An Introduction to Element-based Galerkin Methods on Tensor-Product Bases: Analysis, Algorithms, and Applications

Francis X. Giraldo Department of Applied Mathematics Naval Postgraduate School Monterey, CA 93943-5216

November 30, 2019

Contents

Fo	orewo	ord	xiii
Μ	y Ga	alerkin Story xx	XXV
Ι	In	troduction	1
1	Mo	tivation and Background	3
	1.1	Introduction	3
	1.2	Continuous Governing Equations	6
	1.3	Analytic Tools for Deriving Solutions to the Continuous Problem	7
	1.4	Computational Tools for Obtaining Solutions to the Discrete Problem	7
		1.4.1 From Continuous to Discrete Formulations	7
		1.4.2 Validity of the Numerical Solution and the Lax Equivalence	
		Theorem	8
		1.4.3 Convergence	17
		1.4.4 Efficiency of Galerkin Methods on Distributed-Memory Com-	
		puters	18
2	Ove	erview of Existing Methods	23
_	2.1	Introduction	23
	2.2	Differential Form: Finite Differences	23
	2.3	Integral Form: Galerkin Methods	24
		2.3.1 Continuous Galerkin Method	26
		2.3.2 Discontinuous Galerkin Method	27
	2.4	Introduction to Galerkin Methods	31
		2.4.1 Periodic Boundary Conditions	34
		2.4.2 Non-Periodic Boundary Conditions	34
		2.4.3 Modal/Nodal Expansions	34
	2.5	Global Galerkin Methods	35
	2.6	Element-based Galerkin Methods	36
II	. C	One-Dimensional Problems	39
9			41
3	TIILE	erpolation in One Dimension	41

iv CONTENTS

	3.1	Introd	uction	. 41
	3.2	Modal	Interpolation	. 41
		3.2.1	Monomial Expansion	. 42
		3.2.2	Sturm-Liouville Operator	. 42
		3.2.3	Fourier Functions	. 42
		3.2.4	Jacobi Polynomials	. 43
		3.2.5	Legendre Polynomials	
		3.2.6	Chebyshev Polynomials	. 44
		3.2.7	More on Legendre Polynomials	. 45
		3.2.8	Vandermonde Matrix	. 46
	3.3	Nodal	Interpolation	. 47
		3.3.1	Lebesgue Function and Lebesgue Constant	. 48
		3.3.2	Lagrange Polynomials	. 48
		3.3.3	Quality of Lagrange Polynomial Interpolation	. 51
	3.4	Examp	ole of Interpolation Quality	. 57
		3.4.1	Equi-Spaced Points	. 57
		3.4.2	Chebyshev Points	. 58
		3.4.3	Legendre Points	. 59
		3.4.4	Lobatto Points	. 60
	3.5	Summa	ary of Interpolation Points	. 60
4	Niii	merical	Integration in One Dimension	63
_	4.1		uction	
	4.2		d Differences	
	4.3		rical Integration	
	_	4.3.1	Introduction	
		4.3.2	Quadrature Roots	
		4.3.3	Quadrature Weights	
	4.4		ble of Integration Quality	
	4.5		ary of Integration Points	
5			uous Galerkin Method for Hyperbolic Equations	73
	5.1		uction	
	5.2		nuous Galerkin Representation of the 1D Wave Equation	
	5.3		Functions and the Reference Element	
	5.4		Matrix	
		5.4.1	General Form of the Mass Matrix	
	5.5		entiation Matrix	
		5.5.1	General Form of the Differentiation Matrix	
	5.6		ing Element Equations	
	5.7		nt Contribution to Gridpoint I	
		5.7.1	Left Element	
		5.7.2	Right Element	
		5.7.3	Total Contribution	
		5.7.4	High-Order Approximation	. 84

CONTENTS

	5.8	Direct	Stiffness Summation	. 87
	5.9	Analys	sis of the Matrix Properties of the Spatial Operators	. 89
		5.9.1	Sparsity Pattern of the Mass Matrix	. 89
		5.9.2	Sparsity Pattern of the Differentiation Matrix	. 90
		5.9.3	Eigenvalue Analysis of the Spatial Operator	. 91
	5.10	Exam	ple of 1D Wave Equation Problem	. 93
		5.10.1	Initial Condition	. 93
			Boundary Condition	
		5.10.3	Error Norm	. 93
		5.10.4	Time-Integrator	. 94
		5.10.5	Construction of the CG Solution	. 95
		5.10.6	Solution Accuracy for a Smooth Problem	. 95
		5.10.7	Solution Accuracy for a Non-Smooth Problem	. 98
6	1D	Discon	ntinuous Galerkin Methods for Hyperbolic Equations	101
	6.1		ntinuous Galerkin Representation of the 1D Wave Equation .	
	6.2	Mass I	Matrix	. 103
	6.3	Differe	entiation Matrix	. 103
		6.3.1	General Form of the Weak Differentiation Matrix	. 104
	6.4	Flux N	Matrix	
		6.4.1	General Form of the Flux Matrix	. 105
	6.5	Result	ing Element Equations	. 105
		6.5.1	Left Element	
		6.5.2	Center Element	. 107
		6.5.3	Right Element	
		6.5.4	Total Contribution	. 107
		6.5.5	Centered Numerical Flux	. 110
		6.5.6	Rusanov Numerical Flux	
	6.6	High-(Order Approximation	. 116
	6.7		sis of the Matrix Properties of the Spatial Operators	
			Sparsity Pattern of the Mass Matrix	
			Sparsity Pattern of the Differentiation Matrix	
		6.7.3	Eigenvalue Analysis of Spatial Operator	. 121
	6.8	Conse	rvation Property of DG	. 125
		6.8.1	Exact Integration	
		6.8.2	Inexact Integration	
		6.8.3	Conservation Property of CG	
	6.9	Exam	ple of 1D Wave Equation Problem	
		6.9.1	Initial Condition	
		6.9.2	Boundary Condition	
		6.9.3	Error Norm	
		6.9.4	Time-Integrator	
		6.9.5	Construction of the DG Solution	
		6.9.6	Solution Accuracy for a Smooth Problem	. 129
		6.9.7	Solution Accuracy for a Non-Smooth Problem	

vi *CONTENTS*

7	1D	Unifie	d Continuous and Discontinuous Galerkin	Methods	fo	r
	\mathbf{Sys}	${ m tems}$ o	f Hyperbolic Equations			137
	7.1	Introd	uction			137
	7.2	CG an	nd DG Storage of Data			137
		7.2.1	From DG to CG Storage			138
		7.2.2	From CG to DG Storage			138
	7.3	1D Wa	ave Equation			139
		7.3.1	Communicator			141
		7.3.2	Construction of the Unified CG/DG Solution			142
		7.3.3	Face Data Structure			147
	7.4	1D Sh	allow Water Equations			148
		7.4.1	Example of Linearized 1D Shallow Water Equation	ns		150
		7.4.2	Analytic Solution and Initial Condition			150
		7.4.3	Boundary Condition			151
		7.4.4	Error Norm			151
		7.4.5	Time-Integrator			151
		7.4.6	CG Solution Accuracy			152
		7.4.7	DG Solution Accuracy			153
	7.5	1D Eu	ller Equations			154
	7.6	Dissip	ation and Dispersion Analysis			157
		7.6.1	Continuous Galerkin Method			158
		7.6.2	Discontinuous Galerkin Method			161
	7.7	Disper	rsion and High-Frequency Waves			164
		7.7.1	Multi-scale Test Problem			164
		7.7.2	CG and DG Solutions			165
8	1D	Contin	nuous Galerkin Methods for Elliptic Equation	ıs		169
	8.1	Introd	uction			169
	8.2	Ellipti	c Equations			169
	8.3	Finite	Difference Method			170
	8.4		nuous Galerkin Method			171
	8.5	First I	Derivatives in their Strong and Weak Forms			173
		8.5.1	Strong Form			173
		8.5.2	Weak Form			176
	8.6	Second	d Derivatives in their Weak Form			178
		8.6.1	Laplacian Matrix			178
		8.6.2	Resulting Element Equations			180
		8.6.3	Element Contribution to Gridpoint I			180
		8.6.4	1D Elliptic Equation			181
	8.7	Analys	sis of the Matrix Properties of the Spatial Operator	s		185
		8.7.1	Sparsity Pattern of the Mass Matrix			186
		8.7.2	Sparsity Pattern of the Laplacian Matrix			186
		8.7.3	Eigenvalue Analysis of the Laplacian Operator			187
	8.8	Exam	ole of 1D Poisson Equation Problem			188
		8.8.1	Error Norm			188

CONTENTS vii

		8.8.2	Solution Accuracy	188
9	1D	Discon	tinuous Galerkin Methods for Elliptic Equations	191
	9.1	Introd	uction	191
	9.2	Ellipti	c Equations	191
	9.3	Discon	tinuous Galerkin Method	192
	9.4	First I	Derivatives in Weak Form	193
		9.4.1	Resulting Element Equations	195
		9.4.2	Element Derivative at the Gridpoint I	195
	9.5	Second	d Derivatives	198
		9.5.1	First Derivative: Auxiliary Variable	198
		9.5.2	Resulting Element Equations	199
		9.5.3	Element Derivative at the Gridpoint I	199
		9.5.4	Possible Choices for the Numerical Flux	200
		9.5.5	Resulting Auxiliary Variable at the Gridpoint I	201
		9.5.6	Second Derivative	202
		9.5.7	Resulting Element Equations	202
		9.5.8	Element Second Derivative at the Gridpoint I	203
		9.5.9	Resulting Second Derivative at the Gridpoint I	203
		9.5.10	1D Elliptic Equation	205
	9.6	Analys	sis of the Matrix Properties of the Spatial Operators	207
		9.6.1	Sparsity Pattern of the Mass Matrix	208
		9.6.2	Sparsity Pattern of the Laplacian Matrix	208
		9.6.3	Eigenvalue Analysis of the Laplacian Operator	209
	9.7	Examp	ole of 1D Poisson Equation Problem	210
		9.7.1	Error Norm	210
		9.7.2	Solution Accuracy	210
II	I I	Multi-	-Dimensional Problems	213
10) Inte	rpolat	ion in Multiple Dimensions	215
		-	uction	
			olation on the Quadrilateral	
	10.2		Modal Interpolation	
			Nodal Interpolation	
			Popularity of Quadrilateral Elements	
			Example of Quadrilateral Basis Functions	
	10.3		olation on the Hexahedron	
	20.0	_	Modal Interpolation	
			Nodal Interpolation	
			Indexing of the Basis Functions	
			(,	0

viii *CONTENTS*

11 Nu	merical	Integration in Multiple Dimensions		227
11.1	Introd	uction		227
11.2	Numer	ical Integration on the Quadrilateral		228
11.3	Numer	rical Integration on the Hexahedron		229
11.4	Types	of Integrals Required	•	230
12 2D	Contin	uous Galerkin Methods for Elliptic Equations		231
12.1	Introd	uction		231
12.2	Proble	m Statement for the Elliptic Equation		232
12.3	Integra	al Form		232
12.4	Basis 1	Functions and the Reference Element		233
	12.4.1	Metric Terms of the Mapping		234
	12.4.2	Algorithm for the Metric Terms		242
12.5	Elemen	nt Equations on a Single Element		246
	12.5.1	Integration by Parts for the Diffusion Operator		246
	12.5.2	Matrix-Vector Problem Resulting from Exact Integration		246
	12.5.3	Matrix-Vector Problem Resulting from Inexact Integration .		247
	12.5.4	Algorithms for the Element Matrices		248
12.6		Matrix-Vector Problem		250
	12.6.1	Direct Stiffness Summation		251
		Boundary Condition		253
12.7		Order Operators without Integration by Parts		254
		ole of 2D CG for Linear Elements		255
		2D Basis Functions on Quadrilaterals		255
		Metric Terms		256
		Derivatives in Physical Space		257
		Laplacian Matrix		257
		Mass Matrix		258
		Matrix Equations on the Reference Element		259
		Difference Equation for the Laplacian Operator		260
12.9		iptic Equation		263
		Algorithm for the 2D Elliptic Equation		265
12.1		sis of the Matrix Properties of the Spatial Operators		265
	•	Sparsity Pattern of the Mass Matrix		266
		Sparsity Pattern of the Laplacian Matrix		266
		BEigenvalue Analysis of Spatial Operator		266
12.1		ble of 2D Poisson Equation		267
12.1	_	Error Norm		268
		Solution Accuracy		268
12.1		itational Cost of High-Order		269
12.1	_	Solution Accuracy	•	270

CONTENTS ix

13	2D	Discontinuous Galerkin Methods for Elliptic Equations	275
	13.1	Introduction	. 275
	13.2	2D Elliptic Equation	. 275
	13.3	Weak Integral Form	. 276
	13.4	Basis Functions and the Reference Element	. 277
	13.5	Element Equations on a Single Element	. 277
		13.5.1 First Step: Evaluating the Auxiliary Variable	
		13.5.2 Second Step: Evaluate the Poisson Problem	. 279
	13.6	Solution Strategy	. 280
		13.6.1 Approach I	. 280
		13.6.2 Approach II	. 281
	13.7	Algorithm for LDG	
		13.7.1 Element Differentiation Matrix	. 283
		13.7.2 Global Flux Matrix	. 283
	13.8	Analysis of the Matrix Properties of the Spatial Operators	. 285
		13.8.1 Sparsity Pattern of the Mass Matrix	. 285
		13.8.2 Sparsity Pattern of the Laplacian Matrix	. 285
		13.8.3 Eigenvalue Analysis of Spatial Operator	
	13.9	Example of 2D Poisson Equation	. 287
		13.9.1 Solution Accuracy	. 288
	14.2 14.3 14.4 14.5	Introduction	. 291. 292. 292. 294
		Algorithm for the SIPG Method	
	14.1	14.7.1 Sparsity Pattern of the Laplacian Matrix	
		14.7.1 Sparsity Fattern of the Laplacian Matrix	
	1/1 &	Example of 2D Poisson Equation	
	14.0	14.8.1 Solution Accuracy	
		14.0.1 Solution Accuracy	. 250
15	2D	Continuous Galerkin Methods for Hyperbolic Equations	301
		Introduction	
		2D Advection-Diffusion Equation	
		Integral Form	
		Element Equations on the Reference Element	
		15.4.1 Integration by Parts for the Diffusion Operator	
		15.4.2 Matrix-Vector Problem Resulting from Exact Integration	
		15.4.3 Matrix-Vector Problem Resulting from Inexact Integration .	
	15.5	Global Matrix-Vector Problem	
		Example of 2D CG for Linear Elements	

X CONTENTS

		15.6.1 2D Basis Functions	308
		15.6.2 Metric Terms	308
		15.6.3 Derivatives in Physical Space	309
		15.6.4 Mass and Laplacian Matrices	309
		15.6.5 Advection Matrix	309
		15.6.6 Matrix Equations on the Reference Element	311
	15.7	Algorithms for the CG Global Matrix-Vector Problem	312
		15.7.1 Non-Tensor-Product Approach	312
		15.7.2 Tensor-Product Approach	315
	15.8	Example of 2D Hyperbolic Equation Problem	318
		15.8.1 Solution Accuracy	318
		15.8.2 Computational Cost of High-Order	319
16		Discontinuous Galerkin Methods for Hyperbolic Equations	321
		Introduction	321
		2D Advection-Diffusion Equation	321 322
		Integral Form	$\frac{322}{323}$
			323 324
	10.5	Element Equations on a Single Element: Weak Form	
		16.5.2 Matrix-Vector Problem Resulting from Exact Integration	325
		16.5.3 Matrix-Vector Problem Resulting from Inexact Integration	$\frac{325}{326}$
	16.6	Element Equations on a Single Element: Strong Form	327
	10.0	16.6.1 Matrix-Vector Problem Resulting from Exact Integration	327
		16.6.2 Matrix-Vector Problem Resulting from Inexact Integration	328
	16.7	Example of 2D DG for Linear Elements	329
	10.,	16.7.1 2D Basis Functions	329
		16.7.2 Metric Terms	330
		16.7.3 Derivatives in Physical Space	330
		16.7.4 Mass Matrix	330
		16.7.5 Differentiation Matrix	330
		16.7.6 Flux Matrix	331
		16.7.7 Numerical Flux Function	335
	16.8	Algorithms for the DG Matrix-Vector Problem	338
		16.8.1 Non-Tensor-Product Approach	338
		16.8.2 Tensor-Product Approach	345
	16.9	Example of 2D Hyperbolic Equation Problem	348
		16.9.1 Error Norm	349
		16.9.2 Lobatto Points	349
		16.9.3 Legendre Points	350
17		${ m Continuous/Discontinuous~Galerkin~Methods~for~Hyperbolic~Eq}$	
	tion		353
		Introduction	353
	17.2	2D Advection-Diffusion Equation	353

CONTENTS xi

17.3	Weak Integral Form	. 354
17.4	2D Basis Functions and the Reference Element	. 355
17.5	Element Equations on a Single Element: Weak Form	. 355
	17.5.1 Matrix-Vector Problem Resulting from Exact Integration	. 355
	17.5.2 Matrix-Vector Problem Resulting from Inexact Integration .	. 357
17.6	Element Equations on a Single Element: Strong Form	. 357
	17.6.1 Matrix-Vector Problem Resulting from Exact Integration	. 358
	17.6.2 Matrix-Vector Problem Resulting from Inexact Integration .	. 358
17.7	Algorithms for a Unified CG/DG Matrix-Vector Problem	. 359
	17.7.1 First Order Operator	
	17.7.2 Second Order Operator	. 362
	17.7.3 Construction of the Global Matrix Problem	
17.8	Example of 2D Hyperbolic Equation Problem	. 369
\mathbf{IV}	Advanced Topics	371
18 Stal	bilization of High-Order Methods	373
18.1	Introduction	. 373
18.2	Aliasing Error	. 374
18.3	Diffusion Operators	. 378
18.4	Spectral Filters	. 381
18.5	Limiters	. 385
	18.5.1 Taylor Polynomials to Monomials	. 385
	18.5.2 Monomials to Orthogonal Polynomials	. 386
	18.5.3 Zeroth Mode of an Orthogonal Expansion	
	18.5.4 Minmod Limiter	. 390
	Riemann Solvers and Upwinding	
18.7	Local Adaptive Viscosity Methods	. 393
	18.7.1 Streamline Upwind Petrov-Galerkin	
	18.7.2 Variational Multi-Scale Method	. 396
	18.7.3 Dynamic Sub-Grid Scales	
	Positivity Preservation	
18.9	Provably Stable Methods	
	18.9.1 Classical DG Solution of the 1D Burgers Equation	
	18.9.2 Skew-Symmetric Form of the 1D Burgers Equation	
	18.9.3 Entropy Stable Methods	. 408
	aptive Mesh Refinement	411
	Introduction	
	Conforming vs non-conforming mesh	
19.3	H-Refinement Method	. 413
	19.3.1 Data Structures	. 414
	19.3.2 H-Refinement Algorithm	. 416
	19.3.3 Gather and Scatter Matrices	. 417

xii CONTENTS

		1	20
	19.4	P-Refinement Method	20
			21
		19.4.2 P-Refinement for Nodal CG and DG 4	22
		19.4.3 Additional Matrices for Nodal P-Refinement 4	23
	19.5		24
	19.6	H-Refinement Example in Two Dimensions 4	26
		-	27
		•	28
			28
		19.6.4 Handling of non-conforming faces for DG	29
		19.6.5 Handling of non-conforming faces for CG	32
20	Tim	Integration 4	39
	20.1	Introduction	39
	20.2	Explicit Methods	39
		20.2.1 Single-step Multi-stage Methods	40
			41
	20.3	Fully-Implicit Methods	42
			44
		1	45
	20.4	Implicit-Explicit (IMEX) Methods 4	46
		20.4.1 Single-step Multi-stage Methods 4	46
		20.4.2 Multi-step Methods	47
	20.5	Semi-Lagrangian Methods	48
		20.5.1 Non-Conservative Semi-Lagrangian Method 4	48
		20.5.2 Conservative Semi-Lagrangian Method 4	51
		20.5.3 Semi-Lagrangian Example	53
		0 0	54
	20.6	Multirate Methods	55
		20.6.1 Multirate as in Knoth-Wensch	55
		20.6.2 Convergence Rate	57
		20.6.3 Speedup	57
21		U .	61
			61
	21.2	i ,	63
			63
			66
		O .	66
	21.3		69
		1	69
			74
		1	80
	21.5	Complexity Analysis of HDG	81

CC	CONTENTS xi				
${f A}$	21.5.1 HDG versus CGc	483 483 483 1487			
В	Jacobi PolynomialsB.1 Chebyshev PolynomialsB.2 Legendre PolynomialsB.3 Lobatto Polynomials	492			