

Virtual 3D microstructures with specified characteristics of state variable distributions

Edgar Gomes¹, Kim Verbeken¹, and Leo Kestens^{1,2}

¹Ghent University,
Department of Materials Science and Engineering
²Delft University of Technology,
Materials Science and Engineering Department

16th ICOTOM - December 12, 2011

Physical model

is "a representation of the essential aspects of an existing system (or a system to be constructed) which presents knowledge of that system in usable form"

^aEykhoff, System Identification: Parameter and State Estimation (1974).

Motivation

3D measurements

of real materials are possible but consume relatively high amount of financial and time resources. Which implies in volume/statistics limitation.

Virtual Materials

Virtual material

is an abstraction that represents characteristics of a microstructure in a computer data structure.

In the past decades ...

... but now we want the reverse!

Results

Grain Morphology

shape distribution

number of neighbours

size distribution

clustering

discrete or custom

Orietation distribution

Texture

$$\frac{dV}{V} = f(g)dg$$

$$\oint f(g)dg = 1$$

$$f(g) = \sum_{l=0}^{\infty} \sum_{l=0}^{l} \sum_{l=0}^{l} C_l^{mn} \cdot T_l^{mn}(g)$$

At first glance, both *Grain Morphology and Texture*, are independent but:

- 1 volume fraction constraint is implicit
 - no random texture with 2 grains
- 2 and...

Grain Boundary
Character Distribution

Uniform Random distribution

Orientation sampling

 $F(x) = \int_{-\infty}^{x} f(t) dt$

Atention

sampling an ODF return values unrelated with the grain size distribution. All sampled values are valid for constant grain size.

Grain Size Distribution

Final words Introduction Framework Grains Texture Results Department of 00 UNIVERSITEIT GENT & Engineering

Orientation Distribution

Framework Final words Introduction Grains Texture Results Department of 00000 00000 0000 000 000 00

Orientation Distribution

Future work

- Faster algorithm for grain generation with control of others properties other than size distribution.
- Sampling orientations regarding grain size distribution.
- Merge distributions into a high dimension distribution function (DF).
- Sampling set of properties from high dimensions DF.

Thank for your attention !!!

"Joe Magarac was an imaginary folk hero whose story came from eastern European immigrants working in Pittsburgh area steel mills. His physical power and his brave, generous, and hard-working character made Joe Magarac (whose name "Magarac" means "donkey" in Croatian) the greatest steelworker who ever lived." a

Edgar.Gomes@UGent.be

a http://www.jaha.org/edu/discovery_center/work/folk_hero.html