Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный тохунический университел имени Н Э

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

УДК № 378.14 № госрегистрации 01970006723 Инв. №	УТВЕРЖДАЮ	
	головной исполнитель НИР	
	«»	2019 r
C)ТЧЁТ	
О НАУЧНО-ИССЛЕД	(ОВАТЕЛЬСКОЙ РАБО	$\Gamma \mathrm{E}$
Моделирован	о теме: ние взрыва частиц ежуточный)	

____ А.С. Кострицкий

Руководитель проекта

СОДЕРЖАНИЕ

Введение	4
1 Аналитический раздел	6
1.1 Анализ предметной области	6
1.2 Обзор и анализ существующих решений, обоснование необходи-	-
мости разработки	6
1.3 Выбор, обоснование метода моделирования и алгоритма	6
2 Конструкторский раздел	7
3 Технологический раздел	8
4 Экспериментальный раздел	9
Заключение	10
Список использованных источников	11
Приложение А Картинки	12

РЕФЕРАТ

Отчет содержит $12\,\mathrm{стр.},\,3$ источн., 1 прил.

ВВЕДЕНИЕ

На протяжении десятилетий взрывы были самыми динамичными и визуально привлекательными спецэффектами в кино и видеоиграх. Они стали настолько заметными в боевиках и приключенческих фильмах, что кажется необычным, когда его нет в фильме. Каким был бы фильм "Звездные войны" без финального взрыва Звезды Смерти?

Традиционно взрывные эффекты создаются перед камерой, а не в компьютере. Либо строится уменьшенная модель и взрывается перед высокоскоростными камерами, либо используются настоящие взрывчатые вещества.

Правда в кинематографе, важна эффектность, поэтому все заранее планируется в мельчайших подробностях.

Если нужно взорвать настоящее здание, пусть даже специально для этого построенное, его предварительно готовят: подпиливают рамы так, чтобы нужная часть их осталась на месте, а нужная — разлетелась на части. Также это делается для того, чтобы здание развалилось при минимально необходимом заряде. Все части, что должны развалиться, делаются из легких материалов с тем, чтобы если какие-то куски случайно упадут на голову кинематографистам, ущерб был бы минимален.

Если при этом в кадре должны быть персонажи, с людьми скрупулезно отрабатываются все их передвижения, фиксируется время, необходимое для того, чтобы они достигли безопасного расстояния до того, как произойдет главный взрыв. [1]

Существует множество веских причин для использования компьютеров для создания взрывных эффектов вместо более традиционных практических методов. Основной мотивацией, конечно, забота о безопасности актеров. Когда взрыв происходит полностью внутри компьютера, нет никаких шансов на то, что кто-то случайно попадет в зону взрыва. Также компьютерные взрывы дешевле и быстрее, чем точное масштабирование и размещение детонаторов, а также огнестойкость существующих конструкций или создание специальных миниатюр. Когда режиссеры снимают практический взрыв, они настраиваются на несколько дней, чтобы получить несколько ракурсов на один единственный взрыв. С помощью компьютерных эффектов режиссеры могут посмотреть на промежуточный результат и попросить что-то изменить, чтобы более точно отразить свое творческое видение.

Целью проекта является создание максимально приближенной модели взрыва большого числа частиц, при столкновении с телом, имеющим больший размер с использованием графического редактора систем частиц. Моделирование основано на физическом явлении взрыва взрыва и возникающих побочных эффектов в заданном пространстве за заданное время и взаимодействующих с окружающей средой.

Для достижения поставленной цели необходимо решить следующие задачи:

- а) Определить понятие системы частиц.
- б) Создать движок для работы с частицами.
- в) Изучить физическое явление взрыв.
- г) Смоделировать взрыва большого числа частиц, при столкновении с телом

1 Аналитический раздел

Целью работы является создание максимально приближенной модели взрыва большого числа частиц. Объекты в сцене представлены в виде твердых частиц, которые приводятся в движение различными силами.

1.1 Анализ предметной области

Система частиц — широко используемый в компьютерной графике метод представления объектов, не имеющих четки геометрических границ. Облака, туманности, дым, взрыв, снег — все эти объекты моделируются с помощью систем частиц. [2]

1.2 Обзор и анализ существующих решений, обоснование необходимости разработки

Актуальность темы исследования обусловлена тем, что за последние несколько лет технология виртуальной реальности совершила огромный скачок в развитии и расширении сфер применения. Если раньше эта технология в основном применялась в военной промышленности и компьютерных играх, то сейчас виртуальная реальность проникает практически во все сферы деятельности человека: медицину, образование, архитектуру, рекламу и прочее. Эта технология имеет огромный потенциал и поэтому она так активно развивается.

1.3 Выбор, обоснование метода моделирования и алгоритма

2 Конструкторский раздел

3 Технологический раздел

4 Экспериментальный раздел

ЗАКЛЮЧЕНИЕ

В результате проделанной работы

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Взрывы в кино: что за кадром? Режим доступа: http://www.mir3d.ru/vfx/950/ (дата обращения: 10.10.2019).
- 2. Простая система частиц? Режим доступа: http://grafika.me/node/496 (дата обращения: 10.10.2019).
- 3. Reeves William T. Particle Systems A Technique for Modeling a Class of Fuzzy Objects. —Computer Graphics, том 17, №3, с. 359-376, 1983.

ПРИЛОЖЕНИЕ А КАРТИНКИ