Game Theory

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Firs	First Chapter 1					
	1.1	First Section	1				
	1.2	Groups of Games	1				
2 St		ategic Games	7				
	2.1	Pure Strategies	7				
	2.2	Nash Equilibrium of Pure Strategies	8				
	2.3	Domination for Pure Strategies	10				
	2.4	Mixed Strategies	11				
	2.5	Nash Equilibrium of Mixed Strategies	12				
	2.6	Domination for Mixed Strategies	13				
3	Len	emke-Homson Algorithm 1					
4	Ma	rket Models	19				
	4.1	Cournot Oligopoly Model	19				
	4.2	Bertrand Oligopoly Model	20				
5 Ro	Rot	iting Games	23				
	5.1	Atomic Selfish Routing Game	23				
	5.2	Non-atomic Selfish Routing	24				
	5.2	Potential Function of Atomic Solfish Pouting Come	20				

ii *CONTENTS*

Chapter 1

First Chapter

1.1 First Section

DEFINITION 1.1 (Winning Position). Consider a two-player game. We say that a player has a **winning position** if and only if optimal play by that player guarantees a win.

DEFINITION 1.2 (Losing Position). Consider a two-player game. We say that a player has a **losing position** if and only if an optimal move by their opponent guarantees a loss.

PROPOSITION 1.3.

- From a winning position (player to move), there exists a move that leads to a losing position for the other player.
- From a losing position (player to move), every move leads to a winning position for the other player.

1.2 Groups of Games

DEFINITION 1.4 (Equivalent Games). Let G and H be two impartial games. We say that G and H are **equivalent** if and only if for all impartial games J, G + J is a losing position if and only if H + J is a losing position.

- for all impartial games J, G + J is a losing position if and only if H + J is a losing position.
- for all impartial games J, G+J is a winning position if and only if H+J is a winning position.

PROPOSITION 1.5. Game equivalence is an equivalence relation. That is, "≡" is:

- Reflexive: $\forall G$, we have $G \equiv G$.
- Symmetric: $\forall G, H$, we have $G \equiv H \iff H \equiv G$.
- Transitive: $\forall G, H, K$, we have $((G \equiv H) \land (H \equiv K)) \implies G \equiv K$.

PROPOSITION 1.6. $\forall G, H, J$, we have $G \equiv H \implies G + J \equiv H + J$.

PROPOSITION 1.7. $G \equiv H$ implies that G and H are both winning or both losing.

LEMMA 1.8. *G* is a losing position if and only if $G \equiv *0$.

Proof. Backward Direction: Suppose that $G \equiv *0$. Then $\forall J, G + J$ is a losing position if and only if *0 + J is a losing position. In particular, take J := *0, then G + *0 is a losing position if and only if *0 + *0 is a losing position. Notice G + *0 = *0 and *0 + *0 = *0. So G is a losing position if and only if *0 is a losing position. We know that *0 is indeed a losing position. So G is a losing position.

Forward Direction: Suppose that G is a losing position. I will show that $G \equiv *0$. Let J be an arbitrary impartial game. Notice *0 + J = J. So there remains to show that G + J is losing if and only if J is losing.

Suppose that G+J is a losing position. I will show that J is a losing position. Assume for the sake of contradiction that J is not losing. Then J is winning. Let $J \to J'$ be a move such that J' is losing. Since G is losing and J' is losing, we get G+J' is losing. So G+J is winning. However, this contradicts to the assumption that G+J is losing. So J is losing.

Suppose that J is a losing position. I will show that G+J is a losing position. Double strong well-founded induction.

G is winning and J is losing, then G + J is winning???

DEFINITION 1.9 (Group of Game). Let \mathcal{G} be a set of games. Let $*: \mathcal{G} \times \mathcal{G} \to \mathcal{G}$ be a binary operation on \mathcal{G} . We say that $(\mathcal{G}, *)$ is a **group** if and only if the following conditions hold:

- 1. Associativity: $\forall G_1, G_2, G_3 \in \mathcal{G}, (G_1 * G_2) * G_3 \equiv G_1 * (G_2 * G_3).$
- 2. Identity: $\exists I \in \mathcal{G}$ such that $\forall G \in \mathcal{G}, G * I \equiv I * G \equiv G$.
- 3. Inverse: $\forall G \in \mathcal{G}, \exists H \in \mathcal{G} \text{ such that } G * H \equiv H * G \equiv I.$

LEMMA 1.10. $G \equiv H$ if and only if $G + H \equiv *0$.

Proof. Forward Direction: Suppose that $G \equiv H$. I will show that $G + H \equiv *0$. Since $G \equiv H$, we get

$$G + H \equiv H + H$$
, by the

LEMMA 1.11. Let G and H be impartial combinatorial games. Suppose that

- For each option G' of G, there exists an option of H which is equivalent to G'.
- For each option H' of H, there exists an option of G which is equivalent to H'.

Then $G \equiv H$.

Proof. Since $G' + H' \equiv *0$, we get $G + H \equiv *0$.

THEOREM 1.12 (Sum of NIM Heaps). Suppose $n_1, ..., n_k \in \mathbb{Z}_{++}$ are distinct powers of 2. Then we have

$$*(n_1 + ... + n_k) \equiv (*n_1 + ... + *n_k).$$

Proof. Base Case: n = 0.

Inductive Step: Suppose the theorem holds for all positive integers less than n. Write n as $n = 2^{a_1} + ... + 2^{a_k}$ where $a_1 > ... > a_k$. Define

$$q := n - 2^{a_1} = 2^{a_2} + \dots + 2^{a_k}.$$

Note that $q < 2^{a_1} < n$. Apply the induction hypothesis on q, we get

$$*q \equiv *2^{a_1} + \dots + *2^{a_k}$$

Now there remains to show that $*n \equiv *2^{a_1} + *q$. Consider the options of *n: $\{*(n-1), *(n-2), ..., *0\}$ and the options of $*2^{a_1} + *q$: $\{G + *q, *2^{a_1} + H\}$ where G is some option of $*2^{a_1}$ and H is some option of *q.

Consider the set $\{*i + *q : 0 \le i < 2^{a_1}\}$ of options of $*2^{a_1} + *q$.

Consider the set $\{*2^{a_1} + *i : 0 \le i < q\}$ of options of $*2^{a_1} + *q$. Write i as $i = 2^{b_1} + 2^{b_2} + \dots$ Notice $2^{a_1} + i < 2^{a_1} + q < n$. So by the inductive hypothesis, we get

$$*(2^{a_1}+i) = *(2^{a_1}+2^{b_1}+2^{b_2}+...) = *2^{a_1}+*2^{b_1}+*2^{b_2}+...$$

So the set of options of *n is equivalent to the set of options for $*2^{a_1} + *q$. So $*n \equiv *2^{a_1} + *2^{a_2} + ...$

EXAMPLE 1.13.

$$(5,9,8) = *5 + *9 + *8 = *(4+1) + *(8+1) + *8$$

= *4 + *1 + *8 + *1 + *8 = *4.

So the optimal move is to take away the *4: $(5,9,8) \rightarrow (1,9,8)$.

DEFINITION 1.14 (Balance, Unbalanced). We say that a NIM position $(a_1, ..., a_q)$ is **balanced** if and only if $a_1 \oplus ... \oplus a_q = 0$. We say that is it **unbalanced** otherwise.

THEOREM 1.15. A NIM position $(a_1, ..., a_q)$ is a losing (winning) position if and only if it is balanced (unbalanced).

DEFINITION 1.16 (Minimum Excludant). Given a subset $S \subsetneq \mathbb{N}$, we define $\max(S)$ to be the smallest element of $\mathbb{N} \setminus S$.

THEOREM 1.17 (MEX Rule). Let $S \subsetneq \mathbb{N}$. Let G be an impartial game whose options are equivalent to $\{*s: s \in S\}$. Then $G \equiv *(\max(S))$.

Proof. Let $m := \max(S)$. By the Generalized Copycat principle, it suffices to show that $G + *m \equiv *0$.

Consider an option of the form G + *m' for some m' < m. Since $m = \max(S)$ and m' < m, we have $m' \in S$. Then there exists an option G' of G such that $G' \equiv *m'$. The other player can move to G' + *m'. Since $G' \equiv *m'$, the game G' + *m' is a losing position (copycat principle). So G + *m' is winning.

Consider an option of the form G' + *m of G + *m. Recall that the options of G are $\{*n : n \in S\}$. Let $k \in S$ be a natural number such that $G' \equiv *k$. Then $G' + *m \equiv *k + *m$. Since $m \notin S$ and $k \in S$, *k + *m is winning. So G' + *m is winning.

Hence all options of G + *m are winning. So G + *m is losing. So $G \equiv *m$.

COROLLARY 1.18. For every impartial game G, there exists a natural number $n \in \mathbb{N}$ such that $G \equiv *n$.

Proof. We use (well-founded) induction on G.

Base case: If G has no options, then $G \equiv *0$.

Inductive step: Suppose the set of options for G is finite and are $G^1, ..., G^q$. By the induction hypothesis, $\forall i \in \{1, ..., q\}$, we have $G^i \equiv *n_i$ for some $n_i \in \mathbb{N}$. So the set of options of G are equivalent to $\{*n_1, ..., *n_q\}$. Apply the MEX rule with $S := \{n_1, ..., n_q\}$, we have

$$G \equiv *(\max(S)) = *(\max(\{n_1, ..., n_a\})).$$

Chapter 2

Strategic Games

2.1 Pure Strategies

DEFINITION 2.1 (Extensive Games). Games with game trees are called **extensive** games with perfect information.

DEFINITION 2.2 (Strategy). A **strategy** (for a player) specifies a move for every decision node for that player. i.e., a function that maps each decision node to a move.

DEFINITION 2.3 (Strategy Profile). A **strategy profile** specifies a strategy for every player. We represent a strategy (profile) by concatenating moves.

DEFINITION 2.4 (Strategic Form). The **strategic form** of a game consists of:

- A set $N = \{1, ..., n\}$ of players;
- A set S_i of strategies for $i \in N$;
- A utility function $u_i: S_1 \times ... \times S_n \to \mathbb{R}$, for each $i \in N$.

A strategic form is a $|S_1| \times ... \times |S_n| \times N$ dimensional tensor.

2.2 Nash Equilibrium of Pure Strategies

DEFINITION 2.5 (Nash Equilibrium). Let $N := \{1, ..., n\}$ denote the set of players. Let S_i denote the set of strategies for player i, for $i \in N$. Let $S := S_1 \times ... \times S_n$. We say that a strategy profile $s^* = (s_1, ..., s_n) \in S$ is a **Nash equilibrium** if and only if $\forall i \in N, \forall s_i' \in S_i$, we have

$$u_i(s_1, ..., s'_i, ..., s_n) \le u_i(s^*).$$

That is, no one player can improve over their utility in s^* by unilaterally deviating in their strategy.

EXAMPLE 2.6 (Prisoner's Dilemma). The Prisoner's dilemma consists of two players, each with strategies Q and C, with payoffs:

$$\begin{array}{c|cccc} & Q & C \\ \hline Q & (2,2) & (0,3) \\ \hline C & (3,0) & (1,1) \\ \end{array}$$

- \bullet (C,C) is the only Nash equilibrium.
- (C, C) is suboptimal overall.

EXAMPLE 2.7 (Bach-Stravinsky).

	Bach	Stravinsky
Bach	(2,1)	(0,0)
Stravinsky	(0,0)	(1,2)

• (B, B) and (S, S) are both Nash equilibria.

EXAMPLE 2.8 (Matching Pennies).

 $\bullet\,$ Player 1 bets on match; player 2 bets on a mismatch.

- Example of a zero-sum game.
- This game has no Nash equilibrium.
- Later in the course we will see that has a mixed Nash equilibrium.

EXAMPLE 2.9. numbers to be fixed

	L	R
T	(2,1)	(0,0)
M	(0,0)	(1,2)
В	(0,0)	(1,2)

Would player 1 ever choose T?

- No, because M is always better than T.
- In this case, T is strictly dominated by M.

2.3 Domination for Pure Strategies

DEFINITION 2.10 (Strictly Dominate). Let $i \in N$. Let $s_i, s_i' \in \mathcal{S}_i$ be two strategies. Let $\mathcal{S}_{-i} := \bigoplus_{j \neq i} \mathcal{S}_j$. We say that s_i strictly dominates s_i' if and only if

$$\forall s_{-i} \in \mathcal{S}_{-i}, \quad u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i}).$$

DEFINITION 2.11 (Weakly Dominate). Let $i \in N$. Let $s_i, s_i' \in \mathcal{S}_i$ be two strategies. Let $\mathcal{S}_{-i} := \bigoplus_{j \neq i} \mathcal{S}_j$. We say that s_i weakly dominates s_i' if and only if

$$\forall s_{-i} \in \mathcal{S}_{-i}, \quad u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}),$$

and $\exists \bar{s}_{-i}^* \in \mathcal{S}_{-i}$ for which the inequality holds strictly.

DEFINITION 2.12 (Best Response Function). We define the **best response func-**

tion for Player i to be a function $B_i: \bigoplus_{j\neq i} \mathcal{S}_j \to \mathcal{P}(\mathcal{S}_i)$ given by

$$B_{i}(s_{-i}) := \{ s_{i} \in \mathcal{S}_{i} : \forall s'_{i} \in \mathcal{S}_{i}, u_{i}(s'_{i}, s_{-i}) \leq u_{i}(s_{i}, s_{-i}) \}$$
$$= \underset{s'_{i} \in \mathcal{S}_{i}}{\operatorname{argmax}} \{ u_{i}(s'_{i}, s_{-i}) \}.$$

In other words, $B_i(s_{-i})$ is the set consisting of all strategies of Player i that yield the maximum payoff against (s_{-i}) .

PROPOSITION 2.13. A strategy profile $s^* = (s_1, ..., s_n) \in \mathcal{S}$ is a Nash equilibrium if and only if

$$\forall i \in N, \quad s_i \in B_i(s_{-i}).$$

2.4 Mixed Strategies

DEFINITION 2.14 (Mixed Strategy). Let S_i denote the set of strategies for player i. We define a **mixed strategy** $x^{(i)}$ over S_i to be a probability distribution over S_i . That is, $x^{(i)} \in \mathbb{R}^{S_i}$ is such that $x^{(i)} \geq 0$ and $\mathbb{1}^{\top} x^{(i)} = 1$.

DEFINITION 2.15 (Mixed Strategy Profile). We define a **mixed strategy profile** to be a vector $\vec{x} = (x^{(1)}, ..., x^{(n)}) \in \mathbb{R}^{S_1} \times ... \times \mathbb{R}^{S_n}$ specifying a mixed strategy $x^{(i)} \in \mathbb{R}^{S_i}$ for each player $i \in N$.

DEFINITION 2.16 (Expected Utility). Let $\vec{x} = (x^{(1)}, ..., x^{(n)})$ denote a mixed strategy profile. We define the **expected utility** of player i in \vec{x} , denoted by $u_i(\vec{x})$, to be a number given by

$$u_i(\vec{x}) := \sum_{\vec{s} \in \mathcal{S}} \left[u_i(\vec{s}) \prod_{j \in \{1, \dots, n\}} x_{s_j}^{(j)} \right] = \sum_{s_i \in \mathcal{S}_i} x_{s_i}^{(i)} \sum_{\vec{s} \in \mathcal{S}, \vec{s}_i = s_i} \left[u_i(\vec{s}) \prod_{j \neq i} x_{s_j}^{(j)} \right].$$

We define the **expected utility of strategy** s_i in \vec{x} to be

$$u_i(s_i, \vec{x}) := \sum_{\vec{s} \in \mathcal{S}, \vec{s}_i = s_i} \left[u_i(\vec{s}) \prod_{j \neq i} x_{s_j}^{(j)} \right].$$

2.5 Nash Equilibrium of Mixed Strategies

DEFINITION 2.17 (Mixed Nash Equilibrium). Let $\bar{x} = (\bar{x}^{(1)}, ..., \bar{x}^{(n)})$ be a mixed strategy. We say that \bar{x} is a **mixed Nash equilibrium** if and ony if $\forall i \in \{1, ..., n\}$, for any mixed strategy $x^{(i)}$ over S_i , we have

$$u_i(\bar{x}) \ge u_i(\bar{x}^1, ..., x^i, ..., \bar{x}^n).$$

DEFINITION 2.18 (Best Response). Given a profile $\bar{x}^{-i} = (\bar{x}^1, ..., \bar{x}^{i-1}, \bar{x}^{i+1}, ..., \bar{x}^n)$ of mixed strategies of players in $N \setminus \{i\}$, the best response for \bar{x}^{-i} is the set $B_i(\bar{x}^{-i})$ of all mixed strategies x^i of player i that maximize the expected utility

u.

PROPOSITION 2.19. Best response functions are continuous.

THEOREM 2.20. A strategy profile is a mixed Nash equilibrium if and only if it lies on both player's best-response graphs.

Optimization problems:

$$\begin{array}{ll} \text{(P)} & \max & \sum_{s \in \mathcal{S}_i} \bar{x}_s^i \cdot u_i(s, \bar{x}^{-i}) \\ & \text{subject to:} & \sum_{s \in \mathcal{S}_i} \bar{x}_s^i = 1, \\ & \bar{x}^i \geq 0. \end{array}$$

(D) min
$$y$$
 subject to: $y \ge u_i(s, \bar{x}^{-i}), \forall s \in \mathcal{S}_i$.

Conversely, we prove that every mixed strategy that chooses from among locally optimal strategies is an optimal strategy...

THEOREM 2.21 (Support Characterization). Given mixed strategies \bar{x}^{-i} of player in $N \setminus \{i\}$, a mixed strategy \bar{x}^i is in $B_i(\bar{x}^{-i})$ if and only if $\bar{x}^i_s > 0$ implies that $s \in \mathcal{S}_i$ is a strategy of maximum expected payoff (against \bar{x}^{-i}).

COROLLARY 2.22. The set $B_i(\bar{x}^{-i})$ is a polyhedron.

Proof. Let $S' \subseteq S$ be the subset consisting of pure strategies s that maximize $u_i(s, \bar{x}^{-1})$. Then

$$B_i(\bar{x}^{-i}) = \{x^i : \text{supp}(x^i) \subseteq S' \text{ and } \sum_{s \in S'} x_s^i = 1\}.$$

2.6 Domination for Mixed Strategies

DEFINITION 2.23 (Strictly Dominate). A strategy $s_i \in \mathcal{S}_i$ strictly dominates strategy $s_i' \in \mathcal{S}_i$ if and only if

$$\forall j \neq i, \forall s_i \in S_i, \quad u_i(s_1, ..., s_i, ..., s_n) > u_i(s_1, ..., s_i', ..., s_n).$$

DEFINITION 2.24. Let x^i be a mixed strategy over S_i . Let $s_i \in S_i$ be a pure strategy. We say that x^i strictly dominates s_i if and only if

$$\forall s_{-i} \in \mathcal{S}_{-i}, \quad u_i(x^i, s_{-i}) > u_i(s_i, s_{-i}).$$

THEOREM 2.25. Let $\bar{x} \in \bigoplus_{i=1}^n \mathbb{R}_+^{S_i}$ be a mixed Nash equilibrium. Let $s \in \mathcal{S}_i$ be a pure strategy. Suppose that there exists a mixed strategy $x^i \in \mathbb{R}_+^{S_i}$ over \mathcal{S}_i that strictly dominates s, then $\bar{x}_s^i = 0$.

Proof. Assume for the sake of contradiction that $\bar{x}_s^i > 0$.

DEFINITION 2.26 (Zero-Sum Game). We say that a game is a **zero-sum game** if and only if

$$\forall s \in \mathcal{S}, \quad \sum_{i=1}^{n} u_i(s) = 0.$$

Player 1's linear program:

(P₁) max
$$\nu_r$$

subject to: $x^{(1)\top}A_{,j} \ge \nu_r$, $\forall j \in S_2$,
 $1^{\top}x^{(1)} = 1, x^{(1)} > 0$.

Player 2's linear program:

(P₂) min
$$\nu_c$$

subject to: $A_{i,.}x^{(2)} \le \nu_c$, $\forall i \in S_1$,
 $1^{\top}x^{(2)} = 1, x^{(2)} > 0$.

They are duals of each other, both feasible and bounded.

These are equivalent to the following programs:

$$(P'_{1}) \quad \max \quad (0_{|S_{1}|}^{\top}, 1) \begin{pmatrix} x^{(1)} \\ \nu_{r} \end{pmatrix}$$
subject to
$$\begin{pmatrix} A^{\top} & -1_{|S_{2}|} \\ 1_{|S_{1}|}^{\top} & 0 \\ -1_{|S_{1}|}^{\top} & 0 \end{pmatrix} \begin{pmatrix} x^{(1)} \\ \nu_{r} \end{pmatrix} \ge \begin{pmatrix} 0_{|S_{2}|} \\ 1 \\ -1 \end{pmatrix},$$

$$x^{(1)} \ge 0_{|S_{1}|}.$$

$$(P'_{1}) \quad \min \quad (0_{-r+1}^{\top}, 1) \begin{pmatrix} x^{(2)} \\ \end{pmatrix}$$

$$(P_2') \quad \min \quad (0_{|S_2|}^\top, 1) \begin{pmatrix} x^{(2)} \\ \nu_c \end{pmatrix}$$
 subject to:
$$\begin{pmatrix} A & 1_{|S_1|} \\ -1_{|S_2|}^\top & 0 \\ 1_{|S_2|}^\top & 0 \end{pmatrix} \begin{pmatrix} x^{(2)} \\ \nu_c \end{pmatrix} \ge \begin{pmatrix} 0_{|S_1|} \\ 1 \\ -1 \end{pmatrix}$$

$$x^{(2)} \le 0_{|S_2|}.$$

THEOREM 2.27. Every finite strategic game has a mixed Nash equilibrium.

Proof. Let $x \in \prod_{i \in N} \Delta_{|\mathcal{S}_i|}$ be a mixed strategy profile. Define for each $i \in \{1, ..., N\}$ and each $s_i \in \mathbb{S}_i$ a function $\Phi_{s_i}^{(i)} : \prod_{i \in N} \Delta_{|\mathcal{S}_i|} \to \mathbb{R}_+$ by $\Phi_{s_i}^{(i)}(x) := \max(0, u_i(s_i, x^{-1}) - u_i(x)).$

Then

- $\Phi_{s_i}^{(i)}(x)$ is positive only if the pure strategy $s_i \in \mathcal{S}_i$ yields higher expected payoff than the mixed strategy $x^{(i)}$;
- By the Support Characterization theorem, $\Phi_{s_i}^{(i)}(x) = 0$ for all $s_i \in \mathbb{S}_i$ if and only if $x^{(i)}$ is a best response to x^{-i} ;
- $\Phi_{s_i}^{(i)}$ is not necessarily differentiable, but it is continuous.

Define a function $f: \prod_{i \in N} \Delta_{|\mathcal{S}_i|} \to \prod_{i \in N} \Delta_{|\mathcal{S}_i|}$ by $f(x) := \bar{x}$ where \bar{x} is given by:

$$\bar{x}_{s_i}^{(i)} := .$$

Then

•

Let $i \in \{1, ..., n\}$ be arbitrary. Let $s_i \in \mathcal{S}_i$ such that $\hat{x}_{s_i}^{(i)} > 0$ and $u_i(s_i, \hat{x}^{-1}) \leq u_i(\hat{x})$. Then $\Phi_{s_i}^{(i)}(\hat{x}) = 0$ and

$$\hat{x}_{s_i}^{(i)} = (f(\hat{x}))_{s_i}^{(i)} = \frac{\hat{x}_{s_i}^{(i)} + 0}{1 + \sum_{s \in S_i} \Phi_s^{(i)}(\hat{x})}.$$

So $\forall s \in \mathcal{S}_i$, we have $\Phi_s^{(i)}(\hat{x}) = 0$. So $\forall i \in \{1, ..., n\}$, $\hat{x}^{(i)}$ is a best response to \hat{x}^{-i} . So \hat{x} is a Nash equilibrium.

THEOREM 2.28 (Daskalakis, Goldberg, Papadimitriou (2008)). NASH is polynomial parity argument for directed graphs (PPAD)-complete.

REMARK 2.29. NASH, BROUWER, and BORSUK-ULAM are PPAD-complete.

REMARK 2.30. The following problems are NP-complete:

- Find a Nash equilibrium maximizing total utility.
- Find two Nash equilibria (or determine that only one exists).

...

Chapter 3

Lemke-Homson Algorithm

Let S_1 and S_2 denote the strategies for player 1 and player 2, respectively. Let $A, B \in \mathbb{R}^{S_1 \times S_2}$ denote the payoff matrices for player 1 and player 2, respectively. Consider the following system

$$(P) \quad \min \quad 0 \\ \text{subject to:} \quad \mathbb{1}^{\top} x^{(i)} = 1, \quad \forall i \in \{1, 2\}, \\ Ax^{(2)} \leq \mathbb{1} v_1, \\ B^{\top} x^{(1)} \leq \mathbb{1} v_2, \\ \sum_{i \in \mathcal{S}_i} x_i^{(1)} (v_1 - A_i.x^{(2)}) = 0, \\ \sum_{j \in \mathcal{S}_j} x_j^{(2)} (v_2 - B_{\cdot j}^{\top} x^{(1)}) = 0, \\ x^{(1)} \in \mathbb{R}^{\mathcal{S}_1}, x^{(2)} \in \mathbb{R}^{\mathcal{S}_2}, v_1, v_2 \in \mathbb{R}.$$

Note that this is a feasibility problem.

CLAIM 3.1. A non-negative solution to this system is a mixed Nash equilibrium.

Proof. By the Support Characterization theorem, $x^{(1)}$ and $x^{(2)}$ are best responses to each other.

DEFINITION 3.2 (Lemke-Homson Algorithm). Define $\bar{x}^{(1)} := x^{(1)}/v_2 \in \mathbb{R}^{S_1}$ and $\bar{x}^{(2)} := x^{(2)}/v_1 \in \mathbb{R}^{S_2}$. Add slack variables $\gamma^{(1)} \in \mathbb{R}^{S_1}$ and $\gamma^{(2)} \in \mathbb{R}^{S_2}$. Then we get the **Lemke-Homson system**:

$$(P) \quad \min \quad 0 \\ \text{subject to:} \quad A\bar{x}^{(2)} + \gamma^{(1)} = \mathbb{1}, \\ B^{\top}\bar{x}^{(1)} + \gamma^{(2)} = \mathbb{1}, \\ \sum_{i \in \mathcal{S}_1} \bar{x}_i^{(1)} \gamma_i^{(1)} = 0, \\ \sum_{j \in \mathcal{S}_2} \bar{x}_j^{(2)} \gamma_j^{(2)} = 0, \\ \bar{x}^{(1)}, \gamma^{(1)} \in \mathbb{R}_+^{\mathcal{S}_1}, \\ \bar{x}^{(2)}, \gamma^{(2)} \in \mathbb{R}_+^{\mathcal{S}_2}.$$

REMARK 3.3. The first two constraints yield

$$\begin{bmatrix} 0 & A & I & 0 \\ B^{\top} & 0 & 0 & I \end{bmatrix} \begin{pmatrix} \overline{x}^{(1)} \\ \overline{x}^{(2)} \\ \gamma^{(1)} \\ \gamma^{(2)} \end{pmatrix} = \mathbb{1}.$$

Note that there is a trivial (basic) solution to the above system: $\gamma^{(i)} = 1$ and $\bar{x}^{(i)} = 0$, for $i \in \{1, 2\}$. However, there is no mixed strategy with all entries zero.

REMARK 3.4. Set $v_1 := (\mathbb{1}^{\top} \bar{x}^{(2)})^{-1}$, $v_2 := (\mathbb{1}^{\top} \bar{x}^{(1)})^{-1}$, and $x^{(1)} := v_2 \bar{x}^{(1)}$, $x^{(2)} := v_1 \bar{x}^{(2)}$ to get a feasible solution to the original problem.

THEOREM 3.5. For a non-degenerate game, the Lemke-Howson algorithm terminates in a finite number of steps.

Proof Idea. It suffices to show that no basis repeats.

Chapter 4

Market Models

4.1 Cournot Oligopoly Model

DEFINITION 4.1 (Cournot Oligopoly Model). Let $c \in \mathbb{R}_{++}$ denote the cost of production. Let $\alpha \in \mathbb{R}_{++}$ denote the maximum cost that the buyers are willing to pay. Suppose that $c < \alpha$ and

$$C_i(q_i) := cq_i, \forall i \in N, \text{ and}$$

$$P(\vec{q}) := \max(\alpha - \sum_{i \in N} q_i, 0).$$

PROPOSITION 4.2 (Utility Function). The utility for player i, under the Cournot Oligopoly Model, is

$$u_i(\vec{q}) = \begin{cases} q_i(\alpha - c - \sum_{j \in N} q_j), & \text{if } \alpha - \sum_{j \in N} q_j \ge 0 \\ -cq_i, & \text{otherwise.} \end{cases}$$

PROPOSITION 4.3 (Best Response Function). The best response function for

player i, under the Cournot Oligopoly Model, is

$$B_i(\vec{q}_{-i}) = \begin{cases} \frac{1}{2}(\alpha - c - \sum_{j \neq i} q_j), & \text{if } \alpha - c - \sum_{j \neq i} q_j \ge 0\\ 0, & \text{otherwise.} \end{cases}$$

PROPOSITION 4.4 (Nash Equilibrium). The Nash equilibrium is \vec{q}^* where $\forall i \in N$,

$$\bar{q}_i^* = \frac{\alpha - c}{n+1}.$$

4.2 Bertrand Oligopoly Model

PROPOSITION 4.5. Let $A := \underset{j \in [n]}{\operatorname{argmin}} \{p_j\}$. Let m := |A|. Then the utility function

$$u_i(\vec{p}) = \begin{cases} p_i \frac{D(p_i)}{m} - C_i(\frac{D(p_i)}{m}), & \text{if } i \in A \\ -C_i(0), & \text{otherwise.} \end{cases}$$

4.2.1 Two Player, Linear Cost, Inverse Linear Demand

PROPOSITION 4.6 (Utility Function). Let c denote the cost of production. Let α denote the maximum price that the consumers are willing to pay. Suppose that n=2, $C_i(q_i)=cq_i$, and $D(p)=\max(\alpha-p,0)$. Then firm i makes a profit of

$$u_i(p_1, p_2) = \begin{cases} (\alpha - p_i)(p_i - c), & \text{if } p_i < p_j \\ \frac{1}{2}(\alpha - p_i)(p_i - c), & \text{if } p_i = p_j \\ 0, & \text{if } p_i > p_j \end{cases}$$

for $i \in \{1, 2\}$ and j := 3 - i.

PROPOSITION 4.7 (Best Reponse Function). Let p^* denote the profit-maximizing price in a monopoly. That is, $p^* := \frac{c+\alpha}{2}$ is the value of p that maximizes $(\alpha-p)(p-c)$.

21

Then the best response function B_i for player i is

$$B_{i}(p_{j}) = \begin{cases} \{p_{i} : p_{i} > p_{j}\}, & \text{if } p_{j} < c \\ \{p_{i} : p_{i} \geq c\}, & \text{if } p_{j} = c \\ \emptyset, & \text{if } c < p_{j} \leq p^{*} \\ \{p^{*}\}, & \text{if } p^{*} < p_{j} \end{cases}$$

for $i \in \{1, 2\}$ and j := 3 - i.

PROPOSITION 4.8 (Nash Equilibrium). The only point that the graphs of B_1 and B_2 intersect is (c, c).

REMARK 4.9.

- Payoff functions can be discontinuous;
- Best responses can be non-existent;
- Graphs of best response functions can be disconnected.

EXAMPLE 4.10 (Infinite Games with no Nash Equilibrium).

- Non-compact strategy space: $S_1 = S_2 := [0,1), u_i(s_1, s_2) := s_i.$
- Discontinuous payoff functions: $S_1 = S_2 := [0,1], u_i(s_1, s_2) := \begin{cases} s_i, & \text{if } s_i < 1 \\ 0, & \text{if } s_i = 1 \end{cases}$
- Discontinuous pay off functions:

Chapter 5

Routing Games

5.1 Atomic Selfish Routing Game

DEFINITION 5.1 (Atomic Selfish Routing Game). An atomic selfish routing game consists of

- A directed graph G = (V, E);
- A set of players $N = \{1, ..., n\}$;
- A source-target pair $(s_i, t_i) \in V \times V$ for each $i \in N$;
- A traffic $r_i \in \mathbb{R}_{++}$ for each $i \in N$;
- A cost function $c_e : \mathbb{R}_{++} \to \mathbb{R}_{++}$ that is continuous and non-decreasing.

REMARK 5.2. Atomic selfish routing game is a special case of finite strategic game. The strategy set \mathcal{P}_i for player i is the set of all $s_i t_i$ -paths in G. We assume that $\forall i \in N$, $\mathcal{P}_i \neq \emptyset$. A strategy profile is a vector $\vec{p} = (p_1, ..., p_n)$ of paths. Let $f_e^{\vec{p}}$ denote the total number of units of traffic in \vec{p} on edge e. If $r_i = 1$ for all $i \in N$, then $f_e^{\vec{p}}$ equals the number of occurrences of e in \vec{p} . The utility of player i is

$$u_i(\vec{p}) = -\sum_{e \in E(p_i)} c_e(f_e^{\vec{p}}).$$

DEFINITION 5.3 (Flow for Atomic). Let $\mathcal{P} := \bigcup_{i \in N} \mathcal{P}_i$. We define a **fow** to be a function $f: N \times \mathcal{P} \to \mathbb{R}_+$. We say that f is **feasible** if and only if $\forall i \in N$, $\exists p_i \in \mathcal{P}_i$ such that $\forall p \in \mathcal{P}$, we have

$$f(i,p) = \begin{cases} r_i, & \text{if } p = p_i \\ 0, & \text{otherwise.} \end{cases}$$

i.e., each player sets all of its traffic to exactly one path that is available for that player.

DEFINITION 5.4 (Cost for Atomic). We define the **cost of a path** p w.r.t. a flow f, denoted by $c_p(f)$, to be a number given by

$$c_p(f) := \sum_{e \in E(p)} c_e(f_e) \text{ where } f_e := \sum_{q \in \{\mathfrak{q} \in \mathcal{P} : e \in \mathfrak{q}\}} \sum_{i \in N} f(i,q).$$

We define the **cost of a flow** f to be an element of \mathbb{R} given by

$$C(f) := \sum_{e \in E(G)} c_e(f_e) f_e.$$

DEFINITION 5.5 (Equilibrium Flow). We say that a feasible flow f is a **equilibrium flow** if and only if $\forall i \in N, \forall p, \tilde{p} \in \mathcal{P}_i$, we have

$$f(i,p) > 0 \implies c_p(f) \le c_{\tilde{p}}(\tilde{f})$$

where \tilde{f} is the flow identical to f except that $\tilde{f}(i,p) = 0$ and $\tilde{f}(i,\tilde{p}) = r_i$.

5.2 Non-atomic Selfish Routing

DEFINITION 5.6 (Non-atomic Selfish Routing). A **non-atomic selfish routing** game consists of

- A directed graph G = (V, E) (multiple edges are allowed).
- A set of players $N = \{1, ..., n\}$.

• For each player $i \in N$, a source-target pair $(s_i, t_i) \in V \times V$. We assume that $\forall i, j \in N, (s_i, t_i) = (s_j, t_j) \implies i = j$.

DEFINITION 5.7 (Flow for Non-atomic). Let \mathcal{P}_i denote the set of all $s_i t_i$ -paths in G. Let $\mathcal{P} := \bigcup_{i \in N} \mathcal{P}_i$. We define a **flow** to be a function $f : \mathcal{P} \to \mathbb{R}_+$. We say that a flow f is **feasible** if and only if

$$\forall i \in N, \quad \sum_{p \in \mathcal{P}_i} f(p) = r_i.$$

DEFINITION 5.8 (Cost for Non-atomic). Let $f : \mathcal{P} \to \mathbb{R}_+$ be a flow. We define the **cost of a path** p w.r.t. a flow f to be

$$c_p(f) := \sum_{e \in E(p)} c_e(f_e)$$
 where $f_e := \sum_{q \in \mathcal{P}: e \in E(q)} f(q)$.

We define the cost of a flow f to be

$$C(f) := \sum_{p \in \mathcal{P}} c_p(f) f(p) = \sum_{e \in E} c_e(f_e) f_e.$$

DEFINITION 5.9 (Equilibrium Flow). We say that a feasible flow is **equilibrium** if and only if

$$\forall i \in N, \forall p, \tilde{p} \in \mathcal{P}_i, \quad f_p > 0 \implies c_p \dots$$

THEOREM 5.10. Let (G, \vec{r}, c) be a non-atomic selfish routing instance. Then

- 1. The instance (G, \vec{r}, c) admits at least one equilibrium flow.
- 2. If f and \tilde{f} are equilibrium flows for (G, \vec{r}, c) , then $c_e(f_e) = c_e(\tilde{f}_e)$ for every edge e.

DEFINITION 5.11 (Marginal Cost Functions). Let $e \in E$ and $p \in \mathcal{P}$. We define the marginal cost functions to be

$$c_e^*(x) := \frac{d(x \cdot c_e(x))}{dx} = c_e(x) + x \cdot c_e'(x) = \frac{\partial}{\partial f_e} C(f),$$

$$c_p^*(f) := \sum_{e \in E(p)} c_e^*(f_e) = \sum_{e \in E(p)} \frac{\partial}{\partial f_e} C(f).$$

LEMMA 5.12. Let $C: \mathbb{R}^n \to \mathbb{R}$ be a convex differentiable function. Let $S \subseteq \mathbb{R}^n$ be a nonempty convex set. Then a feasible point $x^* \in S$ is optimal for the convex problem

$$\min C(x)$$
 s.t. $x \in S$

if and only if

$$\forall x \in S, \quad \nabla C(x^*) \cdot (x - x^*) \ge 0.$$

THEOREM 5.13. Let (G, \vec{r}, c) be a non-atomic selfish routing instance such that for every edge e, the function $x \mapsto x \cdot c_e(x)$ is convex and differentiable. Let c_e^* denote the marginal cost function of the edge e. Then f^* is an optimal flow for (G, \vec{r}, e) if and only if $\forall i \in \mathbb{N}$, $\forall p_1, p_2 \in \mathcal{P}_i$ such that $f^*(p_1) > 0$, we have $c_{p_1}^*(f^*) \leq c_{p_2}^*(f^*)$.

Proof. (\Rightarrow) Suppose that f^* is optimal. Assume for the sake of contradiction that $\exists i \in N$, $\exists p_1, p_2 \in \mathcal{P}_i$ such that $f^*(p_1) > 0$ and $c_{p_1}^*(f^*) > c_{p_2}^*(f^*)$. Define for each $\varepsilon > 0$ a flow $f : \mathcal{P} \to \mathbb{R}_+$ by

$$f(p) := \begin{cases} f^*(p_1) - \varepsilon, & \text{if } p = p_1 \\ f^*(p_2) + \varepsilon, & \text{if } p = p_2 \\ f^*(p), & \text{otherwise.} \end{cases} \implies (f - f^*)_e = \begin{cases} -\varepsilon, & \text{if } e \in E(p_1) \setminus E(p_2) \\ +\varepsilon, & \text{if } e \in E(p_2) \setminus E(p_1) \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} \langle \nabla C(f^*), f - f^* \rangle &= \varepsilon \sum_{e \in E(p_2) \backslash E(p_1)} c_e^*(f_e^*) - \varepsilon \sum_{e \in E(p_1) \backslash E(p_2)} c_e^*(f_e^*) \\ &= \varepsilon \bigg[\sum_{e \in E(p_2)} c_e^*(f_e^*) - \sum_{e \in E(p_1)} c_e^*(f_e^*) \bigg] \end{split}$$

$$= \varepsilon(c_{p_2}^*(f^*) - c_{p_1}(f^*)) < 0.$$

 (\Leftarrow) Suppose that... I will show that f^* is an optimal flow for (G, \vec{r}, e) . Now for any feasible flow $f: \mathcal{P} \to \mathbb{R}_+$ obtained from f^* by shifting ε units...

$$\langle \nabla C(f^*), f - f^* \rangle = \varepsilon(c_{p_2}^*(f^*) - c_{p_1}^*(f^*)) \ge 0.$$

Define

$$\Phi(f) := \sum_{e \in F} h_e(f_e) \text{ where } h_e(f_e) := \int_0^{f_e} c_e(x) dx.$$

Then

$$c_p^*(f) = \sum_{e \in E(p)} h_e'(f_e) = \sum_{e \in E(p)} c_e(f_e) = c_p(f).$$

...

THEOREM 5.14. Every non-atomic selfish routing game admits a Nash flow.

Proof. Define

$$h_e(f_e) := \int_0^{f_e} c_e(x) dx.$$

Then h_e is convex and differentiable. Notice that a differentiable function is convex on an interval if and only if its derivative is non-decreasing. So c_e are continuous, non-decreasing, and non-negative.

Proof. If f and \tilde{f} are equilibrium flows for (G, \vec{r}, c) , then $c_e(f_e) = c_e(\tilde{f}_e)$ for every edge e. Suppose that f and \tilde{f} are both Nash flows. Then f and \tilde{f} are both minimizers of Φ . So $\Phi(f) = \Phi(\tilde{f})$. Since the feasible set is convex, $\forall \lambda \in [0, 1]$, $\lambda f + (1 - \lambda)\tilde{f}$ is also feasible. Note that $\Phi(f) := \sum_{e \in F} h_e(f_e)$ is a sum of convex function and hence convex. So

$$\Phi(\lambda f + (1-\lambda)\tilde{f}) \leq \lambda \Phi(f) + (1-\lambda)\Phi(\tilde{f}) = \Phi(f) = \Phi(\tilde{f}).$$

So $\lambda \mapsto \Phi(\lambda f + (1-\lambda)\tilde{f})$ is a constant function. For a sum of convex functions to be constant, each summand must be linear. So $h_e(f_e) = \int_0^{f_e} c_e(x) dx$ is linear. So $c_e(x)$ is constant from f to \tilde{f} .

THEOREM 5.15. Suppose $\gamma \geq 1$ satisfies $\forall e \in E, \forall x \geq 0$, we have

$$x \cdot c_e(x) \le \gamma \int_0^x c_e(y) dy.$$

Then the price of anarchy is at most γ .

REMARK 5.16. Note that $\gamma < 1$ is impossible since $\forall e \in E, \forall x \geq 0$,

$$\frac{d}{dy}(y \cdot c_e(y)) = c_e(y) + y \cdot c'_e(y) \ge c_e(y)$$

$$\implies x \cdot c_e(x) = \int_0^x \frac{d}{dy}(y \cdot c_e(y))dy \ge \int_0^x c_e(y)dy.$$

Proof. By the previous calculation, $\forall f: \mathcal{P} \to \mathbb{R}$, we have

$$C(f) = \sum_{e \in E} f_e \cdot c_e(f_e) \ge \sum_{e \in E} \int_0^{f_e} c_e(x) dx = \Phi(f).$$

So for all feasible flows f and \tilde{f} where f is a Nash flow, we then have

$$C(f) \le \gamma \Phi(f) \le \gamma \Phi(\tilde{f}) \le \gamma C(\tilde{f}).$$

EXAMPLE 5.17. Let $c_e(x)$ be given by $c_e(x) = \sum_{i=0}^d a_i x^i$ for some $d \in \mathbb{Z}_{++}$ and $a_0, ..., a_d \in \mathbb{R}_{++}$. Then we have

$$x \cdot c_e(x) = \sum_{i=0}^d a_i x^{i+1}$$
 and
$$\int_a^x a_i \dots \int_a^d dx$$

$$(d+1)\int_0^x c_e(y)dy = (d+1)\sum_{i=0}^d \frac{a_i}{i+1}x^{i+1} = \sum_{i=0}^d \frac{d+1}{i+1}a_ix^{i+1} \ge x \cdot c_e(x).$$

Hence we can take $\gamma = d + 1$ in the theorem. So the price of anarchy is at most d + 1.

5.3 Potential Function of Atomic Selfish Routing Game

DEFINITION 5.18 (Potential Function). Suppose $r_1 = ... = r_n = r$ for some $r \in \mathbb{R}$. Then there exists a Nash equilibrium. Define $\mathcal{P} := \bigcup_{i=1}^n \mathcal{P}_i$. Define for each $e \in E$ a number $f_e^{\vec{p}} \in \mathbb{Z}_+$ by $f_e^{\vec{p}} := |\{i \in N : e \in E(\vec{p}_i)\}|$. We define the **potential function** of an atomic selfish routing game, denoted by Φ , to be a function from $\mathcal{P}_1 \times ... \times \mathcal{P}_n$ to \mathbb{R} given by

$$\Phi(\vec{p}) := \sum_{e \in E} \sum_{i=1}^{f_e^{\vec{p}}} c_e(i).$$

DEFINITION 5.19 (Exact Potential Game). We say that a finite strategic game is an **exact potential game** if and only if there exists a potential function $\Phi : \mathcal{S}_1 \times ... \times \mathcal{S}_n \to \mathbb{R}$ such that $\forall i \in N, \forall s_i, s_i' \in \mathcal{S}_i$,

$$\Phi(s_i, s_{-i}) - \Phi(s_i', s_{-i}) = u_i(s_i', s_{-i}) - u_i(s_i, s_{-i}).$$

Notice that utilities are negatives of the cost. So if Φ increases, u_i would decrease, and vice versa.

THEOREM 5.20. An atomic selfish routing game is an exact potential game with potential function $\Phi: \mathcal{P}_1 \times ... \times \mathcal{P}_n \to \mathbb{R}$ given by

$$\Phi(\vec{p}) = \sum_{e \in E} \sum_{i=1}^{f_e^{\vec{p}}} c_e(i).$$

Proof. Let $i \in N$, $s_i, s_i' \in S_i$ be arbitrary. Let $p_i := (s_i, s_{-i})$ and $p_i := (s_i', s_{-i})$. Then

$$\Phi(\vec{p}) - \Phi(\vec{p}') = \sum_{e \in E} \sum_{i=1}^{f_e^{\vec{p}}} c_e(i) - \sum_{e \in E} \sum_{i=1}^{f_e^{\vec{p}'}} c_e(i)$$

$$= \sum_{e \in E(p_i) \setminus E(p_i')} c_e(f_e^{\vec{p}}) - \sum_{e \in E(p_i') \setminus E(p_i)} c_e(f_e^{\vec{p}'})$$

$$= \sum_{e \in E(p_i)} c_e(f_e^{\vec{p}}) - \sum_{e \in E(p_i')} c_e(f_e^{\vec{p}'})$$

$$= (-u_i(\vec{p})) - (-u_i(\vec{p}')) = u_i(\vec{p}') - u_i(\vec{p}).$$

THEOREM 5.21. Every exact potential game has a Nash equilibrium.

Proof. Notice that the set of strategy profiles $S = S_1 \times ... \times S_n$ is a finite set. Let $\vec{s} \in S$ be a minimizer of Φ . Assume for the sake of contradiction that \vec{s} is not a Nash equilibrium, then $\exists i \in N, \exists s'_i \in S_i$ such that $u_i(\vec{s}') - u_i(\vec{s}) > 0$. By the preceding theorem we get $\Phi(\vec{s}) - \Phi(\vec{s}') > 0$, which contradicts to the assumption that \vec{s} is a minimizer of Φ .

DEFINITION 5.22 ((λ, μ) -smooth). Let $\lambda \geq 0$ and $\mu < 1$. Let $f : \mathbb{R}_{++} \to \mathbb{R}_{++}$. We say that f is (λ, μ) -smooth if and only if

$$\forall x, y \in \mathbb{R}_{++}, \quad yf(x) \le \lambda yf(y) + \mu xf(x).$$

EXAMPLE 5.23. Let f(x) := ax + b for some $a, b \in \mathbb{R}_{++}$. Then f is (1, 1/4)-smooth.

Proof. Let $x, y \in \mathbb{R}_{++}$ be arbitrary. Then

$$0 \le a(\frac{1}{2}x - y)^2 = \frac{1}{4}x^2 - axy + ay^2 \iff axy - ay^2 \le \frac{1}{4}ax^2$$

- - -

THEOREM 5.24 (Variational Inequality Characterization). Let f be a feasible flow. Then f is a Nash flow if and only if

$$\forall$$
 feasible flow f^* , $\sum_{e \in E} c_e(f_e) f_e \leq \sum_{e \in E} c_e(f_e) f_e^*$.

Proof. Define for any feasible flow f^*

$$H(f^*) = \sum_{e \in E} c_e(f_e) f_e^*$$

Then

$$H(f^*) = \sum_{e \in E} c_e(f_e) f_e^* = \sum_{e \in E} c_e(f_e) \sum_{p \in \mathcal{P}: e \in E(p)} f_p^* = \sum_{e \in E} \sum_{p \in \mathcal{P}: e \in E(p)} c_e(f_e) f_p^*$$

$$= \sum_{p \in \mathcal{P}} \sum_{e \in E: e \in E(p)} c_e(f_e) f_p^* = \sum_{p \in \mathcal{P}} c_p(f) f_p^* = \sum_{i=1}^N \sum_{p \in \mathcal{P}_i} c_p(f) f_p^*.$$

- (\Rightarrow) Suppose that f is a Nash flow. Then $\forall p \in \mathcal{P}_i, f_p > 0 \implies \forall \hat{p} \in \mathcal{P}_i, c_p(f) \leq c_{\hat{p}}(f)$. So the summation in H(f) is a weighted average of minimal possible terms, whereas the summation in $H(f^*)$ is a weighted average of possibly larger terms. So $H(f) \leq H(f^*)$.
- (\Leftarrow) Suppose that f is a minimizer of H. Then the summation in H(f) must only assign positive weights to the smallest possible values of $c_p(f)$. So $\forall p \in \mathcal{P}_i, f_p > 0 \implies \forall \hat{p} \in \mathcal{P}_i, c_p(f) \leq c_{\hat{p}}(f)$.

THEOREM 5.25. Consider a non-atomic selfish routing game. Suppose that c_e is (λ, μ) -smooth for all $e \in E$ Then

$$C(f) \le \frac{\lambda}{1-\mu} C(\hat{f})$$

whenever f is a Nash flow and \hat{f} is an optimal flow.

Proof.

$$C(f) = \sum_{e \in E} c_e(f_e) f_e \le \sum_{e \in E} c_e(f_e) \hat{f}_e, \text{ by the above theorem}$$

$$\le \lambda \sum_{e \in E} c_e(\hat{f}_e) \hat{f}_e + \mu \sum_{e \in E} c_e(f_e) f_e, \text{ by smoothness of } c_e$$

$$= \lambda C(\hat{f}) + \mu C(f).$$