18.01A Recitation — Monday, Sept. 10, 2018

Quick Review:

• Given y = f(x).

- Linear approximation at x = a: $f(x) \approx f(a) + f'(a)(x - a)$.

- Quadratic approximation at x = a: $f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.

• Useful approximation formula at x = 0:

1.
$$e^x \approx 1 + x + \frac{x^2}{2}$$

2. $\sin x \approx x$

3.
$$\cos x \approx 1 - \frac{x^2}{2}$$

4.
$$\frac{1}{1-x} \approx 1 + x + x^2$$

5.
$$(1+x)^a \approx 1 + ax + \frac{a(a-1)}{2}x^2$$

6.
$$\ln(1+x) \approx x - \frac{1}{2}x^2$$

• L'Hôpital's rule: if when $x \to a$, $\frac{f(x)}{g(x)}$ is either $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

provided that f'(x) and g'(x) are defined near a and the right side limit exists. L'Hôpital's rule can be applied repeatedly if the right side is again either $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Practice problems:

1. Find the quadratic approximation of cos(5x) at x = 0

(a) by using the general formula $f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2$.

(b) by using the quadratic approximation $\cos x \approx 1 - \frac{x^2}{2}$.

Compare the two results.

2. Find the quadratic approximation of

$$\frac{1}{(1-2x)(1-3x)}$$

1

at x = 0 by using the basic approximation formulas.

3. Find the quadratic approximation of

$$\frac{(1+x)^{\frac{3}{2}}}{1+2x}$$

at x = 0 by using the basic formulas.

4. Evaluate the following limits.

$$\lim_{x \to -\infty} x e^x$$

(b)

$$\lim_{x \to 0} x^{x^2}$$

(c)

$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{\sin 3x - 3\sin x}$$

(d)

$$\lim_{x \to \frac{\pi}{4}} \frac{\ln(\tan x)}{\sin x - \cos x}$$

(e)

$$\lim_{x \to 0} \frac{e^{2x} - 1}{\sin 5x}$$

(f)

$$\lim_{x \to \infty} \frac{\ln(\ln x)}{\ln x}$$

(g)

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x}}$$

(h)

$$\lim_{x \to \infty} e^{-x} \ln x$$

(i) (This is a hard one.)

$$\lim_{x\to 0} \cot x - \frac{1}{x}$$