08 Relations.

08_04_The Representations of Relations

Let R be a relation from $A = \{a_1, a_2, ..., a_m\}$ to $B = \{b_1, b_2, ..., b_n\}$. The <u>matrix representation of R</u> is an $m \times n$ matrix $M(R) = [m_{i\,j}]$ such that

$$m_{i,j} = 1 \text{ if } (a_i, b_j) \in R,$$

 $m_{i,j} = 0 \text{ if } (a_i, b_j) \notin R.$

Example. Suppose $A = \{1, 2, 3\}$ and $B = \{w, x, y, z\}$. Let R be a relation from A to B and $R = \{(1, y), (2, x), (2, z), (3, w), (3, x)\}$. Then the matrix representation of R is

If A, B, and the matrix representation of a relation R from A to B are given, then we can find the elements in R.

Example. Suppose $A = \{1, 2\}$, $B = \{s, t, x, y, z\}$, and the representation of a relation R from A to B is as follows.

Then $R = \{(1, s), (1, y), (2, s), (2, x), (2, y), (2, z)\}.$

Suppose R is a relation on a set A of size n and M(R)= $[m_{ij}]$ is the matrix representation of R. Then R is a reflexive relation if and only if m_{ii} = 1 for each i with $1 \le i \le n$.

Suppose R is a relation on a set A of size n and M(R) = $[m_{ij}]$ is the matrix representation of R. Then R is a symmetric relation if and only if $m_{ij} = m_{ji}$ for each i with $1 \le i \le n$ and each j with $1 \le j \le n$.

Suppose R is a relation on a set $A = \{a_1, a_2, ..., a_n\}$. The graphical representation of R is a directed graph (or digraph) which can be formulated in the following steps.

- [1] Use $a_1, a_2, ..., a_n$ in A to label n dots on a plane.
- [2] Draw a directed edge (or arrow) between the dot labeled by a_i and the dot labeled by a_j if and only if $(a_i, a_j) \in R$. The directed edge from dot a_i to dot a_i is called a self-loop.

Example. Suppose $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (1, 4), (2, 3), (2, 4), (3, 2), (3, 4), (4, 4)\}$. Then the graphical representation of R is as follows.

If a set A and the graphical representation of a relation R on A are given, then we can find the elements in R.

Example. Suppose $A = \{1, 2, 3, 4\}$ and the graphical representation of a relation R on A is as follows.

Then $R = \{(1, 2), (1, 3), (1, 4), (2, 2), (4, 1), (4, 2)\}.$

Suppose R is a relation on a set A of size n and D is the graphical representation of R. Then R is a reflexive relation if and only if for each dot in D there is a self-loop at it.

Suppose R is a relation on a set A of size n and D is the graphical representation of R. Then R is a symmetric relation if and only if the directed edge between the dot labelled as a_i and the dot labelled as as a_j appears in D if and only if the directed edge between the dot labelled as a_j and the dot labelled as as a_i appears in D, where $1 \le i \le n$ and $1 \le j \le n$.