

Université Libre de Bruxelles

INFO-F311 Intelligence Artificielle

Synthèse IA

 $\it Étudiants:$

Rayan Contuliano Bravo

 $Enseignants: % \label{eq:enseignants}%$

VINCERE

T. LENAERTS

Contents

1	Introduction	2
2	Recherche 2.1 Problème de recherches	5 5

1 Introduction

Définition 1.1. Qu'est-ce que l'ia

L'intelligence artificielle est une branche de l'informatique qui crée des systèmes qui pensent de manière **rationnelle**

Définition 1.2. Décisions rationnelles

Penser de manière rationnelle signifie qu'on va se concentrer sur le **choix de décisions** qui maximisent la probabilité d'atteindre un objectif donné. On va faire agir les systèmes de manière **optimale**

Remarques:

- 1. Être rationel signifie donc **maximiser** l'utilité attendue.
- 2. On définis un objectif par son **utilité**.

Définition 1.3. Agent

Un agent est un système qui perçoit son environnement par des **capteurs** et agit sur celui-ci par des **effecteurs**.

Définition 1.4. Agent rationnel

Un agent rationnel est un agent qui agit de manière à maximiser son utilité attendue.

Remarque: Les capteurs, effecteurs et l'environnement permettent à l'agent de percevoir et d'agir sur le monde de manière rationnelle. L'agent est le système qui prend les décisions.

Définition 1.5. Fonction agent

La fonction agent est une fonction qui prend en entrée une séquence de perceptions et retourne une action. $f: \mathcal{P}^* \to \mathcal{A}$

Exemple:

Figure 1.1 – Représentation fonction agent dans le jeu Tetris

Définition 1.6. Programe Agent

Un **programe agent** l est <u>exécuté</u> sur une **machine** M afin d'<u>implémenter</u> la fonction agent f.

Remarque: Les machines dans le monde réel sont **imparfaites** et **limitées** en temps et en mémoire.

FIGURE 1.2 – Etat de l'environnement de l'aspirateur

Exemple: Nous pouvons représenter un aspirateur comme un agent qui perçoit son environnement par des capteurs et agit sur celui-ci par des effecteurs.

- Perception : capteurs qui détectent la saleté et sa localisation dans l'espace
- Action : effecteurs qui déplacent l'aspirateur dans l'espace et aspire ou non

En imaginant la situation en figure 1.2, nous pouvons définir la fonction agent de l'aspirateur comme suit :

Sequence de perception	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [B, Clean]	Left
[A, Clean], [B, Dirty]	Suck
etc	etc

Pour que notre agent soit bien rationnel, il nous faut une manière de **mesurer** la **per-formance** de celui-ci. Pour cela, nous allons définir une **fonction de performance** qui va mesurer la qualité des actions de l'agent.

Exemple: On peut lui faire gagner des points ou bien lui en retirer en fonction d'une action

De cette manière, l'agent va savoir quelles actions lui permettent de **maximiser** son utilité attendue.

Afin de bien déterminer un environnement, les particularité de notre agents, il nous faut avant toute chose définir PEAS

Définition 1.7. PEAS

- Performance : mesure de la qualité des actions de l'agent
- Environnement : type d'environnement dans lequel l'agent va évoluer
- **Actuateurs** : les effecteurs de l'agent
- **Sensors** : les capteurs de l'agent

FIGURE 1.3 – Environnement Pacman

Exemple: Pour l'environnement Pacman de la figure 1.3, nous pouvons définir PEAS comme suit :

- **Performance**: -1/pas, +10/nourriture, +500/partie gagnées, -500/mort, +200/tuer un fantôme effrayé
- Environnement : labyrinthe dynamique de pacman
- Actuateurs: Haut, Bas, Gauche, Droite
- Capteurs : L'état entier visible

Définition 1.8. Types d'environnement

Il y a plusieur type d'environnement :

- Mono-agent : un seul agent
- **Multi-agent** : plusieurs agents qui maximisent leur **propre** tâche (coop ou concurentiel)
- **Déterministe** : l'état de l'env est déterminé **seulement** par les actions de l'agent
- Stochastique : l'environnement est non déterministe
- Épisodique : les actions de l'agent n'affectent pas les actions futures
- **Séquentiel** : les actions de l'agent affectent les actions futures
- **Dynamique** : l'environnement peut changer pendant que l'agent réfléchit
- Statique : l'environnement ne change pas pendant que l'agent réfléchit
- Complètement observable : les capteurs de l'agent perçoivent l'état complet de l'environnement
- **Partiellement observable** : les capteurs de l'agent perçoivent une partie de l'état de l'environnement
- **Discret** : un nombre fini d'états
- Continu : un nombre infini d'états
- Connu : l'agent connait les lois de l'environnement

Il existe plusieurs types d'agents qui répondent à des environnements plus complexes :

- Agent réflexe simple : l'agent choisit son action en fonction de la dernière perception
- Agent réflexe basé sur un modèle : l'agent choisit son action en fonction de la dernière perception et d'un état interne (dépend de l'historique des perceptions)
- **Agent fondés sur des buts** : l'agent choisit son action en fonction de la dernière perception ainsi que des infos relatives à l'objectif
- **Agent fondés sur l'utilité** : l'agent choisit son action en fonction de sa satisfaction par rapport à l'état résultant

2 Recherche

Définition 2.1. Agent de Plannification

Un agent de plannification font des **hypothèses** sur les conséquences des actions entreprises et utilise un **modèle** de l'environnement pour trouver un plan qui atteint son objectif.

Note:-

Un plan est une séquence d'actions qui mène à l'objectif.

2.1 Problème de recherches

Définition 2.2. Problème de Recherche

Un problème de recherche est défini par :

- Ensemble d'État S: Une situation dans lequel l'environnement peut être agencé
- État initial s_o : l'état dans lequel le problème commence
- Actions A(s): les actions possibles dans l'état s
- Modèle de Transition Result(s, a): la fonction qui définit les conséquences des actions
- **Solution**: Une séquence d'actions qui mène de l'état initial à l'état final
- **État final** : l'état que l'on veut atteindre

Figure 2.1 – Représentation simple de la Roumanie en graphe

Exemple: Voyage en Roumanie :

- **États** : les villes de Roumanie
- **État initial** : Arad
- Actions : les routes entre les villes adjacentes
- Modèle de transition : Atteindre une ville adjacente
- Cout de l'action : distance entre les villes
- **État final** : Bucharest