2019CSP-S 良心模拟赛

仓鼠

一、题目概览

中文题目名称	咕	咕咕	咕咕咕
英文题目名称	gu	gugu	gugugu
可执行文件名	gu	gugu	gugugu
输入文件名	gu.in	gugu.in	gugugu.in
输出文件名	gu. out	gugu. out	gugugu. out
时间限制	1s	1s	1s
空间限制	1024MB	1024MB	1024MB
题目类型	传统	传统	传统
比较方式	全文比较	全文比较	全文比较
是否有部分分	否	否	否

二、注意事项:

- (1)请注意,题目不一定按照难度顺序排列。
- (2)请注意输入输出对程序效率的影响。出题人提供了样例和快速输入输出模板附加在选手的下发文件中。
- (3) 评测采用捆绑测试。具体而言,你需要通过某个 Subtask 全部测试点才能获得这个 Subtask 的分数。
- (4) 保证每道题的时间限制不少于标程时间最大测试点所用时间的 2 倍。评测时 开启 02 和 C++11。
- (5)本套试题真的十分简单,请大家认真独立完成。

咕 (gu)

【题目描述】

对于一个长度为A的正整数序列B,定义其一个长度为C(0 < C ≤ A)的非空子序列为一个长度为C的下标序列P[1 ... C],满足1 ≤ P[1] < P[2] < ··· < P[C] ≤ A。 子序列本身就是按照顺序把对应的元素拿出来: B[P[1]]B[P[2]] ... B[P[C]]。

给定一个长度为N的正整数序列S和一个长度为M的正整数序列T,同时再给定一个有K条边的有向图G。请你求出它们有多少个公共子序列,满足把子序列拿出来之后,对于任意相邻两个元素(a,b),满足在G中存在一条有向边<a,b>。这里子序列不同,定义为下标位置不同(即序列P不同)。

【输入格式】

第一行三个非负整数N, M, K表示S, T的长度和有向图G的边数。

接下来一行N个正整数,描述正整数序列S。

接下来一行M个正整数,描述正整数序列T。

接下来K行,每行两个正整数s.t,描述有向图G中的一条有向边。

【输出格式】

输出仅一行,表示答案对109+7取模的结果。

【数据范围】

Subtask 1 (5pts): $1 \le N, M \le 10$.

Subtask 2 (10pts): $1 \le N, M \le 20$.

Subtask 3 (10pts): $1 \le N, M \le 100$.

Subtask 4 (3pts): K = 0.

Subtask 5 (15pts): $1 \le K \le 10$.

Subtask 6 (25pts): $1 \le K \le 3000$.

Subtask 7 (32pts): 无特殊限制。

对于全部数据: $1 \le N, M \le 3000$ $0 \le K \le 10^6$ $\forall 1 \le i \le N, 1 \le S[i] \le 10^9$ $\forall 1 \le i \le M, 1 \le T[i] \le 10^9$ $1 \le s, t \le 10^9$ 。

咕咕 (gugu)

【题目描述】

给定一个大小为 $N \times M$ 的矩形网格,每个格点用一个坐标(x,y)描述,这里满足 $1 \le x \le N$ 且 $1 \le y \le M$ 。定义一个合法的路径同时满足如下条件:

- (1) 路径的起点是(1,1),终点是(N,M);
- (2) 到达一个点之后,只能往横坐标和纵坐标中有且仅有一个增加了1的点走。即(x,y)只能走到(x+1,y)或(x,y+1);
- (3) 满足T个限制,每个限制都形如:如果走到了(a,b)那么T一步一定要走到(c,d)。这里可能会有a = N,b = M的情况,不管就好了。

求有多少条合法的路径。由于答案可能很大,请输出其对109+7取模的结果。

【输入格式】

第一行三个正整数N,M,T,分别描述矩形的大小和限制的数目。 接下来T行,每行四个正整数a,b,c,d,表示一个题目描述中所说的限制。

【输出格式】

输出仅一行,表示答案对109+7取模的结果。

【数据范围】

Subtask 1 (10pts): $1 \le N, M \le 10$.

Subtask 2 (10pts): $1 \le N, M \le 100$.

Subtask 3 (20pts): T = 0.

Subtask 4 (20pts): T = 1.

Subtask 5 (40pts): 无特殊限制。

对于全部数据: $1 \le N \le 3000$ $1 \le M \le 3000$ $0 \le T \le 10^6$ $1 \le a,c \le N$ $1 \le b,d \le M$ 。

咕咕咕 (gugugu)

【题目描述】

有一个长度为N的数轴,数轴的范围从1到N。还有M个区间,其中第i个区间是[L_i , R_i]并且有一个权值 V_i 。定义一个选择区间的方案是合法的,当且仅当数轴上每一个整点都被至少一个区间覆盖了,同时该方案的权值是所有选择区间的权值乘积。

请你求出所有合法方案权值的和。由于答案可能很大,请输出其对10°+7取模的结果。

【输入格式】

第一行两个正整数N,M。

接下来M行,第i行先是两个正整数 L_i , R_i 描述区间,然后一个非负整数 V_i 描述区间的权值。

【输出格式】

输出仅一行,表示答案对10°+7取模的结果。

【数据范围】

Subtask 1 (3pts): M = 0.

Subtask 2 (7pts): $1 \le M \le 20$ $1 \le N \le 50$.

Subtask 3 (10pts): $1 \le M \le 20$.

Subtask 4 (10pts): $1 \le M \le 50$.

Subtask 5 (20pts): $1 \le M \le 2000$.

Subtask 6 (10pts): $1 \le N \le 20$.

Subtask 7 (15pts): $1 \le N \le 2000$.

Subtask 8 (15pts): $\forall 1 \le i \le M, V_i = 1$.

Subtask 9 (10pts): 无特殊限制。

对于全部数据: $1 \le N, M \le 2 \times 10^5$ $1 \le L_i \le R_i \le N$ $0 \le V_i < 10^9 + 7$ 。