# Introduction to MATLAB®

Scripts and Functions

Sriram Krishnamurthy

- Commands entered in the Command Window cannot be saved and executed again for several times.
- Therefore, a different way of executing these commands is to create a
  file with these commands and then run this file every time we need to
  run the same operation.
- There are two different ways to do this :
  - 1. M-file Scripts
  - 2. M-file Functions

#### M-file scripts

- A *script file* is an external file that contains a sequence of MATLAB statements. Script files have a filename extension .m and are often called M-files.
- M-files scripts simply execute a series of MATLAB statements.

#### Script Examples

- 1. mySphere.m
- 2. mySin2d.m
- 3. mySin2d loop.m
- 4. compund script.m
- 5. compund script loop.m

#### M-file function

- functions are programs (or routines) that accept input arguments and return
   output arguments.
- Each M-file function (or function or M-file for short) has its OWN area of Workspace, separated from the MATLAB base workspace.
- have a filename extension .m

#### Function Examples

1. Factorial.m

2. Average.m

| Scripts                                                          | Functions                                                         |
|------------------------------------------------------------------|-------------------------------------------------------------------|
| Do not accept input arguments or return output arguments.        | Can accept input arguments and return output arguments            |
| Store variables in a workspace that is shared with other scripts | Store variables in a workspace internal to the function           |
| Are useful for automating a series of commands                   | Are useful for extending the MATLAB language for your application |

### Engineering Applications

#### Solving algebraic expression

- 1. <u>function solve.m</u>
- 2. specvol.m
- 3. mulEq.m

#### Solving ODEs

1. simple ode solver.m

2. simple sim solver.m

#### Irreversible reaction in series

$$A \rightarrow R \rightarrow S$$

$$r_A = \frac{dC_A}{dt} = -k_1 C_A$$

$$r_R = \frac{dC_R}{dt} = k_1 C_A - k_2 C_R$$

$$r_S = \frac{dC_S}{dt} = k_2 C_R$$

irreversible solver.m





#### Numerical Integration

1. integ example1.m

2. integ example2.m

## Average velocity of a fluid — Steady state laminar flow



$$u(r) = \left(\frac{\Delta p D^2}{16\mu L}\right) \left\{1 - \left(\frac{2r}{D}\right)^2\right\}.$$

**Velocity Profile** 

$$V = \frac{\Delta p D^2}{32\mu L}$$

Average velocity - analytical

$$V_{avg} = \frac{2}{R^2} \int_0^R u(r) r dr$$

Average velocity - integration

laminar.m

#### Curve Fitting

1. straight line.m

2. exponential.m

3. GUI examples for curve fitting.

4. Readtable excel

#