Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com
Ex. 1 a) Debrui Beam solid angle - The Solid angle Khavagh which all power if the intensity was constant across the angle and equal to the intensity (un) Directivity - How much of the antenne energy focus in one direction as appose to others.
Crain - Two definitions: 1. Based on ratio between the max radiation intensity, um and the subjection intensity obtained if the power ted to the antenna was radia isotropically.
2. Based on the ratio between the power density at distance "r" and the power density at the same distance if the antenna radiated iso-
Radiation Efficiency - The vario between the power cacliated by the auteus and the power is putted to the anteura.
b.) Define the E-field and the H-field of a faction patiern:
E-field - 2D societien patron, in a given plane, for the electric field vector, E. H-field - 2D Vadiction pattern, in a given plane, for the magnetic field vector, H
(.) The Field emitted by an antenna Q $r = 500m$ is: $E_Q = 0.037$ sin Q $Cosyl$ Plot the radiation pattern in the E-plane and calculate directivity: Radiation pattern:

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com

d.) Define effective area and effective area as a func. of gain

Effective area, $A_e = \frac{P_{rm}}{S} = \frac{Max. \ received power}{Maq. of prighting vector, 15)}$

As a function of gain: $A_e = \frac{G \cdot \lambda^2}{4\pi}$

e.) Define the import impedance of an antenna:

It we consider an antenna as a load of an electrical circuit, the

in pot in pedance is given by: ZA = IRA + j XA

with receiving / transmitting circuits that look like;

(Guartie) VG (2) | Trans.

Za II Local/reciering circuit

Recievro Ant.

f.) Define the effective lough (or height) and obtain an eq. to relute

effective length as a f(he)

Effective length, $h = \frac{V_A}{\dot{E}} = \frac{Qpon.circ. Voltage included}{Ixcident electric field.}$

h = f (Ae) = 2/ RA. Ae.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator.com I deal Dipole EM field is given by. G) Explain the meaning of the far-field of an externa write the E-a Hfield for the ideal dipole in the for-field, outritying your answer. Ans: The far-field is the sadial distance at which the antenna's place warm exhibit local place we behaviour. For an Jeal Spole ZCCZ and this for = 52 So we could say $\beta < >> 1$ i.e. $(\frac{2\pi}{\lambda}, 5\lambda) >> 1$ and so any term with $j \beta < i \wedge$ the denom, will be extremely small comp. to one giring: E = JN 4T IDZ C-JRY SIN(0) Ô H = 5 4T I AZ P-jar Sin(O) \$ PHASE ARLAY QUESTIONS Array Factor -> Rad pater of a gren antenna array : Ethe placed catennas uwe Does this give isotopic agay Shape?? Phase Factor -» Ψ = / cos (0) + κ D 2 Th } use given brea to get 1 Careful that coupling is in cachians!? 1. Phase factor 2. Array factor 3. Normalised eachston patorn $\rightarrow |F(0, 4)| = \left| \frac{\sin \left(N + \frac{\psi}{2}\right)}{N \sin \left(\frac{\psi}{2}\right)} \right|$ 4. if Non-isotropic entended are in use: multiply. |F| of above by that of the automore in use?