Flenri's Conference

Integral Poils on Corner of Higher Genns

Samir Siksek (Warwick)

Joint work with Bugeaud] Strasbourg Stoll Brenen Tengely Debrecen

0

Leiden May 07 Instructional workshop organized by Benkers, Evertse & Tijdeman. Organizers compiled a list of 22 open Diophentine problems:

Problem 1 Solve y2-y=x2-x 9 genus 2 Problem 2 Solve x, ye Z $\binom{2}{3} = \binom{2}{5}$ or, y e Z

C: y2 - y = 25 - 2 $C' = {3 \choose 2} = {3 \choose 5}$ 2) by existing methods fail?

1 Chabanty Determines C(4) if

rank (Jecto) < germs (C)

: Inapplicable here:

rank $(J_c(\Phi)) = 3$

rank Jc/(1)=6

2) Elliptic Chabanty Impractical here.

3) Traditional Approach to integral points on hyperelliptic curves:

 $ay^2 = f(x)$ $a \in \mathbb{Z}$, $f(x) \in \mathbb{Z}[x]$ monic, reporable

 $\Rightarrow x-x=k\xi^2$ Ke finite set

Conjugate: $x - \alpha_1 = K_1 \xi_1^2 = \xi_1^2$

2- K2 52 = T2

2- 43 = K332 = T3

by extending field $e = \phi(\alpha_1, \alpha_2, \alpha_3, \Gamma K_1, \Gamma K_2, \Gamma K_3)$

Si e finite set Ei units.

S, E, + \$2 E2+ 83 E3 = 0 and unit equation

enormous Baker's Theory bounds

De Weger If the unit groups can be computed, then ERR can be used to reduce the bounds to something small, \Rightarrow can solve $a y^2 = f(x)$

Generic Silvation (including C & C') Unit groups needed cannot be computed. But still Balaer's theory gives bounds.

 $y^2 = a_0 x^n + - \cdots + a_n$ Baker 1969 € ZL[2], separable $\Rightarrow |z| \leq \exp(\exp(\exp((n^{10} + 1)^2)))$ H = max lail Improved by: Sprindžuk, Bridza, Schmidt, Poulakis, Vontier, Bugeand, Györy, Bila Improving still on these: wing for example (i) Matreev's bounds for linear forms in logaretums (ii) Landan's estinates for regulators (iii) Many computations. ---

For $C: y^2 - y = 2^5 - 3c$ get $|x| \le \exp(10^{565})$

Arithmetic Geometry C: y2-y=x3-x J Jacobian of C C - Jacobi P ---- $\mathcal{J}(\phi) = \mathcal{I}\mathcal{D}_1 \oplus \mathcal{I}\mathcal{D}_2 \oplus \mathcal{I}\mathcal{D}_3$ mag ma Programs $\mathcal{D}_{i} = (0, i) - \infty$ $\mathcal{D}_2 = (1, 1) - \infty$ $\mathcal{D}_{3} = (-1, 1) - \infty$

On J there are two height functions:

h logarithmic height (+ve definite)

h canonical height (9f on J(4))

If $(x,y) \in C(Z)$ then $h(P) = \log \max[1, |x|] \leq 10^{565}$

|h(P) - h(P) | < 2.677 1 Stoll's bound

 $\lambda (n_1 D_1 + n_2 D_2 + n_3 D_3) = \chi \mathcal{H} \chi^{\pm}$ $\Sigma = (n_1, n_2, n_3)$ $\mathcal{H} = (n_1, n_3, n_3)$

.. If $P \in C(Z)$ $JP = n_1D_1 + n_2D_2 + n_3D_3$ then $|| \Delta || \leq 10^{285}$

Weed a method for sieving for

Mordell - Weil Sieve

Due to Scharaskin. Improved by Bruin & Stoll.

Problem Combinatorial explosion: Typically M 2/J(Fq)/292 14-1() C(FQ)) | 2 M"5 2 93 New Mordell - Weil Siere Construct Wi finite subsets of JA Li sublattices of J(A)
of finite index such that $C_0 \neq C_1 \neq C_2 \neq \cdots$ and $C(A) \subseteq W_i + C_i$. Start Wo = [0] (A) Start No-Lin

Inductive Red Pi+1 = Ker (Pi -> J(Fq))

Step

((\$\Phi\$) \ldots \wi+Pi\)

((\$\Phi\$) \ldots \wi+Pi\)

Wi+Pi\(\ldots \rdots red red C(Fq) = D(Fq) = \$\psi \windskip \(\mathbb{E}_i \rangle \\ \mathbb{E}_i \rangle \\ \mathbb{E}_i

Let Wi+1 = φ-1 () (C(Fq1)).

Choice of 9: (ii) Ri/Ri+1 is smooth With is End Using 922 primes 2 < 10° (37 hours of computation) $\Rightarrow \mathcal{L}((A)) \subseteq W + L$ W= 1 (17 known redional point) [J(\$): L] ≈ 3.32 × 103240 Shortest vector of L has length $\approx 1.156 \times 10^{1080}$. So if PECCZ) then J(P) = 2 + & 12 tiny € = Q or || € || > 1.156 x10 1080 But 11 (P) 11 & 10285 => 1= 2 PE Ruowa points. Theorem The integral points on C: y2-y
= 25-2 are (-1,0), (-1,1), (0,0), (0,1), (1,0), (1,1), (2,-5), (2,6), (3,-15), (3,16), (30,-4929), (30,4930)

Fulwe Plans

(I) Improve the Mordell-Weil Sieve using discrete logarithms

$$(\pi) \, \mathcal{L}_o \quad (\frac{1}{2}) = (\frac{1}{5})$$

(III) Integral ports on gen 2 ames ung linear form of Abelian logs.