Математический анализ

Предельное значение функции. Непрерывность

Предельное значение функции. Непрерывность.

- •Предел функции в точке
- •Предел функции на бесконечности
- •Бесконечно малые и бесконечно большие функции
- •Первый замечательный предел
- •Второй замечательный предел
- •Непрерывность функции
- •Точки разрыва функции и их классификация

Предел функции

Определение 1. Число b называется пределом функции f(x) при $x \to a$, если для любого числа $\varepsilon > 0$, существует $\delta(\varepsilon) > 0$, такое, что для всех x из интервала $(a - \delta, a + \delta)$, где $x \neq a$, соответствующие значения функции принадлежат интервалу $(b - \varepsilon, b + \varepsilon)$. Обозначается

$$\lim_{x \to a} f(x) = b.$$

Определение 1.

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \mid \forall x : 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Предел функции

- Бесконечный предел: $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \mid \forall x : 0 < |x a| < \delta \Rightarrow |f(x)| > \varepsilon$
- Односторонний предел при $x \to a + 0$: $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \ | \ \forall x : a < x < a + \delta \Rightarrow |f(x) b| < \varepsilon$
- Односторонний предел при $x \to a 0$: $\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \ | \ \forall x : a \delta < x < a \Rightarrow |f(x) b| < \varepsilon$
- Предел функции на бесконечности: $\forall \varepsilon>0, \exists \delta(\varepsilon)>0 \ |\ \forall x:x>\delta \Rightarrow |f(x)-b|<\varepsilon$

Основные свойства пределов

Пусть заданные на одном и том же множестве функции f(x) и g(x) имеет в точке a предельные значения b и c соответственно. Тогда:

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = b + c$$

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) = b - c$$

$$\lim_{x \to a} Cf(x) = C \cdot \lim_{x \to a} f(x) = Cb$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = bc$$

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{b}{c}$$

Бесконечно малые функции

Определение 2. Функция y = f(x) называется бесконечно малой в точке x = a (при $x \to a$), если $\lim_{x \to a} f(x) = 0$.

$$\forall \varepsilon > 0, \exists \delta > 0 \mid \forall x : 0 < |x - a| < \delta \Rightarrow |f(x)| < \varepsilon$$

Определение 3. Функция y=f(x) называется бесконечно большой в точке x=a (при $x\to a$), если $\lim_{x\to a} f(x)=\infty$.

$$\forall A > 0, \exists \delta > 0 \mid \forall x : 0 < |x - a| < \delta \Rightarrow |f(x)| > A$$

Свойства бесконечно малых функций

- $\alpha(x), \beta(x)$ бесконечно малые функции, при $x \to a$, тогда функция $\alpha(x) \pm \beta(x)$ есть также бесконечно малые функции
- $\alpha(x)$ бесконечно малая функция при $x \to a$, а функция f(x)— ограничена, тогда $\alpha(x) \cdot f(x)$ бесконечно малая функция
- f(x) определена в окрестности точки a, кроме быть может самой точки a, $\lim_{x\to a}=b$. Тогда $f(x)=b+\alpha(x)$, где $\alpha(x)$ бесконечно малая функция при $x\to a$.

Сравнение бесконечно малых функций Символ Ландау.

- Функция $\alpha(x)$ называется бесконечно малой более высоко порядка, чем $\beta(x)$, если предельное значение $\frac{\alpha(x)}{\beta(x)}$ в точке равно нулю.
- Функции $\alpha(x)$ и $\beta(x)$ называется бесконечно малыми одного порядка, если предельное значение $\dfrac{\alpha(x)}{\beta(x)}$ в точке существует и отлично от нулю.
- Функции $\alpha(x)$ и $\beta(x)$ называется эквивалентными, если предельное значение $\frac{\alpha(x)}{\beta(x)}$ в точке равно единице

Первый замечательный предел

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\frac{1}{2}R^2\sin x < \frac{1}{2}R^2x < \frac{1}{2}R^2 \text{tg}x$$

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\frac{\sin x}{x} > \cos x$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\sin x = x + o(x)$$

Первый замечательный предел

1.
$$\lim_{x\to 0} \frac{\mathbf{tg}x}{x}$$

$$2. \lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{x^2}}$$

1.
$$\lim_{x \to 0} \frac{\lg x}{x} = \lim_{x \to 0} \frac{\sin x}{\cos x \cdot x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos x} = 1 \cdot 1 = 1$$

$$tgx = x + o(x)$$

2.
$$\lim \frac{1 - \cos x}{\frac{x^2}{2}} = \lim_{x \to 0} \frac{2 \sin^2 \frac{x}{x}}{\frac{x^2}{22}} = \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} \cdot \lim_{x \to 0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} = 1 \cdot 1 = 1$$
$$\cos x = \frac{x^2}{2} + o(\frac{x^2}{2}) = \frac{x^2}{2} + o(x^2)$$

Второй замечательный предел

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right) = e$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = \lim_{x \to 0} \frac{1}{x} \ln(1+x) = \lim_{x \to 0} \ln(1+x)^{\frac{1}{x}} = \ln(\lim_{x \to 0} (1+x)^{\frac{1}{x}}) = \ln e = 1$$

$$\ln(1+x) = x + o(x)$$

• Пусть $e^x - 1 = y$. Тогда $x = \ln(1 + y)$. Следовательно:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{y}{\ln(1 + y)} = \lim_{x \to 0} \frac{1}{\frac{\ln(1 + y)}{y}} = 1$$

$$e^x = 1 + x + o(x)$$

Непрерывность функции

Определение 4. Функция f(x) называется непрерывной в точке a, если:

- f(x) существует в точке a
- f(x) имеет предел в точке a
- $\lim_{x \to a} f(x) = f(a)$

$$f(a) = f\left(\lim_{x \to a} x\right) = \lim_{x \to a} f(x)$$

Определение 4.

$$\forall \varepsilon > 0 \exists \delta > 0, \forall x \in \{ |x - a| < \delta \} : |f(x) - f(a)| < \varepsilon$$

Определение 1.

$$\forall \varepsilon > 0, \exists \delta(\varepsilon) > 0 \mid \forall x : 0 < |x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Классификация точек разрыва

- 1. Устранимый разрыв. Точка a точка устранимого разрыва функции f(x), если $\exists \lim_{x \to a} f(x) = b$, но либо в точке a функция неопределенна или частное значение в точке не равно предельному значению.
- 2. Разрыв 1го рода. Точка a точка разрыва первого рода функции f(x), если $\lim_{x \to a+0} f(x) \neq \lim_{x \to a-0} f(x)$.
- 3. Разрыв 2го рода. Точка a точка разрыва второго рода функции f(x), если $\exists \lim_{x \to a+0} f(x)$ или $\exists \lim_{x \to a-0} f(x)$. ($\overline{\exists}$ отрицание существования)

Свойства непрерывных функций

Если функция y = f(x) непрерывна на отрезке [a, b]

- Теорема 1. и на концах его имеет значения, противоположные по знаку, то f(x) обращается в ноль по крайней мере в одной точке интервала (a,b).
- Теорема 2. ... причем f(a) = A, f(b) = B. Тогда, каким бы ни было число C, заключенное между числами A, B на отрезке (a, b) найдётся по крайней мере одна точка c, такая что f(c) = C.
- Теорема 3. ... то она ограничена на нем сверху и снизу.
- Теорема 4. ... то она достигает на этом отрезке своих точных верхних и нижних граней