天津医科大学理论课教案首页

(共4页、第1页)

课程名称:生物信息学 课程内容/章节:第四章(4.1) DNA 序列信息分析

授课方式:理论讲授 **学时数:**2 **教材版本:**生物信息学(自编教材)

教学目的与要求 (分掌握、熟悉、了解、自学四个层次) :

• 掌握限制性核酸内切酶的命名规则及 Ⅱ 型限制酶特点; CpG 岛的概念及其识别依据和判别标准。

- 熟悉 DNA 序列分析的常见内容; ORF 分析中相位的概念; 原核和真核基因启动子的结构。
- 了解 DNA 携带的两类遗传信息; DNA 序列分析相关的数据库和工具; ORF 和 CDS 的定义与区别。
- 自学 DNA 序列分析数据库和工具的使用方法。

授课内容及学时分配:

- (5') 引言与导入:回顾中心法则,阐释核酸序列携带的两类遗传信息。
- (30') DNA 组份分析与序列转换:回顾 Chargaff 法则,讲解 GC 含量的定义与计算,介绍组份分析和序列转换的原理和思路,讨论解决问题的基本策略。
- (15') 限制性核酸内切酶位点分析: 讲解限制性核酸内切酶的概念、命名规则和 Ⅱ 型限制酶的特征,介绍常用的数据库与分析工具。
- (10') 开放阅读框分析: 讲解相位的概念以及 ORF 与 CDS 的定义和区别,介绍常用的 ORF 分析工具。
- (10') 启动子分析: 讲解启动子与转录因子的基本概念, 回顾原核基因和真核基因启动子的结构, 介绍相关数据库与工具。
- (15') CpG 岛识别: 讲解 CpG 岛的概念、识别依据和判别标准,介绍识别 CpG 岛的计算工具。
- (10') EMBOSS 简介:介绍 EMBOSS 软件包及其中常用的程序。
- (5') 总结与答疑: 总结授课内容中的知识点与技能, 解答学生疑问。

教学重点、难点及解决策略:

• 重点: 限制酶的命名规则, CpG 岛的识别依据和判别标准。

• 难点: 开放阅读框中相位的概念。

• 解决策略:通过示意图和实例帮助学生理解、记忆。

专业外语词汇或术语:

中心法则 (central dogma) 编码序列 (Coding Sequence, CDS)

GC 含量 (GC content) 启动子 (promoter)

限制性核酸内切酶 (restriction endonuclease) 转录因子结合位点 (TFBS)

开放阅读框 (Open Reading Frame, ORF) CpG 岛 (CpG island)

辅助教学情况:

• 多媒体:展示中心法则、开放阅读框相位、启动子结构等的示意图。

• 板书: 序列的书写惯例, 限制酶的命名规则, CpG 岛的识别依据和判别标准。

复习思考题:

- 简述 DNA 携带的两类遗传信息及常见的分析内容。
- 简述限制酶的命名规则及Ⅱ型的主要特点。
- 简述 ORF 与 CDS 的定义和区别。
- 简述 CpG 岛的概念、识别依据和判别标准。
- 论述分析任务属性和解决问题的基本策略。

参考资料:

- 朱玉贤,李毅,郑晓峰。现代分子生物学(第3版),高等教育出版社,2007。
- 维基百科。

主任签字: 年 月 日 教务处制

天津医科大学理论课教案续页

(共4页、第2页)

一、引言与导入(5分钟)

- 1. 分子生物学的中心法则: DNA 转录成 RNA、RNA 翻译成蛋白质。
 - DNA: 携带最原始的决定个体性状的遗传信息
 - RNA: 参与遗传信息的表达和调控
 - 蛋白质: 执行特定的生物功能从而决 定最终的表型
 - 排列顺序蕴含生物信息: 类似于二进制中运用一连串的 0 和 1 以及英文字母表中运用 26 个不同的字母来表达信息 (通过类比进行说明)

- 2. DNA 携带两类遗传信息
 - 功能序列: 具有功能活性的 DNA 序列,遗传的基本单位
 - 调控信息:特定的 DNA 区域,能被功能性蛋白质分子特异地识别结合
- 3. DNA 序列分析
 - 基本信息: 碱基组份, GC 含量, 序列转换, 限制性核酸内切酶位点, ……
 - 特征信息: 开放阅读框, 启动子, 转录因子结合位点, CpG岛, ……
- 二、DNA 组份分析与序列转换(30分钟)
 - 以Chargaff法则引申出序列组份分析、序列转换的内容与原理。
 - 1. Chargaff 法则
 - $A = T, G = C \Rightarrow$ 序列长度, 碱基数目及比例, 序列转换
 - AT/GC 的比值因生物种类不同而异 \Rightarrow GC 含量
 - 2. GC 含量

- 3. 序列转换
- 鸟嘌呤 (G) 和胞嘧啶 (C) 所占的比例
- GC content: $\frac{G+C}{A+T+G+C} \times 100$
- GC ratio: $\frac{A+T}{G+C}$

- 反向序列, 互补序列
 - 反向互补序列 ⇒ 序列书写惯例
- 显示 DNA 双链
- 转换为 RNA 序列

- 4. 序列书写惯例
 - DNA/RNA: [左] 5' ⇒ 3' [右]
 - 多肽/蛋白质: [左] N 端 (氨基端) ⇒ C 端 (羧基端) [右]
- 5 分析解决问题的策略
 - 以计算 GC 含量为例 (使用简单例子易于学生理解)
 - 任务属性决定解决策略(使用序列长短、数目多少的实例进行讲解)
- 三、限制性核酸内切酶位点分析(15分钟)
 - 1. 限制性核酸内切酶
 - 定义:识别 DNA 特异序列、并在识别位点或其周围切割双链 DNA 的内切酶
 - 【重点】命名规则(以 *Eco*RI 为例)
 - 属名的第一个字母
 - 种名的前两个字母
 - 细菌的菌株/品系
 - 同一品系中的发现顺序

Derivation of the EcoRI name				
Abbreviation	Meaning	Description		
E	Escherichia	genus		
со	coli	species		
R	RY13	strain		
ı	First identified	order of identification in the bacterium		

天津医科大学理论课教案续页

(共4页、第3页)

• II 型限制酶的特点(以 EcoRI、AluI 等实例加深学生的印象)

- 识别、切割位点专一

- 识别序列: 4-8个碱基, 回文对称结构

- 切割序列: 识别序列, 切割位点对称

- 切割末端: 黏性末端, 平滑末端

- 黏性末端: 切割位点在回文序列的一侧

- 平滑末端: 切割位点在回文序列的中间

酵素名称	来源	辩识序列	切法
EcoRI	Escherichia coli	5'GAATTC 3'CTTAAG	5'G AATTC3' 3'CTTAA G5'
Alul*	Arthrobacter luteus	5'AGCT 3'TCGA	5'AG CT3' 3'TC GA5'

2. 相关资源

• 数据库: REBASE 收录了限制酶的所有信息

• 分析工具: NEBCutter V2.0 产生 DNA 序列的酶切位点分析结果

四、开放阅读框分析(10分钟)

1. ORF: 开放阅读框

2. **【难点】**frame:相位(通过示意图加深理解)

3. CDS: 编码序列

4. ORF vs. CDS: 理论预测 vs. 实验证实

5. 分析工具: ORF Finder

五、启动子分析(10分钟)

1 转录调控

• 顺式作用元件:核酸序列 ⇒ 启动子

• 反式作用因子: 蛋白质

• 两者相互作用实现转录调控

2 启动子

- 基本概念
 - 启动子: 一段位于转录起始位点 5' 端上游区的 DNA 序列
 - 转录起始位点:与新生 RNA 链第一个核苷酸相对应 DNA 链上的碱基 (图示 TSS 附近的坐标)

- 启动子结构(图示、对比原核和真核基因的启动子结构,帮助学生记忆)
 - 原核基因
 - * -10 ⊠, -10, TATAAT
 - * -35 ⊠, -35, TTGACA
 - 真核基因
 - * TATA box, $-25 \sim -30$, TATAAA
 - * CAAT box, $-70 \sim -80$, CCAAT

3. 转录因子

- 转录因子: 蛋白质
- 转录因子结合位点: DNA 序列, 5 ~ 20bp
- 4. 相关资源
 - 数据库: EPD; TRANSFAC
 - 分析工具: Promoter Scan, Promoter 2.0; Tfblast

天津医科大学理论课教案续页

(共4页、第4页)

六、CpG 岛识别 (15 分钟)

- 1. CpG 岛简介
 - CpG 保持或高于正常概率的基因组区段
 - 一般位于基因 (尤其是看家基因) 的 5° 端区域,长度约 300~3000bp;大多数未甲基化
- 2. 【重点】识别依据与判别标准(提醒学生判别标准不是唯一的)
 - GC 含量: 50% → 55%
 - CpG 岛的长度: 200bp → 500bp
 - CpG 二核苷酸的出现频率: $60\% \rightarrow 65\%$ (计算公式: $\frac{Num\ of\ CpG}{Num\ of\ C\times Num\ of\ G} \times Total\ number\ of\ nucleotides\ in\ the\ sequence)$
- 3. 分析工具: EMBOSS (CpGPlot/CpGReport/Isochore)

七、EMBOSS 简介 (10 分钟)

- 1. EMBOSS 简介
 - 开源、免费的序列分析软件包,整合了目前可以获得的大部分序列分析软件
 - 可以将系列分析工作进行无缝整合, 弥补了许多软件功能分散、分析效率低下的缺陷
- 2. 使用界面
 - 操作系统: Linux, Mac, Windows
 - JEMBOSS: java 界面
 - EMBOSS Explorer: web 界面
- 3. 主要程序
 - 最重要的程序。Wossname:根据关键字查找程序;Showdb:显示所有整合的数据库。
 - 序列编辑。Revseq:将序列反转并互补;Segret:序列格式转换。
 - 两个序列相似性图形表达。Dottup:精确匹配; Dotmatcher:近似匹配。
 - 双序列比对。Needle: 全局比对: Water: 局部比对。
 - 多序列比对。Emma: clustalW。
 - 寻找 SNP。Deffseg: 仅限于双序列比对中。
 - 其他。Plotorf, Getorf: 翻译; Iep: 等电点预测; Tmap: 跨膜区预测; Pepinfo: 蛋白质性质; Patmatmotifs: Motif 搜索。
- 4. 使用实例:以使用 EMBOSS 识别 CpG 岛的实例操作加深学生对 CpG 岛识别依据和标准的理解,同时熟悉 EMBOSS 的使用方法

八、总结与答疑(5分钟)

- 1. 知识点
 - DNA 序列基本信息分析: Chargaff 法则, GC 含量, 序列转换
 - 限制性核酸内切酶位点分析: 命名规则, II 型核酸酶的特点
 - 开放阅读框分析:相位, ORF 和 CDS 的区别
 - 启动子分析: 原核基因和真核基因的启动子结构
 - CpG 岛识别:概念、识别依据及判别标准
- 2. 技能
 - 任务属性决定解决方案
 - 寻找最合适的方法
 - 先易后难, 由浅入深