

GBI Tutorium Nr.

Foliensatz 0333

Vincent Hahn - vincent.hahn@student.kit.edu | 6. November 2012

Outline/Gliederung

Division mit Rest

- Algorithmen
- Schleifeninvarianzen

Überblick

- 1 Division mit Rest
- 2 Algorithmen
- Schleifeninvarianzen

Division mit Rest

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+ :$$

 $x = y \cdot (x \operatorname{div} y) + (x \operatorname{mod} y)$

Hierbei ist div die Ganzzahldivision ohne Rest.

Beispiel

Den Rest a der Ganzzahldivision erhält man also mit $a = x \mod y$

$$1 = 4 \mod 3$$

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

Division mit Rest

Definition

$$\forall x \in \mathbb{N}_0, \forall y \in \mathbb{N}_+:$$

 $x = y \cdot (x \operatorname{div} y) + (x \operatorname{mod} y)$

Hierbei ist div die Ganzzahldivision ohne Rest.

Beispiel

Den Rest a der Ganzzahldivision erhält man also mit $a = x \mod y$:

$$1 = 4 \mod 3$$

Division mit Rest

Folgerung

Aus der Definition kann direkt geschlossen werden:

$$x \operatorname{div} y \in \mathbb{N}_0$$

$$x \mod y \in \{0, \dots, y-1\}$$

mündlich

X	у	x div y	X	mod y
4	3			
2	1			
10	3			
8	3			
9	2			
4	3			

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

	- 10		
mün	all		h
mun	u	IIC	ш

Х	У	x div y	Х	mod y
4	3	1		1
2	1			
10	3			
8	3			
9	2			
4	3			

mü	n	МI		h
ши		чι	IIU	

X	у	x div y	X	mod y
4	3	1		1
2	1	2		0
10	3			
8	3			
9	2			
4	3			

mündlich

X	у	x div y	X	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3			
9	2			
4	3			

	- 10		
mün	all		h
mun	u	IIC	ш

Χ	У	x div y	Χ	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2			
4	3			

mündlich

X	У	x div y	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3			

mündlich

Х	у	x div y	Х	mod y
4	3	1		1
2	1	2		0
10	3	3		1
8	3	2		2
9	2	4		1
4	3	1		1

Größter gemeinsamer Teiler

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \operatorname{div} m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

 $\Rightarrow a = 2^3 \cdot 3^2 \cdot 5^0 \cdot 7^2$
 $\Rightarrow b = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^1$

Größter gemeinsamer Teiler

Definition

Der größte gemeinsame Teiler zweier Zahlen ist die größtmögliche Zahl $m \in \mathbb{N}_0$, für die gilt:

$$a \operatorname{div} m = 0 \wedge bivm = 0$$

Bestimmung

Der größte gemeinsame Teiler kann mit Primfaktorzerlegung bestimmt werden:

$$a = 3528, b = 3780$$

 $\Rightarrow a = 2^3 \cdot 3^2 \cdot 5^0 \cdot 7^2$
 $\Rightarrow b = 2^2 \cdot 3^3 \cdot 5^1 \cdot 7^1$

Größter gemeinsamer Teiler

Programmierung

Die ggt-Funktion lässt sich so programmieren:

$$ggt(a,b) = \begin{cases} a & \text{falls } b = 0 \\ ggt(b, a \mod b) \end{cases}$$

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

Überblick

- 1 Division mit Rest
- Algorithmen
- Schleifeninvarianzen

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch.
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Eigenschaften¹

Ein Algorithmus...

- hat eine endliche Beschreibung,
- besteht aus elementaren Aussagen,
- ist deterministisch,
- gibt endliche Ausgabe auf endliche Eingabe aus,
- hat endlich viele Schritte,
- ist skalierbar
- und ist nachvollziehbar

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

6. November 2012

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

11/20

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt

Arten

while Wiederholen, wenn eine Bedingung erfüllt ist.

for *n*-Mal wiederholen.

do-while Wiederholen, danach nochmal, wenn eine Bedingung erfüllt ist.

Vincent Hahn - vincent.hahn@student.kit.edu - GBI Tutorium

6. November 2012

Beispiel 1

Output: i

```
Input: x \in \mathbb{N}

i \leftarrow 0

while x > 1 do

x \leftarrow x \operatorname{div} 2

i \leftarrow i + 1

od
```

6. November 2012

Beispiel 2

 $k \leftarrow 0$ for $i \leftarrow 0$ to 20 do $k \leftarrow i$ od

Output: k

Beispiel 3

Gegeben sei ein Wort w der Länge |w| = n. Das Array W hat an i-ter Stelle den i-ten Buchstabe von w. w ist ϵ -frei.

$$c \leftarrow 0$$
 for $i \leftarrow 0$ to $n-1$ do $c \leftarrow \begin{cases} c+1 & \text{falls } W[i] = x \\ c & \text{sonst} \end{cases}$

Output: c

Übung 1, Winter 2008/2009

Es sei A ein Alphabet.

Schreiben Sie einen Algorithmus auf, der folgendes leistet: Als Eingaben erhält er ein Wort w über A und zwei Symbole $x \in A$ und $y \in A$. Am Ende soll eine Variable r den Wert 0 oder 1 haben, und zwar soll gelten:

$$r = \begin{cases} 1 & \text{falls irgendwo in w direkt hintereinander erst } x \text{ dann } y \text{ vorkommt} \\ 0 & \text{sonst} \end{cases}$$

Benutzen Sie zum Zugriff auf das i-te Symbol von w die Schreibweise w (i). Formulieren Sie den Algorithmus mit Hilfe einer for-Schleife.

Überblick

- Division mit Rest
- 2 Algorithmen
- Schleifeninvarianzen

16/20

Definition

Eine Schleifeninvariante ist eine Eigenschaft einer Schleife, die bei jedem Schleifenzeitpunkt gültig ist.

Hä?

Eine Schleifeninvariante ist zum Beispiel

- ein Wertebereich für eine Variable oder
- ein Verhältnis zweiter Variablen.

Definition

Eine Schleifeninvariante ist eine Eigenschaft einer Schleife, die bei jedem Schleifenzeitpunkt gültig ist.

Hä?

Eine Schleifeninvariante ist zum Beispiel

- ein Wertebereich für eine Variable oder
- ein Verhältnis zweiter Variablen.

Wofür?

Mit Schleifeninvarianten lassen sich Algorithmen überprüfen.

Wie?

Mit vollständiger Induktion :-)

Wofür?

Mit Schleifeninvarianten lassen sich Algorithmen überprüfen.

Wie?

Mit vollständiger Induktion :-)

Beispiel

Input:
$$a, b \in \mathbb{N}_0$$

 $S \leftarrow a$
 $Y \leftarrow b$
for $i \leftarrow 0$ to $b - 1$ do
 $S \leftarrow S - 1$
 $Y \leftarrow Y - 1$
od

Output: S

Übung

Algorithmus mit a = 3 und b = 4 ausprobieren und Werte für S und Y bei jedem Schleifendurchlauf finden.

Beispiel

Input:
$$a, b \in \mathbb{N}_0$$

 $S \leftarrow a$
 $Y \leftarrow b$
for $i \leftarrow 0$ to $b-1$ do
 $S \leftarrow S-1$
 $Y \leftarrow Y-1$
od

Übung

Output: S

Algorithmus mit a = 3 und b = 4 ausprobieren und Werte für S und Y bei jedem Schleifendurchlauf finden.

Winter 2008/2009

$$\begin{array}{l} \textbf{Input:} \ \ a,b \in \mathbb{N}_0 \\ X_0 \leftarrow a \\ Y_0 \leftarrow b \\ P_0 \leftarrow 1 \\ Z_0 \leftarrow X_0 \mod 2 \\ n \leftarrow 1 + \lceil \log_2 a \rceil \\ \textbf{for} \ i \leftarrow 0 \ \textbf{to} \ n - 1 \ \textbf{do} \\ P_{i+1} \leftarrow P_i \cdot Y_i^{Z_i} \\ X_{i+1} \leftarrow X_i \ \text{div} \\ Y_{i-1} \leftarrow Y_i^2 \\ Z_{i+1} \leftarrow X_{i+1} \mod 2 \end{array}$$

Beweisen Sie durch vollständige Induktion über *i* die Schleifeninvariante:

$$\forall i \in \mathbb{N}_0 : P_i \cdot Y_i^{X_i} = b^a$$