

About Me

- ID:sm0nk
- 猎户实验室安全研究员
- · 特长:WEB攻防、攻击建模
- 爱好:金庸武侠、关联分析

http://weibo.com/shellr00t

目录结构

一 安全环境及定位分析

大数据及模型应用

WEB攻击溯源分析与处理

四 WITS Demo及分析响应

- Web Intrusion Tracking System WEB入侵追踪系统(以大数据为基础,联动为主线,实现攻击溯源的下一代智能安全防御系统)
 - 大环境(棱镜、第五空间、哨兵)
 - WEB攻击定位: WEB攻击切入点、APT敲门砖
 - 面临的挑战与机遇

传统安全防御体系

如果发生安全事件怎么办? 业务安全漏洞能否检测?

应急响应模型-密切关联

目录结构

- 安全环境及定位分析
- 二大数据及模型应用
- WEB攻击溯源分析与处理

四 WITS Demo及分析响应

大数据

1. 什么是大数据?

- 2、大数据到底有多大?
- 3、大数据时代怎么理解?

大数据 特点:

数据量大、数据种类多、 要求实时性强、数据所蕴藏的价值大。 在各行各业均存在大数据,但是众多的信息和咨询是纷繁复杂的,我们需要搜索、处理、分析、归纳、总结其深层次的规律。

IBM出版了一本书叫做《无所不包的数据》在对大数据进行描述时,常见的GB或者TB的数据存储单位已经不再使用,而是以PB(1024TB)、EB(1024PB)甚至ZB(1024EB)。

由于大数据对所有网络用户的数据进行汇集存储,在一定程度上,为用户的个人数据的隐私保护埋下了安全隐患。

大数据处理过程

BIG

DATA

利用大数据对确切的 攻击行为进行分析

- ✓分析攻击者的来源
- ✓攻击路线
- ✓身份背景
- ✓目的
- ✓攻击者是谁
- ✓从哪来
- ✓来干什么
- ✓拿到了什么?

入侵事件的处理模型

数据分析处理输出中心

攻击检测模型

目录结构

- 安全环境及定位分析
- 大数据及模型应用
- 三 WEB攻击溯源分析与处理

四 WITS Demo及分析响应

溯源威胁模型

- 杀毒软件原理?
- 威胁模型
 - 标准?应用 top10、业务逻辑top10
 - -需要哪些技术?
 - •漏洞原理及触发规则
 - 攻击样本
 - 对未知方法及木马的"主动学习"模式(蜜罐)
 - 攻防技术及研究人员的储备
 - 结果导向:正则匹配、双向数据包比对

溯源取证扮演的角色

- •攻击手段分析取证
- •黑客工具分析取证

Where &when

- •本次安全事件轨迹
- •绘制攻击者历史轨迹

How

- •攻击者身份、个人信息、
- •攻击者网络指纹

溯源取证解决的问题

自内部与外 部的攻击行 为

通过诸多数 据来源,还 原安全事件 真相

检测威 胁

事件还 原

事件追 溯

WITS

实时检测来

漏洞分析

解读攻击者 的真实身份、 背景、动机

出具漏洞 修补方案, 抵御二次 攻击

分析检测过程

双向检测

请求包、返回包 双因子检测模式

动态建模

建立策略,对比 正常的访问行为 基线;如明显偏 离正常行为模式 则可产生告警

大数据支撑

- 1.海量基础数据支撑
- 2.海量攻击数据
- 3.互联网资安分析
- 4.机器学习

事件还原

• 对整个事件的串联分析及展现

事件追溯

• 对特征、手法、行为、时间段、目的进行智能分析

目录结构

- 安全环境及定位分析
- 大数据及模型应用
- WEB攻击溯源分析与处理

四 WITS Demo及分析响应

溯源DEMO

溯源案例

黑客工具分析: Tornado

黑客云鉴定: 该黑客的攻击手法(扫描指纹,注入指纹)曾经攻击过多个中国政府网站。点击查看详情

攻击者多维度信息

68.36.220 61.183.

高危文件

未收录

成功

98次

高危

日志: 未知 2015-04-08

北京时间下午

16:00 探针: 未知

云端:已收录

攻击溯源

基本信息

IP地址:	68.36
IP所属组织:	CMCS - Comcast Cable Communications, Inc.,US
经纬度:	-74.1001,40.7923
IP来源:	United States,New Jersey
HOSTNAME:	c-68-36-236-16.hsd1.mi.comcast.net
PREFIX:	68.36.0.0/15
ASN:	AS33668
REGION:	New Jersey

通过IP信息可以初步判断该IP来自虚拟空间提供 商,非正常用户访问

云端信息

端口:	80,1723		
反向域名:	未检查到域名		
注册国家:	未收录		
IP所属国家:	美国	通过云端的历史记录,该IP曾经开放	7
服务器信息:	centos 6.5	80,1723端口也可以断定为跳板机器,	
虚拟空间判断:	是	常用户访问	

处理引擎

攻击分析引擎:	发生了 98 次攻击行为		
态势感知引擎:	可疑	通过拉去公析	f引擎判断检测到了5次攻击行为。
云端恶意IP分析引擎:	否		8判断为可疑,其依据是云端大数据模型。
规则分析引擎:	PHPINFO		n恶意IP,证明之前被有过攻击行为。 按识别为"PHPINFO"方式攻击。
攻击者数量分析引擎:	2	攻击者数量被	
APT分析引擎:	是		攻击,其依据主要是此IP之前有过APT攻击行为,
域名分析引擎:		而现在又进行	于了同样手法的攻击。

沙箱信息

脚本沙箱:	发现后门	通过脚本沙箱,	识别出来有后门程序
程序沙箱:	未发现可执行文件		

整体威胁分析

已侦测到 21012123 条访问记录 共遭受到 228363 人次黑客攻击 共有 12 台服务器,被 550 人次黑客攻击 分析统计后定性为黑客攻击事件 88 起 其中有 2 台服务器,被黑客攻击成功 截获 WebShell 后门 2 个

黑客IP来源:

中国:461 美国:46 法国:14 德国:5 中国香港:4 俄罗斯:3 加拿大:3 乌克兰:2 哥仑比亚:2 朝鲜:2 中国台湾:1 荷兰:1 越南:1 阿塞拜疆:1 马其顿:1 罗马尼亚:1 意大利:1 菲律宾:1

应急响应模型对比分析

Prepare - 准备(双向监控流量)

Detection - 检测 (态势感知、预警、自动化精确规则匹配)

Containment – 遏制(推送规则给WAF、FW)

Eradication - 根除(自动化定位原因,联动阻断,防御二次)

Recovery - 恢复(漏洞加固方案)

Follow-Up - 跟踪(实时监控、持续跟踪)

安全功能展望

- 联动处理
 - 目前已经实现联动分析,联动接口已开放
 - WAF、FW联动
- 引擎融入
 - -沙箱脚本
 - 杀毒引擎
- 瓶颈分析
 - 各家安全产品联动处理接口多而杂
 - 业务逻辑漏洞

Thx,Q&A