CM A – Difração de Raios X

Felipe B. Pinto 61387 – MIEQB

4 de novembro de 2023

Conteúdo

Questão 7	2	Questão 10							5
Questão 8	3	Questão 11							6
Ouestão 9	 4								

Sabendo os critérios para determinar a existência de difração por parte de uma família de planos são na estrutura:

Cúbica simples (CS): todos os índices possíveis

Cúbica de Corpo Centrado (CCC): Soma dos índices é par

Cúbica de Faces Centradas (CFC): Indices todos pares ou todos ímpares

Assinale abaixo nas colunas correspondentes as reflexões possíveis para casa caso:

h	k	l	N	CS	CFC	CCC
1	0	0	1	X		
1	1	0	2	X		X
1	1	1	3	X	X	
2	0	0	4	X	X	X
2	1	0	5	X		
2	1	1	6	X		X
2	2	0	8	X	X	X
2	2	1	9	X		
3	0	0	9	X		
3	1	0	10	X		X
3	1	1	11	X	X	
2	2	2	12	X	X	X

Os elementos do Grupo IV-A da tabela periódica apresentam uma estrutura cristalina designada de diamante em que as reflexões ocorrem nos planos nos quais os índices (h k l) são:

i: todos ímpares ou

ii: todos pares e h + k + l = 4 n, i.e., a soma é um múltiplo de 4.

Determine as posições 2θ em que deverá obter os primeiros 12 picos de difração do Si ($a_{\rm Si}=5.4309\,{\rm \AA}$), utilizando o comprimento de onda da radiação

•
$$K \alpha_{Mo} = 0.71073 \,\text{Å}$$

•
$$K \alpha_{Cu} = 1.5406 \,\text{Å}$$

Resposta

$$n \lambda = 2 d_{hkl} \sin(\theta) \implies$$

$$\implies 2\theta = 2 \arcsin \frac{n \lambda}{2 d_{hkl}} = 2 \arcsin \frac{1 * \lambda}{2 (a/\sqrt{h^2 + k^2 + l^2})} =$$

$$= 2 \arcsin \frac{\lambda}{2 a/\sqrt{N}} = 2 \arcsin \frac{\lambda \sqrt{N}}{2 a}$$

h	k	l	N	$2 heta_{ ext{Mo}}$	$2 heta_{ extsf{Cu}}$
1	1	1	3	0.227	0.496
2	2	0	8	0.372	0.826
3	1	1	11	0.438	0.980
4	0	0	16	0.530	1.207
3	3	1	19	0.578	1.333
4	2	2	24	0.653	1.536
3	3	3	27	0.694	1.657
5	1	1	27	0.694	1.657
4	4	0	32	0.758	1.862
5	3	1	35	0.795	1.991
6	2	0	40	0.853	2.226
5	3	3	43	0.887	2.389

- $r_{\text{Fe}} = 1.24 \,\text{Å}$
- $\lambda K \alpha_{Cu} = 1.54 \text{ Å}$
- $\lambda K \alpha_{Cr} = 2.29 \,\text{Å}$

Q9 a.

Usando a lei de Bragg, calcule os ângulos de difração 2θ para os três primeiros picos do Fe $-\alpha$ (CCC) obtidos com uma ampola de cobre e com uma ampola de crómio.

Q9 b.

Compare os dados obtidos a partir destes cálculos com os valores do espectro do aço ferramenta H13.

· {110}

Considere uma estrutura cúbica simples. Liste por ordem crescente de densidade atómica os seguintes planos:

• {100} • {210} • {211}

· {311}

· {111}

Considere os seguintes ângulos de difração para os primeiros três picos do padrão de difração de raios X de um metal. Utilizou-se radiação monocromática que possui um comprimento de onda de 0.1542 nm.

Ordem dos picos	ângulo de difração
1	38.6
2	55.7
3	70.0
	

Q11 a.

Determinar se esta estrutura cristalina é CFC ou CCC, ou nenhuma delas, justificando a sua escolha.

Q11 b.

Com base na seguinte tabela identifique qual dos metais possui esse padrão de difração

	Estantino	Daia Atámia
Metal	Estrutura	Raio Atómico
	Cristalina	(nm)
Alumínio	CFC	0.1431
Cadmio	HC	0.1490
Crómio	CCC	0.1249
Cobalto	HC	0.1253
Cobre	CFC	0.1278
Ouro	CFC	0.1442
Ferro-a	CCC	0.1241
Chumbo	CFC	0.1750
Molibdénio	CCC	0.1363
Níquel	CFC	0.1246
Platina	CFC	0.1387
Prata	CFC	0.1445
Tântalo	CCC	0.1430
Titânio-a	HC	0.1445
Tungsténio	CCC	0.1371
Zinco	HC	0.1332