การทดลองที่ 2 การใช้งาน GPIO

วัตถุประสงค์

- 1 เพื่อให้นักศึกษาเขียนโปรแกรมควบคุมการทำงานของ GPIO ได้
- 2 เพื่อให้นักศึกษาเขียนโปรแกรมเพื่อรับอินพุตจากสวิตช์บนบอร์ดได้

1. Switch และ LED

บนบอร์ด Nucleo-F411RE มีสวิตช์ 1 ปุ่มและ LED 1 ดวงที่ผู้ใช้สามารถใช้งานได้ ได้แก่สวิตช์ B1 สีน้ำเงินซึ่ง เชื่อมต่อกับขา PC13 เมื่อกดจะมีสถานะลอจิก 0 เมื่อปล่อยจะมีสถานะลอจิก 1 ดังรูปที่ 1.1 และ LD2 ซึ่งเป็น LED สีเขียว ที่จะติดเมื่อป้อนลอจิก 1 ทางขา PA5 ดังรูปที่ 1.2

ร**ูปที่ 1.1** การเชื่อมต่อสวิตช์เข้ากับขา PC13

รูปที่ 1.2 การเชื่อมต่อ LED เข้ากับขา PA5

นอกจากสวิตช์และ LED ที่มีมาให้บนบอร์ดอยู่แล้ว ผู้ใช้สามารถเชื่อมต่อสวิตช์และ LED เพิ่มเติมได้ทางตัวเชื่อมต่อ บนบอร์ด ซึ่งเชื่อมต่อกับขา GPIO ของไมโครคอนโทรลเลอร์ดังรูปที่ 1.3

รูปที่ 1.3 การเชื่อมต่อขา GPIO ของไมโครคอนโทรลเลอร์ไปยังตัวเชื่อมต่อตำแหน่งต่างๆ

การเชื่อมต่อสวิตช์ต้องต่อตัวต้านทานเพื่อจำกัดกระแส โดยต่อได้ 2 แบบ คือ แบบ pull-up ดังรูปที่ 1.4 (a) และ แบบ pull-down ดังรูปที่ 1.4 (b)

รูปที่ 1.4 การต่อสวิตช์แบบต่างๆ

- (a) Pull-up resistor
- (b) Pull-down resistor

2. การอ่านค่าอินพูต

การเริ่มต้นใช้งาน GPIO นั้นต้องมีการจ่ายสัญญาณนาฬิกาไปยังพอร์ตที่ต้องการใช้งาน พร้อมทั้งกำหนดโหมดการ ทำงานให้กับแต่ละขาว่าจะให้เป็นอินพุตหรือเอาต์พุตประเภทใด อีกทั้งยังสามารถกำหนดความเร็ว (speed) เมื่อทำหน้าที่ เป็นเอาต์พุตได้ว่าจะให้มีความเร็ว LOW, MEDIUM, HIGH หรือ VERY HIGH

หากต้องการเขียนโปรแกรมเพื่อตรวจสอบว่าเมื่อกดสวิตช์ B1 ทำให้ LD2 ติดนาน 1 วินาทีแล้วดับ มีขั้นตอนดังนี้

- 1) ใช้โปรแกรม STM32CubeMX สร้างโปรเจ็คขึ้นมาเช่นเดียวกับการทดลองที่ 1 แต่ใช้ขา GPIO ดังรูปที่ 2.1
- 2) พิมพ์โค้ดใน while loop ดังรูปที่ 2.2

01136104 ระบบฝั่งตัว หน้า 2/6

GPIO Mode and Configuration

Configuration ☐ Group By Peripherals ☐ GPIO Pin Name ☐ Signal on Pin GPIO output level GPIO mode GPIO Pull-up/P... Maximum outpu... User Label Modified PA5 n/a Low Output Push Pull No pull-up and ... Low ☐ PC13-ANTI_TA... n/a n/a Input mode No pull-up and ... n/a ☐

(b)

รูปที่ 2.1 การกำหนด GPIO ที่ต้องการใช้งาน

- (a) Pinout Configuration
- (b) GPIO Configuration

```
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
  //Check whether switch B1 is pressed
  if (HAL GPIO ReadPin(GPIOC, GPIO PIN 13) == GPIO PIN RESET)
    //Turn on LD2 at PA5
   HAL GPIO WritePin(GPIOA, GPIO PIN 5, GPIO PIN SET);
    //Delay 1,000 millisecond
   HAL_Delay(1000);
    //Turn off LD2 at PA5
   HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
    //Delay 1,000 millisecond
    HAL Delay(1000);
  USER CODE END 3 */
```

รูปที่ 2.2 โค้ดใน while loop ในฟังก์ชัน main

01136104 ระบบฝั่งตัว หน้า 3/6

3. อธิบายการทำงาน

ฟังก์ชัน MX GPIO init ()

- เป็นฟังก์ชันที่โปรแกรม STM32CubeMX สร้างขึ้นมา เพื่อตั้งค่า GPIO บนไมโครคอนโทรลเลอร์ให้ สอดคล้องกับที่กำหนดไว้ในโปรแกรม
- เริ่มต้นด้วยการ Enable สัญญาณนาฬิกาให้ GPIOC (สำหรับสวิตช์ B1) และ GPIOA (สำหรับ LED)

```
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
```

กำหนดให้ PA5 ซึ่งเชื่อมต่อกับ LD2 เป็นเอาต์พุต Push Pull แบบ High

```
GPIO_InitStruct.Pin = GPIO_PIN_5
```

GPIO InitStruct.Mode = GPIO MODE OUTPUT PP;

GPIO_InitStruct.Pull = GPIO_NOPULL;

GPIO InitStruct.Speed = GPIO SPEED FREQ LOW;

HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

กำหนดให้ PC13 ซึ่งเชื่อมต่ออยู่กับสวิตช์ B1 เป็นอินพุตแบบ Floating

```
GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
```

ฟังก์ชัน main ()

- เริ่มต้นการทำงานด้วยฟังก์ชัน HAL_Init() , SystemClock_Config() และ MX_GPIO_Init();
- อ่านสถานะของสวิตช์ B1 โดยใช้คำสั่ง

```
HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13)
```

• ตรวจสอบเงื่อนไขเพื่อดูว่าสวิตช์ถูกกดหรือไม่ ด้วยคำสั่ง

```
HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) == GPIO_PIN_RESET
```

สามารถศึกษารายละเอียดฟังก์ชันที่สามารถใช้งานกับโมดูล GPIO เพิ่มเติมได้จากไฟล์เอกสาร HAL Drivers

01136104 ระบบฝั่งตัว หน้า 4/6

4. การทดลอง

- 1. จงเขียนโปแกรมที่มีการทำงานดังนี้ **เมื่อสวิตช์ B1 ถูกกด ให้ LD2 ติดสว่างนาน 1 วินาที แล้วดับ**
- 2. จงต่อสวิตช์และ LED ภายนอก โดยเชื่อมต่อสวิตช์ที่**ขา PAO** แบบ pull down ดังรูปที่ 1.4 (b) และเชื่อมต่อ LED ที่**ขา PCO** โดยให้ย้อนกลับไปแก้ไขการตั้งค่าในโปรแกรม STM32CubeMX จากนั้น generate code ใหม่ แล้วจึงแก้ไขโค้ด ให้สามารถทำงานได้ตามการทดลองข้อ 1

ห้ามสร้างโปรเจ็คใหม่ และควรปิดโปรแกรม Keil ก่อนการ generate code ซ้ำ

3. จงเขียนคำสั่งเพื่อตรวจสอบว่า LED ในการทดลองข้อ 2 **ติด**อยู่หรือไม่

HAL GPIO ReadPin(GPIOC, GPIO PIN 0) == GPIO PIN SET

4. จงต่อ LED เพิ่มอีก 2 ดวงเรียงกัน โดยให้เชื่อมต่อที่ขา PC1 ถึง PC2 แล้วเขียนโปรแกรมให้ทำงานดังตารางที่ 4.1

ตารางที่ 4.1 การแสดงผลด้วย LED เมื่อกดสวิตช์ต่างๆ

Switch	การทำงานของ LED
B1	เมื่อกดสวิตช์ B1 ให้ LED ติดค้างทีละดวง และเมื่อกดสวิตช์ B1 อีกครั้งให้ LED ดวงถัดไปติดแทน ถ้า
	หากไม่มี LED ดวงใดติดอยู่เลยให้เริ่มต้นที่ LED0 ที่ขา PC0 แล้วขยับไปยัง LED1 ที่ขา PC1
	จนกระทั่งถึง LED2 ที่ขา PC2 แล้ววนไปที่ LED0 อีกครั้ง
	เริ่มต้น กดสวิตช์ B1 -> LED0 ติดค้าง -> กดสวิตช์ B1 -> LED0 ดับ และ LED1 ติดค้าง -> กดสวิตช์
	B1 -> LED1 ดับ และ LED2 ติดค้าง
PA0 Switch	LED จะไล่ติดแล้วดับทีละดวงเริ่มตั้งแต่ LED2 จนถึง LED0 โดยอัตโนมัติ 1 รอบ กำหนดให้ใช้
	delay time 0.5 วินาที

01136104 ระบบฝั่งตัว หน้า 5/6

```
ข้อ 1
```

```
if(HAL GPIO ReadPin(GPIOC, GPIO PIN 13) == GPIO PIN RESET){
        HAL GPIO WritePin(GPIOC,GPIO PIN 5,GPIO PIN SET);
        HAL Delay(1000);
        HAL GPIO WritePin(GPIOC,GPIO PIN 5,GPIO PIN RESET);
        HAL Delay(1000);
}
ข้อ 2
if(HAL GPIO ReadPin(GPIOA, GPIO PIN 0) == GPIO PIN SET){
        HAL GPIO WritePin(GPIOC,GPIO PIN 5,GPIO PIN SET);
        HAL Delay(1000);
        HAL GPIO WritePin(GPIOC,GPIO PIN 5,GPIO PIN RESET);
        HAL Delay(1000);
ข้อ 3 ไม่ต้องคอมไพล์
int LED ON = HAL GPIO ReadPin(GPIOC, GPIO PIN 0) == GPIO PIN SET
ข้อ 4
 /* USER CODE BEGIN WHILE */
                                {GPIO PIN SET, GPIO PIN RESET, GPIO PIN RESET, GPIO PIN RESET},
 GPIO_PinState StatePin[3][4] = {
                                 {GPIO PIN RESET, GPIO PIN SET, GPIO PIN RESET, GPIO PIN RESET},
                                 {GPIO PIN RESET, GPIO PIN RESET, GPIO PIN SET, GPIO PIN RESET} };
 int b = 0;
 while(1)
        if(HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0) == GPIO_PIN_SET){
                 HAL Delay(200);
                 for(int a=0;a<5;a++){ // loop 4 cycle.
                         HAL GPIO_WritePin(GPIOC, GPIO_PIN_0, StatePin[2][a]);
                         HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1, StatePin[1][a]);
                         HAL GPIO_WritePin(GPIOC, GPIO_PIN_2, StatePin[0][a]);
                         HAL Delay(500);
        } else if(HAL GPIO ReadPin(GPIOC, GPIO PIN 13) == GPIO PIN RESET){
                 HAL Delay(200);
                 HAL GPIO WritePin(GPIOC, GPIO PIN 0, StatePin[0][b]);
                 HAL GPIO WritePin(GPIOC, GPIO PIN 1, StatePin[1][b]);
                 HAL GPIO WritePin(GPIOC, GPIO_PIN_2, StatePin[2][b]);
                 if (b++==2) b=0;
```

ใบตรวจการทดลองที่ 2

KU CSC Embedded System

วัน/เดือน/เ	J กลุ่มที่	
1. รหัสนิสิต	ชื่อ-นามสกุล	
2. รหัสนิสิต	ชื่อ-นามสกุล	
3. รหัสนิสิต	ชื่อ-นามสกุล	
ลายเซ็นผู้ตรวจ การทดลองข้อ 2&3 ผู้ตรวจ	วันที่ตรวจ 🔲 W 🔲 W+1	
การทดลองข้อ 4 ผู้ตรวจ	วันที่ตรวจ 🔲 W 🔲 W+1	
	ให้ LED0 LED1 และ LED2 ที่ขา PC0, PC1 และ PC2 ติดพร้อมกัน	
	(uint16_t)0x0007, GPIO_PIN_SET);	
	ตั้งค่า GPIO ในการทดลองข้อ 4 หากโค้ดใน while loop เป็นดังโค้ดด้านล่า	٩
แสดงว่าโปรแกรมนี้ทำงานอย่าง	โร	
uint8_t n;		
while (1) {		
for (n=0; n<	=2; n++)	
{	// [16 - 32] [0-15] GPIOC-> BSRR = 0x00070000; // 0000 0000 0111 0000 0000 0000 0	
	// HEX BINARY GPIOC -> BSRR = 0x00000004 >> n; // 0x00000004 == 0000 0100	
}	HAL_Delay(500); // IF n = 0; 0000 0100 -> PC2 // IF n = 1; 0000 0010 -> PC1	
}	// IF n = 2; 0000 0001 -> PC0 // 0000 0000 0000 0000 0000 0000 0100	
•)x00000004.>> n หมายถึง ขยับบิตไปด้านขวา n ครั้ง)	-
	= 0x00070000 ; เซ็ตค่า RESET ให้ PC0, PC1, PC2 แล้ว ดีเลย์ 500 ms	-
	0x00000004 >> 0 ; ทำให้โค้ดส่วนนี้ไปเซ็ตค่า SET ให้ PC2 แล้ว ดีเลย์ 500 ms	-
รอบที่ 2 n=1 จะได้ GPIOC -> BSRR =	0x00000004 >> 1 ; ทำให้โค้ดส่วนนี้ไปเซ็ตค่า SET ให้ PC1 แล้ว ดีเลย์ 500 ms	_
รอบที่ 3 n=2 จะได้ GPIOC -> BSRR =	0x00000004 >> 2 ; ทำให้โค้ดส่วนนี้ไปเซ็ตค่า SET ให้ PC0 แล้ว ดีเลย์ 500 ms	_

01136104 ระบบฝั่งตัว หน้า 6/6