Functions II Assignment

1.	Let $f: R \to R$ be a function defined by $f(x) = \frac{1}{x^2 + x + 1}$ is			İS
	(1) one-one and inte	0	(2) one-one and ont	to
	(3) many-one and c	onto	(4) many-one and i	nto
2.	$f \colon R \to R$ is a func	tion defined by $f(x)$	$=\frac{e^{ x }-e^{-x}}{e^x-e^{-x}}$ then f	is
	(1) a bijection		(2) an injection onl	у
	(3) surjection only		(4) neither injection	n nor surjection
3.	If $f: R \to \left[\frac{\pi}{6}, \frac{\pi}{2}\right)$ set of values of a is	$: R \to \left[\frac{\pi}{6}, \frac{\pi}{2}\right)$ defined by $f(x) = \sin^{-1}\left(\frac{x^2 - a}{x^2 + 1}\right)$ is an onto function, then to values of a is		
	$(1) \ (-\infty, -1)$	$(2) \ (-1, \infty)$	$(3) (-\infty, 0)$	$(4) \ (-\infty, \infty)$
4.	4. Let $f: R \to R$ be any function. Define $g: R \to R$ by $g(x) = f(x) $ for all x the is			
	(1) onto if f is onto)	(2) one-one if f is one-one	
		(4) neither one-one	ther one-one nor onto	
5.	We have $f(x) = \begin{cases} 3 \\ 3 \end{cases}$		$(as sgn(e^{-x} =$	$=1\forall x\in R).$
	(1) one-one and inte	0	(2) one-one and ont	to
	(3) many-one and onto		(4) Neither one-one nor onto	
6. Let $A = \{1, 2, 3, 4, 5\}$. If f is a bijective function such functions for which $f(k) \neq k$, $k = 1, 2, 3$		the function from A to $1, 2, 3, 4, 5$ is	A, then the number of	
	$(1) 5^5$	(2) 120	(3) 44	$(4) 5^5 - 120$
7.	The set of values of a for which the function $f: R \to R$ given by $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is one-one is			en by
	(1) [-2,4]	(2) (1,3)	(3) (1,4)	(4) (1,5)
8.	S-I: If $f(x) = 2x^3 +$ S-II: A function $y =$		ue of $f^{-1}(4)$ is 1. If f is one-one and on	nto.
	 Both S-I and S-II are individually true and R is the correct explanation of A Both S-I and S-II are individually true but R is not the correct explanation of A S-1 is true but S-II is false 			

(4) S-I is false but S-II is true

9.	The sum of solution(s) of the equation $2[x] + x = 6\{x\}$ where $[x]$ denotes greatest integer less than or equal to x and $\{x\}$ denotes fractional part of x is				
	(1) 0	(2) $\frac{5}{3}$	(3) $\frac{3}{5}$	$(4) \frac{8}{5}$	
10.	. If $[x]$ is the greatest integer function, then $\sum_{k=1}^{4020} \left[\frac{1}{2} + \frac{k-1}{4020} \right]$ is equal to				
	(1) 2010	(2) 2009	(3) 2011	(4) 2005	
11.	$f(x) = \sin[x] + [\sin x], 0 < x < \frac{\pi}{2}$, where [·] represents the greatest integer function can also be represented as				
	$(1) \begin{cases} 0, & 0 < 1 \\ 1 + \sin 1, & 1 \le 1 \end{cases}$		(2) $\begin{cases} \frac{1}{\sqrt{2}}, \\ 1 + \frac{1}{2} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \end{cases}$	$0 < x < \frac{\pi}{4}$ $-\frac{\sqrt{3}}{2}, \frac{\pi}{4} \le x < \frac{\pi}{2}$	
	$(3) \begin{cases} 0, & 0 < x < 0 \\ \sin 1, & 1 \le x \end{cases}$	$<\frac{1}{2}$	(4) $\begin{cases} 0, & 0 < x \\ 1, & \frac{\pi}{4} < x \\ \sin 1, & 1 \le x \end{cases}$	$<\frac{\pi}{4} < 1 < \frac{\pi}{2}$	
	2000		d fractional parts of	x respectively, then the	
	value of $\sum_{r=1}^{2000} \frac{\{x+r\}}{2000}$ is				
	(1) x	(2) [x]	$(3) \{x\}$	(4) $x + 2001$	
13.	Total number of sol	ution of $2^x + 3^x + 4^x$	$x^{2} - 5^{x} = 0$ is		
	$(1) \ 0$	(2) 1	(3) 2	(4) infinitely many	
14.	The of the real-value	ned function satisfying	g f(x) + f(x+4) =	f(x+2) + f(x+6) is	
	(1) 10	(2) 8	(3) 12	(4) 6	
15.	The period of $ \sin(4\pi) + \cos(4\pi) $				
	$\frac{ \sin(4x) + \cos(4x) }{ \sin(4x) - \cos(4x) + \sin(4x) + \cos(4x) }$				
	is π		_		
	$(1) \frac{\pi}{4}$	$(2) \frac{\pi}{2}$	(3) $\frac{\pi}{8}$	$(4) \pi$	
16.	If $f(x) = \cos x + \{x$	$\{\cdot\}$ where $\{\cdot\}$ is fraction	onal part function th	en the period of $f(x)$ is	
	(1) 2π	(2) 1	$(3) \ \frac{\pi}{2}$	(4) Does not exist	
17.	The period of				
	$f(x) = \sin x + \tan\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right) + \tan\left(\frac{x}{2^2}\right) + \dots + \sin\left(\frac{x}{2^{n-1}}\right) + \tan\left(\frac{x}{2^n}\right)$				
	(1) 2π	(2) $2^n \pi$	(3) $2^n \frac{\pi}{3}$	$(4) \ 3^n \pi$	

18.	Period of $f(x) = \sin((\cos x) + x)$ is				
	(1) Does not exist	(2) π	$(3) \ \frac{\pi}{2}$	(4) 2π	
19.	The period of the function $\left \sin^3\left(\frac{x}{2}\right)\right + \left \cos^5\left(\frac{x}{5}\right)\right $ is				
	(1) 2π	(2) 10π	(3) 8π	$(4) 5\pi$	
20.			that for some $p > 0$),	
	$f(x+p) = \frac{f(x) - 3}{f(x) - 3}$	$\frac{6}{3}$ $\forall x \in R$. Then, p	eriod of f is		
	(1) 2p	(2) 3p	(3) 4p	(4) 5p	
21.	Let $f(x)$ be a real v	valued function with	domain R such that	- u	
	f((x+p) = 1 + [2-3]	$f(x) + 3(f(x))^2 - (f(x))^2 - ($	$(x))^3]^{\frac{1}{3}}$	
	holds good $\forall x \in R$	and for some +ve co	onstant p then the p	eriod of $f(x)$ is	
	(1) $\frac{p}{2}$	(2) p	(3) 2p	(4) $\frac{p}{3}$	
22.	If $f(a-x) = f(a+x)$ then the period of	f(x) and $f(b-x) = f(x)$ is	$(b+x) \ \forall x \in R \text{ where}$	a, b(a > b) are constants	
	$(1) \ 2a$	(2) $2 a-b $	(3) 3a	(4) b	
23.	The period of $f(x)$ is	= [x] + [2x] + [3x] +	$-[4x] + \dots + [nx] - \frac{1}{2}$	$\frac{n(n+1)}{2}x \text{ (where } n \in N$	
	(1) n	(2) 1	$(3) \ \frac{1}{n}$	(4) 5	
24.	If $f(2+x) = a + [1$	$-\left(f(x)-a\right)^4\right]^{\frac{1}{4}} \ \forall a$	$x \in R$, then $f(x)$ is p	periodic with period	
	(1) 1	(2) 2	(3) 4	(4) 8	
25. If $f: [-4,4] - \{-\pi,0,\pi\} \to R$, such that $f(x) = \cot(\sin x) + \left\lceil \frac{x^2}{ a } \right\rceil + \frac{\sin^2 x}{x^2}$					
	denotes greatest integer function) is an odd function, then the complete set of value of a is				
	$(1) (-\infty, -4] \cup [4, 6]$	$\infty)$	$(2) (-\infty, -16) \cup (1$	$6,\infty)$	
	(3) [-16, 16]		$(4) (-\infty, -16] \cup [10]$	$(6,\infty)$	
26.	S-I: If $f(x)$ is a odd function and $g(x)$ is even function then $f(x) + g(x)$ is neither even nor odd. S-II: Odd function is symmetrical in opposite quadrants and even function is symmetrical about the y-axis.				
	 (1) Both S-I and S-II are individually true and R is the correct explanation of A (2) Both S-I and S-II are individually true but R is not the correct explanation of A (3) S-1 is true but S-II is false 				

(4) S-I is false but S-II is true

- 27. If $f(x) = \begin{cases} 1+x; & 0 \le x \le 2\\ 3-x; & 2 < x < 3 \end{cases}$ then $(f \circ f)(x) = (f \circ f)(x) = (f \circ f)(x)$
 - (2) $\begin{cases} 2+x; & 0 \le x \le 2\\ 2-x; & 2 < x \le 3\\ 4-x; & 2 < x \le 3 \end{cases}$ (1) $\begin{cases} 1 - x; & 0 \le x \le 2\\ 3 + x; & 2 < x \le 3 \end{cases}$
 - (3) $\begin{cases} 2+x; & 0 \le x \le 1 \\ 2-x; & 1 < x \le 2 \\ 4-x; & 2 < x \le 3 \end{cases}$ (4) does not exist
- 28. If for x > 0, $f(x) = (a x^n)^{\frac{1}{n}}$; $g(x) = x^2 + px + q$; $p, q \in R$ and the equation g(x) - x = 0 has imaginary roots then the number of real roots of the equation g(g(x)) - f(f(x)) = 0
 - (3) 4(4) n
- 29. S-I: If $f(x) = \frac{x+1}{x-1}$ then $(f \circ f \circ f \circ f \circ f)(x) = f(x)$ S-II: $(f \circ f)(x) = x$
 - (1) Both S-I and S-II are individually true and R is the correct explanation of A
 - (2) Both S-I and S-II are individually true but R is not the correct explanation of A
 - (3) S-1 is true but S-II is false
 - (4) S-I is false but S-II is true
- 30. The domain of $f(x) = \frac{1}{x} + 2^{\sin^{-1} x} + \frac{1}{\sqrt{x-2}}$ is
 - $(1) (0, \infty)$
- $(2) (-\infty, 0)$
- (3) (1,3)
- $(4) \phi$
- 31. The domain of $f(x) = \sqrt{\ln_{(|x|-1)}(x^2 + 4x + 4)}$ is
 - (1) $[-3, -1] \cup [1, 2]$

- $(3) (-\infty, -3] \cup (-2, -1) \cup (2, \infty)$ $(4) (-\infty, \infty)$
- 32. The domain of $f(x) = \sqrt{\frac{\log_{0.3} |x 2|}{|x|}}$ is
 - (1) [1, 2]
- (2) [2,3]
- $(3) [1,2) \cup (2,3]$
- (4) [0,3]
- 33. The domain of $f(x) = \log_{10} \log_{10} \log_{10} \ldots \log_{10} x$ (log n times) is
 - $(1) \left(10^{10^{10}}, \infty\right)$
- (2) $(10^{n-2}, \infty)$
- (3) $\left(10^{10^{10}}, \infty\right)$
- (4) $\left(10^{10^{10}}, \infty\right)$

34.	The domain of the function $f(x) = \sin^{-1}\left(\frac{4}{3+2\cos x}\right)$ is				
	(1) $\left[2n\pi - \frac{\pi}{3}, 2n\pi - \frac{\pi}{3}\right]$	$+\frac{\pi}{3}$	$(2) \left[2n\pi - \frac{\pi}{6}, 2n\pi \right]$	$+\frac{\pi}{6}$	
	$(3) \left[2n\pi - \frac{\pi}{2}, 2n\pi - \frac{\pi}{2}\right]$	$+\frac{\pi}{2}$	$(4) \left[2n\pi - \frac{\pi}{3}, 2n\pi\right]$	$\left(\frac{3}{2}\right)$	
35.	The domain of $f(x)$	$= \sin^{-1} \left[2 - 4x^2 \right] $	where $[\cdot]$ is G.I.F.) is	3	
	$(1) \left[-\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2} \right]$		$(2) \left[-\frac{3}{2}, \frac{3}{2} \right] - \{0\}$		
	$(3) \left[-\frac{\sqrt{3}}{2}, 0 \right) \cup \left(0 \right)$	$0, \frac{\sqrt{3}}{2}$	(4) ϕ		
36.	The domain of $f(x)$	$= \sqrt{\cos(\sin x)} + \sqrt{\cos(\sin x)}$	$\frac{1}{\log_x \{x\}}$ (where $\{\cdot\}$ i	s fractional part of x) is	
	$(1) [1, \pi)$	(2) $(0,2\pi) - [1,\pi)$	(3) $\left(0, \frac{\pi}{2}\right) - \{1\}$	(4) (0,1)	
37.	The domain of		$\frac{2\tan^{-1}x}{x+3\cos x} + \ln\cos\left(\frac{1}{\sqrt{-x}}\right)$		
	(where $[\cdot]$ is G.I.F. and $\{\cdot\}$ is fractional part function) is				
	(_)		(3) (-1,1)	$(4) \phi$	
38.	The domain of $f(x) = \sin^{-1}([2 - 3x^2])$ (where $[\cdot]$ is G.I.F.) is				
	(1) [-1,1]	(2) (0,1)	$(3) [-1,1] - \{0\}$	(4) ϕ	
39.	The domain of the function				
	$f(x) = \left[9^x + 27^{\frac{2}{3}(x-2)} - 219 - 3^{2(x-1)}\right]^{\frac{1}{4}}$				
	(1) [-3,3]	$(2) [3, \infty)$	$(3) \left[\frac{5}{2}, \infty\right)$	(4) [0, 1]	
40.	If $f(x) = 2x + x $, $g(x) = \frac{1}{3}(2x - x)$ and $h(x) = f(g(x))$ then the domain of $\sin^{-1}(h(h(h \dots h(x))))$ is $(h \text{ is being repeated } n \text{ times})$				
		(2) (0,1)		$(4) \left[\frac{1}{2}, 1\right]$	
42.	The range of tan(lo	g(x)			
	$(1) (0, \infty)$	$(2) \ (1,\infty)$	$(3) (e, \infty)$	$(4) \ (-\infty, \infty)$	
43.	The range of $f(x) =$	$= \frac{e^{-x}}{1 + [x]}$ is (where [·] is G.I.F.)		
	(1) R	(2) $R - \{0\}$	(3) $R - [-1, 0)$	$(4) [0, \infty)$	

44.	The range of $f(x)$	$= \frac{1}{ \sin x } + \frac{1}{ \cos x } \text{ is}$			
	$(1) \left[2\sqrt{2}, \infty\right)$	$(2) \left(\sqrt{2}, 2\sqrt{2}\right)$	$(3) \left(0, 2\sqrt{2}\right)$	$(4) \left(2\sqrt{2},4\right)$	
45.	The range of $f(x)$ =	$= \frac{x - [x]}{1 - [x] + x} \text{ (where}$	$e[\cdot]$ is G.I.F.) is		
	$(1)\ \left[0,\frac{1}{2}\right]$	(2) [0,1]	$(3) \left(0, \frac{1}{2}\right]$	$(4) \left[0, \frac{1}{2}\right)$	
46.	Let $A = \left\{ x \colon 0 \le x \right\}$	$\left\langle \frac{\pi}{2} \right\rangle$ and $f \colon R \to R$	A is an onto function	given by	
	$f(x) = \tan^{-1}(x^2 + x^2)$	$(x + \lambda)$ where			
	$(1) \lambda > 0$	$(2) \ \lambda \le \frac{1}{4}$	$(3) \lambda = \frac{1}{4}$	$(4) \ \lambda \ge \frac{1}{8}$	
47.	$f(x) = x - 1 , f: R^+ \to R \text{ and } g(x) = e^x, g: [-1, \infty) \to R \text{ if the function } (f \circ g)(g)$ is defined, then its domain and range respectively are				
	$(1) (0,\infty) \& [0,\infty)$		(2) $[-1, \infty) \& [0, \infty)$	/ [/ /	
	$(3) [-1, \infty) \& [1 -$	$\left(\frac{1}{e},\infty\right)$	$(4) [-1, \infty) \& \left[\frac{1}{e}\right]$	$-1,\infty$	
48.	The range of $f(x)$ =	$= \left[\frac{1}{\sin\{x\}}\right] \text{ is (where)}$	$\{\cdot\}$ is fractional pa	art and $[\cdot]$ is G.I.F.)	
	$(1) \{1, -1\}$	$(2) \{0\}$	(3) N	(4) Z	
49.	If $f(x) = \pi \left(\frac{\sqrt{x+x}}{x-x} \right)$	$\left(\frac{7}{7} - 4\right)$, then range	of function $y = \sin(2\pi x)$	2f(x)) is	
	(1) [0,1]		$(2) \left(0, \frac{1}{\sqrt{2}}\right]$		
	$(3) \left(0, \frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}\right)$	$\left[\frac{1}{2},1\right]$	(4) (0,1]		
50.	The range of $f(x)$ =	$=\sqrt{a-x}+\sqrt{x-b}$ i	s (where $a > b > 0$)		
	$(1) \left[\sqrt{a-b}, \sqrt{2(a-b)} \right]$	$\overline{(-b)}$	$(2) \left[\sqrt{a-b}, \sqrt{a+b} \right]$	\overline{b}	
	(3) [a,b]	,	(4) (a,b)	-	
51.	The range of $f(x)$ =	$= \cot^{-1}(2x - x^2)$ is			
	$(1) (0,\pi)$	$(2) \left(\frac{\pi}{4}, \pi\right)$	$(3) \left(\frac{\pi}{4}, \pi\right]$	$(4) \left[\frac{\pi}{4}, \pi\right)$	
52.	The sum of the ma	xiumum and minimu	ım values of		
	$f(x) = \sin^{-1}(2x) + \cos^{-1}(2x) + \sec^{-1}(2x)$				

(2) $\frac{\pi}{2}$ (3) 2π (4) $\frac{3\pi}{2}$

is

(1) π

53.	If $f(x) = \log_{[x-1]} \left(\frac{ x }{x} \right)$, (where [·] is G.I.F.) then domain and range are				
	$(1) (2, \infty), (0, 1)$	(2) $[3, \infty), \{0\}$	$(3) [3, \infty), \{0, 1\}$	$(4) (-\infty, \infty), \{0\}$	
54.	If $f(x) = x^3 + 3x^2 + 4x + a \sin x + b \cos x \ \forall x \in R$ is an injection then the greatest value of $a^2 + b^2$ is				
	(1) 1	(2) 2	$(3) \sqrt{2}$	$(4) \ 2\sqrt{2}$	
55.	The domain and range of $f(x) = \sin \left\{ \log \left(\frac{\sqrt{4-x^2}}{1-x} \right) \right\}$ are				
	(1) (-2,1) & [-1,1]	•	(2) (1,3) & [-1,1]		
	(3) [-2,1] & [-1,1]		$(4) (0, \infty) \& [-1, 1]$		
56.	Consider the real va	alued function satisfy	$ying 2f(\sin x) + f(\cos x)$	$(x = x) = x$, then $f\left(\frac{1}{2}\right) = x$	
	(1) 1	(2) 2	$(3) \ 0$	(4) 4	
57.	7. If $f: R \to R$ such that $f(x - f(y)) = f(f(y)) + xf(x) + f(x) - 1 \ \forall x, y \in R$ then $f(x)$ is				
	(1) $1 + \frac{x^2}{4}$	(2) $1 - \frac{x^2}{2}$	(3) $1 + \frac{x^2}{2}$	(4) $1 - \frac{x^2}{4}$	
58.	. A function f well defined $\forall x, y \in R$ is such that $f(1) = 2$, $f(2) = 8$ and $f(x+y) - kxy = f(x) + 2y^2$, where k is some constant then $f(x)$ is				
	(1) x^2	(2) $3x^2$	$(3) 2x^2$	$(4) 4x^2$	
59.	. If f is a polynomial function satisfying $2 + f(x)f(y) = f(x) + f(y) + f(xy) \forall x, y \in F$ and if $f(2) = 5$ then the value of $f(f(2)) = (f(1) \neq 1)$				
	(1) 25	(2) 16	(3) 26	(4) 14	
60.	If f is a function such then $f(5) =$	ch that f(0) = 2; f(1)) = 3 and f(x+2) =	$2f(x) - f(x+1) \ \forall x \in R$	
	(1) 7	(2) 13	(3) 1	(4) 5	
61.	If $f(x) = (-1)^{\left[\frac{2x}{\pi}\right]}$, $g(x) = \sin x - \cos x $, and $\phi(x) = f(x)g(x)$ (where $[\cdot]$ denotes the greatest integer function), then the respective fundamental periods of $f(x)$, $g(x)$ and $\phi(x)$ are				
	(1) π, π, π	(2) π , 2π , π	$(3) \pi, \pi, \frac{\pi}{2}$	$(4) \ \pi, \frac{\pi}{2}, \pi$	
62.	The domain of the	function $f(x) = \frac{1}{\sqrt{10}}$	$\frac{1}{{}^{0}C_{x-1} - 3 \times {}^{10}C_{x}}$ con	ntains the points	
	(1) 9, 10, 11		(2) 9, 10, 12		
	(3) all natural numbers (4) none of these				
63.		= (x+1)(x+2)(x+1)			
	(1) [4,5045]	(2) [0, 5045]	(3) [-20, 5045]	(4) none of these	