Question2

May 7, 2025

0.0.1 Name:Ying Zhou

0.0.2 Question 2A

I extracted solar_data.tar.gz, which contains 10 .txt files from 2014 to 2023. Each file starts with metadata, followed by daily solar data in table format. I checked all 10 files and confirmed they have the same structure: date, radio flux, sunspot data, solar field, X-ray flares (C/M/X), and optical flares (S, 1, 2, 3). Fields are whitespace-separated and consistent across files.

```
In [23]: import os
         import tarfile
         !cp /public/bmort/python/solar_data.tar.gz .
         with tarfile.open("solar_data.tar.gz", "r:gz") as tar:
             tar.extractall("solar_data")
         data_path = "solar_data/solar_data"
         txt_files = sorted([f for f in os.listdir(data_path) if f.endswith('.txt')])
         for fname in txt_files:
            print(f"\n Examining file: {fname}")
            file_path = os.path.join(data_path, fname)
            with open(file_path, 'r') as f:
                 line_count = 0
                 for line in f:
                    if not line.startswith('#') and not line.startswith(':') and line.strip()
                        print(line.strip())
                        line_count += 1
                     if line_count >= 4: # Only show 4 data lines per file
                        break
 Examining file: 2014_DSD.txt
2014 01 01 160
                   106
                            610
                                         -999
                                                 C1.1
                                                       3 1 0 7 0 1 0
                                                 C1.5
                                                         2
                                                             0 5
2014 01 02 161
                   133
                           1410
                                         -999
2014 01 03 182
                   162
                           1570
                                     0
                                          -999
                                                 C1.2
                                                       9 2 0 14 0 0 0
2014 01 04 215
                  178
                           1710
                                         -999
                                                 C1.7
                                                       4 3 0 10 0 1 0
```

Examining file: 2015_DSD.txt

2015 01 01	138	101	870	1	-999	B4.9	3	0	0	9	0	0	0
2015 01 02	146	113	1250	1	-999	B4.9	3	0	0	9	0	0	0
2015 01 03	149	122	1300	0	-999	B5.7	10	1	0	13	1	0	0
2015 01 04	150	124	1220	0	-999	B6.7	5	1		13	0	1	0
2010 01 01	100		1220	ŭ	000	2011	Ū	-	Ŭ		Ů	-	Ů
Examining	filo	2016 DST) +v+										
2016 01 01	98	40	140	2	-999	B3.4	3	1	0	2	0	0	0
2016 01 01	100	52	140	1	-999 -999	B5.4 B5.8	0	0	0	1	0	0	0
2016 01 03	102	50	170	0	-999	B3.1	0	0	0	1	0	0	0
2016 01 04	95	60	160	0	-999	B2.2	0	0	0	0	0	0	0
Examining								_	_	_	_	_	_
2017 01 01	73	0	0	1	-999	A5.7	0	0	0	0	0	0	0
2017 01 02	73	0	0	0	-999	A5.7	0	0	0	0	0	0	0
2017 01 03	73	11	0	1	-999	A5.5	0	0	0	0	0	0	0
2017 01 04	72	0	0	0	-999	A5.4	0	0	0	0	0	0	0
Examining	file:	2018_DSD).txt										
2018 01 01	69	0	0	0	-999	A3.5	0	0	0	0	0	0	0
2018 01 02	70	0	0	0	-999	A3.2	0	0	0	0	0	0	0
2018 01 03	71	0	0	0	-999	A3.1	0	0	0	0	0	0	0
2018 01 04	70	13	20	1	-999	A3.1	0	0	0	0	0	0	0
Examining	file:	2019 DSD).txt										
2019 01 01	72	13	10	1	-999	A1.0	0	0	0	0	0	0	0
2019 01 02	75	16	30	0	-999	A1.9	0	0	0	1	0	0	0
2019 01 03	73	16	90	0	-999	A2.3	0	0	0	0	0	0	0
2019 01 03	72	13	50	0	-999	A1.5	0	0	0	0	0	0	0
2019 01 04	12	13	30	U	-333	AI.5	U	U	U	U	U	U	U
Examining	filor	2020 DGT) +v+										
2020 01 01	72	0	0	0	-999	A8.0	0	0	0	0	0	0	0
2020 01 02	72	13	20	1	-999	A8.3	0	0	0	0	0	0	0
2020 01 03	71	13	20	0	-999	A8.6	0	0	0	0	0	0	0
2020 01 04	72	11	10	0	-999	A8.5	0	0	0	0	0	0	0
		0004 505											
Examining		-											
2021 01 01	80	23	190	0	-999	*	0	0	0	0	0	0	0
2021 01 02	82	22	120	0	-999	*	0	0	0	0	0	0	0
2021 01 03	80	0	0	0	-999	*	0	0	0	0	0	0	0
2021 01 04	78	0	0	0	-999	*	0	0	0	0	0	0	0
Examining	file:	2022_DSD).txt										
2022 01 01	94	52	440	1	-999	*	1	1	0	1	0	0	0
2022 01 02	89	25	340	0	-999	*	1	0	0	0	0	0	0
2022 01 03	84	12	140	0	-999	*	0	0	0	0	0	0	0
2022 01 04	86	12	30	1	-999	*	0	0	0	0	0	0	0

Examining file: 2023_DSD.txt

```
2023 01 01 153
                 94
                       1220
                                     -999
                                                 9 0 0 12 0 0 0
                                1
2023 01 02 146
                       1100
                                     -999
                                                 9 0
                                                      0 7 1 0 0
                 94
                                0
2023 01 03 149
                 89
                        930
                                0
                                     -999
                                                 5 0 0 1 0 0 0
2023 01 04 151
                        550
                                0
                                     -999
                                                 3 0 0 4 0 1 0
                 86
```

0.0.3 Question 2B

```
In [24]: import pandas as pd
         import glob
         data_files = sorted(glob.glob('./solar_data/solar_data/*.txt'))
         col_names = [
             'Date', 'RadioFlux', 'SunspotNumber', 'SunspotArea', 'NewRegions',
             'SolarMeanField', 'XrayBkgd', 'Xray_C', 'Xray_M', 'Xray_X',
             'Optical_S', 'Optical_1', 'Optical_2', 'Optical_3'
         ]
         df_list = []
         for f in data_files:
             try:
                 df = pd.read_csv(
                     f,
                     delim_whitespace=True,
                     skiprows=13,
                     comment='#',
                     header=None
                 )
                 year = df[0].astype(str)
                 month = df[1].astype(str).str.zfill(2)
                 day = df[2].astype(str).str.zfill(2)
                 date_str = year + '-' + month + '-' + day
                 df['Date'] = date_str
                 df.columns = ['Year', 'Month', 'Day', 'RadioFlux', 'SunspotNumber', 'SunspotA
                               'SolarMeanField', 'XrayBkgd', 'Xray_C', 'Xray_M', 'Xray_X',
                                'Optical_S', 'Optical_1', 'Optical_2', 'Optical_3', 'Date']
                 df = df.drop(columns=['Year', 'Month', 'Day'])
                 df_list.append(df)
             except Exception as e:
                 print(f"Failed to load {f}: {e}")
```

```
df_all.head()
Out [24]:
            RadioFlux
                        SunspotNumber
                                        SunspotArea
                                                     NewRegions
                                                                  SolarMeanField XrayBkgd \
         0
                   160
                                   106
                                                610
                                                               1
                                                                             -999
                                                                                      C1.1
                   161
                                                                             -999
                                                                                      C1.5
         1
                                   133
                                               1410
                                                               1
         2
                   182
                                                               0
                                                                             -999
                                                                                      C1.2
                                  162
                                               1570
         3
                   215
                                                               1
                                                                             -999
                                                                                      C1.7
                                  178
                                               1710
         4
                                                               0
                   218
                                   225
                                               1790
                                                                             -999
                                                                                      C1.8
                            Xray_X Optical_S Optical_1
                                                            Optical_2 Optical_3
            Xray_C
                    Xray_M
         0
                  3
                          1
                                  0
                                              7
                                                                     1
                  6
                          2
                                  0
                                              5
                                                                     0
                                                                                 0
         1
                                                          1
                          2
         2
                  9
                                  0
                                             14
                                                          0
                                                                     0
                                                                                 0
         3
                  4
                          3
                                  0
                                             10
                                                          0
                                                                     1
                                                                                 0
                                                                                 0
         4
                  3
                          0
                                  0
                                             14
                                                          0
                                                                     0
                   Date
            2014-01-01
           2014-01-02
         1
         2 2014-01-03
         3 2014-01-04
         4 2014-01-05
In [25]: import numpy as np
         numeric_cols = df_all.columns.drop(['Date', 'XrayBkgd']).tolist()
         df_all[numeric_cols] = df_all[numeric_cols].astype(float)
         df_all[numeric_cols] = df_all[numeric_cols].replace(-999, np.nan)
         summary = df_all[numeric_cols].describe()
         display(summary)
         RadioFlux
                     SunspotNumber
                                     SunspotArea
                                                   NewRegions
                                                                SolarMeanField \
       3650.000000
                       3650.000000
                                     3650.000000
                                                  3650.000000
                                                                            0.0
count
        100.773699
                         49.189863
                                      344.112877
                                                     0.433973
                                                                            NaN
mean
std
         35.477323
                         51.333475
                                      449.820622
                                                     0.735244
                                                                            NaN
                                                                            NaN
min
         -1.000000
                          0.000000
                                        0.000000
                                                     0.000000
25%
         71.000000
                                        0.000000
                                                                            NaN
                          0.000000
                                                     0.000000
50%
         85.000000
                         31.000000
                                      160.000000
                                                     0.000000
                                                                            NaN
75%
        126.000000
                         81.000000
                                      540.000000
                                                     1.000000
                                                                            NaN
max
        343.000000
                        296.000000
                                    3120.000000
                                                     6.000000
                                                                            NaN
                                                  Optical_S
                                                                Optical_1
            Xray_C
                          Xray_M
                                        Xray_X
                     3650.000000 3650.000000 3650.000000 3650.000000
       3650.000000
count
```

df_all = pd.concat(df_list, ignore_index=True)

mean	2.498904	0.261096	0.011781	3.291507	0.210959
std	3.902361	0.854465	0.112878	5.588125	0.629407
min	0.000000	0.000000	0.000000	0.00000	0.000000
25%	0.000000	0.000000	0.000000	0.00000	0.000000
50%	0.000000	0.000000	0.000000	0.00000	0.000000
75%	4.000000	0.000000	0.000000	4.000000	0.000000
max	30.000000	11.000000	2.000000	55.000000	7.000000
	Optical_2	Optical_3			
count	3650.000000	3650.000000			
mean	0.034247	0.003836			
std	0.194976	0.061822			
min	0.000000	0.000000			
25%	0.000000	0.000000			
50%	0.000000	0.000000			
75%	0.000000	0.000000			
max	2.000000	1.000000			

0.0.4 Question 2B Summary

Loaded all yearly solar data into a single Pandas DataFrame.

Data cleaning actions: - Combined "Year, Month, Day" into a single Date column. - Replaced -999 with NaN to handle missing values. - Converted numeric columns to "float" type, excluding non-numeric ones like "XrayBkgd".

Summary statistics: - The numerical columns have different magnitudes and ranges. - For example, "SunspotArea" ranges up to 3120, while "Xray_M", "Optical_2", etc., have mostly zeros and small values. - This shows the variables are not on the same scale. - Some columns show potential outliers, especially those with large max values far above the 75th percentile.

0.0.5 Question2C

2023-02-17 had the highest value for the radio flux2022-12-16 had the lowest value for the radio flux.

0.0.6 Question2D

Day(s) with the highest number of solar flares: 2023-02-11 had the highest number of solar flares, with a total of 60 flares observed. Number of days with no solar flares: There were 1,823 days with zero solar flares recorded.

0.0.7 Question 2E

```
In [29]: import seaborn as sns
    import matplotlib.pyplot as plt

df_all['Date'] = pd.to_datetime(df_all['Date'])

df_all['Year'] = df_all['Date'].dt.year

plt.figure(figsize=(12, 6))
    sns.boxplot(x='Year', y='RadioFlux', data=df_all)

plt.title('Radio Flux Distribution by Year')
    plt.xlabel('Year')
    plt.ylabel('Solar Radio Flux')
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```


0.0.8 Question2F

Training set size: 2920 Testing set size: 730

0.0.9 Question2G and H

```
model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

mse = mean_squared_error(y_test, y_pred)
    r2 = r2_score(y_test, y_pred)

print("Mean Squared Error:", round(mse, 2))
print("R-squared:", round(r2, 4))

Mean Squared Error: 173.82
R-squared: 0.8644
```

The model predicts the solar radio flux quite well, with an Rš score of approximately 0.86, indicating that about 86% of the variability in solar radio flux can be explained by sunspot number and solar flare activity. The accuracy is good because solar activity indicators like sunspots and flares have a strong correlation with radio flux. However, the prediction is not perfect due to possible noise in the data or other influencing factors not included in the model.

0.0.10 Question2I

The predicted solar radio flux for a day with 96 sunspots and a single C-class X-ray flare is approximately 122.72.

We are reasonably confident in this prediction because the model achieves a high Rš score of approximately 0.86. However, the prediction is not perfect due to noise in the data and other influencing factors not captured in the model.