Fakulteta n je produkt prvih n naravnih števil:

$$n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$$

Za velika števila n si pri izračunu fakultete pogosto pomagamo s Stirlingovim približkom (ali Stirlingovo formulo):

$$n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

Poglejmo si, kako natančen je Stirlingov približek pri različnih vrednostih n.

1) Napišite metodi

```
static long fakultetaL(int n);
static long stirlingL(int n);
```

ki izračunata in vrneta fakulteto števila n, prva po definiciji, druga po Stirlingovi formuli.

Opomba: Ker je izračunana vrednost Stirlingove formule realna, mora metoda stirlingL() vrniti vrednost, zaokroženo na celo število. Za to lahko uporabimo metodo Math.round().

2) Napišite tudi metodo main(), v kateri izračunate in izpišete vrednosti obeh metod iz točke 1) za prvih 20 vrednosti števila n. Poleg tega izračunajte in izpišite tudi relativno napako Stirlingove formule. Izpis naj bo natanko tak:

n	n!	Stirling(n)	napaka (%)
1	1	1	0,0000000
2	2	2	0,0000000
3	6	6	0,0000000
4	24	24	0,0000000
5	120	118	1,6666667
6	720	710	1,3888889
7	5040	4980	1,1904762
8	40320	39902	1,0367063
9	362880	359537	0,9212412
10	3628800	3598696	0,8295855
11	39916800	39615625	0,7545069
12	479001600	475687486	0,6918795
13	6227020800	6187239475	0,6388500
14	87178291200	86661001741	0,5933696
15	1307674368000	1300430722199	0,5539335
16	20922789888000	20814114415223	0,5194120
17	355687428096000	353948328666101	0,4889404
18	6402373705728000	6372804626194313	0,4618456
19	121645100408832000	121112786592294192	0,4375958
20	2432902008176640000	2422786846761135104	0,4157653

Namig: Izpis naredite z uporabo metode System.out.printf() za formatiran izpis.

3) Ker vrednost fakultete z večanjem števila n zelo hitro narašča, bo podatkovni tip long kmalu premajhen. Ugotovite, do katere vrednosti n je ta tip še primeren za izračun vrednosti fakultete.

4/2/24, 6:20 PM P2: Fakulteta

static double fakultetaD(int n);
static double stirlingD(int n);

ki vračata rezultat tipa double. Pri tem ustrezno spremenite kodo obeh že napisanih metod.

5) Za prvih 100 vrednosti števila n izpišite tabelo z vrednostmi obeh metod in relativno napako (tj. razliko med obema izračunoma približkov). Izpis naj bo natanko tak, kot je prikazano.

:20	РΜ				P2: Fakulteta	
	n	n!	Stirling(n)	napaka (%)		
	1	1 0000000000	0 2212700005 01	7 7962001		
	1 2	1,000000000E+00	9,221370089E-01	7,7862991		
	3	2,000000000E+00 6,000000000E+00	1,919004351E+00 5,836209591E+00	4,0497824 2,7298401		
	4	2,400000000E+01	2,350617513E+01	2,0576036		
	5	1,200000000E+02	1,180191680E+02	1,6506934		
	6	7,200000000E+02	7,100781846E+02	1,3780299		
	7	5,040000000E+03	4,980395832E+03	1,1826224		
	8	4,032000000E+04	3,990239545E+04	1,0357256		
	9	3,628800000E+05	3,595368728E+05	0,9212762		
	10	3,628800000E+06	3,598695619E+06	0,8295960		
	11	3,991680000E+07	3,961562505E+07	0,7545067		
	12	4,790016000E+08	4,756874865E+08	0,6918794		
	13	6,227020800E+09	6,187239475E+09	0,6388500		
	14	8,717829120E+10	8,666100174E+10	0,5933696		
	15	1,307674368E+12	1,300430722E+12	0,5539335		
	16	2,092278989E+13	2,081411442E+13	0,5194120		
	17	3,556874281E+14	3,539483287E+14	0,4889404		
	18	6,402373706E+15	6,372804626E+15	0,4618456		
	19	1,216451004E+17	1,211127866E+17	0,4375958		
	20	2,432902008E+18	2,422786847E+18	0,4157653		
	21	5,109094217E+19	5,088861733E+19	0,3960092		
	22	1,124000728E+21	1,119751495E+21	0,3780454		
	23	2,585201674E+22	2,575852537E+22	0,3616405		
	24	6,204484017E+23	6,182979270E+23	0,3466001		
	25	1,551121004E+25	1,545959483E+25	0,3327607		
	26	4,032914611E+26	4,020009931E+26	0,3199840		
	27	1,088886945E+28	1,085531517E+28	0,3081521		
	28	3,048883446E+29	3,039823262E+29	0,2971640		
	29	8,841761994E+30	8,816392105E+30	0,2869325		
	30	2,652528598E+32	2,645170959E+32	0,2773821		
	31	8,222838654E+33	8,200764697E+33	0,2684469		
	32	2,631308369E+35	2,624465141E+35	0,2600694		
	33	8,683317619E+36	8,661418381E+36	0,2521990		
	34	2,952327990E+38	2,945100961E+38	0,2447909		
	35	1,033314797E+40	1,030857517E+40	0,2378056		
	36	3,719933268E+41	3,711332491E+41	0,2312078		
	37 38	1,376375309E+43	1,373278928E+43 5,218769212E+44	0,2249663 0,2190529		
	39	5,230226175E+44 2,039788208E+46	2,035434435E+46	0,2134424		
	40	8,159152832E+47	8,142172645E+47	0,2134424		
	41	3,345252661E+49	3,338460407E+49	0,2030416		
	42	1,405006118E+51	1,402221224E+51	0,1982122		
	43	6,041526306E+52	6,029829471E+52	0,1936073		
	44	2,658271575E+54	2,653241821E+54	0,1892114		
	45	1,196222209E+56	1,194009069E+56	0,1850108		
	46	5,502622160E+57	5,492662822E+57	0,1809926		
	47	2,586232415E+59	2,581651028E+59	0,1771452		
	48	1,241391559E+61	1,239238266E+61	0,1734580		
	49	6,082818640E+62	6,072482646E+62	0,1699211		
	50	3,041409320E+64	3,036344594E+64	0,1665256		
	51	1,551118753E+66	1,548586347E+66	0,1632632		
	52	8,065817517E+67	8,052902038E+67	0,1601261		
	53	4,274883284E+69	4,268167131E+69	0,1571073		
	54	2,308436973E+71	2,304877359E+71	0,1542002		
	55	1,269640335E+73	1,267718116E+73	0,1513988		
	56	7,109985878E+74	7,099413523E+74	0,1486973		
	57	4,052691950E+76	4,046771352E+76	0,1460905		
	58	2,350561331E+78	2,347186546E+78	0,1435736		
	59	1,386831185E+80	1,384873786E+80	0,1411419		
	60	8,320987113E+81	8,309438315E+81	0,1387912		
	61	5,075802139E+83	5,068872779E+83	0,1365175		
	62 62	3,146997326E+85	3,142770369E+85	0,1343172		
	63 64	1,982608315E+87	1,979987573E+87	0,1321866		
	64 65	1,268869322E+89 8,247650592E+90	1,267218237E+89 8,237083540E+90	0,1301225 0,1281220		
	0,5	5,27,030332LT30	5,25,0055 +0 LT50	J, 1201220		

```
66
    5,443449391E+92 5,436580738E+92 0,1261820
67 3,647111092E+94 3,642577737E+94 0,1242999
68 2,480035542E+96 2,476998167E+96 0,1224731
69 1,711224524E+98 1,709159090E+98 0,1206992
70 1,197857167E+100 1,196432005E+100 0,1189760
71 8,504785886E+101 8,494809664E+101 0,1173013
72 6,123445838E+103 6,116362662E+103 0,1156730
73 4,470115462E+105 4,465015533E+105 0,1140894
74 3,307885442E+107 3,304162465E+107 0,1125485
75 2,480914081E+109 2,478159057E+109 0,1110487
76 1,885494702E+111 1,883428418E+111 0,1095884
77 1,451830920E+113 1,450260533E+113 0,1081660
78 1,132428118E+115 1,131218911E+115 0,1067800
79 8,946182131E+116 8,936750256E+116 0,1054291
80 7,156945705E+118 7,149494473E+118 0,1041119
81 5,797126021E+120 5,791164997E+120 0,1028272
82 4,753643337E+122 4,748814876E+122 0,1015739
83 3.945523970E+124 3.941564607E+124 0.1003507
84 3,314240135E+126 3,310953844E+126 0,0991567
85 2,817104114E+128 2,814343614E+128 0,0979907
86 2,422709538E+130 2,420363099E+130 0,0968519
87 2,107757298E+132 2,105739349E+132
                                      0.0957392
88 1,854826423E+134 1,853070797E+134 0,0946517
89 1.650795516E+136 1.649250557E+136 0.0935887
90 1,485715964E+138 1,484340944E+138 0,0925494
91 1,352001528E+140 1,350764003E+140 0,0915328
92 1,243841405E+142 1,242715252E+142 0,0905383
93 1,156772507E+144 1,155736441E+144 0,0895653
94 1,087366157E+146 1,086402610E+146 0,0886129
95 1,032997849E+148 1,032092111E+148
                                      0,0876805
96 9,916779349E+149 9,908174800E+149
                                      0.0867676
97 9,619275968E+151 9,611015564E+151
                                      0,0858735
98 9,426890449E+153 9,418877821E+153
                                      0,0849976
99 9,332621544E+155 9,324769134E+155
                                      0,0841394
100 9,332621544E+157 9,324847625E+157
                                      0,0832983
```

Kaj lahko rečete o relativni napaki Stirlingove formule?

DODATNI IZZIVI

A) Število π

V Javi je konstanta π definirana na 15 decimalk natančno:

```
public static final double PI = 3.141592653589793d;
```

Vemo, da ima število π veliko več kot 15 decimalk (pravzaprav neskončno), saj je iracionalno število. Zakaj je potem v Javi definirano le na 15 decimalk natančno?

B) Nilakanthova vrsta

Število π lahko poljubno natančno izračunamo s pomočjo neskončne vrste. Ena takih vrst je tudi Nilakanthova vrsta, ki je definirana takole:

$$\pi = 3 + \tfrac{4}{2 \cdot 3 \cdot 4} - \tfrac{4}{4 \cdot 5 \cdot 6} + \tfrac{4}{6 \cdot 7 \cdot 8} - \tfrac{4}{8 \cdot 9 \cdot 10} + \tfrac{4}{10 \cdot 11 \cdot 12} - \tfrac{4}{12 \cdot 13 \cdot 14} + \dots$$

Napišite metodo izracunajPiNilakantha(k), ki izračuna π po Nilakanthovi formuli kot vsoto prvih k členov vrste in vrne približek π kot rezultat.

Tabelirajte tudi izračun π s pomočjo Nilakanthove formule in izpišite izračunane približke za vse k od 1 do 22, zraven pa pripišite tudi razliko med izračunano vrednostjo in vrednostjo Math.PI, kot je prikazano spodaj.

4/2/24, 6:20 PM P2: Fakulteta

k	Math.PI	PI (Nilakantha)	razlika
1	3,141592653589793	3,0000000000000000	+0,141592653589793
2	3,141592653589793	3,166666666666667	-0,025074013076873
3	3,141592653589793	3,133333333333333	+0,008259320256460
4	3,141592653589793	3,145238095238095	-0,003645441648302
5	3,141592653589793	3,139682539682540	+0,001910113907253
6	3,141592653589793	3,142712842712843	-0,001120189123049
7	3,141592653589793	3,140881340881341	+0,000711312708452
8	3,141592653589793	3,142071817071817	-0,000479163482024
9	3,141592653589793	3,141254823607765	+0,000337829982028
10	3,141592653589793	3,141839618929402	-0,000246965339609
11	3,141592653589793	3,141406718496502	+0,000185935093291
12	3,141592653589793	3,141736099260665	-0,000143445670872
13	3,141592653589793	3,141479689004255	+0,000112964585538
14	3,141592653589793	3,141683189207755	-0,000090535617962
15	3,141592653589793	3,141518985595276	+0,000073667994517
16	3,141592653589793	3,141653394197426	-0,000060740607633
17	3,141592653589793	3,141541985997783	+0,000050667592010
18	3,141592653589793	3,141635356679389	-0,000042703089596
19	3,141592653589793	3,141556330284573	+0,000036323305221
20	3,141592653589793	3,141623806667838	-0,000031153078045
21	3,141592653589793	3,141565734658547	+0,000026918931246
22	3,141592653589793	3,141616071918187	-0,000023418328393

Pri kateri vrednosti k dobimo število π na 4 decimalke natančno?

C) Verižni ulomki (samo za hitre, spretne programerske prste)

Število π lahko poljubno natančno izračunamo s pomočjo verižnih ulomkov. Posplošen verižni ulomek je definiran kot neskončno zaporedje ulomkov (a je števec, b pa imenovalec):

$$f=rac{a_1}{b_1+rac{a_2}{b_2+rac{a_3}{b_3+rac{a_4}{b_4+\dots}}}}$$

Približek verižnega ulomka, kjer z izračunom prenehamo pri k-tem ulomku, pa je naslednji:

$$f_k = rac{a_1}{b_1 + rac{a_2}{b_2 + rac{a_3}{b_3 + rac{a_4}{\cdots + rac{a_5}{b_1}}}}}$$

Število π lahko izračunamo s pomočjo verižnih ulomkov kot:

$$\pi = \frac{4}{1 + \frac{1^2}{3 + \frac{2^2}{5 + \frac{3^2}{7 + \frac{4^2}{11 + \frac{1}{3}}}}}}$$

Napišite metodo izracunajPi(k), ki izračuna π s pomočjo verižnih ulomkov za prvih k členov in vrne približek π kot rezultat.

Napišite še metodo izracunajPiRekurzivno(k), ki deluje enako kot metoda izracunajPi(k), le da izračun izvede rekurzivno.

Tabelirajte tudi izračun π s pomočjo verižnih ulomkov (z uporabo iterativne in rekurzivne metode za izračun približka). Izpišite približke za vse k od 1 do 22, zraven pa pripišite tudi razliko med izračunano vrednostjo in vrednostjo Math.PI, kot je prikazano spodaj.

4/2/24, 6:20 PM P2: Fakulteta

k	Math.PI	PI (rekurzivno)	PI (iterativno)	razlika
1	3,141592653589793	4,0000000000000000	4,0000000000000000	-0,858407346410207
2	3,141592653589793	3,0000000000000000	3,0000000000000000	+0,141592653589793
3	3,141592653589793	3,166666666666667	3,166666666666667	-0,025074013076874
4	3,141592653589793	3,137254901960785	3,137254901960785	+0,004337751629008
5	3,141592653589793	3,142342342342342	3,142342342342342	-0,000749688752549
6	3,141592653589793	3,141463414634146	3,141463414634146	+0,000129238955647
7	3,141592653589793	3,141614906832298	3,141614906832298	-0,000022253242505
8	3,141592653589793	3,141588825092124	3,141588825092124	+0,000003828497669
9	3,141592653589793	3,141593311879928	3,141593311879928	-0,000000658290135
10	3,141592653589793	3,141592540446540	3,141592540446540	+0,000000113143253
11	3,141592653589793	3,141592673030334	3,141592673030334	-0,000000019440541
12	3,141592653589793	3,141592650250245	3,141592650250245	+0,000000003339548
13	3,141592653589793	3,141592654163366	3,141592654163366	-0,000000000573573
14	3,141592653589793	3,141592653491296	3,141592653491296	+0,000000000098498
15	3,141592653589793	3,141592653606706	3,141592653606706	-0,000000000016913
16	3,141592653589793	3,141592653586889	3,141592653586889	+0,0000000000002904
17	3,141592653589793	3,141592653590292	3,141592653590292	-0,0000000000000499
18	3,141592653589793	3,141592653589707	3,141592653589707	+0,0000000000000086
19	3,141592653589793	3,141592653589808	3,141592653589808	-0,0000000000000015
20	3,141592653589793	3,141592653589791	3,141592653589791	+0,0000000000000000
21	3,141592653589793	3,141592653589794	3,141592653589794	-0,0000000000000000
22	3,141592653589793	3,141592653589793	3,141592653589793	+0,000000000000000

Pri kateri vrednosti k dobimo število π na 6 decimalk natančno?

Add submission

Submission status

Submission status	No submissions have been made yet	
Grading status	Not graded	

→ Rešitev naloge

Jump to...

Rešitev naloge ►