

FDMB3800N

Dual N-Channel PowerTrench® MOSFET

30V, 4.8A, 40mΩ

Features

- Max $r_{DS(on)} = 40\text{m}\Omega$ at $V_{GS} = 10\text{V}$, $I_D = 4.8\text{A}$
- Max $r_{DS(on)} = 51\text{m}\Omega$ at $V_{GS} = 4.5\text{V}$, $I_D = 4.3\text{A}$
- Fast switching speed
- Low gate Charge
- High performance trench technology for extremely low $r_{DS(on)}$
- High power and current handling capability.
- RoHS Compliant

MicroFET 3X1.9

MOSFET Maximum Ratings $T_A = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DS}	Drain to Source Voltage	30	V
V_{GS}	Gate to Source Voltage	± 20	V
I_D	Drain Current -Continuous $T_A = 25^\circ\text{C}$	4.8	A
	-Pulsed	9	
P_D	Power Dissipation $T_A = 25^\circ\text{C}$	1.6	W
	Power Dissipation $T_A = 25^\circ\text{C}$	0.75	
T_J, T_{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	80	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1b)	165	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
3800	FDMB3800N	MicroFET3X1.9	7"	8mm	3000 units

Electrical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Typ	Max	Units
Off Characteristics						
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250\mu\text{A}, V_{GS} = 0\text{V}$	30			V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, referenced to 25°C		24		$\text{mV}/^\circ\text{C}$
I_{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24\text{V}, V_{GS} = 0\text{V}$			1	μA
I_{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20\text{V}, V_{DS} = 0\text{V}$			10	nA
					± 100	

On Characteristics

$V_{GS(\text{th})}$	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250\mu\text{A}$	1	1.9	3	V
$\frac{\Delta V_{GS(\text{th})}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, referenced to 25°C		-4		$\text{mV}/^\circ\text{C}$
$r_{DS(\text{on})}$	Drain to Source On Resistance	$V_{GS} = 10\text{V}, I_D = 4.8\text{A}$		32	40	
		$V_{GS} = 4.5\text{V}, I_D = 4.3\text{A}$		41	51	$\text{m}\Omega$
		$V_{GS} = 10\text{V}, I_D = 4.8\text{A}, T_J = 125^\circ\text{C}$		43	61	
g_{fs}	Forward Transconductance	$V_{DS} = 5\text{V}, I_D = 4.8\text{A}$		14		S

Dynamic Characteristics

C_{iss}	Input Capacitance	$V_{DS} = 15\text{V}, V_{GS} = 0\text{V}, f = 1\text{MHz}$		350	465	pF
C_{oss}	Output Capacitance			90	120	pF
C_{rss}	Reverse Transfer Capacitance			40	60	pF
R_g	Gate Resistance	$f = 1\text{MHz}$		3		Ω

Switching Characteristics

$t_{d(\text{on})}$	Turn-On Delay Time	$V_{DD} = 15\text{V}, I_D = 1\text{A}$ $V_{GS} = 10\text{V}, R_{\text{GEN}} = 6\Omega$		8	16	ns
t_r	Rise Time			5	10	ns
$t_{d(\text{off})}$	Turn-Off Delay Time			21	34	ns
t_f	Fall Time			2	10	ns
$Q_{g(\text{TOT})}$	Total Gate Charge at 5V	$V_{GS} = 0\text{V to } 5\text{V}$ $V_{DD} = 15\text{V}$ $I_D = 7.5\text{A}$		4	5.6	nC
Q_{gs}	Gate to Source Gate Charge			1.0		nC
Q_{gd}	Gate to Drain "Miller" Charge			1.5		nC

Drain-Source Diode Characteristics

I_S	Maximum Continuous Drain - Source Diode Forward Current			1.25	A	
V_{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0\text{V}, I_S = 1.25\text{A}$ (Note 2)		0.8	1.2	V
t_{rr}	Reverse Recovery Time	$I_F = 4.8\text{A}, di/dt = 100\text{A}/\mu\text{s}$		17		ns
Q_{rr}	Reverse Recovery Charge			7		nC

Notes:

1: R_{0JA} is determined with the device mounted on a 1in^2 pad 2 oz copper pad on a 1.5×1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. $80^\circ\text{C}/\text{W}$ when mounted on a 1in^2 pad of 2 oz copper

b. $165^\circ\text{C}/\text{W}$ when mounted on a minimum pad of 2 oz copper

2: Pulse Test: Pulse Width < $300\mu\text{s}$, Duty cycle < 2.0%.

Typical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted

Figure 1. On Region Characteristics

Figure 2. Normalized On - Resistance vs Drain Current and Gate Voltage

Figure 3. Normalized On - Resistance vs Junction Temperature

Figure 4. On-Resistance vs Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs Drain to Source Voltage

Figure 9. Forward Bias Safe Operating Area

Figure 10. Maximum Continuous Drain Current vs Ambient Temperature

Figure 11. Single Pulse Maximum Power Dissipation

Typical Characteristics $T_J = 25^\circ\text{C}$ unless otherwise noted

Figure 12. Transient Thermal Response Curve

Dimensional Outline and Pad Layout

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FACT Quiet Series™	OCX™	SILENT SWITCHER®	UniFET™
ActiveArray™	GlobalOptoisolator™	OCXPro™	SMART START™	UltraFET®
Bottomless™	GTO™	OPTOLOGIC®	SPM™	VCX™
Build it Now™	HiSeC™	OPTOPLANAR™	Stealth™	Wire™
CoolFET™	I ² C™	PACMAN™	SuperFET™	
CROSSVOLT™	i-Lo™	POP™	SuperSOT™-3	
DOME™	ImpliedDisconnect™	Power247™	SuperSOT™-6	
EcoSPARK™	IntelliMAX™	PowerEdge™	SuperSOT™-8	
E ² CMOS™	ISOPLANAR™	PowerSaver™	SyncFET™	
EnSigna™	LittleFET™	PowerTrench®	TCM™	
FACT™	MICROCOUPLER™	QFET®	TinyBoost™	
FAST®	MicroFET™	QS™	TinyBuck™	
FASTR™	MicroPak™	QT Optoelectronics™	TinyPWM™	
FPS™	MICROWIRE™	Quiet Series™	TinyPower™	
FRFET™	MSX™	RapidConfigure™	TinyLogic®	
	MSXPro™	RapidConnect™	TINYOPTO™	
Across the board. Around the world.™		μSerDes™	TruTranslation™	
The Power Franchise®		ScalarPump™	UHC™	
Programmable Active Droop™				

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.