```
In [1]: #imported Libs
   import tensorflow as tf
   import numpy as np
   import matplotlib.pyplot as plt
   import cv2
   from tensorflow.keras.utils import get_file
   import os

In []: #dataset_dir = r"E:\APPS\PythonDataSets\caltech\caltech-101\101_ObjectCategories\1
   dataset_dir = r"E:\APPS\PythonDataSets\caltech\caltech-101\101_ObjectCategories\fil
```

```
# Parameters
batch_size = 32
image_size = (64, 128)
# Load the training and validation datasets
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
    dataset_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=image_size,
    batch_size=batch_size
)
val_dataset = tf.keras.preprocessing.image_dataset_from_directory(
    dataset_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=image_size,
    batch_size=batch_size
def dataset_to_numpy(dataset):
    Convert a tf.data.Dataset into NumPy arrays for features and labels.
        dataset: A tf.data.Dataset object.
    Returns:
        X: Numpy array of features (images).
        y: Numpy array of labels.
    X = []
    y = []
    for images, labels in dataset:
        X.append(images.numpy())
        y.append(labels.numpy())
    return np.concatenate(X, axis=0), np.concatenate(y, axis=0)
# Convert the train and validation datasets to NumPy arrays
```

```
X_train, y_train = dataset_to_numpy(train_dataset)
         X_test, y_test = dataset_to_numpy(val_dataset)
         X_test =[cv2.resize(img.astype(np.uint8), (64, 128)) for img in X_test]
         X_train=[cv2.resize(img.astype(np.uint8), (64, 128)) for img in X_train]
        Found 9145 files belonging to 101 classes.
        Using 7316 files for training.
        Found 9145 files belonging to 101 classes.
        Using 1829 files for validation.
In [37]: #SVM def
         import cv2
         import numpy as np
         from sklearn.model selection import train test split, GridSearchCV
         from sklearn.svm import LinearSVC
         from sklearn.metrics import classification_report, accuracy_score
         def SVM(X_train, y_train,X_test,y_test):
             # Step 4: Train LinearSVC with Grid Search for Hyperparameter Tuning
             param_grid = {
                 'C': [0.1,10], # Regularization parameter
             svm = LinearSVC(max_iter=10000) # Linear SVM for multiclass classification dud
             grid_search = GridSearchCV(svm, param_grid, cv=3, verbose=2, n_jobs=-1)
             grid_search.fit(X_train, y_train)
             # Best Model
             best_svm = grid_search.best_estimator_
             print("Best Parameters:", grid_search.best_params_)
             # Step 5: Evaluate Model
             y_pred = best_svm.predict(X_test)
             # Classification Report
             print("Accuracy:", accuracy_score(y_test, y_pred))
             print(classification_report(y_test, y_pred))#,zero_division=1
In [ ]: #Color Histogran Extraction def
         def extract color histogram(image, bins=(8, 8, 8)):
             # Calculate the 3D histogram for the HSV channels
             hist = cv2.calcHist([image], [0, 1, 2], None, bins, [0, 256, 0, 256, 0, 256])
             # Normalize the histogram to ensure invariance to lighting changes
             hist = cv2.normalize(hist, hist).flatten()
             return hist
In [5]: #HOG def
         def extract_hog_features(image):
             # HOG parameters
             winSize = (64, 128)
             blockSize = (16, 16)
             blockStride = (8, 8)
             cellSize = (8, 8)
             nbins = 9
```

```
hog = cv2.HOGDescriptor(winSize, blockSize, blockStride, cellSize, nbins)
             hog features = hog.compute(image)
             return hog_features
In [13]: #LBP def
         from skimage.feature import local_binary_pattern
         def extract lbp features(image, num points=32, radius=8):
             gray img = cv2.cvtColor(image, cv2.COLOR BGR2GRAY)
             grid_size = (8, 8) # Divide image into a 8x8 grid for histograms
              # Compute LBP
             lbp = local_binary_pattern(gray_img, num_points, radius, method="uniform")
             h, w = lbp.shape
             # Divide the image into grids and compute histograms
             grid_h, grid_w = h // grid_size[0], w // grid_size[1]
             histograms = []
             for i in range(grid_size[0]):
                 for j in range(grid_size[1]):
                     grid = lbp[i * grid_h:(i + 1) * grid_h, j * grid_w:(j + 1) * grid_w]
                     hist, _ = np.histogram(grid, bins=np.arange(0, num_points + 3), density
                     histograms.append(hist)
             return np.concatenate(histograms)
In [14]: # Step 1: Extract LBP features for train and test
         lbp_features_train = np.array([extract_lbp_features(image) for image in X_train])
         lbp_features_test = np.array([extract_lbp_features(image) for image in X_test])
In [15]: # Step 2: Extract HOG features for train and test
         hog features train = np.array([extract hog features(image) for image in X train])
         hog_features_test = np.array([extract_hog_features(image) for image in X_test])
In [24]: # Step 3: Extract Color Histogram features for train and test
         clhg_features_train = np.array([extract_color_histogram(image) for image in X_train
         clhg_features_test = np.array([extract_color_histogram(image) for image in X_test]
```

In [22]: SVM(lbp_features_train,y_train,lbp_features_test,y_test)

Fitting 3 folds for each of 1 candidates, totalling 3 fits

Best Parameters: {'C': 1}
Accuracy: 0.47785675232367414

0.	0.47785675232367414						
	precision	recall	f1-score	support			
6	0.15	0.18	0.17	92			
1		0.95	0.89	175			
2		0.95	0.81	44			
3		0.97	0.93	176			
4		0.73	0.62	11			
		0.93	0.86	162			
6		0.00	0.00	7			
7		0.00	0.00	6			
8	0.00	0.00	0.00	10			
9	0.00	0.00	0.00	17			
16	0.12	0.14	0.13	7			
11	1.00	0.00	0.00	9			
12	0.20	0.24	0.22	25			
13	0.37	0.37	0.37	19			
14	0.33	0.43	0.38	7			
15	0.21	0.25	0.23	12			
16	0.15	0.12	0.14	16			
17	0.10	0.08	0.09	12			
18	0.00	0.00	0.00	11			
19	0.63	0.84	0.72	31			
26	0.00	0.00	0.00	8			
21	0.56	0.60	0.58	15			
22	0.18	0.18	0.18	11			
23	0.29	0.32	0.30	19			
24	0.50	0.07	0.12	14			
25		0.12	0.15	16			
26		0.11	0.09	9			
27		0.00	0.00	16			
28		0.11	0.17	9			
29		0.00	0.00	10			
36		0.10	0.09	10			
31		0.00	0.00	13			
32		0.33	0.27	9			
33		0.07	0.07	15			
34		0.35	0.40	17			
35		0.25	0.19	8			
36		0.10	0.09	10			
37		0.23	0.27	13			
38		0.33	0.31	15 17			
39		0.18	0.18	17			
46		0.09	0.07	11 17			
41		0.00	0.00	17			
42		0.14	0.13	7			
43		0.43	0.55	7 5			
44 45		0.00	0.00				
46		0.00	0.00	11 20			
47		0.60 0.07	0.63 0.06	14			
48							
49		0.33 0.12	0.36 0.11	6 8			
56		0.12	0.11				
36	, 0.14	0.12	6.13	17			

51	0.24	0.26	0.25	19
52	0.60	0.50	0.55	6
53	0.20	0.27	0.23	11
54	0.19	0.20	0.19	15
55	0.33	0.42	0.37	24
56	0.29	0.25	0.27	8
57	0.54	0.41	0.47	17
58	0.17	0.18	0.17	17
59	0.00	0.00	0.00	10
60	0.18	0.18	0.18	11
61	0.25	0.10	0.14	10
62	0.00	0.00	0.00	5
63	0.36	0.29	0.32	17
64	0.33	0.33	0.33	3
65	0.71	0.91	0.80	11
66	0.00	0.00	0.00	11
67	0.25	0.25	0.25	4
68	0.20	0.20	0.20	10
69	0.73	0.73	0.73	11
70	0.40	0.22	0.29	9
71	0.29	0.22	0.25	9
72	0.25	0.38	0.30	8
73	1.00	0.00	0.00	7
74	0.42	0.33	0.37	15
75	0.50	0.50	0.50	14
76	0.08	0.09	0.09	11
77	0.50	0.14	0.22	14
78	0.43	0.50	0.46	6
79	0.27	0.31	0.29	13
80	0.33	0.09	0.14	11
81	0.14	0.11	0.12	19
82	0.00	0.00	0.00	17
83	0.50	0.18	0.27	11
84	0.31	0.31	0.31	13
85	0.14	0.20	0.17	5
86	0.00	0.00	0.00	10
87	0.50	0.31	0.38	16
88	0.56	0.45	0.50	11
89	0.50	0.17	0.25	6
90	0.25	0.40	0.31	10
91	0.50	0.33	0.40	9
92	0.56	0.77	0.65	13
93	0.35	0.44	0.39	16
94	0.49	0.69	0.57	52
95	0.20	0.12	0.15	8
96 07	0.27	0.50	0.35	8 7
97	0.00	0.00	0.00	
98	0.54 0.71	0.58	0.56	12 14
99 100	0.71	0.36	0.48 0.76	
100	0.67	0.89	0.76	9
accuracy			0.48	1829
macro avg	0.30	0.27	0.27	1829
ghted avg	0.45	0.48	0.45	1829

macro weighted

In [38]: SVM(hog_features_train,y_train,hog_features_test,y_test)

Fitting 3 folds for each of 2 candidates, totalling 6 fits

c:\Users\Omar Wessam\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklea
rn\svm_classes.py:31: FutureWarning: The default value of `dual` will change from `
True` to `'auto'` in 1.5. Set the value of `dual` explicitly to suppress the warnin
g.

warnings.warn(

Best Parameters: {'C': 0.1} Accuracy: 0.6260251503553854

:	0.6260251503553854						
	pre	cision	recall	f1-score	support		
	0	0.29	0.45	0.35	92		
	1	0.91	0.99	0.95	175		
	2	0.52	0.75	0.61	44		
	3	0.96	1.00	0.98	176		
	4	0.71	0.91	0.80	11		
	5	0.96	0.98	0.97	162		
	6	0.50	0.43	0.46	7		
	7	0.00	0.00	0.00	6		
	8	0.67	0.40	0.50	10		
	9	0.60	0.18	0.27	17		
	10	0.33	0.29	0.31	7		
	11	0.75	0.33	0.46	9		
	12	0.52	0.68	0.59	25		
	13	0.50	0.58	0.54	19		
	14	0.60	0.43	0.50	7		
	15	0.47	0.67	0.55	12		
	16	0.47	0.56	0.51	16		
	17	0.62	0.42	0.50	12		
	18	0.00	0.00	0.00	11		
	19	0.78	0.94	0.85	31		
	20	1.00	0.25	0.40	8		
	21	0.88	0.47	0.61	15		
	22	0.56	0.45	0.50	11		
	23	0.32	0.32	0.32	19		
	24	0.57	0.29	0.38	14		
	25	0.62	0.50	0.55	16		
	26	0.13	0.22	0.17	9		
	27	0.50	0.31	0.38	16		
	28	0.00	0.00	0.00	9		
	29	0.11	0.10	0.11	10		
	30	0.50	0.30	0.38	10		
	31	0.36	0.31	0.33	13		
	32	0.71	0.56	0.62	9		
	33	0.40	0.13	0.20	15		
	34	0.86	0.71	0.77	17		
	35	0.45	0.62	0.53	8		
	36	0.23	0.30	0.26	10		
	37	0.14	0.08	0.10	13		
	38	0.69	0.60	0.64	15		
	39	0.64	0.53	0.58	17		
	40	0.10	0.09	0.10	11		
	41	0.27	0.24	0.25	17		
	42	0.20	0.14	0.17	7		
	43	0.80	0.57	0.67	7		
	44	0.33	0.60	0.43	5		
	45	0.75	0.55	0.63	11		
	46	0.83	0.75	0.79	20		
	47	0.29	0.43	0.34	14		
	48	0.50	0.33	0.40	6		
	49	0.25	0.25	0.25	8		
	50	0.64	0.41	0.50	17		
	51	0.36	0.42	0.39	19		

52	0.80	0.67	0.73	6
53	0.60	0.55	0.57	11
54	0.21	0.40	0.28	15
55	0.76	0.54	0.63	24
56	0.33	0.25	0.29	8
57	0.89	0.94	0.91	17
58	0.32	0.41	0.36	17
59	0.12	0.10	0.11	10
60	0.33	0.27	0.30	11
61	0.50	0.40	0.44	10
62	0.00	0.00	0.00	5
63	0.72	0.76	0.74	17
64	0.33	0.33	0.33	3
65	0.73	0.73	0.73	11
66	0.14	0.09	0.11	11
67	0.27	0.75	0.40	4
68	0.57	0.40	0.47	10
69	1.00	0.91	0.95	11
70	0.00	0.00	0.00	9
71	0.71	0.56	0.62	9
72	0.33	0.50	0.40	8
73	0.00	0.00	0.00	7
74	0.67	0.53	0.59	15
75	0.80	0.86	0.83	14
76	0.38	0.27	0.32	11
77	0.77	0.71	0.74	14
78	0.80	0.67	0.73	6
79	0.57	0.62	0.59	13
80	0.80	0.36	0.50	11
81	0.29	0.21	0.24	19
82	0.12	0.06	0.08	17
83	0.75	0.27	0.40	11
84	0.50	0.38	0.43	13
85	1.00	0.40	0.43	5
86	0.18	0.30	0.22	10
		0.62		
87 88	0.62 0.89	0.73	0.62 0.80	16 11
89	1.00		0.29	
		0.17		6 10
90	0.40	0.80	0.53	10
91	0.50	0.33	0.40	9
92	0.57	0.92	0.71	13
93	0.75	0.75	0.75	16
94	0.72	0.92	0.81	52
95	0.00	0.00	0.00	8
96	0.30	0.38	0.33	8
97	0.00	0.00	0.00	7
98	1.00	0.67	0.80	12
99	1.00	0.36	0.53	14
100	0.80	0.89	0.84	9
accuracy			0.63	1829
macro avg	0.52	0.45	0.46	1829
weighted avg	0.64	0.63	0.62	1829
J 78				-

In [27]: SVM(clhg_features_train,y_train,clhg_features_test,y_test)

Fitting 3 folds for each of 3 candidates, totalling 9 fits

Best Parameters: {'C': 10} Accuracy: 0.32640787315472936

0.32640787315472936						
pr	recision	recall	f1-score	support		
0	0.17	0.10	0.12	92		
1	0.62	0.95	0.75	175		
2	0.65	0.80	0.71	44		
3	0.32	0.88	0.47	176		
4	0.12	0.27	0.17	11		
5	0.44	0.73	0.55	162		
6	1.00	0.00	0.00	7		
7	0.00	0.00	0.00	6		
8	0.00	0.00	0.00	10		
9	1.00	0.00	0.00	17		
10	1.00	0.00	0.00	7		
11	0.00	0.00	0.00	9		
12	0.29	0.08	0.12	25		
13	0.09	0.16	0.12	19		
14	0.00	0.00	0.00	7		
15	0.00	0.00	0.00	12		
16	0.11	0.06	0.08	16		
17	0.00	0.00	0.00	12		
18	0.00	0.00	0.00	11		
19	0.79	1.00	0.89	31		
20	0.00	0.00	0.00	8		
21	0.00	0.00	0.00	15		
22	0.00	0.00	0.00	11		
23	0.00	0.00	0.00	19		
24	1.00	0.00	0.00	14		
25	0.15	0.12	0.14	16		
26	0.00	0.00	0.00	9		
27	0.00	0.00	0.00	16		
28	0.00	0.00	0.00	9		
29	0.00	0.00	0.00	10		
30	0.00	0.00	0.00	10		
31	0.00	0.00	0.00	13		
32	0.33	0.67	0.44	9		
33	0.27	0.20	0.23	15		
34	0.00	0.00	0.00	17		
35	0.00	0.00	0.00	8		
36	0.00	0.00	0.00	10		
37	0.00	0.00	0.00	13		
38	0.00	0.00	0.00	15		
39 40	0.00	0.00	0.00	17		
40	0.00	0.00	0.00	11 17		
41 42	0.00	0.00 0.14	0.00	17 7		
43	0.10		0.12			
43 44	0.00 0.00	0.00 0.00	0.00 0.00	7 5		
45	0.00	0.00	0.00	11		
46	0.00	0.00	0.00	20		
47	0.11	0.14	0.12	14		
48	0.00	0.00	0.00	6		
49	0.17	0.12	0.14	8		
50	0.10	0.06	0.07	17		

51	0.14	0.05	0.08	19
52	0.50	0.17	0.25	6
53	0.08	0.09	0.09	11
54	0.00	0.00	0.00	15
55	0.22	0.25	0.24	24
56	0.00	0.00	0.00	8
57	0.00	0.00	0.00	17
58	0.00	0.00	0.00	17
59	0.00	0.00	0.00	10
60	0.30	0.27	0.29	11
61	0.00	0.00	0.00	10
62	0.00	0.00	0.00	5
63	0.00	0.00	0.00	17
64	0.00	0.00	0.00	3
65	0.07	0.18	0.10	11
66	0.00	0.00	0.00	11
67	0.00	0.00	0.00	4
68	1.00	0.00	0.00	10
69	0.20	0.36	0.26	11
70	0.00	0.00	0.00	9
71	1.00	0.00	0.00	9
72	0.25	0.75	0.38	8
73	0.00	0.00	0.00	7
74	0.00	0.00	0.00	15
75	0.00	0.00	0.00	14
76	0.00	0.00	0.00	11
77	0.00	0.00	0.00	14
78	0.00	0.00	0.00	6
79	0.10	0.08	0.09	13
80	0.00	0.00	0.00	11
81	0.31	0.21	0.25	19
82	0.00	0.00	0.00	17
83	0.30	0.27	0.29	11
84	0.00	0.00	0.00	13
85	0.25	0.20	0.22	5
86	0.00	0.00	0.00	10
87	0.00	0.00	0.00	16
88	0.24	0.36	0.29	11
89	0.29	0.33	0.31	6
90	0.33	0.70	0.45	10
91	0.25	0.22	0.24	9
92	0.12	0.31	0.17	13
93	0.00	0.00	0.00	16
94	0.14	0.08	0.10	52
95	0.00	0.00	0.00	8
96	0.00	0.00	0.00	8
97	0.00	0.00	0.00	7
98	0.00	0.00	0.00	12
99	0.00	0.00	0.00	14
100	0.22	0.22	0.22	9
accuracy			0.33	1829
macro avg	0.15	0.11	0.09	1829
ghted avg	0.25	0.33	0.25	1829
-				

macro weighted