Chương 3: MA TRẬN VÀ CÁC PHÉP TOÁN VỚI MA TRẬN

Ton Duc Thang University

Ngày 22 tháng 2 năm 2016

NỘI DUNG

- 🚺 3. Ma trận (Matrices) và các phép toán với ma trận
 - 3.1. Giới thiệu ma trận trong MATLAB
 - 3.2. Phép toán số học trên vector array

3.1.1. Nhập ma trận

Trong MATLAB ma trận là một array chứa các dữ liệu. Đế nhập một ma trận vào MATLAB ta có thể dùng các cách sau:

- Nhập trực tiếp vào Command Window.
- Nhập từ các file dữ liệu.
- Dùng các hàm trong MATLAB.

Ví dụ:

- » mymatrix = $[1 \ 2 \ 3; \ 4 \ 5 \ 6; \ 7 \ 8 \ 9]$
- » $myvector = [1 \ 2 \ 3]$

3.1.1. Nhập ma trận

Dùng các hàm trong MATLAB:

- Hàm ones(r,c) tạo một ma trận có r hàng và c cột với các giá 1.
- Hàm zeros(r,c) tạo một ma trận có r hàng và c cột với các giá 0.
- Hàm eye(r) tạo một ma trận có r hàng và r cột với các giá 1 tại đường chéo và giá trị 0 tại các phần tử còn lại.
- rand(r,c) tạo một ma trận có r hàng và c cột với các giá trị ngẫu nhiên từ 0 tới 1 theo phân bố uniform.
- randn(r,c) tạo một ma trận có r hàng và c cột với các giá trị ngẫu nhiên theo phân bố Normal đơn vị.
- magic(n) tạo ma trận cấp n gồm các số nguyên từ 1 đến n^2 với tổng các hàng bằng tổng các cột. $(n \ge 3)$.
- pascal(n) tạo ma trận xác định dương các phần tử lấy từ tam giác Pascal.

Stt	Tên hàm	Ý nghĩa	Ví dụ:	Kết	t qua	å
1	zeros(a,b)	tạo ma trận axb, các phần tử = 0	zeros(2,3)	0	0	0
2	ones(a,b)	tạo ma trận axb, các phần tử = 1	ones(2,3)	1	1	1
3	eye(a,b)	tạo ma trận axb, các phần tử đường chéo =1	eye(3,3)	1 0 0	0 1 0	0 0 1

Stt	Tên hàm	Ý nghĩa	Ví dụ:	Kết quả
4	repmat(a,b)	tạo ma trận bxb các phần tử có giá trị a.	repmat(2,3)	2 2 2 2 2 2 2 2 2
5	rand(a,b)	tạo ma trận axb, các phần ngẫu nhiên	rand(2,3)	0.9218 0.1763 0.9355 0.7382 0.4057 0.9169
6	randn(a,b)	tạo ma trận axb, các phần ngẫu nhiên phân bố đều	randn(2,3)	-0.4326
7	linspace(a,b,n)	tạo ma trận hàng n phần tử phân bố đều từ a đến b	linspace(1,1.1,4)	1 2
8	logspace(a,b,n)	tạo ma trận hàng n phần tử phân bố đều từ 10ª đến 10 ^b	logspace(1,5,3)	10 1000 100000

3.1.2. Các phép toán trên ma trận

- A + B: cộng ma trận A và B (2 ma trận cùng kích thuớc)
- ullet A-B: trừ ma trận A và B (2 ma trận cùng kích thuớc)
- A * B : nhân ma trận (số cột của A bằng số hàng của B)
- A. * B : nhân từng phần tử của A và B (A, B cùng kích thước)
- inv(A) : nghịch đảo A
- B/A hay xấp xỉ B * inv(A)
- B./A: chia từng phần tử của B cho A (A, B cùng kích thước).
- $A \setminus B$: nếu A là ma trận vuông, xấp xỉ inv(A) * B. Nếu A là ma trận $n \times n$ và B là vector cột với n phần tử thì $X = A \setminus B$ là lời giải cho hệ đảng thức AX = B.
- $A. \land B$: lũy thừa từng phần tử của A với từng phần tử của B.

3.1.2. Các phép toán trên ma trận

Stt	Dòng lệnh	Ý nghĩa	Kết q	u å
1	A=[1 2;3 4]	Tạo ma trận	1	2
			3	4
2	B=[1,2;3,4]	Tạo ma trận	1	2
			3	4
3	2*A	Nhân một số	2	4
		với ma trận	6	8
4	B/2	Chia ma trận	0.5000	1.0000
		cho 1 số	1.5000	2.0000

- Khi đem ma trận nhân hoặc chia cho 1 số, ta sẽ được một ma trận cùng kích thước, và các phần tử sẽ có giá trị bằng phần tử tương ứng của ma trận cũ nhân hoặc chia cho số đó.

3.1.2. Các phép toán trên ma trận

Stt	Dòng lệnh	Ý nghĩa	Kết quả
5	A+B	Cộng 2 ma trận	2 4
			6 8
6	A-B	Trừ 2 ma trận	0 0
			0 0

^{- 2} ma trận đem cộng hoặc trừ phải cùng kích thước

⁻Kết quả là một ma trận có chung kích thước, các phần tử là tổng hoặc hiệu của 2 phần tử tương ứng.

7	A*B	Nhân 2 ma trận	7 15	10 22
8	A\B	Chia 2 ma trận	1 0	0

⁻ Chỉ áp dung khi giải phương trình AX=B, với A là ma trận vuông, B là ma trận cột có cùng kích thước với A

Gọi chỉ số: Để truy cập tới các giá trị trong ma trận ta dùng chỉ số.
 Ví du:

```
» A=[1 2 3; 4 5 6; 7 8 9];
» A(1,2)
» A(end,end)
```

• Toán tử hai chấm :. Đây là một toán tử đặc biệt của MATLAB.

```
Ví dụ:
```

```
»1:5
»1:2:10
```


• Concatenation- kết hợp các ma trận:

Ví du:

```
a=[1 2 3];
b=[4 5 6];
ab=[a;b]
```

ab=[a b]

Xóa môt hàng hay côt của ma trân.

Ví du:

```
a=[123;456;789];
 a(2,:)=[]
```

$$a(:,2)=[]$$

Ví dụ,

Α	123 456	Thêm cột	Thêm dòng
В	10 12 11 13	D = [A B]	E = [A; C]
С	789 978 897	1 2 3 10 12 4 5 6 11 13	123 456 789 978 897

Ngày 22 tháng 2 năm 2016

Stt	Tên hàm	Ý nghĩa	Ví dụ:]	Kết q	uå	
1	size	Kích thước ma trận	size(Z)		4	4	
2	ndims	số chiều	ndims(Z)			2	
3	length	chiều dài	length(Z)			4	
4	numel	số phần tử ma trận.	numel(Z)		1	6	
5	max	Vecto hàng, chứa các phần tử lớn nhất theo từng cột	max(Z)	4	6	8	10

Stt	Tên hàm	Ý nghĩa	Ví dụ :	I	Kết q	lu å	
6	min	Vecto hàng, chứa các phần tử nhỏ nhất theo từng cột	min(Z)	1	3	5	7
7	sum	Vecto hàng, chứa tổng các phần tử theo từng cột	sum(Z)	10	18	26	34
8	sort	Sắp xếp theo thứ tự tăng dần trong	sort(Z)	1 2 3	3 4 5	5 6 7	7 8 9
		từng cột.		4	6	8	10

Cho ma trận A = 11 2 6 4 17 26 17 8 49

Stt	Tên hàm	Ý nghĩa	Ví dụ :	Kết quả
1	det	Tính định thức ma trận	det(A)	5825

- Định thức ma trận không được định nghĩa ở đây, sinh viên tham khảo trong tài liệu tóan cao cấp.

2	•	Chuyển vị ma	A'	11	4	17
		trận		2	17	8
				6	26	49

- Ma trận chuyển vị là ma trận được tạo từ ma trận ban đầu bằng cách :
 - + Chuyển các hàng thành cột
 - + Hoặc chuyển các cột thành hàng

Stt	Tên hàm	Ý nghĩa	Ví dụ:	Kết quả				
3	tril	tạo ma trận tam	tril(A)	11 0 0				
		giác dưới		4 17 0				
				17 8 49				
- N	- Ma trận tam giác dưới bỏ các thành phần từ đường chéo trở lên.							
4	triu	tạo ma trận tam	triu(A)	11 2 6				
		giác trên		0 17 26				
				0 0 49				
1	Ma trận tam giác trên bỏ các thành phần từ đường chéo trở xuống.							
5	chol	Phân tích ma trận	chol(A)	3.3166 0.6030 1.8091				
		thanh thừa số		0 4.0788 6.1070				
		cholesky		0 0 2.9037				

Stt	Tên hàm	Ý nghĩa	Ví dụ:	Kết quả				
- N	- Ma trận A sẽ được phân tích thành 2 ma trận : R'.R, với R là ma trận tam giác trên.							
6	lu	Phân tích ma trận thành thừa số LU	[L,U]=lu(A)	L: 0.6471 -0.2101 1.0000 0.2353 1.0000 0 1.0000 0 0 U: 17.0000 8.0000 49.0000 0 15.1176 14.4706 0 0 -22.6654				
l .	Ia trận A sẽ đượ I là ma trận tam	•	na trận : L.U v	ới L là ma trận tam giác dưới,				
7	inv	Nghịch đảo ma trận	inv(A)	0.1073 -0.0086 -0.0086 0.0422 0.0750 -0.0450 -0.0441 -0.0093 0.0307				
- <i>N</i>	Marked and the first of a marked All and a first December 1							

200

Với I là ma trận đơn vị

3.2. Phép toán số học trên vector - array

- Các phép toán trên vector được xem như tương tự các phép toán trên ma trận.
- Ngoài ra, trên vector còn định nghĩa các phép toán như: chuyến vị, tích vô hướng, tích có hướng, divergence, gradient, curl...

Phép chuyển vị: toán tử ' sẽ cho chuyển vị Hamilton, tức là chuyển vị và lấy số phức liên hợp. Ví dụ,

```
 a = [1 \ 2 \ 3 \ 4+i]
```

- » transpose(a)
- » a'
- » a.′

3.2. Phép toán số học trên vector - array

- Tổng hay tích các phần tử: Để tính tổng hay tính tích tất cả các phần tử của vector dùng lệnh sum và lệnh prod.
- Các phép toán với từng phần tử: những hàm được định nghĩa sẵn sử dụng được với các phần tử vô hướng hầu như đều sử dụng được với vector.

```
» t = [1\ 2\ 3];
» f = exp(t);
Cũng tương đương với » f = [exp(1)\ exp(2)\ exp(3)];
```

Để sử dụng với từng phần tử của mảng, dùng dấu . ở trước toán tử (.*, .^, ./). Cần chú ý tới kích thước của vector khi sử dụng các toán tử này.

```
>> a = [1 2 3]; b = [4; 2; 1];
>> a.*b, a./b, a.^b % Tất cả đều sai vì kích thước
2 vector không phù hợp
>> a.*b', a./b', a.^(b') % Đều được chấp
nhận.
```