√中 πイ. / □ ※ト		-	
ながれ	(再履修)	中間試験	学籍番号

点/40点

- 1 次の各問に答えなさい(詳細な説明は不要. 問に答えるのみでよい). (各4点)
 - (1) ベクトル $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$ と直交するベクトルを次の (P) \sim (x) の中からすべて選びなさい.

$$(\mathcal{P}) \quad \begin{pmatrix} 1\\1\\2 \end{pmatrix} \qquad (\mathcal{A}) \quad \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \quad (\dot{\mathcal{P}}) \quad \begin{pmatrix} -1\\1\\1 \end{pmatrix} \quad (\mathfrak{D}) \quad \begin{pmatrix} -1\\-1\\-1 \end{pmatrix}$$

$$(\mathcal{A}) \quad \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

(ウ)
$$\begin{pmatrix} -1\\1\\1 \end{pmatrix}$$

$$(\mathfrak{I}) \quad \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$$

氏名

(1)

(2) 複素数 z=2-i と絶対値が等しい複素数を次の (ア) ~ (エ) の中からすべて選びなさい。ただし、i は虚数単位とする。

(イ)
$$\sqrt{5}$$

(ア)
$$5i$$
 (イ) $\sqrt{5}$ (ウ) $\frac{3}{2} + \frac{\sqrt{11}}{2}i$ (エ) 3

(3) 対称行列を次の(ア)~(エ)の中からすべて選びなさい.

$$(\mathcal{P}) \quad \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{array}\right)$$

$$(\mathcal{T}) \quad \begin{pmatrix} 3 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix} \qquad (\mathcal{T}) \quad \begin{pmatrix} -3 & 1 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & -3 \end{pmatrix}$$

- ($\dot{9}$) $\begin{pmatrix} 5 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 7 \end{pmatrix}$ ($\dot{\pi}$) ($\dot{\pi}$) $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -2 & 0 \end{pmatrix}$
- (4) 連立方程式

$$\begin{cases} x + 3y - 2z = 2 \\ 2x + 7y - 4z = 3 \\ 3x + 7y - 6z = 8 \end{cases}$$

の解は $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{v} + k \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ と表されるとする(k は任意の実数.解の自由度は 1).このとき,ベクトル \vec{v} として適当なも

$$(\mathcal{F}) \quad \begin{pmatrix} 1\\1\\1 \end{pmatrix} \qquad (\mathcal{T}) \quad \begin{pmatrix} -5\\1\\0 \end{pmatrix} \qquad (\dot{\mathcal{T}}) \quad \begin{pmatrix} 3\\-1\\-1 \end{pmatrix} \qquad (\mathfrak{I}) \quad \begin{pmatrix} 1\\-1\\-2 \end{pmatrix}$$

2 2 次正方行列 $A=\begin{pmatrix}1&-2\\3&2\end{pmatrix}$ の逆行列 A^{-1} を求めなさい. (4 点)

4 連立方程式
$$\begin{cases} 2x + 3y - 6z = -4 \\ x + 2y - 5z = -1 \\ -2x - y - 2z = 8 \end{cases}$$

し -2x-y-2z=8 の解が存在するか判定し、解が存在する場合はその $\underline{\mathbf{m}}$ と $\underline{\mathbf{m}}$ の自由度 を答えなさい。 (7点)

が非自明解を持つための c の条件 を求めなさい。また,c がその条件を満たすときの 連立方程式の解 を求めなさい。(7 点)