CSE 586, Spring 2015 Computer Vision II

Hidden Markov Model and Kalman Filter

Recall: Modeling Time Series

State-Space Model:

You have a Markov chain of latent (unobserved) states Each state generates an observation

Modeling Time Series

P(x1,x2,x3,x4,...,o1,o2,o3,o4,...) = P(x1)P(o1|x1)P(x2|x1)P(o2|x2)P(x3|x2)P(o3|x3)P(x4|x3)P(o4|x4).....

Modeling Time Series

Examples of State Space models

- •Hidden Markov model
- •Kalman filter

Hidden Markov Models

Note: a good background reference is LR Rabiner, "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition," *Proc. of the IEEE*, Vol.77, No.2, pp.257-286, 1989.

Markov Chain

Note: this picture is a state transition diagram, not a graphical model!

Set of states, e.g. {S1,S2,S3,S4,S5}

Table of transition probabilities ($a_{ij} = Prob$ of going from state S_i to S_i)

Prob of starting in each state e.g. π_1 , π_2 , π_3 , π_4 , π_5 $P(S_i)$

Computation: prob of an ordered sequence S_2 S_1 S_5 S_4 $P(S_2)$ $P(S_1 | S_2)$ $P(S_5 | S_1)$ $P(S_4 | S_5) = \pi_2 \, a_{21} \, a_{15} \, a_{54}$

Hidden Markov Model

Set of states, e.g. {\$1,\$2,\$3,\$4,\$5}

Table of transition probabilities $(a_{ij} = Prob$ of going from state S_i to S_i)

$$egin{array}{llll} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \\ \end{array} \quad P(S_j \mid S_i)$$

Prob of starting in each state e.g. π_1 , π_2 , π_3 , π_4 , π_5 $P(S_i)$

Set of observable symbols, e.g. {v1,v2,v3}

Prob of seeing each symbol in a given state $(b_{ik} = Prob seeing v_k in state S_i)$

Hidden Markov Model

Set of states, e.g. {\$1,\$2,\$3,\$4,\$5}

Table of transition probabilities $(a_{ij} = Prob of going from state S_i to S_i)$

Prob of starting in each state e.g. π_1 , π_2 , π_3 , π_4 , π_5 $P(S_i)$

Set of observable symbols, e.g. {v1,v2,v3}

Prob of seeing each symbol in a given state $(b_{ik} = \text{Prob seeing } v_k \text{ in state } S_i)$

Computation: Prob of ordered sequence (S_2, v_3) (S_1, v_1) (S_5, v_2) (S_4, v_1)

P(S2,S1,S5,S4,v3,v1,v2,v1)

$$= P(S_2) P(v_3|S_2) P(S_1|S_2) P(v_1|S_1) P(S_5|S_1) P(v_2|S_5) P(S_4|S_5) P(v_1|S_4)$$

$$= \pi_2 b_{23} a_{21} b_{11} a_{15} b_{52} a_{54} b_{41}$$

$$= (\pi_2 a_{21} a_{15} a_{54}) (b_{23} b_{11} b_{52} b_{41})$$

$$= P(S1,S2,S3,S4) P(v1,v2,v3,v4|S1,S2,S3,S4)$$

HMM as Graphical Model

Given HMM with states S1,S2,...,Sn, symbols v1,v2,...,vk, transition probs $A=\{a_{ij}\}$, initial probs $\Pi=\{\pi_i\}$, and observation probs $B=\{b_{ik}\}$

Let state random variables be X1,X2,X3,X4,... with Xt being state at time t. Allowable values of Xt (a discrete random variable) are {S1,S2,...,Sn}

Let observed random variables be O1,O2,O3... with Ot observed at time t. Allowable values of Ot (a discrete random variable) are {v1,v2,...,vk}

HMM as Graphical Model

Given HMM with states S1,S2,...,Sn, symbols v1,v2,...,vk, transition probs $A=\{a_{ij}\}$, initial probs $\Pi=\{\pi_i\}$, and observation probs $B=\{b_{ik}\}$

Let state random variables be X1,X2,X3,X4,... with Xt being state at time t. Allowable values of Xt (a discrete random variable) are {S1,S2,...,Sn}

Let observed random variables be O1,O2,O3... with Ot observed at time t. Allowable values of Ot (a discrete random variable) are {v1,v2,...,vk}

Oi are observed variables. Xj are hidden (latent) variables.

HMM as Graphical Model

Verify: What is P(X1,X2,X3,X4,O1,O2,O3,O4)?

P(X1,X2,X3,X4,O1,O2,O3,O4) = P(X1) P(O1|X1) P(X2|X1) P(O2|X2) P(X3|X2) P(O3|X3) P(X4|X3) P(O4|X4) • • •

Three Computations for HMMs

(From Rabiner tutorial)

- Problem 1: Given the observation sequence $O = O_1 O_2 \cdot \cdot \cdot \cdot O_T$, and a model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda)$, the probability of the observation sequence, given the model?
- Problem 2: Given the observation sequence $O = O_1 O_2 \cdot \cdot \cdot O_T$, and the model λ , how do we choose a corresponding state sequence $Q = q_1 q_2 \cdot \cdot \cdot q_T$ which is optimal in some meaningful sense (i.e., best "explains" the observations)?
- Problem 3: How do we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?

What is the likelihood of observing a sequence, e.g. O1,O2,O3?

Note: there are multiple ways that a given sequence could be emitted, involving different sequences of hidden states X1,X2,X3

One (inefficient) way to compute the answer: generate all sequences of three states Sx,Sy,Sz and compute P(Sx,Sy,Sz,O1,O2,O3) [which we know how to do]. Summing up over all sequences of three states gives us our answer.

Drawback, there are 3^N subsequences that can be formed from N states.

Better (efficient) solution is based on message passing / belief propagation.

marginal
$$P(O_1, O_2, O_3) = \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1, x_2, x_3, O_1, O_2, O_3)$$

$$= \sum_{x_1} \sum_{x_2} \sum_{x_3} P(x_1) P(O_1|x_1) P(x_2|x_1) P(O_2|x_2) P(X_3|x_2) P(O_3|x_3)$$

$$= \sum_{x_1} P(x_1)P(O_1|x_1) \left(\sum_{x_2} P(x_2|x_1)P(O_2|x_2) \left(\sum_{x_3} p(x_3|x_2)P(O_3|x_3) \right) \right)$$

This is the sum-product procedure of message passing. It is called the *forward-backward* procedure in HMM terminology

What is the most likely sequence of hidden states S1,S2,S3 given that we have observed O1,O2,O3?

$$X_{MAP} = \underset{X}{\operatorname{argmax}} P(x_1, x_2, x_3 | O_1, O_2, O_3)$$

= $\underset{X}{\operatorname{argmax}} P(x_1, x_2, x_3, O_1, O_2, O_3)$

Again, there is an inefficient way based on explicitly generating the exponential number of possible state sequences... AND, there is a more efficient way using message passing.

$$X_{MAP} = \underset{X}{\operatorname{argmax}} P(\underbrace{x_1, x_2, x_3}_{X}, O_1, O_2, O_3)$$

=
$$\underset{X}{\operatorname{argmax}} P(x_1)P(O_1|x_1)P(x_2|x_1)P(O_2|x_2)p(x_3|x_2)P(O_3|x_3)$$

Define:

$$\Phi(X) = \max_{x_1} P(x_1) P(O_1|x_1) \left[\max_{x_2} P(x_2|x_1) P(O_2|x_2) \left[\max_{x_3} p(x_3|x_2) P(O_3|x_3) \right] \right]$$

Then
$$X_{MAP} = \underset{X}{\operatorname{argmax}} \Phi(X)$$

This is the max-product procedure of message passing. It is called the *Viterbi* algorithm in HMM terminology

Viterbi, under the hood

- 1) Build a state-space *trellis*. 2) Add a source and sink node.
- 3) Given observations. 4) Assign weights to edges based on observations.

Do multistage dynamic programming to find the max product path.

(note: in some implementations, each edge is weighted by -log(w_i) of the weights shown here, so that standard min length path DP can be performed.)

Given a training set of observation sequences

$$\{\{O1,O2,...\},\{O1,O2,...\},\{O1,O2,...\}\}$$

how do we determine the transition probs a_{ij} , initial state probs p_i , and observation probs b_{ik} ?

This is a learning problem. It is the hardest problem of the three. We assume topology of the HMM is known (number and connectivity of the states) otherwise it is even harder.

Two popular approaches:

- Segmental K-means algorithm
- Baum-Welch algorithm (EM-based)

Recall clustering lectures earlier in the semester!

Problem 3

- Given some training data, build a HMM
 - The training data is a set of observation sequences
 - We assume that these sequences are representative and independent
 - We want the HMM to be the one most likely to give rise to the training data
 - We'll look at a solution based on k-means, which uses the solution to Problem 2 to define the best HMM

Hidden Markov Models

Assumptions

- We make a number of simplifying assumptions
 - Each observation symbol is a vector having some fixed length – this means all our observations have the same basic shape
 - Each observation is a series of T symbols we don't need to consider varying lengths (one long sequence can be split up)
 - We know (or guess) the number of states, n
 (we can try different values if we like)

Hidden Markov Models

Segmental K-Means Algorithm Overview

- Initialise the HMM states and assign observation symbols to these states
- Compute the initial state and transition functions given the current HMM
- Compute some statistics about each state
- Find the observation function for each state
- Find the optimal path through the HMM for each observation sequence, and reassign its observation symbols as appropriate
- If any changes have been made goto 2

Hidden Markov Models

Step 1

- We need to set up some initial states
 - We know there are n of them
 - Choose n (different) observation symbols (vectors) and assign these to the n states at random
 - Assign all the other observed vectors to the state which they are closest to (using Euclidean distance)

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham

Note: this is essentially k-means clustering!

- Suppose our observation symbols are velocity measurements, [u, v]
 - We're given three observation sequences:
 - [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]
 - We pick k=3 at random:
 - [0,1], [-1,0], [0,0], **[2, 1]**, [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], **[4, 4]**, [4, 3]

Hidden Markov Models

 Each of these three vectors becomes a state, and we assign each symbol to the state nearest it

Hidden Markov Models

- Doing this for all 3 sequences gives
 - In the state, s₁, centred around [-4,1]:
 - [-1,0], [-3, 0], [-4, 1], [-3, -1], [-2, -1], [-3,-1], [-1, 0]
 - In the state, s₂, centred around [2,1]:
 - [0,1], [0,0], [2, 1], [0, 0], [-1,1], [0, 1]
 - In the state, s₃, centred around [4,4]:
 - [4, 5], [5, 4], [3, 3], [4, 4], [4, 3]

Hidden Markov Models

Step 2

- We now compute the initial probabilities and transition functions
 - I(s) is just the proportion of times a sequence starts in state s
 - T(s_i,s_j) is the proportion of times a sequence takes us from state s_i to state s_j

Hidden Markov Models

- Initial state function:
 - The first sequence starts with [0,1], which is in state s₂
 - The second sequence starts with [-3,0], which is in state s₁
 - The third sequence starts with [-3,-1], which is in state s₁
 - So $I(s_1)=2/3$, $I(s_2)=1/3$, $I(s_3)=0$

Hidden Markov Models

- We're given three observation sequences:
 - [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]

The transitions in the sequences are:

$$[0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]$$

 $s_2 \xrightarrow{} s_1 \xrightarrow{} s_2 \xrightarrow{} s_2 \xrightarrow{} s_3 \xrightarrow{} s_3$

$$[-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1, 1]$$

 $s_1 \xrightarrow{} s_1 \xrightarrow{} s_1 \xrightarrow{} s_2 \xrightarrow{} s_2 \xrightarrow{} s_2$

$$[-3,-1], [-1,0], [0,1], [3,3], [4,4], [4,3]$$

 $s_1 \xrightarrow{} s_1 \xrightarrow{} s_2 \xrightarrow{} s_3 \xrightarrow{} s_3 \xrightarrow{} s_3$

Hidden Markov Models

- We're given three observation sequences:
 - [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]

- 15 transitions:
 - 3 from s₁ to s₁
 - 3 from s₁ to s₂
 - 0 from s₁ to s₃
 - 1 from s₂ to s₁
 - 3 from s₂ to s₂
 - 2 from s₂ to s₃
 - 0 from s₃ to s₁
 - 0 from s₃ to s₂
 - 3 from s₃ to s₃

- Transition function
 - $T(s_1, s_1) = 3/15$
 - $T(s_1, s_2) = 3/15$
 - $T(s_1, s_3) = 0$
- $T(s_2, s_1) = 1/15$
 - $T(s_2, s_2) = 3/15$
 - $T(s_2, s_3) = 2/15$
- $T(s_3, s_1) = 0$
 - $T(s_3, s_2) = 0$
 - $T(s_3, s_3) = 3/15$

Hidden Markov Models

Step 3

- Now we compute some statistics about the observations made in each state
 - Usually we compute the mean and variances or covariance
 - These are going to be used in Step 4, so if you change Step 4 then other statistics might be needed

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham

Note: This part assumes continuous-valued observations are output. For a discrete set of observation symbols, we could just do histograms here.

- State s₁ has the vectors [-1,0], [-3, 0], [-4, 1], [-3, -1], [-2, -1], [-3,-1], and [-1, 0]
 - The mean of these vectors is

$$\mu_1 = [-2.43, -0.29]$$

The variance of each component is

$$\sigma_{u1}=1.1$$

$$\sigma_{v1} = 0.5$$

We compute this for each state

Hidden Markov Models

Step 4

- The next step is to compute the observation probabilities
 - Since the observations are vectors, this is usually a probability function
 - Commonly a Gaussian model is used, but other models could be used if we want
 - Since the vectors are d-dimensional, this Gaussian is d-dimensional also

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham

Note: For a discrete set of observation symbols, we could use histograms normalized to sum to 1 as estimates of the probability mass function of outputting each symbol.

- Using the formula for a 2D Gaussian
 - We put in the mean and covariance computed in Step 3 for each state
 - This gives us a function of the observed symbol and state

$$O(a,s_t) = \frac{1}{2\pi\sigma_{ut}\sigma_{vt}} e^{-\frac{\left((u_a - \mu_{ut})^2 + (v_a - \mu_{vt})^2 - 2\sigma_{ut}^2\right)^2}{2\sigma_{ut}^2}}$$

Hidden Markov Models

Step 5

- We now have estimates for the parameters of our HMM
 - As in normal k-means the next step is to reassign the observations to the states
 - We do this by running the Viterbi algorithm for each observation, giving an optimal assignment of observation symbols to states
 - If any observation has changed state then we go back to step 2 to revise our HMM

Hidden Markov Models

- Suppose the Viterbi algorithm gives the sequence s₂→s₂→s₂→s₂→s₃→s₃ as the best path for the first observation
 - The second symbol ([-1,0]) is now attributed to state s₂ rather than s₁
 - This affects the statistics related with these two states, and also the transition function
 - As a result, the paths explaining the observations may also change

Hidden Markov Models

- We're given three observation sequences:
 - [0,1], [-1,0], [0,0], [2, 1], [4, 5], [5, 4]
 - [-3, 0], [-4, 1], [-3, -1], [-2, -1], [0, 0], [-1,1]
 - [-3,-1], [-1, 0], [0, 1], [3, 3], [4, 4], [4, 3]

Training HMMs

- This algorithm, the segmental k-means algorithm, allows us to build a HMM from training data
 - It can be shown that this converges to an optimal result for a variety of observation functions (including Gaussian)
 - In these cases the starting point doesn't matter, although a poor choice might mean lots of iterations are needed

Hidden Markov Models

Image Processing and Interpretation at The University of Nottingham Really?

Baum-Welch Algorithm

Same thing, but with fractional assignments of observations to states.

Basic idea is to use EM instead of K-means as a way of assessing ownership weights before computing observation statistics at each state.

Kalman Filter

Note: a good background reference is "An Introduction to the Kalman Filter", Greg Welch and Gary Bishop, University of North Carolina at Chapel Hill, Dept of Computer Science Tech Report 95-041.

Welch also maintains an excellent website about all things Kalman:

http://www.cs.unc.edu/~welch/kalman/

Kalman Filter for Tracking

P(x1,x2,x3,x4,...,y1,y2,y3,y4,...) = P(x1)P(y1|x1)P(x2|x1)P(y2|x2)P(x3|x2)P(y3|x3)P(x4|x3)P(y4|x4).....

Kalman Filter for Tracking

P(x1,x2,x3,x4,...,y1,y2,y3,y4,...) = P(x1)P(y1|x1)P(x2|x1)P(y2|x2)P(x3|x2)P(y3|x3)P(x4|x3)P(y4|x4).....

What we typically want to compute for tracking applications is P(xn | y1, y2, ..., yn)

Linear Dynamical Systems

- Next state is a linear function of current state + zero-mean Gaussian noise
- Each observation is a linear function of current state + zeromean Gaussian noise
- Initial prior distribution on first state is Gaussian
- => All distributions remain Gaussian!
- => Means and covariances can be estimated over time by a Kalman filter

Kalman Filter Derivation (in 1D)

Assume:

Linear motion and measurement models:

Implied by motion and measurement models:

Kalman Filter Derivation

What is $P(x_k | y_1,...,y_k)$?

Derivation Strategy

Combine $P(x_{k-1} | y_1,...,y_{k-1})$ and $P(x_k | x_{k-1})$ to compute $P(x_k | y_1,...,y_{k-1})$

Step 1: motion prediction

Derivation Strategy

Combine $P(x_k|y_1,...,y_{k-1})$ and $P(y_k|x_k)$ to compute $P(x_k|y_1,...,y_k)$

Step 2: data correction

Step 1: Motion Prediction

Combine $P(x_{k-1} | y_1,...,y_{k-1})$ and $P(x_k | x_{k-1})$ to compute $P(x_k | y_1,...,y_{k-1})$

$$P(X_{K}|Y_{1}...|Y_{K-1}) = \sum_{X_{K-1}} P(X_{K}|X_{K-1}) P(X_{K-1}|Y_{1}...|Y_{K-1}) dX_{K-1}$$

$$= \sum_{X_{K-1}} N(X_{K}|X_{K-1} + b, Y^{2}) N(X_{K-1}|M_{K-1}, J_{K-1}^{2}) dX_{K-1}$$

$$= constant \leq P(X_{K}|X_{K-1} + b - X_{K})^{2} + (X_{K-1} - A_{K-1})^{2}$$

$$= Constant \leq P(X_{K}|X_{K-1} + b - X_{K})^{2} + (X_{K-1} - A_{K-1})^{2}$$

Quadratic form in x_{k-1} and x_k . Therefore this is a joint Gaussian distribution over x_{k-1} and x_k .

Integrated over x_{k-1} yields marginal distribution $P(x_k|y_1,...,y_{k-1})$

Step 2: Data Correction

Combine $P(x_k|_{y_1,...,y_{k-1}})$ and $P(y_k|x_k)$ to compute $P(x_k|y_1,...,y_k)$

Through some algebra (completing the square), we find that:

$$P(X_{K}|Y_{1}...Y_{K}) \sim N(M_{K}, J_{K}^{2+})$$
where
$$M_{K}^{+} = \frac{\sigma_{K}^{2-} \frac{Y_{K}}{d} + \frac{5^{2}}{d^{2}} M_{K}}{\sigma_{K}^{2-} + \frac{5^{2}}{d^{2}}} = \frac{1}{1^{2}} \frac{\sigma_{K}^{2-} \frac{Y_{K}}{d} + 5^{2}}{1^{2}} \frac{1}{\sigma_{K}^{2-} + 5^{2}}$$

$$\sigma_{K}^{2+} = \frac{\sigma_{K}^{2-} \frac{5^{2}}{d^{2}}}{\sigma_{K}^{2-} + \frac{5^{2}}{d^{2}}} = \frac{\sigma_{K}^{2-} \frac{5^{2}}{d^{2}}}{1^{2}} \frac{1}{\sigma_{K}^{2-} + 5^{2}}$$

Step 2: Data Correction

Combine $P(x_k|_{y_1,...,y_{k-1}})$ and $P(y_k|x_k)$ to compute $P(x_k|y_1,...,y_k)$

Through some algebra (completing the square), we find that: