SÉRIE TD N≗1

LOGIQUE ET RAISONNEMENT

Exercice 1:

1 - Soient *P*; *Q et L* trois propositions logiques. Construire les tables de vérité des formules suivantes:

$$(P \lor Q) \Rightarrow L$$
 ; $(\bar{P} \land Q) \lor P$; $(P \Rightarrow Q) \Rightarrow L$; $(P \land Q) \lor (\bar{Q} \land L)$

2 - Soient *P et Q* deux propositions logiques. Montrer que les propositions suivantes sont des tautologies:

$$P \Rightarrow (P \lor Q)$$
 , $P \Rightarrow (Q \Rightarrow P)$, $(P \land (P \Rightarrow Q)) \Rightarrow Q$

Exercice 2:

Soient *P*; *Q* et *R* trois propositions logiques. Donner la négation de :

$$\bar{P} \vee \bar{Q}$$
 ; $P \Rightarrow \bar{R}$; $P \wedge \bar{Q}$; $P \wedge (\bar{Q} \vee R)$; $P \vee (Q \wedge R)$

Exercice 3:

Soient A et B deux propositions logiques, démontrer que :

$$A \lor (\bar{A} \land B) \Leftrightarrow A \lor B$$

 $A \land (\bar{A} \lor B) \Leftrightarrow A \land B$

Exercice 4:

soit $f: I \subseteq \mathbb{R} \to \mathbb{R}$ une application. Traduire en terme de quantificateurs les expressions :

* f(x) est constante.

* f(x) est majorée.

* f(x) est périodique.

* f(x) est strictement croissante.

* f(x) ne s'annule jamais.

* f(x) est une fonction impaire.

* f(x) n'a jamais les mêmes valeurs en deux points distincts.

Exercice 5:

Dire si les propositions suivantes sont vraies ou fausses, puis écrire leurs négations :

 $\exists n \in \mathbb{N}, \ 1 < n \leq 2$ $\forall n \in \mathbb{N}, 1 < n < 3$

 $\begin{array}{lll} \forall n \in \mathbb{N}, \ \exists p \in \mathbb{N} / \ n = 2p & , & \forall x \in \mathbb{R}, \ \exists y \in \mathbb{R} \ / \ x > y \\ \exists x \in \mathbb{R}, \ \forall y \in \mathbb{R} \ / \ x > y & , & \forall x \in \mathbb{R}, & x \leq 1 \Longrightarrow \ x^2 \leq 1 \end{array}$

 $\forall x \in \mathbb{R}; x \leq 1 \Longrightarrow x^2 \leq 1$

Exercice 6:

Soient *n*, *m* des entiers relatifs. Démonter que :

$$n$$
 est pair $\Leftrightarrow n + 2m$ est pair

Exercice 7:

Démontrer que :

$$\forall n \in \mathbb{N}^*$$
; $n(n+1)$ est un nombre pair

Exercice 8:

Montrer que :

$$\forall \varepsilon > 0, (|a| \le \varepsilon \Longrightarrow a = 0)$$

Exercice 9:

Montrer que : $\sqrt{2} \notin \mathbb{Q}$

Exercice 10:

Soit $n \in \mathbb{N}$, démontrer que :

$$n^2 est impair \implies n \ est impair$$

Exercice 11:

Soient a et b deux nombres réels positifs; en utilisant le raisonnement par l'absurde démontrer que :

$$\frac{a}{1+b} = \frac{b}{1+a} \Longrightarrow a = b$$