Population genetics from missing or low-depth data

Matteo Fumagalli

Challenges

Challenges

Variable and low depth

High sequencing and mapping errors

Challenges

Variable and low depth

High sequencing and mapping errors

Variable and low depth

Variable and low depth

Minimum depth
Maximum depth
Even depth across samples

• • •

Sequencing and mapping errors

Sequencing and mapping errors

Minimum base quality
Minimum mapping quality
Base quality bias

...

Sequencing and mapping errors

Missing data!

Reference

- 1000 Genomes
- Phased using family structures

new data

partial information

Imputed data

- Probabilistic approach
- The results retains the uncertainty of both the genotype and the haplotypes

Reference

- 1000 Genomes
- Phased using family structures

new data

 Data with known and unknown genotypes

Imputed data

$$p(? = T) = p(? = A) =$$

Reference

haplotype frequencies

new data

 Data with known and unknown genotypes

first haplotype

$$p(? = T) = \frac{0.56}{0.56+0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56+0.03} = 0.05$

second haplotype

$$p(? = T) = \frac{0.21}{0.21+0.2} = 0.51$$

 $p(? = A) = \frac{0.2}{0.21+0.2} = 0.49$

Bayes formula

$$p(H = h|f,G) = P(G|H=h)P(H=h|f)$$

$$\sum_{h'} P(G|H=h')P(H=h'|f)$$

$$P(G|H=h)$$

- 1 if consistent
- 0 otherwise

first haplotype

$$p(? = T) = \frac{0.56}{0.56 + 0.03} = 0.95$$

 $p(? = A) = \frac{0.03}{0.56 + 0.03} = 0.05$

The likelihood for known genotypes

$$G = \{G_1, G_2, \dots, G_N\} \text{ with } G_i = \{G_i^1, G_i^2, \dots, G_i^M\}$$

$$p(G|f) = \prod^{N} = p(G_i|f)$$

$$p(G_i|f) = \sum_{h_1} \sum_{h_2} p(G_i|H = \{h_1, h_2\}) p(H = \{h_1, h_2\}|f)$$

$$p(H = \{h_1, h_2\}|f) = f_{h_1}f_{h_2}$$

BEAGLE algorithm

Merging graphs with known haplotypes for 4 sites

В

Ultra low sequencing

Medium depth vs. low depth Medium depth sequencing Ultra low depth sequencing

Ultra low sequencing

- Depth lower than 1X
- also a by product of captured data

Information retained with ultra low sequencing

Next Generation Sequencing data processing

Next Generation Sequencing data processing

Next Generation Sequencing data processing in the non-model world

Next Generation Sequencing data processing in the <u>non-model</u> world

- No reference panel information (no imputation/validation)
- No reference sequence (lower mappability?)
- No HWE assumption (inbred)
- Hyper/Hypovariability or polyploidy or huge genome
- No money (?)

- ...

Next Generation Sequencing data processing in the <u>non-model</u> world

- No reference sequence (lower mappability?)
- No HWE assumption (inbred)
- Hyper/Hypovariability or polyploidy or huge genome
- No money (?)
- Your inferences will be wrong!

Allele frequencies, etc. etc.

Next Generation Sequencing data processing in the non-model world

Next Generation Sequencing data processing in the non-model world

Genetic distances

Genotype 1	Genotype 2	Distance
aa	aa	0
aa	aA	1
aa	AA	2
аА	aa	1
аА	aA	0
аА	AA	2

Genetic distances

e.g. G(i=A,s=1)=0 and G(j=B,s=1)=1 then d(i,j)=1

Genetic distances from known genotypes

Genotypes are {aa, aA, AA} as {0, 1,2} For individuals i and j and N sites:

Α

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2}\right)$$

$$d(i,j) = 1*1.00 = 1.00/2$$

В

	0	1	2
0	0	1	0
1	0	0	0
2	0	0	0

Expected value

What are the possible outcomes? With what probability?

Expected value

 The expected value of a discrete random variable is the probability-weighted average of all possible values

$$\mathrm{E}[X] = \sum_{i=1}^\infty x_i \, p_i,$$

$$\mathrm{E}[X] = rac{x_1 p_1 + x_2 p_2 + \cdots + x_k p_k}{1} = rac{x_1 p_1 + x_2 p_2 + \cdots + x_k p_k}{p_1 + p_2 + \cdots + p_k}$$

Expected value

 Average value if you perform the same experiment many times

$$\mathrm{E}[X] = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5.$$

Genetic distances from (un)known genotypes

Genotypes are {aa, aA, AA} as {0, 1,2} For individuals i and j and N sites:

Α

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2}\right)$$

$$E[d(i,j)] = 0*0.30 + 1*0.50 + 2*0.10 + 1*0.10 + ... = 0.80/2$$

В

	0	1	2
0	0.30	0.50	0.10
1	0.10	0	0
2	0	0	0

Genetic distances from unknown genotypes

Genotypes are {aa, aA, AA} as {0, 1, 2}

For individuals i and j and N sites:

$$d(i,j) = -\log (1 - \frac{1}{N} \sum_{s=1}^{N} \frac{|g(i,s) - g(j,s)|}{2})$$

Iterate across all possible genotypes

Genotypes probability

$$d(i,j) = -\log\left(1 - \frac{1}{N} \sum_{s=1}^{N} \sum_{g(i,s)=0}^{2} \sum_{g(j,s)=0}^{2} \frac{|g(i,s) - g(j,s)|}{2} *P(g(i,s),g(j,s))\right)$$

Genetic distances from unknown genotypes

Genotype calling (no prior)

Clustering

https://github.com/fgvieira/ngsDist

Vieira et al. BJLS 2016

Population structure

Principal Component Analysis (PCA) is a data reduction method for

- visualization,
- correction for population stratification,
- population history and differentiation.

Covariance matrix

Genotype (0,1,2) Allele frequency
$$cov(i,j) = \frac{1}{(m-1)} \frac{\sum_{s=1}^{m} (G_s^{(i)} - 2\hat{p}_s) (G_s^{(j)} - 2\hat{p}_s)}{\sqrt{\hat{p}_s(1 - \hat{p}_s)}}$$

Covariance matrix

Genotype (0,1,2) Allele frequency
$$cov(i,j) = \frac{1}{(m-1)} \frac{\sum_{s=1}^{m} (G_s^{(i)} - 2\hat{p}_s)(G_s^{(j)} - 2\hat{p}_s)}{\sqrt{\hat{p}_s(1-\hat{p}_s)}}$$

Iterate across all genotypes

Weight by their probability

$$co\hat{v}_{(i,j)} := \frac{1}{(\sum_{s=1}^{m} P_{var,s}) - 1} \frac{\sum_{s=1}^{m} (\sum_{G_{s}^{(i)}=0}^{2} \sum_{G_{s}^{(j)}=0}^{2} (G_{s}^{(i)} - 2\hat{p}_{s})(G_{s}^{(j)} - 2\hat{p}_{s})P(G_{s}^{(i)}|X_{s}^{(i)})P(G_{s}^{(j)}|X_{s}^{(j)})P(G_{s}^{(j$$

Probability of the site being variable (to avoid SNP calling)

Site Frequency Spectrum (SFS)

Figure 2

Effect of errors on SFS

Effect of errors on SFS

Using an ad hoc fixed cutoff for SNP calling...

can never produce unbiased estimates.

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded?

If folded?

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

$\mid p_0 \mid$	ρ_1	p_2	p_3	•••	p_{2k}

If folded, *k+1* entries

ρ_0	p_1	p_2	•••	p_{ν}
1 0	<i>'</i> - 1	1- 2		I K

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

$ p_0 $	$ p_1 $	p_2	p_3	•••	p_{2k}

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)
AA AA AG AA AG AA AA AA

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)
If genotypes are unknown? Counting is not possible?

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

• With k diploid individuals, how many possible sample allele frequencies can I observe?

If unfolded, 2k+1 entries

e.g. A is ancestral, G is derived (alternate)

Sample allele frequency probabilities

Sample allele frequency probabilities

Sample allele frequency probabilities

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Estimating allele frequency

$$\hat{f} =$$

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Estimating allele frequency

$$\hat{f} = \sum_{i=0}^{2k} \left(\frac{i}{2k}\right) p(S=i)$$

With 6 chromosomes (3 diploids)

p_0 =0.10	p₁=0.15	$p_2 = 0.50$	$p_3 = 0.15$	<i>p</i> ₄=0.05	p ₅ =0.05	p_{6} =0.00
1 0 -	<i> </i> - <u>1</u>	1-2	1-3	1-4	<i>1</i> -5	

SNP calling

$$p_{\text{var}} = ?$$

$$p_{\rm var} > t$$

with t being 0.95, 0.99, 0.999 and so on.

$$p_0 = 0.10$$
 $p_1 = 0.15$ $p_2 = 0.50$ $p_3 = 0.15$ $p_4 = 0.05$ $p_5 = 0.05$ $p_6 = 0.00$

SNP calling

$$p_{\text{var}} = 1 - p(S = 0) - p(S = 2k)$$
 = 0.90 $p_{\text{var}} > t$

with t being 0.95, 0.99, 0.999 and so on.

Nr of segregating sites

Site 1 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$ Site 2 $p(S_m=0)$ $p(S_m=2k)$ $p(S_m=3)$ $p(S_m=1)$ $p(S_m=2)$ Site 3 $p(S_m=2k)$ $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ Site M $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

Nr of segregating sites

Nr of segregating sites

Site 1

 $p(S_m=0)$

 $p(S_m=0)$

 $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

Site 2

 $p(S_m=1)$

 $p(S_m=1)$

 $p(S_m=3)$ $p(S_m=2)$

 $p(S_m=2k)$

Site 3

 $p(S_m=1)$ $p(S_m=0)$

 $p(S_m=2)$ $p(S_m=3)$ $p(S_m=2k)$

Site M

 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$

 $p(S_m=3)$

 $p(S_m=2k)$

$$E[S] = \sum_{m=1}^{M} p_{\text{var}}^{(m)} = \sum_{m=1}^{M} (1 - p(S_m = 0) - p(S_m = 2k))$$

Nucleotide diversity

Site 1

 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 2

 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 3

 $p(S_m=0)$ $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

• • •

Site M

 $p(S_m=0) \quad p(S_m=1) \quad p(S_m=2) \quad p(S_m=3) \quad \dots \qquad p(S_m=2k)$

$$D = 2f(1-f)$$
$$E[D] =$$

Nucleotide diversity

Site 1

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 2

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

Site 3

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

• • •

Site M

$$p(S_m=0)$$
 $p(S_m=1)$ $p(S_m=2)$ $p(S_m=3)$... $p(S_m=2k)$

$$E[D] = \sum_{m=1}^{M} \sum_{j=0}^{2k} 2 \left(\frac{i}{2k} \right) \left(\frac{2k-i}{2k} \right) p(S_m = i)$$

Maximum Likelihood Estimation (MLE) of the **Site Frequency Spectrum**

Parameterize the SFS, with k individuals

$$\overline{P} = (p_0, p_1, ... p_{2k})$$

If unfolded, 2k+1 entries

n	n	n.	n.		n
$ P_0 $	P_1	P_2	P3	•••	$ P_{2k} $

If folded, 2k entries

p_0 p_1	p_2		p_k
-------------	-------	--	-------

ML estimation of the SFS

Summing across all unknown genotypes and multiplying the likelihood across sites.

Likelihood function:

$$L(P) = \prod_{v} \sum_{j=0}^{2k} p_{j} \left[\sum_{G_{k}^{(v)}} \sum_{G_{k}^{(v)}} c(j, G^{(v)}) \prod_{d=0}^{k} p(X_{d}^{(v)} \mid G_{k}^{(v)}) \right]$$

ML estimation of the SFS

Simulated 30Mb Error rate of 0.3% Mean depth of 5X

Mean depth of 1X:

Applications

• • •

- Model and non-model species
- Plants
- Ancient genomes
- ...