Introducción a Regresión Múltiple Métodos cuantitativos aplicados a estudios urbanos II - MEU UTDT

Ricardo Pasquini - rpasquini@utdt.edu

June 26, 2025

Plan

- Inclusión de variables categóricas como explicativas
- Múltiples categorías.
- Interpretando coeficientes en regresión múltiple
- Omisión de variable relevante
- Inclusión de variable irrelevante y colinealidad

- Las variables categóricas son variables que tienen un número limitado de valores posibles.
- Ejemplos: género, país, ciudad, etc.
- En algunos casos una condición se cumple o no. Ejemplo: propiedad posee cochera o no la posee.
- ► En otros casos pueden existir múltiples categorías. Ejemplo: tipo de propiedad (casa, departamento, etc.).
- ► Ejm: barrio de origen (Barrio Almagro, Barrio Belgrano, Barrio Caballito, etc.).

- En general, las variables categóricas se pueden incluir en el modelo como variables binarias, tambien llamadas dummy variables.
- ▶ Una variable binaria es una variable que solo puede tomar dos valores: 0 o 1.
- ▶ 0 representa la ausencia de la característica y 1 representa la presencia de la característica.
- ► Ejemplo: *propiedad posee cochera* = 1 si la propiedad posee cochera y 0 si no la posee.

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \varepsilon_i$$

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \varepsilon_i$$

Estimo 2 modelos

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \varepsilon_i$$
 if $i \in \mathsf{CABA}$
 $Y_i = \beta_2 + \beta_3 X_{1,i} + \varepsilon_i$ if $i \in \mathsf{Provincia}$

Inclusión de variable binaria

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 D_i + \varepsilon_i$$

where

$$D_i = 1$$
 if $i \in \mathsf{CABA}$

$$D_i = 0$$
 if $i \in Provincia$

Múltiples categorías

- Qué pasaría si tengo múltiples (k)barrios?
- ► Ejemplo: *barrio de origen* (Barrio Almagro, Barrio Belgrano, Barrio Caballito, etc.).
- En este caso, es posible incluir una variable binaria para cada barrio menos uno (k-1). La k-ésima categoria queda capturada en β_0 como referencia.
- Ejemplo:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 D_{1,i} + \dots + \beta_{k-1} D_{k-1,i} + \varepsilon_i$$

where

 $D_{1,i}=1$ if $i\in \mathsf{Barrio}$ Almagro and 0 de otro modo

 $D_{2,i} = 1$ if $i \in Barrio Belgrano and 0 de otro modo$

:

 $D_{k-1,i} = 1$ if $i \in Villa Ortuzar and 0 de otro modo$

Interpretando coeficientes en regresión múltiple

- En regresión múltiple, los coeficientes se interpretan como el cambio en la variable dependiente por unidad de cambio en la variable explicativa, manteniendo las otras variables explicativas constantes.
- ► Ejemplo Modelo 1:

Precio_i =
$$\beta_0 + \beta_1$$
Habitaciones_{1,i} + ε_i

- \triangleright β_1 indica el incremento en el precio (\$) por cada habitación adicional.
- ► Modelo 2:

Precio_i =
$$\beta_0 + \beta_1$$
Habitaciones_{1,i} + β_2 Baños_{1,i} + ε_i

Consecuencias de la mala especificación de un modelo Enfoque tradicional

Consecuencias de Mala Especificación del Modelo					
		Modelo Verdadero			
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$		
	$\hat{Y} = b_1 + b_2 X_2$				
Modelo Estimad	$\hat{Y} = b_1 + b_2 X_2 + b_3 X_3$				

Consecuencias de la mala especificación de un modelo Enfoque tradicional

Consecuencias de Mala Especificación del Modelo					
		Modelo Verdadero			
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$		
0	$\hat{Y} = b_1 + b_2 X_2$	Especificación correcta			
Modelo Estimado	$\hat{Y} = b_1 + b_2 X_2 + b_3 X_3$		Especificación correcta		

Consecuencias de la mala especificación de un modelo Enfoque tradicional

Consecuencias de Mala Especificación del Modelo				
		Modelo Verdadero		
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$	
Modelo Estimado	$\hat{Y} = b_1 + b_2 X_2$	Especificación correcta	Los coeficientes son sesgados. Los errores estándar invalidos.	
	$\hat{Y} = b_1 + b_2 X_2 + b_3 X_3$		Especificación correcta	

Ejemplo efecto constructibilidad

Ejemplo efecto constructibilidad

- \triangleright $\hat{\beta}_1$ resulta sesgado.
- ► Tendriamos que estimar el modelo:

Valor Suelo_i =
$$\beta_0 + \beta_1 FOT_{1,i} + \beta_2 Distancia CBD_{1,i} + \varepsilon_i$$

Consecuencias de la mala especificación de un modelo Omisión de variable relevante

► Si el modelo verdadero es:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \beta_2 X_{2,i} + \varepsilon_i$$

Pero estimamos:

$$Y_i = b_0 + b_1 X_{1,i} + \varepsilon_i$$

La teoría indica que:

$$E(\hat{b}_1) = \beta_1 + \underbrace{\beta_2 \frac{\mathsf{Cov}(X_1, X_2)}{\mathsf{Var}(X_1)}}_{\mathsf{Sespo}}$$

Consecuencias de la mala especificación de un modelo Omisión de Variable Relevante

Omisión de Variable Relevante

Figure: Simulación url: https://simuecon.com/es/ch2_regresion_multiple/2_omitted_variable_bias.html

Inclusión de variable irrelevante

Consecuencias de Mala Especificación del Modelo				
		Modelo Verdadero		
		$Y = \beta_1 + \beta_2 X_2 + u$	$Y = \beta_1 + \beta_2 X_2 + \beta_3 X_3 + u$	
Modelo Estimado	$\hat{Y} = b_1 + b_2 X_2$	Especificación correcta	Los coeficientes son sesgados. Los errores estándar invalidos.	
	$\hat{Y} = b_1 + b_2 X_2 + b_3 X_3$	Los coeficientes son insesgados (en general), Pero ineficiente. Los errores estándar son válidos (en general)	Especificación correcta	

EjemploInclusión de variable irrelevante

Inclusión de variable irrelevante

Si el modelo verdadero es:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + \varepsilon_i$$

Pero estimamos:

$$Y_i = b_0 + b_1 X_{1,i} + b_2 X_{2,i} + \varepsilon_i$$

- \triangleright \hat{b}_1 es insesgado.
- Esto es asi porque el modelo estimado es el correcto cuando $\beta_2 = 0!$:

$$Y_i = \beta_0 + \beta_1 X_{1,i} + 0 \cdot X_{2,i} + \varepsilon_i$$

Inclusión de variable irrelevante

Sin embargo, existe una pérdida de eficiencia. Esto puede verse en la varianza del estimador en regresión múltiple:

$$\mathsf{Var}(\hat{b}_1) = rac{\sigma^2}{n \cdot \mathsf{Var}(X_1)} \cdot rac{1}{1 - \mathsf{Corr}(X_1, X_2)^2}$$

- ► La correlación entre X₁ y X₂ es la que determina la pérdida de eficiencia.
- ► Intuitivamente, si X₁ y X₂ tienen alguna correlación, al modelo le cuesta más distinguir el efecto de X₁ sobre Y.

Colinealidad

- La colinealidad ocurre cuando dos o más variables explicativas están altamente correlacionadas.
- ► Ejemplos:
 - ► X₁ mide distancia al centro político de la ciudad y X₂ mide distancia al centro económico de la ciudad.
 - X₁ y X₂ son dos preguntas que buscan medir el mismo concepto: Satisfacción con la vida y satisfacción con el trabajo.
- La consecuencia se puede observar en la formula de la varianza ya presentada:

$$\mathsf{Var}(\hat{b}_1) = rac{\sigma^2}{n \cdot \mathsf{Var}(X_1)} \cdot rac{1}{1 - \mathsf{Corr}(X_1, X_2)^2}$$

▶ Si Corr $(X_1, X_2) \rightarrow 1$, entonces Var $(\hat{b}_1) \rightarrow \infty$.

