11 Forward and Futures

Forward Interest rates

The forward interest rate between time t-1 and t satisfies:

$$(1 + r_t)^t = (1 + r_{t-1})^{t-1} (1 + f_t)$$

$$f_t = \frac{B_{t-1}}{B_t} - 1 = \frac{(1 + r_t)^t}{(1 + r_{t-1})^{t-1}} - 1$$

Forward price

$$F_T = e^{(r-y)T} S_0$$

Swaps

The swap rate is a weighted average of forward rates:

$$r_s = \frac{\sum_{t=1}^T B_t f_t}{\sum_{u=1}^T B_u} = \sum_{t=1}^T w_t f_t$$
, with the weights $w_t = \frac{B_t}{\sum_{u=1}^T B_u}$

12 Options, Part 1

Net option payoff

The break-even point is given by S_T at which Net Payoff is zero:

$$Netpayof f = max[S_T - K, 0] - C(1+r)^T$$

Option strategies

- Protective Put: Buy stock + Buy a put
- Bull Call Spread: Buy a Call K1 + Write a Call K2, K1 < K2
- Straddle: Buy a Call at *K* + Buy a Put at *K*

Corporate securities as options

- Equity (*E*): A call option on the firm's assets (*A*) with the exercise price equal to its bond's redemption value.
- Debt (*D*): A portfolio combining the firm's assets (*A*) and a short position in the call with the exercise price equal to its bond's face value (*F*):

$$A = D + E \Longrightarrow D = A - E$$

 $E \equiv max(0, A - F)$

$$D = A - E = A - max[0, A - F]$$

Put-Call parity for European options

$$C + B \cdot K = P + S$$

Binominal option pricing model

$$S_0 \bullet S$$

Bond

Option at Expiration

Replicating portfolio (call option) $\begin{pmatrix} S_u & (1+r) \\ S_d & (1+r) \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} max(K-S_u, 0) \\ max(K-S_d, 0) \end{pmatrix}$ solve system to form a portfolio of stock

solve system to form a portfolio of stock and bond that replicates the call's payoff: *a* shares of the stock; *b* dollars in the riskless bond

Binominal option pricing model with multiple periods

Compute the time-0 value working backwards: first C_u and C_d then C_0 . In summary:

- Replication strategy gives payoffs identical to those of the call.
- Initial cost of the replication strategy must equal the call price

13 Options, Part 2

Binomial model: risk-neutral pricing

Option at Expiration

Solve by replication δ shares of the stock, b dollars of riskless bond

$$\delta u S_0 + b(1+r) = C_u$$

$$\delta d S_0 + b(1+r) = C_d$$

Solution:
$$\delta = \frac{C_u - C_d}{(u - d)S_0}$$
, $b = \frac{1}{1+r} \frac{uC_d - dC)u}{u - d}$

Then:
$$C_0 = \delta S_0 + b$$

 $C_0 = \frac{C_u - C_d}{(u - d)} \frac{1}{1 + r} \frac{u C_d - dC)u}{u - d}$

Risk neutral probability

$$q_u = \frac{(1+r)-d}{u-d}, q_d = \frac{u-(1+r)}{u-d}$$
 Then

 $C_0 = \frac{q_u C_u + q_d C_d}{1+r} = \frac{E^Q[C_T]}{1+r}$ where $E^Q[\cdot]$ is the expectation under probability Q = (1, 1-q), which is called the risk-neutral probability

State prices and risk-neutral probabilities

$$\Phi_u = \frac{q}{1+r} \ , \Phi_d = \frac{1-q}{1+r}$$

$$\Phi_{uu} = \frac{q^2}{(1+r)^2}$$
 , $\Phi_{ud} = \Phi_{du} = \frac{q(1-q)}{(1+r)^2}$,

 $\Phi_{dd} = \frac{(1-q)^2}{(1+r)^2}$ With state prices, can price any state-contingent payoff as a portfolio of state-contingent claims: mathematically equivalent to the risk-neutral valuation formula.

Implementing binominal model

- As we reduce the length of the time step, holding the maturity fixed, the binomial distribution of log returns converges to Normal distribution.
- Key model parameters *u*, and *d* need to be chosen to reflect the distribution of the stock return

Once choice is: $u = exp(\sigma \frac{T}{n})$, $d = \frac{1}{u}$, $p = \frac{1}{2} + \frac{1}{2} \frac{u}{\sigma} \sqrt{\frac{T}{n}}$

Black-Scholes-Merton formula

$$C_0 = S_0 N(x) - K e^{-rT} N(x - \sigma \sqrt{T})$$
$$x = \frac{\ln(\frac{S_0}{K e^{-rT}})}{\sigma \sqrt{T}} + \frac{1}{2} \sigma \sqrt{T}$$

The call is equivalent to a levered long position in the stock; $S_0N(x)$ is the amount invested in the stock; $Ke^{-rT}N(x-\sigma\sqrt(T))$ is the dollar amount borrowed;