Hash Maps

Support Video

By the end of this video you will be able to...

- Explain why modular arithmetic is useful for hash functions
- Compute the hash code of integers

Key	Function	Hash Code
3	3 mod 5	3
11	11 mod 5	1

K mod N is a common hash function

Key	Function	Hash Code
3	3 mod 5	3
11	11 mod 5	1

K mod N is a common hash function

Why?

"The remainder when we divide K by N "

"The remainder when we divide K by N"

Integer between 0 and N-1

"The remainder when we divide K by N"

Integer between 0 and N-1

Perfect for storing in an array of size N!

"The remainder when we divide K by N"

Gives us algorithm for computing

Key	Function	Hash Code
3	3 mod 5	3
11	(11 mod 5)	1
11 = 2 * 5 + 1		

Key	Function	Hash Code
3	3 mod 5	3
11	11 mod 5	1
11 = 2 * 5 + 1		

Key	Function	Hash Code
3	3 mod 5	3
11	11 mod 5	1
3 = 0 * 5 + 3		

Key	Function	Hash Code
3	3 mod 5	3
11	7 11 mod 5	1
3 = 0 * 5 + 3		

Collisions?

Collisions?

Key	Function	Hash Code
3	3 mod 5	3
13	13 mod 5	3

Many different integers have the same remainder mod 5!