DREHBUCH RENDERING

Computergrafik.Online

Betreuer: Prof. Jirka Dell'Oro-Friedl 27.06.2018 | Sommersemester 2018

Autor: Berdan Der

1.1 Einleitung	1
1.2 Geometrie und Primitive	2
1.3 Stufen der Rendering Pipeline	3
1.3.1 Modell Transformation	4
1.3.2 Viewing Transformation	5
1.3.3 Per-Vertex Transformation	6
1.3.4 Projektions Transformation	7
1.3.5 Culling und Clipping	8
1.3.6 Rasterisierung	9
1.3.7 Texturirung	10
1.3.8 Blending	11
1.4 Echtzeit Rendering	12
1.5 Realistisches Rendern	
1.5.1 Raytracing	13
1.5.2 Radiosity	14
1.6 Volumengrafik	15

1.1 Einleitung

Sprechertext	Screentext / Notizen	Regieanweisungen
120101 Rendern heißt zu Deutsch Bildsynthese und bezeichnet den Vorgang aus Rohdaten ein Bild zu erzeugen. 120102 Dabei wird das 3D-Objekt in ein rasterisiertes Bild umgewandelt und zum Schluss auf einem Ausgabegerät dargestellt.	120101 - Rendern (dt. Bildsynthese) - Aus Rohdaten wird ein Bild erzeugt	Es wird zu Anfang eine Szene gebaut, die daraufhin gerendert wird. Das alles geschieht während dem Sprechertext als Timelaps
120103 Die Aufgaben eines Renderes sind es: die Flächenposition, deren Ausrichtung, die Lichtsituation und die Farbe zu berechenen bzw. zu ermitteln	120103 Aufgaben Renderers: - Flächenposition, - Ausrichtung, - Lichtsituation, - Farbe ermitteln/berechnen	

1.2 Geometrie und Primitive

Sprechertext	Screentext / Notizen	Regieanweisungen
120201	120201	120201
Die Rendering-Pipeline arbeitet mit Geometrien, die aus einer Vielzahl von Primitiven bestehen können.	- Rendering-Pipeline arbeitet mit Geometrien	Es werden verschiedene Geometrien eingeblendet 120202
120202		Aus diesen Polygonen wird ein kom-
Aus diesen einfachen Formen lassen sich komlexere Objekte darstellen.		plexeres Objekt gebaut. Dieses Objekt bekommt nach und nach mehr Poly- gone
120203		120203
Punkte selbst werden als homogene Koordinate dargestllt.		Es wird eine homogene Koordinate eingblendet.
120204 Diese enthält Koordinaten zur Rotation, Skalierung, Scherung und Verschiebung.		Daraufhin werden Teile der homo- genen Koordinate rot markiert und es wird gezeigt, wofür sie zuständig sind.
120205		
Des Weiteren besitzt sie einen Projektions- und einen homogenen Teil.		
120206		
Verändern Sie mittels der Leiste die Anzahl der Polygone und sehen Sie, wie sich das Objekt verändert.		

1.3 Stufen der Rendering Pipeline

Sprechertext	Screentext / Notizen	Regieanweisungen
120301	Rendering-Pipeline-	Die Schritte der Pipeline werden
Die Rendering-Pipeline besteht aus mehreren Schritten.	Schritte:	nach und nach aufgelistet.
120202	1. Modell- Transformation.	
120302 Zuerst die Modell-Transformation.	2. Viewing-	
Zuerst die Woden-Transformation.	Transformation	
Dann die Viewing-Transformation, auf welche die Per-Ver-	3. Per-Vertex-	
tex-Tarnsformation folgt.	Tarnsformation	
	4. Projektions	
Als vierter Schritt wird die Projektions Transformation durchge-	Transformation	
führt.	5. Texturierung	
Den Schluss macht die Texturierung und das Blending	6. Blending	
Den semuss macht die Texturierung und das Biending		

- 1. Modell-Transformation
- 1. Modell-Transformation
- 2. Viewing-Transformation
- 1. Modell-Transformation
- 2. Viewing-Transformation
- 3. Per-Vertex-Tarnsformation
- 1. Modell-Transformation
- 2. Viewing-Transformation
- 3. Per-Vertex-Tarnsformation
- 4. Projektions Transformation
- 1. Modell-Transformation
- 2. Viewing-Transformation
- 3. Per-Vertex-Tarnsformation
- 4. Projektions Transformation
- 5. Texturierung

- 1. Modell-Transformation
- 2. Viewing-Transformation
- 3. Per-Vertex-Tarnsformation
- 4. Projektions Transformation
- 5. Texturierung
- 6. Blending

1.3.1 Modell Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
12030101 3D-Szenen bestehen meist aus mehreren Objekten, die ein lokales Koordinaten besitzen. 12030102 Dies ermöglicht die enfache Handhabung einfacher Transformationen. 12030103 Jedoch erfolgen alle weiteren Schritte der Rendering-Pipeline in einem globalen Koordinatensystem. Deswegen müssen alle Objekte in diese überführt werden. 12030104 Wechseln Sie zwischen den Koordinatensystemen mittels der Radio Buttons und führen sie Transformationen durch	12030101 Objekte besitzen lokale Koordinatensysteme 12030103 Objekte werden in globales Koordinatensystem überführt	12030101 Es werden mehrere Objekte eingeblendet. Diese erhalten dann ein lokales Koordiantensystem (KS). 12030102 Die Objekte werden daraufhin an diesem KS einfach transformiert. 12030103 Es erscheint ein globales KS. Die Objekte werden nun in dieses überführt (Die Achsen des lok. KS wandern auf die des globalen)

1.3.2 Viewing Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
12030201 Um am Ende ein Bild ausgeben zu können wird in der Szene eine Kamera benötigt.		12030201 Es wird eine Szene eingeblendet.
12030202 Die Kamera wird zunächst als ein Objekt in das globale Koordinatensystem gesetzt. Daurch enstehen aber komplexe Berechnungen in der Projektionsmatrix bei der Projektionstransformationen.		12030202 Darauf folgt eine Kamera, die in der Szene platziert wird.
12030203 Um diesen Komplikationen zu entgehen, setzt man die Kamera in den Ursprung der Szene. Dies vereinfacht die Matrize und spätere Berechnungen.	12030203 Kamera wird in den Urspung des globalen Koordinatensystems gesetzt	12030203 Die Kamera wird in den Ursprund des globalen KS gesetzt.

1.3.3 Per-Vertex Transformation

Sprechertext	Screentext / Notizen	Regieanweisungen
12030301 Bei der Per-Vertex-Transformation wir zunächst eine Lichtquelle in das Koordinatensystem gesetzt. 12030302	12030302	12030301 Es erscheint ein Würfel in der Szene. Diesem folgt eine Lichtquelle.
Daraufhin wird die Beleuchtung, anhand der Winkel des einfallenden Lichtes und der Oberflächenbeschaffenheit der Objekte, berechnet. 12030303 Bei der Rasterung werden später die Farbwerte des Objektes berechnet.	Beleuchtung wird an- hand des einfallenden Lichts und der Ober- flächenbeschaffenheit berechnet	von der Lichtquelle aus werden Strahlen an den Würfel geschossen Darauf hin erscheint der Würfel in korrekter Beleuchtung.

1.3.4 Projektions Transformation

Interaktion:

Sprechertext	Screentext / Notizen	Regieanweisungen
12030401	12030401	12030401
Der View Space, also der Bereich, den die Kamera einfängt, hat	am Anfang: View	Es wird ein Objekt in der Szene
immernoch die Form einer abgeschnittenen Pyramide.	Space = abgeschnittene	eingeblendet.
7	Pyramide	Daraufhin wird der View Space
12030402	,	eingeblendet.
Für die nächsten Schritte sollte der View Space jedoch die Form		
eines Quaders annehemen.		12030403
		Die Kamera wird ins Unendliche
12030403	12030403	verschoben und man sieht, wie
Dies erreicht man dadurch, dass man die Kamera ins Unendliche	Kamera wird ins Un-	sich der View Space ändert.
verschiebt.	endliche verschoben:	
	View Space = Quader	Am Ende ist der View Space einem
12030404		Quader ähnlich.
Verändern Sie den View Space durch das Ziehen an der Kamera		
und schauen Sie, wie sich das Bild verändert.		

1.3.5 Culling und Clipping

Sprechertext	Screentext / Notizen	Regieanweisungen
12030501 Beim Clipping und Culling geht es darum, Elemente, die vom View Space nicht mehr eingefangen werden könne aus der Szene zu entfernen. 12030502 Durch das Backface-Culling werden die Polygone aus der Szene entfernt, die vom Betrachter abgewandt sind. 12030503 Eine mögliche Vorangehensweise wäre es die Winkel zwischen den Normalen der Flächen und einem Vektor der Kamera zu berechnen.	12030502 Culling: Polygone ent- fernen, die der Betrach- ter ncht sehen kann Winkel zwischen Normale und Betrach- ter-Vektor >90°	12030501 Zu Anfang ist ein Sichtfeld und ein Objekt zu sehen. Daraufhin wird alles außerhalb des Sichtfelds weggeschnitten. 12030502/12030503/ 12030504 Es erscheint ein Würfel, der von einem Betrachter gefolgt wird. Daraufhin werden die Normalen der Flächen dargestellt und die Winkel zum Betrachteer gemessen. Flächen, bei denen der Winkel >90°
12030504 Ist der Winkel zwischen der Normale und dem gebildeten Vektor größer als 90° dann wird das Polygon aus der Szene entfernt. 12030505 Beim Clipping werden Teile aus der Szene ermittelt, die im späteren Bild nicht zu sehen sind und nicht mehr im View Space liegen. 12030506 Dabei wird für jede Kante des Sichtfensters einzeln getestet, ob sich der Eckpunkt inner- oder außerhalb der Kante des Sichtfensters befinden. Punkte innerhalb der Grenze werden in ihrer Geometrie belassen, Punkte außerhalb entfernt. Dieses Verfahren wird auch Sutherland Hodgeman Clipping genannt.	12030505 Clipping: Polygone ent- fernen, die außerhalb des SIchtfensters liegen	sind werden verworfen. 12030505/ 12030506 Ein Sichtfenster wird eingblendet. Daraufhin sieht man ein Objekt. Jetzt wird bei jedem Punkt getestet, ob diese inner- oder außerhalb des Fensters liegt. An Schnittpnkten werden neue Punkte gebildet. Alle Flächen außerhalb werden verworfen und an den neuen Punkten entstehen neue Kanten.

1.3.6 Rasterisierung

Sprechertext	Screentext / Notizen	Regieanweisungen
12030601 Mit der Rasterung wir die Umwandlung der Geometrien in Fragmente bezeichnet. 12030602 Die Primitiven die gerastert werden, bilden darauf Flächen. Fragmente selbst sind noch keine fertigen Pixel, sondern zeigen nur deren spätere Position.	12030601 Rasterung = Um- wandlung Gemetrie in Fragmente 12030605 berechnet Farbwerte für Pixel die im Sicht- fenster liegen	Es werden verschiedene Geometrien aufgezeigt , die dan gerastert werden und Fragmente bilden.
12030603 Des Weiteren wird bei übereinanderliegenden Polygonen ermittelt, welche näher am Betrachter liegen. Hierfür wird ein Z-Buffer benötigt.		
12030604 Des weiteren könne Fragmente auch eingefärbt/beleuchtet werden. Dies hängt immer von der Beleuchtung, Textur und anderen Materialeigenschaften zusammen.		
12030605 Stark vereinfacht kann man sagen, dass bei der Rasterisierung Farbwerte für jeden Pixel eines Primitivs, welcher innerhalb des Sichtfensters liegt berechnet wird.		

1.3.7 Texturirung

Sprechertext	Screentext / Notizen	Regieanweisungen
12030701 Jeder Eckpunkt (Vertex) des Objekts kann neben seiner 3D- Koordinaten im Raum zusätztlich auch noch mit einer 2D-Texturkoordinate versehen werden.	12030701 3D-Koordinaten werden 2D-Texturkoordinaten zugewiesen	12030701 Dem Objekt werden Texturkoordinaten zugewiesen.
12030702 Durch die Texturkoordinaten wird definiert, wie eine Textur auf dem Objekt abgebildet werden soll.	12030702 Textur wird je nach Texturkoordinaten auf dem Objekt abgebildet	12030702 Das Objekt wird anhand der Koordinaten mit der Textur gefüllt.

1.3.8 Blending

Sprechertext	Screentext / Notizen	Regieanweisungen
12030801	12030801	12030801
Beim Blending wird bei übereinanderliegenden Polygonen ermit-	Ermittlung durch	Es erscheint ein Bild, bei welchem
telt, welche sichtbar sind und näher am Betrachter liegen.	Z-Buffer, welche Polygone für Betrachter	sich Objekte überschneiden
12030802	sichtbar sind und wel-	
Dafür wird eim Z-Buffer verwendet. Dieser enthält	che näher an ihm sind	
Informationen über die Entfernung der Objektflächen von der		
Kamera und ermittelt, welche Polygone verdeckt sind und welche		
dargestellt werden müssen		
		12030803-12030805
12030803		Es wird ein Raster dargestellt.
Zu erst werden alle Polygone der Objekte gerastert.		Alle Objekte werden auf dem Raster abgebildet.
12030804		
Danach wird ermittelt welche Fragmente näher am Betrachter		Falls der aktuell gerasterte Punkt
liegen und ob sie Fragmente anderer Objekte verdecken.		näher am Betrachter liegt als der
		davor gerasterte Punkt, wird dieser
12030805		durch das aktuelle ersetzt.
Falls der aktuell gerasterte Punkt des Polygons näher am Betrach-		
ter liegt als der Punkt des davor gerasterten Punktes, wird dieser		Dabei wird die Distanz zum Be-
durch das aktuelle Polygon ersetzt.		trachter eingetragen.
		Anhand dieser weiß an, welche
		Objekte wie überschnitten und
		überlagert sind und wie die Objekte
		dartgestellt werden müssen.

5	5	5	5	5	5	5	00
5	5	5	5	5	5	∞	00
5	5	5	5	5	∞	00	00
5	5	5	5	∞	00	∞	00
4	5	5	7	∞	00	00	00
3	4	5	6	7	∞	00	00
2	3	4	5	6	7	00	00
∞	∞	∞	∞	∞	00	∞	∞

1.4 Echtzeit Rendering

Sprechertext	Screentext / Notizen	Regieanweisungen
120401		120401
Bei den Arten des Renderns wird zwischen realistischem und Echtzeit unterschieden.		Es wird ein Bild gezeigt, welches realistisch gerendert wurde und eins welches auf Echtzeit basiert (Video)
120402	120402	, ,
Hierbei wird eine Reihe von Bildern mit hoher Bildfrequenz	Reihe von Bildern mit	120402
berechnet und die Szene durch den Anwender interaktiv verändert.	hoher Bildfrequenz be- rechnet	Daraufhin wird ein Greifarm gezeigt, der mittels Pfeiltasten bewegt wird
120403	kann von Anwender	
Die Anwendung liegt z.B. bei Spielen oder VR-Anwendungen.	interaktiv verändert werden	
120404		
Klicken Sie auf ein Arm-Segment des Greifarms und bewegen Sie ihn mittels der Pfeiltasten.		

1.5.1 Raytracing

Sprechertext	Screentext / Notizen	Regieanweisungen
12050101		12050101
Beim realistischen Rendern liegt das Hauptaugenmerk auf der		Es wird ein Bild von eien Szene ge-
Korrektheit der Darstellung des gerenderten Bildes.		zeigt, welches den Raytracing-Al-
Die Bildqualität und die physikalische Korrektheit eine besondere		gorithmus verwendet.
Rolle, wobe man höhere Rechenzeiten in Kauf nehmen muss.		
		12050103
12050102	12050102	Es wird ein Auge eingeblendet
Raytracing – zu Deutsch "Strahlen verfolgen" – ist in erster Linie	Raytracing	
ein Algorithmus zu Verdeckungsberechnung.	(dt. Strahlen verfolgen")	12050104
		Es erscheint ein Raster.
12050103	12050103	Es schießen Strahlen aus dem
Diese basiert auf dem Aussenden von Strahlen vom Betrachter-	Aussendung von Strah-	Auge durch jedes Rasterelement.
blickpunkt aus.	len vom Betrachter aus	Daraufhin wird geprüft, ob der
12050104		Strahl ein Objekt trifft.
Da das Bild an einem Monitor ausgegeben wird, der über ein	12050104	
Raster verfügt, betrachtet man für jedes Rasterelement nur einen	Für jedes Rasterelement	
Strahl. Dabei Strahl prüft man, ob sich ein Objekt mit dem Strahl	ein Strahl	
schneidet.		
12050105	schneidet Strahl ein	
Stark vereinfacht kann man sagen, das für jedes Element des	Objekt?	
Sichtfenster ein Strahl gesendet wird un daraus Schnittpunkte mit		
der Geometrie und deren Farbbeiträge berechnet werden.		
12050106		
Die Vorteil bei dieser Vorangehensweise ist die realistische Simu-		
lation des Lichtes. Jedoch muss man mit Abzügen in der Perfor-		
mance rechnen.		

1.5.2 Radiosity

Interaktion:

Sprechertext	Screentext / Notizen	Regieanweisungen
12050201	12050201	12050201
Radiosity beschreibt den Vorgang der Ausbreitung von Licht	Radiosity = Vorgang der	Es wird ein Bild gezeigt, welches mit
in einer diffus reflektierenden Umgebung.	Lichtausbreitung	dem Radiosity-Algorithmus gerendert wurde.
12050202	12050202	
Hierbei beeinflussen sich die Flächen gegenseitig, da sie ein	Objekte reflektieren	12050202
Teil des Lichtes reflektiert. Somit werden Objekte zu weiteren	Licht und werden zu	Es erscheint ein Szene mit Lichtquelle.
Lichtquellen. Dadurch erhalten auch Flächen, die nicht direkt	auch zu Lichtquellen	Diese strahlt Strahlen aus.
beleuchtet werden, eine bestimmte Helligkeit.		Objekte die von den Strahlen getrof-
12050202	12050203	fen werden reflektieren und fangen
12050203 Fin Ventail geograpih on Paytus sing ist, does die Liebtwenteilung		an selbst zu einer Lichtquelle zweiter
Ein Vorteil gegenüber Raytracing ist, dass die Lichtverteilung blickpunktunabhängig berechnet wird.	blickpunktunabhängig	Ordung zu werden.
12050204		
Radiosity eignet sich besonders zum Rendern statischer oder		
weniger animierter Szenen in Echtzeit, sofern eine zeitaufwändige Berechnung vortrathen ist		
dige Berechnung vertretbar ist.		
12050204		
Wählen Sie mittels der Radio Button zwischen Raytracing und		
Radiosity aus. Betrachten sie die Änderungen.		

1.6 Volumengrafik

Interaktionsmenü

Beschreibungstext mit Informationen

Sprechertext	Screentext / Notizen	Regieanweisungen
Volumengrafiken sind in der Lage (teilweise) transparente Objekte und Objekte ohne scharfe Abgrenzungen (wie z. B. Wolken) zu modellieren. Diese bestehen aus Voxeln. Voxel bezeichnet einen Gitterpunkt (Bildpunkt, Datenelement) in einem dreidimensionalen Gitter. Dies entspricht einem Pixel in einem 2D-Bild, einer Rastergrafik.	Volumengrafik = trans- parente Objekte Voxel = Gitterpunkt in einem dreidimensiona- len Gitter.	120601 Es wird ein Voxelgitter eingebledet und anhanddessen ein Voxel gezeigt
120602 Die Volumengrafik basiert auf dem Strahlentransport, der beschreibt, wie sich Licht auf dem Weg durch ein Volumen ver- hält.		
120603 Beim Rendern einer Volumengrafik unterscheidet man vier Schritte:	vier Render Schritte: 1. Klassifikation 2. Interpolation	120603 Die vier Schritte werden erklärt: 1) Es werden Eigenschaften verschiedener Transparenzstufen
1. der Klassifikation: Hier werden den Voxeln Materialeigenschaften gegeben 2. der Interpolation: Hier werden die Materialeigenschaften an Punkten zwischen den Voxeln aus den umgebenden Voxeln angenähert. 3. dem Shading: Beim Shading wird bestimmt, wie viel Licht von einem Voxel aus in Richtung des Betrachters reflektiert wird und welche Farbe es hat.	3. Shading 4. Composition	gezeigt 2) Voxel werden am Lichtstrahl interpoliert 3) Die Voxelflächen erhalten Normalen und eine Beleuchtung 4) Die unterchsiedlichen Lichtst fen einer Linie werden miteinander verrechnet
4. der Composition: Beim Compositing werden die Lichtbeiträge von Voxeln, in einer Reihe liegen, miteinander verrechnet, um einen endgültigen Bildpunkt zu erhalten.		Zu schluss wird eine Volumengra- fik eingeblendet, die sich dreht.

