Bargaining with Mechanisms and Two-Sided Incomplete Information

Marcin Pęski

University of Toronto

August 17, 2024

Introduction

- No satisfactory strategic solution for incomplete information bargaining:
 - signaling issues,
 - two-sided uncertainty: folk-theorem multiplicity, possible refinements to eliminate some equilibria.
- ► Here: a natural modification of a standard random-proposer bargaining has a (generically) unique outcome:
 - single good plus transfers,
 - private values,
 - two types for each player.

Introduction

- Bargaining with mechanisms (i.e., sophisticated offers) in the real world
 - menus.
 - menus of menus ("I divide, you choose"),
 - mediation, arbitration (example: "trial by gods"),
 - change in bargaining protocols,
 - deadlines or delays, etc.
- Intuition: larger space of actions help to deal with signaling issues.
- Challenge: How to model mechanisms as actions?

- ▶ Two players i = 1, 2, sometimes third player ("mediator")
 - $T_i = \{I_i, h_i\},\$
 - ▶ belief profiles $\Delta T = \Delta T_1 \times \Delta T_2$
- ▶ Single good and transfers: preferences: $q_i t_i \tau_i$,
 - feasibility: $q_1 + q_2 \le 1$, $q_i \ge 0$, $\tau_1 + \tau_2 \le 0$,
- ► Bargaining game
 - ightharpoonup multiple rounds until offer is accepted, discounting $\delta < 1$,
 - ▶ player *i* is proposer with prob. $\beta_i \ge 0$, where $\beta_1 + \beta_2 = 1$,
 - proposer offers a mechanism,
 - if the offer is accepted, it is implemented, and the bargaining game ends (commitment!).
- ▶ Perfect Bayesian Equilibrium: no updating beliefs about player i after −i's action.

Mechanisms

- ► Game *G*: finite or compact actions + outcome function,
- ▶ Equilibrium payoffs correspondence: $m(p; G) \subseteq \mathcal{U}(p)$ for $p \in \Delta T$,
 - $\mathcal{U}(p) \subseteq R^{T_1 \cup T_2}$ is the set of feasible and incentive compatible payoffs.

Mechanisms

- ► (Abstract) mechanism is correspondence m st. m is u.h.c., $m \subseteq \mathcal{U}$, non-empty valued, and
 - ▶ it can be approximated by continuous functions $m_n : \Delta T \to R^{T_1 \cup T_2}$, $m_n \subseteq \mathcal{U}$ in the sense that $\lim_n \operatorname{Graph}(m_n) \subseteq \operatorname{Graph}(m)$.
 - ▶ the space of mechanism is compact* under Hausdorff distance induced by *d*.

Theorem

(**Virtual implementation**) If G is a game, then m(.; G) is a mechanism.

If m is a mechanism, then, there is a sequence of games G_n that "approximate" m:

$$\lim_{n} Graph(m(.; G_n)) \subseteq Graph(m)$$
.

Mechanisms

- ► (Abstract) mechanism is correspondence m st. m is u.h.c., $m \subseteq \mathcal{U}$, non-empty valued, and
 - ▶ it can be approximated by continuous functions $m_n : \Delta T \to R^{T_1 \cup T_2}$, $m_n \subseteq \mathcal{U}$ in the sense that $\lim_n \operatorname{Graph}(m_n) \subseteq \operatorname{Graph}(m)$.
 - ▶ the space of mechanism is compact* under Hausdorff distance induced by *d*.

Theorem

(**Virtual implementation**) If G is a game, then m(.; G) is a mechanism.

If m is a mechanism, then, there is a sequence of games G_n that "approximate" m:

$$\lim_{n} Graph(m(.; G_n)) \subseteq Graph(m).$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $abla \alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i.
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{ MM_{-i} \{ a, m \} : a \text{ is a mechanism} \}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\Delta \alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i.
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- ▶ $MM_i(A)$ menu of mechanisms $a \in A$ for player i, including public randomization and cheap talk by i.
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- ▶ $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i.
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{ MM_{-i} \{ a, m \} : a \text{ is a mechanism} \}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $abla \alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i.
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\sim \alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i.
- ► IP_i (m) informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1} (IP_2(\delta\mathcal{B}))^{\beta_2}$$

Derived mechanisms

- Given a mechanism or a set of mechanisms, we can construct new ones:
- $\sim \alpha \in \Delta A$ randomly chosen mechanism according to distribution α .
- \triangleright δm discounted mechanism m.
- $I_i(m)$ information revelation game: public randomization plus i's cheap talk followed by m.
- MM_i (A) menu of mechanisms a ∈ A for player i,
 including public randomization and cheap talk by i
- ▶ $IP_i(m)$ informed principal problem of player i with continuation mechanism (i.e., outside option) m,

$$IP_i(m) = MM_i \{MM_{-i} \{a, m\} : a \text{ is a mechanism}\}$$

$$\mathcal{B}^{\delta} = (IP_1(\delta\mathcal{B}))^{\beta_1}(IP_2(\delta\mathcal{B}))^{\beta_2}$$

Informed principal with private values $\beta_i = 1$ (or $\delta = 0$) (Maskin, Tirole 90): monopoly payoff

$$M\left(t_{i};p_{-i}\right)=\max_{\tau}p_{-i}\left(t_{-i}\leq\tau\right)t_{i}+\left(1-p_{-i}\left(t_{-i}\leq\tau\right)\right)\tau,$$

- ► Special features:
 - continuation value = 0 (and it does not depend on beliefs)
 - private information of the principal does not matter due to private values.
 - none of this holds in bargaining.

Random monopoly

Theorem

For each $\delta < 1$, each $u \in \mathcal{B}^{\delta}(p)$, each player i, each t_i ,

$$u_i(t_i) \geq \beta_i M_i(t_i; p_{-i}).$$

- Each player gets at least their random monopoly payoff.
- Rubinstein-style argument, but
- not easy to extend to more than two types.

- ▶ In many cases, Theorem 2 is enough to characterize payoffs and equilibrium behavior, as there is unique interim efficient allocation that satisfies the random monopoly condition:
 - ▶ $\beta_i \in \{0, 1\},$
 - ▶ $p_i \in \{0,1\}$ for one of the players,
 - $I_1 = I_2 \text{ or } I_2 = h_1 \text{ or } h_1 = h_2.$
- In general, there is a gap between random monopoly payoffs and efficiency.
- The gap is not larger than $Gap(p) \le 6.25\%$ of $max(h_1, h_2)$ for all p.

Assume $l_1 < l_2$.

Theorem

For generic payoffs and generic p, $\mathcal{B}(p) = \lim_{\delta} \mathcal{B}^{\delta}(p)$ contains a single element $|\mathcal{B}(p)| = 1$.

The entire gap goes to player 1: If $u \in \mathcal{B}(p)$, then

$$\sum_{t_{1}} p_{1}\left(t_{1}\right) u_{1}\left(t_{1}\right) = \max_{\substack{u \text{ is incentive compatible, feasible at } p \\ u_{2}\left(t_{2}\right) \geq \beta_{2} M_{2}\left(t_{2}; p\right) \text{ for } t_{2} \in \{l_{2}, h_{2}\}} \sum_{t_{1}} p_{1}\left(t_{1}\right) u_{2}\left(t_{2}\right) dt$$

 $l_2 < h_1$

 $h_1 < l_2$

Conclusions

- A natural modification of a standard random-proposer bargaining has unique payoffs under
 - single good plus transfers, private values environment,
 - two types for each player.
- ► A proof of concept better results and a general theory would be nice:
 - more types,
 - other environments,
 - better implementation results.