5·3 모수모형의 적용사례

1979년에 모 양회공장에서는 시멘트(cement) 분쇄공정에서 시멘트 강도에 영향을 주 는 여러 가지 인자 중에서 우선적으로 석고의 종류(A)와 석고첨가량으로 사용되는 SO, 의 함량(B)이 어떤 영향을 주고, 각 인자의 어떤 수준조합에서 높은 강도를 주는가를 실험하였다. 인자의 수준은 다음과 같이 정해 주었다.

A: 석고종류(3수준)

[화학석고(A,), 분말석고(A,), 혼합석고(A,)]

B: 석고첨가량(SO3함량기준, 6수준)

 $[1.6\%(B_1), 2.0\%(B_2), 2.4\%(B_3), 2.8\%(B_4), 3.2\%(B_5), 3.6\%(B_6)]$

실험은 반복 2회의 이원배치실험이고 특성치는 생산 후 28일 후에 측정되는 시멘트 의 압축강도(kg/cm²)이다. 혼합석고(A₃)는 화학과 분말을 1:1로 섞어서 만든 것이다. 이 실험은 또한 압축강도 이외에 응결시간(setting time)과 안정도(soundness)에 대한 특 성치도 측정되었으나 그들의 분석은 여기에서는 생략하기로 한다.

실험의 랜덤화는 실험 전체의 실험횟수 $l \times m \times r = 3 \times 6 \times 2 = 36$ 회를 완전 랜덤화하여 실 험순서를 난수표에 의하여 정한 것이 다음 〈표 5·5〉와 같았다. 이 실험순서에 의하여 실험하여 얻어진 측정치를 표로 만들어 보니 〈표 5.6〉과 같다.

분석은 다음과 같은 순서로 나누어서 실시하였다.

[순서 1] 원데이터의 집계:

원데이터에 대하여 수준조합마다의 합계 (T_{ij}) 와 평균 (\overline{x}_{ij}) 을 구하여 \langle 표 $5\cdot7\rangle$ 의 보조 표를 작성한다.

〈표 5·5〉 랜덤화한 실험순서

	A_1	A_2	A_3
B_1	12 24	00 30	(6) (3)
B_2	① ②	3 26	9 32
B_3	② ①	20 33	25 36
B_4	13 23	149 35 9	① ⑥
B_5	(8) (28)	5 2	(19) (30)
B_6	4 1	15 29	8 2

〈丑	5.6>	강도의	데이	터

인자 <i>A</i> 인자 <i>B</i>	A_1	A_2	A_3	$T_{.j.}$	$\overline{x}_{.j.}$
B_1	305	322	320	1 206	316.0
121	302	325	322	1,896	
B_{2}	335	350	342	2,056	342.7
D_2	337	348	344	2,056	342.7
B_3	366	326	338	2.054	342.3
D_3	364	324	336	2,054	
B_{4}	372	330	348	0.100	350.3
D_4	374	330	348	2,102	
R	376	327	350	0.100	251.0
B_5	373	330	350	2,106	351.0
B_6	348	310	330	1.074	200.0
	350	308	328	1,974	329.0
T_{i}	4,202	3,930	4,056	12,188	
\overline{x}_{i}	350.2	327.5	338.0		338.6

〈표 5·7〉 T_{ii} 와 \overline{x}_{ii} 의 보조표

igcup 인자 A	A_1		F	12	A_3	
인자 B	계	평균	계	평균	계	평균
B_1	607	303.5	647	323.5	642	321
B_{2}	672	336	698	349	686	343
B_3	730	365	650	325	674	337
$B_{\!4}$	746	373	660	330	696	348
$B_{\!\scriptscriptstyle 5}$	749	374.5	657	328.5	700	350
B_6	698	349	618	309	658	329

[순서 2] 원데이터의 그래프화:

내어 요인효과의 개요를 파악한다. 그림으로부터 인자 A, B의 효과가 모두 유의할 것이 라고 예상된다. 또한 $A \times B$ 의 그래프를 보면 연결된 선들이 평행하지 못하고 서로 엇갈 려 있으므로 교호작용도 유의하리라고 예상된다. 이처럼 분산분석하기 전에 $\overline{x}_{i,\cdot},\overline{x}_{ij\cdot},\overline{x}_{ij\cdot}$ 의 그래프를 그려 개요를 파악하여 두는 것이 좋을 것이다.

[순서 3] 등분산의 검토:

인자 A, B의 조합조건마다에서 실험오차가 등분산(equal variance)인가 아닌가를 검토하여 실험이 관리상태하에 있었는가를 체크한다. 먼저 반복 데이터로부터 범위R을 구한다($\langle \Xi 5\cdot 8 \rangle$ 참조). 다음으로 R와 D_4R 를 구하면

$$\overline{R} = \frac{34}{18} = 1.889$$

$$D_4\overline{R} = 3.267 \times 1.889 = 6.171(\because r = 2, D_4 = 3.267)$$

이 되며 $\langle \pm 5.8 \rangle$ 에 있는 모든 R의 값보다 $D_4\overline{R}=6.171$ 의 값이 크므로 실험은 관리상태라고 생각된다. 또한 오차는 등분산의 가정이 옳다고 보아도 좋을 것이다.

〈표 5·8〉범위 R표

인자 A 인자 B	A_1	A_2	A_3	계
B_1	3	3	2	8
B_{2}	2	2	2	6
B_3	2	2	2	6
$B_{\!\scriptscriptstyle 4}$	2	0	0	2
B_{5}	3	3	0 ′	6
$B_{\!6}$	2	2	2	6
계	14	12	8	34

[순서 4] 합의 계산:

변동의 계산을 용이하게 하기 위하여 각 수준별로 합을 계산한다.

〈표 5⋅9〉합의 계산표

인자 A 인자 B	A	1,	A_2		A_3		계(T _{.j.})
B_1	305 302	(607)	322 325	(647)	320 322	(642)	1,896
B_2	335 337	(672)	350 348	(698)	342 344	(686)	2,056
B_3	366 364	(730)	326 324	(650)	338 336	(674)	2,054
B_4	372 374	(746)	330 330	(660)	348 348	(696)	2,102
B_5	376 373	(749)	327 330	(657)	350 350	(700)	2,106
B_6	348 350	(698)	310 308	(618)	330 328	(658)	1,974
_ 계(<i>T_i</i>)	4,202		3,930		4,056		12,188

[순서 5] 각 변동의 계산:

$$N = lmr = (3)(6)(2) = 36$$

$$CT = \frac{T^2}{N} = \frac{(12,188)^2}{36} = 4,126,315.1$$

$$S_T = \sum_{i=1}^{3} \sum_{j=1}^{6} \sum_{k=1}^{2} x_{ijk}^2 - CT$$

$$= (305)^2 + (302)^2 + (335)^2 + ... + (330)^2 + (328)^2 - 4,126,315.1$$

$$= 13,502.9$$

$$S_A = \sum_{i=1}^{3} \frac{T_{i..}^2}{(6)(2)} - CT$$

$$= \frac{1}{12} [(4,202)^2 + (3,930)^2 + (4,056)^2] - 4,126,315.1$$

$$= 3,088.2$$

$$S_B = \sum_{j=1}^{6} \frac{T_{j..}^2}{(3)(2)} - CT$$

$$= \frac{1}{6} [(1,896)^2 + (2,056)^2 + (2,054)^2 + (2,102)^2 + (2,106)^2 + (1,974)^2] - 4,126,315.1$$

$$= 5,548.9$$

$$\begin{split} S_{AB} &= \sum_{i=1}^{3} \sum_{j=1}^{6} \frac{T_{ij.}^{-2}}{2} - CT \\ &= \frac{1}{2} \left[(607)^2 + (672)^2 + (730)^2 + ... + (700)^2 + (658)^2 \right] - 4,126,315.1 \\ &= 13,462.9 \\ S_{A \times B} &= S_{AB} - S_A - S_B \\ &= 13,462.9 - 3,088.2 - 5,548.9 = 4,825.8 \\ S_E &= S_T - S_{AB} \\ &= 13,502.9 - 13,462.9 = 40.0 \end{split}$$

[순서 6] 분산분석표의 작성:

유의수준 $\alpha=0.05$ 와 $\alpha=0.01$ 로 하여 분산분석표를 작성하여 보니 \langle 표 $5\cdot10\rangle$ 과 같다. 이 표에서 평균제곱의 기대값 E(V)는 생략하였다. 여기서 화살표는 F_0 를 계산할 때의 분모, 분자를 나타내주기 위한 것이다.

	〈표 5·10〉분산분석표							
요인	S	φ	V	F_0	F(0.05)	F(0.01)		
A	3,088.2	2	1,544.1	695.5**	3.55	6.01		
B	5,548.9	5	1,109.8 -	499.9**	2.77	4.25		
$A \times B$	4,825.8	10	482.6 ←	217.4**	2.41	3.51		
E	40.0	18	2.22					
T	13,502.9	35			-, 1 -			

이 결과 시멘트의 강도에 대하여 석고종류(A) 및 석고첨가량 SO $_3(B)$ 의 수준의 변화에 따라서 대단히 유의한 차가 있음을 알 수 있고, 또한 $A \times B$ 교호작용도 대단히 유의하다. 이러한 결과는 [순서 2]의 그래프로부터 예상한 내용과 일치한다. 이와 같은 결과로부터 시멘트의 강도를 가장 크게 하는 A 와 B의 조합에 관한 최적조건을 구하고, 공정에의 적용을 검토하여 보아야 한다.

[순서 7] 분산분석 후의 추정:

실험의 결과는 교호작용이 유의하므로 인자 A, B의 조합에 의한 특별한 효과가 나타나고 있다. 이와 같은 경우에는 A, B 각 인자에 대하여 모평균을 추정하는 것보다 A, B 수준의 조합 A, B, 에서 모평균을 추정하여 최적조건을 찾는 것이 의미가 있다. A, B, 에

서의 모평균 $\mu(A,B,0)$ 의 점추정값은 $\bar{x}_{i,j}$ 이고 신뢰수준 $(1-\alpha)$ 의 신뢰구간은 식 $(5\cdot 30)$ 에 의하여

$$\overline{x}_{ij} \pm t \left(\phi_E : \frac{\alpha}{2} \right) \sqrt{\frac{V_E}{r}}$$

이다. \bar{x}_{ij} 를 가장 크게 하는 A_iB_j 는 〈표 $5\cdot 7$ 〉로부터 A_1B_2 이다. 이 수준조합에서 $\mu(A,B,)$ 의 점추정과 95% 구간추정은

$$\begin{split} \overline{x}_{15.} &= 374.5 \\ \overline{x}_{15.} &\pm t \left(\phi_E \, ; \, \frac{\alpha}{2} \right) \sqrt{\frac{V_E}{r}} \\ &\Rightarrow 374.5 \pm t \, (18 \, ; \, 0.025) \, \sqrt{\frac{2.22}{2}} \\ &\Rightarrow 374.5 \pm 2.101 \, \sqrt{1.11} \\ &\Rightarrow 374.5 \pm 2.2 = (372.3, \, 376.7 \text{kg/cm}^2) \end{split}$$

이 얻어진다. 즉, 화학석고(A,)에 SO₃의 함량을 3.2% 첨가시켜서 반응시켰을 때 생성되 는 시멘트가 가장 강한 강도를 주고, 이 최적조건에서의 강도는 372.3kg/cm² 에서 376.7 kg/cm² 사이에 있을 것이라고 기대된다.

만약 A, B 각 인자의 수준에서 강도의 신뢰구간을 구할 필요가 있으면 식 (5·26)과 (5·27)을 사용하면 되며, 수준간의 모평균차의 추정은 식 (5·28)과 (5·29)를 사용하면 될 것이다.

[순서 8] 분석결과의 정리:

실험의 분석결과를 정리하면 다음과 같은 결과를 얻는다.

- (1) 석고종류(A) 및 SO_3 함량(B)에 따라 시멘트의 압축강도의 차가 고도로 유의하며 $A \times B$ 교호작용도 매우 크다.
- (2) [그림 $5 \cdot 2$]로부터 화학석고 (A_1) 가 전반적으로 가장 큰 강도를 주고, SO_3 의 함량은 $1.6\%(B_1)$ 에서 $3.2\%(B_5)$ 까지 증가하면서 강도를 점점 크게 하다가 3.2%가 초과하면 도리어 감소하는 경향이다.
- (3) [그림 $5 \cdot 2$]로부터 화학석고 (A_1) 는 SO_3 가 $3.2\%(B_5)$ 까지는 강도가 증가하다 3.6% (B_a) 에서 감소하나, 분말석고 (A_a) 는 SO_3 가 $2.0\%(B_a)$ 에서 최고의 강도를 이룬다. 혼 합석고 (A_*) 의 경우에는 $2.8\%(B_*)$ 와 $3.2\%(B_*)$ 에서 가장 높은 강도를 주며 $3.2\%(B_*)$ 가 약간 더 좋다.

- (4) 강도를 가장 크게 하는 A, B 인자의 최적수준은 A, B, 로서 이 조건에서의 강도의 점 추정값은 374.5kg/cm² 이고 95% 구간추정은 372.3, 376.7kg/cm²이다.
- (5) 당 공장에서 사용 중인 수준조합조건은 A₃(혼합석고, 화학:분말=1:1)와 B₁ (2.8%)이었다. 이 조건을 A,B.(화학석고, 3.2%)로 바꿀 경우에 SO,함량 증가에는 기 술적·경제적인 문제점이 없으나 화학석고를 단독 사용하는 것은 강도의 발현은 우 수하나 경제적으로 부담이 증가한다.
- (6) 실험의 결론으로 당 공장에서는 두 종류의 시멘트를 잠정적으로 생산하기로 작업조 건을 표준화하였다. 하나는 고강도시멘트로서 화학석고 (A_1) 와 3.2% SO_2 함량 (B_1) 을 사용한다. 또 하나는 강도가 앞의 것에 약간 떨어지나 생산원가가 적게 드는 혼합석 $extbf{Z}(A_3)$ 와 3.2% SO $_3$ 함량 (B_5) 을 사용하기로 한다. 위의 두 종류의 시멘트에 대한 사용 자들의 반응을 충분히 고려하여 차후에 어떤 종류의 시멘트를 양산할 것인가를 결 정하기로 하였다.

5·4 혼합모형

인자 A가 모수인자이고 인자 B가 변량인자인 경우는 혼합모형이 되며, 이 경우에 대 한 반복수가 동일한 이원배치법을 이 절에서는 연구하여 보자. 모수모형과 동일하게 4 의 수준을 l, B의 수준을 m, 그리고 반복을 r 회하는 실험을 생각하면 실험의 랜덤화는 다음과 같이 행한다. 변량인자 B가 랜덤하게 선택된 원료로트(lot)이거나 드럼통 등과 같은 집단인자인 경우에는 실험전체의 lmr 회 실험을 랜덤하게 행하지만, 실험일과 같 은 블록인자인 경우에는 B의 각 수준마다 lr 회의 실험을 랜덤하게 행해 주어야 할 것 이다.

5·4·1 분산분석표의 작성

혼합모형이나 모수모형이나 얻어진 데이터의 배열로부터 변동 $S_{r},S_{s},S_{s},S_{s},S_{s}$ 등 을 구하는 계산방법에는 하나의 차이점도 없다. 그러나 평균제곱의 기대값에 약간의 차 이가 있으며, 이 차이로 인하여 분산분석표에서의 F - 검정방법에 상이한 점이 나타나 게 된다.