MATH3160 — Portfolio 4.2b

Mike Medved

October 8th, 2022

1 Deliverables

1.1 Moment Generating Function (mgf)

The moment generating function of a discrete random variable can be represented as $M_X(t) \to [0, \infty]$ where

$$M_X(t) = E\left[e^{tX}\right]$$

1.1.1 Example of 1.1

The pnf(x):
$$x \in Im \times 0$$
 1 2 $P(X=x) = 0.04 = 0.72 = 0.64$

a)
$$M_x(t) = ?$$
 b) $E[X] = ?$ c) $V_{\alpha}(x) = ?$

a)
$$M_{X}(t) = \sum_{x \in Im X} e^{t \cdot X}$$
, $pmF(x) \Rightarrow e^{t \cdot 0}$, $0.04 + e^{t \cdot 1}$, $0.82 + e^{t \cdot 2}$. 0.64
 $1 \cdot 0.04 + e^{t}$, $0.32 + e^{2t}$, 0.64
 $\Rightarrow 0.04 + (0.32)e^{t} + (0.64)e^{2t}$

$$\downarrow \Rightarrow \text{ for } \ell=0 \Rightarrow \mathbb{E}[X] = M_X(\mathcal{D})$$

$$\Rightarrow 0.32e^0 + 1.2l_00 = 1.6$$

C)
$$E[X^2] = M_X^{11}(t) = 0.32e^{t} + (1.28) \cdot 2e^{2t}$$

$$2.56$$

$$2.56$$

$$\Rightarrow 0.32e^{+} + 2.56e^{2+}$$
For $t=0$, $0.32+2.56=2.88$

$$V_{cr}(X) = E[X^2] - (E[X])^2 = 2.66 - 1.6^2 = 0.32$$