Разбиение чисел

Сколькими способами можно представить число n в виде k

- а) неотрицательных
- б) положительных целых слагаемых, если представления, отличающиеся только порядком слагаемых, считаются: 1) различными, 2) одинаковыми. (Всего рассмотреть 4 варианта.)

Разбиение чисел

$$n = 13, \quad k = 4.$$

Данная задача равносильна задаче распределения 13 неразличимых шаров (т. е. единиц, образующих число 13) по 4 ящикам (4 слагаемым).

- 1а) Если слагаемые неотрицательны, а представления, отличающиеся только порядком слагаемых, считаются различными, то количество различных способов представления числа 13 в виде суммы 4 слагаемых равно $T(13,4) = C_{13+4-1}^{4-1} = C_{16}^3 = \frac{16!}{3!13!} = 560.$
- 1б) Если слагаемые положительны, а представления, отличающиеся только порядком слагаемых, считаются различными, то количество различных способов представления числа 13 в виде суммы 4 слагаемых равно $T*(13,4) = C_{13-1}^{4-1} = C_{12}^3 = \frac{12!}{3!9!} = 220.$ 2a), 2б).

Разбиение чисел

n k		1			2			3		4	,
1	1			1			1			1	
			1			0		(0		0
2	1			2			2			2	
			1			1		(0		0
3	1			2			3			3	
			1			1			1		0
4	1			3			4			5	
			1			2			ı		1
5	ı			3			5			6	
			1			2			2		1
6	1			4			7			9	
			1			3		:	3		2
7	1			4			8			11	
			1	L		3			4		3

n k	1		2		3	4	
8	1		5		10	15	
		1		4	5	5	
9	1		5		12	18	
		1		4	7	6	
10	1		6		14	23	
		1		5	8	9	
11	1		6		16	27	
		1		5	10	11	
12	1		7		19	34	
		1		6	2	15	
13	1		7		21	39	
		1		6	14	18	

При решении многих комбинаторных задач используется метод сведения данной задачи к аналогичной задаче, касающейся меньшего числа предметов.

Такой метод называется методом рекуррентных соотношений. Пользуясь рекуррентным соотношением можно свести задачу об п предметах к задаче об (n-1) предметах, потом об (n-2) предметах и т.д. Последовательно уменьшая число предметов, доходим до задачи, которую уже легко решить. Во многих случаях удается получить из рекуррентного отношения явную формулу для комбинаторной задачи.

Пример рекурсивно заданной функции

$$a_1 = 1$$

$$a_k = a_{k-1} + k$$

Непосредственное задание функции

$$a_n = \frac{n \cdot (n+1)}{2}$$

Семеро математиков хорошо посидели в ресторане и, уходя, каждый захватил с собой чужую шляпу. Сколькими способами это возможно?

$$X(n) = (n-1) [X(n-2) + X(n-1)].$$

При
$$n=1$$
 $X(1)=0$, а при $n=2$ $X(2)=1$. Далее получаем $X(3)=2$, $X(4)=9$, $X(5)=44$, $X(6)=165$, $X(7)=1254$.

Сколькими способами можно оплатить марками бандероль на сумму k рублей, если есть неограниченное число марок достоинством в a, b, c рублей и два способа, отличающиеся только порядком наклейки марок, считаются

1) различными?

2) одинаковыми?

Если число способов не превосходит 10, выписать их в явном виде.

$$f(k) = f(k-6) + f(k-5) + f(k-3).$$

$$f(0) = 1$$
, $f(1) = 0$,
 $f(2) = 0$, $f(3) = 1$, $f(4) = 0$, $f(5) = 1$, $f(6) = 2$;
 $f(7) = f(1) + f(2) + f(4) = 0 + 0 + 0 = 0$;
 $f(8) = f(2) + f(3) + f(5) = 0 + 1 + 1 = 2$;

$$g(20;6,5,3) = g(20;5,3) + g(14;5,3) + g(8;5,3) + g(2;5,3)$$

 $g(20;5,3) = g(20;3) + g(15;3) + g(10;3) + g(5;3) + g(0;3);$
 $g(14;5,3) = g(14;3) + g(9;3) + g(4;3);$ $g(8;5,3) = g(8;3) + g(3;3).$
 $g(20;5,3) = 0 + 1 + 0 + 0 + 1 = 2;$ $g(14;5,3) = 0 + 1 + 0 = 1;$
 $g(8;5,3) = 0 + 1 = 1;$ $g(20;6,5,3) = 2 + 1 + 1 + 0 = 4.$

Поступающий в высшее учебное заведение должен сдать 4 экзамена. Он полагает, что для поступления будет достаточно набрать 17 очков. Сколькими способами он может сдать экзамены, чтобы наверняки поступить в вуз?

$$F(k; N) = F(k-1; N-3) + F(k-1; N-4) + F(k-1; N-5)$$

$$F(4; 17) = F(3; 14) + F(3; 13) + F(3; 12) =$$

$$= F(2; 11) + 2F(2; 10) + 3F(2; 9) + 2F(2; 8) + F(2; 7) =$$

$$= 2 + 3F(2; 9) + 2F(2; 8) + F(2; 7),$$

$$F(4; 17) = F(3; 14) + F(3; 13) + F(3; 12) =$$

= $F(2; 11) + 2F(2; 10) + 3F(2; 9) + 2F(2; 8) + F(2; 7) =$
= $2 + 3F(2; 9) + 2F(2; 8) + F(2; 7)$,

$$F(4; 17) = 2 + 3F(1; 6) + 5F(1; 5) + + 6F(1; 4) + 3F(1; 3) + F(1; 2).$$

$$F(1; 6) = F(1; 2) = 0$$
,

$$F(1; 5) = F(1; 4) = F(1; 3) = 1.$$

$$F(4; 17) = 16.$$

$$F(4; 18) = 10, F(4; 19) = 4$$
 и $F(4; 20) = 1.$

$$16+10+4+1=31$$

Рекуррентное соотношение вида

$$a_n = b_1(n)a_{n-1} + b_2(n)a_{n-2} + b_3(n)a_{n-3} + \dots + b_p(n)a_p$$
 называется линейным рекуррентным соотношением порядка p , т.к. a_n выражается через p элементов вида a_i ($i=1,p$)

Соотношение линейно-рекуррентное, т.к. показатель каждой степени a_i равен 1.

Рекуррентным соотношением k-го порядка называется формула, позволяющая выражать значения члена последовательности с номером n (n > k) через члены этой последовательности с номерами n-1, n-2,..., n-k.

Решением рекуррентного соотношения называется числовая последовательность, обращающая его в верное равенство при подстановке в него формулы общего члена последовательности.

Начальными условиями рекуррентного соотношения k -го порядка называются первые k членов последовательности, являющейся решением данного рекуррентного соотношения.

Линейным однородным рекуррентным соотношением k-го порядка с постоянными коэффициентами называется соотношение вида

$$f(n+k) = a_1 \cdot f(n+k-1) + a_2 \cdot f(n+k-2) + \dots + a_k \cdot f(n).$$

- 1) $a_n = 3a_{n-1}^3 + 4a_{n-2}$ нелинейное, т.к. a_{n-1} в 3-ей степени
- 2) $a_n = 3n^3 a_{n-1} + n \cdot a_{n-2}$ линейное
- 3) $a_{n+2} = a_n \cdot a_{n+1} 3a_{n+1} + 1$ нелинейное рекуррентное соотношение порядка 2,
- т.к. зависит от a_n и a_{n+1}
- 4) $a_{n+3} = 6a_n \cdot a_{n+2} + a_{n+1}$ нелинейное рекуррентное соотношение порядка 3,
- т.к. зависит от a_n , a_{n+1} и a_{n+2}
- 5) $a_{n+2} = 3a_{n+1} 2a_n$ линейное рекуррентное соотношение порядка 2, т.к.
- зависит от a_n и a_{n+1}

$$f(n+k) = a_1 \cdot f(n+k-1) + a_2 \cdot f(n+k-2) + \dots + a_k \cdot f(n).$$

Общим решением сооппошения (*) называется такое его решение, которое содержит к произвольных постоянных, путём подбора которых можно удовлетворить любым начальным условиям.

Характеристическим уравнением соотношения (*) называется

уравнение
$$x^k = a_1 \cdot x^{k-1} + a_2 \cdot x^{k-2} + ... + a_k$$
. (**)

$$f(n+k) = a_1 \cdot f(n+k-1) + a_2 \cdot f(n+k-2) + \dots + a_k \cdot f(n).$$

Теорема: Общее решение соотношения (*) имеет вид:

$$f(n) = A_1 + A_2 + ... + A_p$$

где $A_i = C_i x^n$, если x — действительный корень первой кратности уравнения (**), где C_i — произвольные постоянные.

$$A_{i} = x^{n} \cdot (C_{i,1} + nC_{i,1} + n^{2}C_{i,3} + \dots + n^{m-1}C_{i,m}),$$

если x — действительный корень кратности m уравнения (**), где $C_{i,1}, C_{i,2}, ..., C_{i,m}$ — произвольные постоянные;

$$A_i = r^n (\cos n\varphi \cdot D_i + \sin n\varphi \cdot E_i),$$

если $r(\cos \phi \pm i \sin \phi)$ — комплексно-сопряжённая пара, каждый член которой является корнем первой кратности уравнения (**) и D_i , E_i — произвольные постоянные;

$$A_{i} = r^{n} \left(\cos n\phi \cdot (D_{i,1} + nD_{i,2} + n^{2}D_{i,3} + \dots + n^{m-1}D_{i,m}) + \right.$$

$$+ \sin n\phi \cdot (E_{i,1} + nE_{i,2} + n^{2}E_{i,3} + \dots + n^{m-1}E_{i,m}) \right),$$

если $r(\cos \phi \pm i \sin \phi)$ — комплексно-сопряжённая пара, каждый член которой является корнем кратности m уравнения (**) и $D_{i,1}, D_{i,2},...,D_{i,m}, E_{i,1}, E_{i,2},...,E_{i,m}$ — произвольные постоянные.

Найти общее решение рекуррентного соотношения 5-го порядка

$$f(n+5) = 4 \cdot f(n+4) - 4 \cdot f(n+3) - 2 \cdot f(n+2) + 5 \cdot f(n+1) - 2 \cdot f(n).$$

Запишем характеристическое уравнение данного соотношения:

$$x^{5} - 4x^{4} + 4x^{3} + 2x^{2} - 5x + 2 = 0.$$

$$x_1 = 1$$
, $x_2 = 1$, $x_3 = 1$, $x_4 = -1$ if $x_5 = 2$.

$$f(n) = 1^{n} \cdot (C_1 + nC_2 + n^2C_3) + (-1)^{n}C_4 + C_5 \cdot 2^{n} =$$

$$= C_1 + nC_2 + n^2C_3 + (-1)^{n}C_4 + C_5 \cdot 2^{n}.$$

Найти общий вид решения рекуррентного соотношения 4-го порядка $x_{n+4} - 3x_{n+3} - 8x_{n+1} + 24 = 0$, если $x_0 = 0$.

Запишем характеристическое уравнение данного соотношения:

$$x^4 - 3x^3 - 8x + 24 = 0$$
.

$$x_1 = 2$$
, $x_2 = 3$, $x_{3,4} = -1 \pm i\sqrt{3}$.

Комплексное число $-1+i\sqrt{3}$ имеет модуль r=2 и аргумент

$$\phi = \frac{2\pi}{3} \ .$$

$$x_n = C_1 2^n + C_2 3^n + 2^n \left(C_3 \cos \frac{2\pi n}{3} + C_4 \sin \frac{2\pi n}{3} \right).$$

$$x_0 = 0$$
:

$$0 = C_1 2^0 + C_2 3^0 + 2^0 (C_3 \cos 0 + C_4 \sin 0),$$

$$C_1 = -C_2 - C_3$$
.

$$x_n = (-C_2 - C_3) \cdot 2^n + C_2 3^n + 2^n \left(C_3 \cos \frac{2\pi n}{3} + C_4 \sin \frac{2\pi n}{3} \right).$$

Принцип Дирихле

Принцип Дирихле

Если k+1 или более объектов расположены в k коробках, тогда есть по крайней мере одна коробка, содержащая два или более из объектов.

Пусть $f: A \rightarrow B - функция,$ причем как A, так и B – конечные множества. Предположим, что A состоит из n элементов: a_1, a_2, \ldots, a_n . Принцип Дирихле гласит, что если |A| > |B|, то по крайней мере одно значение f встретится более одного раза. То есть, найдется пара элементов $a_i \neq a_j$, для которых $f(a_i) = f(a_j)$.

Чтобы убедиться в истинности принципа, предположим, что для любой пары разных индексов $i\neq j$ имеем: $f(a_i)\neq f(a_j)$. Тогда множество В содержит по крайней мере п различных элементов: $f(a_1)$, $f(a_2)$, ..., $f(a_n)$. В любом случае, $|B| \ge n$, что противоречит предположению: n = |A| > |B|. Следовательно, есть хотя бы два разных элемента a_i , $a_i \in A$, для которых $f(a_i) = f(a_i)$.

<u>Пример</u>. На семинар записалось восемь студентов. Покажите, что по крайней мере двое из них учатся на одном курсе.

Решение. Множество студентов семинара обозначим буквой A, а множество всех пяти курсов обозначим через B. Рассмотрим функцию f: $A \rightarrow B$, сопоставляющую каждому студенту курс, на котором он учится. Так как |A|=8, а |B|=5, то |A|>|B|. По принципу Дирихле функция f должна иметь повторяющиеся значения, т. е. найдутся два студента с одного и того же курса.

<u>Пример</u>. Какое наименьшее число фамилий должно быть записано в телефонном справочнике, чтобы с гарантией можно было утверждать, что хотя бы две фамилии начинаются с одной и той же буквы и заканчиваются одинаковыми буквами?

Решение. Пусть A — множество фамилий в справочнике, а В — множество пар букв, выписанных из стандартного алфавита русского языка, насчитывающего 33 буквы (если учесть, что фамилии не могут начинаться с букв «Ь» и «Ъ», то требуемый объем справочника окажется меньше). Обозначим через f: A→B функцию, которая каждой фамилии справочника ставит в соответствие пару букв: первую и последнюю буквы фамилии. Например, f(Кузнецов) = (к, в). Множество В содержит 33•33 = 1089 пар букв. Принцип Дирихле гарантирует нам, что если |A| > |B| = 1089, то найдется по крайней мере две фамилии, начинающиеся и оканчивающиеся на одинаковые буквы. Поэтому телефонный справочник должен содержать не менее 1090 фамилий.

Производящие функции

Производящие функции

Определение

Производящей функцией последовательности a_0, a_1, a_2, \dots называют степенной ряд вида

$$a^*(x) = \sum_{n=0}^{\infty} a_n x^n \tag{1}$$

Ряд вида

$$a^{*}(x) = \sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$$
 (2)

называется экспоненциальной производящей функцией последовательности a_0, a_1, a_2, \dots

Числа $\underline{a_n}$ и $\frac{a_n}{n!}$ называются коэффициентами ряда (1) и ряда (2) соответственно.

Операции над формальными объектами

$$(1) \ \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n \ \text{и} \ \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n = \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n \ , \text{ если для любого } \underline{n} \ \underline{a_n} = \underline{b_n};$$

(2)
$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n,$$

$$\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n + \sum_{n=0}^{\infty} \frac{b_n}{n!} x^n = \sum_{n=0}^{\infty} \frac{a_n + b_n}{n!} x^n$$

(3)
$$\left(\sum_{n=0}^{\infty} a_n x^n\right) \left(\sum_{n=0}^{\infty} b_n x^n\right) = \sum_{n=0}^{\infty} c_n x^n$$
, где $c_n = \sum_{i=0}^{n} a_i b_{n-i}$

$$\left(\sum_{n=0}^{\infty} \frac{a_n}{n!} x^n\right) \left(\sum_{n=0}^{\infty} \frac{b_n}{n!} x^n\right) = \sum_{n=0}^{\infty} \frac{d_n}{n!} x^n$$
, где $d_n = \sum_{i=0}^{n} \binom{n}{i} a_i b_{n-i}$

Производящие функции числа основных комбинаторных объектов

11роизвооящая функция числа сочетаний

$$\begin{split} &(1+e_1x)(1+e_2x)...(1+e_nx) = \\ &= 1+(e_1+e_2+...+e_n)x+(e_1e_2+e_1e_3+...+e_{n-1}e_n)x^2 + \\ &+(e_1e_2e_3+e_1e_2e_4+...+e_{n-2}e_{n-1}e_n)x^3+...+e_1e_2e_3...e_nx^n \end{split}$$

Каждому слагаемому коэффициента при x^k , k = 1, 2, ..., n можно сопоставить сочетание из множества $\{e_1, e_2, ..., e_n\}$ по k.

$$e_1 = \dots = e_n = 1$$

$$(1+x)^n = 1 + C_n^1 x + C_n^2 x^2 + C_n^3 x^3 + \dots + C_n^n x^n$$

 $(1+x)^n$ - производящая функция числа сочетаний

$$C_n^k = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Произвооящая функция числа сочетаний

$$(1 + e x + e_1^2 x^2)(1 + e_2 x)(1 + e_3 x) =$$

$$= 1 + (e_1 + e_2 + e_3)x + (e_1 e_2 + e_1 e_3 + e_2 e_3 + e_1 e_1)x^2 +$$

$$+ (e_1 e_2 e_3 + e_1 e_1 e_2 + e_1 e_1 e_3)x^3 + e_1 e_1 e_2 e_3 x^4$$

Каждому слагаемому коэффициента при x^k , k = 1,2,3,4 можно сопоставить сочетание с повторениями из множества $\{e_1, e_2, e_3\}$ по k, e_1 имеет кратность не более двух (0,1,2), кратность элементов e_2,e_3 не более единицы.

$$e_1 = e_2 = e_3 = 1$$
, $(1+x+x^2)(1+x)^2 = 1+3x+4x^2+3x^3+1x^4$ коэффициент при x^k , $k=1,2,3,4$ равен числу таких сочетаний

<u>Производящая</u> функцией числа таких сочетаний $(1+x+x^2)(1+x)^2$

11роизвооящая функция числа сочетаний

Производящая функция числа сочетаний из множества $E = \{e_1, ..., e_n\}$, когда кратность каждого элемента e_i может быть одним из чисел $k_1(i), k_2(i), ...$

$$\left(\!x^{k_1(1)}\!+x^{k_2(1)}\!+\ldots\!\right)\!\!\left(\!x^{k_1(2)}\!+x^{k_2(2)}\!+\ldots\!\right)\!..\!\left(\!x^{k_1(n)}\!+x^{k_2(n)}\!\right)$$

Коэффициент при x_k в степенном ряде равен числу таких сочетаний

произвооящая функция числа сочетаний. Пример 1

Найти число сочетаний с повторениями из \underline{n} элементов по \underline{k} без ограничений на кратность элементов в данном сочетании (число $\overline{C_n^k}$).

Пусть $a^*(x)$ — производящая функция последовательности $1, \overline{C_n^1}, \overline{C_n^2}, ..., \overline{C_n^k}, ...$

Тогда

$$a^*(x) = (1 + x + x^2 + ...)^n = \frac{1}{(1-x)^n}$$

произвооящая функция числа сочетаний. Пример 2

Найти число сочетаний с повторениями из n элементов по k, в которых каждый элемент встречается не менее r раз (кратность каждого элемента может быть одним из чисел $r, r+1, r+2, \ldots$).

Производящей функцией $\underline{b}(\underline{k})$ для числа сочетаний такого вида является функция

$$b^*(x) = (x^r + x^{r+1} + x^{r+2} + \dots)^n = \frac{x^{nr}}{(1-x)^n}.$$

произвооящая функция числа сочетаний. Пример З

В урне находятся 4 красных, 5 синих и 2 зеленых шара. (а) Сколько существует способов выбора 7 шаров из урны? (б) Сколько существует способов выбора из урны 7 шаров, если 1 шар красный и 2 синие.

Для части (а) производящая функция имеет вид

$$(1+x+x^2+x^3+x^4)(1+x+x^2+x^3+x^4+x^5)(1+x+x^2),$$

и количество способов выбора 7 шаров равно коэффициенту при x^7 в разложении этой производящей функции.

В части (б) нужно учесть, что 1 вытянутый шар красный, соответствующий многочлен имеет вид $(x+x^2+x^3+x^4)$, что представляет вытягивание 1, 2, 3 или 4 красных шаров. Точно так же, учитывая, что 2 вытянутых шара синие, соответствующий многочлен должен иметь вид $(x^2+x^3+x^4+x^5)$, что представляет вытягивание 2, 3, 4 или 5 синих шаров. Таким образом, производящий многочлен имеет вид

$$(x + x^2 + x^3 + x^4)(x^2 + x^3 + x^4 + x^5)(1 + x + x^2),$$

и количество способов выбора 7 шаров равно коэффициенту при x^7 в разложении производящей функции.

произвооящая функция числа выоорок. Размещения

Согласно биному Ньютона для любого натурального п

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \dots + \frac{n(n-1)\dots(n-k+1)}{k!}x^{k} + \dots + x^{n}$$

$$(1+x)^n = 1 + A_n^1 \frac{x}{1!} + A_n^2 \frac{x^2}{2!} + \dots + A_n^k \frac{x^k}{k!} + \dots + A_n^n \frac{x^n}{n!}$$

 $(1+x)^n$ - экспоненциальная производящая функция числа размещений

произвооящая функция числа выоорок. Общий случай

Выборки из множества $E = \{e_1, ..., e_n\}$ Условия: кратность каждого элемента e_i может быть одним из чисел $k_1(i), k_2(i), ...$

Экспоненциальная производящая функция числа таких выборок

$$\left(\frac{x^{k_1(1)}}{k_1(1)!} + \frac{x^{k_2(1)}}{k_2(1)} + \ldots\right) \left(\frac{x^{k_1(2)}}{k_1(2)} + \frac{x^{k_2(2)}}{k_2(2)} + \ldots\right) \ldots \left(\frac{x^{k_1(n)}}{k_1(n)} + \frac{x^{k_2(n)}}{k_2(n)} + \ldots\right)$$

произвооящая функция числа выоорок. Пример

Найти число 3-выборок из множества $\{e_1, e_2, e_3\}$ в которые элемент e_1 может входить не более одного раза, элемент e_2 входит обязательно, но не более двух раз, а элемент e_3 либо не входит, либо входит два раза.

Экспоненциальной производящей функцией числа таких выборок является функция

$$\left(1+x\right)\left(x+\frac{x^2}{2!}\right)\left(1+\frac{x^2}{2!}\right) = x+3\frac{x^2}{2!}+6\frac{x^3}{3!}+18\frac{x^4}{4!}+30\frac{x^5}{5!}$$

Число искомых выборок равно коэффициенту при $\frac{x^3}{3!}$, т.е. равно 6.

Производящая функция числа выборок

Для получения числа *k*-выборок с неограниченными повторениями

$$a^{*}(x) = \left(1 + x + \frac{x^{2}}{2!} + \dots\right)^{n} = (e^{x})^{n} = e^{nx} = 1 + nx + \frac{n^{2}x^{2}}{2!} + \dots = \sum_{k=0}^{\infty} n^{k} \frac{x^{k}}{k!}$$

Число k-выборок из множества, состоящего из \underline{n} элементов, равно \underline{n}^k .

Разбиения

Сколькими способами можно представить данное натуральное число n в виде суммы

$$n = a_1 + \ldots + a_k$$

где $k, a_1, ..., a_k$ — положительные целые числа.

Такое представление является разбиением числа *n* на *k* частей.

Случаи:

- 1) две суммы, различающиеся порядком слагаемых считаются различными (такие разбиения принято называть композициями);
- 2) суммы, отличающиеся друг от друга только порядком слагаемых, не различаются (именно в этом случае принято говорить о разбиении)

Разоиения. Произвооящие функции числа разбиении

Пусть, например, рассматриваются разбиения числа N на слагаемые, каждое из которых равно одному из чисел n_1, \ldots, n_k . При этом в сумме слагаемые не должны повторяться, а порядок слагаемых не играет роли.

Для решения задачи образуем выражение

$$(1+x^{n_1})(1+x^{n_2})\ldots(1+x^{n_k}).$$

Например, если надо узнать, сколькими способами можно уплатить 78 коп., беря не более одной монеты каждого достоинства, то надо составить выражение

$$(1+x)(1+x^2)(1+x^3)(1+x^5) \times \times (1+x^{10})(1+x^{10})(1+x^{15})(1+x^{20})(1+x^{50}),$$

раскрыть скобки и найти коэффициент при x78.

Разоиения. Произвооящие функции числа разбиении

Сколькими способами можно уплатить 29 коп. монетами по 3 и 5 коп?

В этой задаче надо найти число способов разбить число 29 на слагаемые, равные 3 и 5, причем порядок слагаемых не имеет значения. Иными словами, нам надо найти число неотрицательных решений уравнения 3m+5n=29.

Для этого составим выражение

$$f(x) = (1 + x^3 + x^6 + \dots + x^{3^m} + \dots) \times \times (1 + x^5 + x^{10} + \dots + x^{5^n} + \dots).$$

коэффициент при x^{29} дает ответ на задачу.

Разоиения. Произвооящие функции числа разбиении С

если надо найти, сколькими способами можно разбить число N на k слагаемых, принимающих значения n_1, \ldots, n_s , причем учитывается порядок слагаемых, то производящая функция имеет вид

$$f(x) = (x^{n_1} + x^{n_2} + \ldots + x^{n_s})^k.$$

Задача упрощается, если числа n_1, \ldots, n_s образуют арифметическую прогрессию— в этом случае x^{n_1}, \ldots, x^{n_s} образуют геометрическую прогрессию, а это позволяет упростить выражение для f(x).

Разоиения. Произвооящие функции числа разбиении С

Найдем, например, сколькими способами можно получить 25 очков, бросая 7 костей. Здесь надо образовать производящую функцию

$$f(x) = (x + x^2 + ... + x^6)^7$$
.

По формуле для суммы геометрической прогрессии эту функцию можно записать в следующем виде:

$$f(x) = \frac{x^7 (1-x^6)^7}{(1-x)^7} = x^7 (1-x^6)^7 (1-x)^{-7}.$$