debouncer

The **debouncer** filters short transient pulses from a signal, ensuring that there are no accidental transitions that may result in unwanted behavior.

Port descriptions:

- Input port clk a clock with a 10ns period
- Input port reset an asynchronous reset port.
- Input port D is the debouncer input.
- Output port Q is the debouncer output.

The internal signals are:

- Multi-bit signal counter counts down to the time where the input has been stable for long enough to merit a transit a change in the output. The number of bits in this counter can be customized through the use of a generic field.
- Signal i_D buffers the input port D.
- Signal i_Q buffers the output port Q.

Behavioral description:

When reset is high, the input D writes straight through to the output.

The value of i_D lags that of D by 1 clock cycle, so D and i_D can be used to detect changes in the input D.

When a change has been detected, **counter** is reset to its maximum value. This maximum value can be customized through the use of a generic field.

When a change is not detected, if the counter is 0, then the input writes through to the output, otherwise the counter decreases by 1.

Port descriptions:

- Input port clk a clock with a 10ns period
- Input port reset an asynchronous reset port.
- Input port ps2_clk_in is the input ps2 clock connection. This port connects to a remote device.
- Input port ps2_data_in is the input ps2 data connection. This port connects to a remote device.
- Output port ps2_clk_out is the output ps2 clock connection. This port connects to a remote device.
- Output port ps2_data_out is the output ps2 data connection. This port connects to a remote device.

- Output 8-bit port received byte returns bytes that the host receives from the ps2 connection.
- Output port received_flag is a flag that is normally 0, but emits a 1 clock period pulse on the clock cycle where received_byte is returning the byte received from the ps2 connection.
- Input 8-bit port send_byte is the byte that is to be sent over the ps2 connection.
- Input port send_flag is given a 1 clock period pulse on the clock cycle where send_byte is set to the byte that is to be sent over the ps2 connection.
- Output port send_busy_flag is 1 when an existing byte is queued to be sent or is being sent, and no new bytes are currently being accepted.

The internal signals are:

- Signal i_ps2_clk is the input ps2_clk_in signal filtered through a debouncer to eliminate transient pulses less than 1µs in duration.
- Signal i_ps2_data is the input ps2_data_in signal filtered through a debouncer to eliminate transient pulses less than 1µs in duration.
- Signal i_ps2_clk_d1 is i_ps2_clk delayed by 1 clock cycle to detect falling edges in i_ps2_clk.
- Signal i_ps2_clk_falling_edge is high when the current value of i_ps2_clk is 0, while the value on the previous clock cycle is 1.
- Signal i_direction has 3 states: S_DIR_IDLE, S_DIR_RECEIVE, S_DIR_SEND. These states denote the following:
 - S_DIR_IDLE denotes the state where no data is begin received or transmitted.
 - S_DIR_RECEIVE denotes the state where a byte is being received.
 - S_DIR_SEND denotes the state where a byte is being sent. Note that a single byte can be primed for sending even if the state is currently S_DIR_RECEIVE. When the state returns to S_DIR_IDLE, it will then be set to S_DIR_SEND and transmission will begin immediately.
- Signal i_data_received_state has 6 states: S_REC_IDLE, S_REC_BITS, S_REC_PARITY, S_REC_STOP, S_REC_DONE, S_REC_ERROR. These states denote the following:
 - S_REC_IDLE denotes the state where no byte is being received. This is the state when i_direction is not S_DIR_RECEIVE. When i_direction is S_DIR_IDLE, and a falling ps2 clock edge has been detected, this signals a transition of i_data_received_state to either S_REC_BITS or S_REC_ERROR depending on the ps2 data line (a valid start bit should always be 0).
 - S_REC_BITS denotes the state where data bits are expected to be sent over the ps2 data line. A new bit is read with each falling ps2 clock edge, and is registered. When a total of 8 bits have been received in this state, sate S_REC_PARITY begins.
 - S_REC_PARITY denotes the state where the parity bit is now expected. When this bit arrives, the next state is either S_REC_STOP or S_REC_ERROR depending on the status of the parity bit.
 - S_REC_STOP denotes the state where the stop bit is now expected. When this bit arrives, the next state is either S_REC_DONE or S_REC_ERROR depending on whether of not the stop bit is correctly 1 or not.
 - S_REC_DONE denotes a successful receipt of a byte from the remote device. This state lasts for exactly 1 clock cycle, after which the next state is S_REC_IDLE.
 - S_REC_ERROR denotes a failed receipt of a byte from the remote device. This state lasts for exactly 1 clock cycle., after which the next state is S_REC_IDLE.

- 8-bit signal i_received_data_buffer stores the bits received from the ps2 data line.
- 3-bit signal i_received_data_bit_index stores an index from 0 to 7, the index of the bit that is being expected.
- Signal i_received_data_parity_bit stores the current parity as the bits are received.
- 17-bit signal i_receive_time_out_counter is a counter that counts the clock ticks since the last falling ps2 clock edge. If 1ms passes without a falling ps2 clock edge, it will be assumed that there was an error in transmission, and the receipt is aborted, turning i_data_received_state to S_REC_ERROR, eventually returning i_direction to S_DIR_IDLE.
- Signal i_send_busy_flag is an internal register for the send_busy_flag output port.
- Signal i_data_send_state has 9 states: S_SEND_IDLE, S_SEND_INHIBIT, S_SEND_BITS, S_SEND_PARITY, S_SEND_STOP, S_SEND_PS2_RELEASE, S_SEND_ACKNOWLEDGE, S_SEND_DONE, S_SEND_ERROR. These states denote the following:
 - S_SEND_IDLE denotes the state where no byte is being currently sent. This is the state when i_direction is not S_DIR_SEND. When i_direction becomes S_DIR_SEND, the state transitions to S_SEND_INHIBIT, the ps2 clock is forced low, and a countdown counter (i_send_inhibitor_counter) for the inhibit pulse is set to 150 μs.
 - S_SEND_INHIBIT denotes the state where the ps2 clock is being inhibited by being forced to 0. This state lasts until the inhibitor counter, i_send_inhibitor_counter, reaches 0 wherein the ps2 clock is released (set to 1) and the ps2 data port is taken control of and forced low. The next state is S_SEND_BITS.
 - S_SEND_BITS denotes the state where a bit is assigned to the ps2 data port on each falling ps2 clock edge. After the 8 bits comes S_SEND_PARITY.
 - S_SEND_PARITY denotes the state where the parity bit is sent on the falling ps2 clock edge. Next
 is S_SEND_STOP.
 - S_SEND_STOP denotes the state where the stop bit, namely 1, is sent on the falling ps2 clock edge.
 Next is S_SEND_ACKNOWLEDGE.
 - S_SEND_ACKNOWLEDGE denotes the state where the ps2 data port is to receive a 0 on the last falling ps2 clock edge. If this 0 is received, the next state is S_SEND_DONE, otherwise the next state is S_SEND_ERROR.
 - S_SEND_DONE denotes a successful transmission of a byte to the remote device. This state lasts for exactly 1 clock cycle, after which the next state is S_SEND_IDLE.
 - S_SEND_ERROR denotes a failed transmission of a byte to the remote device. This state lasts
 for exactly 1 clock cycle., after which the next state is S_SEND_IDLE. The transmission is
 immediately re-attempted.
- 8-bit signal i_send_data_buffer stores the bits that are to be sent to the ps2 data line.
- 3-bit signal i_send_data_bit_index stores an index from 0 to 7, the index of the bit that is being sent.
- Signal i_send_data_parity_bit stores the current parity as the bits are sent.
- 15-bit signal i_send_inhibitor_counter is a counter that counts down to the end of the inhibitor pulse.