CORRECTION DEV.1 AVRIL 2020 -1AS

التمرين ــ7

قارن شدة قوة الجذب العام و شدة القوة الكهربائية بين البروتون والإلكترون في ذرة الهيدروجين علما أن : كتلة المروتون : $m_e = 9,11 \times 10^{-31} \; \mathrm{kg}$ ، كتلة الإلكترون : $m_p = 1,67 \times 10^{-27} \; \mathrm{Kg}$ و نصف قطر ذرة الهيدروجين : $d = 0,53 \times 10^{-10} \; \mathrm{m}$

تعطى : شحنة البروتون : $q_e = -1,60 \cdot 10^{-19} \, C$ ، شحنة الإلكترون : $q_e = -1,60 \cdot 10^{-19} \, C$ ، ماذا تستنتج

$$\frac{F_{o,p}}{F_{o,p}} = \frac{F_{o,e}}{F_{o,e}} = \frac{(253) \sqrt{7} (253)}{(253)}$$

$$\frac{F_{o,p}}{F_{o,p}} = \frac{F_{o,e}}{F_{o,e}} = \frac{(253) \sqrt{7} (253)}{(253)}$$

$$= \frac{3}{161} \times 10^{-37} \times \frac{1}{2} \times 10^{-37} \times \frac{1}{2} \times 10^{-24}$$

$$= \frac{3}{161} \times 10^{-37} \times \frac{1}{2} \times 10^{-37} \times \frac{1}{2} \times 10^{-24}$$

$$= \frac{3}{161} \times 10^{-37} \times \frac{1}{2} \times 10^{-39} \times \frac{1}{2} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-3} \times \frac{1}{2} \times 10^{-39} \times \frac{1}{2} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-3} \times \frac{1}{2} \times 10^{-39} \times \frac{1}{2} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-3} \times 10^{-39} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-39}$$

$$= \frac{3}{2} \times 10^{-3$$

- $d=4 \times 10^{-15} \, \mathrm{m}$ التنافر الكهربائي المتبادل بين بروتونين في النواة إذا كانت المسافة الفاصلة بينهما - كيف تفسر تماسك النواة مع وجود هذا التنافريين بروتوناتها ؟ ناقش.
 - قارن شدة هذه القوة مع قوة التجاذب الكهربائي المتبادل بين البروتون والإكترون في ذرة الهيدروجين . ماذا تستنتج ؟

_ حساب شدة القوة الكهربائية الموجودة بين البروتون و الإلكترون في ذرة الهيدروجين :

$$F_e = 9.10^{9} \cdot \frac{q_P \cdot q_e}{d^2}$$

$$= 9.10^{9} \cdot \frac{1.60 \cdot 10^{-19} \times 1.60 \cdot 10^{-19}}{(0.53 \cdot 10^{-10})^2}$$

$$F_e = 8.2 \cdot 10^{-8} \text{ N}$$

ـــ مقارنة شدة القوة الكهربائية بين البروتون والإلكترون في ذرة الهيدروجين مع شدة قوة التنافر الكهربائي المتبادل بين بروتونين في النواة:

_ نستنتج أن شدة القوة الكهربائية بين البروتون والإلكترون أصغر بــ 1,76 . أمرة شدة قوة التنافر الكهربائي المتبادل بين بروتونين في النواة .

التمرين _13

d = 20 cm في نقطتين d = 20 cm في نقطتين d = 20 cm في نقطتين d = 20 cm

 $k = 9 \times 10^9 \text{ U (SI)}$ و $q_B = -5 \,\mu\text{C}$ و $q_A = 10 \,\mu\text{C}$

1- احسب شدة القوة الكهربائية التي تتأثر بها الشحنة qB مثلها باستعمال سلم مناسب.

- 2 استنتج القوة الكهربائية التي تتأثر بها الشحنة QA .
- $q_{C} = + 20 \,\mu$ بحيث تكون : بحيث تكون من q_{B} بحيث تكون

q_B ، q_A على استقامة واحدة و بهذا الترتيب .

d' = 40 cm تبعد q_C عن q_B مسافة

- 3- ما هي القوة الإجمالية التي تخضع لها الشحنة qB ؟
- 4- هل تتأثر qc بقوة ؟ إذا كان الجواب بنعم أحسبها ثم مثلها على الرسم .
- وما ومنع الشحنة $q_{\rm C}$ كي يصبح التأثير الإجمالي على $q_{\rm B}$ معوما ?

الحـل _ 13

1 - حساب شدة القوة الكهربائية التي تتأثر بها الشحنة qB :

$$F_{A/B} = 9.10^{9} \cdot \frac{q_{B} \cdot q_{A}}{d^{2}}$$

$$= 9.10^{9} \cdot \frac{5.10^{-6} \times 10.10^{-6}}{(20.10^{-2})^{2}}$$

$$F_{A/B} = 11,25 \text{ N}$$

2 استنتاج القوة الكهربائية التي تتأثر بها الشحنة qA :

حسب مبدأ الفعلين المتبادلين ، الشحنة q_A تخضع لنفس القوة التي تخضع لها q_B تساويها في القيمة و تعاكسها في الإتجاه .

: تمثیلهما باستعمال سلم مناسب مثل ا $-1,32~\mathrm{cm} \rightarrow 11,25~\mathrm{N}$

3_ القوة الإجمالية التي تخضع لها الشحنة qB :

 q_C عندما نضع شحنة q_C بالقرب من q_B و هي موجبة فإن q_B تخضع لقوة تجاذب بينها و بين q_C و قوة تجاذب بينها و بين q_C حسا ب شدة قوة التجاذب بين q_C و q_B :

$$F_{B/C} = 9.10^{9} \cdot \frac{q_{B} \cdot q_{C}}{d'^{2}}$$

$$= 9.10^{9} \cdot \frac{5.10^{-6} \times 20.10^{-6}}{(40.10^{-2})^{2}}$$

$$F_{B/C} = 5.62 \text{ N}$$

 ${\bf q}_B$ عندما نضع شحنة ${\bf q}_C$ بالقرب من ${\bf q}_B$ و هي موجبة فإن ${\bf q}_C$ تخضع لقوة نتافر بينها و بين ${\bf q}_C$ و قوة تجاذب بينها و بين ${\bf q}_C$ و ${\bf q}_B$ هي : ${\bf q}_B$ هي ${\bf q}_B$ عندم قوة التجاذب بين ${\bf q}_C$ و ${\bf q}_B$ هي : ${\bf q}_B$

ــ حسا ب شدة قوة التجاذب بين qc و qc :

$$F_{A/C} = 9.10^{9} \cdot \frac{q_{A} \cdot q_{C}}{d^{2}}$$

$$= 9.10^{9} \cdot \frac{10 \cdot 10^{-6} \times 20 \cdot 10^{-6}}{(60 \cdot 10^{-2})^{2}}$$

$$F_{A/C} = 5 \text{ N}$$

القوة الإجمالية \overline{F} التي تخضع لها الشحنة q_C هي قيمة الغرق بين شدتي القوتين \overline{F} و $F_{B/C}$.

$$\mathbf{F} = \mathbf{F}_{B/C} - \mathbf{F}_{A/C} = 5,62 - 5 = 0,62 \text{ N}$$

رك موضع الشحنة q_{C} كي يصبح التأثير الإجمالي على q_{B} معدوم : حتى يصبح التأثير الإجمالي على q_{B} معدوم يجب ان تكون محصلة القوى المؤثرة عليها معدوم أي : $F_{A/B} = F_{C/B}$ و منه :

بفرض البعد بين q_C و q_B هو x نجد :

 $F_{A/B} = F_{C/B}$: نعوض بعلاقتي $F_{A/B}$ و $F_{C/B}$ في المساوات التالية

$$9.10^{9} \cdot \frac{q_{B} \cdot q_{A}}{d^{2}} = 9.10^{9} \cdot \frac{q_{B} \cdot q_{C}}{x^{2}}$$

$$\frac{q_{B} \cdot q_{A}}{(20 \times 10^{-2})^{2}} = \frac{q_{B} \cdot q_{C}}{x^{2}}$$

$$\frac{50}{(20 \times 10^{-2})^{2}} = \frac{100}{x^{2}}$$

 $50 \text{ x}^2 = 100 (20.10^{-2})^2 \implies 50 \text{ x}^2 = 4 \implies \text{x}^2 = 0.08 \implies \text{x} = 0.282 \text{ m} = 28.2 \text{ cm}.$

. يجب وضع الشحنة q_{C} على بعد x=28,2~cm من الشحنة q_{B} كي يصبح التأثير الإجمالي على q_{B} معدوما

التمرين __14

نثبت 3 شحن على رؤوس مثلث قائم متساوي الساقين . س احسب و مثل القوة الكهربائية التي تتأثر بها q_B علما أن : a=10~cm و $q_A=q_B=q_C=6~\mu C$

 $q_{\rm B}$ وكنافر) $q_{\rm B}$ والقوة الذي تؤثر بها الشحنة $q_{\rm A}$ على $q_{\rm B}$ وكنافر) $q_{\rm B}$ والقوة الذي تؤثر بها الشحنة $q_{\rm C}$ على $q_{\rm C}$ وكنافر) الذن الشحنة $q_{\rm B}$ تحت تأثير قوتين، أسمي $q_{\rm B}$ محصلتهما $q_{\rm B}$ والمنافذ $q_{\rm B}$ $q_{\rm A}$ والمنافذ $q_{\rm B}$ والمنافذ والمنا

 $F_{C/B}=F_{A/B}$ ومنه: $q_{B^{=}}$ ومنه: $q_{B^{=}}$ ومنه: $F=F_{A/B}\sqrt{2}$

F=45.81 N

 $F_{C/B}$ الشحنة $q_{\rm B}$ تتأثر بقوة F شدتها $F_{\rm C/B}$ وحاملها يصنع زاوية $F_{\rm C/B}$ مع حامل