

Heterogeneous Platform Example: ARM big.LITTLE

- A chosen scheduling policy significantly affects the runtime and energy efficiency;
- Essential for mobile devices with autonomous power supply.

Examples of Heterogeneous Schedules for Programs A, B

Objective: optimize trade-off between Response Time and Energy

Schedulers affect the efficiency of hardware utilization

Oversimplified ARM big.LITTLE

Existing Heterogeneous Schedulers

Schedulers:

- HEFT: Heterogeneous Earliest Finish Time;

- HASS: Heterogeneity-Aware Signature-Supported.

Property	Description
Objective	to minimize programs response times;
Principle	heuristic and greedy based
Key limitations	suboptimal scheduling decisions; no optimization of energy consumption.

State-Transition Graph for a Solo Program P_1

 P_1 start

P_1 requirements

Block	Param	Core 1	Core 2
Block 1	Time	5	4
DIOCK 1	Energy	6	10
Dlask 2	Time	3	2
Block 2	Energy	3	7
Block 3	Time	2	2
	Energy		6

State-Transition Graph for a Solo Program P_1

P_1 requirements

Block	Param	Core 1	Core 2
Block 1	Time	5	4
	Energy	6	10
Block 2	Time	3	2
	Energy	3	7
Dlock 2	Time	2	2
Block 3	Energy	3	6

State-Transition Graph for a Solo Program P_1

P_1 requirements

Block	Param	Core 1	Core 2
Diode 1	Time	5	4
Block 1	Energy	y 6	10
Diade 2	Time	3	2
Block 2	Energy 3	7	
Dlock 2	Time	2	2
Block 3	Energy	3	6

State-Transition Graph for a Solo Program P_1 P_1 requirements Param Core 1 Core 2 Block P_1 Time 5 4 Block 1 start Energy 6 10 SCPU_WAKEUP **SCPU WAKEUP** 3 Time Block 2 Energy 3 Core 2 Core 1 2 Time Block 3 Block 1 Block 1 Energy 6 3 Time 4 Time 5 Energy 10/4 Energy 6 δ^{MIGR} δ^{MIGR} 5* 4 Core 1 Core 1 Core 2 Core 2 Block 2 Block 2 Block 2 Block 2 Time 3 Time 3 Time 2 Time 2 Energy 3 Energy 7 Energy 3 Energy 7 $\delta^{\sf MIGR}$ $\mathcal{L}^{\mathsf{MIGR}}$ ••• Core 2 Core 1 8 8 Core 2 Core 1 6 6 Block 3 Block 3 Block 3 Block 3 Time 2 Time 2 Time 2 Time 2 * For simplicity, overheads are Energy 6 Energy 6 Energy 3

ignored in the explanation

Energy 3

8

State-Transition Graph for a Solo Program P_1 P_1 requirements Param Core 1 Core 2 Block P_1 Time 5 4 Block 1 start Energy 6 10 SCPU_WAKEUP **SCPU WAKEUP** 3 Time Block 2 Energy 3 Core 2 Core 1 2 Time Block 3 Block 1 Block 1 Energy 3 6 Time(4) Time 5 Energy 10 4 Energy 6 δ^{MIGR} δ^{MIGR} 5 4 Core 1 Core 1 Core 2 Core 2 Block 2 Block 2 Block 2 Block 2 Time 3 Time 2 Time 3 Time(2) Energy 3 Energy 3 Energy 7 Energy 7 δ^{MIGR} $\mathcal{L}^{\mathsf{MIGR}}$ ••• Core 2 Core 1 8 8 Core 2 Core 1 6 6 Block 3 Block 3 Block 3 Block 3 Time 2 Time 2 **Minimized RT: 8** Time 2 Time(2) Energy 6 Energy 3 Energy 6 Energy 3 High energy use: 20

State-Transition Graph for a Solo Program P_1 P_1 requirements Param Core 1 Core 2 Block P_1 Time 5 4 Block 1 start Energy 6 10 SCPU_WAKEUP **SCPU WAKEUP** 3 Time Block 2 Energy 3 Core 2 Core 1 2 Time Block 3 Block 1 Block 1 Energy 3 6 Time(5) Time(4) Energy 6 Energy $10/_{4}$ δ^{MIGR} δ^{MIGR} 5 4 Core 1 Core 1 Core 2 Core 2 Block 2 Block 2 Block 2 Block 2 Time(3) Time 2 Time 2 Time 3 Energy 3 8 Energy 7 Energy 3 Energy 7 δ^{MIGR} **∠MIGR** ••• Core 2 8 Core 1 8 Core 2 6 Core 1 6 Block 3 Block 3 Block 3 Block 3 Time(2) Time 2 High RT: 10 Time 2 **RT: 8** Time(2) Energy 6 Energy 6 Energy 3 Energy 3 Min. Energy: 12 Energy: 20

