# Esercitazione di Laboratorio:

Oscilloscopio Digitale

Coa Giulio

Licastro Dario

Montano Alessandra

26 novembre 2019

## 1 Scopo dell'esperienza

Lo scopo di questa esercitazione è stato misurare l'ampiezza e la frequenza di forme d'onda, prodotte da un generatore di segnali, tramite l'uso di un oscilloscopio; in particolare le fasi dell'esercitazione consistevano in:

- Misurazione dell'ampiezza e della frequenza del segnale.
- Misurazione del tempo di salita del segnale.
- Verifica del fenomeno dell'aliasing.

### 2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

| Strumento             | Marca e Modello | Caratteristiche                                                                 |
|-----------------------|-----------------|---------------------------------------------------------------------------------|
| Multimetro            | Agilent 34401A  |                                                                                 |
| Oscilloscopio         | Rigol DS1054Z   | 4 canali,                                                                       |
|                       |                 | $B = 50 \mathrm{MHz},$                                                          |
|                       |                 | $f_{\rm c} = 1  {\rm G} \frac{{\rm Sa}}{{\rm s}},$                              |
|                       |                 | $R_{\rm i} = 1  { m M} \tilde{\Omega},$                                         |
|                       |                 | $C_{\rm i}$ = 13 pF,                                                            |
|                       |                 | 12 Mbps di profondità di memoria                                                |
| Generatore di segnali | Rigol DG1022    | 2 canali,                                                                       |
|                       |                 | $f_{\rm uscita} = 20  \mathrm{MHz},$                                            |
|                       |                 | $Z_{ m uscita}$ = $50\Omega$                                                    |
| Sonda                 | Rigol PVP215    | $B = 35 \mathrm{MHz},$                                                          |
|                       |                 | $V_{\text{nominale}} = 300 \text{V},$                                           |
|                       |                 | $L_{\rm cavo} = 1.2 \mathrm{m},$                                                |
|                       |                 | $R_{\rm s}$ = 1 M $\Omega$ ,                                                    |
|                       |                 | Intervallo di pensazione: $10 \div 25 \mathrm{pF}$                              |
| Cavi coassiali        |                 | Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$ |
| Connettori            |                 | III                                                                             |

### 3 Premesse teoriche

### 3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

#### 3.2 Valore efficace

Il valore efficace di un segnale periodico rappresenta il valore che un segnale continuo dovrebbe avere per ottenere la stessa potenza media; esso è definito come:

$$V_{\text{eff}} = \sqrt{\frac{1}{T} \int_0^T V(t)^2 dt}$$

Per i segnali sinusoidali del tipo

$$V = A \cdot \sin(\overline{\omega} \cdot \mathbf{t})$$

il valore efficace corrisponde a

$$V_{\text{eff}} = \frac{A}{\sqrt{2}}$$

#### 3.3 Tempo di salita

Il tempo di salita di un segnale è definito come il tempo che il segnale impiega per passare dal 10% al 90% della sua ampiezza.

Nel caso in cui si stia analizzando un filtro passa-basso, vale la seguente la relazione che collega la banda del filtro (B) e il tempo di salita del segnale  $(t_{\text{salita}})$ :

$$B \cdot t_{\mathrm{salita}} = 0.35$$

N.B. Questa relazione vale solo per gli oscilloscopi analogici; nel caso di un oscilloscopio digitale la costante deve essere tratta dal manuale.

Inoltre, nel caso si voglia misurare il tempo di salita tramite un oscilloscopio, vale la relazione

$$t_{\text{salita}}^2 = t_{\text{salita} \to \text{ffettivo}}^2 + t_{\text{oscilloscopio}}^2$$

dove  $t_{\text{oscilloscopio}}$  rappresenta il tempo di salita introdotto dall'oscilloscopio.

#### 3.4 Sonda

La sonda è un particolare cavo coassiale che presenta un'estremità capace di effettuare delle misurazioni.

Quando si usano dei classici cavi coassiali BNC-BNC al fine di collegare il circuito, su cui effettuare le misure, all'oscilloscopio, si sta inserendo in parallelo al circuito un condensatore di capacità  $(C_c)$  pari a quella del cavo.



Figura 1: Circuito analizzato collegato all'oscilloscopio tramite un cavo coassiale BNC-BNC.

In questo caso, l'oscilloscopio si comporta, in ingresso, come un filtro passa-basso con una frequenza di taglio  $(f = \frac{1}{2\pi R_i(C_s + C_i)})$ . L'uso di una sonda per misurare delle grandezze in un circuito, si può vedere come l'inserimento di un condensatore in serie al circuito.



Figura 2: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

L'introduzione di questo condensatore comporta un calo della capacità equivalenti vista all'ingresso del circuito  $(\frac{C_s(C_c+C_i)}{C_s+C_c+C_i} \ll C_c + C_i)$ , ovvero una riduzione della frequenza del polo  $(f_{\text{polo}} = \frac{1}{2\pi R_i(C_s+C_i)})$ ; ciò porta ad una perdita d'informazioni in bassa frequenza. Al fine di evitare tale perdita d'informazioni, si pone, in parallelo al condensatore, una resistenza.



Figura 3: Circuito analizzato collegato all'oscilloscopio tramite una sonda.

Tale resistenza comporta la presenza di uno zero, oltre al polo precedentemente detto.



Figura 4: Diagramma di Bode della funzione di trasferimento del circuito.

A seconda dell'elevata o della bassa compensazione della sonda, il segnale sarà distorto verso l'alto o verso il basso.



Figura 5: Visualizzazione del segnale al variare della compensazione della sonda.

La sonda risulta compensata quando la frequenza del polo coincide con la frequenza dello zero; ciò avviene quando  $R_{\rm s}C_{\rm s}=R_{\rm i}(C_{\rm c}+C_{\rm i})$ . La sonda presenta un opportuno trimmer che influenza il valore di  $R_{\rm s}$  e permette la compensazione. Al fine di verificare se la sonda è compensata si esegue un confronto con un segnale noto.



Figura 6: Sonda compensata.

#### 3.5 Aliasing

L'aliasing è un fenomeno che si verifica quando non viene adoperata un'adeguata frequenza di campionamento per il segnale di ingresso, ovvero quando non viene rispettato il teorema del campionamento e si sottocampiona il segnale; ciò comporta una visualizzazione errata del segnale (perdita d'informazioni sul segnale) dovuta alla sovrapposizione di due ripetizioni del segnale.



Figura 7: Aliasing nel dominio delle frequenze.

Al fine di evitare questo fenomeno, si usano dei filtri passa-basso particolari detti, appunto, filtri anti-aliasing. Nel caso in cui ci si ritrovi in tale situazione, a volte, basta regolare la base tempi, in modo da poter visualizzare il segnale correttamente.

#### 3.5.1 Aliasing percettivo

In alcune occasioni è possibile che si verifichi il fenomeno dell'aliasing percettivo, ovvero la non corretta visione da parte dell'operatore della forma d'onda rappresentata sull'oscilloscopio, nonostante quest'ultima sia rappresentata correttamente.

### 4 Esperienza in laboratorio

#### 4.1 Misurazione del valore efficace e della frequenza del segnale

#### 4.1.1 Operazioni preliminari

Abbiamo regolato il generatore di segnali in modo da visualizzare un segnale sinusoidale di ampiezza  $V_{\rm pp}=1\,{\rm V}$  e frequenza  $f=1\,{\rm kHz}$ ; successivamente abbiamo collegato il generatore di segnali all'oscilloscopio tramite un cavo coassiale BNC-BNC al fine di visualizzare la forma d'onda.



Figura 8: Segnale sinusoidale di ampiezza  $V_{\rm pp}=1\,{\rm V}$ e frequenza  $f=1\,{\rm kHz}.$ 

#### 4.1.2 Misurazione del valore efficace del segnale

Abbiamo determinato, tramite l'uso dei cursori, l'ampiezza del segnale e, successivamente, l'incertezza di misura. Infine, si è determinato il valore efficace del segnale e la sua incertezza.



Figura 9: Misurazione dell'ampiezza e della frequenza del segnale.

#### 4.1.3 Misurazione della frequenza del segnale

Abbiamo determinato, tramite l'uso dei cursori, il periodo del segnale e, successivamente, l'incertezza di misura. Infine, si è determinato la frequenza del segnale e la sua incertezza (si veda la figura 9).

#### 4.1.4 Verifica col multimetro

Abbiamo misurato, tramite l'uso del multimetro, sia il valore efficace sia la frequenza del segnale, procedendo, poi, al calcolo delle relative incertezze di misura.

#### 4.2 Misurazione del tempo di salita del segnale

#### 4.2.1 Operazioni preliminari

Abbiamo regolato il generatore di segnali in modo da visualizzare un segnale ad onda quadra di ampiezza  $V_{\rm pp}=1\,{\rm V}$  e frequenza  $f=1\,{\rm kHz}$  (si veda la figura 8).

#### 4.2.2 Tempo di salita in condizioni di adattamento di impedenza

Abbiamo inserito in parallelo all'ingresso dell'oscilloscopio un terminatore di valore pari a  $50\,\Omega$ , collegato tramite un connettore a  $\tau$ . In questo modo, l'oscilloscopio mostra al cavo caoassiale BNC-BNC un'impedenza d'ingresso di  $50\,\Omega$ .



Figura 10: Connessione della resistenza da  $50\,\Omega$  in parallelo all'ingresso dell'oscilloscopio.

Successivamente abbiamo regolato l'oscilloscopio in modo da visualizzare il fronte di salita del segnale e abbiamo eseguito la misurazione, tramite i cursori, del tempo di salita.



Figura 11: Misurazione del tempo di salita di un segnale ad onda quadra di ampiezza  $V_{\rm pp}=1\,{\rm V}$  e frequenza  $f=1\,{\rm kHz}.$ 

Questa misurazione presenta un errore sistematico dovuto alla banda dell'oscilloscopio, per cui abbiamo calcolato tale errore per poter stabilire se la misura effettuata andasse corretta o meno al fine di ottenere il reale tempo di salita.

#### 4.2.3 Tempo di salita con generatore ad alta impedenza: uso della sonda compensata

Abbiamo inserito in serie all'ingresso dell'oscilloscopio, o, a seconda dei punti di vista, all'uscita del generatore di segnali, una resistenza di valore pari a  $1\,\mathrm{k}\Omega$ , collegata tramite una coppia di cavi BNC-coccodrillo (abbiamo collegato un cavo al generatore di segnali e un cavo all'oscilloscopio; successivamente abbiamo unito tra di loro i coccodrilli rappresentanti il polo negativo e abbiamo posto quelli rappresentanti il polo positivo ai capi della resistenza). In questo modo, il generatore di segnali presenta una resistenza interna pari a  $1'050\,\Omega$ , di cui  $50\,\Omega$  dovuti alla resistenza interna del generatore di segnali; a seguito di ciò, il circuito equivalente è diventato



Figura 12: Connessione, tramite il cavo, della resistenza da  $1\,\mathrm{k}\Omega$  in serie all'uscita del generatore di segnali.

Abbiamo, poi, proceduto al calcolo, sia teorico sia tramite i cursori, del nuovo tempo di salita del segnale, soggetto all'effetto del filtro passa-basso costituito dalla resistenza interna del generatore di segnali  $(R_g)$ , dalla capacità del cavo  $(C_c)$  e dalla capacità d'ingresso dell'oscilloscopio  $(C_i)$ .



Figura 13: Misurazione del tempo di salita del segnale dopo aver posto in serie la resistenza da  $1\,\mathrm{k}\Omega$ .

Infine, abbiamo sostituito il cavo BNC-coccodrillo che connetteva la resistenza da  $1\,\mathrm{k}\Omega$  all'oscilloscopio con la sonda (abbiamo collegato la testa della sonda, rappresentante il polo positivo, alla resistenza e il coccodrillo della sonda, rappresentante il polo negativo, al coccodrillo dell'altro cavo BNC-coccodrillo); in questo modo, il circuito equivalente è diventato



Figura 14: Connessione, tramite la sonda, della resistenza da  $1\,\mathrm{k}\Omega$  in serie all'uscita del generatore di segnali.

A questo punto, abbiamo compensanto la sonda tramite il suo trimmer, verificandone l'effetto su un segnale ad onda quadra, e abbiamo ripetuto il procedimento effettuato al punto precedente.



(a) Segnale dopo aver sostituito il cavo (b) Misurazione del tempo di salita del BNC-BNC con la Sonda. segnale dopo aver compensato la Sonda.

#### 4.3 Verifica del fenomeno dell'aliasing

#### 4.3.1 Operazioni preliminari

Abbiamo regolato il generatore di segnali in modo da visualizzare un segnale sinusoidale di ampiezza  $V_{\rm pp}=1\,{\rm V}$  e frequenza  $f=100\,{\rm kHz}$ , per poi procedere al calcolo della minima frequenza di campionamento  $(f_{\rm c})$ . Successivamente abbiamo verificato se essa era compatibile con la frequenza di campionamento dell'oscilloscopio, al fine di determinare se il teorema del campionamento fosse rispettato o meno. Infine abbiamo determinato, come richiesto, il numero di campioni presenti in un periodo del segnale sia analiticamente sia tramite l'uso dei cursori.

#### 4.3.2Aliasing percettivo

Abbiamo ridotto la velocità di scansione (nell'effettivo abbiamo ridotto la profondità della memoria e aumentato il numero di  $\frac{s}{\mathrm{div}})$ e osservato come essa influisse sulla frequenza di campionamento (comporta un calo della suddetta frequenza); successivamente abbiamo impostato la velocità di scansione in modo tale da ottenere una frequenza di campionamento  $f_c = 1 \text{ MHz}$ , ovvero abbiamo ridotto la profondità della memoria a 12 kSa, e abbiamo impostato l'oscilloscopio in DOTS MODE, ovvero senza l'interpolazione dei punti, ottenendo il seguente segnale.



Figura 16: Segnale a 100 kHz affetto da aliasing percettivo.

In questo caso il teorema del campionamento è rispettato, ma il segnale rappresentato non corrisponde ad una sinusoide in quanto viene sovracampionato (il numero di  $\frac{\dot{S}_a}{div}$  è troppo elevato perchè l'oscilloscopio riesca a rappresentare il segnale in maniera adeguata). Al fine di visualizzare meglio il segnale, abbiamo dovuto diminuire il numero di  $\frac{s}{div}$ . Infine abbiamo portato la frequenza del generatore di segnali a 100.1 kHz, ottenendo il seguente

segnale.



Figura 17: Segnale a 100.1 kHz affetto da aliasing percettivo.

Questo è un caso analogo al precedente, ma si distingue da esso in quanto il fenomeno dell'aliasing percettivo è "meno marcato".

#### 4.3.3 Aliasing nel dominio del tempo

Abbiamo regolato il generatore di segnali in modo da visualizzare il segnale sinusoidale ad una frequenza  $f=100.1\,\mathrm{kHz}$ , per poi procedere ad una riduzione della velocità di scansione fino a giungere ad una frequenza di campionamento  $f_\mathrm{c}=100\,\mathrm{kHz}$ . Successivamente abbiamo misurato, tramite i cursori, la frequenza del segnale ottenenuto.



Figura 18: Segnale a 100.1 kHz affetto da aliasing.

In questo caso il teorema del campionamento non è rispettato; infatti, sull'oscilloscopio, viene rappresentato un segnale non statico la cui frequenza, misurata tramite i cursori, è pari a  $102\,\mathrm{Hz}$ . Infine, abbiamo riportato la frequenza del generatore di segnali a  $f=100\,\mathrm{kHz}$ , ottenendo il seguente segnale.



Figura 19: Segnale a 100 kHz affetto da aliasing.

Anche in questo caso il teorema del campionamento non viene rispettato; infatti, sull'oscilloscopio, viene visualizzato un segnale non statico, come si nota dalla sequenza d'immagini 19, rappresentanti il segnale in momenti differenti, e con un periodo che non riesce ad essere rappresentato nella sua completezza.

### 5 Risultati

### 5.1 Misurazione del valore efficace e della frequenza del segnale

#### 5.1.1 Misurazione del valore efficace del segnale

L'incertezza relativa associata alla misurazione è pari a

$$\begin{split} \epsilon V_{\rm pp} &= \epsilon n_{\rm div} + \epsilon_{\rm oscilloscopio} = \\ &= \frac{\delta n_{\rm div}}{n_{\rm div}} + \frac{\delta_{\rm oscilloscopio}}{V_{\rm m}} = \\ &= \frac{\delta n_{\rm div}}{n_{\rm div}} + \frac{\frac{3}{100} V_{\rm fs}}{V_{\rm m}} = \\ &= \frac{0.2}{4} + \frac{\frac{3}{100} \cdot 500 \cdot 8}{1.01} m = \\ &= \frac{1}{20} + \frac{12}{101} = \\ &= 0.050 + 0.119 = \\ &= 0.169 \end{split}$$

Da cui

$$\begin{split} \delta V_{\mathrm{pp}} &= \epsilon V_{\mathrm{pp}} \cdot V_{\mathrm{pp}} = \\ &= 0.169 \cdot 1.01 = \\ &= 0.171 \, \mathrm{V} \end{split}$$

L'ampiezza del segnale analizzato è, quindi, pari a

$$V_{\rm pp} = 1.01 \pm 0.171 \, {
m V}$$

Sapendo l'ampiezza del segnale, abbiamo potuto determinarne il valore efficace tramite la sua definizione  $(V_{\rm eff} = \frac{V_{\rm pp}}{\sqrt{2}})$ , ottenendo

$$V_{\rm eff} = 714 \pm 121 \,{\rm mV}$$

Dove l'incertezza è stata calcolata tramite la formula

$$\begin{split} \epsilon V_{\text{eff}} &= \epsilon_{\sqrt{2}} + \epsilon V_{\text{pp}} = \\ &= \epsilon V_{\text{pp}} = \\ &= 0.169 \end{split}$$

Da cui

$$\begin{split} \delta V_{\text{eff}} &= \epsilon V_{\text{eff}} \cdot V_{\text{eff}} = \\ &= 0.169 \cdot 714 = \\ &= 121 \, \text{mV} \end{split}$$

#### 5.1.2 Misurazione della frequenza del segnale

L'incertezza relativa associata alla misurazione è pari a

$$\begin{split} \epsilon T &= \epsilon n_{\rm div} + \epsilon_{\rm oscilloscopio} = \\ &= \frac{\delta n_{\rm div}}{n_{\rm div}} + \frac{\delta_{\rm oscilloscopio}}{T_{\rm m}} = \\ &= \frac{\delta_{\rm n_{div}}}{n_{\rm div}} + \frac{25\mu \cdot T_{\rm fs}}{T_{\rm m}} = \\ &= \frac{0.2}{2} + \frac{25 \cdot 500 \cdot 8}{1.00} p = \\ &= \frac{1}{10} + 100n = \\ &= 0.100 + 100n = \\ &\approx 0.100 \end{split}$$

Da cui

$$\delta T = \epsilon T \cdot T =$$

$$= 0.100 \cdot 1.00m =$$

$$= 0.100 \text{ ms}$$

Il periodo del segnale analizzato è, quindi, pari a

$$T = 1.00 \pm 0.100 \,\mathrm{ms}$$

Sapendo il periodo del segnale, abbiamo potuto determinarne la frequenza tramite la sua definizione  $(f = \frac{1}{T})$ , ottenendo

$$f = 1.00 \pm 0.100 \, \mathrm{kHz}$$

Dove l'incertezza è stata calcolata tramite la formula

$$\delta f = \left| \frac{1}{T^2} \right| \cdot \delta T =$$
=  $\left| \frac{1}{1.00^2} \right| M \cdot 0.100m =$ 
= 0.100 kHz

#### 5.1.3 Verifica col multimetro

Tramite il multimetro, abbiamo misurato il seguente valore efficace

$$V_{\rm eff} = 714 \pm 225 \,\rm mV$$

Si può notare come il valore sia coerente con quello calcolato, ma presenti un'incertezza maggiore rispetto ad esso.

Abbiamo, poi, misurato la seguente frequenza

$$f = 999 \pm 0.0100 \,\mathrm{Hz}$$

Al contrario del valore efficace, la frequenza, per quanto il risultato, presenta un'incertezza minore rispetto a quella calcolata.

#### 5.2 Misurazione del tempo di salita del segnale

#### 5.2.1 Tempo di salita in condizioni di adattamento di impedenza

L'incertezza relativa associata alla misurazione è pari a

$$\begin{split} \epsilon t_{\text{salitaMisurato}} &= \epsilon n_{\text{div}} + \epsilon_{\text{oscilloscopio}} = \\ &= \frac{\delta n_{\text{div}}}{n_{\text{div}}} + \frac{\delta_{\text{oscilloscopio}}}{t_{\text{salitaMisurato}}} = \\ &= \frac{\delta_{\text{n}_{\text{div}}}}{n_{\text{div}}} + \frac{25\mu \cdot t_{\text{fs}}}{t_{\text{salitaMisurato}}} = \\ &= \frac{0.2}{3} + \frac{25 \cdot 500 \cdot 8}{19.3} \mu = \\ &= \frac{1}{15} + 5.18m = \\ &= 0.0667 + 5.18m = \\ &= 0.0719 \end{split}$$

Da cui

$$\delta t_{
m salitaMisurato} = \epsilon t_{
m salitaMisurato} \cdot t_{
m salitaMisurato} =$$

$$= 0.0719 \cdot 19.3n =$$

$$= 1.39 \, \rm ns$$

Il tempo di salita del segnale analizzato è, quindi, pari a

$$t_{\rm salitaMisurato} = 19.3 \pm 1.39 \, \rm ns$$

Come detto in precedenza, questa misurazione è affetta da un errore sistematico del valore di

$$t_{\text{oscilloscopio}} = \frac{0.35}{B} =$$

$$= \frac{0.35}{50M} =$$

$$= 7 \text{ ns}$$

Questo errore produce una variazione del tempo di salita, per cui esso deve essere corretto con la seguente formula

$$t_{\rm salita} = \sqrt{t_{\rm salitaMisurato}^2 - t_{\rm oscilloscopio}^2} =$$

$$= \sqrt{(19.3n)^2 - (7n)^2} =$$

$$= 18.0 \, \rm ns$$

#### 5.2.2 Tempo di salita con generatore ad alta impedenza: uso della sonda compensata

I cavi coassiali BNC-BNC usati erano lunghi 0.3 m cadauno, perciò la loro capacità era pari a

$$C_{\rm c} = 100 \cdot 0.3 =$$
  
= 30 pF

cadauno. Da ciò ne deriva che la capacità totale sarà pari a

$$C_{\text{tot}} = C_{c_1} + C_{c_2} + C_{\text{oscilloscopio}} =$$
  
=  $30p + 30p + 13p =$   
=  $73 \text{ pF}$ 

La resistenza del generatore, visto l'inserimento in serie della resistenza, è diventata

$$R_{\rm g} = 50 + 1k =$$
  
= 1'050 \Omega

Da ciò, ne deriviamo che la frequenza del polo dovrebbe essere pari a

$$\begin{split} f_{\rm p} &= \frac{1}{2\pi \cdot R_{\rm g} \cdot C_{\rm tot}} = \\ &= \frac{1}{2\pi \cdot 1'050 \cdot 73p} = \\ &= 2'076\,\mathrm{kHz} \end{split}$$

e che il relativo tempo di salita dovrebbe valere

$$t_{\text{salita}} = \frac{0.35}{f_{\text{p}}} =$$

$$= \frac{0.35}{2'076k} =$$
= 168 ns

Il tempo di salita del segnale ottenuto dalla lettura sull'oscilloscopio è, infatti, pari a

$$t_{\rm salitaMisurato} = 166 \pm 11.2 \,\mathrm{ns}$$

Sostituendo il cavo coassiale BNC-BNC con la Sonda, invece, si ottengono i seguenti valori

$$C_{\text{tot}} = C_{\text{s}} /\!\!/ C_{\text{c}} =$$

$$= \frac{C_{\text{s}} \cdot C_{\text{c}}}{C_{\text{s}} + C_{\text{c}}} =$$

$$= \frac{25p \cdot 120p}{25p + 120p} =$$

$$= 20.7 \text{ pF}$$

$$f_{\text{p}} = \frac{1}{2\pi \cdot R_{\text{g}} \cdot C_{\text{tot}}} =$$

$$= \frac{1}{2\pi \cdot 1'050 \cdot 20.7p} =$$

$$= 7'322 \text{ kHz}$$

$$t_{\text{salita}} = \frac{0.35}{f_{\text{p}}} =$$

$$= \frac{0.35}{7'322k} =$$

$$= 47.8 \text{ pg}$$

Con un tempo di salita misurato pari a

$$t_{\rm salitaMisurato} = 52 \pm 5.3 \, \mathrm{ns}$$

Mettendo a confronto i valori possiamo notare l'effetto della sonda; la frequenza del polo è, notevolmente, aumentata, poichè abbiamo ridotto la capacità totale vista dal generatore, e, di conseguenza, sia il tempo di salita calcolato sia quello misurato sono, notevolmente, diminuiti.

#### 5.3 Verifica del fenomeno dell'aliasing

Tramite il teorema del campionamento  $(f_c \ge 2f_{\text{max}})$ , abbiamo stabilito che la minima frequenza di campionamento corrisponde a

$$f_{\rm c} = 2 \cdot 100 \, \rm kHz = 200 \, \rm kHz$$

Dato che la frequenza di campionamento dell'oscilloscopio è pari a  $1\,\mathrm{G}\,\frac{\mathrm{Sa}}{\mathrm{s}}$ , possiamo affermare che il teorema del campionamento è rispettato.

Dato che il segnale presenta un periodo di  $10 \,\mu s$  ( $10.1 \,\mu s$  se determinato tramite i cursori), il numero di campioni presenti in un periodo del segnale sarà pari a

$$1 \text{ GSa}: 1 \text{ s} = x \text{ Sa}: 10 \,\mu\text{s}$$
 
$$x = \frac{1 \text{ G} \cdot 10 \,\mu}{1} \text{ Sa} = 10 \,\text{kSa}$$

Nel caso del periodo determinato tramite i cursori, il procedimento sarebbe lo stesso e porterebbe ai seguente risultato, totalmente comparabile con quello teorico.

$$1 \text{ GSa} : 1 \text{ s} = x \text{ Sa} : 10.1 \,\mu\text{s}$$

$$x = \frac{1\,\mathrm{G}\cdot 10.1\,\mu}{1}\,\mathrm{Sa} = 10.1\,\mathrm{kSa}$$