Name: 陈亚军

Degree: Ph. D

Major: Materials Science and Engineering

Associate Professor; Master Instructor

International Welding Engineer (IWE)

Interest:

- engine high temperature material research
- □ aircraft structure fatigue failure analysis

E-mail: yjchen@cauc.edu.cn

Tel:24092630

1. Introduction to Engineering Materials

1.1 HISTORICAL PERSPECTIVE

➤ Early civilizations have been designated by level of materials development

(Stone Age, Bronze Age, Iron Age)

➤ Characteristics of materials meet the needs of modern society(Roman-Lead-Pb(C2H3O2)2) -84 VS30 ppm

➤ Suitable materials make our existence so comfortable

1.2 MATERIALS SCIENCE AND ENGINEERING

- ➤ Materials science VS Materials engineering
- ➤ Materials scientist VS Materials engineer
- ➤ Structure and Property

The Notion of structure----nebulous term

- ➤ Subatomic structure----(electrons/individual atoms /nuclei)
- ➤ Atomic level----(atoms or molecules)
- ➤ Microscopic level----(large groups of atoms)
- ➤ Macroscopic level----(viewed with naked eye)

The Notion of property-----elaboration

- > Response to a specific imposed stimuli
- ➤ Independent of material shape and size

Six different categories:

- ➤ Mechanical
- > Electrical
- **≻**Thermal
- ➤ Magnetic
- **≻**Optical
- ➤ Deteriorative

The four components of the discipline of materials science and engineering and their interrelationship

The four components of the discipline of materials science and engineering and their interrelationship

Steels							
Processing		Diffusion		Recrystallizat ion		Isothermal transformation diagrams, continuous cooling transformation diagrams; heat treating for tempered martensite	treatment of
Structure	Cristal structure, polymorph ism				Development of microstructure , iron-iron carbide alloys	Microstructure of various microconstituents	
Properties		Solid solution s, dislocati ons	Mechanica l properties	Dislocations, slip systems, strengthening mechanisms	Phase equilibria, the iron-iron carbide phase diagram	Mechanical properties of Fe-C alloys	
Performance							Applications of steel alloys

Processing → Structure → Properties → Performance

Processing		Continuous cooling transformation diagrams	Concept viscosity	of	Crystallization, fabrication, Heat treatment
Structure	Noncryst alline solids		Atomic structure silica glasses	of	Polycrystallinity
Properties					Mechanical, thermal optical properties Opacity and translucency in insulators
Performance					Applications

Processing → Structure → Properties → Performance

Polymer Fibers					
Processing			Polymerization, additives, melting, fiber forming; Melting temperature, factors that affect;		
Structure	Electroni c structure Interato mic bonding	molecules, polymer			
Properties		Thermoplas tic polymers	Melting temperature factors that affect Mechanical properties, factors that affect	Degrada tion	
Performance			Applications		

Processing → Structure → Properties → Performance

Silicon Semiconductors					
Processing		Composition specification	Diffusion	Integrated circuits	
Structure	Electronic structure Interatomic bonding			Electronic band structure	
Properties				Electrical properties	
Performance				Integrated circuits	

Aluminum oxide

1.3 WHY STUDY MATERIALS SCIENCE AND ENGINEERING?

The criteria to make final decision

- >In-service conditions
- ➤ Deterioration
- > economics

- **≻**Semiconductor
- **≻**Biomaterials
- >Smart materials
- ➤ nanomaterials

- ➤ Nuclear energy
- ➤ Materials of Engine
- ➤ Fuel cell
- > Environmental

Structural metallic materials QUESTION

Select one or more of the following modern items or devices and conduct an internet search in order to determine what specific material is used and what specific properties this material possess in order for the device/item to function properly, write short essay in which you report your findings:

- ➤ Cell phone
- ➤ Digital camera batteries
- ➤ Solar cells
- ➤Wind turbine blades
- >Fuel cells
- ➤ Automobile engines block (other than cast iron)
- ➤ Automobile bodies (other than steel alloys)
- ➤ Space telescope mirrors
- ➤ Military body armor
- ➤ Sports equipment

