```
In [3]:
          # Data 201 Project #1
          # Walter Hinkley
 In [5]:
          import numpy as np
 In [7]:
          import pandas as pd
 In [9]:
          import matplotlib.pyplot as plt
In [11]:
          import seaborn as sns
          bags = pd.read_csv('Bag_Tax_20250404.csv')
In [13]:
In [15]:
          bags.head()
Out[15]:
                                                       Bag
                                                              Amount
                                                                      Amount
                                                                                Amount
             File ID Account
                              Date From
                                            Date To
                                                     Count Collected
                                                                          Due
                                                                               Retained
                              03/01/2022 03/31/2022
            82554
                                                     12872
                                                              643.60
                                                                        514.88
                                                                                  128.72 04/:
          1 68385
                         863
                              10/01/2020
                                         10/31/2020
                                                       454
                                                                22.70
                                                                         18.16
                                                                                   4.54
                                                                                          11/
                                                                 0.00
                                                                          0.00
            57463
                        1470
                              07/01/2019
                                          07/31/2019
                                                         0
                                                                                   0.00
                                                                                         08/
            80143
                         552
                              12/01/2021
                                          12/31/2021
                                                       861
                                                                43.05
                                                                                    8.61
                                                                                         01/
                                                                        34.44
            46402
                        1470 04/01/2018 04/30/2018
                                                                 0.00
                                                         0
                                                                          0.00
                                                                                   0.00
                                                                                         05/
          bags.describe()
In [17]:
```

about:srcdoc Page 1 of 5

\cap	11	+	Г	1	7	1	
U	u	L	L	Т	/	Ш	

	File ID	Account	Bag Count	Amount Collected	Amount Due	
count	74045.000000	74045.000000	7.404500e+04	74045.000000	74045.000000	74(
mean	46602.325316	1054.333973	1.181932e+04	590.964982	472.772887	
std	30744.384167	1216.081710	7.129513e+04	3564.756520	2851.805161	
min	12.000000	1.000000	0.000000e+00	0.000000	0.000000	
25%	18557.000000	293.000000	2.640000e+02	13.200000	10.560000	
50%	45802.000000	602.000000	1.162000e+03	58.100000	46.480000	
75%	76219.000000	1218.000000	3.603000e+03	180.150000	144.120000	
max	97612.000000	5241.000000	2.134035e+06	106701.750000	85361.400000	210

In [19]: maryland_bags = bags[bags['State'] == 'MD']

In [21]: maryland_bags.head()

Out[21]:

	File ID	Account	Date From	Date To	Bag Count	Amount Collected	Amount Due	Amount Retained	
5	65348	1300	08/23/2019	06/26/2020	8000	400.00	320.00	80.00	06
9	68185	3838	10/01/2020	10/31/2020	390	19.50	15.60	3.90	11
11	68165	1302	10/01/2020	10/31/2020	5689	284.45	227.56	56.89	11
12	68378	229	10/01/2020	10/31/2020	1620	81.00	64.80	16.20	1
13	68205	1336	10/01/2020	10/31/2020	303	15.15	12.12	3.03	11

In [23]: city_count = maryland_bags.groupby('City')['Bag Count'].sum().reset_index()

In [25]: city_count = city_count.sort_values('Bag Count', ascending=False)

about:srcdoc Page 2 of 5

```
In [27]: plt.figure(figsize=(10, 8))
    sns.barplot(y='City', x='Bag Count', data=city_count)
    plt.title('Bag Count per City in Maryland')
    plt.xlabel('Total Bag Count per 1000')
    plt.ylabel('City')
    plt.tight_layout()
    plt.show()
```



```
In [29]: median_amount_retained = maryland_bags['Amount Retained'].median()
In [31]: print(f"Median Amount Retained: {median_amount_retained}")
Median Amount Retained: 8.54
```

In [35]: num_rows = len(maryland_bags)
print(f"Number of rows in maryland_bags: {num_rows}")

Number of rows in maryland_bags: 52269

In [37]: bootstrap_sample = maryland_bags.sample(n=5300, replace=True, random_state=1
 print(f"Bootstrap_sample shape: {bootstrap_sample.shape}")

about:srcdoc Page 3 of 5

Bootstrap sample shape: (5300, 14)

```
In [39]: bootstrap_sample.head()
```

Out[39]:

	File ID	Account	Date From	Date To	Bag Count	Amount Collected	Amount Due	Amount Retained
47764	29265	288	10/01/2016	10/31/2016	679	33.95	27.16	6.79
67343	91345	4998	12/01/2023	12/31/2023	327	16.35	13.08	3.27
47408	28950	446	10/01/2016	10/31/2016	5049	252.45	201.96	50.49
48500	29662	1336	12/01/2016	12/31/2016	319	15.95	12.76	3.19
32431	27168	859	07/01/2016	07/31/2016	156	7.80	6.24	1.56

```
In [41]: from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
```

```
In [43]: X = bootstrap_sample['Bag Count'].values.reshape(-1, 1) # Independent varia
y = bootstrap_sample['Amount Collected'] # Dependent variable

# Create and fit the linear regression model
model = LinearRegression()
model.fit(X, y)

# Get model parameters
slope = model.coef_[0]
intercept = model.intercept_
r_squared = model.score(X, y)

# Print results
print(f"Linear Regression Model: y = {slope:.4f}x + {intercept:.4f}")
print(f"R-squared: {r_squared:.4f}")

# Create predictions for plotting
X_pred = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
y_pred = model.predict(X_pred)
```

about:srcdoc Page 4 of 5

```
# Plot the data and regression line
plt.figure(figsize=(10, 6))
plt.scatter(X, y, alpha=0.5, label='Bootstrap Sample')
plt.plot(X_pred, y_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('Bag Count')
plt.ylabel('Amount Collected')
plt.title('Linear Regression: Bag Count vs Amount Collected')
plt.legend()
plt.grid(True, alpha=0.3)
plt.tight_layout()
plt.show()
```

Linear Regression Model: y = 0.0500x + 0.0000 R-squared: 1.0000

about:srcdoc Page 5 of 5