Sentiment Analysis of Amazon Reviews: A Deep Learning Approach

Technical Report

Table of Contents

- 1. Executive Summary
- 2. Exploratory Data Analysis
- 3. Traditional Models
- 4. LSTM Model
- 5. Transformer Model
- 6. Conclusions and Recommendations

1. Executive Summary

This project addresses the challenge of automatically classifying Amazon product reviews into three sentiment categories: positive, neutral, and negative. Three different approaches were implemented and evaluated:

- Traditional machine learning models
- Recurrent neural networks (LSTM)
- Transformer-based models (BERT)

Dataset

• Total size: 67,992 reviews

Distribution: 91.99% positive, 4.27% neutral, 3.74% negative
Features: 14 columns including text, titles, ratings, and metadata

2. Exploratory Data Analysis

2.1 Dataset Characteristics

Textual Statistics

• Review Length by Sentiment:

Positive: Mean of 145.04 words
 Neutral: Mean of 185.56 words
 Negative: Mean of 23.50 words

Textual Complexity

- Negative reviews tend to be longer and use more complex vocabulary
- Higher number of sentences in negative reviews
- More consistent words per sentence in positive reviews

2.2 Usefulness Analysis

Negative reviews: Mean of 2.15 helpful votes
 Neutral reviews: Mean of 0.69 helpful votes
 Positive reviews: Mean of 0.39 helpful votes

3. Traditional Models

3.1 Methodology

- Preprocessing:
 - Text cleaning and normalization
 - TF-IDF vectorization
 - Class balancing (SMOTE + RandomUnderSampler)

3.2 Comparative Results

Model	Accurac y	Macro F1-score	Cross-validation
Naive Bayes	0.79	0.52	0.797 (±0.010)
Logistic Regression	0.84	0.57	0.837 (±0.008)
SVM	0.85	0.58	0.851 (±0.012)
Random Forest	0.95	0.75	0.947 (±0.001)

4. LSTM Model

4.1 Architecture

Bidirectional LSTM with 3 layers (256, 128, 64 units)

• Dropout (0.2) for regularization

• Batch Normalization

• Dense layers with L1/L2 regularization

• Total parameters: 2,619,715

4.2 Results

Training accuracy: 0.8923Validation accuracy: 0.8745Training loss: 0.2834

Validation loss: 0.3156

Metrics by Class

Class	Precision	Recall	F1-score
Negative	0.87	0.85	0.86
Neutral	0.79	0.76	0.77
Positive	0.91	0.93	0.92

5. Transformer Model

5.1 Configuration

Base model: BERT (bert-base-uncased)
 Maximum tale primation: 400 tale pre-

Maximum tokenization: 128 tokens

Batch Size: 32Learning Rate: 2e-5Weight Decay: 0.01

Epochs: 4

5.2 Results

Accuracy: 0.960290
F1-Score: 0.959570
Precision: 0.958969
Recall: 0.960290

Training Progression

Epoc h	F1-Score
1	0.904339
2	0.918984
3	0.944916
4	0.952680

6. Conclusions and Recommendations

6.1 Model Comparison

1. Transformer (BERT)

- Best overall performance (96% accuracy)
- Greater generalization capacity
- Requires more computational resources

2. **LSTM**

- Good performance/resource balance (87% accuracy)
- Effective at capturing temporal dependencies
- Shorter training time than BERT

3. Random Forest

- Best traditional model (95% accuracy)
- o Easy to implement and maintain
- Lower computational cost

6.2 Recommendations

- 1. Implement the BERT model in production for cases requiring maximum precision
- 2. Use LSTM as an alternative when computational resources are limited
- 3. Maintain Random Forest as baseline and for low-latency cases

7. Dashboard

