ODD SEMESTER EXAMINATION, 2024 – 25

2nd Year (3rd Sem) B.Tech.

MATHEMATICS-III

Duration: 3:00 hrs Max Marks: 100

Note: - Attempt all questions. All Questions carry equal marks. In case of any ambiguity or missing data, the same may be assumed and state the assumption made in the answer.

Q 1. Answer any two parts of the following. (10x2=20)a) (i) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2, & for |x| \le 1 \\ 0 & for |x| > 1. \end{cases}$ (5 marks) (ii) Find the Fourier sine transform of $f(x) = \frac{e^{-tx}}{x}$ (5 marks) b) Express the function $f(x) = \begin{cases} 1, & When \ |x| \le 1 \\ 0, & When \ |x| > 1. \end{cases}$ As a Fourier integral. Hence evaluate $\int_0^\infty \frac{\sin \lambda \cos \lambda}{2} d\lambda$. (10 marks) c) Solve $\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$ for $0 \le x < \infty$, t > 0 given the condition (i) u(x, 0) = 0 for all $x \ge 0$ (ii) $\frac{\partial u}{\partial x}(0,t) = -a$ (constant) (iii) u(x, t) is bounded. (10 marks) Q 2. Answer any two parts of the following. (10x2=20)a) (i) Obtain the Laplace transform of $t^2e^t \sin 4t$. (5 marks) (ii) Find the inverse Laplace transform of $\frac{s+4}{s(s-1)(s^2+4)}$. (5 marks) b) Find the Laplace transform of periodic function and find the Laplace transform of the following periodic function with period $\frac{2\pi}{\omega}$ defined as $f(t) = \begin{cases} \sin \omega t, \ 0 \le t < \frac{\pi}{\omega} \\ 0, \quad \frac{\pi}{\omega} \le t \le \frac{2\pi}{\omega} \end{cases}$ (10 marks) c) Using Laplace transforms, find the solution of initial value problem $y'' - 4y' + 4y = 64 \sin 2t$

$$y(0) = 0, y'(0) = 1.$$
 (10 marks)

- Q 3. Answer any two parts of the following. (10x2= 20)

 a) (i) By using Newton Raphson's method find the root of x⁴ x -10 = 0, which is near to x = 2 correct to three places of decimal. (5 marks)
 - (ii). Given f(0) = 3, f(1) = 12, f(2) = 81, f(3) = 200, f(4) = 100 and f(5) = 8. Form a difference table

	and find	$\Delta^5 f(0)$.								(5 marks)			
	b) Given values												
		X	5	7	11		13		17				
		F(x)	150	392	2 1	452	23	66	5202				
	Find the value f(9) by using Lagrange's formula. (10 marks)												
	c) Estimate the sale for 1966 using the following table by Newton-Gregory formula												
		Year	1931	1941	1951	1961	1	.971	1981				
		Sale in Thousand	12	15	20	27	3	39	52				
	,		'		ı				•	(10 marks)			
Q 4.	Answer any two parts of the following. $(10x2=20)$												
	a) (i) Calculate the value of the integral $\int_4^{5.2} \log x \ dx$ by Trapezoidal rule. (5 marks)												
	(ii) Using Milne predictor formula find y when $x = 0.8$ given $\frac{dy}{dx} = x - y^2$, $y(0) = 0$, $y(0.2) = 0.02$,												
	y(0.4) = 0.0795, y(0.6) = 0.1762. (5 marks)												
	d) b) Find $\int_0^1 \frac{dx}{1+x^2}$ by using												
	(i). Simpson's $\frac{1}{3}$ rule												
	(ii). Simpson's $\frac{3}{8}$ rule (10 marks)												
	c) Given $\frac{dy}{dx} = y - x$, $y(0) = 2$. Find, using Runge-Kutta fourth order formula y (0.1) and y (0.2) correct to												
	four decimal									(10 marks)			
Q 5.	Answer any	two parts of the fol	lowing.							(10x2=20)			
	a) (i) Define Skewness and its type. Calculate Karl Pearson's coefficient of skewness for distribution												
	having mean=3.41, median = 3.4 and S. D. =0.70. (5 marks)												
	(ii) Define Kurtosis. For a distribution the second and fourth central moments are 2 and 17												
	respectively. Find the moment coefficient of Kurtosis. (5 marks)												
	b) Obtain the regression equation Y on X by least square method for the following data, also estimate the value of Y when $X = 10$.												
		X	1	2	3		4	5					
		У		9			12	11					
										(10 marks)			

(10 marks)

c) Fit a least square geometric curve $y = ax^b$ for the following data

X	1	2	3	4	5
у	0.5	2	4.5	8	12.5

(10 marks)
