Example. Consider the series $\sum \frac{(-1)^{n-1}}{(n+x^2)}$ for uniform convergence for all values of

X.

Solution. Let
$$u_n = (-1)^{n-1}$$
, $v_n(x) \frac{1}{n+x^2}$

Since $f_n(x) = \sum_{r=1}^n u_r = 0$ or 1 according as n is even or odd, $f_n(x)$ is bounded for all n.

Also $v_n(x)$ is a positive monotonic decreasing sequence, converging to zero for all real values of x.

Hence by Dirichlets test, the given series is uniformly convergent for all real values of x.

Example. Prove that the series $\sum (-1)^n \frac{x^2 + n}{n^2}$, converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Solution. Let the bounded interval be [a, b], so that \exists a number K such that, for all x in [a, b], |x| < K.

Let us take $\sum u_n = \sum (-1)^n$, which oscillates finitely, and

$$a_n = \frac{x^2 + n}{n^2} < \frac{K^2 + n}{n^2}$$

Clearly a_n is a positive, monotonic decreasing function of n for each x in [a, b], and tends to zero uniformly for $a \le x \le b$.

Hence by Dirchlet's test, the series $\sum (-1)^n \frac{x^2 + n}{n^2}$ converges uniformly on [a, b].

Again
$$\sum \left| (-1)^n \frac{x^2 + n}{n^2} \right| = \sum \frac{x^2 + n}{n^2} \sim \sum \frac{1}{n}$$
, which diverges. Hence the

given series is not absolutely convergent for any value of x.

Example. Show that the series $\sum_{n=1}^{\infty} (-1)^{n-1} x^n$ converges uniformly in $0 \le x \le k < 1$.

Solution. Let $u_n = (-1)^{n-1}$, $v_n(x) = x^n$.

Since $f_n(x) = \sum_{n=1}^n u_n = 0$ or 1 according as n is even or odd, $f_n(x)$ is bounded for all n. Also $\{v_n(x)\}$ is a positive monotonic decreasing sequence, converging to zero for all values of x in $0 \le x \le k < 1$. Hence by Dirichlet's test, the given series is uniformly convergent in $0 \le x \le k < 1$.

Example 14. Prove that the series $\sum \frac{\cos n\theta}{n^p}$ converges uniformly for all values of p > 0 in an interval $[\alpha, 2\pi - \alpha[$, where $0 < \alpha < \pi$.

Solution. When $0 , the series converges uniformly in any interval <math>[\alpha, 2\pi - \alpha]$, $\alpha > 0$. Take $a_n = (1/n^p)$ and $u_n = \cos n\theta$ in Dirchlet's test.

Now $(1/n^p)$ is positive monotonic decreasing and tending uniformly to zero for 0 , and

$$\left| \sum_{t=1}^{n} u_{t} \right| = \left| \sum_{t=1}^{n} \cos t\theta \right| = \left| \cos \theta + \cos 2\theta + \dots + \cos n\theta \right|$$

$$= \left| \frac{\cos((n+1)/2)\theta \sin(n/2)\theta}{\sin(\theta/2)} \right| \le \csc(\alpha/2), \ \forall \ n,$$

$$\text{for } \theta \in [\alpha, 2\pi - \alpha]$$

Now by Dirchlet test , the series $\Sigma(\cos n\theta/n^p)$ converges uniformly on $[\alpha, 2\pi - \alpha]$ where $0 < \alpha < \pi$. When p > 1, Weierstrass's M-test , the series converges uniformly for all real values of θ .

Problem 4 (pg. 166 #5). Let

$$f_n(x) := \begin{cases} 0 & \left(x < \frac{1}{n+1}\right), \\ \sin^2(\frac{\pi}{x}) & \left(\frac{1}{n+1} \le x \le \frac{1}{n}\right), \\ 0 & \left(\frac{1}{n} < x\right). \end{cases}$$

Show that $\{f_n\}$ converges to a continuous function, but not uniformly. Use the series $\sum f_n$ to show that absolute convergence, even for all x, does not imply uniform convergence.

Solution. The first thing to do is decide what function these f_n 's converge to. This is fairly simple, since if $x \leq 0$, $f_n(x) \equiv 0$ and if x > 0, $f_n(x) = 0$ for every large n. Hence, $f_n \to 0$ pointwise. However, this is not a uniform convergence. Fix $\epsilon = 1$. Let $N \in \mathbb{N}$, and set $x = \frac{1}{N+1/2}$. You can check that $|f_N(x) - f(x)| = |f_N(x)| = 1 > 0$ so the convergence cannot be uniform.

The series $\sum f_n$ converges to the function defined by

$$f^*(x) := \begin{cases} 0 & x < 0, \text{ or } x > 0; \\ \sin^2(\frac{\pi}{x}) & 0 < x < 1. \end{cases}$$

Problem 5. Prove that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Solution. Fix an x, and Set $a_n := \frac{x^2+n}{n^2}$. Since

$$|(-1)^n a_n| = \frac{x^2 + n}{n^2} \ge \frac{1}{n},$$

it is easy to see that $\sum |(-1)^n a_n|$ diverges by the comparison test.

Now, if we fix a bounded interval, $|x| \leq M$ for some M and any x. Hence, $\lim a_n = 0$ (we need boundedness to be able to take the limit), so that $\sum (-1)^n a_n$ converges by the alternating series test.

Prove that
$$f(x)=f(n)=\left\{egin{array}{ll} x, & ext{if } n\in Q \ -x, & ext{if } n
otin Q \end{array}
ight.$$

is not integrable on [0,1]

Suppose that P is a partition of [0,1] with endpoints $x_0 = 0 < x_1 < \ldots < x_n = 1$. For $k = 1, \ldots, n$ let $I_k = [x_{k-1}, x_k]$. Then

$$\sup_{x\in I_k} f(x) = x_k \qquad ext{and} \qquad \inf_{x\in I_k} f(x) = -x_k \ ,$$

SO

$$U(f,P) = \sum_{k=1}^{n} x_k (x_k - x_{k-1})$$
 (1)

$$\geq \sum_{k=1}^n \left(\frac{x_k+x_{k-1}}{2}\cdot (x_k-x_{k-1})\right) \tag{2}$$

$$=\frac{1}{2}\sum_{k=1}^{n}\left(x_{k}^{2}-x_{k-1}^{2}\right) \tag{3}$$

$$=\frac{1}{2}\big(x_n^2-x_0^2\big) \tag{4}$$

$$=\frac{1}{2}\;.$$

The calculation showing that $L(f,P) \leq -rac{1}{2}$ is entirely similar. Thus, for all partitions P we have

$$U(f,P)-L(f,P)\geq rac{1}{2}-\left(-rac{1}{2}
ight)=1\;,$$

and f is not Riemann integrable.

Example 10. Show that the function f defined by $f(x) = \begin{cases} 0, & \text{if } x \text{ is an integer} \\ 1, & \text{otherwise} \end{cases}$ is integrable on [0, m], $f(x) = \begin{cases} 0, & \text{if } x \text{ is an integer} \\ 1, & \text{otherwise} \end{cases}$ (M.D.U. 1990)

Sol.
$$f(x) = \begin{cases} 0, & \text{if } x = 0, 1, 2, \dots, m \\ 1, & \text{if } r - 1 < x < r, \quad r = 1, 2, \dots, m \end{cases}$$

 \Rightarrow f is bounded and has only m+1 points of finite discontinuity at 0, 1, 2,, m. Since the points of discontinuity of f on [0, m] are finite in number, therefore, f is integrable on [0, m].

Note.
$$\int_0^m f(x) dx = \int_0^1 f(x) dx + \int_0^2 f(x) dx + \dots + \int_{m-1}^m f(x) dx$$
$$= \int_0^1 1 dx + \int_1^2 1 dx + \dots + \int_{m-1}^m 1 dx$$
$$= (1-0) + (2-1) + \dots + (m-(m-1)) = 1 + 1 + \dots + 1 = m.$$

Example 12. Show that a function f defined on [0, 1] by $f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n}, & (n = 1, 2,) \\ 0, & x = 0 \end{cases}$

is integrable on [0, 1]. Also show that $\int_0^1 f(x) dx = \frac{\pi^2}{6} - 1$.

Sol.
$$f(x) = 1$$
, when $\frac{1}{2} < x \le 1$
 $= \frac{1}{2}$, when $\frac{1}{3} < x \le \frac{1}{2}$
 $= \frac{1}{3}$, when $\frac{1}{4} < x \le \frac{1}{3}$
 \vdots
 $= \frac{1}{n}$, when $\frac{1}{n+1} < x \le \frac{1}{n}$
 \vdots
 $= 0$, when $x = 0$

Example 11. Show that the function f defined by

$$f(x) = \frac{1}{2^n}$$
, when $\frac{1}{2^{n+1}} < x \le \frac{1}{2^n}$, $(n = 0, 1, 2,)$

is integrable on [0, 1], although it has an infinite number of points of discontinuity.

Also evaluate
$$\int_{0}^{1} f(x) dx$$
 (M.D.U. 1995)
Sol. $f(x) = 1$, when $\frac{1}{2} < x \le 1$
 $= \frac{1}{2}$, when $\frac{1}{2^{2}} < x \le \frac{1}{2}$
 $= \frac{1}{2^{2}}$, when $\frac{1}{2^{3}} < x \le \frac{1}{2^{2}}$
 \vdots
 $= \frac{1}{2^{n-1}}$, when $\frac{1}{2^{n}} < x \le \frac{1}{2^{n-1}}$

Thus we notice that f is bounded and continuous on [0, 1] except at the points $0, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots$

when x = 0

The set of points of discontinuity of f on [0, 1] is $\left\{0, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots\right\}$ which has only one limit point 0.

Since the set of points of discontinuity of f on [0, 1] has a finite number of limit points, therefore, f is integrable on [0, 1].

Now
$$\int_{1/2^{n}}^{1} f(x) dx = \int_{1/2}^{1} f(x) dx + \int_{1/2^{2}}^{1/2} f(x) dx + \int_{1/2^{3}}^{1/2^{2}} f(x) dx + \dots + \int_{1/2^{n}}^{1/2^{n-1}} f(x) dx$$

$$= \int_{1/2}^{1} 1 dx + \int_{1/2^{2}}^{1/2} \frac{1}{2} dx + \int_{1/2^{3}}^{1/2^{2}} \frac{1}{2^{2}} dx + \dots + \int_{1/2^{n}}^{1/2^{n-1}} \frac{1}{2^{n-1}} dx$$

$$= \left(1 - \frac{1}{2}\right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2^{2}}\right) + \frac{1}{2^{2}} \left(\frac{1}{2^{2}} - \frac{1}{2^{3}}\right) + \dots + \frac{1}{2^{n-1}} \left(\frac{1}{2^{n-1}} - \frac{1}{2^{n}}\right)$$

$$= \frac{1}{2} + \frac{1}{2} \left(\frac{1}{2^{2}}\right) + \frac{1}{2^{2}} \left(\frac{1}{2^{3}}\right) + \dots + \left(\frac{1}{2^{2}}\right)^{n-1} = \frac{1}{2} \cdot \frac{1 - \left(\frac{1}{2^{2}}\right)^{n}}{1 - \frac{1}{2^{2}}} = \frac{2}{3} \left(1 - \frac{1}{4^{n}}\right)$$

Proceeding to the limit when $n \to \infty$, we get $\int_0^1 f(x) dx = \frac{2}{3}$.

Example 14. Show that
$$\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right] = \frac{3}{8}$$
.
Sol. $\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right]$

$$= \lim_{n \to \infty} \left[\frac{n^2}{(n+0)^3} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{n^2}{(n+n)^3} \right]$$

$$= \lim_{n \to \infty} \sum_{r=0}^{n} \frac{n^2}{(n+r)^3} = \lim_{n \to \infty} \sum_{r=0}^{n} \frac{\frac{1}{n}}{\left(1 + \frac{r}{n}\right)^3}$$

$$= \int_0^1 \frac{dx}{(1+x)^3}$$

$$= \left[\frac{-1}{2(1+x)^2} \right]_0^1 = -\frac{1}{2} \left(\frac{1}{4} - 1 \right) = \frac{3}{8}.$$
[replacing $\frac{r}{n}$ by x and $\frac{1}{n}$ by dx]

Example 9. Show that the greatest integer function f(x) = [x] is integrable on [0, 4] and

$$\int_{0}^{4} [x] dx = 6.$$
 (M.P.U. 1992)

Sol.
$$f(x) = [x] \text{ on } [0, 4]$$
 \Rightarrow $f(x) = \begin{cases} 0 & \text{when } 0 \le x < 1 \\ 1 & \text{when } 0 \le x < 1 \\ 2 & \text{when } 0 \le x < 1 \\ 3 & \text{when } 0 \le x < 1 \end{cases}$

⇒ f is bounded and has only four points of finite discontinuity at 1, 2, 3, 4.

Since the points of discontinuity of f on [0, 4] are finite in number, therefore, f is integrable on [0, 4]

and

$$\int_0^4 [x] dx = \int_0^1 [x] dx + \int_1^2 [x] dx + \int_2^3 [x] dx + \int_3^4 [x] dx$$
$$= \int_0^1 0 dx + \int_1^2 1 dx + \int_2^3 2 dx + \int_3^4 3 dx$$
$$= 0 + (2 - 1) + 2(3 - 2) + 3(4 - 3) = 6.$$

Example 7. Prove that $\int_0^{\pi/2} \cos x \, dx = 1$.

Sol. Since $f(x) = \cos x$ is bounded and continuous on $\left[0, \frac{\pi}{2}\right]$, therefore, f is integrable on $\left[0, \frac{\pi}{2}\right]$.

Consider a partition $P = \left\{ 0 = x_0, x_1, x_2, \dots, x_n = \frac{\pi}{2} \right\}$ of $\left[0, \frac{\pi}{2} \right]$ dividing it into n equal sub-integral $\left[0, \frac{\pi}{2} \right]$

each of length
$$\frac{\frac{\pi}{2} - 0}{n} = \frac{\pi}{2n}$$
 so that $\|P\| \to 0$ as $n \to \infty$.

Also
$$x_{r} = 0 + \frac{r\pi}{2n} = \frac{r\pi}{2n} \quad \text{and} \quad \delta_{r} = \frac{\pi}{2n}, \qquad r = 1, 2, \dots, n.$$

$$\therefore \int_{0}^{\pi/2} f(x) dx = \lim_{\|P\| \to 0} \sum_{r=1}^{n} f(\xi_{r}) \delta_{r} = \lim_{n \to \infty} \sum_{r=1}^{n} f(x_{r}) \delta_{r} \qquad \text{(taking } \xi_{r} = x_{r})$$

$$= \lim_{n \to \infty} \sum_{r=1}^{n} f\left(\frac{r\pi}{2n}\right) \cdot \frac{\pi}{2n} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{\pi}{2n} \cos \frac{r\pi}{2n}$$

$$= \lim_{n \to \infty} \frac{\pi}{2n} \left[\cos \frac{\pi}{2n} + \cos \frac{2\pi}{2n} + \dots + \cos \frac{n\pi}{2n}\right]$$

$$= \lim_{n \to \infty} \frac{2n}{2n} \left[\frac{\cos 2n + \cos 2n}{2n} + \dots + \cos 2n}{\sin \left(\frac{\pi}{2} \cdot \frac{\pi}{2n} \right)} \right]$$

$$= \lim_{n \to \infty} \frac{\pi}{2n} \cdot \frac{\cos \left(\frac{\pi}{2n} + \frac{n-1}{2} \cdot \frac{\pi}{2n} \right) \sin \left(\frac{n}{2} \cdot \frac{\pi}{2n} \right)}{\sin \left(\frac{1}{2} \cdot \frac{\pi}{2n} \right)}$$

$$\frac{\cos(\alpha + \frac{n-1}{2}\beta)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$$

$$\frac{\cos(\alpha + \frac{n-1}{2}\beta)\sin\frac{n\beta}{2}}{\sin\frac{\beta}{2}}$$

$$= \lim_{n \to \infty} 2 \cdot \frac{\frac{\pi}{4n}}{\sin \frac{\pi}{4n}} \cdot \cos \frac{\pi}{4} \left(\frac{2}{n} + \frac{n-1}{n} \right) \sin \frac{\pi}{4}$$

$$= \lim_{n \to \infty} 2 \cdot \frac{\frac{\pi}{4n}}{\sin \frac{\pi}{4n}} \cdot \cos \frac{\pi}{4} \left(1 + \frac{1}{n} \right) \sin \frac{\pi}{4} = 2 \times 1 \times \cos \frac{\pi}{4} \times \sin \frac{\pi}{4} = \sin \frac{\pi}{2} = 1.$$

Example 8. Show by an example that every bounded function need not be R-integrable.

(M.D.U. 1991)

Sol. Consider a function f defined on [0, 1] by $f(x) = \begin{cases} 0, & \text{when } x \text{ is rational} \\ 1, & \text{when } x \text{ is irrational} \end{cases}$

Clearly, f(x) is bounded in [0, 1] because $0 \le f(x) \le 1 \quad \forall \quad x \in [0, 1]$

If $P = \{0 = x_0, x_1, x_2, \dots, x_n = 1\}$ is any partition of [0, 1], then for any sub-interval $I_r = [x_{r-1}, x_r]$, $r = 1, 2, \dots, n$, we have $M_r = 1, m_r = 0$

$$U(P, f) = \sum_{r=1}^{n} M_r \delta_r = \sum_{r=1}^{n} 1 \cdot (x_r - x_{r-1}) = x_n - x_0 = 1$$

$$L(P, f) = \sum_{r=1}^{n} m_r \delta_r = \sum_{r=1}^{n} 0(x_r - x_{r-1}) = 0$$

$$\therefore \qquad \int_{\underline{0}}^{1} f(x) dx = \sup \left\{ L(P, f) \right\}_{P \in P[0, 1]} = 0$$

and
$$\int_0^{\overline{1}} f(x) dx = \inf \left\{ U(P, f) \right\}_{P \in P[0, 1]} = 1$$

and

Example 3. Evaluate
$$\int_{-1}^{2} f(x) dx$$
, where $f(x) = |x|$.

Sol. Since
$$f(x) = |x| = \begin{cases} -x, & \text{when } x \le 0 \\ x, & \text{when } x > 0 \end{cases}$$

 \therefore f is bounded and continuous on [-1, 2]

 \Rightarrow f is integrable on [-1, 2]

Consider a partition $P = \{-1 = x_0, x_1, x_2, \dots, x_n = 0, x_{n+1}, x_{n+2}, \dots, x_{3n} = 2\}$ of [-1, 2] dividing it into 3n equal sub-intervals, each of length $\frac{b-a}{3n} = \frac{2-(-1)}{3n} = \frac{1}{n}$ so that $\|P\| \to 0$ as $n \to \infty$.

Also
$$x_r = -1 + \frac{r}{n}$$
 and $\delta_r = \frac{1}{n}, r = 1, 2, \dots, 3n$.

$$\therefore \int_{-1}^{2} f(x) dx = \lim_{\|P\| \to 0} \sum_{r=1}^{3n} f(\xi_r) \delta_r = \lim_{n \to \infty} \sum_{r=1}^{3n} f(x_r) \delta_r$$

$$= \lim_{n \to \infty} \left[\sum_{r=1}^{n} f(x_r) \delta_r + \sum_{r=n+1}^{3n} f(x_r) \delta_r \right]$$

$$= \lim_{n \to \infty} \left[\sum_{r=1}^{n} f\left(-1 + \frac{r}{n}\right) \cdot \frac{1}{n} + \sum_{r=n+1}^{3n} f\left(-1 + \frac{r}{n}\right) \cdot \frac{1}{n} \right]$$

$$= \lim_{n \to \infty} \left[\sum_{r=1}^{n} -\left(-1 + \frac{r}{n}\right) \cdot \frac{1}{n} + \sum_{r=n+1}^{3n} \left(-1 + \frac{r}{n}\right) \cdot \frac{1}{n} \right]$$

$$= \lim_{n \to \infty} \left[\sum_{r=1}^{n} \left(\frac{1}{n} - \frac{r}{n^2}\right) + \sum_{r=n+1}^{3n} \left(-\frac{1}{n} + \frac{r}{n^2}\right) \right]$$

$$= \lim_{n \to \infty} \left[\frac{1}{n} \cdot n - \frac{1}{n^2} \sum_{r=1}^{n} r + \left(-\frac{1}{n}\right) \cdot 2n + \frac{1}{n^2} \sum_{r=n+1}^{3n} r \right]$$

$$= \lim_{n \to \infty} \left[1 - \frac{1}{n^2} \cdot \frac{n(n+1)}{2} - 2 + \frac{1}{n^2} \left\{ (n+1) + (n+2) + \dots + 3n \right\} \right]$$

$$= \lim_{n \to \infty} \left[-1 - \frac{1}{2} \left(1 + \frac{1}{n} \right) + \left(4 + \frac{1}{n} \right) \right] = -1 - \frac{1}{2} + 4 = \frac{5}{2}.$$

4.10. THEOREM

Every convergent sequence has a unique limit.

Or

A sequence cannot converge to more than one limit.

(D.U. 1987)

Proof. If possible, let a sequence $\{a_n\}$ converge to two distinct real numbers l and l'.

Let
$$\varepsilon = \frac{1}{2} |l - l'|$$
. Since $l \neq l'$, $|l - l'| > 0$ so that $\varepsilon > 0$.

Now the sequence $\{a_n\}$ converges to l

⇒ Given ε > 0,
$$\exists$$
 a positive integer m_1 such that $|a_n - l| < \frac{\varepsilon}{2}$ $\forall n \ge m_1$

Also the sequence $\{a_n\}$ converges to l'

$$\Rightarrow$$
 Given ε > 0, \exists a positive integer m_2 such that $|a_n - l'| < \frac{\varepsilon}{2}$ $\forall n \ge m_2$

Let
$$m = \max_{1} \{m_1, m_2\}$$

Then

$$|a_n-l|<\frac{\varepsilon}{2}$$

and

$$|a_n - l'| < \frac{\varepsilon}{2} \quad \forall n \ge m$$
 ...(1)

Now

$$\begin{aligned} |l-l'| &= |(l-a_n) + (a_n - l')| \le |l-a_n| + |a_n - l'| \\ &= |a_n - l| + |a_n - l'| & [\because |-x| = |x|] \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall n \ge m \end{aligned}$$
 [Using (1)]

$$|l-l'| < \varepsilon \quad \forall n \geq m$$

which contradicts the assumption that $\varepsilon = \frac{1}{2} |l - l'|$

 \Rightarrow Our supposition is wrong. Hence l = l'.

Example 17. Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{7}$, $u_{n+1} = \sqrt{7 + u_n}$ converges to the positive root of the equation $x^2 - x - 7 = 0$. (K.U. 1984 S)

Sol.

$$u_1 = \sqrt{7}$$
, $u_{n+1} = \sqrt{7 + u_n}$

$$u_2 = \sqrt{7 + u_1} = \sqrt{7 + \sqrt{7}} > \sqrt{7} = u_1$$
 $\Rightarrow u_2 > u_1$

Suppose

$$u_{-} > u_{--1}$$

$$\Rightarrow$$

$$7 + u_n > 7 + u_{n-1} \implies \sqrt{7 + u_n} > \sqrt{7 - u_{n-1}} \implies u_{n+1} > u_n$$

 \therefore By mathematical induction, $u_{n+1} > u_n \forall n$

 \Rightarrow { u_n } is monotonically increasing.

Now

$$u_1 = \sqrt{7} < 7$$

Suppose

$$u_{-} < 7$$

then

$$7 + u_n < 7 + 7 \quad \Rightarrow \quad \sqrt{7 + u_n} < \sqrt{14} < \sqrt{49} = 7 \quad \Rightarrow \quad u_{n+1} < 7$$

- \therefore By mathematical induction, $u_n < 7 \forall n$
- $\Rightarrow \{u_n\}$ is bounded above.

Since $\{u_n\}$ is monotonically increasing and bounded above, it is convergent.

But $\frac{1-\sqrt{29}}{2} < 0$ whereas $u_n > 0 \ \forall n$

 $l \neq \frac{1 - \sqrt{29}}{2}$

Hence the sequence $\{u_n\}$ converges to $\frac{1+\sqrt{29}}{2}$ which is the +ve root of the equation $x^2-x-7=0$.

Example 20. If a_1 , b_1 are two positive unequal numbers and a_n , b_n are defined as

$$a_n = \frac{1}{2} (a_{n-1} + b_{n-1}), b_n = \sqrt{a_{n-1} b_{n-1}} \text{ for } n \ge 2,$$

prove that two sequences $\{a_n\}$ and $\{b_n\}$ are monotonic, one increasing and the other decreasing and that they tend to the same limit.

Sol. Let $a_1 > b_1$.

i.e.

OF

For any two +ve numbers, the arithmetic mean is greater than the geometric mean.

$$\therefore a_n > b_n, \text{ for all } n. \qquad \dots (i)$$

Also
$$a_{n+1} = \frac{1}{2} (a_n + b_n) < \frac{1}{2} (a_n + a_n) = a_n$$
 [: $b_n < a_n$]

 $\{a_n\}$ is monotonic decreasing

$$\Rightarrow$$
 $a_1 > a_2 > a_3 > a_4 \dots$ (ii)

Again
$$b_{n+1} = \sqrt{a_n \cdot b_n} > \sqrt{b_n \cdot b_n} = b_n$$
 [: $a_n > b_n$]

$$\therefore$$
 $\{b_n\}$ is monotonic increasing i.e. $b_1 < b_2 < b_3 < b_4$...(iii)

Now
$$a_n = \frac{1}{2}(a_{n-1} + b_{n-1}) > \frac{1}{2}(b_{n-1} + b_{n-1}) = b_{n-1}$$
 [:: of (i)]

$$a_n > b_{n-1} > b_{n-2} > \dots > b_2 > b_1$$
 [from (iii)]

$$a_n > b_{n-1} > b_{n-2} > \dots > b_2 > b_1$$

$$\vdots \qquad a_n > b_1 \text{ for all } n.$$

This implies that the sequence $\{a_n\}$ is bounded below and being monotonic decreasing is convergent.

Again,
$$b_n = \sqrt{a_{n-1} \cdot b_{n-1}} < \sqrt{a_{n-1} \cdot a_{n-1}} = a_{n-1}$$
 [: of (i)]
i.e. $b_n < a_{n-1} < a_{n-2} < \dots < a_2 < a_1$ [from (ii)]
or $b_n < a_1$ for all n .

:. {b_n} is bounded above and being monotonic increasing is convergent.

Now let Lt
$$a_n = l$$
 and Lt $b_n = l'$.

Since
$$a_n = \frac{1}{2}(a_{n-1} + b_{n-1})$$
 or $2a_n = a_{n-1} + b_{n-1}$

$$2a_{n+1} = a_n + b_n$$
Lt $(2a_{n+1}) =$ Lt $a_n +$ Lt b_n or $2l = l + l'$ or $l = l'$.

 \therefore { a_n } and { b_n } converge to the same limit.

Example 22. A sequence $\langle a_n \rangle$ is defined as $a_1 = 1$, $a_{n+1} = \frac{4+3a_n}{3+2a_n}$, $n \ge 1$. Show that $\langle a_n \rangle$ converges and find its limit. (D.U. 1984, 87)

Sol.
$$a_1 = 1$$
, $a_2 = \frac{4 + 3a_1}{3 + 2a_1} = \frac{7}{5} > 1$ \Rightarrow $a_2 > a_1$.

Let us assume that $a_{n+1} > a_n$

Then
$$a_{n+2} - a_{n+1} = \frac{4 + 3a_{n+1}}{3 + 2a_{n+1}} - \frac{4 + 3a_n}{3 + 2a_n} = \frac{a_{n+1} - a_n}{(3 + 2a_{n+1})(3 + 2a_n)} > 0$$

$$\{ \because a_{n+1} > a_n \text{ and } a_n > 0 \ \forall n \}$$

$$\Rightarrow$$
 $a_{n+2} > a_{n+1}$

 \therefore By mathematical induction, $\langle a_n \rangle$ is monotonically increasing.

Also
$$a_{n+1} = \frac{4+3a_n}{3+2a_n} = \frac{3}{2} - \frac{1}{2(3+2a_n)}$$

$$= \frac{3}{2} - \text{(a positive quantity less than 1)} \qquad [\because a_n > a_1 = 1 \quad \forall n]$$

$$< \frac{3}{2} \implies a_{n+1} < \frac{3}{2} \quad \forall n.$$

 \therefore The sequence $\langle a_n \rangle$ is bounded above.

Since the sequence $\langle a_n \rangle$ is monotonically increasing and bounded above, it is convergent.

Let the sequence $\langle a_n \rangle$ converge to l, then $\lim a_n = l$

Now
$$a_{n+1} = \frac{4+3a_n}{3+2a_n} \qquad \Rightarrow \qquad \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{4+3a_n}{3+2a_n}$$
$$\Rightarrow \qquad l = \frac{4+3l}{3+2l} \qquad \Rightarrow \qquad 3l+2l^2 = 4+3l$$
$$\Rightarrow \qquad l^2 = 2 \qquad \qquad \therefore \qquad l = \pm \sqrt{2}$$

But I cannot be negative.

$$(: a_n \ge 1 \quad \forall n, \qquad : \qquad l = \lim_{n \to \infty} a_n \ge 1).$$

 \therefore Rejecting $l = -\sqrt{2}$, we have $l = \sqrt{2}$.

Example 37. Prove that the sequence $< a_n >$ where $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$

is convergent and its limit lies between $\frac{1}{2}$ and 1.

(M.D.U. 1993; D.U. 1984, 85)

Sol.
$$a_{n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

$$a_{n+1} = \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n} + \frac{1}{2n+1} + \frac{1}{2n+2}$$

$$\therefore a_{n+1} - a_{n} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1}$$

$$> \frac{1}{2n+2} + \frac{1}{2n+2} - \frac{1}{n+1} = \frac{2}{2n+2} - \frac{1}{n+1} = \frac{1}{n+1} - \frac{1}{n+1} = 0$$

$$\Rightarrow a_{n+1} - a_{n} > 0 \quad \forall n$$

$$\Rightarrow a_{n+1} > a_{n} \quad \forall n$$

$$\Rightarrow a_{n+1} > a_{n} \quad \forall n$$

$$\Rightarrow a_{n} > \text{ is monotonically increasing.}$$
Also
$$a_{n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}$$

$$< \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{n+1} = \frac{n}{n+1} < 1 \quad \forall n$$

⇒ < a_n > is bounded above.

Since $\langle a_n \rangle$ is monotonically increasing and bounded above, it is convergent.

Now
$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$

 $> \frac{1}{2n} + \frac{1}{2n} + \dots + \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2} \quad \forall n$
 $\therefore \qquad \frac{1}{2} < a_n < 1 \quad \forall n$
Hence $\frac{1}{2} \le \lim_{n \to \infty} a_n \le 1$.

- a. Give an example of an infinite set that has no limit point.
 As we saw in Exercise 1, the infinite set Z has no limit point.
- b. Give an example of a bounded set that has no limit point.
 A finite set like (2) will not have any limit points. We could also look at the empty set Ø.
- c. Give an example of an unbounded set that has no limit point. As we saw in Exercise 1, the infinite set ² has no limit point.
- d. Give an example of an unbounded set that has exactly one limit point. The unbounded set Z∪ { ¹/_π | n ∈ Z⁺ } has only the limit point ⁰.
- Give an example of an unbounded set that has exactly two limit points.
 The set

$$\mathbf{Z} \cup \left\{ \frac{1}{n} \mid n \in \mathbf{Z}^+ \right\} \cup \left\{ 1 + \frac{1}{n} \mid n \in \mathbf{Z}^+ \right\}$$

has the two limit points 0 and 1. We can see this directly or we can use the assertion proved in Exercise 6 below.