DEAs und NEAs

Aufgaben 3-5 erstellt von Robin Feldmann

Definition Nichtdeterministischer Endlicher Automat

Ein nichtdeterministischer endlicher Automat (NEA) $A = (X, S, S_0, \delta, F)$ besteht aus:

 $X: Endliches\ Eingabealphabet$

 $S: Endliche\ Zustandsmenge$

 S_0 : Menge $der\ Startzust$ ände $\subseteq S$

 $\delta: Zustands "ubergangs funktion: \delta: S \times X \rightarrow P(S)$

 $F: Menge\ der\ Endzust \ddot{a}nde \subseteq S$

Definition Äquivalenz

Zwei (nicht)deterministische endliche Automaten A und B heißen Äquivalent, wenn L(A) = L(B) ist.

Definition zugeordneter DEA

Ein aus einem NEA A per Konstruktionsverfahren abgeleiteter DEA A^d heißt zugeordneter Automat zu A. Die Automaten A^d und A sind Äquivalent.

Aufgabe 1

```
Gegeben sei das Eingabealphabet X = \{a, b, c\} sowie die Sprache L = \{a^x(bc)^y a^z \mid x, z \in \mathbb{N}_0; z \mod 2 = 1; y \in \mathbb{N}\}. Gesucht ist ein DEA mit Tupel, der die Sprache L akzeptiert. (Angelehnt an Klausur WS22 Aufgabe 4; ca. 10% der Punkte)
```

Aufgabe 2

Gegeben sei das Alphabet $X = \{a, b, c\}$. Geben Sie einen NEA für die Sprache $L = \{x \in X^* \mid x = a^n b^m, n, m \in \mathbb{N}\}$ an. Geben Sie den Automaten in Form eines Übergangsgraphen und Tupel an.

Aufgabe 3

Gegeben sei folgender NEA.

$$A = (\{a,b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta \text{ gemäß } Graph, \{S_2\})$$

Konstruieren Sie entsprechend des Beweises in der Vorlesung mit Hilfe des Erreichbarkeitsprinzips den zugehörigen DEA. Geben Sie also die Zustandsübergangsfunktion für jedes Element aus der Potenzmenge $P(\{S_0, S_1, S_2\})$ sowie das Tupel an. Geben Sie außerdem den Zustandübergangsgraphen an.

Aufgabe 4

a) Gegeben sei folgender NEA:

$$A = (\{a,b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta \text{ gemäß Tabelle}, \{S_2\})$$

δ	a	b
S_0	S_1	S_2
S_1	S_1, S_2	{}
S_2	{}	{}

Konstruieren Sie den zugehörigen DEA. Geben Sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an.

b) Gegeben sei folgender NEA:

$$A = (\{a, b\}, \{S_0, S_1, S_2, S_3\}, \{S_0, S_3\}, \delta \text{ gemäß Tabelle}, \{S_2, S_3\})$$

δ	a	b
S_0	S_0, S_1	{}
$\overline{S_1}$	{}	S_1, S_2
S_2	S_0, S_2	{}
$\overline{S_3}$	{}	S_1

Konstruieren Sie den zugehörigen DEA. Geben Sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an.

2

Aufgabe 5

Gegeben sei folgender NEA.

$$A = (\{x,y\}, \{N_0, N_1, N_2, N_3\}, \{N_0, N_2\}, \delta \ gem\"{a} \ Graph, \{N_1, N_3\})$$

Konstruieren Sie den zugehörigen DEA. Geben Sie diesen als Tupel und die Zustandsübergangsfunktion als Tabelle an (Angelehnt an SoSe17 Aufgabe 1. b)) .