

abstract data type strutture dati dinamiche non lineari

Alberto Ferrari

- o una struttura dati si definisce *dinamica* se permette di rappresentare insiemi dinamici la cui *cardinalità varia* durante l'esecuzione del programma
- o strutture dinamiche non lineari
 - o alberi
 - o alberi binari
 - o grafi

struttura dati dinamica non lineare

albero

- o si dice albero una tripla T = (N, r, B) dove
 - o Nè un insieme di *nodi*
 - \circ r \in N è detto radice
 - o \boldsymbol{B} è una $relazione\ binaria\ \mathrm{su}\ N\ (\boldsymbol{B}\subseteq N\times N)$
- \circ la relazione \boldsymbol{B} soddisfa le seguenti proprietà
 - $o \forall n \in \mathbb{N}, (n,r) \notin B$
 - $o \forall n \in \mathbb{N}$, se $n \neq r$ allora esiste *uno e un solo* $n' \in \mathbb{N}$ tale che $(n', n) \in B$
 - \forall $\mathbf{n} \in \mathbb{N}$, se $\mathbf{n} \neq \mathbf{r}$ allora \mathbf{n} è raggiungibile da \mathbf{r} , cioè esistono $\mathbf{n'_1}$, ..., $\mathbf{n'_k} \in \mathbb{N}$ con $k \geq 2$ tali che $\mathbf{n'_1} = \mathbf{r}$, $(\mathbf{n'_i, n'_{i+1}}) \in B$ per ogni $1 \leq i \leq k-1$, ed $\mathbf{n'_k} = \mathbf{n}$

- o sia T = (N, r, B) un albero ed $n \in N$
 - o si dice **sottoalbero** generato da **n** l'albero T' = (N', r, B') dove N' è il sottoinsieme dei nodi di N raggiugibili da $n \in B' = B \cap (N' \times N')$
- o sia T=(N,r,B) un albero e siano $T_1=(N_1,n_1,B_1)$ e $T_2=(N_2,n_2,B_2)$ i sottoalberi generati da $n_1,n_2\in N$
 - o allora $N_1 \cap N_2 = \emptyset$ oppure $N_1 \subseteq N_2$ oppure $N_2 \subseteq N_1$

- o sia T = (N, r, B) un albero
- o se (n , n') ∈ B allora
 - o nè detto *padre* di n'
 - o n'è detto *figlio* di n
- se $(n, n_1), (n, n_2) \in B$ allora n_1 ed n_2 sono detti fratelli
- o i nodi privi di figli sono detti **foglie** (nodi esterni)
 - o gli altri nodi sono detti nodi interni
- o gli elementi di **B** sono detti **rami**

- o sia T = (N, r, B) un albero
- \circ si dice grado di T il massimo numero di figli di un nodo di T
- o si dice che r è a *livello* 1
- \circ se n ∈ N è al livello i e (n, n') ∈ B allora n' è a livello i+1
- o si dice *profondità* di *T* il *massimo* numero di *nodi* che si *attraversano* per andare dalla radice alla foglia più distante
- o si dice *ampiezza* di *T* il massimo numero di *nodi* di T che si trovano allo *stesso livello*

struttura dati dinamica non lineare

albero binario

- o un albero T = (N, r, B) si dice binario se:
 - $\circ B = B_{sx} \cup B_{dx}$
 - $\circ B_{sx} \cap B_{dx} = \emptyset$
 - o \forall n, n₁, n₂ \in N se (n, n₁) \in B_{sx} ed (n, n₂) \in B_{sx} allora $n_1 = n_2$
 - \circ idem per $\mathbf{B_{dx}}$
 - \circ se $(n, n') \in B_{sx}$ allora n' è detto figlio sinistro di n
 - o idem per figlio destro

trasformazione da albero in albero binario corrispondente

- o ogni albero *non binario* è *equivalente* ad un albero *binario* ottenuto applicando la seguente trasformazione *fratello-figlio* ad ogni nodo n dell'albero avente come figli i nodi $n_1, n_2, ..., n_k$
- o creare i nuovi nodi $n'_1, n'_2, ..., n'_k$
- \circ mettere n'_1 come figlio sinistro di n'
- o per ogni i = 1, ..., k-1, mettere n'_{i+1} come figlio destro di n'_k

rappresentazione di un albero binario

- o la *visita* consiste nell'*accesso una e una sola volta* a *tutti* i *nodi* dell'albero
- o per gli *alberi binari* sono possibili più algoritmi di visita che generano sequenze diverse (*per ordine*) di nodi
 - o visita in ordine *anticipato*
 - o visita in ordine *simmetrico*
 - o visita in ordine posticipato (*differito*)

visita in ordine anticipato

- o visita la *radice*
- o visita il sottoalbero *sinistro* in ordine anticipato
- o visita il sottoalbero *destro* in ordine anticipato
- o lista dei nodi:
 - o F, B, A, D, C, E, G, I, H

- o visita il sottoalbero *sinistro* in ordine simmetrico
- o visita la *radice*
- o visita il sottoalbero *destro* in ordine simmetrico
- o lista dei nodi:
 - o A, B, C, D, E, F, G, H, I

- o visita il sottoalbero *sinistro* in ordine differito
- o visita il sottoalbero *destro* in ordine differito
- o visita la *radice*
- o lista dei nodi:
 - o A, C, E, D, B, H, I, G, F

- ogni *nodo* che contiene un *operatore* è *radice* di un sottoalbero
- ogni foglia contiene un valore costante o una variabile
- notazione polacca (sintassi) denota formule matematiche
 - gli operatori si trovano tutti a sinistra degli argomenti (*prefissa*)
 - notazione polacca inversa (*postfissa*)

•
$$- \times - + a \times b c e / + c a d$$

•
$$abc \times + e - b \times ca + d/$$

- un *albero binario di ricerca* è un albero binario tale che:
- per ogni nodo che contiene una *chiave* di valore *k*
- ogni nodo del suo sottoalbero sinistro contiene una chiave di valore $\leq k$
- ogni nodo del suo sottoalbero destro contiene una chiave di valore $\geq k$

albero binario esempio

```
class AlberoBin {
public:
  AlberoBin();
  AlberoBin(string i);
  AlberoBin(string i, AlberoBin* 1,
            AlberoBin* r);
  virtual ~AlberoBin();
  ... <setter & getter>
  void preOrder();
  void inOrder();
  void postOrder();
private:
  string info;
  AlberoBin* left;
  AlberoBin* right;
};
```

```
void AlberoBin::preOrder() {
    cout << info << " - ";</pre>
    if (left!=nullptr) left->preOrder();
    if (right!=nullptr)
                         right->preOrder();
void AlberoBin::inOrder() {
    if (left!=nullptr) left->inOrder();
    cout << info << " - ";
    if (right!=nullptr) right->inOrder();
void AlberoBin::postOrder() {
    if (left!=nullptr) left->postOrder();
    if (right!=nullptr) right->postOrder();
   cout << info << " - ";
```


algoritmo di ricerca in alberi binari di ricerca

- o *non* è necessario visitare *tutti* i nodi
- o basta fare un *unico percorso* tra quelli che partono dalla radice, scendendo ad ogni nodo incontrato che non contiene il valore dato a *sinistra* o a *destra* a seconda che il valore dato sia *minore* o *maggiore*, rispettivamente, della chiave contenuta nel nodo
- o la *complessità* della ricerca dipende quindi dalla *profondità* dell'albero

struttura dati dinamica non lineare

grafo

- o si dice grafo diretto una coppia $G = (V, \varepsilon)$ dove V è un insieme di vertici ed ε è una relazione binaria su V
- o se $(v,v') \in \varepsilon$ si dice che v' è *adiacente* a v (c'è un arco da v a v')
- o $grado uscente di v \in V è il numero di vertici <math>adiacenti a v$
- o grado entrante di $v \in V$ è il numero di vertici a cui v è adiacente
- o $grado \operatorname{di} v \in V \operatorname{è} \operatorname{il} numero \operatorname{di} \operatorname{archi} \operatorname{in} \operatorname{cui} v \operatorname{\grave{e}} \operatorname{coinvolto}$
- o $G \in completo \text{ se } \varepsilon = V \times V$

- o sia $G = (V, \varepsilon)$ un grafo diretto
 - \circ siano $v_1, v_2 \in V$ si dice che v_2 è raggiungibile da v_1 se esiste un percorso da v_1 a v_2
 - o si dice che G è connesso se per ogni $v_1,\,v_2\in V$ esiste un percorso da v_1 a v_2 o da v_2 a v_1
 - o si dice che G è *fortemente connesso* se per ogni $v_1, v_2 \in V$ esistono un *percorso* da v_1 a v_2 e un *percorso* da v_2 a v_1

implementazione con liste di adiacenza

- il grafo viene rappresentato come una struttura dati dinamica reticolare detta *lista di adiacenza*, formata da una *lista primaria* dei *vertici* e più *liste secondarie* degli *archi*
- o la lista *primaria* contiene *un elemento* per *ciascun vertice* del grafo, il quale contiene a sua volta la *testa* della relativa *lista secondaria*
- o la lista **secondaria** associata ad un vertice descrive tutti gli **archi uscenti** da quel vertice

implementazione con matrice di adiacenza

- o se la struttura di un grafo non cambia oppure è importante fare accesso rapidamente alle informazioni contenute nel grafo, allora conviene ricorrere ad una rappresentazione a *matrice di adiacenza*
- o la *matrice* ha tante *righe* e tante colonne quanti sono i *vertici*
- o l'elemento di indici i e j vale 1 se esiste un arco dal vertice i al vertice j, 0 altrimenti
- o per i grafi *pesati* si può sostituire il valore 1 con il *peso* del grafo

applicazione dei grafi: esempio

- o il problema dei *sette ponti di Königsberg* è un problema ispirato da una città reale e da una situazione concreta
- Königsberg è percorsa dal fiume Pregel e da suoi affluenti e presenta due estese isole che sono connesse tra di loro e con le due aree principali della città da sette ponti
- o nel corso dei secoli è stata più volte proposta la questione se sia possibile con una passeggiata seguire un percorso che attraversi ogni ponte una e una volta soltanto e tornare al punto di partenza
- o nel 1736 Leonhard Euler affrontò tale problema, dimostrando che la passeggiata ipotizzata *non era possibile*

- Eulero ha formulato il problema in termini di teoria dei grafi,
 astraendo dalla situazione specifica di Königsberg
 - o *eliminazione* di tutti gli *aspetti contingenti* ad esclusione delle aree urbane delimitate dai bracci fluviali e dai ponti che le collegano
 - o rappresentazione di ogni area urbana con un vertice
 - o rappresentazione di ogni *ponte* con un *arco*

