✓ Congratulations! You passed!

Next Item

V	Ι,	building a machine learning algorithm?			
1 / 1 point			Training and test sets		
			Machine learning		
			Artificial intelligence		
		0	Collecting data to answer the question.		
		Corr	ect		
			Statistical inference		
1/1 point	2.	Suppose we build a prediction algorithm on a data set and it is 100% accurate on that data set. Why might the algorithm not work well if we collect a new data set?			
			We have too few predictors to get good out of sample accuracy.		
			We have used neural networks which has notoriously bad performance.		

				We may be using a bad algorithm that doesn't predict well on this kind of data.	
				Our algorithm may be overfitting the training data, predicting both the signal and the noise.	
			Corr	ect	
	~	3.	What a sets?	are typical sizes for the training and test	
	1 / 1 point			100% training set, 0% test set.	
				20% training set, 80% test set.	
			0	60% in the training set, 40% in the testing set.	
			Corr	ect	
Quiz 1 Quiz, 5 questions				90% training set, 10% test set	
	~	4.	predicting binary variables (i.e. variables with two		
	1/1 point		•	le values like yes/no, disease/normal, l/didn't click)? Check the correct answer(s).	
			0	Specificity	
			Corr	ect	
				R^2	

			Root mean squared error
			Correlation
			Median absolute deviation
1/1 point	5.	learnin will be specific visits to clicked	se that we have created a machine ig algorithm that predicts whether a link clicked with 99% sensitivity and 99% city. The rate the link is clicked is 1/1000 of a website. If we predict the link will be on a specific visit, what is the probability it ually be clicked? 99% 89.9% 0.009%

~

