Commutative Algebra

September 6, 2018

Contents

1	Introduction	1
2	Rings and Ideals	3
	2.1 Operations on Ideals	7

Chapter 1

Introduction

Remark. Throughout this book, R is a CRW1, k is a field.

Remark (Application). (1) In calculus, e.g., $\mathcal{C}(\mathbb{R})$ and $\mathcal{D}(\mathbb{R})$ are both CRW1's.

(2) In graph theory, e.g., let G be a finite simple graph with vertex set $V = \{v_1, \dots, v_d\}$. The edge ideal of G is $I(G) = \langle v_i v_j \mid v_i v_j$ is an edge in $G \rangle \leq K[v_1, \dots, v_d]$. Then

algebraic properties of $I(G) \rightleftharpoons$ combinatorial properties of G.

(3) In combinatorics, e.g., a simplicial complex Δ on V. Stanley-Reisner ideal $J(\Delta) \leq K[v_1, \dots, v_d]$. Then

algebraic properties of $J(\Delta) \rightleftharpoons \text{combinatorics properties of } \Delta$.

Let P be a poset and $\Delta(P)$ = "order complex of P" = {chains in P}. Study P via $J(\Delta(P))$.

- (4) In number theory, which study the solutions of polynomial equations over \mathbb{Z} , e.g., given an intermediate field $\mathbb{Q} \subseteq K \subseteq \mathbb{C}$, let $R = \{\alpha \in K \mid \exists \text{ monic } f \in \mathbb{Z}[x] \text{ s.t. } f(\alpha) = 0\}$. Then $\mathbb{Z} \subseteq R \subseteq K$ and R is a subring of K.
- (5) In algebraic geometry, which study solution sets for systems of polynomial equations over fields. Let K be a field and $f_1, \dots, f_m \in K[X_1, \dots, X_d]$. Let $V(f_1, \dots, f_n) = \{\underline{x} \in K^d \mid f_i(\underline{x}) = 0, \ \forall \ i = 1, \dots, m\}$, where V for "variety". Let $I(V) = \{f \in K[X_1, \dots, X_d \mid f(\underline{x}) = 0, \ \forall \ \underline{x} \in V\} \leq K[X_1, \dots, X_d]$. Then

algebraic properties of $I(V) \rightleftharpoons$ geometric properties of V.

Remark. To study geometry, we need continuity. Let $V = V(f_1, \dots, f_m)$, $W = V(g_1, \dots, g_n)$ and $\phi: V \to W$. What does it mean for ϕ to be continuous if $K = \mathbb{F}_3$? Need a notion of open sets in V and W.

Chapter 2

Rings and Ideals

Remark (Fact). R = 0 iff $1_R = 0_R$.

Remark (Fact). (1) 1_R and 0_R are both unique.

- (2) For any $r \in R$, -r is unique.
- (3) If $r \in \mathbb{R}^{\times}$, then r^{-1} is also unique.

Defintion 2.0.1. A *subring* of R is a subset $S \subseteq R$ such that S is a CRW1 under the operations for R and $1_S = 1_R$, i.e., $1_R \in S$.

Remark (Subring test). Need $\emptyset \neq S \subseteq R$, and S is closed under $+, \cdot, -$ and $1_R \in S$.

Example 2.0.2. $R = \mathbb{F}_3 \times \mathbb{F}_3 \supseteq \{(a,a) \mid a \in \mathbb{F}_3\} =: S$. Then S is a subring of R. Although $S_1 = \{(a,0) \mid a \in \mathbb{F}_3\}$ and $S_2 = \{(0,a) \mid a \in \mathbb{F}_3\}$ are rings but not subrings of R since $1_R = (1,1) \notin S_1$ and $1_R = (1,1) \notin S_2$.

Remark (Fact). If $S \subseteq R$, the inclusion map $\varepsilon: S \to R$ given by $\varepsilon(s) = s$ is a ring homomorphism.

Defintion 2.0.3. An *ideal* of R is a non-empty set $\mathfrak{a} \subseteq R$ which is a subgroup under addition such that for any $r \in R$ and any $a \in \mathfrak{a}$, we have $ra \in \mathfrak{a}$.

- (1) An ideal $\mathfrak{a} \leq R$ is *prime* if $\mathfrak{a} \neq R$ and for any $a, b \in R$, if $a, b \notin \mathfrak{a}$, then $ab \notin \mathfrak{a}$, i.e., if $ab \in \mathfrak{a}$, then $a \in \mathfrak{a}$ or $b \in \mathfrak{a}$.
- (2) An ideal $\mathfrak{a} \leq R$ is maximal if $\mathfrak{a} \neq R$ and for any ideal $\mathfrak{b} \leq R$, if $\mathfrak{a} \subseteq \mathfrak{b} \subseteq R$, then either $\mathfrak{a} = \mathfrak{b}$ or $\mathfrak{b} = R$.

Remark (ideal test?). A subset $\mathfrak{a} \subseteq R$ is an ideal iff $\mathfrak{a} \neq \emptyset$, \mathfrak{a} is closed under + and \cdot , since if $\mathfrak{a} \neq \emptyset$ and \mathfrak{a} is closed under \cdot , then for any $a \in \mathfrak{a}$, $-a = (-1_R)a \in \mathfrak{a}$ and since \mathfrak{a} is also closed under +, it is automatically closed under -.

Example 2.0.4. In $R = \mathbb{Z}$, ideals are $n\mathbb{Z} = \{nm \mid m \in \mathbb{Z}\}$, where $n \in \mathbb{Z}$.

- (1) $n\mathbb{Z}$ is prime iff n = 0 or |n| is prime.
- (2) $n\mathbb{Z}$ is maximal iff |n| is prime.

Example 2.0.5. (1) If $I_{\lambda} \leq R$ for any $\lambda \in \Lambda$, then $\bigcap_{\lambda \in \Lambda} I_{\lambda} \leq R$.

- (2) If $r_1, \dots, r_m \in R$, then $\langle r_1, \dots, r_m \rangle = \langle r_1, \dots, r_m \rangle R = (r_1, \dots, r_m) = (r_1, \dots, r_m) R = \bigcap_{r_1, \dots, r_m \in I \leq R} I = \{ \sum_{i=1}^m a_i r_i \mid a_i \in R, \ \forall \ i = 1, \dots, n \} \leq R$. In particular, for any $r \in R$, $\langle r \rangle = \langle r \rangle R = (r) = (r) R = r R = R r = \{ ar \mid a \in R \} = \bigcap_{r \in I \leq R} I$.
- (3) If $A \subseteq R$, then $\langle A \rangle = \bigcap_{A \subseteq I \leq R} I = \{ \sum_{a \in A}^{\text{finite}} r_a a \mid r_a \in R \}$.

Remark (Fact). For any $r_1, \dots, r_m \in R$, $\langle r_1, \dots, r_m \rangle$ is the smallest ideal of R containing r_1, \dots, r_m , i.e., for any $\mathfrak{a} \leq R$, we have $r_1, \dots, r_m \in \mathfrak{a}$ iff $\langle r_1, \dots, r_m \rangle \subseteq \mathfrak{a}$. Similarly, $A \subseteq \mathfrak{a}$ iff $\langle A \rangle \subseteq \mathfrak{a}$.

Example 2.0.6. If $A \leq R$, then $A = \langle A \rangle$.

Remark (Construction). Let $\mathfrak{a} \leq R$. For any $r \in R$: $r + \mathfrak{a} = \{r + a \mid a \in \mathfrak{a}\} = \overline{r}$. $R/\mathfrak{a} = \{r + \mathfrak{a} \mid r \in R\}$. Then R/\mathfrak{a} is a CRW1. $\overline{r} \pm \overline{s} = \overline{r \pm s}$, $\overline{r}\overline{s} = \overline{rs}$, $0_{R/\mathfrak{a}} = \overline{0_R}$ and $1_{R/\mathfrak{a}} = \overline{1_R}$. Let $\pi : R \to R/\mathfrak{a}$ given by $\pi(r) = \overline{r}$. Then π is a well-defined ring homomorphism. Consider

$$R \xrightarrow{\phi} S$$

$$\downarrow^{\pi} \exists ! \overline{\phi}$$

$$R/\mathfrak{a}$$

For any $\phi: R \to S$ ring homomorphism, if $\phi(\mathfrak{a}) = 0$, then there exists a unique ring homomorphism $\overline{\phi}: R/\mathfrak{a} \to S$ making the diagram commute, where $\overline{\phi}(\overline{r}) = \overline{\phi}(\pi(r)) = \phi(r)$. Note $\phi(\mathfrak{a}) = 0$ iff $\mathfrak{a} \subseteq \text{Ker}(\phi)$ and if $\mathfrak{a} = \langle A \rangle$, then $\mathfrak{a} \subseteq \text{Ker}(\phi)$ iff $A \subseteq \text{Ker}(\phi)$.

Remark (Fact). Let $\mathfrak{a} \leq R$.

- (1) \mathfrak{a} is prime iff R/\mathfrak{a} is an integral domain.
- (2) \mathfrak{a} is maximal iff R/\mathfrak{a} is a field.
- (3) If \mathfrak{a} is maximal, then \mathfrak{a} is prime.

Theorem 2.0.7 (ideal correspondence for quotients). Let $\mathfrak{a} \leq R$ and $\pi : R \to R/\mathfrak{a}$ be the canonical epimorphism. Then

$$\{ideals\ I \le R/\mathfrak{a}\} \rightleftarrows \{ideals\ J \le R \mid \mathfrak{a} \subseteq J\}$$
$$I \mapsto \pi^{-1}(I)$$
$$J/\mathfrak{a} \longleftrightarrow J$$

 $\{primes\ ideals\ of\ R/\mathfrak{a}\} \rightleftarrows \{prime\ ideals\ \mathfrak{p} \le R \mid \mathfrak{a} \subseteq \mathfrak{p}\}$

 $\{maximal\ ideals\ of\ R/\mathfrak{a}\} \rightleftarrows \{maximal\ ideals\ \mathfrak{m} \le R \mid \mathfrak{a} \subseteq \mathfrak{m}\}$

Note maximal ideals are a subset of prime ideals and prime ideals are a subset of ideals.

Remark. The proof of $\frac{R/\mathfrak{a}}{J/\mathfrak{a}} \cong \frac{R}{J}$.

Clearly $J \subseteq \operatorname{Ker}(\tau \circ p)$ and we can use the UMP. Actually, $J = \operatorname{Ker}(\tau \circ p)$. Also, since $\operatorname{Ker}(\overline{\phi}) = 0 + J$, $\overline{\phi}$ is 1-1. Since $\tau \circ p$ is onto and the diagram commutes, $\overline{\phi}$ is onto. Note $\overline{\phi}(\overline{r}) = \overline{r}$, i.e., $\overline{\phi}(r+J) = (r+\mathfrak{a}) + J/\mathfrak{a}$.

Defintion 2.0.8. Let $\operatorname{Spec}(R) = \{ \text{primes ideals of } R \}$, which is called the *prime spectrum of R*. Let $\operatorname{V}(\mathfrak{a}) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq \mathfrak{a} \}$.

Remark (Fact). Let $\varphi: R \to S$ be a ring homomorphism. Then $\operatorname{Ker}(\varphi) \leq R$, $\operatorname{Im}(\varphi) \subseteq S$ is a subring and $\operatorname{Im}(\varphi) \cong R/\operatorname{Ker}(\varphi)$.

If S is an integral domain, then so is $\text{Im}(\varphi)$. Hence $\text{Ker}(\varphi)$ is prime. More generally, for any $\mathfrak{q} \leq S$, we have $\varphi^{-1}(\mathfrak{q}) = \{x \in R \mid \varphi(x) \in \mathfrak{q}\} \leq R$.

Let now $\mathfrak{q} \in \operatorname{Spec}(S)$. Then S/q is an integral domain. Since $R/\operatorname{Ker}(\pi \circ \varphi) \cong S/\mathfrak{q}$, $\operatorname{Ker}(\pi \circ \varphi)$ is prime. Note $\varphi^{-1}(\mathfrak{q}) = \operatorname{Ker}(\pi \circ \varphi)$, we have $\varphi^{-1}(\mathfrak{q})$ is prime, i.e., $\varphi^{-1}(\mathfrak{q}) \in \operatorname{Spec}(R)$. Thus, φ induces a well-defined map $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$.

$$R \xrightarrow{\varphi} S \xrightarrow{\pi} S/\mathfrak{q}$$

$$\downarrow p$$

$$\exists ! \overline{\phi} := \overline{\pi} \circ \overline{\varphi}$$

$$\varphi^{-1}(\mathfrak{q})$$

Remark (Fact). (1) If $R \neq 0$, then R has a maximal ideal \mathfrak{m} . So R has a prime ideal. Moreover, for any $\mathfrak{a} \subseteq R$, there exists a maximal ideal $\mathfrak{m} \supseteq \mathfrak{a}$, in particular, $V(\mathfrak{a}) \neq \emptyset$.

(2) Let $\mathfrak{a} \subseteq R$. Then $0 \neq R/\mathfrak{a}$ is a CRW1. So R/\mathfrak{a} has a maximal ideal, the ideal corresponds for quoitients and it is of the form $\mathfrak{m}/\mathfrak{a}$, where \mathfrak{m} is the maximal ideal of R containing \mathfrak{a} .

Defintion 2.0.9. R is *local* if it has a unique maximal ideal \mathfrak{m} , which is also known as (A.K.A) quasi-local. The residue field of R is R/\mathfrak{m} .

Remark (Shorthand). Assume (R, \mathfrak{m}, k) is local, where \mathfrak{m} is the unique maximal ideal of R and $k = R/\mathfrak{m}$. Or assume (R, \mathfrak{m}) is local.

Remark (Fact). If (R, \mathfrak{m}) is local and $\mathfrak{a} \subsetneq R$, then $(R/\mathfrak{a}, \mathfrak{m}/\mathfrak{a})$ is also local and $\frac{R/\mathfrak{a}}{\mathfrak{m}/\mathfrak{a}} \cong R/\mathfrak{m}$ canonical isomorphic residue fields. Converse fails in general by h19.

Example 2.0.10. (1) Any field is local with the maximal ideal $\{0\}$.

- (2) Let p be prime in \mathbb{Z} . Since \mathbb{Z} is a PID, $\mathbb{Z}/\langle p^n \rangle$ has a maximal ideal $\mathfrak{m} = \langle p \rangle / \langle p^n \rangle$, where $\langle p \rangle$ is a maximal ideal of R containing $\langle p^n \rangle$. Assume there is $\mathfrak{m}_1 \leq R$ maximal such that $\mathfrak{m}_1 \supseteq \langle p^n \rangle$. Then \mathfrak{m}_1 is prime, so $p \in \mathfrak{m}_1$ and hence $\langle p \rangle \subseteq \mathfrak{m}_1$. Since $\langle p \rangle$ is maximal, $\langle p \rangle = \langle \mathfrak{m}_1 \rangle$. Thus, $\langle p \rangle$ is the unique maximal ideal containing $\langle p^n \rangle$ and so $\mathbb{Z}/\langle p^n \rangle$ is local. Similarly, $\operatorname{Spec}(\mathbb{Z}/\langle p^n \rangle) = \{\langle p \rangle / \langle p^n \rangle\}$.
- (3) Let $R = k[X]/\langle X^n \rangle$ is local with the maximal ideal $\langle X \rangle/\langle X^n \rangle$ and $\operatorname{Spec}(R) = \{k[X]/\langle X^n \rangle\}$.

(4) Let $R = \frac{k[X_1, \dots, X_d]}{\langle X_1^{a_1} \dots X_d^{a_d} \rangle}$, where $a_i \ge 1$ for any $i = 1, \dots, d$. Then $\operatorname{Spec}(R) = \left\{ \frac{\langle X_1, \dots, X_d \rangle}{\langle X_1^{a_1} \dots X_d^{a_d} \rangle} \right\}$.

Remark (Notation). Let $R^{\times} = R^* = \{\text{units of } R\}.$

Proposition 2.0.11. TFAE.

- (1) R is local.
- (2) $R \setminus R^{\times} \leq R$.
- (3) There exists $\mathfrak{a} \leq R$ such that $R \setminus \mathfrak{a} \subseteq R^{\times}$.

When these are satisfied, $\mathfrak{m} = R \setminus R^{\times} = \mathfrak{a}$.

Proof. "(i) \Rightarrow (ii)". Claim $\mathfrak{m} = R \setminus R^{\times}$. It suffices to show $R \setminus \mathfrak{m} = R^{\times}$. " \supseteq ". Let $u \in R^{\times}$. Then $u \notin \mathfrak{m}$ and so $R^{\times} \subseteq R \setminus \mathfrak{m}$. " \subseteq ". Let $x \in R \setminus R^{\times}$. Since $1 \in R^{\times}$, $\langle x \rangle \subseteq R$. Since \mathfrak{m} is the unique maximal ideal in R, $\langle x \rangle \subseteq \mathfrak{m}$, i.e., $x \in \mathfrak{m}$. Thus, $R \setminus R^{\times}$, i.e., $R \setminus \mathfrak{m} \subseteq R^{\times}$. "(ii) \Rightarrow (iii)". Assume $R \setminus R^{\times} \subseteq R$. Set $\mathfrak{a} = R \setminus R^{\times}$. Then $R \setminus \mathfrak{a} = R^{\times}$. "(iii) \Rightarrow (i)". Claim $\mathfrak{a} = R \setminus R^{\times}$. " \supseteq ". Let $\mathfrak{a} < R$ such that $R \setminus \mathfrak{a} \subseteq R^{\times}$. Then $\mathfrak{a} \supseteq R \setminus R^{\times}$. " \supseteq ".

"(iii) \Rightarrow (i)". Claim $\mathfrak{a}=R\setminus R^{\times}$. " \supseteq ". Let $\mathfrak{a} \leq R$ such that $R\setminus \mathfrak{a} \subseteq R^{\times}$. Then $\mathfrak{a} \supseteq R\setminus R^{\times}$. " \subseteq ". Let $a\in \mathfrak{a}$. Since $\mathfrak{a} \leq R$, $a\not\in R^{\times}$. So $a\in R\setminus R^{\times}$. Then $\mathfrak{a} \subseteq R\setminus R^{\times}$. Let $\mathfrak{n} \leq R$ be maximal and $y\in \mathfrak{n}$. Then $y\not\in R^{\times}$. So $y\in R\setminus R^{\times}=\mathfrak{a}$. Thus, $\mathfrak{n} \subseteq \mathfrak{a} \leq R$. Since \mathfrak{n} is maximal, $\mathfrak{n}=\mathfrak{a}$.

Proposition 2.0.12. Let $\mathfrak{m} \subseteq R$ be maximal such that $1 + \mathfrak{m} \subseteq R^{\times}$. Then R is local.

Proof. By previous proposition, it suffices to show $R \setminus \mathfrak{m} \subseteq R^{\times}$. Let $x \in R \setminus \mathfrak{m}$. Set $\langle x, \mathfrak{m} \rangle = \langle \{x\} \cup \mathfrak{m} \rangle = \{ax + m \mid a \in R, m \in \mathfrak{m}\}$. Then $\mathfrak{m} \subsetneq \langle x, \mathfrak{m} \rangle \leq R$. Since \mathfrak{m} is maximal, $\langle x, \mathfrak{m} \rangle = R$. So 1 = ax + m for some $a \in R$ and $m \in \mathfrak{m}$, i.e., $ax = 1 - m \in 1 + \mathfrak{m} \subseteq R^{\times}$. Thus, $a, x \in R^{\times}$.

Defintion 2.0.13. $x \in R$ is *nilpotent* if there exists $n \in \mathbb{N}$ such that $x^n = 0$. Then *nilradical* of R is $Nil(R) = N(R) = \{\text{nilpotent elements of } R\}$.

Example 2.0.14. In $\mathbb{Z}/\langle p^n \rangle$, \overline{p} is nilpotent. Similarly, in $k[x]/\langle x^n \rangle$ and $k[x_1, \dots, x_n]/\langle x_1^{a_1}, \dots, x_d^{a_d} \rangle$.

Proposition 2.0.15. (1) $Nil(R) \leq R$.

- (2) $\operatorname{Nil}(R/\operatorname{Nil}(R)) = 0$.
- (3) Nil(R) = R iff R = 0.
- (4) $Nil(R) = \bigcap_{\mathfrak{p} \in Spec(R)} \mathfrak{p}.$
- *Proof.* (1) Let $r \in R$ and $a, b \in \text{Nil}(R)$. Then there exists $m, n \in \mathbb{N}$ such that $a^m = 0 = b^n$. Then $(ra)^m = r^m a^m = 0$ and so $ra \in \text{Nil}(R)$. Since $(a+b)^{m+n} = \sum_{i=0}^{m+n} \binom{m+n}{i} a^i b^{m+n-i} = 0$, we have $a+b \in \text{Nil}(R)$.
- (2) Let $\overline{x} \in \text{Nil}(R/\text{Nil}(R))$. Then there exists $n \in \mathbb{N}$ such that $\overline{x}^n = 0$, i.e., $x^n \in \text{Nil}(R)$. So there exists $m \in \mathbb{N}$ such that $(x^n)^m = 0$, i.e., $x^{mn} = 0$. So $x \in \text{Nil}(R)$. Thus, $\overline{x} = 0$.
- (3) Since $1 \in Nil(R)$, there exists $n \in \mathbb{N}$ such that $1 = 1^n = 0$. So R = 0.

(4) " \subseteq ". Let $x \in \text{Nil}(R)$. Then $x^n = 0 \in \mathfrak{p}$ for any $\mathfrak{p} \in \text{Spec}(R)$. So $x \in \mathfrak{p}$ for any $p \in \text{Spec}(R)$. Thus, $x \in \bigcap_{\mathfrak{p} \in \text{Spec}(R)} \mathfrak{p}$.

"\(\textcolor\)". Let $x \in R \setminus \operatorname{Nil}(R)$. It suffices to show $x \notin \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)}$. It is enough to show there exists $\mathfrak{p} \in \operatorname{Spec}(R)$ such that $x \notin \mathfrak{p}$. Let $\Sigma = \{\mathfrak{a} \le R \mid x, x^2, x^3 \cdots \notin \mathfrak{a}\}$. Since $x \ne 0$, $(0) \in \Sigma$ and then $\Sigma \ne \emptyset$. Let $\mathscr{C} \subseteq \Sigma$ be chain. Then $\mathfrak{q} := \bigcup_{\mathfrak{a} \in \mathscr{C}} \mathfrak{a} \le R$. Suppose $x^n \in \mathfrak{q}$ for some $n \in \mathbb{N}$. Then $x^n \in \mathfrak{a}$ for some $\mathfrak{a} \in \mathscr{C} \subseteq \Sigma$, a contradiction. So $x^n \notin \mathfrak{q}$ for any $n \in \mathbb{N}$ and hence $\mathfrak{q} \in \Sigma$. Then \mathfrak{q} is an upper bound for \mathscr{C} in Σ . So by Zorn's lemma, Σ has a maximal element I. Claim I is prime. Suppose I = R. Then $x^n \in R = I$, a contradiction. So $I \le R$. Let $r, s \in R \setminus I$. Then $I \le \langle r, I \rangle \le R$ and $I \le \langle s, I \rangle \le R$. By the maximality of I in Σ , we have $\langle r, I \rangle, \langle s, I \rangle \notin \Sigma$. So there exists $m, n \in \mathbb{N}$ such that $x^m \in \langle r, I \rangle$ and $x^n \in \langle s, I \rangle$. Then $x^m = ar + i$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in \mathbb{N}$ and $x^m \in \mathbb{N}$ for some $x^m \in$

Example 2.0.16. Let $R = \frac{k[X_1, \dots, X_d]}{(X_1^{a_1}, \dots, X_d^{a_d})} \neq 0$. Then $Nil(R) = \frac{\langle X_1, \dots, X_d \rangle}{\langle X_1^{a_1}, \dots, X_d^{a_d} \rangle}$.

Proof. M1: This is the intersection of the unique prime ideal of R. M2: Since $\overline{X}_i \in \text{Nil}(R)$ for each $i=1,\cdots,d$, we have $\overline{\langle X_1,\cdots,X_d\rangle}=\langle \overline{X}_1,\cdots,\overline{X}_d\rangle\subseteq \text{Nil}(R)\subsetneq R$. Since $\overline{\langle X_1,\cdots,X_d\rangle}$ is maximal, we have $\text{Nil}(R)=\overline{\langle X_1,\cdots,X_d\rangle}$.

Remark (Fact). If $\mathfrak{a} \leq R$ and $r_1, \dots, r_n \in R$, then $R/\mathfrak{a} \supseteq \langle \overline{r}_1, \dots, \overline{r}_n \rangle = \frac{\langle r_1, \dots, r_n, \mathfrak{a} \rangle}{\mathfrak{a}}$. In particular, if $\langle r_1, \dots, r_n \rangle \supseteq \mathfrak{a}$, then $\langle \overline{r}_1, \dots, \overline{r}_n \rangle = \frac{\langle r_1, \dots, r_n \rangle}{\mathfrak{a}}$.

Defintion 2.0.17. The Jacobson radical of R is $Jac(J) = \mathcal{R}(R) = \mathcal{J}(R) = \bigcap_{m \leq R \text{ max'}} \mathfrak{m}$.

Remark. $\operatorname{Jac}(R) \supseteq \operatorname{Nil}(R) = \bigcap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}.$

Proposition 2.0.18. $\mathcal{J}(R) = \{x \in R \mid 1 - xy \in R^{\times}, \ \forall \ y \in Y\}.$

Proof. " \subseteq ". Let $x \in \mathcal{J}(R)$. By way of contradiction (BWOC), suppose there exists $y \in R$ such that $1 - xy \notin R^{\times}$. Then there exists $\mathfrak{m} \leq R$ maximal such that $1 - xy \in \mathfrak{m}$. Since $x \in \mathcal{J}(R) \subseteq \mathfrak{m}$, $xy \in \mathfrak{m}$. So $1 = (1 - xy) + xy \in \mathfrak{m}$, a contradiction.

"\(\text{\text{"}}\)". Argue by contrapositive. Let $x \in R$ such that $1 - xy \in R^{\times}$ for any $y \in Y$. Suppose $x \notin \mathcal{J}(R)$. Then there exists $\mathfrak{m} \leq R$ maximal such that $x \notin \mathfrak{m}$. So $\mathfrak{m} \lneq \langle \mathfrak{m}, x \rangle \leq R$. Hence $\langle x, \mathfrak{m} \rangle = R$. Then there exists $y \in R$ and $m \in \mathfrak{m}$ such that 1 = xy + m. Then $1 - xy = m \in \mathfrak{m}$. So $1 - xy \notin R^{\times}$, a contradiction.

2.1 Operations on Ideals

Let $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \leq R$, $\mathfrak{a}_1, \cdots, \mathfrak{a}_n \leq R$ and $\mathfrak{a}_{\lambda} \leq R$ for any $\lambda \in \Lambda$, where Λ is an index set.

Defintion 2.1.1. $\mathfrak{a} + \mathfrak{b} = \langle \mathfrak{a} \cup \mathfrak{b} \rangle = \bigcap_{\mathfrak{a} \cup \mathfrak{b} \subset I < R}$

Remark (Fact). (1) $\mathfrak{a} + \mathfrak{b} \subseteq \mathfrak{c}$ iff $\mathfrak{a} \cup \mathfrak{b} \subseteq \mathfrak{c}$.

(2) $\mathfrak{a} + \mathfrak{b}$ is the (unique) smallest ideal of R that contains $\mathfrak{a} \cup \mathfrak{b}$.

Proposition 2.1.2. (1) $\mathfrak{a} + \mathfrak{b} = \{a + b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}.$

- (2) If $\mathfrak{a} = \langle S \rangle$ and $\mathfrak{b} = \langle T \rangle$, then $\mathfrak{a} + \mathfrak{b} = \langle S \cup T \rangle$.
- (3) If $\mathfrak{a} = \langle x_1, \dots, x_m \rangle$ and $\mathfrak{b} = \langle y_1, \dots, y_n \rangle$, then $\mathfrak{a} + \mathfrak{b} = \langle x_1, \dots, x_m, y_1, \dots, y_n \rangle$.
- (4) If $x \in R$, then $\langle x, \mathfrak{a} \rangle = \langle x \rangle + \mathfrak{a}$.
- (5) If $\mathfrak{a} + (\mathfrak{b} + \mathfrak{c}) = (\mathfrak{a} + \mathfrak{b}) + \mathfrak{c}$.
- *Proof.* (1) Set $I = \{a+b \mid a \in \mathfrak{a}, b \in \mathfrak{b}\} \leq R$. For any $a \in \mathfrak{a}$, $a = a+0 \in I$ and for any $b \in \mathfrak{b}$, $b = 0+b \in I$. So $\mathfrak{a} \cup \mathfrak{b} \subseteq I$. By (1), $\mathfrak{a} + \mathfrak{b} \subseteq I$. On the other hand (OTOH), for any $a+b \in I$, $a,b \in \mathfrak{a} \cup \mathfrak{b} \subseteq \mathfrak{a} + \mathfrak{b} \leq R$. So $a+b \in \mathfrak{a} + \mathfrak{b}$.
- (2) Let $I \leq R$. $I \supseteq \mathfrak{a} \cup \mathfrak{b}$ iff $I \supseteq \mathfrak{a}, \mathfrak{b}$ iff $I \supseteq \langle S \rangle, \langle T \rangle$ iff $I \supseteq S, T$ iff $I \supseteq S \cup T$. So $\mathfrak{a} + \mathfrak{b} = \bigcap_{\mathfrak{a} \cup \mathfrak{b} \subseteq I \leq R} I = \bigcap_{S \cup T \subseteq I \leq R} I = \langle S \cup T \rangle$.
- (3) By (2).
- (4) By (1).
- (5) The essential point is $\mathfrak{a} + (\mathfrak{b} + \mathfrak{c}) = \langle \mathfrak{a} \cup (\mathfrak{b} \cup \mathfrak{c}) \rangle = \langle (\mathfrak{a} \cup \mathfrak{b}) \cup \mathfrak{c} \rangle = (\mathfrak{a} + \mathfrak{b}) + \mathfrak{c}$.

Example 2.1.3. $m\mathbb{Z} + n\mathbb{Z} = \langle m, n \rangle \mathbb{Z} = \gcd(m, n) \mathbb{Z}$, where $m \neq 0$ or $n \neq 0$.

Remark (Recall). Spec $(R) = \{ \text{prime ideals of } R \}$. For any $S \subseteq R$, $V(S) = \{ \mathfrak{p} \in \text{Spec}(R) \mid \mathfrak{p} \supset S \}$.

Proposition 2.1.4. (1) $V(S) = V(\langle S \rangle)$ for any $S \subseteq R$.

- (2) $\mathfrak{a} = R$ iff $V(\mathfrak{a}) = \emptyset$.
- (3) $\mathfrak{a} \subseteq Nil(R)$ iff $V(\mathfrak{a}) = Spec(R)$.
- (4) If $\mathfrak{a} \subseteq \mathfrak{b}$, then $V(\mathfrak{a}) \supseteq V(\mathfrak{b})$.
- (5) If $S \subseteq T \subseteq R$, then $V(S) \supseteq V(T)$.
- *Proof.* (a) "\(\top\)". Since $S \subseteq \langle S \rangle$, $V(S) \supseteq V(\langle S \rangle)$ by definition. "\(\subset\)". Let $\mathfrak{p} \in V(S)$. Then $\mathfrak{p} \supseteq S$. So $\mathfrak{p} \supseteq \langle S \rangle$ and then $\mathfrak{p} \in V(\langle S \rangle)$. Hence $V(S) \subseteq V(\langle S \rangle)$.
- (b) " \Rightarrow ". Let $\mathfrak{a} = R$. Then $\mathfrak{p} \not\supseteq \mathfrak{a}$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$. So $V(\mathfrak{a}) = \emptyset$. " \Leftarrow ". Let $V(\mathfrak{a}) = \emptyset$. Suppose $\mathfrak{a} \neq R$, then there exists $\mathfrak{m} \leq R$ maximal such that $\mathfrak{m} \supseteq \mathfrak{a}$. Since $\mathfrak{m} \in \operatorname{Spec}(R)$, $\mathfrak{m} \in V(\mathfrak{a})$, a contradiction.
- (c) $\mathfrak{a} \subseteq \text{Nil}(R)$ iff $\mathfrak{p} \supseteq \mathfrak{a}$ for any $\mathfrak{p} \in \text{Spec}(R)$ iff V(R) = Spec(R).
- (d) Similar to (1).
- (e) By (1) and (4).

Proposition 2.1.5. (a) $V(\mathfrak{a} + \mathfrak{b}) = V(\mathfrak{a} \cup \mathfrak{b}) = V(\mathfrak{a}) \cap V(\mathfrak{b}).$

(b) $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$ iff $\mathfrak{a} + \mathfrak{b} = R$.

Proof. (a) Since $\mathfrak{a} + \mathfrak{b} = \langle \mathfrak{a} \cup \mathfrak{b} \rangle$, $V(\mathfrak{a} + \mathfrak{b}) = V(\mathfrak{a} \cup \mathfrak{b})$. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Note $\mathfrak{p} \supseteq \mathfrak{a} \cup \mathfrak{b}$ iff $\mathfrak{p} \supseteq \mathfrak{a}$ and $\mathfrak{p} \supseteq \mathfrak{b}$. So $V(\mathfrak{a} \cup \mathfrak{b}) = V(\mathfrak{a}) \cap V(\mathfrak{b})$.

(b)
$$V(\mathfrak{a}) \cap V(\mathfrak{b}) = \emptyset$$
 iff $V(\mathfrak{a} + \mathfrak{b}) = \emptyset$ iff $\mathfrak{a} + \mathfrak{b} = R$.

Remark. You can define $\mathfrak{a}_1 + \cdots + \mathfrak{a}_n$ inductively and same properties as above hold for finite sums.

Remark (Fact). (a) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \subseteq \mathfrak{c}$ iff $\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} \subseteq \mathfrak{c}$.

(b) $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$ is the (unique) smallest ideal of R containing $\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}$.

(c)
$$\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \left\{ \sum_{\lambda \in \Lambda}^{\text{finite}} a_{\lambda} \mid a_{\lambda} \in \mathfrak{a}_{\lambda}, \ \forall \ \lambda \in \Lambda \right\}$$

(d) If $\mathfrak{a}_{\lambda} = \langle S_{\lambda} \rangle$ for any $\lambda \in \Lambda$, then $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = \langle \bigcup_{\lambda \in \Lambda} S_{\lambda} \rangle$.

Remark (Fact). (a) $V(\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}) = V(\bigcup_{\lambda \in \Lambda} \mathfrak{a}_{\lambda}) = \bigcap_{\lambda \in \Lambda} V(\mathfrak{a}_{\lambda}).$

(b) $\bigcap_{\lambda \in \Lambda} V(\mathfrak{a}_{\lambda}) = \emptyset$ iff $\sum_{\lambda \in \Lambda} \mathfrak{a}_{\lambda} = R$.

Defintion 2.1.6. $\mathfrak{ab} = \langle N \rangle = \bigcap_{N \subseteq I \leq R} R$, where $N = \{ab \mid a \in \mathfrak{a}, b \in \mathfrak{b}\}$.

Remark (Fact). Let $\mathfrak{ab} = \langle N \rangle$.

- (a) $\mathfrak{ab} \subset \mathfrak{c}$ iff $N \subset \mathfrak{c}$.
- (b) \mathfrak{ab} is the (unique) smallest ideal of R containing N.
- (c) $\mathfrak{ab} = \{\sum_{i}^{\text{finite}} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, \ \forall \ i\}.$
- (d) If $\mathfrak{a} = \langle S \rangle$ and $\mathfrak{b} = \langle T \rangle$, then $\mathfrak{ab} = \langle st \mid s \in S, t \in T \rangle$.
- (e) If $\mathfrak{a} = \langle x_1, \dots, x_m \rangle$ and $\mathfrak{b} = \langle y_1, \dots, y_n \rangle$, then $\mathfrak{ab} = \langle x_i y_j \mid i = 1, \dots, m, j = 1, \dots, n \rangle$.
- (f) $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$.

Proof. (c) Let $I = \{\sum_{i=1}^{\text{finite}} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}\} \leq R$. Then, by definition, $\mathfrak{ab} = \langle N \rangle = I$.

(f) To show $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, it suffices to show $ab \in \mathfrak{a} \cap \mathfrak{b}$ for any $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Since $a \in \mathfrak{a}$, $ab \in \mathfrak{a}$. Since $b \in \mathfrak{b}$, $ab \in \mathfrak{b}$. So $ab \in \mathfrak{a} \cap \mathfrak{b}$.

Proposition 2.1.7. (a) $V(\mathfrak{ab}) = V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$.

- (b) $V(\mathfrak{a}) \cup V(\mathfrak{b}) = \operatorname{Spec}(R)$ iff $\mathfrak{ab} \subseteq \operatorname{Nil}(R)$ iff $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{Nil}(R)$.
- Proof. (a) Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Then $\mathfrak{p} \supseteq \mathfrak{ab}$ iff $\mathfrak{p} \supseteq \mathfrak{a}$ or $\mathfrak{p} \supseteq \mathfrak{b}$. So $V(\mathfrak{ab}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$. Since $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$, $V(\mathfrak{ab}) \supseteq V(\mathfrak{a} \cap \mathfrak{b})$. Let $\mathfrak{p} \in V(\mathfrak{ab})$. Let $x \in \mathfrak{a} \cap \mathfrak{b}$. Then $x^2 = x \cdot x \in \mathfrak{ab} \subseteq \mathfrak{p}$. Since \mathfrak{p} is prime, $x \in \mathfrak{p}$. So $\mathfrak{p} \subseteq \mathfrak{a} \cap \mathfrak{b}$ and then $\mathfrak{p} \in V(\mathfrak{a} \cap \mathfrak{b})$. Hence $V(\mathfrak{ab}) \subseteq V(\mathfrak{a} \cap \mathfrak{b})$.
- (b) $V(\mathfrak{a}) \cap V(\mathfrak{b}) = \operatorname{Spec}(R)$ iff $V(\mathfrak{ab}) = \operatorname{Spec}(R)$ iff $\mathfrak{ab} \subseteq \operatorname{Nil}(R)$ and similarly for $\mathfrak{a} \cap \mathfrak{b}$.

Defintion 2.1.8. If $\mathfrak{a} + \mathfrak{b} = R$, then \mathfrak{a} and \mathfrak{b} are called "coprime" or "comaximal".

Proposition 2.1.9. (a) $\mathfrak{ab} = \mathfrak{ba}$ and $(\mathfrak{ab})\mathfrak{c} = \mathfrak{a}(\mathfrak{bc})$.

- (b) $\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}$.
- (c) If $\mathfrak{a} + \mathfrak{b} = R$, then $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$.
- (d) If R is PID and $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$ with $\mathfrak{a} \neq 0 \neq \mathfrak{b}$, then $\mathfrak{a} + \mathfrak{b} = R$.

Proof. (c) We always have $\mathfrak{a} \cap \mathfrak{b} \supseteq \mathfrak{ab}$.

M1: Assume $\mathfrak{a} + \mathfrak{b} = R$. Then 1 = a + b for some $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Let $x \in \mathfrak{a} \cap \mathfrak{b}$. Then $x = 1 \cdot x = (a + b)x = ax + bx \in \mathfrak{ab}$.

M2: $\mathfrak{a} \cap \mathfrak{b} = R(\mathfrak{a} \cap \mathfrak{b}) = (\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{a}(\mathfrak{a} \cap \mathfrak{b}) + \mathfrak{b}(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{ab}$.

(d) Let R be a PID and $\mathfrak{a}, \mathfrak{b} \neq 0$. Write $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_n^{e_n} R$ and $\mathfrak{b} = \mathfrak{p}_1^{f_1} \cdots \mathfrak{p}_n^{f_n} R$ with $e_i, f_i \geq 0$ for any $i = 1, \dots, n$, and \mathfrak{p}_i 's $\in \operatorname{Spec}(R)$ non-associates. Assume $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{ab}$. Since R is a PID, $\mathfrak{a} \cap \mathfrak{b} = \operatorname{lcm}(p_1^{e_1} \cdots p_n^{e_n}, p_1^{f_1} \cdots p_n^{f_n}) R = \mathfrak{p}_1^{\max\{e_1, f_1\}} \cdots \mathfrak{p}_n^{\max\{e_n, f_n\}}$ and $\mathfrak{ab} = \mathfrak{p}_1^{e_1 + f_1} \cdots \mathfrak{p}_n^{e_n + f_n}$. So $e_i = 0$ or $f_i = 0$ for any $i = 1, \dots, n$. In other words, for any $\mathfrak{p} \in \operatorname{Spec}(R)$, either $\mathfrak{a} \not\subseteq \mathfrak{p} R$ or $\mathfrak{b} \not\subseteq \mathfrak{p} R$. So $\operatorname{V}(\mathfrak{a}) \cap \operatorname{V}(\mathfrak{b}) = \emptyset$ for any $\mathfrak{p} \in \operatorname{Spec}(R)$. Thus, $\mathfrak{a} + \mathfrak{b} = R$.

Remark. You can do this for $\mathfrak{a}_1, \dots, \mathfrak{a}_n$.

If R is not a UFD, (4) may fail. For example, R = k[x, y]. Let $\mathfrak{a} = \langle x \rangle$ and $\mathfrak{b} = \langle y \rangle$. Then $\mathfrak{a} \cap \mathfrak{b} = \langle xy \rangle = \mathfrak{a}\mathfrak{b}$. But $\mathfrak{a} + \mathfrak{b} = \langle x, y \rangle \subseteq R$.

Defintion 2.1.10. Let $\mathfrak{a} \leq R$ and $n \in \mathbb{N}$. Let $\mathfrak{a}^n = \underbrace{\mathfrak{a} \cdots \mathfrak{a}}_{n \text{ times}}$ and $\mathfrak{a}^0 = R$.

Remark (Warning). \mathfrak{a}^n is not generated by $\{a^n \mid a \in \mathfrak{a}\}$. For example, let $R = \mathbb{F}_2[x,y]$ and $\mathfrak{a} = \langle x,y \rangle$, then $\mathfrak{a}^2 = \langle x^2, xy, y^2 \rangle \neq \langle f^2 \mid f \in \mathfrak{a} \rangle \not\ni xy$.

Proposition 2.1.11. (a) Let $\mathfrak{a}^n = \langle N \rangle$. Then for any $\mathfrak{b} \leq R$, $\mathfrak{a}^n \subseteq \mathfrak{b}$ iff $N \subseteq \mathfrak{b}$.

- (b) \mathfrak{a}^n is the (unique) smallest ideal of R containing N.
- (c) $\mathfrak{a}^n = \{\sum_{i=1}^{finite} a_{i1} \cdots a_{in} \mid a_{ij} \in \mathfrak{a}_j, \ \forall \ j\}.$
- (d) If $\mathfrak{a} = \langle S \rangle$, then $\mathfrak{a}^n = \langle s_1 \cdots s_n \mid s_i \in S, \ \forall \ i = 1, \cdots, n \rangle$.
- (e) If $\mathfrak{a} = \langle x_1, \dots, x_m \rangle$, then $\mathfrak{a}^n = \langle x_{i_1} \dots x_{i_n} \mid i_j = 1, \dots, m, \ \forall \ j = 1, \dots, n \rangle$.

Remark (Fact). $V(\mathfrak{a}^n) = V(\mathfrak{a})$.

Proposition 2.1.12. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n \leq R$.

- (a) The function $\phi: R \to (R/\mathfrak{a}_1) \times \cdots \times (R/\mathfrak{a}_n)$ given by $\phi(x) = (\overline{x}, \dots, \overline{x}) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n)$ is a well-defined ring homomorphism.
- (b) If $\mathfrak{a}_i + \mathfrak{a}_j = R$ for any $1 \leq i \neq j \leq R$, then $\bigcap_{i=1}^n \mathfrak{a}_i = \mathfrak{a}_1 \cdots \mathfrak{a}_n$ and $\mathfrak{a}_i + (\bigcap_{j \neq i} \mathfrak{a}_j)R = R$.
- (c) ϕ is surjective iff $\mathfrak{a}_i + \mathfrak{b}_j = R$ for any $1 \leq i \neq j \leq n$.

- (d) $\operatorname{Ker}(\phi) = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$.
- (e) If $\mathfrak{a}_i + \mathfrak{a}_j = R$ for any $1 \leq i \neq j \leq R$ and $\bigcap_{i=1}^n \mathfrak{a}_i = 0$, then $R \cong (R/\mathfrak{a}_1)R \cap \cdots \times (R/\mathfrak{a}_n)R$.

Proof. (2) To show $\mathfrak{a}_i + (\bigcap_{j \neq i})R = R$. It suffices to show $V() \neq \emptyset$.

(3) "\(\Rightarrow\)". Assume ϕ is surjective. In particular, there exists $x \in R$ such that $(\overline{1}, \overline{0}, \cdots, \overline{0}) = \phi(x) = (\overline{x}, \overline{x}, \cdots, \overline{x})$. So $x + \mathfrak{a}_1 = 1 + \mathfrak{a}_1$ and $x + \mathfrak{a}_i = 0 + \mathfrak{a}_i$ for any $2 \le i \le n$. Hence $1 - x \in \mathfrak{a}_1$ and $x \in \mathfrak{a}_i$ for any $2 \le i \le n$. Also, since 1 = (1 - x) + x, we have $\mathfrak{a}_1 + \mathfrak{a}_i = R$ for any $2 \le i \le n$. Consider $(\overline{0}, \cdots, \overline{0}, \overline{1}, \overline{0}, \cdots, \overline{0})$ arrow $\mathfrak{a}_i + \mathfrak{a}_j = R$ for any $1 \le i \ne j \le n$. "\(\Liep\)". Assume $\mathfrak{a}_i + \mathfrak{b}_j = R$ for any $1 \le i \ne j \le n$. By (2), $\mathfrak{a}_1 + (\bigcap_{i=2}^n \mathfrak{a}_i)R = R$. So $1 = a_1 + y$ with $a_1 \in \mathfrak{a}_1$ and $y \in \bigcap_{i=2}^n \mathfrak{a}_i$. Then $\phi(y) = (\overline{y}, \overline{y}, \cdots, \overline{y}) = (y + \mathfrak{a}_1, y + \mathfrak{b}_2, \cdots, y + \mathfrak{a}_n) = (1 + \mathfrak{a}_1, 0 + \mathfrak{a}_2, \cdots, 0 + \mathfrak{a}_n) = (\overline{1}, \overline{0}, \cdots, \overline{0})$. Similarly, for any $i = 1, \cdots, n$, there exists y_i such that $\phi(y_i) = (\overline{0}, \cdots, \overline{0}, \overline{1}, \overline{0}, \cdots, \overline{0})$. Then for any $(\overline{r}_1, \cdots, \overline{r}_n) \in \frac{R}{\mathfrak{a}_1} \times \cdots \times \frac{R}{\mathfrak{a}_n}$, $(\overline{r}_1, \cdots, \overline{r}_n) = \sum_{i=1}^n r_i((\overline{0}, \cdots, \overline{0}, \overline{1}, \overline{0}, \cdots, \overline{0})) = \sum_{i=1}^n r_i \phi(y_i) = \phi(\sum_{i=1}^n r_i y_i)$.

Proposition 2.1.13. Let $\mathfrak{a}_1, \dots, \mathfrak{a}_n \leq R$ and $\mathfrak{p} \in \operatorname{Spec}(R)$.

- (a) If $\mathfrak{a} = \mathfrak{p}_1 \cdots \mathfrak{p}_n$, then $\mathfrak{p} = \mathfrak{a}_i$ for some $i \in \{1, \cdots, n\}$.
- (b) If $\mathfrak{p} = \mathfrak{a}_1 \cap \cdots \cap \mathfrak{a}_n$, then $\mathfrak{p} = \mathfrak{a}_1$ for some $i \in \{1, \cdots, n\}$.
- *Proof.* (2) Assume $\mathfrak{p}_1 \cap \cdots \mathfrak{p}_n \supseteq \mathfrak{a}_1 \cdots \mathfrak{a}_n$. Since $\mathfrak{p} \in \operatorname{Spec}(R)$, there exists $i \in \{1, \dots, n\}$ such that $\mathfrak{p} \supseteq \mathfrak{a}_i$.

Fact 1.