

Conclusions

Practical Machine Learning (with R)

UC Berkeley Spring 2016

3 Questions

- What did you learn that was unexpected and insightful?
- What did you struggle with the most?

What are you sorry that we didn't get to cover? / What are you going to learn on your own?

Class Evaluation

Please do it now.

Agenda

Administrativa

- Role Call / 3 Questions
- Class Evaluations

Review/Expectations

- Readings
 - Forecasting Principals and Practice
 - Chapters 1 "Getting Started"
 - Chapter 2 "The Forecaster's Toolbox"
 - Chapter 6 "Time Series Decomposition"
 - APM
 - Chapter 7.1, 13.2 "Neural Networks"
 - Chapter 7.3, 13.4 "Support Vector Machines"
- Previous Lecture Rewiew
- New Topics

Remaining Topics

Today

- Neural Networks
- Deploying Models
- Recommender Patterns
- SVMs

QUESTIONS

NEURAL NETWORKS / ARTIFICIAL NEURAL NETWORKS (ANN)

Analogy to How the Brain Works

Essential Brain Functions

- Neurons receive signals from stimuli
- Neurons either "fire" or not → 0 | 1
- If fired, signal is propagated.
- Neurons can have multiple inputs and outputs
- Neurons can receive and send signals to other neurons.
 - "Network of neurons" result in cognitive function
- Response is continuous valued

Neuron

 Neurons receive signals from stimuli

Neurons either "fire" or not → 0 | 1

Network

- Neurons can have multiple inputs
- Neurons can send a signal (0,1) to multiple outputs
- Neurons can receive and send signals to other neurons.
 - "Network of neurons" result in cognitive function

Response

Response is continuous valued

SINGLE-LAYER FEED-FORWARD NETWORK

Hidden units are comprised of transformation of linear combination of predictors:

$$h(x) = g(\beta_0 + \sum_{i=1}^{P} x_i \beta_i)$$

Where g(x) is a sigmodial activation function, resulting in values equal or close to 0 or 1 (often the logistic function).

Outcome is then a regression/classification on the Hidden Units, for example:

NB:
$$\beta$$
 and γ are called "weights".

$$f(x) = \gamma_0 + \sum_{k=1}^{H} x_k \gamma_k$$

NEURAL NETWORK AS A LEARNING ALGORITHM

Component	
Loss Function	Various typically:RMSE (Regression)Binary 0-1 Loss (Classification)
Restricted Class of Function	 Sigmodial Activation Function (logistic) with Linear combination of hidden units (linear regression)
Search Methodology	Optimization, typically via Back-propagation

NEURAL NETWORK CLASSIFICATION

NEURAL NETWORKS: VARIATIONS

- Neural Networks can be made more complex by:
 - Adding hidden units
 - Adding hidden layers
 - Allowing back propagation of neuron signals.

NEURAL NETWORK: ADVANTAGES

- Performs very well
 - yields highly accurate predictions
 - low signal-to-noise
 - Non-linear response
- Easy to add or remove complexity
 - Hidden units
 - Hidden layers

Modelled after brain function

NEURAL NETWORKS: DISADVANTAGES

- Not interpretable → difficult to relate inputs to outcomes
- Requires numeric inputs, typically scaled/centered
- \Rightarrow All parameters, $\beta's$ and $\gamma's$ estimated simultaneously
 - A large number of parameters \rightarrow requires larger data sets. H*(P+1)+H+1
 - Training times can be long
 - Numerical solution technique:
 - No guarantee of uniqueness
 - Dependent on initial selections of parameters usually small random
- Tends to overfit

SOLUTIONS TO OVERFITTING

 Early stopping: iterative algorithms for solving for the regression equations can be prematurely halted

Weight Decay:

add a penalty for large regression coefficients; large values must have a significant effect on the model errors to be tolerated:

$$\sum_{i=1}^{n} \left(y_i - f_i(x) \right)^2$$

$$0 < \lambda \le 0.1$$

ASIDE: WEIGHT DECAY

- This addition of a term to the minimization target is called "shrinkage" or "regularization"
- Tuning parameter ... Bias Variance Trade-off
- Can be applied to any technique that directly estimate parameters ... linear regression (ridge L1/lasso L2)

DEEP LEARNING

- Buzz word: Rebranding of (artificial) neural networks
 - Training speed improvements (Hinton et. al, 2013)
 - Hardware Improvements
- Requirements
 - Multiple (often) many layers
 - Supervised or unsupervised learning at each layer
 - Each successive layer is a higher level of abstraction
 - Pixel → Group of pixels → Whisker → Feline Face → House Cat layer 1 layer 2 layer3
- Higher abstractions obviate feature engineering ...
 to a point.
 - Untransformed input features
 - Large success on unsupervised learning, e.g. can we create a model for cats.

Deep Learning

Benefits

- → Highly accurate → NN
- Reduced need for manual feature engineering
- Does not necessarily require labelled data
- Exciting area of development ... Al Spring

Limitations

- Computationally expensive
 - long training times or
 - need for specialty hardware
- High number of parameters require lots of data
- Really novel?

Deep Learning

DEPLOYMENT

DEPLOYMENT CONSIDERATIONS

- Access: How will the model be accessed?
 Online? Excel? In Database? In application?
- Trigger: What event when scoring occurs? How often?
- Inputs
 - Where data to be scored exists, how obtained
 - How much data?
 - What features can be calculated and cached offline?
- Outputs: determine the output of the models
 - Scores: raw score, class, class probabilities?
 - Additional data: e.g. benefit, prescribed actions
- Logic

Data → [Feature Specifications] → Features → [Model Specifications] → Final Processing (online or offline)

MODEL ACCESS AND USAGE PATTERNS

User	Access Point	Deployment Technology	Consideration(s)
Client, Non-technical	Web	Shiny	Interface changes with most model updates
Client, Excel-user	Excel	OpenCPU + VB REST libs	Excel quirks, e.g. Auto calculate
Non-R App. Developer	RESTful API	OpenCPU	Marshalling JSON data to from R
R Developer	Web RESTful API Native R UI R / Rstudio	Shiny OpenCPU Rserve libraries / git / packrat	
Recurrent Process Manual Automated	command line	Rscript + optigrab or	Logging, trapping errors, default parameters, notifications (long processes)
Proprietary ApplicationDatabaseBI Application		SQL Server (SSAS), R Oracle Enterprise	Mileage varies

REVIEW: CREATING AN R PACKAGE

A package is just a directory + conventions for locating code, data, documentation and more

To create a package template

```
devtools::create("path/to/mypackage")
```

Packages:

- Save models / feature specs objects to data/ directory:
 - save
- Use roxygen2 for documentation
 - Uses tags: @export, @parm, @main, ...
- Use package metadata for
 - Author:, Date:, Version:
- Best practice, use git tag to match version number

Shiny - What is it

Interactive web framework for analysis and visualization in R

- Application written entirely in R
- Reactive programming
 - Variable have dependency on other values
 - Update values when dependencies change
- Separated concerns
 - ui/ui.R (layout, presentation)
 - high-level functions for widgets and layout
 - server / server.R (application) : application logic
- Well-documented: <u>shiny.rstudio.com</u>
 - Tutorials, examples, gallery ...
- Integrated with Rstudio (runApp)
- Uses popular JS libraries for client side reactivity, DataTable,
 Selectize, d3.js. Search CRAN and Shiny Web sites.

Shiny Resources

- shiny.rstudio.com
- CRAN
- R-bloggers
- Stack-overflow

SHINY SCORER EXAMPLE

openCPU

- Exposes R as a RPC web service:
 - http://myserver/ocpu/path/command/format
- Examples
 - Path:

```
library/stats/
library/datasets
```

CommandR/meandata/airquality

Format:

```
print | json | csv | tab | md |
rda | rds | pb | png | pdf | svg
```

Example: openCPU example

Shiny vs openCPU

Shiny

- user-interactive apps
 - single purpose
 - single threaded
- manages state
 - Remembers uses settings between calls
- Easy-to do simple things
- Integration with RStudio

openCPU

- Web service
 - part of larger application
 - analysis deployed to multiple endpoints
 - Batch
- Stateless
 - Inherently multithreaded
- More complex
- Manual configuration

MISCELLANEOUS TOPICS

Formula Tools

oi and poly

CUSTOM LOSS FUNCTIONS

- Use in-model training
- Use case weights are
- Use 2nd optimization → another model

- → rarely available
- > more weight to

RECOMMENDER SYSTEM

RECOMMENDER SYSTEM

 Goal develop a Netflix/Amazon style recommendations system to users

Setup

- Two disjoint sets: users and products
- Historical interactions:
 - Sales / Rentals
 - Ratings/ Likes / Comments
 - Etc

APPENDIX

NEURAL NETWORKS: CLASSIFICATION

- Add additional responses, one for each class.
- Transform continuous response are transformed by logistic function
- Apply *Softmax* function: Transform all class probabilities via the soft max function.

$$\hat{p}_{\ell}^* = \frac{e^{\hat{y}_{\ell}}}{\sum_{l=1}^{C} e^{\hat{y}_{l}}}$$

Maps arbitrary real-values

- so that all values sum to 1
- and are between 0 and 1

Shiny Component

ui.R

- HTML Layout:
 - fluidPage
 - navBarPage
 - bootstrapPage
 - shinydashboard
- Widgets
 - Input: input*
 - Output: *Output

Reactivity:

ui redraws in response to user inputs and server events

server.R – logic/data/results

- Manage input and output
 - input\$name
 - output\$name
- Manages reactivity
 - observe, observeEvent
 - Isolate
- Creates data/results:
 - render*

Reactivity:

server responds to changes in **user inputs**

Shiny: Best Practices

- Best way to learn shiny is to do shiny
- Shiny applications can get complicated quickly
 - Designed for simple, single-page, single-thread apps
 - Goal: Reduce complexity
- All shiny functions are camelCase
 - Separate concerns
 - Keep related things close together
- use source as needed
- Separate common elements for both ui.R and server.R into common file and source them or place them in a package

Shiny: Best Practices

⇒ ui.R

- Program model uses functions and names
- All ui widgets must have unique name even if identical element is used twice.
- Naming can be confusing → adopt a naming convention.
- For complex applications, separate widgets and layout
 - layout → ui.R
 - widgets → widgets.R

Server.R

- Program model uses named lists
 - All inputs accessed by input list, must respond appropriately to empty inputs
 - All rendered objects must be placed in output list
- Dynamic inputs use renderUI (server.R) & uiOutput (ui.R)
 - If you use any dynamic inputs, use all dynamic inputs

Shiny: Best Practives

Development

Develop within Rstudio

```
library(rstudioapi)
runApp( launch.browser=rstudioapi:::viewer ) # or
options("shiny.launch.browser" = rstudioapi:::viewer )
```

- runApp can reload with ui.R errors / must be reloaded with server.R errors
- browser is your friend!

- Open Source free version lacks
 - Authentication
 - Multiple-threads
 - Resource allocation and monitoring