Bayesian approach of the parameter inverse problem under uncertainties

Victor Trappler

Directeurs de Thèse : Arthur VIDARD (Inria) Élise ARNAUD (UGA) Laurent DEBREU (Inria)

22 janvier 2020

Table des matières

1	(Joi	int) Posterior formulation
	1.1	Priors
	1.2	Likelihood model
2	GP,	RR-based family of estimators
	2.1	Random processes
		Linear Estimation
	2.3	GP of the penalized cost function Δ_{α}
		2.3.1 GP processes
		2.3.2 Approximation of the objective probability using GP
		2.3.3 Sources, quantification of uncertainties, and SUR strategy?

(Joint) Posterior formulation

Priors

 $K \sim \mathcal{U}(\mathbb{K}), \quad p(k)$ $U \sim \mathcal{U}(\mathbb{U}), \quad p(u)$

Likelihood model

$$p(y \mid k, u, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} SS(k, u)\right]$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2\sigma^2} \|\mathcal{M}(k, u) - y\|_{\Sigma}^2\right]$$

Now to Bayes' theorem

$$p(k, u \mid y, \sigma^2) = \frac{p(y \mid k, u, \sigma^2) p(k, u)}{\iint_{\mathbb{K} \times \mathbb{U}} p(y \mid k, u, \sigma^2) p(k, u) \, \mathrm{d}(k, u)}$$

Let us assume an hyperprior for $\sigma^2: p(\sigma^2)$

GP, RR-based family of estimators

Random processes

Let us assume that we have a map f from a p dimensional space to \mathbb{R} :

$$f: \ \mathbb{X} \subset \mathbb{R}^p \longrightarrow \mathbb{R}$$

$$x \longmapsto f(x)$$
(1)

This function is assumed to have been evaluated on a design of n points, $\mathcal{X} \subset \mathbb{X}^n$. We wish to have a probabilistic modelling of this function We introduce random processes as way to have a prior distribution on function This uncertainty on f is modelled as a random process:

$$Z: \mathbb{X} \times \Omega \longrightarrow \mathbb{R}$$

$$(x, \omega) \longmapsto Z(x, \omega)$$
(2)

The ω variable will be omitted next.

Linear Estimation

A linear estimation \hat{Z} of f at an unobserved point $x \notin \mathcal{X}$ can be written as

$$\hat{Z}(x) = \begin{bmatrix} w_1 \dots w_n \end{bmatrix} \begin{bmatrix} f(x_1) \\ \vdots \\ f(x_n) \end{bmatrix} = \mathbf{W}^T f(\mathcal{X}) = \sum_{i=1}^n w_i(x) f(x_i)$$
 (3)

Using those kriging weights W, a few additional conditions must be added:

- Non-biased estimation : $\mathbb{E}[\hat{Z}(x) Z(x)] = 0$
- Minimal variance : $\min \mathbb{E}[(\hat{Z}(x) Z(x))^2]$

Translating using Eq.(3):

$$\mathbb{E}[\hat{Z}(x) - Z(x)] = 0 \iff m(\sum_{i=1}^{n} w_i(x) - 1) = 0 \iff \sum_{i=1}^{n} w_i(x) = 1 \iff \mathbf{1}^T \mathbf{W} = 1$$
 (4)

For the minimum of variance, we introduce the augmented vector $\mathbf{Z}_n(x) = [Z(x_1), \dots Z(x_n), Z(x)]$, and the variance can be expressed as:

$$\mathbb{E}[(\hat{Z}(x) - Z(x))^2] = \mathbb{V}\operatorname{ar}\left[[\mathbf{W}, -1]^T \mathbf{Z}_n(x)\right]$$
(5)

GP of the penalized cost function Δ_{α}

GP processes

Let $\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) = J(\mathbf{k}, \mathbf{u}) - \alpha J^*(\mathbf{u})$. Furthermore, we assume that we constructed a GP on J on the joint space $\mathbb{K} \times \mathbb{U}$, based on a design of n points $\mathcal{X} = \{(\mathbf{k}^{(1)}, \mathbf{u}^{(1)}), \dots, (\mathbf{k}^{(n)}, \mathbf{u}^{(n)})\}$, denoted as $(\mathbf{k}, \mathbf{u}) \mapsto Y(\mathbf{k}, \mathbf{u})$.

As a GP, Y is described by its mean function m_Y and its covariance function $C(\cdot, \cdot)$, while $\sigma_Y^2(\mathbf{k}, \mathbf{u}) = C((\mathbf{k}, \mathbf{u}), (\mathbf{k}, \mathbf{u}))$

$$Y(\mathbf{k}, \mathbf{u}) \sim \mathcal{N}\left(m_Y(\mathbf{k}, \mathbf{u}), \sigma_Y^2(\mathbf{k}, \mathbf{u})\right)$$
 (6)

Let us consider now the conditional minimiser:

$$J^*(\mathbf{u}) = J(\mathbf{k}^*(\mathbf{u}), \mathbf{u}) = \min_{\mathbf{k} \in \mathbb{K}} J(\mathbf{k}, \mathbf{u})$$
 (7)

Analogous to J and J^* , we define Y^* as

$$Y^*(\mathbf{u}) \sim \mathcal{N}\left(m_Y^*(\mathbf{u}), \sigma_Y^{2,*}(\mathbf{u})\right)$$
 (8)

where

$$m_Y^*(\mathbf{u}) = \min_{\mathbf{k} \in \mathbb{K}} m_Y(\mathbf{k}, \mathbf{u}) \tag{9}$$

The surrogate conditional minimiser is used in Ginsbourger profiles etc. The α -relaxed difference Δ_{α} modelled as a GP can then be written as

Considering the joint distribution of $Y(\mathbf{k}, \mathbf{u})$ and $Y^*(\mathbf{u}) = Y(\mathbf{k}^*(\mathbf{u}), \mathbf{u})$, we have

$$\begin{bmatrix} Y(\mathbf{k}, \mathbf{u}) \\ Y^*(\mathbf{u}) \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} m_Y(\mathbf{k}, \mathbf{u}) \\ m_Y^*(\mathbf{u}) \end{bmatrix}; \begin{bmatrix} C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}, \mathbf{u}) \right) & C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) \\ C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) & C\left((\mathbf{k}^*(\mathbf{u}), \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u}) \right) \end{bmatrix} \right)$$

$$(10)$$

By multiplying by the matrix $\begin{bmatrix} 1 & -\alpha \end{bmatrix}$ yields

$$\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) \sim \mathcal{N}\left(m_{\Delta}(\mathbf{k}, \mathbf{u}); \sigma_{\Delta}^{2}(\mathbf{k}, \mathbf{u})\right)$$
 (11)

$$m_{\Delta}(\mathbf{k}, \mathbf{u}) = m_Y(\mathbf{k}, \mathbf{u}) - \alpha m_Y^*(\mathbf{u})$$
(12)

$$\sigma_{\Delta}^{2}(\mathbf{k}, \mathbf{u}) = \sigma_{Y}^{2}(\mathbf{k}, \mathbf{u}) + \alpha^{2} \sigma_{Y^{*}}^{2}(\mathbf{k}, \mathbf{u}) - 2\alpha C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^{*}(\mathbf{u}), \mathbf{u})\right)$$
(13)

Assuming that $C((\mathbf{k}, \mathbf{u}), (\mathbf{k}', \mathbf{u}')) = s \prod_{i \in \mathcal{I}_{\mathbf{k}}} \rho_{\theta_i}(\|k_i - k_i'\|) \prod_{j \in \mathcal{I}_{\mathbf{u}}} \rho_{\theta_j}(u_j - u_j'\|)$

$$C\left((\mathbf{k}, \mathbf{u}), (\mathbf{k}^*(\mathbf{u}), \mathbf{u})\right) = s \prod_{i \in \mathcal{I}_{\mathbf{k}}} \rho_{\theta_i}(\|k_i - k_i^*(\mathbf{u})\|) \prod_{j \in \mathcal{I}_{\mathbf{u}}} \rho_{\theta_j}(0)$$
(14)

$$= s \prod_{i \in \mathcal{I}_{\mathbf{k}}} \rho_{\theta_i}(\|k_i - k_i^*(\mathbf{u})\|)$$
(15)

Approximation of the objective probability using GP

We are going now to use a different notation for the probabilities, taken with respect to the $GP : \mathcal{P}$, to represent the uncertainty encompassed by the GP.

Defined somewhere else, we have

$$\Gamma_{\alpha}(\mathbf{k}) = \mathbb{P}_{\mathbf{U}}\left[J(\mathbf{k}, \mathbf{U}) \le \alpha J^*(\mathbf{U})\right]$$
 (16)

$$= \mathbb{E}_{\mathbf{U}} \left[\mathbb{1}_{J(\mathbf{k}, \mathbf{U}) \le \alpha J^*(\mathbf{U})} \right] \tag{17}$$

This classification problem can be approached with a plug-in approach, or a probablistic one :

$$\mathbb{1}_{J(\mathbf{k},\mathbf{u}) \leq \alpha J^*(\mathbf{u})} \approx \mathbb{1}_{m_{\mathbf{v}}(\mathbf{k},\mathbf{u}) \leq \alpha m_{\mathbf{v}}^*(\mathbf{u})} \tag{18}$$

$$\mathbb{1}_{J(\mathbf{k},\mathbf{u}) \le \alpha J^*(\mathbf{u})} \approx \mathcal{P}\left[\Delta_{\alpha}(\mathbf{k},\mathbf{u}) \le 0\right] = \pi(\mathbf{k},\mathbf{u})$$
(19)

Using the GPs, for a given \mathbf{k} , α and \mathbf{u} , the probability for our meta model to verify the inequality is given by Based on those two approximation, the approximated probability Γ is

$$\hat{\Gamma}_{\alpha,n}(\mathbf{k}) = \mathbb{P}_{U} \left[m_{Y}(\mathbf{k}, \mathbf{u}) \leq \alpha m_{Y}^{*}(\mathbf{u}) \right]$$
 (plug-in)

$$\hat{\Gamma}_{\alpha,n}(\mathbf{k}) = \mathbb{E}_{U} \left[\mathcal{P} \left[\Delta_{\alpha}(\mathbf{k}, \mathbf{u}) \leq 0 \right] \right]$$
 (Probabilistic approx)
(20)

The probability of coverage for the set $\{Y - \alpha Y^*\}$ is π_{α} , and can be computed using the CDF of the standard normal distribution Φ :

$$\pi_{\alpha}(\mathbf{k}, \mathbf{u}) = \Phi\left(-\frac{m_{\Delta_{\alpha}}(\mathbf{k}, \mathbf{u})}{\sigma_{\Delta_{\alpha}}(\mathbf{k}, \mathbf{u})}\right)$$
(21)

Finally, averaging over \mathbf{u} yields

$$\hat{\Gamma}(\mathbf{k}) = \int_{\mathbb{H}} \pi_{\alpha}(\mathbf{k}, \mathbf{u}) p(\mathbf{u}) \, d\mathbf{u}$$
 (22)

Sources, quantification of uncertainties, and SUR strategy?

Formally, for a given point (\mathbf{k}, \mathbf{u}) , the event "the point is α -acceptable" has probability $\pi(\mathbf{k}, \mathbf{u})$ and variance $\pi(\mathbf{k}, \mathbf{u})(1 - \pi(\mathbf{k}, \mathbf{u}))$. Obviously, the points with the highest uncertainty have the highest variance, so have a coverage probability π around 0.5.