HW~#4: Analyze real-world emissions data

Hayden Atchley

2022-11-08

1

Figure 1: Emissions density by date.

1.1

location	pollutant	max_emisions	median_emissions	max / median
Timp Hwy East	CO	177.80	3.36	52.90
Timp Hwy East	$^{\mathrm{HC}}$	53.99	1.62	33.31
Timp Hwy East	NOx	24.31	0.50	48.38
Timp Hwy West	CO	803.31	1.59	504.24
Timp Hwy West	$^{\mathrm{HC}}$	42.14	1.89	22.25
Timp Hwy West	NOx	21.11	0.42	49.83
Univ Ave	CO	452.85	7.19	63.00
Univ Ave	$^{\mathrm{HC}}$	247.66	3.18	77.96
Univ Ave	NOx	64.70	0.25	259.12

1.2

Looking at Figure 1, NOx appears to have quite a skewed distribution, though CO has a few extreme outliers.

2

 $R^2 = 0.162$

While it appears that vehicles with more CO emissions also have more NOx and HC emissions (both of these slopes/coefficients are positive), the R^2 value is quite low. There could be many other factors explaining the variance in emission rates.

3