Chapter 7

Rings

Rings and fields

Def.: A nonempty set A with two operations * and \circ defined on it $(A, *, \circ)$ is called a ring iff

- 1. (A,*) is an Abelian (commutative) group
- 2. (A, \circ) is associative
- 3. In $(A, *, \circ)$ the operation * is distributive in respect to \circ , i.e.

$$a\circ (b*c)=(a\circ b)*(a\circ c)$$

Def.: If ring $(A, *, \circ)$ has a neutral element in respect to \circ , then it is called a <u>unitary ring</u>.

Def.: A ring $(A, *, \circ)$ is called commutative if the operation \circ is also commutative.

Examples: $(\mathbb{Z}, +, \times)$ is a commutative ring. $(M_{n \times n}, +, \times)$ is a ring (not commutative).

Notation

Given a ring $(A, +, \times)$:

- ▶ we call the operations + and × as addition and multiplication, respectively;
- we denote by 0 the neutral element of +;
- \blacktriangleright we denote by -a the opposite (inverse) element to a for +;
- we denote by 1 the neutral element of x;
- we denote $A^* = A \setminus \{0\}$.

Let's consider the common relation of congruences:

$$(\mathbb{Z}/n\mathbb{Z},+,\times)=(\mathbb{Z}_n,+,\times)$$

We can easily show that it is a commutative unitary ring: 1) Obviously $(\mathbb{Z}_n, +)$ is a commutative group; 2) (\mathbb{Z}_n, \times) is associative and has the neutral element $1 = [1]_n$; 3) It is distributive:

$$[a]_n \times ([b]_n + [c]_n) = [a]_n [b+c]_n = [ab+ac]_n = [a]_n [b]_n + [a]_n [c]_n$$

4) \times is commutative, thus, it is a commutative ring.

If n is not a prime number, then $\exists q, m \in \mathbb{Z}_n \setminus \{[0]\}$ s.t. $q \times m = 0$. In other words we have devisors of zero.

This does not happen in \mathbb{Z} , \mathbb{Z}_p , $\mathbb{F}[x]$.

In \mathbb{Z}_n : $\underbrace{1+1+\cdots+1}_{n \text{ times}} = 0$. This does not happen in \mathbb{Z} .

Def.: In a ring $(A, +, \times)$ we shall call divisor of zero from the left any element $a \in A \setminus \{0\}$ for which $\exists b \in A \setminus \{0\}$ s.t. $a \times b = 0$.

Def.: A ring $(A, +, \times)$ that has no divisors of zero is called the integral domain, i.e. the product of any two nonzero elements is also nonzero.

Examples: $(\mathbb{Z}, +, \times)$ and $(\mathbb{Z}_p, +, \times)$ (p is prime) are integral domains.

More complex example: The set of polynomials over a field, $\mathbb{F}[x]$, is an integral domain. Indeed, given:

$$p_n(x) = \sum_{i=0}^m a_i x^i, \quad q_m(x) = \sum_{i=0}^m b_i x^i, \quad a_n, b_m \neq 0$$

their product:

$$p_n(x)q_m(x) = a_n b_m x^{n+m} + s_{n+m-1}(x) \neq 0$$

Fields

Rings

Intuitively, a field is a set A that is a commutative group with respect to two compatible operations: addition and multiplication (except 0).

Def.: Given a commutative unitary ring $(A, +, \times)$ we say that it is a field if 1) $1 \neq 0$ and 2) $\forall a \in A^*$ there exists its inverse in respect to \times , i.e. $a^{-1} \times a = 1$.

In other words: $(A, +, \times)$ is a field if (A, +) and (A^*, \times) are commutative groups

Examples: $(\mathbb{R}, +, \times)$, $(\mathbb{Q}, +, \times)$ are fields.

Problem 7.1 Verify if the following sets are rings, commutative, contain 1, integral domains or fields.

- (a) The set of positive integers, i.e., $\mathbb{N}\setminus\{0\}$. It is not a ring since $(\mathbb{N}\setminus\{0\},+)$ is not a group (no 0).
- (b) The integers multiples of 7, i.e., $7\mathbb{Z}$.
- $(7\mathbb{Z},+)$ is a commutative group. Indeed + is associative and commutative, there exist a neutral element 0 and the opposite -a+a=0. Then \times is associative, distributive, and commutative. Thus, it is a commutative ring. However, \times has no neutral element 1. It is not a unitary ring, but it is an integral domain.
- (c) $A = \{0, 1, -1, i, -i\}$. (A, +) is not a group $(1 + i \notin A)$
- (d) $\mathcal{M}_{2\times 3}(\mathbb{R})$ is not a ring since $a\times b$ is not even defined.

(e)
$$A = \mathcal{M}_{2\times 2}(\mathbb{Z}_3)$$
.

(A,+) is a commutative group. (A,\times) is associative and has the neutral element $1=\left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$. $(A,+,\times)$ is distributive. Thus it is a unitary ring.

It is not commutative (so it is not a field):

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

It is not integral domain:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right) \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right) = 0$$

Subrings and Ideals

Def.: Given a ring $(A, +, \times)$ and $S \subseteq A$ then if $(S, +, \times)$ is a ring, it is called a subring of A.

Def.: Given a ring $(A, +, \times)$ and its subring $(I, +, \times)$, then I is called an ideal of A if $\forall s \in I$ and $\forall a \in A$:

$$as \in I, sa \in I$$

Example: $2\mathbb{Z}$ is an ideal of \mathbb{Z} . Indeed, $2\mathbb{Z}$ is a ring (without unity) and $\forall a=2k\in 2\mathbb{Z}$, $\forall b\in \mathbb{Z}$ we have

$$a \times b = b \times a = 2(kb) \in 2\mathbb{Z}$$

Problem 7.2 (a) Prove that $B \subseteq A$ is a subring of A if $\forall b, b' \in B$ we have $b - b' \in B$, $bb' \in B$.

- 1) (B, +) is a commutative group:
- a) + is associative due to A; b) A has 0 and -a: a+0=a, then a-a=0. Now let a=b, b'=b then $b-b=0\in B$; c) Opposite element: b=0 then $0-b'=-b'\in B$. Besides, + is well defined.
- 2) \times is well defined since $b \times b' \in B$; \times is associative and distributive due to A
- (b) If $\forall b, b' \in B$ and $\forall a \in A$ we have $b b' \in B$, $ab \in B$, and $ba \in B$ then B is an ideal of A.
- 1) B is a subring: let a = b' then $ab = b'b \in B$. Thus, all conditions of (a) are satisfied and B is a subring.
- 2) By exercise: ab, $ba \in B$. Thus, it is an ideal.

Rings

Problem 7.3 (a) Prove that $B = \{0, 2, 4, 6, 8\}$ is a subring of \mathbb{Z}_{10} .

Let $b = [2n]_{10}$ and $b' = [2m]_{10}$. Then $b - b' = 2(n - m) \in B$ and $bb' = 2(2nm) \in B$. Thus by P.7.2 it is a subring.

- (b) Is it an ideal? Let $a = [k]_{10} \in \mathbb{Z}_{10}$ then $ab = ba = 2nk \in B$. So it is.
- (c) Construct the multiplication table:

×	0	0 4 8 2 6	4	6	8
0	0	0	0	0	0
2	0	4	8	2	6
4	0	8	6	4	2
6	0	2	4	6	8
8	0	6	2	8	4

Thus, $[6]_{10} = 1$ and the group is commutative and unitary.

(d) Is it a field?

We check the existence of the inverse: $[2] \times [8] = [6]$, $[4] \times [4] = [6]$. Thus all elements in B^* have inverses and B is a field (it is isomorphic to \mathbb{Z}_5 , which is a field).

Problem 7.5 Prove that if $a \in A$ is nilpotent than it is a divisor of 0.

Since a is nilpotent, then $\exists n > 1$ s.t. $a^n = 0$. We then can write

$$0 = a^n = a \times a^{n-1} = a^{n-1} \times a, \quad a^{n-1} \in A$$

Thus a is a divisor of zero.

Problem 7.6(b) Find nilpotent elements of \mathbb{Z}_{12} .

Let's check all elements: $2^2 = 4$, $2^3 = 8$, $2^4 = 4$. Thus, $[2]_{12}$ is not nilpotent, etc. There is only one nilpotent element:

$$[6^2]_{12} = [36]_{12} = [0]_{12}$$

Problem 7.7: Show that $B = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a subring with unity of $\mathcal{M}_{n \times n}(\mathbb{R})$.

Using P.7.2: let $c, c' \in B$ then it is trivial to show that $c - c' \in B$ and $c \times c' \in B$.

Let $f: B \to \mathbb{C}$ with $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \mapsto a + bi$. Prove that f is an isomorphism of rings.

1. It is a homomorphism. Indeed, let $c, c' \in B$, then a) Addition is trivial:

$$f(c+c') = (a+a') + (b+b')i = f(c) + f(c')$$

b) Multiplication:

$$f(cc') = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} a' & b' \\ -b' & a' \end{pmatrix} = \begin{pmatrix} aa' - bb' & ab' + ba' \\ -ba' - ab' & aa' - bb' \end{pmatrix} =$$
$$= (aa' - bb') + (ab' + a'b)i = (a + bi)(a' + b'i) = f(c)f(c')$$

c) Unity is trivial:

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \mapsto 1 + 0i$$

2. f is bijection. Again trivial $\forall c \in B \exists ! \ z = f(c) \in \mathbb{C}$ and vice versa.

Thus, f is a ring isomorphism. Since $\mathbb C$ is a field, we can conclude that B is also a field.

Polynomials

Def.: Let \mathbb{F} be a field. Then we define the set of polynomials over this field:

$$\mathbb{F}[x] = \{a_0 + a_1x + \dots + a_nx^n : n \in \mathbb{N}, a_i \in \mathbb{F}, i = 0, \dots, n\}$$

Def.: Given $p(x) = a_0 + a_1x + \cdots + a_nx^n$, $a_n \neq 0$, we shall call the polynomial degree: deg(p) = n.

Def.: Given two polynomial p(x) and q(x) of degrees n and m, respectively. Assuming $n \le m$ we define:

1. Addition of polynomial as:

$$s(x) = p(x) + q(x) = \sum_{k=0}^{m} c_k x^k, \quad c_k = a_k + b_k$$

Note: for p(x) we set $a_k = 0$ for k > n.

2. Product of polynomial as:

$$r(x) = p(x)q(x) = \sum_{k=0}^{n+m} c_k x^k, \quad c_k = \sum_{i=0}^{k} a_i b_{k-i}$$

Note that: $deg(s) \le m$, deg(r) = n + m.

Similar to integers we can state the remainder theorem for polynomials.

Theorem: (about remainder) Let $\mathbb{F}[x]$ be a ring of polynomials defined over a field \mathbb{F} . Then for all $P, Q \in \mathbb{F}[x]$ ($Q \neq 0$) $\exists !s, r \in \mathbb{F}[x]$ s.t.

$$P(x) = s(x)Q(x) + r(x), \quad \deg(r) < \deg(Q)$$

Problem 7.8: Divide polynomials:

(a)
$$P(x) = x^4 + 3x^3 + 2x^2 + x + 4$$
, $Q(x) = 3x^2 + 2x$ in $\mathbb{Z}_5[x]$.

We need $[3]_5^{-1} = [2]_5$. Then, e.g. $1 = 2 \times 3$, $4 \times 2 = 3$, etc.

Thus,

$$P = (2x^2 + 3x + 2)Q(x) + 2x + 4$$

(b)
$$P(x) = x^{10}$$
, $Q(x) = x^2 + 1$ in $\mathbb{Z}_2[x]$.

Note that -1=1 in \mathbb{Z}_2

$$x^{10} = (x^8 + x^6 + x^4 + x^2 + 1) \times (x^2 + 1) + 1$$

Let \mathbb{F} be a field and $P, Q \in \mathbb{F}[x]$ ($Q \neq 0$). Then:

Def.: We say that Q divides P if there exists $q \in \mathbb{F}[x]$ s.t.

$$P(x) = q(x)Q(x)$$

Def.: We say that P(x) is irreducible if any polynomial Q that divides P has either $\deg(Q) = 0$ or $\deg(Q) = \deg(P)$.

Def.: We say that $D \in \mathbb{F}[x]$ is the greatest common divisor of P and Q if D|P and D|Q. Besides, if h|P and h|Q, then $\deg(h) \leq \deg(D)$.

Lemma of Bezout. Given $P,Q\in\mathbb{F}[x]$ and $D=\gcd(P,Q)$. Then there exist $u,v\in\mathbb{F}[x]$ s.t.

$$D(x) = u(x)P(x) + v(x)Q(x)$$

Euclides algorithm

Rings

Let $P, Q \in \mathbb{F}[x]$ and P(x) = q(x)Q(x) + r(x) (deg $(r) < \deg(Q)$). Then we construct the table:

ri	P	Q	r	
q_i		q		
α_i	1	0		
β_i	0	1		

where r_i , α_i , and β_i are calculate by:

$$r_i = r_{i-2} - q_{i-1}r_{i-1}$$

Then

$$r_n(x) = \gcd(P, Q) = \alpha_n(x)P(x) + \beta_n(x)Q(x)$$

Rings

Problem 7.10: Find the greatest common divisor of the following polynomials and write them in the form a(x)f(x) + b(x)g(x):

(a)
$$f(x) = x^3 - 1$$
, $g(x) = x^4 - x^3 + x^2 + x - 2$ in $\mathbb{Q}[x]$

g	f	$x^2 + 2x - 3$	7x - 7	0
	x-1	x-2	$\frac{1}{7}x + \frac{3}{7}$	
1	0	1	-x + 2	
0	1	-x + 1	1+(x-1)(x-2)	

$$g = (x-1)f + x^2 + 2x - 3$$
; $f = (x-2)(x^2 + 2x - 3) + 7x - 7$; $x^2 + 2x - 3 = (\frac{1}{7}x + \frac{3}{7})(7x - 7)$. Thus

$$7x - 7 = (-x + 2)(x^4 - x^3 + x^2 + x - 2) + (x^2 - 3x + 3)(x^3 - 1)$$

Problem 7.11 Find zeros

(a)
$$f(x) = x^5 + 3x^3 + x^2 + 2x \in \mathbb{Z}_5[x]$$

$$f(x) = x(x^4 + 3x^2 + x + 2)$$

Thus, x=0 is a root. Now assume $x\neq 0$ and by using Fermat $(a^4=1 \text{ in } \mathbb{Z}_5)$ we get that roots can be found from $3x^2+x+3=0=(x-\alpha)(3x+c)=3(x-\alpha)(x-3c)$. Then $3\alpha c=1 \ \Rightarrow \ 3c=\alpha^{-1}$. Thus, $3x^2+x+3=3(x-\alpha)(x-\alpha^{-1})$.

$$\begin{array}{ccc} \alpha = 1 & \Rightarrow & 3 + 1 + 3 = 2 \neq 0 \\ \alpha = 2 & \Rightarrow & 12 + 2 + 3 = 2 \neq 0 \\ \alpha = 3 = -2 & \Rightarrow & 12 - 2 + 3 = 3 \neq 0 \\ \alpha = 4 = -1 & \Rightarrow & 3 - 1 + 3 = 0 \end{array}$$

Thus, $\alpha = 4$ and $\alpha^{-1} = 4^{-1} = 4$ are roots (i.e. 4 is a double root).

(b)
$$g = x^5 - x \in \mathbb{Z}_5[x]$$
.

$$g = x(x^4 - 1)$$

We know that $x - 1|x^n - 1$ (Ex. 9). Thus by dividing:

$$x^4 - 1 = (x^3 + x^2 + x + 1)(x - 1)$$

Therefore $g = x(x-1)(x^3+x^2+x+1)$. Then we can check that x=1 is not multiple. For x=2 we have 3+4+2+1=0. Then $g=x(x-1)(x-2)(x^2+3x+2)$. We now see x=-1 is also a root. Finally:

$$g = x(x-1)(x-2)(x-3)(x-4).$$

From the other side: $x^4 - 1 = 1 - 1 = 0$ ($x \ne 0$). Thus, for any x we g(x) = 0, which means that x = 0, 1, 2, 3, 4 are roots and we get the same result.

Multiple roots

If α is a root of $p \in \mathbb{F}[x]$ then

$$p(x) = (x - \alpha)q(x)$$

If $\alpha \in \mathbb{F}$ then $q \in \mathbb{F}[x]$ (if not then q belongs to a bigger set).

If deg(p) = n then p at most has n roots.

Def.: We say that α is a root of $p \in \mathbb{F}[x]$ of multiplicity k if

$$p(x) = (x - \alpha)^k q(x), \quad q \in \mathbb{F}[x], \ q(\alpha) \neq 0$$

Def.: Given $p \in \mathbb{F}[x]$ of degree n we introduce its derivative as:

$$p'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1}$$

$$p' = [3]_3 x^2 + [1]_3 = 1$$

If p'=0 then all roots of p are multiple. Indeed, Let α be a root of p, then

$$p = (x - \alpha)q \Rightarrow p' = q + (x - \alpha)q' = 0 \Rightarrow p = (x - \alpha)^2(-q)$$

Theorem: Let $p \in \mathbb{F}[x]$ such that $p' \neq 0$. Then the next statements are equivalent: a) There exists a multiple root α ; b) $(x - \alpha)$ divides p and p'; c) $h = \gcd(p, p')$ s.t. $\deg(h) = n \geq 1$ and $a_n = 1$.

Rings

Searching for multiple roots

Let $\alpha \in \mathbb{F}$ be a multiple root of $p \in \mathbb{F}[x]$. Then

$$p(x) = (x - \alpha)^k q(x), \quad q \in \mathbb{F}[x], \quad q(\alpha) \neq 0$$

The derivative:

$$p'(x) = k(x-\alpha)^{k-1}q(x) + (x-\alpha)^k q'(x) = (x-\alpha)^{k-1}[kq(x) + (x-\alpha)q'(x)]$$

Denoting $h = kq(x) + (x - \alpha)q'(x)$ we observe:

$$p'(x) = (x - \alpha)^{k-1}h(x), \quad h \in \mathbb{F}[x], \quad h(\alpha) = kq(\alpha) \neq 0$$

Thus,

$$(x - \alpha)^{k-1}|p(x)$$
 and $(x - \alpha)^{k-1}|p'(x)$

We thus have to find the gcd(p, p'). If it can be presented in the form $c(x - \alpha)^n$, then α is a root of multiplicity n + 1.

Problem 7.12 Which polynomials have multiple roots?

(a) This is horrible. Don't continue.

(b)
$$g(x) = x^3 + 2x - i$$
 in $\mathbb{C}[x]$

$$g'(x) = 3x^2 + 2$$

Let's find the gcd by the Euclides algorithm:

$$\begin{array}{c|c|c} g & g' & \frac{4}{3}x - i & \frac{5}{16} & 0 \\ \hline & \frac{x}{3} & \frac{9}{4}x + \frac{27}{16}i & \frac{64}{15}x - \frac{16}{5}i \end{array}$$

Thus $gcd(g,g') = \frac{5}{16} \implies deg(gcd(g,g')) = 0$ and hence there are no multiple roots.

(c)
$$f = x^3 + x + 1$$
 in $\mathbb{Z}_3[x]$

$$f' = 3x^2 + 1 = 1 \implies \gcd(f, f') = 1 \implies \deg(1) = 0$$

Thus, f has no multiple roots.

(g)
$$f = x^5 + 5x^4 + 3x^3 + 2x + 1$$
 in $\mathbb{Z}_7[x]$
$$f' = 5x^4 - x^3 + 2x^2 + 2$$

Let's find gcd

$$\begin{array}{c|ccccc} f & f' & x^2 + 3x + 2 & 3x + 6 & 0 \\ \hline & 3(x+1) & 5(x^2 + x + 1) & 5(x+1) \end{array}$$

Thus, gcd(f, f') = 3x + 6, deg(3x + 6) = 1 and therefore there are multiple roots. Namely:

$$3x + 6 = 3(x + 2) = 3(x - 5)$$

Thus, x = 5 is a root with multiplicity 2.

