2019年9月22日

Spatial Interpolation of Surface Air Temperatures Using Artificial Neural Networks: Evaluating Their Use for Downscaling GCMs.

Introduction:

如今GCMs的精度范围为2.5* 2.5~8*10(lat and long)。

仍有几个因素主导了GCMs进行降尺度的难度:气象要素例如温度和降水会随着地形而改变;大多数的变量在空间中并非是一阶或者二阶稳定的;大多数气象变量会受到其他气象条件的影响,例如湿度、压力场等。

因此,对GCMs进行传统的空间插值方法效果较差。

Methods:

研究地区:美国中部地区的11个台站

研究时间: 1931-1993 (63-yr)

数据来源:National Oceanic and Atmospheric Association(NOAA)

ground weather stations(NCDC 1994)

研究变量: Tmax

使用模型:多层前反馈后向传播ANN(multilayer feedforward

backpropagaiton ANN)

Results:

TABLE 1. Overall performance measures. RMSE and R^2 for test dataset using the 4-point and 16-point ANNs by station and on average across stations.

	4-point ANN		16-point ANN	
	rmse	R^2	rmse	R^2
Station 1	6.123	0.916	5.889	0.922
Station 2	5.230	0.954	4.131	0.971
Station 3	5.409	0.947	4.125	0.969
Station 4	6.741	0.917	6.036	0.934
Station 5	4.905	0.956	4.664	0.960
Station 6	6.929	0.905	6.697	0.911
Station 7	6.158	0.932	5.340	0.949
Station 8	5.313	0.949	5.110	0.953
Station 9	4.994	0.951	4.761	0.955
Station 10	5.566	0.932	5.064	0.944
Station 11	5.268	0.946	4.488	0.961
Average	5.694	0.937	5.119	0.948
Minimum	4.905	0.905	4.125	0.911
Maximum	6.929	0.956	6.697	0.971

TABLE 2. Test results for systematic bias. Regression coefficients from Eq. (1) for each station for the predicted output from the 4-point and 16-point ANNs. Bracketed values are p values for t statistics testing significant differences for α and β from 0 and 1, respectively Values significant at p < 0.05 are in boldface.

	4-point ANN		16-point ANN	
	α	β	α	β
Station 1	0.464 [0.243]	0.992 [0.156]	0.693 [0.068]	0.989 [0.043]
Station 2	-1.380 [0.000]	1.007 [0.100]	-0.163 [0.434]	1.004 [0.261]
Station 3	-0.514 [0.076]	0.993 [0.123]	0.273 [0.213]	0.999 [0.819]
Station 4	-0.504 [0.166]	0.988 [0.029]	0.211 [0.518]	0.997 [0.564]
Station 5	-1.735 [0.000]	1.003 [0.459]	-0.148 [0.566]	1.001 [0.811]
Station 6	0.091 [0.828]	0.991 [0.151]	-0.063 [0.876]	0.998 [0.750]
Station 7	-0.343 [0.296]	0.986 [0.004]	0.554 [0.052]	0.993 [0.110]
Station 8	-0.805 [0.005]	0.999 [0.746]	0.351 [0.205]	0.996 [0.307]
Station 9	-0.299 [0.313]	1.001 [0.726]	0.242 [0.388]	0.996 [0.329]
Station 10	-0.080 [0.814]	0.994 [0.193]	0.477 [0.119]	0.992 [0.087]
Station 11	-1.069 [0.001]	1.002 [0.694]	-0.137 [0.602]	1.005 [0.144]

16-point在station 6表现最差,而在 station 2的表现最佳;

4-point对于station 6的表现也最差;两个模型RMSE的表现和R2大体一致。

对于16-point,仅有一个未通过t-test;而4-point ANN有很明显的偏差,其截距在station2,5,8 和11远小于零,斜率在station4和7明显小于1;因此16-point要明显优于4-point。

Conclusions:

- 1. 采用16-point ANN的网络要比4-point的网络表现更好;
- 2. 这也可以表明使用ANNs对于GCMs的表面温度进行降尺度是一个叫有效的方法,ANNs可以抓住非线性系统中的复杂联系并学习空间中的相关之处。