Lecture Notes for Machine Learning in Python

Professor Eric Larson Week Five, Lecture B

Class Logistics and Agenda

- Welcome back to lecture!
- Agenda
 - Logistic Regression
 - Solving
 - Programming

Logistic Regression

Setting Up Binary Logistic Regression

From flipped lecture:

$$p(y^{i}) = \frac{1}{1 + \exp(-w^{T}x^{i})}$$

$$p(y^{i}) = 0 = \frac{1}{1 + \exp(-w^{T}x^{i})}$$

$$p(y^{i}) = 0 = \frac{1}{1 + \exp(-w^{T}x^{i})}$$

$$p(y^{i}) = 0 = \frac{1}{1 + \exp(-w^{T}x^{i})}$$

$$p(y^{i}) = 1 = \frac{1}{1 + \exp(-w^{T}x^{i})}$$

Binary Solution for Update Equation

From supplement:

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)})) x_j^{(i)}$$

$$\underbrace{w_j}_{\text{old value}} + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)})) x_j^{(i)}$$

$$\underbrace{w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)})) x^{(i)}}_{i=1}$$

Demo

6

Reinvent sklearn **Logistic Regression**

Programming

Extended Example

Other Tutorials:

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/ plot_iris_logistic.html

For Next Lecture

- Next time: Gradient based optimization
- Next Next time: SVMs via in class assignment

Scratch Paper

Scratch Paper

Scratch Paper