

Probability Concepts

Principles of Counting

help to determine the total number of possibilities in a problem

Step 2

Step 3

How many ways to assign?

How many ways to assign?

Factorial

 $n \times (n-1) \times (n-2) \times \times 1 = n!$

BATTPLUS TEXAS INSTRUMENTS COMPUTE ENTER ++ 5.00 MAR= 2ND

Total Possible Sequences = 9! = 362,880

Number of different ways to assign the 9 stocks

Multinomial Formula

Num of Ways =
$$\frac{n!}{n_1! n_2! \dots n_k!}$$

Combination Formula

"n choose r"
$$nC_r = \frac{n!}{r! (n-r)!}$$

Combination Formula

Sequence is not important

$$_{4}C_{3} = 4!/3!1! = 4$$

"n choose r"
$$nC_r = \frac{n!}{r! (n-r)!}$$

Permutation Formula

$$_4P_3 = 4! / 1! = 24$$

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

prepnuggets.com