MAS205 Complex Variables 2005-2006

Exercises 3

Exercise 9: Find the Möbius transformation f(z) = (az + b)/(cz + d) which maps $1 \mapsto 0$, $i \mapsto 1$, and $0 \mapsto i$.

- (a) What is the image of z = -1?
- (b) Which point is mapped by f to 2i?
- (c) What is the image of the unit disk under f?

Exercise 10: Evaluate the following limits:

(a)
$$\lim_{z \to \infty} \frac{(iz-1)(z+3)^2}{(z+i)^2(z-1)}$$
 (b) $\lim_{z \to 2-2i} \frac{z^5+1}{z^2+8i}$ (c) $\lim_{z \to i} \frac{z^2}{z^3-1}$

Exercise 11: (a) Give an example of a function $f: \mathbb{C} \to \mathbb{C}$ such that

$$\lim_{z \to i} f(z) = \infty$$
 and $\lim_{z \to 1} f(z) = 0$.

(b) Suppose

$$f(z) = rac{p(z)}{z^2-4} \;, \quad ext{where} \; p(z) = az+b \; ext{for some} \; a,b \in \mathbb{C}.$$

If $\lim_{z\to-2} f(z) = 1$, what is p(z)?

(c) Suppose

$$f(z) = \frac{p(z)}{z^2 + 1}$$
, where $p(z)$ is a quadratic polynomial.

If
$$\lim_{z\to -i} f(z) = 1$$
 and $\lim_{z\to \infty} f(z) = 1$, what is $p(z)$?

Exercise 12: For each of the following functions, decide at which values of z the function is continuous and at which values it is not continuous. Give reasons, but detailed proofs are not expected.

(a)
$$f(z) = z + i\Re(z)$$

(b)
$$f(z) = (z/\overline{z})^3$$
 for all non-zero z , and $f(0) = 1$.

Please hand in your solutions (to the yellow Complex Variables box on the ground floor) by 10:30am Wednesday 26th October

Thomas Prellberg, October 2005

9) (i)
$$\frac{a+b}{c+d} = 0$$
 $\approx a+b = 0$

$$(\pi i) \quad \frac{5}{d} = i \quad \sim \quad 5 = id$$

Mus
$$b=id$$
, $a=-b=-id$, and $(-id)i+id=ci+d$

mplies $c=d$, Mus

$$f(z) = \frac{-id z + id}{dz + d} = \frac{-iz + i}{z + 1}$$

$$ded: f(1) = \frac{-i + i}{1 + 1} = 0$$

$$f(z) = \frac{1 + i}{i + 1} = 1$$

$$f(0) = \frac{1}{1} = 0$$

$$f(0) = \frac{1}{1} = 0$$

(a)
$$\int_{-1+1}^{1} (-1) = \frac{i+i}{-1+i} = \infty$$

(b)
$$\frac{-iz+i}{z+1} = 2i \quad \Rightarrow \quad -\cancel{z}+\cancel{z} = 2\cancel{z}(z+i)$$

$$\sim 2 = -\frac{1}{3}$$
 . del: $\int (-\frac{1}{3})^2 \frac{4i\frac{1}{3}+i}{-\frac{1}{3}+i} = \frac{3i}{\frac{2}{3}} = 2i$

(a) held 3 points, have
$$f(i) = 0$$
, $f(i) = 1$, $f(-1) = \infty$
and interior point: $f(0) = i$

(a) Wh
$$\frac{(iz-1)(z+3)^2}{(z-1)} = lin \frac{(i/s-1)(1/s+3)^2}{(1/s+i)^2(1/s-1)}$$

$$= \frac{\lambda L}{5.90} \frac{(i-5)(1+35)^2}{(1+i5)^2(1-i5)} = \frac{i-1^2}{1^2.1} = i$$

(b)
$$\lim_{z \to 2^{-2}i} \frac{z^{5}+1}{z^{2}+8i} = \infty$$

as
$$\lim_{z \to l-2i} (2^{5}H) = (2-li)^{5} + 1 \neq 0$$

and
$$\lim_{t \to l - li} (t^2 + 8i) = (2 - li)^{l} + 8i = 4 - 4 - 8i + 8i = 0$$

(c)
$$\lim_{z \to i} \frac{z^2}{z^2} = \frac{i^2}{i^2} = \frac{-1}{-i} = \frac{1}{1+i} = \frac{1}{2}$$
 (d)

(1) (a) e.g.
$$\int_{1}^{\infty} (z) = \frac{z-1}{z-1}$$

(5)
$$\int_{1}^{1} (z) = \frac{p(z)}{q(z)} \quad \text{with } p(z) = az+1, \quad q(z) = z^{2}-4$$

Line
$$\frac{p(z)}{q(z)} = 1$$
 possible only if $p(-2) = 0$, as $q(-2) = 0$

N b= 2a and
$$f(z) = \frac{az+2a}{z^2-4} = \frac{a}{z-2}$$

$$1 = \lim_{z \to 1} \frac{\alpha}{z} = -\frac{\alpha}{4} \implies \alpha = -4$$
 and then

(c)

$$\int (z) z \frac{p(z)}{z^2 n}$$
 with $p(z)$ quadratic

In
$$f(z) = 1$$
 possible only if $p(-i) = 0$ as $(-i)^2 + 1 = 0$

$$\Rightarrow$$
 $p(z) = (z+i)(az+1)$ and $f(z) = \frac{az+1}{z-i}$

$$1 = \lim_{z \to -i} \int_{-2i}^{(z)} = \frac{-\alpha i + 3}{-2i} \rightarrow 5 = ai - 2i$$

$$1 = \lim_{z \to -i} \int_{(z)}^{(z)} z = \frac{-\alpha i + 1}{-2i} \rightarrow \int_{z}^{z} = a - 2i$$

$$1 = \lim_{z \to -i} \int_{(z)}^{(z)} z = \frac{a + 1}{2i} = a \rightarrow a = 1$$

$$1 = \lim_{z \to \infty} \int_{(z)}^{(z)} z = \frac{a + 1}{2i} = a \rightarrow a = 1$$

(a)
$$\int (z) = z + i \operatorname{Re}(z)$$

contimous for all ZE (

by proposition 1.10 and the fact

HA ZHO Re(2) is continuous:

 $\lim_{z\to z_0} R_c(z) = \lim_{x\to \infty} y = y_0 = R_c(z_0)$ $\lim_{x\to z_0} R_c(z_0) = \lim_{x\to z_0} y_0 =$

(b) $f(z) = (2/\overline{z})^3$ is continuous for all 7 ± 0 by propositive 1:10 and to fact that $7 - 7\overline{z}$ is continuous

but is not continuous for 2 = 0, as

f(rito) = e biq well-defined for r>0.

but for roo q-legadent values.

(3)

25