Towards a Holistic Integration of Energy Justice and Energy System Engineering Preliminary Exam

Samuel G. Dotson Advanced Reactors and Fuel Cycles Group

University of Illinois at Urbana-Champaign

January 9, 2024

Outline

- 1 Introduction
- 2 Motivating Observations
- 3 Tale of Three Uncertainties

Parametric Uncertainty

Structural Uncertainty

Normative Uncertainty

Prescriptive: Parametric-Structural Prescriptive: Structural-Normative

Pre-Descriptive: Normative-Parametric

4 Conclusion

Presentation Goals

I have the following goals for this presentation:

- Motivate why social science and quantitative modeling must be more strongly integrated (based on the relations among three types of uncertainty).
- 2 Demonstrate how Osier currently accomplishes this goal.
- 3 Propose future work to enhance Osier's capabilities and validate its usage.

Proposal Overview

I propose to:

- Deepen the theoretical foundations of this work.
- Develop an optimization tool (Osier) that
 - addresses three related uncertainties,
 - closes the gap between technical expertise and public preferences,
 - enhances justice outcomes related to energy planning.
- **9** Validate this tool by conducting a case study of energy planning processes in the Champaign-Urbana region.

Outline

- Introduction
- **2** Motivating Observations
- 3 Tale of Three Uncertainties

Parametric Uncertainty

Structural Uncertainty

Normative Uncertainty

Prescriptive: Parametric-Structural Prescriptive: Structural-Normative

Pre-Descriptive: Normative-Parametric

4 Conclusion

Anthropogenic Climate Change

Climate change is happening!

Figure 1: Observed increase in CO_2 levels at Mauna Loa Observatory [6].

Anthropogenic Climate Change Exists

• Climate change is happening!

Figure 2: Carbon emissions by economic sector

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Outline

П

- 1 Introduction
- 2 Motivating Observations
- **3** Tale of Three Uncertainties

Triarchic Uncertainty Parametric Uncertainty Structural Uncertainty

Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative

Pre-Descriptive: Normative-Parametric

4 Conclusion

Triarchic Theory of Model Development

Figure 3: A summary of three uncertainties and their interactions.

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Parametric Uncertainty

Definition (Parametric Uncertainty)

Related to uncertainty in model inputs (empirical values). The most commonly addressed type of uncertainty in science and engineering [13, 2, 10].

May be classified as either **aleatory** or **epistemic** [11, 8].

Examples of Parametric Uncertainty

Figure 4: Possible distributions of several parameters.

- Rates (e.g., interest, learning, growth),
- costs (e.g., fuel, capital, O&M),
- aggregated energy demand,
- spent fuel burnup [4],
- nuclear cross-section data [3, 12],
- likelihood and magnitude of consequences (i.e., probabilistic risk assessment).

Addressing parametric uncertainty

Figure 5: Addressing parametric uncertainty produces confidence intervals

Idea: Rerun a simulation until you reach a large enough sample size to do statistics.

Formal methods to address parametric uncertainty*:

"Monte Carlo" (i.e., statistical sampling)

Addressing parametric uncertainty

Figure 5: Addressing parametric uncertainty produces confidence intervals

Idea: Rerun a simulation until you reach a large enough sample size to do statistics.

Formal methods to address parametric uncertainty*:

- "Monte Carlo" (i.e., statistical sampling)
- Sensitivity analysis (specific or global)

Addressing parametric uncertainty

Figure 5: Addressing parametric uncertainty produces confidence intervals.

Idea: Rerun a simulation until you reach a large enough sample size to do statistics.

Formal methods to address parametric uncertainty*:

- "Monte Carlo" (i.e., statistical sampling)
- Sensitivity analysis (specific or global)
- Stochastic optimization

Figure 5: Addressing parametric uncertainty produces confidence intervals

Idea: Rerun a simulation until you reach a large enough sample size to do statistics.

Formal methods to address parametric uncertainty*:

- "Monte Carlo" (i.e., statistical sampling)
- Sensitivity analysis (specific or global)
- Stochastic optimization
- *These methods are appropriate for aleatory uncertainties.

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Structural Uncertainty

Definition (Structural Uncertainty)

[R]efers to the imperfect and incomplete nature of the equations describing the system [2].

This type of uncertainty will always persist.

Parametric Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Examples of Structural Uncertainty

I

Objective functions (most typical)

Inarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Examples of Structural Uncertainty

- Objective functions (most typical)
- Spatiotemporal resolution

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Examples of Structural Uncertainty

- Objective functions (most typical)
- Spatiotemporal resolution
- Physics fidelity

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Examples of Structural Uncertainty

- Objective functions (most typical)
- Spatiotemporal resolution
- Physics fidelity
- Solution method

Irarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Addressing Structural Uncertainty

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Per-Descriptive: Normative-Parametric

I

Normative Uncertainty

Stating your assumptions is a necessary but insufficient condition for addressing normative uncertainty.

Answers the question "what is acceptable and why?"

Climate change is happening!

Harchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

Descriptive: Parametric-Structural

П

Climate change is happening!

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Per-Descriptive: Normative-Parametric

Prescriptive: Structural-Normative

__

Generating prescriptive conclusions is the primary reason to model energy systems.

If the solution to structural uncertainty was identifying alternative, "sub-optimal" solutions, then the prescriptive stage means deciding among these diverse alternatives.

Theorem (Arrow's Impossibility Theorem)

It is impossible to construct a utility function that maps individual preferences onto a global preference order without imposition or dictating [7, 5, 1].

How are representative probability distributions chosen?

Figure 6: Possible distributions for a single parameter. Which is best?

The probability distributions are usually obtained through modelers' judgement or expert elicitations [13].

How are representative probability distributions chosen?

Figure 6: Possible distributions for a single parameter. Which is best?

The probability distributions are usually obtained through modelers' judgement or expert elicitations [13].

- A
- B

How are representative probability distributions chosen?

Figure 6: Possible distributions for a single parameter. Which is best?

The probability distributions are usually obtained through modelers' judgement or expert elicitations [13].

- A
- B
- (

Triarchic Uncertainty
Parametric Uncertainty
Structural Uncertainty
Normative Uncertainty
Descriptive: Parametric-Structural
Prescriptive: Structural-Normative
Pre-Descriptive: Normative-Parametric

How do modellers choose or create distributions?

Definition (Knightian/Deep/Epistemic Uncertainty)

Unknowable unknowns — uncertainties that cannot be quantified or measured due to a lack of knowledge or understanding.

Outline

- 1 Introduction
- 2 Motivating Observations
- 3 Tale of Three Uncertainties

Parametric Uncertainty

Structural Uncertainty

Descriptive: Parametric-Structural Prescriptive: Structural-Normative

Pre-Descriptive: Normative-Parametric

4 Conclusion

We showed many things. This slide is an example of how you can animate bulleted lists, for more information about using beamer animations, checkout the overleaf article on overlay specifications in the group's guide.

Cats are peculiar

We showed many things. This slide is an example of how you can animate bulleted lists, for more information about using beamer animations, checkout the overleaf article on overlay specifications in the group's guide.

- Cats are peculiar
- Blue and Orange are fierce colors

We showed many things. This slide is an example of how you can animate bulleted lists, for more information about using beamer animations, checkout the overleaf article on overlay specifications in the group's guide.

- Cats are peculiar
- Blue and Orange are fierce colors
- Math can be rendered nicely

We showed many things. This slide is an example of how you can animate bulleted lists, for more information about using beamer animations, checkout the overleaf article on overlay specifications in the group's guide.

- Cats are peculiar
- Blue and Orange are fierce colors
- Math can be rendered nicely
- Cite your sources

We also tested citations [9]

Acknowledgement

Acknowledgements should include both people who helped and funding streams. If you are funded by an NEUP grant, that number usually goes here. \cdot

References I

[1] Kenneth J. Arrow.

A difficulty in the concept of social welfare.

58(4):328-346.

Publisher: University of Chicago Press.

[2] Joseph F. DeCarolis.

Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. 33(2):145-152.

Publisher: Elsevier.

- [3] Michael J. Eades, Ethan S. Chaleff, Paolo F. Venneri, and Thomas E. Blue. The influence of xe-135m on steady-state xenon worth in thermal molten salt reactors. 93:397–405.
- [4] B. Feng, S. Richards, J. Bae, E. Davidson, A. Worrall, and R. Hays. Sensitivity and uncertainty quantification of transition scenario simulations.

References II

[5] Maarten Franssen.

Arrow's theorem, multi-criteria decision problems and multi-attribute preferences in engineering design.

16(1):42-56.

[6] R. P. Kane and E. R. de Paula.

Atmospheric CO2 changes at mauna loa, hawaii.

58(15):1673-1681.

- [7] Joseph R. Kasprzyk, Shanthi Nataraj, Patrick M. Reed, and Robert J. Lempert. Many objective robust decision making for complex environmental systems undergoing change. 42:55–71.
- [8] Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? 31(2):105–112.

References III

- [9] Doug McAdam and Hilary Schafer Boudet.
 Putting Social Movements in Their Place: Explaining Opposition to Energy Projects in the United States from 2000-2005.
 Cambridge University Press.
- [10] Millett Granger Morgan, Max Henrion, and Mitchell Small. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis. Cambridge University Press. Google-Books-ID: ajd1V305PgQC.
- [11] Stefan Pfenninger, Adam Hawkes, and James Keirstead. Energy systems modeling for twenty-first century energy challenges. 33:74–86.
- [12] Majdi I. Radaideh and Tomasz Kozlowski. Combining simulations and data with deep learning and uncertainty quantification for advanced energy modeling. 43(14):7866–7890.

References IV

[13] Xiufeng Yue, Steve Pye, Joseph DeCarolis, Francis G.N. Li, Fionn Rogan, and Brian Gallachóir. A review of approaches to uncertainty assessment in energy system optimization models. 21:204–217.