Лабораторная работа № 3: Метод совпадений

Цель работы: Изучение методов выделения эффекта по корреляции времен срабатывания независимых детекторов.

Теория

Для выделения в эксперименте нужных событий при наличии фона используются методы корреляции моментов срабатывания независимых частей регистрирующей аппаратуры в режиме on-line и/или в режиме off-line.

Обычно в экспериментах применяют оба метода: в режиме on-line выделяют эффект с некоторой примесью фона, а в режиме off-line отбрасывают оставшийся фон.

on-line режим

В режиме on-line используются схемы совпадений (СС) на основе быстрой электроники. Результат в виде наличия или отсутствия импульса на выходе СС получается через несколько десятков наносекунд.

- + Подход позволяет отбрасывать ненужные события на начальном этапе до оцифровки и записи информации от детекторов.
- Отсутствие данных об отброшенных событиях, что при неточной настройке схем совпадений может привести к неконтролируемой потере событий эффекта. Поэтому обычно разрешающее время СС выбирается с запасом, что приводит к ухудшению предельно достижимого соотношения эффект/фон.

Аппаратную систему для on-line отбора событий называют низкоуровневой или первичным триггером.

off-line режим

В режиме off-line с помощью ВЦП измеряются времена срабатывания различных детекторов относительно некоторого временного репера. Полученные данные записываются и используются при последующей обработке.

+ Метод позволяет достичь предельного временного разрешения, поскольку при обработке информации можно учесть различные эффекты, например, зависимость времени срабатывания детектора от места прохождения частицы (геометрический фактор), от амплитуды сигнала с детектора и т.п.

Распад кобальта

Рис. 3.1: Схема распада кобальта-60.

Описание установки

Два сцинтилляционных счётчика

Рис. 3.2: Схема сцинтилляционного счётчика.

Частица проходит через пластмассу -> возбуждение и ионизация -> регистрация спинтиллянии ФЭУ.

Гамма-кванты регистрируются только после их взаимодействия со средой детектора и образования электрона в ходе фотоэффекта, Комптон-эффекта или процесса рождения электрон-позитронной пары.

При энергии гамма-квантов в районе 1.2-1.3 МэВ основным процессом является Комптонэффект.

Временные характеристики сцинтилляционных счетчиков

Разрешающее время детектора - минимальный интервал времени между приходом частиц в детектор, при котором эти частицы регистрируются раздельно.

Время высвечивания - продолжительность световой вспышки сцинтиллятора, вызванной ионизирующим излучением.

Сцинтилляционная пластмасса (полистирол со сцинтиллирующей добавкой) - наименьшее время высвечивания (порядка наносекунд)-> временное разрешение ФЭУ необходимо учитывать при определении временной разрешающей способности сцинтилляционного детектора

$$\frac{\mathrm{d}N_{\gamma}(t)}{\mathrm{d}t} = \frac{N_0}{\tau} e^{-t/\tau},$$

Зависимость световыхода от времени высвечивания:

Временное развитие импульсов в ФЭУ

Фотоны люминесценции распространяются по сцинтиллятору -> попадают на фотокатод ФЭУ -> выбивают электроны -> начинается лавина. В момент прихода электронов на анод ФЭУ, возникает импульс отрицательной полярности.

Іа - ФЭУ (источник тока)

Ra - сопротивление анодной нагрузки

Са - суммарная паразитная емкость цепи анода по отношению к земле

Рис. 3.4: Эквивалентная схема анодной цепи.

Будем считать, что ФЭУ не дает доп. разброса времени прихода импульсов от фотонов, а светосбор достаточно быстрый.

Тогда зависимость тока анода от времени:

е - заряд электрона

$$I_a(t)=rac{e\eta\epsilon_CGN_0}{ au}\,e^{-t/ au}=rac{N_{
m p.e.}G}{ au}\,e^{-t/ au}, egin{array}{ll} \eta_{:-} & {
m квантовая эффективность} \ {\epsilon_C} & {
m коэффициент сбора фотоэлектронов} \ {\kappaoэффициент усиления ФЭУ} \ {N_{
m p.e.}} & {
m число фотоэлектронов от вспышки} \end{array}$$

Емкость анода C_a при этом разряжается через сопротивление нагрузки R_a . Согласно гравилам Кирхгофа имеем следующие уравнения

$$I_a = I_R + I_C,$$

$$I_R R_a = \frac{Q}{C_a} = U_a,$$

где I_R и I_C — токи, текущие через анодные сопротивление и ёмкость, соответственно, Q — заряд на ёмкости анода.

Используя равенство $I_C=\mathrm{d}Q/\mathrm{d}t$ и выражение (3.2), получим дифференциальное уравнение относительно U_a :

$$\frac{\mathrm{d} U_a}{\mathrm{d} t} + \frac{U_a}{R_a C_a} = \frac{N_{\mathrm{p.e.}} G}{\tau C_a} \, e^{-t/\tau}. \label{eq:equation:equation}$$

Решив это уравнение, получим амплитуду импульса на аноде ФЭУ:

$$U_a(t) = -\frac{U_0}{1 - \frac{\tau}{R_a C_a}} (e^{-t/(R_a C_a)} - e^{-t/\tau}),$$

где $U_0 = eN_{\rm p.e.}G/C_a$ — амплитуда напряжения при бесконечном R_a .

Видно, что если $au \ll R_a C_a$ то импульс будет олизким к экспоненциальном $R_a C_a$ ременем спада и коротким передним фронтом. Максимальная амплитуда U_0 и этом почти достигает

Рис. 3.5: Импульс напряжения на аноде ФЭУ при $\tau=1$ нс и $R_aC_a=10$ нс.

Чтобы получить на выходе ФЭУ импульсы нужной длительности T , сопротивление подбирают так, чтобы $T \sim R_a C_a$. Если $R_a C_a \sim \tau$

, или меньше, то

время нарастания до максимума уменьшится, но и амплитуда не будет достигать максимально возможного значения.

Рис. 3.6: Импульс напряжения на аноде ФЭУ при $\tau=1$ нс и $R_aC_a=2$ нс.

Из-за разброса скоростей вылета электронов из фотокатода и различием траектории (недостаточной фокусировки), ФЭУ имеет разброс по времени.

Даже мгновенная световая вспышка в сцинтилляторе будет растянута в ФЭУ на 1-10 нс.

В неорганических сцинтилляторах время высвечивания более 100 нс, поэтому флуктуации время пролета через ФЭУ не играют роли, а время нарастания будет определяться временем высвечивания.

В органических сцинтилляторах время высвечивания порядка нс, и тогда временное разрешение Φ ЭУ необходимо учитывать при определении разреш. способности сцинтилляционного детектора.

Разрешающее время

Разрешающее время (PB) всей схемы можно определить по кривой задержанных совпадений — зависимости скорости счёта от задержки одного канала относительно другого.

Определяется как расстояние между серединами склонов кривой.

В данном случае РВ примерно равно сумме длительностей импульсов от дискриминаторов.

Задержка срабатывания СС и разброс времен прихода импульсов от ФЭУ, приводящие к отличию кривой от "ступеньки", значительно меньше РВ.

Рис. 3.8: Кривая задержанных совпадений.

Активность радиоизотопного источника

При распаде кобальта вылетает 2 гамма-кванта примерно равной энергии, поэтому эффективность их регистрации почти равна:

$$N_1 = 2N_0\varepsilon_1, \ N_2 = 2N_0\varepsilon_2$$

N0 - число распадов в секунду, $\ arepsilon_1\$ и $\ arepsilon_2$ квантов счетчиками.

- эффективности регистрации гамма-

Считаем, что направления вылета гамма-квантов независимы. Тогда скорость счета истинных совпадений(регистрации гамма-квантов от распада одного ядра):

$$N_{\text{HCT}} = 2N_0\varepsilon_1\varepsilon_2$$

Скорость счета случайных совпадений(регистрации распадов двух ядер за период ВР СС):

$$N_{\rm CJI} = 2\tau N_1 N_2$$

Измерив $N_{\text{ИСТ}}$, $N_{\text{СЛ}}$ и 2τ , из (3.5) и (3.6) можно определить активность изотопа 60 Со:

$$N_0 = \frac{N_{\rm CJI}}{4\tau N_{\rm HCT}} \tag{3.7}$$

Активность изотопа, измеренная таким образом будет занижена, так как в число истинных совпадений войдут совпадения от гамма-квантов, рассеянных в одном счетчике и зарегистрированных в другом.

Для исключения таких событий требуется выставить правильный порог дискриминатора по амплитуде.

Также стоит учитывать совпадения от космических частиц.

 $N_{\rm CЛ}$ можно измерить, установив задержку в одном канале относительно другого больше с некоторым запасом, чем PB.

Для определения нужного порога дискриминатора, нужно:

- 1. Зафиксировать порог одного дискриминатора на некотором большом значении.
- 2. На втором канале снять зависимости скорости счета истинных совпадений от порога с изотопом и без, вычесть их (получить интегральный амплитудный спектр).
- 3. Правый край спектра даст макс. амплитуду от прямого гамма-кванта (макс. энергию комптоновского электрона).
- 4. Выбрать порог дискриминатора, соответствующий энергии выше, чем энергия рассеянного назад гамма-кванта.

Эффективность регистрации

$$\varepsilon_1 = \frac{N_{\rm HCT}}{N_2}, \ \varepsilon_2 = \frac{N_{\rm HCT}}{N_1}$$

Чтобы определить N_1 , N_2 , нужно измерить скорость счета срабатываний в каждом канале (с выбранными порогами) с изотопом и без, вычитая второе из первого.

Другая оценка для эффективности регистрации из теории взаимодействия гамма-квантов с веществом (считаем, что не зависит от направления кванта, светосбор однороден).

Для комптоновского сечения сечение рассеяния:

• при
$$E_{\gamma} \ll mc^2$$
 : $\sigma = \frac{8}{3} \pi r_0^2$, где r_0 — классический радиус электрона; (3.4)

• при
$$E_{\gamma} \gg mc^2$$
: $\sigma = \pi r_0^2 \frac{mc^2}{E_{\gamma}} \left[\ln \left(\frac{2E_{\gamma}}{mc^2} \right) + \frac{1}{2} \right]$. (3.5)

При малых энергиях γ -кванта сечение комптоновского рассеяния не зависит от E_{γ} и описывается томсоновским сечением рассеяния (3.4). С увеличением E_{γ} сечение уменьшается.

Коэффициент поглощения связан с сечением взаимодействия у-кванта с атомом:

$$\mu = rac{N_0}{A} \, \sigma_{
m atom} \, \left[rac{{
m cm}^2}{\Gamma}
ight] \quad$$
или $\mu = rac{N_0}{A} \,
ho \, \sigma_{
m atom} \, \left[rac{1}{{
m cm}}
ight] \, .$

Следует учесть, что теория Клейна– Нишины– Тамма дает сечение комптоновского рассеяния γ -кванта на одном электроне. Поэтому при вычислении $\mu_{\text{компт}}$ в веществе выражения (3.4) и (3.5) нужно умножить на z_0 .

$$N = N_0 e^{-n\sigma t}$$

$$n$$
 — число электронов в $1\,\mathrm{cm}^3$ вещества $\frac{N_0}{A}z_0
ho$

Рис. 3.7: Блок-схема измерения в режиме on-line.

Рис. 3.9: Блок-схема измерения в режиме off-line.

Экспериментальные данные

Задания 1:

Снять зависимость скорости счёта истинных совпадений от порога дискриминаторов первой стадии поочерёдно в первом и втором каналах с источником 60Со и без него. Выбрать порог на дискриминаторах таким, чтобы амплитуды шумовых импульсов и сигналов от γ-квантов обратного рассеяния были ниже порога дискриминаторов.

Ch0, c CO, mV	N = N1	Ch0, без CO, mV	N	Diff0 = Nист1	Ch1, mV
10	4426	10	46	4380	20
20	3202	20	45	3157	
30	2437	30	37	2400	
40	1811	40	33	1778	
50	1196	50	34	1162	
60	703	60	37	666	
70	422	70	37	385	
80	232	80	36	196	
90	173	90	45	128	
100	89	100	35	54	
110	71	110	28	43	
120	44	120	23	21	
130	45	130	27	18	
140	29	140	19	10	
150	16	150	8	8	

Ch1, c CO,	N= N2	Ch1, без CO, mV	N	Diff1 = Nист2	Ch0, mV
20	3296	20	45	3251	20
30	2390	30	60	2330	
40	1491	40	44	1447	
50	891	50	40	851	
60	547	60	35	512	
70	279	70	29	250	
80	145	80	45	100	
90	95	90	30	65	
100	47	100	28	19	
110	35	110	27	8	
120	30	120	27	3	
130	15	130	17	-2	
140	16	140	9	7	
150	11	150	13	-2	

Летят гамма-кванты с $E=1.3~\mathrm{M}{\circ}B$, рассеяние на 180.

1.3 МэВ - 150 мВ

0.21 МэВ - х

Ch0 - 30 mV

Ch1 - 25 mV

Провести измерение скорости счёта в зависимости от задержки в обоих каналах и по кривой задержанных совпадений определить разрешающее время схемы совпадений.

1 Chanel, nc	N	2 Chanel, nc	N	
0	2261	0	2261	
5	2334	5	2365	
10	2320	10	2313	
15	2223	15	2251	
20	660	20	1462	
25	101	25	146	
30	67	30	97	
35	56	35	68	
40	75	40	84	
45	77	45	70	
50	66	50	68	
55	63	55	70	2t
60	67	60	79	t

Измерить скорость счёта истинных и случайных совпадений от γ-квантов 60Co и определить активность изотопа с указанием ошибки измерений.

	c Co						
Случайные	1 Chanel, nc	N	Исти	инные	1 Chanel, nc	2 Chanel, nc	N
совпадения	35	68	совг	падения	10	10	1326
	без Со						
Случайные	1 Chanel, nc	N	Исти	инные	1 Chanel, nc	2 Chanel, nc	N
совпадения	35	0	совг	падения	10	10	44

 N_0 (без учета наличия шума) = 674763,8327 = 675 к Γ ц

N 0 (с учетом наличия шума) = 697922,6537 = 698 кГц

<mark>Ошибка</mark>

По измерениям и расчётным путём найти эффективности регистрации счётчиками γ-квантов и сравнить расчётные и экспериментальные значения.

Эффективности расчётные

(вероятность того, что, пролетая оргстекло 1 см произойдёт комптоновское рассеяние)

гамма-квант с E = 1,33 MэB, Po = 1 гм/см3

Сечение комптоновского рассеяния при E>>mc2: сигма = $2*10^{(-25)}$ см2

Эффективность сечения комптоновского рассеяния = $1 - e^{(-n*curma*t)}$

t = плотность * толщину = 1гм/см3 * 1см = 1 гм/см2

$$n = 0.01*6*10^23*54 = 3.24*10^23$$

Eteop = 1 —
$$e^{(-3.24*10^23*2*10^2-25*1)} = 1$$
 — $0.937 = 0.063$

t = 1 c		с Со	без Со	delta	N1	N2
Ch0 = 30 mV	1	13692	50	13642	13642	15368
Ch1 = 20 m V	2	15417	49	15368		
E1	0,093974					
E2	0,08342					

С помощью какого-либо эксперимента попытаться ответить на вопрос: есть или нет корреляция между направлениями вылета у-квантов от распада 60Со. Объяснить полученный результат.

KAK

Выполнить задания, указанные в тексте.

• Оценить энергию гамма-квантов, рассеянных назад:

$$E_{\gamma'} = rac{E_{\gamma}}{1 + (E_{\gamma}/m_ec^2)(1-\cos heta)} \; .$$

E = 209,6 KэB

- Есть также совпадения от космических частиц, которые пересекают оба счётчика практически одновременно (оценить задержку). Для исключения вклада "космических событий" необходимо измерить скорость счёта совпадений без изотопа.
- Способы образования энергичного электрона: фотоэффект, Комптон эффект, электрон-позитронной пары вследствие процесса рождения пар.

Основным процессом является Комптон-эффект (оценить вклад всех трех процессов в вероятность взаимодействия). Энергетический спектр комптоновских электронов является практически равномерным от нуля до некоторой максимальной энергии (оценить эту энергию), (оценить эффективность регистрации).

Основными процессами взаимодействия

γ- квантов с веществом являются: фотоэлектрическое поглощение, комптоновское рассеяние и образование пар. Вероятность взаимодействия γ-кванта при прохождении слоя

сцинтиллятора толщиной d см (предполагается, что параллельный пучок γ -квантов падает перпендикулярно поверхности сцинтиллятора) определяется выражением

$$W = 1 - \exp(-\mu d)$$

где
$$\mu = (\sigma \phi + \sigma \kappa + \sigma n) N0$$

 $\sigma \varphi$, $\sigma \kappa$ и σn (см) — эффективные поперечные сечения для фото-, комптон-эффектов и образования пар, рассчитанные на один атом, N0 (см)-число атомов в 1см3, $\mu = (\sigma \varphi + \sigma \kappa + \sigma n) N0$ (см-1) — коэффициент поглощения γ -квантов за счет этих процессов. Вероятность регистрации γ -квантов зависит отхимического состава сцинтиллятора и энергии этих γ -квантов, так как $\sigma \varphi$, $\sigma \kappa$ и σn зависят от атомного номера вещества сцинтиллятора и энергии фотонов.

$$\sigma_{ph} = rac{16}{2} \sqrt{2} \pi r_e^2 lpha^4 rac{Z^5}{k^{3.5}} pprox 3 \cdot 10^{12} rac{Z^5}{E_{\gamma}^{3.5}}$$

The cross section of the Compton effect is described by the Klein-Nishina equation:

$$\sigma_C = Z 2 \pi r_e^2 \left\{ rac{1+k}{k^2} \left[rac{2(1+k)}{1+2k} - rac{\ln{(1+2k)}}{k}
ight] + rac{\ln{(1+2k)}}{2k} - rac{1+3k}{(1+2k)^2}
ight\}$$

for energies higher than 100 keV (k>0.2). For lower energies, however, this equation shall be substituted by:[6]

$$\sigma_{pair} = Z^2 lpha r_e^2 rac{2\pi}{3} igg(rac{k-2}{k}igg)^3 igg(1 + rac{1}{2}
ho + rac{23}{40}
ho^2 + rac{11}{60}
ho^3 + rac{29}{960}
ho^4igg)$$
 for low energies (k<4),

where

$$\rho = \frac{2k-4}{2+k+2\sqrt{2k}}$$

Задания 2:

Выбрать порог дискриминаторов первой стадии, чтобы он составлял приблизительно половину от максимальной амплитуды выходного сигнала (объяснение дано в первой части работы)

Подобрать задержку в канале "стоп" относительно канала "старт", чтобы был виден пик во временном спектре, положение которого меняется при изменении задержки. Для определения цены канала ВЦП в наносекундах ввести известную задержку в каналы "старт" или "стоп" и измерить смещение пика.

1 pic			2 pic		
start		stop	start		stop
	0	20		20	40
x1		70,9149	x2		43,5532

$$K = 0.731$$

Набрать временной спектр от ВЦП, получить распределение разности времён срабатывания сцинтилляционных счётчиков от γ-квантов 60Со. Измерить ширину на полувысоте наблюдаемого пика в наносекундах.

ширина	16,417	
x1	62,9551 x2	79,3721

Ширина = 12 нс.

Перечислить эффекты, дающие вклад во временное разрешение эксперимента

Из-за разброса скоростей вылета электронов из фотокатода и различием траектории (недостаточной фокусировки), ФЭУ имеет разброс по времени.

Даже мгновенная световая вспышка в сцинтилляторе будет растянута в ФЭУ на 1-10 нс.

В неорганических сцинтилляторах время высвечивания более 100 нс, поэтому флуктуации время пролета через ФЭУ не играют роли, а время нарастания будет определяться временем высвечивания.

В органических сцинтилляторах время высвечивания порядка нс, и тогда временное разрешение $\Phi \ni Y$ необходимо учитывать при определении разреш. способности сцинтилляционного детектора.