

LTP Drift Mode Alternate Analysis

Ira Thorpe (NASA/GSFC), Curt Cutler (NASA/JPL)

LTPDA Progress Meeting - Trento
17th April, 2012

Motivation

LISA/NGO:

- TM Sensitive directions are not co-linear
- Both TMs can be operated drag-free (within measurement band)

LTP:

- TM Sensitive directions are co-linear
- Only one TM can be operated drag-free, the other must be forced
- Potential noise source not present in LISA

Drift Mode

Concept:

- Concentrate TM2 forcing into small time windows, a.k.a. "kicks"
- Allow TM2 to fly free between kicks
- Compare measured TM noise with normal science mode to study force noise effects

„Closed-Loop Kicks“

References:

- C&QG **26** 094007 (2009)
- Space Sci Rev **151**: 183-196 (2010)
- S2-iFR-TN-3008
- S2-iFR-TN-3006
- S2-UTN-TN-3091

Data Analysis Challenge

- Periods of low noise (free-flights) separated by short periods of high noise (kicks)
 - Must excise kicks
- Care about frequencies down to 1mHz but flights only last ~200s
 - Need to combine information from multiple free flights to get low-frequency information
 - have to remove deterministic part of the free-flight
- Desired Outputs
 - Residual spectrum or parameters that describe it
 - Parameters that describe Deterministic signal

Pre-processing

- Read data from dynamical simulations into LTPDA
- Remove any known cross couplings
- Convert from displacement to acceleration
- Identify & excise kicks
- Remaining data stream has deterministic part plus quasi-periodic gaps.

Data Analysis Approaches

- Apply window function to data that goes to zero during the gaps
- Fill the gaps with randomly generated noise with the correct statistical properties
- Compute and correct for spectral leakage effects caused by gaps

Gap-filling Approach

Simultaneously do noise estimation and Bayesian parameter estimation of deterministic signals.

$$a(t) = n(t) + \sum_{i=1}^N \lambda_i \phi_i(t)$$

1. Make a guess for underlying noise spectrum and coupling parameters
2. Remove estimate of deterministic signal
3. Fill gaps using “constrained Gaussian noise”
4. Re-estimate spectrum
5. Re-estimate deterministic pieces (Fisher matrix)
6. Repeat 2-5 as necessary

Does not require periodic gaps

Constrained Gaussian Noise

- Want data with correct spectrum in frequency domain
- In time-domain, this means correct 2-point correlation function

$$C^{ij} \equiv \langle x^i x^j \rangle = \int_{-\infty}^{+\infty} e^{-2\pi i f(t_i - t_j)} \frac{1}{2} S_n(f) df$$

- Fill gaps with random data but adjust the mean of each data point based on correlation function and data outside gap
- *Caveat:* In practice, need to truncate C_{ij} at finite length...requires white or rising spectrum. Will need to pre-whiten.

Noise filling example

Input Noise $S_n(f) = S_0 [1 + (f/f_0)^a]$

Noise filling example

Add gaps (1s duration at 200s intervals)

Noise filling example

Noise filling example

Noise filling example

Noise filling example

Convergence

$$S_n(f) = S_0 [1 + (f/f_0)^a]$$

Spectrum	S_0	f_0	a	χ^2
Input	9.50E-07	2.94E-02	3.990	1.07
Iteration 0	3.31E-02	1.88E-01	2.638	232
Iteration 1	1.09E-04	9.72E-02	4.002	7.51
Iteration 2	3.07E-06	4.00E-02	4.006	2.80
Iteration 3	1.08E-06	3.06E-02	3.998	1.23
Iteration 4	9.50E-07	2.94E-02	3.990	1.13

Time domain

Bayesian Parameter Estimation

$$a(t) = \sum_k \lambda_k \phi_k(t) + n(t)$$

$$(\phi_k | \phi_l) \equiv 4\mathcal{R} \int_0^\infty \frac{\tilde{\phi}_k(f) \cdot \tilde{\phi}_l^*(f)}{S_n(f)} df$$

$$\Gamma_{kl} \equiv \left(\frac{\partial a}{\partial \lambda^k} \middle| \frac{\partial a}{\partial \lambda^l} \right)$$

$$\lambda^k = \sum_l (\Gamma^{-1})^{kl} (a | \phi_l)$$

Combine the two steps - first try

Next Steps

- Work on combined problem
- Investigate other noise shapes, esp. red noise (pre-whitening?)
- Apply to more realistic data (STOC?, SSM?)

