

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 06/06/2016

Esercizio n. 1

In un parco pubblico si trova una giostra girevole per bambini assimilabile ad un disco omogeneo di raggio R=2 m e di massa M=50 kg, vincolato a ruotare attorno ad un asse passante per il suo centro. In due punti diametralmente opposti della giostra sono seduti due bambini di uguale massa m=25 kg, su delle seggioline ancorate al piano della giostra (massa delle seggioline trascurabile). La giostra e' inizialmente ferma. Poi un adulto incomincia a spingere la giostra in modo da metterla in rotazione.

- 1)Dopo un tempo t1=5 sec la giostra raggiunge una velocita' angolare pari a ω 1= 0.5 giro/sec . Supponendo che il moto sia uniformemente accelerato calcolare la accelerazione angolare della giostra+bambini e quanto giri fa la giostra+bambini nell'intervallo di tempo 0 -5 sec.
- 2) Calcolare il lavoro esercitato dall'adulto.
- L'adulto smette di spingere e la giostra ruota liberamente (si trascurino le forze di attrito). Ad un certo istante uno dei due bambini scende dalla giostra in movimento
- 3) Calcolare la velocita' angolare ω2 della giostra dopo che e' sceso uno dei due bambini
- 4) Rispetto al sistema di riferimento solidale con la giostra che gira, disegnare le forze (o la forza) non inerziale che agisce sul bambino rimasto seduto sulla seggiolina della giostra., e calcolarne l'intensita'
- 5) Sempre rispetto al sistema di riferimento solidale con la giostra che gira, calcolare quanto vale la risultante delle forze agenti sul bambino

(TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE, si ricorda che il momento di inerzia di un disco omogeno rispetto ad un asse passante per il suo centro e perpendicolare al disco e' I=1/2 M R^2)

Cognome e Nome		n. matricola
Corso di Laurea		Firma
PROVA SCRITTA DI FISICA LT ING.	ELETTR. INFO	RMATICA DEL 06/06/2016

Esercizio n. 2

All'interno di un pluviale verticale scorre dell'acqua piovana con una portata q=1.4 10³ cm³/sec. Il pluviale presenta una strozzatura ad una altezza h=2m dal suolo: si passa da un diametro D=7.8 cm a d=1.3cm. La pressione del liquido ad altezza H=122 cm sopra la strozzatura vale P1=6.2 10⁵ Pa. Detarminare:

- a) quanta massa d'acqua passa nel tubo, nell'unita' di tempo (si indichi con dm/dt tale quantita e la si esprima in gr/s)
- b) velocita' dell'acqua prima della strozzatura, v1
- c) velocita' dell'acqua immediatamente dopo la strozzatura, v2
- d) pressione dell'acqua immediatamente dopo la strozzatura, P2

Si consideri l'acqua piovana come un fluido ideale, ed il moto si consideri stazionario e irrotazionale. Si assumi come densita' dell'acqua il valore rho=1 gr/cm³, usare g=9.8 m/s²) (TUTTI I RISULTATI VANNO ESPRESSI NEL SISTEMA INTERNAZIONALE)

Cognome e Nome	n. matricola
Corso di Laurea	Firma

Soluzioni

_	•	•	-
Eser		710	
		,,,,	

a) moto circolare uniformemente accelerato:
$$\omega$$
 (t)= alfa t θ (t)= ½ alfa t^2 alfa= $\omega_1/t1=0.628$ rad/s^2 θ = ½ alfa t^2=1/2 * 0.628 *25 = 7.85 rad=1.25 giri

b)Teorema dell'energia cinetica

L=1/2 I
$$\omega$$
 1² dove: I=1/2 M R² + 2 m R² = 300 Kg m² L= 1479 J

c)momento di inerzia del sistema disco+ 1 bambino rispetto all'asse di rotazione : $I2=\frac{1}{2}$ MR^2+ m R^2=200 kg m2

conservazione del momento angolare:

I
$$\omega_1$$
= I2 ω_2
 ω_2 = ω_1 I / I2 = 3/2 ω_1 =0.75 giri/sec =4.71 rad/sec

- d) Forza centrifuga diretta radialmente verso l'esterno e con modulo $F= m \omega_2^2 R = 25 * 4.71 ^2 *2 = 1109 N$
- e) Forza risultante nulla nel sistema solidale alla giostra

Esercizio 2

1)
$$dm/dt = rho q = 1.4 10^3 gr/sec = 1.4 kg/sec$$

2)dalla definizione di portata : q= v S con S= sezione del tubo

$$v1=q/S1 = 29 \text{ cm/s} = 0.29 \text{ m/s}$$
 S1= pigreco D^2 /4

$$v2=q/S2=1055 \text{ cm/s}=10.5 \text{ m/s}$$
 S2= pigreco d^2/4

3) applicando il teorema di Bernoulli, prendendo come quote h1=H e h2=0

P2= P1+ rho g H +
$$\frac{1}{2}$$
 rho $(v1^2 - v2^2)$ = =5.76 10^6 dine/cm2 = 5.76 10^5 Pa

ът

Cognome e Nome	n. matricola
Corso di Laurea	Firma

PROVA SCRITTA VALIDA COME ORALE DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 06/06/2016

Domanda n.1

Si scriva l'espressione vettoriale della forza elastica unidimensionale (legge di Hook), spiegando i vari termini e le relative unità di misura nel sistema internazionale. Aiutarsi con un disegno per la spiegazione dei vari termini. La forza elastica e' conservativa? Giustificare la risposta con dimostrazione

Domanda n.2

Si scriva l'espressione del calore scambiato da un corpo di massa m con l'ambiente, quando la sua temperatura passa da T1 a T2, specificando i vari termini, le unita' di misura nel sistema internazionale.

Il calore scambiato e' sempre positivo?

Si considerino ora due oggetti di uguale massa ma di materiale diverso e temperature diverse, posti a contatto tra di loro (non avvengono contatti con altri corpi e ambiente). Si ricavi l'espressione della temperatura di equilibrio.

Cognome e Nome	n. matricola
Campa di Laumas	Eima e
Corso di Laurea	Firma
PROVA SCRITTA DI FISICA L'	Γ ING. ELETTR. INFORMATICA DEL 06/06/2016