TRIGONOMETRY

Chapter 16

IDENTIDADES TRIGONOMÉTRICAS @ SACO OLIVEROS **AUXILIARES DEL ÁNGULO DOBLE**

HISTORIA DE LA TRIGONOMETRÍA

• El padre de la trigonometría es hiparco: nació en Nicea de bithynia actualmente iznik, al noroeste de Turquía nació alrededor del año 190 A.C. efectuó sus primeras observaciones astronómicas en su ciudad natal y más tarde se marchó a la isla de Rodas en la zona suroeste del Mar Egeo, fue aquí donde realizó sus principales trabajos, algunos historiadores lo sitúan como un astrónomo visitante en Alejandría y también fue ahí donde realizó otros importantes trabajos, Este genio de la antigüedad vivió en el periodo conocido como Helenismo.

IDENTIDADES TRIGONOMÉTRICAS AUXILIARES DEL ÁNGULO DOBLE

I. IDENTIDADES DE DEGRADACIÓN

II. TRIÁNGULO DEL ÁNGULO DOBLE

$$sen2x = \frac{2tanx}{1+tan^2x}$$

$$\cos 2x = \frac{1 - tan^2x}{1 + tan^2x}$$

III. IDENTIDADES AUXILIARES

$$\cot x - \tan x = 2\cot(2x)$$

$$\cot x + \tan x = 2\csc(2x)$$

1. Simplifique la expresión E = (cotx + tanx)sen2x

RESOLUCIÓN

Recordar:

 $\cot x + \tan x =$

$$E = (\cot x + \tan x) \operatorname{sen} 2x$$

$$2 \operatorname{csc} 2x$$

$$E = 2 \operatorname{csc} 2x \cdot \operatorname{sen} 2x$$

$$1$$

$$E = 2$$

HELICO | PRACTICE

2. Si para un ángulo agudo θ se cumple que

$$\frac{1-\cos 2\theta + \sin 2\theta}{1+\cos 2\theta + \sin 2\theta} = \frac{1}{5}; \text{ calcule sen2}\theta$$

RESOLUCIÓN

$$2sen^2θ$$
 $2senθcosθ$

$$\frac{1 - \cos 2\theta + \sin 2\theta}{1 + \cos 2\theta + \sin 2\theta} = \frac{1}{5}$$

$$\frac{2\cos^2\theta}{2} = \frac{2\sin\theta\cos\theta}{2}$$

$$\frac{2sen\theta(sen\theta+cos\theta)}{2cos\theta(cos\theta+sen\theta)} = \frac{1}{5}$$

$$\tan\theta = \frac{1}{5}$$

Recordar:

$$sen2\theta = \frac{2tan\theta}{1+tan^2\theta}$$

Calculamos: sen2θ

$$sen2\theta = \frac{2\left(\frac{1}{5}\right)}{1 + \left(\frac{1}{5}\right)^2} = \frac{1\left(\frac{2}{5}\right)^1}{5\left(\frac{26}{25}\right)^{13}}$$

3. Al copiar de la pizarra la expresión 1+cos80°, un estudiante cometió un error y escribió sen80°. Calcule la razón entre lo que estaba escrito en la pizarra y lo copió el estudiante.

RESOLUCIÓN

Recordar:

$$2\cos^2(x) = 1 + \cos(2x)$$

HELICO | PRACTICE

4. Un árbol, al caer, se inclina 7°30' respecto a la vertical y luego se rompe generando una sombra de 8 m, tal como se muestra en la figura.

Si $4\sqrt{4+\sqrt{a}-\sqrt{b}}$ m, es la altura original del árbol. Calcule a + b

RESOLUCIÓN

Recordar: $(\text{senx} + \text{cosx})^2 = 1 + \text{sen}2x$

Del gráfico: 8sen7°30′ + 8cos7°30′ =
$$4\sqrt{4 + \sqrt{a} - \sqrt{b}}$$

⇒ 2(sen7°30′ + cos7°30′) = $\sqrt{4 + \sqrt{a} - \sqrt{b}}$

Al cuadrado: $4(\text{sen}7^{\circ}30' + \cos 7^{\circ}30')^2 = 4 + \sqrt{a} - \sqrt{b}$

$$4 (1 + sen15^{\circ}) = 4 + \sqrt{a} - \sqrt{b}$$

$$4 + 4sen15^{\circ} = 4 + \sqrt{a} - \sqrt{b}$$

$$\cancel{A} + \cancel{A} \left(\frac{\sqrt{6} - \sqrt{2}}{\cancel{A}}\right) = \cancel{A} + \sqrt{a} - \sqrt{b}$$

$$\sqrt{6} - \sqrt{2} = \sqrt{a} - \sqrt{b}$$

$$\Rightarrow a = 6; b = 2$$

$$\therefore a + b = 8$$

5. Calcule el valor de:
$$E = \frac{\cot\left(\frac{\pi}{12}\right) + \tan\left(\frac{\pi}{12}\right)}{\cot\left(\frac{\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right)}$$

RESOLUCIÓN

$$E = \frac{\cot\left(\frac{\pi}{12}\right) + \tan\left(\frac{\pi}{12}\right)}{\cot\left(\frac{\pi}{8}\right) - \tan\left(\frac{\pi}{8}\right)}$$

$$E = \frac{2\csc\left(\frac{\pi}{6}\right)}{2\cot\left(\frac{\pi}{4}\right)}$$

$$E = \frac{csc30^{\circ}}{cot45^{\circ}}$$

$$E = \frac{2}{1}$$

$$\therefore E = 2$$

$$\cot x + \tan x = 2\csc(2x)$$

$$\cot x - \tan x = 2\cot(2x)$$

6. El señor Castillo compra una casa en el distrito de La molina; en la parte posterior de la vivienda se ubica una piscina rectangular cuyas longitudes de dos lados adyacentes son (3A) m y (4B) m, además la piscina tiene una profundidad uniforme de 2 m.

Si

A = (cot40° + tan40°)cos10° y B = (cot35° – tan35°)cot20° Calcule el volumen de agua necesario para llenar la piscina.

RESOLUCIÓN

$$A = (\cot 40^{\circ} + \tan 40^{\circ})\cos 10^{\circ}$$

$$A = 2\csc 80^{\circ} \cdot \sec 80^{\circ} \rightarrow A = 2$$

$$B = (\cot 35^{\circ} - \tan 35^{\circ})\cot 20^{\circ}$$

$$B = 2\cot 70^{\circ} \cdot \tan 70^{\circ} \rightarrow B = 2$$

$$Volumen piscina = (3A)(4B)2$$

= (6)(8)(2)

7. Simplifique y evalúe para $x = \frac{\pi}{8}$

$$M = \frac{2\tan x}{1+\tan^2 x} + \frac{1+\tan^2 x}{1-\tan^2 x}$$

$$sen (2x) = \frac{2tanx}{1+tan^2x}$$

$$\cos (2x) = \frac{1-\tan^2 x}{1+\tan^2 x}$$

RESOLUCIÓN

$$M = \frac{2tanx}{1 + tan^2x} + \frac{1 + tan^2x}{1 - tan^2x}$$

$$M = sen2x + sec2x$$

$$M = sen 2 \left(\frac{\pi}{8}\right) + sec 2 \left(\frac{\pi}{8}\right)$$

$$M = sen\left(\frac{\pi}{4}\right) + sec\left(\frac{\pi}{4}\right)$$

$$M = sen45^{\circ} + sec45^{\circ}$$

$$M = \frac{\sqrt{2}}{2} + \sqrt{2}$$

$$M = \frac{3\sqrt{2}}{2}$$