단답형 문제 정답

$\frac{1}{2}\frac{Gm^2}{a}$	2	$\frac{1}{6}I\omega^2$	$rac{L_0}{L} ho$	
$\sqrt{2}$	7 (a) $4s$ (b) $\frac{\pi^2}{4} [N/m]$ or $\frac{\pi^2}{4} [kg/s^2]$	3	9 (2), (4)	1.2
$\sqrt{3}$	12 -20 <i>J</i> (부호 틀리면 틀림)	※ 7번은 순서 맞아야 정답※ 7, 12번은 단위 써야 정답※ 9번은 둘다 써야 정답		

주관식 1.

- (가) 평행축 정리에 따라 $I = I_{CM} + MR^2 = \frac{3}{2}MR^2$ $(\frac{3}{2}MR^2$ 만 써도 5점)
- (나) 역학적에너지 보존법칙을 이용하면.

$$K_i + U_i = K_f + U_f$$
 이고, $K = U_f = 0$ 이므로 $MgR = I\omega^2/2$ 가 된다.

(7)에서 구한 회전관성값을 대입하면 $\frac{3}{4}MR^2\omega^2 = MgR$ 이 된다.

점선 위치의 최저점에서 속력은 $v=2R\omega$ 이므로,

$$v = 4\sqrt{\frac{gR}{3}}$$

주관식 2.

(7) 그림으로부터 주기는 10s이다. (단위 안쓰면 틀림)

속도는 $v = \lambda/T = 0.2 \, m/10 \, s = 0.02 \, m/s$ (단위 안쓰면 2점 \rightarrow 1점)

그림으로부터 진폭은 0.5m이다. (단위 안쓰면 틀림)

사인 곡선형의 파동이고 t=2.5s 는 주기의 1/4 시간이므로 그림에서 변위가 최대인 지점이 된다. 따라서 0.5m 이다. (단위 안쓰면 틀림)

(나) 파동함수를 $y(x,t) = Asin(kx - \omega t + \phi)$ 로 놓으면,

 $A = 0.5 \, m$

$$k = 2\pi/\lambda = (2\pi/0.2) m^{-1} = 10\pi m^{-1}$$

$$\omega = 2\pi/T = (2\pi/10) s^{-1} = 0.2\pi s^{-1}$$

 $x=0,\;t=2.5$ 일 때 $y=0.5=0.5\sin\left(-\frac{\pi}{2}+\phi\right)$ 따라서 $\phi=\pi$ (π 의 홀수배이면 모두 가능함. 음수포함, 채점시 유의)

 $\therefore y(x,t) = 0.5 \sin(10\pi x - 0.2\pi t + \pi)$ (m) (마지막 식에 단위 안쓰면 2점→1점)

(다) 위에서 구한 파동방정식은 t=0일 때 $\therefore y(x,t)=0.5\sin\left(10\pi x+\pi\right)(m)$ 이다. 따라서 파장이 $0.2\,m$ 인 사인함수를 구한 후 $-\pi$ 만큼 평행이동 시킨다. ((가)에서 구한 ϕ 에 따라 평행이동 값이 달라질 수 있으니 채점시 유의)

주관식 3

- (가) PV = nRT에서 등온과정이므로 $n,\ R,\ T$ 일정 $\Rightarrow P_1V_1 = P_2V_2$ $V_2 = 3\,V_1$ 이므로 $P_1V_1 = P_2 \times 3\,V_1,\ P_2 = \frac{1}{3}\,P_1$ $\therefore \frac{1}{3}$ 배
- (다) PV^{γ} =상수 에서 단원자 이상기체이므로 $\gamma = \frac{5}{3}$
- $\Rightarrow P_1 V_1^{\frac{5}{3}} = P_2 V_2^{\frac{5}{3}}, \ V_2 = 3 \ V_1$ 이므로 $\Rightarrow P_1 V_1^{\frac{5}{3}} = P_2 (3 \ V_1)^{\frac{5}{3}}$ $\therefore P_2 = 3^{-\frac{5}{3}} P_1$ 한편, 이상기체의 상태 방정식 PV = nRT로부터 $P_1 V_1 = nRT_1$ 라고 하면

 $P_2V_2=(3^{-\frac{5}{3}}P_1)(3\,V_1)=3^{-\frac{2}{3}}P_1V_1,\;n,\;R$ 은 일정하므로 $T=3^{-\frac{2}{3}}T_1$ 이므로 $\therefore 3^{-\frac{2}{3}}$ 배