芯视清

C4-30多功能FPGA开发板使用说明书

VER2. 0

主要配置:

 FPGA 主芯片:
 EP4CE30F23C7N
 ------ Cyclone IV

 配置芯片:
 EPCS16N
 ------ 16Mb

 DDR 存储器:
 H5DU2562GTR-E3C
 ------ 256Mb hynix (16bit width)

 SDRAM 存储器:
 H57V2562GTR-60C
 ------ 256Mb hynix (16bit width)

 2.8" TFT LCD:
 ILI9325 Driver
 ----- 320*240 26K Color

视频解码: SAA7113H ------ Philips NTSC/PAL decoder

音频 Codec: WM8731S ------ Wolfson

VGA 输出: ADV7123KSTZ140

USB /SD: CH376T

LAN: ENC28J60 ----- 10Mbps

RTC 时钟: DS1302Z 红外遥控: VS1838 串口: SP3232 双晶振: 40M / 50M

PS/2 键盘接口: 40 针独立扩展口:

4 位数码管 / 4 位拨码开关/ 4 位 LED / 3 位按键 / 复位按键 / JTAG / AS 下载口

注意事项:

- 1. 拔掉 JTAG/AS 下载线时请先取掉连接 USB blaster 的 USB 线。
- 2. 请勿带电插拔排线和接插端口。
- 3. 注意双手静电防护问题;
- 4. 扩展口外接扩展板时,注意检查方向以及是否错位;
- 5. 如用开发板自带测试程序测试出现功能异常时,一般按复位键即可正常;

自检测试:

- 开发板上电后,通过开发板板载程序可实现开发板全部器件的功能测试;
- 主要通过 4 位拨码开关/数码管/LED/LCD 进行综合判断功能的正确与否;

4 位拨码开关	测试器件		功能描述
{1, 2, 3, 4}			
0 0 0 0	液晶屏/RTC 时钟/数码管	1.	4 个 LED 发光二极管闪烁;
	/LED/按键	2.	4 位数码管以秒累进计时显示,同时说明 RTC 时
			钟(DS1302Z 器件正常)
* 1/2/3/4 对应拨码		3.	2.8" TFT LCD 显示红/绿/蓝三种颜色竖条
开关的 1/2/3/4 ;		4.	按下3个独立按键的任何一个按键,4个发光二
* 拨码开关为1说			极管将同时为亮,松开按键则恢复闪烁,用于测
明处于"ON"位置,			试按键功能;
否则为 0		5.	该部分可测试 FPGA/ LCD / RTC 时钟/ 数码管
			/LED / 按键 的功能;
0 0 0 1	VGA 输出	1.	VGA 输出为 1024×768@60hz, 均匀分布的红、
	(ADV7123)		绿、蓝、白四竖条,四种颜色逐渐变化并反复循
			环,说明 ADV7123 对 r/g/b 三个通道的 DA 变换
			正常(每个通道都从 0~255(8bit 表示)循环
			变化)。
0 0 1 1	红外遥控	1.	4 位数码管初始显示 0000
	VS1838	2.	按下红外遥控器相应按键,数码管显示 00xx,
			其中 xx 即对应遥控器相应按键的值,另外当按
			键被正确接收时,发光二极管 LED01 状态翻转,
			如LED01从亮到灭 或者 从灭到亮 说明遥控器
			当次操作有效;
0 1 1 1	PS/2 键盘接口	1.	数码管初始显示 0000
		1.	外接键盘,按任意键,数码管头两位将显示该
			键值的 ASIIC 码值; 如按键为键盘字母上方的数
	No deed Not all		字键0~9时,数码管的后两位将显示该数字值;
1 1 1 1	音频部分	1.	数码管显示 8731
	WM8731S	2.	LINE IN(蓝色) 音频接口接入音频信号,如电
			脑/MP3/IPOD等音频源(非功放输出等信号源)
		3.	LINE OUT(绿色)接耳机或者其他音频设备,可
			听到通过 LINE IN 输入的音频;
		4.	LINE IN 输入音频数据经过 FPGA 后再输出到
			WM8731S, 经 LINE OUT 输出,该部分可测试
			WM8731S/FPGA 的功能;
1 1 1 0	视频部分 / DDR	1	数码管显示 7113
1 1 1 0	1元/火口[7] / DDK	1.	蚁 円目业小 /115

SAA7	113H /	2. 视频输入为空时,液晶屏显示黑色
	2562GTR-E3C	3. 视频输入连接 DVD/摄像头等设备时,LCD 将播
		放相应视频信号
		4. 视频数据经 FPGA 采集处理后,将按帧为单位,
		依次写入到外部 DDR 存储器中,遍历 DDR 的所
		有空间并循环写入,显示时,依次读取 DDR 中
		视频数据并送 LCD 显示:
		5. 该部分测试 视频部分和 DDR 部分的功能;
1 1 0 0 UART	串口测试	1. 数码管初始显示 0000
1 1 0 0 OAKI	T 11 13 14	2. 通过 USB 转串口线 或 串口线 连接 PC 和开发
		板,并正确设置相关参数;
		3. PC 端通过串口通信工具如 sscom42.exe 向开发
		板发生 8bit 数据,数码管将显示 00xx,其中 xx
		即为 PC 端所发字节数据;
		4. PC 端通过串口工具如 ttermpro.exe 可接受开发
		板发送数据,每按复位键一次,PC 端将接收到
		一次 hello world 信息;
1 0 0 1 40 针	扩展 10 口	1. 数码管显示 0040
		2. 40 针扩展口除了 4 个管脚为电源/地, 其他 36
		脚将输出方波信号,可外接示波器观察,用于
		测试扩展口和 FPGA 管脚连接的正确性
		3. 拨码开关拨至其他位置时,除电源/地外的扩展
		IO 输出为 0
1 0 1 0 USB I	HOST/SDRAM	1. 数码管初始显示 8888, LED01 灯灭
CH376	T / H57V2562GTR	2. USB 设备(如 U 盘)建 C430 文件夹,并在该
NIO	SII 软核实现	文件夹下建立 C430TEST.C 文件, C430TEST.C
		文件中写入一些数据; 注: U 盘格式须为
		FAT/FAT32
		3. 插入 USB 设备, FPGA 程序将读取 USB 设备如 U
		盘中 \\C430\C430TEST.C 文件的内容,并在 4
		位数码管中显示头四个字节的十六进制数(非
		ASCII 码值),同时 LED01 灯亮
		4. 也可直接拷贝开发板配套资料中的 C430 文件
		夹至 U 盘中,后插入 USB 口,数码管将显示
		1234
		5. 如果未插入 USB 设备时, 数码管初始显示不为
		8888,或者插入 USB 设备后,数码管未正确
		显示,可按复位键,将重新读取 USB 设备中
		内容;如依然错误,请更换其他 U 盘测试;
		6. 该部分 FPGA 程序是以 NIOS II 形式实现;
1 0 1 1 SD ½	姜口 /SDRAM	1. 数码管初始显示 6666, LED01 等灭
CH3	76T	2. 其余和 USB 设备测试方法类似,在 SD 卡中建立
NIO	SII 软核实现	\\C430\C430TEST.C 文件,插入后 FPGA 程序读取并在
		数码管显示头 4 字节 16 进制数据,如未正确读取,

http://hevc265.taobao.com

		请按复位键重新读取;
1 1 0 1	网络接口测试/SDRAM	1. 数码管显示 2860
	ENC28J60	2. 用普通网线(直通线)连接开发板和电脑,电
	NIOS II 软核实现	脑的网络设置: IP 192.168.0.x (x 不能为 8) 掩
		码: 255.255.255.0, 其余为空; 开发板板载默
		认 IP 为: 192.168.0.8
		3. 点击: 开始→运行→ cmd → ping 192.168.0.8,
		可测试网络接口是否连接成功,如显示 time
		request out, 请按复位键重新连接;
		4. 打开 IE, 地址栏输入 http://192.168.0.8/123456,
		即可进入开发板网页,点击 LED ON 或 LED OFF
		按钮,开发板的 LED01 发光二极管的状态将相
		应变化

● 开发板 40 针扩展说明

(注: VCC5.0/VCC3.3V 为开发板提供的向外输出电源; 扩展 IO 所在 FPGA BANK 的 VCCIO=3.3V)

展开说明:

1. USB Blaster 下载器驱动安装

将 USB Blaster 下载器的 USB 接口插入计算机,弹出"找到新硬件"向导,如下图进行选择。

上图中的搜索位置为 quartus 安装目录,根据实际安装目录和 quartus 版本选择,如下图所示,只需要选 usb-blaster,再点确定即可,如选择 x32/x64,则出现找不到驱动情况。

出现上图时,点"仍然继续",即可完成 usb-blaster 驱动安装;

2 USB 转串口线 驱动安装

双击光盘附带 USB 转串口驱动安装程序 "CH341SER.EXE",点 INSTALL,安装完毕后再插入 USB 转串口线,即可使用。

3 PC 端串口信息接收软件设置

可用光盘附带软件 ttermpro.exe (在文件夹"串口调试信息输出工具"),如下图,点击Setup-> Serial port setup

波特率选择"57600",端口此处选择 COM1,实际调试时选择 COM? 要根据连接开发 板串口线的端口而定; 如外接 USB 转串口线时,安装好驱动后,可查看该串口线实际占用 COM?, 查看方法如下图所示:

如下图所示,可查看 USB 转串口线实际占用的端口号;(注意,需要把 USB 转串口线插入电脑才可查看到相关信息)

设置好参数后,开发板设置成串口测试模式,每按一次复位键,串口信息接收软件将显示一次 "hello world!",如下图所示:

4. PC 端串口发送信息软件设置

打开光盘附送软件 sscom4.2.exe,如下图所示:

上图中的串口号要和开发板连接串口线的实际端口号相符合,波特率选择 115200,数据位选择 8,点击"打开串口",即可在字符串输入框中输入要发送到开发板的数据(8bit)。

如上图所示,输入 89,点发送,即可在开发板的 4 位数码管中显示 0089,数码管的后两位即为 PC 端发送 8bit 数据(注意,开发板需要在串口测试模型下,即拨码开关要拨至指定位置)。

5 网络测试设置

开发板的板载测试程序中设置的网络 IP 为 192.168.0.8,可通过普通网线直接连接开发板和电脑的网络端口,再把电脑的 IP 段设置成和开发板一样,设置电脑 IP 的方法如下:右击"网上邻居"->属性 ->本地连接->属性,如下图所示,点"属性"

如下图所示, IP 地址设置成 192.168.0.X (8 除外), 掩码: 255.255.255.0, 其余为空;

可以通过 PING 来测试电脑和开发板的网络是否连接成功,点"开始"-》运行-》cmd,如下图,输入 ping 192. 168. 0. 8,如图所示即说明网络连接成功,如未连接成功,可按下开发板复位键,再重新输入 ping 192. 168. 0. 8,一般即可连接成功。(注意,网络测试需要拨码开关拨至指定位置)。

在网络连接成功的情况下,打开 IE 浏览器,输入 http://192.168.0.8, 可出现如下 图所示画面:

IE 浏览器中输入 http://192.168.0.8/123456, 可出现如下画面

点击如图所示的 LED01 on / LED01 off, 开发板上的 LED01 发光二极管将相应的变成亮和灭的状态(第一次点击时 LED01 不会变化);

6 红外遥控器电池说明

新的遥控器的电池部分垫了一张隔离用的塑料纸,第一次使用时需要取掉可正常使用。

● FPGA IO 管脚分配

特别说明:

- 1. DDR/LCD 液晶屏 接口信号所在的 FPGA BANK VCCIO=2.5V, 其余接口信号均为 3.3V。
- 2. 40 针扩展口中有两对电源/地共 4 根引脚, 其余 36 针为扩展 IO 口, 依照顺序对应 extio[0]~extio[35];
- 3. DDR 全部接口信号均为等长布线,线长为 1700mil/+-10mil
- 4. USB 接口默认为 USB HOST 接口,可外接 U 盘等 USB 设备,勿直接连接电脑等 HOST 设备;如要改为 slave USB (可与电脑直接连接),可把 R77 (0 欧电阻)取掉即可;
- 5. USB/SD 均通过 CH376T 相连,没有专门引脚来判断 USB/SD 插拔状态,可通过拨码开 关设置和定时查询方法进行检测

时钟/复位 50M / 40M

set_location_assignment PIN_T22 -to clk_50M set_location_assignment PIN_G1 -to clk_40M set_location_assignment PIN_T2 -to rstn

- ## 4位拨码开关
- ## SW_1 对应拨码开关的 1

set_location_assignment PIN_M4 -to sw_1
set_location_assignment PIN_K7 -to sw_2
set_location_assignment PIN_K8 -to sw_3
set_location_assignment PIN_J8 -to sw_4

3个独立按键

set_location_assignment PIN_N6 -to btn_ent set_location_assignment PIN_N7 -to btn_lft

set_location_assignment PIN_T1 -to btn_rgt

4 位数码管

```
set_location_assignment PIN_J17 -to seg7_leda
set_location_assignment PIN_K17 -to seg7_ledb
set_location_assignment PIN_N20 -to seg7_ledc
set_location_assignment PIN_N17 -to seg7_ledd
set_location_assignment PIN_P20 -to seg7_lede
set_location_assignment PIN_K18 -to seg7_ledf
set_location_assignment PIN_K19 -to seg7_ledg
set_location_assignment PIN_N18 -to seg7_ledh
set_location_assignment PIN_P17 -to seg7_sel3
set_location_assignment PIN_T17 -to seg7_sel2
set_location_assignment PIN_R18 -to seg7_sel1
set_location_assignment PIN_R18 -to seg7_sel0
```

4 位 LED 发光二极管

```
set_location_assignment PIN_T5 -to led_01
set_location_assignment PIN_R6 -to led_02
set_location_assignment PIN_R5 -to led_03
set_location_assignment PIN_P6 -to led_04
```

```
## 2.8" TFT LCD
```

37 脚 ILI9325 Driver

采用 8 位工作模式 | Icd dat[7:0] 对应说明书中的 [17:10]

LCD 接口所在 BANK 的 VCCIO 为 2.5V

```
set_location_assignment PIN_AA20 -to lcd_rst
set_location_assignment PIN_V13 -to lcd_cs
set_location_assignment PIN_AB20 -to lcd_dat[7]
set_location_assignment PIN_AA19 -to lcd_dat[6]
set_location_assignment PIN_AB19 -to lcd_dat[5]
set_location_assignment PIN_AB18 -to lcd_dat[4]
set_location_assignment PIN_Y17 -to lcd_dat[3]
set_location_assignment PIN_T15 -to lcd_dat[2]
```

set_location_assignment PIN_T14 -to lcd_dat[1] set location assignment PIN W15 -to lcd dat[0]

```
set_location_assignment PIN_T13 -to lcd_rd
set_location_assignment PIN_V15 -to lcd_wr
set_location_assignment PIN_V14 -to lcd_rs

set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_rst
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_cs
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[7]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[6]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[5]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[4]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[3]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[2]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[1]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[0]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_dat[0]
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_rd
set_instance_assignment -name IO_STANDARD "2.5 V" -to lcd_rd
```

set_instance_assignment -name IO_STANDARD "2.5 V" -to Icd_wr

网络 LAN ENC28J60

```
set_location_assignment PIN_Y22 -to net_intn
set_location_assignment PIN_W21 -to net_woln
set_location_assignment PIN_W22 -to net_so
set_location_assignment PIN_V21 -to net_si
set_location_assignment PIN_V22 -to net_sck
set_location_assignment PIN_U21 -to net_csn
set_location_assignment PIN_U22 -to net_rstn
```

```
## 串口 Uart SP3232
```

```
set_location_assignment PIN_R21 -to rs_txd set_location_assignment PIN_R22 -to rs_rxd
```

PS/2 键盘接口

set_location_assignment PIN_Y21 -to ps2_clk set_location_assignment PIN_AA21 -to ps2_dat

USB/SD CH376T

set_location_assignment PIN_H17 -to usb_intn set_location_assignment PIN_T18 -to usb_sdo set_location_assignment PIN_U20 -to usb_sdi set_location_assignment PIN_U19 -to usb_sck set_location_assignment PIN_W20 -to usb_scs

VGA 输出

R/G/B 单色 8 种颜色组合

set_location_assignment PIN_Y1 -to vga_vs set_location_assignment PIN_Y2 -to vga_hs

set_location_assignment PIN_R2 -to vga_r[7]

set_location_assignment PIN_R1 -to vga_r[6]

set_location_assignment PIN_U2 -to vga_r[5]

set_location_assignment PIN_U1 -to vga_r[4]

set_location_assignment PIN_V2 -to vga_r[3]

set_location_assignment PIN_V1 -to vga_r[2]

set_location_assignment PIN_W2 -to vga_r[1]

set_location_assignment PIN_W1 -to vga_r[0]

set_location_assignment PIN_P1 -to vga_g[0]

set_location_assignment PIN_P2 -to vga_g[1]

set_location_assignment PIN_N1 -to vga_g[2]

set_location_assignment PIN_N2 -to vga_g[3]

set_location_assignment PIN_M1 -to vga_g[4]

set_location_assignment PIN_M2 -to vga_g[5]

set_location_assignment PIN_J1 -to vga_g[6]

set_location_assignment PIN_J2 -to vga_g[7]

set_location_assignment PIN_H1 -to vga_blk

set_location_assignment PIN_H2 -to vga_syn

set_location_assignment PIN_F1 -to vga_b[0]

set_location_assignment PIN_F2 -to vga_b[1]

set_location_assignment PIN_E1 -to vga_b[2]

set_location_assignment PIN_G4 -to vga_b[3]

```
set_location_assignment PIN_D2 -to vga_b[4]
set_location_assignment PIN_C1 -to vga_b[5]
set_location_assignment PIN_C2 -to vga_b[6]
set_location_assignment PIN_B1 -to vga_b[7]
set_location_assignment PIN_B2 -to vga_clk
```

```
## RTC 实时时钟
## DS1302Z
```

```
set_location_assignment PIN_H5 -to rtc_rstn
set_location_assignment PIN_G5 -to rtc_dat
set_location_assignment PIN_G3 -to rtc_clk
```

```
## 视频输入
## SAA7113H
```

```
set_location_assignment PIN_F20 -to saa_sda
set_location_assignment PIN_F22 -to saa_scl
set_location_assignment PIN_G22 -to saa_llc
set_location_assignment PIN_F21 -to saa_vpo[7]
set_location_assignment PIN_E22 -to saa_vpo[6]
set_location_assignment PIN_E21 -to saa_vpo[5]
set_location_assignment PIN_D22 -to saa_vpo[4]
set_location_assignment PIN_D21 -to saa_vpo[3]
set_location_assignment PIN_C22 -to saa_vpo[1]
set_location_assignment PIN_C21 -to saa_vpo[0]
```

```
## 音频接口
## WM8731S
```

```
set_location_assignment PIN_P22 -to aud_bclk set_location_assignment PIN_R20 -to aud_dacdat set_location_assignment PIN_M21 -to aud_daclrc set_location_assignment PIN_H21 -to aud_adcdat set_location_assignment PIN_P21 -to aud_adclrc set_location_assignment PIN_H22 -to aud_sdin set_location_assignment PIN_M22 -to aud_sclk
```

```
## IR 红外遥控
## VS1838
```

set_location_assignment PIN_P7 -to ir_din

```
## SDRAM
## H57V2562GTR-60C 256Mb 16M*16bit hynix
```

```
set_location_assignment PIN_A10 -to sdr_addr[4]
set_location_assignment PIN_B10 -to sdr_addr[5]
set_location_assignment PIN_D10 -to sdr_addr[6]
set_location_assignment PIN_B13 -to sdr_addr[7]
set_location_assignment PIN_A13 -to sdr_addr[8]
set_location_assignment PIN_B14 -to sdr_addr[9]
set_location_assignment PIN_A14 -to sdr_addr[11]
set location assignment PIN B15 -to sdr addr[12]
set_location_assignment PIN_A15 -to sdr_cke
set_location_assignment PIN_B16 -to sdr_clk
set_location_assignment PIN_A16 -to sdr_udm
set_location_assignment PIN_B17 -to sdr_dq[8]
set_location_assignment PIN_A17 -to sdr_dq[9]
set_location_assignment PIN_A18 -to sdr_dq[10]
set location assignment PIN B18 -to sdr dq[11]
set_location_assignment PIN_A19 -to sdr_dq[12]
set_location_assignment PIN_B19 -to sdr_dq[13]
set_location_assignment PIN_A20 -to sdr_dq[14]
set_location_assignment PIN_B20 -to sdr_dq[15]
set_location_assignment PIN_B3 -to sdr_addr[3]
set_location_assignment PIN_A3 -to sdr_addr[2]
set_location_assignment PIN_B4 -to sdr_addr[1]
set_location_assignment PIN_C3 -to sdr_addr[0]
set location assignment PIN C4 -to sdr addr[10]
set_location_assignment PIN_C6 -to sdr_ba[1]
set_location_assignment PIN_C7 -to sdr_ba[0]
set_location_assignment PIN_D6 -to sdr_csn
set_location_assignment PIN_A4 -to sdr_rasn
set_location_assignment PIN_B5 -to sdr_casn
set_location_assignment PIN_A5 -to sdr_wen
```

```
set_location_assignment PIN_B6 -to sdr_ldm
set_location_assignment PIN_A6 -to sdr_dq[7]
set_location_assignment PIN_B7 -to sdr_dq[6]
set_location_assignment PIN_A7 -to sdr_dq[5]
set_location_assignment PIN_B8 -to sdr_dq[4]
set_location_assignment PIN_A8 -to sdr_dq[3]
set_location_assignment PIN_B9 -to sdr_dq[2]
set_location_assignment PIN_A9 -to sdr_dq[1]
set_location_assignment PIN_C10 -to sdr_dq[0]
```

```
## DDR
## H5DU2562GTR-E3C 256Mb 16M*16bit hynix
## DDR 接口信号所在 BANK VCCIO=2.5V

set_location_assignment PIN_AA16 -to ddr_addr[4]
```

```
set_location_assignment PIN_AA15 -to ddr_addr[5]
set_location_assignment PIN_AB16 -to ddr_addr[6]
set_location_assignment PIN_AB15 -to ddr_addr[7]
set_location_assignment PIN_AA14 -to ddr_addr[8]
set_location_assignment PIN_AB14 -to ddr_addr[9]
set_location_assignment PIN_Y6 -to ddr_addr[10]
set_location_assignment PIN_Y13 -to ddr_addr[11]
set_location_assignment PIN_AB13 -to ddr_addr[12]
set_location_assignment PIN_AA17 -to ddr_clkp
set_location_assignment PIN_AB17 -to ddr_clkn
set location assignment PIN AA7 -to ddr udm
set_location_assignment PIN_AB9 -to ddr_udqs
set_location_assignment PIN_AB7 -to ddr_dq[8]
set_location_assignment PIN_AB8 -to ddr_dq[9]
set_location_assignment PIN_AA8 -to ddr_dq[10]
set_location_assignment PIN_AA9 -to ddr_dq[11]
set_location_assignment PIN_Y10 -to ddr_dq[12]
set_location_assignment PIN_W10 -to ddr_dq[13]
set_location_assignment PIN_U10 -to ddr_dq[14]
set location assignment PIN V11 -to ddr dq[15]
set_location_assignment PIN_V8 -to ddr_dq[0]
set_location_assignment PIN_W6 -to ddr_dq[1]
set_location_assignment PIN_U9 -to ddr_dq[2]
set_location_assignment PIN_W7 -to ddr_dq[3]
set_location_assignment PIN_W8 -to ddr_dq[4]
set_location_assignment PIN_AA5 -to ddr_dq[5]
set_location_assignment PIN_AA4 -to ddr_dq[6]
```

```
set_location_assignment PIN_V5 -to ddr_dq[7]
set_location_assignment PIN_V10 -to ddr_ldqs
set_location_assignment PIN_Y3 -to ddr_ldm
set_location_assignment PIN_T8 -to ddr_wen
set_location_assignment PIN_U8 -to ddr_casn
set_location_assignment PIN_AA10 -to ddr_rasn
set_location_assignment PIN_AB10 -to ddr_csn
set_location_assignment PIN_Y8 -to ddr_ba[0]
set_location_assignment PIN_Y7 -to ddr_ba[1]
set_location_assignment PIN_V7 -to ddr_addr[0]
set_location_assignment PIN_AB5 -to ddr_addr[1]
set_location_assignment PIN_AA3 -to ddr_addr[2]
set_location_assignment PIN_AB3 -to ddr_addr[3]
set_location_assignment PIN_AB3 -to ddr_addr[3]
```

```
## 扩展 IO
## 40 针扩展口 11/12 脚为 VCC5.0 /GND; 29/30 脚为 VCC3.3 /GND, VCC5.0/VCC3.3 均 为开发板提供向外输出电源,非输入
## 其余 36 脚为 GPIO 口,可以设置为输入/输出/双向 IO 口;
## ext_io[35:0] 对应除了 VCC/GND 外的 36 个 GPIO 扩展脚, ext_io[0]对应 1 脚, ext_io[10]
## 对应 13 脚, ext_io[35]对应 40 脚
```

```
set_location_assignment PIN_V3 -to ext_io[0]
set_location_assignment PIN_V4 -to ext_io[1]
set_location_assignment PIN_AA1 -to ext_io[2]
set_location_assignment PIN_E7 -to ext_io[3]
set_location_assignment PIN_D7 -to ext_io[4]
set_location_assignment PIN_G8 -to ext_io[5]
set_location_assignment PIN_G9 -to ext_io[6]
set_location_assignment PIN_F9 -to ext_io[7]
set_location_assignment PIN_G10 -to ext_io[8]
set_location_assignment PIN_G11 -to ext_io[9]
set_location_assignment PIN_E11 -to ext_io[10]
set_location_assignment PIN_F11 -to ext_io[11]
set_location_assignment PIN_C13 -to ext_io[12]
set_location_assignment PIN_D13 -to ext_io[13]
set_location_assignment PIN_F13 -to ext_io[14]
set_location_assignment PIN_E13 -to ext_io[15]
set_location_assignment PIN_G14 -to ext_io[16]
```

```
set_location_assignment PIN_F14 -to ext_io[17]
set_location_assignment PIN_F15 -to ext_io[18]
set_location_assignment PIN_G15 -to ext_io[19]
set_location_assignment PIN_D17 -to ext_io[20]
set_location_assignment PIN_E16 -to ext_io[21]
set_location_assignment PIN_D19 -to ext_io[22]
set_location_assignment PIN_C19 -to ext_io[23]
set_location_assignment PIN_D20 -to ext_io[24]
set_location_assignment PIN_C20 -to ext_io[25]
set_location_assignment PIN_F19 -to ext_io[26]
set_location_assignment PIN_C17 -to ext_io[27]
set_location_assignment PIN_H18 -to ext_io[28]
set_location_assignment PIN_G17 -to ext_io[29]
set_location_assignment PIN_J22 -to ext_io[30]
set_location_assignment PIN_H20 -to ext_io[31]
set_location_assignment PIN_B21 -to ext_io[32]
set_location_assignment PIN_J21 -to ext_io[33]
set_location_assignment PIN_M20 -to ext_io[35]
set_location_assignment PIN_H19 -to ext_io[34]
```

```
## EPCS16
```

NIOS 开发时可能需要对 EPCS16 的管脚分配进行设定

```
set_location_assignment PIN_D1 -to epcs_asdo
set_location_assignment PIN_K1 -to epcs_data0
set_location_assignment PIN_K2 -to epcs_dclk
set_location_assignment PIN_E2 -to epcs_ncso
```