Follow this link to view the full presentation, with animated (scans)

https://docs.google.com/presentation/d/10Z646nL0SNAtWqknQ7BCpWcpevJxT_GHyK5vZl9EGXo

Another Philips Pulseq Interpreter from basics to pTx

ISMRM Virtual Meeting - 17 November 2023Thomas Roos

Pulseq is like music

While Philips invented CDs...

Philips MRI scanners are no CD players

Why is Pulseq challenging?

Philips platform is too optimised - or is it?

Aim

Compatible

→ Current sequences & timing

Generic & easy

- → No conversions
- → Runs .seq directly
- → No required labels, etc

Accurate

→ No timing changes

Architecture

Runtime

Modifies dummy sequence

to convert

Pulseq blocks to

Philips 'blocks'

Images

Philips encoding

Recon

Playing: a gradient echo

Pulseq Native

One of the second seco

Pulseq & Native GRE using Philips Achieva 7T version R5.4

Playing: a spiral readout

Requested in .seq

Measured using Skope

k-space trajectory

Playing: an EPI?!

Playing: a MP-RAGE

Philips Achieva 7T

1mm³ resolution

2x2 SENSE 3min

Philips sequence

Pulseq sequence

Let's make Universal Pulses, Truly Universal!

pTx-Pulseq

Full pTx

- Magnitude & phase

Backwards compatible

- No changes to MATLAB toolbox
- Current interpreter reads ch1

Repeating time-points for the different channels


```
tx_pattern = [ 1 0 0 0 0 0 0 0 ]; % Only Tx #1

rf_singleTx = rf; % Start with regular RF pulse

rf_singleTx.signal = reshape(rf.signal' .* tx_pattern, 1, []);

rf_singleTx.t = repmat(rf.t, 1, num_tx);
```

Hybrid sequence

Best of both worlds

Pulseq Features Flexibility

Native
Optimizations
Recon
Accessibility

Playing: *Hybrid pTx-Pulseq*

1mm³ resolution

R=4 using CS

On-scanner reconstruction

Safety checks

During scan:

- SAR (average power)
- System specs (slew, strength)
- System safety (grad temp)

Using Pulseq:

- PNS (MATLAB model)
- Gradient resonances

To be implemented:

- SAR prediction
- Gradient temp prediction

Current state

Highlights

- Timing flexibility
- Full pTx
- Hybrid sequences

Next steps

- Improve simulations
- Add labels to data
- On-scanner recon of Pulseq encoding
- Off-center FOV

Acknowledgement

Edwin Versteeg Kyungmin Nam Mark Gosselink Hans Hoogduin Dennis Klomp Jeroen Siero Jannie Wijnen

and the rest!

Spinoza Centre for Neuroimaging

