Rewriting Higher-Order Stack Trees

Vincent Penelle

Highlights, September 3rd, 2014

Context

 Model Checking over some classes of infinite graphs: which logic theories (FO,FO[→*],MSO,...) are decidable?

2 / 12

Context

 Model Checking over some classes of infinite graphs: which logic theories (FO,FO[→*],MSO,...) are decidable?

Configuration graphs of HOPDA [Caucal02] & [Carayol, Wohrle03]	?	Tree automatic of order n [Colcombet,Loding07]
Configuration graphs of PDA [Muller,Shupp85]	Ground tree rewriting graphs [Dauchet, Tison90]	Tree automatic [Khoussainov,Nerode94]
MSO	$FO[o^*]$	FO

Higher-Order Stack Trees

A *n*-stack tree is a tree labelled by (n-1)-stacks.

Higher-Order Stack Trees

A *n*-stack tree is a tree labelled by (n-1)-stacks.

A unary *n*-stack tree is a *n*-stack.

A 1-stack tree is a tree labelled by Σ .

Basic Operations: Level 0

Rewriting operations over Σ : rew_{b,a}

Basic Operations: Level 0

Rewriting operations over Σ : rew_{b,a}

Basic Operations: Level i < n

Copy operations: $copy_i, \overline{copy}_i$

Basic Operations: Level i < n

Copy operations: $copy_2$

Basic Operations: Level i < n

Copy operations: $copy_2$

Basic Operations: Level n

Tree copy operations: $\operatorname{copy}_n^i, \overline{\operatorname{copy}}_n^i$

Basic Operations: Level n

Tree copy operations: $copy_3^2$

Basic Operations: Level n

Tree copy operations: $copy_3^2$

Composition

$rew_{b,a} \circ copy_3^2$:

Composition

$rew_{b,a} \circ copy_3^2$:

 Characterised by DAGs obtained by concatenations of DAGs whose edges represent basic operations:

Only connected operations

 Characterised by DAGs obtained by concatenations of DAGs whose edges represent basic operations:

- Only connected operations
- ullet Level 1 o ground tree rewriting rules
- \bullet Unary trees \to finite composition of higher-order pushdown operations

Main Result

Given a set of compound operations R, its rewriting graph \mathcal{G}_R is:

- $V_{G_P} = ST_n$
- $E_{G_R} = \{(t, r, t') \mid r \in R \land r(t, t')\}$

Theorem

Given a finite set of compound operations R, its rewriting graph has a decidable $FO[\stackrel{*}{\to}]$ theory.

Proof ingredients:

- Notion of recognisability over compound operations
- Finite set interpretation of every stack-tree rewriting graph into a graph with a decidable MSO-theory (the level *n* treegraph)

Perspectives

- Languages recognised by rewriting graphs of stack trees. Example $\{u \sqcup u \mid u \in \Sigma^*\}$
- Strictness of the graph hierarchy
- Extension of the model to n-trees labelled by (n-1)-trees