$f_2(2010)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

f₂(2010) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
2011 ⁺ 62 - 76	¹ ETKIN	88	MPS	$22 \pi^- p \to \phi \phi n$
• • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
2005± 12	VLADIMIRSK.	06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
1980± 20	² BOLONKIN	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$ $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
2050^{+}_{-} $\begin{array}{c} 90 \\ 50 \end{array}$				$22 \pi^- p \rightarrow 2\phi n$
$2120 + 20 \\ -120$	LINDENBAUM	1 84	RVUE	
2160± 50	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$

 $^{^1}$ Includes data of ETKIN 85. The percentage of the resonance going into $\phi\phi$ 2 $^+$ + S_2 , $_2D_2$, and D_0 is 98 $^+_3$, 0 $^+_0$, and 2 $^+_1$, respectively.

f₂(2010) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
202 <mark>+ 67</mark> - 62	³ ETKIN	88	MPS	22 $\pi^- p \rightarrow \phi \phi n$
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •
209± 32	VLADIMIRSK.	06	SPEC	40 $\pi^- p \to K_S^0 K_S^0 n$
145± 50	⁴ BOLONKIN	88	SPEC	$40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$ $40 \pi^{-} p \rightarrow K_{S}^{0} K_{S}^{0} n$
200^{+160}_{-50}				$22 \pi^- p \rightarrow 2\phi n$
$300 + 150 \\ -50$	LINDENBAUN	1 84	RVUE	
310± 70	ETKIN	82	MPS	$22 \pi^- p \rightarrow 2\phi n$
3 Includes data of ETKIN 95				

Includes data of ETKIN 85.

f₂(2010) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$\phi\phi$	seen
Γ_2	$K\overline{K}$	seen

f2(2010) BRANCHING RATIOS

Γ(KK)/Γ _{total}	DOCUMENT ID	Γ ₂ /Γ <u>TECN</u> <u>COMMENT</u>
seen	VLADIMIRSK06	SPEC 40 $\pi^- p \rightarrow \kappa_S^0 \kappa_S^0 n$
HTTP://PDG.LBL.GOV	Page 1	Created: 5/30/2017 17:21

² Statistically very weak, only 1.4 s.d.

⁴ Statistically very weak, only 1.4 s.d.

f₂(2010) REFERENCES

VLADIMIRSK	. 06	PAN 69 493	V.V. Vladimirsky et al.	(ITEP, Moscow)
		Translated from	YAF 69 515.	,
BOLONKIN	88	NP B309 426	B.V. Bolonkin et al.	(ITEP, SERP)
ETKIN	88	PL B201 568	A. Etkin <i>et al.</i>	(BNL, CUNY)
ETKIN	85	PL 165B 217	A. Etkin <i>et al.</i>	(BNL, CUNY)
LINDENBAUM	84	CNPP 13 285	S.J. Lindenbaum	` (CUNY)
ETKIN	82	PRL 49 1620	A. Etkin <i>et al.</i>	(BNL, CUNY)
Also		Brighton Conf.	351 S.J. Lindenbaum	(BNL, CUNY)
		-		,

Created: 5/30/2017 17:21