CS-201Computational Physics

Lab-2 14 . 02 . 2020

2 Basic Physical Systems of Growth and Decay

2.1
$$f(x) = 40$$
 ; $x(0) = 0$; $0 \le t \le 10$, $\Delta t = 0.1$, $\Delta t = 0.001$

Analytical solution : x(t) = 40 * t

2.2 f(v) = -9.8 ; v(0)=0 ; $0 \le t \le 10$, $\Delta t = 0.1$, $\Delta t = 0.001$

Analytical Solution : v(t) = -9.8 * t

2.3.1 $f(x) = -1.54 * 10^{-10} * x$; x(0)=1 ; $0 \le t \le 3.08 * 10^{-11}$, $\Delta t = -1.54 * 10^{-12}$

Analytical Solution : $x(t) = e^{-t*1.54*(10^{4}-10)}$

2.3.2 $f(x) = -4.3321 * 10^{-4} * x$; x(0)=1 ; $0 \le t \le 8.6642 * 10^{-5}$, $\Delta t = 4.3321 * 10^{-6}$

Analytical Solution : $x(t) = e^{-t^*4.3321^*(10^{\land}-4)}$

2.3.3 f(x) = -0.0315 * x ; x(0)=1 ; $0 \le t \le 6.3*10^{-3}$, $\Delta t = 3.15 * 10^{-4}$

Analytical Solution : $x(t) = e^{-t*0.0315}$

