

Clustering using K-Mean algorithm

K-means clustering is a clustering algorithm that aims to partition n observations into k clusters.

There are 3 steps:

Step 1:

Initialisation – K initial "means" (centroids) are generated at random

Step 2:

Assignment – K clusters are created by associating each observation with the nearest centroid

Step 3:

Update - The centroid of the clusters becomes the new mean

Assignment and Update are repeated iteratively until convergence

The end result is that the sum of squared errors is minimised between points and their respective centroids.

```
#-----
import copy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.DataFrame({
            'x': [12, 20, 28, 18, 29, 33, 24, 45, 45, 52, 51, 52, 55, 53, 55, 61,
64, 69, 72],
           'y': [39, 36, 30, 52, 54, 46, 55, 59, 63, 70, 66, 63, 58, 23, 14, 8, 19,
7, 24]
           })
print("Step 1: Initialisation - K initial "means" (centroids) are generated at
random");
print("Data set for training");
print("----");
print(df);
print("----");
np.random.seed(200)
k = 3
\# centroids[i] = [x, y]
```



```
centroids = {
  i+1: [np.random.randint(0, 80), np.random.randint(0, 80)]
  for i in range(k)
print("Random centroid generated");
print(centroids);
print("----");
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color='k')
colmap = \{1: 'r', 2: 'g', 3: 'b'\}
for i in centroids.keys():
  plt.scatter(*centroids[i], color=colmap[i])
plt.title("Marvellous: Dataset with random centroid");
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.show()
# Assignment - K clusters are created by associating each observation with the
nearest centroid
def assignment(df, centroids):
  for i in centroids.keys():
     \# \operatorname{sqrt}((x1 - x2)^2 - (y1 - y2)^2)
     df['distance_from_{}'.format(i)] = (
                               np.sqrt(
                                    (df['x'] - centroids[i][0]) ** 2
                                    + (df['y'] - centroids[i][1]) ** 2
                               )
         centroid_distance_cols = ['distance_from_{}'.format(i) for i in
centroids.keys()]
  df['closest'] = df.loc[:, centroid_distance_cols].idxmin(axis=1)
  df['closest'] = df['closest'].map(lambda x: int(x.lstrip('distance from ')))
  df['color'] = df['closest'].map(lambda x: colmap[x])
  return df
```



```
print("Step 2 : Assignment - K clusters are created by associating each
observation with the nearest centroid");
print("Before assignment dataset");
print(df)
df = assignment(df, centroids)
print("First centroid : Red");
print("Second centroid : Green");
print("Third centroid : Blue");
print("After assignment dataset");
print(df)
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
  plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.title("Marvellous: Dataset with clustering & random centroid");
plt.show()
old centroids = copy.deepcopy(centroids)
print("Step 3:Update - The centroid of the clusters becomes the new mean
Assignment and Update are repeated iteratively until convergence");
def update(k):
  print("Old values of centroids");
  print(k);
  for i in centroids.keys():
     centroids[i][0] = np.mean(df[df['closest'] == i]['x'])
     centroids[i][1] = np.mean(df[df['closest'] == i]['y'])
  print("New values of centroids");
  print(k);
  return k
centroids = update(centroids)
fig = plt.figure(figsize=(5, 5))
ax = plt.axes()
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
```



```
plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
for i in old_centroids.keys():
  old x = old centroids[i][0]
  old_y = old_centroids[i][1]
  dx = (centroids[i][0] - old_centroids[i][0]) * 0.75
  dy = (centroids[i][1] - old_centroids[i][1]) * 0.75
    ax.arrow(old x, old y, dx, dy, head width=2, head length=3, fc=colmap[i],
ec=colmap[i])
plt.title("Marvellous: Dataset with clustering and updated centroids");
plt.show()
## Repeat Assignment Stage
print("Before assignment dataset");
print(df)
df = assignment(df, centroids)
print("After assignment dataset");
print(df)
# Plot results
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
   plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.title("Marvellous: Dataset with clustering and updated centroids");
plt.show()
# Continue until all assigned categories don't change any more
  closest_centroids = df['closest'].copy(deep=True)
  centroids = update(centroids)
  print("Before assignment dataset");
  print(df)
  df = assignment(df, centroids)
  print("After assignment dataset");
  print(df)
  if closest centroids.equals(df['closest']):
     break
print("Final values of centroids");
print(centroids);
```



```
fig = plt.figure(figsize=(5, 5))
plt.scatter(df['x'], df['y'], color=df['color'], alpha=0.5, edgecolor='k')
for i in centroids.keys():
    plt.scatter(*centroids[i], color=colmap[i])
plt.xlim(0, 80)
plt.ylim(0, 80)
plt.title("Marvellous : Final dataset with set centroids");
plt.show()
```


Output of above application:

Step 1: Initialisation - K initial "means" (centroids) are generated at random

Data set for training

63 70 66 63 58 23

Random centroid generated

{1: [26, 16], 2: [68, 42], 3: [55, 76]}

Step 2 : Assignment – K clusters are created by associating each observation with the nearest centroid

Before assignment dataset

First centroid : Red Second centroid : Green Third centroid : Blue

After assignment dataset

	Χ	y distar	nce_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	26.925824	56.080300	56.727418	1	r
1	20	36	20.880613	48.373546	53.150729	1	r
2	28	30	14.142136	41.761226	53.338541	1	r
3	18	52	36.878178	50.990195	44.102154	1	r
4	29	54	38.118237	40.804412	34.058773	3	b
5	33	46	30.805844	35.227830	37.202150	1	r
6	24	55	39.051248	45.880279	37.443290	3	b
7	45	59	47.010637	28.600699	19.723083	3	b
8	45	63	50.695167	31.144823	16.401219	3	b
9	52	70	59.933296	32.249031	6.708204	3	b
10	51	66	55.901699	29.410882	10.770330	3	b
11	52	63	53.712196	26.400758	13.341664	3	b
12	55	58	51.039201	20.615528	18.000000	3	b
13	53	23	27.892651	24.207437	53.037722	2	g
14	55	14	29.068884	30.870698	62.000000	1	r
15	61	8	35.902646	34.713110	68.264193	2	g

16	64	19	38.118237	23.345235	57.706152	2	g
17	69	7	43.931765	35.014283	70.405966	2	g
18	72	24	46.690470	18.439089	54.708317	2	g

Step 3:Update – The centroid of the clusters becomes the new mean Assignment and Update are repeated iteratively until convergence Old values of centroids

{1: [26, 16], 2: [68, 42], 3: [55, 76]}

New values of centroids

{1: [27.6666666666666, 36.1666666666664], 2: [63.8, 16.2], 3: [44.125, 61.0]}

Note: New centroids are mean of the generated X and Y coordinates of clustering members. We can use additions of distances to decide the error rate.

Example:

X for centroid 1 : (12+20+28+18+55) / 6 = 27.66 Y for centroid 2 : (39+36+30+52+14) / 6 = 36.16

Before assignment dataset

	X	y distar	nce_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	26.925824	56.080300	56.727418	1	r
1	20	36	20.880613	48.373546	53.150729	1	r
2	28	30	14.142136	41.761226	53.338541	1	r
3	18	52	36.878178	50.990195	44.102154	1	r
4	29	54	38.118237	40.804412	34.058773	3	b
5	33	46	30.805844	35.227830	37.202150	1	r
6	24	55	39.051248	45.880279	37.443290	3	b
7	45	59	47.010637	28.600699	19.723083	3	b
8	45	63	50.695167	31.144823	16.401219	3	b
9	52	70	59.933296	32.249031	6.708204	3	b
10	51	66	55.901699	29.410882	10.770330	3	b
11	52	63	53.712196	26.400758	13.341664	3	b
12	55	58	51.039201	20.615528	18.000000	3	b
13	53	23	27.892651	24.207437	53.037722	2	g
14	55	14	29.068884	30.870698	62.000000	1	r
15	61	8	35.902646	34.713110	68.264193	2	g
16	64	19	38.118237	23.345235	57.706152	2	g
17	69	7	43.931765	35.014283	70.405966	2	g
18	72	24	46.690470	18.439089	54.708317	2	g

After assignment dataset

	X	y distar	nce_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	15.920811	56.595760	38.936045	1	r
1	20	36	7.668478	48.067453	34.742130	1	r
2	28	30	6.175669	38.367695	34.943034	1	r
3	18	52	18.550981	58.131575	27.631786	1	r
4	29	54	17.883108	51.379763	16.666302	3	b
5	33	46	11.186549	42.856505	18.675268	1	r
6	24	55	19.186946	55.583091	21.000372	1	r
7	45	59	28.667151	46.746979	2.183031	3	b
8	45	63	31.944831	50.434909	2.183031	3	b
9	52	70	41.674999	55.078853	11.958914	3	b
10	51	66	37.874427	51.418674	8.500919	3	b
11	52	63	36.223458	48.264687	8.125000	3	b
12	55	58	34.982932	42.716273	11.281207	3	b
13	53	23	28.550637	12.762445	39.022630	2	g
14	55	14	35.191934	9.070832	48.241742	2	g
15	61	8	43.640259	8.664872	55.621629	2	g
16	64	19	40.184643	2.807134	46.465209	2	g
17	69	7	50.587932	10.567876	59.453895	2	g
18	72	24	45.972516	11.317243	46.325108	2	g

Old values of centroids

{1: [27.66666666666668, 36.1666666666664], 2: [63.8, 16.2], 3: [44.125, 61.0]}

New values of centroids

Before assignment dataset

	Χ	y (distance_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	15.920811	56.595760	38.936045	14	r
1	20	36	7.668478	48.067453	34.742130	1	r
2	28	30	6.175669	38.367695	34.943034	1	r
3	18	52	18.550981	58.131575	27.631786	1	r
4	29	54	17.883108	51.379763	16.666302	3	b
5	33	46	11.186549	42.856505	18.675268	1	r
6	24	55	19.186946	55.583091	21.000372	1	r
7	45	59	28.667151	46.746979	2.183031	3	b
8	45	63	31.944831	50.434909	2.183031	3	b
9	52	70	41.674999	55.078853	11.958914	3	b
10	51	66	37.874427	51.418674	8.500919	3	b
11	52	63	36.223458	48.264687	8.125000	3	b
12	55	58	34.982932	42.716273	11.281207	3	b
13	53	23	3 28.550637	12.762445	39.022630	2	g
14	55	14	35.191934	9.070832	48.241742	2	g
15	61	8	43.640259	8.664872	55.621629	2	g
16	64	19	40.184643	2.807134	46.465209	2	g
17	69	7	50.587932	10.567876	59.453895	2	g
18	72	24	45.972516	11.317243	46.325108	2	g

After assignment dataset

```
y distance from 1 distance from 2 distance from 3 closest color
                             55.408834
   12 39
              11.236103
                                            41.802500
                                                           1
0
                                                               r
1
   20 36
              7.433034
                            46.891423
                                           37.384380
                                                           1
                                                               r
2
   28 30
              14.115594
                             37.141247
                                            37.092823
                                                           1
                                                               r
3
              10.062306
   18 52
                             57.214266
                                            30.629451
                                                           1
                                                               r
4
   29 54
              12.776932
                             50.673519
                                            19.640130
                                                           1
                                                               r
5
   33 46
              10.920165
                             42.076980
                                            21.152990
                                                           1
                                                               r
6
   24 55
                                            24.000425
              12.093387
                             54.803943
                                                           1
                                                               r
7
   45 59
              27.608875
                             46.516723
                                            3.487587
                                                           3
                                                               b
   45 63
8
              30.103986
                             50.250760
                                             2.303502
                                                           3
                                                               b
                             55.143500
   52 70
              39.990624
                                            9.555424
                                                           3
9
                                                               b
10 51 66
              36.623080
                             51.430914
                                             5.758756
                                                           3
                                                               b
11 52 63
                                                           3
              35.640567
                             48.285321
                                             5.128949
                                                               b
                             42.799598
12 55 58
              35.794553
                                             8.881303
                                                           3
                                                               b
13 53 23
              36.472592
                             11.767422
                                            39.317649
                                                           2
                                                                g
14 55 14
              43.557433
                              7.559027
                                            48.521193
                                                           2
                                                               g
                                                           2
15 61
       8
              52.031241
                              7.945998
                                           55.647029
                                                               g
                                                           2
16 64 19
              47.940067
                              3.578485
                                            46.105690
                                                               g
                                                           2
17 69
              58.806887
                                            59.104197
      7
                             11.066717
                                                               g
18 72 24
              53.021222
                             12.654600
                                                           2
                                            45.366984
                                                                g
Old values of centroids
{1: [22.5, 43.0], 2: [62.333333333333333, 15.8333333333333333], 3: [47.0,
61.857142857142854]}
```

New values of centroids

Before assignment dataset

	X	y distar	nce_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	11.236103	55.408834	41.802500	1	r
1	20	36	7.433034	46.891423	37.384380	1	r
2	28	30	14.115594	37.141247	37.092823	1	r
3	18	52	10.062306	57.214266	30.629451	1	r
4	29	54	12.776932	50.673519	19.640130	1	r
5	33	46	10.920165	42.076980	21.152990	1	r
6	24	55	12.093387	54.803943	24.000425	1	r
7	45	59	27.608875	46.516723	3.487587	3	b
8	45	63	30.103986	50.250760	2.303502	3	b
9	52	70	39.990624	55.143500	9.555424	3	b
10	51	66	36.623080	51.430914	5.758756	3	b
11	52	63	35.640567	48.285321	5.128949	3	b
12	55	58	35.794553	42.799598	8.881303	3	b
13	53	23	36.472592	11.767422	39.317649	2	g
14	55	14	43.557433	7.559027	48.521193	2	g
15	61	8	52.031241	7.945998	55.647029	2	g
16	64	19	47.940067	3.578485	46.105690	2	g
17	69	7	58.806887	11.066717	59.104197	2	g
18	72	24	53.021222	12.654600	45.366984	2	g

After assignment dataset

	X	y distar	nce_from_1	distance_from_2	distance_from_3	clos	est color
0	12	39	12.714286	55.408834	45.033629	1	r
1	20	36	9.231711	46.891423	40.472556	1	r
2	28	30	15.271689	37.141247	39.799846	1	r
3	18	52	9.200710	57.214266	33.892395	1	r
4	29	54	10.951656	50.673519	22.913485	1	r
5	33	46	9.677451	42.076980	24.159769	1	r
6	24	55	10.444215	54.803943	27.252421	1	r
7	45	59	25.952075	46.516723	6.508541	3	b
8	45	63	28.371443	50.250760	5.002777	3	b
9	52	70	38.248383	55.143500	7.120003	3	b
10	51	66	34.919441	51.430914	3.004626	3	b
11	52	63	33.999100	48.285321	2.006932	3	b
12	55	58	34.308623	42.799598	7.189885	3	b
13	53	23	36.603223	11.767422	40.278544	2	g
14	55	14	43.947325	7.559027	49.420250	2	g
15	61	8	52.431685	7.945998	56.252654	2	g
16	64	19	47.957677	3.578485	46.332434	2	g
17	69	7"	59.062402	11.066717	59.293292	2	g
18	72	24	52.748150	12.654600	44.922464	2	g

