

ECE 1390/2390

Image Processing and Computer Vision – Fall 2021

Multiple Views - Homographies and Projection

Ahmed Dallal

Reading and announcements

- FP 7.1 and 8 (all)
- HW 3:
 - due November 1st.
 - based upon last week and multiple view material
- Quiz 3 on Wednesday (10/20).
- Plagiarism!

Two views...

- Projective transforms from image to image
- Some more projective geometry
 - · Points and lines and planes
- Two arbitrary views of the same scene
 - Calibrated "Essential Matrix"
 - Two uncalibrated cameras "Fundamental Matrix"
 - Gives epipolar lines

Image to image projections

The projective plane

- What is the geometric intuition of using homogenous coordinates?
 - · a point in the image is a ray in projective space

- Each point (x,y) on the plane (at z=1) is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Image reprojection

- Basic question
 - How to relate two images from the same camera center?
 - how to map a pixel from projective plane PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:

Rather than thinking of this as a 3D reprojection, think of it as a 2D **image warp** from one image (plan) to another.

PP = Projective Plane

Source: Alyosha Efros

2D Transformations

Example: translation

$$x' = x + t$$
 $x' = \begin{bmatrix} I & t \end{bmatrix} \bar{x}$

Projective Transformations

 Projective transformations: for 2D images it's a 3x3 matrix applied to homogenous coordinates

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ y \\ w' \end{bmatrix} \begin{bmatrix} y \\ y \\ w \end{bmatrix}$$

Special Projective Transformations

Translation

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Preserves:
 - Lengths/Areas
 - Angles
 - Orientation
 - Lines

Quiz 1

Suppose I told you the transform from image A to image B is a *translation*. How many pairs of corresponding points would you need to know to compute the transformation?

- a) 3
- b) 1
- c) 2
- d) 4

Special Projective Transformations

• Euclidean (Rigid body)

$$\begin{bmatrix} x' \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_x \end{bmatrix} \begin{bmatrix} x \\ y' \end{bmatrix} = \begin{bmatrix} \sin(\theta) & \cos(\theta) & t_y \end{bmatrix} \begin{bmatrix} y \\ 0 & 0 \end{bmatrix}$$

- Preserves:
 - Lengths/Areas
 - Angles
 - Lines

Special Projective Transformations

• Similarity (trans, rot, scale) transform

- Preserves:
 - Ratios of Areas
 - Angles
 - Lines

Special Projective Transformations

- Affine transform
- $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ 1 & e \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- Preserves:
 - Parallel lines
 - Ratio of Areas
 - Lines

Quiz2

Suppose I told you the transform from image A to image B is *affine*. How many pairs of corresponding points would you need to know to compute the transformation?

- a) 3
- b) 1
- c) 2
- d) 4

Projective Transformations

General projective transform (or Homography)

$$\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} wx \\ wy \\ \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ \end{bmatrix}$$

- Preserves:
 - Lines
 - Also cross ratios (maybe later)

Projective Transformations

Remember, these are homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ \end{bmatrix} = \begin{bmatrix} sx \\ \end{bmatrix} = \begin{bmatrix} a \\ d \\ e \end{bmatrix} = \begin{bmatrix} x \\ \end{bmatrix}$$

$$\begin{bmatrix} y \\ \end{bmatrix} = \begin{bmatrix} sy \\ \end{bmatrix} = \begin{bmatrix} d \\ d \\ \end{bmatrix} = \begin{bmatrix} f \\ \end{bmatrix} = \begin{bmatrix} y \\ \end{bmatrix}$$

Projective Transformations

General projective transform (or Homography)

$$\begin{bmatrix} x \\ \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix} \begin{bmatrix} wx \\ \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix} \begin{bmatrix} x \\ \end{bmatrix}$$

$$\begin{bmatrix} y \\ \end{bmatrix} \cong \begin{bmatrix} wy \\ \end{bmatrix} = \begin{bmatrix} d \\ e \end{bmatrix} \begin{bmatrix} e \\ \end{bmatrix} \begin{bmatrix} y \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ \end{bmatrix} \begin{bmatrix} w \\ \end{bmatrix} \begin{bmatrix} g \\ h \end{bmatrix} \begin{bmatrix} 1 \\ \end{bmatrix}$$

- Preserves:
 - Lines
 - Also cross ratios (maybe later)

Quiz3

Suppose I told you the transform from image A to image B is a *homography*. How many pairs of corresponding points would you need to know to compute the transformation?

- a) 3
- b) 8
- c) 2
- d) 4

Homographies and mosaics

Projective Transformations

Projective transformations: for 2D images it's a 3x3 matrix applied to homogenous coordinates

$$\begin{bmatrix} w'^* x' \end{bmatrix} \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ w'^* y' \end{bmatrix} = \begin{bmatrix} d & e & f \end{bmatrix} \begin{bmatrix} y \\ w \end{bmatrix}$$

Application: Simple mosaics

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)

Source: Steve Seitz

Image reprojection

Warning: This model only holds for angular views up to 180°. Beyond that need to use sequence that "bends the rays" or map onto a different surface, say, a cylinder.

∼ mosaic PP

- The mosaic has a natural interpretation in 3D
 - The images are reprojected onto a common plane
 - · The mosaic is formed on this plane

Mosaics

Obtain a wider angle view by combining multiple images all of which are taken from the same camera center.

Image reprojection: Homography

- A projective transform is a mapping between any two PPs with the same center of projection /
 - rectangle should map to arbitrary quadrilateral
 - parallel lines aren't
 - but must preserve straight lines
 - called Homography

$$\begin{bmatrix} wx' \\ wy' \\ wy' \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ * & * & * \end{bmatrix} \begin{bmatrix} I \\ J \end{bmatrix}$$

$$\mathbf{p}' \qquad \mathbf{H} \qquad \mathbf{p}$$

Source: Alyosha Efros

Homography

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Solving for homographies

$$\mathbf{p'} = \mathbf{H}\mathbf{p} \qquad \begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

- Can set scale factor i=1. So, there are 8 unknowns.
- Set up a system of linear equations Ah = b
- where vector of unknowns h = [a,b,c,d,e,f,g,h]T
- Need at least 4 points for 8 eqs, but the more the better...
- Solve for h. If overconstrained, solve using least-squares:

$$\min ||Ah - b||^2$$

Look familiar? (If don't set i to 1 can use SVD)

Solving for homographies – homogeneous

$$\mathbf{p'} = \mathbf{H}\mathbf{p} \qquad \begin{bmatrix} w \ x' \\ w \ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Just like we did for the extrinsics, multiply through, and divide out by w. Gives two homogeneous equations per point.
Solve using SVD just like before. This is the cool way.

Apply Homography

To apply a given homography H

- Compute **p'** = **Hp** (regular matrix multiply)
- Convert **p**' from homogeneous to image coordinates

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}' \qquad \mathbf{H} \qquad \mathbf{p}$$

Mosaics

Combine images with the computed homographies...

Mosaics for Video Coding

 Convert masked images into a background sprite for content-based coding

=

Homographies and 3D planes

Remember this:

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

• Suppose the 3D points are on a plane:

$$aX + bY + cZ + d = 0$$

Homographies and 3D planes

•On the plane [a b c d] can replaceZ:

This column multiplies X, Y and a constant term, so its effect can be represented using the other columns

Homographies and 3D planes

•So, can put the Z coefficients into the others:

$$\begin{bmatrix} u \\ v \\ \end{bmatrix} = \begin{bmatrix} m'_{00} & m'_{01} & 0 & m'_{03} \\ m'_{10} & m'_{11} & 0 & m'_{13} \\ m'_{20} & m'_{21} & 0 & m'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ m'_{20} & m'_{21} & 0 & m'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & m'_{21} & 0 & m'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & m'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & m'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{23} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{21} \\ M'_{20} & M'_{21} & 0 & M'_{22} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{22} \\ M'_{20} & M'_{21} & 0 & M'_{22} \end{bmatrix} \begin{bmatrix} X \\ Y \\ M'_{20} & M'_{21} & 0 & M'_{22} \\ M'_{20} & M'_{21} & 0 & M'_{22} \\ M'_{20} & M'_{21} & M'_{22} \\ M'_{20} & M'_{21} & M'_{22} & M'_{22} \\ M'_{20} & M'_{21} & M'_{22} \\ M'_{21} & M'_{22} & M'_{22} \\ M'_{22} & M'_{22} \\ M'_{22} & M'_{22} & M'_{22} \\ M'_{22} & M'_{22$$

 Mapping between planes is a homography. Whether a plane in the world to the image or between image planes.

Rectifying slanted views

Rectifying slanted views

front-to-parallel

Measurements on planes

2 3

Image rectification

A planar rectangular grid in the scene. Map it into a rectangular grid in the image.

Some other images of rectangular grids...

Image warping

Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Slide from Alyosha Efros, CMU

Forward warping

• Send each pixel f(x,y) to its corresponding location

• (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Slide from Alyosha Efros, CMU

Forward warping

- Send each pixel f(x,y) to its corresponding location
- (x',y') = T(x,y) in the second image
- Q: what if pixel lands "between" two pixels?
- A: distribute color among neighboring pixels (x',y')
 - Known as "splatting"

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Slide from Alyosha Efros, CMU

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

- nearest neighbor, bilinear...

Slide from Alyosha Efros, CMU

>> help interp2

Bilinear interpolation

Sampling at f(x,y):

$$(i, j+1)$$

$$(x, y)$$

$$(i, j)$$

$$(i+1, j+1)$$

$$(i+1, j)$$

$$f(x,y) = (1-a)(1-b) \quad f[i,j]$$

$$+a(1-b) \quad f[i+1,j]$$

$$+ab \quad f[i+1,j+1]$$

$$+(1-a)b \quad f[i,j+1]$$

Slide from Alyosha Efros, CMU

Projective geometry

Recall: The projective plane

- What is the geometric intuition of using homogenous coordinates?
 - a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
 - all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Homogeneous coordinates

2D Points:

Points:
$$p = \begin{bmatrix} x \\ y \end{bmatrix} \longrightarrow p' = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \quad p' = \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \longrightarrow p = \begin{bmatrix} x'/w' \\ y'/w' \end{bmatrix}$$

Homogeneous coordinates

2D Lines: ax + by + c = 0

$$\begin{bmatrix} x \\ a & b & c \end{bmatrix} \begin{vmatrix} y \\ b \end{vmatrix} = 0$$

$$\begin{bmatrix} a & b & c \end{bmatrix} \begin{vmatrix} y \\ b \end{vmatrix} = 0$$

Projective lines

What does a line in the image correspond to in projective space?

Projective lines

A line is a *plane* of rays through origin define by the normal l=(a, b, c)

All rays (x,y,z) satisfying:

$$ax + by + cz = 0$$

Projective lines

In vector notation:

$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{vmatrix} x \\ y \\ z \end{bmatrix}$$

$$l \qquad p$$

A line is also represented as a homogeneous 3-vector!

Point and line duality

- A line I is a homogeneous 3-vector
- It is ⊥ to every point (ray) p
 on the line: I^Tp=0
 i.e., perpendicular to the ray that defines that point

Point and line duality

What is the line I spanned by rays p_1 and p_2 ?

I is
$$\perp$$
 to $\mathbf{p_1}$ and $\mathbf{p_2}$
 \Rightarrow $\mathbf{l} = \mathbf{p_1} \times \mathbf{p_2}$

I is the plane normal

Point and line duality

What is the intersection of two lines I_1 and I_2 ?

$$\boldsymbol{p}$$
 is \perp to $\boldsymbol{I_1}$ and $\boldsymbol{I_2} \ \Rightarrow$

$$p = I_1 \times I_2$$

Points and lines are dual in projective space

• Given any formula, can switch the meanings of points and lines to get another formula

Homogeneous coordinates

Line joining two points:

ax + by + c = 0

Homogeneous coordinates

Intersection between two lines:

$$p_{12} = a_1 x + b_1 y + a_2$$

$$a_{2}x + b_{2}y + c_{2} = 0$$

Idealpoints and lines

Ideal point ("point at infinity")

 $p \cong (x, y, 0)$ - ray parallel to image plane \rightarrow intersection occurs at infinity!

It has infinite image coordinates

Idealpointsandlines

Ideal line

I ≅ (a, b, 0) – normal is parallel to image plane Corresponds to a line in the image (finite coordinates)

-goes through image
origin (principle point)

3D projective geometry

- These concepts generalize naturally to 3D
- Recall the equation of a plane:

$$aX + bY + cZ + d = 0$$

Homogeneous coordinates
 Projective 3D points have four coords: p = (wX,wY,wZ,w)

3D projective geometry

- Duality
 - A plane N is also represented by a 4vector N = (a,b,c,d)
 - Points and planes are dual in 3D: $N^Tp = 0$
- Projective transformations
 - Represented by 4x4 matrices T: P' = TP