Guidelines for Using State-of-the-Art Methods to Estimate Propensity Score and Inverse Probability of Treatment Weights When Drawing Causal Inferences

Session 7. Marginal Structural Models

Beth Ann Griffin Dan McCaffrey

Marginal Structural Models

- $lue{}$ For each of many treatment conditions Z=j, let $\mu_j=E(Y_j)$
- $lue{}$ Model μ_j as a function of the treatment condition attributes
- □ For example, if conditions are no treatment (μ_{00}), treatment A only (μ_{10}), treatment B only (μ_{01}), and both treatments A and B (μ_{11}), i.e., a factorial design, then

$$\mu_{A,B} = \beta_0 + \beta_A A + \beta_B B + \beta_{AB} A B,$$

where A and B are indicators for the conditioning including treatment ${\bf A}$ or ${\bf B}$

- lacksquare eta_A , eta_B are main effects and eta_{AB} is the interaction
- To estimate the model, we weight observation to estimate potential outcome means and fit the model to them
- Particularly useful with time varying treatments

Time Varying Treatment

- So far we considered only static treatment applied at one point in time and effects assessed sometime after treatment
- What if cases are followed longitudinally and treatment is time varying?
 - Students who do or do not participate in special reading intervention from year to year

Extending the Causal Model

- $lue{}$ Suppose we have K time points
- \Box $T_k = 1$ if received treatment in period k, 0 otherwise
- Each case in the sample has a vector $\mathbf{T}_i = (T_{i1}, \dots, T_{ik})'$ designating treatment
- For each of the 2^K possible values of T_i there is a potential outcome, Y_T at some point after last treatment interval
- Causal effects depend on relationships among these many potential outcomes
 - lacksquare $Y_{(1,1,\dots,1)}-Y_{(0,0,\dots,0)}$ causal effect of treatment every period vs. no treatment
 - $= \{(Y_{(0,0,\dots,0,1)} Y_{(0,0,\dots,0,0)}) + (Y_{(0,0,\dots,1,1)} Y_{(0,0,\dots,0,1)}) + \dots \\ + (Y_{(0,1,\dots,1,1)} Y_{(0,0,\dots,1,1)}) + (Y_{(1,1,\dots,1,1)} Y_{(0,1,\dots,1,1)})\}/K, \text{ the average causal effect of one more period of treatment}$

Extending the Causal Model (cont.)

- $lue{}$ When K is even moderate, the possible number of causal effects becomes large and defining them may be difficult
- $lue{}$ Reduce the dimensionality of the problem by developing a model for $Y_{\mathbf{T}}$ as a function of lower dimensional mapping of \mathbf{T}
 - **■** E.g., the number of periods of treatment
- Use the parameters of this model to define causal effects of interest
- These are structural models because they describe the potential outcomes, not the observed outcomes
- Challenge is to estimate the structural model parameters with observed outcomes and treatment assignments

Heuristic on Estimating the Structural Model

- Suppose the model is $E(Y_T) = \alpha + \beta g(T)$, where g(T) is a scalar function of T
- ☐ If we observed every case at all values of T we could model the relationship directly
- We can't make this observation, but suppose we knew how to weight cases with $\mathbf{T} = \mathbf{t}$ so the weighted average was an unbiased estimate of $E(Y_{\mathbf{t}})$ for all values of \mathbf{t}
- We could then model these weighted averages or model all the weighted cases to obtain the structural model parameters

Assumptions for Estimating Marginal Structural Models

- We need to extend the notion of strong ignorability
- Consistent estimation requires no unmeasured treatment confounders
 - There are no unmeasured risk factors for the potential outcomes that directly affect treatment assignment at any time point
- Observed risk factors can affect treatment assignment and they can be affected by earlier treatment assignment
- Unobserved variables can affect observed risk factors and they can be affected by prior treatment and unobserved risk factors but they cannot affect treatment

The Assumptions Are Less Stringent Than Those Required for Regression Modeling

- Regression modeling would include functions of treatment history and risk factor history as variables in the model
- If observed risk factors are affected by prior treatment assignments, then the model yields biased estimates of the parameters for treatment history
 - Putting variables on the causal pathway into the model
- □ For regression to work we would need to include only observed risk factors that were not affected by prior treatment

Weighting for Estimating Marginal Structural Models

- Assume no unobserved confounding
- Weighting by the inverse probability of receiving observed treatment history given observed risk factors yields unbiased estimates
- $\Box p = \prod_{k=1}^{K} P(T_k = t_k | T_0, \dots, T_{k-1}, x_1, \dots, x_k)$
- lacksquare Weighting by 1/p would yield unbiased estimates
- p can be estimated by a series of models for dichotomous treatment indicators
- These weights can be unstable

Stabilizing the Weighting for Estimating Marginal Structural Models

- Stabilized weights can also yield unbiased estimates but not vary so much
- **Let** $p_m = \prod_{k=1}^K P(T_k = t_k | T_0, \dots, T_{k-1})$
- $\square w = p_m/p$
- Notion is that we don't need to weight up rare treatment patterns (small p_m) because our goal is to compare across patterns, not combine them, but we do need to account for differential probabilities among people with each pattern
- lacksquare Alternatively can weight by $p'_m = P(g(\mathbf{T}) = g(\mathbf{t}))$

MSM and Time Varying Outcomes

- We can use MSM approach to model repeated outcomes
- □ For instance if modeling the effect of an additional quarter of a reading intervention
- We have repeated measures Y_{ik} , functions of treatment status up to time k, $g(\mathbf{T}_{ik})$, and weights w_{ik} for each individual i and time period $k=1,\ldots,K$
- lacksquare We can the model Y_{ik} by the appropriate function of $g(\mathbf{T}_{ik})$ and weight observations by w_{ik}
- Because we have repeated outcome measures on the same individuals, we need to adjust the standard error for weighting and clustering of observations within individual

Summary Marginal Structural Models

- Extends causal modeling paradigm to time-varying treatment effects
- Establishes structural models for potential outcomes on the basis of reductions of the multivariate treatment assignment vector
- Using stabilized weighting to estimate the structural model parameters
- Unbiased estimation requires assumptions that the structural models are correct and there are no unobserved confounders
- Can control for risk factors that can be affected by prior treatment without introducing bias whereas regression models cannot

Motivating Case Study

 Estimate the average effect of each additional treatment episode with:

over 9-month period on outcomes at one-year post-intake

Treatment is Rarely A One-Time Event

One Hypothetical Treatment Trajectory

Case Study Data

- N = 2,870 adolescents who received treatment at CSAT-funded program sites
- Follow-ups at baseline, 3, 6, 9, and 12 months
- Patient characteristics and outcomes assessed using Global Appraisal of Individual Needs (GAIN)
- Multiply imputed data

Treatment assignment between follow-ups

- Treatment = 4-level categorical variable
 - Time-varying and defined at the end of each 3 month interval

Outcomes - Measured at 12-months

Substance Frequency Scale (SFS)	 8-items average proportion of alcohol and other drugs using days in the past 90
Substance Problem Scale (SPS)	 16 items count possible symptoms in the past 30 days related to drug dependence and substance abuse

Biggest challenge in estimating our outcome models: Addressing confounding

Not only have baseline differences but also differences at each time point

Illustration of time-varying confounding

If we randomized individuals to levels of T_1

If we were able to randomize individuals to levels of T_2

Defining our MSM

 To estimate average effect of additional periods of each treatment on 12-month outcomes, we use

$$E[Y_{\overline{T}_{i,12}}] = a_0 + a_{OP} * cum(\overline{OP_i}) + a_{RES} * cum(\overline{RES_i}) + a_{BDS} * cum(\overline{BDS_i})$$

- MSM shows how we hypothesize population means of each treatment trajectory to vary as a function of the covariates in the model
 - We don't have the sample size to fit fully saturated model in our data
 - Reduced to a simpler function that assumes a constant effect of each additional episode

Four key steps

- 1) Define the primary treatment effect of interest via a MSM
- 2) Estimate IPTW
- 3) Evaluate the quality of the IPTW
- 4) Estimate the treatment effect

Step 1: Define the primary treatment effect of interest via a MSM

- As noted before, we focus on estimating the average effect of each additional period of a given treatment on 12-month outcomes
- To simplify presentation, only going to use binary treatment in next few slides
- So we will use the following MSM

$$E[Y_{\overline{T}_{i,12}}] = a_0 + a_{Tx} * cum(\overline{Tx}_i)$$

Step 2: Estimate the IPTW

- Recommend using iptw() in twang
- When designing data, can use either "long" or "wide" format
 - Wide format has a separate column for each time-varying characteristic at each time
 - Long format has a single column for each timevarying characteristic

Example data – wide format

> head(wideDat)

	gender	age	use0	use1	use2	tx1	tx2	tx3
1	0	43	1.13496509	0.467482544	0.3174825	1	1	1
2	0	50	1.11193185	0.455965923	0.4059659	1	0	1
3	1	36	-0.87077763	-0.535388817	-0.5853888	1	0	0
4	1	63	0.21073159	0.005365793	-0.1446342	1	1	1
5	0	24	0.06939565	-0.065302176	-0.1153022	1	0	1
6	1	20	-1.66264885	-0.931324426	-1.0813244	1	1	1

Example of iptw code: "wide" format

```
tv1 <- iptw(list(tx1 ~ use0,
	 tx2 ~ use1,
	 tx3 ~ use2),
	 data = wideDat,
	 timeInvariant = ~ gender + age,
	 n.trees = 5000,
	 cumulative = TRUE,
	 priorTreatment = TRUE,
	 stop.method = "es.max")
```

Note: List of equations should be ordered from earliest to latest treatments

Example of iptw code: "wide" format

```
tv1 <- iptw(list(tx1 ~ use0,
		 tx2 ~ use1 + use0 + tx1,
		 tx3 ~ use2 + use1 + use0 + tx2 + tx1),
		 data = wideTvEx,
		 timeInvariant = ~ gender + age,
		 n.trees = 5000,
		 cumulative = TRUE,
		 priorTreatment = TRUE),
		 stop.method = "es.max")
```

Note: List of equations should be ordered from earliest to latest treatments

Step 3: Evaluate the quality of the IPTW

- Recommend assessing balance at each time point
- Use standard metric for assessing balance with propensity score weights
 - For more then two groups, we recommend examining all pairwise standardized mean difference (SMD) and ks statistics

Summary (detail)

```
> summary(tv1)
Summary for time period 1:
          n.treat n.ctrl ess.treat ess.ctrl
                                            max.es
             706 294 706.0000 294.0000 0.5891037
unw
es.max.ATE 706 294 656.0565 216.4759 0.1519663
Summary for time period 2:
          n.treat n.ctrl ess.treat ess.ctrl
                                             max.es
             508 492 508.0000 492.000 0.38549444
unw
es.max.ATE 508 492 475.1469 449.064 0.08884127
Summary for time period 3:
          n.treat n.ctrl ess.treat ess.ctrl
                                            max.es
             585 415 585.0000 415.0000 0.4843836
unw
          585 415 541.1826 353.0498 0.1058122
es.max.ATE
```

plots = 1

plots = 2

plots = 3, color = FALSE

bal.table() detail

```
Balance at time 3:
$unw
                     ct.mn ct.sd std.eff.sz stat
              tx.sd
                                                            ks ks.pval
       tx.mn
                                                       р
use0
       0.064
              1.018 -0.129 1.062
                                       0.186 2.888 0.004 0.135
                                                                 0.000
gender 0.544
              0.499
                     0.390
                           0.488
                                       0.307 4.849 0.000 0.153
                                                                 0.000
      43.002 13.391 38.267 14.198
                                       0.340 5.322 0.000 0.186
                                                                 0.000
age
use1
      -0.043 0.506 -0.129
                           0.528
                                       0.166 2.582 0.010 0.140
                                                                 0.000
tx1
      0.750
              0.433
                    0.643 0.480
                                       0.235 3.621 0.000 0.107
                                                                 0.007
use2
      -0.141
              0.506 - 0.198
                            0.531
                                       0.109 1.687 0.092 0.116
                                                                 0.003
tx2
       0.609
              0.488
                     0.366
                            0.482
                                       0.484 7.789 0.000 0.242
                                                                 0.000
$es.max.ATE
              tx.sd ct.mn ct.sd std.eff.sz stat
                                                            ks ks.pval
       tx.mn
                                                       р
      -0.005
              1.026 -0.041
                            1.021
                                       0.036 0.531 0.596 0.041
                                                                 0.840
use0
gender 0.501
              0.500
                     0.459
                            0.499
                                       0.084 1.217 0.224 0.042
                                                                 0.826
      41.504 13.738 40.594 14.006
                                       0.066 0.961 0.337 0.047
                                                                 0.717
age
                                                                 0.873
use1
      -0.075
              0.510 -0.090
                            0.509
                                       0.031 0.463 0.643 0.040
tx1
      0.723
              0.448
                     0.700
                           0.459
                                       0.052 0.778 0.437 0.024
                                                                 0.999
                                       0.018 0.274 0.784 0.041
use2
      -0.164
              0.510 - 0.173
                            0.511
                                                                 0.847
       0.530
              0.500
                            0.500
                                       0.106 1.531 0.126 0.053
                                                                 0.564
tx2
                     0.477
```

Note: We haven't even begun to talk about the outcome yet

- Steps 1 to 3 do not involve any outcomes
- We first focus on dealing with selection (pretreatment and time-varying) group differences
- Then, if we do a good job, we will move to outcome analyses

Step 4: Estimate the treatment effect

- Estimate the regression model defined in the MSM using commands from your favorite survey package
- Fitting a weighted regression model
 - Since we are using weights, we need to adjust our standard errors for the weighting
 - Analogous to fitting regression models with survey data with survey weights

Getting weights

- For iptw, twang produces unstabilized weights
 - Use get.weights.unstab()
- Stabilization depends on specification of the marginal outcome model
 - Can use get.weights.num() to obtain stabilization factor for iptw (e.g, numerator of $SW_i(t)$)

$$SW_{i}(t) = \frac{\prod_{j=1}^{t} P_{j}(T_{ij} = k_{ij} | \overline{T}_{i,j-1})}{\prod_{j=1}^{t} P_{j}(T_{ij} = k_{ij} | \overline{T}_{i,j-1}, \overline{L}_{ij})}$$

```
Code with stabilizing weights (using glm) ftList <- list(glm(tx1 ~ 1, family = binomial), glm(tx2 ~ tx1, family = binomial), glm(tx3 ~ tx1 + tx2, family = binomial)) numWt1 <- get.weights.num(tv1, ftList) unstabWt1 <- get.weights.unstab(tv1) stabWt1 <- numWt * unstabWt1 outDt <- data.frame(outcome, nTx, wt = stabWt1$es.max.ATE) sv1stab <- svydesign(~1, weights = ~wt, data = outDt)
```

```
Code with stabilizing weights (using glm)
ftList <- list(glm(tx1 \sim 1, family = binomial),
                   glm(tx2 \sim tx1, family = binomial),
             glm(tx3 \sim tx1 + tx2, family = binomial))
numWt1 <- get.weights.num(tv1, ftList)</pre>
                                                          Gets
unstabWt1 <- get.weights.unstab(tv1) •
stabWt1 <- numWt * unstabWt1
                                                          weight
outDt <- data.frame(outcome, nTx, wt = stabWt1$es.m
sv1stab <- svydesign(~1, weights = ~wt, data = outDt)
```

denominator value for each

```
Code with stabilizing weights (using glm)
ftList <- list(glm(tx1 \sim 1, family = binomial),
                   glm(tx2 \sim tx1, family = binomial),
            glm(tx3 \sim tx1 + tx2, family = binomial))
numWt1 <- get.weights.num(tv1, ftList)</pre>
unstabWt1 <- get.weights.unstab(tv1)
stabWt1 <- numWt * unstabWt1
outDt <- data.frame(outcome, nTx, wt = stabWt1$es.max.ATE)
sv1stab <- svydesign(~1, weights = ~wt, data = outDt)
                                                       Attaches weights
```

to dataset

Creates weighted survey design for outcome models

Results (True treatment effect = -0.1)

Results (True treatment effect = -0.1)

95% CI for unweighted model doesn't contain true treatment effect of -0.1 because there is confounding from pretreatment and time-varying confounders

Results (True treatment effect = -0.1)

95% CI for weighted model does contain true treatment effect of -0.1; weights have removed confounding effect from pretreatment and time-varying confounders

RESULTS FROM CASE STUDY

Assessing quality of our IPTW

Results: Significant reductions in use for each additional period of treatment

Results: No impact on substance problems

Conclusions from motivating study (Griffin et al 2014)

- Residential treatment, outpatient treatment, and biological drug screening each have effects that cumulate over time
 - On average, each additional period reduces use by about 10%
- Support adopting "life-course perspective" and rethinking how we define "effective" programs
- Limitations: unobserved confounding; coarse measures of treatment; MSM too simple; generalizability

Final remarks

- Use of MSM+IPTW for time-varying treatments is a robust and meaningful way to draw causal inference
- Recommend estimating IPTW using machine learning or other state of the art methods rather than relying on parametric approaches
- Assessing balance is a critical step in understanding how robust inferences will be
- Ideally also do a sensitivity analysis to unobserved confounding