Integrated ensemble

2024-11-20

Integrated ensemble

Function CM to compute F1 scores for both corpora

```
suppressMessages(suppressWarnings(library(caret)))
#install.packages("kableExtra")
suppressMessages(suppressWarnings(library(kableExtra)))
col.lab<-c("Recall_mean", "Recall_sd", "Preci_mean", "Preci_sd", "F1_mean", "F1_s
d")
B.lab<-c("T","A","AW","De","S")
cm2<-function(X){</pre>
RES<-matrix(0,10,10)
X<-as.matrix(X)</pre>
for(i in 1:100)
res<-sort.list(X[i,-1],decreasing = TRUE)[1]</pre>
RES[X[i,1]+1,res]<-RES[X[i,1]+1,res]+1
}
a<-apply(confusionMatrix(RES,mode="prec_recall")$byClass[,c(6,5,7)],2,mean)</pre>
b<-apply(confusionMatrix(RES,mode="prec_recall")$byClass[,c(6,5,7)],2,sd)
res<-data.frame(rbind(a,b))</pre>
#res
res_vector<-c(res[1,1],res[2,1],res[1,2],res[2,2],res[1,3,],res[2,3])
names(res_vector)<-col.lab</pre>
list(vec=res vector,matri=res)
}
```

Read BERTs test results (probability vectors)

```
corpusA<-list()
corpusB<-list()

suppressMessages(suppressWarnings(library(readx1)))
path1<-"C:/ensemble/CorpusA_BERT_Test_Results.xlsx"

BERT.A<-list()
for(i in 1:5)

BERT.A[[i]] <- suppressMessages(suppressWarnings(
    read_excel(path1, sheet = i,col_names = FALSE)))

path2<-"C:/ensemble/CorpusB_BERT_Test_Results.xlsx"

BERT.B<-list()
for(i in 1:5)

BERT.B[[i]] <- suppressMessages(suppressWarnings(
    read_excel(path2, sheet = i,col_names = FALSE)))</pre>
```

Compute BERTs scores

```
suppressMessages(suppressWarnings(library(knitr)))
# Calculating BERT scores for Corpus A
singBERT.A<-numeric()
for(i in 1:5)
    singBERT.A<-rbind(singBERT.A,cm2(BERT.A[[i]])[[1]])

singBERT.A<-data.frame(lab=B.lab,singBERT.A)

BERT.lab<-c("TohokuB","AozoraB","AozoraWikiB","DeBERTa","StockMarkB")
rownames(singBERT.A)<-BERT.lab
colnames(singBERT.A)<-c("lab",col.lab)
write.csv(singBERT.A,"C:/ensemble/singBERT.A.csv")
corpusA[[1]]<-singBERT.A[,6]

table2A<-singBERT.A;
table2A[,-1]<-round(table2A[,-1],3)
kable(table2A, format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

	lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1
TohokuB	Т	0.653	0.209	0.64	0.201	0.642	0

	lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1
AozoraB	Α	0.973	0.044	0.97	0.067	0.969	0
AozoraWikiB	AW	0.973	0.044	0.97	0.048	0.970	0
DeBERTa	De	0.752	0.215	0.68	0.162	0.691	0
StockMarkB	S	0.619	0.201	0.60	0.211	0.600	0

```
# Calculating BERT scores for Corpus B
path2<-"C:/ensemble/CorpusB_BERT_Test_Results.xlsx"</pre>
BERT.B<-list()</pre>
for(i in 1:5)
  BERT.B[[i]] <- suppressMessages(read_excel(path2, sheet = i,col_names = FA</pre>
LSE))
singBERT.B<-numeric()</pre>
for(i in 1:5)
  singBERT.B<-rbind(singBERT.B,cm2(BERT.B[[i]])[[1]])</pre>
singBERT.B<-as.matrix(singBERT.B)</pre>
colnames(singBERT.B)<-col.lab</pre>
rownames(singBERT.B)<-BERT.lab</pre>
singBERT.B<-data.frame(lab=B.lab,singBERT.B)</pre>
write.csv(singBERT.B, "C:/ensemble/singBERT.B.csv")
table2B<-singBERT.B;</pre>
table2B[,-1]<-round(table2B[,-1],3)
kable(table2B, format = "html") %>%
  kable_styling(full_width = FALSE, position = "left")
```

	lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1
TohokuB	Т	0.762	0.151	0.74	0.117	0.744	0
AozoraB	Α	0.813	0.210	0.77	0.195	0.773	0
AozoraWikiB	AW	0.838	0.116	0.82	0.114	0.820	0

	lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1
DeBERTa	De	0.834	0.118	0.82	0.063	0.823	0
StockMarkB	S	0.706	0.126	0.69	0.110	0.692	0

```
corpusB[[1]]<-singBERT.B[,6]
table2<-data.frame(rbind(table2A,table2B))
write.csv(table2,"C:/ensemble/table2.csv")
#corpusB[[1]]</pre>
```

Ensemble BERTs functions for both corpora Ensemble of two BERTs

```
col.lab<-c("Recall_mean", "Recall_sd", "Preci_mean", "Preci_sd", "F1_mean", "F1_s
d")
B.lab<-c("T","A","AW","De","S")</pre>
ensemb2<-function(BB,w){</pre>
#BB is the test result list data.
#w is the weight vector .
#ensemble of any two BERTs
B.lab<-c("T","A","AW","De","S")</pre>
comb2<-combn(1:5, 2)
string=c()
resu=numeric()
for(i in 1:ncol(comb2)){
J<-comb2[1,i]
K<-comb2[2,i]
X \leftarrow BB[[J]]; X[,-1] \leftarrow X[,-1]*w[1]+w[2]*BB[[K]][,-1]
#Calculate F1 values, etc. from contingency table
string=c(string,paste("{",B.lab[J],",",B.lab[K],"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
  }
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=string,resu)</pre>
resu
}
```

Ensemble of three BERTs

```
# Ensemble of three BERT results
ensemb3<-function(BB,w){</pre>
comb3<-combn(1:5, 3)
string=c()
resu=numeric()
for(i in 1:ncol(comb3)){
J<-comb3[1,i]
K<-comb3[2,i]</pre>
L<-comb3[3,i]
X<-BB[[J]]</pre>
X[,-1]<-X[,-1]*w[J]+w[K]*BB[[K]][,-1]+w[L]*BB[[L]][,-1]
string=c(string,paste("{",B.lab[J],",",B.lab[K],",",B.lab[L],"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
}
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=string,resu)</pre>
resu
}
```

Ensemble of four annd five BERTs

```
# Ensemble of 4 and 5 BERT results
ensemb4<-function(BB,w){</pre>
string=c()
resu=numeric()
comb4<-combn(1:5, 4)
for(i in 1:ncol(comb4)){
J<-comb4[1,i]
K<-comb4[2,i]
L<-comb4[3,i]
G < -comb4[4,i]
X<-BB[[J]];</pre>
X[,-1]<-X[,-1]*w[J]+w[K]*BB[[K]][,-1]+BB[[L]][,-1]*w[L]+w[G]*BB[[G]][,-1]
string=c(string,paste("{",B.lab[J],",",B.lab[K],",",B.lab[L],",",B.lab
[G],"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
}
#Ensemble of five BERT results
X \leftarrow BB[[1]]; X[,-1] \leftarrow X[,-1]*w[1]+w[2]*BB[[2]][,-1]+BB[[3]][,-1]*w[3]+w[4]*BB[1]
[[4]][,-1]+w[5]*BB[[5]][,-1]
resu<-rbind(resu,cm2(X)[[1]])</pre>
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=c(string,"{T,A,AW,De,S}"),resu)</pre>
resu
}
```

Compute ensemble results for corpus A

```
# Calculate the results of the corpus A ensemble
w<-c(1,1,1,1,1)
resu.A2<-ensemb2(BERT.A, w)
resu.A3<-ensemb3(BERT.A, w)
resu.A4<-ensemb4(BERT.A, w)
ensemBERT.A<-rbind(resu.A2,resu.A3,resu.A4)
temp<-sort.list(ensemBERT.A[,6],decreasing=TRUE)
ensemBERT.A<-data.frame(ensemBERT.A[temp,])
rownames(ensemBERT.A)<-1:dim(ensemBERT.A)[1]
write.csv(ensemBERT.A,"C:/ensemble/ensemBERT.A.csv")
corpusA[[2]] <- ensemBERT.A[,6]
kable(head(ensemBERT.A),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{A, S}	0.9909091	0.0287480	0.99	0.0316228	0.9899749	0.0211677
{ T , A }	0.9833333	0.0527046	0.98	0.0421637	0.9803828	0.0332604
{ A , AW }	0.9818182	0.0383306	0.98	0.0421637	0.9799499	0.0259385
{ A , De }	0.9818182	0.0383306	0.98	0.0421637	0.9799499	0.0259385
{ AW , S }	0.9818182	0.0383306	0.98	0.0421637	0.9799499	0.0259385
{ A , AW , De }	0.9818182	0.0383306	0.98	0.0421637	0.9799499	0.0259385

```
# Calculate the results of the corpus A weighted ensemble
w<-singBERT.A[,6]
resu.A2<-ensemb2(BERT.A, w)
resu.A3<-ensemb3(BERT.A, w)
resu.A4<-ensemb4(BERT.A, w)
ensemBERT.A.W<-rbind(resu.A2,resu.A3,resu.A4)
temp<-sort.list(ensemBERT.A.W[,6],decreasing=TRUE)
ensemBERT.A.W<-data.frame(ensemBERT.A.W[temp,])
rownames(ensemBERT.A.W)<-1:dim(ensemBERT.A.W)[1]
write.csv(ensemBERT.A.W,"C:/ensemble/ensemBERT.A.W.csv")
corpusA[[3]] <- ensemBERT.A.W[,6]</pre>
```

```
## [1] 0.9899749 0.9803828 0.9799499 0.9799499 0.9799499 0.9799499 0.969924

## [8] 0.9699248 0.9699248 0.9699248 0.9599499 0.9497479 0.9411331 0.940656

## [15] 0.9399749 0.9313534 0.9304261 0.9097744 0.9013603 0.8913390 0.879849

## [22] 0.8723099 0.7444652 0.7186510 0.7183238 0.6818886
```

Compute ensemble results for corpus B

```
# Calculate the results of the corpus A ensemble
w<-c(1,1,1,1,1)
resu.B2<-ensemb2(BERT.B,w)
resu.B3<-ensemb3(BERT.B,w)
resu.B4<-ensemb4(BERT.B,w)
ensemBERT.B<-rbind(resu.B2,resu.B3,resu.B4)

temp<-sort.list(ensemBERT.B[,6],decreasing=TRUE)
ensemBERT.B<-data.frame(ensemBERT.B[temp,])
rownames(ensemBERT.B)<-1:dim(ensemBERT.B)[1]
write.csv(ensemBERT.B,"C:/ensemble/ensemBERT.B.csv")
corpusB[[2]]<-ensemBERT.B[,6]
kable(head(ensemBERT.B),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	I
{ T , A , AW , De }	0.9116162	0.1127632	0.90	0.0816497	0.9018987	0.07
{ A , AW , De , S }	0.9083333	0.1034139	0.90	0.0816497	0.9010898	0.07
{ T , A , De , S }	0.9048718	0.1354880	0.89	0.0875595	0.8935737	0.09
{T,A,AW,De,S}	0.9005051	0.1084794	0.89	0.0875595	0.8913724	0.07
{ T , AW , De , S }	0.8985897	0.0881609	0.89	0.0875595	0.8902952	0.06
{ T , A , AW }	0.8940948	0.1260121	0.88	0.0918937	0.8821566	0.08

```
# Calculate the results of the corpus B weighted ensemble
w<-singBERT.B[,6]
resu.B2<-ensemb2(BERT.B,w)
resu.B3<-ensemb3(BERT.B,w)
ensemBERT.B.W<-rbind(resu.B2,resu.B3,resu.B4)
temp<-sort.list(ensemBERT.B.W[,6],decreasing=TRUE)
ensemBERT.B.W<-data.frame(ensemBERT.B.W[temp,])
rownames(ensemBERT.B.W)<-1:dim(ensemBERT.B)[1]
write.csv(ensemBERT.B.W,"C:/ensemble/ensemBERT.B.W.csv")

corpusB[[3]]<-ensemBERT.B.W[,6]
ensemBERT.B.W[,6]</pre>
```

```
## [1] 0.8994274 0.8935737 0.8927645 0.8913724 0.8902952 0.8889011 0.882082

## [8] 0.8807876 0.8802864 0.8730224 0.8704983 0.8703797 0.8700513 0.862399

## [15] 0.8619462 0.8582819 0.8535494 0.8533235 0.8522264 0.8483875 0.839776

## [22] 0.8350068 0.8337710 0.8241006 0.7944480 0.7889839
```

Draw the box plot of BERT's and ensemble F1 scores

```
# Drawing the resulting box plot
par(mfrow=c(1,2), cex.lab = 0.7, cex.axis = 0.7)
lab=factor(c(rep("sin",each=5),rep("ens",each=26),rep("wens",each=26)),level
s = c("sin", "ens", "wens"))
col<-c("lightblue","gold1","pink")</pre>
#Boxplot of F1 values for Corpus A
F1<-c(singBERT.A[,6],ensemBERT.A[,6],ensemBERT.A.W[,6])
BERT.A.resu<-data.frame(lab=lab,F1=F1)
boxplot(F1 ~ lab, data = BERT.A.resu,col=col,ylab="",xlab="");grid()
legend("bottomright", legend = c("sin: Single BERT", "en: Ensemble BERTs","w
ens: Wighted Ensemble BERTs"), fill = col, cex = 0.6)
#Boxplot of F1 values for Corpus B
F1<-c(singBERT.B[,6],ensemBERT.B[,6],ensemBERT.B.W[,6])
BERT.B.resu<-data.frame(lab=lab,F1=F1)</pre>
boxplot(F1 ~ lab, data = BERT.B.resu,col=col,ylab="",xlab="");grid()
legend("bottomright", legend = c("sin: Single BERT", "en: Ensemble BERTs","w
ens: Wighted Ensemble BERTs"), fill = col, cex = 0.6)
```


Load Features & Classifiers test results

```
library(readx1)
path3<-"C:/ensemble/CorpusA_Feature&Classifiers_Test_Results.xlsx"
AdaRF.A<-list()
#Ada.Char,Ada.Token, Ada.Pattern,RF.Char,RF.Token, RF.Pattern
for(i in 1:6)
AdaRF.A[[i]] <- suppressMessages(read_excel(path3, sheet = i,col_names = FAL SE))

path4<-"C:/ensemble/CorpusB_Feature&Classifiers_Test_Results.xlsx"
AdaRF.B<-list()
#Ada.Char,Ada.Token, Ada.Pattern,RF.Char,RF.Token, RF.Pattern
for(i in 1:6)
    AdaRF.B[[i]] <- suppressMessages(read_excel(path4, sheet = i,col_names = FALSE))</pre>
```

Compute single F & C scores for Corpus A

```
resu<-numeric()
for(i in 1:6) resu<-rbind(resu,cm2(AdaRF.A[[i]])[[1]])

##Table type the results of corpus A
resu<-data.frame(resu)
colnames(resu)<-col.lab
F.lab<-c("Ada.Char","Ada.Token","Ada.Pattern","RF.Char","RF.Token","RF.Patte
rn")
FeaClas.A<-data.frame(lab=F.lab,resu)
corpusA[[4]]<-FeaClas.A[,6]
write.csv(FeaClas.A,"C:/ensemble/FeaClas.A.csv")
table3A<-FeaClas.A
table3A[,-1]<-round(FeaClas.A[,-1],3)
kable(table3A,format = "htm1") %>%
    kable_styling(full_width = FALSE, position = "left")
```

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
Ada.Char	0.786	0.188	0.76	0.143	0.766	0.152
Ada.Token	0.767	0.149	0.75	0.097	0.754	0.109
Ada.Pattern	0.762	0.116	0.75	0.165	0.747	0.125
RF.Char	0.792	0.130	0.79	0.179	0.784	0.134
RF.Token	0.823	0.124	0.81	0.120	0.810	0.094
RF.Pattern	0.714	0.120	0.71	0.185	0.704	0.135

Compute single F & C scores for Corpus B

```
##Corpus B
resu<-numeric()
for(i in 1:6) resu<-rbind(resu,cm2(AdaRF.B[[i]])[[1]])

resu<-data.frame(resu)
colnames(resu)<-col.lab
FeaClas.B<-data.frame(lab=F.lab,resu)
write.csv(FeaClas.B,"C:/ensemble/FeaClas.B.csv")
corpusB[[4]]<-FeaClas.B[,6]

table3B<-FeaClas.B
table3B[,-1]<-round(FeaClas.B[,-1],3)
kable(table3B,format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
Ada.Char	0.779	0.125	0.76	0.117	0.761	0.083
Ada.Token	0.772	0.122	0.76	0.097	0.762	0.091
Ada.Pattern	0.654	0.131	0.65	0.158	0.647	0.131
RF.Char	0.780	0.106	0.78	0.215	0.767	0.155
RF.Token	0.810	0.109	0.80	0.105	0.800	0.090
RF.Pattern	0.668	0.150	0.65	0.178	0.643	0.142

```
table3<-data.frame(rbind(table3A,table3B))
write.csv(table3,"C:/ensemble/table3.csv")</pre>
```

Ensemble of F & C

Function of ensemble of two F & C

```
#Two ensemble functions
FEnsemb2<-function(FE,w){</pre>
comb2 < -combn(1:6,2)
string=c()
resu=numeric()
for(i in 1:ncol(comb2)){
J<-comb2[1,i]</pre>
K<-comb2[2,i]</pre>
X \leftarrow FE[[J]]; X[,-1] \leftarrow w[J]*X[,-1] + w[K]*FE[[K]][,-1]
string=c(string,paste("{",J,",",K,"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
  }
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=string,resu)</pre>
resu
}
```

Function of ensemble of three F & C

```
FEnsemb3<-function(FE,w){</pre>
res<-list()
string=c()
resu=numeric()
comb3<-combn(1:6, 3)
for(i in 1:ncol(comb3)){
J<-comb3[1,i]
K<-comb3[2,i]</pre>
L<-comb3[3,i]
X<-FE[[J]]</pre>
X[,-1]<-w[J]*X[,-1]+w[K]*FE[[K]][,-1]+w[L]*FE[[L]][,-1]
string=c(string,paste("{",J,",",K,",",L,"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=string,resu)</pre>
resu
}
```

Function of ensemble of four F & C

```
FEnsemb4<-function(FE,w){</pre>
res<-list()
string=c()
resu=numeric()
comb4<-combn(1:6, 4)
res<-list()
for(i in 1:ncol(comb4)){
  J<-comb4[1,i]
  K < -comb4[2,i]
  L<-comb4[3,i]
  G<-comb4[4,i]
 X<-FE[[J]]</pre>
 X[,-1]<-w[J]*X[,-1]+w[K]*FE[[K]][,-1]+w[L]*FE[[L]][,-1]+w[G]*FE[[G]][,-1]
string=c(string,paste("{",J,",",K,",",L,",",G,"}"))
resu<-rbind(resu,cm2(X)[[1]])</pre>
  }
resu<-data.frame(resu)</pre>
colnames(resu)<-col.lab</pre>
resu<-data.frame(comb=string,resu)</pre>
resu
}
```

Function of ensemble of five and six F & C

```
FEnsemb5<-function(FE,w){</pre>
 string=c()
 resu=numeric()
 comb5<-combn(1:6, 5)
 for(i in 1:ncol(comb5)){
 J<-comb5[1,i]; K<-comb5[2,i];L<-comb5[3,i]</pre>
 G<-comb5[4,i]; F<-comb5[5,i];
X<-FE[[J]]
X[,-1]<-w[J]*X[,-1]+w[K]*FE[[K]][,-1]+w[L]*FE[[L]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[[G]][,-1]+w[G]*FE[
 [F]*FE[[F]][,-1]
 string=c(string,paste("{",J,",",K,",",L,",",G,",",F,"}"))
 resu<-rbind(resu,cm2(X)[[1]])</pre>
 }
## ensemble six F & C
X<-FE[[1]]
X[,-1]<-w[1]*X[,-1]+w[2]*FE[[2]][,-1]+w[3]*FE[[3]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[[4]][,-1]+w[4]*FE[
                                                         w[5]*FE[[5]][,-1]+w[6]*FE[[6]][,-1]
 resu<-rbind(resu,cm2(X)[[1]])</pre>
 resu<-data.frame(resu)</pre>
 colnames(resu)<-col.lab</pre>
 resu<-data.frame(comb=c(string,paste</pre>
 ("{",1,",",2,",",3,",",4,",",5,",",6,"}")),resu)
 resu
  }
```

Compute the ensemble scores for corpus A

```
## Without weights
W < -c(1,1,1,1,1,1)
FEnsemb2(AdaRF.A, w)->res2
FEnsemb3(AdaRF.A, w)->res3
FEnsemb4(AdaRF.A, w)->res4
FEnsemb5(AdaRF.A, w)->res5
ensembFeature.A<-rbind(res2, res3, res4, res5)</pre>
temp<-sort.list(ensembFeature.A[,6],decreasing=TRUE)</pre>
ensembFeature.A<-data.frame(ensembFeature.A[temp,])</pre>
rownames(ensembFeature.A)<-1:dim(ensembFeature.A)[1]</pre>
write.csv(ensembFeature.A, "c:/ensemble/ensembFeature.A.csv")
corpusA[[5]]<-ensembFeature.A[1:50,6]</pre>
## Weighted ensemble for Corpus A
w<-FeaClas.A[,6]</pre>
FEnsemb2(AdaRF.A, w)->res2
FEnsemb3(AdaRF.A, w)->res3
FEnsemb4(AdaRF.A, w)->res4
FEnsemb5(AdaRF.A, w)->res5
ensembFeature.A.W<-rbind(res2, res3, res4, res5)</pre>
temp<-sort.list(ensembFeature.A.W[,6],decreasing=TRUE)</pre>
ensembFeature.A.W<-data.frame(ensembFeature.A.W[temp,])</pre>
rownames(ensembFeature.A.W)<-1:dim(ensembFeature.A.W)[1]
write.csv(ensembFeature.A.W, "c:/ensemble/ensembFeature.A.W.csv")
corpusA[[6]]<-ensembFeature.A.W[1:50,6]</pre>
kable(head(ensembFeature.A),format = "html") %>%
  kable styling(full width = FALSE, position = "left")
```

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{1,3 ,5}	0.9223621	0.1015360	0.91	0.0737865	0.9117180	0.0627522
{ 1 , 3 , 4 , 5 }	0.9223621	0.1015360	0.91	0.0737865	0.9117180	0.0627522
{ 1, 3, 4, 5, 6 }	0.9223621	0.1015360	0.91	0.0737865	0.9117180	0.0627522

19 / 37

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ 1,3,6}	0.9118823	0.0982960	0.90	0.0942809	0.9005233	0.0676110
{ 1 , 3 , 4 }	0.9032828	0.1219002	0.89	0.0737865	0.8928078	0.0821913
{ 1, 2, 3, 6}	0.8926651	0.1151089	0.88	0.0421637	0.8833235	0.0701059

Compute the ensemble scores for corpus B

```
## Without weights
w<-c(1,1,1,1,1,1)
FEnsemb2(AdaRF.B, w)->res2
FEnsemb3(AdaRF.B, w)->res3
FEnsemb4(AdaRF.B, w)->res4
FEnsemb5(AdaRF.B, w)->res5
ensembFeature.B<-rbind(res2,res3,res4,res5)

temp<-sort.list(ensembFeature.B[,6],decreasing=TRUE)
ensembFeature.B<-data.frame(ensembFeature.B[temp,])
rownames(ensembFeature.B)<-1:dim(ensembFeature.B)[1]
write.csv(ensembFeature.B,"c:/ensemble/ensembFeature.B.csv")
corpusB[[5]]<-ensembFeature.B[1:50,6]
kable(head(ensembFeature.B),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{1,2,6}	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035
{ 1 , 2 , 4 , 6 }	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ 1 , 2 , 5 , 6 }	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035
{ 1, 2, 4, 5, 6 }	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035
{1,2,4}	0.8722475	0.0726725	0.87	0.1059350	0.8685365	0.0772004
{4,5,6}	0.8821900	0.0999370	0.87	0.1567021	0.8657890	0.1016219

```
## Weighted ensemble for Corpus B
w<-FeaClas.B[,6]
FEnsemb2(AdaRF.B, w)->res2
FEnsemb3(AdaRF.B, w)->res3
FEnsemb4(AdaRF.B, w)->res4
FEnsemb5(AdaRF.B, w)->res5
ensembFeature.B.W<-rbind(res2,res3,res4,res5)
temp<-sort.list(ensembFeature.B.W[,6],decreasing=TRUE)
ensembFeature.B.W<-data.frame(ensembFeature.B.W[temp,])
rownames(ensembFeature.B.W)<-1:dim(ensembFeature.B.W)[1]

write.csv(ensembFeature.B.W), "c:/ensemble/ensembFeature.B.W.csv")
kable(head(ensembFeature.B.W), format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{1,2,6}	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035
{ 1 , 2 , 4 , 6 }	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035

comb	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ 1, 2, 4, 5, 6 }	0.8970202	0.0724072	0.89	0.0994429	0.8887394	0.0585035
{ 1,2,5,6	0.8856566	0.0688267	0.88	0.1032796	0.8783498	0.0600967
{4,5,6}	0.8836619	0.0987133	0.87	0.1251666	0.8686392	0.0775492
{ 1 , 2 , 4 }	0.8722475	0.0726725	0.87	0.1059350	0.8685365	0.0772004

```
corpusB[[6]]<-ensembFeature.B.W[1:50,6]</pre>
```

Draw the boxplot of F & C's and ensemble F1 scores

```
#Boxplot
par(mfrow=c(1,2),cex.lab = 0.6, cex.axis = 0.6)
col=c("lightblue", "gold1", "pink")
lab=factor(c(rep("sin",each=6),rep("ens",each=57)),rep("wes",each=57)), level
s = c("sin", "ens", "wes"))
#Draw boxplot of Corpus A F1 scores
F1<-c(FeaClas.A[,6],ensembFeature.A[,6],ensembFeature.A.W[,6])
FeaClas.AF1<-data.frame(lab=lab,F1=F1)</pre>
boxplot(F1 ~ lab, data = FeaClas.AF1, col=col,ylab="",xlab="");grid()
legend("bottomright", legend = c("Single-Feature", "Ensemble-Features", "Wigh
ted-Ensemble-Features"), fill = col, cex = 0.6)
#Draw boxplot of Corpus B F1 scores
F1<-c(FeaClas.B[,6],ensembFeature.B[,6],ensembFeature.B.W[,6])
FeaClas.BF1<-data.frame(lab=lab,F1=F1)</pre>
boxplot(F1 ~ lab, data = FeaClas.BF1,col=col,ylab="",xlab="");grid()
legend("bottomright", legend = c("Single-Feature", "Ensemble-Features", "Wigh
ted-Ensemble-Features"), fill = col, cex = 0.6)
```


Integrated ensemble

Compute method of Strom40 (ensemble%20for%20one%20BERT%20and%20one%

```
one2one<-function(XX,YY,xw,yw)</pre>
{
resu<-numeric()</pre>
string<-c()</pre>
k=0
for(i in 1:5)
  for(j in 1:6){
    k=k+1
    temp<-XX[[i]]
    temp[,-1]<-xw[i]*XX[[i]][,-1]+yw[j]*YY[[j]][,-1]
    resu<-rbind(resu,cm2(temp)[[1]])</pre>
    string=c(string,paste("{",B.lab[i],"|",j,"}"))
  }
 colnames(resu)<-col.lab</pre>
 resu<-data.frame(lab=string,resu)</pre>
 temp<-sort.list(resu[,6],decreasing=TRUE)</pre>
one2one.res<-resu[temp,]
one2one.res
}
#compute method of Strom40
xw<-c(1,1,1,1,1); yw<-c(1,1,1,1,1,1)
strom40A<-one2one(BERT.A,AdaRF.A,xw,yw)</pre>
corpusA[[8]]<-strom40A[,6]
head(strom40A[,6])
## [1] 0.9899749 0.9799499 0.9799499 0.9799499 0.9799499 0.9699499
```

```
xw<-c(1,1,1,1,1);yw<-c(1,1,1,1,1,1)
strom40B<-one2one(BERT.B,AdaRF.B,xw,yw)
corpusB[[8]]<-strom40B[,6]
head(strom40B[,6])</pre>
```

```
## [1] 0.9008898 0.8900725 0.8811990 0.8775273 0.8713562 0.8585129
```

Computing method of Wu[39]

```
Wu39<-function(XX,YY){</pre>
 #XX<-BERT.A; YY<-AdaRF.B
  Char<-(YY[[1]][,-1]+YY[[4]][,-1])/2
  Token<-(YY[[2]][,-1]+YY[[5]][,-1])/2
  Phra<-(YY[[3]][,-1]+YY[[6]][,-1])/2
  temp<-XX[[1]]
  temp[,-1]<-(XX[[1]][,-1]+XX[[2]][,-1]+XX[[3]][,-1]+
                 XX[[4]][,-1]+XX[[5]][,-1])/5
temp1<-temp; temp1[,-1]<-temp1[,-1]+Char</pre>
res1<-cm2(temp1)[[1]]
temp2<-temp; temp2[,-1]<-temp2[,-1]+Token</pre>
res2<-cm2(temp2)[[1]]
temp3<-temp3[,-1]<-temp3[,-1]+Phra
res3<-cm2(temp3)[[1]]
res<-rbind(res1,res2,res3)</pre>
res<-data.frame(lab=c("{5BERTs,1,4}","{5BERTs,2,5}","{5BERTs,3,6}"),res)
res
}
Wu39.A<-Wu39(BERT.A,AdaRF.A)
corpusA[[7]]<-Wu39.A[,6]
summary(Wu39.A[,6])
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
   0.9393 0.9396 0.9399 0.9531 0.9599
                                             0.9800
Wu39.B<-Wu39(BERT.B,AdaRF.B)
corpusB[[7]]<-Wu39.B[,6]
summary(Wu39.B[,6])
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
   0.8884 0.9095
                    0.9305 0.9193 0.9347
                                             0.9389
```

Integrated ensemble

```
interEnsemb<-function(BB,FF,wb,wf){</pre>
eBA.lab<-list()
comb2<-combn(1:5, 2);L2<-dim(comb2)[2]
comb3<-combn(1:5, 3);L3<-dim(comb3)[2]
comb4<-combn(1:5, 4);L4<-dim(comb4)[2]
comb5<-combn(1:5, 5)
# Set the label list for the BERTs combination
for(i in 1:L2) eBA.lab[[i]]<-comb2[,i]</pre>
for(i in 1:L3) {(L2+i)->k; eBA.lab[[k]]<-comb3[,i]}</pre>
for(i in 1:L4) {(L2+L3+i)->k; eBA.lab[[k]]<-comb4[,i]}</pre>
eBA.lab[[L2+L3+L4+1]]<-comb5[,1]
# Set the label list for the F & C combination
eFA.lab<-list()
comb2<-combn(1:6, 2);L2<-dim(comb2)[2]
comb3<-combn(1:6, 3);L3<-dim(comb3)[2]</pre>
comb4<-combn(1:6, 4);L4<-dim(comb4)[2]
comb5<-combn(1:6, 5);L5<-dim(comb5)[2]
for(i in 1:L2) eFA.lab[[i]]<-comb2[,i]</pre>
for(i in 1:L3) {(L2+i)->k; eFA.lab[[k]]<-comb3[,i]}</pre>
for(i in 1:L4) {(L2+L3+i)->k; eFA.lab[[k]]<-comb4[,i]}</pre>
for(i in 1:L5) {(L2+L3+L4+i)->k; eFA.lab[[k]]<-comb5[,i]}</pre>
eFA.lab[[L2+L3+L4+L5+1]] < -c(1,2,3,4,5,6)
#Compute for all combinations
resu<-c()
resLab<-c()
for(i in 1:length(eBA.lab)){
  for(j in 1:length(eFA.lab)){
    #Data creation for BERTs
    tempBi<-eBA.lab[[i]]</pre>
    LBi<-length(tempBi)
    BX<-BB[[tempBi[1]]];</pre>
    for(k in 2:LBi)
      BX[,-1]<-BX[,-1]*wb[tempBi[1]]+wb[tempBi[k]]*BB[[tempBi[k]]][,-1]
    BX[,-1]<-BX[,-1]/5
    #Data creation for F & C
    tempFj<-eFA.lab[[j]]</pre>
```

```
LFj<-length(tempFj)</pre>
    FX<-FF[[tempFj[1]]]</pre>
    for(k in 2:LFj)
      FX[,-1]<-FX[,-1]*wf[tempFj[1]]+wf[tempFj[k]]*FF[[tempFj[k]]][,-1]</pre>
    FX[,-1]<-FX[,-1]/6
     #Integrative Ensemble
    BFX<-BX; BFX[,-1]<-BX[,-1]+FX[,-1]
    labi<- paste(B.lab[eBA.lab[[i]]], collapse = ",")</pre>
    labj<- paste(eFA.lab[[j]], collapse = ",")</pre>
    labij<-paste("{",labi,"|",labj,"}")</pre>
    resLab<-rbind(resLab,labij)</pre>
    resu<-rbind(resu,cm2(BFX)[[1]])</pre>
  }
}
resu<-data.frame(resLab, resu)</pre>
temp<-sort.list(resu[,6],decreasing = TRUE)</pre>
resu<-resu[temp,]</pre>
rownames(resu)<-1:dim(resu)[1]</pre>
colnames(resu)<-c("lab",col.lab)</pre>
resu
}
```

Compute the integrative ensemble for corpus A

```
#without weight
wb<-c(1,1,1,1,1); wf<-c(1,1,1,1,1,1)
interEnsemb(BERT.A,AdaRF.A, wb,wf)->InterEnsemble.A
temp<-sort.list(InterEnsemble.A[,6],decreasing = TRUE)
InterEnsemble.A<-InterEnsemble.A[temp,]
write.csv(InterEnsemble.A,"c:/ensemble/InterEnsemble.A.csv")
corpusA[[9]]<-InterEnsemble.A[1:50,6]
kable(head(InterEnsemble.A,10),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

lab Recall_mean Recall_sd Preci_mean Preci_sd F1_mean F1_sd

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ A,S 3,5	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ A,S 3,6 }	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ A,S 4,6	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ A,S 5,6 }	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ A,S 3,5,6 }	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ A,S 4,5,6 }	1.0000000	0.000000	1.00	0.0000000	1.0000000	0.0000000
{ T,A 3,6 }	0.9909091	0.028748	0.99	0.0316228	0.9899749	0.0211677
{ T,A 1,3,6 }	0.9909091	0.028748	0.99	0.0316228	0.9899749	0.0211677

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ T,A 3,4,6 }	0.9909091	0.028748	0.99	0.0316228	0.9899749	0.0211677
{ T,A 3,5,6 }	0.9909091	0.028748	0.99	0.0316228	0.9899749	0.0211677

```
#Weighted ensemble
wb<-singBERT.A[,6]
wf<-FeaClas.A[,6]
interEnsemb(BERT.A,AdaRF.A, wb,wf)->InterEnsemble.A.W
temp<-sort.list(InterEnsemble.A.W[,6],decreasing = TRUE)
InterEnsemble.A.W<-InterEnsemble.A.W[temp,]
write.csv(InterEnsemble.A.W,"c:/ensemble/InterEnsemble.A.W.csv")
corpusA[[10]]<-InterEnsemble.A.W[1:50,6]

kable(head(InterEnsemble.A.W),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ A,S 1,3 }	1	0	1	0	1	0
{ A,S 2,3 }	1	0	1	0	1	0
{ A,S 3,4 }	1	0	1	0	1	0
{ A,S 3,5 }	1	0	1	0	1	0

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sd
{ A,S 3,6 }	1	0	1	0	1	0
{ A,S 1,2,3 }	1	0	1	0	1	0

Compute the integrative ensemble for corpus B

```
#Without weight
wb<-c(1,1,1,1,1);wf<-c(1,1,1,1,1,1)
interEnsemb(BERT.B,AdaRF.B, wb,wf)->InterEnsemb.B
temp<-sort.list(InterEnsemb.B[,6],decreasing = TRUE)
InterEnsemble.B<-InterEnsemb.B[temp,]
corpusB[[9]]<-InterEnsemb.B[1:50,6]
write.csv(InterEnsemb.B,"C:/ensemble/InterEnsemb.B.csv")
kable(head(InterEnsemb.B,10),format = "html") %>%
    kable_styling(full_width = FALSE, position = "left")
```

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sc
{ T,De 1,2 }	0.9642424	0.0607876	0.96	0.0516398	0.9603577	0.0381913
{ T,AW 1,2 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831
{ T,AW 1,2,4 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831
{ T,AW,De 1,2,4,6 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831

lab	Recall_mean	Recall_sd	Preci_mean	Preci_sd	F1_mean	F1_sc		
{ T,AW,De 1,2,4,5,6 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831		
{ AW,De,S 1,2 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831		
{ AW,De,S 1,6 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831		
{ AW,De,S 1,2,4 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.030083		
{ AW,De,S 1,2,5 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.030083		
{ AW,De,S 1,2,6 }	0.9651515	0.0597797	0.96	0.0516398	0.9603326	0.0300831		
<pre>#Weighted ensemble wb<-singBERT.B[,6]; wf<-FeaClas.B[,6] interEnsemb(BERT.B,AdaRF.B, wb,wf)->InterEnsemb.B.W temp<-sort.list(InterEnsemb.B.W[,6],decreasing = TRUE)</pre>								

Create table 4

InterEnsemble.A.W<-InterEnsemb.B.W[temp,]
corpusB[[10]]<-InterEnsemb.B.W[1:50,6]</pre>

write.csv(InterEnsemb.B.W,"c:/ensemble/InterEnsemb.B.W.csv")

31 / 37

```
max_vector1<-numeric()</pre>
mean vector1<-numeric()</pre>
max vector2<-numeric()</pre>
mean_vector2<-numeric()</pre>
sd_vector1<-numeric()</pre>
sd vector2<-numeric()</pre>
for(i in 1:10){
  max vector1<-c(max vector1,max(corpusA[[i]]))</pre>
  max vector2<-c(max vector2,max(corpusB[[i]]))</pre>
  mean vector1<-c(mean vector1, mean(corpusA[[i]]))</pre>
  mean_vector2<-c(mean_vector2, mean(corpusB[[i]]))</pre>
  sd_vector1<-c(sd_vector1,sd(corpusA[[i]]))</pre>
  sd vector2<-c(sd vector2,sd(corpusB[[i]]))</pre>
}
# Set data name
labs<-c("BERTs",</pre>
         "Ensemble BERTs",
         "Weighted Ensemble BERTs",
         "Feature",
         "Ensemble Features & Classifiers",
         "Weighted Ensemble Features & Classifiers",
         "Ensemble One Feature & Classifiers and BERTs [39]",
         "Ensemble One BETR and Features & Classifiers [40]",
         "Intergreted Ensemble",
         "Intergreted Weighted Ensemble"
    )
table4<-data.frame(method=labs,
mean=mean_vector1,sd=sd_vector1,Max=max_vector1,
mean=mean_vector2,sd=sd_vector2,Max=max_vector2
)
table4[,-1]<-round(table4[,-1],3)
write.csv(table4, "C:/ensemble/table4.csv")
kable(table4,format = "html") %>%
  kable styling(full width = FALSE, position = "left")
```

method	mean	sd	Max	mean.1	sd.1	Max.1
BERTs	0.775	0.181	0.970	0.770	0.055	0.823

method	mean	sd	Max	mean.1	sd.1	Max.1
Ensemble BERTs	0.911	0.091	0.990	0.861	0.030	0.902
Weighted Ensemble BERTs	0.910	0.096	0.980	0.861	0.029	0.899
Feature	0.761	0.036	0.810	0.730	0.067	0.800
Ensemble Features & Classifiers	0.852	0.033	0.912	0.817	0.039	0.889
Weighted Ensemble Features & Classifiers	0.851	0.034	0.912	0.828	0.033	0.889
Ensemble One Feature & Classifiers and BERTs [39]	0.953	0.023	0.980	0.919	0.027	0.939
Ensemble One BETR and Features & Classifiers [40]	0.839	0.127	0.990	0.814	0.052	0.901
Intergreted Ensemble	0.991	0.003	1.000	0.957	0.005	0.960
Intergreted Weighted Ensemble	1.000	0.000	1.000	0.954	0.005	0.960

Create table 5

comBERT	cB_F1	comFea	cF_F1	intEns	cF_F1.1
{ A , S }	0.99	{1,3,5}	0.912	{ A,S 3,5 }	1.00
{ T , A }	0.98	{1,3,4,5}	0.912	{ A,S 3,6 }	1.00

comBERT	cB_F1	comFea	cF_F1	intEns	cF_F1.1
{ A , AW }	0.98	{1,3,4,5,6}	0.912	{ A,S 4,6 }	1.00
{ A , De }	0.98	{1,3,5,6}	0.901	{ A,S 5,6 }	1.00
{ AW , S }	0.98	{1,3,4}	0.893	{ A,S 3,5,6 }	1.00
{ A , AW , De }	0.98	{1,2,3,6}	0.883	{ A,S 4,5,6 }	1.00
$\{T,A,AW\}$	0.97	{1,2,3,4,6}	0.883	{ T,A 3,6 }	0.99
{ A , AW , S }	0.97	{1,2,3,5,6}	0.883	{ T,A 1,3,6 }	0.99
$\{T,A,AW,De\}$	0.97	{1,2,3,4,5,6}	0.883	{ T,A 3,4,6 }	0.99
$\{T,A,AW,S\}$	0.97	{1,3,6}	0.882	{ T,A 3,5,6 }	0.99

```
table5B<-data.frame(
  comBERT=ensemBERT.B[1:10,1],cB_F1=round(ensemBERT.B[1:10,6],3),
  comFea=ensembFeature.B[1:10,1],cF_F1=round(ensembFeature.B[1:10,6],3),
  intEns=InterEnsemble.B[1:10,1],cF_F1=round(InterEnsemble.B[1:10,6],3)
  )
kable(table5B,format = "html") %>%
  kable_styling(full_width = FALSE, position = "left")
```

comBERT	cB_F1	comFea	cF_F1	intEns	cF_F1.1
{ T , A , AW , De }	0.902	{1,2,6}	0.889	{ T,De 1,2 }	0.96
{ A , AW , De , S }	0.901	{1,2,4,6}	0.889	{ T,AW 1,2 }	0.96
{ T , A , De , S }	0.894	{1,2,5,6}	0.889	{ T,AW 1,2,4 }	0.96
{T,A,AW,De,S}	0.891	{ 1 , 2 , 4 , 5 , 6 }	0.889	{ T,AW,De 1,2,4,6 }	0.96

comBERT	cB_F1	comFea	cF_F1	intEns	cF_F1.1
$\{ T, AW, De, S \}$	0.890	{1,2,4}	0.869	{ T,AW,De 1,2,4,5,6 }	0.96
$\{T,A,AW\}$	0.882	{4,5,6}	0.866	{ AW,De,S 1,2 }	0.96
$\{T,AW,De\}$	0.882	{1,4,5,6}	0.859	{ AW,De,S 1,6 }	0.96
$\{T,A,AW,S\}$	0.881	{1,2,5}	0.858	{ AW,De,S 1,2,4 }	0.96
{ A , AW , De }	0.880	{1,2,4,5}	0.858	{ AW,De,S 1,2,5 }	0.96
{ AW , De }	0.880	{1,2,3,4}	0.855	{ AW,De,S 1,2,6 }	0.96

```
table5<-rbind(table5A,table5B)
#kable(table5, format = "html") %>%
# kable_styling(full_width = FALSE, position = "left")
write.csv(table5,"c:/ensemble/table5.csv")
```

Draw Figure 2

For Corpus A

35 / 37

```
names(corpusA)<-labs</pre>
# Set horizontal axis labels
x_labels <- LETTERS[1:10]</pre>
# Set legend label
legend labels <- paste(x labels, names(corpusA), sep = ": ")</pre>
# Draw Box-plot of Corpus A
par(mfrow=c(1,2),cex.lab = 0.6, cex.axis = 0.6,
  mgp = c(1, 0.4, 0), mai = c(1, 1, 1, 1))
  boxplot(corpusA, col = c("lightblue"), names = x_labels, main = "", xlab =
"Corpus A", ylab = "F1 Scor", cex.axis = 0.6, cex.lab = 0.6)
# Add grid lines and Legend
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
legend("bottomright", legend = legend_labels, title = "Dataset Names", cex =
0.6)
# Draw Box-plot of Corpus B
# Set data name
names(corpusB)<-labs</pre>
# Set horizontal axis labels
x_labels <- LETTERS[1:10]</pre>
# Set Legend Label
legend_labels <- paste(x_labels, names(corpusB), sep = ": ")</pre>
# Draw Box-plot of Corpus B
par(mgp = c(1, 0.4, 0), mai = c(1, 1, 1, 1))
boxplot(corpusB, col = "lightgreen",names = x_labels, main = "", xlab = "Cor
pus B", ylab = "F1 Scor", cex.axis = 0.6, cex.lab = 0.6)
# Add grid lines and legend
grid(nx = NULL, ny = NULL, col = "lightgray", lty = "dotted")
legend("bottomright", legend = legend labels, title = "Dataset Names", cex =
0.5)
```


