

basic criterion for self-adjointness

 ${\bf Canonical\ name} \quad {\bf Basic Criterion For Selfadjointness}$

Date of creation 2013-03-22 14:53:02 Last modified on 2013-03-22 14:53:02

Owner Koro (127) Last modified by Koro (127)

Numerical id 5

Author Koro (127) Entry type Theorem Classification msc 47B25 Let $A \colon D(A) \subset \mathscr{H} \to \mathscr{H}$ be a symmetric operator on a Hilbert space. The following are equivalent:

- 1. $A = A^*$ (i.e A is self-adjoint);
- 2. $Ker(A^* \pm i) = \{0\}$ and A is closed;
- 3. $\operatorname{Ran}(A \pm i) = \mathcal{H}$.

Remark: $A + \lambda$ represents the operator $A + \lambda I : D(A) \subset \mathcal{H} \to \mathcal{H}$, and Ker and Ran stand for kernel and range, respectively.

A similar version for essential self-adjointness is an easy corollary of the above. The following are equivalent:

- 1. $\overline{A} = A^*$ (i.e. A is essentially self-adjoint);
- 2. $Ker(A^* \pm i) = \{0\};$
- 3. $\operatorname{Ran}(A \pm i)$ is dense in \mathcal{H} .