Authors:

Erick Rosete Beas — er165@uni-freiburg.de Jessica Lizeth Borja Diaz — jb986@uni-freiburg.de

Principles of AI Planning

Exercise Sheet 10

17.01.2020

Exercise 10.1 - Affecting labels vs. orthogonality

Prove the following: Let \mathcal{A}_i be an abstraction of some transition system \mathcal{T} with abstraction mapping α_i for $i \in \{1,2\}$. If no label of \mathcal{T} affects both \mathcal{A}_1 and \mathcal{A}_2 , then α_1 and α_2 are orthogonal.

Definition of orthogonality:

Let α_1 and α_2 be abstraction mappings on \mathcal{T} . We say that α_1 and α_2 are orthogonal if for all transitions $\langle s, l, t \rangle$ of \mathcal{T} , we have $\alpha_i(s) \neq \alpha_i(t)$ for at most one $i \in \{1, 2\}$.

Definition of affecting transition labels.

For a transition system \mathcal{A} and a label l of \mathcal{A} , we say that l affects \mathcal{A} if \mathcal{A} has a transition $\langle s, l, t \rangle$ with $s \neq t$.

Exercise 10.2 - Potential heuristics: consistency constraints

Let $\Pi = \langle V, I, O, \gamma \rangle$ be an SAS^+ planning task in transition normal form, and let $\mathcal{F} = \{f_{v=d} \mid v \in V, d \in \mathcal{D}_v\}$ be the set of all atomic features over Π . Finally, let:

$$h(s) = \sum_{fact \ v=d} w_{v=d} \cdot f_{v=d}(s)$$

be the potential heuristic with potentials $w_{v=d}$ for all $v \in V, d \in \mathcal{D}_v$, such that for all $o \in O$, the following constraint is satisfied:

$$\sum_{fact \ v=d \ \text{consumed by } o} w_{v=d} - \sum_{fact \ v=d \ \text{produced by } o} w_{v=d} \leq cost(o)$$

Prove: Then h is consistent, i. e., $h(s) - h(t) \leq cost(o)$ for all transitions (s, o, t) in $\mathcal{T}(\Pi)$.