Introduction to Decision Analysis

BU609

The only constant is change, The only certainty is uncertainty

Making Smart Choices

- PRoblem frame decision properly
- Objectives SMART
- Alternatives creative, reasonable
- Consequences understand
- Tradeoffs forces prioritization
- Uncertainty assess likelihood, impact
- Risk Tolerance determine
- Linked Decisions?

Objectives

- Appreciate how decision analysis can improve business decision making
- Be able to develop Payoff tables and Decision Trees
- Be able to use TreePlan to develop models and to complete sensitivity analysis

Tools and Techniques (ranked in order of usage)

- Simulation
- Statistics and forecasting
- Linear programming
- Decision analysis
- Queueing analysis
- Integer programming
- Network methods

Key Problem Characteristics

- Important problem
- Unique
- Non-instantaneous decision required
- Complex
- Uncertainty; therefore RISK
- Elsewhere in course will consider decision situations where there is no risk, but decision is very complex

Risk

- Associated with uncertainty; probabilities
- Three dimensions
 - Possible outcomes; Likelihood of each outcome; Impact of each outcome
- Possible responses
 - Avoid/Eliminate, Manage, or Embrace risk
- Major difference between single vs repeated decisions
 - Use risk profile with decision trees, plus sensitivity analysis
 - Use outcome distribution thru simulation

Types of Decision Problems

- Certainty know which outcome will occur; hence select best alternative
- Uncertainty no probability information available
- Risk probabilities of outcomes (states of nature) are available
- Often faced with a mixture of these!
- Most interesting problems are complex!
- Major difference between 1-shot & continuing, corporate vs personal

Scoring Model Methodology

- Identify goal, criteria, alternatives
- Score/Rate each alternative based on each criteria
 - Keep "order of magnitude" the same
- Weight each criteria
- Calculate weighted average for each alternative (sum of scores x weights)
- Consider results, intangibles, other managerial considerations

Limitations of Scoring Approach • Identification of all criteria

- - brainstorming
- Duplication of criteria
 - consolidate like factors
- Determinations of criteria scores & weights
 - often subjective; start with ranking; use main critéria & sub-criteria
- Consistency Check
 - subjective

Single Decision, Single Objective, with Risk or **Uncertainty**

Payoff Tables, Decision Trees

Terminology

- Decision Alternatives
 - controllable; our choice
- Outcomes, Consequences, States of nature
 - future events, uncontrollable
 - define all (mutually exclusive, collectively exhaustive)
- Criteria to evaluate alternatives associated with outcomes (Payoffs)

11

- V(D,S)

Payoff Table & Decision Tree

10

12

States of nature **Decisions S1** S2 V(D1,S1) V(D1,S2) V(D1,S3) V(D2,S1) V(D2,S2) V(D2,S3)

Structuring Decision Problems

- Payoff Table
 - table of actions (decisions) vs outcomes (consequences) and payoffs
- Decision Trees
 - chronological representation of problem
 - nodes and branches
 - 2 types of nodes: square = decision, round = outcome
 - payoffs at end of branches

Common Approaches (Risk)

- Optimistic
 - Select Decision which is 'best of the best'; identify best payoff for each decision & take best of these
- Pessimistic
 - Select Decision which is 'best of the worst'; identify worst payoff for each decision & take best of these
- Equally Likely
 - Sum payoffs for each decision & select best
- Regret Minimization
 - Prepare regret table; select decision which 'minimizes maximum regret' (minimax regret)

14

Example

• Profit example

Minimax Regret: D2

	S1	S2	S3		Regret	Table		
D1	10000	6500	-4000		S1	S2	S3	
D2	8000	6000	1000	D1	0	0	9000	
D3	5000	5000	5000	D2	2000	500	4000	
Opti	mistic: I	D1		D3	5000	1500	0	
Pess	imistic: l	D3			Regret by column (outcome); best always 0			
Equa	ally Like	ly: D2	or D3	Max re	Max regret by row; pick least			

Now redo, but payoffs are costs

Risk

13

- Risk implies a given action has more than one possible outcome
- Risk can be subjective or objective
- Impact is important
 - Necessary consideration in risk analysis
- Choices usually possible:
 - avoid, prevent
 - minimize impact
 - Embrace
- Payoff Table Decision shows Risk Profile

Decisions Under Uncertainty

- Probabilities known for Outcomes (States of Nature)
- Use Expected Value Approach
 - Appropriate when there are many continuing decisions, even though each situation is different
 - Not appropriate for 1-shot "bet the business" decisions
- The decision yielding the best expected return is chosen

Decisions Under Uncertainty

Expected value approach

$$P(S1)=.6 P(S2)=.2 P(S3)=.2$$

Calculate for each decision. Which we would choose? Why?

Expected Value (long term avg)

- Expected value of a decision alternative is the sum of weighted payoffs for that alternative
- Expected value (EV) of decision alternative d_i is defined as:

$$EV(d_i) = \sum_{j=1}^{N} P(s_j) V_{ij}$$

18

N = the number of states of nature (outcomes) $P(s_j)$ = the probability of state of nature s_j V_{ij} = the payoff corresponding to decision alternative d_i and state of nature s_i

Expected Values

	S1	S2	S3	EV(D)
	(0.6)	(0.2)	(0.2)	,
D1	10000	6500	-4000	6500
D2	8000	6000	1000	6200
D3	5000	5000	5000	5000
	D2	(0.6) D1 10000 D2 8000	(0.6) (0.2) D1 10000 6500 D2 8000 6000	(0.6) (0.2) (0.2) D1 10000 6500 -4000 D2 8000 6000 1000

e.g.,
$$10000*0.6 + 6500*0.2 + (-4000)*0.2 = 6500$$

Risk Profile of optimal decision: 10K (p=.6), 6.5K (p=.2), -4K (p=.2)

Remember "Flaw of Averages"

Decision Tree Approach

Risk Profile

Rollback to determine decision

Decision Tree Review

- Square = decision, Circle = chance event
- Chronological order, left to right
- Probability above branch, \$ below
- Conditional probabilities
- Payoff at end
- Rollback calculates EV for each "route" and selects best
- Manual calculation fine for small problems; use s/w for larger problems

Decision Tree Rollback

Calculate Expected Value for each path, working back from right (payoffs) to left (decisions); select optimal decision at every decision point

21

Decision Tree Benefits

- Model decisions efficiently & effectively
 - facilitates understanding
- Formally analyze decisions, clearly laying out goals & options
- Captures a chronological sequence of choices and possible events
- Explain and document your reasoning to others
- Make well-informed decisions

22

TreePlan

- Excel add-in comes with text
 - www.treeplan.com
- Older trial version available on website
 - Treeplan.xls (see Excel Files)
 - Documentation: Treeplan.doc (see Website)
- Supports building, labeling & rollback of decision trees
- For occasional use, launch Excel and use Excel's File | Open command to load TreePlan.xls; must enable macros
- Use Cut / Paste Special to transfer diagram

Example: BU609-7-TreePlan.xls

25

TreePlan Commands

- Ctrl-T: starts new tree (or Tools > Decision Tree from menu bar)
- To expand tree, repeat at node
- Add titles & values (payoffs (below), probabilities (above))
- Choose menu instructions from dialogue boxes
- Easy to learn; just play with it!
- Documentation only 4 pages

Linked Decisions: Multiple Decisions over time

Structuring Linked Decisions

- More common use of Decision Trees
 - a sequence of decisions (controllable) and events (uncontrollable), over a period of time
- Linked decisions are more complex (initial, future)
- Can be used quantitatively or qualitatively
- Proctor & Gamble uses for "Real Options" analysis

Exercise, part 1

- Handout: "To Settle or Not to Settle", part 1
- Identify:
 - decisions
 - events
- Draw initial decision tree

Analyzing Linked Decisions

- Understand basic decision problem
- Identify ways to reduce critical uncertainties
- Identify future decisions linked to basic decision
- Understand relationships in linked decisions
 - get the timing right
 - sketch essence of the decision problem
 - describe consequences at end points
- Decide what to do in basic decision
- Treat later decisions as new decision problems (when time arrives)

Non-monetary Tangibles

- \$ equivalent tradeoff
 - "Even swaps": I' d pay \$x to have this or to avoid it; It would be worth \$x to me
 - Can extend beyond \$\$ swaps (lives, etc.)
- Utility theory

29

- Economics approach
- Both approaches are specific to individual and decision situation
- Also works for intangibles (pain, suffering, happiness)

Exercise, part 2

- Handout: "To Settle or Not to Settle", part 2
- Draw final decision tree
- What is Expected Value solution?

Exercise, part 3

• What would you have done? Why? How does this reflect personal values and your risk profile? How might the decision be different for the lawyer?

33

Keys to Effective Decision Making

- Work on right decision problem
- Specify your objectives
- Create imaginative alternatives
- Understand the consequences
- Grapple with your tradeoffs
- Clarify your uncertainties
- Think hard about risk tolerance
- Consider linked decisions

Hammond, Keeney, & Raiffa (1999), Smart Choices, HBS Press