LiteNap: Downclocking LoRa Reception [INFOCOM 20]

Xianjin Xia, Yuanqing Zheng and Tao Gu The Hong Kong Polytechnic, RMIT University

Motivation

Improving energy efficiency in LoRaWAN

Duty cycle

Reducing clock-rate can also reduce energy

consumption

- High SER. Due to Nyquist sampling theorem

Issues when reducing sampling rate

- ☐ Frequency is changed when reducing sampling rate
 - SF=8, BW=250kHz. $F_s=250kHz$. $(-125k\sim125k)$
 - Symbol 0(-125kHz) -> Symbol 127 (0Hz), Fs=125k

Issues when reducing sampling rate

- Specific example for the first frequency in chirp.
 - Target=125k
 - -Fs=250k
 - Fds=125k

□ Problem:

 How to resolve the ambiguity caused by frequency aliasing due to undersampling

Observation

- □ Frequency leakage when frequency suddenly changes from its maximum to minimum
 - Symbol#0. (a)at 256, (c) at 128 has leakage
 - Symbol#127. (b) at 128, (d) at 64 has leakage

(a) Original chirp of symbol #0

(c) Aliased chirp of symbol #0

(b) Original chirp of symbol #127

(d) Aliased chirp of symbol #127

Approach one-frequency based

■ Key idea:

- Detecting the leakage offset
- Mapping the offset to the real symbol.

18 E 12 6 0 62.5 125 Frequency (kHz)

The original SF and BW are known. And down-clock to save energy.

(a) Dechirped signal, F_s =250 ksps

(c) FFT of window B

(b) FFT of window A

(d) Detected Loc. of freq. leakage

1.Moving window.2.Difference of adjacent FFT.3.Sum all the amplitude.

Approach one-frequency based

■ Key idea:

- Detecting the leakage offset
- Mapping the offset to the real symbol.

The original SF and BW are known. And down-clock to save energy.

- (a) Dechirped signal, F_s =250 ksps
- (b) FFT of window A

- (c) FFT of window B
- (d) Detected Loc. of freq. leakage

- 1. Moving window.
- 2.Difference of adjacent FFT.
- 3.Sum all the amplitude.

Approach one-frequency based

□ Unreliable when there are noise.

(a) Detected freq. leakage (D=1)

(b) Detected freq. leakage (D=2)

Need to find another robust approach.

LiteMAP – Phase based approach

- Frequency leakages are essentially caused by the phase jitters
 - Introduced by the hardware of LoRa modem.
 - Aka. Adding phase to change frequency.
 - Changing phase to modulate frequency switch.

```
a frequency shift keying s(t) = A\cos(2\pi(f \pm \Delta f)t)
```

phase shift keying of $s(t) = A\cos(2\pi f t \pm \Phi(t))$, where $\Phi(t) = 2\pi \Delta f t$.

LiteMAP - Phase based approach

■ Received signal considering phase jitter

$$R_{jit}(t,f_{sym}) = S(t,f_{sym}) \underbrace{e^{j\varphi(t)}},$$
 Phase jitter Symbol initial

- □ 1. Obtain f_{alias} according to received signal. frequency
- □ 2. nBW/D is integer and is one. Rest fi(t) and f_{cfo}.

Evaluation

- Base station: PC + RTL-SDR
- LoRa node: Dragino LoRa shield
 - Settings:
 - *SF*=8, *BW*=250 kHz and coding rate *CR*=4/5.
 - RTL-SDR
 - Low sampling rates.

Fingerprint extraction

Phase-based is more robust than frequency-based

Fig. 12. Histogram of offsets (in # of PHY samples) between the extracted fingerprints and the ideal locations under the downclocking factor of D=8.

Packet reception performance

- □ 1,000 packets (payload: 22 Bytes).
- ☐ Can be reduced to 1/8 Nyquist-rate.
- Poor (<5dB) and Good (≥5dB) SNRs.</p>

Fig. 13. Impacts of downclocking on Packet Reception Ratio (PRR).

Throughput performance

■ 85% of the throughput of full sampling rate. (Phase-based)

Fig. 14. Impacts of downclocking on throughput.

Energy saving

- □ (payload: 22 Bytes) with a duty-cycle of 2%.
- □ Consumption reduced by 56.6%. with 1/8 Nyquistrate.

Fig. 16. Per-packet energy consumption under different downclocking factors. For the frequency-based approach, since no packets are correctly received in the cases of D=16 in good SNRs and D=4, 8, 16 in poor SNRs (see Fig.13), the corresponding results are absent.

Energy saving

Power characteristics

TABLE II
POWER CHARACTERISTICS OF DOWNCLOCKED LORA RECEPTION.

Downclocking factors	D=1	D=2	D=4	D=8	D=16
Transmit power (mW)	66.00	66.00	66.00	66.00	66.00
Receive power (mW)	37.95	24.67	17.08	13.28	11.39
Standby power (mW)	5.94	3.86	2.67	2.08	1.78
Packet on-air time	$35.84 \sim 46.08 \text{ (ms)}$				
LoRaWAN on-duty time*	3 (s)				

^{*}on-duty time = TX Win + $2 \times RX$ Win + RX Delays(idle waiting).

Conclusion

- Improve the energy efficiency of LoRa by enabling sub-Nyquist sampling and packet decoding
- Frequency leakage within a chirp can serve as a fingerprint to uniquely identify a symbol
- Results show that a down-clock receiver can reduce power consumption by up to 50%, while achieving comparable packet reception performance of a fullclock receiver in good channel conditions.

Future:

$$f = n_c \frac{BW}{D} + f_{alias}$$

- Downclock decoding in WiFi OFDM (QAM)?
 - A(10), B(20), C(30,) D(40), E(50), F(60). (Fs=120Hz)
 - -20, -10, 0, 10, 20, 0. (Fs=60Hz, D=2) A,B,D,E, C+F
 - -10, 0, 10, 0, 10, 0. (Fs=30Hz, D=3) A, C+E, B+D+F,

Thanks!