

The kinetic energy of rotating masses is converted to electric energy using an electric machine and subsequently dissipated in the internal resistance and the external braking resistance to heat.

DC-Machine with Permanentmagnet Excitation

Farady's Law: $V_i = k\Phi \cdot \omega$

Lorentz' Law: $\tau = k\Phi \cdot I_A$

These two basic equations get implemented in the "electro-mechanical converter".

Kirchhoff's voltage law: $V_A = R_A \cdot I_A + L_A \cdot \frac{dI_A}{dt} + V_i$

Equation of Motion: $\tau - \tau_L = (J_r + J_L) \cdot \frac{d\omega}{dt}$

Parameter sets:

			Unite 48V	Unite XL
Nominal armature voltage	V_{ANom}	V	48	480
Nominal armature current	I _{ANom}	Α	20	10
Armature resistance @ 20°C	R _{ARef}	Ω	0,23184	2,625
Nominal armature temperature	T _{ANom}	°C	95	95
Armature inductance	L _A	mH	0,6	6,5
Induced voltage at nom. speed	V_{iNom}	V	42	446
Nominal shaft speed	ω_{Nom}	rpm	3150	1500
No-load speed	ω_0	rpm	3600	1614
Machine constant	kφ	Wb	0,127322243	2,839511426
Nominal torque	τ_{Nom}	Nm	2,546444851	28,39511426
Rotor's moment of inertia	J _r	kg.m²	0,0012	0,012
Stator's moment of inertia	J _s		4 x J _r	4 x J _r

$$R_A(95^\circ) = R_A(20^\circ) \cdot \frac{235^\circ + 95^\circ}{235^\circ + 20^\circ}$$

$$V_{iNom} = V_{ANom} - R_{A95^\circ} \cdot I_{ANom} = k\phi \cdot \omega_{Nom}$$

$$V_{ANom} = k\phi \cdot \omega_0 \to \omega_0 = \omega_{Nom} \cdot \frac{V_{ANom}}{V_{iNom}}$$

Resistive Braking with Electrical Machines

Analytic solution:

Looking at the above mentioned equation system: A rapid change of current only occurs immediately after shorting the induced voltage. Afterwards the current follows the change of induced voltage, which in turn is determined by mechanical speed, whose change is comparably low. Therefore we neglect $\frac{dI_A}{dt}$.

$$I_a = -\frac{k\phi}{R_a + R_b} \cdot \omega$$
$$\tau = -\frac{k\phi^2}{R_a + R_b} \cdot \omega$$

The braking torque τ is proportional to angular velocity ω , to the square of magnetic flux ϕ and to geometry k as well as indirect proportional to the resistance $R_a + R_b$.

$$J \cdot \frac{d\omega}{dt} = -\frac{k\phi^2}{R_a + R_b} \cdot \omega$$

J is the sum of inertias of the machine's rotor and the load. Separation of variables:

$$\begin{split} \frac{d\omega}{\omega} &= -\frac{k\phi^2}{J\cdot(R_a + R_b)} \cdot dt \\ ln(\omega) &= ln(\omega_0) - \frac{k\phi^2}{J\cdot(R_a + R_b)} \cdot t \\ \tau &= \frac{J\cdot(R_a + R_b)}{k\phi^2} \\ \omega &= \omega_0 \cdot e^{-\frac{t}{\tau}} \end{split}$$

Synchronous Machine with Permanentmagnet Excitation

Stator fixed frame $\alpha + j\beta$

Rotor fixed frame k + jl

Field fixed frame d + jq

For synchronous machines the field fixed frame and the rotor fixed frame are the same.

 γ is the mechanical angle of the rotor φ_m (with respect to the stator).

For this machine Clarke and Park transform for voltages and currents are implemented in the corresponding electro-mechanical converter:

$$\begin{bmatrix} \cos(p \cdot \varphi_m) & -\sin(p \cdot \varphi_m) \\ \sin(p \cdot \varphi_m) & \cos(p \cdot \varphi_m) \end{bmatrix} \cdot \begin{bmatrix} i_d \\ i_q \end{bmatrix} \begin{bmatrix} i_\alpha \\ i_\beta \end{bmatrix} = \frac{2}{3} \cdot \begin{bmatrix} \cos\left(0 \cdot \frac{2\pi}{3}\right) & \cos\left(1 \cdot \frac{2\pi}{3}\right) & \cos\left(2 \cdot \frac{2\pi}{3}\right) \\ \sin\left(0 \cdot \frac{2\pi}{3}\right) & \sin\left(1 \cdot \frac{2\pi}{3}\right) & \sin\left(2 \cdot \frac{2\pi}{3}\right) \end{bmatrix} \cdot \begin{bmatrix} i_u \\ i_v \\ i_w \end{bmatrix}$$

The zero components fulfills the following equation:

$$i_0 = \frac{1}{3} \cdot (i_u + i_v + i_w)$$
$$v_0 = L_0 \cdot \frac{di_0}{dt}$$

Set of Equations:

Due to magnetic saliency and the permanent magnets acting in one foxed direction with respect to the rotor the equations have to be implemented in the rotor fixed frame:

$$\begin{aligned} v_d &= R_S \cdot i_d + L_d \cdot \frac{di_d}{dt} - p \cdot \omega_m \cdot L_q \cdot i_q \\ v_q &= R_S \cdot i_q + L_q \cdot \frac{di_q}{dt} + p \cdot \omega_m \cdot L_d \cdot i_d + p \cdot \omega_m \cdot \psi_{PM} \\ \tau &= \frac{3}{2} \cdot p \cdot \left[\psi_{PM} + \left(L_d - L_q \right) \cdot i_d \right] \cdot i_q \\ \tau &- \tau_L &= \left(J_r + J_L \right) \cdot \frac{d\omega}{dt} \end{aligned}$$

Resistive Braking with Electrical Machines

Parameter sets:

			S1FT7102	S1FT7105
Nominal RMS stator voltage per phase	V_{sNom}	V	400/√3	400/√3
Nominal RMS stator current per phase	I _{ANom}	Α	8	15
Stator resistance @ 20°C	R_{sRef}	Ω	0,6	0,15
Nominal stator winding temperature	T_{sNom}	°C	95	95
d-axis inductance	L _d	mH	12,5	4,2
q-axis inductance	Lq	mH	12,5	4,2
zero component inductance	Lo	mH	1,25	0,42
Open circuit RMS voltage at nom. speed	V_{sOC}	V	183,8571932	199,7631931
Nominal shaft speed	ω_{Nom}	rpm	1500	2000
Number of pole pairs	р		5	5
Nominal stator frequency	f_s	Hz	125	166,6666667
Rotor's moment of inertia	J _r	kg.m²	0,009	0,018
Stator's moment of inertia	Js		4 x J _r	$4 \times J_r$

The machines have m=3 stator phases, the windings are star-connected.

Stator frequency is strictly related to mechanical shaft speed:

$$2\pi \cdot f_s = p \cdot \omega_m$$

Flux linkage space phasor of stator due to permanent magnets can be calculated from open circuit voltage at nominal speed:

$$\sqrt{2} \cdot V_{soc} = \psi_{PM} \cdot 2\pi \cdot f_s$$

Analytic solution:

Looking at the above mentioned equation system: A rapid change of current only occurs immediately after shorting the induced voltage. Afterwards the current follows the change of induced voltage, which in turn is determined by mechanical speed, whose change is comparably low. Therefore we neglect $\frac{di}{dt}$.

$$\begin{split} i_{d} &= \frac{\omega_{S} \cdot L_{q}}{R_{S} + R_{b}} \cdot i_{q} \\ i_{q} \cdot \left(1 + \frac{\omega_{S}^{2} \cdot L_{d} \cdot L_{q}}{(R_{S} + R_{b})^{2}}\right) &= -\frac{\omega_{S} \cdot \psi_{PM}}{R_{S} + R_{b}} \\ \omega_{K} &= \frac{R_{S} + R_{b}}{\sqrt{L_{d} \cdot L_{q}}} \\ \tau &= -\frac{3}{2} \cdot p \cdot \frac{\psi_{PM}^{2}}{R_{S} + R_{b}} \cdot \omega_{K} \cdot \frac{1}{\frac{\omega_{K}}{\omega_{S}} + \frac{\omega_{S}}{\omega_{V}}} &= -\frac{3}{2} \cdot p \cdot \frac{\psi_{PM}^{2}}{\sqrt{L_{d} \cdot L_{q}}} \cdot \frac{1}{\frac{\omega_{K}}{\omega_{S}} + \frac{\omega_{S}}{\omega_{V}}} \end{split}$$

The braking torque τ follows the same equation as Kloss' formula (for the induction machine using the slip). The maximum torque τ_K occurs at $\omega_S = \omega_K$:

$$\tau_K = -\frac{3}{4} \cdot p \cdot \frac{\psi_{PM}^2}{\sqrt{L_d \cdot L_q}}$$
$$\tau = \frac{2 \cdot \tau_K}{\frac{\omega_K}{\omega_S} + \frac{\omega_S}{\omega_K}}$$

For small speed $\omega_S \ll \omega_K$ we can approximate torque with a linear dependency on speed:

$$\tau = 2 \cdot \tau_K \cdot \frac{\omega_S}{\omega_K}$$

For large speed $\omega_{\it S}\gg\omega_{\it K}$ we can approximate torque with a hyperbolic dependency on speed:

$$\tau = 2 \cdot \tau_K \cdot \frac{\omega_K}{\omega_S}$$

The equation of motion can be expressed as follows:

$$\frac{J}{p} \cdot \frac{d\omega_S}{dt} = \frac{2 \cdot \tau_K}{\frac{\omega_K}{\omega_S} + \frac{\omega_S}{\omega_K}}$$

J is the sum of inertias of the machine's rotor and the load. Separation of variables:

$$\left(\frac{\omega_K}{\omega_S} + \frac{\omega_S}{\omega_K}\right) \cdot d\frac{\omega_S}{\omega_K} = p \cdot \frac{2 \cdot \tau_K}{J \cdot \omega_K} \cdot dt$$

$$ln\left(\frac{\omega_S}{\omega_K}\right) + \frac{1}{2} \cdot \left(\frac{\omega_S}{\omega_K}\right)^2 + K = p \cdot \frac{2 \cdot \tau_K}{J \cdot \omega_K} \cdot t$$

This term cannot be solved analytically for $\omega_S = p \cdot \omega_m$.