How to install the ISI system from the Haider Lab – Georgia Tech

List of equipment

This list was modified from Juavinett, 2016: http://dx.doi.org/10.1038/nprot.2016.158

# ID	Equipment name	Number of	Vendor /Manufacturer	Cat. No. / Model # /
		items		Comments
1	Photodiode		Thor Labs	PDA36A2
2	Light source with serial port	1	Illumination	3900e
	communication		Technologies	
3	Light guides	1 set	Illumination	9240HT
			Technologies	
4	Excitation filters	1	Illumination	
	(510–590 nm and 610 nm)		Technologies/	
			Chroma	
5	Emission filter	1	Edmund Optics	87-801
	(525-nm bandpass filter)			
6	Emission filter	1	Edmund Optics	88-018
	(700-nm bandpass filter)			
7	CCD or CMOS camera	1	Teledyne Dalsa	FA-80-12M1H-00-R
8	Lens 1	1	Nikon	AI-S FX Nikkor 50
				mm f/1.2 manual
		1	F1 10 :	focus lens
9	Camera mount	1	Edmund Optics	54-123
10	Lens 2	1	Nikon	Ai 85 mm f/2
				manual focus lens
11	NogaFlex Holders	2		
12	Frame-grabber	1	Matrox	RADIENT eVCL
13	DAQ	1	Measurement	USB - 1208FS
			computing (MC)	
14	Emission filter wheel	1	Thor Labs	LCFW5
15	Camera mount	1		
16	Primary computer	1	Dell	with at least 8 GB and SSD card
17	Secondary computer	1	Dell	with Psychotoolbox

^{**} Camera mounting base and post were made from an adapted monitor desk mount.

System setup

Primary computer: This is the main processing unit of the system. It instructs the secondary computer to start visual stimulus display [4], controls the light intensity [1], triggers the camera [2], acquires analog signal from photodiode [3].

Secondary computer: Displays visual stimulus on monitors after primary computer gives instructions via UDP connection.

Equipment setup

- 1. Download the ISI package from the Haider Lab GitHub (Link: https://github.gatech.edu/haider-lab/ISI/tree/main/Core)
- 2. Install Psychotoolbox on secondary computer, which is used for stimulus presentation. Check for specifications here: http://psychtoolbox.org/requirements/
- 3. Place photodiode on bottom right corner of secondary computer screen and connect it to DAQ.
- 4. Connect DAQ to primary computer. If the DAQ used is MC, the driver must be installed in Matlab. See section below for how to install MC in Matlab.
- 5. Insert frame-grabber in primary computer. It must be placed in a PCI slot.
- 6. Assemble camera, lenses, and emission filter wheel. (The wheel should be placed between the two lenses.
 - a. Top lens must be focused at ∞ to 2.8
 - b. Bottom lens must be focused at ∞ to 5.6
- 7. Connect camera to frame-grabber.
- 8. Assemble light source and connect to primary computer.

How to install MC driver in Matlab

- 1. Download MC driver package from Matlab (Home -> Add-Ons -> Get Hardware Support Packages).
- 2. Install MC DAQ drivers from the provided disc.
- 3. Close Matlab, and start InstaCall (This step is critical!). InstaCall is a software provided with the DAQ. It is part of the drivers installed during step 2. Once InstaCall is open, follow the steps below.
 - a. Find your device in platform
 - b. Start acquisition of signal
- 4. Close InstaCall and start Matlab again.

How to run an experiment

Note: some of these steps are specific to our setup. Adjustments may be necessary.

- 1. Turn on the camera
- 2. Turn on the illumination:
 - Change excitation and emission filters to allow for **GREEN** light
- 3. Uncap the camera lens
 - Make sure the bottom lens is focused at ∞ to 2.8
 - Make sure the top lens is focused at ∞ to 5.6
- 4. On the secondary computer:
 - Turn on MATLAB as an administrator
 - Add path for location of package downloaded from GitHub
 - Open "secondary script.m"
 - Enter IP address of primary computer for UDP connection (masterIP)
 - Run script
- 5. On the primary computer:
 - Turn on MATLAB as an administrator
 - Add path for location of package downloaded from GitHub
 - Create "neurodata\AnalyzerFiles_new\xx0\u000_000\48s_00000" folders in local computer C drive. This location will store the parameters of the visual stimulus displayed.
 - Open "primary script.m"
 - Enter camera interface settings to specify how frames are captured
 - An executable to acquire frames for Matrox frame grabbers and its Visual Studio solution are provided in "Core\New Imager\MdigProcess"
 - MIL-Lite is licensed for both application development and deployment in the presence of Matrox Imaging hardware or a supplemental license
 - o To use a custom executable, review requirements specified in the
 - "Core\New Imager\grabFrames.m" function
 - Enter IP address of secondary computer for UDP connection
 - Enter path where data must be stored
 - Enter whether to use old/new camera interface Matrox Frame grabber (.useExecutable)
 - Enter location of Matrox camera control executable (.exePath)
 - Enter location for temporary storage for camera acquisition (.tempStoragePath)
 - Enter frame dimension (.frameDimensions)
 - Enter the mouse ID (inputM.mouseID)
 - Enter the date (inputM.date)

- Enter the location where acquired frames are stored (inputM.analyzerRoot)
- Enter the input session (inputM.ses)

** Place the mouse under camera

- ** Using a Caliper, measure the length of the cranial window edges. This is important to determine the real size of areas
- ** Inject Sedative
- 6. Run the primary script
 - An adjust list window will appear. Adjust light if necessary, then close window.

** Put the green filter in the illumination box

- ** Turn the revolver between lenses to green filter
- 7. A new window GUI will appear
 - Click on Launch live
 - Move the camera until the cranial window is visible
 - Adjust the light intensity if necessary
 - Focus lenses by adjusting height until blood vessels are visible, then slightly focus $\sim 100 500$ µm below vasculature
 - Click on Capture image
 - On the captured image (see right), select the cranial window by clicking and dragging
 - Click on View ROI
 - Set Frame rate to 10
 - Close that window

** The section below was modified from link below. See documentation (Intrinsic Imaging Rig.pdf) for full description of GUI use.

Link: https://sites.google.com/site/iannauhaus/home/matlab-code

- 8. Three window GUIs will appear: Main, Looper, ParamSelect
 - Spread the GUIs around
- 9. In looper
 - Enter parameter for test run See Intrinsic Imaging Rig.pdf for full description
 - Example:
 - In the first column, under "symbol", write: ori
 - In the second box, under "vector", write: [0]

10. In ParamSelect

- Click on Load and load visual stimulus See Intrinsic Imaging Rig.pdf for full description
- Example:
 - Load Horz F 18.param from params folder GitHub
- 11. In the Main window, click Run
- 12. A feedback window will appear after the recording is done
- ** If no signal is detected, appropriate interventions may be necessary
- 13. After the previous run has ended
- 14. Change the excitation and emission filters to allow for **RED** light
- 15. Load visual stimulus and adjust parameters for Azimuth and Elevation stimulus display
- 16. In the Main window, click Run

- 17. A feedback window will appear after the recording is done
- 18. Repeat steps 15-16 until the number of visual stimulus display is met.
- ** Use post-recording toolkits for construction of average retinotopic, VFS, and eccentricity maps.

Examples:

Using Green light

BAD green

GOOD green

BAD red

GOOD red

