◆₩◆ MATH 5350 ♦₩◆

Homework VII

Michael Nameika

Section 3.4 Problems

8. Show that an element x of an inner product space X cannot have "too many" Fourier coefficients $\langle x, e_k \rangle$ which are "big"; here (e_k) is a given orthonormal sequence; more precisely, show that the number n_m of $\langle x, e_k \rangle$ such that $|\langle x, e_k \rangle| > 1/m$ must satisfy $n_m < m^2 ||x||^2$.

Proof: Let $\{e_l\}$ be the subset of elements of $\{e_k\}$ such that $|\langle x, e_k \rangle| > 1/m$. Suppose that there are n_m of such elements. We will show that $n_m < \infty$. Notice, by Bessel's inequality,

$$\sum_{l=1}^{n_m} |\langle x, e_l \rangle|^2 \le ||x||^2$$

and that, since $\langle x, e_l \rangle > 1/m$, we have

$$\frac{n_m}{m^2} < \sum_{l=1}^{n_m} |\langle x, e_l \rangle|^2.$$

Using this inequality along with Bessel's inequality above, we have

$$\frac{n_m}{m^2} < ||x||^2 n_m < m^2 ||x||^2$$

so that n_m is bounded and hence finite.

9. Orthonormalize the first three terms of the sequence (x_0, x_1, x_2, \cdots) , where $x_j(t) = t^j$, on the interval [-1, 1], where

$$\langle x, y \rangle = \int_{-1}^{1} x(t)y(t)dt.$$

Soln. Applying the Gram-Schmidt process, let $v_0 = x_0 = 1$. Then taking $e_0 = \frac{v_0}{\|v_0\|}$, we have

$$||v_0|| = \sqrt{\int_{-1}^1 dt}$$
$$= \sqrt{2}$$

so that $e_1 = \frac{1}{\sqrt{2}}$. Now, $v_1 = x_1 - \langle x_1, e_0 \rangle e_0$ for $x_1 = t$. Then

$$\langle x_1, e_0 \rangle = \int_{-1}^1 \frac{1}{\sqrt{2}} t dt$$

and so $v_1 = x_1 = t$. Normalizing,

$$||v_1|| = \sqrt{\int_{-1}^1 t^2 dt}$$
$$= \sqrt{\frac{2}{3}}$$

◆♥◆ MATH 5350 ♦♥◆

so that

$$e_1 = \frac{v_1}{\|v_1\|} = \sqrt{\frac{3}{2}}t.$$

Finally, finding $v_2 = x_2 - \langle x_2, e_1 \rangle e_1 - \langle x_2, e_0 \rangle e_0$:

$$\langle x_2, e_1 \rangle = \int_{-1}^1 \sqrt{\frac{3}{2}} t(t^2) dt$$
$$= \sqrt{\frac{3}{2}} \int_{-1}^1 t^3 dt$$
$$= 0$$

and

$$\langle x_2, e_0 \rangle e_0 = \left(\int_{-1}^1 \frac{1}{\sqrt{2}} t^2 dt \right) e_0$$

$$= \frac{1}{\sqrt{2}} \frac{2}{3} e_0$$

$$= \frac{\sqrt{2}}{3} \left(\frac{1}{\sqrt{2}} \right)$$

$$= \frac{1}{3}.$$

We now have

$$v_2 = t^2 - \frac{1}{3}.$$

Normalizing,

$$||v_2|| = \sqrt{\int_{-1}^1 \left(t^2 - \frac{1}{3}\right)^2 dt}$$

$$= \sqrt{\int_{-1}^1 \left(t^4 - \frac{2}{3}t^2 + \frac{1}{9}\right) dt}$$

$$= \sqrt{\frac{2}{5} - \frac{4}{9} + \frac{2}{9}}$$

$$= \sqrt{\frac{2}{5} - \frac{2}{9}}$$

$$= \sqrt{\frac{8}{45}}$$

$$= \frac{2\sqrt{2}}{3\sqrt{5}}$$

so that

$$e_2 = \frac{3\sqrt{5}}{2\sqrt{2}} \left(t^2 - \frac{1}{3} \right)$$
$$= \frac{3\sqrt{5}}{2\sqrt{2}} t^2 - \frac{\sqrt{5}}{2\sqrt{2}}.$$

Then the first few orthonormal terms are

$$\{e_0, e_1, e_2\} = \left\{ \frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}t, \frac{3\sqrt{5}}{2\sqrt{2}}t^2 - \frac{\sqrt{5}}{2\sqrt{2}} \right\}$$

MATH 5350 *** 3 ***

Section 3.5 Problems

6. Let (e_i) be an orthonormal sequence in a Hilbert space H. Show that if

$$x = \sum_{j=1}^{\infty} \alpha_j e_j, \quad y = \sum_{j=1}^{\infty} \beta_j e_j, \quad \text{then} \quad \langle x, y \rangle = \sum_{j=1}^{\infty} \alpha_j \overline{\beta}_j,$$

the series being absolutely convergent.

Proof: First notice

$$\langle x, y \rangle = \left\langle \sum_{j=1}^{\infty} \alpha_j e_j, \sum_{k=1}^{\infty} \beta_j e_j \right\rangle$$

$$= \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \alpha_j \overline{\beta}_k \langle e_j, e_k \rangle$$

$$= \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \alpha_j \overline{\beta}_k \delta_{jk}$$

$$= \sum_{j=1}^{\infty} \alpha_j \overline{\beta}_j$$

where δ_{jk} is the Kronecker delta. Now, the norm of x and y are given by the following (since (e_j) is orthonormal):

$$||x||^2 = \sum_{j=1}^{\infty} |\alpha_j|^2$$
$$||y||^2 = \sum_{j=1}^{\infty} |\beta_j|^2$$

each of which is convergent. Then notice

$$\left| \sum_{j=1}^{\infty} \alpha_j \overline{\beta_j} \right| \leq \sum_{j=1}^{\infty} |\alpha_j \beta_j|^2$$

$$\leq \sum_{j=1}^{\infty} |\alpha_j|^2 \sum_{k=1}^{\infty} |\beta_k|^2$$

$$= ||x||^2 ||y||^2$$

 \square

so that the series is absolutely convergent.

8. Let (e_k) be an orthonormal sequence in a Hilbert space H, and let $M = \operatorname{span}(e_k)$. Show that for any $x \in H$ we have $x \in \overline{M}$ if and only if x can be represented by (6) with coefficients $\alpha_k = \langle x, e_k \rangle$.

Proof: First suppose that $x \in H$ can be represented by

$$\sum_{k=1}^{\infty} \langle x, e_k \rangle e_k.$$

Then we have that the sequence (s_n) defined by

$$\sum_{k=1}^{n} \langle x, e_k \rangle e_k$$

◆₩◆ MATH 5350 ♦₩◆

is a Cauchy sequence in M which converges to x. Hence x is a limit point of M and so $x \in \overline{M}$. Now suppose $x \in \overline{M}$. We wish to show that x can be represented by

$$x = \sum_{k=1}^{\infty} \langle x, e_k \rangle e_k.$$

Section 3.6 Problems

10. Let M be a subset of a Hilbert space H, and let $v, w \in H$. Suppose that $\langle v, x \rangle = \langle w, x \rangle$ for all $x \in M$ implies v = w. If this holds for all $v, w \in H$, show that M is total in H.

Proof: To begin, note that for any $x \in H$, (0, x) = 0. Now let $v \in M^{\perp}$. That is,

$$\langle v, x \rangle = 0$$

for all $x \in M$. Thus,

$$\langle v, x \rangle = \langle 0, x \rangle$$

 $\implies v = 0$

Thus, $M^{\perp} = \{0\}$, so that the span of M is dense in H, and thus, M is total in H.

Extra Credit Exercise VII.1

(a) Let (x_j) be an *orthogonal* sequence in an inner product space X, meaning $\langle x_i, x_j \rangle = 0$ for all $i \neq j$, and suppose that the series $||x_1||^2 + ||x_2||^2 + ||x_3||^2 + \cdots$ converges. Show that (s_n) is a Cauchy sequence, where $s_n = x_1 + \cdots + x_n$.

Proof: Let (x_j) be an orthogonal sequence in an inner product space X and suppose $M = ||x_1||^2 + ||x_2||^2 + \cdots$ converges. We will show that (s_n) is a Cauchy sequence. To begin, note that since M converges, the sequence of partial sums (M_n) of M is Cauchy. Fix $\varepsilon > 0$. Then there exists an index N such that for all n > m > N,

$$\sum_{j=m+1}^{n} \|x_j\|^2 < \varepsilon^2.$$

Now let us inspect $||s_n - s_m||^2$:

$$||s_n - s_m||^2 = \left\langle \sum_{j=m+1}^n x_j, \sum_{k=m+1}^n x_k \right\rangle$$

$$= \sum_{j=m+1}^n \sum_{k=m+1}^n \langle x_j, x_k \rangle$$

$$= \sum_{j=m+1}^n ||x_j||^2$$

since (x_i) is orthogonal. Then

$$||s_n - s_m||^2 = \sum_{j=m+1}^n ||x_j||^2$$

$$< \varepsilon^2$$

$$\implies ||s_n - s_m|| < \varepsilon.$$

Hence, (s_n) is a Cauchy sequence, as desired.

♦₩♦ MATH 5350 ♦₩♦

(b) Remove the orthogonality assumption from part (a), but assume instead the more stringent series condition that $||x_1|| + ||x_2|| + ||x_3|| + \cdots$ converges. Show that (s_n) is a Cauchy sequence, where $s_n = x_1 + \cdots + x_n$.

Proof: Suppose $M = ||x_1|| + ||x_2|| + \cdots$ converges. Then M is a Cauchy sequence, hence, for any $\varepsilon > 0$, there exists an index N such that whenever n > m > N, we have

$$\sum_{k=m+1}^{n} \|x_k\| < \varepsilon.$$

Now, define

$$s_n := x_1 + x_2 + \dots + x_n.$$

We will show that (s_n) is Cauchy. Let n > m > N as above, and notice

$$||s_n - s_m||^2 = \left\langle \sum_{j=m+1}^n x_j, \sum_{k=m+1}^n x_k \right\rangle$$
$$= \sum_{j=m+1}^n \sum_{k=m+1}^n \langle x_j, x_k \rangle$$

and by the Schwarz inequality, we have

$$||s_n - s_m||^2 = \left| \sum_{j=m+1}^n \sum_{k=m+1}^n \langle x_j, x_k \rangle \right|$$

$$\leq \sum_{j=m+1}^n \sum_{k=m+1}^n ||x_j|| ||x_k||$$

$$= \left(\sum_{j=m+1}^n ||x_j|| \right) \left(\sum_{k=m+1}^n ||x_k|| \right)$$

$$< \varepsilon \cdot \varepsilon$$

$$= \varepsilon^2.$$

So now we have $||s_n - s_m||^2 < \varepsilon^2$ for all n > m > N, hence

$$||s_n - s_m|| < \varepsilon$$

so that (s_n) is a Cauchy sequence.

 \square