Lezione 6 La distribuzione Normale

Obiettivi di apprendimento

- Conoscere le caratteristiche della distribuzione Normale
- Conoscere le caratteristiche della distribuzione Normale Standardizzata
- Conoscere le caratteristiche della distribuzione t di Student

Le fasi della ricerca

Parametri vs statistiche

Statistica	Popolazione	Campione
Numerosità	N	n
Media	μ	$ar{x}$
Deviazione Standard	σ	S
Proporzione	π	p

La distribuzione della popolazione

" Qual è la distribuzione del peso alla nascita per i gemelli inglesi?

La distribuzione della popolazione

" Qual è la distribuzione del peso alla nascita per i gemelli inglesi?

$$N=1,000,000$$
 $\mu=2404~\mathrm{g};~\sigma=580~\mathrm{g}$ $mediana=2408~\mathrm{g}$

La distribuzione della popolazione

" Qual è la distribuzione del peso alla nascita per i gemelli inglesi?

N=1,000,000 $\mu=2404~\mathrm{g};~\sigma=580~\mathrm{g}$ $mediana=2408~\mathrm{g}$

La distribuzione Normale

- ullet $\mathcal{N}=(\mu,\sigma^2)$
- $moda \equiv media \equiv medana$
- Simmetrica

La distribuzione Normale

- Area sottesa alla curva = 1
- proporzione ≡ probabilità

"very low birth weight" $< 1500~{
m g}$ Gemelli "very low birth weight" = 6% ${\cal P}($ "ß very low birth weight") = 0.06

Esercizio #1

- ? Qual è la curva con la media maggiore?
 - a) Verde
 - b) Blu
 - c) Gialla
 - d) Non lo posso sapere
 - e) Nessuna delle precedenti

- ? Qual è la curva con la media maggiore?
 - a) Verde
 - b) Blu
 - c) Gialla
 - d) Non lo posso sapere
 - e) Nessuna delle precedenti

Esercizio #2

- ? Qual è la curva con la deviazione standard maggiore?
 - a) Verde
 - b) Blu
 - c) Gialla
 - d) Non lo posso sapere
 - e) Nessuna delle precedenti

- ? Qual è la curva con la deviazione standard maggiore?
 - a) Verde
 - b) Blu
 - c) Gialla
 - d) Non lo posso sapere
 - e) Nessuna delle precedenti

La distribuzione Normale

- Regola del 3 σ :
 - \circ 68% dei valori osservati sono a 1 σ dalla media
 - \circ 95% sono a 2 σ
 - \circ 99.7% sono a 3 σ
- Regola empirica:
 - \circ valori $< 2\sigma$ sono "comuni"
 - \circ valori $> 2\sigma$ sono "inusuali"
 - \circ valori $>3\sigma$ sono "estremi"

I valori estremi

Esercizio #3

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

- a) La mediana
- b) La proporzione di italiani con altezza > 170~
 m cm
- c) I "range" di altezze considerabili come "inusuali" o "estremi"
- d) L'altezza più comune
- e) L'italiano più alto di sempre

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

- a) La mediana ightarrow coincide con la media $= 170~\mathrm{cm}$
- b) La proporzione di italiani con altezza > 170

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

- a) La mediana ightarrow 170cm
- b) La proporzione di italiani con altezza $>170~{
 m cm}
 ightarrow$ sono quelli a destra della mediana, la metà dell'area sottesa dalla curva =50%
- c) I "range" di altezze considerabili come "inusuali" o "estremi"

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

E' possibile calcolate i seguenti valori? Se sì, quali sono?

- a) La mediana ightarrow 170cm
- b) La proporzione di italiani con altezza $> 170~\mathrm{cm} \to 50\%$
- c) l "range" di altezze considerabili come "inusuali" o "estremi" ightarrow sono quelli >2 deviazioni standard dalla media

$$= 170 - 9.5 \times 2 = 151 \text{ cm} \wedge 170 + 9.5 \times 2 = 189 \text{ cm}$$

d) L'altezza più comune

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

- a) La mediana ightarrow 170cm
- b) La proporzione di italiani con altezza $> 170~{
 m cm}
 ightarrow 50\%$
- c) I "range" di altezze considerabili come "inusuali" o "estremi" $ightarrow < 151~{
 m cm}~\wedge > 189~{
 m cm}$
- d) L'altezza più comune ightarrow è la moda, che coincide con la media e la mediana = $170~\mathrm{cm}$
- e) L'italiano più alto di sempre

? L'altezza della popolazione maschile italiana si distribuisce secondo una normale con media 170 cm e deviazione standard 9.5 cm

- a) La mediana ightarrow 170cm
- b) La proporzione di italiani con altezza $> 170~\mathrm{cm} \to 50\%$
- c) I "range" di altezze considerabili come "inusuali" o "estremi"
 - $ightarrow~<151~{
 m cm}~\wedge>189~{
 m cm}$
- d) L'altezza più comune $ightarrow 170~\mathrm{cm}$
- e) L'italiano più alto di sempre \rightarrow non si può calcolare

Esercizio #4

Table 1. Demographic Characteristics of the Participants			
Characteristic	All Participants (N=277)		
	Oxytocin (N=139)	Placebo (N=138)	
Age			
Mean — yr	10.4±4.1	10.4±4.0	
Distribution — no. (%	6)		
3–6 yr	34 (24)	35 (25)	
7–11 yr	54 (39)	53 (38)	
12–17 yr	51 (37)	50 (36)	
Sex — no. (%)			
Male	122 (88)	120 (87)	
Female	17 (12)	18 (13)	

? Indicativamente, in quale range di età è compreso il 68% dei pazienti nel gruppo di intervento?

- a) 3-17 anni
- b) 6.3-14.5 anni
- c) 4.1 16.7 anni
- d) Non è possibile desumerlo dalla tabella

Table 1. Demographic Characteristics of the Participants			
Characteristic	All Participants (N=277)		
	Oxytocin (N=139)	Placebo (N=138)	
Age			
Mean — yr	10.4±4.1	10.4±4.0	
Distribution — no. (%	5)		
3–6 yr	34 (24)	35 (25)	
7–11 yr	54 (39)	53 (38)	
12–17 yr	51 (37)	50 (36)	
Sex — no. (%)			
Male	122 (88)	120 (87)	
Female	17 (12)	18 (13)	

Sikich, L. et al., Intranasal Oxytocin in Children and

Adolescents with Autism Spectrum Disorder, NEJM, 2021

? Indicativamente, in quale range di età è compreso il 68% dei pazienti nel gruppo di intervento?

- a) 3-17 anni
- b) 6.3-14.5 anni
- c) 4.1 16.7 anni
- d) Non è possibile desumerlo dalla tabella

Esercizio #5

- ? Con quale probabilità si potrà trovare nella popolazione soggetti con valori superiori al terzo quartile?
 - a) 25%
 - b) 50%
 - c) 75%
 - d) Servono più informazioni per poter rispondere

? Con quale probabilità si potrà trovare nella popolazione soggetti con valori superiori al terzo quartile?

- a) 25%
- b) 50%
- c) 75%
- d) Servono più informazioni per poter rispondere

Proporzione \equiv probabilità

- 6% dei gemelli sono "very low birth weight"
- La probabilità essere "very low birth weight" è 0.06

Ma come è stato calcolato?

La standardizzazione

$$ullet$$
 $\mathcal{N}=(\mu,\sigma^2) o Z=(0,1)$

La standardizzazione

$$ullet$$
 $\mathcal{N}=(\mu,\sigma^2) o Z=(0,1)$

•
$$z = \frac{x-\mu}{}$$

La standardizzazione

$$ullet$$
 $\mathcal{N}=(\mu,\sigma^2) o Z=(0,1)$

•
$$z = \frac{x-\mu}{\sigma}$$

La distribuzione Normale standardizzata

$$ullet$$
 $\mathcal{N}=(\mu,\sigma^2) o Z=(0,1)$

•
$$z = \frac{x-\mu}{\sigma}$$

$$\mu = 2404 \text{ g}; \ \sigma = 580 \text{ g}$$

$$P(x < 1500 \text{ g}) = ?$$

$$\mu = 2404 \text{ g}; \ \sigma = 580 \text{ g}$$

$$z = \frac{x - \mu}{\sigma} = \frac{1500 \text{ g} - 2404 \text{ g}}{580 \text{ g}}$$

= -1.56

$$P(x < 1500 \text{ g}) = ?$$

$$\mu = 2404 \text{ g}; \ \sigma = 580 \text{ g}$$

$$z = \frac{x - \mu}{\sigma} = \frac{1500 \text{ g} - 2404 \text{ g}}{580 \text{ g}}$$

= -1.56

$$P(x < 1500 \text{ g}) = ?$$

$$\mu = 2404 \text{ g}; \ \sigma = 580 \text{ g}$$

$$z = \frac{x - \mu}{\sigma} = \frac{1500 \text{ g} - 2404 \text{ g}}{580 \text{ g}}$$

= -1.56

$$\mathcal{P}(x < 1500 \text{ g}) = 1 - 0.9406 = 0.0594 \rightarrow 5.94\%$$

Esercizio #6

? Non sapendo che il bambino ha un gemello, il pediatra dice alla madre che un peso alla nascita inferiore ai 2500g è inusuale. La madre deve preoccuparsi?

$$\mu = 2404 \text{ g}; \ \sigma = 580 \text{ g}$$

? Non sapendo che il bambino ha un gemello, il pediatra dice alla madre che un peso alla nascita inferiore ai 2500g è inusuale. La madre deve preoccuparsi?

$$\mu = 2404 ext{ g}; \ \sigma = 580 ext{ g}$$
 $z = \frac{x-\mu}{\sigma} = \frac{2500-2404}{580} = 0.17$ $\mathcal{P}(x < 2500) = 0.5675 o 56.75\%$

? Non sapendo che il bambino ha un gemello, il pediatra dice alla madre che un peso alla nascita inferiore ai 2500g è inusuale. La madre deve preoccuparsi?

$$\mu = 2404~
m g;~\sigma = 580~
m g$$
 $z = rac{x-\mu}{\sigma} = rac{2500-2404}{580} = 0.17$ $\mathcal{P}(x < 2500) = 0.5675
ightarrow 56.75\%$

Esercizio #7

- ? Abbiamo una distribuzione Normale $\mathcal{N}=(0,1)$. Qual è il valore della sua mediana?
 - a) 0
 - b) 1
 - c) 2
 - d) Servono più informazioni per poter rispondere

? Abbiamo una distribuzione Normale $\mathcal{N}=(0,1)$. Qual è il valore della sua mediana?

- a) 0 🗸
- b) 1
- c) 2
- d) Servono più informazioni per poter rispondere

- Non posso approssimare a una normale
- Uso la t di Student

- Non posso approssimare a una normale
- Uso la t di Student
 - \circ considera i gradi di libertà (df)
 - \circ per un campione di dimensione n o df = n-1

- Non posso approssimare a una normale
- Uso la t di Student
 - \circ considera i gradi di libertà (df)
 - \circ per un campione di dimensione n o df = n-1

- Non posso approssimare a una normale
- Uso la t di Student
 - \circ considera i gradi di libertà (df)
 - \circ per un campione di dimensione n o df = n-1

Cosa abbiamo imparato in questa lezione?

- La popolazione viene rappresentata con dei parametri (equivalenti alle statistiche usate per i campioni)
- Diversi fenomeni naturali sono normalmente distribuiti
- La normale è definita dalla sua media e deviazione standard e corrisponde a una distribuzione di probabilità
- La distribuzione (normale) di una popolazione ci fornisce la probabilità di estrarre un individuo da quella popolazione ma anche la sua frequenza
- Se i dati sono normalmente distribuiti, il 68% della popolazione si trova a 1 SD dalla media, il 95% a 2 SD e il 99.7% a 3 SD
- ullet Per campioni piccoli (n < 30), usiamo la distribuzione t di Student per ottenere una probabilità