ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ М.В.ЛОМОНОСОВА»

Механико-математический факультет Кафедра теории функций и функционального анализа

ОТЧЕТ

Выполнил студент 404 группы Воротников Александр Валерьевич

Преподаватель: Друца Алексей Валерьевич

Содержание работы

1	1 Постановка исходной задачи		
2	Раз	ностная схема	2
3	Реп	пение дискретной задачи	4
	3.1	Метод наискорейшего градиентного спуска	4
	3.2	Метод Зейделя	5
4	Гра	фики полученных функций	7

1 Постановка исходной задачи

Для дифференциальной задачи Дирихле для уравнения Пуассона в квадрате $\Omega = [0,1]^2$

$$-\Delta u = f$$
, $u|_{\partial\Omega} = \alpha$, $\alpha = const$,

построить разностную схему со вторым порядком аппроксимации и решить полученную систему линейных уравнений двумя методами:

- 1. Метод наискорейшего градиентного спуска
- 2. Метод Гаусса-Зейделя.

2 Разностная схема

Итак, введем основные обозначения.

$$U = C^4(\Omega), \quad F = C^6(\Omega), \quad \Phi = \mathbb{R}$$

$$L: U \to F, \quad L(u) = -\Delta u$$

$$\ell: U \to \Phi, \quad \ell(u) = \alpha$$

Зададим нормы в пространствах U, F, Φ следующим образом :

$$||u||_U = \max_{x \in \Omega} |u(x)|, ||f||_F = \max_{x \in \Omega} |f(x)|, ||\alpha||_{\Phi} = |\alpha|$$

Рассмотрим квадратную сетку на отрезке [0,1] с шагом h=1/N.

Точки вида (ih, jh) называются узлами. Те узлы, которые находятся внутри квадрата называются внутренними и их совокупность обозначается Ω_h . Заметим, что $|\Omega_h| = (N-1)^2$.

Граничными узлами назовем узлы на границе квадрата, кроме угловых (0,0), (Nh,0), (0,Nh), (Nh,Nh). Их совокупность обозначим Γ_h .

Множество $\overline{\Omega}_h = \Omega_h \cup \Gamma_h$ называется сеткой.

Введем следующие пространства функций

$$U_h = {\overline{\Omega}_h \to \mathbb{R}}, \quad ||u_h||_{U_h} = \max_{i,j=0,\dots,N} |u_h(ih,jh)|$$

$$F_h = \{\Omega_h \to \mathbb{R}\}, \quad \|f_h\|_{F_h} = \max_{i,j=0,\dots,N-1} |f_h(ih,jh)|$$

$$\Phi_h = \mathbb{R}, \quad \|\alpha\|_{\Phi_h} = |\alpha|.$$

Теперь определим "проекцию" пространств U, F, Φ на дискретные U_h, F_h, Φ_h :

$$[u]_h(ih, jh) = u(ih, jh), \quad [f]_h(ih, jh) = f(ih, jh), \quad [\varphi]_h = \varphi$$

Введем

$$L_h(u_h)|_{(ih,jh)} = -\frac{u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{ij}}{h^2}, \quad u_{ij} := u_h(ih,jh)$$

$$l_h(u_h) = \alpha$$

$$f_h = [f]_h, \ \varphi_h = [\varphi]_h$$

Рассмотрим задачу вида

$$\begin{cases} L_h(u_h) = f_h, \ x \in \Omega_h, \\ l_h(u_h) = \varphi_h \end{cases}$$

А именно

$$\begin{cases} -\frac{1}{h^2}(u_{i,j+1} + u_{i,j-1} + u_{i+1,j} + u_{i-1,j} - 4u_{ij}) = f_h(ih, jh), \ x \in \Omega_h, \\ u_h|_{\Gamma_h} = \alpha, \end{cases}$$

Покажем, что полученная задача (разностная схема) является аппроксимацией второго порядка исходной задачи, т.е. $\exists h_0 \forall u \in U \exists c : \forall h < h_0$ выполнено :

$$||[Lu]_h - L_h[u]_h||_{F_h} + ||[lu]_h - l_h[u]_h||_{\Phi_h} + ||f_h - [f]_h||_{F_h} + ||\varphi_h - [\varphi]_h||_{\Phi_h} \leqslant ch^2$$

Разложим $u(x_{m+1},y_n), u(x_{m-1},y_n), u(x_m,y_{n-1}), u(x_m,y_{n+1})$ по формуле Тейлора в точке (x_m,y_n) :

$$\begin{split} &u(x_{m+1},y_n)=u(x_m,y_n)+hu_x(x_m,y_n)+\frac{h^2}{2}u_{xx}(x_m,y_n)+\frac{h^3}{6}u_{xxx}(x_m,y_n)+\frac{h^4}{24}u_{xxxx}(\xi_m^+,y_n)\\ &u(x_{m-1},y_n)=u(x_m,y_n)-hu_x(x_m,y_n)+\frac{h^2}{2}u_{xx}(x_m,y_n)-\frac{h^3}{6}u_{xxx}(x_m,y_n)+\frac{h^4}{24}u_{xxxx}(\xi_m^-,y_n)\\ &u(x_m,y_{n+1})=u(x_m,y_n)+hu_y(x_m,y_n)+\frac{h^2}{2}u_{yy}(x_m,y_n)+\frac{h^3}{6}u_{yyy}(x_m,y_n)+\frac{h^4}{24}u_{yyyy}(x_m,\eta_n^+)\\ &u(x_m,y_{n-1})=u(x_m,y_n)-hu_y(x_m,y_n)+\frac{h^2}{2}u_{yy}(x_m,y_n)-\frac{h^3}{6}u_{yyy}(x_m,y_n)+\frac{h^4}{24}u_{yyyy}(x_m,\eta_n^-) \end{split}$$

Подставляем и получаем после сокращения:

$$([Lu]_h - L_h[u]_h)(x_m, y_n) = \frac{h^2}{24}(u_{xxxx}(\xi_i^+, y_n) + u_{xxxx}(\xi_i^-, y_n) + u_{yyyy}(x_m, \eta_n^+) + u_{xxxx}(x_m, \eta_n^-))$$

Из непрерывности четвертых производных получаем, что $\|[Lu]_h - L_h[u]_h\| \le C_1 h^2$ Таким образом имеется аппроксимация 2-го порядка.

3 Решение дискретной задачи

Сначала поймем, какой вид имеет матрица постоенной схемы. Неизвестных $(N-1)^2$ штук. Будем, считать, что неизвестные (и соответственно уравнения) занумерованы следующим образом: $(1,1),(1,2)\dots(1,N-1),(2,1),(2,2)\dots(2,N-1)\dots(N-1,N-1)$.

Тогда нетрудно увидеть, что матрица будет иметь вид

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 & \cdots & \ddots & 0 \\ A_{21} & A_{22} & A_{23} & \cdots & \ddots & \ddots \\ 0 & A_{32} & A_{33} & \cdots & \ddots & \ddots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \cdots & \ddots & A_{N-2,N-1} \\ 0 & \ddots & \ddots & \cdots & A_{N-1,N-2} & A_{N-1,N-1} \end{pmatrix}$$

где

$$A_{ii} = \begin{pmatrix} 4 & -1 & 0 & \cdot & \cdots & \cdot & 0 \\ -1 & 4 & -1 & 0 & \cdots & \cdot & \cdot \\ 0 & -1 & 4 & -1 & \cdots & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdots & 4 & -1 \\ \cdot & \cdot & \cdot & \cdot & \cdots & -1 & 4 \end{pmatrix}$$

а матрица $A_{i,i\pm 1}$ – диагональная с -1 на диагонали.

То есть получили блочно-трехдиагональную матрицу и в каждой строке не более пяти ненулевых элементов. Кроме того это ленточная матрица с шириной ленты 2N-1.

Вектор $b = (b_{iN+i})$, где

$$b_{i(N-1)+j}=f(ih,jh)\cdot h^2+2\alpha,$$
 точка (ih,jh) угловая $b_{i(N-1)+j}=f(ih,jh)\cdot h^2+\alpha,$ точка (ih,jh) граничная $b_{i(N-1)+j}=f(ih,jh)\cdot h^2,$ иначе

(это получается в силу краевых условий). Таким образом, нам надо решить систему уравнений Ax = b. Для этого будем применять итерационные процессы: метод наискорейшего градиентного спуска (Gradient Descent Method) и метод Зейделя. В программе будем прерывать процесс в тот момент, когда изменение по норме между двумя последовательными итерациями окажется меньше $\varepsilon = 10^{-6}$.

3.1 Метод наискорейшего градиентного спуска

Заметим, что матрица A является матрицей с диагональным преобладанием, симметрична и диагональные элементы положительны. Отсюда следует, что матрица $A \geqslant 0$.

Введем энергетическую норму, порожденную матрицей A:

$$||x||_A^2 = (Ax, x)$$

и функционал энергии

$$F(x) = (Ax, x) - 2(f, x)$$

Легко проверить, что $F(x) = \|x - \overline{x}\|_A^2 - \|\overline{x}\|_A^2$. Поэтому минимум F(x) достигается на решении системы Ax = f. Логично рассмотреть итерационный процесс:

$$x^{n+1} = x^n - \alpha_n \nabla F(x^n)$$

причем, можно вычислить, что $\nabla F(x^n) = 2(Ax^n - f)$, а оптимальный коэффициент $\alpha_n = \frac{\|Ax^n - f\|^2}{\|Ax^n - f\|_A^2}.$ Обозначим $\xi^n = Ax^n - f$. Тогда итерационный процесс

$$x^{n+1} = x^n - \alpha_n (Ax^n - f),$$

где $\alpha_n = \frac{\|\xi^n\|^2}{\|\xi^n\|_A^2} = \frac{\|Ax^n - f\|^2}{(A(Ax^n - f), Ax^n - f)} = \frac{\|\xi^n\|^2}{(A\xi^n, \xi^n)}$

называется методом наискорейшего градиентного спуска.

Минус метода в том, что здесь требуется выполнять два умножения матрицу на вектор. Но этого можно избежать. Заметим, что

$$\xi^{n+1} = \xi^n - \alpha_n A \xi^n$$

В процессе итерации будем запоминать векторы x^n и ξ^n , а по ним будем последовательно вычислять $A\xi^n, \alpha_n, x^{n+1}, \xi^{n+1}$. То есть умножение матрицы на вектор теперь одно на каждом шаге, но приходится хранить одновременно два вектора.

Для умножения матрицы на вектор потребуется $O(N^2)$ операций, так как на вычисление каждого из $(N-1)^2$ элемента вектора нужно (максимум) 5 умножений и 4 сложения (в каждой строке матрицы не более пяти ненулевых элементов).

3.2 Метод Зейделя

Условие $a_{ii} \neq 0$ выполнено, поэтому можно предствить матрицу A в виде

$$A = B + C$$

где B – нижнетреугольная, C – верхнетреугольная с нулями на диагонали.

Рассмотрим следующий итерационный метод, который называется методом Зейделя:

$$Bx^{n+1} + Cx^n = f$$

Из лекций знаем, что если $A = A^T > 0$, то метод Зейделя сходится.

Из условия очевидно, что существует матрица B^{-1} , поэтому метод можно переписать так:

$$x^{n+1} = -B^{-1}Cx^n + B^{-1}f$$

Но вычислять будет лучше через явные формулы, без операций над матрицами. Их мы получим, если распишем выражение $Bx^{n+1} + Cx^n = f$ в таком виде:

$$\begin{cases} a_{11}x_1^{n+1} + a_{12}x_2^n + \dots + a_{1m}x_m^n = f_1 \\ a_{21}x_1^{n+1} + a_{12}x_2^{n+1} + \dots + a_{2m}x_m^n = f_2 \\ \dots \\ a_{m1}x_1^{n+1} + a_{12}x_2^{n+1} + \dots + a_{mm}x_m^{n+1} = f_m \end{cases}$$

Отсюда получим, что

$$\begin{cases} x_1^{n+1} = \frac{1}{a_{11}} (f_1 - a_{12} x_2^n - \dots - a_{1m} x_m^n) \\ x_2^{n+1} = \frac{1}{a_{22}} (f_2 - a_{12} x_2^n - \dots - a_{1m} x_m^n - a_{21} x_1^{n+1}) \\ \dots \\ x_k^{n+1} = \frac{1}{a_{kk}} (f_k - \sum_{i < k} a_{ki} x_i^{n+1} - \sum_{i > k} a_{ki} x_i^n) \\ \dots \\ x_m^{n+1} = \frac{1}{a_{mm}} (f_m - \sum_{i=1}^{m-1} a_{mi} x_i^{n+1}) \end{cases}$$

4 Графики полученных функций

Здесь представлены графики полученных решений только для одного из двух методов (как узазывалось выше, остановка процесса происходит, когда изменение по норме между двумя последовательными итерациями окажется меньше $\varepsilon=10^{-6}$). Норма разности решений обоих методов представлена в иллюстрациях справа, и она маленькая, поэтому смысла рисовать два графика нет. Так же можно сравнить скорость работы двух методов и количество итераций. Очевидное превосходство в данном случае имеет метод Зейделя.

Результаты работы при разных N и f метода наискорейшего градиентного спуска:

GDM	$f(x,y) = \sin(x^3 * y) * exp(10y^2)$	$f(x,y) = x^2 * y * 25$
N = 20	T: 0 сек, It: 570, Res = 0.00394133	T: 0 сек, It: 580, Res = 0.00394133
N = 50	T: 2 сек, It: 2994, Res = 0.00398318	T: 2 cek , It 3182 , Res = 0.00398249
N = 100	T: 35 сек, It: 10309, Res = 0.0039974	T: 36 сек, It 11357, Res = 00399478

Результаты работы при разных N и f метода Зейделя:

Seidel	$f(x,y) = \sin(x^3 * y) * exp(10y^2)$	$f(x,y) = x^2 * y * 25$
N = 20	T: 0 сек, It: 300, Res = 0.00197866	T: 0 cek, It: 307, Res = 0.00197441
N = 50	T: 0 сек, It: 1583, Res = 0.00199574	T: 0 сек, It 1685, Res = 0.00199361
N = 100	T: 7 сек, It: 5489, Res = 0.00199811	T: 7 сек, It 6034, Res = 0.00199873

T — время, It — количество итераций, Res — невязка.

Рис. 1: N=100, f(x,y)=sin(pow(x,3)*y)*exp(10*y*y), $\alpha=1$

Рис. 2: N = 50, f(x,y) = x * x * y * 25, $\alpha = -5$

Рис. 3: N=100, f(x,y)=1./(x+1)*y, $\alpha=1$