DS-306 Data Warehousing and Business Intelligence

Topic 6: OLAP and Its Operations

Dr. Khurram Shahzad

Typical DW architecture

Typical DW architecture

Supporting the human thought process

THOUGHT PROCESS

An enterprise wide fall in profit

Profit down by a large percentage consistently during last quarter only. Rest is OK

What is special about last quarter?

Products alone doing OK, but North region is most problematic.

OK. So the problem is the high cost of products purchased in north.

QUERY SEQUENCE

What was the quarterly sales during last year ??

What was the quarterly sales at regional level during last year ??

What was the quarterly sales at product level during last year?

What was the monthly sale for last quarter group by products

What was the monthly sale for last quarter group by region

What was the monthly sale of products in north at store level group by products purchased

Observations on Example

- Analysis is Ad-hoc
- Analysis is interactive (User-Driven)
- Analysis is iterative
 - Answer to one question leads to a dozen more
- Analysis is directional
 - Aggregating to lower level in dimensional hierarchy
 - Aggregating to higher level in dimensional hierarchy
 - Including multiple dimensions

Observations on Example

Writing pre-defined queries will not work

- Does not remain user-driven
- Does not remain Ad-hoc and hence is not interactive

Enable Ad-hoc query support

- User can build his/her own queries (No SQL)
- Do not afford on-the-fly computation

Problem

Want to Pre-compute the answers but do not know the questions

Solution

- Compute answers to all possible questions
- Remember, questions are always multidimensional aggregations at some level

OLAP Solution

- Online Analytical processing system
 - Online = no waiting for answer
- DW stores data and OLAP is for analysis of data and facilitates analysis
- OLAP: "A category of applications and technologies for collecting, managing, processing and presenting multidimensional data for analysis and management purposes"

Two dimensions/Traditional Analysis

Example of two dimensions can be represented by a table

Month	Sales	Direct Costs	Indirect Costs	Total Costs	Margin
January	790	480	110	590	200
February	850	520	130	650	200
March	900	530	140	670	230
April	910	590	150	740	170
May	860	600	120	720	140
June	830	490	100	590	240
July	880	500	110	610	270
August	900	620	130	750	150
September	790	300	90	390	400
October	820	540	100	640	180
November	840	570	150	720	120
December	810	600	120	720	90
Total	10,180	6,340	1,450	7,790	2,390

Three-dimensional Cube

Three dimensions visualization

OLAP Intro.

Cube

Beyond three dimensions

If we have more than three dimensions

Hyper-cubes, is a cube with more than three

dimensions

Another form for 4 dimensions

• Four dimensions can be represented by four

Hyper-cubes on computer screen

Six dimensions can be represented on computer screen

Diff. Six-dimension display

Page order dimension

Column order dimension

Row order dimension

Store 3	Males,65+		Direct sales	Indirect sales			Total sales
		Actual	Planned	Actual	Planned	Actual	Planned
January	Desks	250	300	125	150	375	450
	Lamps	267	320	133	160	400	480
February	Desks	333	400	167	200	500	600
	Lamps	283	340	142	170	425	510
March	Desks	350	420	175	210	525	630
	Lamps	250	300	125	150	375	450

Levels in Dimension

Operations in OLAP

Cube Navigation Operations

- Roll up
- Drill down
- Pivot
- Slice
- Dice

Navigation Operations: Roll-up

Roll Up

- Perform aggregation on a data cube, involves summarizing the data along one dimension
- Summarize data e.g. given sales

Navigation Operations: Roll-up

Navigation Operations: Drill-down

Drill down

- Get more details, find breakup of sales from Quarter to Months
- Allows users to navigate among levels of data ranging from the most summarized (up) the most detailed (down)

Graphical form

Navigation Operations: Drill-down

LINE	TOTAL SALES
Clothing	\$12,836,450
Electronics	\$16,068,300
Video	\$21,262,190
Kitchen	\$17,704,400
Appliances	\$19,600,800
Total	\$87,472,140

High level summary by product line

Navigation Operations: Drill-down

LINE	TOTAL SALES
Clothing	\$12,836,450
Electronics	\$16,068,300
Video	\$21,262,190
Kitchen	\$17,704,400
Appliances	\$19,600,800
Total	\$87,472,140

High level summary by product line

Drill down by year

LINE	1998	1999	2000	TOTAL
Clothing	\$3,457,000	\$3,590,050	\$5,789,400	\$12,836,450
Electronics	\$5,894,800	\$4,078,900	\$6,094,600	\$16,068,300
Video	\$7,198,700	\$6,057,890	\$8,005,600	\$21,262,190
Kitchen	\$4,875,400	\$5,894,500	\$6,934,500	\$17,704,400
Appliances	\$5,947,300	\$6,104,500	\$7,549,000	\$19,600,800
Total	\$27,373,200	\$25,725,840	\$34,373,100	\$87,472,140

Navigation Operations: Pivot

- Pivot operation is also called rotation
- Rotates the data axes in view to provide alternative presentation

Navigation Operations: Pivot

LINE	1998	1999	2000	TOTAL
Clothing	\$3,457,000	\$3,590,050	\$5,789,400	\$12,836,450
Electronics	\$5,894,800	\$4,078,900	\$6,094,600	\$16,068,300
Video	\$7,198,700	\$6,057,890	\$8,005,600	\$21,262,190
Kitchen	\$4,875,400	\$5,894,500	\$6,934,500	\$17,704,400
Appliances	\$5,947,300	\$6,104,500	\$7,549,000	\$19,600,800
Total	\$27,373,200	\$25,725,840	\$34,373,100	\$87,472,140

Rotate columns to rows

YEAR	Clothing	Electronics	Video	Kitchen	Appliances	TOTAL
1998	\$3,457,000	\$5,894,800	\$7,198,700	\$4,875,400	\$5,947,300	\$27,373,200
1999	\$3,590,050	\$4,078,900	\$6,057,890	\$5,894,500	\$6,104,500	\$25,725,840
2000	\$5,789,400	\$6,094,600	\$8,005,600	\$6,934,500	\$7,549,000	\$34,373,100
Total	\$12,836,450	\$16,068,300	\$21,262,190	\$17,704,400	\$19,600,800	\$87,472,140

Navigation Operations: Slice

- Slice Operation
 - Correspond to reducing the number of dimensions by taking a project of data in cube on a dimension
 - Slice operation will reduce the number of dimensions

Navigation Operations: Slice

Navigation Operations: Dice

Dice Operation

- Produces a sub-cube based on specific values of multiple dimensions (two or more dimensions)
- Select data that satisfies a list of predicates connected by logical operators AND, OR, or NOT

Navigation Operations: Slice vs. Dice

- Slice performs a selection on one dimension of a cube
- Dice operation defines a sub-cube by performance a selection on tow or more dimensions

Slice

Sample Cube (visualization)

	Sales	Coun	tales	Count
+ Washington	-\$25210 ngl	nam12 <mark>0</mark>	s700	32
+ California	+\$24£ 0ner	ton129	\$400	20
+ Washington	-\$25926npi	a 120	s850	44
	+ Redmo	nd	s250	9
	+ Seattle		s320	15
	+ Berkele	У	\$820	41
+ California	-\$ 2 241@rly	Hil 1 29	s910	50
	+ Los Ang	jeles	\$680	38

Sample Cube

Northwind Example OLAP Operations

Implementation of OLAP

OLAP Implementation Architectures

- MOLAP
- ROLAP
- HOLAP

OLAP Implementation

MOLAP: OLAP implemented with a multidimensional data structure.

 ROLAP: OLAP implemented with a relational database.

HOLAP: OLAP implemented as a hybrid of MOLAP and ROLAP.

OLAP Implementation: MOLAP

- Data is stored in the form of multi-dimensional arrays (cubes).
- Analytical tools to allow analysis of data
- It requires the pre-computation and storage of information in cube

OLAP Implementation: MOLAP

Advantages

- Instance response (pre-calculated aggregates)
- Excellent performance

Disadvantages

- Limited in the amount of data it can handle
- Long load time (due to pre-calculation)
- Very sparse cube (space wastage) for high cardinality
- Actually, the cubes are less than 1% full

Data Sparsity and Dense Value

- The term sparsity has been used for missing, inapplicable, zero value
- Notice all sparse or blank cell
 - Identification of sparse or blank cell is very important
 - Very sparce cube (wastage of space)
- Opposite value is DENSE value
- Some values are meaningless (Identify them)
- Need to distinguish missing & meaningless value

Data Sparsity and Dense Value

Fact Table

Month	Product	Zone	Sale K Rs.	
M1	P1	Z1	250	
M2	P2	Z1	500	

OLAP Implementation: ROLAP

- Data is stored as relational tables
- ROLAP and space requirements
 - Increase in number of dimensions increases number of summary tables
 - Consider two dimensions
 - Time: Day, Week, Month, Quarter, Year, All days
 - Product: Item, subcategory, Category, all products

2	2001				2002			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Orange juice	232	2,432	4,353	354	535	345	7,897	789
Rola-Kola	2,342	243	353	4,535	5,655	4,424	789	798
8-UP	2,424	3,131	1,313	5,675	567	5,675	789	9,797
Pola-Kola	242	3,112	567	646	567	567	789	798
Mango juice	2,342	243	243	4,564	564	1,232	242	4,553
Bubbly-UP	3,453	3,453	535	2,422	2,131	242	1,321	245
Apple juice	253	456	2,433	567	2,442	5,453	4,566	345

3	2001			2002				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Soda Drinks	8,461	9,939	2,768	13,278	8,920	10,908	3,688	11,638
Juices	2,827	3,131	7,029	5,485	3,541	7,030	12,705	5,687

ROLAP as a "Cube"

- OLAP data is stored in a relational database (e.g. a star schema)
- The fact table is a way of *visualizing as* a "un-rolled" cube.
- So where is the cube?
 - It's a matter of perception

Fact Table

Month	Product	Zone	Sale K Rs.
M1	P1	Z1	250
M2	P2	Z1	500

OLAP Implementation: ROLAP

Advantages

- Can handle large amount of data
- Can leverage functionalities inherent in the relational DB

Disadvantages

- Performance can be slow
- Limited by SQL functionalities

OLAP Implementation: HOLAP

- Hybrid OLAP
- Target is to get the best of both worlds
- HOLAP allow co-existence of pre-build MOLAP cubes alongside relational OLAP or ROLAP structure

OLAP Implementation: Summary

- Multidimensional OLAP (MOLAP)
 - Best Query Performance
- Relational OLAP (ROLAP)
 - Ideal for large databases
- Hybrid OLAP (HOLAP)
 - Best & Worst of both worlds!