NGHIÊN CỬU VÀ PHÁT TRIỂN HỆ THỐNG PHÁT HIỆN BỆNH NÔNG NGHIỆP TỪ HÌNH ẢNH LÁ CÂY SỬ DỤNG HỌC SÂU

Nguyễn Minh Lộc - 2252079

Huỳnh Chấn Kiệt - 22520717

Tóm tắt

- Lớp: CS519.P11
- Link Github của nhóm:
- Link YouTube video:

Nguyễn Minh Lộc

Huỳnh Chấn Kiệt

Giới thiệu

- Plant Disease Leaf Analysis (PDLA) là tác vụ phát hiện và phân loại bệnh từ hình ảnh lá cây
- Các thách thức chính:
 - Phân biệt các bệnh có triệu chứng tương tự
 - Thiếu khả năng giải thích kết quả dự đoán
 - Độ chính xác trong điều kiện thực tế (ánh sáng, góc chụp)

θο chini xac trong dieu kiện thực te (ann sang, gọc chiệp)			
	Bell Pepper	Potato	Tomato
Healthy			
Disease	Bacterial Spot	Early Blight Late Blight	Early Blight Bacterial Spot Late Blight Tomato Mosaic Virus

Mục tiêu

- Tìm hiểu tổng quan về bài toán phát hiện bệnh cây trồng từ hình ảnh sử dụng học sâu
- Phân tích và đánh giá hiệu suất các mô hình học sâu hiện có
- Đề xuất kiến trúc mạng học sâu đa nhánh với 3 thành phần:
 - Backbone trích xuất đặc trưng
 - Cơ chế chú ý tăng cường vùng bệnh
 - Module giải thích kết quả dự đoán

1. Thu thập và tiền xử lý dữ liệu

- Sử dụng bộ dữ liệu PlantVillage
- Tiêu chí: đa dạng điều kiện, chất lượng tốt, gán nhãn chính xác
- Tiền xử lý: chuẩn hóa kích thước, điều chỉnh độ sáng
- Phân chia: 70:15:15 (train:test:validation)

2. Xây dựng mô hình

- Backbone: EfficientNet
- Cơ chế chú ý cho vùng bệnh
- Module Grad-CAM giải thích kết quả

3. Tối ưu hóa và đánh giá

- Hàm loss kết hợp: L = αCE(y, ŷ) + βFL(y, ŷ)
- Metrics: accuracy, precision, recall, F1-score
- So sánh với các phương pháp hiện có

4. Phát triển ứng dụng

- Chuyển đổi sang TFLite
- Giao diện Flutter
- Thử nghiệm thực địa

Kết quả dự kiến

- Hệ thống phát hiện bệnh ổn định trong điều kiện thực tế
- Hiệu suất:
 - Độ chính xác tương đương các phương pháp hiện có
 - Thời gian xử lý < 2 giây/ảnh trên thiết bị di động
- Úng dụng di động hoàn chỉnh:
 - Dễ sử dụng cho nông dân
 - Giải thích kết quả trực quan

Tài liệu tham khảo

- [1] Singh, A., & Misra, S. (2023). "Deep Learning in Plant Disease Detection: A Comprehensive Review." IEEE Access, 11, 12345-12367.
- [2] Wang, G., et al. (2022). "Attention-based Multi-branch CNN for Plant Disease Detection." Pattern Recognition, 128, 108671.
- [3] Zhang, K., et al. (2023). "Explainable Deep Learning for Agricultural Disease Detection." Computers and Electronics in Agriculture, 205, 107653.
- [4] Liu, J., & Wang, X. (2021). "Mobile-based Plant Disease Detection: A Survey." Agricultural Systems, 189, 103078.[5] FAO. (2023). "Global Food and Agriculture Statistics." Food and Agriculture Organization of the United Nations.

UIT.CS519.ResearchMethodology