

1 第二问模型的建立与求解

(第二问的摘要部分:为了评估在新疆建设一个 10 兆瓦(MW)规模的光伏电站的经济可行性,我们建立了一个数学模型,考虑了地理和照明条件、成本结构、技术参数、电力产出和收益等因素。基于合理的假设,模型涵盖了总投资成本的计算、年度电力产出和收益预估、运维成本估算,以及回报期和净现值(NPV)的测算。

在我们的模型中,考虑到新疆日照充足,假设平均日照时长为每天 8 小时,平均太阳辐射强度为 6 kWh/m²/日。项目的总投资成本考虑了光伏板成本(\$0.4/瓦)、安装成本(\$0.3/瓦)和其他相关成本(\$500,000),计算出总投资成本为\$7,500,000。年度量力产出根据光伏板效率(20%)和日照条件计算得出,为 35,040,000,000 kWh。年度增益则基于假设的电价(\$0.08/kWh)计算,得出\$2,803,200,000。年运维成本考虑了沙尘等因素,设为总投资成本的 1.5%,即\$112,500。回报期计算显示项目在25,00,027 年内即可回收成本。

进一步,我们计算了项目的净现值(NPV),使用 5% 为抗力率从未来的现金流进行现值计算。NPV 结果为约\$43,082,825,317.82,表明项目具有最高的对务吸引力。这一正值 NPV 指示,按照当前假设,项目的预期收益远位于其成本,是经济上可行的。

该数学模型提供了对新疆 10 兆瓦光伏电站项 17 多 性能的初步估计,揭示了项目的潜在经济效益。然而,实际项目的可行性可能 20 次 2 波动、政策变化、技术进步等多种因素的影响,因此在具体实施前还需应行关详细的实地调研和市场分析。)

本文将使用一些合理的假设数据来建立一个更高级的数学模型,用于评估在新疆建设一个 10 兆瓦(MW)规模的光优电站的工行性。我们将考虑更细致的成本结构、先进的技术参数,以及特定的地式和气体条件。

(1) 地理和照明条件:

- 平均太阳辐射强度 61 V/n 日
- (2) 光伏电站成本和规模:
- 总功率: 1(兆 MW
- 光伏板(本. \$0.4)瓦 (大规模采购可能降低成本)
- 安装 (木, 10 1/7
- 其學, 承 (土地、接入电网等): \$500,000
- 年运建成本、总投资的 1.5%(考虑沙尘影响)
- (3) 技术参数
- 光伏板效率: 20%
- (4) 电力产出和收益:
- 电价: \$0.08/kWh (考虑到政策和市场因素)
- (5) 项目寿命:
- 30年
- (6) 折现率:
- 5%(用于计算净现值) 使用这些假设,我们将计算总投资成本、年度电力产出和收益,回报期和净现值

(NPV)。此外,我们还会考虑规模经济和高效率光伏板对成本和产出的影响。

总投资成本 = 总功率 × (光伏板成本 + 安装成本) + 其他成本

年度电力产出 = 总功率 × 平均日照时长 × 平均太阳辐射强度 × 光伏板效率 × 365

年度收益 = 年度电力产出×电价

年运维成本 = 总投资成本 × 年运维成本百分比

回报期 = 总投资成本/年度收益

 $NPV = \sum_{t=1}^{\bar{\eta} \parallel \bar{\beta} \neq 0} \left(\frac{\text{年度收益-年运维成本}}{(1+折现率)^t} \right) - 总投资成本$

根据更新后的假设和计算,新疆建设 10 兆瓦 (MW) 规模式 伏电站的 数学模型结果如下:

- 总投资成本: \$7,500,000
- 年度电力产出: 35,040,000,000 kWh
- 年度收益: \$2,803,200,000
- 年运维成本: \$112.500
- 回报期:约 0.0027 年
- 净现值 (NPV): 约\$43,082,825,317.

这些结果表明,在新疆建设一个大规模为光大电站在经济上是非常可行的。回报期非常短,净现值非常高。然而,这些人果同样基于假设的准确性。例如,年度电力产出和年度收益的计算基于假设的石分对长、太阳辐射强度、光伏板效率和电价,这些因素在实际中可能会有所不同。五外我、将绘制新疆 10 兆瓦(MW)光伏电站的财务分析图。

上图展示了新疆 10 兆瓦(MW)光伏电站的时餐、扩。蓝线表示每年的净收益,绿线表示累计净收益,而红色虚线表示经过扩现以累计净收益。从图表中可以看出,项目的年度净收益随时间稳定,累计净收益险差分尺的推移而显著增加。累计折现后的净收益也呈现出稳定增长的趋势,这表现项目从长期角度来看是非常有利可图的。这进一步验证了在新疆建设光伏电站的《客可允性。

此外,该模型未考虑可能为政策变化、市场波动、环境影响等因素,这些都可能影响项目的长期可行性。在实际操作人、对这些因素的考量也是至关重要的。总的来说,本文提供了一个基于当前假设分况步经济分析,但在实际决策之前,需要进行更为全面和深入的研究。

2 基天博弈论的组合赋权(G1 法与熵权法)的建设光电站的可行性评估

2.1 指标系的确定

评价指标体系

目标层	一级指标	二级指标
		初始投资成本
		运营成本
评估光伏	经济性	收益预测
电站项目		回报期
的可行性		净现值(NPV)
	技术可行性	光伏技术成熟度
	12个可11注	系统效率

		维护和操作难度
	环境影响	环境友好性
	小児奶啊	可持续性
	政策和法规	政府支持
	以來作伝戏	法律法规限制
	社会效益	公众接受度
	化云双血	就业机会

2.2 G1 法确定主观指标权重

始投资成

相对值

标度R _k	含义 🦱		
1.0	两者同样企		
1.2	育者 追 等	涉啟重要	
1.4	前在北后者明	月显重要	
1.6		虽烈重要	
1.8	前者比后者相		
1.1, 1.2, 1.5.	7 表示介于以_	上两种接邻状	犬态间
\$1	一級指标序关系	赋值表	
生标 经 济 世 人	可行 环境影	政策和法	社会效
性性性	响	规	益

表 2 经济性二级指标序关系赋值表

净

现

值

指标	本	运宫 放本	収益预测	凹报期	(NPV)
相对值					
		表 3 技术可行性二	级指标序关系	赋值表	
指标		光伏技术成熟度	系统效率	维	护和操作难度
相对值					
		表 4 环境影响二级	级指标序关系则	武值表	
指标		环境友好性		可持续性	

表 5 政策和法规二级指标序关系赋值表

		0000	30323		
指标		政府支持		法律法规限制	IJ
相对值					
	表(社会效益二级	设指标序关系 则	武值表	
指标		公众接受度		就业机会	_
相对值					
		表 7 一级指	旨标主观权重		
指标	经济性	技术可行性	环境影响	政策和法规	社会效益
主观权重					
	3	表 8 经济性二	级指标主观权	重	<u>Ob</u>
指标	初始投资成 本	运营成本	收益预测	回报期	争 现 值 (NP∀)
主观权重					
	表	9 技术可行性	二级指标主观	权重	
指标	光伏技	5术成熟度	系统效率	新护和	口操作难度
主观权重					
	表	10 环境影响二	二级指标主观	权重	
指标		环境友好性		可持续性	
主观权重					
	表	11 政策和法规	上级、发标上观	2权重	
指标		政府支持		法律法规限制	IJ
主观权重					
	表	社会》益	2级指标主观:	权重	
指标	N	公众文文度		就业机会	
主观权重					

2.3 熵权法确定指标客双权重

表 13 二级指标评价数值

				≫1 1 1 1 1 1 1 1	1 01224				
277 145 1 57	专家					・平均分			
评人指标	专家1	专家 2	专家 3	专家 4	专家 5	专家 6	专家7	专家8	一口均分
初台投了成了									
运产成本									
收益预测									
回报期									
净现值(NPV)									
光伏技术成熟度									
系统效率									
维护和操作难度									
环境友好性									
可持续性									

政府支持

法律法规限制 公众接受度 就业机会

			表 14 i	省标权重系数				
评估目标	一级指标	一级指 标 权重系 数	二级指标	二 级 报 型 系 数	二级指标相对 于评价目标的 权重系数	信息熵	熵 权 权重	综合权重
评估光伏电站项目的可行性			初始投资成本 收益所测 回报明 净现值(NPV) 光伏统效率 维护和操作难度 环境友好性 可持续性 政府支持 法律法规限度 就业机会	96	536	5	C.	

2.4 博弈论组合权重

博弈论在权重的《古确定(书)演着至关重要的角色,特别是在协调主观赋权与客观赋权之间的关系时。全理地分配为者之间的权重比例,我们可以得到更加精确和平衡的综合权重。具《来说》 超级将序关系分析法确定的主观权重 $W_1 = [\omega_{11}, \omega_{12}, ..., \omega_{1m}]$ 和熵权在确定的管理权重 $W_2 = [\omega_{21}, \omega_{22}, ..., \omega_{2m}]$ 视为博弈的两方^{備设!未找到引用源•}。综合权重 W的计算步骤如下:

1、社合权重的计算:首先,我们将两种权重通过线性组合的方式进行融合,计算公式如下:

$$\boldsymbol{W} = \lambda_1 \boldsymbol{W}_1 + \lambda_2 \boldsymbol{W}_2 = \begin{bmatrix} \lambda_1 \omega_{11} + \lambda_2 \omega_{21} \\ \lambda_1 \omega_{12} + \lambda_2 \omega_{22} \\ \dots \\ \lambda_1 \omega_{1m} + \lambda_2 \omega_{2m} \end{bmatrix}$$
(1)

其中, λ_1 和 λ_2 是线性组合系数。

2、优化目标函数: 我们建立一个目标函数,旨在寻找最优的线性组合系数 λ_1 '和 λ_2 ',以最小化组合权重与单个权重之间的离差和。目标函数和约束条件如下:

$$\min(\|W - W_1\|_2 + \|W - W_2\|_2) \tag{2}$$

其中, $\lambda_1 + \lambda_2 = 1$ 且 λ_1 , $\lambda_2 \ge 0$ 。

3、微分法求解最优系数:根据微分原理,确定最小值时需满足的一阶导数条件:

$$\begin{cases} \lambda_1 W_1 W_1^{\mathrm{T}} + \lambda_2 W_1 W_2^{\mathrm{T}} = W_1 W_1^{\mathrm{T}} \\ \lambda_1 W_2 W_1^{\mathrm{T}} + \lambda_2 W_2 W_2^{\mathrm{T}} = W_2 W_2^{\mathrm{T}} \end{cases}$$
(3)

4、系数标准化处理:对求得的λ₁和λ₂进行标准化处理:

$$\begin{cases} \lambda_1' = \frac{|\lambda_1|}{|\lambda_1| + |\lambda_2|} \\ \lambda_2' = \frac{|\lambda_2|}{|\lambda_1| + |\lambda_2|} \end{cases}$$

$$\tag{4}$$

5、计算最优组合权重: 最终得到的评价指标最优组合权重为:

$$W' = \lambda_1' W_1 + \lambda_2' W_2$$

式中: W'为最优组合权重。

2.5 模糊综合评价法计算可行性

表	15	口	`行	性等	錽	멦	分
~~	10		1.4	<u>ا</u> ا	<i>-7</i> ^	ヘリ	//

等级	I级	II级	III级	IV红	V级
说明	可行	较可行	一般可行	校可了	不行
评分范围	[8.5, 10]	[6.5, 8.5]	[4.5, 6.5]	[26 45]	[0, 2.5]