

Tarea 4

18 de Octubre 2023

 $2^{\mathbb{Q}}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado - B. Barías Diego Pérez - 22203583

Problema 1

Sea $R_3 = R_1 \cup R_2 \text{ y } R_4 = R_1 \circ R_2.$

 \implies Suponemos que R_3 es relación de equivalencia. Tenemos que demostrar 2 cosas:

- $R_3 \subseteq R_4$. Sea $(x,y) \in R_3$ y particularmente (y sin pérdida de generalidad) se tiene $(x,y) \in R_1$ (ya que (x,y) debe estar en R_1 o en R_2). Como R_2 es refleja, $(y,y) \in R_2$, luego, xR_1y y yR_2y , entonces $xR_1 \circ R_2y$, por lo que $(x,y) \in R_4$. Como esto se cumple para todo elemento de R_3 , tenemos $R_3 \subseteq R_4$.
- $R_4 \subseteq R_3$. Sea $(x,y) \in R_4$. Por definición de R_4 , existe un $z \in A$ que cumple $(x,z) \in R_1$ y $(z,y) \in R_2$, entonces por definición de R_3 , $(x,z) \in R_3$ y $(z,y) \in R_3$. Como R_3 es transitiva (supuesto), entonces $(x,y) \in R_3$. Como esto se cumple para todo elemento de R_4 , tenemos $R_4 \subseteq R_3$.

De donde obtenemos $R_3 = R_4$, como queríamos.

Supongamos que $R_3 = R_4$. Como R_1 es refleja, entonces $\{(a,a)|a \in A\} \subseteq R_1 \subseteq R_3$, por lo que R_3 es refleja. Además, notar que si $(x,y) \in R_3$, entonces $(x,y) \in R_1$ o $(x,y) \in R_2$, digamos (sin pérdida de generalidad) que $(x,y) \in R_1$. Como R_1 es simétrica, $(y,x) \in R_1 \subseteq R_3$, por lo que R_3 es simétrica . Sean (x,y) y (y,z) dos elementos cualquiera de R_3 . Digamos que sin pérdida de generalidad, $(x,y) \in R_1$. Tenemos 2 casos:

- $(y,z) \in R_1$. Como R_1 es transitiva, entonces $(x,z) \in R_1$, por lo que $(x,z) \in R_3$
- $(y,z) \notin R_1$. Como $(y,z) \in R_3$, entonces necesariamente $(y,z) \in R_2$. Tenemos xR_1y y yR_2z , por lo que $(x,z) \in R_4$. Como $R_3 = R_4$, entonces $(x,z) \in R_3$.

En todo caso, $(x, z) \in R_3$, por lo que R_3 es transitiva. Se demostró que R_3 es refleja, simétrica y transitiva, por lo que es una relación de equivalencia.

Problema 2

- 1. a) Supongamos que f(a) = f(b) para algunos $a, b \in A$. Para demostrar inyectividad, basta demostrar que a = b. Supongamos por contradicción que $a \neq b$ y sin pérdida de generalidad, que a > b. Como f es creciente, entonces f(a) > f(b), pero habiamos asumido f(a) = f(b), contradicción. Concluimos por contradicción que a = b y por lo tanto, que f es inyectiva.
 - b) Respuesta: es inyectiva

Por (a), tanto f como g son inyectivas. Supongamos que g(f(a)) = g(f(b)) para algunos $a, b \in A$. Nuevamente, basta demostrar que a = b. Como g es inyectiva, entonces f(a) = f(b) y como f también lo es, entonces a = b. Concluimos entonces que $g \circ f$ es inyectiva.

2. Dado $f \in A^{B \cup C}$, definimos $B(f) = \{b \mid b : B \mapsto A, b(x) = f(x) \text{ para todo } x \in B\}$, o en otras palabras, B(f) es el conjunto de todas las funciones b de B a A tales que b mapea los elementos de B de igual forma que lo hace f. Similarmente, definimos $C(f) = \{c \mid c : C \mapsto A, c(x) = f(x) \text{ para todo } x \in C\}$.

Proposición: Los conjuntos B(f) y C(f) tienen un solo elemento.

<u>Demostración:</u> Claramente B(f) es no vacio. Dados $b_1, b_2 \in B(f)$, tenemos que $b_1(x) = f(x) = b_2(x)$ para todo $x \in B$. Como el dominio de los b_1 y b_2 es B, deducimos $b_1 = b_2$ (2 funciones con igual dominio que lo mapean a la misma imagen). Sigue que |B(f)| = 1 y similarmente, |C(f)| = 1.

Denotamos $B(f)=\{b(f)\}$ y $C(f)=\{c(f)\}$. Definimos $T:A^{B\cup C}\mapsto A^B\times A^C$ que satisface T(f)=(b(f),c(f)) para todo $f\in A^{B\cup C}$.

Proposición: T es una biyección.

<u>Demostración</u>: En primer lugar, T es función total por la proposición anterior, por lo que solo basta demostrar que es sobre e inyectiva.

■ Sobre: Sea $p = (b, c) \in A^B \times A^C$. Definimos $f : A^{B \cup C} \mapsto A^B \times A^C$ como

$$f(x) = \begin{cases} b(x) & \text{si } x \in B \\ c(x) & \text{si } x \in C \end{cases}$$

Para todo $x \in B \cup C$. Como B y C no tienen elementos en común, f es una función que cumple T(f) = p, por lo que dicho p tiene una preimagen en T. Como esto se cumple para todo p, se concluye que T es sobre

■ Inyectiva: Supongamos que T(f) = T(f') = (b, c). Notar que por construcción, f(b) = f'(b) y f(c) = f'(c) para todo $b \in B, c \in C$. Como el dominio de tanto f como f' es $B \cup C$, se concluye f = f', por lo que T es inyectiva.

Como existe una biyección (T) entre $A^{B\cup C}$ y $A^B\times A^C$, se concluye $A^{B\cup C}\approx A^B\times A^C$.