

PO: Precision Oncology Course Variant Annotation using VEP

Exercise

Annotation of the panel 1 using VEP webpage

Study case

Panel 1

Tumor type: Patient with Colon Adenocarcinoma

Sequencing platform: Illumina HiSeq2500

Type of data: Sequencing panel (paired). Ion Ampliseq Cancer Hotspot Panel v2 (46 genes)

Samples: Tumor with matched healthy tissue

File with somatic variants from Mutect2: Variants detected in tumor sample but not in the corresponding control

Data: https://drive.google.com/file/d/1BknV7nyQDrUJ6LgAxh4ln8qVriUNI8-F/view? usp=sharing

Reference genome: hg19

Steps

Run VEP from the web

- 1. Go to: http://www.ensembl.org/info/docs/tools/vep/index.html
- 2. Click on "Web interface"

Ensembl Variant Effect Predictor (VEP)

VEP determines the effect of your variants (SNPs, insertions, deletions, CNVs or structural variants) on genes, transcripts, and protein sequence, as well as regulatory regions.

Simply input the coordinates of your variants and the nucleotide changes to find out the:

- Genes and Transcripts affected by the variants
- Location of the variants (e.g. upstream of a transcript, in coding sequence, in non-coding RNA, in regulatory regions)
- Consequence of your variants on the protein sequence (e.g. stop gained, missense, stop lost, frameshift), see variant consequences
- Known variants that match yours, and associated minor allele frequencies from the 1000 Genomes Project
- SIFT and PolyPhen-2 scores for changes to protein sequence
- ... And more! See data types, versions

★ What's new in release 106?

VEP interfaces

Steps

Run VEP from the web

- 3. Fill in a new job. We want the following annotations:
 - HUGO gene symbol.
 - The HGVS identifiers for coding DNA and protein.
 - The Global Minor Allele Frequency of 1000 genomes project.
 - gnomAD frequencies.
- 4. You can add any other annotation you want.

HINTS: Remember to use the same assembly used in the variant detection. Further info: http://www.ensembl.org/info/docs/tools/vep/online/input.html

30 min

Questions

- How many variants were in the VCF file?
- How many of them are not known in the database?
- How many genes and transcripts are affected by the variants?
- Is there any regulatory region overlapping some variant?
- Which is the most represented consequence category?

Questions

- Which is the most represented coding sequence consequence?
- How many variants fall in a coding region in some gene?
- What do the HGVS identifiers represent in each case?
- Is there any clear polymorphism within the data?

Steps

Download the file

- 1. Save the file in VCF format.
- 2. Check that the following annotations have been added to the INFO field:
 - Allele
 - Consequence

 - Gene
 - Feature type
 - Feature
 - HGVSc
 - HGVSp

- cDNA position
- Protein position
- SymbolAmino acids
 - Codons
 - Existing variant
 - AF
 - gnomAD AF
 - gnomAD NFE AF

Thanks!

