

Motivation

Joint control policy approximated as a decentralized control policy:

$$\pi(s, a_1, ..., a_i, ..., a_n) \approx \prod_{i=1}^{N} \pi_i(s, a_i) \approx \prod_{i=1}^{N} \pi_i(o_i, a_i)$$

- As a system becomes larger and more complex, it become more difficult to understand and control the target systems
- A methodology has been developed to independently model the agents that make up the entire system, to efficiently model the entire system considering their interaction, and to derive distributed control strategies
 - Decentralized MDP, Decentralized-POMDP, Decentralized Cooperative Control, Team Game, Cooperative Game...
 - Analytical solutions to these problems are limited to only special cases
- Recent advanced in Deep learning and Reinforcement learning approach can open up new solution approaches

Motivation

- Multi Agent Reinforcement Learning (MARL) aims to derive a decentralized policy while considering the interactions among agents (cooperative, competitive, Nash, etc.)
- We mainly aim to derive a decentralized decision making policy for each agent (e.g., intersection, zones, OHT) that can lead a global performance of the whole system (AMHS)

Motivation

Equilibrium concept: Team; Cooperative; Nash; Zero-sum; Stackelberg; Correlated

	Single Agent	Multi Agent
Static	Static Optimization	Static Game
Dynamic	Dynamic Optimization	Dynamic Game

Action space

Time space

	Model free	Finite	Infinite
-	Discrete	Multi-Agent Value-based RL	Multi-Agent Policy-based RL
	Continuous		

Actor-Critic algorithm is used	Team Game	Cooperative Game	Non-Cooperative Game	Non-Cooperative Game	Non-Cooperative Game	Stackelberg Game
Equilibrium Concept	Optimum Policy	Optimum Policy	Nash Equilibrium Policy	Correlated Equilibrium Policy	Mean-Field Nash Equilibrium Policy	Nash-Equilibrium Policy or Mean-Field Nash
Reward function	Common reward $R^{i}(s, a) = R(s, a) \ \forall i$	Independent $R^{i}(s,a), i=1,,n$	Independent $R^{i}(s,a), i=1,,n$	Independent $R^{i}(s,a), i=1,,n$	Independent $R^{i}(s,a), i=1,,n$	Independent $R^{i}(s, a), i = 1,, n$
Q function	Common central Q $Q(s,a) = \sum_{t=0}^{T} \gamma^t r_t$	Common central Q $Q(s,a) = \sum_{t=0}^{T} \sum_{i=1}^{N} \gamma^{t} r_{t}^{i}$	individual Q^i $Q^i(s,a) = \sum_{t=0}^T \gamma^t r_t^i ,$ $i=1,\dots,n$	individual Q $Q^i(s,a) = \sum_{t=0}^T \gamma^t r_t^i ,$ $i=1,\dots,n$	Mean field Q $Q^i\big(s,a^i,\bar{a}\big) = \sum_{t=0}^T \gamma^t r_t^i,$ $i=1,\dots,n$	individual Q $Q^i(s,a) = \sum_{t=0}^T \gamma^t r_t^i,$ $i = 1,, n$
Agents	Moderate <i>N</i>	Moderate N	Moderate <i>N</i>	Moderate N	Large N	1 to N or 1 to large N
Policy $\pi(s,a) = \prod_{i=1}^{N} \pi^{i}(s,a^{i})$	Decentralized independent policy $\pi^i(o^i, a^i), o^i = h^i(s)$	Decentralized independent policy $\pi^i(s,a^i)$	Decentralized independent policy $\pi^i(o^i, a^i), o^i = h^i(s)$	Decentralized independent policy $\pi^i(s,a^i)$	Decentralized independent policy $\pi^i(s,a^i)$	Decentralized independent policy $\pi^i(s,a^i)$
Consensus mechanism (how the mutual interaction is modeled?)	Each agent learn central $Q(s,a)$ using its own local reward and train $\pi^iig(o^i,a^iig)$	Each agent Learn central $Q(s,a)$ using its own local reward by sharing local parameters for $Q(s,a)$ and independently train $\pi^i(o^i,a^i)$	Learn other player's policy and use that to estimate $Q^i(s,a) = Q^i(s,\pi^1(s),,\pi^N(s))$	Use collective gradient (coordinated gradient)	Model agent's state distribution and consider agents collective behavior using averaged actions	
Target Application	Decentralized control for large system with single goal: (OHT, wind Farm)	Imposing coordination among agents with its individual goals	Derive the equilibrium policy under incomplete information on reward functions (ESS, EV)	Impose implicit coordination under non-cooperative setting (ESS, EV)	Modelling collective behavior of a large number of agents and find the best response (OHT, wind Farm, EV, ESS)	Optimal hierarchical decision making (Smart grid, Marketing)
Representative Paper	Counterfactual MAPG (Oxford, 2017)	Fully-Decentralized MARL (UIUC, 2018)	MADDPG (OpenAl, 2017)	Correlated-DDPG	Mean Field MARL (UCL, 2018)	Open-loop Stackelberg Learning (VT, 2017)

Recap: Actor Critic Reinforcement Learning

- Value-based RL and Policy-based RL
- Approximate value or action-value function using parameter θ

$$V_{\theta}(s) \approx V^{\pi}(s)$$

$$Q_{\theta}(s, a) \approx Q^{\pi}(s, a)$$

- Incremental Methods
 - Monte Carlo control, $TD(\lambda)$, SARSA...
- Batch Methods
 - LSTD, DQN..
- Implicit policy from value function
 - e.g. ϵ -greedy

Recap: Actor Critic Reinforcement Learning

- Value-based RL and Policy-based RL
- Use parametrized policy $\pi_{\theta}(s, a) = \mathbb{P}[a|s; \theta]$
- Policy gradient
 - State $s{\sim}d^{\pi_{\theta}}$, one-step reward $r=\mathcal{R}_{s,a}$

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r] = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$\nabla_{\theta} J(\theta) = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a \in A} \pi_{\theta}(s, a) \nabla_{\theta} \log \pi_{\theta}(s, a) \mathcal{R}_{s, a}$$

$$= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) r]$$

• Equivalent form

$$\begin{split} &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) \, \nu_{t}] & \text{Monte-Carlo} \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) \, Q^{w}(s, a)] & \text{Q function} \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) \, A^{w}(s, a)] & \text{Advantage function} \\ &= \mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) \, \delta] & \text{TD(0)} \end{split}$$

Recap: Actor Critic Reinforcement Learning

• Actor-critic maintain two sets of parameters

Critic Updates action-value function parameter w $Q^{rr}(S)$ Actor Updates policy parameters θ , in direction suggested by critic $\pi_{\theta}(S)$

$$Q^w(s,a) \approx Q^{\pi_{\theta}}(s,a)$$

$$\pi_{\theta}(s, a) = \mathbb{P}[a|s; \theta]$$

- Bias in actor-critic algorithm
 - To reduce variance, subtract a baseline function B(s) from the policy gradient

$$\mathbb{E}_{\pi_{\theta}}[\nabla_{\theta} \log \pi_{\theta}(s, a) B(s)] = \sum_{s \in S} d^{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) B(s)$$
$$= \sum_{s \in S} d^{\pi_{\theta}}(s) B(s) \nabla_{\theta} \sum_{a} \pi_{\theta}(s, a)$$
$$= 0 \quad (\because \sum_{a} \pi_{\theta}(s, a) = 1)$$

• Rewrite the policy gradient using the advantage function $A^{\pi_{\theta}}(s,a)$

$$A^{w}(s, a) = Q^{w}(s, a) - V^{w}(s)$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) A^{w}(s, a)]$$

Solving Team & Cooperative Game using Actor Critic Reinforcement Learning

Main Principle:

Centralized Training (using high fidelity simulator)

distributed and decentralized execution

- Centralized Critic Q(s,a): Capture the interactions among agents in terms of achieving a global objective
- Localized Policy $\pi_i(s, a_i)$: Determine the local action in a decentralized manner

Stochastic Game

• Transition:

$$P(s_{t+1}|a_t^1,\dots,a_t^N,s_t)$$

• Reward:

$$r_t^i(s_t, a_t^1, \dots, a_t^N)$$

• Observation:

$$o_t^i = h^i(s_t)$$

• Decentralized Policy:

$$\pi(s_t, a_t^1, \dots, a_t^N) \approx \prod_{i=1}^N \pi_i(s_t, a_t^i)$$
$$\approx \prod_{i=1}^N \pi_i(o_t^i, a_t^i)$$

• Objective of agent i:

$$\max_{\pi_i} E\left[\sum_{t=1}^T r_t^i(s_t, a_t^1, \dots, a_t^N)\right]$$

Team Game

• Transition:

$$P(s_{t+1}|a_t^1,\dots,a_t^N,s_t)$$

• Reward:

$$r_t(s_t, a_t^1, \dots, a_t^N)$$

• Observation:

$$o_t^i = h^i(s_t)$$

Decentralized Policy:

$$\pi(s_t, a_t^1, \dots, a_t^N) \approx \prod_{i=1}^N \pi_i(s_t, a_t^i)$$
$$\approx \prod_{i=1}^N \pi_i(o_t^i, a_t^i)$$

• Objective of agent i:

$$\max_{\pi_i} E\left[\sum_{t=1}^T r_t(s_t, a_t^1, \dots, a_t^N)\right]$$

Team Game & Cooperative Game

	Team Game	Cooperative Game	
Reward	Each agent shares common reward, $r(\boldsymbol{a},s)$ $a_t = (a_t^1, \dots, a_t^N)$ a_t^N a_t^N a_{t+1}^N a	Each agents have independent reward, $r^i(a,s)$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Objective	$\max_{\theta} \mathbb{E}_{\pi_{\theta}}[r(s, \boldsymbol{a})]$	$\max_{\theta} \mathbb{E}_{\pi_{\theta}} \left[\frac{1}{N} \sum_{i \in N} r^{i}(s, \boldsymbol{a}) \right]$	
Representative Paper	COunterfactual MAPG (Oxford, 2017)	Fully-Decentralized MARL (UIUC, 2018)	

		Training	
		Centralized Training	Decentralized Training
Execution	Centralized Execution	MDP	
	Decentralized Execution	Dec-(PO)MDP	?

		Training	
		Centralized Training	Decentralized Training
Execution	Centralized Execution	MDP	
	Decentralized Execution	Dec-(PO)MDP	?

Centralized Training vs Decentralized Training

- In centralized training, we assume a central learner who can access all the global information $s=(s_1,\ldots,s_N)$ and $a=(a_1,\ldots,a_N)$ for modeling mutual interactions among agents
- In decentralized training, each agent has a limited information about the global state and the joint action

		Training	
		Centralized Training	Decentralized Training
Europution	Centralized Execution	MDP	
Execution	Decentralized Execution	Dec-(PO)MDP	?

- Centralized Training vs Decentralized Training
 - In centralized training, we assume a central learner who can access all the global information $s=(s_1,\ldots,s_N)$ and $a=(a_1,\ldots,a_N)$ for modeling mutual interactions among agents
 - In decentralized training, each agent has a limited information about the global state and the joint action
- Centralized Exestuation vs Decentralized Execution
 - In centralized exestuation, a joint action $a = (a_1, ..., a_N)$ is selected by a central agent
 - In centralized exestuation, each agent selects individual action to compose a joint action:

$$\pi(s, a) \approx \prod_{i=1}^{N} \pi_i$$
 (Information of agent i, a_i)

		Training	
		Centralized Training	Decentralized Training
Evecution	Centralized Execution	MDP	
Execution	Decentralized Execution	Dec-(PO)MDP (CTDE)	?

Centralized Training

Decentralized Execution

- Centralized Training and Decentralized Execution (CTDE) is a widely adopted to overcome the non-stationarity problem when training multi-agent systems (Oliehoek et al., 2008; Kraemer & Banerjee, 2016; Jorge et al., 2016; Foerster et al., 2018)
- CTDE enables to leverage the observations of each agent, as well as their actions, to better model the interactions among agents during training.
- Depending on the information structure $h_i(s)$ of each agent has in execution, there are various approaches in CTDE
 - Local observations: each agent can access only to its local (state) observation
 - Global observations: each agent can access to the global state (observation)

CTDE framework for Team Game

		Training
		Centralized Training
Cycoution	Centralized Execution	MDP
Execution	Decentralized Execution	Dec-(PO)MDP (CTDE)

- Depending on the information that each agent can use when making a decision (information structure), CTDE has
 different approaches.
 - Local observation: $h_i(s) = s_i(\text{or } o_i)$: (when there is partial observability and/or communication constraints)

• Global observation: $h_i(s) = s(\text{or } o)$: (global observation or communication is allowed)

Information Structure in CTDE framework

Local observation: $h_i(s) = s_i(\text{or } o_i)$

$$\pi(s,a)pprox \prod_{i=1}^N \pi_i(s_i,a_i)$$
 Do not know other agent's state and action $pprox \prod_{i=1}^N \pi_i(s_i,a_i; heta_i)$:Function approximation

Consensus through central $Q(s, a; \phi)$ modeling

Global observation: $h_i(s) = s(\text{or } o)$

Consensus through Communication & GNN

Information Structure in CTDE framework (homogeneous agents)

Local observation: $h_i(s) = s_i(\text{or } o_i)$

$$\pi(s,a)pprox \prod_{i=1}^N \pi_i(s_i,a_i)$$
 Do not know other agent's state and action $pprox \prod_{i=1}^N \pi_i(s_i,a_i; heta_i)$:Function approximation $=\prod_{i=1}^N \pi(s_i,a_i; heta)$ Parameter sharing among homogeneous agents

Consensus through central $Q(s, a; \phi)$ modeling

Global observation: $h_i(s) = s(\text{or } o)$

Consensus through Communication & GNN

Information Structure in CTDE framework (groups of homogeneous agents)

Local observation: $h_i(s) = s_i(\text{or } o_i)$

$$\pi(s,a) pprox \prod_{i=1}^N \pi_i(s_i,a_i)$$
 Do not know other agent's state and action $pprox \prod_{i=1}^N \pi_i(s_i,a_i; heta_i)$: Function approximation
$$= \prod_{i=1}^N \pi(s_i,a_i; heta_{g(i)}) \quad g(i) \in \{1,\dots,M\}$$
 Parameter sharing among **a group of agents**

Consensus through central $Q(s, a; \phi)$ modeling

Critic Q(s,a)Actor 1 $a_1 = \pi_1(s;\theta_1)$ S

Actor i $a_i = \pi_i(s;\theta_i)$ S

Actor i $a_i = \pi_i(s;\theta_i)$ S

Environment

Global observation: $h_i(s) = s(\text{or } o)$

Consensus through Communication & GNN

Consensus through central Critic modeling (learning to cooperate)

Challenges in "learning to cooperate approach"

$$s = (s_1, ..., s_N)$$

$$a = (a_1, ..., a_N)$$

$$r = f(s, a)$$

$$h_1(s) \longrightarrow Agent 1$$

$$\pi_1$$

$$Agent i$$

$$\pi_i$$

$$Agent i$$

$$\pi_i$$

$$Agent N$$

$$\pi_i$$

$$Agent N$$

$$\pi_i$$

$$Agent N$$

$$\pi_i$$

$$Agent N$$

$$A$$

 $h_i(s) = o_i$

Usually local observation is assumed

Two challenging questions:

- How to represent the action-value function that capturing the interactions among agents
 - Require the global state and joint action with the associated global reward
 - Difficult to learn when the dimension of state is large
 - Difficult to learn when the dimension of action (the number of agents) is large
- How to extract decentralized policies that allow each agent to select only an individual action based on an individual observation
 - Not obvious!

Factorized or Decomposed Approaches to Represent Central Q

Individual Action Value Function (IQL)

- Cannot explicitly represent interactions between the agents and may not converge, as each agent's learning is confounded by the learning and exploration of others
- (Tan, 1993)

Factorized or Decomposed
Approaches
(with structural assumptions)

- Learn a fully centralized but factorized state-action value function Q(s, a)
- Apply an inductive biases (structural assumptions) to factorize or decompose the Q(s, a)
- Simple example would be fully decomposed one:

$$Q(s,a) = Q_1(s_1, a_1) + \dots + Q_N(s_N, a_N)$$

- Value Decomposition Network (VDN) (Sunehag et al., 2019)
- Monotonic Value Function Factorization (QMIX) (Rashid et al., 2018)

Fully Centralized State Action Value Function

+

Decentralized Policy (Actor Critic Framework)

- Learn a fully centralized state-action value function Q(s, a) and then use it to guide the optimization of decentralized policies in an actor-critic framework
- Counterfactual multi-agent (COMA) policy gradients (Foerster 3t al., 2018)
- (Gupta et al., 2017)
- These requires on-policy learning, which can be sample-inefficient
- Not scalable to learn central Q(s, a) with more than a handful of agents

Consensus through Communication (learning to communicate)

Why Communication is Required?

- Communication is a fundamental aspect of intelligence, enabling agents to behave as a group, rather than a collection of individuals
- It is vital for performing complex tasks in real-wolrld environments whre each actor has limited capabilities and/or visibility of the world
- Practical examples include
 - Elevator control
 - Sensor network
 - Robot soccer
- In any partially observed environment, the communication between agents is vital to coordinate the behavior of each individual

Categorization of Communication

Graph Neural Networks

- Combinatorial generalization is an ability for constructing new inferences, predictions and behaviors from known building blocks. (AI to achieve a human-like abilities)
- Relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and the rules for composing them
- We need models with explicit representations of entities and relations, and learning algorithms which find rules for computing their interactions, as well as ways of grounding them in data.
 - > Thus, we need Graph

Graph Neural Networks

(Figure: example showing how GNN process and propagate data among nodes and edges)

- Graph The Neural Network (GNN) accepts a graph $G=(\boldsymbol{u},\ V,\ E)$ as an input
 - \checkmark u is global attribute
 - \checkmark V is a set of nodes (each represented by attributes)
 - \checkmark E is a set of edges (also represented by attributes)
- Graph Neural Network (GNN) outputs a graph or vector as predictions
- GNN learns how to propagate and process the data among neighboring nodes and edges using neural network
- Because it learns the relationships among nodes, it can applied to any size of graph with different nodes (generalization)

Input a graph, defined as tuple G = (u, V, E)

- \boldsymbol{u} is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Input a graph, defined as tuple G = (u, V, E)

- $oldsymbol{u}$ is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_i^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_i^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- $oldsymbol{u}$ is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_{i}^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- $oldsymbol{u}$ is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_i^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$

• Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_i^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

$$\begin{pmatrix} h_i^{(1)} \end{pmatrix} \leftarrow \overline{m}_i^{(0)} + \left(h_i^{(0)} \right)$$

Input a graph, defined as tuple G = (u, V, E)

- \boldsymbol{u} is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N) \text{ for all } i$$

$$\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E) \text{ for all } (i, j) \text{ pair}$$

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_{i}^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \bar{m}_i^{(0)}; \theta_1^u\right)$$

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- \boldsymbol{u} is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_i^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_{i}^{(0)} = \sum_{i \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u)$$
 for all *i*

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- **u** is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N) \text{ for all } i$$

$$\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E) \text{ for all } (i, j) \text{ pair}$$

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\bar{m}_i^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$
 for all i

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u\right)$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- u is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\overline{m}_{i}^{(0)} = \sum_{i \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$
 for all i

Edge Update

$$\eta_{ij}^{(1)} = g(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u) \text{ for all } i$$

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \boldsymbol{\eta}^{(1)}; \theta_3^u)$$

Input a graph, defined as tuple G = (u, V, E)

- $oldsymbol{u}$ is global attribute
- $V = \{v_1, ..., v_N\}$ is a set of nodes with v_i node features
- $E = \{e_{12}, ..., e_{iN}\}$ is a set of edges with e_{ij} edge features

Node Initialization & Edge Initialization

$$h_i^{(0)} = f(v_i; \theta_0^N)$$
 for all i
 $\eta_{ij}^{(0)} = f(e_{ij}; \theta_0^E)$ for all (i, j) pair

Message Computation

$$m_{ij}^{(0)} = g\left(h_j^{(0)}, h_i^{(0)}, \eta_{ij}^{(0)}; \theta^m\right)$$
 for all (i, j) pair

Aggregate Message

$$\bar{m}_i^{(0)} = \sum_{j \neq i} m_{ij}^{(0)}$$

Node & Update

$$h_i^{(1)} = g\left(h_i^{(0)}, \overline{m}_i^{(0)}; \theta_1^u\right)$$
 for all i

Edge Update

$$\eta_{ij}^{(1)} = g\left(\eta_{ij}^{(0)}, h_i^{(1)}, h_j^{(1)}; \theta_2^u\right)$$
 for all i

$$\mathbf{u}^{(1)} = g(\mathbf{u}^{(0)}, \mathbf{h}^{(1)}, \mathbf{\eta}^{(1)}; \theta_3^u)$$
where $\mathbf{h}^{(1)} = \{\mathbf{h}_1^{(1)}, ..., \mathbf{h}_N^{(1)}\}$ $\mathbf{\eta}^{(1)} = \{\mathbf{\eta}_1^{(1)}, ..., \mathbf{\eta}_N^{(1)}\}$

- As the iteration repeats, the information from the far nodes can be propagated into a target node
- The propagated and processed data at a target node then capture the information about all nodes

Objective:

Find the decentralized policy $\pi_{\theta}(s, a) \approx \prod_{i=1}^{N} \pi_{\theta_i}(s_i, a_i)$

Message computation

- $\bar{h}_i = \sum_{j \in \mathcal{N}(i)} m(h_i, h_j)$ or
- $\bar{h}_i = \sum_{j \in \mathcal{N}(i)} a_{ij} m(h_j)$ or
- $h_i = \sum_{j \in \mathcal{N}(i)} m(h_j)$

Node update

• $h'_i = g(h_i, \bar{h}_i)$

GNN for approximating global Q

Centralized Critic:

Decentralized actor

GNN for approximating global **Q**

Centralized Critic:

Decentralized actor

GNN for approximating Individual Policy

GNN for approximating global **Q**

Centralized Critic:

Decentralized actor

GNN for approximating Individual Policy

Centralized Training Decentralized Execution

Summary

- Widely adopted to overcome the non-stationarity problem when training multi-agent systems
- CTDE enables to leverage the observations of each agent, as well as their actions, to better estimate the action-value functions during training.
- As the policy of each agent only depends on its own private observations during training, the agents are able to decide which actions to take in a decentralized manner during execution