In the Claims

Please amend the claims of the above-identified application as follows:

Claims 1 - 18 (cancelled)

- 19. (currently amended) A pharmaceutical composition for the treatment of appetency disorders containing a CB₁ receptor antagonist and a regulator of metabolic functions together with a pharmaceutical excipient.
- 20. (previously amended) A pharmaceutical composition according to claim 19 wherein said regulator of metabolic functions is a β_3 -agonist.
- 21. (previously amended) A pharmaceutical composition according to claim 20 wherein the CB₁ receptor antagonist is a compound of the formula

$$R_1CH_2$$
 CO-NH-NR₂R₃
 N
 N
 R_7
 R_8
 R_9
 R_6
(II)

in which:

- R₁ is hydrogen, a fluorine, a hydroxyl, a (C₁-C₅)alkoxy, a (C₁-C₅)alkylthio, a hydroxy(C₁-C₅)alkoxy, a group -NR₁₀R₁₁, a cyano, a (C₁-C₅)alkylsulfonyl or a (C₁-C₅)alkylsulfinyl;
- R₂ and R₃ are a (C₁-C₄)alkyl or, together with the nitrogen atom to which they are bonded, form a saturated or unsaturated 5- to 10-membered heterocyclic radical which is unsubstituted or monosubstituted or polysubstituted by a (C₁-C₃)alkyl or by a (C₁-C₃)alkoxy;
- R₄, R₅, R₆, R₇, R₈ and R₉ are each independently hydrogen, a halogen or a trifluoromethyl, and if R₁ is a fluorine, R₄, R₅, R₆, R₇, R₈ and/or R₉ can also be a fluoromethyl, with the proviso that at least one of the substituents R₄ or R₇ is other than hydrogen;
- R₁₀ and R₁₁ are each independently hydrogen or a (C₁-C₅)alkyl, or R₁₀ and R₁₁, together with the nitrogen atom to which they are bonded, form a heterocyclic radical selected from pyrrolidin-1-

yl, piperidin-1-yl, morpholin-4-yl and piperazin-1-yl, which is unsubstituted or substituted by a (C_1-C_4) alkyl,

one of its salts or one of their solvates.

- 22. (previously amended) A pharmaceutical composition according to claim 21 wherein the CB₁ receptor antagonist is N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide, one of its pharmaceutically acceptable salts or one of their solvates.
- 23. (previously amended) A pharmaceutical composition according to claim 21 wherein the β_3 -agonist is a compound of the formula

$$X$$

OH

CH-CH₂-NH

OR (III)

in which:

- X is hydrogen, a halogen, a trifluoromethyl or a (C₁-C₄)alkyl;

or one of its pharmaceutically acceptable salts.

- R is hydrogen or a methyl which is unsubstituted or substituted by a carboxyl or an alkoxycarbonyl in which the alkoxy is (C_1-C_6) ,
- 24. (previously amended) A pharmaceutical composition according to claim 21 wherein the β_3 -agonist is a compound of the formula

$$\begin{array}{c|c} OX' & Y & Z \\ \hline & & \\ A\text{-CH-CH}_2\text{-N-CH-(CH}_2)_n - W \\ \hline & & \\ R" \end{array}$$
 (IV)

in which:

- n is 1, 2 or 3;
- A is a benzofuran-2-yl or a phenyl which is unsubstituted or substituted by one or two halogen atoms or by a (C_1-C_4) alkyl or a trifluoromethyl;

- R' is:
- hydrogen;
- a (C_1-C_6) alkyl;
- a functional group selected from the following groups: hydroxyl; (C₁-C₆)alkoxy; (C₂- $C_6) alkenyloxy; \ (C_2-C_6) alkynyloxy; \ (C_3-C_8) cycloalkoxy; \ (C_3-C_8) cycloalkyl(C_1-C_6) alkoxy; \ (C_3-C_8) cycloalkyl(C_1-C_8) cyclo$ benzyloxy; phenoxy; mercapto; (C1-C6)alkylthio; (C2-C6)alkenylthio; (C2-C6)alkynylthio; (C_3-C_8) cycloalkylthio; (C_3-C_8) cycloalkyl (C_1-C_6) alkylthio; benzylthio; phenylthio; (C_1-C_6) C₆)alkylsulfinyl; (C₂-C₆)alkenylsulfinyl; (C₂-C₆)alkynylsulfinyl; (C₃-C₈)cycloalkylsulfinyl; (C_3-C_8) cycloalkyl (C_1-C_6) alkylsulfinyl; benzylsulfinyl; phenylsulfinyl; (C_1-C_6) alkylsulfonyl; (C₂-C₆)alkenylsulfonyl; (C₂-C₆)alkynylsulfonyl; (C₃-C₈)cycloalkylsulfonyl; (C₃-C₈)cycloalkyl(C1-C6)alkylsulfonyl; benzylsulfonyl; phenylsulfonyl; cyano; nitro; amino which is unsubstituted or substituted by one or two identical or different radicals selected from (C1-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, (C₃-C₈)cycloalkyl, (C₃-C₈)cycloalkyl(C₁-C₆)alkyl, benzyl and phenyl groups; carboxyl; alkoxycarbonyl in which the alkoxy is (C₁-C₆); $(C_2-C_6) alkenyloxycarbonyl; \ (C_2-C_6) alkynyloxycarbonyl; \ (C_3-C_8) cycloalkoxycarbonyl; \$ C₈)cycloalkyl(C₁-C₆)alkoxycarbonyl; benzyloxycarbonyl; phenoxycarbonyl; and carbamoyl which is unsubstituted or substituted on the amino group by one or two identical or different radicals selected from (C1-C6)alkyl, (C2-C6)alkenyl, (C2-C6)alkynyl, (C3-C8)cycloalkyl, (C₈)cycloalkyl(C₁-C₆)alkyl, benzyl and phenyl groups;
- a group R''' selected from the following groups: (C_1-C_6) alkyl substituted by a functional group; (C_2-C_6) alkenyl substituted by a functional group; (C_2-C_6) alkenyl substituted by a functional group; phenyl (C_1-C_6) alkyl substituted on the phenyl by a (C_1-C_6) alkyl or by a functional group; phenyl (C_2-C_6) alkenyl substituted on the phenyl by a (C_1-C_6) alkyl or by a functional group; phenyl (C_2-C_6) alkynyl substituted on the phenyl by a (C_1-C_6) alkyl or by a functional group; benzyl substituted on the phenyl by a (C_1-C_6) alkyl or by a functional group; and phenyl which is unsubstituted or substituted by a (C_1-C_6) alkyl or by a functional group, the functional group being as defined above;
- a group O-R", S-R", SO-R" or SO₂-R", in which R" is as defined above;

- a group NR'"R°, in which R'" is as defined above and R° is hydrogen or is as defined above for R'", or R'" and R°, together with the nitrogen to which they are bonded, form a group selected from pyrrolidino, piperidino and morpholino groups;
- a group COOR" or a group CO-SR", in which R" is as defined above;
- a group CONR"'R°, in which R" is as defined above and R° is hydrogen or is as defined above for R", or R" and R°, together with the nitrogen to which they are bonded, form a group selected from pyrrolidino, piperidino and morpholino groups;
- a group SO₂NR'"R°, in which R'" is as defined above and R° is hydrogen or is as defined above for R'", or R'" and R°, together with the nitrogen to which they are bonded, form a group selected from pyrrolidino, piperidino and morpholino groups;
- R" is hydrogen; a halogen; a (C₁-C₆)alkyl; a functional group as defined above; a group OR", R" being as defined above; or a group CONR"R°, in which R" is as defined above and R° is hydrogen or is as defined above for R", or R" and R°, together with the nitrogen to which they are bonded, form a group selected from pyrrolidino, piperidino and morpholino groups;
- W is a direct bond or an oxygen atom;
- X' is hydrogen, a (C_1-C_6) alkyl or a (C_1-C_6) alkylcarbonyl;
- Y is hydrogen or a group A'-CH(OH)-CH₂-, A' being identical to A but other than benzofuran-2-yl; or
- X' and Y, taken together, form a methylene group optionally substituted by an alkoxycarbonyl in which the alkoxy is (C₁-C₆); an ethylene group optionally substituted by an oxo group; or a 1,3-propylene group;
- Z is hydrogen or a (C₁-C₆)alkyl, or one of its pharmaceutically acceptable salts.
- 25. (previously amended) A pharmaceutical composition according to claim 21 wherein the β_3 -agonist is a compound of the formula

$$\begin{array}{c} OH \\ CH-CH_2-NH-CH_2 \\ \end{array} \hspace{0.5cm} (V)$$

in which:

- E is hydrogen, a (C_1-C_4) alkyl, a (C_1-C_4) alkoxy, a phenyl, a nitro, a halogen atom or a trifluoromethyl;
- L is hydrogen, a (C₁-C₄)alkyl, a (C₁-C₄)alkoxy, a phenyl, a nitro or a halogen atom; or E and L together are a group -CH=CH-CH=CH- or -CH₂-CH₂-CH₂-CH₂-; and
- G is hydrogen, a chlorine atom, a hydroxyl or a group OG', in which G' is a (C₁-C₄)alkyl which is unsubstituted or substituted by a hydroxyl, (C₁-C₄)alkoxy, (C₁-C₄)alkoxycarbonyl, carboxyl or (C₃-C₇)cycloalkyl; a (C₃-C₇)cycloalkyl; or a (C₂-C₄)alkanoyl, or one of its pharmaceutically acceptable salts.
- 26. (previously amended) A pharmaceutical composition according to claim 23 wherein the β_3 agonist is N-[(2S)-7-ethoxycarbonylmethoxy-1,2,3,4-tetrahydronaphth-2-yl]-(2R)-2-(3-chlorophenyl)-2-hydroxyethanamine or one of its pharmaceutically acceptable salts.
- 27. (previously amended) A pharmaceutical composition according to claim 23 containing from 0.5 to 600 mg of CB₁ receptor antagonist and from 0.5 to 600 mg of β_3 -agonist.
- 28. (original) A pharmaceutical composition according to claim 27 containing from 1 to 400 mg of CB₁ receptor antagonist and from 2 to 400 mg of β_3 -agonist.
- 29. (original) A pharmaceutical composition according to claim 28 containing from 2 to 200 mg of CB₁ receptor antagonist and from 10 to 250 mg of β_3 -agonist.

Claims 30 - 38 (cancelled)

39. **(previously added)** A pharmaceutical composition according to claim 26 wherein the CB₁ antagonist is N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide or one of its pharmaceutically acceptable salts or one of their solvates.