User Datagram
Protocol
(UDP)

COKET = IP адрес + номер на порт

Server

Application

Destination port number selects the process

Data

Destination IP address selects the server

19 address
193.14.26.7

13

Figure 13.3

Forouzan, B.A., TCP/IP Protocol Suit, 4th ed., McGraw-Hill, 2010

8

UDP: Контролна сума (опционна) 10011001 00010010 -00001000 01101001 -10101011 00000010 -**→** 171.2 00001110 00001010 -→ 14.10 153.18.8.105 00000000 00010001 -→ 0 and 17 171.2.14.10 00000000 00001111 -00000100 00111111 -→ 1087 All 0s 00000000 00001101 -00000000 00001111 -1087 13 00000000 00000000 → 0 (checksum) 15 All 0s ◀ 01010100 01000101 -01010011 01010100 S and T 01001001 01001110 G All 0s 01000111 00000000 -→ G and 0 (padding) 10010110 11101011 --- $101101001 00010100 \longrightarrow Checksum$ Forouzan, B.A., TCP/IP Protocol Suit, 2nd ed., McGraw-Hill, 200 Figure 11-9

10

UDP: Функциониране

• RFC 768

9

- Дейтаграмна услуга
- Без съединение
 - Няма повторни предавания при констатиране на грешки
 - Всяка UDP дейтаграма се доставя независимо от другите
 - Доставка с най-добро възможно усилие (best effort)
 - Дейтаграмите могат да се загубят, да бъдат доставени непоред и т.н.
- Дейтаграмите НЕ се номерират
- Недостатъци
 - Ненадеждна услуга
 - Доставката и предотвратяване на дублирания <u>НЕ са гарантирани!</u>
 - Неподходящ за трафик, чувствителен към загуби.
- Предимства
 - По-бърз от ТСР
 - По-малко допълнителни разходи (режийни) от ТСР
 - Поддържа multicasting (TCP не може!)
 - Подходящ за предаване на интерактивен мултимедиен трафик

UDP: Контрол на потока и на грешките?

- Няма контрол на потока
- Слаб контрол на грешките
 - Само контролна сума, по желание.
- Затова тези видове контрол трябва да се поддържат от приложния протокол, използващ транспортните услуги на UDP.

þ. Иван

14

UDP: Използване

- Приложни протоколи с прост комуникационен
- механизъм тип `заявка/оттовор`, например DNS.

 Ако заявката или оттоворът се изгубят, ще се направи нов опит за предаване след изтичане на времето за изчакване.
- Приложения, работещи в реално времет, без нужда от повторно предаване.

 Глас, видео, телеметрия.

 Некритични приложения
- Мониторинг
- Broadcast анонсиране, актуализация на маршрути в RIP, ...
- Приложни протоколи със собствен контрол на потока и на грешките
 - Trivial FTP (TFTP)
 - Протоколи за управление (например, SNMP)
- Multicasting предаване В безжична среда
- - За да се избегнат някои ТСР проблеми, например ненужни
 - повторни предавания поради липса на потвърждения. Приложенията могат да дефинират свои собствени схеми за потвърждение и правила за повторно предаване

16

UDP: **Ц**изайн Process Processes (when started) Data Control-block D Data Data Data Input module Output module Control-block table IP UDP UDP User datagram User datagram b. Иван Forouzan, B.A., TCP/IP Protocol Suit, 4th ed., McGraw-Hill, 2010

UDP дизайн: Контролен модул (Control-Block Module)

Получава: ID на процеса и номер на порта.

- 1. Претърсва контролната таблица за свободен запис (FREE)
 - Ако (липсва свободен запис)
 - 1. Изтрива на 1 стар запис, по предварително зададена стратегия. Създава на нов запис със статус IN-USE
 - Добавя ID на процеса и номер на порта
 - Връща се в началото

••	Брыща ее в на налото					
	State	Process ID	Port number	Incoming Queue number	Outgoing Queue number	
	IN-USE	23	52010	34	56	
	IN-USE	34	52201		61	
	FREE					
	Control-Block Table					

Real-time Transport Protocol (RTP)

Транспортен протокол за мултимедийни **RTP** приложения, работещи в реално време Например, Интернет радио, Интернет телефония / VoIP, музика по заявка, видео при поискване, видеоконференции Multimedia application Мултиплексира няколко потока данни в един поток от UDP дейтаграми User Няма собствен механизъм за доставка space **RTP** Затова използва услугите на UDP (и по-рядко на TCP, RFC 4571) Използва <u>четни</u> номера на портове Основни <u>услуги</u>: Socket interface <u>Идентификация на вида на кодиране</u> на данните Използване на времеви щампи (time-stamps) за справяне с вариациите на закъснението (jitter) **UDP** Последователно номериране OS Позволява на получателя да открива липсващи или получени непоред RTP пакети IP Kernel Мониторинг на доставката Миксиращи услуги Ethernet Транспортен протокол, реализиран в приложния слой.

— RFC 1889, 3550 Tanenbaum, A.S. & Wetherall D.J., Computer Networks, 5th ed., Pearson, 201.

21

Адаба олад/от чабо RTP:

Функциониране

(напр. 64-kb/s глас)

Орудкая възможе

Втоски възможе възможе

да компенсира липсващите данни чрез интерполация.

Ваманите на закъснението (йист) на пакстите се заглажлат

25

22

RTP: Функциониране (прод.)

- Трансфер на данни в реално време между участници в мултимедийна сесия
 - Multicast или unicast
- Всеки източник
 - Има свой собствен независим RTP поток
 - Например, микрофон или уеб камера.
 - Идентифициран е в RTP заглавната част
 - Поставя времева щампа (timestamp)
- Може да съществуват няколко потока между 2 хоста
 - Например, 4 потока при видео разговор.
 - 2 потока за аудио (по 1 във всяка посока)
 - 2 потока за видео (по 1 във всяка посока)
- Много от техниките за кодиране обединяват аудиото и видеото в един поток
 - Например, MPEG1/2

RTP: Функциониране (прод.)

- RTP пакетите се номерират
 - С последователни номера
 - За откриване на липсващи пакети

чрез буфериране на възпроизвеждането

- <u>Повторно предаване НЕ се използва</u> (тъй като няма смисъл за приложения, работещи в реално време)
 - Няма контрол на потока
 - Няма контрол на грешките
 - Няма потвърждения
- <u>Липсващата стойност</u> или се прескача от приложението (например, прескачане на видео кадър), или се възстановява чрез интерполация (например, при аудио).
- RTP данните съдържат кодирано аудио/видео
 - Различни профили
 - Например, 1 аудио поток.
 - За всеки профил има няколко формата за кодиране
 - Напр. ИКМ/РСМ, делта-модулация, GSM кодиране, MP3 и др.
 - Форматът е указан в полето Payload Type

þ. Иван

29

Пример без използване на времеви щампи Client Internet 00.00.00 00.00.01 First Packet 00.00.10 00.00.15 Second Packet 00.00.20 00.00.27 Third Packet 00.00.30 00.00.37 Send time Forouzan, B.A., TCP/IP Protocol Suite, 4th ed., McGraw-Hill, 2010 Arrive and play time

33

Буфер за възпроизвеждане: Пример

At time 00:00:08

Arrival

Arrival

Arrival

Playback

Arrival

Playback

Playback

Arrival

Playback

Figure 25.17

Forouzan, B.A., TCP/IP Protocol Suite, 4th ed., McGraw-Hill, 2010

р. Иван

Real-time
Transport

<u>Control</u>
Protocol
(RTCP)

35 36

RTCP

- Real-time Transport Control Protocol
 - НЕ транспортира данни
 - Подпомага RTP
 - RTP използва само 1 вид съобщение за пренасяне на данни от източника до получателя
 - Повече видове съобщения са необходими в една сесия
 - Добавя функционалност на системно ниво:
 - Управление на потока
 - Например, получателят да може да интегрира и синхронизира отделните пакетни потоци заедно.
 - Контрол на качеството на обслужване (QoS)
 - Например, източникът да бъде <u>информиран</u> за качеството на аудио/видео разпространението с цел <u>приспособяване</u> към състоянието на мрежата в момента (напр. пропускателна способност, закъснение, вариране на закъснението, ...).
- Контрол на обратната връзка
 Например, получателят изпраща информация обратно към източника, която може да се използва за диагностициране на неизправности в аудио/видео разпространението.
 • RFC 1889, 3550

37

38

