PAT-NO:

JP411275847A

DOCUMENT-IDENTIFIER:

JP 11275847 A

TITLE:

TWO-SHAFT STEPPING MOTOR

PUBN-DATE:

October 8, 1999

INVENTOR-INFORMATION:

NAME

IDA, OSAMU N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

MATSUSHITA ELECTRIC IND CO LTD N/A

APPL-NO:

JP10070159

APPL-DATE:

March 19, 1998

INT-CL (IPC): H02K037/14, H02K037/12

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a two-shaft stepping motor having two output shafts which are separated and used independently for OA and AV apparatuses.

SOLUTION: In an outer yoke 1 and an inner yoke 2, pole teeth are provided on the internal-diameter and external-diameter sides of a disk-like collar, and an inner rotor 8 and an outer rotor 14 are constituted, and

these two output

shafts separate from each other and rotate independently. Consequently, it is

possible to obtain a two-shaft stepping motor whose one output shaft keeps

rotating, even if the other output shaft stops due to

overload.

COPYRIGHT: (C) 1999, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-275847

(43)公開日 平成11年(1999)10月8日

(51) Int.Cl. ⁶	識別記号	F I
H02K 37/14	5 3 5	H02K 37/14 535M
		5 3 5 V
37/12	5 1 1	37/12 5 1 1

審査請求 未請求 請求項の数6 OL (全 7 頁)

(21)出願番号	特願平10-70159	(71)出願人 000005821
		松下電器産業株式会社
(22)出願日	平成10年(1998) 3月19日	大阪府門真市大字門真1006番地
		(no) vouste them the
		(72)発明者 井田 修
		大阪府門真市大字門真1006番地 松下電器
		人数/引 1光:17/1 1 1光:1000周/2 1A 1 岩和
		産業株式会社内
		(74)代理人 弁理士 滝本 智之 (外1名)

(54) 【発明の名称】 2軸ステッピングモータ

(57)【要約】

【課題】 OA機器やAV機器に使用されるステッピングモータにおいて、2つに分離・独立した出力軸を有する2軸ステッピングモータを提供する。

【解決手段】 外ヨーク1と内ヨーク2には、円盤状のつば部の内径側と外径側に極歯を設け、インナーロータ8とアウターロータ14を構成し、この2つの出力軸は分離・独立して回転することにより、一方の出力軸が過負荷で停止しても、もう一方の出力軸は回転し続ける2軸ステッピングモータが得られる。

【特許請求の範囲】

【請求項1】突出形成した複数の極歯を内径側と外径側 に有する2つの外ヨークと、突出形成した複数の極歯を 内径側と外径側に有する2つの内ヨークと、2つのコイ ル組立と、外周が多極着磁されたインナーロータマグネ ットとインナーロータシャフトを有するインナーロータ と、内周が多極着磁されたリング状のアウターロータマ グネットとアウターロータシャフトとロータフレームを 有するアウターロータと、軸受を有するブラケットと、 軸受を有する取付板とを備え、前記インナーロータシャ 10 フトと前記アウターロータシャフトとは互いに分離・独 立した出力軸としたことを特徴とした2軸ステッピング モータ。

【請求項2】内ヨーク、外ヨークそれぞれの内径側と外 、径側の極歯の数は、異なるようにし、さらにインナーロ ータマグネットの着磁数と、アウターロータマグネット の着磁数とを異なるように構成した請求項1記載の2軸 ステッピングモータ。

【請求項3】2つの外ヨークと、2つの内ヨークと、2 つのコイル組立とを樹脂一体成形した請求項1記載の2 軸ステッピングモータ。

【請求項4】コイル組立の端子は、モータの軸方向に形 成し、外径側の極歯より内側部に端子を配置した請求項 1記載の2軸ステッピングモータ。

【請求項5】コイル組立の端子に接続された配線は、外 ヨークの外周側極歯部と内ヨーク外周側極歯部の隙間に 配置した請求項1記載の2軸ステッピングモータ。

【請求項6】アウターロータシャフトのモータ内側部 と、インナーロータシャフトのモータ外側部に、リング 状の抜け防止機構を設けた請求項1記載の2軸ステッピ 30

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、プリンタ、複写機 などのOA機器の駆動用に使用される2軸ステッピング モータに関するものである。

[0002]

【従来の技術】従来の技術では、出力軸は1つのみであ る。一つのモータから2つの出力を得たい。第1のモー 5-64497号公報がある。

【0003】図10に従来のモータの構造を示す。図1 0において、第1のステッピングモータ101と、第2 のステッピングモータ102は共有の回転子を有し、す なわち第1のステッピングモータ101の回転子である 磁石105と、第2のステッピングモータ102の回転 子である磁石106とは連結軸107を共有し結合され ている。

【0004】また第1のステッピングモータ101の固

02の固定子の巻線104とは分離され、前記巻線10 4は出力軸108と結合され、ここから回転を取り出す よう構成されている。

【0005】上記構成において、第1のモータの単位運 動量と第2のモータの単位運動量は僅かに差が生じるよ う構成し、差動ステップ角を出力軸108より取り出す ものである。例えば、1ステップ目で第1のモータによ り回転子をCW方向に3.75°で回転させ、2ステッ プ目で第2のモータにより回転子をCCW方向に3.6 。 で回転させる信号を入力すると、出力軸を有する第2 のモータの固定子はCW方向に3.75-3.6=0. 15°回転したことになり、出力軸108から微小ステ ップ回転角度を得ることができる。

【0006】しかしこれは差動動作をさせてステップ角 分解能を上げたものであって本発明の目的とするところ とは異なる。

[0007]

【発明が解決しようとする課題】このように、従来の技 術では、第2のモータの巻線を有する固定子が回転し、 巻線の端子処理が複雑となり、また出力軸は1つのみで ある。

【0008】本発明の課題のステッピングモータには2 つの出力軸が要求され、さらにステッピングモータに は、シャフト両端の2つの出力軸のどちらかに過負荷が かかりシャフトの回転が停止した場合でも、もう一方の 出力軸はシャフトが回転し続けることが要求され、さら に2つの出力軸は、異なる回転数となることが要求さ れ、さらに2つの出力軸は、逆回転または同一回転どち らでも可能となることが要求され、さらにステッピング モータの低振動化と小型化が要求されている。

【0009】本発明は、インナーロータとアウターロー タを構成し、シャフトを2つに分離することにより、2 つの出力軸は異なる回転数とし、さらにステッピングモ ータの低振動化と小型化の実現を目的とする。

[0010]

【課題を解決するための手段】上記課題を解決するため に本発明は、突出形成した複数の極歯を内側と外側に有 する2つの外ヨークと、突出形成した複数の極歯を内側 と外側に有する2つの内ヨークと、2つのコイル組立 タと第2のモータを複合して構成した例としては特開平 40 と、外周が多極着磁されたマグネットとシャフトを有す るインナーロータと、内周が多極着磁されたリング状の マグネットとシャフトとロータフレームを有するアウタ ーロータと、軸受を有するブラケットと、軸受を有する 取付板とを備えたステッピングモータにおいて、シャフ トを2つに分離し、インナーロータとアウターロータを 構成して、2つの分離・独立した出力軸を構成したもの である。

[0011]

【発明の実施の形態】本発明の請求項1に記載の発明 定子である巻線103と、第2のステッピングモータ1 50 は、突出形成した複数の極歯を内径側と外径側に有する 2つの外ヨークと、突出形成した複数の極歯を内径側と外径側に有する2つの内ヨークと、2つのコイル組立と、外周が多極着磁されたインナーロータマグネットとインナーロータシャフトを有するインナーロータと、内周が多極着磁されたリング状のアウターロータマグネットとアウターロータシャフトとロータフレームを有するアウターロータと、軸受を有するブラケットと、軸受を有する取付板とを備えたステッピングモータにおいて、2つのシャフトを有することを特徴としたものである。このように、2つの出力軸は分離・独立して構成できる10作用を有する。

【0012】本発明の請求項2に記載の発明は、内ヨーク、外ヨークそれぞれ内側と外側の極歯の数は、異なるようにし、さらにインナーロータマグネットの着磁極数と、アウターロータマグネットの着磁極数とを異なるように構成した請求項1記載の2軸ステッピングモータである。このように、アウターロータが対向する極歯数とが異なるように構成したことにより、同じ入力信号で回転制御した場合でも、アウターロータとインナーロータの回転数は異な 20り、その差は極歯数の差で決定できるという作用を有する。

【0013】本発明の請求項3記載の発明は、2つの外ヨークと、2つの内ヨークと、2つのコイル組立を樹脂一体成形した請求項1記載の2軸ステッピングモータである。このように、ステータを構成する2つの外ヨークと、2つの内ヨークと、2つのコイル組立を樹脂一体成形して固着することにより、外ヨーク、内ヨーク、コイル組立の、固着部の剥離、がたつきの低減という作用を有する。

【0014】本発明の請求項4に記載の発明は、コイル 組立の端子を、モータの軸方向に形成し、外側極歯の外 周より内部に端子を配置した請求項1記載の2軸ステッ ピングモータである。このように、モータの半径方向で はなく、軸方向にコイル組立の端子を形成し、さらに端 子は、外ヨーク外周側の極歯部と、内ヨーク外周側の極 歯部とが噛み合わせる隙間部に配置されたことにより、 アウターロータとコイル組立の端子が接触することを防 ぐ作用を有する。

【0015】本発明の請求項5記載の発明は、コイル組 40 立の端子に接続された配線は、外ヨークの外周側極歯部 と内ヨーク外周側極歯部の隙間に配置した請求項1記載の2軸ステッピングモータである。このように、配線を 外周側極歯部の内側に配置したことにより、アウターロータと配線が接触することを防ぎ、かつ2つのコイルの 出力端子は、取付板とロータフレームの隙間付近に配置 できる作用を有する。

【0016】本発明の請求項6に記載の発明は、アウターロータのシャフトのモータ内側部と、インナーロータのシャフトのモータ外側部に、リング状の抜け防止機構 50

を設けた請求項1記載の2軸ステッピングモータである。このように、ロータのスラストがたつき量を制限さ

る。このように、ロータのスラストがたつき量を制限させることにより、ロータの抜けと、2つのシャフトの端面同士が接触することを防ぐ作用を有する。

[0017]

持されている。

【実施例】以下、本発明の実施例について図面を参照しながらその動作を説明する。

【0018】(実施例1)図1及び図2において、円盤 状のつば部の内径側と外径側に突出形成した複数の極歯 を有する外ヨーク1と、円盤状のつば部の内径側と外径 側に突出形成した複数の極歯を有する内ヨーク2とは、 コイル組立3を挟みこみながら、同軸上に、極歯部が互 いに噛み合うラジアル位置に固定され、さらに前記と同 様に外ヨーク1と内ヨーク2とコイル組立3を組み合わ せ固定され、この2つの固定された部品は、内ヨーク2 が互いに背合わせになるよう固定され、ステータを構成 する。

【0019】このステータの略同軸度上に、軸受4を備えた取付板5が固着され、さらに外周が多極着磁されたインナーロータマグネット6と、インナーロータシャフト7を有するインナーロータ8が、内径側の極歯部と、インナーロータ8の外径にわずかな隙間を介して対向するように挿入され、インナーロータシャフト7は前記軸受4により、回転自在に支持されている。

【0020】そして前記取付板5と反対側の、ステータの同軸上には、軸受9を備えたブラケット10が固着され、さらに内周が多極着磁されたアウターロータマグネット11とアウタロータシャフト12とロータフレーム13を有するアウターロータ14が、外径側の極歯部と、アウターロータ14の内径側にわずかな隙間を介して対向するように挿入され、アウターロータシャフト1

2は前記ブラケット10の軸受9により、回転自在に支

【0021】この構成により、インナーロータ8とアウターロータ14は別々に分離して回転自在に支持でき、2つの出力軸は分離して構成される作用を有し、インナーロータ8又はアウターロータ14のどちらか一方が過負荷により回転停止しても、もう一方のロータは回転しつづけることができる優れた2軸ステッピングモータを実現できるものである。

【0022】(実施例2)以下、本発明の第2の実施例について、図面を参照しながらその動作を説明する。図3において、インナーロータ8とアウターロータ14は別々に分離して回転自在に支持でき、2つの出力軸は分離して構成した点は、実施例1を示す図1,図2と同様なものである。図1,図2と差異がある点は、内ヨーク2、外ヨーク1それぞれ内径側の極歯15と外径側の極歯16を異なる数に構成し、さらにインナーロータマグネット6の着磁極数と、アウターロータマグネット11の着磁極数とを異なるように構成した点である。

【0023】この構成により、アウターロータ14が対向する極歯数と、インナーロータ8が対向する極歯数は異なるよう形成されたことにより、同じ周波数信号で回転制御した場合でも、アウターロータ14とインナーロータ8の回転数は異なり、その回転数の差異は極歯の数で決定できるという作用を有し、2つの出力軸は異なる回転数となる優れた2軸ステッピングモータを実現できるものである。

【0024】さらに、内径側の極歯15と外径側極歯16のラジアル位置を変更して形成することにより、アウ 10ターロータ14とインナーロータ8の回転方向は逆向きとなる作用を有し、2つの出力軸は逆回転となる優れた2軸ステッピングモータを実現できるものである。

【0025】(実施例3)以下、本発明の第3の実施例について、図面を参照しながらその動作を説明する。図4,図5において、インナーロータ8とアウターロータ14は別々に分離して回転自在に支持でき、2つの出力軸は分離して構成した点は、実施例1を示す図1,図2と同様なものである。

【0026】図1,図2と差異がある点は、2つの外ヨ 20 ーク1と、2つの内ヨーク2と、2つのコイル組立3を 樹脂17で一体成形した請求項1記載の2軸ステッピングモータである。その際、取付板5とブラケット10に は段設部18を設け、樹脂の突出部19と嵌合し、取付板とブラケットは、ステータの同軸上に形成される。さらに、外ヨークの円盤状のつば部20は、露出し、この露出部分と取付板とブラケットの段設部18を固着する。

【0027】このように、ステータを構成する2つの外ヨーク1と、2つの内ヨーク2と、2つのコイル組立3 30を樹脂一体成形してステータを固着する構成により、外ヨーク1、内ヨーク2、コイル組立3の、嵌合部の剥離を防ぎ、嵌合部のがたつきを低減する作用を有し、また取付板とブラケットの段設部18と、樹脂の突出部19を嵌合して固定することにより、軸受4を有する取付板5及びブラケット10と、ステータの同軸度は容易に向上する作用を有し、低振動で回転する優れた2軸ステッピングモータを実現できるものである。

【0028】(実施例4)以下、本発明の第4の実施例について、図面を参照しながらその動作を説明する。図 406,図7において、ステータを構成する2つの外ヨーク1と、2つの内ヨーク2と、2つのコイル組立3を樹脂ー体成形して固着した点は、実施例3を示す図4,図5と同様なものである。

【0029】図4,図5と差異がある点は、コイル組立 3が有するマグネットワイヤ64からあげられた端子6 1を、モータの軸方向に形成し、さらに外ヨーク1の外 側極歯と、内ヨーク2の外側極歯の隙間に前記端子61 を配置し、ステータ外周より内側に端子61を構成した 請求項3記載の2軸ステッピングモータである。 【0030】このように、モータの半径方向ではなく、 軸方向にコイル組立の端子61を形成し、さらに端子6 1は、外ヨーク外周側の極歯部と、内ヨーク外周側の極 歯部とが噛み合わせる隙間部に配置されたことにより、 アウターロータ14とコイル組立の端子61が接触する ことを防ぐ作用を有し、2軸ステッピングモータの半径 方向の小型化を実現できるものである。

【0031】(実施例5)以下、本発明の第5の実施例について、図面を参照しながらその動作を説明する。図8において、ステータを構成する2つの外ヨーク1と、2つの内ヨーク2と、2つのコイル組立3を樹脂一体成形して固着した点は、実施例3を示す図4,図5と同様なものである。

【0032】図4,図5と差異がある点は、コイル組立の端子61に接続された配線62は、外ヨークの外周側極歯部と内ヨーク外周側極歯部の隙間に配置し、前記配線62も同時に樹脂一体成形した請求項3記載の2軸ステッピングモータである。

【0033】このように、配線62を外周側極歯部の内側に配置したことにより、アウターロータ14と配線62が接触することを防ぎ、かつ2つのコイルの電流入力端子65は、取付板とロータフレームの隙間付近の同一平面上に配置でき、フレキシブル基板等の接続を容易にできる作用を有し、接触により発生するモータ回転時の振動を防止し、かつ電流入力端子65を同一平面上に形成してモータを小型化した優れた2軸ステッピングモータを実現できるものである。

【0034】(実施例6)以下、本発明の第6の実施例について、図面を参照しながらその動作を説明する。図9において、インナーロータ8とアウターロータ14は別々に分離して回転自在に支持でき、2つの出力軸は分離して構成した点は、実施例1を示す図1,図2と同様なものである。

【0035】図1,図2と差異がある点は、アウターロータシャフト7のモータ内側部と、インナーロータシャフト12のモータ外側部に、リング状の抜け防止機構63を設けた請求項1記載の2軸ステッピングモータである。

【0036】このように、リング状の抜け防止機構63 により、インナーロータのがたつき量は(軸受4と抜け 防止機構63の隙間△h1+軸受4とインナーロータの 隙間△h2)、アウターロータのがたつき量は(軸受9 と抜け防止機構63の隙間△h3+ブラケット10とア ウターロータ14の隙間△h4)以下の寸法となり、ロ ータのスラストがたつき量を制限させ、ロータの抜けを 防止し、さらに2つのシャフト端面の隙間△h5を(△ h1+△h3)より大きく配することにより、2つのシャフトの端面同士が接触することを防ぐ作用を有し、接 触による振動を防止する優れた2軸ステッピングモータ を実現できるものである。

[0037]

【発明の効果】上記実施例から明かなように、請求項1 記載の発明によれば、外ヨークと内ヨークの円盤状のつ ば部の外径側と内径側に極歯を設け、アウターロータと インナーロータを構成し、2つの出力軸を分離・独立し て形成したことにより、2つの出力軸のどちらかに過負 荷がかかりシャフトの回転が停止した場合でも、もう一 方の出力軸のシャフトが回転し続ける優れた2軸ステッ ピングモータを実現できるものである。

【0038】また請求項2記載の発明によれば、内ヨー 10 ク、外ヨークそれぞれ内径側と外径側の極歯を異なる数 に構成し、さらにインナーロータ側のマグネットの着磁 極数と、アウターロータ側のマグネットの着磁極数とを 異なるように構成し、アウターロータが対向する極歯数 と、インナーロータが対向する極歯数は異なるよう形成 したことにより、同じ周波数信号で回転制御した場合で も、アウターロータとインナーロータの回転数は異な り、その回転数の差異は極歯の数で決定できるという作 用を有し、同時に異なる回転数の2つの出力軸を得られ る優れた2軸ステッピングモータを実現できるものであ 20 る。

【0039】さらに、内径側の極歯と外径側極歯のラジ アル位置を変更して形成することにより、アウターロー タとインナーロータの回転方向は逆向きとなる作用を有 し、2つの出力軸は逆回転となる優れた2軸ステッピン グモータを実現できるものである。

【0040】また請求項3記載の発明によれば、ステー タを構成する2つの外ヨークと、2つの内ヨークと、2 つのコイル組立を樹脂一体成形としたことにより、外ヨ ーク、内ヨーク、コイル組立の嵌合部の剥離を防ぎ、嵌 30 1 外ヨーク 合部のがたつきを低減させ、また取付板とブラケットの 段設部と、樹脂の突出部を嵌合して固定することによ り、軸受を有する取付板及びブラケットと、ステータの 同軸度は容易に向上し、低振動で回転する優れた2軸ス テッピングモータを実現できるものである。

【0041】また請求項4記載の発明によれば、コイル 組立が有する端子を、モータの軸方向に形成し、さらに 外ヨークの外側極歯と、内ヨークの外側極歯の隙間に前 記端子を配置し、ステータ外周より内側に端子を配置し たことにより、アウターロータとコイル組立の端子が接 40 触することを防ぎ、2軸ステッピングモータの半径方向 の小型化を実現できるものである。

【0042】また請求項5記載の発明によれば、コイル 組立の端子に接続された配線は、外ヨークの外周側極歯 部と内ヨーク外周側極歯部の隙間に配置し、前記配線も 同時に樹脂一体成形し、配線を外周側極歯部の内側に配 置したことにより、アウターロータと配線が接触するこ とを防ぎ、接触により発生するモータ回転時の振動を低 減する優れた2軸ステッピングモータを実現できるもの である。

【0043】また請求項6記載の発明によれば、アウタ ーロータシャフトのモータ内側部と、インナーロータシ ャフトのモータ外側部に、リング状の抜け防止機構を設 け、リング状の抜け防止機構により、ロータのスラスト がたつき量を制限させることにより、ロータの抜けと、 2つのシャフトの端面同士が接触することを防ぐことに より、接触による振動を低減する優れた2軸ステッピン グモータを実現できるものである。

【図面の簡単な説明】

【図1】本発明の第1の実施例における2軸ステッピン グモータの斜視図

【図2】本発明の第1の実施例における2軸ステッピン グモータの断面図

【図3】本発明の第2の実施例における2軸ステッピン グモータの斜視図

【図4】本発明の第3の実施例における2軸ステッピン グモータのステータ部の斜視図

【図5】本発明の第3の実施例における2軸ステッピン グモータの断面図

【図6】本発明の第4の実施例における2軸ステッピン グモータのコイル組立の斜視図

【図7】本発明の第4の実施例における2軸ステッピン グモータのステータ部の樹脂成形前の斜視図

【図8】本発明の第5の実施例における2軸ステッピン グモータのステータ部の拡大斜視図

【図9】本発明の第6の実施例における2軸ステッピン グモータの断面図

【図10】従来のステッピングモータの斜視図 【符号の説明】

- - 2 内ヨーク
 - 3 コイル組立
 - 4,9 軸受

5 取付板

- 6 インナーロータマグネット
- 7 インナーロータシャフト
- 8 インナーロータ
- 10 ブラケット
- 11 アウターロータマグネット
- 12 アウターロータシャフト
 - 13 ロータフレーム
 - 14 アウターロータ
 - 15 内径側極歯
 - 16 外径側極歯
 - 17 樹脂
 - 18 取付板及びブラケットの段設部
 - 19 樹脂の突出部
 - 20 外ヨーク露出部
 - 61 コイル組立の端子
- 50 62 配線

(6) 特開平11-275847 10

63 抜け防止機構64 マグネットワイヤ

65 電流入力端子

101 第1のステッピングモータ

102 第2のステッピングモータ

103 第1のステッピングモータの巻線

9

104 第2のステッピングモータの巻線

105 第1のステッピングモータの磁石

106 第2のステッピングモータの磁石

107 連結軸

108 出力軸

【図6】

【図7】

【図8】

【図9】

【図10】

