United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Final Exam Total Marks: 50 Summer 2024

Course Code: CSE 2217 Course Title: Data Structure and Algorithms II

Time: 2 hours

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

There are **five** questions. **Answer all of them**. Show full simulation/tabulations wherever necessary. Figures in the right-hand margin indicate full marks.

1.	them. Corboth directhe follow	nstructing tions using ing table.	a road bet g a road. T Find the	tween two The cost to minimum	particular construct cost requ	cities required to co	10 12 15 10 Costs between cities					
	Roads between cities	A and B	B and D	C and D	C and E	A and C	E and F	A and F	A and D			
	cost	7	12	10	8	10	12	15	10			
	Table 1 : Road construction Costs between cities (b) If all the edge weights are positive in a Graph, then how can you find Maximum Spanning											
	Tree using	g Kruskal v rite any j	or Prim's pseudocod	algorithn le [A maxi	n? Provide	your idea	a by givin	g an exan	nple. You	do not	[2]	
				Justify m	entioning	the time c o	omplexity			skal for	[2]	
2.	` ′	operations Draw th What w	s sequentia le disjoint ill be retur	ally using paset forest rand by Fir	oath comp	oression and and and Find-	nd union-l -Set(3)? (F	oy-rank he	euristic:.	orm the	[1]	
	_	Index 1	2 3	4 5 3 4	6 7 5 7	8 9 7 7	10 11 9 2	12 13 7 12				
	Parent 1 1 1 3 4 5 7 7 7 9 2 7 12 13 Table 2 : Parent array of a Disjoint set											
	(b) Why do we use the heuristics: union-by-rank and path-compression in Disjoint-Set data structure? Explain your answer through appropriate example(s).											
3	` '	•			•	• .	•	•	even if the		[3]	

Dijkstra's algorithm can fail. Draw a diagram to explain your answer.

(b) Determine the **shortest paths** from **vertex 1** to all other vertices in the graph given in Figure 1. Show all the necessary calculations step-by-step. Additionally, **print** both the **shortest distances** and **the corresponding paths for each vertex**.

[5]

Figure 1: A weighted directed graph

(c) Justify the following statement with an appropriate example: "The single source shortest path problem satisfies the optimal substructure property".

[2]

(d) "If all the edges of a graph have equal weights, then **Breadth First Search** (**BFS**) gives the Minimum Spanning Tree and Single Source Shortest Path more efficiently than any other algorithms you have studied in this course" - do you agree or not? Show logical reasoning. **You don't have to show any simulation using BFS.**

[2]

(e) Consider the following graph in Figure 2. Use **topological sort** starting from **node 2** to find a linear ordering of the nodes. Show details.

[3]

Figure 2: Graph for topological sort

(a) Explain a scenario in which the Rabin-Karp algorithm performs no better than the naive string matching algorithm.

[2]

	` ′		_			•		•	within a text using a hash-	[5]
	based pattern-m	atching approa	ch. The c	harac	ters i	n the	text	and pat	tern are represented as follows	•
			char	a	b	c	d	f		
			code	2	3	5	7	11		
									•	
	The hash function	on is defined as	s follows:							
		/m-1		\						
	hash(s) =	$\left(\sum_{i=0}^{m-1} \left(s[i] *\right)\right)$	d ⁱ)mod	i a \	mod	l a				
	(-)	$\left(\sum_{i=0}^{\infty} \left(\sum_{i=1}^{\infty} i\right)\right)$		٦,		- 4				
		(-								
	where,									
		m = size of the string you want to hash								
	d = m + p, where $p = 3q = 131For string s = "bfd", s[0] = 'b', s[1] = 'f', s[2] = 'd'. Given this information, find all occurrences of the pattern "abd" in the text "abfabd". Show the indices of both valid hits and spurious hits$									
	•					the	ndic	es of b	oth valid hits and spurious hit	•
	(if any) using th	ie aforemention	ied nasn i	uncu	on.					
5	(a) Define three	e types of prob	ing in on	on ac	ldros	sina	with	nrone	r examples. State pros and con	s [3]
	of each probing	• • •	mg m op	cii ac	iuics	sing	** 1 t 11	prope	examples. State pros and con	, l [2]
	or each prooms	meenamen.								
	(b) Consider an	open-address	ing hash t	able	as sho	own l	elow	(Table	e 3). The table already contains	
	four data items.		ollisions a	ire ha	ndled	l by t	he fo	llowin	g hash function.	
		$h(k,i) = (h'(k) + i h''(k)) \mod m$, where $h'(k) = (2k+7) \mod m$ and $h''(k) = 1 + (3k \mod m)$; $m = 13$								
		where $h'(k) =$	(2k+7) m	od m	and /	ı''(k)	= I -	+ (3k)	mod m); m = 13	
	By showing cale	culations, redra	w the tab	le an	d sho	w fo	llowi	ng ope	rations	
	i.	Insert 52						<i>U</i> 1		[1]
		Insert 70								[2]
		Delete 98, Rep	place with	NIL						[1]
1	iv.	Search 40								[1]

									_	_	_	_	
Index	0	1	2	3	4	5	6	7	8	9	10	11	12
Value					83	12			98	27			

Table 3: Open Addressing Table

(c) What is **primary clustering**? Do you think there is any 'primary clustering' in Table 3? Justify your answer.

[2]