Corrigé - Colle 3 (Sujet 2)

MPSI2 Année 2021-2022

5 octobre 2021

Question de cours . La somme de deux fonctions périodiques est-elle périodique? Justifier.

Exercice 1. Démontrer que, pour tout $x \ge 0$, on a

$$x - \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x.$$

Solution de l'exercice 1. On pose, pour $x \ge 0$,

$$f(x) = x - \ln(1+x).$$

Alors f est dérivable sur \mathbb{R}^+ et, pour tout $x \ge 0$, on a

$$f'(x) = 1 - \frac{1}{1+x} = \frac{x}{x+1} \ge 0.$$

Ainsi, la fonction f est croissante sur l'intervalle $[0, \infty[$. De plus, f(0) = 0, donc, pour tout $x \ge 0$, on a $f(x) \ge 0$ ce qui entraı̂ne $\ln(1+x) \le x$.

Pour démontrer l'autre inégalité, on introduit cette fois la fonction g définie sur $[0, +\infty]$ par

$$g(x) = \ln(1+x) - x + \frac{x^2}{2}.$$

g est dérivable sur \mathbb{R}^+ et pour tout $x \ge 0$, on a

$$g'(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x} \ge 0.$$

g est donc croissante sur \mathbb{R}^+ et $g(0) \ge 0$, donc pour tout $x \ge 0$,

$$g(x) \geqslant 0 \quad \Leftrightarrow \quad x - \frac{x^2}{2} \leqslant \ln(1+x).$$

Exercice 2. On considère la fonction f définie par

$$f(x) = \frac{\sin(x)}{1 + \sin(x)}.$$

On note Γ sa courbe représentative dans un repère orthonormé.

- 1. Quel est le domaine de définition de f? Vérifier que f est 2π -périodique.
- 2. Comparer $f(\pi x)$ et f(x). Que dire sur Γ ?
- 3. Étudier les variations de f sur l'intervalle $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, puis déterminer la limite de f en $-\frac{\pi}{2}$.
- 4. Construire Γ à l'aide des renseignements précédents.

Solution de l'exercice 2. 1. f(x) est défini partout où le dénominateur ne s'annule pas, c'està-dire pour tout les x avec $\sin(x) \neq -1$. Le domaine de définition de f est donc

$$\mathcal{D}_f = \mathbb{R} \setminus \left\{ -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z} \right\}.$$

De plus, la 2π -périodicité de sin entraı̂ne facilement la 2π -périodicité de f.

- 2. De $\sin(\pi x) = \sin(x)$, on déduit que $f(\pi x) = f(x)$. Ceci signifie que la droite d'équation $x = \frac{\pi}{2}$ est un axe de symétrie de Γ .
- 3. Posons $g(x) = \frac{x}{x+1}$ et $h(x) = \sin(x)$. On a $f = g \circ h$. De plus, h est croissante sur l'intervalle $\left] \frac{\pi}{2}, \frac{\pi}{2} \right[$ dont l'image est] 1, 1]. La fonction g est elle croissante sur l'intervalle] 1, 1] (par exemple, on peut écrire $g(x) = 1 \frac{1}{x+1}$. Par composition, f est croissante sur $\left] \frac{\pi}{2}, \frac{\pi}{2} \right]$. De plus, on a $\sin(x) \to -1^+$ lorsque x tend vers $-\frac{\pi}{2}$ et $g(x) \to -\infty$ lorsque $x \to -1^+$. Ainsi, par composition de limites, f tend vers $-\infty$ en $-\frac{\pi}{2}$.
- 4. On construit d'abord γ sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right]$. On la déduit sur $\left]-\frac{\pi}{2},\frac{3\pi}{2}\right]$ par symétrie d'axe $x=\frac{\pi}{2}$. Enfin, on l'obtient sur \mathbb{R} par périodicité de période 2π , et donc par des translations de vecteur $2k\pi\bar{i}$, $k\in\mathbb{Z}$. On obtient :

Exercice 3. Démontrer que pour tous réels x et y, on a

$$\frac{|x+y|}{1+|x+y|} \leqslant \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

Solution de l'exercice 3. Une rapide étude montre que la fonction $u\mapsto \frac{u}{1+u}$ est croissante sur

 $[0, +\infty[$. Puisque $|x+y| \le |x| + |y|$, on en déduit que

$$\frac{|x+y|}{1+|x+y|} \leqslant \frac{|x|+|y|}{1+|x|+|y|} = \frac{|x|}{1+|x|+|y|} + \frac{|y|}{1+|x|+|y|} \leqslant \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

Exercice 4. Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Solution de l'exercice 4. Pour x > 0, posons

$$f(x) = x^{1/x} = e^{\frac{\ln(x)}{x}}$$

de sorte que $\sqrt[n]{n} = f(n)$. f est dérivable sur l'intervalle $[0, +\infty[$ et on a

$$f'(x) = \frac{1 - \ln(x)}{x^2} e^{\frac{\ln(x)}{x}}.$$

Pour x > 0, f'(x) est du signe de $1 - \ln(x)$, donc f'(x) > 0 si $x \in]0, e[$ et f'(x) < 0 si $x \in]e, +\infty[$. Puisque 3 > e, on en déduit que la fonction f est strictement décroissante sur $[3, +\infty[$. En particulier, pour $n \ge 3$, on a $f(n) \ge f(3)$, et donc la plus grande valeur de $\sqrt[n]{n}$ est atteinte pour n = 2 ou pour n = 3. Comme $\sqrt{2} \simeq 1,41$ et $\sqrt[3]{3} \simeq 1,44$ la valeur maximale vaut $\sqrt[3]{3}$.