EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Today

- Part 3: Sequential Decision Making under Uncertainty
- Test: 11/21, in class
 - Material: everything up to previous week (11/14)

Sequential Decision Making under Uncertainty

We've seen how to reason in uncertain environments

 Now we will put this reasoning machinery to work at selecting actions in a stochastic environment

 To do this we need one more piece of information, a "utility function"

Utility function

The job of this function is to capture the *long-term value* of taking an action at some state of the world

Sequential Decision Making Example

Goal: Find a sequence of actions from *every* state that maximizes "expected future reward"

SDM and Classical Planning

Sequential Decision Making

- Agent starts with no initial knowledge
- Handles stochastic
 Worlds/Actions
- Produces "policy": optimal action for each state
- Propositional only
- Optimize Utility

Classical Planning

- Agent starts with detailed structured knowledge
- DeterministicWorlds/Actions
- Produces "plan": optimal action sequence from initial state
- Can be extended to firstorder worlds
- Goal-Directed

Issues in Sequential Decision Making

Credit Assignment

- Suppose the agent performs a sequence of actions, and then the world gives it a reward (or penalty)
- Which action(s) in the sequence were really responsible for this reward (or penalty)?

Issues in Sequential Decision Making

- Exploration versus Exploitation
 - Generally, the agent will not start off by knowing the characteristics of the world it is in, specifically, how to get to the high utility states
 - It has to discover these by exploring the world
 - Suppose it has explored a bit and found some sequence of actions that looks good
 - Should it just follow (*exploit*) this sequence or explore some more and possibly find an even better sequence?

SDM Formalization

- A formal model for an SDM is defined via a Markov Decision Process (MDP)
- An MDP has six components:
 - A set of states, S, representing possible states of the world
 - A set of actions, A, representing possible actions of the agent
 - A transition function, T
 - A reward function, R
 - An initial state distribution, P_0
 - − A "discount factor", $0 \le \gamma \le 1$

Transition Function

 The transition function maps a state and action to a probability over the next state:

$$T: S \times A \times S \rightarrow [0,1]$$

$$-T(s,a,s')=Pr(s'|s,a)$$

Markov property: The next state only depends on the current state and action.

- Actions in the real world aren't necessarily deterministic
 - For a deterministic domain, T(s,a,s')=1 for one next state s' and zero elsewhere

Reward Function

- The reward function maps a state and action to a real number: $R: S \times A \rightarrow \Re$
 - -R(s,a) Markov property: The reward only depends on the current state and action.
- We assume R is a bounded function
- If there is no feedback from the environment when the agent carries out an action, this will be zero

Assumptions

- First-Order Markovian dynamics (history independence)
 - $Pr(S^{t+1}/A^t, S^t, A^{t-1}, S^{t-1}, ..., S^0) = Pr(S^{t+1}/A^t, S^t)$
 - Next state only depends on current state and current action
- First-Order Markovian reward process
 - $Pr(R^t/A^t, S^t, A^{t-1}, S^{t-1}, ..., S^0) = Pr(R^t/A^t, S^t)$
 - Reward only depends on current state and action
- Stationary dynamics and reward
 - $Pr(S^{t+1}/A^t, S^t) = Pr(S^{k+1}/A^k, S^k)$ for all t, k
 - The world dynamics do not depend on the absolute time
- Full observability
 - Though we can't predict exactly which state we will reach when we execute an action, once it is realized, we know what it is
- Static, Single Agent

Policy

- Given a Markov Decision Process, an agent follows a (deterministic) "policy" $\pi: S \to A$
 - $-\pi(s)$ is the action the agent will execute in state s

- An optimal policy, π^* , is a policy that maximizes the expected future reward from any state
 - This is what the agent needs to learn

Optimality Criterion

• Suppose the agent, following policy π , visits a state sequence s_0 , s_1 , s_2 , ...

 We will measure the goodness or utility of this sequence as the discounted infinite-horizon cumulative reward:

$$U([s_0, s_1, \ldots]) = \sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)$$
Polynomial discount factor

Discounting

- Two reasons to use this criterion:
 - Behavioral
 - Mathematical
- Behavioral: People and animals appear to prefer short term rewards over long term rewards
- Mathematical: Since visit sequences can be infinitely long, if we just add up the rewards, the sum is not well defined

Aside

- Other optimality criteria exist
 - E.g., could choose to optimize average reward
 - Or in the finite horizon case, optimize cumulative reward
- Algorithms we describe can be extended to these cases

Visit Distribution

- Since actions are stochastic, if we start at some state s_0 and follow π , we will generate many state sequences, each with some probability (product of the transition functions)
 - Call this the visit distribution

Value of a policy

 We define the value of a policy as the expected utility, where expectation is with respect to the visit distribution

 Then the optimal policy is the policy that maximizes this expected utility:

$$\pi^* = \arg\max_{\pi} E\left(\sum_{t} \gamma^t R(s_t, \pi(s_t))\right)$$

Value of a state under a policy

• We define the value of a state s under a policy π as the value of the policy given that we start at s:

$$V^{\pi}(s) = E\left(\sum_{t} \gamma^{t} R(s_{t}, \pi(s_{t})) \mid s_{0} = s\right)$$

• This is called the "value function"

Rewriting the value function

For a Markov Decision Process, we have:

$$V^{\pi}(s) = E\left(\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, \pi(s_{t})) \mid s_{0} = s\right)$$

$$= R(s, \pi(s)) + \gamma E\left(\sum_{t=1}^{\infty} \gamma^{t-1} R(s_t, \pi(s_t))\right)$$

$$= R(s,\pi(s)) + \gamma \sum_{s'} \Pr(s' \mid s,\pi(s)) \left[E\left(\sum_{t=1}^{\infty} \gamma^{t-1} R(s_t,\pi(s_t)) \mid s_1 = s'\right) \right]$$

$$= R(s, \pi(s)) + \gamma \sum_{s'} T(s, \pi(s), s') V^{\pi}(s')$$

Picture

Bellman equation