实变函数习题

王子毅 210803133@stu.yzu.edu.cn

2024年6月20日

目录

1	Homework 1	2
2	Homework 2	5
3	Homework 3	6
4	Homework 4	7
5	Homework 5	8
6	Homework 6	9
7	Homework 7	11
8	Homework 8	15
9	Homework 9	17
10	Homework 10	20
11	Homework 11	23

Exercise 1. 证明下面的等式

1.
$$\bigcup_{i=1}^{n} A_i - \bigcup_{j=1}^{m} B_j = \bigcup_{i=1}^{n} \bigcap_{j=1}^{m} (A_i - B_j);$$

2.
$$A \cap \left(\bigcup_{a \in I} B_a\right) = \bigcup_{a \in I} (A \cap B_\alpha);$$

3.
$$E - \bigcup_{a \in I} A_a = \bigcap_{a \in I} (E - A_a);$$

Proof.

1.

$$\bigcup_{i=1}^{n} A_i - \bigcup_{j=1}^{m} B_j = \bigcup_{i=1}^{n} A_i \cap \left(\bigcup_{j=1}^{m} B_j\right)^c$$

$$= \bigcup_{i=1}^{n} \left(A_i \cap \bigcap_{j=1}^{m} B_j^c\right)$$

$$= \bigcup_{i=1}^{n} \left(\bigcap_{j=1}^{m} A_i \cap B_j^c\right)$$

$$= \bigcup_{i=1}^{n} \left(\bigcap_{j=1}^{m} A_i - B_j\right)$$

$$= \bigcup_{i=1}^{n} \bigcap_{j=1}^{m} (A_i - B_j)$$

2.

$$\forall x \in A \cap \left(\bigcup_{a \in I} B_a\right) \Longleftrightarrow x \in A, \quad \exists x \in B_1 \vec{\boxtimes} x \in B_2 \dots$$

$$\iff x \in A \exists x \in B_1, \quad \vec{\boxtimes} x \in A \exists x \in B_2, \quad \dots$$

$$\iff x \in \bigcup_{a \in I} (A \cap B_\alpha)$$

3.

$$\forall x \in E - \bigcup_{a \in I} A_a \iff x \in E \, \exists x \notin A_1 \, \exists x \notin A_2 \dots \, \exists x \notin A_\alpha (\alpha \in I)$$

$$\iff x \in E \, \exists x \notin A_1, \ \exists x \in E \, \exists x \notin A_2, \dots, \ \exists x \in E \, \exists x \notin A_\alpha (\alpha \in I)$$

$$\iff x \in \bigcap_{a \in I} (E - A_a)$$

Exercise 2. 设 $\{A_n\}$ 是一列集. 令 $B_1 = A_1, B_n = A_n - \bigcup_{i=1}^{n-1} A_i (n \ge 2)$. 证明 $\{B_n\}$ 中的集互不相交, 并且

$$\bigcup_{i=1}^{n} A_i = \bigcup_{i=1}^{n} B_i, \quad \bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} B_i.$$

Proof.

1. 对
$$i \neq j$$
, 不妨设 $i < j$, 则 $B_i = A_i - \bigcup_{k=1}^{i-1} A_k \subset A_i, B_j = A_j - \bigcup_{k=1}^{j-1} A_k \subset A_j - A_i$, 故
$$B_i \cap B_j = \left(A_i - \bigcup_{k=1}^{i-1} A_k\right) \cap \left(A_j - \bigcup_{k=1}^{j-1} A_k\right) \subset A_i \cap (A_j - A_i) = \emptyset,$$

2. (a)
$$B_i \subset A_i$$
, 则 $\bigcup_{i=1}^n B_i \subset \bigcup_{i=1}^n A_i$

(b) 任取
$$x \in \bigcup_{i=1}^{n} A_{i}$$
,则 $\exists i \in \{1, 2, \dots n\}$,使得 $x \in A_{i}$,取 $1, 2, \dots n$ 中 k 使得 $x \in A_{k}$ 且 $x \notin A_{j} (j = 1, 2, \dots, k-1)$,则 $x \in A_{k} - \bigcup_{i=1}^{k-1} A_{i} = B_{k} \subset \bigcup_{i=1}^{n} B_{i}$,即 $\bigcup_{i=1}^{n} A_{i} \subset \bigcup_{i=1}^{n} B_{i}$ 综上, $\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} B_{i}$

Exercise 3. 设 $\{f_n(x)\}$ 是 \mathbb{R}^n 上的一列实值函数. 试用形如 $\{x:f_n(x)>k\}$ 的集表示集

$$\left\{x: \lim_{n\to\infty} f_n(x) = +\infty\right\}.$$

Solution.

$$\forall x \in \left\{ x : \lim_{n \to \infty} f_n(x) = +\infty \right\} \iff \forall k > 0, \exists m > 0, \forall n \geqslant m, x \in \left\{ x : f_n(x) > k \right\}$$

$$\iff \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \left\{ x \in \mathbf{R}^n : f_n(x) > k \right\}$$

Exercise 4. 设 $\{f_n(x)\}$ 是 \mathbf{R}^n 上的一列实值函数, 并且 $\lim_{n\to\infty} f_n(x) = f(x) \, (x \in \mathbf{R}^n)$. 证明对任意实数 a, 有

$$\{x: f(x) \leqslant a\} = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \left\{x: f_n(x) < a + \frac{1}{k}\right\}.$$

1. $\forall x_0 \in \{x : f(x) \leqslant a\}, \lim_{n \to \infty} f_n(x_0) = f(x_0) \leqslant a,$

则对 $\forall k \in \mathbb{N}, \exists m \in \mathbb{N}, \ \ \, \exists \ n \geqslant m \ \ \, \exists \ \, f_n(x_0) < a + \frac{1}{k}, \ \ \, \square \ x_0 \in \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n,k}$

2. $\forall x_0 \in \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n,k}$,对于任意给定的 $k \in \mathbb{N}$, $x_0 \in \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} E_{n,k}$,则 $x_0 \in \underline{\lim} E_{n,k}$ 故 $\exists m \in \mathbb{N}, \forall x_0 \in E_{n,k}$,一切 n > m 时,有 $f_n(x_0) < a + \frac{1}{k}$,令 $n \to \infty, k \to \infty$,可得 $f(x_0) \leqslant a$,故 $x_0 \in \{x : f(x) \leqslant a\}$

Solution.

1. $\forall x \leq 0, x \notin A_n, \ \text{id} x \notin \underline{\lim}_{n \to \infty} A_n, x \notin \overline{\lim}_{n \to \infty} A_n$ $\forall x > 0, \exists N, \text{ s.t. } x < N, \ \text{id} \ \forall n > N, x \in (0, n) = A_{2n}, \ \text{id} \ x \in \overline{\lim}_{n \to \infty} A_n$

$$\overline{\lim}_{n\to\infty} A_n = (0, +\infty)$$

2. $\forall x > 0, \exists n_0, \text{ s.t. } x > \frac{1}{n_0},$ 故 $\forall n > n_0, x \notin (0, \frac{1}{n}) = A_{2n-1},$ 故 $x \notin \underline{\lim}_{n \to \infty} A_n$ $\underline{\lim}_{n \to \infty} A_n = \varnothing$

Exercise 1. 证明可列集的有限子集的全体是可列集.

Exercise 2. 设 A 是无限集, B 是可列集. 证明若存在一个 A 到 B 的单射, 则 A 是可列集.

Exercise 3. 设 A 是直线上以有理数为端点的开区间的全体. 证明 A 是可列集.

Exercise 4. 作出下面的集与集之间的一个双射:

- 1. 实数集到无理数集;
- 2. 平面上的闭单位圆盘 $\overline{U(0,1)}$ 到开单位圆盘 U(0,1).

Exercise 5. 设 A 是平面上圆的全体所成之集. 求证 $\overline{\overline{A}} = c$.

Exercise 1. 设 f(x) 是 \mathbb{R}^n 上的实值函数. 证明若对任意常数 a, $\{x : f(x) < a\}$ 和 $\{x : f(x) > a\}$ 都是开集, 则 f(x) 在 \mathbb{R}^n 上连续.

Exercise 2. 设 $A, B \subset \mathbb{R}^n$. 证明:

- 1. $(A^c)^\circ = (\overline{A})^c$, $\overline{A^c} = (A^\circ)^c$;
- 2. $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$;
- 3. $(A \cup B)' = A' \cup B', \overline{A \cup B} = \overline{A} \cup \overline{B}.$

Exercise 3. $\ \ \mathcal{B} A, B \subset \mathbb{R}^n, A \cap B = \emptyset. \ \ \text{iii} \ \ \overline{A} \cap B^\circ = \emptyset.$

Exercise 4. $\[\mathcal{C} A \subset \mathbb{R}^n \]$. $\[\mathcal{C} H \cap \mathbb{R}^n \]$. $\[\mathcal{C} H \cap \mathbb{R}^n \cap \mathbb{R}^n \]$. $\[\mathcal{C} H \cap \mathbb{R}^n \cap$

Exercise 5. 设 $A \in \mathbb{R}^n$ 的非空子集. 证明:

- 1. d(x, A) = 0 当且仅当 $x \in \overline{A}$. (特别地, 若 A 是闭集, $x \notin A$, 则 d(x, A) > 0.)
- 2. $f(x) = d(x, A) (x \in \mathbf{R}^n)$ 是 \mathbf{R}^n 上的连续函数.

Exercise 6. 设 $A \in \mathbb{R}^n$ 中的非空闭集. 证明对任意 $x \in \mathbb{R}^n$, 存在 $y_0 \in A$ 使得

$$d(x,A) = d(x,y_0).$$

Exercise 7. 设 A 和 B 分别是 \mathbf{R}^p 和 \mathbf{R}^q 中的闭集, 证明 $A \times B$ 是 $\mathbf{R}^p \times \mathbf{R}^q$ 中的闭集.

Exercise 8. 设 f(x) 是 [a,b] 上的非负连续函数. 证明 f(x) 的下方图形

$$E = \{(x,y): a \leqslant x \leqslant b, 0 \leqslant y \leqslant f(x)\}$$

是 \mathbf{R}^2 中的闭集.

Exercise 9. 求证 \mathbb{R}^n 中的每个闭集是 G_δ 型集, 每个开集是 F_σ 型集.

Exercise 1. 设 $A \subset \mathbf{R}^n$. 求证若 A 有界, 则 $m^*(A) < \infty$.

Exercise 2. 设 f(x) 是 [a,b] 上的连续函数. 求证曲线 y=f(x) 的作为 \mathbf{R}^2 的子集, 其外测度 为零

Exercise 3. 设 $A \subset \mathbf{R}^n$. 若对任意 $x \in A$, 存在 x 的邻域 $U(x,\varepsilon)$, 使得 $m^*(A \cap U(x,\varepsilon)) = 0$, 求证 $m^*(A) = 0$.

Exercise 1. 设 $A, B \subset \mathbb{R}^n$. 若 A 是可测集, $m^*(A \triangle B) = 0$, 求证 B 是可测集, 并且

$$m(B) = m(A)$$
.

Exercise 2. 设 $A \subset \mathbb{R}^n$. 若对任意 $\varepsilon > 0$, 存在可测集 $E \subset A$ 使得 $m^*(A - E) < \varepsilon$. 求证 A 是可测集

Exercise 3. 设 A, B, C 是 \mathbb{R}^n 中的可测集. 若 A, B, C 的测度都是有限的, 求证:

$$m(A \cup B \cup C) = m(A) + m(B) + m(C) - m(A \cap B) -$$

$$m(A \cap C) - m(B \cap C) + m(A \cap B \cap C).$$

Exercise 4. 设 $\{A_n\}$ 是 \mathbb{R}^n 中的一列可测集. 求证:

1. 若
$$m\left(\bigcup_{n=1}^{\infty} A_n\right) < \infty$$
, 则 $m\left(\overline{\lim}_{n\to\infty} A_n\right) \geqslant \overline{\lim}_{n\to\infty} m(A_n)$;

2. 若
$$m\left(\bigcup_{n=1}^{\infty}A_{n}\right)<\infty$$
, 并且极限 $\lim_{n\to\infty}A_{n}$ 存在, 则 $\lim_{n\to\infty}m\left(A_{n}\right)$ 存在, 并且

$$m\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}m\left(A_n\right).$$

Exercise 1. 设 $\{A_n\}$ 是 [0,1] 中的一列可测集, 并且 $m(A_n) = 1 (n \ge 1)$. 求证

$$m\left(\bigcap_{n=1}^{\infty} A_n\right) = 1.$$

Exercise 2. $\ \ \mathcal{U}(A_1,A_2,\cdots,A_n) = [0,1]$ 中的可测集, $\sum_{i=1}^n m(A_i) > n-1$. 求证 $m\left(\bigcap_{i=1}^n A_i\right) > 0$.

Exercise 3. 计算 E 的测度, 这里

 $E = \{x \in (0,1] : x$ 的十进制无限小数表示中不出现 7\}.

Exercise 4. 求证: 非空开集的测度大于零.

Exercise 5. 设 $0 < \varepsilon < 1$. 在区间 [0,1] 中作出一个开集 G, 使得 $m(G) \leqslant \varepsilon$, 并且 $\overline{G} = [0,1]$.

Exercise 6. 设 0 < c < 1. 在 [0,1] 中作出一个无内点的闭集 F, 使得 m(F) = c.

Exercise 7. 设 $A \subset \mathbb{R}^n$. 求证 A 是可测集当且仅当对任意 $\varepsilon > 0$, 存在开集 G 和闭集 F, 使得 $F \subset A \subset G$, 并且 $m(G - F) < \varepsilon$.

Exercise 8. 设 E 为 \mathbb{R}^n 中的可测集, $m(E) < \infty$. 求证对任意 $\varepsilon > 0$, 存在有界闭集 $F \subset E$, 使得 $m(E - F) < \varepsilon$.

Exercise 9. 设 f 是定义在 (a,b) 上的函数. 求证若 f 在每个 $[\alpha,\beta] \subset (a,b)$ 上可测, 则 f 在 (a,b) 上可测.

Proof. 取 $N = \left[\frac{2}{b-a}\right] + 1$,对任意的正整数 n > N,f 在每个 $\left[a + \frac{1}{n}, b - \frac{1}{n}\right]$ 上可测,从而对 $\forall c \in \mathbb{R}$,集 $\left\{x \in \left[a + \frac{1}{n}, b - \frac{1}{n}\right] : f(x) > c\right\}$ 可测,

$$\{x \in (a,b) : f(x) > c\} = \bigcup_{n=N}^{\infty} \left\{ x \in \left[a + \frac{1}{n}, b - \frac{1}{n} \right] : f(x) > c \right\}$$
 可测

即 f 在 (a,b) 可测

Exercise 10. 设 $\{f_n\}$ 是 E 上的实值可测函数列. 求证 A 是可测集, 这里

$$A = \left\{ x \in E : \lim_{n \to \infty} f_n(x)$$
 存在并且有限 $\right\}.$

Proof. 由 Cauchy 收敛准则, $\lim_{n\to\infty} f_n(x)$ 存在当且仅当对 $\forall k \geq 1, \exists N \geq 1, \exists N \geq 1, \exists N \geq N,$ 都有 $|f_m(x) - f_n(x)| < \frac{1}{k}$.

$$A = \bigcap_{k=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcap_{m=N}^{\infty} \bigcap_{n=N}^{\infty} \left\{ x \in E : |f_m(x) - f_n(x)| < \frac{1}{k} \right\}$$

由于每个 f_n 可测, 故 $\left\{x \in E : |f_m(x) - f_n(x)| < \frac{1}{k}\right\}$ 是可测集, 因此 A 是可测集. \square

Exercise 11. 设 f(x) 是 [a,b] 上的可导函数. 求证 f'(x) 是 [a,b] 上的可测函数.

Proof. 证明. 补充定义当 x > b 时 f(x) = f(b). 对每个 $n \ge 1$, 令

$$f_n(x) = n \left[f\left(x + \frac{1}{n}\right) - f(x) \right], \quad x \in [a, b],$$

则由 f(x) 在 [a,b+1] 上连续可得每个 $f_n(x)$ 在 [a,b+1] 上可测.

注意到 $f'(x) = \lim_{n \to \infty} f_n(x), x \in [a, b)$, 因此 f'(x) 在 [a, b) 上是可测的. 由于对任何 $c \in R$,

$$\{x \in [a,b] : f'(x) > c\} = \begin{cases} \{x \in [a,b) : f'(x) > c\}, & f'(b) \le c, \\ \{x \in [a,b) : f'(x) > c\} \cup \{b\}, & f'(b) > c, \end{cases}$$

故 $\{x \in [a,b]: f'(x) > c\}$ 是可测集, 因此 f'(x) 是 [a,b] 上的可测函数.

Exercise 12. 设 f(x) 在 \mathbb{R}^n 上可测, $a \in \mathbb{R}^1$. 求证 f(ax) 在 \mathbb{R}^n 上可测.

Proof. $\stackrel{.}{=} a = 0$, $\stackrel{.}{=} \text{M}$.

若 $a \neq 0$

$${x \in \mathbf{R}^n : f(ax) > c} = \frac{1}{a} {x \in \mathbf{R}^n : f(x) > c}$$

Exercise 1. 设 f 和 g 是 \mathbf{R}^1 上的两个连续函数. 求证若在 \mathbf{R}^1 上 f = g a.e., 则 f 和 g 在 \mathbf{R}^1 上处处相等.

Proof. 方法1

反证: 设存在 $x_0 \in \mathbb{R}^1$ 使 $f(x_0) \neq g(x_0)$,则 $f(x_0) - g(x_0) \neq 0$,不妨设 $f(x_0) - g(x_0) > 0$ f, g 为连续函数,故 f - g 在 \mathbb{R}^1 上连续,则由连续函数的局部保号性,存在 $\delta > 0$,

$$f(x) - g(x) > 0 \quad (x \in U(x_0, \delta)),$$

即当 $x \in U(x_0, \delta)$ 时 $f(x) \neq g(x)$. 而 $m(U(x_0, \delta)) = 2\delta > 0$,与 f = g a.e. 矛盾. 因此 f 和 g 在 \mathbb{R}^1 上处处相等.

方法2

设 $A = \{x: f(x) \neq g(x)\} = \{x: f(x) - g(x) > 0\} \cup \{x: f(x) - g(x) < 0\},$ 则由 f - g 连续可得 A 是开集. 下证 $A = \varnothing$.

若存在 $x_0 \in A$, 则存在 $\delta > 0$, 使得 $U(x_0, \delta) \subset A$, 从而

$$m(A) \geqslant m(U(x_0, \delta)) = 2\delta > 0,$$

这与 f = g a.e. 矛盾!

Exercise 2. 用定义直接证明 $f_n(x) = \ln(1 + x^n)$ 在 [0, 1] 上依测度收敛于 0.

Proof. 当 $x \ge 0$ 时, $\ln(1+x^n) \le x^n$,所以对任何 $\varepsilon > 0$,

$$\left\{x\in\left[0,1\right]:\left|\ln\left(1+x^{n}\right)\right|\geqslant\varepsilon\right\}\subset\left\{x\in\left[0,1\right]:\left|x^{n}\right|\geqslant\varepsilon\right\}$$

从而

$$\begin{split} m\left(\left\{x\in\left[0,1\right]:\left|\ln\left(1+x^{n}\right)\right|\geqslant\varepsilon\right\}\right)&\leq m\left(\left\{x\in\left[0,1\right]:\left|x^{n}\right|\geqslant\varepsilon\right\}\right)\\ &=m\left(\left\{x\in\left[0,1\right]:\left|x\right|\geqslant\varepsilon^{\frac{1}{n}}\right\}\right)\\ &=m\left(\left[\varepsilon^{\frac{1}{n}},1\right]\right)=1-\varepsilon^{\frac{1}{n}}\to0 \end{split}$$

因此在 [0,1] 上 $\ln(1+x^n) \xrightarrow{m} 0$.

Exercise 3. 求证:

- 1. 若 $f_n \longrightarrow f$ a.e., $f_n \longrightarrow g$ a.e., 则 f = g a.e.;
- 2. 若 $f_n \xrightarrow{m} f, f_n \xrightarrow{m} g$, 则 f = g a.e.

Proof.

1. 由于 $f_n \to f$ a.e., $f_n \to g$ a.e., 存在 $E_1 \subset E, E_2 \subset E, \ m(E_1) = m(E_2) = 0$, 使得当 $x \in E - E_1$ 时 $f_n(x) \to f(x)$, 当 $x \in E - E_2$ 时 $f_n(x) \to g(x)$. 令 $E_0 = E_1 \cup E_2$, 则 $m(E_0) = 0$, $E - E_0 \subset (E - E_1) \cap (E - E_2)$

$$f(x) = \lim_{n \to \infty} f_n(x) = g(x) \quad (x \in E - E_0)$$

因此 f = g a.e..

2. 方法1

设 $f_n \xrightarrow{m} f$, 由 Riesz 定理, 存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$ a.e. 由 $f_n \xrightarrow{m} g$ 可得 $f_{n_k} \xrightarrow{m} g$, 从而由 Riesz 定理, 存在 $\{f_{n_k}\}$ 的子列 $\{f_{n_{k_j}}\}$, 使得 $f_{n_{k_j}} \to g$ a.e., 显然也有 $f_{n_{k_j}} \to f$ a.e., 因此由 (1) 得 f = g a.e..

方法2

$$|f - g| \le |f - f_k| + |f_k - g|$$

$$m\left(E\left(|f - g| \ge \frac{1}{n}\right)\right) \le m\left(E\left(|f - f_k| \ge \frac{1}{2n}\right)\right) + m\left(E\left(|f_k - g| \ge \frac{1}{2n}\right)\right)$$

$$\Leftrightarrow n \to \infty$$

$$m\left(E\left(|f - g| \ge \frac{1}{n}\right)\right) = 0$$

$$E(f \ne g) = \bigcup_{n=1}^{\infty} E\left(|f - g| \ge \frac{1}{n}\right)$$

故 $m(E(f \neq g \mid) = 0$,即 f = g a.e.

Exercise 4. 求证:

- 1. 若 $f_n \longrightarrow f$ a.un., 则 $f_n \longrightarrow f$ a.e.;
- 2. 若 $f_n \longrightarrow f$ a.un., 则 $f_n \xrightarrow{m} f$.

Proof.

1. 设在 $E \perp f_n \to f$ a.un., 则对 $\forall k \geq 1$, 存在可测集 $E_k \subset E$ 使得 $m(E - E_k) < \frac{1}{k}$, 并且 在 $E_k \perp f_n$ 一致收敛 (逐点收敛) 于 f.

$$\diamondsuit E_0 = E - \bigcup_{k=1}^{\infty} E_k = \bigcap_{k=1}^{\infty} (E - E_k),$$
则

$$m(E_0) \leqslant m(E - E_k) < \frac{1}{k} \quad (k \geqslant 1)$$

令 $k \to \infty$,故 $m(E_0) = 0$,且当 $x \in E - E_0$ 时 $f_n(x) \to f(x)$,即 $f_n \to f$ a.e..

2. 设在 $E \perp f_n \to f$ a.un., 则对 $\forall \delta \geq 0$, 存在可测集 $E_\delta \subset E$ 使得 $m(E - E_\delta) < \delta$, 并且在 $E_\delta \perp f_n$ 一致收敛于 f.

于是对 $\forall \varepsilon \geq 0, \exists N \geq 1,$ 使得当 $n \geq N$ 时,对任意的 $x \in E_{\delta}, |f_n(x) - f(x)| < \varepsilon$ 即 $E(|f_n(x) - f(x)| \geq \varepsilon) \subset E - E_{\delta}.$ 于是,

$$m\left(E\left(|f_n(x) - f(x)| \geqslant \varepsilon\right)\right) \leqslant m\left(E - E_\delta\right) < \delta, \quad \forall n \geqslant N.$$

这表明 $\lim_{n\to\infty} m\left(E\left(|f_n(x)-f(x)|\geqslant \varepsilon\right)\right)=0$, 即 $f_n\xrightarrow{m}f$.

Exercise 5. 求证: 若在 $E \perp f_n \xrightarrow{m} f$, 则 $\lim_{n \to \infty} f_n \leqslant f \leqslant \overline{\lim}_{n \to \infty} f_n$ a.e.

Proof. 设 $f_n \xrightarrow{m} f$, 由 Riesz 定理, 存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$ a.e., 即存在 E 的子集 E_0 , 使得 $m(E_0) = 0$, 当 $x \in E - E_0$ 时 $f_{n_k}(x) \to f(x)$. 于是, 当 $x \in E - E_0$ 时,

$$\underline{\lim}_{n \to \infty} f(x) \leqslant \lim_{k \to \infty} f_{n_k}(x) = f(x) \leqslant \overline{\lim}_{n \to \infty} f(x),$$

 $\exists \exists \underline{\underline{\lim}}_{n \to \infty} f_n \leqslant f \leqslant \overline{\underline{\lim}}_{n \to \infty} f_n \text{ a.e.}$

Exercise 6. 设在 $E \perp f_n \xrightarrow{m} f, f_n \leqslant f_{n+1}$ a.e. $(n \geqslant 1)$. 求证 $f_n \to f$ a.e.

Proof. 由 $f_n \xrightarrow{m} f$ 以及 Riesz 定理, 存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$ a.e.,

即存在 E 的零测度子集 E_1 , 使得当 $x \in E - E_1$ 时 $f_{n_k}(x) \to f(x)$;

又由 $f_n \leq f_{n+1}$ a.e., 存在 E 的零测度子集 E_2 ,

使得当 $x \in E - E_2$ 时 $f_n(x) \leq f_{n+1}(x) \quad (n \geq 1)$.

取 $E_0 = E_1 \cup E_2$,则 $m(E_0) = 0$, 当 $x \in E - E_0$ 时 $\{f_n(x)\}$ 单调增,

且存在子列 $\{f_{n_k}(x)\}$ 使得 $f_{n_k}(x) \to f(x)$,

从而有当 $x \in E - E_0$ 时 $\lim_{n \to \infty} f_n(x) = \lim_{k \to \infty} f_{n_k}(x) = f(x)$, 即 $f_n \to f$ a.e.

Exercise 7. 设 $m(E) < \infty$, $f \in E$ 上几乎处处有限的可测函数. 求证对任意 $\delta > 0$, 存在 E 的可测子集 A, 使得 $m(E - A) < \delta$, 并且 $f \in A$ 上有界.

Proof. \diamondsuit $E_0 = E(|f| = \infty), \quad E_n = E(|f| > n), \quad n \geqslant 1,$

$$\lim_{n \to \infty} E_n = \bigcap_{n=1}^{\infty} E_n = E(|f| = \infty) = E_0$$

由 f 在 E 上 a.e. 有限可得 $m(E_0) = 0$, 再由 $m(E) < \infty$ 及测度的上连续性可得

$$\lim_{n\to\infty} m\left(E_n\right) = m\left(E_0\right) = 0$$

从而 $\forall \delta > 0$, $\exists n_0$, 使得 $m(E_{n_0}) < \delta$. 令 $A = E - E_{n_0}$, 则 $m(E - A) = m(E_{n_0}) < \delta$, 并且在 $A \perp |f| \leq n_0$.

Exercise 8. 设 f 是 E 上的 a.e. 有限的可测函数. 求证存在 \mathbb{R}^n 上的连续函数列 $\{g_n\}$, 使得在 $E \perp g_n \to f$ a.e., 并且

$$\sup_{x\in \mathbf{R}^n} |g_n(x)| \leqslant \sup_{x\in \mathbb{E}} |f(x)| \quad (n\geqslant 1).$$

Proof. 由于 f 是 E 上 a.e. 有限的可测函数, 由 Lusin 定理, 对任意的 $k \geqslant 1$, 存在 \mathbf{R}^n 上的连续函数 h_k , 使得 $m\left(E\left(f \neq h_k\right)\right) < \frac{1}{k}$, 并且 $\sup_{x \in \mathbf{R}^n} |h_k(x)| \leqslant \sup_{x \in E} |f(x)|$.

又对 $\forall \varepsilon > 0$,

$$E(|f - h_k| \geqslant \varepsilon) \subset E(f \neq h_k)$$

因而

$$m\left(E\left(|f-h_k|\geqslant\varepsilon\right)\right)\leqslant m\left(E\left(f\neq h_k\right)\right)<\frac{1}{k}\to 0(k\to\infty)$$

这表明在 $E \perp h_k \xrightarrow{m} f$, 故由 Riesz 定理可得存在 $\{h_k\}$ 的子列 $\{h_{k_n}\}$, 使得在 $E \perp h_{k_n} \to f$ a.e.. 令 $g_n = h_{k_n}$, 则 $\{g_n\}$ 满足要求.

Exercise 9. (Lusin 定理的逆) 设 f 是定义在 E 上的函数. 若对任给的 $\delta > 0$, 存在闭集 $F_{\delta} \subset E$, 使得 $m(E - F_{\delta}) < \delta$, 并且 f 在 F_{δ} 上连续. 则 f 在 E 上可测.

Proof. $\forall k \geq 1, \exists F_k \subset E$, 使得 $m(E - F_k) < \frac{1}{k}$, 并且 f 在 F_k 上连续.

令 $F = \bigcup_{k=1}^{\infty} F_k$, 则 f 在 F 上连续, 而 F 为 F_{σ} 型集, 故可测, 因此 f 在 F 上可测.

又
$$E - F = E - \bigcup_{k=1}^{\infty} F_k = \bigcap_{k=1}^{\infty} (E - F_k), \quad m(E - F) \leq m(E - F_k) < \frac{1}{k}(k \geq 1),$$
 故 $m(E - F) = 0$. 即 f 在 $E - F$ 可测, 综上 f 在 $(E - F) \cup F = E$ 上可测.

Exercise 1. 设 $f \in [a,b]$ 上的实值可测函数, 并且

$$\int_a^b |f(x)| \ln(1+|f(x)|) \mathrm{d}x < \infty.$$

求证 $f \in L[a,b]$.

$$\int_{E_1} |f(x)| dx \le \int_{E_1} (e-1) dx \le \int_{[a,b]} (e-1) dx = (e-1)(b-a) < +\infty$$

$$\int_{E_2} |f(x)| dx < \int_{E_2} |f(x)| \ln(1+|f(x)|) < +\infty$$

$$\int_{[a,b]} |f(x)| dx = \int_{E_1} |f(x)| dx + \int_{E_2} |f(x)| dx < +\infty$$

即 $|f| \in L[a,b]$,故 $f \in L[a,b]$

Exercise 2. 设 $f \in L(\mathbf{R}^1)$, 满足 f(0) = 0, f'(0) 存在. 求证 $\frac{f(x)}{x} \in L(\mathbf{R}')$.

Proof.
$$\forall \varepsilon > 0, \exists \delta > 0, \ \ \ \ \ \ \ \ \ \ \ \ \left| \frac{f(x)}{x} - f'(0) \right| < \varepsilon$$

 $\text{Re } E_1 = (-\delta, \delta), E_2 = (-\infty, -\delta] \cup [\delta, +\infty)$

$$\int_{E_1} \left| \frac{f(x)}{x} \right| dx < 2\delta \cdot (|f'(0)| + \varepsilon) < +\infty$$

$$\int_{E_2} \left| \frac{f(x)}{x} \right| dx < \int_{E_2} \frac{|f(x)|}{\delta} dx < +\infty$$

$$\int_{E_2} \left| \frac{f(x)}{x} \right| dx = \int_{E_2} \left| \frac{f(x)}{x} \right| dx + \int_{E_2} \left| \frac{f(x)}{x} \right| dx < \infty$$

即
$$\left| \frac{f(x)}{x} \right| \in L\left(\mathbf{R}^1\right)$$
,故 $\frac{f(x)}{x} \in L\left(\mathbf{R}^1\right)$

Exercise 3. 设 m(E) > 0, $f \neq E$ 上的可测函数, 并且 f(x) > 0($x \in E$). 求证 $\int_E f \, dx > 0$.

Proof.
$$E_k = E\left(f \geqslant \frac{1}{k}\right), \quad E = E[f > 0] = \bigcup_{k=1}^{\infty} E_k$$

$$m(E) = m\left(\bigcup_{k=1}^{\infty} E_k\right) \leqslant \sum_{k=1}^{\infty} m\left(E_k\right)$$

 $m(E_k) \geqslant 0$, 若 $m(E_k)$ 均为 0,

$$0 \leqslant m(E) \leqslant \sum_{k=1}^{\infty} m(E_k) = 0$$

与m(E) > 0矛盾!

故至少存在一个 $m(E_k) = \mu > 0$

$$\int_{E} f \mathrm{d}x > \int_{E_{k}} f \mathrm{d}x = \int_{E\left(f \geqslant \frac{1}{k}\right)} f \mathrm{d}x \geqslant \int_{E\left(f \geqslant \frac{1}{k}\right)} \frac{1}{k} \mathrm{d}x = \frac{\mu}{k} > 0$$

Exercise 4. 设 $f,g \in L(E)$, 并且对 E 的任意可测子集 A, 有 $\int_A f \, \mathrm{d}x = \int_A g \, \mathrm{d}x$. 求证 f = g a.e.

Proof. $\diamondsuit h = f - g$, \square

$$\int_{A} h \mathrm{d}x = \int_{A} f \mathrm{d}x - \int_{A} g \mathrm{d}x = 0$$

若 $m(E(f \neq g)) > 0$,不妨设 m(E(f > g)) > 0,则

$$\int_{E(f>g)} h \mathrm{d}x > 0$$

矛盾!

故
$$m(E(f \neq g)) = 0$$
, 即 $f = g$ a.e. 于 E

Exercise 1. 设 $f \in L(E)$. 求证 $\lim_{n \to \infty} n \cdot mE(|f| \ge n) = 0$.

Proof. 由于 $f \in L(E)$, 由积分的绝对连续性, 对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $A \subset E$ 且 $m(A) < \delta$ 时, $\int_A |f| dx < \varepsilon$.

又由 Chebyshev 不等式, 对每个正整数 $k \geqslant 1$, $mE(|f| \geqslant k) \leqslant \frac{1}{k} \int_{E} |f| dx$,

即 $\lim_{k\to\infty} mE(|f|\geqslant k)=0$. 因此对上述 $\delta>0$, 存在 $K\geqslant 1$, 使得 $mE(|f|\geqslant K)<\delta$,

从而
$$\int_{E(|f|\geqslant K)} |f| dx < \varepsilon$$
. 于是当 $n \geqslant K$ 时,

$$n \cdot mE(|f| \geqslant n) = \int_{E(|f| \geqslant n)} n \mathrm{d}x \leqslant \int_{E(f| \geqslant n)} |f| \mathrm{d}x \leqslant \int_{E(|f| \geqslant K)} |f| \mathrm{d}x < \varepsilon,$$

即有 $\lim_{n \to \infty} n \cdot mE(|f| \ge n) = 0.$

Exercise 2. 设 $E \neq [a,b]$ 中的可测集, $f \in L(E)$ 并且 $I = \int_E f \, dx > 0$. 求证对任意 0 < c < I, 存在 E 的可测子集 A, 使得 $\int_A f \, dx = c$.

Proof. $\Leftrightarrow \varphi(t) = \int_{[a,t] \cap E} f dx (a \leqslant t \leqslant b).$

由积分的绝对连续性, $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $A \subset [a,b]$ 且 $m(A) < \delta$ 时, $\int_A |f| dx < \varepsilon$. 于是对 $\forall t_1, t_2 (a \leqslant t_1 \leqslant t_2 \leqslant b)$,且 $|t_2 - t_1| < \delta$ 时,

$$\left|\varphi\left(t_{2}\right)-\varphi\left(t_{1}\right)\right|=\left|\int_{\left[t_{1},t_{2}\right]\cap E}f\mathrm{d}x\right|\leqslant\int_{\left[t_{1},t_{2}\right]\cap E}\left|f\right|\mathrm{d}x<\varepsilon.$$

故 φ 在 [a,b] 上一致连续. 又 $\varphi(a)=0, \varphi(b)=I$, 对任意 0< c< I, 由连续函数的介值 定理, 存在 $t_0\in [a,b]$, 使得 $\varphi(t_0)=\int_{[a,t_0]\cap E}f\mathbf{d}x=c$. 取 $A=[a,t_0]\cap E$ 即证得原命题.

Exercise 3. 设 f 是 E 上的非负可测函数, $\{E_n\}$ 是 E 的一列单调递增的可测子集, 并且 $E = \bigcup_{n=1}^{\infty} E_n$. 求证 $\int_E f \, dx = \lim_{n \to \infty} \int_{E_n} f \, dx$.

Proof. 令 $f_n = f \cdot \chi_{E_n}$,则由 f 在 E 上非负及 $\{E_n\}$ 单调递增,可得 $\{f_n\}$ 是 E 上的非负可测函数列,再由 $E = \bigcup_{n=0}^{\infty} E_n$ 可得 $f_n \uparrow f$. 从而由 Levi 单调收敛定理得到

$$\lim_{n\to\infty}\int_{E_n}f\mathrm{d}x=\lim_{n\to\infty}\int_{E}f\chi_{E_n}\mathrm{d}x=\lim_{n\to\infty}\int_{E}f_n\mathrm{d}x=\int_{E}f\mathrm{d}x.$$

Exercise 4. 设 $\{A_n\}$ 是 E 中的一列可测集, 使得 $\sum_{n=1}^{\infty} m(A_n) < \infty$. 求证对几乎所有 $x \in E$, x 只属于有限个 A_n .

Proof. 由逐项积分定理可得

$$\int_{E} \sum_{n=1}^{\infty} \chi_{A_n} \mathrm{d}x = \sum_{n=1}^{\infty} \int_{E} \chi_{A_n} \mathrm{d}x = \sum_{n=1}^{\infty} m\left(A_n\right) < \infty,$$

故
$$\sum_{n=1}^{\infty} \chi_{A_n} \in L(E)$$
, 从而 a.e. 有限, 即对 a.e $x \in E, x$ 只属于有限个 A_n .

Exercise 5. 设 $\{f_n\}$ 是 E 上的可测函数列,并且 $\sum_{n=1}^{\infty} \int_{E} |f_n| \, \mathrm{d}x < \infty$. 求证 $\sum_{n=1}^{\infty} |f_n(x)| < \infty$ a.e., $\sum_{n=1}^{\infty} f_n(x)$ 在 E 上可积,并且

$$\int_{E} \sum_{n=1}^{\infty} f_n dx = \sum_{n=1}^{\infty} \int_{E} f_n dx$$

Proof. 令 $g(x) = \sum_{n=1}^{\infty} |f_n(x)|$. 由逐项积分定理可得

$$\int_{E} g \mathrm{d}x = \int_{E} \sum_{n=1}^{\infty} |f_n| \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{E} |f_n| \, \mathrm{d}x < \infty,$$

故 $g \in L(E)$. 由此可知 g 在 E 上 a.e. 有限, 即在 E 上 a.e. $g(x) = \sum_{n=1}^{\infty} |f_n(x)| < \infty$,

因此函数项级数 $\sum_{n=1}^{\infty} f_n(x)$ 在 $E \perp$ a.e. 收敛. 令 $f(x) = \sum_{n=1}^{\infty} f_n(x)$,

则 f 在 E 上 a.e. 有定义. 再令 $g_n(x) = \sum_{i=1}^n f_i(x)$,则 $g_n \to f$ a.e. 于 E,并且 $|g_n| \leq g$ a.e. 于 E. 由 DCT 可得

$$\int_{E} \sum_{n=1}^{\infty} f_n dx = \int_{E} \lim_{n \to \infty} g_n dx = \lim_{n \to \infty} \int_{E} g_n dx$$

$$= \lim_{n \to \infty} \int_{E} \sum_{i=1}^{n} g_i dx = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{E} f_i dx$$

$$= \sum_{n=1}^{\infty} \int_{E} f_n dx$$

Exercise 6. 设 $f, f_n(n \ge 1)$ 为 E 上的非负可测函数, $f_n \xrightarrow{m} f$. 求证

$$\int_{E} f dx \leqslant \underline{\lim}_{n \to \infty} \int_{E} f_{n} dx.$$

Proof. 由下极限的定义, 存在 $\{f_n\}$ 的子列 $\{f_{n_k}\}$, 使得 $\lim_{n\to\infty}\int_E f_n dx = \lim_{k\to\infty}\int_E f_{n_k} dx$; 由 $f_n \xrightarrow{m} f$ 可得 $f_{n_k} \xrightarrow{m} f$. 于是存在 $\{f_{n_k}\}$ 的子列, 不妨仍记为 $\{f_{n_k}\}$, 使得 $f_{n_k} \to f$ a.e.. 利用 Fatou 引理可得

$$\int_E f \mathrm{d}x = \int_E \lim_{k \to \infty} f_{n_k} \mathrm{d}x \leqslant \lim_{k \to \infty} \int_E f_{n_k} \mathrm{d}x = \varliminf_{n \to \infty} \int_E f_n \mathrm{d}x.$$

Exercise 1. 设 f 在 [a,b] 上 Riemann 可积, g 是 \mathbf{R}^1 上的连续函数. 证明 g(f(x)) 在 [a,b] 上 Riemann 可积.

Proof. 由 f 在 [a,b] 上 Riemann 可积可得 f 在 [a,b] 上有界, 且几乎处处连续,

即存在 M > 0, 使得对任何 $x \in [a, b]$ 有 $|f(x)| \leq M$.

由 g 在 \mathbb{R}^1 上的连续可知 g 在 [-M,M] 上有界, 从而 g(f(x)) 在 [a,b] 上有界.

又显然 g(f(x)) 在 [a,b] 上几乎处处连续, 因此 Riemann 可积.

Exercise 2. 设 A 是无理数集, 令 $f(x) = e^{-x} \chi_A(x)$. 证明在 $f \in L[0, \infty)$, 并且求其积分值.

Proof. 由于 m(Q) = 0 (Q 为有理数集),故 $f(x) = e^{-x}$ a.e 于 $[0, +\infty)$., 因此

$$(L) \int_0^{+\infty} f(x) dx = (L) \int_0^{+\infty} e^{-x} dx = (R) \int_0^{+\infty} e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1,$$

故
$$f \in L[0, +\infty)$$
 且 $\int_0^{+\infty} f(x) dx = 1$.

Exercise 3. 设 f 和 g 在 [a,b] 上 Riemann 可积, 并且在 [a,b] 中的有理数集上相等. 证明 f 和 g 在 [a,b] 上积分相等.

Proof. 因为 f 和 g 在 [a,b] 上 Riemann 可积, 故 $f,g \in C[a,b]$ a.e.

即存在零测度集 $A \subset [a,b]$, 使得 f 和 g 在 [a,b] — A 上连续.

又因 f 和 g 在 [a,b] 中的有理数集上相等, 故对 $\forall x \in [a,b]-A$, 可取有理数序列 $\{r_n\}$, 使 $r_n \to x$, 于是

$$f(x) = \lim_{n \to \infty} f(r_n) = \lim_{n \to \infty} g(r_n) = g(x),$$

即
$$f = g$$
 a.e., 因此 $\int_a^b f dx = \int_a^b g dx$.

Exercise 4. 证明 $\lim_{n\to\infty}\int_0^\infty \frac{n\sqrt{x}}{1+n^2x^2}\sin^5 x \, \mathrm{d}x = 0.$

Proof.
$$\diamondsuit f_n(x) = \frac{n\sqrt{x}}{1 + n^2 x^2} \sin^5 x$$
, $\boxtimes \text{Min} \lim_{n \to \infty} f_n(x) = 0$.

由于当
$$0 < x \leqslant 1$$
 时, $|f_n(x)| \leqslant \frac{n\sqrt{x}}{1 + n^2 x^2} \leqslant \frac{1}{2\sqrt{x}} \leqslant \frac{1}{\sqrt{x}}$;

$$g(x) = \frac{1}{\sqrt{x}} \cdot \chi_{(0,1]}(x) + \frac{1}{x\sqrt{x}} \cdot \chi_{(1,+\infty)}(x),$$

则 $|f_n(x)| \leq g(x)(n \geq 1)$,且由 $\int_0^{+\infty} g dx < \infty$ 知 $g \in L(0, +\infty)$.

由 DCT 可得

$$\lim_{n\to\infty}\int_0^\infty \frac{n\sqrt{x}}{1+n^2x^2}\sin^5x\mathrm{d}x = \int_0^\infty 0\mathrm{d}x = 0.$$

Exercise 5. 求证当 p,q > 0 时, $\int_0^1 \frac{x^{p-1}}{1+x^q} dx = \sum_{n=0}^{\infty} (-1)^n \frac{1}{p+nq}$.

Proof. 幂级数展开式可得

$$\frac{x^{p-1}}{1+x^q} = \sum_{n=0}^{\infty} (-1)^n x^{nq+p-1} (0 \leqslant x < 1).$$

当 $n = 2k(k = 0, 1, 2, \cdots)$ 时

$$(-1)^n x^{nq+p-1} = x^{2kq+p-1}$$

$$(-1)^n x^{nq+p-1} = -x^{(2k+1)q+p-1}$$

故

$$\frac{x^{p-1}}{1+x^q} = \sum_{n=0}^{\infty} (-1)^n x^{nq+p-1} = \sum_{k=0}^{\infty} x^{2kq+p-1} - \sum_{k=0}^{\infty} x^{(2k+1)q+p-1}$$

由逐项积分定理可得

$$\begin{split} \int_0^1 \frac{x^{p-1}}{1+x^q} \mathrm{d}x &= \int_0^1 \sum_{k=0}^\infty x^{2kq+p-1} \mathrm{d}x - \int_0^1 \sum_{k=0}^\infty x^{(2k+1)q+p-1} \mathrm{d}x \\ &= \sum_{k=0}^\infty \int_0^1 \left(x^{2kq+p-1} - x^{(2k+1)q+p-1} \right) \mathrm{d}x \\ &= \sum_{k=0}^\infty \left(\frac{1}{p+2kq} - \frac{1}{p+(2k+1)q} \right) \\ &= \sum_{n=0}^\infty (-1)^n \frac{1}{p+nq}. \end{split}$$

Exercise 6. 计算 $I = \int_0^\infty \left(e^{-ax^2} - e^{-bx^2} \right) \frac{1}{x} dx (0 < a < b).$

Solution.

$$I = \int_0^{+\infty} \mathrm{d}x \int_a^b x e^{-yx^2} \mathrm{d}y$$

由 Fubini 定理可得

$$I = \int_{a}^{b} dy \int_{0}^{+\infty} x e^{-yx^{2}} dx = \frac{1}{2} \int_{a}^{b} \frac{1}{y} dy = \frac{1}{2} \ln \frac{b}{a}.$$

Exercise 7. 设 f(x,y) 在 $[0,1] \times [0,1]$ 上可积. 证明

$$\int_0^1 dx \int_0^x f(x,y) dy = \int_0^1 dy \int_y^1 f(x,y) dx.$$

Proof. 记 $A = \{(x,y): 0 \le x \le 1, 0 \le y \le x\}$, 则 $A \in \mathbb{R}^2$ 中的可测集. 于是 $\chi_A(x,y)$ 是 \mathbb{R}^2 上的可测函数. 当 $(x,y) \in [0,1] \times [0,1]$ 时,

$$\chi_{[0,x]}(y) = \chi_A(x,y) = \chi_{[y,1]}(x).$$

因此 $g(x,y)=\chi_{[0,x]}(y)$ 是 \mathbf{R}^2 上的可测函数. 对函数 $f(x,y)\chi_{[0,x]}(y)$ 利用 Fubini 定理. $\ \square$

Exercise 1. 计算函数 $f(x) = \sin x$ 在 $[0, 2\pi]$ 上的全变差, 并计算 $V_0^x(f)$.

Exercise 2. 证明若 $f,g \in \mathrm{BV}[a,b],$ 则 $fg \in \mathrm{BV}[a,b].$ $V_0^x(f)$

Exercise 3. 设 f(x) 是 [a,b] 上的可微函数, 并且 f'(x) 在 [a,b] 上有界, 则 $f \in BV[a,b]$.

Exercise 4. 证明若 $f, g \in AC[a, b]$, 则 $fg \in AC[a, b]$.

Exercise 5. 利用定理 5.9 证明, 若 $f \in L[a,b]$, 并且对任意 $a \le c \le b$, 恒有 $\int_a^c f \, dx = 0$, 则 f = 0 a.e. (参见习题 4, B 类第 5 题).

Exercise 6. 设 $f \in AC[a, b]$, 并且 $f'(x) \ge 0$ a.e. 证明 f 是单调递增的.