COVID-19 Data Science Analysis

Mhealyssah Bustria & Anjelina Velazquez Mentors: Dr. Niema Moshiri & Dr. Youwen Ouyang

UCSD DBMI Summer Internship 2020 August 12, 2020

About Us

Mhealyssah (Mhea) Bustria

A Computer Science undergraduate at CSUSM. She is always happy to give back to her community, and she is especially-interested in advancing the fields of education and health.

Anjelina Velazquez

Currently a fourth year Computer Science student at CSUSM. Enjoys keeping busy by always learning new concepts and ideas. She is always encouraging others to do the same.

Outline

BACKGROUND

- Motivation
- Our Project
- Methods

RESULTS

- Reading patient data
- Analyzing the dataset

CONCLUSIONS

- Lessons learned
- Next steps

Background - Motivation

To combat the **COVID-19 pandemic**, researchers need to make inferences from data collected from patients.

Background - Motivation

To combat the **COVID-19 pandemic**, researchers need to make inferences from data collected from patients.

Are these inferences generalizable?

Background - Motivation

To combat the **COVID-19 pandemic**, researchers need to make inferences from data collected from patients.

Are these inferences generalizable?

Researchers need to account for...

potential errors and inaccuracies that are present in the data collected due to manual input

potential confounding factors, such as biases in patient sampling

Background - Our project

Collection of over 75,000 SARS-CoV-2 Patient Records

Manually-entered data

Errors,
inconsistencies, and
missing data
affects
the data science
analysis process.

Large dataset

What do the patient records in our dataset look like?

What are some potential confounding factors?

Research Goals

Reading patient data

Demonstrate how manually-entered data affects data science analysis.

Analysis and visualization

Show how demographic information varies in our large sample.

This research was supported by the NLM training grant T15LM011271, the NSF RAPID grant NSF-2028040, and the GCP Research Credits Program.

Obtaining the dataset

Global initiative on sharing all influenza data (GISAID)

 Extracted records were stored in a gzipped JSON file

Obtaining the dataset

Global initiative on sharing all influenza data (GISAID)

 Extracted records were stored in a gzipped JSON file

Data reading and analysis

Python

- Identify what information can be found in the records
- Decide what information to use for analysis and visualization

Obtaining the dataset

Global initiative on sharing all influenza data (GISAID)

 Extracted records were stored in a gzipped JSON file

Data reading and analysis

Python

- Identify what information can be found in the records
- Decide what information to use for analysis and visualization

Data visualization

matplotlib Python library

pie charts

seaborn Python library (based on matplotlib)

- bar plots
- count plots
- violin plots

RESULTS

Reading Patient Data

Results - Reading patient data

How were our analysis and visualization processes affected by manual data-entry practices?

How did we modify our data-reading strategies to account for unusable data?

- data correction
- data exclusion

What are potential solutions to address the issues caused by manual data entry?

2? Types of missing / unknown / invalid data

Type 1

Data for the attribute-of-interest was **not provided**.

2? Types of missing / unknown / invalid data

Type 1

Data for the attribute-of-interest was **not provided**.

Type 2

Data for the attribute-of-interest was provided, but was entered as some variation of "unknown" or "not applicable".

2? Types of missing / unknown / invalid data

Type 1

Data for the attribute-of-interest was **not provided**.

Type 2

Data for the attribute-of-interest was provided, but was entered as some variation of "unknown" or "not applicable".

Type 3

Data for the attribute-of-interest contained an error such as formatting inconsistencies or misspellings.

2 How often was attribute data missing or invalid/unknown?

2 How often was attribute data missing or invalid/unknown?

2 How often was attribute data missing or invalid/unknown?

† How often did we encounter unknown gender data?

Amounts of known and unknown gender data from 75,571 records

How often did we encounter unknown or unusable age data?

Formats of age data of 75,571 COVID-19 patient records

Throughout the study,
how did we
revise our strategies
to handle the issues
involved with
manually-entered data?

retrieve the data

the data may or may not be missing

Handling manually-entered data - example of data exclusion

Handling manually-entered data - example of data exclusion

This research was supported by the NLM training grant T15LM011271, the NSF RAPID grant NSF-2028040, and the GCP Research Credits Program.

Handling manually-entered data - example of data exclusion

Handling manually-entered data

Handling manually-entered data - example of data correction

Handling manually-entered data

Handling manually-entered data - example of data inclusion

Handling manually-entered data - example of data inclusion

Handling manually-entered data - example of data inclusion

Handling manually-entered data

Potential solutions for improving data-entry practices

Improving Manual Data Entry

- The use of dropdown menus instead of allowing the user to input information
- Adding Data Validation will ensure that all information being added is formatted correctly

Automated Data Capture instead of Manual Data Entry.

Benefits of automation:

- Significantly reduces errors
- Improved efficiency and cleaner data

RESULTS

Analyzing the dataset

Results - Analyzing the dataset

What did our collection of 75,571 patient records look like?

Location

Where the data was submitted from

- → Continent
- \rightarrow Country
 - → State

Attributes that we looked at

Gender

→ The gender data that was provided

Age

→ The age in years of the patient

• What continents were the records submitted from?

Global collection of 75,571 COVID-19 Patient Records Dates: 2010-03-12 to 2020-5-9

Which countries have submitted over 1,000 records?

† What genders were found in the dataset?

Gender data found in 23,572 out of 75,571 records (31.19%)

What was the gender data in various countries?

Out of the 42,615 patient records from these countries, 55.0% held either female of male gender data.

What was the age data in various countries?

♀ † ♣ What were the combinations of age and gender?

Age categorized by Gender of COVID-19 patients

Note: Age and gender data was provided by 9,457 out of 42,830 records in these countries (22.08%)

Genders of Patients in CALIFORNIA, USA Note: Gender data was provided by 246 out of 2,176 records in CALIFORNIA, USA (11.31%)

What ages and genders were found in California?

Age categorized by Gender of COVID-19 patients in CALIFORNIA, USA

State Note: Age and gender provided by 246 out of 2,176 records in CALIFORNIA, USA (11.31%)

Lessons Learned - Biomedical Research

Reading patient data

Data analysis is affected by the data-entry methods that were used to create the data.

Confounding errors such as the lack of correct data entry can cause misinterpretation.

Analysis and visualization

In order to generalize inferences about a sample of patients, the differences in the patients should be accounted for instead of treating each patient as if they are the same person.

Lessons Learned - Data Science

Reading patient data

Loading and reading a collection of data from a file.

Identifying what information should be included in analysis and visualization.

Analysis and visualization

Choosing the appropriate visualization types to show trends in data.

Using tools to generate the visualizations.

Next Steps

Improve data-handling strategies in our code

Current focus: error-handling for location data

Example: Use pre-defined lists of all states in a country to prevent misrepresentation

Improve
efficiency,
readability, and
reusability
of our code
so that our methods
can be used to assist
with the study other
datasets

Advocate for improvement in data-entry practices

Acknowledgements

DBMI Summer 2020 Internship Program Leaders

Nancy Herbst

Dr. Jejo Koola

Dr. Tsung-Ting (Tim) Kuo

Dr. Lucila Ohno-Machado

Elizabeth Santillanez

Project Mentors

Dr. Niema Moshiri | Dr. Youwen Ouyang

Research Funding

The National Library of Medicine (NLM) training grant number T15LM011271

The National Science Foundation RAPID grant number NSF-2028040

Google Cloud Platform (GCP) Research Credits Program

Thank you for your time!

Any questions are welcome.

Mhealyssah Bustria bustr003@cougars.csusm.edu

Anjelina Velazquez velaz035@cougars.csusm.edu