C^* -Algebras, and the Gelfand-Naimark Theorems

Luke Armitage

University of York

June 8, 2017

Banach algebra

A Banach algebra is a complete normed algebra A such that

$$||ab|| \le ||a|| \cdot ||b|| \quad \forall a, b \in A.$$

 C^* -algebra

A C^* -algebra A is a Banach algebra with adjoint map $a\mapsto a^*$ on A, satisfying the following:

- 1. $a^{**} = a$
- 2. $(\alpha a + b)^* = \bar{\alpha}a^* + b^*$
- 3. $(ab)^* = b^*a^*$
- 4. $||a^*a|| = ||a||^2$ (C^* axiom)

We assume here that C^* -algebras have an identity, denoted 1.

Examples

Continuous complex-valued functions on a compact Hausdorff space.

Bounded operators on a Hilbert space, $\mathcal{B}(\mathcal{H})$.

Ideal of compact operators, $\mathcal{K}(\mathcal{H})$.

Calkin algebra, the quotient algebra $\mathcal{B}(\mathcal{H})/\mathcal{K}(\mathcal{H})$.

Definitions Spectrum

Spectrum of $a \in A$ is

$$\sigma(a) = \left\{\lambda \in \mathbb{C} \mid a - \lambda 1 \text{ is not invertible}\right\}.$$

Spectral radius of $a \in A$ is

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda|.$$

Normal elements

Say that $a\in A$ is **self-adjoint** if $a^*=a$, and **normal** if $a^*a=aa^*$. Say that a self-adjoint a is **positive** if $\sigma(a)\subset\mathbb{R}^+$.

Definitions States

A **state** is a linear map $\rho:A\to\mathbb{C}$ such that $\rho(a)\geq 0$ for all positive $a\in A$, and $\rho(1)=1.$

The **state space**, S(A), is a convex subset of the dual space of A. Call the extreme points of the state space **pure states**.

Maps between C^* -algebras

A *-homomorphism is an algebra homomorphism $\varphi:A\to B$ such that $\varphi(a^*)=\varphi(a)^*$, for all $a\in A$.

A *-isomorphism is a bijective *-homomorphism.

Cool Results

Uniqueness of norm

The norm of each element is given by the spectral radius, so the norm is unique.

$$||a||^2 = ||a^*a|| = r(a^*a)$$

 $||a|| = r(a^*a)^{1/2}$

Cool Results

*-homomorphisms are continuous

Let $\varphi:A\to B$ be a *-homomorphism, then

$$\|\varphi(a)\| \le \|a\|$$

for all $a \in A$.

Equality if φ is a *-isomorphism.

Representation

A **representation** of A on a Hilbert Space $\mathcal H$ is a *-homomorphism $A \to \mathcal B(\mathcal H).$

A bijective representation is called **faithful**.

Theorem

Every C^* -algebra has a faithful representation.

Proof.

Uses the Gelfand-Naimark-Segal construction.

Proof: Gelfand-Naimark-Segal Construction

Let
$$L = \{ a \in A \mid \rho(a^*a) = 0 \}.$$

 ${\cal H}$ is the Hilbert space completion of A/L.

Define operators

$$\pi_a: A/L \to A/L: b+L \mapsto ab+L,$$

and extend to $\pi_a:\mathcal{H}\to\mathcal{H}$.

Representation is given by

$$\pi: A \to \mathcal{B}(\mathcal{H}): a \mapsto \pi_a$$
.

Proof: Direct Sum

Proof concludes by taking 'direct sum' representation over the representations given by doing GNS construction to a subset of state space containing all pure states. This gives a faithful representation.

For Commutative C^* -algebras

Theorem

Every commutative C^* -algebra A is *-isomorphic to $C(\mathscr{P}(A))$, the algebra of continuous functions on the compact Hausdorff space $\mathscr{P}(A)$ containing all pure states on A.

References – Any Questions?

Kadison, R.V. and Ringrose, J.R., 1983. Fundamentals of the Theory of Operator Algebras, Vol. I. Elementary Theory. Springer.

Blackadar, B., 2006. Algebras: Theory of C^* -Algebras and Von Neumann Algebras (Vol. 122). Springer Science & Business Media.

My project report can be downloaded from goo.gl/Qv1zas.

