Departamento de Matemática Universi	dade do Minho
Álgebra $1^{\underline{o}}$ test	e – 5 dez 2020
Lic. em Ciências de Computação/Lic. em Matemática - 2º ano dura	ição: duas horas
Nome	
Curso Número	
Responda no próprio enunciado, colocando uma cruz no quadrado correspondente. Cada ques cotada com 0,8 valores numa escala de 0 a 20. Respostas erradas não têm qualquer penaliza	
Em cada uma das questões seguintes, diga se é verdadeira (V) ou falsa (F) a assinalando a opção conveniente:	proposição,
1. Sejam $(S,*)$ um grupóide e $a,b\in G$ tais que $a*b\neq b*a$. Então, $(S,*)$ é um grupóid não comutativo.	de V□ F□
2. Se G é um grupo e $a,b\in G$ são tais que $a^2\neq b^2$ então $a\neq b$.	V□ F□
3. Dado um conjunto finito não vazio qualquer X , é possível definir em X uma operação binária \ast tal que (X,\ast) é um grupo.	V 🗆 F 🗆
4. Um subconjunto H de um grupo é um seu subgrupo se $ab^{-1} \in H$ sempre que $a,b \in H$	I. V□ F□
5. A união de dois subgrupos de um grupo nunca é um subgrupo desse grupo.	V□ F□
6. Existem grupos não abelianos que admitem subgrupos não triviais abelianos.	V□ F□
7. Um subgrupo ${\cal H}$ de um grupo é uma classe lateral esquerda módulo ${\cal H}.$	V□ F□
8. Se G é um grupo de ordem 20 e $H < G$ é tal que $[G:H] = 10$, então, $ H = 10$.	V□ F□
9. Se G é grupo, então, $H \lhd G$ se e só se $xyx^{-1} \in H$, para todo $x \in G$ e $y \in H$.	V□ F□
$10. \mathbb{Z}_{6}$ admite um subgrupo que não é normal.	V□ F□
11. Um grupo quociente de um grupo não abeliano é não abeliano.	V□ F□
12. O grupo aditivo \mathbb{R}/\mathbb{Z} não tem elementos de ordem 2.	V□ F□
13. Se $\varphi:G\to G'$ é um morfismo de grupos e $H\lhd G$ então $\varphi(H)\lhd G'$.	V□ F□
14. $\mathbb{Z}_2\otimes\mathbb{Z}_4$ é isomorfo a $\mathbb{Z}_8.$	V 🗆 F 🗆
15. Se G é grupo e $a,b\in G$ são tais que $b\in < a>$ então $a\in < b>$.	V 🗆 F 🗆

 $v.s.f.f. \, \longrightarrow \,$

 $V \square F \square$

 $V\,\square\,\,F\,\square$

16. Se G é um grupo e H < G é cíclico então G é cíclico.

17. $\mathbb{Z}_4\otimes\mathbb{Z}_9$ é um grupo cíclico.

Em cada uma das questões seguintes, assinale a(s) opção(ões) correta(s):

	eja $\varphi:\mathbb{Z}\otimes\mathbb{Z}\to\mathbb{Z}$ um morfismo de grupos tal que $\varphi((1,0))=15$ e $\varphi((0,1))=28$. Então, $(\mathbb{Z}\otimes\mathbb{Z})=n\mathbb{Z}$, com
	$\square \ n = 1 \qquad \square \ n = 13 \qquad \square \ n = 43 \qquad \square \ n = 15$
19. Se	eja G um grupo cíclico de ordem 27. O número de subgrupos cíclicos de G é
	\square 18 \square 13 \square 27 \square 4
20. Se	ejam G um grupo, $K, H \lhd G$. Podemos concluir que:
	$\square \ \forall h \in H, \ \forall k \in K, \ hk = kh$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists k' \in K : \ hk = k'h$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H : \ kh = h'k$ $\square \ \forall h \in H, \ \forall k \in K, \ \exists h' \in H : \ hk = kh'$
	eja $G=\mathbb{Z}_6\otimes\mathbb{Z}_{15}.$ Se $H< G$ é tal que $ H =10$, então podemos ter
	$ \exists H = <([3]_6, [3]_{15}) > $
22. Se	ejam G um grupo e $a \in G \backslash \{1_G\}$ tal que $a^{12} = 1_G$. Então,
	$\square \ a^{36} = 1_G \qquad \square \ a^8 \neq 1_G \qquad \square \ a^{13} = 1_G \qquad \square \ a^3 \neq 1_G$
23. Se	ejam G um grupo não abeliano de ordem 21 e $a\in G$. Então,
	$\square \ o(a) \in \{1,7\}$ $\square \ o(a) \in \{1,3,7,21\}$ $\square \ o(a) = \{3,7\}$ $\square \ o(a) \in \{1,3,7\}$
24. Se	eja $arphi:G o G'$ um morfismo não nulo de grupos.
	$\Box G = 7 \Rightarrow G' = 7$ $\Box G' = 7 \Rightarrow G = 7$ $\Box G' = 7 \Rightarrow 7 G' $ $\Box G' = 7 \Rightarrow 7 G $
25. Se	eja $arphi: \mathbb{Z} o Z_{18}$ o morfismo de grupos definido por $arphi(n) = [15n]_{18}$. Então,
	$\square \operatorname{Nuc} \varphi = \{0\} \qquad \square \operatorname{Nuc} \varphi = 6\mathbb{Z} \qquad \square \operatorname{Nuc} \varphi = 5\mathbb{Z} \qquad \square \operatorname{Nuc} \varphi = \mathbb{Z}_6$