# Chov sumců

Bu Dengklek chová sumce v rybníku tvořeném čtvercovou mřižkou o rozměrech  $N \times N$ . Sloupce mřížky jsou očíslovány od 0 do N-1 v pořadí od západu na východ a řádky od 0 do N-1 v pořadí od jihu na sever. Čtverci v c-tém sloupci a r-tém řádku ( $0 \le c \le N-1, 0 \le r \le N-1$ ) budeme říkat čtverec (c,r).

V rybníku žije M sumců očíslovaných od 0 do M-1. Pozice sumců jsou **po dvou různé**, žádní dva sumci tedy nežijí ve stejném čtverci. Sumec i (kde  $0 \le i \le M-1$ ) žije ve čtverci (X[i],Y[i]) a váží W[i] gramů.

Bu Dengklek chce postavit mola, aby mohla sumce chytat. Molo délky k ve sloupci c (pro  $0 \le c \le N-1$  a  $1 \le k \le N$ ) je obdélník šířky 1 zasahující do řádků 0 až k-1, který pokrývá čtverce  $(c,0),(c,1),\ldots(c,k-1)$ .

*Bu Dengklek* si pro každý sloupec může vybrat, jestli v něm postaví nebo nepostaví molo. Pro každé postavené molo může zvolit libovolnou délku.

Sumec i (pro i splňující  $0 \le i \le M-1$ ) může být chycen, pokud je čtverec na východ nebo na západ od něj poryt molem a zároven čtverec, ve kterém žije, molem pokryt není. Sumec tedy může být chycen, pokud jsou splněny obě následující podmínky:

- **Aspoň jeden** ze čtverců (X[i]-1,Y[i]) a (X[i]+1,Y[i]) je pokryt molem.
- Čtverec (X[i], Y[i]) není pokryt molem.

Uvažme například rybník velikost N=5, ve kterém žijí M=4 sumci:

- Sumec 0 žije ve čtverci (0, 2) a váží 5 gramů.
- Sumec 1 žije ve čtverci (1, 1) a váží 1 gram.
- Sumec 2 žije ve čtverci (4,4) a váží 1 gram.
- Sumec 3 žije ve čtverci (3,3) a váží 3 gramy.

Jeden ze způspbů, jak může Bu Dengklek postavit mola, je následující:



Číslo ve čtverci udává váhu sumce, který v něm žije. Zvýrazněné čtverce jsou pokryty moly. V tomto případě je možné chytit sumce 0 (ve čtverci (0,2)) a sumce 3 (ve čtverci (3,3)). Sumec 1 (ve čtverci (1,1)) chycen být numůže, protože je jeho čtverec pokryt molem. Sumce 2 (ve čtverci (4,4)) také není možné chytit, protože čtverce nalevo ani napravo od něj nejsou pokryty molem.

*Bu Dengklek* by ráda postavila mola tak, aby byla celková váha sumců, které může chytit, co největší. Vaším úkolem je určit maximální možnou celkovou váhu sumců, které může *Bu Dengklek* po postavení mol chytit.

## Implementační detaily

Implementujte následující funkci:

```
int64 max_weights(int N, int M, int[] X, int[] Y, int[] W)
```

- *N*: velikost rybníka.
- *M*: počet sumců.
- *X*, *Y*: pole délky *M* udávající polohy sumců.
- W: pole délky M udávající váhy sumců.
- Tato funkce by měla vrátit přirozené číslo reprezentijící maximální možnou celkovou váhu sumců, které může *Bek Dengklek* chytit po postavení mol.
- Tato funkce je volána právě jednou.

#### Příklad

Uvažujme následující volání funkce:

```
max_weights(5, 4, [0, 1, 4, 3], [2, 1, 4, 3], [5, 2, 1, 3])
```

Tento příklad je popsán v zadání úlohy výše.

Po postavení mol, jak je popsáno výše, může  $Bu\ Dengklek$  chytit sumce 0 a 3, jejichž celková váha je 5+3=8 gramů. Není možné postavit mola tak, aby bylo možné chytit sumce o ceklové váze vyšší než 8 gramů, funkce by tedy měla vrátit 8.

### Omezení

- $2 \le N \le 100\ 000$
- 1 < M < 300000
- $0 \leq X[i] \leq N-1$ ,  $0 \leq Y[i] \leq N-1$  (pro každé i splňující  $0 \leq i \leq M-1$ )
- $1 \leq W[i] \leq 10^9$  (pro každé i splňující  $0 \leq i \leq M-1$ )
- Žádní dva sumci nejsou ve stejném čtverci. Jinými slovy,  $X[i] \neq X[j]$  nebo  $Y[i] \neq Y[j]$  (pro každé i a j splňujcí  $0 \leq i < j \leq M-1$ ).

## Podúlohy

```
1. (3 body) X[i] je sudé (pro každé i splňující 0 \le i \le M-1)
```

- 2. (6 bodů)  $X[i] \leq 1$  (pro každé i splňující  $0 \leq i \leq M-1$ )
- 3. (9 bodů) Y[i] = 0 (pro každé i splňující  $0 \le i \le M-1$ )
- 4. (14 bodů)  $N \leq 300$ ,  $Y[i] \leq 8$  (pro každé i splňující  $0 \leq i \leq M-1$ )
- 5. (21 bodů)  $N \le 300$
- 6. (17 bodů)  $N \leq 3000$
- 7. (14 bodů) V každém sloupci žijí nejvýše 2 sumci.
- 8. (16 bodů) Žádná další omezení.

## Ukázkový grader

Ukázkový grader načítá vstup v následujícím formátu:

- řádek 1: *N M*
- řádek 2 + i ( $0 \le i \le M 1$ ):  $X[i] \ Y[i] \ W[i]$

Ukázkový grader vypíše vaši odpověď v následujícím formátu:

• řádek 1: návratová hodnota max\_weights