main

October 25, 2025

1 House Prices - Advanced Regression Techniques

The objective of this challenge is to build a regression model to predict the final price of homes in the dataset.

The dataset has 79 features, describing the characteristics of each given house. The description of each feature can be found in the data description.txt file.

We will approach the problem in different steps:

- 1. Load the dataset and describe it
- 2. Data cleaning (e.g. remove nulls, feature encoding, etc.)
- 3. Train & Evaluate (rmse, r-squared)
- 4. Results

Column

5. [Bonus] Improving our Kaggle score, where we try to improve the score with advanced techniques

2 Load the dataset and describe it

We are given two datasets, one called train.csv and the other test.csv. The train.csv dataset will be used for training, whereas the test.csv to create our final submission to Kaggle.

```
[1]: # Imports for the project
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    import numpy as np
    random_state = 13427895

[2]: train_dataset_raw = pd.read_csv('./data/train.csv', index_col='Id')
    test_dataset_raw = pd.read_csv('./data/test.csv', index_col='Id')
    train_dataset_raw.info()
    <class 'pandas.core.frame.DataFrame'>
    Index: 1460 entries, 1 to 1460
    Data columns (total 80 columns):
```

Non-Null Count Dtype

0	MSSubClass	1460 non-null	int64
1	MSZoning	1460 non-null	object
2	LotFrontage	1201 non-null	float64
3	LotArea	1460 non-null	int64
4	Street	1460 non-null	object
5	Alley	91 non-null	object
6	LotShape	1460 non-null	object
7	LandContour	1460 non-null	object
8	Utilities	1460 non-null	object
9	LotConfig	1460 non-null	object
10	LandSlope	1460 non-null	object
11	Neighborhood	1460 non-null	object
12	Condition1	1460 non-null	object
13	Condition2	1460 non-null	object
14	BldgType	1460 non-null	object
15	HouseStyle	1460 non-null	object
16	OverallQual	1460 non-null	int64
17	OverallCond	1460 non-null	int64
18	YearBuilt	1460 non-null	int64
19	YearRemodAdd	1460 non-null	int64
20	RoofStyle	1460 non-null	object
21	RoofMatl	1460 non-null	object
22	Exterior1st	1460 non-null	object
23	Exterior2nd	1460 non-null	object
24	MasVnrType	588 non-null	object
25	MasVnrArea	1452 non-null	float64
26	ExterQual	1460 non-null	object
27	ExterCond	1460 non-null	object
28	Foundation	1460 non-null	object
29	BsmtQual	1423 non-null	object
30	BsmtCond	1423 non-null	object
31	${\tt BsmtExposure}$	1422 non-null	object
32	BsmtFinType1	1423 non-null	object
33	BsmtFinSF1	1460 non-null	int64
34	BsmtFinType2	1422 non-null	object
35	BsmtFinSF2	1460 non-null	int64
36	BsmtUnfSF	1460 non-null	int64
37	TotalBsmtSF	1460 non-null	int64
38	Heating	1460 non-null	object
39	${\tt HeatingQC}$	1460 non-null	object
40	CentralAir	1460 non-null	object
41	Electrical	1459 non-null	object
42	1stFlrSF	1460 non-null	int64
43	2ndFlrSF	1460 non-null	int64
44	LowQualFinSF	1460 non-null	int64
45	GrLivArea	1460 non-null	int64
46	BsmtFullBath	1460 non-null	int64

```
47
     BsmtHalfBath
                     1460 non-null
                                      int64
                                      int64
48
     FullBath
                     1460 non-null
49
     HalfBath
                     1460 non-null
                                      int64
50
     BedroomAbvGr
                     1460 non-null
                                      int64
51
     KitchenAbvGr
                     1460 non-null
                                      int64
52
     KitchenQual
                     1460 non-null
                                      object
53
     TotRmsAbvGrd
                     1460 non-null
                                      int64
54
     Functional
                     1460 non-null
                                      object
                     1460 non-null
55
     Fireplaces
                                      int64
56
     FireplaceQu
                    770 non-null
                                      object
57
     GarageType
                     1379 non-null
                                      object
     GarageYrBlt
                     1379 non-null
58
                                      float64
59
     GarageFinish
                     1379 non-null
                                      object
                                      int64
60
     GarageCars
                     1460 non-null
61
     GarageArea
                     1460 non-null
                                      int64
     GarageQual
                     1379 non-null
                                      object
62
63
     GarageCond
                     1379 non-null
                                      object
64
     PavedDrive
                     1460 non-null
                                      object
65
     WoodDeckSF
                     1460 non-null
                                      int64
66
     OpenPorchSF
                     1460 non-null
                                      int64
                    1460 non-null
67
     EnclosedPorch
                                      int64
     3SsnPorch
                     1460 non-null
68
                                      int64
     ScreenPorch
                     1460 non-null
                                      int64
70
     PoolArea
                     1460 non-null
                                      int64
71
    PoolQC
                     7 non-null
                                      object
72
     Fence
                     281 non-null
                                      object
73
     MiscFeature
                     54 non-null
                                      object
74
     MiscVal
                     1460 non-null
                                      int64
75
     MoSold
                     1460 non-null
                                      int64
76
     YrSold
                     1460 non-null
                                      int64
     SaleType
77
                     1460 non-null
                                      object
78
     SaleCondition
                    1460 non-null
                                      object
79
     SalePrice
                     1460 non-null
                                      int64
dtypes: float64(3), int64(34), object(43)
```

[3]: train_dataset_raw.sample(8, random_state=random_state)

RL

memory usage: 923.9+ KB

60

671

[3]: MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \ Ιd 1245 70 RLNaN 11435 Pave NaNIR1 974 20 FV 95.0 11639 Pave NaN Reg 257 60 FV64.0 8791 NaNIR1 Pave 452 20 RL62.0 70761 Pave NaN IR1 1412 50 RL80.0 9600 Pave NaNReg 958 20 RL70.0 7420 NaNPave Reg

64.0

8633

Pave

NaN

Reg

	1219		50		RM	52.	0	6240	Pave	NaN	Reg	
		LandCont	tour	Uti	lities	LotConfig	•••	PoolArea	PoolQC	Fence	MiscFeature	\
	Id		TTT 0		4335 1	a	•••	0	37 37	37 37	NT NT	
	1245		HLS		AllPub	Corner	•••	0	NaN		NaN	
	974		Lvl		AllPub	Corner	•••	0	NaN		NaN	
	257		Lvl		AllPub	Inside	•••	0	NaN		NaN	
	452		Low		AllPub	Inside	•••	0	NaN		NaN	
	1412		Lvl		AllPub	Inside	•••		NaN		NaN	
	958		Lvl		AllPub	Inside	•••		NaN		NaN	
	671		Lvl		AllPub	FR2	•••	0	NaN		NaN	
	1219		Lvl		AllPub	Inside	•••	0	NaN	NaN	NaN	
	Id	MiscVal	MoSo	old	YrSolo	d SaleType)	SaleCondit	tion S	alePrice	е	
	1245	0		6	2006	6 WI)	Non	rmal	230000)	
	974	0		12	2008			Part		182000		
	257	0		5	2008				rmal	207500		
	452	0		12	2006				rmal	280000		
	1412	0		9	2009				rmal	140000		
	958	0		4	2007				rmal	132000		
	671	0		2	2009				rmal	173500		
	1219	0		7	2006				rmal	80500		
[4]:		ows x 80				w.isna().su	ım ()				
	missi	ing[missi	ing :	> 0]								
[4]:	LotFr	contage		259								
2 -3 -	Alley	_	1	1369								
	•	ırType	-	872								
		rArea		8								
	BsmtQ			37								
	BsmtC	-		37								
		Exposure		38								
		FinType1		37								
		FinType1		38								
		rical		1								
		olaceQu		690								
	-	отасеци geТуре		81								
	_			81								
	_	geYrBlt		81								
	_	geFinish										
	_	geQual		81								
	_	geCond		81								
	Pool	ĮC]	1453								

Fence 1179 MiscFeature 1406

dtype: int64

Looking at the output and in accordance with the data_description.txt file we can observe that the dataset:

- Contains many features with missing values. Now, should these columns or rows that contain them be dropped? We will have to distinguish whether the missing data actually is actually relevant.
 - For example, looking at the PoolQC feature, it indicates the PoolQuality. If NaN it
 indicates that the house does not have a pool, therefore is a useful information that we
 want to keep
 - Whereas, we see that for example MasVnrArea indicates the veneer area in square feet, a NaN value here means that we do not have that information, therefore we could either set it to zero or remove completely.

In summary:

- 1. These columns Alley, BsmtQual, BsmtCond, BsmtExposure, BsmtFin-Type1, BsmtFinType2, FireplaceQu, GarageType, GarageFinish, Garage-Qual, GarageCond, PoolQC, Fence, MiscFeature, MasVnrType are absent, but contain meaningful information
- 2. **Electrical** column is actually missing (1 row), therefore we will simply remove it from the dataset
- 3. **LotFrontage** column is missing in 259 rows. In this case we won't delete the rows since it would mean deleting roughly 20% of the dataset. Therefore, we will set the missing values to the median of the rows with values
- Contains many categorical features, which we will likely need to encode.

2.1 Target Variable

The target variable 'y' in the dataset is **SalePrice**

```
[5]: target_column = 'SalePrice'
train_dataset_raw[target_column].describe()
```

```
[5]: count
                 1460.000000
     mean
               180921.195890
     std
                79442.502883
               34900.000000
     min
     25%
              129975.000000
     50%
              163000.000000
     75%
              214000.000000
              755000.000000
     max
```

Name: SalePrice, dtype: float64

We observe that the **mean** (180921) is higher than the **median** (50% - 163000), which could mean that there are some houses that are driving the price up (max 755000) which could indicate that the data is skewed towards the right. To confirm this, let's plot the data.

```
[6]: sns.histplot(train_dataset_raw[target_column], kde=True)
    plt.title(f"Distribution of {target_column}")
    plt.xlabel(target_column)
    plt.ylabel("Frequency")

plt.show()
```


And indeed we observe that the data is right-skewed. We will need to appy a transformation to make it less "unbalanced".

2.2 Correlation

Let's go on and see the how the different columns contribute to the **SalePrice** target column by using correlation.

```
[7]: corr_matrix = train_dataset_raw.corr(numeric_only=True)
saleprice_correlations = corr_matrix[target_column].sort_values(ascending=False)

plt.figure(figsize=(12,7))
sns.barplot(x=saleprice_correlations.values, y=saleprice_correlations.index)
```

```
plt.title(f"Correlation of features for {target_column}")
plt.ylabel("Features")
plt.show()
```


Based on this visualization we can see that some features heavily (> .6) contribute to the **SalePrice** target

```
[8]: saleprice_correlations[saleprice_correlations > .6]
```

Name: SalePrice, dtype: float64

Knowing this, let's see if these highly-correlated features have outliers using scatter plots.

```
[9]: highly_correlated = saleprice_correlations[saleprice_correlations > .6]
highly_correlated = highly_correlated[1:] # remove the target column

fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(20, 12))

for feature, ax in zip(highly_correlated.keys(), axes.flatten()):
```

```
sns.scatterplot(x=train_dataset_raw[feature], u
    y=train_dataset_raw[target_column], ax=ax)
    ax.set_title(f"Outliers: {feature} vs {target_column}")

plt.tight_layout()
plt.show()
```


Looking at this we see some outliers for:

- GrLivArea where two houses with a > 4500ft sq. are are sold at < 200000 dollars. We will remove this as it doesn't make much sense if we think at the context we are working in. A house that big should cost way more money, but here it is sold very cheap.
- GarageArea where houses with a > 1200ft sq. are sold at < 300000 dollars. This is more nuanced as it's plausible that a real house might have an enormous garage or workshop. We will leave this outsider to be conservative and later see if it was the right decision.
- TotalBSmtSF & 1stFlrSF with a really out-of-charts outliers, most certainly an error in the data.

3 Data Cleaning

In the previous phase, we identified several items that we need to address:

• Missing Data, We found numerous columns with missing values and determined that some NaNs represent a meaningful absence of a feature (e.g., no pool), while others are truly missing data points.

- Outliers, We identified a few significant outliers, particularly two data points with very large GrLivArea but unusually low SalePrice, which could negatively impact model performance.
- Target Variable Skewness, Our target variable, SalePrice, is heavily right-skewed and will need to be transformed to be more suitable for linear models.

In this section, we will execute a cleaning plan based on these findings. The process will be as follows:

- 1. First, we will handle all missing data by either **imputing** values or **dropping** rows.
- 2. Second, we will **remove** the identified outliers from the dataset.
- 3. Third, we will apply a log transformation to the **SalePrice** column to normalize its distribution.
- 4. Finally, once the data is clean, we will perform **feature encoding** to convert categorical columns into a numerical format that machine learning models can process.

3.0.1 Filling "missing" data and filling

```
[10]: target_column = 'SalePrice'
      train_dataset_cleaned = train_dataset_raw.copy()
      test_dataset_cleaned = test_dataset_raw.copy()
      features_to_fill_none = [
           'Alley', 'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1',
           'BsmtFinType2', 'FireplaceQu', 'GarageType', 'GarageFinish',
           'GarageQual', 'GarageCond', 'PoolQC', 'Fence', 'MiscFeature',
           'MasVnrType'
      ]
      # fill categorical missing with "None" string
      for feature in features to fill none:
          train dataset cleaned[feature] = train dataset cleaned[feature].

¬fillna("None")
          test_dataset_cleaned[feature] = test_dataset_cleaned[feature].fillna("None")
      # fill numerical missing with 0
      features_to_fill_zero = ['GarageYrBlt', 'MasVnrArea']
      for feature in features_to_fill_zero:
          train_dataset_cleaned[feature] = train_dataset_cleaned[feature].fillna(0)
          test_dataset_cleaned[feature] = test_dataset_cleaned[feature].fillna(0)
      # fill any remaining NaNs in LotFrontage (e.g., if a neighborhood in test set_{\sqcup}
       was not present in the training set,
      # or if a neighborhood had all NaNs) with the global median from the training
      lot_frontage_median = train_dataset_cleaned['LotFrontage'].median()
```

Rows with NaN values after cleaning: 0

3.0.2 Outliers

Before removal of outliers 1459 After removal of outliers 1455

3.0.3 Adjusting skewness

```
axes[1].set_title(f"Log-Transformed {transformed_to_log_target_column}_⊔

⇔Distribution")

plt.show()
```


To encode the features, we have to be aware of the different types that are present in the dataset. We have two types (1) **Ordinal** and (2) **Nominal** features.

Ordinal features have an intrinsic order. For example we observe that many features in the dataset refer to "Quality of X", like "ExterQual", "BsmtQual", etc that is ordered from (NA - No X, Po - Poor quality, Fa - Fair quality, TA - typical quality, Gd - good quality and Ex - excellent quality. We will map these values to a 0-5 and encode them using **Ordinal Encoding**.

Nominal features are categories to which the feature is assigned to. For example the **Neighborhood**, which represents the physical location of the house in the city, can assume different values dependending, of course, by the neighboorhood the house is in.

3.0.4 Encoding

```
land_slope_cats = ['Sev', 'Mod', 'Gtl']
# --- Initialize all encoders ---
qual_encoder = OrdinalEncoder(categories=[qual_cats] * len(qual_cols),__
 ⇔handle_unknown='use_encoded_value', unknown_value=-1)
bsmt fin encoder = OrdinalEncoder(categories=[bsmt fin cats] ****
 ⇔len(bsmt_fin_cols), handle_unknown='use_encoded_value', unknown_value=-1)
bsmt_exp_encoder = OrdinalEncoder(categories=[bsmt_exp_cats],__
 ⇔handle_unknown='use_encoded_value', unknown_value=-1)
garage fin encoder = OrdinalEncoder(categories=[garage fin cats],
 ⇔handle_unknown='use_encoded_value', unknown_value=-1)
paved_drive_encoder = OrdinalEncoder(categories=[paved_drive_cats],__
 ⇔handle_unknown='use_encoded_value', unknown_value=-1)
land slope encoder = OrdinalEncoder(categories=[land slope cats],
 ⇔handle_unknown='use_encoded_value', unknown_value=-1)
# --- Fit and Transform the Training Data ---
# Note: We fill NaNs with a default value just before fitting/transforming
train_dataset_cleaned[qual_cols] = qual_encoder.

¬fit_transform(train_dataset_cleaned[qual_cols])
train dataset cleaned[bsmt fin cols] = bsmt fin encoder.

→fit_transform(train_dataset_cleaned[bsmt_fin_cols])
train_dataset_cleaned[bsmt_exp_cols] = bsmt_exp_encoder.

fit_transform(train_dataset_cleaned[bsmt_exp_cols])
train_dataset_cleaned[garage_fin_cols] = garage_fin_encoder.

fit_transform(train_dataset_cleaned[garage_fin_cols])
train_dataset_cleaned[paved_drive_cols] = paved_drive_encoder.

fit_transform(train_dataset_cleaned[paved_drive_cols])
train dataset cleaned[land slope cols] = land slope encoder.
 Git_transform(train_dataset_cleaned[land_slope_cols])
# --- Transform the Test Data (filling NaNs with the same strategy) ---
test_dataset_cleaned[qual_cols] = qual_encoder.
 ⇔transform(test_dataset_cleaned[qual_cols])
test_dataset_cleaned[bsmt_fin_cols] = bsmt_fin_encoder.
 →transform(test_dataset_cleaned[bsmt_fin_cols])
test_dataset_cleaned[bsmt_exp_cols] = bsmt_exp_encoder.
 stransform(test_dataset_cleaned[bsmt_exp_cols])
test_dataset_cleaned[garage_fin_cols] = garage_fin_encoder.
 →transform(test_dataset_cleaned[garage_fin_cols])
test_dataset_cleaned[paved_drive_cols] = paved_drive_encoder.

¬transform(test_dataset_cleaned[paved_drive_cols])
test dataset cleaned[land slope cols] = land slope encoder.
 stransform(test_dataset_cleaned[land_slope_cols])
```

```
[14]: train_dataset_cleaned.sample(8, random_state=random_state)
```

```
[14]:
            MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \
      Τd
      1243
                     85
                               R.I.
                                           85.0
                                                   10625
                                                            Pave
                                                                  None
                                                                             Reg
      1186
                     50
                               RL
                                           60.0
                                                            Pave
                                                                  None
                                                    9738
                                                                             Reg
      1258
                               RL
                     30
                                           56.0
                                                    4060
                                                            Pave None
                                                                             Reg
      1254
                               RL
                                           69.0
                                                   17542
                                                            Pave None
                     60
                                                                             IR1
      1221
                     20
                               RL
                                           66.0
                                                    7800
                                                            Pave None
                                                                             IR1
      1320
                     20
                               RL
                                           75.0
                                                   10215
                                                            Pave
                                                                  None
                                                                             Reg
      172
                     20
                               RL
                                          141.0
                                                   31770
                                                            Pave
                                                                  None
                                                                             IR1
      958
                     20
                               RL
                                           70.0
                                                    7420
                                                            Pave
                                                                  None
                                                                             Reg
           LandContour Utilities LotConfig ...
                                                           Fence MiscFeature MiscVal
                                                  PoolQC
      Ιd
      1243
                                                                         None
                                                                                     0
                    Lvl
                            AllPub
                                      Inside
                                                    None
                                                           MnPrv
                                                                                     0
      1186
                    Lvl
                            AllPub
                                      Inside
                                                    None
                                                            None
                                                                         None
      1258
                    Lvl
                            AllPub
                                      Corner ...
                                                    None
                                                            None
                                                                         None
                                                                                     0
      1254
                    Lvl
                           AllPub
                                      Inside
                                                    None
                                                           MnPrv
                                                                         None
                                                                                     0
      1221
                    Lvl
                           AllPub
                                      Inside ...
                                                            None
                                                                         None
                                                    None
                                                                                     0
      1320
                    Bnk
                            AllPub
                                      Inside ...
                                                    None
                                                            None
                                                                         None
                                                                                     0
      172
                    Lvl
                            AllPub
                                      Corner ...
                                                    None
                                                            None
                                                                         None
                                                                                     0
      958
                    Lvl
                            AllPub
                                      Inside ...
                                                    None
                                                            None
                                                                         None
                                                                                     0
           MoSold YrSold SaleType
                                      SaleCondition SalePrice
                                                                  SalePrice_log
      Ιd
      1243
                     2010
                                  WD
                                              Family
                                                          170000
                                                                       12.043560
                 1
      1186
                 3
                     2006
                                  WD
                                              Normal
                                                          104900
                                                                       11.560772
      1258
                 7
                     2009
                                  WD
                                              Normal
                                                                       11.511935
                                                           99900
                 7
      1254
                     2007
                                  WD
                                              Normal
                                                          294000
                                                                       12.591338
      1221
                     2006
                                             Abnorml
                11
                                  WD
                                                          115000
                                                                       11.652696
      1320
                 2
                     2007
                                  WD
                                              Normal
                                                          111000
                                                                       11.617294
      172
                 5
                     2010
                                  WD
                                              Normal
                                                          215000
                                                                       12.278398
      958
                 4
                     2007
                                  WD
                                              Normal
                                                          132000
                                                                       11.790565
      [8 rows x 81 columns]
[15]: ## Point 4 - Nominal
      from sklearn.preprocessing import OneHotEncoder
      df_final = train_dataset_cleaned.copy()
```

ohe = OneHotEncoder(drop='first', sparse_output=False, handle_unknown='ignore')

df_test_final = test_dataset_cleaned.copy()

df_final['MSSubClass'] = df_final['MSSubClass'].astype(str)

df_test_final['MSSubClass'] = df_test_final['MSSubClass'].astype(str)

nominal_cols = df_final.select_dtypes(include=['object']).columns

```
# Fit on the training data and transform it
     encoded_train = ohe.fit_transform(df_final[nominal_cols])
     encoded_df_train = pd.DataFrame(encoded_train, index=df_final.index,_
       # ONLY transform the test data
     encoded test = ohe.transform(df test final[nominal cols])
     encoded_df_test = pd.DataFrame(encoded_test, index=df_test_final.index,__
       ⇔columns=ohe.get_feature_names_out(nominal_cols))
      # Drop, concat, and align
     df_final.drop(nominal_cols, axis=1, inplace=True)
     df_test_final.drop(nominal_cols, axis=1, inplace=True)
     df_final = pd.concat([df_final, encoded_df_train], axis=1)
     df_test_final = pd.concat([df_test_final, encoded_df_test], axis=1)
      # also process the missing values on the test dataset after encoding the \Box
       \rightarrow features
     test_nan_cols = df_test_final.columns[df_test_final.isna().any()].tolist()
     for col in test_nan_cols:
         median value = df final[col].median()
         df_test_final[col] = df_final[col].fillna(median_value)
         print(f"Filled NaNs in '{col}' with training data median for test dataset:⊔
       →{median_value}")
     Filled NaNs in 'BsmtFinSF1' with training data median for test dataset: 381.0
     Filled NaNs in 'BsmtFinSF2' with training data median for test dataset: 0.0
     Filled NaNs in 'BsmtUnfSF' with training data median for test dataset: 479.0
     Filled NaNs in 'TotalBsmtSF' with training data median for test dataset: 991.0
     Filled NaNs in 'BsmtFullBath' with training data median for test dataset: 0.0
     Filled NaNs in 'BsmtHalfBath' with training data median for test dataset: 0.0
     Filled NaNs in 'GarageCars' with training data median for test dataset: 2.0
     Filled NaNs in 'GarageArea' with training data median for test dataset: 479.0
     /Users/ilcors-dev/src/unibo/corsetti-
     house_prices_advanced_regression_techniques/.venv/lib/python3.13/site-
     packages/sklearn/preprocessing/_encoders.py:246: UserWarning: Found unknown
     categories in columns [0, 1, 6, 15, 16, 22, 27] during transform. These unknown
     categories will be encoded as all zeros
       warnings.warn(
[16]: df_final.sample(8, random_state=random_state)
[16]:
           LotFrontage LotArea LandSlope OverallQual OverallCond YearBuilt \
     Ιd
     1243
                  85.0
                          10625
                                       2.0
                                                      7
                                                                           1974
```

1186	60.0	9738	2.0	5		7	19	924
1258	56.0	4060	2.0	5		8	1.9	922
	69.0			7		7		
1254		17542	2.0					974
1221	66.0	7800	2.0	5		5	19	964
1320	75.0	10215	2.0	4		5	19	954
172	141.0	31770	2.0	6		5		960
958	70.0	7420	2.0	5		5	19	962
	YearRemodAdd	MasVnrArea	a ExterQual	ExterCo	nd	SaleType_	ConLI	\
Id					•••			
	107/	81.0	2 0	2			0 0	
1243	1974				.0		0.0	
1186	1950	0.0	3.0	4	.0		0.0	
1258	1950	0.0	3.0	3	.0		0.0	
1254	2003	0.0			.0		0.0	
1221	1964	0.0			.0		0.0	
1320	1954	132.0	3.0	3	.0		0.0	
172	1960	112.0	3.0	3	.0		0.0	
958	1962	0.0			_		0.0	
950	1902	0.0	3.0	3	.0		0.0	
	SaleType_ConL	w SaleType	e_New SaleT	ype_Oth S	SaleTy	pe_WD \		
Id								
1243	0.	0	0.0	0.0		1.0		
1186	0.		0.0	0.0		1.0		
1258	0.	0	0.0	0.0		1.0		
1254	0.	0	0.0	0.0		1.0		
1221	0.		0.0	0.0		1.0		
1320	0.		0.0	0.0		1.0		
172	0.	0	0.0	0.0		1.0		
958	0.	0	0.0	0.0		1.0		
	SaleCondition	AdiLand S	SaleConditio	n Alloca	SaleC	ondition F	'amilv	\
Id	•	_ 3		_		_	J	
		0 0		0 0			4 0	
1243		0.0		0.0			1.0	
1186		0.0		0.0			0.0	
1258		0.0		0.0			0.0	
1254		0.0		0.0			0.0	
1221		0.0		0.0			0.0	
1320		0.0		0.0			0.0	
172		0.0		0.0			0.0	
958		0.0		0.0			0.0	
	SaleCondition	_Normal Sa	aleCondition	_Partial				
Id								
1243		0.0		0.0				
1186		1.0		0.0				
1258		1.0		0.0				
1254		1.0		0.0				
		-						

1221	0.0	0.0
1320	1.0	0.0
172	1.0	0.0
958	1.0	0.0

[8 rows x 228 columns]

4 Train & Evaluate

Now that we have a clean dataset, we can train some models and evaluate them using **Root Mean Squared Error (RMSE)**, **R-squared**.

Going step by step, here's how we are going to split the work: 1. **Prepare Data for Modeling**: We will separate our data into a feature matrix (X) and a target vector (y). We will then split these into a training set (for teaching the models) and a validation set (for evaluating their performance on unseen data).

- 2. Establish a Baseline Model: We'll start by training a simple and interpretable Ridge Regression model. This will give us a baseline performance score that we can strive to improve upon.
- 3. Train Advanced Models: We will then train two more powerful models: a Random Forest Regressor and an XGBoost Regressor.
- 4. Evaluate and Compare Models: Finally, we will compare the performance of all three models using Root Mean Squared Error (RMSE) and R-squared on the validation set. This will help us determine which model is the most accurate and best suited for this challenge.

Why do we use **RMSE** and **R-squared**?

RMSE, tells us the distance between the model's predictions and the actual values.

$$\begin{aligned} \text{error} &= \text{actual} - \text{predicted} \\ \text{MSE} &= \frac{1}{n} \sum_{i=1}^{n} (\text{actual} - \text{predicted})^2 \\ \text{RMSE} &= \sqrt{\text{MSE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\text{actual} - \text{predicted})^2} \end{aligned}$$

In our case, it tells how much of, on average, our prediction is off by log-dollars. For example, if we get a **RMSE** of 0.13, it means that on average our model prediction is off by 0.13 log scaled dollars.

The lower the better because we want to minimize our prediction error.

R-squared, tells us how good our model fits the data by measuring the proportion of the variance in the target variable that gets explained by our model. It does so by comparing our model's performance to a baseline model that just predicts the mean value of the target for every observation.

$$\begin{split} \text{SS}_{\text{res}}(\text{Sum of squared residuals}) &= \sum i = 1^n (\text{actual-prediction})^2 \\ \text{SS}_{\text{tot}}(\text{Total sum of squares}) &= \sum i = 1^n (\text{actual-mean})^2 \\ R^2 &= 1 - \frac{\text{SS}_{\text{res}}}{\text{SS}_{\text{tot}}} \end{split}$$

where:

- \bullet SS_{res}(Sum of squared residuals) represents the errors of our model
- SS_{tot}(Total sum of squares) represents the errors of the mean-only model (the baseline)

In our case, it tells us **how well** our model accounts for the variation in the data. For example, if we get a **R-squared** of 0.86, it means that our model can explain 86% of the variation of the house prices.

The higher the better because it means that our model can explain the complexity of the data well

4.1 Data preparation

```
Shape of the original unsplitted dataset (1455, 226)
Shape of the splitted train dataset (1164, 226)
Shape of the splitted test dataset (291, 226)
```

```
[18]: from sklearn.metrics import mean_squared_error, r2_score
from sklearn.model_selection import cross_val_score

models = {
    'ridge': {
        'model': None,
        'prediction': None,
        'metrics': {}
    },
    'ridge_best': {
```

```
'model': None,
        'prediction': None,
        'metrics': {}
    },
    'random_forest': {
        'model': None,
        'prediction': None,
        'metrics': {}
    },
    'random_forest_best': {
        'model': None,
        'prediction': None,
        'metrics': {}
    },
    'xgboost': {
        'model': None,
        'prediction': None,
        'metrics': {}
    },
    'xgboost_best': {
        'model': None,
        'prediction': None,
        'metrics': {}
    }
}
def compare_models(models_to_evaluate):
    11 11 11
    Creates a dictionary to compare the trained models.
    Arqs:
    models to evaluate (dict): A dictionary where keys are model names
                                 and values are instantiated model objects.
    Returns:
        pd.DataFrame: A DataFrame with the RMSE and R2 scores for each model.
    cv_results = {}
    for name, model_dict in models_to_evaluate.items():
        if 'rmse' not in model_dict['metrics'] or 'r2' not in_
 →model_dict['metrics']:
            continue
        cv_results[name] = {
            'rmse': model_dict['metrics']['rmse'],
            'r2': model_dict['metrics']['r2']
```

```
}
  results_df = pd.DataFrame.from_dict(cv_results, orient='index').
⇔sort_values(['rmse', 'r2'], ascending=[True, False])
  fig, axes = plt.subplots(1, 2, figsize=(16, 4))
  sns.barplot(y=results df.index, x='rmse', data=results df, ax=axes[0],

→palette='viridis', hue=results_df.index, legend=False)
  axes[0].set_title('Model RMSE Comparison (lower is best)')
  axes[0].set_xlabel('RMSE')
  axes[0].set ylabel('Model')
  min_rmse = results_df['rmse'].min()
  max_rmse = results_df['rmse'].max()
  axes[0].set_xlim(min_rmse * 0.95, max_rmse * 1.05)
  sns.barplot(y=results_df.index, x='r2', data=results_df, ax=axes[1],__
→palette='viridis', hue=results_df.index, legend=False)
  axes[1].set_title('Model R2 Score Comparison (higher is best)')
  axes[1].set_xlabel('R2 Score')
  axes[1].set_ylabel('Model')
  min_r2 = results_df['r2'].min()
  \max r2 = \text{results df}['r2'].\max()
  axes[1].set_xlim(min_r2 * 0.95, max(1.0, max_r2 * 1.05))
  plt.tight_layout()
  plt.show()
  return results df
```

4.2 Training a Baseline model

Let's now go on training the **Rigde Regression** model. Why? We want to come to an acceptable solution by starting with a simple model and building upon it to improve the predictions. There are a bunch of models that are deemed *simple* like the **Linear Regressor** or the **Ridge Regressor**.

The **Linear Regressor** goal is to minimize the "sum of squared errors" (SSE), that is having a cost function associated of this form

$$\min(\sum{(actual_target-predicted_target)^2})$$

In other words the model tries to find the specific slope (coefficient) for each feature that makes this total sum as little as possible. Since our dataset has many features columns, the **Linear Regressor** does not perform well because in case of highly correlated features the model may decide to give more weight to one feature (assigning a large coefficient) while assigning a negative weight to a

similar correlated feature (exploding coefficients). In the end this could lead to an unstable model which may perform really well on the train data but poorly on new unseen data (overfitting).

On the other hand, the goal of **Ridge Regressor** is the same as the **Linear Regressor** but it assigns a penalty to the coefficients that are assigned to be too large by adding a **regularization term** to the cost function. This term represents the sum of the squares of all the feature coefficients multiplied by an alpha (α) value.

$$\min(\sum actual_target - predicted_target^2 + \alpha \cdot \sum all_feature_coefficients^2)$$

With this, the model still aims to fit the training data well, but it is also incentivized to keep the coefficients small to minimize the penalty that would be assigned. The α is an hyperparameter that is set by us:

- if $\alpha = 0$: the Ridge Regressor acts like a standard Linear Regressor
- if α is very large: the penalty is severe, meaning that the model will keep the coefficients really small to avoid the penalty, which leads to fitting the training data a bit worse (underfitting)

We therefore want to set an α that is something in between to avoid overfitting (exploding coefficients) and underfitting (making coefficients really small)

```
[19]: from sklearn.linear_model import Ridge
      models['ridge']['model'] = Ridge(alpha=1.0, random_state=random_state)
      models['ridge']['model'].fit(X_train, y_train)
      models['ridge']['prediction'] = models['ridge']['model'].predict(X_test)
      models['ridge']['metrics']['mse'] = mean_squared_error(y_test,__
       →models['ridge']['prediction'])
      models['ridge']['metrics']['rmse'] = np.sqrt(models['ridge']['metrics']['mse'])
      models['ridge']['metrics']['r2'] = r2_score(y_test,__
       →models['ridge']['prediction'])
      print("--- Ridge Regression Baseline ---")
      print(f"RMSE: {models['ridge']['metrics']['rmse']:.4f}")
      print(f"R-squared: {models['ridge']['metrics']['r2']:.4f}")
     --- Ridge Regression Baseline ---
     RMSE: 0.1137
     R-squared: 0.9178
[20]: plt.figure(figsize=(8, 6))
      plt.scatter(y_test, models['ridge']['prediction'], alpha=0.5)
      plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--',
       →lw=2) # Perfect prediction line
      plt.xlabel("Actual SalePrice (log-transformed)")
```

```
plt.ylabel("Predicted SalePrice (log-transformed)")
plt.title("Ridge Model: Predictions vs. Actual Values")
plt.grid(True)
plt.show()
```



```
[21]: models['ridge']['residuals'] = y_test - models['ridge']['prediction']

plt.figure(figsize=(10, 5))
    sns.histplot(models['ridge']['residuals'], bins=30, kde=True)

plt.axvline(x=0, color='r', linestyle='--')

plt.title("Distribution of residuals for Ridge Model")
    plt.xlabel("Residual error (error: actual - predicted)")
    plt.ylabel("Frequency")
    plt.grid(True)
    plt.show()
```


Our initial baseline model, was trained to establish a performance benchmark. The model performed well, achieving an R-squared value of **0.9178**. This indicates that our model can explain approximately 91.8% of the variance in the log-transformed sale prices, which points to a very strong fit.

The RMSE was **0.1137**. This means that on the log-transformed scale, our model's predictions are, on average, off by about **0.11** log-scaled dollars.

4.2.1 Finetuning

Since we need to set the hyperparameter α , it's a good idea to finetune the model with **Grid-SearchCV** to find the best one.

```
ridge_grid_search.fit(X_train, y_train)
      models['ridge_best']['model'] = ridge_grid_search.best_estimator_
      print(f"Best alpha hyperparameter found {models['ridge best']['model'].alpha}")
      models['ridge_best']['prediction'] = models['ridge_best']['model'].
       →predict(X_test)
      models['ridge_best']['metrics']['mse'] = mean_squared_error(y_test,_
       →models['ridge_best']['prediction'])
      models['ridge best']['metrics']['rmse'] = np.

¬sqrt(models['ridge_best']['metrics']['mse'])
      models['ridge_best']['metrics']['r2'] = r2_score(y_test,__
       →models['ridge_best']['prediction'])
      print(f"RMSE: {models['ridge_best']['metrics']['rmse']:.4f}")
      print(f"R-squared: {models['ridge_best']['metrics']['r2']:.4f}")
     Best alpha hyperparameter found 26.366508987303583
     RMSE: 0.1127
     R-squared: 0.9192
[23]: plt.figure(figsize=(8, 5))
      plt.scatter(y_test, models['ridge_best']['prediction'], alpha=0.5)
      plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--',__
       →lw=2) # Perfect prediction line
      plt.xlabel("Actual SalePrice (log-transformed)")
      plt.ylabel("Predicted SalePrice (log-transformed)")
      plt.title("Ridge Best Model: Predictions vs. Actual Values")
      plt.grid(True)
      plt.show()
```



```
[24]: models['ridge_best']['residuals'] = y_test - models['ridge_best']['prediction']

plt.figure(figsize=(10, 5))
    sns.histplot(models['ridge_best']['residuals'], bins=30, kde=True)

plt.axvline(x=0, color='r', linestyle='--')

plt.title("Distribution of residuals for Ridge Best Model")
    plt.xlabel("Residual error (error: actual - predicted)")
    plt.ylabel("Frequency")
    plt.grid(True)
    plt.show()
```


We found a slightly better model with $\alpha = 26.366508987303583$, a slightly lower RMSE and higher R-squared.

4.3 Advanced Models

Our tuned **Ridge Regression** model provided a strong linear baseline, but the relationships between the features and the sale price are likely more complex and non-linear. To capture these intricate patterns and potentially improve our predictive accuracy, we will now explore two powerful ensemble models: **Random Forest** and **XGBoost**.

- Random Forest Regressor: This model operates by building a multitude of decision trees and averaging their predictions. This approach makes it robust, less prone to overfitting than a single tree, and excellent at modeling complex interactions.
- XGBoost Regressor: This is a leading implementation of gradient boosting, an algorithm that builds models sequentially, with each new model correcting the errors of its predecessor.

By training and evaluating these models, we can determine if a more complex, non-linear approach yields a significant improvement over our initial Ridge baseline.

4.3.1 Random Forest

[26]: compare_models(models)


```
[26]: rmse r2
ridge_best 0.112727 0.919156
ridge 0.113688 0.917771
random_forest 0.137517 0.879688
```

```
[27]: models['random_forest']['model'].estimator
```

[27]: DecisionTreeRegressor()

As we can see, our tuned **Ridge Regressor** performs better than this newly trained model. It's expected since we have not yet looked for the optimal parameters for this regressor.

Finetuning

```
[29]: from sklearn.model_selection import RandomizedSearchCV
      param_grid = {
          'n_estimators': [100, 200, 300, 500],
          'max_depth': [10, 20, 30, None],
          'min_samples_split': [2, 5, 10],
          'min_samples_leaf': [1, 2, 4],
          'max_features': [1.0, 'sqrt']
      }
      rf_random_search = RandomizedSearchCV(
          estimator=RandomForestRegressor(random state=random state),
          param_distributions=param_grid,
          cv=5,
          scoring='neg_mean_squared_error',
          n_{jobs=-1},
          random_state=random_state
      )
      rf_random_search.fit(X_train, y_train)
      models['random_forest_best']['model'] = rf_random_search.best_estimator_
```


[30]:		rmse	r2
	ridge_best	0.112727	0.919156
	ridge	0.113688	0.917771
	random_forest_best	0.135646	0.882939
	random forest	0.137517	0.879688

We can conclude that our tuned Ridge model is a very strong and effective baseline. Any more complex model must prove that it is significantly better to justify its added complexity. Our tuned **Random Forest** failed to do this. Also, maybe the different features of the dataset are more linear than we thought they would be!

4.3.2 XGBoost

Let's try to train another model, **XGBoost** (eXtreme Gradient Boosting). This tree-based model works by building multiple models, each new one improving the last one. In other words (1) it starts with a simple model which will predict quite poorly, (2) the algorithm calculates the "how wrong" the prediction was for each house

```
Error = actual_value - predicted_value,> 0, if prediction is lower than actual< 0, if prediction is greater than actual</li>
```

- (3) train a new model not to predict the target variable, but to predict the calculated error (basically trying to fix the previous model errors), (4) add this new model prediction to the previous one, using an hyperparameter called learning_rate which is used to tell the model "how much the correction should be trusted". For example, a value of 1.0, will tell the model that the correction made by this new model is 100% trust-worthy, which can improve training speed but could make the model learn noise instead of actual patterns.

```
new\_prediction = old\_prediction + (learning\_rate \cdot error\_tree\_prediction)
```

```
[31]: import xgboost as xgb

models['xgboost']['model'] = xgb.XGBRegressor(random_state=random_state)

models['xgboost']['model'].fit(X_train, y_train)
```

[31]: XGBRegressor(base_score=None, booster=None, callbacks=None, colsample_bylevel=None, colsample_bynode=None, colsample_bytree=None, device=None, early_stopping_rounds=None, enable_categorical=False, eval_metric=None, feature_types=None, feature_weights=None, gamma=None, grow_policy=None, importance_type=None, interaction_constraints=None, learning_rate=None, max_bin=None, max_cat_threshold=None, max_cat_to_onehot=None, max_delta_step=None, max_depth=None, max_leaves=None, min_child_weight=None, missing=nan, monotone_constraints=None, multi_strategy=None, n_estimators=None, n_jobs=None, num_parallel_tree=None, ...)


```
[32]: rmse r2
ridge_best 0.112727 0.919156
ridge 0.113688 0.917771
random_forest_best 0.135646 0.882939
```

Finetuning The **Tuned Ridge** regressor is still the best performing model here. Let's see if we can optimize the **XGBoost** model

```
param_grid = {
    'max_depth': [3, 4, 5],
    'learning_rate': [0.05, 0.1, 0.2],
    'n_estimators': [100, 200, 300],
    'subsample': [0.8, 1.0]
}

xgb_grid_search = GridSearchCV(
    estimator=xgb.XGBRegressor(random_state=random_state),
    param_grid=param_grid,
    cv=5,
    scoring='neg_mean_squared_error',
    n_jobs=-1
)

xgb_grid_search.fit(X_train, y_train)

models['xgboost_best']['model'] = xgb_grid_search.best_estimator_
```



```
[34]: rmse r2
xgboost_best 0.111714 0.920602
ridge_best 0.112727 0.919156
ridge 0.113688 0.917771
random_forest_best 0.135646 0.882939
random_forest 0.137517 0.879688
xgboost 0.144381 0.867377
```

The tuned **XGBoost** model achieved the best **RMSE** and **R-squared**.

5 Results

In conclusion, we successfully executed all the steps we planned:

- 1. **Data Exploration**, where we took a look at the given dataset, discovering the correlation between features, discovering possible outliers and analysing the type of data.
- 2. **Data Cleaning**, where we applied our findings from point (1) to remove outliers, impute missing values, remove skewness of the target variable, convert categorical features with ordinal and one-hot encoding.
- 3. **Training and evaluation**, where we trained different models with different regressors, looking each time for the best parameters combination of each using GridSearchCV. In the end we found the best model to be XGBoost.

5.1 Final Step: Submission

What's left now is to get the best model we found, retrain it on the whole **train.csv** dataset and create a **submission.csv** dataset by inverting the log-based predictions back into the real unit in dollars and see how well we scored.

```
print(best_model['metrics'])
    return best_model['model']
def create_submission(model, X_train_full, y_train_full, X_test_full,_u
 ⇔output_file_name='submission'):
    Retrains the given model on the full dataset, handles any final
    data cleaning, and generates the submission.csv file.
    Arqs:
        models\_dict (dict): Dictionary containing all trained and evaluated_{\sqcup}
 \hookrightarrow models.
        X_{train_full} (pd.DataFrame): The complete, aligned training feature set.
        y_train_full (pd.Series): The complete training target set.
        X_{test_{full}} (pd.DataFrame): The complete, aligned test feature set.
    params = model.get_params()
    model_type_name = type(model).__name__
    model = None
    match model_type_name:
        case 'Ridge':
            model = Ridge(**params)
        case 'RandomForestRegressor':
            model = RandomForestRegressor(**params)
        case 'XGBRegressor':
            model = xgb.XGBRegressor(**params)
        case _:
            print(f"Error: Unhandled model type '{model_type_name}'")
    if not model:
         return
    print(f"Final model for retraining: {model_type_name}")
    model.fit(X_train_full, y_train_full)
    print("Retraining complete.")
    X_test_prepared = X_test_full.copy()
    nan_cols = X_test_prepared.columns[X_test_prepared.isna().any()].tolist()
    for col in nan_cols:
```



```
Best model found xgboost_best {'mse': 0.012480020428009513, 'rmse': np.float64(0.11171401178012323), 'r2': 0.9206015347114854} Final model for retraining: XGBRegressor Retraining complete. Filled NaNs in 'BsmtFinSF1' with training data median: 381.0 Filled NaNs in 'BsmtFinSF2' with training data median: 0.0
```

```
Filled NaNs in 'BsmtUnfSF' with training data median: 479.0
Filled NaNs in 'TotalBsmtSF' with training data median: 991.0
Filled NaNs in 'BsmtFullBath' with training data median: 0.0
Filled NaNs in 'BsmtHalfBath' with training data median: 0.0
Filled NaNs in 'GarageCars' with training data median: 2.0
Filled NaNs in 'GarageArea' with training data median: 479.0
Making predictions on the prepared test set...
submission.csv' has been created successfully!
Here are the first 5 predictions:
     Td
             SalePrice
 1461
        122212.382812
0
1
  1462 154279.921875
2 1463 184631.468750
3 1464 187498.406250
  1465 180924.343750
```

6 [Bonus] Improving our Kaggle score

Our solutions scores 0.12810, which places us 1172 on the leaderboard. Let's see if we can improve this.

Two things we can do is:

- 1. **Feature engineering**, which consists of creating new features based on the ones that are correlated with each other and retrain the models on this new dataset.
- 2. **Model ensembling**, which consists of using our best models predictions as new features upon which to train another model.

6.1 Feature Engineering

Looking deeper at the data_description.txt file, we can see that some features can be merged together:

- TotalBsmtSF, 1stFlrSF, 2ndFlrSF all represent the floors square feets.
- FullBath, HalfBath, BsmtFullBath, BsmtHalfBath all represents the baths present in the house and where they are.
- OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch all represent the porches square feets.
- YrSold, YearBuilt age related features
- YrSold, YearRemodAdd age related on reworking
- YrSold == YearBuilt, new house
- YearRemodAdd != YearBuilt, was reworked
- OverallQual, TotalSF relating the overall quality to the total square feets
- OverallQual, HouseAge relating the overall quality to the house age

```
[37]: def add_features(df):
    df['TotalSF'] = df['TotalBsmtSF'] + df['1stFlrSF'] + df['2ndFlrSF']
    df['TotalBath'] = df['FullBath'] + 0.5 * df['HalfBath'] + □
    ⇔df['BsmtFullBath'] + 0.5 * df['BsmtHalfBath']
```

```
df['TotalPorchSF'] = df['OpenPorchSF'] + df['EnclosedPorch'] +
    df['3SsnPorch'] + df['ScreenPorch']

df['HouseAge'] = df['YrSold'] - df['YearBuilt']
    df['RemodelAge'] = df['YrSold'] - df['YearRemodAdd']

df['IsNew'] = (df['YrSold'] == df['YearBuilt']).astype(int)
    df['WasRemodeled'] = (df['YearRemodAdd'] != df['YearBuilt']).astype(int)

df['OverallQual_x_TotalSF'] = df['OverallQual'] * df['TotalSF']
    df['OverallQual_x_HouseAge'] = df['OverallQual'] * df['HouseAge']

return df
```

```
[38]: train_dataset = add_features(df_final.copy())
      test_dataset = add_features(df_test_final.copy())
      X = train_dataset.copy().drop([target_column,__
       ⇔transformed_to_log_target_column], axis=1, errors='ignore')
      y = train_dataset.copy()[transformed_to_log_target_column]
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2,__
       →random_state=random_state)
      models to evaluate = {
          'ridge feature engineering': GridSearchCV(
              estimator=Ridge(random state=random state),
              param_grid={ 'alpha': np.logspace(-2, 3, 20) },
              cv=5.
              scoring='neg_mean_squared_error'
          ),
          'random_forest_feature_engineering': RandomizedSearchCV(
              estimator=RandomForestRegressor(random_state=random_state),
              param_distributions={
                  'n_estimators': [100, 200, 300, 500],
                  'max_depth': [10, 20, 30, None],
                  'min_samples_split': [2, 5, 10],
                  'min_samples_leaf': [1, 2, 4],
                  'max_features': [1.0, 'sqrt']
              },
              cv=5.
              scoring='neg_mean_squared_error',
              n_{jobs=-1},
              random_state=random_state
          ),
          'xgboost_feature_engineering': GridSearchCV(
              estimator=xgb.XGBRegressor(random_state=random_state),
```

```
param_grid={
            'max_depth': [3, 4, 5],
            'learning_rate': [0.05, 0.1, 0.2],
            'n_estimators': [100, 200, 300],
            'subsample': [0.8, 1.0]
        },
        cv=5,
        scoring='neg_mean_squared_error',
        n jobs=-1
    )
}
for name, searcher in models_to_evaluate.items():
    models[name] = {
        'model': None,
        'prediction': None,
        'metrics': {}
    }
    searcher.fit(X_train, y_train)
    models[name]['model'] = searcher.best_estimator_
    models[name]['prediction'] = models[name]['model'].predict(X_test)
    models[name]['metrics']['mse'] = mean_squared_error(y_test,__
 →models[name]['prediction'])
    models[name]['metrics']['rmse'] = np.sqrt(models[name]['metrics']['mse'])
    models[name]['metrics']['r2'] = r2_score(y_test, models[name]['prediction'])
compare_models(models)
```



```
[38]: rmse r2
xgboost_best 0.111714 0.920602
ridge_best 0.112727 0.919156
ridge_feature_engineering 0.113245 0.918410
ridge 0.113688 0.917771
```

```
      xgboost_feature_engineering
      0.113850
      0.917536

      random_forest_best
      0.135646
      0.882939

      random_forest
      0.137517
      0.879688

      random_forest_feature_engineering
      0.138983
      0.877109

      xgboost
      0.144381
      0.867377
```

However this did not find a better model unfortunately, our best **xgboost_best** remains the best.

```
[39]: X = df_final.copy().drop([target_column, transformed_to_log_target_column],__
       ⇔axis=1, errors='ignore')
      y = df_final.copy()[transformed_to_log_target_column]
      X_test_final = df_test_final.copy()
      X_train_final, X_test_final = X.align(X_test_final, join='inner', axis=1) #_
       ⇒make sure the train and test dataset have the same
      create_submission(models['ridge_feature_engineering']['model'], X_train_final,__

y, X_test_final, output_file_name='submission_feature_engineered')

     Final model for retraining: Ridge
     Retraining complete.
     Filled NaNs in 'BsmtFinSF1' with training data median: 381.0
     Filled NaNs in 'BsmtFinSF2' with training data median: 0.0
     Filled NaNs in 'BsmtUnfSF' with training data median: 479.0
     Filled NaNs in 'TotalBsmtSF' with training data median: 991.0
     Filled NaNs in 'BsmtFullBath' with training data median: 0.0
     Filled NaNs in 'BsmtHalfBath' with training data median: 0.0
     Filled NaNs in 'GarageCars' with training data median: 2.0
     Filled NaNs in 'GarageArea' with training data median: 479.0
     Making predictions on the prepared test set...
```

submission.csv' has been created successfully! Here are the first 5 predictions:

```
Id SalePrice
0 1461 115551.721936
1 1462 147277.669182
2 1463 173289.044735
3 1464 197218.154716
4 1465 188098.595276
```

As a result, submitting the best model trained on the engineered features scores worse on Kaggle (0.13214) than our **xgboost_best** best submission.

6.2 Model Ensembling (Stacking)

Stacking is an advanced ensembling technique that involves combining the predictions from multiple different machine learning models. We use a "meta-model" that learns how to best combine the outputs of several "base models" to produce a final, often more accurate, prediction.

The main idea is to take multiple models with their strengths and weaknesses and compensate the weaknesses with other models strengths making our final model hopefully more robust.

To implement the stacking we need to ensure that the predictions used to train our meta-model are "clean" meaning the base models that generated them had not seen that same data during their own training. If we train and predict on the same data, our meta-model will learn from over-optimistic predictions and fail to generalize to new data.

We achieve this by generating predictions in two different ways:

- 1. For the Training Set (Creating Meta-Features): We use K-Fold cross-validation. For each fold, we train our base models on the other K-1 folds and then make predictions on the held-out fold. We repeat this process for all folds until we have a complete set of predictions for our entire training dataset. These are called "out-of-fold" predictions, and they serve as the feature set to train our meta-model.
- 2. For the **Test Set (Creating the Submission)**: To generate predictions for the final, unseen test data, we train our base models on the **entire** training dataset. This allows each base model to learn from all the available information before making its final prediction on the test data. The meta-model then takes these predictions as input to generate the final submission file.

```
[40]: from sklearn.model_selection import KFold
      from sklearn.linear_model import RidgeCV
      train_dataset = add_features(df_final.copy())
      test dataset = add features(df test final.copy())
      X = train_dataset.copy().drop([target_column,__
       stransformed_to_log_target_column], axis=1, errors='ignore')
      y = train_dataset.copy()[transformed_to_log_target_column]
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.2,_
       →random_state=random_state)
      base_models = [models['ridge_best']['model'], models['xgboost_best']['model'],__
       →models['random forest best']['model']]
      base model names = ['ridge best', 'xgboost best', 'random forest best']
      models['ridge_stacked'] = {
          'model': None,
          'prediction': None,
          'metrics': {}
      }
      models['ridge_stacked']['model'] = RidgeCV()
      kf = KFold(n splits=5, shuffle=True, random state=random state)
      meta_features_train = np.zeros((X_train.shape[0], len(base_models)))
```

```
meta_features_test = np.zeros((X_test.shape[0], len(base_models)))
for i, model in enumerate(base_models):
    print(f"Processing base model {i+1}/{len(base_models)}:__
 →{base_model_names[i]}...")
    # Create out-of-fold predictions for training data
   for train_idx, val_idx in kf.split(X_train):
        model.fit(X_train.values[train_idx], y_train.values[train_idx])
        meta_features_train[val_idx, i] = model.predict(X_train.values[val_idx])
    # Create predictions for test data (by fitting on full training data)
   model.fit(X_train, y_train)
   meta_features_test[:, i] = model.predict(X_test)
models['ridge_stacked']['model'].fit(meta_features_train, y_train)
models['ridge_stacked']['prediction'] = models['ridge_stacked']['model'].
 →predict(meta_features_test)
models['ridge_stacked']['metrics']['mse'] = mean_squared_error(y_test,__
 →models['ridge_stacked']['prediction'])
models['ridge stacked']['metrics']['rmse'] = rmse = np.

¬sqrt(models['ridge_stacked']['metrics']['mse'])
models['ridge_stacked']['metrics']['r2'] = r2_score(y_test,__
 →models['ridge_stacked']['prediction'])
compare_models(models)
```

Processing base model 1/3: ridge_best...

Processing base model 2/3: xgboost_best...

Processing base model 3/3: random_forest_best...


```
[40]: rmse r2
ridge_stacked 0.109142 0.924216
xgboost_best 0.111714 0.920602
```

```
      ridge_best
      0.112727
      0.919156

      ridge_feature_engineering
      0.113245
      0.918410

      ridge
      0.113688
      0.917771

      xgboost_feature_engineering
      0.113850
      0.917536

      random_forest_best
      0.135646
      0.882939

      random_forest
      0.137517
      0.879688

      random_forest_feature_engineering
      0.138983
      0.877109

      xgboost
      0.144381
      0.867377
```

We can see that our **ridge_stacked** is the best performing model we trained so far!

```
[41]: X_full_train = df_final.copy().drop([target_column,__
      stransformed_to_log_target_column], axis=1, errors='ignore')
      y full train = df final.copy()[transformed to log target column]
      X_final_test = df_test_final.copy()
      X_full_train, X_final_test = X_full_train.align(X_final_test, join='inner', __
       ⇒axis=1)
      test_nan_cols = X_final_test.columns[X_final_test.isna().any()].tolist()
      for col in test nan cols:
          median_value = X_full_train[col].median()
          X final test[col] = X final test[col].fillna(median value)
          print(f"Filled NaNs in '{col}' with training data median for test dataset:⊔
       →{median value}")
      print("Generating meta-features for the entire training set (out-of-fold)...")
      meta_features_full_train = np.zeros((X_full_train.shape[0], len(base_models)))
      meta_features_final_test = np.zeros((X_final_test.shape[0], len(base_models)))
      for i, model in enumerate(base models):
          print(f"Processing train meta-features with model {i+1}/{len(base_models)}:___

√{base_model_names[i]}...")

          for train_idx, val_idx in kf.split(X_full_train):
              model.fit(X_full_train.iloc[train_idx], y_full_train.iloc[train_idx])
              # Predict on the validation fold
              meta_features_full_train[val_idx, i] = model.predict(X_full_train.
       →iloc[val_idx])
      for i, model in enumerate(base models):
          print(f"Generating test meta-features with model {i+1}/{len(base_models)}...
       ر <del>۱۱</del> )
          # Fit on the ENTIRE training data
          model.fit(X_full_train, y_full_train)
          # Predict on the final test data
```

```
meta_features_final_test[:, i] = model.predict(X_final_test)
print("Training the final stacked model on full meta-features...")
final_stacked_model = RidgeCV()
final_stacked_model.fit(meta_features_full_train, y_full_train)
final_predictions_log = final_stacked_model.predict(meta_features_final_test)
final_predictions = np.expm1(final_predictions_log)
submission_df = pd.DataFrame({'Id': X_final_test.index, 'SalePrice': __
  →final predictions})
submission_df.to_csv('submission_stacked.csv', index=False)
print("File saved!")
Filled NaNs in 'BsmtFinSF1' with training data median for test dataset: 381.0
Filled NaNs in 'BsmtFinSF2' with training data median for test dataset: 0.0
Filled NaNs in 'BsmtUnfSF' with training data median for test dataset: 479.0
Filled NaNs in 'TotalBsmtSF' with training data median for test dataset: 991.0
Filled NaNs in 'BsmtFullBath' with training data median for test dataset: 0.0
Filled NaNs in 'BsmtHalfBath' with training data median for test dataset: 0.0
Filled NaNs in 'GarageCars' with training data median for test dataset: 2.0
Filled NaNs in 'GarageArea' with training data median for test dataset: 479.0
Generating meta-features for the entire training set (out-of-fold)...
Processing train meta-features with model 1/3: ridge_best...
Processing train meta-features with model 2/3: xgboost_best...
Processing train meta-features with model 3/3: random forest best...
Generating test meta-features with model 1/3...
Generating test meta-features with model 2/3...
Generating test meta-features with model 3/3...
Training the final stacked model on full meta-features...
```

And indeed submitting this on Kaggle results in our best-so-far score of 0.12624. on Kaggle.

File saved!