# Quantum Gates

#### Quantum Gates

- A classical computer is built from an electrical circuit containing wires and logic gates
- The wires are used to carry information around the circuit, while the logic gates perform manipulations of the information, converting it from one form to another
- Similar to a classical computer, a quantum computer is built from a quantum circuit containing wires and elementary quantum gates to carry around and manipulate the quantum information
- Thus, quantum gates act on qubits, like logic gates act on bits
- Specifically, a quantum gate transforms the state of a qubit into other states

#### **Classical Computer**

- Consider, for example, the **NOT** classical single bit logic gate, whose operation is defined by its *truth table* 



| Input bit A | Output bit A |
|-------------|--------------|
| 0           | 1            |
| 1           | 0            |

in which  $0 \rightarrow 1$  and  $1 \rightarrow 0$ , that is, the 0 and 1 states are interchanged

Question: can an analogous quantum gate for qubits be defined?

- Imagine that we have a quantum gate which takes the state  $|0\rangle$  to the state  $|1\rangle$  and vice versa
- We denote a single-qubit gate with a box containing the label (straddling the line) representing the operation carried out by the gate



- Let's call *Gate* the operator which flips the state of a qubit from state  $|0\rangle$  to state  $|1\rangle$  and vice versa

$$Gate |0\rangle = |1\rangle$$

$$Gate |1\rangle = |0\rangle$$

Such a quantum operator would obviously be a good candidate for a quantum analogue to the **NOT** gate



- However, the specification given in the previous slide is not enough!
- Question: why is that?
- **Answer:** because specifying the action of the gate on the states  $|0\rangle$  and  $|1\rangle$  does not tell us what happens to **superpositions** of the states  $|0\rangle$  and  $|1\rangle$

- In fact, the quantum gate acts *linearly*, that is, operating on a superposition it would do the following

$$|\psi\rangle_{out} = Gate|\psi\rangle_{in} = Gate(\alpha|0\rangle + \beta|1\rangle) = \alpha(Gate|0\rangle) + \beta(Gate|1\rangle)$$

$$= \alpha|1\rangle + \beta|0\rangle = \beta|0\rangle + \alpha|1\rangle$$

$$\longrightarrow$$

$$|\psi\rangle_{out} = \beta|0\rangle + \alpha|1\rangle$$

$$|\psi\rangle_{in}=lpha|0
angle+eta|1
angle \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad |\psi\rangle_{out}=eta|0
angle+lpha|1
angle$$

As it should be, the output state is normalized.

#### NOTE

- Why the quantum gate acts linearly and not in some nonlinear fashion is a very interesting question, and the answer is not at all obvious
- It turns out that this *linear behavior* is a general property of quantum mechanics, and *very well motivated empirically*; moreover, nonlinear behavior can lead to apparent paradoxes such *as faster-than-light communication*, and *violations of the second laws of thermodynamics*

- Before doing an in-depth analysis of specific one-qubit quantum gates we extend the previous result to the case of the most general onequbit gate
- As we said before a quantum gate *transforms* the state of a qubit into other states



- Let's denote by U such a transformation which generally turns  $|0\rangle$  and  $|1\rangle$  into a superposition of  $|0\rangle$  and  $|1\rangle$ 

$$U \left| 0 \right\rangle = a \left| 0 \right\rangle + b \left| 1 \right\rangle = \begin{bmatrix} a \\ b \end{bmatrix} \quad \text{We can arrange the resulting amplitudes} \\ \text{amplitudes} \\ \text{side-by-side, resulting in the following 2x2 matrix} \qquad \longrightarrow \qquad U = \begin{bmatrix} a \\ b \end{bmatrix} \quad \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

- Plugging this matrix into  $U|0\rangle$  and  $U|1\rangle$ 

$$U | 0 \rangle = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$U |1\rangle = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$$

#### From the previous slide

$$U|0\rangle = a|0\rangle + b|1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$U|1\rangle = c|0\rangle + d|1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$$

- Remember that the quantum gate (or *U*) acts *linearly*, meaning that if a qubit is in the state

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

From the previous slide

$$U|0\rangle = a|0\rangle + b|1\rangle = \begin{bmatrix} a \\ b \end{bmatrix}$$

$$U|1\rangle = c|0\rangle + d|1\rangle = \begin{bmatrix} c \\ d \end{bmatrix}$$

then applying *U* transforms this to

$$U|\psi\rangle = \alpha U|0\rangle + \beta U|1\rangle = \alpha \begin{bmatrix} a \\ b \end{bmatrix} + \beta \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a\alpha \\ b\alpha \end{bmatrix} + \begin{bmatrix} c\beta \\ d\beta \end{bmatrix} = \begin{bmatrix} a\alpha + c\beta \\ b\alpha + d\beta \end{bmatrix}$$

- From the above slide we have

$$U|\psi\rangle = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} a\alpha + c\beta \\ b\alpha + d\beta \end{bmatrix} = (a\alpha + c\beta) \begin{bmatrix} 1 \\ 0 \end{bmatrix} + (b\alpha + d\beta) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= (a\alpha + c\beta) |0\rangle + (b\alpha + d\beta) |1\rangle$$

- Assuming the original state was normalized, i.e.  $|\alpha|^2 + |\beta|^2 = 1$ , this must also be true for the quantum state after the gate has acted

$$|\psi
angle$$
 —  $U|\psi
angle$ 

- Of course, the matrix must ensure that the total probability remains 1, so in the previous example, we must have

$$|a\alpha + c\beta|^2 + |b\alpha + d\beta|^2 = 1$$

- This yields the following point: quantum gates are (represented by) matrices that keep the total probability equal to 1

$$U \left| \psi \right\rangle = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} a\alpha + c\beta \\ b\alpha + d\beta \end{bmatrix}$$
 From the previous slide

#### Example

- For example, consider a quantum gate that performs the following transformation:

$$U|0\rangle = \frac{\sqrt{2} - i}{2}|0\rangle - \frac{1}{2}|1\rangle = \begin{bmatrix} \frac{\sqrt{2} - i}{2} \\ -\frac{1}{2} \end{bmatrix},$$

$$U|1\rangle = \frac{1}{2}|0\rangle + \frac{\sqrt{2} + i}{2}|1\rangle = \begin{bmatrix} \frac{1}{2} \\ \frac{\sqrt{2} + i}{2} \end{bmatrix}$$

$$U=\begin{bmatrix} \frac{\sqrt{2} - i}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{2} + i}{2} \end{bmatrix}$$

#### Example

A quantum gate must be *linear*, meaning we can distribute it across superpositions:

$$\begin{split} U(\alpha|0\rangle + \beta|1\rangle) &= \alpha U|0\rangle + \beta U|1\rangle \\ &= \alpha \left(\frac{\sqrt{2} - i}{2}|0\rangle - \frac{1}{2}|1\rangle\right) + \beta \left(\frac{1}{2}|0\rangle + \frac{\sqrt{2} + i}{2}|1\rangle\right) \\ &= \left(\alpha \frac{\sqrt{2} - i}{2} + \beta \frac{1}{2}\right)|0\rangle + \left(-\alpha \frac{1}{2} + \beta \frac{\sqrt{2} + i}{2}\right)|1\rangle. \end{split}$$

## Example

= 1.

For this to be a valid quantum gate, the total probability must remain 1. Assuming the original state was normalized, i.e.,  $|\alpha|^2 + |\beta|^2 = 1$ , we can calculate the total probability by summing the norm-square of each amplitude to see if it is still 1:

$$\begin{split} \left| \alpha \frac{\sqrt{2} - i}{2} + \beta \frac{1}{2} \right|^2 + \left| -\alpha \frac{1}{2} + \beta \frac{\sqrt{2} + i}{2} \right|^2 \\ &= \left( \alpha \frac{\sqrt{2} - i}{2} + \beta \frac{1}{2} \right) \left( \alpha^* \frac{\sqrt{2} + i}{2} + \beta^* \frac{1}{2} \right) \\ &+ \left( -\alpha \frac{1}{2} + \beta \frac{\sqrt{2} + i}{2} \right) \left( -\alpha^* \frac{1}{2} + \beta^* \frac{\sqrt{2} - i}{2} \right) \\ &= |\alpha|^2 \frac{(\sqrt{2} - i)(\sqrt{2} + i)}{4} + \alpha \beta^* \frac{\sqrt{2} - i}{2} + \beta \alpha^* \frac{\sqrt{2} + i}{4} + |\beta|^2 \frac{1}{4} \\ &+ |\alpha|^2 \frac{1}{4} - \alpha \beta^* \frac{\sqrt{2} - i}{4} - \beta \alpha^* \frac{\sqrt{2} + i}{4} + |\beta|^2 \frac{(\sqrt{2} + i)(\sqrt{2} - i)}{4} \\ &= |\alpha|^2 \frac{3}{4} + |\beta|^2 \frac{1}{4} + |\alpha|^2 \frac{1}{4} + |\beta|^2 \frac{3}{4} \end{split} \qquad \text{So, $U$ is a valid quantum gate. Then,} \\ &= |\alpha|^2 + |\beta|^2 \end{split}$$

Quantum gates are linear maps that keep the total probability equal to 1.

- Let's return to the previous example where

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

and

$$U|\psi\rangle = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} a\alpha + c\beta \\ b\alpha + d\beta \end{bmatrix}$$

- We see that  $U|\psi
angle$  is a column vector, so we can also write it as a ket  $|\psi
angle$ 

$$U|\psi\rangle = |\psi\rangle$$
 where  $|\psi\rangle = \begin{bmatrix} a\alpha + c\beta \\ b\alpha + d\beta \end{bmatrix}$ 

- Now, consider the *conjugate transpose* of  $U|\psi
angle$ 

 $|\psi\rangle = U|\psi\rangle \longrightarrow \langle\psi| = \langle\psi|U^{\dagger}$ 

$$\left\langle \psi \right| = \left[ \left( a\alpha + c\beta \right)^*, \quad \left( b\alpha + d\beta \right)^* \right] = \left[ a^*\alpha^* + c^*\beta^*, \quad b^*\alpha^* + d^*\beta^* \right]$$

$$= \left[ \alpha^*, \quad \beta^* \right] \left[ a^* \quad b^* \right] = \left[ \alpha^*, \quad \beta^* \right] \left[ a \quad b \right]^*$$

$$= \left[ \alpha^*, \quad \beta^* \right] \left[ \left[ a \quad c \right]^* \right]^T = \left[ \alpha^*, \quad \beta^* \right] \left[ a \quad c \right]^\dagger = \left\langle \psi \right| U^\dagger$$
- To summarize 
$$\left\langle \psi \right| \qquad U$$

- We can reach the same result  $\langle \psi | = \langle \psi | U^{\dagger}$  by considering that



- Using this, we can come up with an easy way to determine whether a matrix keeps the total probability equal to 1
- Consider a quantum gate (matrix) U
- If it acts on  $|\psi\rangle$  , we have

$$U|\psi\rangle = |\psi\rangle$$

- For U to be a quantum gate,  $|\psi\rangle$  must be normalized, that is, the inner product of  $|\psi\rangle$  with itself must equal 1

A matrix that satisfies this property  $U^{\dagger}U = I$  and  $UU^{\dagger} = I$  is called *unitary* 

Quantum gates are unitary matrices, and unitary matrices are quantum gates

This is why we typically use U to denote a quantum gate. It stands for unitary. As an example application of this, is the following matrix a quantum gate?

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$

We can just check whether it is unitary, so whether  $U^{\dagger}U = I$  or not.

$$U^{\dagger}U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix} \neq I.$$

So no, it's not a quantum gate.

#### Reversibility

- A matrix M is *reversible* or *invertible* if there exists a matrix denoted  $M^{-1}$  such that

$$MM^{-1} = M^{-1}M = I$$

- Now, since a quantum gate *U* must be unitary, i.e.

$$UU^{\dagger} = U^{\dagger}U = I$$

it follows that the inverse of the unitary matrix U is simply  $U^{-1} = U^{\dagger}$ 

# Reversibility

- As a consequence, a quantum gate U is always reversible
- If we have a qubit and we applied a quantum gate U, we can undo the operation by applying  $U^\dagger$



# One-Qubit Quantum Gates

#### Reference

To find out more about quantum gates, I recommend you read the paper

Quantum computers: registers, gates and algorithm by Paul Isaac Hagouel

# Identity Gate (/)

- The *identity gate* turns  $|0\rangle$  into  $|0\rangle$  and  $|1\rangle$  into  $|1\rangle$ , hence doing nothing
- The *input* state is placed on the *left* of the gate symbol and the *output* state on the *right*

$$|\psi
angle_{_{in}}=|\psi
angle \quad ------ \quad |\psi
angle_{_{out}}=|\psi
angle$$

$$I|0\rangle = |0\rangle = \begin{bmatrix} 1\\0\end{bmatrix}$$

$$\rightarrow I = \begin{bmatrix} 1&0\\0&1 \end{bmatrix} \equiv |0\rangle\langle 0| + |1\rangle\langle 1|$$

$$I|1\rangle = |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

- This gate, turns  $|0\rangle$  into  $|1\rangle$ , and  $|1\rangle$  into  $|0\rangle$ 

$$X|0\rangle = |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$X = \begin{bmatrix} 0 & 1\\1 & 0 \end{bmatrix} \equiv |0\rangle\langle 1| + |1\rangle\langle 0| \longrightarrow X = X^{\dagger}$$

$$X|1\rangle = |0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

- When acting on  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ , X swaps the amplitudes  $\alpha$  and  $\beta$
- The X operator is sometimes called the bit flip operator, because it "flips" the computational basis amplitudes, i.e.,  $\alpha \leftrightarrow \beta$

$$|\psi_{out}\rangle = X \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

$$|\psi\rangle_{in} = \alpha|0\rangle + \beta|1\rangle$$
  $|\psi\rangle_{out} = \beta|0\rangle + \alpha|1\rangle$ 

- Since

$$X = X^{\dagger} \longrightarrow XX^{\dagger} = X^{\dagger}X = XX = X^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

- It turns out that the matrix X describing the single qubit gate is unitary
- We can use  $X^2 = 1$  to simplify consecutive applications of X. For example:

$$X^{1001} = X^{1000}X = (X^2)^{500}X = I^{500}X = X$$

- Unitary quantum gates are *always* **invertible**, since the inverse of a unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted by another quantum gate

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \longrightarrow X^{\dagger} = X^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = X$$



## The Pauli Z-Gate or Phase Flip Gate

- This gate, keeps  $|0\rangle$  as  $|0\rangle$ , and turns  $|1\rangle$  into  $-|1\rangle$ 

$$Z|0\rangle = |0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$\Rightarrow Z = \begin{bmatrix} 1&0\\0&-1 \end{bmatrix} \equiv |0\rangle\langle 0| - |1\rangle\langle 1| \Rightarrow Z^{\dagger} = Z$$

$$Z|1\rangle = -|1\rangle = \begin{bmatrix} 0\\-1 \end{bmatrix}$$

- Z is unitary and thus reversible

$$ZZ^{\dagger} = Z^{\dagger}Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

## The Pauli Z-Gate or Phase Flip Gate

When acting on  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ 

$$Z\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ -\beta \end{bmatrix} = \alpha |0\rangle - \beta |1\rangle$$

Z leaves  $|0\rangle$  unchanged, and flips the sign of  $|1\rangle$  to give  $-|1\rangle$ 

$$|\psi\rangle_{in} = \alpha|0\rangle + \beta|1\rangle \qquad \qquad |\psi\rangle_{out} = \alpha|0\rangle - \beta|1\rangle = \alpha|0\rangle + e^{i\pi}\beta|1\rangle$$

#### The Pauli Z-Gate or Phase Flip Gate

- Z is also called a *phase flip*, because it changes the sign of the amplitude of the state  $|1\rangle$ 



- The circuit produces the *A*-to-*B* trasition  $\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \rightarrow \begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$  yielding the same probabilities,  $|\alpha|^2$  and  $|\beta|^2$ , at both access point

#### The Pauli Y-Gate

- This gate, turns  $|0\rangle$  into  $i|1\rangle$ , and  $|1\rangle$  into  $-i|0\rangle$ 

$$Y|0\rangle = i|1\rangle = \begin{bmatrix} 0\\i \end{bmatrix}$$

$$Y|1\rangle = -i|0\rangle = \begin{bmatrix} -i\\0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i\\i & 0 \end{bmatrix} = -i|0\rangle\langle 1| + i|1\rangle\langle 0|$$

#### The Pauli Y-Gate

- Y is *unitary* and thus *reversible* 

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \longrightarrow Y^{\dagger} = \left( \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}^{*} \right)^{T} = \left( \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix} \right)^{T} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = Y$$

$$\rightarrow Y^{\dagger} = Y$$

- Thus

$$YY^{\dagger} = Y^{\dagger}Y = YY = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

#### The Pauli Y-Gate

- When acting on  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ 

$$Y\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} -i\beta \\ i\alpha \end{bmatrix} = -i \begin{bmatrix} \beta \\ -\alpha \end{bmatrix} \equiv \beta |0\rangle - \alpha |1\rangle$$

$$|\psi\rangle_{in} = \alpha|0\rangle + \beta|1\rangle$$
  $\qquad \qquad \qquad |\psi\rangle_{out} = -i\beta|0\rangle + i\alpha|1\rangle \equiv \beta|0\rangle - \alpha|1\rangle$ 

- Although Y has no official name, it could be called the bit-and-phase flip, because it flips both the bits and the relative phase, simultaneously

# The Phase-Shift Gates, S and T

- We have already seen that he phase-flip gate, Z, when operates on a qubit state  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  flips the relative phase, i.e. shifts it, by  $\pi$  radians

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \rightarrow \begin{bmatrix} \alpha \\ -\beta \end{bmatrix} = \begin{bmatrix} \alpha \\ e^{i\pi} \beta \end{bmatrix}$$

- There are two other common shift amounts,  $\pi/2$  (the *S* operator) and  $\pi/4$  (the *T* operator)

#### The Phase S-Gate

- This gate, keeps  $|0\rangle$  as  $|0\rangle$ , and turns  $|1\rangle$  into  $i|1\rangle$ 

$$S|0\rangle = |0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$\Rightarrow S = \begin{bmatrix} 1&0\\0&i \end{bmatrix} \equiv |0\rangle\langle 0| + i|1\rangle\langle 1|$$

$$S|1\rangle = i|1\rangle = \begin{bmatrix} 0\\i \end{bmatrix}$$

### The Phase S-Gate

- S is unitary

$$S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \longrightarrow S^{\dagger} = \left( \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}^{*} \right)^{T} = \left( \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \right)^{T} = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix}$$

$$SS^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$S^{\dagger}S = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$SS^{\dagger}S = \begin{bmatrix} 1 & 0 \\ 0 & -i \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

#### The Phase S-Gate

- When acting on  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ 

$$S\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ i\beta \end{bmatrix} = \alpha |0\rangle + i\beta |1\rangle = \alpha |0\rangle + e^{i\pi/2}\beta |1\rangle$$

# The $\pi/8$ or T-Gate

- This gate, keeps  $|0\rangle$  as  $|0\rangle$ , and turns  $|1\rangle$  into  $e^{i\pi/4}|1\rangle$ 

$$T|0\rangle = |0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix}$$

$$T|1\rangle = e^{i\pi/4}|1\rangle = \begin{bmatrix} 0\\e^{i\pi/4} \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 0\\0 & e^{i\pi/4} \end{bmatrix} \equiv |0\rangle\langle 0| + e^{i\pi/4}|1\rangle\langle 1|$$

### The T-Gate

#### T is unitary

$$T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \longrightarrow T^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}^{*} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}^{T} = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix}$$

$$TT^{\dagger} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$T^{\dagger}T = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$T^{\dagger}T = \begin{bmatrix} 1 & 0 \\ 0 & e^{-i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

### The *T*-Gate

- When acting on  $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ , where  $|\alpha|^2 + |\beta|^2 = 1$ 

$$T\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = T = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ e^{i\pi/4} \beta \end{bmatrix} = \alpha |0\rangle + e^{i\pi/4} \beta |1\rangle$$

$$|\psi\rangle_{in} = \alpha|0\rangle + \beta|1\rangle$$
  $\qquad \qquad |\psi\rangle_{out} = \alpha|0\rangle + e^{i\pi/4}\beta|1\rangle$ 

### The *T*-Gate

- You might wonder why the T gate is called the  $\pi/8$  gate when it is  $\pi/4$  that appears in the definition
- The reason is that the gate has historically often been referred to as the  $\pi/8$  gate, simply because up to an unimportant global phase, T is equal to a gate which has  $\exp(\pm i\pi/8)$  appearing on its diagonals

$$T=e^{i\pi/8}egin{bmatrix} e^{-i\pi/8} & 0 \ 0 & e^{i\pi/8} \end{bmatrix}$$

- Nevertheless, the nomenclature is in some respects rather unfortunate, and we often refer to this gate as the *T* gate

#### The Hadamard H-Gate

- This gate, turns  $|0\rangle$  into  $|+\rangle$ , and  $|1\rangle$  into  $|-\rangle$ 

$$H |0\rangle = |+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\rightarrow H |x\rangle = \frac{|0\rangle + (-1)^{x} |1\rangle}{\sqrt{2}} \quad \forall x \in \{0, 1\}$$

$$H |1\rangle = |-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$compact form$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \equiv \frac{1}{\sqrt{2}} (|0\rangle\langle 0| + |0\rangle\langle 1| + |1\rangle\langle 0| - |1\rangle\langle 1|)$$

#### The Hadamard H-Gate

- *H* is unitary

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \longrightarrow H^{\dagger} = \left( \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}^* \right)^I = \left( \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \right)^T = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H$$

$$HH^{\dagger} = H^{\dagger}H = \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I \longrightarrow HH^{\dagger} = H^{\dagger}H = I$$

#### The Hadamard H-Gate

- The application of a Hadamard gate to an arbitrary qubit  $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$  gives the following output

$$H\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} \alpha + \beta \\ \alpha - \beta \end{bmatrix} = \left( \frac{\alpha + \beta}{\sqrt{2}} \right) |0\rangle + \left( \frac{\alpha - \beta}{\sqrt{2}} \right) |1\rangle$$

$$=\alpha\frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta\frac{|0\rangle-|1\rangle}{\sqrt{2}}=\alpha|+\rangle+\beta|-\rangle$$

- This is an example of *quantum interference*
- In the previous slide we have shown that

$$H\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \frac{\alpha + \beta}{\sqrt{2}} \\ \frac{\alpha - \beta}{\sqrt{2}} \end{bmatrix}$$

- Thus

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \alpha |0\rangle + \beta |1\rangle \qquad \begin{bmatrix} \frac{\alpha + \beta}{\sqrt{2}} \\ \frac{\alpha - \beta}{\sqrt{2}} \end{bmatrix} = \frac{\alpha + \beta}{\sqrt{2}} |0\rangle + \frac{\alpha - \beta}{\sqrt{2}} |1\rangle$$

- Notice that the probability to obtain  $|0\rangle$  upon measurement has been changed as the amplitude

$$\alpha \to \frac{\alpha + \beta}{\sqrt{2}}$$

while the probability to find  $|1\rangle$  has been changed as the amplitude

$$\beta \rightarrow \frac{\alpha - \beta}{\sqrt{2}}$$

- Now, let's look at the following scenario with  $\alpha = \beta = 1/\sqrt{2}$ 

$$|+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
  $\mathcal{H}$   $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = |0\rangle$ 

- With the Hadamard transformation of the state  $|+\rangle$  we have the following:
  - *Positive interference* with regard to the basis state  $|0\rangle$ . The two amplitudes add to increase the probability of finding  $|0\rangle$  upon measurement. In fact, in this case, it goes to unity meaning we are certain to find  $|0\rangle$ .
  - Negative interference with regard to the basis state  $|1\rangle$ . We go from a state where there was a 50% chance of finding 1 upon measurement to one where there is no chance of finding 1 upon measurement.

- Similarly, with  $\alpha = 1/\sqrt{2}$ ,  $\beta = -1/\sqrt{2}$ 

$$|-\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} = |1\rangle$$

- With the Hadamard transformation of the state  $|-\rangle$  we have the following:
  - *Positive interference* with regard to the basis state  $|1\rangle$ . The two amplitudes add to increase the probability of finding  $|1\rangle$  upon measurement. In fact, in this case, it goes to unity meaning we are certain to find  $|1\rangle$ .
  - Negative interference with regard to the basis state  $|0\rangle$ . We go from a state where there was a 50% chance of finding 1 upon measurement to one where there is no chance of finding 1 upon measurement.

#### Relative Phase

- Obviously, both  $|+\rangle$  and  $|-\rangle$  will have identical measurement probabilities; if we have 1000 electrons in spin state  $|+\rangle$  and 1000 in state  $|-\rangle$ , a measurement of all of them will throw about  $\left|1/\sqrt{2}\right|^2 \times 1000 = 500$  into state  $|0\rangle$  and  $\left|1/\sqrt{2}\right|^2 \times 1000 = 500$  into state  $|1\rangle$
- However, two states that have the same measurement probabilities are not necessarily the same state

$$\left|+\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0\right\rangle + \left|1\right\rangle\right) = \frac{1}{\sqrt{2}} \begin{bmatrix}1\\1\end{bmatrix} \qquad \left|-\right\rangle = \frac{1}{\sqrt{2}} \left(\left|0\right\rangle - \left|1\right\rangle\right) = \frac{1}{\sqrt{2}} \begin{bmatrix}1\\-1\end{bmatrix}$$

#### Relative Phase

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
 —  $|0\rangle$ 

$$|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$
 —  $|1\rangle$ 

- If we give  $|+\rangle$  and  $|-\rangle$  as input to the H gate we obtain as output  $|0\rangle$  and  $|1\rangle$  states respectively, i.e., states which give rise to physically observable differences in measurement statistics
- Therefore, it is not possible to regard these states ( $|+\rangle$  and  $|-\rangle$ ) as physically equivalent, as we do with states differing by a global phase factor

#### Global Phase

The input states  $|+\rangle$  and  $e^{i\theta}|+\rangle$  are physically equivalent and so are the output states  $|0\rangle$  and  $e^{i\theta}|0\rangle$ 

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}$$
  $H |+\rangle = |0\rangle$ 

$$e^{i\theta} \left| + \right\rangle = e^{i\theta} \left( \frac{\left| 0 \right\rangle + \left| 1 \right\rangle}{\sqrt{2}} \right) \qquad \qquad H \left( e^{i\theta} \left| + \right\rangle \right) = e^{i\theta} H \left( \frac{\left| 0 \right\rangle + \left| 1 \right\rangle}{\sqrt{2}} \right) = e^{i\theta} \left| 0 \right\rangle$$

*It follows from the H linearity* 

#### Relative Phase

The input states  $|-\rangle$  and  $e^{i\theta}|-\rangle$  are physically equivalent and so are the output states  $|1\rangle$  and  $e^{i\theta}|1\rangle$ 

$$\left|-\right\rangle = \frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}$$
  $H\left|-\right\rangle = \left|1\right\rangle$ 

$$H = e^{i\theta} |1\rangle \qquad H(e^{i\theta} |-\rangle) = e^{i\theta} H(\frac{|0\rangle - |1\rangle}{\sqrt{2}}) = e^{i\theta} |1\rangle$$

$$|1\rangle = e^{i\theta} |1\rangle \qquad \text{It follows from the H linearity}$$

| Special 1-Qubit Gates | Gate              | Action on Computational Basis                                                                                     | Matrix Representation                                                  |
|-----------------------|-------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|                       | Identity          | $I 0\rangle =  0\rangle$ $I 1\rangle =  1\rangle$                                                                 | $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$                     |
|                       | Pauli X           | $X 0\rangle =  1\rangle$ $X 1\rangle =  0\rangle$                                                                 | $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$                     |
|                       | Pauli Y           | $Y 0\rangle = i 1\rangle$ $Y 1\rangle = -i 0\rangle$                                                              | $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$                    |
|                       | Pauli Z           | $Z 0\rangle =  0\rangle$ $Z 1\rangle = - 1\rangle$                                                                | $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$                    |
|                       | Phase S           | $S 0\rangle =  0\rangle$ $S 1\rangle = i 1\rangle$                                                                | $S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$                     |
|                       | T                 | $T 0\rangle =  0\rangle$ $T 1\rangle = e^{i\pi/4} 1\rangle$                                                       | $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$            |
|                       | Hadamard <i>H</i> | $H 0\rangle = \frac{1}{\sqrt{2}}( 0\rangle +  1\rangle)$ $H 1\rangle = \frac{1}{\sqrt{2}}( 0\rangle -  1\rangle)$ | $H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ |
|                       |                   |                                                                                                                   |                                                                        |

- We can combine these quantum gates to create all sorts of states

$$HSTH|0\rangle = HST \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$= HS \frac{1}{\sqrt{2}} (|0\rangle + e^{i\pi/4}|1\rangle)$$

$$= H \frac{1}{\sqrt{2}} (|0\rangle + e^{i3\pi/4}|1\rangle)$$

$$= \frac{1}{\sqrt{2}} \left[ \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + e^{i3\pi/4} \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \right]$$

$$= \frac{1}{2} \left[ (1 + e^{i3\pi/4}) |0\rangle + (1 - e^{i3\pi/4}) |1\rangle \right],$$

where in the third line, we used  $ie^{i\pi/4} = e^{i\pi/2}e^{i\pi/4} = e^{i3\pi/4}$ .

Gates operate from *left-to-right*, but operator algebra moves from *right to-left*. When translating a circuit into a product of matrices, we must reverse the order. So, *stay alert*!

- Then, if we measure this qubit in the Z-basis  $\{|0\rangle,|1\rangle\}$  the probability of getting  $|0\rangle$  is

$$\left| \frac{1}{2} \left( 1 + e^{i3\pi/4} \right) \right|^2 = \frac{1}{2} \left( 1 + e^{i3\pi/4} \right) \frac{1}{2} \left( 1 + e^{-i3\pi/4} \right)$$

$$= \frac{1}{4} \left( 1 + e^{-i3\pi/4} + e^{i3\pi/4} + e^0 \right)$$

$$= \frac{1}{4} \left( 2 + 2\cos\frac{3\pi}{2} \right)$$

$$= \frac{1}{2} \left( 1 - \frac{\sqrt{2}}{2} \right)$$

$$\approx 0.146,$$

where to go from the second to the third line, we used Euler's formula

$$e^{i\vartheta} + e^{-i\vartheta} = 2\cos\vartheta$$

- Similarly, the probability of getting  $|1\rangle$  is

$$\left| \frac{1}{2} \left( 1 - e^{i3\pi/4} \right) \right|^2 = \frac{1}{4} \left( 2 - 2\cos\frac{3\pi}{2} \right) = \frac{1}{2} \left( 1 + \frac{\sqrt{2}}{2} \right) \approx 0.854.$$

- Another combination of quantum gates.



- So we start with a single qubit in the  $|0\rangle$  state and apply a Hadamard gate H to it, followed by a phase gate S, and finally a Z gate
- The state at the output of the Z gate, will be  $\mathit{ZSH} \ket{0}$

-  $ZSH | 0 \rangle$  results in the state,

$$ZSH |0\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \rangle - i |1\rangle \end{bmatrix}$$

and if we measure the qubit in the Z-basis, we get  $|0\rangle$  or  $|1\rangle$  with equal probability

$$|0\rangle$$
  $H$   $S$   $Z$ 

- Question: what is the most general kind of quantum gate for a single qubit?
- To address this, we must first introduce the family of quantum gates that perform *rotations* about *the three mutually perpendicular axes* of the *Bloch sphere*
- A single qubit state is represented by a point on the surface of the Bloch sphere

- The effect of a single qubit gate that acts in this state is to map it to some other point on the Bloch sphere
- The gates that rotate states around the x-, y-, and z-axes are of special significance since we will be able to decompose an arbitrary 1-qubit quantum gate into sequences of such rotation gates
- Any point on the surface of the Bloch sphere can be specified using its (x, y, z) coordinates or, equivalently, its  $r, \theta, \phi$  coordinates (let's ignore the global phase for now)

- These two coordinate systems are related via the equations:

$$x = r \sin(\theta) \cos(\phi)$$
$$y = r \sin(\theta) \sin(\phi)$$
$$z = r \cos(\theta)$$

- So, what are the quantum gates that rotate this state about the x-, y-, or z-axes?
- We claim that these gates can be built from the Pauli X, Y, Z, matrices, and the fourth Pauli matrix, I, can be used to achieve a global overall phase shift

#### Let's define the following unitary matrices

$$R_{x}(\alpha) = \exp(-i\alpha X/2) = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & -i\sin\left(\frac{\alpha}{2}\right) \\ -i\sin\left(\frac{\alpha}{2}\right) & \cos\left(\frac{\alpha}{2}\right) \end{bmatrix}$$

$$R_{z}(\alpha) = \exp(-i\alpha Z/2) = \begin{bmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{bmatrix}$$

$$R_z(\alpha) = \exp(-i\alpha Z/2) = \begin{bmatrix} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{bmatrix}$$

$$R_{y}(\alpha) = \exp(-i\alpha Y/2) = \begin{bmatrix} \cos\left(\frac{\alpha}{2}\right) & -\sin\left(\frac{\alpha}{2}\right) \\ \sin\left(\frac{\alpha}{2}\right) & \cos\left(\frac{\alpha}{2}\right) \end{bmatrix} \qquad Ph(\delta) = e^{i\delta} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$Ph(\delta) = e^{i\delta} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

To prove (in the above expressions for the rotations) that the exponentials are equivalent to the matrices, you have to prove first that, given a real number x and an A matrix such that  $A^2=I$  the following relation holds

$$e^{iAx} = \cos(x)I + i\sin(x)A$$

This condition holds true for the rotation gates as we have already proved that  $X^2=Y^2=Z^2=I$ 

- Consider the gate  $R_z(\alpha)$
- Let's see how this gate transforms an arbitrary single qubit

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle \longrightarrow$$

$$R_{z}(\alpha)|\psi\rangle = \begin{bmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = \begin{bmatrix} e^{-i\alpha/2}\cos\left(\frac{\theta}{2}\right) \\ e^{i\alpha/2}e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = e^{-i\alpha/2}\cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\alpha/2}e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

#### From the above slide $\rightarrow$

$$R_{z}(\alpha)|\psi\rangle = e^{-i\alpha/2} \left(\cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\alpha/2}e^{i\alpha/2}e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle\right) \equiv \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\alpha}e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$= \cos\left(\frac{\theta}{2}\right) |0\rangle + e^{i(\phi + \alpha)} \sin\left(\frac{\theta}{2}\right) |1\rangle$$

where ≡ is to be read as

"equal up to an unimportant
arbitrary global phase factor"



- Hence the action of the  $R_z(\alpha)$  gate on  $|\psi\rangle$  has been to advance the angle  $\phi$  by  $\alpha$  and hence rotate the state about the z-axis through

angle  $\alpha$ 

- This is why we call  $R_z(\alpha)$  a z-rotation gate



- We leave it to the exercises for you to prove that  $R_x(\alpha)$  and  $R_y(\alpha)$  rotate the state about the x- and y-axes respectively





- Rotations on the Bloch sphere do not conform to commonsense intuitions about rotations that we have learned from our experience of the everyday world
- In particular, usually, a rotation of  $2\pi$  radians (i.e., 360 degrees) of a solid object about any axis, restores that object to its initial orientation

- However, this is not true of rotations on the Bloch sphere! When we rotate a quantum state through  $2\pi$  on the Bloch sphere we don't return it to its initial state
- Instead, we pick up a phase factor

- To see this, let's compute the effect of rotating our arbitrary single qubit state

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

about the z-axis through  $2\pi$  radians

$$R_{z}(2\pi)|\psi\rangle = \begin{bmatrix} e^{-i\pi} & 0 \\ 0 & e^{i\pi} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\theta+2\pi}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta+2\pi}{2}\right) \end{bmatrix} = \begin{bmatrix} -\cos\left(\frac{\theta}{2}\right) \\ -e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = -|\psi\rangle$$
 which has an extra overall phase of -1

- To see this, let's compute the effect of rotating our arbitrary single qubit state

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right)|1\rangle$$

$$e^{-i\pi} = e^{i\pi} = -1$$

about the z-axis through  $2\pi$  radians

$$R_{z}(2\pi)|\psi\rangle = \begin{bmatrix} e^{-i\pi} & 0 \\ 0 & e^{i\pi} \end{bmatrix} \begin{bmatrix} \cos\left(\frac{\theta}{2}\right) \\ e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = \begin{bmatrix} e^{-i\pi}\cos\left(\frac{\theta}{2}\right) \\ e^{i\pi}e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = \begin{bmatrix} -\cos\left(\frac{\theta}{2}\right) \\ -e^{i\phi}\sin\left(\frac{\theta}{2}\right) \end{bmatrix} = -|\psi\rangle$$

which has an extra overall phase of -1

- To restore a state back to its original form we need to rotate it through  $4\pi$  on the Bloch sphere
- Have you ever encountered anything like this in your everyday world?
   You probably think not, but you'd be wrong!
- See the "Dirac's Belt" or the "Belt Trick" video https://www.youtube.com/watch?v=Vfh21o-JW9Q

#### X From a Rotation Gate

- On the Bloch sphere, it can be shown that X is a rotation of 180<sup>o</sup> about the x-axis together with global phase shifts of 90<sup>o</sup>

$$R_{x}(\pi) \cdot Ph\left(\frac{\pi}{2}\right) = \begin{vmatrix} \cos\frac{\pi}{2} & -i\sin\frac{\pi}{2} \\ -i\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{vmatrix} e^{i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} (i) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = X$$

#### X From a Rotation Gate

- With this rotation in mind, we geometrically see that X causes  $|0\rangle$  (the north pole) to rotate to  $|1\rangle$  (the south pole), and vice versa
- We also see that  $|i\rangle$  and  $|-i\rangle$  rotate to each other, whereas  $|+\rangle$  and  $|-\rangle$  are unchanged
- Note, however, that mathematically

$$X \left| - \right\rangle = - \left| - \right\rangle \equiv \left| - \right\rangle$$

since the global phase does not matter

- If we apply the X-gate twice, we rotate around the x-axis of the Bloch sphere by  $360^{\circ}$ , which does nothing. Then,  $X^2 = I$ 





#### Y From a Rotation Gate

- On the Bloch sphere, it can be shown that Y is a rotation of 180° about the y-axis together with global phase shifts of 90°

$$R_{y}(\pi) \cdot Ph\left(\frac{\pi}{2}\right) = \begin{bmatrix} \cos\frac{\pi}{2} & -\sin\frac{\pi}{2} \\ \sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} e^{i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (i) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = Y$$





$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} (i) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = Y$$

If we apply the Y-gate twice, we rotate around the y-axis of the Bloch sphere by 360°, which does nothing. Then,  $Y^2 = I$ 

#### Z From a Rotation Gate

- On the Bloch sphere, it can be shown that Z is a rotation of  $180^{\circ}$  about the z-axis together with *global phase shifts* of  $90^{\circ}$ 

$$R_{z}(\pi) \cdot Ph\left(\frac{\pi}{2}\right) = \begin{bmatrix} e^{-i\pi/2} & 0 \\ 0 & e^{i\pi/2} \end{bmatrix} e^{i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{2} - i\sin\frac{\pi}{2} & 0 \\ 0 & \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \end{bmatrix} \left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$



### S From a Rotation Gate

- On the Bloch sphere, it can be shown that S is a rotation of  $90^{\circ}$  about the z-axis together with global phase shifts of  $45^{\circ}$ 

$$R_{z}\left(\frac{\pi}{2}\right) \cdot Ph\left(\frac{\pi}{4}\right) = \begin{bmatrix} e^{-i\pi/4} & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} e^{i\pi/8} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{4} - i\sin\frac{\pi}{4} & 0 \\ 0 & \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} \end{bmatrix} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 1-i & 0 \\ 0 & 1+i \end{bmatrix} \left( \frac{1}{\sqrt{2}} (1+i) \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} 1-i & 0 \\ 0 & 1+i \end{bmatrix} \begin{bmatrix} 1+i & 0 \\ 0 & 1+i \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1-i^2 & 0 \\ 0 & (1+i)^2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2i \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S$$

### S From a Rotation Gate



- Now, S<sup>2</sup> rotates by 90° twice, so it is equivalent to rotating by 180°
- Then,  $S^2 = Z$
- We would need to apply S four times in order to return to the same point on the Bloch sphere, so  $S^4 = I$

#### T From a Rotation Gate

- On the Bloch sphere, it can be shown that T (also called  $\pi/8$  gate) is a rotation of  $45^0$  about the z-axis together with *global phase shifts* of  $\pi/8$  radiants

$$R_{z}\left(\frac{\pi}{4}\right).Ph\left(\frac{\pi}{8}\right) = \begin{bmatrix} e^{-i\pi/8} & 0\\ 0 & e^{i\pi/8} \end{bmatrix} e^{i\pi/8} \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} = T$$



#### T From a Rotation Gate



It is obvious that  $T^2 = S$  and  $T^4 = Z$ , since rotating by  $45^0$  twice is equivalent to rotating by  $90^0$ , and rotating by  $45^0$  four times is equivalent to rotating by  $180^0$ 

$$T^{2} = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & e^{i\pi/2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix} = S$$

### H From Rotation Gates

- On the Bloch sphere, it can be shown that H is a rotation of  $180^{\circ}$  about the x + z-axis
- Before showing it, we need to consider the Rotation About an Arbitrary Axis

### Rotation About an Arbitrary Axis

- If  $n = [n_x, n_y, n_z]$  is a real unit vector in three dimensions, then it can be shown that the operator  $R_n(\theta)$  rotates the Bloch vector by an angle  $\theta$  about the  $\hat{n}$  axis, where

$$R_n(\theta) = \exp\left(-i\theta\left(\hat{n}\cdot\frac{\hat{\sigma}}{2}\right)\right)$$

and  $\hat{\sigma}$  denotes the three-component vector (X,Y,Z) of Pauli matrices



### Rotation About an Arbitrary Axis

- Furthermore, it is not hard to show that  $(n \cdot \vec{\sigma})^2 = I$ , and therefore we can use the special case operator exponential and write

$$R_n(\theta) = \exp\left(-i\theta\left(n\cdot\frac{\vec{\sigma}}{2}\right)\right) = \exp\left(-i\frac{\theta}{2}\left(n\cdot\vec{\sigma}\right)\right) = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)n\cdot\vec{\sigma}$$

$$= \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)\left(n_xX + n_yY + n_zZ\right)$$

Given a real number x and an A matrix such that  $A^2=I$  the following relation holds



$$e^{iAx} = \cos(x)I + i\sin(x)A$$

## **Arbitrary Unitary Operator**

- It can be shown that *an arbitrary single qubit unitary operator U* can be written in the form

$$U = \exp(i\alpha) R_n(\theta)$$

for some real number  $\alpha$  and  $\theta$ , and a real three-dimensional unit vector  $n = [n_x, n_y, n_z] \rightarrow$ 

$$U = \exp(i\alpha)R_n(\theta) = \exp(i\alpha)\left[\cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)(n_xX + n_yY + n_zZ)\right]$$

## Arbitrary Unitary Operator

$$U = \exp(i\alpha) \left[ \cos\left(\frac{\theta}{2}\right) I - i\sin\left(\frac{\theta}{2}\right) \left(n_x X + n_y Y + n_z Z\right) \right]$$

- For example, consider

$$\alpha = \frac{\pi}{2}$$
,  $\theta = \pi$ , and  $n = \left[\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right] \rightarrow n \cdot \vec{\sigma} = \left(n_x X + n_y Y + n_z Z\right) = \frac{X + Z}{\sqrt{2}}$ 

$$U = \exp(i\pi/2)R_n(\pi) = \exp(i\pi/2) \left[\cos\left(\frac{\pi}{2}\right)I - i\sin\left(\frac{\pi}{2}\right)\frac{1}{\sqrt{2}}(X+Z)\right]$$
$$= i\left[\cos\left(\frac{\pi}{2}\right)I - i\sin\left(\frac{\pi}{2}\right)\frac{1}{\sqrt{2}}(X+Z)\right] = \frac{1}{\sqrt{2}}(X+Z)$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H$$

### H From a Rotation Gate

Thus, on the Bloch sphere, H is a rotation of  $180^{\circ}$  about the x+z-axis together with *global phase shifts* of  $90^{\circ}$ 



### H From Rotation Gates

 However, we can also demonstrate that H can be obtained by the following combination of rotation

$$R_{x}(\pi) \cdot R_{y}\left(\frac{\pi}{2}\right) \cdot Ph\left(\frac{\pi}{2}\right) = \begin{bmatrix} \cos\frac{\pi}{2} & -i\sin\frac{\pi}{2} \\ -i\sin\frac{\pi}{2} & \cos\frac{\pi}{2} \end{bmatrix} \begin{bmatrix} \cos\frac{\pi}{4} & -\sin\frac{\pi}{4} \\ \sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} e^{i\pi/2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \left( \cos\frac{\pi}{2} + i\sin\frac{\pi}{2} \right) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{i}{\sqrt{2}} \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = H$$

## **Arbitrary Unitary Operator**

- An arbitrary unitary operator on a single qubit can be written in many ways as a combination of rotations, together with *global phase shifts* on the qubit
- For example, we have already seen that

$$X = R_{x}(\pi) \cdot Ph\left(\frac{\pi}{2}\right) \qquad H = R_{x}(\pi) \cdot R_{y}\left(\frac{\pi}{2}\right) \cdot Ph\left(\frac{\pi}{2}\right)$$

- However, we can easily show that

$$X = R_{y}(\pi) \cdot R_{z}(\pi) \cdot Ph\left(\frac{\pi}{2}\right) \qquad H = R_{y}\left(\frac{\pi}{2}\right) \cdot R_{z}(\pi) \cdot Ph\left(\frac{\pi}{2}\right)$$

### Arbitrary Unitary Operator

- The following theorem will be particularly useful in later applications to controlled operations.
- Theorem: (Z-Y decomposition for a single qubit) Suppose U is a unitary operation on a single qubit. Then there exist real numbers  $\alpha$ ,  $\beta$ ,  $\gamma$  and  $\delta$  such that

$$U = \exp(i\alpha) R_z(\beta) \cdot R_y(\gamma) \cdot R_z(\delta)$$

#### Question

- How does the state,  $|\psi\rangle$  , of a quantum mechanical system change with time?

#### **Answer**

- **Postulate 2:** The evolution of a *closed* quantum system is described by a *unitary transformation*. That is, the state  $|\psi\rangle$  of the system at time  $t_1$  is related to the state  $|\psi'\rangle$  of the system at time  $t_2$  by a unitary operator U which depends only on the times  $t_1$  and  $t_2$ ,

$$|\psi'\rangle = |\psi(t_2)\rangle = U(t_1, t_2)|\psi(t_1)\rangle$$

- Postulate 2 requires that the system being described be closed
- That is, it is not interacting in any way with other systems
- In reality, all systems (except the Universe as a whole) interact at least somewhat with other systems
- Nevertheless, there are interesting systems which can be described to a good approximation as being closed, and which are described by unitary evolution to some good approximation

- Postulate 2 describes how the quantum states of a closed quantum system at two different times are related
- A more refined version of this postulate can be given which describes the evolution of a quantum system in *continuous time*
- From this more refined postulate we will recover Postulate 2

- **Postulate 2':** The time evolution of the state of a closed quantum system is described by the *Schrodinger equation*,

$$i\hbar \frac{d\left|\psi\left(t\right)\right\rangle}{dt} = H\left|\psi\left(t\right)\right\rangle$$

- In this equation,  $\hbar$  is a physical constant known as *Planck's constant*
- The exact value is not important to us. In practice, it is common to absorb the factor  $\hbar$  into H, effectively setting  $\hbar=1$
- H is a fixed Hermitian  $(H = H^{\dagger})$  operator known as the Hamiltonian (Not Hadamard!!) of the closed system

- **Question:** What is the connection between the Hamiltonian picture of dynamics, Postulate 2', and the unitary operator picture, Postulate 2?

$$\left|\psi\left(t_{2}\right)\right\rangle = \exp\left[\frac{-iH\left(t_{2}-t_{1}\right)}{\hbar}\right]\left|\psi\left(t_{1}\right)\right\rangle = U\left(t_{1},t_{2}\right)\left|\psi\left(t_{1}\right)\right\rangle$$

where we define

$$U(t_1, t_2) = \exp \left[ \frac{-iH(t_2 - t_1)}{\hbar} \right]$$

- There is therefore a one-to-one correspondence between the discretetime description of dynamics using unitary operators, and the continuous time description using Hamiltonians