

LCD MODULE SPECIFICATION

Model:	UE019QV-AB40-L001A
Version:	V2.0
Date:	2024-07-29

Customer Confirmation

Approved by		Notes	
	1101		
	CKI		

Please return one of the copies of the specification with your signature to us within two weeks after you receive this document. If it is not returned, we will assume that you agree to the entire contents of this specification document.

VIEWE Confirmation

Prepared by	Reviewed by	Approved by

<u>www.chinasunyee.com</u> TEL: 400-660-3306 Page: 1 / 17

REVISION HISTORY

Revision	Date	Contents of Revision Change	Remark
V1.0	2023-07-29	Preliminary release	
		CHILL	
	TEM.		

TABLE of CONTENTS

1. GENERAL INFORMATION	4
1.1 Features	4
1.2 Mechanical Specification	4
2. ABSOLUTE MAXIMUM RATINGS	
3. MECHANICAL DRAWING	7 8
5.1 TFT-LCD Panel Driving Section	8
5.2 Back Light Driving Section	8
5.3 Power On/Off	9
5.4 Timing Characteristics	11
5.5 Display Serial Interface Timing Characteristics (SPI system)) 12
6.OPTICAL CHARACTERISTICS	
7.RELIABILITY	
8. PACKAGE DRAWING	17

1. GENERAL INFORMATION

1.1 Features

Pixel Arrangement: RGB Vertical Stripe
 Interface Mode: MCU 8/16BIT/SPI

3) Driver IC: GC9307

4) Operation Temperature: -20~70°C
5) Storage Temperature: -30~80°C
6) Backlight Type: White LED
7) Display mode: Normally Black,

8) Pixel Density: 182 PPI

9) LED life time: 30,000 Hours

1.2 Mechanical Specification

Item	Specification	Unit	Remark
Pixel Driving element	TFT	-	-
Screen Size	1.99	Inch	Diagonal
Resolution	170(W)*3(RGB)*320(H)	Dots	-
Interface	MCU 8/16BIT/SPI	-	40PIN
Module Power Consumption	0.28	Watt	Тур.
Active Area	22.695(W)*42.72(H)	mm	-
Pixel pitch (W*H)	0.1335(W)*0.1335(H)	mm	-
Module Size (W*H*D)	25.80(W)*49.72(H)*1.59(D)	mm	-
Luminance	550	cd/m ²	Тур.
Viewing Direction	ALL	O'clock	-
Display Color	262K	Colors	18bits

Page: 5 / 17

2. ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Min.	Max.	Unit	Remark
Power supply voltage1	IOVCC	-0.5	3.6	V	Note1
Power supply voltage2	VCI	-0.5	3.6	V	Note1
LED forward current	IF	-0.001	40	mA	For each led,Note1
LED Reverse Voltage	VR	-	2.9	V	For each led,Note1
Operating temperature	Top	-20	70	°C	Note1,2
Storage temperature	Tst	-30	80	°C	Note1,2
Humidity	Hst	10	90	%RH	Note1,3

 $(Ta=+25^{\circ}C,GND=0V)$

Note1:If the module exceeds the absolute maximum ratings, it may be damaged permanently. Also if the module operates with the absolute maximum ratings for a long time, the reliability may drop.

Note2: In case of temperature below 0° C, the response time of liquid crystal (LC) becomes slower and the color of panel darker than normal one.

TEL: 400-660-3306

Note3: Temp. \leq 60 °C , 90% RH MAX.

Temp. $>60^{\circ}$ C, Absolute humidity shall be less than 90% RH.

3. MECHANICAL DRAWING

4. Input Terminal Pin Assignment

I: Input; O: Output; P: Power

1:	1: Input; O: Output; P: Power						
Pin No.	Symbol 符号	I/O	Description 描述				
1	XL	ı	I2C clock signals for CTP;				
•	/CTP-SCL	ľ	Option XL for RTP				
2	YU	ı	I2C data signal for CTP,				
	/CTP-SDA	ı	Option YU for RTP				
3	XR	ı	The signal will reset the CTP, Signal is active low,				
	/CTP-RST	ı	Option XR for RTP				
4	YD	I/O	Interrupt signals for CTP,				
4	/CTP-INT	1/0	Option YD for RTP				
5	GND	Р	Power Ground				
6	IOVCC	Р	Power supply for I/O system				
7	VCI	Р	Power supply for analog circuits				
8	TE	0	Tearing effect signal is used to synchronize MCU to frame memory				
9	SPI_CS /MCU_CS	I	Chip selection pin. Low-active				
10	SPI_SCL		Display data/command selection pin in MCU interface				
10	/MCU_RS	I	In SPI mode, this pin is used as SCL				
11	SPI_RS	ı	Write enable in MCU parallel interface				
11	/MCU_WR	ı	RS=1 display data or parameter;RS=0 register index / command				
12	MCU_RD	I	Read enable in 8080 MCU parallel interface. Low-active.				
13	SPI_SDA	I/O	Serial communication data input and output, internal pull low.				
14	SPI_SDO	0	SPI interface output pin				
15	RESET	ı	The signal will reset the LCM, Signal is active low.				
16	GND	Р	Power Ground				
17-32	DB0-DB15	I/O	data bus for MCU				
33	LED-A	Р	Power supply for backlight anode				
34-36	LED-K	Р	Power supply for backlight cathode				
37	GND	Р	Power Ground				
38	IM0	ı	The MCU interface mode select.				
39	IM1	ı	The MCU interface mode select.				
40	IM2	ı	The MCU interface mode select.				

I: Input; O: Output; P: Power

5. ELECTRICAL CHARACTERISTICS

5.1 TFT-LCD Panel Driving Section

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Power Supply Voltage1	IOVCC	3.0	3.3	3.6	V	-
Power Supply Voltage2	VCC	3.0	3.3	3.6	V	-
Power Supply Current1	Iiovee	-	-	-	mA	Note1
Power Supply Current2	Ivcc	-	12	-	mA	Note1
Logic Input High Voltage	V _{IH}	0.7VDD	-	VDD	V	-
Logic Input Low Voltage	VIL	0	-	0.3VDD	V	-
Panel Power Consumption	Pvdd	-	0.04	(-)	Watt	Note1
Module Power Consumption	PLCM	-	0.28	-	Watt	Note1,2

 $(Ta=+25^{\circ}C,GND=0V)$

Note1:Measurement Conditions (Video Mode): Full Screen Red Pattern, VDD=3.3V, 60Hz Refresh.

Note2: PLCM= PVDD+ PBL, About PBL information, inference to 5.2 Back Light Driving Section.

5.2 Back Light Driving Section

Item	Symbol	Min.	Тур.	Max.	Unit	Remark
Forward Voltage		>	2.9	-	V	Note1
Forward Current	IF	_	80	_	mA	Note1
Backlight Power consumption	P _{BL}		0.24	_	Watt	Note1
LED life time	7 I BL	30000		-	Hrs	Note2
	-	30000	-	-		Notez
LED Quantity			4		PCS	

 $(Ta=+25^{\circ}C,GND=0V)$

Note1: The LED driving condition is defined for each LED module

Note2: The "LED life time" is defined as the module brightness decrease to 50% of original brightness at ILED=20mA(Per Led). The LED life time could be decreased if operating ILED is larger than 20mA.

<u>www.chinasunyee.com</u> TEL: 400-660-3306 Page: 8 / 17

5.3 Power On/Off

5.3.1 Case 1 - RESX Line is Held High or Unstable by Host at Power ON

If the RESX line is held High or unstable by the host during Power On, then Hardware Reset must be applied after both VCI and IOVCC have been applied. Otherwise, the correct functionality is not guaranteed. There is no timing restriction upon this hardware reset.

trPWRESX1 is applied to RESX falling in the Sleep Out Mode trPWRESX2 is applied to RESX falling in the Sleep In Mode

Note: Unless otherwise specified, timings herein show the cross point at 50% of the signal power level.

5.3.1.2 Case 2 - RESX Line is Held Low by Host at Power ON

If the RESX line is held Low (and stable) by the host during Power On, then the RESX must be held low for a minimum of 10µsec after both VCI and IOVCC have been applied.

trPWRESX1 is applied to RESX falling in the Sleep Out Mode trPWRESX2 is applied to RESX falling in the Sleep In Mode

5.4 Timing Characteristics

8080 Series MCU Parallel Interface Timing Characteristics: 16/8-bit Bus

Figure 48 i80-System Bus Timing

Normal Write Mode (IOVCC = 1.65~3.3V)

	Symbol	Unit	Min.	Typ.	Max.	Test Condition	
Due quele time	Write	tcycw	ns	TBD	=		-
Bus cycle time	Read	tcycr	ns	300	-	-	-
Write low-level pu	llse width	PW _{LW}	ns	TBD	~	500	-
Write high-level p	ulse width	PW _{HW}	ns	TBD	_	2	2
Read low-level pu	ulse width	PW _{LR}	ns	150	5	15	-
Read high-level p	ulse width	PW _{HR}	ns	150	-	-	
Write / Read rise	/ fall time	t _{wr} /t _{wrf}	ns	-	-	25	
Catum times	Write (RS to nCS, E/nWR)		ns	10	-	-	
Setup time	Read (RS to nCS, RW/nRD)	tas		5		2	
Address hold time		t _{AH}	ns	5	_	2	
Write data set up time		t _{DSW}	ns	10	-	ā	
Write data hold time		t _H	ns	15	-	-	
Read data delay time		t _{DDR}	ns	-	-	100	
Read data hold til	me	tohr	ns	5	-	-	

5.5 Display Serial Interface Timing Characteristics (SPI system)

Signal	Symbol	Parameter	min	max	Unit	Description
	tcss	Chip select time (Write)	15	51	ns	
CSX	tcsh	Chip select hold time (Read)	1 5	2	ns	
	tCHW	CS H pulse width	40	9	ns	
	twc	Serial clock cycle (Write)	50	-	ns	
	twrh	SCL H pulse width (Write)	10	5	ns	
COL	twrl	SCL L pulse width (Write)	10	9	ns	
SCL	trc	Serial clock cycle (Read)	150	40	ns	
	trdh	SCL H pulse width (Read)	60	ਰ	ns	
	trdl	SCL L pulse width (Read)	60	E	ns	
DICY	tas	D/CX setup time	10	25	ns	
D/CX	tah	D/CX hold time (Write/Read)	10	-	ns	
SDA	tds	Data setup time (Write)	10	#	ns	
(Input)	tdh	Data hold time (Write)	10	5	ns	
SDA/SDO	tacc	Access time (Read)	10	50	ns	For maximum CL=30pF
(Output)	tod	Output disable time (Read)	15	50	ns	For minimum CL=8pF

Notes:

- 1. Ta = -30 to 70 °C, IOVCC = 1.65V to 3.3V, VCI = 2.5V to 3.3V, AGND = DGND = 0V, T = 10+/-0.5ns.
- 2. Does not include signal rising and falling times.

6.OPTICAL CHARACTERISTICS

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Contrast Ratio	C/R	$\theta = 0$ °	1000	1200	-	-	Note(4)
NTSC Ratio	S	θ=0°	60	65	-	%	Note(7)
Luminance	L	θ=0°	-	550	-	cd/m2	Note(5)
Luminance uniformity	Uw	θ =0°	70	80		%	Note(3)
Response Time	T _R + T _F	25 °C	-	30	3,5	ms	Note(2)
Color Coordination	Wx Wy Rx Ry Gx By	θ = 0° (Center) Normal viewing angle B/L On	-0.04	0.33 0.37 0.660 0.323 0.279 0.574 0.134 0.131	+0.04	NTSC (x,y)	Note(6)
Viewing Angle	θι	C/R>10	75	85	-	- -	Note(1)
	θ R		75	80	-		
	θυ		75	85	- Degree	Degree	
	θр		75	85	-		

Test Conditions:

- 1. VDD=3.3V, I_F=20mA (Backlight current), the ambient temperature is+25°C.
- 2. The test systems refer to Note 8.

Note1: Definition of Viewing Angle: The viewing angle range that the CR>10

Note2: Definition of Response time: Sum of TR and TF

Note 3: Definition of Luminance Uniformity: Active area is divided into 9 measuring areas, every measuring point is placed at the center of each measuring area.

Luminance Uniformity = $\frac{\text{Min Luminance of white among 9-points}}{\text{Max Luminance of white among 9-points}} \times 100\%$

optical

Note4: Definition of Contrast Ratio (CR): measured at the center point of panel

Contrast ratio (CR) = $\frac{\text{Luminance measured when LCD on the "White" state}}{\text{Luminance measured when LCD on the "Black" state}}$

Note 5: Definition of Luminance: Center Luminance of white is defined as luminance values of 1 point average across the LCD surface.

Note 6: Definition of Color Chromaticity (CIE 1931)

Color coordinates of white & red, green, blue measured at center point of LCD.

Note 7: Definition of NTSC ratio:

Note 8: Definition of measurement system.

The optical characteristics should be measured in dark room. After 5 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured

by Photo detector TOPCON BM-7, Field of view: 1°/Height: 500mm.)

7.RELIABILITY

Item	Test Condition	Remark
High Temperature Storage	$Ta = +80^{\circ}C / 96Hours$	Note1,2,3
Low Temperature Storage	$Ta = -30^{\circ}C / 96Hours$	Note1,2,3
High Temperature Operating	$Ta = +70^{\circ}C / 96Hours$	Note1,2,3
Low Temperature Operating	Ta = -20°C / 96Hours	Note1,2,3
Temperature Cycle storage Test	-30°C/30min Δ+70°C /30min for	Note2,3
	30cycles,Transfer time less than 5min	
Thermal humidity storage Test	60°C x 90%RH / 96Hours	Note2,3
Package Vibration Test	Frequency: 10Hz~55Hz,Amplitude:1.5mm, 1	Note2
	hrs for each direction of X, Y, Z	
Packing shock test	Drop to the ground from 60cm height,	Note2
	1 corner, 3 edges, 6 surfaces.	

Inspection after Test:

Note1:Ta is the ambient temperature of samples.

Note 2: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but doesn't guarantee all the cosmetic specification.

Note 3: Before cosmetic and function tests, the product must have enough recovery time, at least 2 hours at room temperature.

Note 4: In case of malfunction defect caused by ESD damage, if it would be recovered to normal state after resetting, it would be judged as a good part.

TEL: 400-660-3306

8. PACKAGE DRAWING

第一步

将产品放入吸塑盘中, LCD AA 面朝上,注意 防呆方向

第二步

每一层吸塑盘与相邻 层,量放时相错 180 度,最上层不放产品, 总量 加层数参考

第三步

检查无误后用胶带固定吸塑盘,将捆好的吸 塑盘放入无尘带中并 對口;

First step

Putting products into the tray,

LCD A.A faces Upward, (nav attention to the

Second step

Neighbouring trays should be staggered 180° while stacking up.

on the top,there is an empty tray without product

Third step

Taping up the tray after inspection,and put them into a PE

第四步

外箱內侧底部和四周 放上泡棉将包好的产 品装入纸箱,合盖;

第五步

最后胶带封箱,贴外箱 标签

第六步

将每箱整齐放在栈板 上并包裹最高可堆叠 6 层)

Fourth step

Putting EPE foams and products with trays into the carton;

Close the carton box

fifth step

Sealing the carton with cellulose tape; Stick on a carton label,

sixth step

Placing the boxes together on a pallet (6 layers at most),