15-442/15-642: Machine Learning Systems

Memory Optimizations

Spring 2024

Tianqi Chen
Carnegie Mellon University

Outline

Activation Checkpointing and Rematerialization

Mixed Precision

Fully Sharded Data Parallelism

Outline

Activation Checkpointing and Rematerialization

Mixed Precision

Fully Sharded Data Parallelism

Recap: GPU memory hierarchy

Sources of memory consumption

A simplified view of a typical computational graph for training, weights are omitted and implied in the grad steps.

Sources of memory consumption

- Model weights
- Optimizer states
- Intermediate activation values

Optimizer states

Techniques for Memory Saving, Inference Only

We only need O(1) memory for computing the final output of a N layer deep network by cycling through two buffers

Activation Memory Cost for Training

Because the need to keep intermediate value around (checkpoint) for the gradient steps. Training a N-layer neural network would require O(N) memory.

We will use the following simplified view to combine gradient and forward computation

Checkpointing Techniques in AD

- Only checkpoint colored nodes (step 0)
- Recompute the missing intermediate nodes in small segments (step 1, 2)

Sublinear Memory Cost

Forward computation

Gradient per segment with re-computation

For a *N* layer neural network, if we checkpoint every *K* layers

$$Memory\ cost = O\left(\frac{N}{K}\right) + O(K) \qquad \text{Pick}\ K = \sqrt{N}$$
 Checkpoint cost
 Re-computation cost

Outline

Rematerialization

Mixed Precision

Fully Sharded Data Parallelism

16bit Floating Points

Less easy to overflow

source: wikipedia

Mixed Precision

- Some layers are more sensitive to dynamic range
- Common issues: aggregation of a lot of entries
- Mixed precision: different input/output/accumulation types

Outline

Activation Checkpointing and Rematerialization

Mixed Precision

Fully Sharded Data Parallelism

Recap: AllReduce Abstraction

Interface result = allreduce(float buffer[size])

Running Example

Worker 0

comm = communicator.create()

a = [1, 2, 3]

b = comm.allreduce(a, op=sum)

Worker 1

comm = communicator.create()

a = [1, 0, 1]

b = comm.allreduce(a, op=sum)

assert b == [2, 2, 4] assert b == [2, 2, 4]

- Form a logical ring between nodes
- Streaming aggregation

Each node have correctly reduced result of one segment! This is called *reduce_scatter*

Reduce Scatter Abstraction

Interface result = reduce_scatter(float buffer[size])

Running Example

Worker 0

comm = communicator.create()

$$a = [1, 2, 3, 4]$$

b = comm.allreduce(a, op=sum)

Worker 1

comm = communicator.create()

a = [1, 0, 1, 1]

b = comm.allreduce(a, op=sum)

assert b == [2, 2]

assert b == [4, 5]

Question: What is Time Complexity of Ring based Reduction

Allgather abstraction

Interface result = allgather(float buffer[size])

Running Example

Worker 0

comm = communicator.create()

$$a = [1, 2]$$

Worker 1

comm = communicator.create()

a = [3, 4]

b = comm.allgather(a)

assert b == [1, 2, 3, 4]

assert b == [1, 2, 3, 4]

Overall Relations

Combine both we get Allreduce

FSDP: Fully Sharded Data Parallel

Core idea is equivalent to ZeRO3