- <110> Conaris Research Institute GmbH
- <120> Diagnostic Use of Polymorphisms in the Gene Coding for the TNF Receptor II and Method for Detecting Non-Responders to Anti-TNF-Therapy

SEQUENCE LISTING

- <130> K51347/8
- <140>
- <141>
- <160> 54
- <170> PatentIn Ver. 2:1
- <210> 1
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>

- <223> Description of Artificial Sequence: Forward Primer
- <400> 1
- cttccacgag gtgacatctc c

21

- <210> 2
- <211> 19
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Reverse Primer
- <400> 2
- gccctaatac agggccagc

- <210> 3
- <211> 21
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Forward Primer

<400> 3	
ggacagattg cagctggaat g	21
<210> 4	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 4	
tagagccaga ccacctgggt	20
•	
2010\ F	
<210> 5	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
2220 \$	
<220>	
<223> Description of Artificial Sequence: Forward Primer	
<400> 5	
agcctggaca acatggcga	19
<210> 6	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<u>-</u>	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 6	
ccctcgactg aaagcgaaag	20
<210> 7	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Forward Primer	

. 7				
gtgtc caaggcc				17
8				
17				
DNA				
interfrontal bequeince				
		_		
Description of Artificial	Sequence:	Reverse	Primer	
8				
gagtc accacct				17
9				
1				
Artificial Sequence				
				•
Description of Artificial	Sequence:	Forward	Primer	
9				
ccatq qcaqaaccc				19
10				
Artificial Sequence				
Description of Artificial	Sequence:	Reverse	Primer	
10				
				14
10 tcacc cggc				14
				14
tcacc cggc				14
tcacc cggc				14
tcacc cggc 11 21				14
tcacc cggc 11 21 DNA				14
tcacc cggc 11 21				14
tcacc cggc 11 21 DNA				14
tcacc cggc 11 21 DNA				14
	gagtc accacct 9 19 DNA Artificial Sequence Description of Artificial 9 ccatg gcagaaccc 10 14 DNA Artificial Sequence	9 19 DNA Artificial Sequence: 8 19 19 DNA Artificial Sequence Description of Artificial Sequence: 9 19 DNA Artificial Sequence 10 14 DNA Artificial Sequence	9 19 19 19 19 19 19 19 19 19 19 19 19 19	9 19 DNA Artificial Sequence 9 19 DNA Artificial Sequence Description of Artificial Sequence: Reverse Primer 8 rigagtc accacct 9 19 DNA Artificial Sequence Description of Artificial Sequence: Forward Primer 9 ccatg gcagaaccc 10 14 DNA Artificial Sequence

<400> 11	
gactctggcc ttgtttcctc a	21
(010) 10	
<210> 12	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
(213) Artificial bequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
•	
4400> 10	
<400> 12	
gggaagttgg aggcaggg	18
•	
<010 12	
<210> 13	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
1220 III CITIOIGI OOQUONOO	
<220>	•
<223> Description of Artificial Sequence: Forward Primer	
<400> 13	
tgaccgtttg cgccctc	17
<210> 14	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 14	
gtccccaagg acctgagcc	19
ggg	-3
<210> 15	
(210) 13	
<211> 18	
<211> 18	
<211> 18 <212> DNA	
<211> 18	
<211> 18 <212> DNA	
<211> 18 <212> DNA	

	•
<400> 15	
agacagaget cettggge	18
1010- 16	
<210> 16	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence	e: Reverse Primer
<400> 16	
	21
gcagacagaa ggagtgaatg a	21
•	
<210> 1,7	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
(010) III 01110111 Doduced	
<220>	
<pre><220> <223> Description of Artificial Sequence</pre>	a. Forward Primer
<2235 Description of Artificial Sequence	e. Forward Frimer
<400> 17	17
tcctggcttg ctggctg	17
<210> 18	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
•	
<220>	
<pre><223> Description of Artificial Sequenc</pre>	a. Reverse Primer
(223) Description of Artificial Sequence	e. Reverse IIImer
4400 10	
<400> 18	4-
gagggcagtg gagacac	17
<210> 19	
<211> 17	
<212> DNA	
<213> Artificial Sequence	
4	
<220>	
1000 Providence of Watifield Company	o. Forward Primor

•	
<400> 19	
gctgactgct ctcccct	17
<210> 20	
<211> 18	
<212> DNA	
<213> Artificial Sequence	
·	
<220>	
<223> Description of Artificial Sequence: Reverse Prime	er
<100× 00	
<400> 20	
tgggaagaag caggtgtg	18
.010. 01	
<210> 21	1
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward Prime	2r
vezes bescription of intellicial bequence. Forward frime	~ _
<400> 21	
gaatctgcat cttgggcagg	20
<210> 22	
<211> 17	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse Prime	er
<400> 22	
	17
gaggetgegg etgtgga	17
<210> 23	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
.000	
<220>	
2003 Description of Autificial Company Forward Dring	- w

(j.

		1
<400> 23		
cggtgtgggc tgtgtcgta		19
.010. 04		
<210> 24		
<211> 19		
<212> DNA		
<213> Artificial Seque	ence	
-		
<220>		
	Antificial Compando.	Powerse Drimer
<223> Description of A	Artificial Sequence:	Reverse Frimer
<400> 24		
cctacagggc tgccacctc		19
	-	
<210> 25		
<211> 38	ì	
<212> DNA		
<213> Artificial Seque	ence	
<220>		
<223> Description of A	Artificial Sequence:	FAM Probe
	•	
<400> 25		
	********	38
acagatccag acaggttcag	ctatgtgtct gagaagtt	36
<210> 26		
<211> 38		
<212> DNA		
<213> Artificial Seque	ence	
1		
<220>		
		MEM Ducks
<223> Description of A	Artificial Sequence:	TET Probe
<400> 26		
acagatccag acagtttcag	ttatgtgtct gagaagtt	38
<210> 27		
<211> 24		
<212> DNA		
	22.0	
<213> Artificial Seque	ence	
<220>		
<223> Description of A	Artificial Sequence:	Forward Primer

<400> 27 gacaggttat ctccactctg caaa	24
3 33	2.4
<210> 28	
<211> 26	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Reverse	Primer
<400> 28	
caattcagaa tgcttagctt tttagc	26
<210> 29	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: FAM Prob</pre>	pe
<400> 29	
tgctgctgcc gctggtgaga cc	22
<210> 30	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Prob)e
<400> 30	
aactgctgct gccactggtg agacc	25
<210> 31	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Forward	Primer

	_			
•		<400>	31	
		cttggg	acgt cctggacaga c	21
		<210>	วา	
		<211>		
		<212>		
		<213>	Artificial Sequence	
		<220>		
		<223>	Description of Artificial Sequence: Reverse Primer	
			•	
		<400>	32	
				17
		aaygug	cctc gcccacc	1,
			·	
		<210>	33 _i	
	4	<211>	21	
	wī.	<212>	DNA	
		<213>	Artificial Sequence	
	the first that the same of the same that the		•	
	jad.	<220>		
	20.00		Description of Artificial Sequence: FAM Probe	
		\ 2237	Description of Artificial Sequence: rAM Frobe	
	E			
		<400>		
	- 	tgcagc	aaat gctcgccggg t	21
		<210>	34	
	<u>į</u> mili	<211>	20	
		<212>		
			Artificial Sequence	
41.		/213/	Arctitotat beduence	
		.000:		
		<220>		
		<223>	Description of Artificial Sequence: TET Probe	
		<400>	34	
		tgcagc	aagt gctcgccggg	20
		<210>	35	
		<211>		
		<212>		
		<213>	Artificial Sequence	
		<220>		
		1000	Description of Antificial Companyon Forward Primer	

•		<400> 35	
		cagagaatac tatgaccaga cagctca	27
		<210> 36	
		<211> 16	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Reverse Primer	
		<400> 36	
		gagtgcccc gtggct	16
9,775 80 (5)		<210> 37	
(1) in		<211> 26	
		<212> DNA	
	1	<213> Artificial Sequence	
		<220>	٠
	gamin Tali	<223> Description of Artificial Sequence: FAM Probe	
	T		
	9	<400> 37	
		aatgcaagca tggatgcagt ctgcac	26
	*		
		(010) 20	
		<210> 38	
		<211> 26	
		<212> DNA	
		<213> Artificial Sequence	
,		<220>	
		<pre><220> <223> Description of Artificial Sequence: TET Probe</pre>	
		(223) Bescription of Artificial Boquesov 121 12020	
		<400> 38	
		aatgcaagca gggatgcagt ctgcac	26
		<210> 39	
		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Description of Artificial Sequence: Forward Primer	

(17)

<400> 39	
gctgtaacgt ggtggccatc	20
<210> 40	
<211> 15	
<212> DNA	
<213> Artificial Sequence	
V213/ III CITIOIAI DOQUONOO	
<2205	
<220>	
<223> Description of Artificial Sequence: Reverse Primer	
<400> 40	
ctgggttctg gagtt	15
•	
<210> 41	1
<211> 26	·
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Description of Artificial Sequence: FAM Probe</pre>	
<400> 41	
	26
agaggcagcg agttgtggaa agcctc	20
<210> 42	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: TET Probe	
<400> 42	
aggcagcggg ttgtggaaag cct	23
<210> 43	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
2000 Decemention of Artificial Compands, Forward Primer	

17
17
·
2.0
22
23
2.5

- 4.0	0 - 4	_								,		•				
	0> 4															
ctg	cagg	cca	agag	caga	g											19
	0> 4	_														
	1> 2															
<21	2> D	NA														
<21	3> A	rtif	icia	l Se	quen	ce										
<22	0>															
<22	3> D	escr	ipti	on o	f Ar	tifi	cial	Sea	uenc	e: R	ever	se P	rime	r		
			•					•								
<40	0> 4	8														
			aagc	0202	aa +											2.1
ggt		egg	aayc	caya	ge L											21
					-											
		_														
	0> 4															
<21	1> 3	683														
<21	2> D	NA														
<21	3> H	omo	sapi	ens												
<220)>															
<22	1> C	DS											*			
			.(14	751												
```	(	,,,,	• (	, 5 ,												
<220	1															
				_1 _												
			epti	ae												
<222	2> (	156)														
	_	_														
	)> 4															
gcga	agcg	cag	cgga	gcct	gg a	gaga	aggc	g ct	gggc	tgcg	agg	gcgc	gag	ggcg	cgaggg	60
cago	gggg	caa (	ccgga	accc	eg e	ccgca	accc	atg	gcg	CCC	gtc	gcc	gtc	tgg	gcc	113
								Met	Ala	Pro	Val	Ala	Val	Trp	Ala	
										-20				-	-15	
aca	cta	acc	gtc	aas	cta	asa	c+c	taa	act	aca	aca	C 2 C	~~~	++~	000	161
																101
Ата	цец	Ala	Val		ьец	GIU	теп	ırp		Ala	Ald	нтз			Pro	
				-10					<b>-</b> 5				-1	1		
gcc	cag	gtg	gca	ttt	aca	ccc	tac	gcc	ccg	gag	ccc	ggg	agc	aca	tgc	209
Ala	Gln	Val	Ala	Phe	Thr	Pro	Tyr	Ala	Pro	Glu	Pro	Gly	Ser	Thr	Cys	
		5					10					15				
cgg	ctc	aga	gaa	tac	tat	gac	cag	aca	gct	cag	atg	tgc	tgc	agc	aaa	257
			Glu													
-	20	_		-	_	25					30	<b>4</b>	4	= = = =	<b></b>	

										,		•				
		ccg Pro												_	_	305
		tgt Cys					_					_				353
		ccc Pro												_	_	401
	_	act Thr 85		-	_			_	_		_		-		-	449
		ggc Gly													_	497
_		ccg Pro	_	_	_	_	-	_					_	-		545
		gaa Glu			-			_	_		_	_	_		_	593
		aac Asn	_				_	_		_				_		641
-		gtg Val 165		-					-	_	-	-	-	-	-	689
_		acg Thr					_	_	_			_	-			737
	_	cca Pro				-				-	-				-	785
		act Thr	-		-											833

(: ;

			gaa Glu 230													881
			gtg Val													929
_			atg Met													977
			gtg Val													1025
			cag Gln													1073
			gag Glu 310													1121
			cca Pro													1169
			agc Ser													1217
acc Thr 355	cag Gln	gtc Val	aat Asn	gtc Val	acc Thr 360	tgc Cys	atc Ile	gtg Val	aac Asn	gtc Val 365	tgt Cys	agc Ser	agc Ser	tct Ser	gac Asp 370	1265
			cag Gln													1313
gat Asp	tcc Ser	agc Ser	ccc Pro 390	Ser	gag Glu	tcc Ser	ccg Pro	aag Lys 395	Asp	gag Glu	cag Gln	gtc Val	Pro	Phe	tcc Ser	1361
			Cys					Gln					Glu		ctg Leu	1409

ctg ggg agc acc gaa gag aag ccc ctg ccc ctt gga gtg cct gat gct 145° Leu Gly Ser Thr Glu Glu Lys Pro Leu Pro Leu Gly Val Pro Asp Ala 420 425 430

1505

ggg atg aag ccc agt taa ccaggccggt gtgggctgtg tcgtagccaa 15 Gly Met Lys Pro Ser 435 440

qqtqqqctqa gccctggcag gatgaccctg cgaaggggcc ctggtccttc caggccccca 1565 ccactaggae tetgaggete tttetgggee aagtteetet agtgeeetee acageegeag 1625 cctccctctg acctgcaggc caagagcaga ggcagcgagt tggggaaagc ctctgctgcc 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgaçte tetgtgaeet geeegeeca getgeaeetg ceageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctccccctgg gctctgccca 1865 gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgctgcct gagtcaccca tgaagacagg acagtgcttc agcctgaggc tgagactgcg 1985 ggatggtcct ggggctctgt gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttaget caggaggett ggaaageate aceteaggee aggtgeagtg geteaegeet 2105 atgateceag caetttggga ggetgaggeg ggtggateae etgaggttag gagttegaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 cccgggaagc ggaggttgca gggagccgag atcacgccac tgcactccag cctgggcgac 2345 agagcgagag tctgtctcaa aagaaaaaaa aaaaagcacc gcctccaaat gctaacttgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccgcgc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705

tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctcccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gccctgccac tttggtacat ggccagtgtg atcccaagtg ccagtcttgt gtctgcgtct 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaage tgggatteet ecceattaga gteageette ecceteecag ggeeagggee 3005 ctgcagaggg gaaaccagtg tagccttgcc cggattctgg gaggaagcag gttgaggggc 3065 tcctggaaag gctcagtctc aggagcatgg ggataaagga gaaggcatga aattgtctag 3125 cagagcaggg gcagggtgat aaattgttga taaattccac tggacttgag cttggcagct 3185 gaactattgg agggtgggag agcccagcca ttaccatgga gacaagaagg gttttccacc 3245 ctggaatcaa gatgtcagac tggctggctg cagtgacgtg cacctgtact caggaggctg 3305 aggggaggat cactggagcc caggagtttg aggctgcagc gagctatgat cgcgccacta 3365 cactccagcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaa agtcagactg 3425 ctgggactgg ccaggtttct gcccacattg gacccacatg aggacatgat ggagcgcacc 3485 tgccccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 teccaagaca atgaaagttt geactgtatg etggaeggea tteetgetta teaataaace 3665 3683 tqtttgtttt aaaaaaaa

<210> 50

<211> 461

<212> PRT

<213> Homo sapiens

<400> 50

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu

1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr

20 25 30

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln

35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 150 155 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Met Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205 Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 215 220 Gln His Thr Gln Pro Thr Pro Glu Pro Ser Thr Ala Pro Ser Thr Ser 230 235 Phe Leu Leu Pro Met Gly Pro Ser Pro Pro Ala Glu Gly Ser Thr Gly 245 250 Asp Phe Ala Leu Pro Val Gly Leu Ile Val Gly Val Thr Ala Leu Gly 265 Leu Leu Ile Ile Gly Val Val Asn Cys Val Ile Met Thr Gln Val Lys 280 Lys Lys Pro Leu Cys Leu Gln Arg Glu Ala Lys Val Pro His Leu Pro 295 Ala Asp Lys Ala Arg Gly Thr Gln Gly Pro Glu Gln Gln His Leu Leu 310 315 Ile Thr Ala Pro Ser Ser Ser Ser Ser Leu Glu Ser Ser Ala Ser 330 Ala Leu Asp Arg Arg Ala Pro Thr Arg Asn Gln Pro Gln Ala Pro Gly 340 345 Val Glu Ala Ser Gly Ala Gly Glu Ala Arg Ala Ser Thr Gly Ser Ser 360 Asp Ser Ser Pro Gly Gly His Gly Thr Gln Val Asn Val Thr Cys Ile 370 375 Val Asn Val Cys Ser Ser Ser Asp His Ser Ser Gln Cys Ser Ser Gln 385 390 395 Ala Ser Ser Thr Met Gly Asp Thr Asp Ser Ser Pro Ser Glu Ser Pro 405 410 Lys Asp Glu Gln Val Pro Phe Ser Lys Glu Glu Cys Ala Phe Arg Ser 420 425

Gln Leu Glu Thr Pro Glu Thr Leu Leu Gly Ser Thr Glu Glu Lys Pro
435 440 445

Leu Pro Leu Gly Val Pro Asp Ala Gly Met Lys Pro Ser
450 455 460

<210> 51
<211> 3683
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (90)..(1475)

<220>
<221> mat_peptide
<222> (156)

<400> 51

gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg 60

cagggggcaa ccggaccccg cccgcaccc atg gcg ccc gtc gcc gtc tgg gcc 11:

Met Ala Pro Val Ala Val Trp Ala

-20 -15

gcg ctg gcc gtc gga ctg gag ctc tgg gct gcg gcg cac gcc ttg ccc  $\,$  161 Ala Leu Ala Val Gly Leu Glu Leu Trp Ala Ala Ala His Ala Leu Pro  $\,$  -1  $\,$  1

gcc cag gtg gca ttt aca ccc tac gcc ccg gag ccc ggg agc aca tgc 209
Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys
5 10 15

cgg ctc aga gaa tac tat gac cag aca gct cag atg tgc tgc agc aag 257
Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys
20 25 30

tgc tcg ccg ggc caa cat gca aaa gtc ttc tgt acc aag acc tcg gac 305 Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp 35 40 45 50

acc gtg tgt gac tcc tgt gag gac agc aca tac acc cag ctc tgg aac 353
Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn
55 60 65

tgg gtt ccc gag tgc ttg agc tgt ggc tcc cgc tgt agc tct gac cag 401



tgt gtc atc atg acc cag gtg aaa aag aag ccc ttg tgc ctg cag aga

					,								_,			
'Cys	Val 260	Ile	Met	Thr	Gln	Val 265	Lys	Lys	Lys	Pro	Leu 270	Cys	Leu	Gln	Arg	
-	_	-				ttg Leu										1025
						ctg Leu										1073
-		_		_	_	gcc Ala	-									1121
						cca Pro										1169
_		-	_			agc Ser 345		_								1217
						tgc Cys										1265
						tcc Ser										1313
						tcc Ser							_		_	1361
-						cgg Arg									ctg Leu	1409
_		-		_		aag Lys 425		_								1457
			ccc Pro		taa 440	ccaç	ggee	ggt (	gtgg	gctgi	tg to	cgta	gccaa	a		1505
			,			. 4				~~~	a+ =	~+ ~~		<b>a</b> a <b>a</b> a		1565

ggtgggctga gccctggcag gatgaccctg cgaaggggcc ctggtccttc caggccccca 1565

ccactaggac tetgaggete tttetgggee aagtteetet agtgeeetee acageegeag 1625 cetecetetg acetgeagge caagageaga ggeagegagt tgggggaaage etetgetgee 1685 atggtgtgtc cctctcggaa ggctggctgg gcatggacgt tcggggcatg ctggggcaag 1745 tecetgaete tetgtgaeet geecegeeca getgeaeetg ceageetgge ttetggagee 1805 cttgggtttt ttgtttgttt gtttgtttgt ttgtttgttt ctccccctgg gctctgccca 1865 gctctggctt ccagaaaacc ccagcatcct tttctgcaga ggggctttct ggagaggagg 1925 gatgetgeet gagteaceea tgaagacagg acagtgette ageetgagge tgagactgeg 1985 ggatggtcct ggggctctgt gtagggagga ggtggcagcc ctgtagggaa cggggtcctt 2045 caagttaget caggaggett ggaaagcate aceteaggee aggtgeagtg geteaegeet 2105 atgatcccag cactttggga ggctgaggcg ggtggatcac ctgaggttag gagttcgaga 2165 ccagcctggc caacatggta aaaccccatc tctactaaaa atacagaaat tagccgggcg 2225 tggtggcggg cacctatagt cccagctact cagaagcctg aggctgggaa atcgtttgaa 2285 occgggaago ggaggttgca gggagoogag atcaegocae tgeactccag cetgggegae 2345 agagcgagag tetgteteaa aagaaaaaaa aaaaagcace geeteeaaat getaaettgt 2405 ccttttgtac catggtgtga aagtcagatg cccagagggc ccaggcaggc caccatattc 2465 agtgctgtgg cctgggcaag ataacgcact tctaactaga aatctgccaa ttttttaaaa 2525 aagtaagtac cactcaggcc aacaagccaa cgacaaagcc aaactctgcc agccacatcc 2585 aacccccac ctgccatttg caccctccgc cttcactccg gtgtgcctgc agccccqcqc 2645 ctccttcctt gctgtcctag gccacaccat ctcctttcag ggaatttcag gaactagaga 2705 tgactgagtc ctcgtagcca tctctctact cctacctcag cctagaccct cctcctccc 2765 cagaggggtg ggttcctctt ccccactccc caccttcaat tcctgggccc caaacgggct 2825 gecetgeeae tttggtaeat ggeeagtgtg ateceaagtg ceagtettgt gtetgegtet 2885 gtgttgcgtg tcgtgggtgt gtgtagccaa ggtcggtaag ttgaatggcc tgccttgaag 2945 ccactgaage tgggatteet eeccattaga gteageette eeceteecag ggecagggee 3005

ctgcagaggg gaaaccagtg tagcettgce eggattetgg gaggaagcag gttgaggggc 3065
teetggaaag geteagtete aggagcatgg ggataaagga gaaggcatga aattgtetag 3125
cagagcaggg geagggtgat aaattgttga taaatteeae tggaettgag ettggeaget 3185
gaactattgg agggtggag ageceageea ttaccatgga gacaagaagg gtttteeaee 3245
ctggaateaa gatgteagae tggetggetg eagtgaegtg eacetgtaet eaggaggetg 3305
agggggaggat eactggagee eaggagttg aggetgeage gagetatgat egegeeaeta 3365
caeteeagee tgagcaacag agtgagaeee tgtetettaa agaaaaaaaa agteagaetg 3425
ctgggaetgg eeaggtteet geeeaeattg gaceeaeatg aggaeatgat ggagegeaee 3485
tgeeeeetgg tggacagtee tgggagaace teaggettee ttggeateae agggeagage 3545
egggaagega tgaatttgga gaetetgtgg ggeettggtt eeettgtgt tgtgtgttga 3605
teeeaagaea atgaaagttt geaetgtatg etggaeggea tteetgetta teeaataaace 3665
tgtttgtttt aaaaaaaaa

<210> 52

<211> 461

<212> PRT

<213> Homo sapiens

<400> 52



<210> 53

<211> 3683

<212> DNA

	<213	3> нс	omo s	sapie	ens												
	<220	)>															
	<221	L> CI	)S														
	<222	2> (9	90).	. (147	75)												
	40.00																
	<220																
		L> ma	_	eptic	de												
	<222	2> (1	L56)														
	<400	)> 53	3														
gcgagcgcag cggagcctgg agagaaggcg ctgggctgcg agggcgcgag ggcgcgaggg														cgaggg	60		
	cago	gggg	caa o	ccaa	accc	ca co	caca	accc	atq	gcg	ccc	gtc	gcc	gtc	tgg	gcc	113
	3.	,,,,				_	_			Ala							
											-20					-15	
											20					13	
	gcg	ctg	gcc	gtc	gga	ctg	gag	ctc	tgg	gct	gcg	gçg	çaç	gcc	ttg	ccc	161
	Ala	Leu	Ala	Val	Gly	Leu	Glu	Leu	Trp	Ala	Ala	Ala	His	Ala	Leu	Pro	
					-10					-5				-1	1		
	gcc	cag	gtg	gca	ttt	aca	ccc	tac	gcc	ccg	gag	ccc	ggg	agc	aca	tgc	209
	Ala	Gln	Val	Ala	Phe	Thr	Pro	Tyr	Ala	Pro	Glu	Pro	Gly	Ser	Thr	Cys	•
			5					10					15				
										4-		- 4	<b>.</b>				257
		ctc -															257
	Arg	Leu	Arg	Glu	Tyr	Tyr		Gin	Thr	Ala	Gin		Cys	Cys	ser	гÀг	
		20					25					30					
	tac	tcg	ccg	ggc	caa	cat	gca	aaa	gtc	ttc	tgt	acc	aag	acc	tcg	gac	305
	_	Ser	_														
	35			1		40					45		-			50	
	5.0					10					.0						
	acc	gtg	tgt	gac	tcc	tgt	gag	gac	agc	aca	tac	acc	cag	ctc	tgg	aac	353
	Thr	Val	Cys	Asp	Ser	Cys	Glu	Asp	Ser	Thr	Tyr	Thr	Gln	Leu	Trp	Asn	•
					55					60					65		
									~~~	+ ~ ~	~~~	+~+	200	+ 0+	~~~	~~~	401
		gtt															401
	Trp	Val	Pro		Cys	Leu	Ser	Cys		ser	Arg	Cys	ser		Asp	GIII	
				70					75					80			
	ata	gaa	act	caa	qcc	tac	act	caa	gaa	cag	aac	cgc	atc	tgc	acc	tgc	449
		Glu															
			85			-13		90				- 3	95	4		-	
			55					20									
	agg	ccc	ggc	tgg	tac	tgc	gcg	ctg	agc	aag	cag	gag	ggg	tgc	cgg	ctg	497
		Pro															
		100					105					110					



ı																
-														ccc		1121
														ggg Gly		1169
_														cat His		1217
														tct Ser		1265
	_													gac Asp 385		1313
_		_												ttc Phe		1361
_		_												acc Thr		1409
_	-													gat Asp		1457
		aag Lys				cca	ggcc	ggt (	gtgg	gctg	tg t	cgta	gcca	a		1505
ggt	gggc	tga -	gccc	tggc	ag g	atga	ccct	g cg	aagg	ggcc	ctg	gtcc	ttc	cagg	cccca	1565
cca	ctag	gac	tctg	aggc	tc t	ttct	gggc	c aa	gttc	ctct	agt	gccc	tcc	acag	ccgcag	1625
cct	ccct	ctg	acct	gcag	gc c	aaga	gcag	a gg	cagc	gagt	tgg	ggaa	agc	ctct	gctgcc	1685
atg	gtgt	gtc	cctc	tcgg	aa g	gctg	gctg	g gc	atgg	acgt	tcg	gggc	atg	ctgg	ggcaag	1745
tcc	ctga	ctc	tctg	tgac	ct g	cccc	gccc	a gc	tgca	cctg	сса	gcct	ggc	ttct	ggagcc	1805
ctt	gggt	ttt	ttgt	ttgt	tt g	tttg	tttg	t tt	gttt	gttt	ctc	cccc	tgg	gctc	tgccca	1865



aggggaggat cactggagcc caggagtttg aggctgcagc gagctatgat cgcgccacta 3365 cactccagcc tgagcaacag agtgagaccc tgtctcttaa agaaaaaaa agtcagactg 3425 ctgggactgg ccaggtttct gcccacattg gacccacatg aggacatgat ggagcgcacc 3485 tgccccctgg tggacagtcc tgggagaacc tcaggcttcc ttggcatcac agggcagagc 3545 cgggaagcga tgaatttgga gactctgtgg ggccttggtt cccttgtgtg tgtgtgttga 3605 teccaagaca atgaaagttt geactgtatg etggaeggea tteetgetta teaataaace 3665 tgtttgtttt aaaaaaaa 3683

<210> 54 <211> 461 <212> PRT

<213> Homo sapiens

<400> 54

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 10 Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 25 Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 55 Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 120 Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 135 Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 150 155 Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 185 Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195

