Exceptions and Interrupts

Cuauhtémoc Carbajal

ITESM CEM 13/03/2014

Agenda

- Basics of Exceptions
- Cortex-M4 Core Peripherals
 - System Control Block (SCB)
 - SCB Registers
 - SysTick Timer
 - Registers
 - Configuration
 - Code Example
 - Nested Vectored Interrupt Controller (NVIC)
 - Exception/Interrupt Vector Table
 - Exception States
 - NVIC Registers

Agenda

- Handling External Interrupts
 - System Configuration Controller (SYSCFG)
 - SYSCFG external interrupt configuration registers (EXTICRx)
 - Extended Interrupts and Events Controller (EXTI)
- EXTIO
 - Registers
 - > EXTIO Configuration
 - > EXTIO Code Example
- COMP
 - Registers
 - Configuration
 - Code Example

Basics of Exceptions

Types of Exceptions

Exceptions

 situations where the processor needs to stop executing the current code

Hardware

- asynchronous
- also called interrupts

Software

- synchronous
- also called exceptions

Nonmaskable

- cannot be ignored
- signaled via RESET or NMI

Maskable

- can be ignored
- signaled via IRQ

Fault

related to an error condition

System service call

- used by operating systems
- caused by the SVC instruction

Debug event

Basics of Exceptions (1 of 5)

- What is an exception?
 - A special event that requires the CPU to stop normal program execution and perform some service related to the event.
 - > Examples of exceptions include
 - I/O completion, timer time-out, end of conversion,
 - illegal opcodes, arithmetic overflow, divide-by-0, etc.
- Functions of exceptions
 - Respond to infrequent but important events
 - Alarm conditions like low battery power
 - Error conditions
 - > I/O synchronization
 - Trigger interrupt when signal on a port changes
 - Periodic interrupts
 - Generated by the timer at a regular rate
 - Systick timer can generate interrupt when it hits zero
 - Reload value + frequency determine interrupt rate

Polling versus Interrupt

polling

interrupt

Basics of Exceptions (2 of 5)

- Interrupt maskability
 - Interrupts that can be ignored by the CPU are called maskable interrupts.
 - A maskable interrupt must be enabled before it can interrupt the CPU.
 - > An interrupt is enabled by setting an enable bit.
 - Interrupts that can't be ignored by the CPU are called nonmaskable interrupts.
- Exception priority
 - Allow multiple pending interrupt requests
 - Resolve the order of service for multiple pending interrupts
- Interrupt service routine
 - An interrupt handler, also known as an Interrupt Service Routine (ISR), is a callback subroutine in microcontroller firmware whose execution is triggered by the reception of an interrupt.
 - Interrupt handlers have a multitude of functions, which vary based on the reason the interrupt was generated.

Basics of Exceptions (3 of 5)

- Interrupt vector
 - Starting address of the interrupt handler
- Interrupt vector table
 - table of interrupt vectors that associates an interrupt handler with an interrupt request
- Methods of determining interrupt vectors
 - Predefined locations (Microchip PIC18, 8051 variants)
 - Fetching the vector from a predefined memory location (HC\$12, \$TM32)
 - Executing an interrupt acknowledge cycle to fetch a vector number in order to locate the interrupt vector (68000 and x86 families)

STM32 Vector Table

Basics of Exceptions (4 of 5)

A complete interrupt service cycle includes

- Saving the program counter value in the stack
- Saving the CPU status (including the CPU status register and some other registers) in the stack
- Identifying the cause of interrupt
- Resolving the starting address of the corresponding interrupt service routine
- Executing the interrupt service routine
- Restoring the CPU status and the program counter from the stack
- Restarting the interrupted program

Basics of Exceptions (5 of 5)

- Interrupt is a powerful concept in embedded systems for separating the time-critical events from the others and execute them in a prioritized manner.
- In a typical embedded system, the embedded processor (microcontroller) is responsible for doing more than one task (but can do only one at a time).

Typical Digital Control System

A thermoelectric cooler (TEC) is a device based on the Peltier effect. It typically comprises two kinds of materials and transfers heat from one side of the device to the other while a DC current is forced through it. The side from which heat is removed becomes cold. Contrastingly, the side to which heat is moved becomes hot. When the current reverses its direction, the previously "cold" side becomes hot and the previously "hot" side becomes cold.

A TEC has no moving parts or working fluids, so it is very reliable and can be very small in size. TECs are used in many applications that require precision temperature control, including optical modules.

Cortex M4 Core Peripherals

Cortex-M4 Core Peripherals

Core peripheral	Description
System Control Block	It provides system implementation information and control. In particular It supports exception configuration, control, and processing.
Nested Vectored Interrupt Controller	It supports low latency interrupt configuration, control, and processing.
System timer (SysTick)	Use this 24-bit count-down timer as a Real Time Operating System (RTOS) tick timer or as a simple counter.
Memory Protection Unit	It improves system reliability by defining the memory attributes for different memory regions.
Floating-point Unit	It provides IEEE754-compliant operations on single-precision, 32-bit, floating-point values.

System control block (SCB)

Provides:

- Exception enables.
- Setting or clearing exceptions to/from the pending state.
- Exception status (Inactive, Pending, or Active). Inactive is when an exception is neither Pending nor Active.
- Priority setting (for configurable system exceptions)
- The exception number of the currently executing code and highest pending exception.

What is my vector, Victor?

```
AREA
                      RESET, DATA, READONLY
              EXPORT
                       Vectors
              EXPORT
                       Vectors End
                      Vectors Size
              EXPORT
           IRQ#
Vectors
                                                ; Top of Stack
             DCD
                      initial sp
                      Reset Handler
                                                 : Reset Handler
          -14 DCD
                      NMI Handler
                                                 ; NMI Handler
          -13 DCD
                      HardFault Handler
                                                 ; Hard Fault Handler
                     MemManage Handler
          -12 DCD
                                                 ; MPU Fault Handler
          -11 DCD
                      BusFault Handler
                                                 ; Bus Fault Handler
                  UsageFault Handler
          -10 DCD
                                                 ; Usage Fault Handler
          -09 DCD
                                                 : Reserved
                                                                                 Exceptions
          -08 DCD
                                                 : Reserved
          -07 DCD
                                                 : Reserved
           -06 DCD
                                                 : Reserved
          -05 DCD
                      SVC Handler
                                                 : SVCall Handler
                      DebugMon Handler
          -04 DCD
                                                 ; Debug Monitor Handler
          -03 DCD
                                                 ; Reserved
          -02 DCD
                      PendSV Handler
                                                 ; PendSV Handler
                      SysTick Handler
           -01 DCD
                                                 ; SysTick Handler
              ; External Interrupts
          00 DCD
                      WWDG IRQHandler
                                                      ; Window WatchDog
                      PVD IRQHandler
          01 DCD
                                                       ; PVD through EXTI Line detection
                      TAMPER STAMP IRQHandler
                                                        ; Tamper and TimeStamps through the EXTI line
          02 DCD
                      RTC WKUP IRQHandler
          03 DCD
                                                        ; RTC Wakeup through the EXTI line
          04 DCD
                      FLASH IRQHandler
                                                        : FLASH
          05 DCD
                      RCC IRQHandler
                                                        ; RCC
                     EXTIO IROHandler
                                                        ; EXTI Line0
          06 DCD
```

Interrupt and exception vectors (1 of 2)

Ехс	IRQn	Exception	Priority	Description	Vector
No.		Туре			Address
0		Initial SP			
1		Reset	-3 (F)	Reset	0x04
2	-14	NMI	-2 (F)	Non-Maskable Interrupt	0x08
3	-13	HardFault	-1 (F)	Default fault if other handler not implemented	0x0C
4	-12	MemManage	0 (P)	MPU violation or access to illegal locations	0x10
5	-11	BusFault	1 (P)	Fault if AHB interface receives error	0x14
6	-10	UsageFault	2 (P)	Exception due to program errors	0x18
7-10		Reserved			
11	-5	SVCall	3 (P)	System service call via SWI instruction	0x2C
12	-4	Debug Monitor	4 (P)	Break points, watch points, external debug	0x30
13	-3	Reserved			
14	-2	PendSV	4 (P)	Pendable request for System Device	0x38
15	-1	SysTick	6 (P)	System tick timer	0x3C

- These exceptions are controlled by the System Control Block (SCB).
- If the priority of an exception is programmable, its default value is zero.

SCB Registers (1 of 2)

Name	Description	Operation
ACTLR	Auxiliary Control Register	 disables certain aspects of functionality within the processor.
CPUID	CPUID Base Register	 specifies the ID and version numbers, and the implementation details of the processor core.
ICSR	Interrupt Control State Register	 Used to: set a pending Non-Maskable Interrupt (NMI) set or clear a pending PendSV set or clear a pending SysTick check for pending exceptions check the vector number of the highest priority pended exception check the vector number of the active exception.
VTOR	Vector Table Offset Register	• indicates the offset of the vector table base address from memory address 0x00000000.

SCB Registers (2 of 2)

Name	Description	Operation
AIRCR	Application Interrupt and Reset Control Register	 provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system.
SCR	System Control Register	 controls features of entry to and exit from low power state.
CCR	Configuration and Control Register	 permanently enables stack alignment and causes unaligned accesses to result in a Hard Fault.
SHPRx	System handler priority registers	 set the priority level of the exception handlers that have configurable priority.

Application interrupt and reset control register (SCB->AIRCR)

- The SCB_AIRCR provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system.
- To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	VECTKEYSTAT[15:0](read)/VEC							TKEY[15:	0](write)					,	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIA NESS		Rese	erved		PRIGROUP					Reserved			SYS RESET REQ	VECT CLR ACTIVE	VECT RESET
r	r rw rw rw				rw						w	w	w		

Application interrupt and reset control register (SCB->AIRCR)

Bits	Name	Туре	Reset Value	Description
31:16	VECTKEYSTAT/ VECTKEY	R/W	0xFA05	Register key Reads as 0xFA05 On writes, write 0x5FA to VECTKEY, otherwise the write is ignored.
15	ENDIANESS	R/W	0	Bit Data endianness. This bit reads as 0. 0: Little-endian
10:8	PRIGROUP	R/W	0	Interrupt priority grouping field This field determines the split of group priority from subpriority.
2	SYSRESETREQ	R/W	0	System reset request This is intended to force a large system reset of all major components except for debug. This bit reads as 0. 0: No system reset request 1: Asserts a signal to the outer system that requests a reset
1	VECTCLRACTIVE	R/W	0	Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is unpredictable.
0	VECTRESET	R/W	0	Reserved for Debug use. This bit reads as 0. When writing to the register you must write 0 to this bit, otherwise behavior is unpredictable

PRIGROUP field

- The 3-bit PRIGROUP field allows you to split the 4-bit priority fields into groups and subgroups.
- For example, PRIGROUP value 6 (partition: [1:7]) creates 2 priority groups, each with 8 levels of subpriority.
- Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the handler.
- If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first.
- Configuring a peripheral interrupt is very similar to configuring an internal Cortex exception.

Interrupt priority grouping field

PRIGROUP	Interrupt prior	Number of			
[2:0]	Binary point	Group priority bits	Subpriority bits	Group priorities	Sub priorities
0	0bxxxxxxx.y	7-1	0	16	None
1	0bxxxxxx.yy	7-2	1-0	16	None
2	0bxxxxx.yyy	7-3	2-0	16	None
3	Obxxxx.yyyy	7-4	3-0	16	None
4	Obxxx.yyyyy	7-5	4-0	8	2
5	0bxx.yyyyyy	7-6	5-0	4	4
6	0bx.yyyyyyy	7	6-0	2	8
7	0b.уууууууу	None	7-0	None	16

The NVIC_AIRCR PRIGROUP field allows us to change the size of the preemption group field and priority subgroup. On reset this field defaults to priority group zero. So, for example, if our MCU has four active priority bits we could select priority group 5, which would give us four levels of preemption each with four levels of subpriority.

24

System handler priority registers SCB_SHPRx (1)

- The SHPR1-SHPR3 registers set the priority level (0 to 15), of the exception handlers that have configurable priority.
- SHPR1-SHPR3 are byte accessible.
- The system fault handlers, the priority field and register for each handler are:

Handler	Field	Register	CMSIS
MemManage_Handler	PRI_4	SCB_SHPR1	SCB->SHP[0]
BusFault_Handler	PRI_5	SCB_SHPR1	SCB->SHP[1]
UsageFault_Handler	PRI_6	SCB_SHPR1	SCB->SHP[2]
SVC_Handler	PRI_11	SCB_SHPR2	SCB->SHP[7]
PendSV_Handler	PRI_14	SCB_SHPR3	SCB->SHP[10]
SysTick_Handler	PRI_15	SCB_SHPR3	SCB->SHP[11]

Each PRI_N field is 8 bits wide, but the processor implements only bits[7:3] of each field, and bits[3:0] read as zero and ignore writes (where M=4). SCB_SHPRx fields (PRI_y) are mapped to the SCB->SHP[z] array.

System handler priority registers SCB_SHPRx (2)

	31			0
	PRI_15	PRI_14	PRI_13	PRI_12
SCB_SHPR3	SCB->SHP[11]	SCB->SHP[10]	SCB->SHP[9]	SCB->SHP[8]
	SysTick	PendSV		
	PRI_11	PRI_10	PRI_9	PRI_8
SCB_SHPR2	SCB->SHP[7]	SCB->SHP[6]	SCB->SHP[5]	SCB->SHP[4]
	SVCall			
	PRI_7	PRI_6	PRI_5	PRI_4
SCB_SHPR1	SCB->SHP[3]	SCB->SHP[2]	SCB->SHP[1]	SCB->SHP[0]
		UsageFault	BusFault	MemManage
SCB_SHPR0	PRI_3	PRI_2	PRI_1	PRI_0

Programming Manual name

System handler priority register SCB->SHP[3]

System handler priority register 3 (SHPR3)

Address: 0xE000 ED20

Reset value: 0x0000 0000

Required privilege: Privileged

Bits 31:24 PRI_15: Priority of system handler 15, SysTick exception

Bits 23:16 PRI_14: Priority of system handler 14, PendSV

Bits 15:0 Reserved, must be kept cleared

SCB->SHP[11]

SysTick Timer

SysTick timer

- The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to) the value in the STK_LOAD register on the next clock edge, then counts down on subsequent clocks.
- When the processor is halted for debugging the counter does not decrement.
- Systick can be used to generate an exception (#15).
- It can be used as the basic timer for an operating system, as an alarm timer, for timing measurements, and more.

Address	Name	Туре	Required privilege	Reset value	Description
0xE000E010	STK_CTRL	RW	Privileged	0x00000004	SysTick control and status register (STK_CTRL)
0xE000E014	STK_LOAD	RW	Privileged	Unknown	SysTick reload value register (STK_LOAD)
0xE000E018	STK_VAL	RW	Privileged	Unknown	SysTick current value register (STK_VAL)
0xE000E01C	STK_CALIB	RO	Privileged	0xC0000000	SysTick calibration value register (STK_CALIB)

SysTick control and status register (SysTick->CTRL)

Bits	Name	Туре	Reset Value	Description
16	COUNTFLAG	R	0	Returns 1 if timer counted to 0 since last time this register was read.
2	CLKSOURCE	R/W	0	Clock source selection 0: AHB/8 1: Processor clock (AHB)
1	TICKINT	R/W	0	SysTick exception request enable
0	ENABLE	R/W	0	SysTick timer enable

Systick exception configuration

- The SysTick interrupt is an internal Cortex exception and is handled in the system registers.
- Some of the internal exceptions are permanently enabled; these include the reset and NMI interrupts, but also the SysTick timer, so there is no explicit action required to enable the SysTick interrupt within the NVIC.
- To configure the SysTick interrupt we need to set the timer going and enable the interrupt within the peripheral itself:

System Tick Configuration

- This function initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts.
 - > parameter: ticks Number of ticks between two interrupts
 - return 0 Function succeeded
 - 1 Function failed

Interrupt Handler or ISR

In the case of the SysTick timer we can create an interrupt service routine by declaring a 'C' routine with the matching symbolic name:

```
void SysTick_Handler (void)
{
....
}
```

Now with the vector table configured and the ISR prototype defined, we can configure the NVIC to handle the SysTick timer interrupt. Generally we need to do two things: set the priority of the interrupt and then enable the interrupt source.

Structure of the Cortex-M4 processor

• The NVIC is an integral part of all Cortex-M processors and provides the processors' outstanding interrupt handling abilities. The Cortex-M4 supports up to 240 IRQs, 1 NMI and further system exceptions.

What is my vector, Victor?

```
AREA
                     RESET, DATA, READONLY
             EXPORT
                     Vectors
             EXPORT
                     Vectors End
                     Vectors Size
             EXPORT
          IRO
Vectors
                                              ; Top of Stack
             DCD
                     initial sp
                     Reset Handler
                                              : Reset Handler
          -14 DCD
                     NMI Handler
                                               ; NMI Handler
          -13 DCD
                     HardFault Handler
                                              ; Hard Fault Handler
                 MemManage Handler
          -12 DCD
                                               : MPU Fault Handler
          -11 DCD BusFault Handler
                                              ; Bus Fault Handler
                 UsageFault Handler
          -10 DCD
                                               ; Usage Fault Handler
          -09 DCD
                                                : Reserved
          -08 DCD
                                                : Reserved
          -07 DCD
                                               : Reserved
          -06 DCD
                                               : Reserved
          -05 DCD
                     SVC Handler
                                               : SVCall Handler
                     DebugMon Handler
          -04 DCD
                                               ; Debug Monitor Handler
          -03 DCD
                                               ; Reserved
          -02 DCD
                     PendSV Handler
                                               ; PendSV Handler
                     SysTick Handler
          -01 DCD
                                               ; SysTick Handler
             ; External Interrupts
          00 DCD
                     WWDG IRQHandler
                                                    ; Window WatchDog
                     PVD IRQHandler
          01 DCD
                                                    ; PVD through EXTI Line detection
                     TAMPER STAMP IRQHandler
                                                      ; Tamper and TimeStamps through the EXTI line
          02 DCD
          O3 DCD
                     RTC WKUP IRQHandler
                                                      ; RTC Wakeup through the EXTI line
          04 DCD
                     FLASH IRQHandler
                                                      : FLASH
          05 DCD
                     RCC IRQHandler
                                                      ; RCC
          06 DCD
                     EXTIO IROHandler
                                                      ; EXTI Line0
```

Interrupt and exception vectors (2 of 2)

Exc No.	IRQn	Exception Type	Priority	Description	Associated Peripheral in the STM32F3
16	0	IRQ0	7 (P)	Window Watchdog interrupt	WWDG
17	1	IRQ1	8 (P)	PVD through EXTI line 16 detection interrupt	PVD
18	2	IRQ2	9 (P)	Tamper and TimeStamp interrupts through the EXTI line 19	TAMPER_STAMP
19	3	IRQ3			RTC_WKUP
20	4	IRQ4			FLASH
21	5	IRQ5			RCC
22	6	IRQ6			EXTIO
23	7	IRQ7			EXTI1
					•
					•
16+n	n	IRQn	n+7 (P)	Interrupción externa #n	

- These interrupts are controlled by the Nested Vector Interrupt Controller (NVIC).
- If the priority of an exception is programmable, its default value is zero.

IRQn Peripheral IRQn Peripheral IRQn Peripheral O WWDG 30 TiM4 60 DMA2_Channel5						
1 PVD 31 I2C1_EV 61 ADC4 2 TAMPER_STAMP 32 I2C1_ER 62 3 RTC_WKUP 33 I2C2_EV 63 4 FLASH 34 I2C2_ER 64 COMP1_2_3 5 RCC 35 SPII 65 COMP4_5_6 6 EXTI0 36 SPI2 66 COMP7 7 EXTII 37 USARTI 67 8 EXTI2_TS 38 USART3 69 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 15 DMA1_Channel6 46 TIM8_CC		-				•
2 TAMPER_STAMP 32 I2C1_ER 62 3 RTC_WKUP 33 I2C2_EV 63 4 FLASH 34 I2C2_ER 64 COMP1_2_3 5 RCC 35 SPI1 65 COMP4_5_6 6 EXTI0 36 SPI2 66 COMP7 7 EXTII 37 USARTI 67 8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_UP 16 DMA1_Channel7 47 ADC	0					
3 RTC_WKUP 33 I2C2_EV 63 4 FLASH 34 I2C2_ER 64 COMP1_2_3 5 RCC 35 SPI1 65 COMP4_5_6 6 EXTI0 36 SPI2 66 COMP7 7 EXTI1 37 USARTI 67 8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TGCOM 75 USB USB_LP 16 DMA1_Channel7 47 ADC3 77 USB_UP 18 ADC1_2 48 <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>ADC4</td>	1					ADC4
4 FLASH 34 I2C2_ER 64 COMP1_2_3 5 RCC 35 SPI1 65 COMP4_5_6 6 EXII0 36 SPI2 66 COMP7 7 EXII1 37 USART1 67 8 EXTI2_TS 38 USART2 68 9 EXII3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_UP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79	2	TAMPER_STAMP	32	I2C1_ER	62	
5 RCC 35 SPII 65 COMP4_5_6 6 EXTIO 36 SPI2 66 COMP7 7 EXTII 37 USARTI 67 8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTII5_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_C 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 7 18 ADC1_2 48 78 19 19 USB_HP_CAN1_TX <t< td=""><td>3</td><td>RTC_WKUP</td><td>33</td><td>I2C2_EV</td><td>63</td><td></td></t<>	3	RTC_WKUP	33	I2C2_EV	63	
6 EXTIO 36 SPI2 66 COMP7 7 EXTII 37 USARTI 67 8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTII5_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 8 19 USB_HP_CAN1_TX 49 79	4	FLASH	34	I2C2_ER	64	COMP1_2_3
7 EXTI1 37 USART1 67 8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_UP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 48 19 USB_HP_CAN1_TX 49 79 49 20 USB_LP_CAN1_RXO 50 80 80	5	RCC	35	SPI1	65	COMP4_5_6
8 EXTI2_TS 38 USART2 68 9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 18 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 49 78	6	EXTIO EXTIO	36	SPI2	66	COMP7
9 EXTI3 39 USART3 69 10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 <	7	EXTI1	37	USART1	67	
10 EXTI4 40 EXTI15_10 70 11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 19 USB_HP_CAN1_TX 49 79 20 20 USB_LP_CAN1_RXO 50 80 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel2 58 DMA2_	8	EXTI2_TS	38	USART2	68	
11 DMA1_Channel1 41 RTC_Alarm 71 12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 48 19 USB_HP_CAN1_TX 49 79 9 20 USB_LP_CAN1_RX0 50 80 9 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 4 23 EXTI9_5 53 UART5 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 56 DMA2_Channel1 57 DMA2_Channel3 <td>9</td> <td>EXTI3</td> <td>39</td> <td>USART3</td> <td>69</td> <td></td>	9	EXTI3	39	USART3	69	
12 DMA1_Channel2 42 USBWakeUp 72 13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 3 UART5 3 UART5 3 4 TIM6_DAC 1	10	EXTI4	40	EXTI15_10	70	
13 DMA1_Channel3 43 TIM8_BRK 73 14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 9 9 9 24 TIM1_BRK_TIM15 54 TIM6_DAC 1 <	11	DMA1_Channel1	41	RTC_Alarm	71	
14 DMA1_Channel4 44 TIM8_UP 74 USB_HP 15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RXI 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 9 </td <td>12</td> <td>DMA1_Channel2</td> <td>42</td> <td>USBWakeUp</td> <td>72</td> <td></td>	12	DMA1_Channel2	42	USBWakeUp	72	
15 DMA1_Channel5 45 TIM8_TRG_COM 75 USB_LP 16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 9 9 9 23 EXTI9_5 53 UART5 9 <t< td=""><td>13</td><td>DMA1_Channel3</td><td>43</td><td>TIM8_BRK</td><td>73</td><td></td></t<>	13	DMA1_Channel3	43	TIM8_BRK	73	
16 DMA1_Channel6 46 TIM8_CC 76 USBWakeUp_RMP 17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RXI 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 52 UART5 53 UART5 54 TIM6_DAC 54 TIM6_DAC 55 TIM7 56 DMA2_Channel1 56 DMA2_Channel2 57 DMA2_Channel2 58 DMA2_Channel3 58 DMA2_Channel3 58	14	DMA1_Channel4	44	TIM8_UP	74	USB_HP
17 DMA1_Channel7 47 ADC3 77 18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RXO 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	15	DMA1_Channel5	45	TIM8_TRG_COM	75	USB_LP
18 ADC1_2 48 78 19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RX0 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	16	DMA1_Channel6	46	TIM8_CC	76	USBWakeUp_RMP
19 USB_HP_CAN1_TX 49 79 20 USB_LP_CAN1_RX0 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4	17	DMA1_Channel7	47	ADC3	77	
20 USB_LP_CAN1_RX0 50 80 21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4	18	ADC1_2	48		78	
21 CAN1_RX1 51 SPI3 81 FPU 22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	19	USB_HP_CAN1_TX	49		79	
22 CAN1_SCE 52 UART4 23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	20	USB_LP_CAN1_RX0	50		80	
23 EXTI9_5 53 UART5 24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	21	CAN1_RX1	51	SPI3	81	FPU
24 TIM1_BRK_TIM15 54 TIM6_DAC 25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	22	CAN1_SCE	52	UART4		
25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	23	EXTI9_5	53	UART5		
25 TIM1_UP_TIM16 55 TIM7 26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	24	TIM1_BRK_TIM15	54	TIM6_DAC		
26 TIM1_TRG_COM_TIM17 56 DMA2_Channel1 27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3	25		55			
27 TIM1_CC 57 DMA2_Channel2 28 TIM2 58 DMA2_Channel3			56	DMA2_Channel1		
28 TIM2 58 DMA2_Channel3		TIM1_CC	57	DMA2_Channel2		
	28	TIM2	58	DMA2_Channel3		20
	29	TIM3	59			

stm32f30x.h

Interrupt latency

- The NVIC is designed for fast and efficient interrupt handling; on a Cortex-M4 you will reach the first line of C code in your interrupt routine after 12 cycles for a zero wait state memory system.
- This interrupt latency is fully deterministic so from any point in the background (non-interrupt) code you will enter the interrupt with the same latency.
- Multi-cycle instructions can be halted with no overhead and then resumed once the interrupt has finished.

Exception states

Inactive:

> The exception is not active and not pending.

Pending:

- > The exception is waiting to be serviced by the processor.
- An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

• Active:

- An exception that is being serviced by the processor but has not completed.
- An exception handler can interrupt the execution of another exception handler. In this case both exceptions are in the active state.

Active and pending

The exception is being serviced by the processor and there is a pending exception from the same source.

NVIC Registers (1 of 2)

- Each of the USER peripherals is controlled by the IRQ register blocks.
 - Each user peripheral has an Interrupt Enable bit. These bits are located across two 32-bit IRQ Set Enable registers.
 - There are matching IRQ Clear Enable registers that are used to disable an interrupt source.
 - The NVIC also includes pending and active registers that allow you to determine the current condition of an interrupt source.

NVIC registers (2 of 2)

Address	Name	Туре	Description
0xE000E100 - 0xE000E10B	NVIC_ISER0 - NVIC_ISER2	RW	Interrupt Set-Enable Registers
0xE000E180 - 0xE000E18B	NVIC_ICER0 - NVIC_ICER2	RW	Interrupt Clear-Enable Registers
0xE000E200 - 0xE000E20B	NVIC_ISPR0 - NVIC_ISPR2	RW	Interrupt Set-Pending Registers
0xE000E280 - 0xE000E28B	NVIC_ICPR0 - NVIC_ICPR2	RW	Interrupt Clear-Pending Registers
0xE000E300 - 0xE000E30B	NVIC_IABR0 - NVIC_IABR2	RO	Interrupt Active Bit Register
0xE000E400 - 0xE000E453	NVIC_IPR0 - NVIC_IPR20	RW	Interrupt Priority Register
0xE000EF00	NVIC_STIR	WO	Software trigger interrupt register

Write to the STIR to generate a Software Generated Interrupt (SGI). The value to be written is the Interrupt ID of the required SGI, in the range 0-239. For example, a value of 3 specifies interrupt IRQ3.

Priority Registers

- In the STM32, there are 21 priority registers.
- Each priority register is divided into four eight bit priority fields, each field being assigned to an individual interrupt vector.
- The STM32 only uses half of this field to implement 16 levels of priority.
 - However, you should note that the active priority bits are in the upper nibble of each priority field.
- By default the priority field defines 16 levels of priority with level zero the highest and 15 the lowest.
- It is also possible to format the priority field into priority groups and subgroups, by programming the PRIGROUP field in the Application Interrupt and Reset Control Register (SCB->AIRCR).

7	6	5	4	3	2	1	0
				D/C	D/C	D/C	D/C

Interrupt priority registers: NVIC_IPRx

• The NVIC_IPR0-IPR20 registers provide an 8-bit priority field for each interrupt. These registers are byte-accessible. Each register holds four priority fields, that map to four elements in the CMSIS interrupt priority array (NVIC->IP[0] to NVIC->IP[80])

NVIC Register Mapping

CMSIS Register Name	Cortex-M3 and Cortex-M4	Register Name
NVIC->ISER[]	NVIC_ISER02	Interrupt Set-Enable Registers
NVIC->ICER[]	NVIC_ICER02	Interrupt Clear-Enable Registers
NVIC->ISPR[]	NVIC_ISPR02	Interrupt Set-Pending Registers
NVIC->ICPR[]	NVIC_ICPR02	Interrupt Clear-Pending Registers
NVIC->IABR[]	NVIC_IABRO2	Interrupt Active Bit Register
NVIC->IP[]	NVIC_IPR020	Interrupt Priority Register
NVIC->STIR	STIR	Software Triggered Interrupt Register

Write to the STIR to generate a Software Generated Interrupt (SGI). The value to be written is the Interrupt ID of the required SGI, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.

Handling External Interrupts

EXTI main features

- External events/interrupts are connected to NVIC through the Extended Interrupts and Events Controller (EXTI), which main features are:
 - support generation of up to 36 event/interrupt requests (28 external and 8 internal lines);
 - mapping of multiple GPIO lines to 16 NVIC external interrupt inputs
 - Independent configuration of each line as an external or an internal event request;
 - Independent mask on each event/interrupt line
 - Automatic disable of internal lines when system is not in STOP mode
 - Independent trigger for external event/interrupt line
 - Dedicated status bit for external interrupt line;
 - Emulation for all the external event requests.
- The STM32F30xx is able to handle external or internal events in order to wake up the core (WFE).

EXTI module: from pin to NVIC

System Configuration Register (SYSCFG)

- The SYSCFG register manages the external interrupt line connection to the GPIOs –among other purposes.
- Por this purpose, the SYSCFG clock should be enabled.

APB2 peripheral clock enable register (RCC_APB2ENR)

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	Res	TIM17 EN	TIM16 EN	TIM15 EN
									rw				rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Res	USAR T1EN	TIM8 EN	SPI1 EN	TIM1 EN	Res	Res	SYS CFG EN								
	rw	rw	rw	rw											rw

Bit 0 SYSCFGEN: SYSCFG clock enable

0: SYSCFG clock disabled 1: SYSCFG clock enabled

External interrupt/event GPIO

mapping

SYSCFG_EXTICRX

SYSCFG->EXTICR1 (SYSCFG external interrupt configuration register 1)

	bits[3:0]			bits[7:4]			bits[11:8]			bits[15:12]	
EXTI0	0	PA0	EXTI1	0	PA1	EXTI2	0	PA2	EXTI3	0	PA3
	1	PB0		1	PB1		1	PB2		1	PB3
	2	PC0		2	PC1		2	PC2		2	PC3
	3	PD0		3	PD1		3	PD2		3	PD3
	4	PE0		4	PE1		4	PE2		4	PE3
	5	PF0		5	PF1		5	PF2		5	PF3

SYSCFG->EXTICR2 (SYSCFG external interrupt configuration register 2)

	bits[3:0]			bits[7:4]			bits[11:8]			bits[15:12]	
EXTI4	0	PA4	EXTI5	0	PA5	EXTI6	0	PA6	EXTI7	0	PA7
	1	PB4		1	PB5		1	PB6		1	PB7
	2	PC4		2	PC5		2	PC6		2	PC7
	3	PD4		3	PD5		3	PD6		3	PD7
	4	PE4		4	PE5		4	PE6		4	PE7
				5	PF5		5	PF6		5	PF7

SYSCFG_EXTICRX (2)

SYSCFG->EXTICR3 (SYSCFG external interrupt configuration register 3)

	bits[3:0]			bits[7:4]			bits[11:8]			bits[15:12]	
EXTI8	0	PA8	EXTI9	0	PA9	EXTI10	0	PA10	EXTI11	0	PA11
	1	PB8		1	PB9		1	PB10		1	PB11
	2	PC8		2	PC9		2	PC10		2	PC11
	3	PD8		3	PD9		3	PD10		3	PD11
	4	PE8		4	PE9		4	PE10		4	PE11
				5	PF9		5	PF10		5	PF11

SYSCFG->EXTICR4 (SYSCFG external interrupt configuration register 4)

	bits[3:0]			bits[7:4]			bits[11:8]			bits[15:12]	
EXTI12	0	PA12	EXTI13	0	PA13	EXTI14	0	PA14	EXTI15	0	PA15
	1	PB12		1	PB13		1	PB14		1	PB15
	2	PC12		2	PC13		2	PC14		2	PC15
	3	PD12		3	PD13		3	PD4		3	PD15
	4	PE12		4	PE13		4	PE4		4	PE15
				5	PF13		5	PF4		5	PF15

SYSCFG_EXTICRx Mapping

Register	CMSIS
SYSCFG_EXTICR1	SYSCFG->EXTICR[0]
SYSCFG_EXTICR2	SYSCFG->EXTICR[1]
SYSCFG_EXTICR3	SYSCFG->EXTICR[2]
SYSCFG_EXTICR4	SYSCFG->EXTICR[3]

EXTI[16:35] Connections

EXTI Line	Connection	EXTI Line	Connection	EXTI Line	Connection	EXTI Line	Connection
EXTI16	PVD output	EXTI21	Comparator 1 output	EXTI26*	USART2 wakeup	EXTI31	Comparator 5 output
EXTI17	RTC Alarm event	EXTI22	Comparator 2 output	EXTI27*	reserved	EXTI32	Comparator 6 output
EXTI18	USB Device FS wakeup event	EXTI23*	I2C1 wakeup	EXTI28*	USART3 wakeup	EXTI33	Comparator 7 output
EXTI19	RTC tamper and Timestamps	EXTI24*	I2C2 wakeup	EXTI29	Comparator 3 output	EXTI34*	UART4 wakeup
EXTI20	RTC wakeup	EXTI25*	USART1 wakeup	EXTI30	Comparator 4 output	EXTI35*	UART5 wakeup

Note: EXTI lines 23, 24, 25, 26, 27, 28, 34 and 35 are internal.

Handling external interrupts

- The active edge of each external interrupt line can be chosen independently, whilst for internal interrupt the active edge is always the rising one.
- An interrupt could be left pending
 - In case of an external one, a status register is instantiated and indicates the source of the interrupt; an event is always a simple pulse and it's used for triggering the core wake-up.
 - > For internal interrupts, the pending status is assured by the generating peripheral, so no need for a specific flag.
- Each input line can be masked independently for interrupt or event generation, in addition the internal lines are sampled only in STOP mode. This controller allows also to emulate the (only) external events by software, multiplexed with the corresponding hardware event line, by writing to a dedicated register.

External interrupt/event block

EXTI registers

Register		CMSIS	Operation
Interrupt mask register	EXTI_IMR1 EXTI_IMR2	EXTI->IMR EXTI->IMR2	0: Interrupt request from Line x is masked 1: Interrupt request from Line x is not masked
Event mask register	EXTI_EMR1 EXTI_EMR2	EXTI->EMR EXTI->EMR2	0: Event request from Line x is masked1: Event request from Line x is not masked
Rising trigger selection register	EXTI_RTSR1 EXTI_RTSR2	EXTI->RTSR EXTI->RTSR2	0: Rising trigger disabled (for Event and Interrupt) for input line 1: Rising trigger enabled (for Event and Interrupt) for input line.
Falling trigger selection register	EXTI_FTSR1 EXTI_FTSR2	EXTI->FTSR EXTI->FTSR2	0: Falling trigger disabled (for Event and Interrupt) for input line 1: Falling trigger enabled (for Event and Interrupt) for input line.
Software interrupt event register	EXTI_SWIER1 EXTI_SWIER2	EXTI->SWIER EXTI->SWIER2	Writing a '1' to this bit when it is at '0' sets the corresponding pending bit in the EXTI_PR register. If the interrupt is enabled on this line on the EXTI_IMR and EXTI_EMR registers, an interrupt request is generated. This bit is cleared by writing a '1' into the corresponding bit in the EXTI_PR register.
Pending register	EXTI_PR1 EXTI_PR2	EXTI->PR EXTI->PR2	0: No trigger request occurred 1: Selected trigger request occurred This bit is set when the selected edge event arrives on the external interrupt line. This bit is cleared by writing a '1' to the bit or by changing the sensitivity of the edge detector.

Two configuration modes:

- Interrupt mode: generate interrupts with external lines edges
- Event mode: generate pulse to wake-up system from SLEEP and STOP modes

External interrupt/event controller register map and reset values

Offset	Register	31	30	59	28	27	56	25	24	23	22	51	20	19	18	17	16	15	14	13	12	Ξ	9	6	8	7	9	2	4	3	2	-	0
0x00	EXTI_IMR1															1	MR	31:0)]														
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x04	EXTLEMR1															,	MR[31:0)]														
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x08	EXTI_RTSR1	TR	[31:	29]	Hes.	Res.	Hes.	Hes.	Hes.	Hes.											TF	R[22	:0]										
	Reset value	0	0	0			匚				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0C	EXTI_FTSR1	TR	[31:	29]	Hes.	Res.	Hes.	Hes.	Res.	Res.											TF	R[22	:0]										
	Reset value	0	0	0	匚		匚				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x10	EXTI_SWIER1		WIE 31:21		Bes.	Res.	Bes.	Bes.	Res.	Hes.										:	SWI	ER(22:0)]									
	Reset value	0	0	0	F		匚				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x14	EXTI_PR1		PR 31:21		Hes.	Res.	Hes.	Hes.	Res.	Res.											PF	R[22	:0]										
	Reset value	0	0	0	L		匚				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x18	EXTI_IMR2	Res.	Res.	Res.	Bes.	Res.	Hes.	Bes.	Res.	Bes.	Res.	H98	Bes.	Bes.	Res.	Bes.	Hes	Bes.	Hes	Hes	Hes	Нөз	MR38	MR34	MR33	MR82							
	Reset value						匚																							0	0	0	0
0x1C	EXTI_EMR2	Res.	Res.	Hes.	Bes	Res.	Bes	Bes	Hes.	Hes.	Bes	Res.	Bes	H88.	Hes.	Bes	Besi	Besi	H88	P88.	Bes	H88.	Hes.	H88	P88.	H88	Hes	H88	Hes.	MR36	MR34		MB32
	Reset value			匚			匚																							0	0	0	0
0x20	EXTI_RTSR2	Res.	Res.	Hes.	Hes.	Res.	Hes.	Hes.	Res.	Hes.	Hes.	Res.	Hes.	Res.	Res.	Hes.	Res.	Res.	H88	Hes.	Hes.	Res.	Hes.	H88	Hes.	H88	H88	H88	Hess.	H88.	H88	TR33	TR32
	Reset value			匚	\sqsubset	\Box	\sqsubset																								\sqsubset	0	0
0x24	EXTI_FTSR1	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Hess	Res.	Res.	Res.	Res.	Нөз	Res.	Нөз	Hes	Нөз	Нөз.	Hess	Hes		TR32
	Reset value	П		\sqsubset	\sqsubset	\Box	\sqsubset		Г						Г					Г					Г		Г				\sqsubset	0	0
0x28	EXTI_SWIER2	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	9 H H H	Res.	Res.	Res.	Res.	H98	Res.	H98	Hes	H98	Нөз.	9 H H H	Нее	SWIER33	SWIERS2
	Reset value																															0	0
0x2C	EXTI_PR2	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Res.	Hes.	Res.	Res.	Res.	Res.	Hes.	Res.	Hes.	Hes.	Hes.	Hes.	Hes.	Hes.	PR33	PR32
	Reset value																														上	0	0

External Interrupt Configuration (1 of 2)

- To configure an external interrupt one must configure the external interrupt (EXTI) peripheral as well as the NVIC peripheral. The general procedure is as follows:
 - Configure the EXTIXX bits in the SYSCFG_EXTICRX registers to map the GPIO pin(s) of interest to the appropriate external interrupt lines (EXTIO-EXTI15).
 - For the external interrupt lines (EXTIxx) of interest, choose a signal change that will trigger the external interrupt. The signal change can be a rising edge, a falling edge or both. These can be set via the EXTI_RTSR (rising) and the EXTI_FTSR (falling) registers.
 - Unmask the external interrupt line(s) of interest. by setting the bit corresponding to the EXTI line of interest in the EXTI_IMR register.

External Interrupt Configuration (1 of 2)

- Set the priority for the interrupt vector in question in the NVIC either via the CMSIS based "NVIC_SetPriority()" function or through the IPRO-IPR7 registers.
- Enable the interrupt in the NVIC either via the CMSIS based "NVIC_EnableIRQ()" function or via the ISER register.
- > Write your interrupt service routine (ISR).
- Inside your interrupt service routine, check the source of the interrupt...either the GPIO pin directly or the external interrupt line. Once you figure out which one triggered the interrupt, perform the interrupt processing scheme associated with it. Make sure that you clear the corresponding pending bit of the external interrupt lines of interest in the EXTI_PR (external interrupt pending register) register by writing a '1' to it.

INTy Configuration

#	Action	Registers to be modified
1	Enable GPIOx clock	RCC->AHBENR.IOPXEN
2	Configure the GPIOx pin as floating input	GPIOx->MODER.MODERy GPIOx->PUPDR.PUPDRy
3	Enable SYSCFG clock	RCC->APB2ENR.SYSCFGEN
4	Select the GPIOx pin as input for the interrupt line INTly	SYSCFG->EXTICR[z]
5	Unmask INTy	EXTI_IMRx
5	Select the edge or edges that could trigger the interrupt	EXTI_RTSRx EXTI_FTSRx
6	Enable the interrupt line	NVIC->ISER[z]
7	Select the priority and subpriority of the interrupt	SCB->AIRCR.PRIGROUP NVIC->IP[y]

Comparators

Comparators (COMP)

- The STM32F30xxx embeds seven general purpose comparators that can be used either as standalone devices (all terminal are available on I/Os) or combined with the timers.
- They can be used for a variety of functions including:
 - wake-up from low-power mode triggered by an analog signal;
 - analog signal conditioning;
 - cycle-by-cycle current control loop when combined with the DAC and a PWM output from a timer.)
- Rail-to-rail comparators
- Each comparator has configurable positive and negative inputs used for flexible voltage selection:
 - Multiplexed I/O pins
 - DAC channel 1 or DAC channel 2
 - Internal reference voltage and three submultiple values (1/4, 1/2, 3/4) provided by scaler (buffered voltage divider).

COMP main features

- Programmable hysteresis
- Programmable speed and consumption
- The outputs can be redirected to an I/O or to multiple timer inputs for triggering:
 - Capture events
 - OCref_clr events (for cycle-by-cycle current control)
 - Break events for fast PWM shutdowns
- COMP1 and COMP2, COMP3/COMP4, and COMP5/COMP6 comparators can be combined in a window comparator. COMP7 does not support the window mode.
- Comparators output with blanking source
- Each comparator has interrupt generation capability with wake-up from Sleep and Stop modes (through the EXTI controller)

Block diagram of comparators 1 & 2

Clock

- The COMP clock provided by the clock controller is synchronous with the PCLK2 (APB2 clock).
- There is no clock enable control bit provided in the RCC controller. To use a clock source for the comparator, the SYSCFG clock enable control bit must be set in the RCC controller.
- Note: The polarity selection logic and the output redirection to the port works independently from the PCLK2 clock. This allows the comparator to work even in Stop mode.

Comparator inputs and outputs

- The I/Os used as comparators inputs must be configured in analog mode in the GPIOs registers.
- The comparator output can be connected to the I/Os using the alternate function channel given in "Alternate function mapping" table in the datasheet.
- The output can also be internally redirected to a variety of timer input for the following purposes:
 - Emergency shut-down of PWM signals, using BKIN and BKIN2 inputs
 - Cycle-by-cycle current control, using OCref_clr inputsInput capture for timing measures
- It is possible to have the comparator output simultaneously redirected internally and externally.

Interrupt and wakeup

The comparator outputs are internally connected to the Extended interrupts and events controller (EXTI). Each comparator has its own EXTI line and can generate either interrupts or events. The same mechanism is used to exit from low power modes.

Power mode

• The comparator power consumption versus propagation delay can be adjusted to have the optimum trade-off for a given application using the bits COMPxMODE[1:0] in COMPx_CSR registers

COMP1 control and status register (COMP1_CSR)

Bits	NAME	FUNCTION	OPERATION
31	COMP1LOCK	Comparator 1 lock	0: COMP1_CSR is read-write.1: COMP1_CSR is read-only.
30	COMP1OUT	Comparator 1 output	0: Output is low (non-inverting input below inverting input).1: Output is high (non-inverting input above inverting input).
20:18	COMP1_BLANKING	Comparator 1 blanking source	000: No blanking001: TIM1 OC5 selected as blanking source010: TIM2 OC3 selected as blanking source011: TIM3 OC3 selected as blanking source
17:16	COMP1HYST[1:0]	Comparator 1 hysteresis	00: No hysteresis01: Low hysteresis10: Medium hysteresis11: High hysteresis
15	COMP1POL	Comparator 1 output polarity	0: Output is not inverted1: Output is inverted
13:10	COMP1OUTSEL[3:0]	Comparator 1 output selection	These bits select which Timer input must be connected with the comparator 1 output.

COMP1 control and status register (COMP1_CSR)

Bits	NAME	FUNCTION	OPERATION
6:4	COMP1INMSEL[2:0]	Comparator 1 inverting input selection	000: 1/4 of Vrefint 001: 1/2 of Vrefint 010: 3/4 of Vrefint 011: Vrefint 100: COMP1_INM4 (PA4 or DAC1 output if enabled) 101: COMP1_INM5 (PA5 or DAC2 output if enabled) 110: COMP1_INM6 (PA0) 111: Reserved
3:2	COMP1MODE[1:0]	Comparator 1 mode	00: High speed01: Medium speed10: Low power11: Ultra-low power
1	COMP1SW1	Comparator 1 non inverting input connection to DAC output.	0: Switch open1: Switch closed
0	COMP1EN	Comparator 1 enable	0: Comparator 1 disabled1: Comparator 1 enabled

Preventing false over-current detections in motor control applications

