

SOLUCIONES DEL TEMA 3 - PARTE 1

Cinemática directa del robot

Solución ejercicio 1. *A. Barrientos, "Fundamentos de Robótica", ejercicio resuelto 4.2, pág. 172.* Se trata de un robot de 3 GDL, con todas sus articulaciones de rotación:

La matriz de transformación T que representa la cinemática directa del robot es:

$$\mathbf{T} = \begin{bmatrix} \mathbf{n} & \mathbf{o} & \mathbf{a} & \mathbf{p} \\ 0 & 0 & 0 & 1 \end{bmatrix} = {}^{0}\mathbf{A}_{3} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} =$$

$$= \begin{bmatrix} C_{1}C_{23} & -C_{1}S_{23} & S_{1} & l_{3}C_{1}C_{23} + l_{2}C_{1}C_{2} \\ S_{1}C_{23} & -S_{1}S_{23} & -C_{1} & l_{3}S_{1}C_{23} + l_{2}S_{1}C_{2} \\ S_{23} & C_{23} & 0 & l_{3}S_{23} + l_{2}S_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solución ejercicio 2. En este caso tenemos un robot de 4 GDL, con tres articulaciones de rotación y una prismática. Por su configuración se trata de un robot de tipo SCARA.

La matriz de transformación T que representa la cinemática directa del robot viene dada por el producto de 5 matrices de transformación (tantas como filas en la representación D-H):

$$T = {}^{B}A_{0} {}^{0}A_{1} {}^{1}A_{2} {}^{2}A_{3} {}^{3}A_{4} = \begin{bmatrix} c_{124} & -s_{124} & 0 & 0.7(c_{12} + c_{1}) \\ s_{124} & c_{124} & 0 & 0.7(s_{12} + s_{1}) \\ 0 & 0 & 1 & q_{3} + 0.5 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- BAo representa la matriz de la base (fija) del robot.
- c_{124} y s_{124} representan $cos(q_1+q_2+q_4)$ y $sen(q_1+q_2+q_4)$, respectivamente.

Solución ejercicio 3. A. Barrientos, "Fundamentos de Robótica", ejercicio resuelto 4.3, pág. 172.

La la tabla de parámetros de Denavit-Hartenberg que se corresponde con el robot de la figura es la siguiente:

Articulación	θ	d	a	α
1	π/2	$q_{_1}$	l_1	0
2	q_2	0	l_2	0
3	$q_3 + \pi/2$	0	0	π/2
4	$q_{_4}$	l_3	0	0

La matriz de transformación T que representa la cinemática directa del robot es:

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & l_{1} \\ 0 & 0 & 1 & q_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}\mathbf{A}_{2} = \begin{bmatrix} C_{2} & -S_{2} & 0 & l_{2}C_{2} \\ S_{2} & C_{2} & 0 & l_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} -S_{3} & 0 & C_{3} & 0 \\ C_{3} & 0 & S_{3} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{3}\mathbf{A}_{4} = \begin{bmatrix} C_{4} & -S_{4} & 0 & 0 \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = {}^{0} \mathbf{A}_{4} = \begin{bmatrix} -C_{4}C_{23} & S_{4}C_{23} & -S_{23} & -l_{3}S_{23} - l_{2}S_{2} \\ -C_{4}S_{23} & S_{4}S_{23} & C_{23} & l_{3}C_{23} + l_{2}C_{2} + l_{1} \\ S_{4} & C_{4} & 0 & q_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Solución ejercicio 4. La tabla de parámetros de Denavit-Hartenberg del robot industrial ABB IRB 120 según los sistemas de referencia de la figura es la siguiente:

i	d _{i (mm)}	θί	ai (mm)	α
1	290	θ1	0	-π/2
2	0	θ2-π/2	270	0
3	0	θ ₃	70	-π/2
4	302	θ4	0	π/2
5	0	θ ₅	0	-π/2
6	72	θ ₆ +π	0	0

Solución ejercicio 5. Ver solución detallada en PDF aparte.

Solución ejercicio 6. Ver solución detallada en PDF aparte.