Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа №5 Частотная и фазовая модуляция

Руководитель
______ Н.В. Богач
Выполнил
______ Л. Д. Конина
группа 33501/3

 ${
m Cahkt-}\Pi$ етербург 2018

Цель:

Изучение частотной и фазовой модуляции/демодуляции сигнала. **Постановка задачи**

- 1) Сгенерировать однотональный сигнал низкой частоты
- 2) Выполнить фазовую модуляцию/демодуляцию сигнала по закону $u(t) = U_m \cos(\omega_0 t + ks(t))$
- 3) Получить спектр модулированного сигнала
- 4) Выполнить частотную модуляцию/демодуляцию по закону $u(t) = U_m cos(\omega_0 t + k \int_0^t s(t) dt)$

Теоретический раздел

Модуляция

Модуляция — это перенос спектра сигналов из низкочастотной области на заданную частоту. Это применяется для передачи сигнала в заданном частотном диапазоне. Для модулирующего (исходного) сигнала S(t) в канале связи для передачи формируется вспомогательный периодический высокочастотный сигнал $u(t) = f(t, [a_1, a_2, ... a_m])$. Параметры a_i определяют форму сигнала. При модуляции исходный сигнал S(t) переносят на один из параметров a_i , форма сигнала u(t) (несущей) изменяется и служит для переноса информации, содержащейся в сигнале S(t). Обратная операция выделения сигнала S(t) из модулированного сигнала u(t) называется демодуляция.

Однотональный сигнал

Для генерации гармонического сигнала можно воспользоваться формулой $signal = A*cos(2*\pi*f*t+\varphi),$ где A — амплитуда сигнала, f — частота, t — вектор отсчетов времени, φ — смещение по фазе.

Угловая модуляция

При угловой модуляции в несущем гармоническом колебании $u(t) = U_m cos(\omega t + \varphi)$ значение амплитуды колебаний U_m остается постоянным, а информация s(t) переносится либо на частоту ω , либо на фазовый угол φ . В обоих случаях текущее значение фазового угла гармонического колебания u(t) определяет аргумент $\psi(t) = \omega t + \varphi$, который называется полной фазой колебания.

Фазовая модуляция При фазовой модуляции модулирующий сигнал определяет фазу несущего колебания $\phi(t)=ks(t)$. Сигнал с фазовой модуляцией имеет вид $u(t)=U_m\cos(\omega_0 t+ks(t))$

Изображение сигнала после фазовой модуляции приведено ниже на рисунке.

Частотная модуляция

При частотной модуляции модулирующий сигнал определяет частоту несущего

колебания. Сигнал с частотной модуляцией имеет вид $u(t) = U_m cos(\omega_0 t + k \int_0^t s(t) dt)$ Изображение сигнала после частотной модуляции приведено на рисунке.

Ход работы

Генерация однотонального сигнала

Получим гармонический сигнал $s(t) = A*cos(2*\pi*f*t+\varphi)$

Его спектр:

Фазовая модуляция

Сигнал после фазовой модуляции приведён на рисунке.

Его спектр:

Демодуляция фазовой модуляции Демодуляция фазовой модуляции представлена на рисунке:

Спектр демодулированного сигнала:

Как видно по графикам, сигнал после демодуляции совпадает с исходным.

Частотная модуляция

Сигнал после частотной модуляции приведён на рисунке:

Его спектр:

Демодуляция частотной модуляции Демодуляция частотно-модулированного сигнала представлена на рисунке:

Спектр:

В сигнале после демодуляции присутствуют незначительные отличия от исходного сигнала.

Выводы

В данной работе были изучены фазовая и частотная модуляция/демодуляции. Были построены спектры модулированных сигналов. Сигналы были демодулированы с хорошей точностью как для частотной так и для фазовой модуляции, что говорит об эффективности использования этих методов. Рассмотренные способы модуляции можно применять для высококачественной передачи данных.