EXERCISE - II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** Matrix $\begin{vmatrix} a & b & (a\alpha b) \\ b & c & (b\alpha c) \\ 2 & 1 & 0 \end{vmatrix}$ is non invertible if
- (A) $\alpha = 1/2$
- (B) a, b, c are in A.P.
- (C) a, b, c are in G.P.
- (D) a, b, c are in H.P.
- 2. If A is a square matrix, then
- (A) AA' is symmetric
- (B) AA' is skew symmetric
- (C) A'A is symmetric
- (D) A'A is skew symmetric
- **3.** If D is a determinant of order three and Δ is a determinant formed by the cofactors of determinant D then
- (A) $\Delta = D^2$
- (B) D = 0 implies $\Delta = 0$
- (C) if D = 27, then Δ is perfect cube
- (D) None of these
- **4.** If B is an idempotent matrix, and A = I B, then
- (A) $A^2 = A$ (B) $A^2 = I$
- (C) AB = 0 (D) BA = 0
- 5. A square matrix A with elements from the set of real numbers is said to be orthogonal if $A' = A^{-1}$. If A is an orthogonal matrix, then
- (A) A' is orthogonal
- (B) A⁻¹ is orthogonal
- (C) Adj A = A'
- (D) $|A^{-1}| = 1$
- **6.** If $A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix}$, then
- (A) |A| = 2
- (B) A is non-singular
- (C) Adj. A = $\begin{bmatrix} 1/2 & -1/2 & 0 \\ 0 & -1 & 1/2 \\ 0 & 0 & -1/2 \end{bmatrix}$
- (D) A is skew symmetric matrix
- **7.** Which of the following is true for matrix $A = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$
- (A) A + 4l is a symmetric matrix
- (B) $A^2 4A + 5I_2 = 0$
- (C) A B is a diagonal matrix for any value of α if B = $\begin{bmatrix} \alpha & -1 \\ 2 & 5 \end{bmatrix}$
- (D) A 4l is a skew symmetric matrix

- 8. Which of the following statement is always true
- (A) Adjoint of a symmetric matrix is symmetric matrix
- (B) Adjoint of a unit matrix is unit matrix
- (C) A (adj A) = (adj A) A
- (D) Adjoint of a diagonal matrix is diagonal matrix
- **9.** If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ (where $bc \neq 0$) satisfies the equations
- $x^2 + k = 0$, then
- (A) a + d = 0
- (B) k = -|A|
- (C) k = |A|
- (D) None of these
- **10.** Let $\phi_1(x) = x + a_1$, $\phi_2(x) = x^2 + b_1x + b_2$ and

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ \phi_1(x_1) & \phi_1(x_2) & \phi_1(x_3) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(x_3) \end{vmatrix} \text{, then}$$

- (A) Δ is independent of a_1
- (B) Δ is independent of b_1 and b_2
- (C) Δ is independent of x_1 , x_2 and x_3
- (D) None of these
- **11.** Suppose a_1 , a_2 , a_3 are in A.P. and b_1 , b_2 , b_3 are in H.P.

and let
$$\Delta = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & a_1 - b_3 \\ a_2 - b_1 & a_2 - b_2 & a_2 - b_3 \\ a_3 - b_1 & a_3 - b_2 & a_3 - b_3 \end{vmatrix}$$
, then prove that

- (A) Δ is independent of a_1 , a_2 , a_3
- (B) A_1 Δ , a_2 2Δ , a_3 3Δ are in A.P.
- (C) $b_1 + \Delta$, $b_2 + \Delta^2$, $b_3 + \Delta$ are in H.P.
- (D) Δ is independent of b_1 , b_2 , b_3

12. If
$$\Delta = \begin{vmatrix} x & 2y - z & -z \\ y & 2x - z & -z \\ y & 2y - z & 2x - 2y - z \end{vmatrix}$$
, then

- (A) x-y is a factor of Δ (B) $(x-y)^2$ is a factor of Δ (C) $(x-y)^3$ is a factor of Δ (D) Δ is independent of z

13. Let
$$\Delta = \begin{vmatrix} a & a^2 & 0 \\ 1 & 2a+b & (a+b)^2 \\ 0 & 1 & 2a+3b \end{vmatrix}$$
 then

- (A) a + b is a factor of Δ
- (B) a + 2b is a factor of Δ
- (C) 2a + 3b is a factor of Δ (D) a^2 is a factor of Δ

- **14.** Let a, b, > 0 and $\Delta = \begin{vmatrix} -x & a & b \\ b & -x & a \\ a & b & -x \end{vmatrix}$, then
- (A) a + b x is a factor of Δ
- (B) $x^2 + (a + b)x + a^2 + b^2 ab$ is a factor of Δ
- (C) Δ = 0 has three real roots if a = b
- (D) None of these