Date: Mar 28 Made by Eric

In this note, V always stand for a vector space over \mathbb{F} , V^- stands for a finite dimensional vector space over \mathbb{F} , and T is always a linear operator on V^-

Definition

Definition 1. Let T satisfy $\forall x \in V^-, ||T(x)|| = ||x||$

$$T(x)$$
 is an unitary operator if $\mathbb{F} = \mathbb{C}$
 $T(x)$ is an orthogonal operator if $\mathbb{F} = \mathbb{R}$

Lemma 1. Let U be self-adjoint

$$\forall x \in V, \langle x, U(x) \rangle = 0 \implies U = 0$$

Proof. Pick an orthonormal basis β that diagonalize U

Let $\beta_i \in \beta$, and write $U(\beta_i) = \lambda_i \beta_i$

$$0 = \langle \beta_i, U(\beta_i) \rangle = \lambda_i \langle \beta_i, \beta_i \rangle \implies \lambda_i = 0$$

Theorem 2. Let T be unitary and β be an orthonormal basis for V^-

(i)
$$TT^*=T^*T=I$$

(ii) $\langle T(x),T(y)\rangle=\langle x,y\rangle$
(iii) $T(\beta)$ is an orhonormal basis for V^-

Proof.
$$\langle x,x\rangle=\|x\|^2=\|T(x)\|^2=\langle T(x),T(x)\rangle=\langle T^*T(x),x\rangle\Longrightarrow\langle (I-T^*T)x,x\rangle=0$$

Because $I - T^*T$ is self adjoint, so by Lemma 1, $I = T^*T$ (i)

$$\langle T(x), T(y) \rangle = \langle T^*T(x), y \rangle = \langle x, y \rangle$$
 (ii)

Let $\beta_i, \beta_j \in \beta$

$$\langle T(\beta_i), T(\beta_j) \rangle = \langle T^*T(\beta_i), \beta_j \rangle = \langle \beta_i, \beta_j \rangle = 0$$
 (iii)