Graphes

1 Considérons le graphe suivant :

Dessinez sa représentation sous forme de :

- a) Liste d'arcs
- b) Matrice d'adjacence
- c) Liste d'adjacence
- 2 Remplissez le tableau suivant en donnant les coûts.

(n : nombre de sommets m : le nombre d'arcs)

	Liste d'arcs	Liste	Matrice
		d'adjacence	d'adjacence
arcsIncidents(Sommet s)			
arcsEntrants(Sommet s)			
arcsSortants(Sommet s)			
sommetsAdjacents(Sommet s)			
sommetsAdjacentsEntrants(Sommet s)			
sommetsAdjacentsSortants(Sommet s)			
sontAdjacents(Sommet s1, Sommet s2)			
<pre>supprimeSommet(Sommet s)</pre>			
ajouteSommet(Sommet s)			

3. Considérons le graphe suivant :

- a) Pour ce graphe, dessinez l'arbre obtenu lors d'un parcours en profondeur (DFS) commençant au sommet 1 (les arcs sont essayés dans l'ordre croissant de leur destination).
- b) Pour ce graphe, dessinez l'arbre obtenu lors d'un parcours en largeur (BFS) commençant au sommet 1 (les arcs sont essayés dans l'ordre croissant de leur destination). Numérotez les arcs selon l'ordre du parcours.

4 Considérons le graphe ci-dessous :

Appliquez l'algorithme de Dijkstra pour trouver les chemins les plus courts à partir du sommet 1. Donnez toutes les étapes!