История.

- Intel създава първия в света микропроцесор като единична интегрална схема (single-chip microprocessor) през 1971 година *Intel4004* (I4004). Историята на създаването му е свързана с търсенето на гъвкав контролер за серия от калкулатори. Изработен е върху силициева пластина с площ 12 mm² и е с организация 4-bit. Схемата има 2300 транзистора, създадени чрез използване на 10-µm технология, и работи на 750 kHz.
- Следват **I8008** и **I8080** с организация 8-bit, които са стъпка към създаванто на **I8086** и **I8088** (1978 год.) с организация 16-bit, които стават особено популярни с използването им от IBM в най-продавания им модел компютри IBM РС ХТ.
- Успехът е продължен с **I80186** и **I80286** (1982 год.)
 и цяла серия от последващи разработки. За това **I8086** се счита за родоначалник на фамилията х86 процесори.

КАРХ: Тема_14: Архитектура x86 - обзор *Intel4004*.

Intel80386.

- През 1985 г. Intel представя I80386, който разширява архитектурата на 8086 на 32-bit и дефинира архитектурата х86 (*IA-32*).
- Използва 32-bit регистри както за операции, така и за адресиране.
- Долната половина на всеки регистър запазва свойствата на предишните 16-bit регистри за запазване на съвместимост с предишните процесори и програмите, написани за тях.
- Осигурява virtual-8086 mode, с който програмите, писани за 16-bit машини се изпълняват по-ефективно.
- Поддържа 32-bit адресиране и до 4GB физическа памет.
- Управление на виртуална памет на страници от по 4кВ.

Фамилия х86.

• Посочените процесори са само на Intel. Съществуват и процесори-клонинги произведени от други фирми като AMD, Cyrix, Texas Instruments и други. Те са

напълно съвместими до ниво Pentium MMX с процесорите на Intel. По-нататък пътищата им се разделят.

Процесор	Еквивал.	Година на	Работни	Разрядност [bit]	
	брой транз.	обявяване	честоти [MHz]	вътр./(външна)	
8086	29 хил.	Юни 1978	4.77; 8; 10	16	
8088	29 хил.	Юни 1979	4.77; 8	16 (8)	
80188	100 хил.	Март 1982	8; 10; 12.5; 16	16 (8)	
80186	100 хил.	Март 1982	8; 10; 12.5; 16	16	
80286	134 хил.	Февр.1982	8; 10; 12.5; 16	16	
80386 (386DX)	275 хил.	Окт. 1985	16; 20; 25; 33	32	
386SX	275 хил.	Юни 1988	16; 20; 25; 33	32 (16)	
386SL	855 хил.	Окт. 1990	20; 25	32 (16)	
486DX	1.2 млн.	Апр. 1989	25; 33; 50	32	
486SX	1.185 млн.	Апр. 1991	16; 20; 25; 33	32	
486DX2	1.4 млн.	Март 1992	40; 50; 66; (100)	32	
486DX4	1.6 млн.	Март 1994	75; 100	32	
Pentium	3.1-3.3 млн.	Март 1993	60; 66;; 200	64 (32)	
Pentium Pro	5.5 млн.	Ноем.1995	150; 166; 180; 200	32 (64)	
Pentium MMX	4.5 млн.	Окт. 1996	166; 200; 233	64	
Pentium II	7.5 млн.	Май 1997	233;; 450	64	
Pentium III	9.5-28 млн.	Февр.1999	450;; 1400	64	
Pentium IV	42-55 млн.	Ноем.2000	1300;; 3800	64	
Pentium Dual Core	167 млн.	Юни 2007	1300;; 2930	64	
Core 2 (Solo; Duo; Quad)	291 млн.	Юли 2006	1060;; 3330	64	

Фамилия х86.

• Поглед от друга страна...

Процесор	Година на производство	Технология [μm]			Микро- архитектура	
80386	1985	1.5÷1.0	275к	16÷25	multicycle	
80486	1989	1.0÷0.6	1.2M	25÷100	pipelined	
Pentium	1993	0.8÷0.35	3.2÷3.4M	60÷300	superscalar	
Pentium II	1997	0.35÷0.25	7.5M	233÷450	out of order	
Pentium III	1999	0.25÷0.18	9.5÷28M	450÷1400	out of order	
Pentium 4	2001	0.18÷0.09	42÷178M	1400÷3730	out of order	
Pentium M	2003	0.13÷0.09	77÷140M	900÷2130	out of order	
Core Duo	2005	0.065	152M	1500÷2160	dual core	
Core 2 Duo	2006	0.065÷0.045	167÷410M	1800÷3300	dual core	
Core i-series	2009	0.045÷0.032	382÷731M	2530÷3460	multi-core	

Фамилия х86.

• Структура на 80386.

Фамилия х86.

• Структура на 80486.

Фамилия х86.

• Структура на Pentium.

Фамилия х86.

• Структура на Pentium III.

Фамилия х86.

• Структура на Pentium 4.

Фамилия х86.

• Структура на Core Duo.

Фамилия х86.

• Структура на Core i-7.

<u>Сравнение MIPS – x86.</u>

- Много групи от Intel и AMD от много години разработват допълнения и кръпки към остарялата архитектура на х86. Резултатът далеч не е така елегантен сравнен с MIPS архитектурата. Както казват създателите на MIPS Patterson и Hennessy архитектурата х86 е "...difficult to explain and impossible to love.".
- Основни разлики между MIPS и x86 (RISC и CISC архитектури)

Feature	MIPS	x86		
# of registers	32 general purpose	8, some restrictions on purpose		
# of operands	3 (2 source, 1 destination)	2 (1 source, 1 source/destination)		
operand location	registers or immediates	Registers, immediates, or memory		
operand size	32 bits	8, 16, or 32 bits		
condition codes	no	yes		
instruction types	simple	simple and complicated		
instruction encoding	fixed, 4 bytes	variable, 1÷15 bytes		

КАРХ: Тема_14: Архитектура x86 - обзор <u>x86 регистри.</u>

- Микропроцесорът 8086 има 8 на брой 16-bit регистри, като има отделен достъп до старшите и младшите 8 bit на някои от тези регистри.
- С появата на 80386 тези регистри са удължени до 32-bit. За запазване на съвместимост с предишната архитектура се запазва достъпа до младшите 16-bit и най-младшите 8-bit на някои от регистрите.
- ESP е запазен за стек поинтер.

х86 операнди.

• х86 инструкциите могат да опрират с регистри, константи и памет. Последното частично компенсира малкия брой на регистрите.

Source/Destination	Source	Example	Meaning
register	register	add EAX, EBX	$EAX \leftarrow EAX + EBX$
register	immediate	add EAX, 42	$EAX \leftarrow EAX + 42$
register	memory	add EAX, [20]	$EAX \leftarrow EAX + mem[20]$
memory	register	add [20], EAX	$mem[20] \leftarrow mem[20] + EAX$
memory	immediate	add [20], 42	$mem[20] \leftarrow mem[20] + 42$

х86 методи за адресиране на паметта.

• Има сходство с начина на адресиране в ARM архитектурата.

Example	Meaning	Comment		
add EAX, [20]	$EAX \leftarrow EAX + mem[20]$	displacement		
add EAX, [ESP]	$EAX \leftarrow EAX + mem[ESP]$	base addressing		
add EAX, [EDX + 40]	$EAX \leftarrow EAX + mem[EDX + 40]$	base + displacement		
add EAX, [60 + EDI*4]	$EAX \leftarrow EAX + mem[60 + EDI*4]$	Displacement + scaled index		
add EAX, [EDX + 80 + EDI*2]	$EAX \leftarrow EAX + mem[EDX + 80 + EDI*2]$	base + displacement + scaled index		

х86 регистър на флаговете.

• x86 използва 32-bit регистър EFLAGS за съхранение на четири флага – CF (Carry Flag), ZF (Zero Flag), SF (Sign Flag), OF (Overflow Flag). Останалите битове на регистъра се използват от операционната система.

х86 декодиране на инструкциите.

• х86 инструкциите варират от 1 до 15 bytes. Общият им вид е

Prefixes		Opcode	ModR/N	и	SIB	Displace	ement	lmr	nediate
Up to 4 options prefixes of 1 byte each	refixes 1-, 2-, or 3-byte (for certain		ng à	1 byte for certain ddressing modes)	1, 2, or 4 bytes for addressing modes with displacement		for a	or 4 bytes addressing odes with nmediate	
						*			
	Mod	Reg/ Opcode	R/M		Scale	Index	Bas	е	
2	2 bits	3 bits	3 bits		2 bits	3 bits	3 bit	s	

х86 разширение на адресното пространство.

- През 2003 г. AMD удължава адресното пространство и размера на регистрите до 64-bit, наричайки тази подобрена архитектура AMD64, като запазва съвместим мод, позволяващ изпълнението на 32-bit програми без промени, а операционната система се възползва от увеличеното адресно простанство.
- През 2004 г. Intel възприема 64-bit удължение като го нарича Extended Memory 64 Technology (EM64T). С 64-bit адресация компютрите могат да адресират 16 exabytes (16 милиарда GB) памет.
- Intel и Hewlett-Packard разработват съвместно нова архитектура IA-64, още през 90-те години на миналия век, която е разработена на чисто, прескачайки историята на x86. Предстои тази архитектура да се наложи на пазара. Въпреки това повечето компютри използват разширението на x86.