

UNIVERSIDAD CATÓLICA SAN PABLO

MAESTRÍA EN CIENCIA DE LA COMPUTACIÓN COMPUTACIÓN GRÁFICA

Finding Surface Correspondences Using Symmetry Axis

Curves

Tianqiang Liu, Vladimir G. Kim, and Thomas Funkhouser

José Castro Ochante
Jose.castro.ochante@ucsp.edu.pe

Arequipa, Marzo 2018

Contenido

- Objetivo
- Introducción
- Métodos
- Conclusiones
- Limitaciones
- Referencias

Objetivo

Implementación de un algoritmo para encontrar un mapeo de correspondencia entre dos superficies 3D.

$$f: S1 \rightarrow S2$$

Donde S1 y S2, son superficies.

Introducción

Encontrar correspondencias semánticamente significativas entre puntos en diferentes superficies es un problema fundamental en computación gráfica.

Introducción

Idea principal: Aprovechar las simetrías reflexivas globales para simplificar el problema de correspondencia entre superficies.

Métodos

Preprocessing

Symmetric Axis Curves

Pasos requeridos para el algoritmo y el orden de complejidad en cada paso:

Step	Complexity
 Read the image into memory and store as an array of intensity values. 	O(n)
(2) Calculate the centroid of the object.	O(n)
(3) Calculate the covariance matrix for the object.	O(n)
(4) Calculate the eigenvectors of the co- variance matrix for the object to deter- mine the principal axes.	k_1
(5) For each principal axis, measure the degree of bilateral symmetry in the im- age about the hyperplane that is normal to the axis and contains the centroid.	O(n)
(6) Select the hyperplane with the high- est measure of symmetry as the domi- nant hyperplane of bilateral symmetry.	k ₂

Symmetric Axis Curves

Symmetric Axis Alignment

Encontrando los argumentos que maximice la calidad de la curva

$$(C_1^*, C_2^*, c^*) = \arg\max_{C_1^i, C_2^i, c} \{Q(C_1^i, C_2^i, c)\}$$

Definimos la calidad de alineación como:

$$Q(C_1^i, C_2^j, c) = Q_{Axis}(C_1^i) \cdot Q_{Axis}(C_2^j) \cdot Q_{Align}(C_1^i, C_2^j, c)$$

Donde:

$$Q_{Align}(A, B, c) = 1/(D(A, B, c) + \varepsilon)$$
$$D(A, B, c) = \sum_{0 \le k < K} \gamma(\mathbf{a}_{i_k}, \mathbf{b}_{j_k})$$

Symmetric Axis Alignment

Edit Distance Algorithm

$$\begin{split} D(A_{1:i},B_{1:j}) &= \\ \min \begin{cases} D(A_{1:i-1},B_{1:j-1}) + \gamma(a_i,b_j) \\ D(A_{1:i-1},B_{1:j}) + \min(\gamma(a_i,b_j),\gamma(a_i,\lambda)) \\ D(A_{1:i},B_{1:j-1}) + \min(\gamma(a_i,b_j),\gamma(\lambda,b_j)) \end{cases} \end{split}$$

Symmetric Axis Alignment

Correspondence Extrapolation

Generalized Multidimensional Scaling(GMDS)

$$\sigma(\mathbf{X}; \mathbf{D}_{\mathscr{S}_N}) = \frac{1}{N} \sum_{i>j} (d_{\mathbb{R}^m}(x_i, x_j) - d_{\mathscr{S}}(s_i, s_j))^2,$$

Correspondence Extrapolation

Resultados.

Resultados.

Limitaciones.

- Métodos matemáticos muy poco detallado.
- DataSet incompletos y no actualizados.
- En lo personal me limitaba el tiempo en entender temas de topología y generación de mallas.

Propuesta

- Replicar el paper usando la versión moderna de openGL.
- -Uso de CUDA para el ejecución de métodos de alto costo computacional.