Car Accident Severity Analysis

(Applied Data Science Capstone)

The project aims to study factors which play a role in severity of accidents using Machine Learning Models

1. Introduction

1.1 Background

Seattle, also known as the Emerald city, is Washington State's largest city, with home to a large tech industry with Microsoft and Amazon headquartered in its metropolitan area. As of 2020, it has a total metro area population of 3.4 million (www.macrotrends.net). The total number of personal vehicles in Seattle in the year 2016 hit a new high of nearly 444,000 vehicles. In one South Lake Union census tract, the car population has more than doubled since 2010 (www.seattletimes.com). The increase in car ownership rates can lead to higher numbers of accidents on the road because of a simple probability. Worldwide, approximately 1.35 million people die in road crashes each year, on average 3,700 people lose their lives every day on the roads and an additional 20-50 million suffer non-fatal injuries, often resulting in long-term disabilities.

1.2 Problem

The world suffers due to car accidents, including the USA. National Highway Traffic Safety Administration of the USA suggests that the economical and societal harm from car accidents can cost up to \$871 billion in a single year. According to 2017 WSDOT data, a car accident occurs every 4 minutes and a person dies due to a car crash every 20 hours in the state of Washington while Fatal crashes went from 508 in 2016 to 525 in 2017, resulting in the death of 555 people. The project aims to predict how severity of accidents can be reduced based on a few factors.

1.3 Stakeholders

The reduction in severity of accidents can be beneficial to the Public Development Authority of Seattle which works towards improving those road factors and the car drivers themselves who may take precaution to reduce the severity of accidents.

2.0 Understanding Data

2.1 Data Analysis

Dataset provided has 194673 responses and 38 variables. Below is the basic information about data, and each variable data type. Second figure shows variable with blanks in them, many of them have large no of blanks.

#	Column	Non-Null Count	Dtype		
	SEVERITYCODE	194673 non-null			
1	X	189339 non-null			
2	Y	189339 non-null	float64		
3	OBJECTID	194673 non-null	int64		
4	INCKEY	194673 non-null			
5	COLDETKEY	194673 non-null			
6	REPORTNO	194673 non-null		17	E224
7 8	STATUS	194673 non-null		X	5334
9	ADDRTYPE INTKEY	192747 non-null 65070 non-null		Y	5334
-	LOCATION	191996 non-null			1000
11		84811 non-null		ADDRTYPE	1926
12	EXCEPTRSNDESC	5638 non-null	object	INTKEY	129603
13	SEVERITYCODE.1	194673 non-null			
	SEVERITYDESC	194673 non-null		LOCATION	2677
15	COLLISIONTYPE			EXCEPTRSNCODE	109862
	PERSONCOUNT PEDCOUNT	194673 non-null 194673 non-null			
	PEDCYLCOUNT	194673 non-null		EXCEPTRSNDESC	189035
19		194673 non-null		COLLISIONTYPE	4904
20	INCDATE	194673 non-null			
21	INCDTTM	194673 non-null		JUNCTIONTYPE	6329
	JUNCTIONTYPE	188344 non-null	object	INATTENTIONIND	164868
23		194673 non-null			
24 25		194673 non-null		UNDERINFL	4884
26	UNDERINFL	29805 non-null 189789 non-null		WEATHER	5081
27	WEATHER	189592 non-null			
28	ROADCOND	189661 non-null	3	ROADCOND	5012
29	LIGHTCOND	189503 non-null	object	LIGHTCOND	5170
	PEDROWNOTGRNT	4667 non-null	object		
	SDOTCOLNUM	114936 non-null		PEDROWNOTGRNT	190006
	SPEEDING ST COLCODE	9333 non-null 194655 non-null	object	SDOTCOLNUM	79737
34	ST COLDESC	189769 non-null			
35	SEGLANEKEY	194673 non-null		SPEEDING	185340
36	CROSSWALKKEY	194673 non-null		ST COLCODE	18
37	HITPARKEDCAR	194673 non-null	object	_	
		int64(12), object	(22)	ST_COLDESC	4904
memo	ry usage: 56.4+	MB		dtvpe: int64	
				asype. Intot	

We need to predict severity of accident, using 'SEVERITYCODE'. However, dataset is unbalanced. We could use technique like SMOT to balance the data.

ADDRTYPE – Data shows Block has most collisions. Intersection has very high Injury Collision
with respect to number of collisions occur in Intersection.

 COLLISIONTYPE – Parked car face most collisions, which mostly occur in Block. Rear ended have high number of injury collision. Cyclist and Pedestrian have injury collisions

```
#Cyclist and Pedestrian have injury collisions
  #Parked Car collosion with property damage mostly occur in block
  #Rear ended have high number of injury collision
  plt.figure(figsize=(10,10))
  sns.catplot(y='COLLISIONTYPE',col='SEVERITYCODE',hue='ADDRTYPE',data=accident_df,kind='count',aspect=1)
: <seaborn.axisgrid.FacetGrid at 0x1d85cb99be0>
  <Figure size 720x720 with 0 Axes>
                            SEVERITYCODE = 1
                                                                       SEVERITYCODE = 2
        Angles
      Sideswipe
         Other
                                                                                                      ADDRTYPE
         Cycles

    Intersection

     Rear Ended
                                                                                                      Block
                                                                                                    Alley
       Head On
       Left Turn
      Pedestrian
      Right Turn
                 5000 10000 15000 20000 25000 30000 35000 40000
                                                            5000 10000 15000 20000 25000 30000 35000 40000
```

JUNCTIONTYPE – "Mid-Block (not related to intersection)" and "At Intersection (intersection related)" have high number of collisions.

 SDOT_COLDESC – PEDACYCLIST/PEDESTRIAN face mostly Injury Collision. Trying group as category list is large.

SEVERITYDESC	Injury Collision	Property Damage Only Collision
SDOT_COLCODE		
0	708	9079
1	43079	115253
2	8836	1108
3	3872	10472
4	21	251
5	19	100
6	1481	216
7	172	6

```
accident_df['SDOT_COLCODE'].replace([11,12,13,14,15,16],1,inplace=True) #MOTOR VEHICLE STRUCK MOTOR VEHICLE
accident_df['SDOT_COLCODE'].replace([18,21,22,23,24],2,inplace=True) #MOTOR VEHICLE STRUCK PEDALCYCLIST/PEDESTRIAN
accident_df['SDOT_COLCODE'].replace([25,26,27,28,29],3,inplace=True) #MOTOR VEHICLE SELF
accident_df['SDOT_COLCODE'].replace([31,32,33,34,35,36],4,inplace=True) #DRIVERLESS VEHICLE STRUCK MOTOR
accident_df['SDOT_COLCODE'].replace([44,46,47,48],5,inplace=True) #DRIVERLESS VEHICLE SELF
accident_df['SDOT_COLCODE'].replace([51,52,53,54,55,56,58],6,inplace=True) #PEDALCYCLIST STRUCK
accident_df['SDOT_COLCODE'].replace([61,64,66,68,69],7,inplace=True) #PEDALCYCLIST SELF
accident_df['SDOT_COLCODE'].replace([61,64,66,68,69],7,inplace=True) #PEDALCYCLIST SELF
accident_df['SDOT_COLCODE'].replace([0,0,inplace=True) #PEDALCYCLIST SELF
accident_df['SDOT_COLCODE'].replace([0,0,inplace=True) #PEDALCYCLIST SELF
#MOTOR VEHICLE STRUCK MOTOR
#PEDALCYCLIST SELF
#MOTOR VEHICLE STRUCK MOTOR
#PEDALCYCLIST SELF
#PEDALCYCLIST SELF
#MOTOR VEHICLE STRUCK MOTOR
#MO
```

• WEATHER – Mostly collisions occur when weather is clear.

SEVERITYDESC Injury Collision Property Damage Only Collision WEATHER

WEATHER		
Blowing Sand/Dirt	15	41
Clear	35840	75295
Fog/Smog/Smoke	187	382
Other	116	716
Overcast	8745	18969
Partly Cloudy	3	2
Raining	11176	21969
Severe Crosswind	7	18
Sleet/Hail/Freezing Rain	28	85
Snowing	171	736
Unknown	816	14275

• ROADCOND – Most collisions take place when road condition is Dry.

Dry	124510	
Wet	47474	
4	15210	
Ice	1209	
Snow/Slush	1004	
Standing Water	115	
Sand/Mud/Dirt	75	
Oil	64	
Name: ROADCOND,	dtype: int64	

• LIGHTCOND – Most collisions take place in Daylight condition.

```
Daylight 116137
Dark - Street Lights On 48507
4 13708
Dusk 5902
Dawn 2502
Dark - No Street Lights 1537
Dark - Street Lights 0ff 1199
Dark - Unknown Lighting 11
Name: LIGHTCOND, dtype: int64
```

• INATTENTIONIND, PEDROWNOTGRNT, SPEEDING, UNDERINFL – Have Y and blank row. Replacing blank with N. Replacing Yes with 1 and No with 0.

```
accident_df['INATTENTIONIND'].value_counts()
       164868
0.0
1.0
        29805
Name: INATTENTIONIND, dtype: int64
accident_df['PEDROWNOTGRNT'].value_counts()
0.0
       190006
         4667
Name: PEDROWNOTGRNT, dtype: int64
accident_df['SPEEDING'].value_counts()
       185340
0.0
Name: SPEEDING, dtype: int64
accident_df['UNDERINFL'].value_counts()
0
     185552
1 9121
Name: UNDERINFL, dtype: int64
```

INCDTTM – Converting it to Datetime, to run additional date time analysis. Like checking Month,
 Year, Hour of the day, week of the day with collision to find any pattern.

2.2 Feature Selection

Finally selecting the below variables in the analysis along with SEVERITYCODE, which is our target variable.

Feature Variables	Description	
	Collision address type:	
	• Alley	
	• Block	
ADDRTYPE	• Intersection	
JUNCTIONTYPE	Category of junction at which collision took place	
INATTENTIONIND	Whether or not collision was due to inattention. (Y/N	
UNDERINFL	Whether or not a driver involved was under the influence of drugs or alcohol.	
WEATHER	A description of the weather conditions duringthe time of the collision.	
ROADCOND	The condition of the road during the collision.	
LIGHTCOND	GHTCOND The light conditions during the collision.	
PEDROWNOTGRNT	Whether or not the pedestrian right of way was not granted. (Y/N)	
SDOT_COLCODE	A description of the collision corresponding to the collision code.	
SPEEDING	Whether or not speeding was a factor in the collision. (Y/N)	

Post selecting the variables and then checking for blanks. Approximately 6% of data is lost in the process to remove blanks.