



## Logistics!

- Main GitHub Repository <u>here</u>
- We suggest going through the <u>gentle intro notebook</u> if you do not have experience with programming concepts
- You can reach out to us at
  - <u>irg377@cornell.edu</u>
  - tp399@cornell.edu
- You can use Colab, Jupyter, VS code, etc.
- We're not going to do installations today, let's work on Colab if you don't have Jupyter, VS Code, etc. installed



#### Jan 24: Pandas

Python library used for data manipulation, analysis, and cleaning.

```
instructors = pd.Series(["Laura Tach", "Moon Duchin", "Rachel Riedl", "Benjamin Soltoff"], index=("PUBPOL 2301","PUBPOL 2130","PUBPOL 2320","INFO 2951"])
    print("\nPandas Series Example")
    print(instructors)
    Pandas Series Example
    PUBPOL 2301
                         Laura Tach
                                                                                                                                                             Series
    PUBPOL 2130
                        Moon Duchin
    PUBPOL 2320
                       Rachel Riedl
    INFO 2951
                   Benjamin Soltoff
    dtype: object
df = pd.DataFrame({
   "id": [
        "PUBPOL 2301",
        "PUBPOL 2130",
        "PUBPOL 2320",
        "INFO 2951",
   ],
    "name": [
        "Introduction to Public Policy",
        "Data and the State: How Governments See People and Places",
        "Global Democracy and Public Policy",
        "Introduction to Data Science with R",
   "instructor": ["Laura Tach", "Moon Duchin", "Rachel Riedl", "Benjamin Soltoff"],
   "credits": [4., 4., 3., 4.],
})
df
                                                                                        Dataframe
            id
                                                               instructor credits
                                                    name
0 PUBPOL 2301
                                                                             4.0
                                   Introduction to Public Policy
                                                               Laura Tach
1 PUBPOL 2130 Data and the State: How Governments See People...
                                                              Moon Duchin
                                                                             4.0
2 PUBPOL 2320
                             Global Democracy and Public Policy
                                                              Rachel Riedl
                             Introduction to Data Science with R Benjamin Soltoff
      INFO 2951
```



# Jan 24: Matplotlib Theory

Python library used for creating static, interactive, and animated visualizations.

- Versatility
- Customization
- Integration
- Interactive Capabilities
- Export Options





## Jan 24: Matplotlib Disadvantages

- Complexity
- Verbose Syntax
- Limited Interactivity
- Performance Issues
- Default Aesthetics are Outdated

```
[8] print(df.head())
       Sales
         406
         319
         206
    counts, bins, _ = plt.hist(df['Sales'], bins=10) # 10 bins by default
    plt.title('Sales Distribution')
    plt.xlabel('Sales Amount')
    plt.ylabel('Frequency')
    # Add default placement of data labels
    for i in range(len(counts)):
        plt.text(bins[i], counts[i], str(int(counts[i])))
    # Show the plot
    plt.show()
                                Sales Distribution
       12
       10
     Frequency
                  100
                              200
                                           300
                                                       400
                                   Sales Amount
```



Let's start executing week1.ipynb together!





#### **Announcements!**

#### Weekly homework assignments:

- Will be due in 11 days
- New homework assigned on Fridays during lab
- Turn in on Gradescope

#### **Upcoming exam on Feb. 13th:**

- Will be 40 minutes, in class
- Lecture on Feb. 11th likely exam review or makeup



#### **Announcements!**

#### **Homework Reminders:**

- Don't give us code unless we ask for it!
  - O Don't turn in an .ipynb file
  - Turn in <u>exports</u>, not screenshots
- Make sure axis labels are clear
- Include information on parameters that don't change
- Default parameters in matplotlib may not be optimal –
   experiment with different ones
  - E.g., binning with histograms



#### Jan 31: Census Data





# Jan 31: census Python Package

- Wrapper for the United States Census Bureau's API
   More information <u>here</u>
- Information on the Census Bureau API is <u>here</u> and <u>here</u>
  - You can request an API key here

Note: you do not need an API key for querying small quantities of data, with minimal restrictions (e.g. <500 queries/day per IP)



# Jan 31: Exporting plots

- Tricky in Colab vs. VSCode/Jupyter
- In matplotlib: plt.savefig("file name.jpg")
- In Colab:

```
from google.colab import files
plt.savefig("file_name.jpg")
files.download("file name.jpg")
```

 Alternatively, you can use simple scripts in Colab to save exports to your temporary Colab environment

```
plt.savefig("file name.jpg", format="jpeg", dpi=95)
```



Let's start executing Week2.ipynb together!





# Feb 07: What Are Shapefiles?

A shapefile is a widely used **geospatial data format** for mapping locations, boundaries, and spatial relationships.

- It represents **geographic features** as points, lines, or polygons.
- Common Uses: Political boundaries, census tracts, roads, environmental features.
- Shapefile Components:
  - shp Stores geometry (the actual shapes).
  - shx Index for quick lookup.
  - dbf Attribute data (tabular information).



## Feb 07: Census Shapefiles

#### Some examples of Census shapefiles

- States
- Counties and county equivalents
- County subdivisions
- Census tracts
- American Indian, Alaska Native, Native Hawaiian areas
- Tribal subdivisions
- Roads, rails, rivers
- School districts, etc.



# Feb 07: What Is a Choropleth Map?

A choropleth map is a thematic map where areas are shaded or colored based on data values.

• Each region (e.g., state, county) is filled with a color corresponding to a data variable (e.g., population, unemployment rate).

Population density, 2022







Let's start executing Week3.ipynb together!





#### Feb 13: Census Blocks

#### **Blocks:**

- Statistical areas with natural boundaries (e.g., roads)
- Cover the entire U.S.
- Smallest geographic unit for demographic data







#### Feb 13: Census Tracts

#### **Tracts:**

- Small, statistical subdivisions of counties
- Population between1,200 and 8,000
- Spatial size varies widely





### Feb 13: Precincts

#### **Tracts:**

- Finest resolution of election data
- Not consistently maintained by states!
- mggg contains an open repository of precincts data





### Feb 13: maup

- A geospatial toolkit for redistricting data
- Helpful for:
  - Aggregating from blocks to precincts
  - Disaggregating from precincts to blocks
  - o "Prorating" data when there is no clean overlap



# Feb 13: Assigning precincts to districts

#### **Assigning precincts to districts**

The assign function in maup takes two sets of geometries called sources and targets and returns a pandas Series. The Series maps each geometry in sources to the geometry in targets that covers it. (Here, geometry A covers geometry B if every point of A and its boundary lies in B or its boundary.) If a source geometry is not covered by one single target geometry, it is assigned to the target geometry that covers the largest portion of its area.



Let's start executing Week4.ipynb together!