Modelo Relacional

BASES DE DATOS

Profesor: Héctor Gómez Gauchía

Materiales: Mercedes García Merayo, Héctor Gómez Gauchía

Modelo Relacional

- Representa la BD desde otra perspectiva:
 - El Modelo E/R: más cercano al cliente y a los Requisitos en lenguaje natural
 - QUÉ voy a almacenar en la BD
 - ▶ El Modelo Relacional (MR) más cercano a la implementación
 - CÓMO voy a almacenar esa información: qué estructura, qué consulto
 - CÓMO hago operaciones: consultas, añadir, quitar, modificar datos (Alg.Rel.)
- Relación tiene un sentido más amplio que en el modelo E/R,
 - incluye ambas: entidades y relaciones
- Una BD es una colección de "relaciones" ...
 - cada relación es como una tabla con
 - registros de longitúd fija ("filas" o "tuplas")
 - \square \rightarrow equivalen a las entidades en el m. E/R
- DNI NombreC **Direccion Telefono** 10000001 Client A direc 11 911111111111 Client B 00000003 direc 13 911111111113 00000002 Client C direc 12 911111111112 Client A direc 15 00000005 91111111115 Client A 0000004 direc 14 911111111114 0000006 Client D direc 16 911111111116

relación Cliente de BDejemplo

- Atributos y sus tipos de datos ("columnas)"
- ... que tiene una serie de "Restricciones"

Modelo Relacional y equivalentes en el M. E/R

- - ▶ Tiene un valor único para cada atributo
 - Se distingue una de otra por sus valores distintos en algunos atributos
 - Esos atributos forman la clave primaria
- ▶ Atributo ⇔ Atributo Modelo ER. También se conoce como Columna
 - El dominio de los atributos tiene que ser simple:
 - ▶ **No** se admiten atributos multivalorados ni compuestos
- Clave Primaria ⇔ a veces, Claves unidas de Ent. y Rel. Modelo ER
- Esquema de una relación ⇔ Tipo de Entidad Modelo ER
 - nombre de la relación o tabla

Clientes (<u>DNI</u>, NombreC, Direccion, Telefono)

- lista de nombres de atributos o columnas
 - El orden de los atributos en la lista no importa.
- Cardinalidad de la relación: cuantas filas tiene ⇔ otra cosa en Modelo ER
- ▶ Grado de la relación: cuántos atributos tiene la relación ⇔ otra cosa en ER

Modelo Relacional y equivalentes en el M. E/R

- ► Instancia de [esquema de] una relación ⇔ Conjuntos de entidades en Modelo ER
 - Cada entidad se representa como una tupla
 - Cada componente de la tupla es el valor del atributo correspondiente,
 - según el orden de atributos en el esquema de la relación

EJ: Instancia de [esquema de] relación Cliente de BDejemplo

DNI	NombreC	Direccion	Telefono
00000001	Client A	direc	91111111111
00000003	Client B	direc 13	91111111113
00000002	Client C	direc 12	91111111112
00000005	Client A	direc 15	91111111115
0000004	Client A	direc 14	91111111114
00000006	Client D	direc 16	91111111116

EJ: Esquema de la relación ALUMNOS: ALUMNOS(DNI, Nombre, Domicilio, Teléfono)

EJ: Instancia del esquema de la relación ALUMNOS

{(01234567Z, Manuel Vázquez Prieto, Calle del Jazmín 7, 9112345678), (245245544P, Laura Ayala García, Calle Sánchez Mora 23, 9134534567)...}

Modelo Relacional: definiciones formales

- El esquema de una base de datos relacional
 - es un conjunto de esquemas de relación
 - y restricciones de integridad.
- Un estado o instancia de una base de datos relacional
 - es un conjunto de instancias de relaciones,
 - uno para cada esquema de relación del esquema de base de datos.
 - ▶ Si satisface las restricciones de integridad, está en un estado correcto
 □ en otro caso hablamos de estado incorrecto.
- Una base de datos relacional define tanto
 - a su esquema como
 - a su estado actual.

Restricciones del Modelo Relacional

- R. Dominio: No se permiten atributos compuestos o multivalor.
- R. Unicidad, de clave o exclusividad:
 - Una relación no puede tener tuplas duplicadas
 - Una relación debe tener una clave que especifica una restricción
- Una clave representa varias restricciones:
 - Dos tuplas de una relación no pueden tener valores idénticos para
 - □ todos los atributos de una clave.
 - Cada relación tiene al menos una clave predeterminada (cierta):
 - □ el conjunto de todos los atributos de la relación
 - La clave corresponde a una superclave mínima
 - Las restricciones de integridad de las relaciones requieren que
 - □ ninguna clave principal pueda tener el valor NULL
- R. de Integridad Referencial: siguiente transparencia

Restricciones de Integridad Referencial

- Se especifican entre dos relaciones
 - para mantener la consistencia entre las tuplas de las mismas
 - ▶ Se hacen mediante una <u>clave ajena</u> en el Modelo Relacional
- ► Una clave externa o ajena (foreign key → FK) de una relación A
 - Se forma con un conjunto de atributos de A y
 - Hace <u>referencia</u> a otro conjunto de atributos que son C.P. en otra relación B
- Dicha clave ajena FK debe cumplir que:
 - Los atributos de la FK tienen los mismos dominios que
 - los atributos de la clave primaria C.P. de la relación B
 - El valor de los atributos del FK de cualquier fila de A
 - aparece como valor de una clave principal de alguna fila de B
 - Es decir: la fila "destino" de la clave ajena de A debe existir en B

Del Modelo ER al Modelo Relacional: BD Empleos

Del Mod. ER al Modelo Relacional: Criterios Generales

- FASE: Terminado el ER, lo transformamos en el M. R.
- Al traspasar información de ER al M. relacional: se podría perder información
 - Puedo acceder a la misma info? Pierdo info? Repito info?
- Objetivo I: Conservar la misma información
 - Evitar pérdidas de filas/entidades
 - Qué entidad de un Tipo se relaciona con qué entidad del otro Tipo
 - Mantener la misma accesibilidad
- Objetivo II: Mantener mínima redundancia:
 - repetir mínimamente los atributos que relacionan entidades

- Tipo de entidad normal / fuerte en ER (no débil)
 - se crea una relación en M.R. con
 - el mismo nombre
 - Y solo atributos simples de la entidad
 - Los atributos compuestos NO se incluyen en la relación,
 - □ solo los atributos simples que componen al compuesto
 - Los atributos multivalorados (multivalor) NO se incluyen
 - Su Clave primaria = los atributos que forman la clave de la entidad
 - Cada entidad pasa a ser una fila o tupla

- Los Tipos de entidad normal / fuerte en ER de la <u>BD Empleos</u>
 - ▶ Generan estas relaciones en el MR:

EMPLEADO

<u>DNI</u> Nombre Apellidos Dirección Sueldo
--

PROYECTO

<u>NúmeroProyecto</u>	Nombre	Ubicación
-----------------------	--------	-----------

DEPARTAMENTO (vemos ahora qué hacer con el atributo multivalor "Ubicaciones"

<u>NúmeroDept</u>	Nombre
-------------------	--------

- Atributos Multivalor o multivalorados en ER
 - ▶ Por cada atributo multivalor (ej.: ubicaciones) . . .
 - que pertenece a un T. de entidad E (ej.: departamento)
 - ... se crea una nueva relación R (ej.: ubicación) que incluye:
 - ▶ El atributo multivalor (ahora solo admite un valor)
 - □ Que genera tantas filas como valores tuviera cada entidad
 - Y los atributos de la clave primaria del tipo de entidad E
 - La clave primaria de R es la combinación de atributos de:
 - la clave primaria del tipo de entidad E y el atributo multivalor
 - La R tendrá una FK constituida por los atributos correspondientes
 - a la clave primaria del tipo de relación E.

Ejemplo de Atributos Multivalor en ER

Queda así en el MR:

UBICACION

13

- Tipos de entidades débiles en ER
 - La entidad débil E (ej.: Familiar) se transforma en una relación R con
 - ▶ El mismo nombre que la entidad E (ej.: Familiar)
 - Los atributos de la entidad E más
 - una nueva clave primaria de R, compuesta por
 - □ clave primaria del tipo de entidad propietaria E' (ej.: Empleado)
 - □ y la clave parcial de E (ej.: Nombre de Familiar), . . . si tiene
 - La relación R tendrá una FK constituida por los atributos que son
 - la clave primaria del tipo de entidad propietaria E'
 - en ER, la <u>relación identificadora</u> o débil R' (ej.: Relacionado)
 - no se crea en el M.R.

FAMILIAR

- Tipos de relaciones en ER
 - Para un tipo de relación 1:1 entre dos T. de entidades S y R
 - No se crea por separado la relación del ER
 - Se crea una relación S (si no se ha creado ya) con
 - □ Los mismos atributos que tenía S en el ER y la misma Clave P.
 - □ Se añaden, como FK, los atributos de la clave primaria de R
 - Si la restricción de participación de la entidad (S) es parcial
 - □ deben marcarse los atributos de FK como <u>nulables</u> (*)
 - □ Pueden ser nulos

EJ.: Relación ADMINISTRA (caso 1)

EMPLEADO

Nombre	Apellidos	DNI	Dirección	Sueldo	NumeroDept*	Fechalni *
DEPARTAMENTO						
Nombre	<u>NúmeroD</u>	<u>ept</u>				

Del Modelo ER al Modelo Relacional

- NOTA: cuando la participación de una de las entidades es total
 - es mas eficiente incluir en la relación creada para dicha entidad
 - los atributos de Clave P. de la otra entidad para formar la FK
 - De ese modo, no existirán valores nulos

Relación ADMINISTRA(2) alternativa

EMPLEADO

۱7

- NOTA: Si la participación de <u>ambas</u> entidades es <u>total</u> se puede
 - rear una única relación combinando los atributos de ambas entidades
 - Dándole el nombre de la importante
 - ▶ SOLO si tienen pocos atributos (frente a segmentar una entidad)

Departamento (versión I)

Director (versión 2) alternativa si no se hace la anterior

NombreDir	DNI	NombreDept	<u>NúmeroDept</u>
-----------	-----	------------	-------------------

- Tipos de relaciones en ER
 - Para cada tipo de relación 1: N entre dos T. de entidades S y R
 - No se crea por separado la relación del ER (ej.: pertenece no se crea)
 - ▶ Se crea una relación para la entidad S, que tiene la cardinalidad (1,1)
 - \square se le añaden, como FK, los atributos de clave primaria de R (1,N)
 - ▶ Se crea otra relación para la entidad R con sus atributos

Relación PERTENECE usando el resultado de ADMINISTRA (2)

EMPLEADO, es la "S"

1	Nombre	Apellidos	<u>DNI</u>	Dirección	Sueldo	NumDpto
TEDA DTA						

DEPARTAMENTO, es la "R"

Nombre	<u>NúmeroDept</u>	DNIDirector	FechalniDirector
--------	-------------------	-------------	------------------

- Tipos de relaciones en ER
 - Para cada tipo de relación 1: N (continuación)
 - Si la participación de S es parcial: es con cardinalidad (0,1)
 - □ deben marcarse los atributos de FK como nulables (*)

Relación CONTROLA

PROYECTO

Nombre	<u>NúmeroPro</u>	Número Proyecto Ubicacio			cación NumDp	
DEPARTAMENTO ,						
DLIANIAI	VILIA 10 V					
Nombre	<u>NúmeroDept</u>	DNIDir	ector	Fecha	IniDirec	tor

Modelo Relacional

- Tipos de relaciones en ER
 - Para cada tipo de relación N:M entre dos T. de entidades S y R
 - Se crea una nueva relación con (ej.: trabaja_en)
 - □ atributos propios del tipo de relación en ER más
 - □ los atributos de las claves primarias de los tipos de entidad S y R
 - □ Que, unidos, forman la clave primaria de la relación creada
 - □ Se marcan como FK los atributos de las claves primarias de S y R

EMPLEADO

Modelo Relacional de la BD Empleos

UBICACION (<u>NúmeroDept, Ubicación</u>)

NumDept Fk en departamento

FAMILIAR (<u>DNIEmp,Nombrefam</u>,FechaNac,Sexo,Dirección,Relación)
 dniemp es FK en empleado(dni)

EMPLEADO (Nombre, Apellidos, <u>DNI</u>, Dirección, Sueldo, Num Dpto)

NumDpto es FK de departamento(NúmerpDept)

DEPARTAMENTO (Nombre, Número Dept, DNI Director, Fechalni Director)
 DNi Director es FK de Empleado (dni)

PROYECTO (Nombre, Número Proyecto, Ubicación, Num Dpto *)

NumDpto es FK de departamento(NúmeroDept)

TRABAJA_EN (<u>NúmeroProyecto</u>, <u>DNIEmp</u>, Horas)

DNIEmp es FK de Empleado(DNI)

- Tipos de relaciones en ER
 - ▶ R. Ternaria "S" con al menos dos entidades con cardinalidad (1,N)
 - Se crea una nueva relación con el mismo nombre S con
 - □ Los atributos propios del tipo de relación S del ER
 - □ los atributos de las claves primarias de los tipos de las entidad participantes
 - □ Juntos formarán la clave de S
 - □ Se marcan como FK esos atributos (de las claves P. de cada entidad)
 - NOTA:
 - ▶ Si hay entidad con cardinalidad (1,1),
 - los atrib. de la CP de dicha entidad no serán parte de la clave primaria de S
 - □ Aunque <u>sí</u> se incluyen en S y se marcan como FK

- Tipos de relaciones en ER
 - R. Ternaria "S" con solo una entidad con cardinalidad (1,N)
 - No se crea una nueva relación
 - los atributos de la clave de las dos entidades con cardinalidad (1,1)
 - □ se incluyen en la entidad con cardinalidad (1,N)
 - □ Y además pasan a ser la clave primaria de esa entidad
 - □ Se marcan esos atributos como FK

24

SUMINISTRO

SUMINISTRO

Tipos de relaciones en ER

Relaciones recursivas se aplican las reglas en función de la cardinalidad de participación.

EMPLEADO

- Generalización y especialización en ER
- se tratan igual que en el caso de las entidades débiles sin clave parcial

VEHICULO Número Chasis Matrícula Precio **CAMION Número Chasis Ejes Toneladas** COCHE **Velocidad Número Chasis Plazas MOTO Número Chasis** Cilindrada

- Agregaciones en ER
- Las entidades o relaciones dentro o fuera de una agregación
 - Siguen las mismas normas
- Para la relación R que asocia la agregación a otra entidad
 - Crear una relación M.R. con
 - ▶ los atributos de R,
 - los de la clave primaria de la entidad externa a la agregación y
 - los de la clave primaria de la relación dentro de la agregación con la que se asocia
 - La clave primaria se decide de la forma habitual
 - > según el tipo de restricción de cardinalidad de la relación externa

Aclaración de términos:

- círculo negro: Clave primaria
- o círculo vacío: Atributo normal

Participación:

Optional es "parcial" **Mandatory** es "total"

* asterísco: Pueden tener valor "null"

"external identifiers" círculo negro con línea: la relación necesita atributos de otras entidades para formar clave primaria

Туре	Initial schema	Possible translation
One-to-one relationship with mandatory participation for both entities	E ₁ A _{E11} O A _{E12} R O A _R (1,1) O A _{E22} E ₂ O A _{E22}	$E_{1}(\underline{A_{E11}}, A_{E12}, \underline{A_{E21}}, A_{R})$ $E_{2}(\underline{A_{E21}}, A_{E22})$ Alternatively: $E_{2}(\underline{A_{E21}}, A_{E22}, \underline{A_{E11}}, A_{R})$ $E_{1}(\underline{A_{E11}}, A_{E12})$
One-to-one relationship with optional participation for one entity	E ₁ A _{E11} R A _{E12} R A _{E21} A _{E21} A _{E22}	E ₁ (A _{E11} ,A _{E12} ,A _{E21} ,A _R) E ₂ (A _{E21} ,A _{E22})

Туре	Initial schema	Possible translation
Binary many-to-many relationship	E ₁ A _{E11} A _{E12} (X,N) A _R (X,N) A _{E21} E ₂ A _{E22}	E ₁ (A _{E11} ,A _{E12}) E ₂ (A _{E21} ,A _{E22}) R(A _{E11} ,A _{E21} ,A _R)
Ternary many-to-many relationship	E ₁ A _{E11} A _{E12} E ₃ (XN) (XN) A _R (XN) A _{E31} A _{E32} E ₂ A _{E21} A _{E22}	E ₁ (A _{E11} ,A _{E12}) E ₂ (A _{E21} ,A _{E22}) E ₃ (A _{E31} ,A _{E32}) R(A _{E11} ,A _{E21} ,A _{E31} ,A _R
One-to-many relationship with mandatory participation	E ₁ O A _{E12} R O A _{E12} R O A _{E21} E ₂ O A _{E22}	E ₁ (A _{E11} ,A _{E12} ,A _{E21} ,A _R

Туре	Initial schema	Possible translation
One-to-many relationship with optional participation	E ₁ A _{E11} (0,1) A _{E12} (0,1) A _{E12} (X,N) A _{E21} (X,N) A _{E22}	$E_{1}(\underline{A_{E11}}, A_{E12})$ $E_{2}(\underline{A_{E21}}, A_{E22})$ $R(\underline{A_{E11}}, \underline{A_{E21}}, A_{R})$ $Alternatively:$ $E_{1}(\underline{A_{E11}}, A_{E21}, A_{E21}^{*}, A_{R}^{*})$ $E_{2}(\underline{A_{E21}}, A_{E22})$
Relationship with external identifiers	E ₁	E ₁ (A _{E12} , A _{E21} , A _{E11} , A _R) E ₂ (A _{E21} , A _{E22})