Deep Reinforcement Learning

David Silver, Google DeepMind

Presented by Khimya Khetarpal McGill University , Mila Montreal

IVADO/MILA Summer School - 2019 Slides merged from two different talks/lectures of David Silver

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

■ Backgammon: 10²⁰ states

■ Computer Go: 10¹⁷⁰ states

Helicopter: continuous state space

Value Function Approximation

- So far we have represented value function by a *lookup table*
 - **E**very state s has an entry V(s)
 - Or every state-action pair s, a has an entry Q(s, a)
- Problem with large MDPs:
 - There are too many states and/or actions to store in memory
 - It is too slow to learn the value of each state individually
- Solution for large MDPs:
 - Estimate value function with function approximation

$$\hat{v}(s,\mathbf{w})pprox v_{\pi}(s)$$
 or $\hat{q}(s,a,\mathbf{w})pprox q_{\pi}(s,a)$

- Generalise from seen states to unseen states
- Update parameter w using MC or TD learning

Types of Value Function Approximation

Which Function Approximator?

There are many function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

Which Function Approximator?

We consider differentiable function approximators, e.g.

- Linear combinations of features
- Neural network
- Decision tree
- Nearest neighbour
- Fourier / wavelet bases
- ...

Furthermore, we require a training method that is suitable for non-stationary, non-iid data

Gradient Descent

- Let $J(\mathbf{w})$ be a differentiable function of parameter vector \mathbf{w}
- Define the *gradient* of $J(\mathbf{w})$ to be

$$\nabla_{\mathbf{w}} J(\mathbf{w}) = \begin{pmatrix} \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_1} \\ \vdots \\ \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}_n} \end{pmatrix}$$

- To find a local minimum of $J(\mathbf{w})$
- Adjust **w** in direction of -ve gradient

$$\Delta \mathbf{w} = -\frac{1}{2} \alpha \nabla_{\mathbf{w}} J(\mathbf{w})$$

where α is a step-size parameter

Action-Value Function Approximation

Approximate the action-value function

$$\hat{q}(S,A,\mathbf{w})pprox q_{\pi}(S,A)$$

• Minimise mean-squared error between approximate action-value fn $\hat{q}(S, A, \mathbf{w})$ and true action-value fn $q_{\pi}(S, A)$

$$J(\mathbf{w}) = \mathbb{E}_{\pi}\left[\left(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w})\right)^{2}\right]$$

Use stochastic gradient descent to find a local minimum

$$-\frac{1}{2}\nabla_{\mathbf{w}}J(\mathbf{w}) = (q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$
$$\Delta\mathbf{w} = \alpha(q_{\pi}(S,A) - \hat{q}(S,A,\mathbf{w}))\nabla_{\mathbf{w}}\hat{q}(S,A,\mathbf{w})$$

Linear Action-Value Function Approximation

Represent state and action by a feature vector

$$\mathbf{x}(S,A) = \begin{pmatrix} \mathbf{x}_1(S,A) \\ \vdots \\ \mathbf{x}_n(S,A) \end{pmatrix}$$

Represent action-value fn by linear combination of features

$$\hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)^{\top} \mathbf{w} = \sum_{j=1}^{n} \mathbf{x}_{j}(S, A) \mathbf{w}_{j}$$

Stochastic gradient descent update

$$\nabla_{\mathbf{w}} \hat{q}(S, A, \mathbf{w}) = \mathbf{x}(S, A)$$
$$\Delta \mathbf{w} = \alpha (q_{\pi}(S, A) - \hat{q}(S, A, \mathbf{w})) \mathbf{x}(S, A)$$

Batch Reinforcement Learning

- Gradient descent is simple and appealing
- But it is not sample efficient
- Batch methods seek to find the best fitting value function
- Given the agent's experience ("training data")

Least Squares Prediction

- Given value function approximation $\hat{v}(s, \mathbf{w}) \approx v_{\pi}(s)$
- And *experience* \mathcal{D} consisting of $\langle state, value \rangle$ pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

- Which parameters **w** give the *best fitting* value fn $\hat{v}(s, \mathbf{w})$?
- Least squares algorithms find parameter vector \mathbf{w} minimising sum-squared error between $\hat{v}(s_t, \mathbf{w})$ and target values v_t^{π} ,

$$egin{aligned} LS(\mathbf{w}) &= \sum_{t=1}^T (v_t^\pi - \hat{v}(s_t, \mathbf{w}))^2 \ &= \mathbb{E}_{\mathcal{D}}\left[(v^\pi - \hat{v}(s, \mathbf{w}))^2
ight] \end{aligned}$$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

1 Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Stochastic Gradient Descent with Experience Replay

Given experience consisting of *(state, value)* pairs

$$\mathcal{D} = \{\langle s_1, v_1^\pi \rangle, \langle s_2, v_2^\pi \rangle, ..., \langle s_T, v_T^\pi \rangle\}$$

Repeat:

1 Sample state, value from experience

$$\langle s, v^{\pi} \rangle \sim \mathcal{D}$$

2 Apply stochastic gradient descent update

$$\Delta \mathbf{w} = \alpha (\mathbf{v}^{\pi} - \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})) \nabla_{\mathbf{w}} \hat{\mathbf{v}}(\mathbf{s}, \mathbf{w})$$

Converges to least squares solution

$$\mathbf{w}^{\pi} = \underset{\mathbf{w}}{\operatorname{argmin}} \ LS(\mathbf{w})$$

Deep Reinforcement Learning

- Can we apply deep learning to RL?
- Use deep network to represent value function / policy / model
- Optimise value function / policy /model end-to-end
- Using stochastic gradient descent

Bellman Equation

Value function can be unrolled recursively

$$Q^{\pi}(s, a) = \mathbb{E}\left[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a\right]$$

= $\mathbb{E}_{s'}\left[r + \gamma Q^{\pi}(s', a') \mid s, a\right]$

▶ Optimal value function $Q^*(s, a)$ can be unrolled recursively

$$Q^*(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q^*(s',a') \mid s,a
ight]$$

Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}\left[r + \gamma \max_{a'} Q_i(s',a') \mid s,a
ight]$$

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

- Take action a_t according to ϵ -greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- **Compute Q-learning targets** w.r.t. old, fixed parameters w^-
- Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}_i(w_i) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}_i} \left[\left(r + \gamma \max_{a'} Q(s',a';w_i^-) - Q(s,a;w_i) \right)^2 \right]$$

Using variant of stochastic gradient descent

Deep Q-Learning

► Represent value function by deep Q-network with weights w

$$Q(s, a, w) \approx Q^{\pi}(s, a)$$

▶ Define objective function by mean-squared error in Q-values

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \max_{a'} Q(s', a', w)}_{\text{target}} - Q(s, a, w)\right)^{2}\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

▶ Optimise objective end-to-end by SGD, using $\frac{\partial L(w)}{\partial w}$

Stability Issues with Deep RL

Naive Q-learning oscillates or diverges with neural nets

- 1. Data is sequential
 - Successive samples are correlated, non-iid
- 2. Policy changes rapidly with slight changes to Q-values
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
- 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be large unstable when backpropagated

Deep Q-Networks

DQN provides a stable solution to deep value-based RL

- 1. Use experience replay
 - Break correlations in data, bring us back to iid setting
 - Learn from all past policies
- 2. Freeze target Q-network
 - Avoid oscillations
 - Break correlations between Q-network and target
- 3. Clip rewards or normalize network adaptively to sensible range
 - Robust gradients

Stable Deep RL (1): Experience Replay

To remove correlations, build data-set from agent's own experience

- ▶ Take action a_t according to ϵ -greedy policy
- ▶ Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory \mathcal{D}
- ▶ Sample random mini-batch of transitions (s, a, r, s') from \mathcal{D}
- Optimise MSE between Q-network and Q-learning targets, e.g.

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^{2} \right]$$

Stable Deep RL (2): Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target

► Compute Q-learning targets w.r.t. old, fixed parameters w⁻

$$r + \gamma \max_{a'} Q(s', a', w^-)$$

Optimise MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim \mathcal{D}} \left[\left(r + \gamma \max_{a'} Q(s', a', \mathbf{w}^{-}) - Q(s, a, \mathbf{w}) \right)^{2} \right]$$

▶ Periodically update fixed parameters $w^- \leftarrow w$

Stable Deep RL (3): Reward/Value Range

- ▶ DQN clips the rewards to [-1, +1]
- ► This prevents Q-values from becoming too large
- Ensures gradients are well-conditioned
- Can't tell difference between small and large rewards

Reinforcement Learning in Atari

DQN in Atari

- ▶ End-to-end learning of values Q(s, a) from pixels s
- ▶ Input state *s* is stack of raw pixels from last 4 frames
- ▶ Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step

Network architecture and hyperparameters fixed across all games [Mnih et al.]

DQN Results in Atari

How much does DQN help?

DQN

	Q-learning	Q-learning	Q-learning	Q-learning
			+ Replay	+ Replay
		+ Target Q		+ Target Q
Breakout	3	10	241	317
Enduro	29	142	831	1006
River Raid	1453	2868	4103	7447
Seaquest	276	1003	823	2894
Space Invaders	302	373	826	1089

Conclusion

- RL provides a general-purpose framework for AI
- RL problems can be solved by end-to-end deep learning
- ▶ A single agent can now solve many challenging tasks
- ► Reinforcement learning + deep learning = AI

Questions?			

"The only stupid question is the one you never ask" -Rich Sutton