

flip flop A Each f/f must change state instantly at the same time, otherwise we might end up at the wrong state

We can use a <u>master-slave</u> approach to make sure that changes propagate instantly.

The clock behaves as such:

When D and C are 1 the state of the master becomes 1. the only way to change the value of the circuit (master) is for C to change from 1 to 0 (negative edge)

When clock is 1, y is a copy of the input when clock is 0, y doesn't change

Q is a copy of y when clock is 0, no change when clock is 1

Problem statement: Design the clocked sequential circuit for the

below specification using JK flip flops.

0	→	1	by	۹	1	
1	-	2	by	a	0	
2	→	3	by	a	1	
ъ	\rightarrow	0	by	a	1	

->	1 by 2 by 3 by 0 by	a 0		01
Q(t)	Q(t+1)	J	K	

KMaps

Q(t)	Q(t + 1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
	(b) <i>JK</i>		
	ı		

Present State Q(t)		In put	Next State Q(t+1)		f/f in puts					
	A	B	×	A	В	JA	IL.	J_{A}	KA	
	0	0	0	0	0	0	×	O	×	V
	0	0	t	0	ſ	0	×	١	X	
	0	١	0	1	0	١	X	X	1	
	0	(١	0		ð	×	X	0	
	1	0	0	1	0	X	0	0	X	
	t	0	1	ĺ	1	X	0	l	×	
	١	١	0	1	1	×	٥	X	0	
	ı	١	1	0	0	×	1	X	1	
						•				7

 $2^{4} = Bx$, $K^{4} = BX$