2. Matrices

Let us Recall

- If A and B are square matrices of the same order such that AB = BA = I then A and B are called inverses of each other. We denote inverse of A by A^{-1} .
- If A is a non singular matrix then $A^{-1} = \frac{1}{|A|} adjA$.

Ex. (1) If $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$ then find matrices X and Y

$$AX = B$$
 and $YB = A$.

Solution: Consider the matrix equation AX = B

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_1$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 1 & 2 & 4 \end{bmatrix}$$

$$R_2 \rightarrow \frac{1}{2} R_2$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 2 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\ 1 & 2 & 4 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - 2R_2$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & -3 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\ 0 & 1 & -1 \end{bmatrix}$$

$$R_{3} \to -\frac{1}{3}R_{3}$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ \frac{1}{2} & \frac{1}{2} & \frac{5}{2} \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$R_1 \to R_1 - R_3$$
 , $R_2 \to R_2 - \frac{3}{2}R_3$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & \frac{7}{3} & \frac{8}{3} \\ \frac{1}{2} & 1 & 2 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

$$\therefore X = \begin{bmatrix} 1 & \frac{7}{3} & \frac{8}{3} \\ \frac{1}{2} & 1 & 2 \\ 0 & -\frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

Now consider the equation YB = A

$$Y \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$$

$$C_2 \to C_2 - 2C_1, C_3 \to C_3 - 3C_1$$

$$Y \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -2 \\ 0 & 2 & 3 \\ 1 & 0 & -2 \end{bmatrix}$$

$$C_2 \rightarrow -1C_2$$

$$Y \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -2 \\ 0 & -2 & 3 \\ 1 & 0 & -2 \end{bmatrix}$$

$$C_1 \to C_1 - C_2$$
 , $C_3 \to C_3 - 2C_2$

$$Y \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -6 \\ 2 & -2 & 7 \\ 1 & 0 & -2 \end{bmatrix}$$

$$C_1 \rightarrow C_1 - 2C_3$$

$$Y \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 2 & -6 \\ -12 & -2 & 7 \\ 5 & 0 & -2 \end{bmatrix}$$

$$\therefore Y = \begin{bmatrix} 11 & 2 & -6 \\ -12 & -2 & 7 \\ 5 & 0 & -2 \end{bmatrix}$$

Ex. (2) Show that following system of equations has unique solution. Find its solution by the reduction method.

$$x + y + z = 2,$$

$$x-2y+z=8,$$

$$3x + y + z = 4$$

Solution: We write the given system of equations in matrix equation as:

AX = B, where
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ 8 \\ 4 \end{bmatrix}$

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 4 \end{bmatrix}$$

$$|A| = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 3 & 1 & 1 \end{vmatrix} = 1(-3) - 1(-2) + 1(7) = 6$$

As $|A| \neq 0$, A is non-singular.

:. Given system has unique solution.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 8 \\ 4 \end{bmatrix}$$

$$R_2 \to R_2 - R_1, \quad R_3 \to R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & -2 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix}$$

$$R_3 \rightarrow -\frac{1}{2} R_3$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 1 \end{bmatrix}$$

$$R_3 \to R_3 + \frac{1}{3} R_2$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}$$

$$\therefore x + y + z = 2$$

$$-3y = 6$$

$$z = 3$$

$$x = 1, y = -2, z = 3$$

Ex. (3) If
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$
 then verify that $A \times (adjA) = (adjA) \times A = \begin{bmatrix} adjA \\ 1 & 0 & 3 \end{bmatrix}$

Solution:
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$|A| = (1) \begin{vmatrix} 0 & 2 \\ 0 & 3 \end{vmatrix} - (-1) \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} + (2) \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 1(0) + 1(7) + 2(0) = ...7$$

$$\therefore |A| = .7.$$

Let us find minors and cofactors. $A_{ij} = (-1)^{i+j} M_{ij}$

$$A_{11} = (-1)^2 \begin{vmatrix} 0 & 2 \\ 0 & 3 \end{vmatrix} = 0 , A_{12} = (-1)^3 \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = 0, A_{13} = (-1)^4 \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} = 0$$

$$A_{21} = (-1)^3 \begin{vmatrix} -1 & 2 \\ 0 & 3 \end{vmatrix} = 3$$
 $A_{22} = (-1)^4 \begin{vmatrix} 1 & 2 \\ 1 & 3 \end{vmatrix} = 1$ $A_{23} = (-1)^5 \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} = ...$

$$A_{31} = (-1)^4 \begin{vmatrix} ... & 2 \\ ... & 2 \end{vmatrix} = ... A_{32} = (-1)^5 \begin{vmatrix} ... & 2 \\ ... & 2 \end{vmatrix} = ... A_{33} = (-1)^6 \begin{vmatrix} 1 & -1 \\ 3 & 0 \end{vmatrix} = 3$$

$$\therefore \text{ The matrix of cofactors is } \begin{bmatrix} 0 & -7 & 0 \\ 3 & 1 & -1 \\ -2 & 4 & 3 \end{bmatrix}$$

The transpose of the cofactor matrix is the adjoint of A.

$$\therefore adj \ A = \begin{bmatrix} 0 & 3 & -2 \\ -7 & 1 & 4 \\ 0 & -1 & 3 \end{bmatrix}$$

$$A \times adj \ A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & -2 \\ -7 & 1 & 4 \\ 0 & -1 & 3 \end{bmatrix}$$

$$\therefore A \times adj \ A = \begin{bmatrix} .7. & 0 & 0 \\ 0 & .7. & 0 \\ 0 & 0 & .7. \end{bmatrix} = 7I = |A| \times I \dots (1)$$

$$adj \ A \times A = \begin{bmatrix} .0 & 3. & -2. \\ -.7 & 1. & 4. \\ 0 & -1 & 3. \end{bmatrix} \begin{bmatrix} .1 & -1 & 2. \\ 3. & 0. & 2. \\ 1. & 0. & 3 \end{bmatrix}$$

$$\therefore adj \ A \times A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} = 7I = |A| \times I \dots (2)$$

From (1) and (2) we get $A \times adj A = (adj A) \times A = |A| \times I$

Ex. (4) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$$
 then find A^{-1} by elementary column transformations.

Solution:
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix}$$

As $|A| \neq 0$, A is non singular.

$$\therefore A^{-1}$$
 exist.

$$A^{-1} A = I$$

$$A^{-1} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_2 \to C_2 - 2C_1, C_3 \to C_3 - 3C_1$$

$$A^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 2 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} .! & -2 & -3 \\ .! & ... & -3 \\ .! & ... & ... \\ .! & ... & ... \end{bmatrix}$$

$$C_2 \rightarrow + 1C_2$$

$$A^{-1} \begin{bmatrix} .1 & .0 & 0 \\ .1 & .1 & 2 \\ .2 & .0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_1 \rightarrow C_1 - C_2$$
, $C_3 \rightarrow C_3 - 2C_2$

$$A^{-1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 2 & -7 \\ 1 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$C_1 \rightarrow C_1 - 2C_3$$

$$A^{-1} \begin{bmatrix} ... & ... & ... \\ ... & ... & ... \\ ... & ... & ... \end{bmatrix} = \begin{bmatrix} 13 & 2 & -7 \\ -3 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 13 & 2 & -7 \\ -3 & -1 & 2 \\ -2 & 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} = A H (8)$$

Ex.(5) Show that matrix
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
 is invertible. Find its inverse by adjoint A solution : $A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Solution :
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$|A| = (0) \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} - (0) \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} + (1) \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = 0 - 0 - 1 = -1$$

$$|A| = \overline{A}$$

As $|A| \neq 0$, A is invertible.

As $|A| \neq 0$, A is invertible. $\therefore A^{-1}$ exist. Let us find minors and cofactors. $A_{ij} = (-1)^{i+j} M_{ij}$

$$A_{11} = (-1)^{2} \begin{vmatrix} .1 & 0 \\ .0 & 0 \end{vmatrix} = .0, \quad A_{12} = (-1)^{3} \begin{vmatrix} .0 & 0 \\ .1 & 0 \end{vmatrix} = .0, \quad A_{13} = (-1)^{4} \begin{vmatrix} .0 & 1 \\ .1 & 0 \end{vmatrix} = .0$$

$$A_{21} = (-1)^3 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = 0, \quad A_{22} = (-1)^4 \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1, \quad A_{23} = (-1)^5 \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} = .0$$

$$A_{31} = (-1)^4 \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = \frac{1}{1} A_{32} = (-1)^5 \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} = \frac{1}{1} A_{33} = (-1)^6 \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = 0$$

$$\therefore \text{ The matrix of cofactors is } \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 28 + 48 \\ 53 + 48 \end{bmatrix}$$

The transpose of the cofactor matrix is the adjoint of A.

9(+24 +32 = -3 - (I)

$$\therefore adj A = \begin{bmatrix} .0 & .0 & -1 \\ .0 & -1 & .0 \\ -1 & .0 & .0 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} adj A = \frac{1}{-1} \begin{bmatrix} .Q & .Q & ... \\ .Q & ... ! & .Q \\ ... & .Q & .Q \end{bmatrix} = \begin{bmatrix} .Q & .Q & ... \\ .Q & .J & .Q \\ ... & .Q & .Q \end{bmatrix}$$

Ex. (6) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -3 \\ -6 \\ -9 \end{bmatrix}$ and $AX = B$ then find X .

Solution:

where
$$\chi = \begin{bmatrix} \chi \\ y \\ z \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_0$$

by equality of matrices

$$34 + 62 = -15 - (I)$$

$$3y = -15 + 36$$

$$x = -3+4$$

(I) 0 -1 0 = 1 8

[0 0 1-]

T.

Ex. (7) If $A = \begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix}$ then find matrix B such that AB = I. Verify

ic equation is called a principal solution	
Solution:	$R_2 \rightarrow R_2 - 5R_1, R_3 \rightarrow R_3 - R_1$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
A= 5 10	[0 0 1] [0 0]
	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \overrightarrow{A}^{1} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$
$ A = \begin{vmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \end{vmatrix}$	1 2 1 -1 0 1
131	
= 1 (1-0)-0(5-0)+0(15-1)	···R·3 3.R2
= 1-0+0	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \overrightarrow{A^{1}} = \begin{bmatrix} 1 & 0 & 0 \\ -5 & 1 & 0 \\ 14 & -3 & 1 \end{bmatrix}$
A =	
	[14-3]
IAI ≠ 0	
A is non singular	$I A = \begin{bmatrix} -5 & 1 & 0 \\ -5 & 1 & 0 \\ 14 & -3 & 1 \end{bmatrix}$
: A exist	14 -3 1
vow we will find matrix B	
Such that AB=I	B = -5 1 0 from (I)
multiplying by A-1 on bis	14 -3 1
A-1 A B = A-1 I	
$IB = A^{-1} : A^{-1}A = I$	we know that
: B = A' (I)	AA=I
	but A = B
Now AAT = I	, BA = I
$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	
[131] [011]	Hence Verified.
Sign of Teacher:	