YTU – Faculty of Arts and Sciences Exam Questions and Solutions Sheet	Score Table					
	1. q	2. q	3. q	4.q		TOTAL
					1 1	
Group No						
		Date			08.11. 2019	
MAT1320 Linear Algebra	Duration		nl.		Room	
nunun <i>Öğrenci Disiplin Yönetmeliğinin</i> 9. Maddes					<u> </u>	- tramak
	Group No MAT1320 Linear Algebra	Group No MAT1320 Linear Algebra	Group No Group No Duration MAT1320 Linear Algebra Duration	guestions and Sciences Questions and Solutions Sheet Group No Date MAT1320 Linear Algebra Duration Sign	guestions and Sciences 1. q 2. q 3. q 4.q	guestions and Sciences 1. q 2. q 3. q 4. q

1) Using elementary row operations, find the inverse of the matrix
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 0 & 1 \\ 2 & 3 & 0 \end{pmatrix}$$
.

$$\begin{bmatrix}
1 & 0 & 2 & : & 1 & 0 & 0 \\
0 & 3 & 4 & : & -2 & 0 & 1
\end{bmatrix}
\xrightarrow{\int_{3} -\frac{1}{3} \cdot \int_{3}}
\begin{bmatrix}
1 & 0 & 2 & : & 1 & 0 & 0 \\
0 & 3 & -4 & : & -2 & 0 & 1
\end{bmatrix}
\xrightarrow{\int_{2} -\frac{1}{2} \cdot \int_{3}^{2} +\frac{1}{3} \cdot \int_{3}^{2} -\frac{1}{3} \cdot \int_{3}^{2}$$

Good Luck...

2) $n \times n$ tipinde bir $A = (a_{ij})$ matrisinin izi Tr(A) ile gösterilsin.

$$n \times n$$
 tipinde bir $A = (a_{ij})^n$
a) $Tr(A^T A) \ge 0$ olduğunu gösteriniz. (13 Puan)

$$A^{T}A = B = \begin{pmatrix} bij \end{pmatrix} \text{ olsum}.$$

$$b_{ii} = \sum_{j=1}^{n} a_{ij} a_{ji} = \sum_{j=1}^{n} a_{ji}$$

$$Tr(B) = Tr(A^{T}A) = \sum_{i=1}^{n} b_{ii}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} = \sum_{i=1}^{n} a_{ij} = \sum_{i=1$$

acadeceles

b) $AB-BA=I_2$ eşitliğini sağlayan 2×2 tipinde A ve B matrislerinin var olmadığını gösteriniz. (12 Puan)

Başarılar...

3) Suppose that $f: \mathbb{R} \to M_2(\mathbb{R})$ is a function from the set of real numbers to the set $M_2(\mathbb{R})$ of 2×2 matrices

such that
$$f(x) = \begin{pmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{pmatrix}$$
.

a) Show that f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$.

$$f(x) f(y) = \begin{pmatrix} \cos x - \sin x \\ \sin x \cos x \end{pmatrix} \begin{pmatrix} \cos y - \sin y \\ \sin y \cos y \end{pmatrix}$$

$$= \left(\cos(x+y) - \sin(x+y) \right) = f(x+y)$$

$$\leq \sin(x+y) \cos(x+y)$$

b) Show that f(x) is an orthogonal matrix for all x in $\mathbb R$.

$$f(x).(f(x))^T = I_2$$
 olmah.

$$\begin{cases}
\frac{f(x)}{f(x)} = \frac{1}{2} \\
\cos x - \sin x
\end{cases} = \frac{\cos x + \sin x}{\sin x} = \frac{\cos x}{\sin x} = \frac$$

$$=\begin{pmatrix}0&1\\\end{pmatrix}$$

Good Luck...

4)
$$A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 2 & 0 \\ 3 & -2 & 1 \end{pmatrix}$$
 matrisi verilsin.

a) Ek(A) ve det(A)'yı hesaplayınız. (13 Puan)

$$E\mu(A) = \begin{pmatrix} \begin{vmatrix} 2 & 0 \\ -2 & 1 \end{vmatrix} & - \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} & \begin{pmatrix} 1 & 3 \\ 2 & 0 \end{vmatrix} \\ - \begin{vmatrix} -1 & 0 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 3 \\ 3 & 1 \end{vmatrix} & - \begin{vmatrix} 2 & 3 \\ -1 & 0 \end{vmatrix} \\ \begin{vmatrix} 3 & 2 \\ 3 & -2 \end{vmatrix} & - \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ -1 & 2 \end{vmatrix} \\ - \begin{vmatrix} 2 & 1 \\ 3 & -2 \end{vmatrix} &$$

$$det(A) = 3 det \begin{pmatrix} -1 & 2 \\ 3 & -2 \end{pmatrix} - 0 det \begin{pmatrix} 2 & 1 \\ 3 & -2 \end{pmatrix} + 1 det \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}$$

$$= 3(-4) + 5 = -12 + 5 = 7$$

b) $Ek(A)A = det(A)I_3$ eşitliğinin doğru olduğunu gösteriniz. (12 Puan)

$$EV(A)A = \begin{pmatrix} 2 & -3 & -6 \\ 1 & -4 & -3 \\ -1 & 2 & 0 \\ 3 & 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -7 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & -7 \end{pmatrix} = dt(A) \cdot I_3$$

Başarılar...