Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch Adiabatenexponent Protokoll

Praktikant: Michael Lohmann

Skrollan Detzler

E-Mail: m.lohmann@stud.uni-goettingen.de

skrollan.detzler@stud.uni-goettingen.de

Versuchsdatum: 16.6.2014

Betreuer: Martin Ochmann

Testat:

Inhaltsverzeichnis

Inhaltsverzeichnis

Lit	teratur	5
5	Diskussion	5
4	Auswertung4.1 Messung nach Rüchard	3 3 4
3	Durchführung	3
2	Theorie	3
1	Einleitung	3

1 Einleitung

Der Adiabatenexponent ist ein wichtiges Kennzeichen von Gasen. Er beschreibt das Verhältnis des Wärmespeicherkoeffizienten bei konstantem Druck zu dem mit konstantem Volumen ([Mes10, S. 263]). In der Regel wird er mit κ bezeichnet.

2 Theorie

3 Durchführung

4 Auswertung

4.1 Messung nach Rüchard

Die aufbauspezifischen Daten unseres Versuchs lauten: Da beim schwingenden Gewicht

Messgröße	Messwert
Masse	m = 4.88 g
Durchmesser	d = 9.97 mm
Volumen	$V = 2300.45 \text{ cm}^3$
Luftdruck	$b_1 = 1015.8 \text{ hPa}$
- nachher	$b_2 = 1015.5 \text{ hPa}$
Temperatur	$T_1 = 25.9^{\circ} \text{ C}$
- nachher	$T_2 = 23.6^{\circ} \text{ C}$

Tabelle 1: Versuchsspezifische Größen

in der Röhre zusätzlich noch das sich darin befindliche Gas bewegt werden muss, ist die effektive Masse $m_{\rm eff}$ höher:

$$m_{\text{eff}} = m + \rho_L \cdot A \cdot l$$
$$\sigma_{m_{\text{eff}}} = \sigma_l \cdot \rho_l \cdot A$$

Der daraus resultierende Druck p wird durch

$$p = b + \frac{m_{\text{eff}} g}{A}$$
$$\sigma_p = \sqrt{\sigma_b^2 + \sigma_{m_{\text{eff}}}^2 \left(\frac{g}{A}\right)^2}$$

berechnet. Die Werte für unseren Versuch sind in Tabelle 2 dargestellt.

Gas	$m_{\rm eff}$ [g]	p [hPa]
CO_2	4.8983 ± 0.0005	1021.81 ± 0.10
Argon	4.8917 ± 0.0005	1021.80 ± 0.10
Luft	4.8964 ± 0.0005	1021.80 ± 0.10

Tabelle 2: Effektive Masse zu den einzelnen Gasen und die daraus resultierenden Drücke

Gas	Schwingungen	Periodendauer [ms]	κ
	1	762.1 ± 1.1	1.2299 ± 0.0034
	10	762.23 ± 0.24	1.2294 ± 0.0008
CO_2	20	763.29 ± 0.11	1.2261 ± 0.0004
	50	763.39 ± 0.12	1.2257 ± 0.0004
	100	762.70 ± 0.22	1.2279 ± 0.0007
	1	685.8 ± 1.0	1.517 ± 0.004
	10	686.5 ± 0.4	1.5138 ± 0.0019
Argon	20	686.48 ± 0.27	1.5137 ± 0.0012
	50	686.48 ± 0.15	1.5137 ± 0.0007
	100	686.33 ± 0.06	1.51441 ± 0.00034
	1	737.4 ± 1.0	1.313 ± 0.004
	10	737.4 ± 0.4	1.3133 ± 0.0013
Luft	20	737.96 ± 0.25	1.3112 ± 0.0009
	50	738.6 ± 0.5	1.3090 ± 0.0020
	100	739.1 ± 0.5	1.3072 ± 0.0019

Tabelle 3: Schwingungszeiten unterschiedlicher Gase und die resultierenden κ

$$\kappa = \frac{4\pi^2 \cdot m_{\text{eff}} \cdot V}{T^2 \cdot p \cdot d^4}$$

$$\sigma_{\kappa} = \frac{4\pi^2 V}{T^3 d^4 p^2} \cdot \sqrt{\left(T m_{\text{eff}}\right)^2 \cdot \sigma_p^2 + \left(T p\right)^2 \cdot \sigma_{m_{\text{eff}}}^2 + \left(2 m_{\text{eff}} \ p\right)^2 \cdot \sigma_T^2}$$

4.2 Messung nach Clement-Desormes

Da gilt $\kappa = \frac{\Delta p_1}{\Delta p_1 - \Delta p_2}$ folgt aus der Proportionalität des Drucks zur Steighöhe (nach ??S. 457]giancoli gilt: $p = \rho gh$):

$$\kappa = \frac{\Delta h_1}{\Delta h_1 - \Delta h_2}$$

$$\sigma_{\kappa} = \frac{1}{\left(\Delta h_1 - \Delta h_2\right)^2} \cdot \sqrt{\Delta h_1^2 \cdot \sigma_{\Delta h_2}^2 + \Delta h_2^2 \cdot \sigma_{\Delta h_1}^2}$$

Für unsere Messwerte haben wir die gewichteten Mittelwerte in Tabelle 4 vermerkt.

Öffnungszeit [s]	κ
0.1	1.130 ± 0.014
1.0	1.133 ± 0.013
5.0	1.106 ± 0.014

Tabelle 4: Gew. Mittelwerte von κ zu den jeweiligen Öffnungszeiten

5 Diskussion

In der Tabelle der versuchsspezifischen Größen 1 fällt auf, dass sich die Temperatur im Versuchsraum während der Messungen um über 2° C geändert hat. Dies verfälscht die Messwerte, so dass für zukünftige Messungen empfehlenswert ist, zumindest die Fenster zu schließen, so unangenehm dies auch ist. Noch besser wäre allerdings ein klimatisierter Raum.

Literatur

[Mes10] Meschede, Dieter: Gerthsen Physik. Springer-Verlag, Berlin Heidelberg, 24. Auflage, 2010, ISBN 978-3-642-12893-6.