260-2017-11-03-pain

Rick Gilmore 2017-11-02 11:11:42

Prelude I (5:56)

Prelude II (4:56)

Today's Topics

- Wrap up on somatosensation
- Pain
- Blog #2 deadline today

Size/speed trade-off

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Αα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5–2

BIOLOGICAL PSYCHOLOGY, Fourth Edition, Table 8.2 © Sinauer Associates, Inc.

From skin to brain

- Cutaneous receptors
- Dorsal root ganglion
- Ventral posterior lateral thalamus
- Primary somatosensory cortex (S1)
 - Parietal lobe

Dermatomes

BIOLOGICAL PEPCHOLOGY, Faurth Edition, Figure 8.16 (Part 2): 0.0001 (Insure Associates, Inc.

Dermatomes

Functional segregation

Functional segregation

- Dorsal column/medial leminiscal pathway
 - Touch, proprioception
- Spinothalamic tract
 - Pain, temperature

Somatatopic maps

Non-uniform mapping of skin surface

Non-uniform mapping of skin surface

http://jov.arvojournals.org/data/Journals/JOV/933499/jov-3-10-1-fig001.jpeg

Columnar organization/functional segregation

Phantom Limbs

What/where

- Perceiving Where
 - Somatotopic maps where on skin
 - Kinesthesia configuration of limbs
- Perceiving What
 - Patterns of smoothness, roughness, shape, temperature

Somatosensation in other animals

The neuroscience of pain

- Nociceptors (Latin nocere to harm or hurt) detect harmful or potentially harmful stimuli of varied types:
 - chemical
 - mechanical
 - thermal

Nociception

- External
 - Skin, cornea (eye), mucosa
- Internal
 - Muscles, joints, bladder, gut

Interoception

- Receptors for
 - metabolism (acidic pH, hypoxia, ...)
 - cell rupture (ATP and glutamate)
 - cutaneous parasite penetration (histamine)
 - mast cell (white blood cell) activation (serotonin, bradykinin, ...)
 - immune and hormonal activity (cytokines and somatostatin)

Fast ($A\delta$) and slow (C) transmission to CNS

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Αα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Αδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5–2

Thermal grill illusion

'Cross-talk' between nociceptor channels

Projection to brain via anterolateral system

(Craig 2002)

Key CNS nodes in network

- Periaqueductal grey (PAG)
- Insular cortex (insula)
- Hypothalamus
- · Amygdala

Key CNS nodes in network

- Thalamus
 - Ventroposterior lateral nucleus
 - Ventroposterior medial nucleus
 - Ventromedial nucleus

Nature Reviews | Neuroscience

(Craig 2002)

Pain in the brain

(Wager et al. 2013)

Pain in the brain

"...we used machine-learning analyses to identify a pattern of fMRI activity across brain regions — a neurologic signature — that was associated with heat-induced pain. The pattern included the thalamus, the posterior and anterior insulae, the secondary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray matter, and other areas..."

(Wager et al. 2013)

- Prostaglandins
 - hormone-like effects, but released in many places
 - trigger vasodilation and inflammation

- Paracetymol (acetaminophen)
 - Mechanism not fully understood
 - inhibits synthesis of prostaglandins via cyclooxygenase (COX) enzyme
 - may modulate endocannabinoid system
- Nonsteroidal anti-inflamatory drugs (NSAIDs): aspirin, ibuprofen
 - Also inhibit prostaglandins via COX

- Opioids
 - Activate endogenous opioid systems
 - multiple receptor types (δ , κ , μ ,...)
 - peripheral sensory neurons, amygdala, hypothalamus, PAG, spinal cord, cortex, medulla, pons,...
 - brainstem opioid neurons provide *descending* inhibition of nociceptors

- Capsaicin
 - Binds to TRPV1 receptor in thermo/nociceptors
 - Alters how peripheral neuron responds to mechanical stimulation
 - (Borbiro, Badheka, and Rohacs 2015)

Why rubbing can help

TABLE 8.2 Fibers That Link Receptors to the CNS

Sensory function(s)	Receptor type(s)	Axon type	Diameter (μm)	Conduction speed (m/s)
Proprioception (see Chapter 11)	Muscle spindle	Αα	13–20	80–120
Touch (see Figures 8.12 and 8.13)	Pacinian corpuscle, Ruffini's ending, Merkel's disc, Meissner's corpuscle	Αβ	6–12	35–75
Pain, temperature	Free nerve endings; VRL1	Aδ	1–5	5–30
Temperature, pain, itch	Free nerve endings; VR1, CMR1	С	0.02-1.5	0.5-2

Gate control theory (Melzack and Wall 1965)

By self - self-made in Inkscape, CC BY 3.0, Link

Gate control theory (Melzack and Wall 1965)

By self - self-made in Inkscape, CC BY-SA 3.0, Link

Psychological and physical dimensions

(Papini, Fuchs, and Torres 2015)

Main points

- Somatosensation
 - Exteroception via
 - Cutaneous receptors + proprioception
 - Interoception via
 - Widely distributed receptors
 - Specific and non-specific

Main points

- Pain
 - Multiple receptor channels
 - Highly interconnected CNS network
 - Multiple targets for modulation

Next time...

Action

References

Borbiro, Istvan, Doreen Badheka, and Tibor Rohacs. 2015. "Activation of Trpv1 Channels Inhibits Mechanosensitive Piezo Channel Activity by Depleting Membrane Phosphoinositides." *Sci. Signal.* 8 (363): ra15. doi:10.1126/scisignal.2005667.

Craig, A D. 2002. "How Do You Feel? Interoception: The Sense of the Physiological Condition of the Body." *Nat. Rev. Neurosci.* 3 (8): 655–66. doi:10.1038/nrn894.

Melzack, R, and P D Wall. 1965. "Pain Mechanisms: A New Theory." *Science* 150 (3699): 971–79. doi:10.1126/science.150.3699.971.

Papini, Mauricio R, Perry N Fuchs, and Carmen Torres. 2015. "Behavioral Neuroscience of Psychological Pain." *Neurosci. Biobehav. Rev.* 48 (January): 53–69. doi:10.1016/j.neubiorev.2014.11.012.

Wager, Tor D, Lauren Y Atlas, Martin A Lindquist, Mathieu Roy, Choong-Wan Woo, and Ethan Kross. 2013. "An fMRI-based Neurologic Signature of Physical Pain." *N. Engl. J. Med.* 368 (15): 1388–97. doi:10.1056/NEJMoa1204471.