

(1) Veröffentlichungsnummer: 0 615 044 A1

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 94103579.2

(1) Int. Cl.5: E06B 3/66

2 Anmeldetag: 09.03.94

@ Priorität: 09.03.93 DE 4307403

Veröffentlichungstag der Anmeldung:
 14.09.94 Patentblatt 94/37.

Benannte Vertragsstaaten:
 AT DE FR IT

Anmelder: CTA Gesellschaft für Composite
Technologie Automation mbH,
Georg-Heyken Strasse 6
D-21147 Hamburg (DE)

② Erfinder: Lengen: Wilhelm, Dipl.-Ing.
Haldberg 14 a
D-21224 Rosengarten (DE)
Erfinder: Weinfurtner, Hans, Dipl.-Ing.
Bachgasse 17
D-92533 Wernberg-Köblitz (DE)
Erfinder: Puritz, Wolfgang, Dipl.-Ing.
Im Teich 4

D-21614 Buxtehude (DE)

Verfahren und Vorrichtung zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung von Isolierglasscheiben.

Die Scheiben (10,12) werden in einer vorbestimmten Ausrichtung einander gegenüberstehend angeordnet, zunächst in V-förmiger Lage gegeneinander ausgerichtet und dann in eine Parallellage verschwenkt. An die Unterseite der Scheiben wird eine Gasfülleinrichtung (30) gelegt. Dabei wird zwischen den Scheiben (10,12) ein Raum gebildet, dessen Breite so eingestellt wird, daß zwischen dem Abstandhalterrahmen (14) und der diesem gegenüberliegenden Scheibe (10) umlaufend ein Spalt (16) mit im wesentlichen gleichmäßiger Weite verbleibt. An den Seitenkanten der Scheiben wird, sowohl an

der in Transportrichtung vorderen als auch an der hinteren Seite, jeweils eine Abdichtung (52) zum gasdichten Abschließen angeordnet, wonach durch die Gasfülleinrichtung (30) ein Füllgas in den Raum zwischen den Scheiben (10,12) gefördert wird, wobei die Luft durch den Spaltabschnitt an der Oberseite der Scheibenanordnung aus dem Raum verdrängt wird. Danach werden die Scheiben (10,12) aufeinander zu gefahren, wobei der umlaufende Spalt (16) geschlossen wird, und die Scheiben miteinander verpreßt werden.

Die Erfindung betrifft ein Verfahren zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung Isolierglasscheiben, bei dem Einzelscheibe(n) und/oder die Scheibenanordnung-(en) in einer vorbestimmten Ausrichtung einander gegenüberstehend angeordnet werden, wobei eine der Einzelscheiben und/oder Scheibenanordnungen an ihrer der anderen Einzelscheibe/Scheibenanordnung zugewandten Seite umlaufend mit einem Abstandhalterrahmen versehen ist, wobei die Einzelscheibe(n) und/oder Scheibenanordnung(en) zunächst in im wesentlichen V-förmiger Lage gegeneinander ausgerichtet werden und dann in eine Parallellage verschwenkt werden und bei dem in gasdichter Anbindung an die Unterseite der aus Einzelscheibe(n)-/Scheibenanordnung(en) gebildeten, noch nicht verpreßten Anordnung eine Gasfülleinrichtung gelegt wird Die Erfindung betrifft weiterhin eine Vorrichtung, die zum Durchführen des Verfahrens geeigthe right physicial net list, a real matter of magazine in the study of the

Um bei Doppel- oder Mehrfachverglasungen eine verbesserte Wärme- oder auch Schallisolation zu erhalten, wird üblicherweise in den Raum zwischen den Einzelscheiben durch ein geeignetes Fullgas, wie Edelgas oder ein hochmolekulares Gas, ein sogenanntes Schwergas, eingebracht.

Die Beschickung des Scheibenzwischenraumes mit Füllgas wird üblicherweise durch Öffnungen im "Abstandhalterrahmen vorgenommen; auch unterstützt durch Pumpen, wie beispielsweise bei der DE-A 30 32 825, wobei die Öffnungen nachher gasdicht zu verschließen sind.

tant view de

Um zu vermeiden, daß der Abstandhalterrahmen zum Gasfüllen mit Öffnungen versehen werden muß, wird gemäß der DE-A 39 14 706 vorgeschlagen, eine der Einzelscheiben so zu verbiegen, daß vorübergehend zwischen dem Abstandhalterrahmen und der Scheibe ein Öffnungsspalt verbleibt, durch den der Scheibenzwischenraum insbesondere mit Schwergas befüllt werden kann.

Die DE-A 31 39 856 beschreibt eine Vorrichtung zum Füllen von Isolierglasanordnungen mit Schwergas, wie beispielsweise Schwefelhexafluorid, und anschließendem Verpressen. Unterstützt durch die Saugwirkung einer Pumpe, welche einen Unterdruck in dem Zwischenraum zwischen den Einzelscheiben der Anordnung erzeugt, wird das Schwergas aus einem Behälter mit faltenbalgartigen Seitenwänden durch Anheben des Bodens des Behälters in das offene untere Ende der Anordnung eingelassen. Zum Abdichten der Seitenkanten sind in einer Ausnehmung an einer Preßplatte, an der die Isolierglasanordnung liegt, Längsfaltenschläuche vorgesehen, die durch Beaufschlagen mit Druck in dichtende Anlage an die zweite Preßplatte

gebracht werden können.

Bei dem Verfahren gemäß der DE-A 31 15 566 ist vorgesehen, die Einzelscheiben in der Gasatmosphäre, mit der der Scheibenzwischenraum gefüllt werden soll, zusammenzubauen.

Die EP-B 0 269 194 schlägt vor, die zusammengebaute Scheibenanordnung in eine Kammer zu bringen, die zunächst evakuiert und dann miter mehr Füllgas beaufschlagt wird. . The madelphic

10.2 V. Üblicherweise werden Einzelscheiben in senkrechter Lage zusammengebaut, weil dies die Posie tionierung der Scheiben relativ zueinander erleich tert und auch aus Stabilitätsgründen vorteilhaft ist Vorschläge dazu sind der DE-A 20 12 597 entnehmbar.

Ein Verfahren der eingangs genannten Gattung und eine Vorrichtung zum Durchführen des Verfahrens sind aus der DE-A 31.01.342 bzw. der gleichinhaltlichen EP-A 0 056 762 bekannt. Dabei wird die Isolierglasscheibenanordnung in der allseitig abgeschlossenen Presse mit dem Füllgas beaufschlagt, wobei das Gas auch in den Scheibenzwischenraum dringt. Anschließend wird die Isolierglasscheibenanordnung in der Füllgasatmosphäre verpreßt. Die Anströmung mit Füllgas kann dabei von oben nach unten oder von unten nach oben aufsteigend erfolgen. Mit der Vorrichtung können Isolierglasscheiben unterschiedlicher Abmessungen befüllt werden, da nämlich der das Gas zuführende Gasfüllbalken aus einer Vielzahl von Einzelkam mern besteht, die wahlweise mit Gas beliefert werden können. Überschüssiges Gas wird abgesaugt: Nachteilig bei diesem Verfahren ist, daß eine Befüllung des Scheibenzwischenraumes mit Füllgas nicht vollständig gelingt, da immer Luftanteile in der Presse eingeschlossen bleiben.

Es ist daher die Aufgabe der Erfindung, ein Verfahren und eine Vorrichtung zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung von Isolierglasscheiben zur Verfügung zu stellen, mit dem bzw. mit der die Befüllung des Scheibenzwischenraumes schnell und mit einem hohen Gasfüllgrad gelingt.

Diese Aufgabe wird von einem Verfahren nach Anspruch 1 bzw. einer Vorrichtung nach Anspruch 6 gelöst. Vorteilhafte Ausgestaltungen von Verfahren und Vorrichtung sind Gegenstand der jeweils rückbezogenen Unteransprüche.

Erfindungsgemäß ist vorgesehen, daß zwischen Einzelscheibe(n) und/oder der/den Scheibenanordnung(en) ein Raum gebildet wird, dessen Breite so eingestellt wird, daß zwischen dem Abstandhalterrahmen und der diesem gegen-Einzelscheibe/Scheibenanordnung überliegenden umlaufend ein Spalt mit im wesentlichen gleichmäßiger Weite verbleibt, daß an den Seitenkanten der

55

35

40

Einzelscheibe(n)/Scheibenanordnung(en), an der in Transportrichtung vorderen als auch an der hinteren Seite, jeweils eine Abdichtung zum gasdichten Abschließen angeordnet wird und daß durch die Gasfülleinrichtung ein Füllgas in den den Einzelscheibe(n)-Raum zwischen /Scheibenanordnung(en) gefördert wird, wobei die Luft durch den Spaltabschnitt an der Oberseite aus Raum zwischen den Einzelscheibe(n)dem /Scheibenanordnung(en) verdrängt wird, daß der Spaltabschnitt an der Oberseite der Einzelscheibe-(n)/Scheibenanordnung(en) frei mit der Umgebung kommuniziert, daß die Einzelscheibe(n) und/ oder Scheibenanordnung(en) aufeinander zu gefahren werden, wobei der umlaufende Spalt geschlossen Einzelscheibe(n) und/oder wird, und die Scheibenanordnung(en) miteinander verpreßt werden. Mit dem erfindungsgemäßen Verfahren können auch Scheiben mit extrem unterschiedlichen Seitenabmessungen oder mit einem Sprossengitter im Zwischenraum nacheinander schnell, wirtschaftlich und mit hohem Gasfüllgrad mit einem Füllgas, z. B. Argon oder Schwefelhexafluorid, befüllt werden Durch die große Füllöffnung, gebildet durch die unten offene Spaltanordnung, in Verbindung mit der nach oben praktisch ohne Gegendruck wirkenden Möglichkeit des Abführens der Luft, tritt praktisch keine Verwirbelung des Füllgases mit der noch im Scheibenzwischenraum befindlichen Luft : auf. Selbst bei kleinen Scheibenzwischenräumen ist eine Befüllung möglich, da bei der eingesetzten Steigstromspülung durch die anpaßbare Steiggeschwindigkeit des Füllgases immer der unerwünschten Verwirbelung vorgebeugt werden kann. Eine Spaltbreite von etwa 2 mm hat sich für die meisten Fälle als geeignet erwiesen. Nicht zuletzt sind im Vergleich zum herkömmlichen Verfahren die Spülungsverluste gering.

Besonders vorteilhaft ist es, wenn die erwünschte Füllhöhe des Füllgases bzw. der Gasfüllgrad im Raum festgestellt wird und beim Erreichen der Füllhöhe die Gaszufuhr beendet wird. Möglich ist es allerdings auch, eine für den entsprechenden Scheibentyp vorausberechnete Gasvolumenmenge, einschließlich eines Sicherheitszuschlages, einzufüllen und auf eine Kontrolle der Füllhöhe des Füllgases zu verzichten.

Ebenfalls vorteilhaft ist es, wenn das Verpressen der Einzelscheibe(n) und/oder Scheibenanordnung(en) so erfolgt, daß die Scheiben nach dem Gasbefüllen des Raumes zwischen ihnen zunächst nur in ihrem unteren Bereich mit einer ersten vorbestimmten Geschwindigkeit aufeinander zu fahren und zeitverzögert mit einer zweiten, gegenüber der ersten jedoch höheren Geschwindigkeit auch in ihrem oberen Bereich. Durch diese Art des Verpressens wird eine sogenannte Preßentlüftung bewirkt, wodurch in den Seitenbe-

reichen der Isolierglasscheibe eventuell noch vorhandene Luftanteile zuverlässig entfernt werden.

Vorzugsweise wird die Befüllung über die gesamte Unterseite der Einzelscheibe(n) und/oder Scheibenanordnung(en) vorgenommen, um eine im wesentlichen homogene, nach oben gerichtete Strömung zu erzeugen.

Eine besonders wirbelarme Befüllung gelingt,
wenn der Spaltabschnitt an der Unterseite der
Einzelscheibe(n) und/oder Scheibenanordnung(en)
in seiner Längserstreckung in bezug auf eine Düssenanordnung für die Gasbefüllung zentriert wird.

Eine Scheibenanordnung kann beispielsweise eine bereits verpreßte Isolierglasscheibe oder auch eine sogenannte Verbundsicherheitsglasscheibe mit mindestens einer Kunststoffschicht auf einer Glasscheibe oder zwischen zwei Glasscheiben angeordnet bedeuten

Eine Vorrichtung zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung von Isolierglasscheiben, die insbesondere zur Durchführung des Verfahrens geeignet ist, umfaßt zwei bewegbare Preßplatten, an denen jeweils eine Einzelscheibe/Scheibenanordnung durch Unterdruck zu halten ist, und eine Gasfülleinrichtung zum Zuführen von Lati in einen Raum zwischen der/den thest and :der/den Challe Challe 4 Einzelscheibe(n) hand, lund/oder Scheibenanordnung(en), wobei die Preßplatten im wesentlichen V-förmig zueinander ausgerichtet einstellbar sind und parallel zueinander mit einstellbarem Abstand ausrichtbar sind, und die Gasfülleinrichtung eine Düsenanordnung, die gasdicht abschließend an die Unterseite der Einzelscheibe(n)-/Scheibenanordnung(en) zu legen ist, umfaßt, und ist dadurch gekennzeichnet, daß Einrichtungen vorgesehen sind, die an den Seitenkanten, sowohl an der in Transportrichtung vorderen als auch an der Einzelscheibe(n)-Seite der hinteren /Scheibenanordnung(en) zum gasdichten Abschlie-Ben angelegt werden.

Vorzugsweise ist ein Gassensor, der zumindest die maximale Füllstandshöhe des einzufüllenden Gases feststellt, vorgesehen.

Die Bewegung der Preßplatten erfolgt über vier jeweils in ihren Ecken angeordnete Hubspindeln, wobei zunächst nur die jeweils unteren Spindeln der beiden Preßplatten mit einer ersten vorbestimmten Geschwindigkeit angetrieben werden und zeitverzögert mit einer zweiten, jedoch gegenüber der ersten höheren Geschwindigkeit, jeweils die beiden oberen Spindeln.

Besonders vorteilhaft sind anstelle der Hubspindeln Hydraulik-Zylinder vorgesehen.

Es kann die Düsenanordnung zumindest eine zeilenförmige Düse mit beidseitig angeordneten Dichtlippen sein, wobei sich die Dichtlippen an die

55

30

35

Preßplatten oder die Scheiben legen können.

Nach einer bevorzugten Ausführungsform weist die Düse bzw. mindestens eine einer Vielzahl von Düsen wenigstens eine Zuleitung auf, über die die Düse(n), gegebenenfalls unabhängig voneinander oder im wesentlichen gleichzeitig und gleichmäßig, mit einem oder mehreren verschiedenen Füllgasen oder einem Gemisch von Gasen versorgbar sind. Damit ergibt sich eine Fülle von Möglichkeiten, Gase unterschiedlicher Zusammensetzungen für die unterschiedlichsten Anforderungen und Scheibenarten bereitzustellen seinsbesondere können Gasgemische eingefüllt werden, deren Anteile oder relative Konzentrationen ohne weiteres sogar von Scheibe zu Scheibe geändert werden können. Die Zuleitungen können direkt an die jeweilige(n) Düse-(n) führen, es kann aber auch für jede Düse eine Vorkammer vorgesehen sein, in die die Zuleitung-(en) mündet/münden, um eine Vormischung vorzunehmen, aber auch, um das Füllgas der Düse entspannt zuzuleiten.

Letzteres wird auch dadurch unterstützt, daß die Offnung der Düse(n) mit porösem Material abgedeckt ist

Nach einer bevorzugten Ausführungsform der Effindung ist zumindest für die in Transportrichtung der Einzelscheibe(n)/Scheibenanordnung(en) vorderen Kanten ein sich selbständig an eine Spaltbreite anpassendes Dichtelement vorgesehen.

Ebenso vorteilhaft, weisen die Abdichteinrichtungen für die in Transportrichtung der Einzelscheibe(n)/Scheibenanordnung(en) vorderen Kanten eine einschwenkbare Dichtklappe, für die in Transportrichtung der Einzelscheibe(n)-/Scheibenanordnung(en) hinteren Kanten wenigstens ein flexibles, sich selbständig an eine Spaltbreite anpassendes Dichtelement, beispielsweise einen Dichtschlauch, auf. Denkbar wäre es auch, für die vorderen Scheibenkanten ebenfalls einen Dichtschlauch bzw. für die hinteren Kanten auch eine Dichtklappe zum gasdichten Abschließen der Scheibenkanten vorzusehen. Auch kann eine Dichtklappe an den hinteren Seitenkanten und ein Dichtschlauch an den vorderen Seitenkanten vorgesehen sein.

Am Dichtelement für die hinteren Kanten oder an einem der Dichtelemente ist vorteilhaft eine verschiebbare Blende vorgesehen, die in die Düse für deren Anpassung an die Länge der Unterkante der Einzelscheibe(n)/Scheibenanordnung(en) eingreift.

Eine besonders vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß sie wenigstens eine Faltenbalgpumpe aufweist, die jeweils mit einem vorgewählten Füllgasvolumen befüllt wird, wobei das Gesamtvolumen aller Faltenbalgpumpen so bemessen ist, das es an das zu befüllende Volumen der herzustellenden Isolier-

glasscheibe angepaßt ist.

Im folgenden soll die Erfindung beispielhaft anhand der beigefügten Zeichnungen näher erläutert werden. Dabei zeigt

- Figur 1 die Anordnung der Preßplatten vor dem Einlauf von Einzelscheiben;"
- Figur 2 in Teilbildern (a) bis (d) den Ablauf des erfindungsgemäßen Verfahrens;
- Figur 3 eine Schnittansicht längs der Linie A-A aus Figur 2(c):
- Figur 4 eine schematische Darstellung (der Gasfülleinrichtung und der Abdicht einrichtungen
- Figur 5 eine Schnittansicht, die die Stromungsverhältnisse bei vertikal gestellten Preßplatten und angebrachten Abdichteinrichtungen verdeut-
- Figur 6 eine schematische Darstellung der Gasströmung beim Verpressen der Einzelscheibe(n)-100 (Scheibenanerdnung(en)
- Figur 7 eine weitere Ausführungsform der Düsenanerdnung:
- Figur 8 eine Detallansicht aus Figur 7; und Figur 9 schematisch die Befüllung mittels Faltenbalgpumpen und der Düsenanordnung der Figur 7.

zeigt ein Beispiel einer Vorrichtung Figur 1 zum Durchführen des erfindungsgemäßen Verfahrens. Die Scheiben, beispielsweise Einzelscheiben oder auch eine bereits vorbereitete Scheibenanordnung für Mehrfachverglasungen, laufen z. B. paarweise und in V-Anordnung über eine Transporteinrichtung 60 in die Vorrichtung ein und werden sowohl in x- als auch in y-Richtung durch geeignete Einrichtungen justiert, die hier in der Figur nicht dargestellt sind. Die Vorrichtung weist zwei Preßplatten 20, 22 auf, die mittels hydraulischer, pneumatischer oder mechanischer Stellglieder 26, welche beispielsweise Hubspindeln oder Hydraulik-Zylinder aufweisen, unabhängig voneinander um ieweils eine zugeordnete Achse 28 schwenkbar sind. Jede Preßplatte 20, 22 weist z. B. ein Lochmuster 24 auf, das mit einer Einrichtung zum Erzeugen eines Unterdrucks, in der Figur nicht dargestellt, in Verbindung steht. Möglich ist auch die Anordnung von Saugnäpfen auf den Preßplatten 20, 22 zum Fixieren der Scheiben 10, 12. Sobald die Scheiben justiert sind, werden sie mittels dieses erzeugten Unterdruckes an den Preßplatten 20, 22 fixiert. Die Neigung der Preßplatten 20, 22 ist vorzugsweise so eingestellt, daß sich die notwendige V-förmige Anordnung der Scheiben ergibt. Die Preßplatten 20, 22 sind weiterhin unabhängig voneinander in z-Richtung verfahrbar. Unterhalb der Preßplatten 20. 22, hier nicht erkennbar, befindet sich eine Gasfülleinrichtung, deren Aufbau und Arbeitsweise im Zu-

55

ૂ, **3**5

sammenhang mit Figur 4 beschrieben wird. Oberhalb der Preßplatten 20, 22 hängt eine Gas-Schnüffelhaube 40 ab, in der ein Gassensor oder mehrere Gassensoren untergebracht sind, mit dem bzw. mit denen die Füllstandshöhe bzw. der Füllgrad des Füllgases ermittelt werden kann.

Figur 2 zeigt den verfahrensmäßigen Ablauf. Teilbild (a) entspricht im wesentlichen der Darstellung der Figur 1 hinsichtlich der Anordnung der Preßplatten 20, 22. Auf der Preßplatte 20 ist eine 10 der Scheiben 10 fixiert, auf der Preßplatte 22, ausgerichtet in bezug auf die Scheibe 10, eine zweite Scheibe 12, auf der bereits ein Abstandhalterrahmen 14 z. B. durch Kleben befestigt ist. An seiner der Scheibe Tu zugewahrt. Ausgeschaft einem Kleber halterrahmen 14 beispielsweise mit einem Kleber wie einem Butylkleber, versehen. Lagereinrichtungen 28 definieren die Schwenkachse für jede der Preßplatten 20, 22 Die Preßplatten 20, 22 weisen mit entgegengesetzter. Orientierung, so daß sich z chend gering eingestellt wird. B. eine symmetrische. V-förmige Anordnung der Teilbild (d) der Figur 2 zeigt einen bevorzugten Preßplatten 20, 22 und damit auch der Scheiben 10, 12 ergibt, Etwa auf der Symmetrieachse der Preßplattenanordnung ist oberhalb der Platten 20. 25 tels der hydraulischen pneumatischen oder me-22 eine in vertikaler Richtung verfahrbare Gas-Schnüffelhaube 40 angeordnet, die sich in Längsrichtung, also in die x-Richtung der Figur 1, über ihren Ecken angeordnete Hubspindeln (nicht gedie Preßplattenanordnung erstreckt. An ihrem in Transportrichtung der Fertigungslinie rückwärtigen 30 Ende hängt ein Abdichtschlauch 52 als flexibles Abdichtelement ab, das im Bereich der Unterkanten der Preßplatten endet. Für den Abdichtschlauch 52 ist eine Hubspindel 54 vorgesehen, so daß dieser gasdicht auf die hinteren Seitenkanten der Einzelscheibe(n)/Scheibenanordnung(en) gefahren werden kann und gegebenenfalls gleichzeitig das hintere Ende der Gasfülleinrichtung 30 abdichtet, wie dies später noch genauer erläutert werden wird.

standard Life !

He State CV

Commence .

建长汉约17-1-1

and the same

1988 S. F

3/50

問禮人。

1,500

Carrier.

In dem in Figur 2(b) dargestellten Verfahrensschritt sind die Preßplatten 20, 22 senkrecht gestellt, wobei die Lagereinrichtungen 28 jeweils nach außen, also in positiver bzw. negativer z-Richtung nach Figur 1 verfahren worden sind. Die Scheiben 10, 12 stehen sich mit einem relativ großen Abstand vertikal gegenüber. Eine Gasfülleinrichtung 30, die genauer mit Bezug auf Figur 4 beschrieben wird, ist zwischen die Lagereinrichtungen 28 gefahren.

Wie in Teilbild (c) der Figur 2 dargestellt, werden die Preßplatten 20, 22 aufeinander zu verfahren, bis zwischen dem Abstandhalterrahmen 14 der Scheibe 12 und der Scheibe 10 umlaufend ein Spalt 16 einer Breite von etwa 2 mm eingestellt ist. Wie in der Figur nur angedeutet, verschließt der Abdichtschlauch 52 den Spaltabschnitt zwischen den Scheiben 10, 12 an deren rückwärtigem Ende.

Nicht dargestellt ist eine Dichtklappe, die den entsprechenden Spaltabschnitt am vorderen Ende der Scheiben gasdicht abschließt. Die Gasfülleinrichtung 30 ist an die Unterkante der Scheiben 10, 12 gefahren und sorgt hier für den gasdichten Abschluß. Ein eventueller Abstand zwischen Abstandhalterrahmen 14 und den Außenkanten insbesondere der Scheibe 12 ist allenfalls gering und wird von to den Dichtlippen der Düse 30 gefüllt. Insgesamt wird eine nach drei Seiten hermetisch geschlossene Gasfüllkammer zwischen den Einzelscheiben/-Scheibenanordnungen gebildet Wenn nun Gas insbesondere Schwergas, in die Gasfüllkammer eingeleitet wird, wird die zunächst in der Gasfüllder Scheibe 10 zugewandten Seite ist der Abstand- 15 kammer befindliche Luft bevorzugt nach oben getrieben. Da in dem oberen Bereich die gebildete Gasfüllkammer mit der Umgebung kommuniziert, kann die Luft entweichen wobei kaum oder gar keine Verwirbelungen mit dem Füllgas auftreten einen etwa identischen Neigungswinkel auf, jedoch 20 "wenn dessen Strömungsgeschwindigkeit, hinrei-

Verpreßvorgang, der stattfindet, nachdem das Befüllen mit dem gewählten Füllgas beendet ist. Mitchanischen Stellglieder 26 werden die Preßplatten 20, 22 bewegt, vorzugsweise über vier jeweils in zeigt), wobei zunächst:nur die jeweils unteren Spindeln der beiden Preßplatten mit einer ersten vorbestimmten Geschwindigkeit angetrieben werden und zeitverzögert mit einer zweiten jedoch gegenüber der ersten höheren Geschwindigkeit, jeweils die beiden oberen Spindeln, bis die Scheibe 10 in engen Kontakt mit dem Abstandhalterrahmen 14 kommt, wodurch die feste Verbindung, z. B. die Klebverbindung, hergestellt wird und gleichzeitig aus den Seitenbereichen der Scheibenanordnung die Luftanteile ausgetrieben werden. Das Verpressen kann erfolgen, solange noch die Gasfüllkammer eingerichtet ist, aber auch, wenn die Gasfülleinrichtung 30 abgesenkt und/oder die Abdichteinrichtungen 50, 52 entfernt worden sind.

Figur 3 zeigt eine Schnittansicht längs der Linie A-A aus Teilbild (c) der Figur 2 in einer schematischen Vergrößerung. Die hinteren Seitenkanten der Scheiben 10, 12 werden durch den Abdichtschlauch 52 gasdicht verschlossen, indem dieser mit Druckluft beaufschlagt wird, so daß er sich je nach der lichten Weite zwischen den Kanten der Scheiben 10, 12 in seiner Ausdehnung einstellen kann. Vorzugsweise ist der Schlauch mittig, eventuell durchgehend, mit einer Metallseele versehen, wodurch ein einfaches Zentrieren beim Aufblasen ermöglicht wird. Am in Transportrichtung vorderen Kantenbereich der Scheiben 10, 12 ist eine sich über die Länge der Seitenkanten erstreckende Dichtklappe 50 vorgesehen, die um eine Achse 56

50

55

schwenkbar ist, welche in unmittelbarer Nähe der Presplatte 20 angeordnet ist. Die Dichtklappe 50 ist so bemessen, daß sie zwischen den vorderen Kanten der Scheiben 10, 12 zur Anlage kommt. Damit ist eine hermetische Abdichtung der Scheiben in den Seitenbereichen bzw. Seitenkantenbereichen vorgenommen.

man military **国政治内部,实际到一会** schen den Scheiben, die hier nicht dargestellt sind; Durch das Verpressen mit Preßentlüftung auf mal möglichen. Baugröße einer Isolierglasscheibe 200 Gasfüllgrad im Scheibenzwischen aum vorliegt entspricht, Beidseitig der U-förmigen Düse ist jeseitlich von der Düse 30 erstreckt. Die Düse 30 Wenn das Befüllen des Raumes zwischen den Unterseite der Scheibenanordnung, wobei sie relativ zum Spalt zentriert wird. Zweckmäßigerweise obwohl es auch denkbar ist, die Düse stationär auszubilden und die Scheibenanordnung über die Düse zu bewegen. Der Abdichtschlauch 52 für das hintere Ende der Scheibenanordnung weist an seinem unteren Ende eine Blende 58 auf, die in der Düse 30 einliegt und diese in ihrer wirksamen Länge begrenzt. Einströmendes Füllgas wird also an der Blende 58 bzw. dann am Abdichtschlauch 52 umgelenkt. Die vorderen Seitenkanten der Scheibenanordnung sind durch die Dichtklappe 50 verschließbar, die hier nicht in ihrer Arbeitsposition dargestellt ist, sondern in explosionsartiger Darstellung versetzt. Bei geschlossener Dichtklappe 50, wie in Figur 3 gezeigt, liegen die Dichtlippen 32, 34 an ihrer Unterseite an. Die Düse 30 mit den Dichtlippen 32, 34, Dichtklappe 50 und Abdichtschlauch 52 mit Blende 58 bilden somit zusammen mit der Scheibenanordnung eine Gasfüllkammer, wobei die Gasfüllkammer - und damit auch der Scheibenzwischenraum - über die offene Oberseite mit der Umgebung kommuniziert, ansonsten aber gasdicht geschlossen ist. Die Pumpe des Versorgungssystemes fördert Füllgas mit geringer Strömungsgeschwindigkeit in die Düse 30. Durch den geringen Überdruck, unter dem das Füllgas durch die Wirkung der Pumpe steht, steigt der Füllgasspiegel in der Gasfüllkammer an, wobei die verdrängte Luft durch die offene Oberseite in die Umgebung ent-

weicht. Da bei dieser Steigspülung praktisch keine Verwirbelung des Füllgases mit der Luft eintritt, kann mit minimaler Füllgasmenge gearbeitet werden, um im Scheibenzwischenraum einen hohen Füllgasgrad zu erhalten.

Figur 5 zeigt eine Schnittansicht des Scheibenzwischenraums/der Gasfüllkammer, aus der die Strömungsverhältnisse deutlich werden. Aus der explosionsartiger Darstellung, die Lage einer ersten Düse 30 steigt das Füllgas durch den Spalt 16 in Ausführungsform der Gasfülleinrichtung 30 sowie hab den Raum zwischen den Scheiben. Die Füllhöhe. der Abdichteinrichtungen 50, 52 in bezug auf die der der maximale Füllstand kann durch die Gas-Kanten der Scheiben 10, Die parallelstehenden sensoren in der Gas-Schnüffelhaube erfaßt werden, Rreßplatten 20, 22 sind so beabstandet, daß zwi- woraufhin dann die Abschaltung des Versorgungs-14.3.2.4 Alderes

standhalterrahmen 14 umlaufend ein Spalt definier ter Breite eingerichtet ist. Eine zeilenförmige Düsen Geschleite Entlüftung gerade der Kantenbereiche der Schel-30; die etwa U-förmigen Querschnitt hat ist so ben, wie schematisch in Figur 6 angedeutet, so daß man davon ausgehen kann daß ein sehr hoher

weils, eine Dichtlippe, 32, 34, angebracht, die sich Vorrichtung gemäß der vorliegenden Erfindung mit einer Abänderung der Düsenanordnung. Statt einer wird aus einem nicht dargestellten Versorgungssy- Einzeldüse wird eine Vielzahl von Düsen 301 302 stem über eine Pumpe mit dem Füllgas gespeist 25 303, 304, 305, 306, 307, 308, 309 längs des Spaltes an der Unterseite der Gasfüllkammer angeord-Scheiben erfolgen soll, fährt die Düse 30 gegen die Die Gesamtheit der Düsen 301, 302, 303, 304, 305, 306, 307, 308, 309 ist an einem Düsenbalken 310 geschieht dies durch das Einrichten der Düse 30. an angeordnet und kann in Richtung des Pfeile A an den Spalt oder von ihm weg gefahren werden. Je nach Größe der herzustellenden Isolierglasscheibe. die hier in ihrer Lage durch die Scheibe 12 angedeutet ist, können eine oder mehrere der Düsen 301, 302, 303, 304, 305, 306, 307, 308, 309 deaktiviert sein, so daß Füllgas nur über die Spaltbreite. die durch die Dichtelemente 50, 52 vorgegeben ist. eingeleitet wird. Zum Ändern der Spaltbreite kann beispielsweise das Dichtelement 50 in die Richtungen des Doppelpfeiles B verfahren werden. An jeder der Düsen, in der Figur 7 beispielhaft für die Düse 301 dargestellt, sind Anschlüsse bzw. ihre Zuleitungen 70, 72, 74 für verschiedene Arten von Füllgas, so wie Argon, SF₆, Luft oder dergleichen, vorgesehen.

> Figur 8 ist eine Detailansicht aus Figur 7 und zeigt eine der Düsen 301 mit ihren Zuleitungen 70. 72, 74 für Argon, SF₆ bzw. Luft. Eine nicht dargestellte Steuerungseinrichtung regelt den Zustrom der Gase, wie es genauer im Zusammenhang mit Figur 9 erläutert wird. Die Zuleitungen münden in eine gemeinsame Vorkammer 38, in der sie sich vermischen, bevor sie durch die Austrittsöffnung der Düse 301 in die Gasfüllkammer gelangen. Damit das indirekte, wirbelfreie Einfüllen der Gase optimal gelingt, sind die Austrittsöffnungen oder Schlitze mit einer Drossel 36 aus porösem Material abgedeckt. Für die Düsen 302, 303, 304, 305, 306,

55

45

经营产品的基础

Philoday next

J. A. South Lake

的。这种接触

學說"基本者" 于

10

307, 308, 309, die in Figur 8 nur teilweise dargestellt sind, ist jeweils eine ähnliche Anordnung und Gestaltung vorgesehen.

Figur 9 zeigt schematisch die Befüllung der Scheibenanordnung mittels Faltenbalgpumpen 80, 82, 84 über die Düsenanordnung der Figur 7. Für jede Gassorte ist somit eine Faltenbalgpumpe vorgesehen, die jeweils mit einem Füllstandsmeßsystem und geführter, gewichtsbelasteter Kolbenplatte 802, 822, 842 versehen sind. Die einzelnen Pumpen sind so dimensioniert, daß die größtmöglich herzustellenden Isolierscheiben mit einem Hub der Pumpe befüllt werden können. Das Befüllen, der Pumpen 80, 82, 84 erfolgt aus handelsüblichen Stahlflaschen 804, 824, 844, die jeweils mit einem Düsenbalken Stahlflaschen 804, 824, 844, die jeweils mit einem Druckredûzierventil 806, 826, 846 ausgestattet sind. Die jeweilige Füllmenge wird aus den Abmessungen der herzustellenden Isolierglasscheibe ermit34

telt, und Absperventile 808, 828, 848, die jeweils in die Leitungen zwischen den Stahlflaschen 804. 20: 36 824 844 und Pumpen 80, 82, 84 geschaltet sind. werden von einer nicht gezeigten Steuervorrichtung entsprechend angesteuert. Die aktuelle Füllstandshöhe wird über einen Weglängenmesser 810, 830. 850 erfäßt der jeweits an der Faltenbalgpume 80. 82, 84 vorgesehen ist. Jede der Pumpen 80, 82, 84 ist mit jeder Düsen 301, 302, 303, 304, 305, 306, 307, 308, 309 über Zuleitungen wie den Zuleitungen 70, 72, 74 für die Düse 301, verbunden. Jede Zuleitung kann mittels eines durch die Steuervorrichtung betätigbaren Absperrventiles, wie den Absperrventilen 702, 704, 706 für die Zuleitungen 70, 72, 74, verschlossen werden. Dies wird im allgemeinen nach Beenden des Befüllens für alle Zuleitungen geschehen, kann aber auch für einzelne der Zuleitungen vorgenommen werden, wenn nicht alle zur Verfügung stehenden Gassorten genutzt werden sollen.

Mit den Faltenbalgpumpen ist eine einfache und schnelle Volumendosierung möglich, die keine teuren oder komplizierten Meßgeräte erfordert.

Die in der vorstehenden Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung wesentlich sein.

Bezugszeichenliste

10 Scheibe Scheibe Abstandhalterrahmen 16 Spalt 20

Presplatte 22 Preßplatte 24 Lochmuster 26 hydraulisches/pneumatisches Stellglied 28 Schwenkachse/Lagereinnichtung 30 STATE THE STATE OF THE STATE Düse 301, 302, 303, 304, 305, 306, 307, 308, 309 Dusers and Manager and American 310 has designed by the confidence of the first state of 40 Committee of the com Gas-Schnüffelhaube 50 Dichtklappe 524 Comments of the second second second Abdichtschlauch 19, 12 5 54 Charles of the control of the con *30) ·-Hubspindel Andrew 56 74 4 Schwenkachse: 58 Blende 35 60 Transporteinrichtung 70, 72, 74 Zuleitung 702, 704, 706 40 Absperrventil 80, 82, 84 Faltenbalgpumpe 802, 822, 842 Kolbenplatte 804, 824, 844 Stahlflasche 806, 826, 846 Druckreduzierventil 808, 828, 848 50 Absperrventil 810, 830, 850

Patentansprüche

Weglängenmesser

1. Verfahren zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits

Transport to paying the same

vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung von Isolierglasscheiben, bei dem die Einzelscheibe(n) und/oder die Scheibenanordnung(en) in einer vorbestimmten Ausrichtung einander gegenüberstehend angeordnet werden, wobei eine der Einzelscheiben und/oder Scheibenanord nungen an ihrer der anderen Einzelscheibe/Scheibenanordnung zugewandten Seite um laufend mit einem Abstandhalterrahmen verse hen ist, wobei die Einzelscheibe(n) und/oder die Scheibenanordnung(en) zunächst in im wesentlichen V-förmiger Lage gegeneinander ausgerichtet und dann in eine Parallellage verschwenkt werden und bei dem in gasdichter 75 Anbindung an die Unterseite der aus Einzelscheibe(n)/Scheibenanordnung(en) gebildeten noch nicht verpreßten Anordnung eine Gasfülleinrichtung gelegt wird dadurch gekennzeichnet: daß zwischen der/den Einzelscheibe(n) und/oder der/den Scheibenanordnung(en) ein Raum gebildet wird, dessen Breite so eingestellt wird, daß zwischen dem Abstandhälterrahmen und der diesem gegenüberliegenden Einzelscheibe/Scheibenanordnung umlaufend ein Spalt mit im wesentlichen gleichmäßiger Weite veran den Seitenkanten der bleibt daß Einzelscheibe(n)/Scheibenanordnung(en)sowohl an der in Transportrichtung vorderen als auch an der hinteren Seite, jeweils eine Abdichtung zum gasdichten Abschließen angeordnet wird und daß durch die Gasfülleinrichtung ein Füllgas in den Raum zwischen den Einzelscheibe(n)/Scheibenanordnung(en) fördert wird, wobei die Luft durch den Spaltabschnitt an der Oberseite der Einzelscheibe(n)-/Scheibenanordnung(en) aus dem Raum verdrängt wird, daß der Spaltabschnitt an der Oberseite der Einzelscheibe(n)-/Scheibenanordnung(en) frei mit der Umgebung kommuniziert, daß die Einzelscheibe(n) und/oder Scheibenanordnung(en) aufeinander zu gefahren werden, wobei der umlaufende Spalt geschlossen wird, und die Einzelscheibe-(n) und/oder Scheibenanordnung(en) miteinander verpreßt werden.

- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die erwünschte Füllhöhe des Füllgases oder der Gasfüllgrad im Raum festgestellt wird und beim Erreichen der Füllhöhe oder des Gasfüllgrades die Gaszufuhr beendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Verpressen der Einzelscheibe(n) und/oder Scheibenanordnung-

- (en) so erfolgt, daß die Scheiben nach dem Gasbefüllen des Raumes zwischen ihnen zunächst nur in ihrem unteren Bereich mit einer ersten vorbestimmten Geschwindigkeit aufeinander zu fahren und zeitverzögert mit einer zweiten, gegenüber der ersten jedoch höheren Geschwindigkeit auch in ihrem oberen Bereich.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Befüllung mit Fullgas über die gesamte Unterseite der Einzelscheibe(n) und/oder Scheibenanordnung (en) vorgenommen wird. FOR APPLACE FOR
- Verfahren nach einem der Ansprüche 1 bis 4 dadurch gekennzeichnet, daß der Spaltabschnitt an der Unterseite der Einzelscheibe(n) und/oder Scheibenanordnung(en) in seiner Längserstreckung, in, bezug, auf "eine Düsenanordnung für die Gasbetüllung zentriert wird
- Vorrichtung zum Einrichten, Gasfüllen und Verpressen von Einzelscheiben und/oder bereits vorgefertigten Scheibenanordnungen als zwei Komponenten bei der Herstellung von solierglasscheiben, mit zwel bewegbaren Preßplatten (20, 22), an denen jeweils eine Einzelscheit be/Scheibenanordnung (10, 12) durch Unterdruck zu halten ist, und mit einer Gasfülleinrichtung (30; 301, 302, 303, 304, 305, 306, 307, 308, 309) zum Zuführen von Gas in einen Raum zwischen der/den Einzelscheibe(n) und/oder der/den Scheibenanordnung(en) (10, 12), wobei die Preßplatten (20, 22) im wesentlichen V-förmig zueinander ausgerichtet einstellbar sind und parallel zueinander mit einstellbarem Abstand ausrichtbar sind, wobei die Gasfülleinrichtung eine Düsenanordnung (30; 301, 302, 303, 304, 305, 306, 307, 308, 309), die gasdicht abschließend an die Unterseite der Einzelscheibe(n)/Scheibenanordnung(en) zu legen ist, umfaßt, dadurch gekennzeichnet, daß Einrichtungen (50, 52) vorgesehen sind, die an den Seitenkanten, sowohl an der in Transportrichtung vorderen als auch an der hinteren der Einzelscheibe(n)-/Scheibenanordnung(en) (10, 12) zum gasdichten Abschließen anlegbar sind.
- Vorrichtung nach Anspruch 6, dadurch gekenn-50 zeichnet, daß ein Gassensor (40), der zumindest die maximale Füllstandshöhe des einzufüllenden Gases feststellt, vorgesehen ist.
- Vorrichtung nach Anspruch 6 oder 7, dadurch 55 gekennzeichnet, daß die Bewegung der Preßplatten (20, 22) über vier jeweils in ihren Ecken angeordnete Hubspindeln oder Hydraulik-Zylin-

45

4、1967年1月1日 1月1日

WARRY AREA

der erfolgt, wobei zunächst nur die jeweils unteren Spindeln bzw. Zylinder der beiden Preßplatten (20, 22) mit einer ersten vorbestimmten Geschwindigkeit angetrieben werden und zeitverzögert mit einer zweiten, jedoch gegenüber der ersten höheren Geschwindigkeit, jeweils die beiden oberen Spindeln bzw. (Scheibenanordnung(en) (10, 12) eingreift. Zylinder.

准分指点 水体

·原序标志 "统

- to. Vorrichtung nach Anspruch 9, dadurch gekennist.

 zeichnet, daß die Düse (30) bzw. mindestens
 eine einer Vielzahl (301, 302, 303, 304, 305) 306, 307, 308, 309), von Düsen wenigstens 20 eine Zuleitung (70, 72, 74) aufweist, über die die Düse(n) (30; 301, 302, 303, 304, 305, 306; 307, 308, 309), gegebenenfalls unabhängig voneinander oder im wesentlichen gleichzeitig und gleichmäßig, mit einem oder mehreren 25 verschiedenen Füllgasen oder einem Gemisch. von Gasen versorgbar sind.

 11. Vorrichtung nach Anspruch 10, dadurch ge
 - kennzeichnet, daß die Düse (30) bzw. minde- 30 stens eine der Vielzahl (301, 302, 303, 304, 305, 306, 307, 308, 309) der Düsen eine Vorkammer (38) aufweist, in die die mindestens eine Zuleitung (70, 72, 74) mündet.
 - 12. Vorrichtung nach einem der Ansprüche 6 bis 11, dadurch gekennzeichnet, daß die Öffnung der Düse(n) (30; 301, 302, 303, 304, 305, 306, 307, 308, 309) mit porösem Material (36) abgedeckt ist.
 - 13. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß zumindest für die in Transport-Einzelscheibe(n)der /Scheibenanordnung(en) (10, 12) vorderen Kanten ein sich selbständig an eine Spaltbreite anpassendes Dichtelement vorgesehen ist.
 - 14. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Abdichteinrichtungen (50, 52) für die in Transportrichtung der Einzelscheibe-(n)/Scheibenanordnung(en) (10, 12) vorderen Kanten eine einschwenkbare Dichtklappe (50) für die in Transportrichtung Einzelscheibe(n)/Scheibenanordnung(en) 12) hinteren Kanten wenigstens ein flexibles, sich selbständig an eine Spaltbreite anpassendes Dichtelement (52) aufweisen.

- 15. Vorrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß am Dichtelement (52) oder an einem der Dichtelemente eine verschiebbare Blende (58) vorgesehen ist, die in die Düse (30) für deren Anpassung an die Länge der Unterkante der Einzelscheibe(n)-
- 16. Vorrichtung nach einem der Ansprüche 6 bis 9. Vorrichtung nach einem der Ansprüche 6 bis 10 15, dadurch gekennzeichnet, daß sie wenig-8 dadurch gekennzeichnet, daß die Düsenan-stens eine Faltenbalgpumpe (80, 82, 84) aufordnung zumindest eine zeilenförmige Düse weist die jeweils mit einem vorgewählten Füll-(30, 301, 302, 303, 304, 305, 306, 307, 308, gasyolumen befüllt wird, wobei das Gesamtvolumen aller Fattenbalgpumpen so bemessen ist, das es an das zu befüllende Volumen der herzustellenden Isolierglasscheibe angepaßt

٠.:

40

45

50

-iq 1

Fig. 5

Fig-6

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 94 10 3579

	EINSCHLÄGIGE DOKUMENTE				
Kategorie	Kennzeichnung des Dokur der maßgeb	neats mit Angabe, so weit erforderlich, lichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int.CL5)	
D,A	and has been built	REINIGTE GLASWERKE) 1 - Seite 20, Zeile 8;	1,6,9, 10,13,14	E06B3/66	
A	US-A-4 773 453 (HA * Spalte 2, Zeile	HN) 1 - Spalte 4, Zeile 2	1,2		
	DE-A-23 19 386 (LE * Seite 5, Absatz Abbildungen *	NHARDT) 6 - Seite 7, Absatz 2;	1,3,6		
A	DE-A-34 02 323 (IN	TERPANE)	1,2,4,6,		
	* Seite 13, Zeile Abbildungen 3,5 *	24 - Seite 17, Zeile 10	7,14		
	DE-A-39 14 706 (LENHARDT) * Spalte 10, Zeile 40 - Spalte 11, Zeile 11 *		1,6,8		
	* Spalte 16, Zeile * Abbildungen 1,22	3 - Zeile 56 * .23 *		RECHERCHIERTE SACIGEBIETE (Int.Cl.5)	
	DE-A-31 39 856 (LI		1,2,4,6, 7,13,14, 16	E06B	
	* Seite 7, Zeile 12 Abbildung *	2 - Seite 11, Zeile 36;			
		,			
				3	
	•				
		•			
Der vort	iegende Recherchenbericht wur	de für alle Patentansprüche erstellt			
	Recherchement	Abschluftdatum der Recherche		Prifer	

EPO FORM LSCI CLEZ (POICCO)

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: allehtschriftliche Offenbarung
 P: Zwischenliteratur

- T: der Erfindung zugrunde liegende Theorien oder Gr E: älterse Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument
- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

THIS PAGE BLANK (USPTO)