

LGS GROUP OF COLLEGES

TEST#

W-T-8

[XII MATHEMATICS] Exercise 7.1,7.2,7.3

Paper Code: 1208	Name:	Roll No:
Time: 35 Minutes	Objective + Subjective	Marks = 15

OBJECTIVE TYPE

Q# 1. Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question. $(1 \times 4 = 4)$

	1		
1	$\left \cos a\underline{i} + \sin a\underline{j} + 0\underline{k}\right = \underline{\qquad}$		
	A. 0	B. 1	
	C1	D. 2	
2	A vector with magnitude 1 is called:		
	A. Null vector	B. Unit vector	
	C. Zero vector	D. Constant vector	
3	If vectors $2\hat{\imath} + \hat{\jmath} + \hat{k}$ and $\hat{\imath} - 4\hat{\jmath}$	$+ a\hat{k}$ are perpendicular, then $\alpha = :$	
	A. 1	B. 2	
	C. 3	D. 4	
4	If \vec{v} is any vector then vector of \vec{v}	magnitude 5 opposite to \vec{v} is:	
	A. 5 \vec{v}	B. $-5\vec{v}$	
	$C.5\frac{\vec{v}}{m}$	D. $-5\frac{\vec{v}}{}$	
	v	v	

SUBJECTIVE TYPE

SECTION - 1

Q# 2. Attempt ALL SHORT Questions:

 $(2 \times 3 = 6)$

i	Find a vector whose magnitude is 2 and is parallel to $-\underline{i} + \underline{j} + \underline{k}$
ii	Calculate the projection of \underline{a} along \underline{b} and projection of \underline{b} along \underline{a} when:
	$\underline{\alpha} = \underline{i} - \underline{k} \ , \underline{b} = \underline{j} + \underline{k}$
iii	Find the sum of vector \overrightarrow{AB} and \overrightarrow{CD} given the four points $A(1,-1)$, $B(2,0)$, $C(-1,3)$ and
	D(-2,2)

SECTION - II

Attempt LONG Question:

 $(5 \times 1 = 5)$

Q# 3.	Prove that perpendicular bisectors of the sides of a triangle are concurrent