Topological Data Analysis and Neuroscience

Chapter 1: Basics

Instructor: Alex McCleary

Section 1: Topological Spaces

Topological Spaces

- A topological space is a pair $\langle X, \mathcal{T} \rangle$
 - a set X endowed with a topological structure \mathcal{T} (i.e. a collection of subsets of X), such that:
 - **b** both the empty set and X are elements of T
 - lacktriangleright the union of arbitrary many elements of ${\mathcal T}$ is also an element of ${\mathcal T}$
 - lacktriangleright the intersection of finitely many elements of ${\mathcal T}$ is an element of ${\mathcal T}$

Topological Spaces

- ▶ A topological space is a pair $\langle X, \mathcal{T} \rangle$
 - ▶ a set X endowed with a topological structure \mathcal{T} (i.e. a collection of subsets of X), such that:
 - **b** both the empty set and X are elements of T
 - lacktriangleright the union of arbitrary many elements of ${\mathcal T}$ is also an element of ${\mathcal T}$
 - lacktriangleright the intersection of finitely many elements of ${\mathcal T}$ is an element of ${\mathcal T}$

Open/closed sets

- ▶ A subset $A \subseteq X$ is open (w.r.t. $\langle X, \mathcal{T} \rangle$) is A is an element in \mathcal{T}
- ▶ A subset $A \subseteq X$ is closed if its complement is open

Examples

- \blacktriangleright The discrete topology on a set X is the power set of X.
- ▶ The indiscrete topology on X is the set $\{\emptyset, X\}$.
- The Euclidean topology on \mathbb{R} is the set $\{\bigcup_{i\in I} (a_i,b_i)|a_i< b_i\}$ of unions of open intervals.

Metric Spaces

- ▶ A metric space (X, d_X) is a set X equipped with a function $d_X: X \times X \to R$ such that
 - $d_X(x,y) \ge 0 \text{ for all } x,y \in X$
 - $d_X(x,x) = 0$ if and only if x = y
 - $d_X(x,y) = d_X(y,x)$ for all $x, y \in X$
 - $d_X(x,y) + d_X(y,z) \ge d_X(x,z), \text{ for any } x,y,z \in X$
- Examples:
 - Euclidean space $(R^d, ||\cdot||_2)$

Metric Space Topology

- "Open ball" topology
- Given (X, d), a natural topology (X, \mathcal{T})
 - ▶ open ϵ -ball $B(x, \epsilon) := \{ y \in X \mid d(x, y) < \epsilon \}$
 - $\mathcal{B} \coloneqq \{B(x, \epsilon) \mid x \in X, \epsilon > 0\}$
 - $ightharpoonup \mathcal{T}$ =collection of unions of open balls from \mathcal{B}
- **Example:** the real line *R*
- Remark:
 - \triangleright B above also forms the basis of the resulting topology $\langle X, \mathcal{T} \rangle$

Subspace Topology

- ▶ Given a topological space $\langle X, \mathcal{T} \rangle$, and a subset $Y \subset X$
 - (Y, \mathcal{T}_Y) : the subspace topology on Y induced from (X, \mathcal{T}) where
 - ightharpoonup open sets in \mathcal{T}_Y are the intersection of open sets from \mathcal{T} with Y

Examples:

- a line segment
- ightharpoonup A surface in R^3

Closure/interior

- ▶ Given a subset A of a topological space X
 - the closure of A, denoted by \bar{A} , is the intersection of all closed sets containing A
 - the interior of A, denoted by $int\ A$, is the union of all open sets contained in A
 - the boundary of A is $bd A := \overline{A} \cap \overline{X A}$

Section 2: Maps, homeomorphism, and homotopy

Continuous Functions

- An important concept to describe relations between (the connectivity of) two topological spaces
- A neighborhood of a point $x \in X$ is simply an open set of X containing x
- ▶ A function $f: X \to Y$
 - is continuous at $x \in X$ if for any neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.
 - \blacktriangleright is continuous if it is continuous at all points in X

Continuous Functions

- An important concept to describe relations between (the connectivity of) two topological spaces
- A neighborhood of a point $x \in X$ is simply an open set of X containing x
- ▶ A function $f: X \to Y$
 - is continuous at $x \in X$ if for any neighborhood V of f(x), there is a neighborhood U of x such that $f(U) \subseteq V$.
 - \blacktriangleright is continuous if it is continuous at all points in X
- ▶ Equivalently, a function $f: X \to Y$
 - is continuous if for any open set V in Y, its preimage $f^{-1}(V)$ is also open

Remarks

- ▶ The perhaps more familiar (ϵ, δ) -definition of a continuous real-valued function $f: R \to R$
- \blacktriangleright If we know a basis generating the topology of Y,
 - then to check whether a function $f: X \to Y$ is continuous, we only need to verify that for each basis element of Y, its preimage is open in X.

Homeomorphism

- Intuitively, two topological spaces are homeomorphic if they are equivalent as topological spaces.
- Given two topological spaces X and Y
 - a homeomorphism between them is a continuous function h: X → Y such that h is bijection and the inverse of h is also continuous.
 - In this case, X is homeomorphic to Y, denoted by $X \cong Y$

\blacktriangleright Examples: $X \cong Y$ in each pair below

More Examples

Constructing homeomorphisms

- ightharpoonup Open d-ball and R^d
- Sphere and the boundary of a tetrahedron
- \blacktriangleright Sphere with north-pole removed and R^2

Embeddings

▶ Given two topological spaces X and Y

 ϕ is an embedding of X into Y if it induces a homeomorphism between X and $\phi(X)$

Two embeddings of the torus in R^3

Homotopy

- ▶ Two continuous functions $f, g: X \to Y$ are homotopic if
 - there is a continuous map $H: X \times [0,1] \to Y$ such that $H(\cdot,0) = f$ and $H(\cdot,1) = g$. We denote this by $X \simeq Y$.
 - lacktriangledown the map H is called a homotopy connecting f and g

Example:

- Two maps from f, g: $\mathbb{R} \to \mathbb{R}$ given by g(x) = x and f(x) = 0.
- A homotopy between them is given by H(x, t) = t * x.

Homotopy Equivalence

- Two topological spaces X and Y are homotopy equivalent if
 - there is a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that $f \circ g$ is homotopic to id_Y , the identity in Y, and $g \circ f$ is homotopic to id_X , the identity in X.
 - denoted by $X \simeq Y$
- Intuition and examples
- ▶ Theorem:
 - Two homeomorphic spaces are also homotopy equivalent, but not vice versa.

Deformation Retraction

 A special type of homotopy equivalence, which is more intuitive and often easier to construct

Retraction:

Given $A \subseteq X$, a retraction map is a continuous function $r: X \to A$ such that r(x) = x for any $x \in A$

Deformation retraction:

a retraction map $r: X \to A$ is a deformation retraction if $r \simeq id_X$ (i.e, r is homotopic to the identity map in X). A is called a deformation retract of X in this case.

Theorem:

If $A \subseteq X$ is a deformation retract of X, then $X \simeq A$, i.e, they are homotopy equivalent.

▶ Theorem:

- If $X \cong Y, Y \cong Z$, then $X \cong Z$.
- If $X \simeq Y, Y \simeq Z$, then $X \simeq Z$.

Examples

Section 3: Clustering

Section 3: Manifolds

Some Notations

▶ Open *d*-ball:

- $\mathbb{B}_d^o \coloneqq \{ x \in R^d \mid ||x|| < 1 \}$
- Closed d-ball:
 - $\mathbb{B}_d \coloneqq \{ x \in \mathbb{R}^d \mid ||x|| \le 1 \}$
- ▶ *d*-sphere:

 - $\mathbb{S}_d = bd \; \mathbb{B}_{d+1}$

What is \mathbb{S}_1 ? \mathbb{S}_2 ? \mathbb{S}_0 ?

Some Notations

\blacktriangleright Open d-ball:

- $\mathbb{B}_d^o \coloneqq \{ x \in R^d \mid ||x|| < 1 \}$
- ▶ Closed *d*-ball:
 - $\mathbb{B}_d \coloneqq \{ x \in R^d \mid ||x|| \le 1 \}$
- ▶ *d*-sphere:

Relation between

- \mathbb{B}_d^o and \mathbb{R}^d ?
- \triangleright \mathbb{B}_2 and a triangle?
- \triangleright \mathbb{B}_3 and a cube?
- $ightharpoonup \mathbb{B}_d$ and a point?
- What is the space \mathbb{S}_d (0,0,...,1) (i.e, d-sphere with north pole removed) homeomorphic to?

A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).

A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).

A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).

- A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).
- A d-manifold with boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to either R^d or the half-space $R^d_{x_1 \ge 0}$

X is on interior point.

2 is on the boundary.

- A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).
- A d-manifold with boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to either R^d or the half-space $R^d_{x_1 \ge 0}$

- A d-manifold without boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to R^d (i.e, to \mathbb{B}_d^o).
- A d-manifold with boundary is a topological space M such that each point $x \in M$ has a neighborhood homeomorphic to either R^d or the half-space $R^d_{x_1 \ge 0}$

Theorem

The boundary of a d-manifold is a (d-1)-manifold without boundary (potentially with multiple connected components).

More Examples

Intrinsic / ambient dimension

- Given a m-dimensional manifold M embedded in R^d
 - intrinsic dimension: m
 - ambient dimension: d
- Often in practice, $m \ll d$
 - It is desirable to have time complexity of an algorithm depending mostly on m instead of on d

Section 4: 2-Manifolds and their classification

Orientable / non-orientable surfaces

- ▶ A closed curve $\gamma \subseteq M$ is
 - orientation-reversing: if the hand-ness of a local frame changes as we traverse the curve once.
 - orientation-preserving: otherwise.
- A 2-manifold is
 - non-orientable: if it contains any orientation-reversing closed curve
 - orientable: otherwise.

▶ Any compact surface embedded in R^3 is orientable.

- ▶ Any compact surface embedded in R^3 is orientable.
- Non-orientable surface
 - Möbius strip (simplest non-orientable surface with boundary)

- ▶ Any compact surface embedded in R^3 is orientable.
- Non-orientable surface
 - Möbius strip (simplest non-orientable surface with boundary)
 - Projective plane (simplest non-orientable surface without boundary)
 - by obtained by gluing the boundary of a Möbius strip to that of a disk
 - or: think of a disk, then glue the pairs of antipodal points of it

- ▶ Any compact surface embedded in R^3 is orientable.
- Non-orientable surface
 - Möbius strip (simplest non-orientable surface with boundary)
 - Projective plane (simplest non-orientable surface without boundary)
 - by obtained by gluing the boundary of a Möbius strip to that of a disk
 - or: think of a disk, then glue the pairs of antipodal points of it

- ▶ Any compact surface embedded in R^3 is orientable.
- Non-orientable surface
 - Möbius strip (simplest non-orientable surface with boundary)
 - Projective plane (simplest non-orientable surface without boundary)
 - Klein bottle
 - Obtained by gluing two Möbius strips along their boundaries

- ▶ A way to construct ``more complicated'' surfaces
 - Given two surfaces S and T, their connected sum S # T is constructed by:
 - first, removing a disk from both,
 - then, gluing them along the boundary of the disks

- ▶ A way to construct ``more complicated'' surfaces
 - Given two surfaces S and T, their connected sum S # T is constructed by:
 - first, removing a disk from both,
 - then, gluing them along the boundary of the disks

- ▶ A way to construct ``more complicated'' surfaces
 - Given two surfaces S and T, their connected sum S # T is constructed by:
 - first, removing a disk from both,
 - then, gluing them along the boundary of the disks

- A way to construct ``more complicated'' surfaces
 - Given two surfaces S and T, their connected sum S # T is constructed by:
 - first, removing a disk from both,
 - then, gluing them along the boundary of the disks
 - More examples: S: 2-sphere, T: torus, P: projective plane
 - \triangleright S #S , S# T, T#T, T#T# T
 - \blacktriangleright What is P#P ? \$ # P ?

Surface Classification

Complete classification of compact 2-manifolds

Theorem 4.2 (Classification Theorem) The two infinite families \mathbb{S} , \mathbb{T} , $\mathbb{T}\#\mathbb{T}$, ..., and \mathbb{P} , $\mathbb{P}\#\mathbb{P}$, ..., exhaust the family of compact 2-manifold without boundary (upto homeomorphism). The first family of surfaces are all orientable; while the second family are all non-orientable. Furthermore, no two surfaces in these sequences are homeomorphic.

- $M \# \mathbb{T}$: adding a handle
 - All orientable compact surfaces can be obtained by adding handles to a sphere
- ▶ M # P: adding a cross-cap
 - All non-orientable compact surfaces can be obtained by adding cross-caps to a sphere

