

Mei Rose Connor

September 26, 2024

A beautiful world we live in, when it IS possible, and when many other such things are possible, and not only possible, but done—done, see you!—under that sky there, every day. Long live the Devil. Let us go on.

Ernest Defarge, A Tale of Two Cities, Charles Dickens

Contents

0 Our first meeting all together

1

Chapter 0

Week 0: Our first meeting all together

0.0 Introduction of myself

My name is Mei Rose. My background in Formal Logic consists mostly of undergraduate courses in Philosophical Logic, but I studied Mathematical Logic at UW and at the Universiteit van Amsterdam, for two and one semester respectively. I worked at a software development group in my undergraduate university and wrote a proof-checker in JavaScript. Modal logic has been a passion of mine since taking a course on the Philosophy of Mathematics and seeing its history and uses since the times of Leibniz and earlier to puzzle about statements about possible worlds. My personal logic and mathematics heroes of history are David Hilbert and Amalie Emmy Noether. In recent history, I have looked up to Saul Aaron Kripke, who died in 2022 and left a wave of controversy in his wake that we will hopefully have time to discuss during this project. And alive today, inspiring me to be a Logician, is J. F. A. K. (Johan) van Benthem, the only person I know of who holds permanent research positions at three different universities at the same time.

0.1 Introductions of students

I am interested to know how your journey through mathematics and logic has been going so far. All I know about you is that the committee recommended you into the project, what courses you are enrolled in, and which courses you have taken that are relevant to the reading group.

- Please tell me about your favorite mathematical experiences. What made them special or unique?
- What sorts of things do you like to do outside of your coursework? Does mathematics or logic ever factor into those activities?
- Who inspires you in history, or the present day?

0.2 Overview and goals

As stated in the project description, I aim for us to discuss many aspects of the so-called modal logic by the end of the semester. After establishing some groundwork in Kripke frames and models and a brief discussion of modal bisimulation, I plan to begin tackling the applications of modal logic. This is where your interests come in. I have the most experience working with modal logic applications in philosophy and linguistics, but there exist many more, such as information/preference theory, game theory, and more. Modal logic also touches more classical logic topics such as provability and model theory, and we can look into those if you are interested. (The "magical" [according to van Benthem] modal proof of Second Incompleteness is what gave this project its name.)

I would like to conclude the project with two connections between modal logic and first-order logic. These two connections are called van Benthem's Theorem and the Salqvist-van Benthem Algorithm. Each gives a slightly different viewpoint on how powerful modal logic is compared to first-order logic.

0.3 Propositional and First-order logic reminders

I will be assuming throughout this project that you are familiar with the following logical symbols from propositional logic: \sim (logical negation, sometimes written as \neg), \wedge (logical conjunction), \vee (logical disjunction), \rightarrow (material conditional), and \leftrightarrow (biconditional). This means that you know their truth tables, and how to "read" them in a formula (e.g., $P \wedge Q$ gets read as "P and Q".)

As for the first-order logic I expect you to be familiar with, \forall and \exists are the starting point. Being able to read these symbols as "for all" and "there exists/there is at least one" is important, as is being able to write and interpret statements with relation or function symbols like R(x,y) or F(x,y,z). When I say that R is a two-place relation between a set and itself (as most of our relations will be in this project), I want you to be able to picture a diagram like the one below. The arrows show the relations. For example, we can say that