Statistics 630 – Final Exam Wednesday, 2 December 2020

Printed Name: Email:
INSTRUCTIONS FOR THE STUDENT:
1. You have 2 hours to complete the exam (after taking a moment to read these instructions). Please indicate your start time:,
and your end time:
2. There are 11 pages including this cover sheet and the formula sheets.
3. Questions 1–7 are multiple choice and worth 5 points each.
4. Questions 8–10 are multiple selection and worth 5 points each.
5. Questions 11–15 require solutions to be worked out and are 10 points each. Please write out your answers in <i>the spaces provided</i> , explaining your steps. You may refer to theorems by name/description rather than by its number in the book.
6. If you $cannot$ print out the exam, please write your answers on blank sheet of paper – in order.
7. You may use the <i>attached formula sheets</i> . No other resources are allowed. Do not use the textbook, the class notes, homework or formula sheets that were posted online.
8. Do not use a calculator. You may leave answers in forms that can easily be put into a calculator such as $\frac{12}{19}$, $\binom{40}{5}$, e^{-3} , $\Phi(1.5)$, etc.
9. Do not discuss or provide any information to anyone concerning any of the questions on this exam until your solutions are returned or I post my solutions.
I attest that I spent no more than 2 hours to complete the exam. I used only the materials allowed above. I did not receive assistance from or provide assistance to anyone either before or while taking this exam.
Student's Signature

Questions 1–7 are multiple choice: circle the single correct answer. No partial credit!

- 1. (5 points) Var(X) = 4, Var(Y) = 1 and Cov(X, Y) = -2. What is Var(X Y)?
 - (a) 1.
 - (b) 9.
 - (c) 3.
 - (d) 0.
 - (e) 5.
- 2. (5 points) Sally Scientist obtained a 98% confidence interval for μ from a random sample of normal(μ , 37.0) data (σ^2 known). The sample size was n=25 and the interval she computed was $9.54 \pm 2.83 = (6.71, 12.37)$. The confidence level 98% is the probability, before sampling,
 - (a) that \bar{X} will be between 6.71 and 12.37.
 - (b) that μ is between 6.71 and 12.37.
 - (c) that \bar{X} will be within 2.83 of 9.54.
 - (d) that \bar{X} will be within 2.83 of μ .
 - (e) that a Type I error is not made.
- 3. (5 points) T is a statistic with cdf $F(t) = \theta t + (1 \theta)t^2$, $0 \le t \le 1$, $0 \le \theta \le 1$. Suppose $H_0: \theta = 0$ is rejected when $T \le \sqrt{\alpha}$, which is a size α test. Then the power function for the test is
 - (a) $\theta T + (1 \theta)T^2$.
 - (b) $\theta\sqrt{\alpha} + (1-\theta)\alpha$.
 - (c) $\Phi\left(\frac{\sqrt{\alpha}-.5}{\sqrt{1/12}}\right)$.
 - (d) $\theta \alpha + (1 \theta)\alpha^2$.
 - (e) $\Phi\left(\frac{\sqrt{\alpha}-\theta}{\sqrt{1/12}}\right)$.
- 4. (5 points) An estimator $\hat{\theta}$ is asymptotically normal $(\theta, \frac{1}{n\theta})$. Consequently, a level γ Wald confidence interval for θ is
 - (a) $\hat{\theta} \pm z_{(1+\gamma)/2} \frac{1}{\sqrt{n\hat{\theta}}}$.
 - (b) $\hat{\theta} \pm \sqrt{\frac{\chi_{\gamma}^2}{n\theta}}$.
 - (c) $\hat{\theta} \pm z_{(1+\gamma)/2} \frac{\hat{\theta}}{\sqrt{n}}$.
 - (d) $\hat{\theta} \pm z_{(1+\gamma)/2} \frac{1}{\sqrt{n\theta}}$.
 - (e) $\hat{\theta} \pm \sqrt{\frac{z_{(1+\gamma)/2}}{n\hat{\theta}}}$.

- 5. (5 points) A and B are independent events with probabilities α and β , respectively. The conditional probability that both occur, given at least one occurs, (that is, $P(A \cap B \mid A \cup B)$) is
 - (a) $\frac{\alpha\beta}{\alpha+\beta}$.
 - (b) $\frac{\alpha+\beta}{\alpha\beta}$.
 - (c) $\frac{\alpha\beta}{(1-\alpha)(1-\beta)}$.
 - (d) $\frac{\alpha+\beta}{2-\alpha-\beta}$.
 - (e) $\frac{\alpha\beta}{\alpha+\beta-\alpha\beta}$.
- 6. (5 points) In the spirit of diversity, independent random variables $X \sim \text{normal}(1,2)$, $Y \sim \text{Poisson}(3)$ and $Z \sim \text{gamma}(4,5)$ get together for a (socially distanced) party. Let T = X + Y + Z be their sum. The variance of T is
 - (a) $2 \times 3 \times 5$.
 - (b) 2+3+5.
 - (c) 2+3+20.
 - (d) $2+3+\frac{4}{5}$.
 - (e) $2+3+\frac{4}{25}$.
- 7. (5 points) Consider the basic two-sided test for a mean (with variance known) having rejection criterion $\sqrt{n} \left| \frac{\bar{X} \mu_0}{\sigma} \right| > z_{1-\alpha/2}$. The power of the test increases
 - (a) when α decreases or n increases.
 - (b) only when both α decreases and n increases.
 - (c) when α increases or n increases.
 - (d) only when n increases.
 - (e) only when α decreases.

Questions 8–10 can have 0, 1 or more than 1 answer: circle \underline{all} that are correct.

- 8. (5 points) X_1, \ldots, X_n are iid normal(2,1) random variables. Which of the following hold?
 - (a) $(X_1 2)^2 \sim \text{chi-square}(1)$.
 - (b) $\frac{(X_1-2)^2}{((X_1-2)^2+\cdots+(X_n-2)^2)/n} \sim F(1,n)$.
 - (c) $\frac{(X_1-2)^2}{(X_2-2)^2+\cdots+(X_n-2)^2} \sim F(1,n-1).$
 - (d) $\sum_{i=1}^{n} (X_i \bar{X})^2 \sim \text{chi-square}(n-1)$.
 - (e) $\sum_{i=1}^{n} X_i^2 \sim \text{chi-square}(n)$.

- 9. (5 points) Q_1, \ldots, Q_n is a random sample from a distribution with mean $\sqrt{\beta}$ and variance 2β . Which of the following are correct?
 - (a) \bar{Q} is unbiased for $\sqrt{\beta}$.
 - (b) $\frac{1}{n} \sum_{i=1}^{n} Q_i^2$ is unbiased for 2β .
 - (c) \bar{Q}^2 is unbiased for β .
 - (d) $\frac{\bar{Q}^2}{1+2/n}$ is unbiased for β .
 - (e) $\frac{1}{2(n-1)}\sum_{i=1}^{n}(Q_i-\bar{Q})^2$ is unbiased for β .
- 10. (5 points) A Poisson(λ) random sample N_1, \ldots, N_n has MLE $\hat{\lambda} = \bar{N}$, score $S(\lambda) = n(\frac{\bar{N}}{\lambda} 1)$ and Fisher information $I(\lambda) = \frac{n}{\lambda}$. Which of the following hold, as $n \to \infty$?
 - (a) $\frac{\bar{N}-\lambda}{\sqrt{n/\lambda}} \stackrel{\mathsf{D}}{\to} \mathrm{normal}(0,1)$.
 - (b) $\frac{(\bar{N}-\lambda)^2}{\lambda/n} \stackrel{\mathsf{D}}{\to} \text{chi-square}(1)$.
 - (c) $\frac{S^2(\lambda)}{I(\lambda)} \stackrel{\mathsf{D}}{\to} \text{chi-square}(n)$.
 - (d) $\bar{N} \stackrel{\mathsf{D}}{\to} \operatorname{normal}(\lambda, \lambda/n)$.
 - (e) $\frac{S(\lambda)}{\sqrt{I(\lambda)}} \xrightarrow{\mathsf{D}} \text{normal}(0,1)$.

Provide solutions to Questions 11-15, to the point of a calculable expression.

11. X has pdf $f_X(x) = \frac{e^{-x}}{c(1+x)}$, x > 0 (where $c = \int_0^\infty \frac{e^{-x}}{1+x} dx$), and the conditional pdf for Y, given X = x, is $f_{Y|X}(y|x) = (1+x)e^{-y-xy}$, y > 0. Find the conditional pdf for X, given Y = y.

12. (10 points) R_1, R_2, \ldots are iid random variables from the distribution with pdf $f(r) = 2\theta r e^{-\theta r^2}$, r > 0, $\theta > 0$. Determine the MLE for θ and its asymptotic variance.

13. (10 points) Assume as in the previous problem but suppose θ has prior distribution gamma(2,1) with pdf $\theta e^{-\theta}$. Identify the posterior distribution for θ (by name and parameter values).

14. (10 points) Consider an exponential(λ) random sample X_1, \ldots, X_n . Determine a moment estimator for $e^{-\lambda} = e^{-1/\mu}$, based on \bar{X} , and use the delta method to derive an asymptotic variance for it.

15. (10 points) Let $Y_1, Y_2, ..., Y_n$ be a random sample from the geometric(θ) distribution with pmf $\theta(1-\theta)^y$, y=0,1,2..., $0<\theta<1$. Determine the size α (asymptotic) generalized likelihood ratio test for $H_0: \theta=\frac{1}{2}$ versus $H_a: \theta\neq\frac{1}{2}$.

Formulas for Final Exam

Bayes' rule $P(B_j \mid A) = \frac{P(A|B_j)P(B_j)}{\sum_{k=1}^n P(A|B_k)P(B_k)}$ if B_1, \dots, B_n are disjoint and $\bigcup_{k=1}^n B_k = S$.

quantile function $Q_X(p)$ satisfies $F_X(x) \le p \le F(Q_X(p))$ for all $x < Q_X(p)$. $F(Q_X(p)) = p$ if X is a continuous rv.

distribution of a function of X $F_Y(y) = P(h(X) \le y)$ for Y = h(X).

If X is a discrete rv or h(x) takes only countably many values then Y has pmf $p_Y(y) = P(h(X) = y)$.

If X is a continuous rv and h(x) is a continuous function then Y has pdf $f_Y(y) = \frac{dx}{dy} P(h(X) \le y)$.

binomial theorem $\sum_{k=0}^{n} {n \choose k} a^k b^{n-k} = (a+b)^n$

geometric sum $\sum_{k=n}^{\infty} a^k = \frac{a^n}{1-a}$ if -1 < a < 1.

exponential expansion $\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$.

gamma integral $\int_0^\infty x^a e^{-x} dx = \Gamma(a+1) = a!$ for a > -1.

Bernoulli pmf $p(x) = (1 - \theta)^{1-x} \theta^x I_{\{0,1\}}(x)$ for $0 < \theta < 1$, same as binomial $(1, \theta)$.

 $\mathbf{beta}(a,b) \ \mathbf{pdf} \ f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} I_{(0,1)}(x) \ \text{for} \ a>0, \ b>0; \ \mathsf{E}(X) = \frac{a}{a+b} \ \mathsf{Var}(X) = \frac{ab}{(a+b)^2(a+b+1)} \, .$

binomial (n, θ) **pmf** $p(x) = \binom{n}{x} \theta^x (1 - \theta)^{n-x} I_{\{0,1,\dots,n\}}(x)$ for $0 < \theta < 1$. $\mathsf{E}(X) = n\theta$, $\mathsf{Var}(X) = n\theta(1 - \theta)$, $m(s) = (1 - \theta + \theta e^s)^n$.

chi-square(n) same as gamma($\frac{n}{2}, \frac{1}{2}$), the distribution of $X = Z_1^2 + \cdots + Z_n^2$ for iid standard normal Z_1, \ldots, Z_n . $\mathsf{E}(X) = n$, $\mathsf{Var}(X) = 2n$.

In particular, if $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \operatorname{normal}(\mu, \sigma^2)$ then $\frac{(n-1)S^2}{\sigma^2} \sim \operatorname{chi-square}(n-1)$.

 $\mathbf{discrete\ uniform}(N)\ \mathbf{pmf}\ p(x) = \tfrac{1}{N}\,I_{\{1,2,\dots,N\}}(x).\ \mathsf{E}(X) = \tfrac{N+1}{2},\,\mathsf{Var}(X) = \tfrac{N^2-1}{12}\,.$

exponential(λ) **pdf** $f(x) = \lambda e^{-\lambda x} I_{(0,\infty)}(x)$ for $\lambda > 0$, same as gamma $(1,\lambda)$. $E(X) = \frac{1}{\lambda}$, $Var(X) = \frac{1}{\lambda^2}$.

 $\mathbf{F}(m,n)$ the distribution of $W=\frac{X/m}{Y/n}$ where $X\sim \mathrm{chi}\text{-square}(m),\ Y\sim \mathrm{chi}\text{-square}(n),$ independent. $\mathsf{E}(W)=\frac{n}{n-2}$ if n>2.

 $\mathbf{gamma}(\alpha,\lambda) \ \mathbf{pdf} \ f(x) = \tfrac{\lambda^\alpha}{\Gamma(\alpha)} \, x^{\alpha-1} \mathrm{e}^{-\lambda x} I_{(0,\infty)}(x) \ \text{for} \ \lambda > 0, \ \alpha > 0; \ \mathsf{E}(X) = \tfrac{\alpha}{\lambda} \, , \ \mathsf{Var}(X) = \tfrac{\alpha}{\lambda^2} \, , \\ m(s) = \left(\tfrac{\lambda}{\lambda - s} \right)^\alpha \ \text{if} \ s < \lambda.$

geometric(θ) **pmf** $p(x) = \theta(1-\theta)^x I_{\{0,1,2,\ldots\}}(x)$ for $0 < \theta < 1$, same as negative binomial $(1,\theta)$. $\mathsf{E}(X) = \frac{1-\theta}{\theta}$, $\mathsf{Var}(X) = \frac{1-\theta}{\theta^2}$.

 $\mathbf{hypergeometric}(N,M,n) \ \mathbf{pmf} \ p(x) = \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} I_{\{0,1,\dots,n\}}(x) \ \text{for} \ M < N. \ \mathsf{E}(X) = np \ \text{where}$ $p = \frac{M}{N}$, $Var(X) = \frac{N-n}{N-1} np(1-p)$.

 $\mathbf{negative\ binomial}(r,\theta)\ \mathbf{pmf}\ p(x) = \binom{r+x-1}{r-1}\theta^r(1-\theta)^x I_{\{0,1,2,\ldots\}}(x) \ \text{for} \ 0 < \theta < 1. \ \mathsf{E}(X) = \frac{r(1-\theta)}{\theta},$ $\operatorname{Var}(X) = \frac{r(1-\theta)}{\theta^2}, m(s) = \left(\frac{\theta}{1-(1-\theta)e^s}\right)^r \text{ if } s < -\log(1-\theta).$

 $\mathbf{normal}(\mu, \sigma^2) \ \mathbf{pdf} \ f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/(2\sigma^2)} I_{(-\infty,\infty)}(x) \ \text{for} \ \sigma^2 > 0; \ \mathsf{E}(X) = \mu, \ \mathsf{Var}(X) = \sigma^2,$ $m(s) = e^{\mu s + \sigma^2 s^2/2}$

 $\mathbf{Poisson}(\lambda) \ \mathbf{pmf} \ p(x) = \tfrac{\lambda^x}{x!} \, \mathrm{e}^{-\lambda} I_{\{0,1,2,\ldots\}}(x) \ \text{for} \ \lambda > 0. \ \mathsf{E}(X) = \lambda, \ \mathsf{Var}(X) = \lambda, \ m(s) = \mathrm{e}^{\lambda(\mathrm{e}^s - 1)}.$

 $\mathbf{t}(n)$ the distribution of $T = \frac{Z}{\sqrt{Y/n}}$ where $Z \sim \text{normal}(0,1), Y \sim \text{chi-square}(n), independent.$

 $\mathsf{E}(T) = 0$, $\mathsf{Var}(T) = \frac{n}{n-2}$ if n > 2. In particular, if $X_1, \ldots, X_n \stackrel{\mathsf{iid}}{\sim} \mathrm{normal}(\mu, \sigma^2)$ then $\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim$ t(n-1).

uniform(a, b) **pdf** $f(x) = \frac{1}{b-a} I_{(a,b)}(x)$ for a < b. $\mathsf{E}(X) = \frac{a+b}{2}$, $\mathsf{Var}(X) = \frac{(b-a)^2}{12}$.

Weibull (α, β) pdf $f(x) = \frac{\alpha}{\beta} (x/\beta)^{\alpha-1} e^{-(x/\beta)^{\alpha}} I_{(0,\infty)}(x)$ for $\alpha > 0, \beta > 0$. $E(X^k) = \beta^k \Gamma(1 + \frac{k}{\alpha})$.

marginal pmf/pdf $p_X(x) = \sum_{y} p(x,y)$; $f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$.

conditional pmf/pdf $p_{X|Y}(x|y) = \frac{p(x,y)}{p_Y(y)}$; $f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$.

independent random variables $p(x,y) = p_X(x)p_Y(y)$ if (X,Y) is discrete; $f(x,y) = f_X(x)f_Y(y)$ if (X,Y) is continuous.

discrete convolution $p_{X+Y}(z) = \sum_{x} p_X(x) p_Y(z-x)$ for independent X, Y.

continuous convolution $f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$ for independent X, Y.

covariance and correlation $Cov(X,Y) = E((X-\mu_X)(Y-\mu_Y)) = E(XY) - \mu_X \mu_Y$; $Corr(X,Y) = E(XY) - \mu_X$; Corr(X,Y) = E(XY) $\frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}$. For independent X and Y, $\operatorname{Cov}(X,Y) = \operatorname{Corr}(X,Y) = 0$.

expectation of a sum $E(a_1X_1 + \cdots + a_nX_n) = a_1E(X_1) + \cdots + a_nE(X_n)$.

expectation of a product If X_1, \ldots, X_n are independent, $\mathsf{E}\left(\prod_{i=1}^n h_i(X_i)\right) = \prod_{i=1}^n \mathsf{E}(h_i(X_i))$.

variance of a sum $Var(aX + bY) = a^2 Var(X) + 2ab Cov(X, Y) + b^2 Var(Y)$.

variance of a sum of independent rvs $Var(a_1X_1 + \cdots + a_nX_n) = a_1^2 Var(X_1) + \cdots + a_n^2 Var(X_n)$. **moments** k-th moment is $\mu_k = \mathsf{E}(X^k), k = 1, 2, \dots$

moment generating function $m_X(s) = \mathsf{E}(\mathrm{e}^{sX}); \; \mathsf{E}(X^k) = \frac{\mathrm{d}x^k}{\mathrm{d}s^k} \, m_X(s) \Big|_{s=0}$

mgf of a sum If X and Y are independent, $m_{aX+bY}(s) = \mathsf{E}(\mathrm{e}^{(aX+bY)s}) = m_X(as)m_Y(bs)$.

conditional expectation $\mathsf{E}(h(Y)|X=x) = \sum_y h(y) p_{Y|X}(y|x)$ or $\mathsf{E}(h(Y) \mid X=x) = \int_{-\infty}^\infty h(y) f_{Y|X}(y|x) \, dy.$

iterated expectation $\mathsf{E}(h(Y)) = \mathsf{E}(\mathsf{E}(h(Y) \mid X)), \, \mathsf{E}(q(X)h(Y)) = \mathsf{E}(q(X)\mathsf{E}(h(Y) \mid X)).$

conditional variance $Var(Y \mid X) = E(Y^2 \mid X) - (E(Y \mid X))^2$.

 $\mathbf{variance} \ \mathbf{partition} \ \mathbf{formula} \ \ \mathsf{Var}(Y) = \mathsf{E}(\mathsf{Var}(Y\mid X)) + \mathsf{Var}(\mathsf{E}(Y\mid X)).$

Markov's inequality $P(|X| \ge x) \le \frac{E(|X|)}{x}$ for x > 0.

Chebyshev's inequality $P(|X - \mu_X| \ge x) \le \frac{Var(X)}{x^2}$ for x > 0.

sample mean, variance, k-th moment $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$; $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$; $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

unbiased sample variance $S^2 = \frac{n}{n-1} \, \widehat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$.

law of large numbers For iid X_1, X_2, \ldots with mean $\mu, \bar{X}_n \to \mu$ as $n \to \infty$.

central limit theorem For iid X_1, X_2, \ldots with mean μ and variance σ^2 , $\mathsf{P}\Big(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \leq z\Big) = \mathsf{P}\Big(\frac{X_1 + \cdots + X_n - n\mu}{\sqrt{n}\sigma} \leq z\Big) \to \Phi(z) \text{ (normal(0,1) cdf), as } n \to \infty.$

bias and standard error $\mathsf{Bias}(\widehat{\theta}) = \mathsf{E}(\widehat{\theta}) - \theta$; $\mathsf{SE}(\widehat{\theta}) = \sqrt{\mathsf{Var}(\widehat{\theta})}$.

 $\mathbf{mean \ squared \ error \ } \mathsf{MSE}(\widehat{\theta}) = \mathsf{E}((\widehat{\theta} - \theta)^2) = \mathsf{Var}(\widehat{\theta}) + (\mathsf{Bias}(\widehat{\theta}))^2$

consistency $\widehat{\theta}$ is consistent if $MSE(\widehat{\theta}) \to 0$ as $n \to \infty$.

method of moments for iid sample match the k-th population moment $\mathsf{E}(X^k)$ with the k-th sample moment m_k , and solve for the desired parameter estimates.

likelihood function $L(\theta|X_1,\ldots,X_n) = \prod_{i=1}^n f_{\theta}(X_i)$ for iid sample $\underline{X} = (X_1,\ldots,X_n)$.

maximum likelihood for iid sample maximize the likelihood function $L(\theta|X_1,\ldots,X_n) = \prod_{i=1}^n f_{\theta}(X_i)$ or the log-likelihood $\ell(\theta|X_1,\ldots,X_n) = \log L(\theta|X_1,\ldots,X_n) = \sum_{i=1}^n \log f_{\theta}(X_i)$.

If $\log L(\theta)$ is differentiable and concave at θ , the MLE is a solution to $S(\theta) = \frac{d}{d\theta} \log L(\theta) = 0$. (For a multidimensional parameter θ this is a system of equations.)

score function $S(\theta|X_1,\ldots,X_n) = \frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta)$.

Fisher information $I_n(\theta) = \mathsf{Var}(\frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta)) = -\mathsf{E}(\frac{\mathrm{d}^2}{\mathrm{d}\theta^2} \ell(\theta))$, if ℓ has two derivatives.

For an iid sample, $I_n(\theta) = nI_1(\theta)$ and $I_1(\theta) = \text{Var}(\frac{d}{d\theta} \log f_{\theta}(X_1)) = -\text{E}(\frac{d^2}{d\theta^2} \log f_{\theta}(X_1)).$

sufficient statistic $T = T(\underline{X})$ is sufficient if $L(\theta|\underline{X}) = h(\underline{X})g(T(\underline{X}), \theta)$ for some functions $h(\underline{x})$ and $g(t, \theta)$.

exponential family The pdf/pmf has the form $f_X(x|\theta) = d(\theta)h(x)e^{c(\theta)t(x)}$ for all x, θ . In this case, with an iid random sample, $T(\underline{X}) = \sum_{i=1}^n t(X_i)$ is a sufficient statistic and $I_n(\theta) = n(c'(\theta))^2 \operatorname{Var}(t(X_1))$.

asymptotics for MLE Assuming Fisher information exists and $\hat{\theta}$ is the MLE, $\hat{\theta} \to \theta$ in probability and $\sqrt{I_n(\theta)}(\hat{\theta} - \theta) \to \text{normal}(0, 1)$ in distribution as $n \to \infty$.

asymptotic normality $\widehat{\theta}$ is asymptotic normal (θ, V_n) if $\frac{\widehat{\theta} - \theta}{\sqrt{V_n}} \to \text{normal}(0, 1)$ in distribution as $n \to \infty$. V_n may depend on θ or other parameters. If \widehat{V}_n is an estimator such that $\widehat{V}_n/V_n \to 1$ then $\frac{\widehat{\theta} - \theta}{\sqrt{\widehat{V}_n}} \to \text{normal}(0, 1)$ in distribution.

- **delta method** If $g(\theta)$ is continuously differentiable and estimator $\widehat{\theta}$ is asymptotic normal (θ, V_n) , then $g(\widehat{\theta})$ is asymptotic normal $(g(\theta), (g'(\theta))^2 V_n)$.
- level γ confidence interval $(L(\underline{X}), U(\underline{X}))$ such that $P_{\theta}(L(\underline{X}) \leq \theta \leq U(\underline{X})) = \gamma$.
- **confidence interval from pivot** If $h(\underline{X}, \theta)$ has a distribution that does not depend on θ , a level γ confidence interval is defined by $\{\theta : h(\underline{X}, \theta) \in A\}$ where $P_{\theta}(h(\underline{X}, \theta) \in A) = \gamma$.
- Wald confidence interval If $\hat{\theta}$ is asymptotic normal (θ, V_n) and \hat{V}_n is an estimator for V_n , an approximate level γ confidence interval for θ has endpoints $\hat{\theta} \pm z_{(1+\gamma)/2} \sqrt{\hat{V}_n}$, where $z_{(1+\gamma)/2}$ is the $(1+\gamma)/2$ quantile of the normal(0,1) distribution.
- score confidence interval For MLE $\widehat{\theta}$, an approximate level γ confidence interval defined by $\{\theta: -z_{(1+\gamma)/2} \leq (\frac{\mathrm{d}}{\mathrm{d}\theta} \ell(\theta))/\sqrt{I_n(\theta)} \leq z_{(1+\gamma)/2}\}$, where $z_{(1+\gamma)/2}$ is the $(1+\gamma)/2$ quantile of the normal(0,1) distribution.

A related method is the interval given by $\{\theta: -z_{(1+\gamma)/2} \leq \sqrt{I_n(\theta)}(\widehat{\theta} - \theta) \leq z_{(1+\gamma)/2}\}.$

Type I and II errors, level and power A Type I error is rejecting H_0 when it is true. The level of a test is $\alpha = \max_{\theta \in H_0} \mathsf{P}_{\theta}(H_0 \text{ is rejected})$ computed with values of θ such that H_0 true.

A Type II error is not rejecting H_0 when H_a is true. The power of a test is $\beta = \beta(\theta) = P_{\theta}(H_0)$ is rejected computed with parameter value θ (satisfying H_a).

- *P*-value The smallest level α for which H_0 will still be rejected it is a statistic (function of the data).
- **Neyman-Pearson likelihood ratio test** For simple hypotheses $H_0: \theta = \theta_0$ vs. $H_a: \theta = \theta_1$, reject H_0 if $LR = \frac{L(\theta_1)}{L(\theta_0)} \ge c_{\alpha}$ where $\mathsf{P}(LR \ge c_{\alpha}) = \alpha$ when H_0 is true. If, for each $c, LR \ge c \iff T \ge k$ (or $R \ge c \iff T \le k$) for some statistic T and some value k then it suffices to find k_{α} such that $\mathsf{P}(T \ge k_{\alpha}) = \alpha$ (resp., $\mathsf{P}(T \le k_{\alpha}) = \alpha$) when H_0

generalized likelihood ratio test For hypotheses H_0 and H_a about parameter θ and MLE $\widehat{\theta}$, reject H_0 if $LR = \frac{L(\widehat{\theta})}{\max_{\theta \in H_0} L(\theta)} \ge c_{\alpha}$ where $\max_{\theta \in H_0} \mathsf{P}(LR \ge c_{\alpha}) = \alpha$.

If $H_0: \theta = \theta_0$ and $H_a: \theta \neq \theta_0$ then $LR = \frac{L(\widehat{\theta})}{L(\theta_0)}$.

uniformly most powerful test A test is UMP if it has maximum possible power for every parameter value θ that satisfies H_a .

In particular, if the test is the same as the Neyman-Pearson test for each θ satisfying H_a then it is UMP.

Wald test If $\hat{\theta}$ is asymptotic normal (θ, V_n) and \hat{V}_n is an estimator for V_n , reject $H_0: \theta = \theta_0$ when $\frac{|\hat{\theta} - \theta_0|}{\sqrt{\hat{V}_n}} \ge z_{1-\alpha/2}$, where $z_{1-\alpha/2}$ is the $(1 - \alpha/2)$ quantile of the normal(0,1) dist. Equivalently,

reject
$$H_0$$
 if $\frac{(\widehat{\theta}-\theta_0)^2}{\widehat{V}_n} \ge \chi_{1,1-\alpha}^2$.

is true.

Important case: $\hat{\theta}$ is the MLE and $\hat{V}_n = 1/I_n(\hat{\theta})$.

- (asymptotic) score test For MLE $\widehat{\theta}$, reject $H_0: \theta = \theta_0$ when $\frac{\left|\frac{\mathrm{d}}{\mathrm{d}\theta}\ell(\theta_0)\right|}{\sqrt{I_n(\theta_0)}} \geq z_{1-\alpha/2}$, where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ quantile of the normal(0,1) dist. Equivalently, reject H_0 if $\frac{\left(\frac{\mathrm{d}}{\mathrm{d}\theta}\ell(\theta_0)\right)^2}{I_n(\theta_0)} \geq \chi_{1,1-\alpha}^2$. A related test is to reject $H_0: \theta = \theta_0$ when $\sqrt{I_n(\theta_0)} |\widehat{\theta} \theta_0| \geq z_{1-\alpha/2}$, and $\widehat{\theta}$ is the MLE.
- asymptotic likelihood ratio test Using the generalized LR statistic, reject $H_0: \theta = \theta_0$ when $2\log(LR) \ge z_{1-\alpha/2}^2 = \chi_{1,1-\alpha}^2$.
- test equivalent to interval Define a test from an interval (or an interval from a test) by: reject $H_0: \theta = \theta_0$ at level $\alpha \iff \theta_0$ is not in the 1α confidence interval.
- **prior and posterior distributions** If the prior density (or pmf) for θ is $f_{\Theta}(\theta)$ then the posterior density (or pmf) is $f_{\Theta}(\theta|\underline{X}) = c(\underline{X})f_{\underline{X}}(\underline{X}|\theta)f_{\Theta}(\theta)$, with $c(\underline{X})$ chosen so that $f_{\Theta}(\theta|\underline{X})$ is a proper pdf (pmf) in θ .
- Bayes estimator Either the mean or the mode of the posterior distribution.
- Bayes γ credible interval An interval $(L(\underline{X}), U(\underline{X}))$ such that, under the posterior distribution, $P(L(\underline{X}) \leq \theta \leq U(\underline{X}) \mid \underline{X}) = \gamma$. The interval is HPD (highest posterior density) if it equals the set $\{\theta : f_{\Theta}(\theta | \underline{X}) \geq c\}$ for some
- **Bayes Hypothesis test** Choose H_1 if and only if $\frac{\mathsf{P}(H_1 \mid \underline{X})}{\mathsf{P}(H_0 \mid X)} > 1$.

constant c.