I2	Výstupní charakteristiky	3D2
11. 6. 2018	logických obvodů	Meinlschmidt

ZADÁNÍ:

- 1. Popište vlastnosti výstupních budičů logických obvodů:
 - a) Klasické
 - b) S otevřeným kolektorem
 - c) Třístavové

Uveďte, jak a kde se jednotlivé typy využívají.

- 2. Jak jsou definovány úrovně vstupních a výstupních napětí logických hodnot u jednotlivých druhů logických obvodů?
- 3. Zapište charakteristické hodnoty logických obvodů udávaných výrobcem
- 4. U předložených obvodů změřte úrovně výstupních napětí na prázdno a zatěžovací charakteristiky při výstupních úrovních "L" a "H".
- 5. Vyzkoušejte práci s logickou sondou.
- 6. Sestrojte zatěžovací charakteristiky $U_{2H} = f(I2H)$ a $U_{2L} = f(I2L)$ všech měřených obvodů.
- 7. Porovnejte naměřené hodnoty vzájemně a s hodnotami udávanými výrobcem v katalogu.

TEORIE:

ODPOVĚDI NA OTÁZKY:

Popište vlastnosti výstupních budičů logických obvodů:

- S otevřeným kolektorem
 - Hradlo spíná pouze při "0", pro "1" musí být výstup hradla doplněný externím "pull-up" rezistorem
 - Výstupy těchto hradel lze spojovat paralelně
- Třístavové
 - Oproti klasickému TTL je rozšířen o možnost třístavovosti výstupu: 0, 1, vysoká impedance
 - Logické obvody s těmito výstupy se používají například při komunikaci více obvodů po společné sběrnici.
- Klasický
 - o Logický zisk standardního TTL hradla je 10
 - Výstupy dvou či více hradel nelze spojit paralelně (montovaný součin), protože by došlo k jejich zničení

<u>Jak jsou definovány úrovně vstupních a výstupních napětí logických hodnot u jednotlivých druhů logických obvodů?</u>

Klasický

- Napájení:
 - o 5 V
- Vstup (U_e)
 - \circ ,,0": 0 0,8 V
 - \circ ,1": 2 5 V
- Výstup (U_a)
 - \circ , 0": 0 0,4 V
 - \circ "1": 2,4 4 V
- Šumová imunita:
 - o 0,4 V

CMOS

• Úrovně logických signálů:

o Napájení: 3 − 15 V

 \circ "0": 0 – 30% UNAP

o ,,1":70 – 100% UNAP

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Napájecí zdroj	UNI-T 3703S	975/9
Voltmetr	UNI-T UT803	S349
Ampérmetr	UNI-T UT803	S306
Panel se zkušební paticí	P-07	
Přípravek pro měření zat. char.	P-09	
Logická sonda		

SCHÉMA ZAPOJENÍ:

Měření zatěžovací charakteristiky ve stavu "L"

Měření zatěžovací charakteristiky ve stavu "H"

POPIS PRÁCE:

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například zdroj napětí, ampérmetr, voltmetr atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

V první řadě jsme zapojili obvod pro měření typu "L". Měření probíhalo tak, že jsme přidali čip do zapojení obvodu a naměřili napětí a proud. Ty jsme si v daném rozmezí rovnoměrně rozdělili. Dále jsme pokračovali výměnou čipu za jiný, takto jsme postupovali pro všechny 4 čipy. Nakonec jsme vzali katalogy a doplňovali katalogové hodnoty do tabulek.

TABULKY:

Typ obvodu	7400	74S00	7437	74HC00
U_{cc} [V]	5	5	5	5
U_{2LMIN} [V]	0,8	0,8	0,2	0,19
U_{2LMAX} [V]	0,8	0,8	0,4	1,8
U_{2HMIN} [V]	2	2	2,4	1,5
U_{2HMAX} [V]	5,5	5,5	3,3	4,3
I_{2LMAX} [mA]	16	20	48	-20
I_{2HMAX} [mA]	-0,4	-1	-1,2	+20

7400		74 S00		7437		74HC00	
I_{2H} [mA]	U_{2H} [V]	I_{2H} [mA]	U_{2H} [V]	I_{2H} [mA]	U_{2H} [V]	I_{2H} [mA]	$U_{2H}[V]$
0	0	0	0	0	0	0	0
3	3,295	3	3,470	4	4,831	2,64	3,497
4,5	3,180	5	3,434	7	4,710	3,5	3,403
6	2,992	4,5	3,384	9	4,628	5,5	3,269
7	2,823	8,5	3,297	11	4,540	7	3,164
8	2,633	10	3,226	13	4,458	8	3,073
9,5	2,415	12	3,123	15	4,361	10	2,917
I_{2L} [mA]	$U_{2L}[V]$	I_{2L} [mA]	$U_{2L}[V]$	I_{2L} [mA]	$U_{2L}[V]$	I_{2L} [mA]	U_{2L} [V]
0	0	0	0	0	0	0	0
4	0,188	4	0,890	4	0,143	4	0,146
6	0,225	6,5	0,946	6,5	0,239	6,5	0,164
8	0,413	8,5	1,030	8,5	0,299	8,5	0,176
10	0,699	11	1,162	11	0,397	11	0,191
14	0,756	14	1,129	14	0,505	14	0,209
16,4	0,812	16,4	1,144	17	0,638	18	0,233

SPOLUPRACOVALI:

Kropáček Tomáš, Němeček Matyáš

ZÁVĚR:

Všechny úkoly se zadání byly splněny, během měření jsem si nevšiml žádných chyb nebo logických nesrovnalostí.