Il teorema di Takens: varianti ed applicazioni

Antonio De Capua

Scuola Normale Superiore

Dinamica e Serie Temporali, 8 giugno 2011

Introduzione

- Il teorema di Takens (1980) "autorizza" la ricostruzione della dinamica di sistemi di varia natura a partire da serie temporali.
- Nella sua forma standard esso è applicabile solo a sistemi autonomi, e all'atto pratico necessita di essere applicato in un modo "ottimizzato".
- Vedremo quali sono i progressi che sono stati fatti in tempi recenti nel dimostrarne varianti o migliorarne le applicazioni.
- Parleremo dei risultati che dà sull'analisi dei dati provenienti da fMRI.

La situazione di interesse

Il teorema di Takens si applica a sistemi dinamici discreti.

La situazione di interesse

Il teorema di Takens si applica a sistemi dinamici discreti.

- lo spazio delle fasi è una varietà differenziabile compatta M
- l'evoluzione del sistema è data da una mappa $f \in \text{Diff}(M)$
- f in generale cambia ad ogni passo in base ad uno o più parametri. Se ciò non accade il sistema è autonomo.

Si vogliono ricostruire le proprietà del sistema dinamico in base ai valori assunti nel tempo da un osservabile, cioè un'applicazione $\phi: M \to \mathbb{R}$.

Enunciato del teorema

Per ora ci occupiamo di sistemi autonomi. La delay map associata a $f \in \phi$, fissato un $d \ge 0$, è

$$\Phi_{f,\phi}: M \to \mathbb{R}^d \\ x \mapsto (\phi(x), \phi(fx), \dots, \phi(f^{(d-1)}x))$$

Teorema (Takens)

Sia M^m una varietà compatta, e siano $r \ge 1$, $d \ge 2m + 1$. Allora esiste un sottoinsieme aperto denso di

$$(f,\phi)\in \mathsf{Diff}^r(M) imes \mathcal{C}^r(M,\mathbb{R})$$

tali che la delay map $\Phi_{f,\phi}$ è un embedding.

Come si usa il teorema di Takens

Supponiamo di avere una serie temporale data da

$$\phi_i = \phi(f^{(i)}x_0).$$

- Sia $F = \Phi_{f,\phi} \circ f \circ \Phi_{f,\phi}^{-1}$ la mappa coniugata a f su $\Phi_{f,\phi}(M)$.
- Detto $z_i = (\phi_i, \phi_{i+1}, \dots, \phi_{i+d-1})$ si ha allora $F(z_i) = z_{i+1}$.
- Avendo a disposizione una serie temporale abbastanza lunga, è possibile tentare un'approssimazione di F: quindi di descrivere proprietà del sistema dinamico in esame a meno di coniugio.

Problemi di applicazione

- L'ipotesi di sistema dinamico autonomo è molto restrittiva nella pratica.
- Nei fatti si hanno a disposizione serie temporali non infinite, e talvolta anche piuttosto corte.
- Senza conoscere il sistema dinamico a monte, non si sa neanche quanto deve essere alta la dimensione di embedding d.

Fissato un intero positivo τ (il lag), è possibile definire la delay map anche come

$$\mathbf{X} \mapsto \left(\phi(\mathbf{X}), \phi(f^{(\tau)}\mathbf{X}), \dots, \phi(f^{((d-1)\tau)}\mathbf{X})\right)$$

ottenendo gli stessi risultati.

È indispensabile capire qual è il lag che dà i migliori risultati nell'embedding.

Mutua informazione

Siano S e Q due sistemi che presentano un ventaglio di output possibili $\{s_i\}$ e $\{q_i\}$ con probabilità note.

- L'entropia è la quantità $H(S) = \sum_{i} p_{S}(s_{i}) \log p_{S}(s_{j})$
- La mutua informazione fra S e Q è

$$I(S,Q) = H(S) + H(Q) - H(S,Q)$$

La mutua informazione è una misura di quanto la conoscenza di uno dei due sistemi aiuta a "spiegare" l'altro.

Rispetto alla più classica correlazione, ha il pregio di considerare anche i legami non lineari.

La scelta del lag

- Consideriamo come ventagli di output la serie $\{\phi_i\}$ e la serie ritardata $\{\phi_{i-\tau}\}$, e ne stimiamo quali sono le probabilità associate, sia disgiunte che congiunte.
- Sia I_{τ} la relativa mutua informazione.
- Una buona scelta per il lag τ è allora il primo punto di minimo locale di I_{τ} .

Embedding dell'attrattore di Roux.

Attrattore di Rössler

$$\begin{cases} \dot{x} = -z - y \\ \dot{y} = x + ay \\ \dot{z} = b + z(x - c) \end{cases}$$

I prodotti obliqui

- Modellizziamo un sistema forzato come un sistema M in cui la mappa f_y è determinata dallo stato y in cui si trova un altro sistema (autonomo) N, la cui evoluzione è descritta da g ∈ Diff(N).
- Matematicamente, si potrebbe pensare $N \subseteq Diff(M)$.
- L'evoluzione congiunta nel tempo di (x_i, y_i) ∈ M × N è descritta da un prodotto obliquo

$$x_{i+1} = f(x_i, y_i) = f_{y_i}(x_i)$$

 $y_{i+1} = g(y_i)$

• Le generalizzazioni possibili di Takens sono diverse se conosciamo (N, g) oppure no.

Il primo adattamento

- Se non conosciamo (N, g) potremmo pensare di applicare Takens prendendo il sistema $M \times N$ per intero.
- Il problema è che vorremmo usare un osservabile che dipende solo dallo stato di M.

Teorema (Takens forzato - Stark 1999)

Siano M^m e N^n varietà compatte ($m \ge 1$) e siano $r \ge 1$, $d \ge 2(m+n)+1$.

Supponiamo che $g \in \mathsf{Diff}^r(N)$ sia t.c. le orbite periodiche di periodo < 2d siano isolate; e che Tg, calcolato nei punti di tali orbite, abbia sempre autovalori tutti distinti.

Allora esiste un aperto denso di

$$(f,\phi) \in \mathsf{Diff}^r(M \times N,M) \times \mathcal{C}^r(M,\mathbb{R})$$

tale che la delay map $\Phi_{(f,q),\phi}$ è un embedding di $M \times N$.

La ricostruzione nel caso forzato

- Tramite Takens forzato, ogni mappa f_y risulta coniugata a $F_y = \Phi_{(f,g),\phi,g(y)} \circ f_y \circ \Phi_{(f,g),\phi,y}^{-1}$. Conoscere l'evoluzione temporale di y è quindi necessario.
- Se (N, g) è noto a priori, potremmo abbassare d richiedendo solo che gli $\Phi_{(f,g),\phi,y}$ siano embedding.

Teorema (degli embedding fibrati - Stark 1999)

Siano M^m e N^n varietà compatte ($m \ge 1$) e siano $r \ge 1$, $d \ge 2m+1$. Supponiamo che $g \in \mathsf{Diff}^r(N)$ sia t.c. le orbite periodiche di periodo < d abbiano misura di Lebesgue nulla in N.

Allora esiste un insieme residuo di

$$(f,\phi) \in \mathsf{Diff}^r(M \times N, M) \times \mathcal{C}^r(M, \mathbb{R})$$

tale che la delay map $\Phi_{(f,g),\phi,y}$ è un embedding di M al variare di y in un insieme aperto, denso e di misura piena in N.

Alcune osservazioni

- La tesi di questa versione è più debole delle precedenti.
- Le ipotesi tecniche su g per Takens forzato sono necessarie.
- Spesso, quando si ha una forzatura periodica, si campiona ϕ con una frequenza pari a quella della forzatura, quindi $g=id_N$. Però in tal caso il sistema M risulta non forzato.
- Si costruiscono esempi di g per cui la tesi non vale per tutti gli y per un insieme aperto di (f, ϕ) .

Dal caso forzato a quello stocastico

I sistemi stocastici di nostro interesse si possono modellizzare come una generalizzazione di quelli forzati: l'evoluzione di M è data da una f_{ω^0} con $\omega^0 \in N$ scelta casualmente ad ogni passo.

- Sia $\Sigma = N^{\mathbb{Z}}$ e sia σ lo shift su Σ : $[\sigma(\omega)]^i = \omega^{i+1}$.
- Il sistema $M \times \Sigma$ si evolve ancora secondo un prodotto obliquo

$$x_{i+1} = f(x_i, \omega_i) = f_{\omega_i}(x_i)$$

 $\omega_{i+1} = \sigma(\omega_i)$

La delay map diventa

$$\Phi_{f,\phi,\omega}: \mathbf{X} \mapsto (\phi(\mathbf{X}), \phi(f_{\omega^0}\mathbf{X}), \phi(f_{\omega^0\omega^1}\mathbf{X}), \dots, \phi(f_{\omega^0\dots\omega^{d-2}}\mathbf{X}))$$

 Ci troviamo in un caso poco dissimile da quello forzato finito-dimensionale.

Un'ambientazione più probabilistica

- Su N si può porre una misura di probabilità μ , e su Σ quella prodotto.
- Σ può anche essere un sottoinsieme σ -invariante di $N^{\mathbb{Z}}$ dotato di una misura μ_{Σ} anch'essa σ -invariante.

Teorema (Takens per processi stocastici - Stark et al. 2003)

Siano M^m e N^n varietà compatte ($m \ge 1$) e siano $r \ge 1$, $d \ge 2m+1$. Sia μ_{Σ} una misura di probabilità σ -invariante su Σ t.c. la misura marginale μ_{d-1} su N^{d-1} sia assolutamente continua rispetto alla misura di Lebesgue.

Allora esiste un insieme residuo di

$$(f,\phi) \in \mathsf{Diff}^r(M \times N,M) \times \mathcal{C}^r(M,\mathbb{R})$$

tale che la delay map $\Phi_{f,\phi,\omega}$ è un embedding di M per μ_{Σ} -quasi ogni ω .

I passi della dimostrazione

- $\Phi_{f,\phi}: M \times N^{d-1} \to \mathbb{R}^d$ è tale che $\tilde{T}\Phi_{f,\phi} \pitchfork$ alla sezione nulla di $T\mathbb{R}^d$ e $\Phi_{f,\phi} \times \Phi_{f,\phi} \pitchfork \Delta \subset \mathbb{R}^d \times \mathbb{R}^d$ per un insieme residuo di (f,ϕ) .
- Per il teorema di trasversalità parametrica questo è vero per quasi tutte le $\Phi_{f,\phi,\omega}$.
- Per questioni di dimensione, trasversalità=non intersezione.
- Il problema principale nella dimostrazione sono i punti che prendono due o più coordinate uguali.

Alcune osservazioni

- Per n = 0, si ha un embedding per *ogni* ω .
- Il teorema è applicabile al caso in cui c'è soltanto un rumore stocastico (anche nell'osservabile).
- È applicabile anche al caso in cui si fanno campionamenti di un sistema deterministico a intervalli irregolari.
- Il teorema non dà alcuna indicazione sulla ricostruzione di ω , necessaria per ricostruire M.
- ullet Non sembra possibile caratterizzare l'insieme delle (f,ϕ) "buone".

Serie temporali vettoriali

Se abbiamo più osservabili $\phi^1,\dots,\phi^m,$ ha senso pensare ad una delay map del tipo

$$\begin{array}{ccc}
x & \mapsto & (\phi^{1}(x), \phi^{1}(f^{(\tau_{1})}x), \dots, \phi^{1}(f^{((d_{1}-1)\tau_{1})}x), \\
& \vdots \\
& \phi^{m}(x), \phi^{m}(f^{(\tau_{m})}x), \dots, \phi^{m}(f^{((d_{m}-1)\tau_{m})}x))
\end{array}$$

- Non c'è alcun ostacolo teorico ad applicare Takens.
- Data una serie temporale $(\phi_i = (\phi_i^1, \dots, \phi_i^m))_{i=1}^N$, siano \mathbf{V}_i i relativi vettori di ricostruzione $(i = J_0, \dots, N)$.
- Come nel caso standard, avremo $V_{i+1} = F(V_i)$; o equivalentemente, si hanno delle mappe F^k tali che $\phi_{i+1}^k = F^k(V_i)$.

Scelta dei parametri

- Risulta meglio scegliere i τ_j e i d_j indipendentemente per ogni F^k .
- L'idea per i d_i è fare in modo che le F^k risultino continue.
- Sia $\eta(i)$ l'indice per cui $\|\mathbf{V}_i \mathbf{V}_{\eta(i)}\|$ è minimo.
- L'errore medio nell'approssimazione grezza di F^k è $E^k(d_1,\ldots,d_m)=\frac{1}{N-J_0+1}\sum_{i=J_0}^N|\phi_{i+1}^k-\phi_{\eta(i)+1}^k|.$
- Ci si aspetta che E^k presenti un punto di minimo.
- La scelta più opportuna è quindi $(d_1, \ldots, d_m) = \operatorname{argmin} E^k$.
- Le F^k vengono approssimate in modo localmente lineare.
- Se vogliamo approssimare le iterate di F, bisogna ridefinire l'errore di conseguenza.

Utilizzi dell'approccio multivariato

- Sulla predizione di una serie temporale, l'approccio multivariato lavora molto meglio di quello univariato.
- Si possono rintracciare le relazioni funzionali esistenti fra più serie: si cerca di fittare una relazione del tipo

$$\phi_{i}^{l} = G(\phi_{i-t_{11}}^{k_{1}}, \dots, \phi_{i-t_{1d_{1}}}^{k_{1}}, \\
\vdots \\
\phi_{i-t_{m1}}^{k_{m}}, \dots, \phi_{i-t_{md_{m}}}^{k_{m}})$$

che può essere predittiva o meno.

La figura illustra il cosiddetto doppio rotore calciato

La figura illustra il cosiddetto doppio rotore calciato

A destra sono i risultati della predizione nel caso univariato e bivariato.

Connettività funzionale fra diverse aree cerebrali

- La Functional Magnetic Resonance Imaging osserva l'attività dei neuroni cerebrali nel tempo, suddivisi in voxel.
- È un modo per indagare su quali aree rispondono a determinati stimoli.
- Altra domanda importante è la connettività funzionale: la "correlazione temporale fra eventi neurofisiologici lontani nello spazio".
- Usualmente la correlazione fra X e Y è definita da $corr(X, Y) = \frac{cov(X, Y)}{\sigma_X \sigma_Y}$
- Con tale definizione, però, si rintracciano solo i legami a livello lineare.

Bivariate Nonlinear Connectivity Index

- Consideriamo due serie temporali (ϕ_i) e (ψ_i) provenienti da voxel diversi.
- Siano d₁^u, d₂^u le rispettive dimensioni ottimali di embedding univariato.
- Sia invece d^b la dimensione totale di embedding bivariato.
- Quando si ha connettività, ci si aspetta che $d^b < d_1^u + d_2^u$.
- Si definisce quindi

$$BNC = 1 - \frac{|d^b - d_1^u| + |d^b - d_2^u|}{d_1^u + d_2^u}.$$

• Il metodo δ - ϵ viene utilizzato come test per assicurarsi un legame deterministico piuttosto che dovuto a rumore: a livello quantitativo viene utilizzato

$$S(r) = |\epsilon(r) - \epsilon^*(r)|/\sigma^*(r)$$

FC in stato di riposo

	Network	Linear	Nonlinear	Granger Causality	
		Connectivity (LC)	Connectivity (BNC)	Direction	DGC
Sub-1	LM↔SMA	0.76	0.52	LM→SMA	-0.52
	$LM \leftrightarrow RM$	0.73	0.89	$LM \rightarrow RM$	-0.78
	$LM \leftrightarrow F$	0.22	0.15	$LM \rightarrow F$	0.20
Sub-2	$LM \leftrightarrow SMA$	0.49	0.63	$LM \rightarrow SMA$	-0.56
	$LM \leftrightarrow RM$	0.57	0.76	$LM \rightarrow RM$	-0.65
	$LM \leftrightarrow F$	0.45	0.54	$LM \rightarrow F$	0.15

- I risultati dell'analisi nonlineare sembrano precisare, senza contraddire, quelli dell'analisi lineare.
- Il risultato ottenuto tramite analisi nonlineare appare più solido.

Il metodo nonlineare trova una zona connessa in più, mentre elimina una connessione spuria trovata tramite correlazione.

FC mentre si tamburellano le dita

- Le figure mostrano i voxel che presentano una FC significativa con la regione di riferimento in bianco.
- I voxel connessi aumentano con il trascorrere del tempo.
- L'analisi nonlineare rileva molti più voxel connessi di quella lineare.

Grazie per l'attenzione.

Riferimenti bibliografici

Andrea Marchesini

Ricostruzione di attrattori a partire da serie temporali: il teorema di Takens Tesi di Laurea triennale, A.A. 2009-2010

J. Stark

Delay Embeddings for Forced Systems. I. Deterministic Forcing J. Nonlinear Sci. Vol. 9: pp. 255-332, 1999 Springer-Verlag

J. Stark, D.S. Broomhead, M.E. Davies, J. Huke

Delay Embeddings for Forced Systems. II. Stochastic Forcing J. Nonlinear Sci. Vol. 13: pp. 519-577, 2003 Springer-Verlag

Liangyue Cao, Alistair Mees, Kevin Judd

Dynamics from multivariate time series *Physica D* 121, 1998, pp. 75-88

Gopikrishna Deshpande, Stephen LaConte, Scott Peltier, Xiaoping Hu

Connectivity Analysis of Human Functional MRI Data: From Linear to Nonlinear and Static to Dynamic MIAR 2006, LNCS 4091, pp. 17-24, 2006 Springer-Verlag

Andrew M. Fraser, Harry L. Swinney

Indipendent coordinates for strange attractors from mutual information Physical Review A, Vol. 33, No. 2, pp. 1134-1140, 1986 The Americal Physical Society