Lagrangian density
$-t_1 \; \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
$2 r_1 \partial_i \omega^{\kappa \lambda}_{\ \kappa} \partial^i \omega_{\lambda \alpha}^{\ \alpha} - \frac{2}{3} r_1 \partial^\beta \omega^{\theta \alpha}_{\ \kappa} \partial_\theta \omega_{\alpha \beta}^{\ \kappa} + \frac{2}{3} r_2 \partial^\beta \omega^{\theta \alpha}_{\ \kappa} \partial_\theta \omega_{\alpha \beta}^{\ \kappa} -$
$\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{ \ \ k}\partial_{\kappa}\omega^{\alpha\beta\theta} - \frac{1}{3}r_{2}\partial_{\theta}\omega_{\alpha\beta}^{ \ \kappa}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{ \ \kappa}\partial_{\kappa}\omega^{\theta\alpha\beta} -$
$\frac{2}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{} + 2 k_1 \partial_\alpha \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} - 2 r_1 \partial_\theta \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\theta \kappa \lambda} +$
$2r_1\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta}-4r_1\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-\frac{1}{3}t_1\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta}-$
$rac{2}{3}t_{1}\partial^{lpha}\!f_{\kappa heta}\partial^{\kappa}\!f_{lpha}^{}\!-\!rac{1}{3}t_{1}\partial^{lpha}\!f^{\lambda}_{}\partial^{\kappa}\!f_{lpha\lambda}^{}\!+\!t_{1}\;\omega_{\kappalpha}^{lpha}\partial^{\kappa}\!f'_{}^{}\!+$
$t_1 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^\kappa f'_{\;\; } + 2 t_1 \partial^\alpha f_{\;\; \kappa\alpha} \partial^\kappa f'_{\;\; } - t_1 \partial_\kappa f^\lambda_{\;\; } \partial^\kappa f'_{\;\; } + \frac{1}{3} t_1 \; \omega_{_{!}\theta\kappa} \; \partial^\kappa f^{_{!}\theta} +$
$rac{4}{3}t_{1}\;\omega_{_{IK}\theta}\;\partial^{\kappa}f^{_{I}\theta}-rac{1}{3}t_{1}\;\omega_{ heta_{IK}}\;\partial^{\kappa}f^{_{I} heta}+rac{2}{3}t_{1}\;\omega_{ heta_{K}}\;\partial^{\kappa}f^{_{I} heta}-t_{1}\;\omega_{_{I}lpha}\;\partial^{\kappa}f^{_{I}}_{\;\;\kappa}-$
$t_1\;\omega_{_{I}\lambda}^{\;\;\lambda}\;\partial^{\kappa}f_{_{K}}'+rac{1}{3}t_1\;\partial^{lpha}f_{_{A}}\;\partial^{\kappa}f_{\;\lambdalpha}+rac{1}{3}t_1\;\partial_{\kappa}f_{\;\;\theta}^{\;\;\lambda}\;\partial^{\kappa}f_{\;\;\lambda}^{\;\; heta}+$
$rac{2}{3}t_1\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_{\lambda}^{\theta}$ - $t_1\partial^\alpha f^\lambda_{\kappa}$ $\partial^\kappa f_{\lambda\kappa}$ + $rac{2}{3}r_1\partial_\kappa \omega^{\alpha\beta\theta}\partial^\kappa \omega_{\alpha\beta\theta}$ +
$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} +$
$rac{2}{3}r_1\partial^{eta}\omega_{\alpha}^{\ lpha\lambda}\partial_{\lambda}\omega_{lphaeta}^{\ \prime}-rac{2}{3}r_2\partial^{eta}\omega_{\alpha}^{\ lpha\lambda}\partial_{\lambda}\omega_{lphaeta}^{\ \prime}-rac{8}{3}r_1\partial^{eta}\omega_{\lambda}^{\ \lambdalpha}\partial_{\lambda}\omega_{lpha}^{\ \prime}+$
$rac{2}{3}r_2\partial^{eta}\omega_{\lambda}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $2r_1\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}{}_{\kappa}$ + $2r_1\partial_{ heta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}{}_{\kappa}$
Added source term: $f^{\alpha\beta} au_{lphaeta} + \omega^{lphaeta\chi} \sigma_{lphaeta\chi}$

${\mathfrak t}_1^{\#2}$	0	0	0	$\frac{ik}{k^2 t_1}$	$\frac{k^2 r_1 + t_1)}{k^2 t_1)^2}$	0	$\frac{2r_1+t_1)}{r^2t_1)^2}$
)))	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$)	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	$\frac{12ik}{(3+2k^2)^2t_1}$	$\frac{12k^2}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{12}{(3+2k^2)^2t_1}$	$-\frac{12ik}{(3+2k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+2k^2)^2t_1}$	$-\frac{6\sqrt{2}}{(3+2k^2)^2t_1}$	$\frac{6i\sqrt{2}k}{(3+2k^2)^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_1^{\#1} +^\alpha$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} + \alpha$	$\tau_{1}^{\#2} +^{\alpha}$

	#	_		8	m	m r	n u	19
Source constraints	SO(3) irreps	$\tau_{0+}^{\#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$t_1^{\#1}{}^{\alpha} == 0$	0	$+ O_1^{\pm} = 0$	Total #:
f#2	, 1 α	0	0	0	ikt ₁	0	0	0
$f_{1}^{#1}$, τ α	0	0	0	0	0	0	0
ω_{1}^{*2} , f_{1}^{*1} , f_{1}^{*2} .	α	0	0	0	$\frac{t_1}{\sqrt{2}}$. 0	0	0
$\omega_{1}^{\#1}$	-1 α	0	0	0	$-k^2 r_1 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ec{\imath}kt_1$
f#1 f + +	1. αβ	$-\frac{ikt_1}{3\sqrt{2}}$	<u>i</u> kt <u>1</u> 3	$\frac{k^2 t_1}{3}$	0	0	0	0
ω_{+}^{*2} , ω_{+}^{*1}	$1 \alpha \beta$	$-\frac{\epsilon_1}{3\sqrt{2}}$	£ 3	$-\frac{1}{3}$ \bar{l} kt_1	0	0	0	0
$\omega_{1+\tilde{z},o}^{\#1}$	1 αβ	6 6	$-\frac{t_1}{3\sqrt{2}}$	$\frac{ikt_1}{3\sqrt{2}}$	0	0	0	0
		$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{lpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	$k^2 r_2$	
$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	$i\sqrt{2}kt_1$	$-2 k^2 t_1$	0	0	
$\omega_{0}^{\#1}$	-¢ ₁	$-i\sqrt{2}kt_1$	0	0	
·	$\omega_{0}^{\#1}\dagger$	$f_{0}^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1} \dotplus$	

$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_2^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{#1} +^{lphaeta\chi}$

_	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2+}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\sigma_0^{\#1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0^{+}}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\!$	0	0	0	$\frac{1}{k^2 r_2}$

	Massive particle		
? $J^P = 2^{-/}$	Pole residue:	$-\frac{1}{r_1} > 0$	
2	Polarisations:	5	
\vec{k}^{μ}	Square mass:	$-\frac{t_1}{2r_1} > 0$	
?	Spin:	2	
·	Parity:	Odd	

Unitarity conditions $r_1 < 0 \&\& t_1 > 0$

(No massless particles)