Основное уравнение МКТ, давление газа

Уровень 1

1. Основное уравнение МКТ записывается в виде:

- 2. Единицей количества вещества в СИ является:
- а) 1кг; б) 1моль; в) 1г; г) 1кмоль.
- 3. Среднюю кинетическую энергию газа вычислим по формуле:

a)
$$< E >= \frac{1}{3}kT$$
; 6) $< E >= 2kT$; b) $< E >= \frac{3}{2}kT$; Γ) $< E >= \sqrt{\frac{3RT}{M}}$.

4. Единицей измерения в системе СИ давления является:

- а) кПа; б) мм.рт.ст.; в) Па; г) моль/м.
- **5.** Средняя квадратичная скорость молекул газа вычисляется по формуле:

a)
$$=\sqrt{\frac{3RT}{M}};$$
 6) $=\sqrt{\frac{8RT}{\pi M}};$ B) $=\sqrt{\frac{2RT}{M}};$ $\Gamma)=\frac{3}{2}kT.$

Уровень 2

- **1.** [12] Определите среднюю концентрацию молекул одноатомного газа при температуре 290К и давлении 0.8кПа. $(2 \cdot 10^{38})$
- **2.** [12] Во сколько раз возрастет давление идеального газа, если средняя квадратичная скорость его молекул увеличится в n=2 раза? *(увеличится в 2 раза)*
- **3.** [12] Найдите среднюю кинетическую энергию молекулы одноатомного газа при давлении 20кПа. Концентрация молекул этого газа при указанном давлении $3 \cdot 10^{25} \, \text{м}^{-3}$. (10^{-21})
- **4.** [12] Средние квадратичные скорости молекул водорода и кислорода соответственно равны 1840м/с и 460м/с. Сравните средние кинетические энергии этих молекул. (средняя кинетическая энергия водорода в 4 раза больше кислорода)
- **5.** [11] Определите среднюю квадратичную скорость движения молекул при нормальных условиях. $(1,3\kappa m/c)$

Уровень 3

- **1.** [11] Вода массой 100г, которая находится в стакане, полностью испарилась за 10 суток. Определите среднее количество молекул воды, вылетевших ежесекундно с ее поверхности, и их давление, если известно, что температура равна 25° С. $(4\cdot10^{18}c^{-1},138\cdot10^{5}\Pi a)$
- **2.** [11] Средняя квадратичная скорость молекул некоторого газа при нормальных условиях равна 480м/с. Определите число молекул в 1г этого газа? $(2.04 \cdot 10^{22})$
- **3.** [11] Плотность газа в баллоне газонаполненной электрической лампы в рабочем режиме равна 0.9кг/м³ при давлении $1.1 \cdot 10^{-5}$ Па. Определите среднюю квадратичную скорость молекул газа при этих условиях. (495м/с)
- **4.** [11] При какой температуре средняя квадратичная скорость молекул кислорода достигает 600м/с? Определите давление газа. (462К)
- **5.** [11] Плотность некоторого газа при температуре 14°C и давлении $4\cdot10^5$ Па равна 0,68кг/м³. Определите молярную массу этого газа. Чему будет равно давление этого газа, если концентрация молекул $2\cdot10^{22}$. (4г/моль, $792\cdot10^{-16}$ Πa)

Уровень 4

- **1.** [9] В сосуде объемом 3дм³ находится $5 \cdot 10^{24}$ молекул водорода при давлении 2МПа. Определите среднюю кинетическую энергию поступательного движения молекул водорода. $(1,8 \cdot 10^{-21} \mbox{Дж})$
- **2.** [11] В баллоне вместимостью 10л находится газ при температуре 27°С. Из-за утечки газа давление в баллоне понизилось на 4,2кПа. Сколько молекул газа покинуло баллон? (10^{22})
- **3.** [13] В сосуде находится смесь азота и водорода. При начальной температуре Т, азот полностью диссоциирует на атомы, а диссоциацией водорода можно пренебречь. При нагревании до температуры 2Т оба газа полностью диссоциируют и давление утраивается по сравнению с начальным. Каково соотношение масс азота и водорода в смеси. (7)
- **4.** [9] В баллоне находится двухатомный газ. Во сколько раз увеличится давление газа, если четверть всех молекул распадется на атомы? Температура газа неизменна. (возрастем в 1.25 раза)

5. [11] В сосуде объемом 0,2дм³ находится газ при температуре 30°C. На сколько понизится давление в сосуде, если в результате утечки из него вышли 10^{20} молекул газа? Температуру газа считать постоянной. $(2,1\kappa\Pi a)$

Уровень 5

- **1.** При какой температуре средняя квадратичная скорость поступательного движения молекул гелия $\langle v_{\kappa s} \rangle = 700 \text{м/c}$? Для этой температуры определить полную энергию всех молекул гелия, масса которого равна 100г. (315K, $98\kappa \mathcal{J}$ жс)
- **2.** При давлении 150кПа плотность воздуха 1,29кг/м 3 . Вычислить среднюю квадратичную скорость поступательного движения молекул воздуха при данных условиях. (590м/с)
- **3.** [9] На поверхности Венеры температура и атмосферное давление соответственно равны 750К и 9120кПа. Найти плотность атмосферы у поверхности планеты, считая, что она состоит из углекислого газа. $(64\kappa z/m^3)$
- **4.** [6] При какой температуре средняя квадратичная скорость атомов гелия станет равной скорости искусственного спутника Земли, летящего по круговой орбите на высоте 400км? (9471K)
- **5.** [11] Какой скоростью обладали атомы паров серебра в опыте Штерна, если частота вращения прибора 3000мин⁻¹, а сдвиг полоски серебра при температуре 1173К был равен 9,5мм. Диаметры внутренних и внешних цилиндров соответственно равны 12 и 240мм. (452м/с)