Solve with instructor

Mr. Kumar Ramanand Tutorial Instructor

Table of Contents

Positive Definite Matrices and Functions

2 Principal Component Analysis (PCA)

$$f(x,y) = x^2 + y^2$$

Which of the following is an stationary point of the above function?

- A. (0,0)
- B. (0,1)
- C. (1,0)
- D. (1,1)

$$f(x,y) = x^2 + y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-2 solution

$$f(x,y) = -x^2 - y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-3 solution

$$f(x,y) = x^2 - y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-4 solution

$$f(x,y) = -x^2 + y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-5 solution

Which of the following is an stationary point of the below function?

$$f(x,y) = 8x^2 + 12xy + 10y^2$$

- A. (0,0)
- B. (0,1)
- C. (1,0)
- D. (1,1)

Question-6 solution

Quadratic form,
$$f(x, y) = 8x^2 + 12xy + 10y^2$$

Derivative method

Check for stationary point:

- First order partial derivatives: $f_x = 16x + 12y$, $f_y = 12x + 20y$
- First order partial derivatives at point (0,0): $f_x = 0$, $f_y = 0$
- This means the point (0, 0) is an stationary point for f(x, y)

Which of the following is an stationary point of the below function?

$$f(x,y) = 2x^2 - 8x + 4xy - 8y + 2y^2$$

- A. (0,0)
- B. (-1,-1)
- C. (1,1)
- D. Can not be determined

Question-7 solution

Quadratic form,
$$f(x, y) = 2x^2 - 8x + 4xy - 8y + 2y^2$$

Derivative method

Check for stationary point:

- First order partial derivatives: $f_x = 4x + 4y 8$, $f_y = 4x + 4y 8$
- First order partial derivatives at point (1,1): $f_x = 0, f_y = 0$
- This means the point (1, 1) is an stationary point for f(x, y)

$$f(x,y) = 8x^2 + 12xy + 10y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-8 solution

Derivative method

- Second order partial derivatives, $f_{xx} =$ $16, f_{xy} = 12, f_{yy} = 20$
- $D = f_{xx}f_{yy} f_{xy}^2 =$ $16 * 20 - 12^2 = 176$
- a > 0 and D > 0.
- The function has a minima at the point (0,0)

$$f(x,y) = -8x^2 + 12xy - 10y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-9 solution

Derivative method

 Second order partial derivatives.

$$f_{xx} = -16, f_{xy} = 12, f_{yy} = -20$$

- $D = f_{xx}f_{yy} f_{xy}^2 =$ $-16*-20-12^2=174$
- a < 0 and D > 0.
- The function has a maxima at the point (0,0)

$$f(x,y) = 4x^2 + 12xy + 5y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-10 solution

Derivative method

- Second order partial derivatives, $f_{xx} =$ $8, f_{xy} = 12, f_{yy} = 10$
- $D = f_{xx}f_{yy} f_{xy}^2 =$ $8*10-12^2=-64$
- D < 0.
- The function has a saddle point at the point (0,0)

$$f(x,y) = 2xy$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-11 solution

Derivative method

 Second order partial derivatives,

$$f_{xx} = 0, f_{xy} = 0, f_{yy} = 0$$

•
$$D = f_{xx}f_{yy} - f_{xy}^2 = 0$$

• D = 0, The second derivative test fails at the point (0,0)

$$f(x,y) = x^2 + 2xy + y^2$$

- A. Minima
- B. Maxima
- C. Saddle
- D. Can not be determined

Question-12 solution

Derivative method

 Second order partial derivatives.

$$f_{xx} = 2, f_{xy} = 2, f_{yy} = 2$$

- $D = f_{xx}f_{yy} f_{xy}^2 =$ $2*2-2^{2}=0$
- D = 0. The second derivative test fails at the point (0,0)

$$A = \begin{bmatrix} 4 & 2 \\ 2 & 2 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-13 solution

Graphical test

• f(x,y) > 0 for all

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

A is positive definite

Determinant test

- For the function, a = 4, b = 2, c = 2
- a > 0, $ac b^2 > 0$
- A is positive definite

$$A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-14 solution

Graphical test

• $f(x,y) \ge 0$ for all

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

A is positive semidefinite

Determinant test

• For the function, a = 2, b = 2, c = 2

•
$$a > 0$$
, $ac - b^2 = 0$

A is positive semidefinite

$$A = \begin{bmatrix} -4 & 2 \\ 2 & -2 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-15 solution

Graphical test

• f(x, y) < 0 for all

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• A is negative definite

Determinant test

• For the function.

$$a = -4, b = 2, c = -2$$

- a < 0, $ac b^2 > 0$
- A is negative definite

$$A = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-16 solution

Graphical test

• $f(x,y) \leq 0$ for all

$$v = \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

A is negative semidefinite

Determinant test

• For the function, a = -2, b = 2, c = -2

•
$$a < 0, ac - b^2 = 0$$

A is negative semidefinite

$$A = \begin{bmatrix} 2 & 2 \\ 2 & -2 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-17 solution

Graphical test

Quadratic form,

$$f(x,y) = 2x^2 + 4xy - 2y^2$$

- f(x,y) > 0 at (1,0), f(x,y) < 0 at (0,2)
- A is indefinite

Determinant test

- a = 2, b = 2, c = -2
- $ac b^2 < 0$
- A is indefinite

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-18 solution

Eigenvalue test

• Quadratic form,

$$f(x,y,z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- characteristic equation, $(A \lambda)I = 0$
- $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$
- A is positive definite

Question-18 solution

Determinant test

•
$$det(A_1) = 1 > 0$$

•
$$det(A_2) = det(\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}) = 2 > 0$$

•
$$det(A_3) = det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}) = 6 > 0$$

- Since, $A_1 > 0, A_2 > 0, A_3 > 0$
- A is positive definite

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Question-19 solution

Eigenvalue test

Quadratic form,

$$f(x,y,z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- characteristic equation, $(A \lambda)I = 0$
- $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 3$
- A is positive semidefinite

Question-19 solution

Determinant test

•
$$det(A_1) = 1 > 0$$

•
$$det(A_2) = det(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}) = 0$$

•
$$det(A_3) = det(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}) = 0$$

- Since, $A_1 > 0, A_2 = 0, A_3 = 0$
- A is positive semidefinite

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Eigenvalue test

• Quadratic form,

$$f(x,y,z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- characteristic equation, $(A \lambda)I = 0$
- $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = -3$
- A is negative definite

Determinant test

•
$$det(A_1) = -1$$

•
$$det(A_2) = det(\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}) = 2$$

•
$$det(A_3) = det\begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix}) = -6$$

- Since, $A_1 < 0, A_2 > 0, A_3 < 0$
- A is negative definite

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

The above matrix is

- A. Positive definite
- B. Positive semidefinite
- C. Negative definite
- D. Negative semidefinite
- E. Indefinite

Eigenvalue test

Quadratic form,

$$f(x,y,z) = \begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- characteristic equation, $(A \lambda)I = 0$
- $\lambda_1 = -1, \lambda_2 = -2, \lambda_3 = 0$
- A is negative semidefinite

Determinant test

•
$$det(A_1) = -1 < 0$$

•
$$det(A_2) = det(\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}) = 2$$

•
$$det(A_3) = det\begin{pmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}) = 0$$

- Since, $A_1 < 0, A_2 > 0, A_3 = 0$
- A is negative semidefinite

Data points:
$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $x_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $x_4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$

For the given data points, perform the following activities:

- The mean vector of the data points
- The covariance matrix, $C = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(x_i \bar{x})^T$
- Eigenvalues of the matrix C
- Eigenvectors of the matrix C
- Transformed data points for one dimensional PCA
- The reconstruction error for one dimensional PCA

- Step-1: Data points: $x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $x_3 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, $x_4 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$
- Step-2: Mean vector: $\bar{X} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
- Step-3: Symmetric matrix, C =

$$\frac{1}{4} \begin{pmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} \begin{bmatrix} -2 & -2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \end{bmatrix}) = \frac{2}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- Step-4: Characteristic equation: $(\begin{bmatrix} 2-\lambda & 1 \\ 1 & 2-\lambda \end{bmatrix})u_j = 0$
- Step-5: Eigen values: $\lambda_1 = 3, \lambda_2 = 1$ Eigen vectors:

$$\lambda_1=3, a_1=1, a_2=1=>u_1=rac{1}{\sqrt{2}}egin{bmatrix}1\\1\end{bmatrix}, \ \lambda_2=1, a_1=-1, a_2=1=>u_2=rac{1}{\sqrt{2}}egin{bmatrix}-1\\1\end{bmatrix}$$

- Step 6: Projecting data points
 Projecting x₁ on u₁
 - Projection on $u_1 = \alpha_1 = \frac{1}{\sqrt{2}}(\begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = 0$

Projecting x_2 on u_1

• Projection on $u_1 = \alpha_1 = \frac{1}{\sqrt{2}}(\begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = 2\sqrt{2}$

Projecting x_3 on u_1

• Projection on $u_1 = \alpha_1 = \frac{1}{\sqrt{2}}(\begin{bmatrix} 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}) = 3\sqrt{2}$

Projecting x_4 on u_1

• Projection on $u_1=\alpha_1=\frac{1}{\sqrt{2}}(\begin{bmatrix} 4 & 2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \end{bmatrix})=3\sqrt{2}$

 Step 7: Choose eigen vectors corresponding to top k eigen values (k=1 here)

Derive the transformed data points:

$$ilde{x_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $ilde{x_2} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $ilde{x_3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ $ilde{x_4} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

• Step-8:

Reconstruction Error =
$$J = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \tilde{x_i}||^2 = \frac{1}{4} [(0^2 + 0^2) + (0^2 + 0^2) + (1^2 + 1^2) + (1^2 + 1^2)] = 1$$
, Projected Variance = $\lambda_1 = 3$

Original	Transformed	
$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\tilde{x_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
[0]		
$x_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\tilde{x_2} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	
[2]	$\tilde{x_3} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$	
$x_3 = \begin{bmatrix} 4 \end{bmatrix}$	$x_3 = \begin{bmatrix} 3 \end{bmatrix}$	
$x_4 = \begin{bmatrix} 4 \end{bmatrix}$	$\tilde{x_4} = \begin{bmatrix} 3 \end{bmatrix}$	
[2]	[3]	

Table: Data points

Data points:
$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$

For the given data points, perform the following activities:

- The mean vector of the data points
- The covariance matrix, $C = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})(x_i \bar{x})^T$
- Eigenvalues of the matrix C
- Eigenvectors of the matrix C
- Transformed data points for one dimensional PCA
- The reconstruction error for one dimensional PCA

• Step-1: Data points:
$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$

- Step-2: Mean vector: $\bar{X} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$
- Step-3: Symmetric matrix, C =

$$\frac{1}{3} \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$$

• Step-4: Characteristic equation: $(\frac{1}{3}\begin{vmatrix}2-\lambda & -1 & -1\\-1 & 2-\lambda & -1\\-1 & -1 & 2-\lambda\end{vmatrix})u_j=0$

• Step-5: Eigenvalues: $\lambda_1 = 3, \lambda_2 = 3, \lambda_3 = 0$ Eigenvectors:

$$\lambda_1 = 3, a_1 = -1, a_2 = 1, a_3 = 0 => u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1\\0 \end{bmatrix},$$
 $\lambda_2 = 3, a_1 = -1, a_2 = 0, a_3 = 1 => u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\0\\1 \end{bmatrix}$
 $\lambda_3 = 0, a_1 = 1, a_2 = 1, a_3 = 1 => u_3 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix}$

• Step 6: Projecting data points

Projecting x_1 on u_1

• Projection on $u_1 =$

$$\alpha_1 = \frac{1}{\sqrt{2}}(\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}) = \frac{1}{\sqrt{2}}$$

Projecting x_2 on u_1

• Projection on $u_1 =$

$$lpha_1 = rac{1}{\sqrt{2}}(egin{bmatrix} 2 & 3 & 1 \end{bmatrix} egin{bmatrix} -1 \ 1 \ 0 \end{bmatrix}) = rac{1}{\sqrt{2}}$$

Projecting x_3 on u_1

• Projection on $u_1 =$

$$\alpha_1 = \frac{1}{\sqrt{2}}(\begin{bmatrix} 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}) = \frac{2}{\sqrt{2}}$$

 Step 7: Choose eigenvectors corresponding to top k eigen values (k=1 here)
 Derive the transformed data points:

$$ilde{x_1} = \begin{bmatrix} -0.5 \\ 0.5 \\ 0 \end{bmatrix}$$
, $ilde{x_2} = \begin{bmatrix} -0.5 \\ 0.5 \\ 0 \end{bmatrix}$, $ilde{x_3} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$

• Step-8:

Reconstruction Error =
$$J$$
 = $\frac{1}{n}\sum_{i=1}^{n}||x_i - \tilde{x}_i||^2 = \frac{1}{3}\left[\frac{54}{4} + \frac{54}{4} + 12\right] = 13$, Projected Variance = $\lambda_1 = 3$

Original		Transformed	
$x_1 =$	$\lceil 1 \rceil$		$\lceil -0.5 \rceil$
	2	$\tilde{x_1} =$	0.5
	3		0
<i>x</i> ₂ =	[2]		$\lceil -0.5 \rceil$
	3	$\tilde{x_2} =$	0.5
	1		0
<i>x</i> ₃ =	[3]		_ [1]
	1	$\tilde{x_3} =$	-1
	[2]		[0]

Table: Data points

Thank you

