CODER UN TEXTE EN BINAIRE

Dans les exercices qui suivent, on s'aidera uniquement de l'extrait de la table ISO 8859-1 cidessous :

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
2		!	"	#	\$	%	&	•	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	,	<	=	^	?
4	@	A	В	C	D	Е	F	G	Н	I	J	K	L	M	N	О
5	P	Q	R	S	Т	U	V	W	X	Y	Z	[\]	^	_
6	`	a	b	С	d	e	f	g	h	i	j	k	1	m	n	0
7	p	q	r	S	t	u	v	W	X	у	Z	{		}	~	DEL
A		i	¢	£	¤	¥		§	:	©	a	«	Γ	1	®	_
В	0	±	2	3	,	μ	•	•	,	1	o	>>	1/4	1/2	3/4	i
C	À	Á	Â	Ã	Ä	Å	Æ	Ç	È	É	Ê	Ë	Ì	Í	Î	Ϊ
D	Đ	Ñ	Ò	Ó	Ô	Õ	Ö	×	Ø	Ù	Ú	Û	Ü	Ý	Þ	ß
Е	à	á	â	ã	ä	å	æ	ç	è	é	ê	ë	ì	í	î	ï
F	ð	ñ	ò	ó	ô	õ	Ö	÷	Ø	ù	ú	û	ü	ý	þ	ÿ

Ex 1 - Encoder en ASCII les chaînes de caractères ci-dessous et présenter le résultat sous la forme d'une suite de nombres hexadécimaux :

- 1) « Paul a faim !»
- $2) \ll (1+7)/4=2$ »
- 3) « toto@free.fr »

Ex 2 - Retrouver les chaînes de caractères encodées ci-dessous en ASCII :

- 1) 52 61 70 69 64 65
- 2) 4E 24 49 20 26 20 43 69 65
- 3) 4A 27 61 69 20 35 30 25

Ex 3 - Compléter le tableau ci-dessous avec des croix :

La chaîne ci-dessous peut être encodée en :	ASCII	ISO 8859-1	UTF8
95%, c'est beaucoup!			
Noël est toujours avant Pâques			
Tu veux des \$, des £ ou des €?			
π et ϕ sont des lettres grecques			

Ex 4 - Encoder en Latin1 les chaînes de caractères ci-dessous et présenter le résultat sous la forme d'une suite de nombres hexadécimaux :

- 1) « Où est Cédric ?»
- 2) « hæc vox »
- 3) « $U = \pm 3\mu V$ »

Ex 5 - Retrouver les chaînes de caractères encodées ci-dessous en Latin1:

- 1) 44 E9 6A E0 20 3F
- 2) 4C 65 20 67 6F FB 74 20 64 65 20 6C 61 20 70 EA 63 68 65
- 3) CE 6C 65 20 64 65 20 46 72 61 6E 63 65

Ex 6 - Encoder en UTF8 les chaînes de caractères ci-dessous et présenter le résultat sous la forme d'une suite de nombres hexadécimaux :

- 1) « Zoé & Hélène»
- 2) « über die straße »
- 3) « ça coûte 10\$ »

Ex 7 - Retrouver les chaînes de caractères encodées ci-dessous en UTF8 :

- 1) 4C 6F C3 AF 63
- 2) 45 6E 74 C3 AA 74 C3 A9
- 3) C2 A1 4F 6C C3 A9 21

Ex 8 - On a encodé ci-dessous en UTF8 des caractères qui sont dans d'autres alphabets. Retrouver les points de codes de ces caractères, puis chercher sur Internet quels sont ces caractères.

- 1) D1 8F D0 B1 D0 BB D0 BE D0 BA D0 BE
- 2) D7 A0 D7 A9 D7 99 D7 9D
- 3) CF 88 CF 85 CF 87 CE AE

Ex 9 - Écrire une fonction Python « decode () » qui reçoit en paramètre une liste de points de codes Unicode et qui renvoie la chaîne de caractère correspondante.

Par exemple, decode ([0x263a, 0x266b, 0x23da]) doit renvoyer: " \bigcirc \square $\stackrel{\bot}{=}$ "

Faites un copier-coller du message et écrivez un petit script Python pour vous aider ;-)