Gianluca Della Vedova

Elementi di Bioinformatica

Gianluca Della Vedova

Univ. Milano-Bicocca http://gianluca.dellavedova.org

17 ottobre 2018

Gianluca Della Vedova Elementi di Bioinformatica

• Elementi di Bioinformatica

Ufficio U14-2041

https://gianluca.dellavedova.org

https://elearning.unimib.it/course/view.php?id=19214

• gianluca.dellavedova@unimib.it

https://github.com/bioinformatica-corso/ programmi-elementi-bioinformatica

https://github.com/bioinformatica-corso/lezioni

Gianluca Della Vedova Elementi di Bioinformatica

2/1

Notazione

simbolo: T[i]

• stringa: $T[1]T[2] \cdots T[l]$

• sottostringa: T[i:j]

• **prefisso**: T[: j] = T[1: j]

• **suffisso**: T[i:] = T[i:|T|]

• concatenazione: $T_1 \cdot T_2 = T_1 T_2$

Gianluca Della Vedova Elementi di Bioinformatica

5/1

1/1

Pattern Matching

Problema

Input: testo $T = T[1] \cdots T[n]$, pattern $P = P[1] \cdots P[m]$, alfabeto Σ

Goal: trovare *tutte* le occorrenze di P in T

Goal: trovare tutti gli *i* tale che $T[i] \cdots T[i+m-1] = P$

Algoritmo banale

Tempo: O(nm)

Lower bound **Tempo**: O(n + m)

Gianluca Della Vedova Elementi di Bioinformatica

Bit-parallel

Algoritmi seminumerici

25

• 25 = 00011001

• 25 = 00011001 =FFFTTFFT

Operazioni bit-level

Or: $x \lor y$, **And**: $x \land y$, **Xor**: $x \oplus y$

Left Shift: $x \ll k$, **Right Shift**: $x \gg k$,

Tutte bitwise

• Tutte in hardware

Gianluca Della Vedova Elementi di Bioinformatica

Dömölki / Baeza-Yates, Gonnet

Matrice M

M(i, j) = 1 sse P[: i] = T[j - i + 1: j] $0 \le i \le m, 0 \le j \le n$

Occorrenza di P in T

 $M(m,\cdot)=1$

 $M(0,\cdot) = 1, M(\cdot,0) = 0$

M(i, j) = 1 sse M(i - 1, j - 1) = 1 AND P[i] = T[j]

Gianluca Della Vedova Elementi di Bioinformatica 6/1

Esempio

Esempio

T=abracadabra P=abr

10010101001 01000000100

 $00100000010 \leftarrow$ **occorrenze**

Matrice M

1 colonna = 1 numero

Colonne

 $U[\sigma]$ = array di bit dove $U[\sigma, i]$ = 1 sse P[i] = σ

C[j] da C[j-1]

• Right shift di C[j-1]

• 1 in prima posizione

• AND con U[T[j]]

ω: word size

• $C[j] = ((C[j-1] >> 1) \mid (1 << (\omega - 1))) \& U[T[j]];$

Gianluca Della Vedova Elementi di Bioinformatica Gianluca Della Vedova Elementi di Bioinformatica 8/1

Note

- Tempo O(n) se $m \le \omega$
- Tempo O(nm)
- No condizioni
- $\omega < m \le 2\omega$?

Licenza d'uso

Quest'opera è soggetta alla licenza Creative Commons: Attribuzione-Condividi allo stesso modo 3.0. https://creativecommons.org/licenses/by-sa/4.0/ Sei libero di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire, recitare e modificare quest'opera alle seguenti condizioni:

- Attribuzione Devi attribuire la paternità dell'opera nei modi indicati dall'autore o da chi ti ha dato l'opera in licenza e in modo tale da non suggerire che essi avallino te o il modo in cui tu usi l'opera.
- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con una licenza identica o equivalente a questa.

10/1

Gianluca Della Vedova Elementi di Bioinformatica 9/1 Gianluca Della Vedova Elementi di Bioinformatica