Geometria 1

Davide Peccioli Anno accademico 2021-2022

Indice

1	Matrici 1.1 Somma	5						
2	Gruppo	8						
3	Operazioni con le matrici	9						
	3.1 Moltiplicazione	9						
	3.2 Prodotto tra matrici	10						
	3.2.1 Prodotto tra matrici quadrate	10						
4	Operazioni tra sottospazi vettoriali							
5	Funzioni lineari	20						
	5.1 Matrice associata ad una applicazione lineare	22						
	5.2 Immagine di sottospazi vettoriali	25						
	5.3 Retroimmagine di sottospazi	27						
	5.4 Nucleo di una funzione lineare	29						

1 Matrici

Una matrice è una tabella rettangolare di numeri reali $(\in \mathbb{R})$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \cdots & \cdots & a_{mn} \end{pmatrix}$$
contiene $m \cdot n$ numeri contiene m righe contiene n colonne

 a_{ij} è l'elemento della matrice nella *i*-esima riga e nella *j*-esima colonna. $a_{ij} \in \mathbb{R}$.

A è una matrice $m \cdot n$. Se m = n allora A è una matrice quadrata.

Le matrici servono per:

- risolvere sistemi lineari
- studiare spazi vettoriali
- classificarre strutture geometrice (es. coniche)
- presentare funzioni (semplificandone lo studio)

 $\mathbb{R}^{m,n}$ è l'insieme delle matrici $m \cdot n$:

• $\mathbb{Q}^{m,n}$ è l'insieme delle matrici $m \cdot n$ le cui entrate sono elementi di \mathbb{Q} .

Esempi (1.1)

• $\mathbb{R}^{2,2}$: matrici $2 \cdot 2$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \quad \begin{pmatrix} 5 & 6 \\ -1 & \frac{1}{2} \end{pmatrix} \dots \in \mathbb{R}^{2,2}$$

- $\mathbb{R}^{1,1} = \mathbb{R}$
- $\mathbb{R}^{m,1}$:

$$A = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} \in \mathbb{R}^{m,1} \quad \text{ anche } \mathbf{vettori} \ \mathbf{colonna}$$

 \bullet $\mathbb{R}^{1,n}$:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{pmatrix} \in \mathbb{R}^{1,n}$$
 anche vettori riga

In $\mathbb{R}^{m,n}$ è sempre definita la **matrice nulla**, in cui tutte le entrate sono nulle. In $\mathbb{R}^{n,n}$ è sempre definita la **matrice identità**:

$$I = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

- In $\mathbb{R}^{1,1}$, I=1
- In $\mathbb{R}^{2,2}$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• In $\mathbb{R}^{3,3}$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

La diagonale composta unicamente da 1 nella matrice identità è ila diagonale principale della matrice.

1.1 Somma

Siano $A, B \in \mathbb{R}^{m,n}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \qquad B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{pmatrix}$$

$$A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ \vdots & & & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{pmatrix}$$

Esempi (1.2)

• In $\mathbb{R}^{1,1}$ la somma tra matrici coincide con la somma usuale di numeri reali.

$$\bullet \ \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \end{pmatrix} + \begin{pmatrix} 0 & -2 & 1 \\ 3 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 4 \\ 3 & -2 & 8 \end{pmatrix}$$

Proprietà della somma

(i) La somma è associativa:

$$\forall A, B, C \in \mathbb{R}^{m,n}$$
 $(A+B)+C=A+(B+C)$

e posso scrivere A + B + C senza ambiguità.

(ii) La somma è commutativa (o abeliana):

$$\forall A, B \in \mathbb{R}^{m,n}$$
 $A + B = B + A$

- (iii) Se $A\in\mathbb{R}^{m,n}$ e $B\in\mathbb{R}^{m,n}$ è la matrice nulla $(B=\underline{0}),$ allora A+B=B+A=A
- (iv) $A A = \underline{0}$:

$$\forall A \in \mathbb{R}^{m,n} \exists -A \in \mathbb{R}^{m,n} \text{ t. c. } A-A=0$$

Definizione Data $A \in \mathbb{R}^{m,n}$,

$$con A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

si definisce -A,

$$con - A = \begin{pmatrix} -a_{11} & \cdots & -a_{1n} \\ \vdots & \ddots & \vdots \\ -a_{m1} & \cdots & -a_{mn} \end{pmatrix}$$

Notazione In genere si scrive A - B in luogo di A + (-B), e si considera come una sottrazione di matrici

Definizione Due matrici $A, B \in \mathbb{R}^{m,n}$ sono uguali se hanno le stesse entrate (A = B)

Proprietà $A = B \iff B - A = 0$

2 Gruppo

Definizione Siano A, B due insiemi, si definisce **prodotto cartesiano**:

$$A \times B = \{(a, b) \text{ t. c. } a \in A, b \in B\}$$

in cui conta l'ordine: $(a, b) \neq_{(b, a)}$

$$A \times A = \{(a_1, a_2) \text{ t. c. } a_1, a_2 \in A\}$$

Definizione Sia G un insieme. Una operazione in G è una funzione

$$\star: G \times G \to G$$
$$(g,h) \mapsto g \star h$$

Proprietà

- (i) L'operazione è associativa se $(g \star h) \star k = g \star (h \star k)$
- (ii) L'operazione ha un elemento neutro se

$$\exists e \in G \text{ t. c. } g \star e = e \star g = g, \forall g \in G$$

(iii) Se $g \in G$ chiamiamo inverso di g un elemento

$$k \in G$$
t.c. $g \star k = k \star g = e$

Definizione Un gruppo è un insieme G con un'operazione \star t. c.

- 1. ★ è associativa
- 2. esiste un elemento neutro
- 3. ogni elemento ha un inverso

Esempi (2.1) Sono gruppi

$$(\mathbb{R}, +), (\mathbb{Z}, +), (\mathbb{Q}, +),$$

(R, ·): lo zero non ha un inverso,

$$(\mathbb{R}\setminus\{0\},\cdot),\ (\mathbb{R}^{m,n},+)$$

Definizione Un gruppo (G, \star) è abeliano se

$$g \star h = h \star g \, \forall \, g, h \in G$$

Nel caso di un gruppo abeliano l'operazione è indicata con + e l'elemento neutro con 0.

 $(\mathbb{R}^{m,n},+)$ è un gruppo abeliano

3 Operazioni con le matrici

3.1 Moltiplicazione

Si può moltiplicare $\lambda \in \mathbb{R}$ con matrici $A \in \mathbb{R}^{m,n}$

$$\lambda A = \lambda \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \cdots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \cdots & \lambda a_{mn} \end{pmatrix}$$

 $-1 \cdot A = -A$ coerente con la definizione di -A

Esempio (3.1)

$$2\begin{pmatrix} 3 & 1 & 0 \\ -1 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 6 & 2 & 0 \\ -2 & 8 & 2 \end{pmatrix}$$

Osservazione (3.1) $0 \cdot A$ è la matrice nulla $\forall A \in \mathbb{R}^{m,n}$

Proprietà del prodotto per scalari

(i)
$$\lambda(A+B) = \lambda A + \lambda B$$
 $\forall \lambda \in \mathbb{R}, A, B \in \mathbb{R}^{m,n}$

(ii)
$$(\lambda + \mu) \cdot A = \lambda \cdot A + \mu \cdot A \quad \forall \lambda \mu \in \mathbb{R}, \ A \in \mathbb{R}^{m,n}$$

(iii)
$$(\lambda \mu)A = \lambda(\mu A)$$
 $\forall \lambda \mu \in \mathbb{R}, A \in \mathbb{R}^{m,n}$

$$(iv) \ 1 \cdot A = A \qquad \forall A \in \mathbb{R}^{m,n}$$

 $(\mathbb{R}^{m,n},+)$ è un **gruppo abeliano** in cui è definita una moltiplicazione per scalari in cui valgono le proprietà i-iv (prototipo per gli spazi vettoriali).

3.2 Prodotto tra matrici

$$A, B \text{ t. c. } A \in \mathbb{R}^{m,n}, B \in \mathbb{R}^{n,k} \implies AB \in \mathbb{R}^{m,k}$$

Questo è definito come il prodotto **righe per colonne**. Il numero di colonne della prima matrice deve corrispondere con il numero di righe della seconda matrice.

Definizione Siano $A \in \mathbb{R}^{m,n}$ e $B \in \mathbb{R}^{n,k}$ due matrici, siano a_{ij} gli elementi di A e b_{rs} gli elementi di B [Notazione: $A = (a_{ij}), B = (b_{rs})$]

La matrice $A \cdot B$ è la matrice in $R^{m,k}$ il cui ij-esimo elemento è

$$a_{i1} \cdot b_{1j} + a_{i2} \cdot b_{2j} + \dots + a_{in} \cdot b_{ni} = \sum_{r=1}^{n} a_{ir} \cdot b_{rj}$$

3.2.1 Prodotto tra matrici quadrate

Siano $A, B \in \mathbb{R}^{m,m}$, $AB \in \mathbb{R}^{m,m}$; in questo caso il prodotto tra matrici definisce una operazione in $\mathbb{R}^{m,m}$.

- i.il prodotto è associativo: $(A\cdot B)\cdot C = A\cdot (B\cdot C),\, \forall A,B,C\in\mathbb{R}^{m,m}$
- ii. esiste un elemento neutro

Proposizione p.i Sia $I \in \mathbb{R}^{m,m}$ la matrice identità, $A \in \mathbb{R}^{m,m}$

$$\implies A \cdot I = I \cdot A = A \ \forall A \in \mathbb{R}^{m,m}$$

dim. (p.i) Sia (r_{ij}) l'ij-esimo elemento della matrice $A \cdot I$ con $A = (a_{ij})$ e $I = (b_{ij})$

$$r_{ij} = \sum_{n=1}^{m} a_{in} \cdot b_{ni}$$

Si noti che $b_{kh} = 0 \ \forall k, h | k \neq h \implies$

$$r_{ij} = \sum_{n=1}^{m} a_{in} \cdot b_{ni} =$$

$$= \underbrace{a_{i1}b_{1j}} + \underbrace{\cdots} + \underbrace{a_{ij}b_{jj}} + \underbrace{\cdots} + \underbrace{a_{in}b_{nj}} =$$

$$= a_{ij} \cdot b_{jj} = a_{ij} \cdot 1$$

$$\implies r_{ij} = a_{ij}$$

In generale se $A \in \mathbb{R}^{m,m}$ # un inverso per A, cioè non esiste $B \in \mathbb{R}^{m,m}$ tale che $A \cdot B = B \cdot A = I$

Esempio (3.2)

- \bullet Se A è la matrice nulla
 - $\implies A \cdot B = \text{matrice nulla} \neq I$
- Se A ha una riga o una colonna nulla (ovvero fatta tutta di zeri)
 - ⇒ non è invertibile

Teorema I Sia V uno spazio vettoriale su campo $\mathbb{K},$ e $W\subseteq V$ un sottospazio vettoriale:

- 1. se V è finitamente generato $\implies W$ è finitamente generato;
- 2. se V è finitamente generato \implies dim $W \leq$ dim V
- 3. se V è finitamente generato e dim $W = \dim V \implies W = V$

dim. (I)

1. Supponiamo che V sia finitamente generato, e per assurdo che W non lo sia.

V è finitamente generato $\implies V$ ha una base

$$\mathscr{B} = \{v_1, \cdots, v_n\}$$

W non è finitamente generato, e sia $w_1 \in W$, $w_1 \neq \underline{0}$, considero $\mathscr{L}(w_1) \subseteq W$, ma $W \neq \mathscr{L}(w_1)$, altrimenti W sarebbe generato da w_1 . $\Longrightarrow \exists w_2 \in W \land w_2 \notin \mathscr{L}(w_1)$.

Considero $\mathcal{L}(w_1, w_2) \subseteq W$, ma $W \neq \mathcal{L}(w_1, w_2)$, altrimenti W sarebbe generato da $\{w_1, w_2\}$.

$$\implies \exists w_3 \in W \land w_3 \notin \mathcal{L}(w_1, w_2).$$

Itero il procedimento e trovo

$$\{w_1, \dots, w_{n+1}\} \subseteq W$$
 t.c. $w_{n+1} \notin \mathcal{L}(w_1, \dots, w_n) \implies \{w_1, \dots, w_{n+1}\}$ è un insieme libero

e contiene più elementi di una base \mathcal{B} . Assurdo per teorema precedente.

2. Supponiamo V finitamente generato, e sia $W \subseteq V$ un sottospazio vettoriale. W è finitamente generato (per 1.) $\Longrightarrow \exists \mathscr{B} = \{w_1, \cdots, w_m\}$ base di $W \Longrightarrow \mathscr{B} \subseteq V$ è un sottoinsieme libero $\Longrightarrow m \leq \dim V$ $\Longrightarrow \dim W \leq \dim V$

3. Sia $W \subseteq V$ uno spazio vettoriale, con V finitamente generato. dim $W = \dim V$.

W ha una base \mathscr{B} con n vettori, dove $n = \dim V \implies \mathscr{B}$ è una base di V.

Se
$$\mathscr{B} = \{w_1, \dots, w_n\} \implies W = \mathscr{L}(w_1, \dots, w_n) = V \implies W = V$$

Osservazione (3.2) Se V è uno spazio vettoriale finitamente generato, e dim $V = n \implies$ ogni insieme libero con n elementi è una base. Infatti se $\mathscr{B} = \{v_1, \dots, v_n\}$ è un insieme libero, se per assurdo esistesse $v \in V \land v \notin \mathscr{L}(v_1, \dots, v_n) \implies \{v_1, \dots, v_n, v\} \subseteq V$ è un insieme libero di cardinalità n+1 (ovvero con n+1 elementi). Assurdo.

Teorema II (del completamento di una base) Sia V uno spazio vettoriale su un campo \mathbb{K} finitamente generato. Sia $\mathscr{B} = \{v_1, \dots, v_n\}$ una base di V e sia $I = \{a_1, \dots, a_l\} \subseteq V$ un sottoinsieme libero. Esiste sempre \mathscr{B}' base di V i cui primi l-elementi sono a_1, \dots, a_l e i restanti n-l-elementi sono elementi di \mathscr{B} .

$$\mathscr{B}' = \{a_1, \dots, a_l, w_1, \dots, w_{n-l}\} \text{ con } w_1, \dots, w_{n-l} \in \mathscr{B}$$

dim. (II) Applico il metodo degli scarti successivi

l = n l'enunciato è banale (I è già una base e non va completata);

$$l < n \implies \mathcal{L}(a_1, \cdots, a_l) \subsetneq V$$

 $\implies \exists w_1 \in \mathcal{B} \text{ t. c. } w_1 \notin \mathcal{L}(a_1, \dots, a_l).$ Infatti, se tutti i generatori appartenenti a \mathcal{B} fossero combinazioni lineari di a_1, \cdot, a_l , non sarebbero più tutti linearmente indipendenti. $\implies I_1 = \{a_1, \cdot, a_l, w_1\}$ è libero.

Se I_1 è una base, la dimostrazione si conclude, altrimenti $\exists w_2 \in \mathcal{B}$ t. c. $w_2 \notin \mathcal{L}(a_1, \cdots, a_l, w_2)$

 $\implies I_1 = \{a_1, \cdot, a_l, w_1, w_2\}$ è libero.

Se I_2 è una base la dimostrazione si conclude, altrimenti si itera fino a

$$I_{n-l} = \{a_1, \cdot, a_l, w_1, \cdots, w_{n-l}\} \text{ con } w_1, \cdots, w_{n-l} \in \mathscr{B}.$$

 I_{n-l} è libero con *n* vettori $\implies I_{n-l}$ è una base

Esempio (3.3) $S(\mathbb{R}^{3,3}) = \{ A \in \mathbb{R}^{3,3} \text{ t. c. } {}^{t}A = A \}$

Cerco una base. Sia $A \in \mathcal{S}(\mathbb{R}^{3,3})$ generica:

$$A = \begin{pmatrix} a & b & c \\ b & d & e \\ c & e & f \end{pmatrix} \text{ con } a, b, c, d, e, f \in \mathbb{R}$$

$$A = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} + e \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} + f \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Siano
$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, E_5 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, E_6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, e \sin \mathcal{B} = \{E_1, \dots, E_6\}$$

Dato

$$I = \left\{ A_1 = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A_3 = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \right\} \subseteq \mathcal{S}(\mathbb{R}^{3,3})$$

insieme libero, si trovino tre elementi $w_1, w_2, w_3 \in \mathcal{B}$ tali per cui $I \cup \{w_1, w_2, w_3\}$ sia una base di $\mathcal{S}(\mathbb{R}^{3,3})$.

$$A_1 = E_1 + 2E_2$$
; $A_2 = E_1 - E_4 + E_6$; $A_3 = E_2 - E_3$

e rispetto alla base \mathcal{B}

$$A_1 = (1, 2, 0, 0, 0, 0), A_2 = (1, 0, 0, -1, 0, 1), A_3 = (0, 1, -1, 0, 0, 0)$$

 $E_1 = (1, 0, \dots, 0), E_2 = (0, 1, 0, \dots, 0), \dots, E_6 = (0, \dots, 0, 1)$

Si studia l'appartenenza di $E_1 \in \mathcal{L}(A_1, A_2, A_3)$. Studio il sistema

$$E_1 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3$$

$$\begin{cases} 1 = \lambda_1 + \lambda_2 \\ 0 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_2 = 0 \\ \lambda_3 = 0 \\ \lambda_1 = 0 \\ \lambda_1 = 1 \\ 0 = \lambda_2 \end{cases} \implies \text{II sistema non ha soluzione}$$

$$\implies E_1 \notin \mathcal{L}(A_1, A_2, A_3) \implies I_2 = \{A_1, A_2, A_3, E_1\}$$

Si studia l'appartenenza di $E_2 \in \mathcal{L}(A_1, A_2, A_3, E_1)$. Studio il sistema

$$E_2 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 1 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_4 = -\frac{1}{2} \\ \lambda_3 = 0 \\ \lambda_2 = 0 \\ \lambda_1 = \frac{1}{2} \end{cases} \implies \text{II sistema ha soluzione}$$

$$\implies E_2 \in \mathcal{L}(A_1, A_2, A_3, E_1) \implies \text{scarto } E_2$$

Si studia l'appartenenza di $E_3 \in \mathcal{L}(A_1,A_2,A_3,E_1)$. Studio il sistema

$$E_3 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 0 = 2\lambda_1 + \lambda_3 \\ 1 = -\lambda_3 \\ 0 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_4 = -\frac{1}{2} \\ \lambda_3 = -1 \\ \lambda_2 = 0 \\ \lambda_1 = \frac{1}{2} \end{cases} \implies \text{Il sistema ha soluzione}$$

$$\implies E_3 \in \mathcal{L}(A_1, A_2, A_3, E_1) \implies \text{scarto } E_3$$

Si studia l'appartenenza di $E_4 \in \mathcal{L}(A_1,A_2,A_3,E_1)$. Studio il sistema

$$E_4 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 0 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 1 = -\lambda_2 \\ 0 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} \lambda_2 = 0 \\ \lambda_2 = -1 \\ \cdots \end{cases} \implies \text{Il sistema non ha soluzione}$$

$$\implies E_4 \notin \mathcal{L}(A_1, A_2, A_3, E_1) \implies I_2 = \{A_1, A_2, A_3, E_1, E_4\}$$

Si studia l'appartenenza di $E_5 \in \mathcal{L}(A_1, A_2, A_3, E_1, E_4)$. Studio il sistema

$$E_5 = \lambda_1 A_1 + \lambda_2 A_2 + \lambda_3 A_3 + \lambda_4 E_1 + \lambda_5 E_4$$

$$\begin{cases} 0 = \lambda_1 + \lambda_2 + \lambda_4 \\ 0 = 2\lambda_1 + \lambda_3 \\ 0 = -\lambda_3 \\ 0 = -\lambda_2 + \lambda_5 \\ 1 = 0 \\ 0 = \lambda_2 \end{cases} \implies \begin{cases} 1 = 0 \\ \dots \end{cases} \implies \text{Il sistema non ha soluzione}$$

$$\implies E_5 \in \mathcal{L}(A_1, A_2, A_3, E_1, E_4) \implies I_3 = \{A_1, A_2, A_3, E_1, E_4, E_5\}$$

La soluzione è $\mathscr{B}' = \{A_1, A_2, A_3, E_1, E_4, E_5\}$

4 Operazioni tra sottospazi vettoriali

Sia V uno spazio vettoriale su un un campo \mathbb{K} , e siano W_1 e $W_2 \subseteq V$ due sottospazi vettoriali.

Si consideri

$$W_1 \cap W_2 = \{x \mid x \in w_1 \land x \in w_2\}$$

Proposizione p.ii $W_1 \cap W_2$ è sempre sottospazio vettoriale

dim. (p.ii) Siano $x, y \in W_1 \cap W_2$

$$\implies \begin{cases} x, y \in W_1 \implies (x+y) \in W_1 \\ x, y \in W_2 \implies (x+y) \in W_2 \end{cases} \implies (x+y) \in W_1 \cap W_2$$

Proposizione p.iii Sia V uno spazio vettoriale e W, W_1 e W_2 sottospazi di V.

Se W contiene W_1 e W contiene W_2 allora W contiene $W_1 + W_2$ (cioè $W_1 + W_2$ è il più piccolo sottospazio di V che contiene sia W_1 che W_2)

dim. (p.iii) Sia $x + y \in W_1 + W_2$, $x \in W_1 \implies x \in W, y \in W_2 \implies y \in W \implies x + y \in W$, poiché W è un sottospazio vettoriale. Quindi ogni $v \in W_1 + W_2$ è elemento di $W \implies W_1 + W_2 \subseteq W$.

La somma si generalizza a più sottospazi. Siano $W_1, \dots, W_l \subseteq V$ sottospazi vettoriali, allora si definisce

$$W_1 + \dots + W_l = \{x_1 + \dots + x_l | x_1 \in W_1, \dots, x_l \in W_l\} \subseteq V$$

è un sottospazio vettoriale ed è il più piccolo sottospazio che contiene tutti i W_1,\cdots,W_l

Esercizio Si trovino somma e intersezione dei seguenti sottospazi vettoriali di \mathbb{R}^4

a.
$$W_1 = \{(x_1, x_2, 0, 0) | x_1, x_2 \in \mathbb{R}\}, W_2 = L(e_4)$$

b.
$$W_1 = \{(x_1, x_2, 0, 0) | x : 1, x : 2 \in \mathbb{R}\},\ Z_2 = \{(0, x_2, 0, x_4) | x_2, x_4 \in \mathbb{R}\}$$

Soluzione

a.
$$W_1 + W_2 = \{(x_1, x_2, 0, x_4) | x_1, x_2, x_4 \in \mathbb{R}\}, W_1 \cap W_2 = \{\underline{0}\}$$

b.
$$W_1 + Z_2 = \{(x_1, x_2, 0, x_4) | x_1, x_2, x_4 \in \mathbb{R}\},$$

 $W_1 \cap Z_2 = \{(0, x_2, 0, 0) | x_2 \in \mathbb{R}\}$

Proposizione p.iv Sia V spazio vettoriale su un campo \mathbb{K} e $W_1, W_2 \subseteq V$ due sottospazi. Sono fatti equivalenti le seguenti proposizioni:

- 1. $W_1 \cap W_2 = \{0\}$ (hanno intersezione banale)
- 2. ogni $v \in W_1 + W_2$ si scrive in modo unico come v = x + y con $x \in W_1$ e $y \in W_2$

dim. (p.iv)

1. \implies 2. Suppongo $W_1 \cap W_2 = \{\underline{0}\}$ e considero $v \in W_1 + W_2$. Scrivo $v = x_1 + y_1$, $v = x_2 + y_2$ e dimostro che $x_1 = x_2$ e $y_1 = y_2$

$$\begin{cases} x_1 - x_2 \in W_2 \implies x_1 - x_2 \in W_1 \cap W_2 \\ y_2 - y_1 \in W_1 \implies y_2 - y_1 \in W_1 \cap W_2 \end{cases}$$

$$\implies \begin{cases} x_1 - x_2 = \underline{0} \implies x_1 = x_2 \\ y_2 - y_1 = \underline{0} \implies y_1 = y_2 \end{cases}$$

2. \implies 1. Suppongo che ogni $v \in W_1 + W_2$ si scriva in modo unico come v = x + y con $x \in W_1$ e $y \in W_2$ e dimostro che $W_1 \cap W_2 = \{\underline{0}\}$

Sia $v \in W_1 \cap W_2$. Sia $v \in W_1 + W_2$, v = x + y = x + v + y - v, con $x + v \in W_1$, $y - v \in W_2$. Quindi se $v \neq \underline{0}$, le due scritture v = x + y, v = (x + v) + (y - v) sono diverse e ciò non è possibile per ipotesi

Notazione Se $W_1 \cap W_2 = \{\underline{0}\}$ si scrive $W_1 \oplus W_2$ invece che $W_1 + W_2 \oplus$ si legge "somma diretta"

Esempio (4.1) $\mathbb{K}^{n,n} = S(\mathbb{K}^{n,n}) \oplus A(\mathbb{K}^{n,n})$

Esempio (4.2) $R^2 = \mathcal{L}(e_1) \oplus \mathcal{L}(e_2)$

Proposizione p.v Sia V uno spazio vettoriale su un campo \mathbb{K} . Siano $W_1,\cdots,W_l\subseteq V$ sottospazi vettoriali. Sono fatti equivalenti le seguenti proposizioni

1.
$$W_i \cap (W_1 + \dots + W_{i-1} + W_{i+1} + \dots + W_l) = \{0\} \ \forall i = 1, \dots, l$$

2. Ogni $v \in W_1 + \cdots + W_l$ si scrive in modo unico come $v = x_1 + \cdots + x_l$ con $x_1 \in W_1, \dots, x_l \in W_l$

Se vale 1. si scrive $W_1 \oplus W_2 \oplus \cdots \oplus W_l$

Esempio (4.3) Considero V spazio vettoriale di dimensione finita e $\mathscr{B} = \{v1, \dots, v_n\} \implies V = \mathscr{L}(v_1) \oplus \dots \oplus \mathscr{L}(v_l)$

Sia V spazio vettoriale su un campo \mathbb{K} , finitamente generato. Sia $W \subseteq V$ un sottospazio vettoriale, sia $\mathscr{B} = \{w_1, \dots, w_l\}$ una base di W. Possiamo completare \mathscr{B} con una base dello spazio $\mathscr{B}' = \{w_1, \dots, w_l, v_1, \dots, v_m\}$. Sia

$$Z = \mathcal{L}(v_1, \cdots, v_m) \subseteq V$$

un sottospazio vettoriale, e per costruzione $V=W\oplus Z$

Osservazione (4.1) Sia V spazio vettoriale di dimensione finita con $V=W\oplus Z$ Siano $\mathscr{B}=\{w1,\cdots,w_l\}$ una base di W e $C=\{z_1,\cdots,z_m\}$ una base di Z. Ogni elemento di V si scrive in modo unico come v=x+y con $x\in W$ e $y\in Z$ \mathscr{B} base di W

 $\implies x \text{ si scrive in modo unico come } x = \lambda_1 w_1 + \cdots + \lambda_l w_l$

 $\mathscr C$ base di $Z \implies y$ si scrive in modo unico come

$$y = \mu_1 z_1 + \dots + \mu_n z_n$$

 $\implies v$ si scrive in modo unico come

$$v = \lambda_1 w_1 + \dots + \lambda_l w_l + \mu_1 z_1 + \dots + \mu_n z_n$$

$$\implies B \cup C = \{w1, \cdots, w_l, z_1, \cdots, z_l\}$$
è una base di V

$$\implies \dim V = \dim W + \dim Z$$

Teorema III Sia V uno spazio vettoriale su un campo \mathbb{K} finitamente generato. Siano $W_1, W_2 \subseteq V$ due sottospazi vettoriali t. c. $V = W_1 + W_2$. Allora

$$\dim V = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$$

Questa è la Formula di Grassmann.

dim. (III) Chiamo dim V = n, dim $W_1 = l$, dim $W_2 = p$, dim $(W_1 \cap W_2) = r$

In particolare $l, p \leq n, r \leq l, p$

1.
$$r = l \implies W_1 \cap W_2 = W_1 \implies W_1 \subseteq W_2 \implies W_1 + W_2 = W_2 = V$$

2.
$$r = p \implies W_1 \cap W_2 = W_2 \implies W_2 \subseteq W_1 \implies W_1 + W_1 = W_1 = V$$

3. si assume $r \leq l, p$ e sia

$$\mathscr{B} = \{a_1, \cdots, a_r\}$$
 base di $W_1 \cap W_2$

Completo \mathscr{B} con una base \mathscr{C} di W_1 ,

$$\mathscr{C} = \{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l\}$$

e completo \mathscr{B} con una base \mathscr{D} di W_2 ,

$$\mathscr{D} = \{a_1, \cdots, a_r, c_{r+1}, \cdots, c_p\}$$

Si verifica che l'insieme

$$\{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l, c_{r+1}, \cdots, c_p\}$$

è una base di V. In questo modo si ottiene

$$\dim V = l + (p - r)$$

cioè la tesi.

Ovviamente risulta

$$\mathscr{L}(a_1,\cdots,a_r,b_{r+1},\cdots,b_l,c_{r+1},\cdots,c_p)=V$$

in quanto contiene i generatori sia di W_1 che di W_2 , e quindi anche della loro somma. Verifichiamo che l'insieme

$$\{a_1,\cdots,a_r,b_{r+1},\cdots,b_l,c_{r+1},\cdots,c_p\}$$

sia libero. Supponiamo

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu r + 1 + b_{r+1} + \dots + \dots + \mu_l b_l + \gamma_{r+1} c_{r+1} + \dots + \gamma_p c_p = \underline{0} * *$$

$$(\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l) = (-\gamma_{r+1} c_{r+1} - \dots - \gamma_p c_p)$$

Sia

$$c = (-\gamma_{r+1}c_{r+1} - \dots - \gamma_p c_p) =$$

$$= (\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l)$$

sicuramente $c \in W_2$

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l \in W_1$$

$$\implies c \in W_1 \cap W_2 = \mathcal{L}(a_1, \cdots, a_r)$$

$$\implies c = \beta_1 a_1 + \dots + \beta_r a_r$$
, vado a sostituire in **

$$(\beta_1 a_1 + \dots + \beta_r a_r) + (\gamma_{r+1} c_{r+1} + \dots + \gamma_p c_p) = \underline{0}$$

$$\implies \begin{cases} \beta_1 = \dots = \beta_r = 0 \\ \gamma_{r+1} = \dots = \gamma_p = 0 \end{cases}$$

Ho ottenuto

$$\gamma_{r+1} = \dots = \gamma_p = 0$$

$$\lambda_1 a_1 + \dots + \lambda_r a_r + \mu_{r+1} b_{r+1} + \dots + \mu_l b_l = \underline{0}$$

Poiché l'insieme

$$\mathscr{C} = \{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l\}$$

è libero

$$\implies \lambda_1 = \dots = \lambda_r = \mu_{r+1} = \dots = \mu_l = 0$$

$$\implies \{a_1, \cdots, a_r, b_{r+1}, \cdots, b_l, c_{r+1}, \cdots, c_p\}$$
 è libero

5 Funzioni lineari

V e W spazi vettoriali sullo stesso campo \mathbb{K} e una funzione $F:V\to W, F$ è lineare se verifica $F(\lambda v + \mu w) = \lambda F(v) + \mu F(w) \ \forall \lambda, \mu \in \mathbb{K}, v, w \in V$

Teorema IV (di esistenza e unicità) Siano V e W spazi vettoriali su un campo \mathbb{K} con V finitamente generato.

Sia $\mathscr{B} = \{v_1, \dots, v_n\}$ una base di $V \in a_1, \dots, a_n \in W$.

Allora esiste un'unica funzione lineare $F: V \to W$ tale che $F(v_i) = a_i$ $\forall i = 1, \dots, n$

dim. (IV)

Esistenza Sia $v \in V$, v si scrive in modo unico come $v = x_1v_1 + x_2v_2 + \cdots + x_nv_n$ per $x_1, \dots, x_n \in \mathbb{K}$

Si definisce

$$F(v) = F(x_1v_1 + x_2v_2 + \dots + x_nv_n) := x_1a_1 \dots + x_na_n$$

F definisce una funzione $V \to W$ tale che $F(v_i) = a_i$ per $i = 1, \dots, n$. Verifico che F è lineare.

Siano $\lambda, \mu \in \mathbb{K}$ e $v, w \in V$ e dimostro che $F(\lambda v + \mu w) = \lambda F(v) + \mu F(w)$

Scrivo

 $v = \sum_{k=1}^{n} x_k v_k$

e

$$w = \sum_{r=1}^{n} y_r v_r$$

$$\lambda v + \mu w = \sum_{k=1}^{n} (\lambda x_k \mu y_k) v_k$$

Quindi per come è definita F risulta che

$$F(\lambda v + \mu w) = F\left(\sum_{k=1}^{n} (\lambda x_k \mu y_k) v_k\right) =$$

$$= \sum_{k=1}^{n} (\lambda x_k \mu y_k) a_k =$$

$$\lambda \sum_{k=1}^{n} \lambda x_k a_k + \mu \sum_{k=1}^{n} y_k a_k =$$

$$= \lambda F(v) + \mu F(w)$$

 $\implies F$ è lineare

Unicità Supponiamo di avere due funzioni lineari $F, G: V \to W$ tali che $F(v_i) = G(v_i) = a_i \ \forall i = 1, \dots, n$ e dimostro che F = G, cioè che $F(v) = G(v) \ \forall v \in V$ Possiamo scrivere $v = \sum_{k=1}^{n} x_k v_k$ quindi

$$F(v) = F\left(\sum_{k=1}^{n} x_k v_k\right)$$

$$= \sum_{k=1}^{n} x_k F(v_k)$$

$$= \sum_{k=1}^{n} x_k a_k$$

Inoltre

$$G(v) = G\left(\sum_{k=1}^{n} x_k v_k\right)$$

$$= \sum_{k=1}^{n} x_k G(v_k)$$

$$= \sum_{k=1}^{n} x_k a_k$$

$$\implies F(v) = G(v) \ \forall v \in V$$

$$\implies F = V$$

5.1 Matrice associata ad una applicazione lineare

Siano V e W spazi vettoriali su un campo $\mathbb K$ con V,W entrambi finitamente generati. Supponiamo dim V=n e dim W=m.

Considero $F:V\to W$ lineare, e fisso $\mathscr{B}=\{v_1,\cdots,v_n\}$ base di V e $\mathscr{C}=\{w_1,\cdots,w_n\}$ base di W.

$$F(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m = \sum_{k=1}^m a_{k1}w_k$$

$$F(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m = \sum_{k=1}^m a_{k2}w_k$$

$$\dots$$

$$F(v_n) = a_{1n}w_1 + a_{2n}w_2 + \dots + a_{mn}w_m = \sum_{k=1}^m a_{kn}w_k$$

Tutto questo determina $A=(a_{ij})\in\mathbb{K}^{m,n},\,A$ è determinata da $F,\mathscr{B},\mathscr{C}$ Sia $v\in V$ un vettore generico $v=\sum_{k=1}^n x_k v_k,\,x_1,\cdots,x_n\in\mathbb{K}$

$$F(v) = F\left(\sum_{k=1}^{n} x_k v_k\right) = \sum_{k=1}^{n} x_k F(v_k) =$$

$$= x_1 F(v_1) + x_2 F(v_2) + \dots + x_n F(v_n) =$$

$$= x_1 \sum_{k=1}^{m} a_{k1} w_k + x_2 \sum_{k=1}^{m} a_{k2} w_k + \dots + x_n \sum_{k=1}^{m} a_{kn} w_k =$$

$$= \sum_{k=1}^{m} (a_{k1} x_1) w_k + \sum_{k=1}^{m} (a_{k2} x_2) w_k + \dots + \sum_{k=1}^{m} (a_{kn} x_n) w_k =$$

$$= \left(\sum_{r=1}^{n} a_{1r} x_r\right) w_1 + \left(\sum_{r=1}^{n} a_{2r} x_r\right) w_2 + \dots + \left(\sum_{r=1}^{n} a_{mr} x_r\right) w_m$$

$$\text{Se } (v)_{\mathscr{B}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\implies (F(v)) = A \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

$$\implies (F(v)) = A(v)_{\mathscr{B}}$$

Notazione Si indica A con $M^{\mathcal{B},\mathcal{C}}(F)$, matrice che rappresenta F rispetto alle basi \mathcal{B} e \mathcal{C}

Esempio (5.1) Sia $I: V \to V$ funzione identità, e calcoliamo $M^{\mathcal{B},\mathcal{B}}(I)$ dove \mathcal{B} è una base fissata di V. Se $\mathcal{B} = \{v_1, \dots, v_n\}$ risulta $I(v_i) = v_i$ $\forall i = 1, \dots, n$

 $\implies M^{\mathscr{B},\mathscr{B}}(I) = Id$ matrice identità

Esempio (5.2) Sia $F: \mathbb{R}^3 \to \mathbb{R}^2$,

$$F(x_1, x_2, x_3) = (3x_1 - x_2, 2x_2 + 3x_3)$$

Sia \mathcal{B} la base canonica di \mathbb{R}^3 e \mathscr{C} la base canonica di \mathbb{R}^2 , voglio trovare $M^{\mathcal{B},\mathscr{C}}(F)$

Possiamo scrivere
$$F\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=M^{\mathscr{B},\mathscr{C}}(F)\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}$$

Sono noti F(1,0,0) = (3,0), F(0,1,0) = (-1,2) e F(0,0,1) = (0,3), quindi

$$M^{\mathcal{B},\mathcal{C}}(F) = \begin{pmatrix} 3 & -1 & 0 \\ 0 & 2 & 3 \end{pmatrix}$$

In generale data $F: \mathbb{R}^n \to \mathbb{R}^m$ espressa in termini della base canonica di \mathbb{R}^n e \mathbb{R}^m la matrice che rappresenta F è la matrice le cui colonne sono $F(e_1), \dots, F(e_n)$

Esempio (5.3) Data $F: \mathbb{R}^3 \to \mathbb{R}^2$: $(x_1, x_2, x_3) \mapsto (4x_1 - x_3, x_1 + x_2 + x_3)$

Si ha

$$M^{\mathscr{B},\mathscr{C}}(F) = \begin{pmatrix} 4 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

Esempio (5.4) $F: \mathbb{K}^{n,n} \to \mathbb{K}: A \mapsto \operatorname{tr}(A)$ e determino la matrice che rappresenta F rispetto alla base canonica di $\mathbb{K}^{n,n}$, $\mathscr{B} = E_{i_1j}$ e alla base canonica di $\mathbb{K} \mathscr{C} = \{1\}$

Si ha

$$M^{\mathcal{B},\mathcal{C}}(F) = \left(\operatorname{tr}(E_{11}) \operatorname{tr}(E_{12}) \cdots \operatorname{tr}(E_{1n}) \operatorname{tr}(E_{21}) \operatorname{tr}(E_{22}) \cdots \operatorname{tr}(E_{nn})\right)$$

Per esempio se n=2 risulta $M^{\mathscr{B},\mathscr{C}}(F)=\begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}$

Esempio (5.5) Sia $a \in V_3$ e $F: V_3 \to V_3$: $x \mapsto a \wedge x$ funzione lineare. Sia $\mathscr{B} = \{i, j, k\}$ base ortonormale positiva di V_3 e calcolo $M^{\mathscr{B}, \mathscr{B}}(F)$, scriviamo $a = a_1i + a_2j + a_3k$

$$F(i) = a \wedge i = (a_1i + a_2j + a_3k) \wedge i = -a_2k + a_3j$$

$$F(j) = a \wedge j = (a_1i + a_2j + a_3k) \wedge j = a_1k - a_3j$$

$$F(k) = a \wedge k = (a_1i + a_2j + a_3k) \wedge k = -a_1j + a_2i$$

Si ha

$$M^{\mathscr{B},\mathscr{B}}(F) = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$$

Esercizio Sia
$$F: \mathbb{R}^3 \to \mathbb{R}^{2,2}$$
, $F(a,b,c) = \begin{pmatrix} a & a+b \\ a+b+c & 0 \end{pmatrix}$

Sia \mathcal{B} base canonica di \mathbb{R}^3 e \mathscr{C} base canonica di $\mathbb{R}^{2,2}$ Si trovi $M^{\mathcal{B},\mathscr{C}}(F)$

Soluzione Da risolvere

5.2 Immagine di sottospazi vettoriali

Siano V e W spazi vettoriali su un campo \mathbb{K} e sia $F:V\to W$ lineare, sia $H\subseteq V$ sottospazio vettoriale, F(H) immagine di H tramite F, tale che $F(H)\subseteq W, F(H)=\{F(h)|h\in H\}$

Proposizione p.vi F(H) è sempre un sottospazio vettoriale di W

dim. (p.vi) Siano $w_1, w_2 \in F(H), \lambda, \mu \in \mathbb{K}$ e dimostriamo che $\lambda w_1 + \mu w_2 \in F(H)$

$$w_1 \in F(H) \implies w_1 = F(h_1)$$
per qualche $h_1 \in H$
 $w_2 \in F(H) \implies w_2 = F(h_2)$ per qualche $h_2 \in H$
 $\lambda w_1 + \mu w_2 = \lambda F(h_1) + \mu F(h_2) = F(\lambda h_1 + \mu h_2)$

Poiché H è un sottospazio vettoriale, risulta che, dato $h=\lambda h_1+\mu h_2$

$$\implies \lambda w_1 + \mu w_2 = F(h)$$
 per qualche $h \in H$

$$\implies \lambda w_1 + \mu w_2 \in F(H)$$

$$\implies F(H)$$
 sottospazio vettoriale di V

Supponiamo $\dim H = n$, $\dim F(H) = ?$

Sia $\mathcal{B} = \{h_1, \dots, h_n\}$ base di H, sappiamo che $\{F(h_1), \dots, F(h_n)\}$ è un insieme di generatori di F(H)

$$\implies \dim F(H) \le n$$

Esercizio Sia $F: \mathbb{R}^3 \to \mathbb{R}^4$ la funzione lineare data da

$$F(x_1, x_2, x_3) = (2x_1 - x_3, x_1 + x_2 + x_3, x_1 - x_2, x_2 - x_3)$$

Sia $H \subseteq \mathbb{R}^3$ il sottospazio $H = \{(x_1, x_2, x_3 \in \mathbb{R}^3 | x_1 + x_2 = 0\}, \dim H = 2$ Si trovi una base di F(H)

Soluzione

- 1. Trovo una base di H, per esempio $\{(1, -1, 0), (0, 0, 1)\}$
- 2. Calcolo le immagini dei vettori della base

$$F(1,-1,0) = (2,0,2,-1)$$

$$F(0,0,1) = (-1,1,0,-1)$$

Questi due vettori sono linearmente indipendendenti, allora formano una base di F(H)

Definizione Sia $F:V\to W$ lineare, F(V) (che è un sottospazio vettoriale di W) si dice l'immagine di F

Osservazione (5.1) F è suriettiva $\iff F(V) = W \iff \dim F(V) = \dim W$ (criterio per testare la suriettività di una funzione lineare)

Esercizio Sia
$$F : \mathbb{R}^3 \to \mathbb{R}^3$$
, $F(x, y, z) = (2x + 2y, x + z, x + 3y - 2z)$

- 1. Dire se F è suriettiva e in caso contrario trovare $w \in \mathbb{R}^3$ tale che $w \notin F(\mathbb{R}^3)$
- 2. Sia $a = (1, 0, 1), b = (0, 1, 1), H = \mathcal{L}(a, b)$. Dire se $(4, 3, -2) \in F(H)$

Soluzione

1.
$$F(\mathbb{R}^3) = \mathcal{L}(F(e_1), F(e_2), F(e_3))$$

$$F(e_1) = (2, 1, 1)$$

$$F(e_2) = (2, 0, 3)$$

$$F(e_3) = (0, 1, -2)$$

Si osserva che $F(e_1) = F(e_2) + F(e_3)$, quindi i tre vettori sono linearmente dipendenti

Ma $F(e_2)$ e $F(e_3)$ sono linearmente indipendenti

 $\implies F(\mathbbm{R}^3)$ ha dimensioone 2, ed i vettori (2,0,3),(0,1,-2)ne formano una base. Fnon è suriettiva

 $w \in \mathbb{R}^3$, $w \notin F(\mathbb{R}^3) \iff w$ non è combinazione lineare di (2,0,3),(0,1,-2).

Per esempio w=(1,0,0) va bene, poiché non esistono $\lambda,\mu\in\mathbb{R}$ tali che $(1,0,0)=\lambda(2,0,3)+\mu(0,1,-2)$

2. $F(H) = \mathcal{L}(F(a), F(b))$. F(a) = (2, 2, -1), F(b) = (2, 1, 1). F(a), F(b) sono linearmente indipendenti, quindi dim F = 2

$$(4,3,-2) \in F(H) \iff \exists \lambda,\mu \in \mathbb{R} \text{ tali che } (4,-3,-2) = (2\lambda+2\mu,2\lambda+\mu,-\lambda+\mu)$$

Il sistema non ha soluzione, pertanto $(4,3,-2) \notin F(H)$

Definizione Data $F: V \to W$ applicazione lineare tra spazi vettoriali su uno stesso campo, il rango di F (rank F) è la dimensione di F(V)

Se \mathscr{B} è una base di V e \mathscr{C} è una base di W, ad F si associa la matrice $M^{\mathscr{B},\mathscr{C}}(F)$ che rappresenta F rispetto alle basi fissate.

$$(F(v))_{\mathscr{C}} = M^{\mathscr{B},\mathscr{C}}(F) \cdot (v)_{\mathscr{B}}$$

Il rango di F
 coincide con il rango della matrice $M^{\mathcal{B},\mathcal{C}}(F)$

 \implies tutte le matrici associate ad F hanno lo stesso rango.

5.3 Retroimmagine di sottospazi

 $F:V\to W$ applicazione lineare, sia $K\subseteq W$ un sottospazio

$$F^{-1}(K) = \{ w \in K | w = F(v) \text{ per qualche } v \in V \}$$

Si noti che $F^{-1}(K) \neq \emptyset$: sicuramente K contiene $\underline{0}_W$ e sappiamo che $F(\underline{0}_V) = \underline{0}_W$.

Proposizione p.vii $F^{-1}(K)$ è sempre un sottospazio vettoriale di V, $\forall K \subseteq W$ sottospazio vettoriale

dim. (p.vii) Fisso $v, w \in F^{-1}(K)$, $\lambda, \mu \in \mathbb{K}$ e dimostro che $\lambda v + \mu w \in F^{-1}(K)$

$$\begin{cases} v \in F^{-1}(K) \implies v = F^{-1}(x) \text{ per qualche } x \in K, F(v) = x \\ w \in F^{-1}(K) \implies v = F^{-1}(y) \text{ per qualche } y \in K, F(w) = y \end{cases}$$

$$F(\lambda v + \mu w) = \lambda F(v) + \mu F(w) = \lambda x + \mu y \in K$$

poiché K è un sottospazio vettoriale

$$\implies F(\lambda v + \mu w) \in K$$

$$\implies \lambda v + \mu w \in F^{-1}(K)$$

$$\implies F^{-1}(K)$$
 sottospazio vettoriale di W

$$\dim F(H) \leq \dim H,$$
 se $K \subseteq F(V) \implies \dim F^{-1}(K) \geq \dim K$

Esercizio

$$F: \mathbb{R}^3 \to \mathbb{R}^4, F(x_1, x_2, x_3) = (x_1 + x_2, 2x_1 + x_2 + x_3, x_1 + x_3, x_2 - x_3)$$

$$K = \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 | y_1 + y_2 = 0\} \dim K = 3$$
 Si determini $F^{-1}(K)$

Soluzione Voglio trovare le $(x_1, x_2, x_3) \in \mathbb{R}^3$ tali che $F(x_1, x_2, x_3) \in K$

$$F(x_1, x_2, x_3) \in K \iff (x_1 + x_2) + 2x_1 + x_2 + x_3 = 0$$

$$3x_1+2x_2+x_3=0$$
è l'equazione di $F^{-1}(K)$ (dim $F^{-1}(K)=2)$

Trovo una base di $F^{-1}(K)$

$$\begin{cases} x_1 = t \\ x_2 = s \\ x_3 = -3t - 2s \end{cases}$$

$$\mathscr{B} = \{(1,0,-3),(0,1,-2)\}$$
 è una base di $F^{-1}(K)$

Altro approccio risolutivo:

Fisso una base di K, per esempio

$$\{w_1 = (1, -1, 0, 0), w_2 = (0, 0, 1, 0), w_3 = (0, 0, 0, 1)\}$$

$$F^{-1}(K) = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | F(x_1, x_2, x_3) = \lambda_1 w_1 + \lambda_2 w_2 + \lambda_3 w_3 \}$$

per qualche $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$

Ottengo il sistema

$$\begin{cases} x_1 + x_2 = \lambda_1 \\ 2x_1 + x_2 + x_3 = -\lambda_1 \\ x_1 + x_3 = \lambda_2 \\ x_2 - x_3 = \lambda_3 \end{cases}$$

Si risolve il sistema in x_1, x_2, x_3, x_4

$$\begin{pmatrix} 1 & 1 & 0 & \lambda_1 \\ 2 & 1 & 1 & -\lambda_1 \\ 1 & 0 & 1 & \lambda_2 \\ 0 & 1 & -1 & \lambda_2 \end{pmatrix} \xrightarrow{\text{si riduce per righe}} \begin{pmatrix} 1 & 1 & 0 & \lambda_1 \\ 0 & -1 & 1 & -3\lambda_1 \\ 0 & 0 & 0 & \lambda_2 + 2\lambda_1 \\ 0 & 0 & 0 & \lambda_3 + 3\lambda_1 \end{pmatrix}$$

Affinché il sistema sia risolubile si deve avere

$$\begin{cases} x_1 + x_2 = \lambda_1 \\ -x_2 + x_3 = -3\lambda_1 \\ \lambda_2 + 2\lambda_1 = 0 \\ \lambda_3 + 3\lambda_1 = 0 \end{cases} \implies \begin{cases} x_1 = -2\lambda_1 - \mu \\ x_2 = \mu + 3\lambda_1 \\ x_2)\mu \end{cases}$$

Da qui si deduce una base di $F^{-1}(K)$

5.4 Nucleo di una funzione lineare

V, W spazi vettoriali su un campo $\mathbb{K}, F: V \to W$ lineare

 $\implies \{\underline{0}_W\}$ è sottospazio vettoriale di W

 $\implies F^{-1}(\underline{0}_W)$ sottospazio vettoriale di V

Definizione $F^{-1}(\underline{0}_W)$ si dice nucleo di F (kernel di F) e si indica con $\ker(F)$

$$\ker F = \{ v \in V | F(v) = \underline{0}_W \}$$

Teorema V F è iniettiva \iff $\ker F = \underline{0}_V$

dim. (V)

" \Longrightarrow " Supponiamo F iniettiva e sia $v \in \ker F$

$$\implies F(v) = \underline{0}_W,$$
ma poiché F è lineare risulta $F(\underline{0}_V) = \underline{0}_W$

$$\implies F(v) = F(\underline{0}_V)$$
e poiché F è iniettiva risulta $v = \underline{0}_W$

$$\implies \ker F = \{\underline{0}_V\}$$

"\equiv " Per ipotesi ker $F = \{\underline{0}_V\}$, siano $v_1, v_2 \in V$ tali che $F(v_1) = F(v_2)$

$$\implies F(v_1) - F(v_2) = \underline{0}_W,$$
 poiché F è lineare si ottiene $F(v_1 - v_2) = \underline{0}_W$

$$\implies v_1 - v_2 \in \ker F$$

$$\implies v_1 - v_2 = 0_V$$

 $\implies v_1 = v_2$, quindi F è iniettiva.

Supponiamo V,W di dimensione finita, dim V=n e dim W=m, siano $\mathcal{B}=\{v_1,\cdots,v_n\}$ base di V e $\mathscr{C}=\{w_1,\cdots,w_m\}$ base di W, e si consideri $M^{\mathcal{B},\mathscr{C}(F)}$

$$\begin{split} \ker F &= \{v \in V | F(v) = \underline{0}_W\} = \\ &= \{v \in V | (F(v))_{\mathscr{C}} = \underline{0}_{\mathbb{K}^m}\} = \\ &= \{v \in V | M^{\mathscr{B},\mathscr{C}}(F)(v)_{\mathscr{B}} = \underline{0}_{\mathbb{K}^m}\} = \\ &= \{v \in V | (v)_{\mathscr{B}} \text{ appartiene al null-space di } M^{\mathscr{B},\mathscr{C}}(F)\} \end{split}$$

In particolare

$$\dim \ker F =$$

$$= \dim(\text{null-space di } M^{\mathcal{B},\mathcal{C}}(F)) =$$

$$= \dim V - \operatorname{rank} M^{\mathcal{B},\mathcal{C}}(F) =$$

$$= \dim V - \operatorname{rank} F$$

$$\dim V = \dim \ker F + \operatorname{rank} F$$

Questo sopra enunciato è il teorema di nullità più rango in termini di una funzione lineare.

Esercizio Sia $F: V \to W$ lineare. Fisso $w_0 \in W$, e definisco

$$F^{-1}(w_0) = \{ v \in V | F(v) = w_0 \}$$

Si diano condizioni necessarie e sufficienti affinché $F^{-1}(w_0)$ sia sottospazio.

Soluzione

Esercizio Sia $\mathcal{B} = \{v_1, v_2, v_3\}$ una base di uno spazio vettoriale V, 3-dim, $\mathcal{C} = \{w_1, w_2, w_3, w_3\}$ una base di uno spazio vettoriale W, 4-dim

Sia $g:V\to W$ la funzione lineare determinata dalle relazioni

$$\begin{cases} g(v_1) = w_1 + 2w_2 + w_3 \\ g(v_2) = w_1 + w_2 + w_4 \\ g(v_3) = w_2 + w_3 - w_4 \end{cases}$$

Si calcolino g(V) e ker g

Soluzione Possiamo calcolare $M^{\mathcal{B},\mathcal{C}}(g)$

$$M^{\mathscr{B},\mathscr{C}}(g) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Per calcolare ker g devo calcolare il null-space di $M^{\mathcal{B},\mathcal{C}}(g)$, cioè

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Riduco $M^{\mathcal{B},\mathcal{C}}(g)$ per righe:

$$\begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} x_1 + x_2 = 0 \\ x_2 - x_3 = 0 \end{pmatrix} \to \begin{cases} x_1 = -\lambda \\ x_2 = \lambda \\ x_3 = \lambda \end{cases}$$

Quindi

$$\ker g = \{-\lambda v_1 + \lambda v_2 + \lambda v_3 | \lambda \in \mathbb{K}\} = \mathcal{L}(v_1 - v_2 - v_3)$$

g(V) ha dimensione 2. Per esercizio si trovi una base di g(V)

Notazione Spesso l'immagine di una funzione lineare F si indica con Im(F)

Teorema VI Sia $F: V \to W$ una funzione lineare tra spazi vettoriali su un campo \mathbb{K} .

Fè iniettiva $\iff F$ porta insiemi liberi di vettori di V in insiemi liberi di vettori di W

dim. (VI)

" \Longrightarrow " Supponiamo F iniettiva e sia $\{v_1, \dots, v_l\} \subseteq V$ un insieme libero, e dimostriamo che $\{F(v_1), \dots, F(v_l)\}$ è un insieme libero in W

Considero $\lambda_1,\cdots,\lambda_l\in\mathbb{K}$ tali che

$$\lambda_1 F(v_1) + \lambda_2 F(v_2) + \dots + \lambda_l F(v_l) = \underline{0}_W$$

Poiché F è lineare risulta

$$F(\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l) = \underline{0}_W$$

$$\implies \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l \in \ker F$$
, ma poiché F iniettiva $\ker F = \{\underline{0}_W\}$

$$\implies \lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_l v_l = \underline{0}_V$$
, ma $\{v_1, \dots, v_l\}$ è libero

$$\implies \lambda_1 = \cdots = \lambda_l = 0$$

$$\implies \{F(v_1), \cdots, F(v_l)\}$$
 è libero

"
—" Per ipotesi Fporta insiemi liberi in insiemi liberi. Si fiss
a $v \in V,$ $v \neq \underline{0}_V,$ quindi $\{v\}$ è libero

$$\implies \{F(v)\}$$
 è libero

$$\implies F(v) \neq \underline{0}_W$$

$$\implies \ker F = \{0_V\}$$

 $\implies F$ è iniettiva

Definizione Una funzione lineare sia iniettiva che suriettiva si dice un isomorfismo

$$F: V \to W$$
 è un isomorfismo $\iff \operatorname{Im}(F) = W \text{ e ker } F = \{\underline{0}_V\}$

Teorema VII

1. Sia $F:V\to W$ lineare con V,W finitamente generati e tali che dim $V=\dim W.$

F è iniettiva \iff F è suriettiva

2. $F:V\to V$ lineare con V finitamente generato è un isomorfismo \iff iniettiva \iff suriettiva

Definizione Un isomorfismo $F: V \to V$ si dice un automorfismo di V

dim. (VII)

1. $\dim V = \dim W$, $\dim V = \dim \ker(F) + \dim \operatorname{Im}(F)$

$$\implies \dim W = \dim \ker(F) + \dim \operatorname{Im}(F)$$

 \bullet Se F è suriettiva

$$\implies \dim W = \dim \operatorname{Im}(F)$$

$$\implies \dim \ker(F) = 0$$

$$\implies \ker F = \{\underline{0}_V\}$$

 \implies F è iniettiva

 $\bullet\,$ Se F è iniettiva

$$\implies \dim \ker F = 0$$

$$\implies \dim W = \dim \operatorname{Im} F$$

$$\implies W = \text{Im}F$$

 \implies F è suriettiva

2. Segue dal punto 1.

Esempio (5.6) V spazio vettoriale su un campo \mathbb{K} , \mathscr{B} base di V

$$V \xrightarrow{L_{\mathscr{B}}} \mathbb{K}^n$$
$$v \mapsto (v)_{\mathscr{B}}$$

è un isomorfismo