

MarginGAN: Adversarial Training in Semi-Supervised Learning

Jinhao Dong Xidian University Tong Lin*
Peking University

NEURAL INFORMATION PROCESSING SYSTEMS VANCOUVER DEC 8-14, 2019

Summary

- A three-player GAN model called MarginGAN is proposed for semisupervised learning (SSL)
- The discriminator is trained as usual to distinguish real examples from fake examples produced by the generator
- The classifier aims at increasing the margin of real examples and decreasing the margin of fake examples
- The generator attempts to yield realistic and large-margin examples in order to fool the discriminator and the classifier simultaneously
- Pseudo labels are used for unlabeled and fake examples in training

Prior Work

Feature Matching GANs (Salimans et al., NeurIPS 2016)

- Good SSL requires a "bad" GAN (Dai et al., NeurIPS 2017)
- Question: How to design a SSL model composed of a classifier, a discriminator, and a "bad" generator?

Our MarginGAN Model

Architecture Overview

The Discriminator

$$Loss(D) = -\{E_{x \sim p^{[l]}(x)}[\log(D(x))] + E_{\widetilde{x} \sim p^{[u]}(\widetilde{x})}[\log(D(\widetilde{x}))] + E_{z \sim p(z)}[\log(1 - D(G(z)))]\}$$

• The Classifier: min cross-entropy = max multiclass margins

$$Loss(C) = Loss(C^{[l]}) + Loss(C^{[u]}) + Loss(C^{[g]})$$

labeled:
$$Loss(C^{[l]}) = E_{(x,y) \sim p^{[l]}(x,y)} \left[-\sum_{i=1}^{\kappa} y_i \log (C(x)_i) \right]$$

$$\text{unlabeled:} \qquad Loss(C^{[u]}) = E_{\widetilde{x} \sim p^{[u]}(\widetilde{x})} \left[-\sum_{i=1}^k \widetilde{y}_i^{[u]} log(C(\widetilde{x})_i) \right]$$

The Generator

pseudo labels

$$Loss(G) = -E_{z \sim p(z)} \Big[\log \left(D(G(z)) \right) \Big] + E_{z \sim p(z)} \Big[Loss_{CE} \left[\widetilde{y}^{[g]}, C(G(z)) \right) \Big]$$

Minimax Game

$$\begin{split} & \min_{G} \max_{D,C} J(G,D,C) \\ &= \Big\{ E_{x \sim p^{[l]}(x)}[\log(D(x))] + E_{\widetilde{x} \sim p^{[u]}(\widetilde{x})}[\log(D(\widetilde{x}))] + E_{z \sim p(z)}[\log(1-D(G(z)))] \Big\} \\ &+ \Big\{ E_{(x,y) \sim p^{[l]}(x,y)} \big[\mathrm{Margin}(x,y) \big] + E_{\widetilde{x} \sim p^{[u]}(\widetilde{x})} \Big[\mathrm{Margin}(\widetilde{x},\widetilde{y}^{[u]}) \Big] \\ &+ E_{z \sim p(z)} \Big[1 - \mathrm{Margin}(G(z),\widetilde{y}^{[g]}) \Big] \Big\}, \end{split}$$

if we redefine $\operatorname{Margin}(x,y) \doteq \langle y, \log C(x) \rangle$ and $1 - \operatorname{Margin}(x,y) \doteq \langle y, \log(1 - C(x)) \rangle$.

Experiments

	Error rates on MNIST					
# of labels	100	600	1000	3000		
NN	25.81	11.44	10.70	6.04		
SVM	23.44	8.85	7.77	4.21		
CNN	22.98	7.68	6.45	3.35		
TSVM	16.81	6.16	5.38	3.45		
DBN-rNCA	_	8.70	_	3.30		
EmbedNN	16.86	5.97	5.73	3.59		
CAE	13.47	6.30	4.77	3.22		
MTC	12.03	5.13	3.64	2.57		
dropNN	21.89	8.57	6.59	3.72		
+PL	16.15	5.03	4.30	2.80		
+PL+DAE	10.49	4.01	3.46	2.69		
MarginGAN (ours)	3.53 ± 0.57	3.03 ± 0.60	2.87 ± 0.71	2.06 ± 0.20		

ı	METHODS	SVHN	CIFAR-10	CIFAR-10
METHODS		(500 labels)	(1000 labels)	(4000 labels)
	Ladder [18]	_	_	20.04 ± 0.47
	CatGAN [14]		_	19.58 ± 0.58
ı	FM GANs [8]			18.63 ± 2.32
ı	Triple-GAN [15]		_	18.82 ± 0.32
	SGAN [<mark>17</mark>]		_	17.26 ± 0.69
	∏ model [7]	6.83 ± 0.66	27.36 ± 1.20	13.20 ± 0.27
	MarginGAN (ours)	6.07 ± 0.43	10.39 ± 0.43	6.44 ± 0.10

