INSTITUT FÜR ANGEWANDTE PHYSIK

Physikalisches Praktikum für Studierende der Ingenieurswissenschaften

Universität Hamburg, Jungiusstraße 11

Die Spezifische Ladung des Elektrons

1 Ziel

Es soll die *Spezifische Ladung* des Elektrons *e/m*, die das Verhältnis zwischen Ladung *e* und Masse *m* des Elektrons angibt, bestimmt werden. Dazu wird ein Elektronenstrahl erzeugt und mit einem Magnetfeld auf eine Kreisbahn geleitet. Aus der Kenntnis der Geschwindigkeit der Elektronen und der Kraft, die nötig ist, um die Elektronen auf der Kreisbahn zu halten, lässt sich die Spezifische Ladung *e/m* berechnen.

Die genaue Bestimmung der spezifischen Ladung ist wichtig, um beispielsweise daraus mit Hilfe des Milikan-Versuches die Elementarladung zu bestimmen.

2 Theorie und Auswertung

Die Elektronen werden mit Hilfe einer Glühkathode erzeugt und durchlaufen anschließend eine Beschleunigungsspannung $U_{\rm B}$. Die potentielle Energie $E_{\rm pot}$ der Elektronen im elektrischen Feld wird dabei in kinetische Energie $E_{\rm kin}$ umgewandelt

$$E_{\rm kin} = \frac{1}{2} m \cdot v^2 = e \cdot U_{\rm B} = E_{\rm pot} . \tag{1}$$

Für die Geschwindigkeit v der Elektronen am Ende des Beschleunigungspotenzials gilt somit

$$V = \sqrt{\frac{2 \quad e \cdot U_{\rm B}}{m}} \quad . \tag{2}$$

Treten die Elektronen nun in ein Magnetfeld ein, so erfahren sie die Lorentz-Kraft

$$\vec{F}_{L} = q \cdot \vec{v} \times \vec{B} . \tag{3}$$

Die Lorentz-Kraft wirkt nur auf sich bewegende Ladungen q. Sie steht senkrecht auf \vec{v} und \vec{B} . Die Richtung der Kraft kann bei negativen Ladungen durch die Linke-Hand-Regel bestimmt werden.

Stehen die Größen \vec{v} und \vec{B} ihrerseits senkrecht zueinander, ergibt sich aus Gleichung (3) mit der Ladung des Elektrons e zu

$$F_{\perp} = \mathbf{e} \cdot \mathbf{v} \cdot \mathbf{B} \ . \tag{4}$$

Auf Teilchen, die sich auf einer Kreisbahn bewegen, wirkt eine Zentripetal- bzw. Radialkraft. Die Radialkraft F_{Rad} gibt an, wie groß eine zum Mittelpunkt gerichtete Kraft sein muss, um einen Körper der Masse m und Geschwindigkeit v auf einer Kreisbahn mit dem Radius r zu halten

$$F_{\text{Rad}} = \frac{m \cdot v^2}{r} \ . \tag{5}$$

Die Beträge der Radialkraft und der Lorentz-Kraft sind gleich. Durch Gleichsetzen von (4) und (5) ergibt sich

$$\mathbf{e} \cdot \mathbf{v} \cdot \mathbf{B} = \frac{m \cdot \mathbf{v}^2}{r} \ . \tag{6}$$

Setzt man nun die Gleichung für die Geschwindigkeit aus (2) in Gleichung (6) ein und löst nach e und m auf, erhält man

$$\frac{e}{m} = \frac{2 U_{B}}{B^2 \cdot r^2} . \tag{7}$$

Die Spezifische Ladung e/m lässt sich demnach durch Messen der Beschleunigungsspannung $U_{\rm B}$, des Magnetfeldes B (unter Kenntnis des Stromes $I_{\rm Sp}$, der durch die das Magnetfeld erzeugende Spule fliesst) und des Radius r der Kreisbahn bestimmen.

3 Aufbau

In einem Glaskolben, einem so genannten Fadenstrahlrohr, befindet sich ein Edelgas unter geringem Druck. Die Elektronen regen die Gasatome zur Emission von Photonen an, so dass ein Elektronenstrahl in dem Kolben sichtbar gemacht werden kann. In dem Kolben sind vier Leuchtstäbe in festen Abständen 4 cm, 6 cm, 8 cm und 10 cm zum Elektronenstrahlursprung angebracht, um den Kreisbahnradius der Elektronen zu bestimmen.

Die Elektronen werden mit einer Glühkathode, die üblicherweise aus Wolfram ist, durch Erhitzen erzeugt und über die variable Spannung zwischen Kathode und Anode beschleunigt. Die Beschleunigungsspannung $U_{\rm B}$ setzt sich hierbei zusammen aus der Spannung zwischen Kathode und Gitter (-50...0 V) und der Anodenspannung (0...+250 V), die zwischen dem Gitter und der Anode anliegt.

Die gesamte Versuchsanordnung befindet sich zwischen zwei Spulen mit einem Radius R=0,2 m und jeweils n=154 Windungen. Die beiden Spulen, die sich auf einer gemeinsamen Achse befinden und einen Abstand in der Größe des Radius R besitzen, werden Helmholtz-Spulen genannt. Das Magnetfeld im Zentrum des Spulenpaares ist in dieser Anordnung in guter Nährung homogen, also von gleicher Stärke und Orientierung.

Abb. 1: Schematischer Versuchsaufbau

Zur Erzeugung des Magnetfeldes wird der Spulenstrom (0...5 A) mit einer Gleichstromquelle produziert. Mit Hilfe der Biot-Savart-Gleichung

$$d\vec{B} = \frac{\mu_0}{4\pi} N \cdot I_{Sp} \cdot \frac{d\vec{l} \times \vec{r}}{r^3}$$
 (8)

lässt sich das Magnetfeld einer Leiterschleife berechnen. Für die obige Anordnung (Radius und Windungszahl) lässt sich damit leicht das Magnetfeld *B* zwischen den Spulen berechnen:

$$B \approx I_{\rm Sp} \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_0 \cdot n}{R} = I_{\rm Sp} \cdot 6,926 \cdot 10^{-4} \frac{T}{A} . \tag{9}$$

Hierbei ist $\mu_0 = 4\pi \cdot 10^{-7} \text{ T} \cdot \text{m/A}$ die magnetische Feldkonstante.

Der Spulenstrom und die Beschleunigungsspannung werden jeweils durch Multimeter gemessen. Im abgedunkelten Raum und bei korrekter Polung des Magnetfeldes ist die gekrümmte Leuchtbahn der Elektronen zu erkennen.

4 Fehlerrechnung

Aufgabe der Fehlerrechnung ist es, eine Abschätzung über die Genauigkeit des Ergebnisses zu machen. In der Versuchsdurchführung lassen sich die Größen $U_{\rm B}$, $I_{\rm Sp}$ und r mit den zur Verfügung stehenden Mitteln nicht mit beliebiger Genauigkeit messen.

Ferner geht es um die Frage, wie sich ein Messfehler oder eine statistische Verteilung von mehreren Einzelmessungen auf das ermittelte Gesamtergebnis auswirkt. Die Antwort darauf liefert das Fehlerfortpflanzungsgesetz.

Für den Fehler $\Delta f(x,y,z)$ einer Funktion f(x,y,z), die von den fehlerbehafteten Größen x, y und z abhängt, gilt (siehe Skript zur Fehlerrechnung)

$$\Delta f(x, y, z) = \sqrt{\left(\frac{\partial f}{\partial x} \cdot \Delta x\right)^2 + \left(\frac{\partial f}{\partial y} \cdot \Delta y\right)^2 + \left(\frac{\partial f}{\partial z} \cdot \Delta z\right)^2} \quad . \tag{10}$$

Dabei ist $\partial f/\partial x$ die partielle Ableitung der Funktion f(x,y,z) nach x; wobei alle übrigen Variablen konstant gehalten werden.

Die Ableitung gibt an, wie stark sich die Funktion f ändert, wenn man x variiert. In diesem Sinne lassen sich die Differentialquotienten in Gleichung (10) als Gewichtungsfaktoren verstehen, die die Einzelfehler Δx , Δy , Δz der Größen x, y, z je nach Einfluss auf das Ergebnis unterschiedlich bewerten.

Im konkreten Fall der Spezifischen Ladung des Elektrons aus Gleichung (7) lautet die Funktion

$$f(x, y, z) = \frac{e}{m} = f(U_B, B, r) = \frac{2}{B^2 \cdot r^2}$$
 (11)

Die Fehlerfortpflanzung lautet dementsprechend

$$\Delta \left(\frac{\mathbf{e}}{m}\right) = \sqrt{\left(\frac{\partial \left(\frac{\mathbf{e}}{m}\right)}{\partial U_{\mathrm{B}}} \cdot \Delta U_{\mathrm{B}}\right)^{2} + \left(\frac{\partial \left(\frac{\mathbf{e}}{m}\right)}{\partial B} \cdot \Delta B\right)^{2} + \left(\frac{\partial \left(\frac{\mathbf{e}}{m}\right)}{\partial r} \cdot \Delta r\right)^{2}},$$
(12)

$$= \sqrt{\left(\frac{2}{B^2 \cdot r^2} \cdot \Delta U_{\rm B}\right)^2 + \left(\frac{4U_{\rm B}}{B^3 \cdot r^2} \cdot \Delta B\right)^2 + \left(\frac{4U_{\rm B}}{B^2 \cdot r^3} \cdot \Delta r\right)^2} , \tag{13}$$

$$=2\frac{e}{m}\cdot\sqrt{\left(\frac{\Delta U_{\rm B}}{2U_{\rm B}}\right)^2+\left(\frac{\Delta B}{B}\right)^2+\left(\frac{\Delta r}{r}\right)^2} \ . \tag{14}$$

Dabei ist noch zu beachten, dass nicht B die Messgröße ist, sondern der Spulenstrom I_{Sp} . Der Fehler für B folgt analog zur obigen Rechnung aus dem Fehler von I_{Sp} .

Mit Gleichung (14) lässt sich also zu jeder Spezifischen Ladung e/m, die aus den Werten U_B , B, r errechnet wurde, ein Fehler angeben.

5 Aufgabenstellung

Das Fadenstrahlrohr und die Helmholtzspulen sind mit Hilfe der Skizze auf Seite 2 anzuschließen und Messgeräte sinnvoll in die Schaltung zu integrieren.

Variieren Sie nun das Magnetfeld B bei festen Beschleunigungsspannungen $U_{\rm B}$, so dass der Bahnradius r der Elektronen mit einem durch die Leuchtstäbe definierten Radius übereinstimmt. Die Leuchtstäbe besitzen jeweils einen Abstand von $2 \cdot r = 4$ cm, 6 cm, 8 cm und 10 cm von der Elektronenquelle. Hierfür werden für jeden Radius r durch Änderung der Anodenspannung $U_{\rm B}$ 11 Werte zwischen 300 V und 200 V eingestellt (10 V-Schritte). Zu den verschiedenen Kombinationen der Werte für $U_{\rm B}$, $I_{\rm Sp}$ und r ist die Spezifische Ladung des Elektrons e/m zu berechnen. Aus den Ergebnissen wird das arithmetische Mittel gebildet.

Um einen Vergleich mit dem Literaturwert durchzuführen ist es wichtig, den messtechnischen Fehler des Ergebnisses zu kennen. Erst dann lässt sich beurteilen, ob die mögliche Abweichung zum Literaturwert innerhalb der Fehlertoleranz liegt und damit auf unvermeidbare zufällige Messungenauigkeiten zurückzuführen ist. Es müssen also die einzelnen Messfehler $\Delta U_{\rm B}, \Delta I_{\rm Sp}$ und Δr vernünftig abgeschätzt werden.

Zu **jedem** Ergebnis für e/m ist der Fehler $\Delta(e/m)$ gemäß GI. (14) mit anzugeben. Aus sämtlichen Werten für e/m wird der Mittelwert sowie dessen Standardabweichung bestimmt.

Die Ergebnisse werden mit dem Literaturwert verglichen und **diskutiert**. Die 44 erhaltenen Werte für e/m werden gegenüber der jeweiligen Beschleunigungsspannung so aufgetragen, dass sie nach entsprechenden Radien unterschieden werden können. Zusätzlich werden der Mittel- und Literaturwert eingetragen. Systematische Abweichungen vom Mittelwert in Abhängigkeit vom Radius sind zu diskutieren.

Literaturwert:

National Institute for Standards and Technology NIST, http://physics.nist.gov/cuu/Constants/index.html:

$$\frac{e}{m} = (1,758\,820150 \pm 0,000000044) \cdot 10^{11} \frac{C}{kg}$$