report executed

August 20, 2021

1 Statistics

In the statistics module we analyze data for different responses and at different spectral peak locations. We use Python package scipy in this module.

1.1 T-Test

T-test checks for difference in the mean between two sample from different responses. We assume the data is independent and follows the normality assumption. Let x_1, \ldots, x_n and y_1, \ldots, y_m be the two samples and we test whether the means are equal. The null hypothesis states means μ_1 and μ_2 are equal and the alternative hypothesis states they are not equal. If the p-value is lower than the chosen significance level, we can reject the null hypothesis, i.e. the samples do not have the same means.

```
[1]:
            import modules.adapml_data as adapml_data
            import modules.adapml_classification as adapml_classification
            import modules.adapml_clustering as adapml_clustering
            import modules.adapml_chemometrics as adapml_chemometrics
            import modules.adapml_statistics as adapml_statistics
            import modules.adapml_regression as adapml_regression
            import numpy as np
            import modules.loadTestData as load_data
            import sklearn.preprocessing as pre
            from sklearn.cross decomposition import PLSRegression as PLS
            from matplotlib import pyplot as plt
            from sklearn import cluster as clst
            from scipy.cluster.hierarchy import dendrogram
            import os
            reldir = os.getcwd()
            path_to_data = os.path.join(reldir, '..', 'data', __
      data = adapml_data.DataImport(path_to_data)
            response1D = data.resp
            #response1D = adapml_data.DataImport.getResponse(path_to_data)
```

```
response2D = adapml_data.DataImport.getDummyResponse(response1D)

variables = data.getVariableNames()

samples = data.getSampleNames()

t_test = adapml_statistics.Statistics(data.data, 'anova', response1D)

t_test.plot_logp_values(variables)
```


1.2 Volcano Plot

Volcano plot is a scatter plot which demonstrates magnitude between the responses and t-test significance of the data. We can choose a significance level and fold change limit to specify the rectangle of interest.

[2]: t_test.plot_volcano_t(variables)

2 Dimension-Reduction

Dimension-reduction methods are used to condense high dimensional data down to dimensions which provide the most information. We have implemented the principal component analysis (PCA). It performs a change of basis and the new basis is chosen, such that the i-th principal component is orthogonal to the first i-1 principal components and the direction maximizes the variance of the projected data. We use the Python library sklearn.

2.1 Principal Component Analysis

The principal component analysis (PCA) is one of the methods for dimension-reduction. It performs a change of basis and the new basis is chosen, such that the i-th principal component is orthogonal to the first i-1 principal components and the direction maximizes the variance of the projected data. Instead of considering all the dimensions, we pick the necessary number of principal components.

```
[3]: data.normalizeData("autoscale")

pca = adapml_chemometrics.Chemometrics(data.data, "pca", response1D)

print("PCA Projections");pca.plotProjectionScatterMultiClass(2, □ → labels=["Healthy", "Not Healthy"])
```

PCA Projections
Projections of data into latent space.
Data is colored by response

2.2 Linear Discriminant Analysis

Linear discriminant analysis is a classifier with a linear decision boundary. We assume normality and fit conditional densities $p(x \mid y = 0)$ and $p(x \mid y = 1)$ with mean and covariance parameters (μ_0, σ_0) and (μ_1, σ_1) , where x, μ_0 and μ_1 are vectors. Dimensionality-reduction is done by projecting the input to the most discriminative directions.

```
[4]: lda = adapml_chemometrics.Chemometrics(data.data, "lda", response1D) # Alsou → Predicts

print("LDA Projections");lda.plotProjectionScatterMultiClass(1, u → labels=["Healthy", "Not Healthy"])
```

LDA Projections
Projections of data into latent space.
Data is colored by response

3 Clustering

In this module we use various different clustering methods on spectra. We use the elbow method to find the optimal number of clusters. Clustering is done with scipy and sklearn libraries.

```
[5]: elbow = adapml_clustering.Clustering(data.data, 'elbow', 3)
nr_clusters = elbow.clustnr
```

3.1 K-Means Clustering

NSCLC_H1703_2

SCLC_DMS79_1

K-means clustering aims to partition the data into k sets and to minimize the Euclidian withincluster sum of squares (WCSS). It is solved by either Lloyd's or Elkan's algorithm and we use sklearn module in Python.

```
[6]: kmeans_cluster = adapml_clustering.Clustering(data.data, 'kmeans', nr_clusters) kmeans_cluster.getClusterResults(samples)
```

```
Cluster 4
      Cluster 1
                       Cluster 2
                                       Cluster 3
                                                                       Cluster 5
   NSCLC_H522_1
                     SCLC_86M1_2
                                   NSCLC_H2228_1
                                                   SCLC_H187_2
                                                                    NSCLC_A549_1
0
   NSCLC H522 2
                     SCLC_86M1_1
                                   NSCLC_H2228_2
                                                   SCLC_H187_1
                                                                    NSCLC_A549_2
1
    NSCLC_PC9_1
                                   NSCLC_H3122_1
2
                      SCLC_H69_1
                                                    SCLC_H82_1
                                                                   NSCLC_H1437_1
3
    NSCLC_PC9_2
                      SCLC_H69_2
                                    NSCLC_H322_2
                                                    SCLC_H82_2
                                                                   NSCLC_H1437_2
4
            NaN
                  SCLC_SW210-5_1
                                   NSCLC_H3122_2
                                                   SCLC_N417_2
                                                                    NSCLC_H322_1
5
            NaN
                  SCLC_SW210_5_2
                                                   SCLC_N417_1
                                                                 NSCLC_HCC4006_1
                                              NaN
6
                                              NaN
                                                                 NSCLC_HCC4006_2
            NaN
                              NaN
                                                           NaN
       Cluster 6
                      Cluster 7
                                    Cluster 8
                                                   Cluster 9
```

NSCLC_H358_2

SCLC_16HV_1

```
NSCLC_H1703_1
                   SCLC_DMS79_2 SCLC_16HV_2 NSCLC_H358_1
1
2
                     SCLC_H209_1
                                   SCLC_H524_1
              NaN
                                                            NaN
3
                     SCLC_H209_2
                                   SCLC_H524_2
              NaN
                                                            {\tt NaN}
4
              NaN
                              NaN
                                            NaN
                                                            NaN
5
                              NaN
                                            NaN
              NaN
                                                            NaN
6
              NaN
                              NaN
                                            NaN
                                                            NaN
```

3.2 BIRCH Clustering

BIRCH (balance iterative reducing and clustering using hierarchies) is a hierarchical clustering method. The hierarchy is created based on the linear sum and the square sum of data points.

```
[7]: birch_cluster = adapml_clustering.Clustering(data.data, 'birch', nr_clusters) birch_cluster.getClusterResults(samples)
```

	Cluster	1 Clus	ter 2	Clus	ter 3	Cluster	4	Cluster 5	\
0	NSCLC_A549_	1 SCLC_8	86M1_2	NSCLC_H	358_2	SCLC_16HV	_1	NSCLC_H1703_2	
1	NSCLC_A549_	2 SCLC_8	86M1_1	NSCLC_H	522_2	SCLC_16HV	_2	NSCLC_H1703_1	
2	NSCLC_H1437_	1 SCLC_	H69_2	NSCLC_H	358_1	SCLC_H524	-1	NaN	
3	NSCLC_H2228_	1 SCLC_SW21	.0-5_1	NSCLC_	PC9_1	SCLC_H524	_2	NaN	
4	NSCLC_H2228_	2 SCLC_SW21	.0_5_2	NSCLC_	PC9_2	N	IaN	NaN	
5	NSCLC_H1437_	2	NaN		NaN	N	IaN	NaN	
6	NSCLC_H322_	2	NaN		NaN	N	IaN	NaN	
7	NSCLC_H322_	1	NaN		NaN	N	IaN	NaN	
8	NSCLC_H522_	1	NaN		NaN	N	IaN	NaN	
9	NSCLC_HCC4006_	1	NaN		NaN	N	IaN	NaN	
10	NSCLC_HCC4006_	2	NaN		NaN	N	IaN	NaN	
	Cluster 6	Cluster 7	Cl	uster 8	Clu	ster 9			
0	NSCLC_H3122_1	SCLC_H69_1	SCLC_	DMS79_1	SCLC_	H187_2			
1	NSCLC_H3122_2	SCLC_H82_1	SCLC_	DMS79_2	SCLC_	H187_1			
2	NaN	NaN	SCLC	_H209_1	SCLC	LH82_2			
3	NaN	NaN	SCLC	_H209_2	SCLC_	N417_2			
4	NaN	NaN		NaN	SCLC_	N417_1			
5	NaN	NaN		NaN		NaN			
6	NaN	NaN		NaN		NaN			
7	NaN	NaN		NaN		NaN			
8	NaN	NaN		NaN		NaN			
9	NaN	NaN		NaN		NaN			
10	NaN	NaN		NaN		NaN			

3.3 DBSCAN Clustering

DBSCAN is a non-parametric density-based clustering algorithm. It clusters together nearby neighbors, marking further away points as outliers, as they are in the low density area.

```
[8]: dbscan_cluster = adapml_clustering.Clustering(data.data, 'dbscan', nr_clusters) dbscan_cluster.getClusterResults(samples)
```

	Cluster 1	Cl	uster 2	Cluster 3	Cluster 4	Cluster 5	١
0	NSCLC_A549_1	NSCLC_	H1703_2	NSCLC_H3122_1	NaN	NaN	
1	NSCLC_A549_2	NSCLC_	H1703_1	NSCLC_H3122_2	NaN	NaN	
2	NSCLC_H1437_1		NaN	NaN	NaN	NaN	
3	NSCLC_H2228_1		NaN	NaN	NaN	NaN	
4	NSCLC_H2228_2		NaN	NaN	NaN	NaN	
5	NSCLC_H1437_2		NaN	NaN	NaN	NaN	
6	NSCLC_H322_2		NaN	NaN	NaN	NaN	
7	NSCLC_H322_1		NaN	NaN	NaN	NaN	
8	NSCLC_H358_2		NaN	NaN	NaN	NaN	
9	NSCLC_H522_1		NaN	NaN	NaN	NaN	
10	NSCLC_H522_2		NaN	NaN	NaN	NaN	
11	NSCLC_HCC4006_1		NaN	NaN	NaN	NaN	
12	NSCLC_H358_1		NaN	NaN	NaN	NaN	
13	NSCLC_PC9_1		NaN	NaN	NaN	NaN	
14	NSCLC_PC9_2		NaN	NaN	NaN	NaN	
15	NSCLC_HCC4006_2		NaN	NaN	NaN	NaN	
16	SCLC_86M1_2		NaN	NaN	NaN	NaN	
17	SCLC_86M1_1		NaN	NaN	NaN	NaN	
18	SCLC_16HV_1		NaN	NaN	NaN	NaN	
19	SCLC_16HV_2		NaN	NaN	NaN	NaN	
20	SCLC_DMS79_1		NaN	NaN	NaN	NaN	
21	SCLC_DMS79_2		NaN	NaN	NaN	NaN	
22	SCLC_H187_2		NaN	NaN	NaN	NaN	
23	SCLC_H187_1		NaN	NaN	NaN	NaN	
24	SCLC_H209_1		NaN	NaN	NaN	NaN	
25	SCLC_H524_1		NaN	NaN	NaN	NaN	
26	SCLC_H209_2		NaN	NaN	NaN	NaN	
27	SCLC_H524_2		NaN	NaN	NaN	NaN	
28	SCLC_H69_1		NaN	NaN	NaN	NaN	
29	SCLC_H82_1		NaN	NaN	NaN	NaN	
30	SCLC_H82_2		NaN	NaN	NaN	NaN	
31	SCLC_H69_2		NaN	NaN	NaN	NaN	
32	SCLC_N417_2		NaN	NaN	NaN	NaN	
33	SCLC_N417_1		NaN	NaN	NaN	NaN	
34	SCLC_SW210-5_1		NaN	NaN	NaN	NaN	
35	SCLC_SW210_5_2		NaN	NaN	NaN	NaN	
	Cluster 6 Clust	er 7 C	luster 8	Cluster 9			
0	NaN	NaN	NaN				
1	NaN	NaN	NaN	NaN			
2	NaN	NaN	NaN	NaN			
3	NaN	NaN	NaN				
4	NaN	NaN	NaN				
5	NaN	NaN	NaN				
6	NaN	NaN	NaN				
7	NaN	NaN	NaN				
8	NaN	NaN	NaN	NaN			

9	NaN	NaN	NaN	NaN
10	NaN	NaN	NaN	NaN
11	NaN	NaN	NaN	NaN
12	NaN	NaN	NaN	NaN
13	NaN	NaN	NaN	NaN
14	NaN	NaN	NaN	NaN
15	NaN	NaN	NaN	NaN
16	NaN	NaN	NaN	NaN
17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
21	NaN	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN
23	NaN	NaN	NaN	NaN
24	NaN	NaN	NaN	NaN
25	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN
27	NaN	NaN	NaN	NaN
28	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN
31	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN
33	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN
35	NaN	NaN	NaN	NaN

3.4 Mean Shift Clustering

The mean shift algorithm is a nonparametric clustering technique which does not require prior knowledge of the number of clusters, and does not constrain the shape of the clusters. It works by starting at data points and iteratevely finding the convergence points for kernel estimate gradient.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	\
0	NSCLC_A549_1	NSCLC_H1703_2	NaN	NaN	NaN	
1	NSCLC_A549_2	NSCLC_H1703_1	NaN	NaN	NaN	
2	NSCLC_H1437_1	NaN	NaN	NaN	NaN	
3	NSCLC_H2228_1	NaN	NaN	NaN	NaN	
4	NSCLC_H2228_2	NaN	NaN	NaN	NaN	
5	NSCLC_H1437_2	NaN	NaN	NaN	NaN	
6	NSCLC_H3122_1	NaN	NaN	NaN	NaN	
7	NSCLC_H322_2	NaN	NaN	NaN	NaN	
8	NSCLC_H322_1	NaN	NaN	NaN	NaN	

9	NSCLC_H	[358_2	NaN	NaN	NaN	NaN
10	NSCLC_H3	122_2	NaN	NaN	NaN	NaN
11	NSCLC_H	1522_1	NaN	NaN	NaN	NaN
12	NSCLC_H	522_2	NaN	NaN	NaN	NaN
13	NSCLC_HCC4	:006_1	NaN	NaN	NaN	NaN
14	NSCLC_H	358_1	NaN	NaN	NaN	NaN
15	NSCLC_	PC9_1	NaN	NaN	NaN	NaN
16	NSCLC_	PC9_2	NaN	NaN	NaN	NaN
17	NSCLC_HCC4	:006_2	NaN	NaN	NaN	NaN
18	SCLC_8	6M1_2	NaN	NaN	NaN	NaN
19	SCLC_8	6M1_1	NaN	NaN	NaN	NaN
20	SCLC_1	6HV_1	NaN	NaN	NaN	NaN
21	SCLC_1	6HV_2	NaN	NaN	NaN	NaN
22	SCLC_DM	IS79_1	NaN	NaN	NaN	NaN
23	SCLC_DM	IS79_2	NaN	NaN	NaN	NaN
24	SCLC_H	187_2	NaN	NaN	NaN	NaN
25	SCLC_H	187_1	NaN	NaN	NaN	NaN
26	SCLC_H	_	NaN	NaN	NaN	NaN
27	SCLC_H	_	NaN	NaN	NaN	NaN
28	SCLC_H	-	NaN	NaN	NaN	NaN
29	SCLC_H	-	NaN	NaN	NaN	NaN
30	_	H69_1	NaN	NaN	NaN	NaN
31	_	H82_1	NaN	NaN	NaN	NaN
32		H82_2	NaN	NaN	NaN	NaN
33	_	H69_2	NaN	NaN	NaN	NaN
34	SCLC_N	_	NaN	NaN	NaN	NaN
35	SCLC_N	-	NaN	NaN	NaN	NaN
36	SCLC_SW21	-	NaN	NaN	NaN	NaN
37	SCLC_SW21	-	NaN	NaN	NaN	NaN
٠.	~~_~					
	Cluster 6	Cluster 7	Cluster 8	Cluster 9		
0	NaN	NaN	NaN	NaN		
1	NaN	NaN	NaN	NaN		
2	NaN	NaN	NaN	NaN		
3	NaN	NaN	NaN	NaN		
4	NaN	NaN	NaN	NaN		
5	NaN	NaN	NaN	NaN		
6	NaN	NaN	NaN	NaN		
7	NaN	NaN	NaN	NaN		
8	NaN	NaN	NaN	NaN		
9	NaN	NaN	NaN	NaN		
10	NaN	NaN	NaN	NaN		
11	NaN	NaN	NaN	NaN		
12	NaN	NaN	NaN	NaN		
13	NaN	NaN	NaN	NaN		
14	NaN	NaN	NaN	NaN		
15	NaN	NaN	NaN	NaN		
16	NaN	NaN	NaN	NaN		
	11011	1,011	11011	11011		

17	NaN	NaN	NaN	NaN
18	NaN	NaN	NaN	NaN
19	NaN	NaN	NaN	NaN
20	NaN	NaN	NaN	NaN
21	NaN	NaN	NaN	NaN
22	NaN	NaN	NaN	NaN
23	NaN	NaN	NaN	NaN
24	NaN	NaN	NaN	NaN
25	NaN	NaN	NaN	NaN
26	NaN	NaN	NaN	NaN
27	NaN	NaN	NaN	NaN
28	NaN	NaN	NaN	NaN
29	NaN	NaN	NaN	NaN
30	NaN	NaN	NaN	NaN
31	NaN	NaN	NaN	NaN
32	NaN	NaN	NaN	NaN
33	NaN	NaN	NaN	NaN
34	NaN	NaN	NaN	NaN
35	NaN	NaN	NaN	NaN
36	NaN	NaN	NaN	NaN
37	NaN	NaN	NaN	NaN

3.5 Gaussian Mixture Clustering

Gaussian mixture models (GMMs) cluster the data by fitting a mixture of Gaussian models to the data and clustering together data points with similar parameter estimates. It's closely related to k-means clustering but allows for less restrictive cluster shapes. K-means fits a multi-dimensional ball as the perimeter, but GMMs can also fit ellipsoidal shapes and other shapes.

	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	\
0	NSCLC_H2228_1	SCLC_DMS79_1	SCLC_16HV_1	NSCLC_H358_2	NSCLC_H1703_2	
1	NSCLC_H2228_2	SCLC_DMS79_2	SCLC_16HV_2	NSCLC_H358_1	NSCLC_H1703_1	
2	NaN	SCLC_H209_1	SCLC_H187_2	NaN	NaN	
3	NaN	SCLC_H209_2	SCLC_H187_1	NaN	NaN	
4	NaN	NaN	SCLC_H524_1	NaN	NaN	
5	NaN	NaN	SCLC_H524_2	NaN	NaN	
6	NaN	NaN	SCLC_H82_1	NaN	NaN	
7	NaN	NaN	SCLC_H82_2	NaN	NaN	
8	NaN	NaN	SCLC_N417_2	NaN	NaN	
9	NaN	NaN	SCLC_N417_1	NaN	NaN	
10	NaN	NaN	NaN	NaN	NaN	
11	NaN	NaN	NaN	NaN	NaN	
	Cluster	6 Cluste	r 7 Clus	ter 8 Cl	uster 9	

0	NSCLC_A549_1	SCLC_H69_1	NSCLC_H3122_1	SCLC_86M1_2
1	NSCLC_A549_2	SCLC_H69_2	NSCLC_H3122_2	SCLC_86M1_1
2	NSCLC_H1437_1	SCLC_SW210-5_1	NaN	SCLC_SW210_5_2
3	NSCLC_H1437_2	NaN	NaN	NaN
4	NSCLC_H322_2	NaN	NaN	NaN
5	NSCLC_H322_1	NaN	NaN	NaN
6	NSCLC_H522_1	NaN	NaN	NaN
7	NSCLC_H522_2	NaN	NaN	NaN
8	NSCLC_HCC4006_1	NaN	NaN	NaN
9	NSCLC_PC9_1	NaN	NaN	NaN
10	NSCLC_PC9_2	NaN	NaN	NaN
11	NSCLC_HCC4006_2	NaN	NaN	NaN

3.6 Hierarchical Clustering

Hierarchical clustering builds hierarchies of clusters based on a chosen metric and a linkage scheme. We used cosine distance and average linkage scheme.

```
[11]: hierarchical_cluster = adapml_clustering.Clustering(data.data, 'hierarchical', □ → nr_clusters)
hierarchical_cluster.getClusterResults(samples)
hierarchical_cluster.plot_dendrogram(samples)
```

	_	· -	0 1			
	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5	\
0	SCLC_86M1_2	NSCLC_H358_2	NSCLC_A549_1	SCLC_H82_1	SCLC_16HV_1	
1	SCLC_86M1_1	NSCLC_H358_1	NSCLC_H1437_1	SCLC_N417_2	SCLC_16HV_2	
2	SCLC_DMS79_1	NSCLC_PC9_1	NSCLC_H1437_2	NaN	SCLC_H524_1	
3	SCLC_DMS79_2	NSCLC_PC9_2	NSCLC_H3122_1	NaN	SCLC_H524_2	
4	SCLC_H209_1	NaN	NSCLC_H3122_2	NaN	NaN	
5	SCLC_H209_2	NaN	${\tt NSCLC_HCC4006_1}$	NaN	NaN	
6	SCLC_H69_1	NaN	NaN	NaN	NaN	
7	SCLC_H69_2	NaN	NaN	NaN	NaN	
8	SCLC_SW210-5_1	NaN	NaN	NaN	NaN	
9	SCLC_SW210_5_2	NaN	NaN	NaN	NaN	
	Cluster 6	Cluster 7	Cluster 8	Cluster 9		
0	NSCLC_H1703_2	NSCLC_H2228_1	NSCLC_H522_1	SCLC_H187_2		
1	NSCLC_H1703_1	NSCLC_H2228_2	NSCLC_H522_2	SCLC_H187_1		
2	NSCLC_A549_2	NSCLC_H322_2	NaN	SCLC_H82_2		
3	NSCLC_H322_1	NaN	NaN	SCLC_N417_1		
4	NSCLC_HCC4006_2	NaN	Na.N	NaN		
5	NaN	NaN	Na.N	NaN		
6	NaN	NaN	Na.N	NaN		
7	NaN	NaN	Na.N	NaN		
8	NaN	NaN	Na.N	NaN		
9	NaN	NaN	Na.N	NaN		

4 Classification

Classification methods aim to classify the response of samples. The given data is separated into a training set and a testing set. The model parameters are found from the training set and the testing set is used to quantify the model accuracy. The methods are from sklearn package.

4.1 Partial Least Squares-Discriminant Analysis

```
def plotProjectionScatterMultiClass(pc, resp, num_var):
    plt.figure(figsize=(24, 18))

for i in range(num_var):
    for j in range(num_var):
        plt.subplot(5,5,5*(i) + j + 1)
        for c in range(resp.shape[1]):
            inx = np.where(resp[:,c] == 1)[0]
            tmp = pc[inx,:]
            pc1 = tmp[:,i]
            pc2 = tmp[:,j]
            plt.scatter(pc1, pc2)
            plt.xlabel("PLS Component "+str(i+1))
            plt.ylabel("PLS Component "+str(j+1))
```

```
plt.show()

data = load_data.loadDataPandas(path_to_data)
d = data.to_numpy()
var_index = data.columns.values.tolist()

resp = load_data.getResponseMatrix2D()

norm_trans = pre.StandardScaler().fit(d)
data_norm = norm_trans.transform(d)
#data_norm, norm_trans = pre.mean_center(d)
#In-built preprocessing method - TBD

pls = PLS().fit(data_norm, resp)
pls_trans = pls.transform(data_norm)

plotProjectionScatterMultiClass(pls_trans, resp, 2)
```


4.2 Support Vector Machines

Classification via SVM is done by fitting a linear plane to the latent space but only considering a subset of inputs in the fitting process. The quantity R^2 measures what percentage of variation was explained by the model in the training set. The quantity Q^2 shows the same measurement but for the test data set.

```
SVM Validated Parameters: {'kernel': 'linear', 'shrinking': True} SVM: R^2=1.0 Q^2=1.0
```

4.3 Random Forest

Random forests is an ensemble classification method. It works by constructing multiple decision trees based on the training data and then choosing the class, chosen by the most number of decision trees. The quantity R^2 measures what percentage of variation was explained by the model in the training set. The quantity Q^2 shows the same measurement but for the test data set.

```
Random Forest Validated Parameters: {'criterion': 'gini', 'n_estimators': 10} RF: R^2=1.0 Q^2=1.0
```

4.4 Logistic Regression

Logistic regression uses a logistic function to model a binary dependent variable. The confusion matrix displays the accuracy of the model for the test data set. We use the packages sklearn for the logistic regression and seaborn for the confusion matrix.

```
Accuracy: 1.0 <modules.adapml_classification.Classification object at 0x7fb102b68400>
```

Confusion matrix

5 Regression

5.1 Linear Regression

Linear regression fits a linear plane between the dependant variables and the response. The linear plane models the relationship between them and allows for prediction or explain variation.

```
[16]: reg = adapml_regression.Regression(data.data, "linear")
reg.linear
```

