

- 11

Exercícios - Capítulo 4

DFT

1. Prove a seguinte relação:
$$\sum_{n=0}^{N-1} e^{j\frac{2\pi}{N}((r-k)n)} = \begin{cases} N, & r=k\\ 0, & r\neq k \end{cases}$$

- Calcule a TDF da seqüência: x(0) = 2; x(1) = 2; x(2) = -2 e x(3) = -2.
- 3. Calcule a TDF inversa, de N pontos (N = 10) de:

$$X(k) = \begin{cases} 1, & k = 0 \\ 2, & k = 3 e 7 \\ 0, & caso \ contrário \end{cases}$$

- 4. Um sinal analógico é amostrado em 10kHz e a TDF de 128 amostras é calculada. Determine o espaçamento de freqüência entre as amostras espectrais.
- 5. Mostre que a resolução espectral de uma TDF de N amostras de um sinal é melhorada acrescentando zeros (por exemplo M) à sequência original, e em seguida calculando a TDF de N+M pontos. Exemplifique.
- 6. Encontre a TDF das seguintes sequências. (Considere 0 ≤ n ≤ N-1 e k um valor inteiro de índice de freqüência):
 - a) $x(n) = \delta(n)$
 - b) $x(n) = \delta(n n_0)$, onde $0 < n_0 < N-1$
 - c) $x(n) = a^n$, onde a < 1d) $x(n) = e^{j(2\pi\alpha/N)n}$

 - e) $x(n) = \cos[(2\pi\alpha/N)n]$
 - f) $x(n) = \begin{cases} 1, & n = 0, 1, ..., 4 \\ 0, & n > 4 \end{cases}$ OBS: faça N=4, 8 e 16. Observe as differenças
- 7. Exemplo no computador: Obter a TDF de $x(n) = cos(2\pi\alpha/N)n$, onde N=128 e $\alpha=1$; 1.5 e 2.