# **Connection with Google Sheet**

```
In [162]:
           1 import pandas as pd
           2 import gspread
           3 from oauth2client.service account import ServiceAccountCredentials
           4 scope = ['https://spreadsheets.google.com/feeds']
           5 credentials = ServiceAccountCredentials.from json keyfile name('DL Workshop-52707c954725.json', scope)
           6  gc = gspread.authorize(credentials)
           7 spreadsheet key = '1qMBlsO134705quy7EtzPyimSBIUjk9cCi9TjFUMQKJQ'
           8 book = gc.open by key(spreadsheet key)
           9 worksheet = book.worksheet("result2")
          10 table = worksheet.get all values()
          11 df = pd.DataFrame(table[1:], columns=table[0])
          12 ##Only keep columns we need
          13 df = df[['Rk', 'Pk', 'Tm', 'Player', 'College', 'Yrs', 'G', 'MP']]
          14 df = df.apply(pd.to numeric, errors='ignore')
          15 df.head()
```

#### Out[162]:

|   | Rk | Pk | Tm  | Player         | College               | Yrs | G   | MP    | MP   |
|---|----|----|-----|----------------|-----------------------|-----|-----|-------|------|
| 0 | 1  | 1  | CLE | Andrew Wiggins | University of Kansas  | 4   | 327 | 11841 | 36.2 |
| 1 | 2  | 2  | MIL | Jabari Parker  | Duke University       | 4   | 183 | 5617  | 30.7 |
| 2 | 3  | 3  | PHI | Joel Embiid    | University of Kansas  | 2   | 94  | 2698  | 28.7 |
| 3 | 4  | 4  | ORL | Aaron Gordon   | University of Arizona | 4   | 263 | 6867  | 26.1 |
| 4 | 5  | 5  | UTA | Dante Exum     |                       | 3   | 162 | 3280  | 20.2 |

# **Introduction to Matpotlib**





<sup>1 &</sup>lt;h1><center>Linestyles/Marker: Provide a different color for a line by using the keyword color with either an HTML color name or a HEX code</center></h1>



1 <h1><center>Add Legends and Labels</center></h1>



## **Bar Chart**



```
In [132]:
           1 from matplotlib import pyplot as plt
           2 fruits = ["orange", "apple", "pineapple", "grape", "pear", "water melon"]
           3 production1 = [880, 570, 450, 630, 750, 850]
           4 production2 = [550, 800, 360, 680, 350, 380]
           5 #Paste the x values code here
           6 n = 1 # This is our first dataset (n = no. of entry - out of the total)
           7 t = 2 # Total number of dataset (t = total)
           8 d = 6 # Number of sets of bars (d = dataset of bars)
           9 w = 0.8 \# Width of each bar (w = width)
          10 location1 x = [t*element + w*n for element in range(d)]
          11 plt.bar(location1 x, production1)
          12 #Paste the x values code here
          13 n = 2 \# This is our second dataset (out of 2)
          14 t = 2 # Number of dataset
          15 d = 6 # Number of sets of bars
          16 w = 0.8 \# Width of each bar
          17 location2 x = [t*element + w*n for element in range(d)]
          18 plt.bar(location2 x, production2)
          19 plt.show()
```



```
In [134]: 1  from matplotlib import pyplot as plt
2  fruits = ["orange", "apple", "pineapple", "grape", "pear", "water melon"]
3  production1 = [880, 570, 450, 630, 750, 850]
4  production2 = [550, 800, 360, 680, 350, 380]
5  plt.bar(range(len(production1)),production1)
6  plt.bar(range(len(production2)),production2,bottom=production1)
7  plt.legend(['Location 1', 'Location 2'])
8  plt.show()
```





### **Pie Chart**



### **Scatter Plot**



# Use plt.axis to zoom in to important information

### This list should contain:

- The minimum x-value displayed
- The maximum x-value displayed
- The minimum y-value displayed
- The maximum y-value displayed

### plt.axis([1, 7, 300, 400])







# **Creating subplots and axes**

#### Months wih Hot Temperature



```
In [126]:
           1 from matplotlib import pyplot as plt
              def warn(*args, **kwargs):
           3
                  pass
              import warnings
           5 | warnings.warn = warn
           6 month names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
           7 months = range(12)
           8 conversion = [0.05, 0.08, 0.18, 0.28, 0.4, 0.66, 0.74, 0.78, 0.8, 0.81, 0.85, 0.85]
           9 plt.xlabel("Months")
          10 plt.ylabel("Conversion")
          plt.plot(months, conversion)
          12 # Your work here
          13 ax = plt.subplot()
          14 # measuring units and lables
          15 ax.set xticks(range(12))
          16 ax.set xticklabels(month names[0:12])
          17 ax.set yticks([0.10, 0.25, 0.5, 0.75])
          18 ax.set yticklabels(['10%', '25%', '50%', '75%'])
          19 plt.show()
```



```
In [163]:
           1 from bs4 import BeautifulSoup
              import requests
            3 import csv
              import pandas as pd
              import matplotlib.pyplot as plt
            7 # Fetch URL
            8 html page = requests.get('https://www.travelchinaguide.com/climate/air-pollution.htm')
           9 # Obtain the entire HTML page
          10 | soup = BeautifulSoup(html page.content, 'html.parser')
           11 # Find all the HTML tables
          12 tables = soup.find all(class = "c tablex")
          13 # Access the first HTML table that contains Air Quality information (header + data)
          14 table = tables[1]
          15 # Obtain air quality column header descriptions from the first HTML table
          16 table header = table.find(class = "c tableX th")
          17 # Extract the header names from the 'td' elements of the header table and store in the variable 'tds'
           18 tds = table header.find all('td')
          19 # Create two empty lists for holding the air quality header names and air quality data
           20 header = []
           21 | data = []
           22 # Loop through the table cells (i.e. 'tds') to extract header names and append to the list
           23 for i in tds:
           24
                   # print(i.text)
                  header.append(i.text)
           25
           26 # print header
          27 all rows = table.find all("tr")
          28 # print data rows.text
           29 for i, row in enumerate(all rows,1):
           30
                       # print row.text
           31
                       if (i < len(all rows)):</pre>
                           tds = all rows[i].find all("td")
           32
                           for j, td in enumerate(tds,1):
           33
           34
                               # print j,td.text
           35
                               if j==1:
           36
                                   rank = td.text
           37
                               if j==2:
           38
                                   city = td.text
           39
                               if j==3:
           40
                                   province = td.text
           41
                               if j==4:
```

```
42
                   agi = td.text
43
                if i==5:
44
                   air quality = td.text
45
                if i==6:
46
                   pm2 5 = td.text
47
                if i==7:
48
                   pm10 = td.text
49
             data.append([rank,city,province,aqi,air quality,pm2 5,pm10])
50 # Assign row data and column headers to dataframe
51 df = pd.DataFrame(data,
    columns = header
52
53 )
54 # Save dataframe to external csv file
55 df.to csv('china air quality.csv', sep='\t', encoding='utf-8')
56 # open csv file and read csv data into Pandas dataframe
57 df = pd.read csv("china air quality.csv", sep='\t', encoding='utf-8')
58 # Set column headings for entire air quality table and print out the entire table
59 air quality ranking = df[['Rank','City','AQI','Air Quality Level','PM2.5','PM10']]
61 # Display City Ranking by Pollution Level
63 print("Air Quality Ranking\n")
64 print(air quality ranking)
65 # Extract cities that are polluted
66 lightly polluted = df[df['Air Quality Level'] == 'Lightly Polluted']
67 heavily polluted = df[df['Air Quality Level'] == 'Heavily Polluted']
68 # Combine the cities of different pollution level into one table
69 selected = lightly polluted.append(heavily polluted)
70 pc = selected[['Rank','City','AQI','Air Quality Level','PM2.5','PM10']]
72 # Display Cities with Pollution
74 print("\nCities with Pollution\n")
75 print(pc)
76 cities = pc['City'].tolist()
77 agi lvl = pc['AQI'].tolist()
78 ax = plt.subplot()
79 plt.bar(range(len(cities)),aqi lvl)
80 # Create ax object here
81 j = 0
82 | ax list = []
83 while j<len(cities):
```

```
ax_list.append(j)
    j += 1

ax.set_xticks(ax_list)

plt.xlabel('Cities')

plt.ylabel('AQI Levels')

plt.title('Cities with High AQI Levels')

ax.set_xticklabels(cities, rotation=70)

plt.show()
```

#### Air Quality Ranking

|    | Rank | City      | AQI | Air Quality Level | PM2.5 | PM10 |
|----|------|-----------|-----|-------------------|-------|------|
| 0  | 1    | Urumqi    | 30  | Excellent         | 11    | 21   |
| 1  | 2    | Changchun | 50  | Excellent         | 29    | 51   |
| 2  | 3    | Dalian    | 53  | Good              | 26    | 56   |
| 3  | 4    | Lhasa     | 52  | Good              | 20    | 58   |
| 4  | 5    | Sanya     | 55  | Good              | 20    | 60   |
| 5  | 6    | Shenyang  | 56  | Good              | 33    | 63   |
| 6  | 7    | Kunming   | 57  | Good              | 36    | 59   |
| 7  | 8    | Hangzhou  | 59  | Good              | 27    | 65   |
| 8  | 9    | Haikou    | 59  | Good              | 30    | 68   |
| 9  | 10   | Qingdao   | 68  | Good              | 28    | 85   |
| 10 | 11   | Changsha  | 69  | Good              | 33    | 88   |
| 11 | 12   | Chongqing | 69  | Good              | 26    | 87   |
| 12 | 13   | Shenzhen  | 70  | Good              | 37    | 91   |
| 13 | 14   | Suzhou    | 72  | Good              | 33    | 102  |
| 14 | 15   | Fuzhou    | 72  | Good              | 31    | 94   |
| 15 | 16   | Wuhan     | 74  | Good              | 32    | 104  |
| 16 | 17   | Nanjing   | 77  | Good              | 23    | 104  |
| 17 | 18   | Shanghai  | 77  | Good              | 40    | 103  |
| 18 | 19   | Xiamen    | 77  | Good              | 30    | 90   |
| 19 | 20   | Nanning   | 79  | Good              | 46    | 108  |
| 20 | 21   | Hefei     | 84  | Good              | 36    | 118  |
| 21 | 22   | Datong    | 87  | Good              | 51    | 124  |
| 22 | 23   | Guilin    | 87  | Good              | 56    | 122  |
| 23 | 24   | Guiyang   | 91  | Good              | 48    | 132  |
| 24 | 25   | Harbin    | 94  | Good              | 63    | 103  |
| 25 | 26   | Xining    | 95  | Good              | 55    | 118  |
| 26 | 27   | Yangzhou  | 96  | Good              | 36    | 142  |
| 27 | 28   | Guangzhou | 99  | Good              | 71    | 131  |
| 28 | 29   | Hohhot    | 100 | Good              | 53    | 150  |

| 29 | 30 | Lanzhou      | 100 | Good             | 43 | 135 |
|----|----|--------------|-----|------------------|----|-----|
| 30 | 31 | Luoyang      | 101 | Lightly Polluted | 67 | 144 |
| 31 | 32 | Chengdu      | 101 | Lightly Polluted | 62 | 143 |
| 32 | 33 | Jinan        | 103 | Lightly Polluted | 43 | 151 |
| 33 | 34 | Xian         | 106 | Lightly Polluted | 75 | 137 |
| 34 | 35 | Beijing      | 109 | Lightly Polluted | 82 | 103 |
| 35 | 36 | Zhengzhou    | 111 | Lightly Polluted | 63 | 172 |
| 36 | 37 | Tianjin      | 118 | Lightly Polluted | 83 | 179 |
| 37 | 38 | Baotou       | 124 | Lightly Polluted | 59 | 198 |
| 38 | 39 | Shijiazhuang | 129 | Lightly Polluted | 87 | 200 |
| 39 | 40 | Taiyuan      | 141 | Lightly Polluted | 88 | 214 |
| 40 | 41 | Yinchuan     | 203 | Heavily Polluted | 77 | 340 |

### Cities with Pollution

|    | Rank | City         | AQI | Air Quality Level | PM2.5 | PM10 |
|----|------|--------------|-----|-------------------|-------|------|
| 30 | 31   | Luoyang      | 101 | Lightly Polluted  | 67    | 144  |
| 31 | 32   | Chengdu      | 101 | Lightly Polluted  | 62    | 143  |
| 32 | 33   | Jinan        | 103 | Lightly Polluted  | 43    | 151  |
| 33 | 34   | Xian         | 106 | Lightly Polluted  | 75    | 137  |
| 34 | 35   | Beijing      | 109 | Lightly Polluted  | 82    | 103  |
| 35 | 36   | Zhengzhou    | 111 | Lightly Polluted  | 63    | 172  |
| 36 | 37   | Tianjin      | 118 | Lightly Polluted  | 83    | 179  |
| 37 | 38   | Baotou       | 124 | Lightly Polluted  | 59    | 198  |
| 38 | 39   | Shijiazhuang | 129 | Lightly Polluted  | 87    | 200  |
| 39 | 40   | Taiyuan      | 141 | Lightly Polluted  | 88    | 214  |
| 40 | 41   | Yinchuan     | 203 | Heavily Polluted  | 77    | 340  |



```
In [165]:
           1 from bs4 import BeautifulSoup
              import requests
            3 import csv
              import pandas as pd
              import matplotlib.pyplot as plt
            7 # Fetch URL
            8 html page = requests.get('https://www.travelchinaguide.com/climate/air-pollution.htm')
           9 # Obtain the entire HTML page
          10 | soup = BeautifulSoup(html page.content, 'html.parser')
           11 # Find all the HTML tables
          12 tables = soup.find all(class = "c tablex")
          13 # Access the first HTML table that contains Air Quality information (header + data)
          14 table = tables[1]
          15 # Obtain air quality column header descriptions from the first HTML table
          16 table header = table.find(class = "c tableX th")
          17 # Extract the header names from the 'td' elements of the header table and store in the variable 'tds'
           18 tds = table header.find all('td')
          19 # Create two empty lists for holding the air quality header names and air quality data
           20 header = []
           21 | data = []
           22 # Loop through the table cells (i.e. 'tds') to extract header names and append to the list
           23 for i in tds:
           24
                   # print(i.text)
           25
                  header.append(i.text)
           26 # print header
          27 all rows = table.find all("tr")
          28 # print data rows.text
           29 for i, row in enumerate(all rows,1):
           30
                       # print row.text
           31
                       if (i < len(all rows)):</pre>
                           tds = all rows[i].find all("td")
           32
                           for j, td in enumerate(tds,1):
           33
           34
                               # print j,td.text
           35
                               if j==1:
           36
                                   rank = td.text
           37
                               if j==2:
           38
                                   city = td.text
           39
                               if j==3:
           40
                                   province = td.text
           41
                               if j==4:
```

```
42
                        aqi = td.text
43
                    if j==5:
44
                        air_quality = td.text
45
                    if j==6:
46
                       pm2 5 = td.text
                    if j==7:
47
48
                        pm10 = td.text
49
                data.append([rank,city,province,aqi,air quality,pm2 5,pm10])
50 # Assign row data and column headers to dataframe
51 df = pd.DataFrame(data,
     columns = header
52
53 )
54 # Save dataframe to external csv file
55 df.to csv('china air quality.csv', sep='\t', encoding='utf-8')
56 # open csv file and read csv data into Pandas dataframe
57
58
```

```
1 import gspread
In [166]:
          2 import pandas as pd
          3 from oauth2client.service account import ServiceAccountCredentials
            import requests
          5 import csv
            import matplotlib.pyplot as plt
          8 scope = ['https://spreadsheets.google.com/feeds']
          9 credentials = ServiceAccountCredentials.from json keyfile name('DL Workshop-52707c954725.json', scope)
         10 | gc = gspread.authorize(credentials)
         11 spreadsheet key = 'lqMBlsO134705quy7EtzPyimSBIUjk9cCi9TjFUMQKJQ'
         12 book = qc.open by key(spreadsheet key)
        13 worksheet = book.worksheet("air quality")
         14 table = worksheet.get all values()
        15 df = pd.DataFrame(table[1:], columns=table[0])
         16 ##Only keep columns we need
        17 df = df[['Rank', 'City', 'AQI', 'Air Quality Level', 'PM2.5', 'PM10']]
         18 | df = df.apply(pd.to numeric, errors='ignore')
        19 df.head()
         20
         21 # df = pd.read csv("china air quality.csv", sep='\t', encoding='utf-8')
         22 # Set column headings for entire air quality table and print out the entire table
         23 air quality ranking = df[['Rank','City','AQI','Air Quality Level','PM2.5','PM10']]
         25 # Display City Ranking by Pollution Level
         27 print("Air Quality Ranking\n")
         28 print(air quality ranking)
         29 # Extract cities that are polluted
         30 | lightly polluted = df[df['Air Quality Level'] == 'Lightly Polluted']
         31 heavily polluted = df[df['Air Quality Level'] == 'Heavily Polluted']
         32 # Combine the cities of different pollution level into one table
         33 selected = lightly polluted.append(heavily polluted)
         34 pc = selected[['Rank','City','AQI','Air Quality Level','PM2.5','PM10']]
         36 # Display Cities with Pollution
         38 print("\nCities with Pollution\n")
         39 print(pc)
         40 cities = pc['City'].tolist()
         41 aqi lvl = pc['AQI'].tolist()
```

```
42 ax = plt.subplot()
43 plt.bar(range(len(cities)),aqi lvl)
44 # Create ax object here
45 | j = 0
46 ax_list = []
47 while j<len(cities):
       ax_list.append(j)
48
       j += 1
49
50 ax.set xticks(ax list)
51 plt.xlabel('Cities')
52 plt.ylabel('AQI Levels')
53 plt.title('Cities with High AQI Levels')
54 ax.set_xticklabels(cities, rotation=70)
55 plt.show()
```

#### Air Quality Ranking

|    | Rank | City      | AQI | Air | Quality Level | PM2.5 | PM10 |
|----|------|-----------|-----|-----|---------------|-------|------|
| 0  | 1    | Urumqi    | 30  |     | Excellent     | 11    | 21   |
| 1  | 2    | Changchun | 50  |     | Excellent     | 29    | 51   |
| 2  | 3    | Dalian    | 53  |     | Good          | 26    | 56   |
| 3  | 4    | Lhasa     | 52  |     | Good          | 20    | 58   |
| 4  | 5    | Sanya     | 55  |     | Good          | 20    | 60   |
| 5  | 6    | Shenyang  | 56  |     | Good          | 33    | 63   |
| 6  | 7    | Kunming   | 57  |     | Good          | 36    | 59   |
| 7  | 8    | Hangzhou  | 59  |     | Good          | 27    | 65   |
| 8  | 9    | Haikou    | 59  |     | Good          | 30    | 68   |
| 9  | 10   | Qingdao   | 68  |     | Good          | 28    | 85   |
| 10 | 11   | Changsha  | 69  |     | Good          | 33    | 88   |
| 11 | 12   | Chongqing | 69  |     | Good          | 26    | 87   |
| 12 | 13   | Shenzhen  | 70  |     | Good          | 37    | 91   |
| 13 | 14   | Suzhou    | 72  |     | Good          | 33    | 102  |
| 14 | 15   | Fuzhou    | 72  |     | Good          | 31    | 94   |
| 15 | 16   | Wuhan     | 74  |     | Good          | 32    | 104  |
| 16 | 17   | Nanjing   | 77  |     | Good          | 23    | 104  |
| 17 | 18   | Shanghai  | 77  |     | Good          | 40    | 103  |
| 18 | 19   | Xiamen    | 77  |     | Good          | 30    | 90   |
| 19 | 20   | Nanning   | 79  |     | Good          | 46    | 108  |
| 20 | 21   | Hefei     | 84  |     | Good          | 36    | 118  |
| 21 | 22   | Datong    | 87  |     | Good          | 51    | 124  |
| 22 | 23   | Guilin    | 87  |     | Good          | 56    | 122  |

| 23 | 24 | Guiyang      | 91  |         | Good     | 48 | 132 |
|----|----|--------------|-----|---------|----------|----|-----|
| 24 | 25 | Harbin       | 94  |         | Good     | 63 | 103 |
| 25 | 26 | Xining       | 95  |         | Good     | 55 | 118 |
| 26 | 27 | Yangzhou     | 96  |         | Good     | 36 | 142 |
| 27 | 28 | Guangzhou    | 99  |         | Good     | 71 | 131 |
| 28 | 29 | Hohhot       | 100 |         | Good     | 53 | 150 |
| 29 | 30 | Lanzhou      | 100 |         | Good     | 43 | 135 |
| 30 | 31 | Luoyang      | 101 | Lightly | Polluted | 67 | 144 |
| 31 | 32 | Chengdu      | 101 | Lightly | Polluted | 62 | 143 |
| 32 | 33 | Jinan        | 103 | Lightly | Polluted | 43 | 151 |
| 33 | 34 | Xian         | 106 | Lightly | Polluted | 75 | 137 |
| 34 | 35 | Beijing      | 109 | Lightly | Polluted | 82 | 103 |
| 35 | 36 | Zhengzhou    | 111 | Lightly | Polluted | 63 | 172 |
| 36 | 37 | Tianjin      | 118 | Lightly | Polluted | 83 | 179 |
| 37 | 38 | Baotou       | 124 | Lightly | Polluted | 59 | 198 |
| 38 | 39 | Shijiazhuang | 129 | Lightly | Polluted | 87 | 200 |
| 39 | 40 | Taiyuan      | 141 | Lightly | Polluted | 88 | 214 |
| 40 | 41 | Yinchuan     | 203 | Heavily | Polluted | 77 | 340 |

### Cities with Pollution

|    | Rank | City         | AQI | Air Quality Level | PM2.5 | PM10 |
|----|------|--------------|-----|-------------------|-------|------|
| 30 | 31   | Luoyang      | 101 | Lightly Polluted  | 67    | 144  |
| 31 | 32   | Chengdu      | 101 | Lightly Polluted  | 62    | 143  |
| 32 | 33   | Jinan        | 103 | Lightly Polluted  | 43    | 151  |
| 33 | 34   | Xian         | 106 | Lightly Polluted  | 75    | 137  |
| 34 | 35   | Beijing      | 109 | Lightly Polluted  | 82    | 103  |
| 35 | 36   | Zhengzhou    | 111 | Lightly Polluted  | 63    | 172  |
| 36 | 37   | Tianjin      | 118 | Lightly Polluted  | 83    | 179  |
| 37 | 38   | Baotou       | 124 | Lightly Polluted  | 59    | 198  |
| 38 | 39   | Shijiazhuang | 129 | Lightly Polluted  | 87    | 200  |
| 39 | 40   | Taiyuan      | 141 | Lightly Polluted  | 88    | 214  |
| 40 | 41   | Yinchuan     | 203 | Heavily Polluted  | 77    | 340  |



In [ ]: 1