P425/2 APPLIED MATHEMATICS Paper 2 Sept. 2023 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

APPLIED MATHEMATICS (PRINCIPAL SUBJECT) SET 5

Paper 2

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

Answer all the Eight questions in Section A and Five questions from Section B. Any additional question(s) answered will not be marked.

All necessary working must be clearly shown.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take g to be 9.8 ms^{-2} .

SECTION A: (40 MARKS)

Answer all the questions in this section.

- 1. Two events A and B are such that P(A) = 0.7, P(A'nB') = P(A'uB') = 0.2. Find
 - (i) P(A'nB)

- (ii) P(A'/B)
- 2. Two particles of masses 10kg and 6kg are connected by a light inelastic string passing over a smooth fixed pulley, x as show below.

Find;

- a. Acceleration of the particles
- b. The tension in the string
- 3. Seven students were given two separate aptitude tests in their order of merit.

				_			
First test	G	F	A	D	В	C	E
Second test	D	F	Е	В	G	С	Α

Calculate the rank correlation co-efficient and comment at 5% level of significance.

- 4. The percentage error in measuring the area of a circle is 5. Determine the corresponding percentage error in the;
 - (i) Radius.

- (ii) circumference.
- 5. Derive the simple iterative formula based on Newton Raphson formula for finding the square root of 5 and show that its given by $x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)$, n=0, 1, 2...
- 6. A bullet of mass 20g is fired with a velocity of $400ms^{-1}$ into a wooden block of mass 2kg lying on a smooth surface. If the bullet is embedded into the block, find the
 - (i) Common speed with which they move.
 - (ii) Loss in kinetic energy after collision.
- 7. A train travels along two stations A and B. The train starts from rest at A and accelerates at 3ms⁻² up to a speed of 40ms⁻¹. It then travels for a distance of 1.6 km at a steady speed and it then decelerates at 2ms⁻² to come to rest at B. Determine the;

8. The table below shows the prices(shs) and amounts of item bought in 2004 and 2005

	Pri	amount	
Item	2004	2005	
Α	635	887.5	6
В	720	815	4
С	730	1045	3
D	362	503	7

Taking 2004 as the base year;

- (a) Calculate the average weighted price index correct to 2 decimal places
- (b) Calculate the price of an item in 2005 costing 50,000 in 2004 using the weighted price index above

SECTION B: (60 MARKS)

Answer any five questions in this section. All questions carry equal marks

9. A continuous random variable T has probability density function given by

$$f(t) = \begin{cases} a + bt; & 0 \le t \le 1 \\ 0; & otherwise \end{cases}$$

Where a and b are constant, Given that $F\left(\frac{1}{2}\right) = \frac{3}{5}$, determine;

(i) Values of a and b.

(ii)
$$P\left(0 < t < \frac{1}{4}\right)$$

(iii)E(T)

- 10. The germination time for a certain species of seeds is known to be normally distributed. If for a given batch of the seeds, 20% take more than 6 days to germinate and 10% take less than 4 days to germinate, determine the
 - (i) Mean and standard deviation of the germination time
 - (ii) Probability that the seeds germinate in less than 10 days
- 11.(a) Use the trapezium rule with 6 sub-intervals to estimate $\int_1^3 x \ln x \, dx$, correct to 3 decimal places
 - (b) Find the exact value of the above expression and correct it to 3 decimal places.
 - (c) Hence determine the percentage error and state how the error may be reduced
- 12.At 12:00 noon the position vector (\tilde{r}) and velocity vector (\tilde{v}) for two objects P and Q are as follows.

Objects	Position vectors (r)	Velocity vector(v)		
P	$r_P = \begin{pmatrix} 5 \\ -3 \\ 4 \end{pmatrix} km$	$v_P = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} kmhr^{-1}$		
Q	$r_Q = \begin{pmatrix} 7 \\ 5 \\ -2 \end{pmatrix} km$	$v_Q = \begin{pmatrix} -3\\ -15\\ 18 \end{pmatrix} kmhr^{-1}$		

- (i) Find the position vector of P relative to Q at any time t.
- (ii) Show that if the velocities remain constant, a collision between P and Q will occur and find the time of collision.
- (iii) Find the position of collision.

(12 marks)

13.In an agricultural experiment, the gain in mass (in kg) of 100 pigs during a certain period were recorded as follows.

-	=						
Γ	Gain in mass (kg)	5 – 9	10 - 14	15 - 19	20 - 24	25 - 29	30 - 34
ſ	Frequency	2	29	37	16	14	2

- (a) Calculate the
 - (i) mean mass
- (ii) standard deviation
- (iii) median
- (b) find the probability that a pig selected at random gained mass greater 14 kg
- 14.(a) Two numbers A and B are approximate to a and b with errors e_1 and e_2 respectively. Show that the maximum relative error made in approximation of $\frac{A^2}{B}$ by $\frac{a^2}{b}$ is given by $2\left|\frac{e_1}{a}\right| + \left|\frac{e_2}{b}\right|$
 - (b) Given that a = 2.13 and b = 2.0125
 - (i) state the maximum possible errors in a and b
 - (ii) find the limits within which the exact value of $\frac{a^2}{b}$ lies correct to 3 decimal places
- 15. Four forces of magnitude 4 N, 13N, 20N and 3N act along the sides AB, BC, DC and DA respectively of a square of side a metres. Find the;
 - (i) Magnitude of the resultant force and the direction of resultant force
 - (ii) Distance in terms of a at which the resultant cuts AB form point A.
 - 16.(a) A particle of mass 0.4 kg has position vector after t seconds given by $r = 3t^2i + 2j$. Find
 - (i) its velocity after t seconds
- (ii) acceleration after t seconds
- (iii) force required to produce the above acceleration
- (b) Four forces $(a\hat{\imath} + (a-1)\hat{\jmath})$, $(3\hat{\imath} + 2a\hat{\jmath})N$, $(5\hat{\imath} 6\hat{\jmath})N$ and $(-\hat{\imath} 2\hat{\jmath})N$ act on a particle. The resultant of the forces make an angle of 45° with horizontal. Find the value of a and hence determine the magnitude of the resultant.