0-1 KNAPSACK PROBLEM

SIA - TP1 - 2022

TABLA DE CONTENIDOS

1 INTRODUCCIÓN
Introducción al problema y sus soluciones.

- CONSIDERACIONES
 Consideraciones tomadas en cuenta para la resolución del problema.
- 3. FUNCIONES DE FITNESS
 Funciones de fitness
 candidatas y ganadora

- SELECCIÓN DE PAREJA

 Funciones de selección de pareja seleccionadas.
- **5** ESTADÍSTICAS
 Estadísticas para los distintos parámetros del problema.

INTRODUCCIÓN

- Se optó por realizar la implementación del problema de la mochila. Este parte de un conjunto de n elementos donde cada uno tiene asociado un peso y un beneficio. El problema busca maximizar el beneficio de la mochila sin pasarse de la capacidad máxima de la misma.
- Formalmente: se llamará wj y bj al peso y beneficio del elemento j. Sean xj las coordenadas del individuo, se buscará maximizar Z sujeto a la condición W.

$$x_{j} = \begin{cases} 1 & \text{si se selecciona el elemento } j \\ 0 & \text{si no} \end{cases}$$

$$Z = \sum_{i=1}^{n} b_{j} * x_{j} \sum_{i=1}^{n} w_{j} * x_{j} \leq W$$

INTRODUCCIÓN

- El lenguaje de programación elegido fue Python.
- Se implementaron 6 métodos de selección:
 - Selección Elitista.
 - Selección por Método de la Ruleta.
 - Selección por Método Rank.
 - o Selección Competitiva.
 - Selección de Boltzmann.
 - Seleccion truncada.
- Se implementaron 3 métodos de cruzamiento:
 - o Cruzamiento Simple.
 - Cruzamiento Múltiple.
 - Cruzamiento Uniforme.

INTRODUCCIÓN

- Los criterios de corte utilizados fueron:
 - Limite temporal
 - Cantidad de generaciones
 - Solucion aceptable
 - Estructura
 - Contenido

 \circ

- Se tuvieron en cuenta 2 métodos de selección de pareja:
 - Seleccion aleatoria.
 - Selección proporcional al fitness.

CONSIDERACIONES

- Los métodos de selección y cruza se aseguran de no generar ni seleccionar individuos repetidos dentro de una misma generación.
- Los gráficos fueron realizados en base a una misma Generación O para cada uno de los gráficos.
- La generación 0 está conformada por individuos con configuraciones válidas.

FUNCIONES DE FITNESS

Para llevar a cabo el trabajo se tuvieron en cuenta varias opciones para el cálculo del fitness de los individuos. Las opciones candidatas fueron:

- 1. Beneficio o 0: esta función consiste en retornar el beneficio en caso de que la configuración sea válida y 0 sino.
- 2. Proporción beneficio peso: esta función consiste en retornar la proporción beneficio/peso.
- 3. Beneficio o Proporción beneficio peso: esta función consiste en retornar la proporción beneficio/peso si la configuración es inválida y el beneficio en caso contrario.

La opción ganadora fue la 3. Esta fue la que mejor se ajustó al problema ya que beneficia mucho a las configuraciones válidas y castiga, sin anular, a las invalidas.

FUNCIONES DE SELECCIÓN DE PAREJA

Para a la selección de parejas que permitirá la generación de nuevos individuos se realizaron dos implementaciones:

- Seleccion aleatoria: selecciona de manera aleatoria dos individuos de la población.
- 2. Selección proporcional al fitness: selecciona dos individuos de la población de manera proporcional al fitness de cada uno.

Ambos métodos permitieron obtener resultados válidos bastante similares pero con algunas pequeñas diferencias.

ESTADÍSTICAS Metodos De Crossover

Selección Elitista

Selección Por Método De La Ruleta

Selección Por Método Rank

Selección Competitiva

Selección De Boltzmann

Seleccion Truncada

Comparación Global - Simple

Comparación Global - Múltiple (4)

Comparación Global - Uniforme

ESTADÍSTICAS Método De Boltzmann

Variación De Parámetros

ESTADÍSTICAS Método De Competencia

Variación De Parámetros

ESTADÍSTICAS Método Truncado

Variación De Parámetros

ESTADÍSTICAS

Probabilidad De Mutación

Selección Elitista

Selección Por Método De La Ruleta

Selección Por Método Rank

Selección Competitiva

Selección De Boltzmann

Seleccion Truncada

ESTADÍSTICAS

Tamaño De Población

Selección Elitista

Selección Por Método De La Ruleta

Selección Por Método Rank

Selección Competitiva

Selección De Boltzmann

Seleccion Truncada

ESTADÍSTICAS Selección De Parejas

Selección Elitista

Selección Por Método De La Ruleta

Selección Por Método Rank

Selección Competitiva

Selección De Boltzmann

Seleccion Truncada

