Physical Properties

Geohydraulics | CE60113

Lecture:04

Learning Objective(s)

To estimate the physical properties of water, air, and porous media

Properties of Porous Media

- The porosity of a rock or soil is simply the fraction of the material volume that is pore space.
- In quantitative terms the porosity η is defined as

$$n = \frac{V_v}{V_t}$$

where V_{ν} is the volume of voids in a total volume of material V

- The porosity is a dimensionless parameter in the range $0 < \eta < 1$.
- Geotechnical engineers often use a related dimensionless parameter called the void ratio *e*, which is defined as

$$e = \frac{V_{\nu}}{V_{s}}$$

where V_s is the volume of mineral solids in a given volume of material.

$$n = \frac{e}{1+e}, \quad e = \frac{n}{1-n}$$

- Home Lab
- Foldable Aquifer Project -http://aquifer.geology.buffalo.edu/
- Paper aquifer model
 - Porosity and Grain Packing

•
$$V_S = 1 \times \frac{\pi}{6} d^3$$
, $V = d^3$, $V_v = V - V_S$, $\eta = \frac{V_v}{V} = 1 - \frac{\pi}{6} = 0.4764$

•
$$V_S = 2^3 \times \frac{\pi}{6} d^3$$
, $V = (2d)^3$, $V_v = V - V_S$, $\eta = \frac{V_v}{V} = 1 - \frac{\pi}{6}$

•
$$V_s = 3^3 \times \frac{\pi}{6} d^3$$
, $V = (3d)^3$, $V_v = V - V_s$, $\eta = \frac{V_v}{V} = 1 - \frac{\pi}{6}$

Porosity

Material	n (%)
Narrowly graded silt, sand, gravel	30-50
Widely graded silt, sand, gravel	20-35
Clay, clay-silt	35-60
Sandstone	5-30
Limestone, dolomite	0-40
Shale	0-10
Crystalline rock	0-10
Massive granite	0-0.5

• Porosity

POROUS MATERIAL

PRIMARY OPENINGS

WELL-SORTED SAND

POORLY-SORTED SAND

SECONDARY OPENINGS

FRACTURES IN GRANITE

CAVERNS IN LIMESTONE

[Values in percent by volume]

Material	Primary openings	Secondary openings
Equal-size spheres (marbles):		
Loosest packing	48	~
Tightest packing	26	~-
Soil	55	
Clay	50	
Sand	25	
Gravel	20	
Limestone	10	10
Sandstone (semiconsolidated)	10	1
Granite		.1
Basalt (young)	10	1

• Grain Size

Table 2.3 U.S. Department of Agriculture Grain Size Definitions		
Material	Grain Size Range (mm)	
Clay	< 0.002	
Silt	0.002-0.05	
Sand	0.05-2.0	
Gravel	>2.0	

- Grain Size
- Solid curve is a narrowly graded (well sorted) fine sand

The porosity of the fine sand is n = 0.38 and the porosity of the gravelly sand is n = 0.29.

• Dashed curve is a widely Graded (poorly sorted) gravelly sand

• Volumetric water content θ_v

$$\theta_v = \frac{V_w}{V}$$

• Porosity η

$$\eta = \frac{V_v}{V}$$

- Under saturated condition $\theta_v = \eta$
- Under partially saturated condition $\theta_{\nu} < \eta$
- Degree of saturation of water S_w

$$S_w = \frac{V_w}{V_v} = \frac{\theta_v}{\eta}$$
$$0 \le S_w \le 1$$

• Degree of saturation of air S_a

$$S_a = \frac{V_a}{V_{22}}$$

$$S_w + S_a = 1$$

• Volumetric water content θ_{ν} can be expressed as

$$\theta_v = \frac{V_w}{V} = \frac{V_w}{V_v} \times \frac{V_v}{V} = S_w \times \eta$$

• Gravimetric water content θ_w

$$\theta_{w} = \frac{W_{w}}{W_{s}} = \frac{W_{Wet\ Soil}}{W_{Dry\ Soil}} - 1$$

• Volumetric water content and gravimetric water content

$$\theta_v = \theta_w \frac{\rho_b}{\rho_w}$$

• Bulk Density

$$\rho_b = \frac{m_s}{V_t}$$

where m_s is the mass of solids in sample volume V

Wet or total bulk density

$$\rho_t = \frac{m_s + m_w}{V_t}$$

where m_w is the mass of water in the sample

• ρ_b is smaller than the density of the solids alone ρ_s

$$\rho_{s} = \frac{m_{s}}{V_{s}}$$

Table 2.4 Common Mineral Densities

Mineral	$ ho_s$ (g/cm 3)
Quartz	2.65
Feldspars	2.54-2.76
Clay minerals	2.6-2.8
Micas	2.7-3.2
Pyroxene	3.2-3.6
Amphibole	2.8-3.6
Olivine	3.3-4.4
Calcite	2.71
Dolomite	2.85
Micas Pyroxene Amphibole Olivine Calcite	2.7–3.2 3.2–3.6 2.8–3.6 3.3–4.4 2.71

Source: Klein and Hurlbut (1993).

Effective Stress

- Mechanisms
 - Compression of the water in the pores
 - Compression of the sand grains
 - Rearrangement of the sand grains and formation of a more closely packed configuration

Compressibility of a Porous Medium

$$\alpha = \frac{-dV_T / V_T}{d\sigma_e}$$

where:

 V_T is the total volume of a soil mass $(V_T = V_S + V_v)$

 V_S is the volume of the solids

 V_{ν} is the volume of voids.

$$dV_T = dV_S + dV_V \longrightarrow dV_S = 0 \longrightarrow dV_T = dV_V$$

$$d\sigma_e = -dp \qquad \qquad \alpha = \frac{1}{V_T} \frac{dV_T}{dp}$$

Types of Soil Water

- Mobile water:
 - Moves freely due to hydrodynamic forces
- Adsorbed water:
 - Governed largely by forces of attraction associated with the structure of the water molecules and the solid mineral surface.
- Capillary water:
 - water is under negative pressure, or suction
- Pendular water:
 - Residual immobile water around grain-to-grain contact points
 - Disconnected in the hydrodynamic sense

Learning Strategy

Chapter 2: Physical Properties

Section 2.1, 2.2, 2.3, 2.4

Thank you