MTA Daily Ridership

John Cruz

2023-03-02

Introduction

The Metropolitan Transportation Authority (MTA), provides a daily ridership dataset containing systemwide ridership and traffic estimates for subways, buses, Long Island Rail Road, Metro-North Railroad, Access-A-Ride, and Bridges and Tunnels. The data starts March 1, 2020 (April 1, 2020 for LIRR and Metro-North) until current date, and provides a percentage comparison against a comparable pre-pandemic date.

Note: Will need to update the code from using CSV file to API connection to establish up to date data. This data was last pulled March 3, 2023.

The objective will be to compare daily ridership between different modes of transportation against estimated pre-pandemic levels.

Data Source: MTA Daily Ridership

Required Libraries

library(tidyverse)

```
## -- Attaching packages ------ tidyverse 1.3.2 -- ## v ggplot2 3.4.0 v purrr 1.0.1
```

Import file

The data is read from a CSV file downloaded from the (NY Open Data)[https://data.ny.gov/]. We can see that there are multiple columns for each unique mode of transportation.

```
mta_data <- read_csv('mta_daily_ridership.csv', show_col_types = FALSE)
mta_data$Date <- as.Date(mta_data$Date, format = '%m/%d/%Y')
knitr::kable(head(mta_data))</pre>
```

											Bridges	Staten	Staten
						Metro-	•		Access-		and	Is-	Island
Subwa	ay <mark>Su</mark> bwa	y B uses	:Buses:	LIRR	:LIRR:	North:	Metro-		A-		Tun-	land	Rail-
To-	% of	To-	% of	То-	% of	To-	North:	Access	s-Ride:	Bridge	s nels:	Rail-	way:
tal	Com-	tal	Com-	tal	Com-	tal	% of	A-	% of	and	% of	way:	% of
Es -	pa-	Es -	pa-	Es -	pa-	Es-	Com-	Ride:	Com-	Tun-	Com-	Total	Com-
ti-	ra-	ti-	ra-	ti-	ra-	ti-	para-	To-	para-	nels:	para-	Esti-	para-
mated	l ble	matec	l ble	matec	l ble	mated	ble	tal	ble	To-	ble	mated	ble
Rid-	Pre-	Rid-	Pre-	Rid-	Pre-	Rid-	Pre-	Sched-	· Pre-	tal	Pre-	Rid-	Pre-
er-	Pande	mier-	Pander	mier-	Pander	mi e r-	Pander	n ic led	Panden	nf E raf-	Pandem	ic er-	Pandemie
Datship	Day	$_{ m ship}$	Day	ship	Day	ship	Day	Trips	Day	$_{ m fic}$	Day	$_{ m ship}$	Day
20237602	450.68	13903	30.62	19524	30.62	176678	0.64	28978	0.97	934427	1.01	7428	0.47
03-													
02													
202337737	060.68	14778	80.66	19214	20.61	176661	0.64	29449	0.99	901530	0.98	7401	0.46
03-													
01													
202334087	510.63	13343	9 3 .62	17753	20.59	139326	0.52	26116	0.89	751643	0.85	6689	0.41
02-													
28													
202333352	040.61	14152	1 0 .66	18027	70.60	160346	0.60	26730	0.91	854625	0.97	6751	0.42
02-													
27													
202316231	640.74	67770	60.69	74226	0.95	67702	0.74	15891	0.94	807475	1.07	1095	0.39
02-													
26													
202320419	010.71	80224	40.63	86403	0.92	81742	0.62	15461	0.95	831613	1.00	1396	0.33
02-													
25													

Transform Data into Long Format

The data is difficult to compare with its current wide format. The following code creates a loop that goes through each column, creating subset data frames that correspond to each unique transit type. The data is then merged back together into one main dataframe containing the date, transit type, and statistics.

```
# create matrix to uniquely identify columns
col_name_matrix <-
    colnames(mta_data) |>
    str_split(pattern = ":", simplify = TRUE)

# find distinct transit types
col_name <- unique(col_name_matrix[, 1])

# loop through data frame and create new long format data frame
merged_transit <- data.frame()</pre>
```

```
for (name in col_name) {
    if (str_to_lower(name) == 'date') {
        next
    }

    temp_df <-
        mta_data |>
        select('Date', starts_with(name)) |>
        rename(date = 1, ridership = 2, pre_covid_pct = 3) |>
        mutate(transit_type = name, pre_covid_est = round(ridership / pre_covid_pct, 0)) |>
        relocate(transit_type, .after = 'date')

merged_transit <-
        rbind(merged_transit, temp_df)

knitr::kable(head(merged_transit))</pre>
```

date	transit_type	ridership	pre_covid_pct	pre_covid_est
2023-03-02 2023-03-01 2023-02-28 2023-02-27	Subways Subways Subways	3760245 3773706 3408751 3335204	0.68 0.68 0.63 0.61	5529772 5549568 5410716 5467548
2023-02-26 2023-02-25	Subways Subways	$1623164 \\ 2041901$	$0.74 \\ 0.71$	$ 2193465 \\ 2875917 $

Comparing Transit Types to their Pre-Pandemic Estimated Ridership

First we see that to compare a transit type, such as the subways, there is seasonality to account for.

```
merged_transit_long <-
  merged_transit |>
  filter(transit_type == 'Subways')|>
  select(!pre_covid_pct) |>
  gather('category', 'count', -c('date', 'transit_type'))

merged_transit_long |>
  ggplot(aes(x = date, y = count, color = category)) +
  geom_line() +
  ggtitle('Subways') +
  theme(legend.position = 'top', legend.title = element_blank())
```

Subways

Trends

The following graphs shows us with a smoothing function how each transit type currently compares to their pre-pandemic levels. Because the data frame has numbers in a wide format for ridership and pre-pandemic percentage, I calculated the estimated pre-pandemic ridership and used the gather() function to transform the data into a longer format. A for loop was used to be able to do this while also printing out each unique transit type.

Note: I learned that ggplot() does not like to automatically print its plot while in a for loop. You have to explicitly call the print() function to ensure it prints out.

Loops and ggplot

Surprisingly, both **Bridges and Tunnels** and **Access-A-Ride** have both returned close to pre-pandemic levels.

```
for (name in col_name) {
   if (str_to_lower(name) == 'date') {
      next
   }

merged_transit_long <-
      merged_transit |>
   filter(transit_type == name)|>
   select(!pre_covid_pct) |>
   gather('category', 'count', -c('date', 'transit_type'))
```

```
print(merged_transit_long |>
    ggplot(aes(x = date, y = count, color = category)) +
    geom_smooth(method = 'loess') +
    ggtitle(name) +
    theme(legend.position = 'top', legend.title = element_blank()))
}
```

Subways

Buses

Metro-North

Access-A-Ride

Bridges and Tunnels

Staten Island Railway

Reccommendations

Further research should be done on how people, who were fully remote, have returned back to the office. Are Uber and Lyft, providing more personal space, increased since the pandemic? Also, looking into transportation deserts within the city, did the numbers ever change from pre-pandemic numbers and can we account for tourism versus native citizens?