Unidad 3: Técnicas de Regularización

Curso: Redes Neuronales Profundas

Regularización de parámetros

$$p(h|D) = \frac{p(D|h)p(h)}{p(D)}$$

Probabilidad de haber visto los datos, suponiendo la hipótesis

Likelihood. Si suponemos i.i.d., es un producto.

$$\sum_{d \in D} log(p(d_i|h))$$
 Log likelihood

$$p(h|D) = \frac{p(D|h)p(h)}{p(D)}$$

Probabilidad de haber visto los datos, suponiendo la hipótesis

Likelihood. Si suponemos i.i.d., es un producto.

Primera aproximación: Maximizar log-likelihood

$$p(h|D) = \underbrace{\frac{p(D|h)p(h)}{p(D)}}$$

Likelihood multiplicado por la probabilidad a priori de la hipótesis

Segunda aproximación: Maximum A Posteriori (MAP)

Podemos tratar de maximizar algo similar:

$$p(D|h)\frac{p(h)^{\alpha}}{Z}$$

$$\sum \log p(d_i|h) + \alpha \log p(h) - \log Z$$

Regularización de Parámetros

$$\tilde{J}(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) = J(\boldsymbol{\theta}; \boldsymbol{X}, \boldsymbol{y}) + \alpha \Omega(\boldsymbol{\theta})$$

Regularización L2 (Weight decay)

$$\Omega(oldsymbol{ heta}) = rac{1}{2} \|oldsymbol{w}\|_2^2$$
 weight decay, ridge regression, Tikhonov regularization

$$\tilde{J}(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y}) = \frac{\alpha}{2}\boldsymbol{w}^{\top}\boldsymbol{w} + J(\boldsymbol{w};\boldsymbol{X},\boldsymbol{y})$$

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \epsilon \left(\alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) \right)$$

Regularización L2 (Weight decay)

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \epsilon \left(\alpha \boldsymbol{w} + \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})\right)$$

$$\boldsymbol{w} \leftarrow (1 - \epsilon \alpha) \boldsymbol{w} - \epsilon \nabla_{\boldsymbol{w}} J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

Sea:
$$oldsymbol{w}^* = rg\min_{oldsymbol{w}} J(oldsymbol{w})$$

$$\hat{J}(\boldsymbol{\theta}) = J(\boldsymbol{w}^*) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^*)^{\top} \boldsymbol{H}(\boldsymbol{w} - \boldsymbol{w}^*)$$

Matriz hessiana

$$\nabla_{\boldsymbol{w}} \hat{J}(\boldsymbol{w}) = \boldsymbol{H}(\boldsymbol{w} - \boldsymbol{w}^*)$$

$$\nabla_{\boldsymbol{w}} \hat{J}(\boldsymbol{w}) = \boldsymbol{H}(\boldsymbol{w} - \boldsymbol{w}^*)$$

$$\alpha \tilde{\boldsymbol{w}} + \boldsymbol{H}(\tilde{\boldsymbol{w}} - \boldsymbol{w}^*) = 0$$
$$(\boldsymbol{H} + \alpha \boldsymbol{I})\tilde{\boldsymbol{w}} = \boldsymbol{H}\boldsymbol{w}^*$$
$$\tilde{\boldsymbol{w}} = (\boldsymbol{H} + \alpha \boldsymbol{I})^{-1}\boldsymbol{H}\boldsymbol{w}^*$$

$$oldsymbol{ ilde{w}} = (oldsymbol{H} + lpha oldsymbol{I})^{-1} oldsymbol{H} oldsymbol{w}^*$$
 $oldsymbol{H} = oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{ op}$
matriz ortonormal
 $oldsymbol{ ilde{w}} = (oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{ op} + lpha oldsymbol{I})^{-1} oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^{ op} oldsymbol{w}^*$

$$\tilde{\boldsymbol{w}} = (\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\top} + \alpha\boldsymbol{I})^{-1}\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\top}\boldsymbol{w}^{*}$$

$$= \left[\boldsymbol{Q}(\boldsymbol{\Lambda} + \alpha\boldsymbol{I})\boldsymbol{Q}^{\top}\right]^{-1}\boldsymbol{Q}\boldsymbol{\Lambda}\boldsymbol{Q}^{\top}\boldsymbol{w}^{*}$$

$$= \boldsymbol{Q}(\boldsymbol{\Lambda} + \alpha \boldsymbol{I})^{-1} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \boldsymbol{w}^{*}$$

scaling factor:
$$\frac{\lambda_i}{\lambda_i + \alpha}$$

Interpretación gráfica

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \frac{\alpha}{2} \boldsymbol{w}^{\top} \boldsymbol{w} + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

$$\boldsymbol{w}^* = \arg\min_{\boldsymbol{w}} J(\boldsymbol{w})$$

$$\tilde{\boldsymbol{w}} = (\boldsymbol{H} + \alpha \boldsymbol{I})^{-1} \boldsymbol{H} \boldsymbol{w}^*$$
$$= \boldsymbol{Q} (\boldsymbol{\Lambda} + \alpha \boldsymbol{I})^{-1} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \boldsymbol{w}^*$$

$$\alpha \tilde{\boldsymbol{w}} + \boldsymbol{H}(\tilde{\boldsymbol{w}} - \boldsymbol{w}^*) = 0$$

Ejemplo: regresión lineal

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y})^{\top} (\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}) + \frac{1}{2} \alpha \boldsymbol{w}^{\top} \boldsymbol{w}$$

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

$$\boldsymbol{w} = (\boldsymbol{X}^{\top} \boldsymbol{X} + \alpha \boldsymbol{I})^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}$$

Regularización L1

$$\Omega(\boldsymbol{\theta}) = ||\boldsymbol{w}||_1 = \sum_i |w_i|$$

$$\tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha ||\boldsymbol{w}||_1 + J(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y})$$

$$\nabla_{\boldsymbol{w}} \tilde{J}(\boldsymbol{w}; \boldsymbol{X}, \boldsymbol{y}) = \alpha \operatorname{sign}(\boldsymbol{w}) + \nabla_{\boldsymbol{w}} J(\boldsymbol{X}, \boldsymbol{y}; \boldsymbol{w})$$

L2 vs L1

Generalización de la norma

$$p$$
-norm of θ $\|\theta\|_p = \left(\sum_{j=0}^p |\theta_j|^p\right)^{\frac{1}{p}}$

Detención temprana

Detención temprana

Detención temprana

Restricciones a los parámetros

Restricciones

- Norma de la matriz W
- Signo de los bias
- Ortonormalización de W

En optimización con restricciones clásica se utilizan multiplicadores de Lagrange pero en la literatura de Deep Learning es común ir proyectando los parámetros después de cada actualización

Max Norm Constraint

```
class MaxNorm(Constraint):

    def __init__(self, m=2.0):
        self.m = m

def __call__(self, p):
        norms = T.sqrt(T.sum(T.square(p), axis=0, keepdims=True))
        desired = T.clip(norms, 0, self.m)
        p = p * (desired / (1e-7 + norms))
        return p
```

SGD con MaxNorm

```
class SGD:
   def init (self, lr=0.01):
       self.lr = lr
   def __call__(self, params, cost):
       updates = []
      grads = T.grad(cost, params)
      for p,g in zip(params,grads):
           updated p = p - self.lr * g
           updated_p = max_norm(updated_p)
           updates.append((p, updated_p))
       return updates
```

Dropout:

A Simple Way to Prevent Neural Networks from Overfitting

Dropout Neural Net Model

Dropout Neural Net Model. **Left**: A standard neural net with 2 hidden layers. **Right**: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Dropout Neural Net Model

Ensemble of subnetworks

Dropout units

Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights \mathbf{w} . **Right**: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

Dropout en Theano

```
from theano.sandbox.rng mrg import MRG RandomStreams as RandomStreams
t rn = RandomStreams (123)
def dropout (X, p=0.):
    dropout using activation scaling to avoid test time
    weight rescaling
    ** ** **
    if p > 0:
         retain prob = 1 - p
        X *= t rng.binomial(X.shape,
                               p=retain prob,
                               dtype=theano.config.floatX)
        X /= retain prob
    return X
```

MNIST results

11543 75356 55900

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout $NN + max-norm constraint$	ReLU	3 layers, 1024 units	1.06
Dropout $NN + max-norm constraint$	ReLU	3 layers, 2048 units	1.04
Dropout $NN + max-norm constraint$	ReLU	2 layers, 4096 units	1.01
Dropout $NN + max-norm constraint$	ReLU	2 layers, 8192 units	0.95
Dropout NN + max-norm constraint (Goodfellow et al., 2013)	Maxout	2 layers, (5×240) units	0.94
DBN + finetuning (Hinton and Salakhutdinov, 2006)	Logistic	500-500-2000	1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009)	Logistic	500-500-2000	0.96
DBN + dropout finetuning	Logistic	500-500-2000	0.92
DBM + dropout finetuning	Logistic	500-500-2000	0.79

Dropout: Robustness

Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Dropout: Street View House Numbers

Method	Error %
Binary Features (WDCH) (Netzer et al., 2011)	36.7
HOG (Netzer et al., 2011)	15.0
Stacked Sparse Autoencoders (Netzer et al., 2011)	10.3
KMeans (Netzer et al., 2011)	9.4
Multi-stage Conv Net with average pooling (Sermanet et al., 2012)	9.06
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012)	5.36
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al., 2012)	4.90
Conv Net $+$ max-pooling	3.95
Conv Net + max pooling + dropout in fully connected layers	3.02
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	2.80
Conv Net $+$ max pooling $+$ dropout in all layers	2.55
Conv Net + maxout (Goodfellow et al., 2013)	2.47
Human Performance	2.0

Table 3: Results on the Street View House Numbers data set.

CIFAR-10 and CIFAR-100 datasets

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

Dropout: CIFAR

Error rates on CIFAR-10 and CIFAR-100.

Method	CIFAR-10	CIFAR-100
Conv Net + max pooling (hand tuned)	15.60	43.48
Conv Net + stochastic pooling (Zeiler and Fergus, 2013)	15.13	42.51
Conv Net + max pooling (Snoek et al., 2012)	14.98	22
Conv Net + max pooling + dropout fully connected layers	14.32	41.26
Conv Net $+$ max pooling $+$ dropout in all layers	12.61	37.20
Conv Net + maxout (Goodfellow et al., 2013)	11.68	38.57

Dropout: ImageNet

Model	Top-1	Top-5
Sparse Coding (Lin et al., 2010)	47.1	28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011)	45.7	25.7
Conv Net + dropout (Krizhevsky et al., 2012)	37.5	17.0

Results on the ILSVRC-2010 test set

Dropout: TIMIT

A standard speech benchmark for clean speech recognition.

Method	Phone Error Rate%
NN (6 layers) (Mohamed et al., 2010) Dropout NN (6 layers)	23.4 21.8
DBN-pretrained NN (4 layers) DBN-pretrained NN (6 layers) (Mohamed et al., 2010)	22.7 22.4
DBN-pretrained NN (8 layers) (Mohamed et al., 2010) mcRBM-DBN-pretrained NN (5 layers) (Dahl et al., 2010)	20.7 20.5
DBN-pretrained NN (4 layers) + dropout DBN-pretrained NN (8 layers) + dropout	19.7 19.7

Dropout

TIMIT Dataset

Dropout

