HAC'S PLATIFIED 29 SEP 2005

793392_1.TXT

SEQUENCE LISTING

#5

	ENOMINE INC. OREA RESEARC		E OF CHEMICA	AL TECHNOLOG	GY				
a	Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide								
<130> 0	P03-1029								
	KR 2002-38011 2002-07-02								
<160> 6									
<170> Ke	opatentIn 1.	71							
<212> Di	410 NA rabidopsis t	haliana							
<400> 1 atggcggatc	attcgtggga	taaaactgtg	gaagaagcag	tgaatgtgct	tgaatccagg	60			
caaattcttc	gatctttgag	gcccatttgc	atgtctaggc	aaaacgaaga	agaaatagtg	120			
aaaagcagag	ccaatggagg	agacgggtac	gaggtgttcg	acggtttgtg	tcaatgggat	180			
cggacttcag	ttgaggtgtc	tgtctcgatt	cctacatttc	agaaatggct	tcacgatgaa	240			
cccagcaacg	gagaagagat	ttttagtgga	gatgcattag	ctgagtgtag	aaaagggaga	300			
ttcaagaagc	tgcttttgtt	ctctgggaat	gattatttgg	gtttgagctc	acatcctaca	360			
atatcaaacg	ctgctgcaaa	cgcagtcaaa	gaatatggta	tgggacctaa	gggttctgct	420			
ttaatatgtg	gctataccac	ttatcatcgt	ttgcttgagt	ctagtttggc	gcaactgaag	480			
aaaaaagagg	attgtcttgt	ttgtcctact	gggtttgctg	ccaatatggc	tgcaatggtt	540			
gcaattggaa	gtgttgcttc	tcttttggcc	gctagcggga	aacctctgaa	gaatgaaaaa	600			
gttgccatct	tttctgatgc	gctgaatcat	gcatcaatta	ttgatggtgt	ccgtcttgct	660			
gaacgacaag	gaaatgttga	agtttttgtt	tatcgacact	gtgacatatc	aaattgcaaa	720			
atgaagagga	aggtcgtggt	gactgatagc	ttatttagta	tggacggtga	ctttgcacca	780			
atggaagagc	tctctcagct	tcggaagaag	tatggcttcc	ttctagttat	tgatgatgct	840			
catggaacat	ttgtctgtgg	agaaaacggt	ggtggcgtgg	ctgaggaatt	taactgtgaa	900			
gctgatgtag	atttatgtgt	gggcactttg	agtaaggcag	cagggtgt,ca	tggcggtttc	960			
atagcttgca	gcaaaaaatg	gaagcaactg	atacagtcga	gaggtcgttc	attcatattt	1020			

793392_1.TXT

tcaacagcaa	tccctgtccc	aatggctgca	gctgcttatg	cagcagttgt	agtggcgagg	1080
aaggagatat	ggagaagaaa	ggcaatatgg	gagagggtaa	aagagttcaa	ggaattatct	1140
ggagttgaca	tctcaagccc	cattatctca	cttgttgtag	ggaatcaaga	gaaagccctc	1200
aaagcgagcc	ggtatctatt	aaaatcaggc	ttccatgtaa	tggcaatacg	accgcccaca	1260
gtgccaccca	attcttgcag	gctaagggtg	acactgagtg	cagcacatac	cacagaagat	1320
gtgaagaaac	tcatcactgc	gctttcttct	tgtttggact	ttgacaacac	agccactcac	1380
attccttcct	ttctatttcc	caaattataa				1410

<210>	2	
<211>	469	
<212>	PRT	
<213>	Arabidopsis	thalian
<400>	2	

Met Ala Asp His Ser Trp Asp Lys Thr Val Glu Glu Ala Val Asn Val 1 5 10 15

Leu Glu Ser Arg Gln Ile Leu Arg Ser Leu Arg Pro Ile Cys Met Ser 20 25 30

Arg Gln Asn Glu Glu Glu Ile Val Lys Ser Arg Ala Asn Gly Gly Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Tyr Glu Val Phe Asp Gly Leu Cys Gln Trp Asp Arg Thr Ser Val 50 55 60

Glu Val Ser Val Ser Ile Pro Thr Phe Gln Lys Trp Leu His Asp Glu 65 70 75 80

Pro Ser Asn Gly Glu Glu Ile Phe Ser Gly Asp Ala Leu Ala Glu Cys 85 90 95

Arg Lys Gly Arg Phe Lys Lys Leu Leu Phe Ser Gly Asn Asp Tyr 100 105 110

Leu Gly Leu Ser Ser His Pro Thr Ile Ser Asn Ala Ala Ala Asn Ala 115 120 125

Val Lys Glu Tyr Gly Met Gly Pro Lys Gly Ser Ala Leu Ile Cys Gly 130 135 140

Tyr Thr Thr Tyr His Arg Leu Leu Glu Ser Ser Leu Ala Gln Leu Lys 145 150 155 160

Lys Lys Glu Asp Cys Leu Val Cys Pro Thr Gly Phe Ala Ala Asn Met 165 170 175

Ala Ala Met Val Ala Ile Gly Ser Val Ala Ser Leu Leu Ala Ala Ser 180 185 190

Gly Lys Pro Leu Lys Asn Glu Lys Val Ala Ile Phe Ser Asp Ala Leu 195 200 205

Page 2

793392_1.TXT

Asn I	His 210	Ala	Ser	Ile	Ile	Asp 215	Gly	Val	Arg	Leu	Ala 220	Glu	Arg	Gln	Gly
Asn \ 225	Val	Glu	Val	Phe	Val 230	Tyr	Arg	His	Cys	Asp 235	Ile	Ser	Asn	Cys	Lys 240
Met 1	Lys	Arg	Lys	Val 245	Val	Val	Thr	Asp	Ser 250	Leu	Phe	Ser	Met	Asp 255	Gly
Asp 1	Phe	Ala	Pro 260	Met	Glu	Glu	Leu	Ser 265	Gln	Leu	Arg	Lys	Lys 270	Tyr	Gly
Phe 1	Leu	Leu 275	Val	Ile	Asp	Asp	Ala 280	His	Gly	Thr	Phe	Val 285	Cys	Gly	Glu
Asn (Gly 290	Gly	Gly	Val	Ala	Glu 295	Glu	Phe	Asn	Cys	Glu 300	Ala	Asp	Val	Asp
Leu (305	Cys	Val	Gly	Thr	Leu 310	Ser	Lys	Ala	Ala	Gly 315	Cys	His	Gly	Gly	Phe 320
Ile A	Ala	Cys	Ser	Lys 325	Lys	Trp	Lys	Gln	Leu 330	Ile	Gln	Ser	Arg	Gly 335	Arg
Ser l	Phe	Ile	Phe 340	Ser	Thr	Ala	Ile	Pro 345	Val	Pro	Met	Ala	Ala 350	Ala	Ala
Tyr A	Ala	Ala 355	Val	Val	Val	Ala	Arg 360	Lys	Glu	Ile	Trp	Arg 365	Arg	Lys	Ala
Ile :	Trp 370	Glu	Arg	Val	Lys	Glu 375	Phe	Lys	Glu	Leu	Ser 380	Gly	Val	Asp	Ile
Ser 9 385	Ser	Pro	Ile	Ile	Ser 390	Leu	Val	Val	Gly	Asn 395	Gln	Glu	Lys	Ala	Leu 400
Lys A	Ala	Ser	Arg	Tyr 405	Leu	Leu	Lys	Ser	Gly 410	Phe	His	Val	Met	Ala 415	Ile
Arg l	Pro	Pro	Thr 420	Val	Pro	Pro	Asn	Ser 425	Cys	Arg	Leu	Arg	Val 430	Thr	Leu
Ser A	Ala	Ala 435	His	Thr	Thr	Glu	Asp 440	Val	Lys	Lys	Leu	Ile 445	Thr	Ala	Leu
Ser S	Ser 450	Cys	Leu	Asp	Phe	Asp 455	Asn	Thr	Ala	Thr	His 460	Ile	Pro	Ser	Phe
Leu 1 465	Phe	Pro	Lys	Leu											
<2102 <2112 <2122 <2132 <2202	> > >	3 28 DNA Art		cial	Seqi	ience	e								

<223>	Forward primer for AtKAPAS	793392_1.TXT gene	
<400>	3		
ggcggatc	ct tcgcccaaat cacaattc		28
<210>	4		
<211>	32		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Reverse primer for AtKAPAS	gene	
<400>	4		
ggcaagct	t tcactgacaa tatcagaaac aa		32
<210>	5		
<211>	26		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Forward primer for AtKAPAS	gene	
<400>	5		
gcagatct	c gcccaaatca caattc		26
<210>	6		
<211>	31		
<212>	DNA		
<213>	Artificial Sequence	•	
<220>			
<223>	Reverse primer for AtKAPAS	gene	
<400>	6		
gcagatct	t cactgacaat atcagaaaca a		31