The Importance of Summarizing Distributions

Image: stephenwolfram.com. Data Science of the Facebook World.

THE DOWNSIDE OF FLEXIBILITY

Highly flexible objects present obstacles.

- · Cannot specify density for every value
- · Cannot communicate or reason about every value
- Cannot estimate density at every value given data

Why not restrict to distributions in a parametric family?

- The real world isn't that neat!
- "Agnostic" approach: minimal assumptions on the model

WHY SUMMARIZE?

Summary tools are the hooks we use to estimate, reason about, and communicate about random variables.

FOUNDATIONAL SUMMARY TOOLS

One Random Variable:

- Expectation: represents the center of a distribution
- Variance: represents the dispersion of a distribution

Two Random Variables

- Covariance: a generalization of variance
- Correlation: an intuitive measure of linear association

Review of Operators and Functions

REVIEW OF OPERATORS AND FUNCTIONS

Reading: Summarizing

Distributions

READING ASSIGNMENT

Read Foundations of Agnostic Statistics, page 44 to the top of page 47, stopping after you read theorem 2.1.5.

Lightboard: Expectation of a

Discrete Random Variable

EXPECTATION OF A DISCRETE RANDOM VARIABLE

EXPECTATION FOR DISCRETE RANDOM VARIABLES

$$\begin{aligned} \mathsf{E}[X] &= \sum_{x \in \mathit{supp}[X]} \mathit{xf}(x) \\ \mathsf{Ex} \ 1 &: X \sim \mathsf{Bernoulli}(\alpha) \\ f(x) &= \begin{cases} \alpha, & x = 1 \\ 1 - \alpha, & x = 0 \\ 0, & \mathit{otherwise} \end{cases} \\ \mathsf{E}[X] &= 0 \cdot (1 - \alpha) + 1 \cdot \alpha = \alpha \end{aligned}$$

Ex 2: $Y \sim Geometric(\beta)$ Let J_i be the event printer jams day i. $P(J_i) = \beta$, all ind. Let Y be days until first jam $P(Y = 1) = P(J_1) = \beta$ $P(Y = 2) = P(J_1^C, J_2) = (1 - \beta)\beta$ $P(Y = 3) = (1 - \beta)^2 \beta$ $f(x) = \begin{cases} (1 - \beta)^{x - 1} \beta, & x \in \{1, 2 ...\} \\ 0, & \text{otherwise} \end{cases}$ $E[Y] = \sum_{x = 1}^{\infty} x(1 - \beta)^{x - 1} \beta = 1/\beta$

Lightboard: Expectation of a

Continuous Random Variable

EXPECTATION OF A CONTINUOUS RANDOM VARIABLE

EXPECTATION FOR CONTINUOUS RANDOM VARIABLES

$$E[X] = \int_{-\infty}^{\infty} xf(x)dx$$
Ex 1: $X \sim \text{Uniform}(a, b)$

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & otherwise \end{cases}$$

$$E[X] = \int_{-\infty}^{\infty} xf(x)dx$$

$$= \int_{-\infty}^{a} x \cdot 0dx + \int_{a}^{b} x \frac{1}{b-a}dx + \int_{b}^{\infty} x \cdot 0dx$$

$$= 0 + \frac{x^2}{2} \frac{1}{b-a} |_{a}^{b} + 0$$

$$= \frac{b^2 - a^2}{2} \frac{1}{b-a} = \frac{(b-a)(b+a)}{2} \frac{1}{b-a}$$

$$= \frac{a+b}{2}$$

Law of the Unthinking Statistician

LAW OF THE UNTHINKING STATISTICIAN (LOTUS)

LAW OF THE UNTHINKING STATISTICIAN (LOTUS)

Proof sketch:

$$E[g(X)] = \sum_{y} yf'(y)$$

$$= \sum_{x \in \mathbb{R}: g(x) = y} yf(x)$$

$$= \sum_{y} \sum_{x \in \mathbb{R}: g(x) = y} g(x)f(x)$$

$$= \sum_{x \in \text{Supp}[X]} g(x)f(x)$$

X is a DRV with pmf f g(X) is a DRV with pmf, $f'(y) = P(g(X) = y) = \sum_{x \in \mathbb{R}: g(x) = y} f(x)$ want: E[g(X)] $E[g(X)] = \sum_{x \in \mathcal{R}: g(x) \neq y} g(x) f(x)$

14

Reading: Linearity of Expectation

READING ASSIGNMENT

Read Foundations of Agnostic Statistics, pages 47–50, stopping at 2.1.2.

Expectation

Lightboard: Linearity of

LINEARITY OF EXPECTATION

Assume RV C with pmf

$$f(x) = \begin{cases} 1, & x = c \\ 0, & otherwise \end{cases}$$
then C is a constant.
$$E[C] = \sum_{x} xf(x) = cf(c) = c$$
*usually write c for RV.

Let
$$X$$
, Y be DRVs. $a \in \mathbb{R}$

$$E[aX] = \sum_{x \in Supp[X]} axf_X(x) = a \sum_{x \in Supp[X]} xf_X(x) = aE[X]$$

$$E[X + Y] =$$

$$\sum_{x \in X(\Omega), y \in Y(\Omega)} (x + y) f(x, y) =$$

$$\sum_{x} \sum_{y} x f(x, y) + \sum_{y} \sum_{x} y f(x, y)$$

$$= \sum_{x} x \sum_{y} f(x, y) +$$

$$\sum_{y} y \sum_{x} f(x, y)$$

$$= \sum_{x} x f_{X}(x) + \sum_{y} y f_{Y}(y)$$

$$= E[X] + E[Y]$$

Reading: Moments and Variance

READING ASSIGNMENT

Read Foundations of Agnostic Statistics, section 2.1.2.

Lightboard: Moments and

Variance

MOMENTS AND VARIANCE

(raw) moments: 1. E[X] 2. E[X²] 3. E[X³]... Define variance.

$$V[aX] = E[(aX)^{2}] - E[aX]^{2} = a^{2}E[X^{2}] - (aE[X])^{2} = a^{2}E[X^{2}] - a^{2}E[X]^{2} = a^{2}V[X]$$

$$V[X + c] = E[(X + c - E[X + c])^{2}] = E[(X + c - E[X] - E[c])^{2}] = E[(X - E[X])^{2}] = V[X]$$

Reading: Mean Squared Error (MSE)

READING ASSIGNMENT

Read Foundations of Agnostic Statistics, section 2.1.3.

Lightboard: Mean Squared Error

(MSE) - Lightboard

THE EXPECTED VALUE AND MSE

Proof that E[X] minimizes MSE

Covariance and Correlation

Measuring Linear Dependency

UNDERSTANDING RELATIONSHIPS

Most of the really important questions in data science are about *relationships*.

· Bitterness of coffee

UNDERSTANDING RELATIONSHIPS

Most of the really important questions in data science are about *relationships*.

- · Bitterness of coffee
- · Roasting temperature and time

How ca	an we n	nake se	ense of	f the v	vide

variety of relationships among

variables?

THE JOINT DISTRIBUTION

MEASURING DEPENDENCY

A good first question about two random variables:

How strong is the relationship?

Two common tools to answer this question:

- Covariance
- Correlation

Intuition for Covariance

Reading Assignment

READING ASSIGNMENT

Note: This is a reading call, we're just placing it here for organization. Read Foundations of Agnostic Statistics, pages 59–62, stopping at Correlation.

Variance of Sums

VARIANCE OF SUMS

Insert content from old section of course: 4.10 Variance of Sums

Alternative Formula for Covariance

ALTERNATIVE FORMULA FOR COVARIANCE

$$\mathsf{cov}[X,Y] = \mathsf{E}\big[\big(X - \mathsf{E}[X]\big)\big(Y - \mathsf{E}[Y]\big)\big]$$

Learnosity

LEARNOSITY: V[X - Y]

You have just read theorem 2.2.3, which says, in part:

Variance of sums

$$V[X + Y] = V[X] + 2cov[X, Y] + V[Y]$$

- 1. If X and Y are independent that is, cov[X, Y] = 0 which is larger? (a) V[X Y]; (b) V[X + Y]; (c) They are the same. (d) We don't have enough information.
- If X and Y are not independent that is, cov[X, Y] ≠ 0 which is larger? (a) V[X Y]; (b) V[X + Y]; (c) They are the same. (d) We don't have enough information.

LEARNOSITY: V[X - Y] (CONT.)

- Under what circumstances would it be possible for V[X] and V[Y] to "cancel out"?
- 2. Notice that V[X + (-1 * X)] = V[X X] = V[0] = 0. Use this to find a simple formula for cov[X, X].

Properties of Covariance Lightboard

PROPERTIES OF COVARIANCE

For random variables X, Y, Z, W and $a, b \in \mathbb{R}$,

LIGHTBOARD: LINEARITY OF COVARIANCE

Note: This is Lightboard. We're just placing it here for organization. For random variables X, Y, Z, W and constants a, b,

$$cov[aX, bY] = E[aXbY] - E[aXE[BY] = abE[XY] - abE[X]E[Y] = abcov[X, Y]$$
 $cov[X + Y, Z] = E[(X + Y) \cdot Z] - E[X + Y]E[Z]$
 $= E[XZ + YZ] - (E[X] + E[Y])E[Z] = E[XZ] + E[YZ] - E[X]E[Z] - E[Y]E[Z]$
 $= cov[X, Z] + cov[Y, Z]$
b.s.a $cov[X, Y + Z] = cov[X, Y] + cov[X, Z]$
 $cov[X + Y, Z + W] = cov[X, Z + W] + cov[Y, Z + W]$
 $= cov[X, Z] + cov[X, W] + cov[Y, Z] + cov[Y, W]$

Correlation

CORRELATION IS RESCALED COVARIANCE

Definition 2.2.5

Correlation is a rescaled derivative of covariance that captures the *linear dependence* between two random variables.

$$\rho[X, Y] = \frac{\text{cov}[X, Y]}{\sigma[X]\sigma[Y]}$$

Society has a plain-language usage of *correlation* that is probably closer in usage to *covariance* than to *correlation*.

CORRELATION MEASURES LINEAR DEPENDENCY

Correlation for example distributions:

Source: en.wikipedia.org/wiki/Correlation_and_dependence

NOT ALL DEPENDENCY IS LINEAR

Example distributions with zero correlation:

Source: en.wikipedia.org/wiki/Correlation_and_dependence

Reading: Correlation

READING ASSIGNMENT

Read pages 62-65, stopping before you get to example 2.2.9.

Theorem 2.2.7

The third and fourth bullet points can be more clearly stated.

If a and b are either both positive or both negative,

$$\rho[aX + c, bY + d] = \rho[X, Y]$$

If a and b have opposite signs,

$$\rho[aX + c, bY + d] = -\rho[X, Y]$$

Covariance, Correlation, and

Independence

INDEPENDENT VARIABLES HAVE ZERO CORRELATION

Independence $\implies \rho = 0$

If X and Y are independent random variables, then:

- E[XY] = E[X]E[Y]
- cov[X, Y] = 0
- $\rho[X, Y] = 0$
- V[X + Y] = V[X Y] = V[X] + V[Y]

INDEPENDENT VARIABLES HAVE ZERO CORRELATION

Wrap-Up of Correlation

WRAP-UP OF CORRELATION

Note: This is a solo-lecture. We are just placing this here for organization.

CODING ACTIVITY

Note: This will be a README. We're just placing it here for organization.