OPTIMAL ATTITUDE CONTROL OF SATELLITES

Victorio Úbeda Sosa

Escuela Técnica Superior de Ingenieros Industriales Universidad de Castilla - La Mancha

23 July 2019

Advisor: Pablo Pedregal Tercero

1 Introduction

- Introduction
- 2 Problem statement

- Introduction
- 2 Problem statement
- 3 Numerical approximation

- Introduction
- 2 Problem statement
- 3 Numerical approximation
- 4 Results

- 1 Introduction
- 2 Problem statement
- 3 Numerical approximation
- Results
- 5 Conclusions and future work

Introduction

Introduction

Aims and objectives

■ To propose algorithms for the attitude control of satellites.

- To propose algorithms for the attitude control of satellites.
- Using optimal control techniques.

What is attitude control?

Attitude

■ **Attitude** = orientation.

- Attitude = orientation.
- Attitude control

- Attitude = orientation.
- **Attitude control** = Controlling the orientation (and angular velocities) of the spacecraft.

Introduction

- Attitude = orientation.
- **Attitude control** = Controlling the orientation (and angular velocities) of the spacecraft.
 - Input

- Attitude = orientation.
- Attitude control = Controlling the orientation (and angular velocities) of the spacecraft.
 - Input: Torques exerted on the satellite.

- Attitude = orientation.
- Attitude control = Controlling the orientation (and angular velocities) of the spacecraft.
 - Input: Torques exerted on the satellite.
 - Output

- Attitude = orientation.
- Attitude control = Controlling the orientation (and angular velocities) of the spacecraft.
 - Input: Torques exerted on the satellite.
 - Output: Angular velocities and orientation (Euler angles, quaterion, etc...).

Introduction

What is optimal control?

What is optimal control?

Optimal control problem

What is optimal control?

Optimal control problem

Minimize in $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^m$

$$\boldsymbol{u} \longmapsto \int_0^T F(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) dt$$

What is optimal control?

Optimal control problem

Minimize in $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^m$

$$\boldsymbol{u} \longmapsto \int_0^T F(t, \boldsymbol{x}(t), \boldsymbol{u}(t)) dt$$

subject to

$$\begin{cases} \mathbf{x}'(t) = \mathbf{f}(t, \mathbf{x}(t), \mathbf{u}(t)) & \forall t \in [0, T] \\ \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{x}(T) = \mathbf{x}_T \\ Pointwise \ constraints \end{cases}$$

Classical control theory:

- Classical control theory:
 - PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011, Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].

- Classical control theory:
 - PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011, Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].
- More modern approaches:

- Classical control theory:
 - PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011,
 Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].
- More modern approaches:
 - Wave-based control [Bellanca et al., 2017, Úbeda et al., 2018, Sherwin et al., 2018].

Classical control theory:

- PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011,
 Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].
- More modern approaches:
 - Wave-based control [Bellanca et al., 2017, Übeda et al., 2018, Sherwin et al., 2018].
 - Linear-quadratic regulators [Lovera and Varga, 2005].

Classical control theory:

■ PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011, Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].

More modern approaches:

- Wave-based control [Bellanca et al., 2017, Übeda et al., 2018, Sherwin et al., 2018].
- Linear-quadratic regulators [Lovera and Varga, 2005].
- Fuzzy logic [Wiśniewski, 1996, Walker et al., 2013].

State of the art

Current state of the art

Classical control theory:

■ PID, PI, PD, etc: [Wiśniewski, 1996, Tudor, 2011, Sekhavat et al., 2011, Yang, 2012, Bråthen, 2013].

More modern approaches:

- Wave-based control [Bellanca et al., 2017, Übeda et al., 2018, Sherwin et al., 2018].
- Linear-quadratic regulators [Lovera and Varga, 2005].
- Fuzzy logic [Wiśniewski, 1996, Walker et al., 2013].
- Neural networks [Battipede et al., 2003].

■ The vast majority rely on a previous linearisation of the equations of motion.

- The vast majority rely on a previous linearisation of the equations of motion.
- The present work deals with the nonlinear system.

Problem statement

Rigid body rotating in space.

Rigid body rotating in space.

Dynamic equations of motion

$$\boldsymbol{J}\frac{d\boldsymbol{\omega}}{dt} + \boldsymbol{\omega} \times J\boldsymbol{\omega} = \mathbf{u}$$

Rigid body rotating in space.

Dynamic equations of motion

$$J\frac{d\omega}{dt} + \omega \times J\omega = \mathbf{u}$$

Rigid body rotating in space.

Dynamic equations of motion

$$J\frac{d\omega}{dt} + \omega \times J\omega = \mathbf{u}$$

where:

■ Angular velocity of the body-fixed frame with respect to the inertial frame: ω

Nonlinear equations of motion

Rigid body rotating in space.

Dynamic equations of motion

$$J\frac{d\omega}{dt} + \omega \times J\omega = \mathbf{u}$$

- **Angular velocity** of the body-fixed frame with respect to the inertial frame: ω
- Tensor of inertia: J

Rigid body rotating in space.

Dynamic equations of motion

$$J\frac{d\omega}{dt} + \omega \times J\omega = \mathbf{u}$$

- **Angular velocity** of the body-fixed frame with respect to the inertial frame: ω
- Tensor of inertia: *J*
- Torques exerted on the satellite: u

Rigid body rotating in space.

Dynamic equations of motion

$$J\frac{d\omega}{dt} + \omega \times J\omega = \mathbf{u}$$

- **Angular velocity** of the body-fixed frame with respect to the inertial frame: ω
- Tensor of inertia: *J*
- **Torques** exerted on the satellite: *u* (This will be the control variable)

Kinematic equations of motion

$$\left\{ egin{aligned} rac{d\omega}{dt} &= -rac{1}{2}\omega imes \epsilon + rac{1}{2}\eta\omega \ rac{d\eta}{dt} &= -rac{1}{2}\omega^t \epsilon \end{aligned}
ight.$$

Kinematic equations of motion

$$\begin{cases} \frac{d\omega}{dt} = -\frac{1}{2}\omega \times \epsilon + \frac{1}{2}\eta\omega \\ \frac{d\eta}{dt} = -\frac{1}{2}\omega^t\epsilon \end{cases}$$

Kinematic equations of motion

$$\left\{ egin{aligned} rac{d\omega}{dt} &= -rac{1}{2}\omega imes \epsilon + rac{1}{2}\eta\omega \ rac{d\eta}{dt} &= -rac{1}{2}\omega^t \epsilon \end{aligned}
ight.$$

where:

■ Unit quaternion representing orientation of the body-fixed frame with respect to the inertial frame: $\mathbf{q} = (\epsilon, \eta)$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\begin{cases} J\omega' = -\omega \times J\omega + \boldsymbol{u} \\ \epsilon' = -\frac{1}{2}\omega \times \epsilon + \frac{1}{2}\eta\omega & \text{in } [0,T] \end{cases}$$
$$\eta' = -\frac{1}{2}\omega^t \epsilon$$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\begin{cases} J\boldsymbol{\omega}' = -\boldsymbol{\omega} \times J\boldsymbol{\omega} + \boldsymbol{u} \\ \boldsymbol{\epsilon}' = -\frac{1}{2}\boldsymbol{\omega} \times \boldsymbol{\epsilon} + \frac{1}{2}\eta\boldsymbol{\omega} & \text{in } [0, T] \end{cases}$$
$$\eta' = -\frac{1}{2}\boldsymbol{\omega}^t \boldsymbol{\epsilon}$$

and

$$\left\{egin{aligned} oldsymbol{\omega}(0) &= oldsymbol{\omega}_0, & oldsymbol{q}(0) &= oldsymbol{q}_0 \ oldsymbol{\omega}(\mathcal{T}) &= oldsymbol{\omega}_\mathcal{T}, & oldsymbol{q}(\mathcal{T}) &= oldsymbol{q}_0 \end{aligned}
ight.$$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\begin{cases} J\omega' = -\omega \times J\omega + \boldsymbol{u} \\ \epsilon' = -\frac{1}{2}\omega \times \epsilon + \frac{1}{2}\eta\omega & \text{in } [0, T] \end{cases}$$
$$\eta' = -\frac{1}{2}\omega^t \epsilon$$

and

$$\left\{egin{array}{ll} \boldsymbol{\omega}(0) = oldsymbol{\omega}_0, & oldsymbol{q}(0) = oldsymbol{q}_0 \ \boldsymbol{\omega}(\mathcal{T}) = oldsymbol{\omega}_\mathcal{T}, & oldsymbol{q}(\mathcal{T}) = oldsymbol{q}_0 \end{array}
ight.$$

In addition to be a minimizer of a functional

$$\boldsymbol{u} \longmapsto \int_0^T F(t, \boldsymbol{\omega}, \boldsymbol{q}, \boldsymbol{u})$$

Reformulation of the nonlinear equations

$$\begin{cases} J\omega' = -\omega \times J\omega + \boldsymbol{u} \\ \epsilon' = \frac{1}{2}G(\epsilon)\omega \end{cases}$$

Reformulation of the nonlinear equations

$$\left\{egin{aligned} Joldsymbol{\omega}' &= -oldsymbol{\omega} imes Joldsymbol{\omega} + oldsymbol{u} \ \epsilon' &= rac{1}{2}G(\epsilon)oldsymbol{\omega} \end{aligned}
ight.$$

$$G(\epsilon) = \left(egin{array}{ccc} \sqrt{1 - ||\epsilon||^2} & -\epsilon_3 & \epsilon_2 \ \epsilon_3 & \sqrt{1 - ||\epsilon||^2} & -\epsilon_1 \ -\epsilon_2 & \epsilon_1 & \sqrt{1 - ||\epsilon||^2} \end{array}
ight)$$

Reformulation of the nonlinear equations

$$\begin{cases} J\boldsymbol{\omega}' = -\boldsymbol{\omega} \times J\boldsymbol{\omega} + \boldsymbol{u} \\ \epsilon' = \frac{1}{2}G(\epsilon)\boldsymbol{\omega} \end{cases}$$

where

$$G(\epsilon) = \left(egin{array}{ccc} \sqrt{1 - ||\epsilon||^2} & -\epsilon_3 & \epsilon_2 \ \epsilon_3 & \sqrt{1 - ||\epsilon||^2} & -\epsilon_1 \ -\epsilon_2 & \epsilon_1 & \sqrt{1 - ||\epsilon||^2} \end{array}
ight)$$

[Yang, 2010]

First order taylor expansion around $oldsymbol{\omega} = oldsymbol{\epsilon} = \mathbf{0}$

First order taylor expansion around $\omega=\epsilon=\mathbf{0}$

Linearised equation of motion

$$\left(\begin{array}{c} \boldsymbol{\omega}' \\ \boldsymbol{\epsilon}' \end{array}\right) = \frac{1}{2} \left(\begin{array}{cc} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{I}_3 & \mathbf{0}_{3\times3} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\omega} \\ \boldsymbol{\epsilon} \end{array}\right) + \left(\begin{array}{c} J^{-1} \\ \mathbf{0}_{3\times3} \end{array}\right) \boldsymbol{u}$$

First order taylor expansion around $\omega=\epsilon=\mathbf{0}$

Linearised equation of motion

$$\left(\begin{array}{c} \boldsymbol{\omega}' \\ \boldsymbol{\epsilon}' \end{array}\right) = \frac{1}{2} \left(\begin{array}{cc} 0_{3\times3} & 0_{3\times3} \\ l_3 & 0_{3\times3} \end{array}\right) \left(\begin{array}{c} \boldsymbol{\omega} \\ \boldsymbol{\epsilon} \end{array}\right) + \left(\begin{array}{c} J^{-1} \\ 0_{3\times3} \end{array}\right) \boldsymbol{u}$$

Once ϵ has been calculated, we use $|\mathbf{q}| = 1$ to compute η .

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\begin{pmatrix} \omega' \\ \epsilon' \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0_{3\times3} & 0_{3\times3} \\ I_3 & 0_{3\times3} \end{pmatrix} \begin{pmatrix} \omega \\ \epsilon \end{pmatrix} + \begin{pmatrix} J^{-1} \\ 0_{3\times3} \end{pmatrix} \boldsymbol{u} \quad \text{in } [0,T]$$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\begin{pmatrix} \boldsymbol{\omega}' \\ \boldsymbol{\epsilon}' \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0_{3\times3} & 0_{3\times3} \\ l_3 & 0_{3\times3} \end{pmatrix} \begin{pmatrix} \boldsymbol{\omega} \\ \boldsymbol{\epsilon} \end{pmatrix} + \begin{pmatrix} J^{-1} \\ 0_{3\times3} \end{pmatrix} \boldsymbol{u} \quad \text{in } [0, T]$$

and

$$\left\{egin{array}{l} \omega(0)=\omega_0, & \epsilon(0)=\epsilon_0 \ \omega(T)=\omega_T, & \epsilon(T)=\epsilon_0 \end{array}
ight.$$

Find $\boldsymbol{u}:[0,T]\longrightarrow\mathbb{R}^3$ such that

$$\left(\begin{array}{c} \boldsymbol{\omega}' \\ \boldsymbol{\epsilon}' \end{array} \right) = \frac{1}{2} \left(\begin{array}{cc} \mathbf{0}_{3\times3} & \mathbf{0}_{3\times3} \\ \mathbf{I}_3 & \mathbf{0}_{3\times3} \end{array} \right) \left(\begin{array}{c} \boldsymbol{\omega} \\ \boldsymbol{\epsilon} \end{array} \right) + \left(\begin{array}{c} J^{-1} \\ \mathbf{0}_{3\times3} \end{array} \right) \boldsymbol{u} \quad \text{in } [0,T]$$

and

Linearised optimal control problem

$$\left\{egin{array}{l} \omega(0)=\omega_0, & \epsilon(0)=\epsilon_0 \ \omega(T)=\omega_T, & \epsilon(T)=\epsilon_0 \end{array}
ight.$$

In addition to be a minimizer of the functional

$$oldsymbol{u} \longmapsto rac{1}{2} \int_0^T oldsymbol{x}^t Q oldsymbol{x} + oldsymbol{u}^t R oldsymbol{u}$$
 $oldsymbol{x} = (oldsymbol{\omega}, oldsymbol{\epsilon})$

Numerical approximation

Nonlinear problem

■ Nonlinear problem \rightarrow variational reformulation.

- Nonlinear problem \rightarrow variational reformulation.
- Linearised problem

- Nonlinear problem \rightarrow variational reformulation.
- Linearised problem \rightarrow LQR techniques.

Constrained minimization

Initialization

Initialization

Section 4

Results

All simulations were performed with a functional of the type

Results

All simulations were performed with a functional of the type

Functional

$$\boldsymbol{u} \longmapsto \frac{1}{2} \int_0^T \boldsymbol{x}^t Q \boldsymbol{x} + \boldsymbol{u}^t R \boldsymbol{u}$$

Linearised model

- Objective:
 - Dissipate rotational energy.
- Initial state:
 - Tumbling ($\omega \neq \mathbf{0}$).
 - (pitch,roll,yaw) = (0,0,0)rad.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.

- Objective:
 - Dissipate rotational energy.
- Initial state:
 - Tumbling ($\omega \neq \mathbf{0}$).
 - (pitch,roll,yaw) = (0,0,0)*rad*.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0, 0, 0)rad.

Figure: Control

- Objective:
 - Dissipate rotational energy.
- Initial state:
 - Tumbling ($\omega \neq \mathbf{0}$).
 - (pitch,roll,yaw) = (0,0,0)*rad*.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0, 0, 0)rad.

Figure: Angular velocities

- Objective:
 - Dissipate rotational energy.
- Initial state:
 - Tumbling ($\omega \neq \mathbf{0}$).
 - (pitch,roll,yaw) = (0,0,0)*rad*.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.

Figure: Euler angles

Simulation parameters

Name	Symbol	Value	Unit
Final time	Т	4.5	s
Tensor of inertia	J	<i>I</i> ₃	kg m ²
Integrand $F = \frac{1}{2}(x^t Qx + u^t Ru)$	Q R	I ₆ I ₃	
Initial angular velocity	ω_0	$(\pi/2, \pi/4, \pi/8)$	rad/s
Final angular velocity	ω_T	(0, 0, 0)	rad/s
Initial orientation (Euler angles)	Φ_0	(0, 0, 0)	rad
Final orientation (Euler angles)	Φ_T	(0, 0, 0)	rad

Table: Simulation parameters

Simulation results

Name	Symbol	Value	Unit
Achieved final angular velocity	$\omega(T)$	$(4.22, 2.11, 2.14)10^{-3}$	rad/s
Error in final angular velocity	$ \omega(T) - \omega_T $	$8.39 \cdot 10^{-3}$	rad/s
Achieved final orientation	$\Phi(T)$	$(8.48, 1.63, 3.29)10^{-3}$ $3.77 \cdot 10^{-2}$	rad
Error in final orientation	$ \Phi(T) - \Phi_T $	$3.77 \cdot 10^{-2}$	rad
Cost	I(u)	4.95	
CPU time		$1.68 \cdot 10^{-3}$	s

Table: Simulation results

Name	Symbol	Value	Unit
Achieved final angular velocity	$\omega(T)$	$(4.22, 2.11, 2.14)10^{-3}$	rad/s
Error in final angular velocity	$ \omega(T) - \omega_T $	$8.39 \cdot 10^{-3}$	rad/s
Achieved final orientation	$\Phi(T)$	$(8.48, 1.63, 3.29)10^{-3}$	rad
Error in final orientation	$ \Phi(T) - \Phi_T $	$3.77 \cdot 10^{-2}$	rad
Cost	I(u)	4.95	
CPU time		$1.68 \cdot 10^{-3}$	S

Table: Simulation results

Simulation parameters

Name	Symbol	Value	Unit
Final time	T	4.5	s
Tensor of inertia	J	<i>I</i> ₃	kg m ²
Integrand $F = \frac{1}{2}(x^tQx + u^tRu)$	Q R	I ₆ I ₃	
Initial angular velocity	ω_0	$(\pi/2, \pi/4, \pi/8)$	rad/s
Final angular velocity	ω_T	(0, 0, 0)	rad/s
Initial orientation (Euler angles)	Φ_0	(0, 0, 0)	rad
Final orientation (Euler angles)	Φ_T	(0, 0, 0)	rad

Table: Simulation parameters.

Simulation parameters

Name	Symbol	Value	Unit
Final time	Т	4.5	s
Tensor of inertia	J	I ₃	kg m ²
Integrand $F = \frac{1}{2}(x^tQx + u^tRu)$	Q R	I ₆ I ₃	
Initial angular velocity Final angular velocity	$oldsymbol{\omega}_0 \ oldsymbol{\omega}_T$	$(\pi/2, \pi/4, \pi/8)$ (0, 0, 0)	rad/s rad/s
Initial orientation (Euler angles) Final orientation (Euler angles)	Φ_0 Φ_T	(0,0,0) (0,0,0)	rad rad

Table: Simulation parameters.

Tensor of inertia J

Tensor of inertia J proportional to the identity

Tensor of inertia J proportional to the identity \Rightarrow

Results

Results

Tensor of inertia J proportional to the identity $\Rightarrow \omega \times J\omega = \mathbf{0}$

Tensor of inertia J proportional to the identity $\Rightarrow \omega \times J\omega = \mathbf{0}$

$$\begin{cases} J\omega' = -\frac{\omega}{\omega} \times J\omega + \mathbf{u} \\ \epsilon' = -\frac{1}{2}\omega \times \epsilon + \frac{1}{2}\eta\omega \\ \eta' = -\frac{1}{2}\omega^t \epsilon \end{cases}$$

Tensor of inertia J proportional to the identity $\Rightarrow \omega \times J\omega = \mathbf{0}$

$$\begin{cases}
J\omega' = -\frac{\omega}{\omega} + \mathbf{u} \\
\epsilon' = -\frac{1}{2}\omega \times \epsilon + \frac{1}{2}\eta\omega \\
\eta' = -\frac{1}{2}\omega^t \epsilon
\end{cases}$$

Nonlinear effects are less noticeable.

If J is not proportional to the identity

If J is not proportional to the identity

$$J = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.75 & 0 \\ 0 & 0 & 0.5 \end{array}\right) kg \ m^2$$

If J is not proportional to the identity

$$J = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.75 & 0 \\ 0 & 0 & 0.5 \end{array}\right) kg \ m^2$$

Figure: Control

If J is not proportional to the identity

$$J = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.75 & 0 \\ 0 & 0 & 0.5 \end{array}\right) kg \ m^2$$

Figure: Angular velocities

If J is not proportional to the identity

$$J = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0.75 & 0 \\ 0 & 0 & 0.5 \end{array}\right) kg \ m^2$$

Figure: Euler angles

If J is not proportional to the identity – Simulation results

Name	Symbol	Value	Unit
Achieved final angular velocity	$\omega(T)$	$(1.33, -3.81, -1.71)10^{-1}$	rad/s
Error in final angular velocity	$ \omega(T) - \omega_T $	$4.38 \cdot 10^{-1}$	rad/s
Achieved final orientation	$\Phi(T)$	(-1.71, -0.75, 0.52)	rad
Error in final orientation	$ \Phi(T) - \Phi_T $	1.94	rad
Cost	I(u)	4.52	
CPU time		$2.56 \cdot 10^{-3}$	S

Table: Simulation results.

If J is not proportional to the identity – Simulation results

Name	Symbol	Value	Unit
Achieved final angular velocity	$\omega(T)$	$(1.33, -3.81, -1.71)10^{-1}$	rad/s
Error in final angular velocity	$ \omega(T) - \omega_T $	$4.38 \cdot 10^{-1}$	rad / s
Achieved final orientation	Φ(<i>T</i>)	(-1.71, -0.75, 0.52)	rad
Error in final orientation	$ \Phi(T) - \Phi_T $	1.94	rad
Cost	l(u)	4.52	
CPU time		$2.56 \cdot 10^{-3}$	S

Table: Simulation results.

If J is not proportional to the identity – Simulation results

Error in angular velocity:

$$|\omega(T) - \omega_T| = 0.44 \; rad/s pprox 4 \; rpm$$

Error in orientation (Euler angles):

$$|\phi(T) - \phi_T| = 1.94 \text{ rad } \approx 111^\circ$$

If J is not proportional to the identity – Simulation results

The linearised model is not able to steer the system to the desired state.

Nonlinear model

Nonlinear model - Detumbling

Nonlinear model – Detumbling

- Objective:
 - Dissipate rotational energy.
- Initial state:
 - Tumbling $(\omega \neq \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.

Simulation parameters

Nonlinear model - detumbling

Simulation parameters

Parameters are set as in the previous case:

Simulation parameters

Parameters are set as in the previous case:

Name	Symbol	Value	Unit
Final time	Т	4.5	s
Integrand $F = \frac{1}{2}(x^t Qx + u^t Ru)$	Q R	I ₇ I ₃	
Initial angular velocity	ω_0	$(\pi/2, \pi/4, \pi/8)$	rad/s
Final angular velocity	ω_T	(0, 0, 0)	rad / s
Initial orientation (Euler angles)	Φ_0	(0, 0, 0)	rad
Final orientation (Euler angles)	Φ_T	(0, 0, 0)	rad

Table: Simulation parameters

Nonlinear model – detumbling

Simulation results

The nonlinear model behaves well for any choice of J.

$$J = I_{3\times3}$$

$$J = diag(1, 0.75, 0.5)$$

Figure: Control.

Figure: Control.

$$J = I_{3\times3}$$

Figure: Angular velocities.

Figure: Angular velocities.

$$J = I_{3\times3}$$

$$J = diag(1, 0.75, 0.5)$$

Figure: Euler angles.

Figure: Euler angles

J proportional to the identity – Simulation results

Error in angular velocity:

$$|\omega(T) - \omega_T| = 7 \cdot 10^{-3} \ rad/s \approx 0.07 \ rpm$$

Error in orientation (Euler angles):

$$|\phi(T) - \phi_T| = 1.59 \cdot 10^{-4} \text{ rad } \approx 0.009^{\circ}$$

J not proportional to the identity – Simulation results

Error in angular velocity:

$$|\omega(T)-\omega_T|=6.1\cdot 10^{-3}\ rad/spprox 0.06\ rpm$$

Error in orientation (Euler angles):

$$|\phi(T) - \phi_T| = 1.55 \cdot 10^{-4} \text{ rad } \approx 0.009^{\circ}$$

Nonlinear model - detumbling

J not proportional to the identity – Simulation results

The nonlinear model is able to steer the system to the desired state.

Nonlinear model

Nonlinear model - single axis, rest to rest

Nonlinear model – Single axis, rest to rest

Nonlinear model – Single axis, rest to rest

- Objective:
 - Rotate $\pi/2$ rad around the z axis.
- Initial state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)*rad*.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = $(\pi/2,0,0)$ rad.
- Inequality constraints on control: $|u_i| \le 1Nm$ i = 1, 2, 3.

Nonlinear model – Single axis, rest to rest

- Objective:
 - Rotate $\pi/2$ rad around the z axis.
- Initial state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = $(\pi/2,0,0)$ rad.
- Inequality constraints on control: $|u_i| \le 1Nm$ i = 1, 2, 3.

Figure: Control

Nonlinear model – Single axis, rest to rest

- Objective:
 - Rotate $\pi/2$ rad around the z axis.
- Initial state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = $(\pi/2,0,0)$ rad.
- Inequality constraints on control: $|u_i| \le 1Nm$ i = 1, 2, 3.

Figure: Angular velocities

Nonlinear model – Single axis, rest to rest

- Objective:
 - Rotate $\pi/2$ rad around the z axis.
- Initial state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = (0,0,0)rad.
- Final state:
 - At rest $(\omega = \mathbf{0})$.
 - (pitch,roll,yaw) = $(\pi/2,0,0)$ rad.
- Inequality constraints on control: $|u_i| \le 1Nm$ i = 1, 2, 3.

Figure: Euler angles

Simulation parameters

Simulation parameters

Name	Symbol	Value	Unit
Final time	T	2.55, 2.525, 2.52	s
Tensor of inertia	J	diag(0.5, 0.75, 1)	Kg m ²
Integrand $F = \frac{1}{2}(x^tQx + u^tRu)$	Q R	0 ₆ 0 ₃	
Initial angular velocity Final angular velocity	$\omega_0 \ \omega_T$	(0,0,0) (0,0,0)	rad/s rad/s
Initial orientation (Euler angles) Final orientation (Euler angles)	Φ_0 Φ_T	(0,0,0) (0,0,0) $(\pi/2,0,0)$	rad rad rad

Table: Simulation parameters

Nonlinear model - single axis, rest to rest

When inequality constraints on control are imposed

When inequality constraints on control are imposed

For example: $|u_i| \le 1$ Nm i = 1, 2, 3

When inequality constraints on control are imposed

For example:
$$|u_i| \le 1 \ \textit{Nm} \ i = 1, 2, 3$$

The control approaches a *bang-bang* strategy as the time interval is reduced.

Figure: Control for T = 2.55s.

Figure: Control for T = 2.525s.

Figure: Control for T = 2.52s.

Simulation results

Error in angular velocity:

$$|\omega(T)-\omega_T|=2.84\cdot 10^{-3}\ rad/spprox 0.03\ rpm$$

■ Error in orientation (Euler angles):

$$|\phi(T)-\phi_T|=3.8\cdot 10^{-3} \; rad pprox 0.2^\circ$$

Animation – Detumbling

Results

Animation – Single axis, rest to rest

Results

Section 5

Conclusions and future work

■ Two different approaches have been employed:

- Two different approaches have been employed:
 - Linearised model.

- Two different approaches have been employed:
 - Linearised model.
 - Nonlinear model (Main aim of the work).

- Two different approaches have been employed:
 - Linearised model.
 - Nonlinear model (Main aim of the work).
- Both have proven successful in certain situations.

Advantages of the nonlinear approach:

Advantages of the linear approach:

Advantages of the nonlinear approach:

Advantages of the linear approach:

Accuracy.

Advantages of the nonlinear approach:

Advantages of the linear approach:

- Accuracy.
- Constraints.

Advantages of the nonlinear approach:

- Accuracy.
- Constraints.
- Larger class of integrands.

Advantages of the linear approach:

Advantages of the nonlinear approach:

- Accuracy.
- Constraints.
- Larger class of integrands.
- Complex manoeuvres.

Advantages of the linear approach:

Advantages of the nonlinear approach:

- Accuracy.
- Constraints.
- Larger class of integrands.
- Complex manoeuvres.

Advantages of the linear approach:

Computation time.

Advantages of the nonlinear approach:

- Accuracy.
- Constraints.
- Larger class of integrands.
- Complex manoeuvres.

Advantages of the linear approach:

- Computation time.
 - I inearised model: CPU time $\sim 10^{-3}$ s
 - Nonlinear model: CPII time $\sim 10s$

Fortran 95.

- Fortran 95.
- Compiled with gfortran.

- Fortran 95.
- Compiled with gfortran.
- Linux machine.

- Fortran 95.
- Compiled with gfortran.
- Linux machine.
- Intel Core i7 4510U.

Future work

■ Controllability.

- Controllability.
- Influence of:

- Controllability.
- Influence of:
 - Magnetic actuation.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.
- Underactuated satellites.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.
- Underactuated satellites.
- Uncertainty.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.
- Underactuated satellites.
- Uncertainty.
- Incomplete measurements.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.
- Underactuated satellites.
- Uncertainty.
- Incomplete measurements.
- Improvement of numerical procedures.

- Controllability.
- Influence of:
 - Magnetic actuation.
 - Disturbances, such as atmospheric drag.
- Underactuated satellites.
- Uncertainty.
- Incomplete measurements.
- Improvement of numerical procedures.
- Implementation and testing.

Thank you.