Simon King, FSU Jena Fakultät für Mathematik und Informatik Henicke, Kraume, Lafeld, Max, Rump

Lineare Algebra für *-Informatik

Wintersemester 2020/21

Übungsblatt 8

Hausaufgaben (Abgabe bis 11.01.2021, 14:00 Uhr)

Hausaufgabe 8.1: Seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen. Zeigen Sie:

- a) (1 P.) $g \circ f$ injektiv $\Rightarrow f$ injektiv.
- b) (1 P.) $q \circ f$ surjektiv $\Rightarrow q$ surjektiv.

Hausaufgabe 8.2: Invertierbarkeit von 2×2 -Matrizen Sei \mathbb{K} ein Körper. Für $A \in M_2(\mathbb{K})$ sei $\det(A) := A_{1,1} \cdot A_{2,2} - A_{1,2} \cdot A_{2,1} \in \mathbb{K}$.

- a) (1 P.) Berechnen Sie det $(\frac{1}{2}\frac{3}{8})$ und det $(\frac{2}{-4}\frac{-5}{10})$.
- b) (2 P.) Verifizieren Sie: $\forall A, B \in M_2(\mathbb{K})$: $\det(A \cdot B) = \det(A) \cdot \det(B)$.
- c) (1 P.) Zeigen Sie: Wenn $A \in M_2(\mathbb{K})$ mit $\det(A) = 0$, dann gibt es kein $B \in M_2(\mathbb{K})$ mit $A \cdot B = \mathbb{1}_2$. **Hinweis:** Nutzen Sie die Aussage der vorigen Teilaufgabe.
- d) (2 P.) Zeigen Sie: Wenn $A \in M_2(\mathbb{K})$ und $\det(A) \neq 0$, dann gibt es ein $B \in M_2(\mathbb{K})$ mit $A \cdot B = \mathbb{1}_2$. **Hinweis:** Sie könnten eine Formel für B ausgedrückt durch die Einträge von A angeben und dann durch eine Rechnung verifizieren, dass $A \cdot B = \mathbb{1}_2$ für Ihre Formel gilt.

Hausaufgabe 8.3: (3 P.) Sei $A := \begin{pmatrix} -1 & 4 & 0 \\ -1 & 3 & 1 \\ 0 & 3 & -2 \end{pmatrix} \in M_3(\mathbb{Q})$. Berechnen Sie A^{-1} .

Hausaufgabe 8.4: Abbildungsmatrizen I

Die lineare Abbildung $f: \mathbb{R}^2 \to \mathbb{R}^2$ sei gegeben durch $f(\vec{e_1}) := \vec{e_1} + 3\vec{e_2}$ und $f(\vec{e_2}) := 6\vec{e_1} - 2\vec{e_2}$. Es seien $\vec{b_1} := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ und $\vec{b_2} := \begin{pmatrix} 1 \\ 1/2 \end{pmatrix}$. Dann ist $B := [\vec{b_1}, \vec{b_2}]$ eine Basis von \mathbb{R}^2 . (3 P.) Berechnen Sie $^B\vec{e_1}$, $^B\vec{e_2}$ und B_Bf .

Erreichbare Punktzahl: 14