- 1. 根据 以下 3-8 译码器芯片 74X138 的电路原理图设计一个由逻辑门电路构成的 3-8 译码器, 并对电路进行仿真测试, 以验证电路的功能。
 - a) 电路原理图

- b) 实验器材分析
 - i. 非门7个
 - ii. 4输入与非门8个
 - iii. 3输入与门反转1个
 - iv. 6 输入
 - v. 8输出
- c) 添加逻辑门和标签

d) 连线

e) 仿真检测真值表

输入				输出									
G1	/G2A	/G2B	A2	A1	A0	/Y0	/Y1	Y2	/Y3	/Y4	/Y5	/Y6	/Y7
×	1	×	×	×	×	1	1	1	1	1	1	1	1
×	×	1	×	×	×	1	1	1	1	1	1	1	1
0	×	×	×	×	×	1	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1	1	1	1	1	0	1
1	0	0	1	1	1	1	1	1	1	1	1	1	0

- f) 错误现象
 - i. 门电路选择错误:

由于实验电路原理图中的门电路与 logisim 中的有所不同,所以找了很久

ii. 连线错误:

线路太多导致连线错误

- 2. 根据以下给出的 8-3 优先级编码器原理图,设计一个由逻辑门电路构成的 8-3 优先级编码器,并将编码器输出连接到一个十六进制数码管,通过数码管的输出显示来验证和测试电路。测试电路中可引入探针、分线器等,并增加电源和接地来连接数码管。
 - a) 实验电路原理图

- b) 实验器材分析
 - i. 2输入1反转与门, 3输入2反转与门, 4输入3反转与门, 5输入4反转与门, 6输入5反转与门, 7输入6反转与门, 8输入7反转与门
 - ii. 3个4输入与门
 - iii. 8 输入 3 输出
- c) 添加逻辑门和标签

d) 连线

e) 添加 16 进制显示器和分线器

f) 电路仿真检测

输出	IO	I1	I2	13	I4	I 5	I 6	I7
0	1	×	×	×	×	×	×	X
1	0	1	×	×	×	×	×	X
2	0	0	1	×	×	×	×	X
3	0	0	0	1	×	×	×	X
4	0	0	0	0	1	×	×	X
5	0	0	0	0	0	1	×	X
6	0	0	0	0	0	0	1	X
7	0	0	0	0	0	0	0	1

g) 问题:

不清楚分线器以及 16 禁止显示器的用法,上网查找资料以及自己试验之后才学会 使用

- 3. 设计一个全加器 (FA), 并在此基础上将 4 个全加器串联成一 4 位串行进位加法器。将输入连接到按钮、输出连接到 LED 数码管进行验证。
 - a) 实验电路原理图

b) 实验器材分析

i. 2 个异或门

ii. 2 个与门

iii. 1个或门

iv. 3 输入 2 输出

c) 添加逻辑门及标签

d) 连线

e) 仿真检测真值表

Α	В	Cin	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- f) 构建 4 位全加器
 - i. 1位全加器作为子电路
 - ii. 配置 4 位全加器

g) 添加 16 进制显示器以及分线器

h) 问题

- i. 对全加器概念不理解
- 4. 设计一个如下图所示的由逻辑门电路、1 位加法器、1 位减法器和 8 选 1 多路选择器构成的一位 ALU 电路(不考虑来自低位的进位或借位),并对电路进行仿真测试,以验证电路的功能。
 - a) 设计 8 选 1 多路选择器并构建

b) 设计加减法电路并构建

i. 加法

ii. 减法

注: 若 cout 为 1 则为负数

c) 设计主电路并引入子电路

d) 问题

- i. 设计 8 选 1 电路时困难 由于原来的 4 选 1 电路设计不完善,所以重新设计 8 选 1 电路
- ii. 加减法 不清楚加减法的输出结果如何表示以及减法怎样表示负数

5. 思考问题

- a) 组合逻辑电路的一般设计步骤是什么?
 - i. 设计电路原理图
 - ii. 根据原理图确定实验器材
 - iii. 分成几个小部分分别进行完成
 - iv. 在主电路中进行组合
 - v. 进行仿真测试考察正确性
- b) 测试电路功能有哪几种方式?
 - i. 真值表
 - ii. 外接输出组件
 - iii. 测试各部分电路
- c) 如何利用 logisim 提供的 LED 矩阵显示 N JUCS 五个字符。

- d) 简要说明 4 位二进制补码加法器溢出检测电路的设计思路。
 - i. 设计全加器
 - ii. 构建 3 位全加器
 - iii. 若 3 位全加器的进位为 1 则溢出