

A summary of Groups and Rings SF2729

JIM HOLMSTRÖM

Abstract

This paper contains a brief summary of the course Groups and Rings which is given at KTH in Stockholm. The basis for this is the book: A First Course In Abstract Algebra by John B. Fraleigh.

Contents

1	Def	inition	lS .	1		
	1.1	Struct	tures	1		
		1.1.1	Set	1		
		1.1.2	Group	1		
		1.1.3	Ring	1		
		1.1.4	Field	1		
	1.2	2 Substructures				
		1.2.1	Subgroup	1		
		1.2.2	Subring	1		
		1.2.3	Ideal	1		
	1.3	Relati	ons between structures	1		
		1.3.1	Homomorphism	1		
		1.3.2	Isomorphism	1		
		1.3.3	Group action	1		
	1.4	Biject	ive functions	1		
		1.4.1	Permutation	1		
2	Use	ful the	eorems	3		
	2.1	LORE	EM IPSUM	3		
		2.1.1	Lagrange's Theorem	3		
		2.1.2	Cauchy's Theorem	3		
3	Mis	c. Lat	er put into some of the above chapters	5		
		3.0.3	Equivalence relation \mathfrak{R}	5		
		$3 \cap 4$	Binary operations *	5		

Chapter 1

Definitions

- 1.1 Structures
- 1.1.1 Set
- 1.1.2 Group
- 1.1.3 Ring
- 1.1.4 Field
- 1.2 Substructures
- 1.2.1 Subgroup
- 1.2.2 Subring
- 1.2.3 Ideal
- 1.3 Relations between structures
- 1.3.1 Homomorphism
- 1.3.2 Isomorphism
- 1.3.3 Group action
- 1.4 Bijective functions
- 1.4.1 Permutation

Chapter 2

Useful theorems

- 2.1 LOREM IPSUM
- 2.1.1 Lagrange's Theorem
- 2.1.2 Cauchy's Theorem

Chapter 3

Misc. Later put into some of the above chapters

3.0.3 Equivalence relation \mathfrak{R}

 $\mathfrak R$ is an equivalence relation on a set $\mathcal S$

$$\begin{cases} x\Re x \\ x\Re y \Rightarrow y\Re x \\ x\Re y \wedge y\Re z \Rightarrow x\Re z \end{cases}, \forall x, y, z \in \mathcal{S}$$
 (3.1)

3.0.4 Binary operations *

$$\begin{array}{ccc}
*: \mathcal{S} \times \mathcal{S} & \to \mathcal{S} \\
(x, y) & \mapsto *((x, y)) = x * y
\end{array}$$
(3.2)

The binary function *((x,y)) is denoted by x*y.

Closed under *

Commutative

Associative

$$(a*b)*c = a*(b*c) (3.3)$$

Which gives us