Data Jobs Salaries

Merve Gürbüz Egecan Serbester

Feature Analysis with HeatMap

- 1.0

- 0.8

0.6

- 0.4

0.2

- 0.0

PCA for Dimension Reduction

- Labelled the String columns (Used LabelEncoder)
- Experiment the PCA (4-6-7-8-10)

Dimension	MSE for Standard Scale Data			
4	0.7418001636406454			
6	0.5774320163069093			
7	0.11008455543984688			
8	0.14195711453268917			
10 (real dimension)	0.12366654622069748			

CT

Row Labels ▼ Count of job title Row Labels ▼ Count of job title

18 2020

Data is imbalance!

75

218

1650

6031

7974

EN

EX

MI

SE

Grand Total

Row Labels Count of job_title

429

245

1546

5754

7974

Linear regression is meaningless since there isn't any column that directly correlate to the salary.

SVR

Random Forest Regression

Best Kernel: RBF (Radial Basis Function)

Tried different parameters with GridSearchCV(regr, parameters) 'n estimators': [100, 150, 200, 250, 300], 'max_depth': [1,2,3,4] (best for n=300, d=4)

Standardized DMSE

DMCE

MSE: 65342 andardized RMSE: 0.36	IN	Standardized Rivise	KIVISE
	7	0.1572816	10128
	10	0.161137	10117

NI

Feature Importance

XG Boost

Training and Test Sets Overfit

more reasonable without salary

RMSE: 48957

RMSE: 4573

Ordinary Least Square Regression

	coef	std err	t	P> t	[0.025	0.975]
const	-2.669e+07	2.43e+06	-10.974	0.000	-3.15e+07	-2.19e+07
work_year	1.32e+04	1203.117	10.975	0.000	1.08e+04	1.56e+04
experience_level_numeric	1.669e+04	835.339	19.980	0.000	1.51e+04	1.83e+04
employment_type_numeric	5404.0621	5855.759	0.923	0.356	-6074.759	1.69e+04
job_title_numeric	492.2807	25.278	19.475	0.000	442.729	541.832
salary	0.0077	0.001	5.628	0.000	0.005	0.010
employee_residence_numeric	442.2196	122.894	3.598	0.000	201.315	683.124
remote_ratio	-37.8901	13.598	-2.787	0.005	-64.545	-11.235
company_location_numeric	473.9454	140.631	3.370	0.001	198.272	749.619
company_size_numeric	-7189.9150	2018.388	-3.562	0.000	-1.11e+04	-3233.346

Selecting The Best Encoder

Hist Gradient Boosting Regressor

