1 Базовые теоретические вопросы

1.1 Дать определение равенства геометрических векторов.

Два вектора называются равными, если они сонаправлены и их длины равны.

1.2 Дать определения суммы векторов и произведения вектора на число.

Суммой двух векторов \vec{a} и \vec{b} называется такой вектор \vec{c} , построенный по следующим правилам Правило парралелограмма Правило треугольника

Пусть O любая точка.

Отложим \vec{a} от O. Получим \overrightarrow{OA} .

Отложим \vec{b} от

Tочки O

Получим

Точки A

Построим

Парралелограмм

Треугольник

Вектор \vec{c} , представителем которого является \overrightarrow{OC} - искомый.

Построение не зависит от выбора точки O и правила построения.

Произведением \vec{a} на число α называется \vec{b} , если он коллинеарен \vec{a} (причем если $\vec{a} \uparrow \uparrow \vec{b}$: $\alpha > 0$, иначе $\alpha < 0$) и его длина равна $|\alpha| |\vec{a}|$

1.3 Дать определения коллинеарных и компланарных векторов.

Геометрические вектора называются

Коллинеарными

Комплонарными

Если они лежат

На одной или парралельных прямых На одной или парралельных плоскостях

Дать определение линейно зависимой и линейно независимой системы 1.4 векторов.

Векторы $\vec{a_1},...,\vec{a_n}$ назваются линейно

Зависимыми

Независимыми

Если существует

Если не существует

Их нетривиальная линейная комбинация, равная $\vec{0}$, т.е.

Если при $\alpha_1,...,\alpha_n \in \mathbb{R}, \ \alpha_1\vec{a_1}+...+\alpha_n\vec{a_n}=0$

 $\exists \alpha_1,...,\alpha_n$ отличные от нуля $\not\equiv \alpha_1,...,\alpha_n$ отличные от нуля

1.5 Сформулировать геометрические критерии линейной зависимости 2-х и 3-х векторов.

- 2 вектора линейно зависимы \iff они коллинеарны
- 3 вектора линейно зависимы 👄 они комплонарны

1.6 Дать определение базиса и координат вектора.

Базисом в пространстве V_1 V_2 V_3 Называется Любой ненулевой Любая упорядоченная пара Любая упорядоченная тройка вектор коллинеарных векторов некомплонарных векторов $\forall \vec{x} \in V_1 \exists ! x \in \mathbb{R}$ $\forall \vec{x} \in V_2 \exists ! x_1, x_2 \in \mathbb{R}$ $\forall \vec{x} \in V_3 \exists ! x_1, x_2, x_3 \in \mathbb{R}$ $\vec{x} = x\vec{e}$ $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2}$ $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}$ Коэффициенты разложения x_1, x_2, x_3 x x_1, x_2 Называются координатами \vec{x} в базисе \vec{e} \vec{e}_1, \vec{e}_2 $\vec{e}_1, \vec{e}_2, \vec{e}_3$

1.7 Сформулировать теорему о разложении вектора по базису.

Любой вектор можно разложить по базису, причем единственным способом $\forall \vec{x} \in V_1 \exists ! x \in \mathbb{R} \quad \forall \vec{x} \in V_2 \exists ! x_1, x_2 \in \mathbb{R} \quad \forall \vec{x} \in V_3 \exists ! x_1, x_2, x_3 \in \mathbb{R}$

1.8 Дать определение ортогональной скалярной проекции вектора на направление.

Ортогональной проекцией вектора \vec{a} на вектор \vec{b} называется число, вычисленное по правилу:

- 1. Отложим вектор \vec{a} от любой точки A, получим \overrightarrow{AB}
- 2. Возьмем любую ось b, направление которой совпадает с \vec{b}
- 3. Спроецируем \overrightarrow{AB} на b и получим $\overrightarrow{A_{np}B_{np}}$
- 4. Найдем число $\pm |\overrightarrow{A_{np}B_{np}}|$, где + если $\overrightarrow{A_{np}B_{np}} \uparrow \uparrow \overrightarrow{b}$, иначе -

Обозначение $np_{\vec{k}}\vec{a}$

1.9 Дать определение скалярного произведения векторов.

Скалярным произведением 2 векторов \vec{a} и \vec{b} называется число, равное произведению длин векторов на косинус угла между ними.

1.10 Сформулировать свойство линейности скалярного произведения.

$$\begin{aligned} \forall \vec{a}, \vec{b} \forall k \in \mathbb{R} \\ (k\vec{a}) \vec{b} &= k(\vec{a}\vec{b}) \\ \vec{a}(k\vec{b}) &= k(\vec{a}\vec{b}) \\ \forall \vec{a}, \vec{b}, \vec{c} \\ (\vec{a} + \vec{b}) \vec{c} &= \vec{a}\vec{c} + \vec{b}\vec{c} \\ \vec{a}(\vec{b} + \vec{c}) &= \vec{a}\vec{b} + \vec{a}\vec{c} \end{aligned}$$

1.11 Записать формулу для вычисления скалярного произведения двух векторов, заданных в ортонормированном базисе.

$$\vec{a}\vec{b} = \vec{a}_1\vec{b}_1 + \vec{a}_2\vec{b}_2 + \vec{a}_3\vec{b}_3, \vec{a}\{a_1; a_2; a_3\}, \vec{b}\{b_1; b_2; b_3\}$$

1.12 Записать формулу для вычисления косинуса угла между векторами, заданными в ортонормированном базисе.

$$cos(\vec{a}, \vec{b}) = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|} = \frac{\vec{a}_1\vec{b}_1 + \vec{a}_2\vec{b}_2 + \vec{a}_3\vec{b}_3}{\sqrt{\vec{a}_1 + \vec{a}_2 + \vec{a}_3}\sqrt{\vec{b}_1 + \vec{b}_2 + \vec{b}_3}}$$

1.13 Дать определение правой и левой тройки векторов.

Упорядоченная тройка некомплонарных векторов $\vec{a}, \vec{b},$ называется Правой Левой Бели кратчайший поворот от \vec{a} к \vec{b} виден из конца \vec{c} проходящей Против часовой стрелке По часовой стрелке

1.14 Дать определение векторного произведения векторов.

Векторным произведением 2 векторов \vec{a} , \vec{b} называется вектор \vec{c} , удовлетворяющих условиям

- 1. $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$
- 2. Упорядоченная тройка $\vec{a}, \, \vec{b}, \, \vec{c}$ правая
- 3. $|\vec{c}| = |\vec{a}| |\vec{b}| sin(\vec{a}, \vec{b})$
- 1.15 Сформулировать свойство коммутативности (симметричности) скалярного произведения и свойство антикоммутативности (антисимметричности) векторного произведения.

$$\forall \vec{a}, \vec{b}$$

$$\vec{a}\vec{b}=\vec{b}\vec{a}\text{ - симметричность скалярного произведения}$$

$$\vec{a}\times\vec{b}=-\vec{b}\times\vec{a}\text{ - кососимметричность векторного произведения}$$

1.16 Сформулировать свойство линейности векторного произведения векторов.

$$\begin{split} \forall \vec{a}, \vec{b} \forall k \in \mathbb{R} \\ (k\vec{a}) \times \vec{b} &= k(\vec{a} \times \vec{b}) \\ \vec{a} \times (k\vec{b}) &= k(\vec{a} \times \vec{b}) \\ \forall \vec{a}, \vec{b}, \vec{c} \\ (\vec{a} + \vec{b}) \times \vec{c} &= \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \\ \vec{a} \times (\vec{b} + \vec{c}) &= \vec{a} \times \vec{b} + \vec{a} \times \vec{c} \end{split}$$

1.17 Записать формулу для вычисления векторного произведения в правом ортонормированном базисе.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}, \vec{a} \{a_1; a_2; a_3\}, \vec{b} \{b_1; b_2; b_3\}$$

Copnright pluttan (

1.18 Дать определение смешанного произведения векторов.

Смешанным произведением 3 векторов $\vec{a}, \vec{b}, \vec{c}$ называется число, равное $(\vec{a} \times \vec{b})\vec{c}$ Обозначение $(\vec{a}, \vec{b}, \vec{c}), \vec{a}\vec{b}\vec{c}$

1.19 Сформулировать свойство перестановки (кососимметричности) смешанного произведения.

При перестановке любых двух векторов, смешанное произведение меняет знак. $\forall \vec{a}, \vec{b}, \vec{c} : \vec{a} \vec{b} \vec{c} = -\vec{b} \vec{a} \vec{c} = -\vec{c} \vec{b} \vec{a}$

1.20 Сформулировать свойство линейности смешанного произведения.

$$\begin{aligned} \forall \vec{a}, \vec{b}, \vec{c}, \forall k \in \mathbb{R} \\ (k\vec{a})\vec{b}\vec{c} &= k(\vec{a}\vec{b}\vec{c}) \\ \vec{a}(k\vec{b})\vec{c} &= k(\vec{a}\vec{b}\vec{c}) \\ \vec{a}\vec{b}(k\vec{c}) &= k(\vec{a}\vec{b}\vec{c}) \\ \forall \vec{a}, \vec{b}, \vec{c}, \vec{d} \\ (\vec{a} + \vec{d})\vec{b}\vec{c} &= \vec{a}\vec{b}\vec{c} + \vec{d}\vec{b}\vec{c} \\ \vec{a}(\vec{b} + \vec{d})\vec{c} &= \vec{a}\vec{b}\vec{c} + \vec{a}\vec{d}\vec{c} \\ \vec{a}\vec{b}(\vec{c} + \vec{d}) &= \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d} \end{aligned}$$

1.21 Записать формулу для вычисления смешанного произведения в правом ортонормированном базисе.

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} \vec{a}\{a_1; a_2; a_3\}, \vec{b}\{b_1; b_2; b_3\}, \vec{c}\{c_1; c_2; c_3\}$$

1.22 Записать общее уравнение плоскости и уравнение «в отрезках». Объяснить геометрический смысл входящих в эти уравнения параметров.

- 1.23 Записать уравнение плоскости, проходящей через 3 данные точки.
- 1.24 Записать условия параллельности и перпендикулярности плоскостей.
- 1.25 Записать формулу для расстояния от точки до плоскости, заданной общим уравнением.
- 1.26 Записать канонические и параметрические уравнения прямой в пространстве. Объяснить геометрический смысл входящих в эти уравнения параметров.
- 1.27 Записать уравнение прямой, проходящей через две данные точки в пространстве.
- 1.28 Записать условие принадлежности двух прямых одной плоскости.
- 1.29 Записать формулу для расстояния от точки до прямой в пространстве.
- 1.30 Записать формулу для расстояния между скрещивающимися прямыми.

2 Теоретические вопросы повышенной сложности

2.1 Доказать геометрический критерий линейной зависимости трёх векторов.

3 вектора линейно зависимы iff они комплонарны

2.1.1 Необходимость

Пусть $\vec{a}, \vec{b}, \vec{c}$ линейно зависимы, тогда один их них является линейной комбинацией остальных. К примеру $\vec{a} = \beta \vec{b} + \gamma \vec{c} (\beta, \gamma \in \mathbb{R})$ Приложим $\vec{a}, \vec{b}, \vec{c}$ к одной точке O, получим $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}: \overrightarrow{OA} = \beta \overrightarrow{OB} + \gamma \overrightarrow{OC}$. Тогда \overrightarrow{OA} диагонать парралелограмма. Следовательно $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$ лежат в одной плоскости, значит они комплонарны, тогда и векторы $\vec{a}, \vec{b}, \vec{c}$ тоже комплонарны.

2.1.2 Достаточность

Пусть $\vec{a}, \vec{b}, \vec{c}$ комплонарны. Рассмотрим 2 случая:

1. Хотя бы один нулевой $(\vec{a}=\vec{0})$. Тогда $\vec{a}=\vec{0}\vec{b}+\vec{0}\vec{c}$ т.е. \vec{a} является линейной комбинацией \vec{b},\vec{c} тогда по основной теореме \vec{a},\vec{b},\vec{c} линейно зависимы.

2. Ни один не нулевой. Приложим $\vec{a}, \vec{b}, \vec{c}$ к одной точке O, получим $\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}$, которые лежат в одной плоскости.

 $\overrightarrow{OA} = \overrightarrow{OB_1} + \overrightarrow{OC_1}$. Т.к. $\overrightarrow{OB}, \overrightarrow{OB_1}$ коллинеарны, то $\overrightarrow{OB_1} = \beta \overrightarrow{OB}$, аналогично $\overrightarrow{OC_1} = \beta \overrightarrow{OC}$ $\vec{a} = \beta \vec{b} + \gamma \vec{c}$, тогда $\vec{a}, \vec{b}, \vec{c}$ линейно зависимы.

2.2 Доказать теорему о разложении вектора по базису.

Любой вектор можно разложить по базису, причем единственным способом $\forall \vec{x} \in V_1 \exists ! x \in \mathbb{R} \quad \forall \vec{x} \in V_2 \exists ! x_1, x_2 \in \mathbb{R} \quad \forall \vec{x} \in V_3 \exists ! x_1, x_2, x_3 \in \mathbb{R}$

2.2.1 Существование

Из геометрических критериев следует, что 4 вектора $\vec{x}, \vec{e_1}, \vec{e_2}, \vec{e_3}$. Тогда $\exists \alpha_0, \alpha_1, \alpha_2, \alpha_3$ (не все равны нулю), что $\alpha_0 \vec{x} + \alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \alpha_3 \vec{e_3} = \vec{0}(1)$. Тогда по определению линейно зависимых $\vec{e_1}, \vec{e_2}, \vec{e_3}$ линейно зависимы, т.е. комплонарны. $\vec{e_1}, \vec{e_2}, \vec{e_3}$ - базис в V_3 $\alpha_0 \neq 0$. Умножим (1) на $\frac{1}{\alpha_0}$ и выразим \vec{x} . $\vec{x} = -\frac{\alpha_1}{\alpha_0} \vec{e_1} - \frac{\alpha_2}{\alpha_0} \vec{e_2} - \frac{\alpha_3}{\alpha_0} \vec{e_3}$. Пусть $-\frac{\alpha_i}{\alpha_0} = x_i$, тогда $\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3}$

2.2.2 Единственность

От противного. Пусть существуют 2 разложения для $\vec{x}:\vec{x}=x_1\vec{e_1}+x_2\vec{e_2}+x_3\vec{e_3};\vec{x}=y_1\vec{e_1}+y_2\vec{e_2}+y_3\vec{e_3}$ Рассмотрим разность $\vec{0}=\vec{x}-\vec{x}=(x_1-y_1)\vec{e_1}+(x_2-y_2)\vec{e_2}+(x_3-y_3)\vec{e_3}$ - линейная комбинация $\vec{e_1},\vec{e_2},\vec{e_3}$. Т.к. $\vec{e_1},\vec{e_2},\vec{e_3}$ не комплонарны тогда их линейная комбинация равна $\vec{0},x_1-y_1=0$ $x_2-y_2=0$ $x_3-y_3=0$ Получили $x_1=y_1$ $x_2=y_2$ $x_3=y_3$ разложение единственно.

2.3 Доказать свойство линейности скалярного произведения.

$$\forall \vec{a}, \vec{b}, \vec{c} \forall k \in \mathbb{R}$$

2.3.1
$$(k\vec{a})\vec{b} = k(\vec{a}\vec{b})$$

- 1. $\vec{b} = \vec{0}$ левая часть = $(k\vec{a})\vec{0} = \vec{0}$, правая часть = $k(\vec{a}\vec{0}) = \vec{0}$
- $2.\ \vec{b}
 eq \vec{0}$ левая часть $= (k\vec{a})\vec{b} = \vec{b}(k\vec{a}) = |\vec{b}|np_{\vec{b}}(k\vec{a}) = k|\vec{b}|np_{\vec{b}}(\vec{a}) = k(\vec{b}\vec{a}) = k(\vec{a}\vec{b}) =$ правая часть

2.3.2 $\vec{a}(k\vec{b}) = k(\vec{a}\vec{b})$

Левая часть $= \vec{a}(k\vec{b}) = (k\vec{b})\vec{a} = k(\vec{a}\vec{b}) =$ правая часть

- **2.3.3** $(\vec{a} + \vec{b})\vec{c} = \vec{a}\vec{c} + \vec{b}\vec{c}$
 - 1. $\vec{c}=\vec{0}$ левая часть $=(\vec{a}+\vec{b})\vec{c}=\vec{0}$, правая часть $=\vec{a}\vec{0}+\vec{b}\vec{0}=\vec{0}$
 - $2.\ \vec{c}
 eq \vec{0}$ левая часть $= \vec{c}(\vec{a} + \vec{b}) = |\vec{c}| np_{\vec{c}}(\vec{a} + \vec{b}) = |\vec{c}| (np_{\vec{c}}\vec{a} + np_{\vec{c}}\vec{b}) = \vec{c}\vec{a} + \vec{c}\vec{b} = \vec{a}\vec{c} + \vec{b}\vec{c}$ правая часть

2.3.4 $\vec{a}(\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c}$

Левая часть = $\vec{a}(\vec{b}+\vec{c})=(\vec{b}+\vec{c})\vec{a}=\vec{a}\vec{b}+\vec{a}\vec{c}=$ правая часть

2.4 Вывести формулу для вычисления скалярного произведения векторов, заданных в ортонормированном базисе.

$$\vec{a}\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

Распишем по свойствам линейности

$$\vec{a}\vec{b} = (a_1\vec{i} + a_2\vec{j} + a_3\vec{k})(b_1\vec{i} + b_2\vec{j} + b_3\vec{k}) = a_1b_1(\vec{i}\vec{i}) + a_1b_2(\vec{i}\vec{j}) + a_1b_3(\vec{i}\vec{k}) + a_2b_1(\vec{j}\vec{i}) + a_2b_2(\vec{j}\vec{j}) + a_2b_3(\vec{j}\vec{k}) + a_3b_1(\vec{k}\vec{i}) + a_3b_2(\vec{k}\vec{j}) + a_3b_3(\vec{k}\vec{k}) + a_3b_3(\vec{k}\vec{k}$$

2.5 Вывести формулу для вычисления векторного произведения в правом ортонормированном базисе.

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \vec{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}, \vec{a}\{a_1; a_2; a_3\}, \vec{b}\{b_1; b_2; b_3\}$$

$$\vec{a} \times \vec{b} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times (b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k}) = a_1 b_1 (\vec{i} \times \vec{i}) + a_1 b_2 (\vec{i} \times \vec{j}) + a_1 b_3 (\vec{i} \times \vec{k}) + a_2 b_1 (\vec{j} \times \vec{i}) + a_2 b_2 (\vec{j} \times \vec{j}) + a_2 b_3 (\vec{j} \times \vec{k}) + a_3 b_1 (\vec{k} \times \vec{i}) + a_3 b_3 (\vec{k} \times \vec{k}) + a_3 b_3 (\vec{k} \times$$

2.6 Доказать свойство линейности смешанного произведения.

$$\forall \vec{a}, \vec{b}, \vec{c}, \vec{d} \forall k \in \mathbb{R}$$

2.6.1 $(k\vec{a})\vec{b}\vec{c} = k(\vec{a}\vec{b}\vec{c})$

$$(k\vec{a})\vec{b}\vec{c} = ((k\vec{a}) \times \vec{b})\vec{c} = (k(\vec{a} \times \vec{b}))\vec{c} = k((\vec{a} \times \vec{b})\vec{c}) = k(\vec{a}\vec{b}\vec{c})$$

2.6.2 $\vec{a}(k\vec{b})\vec{c} = k(\vec{a}\vec{b}\vec{c})$

$$\vec{a}(k\vec{b})\vec{c} = (k\vec{b})\vec{c}\vec{a} = k(\vec{b}\vec{c}\vec{a}) = k(\vec{a}\vec{b}\vec{c})$$

2.6.3 $\vec{a}\vec{b}(k\vec{c}) = k(\vec{a}\vec{b}\vec{c})$

$$\vec{a}\vec{b}(k\vec{c}) = (k\vec{c})\vec{a}\vec{b} = k(\vec{c}\vec{a}\vec{b}) = k(\vec{a}\vec{b}\vec{c})$$

2.6.4 $(\vec{a} + \vec{d})\vec{b}\vec{c} = \vec{a}\vec{b}\vec{c} + \vec{d}\vec{b}\vec{c}$

$$(\vec{a} + \vec{d})\vec{b}\vec{c} = ((\vec{a} + \vec{d}) \times \vec{b})\vec{c} = (\vec{a} \times \vec{b} + \vec{d} \times \vec{b})\vec{c} = \vec{a}\vec{b}\vec{c} + \vec{d}\vec{b}\vec{c}$$

2.6.5 $\vec{a}(\vec{b}+\vec{d})\vec{c} = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{d}\vec{c}$

$$\vec{a}(\vec{b} + \vec{d})\vec{c} = (\vec{b} + \vec{d})\vec{c}\vec{a} = \vec{b}\vec{c}\vec{a} + \vec{d}\vec{c}\vec{a} = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{d}\vec{c}$$

2.6.6 $\vec{a}\vec{b}(\vec{c} + \vec{d}) = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d}$

$$\vec{a}\vec{b}(\vec{c}+\vec{d}) = (\vec{c}+\vec{d})\vec{a}\vec{b} = \vec{c}\vec{a}\vec{b} + \vec{d}\vec{a}\vec{b} = \vec{a}\vec{b}\vec{c} + \vec{a}\vec{b}\vec{d}$$

2.7 Вывести формулу для вычисления смешанного произведения трёх векторов в правом ортонормированном базисе.

$$\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b})\vec{c} = (\vec{i} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \vec{j} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \vec{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix})\vec{c} = c_1 \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - c_2 \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + c_3 \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- 2.8 Вывести формулу для расстояния от точки до плоскости, заданной общим уравнением.
- 2.9 Вывести формулу для расстояния от точки до прямой в пространстве.
- 2.10 Вывести формулу для расстояния между скрещивающимися прямыми.