STAT5030 Assignment1 Solution

- 1. It suffices to prove the null space of \boldsymbol{x} and $\boldsymbol{x}^{\top}\boldsymbol{x}$ (as linear transformation) are equal, that is for any vector \boldsymbol{v} , $\boldsymbol{x}\boldsymbol{v}=0$ if and only if $\boldsymbol{v}^{\top}\boldsymbol{x}^{\top}\boldsymbol{x}\boldsymbol{v}=\|\boldsymbol{x}\boldsymbol{v}\|_{2}^{2}=0$.
- 2. (a) If P = -Q, then $PXX^{\top}P^{\top} = QXX^{\top}Q^{\top}$.
 - (b) If $PXX^{\top} = QXX^{\top}$, by question 1, $(P Q)^{\top}$ is in the null space of XX^{\top} as well as the null space of X^{\top} , thus PX = QX.
- 3. Note

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} A_{11}^- & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^-A_{12} \end{bmatrix}.$$

By the definition of generalized inverse, it suffices to verify $A_{21}A_{11}^-A_{12} = A_{22}$. Since the row rank of $[A_{11}, A_{12}]$ and A are both r, then there exists a $(n-r)\times r$ -matrix P such that $P[A_{11}, A_{12}] = [A_{21}, A_{22}]$. And it can be found that $P = A_{21}A_{11}^-$, and $PA_{12} = A_{22}$.

- 4. (a) Find the Moore-Penrose inverse.
 - (b) Find a generalized inverse different from Moore-penrose inverse.
- 5. (a) Since $(x^{\top}x)^{-}$, I_n and J are symmetric, then A, B, C and D are symmetric. And by the definition of matrix x, J and generalized inverse matrices, it is not hard to verify A, B, C and D are idempotent.

(b)
$$\operatorname{rank}(\boldsymbol{A}) = \operatorname{tr}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{x}) = k;$$

 $\operatorname{rank}(\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{I_n} - \boldsymbol{A}) = \operatorname{tr}(\boldsymbol{I_n}) - \operatorname{tr}(\boldsymbol{A}) = n - k;$
 $\operatorname{rank}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{C}) = \operatorname{tr}(\boldsymbol{A} - \frac{1}{n}\boldsymbol{J}) = \operatorname{tr}(\boldsymbol{A}) - \operatorname{tr}(\frac{1}{n}\boldsymbol{J}) = k - 1;$
 $\operatorname{rank}(\boldsymbol{D}) = \operatorname{tr}(\boldsymbol{D}) = \operatorname{tr}(\boldsymbol{I_n} - \frac{1}{n}\boldsymbol{J}) = \operatorname{tr}(\boldsymbol{I_n}) - \operatorname{tr}(\frac{1}{n}\boldsymbol{J}) = n - 1;$

6. (a) A symmetric generalized inverse for \mathbf{A} could be

$$\begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(b) A nonsymmetric generalized inverse for \boldsymbol{A} could be

$$\left[\begin{array}{ccc} 1/2 & -1/2 & -1 \\ -1/2 & 1 & -1 \\ 0 & 0 & -1 \end{array}\right].$$

- 7. If x is a vector such that Ax = c, then [A, c] = A[I, x] and $\operatorname{rank}(A) \leq \operatorname{rank}([A, c]) = \operatorname{rank}(A[I, x]) \leq \operatorname{rank}(A)$. If $\operatorname{rank}(A) = \operatorname{rank}([A, c])$, then the vector c can be linearly represented by the column vectors of A, that is there exists a vector x such that Ax = c.
- 8. If x is a vector such that Ax = c, then $AA^-c = AA^-Ax = Ax = c$ by the definition of A^- . If $AA^-c = c$ holds for any generalized inverse A^- of A, let $x = A^-c$, then x is a solution to the system of equations Ax = c.
- 9. By the definition of generalized inverse of A, we have $AA^-A = A$, which is $A(A^-A I_p) = 0$. If A is $n \times p$ of rank p < n, then the column vectors of A have full rank, and the system of equations Ax = 0 has only zero solution, implying $A^-A I_p = 0$.
- 10. Let X be $m \times n$, X^- is the corresponding generalized inverse, and r(X) = k > 0. Then:
 - (a) $r(X^-) \ge r(XX^-X) = r(X) = k$.
 - (b) X^-X and XX^- are idempotent.
 - (c) $k = r(X) \ge r(X^{-}X) = r(XX^{-}) \ge r(XX^{-}X) = k$.
 - (d) $X^{-}X = I$ if and only if r(X) = n. (See Question 9)
 - (e) $tr(X^{-}X) = tr(XX^{-}) = r(XX^{-}) = r(X) = k$.
 - (f) X^- is any G-inverse of X, then $(XX^-X)^\top = X^\top$ implying $(X^-)^\top$ is a G-inverse of X^\top .
- 11. For $K = X(X^{\top}X)^{-}X^{\top}$, then:
 - (a) $K = K^{\top}$ by question 10 (f), $K = K^2$ (Symmetric Idempotent).
 - (b) $r(X) \ge r(K) \ge r(X^{\mathsf{T}}KX) = r(X^{\mathsf{T}}X) = r(X) = r$.
 - (c) It can be verified that $(KX X)^{\top}(KX X) = 0$.
 - (d) $(X^{\top}X)^{-}X^{\top}$ is a G-inverse of X for any G-inverse of $X^{\top}X$ by 11 (c).
- 12. (a) Let A_1^+ and A_2^+ be two Moore-Penrose inverse of A. By the definition and properties of Moore-Penrose inverse, $AA_1^+ = (AA_2^+A)A_1^+ = (AA_2^+)(AA_1^+) = (AA_2^+)^\top (AA_1^+)^\top = (A_2^+)^\top A^\top (A_1^+)^\top A^\top = (A_2^+)^\top (AA_1^+A)^\top = (A_2^+)^\top A^\top = (AA_2^+)^\top = AA_2^+$. And $A_1^+A = A_2^+A$ by the similar argument. Then $A_1^+ = A_1^+AA_1^+ = A_1^+AA_2^+ = A_2^+AA_2^+ = A_2^+$.
 - (b) $r(A^+) \le r(A^+AA^+) \le r(A) = r(AA^+A) \le r(A^+)$.
 - (c) If A is symmetric idempotent, it is easy to verify that A itself satisfy the definition of Moore-Penrose inverse. By the uniqueness, $A^+ = A$.