<1> La	place	transform.
--------	-------	------------

> pefinition:
$$\lambda[f(t)] = \overline{f(s)} = \int_{0}^{\infty} e^{-st} \rho(t) dt$$

> LT of standard functions

6> h[sin hat]= a
$$S^{2}-\alpha^{2}$$

7)
$$L[\cosh at J = s]$$

$$s^{2}-a^{2}$$

> First shifting property.

If $L[f(t)] = \overline{f}(s)$ then $L[e^{ak}f(t)] = \overline{f}(s-a)$ Proof:

F(s)= | e-st + (t) dt

: + (s-a) = = = (s-a)t p(t) dt

= 5 e-st+at f(t) df

 $= \int e^{-st} e^{at} f(t) dt = \int e^{at} e^{-st} f(t) dt$

= 5 e-st (eot f(t)) dt

= L [eat f(t)]

7 If cube is given then expand it.

> exponent x pn => solve L[Fn]

then solve L [exp. fo] using first shif.

>	Multiplication	Бу	theorem.
	In general		

> Second shift theorem.

> Division by t theorem.

$$\lim_{t \to \infty} \frac{\partial}{\partial t} = \int_{-\infty}^{\infty} \frac{f(s)}{s} ds.$$

> haplace of derivative.

$$L[f^{h}(t)] = s^{n} F(s) - s^{n-1} f(0) - s^{-2} f'(0)$$

Remember

$$L[f'(r)] = s = (s) - f(0)$$

 $L[f'(t)] = s^2 = f(s) - sf(0) - f'(0)$

> haplace transform of integral-

TP $L[f(t)] = \overline{f(s)}$ then $L[f(t)] = \overline{f(s)}$

Ex.

hit of te-st sin2t dt.

 \Rightarrow

 $\angle \frac{1}{\sin^2 t} = \angle \frac{1 - \cos \frac{t}{2}}{2}$

 $= \frac{1}{2} h \left\{ 1 + \cos t /_2 \right\} - \frac{1}{2} \left[\frac{1}{5} - \frac{5}{5^2 + \frac{t^2}{4}} \right]$

 $= \frac{1}{2} \left[\frac{1}{5} - \frac{4s^2}{4s^2+1} \right]$

 $\frac{1}{2} + \frac{1}{2} + \frac{1}{3} + \frac{1}{3} + \frac{1}{2} + \frac{1}{3} + \frac{1}$

 $\frac{1}{2}$ $\frac{-(s+3)^2}{(s+3)^2}$

Evaluation of integrals using hT . Sy definition $L[f(t)] = \int_{\delta} e^{-st} f(t) dt = \overline{f(s)}$
> for a periodic function $f(t)$ $L[f(t)] = \int_{1-e^{-st}}^{T} e^{-st} f(t) dt$
where $T = \text{period}$. $L \left[H(t-a) \right] = \int_{0}^{\infty} e^{-st} H(t-a) dt$ $= \int_{0}^{\infty} e^{-st} H(t-a) dt + \int_{0}^{\infty} e^{-st} H(t-a) dt$ $= \int_{0}^{\infty} e^{-st} dt = \left[e^{-st} \right] dt$
= 1 e - as 5

		3
	Laplace transform	Inverse laplace trans.
>	LZIJ = 1 5	L-1 [1 [= 1
>	Leat 9: 1	1-17 1 t - eat
>	L[6265 at]= 5	$\frac{1}{(s^2+a^2)} = \frac{7}{(s^2+a^2)}$
>	$A \left[\cosh at \right] = S$ $S^{2}-a^{2}$	$\therefore L^{-1} \left\{ \frac{S}{S^2 - \alpha^2} \right\} = \cosh \alpha l$
>	$\lambda \left[\sin \alpha t \right] : a$ $S^{2} + \alpha^{2}$	$\frac{1}{1} + \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$
>	$A[sinhat] = a$ $s^{2-a^{2}}$	$L = \frac{1}{\sqrt{3^2-a^2}} = \frac{3}{a}$
7	$L = \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
	> Convolution theorem:	4
	١-١ [٩(٤)* ٠٠)]	$= \int_{0}^{\infty} f_{1}(u) f_{2}(t-u) du$
	f,(4) = 1-1 { d, (0) }	$f_2(t) = \lambda^{-1} \left[\phi_2(\omega) \right]$

Let
$$\phi_1(s) = \frac{1}{s + a}$$

$$f_1(t) = \lambda^{-1} \left[\frac{\partial}{\partial x} (S) \right] = \lambda^{-1} \left[\frac{\partial}{\partial x} \right] = e^{-at}$$

$$f_{2}(t) = \lambda^{-1} \left[\phi_{2}(s) \right] = \lambda^{-1} \left[\frac{1}{s} \right] = 1$$

$$= \int_{-\alpha}^{\alpha} e^{-\alpha t} \int_{0}^{1-e^{-\alpha t}} e^{-\alpha t}$$

P	urter series.	
10	CITCI GO.	
7	Parsevel's Identity:	

$$\frac{1}{\lambda} \int \left[f(x) \right]^2 dx = 2 \left(\frac{a_0}{2} \right)^2 + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2 \right)$$

> useful substitutions.

complex variables.

> cortesian form:
$$f(z) = u(x,y) + iv(x,y)$$

Polar form: $f(z) = u(x,0) + iv(x,0)$

Cartesian	Polar.		
$\partial u = \partial V$ $\partial u = -\partial V$	$\frac{\partial u}{\partial v} = \frac{1}{2} \frac{\partial v}{\partial v}, \frac{\partial u}{\partial v} = -\frac{1}{2} \frac{\partial v}{\partial v}$		
ox ay ag	-i@ / - i àv \		

$$f'(z) = \frac{\partial u}{\partial x} + \frac{i}{\partial v} \qquad f'(z) = e^{-i\theta} \left(\frac{\partial u}{\partial x} + \frac{i}{\partial v} \right)$$

-	
	> Harmonic function.
-	Polar Cortesion:
-	$\partial^2 \phi + \partial^2 \phi = 0 - \cdots \phi$ is harmonic f^{\wedge}
1	dx^2 dy^2
The special designation of the last	Polar:
-	
-	$\frac{3^2 d}{3^2} + \frac{1}{3} \frac{3 d}{3^2} + \frac{1}{3^2} \frac{3^2 d}{3^2} = 0$
-	
	Correlation and Regression.
State	> A correlation is a measure of association or
- The second	relation.
	> (ovariance is a measure of joint variation
and transfer or section of	between the two Variables.
-	$cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})$
-	n i=1
-	$\overline{x} = \Sigma x_i$ & $\overline{y} = \Sigma y_i$
- deligible	n n
-	St= COV(XIY) St= Exy-NXY
Section of the sectio	$h = \frac{\omega v(x_1 y)}{6x \cdot 6y} \qquad h = \frac{z_{xy} - N \overline{x} y}{z_{x}^2 - N \overline{x}^2} = \frac{z_{y^2} - N \overline{y}^2}{z_{y^2}^2 - N \overline{y}^2}$
-	
-	> -14 74 41
The special property	
The state of the last	> Spearman's Rank correlation

6 Zdi2 N3-N.

R=

1 -

for non-repeated ranks.

						1.15m3m2	7 1
		r 2	1 [m. 8_m	7+1	m23-m2	1 +1 [m3-m3;	7-1-
0 =	1 -	6 2di	+ 12 111 -10	12			

N8-N

> line of regression of you nis given by

4-4= byx (x-7)

i.e., $y-\bar{y}=\frac{1}{5}$ $\frac{6y}{6x}$ $(x-\bar{x})$, $\frac{6y}{6x}$

r = coefficient of correlation.

similarly of x i.e., line of regression of x on y

> 6xy. byn= 122

> &= ~ bxy.byx.

> $\tan 0 = \frac{1-x^2}{x^2+6y^2}$

> pt. of intersection of regression line is (x, y)

	>
	y on x
	J
	$\Sigma y = na + b \Sigma x$ $\Sigma x = na + b \Sigma y$
	$\Sigma y = na + b \Sigma x$ $\Sigma x = na + b \Sigma y$ $\Sigma xy = a \Sigma x + b \Sigma x^{2}$ $\Sigma xy = a \Sigma y + b \Sigma y^{2}$
	> general line of regression y = a+bx
	> 106
	. 400
	Probability.
	J
	$> P(A) = N_A$
	N
	> If odds in favour of A are a ; b
	then
	P(A) = a
	a+b.
	IF odds against A are a:b
	then
	P(A) = 6
	440
	> Multiplication theorem: P(ANB)= P(A) P(B)
	$= P(B) P\left(\frac{A}{B}\right)$
	P(B() is called as a liberty
	P(B/A) is called as conditional probability of event B given that A has already happened
	Jun 1 has already happened
7	

then A & B are independent events.

$$V[x] = E[x^2] - (E[x])^2$$

Impo.	rtant	for	mula	01
The second secon	and the second s			-

17
$$\cos 2\theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta = \cos^2 \theta - \sin^2 \theta$$

$$\sin a + \sin b = 2 \sin \left(\frac{a+b}{2} \right) \cos \left(\frac{a-b}{2} \right)$$

$$sina - sinb = 2 sin (a-b) cos (a+b)$$

$$\cos \alpha - \cos b = 2\sin \left(\frac{a+b}{2}\right)\sin \left(\frac{b-q}{2}\right)$$

sine series:
$$\sin t = t - t^3 + t^5 - t^7 + t^9 - t^9 + t^9 + t^9 - t^9 + t^9 + t^9 - t^9 + t^9 +$$

		Main regass.
		Main const.
		main meth.
	6>	$e^{-x} = 1 - x + x^2 - x^3 + x^4 - \dots$
		2! 3! 4!
		e2 = 1+x+x2+x3+x1+x
		2! 3! 4! n!
		5
	(۲	$sinht = \left(\frac{e^{t} - e^{-t}}{5}\right)$
		\ 2 /
		4
-	8)	1 1
		1
		7
		3 1 3 3 1
		4 1 4
		5 1 5 10 10 5 1
		6, 6 15 20 15 6 1
		7 1 7 21 35 35 21 7 1
	9>	sin3t = 8sint - sin3t
		cos3t = (cost3 + 3 cost)/4
		tape (3x): (3tanx - tanx3) / 1-8tan2x

classmate

Date _______Page

tan-1
$$\alpha$$
 - tan-1 α = tan-1 α (α - α)

12)
$$f(x) + Q = A + B$$

 $(x-a)(x-b)$ $(x-a)$ $(x-b)$

$$\frac{p(x)+q}{(x-a)^2} = \frac{A}{(x-a)^2} + \frac{B}{(x-a)^2}$$

$$px^{2}+qx+y$$
 = A + B + C
 $(x-a)(x-b)(x-c)$ (x-a) (x-b) (x-c)

$$\frac{p\chi^{2}+q\chi+\chi}{(\chi-a)^{2}(\chi-b)} = \frac{A}{(\chi-a)^{2}} + \frac{B}{(\chi-a)^{2}} + \frac{C}{(\chi-b)}$$

$$px^{2}+qx+r = A + Bx+C$$

$$(x-a)(x^{2}+bx+c) (x-a) x^{2}+bx+c.$$

$$\frac{P(x) + V}{(n^2 + bx + c)(n^2 + dx + e)} = \frac{An + B}{(n^2 + bx + c)(n^2 + dx + e)} + \frac{Cx + D}{(n^2 + dx + e)}$$

$$\frac{1}{2} \tanh^{-1} 0 = \frac{1}{2} \log \left(\frac{1+0}{1-0} \right)$$

14)
$$\int f(x) dx = \int_{-\alpha}^{\alpha} 2 \int f(x) dx \qquad \text{if } f(x) = 0 \text{dot } f^n$$

$$\int_{-\alpha}^{\alpha} f(x) dx = \int_{-\alpha}^{\alpha} 2 \int f(x) dx \qquad \text{if } f(x) = 0 \text{dot } f^n$$

157	$\int e^{ax} \sinh x dx = \frac{e^{ax}}{a^2 + b^2} \left(\frac{a \sin bx - b \cos bx}{a \cos bx + b \sin bx} \right)$
16>	$\int e^{ax}\cos bx dx = \frac{e^{ax}}{a^2+b^2} \left(a\cos bx + b\sin bx\right)$
(דו	extiy = excosy + iexiny
	7
1	