

Zaawansowana analiza danych

Jak przejść z arkuszy Excela do Pythona i R

Tytuł oryginału: Advancing into Analytics: From Excel to Python and R

Tłumaczenie: Filip Kamiński

ISBN: 978-83-283-8551-1

© 2022 Helion S.A.

Authorized Polish translation of the English edition Advancing into Analytics ISBN 9781492094340 © 2021 Candid World Consulting, LLC.

This translation is published and sold by permission of O'Reilly Media, Inc., which owns or controls all rights to publish and sell the same.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz wydawca dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz wydawca nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Helion S.A.

ul. Kościuszki 1c, 44-100 Gliwice tel. 32 231 22 19, 32 230 98 63 e-mail: helion@helion.pl

WWW: https://helion.pl (księgarnia internetowa, katalog książek)

Drogi Czytelniku! Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres https://helion.pl/user/opinie/zaanda Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

Printed in Poland.

- Kup książkę
- Poleć książkę
- Oceń książkę

- Księgarnia internetowa
- Lubię to! » Nasza społeczność

Spis treści

Wpro	/prowadzenie9				
Częś	ć I. Podstawy analizy danych w Excelu	17			
1.	Podstawy eksploracyjnej analizy danych	19			
	Czym jest eksploracyjna analiza danych?	19			
	Obserwacje	21			
	Zmienne	21			
	Przykład: klasyfikacja zmiennych	24			
	Przypomnienie: typy zmiennych	26			
	Eksploracja zmiennych w Excelu	26			
	Eksploracja zmiennych kategorialnych	27			
	Eksploracja zmiennych ilościowych	29			
	Wnioski	40			
	Ćwiczenia	40			
2.	Podstawy prawdopodobieństwa	41			
	Prawdopodobieństwo i losowość	41			
	Prawdopodobieństwo i przestrzeń zdarzeń elementarnych	41			
	Prawdopodobieństwo i eksperymenty	42			
	Prawdopodobieństwo bezwarunkowe i warunkowe	42			
	Rozkłady prawdopodobieństwa	42			
	Dyskretne rozkłady prawdopodobieństwa	43			
	Ciągłe rozkłady prawdopodobieństwa	46			
	Wnioski	53			
	Ćwiczenia	53			

3.	Podstawy wnioskowania statystycznego	. 54
	Ramy wnioskowania statystycznego	54
	Zbierz reprezentatywną próbkę	55
	Sformułuj hipotezy	56
	Stwórz plan analizy	57
	Przeanalizuj dane	59
	Podejmij decyzję	62
	To Twój świat Dane się tylko w nim znajdują	68
	Wnioski	69
	Ćwiczenia	70
4.	Korelacja i regresja	. 71
	Korelacja nie oznacza przyczynowości	71
	Wprowadzenie do korelacji	72
	Od korelacji do regresji	76
	Regresja liniowa w Excelu	78
	Zastanówmy się raz jeszcze — pozorne związki	84
	Wnioski	85
	Przejście do programowania	85
	Ćwiczenia	85
5.	Stos analizy danych	. 87
	Statystyka, analiza danych, nauka o danych	87
	Statystyka	87
	Analiza danych	87
	Analityka biznesowa	88
	Nauka o danych	88
	Uczenie maszynowe	88
	Różne, ale nie rozłączne	89
	Znaczenie stosu analizy danych	89
	Arkusze kalkulacyjne	90
	Bazy danych	92
	Platformy analityki biznesowej	94
	Języki programowania danych	94
	Wnioski	95
	Co dalej	96
	Ćwiczenia	96

Częś	ć II. Z Excela do R	97
6.	Pierwsze kroki w R dla użytkowników Excela	99
	Pobieranie R	99
	Pierwsze kroki w RStudio	99
	Pakiety w R	108
	Aktualizacja pakietów, RStudio i języka R	109
	Wnioski	110
	Ćwiczenia	110
7.	Struktury danych w R	112
	Wektory	112
	Indeksowanie i wybór elementów z wektorów	114
	Od tabel Excela do ramek danych R	115
	Importowanie danych w R	117
	Eksploracja ramki danych	120
	Indeksowanie i wybór elementów z ramek danych	122
	Zapisywanie ramek danych	123
	Wnioski	124
	Ćwiczenia	124
8.	Przetwarzanie i wizualizacja danych w R	125
	Przetwarzanie danych za pomocą dplyr	126
	Operacje kolumnowe	126
	Operacje wierszowe	128
	Agregacja i łączenie danych	131
	dplyr i potęga operatora potoku (%>%)	133
	Przekształcanie danych za pomocą tidyr	135
	Wizualizacja danych w ggplot2	137
	Wnioski	142
	Ćwiczenia	142
9.	R w analizie danych	143
	Eksploracyjna analiza danych	144
	Testowanie hipotez	147
	Test t-Studenta dla prób niezależnych	148
	Regresja liniowa	150
	Podział na zbiór uczący i testowy, walidacja	151
	Wnioski	154
	Ćwiczenia	154

Kup ksi k

Spis treści

Częś	ć III. Z Excela do Pythona	155
10.	Pierwsze kroki w Pythonie dla użytkowników Excela	157
	Pobieranie Pythona	157
	Pierwsze kroki z Jupyterem	158
	Moduły w Pythonie	166
	Aktualizacja pakietów, Anacondy i Pythona	167
	Wnioski	167
	Ćwiczenia	168
11.	Struktury danych w Pythonie	169
	Tablice NumPy	170
	Indeksowanie i wybieranie elementów z tablic NumPy	171
	Ramki danych pandas	172
	Importowanie danych w Pythonie	174
	Eksploracja ramki danych	175
	Indeksowanie i pobieranie wartości z ramek danych	177
	Zapis ramek danych	178
	Wnioski	178
	Ćwiczenia	178
12.	Przetwarzanie i wizualizacja danych w Pythonie	179
	Operacje kolumnowe	180
	Operacje wierszowe	182
	Agregacja i łączenie danych	183
	Przekształcanie danych	185
	Wizualizacja danych	186
	Wnioski	192
	Ćwiczenia	192
13.	Python w analizie danych	193
	Eksploracyjna analiza danych	194
	Testowanie hipotez	196
	Test t-Studenta dla prób niezależnych	196
	Regresja liniowa	197
	Podział zbioru na zbiór treningowy i testowy oraz walidacja modelu	198
	Wnioski	200
	Ćwiczenia	200

4.	Wnioski i kolejne kroki	201
	Kolejne warstwy stosu	203
	Projektowanie badań i eksperymenty biznesowe	201
	Inne metody statystyczne	202
	Nauka o danych i uczenie maszynowe	202
	Kontrola wersji	202
	Etyka	203
	Idź naprzód i ciesz się danymi	203
	Na pożegnanie	203
	Skorowidz	204

Spis treści

Kup ksi k

Spis treści

Przetwarzanie i wizualizacja danych w R

Amerykański statystyk Ronald Thisted zażartował kiedyś, że "surowe dane tak jak surowe ziemniaki zazwyczaj wymagają oczyszczenia przed użyciem". Przygotowanie danych wymaga czasu. Wiesz, co mam na myśli, jeśli kiedykolwiek wykonałeś następujące czynności:

- wybieranie, usuwanie lub tworzenie kolumn obliczeniowych,
- sortowanie lub filtracja wierszy,
- grupowanie i podsumowywanie wartości w grupach,
- łączenie wartości z różnych zbiorów za pomocą wspólnych pól.

Istnieją szanse, że wszystkie te czynności wykonywałeś w Excelu... wiele razy. Prawdopodobnie zgłębiałeś w tym celu tajniki sławnych funkcji, takich jak WYSZUKAJ.PIONOWO(), i tabel przestawnych. W tym rozdziale poznasz odpowiedniki tych narzędzi w R, zwłaszcza z pakietu dplyr.

Z przetwarzaniem danych często łączy się ich wizualizacja. Jak już wspomniałem, ludzie są wyjątkowo dobrzy we wzrokowym przetwarzaniu informacji. Jest to więc świetny sposób na podsumowanie danych. W tym rozdziałe dowiesz się, jak wizualizować dane za pomocą wspaniałego pakietu *ggplot2*, który podobnie jak *dplyr* jest częścią kolekcji *tidyverse*. Da Ci to solidne podstawy do eksploracji i testowania relacji w języku R, które omówię w rozdziałe 9. Zacznij od zaimportowania odpowiednich pakietów. W tym rozdziałe skorzystamy z zestawu danych *star*, który znajdziesz w zbiorze materiałów dołączonych do tej książki (*https://ftp.helion.pl/przyklady/zaanda.zip*). Po załadowaniu bibliotek od razu wczytamy dane:

```
library(tidyverse)
library(readx1)
star <- read excel("dane/star/star.xlsx")</pre>
head(star)
#> # A tibble: 6 x 8
   wynik.mat... wynik.czyt... rodzaj.klasy doświadcz... płeć darmowe... rasa id.szkoły
#>
        <dbl>
                   <dbl> <chr>
                                            <dbl> <chr> <chr> <chr>
#> 1
           473
                       447 mała.klasa
                                                7 dzie… nie
                                                                  biała
#> 2
           536
                       450 mała.klasa
                                                21 dzie… nie
                                                                  czar...
                                                                               20
#> 3
           463
                                                                               19
                       439 standardowa...
                                                 0 chło… tak
                                                                  czar...
#> 4
           559
                       448 standardowa...
                                                16 chło… nie
                                                                  biała
                                                                               69
#> 5
           489
                       447 mała.klasa
                                                 5 chło… tak
                                                                  biała
                                                                               79
#> 6
           454
                       431 standardowa...
                                                8 chło... tak
                                                                  hiała
                                                                                5
```

Kup ksi k Pole ksi k

Przetwarzanie danych za pomocą dplyr

dplyr to popularny pakiet stworzony do przetwarzania tabelarycznych struktur danych. Wiele dostępnych w nim funkcji działa w podobny sposób, a ich wywołania można ze sobą z łatwością łączyć. Tabela 8.1 przedstawia niektóre popularne funkcje z *dplyr* i ich zastosowania. W tym rozdziale omówię każdą z nich.

Tabela 8.1. Popularne funkcje z pakietu dplyr

Nazwa funkcji	Opis
select()	Wybór określonych kolumn
mutate()	Tworzenie nowych kolumn na podstawie istniejących
rename()	Zmiana nazw kolumn
arrange()	Zmiana kolejności wierszy na podstawie określonych kryteriów
filter()	Wybór wierszy na podstawie określonych kryteriów
group_by()	Grupowanie według wybranych kolumn
summarize()	Agregacja wartości w grupach
left_join()	Połączenie odpowiadających sobie rekordów z tabel A i B. Funkcja zwraca NA, jeżeli w tabeli B nie znaleziono pasujących rekordów.

Ze względu na ograniczenia w długości książki nie przedstawię wszystkich funkcji z pakietu *dplyr* ani nie omówię nawet wszystkich sposobów użycia funkcji, które zaprezentuję. Aby dowiedzieć się więcej o tym pakiecie, zajrzyj do książki Hadleya Wickhama i Garretta Grolemunda *Język R. Kompletny zestaw narzędzi dla analityków danych* (Helion, 2017). W RStudio znajdziesz też pomocną ściągawkę, która podsumowuje powiązania pomiędzy funkcjami z pakietu *dplyr*. W RStudio wybierz *Help/Cheatsheets/Data Transformation with dplyr* (pomoc/ściągawki/transformacja danych za pomocą *dplyr*).

Operacje kolumnowe

W Excelu wybieranie i pomijanie kolumn często wymaga ich ukrywania lub usuwania. Takie działania trudno kontrolować i odtwarzać, ponieważ ukryte kolumny można łatwo przeoczyć, a te usunięte nie dają się tak łatwo odzyskać. Do wybrania kolumn z ramki danych w R możesz posłużyć się funkcją select(). Pierwszym argumentem select() (oraz innych omawianych przeze mnie funkcji) jest ramka danych, na której funkcja będzie pracować. Następnie przekazywane są dodatkowe argumenty, którymi w tym przypadku będą nazwy interesujących nas kolumn. W następujący sposób możemy wybrać na przykład kolumny wynik.matematyka, wynik.czytanie, id.szkoły z ramki danych star:

```
select(star, wynik.matematyka, wynik.czytanie, id.szkoły)
#> # A tibble: 5,748 x 3
#>
      wynik.matematyka wynik.czytanie id.szkoły
                 <db1>
                                 <dbl>
                                           <db1>
#>
   1
                   473
                                   447
                                              63
#> 2
                   536
                                   450
                                              20
  3
                   463
                                   439
                                              19
                   559
                                   448
                                              69
  5
                                              79
#>
                   489
                                   447
#>
                   454
                                   431
                                               5
```

126 | Rozdział 8. Przetwarzanie i wizualizacja danych w R

```
#> 7
                 423
                               395
                                           16
#> 8
                  500
                                451
                                           56
#> 9
                  439
                                478
                                           11
#> 10
                  528
                                455
                                           66
#> # ... with 5,738 more rows
```

Za pomocą operatora - możemy pominąć podane w wywołaniu select () kolumny:

```
select(star, -wynik.matematyka, -wynik.czytanie, -id.szkoły)
#> # A tibble: 5.748 x 5
   rodzaj.klasy
                       doświadczenie.nau... płeć
#>
                                                 darmowe.wyż... rasa
#>
    <chr>
                      <dbl> <chr>
                                                 <chr> <chr>
#> 1 mała.klasa
                                      7 dziewczy… nie
#> 2 mała.klasa
                                      21 dziewczy... nie
                                                            czarna
#> 3 standardowa.klasa.z...
                                      O chłopiec tak
                                                             czarna
#> 4 standardowa.klasa
                                      16 chłopiec nie
                                                             biała
#> 5 mała.klasa
                                      5 chłopiec tak
                                                             biała
#> 6 standardowa.klasa
                                      8 chłopiec tak
                                                            biała
#> 7 standardowa.klasa.z...
                                    17 dziewczy… tak
                                                            czarna
#> 8 standardowa.klasa
                                      3 dziewczy… nie
                                                            biała
#> 9 mała.klasa
                                    11 dziewczy… nie
                                                            czarna
                                     10 dziewczy… nie
#> 10 mała.klasa
                                                            biała
#> # ... with 5,738 more rows
```

Bardziej elegancką alternatywą jest przekazanie wszystkich niechcianych kolumn w wektorze, który *następnie* pominiemy:

```
select(star, -c(wynik.matematyka, wynik.czytanie, id.szkoły))
#> # A tibble: 5,748 x 5
#>
    rodzaj.klasy
                       doświadczenie.nau... płeć
                                                  darmowe.wyż... rasa
                                                  <chr>
#>
     <chr>
                         <dbl> <chr>
                                                               <chr>
#> 1 mała.klasa
                                                             biała
                                        7 dziewczy… nie
#> 2 mała.klasa
                                       21 dziewczy… nie
                                                             czar...
#> 3 standardowa.klasa.z...
                                       O chłopiec tak
#> 4 standardowa.klasa
                                      16 chłopiec nie
                                                             biała
#> 5 mała.klasa
                                       5 chłopiec tak
                                                             biała
#> 6 standardowa.klasa
                                       8 chłopiec tak
                                                             biała
                                       17 dziewczy… tak
#> 7 standardowa.klasa.z...
                                                              czar
#> 8 standardowa.klasa
                                       3 dziewczy… nie
                                                              biała
#> 9 mała.klasa
                                       11 dziewczy… nie
                                                             czar...
#> 10 mała.klasa
                                       10 dziewczy… nie
```

Pamiętaj, że w poprzednich przykładach po prostu wywoływałem funkcje. Nie przypisaliśmy rezultatu do żadnego obiektu.

Innym sposobem na skrócenie wywołania select() jest użycie operatora:, który pozwala wybrać wszystkie kolumny znajdujące się pomiędzy dwoma podanymi w wywołaniu kolumnami włącznie. Tym razem przypiszę wyniki do obiektu star. Poniżej wybieram wszystkie kolumny od wynik.matematyka do doświadczenie.nauczyciela włącznie:

```
star <- select(star, wynik.matematyka:doświadczenie.nauczyciela)
head(star)
#> # A tibble: 6 x 4
#> wynik.matematyka wynik.czytanie rodzaj.klasy doświadczenie.nauczyciela
#>
          <dbl> <dbl> <chr>
                                                                      <fdh>>
#> 1
              473
                            447 mała.klasa
                                                                         7
#> 2
              536
                            450 mała.klasa
                                                                         21
#> 3
               463
                            439 standardowa.klasa.z...
                                                                          0
```

Kup ksi k

#>	4	559	448 standardowa.klasa 1	6
#>	5	489	447 mała.klasa	5
#>	6	454	431 standardowa.klasa	8

Prawdopodobnie tworzyłeś kiedyś w Excelu kolumny obliczeniowe. W R możesz je stworzyć za pomocą funkcji mutate(). Stwórzmy kolumnę nowa_kolumna, która będzie zawierała łączny wynik testów z matematyki i czytania. W wywołaniu funkcji mutate() *najpierw* podaje się nazwę nowej kolumny, potem znak równości, a na końcu formułę do obliczania. W formule możesz odwoływać się do innych kolumn z ramki danych:

```
star <- mutate(star, nowa_kolumna = wynik.matematyka + wynik.czytanie)
head(star)
#> # A tibble: 6 x 5
#> wynik.matematyka wynik.czytanie rodzaj.klasy
                                                doświadcz... nowa kolumna
             <db1>
                                                    <db1>
                          <dbl> <chr>
#> 1
               473
                           447 mała.klasa
                                                        7
                                                                      920
#> 2
                            450 mała.klasa
                                                         21
              536
                                                                      986
                            439 standardowa.klasa.z...
#> 3
               463
                                                         0
                                                                      902
#> 4
               559
                           448 standardowa.klasa
                                                        16
                                                                     1007
                                                         5
#> 5
               489
                           447 mała.klasa
                                                                      936
#> 6
                454
                                                         8
                           431 standardowa.klasa
                                                                      885
```

Funkcja mutate() ułatwia tworzenie bardziej złożonych obliczeniowych kolumn, takich jak kolumny zawierające wyniki przekształcenia logarytmicznego lub zmienne opóźnione. Zajrzyj do dokumentacji, aby uzyskać więcej informacji.

Nazwa nowa_kolumna nie jest szczególnie przydatną nazwą dla łącznego wyniku z testu. Na szczęście istnieje funkcja rename(), która zmienia nazwy. W drugim argumencie tej funkcji umieszcza się nową nazwę kolumny, która zastąpi starą:

```
star <- rename(star, łączny.wynik = nowa kolumna)
head(star)
#> # A tibble: 6 x 5
#> wynik.matematyka wynik.czytanie rodzaj.klasy
                                               dowiadcz... łączny.wynik
       <dbl> <dbl> <chr>
                                                 <dbl> <dbl>
#>
#> 1
             473
                          447 mała.klasa
                                                      7
                                                                  920
#> 2
             536
                          450 mała.klasa
                                                     21
                                                                  986
#> 3
                                                      0
             463
                          439 standardowa.klasa.z...
                                                                  902
              559
                          448 standardowa.klasa
#> 4
                                                     16
                                                                 1007
#> 5
              489
                          447 mała.klasa
                                                      5
                                                                  936
                                                      8
#> 6
              454
                          431 standardowa.klasa
                                                                  885
```

Operacje wierszowe

128

Do tej pory operowaliśmy na *kolumnach*. Teraz skupimy się na *wierszach*, zwłaszcza na ich sortowaniu i filtrowaniu. W Excelu sortowanie według wielu kolumn możemy przeprowadzić za pomocą menu *Sortowanie*. Załóżmy na przykład, że chcielibyśmy posortować tę ramkę danych rosnąco według kolumny rodzaj.klasy, a następnie wynik.czytanie. Odpowiednie ustawienia w menu sortowania w Excelu pokazano na rysunku 8.1.

W R możemy to zrobić za pomocą funkcji arrange() z pakietu *dplyr*. Nazwy kolumn, według których ma się odbyć sortowanie, podaje się w kolejności, w jakiej chce się posortować ramkę danych:

Rysunek 8.1. Menu Sortowanie w Excelu

```
arrange(star, rodzaj.klasy, wynik.czytanie)
#> # A tibble: 5,748 x 5
#>
      wynik.matematyka wynik.czytanie rodzaj.klasy doświadczenie... łączny.wynik
#>
                 <dbl>
                               <db1> <chr>
                                                            <dbl>
#> 1
                                                               15
                                                                           782
                  412
                                 370 mała.klasa
#> 2
                  434
                                 376 mała.klasa
                                                               11
                                                                           810
#> 3
                  423
                                 378 mała.klasa
                                                               6
                                                                           801
#>
  4
                  405
                                                               8
                                                                           783
                                 378 mała.klasa
#>
  5
                                  380 mała.klasa
                                                               19
                  384
                                                                           764
#>
   6
                  405
                                  380 mała.klasa
                                                               15
                                                                           785
#>
   7
                  439
                                  382 mała.klasa
                                                               8
                                                                           821
#>
                   384
                                                               10
   8
                                  384 mała.klasa
                                                                           768
#>
  9
                  405
                                  384 mała.klasa
                                                               8
                                                                           789
                                                               21
#> 10
                   423
                                  384 mała.klasa
                                                                           807
#> # ... with 5,738 more rows
```

Nazwę kolumny, względem której chcemy posortować wyniki w porządku malejącym, możemy umieścić w wywołaniu funkcji desc():

```
# Sortujemy malejąco według kolumny rodzaj.klasy i rosnąco według kolumny wynik.czytanie
arrange(star, desc(rodzaj.klasy), wynik.czytanie)
#> # A tibble: 5,748 x 5
#>
      wynik.matematyka wynik.czytanie rodzaj.klasy
                                                              doświadczenie... łączny.wynik
#>
                 <db1>
                                 <dbl> <chr>
                                                                                             <db1>
<db1>
#> 1
                                   372 standardowa.klasa.z...
                                                                                        790
                    418
                                   374 standardowa.klasa.z...
#> 2
                   399
                                                                           11
                                                                                       773
                                                                                       773
#> 3
                   399
                                   374 standardowa.klasa.z....
                                                                           2
                                                                           7
#> 4
                   354
                                   374 standardowa.klasa.z...
                                                                                       728
  5
#>
                   354
                                   376 standardowa.klasa.z...
                                                                           5
                                                                                        730
                                                                           7
#>
   6
                   405
                                    376 standardowa.klasa.z...
                                                                                        781
                                    376 standardowa.klasa.z...
#>
   7
                   444
                                                                           3
                                                                                        820
#> 8
                   399
                                                                           14
                                   378 standardowa.klasa.z...
                                                                                       777
                                                                           7
#> 9
                   418
                                   378 standardowa.klasa.z...
                                                                                       796
#> 10
                    399
                                   380 standardowa.klasa.z...
                                                                           11
                                                                                       779
#> # ... with 5,738 more rows
```

Tabele Excela zawierają pomocne menu rozwijane do filtrowania wartości w dowolnej kolumnie według zadanych warunków. W R do przefiltrowania ramki danych wykorzystamy, trafnie nazwaną, funkcję filter(). Przefiltrujmy dane w zbiorze star i zachowajmy tylko te rekordy, w których rodzaj.klasy jest równy mała.klasa. Pamiętaj, że sprawdzamy równość, a nie przypisujemy wartości do obiektów, dlatego korzystamy z ==, a nie z =:

Kup ksi k

```
filter(star, rodzaj.klasy == 'mała.klasa')
#> # A tibble: 1,733 x 5
#>
     wynik.matematyka wynik.czytanie rodzaj.klasy
                                                     doświadczenie...
                                                                      łączny.wynik
                <db1>
                          <db1> <chr>
                                                              <db1>
                                                                             <db1>
                  473
                                 447 mała.klasa
                                                                               920
#>
   1
                                                                  7
                  536
                                450 mała.klasa
#> 2
                                                                 21
                                                                               986
#> 3
                  489
                                 447 mała.klasa
                                                                  5
                                                                               936
#> 4
                  439
                                 478 mała.klasa
                                                                 11
                                                                               917
#> 5
                  528
                                 455 mała.klasa
                                                                 10
                                                                               983
#>
   6
                  559
                                 474 mała.klasa
                                                                 0
                                                                              1033
   7
                  494
                                                                  6
                                 424 mała.klasa
                                                                               918
#> 8
                  478
                                                                  8
                                 422 mała.klasa
                                                                               900
#> 9
                  602
                                                                 14
                                                                              1058
                                 456 mała.klasa
#> 10
                                 418 mała.klasa
                                                                  8
                                                                               857
#> # ... with 1,723 more rows
```

W wyniku widzimy, że wywołanie filter() wpłynęło *tylko* na liczbę wierszy. Liczba kolumn *nie* zmieniła się. Znajdźmy teraz rekordy, w których wynik testu z matematyki wynosi co najmniej 500 pkt:

```
filter(star, wynik.czytanie >= 500)
#> # A tibble: 233 x 5
#>
      wynik.matematyka wynik.czytanie rodzaj.klasy
                                                           doświadczenie... łączny.wynik
#>
                              <dbl> <chr>
                                                                   <fdb>>
                 <fdb>>
                                                                                  <fdb>>
#>
   1
                   559
                                  522 standardowa.klasa
                                                                         8
                                                                                   1081
#> 2
                   536
                                  507 standardowa.klasa.z...
                                                                         3
                                                                                   1043
                                                                         9
#>
   3
                   547
                                  565 standardowa.klasa.z...
                                                                                   1112
                                                                        7
#>
  Δ
                   513
                                  503 mała.klasa
                                                                                   1016
#> 5
                   559
                                  605 standardowa.klasa.z...
                                                                        5
                                                                                   1164
                                  554 standardowa.klasa
                                                                       14
                   559
                                                                                   1113
#> 7
                   559
                                                                       10
                                  503 standardowa.klasa
                                                                                   1062
#> 8
                   602
                                                                       12
                                  518 standardowa.klasa
                                                                                   1120
#> 9
                   536
                                  580 mała.klasa
                                                                        12
                                                                                   1116
#> 10
                   626
                                  510 mała.klasa
                                                                        14
                                                                                   1136
#> # ... with 223 more rows
```

Możliwe jest również filtrowanie według wielu kryteriów. Możesz to tego celu wykorzystać operator & (*i*) i operator | (*lub*). Połączmy nasze dwa poprzednie kryteria za pomocą operatora &:

```
# Pobieramy rekordy dotyczące małych klas, w których wynik.czytanie wynosi co najmniej 500
filter(star, rodzaj.klasy == 'mała.klasa' & wynik.czytanie >= 500)
#> # A tibble: 84 x 5
      wynik.matematyka wynik.czytanie rodzaj.klasy doświadczenie... łączny.wynik
#>
                                                             <db1>
                 <db1>
                               <dbl> <chr>
                                                                            <fdb>>
                                                                             1016
   1
                   513
                                  503 mała.klasa
                                                                 7
                                                                 12
#> 2
                                  580 mała.klasa
                   536
                                                                             1116
#>
   3
                   626
                                                                 14
                                                                             1136
                                  510 mała.klasa
#>
                   602
                                  518 mała.klasa
                                                                 3
                                                                             1120
  5
                                                                14
#>
                   626
                                  565 mała.klasa
                                                                             1191
                                                               14
#> 6
                   602
                                  503 mała.klasa
                                                                             1105
#> 7
                   626
                                  538 mała.klasa
                                                               13
                                                                             1164
#> 8
                   500
                                  580 mała.klasa
                                                                 8
                                                                             1080
#> 9
                   489
                                                               19
                                  565 mała.klasa
                                                                             1054
                                                                19
#> 10
                   576
                                  545 mała.klasa
                                                                             1121
#> # ... with 74 more rows
```

Kup ksi k

Rozdział 8. Przetwarzanie i wizualizacja danych w R

Agregacja i łączenie danych

Lubię nazywać tabele przestawne mianem "WD-40 Excela", ponieważ ułatwiają one analizę danych, umożliwiając ich "obracanie" w różnych kierunkach. W ramach przykładu odtwórz tabelę przestawną z rysunku 8.2. Pokazuje ona średni wynik z matematyki w zależności od wielkości klasy (zbiór danych *star*).

 Agregacja/grupowanie według rodzaj.klasy 	Podsumowanie za pomocą średniej z wynik.matematyka
Etykiety wierszy	, Średnia z wynik.matematyka
mała.klasa	491,4702827
standardowa.klasa	483,261
standardowa.klasa.z.nauczycielem.wspomagającym	483,0099256
Suma końcowa	485.6480515

Rysunek 8.2. Jak działają tabele przestawne w Excelu

Jak pokazuje rysunek 8.2, tabela przestawna składa się z dwóch elementów. Najpierw zagregowałem dane według zmiennej rodzaj.klasy, a następnie podsumowałem wyniki za pomocą średniej z wynik.matematyka. W R to samo można osiągnąć w kilku krokach za pomocą kilku funkcji z pakietu *dplyr*. Najpierw zagregujemy dane za pomocą funkcji group_by(). W danych wyjściowych znajduje się linia # Groups: rodzaj.klasy [3] wskazująca, że zawartość obiektu star_grouped została podzielona na trzy grupy według wartości zmiennej rodzaj.klasy:

```
star grouped <- group by(star, rodzaj.klasy)
head(star grouped)
#> # A tibble: 6 x 5
#> # Groups:
              rodzaj.klasy [3]
   wynik.matematyka wynik.czytanie rodzaj.klasy
                                                           doświadczenie... łączny.wynik
#>
                <db1>
                               <dbl> <chr>
                                                                     <dbl>
#> 1
                  473
                                  447 mała.klasa
                                                                        7
                                                                                     920
#> 2
                  536
                                  450 mała.klasa
                                                                        21
                                                                                     986
#> 3
                                                                        0
                  463
                                  439 standardowa.klasa.z...
                                                                                     902
#> 4
                  559
                                                                        16
                                                                                    1007
                                  448 standardowa.klasa
#> 5
                  489
                                  447 mała.klasa
                                                                         5
                                                                                     936
                                  431 standardowa.klasa
                                                                                     885
```

Pogrupowaliśmy nasze dane według jednej zmiennej. Teraz *podsumujmy* je za pomocą funkcji summarize() (możesz też skorzystać z summarise()). Musimy określić nazwę wynikowej kolumny oraz sposób obliczania jej wartości. W tabeli 8.2 wymieniono niektóre typowe funkcje agregacyjne.

Funkcja	Rodzaj agregacji
sum()	Suma
n()	Liczba wartości
mean()	Średnia
max()	Maksimum
min()	Minimum
sd()	Odchylenie standardowe

Średni wynik z matematyki według rozmiaru klasy można otrzymać poprzez wywołanie summarize() na naszej zgrupowanej ramce danych:

Poza pewnymi różnicami w formatowaniu wyniki te nie odbiegają od tych z rysunku 8.2.

Jeśli tabele przestawne są WD-40 Excela, to funkcja WYSZUKAJ.PIONOWO() jest jego taśmą klejącą, która pozwala na łatwe łączenie danych pochodzących z wielu źródeł. W oryginalnym zbiorze star id.szkoły jest identyfikatorem okręgu (dystryktu) szkolnego. Pominęliśmy tę kolumnę we wcześniejszej części tego rozdziału. Wczytajmy ją więc ponownie. Co by było, gdybyśmy oprócz identyfikatora chcieli poznać nazwy okręgów? Na szczęście mamy plik districts.csv, który zawiera te informacje. Wczytajmy więc oba pliki i opracujmy strategię ich połączenia:

```
star <- read excel('dane/star/star.xlsx')</pre>
head(star)
#> # A tibble: 6 x 8
#> wynik.mat... wynik.czyt... rodzaj.klasy doświadcz... płeć darmowe.wyż... rasa id.szkoły
       <dbl> <dbl> <chr> <dbl> <dbl >
#>
         473
#> 1
                     447 mała.klasa
                                               7 dzie… nie
                                                                    biała
                                                                                63
#> 2
          536
                     450 mała.klasa
                                              21 dzie… nie
                                                                   czar...
                                                                                 20
#> 3
          463
                     439 standardowa...
                                               0 chło… tak
                                                                                19
                                                                    czar...
                     448 standardowa...
          559
#> 4
                                              16 chło… nie
                                                                   biała
                                                                                 69
          489
#> 5
                     447 mała.klasa
                                                                                 79
                                                5 chło… tak
                                                                    biała
#> 6
          454
                      431 standardowa...
                                                8 chło… tak
                                                                     biała
districts <- read csv('dane/star/okręgi.csv')</pre>
#> --- Column specification -
#> cols(
    id.szkoły = col_double(),
    nazwa szkoły = col character(),
#>
    hrabstwo = col character()
#>)
head(districts)
#> # A tibble: 6 x 3
#> id.szkoły nazwa szkoły hrabstwo
      <dbl> <chr>
#>
                             <chr>
#> 1
         1 Rosalia
                            New Liberty
#> 2
           2 Montgomeryville Topton
          3 Davy Wahpeton
4 Steelton Palestin
#> 3
#> 4
                             Palestine
           6 Tolchester
#> 5
                            Sattley
          7 Cahokia
                            Sattley
```

Wygląda na to, że potrzebny nam będzie odpowiednik funkcji WYSZUKAJ.PIONOWO(). Na podstawie wartości id.szkoły chcemy dopasować wartości zmiennej nazwa_szkoły (i ewentualnie hrabstwo) ze zbioru *okręgi.csv* do danych ze zbioru *star*. W R wykorzystuje się do tego celu koncepcję *złączenia*, która pochodzi z relacyjnych baz danych — tematu, o którym wspomniałem w rozdziale 5. Najbliższym

Kup ksi k Pole ksi k

odpowiednikiem funkcji WYSZUKAJ.PIONOWO() jest złączenie lewostronne zewnętrzne, które w *dplyr* można wykonać za pomocą funkcji left_join(). W wywołaniu najpierw umieszcza się tabelę podstawową (star), a następnie tabelę, w której należy szukać dopasowań (districts). Funkcja znajdzie i zwróci dopasowanie (lub wartość NA w przypadku jego braku) dla każdego rekordu w zbiorze *star*. Aby zmniejszyć ilość informacji w konsoli, zachowam jedynie niektóre kolumny ze zbioru *star*:

```
# Złączenie lewostronne zewnętrzne tabel star i districts
left join(select(star, id.szkoły, wynik.matematyka, wynik.czytanie), districts)
#> Joining, by = "id.szkoły"
#> # A tibble: 5,748 x 5
#>
     id.szkoły wynik.matematyka wynik.czytanie nazwa szkoły
                                                                 hrabstwo
                                          <dbl> <chr>
#>
         <fdb>>
                           <fdb>>
                                                                 <chr>
#> 1
                             473
                                            447 Ridgeville
                                                                 New Liberty
#>
   2
             20
                             536
                                            450 South Heights
                                                                 Selmont 

#> 3
            19
                             463
                                            439 Bunnlevel
                                                                 Sattley
#> 4
             69
                             559
                                            448 Hokah
                                                                 Gallipolis
#> 5
             79
                             489
                                            447 Lake Mathews
                                                                 Sugar Mountain
#> 6
             5
                             454
                                            431 NA
#> 7
             16
                             423
                                            395 Calimesa
                                                                 Selmont
#> 8
             56
                             500
                                            451 Lincoln Heights Topton
#> 9
             11
                             439
                                            478 Moose Lake
                                                                 Imbery
#> 10
             66
                             528
                                            455 Siglerville
                                                                 Summit Hill
#> # ... with 5,738 more rows
```

Funkcja left_join() jest całkiem sprytna. Sama "domyśliła się", że złączenia należy dokonać na podstawie id.szkoły, i dołączyła do wyniku nie tylko nazwę szkoły, ale także hrabstwo. Aby dowiedzieć się więcej o łączeniu danych, zapoznaj się z dokumentacją.

W R brakujące obserwacje są reprezentowane przez specjalną wartość NA. Wydaje się, że funkcji nie udało się znaleźć na przykład dopasowania dla nazwy szkoły w piątym okręgu. W przypadku WYSZUKAJ. →PIONOWO() spowodowałoby to błąd #N/A. Wartość NA *nie* oznacza, że obserwacja jest równa zeru, a jedynie brak wartości. Podczas programowania w R możesz napotkać także inne specjalne wartości, takie jak NaN lub NULL. Więcej informacji na ich temat znajdziesz w dokumentacji.

dplyr i potęga operatora potoku (%>%)

Jak zaczynasz zauważać, funkcje z pakietu *dplyr* to potężne i intuicyjne narzędzie dla każdego, kto kiedyś pracował z danymi, w tym w Excelu. Jak wie każdy, kto pracował z danymi, rzadko udaje się przygotować je w jednym kroku. W ramach przykładu rozważ typowe zadanie analizy danych, które możesz wykonać na zbiorze *star*:

Znajdź średnie wyniki testu czytania w poszczególnych rodzajach klas. Posortuj je malejąco.

Wiedząc co nieco o pracy z danymi, możemy podzielić to zadanie na trzy kroki:

- 1. Pogrupuj dane według rodzaju klasy.
- 2. Znajdź średnią z testu czytania w każdej grupie.
- 3. Posortuj wyniki od najwyższego do najniższego.

Z pomocą pakietu *dplyr* możemy to zrobić mniej więcej tak:

```
star_grouped <- group_by(star, rodzaj.klasy)
star_avg_reading <- summarize(star_grouped, $rednia.z.czytania = mean(wynik.czytanie))</pre>
```

Kup ksi k

W końcu otrzymaliśmy odpowiedź, ale jej znalezienie wymagało sporej liczby kroków i może być trudne do powtórzenia w przypadku innych nazw obiektów i użycia innych funkcji. Alternatywą jest połączenie kolejnych wywołań funkcji za pomocą operatora %>% zwanego **operatorem potoku** (ang. *pipe*). Pozwala on na przekazanie danych wyjściowych z jednej funkcji bezpośrednio do drugiej. Dzięki temu jesteśmy w stanie uniknąć ciągłego zmieniania nazw danych wejściowych i wyjściowych. Domyślny skrót klawiaturowy tego operatora to Ctrl+Shift+M w systemie Windows i Cmd+Shift+M na Macu.

Odtwórzmy poprzednie kroki za pomocą operatora potoku. Każdą funkcję umieść w osobnym wierszu. Połącz wiersze za pomocą %>%. Chociaż umieszczanie każdego kroku w osobnej linii nie jest konieczne, często preferuje się je ze względu na czytelność. Podczas prac z operatorem potoku nie ma również konieczności zaznaczania całego bloku kodu przed uruchomieniem. Po prostu umieść kursor w dowolnym miejscu poniższego kodu, aby go uruchomić:

Brak konieczności uwzględniania danych w wywołaniu każdej funkcji może być na początku trochę dezorientujący, ale porównaj ostatni listing z poprzednim, a zobaczysz, o ile wydajniejsze może być to podejście. Co więcej, operator potoku może być używany również z funkcjami spoza pakietu *dplyr*. Jako przykład wypiszmy kilka pierwszych wierszy z wyniku. Aby to zrobić, umieść wywołanie head() na końcu potoku:

```
# Średnia z czytania i matematyki w każdym okręgu
star %>%
   group by(id.szkoły) %>%
   summarise(średnia.z.czytania = mean(wynik.czytanie), średnia.z.matematyki = mean
   →(wynik.matematyka)) %>%
   arrange(id.szkoły) %>%
  head()
#> # A tibble: 6 x 3
#> id.szkoły średnia.z.czytania średnia.z.matematyki
#>
        <db1>
                          <fdb>>
                                                <db1>
#> 1
          1
                            444.
                                                  492.
         2
#> 2
                            407.
                                                  451.
#> 3
                            441
                                                  491.
#> 4
            4
                            422.
                                                  468.
#> 5
            5
                            428.
                                                  460.
#> 6
            6
                             428.
                                                  470.
```

134 | Rozdział 8. Przetwarzanie i wizualizacja danych w R

Kup ksi k Pole ksi k

Przekształcanie danych za pomocą tidyr

Chociaż prawdą jest, że funkcje group_by() i summarize() pełnią rolę odpowiedników tabeli przestawnej w R, to funkcje te nie potrafią zrobić wszystkiego, co potrafi tabela przestawna w Excelu. Co by było, gdybyś poza agregacją chciał zmienić *kształt* danych lub układ wierszy i kolumn? Ramka danych star zawiera na przykład oddzielne kolumny dla wyników testu z matematyki i czytania (są to odpowiednio: wynik.matematyka i wynik.czytanie). Chciałbym połączyć je w jedną kolumnę o nazwie wynik i dodać do danych kolumnę rodzaj.testu, która wskazywałaby, czy obserwacja dotyczy wyniku z matematyki, czy z czytania. Chciałbym również pozostawić w danych kolumnę id.szkoły.

Na rysunku 8.3 pokazano jeden z możliwych sposobów realizacji tych zmian w Excelu. Zauważ, że zmieniłem nazwy pól z obszaru *Wartości* na czytanie i matematyka. Jeśli chcesz dokładniej przyjrzeć się tej tabeli, to znajdziesz ją w pliku *r08.xlsx*, który znajduje się w materiałach dołączonych do książki (*https://ftp.helion.pl/przyklady/zaanda.zip*). W tym przykładzie ponownie skorzystałem z kolumny indeksu. W przypadku jej braku tabela przestawna próbowałaby "zwinąć" wszystkie wartości na podstawie id.szkoły.

	Α	В	С	D	-
1					
2					
3	id	id.szkoły	Wartości	Suma	
4	81	63	czytanie	447	
5	1	63	matematyka	473	
6	■2	20	czytanie	450	
7	2	20	matematyka	536	
8	■3	19	czytanie	439	
9	3	19	matematyka	463	
10	⊟4	69	czytanie	448	
11	4	69	matematyka	559	
12	■ 5	79	czytanie	447	

Rysunek 8.3. Zmiana kształtu danych star w Excelu

Do zmiany kształtu danych w R możesz wykorzystać pakiet *tidyr* stanowiący rdzeń kolekcji *tidyverse*. Podobnie jak w Excelu, dodanie kolumny z indeksem ułatwi zmianę kształtu danych. Kolumnę z indeksem możesz dodać za pomocą funkcji row number():

Do zmiany kształtu ramki danych wykorzystamy funkcje pivot_longer() i pivot_wider(). Obie pochodzą z pakietu *tidyr*. Spójrz na rysunek 8.3 i zastanów się, co stało się z naszym zbiorem danych, gdy połączyliśmy wyniki z matematyki i czytania w jedną kolumnę. Czy zbiór danych wydłużył się, czy

rozszerzył? W tym przypadku dodaliśmy do niego wiersze, a więc nasz zbiór danych wydłużył się. W wywołaniu pivot_longer() za pomocą argumentu cols musimy określić, o które kolumny chcemy wydłużyć dane. Nazwę wynikowej kolumny określa się w argumencie values_to. Argument names_to pozwala nazwać kolumnę, która będzie wskazywała, czy dany wiersz odnosi się do wyniku z matematyki, czy z czytania:

```
star long <- star pivot %>%
                   pivot longer(cols = c(wynik.matematyka, wynik.czytanie),
                                   values_to = 'wynik', names_to = 'rodzaj.testu')
head(star long)
#> # A tibble: 6 x 4
                                         wynik
#> id.szkoły id rodzaj.testu
#>
         <dbl> <int> <chr>
                                            <db1>
         63 1 wynik.matematyka 473
#> 1
      63 1 wynik.czytanie 447
20 2 wynik.matematyka 536
20 2 wynik.czytanie 450
19 3 wynik.matematyka 463
19 3 wynik.czytanie 439
#> 2
#> 3
#> 4
#> 5
#> 6
```

Świetna robota. Ale czy istnieje sposób, aby zmienić nazwy wynik.matematyka i wynik.czytanie na matematyka i czytanie? Otóż tak. W tym celu należy skorzystać z recode() — kolejnej pomocnej funkcji z pakietu dplyr, którą można zastosować wraz z mutate(). Funkcja recode() działa nieco inaczej niż inne funkcje z tego pakietu. W jej przypadku nazwy "starych" wartości umieszcza się przed znakiem równości. Po znaku równości umieszcza się nowe nazwy. Za pomocą funkcji distinct() z dplyr możesz potwierdzić, że wszystkie wiersze zostały nazwane matematyka lub czytanie:

Po wydłużeniu ramki danych za pomocą funkcji pivot_wider() możemy ją ponownie rozszerzyć. Tym razem w argumencie values_from określę, z której kolumny mają pochodzić wartości dla nowo powstałych kolumn. Nazwy nowych kolumn zostaną pobrane z kolumny, której nazwa zostanie przekazana funkcji w argumencie names from:

```
star wide <- star long %>%
               pivot wider(values from = 'wynik', names_from = 'rodzaj.testu')
head(star wide)
#> # A tibble: 6 x 4
#> id.szkoły id matematyka czytanie
#>
      <dbl> <int> <dbl> <dbl> <dbl>
#> 1
         63 1
                       473
                                 447
        20 2
19 3
69 4
79 5
#> 2
                       536
                                 450
#> 3
                        463
                                 439
                       559
#> 4
                                 448
#> 5
                        489
                                 447
         5 6
#> 6
                         454
                                 431
```

Kup ksi k Pole ksi k

Zmiana kształtu danych w R jest dość trudna. Jeśli masz wątpliwości, zadaj sobie pytania: "Czy rozszerzam, czy wydłużam dane? Jak zrobiłbym to w tabeli przestawnej?". Znacznie uprościsz sobie kodowanie, jeśli będziesz potrafił logicznie przejść przez etapy niezbędne do osiągnięcia stanu końcowego.

Wizualizacja danych w ggplot2

Pakiet *dplyr* oferuje znacznie większe możliwości manipulacji danymi, ale na razie skupmy się na wizualizacji danych. Zwłaszcza za pomocą pakietu *ggplot2*, który jest kolejnym elementem kolekcji *tidyverse*. Pakiet *ggplot2*, wzorowany na opracowanej przez Lelanda Wilkinsona *gramatyce grafiki* i zawdzięczający jej swą nazwę, oferuje uporządkowane podejście do tworzenia wykresów, które odwzorowuje sposób, w jaki elementy mowy łączą się w zdanie (stąd słowo "gramatyka" w nazwie).

W tym podrozdziale omówię niektóre z podstawowych elementów i rodzajów wykresów, które są dostępne w ggplot2. Więcej informacji na temat pakietu znajdziesz w książce ggplot2: Elegant Graphics for Data Analysis autorstwa twórcy tego pakietu, Hadleya Wickhama (Springer, 2009). W RStudio znajdziesz również ściągawkę ułatwiającą pracę z tym pakietem. Aby się z nią zapoznać, wybierz Help/Cheatsheets/Data Visualization with ggplot2 (pomoc/ściągawki/wizualizacja danych za pomocą ggplot2). Niektóre z ważnych elementów pakietu przedstawiłem w tabeli 8.3. Dostępne są też inne. Aby uzyskać więcej informacji, zajrzyj do wymienionych powyżej materiałów.

Tabela 8.3. Podstawowe elementy w ggplot2

Element	Opis
data	Źródło danych
aes	Odwzorowanie danych na elementy wizualne (osie x i y , kolor, rozmiar itd.)
geom	Typ obiektu geometrycznego obserwowany na wykresie (linie, słupki, kropki itd.)

Zwizualizujmy liczby obserwacji dla każdego rodzaju klasy w postaci wykresu słupkowego. Zacznijmy od funkcji ggplot (). W jej wywołaniu musimy określić trzy elementy opisane w tabeli 8.3:

- 1 W argumencie data określa się źródło danych.
- **2** Odwzorowanie danych na elementy wizualne określa się za pomocą funkcji aes (). W tym miejscu odwzorowujemy kolumnę rodzaj.klasy w oś *x* wynikowego wykresu.
- 3 Znając dane i ich odwzorowanie na elementy, za pomocą funkcji geom_bar() na wykresie umiesz-czamy wybrany obiekt geometryczny. Wyniki przedstawiono na rysunku 8.4.

Tak jak w przypadku operatora potoku, zapisywanie każdego działania w osobnej linii nie jest konieczne, ale często preferowane ze względu na czytelność. Możliwe jest również uruchomienie całego kodu tworzącego wykres poprzez umieszczenie kursora w dowolnym miejscu bloku kodu i uruchomienie wykonania.

Kup ksi k

Rysunek 8.4. Wykres słupkowy w ggplot2 (angielski opis osi y został wygenerowany automatycznie i wynika ze specyfiki działania pakietu ggplot2; o tym, jak go zmienić, dowiesz się w dalszej części tego rozdziału)

Dzięki modułowemu podejściu łatwo jest modyfikować wizualizacje tworzone za pomocą *ggplot2*. Możemy na przykład zmienić nasz wykres na histogram wyników testu z czytania. Wystarczy zmienić wartości na osi *x* i wykreślić wyniki za pomocą funkcji geom_histogram(). Powstanie w ten sposób histogram pokazany na rysunku 8.5:

```
ggplot(data = star,aes(x = wynik.czytanie))+
  geom_histogram()
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Rysunek 8.5. Histogram w ggplot2

Kup ksi k Pole ksi k

Wykresy tworzone za pomocą *ggplot2* można dostosowywać na wiele sposobów. Być może zauważyłeś, że komunikat wyjściowy wyświetlony podczas tworzenia poprzedniego wykresu poinformował nas, że na histogramie zastosowano 30 przedziałów (ang. *bins*). Za pomocą kilku dodatkowych argumentów funkcji geom_histogram() możemy zmienić tę liczbę na 25 i zastosować wypełnienie w kolorze różowym. W ten sposób otrzymamy histogram pokazany na rysunku 8.6:

```
ggplot(data = star, aes(x = wynik.czytanie))+
  geom_histogram(bins = 25, fill = 'pink')
```


Rysunek 8.6. Dostosowany histogram stworzony w ggplot2

Za pomocą funkcji geom_boxplot() możesz wygenerować wykres pudełkowy (ang. *boxplot*) pokazany na rysunku 8.7:

```
ggplot(data = star,aes(x = wynik.czytanie))+
  geom boxplot()
```

W każdym z dotychczasowych przykładów możemy "odwrócić" wykres poprzez odwzorowanie interesującej nas zmiennej na oś *y* zamiast na oś *x*. Spróbujmy to zrobić z wykresem pudełkowym. Rysunek 8.8 przedstawia wynik wywołania poniższego kodu:

```
ggplot(data = star, aes(y = wynik.czytanie))+
  geom boxplot()
```

Stworzymy teraz wykres pudełkowy dla każdego rodzaju klasy. Aby to zrobić, na osi *x* przedstawimy wynik.czytanie, a na osi *y* rodzaj.klasy. Efekty pokazano na rysunku 8.9:

```
ggplot(data=star,aes(x = wynik.matematyka,y = wynik.czytanie))+
  geom_point()
```


Rysunek 8.7. Wykres pudełkowy

Rysunek 8.8. "Odwrócony" wykres pudełkowy

W podobny sposób możemy wykorzystać funkcję $geom_point()$ do stworzenia wykresu rozrzutu wyników z matematyki i czytania (zmapowanych na oś x i y). W wyniku otrzymasz wykres pokazany na rysunku 8.10:

```
ggplot(data=star,aes(x = wynik.matematyka,y = wynik.czytanie))+
  geom_point()
```


Rysunek 8.9. Wykres pudełkowy z podziałem na grupy

Rysunek 8.10. Wykres rozrzutu

Za pomocą kilku dodatkowych funkcji z pakietu *ggplot2* możemy dodać do rysunku etykiety osi *x* i *y* oraz tytuł (w ten sposób można też dodać polskie etykiety do poprzednich wykresów z tego rozdziału). Efekty uruchomienia poniższego kodu pokazano na rysunku 8.11:

```
ggplot(data = star, aes(x = wynik.matematyka, y = wynik.czytanie))+
  geom_point() +
  xlab('Wynik z matematyki') + ylab('Wynik z czytania')+
  ggtitle('Wyniki z matematyki i czytania')
```


Rysunek 8.11. Wykres rozrzutu z niestandardowymi etykietami osi i tytułem

Wnioski

Pakiety *dplyr* i *ggplot2* potrafią wiele więcej, ale to, co zaprezentowałem, wystarczy, aby przejść do właściwego zadania, którym jest eksploracja i testowanie relacji w danych. Zagadnienia te będą tematem rozdziału 9.

Ćwiczenia

142

W zbiorze materiałów dołączonych do tej książki (https://ftp.helion.pl/przyklady/zaanda.zip), w podfolderze cenzus, znajdziesz pliki cenzus.csv i cenzus-oddziały.csv. Wczytaj je w R i wykonaj następujące czynności:

- 1. Posortuj dane rosnąco według regionu i oddziału oraz malejąco według liczby ludności. (Aby to zrobić, musisz połączyć ze sobą zbiory danych). Wyniki zapisz w arkuszu Excela.
- 2. Usuń pole kod. pocztowy z połączonego zbioru danych.
- 3. Utwórz nową kolumnę gęstość. zaludnienia, która będzie równa liczbie ludności podzielonej przez powierzchnię.
- 4. Zwizualizuj relację między powierzchnią a populacją dla wszystkich obserwacji z 2015 roku.
- 5. Znajdź całkowitą liczbę ludności w każdym regionie w 2015 roku.
- Utwórz tabelę zawierającą nazwy stanów i liczbę ludności, w której liczba ludności z każdego roku od 2010 do 2015 przechowywana jest w osobnej kolumnie.

Skorowidz

204

Α	błąd	bind_cols, 153
	standardowy, 64, 81, 83	c, 113, 123
agregacja, 131, 183	systematyczny, 55	chdir, 174
aktualizacja pakietów, 109, 167		cor, 148
alfa, 58	С	count, 144, 184
alias, 170	_	crosstab, 194
plt, 179	centralne twierdzenie	data, 116
sns, 173	graniczne, 51	desc, 129
Anaconda, 166, 167	Code, 161	describe, 121, 194
analityka biznesowa, 88, 94	CRAN, 108	describeBy, 145
analiza, 57		dim, 152
dwuwymiarowa, 72	D	displot, 196
jednowymiarowa, 72		distinct, 136
wariancji, 81	data mining, 67	facet_wrap, 145
what-if, 67	dodatek Data Analysis ToolPak,	factor, 116
what-if przedziału ufności, 68	33	file.exists, 118
analiza danych, 87	dokument PEP8, 164	filter, 126, 129
eksploracyjna, 19, 60, 144, 194	dominanta, 29	fit, 152
Python, 193	dyrektywy, 166	geom_bar, 137
Analysis ToolPak, 33		geom_boxplot, 139
regresja, 80	Ε	geom_histogram, 138
statystyka opisowa, 34	1. 1	geom_smooth, 150
test t, 61	edytor skryptów, 102	get_dataset_names, 173
API, application programming	eksploracja	getcwd, 174
interface, 117	ramki danych, 175	ggplot, 137, 150
arkusze kalkulacyjne, 90	zmiennych ilościowych, 29	glance, 152
	zmiennych kategorialnych, 27	glimpse, 121
В	eksploracyjna analiza danych, 19	group_by, 126, 131, 135
	etyka, 203	head, 134, 199
bazy danych, 92		INDEKS, 114, 122
białe znaki, 163	F	initial_split, 152
biblioteka NumPy, 170	6 1 :	is.data.frame, 116
biblioteka	funkcja	is.vector, 113
pandas, 171, 172, 179	abs, 105	isfile, 174
seaborn, 173, 179, 186	arrange, 126 , 128	left_join, 126, 133
	array, 170	· -, ·,,

linear_reg, 152	summary, 121, 150	instalowanie pakietów, 166
LinearRegression, 199	t.test, 148	interfejs programowania aplikacji,
linregress, 197	testing, 152	API, 117
lm, 150, 152	tidy, 152	istotność statystyczna, 58, 77
load_data set, 173	train_test_split, 199	• •
masy prawdopodobieństwa, 48	training, 152	J
max, 131, 184	ttest_ind, 196	•
MAX, 33	type, 165	język
mean, 131, 184	View, 120	Markdown, 161
mean_squared_error, 200	WARIANCJA.POP, 33	Python, 94, 157
MEDIANA, 30	WARIANCJA.PRÓBKI, 33	R, 94, 99
melt, 185	write_csv, 123	SQL, 93
min, 131, 184	write_xlsx, 123	VBA, 91
MIN, 33	WSP.KORELACJI, 73	języki programowania danych, 94
MODUŁ.LICZBY, 105	WYST.NAJCZĘŚCIEJ, 30	Jupyter, 158
mutate, 126, 128, 136	WYST.NAJCZĘŚCIEJ.TABL,	Notebook, 160
n, 131	30	
ODCH.STAND.POPUL, 33	WYSZUKAJ.PIONOWO, 93,	K
ODCH.STANDARD.PRÓBKI,	132	
33	funkcje agregacyjne, 131	klasyfikacja zmiennych, 24
pairplot, 197		kolekcje, 169
pairs, 148	G	kolumny, 20, 92
pivot_longer, 135		kontrola wersji, 202
pivot_wider, 135, 136, 144	graficzny interfejs użytkownika,	korelacja, 71, 85
predict, 153, 199	GUI, 94	dodatnia, 73
r2_score, 200		ujemna, 72
read_csv, 119, 175, 193	Н	kreator importu danych, 119
read_excel, 174	hinotogo	krzywa dzwonowa, 46
read_xlsx, 120	hipoteza	
readr, 120	alternatywna, 57	L
recode, 136	badawcza, 55, 56 statystyczna, 55, 56	linia trendu, 79
regplot, 198	zerowa, 57, 62	lista, 169
regr.fit, 199	hipotezy	Looker, 94
rename, 126, 128	testowanie, 147, 196	losowość, 41
row_number, 135	histogram, 36, 138, 188	,
ROZKŁ.NORMALNY, 48	niestandardowy, 188	Ł
rsq, 153	rozkładu normalnego, 46	
sd, 131	z podziałem na grupy, 37	Łączenie
select, 126	z podziałem na grupy, 37	danych, 131, 183
sqrt, 102, 166		metod, 184
ŚREDNIA, 30	l	
std, 184	importowanie danych, 117, 119	M
str, 113, 116	indeksowanie	macierz korelacji, 74
sum, 131, 184	tablice, 171	Markdown, 161
summarize, 126, 131, 135	wektory, 114	mediana, 29
		,

Kup ksi k

Skorowidz

metoda, 165	potoku, 133	przekształcanie danych, 135, 185
corr, 196	zakresu, 177	przestrzeń zdarzeń
describe, 175	operatory	elementarnych, 41
drop, 180	arytmetyczne, 104, 162	przyczynowość, 71
metoda groupby, 183	porównania, 105	p-wartość, 81
head, 173		Python, 157
iloc, 177	Р	agregacja, 183
info, 175	•	aktualizacja, 167
loc, 177	pakiet	analizowanie danych, 193
merge, 184	tidyr, 135	importowanie danych, 174
najmniejszych kwadratów, 82	dplyr, 126, 133	łączenie danych, 183
rename, 181	ggplot2, 137	moduły, 166
sort_values, 182	openpyxl, 174	operacje kolumnowe, 180
upper, 165	pyplot, 179	operacje wierszowe, 182
write_csv, 178	scikit-learn, 193	operatory arytmetyczne, 162
write_xlsx, 178	seaborn, 173	pakiety, 166
metody statystyczne, 202	statsmodels, 197, 200	przekształcanie danych, 185
miary	tidymodels, 152, 154	struktury danych, 169
tendencji centralnej, 29	pakiety, 108, 166	typy danych, 165
zmienności, 31	aktualizacja, 109	wizualizacja danych, 186
model liniowy, 77	pandas, 171	, ,
moduł, <i>Patrz</i> pakiet, biblioteka	ramki danych, 172	R
moduł matplotlib, 179	plan analizy, 57	
•	platformy analityki biznesowej, 94	R
N	pliki	agregacja, 131
14	.csv, 117	analiza danych, 143
nauka o danych, 88	.ipynb, 158	importowanie danych, 117,
NumPy, 170	.py, 158	119
	pole, 92	instalacja, 100, 117
0	Power BI, 94	komentarze, 104
	Power Pivot, 92	łączenie danych, 131
obiekty, 106	Power Query, 91	operacje kolumnowe, 126
obiekty typu Series, 180	Power View, 92	operacje wierszowe, 128
obserwacje, 21, 92	poziom istotności, 58	operatory arytmetyczne, 104
odchylenie, 31	pozorny związek, 84	operatory porównania, 105
standardowe, 32	prawdopodobieństwo, 41	pakiety, 108
operacje	bezwarunkowe, 42	przekształcanie danych, 135
kolumnowe, 126, 180	warunkowe, 42	przetwarzanie danych, 126
wierszowe, 128, 182	prawo wielkich liczb, 52	ramki danych, 115
operator	programowanie obiektowe, OOP,	struktury danych, 112
\$, 123	180	typy danych, 107
&, 130	próbka, 55	wizualizacja danych, 137
:, 122	przedział ufności, 63, 64, 150	wykres, 103
?, 163	analiza what-if, 68	·
, 130	obliczanie, 65	
~, 145	•	

206 | Skorowidz

ramka danych, 115	Ś	wiersze, 20, 92
eksploracja, 175	(1 :	wizualizacja danych, 137, 186
pandas, 181	średnia arytmetyczna, 29	wnioskowanie statystyczne, 54
ramki danych pandas, 172		współczynnik
regresja	Т	kierunkowy, 77
liniowa, 76, 78, 150, 197	. 1 1 . 02	korelacji, 73, 84, 197
liniowa wielowymiarowa, 83	tabela, 92	korelacji Pearsona, 72
reguła trzech sigm, 47, 49	dwukierunkowa, 28	R-kwadrat, 83, 153
rekord, 92	jednokierunkowa, 27	wybieranie elementów
relacyjne bazy danych, 92	przestawna, 27	tablice, 171
reprezentatywna próbka, 55	Tableau, 94	wybór elementów
R-kwadrat, 153	tablice NumPy, 170	wektory, 114
rozkład normalny, 46, 50, 63	indeksowanie, 171	wykres
standardowy, 63	wybieranie elementów, 171	fasetowy, 145
rozkład prawdopodobieństwa	test dwustronny, 59	przestawny, 36
skumulowany, 44	test t-Studenta, 61, 69	pudełkowy, 38, 39, 139, 140,
rozkład t-Studenta, 63	dla prób niezależnych, 58,	189
rozkłady prawdopodobieństwa, 42	148, 196	punktowy, 72, 191
ciągłe, 46	testowanie hipotez, 59, 67, 147,	rozrzutu, 72, 75, 79, 141, 149,
dyskretne, 43	196	199
rozrzut, 141	typy	Skrzynka i wąsy, 38
rozstęp międzykwartylowy, 38	danych, 107	słupkowy, 29
	obiektów, 165	
równanie regresji, 82		typu pairplot, 198
1::	zmiennych, 26	
liniowej, 77	zmiennych, 26	_
liniowej, 77 RStudio, 99, 118	·	Z
RStudio, 99, 118	zmiennycn, 26	
•	U	zakres, 31
RStudio, 99, 118	·	zakres, 31 zarządzanie pakietami, 166, 167
RStudio, 99, 118 S słownik, 169, 182	U uczenie maszynowe, 88, 202	zakres, 31 zarządzanie pakietami, 166, 167 zbiór
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language,	U	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93	U uczenie maszynowe, 88, 202	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87	U uczenie maszynowe, 88, 202	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106
RStudio, 99, 118 S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169 system kontroli wersji, 202	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość krytyczna, 63	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169 system kontroli wersji, 202 system	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość krytyczna, 63 oczekiwana, 52	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29 kategorialne, 22, 27
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169 system kontroli wersji, 202 system pip, 166	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość krytyczna, 63 oczekiwana, 52 wektory, 112	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29 kategorialne, 22, 27 zmienne
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169 system kontroli wersji, 202 system pip, 166 zarządzania relacyjną bazą	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość krytyczna, 63 oczekiwana, 52 wektory, 112 indeksowanie, 114	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29 kategorialne, 22, 27 zmienne niezależne, 57
S słownik, 169, 182 SQL, structured query language, 93 statystyka, 87 testowa, 63 statystyki opisowe, 29, 34 stos analizy danych, 87, 89 struktury danych w R, 112 w Pythonie, 169 system kontroli wersji, 202 system pip, 166 zarządzania relacyjną bazą	U uczenie maszynowe, 88, 202 V VBA, Visual Basic for Applications, 91 W walidacja, 151, 198 wariancja, 31 wartości odstające, 38 wartość krytyczna, 63 oczekiwana, 52 wektory, 112	zakres, 31 zarządzanie pakietami, 166, 167 zbiór danych, 20 testowy, 151, 198 treningowy, 198 uczący, 151 wektorów, 115 zintegrowane środowisko programistyczne, IDE, 99 złączenie lewostronne, 133 zmienne, 21, 92, 106 ilościowe, 23, 29 kategorialne, 22, 27 zmienne niezależne, 57 zależne, 57

Kup ksi k

Skorowidz

PROGRAM PARTNERSKI

GRUPY HELION -

- 1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj!

http://program-partnerski.helion.pl

Eksploracyjna analiza danych? I w Excelu, i w Pythonie!

Sukces przedsiębiorstwa zależy od jakości podejmowanych decyzji. Spośród strategii, które wspierają ten proces, na szczególną uwagę zasługuje zastosowanie analizy danych. Jest to jednak dość złożona dziedzina. Podstawowym narzędziem wielu analityków danych jest arkusz kalkulacyjny. Ma on tę zaletę, że ułatwia solidne zrozumienie prawideł statystyki i analizy danych. Po zdobyciu takich podstaw warto jednak pójść dalej i nauczyć się eksploracyjnej analizy danych za pomoca języków programowania.

Dzięki tej książce przejście od pracy z arkuszami Excela do samodzielnego tworzenia kodu w Pythonie i R będzie płynne i bezproblemowe. Rozpoczniesz od ugruntowania swoich umiejętności w Excelu i dogłębnego zrozumienia podstaw statystyki i analizy danych. Ułatwi Ci to rozpoczęcie pisania kodu w języku R i w Pythonie. Dowiesz się, jak dokładnie przebiega proces oczyszczania danych i ich analizy w kodzie napisanym w języku R. Następnie zajmiesz się poznawaniem Pythona. Jest to wszechstronny, łatwy w nauce i potężny język programowania, ulubiony język naukowców i... analityków danych. Nauczysz się płynnego przenoszenia danych z Excela do programu napisanego w Pythonie, a także praktycznych metod ich analizy. Dzięki ćwiczeniom, które znajdziesz w końcowej części każdego rozdziału, utrwalisz i lepiej zrozumiesz prezentowane treści.

W książce:

- badanie relacji między danymi za pomocą Excela
- stosowanie Excela w analizach statystycznych i badaniu danych
- podstawy języka R
- proces oczyszczania i analizy danych w R
- przenoszenie danych z Excela do kodu Pythona
- pełna analiza danych w Pythonie

George Mount założył i prowadzi Stringfest Analytics, firmę konsultingową specjalizującą się w analizie danych. Współpracował z wiodącymi bootcampami, platformami edukacyjnymi i organizacjami. Regularnie wypowiada się na tematy dotyczące nauki i analizy danych, a także rozwoju pracowników. Mieszka w Cleveland w stanie Ohio.

