

冲刺高数笔记

奇峰

之前

目录

第一章	函数	、极限、连续	1
	I.	函数极限的计算	1
	II.	数列极限的计算	3
第二章 一元函数微分学			
	I.	导数应用求极值最值	6
	II.	导数求凹凸性与拐点	6
	III.	导数应用证明不等式	7
	IV.	导数定义求方程的根	7
	v.	罗尔中值定理证明题	8
	VI.	拉格朗日中值定理证明	8
	VII.	泰勒中值定理	8
第三章 一元函数积分学 10			
	I.	定积分的计算	10
	II.	变限积分函数的计算	11
	III.	反常积分的计算	12
	IV.	定积分的几何应用	13
	$\mathbf{V}.$	定积分物理应用	13
	VI.	切比雪夫不等式和柯西不等式	13
第四章 微分方程			15
	I.	一阶微分方程	15
	II.	二阶线性微分方程	16
	III.	微分方程综合题	17
第五章 二重积分			
	I.	交换积分次序	21
	TT.	一重积分的计算	22

第一章

函数、极限、连续

I. 函数极限的计算

十算函数极限时,考虑 等价 泰勒 导数定义 拉格朗日

已知极限时,考虑 図数值 - 分母推分子 导数值 - 导数定义 函数符号 - 保号性 函数表达式 - 去极限号,即高阶无穷小

函数极限 - T1.2

直接设三次多项式为 $f(x) = A(x-2a)(x-4a)(x-x_0)$, 代入已知条件求解。

微分方程性质 - T1.3

利用泰勒展开将其展开,然后通过方程求系数。

变限积分求极限 - T1.4-6

变限积分函数求极限时,

- 洛必达
 - n 阶连续可导, 洛 n 次;
 - n 阶可导, 洛 n-1 次, 最后一阶用定义。

• 变限积分等价

变限积分函数,被积函数比值极限为1,则变限积分等价;

$$\mathbb{P}\lim_{x\to x_0}\frac{f(x)}{g(x)}=1, \lim_{x\to x_0}\varphi(x)=0\Rightarrow \lim_{x\to x_0}\frac{\int_0^{\varphi(x)}f(t)\mathrm{d}t}{\int_0^{\varphi(x)}g(t)\mathrm{d}t}=1.$$

• 泰勒展开 - 泰勒展开为多项式, 然后求积分。

泰勒嵌套泰勒 - T1.7-9

利用泰勒展开一部分后,将结果再次利用泰勒展开,化为多项式; 如对 f(g(x)), 先展开 g(x) 得到 $f(t \stackrel{\triangle}{=} g(0) + g'(0)x + \cdots)$, 再展开为 $f(0) + tf'(0) + \cdots$

具体而言,

$$\tan \tan x = \tan x + \frac{1}{3} \tan^3 x + o(x^3)$$

$$= x + \frac{1}{3} x^3 + o(x^3) + \frac{1}{3} [x + o(x)]^3 + o(x^3)$$

$$= x + \frac{2}{3} x^3 + o(x^3).$$

注意,马克劳林展开要求 x,t=0.

拉格朗日/积分中值定理 - T1.8

对
$$f(g_1(x)) - f(g_2(x)) = g'(\xi)(g_1(x) - g_2(x))$$
, 应用二定理需要 $g'(\xi)$

 $\exists \xi$ 介于 $\sin x$, $\tan x$, 则 $\xi \to 0$, 因此当 $g'(\xi) =$

- $\cos \xi \to 1$;
- $\sin \xi \sim \xi \sim x$ 由于 ξ 介于 $\sin x$, $\tan x$

时,都可以应用。

对数求导法 T1.10

对
$$f(x) = \prod g(x)$$
 时,求

$$\ln f(x) = \sum \ln g(x)$$

$$\Rightarrow \frac{f'(x)}{f(x)} = \sum \frac{g'(x)}{g(x)}$$

通过 f'(x)/f(x) 与 f(x) 的极限求 f'(x) 的极限。

等价 T1.10

$$\square \to 1, \square - 1 = \ln(1 + \square - 1) = \ln(\square).$$

T1.11-13

 $x \to 0$ 时,

拆项:
$$\ln(x + \sqrt{1 + x^2}) = \ln(x + \sqrt{1 + x^2} + 1 - 1) \sim x + \sqrt{x^2 + 1} - 1 \sim x + \frac{x^2}{2} \sim x$$
 泰勒: $\ln(x + \sqrt{1 + x^2}) = x - \frac{1}{6}x^3 + o(x^3)$

中值的极限 T1.14

例题 设
$$f(x)$$
 在 $x = x_0$ 二阶可导, $f''(x) \neq 0$,

若
$$f(x) = f(x_0) + f'(x_0 + \theta(x - x_0))(x - x_0), \theta \in (0, 1),$$
求 $\lim_{x \to x_0} \theta$.

求解 由上式,有

可以向更高阶拓展,求解方法是类似的,如三阶, $\lim_{x\to x_0} \theta = \frac{1}{3}$.

事实上,对 n+1 阶可导, $f^{(n+1)}(0) \neq 0$ 的情况, $\lim_{x \to x_0} \theta = \frac{1}{n+1}$.

II. 数列极限的计算

有递推公式的数列 T1.15-17

对
$$x_{n+1} = f(x_n)$$

$$\begin{cases} f(x)$$
 递增
$$\begin{cases} x_1 < x_2, x_2 = f(x_1) < f(x_2) = x_3, \cdots \{x_n\} \uparrow \\ x_1 > x_2, x_2 = f(x_1) > f(x_2) = x_3, \cdots \{x_n\} \downarrow \end{cases}$$
 使用单调有界定理
$$f(x)$$
 递减,数列不单调,则使用夹逼准则

例题 证明数列 $2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}} \cdots$ 收敛,并求其极限。

证明 i. 假设 $\{x_n\}$ 收敛,取极限得极限值 $\lim_{n\to+\infty} x_n = a$.

ii. 压缩映射

利用夹逼定理证明极限是 a.

有
$$0 \leq |x_{n+1}-a| = |f(x_n)-f(a)|$$
,通过通分或拉格朗日得到
原式 $= \frac{1}{ax_n}|x_n-a| < \frac{1}{4}|x_n-a| < \frac{1}{4^2}|x_{n-1}-a| \cdots < \frac{1}{4^n}|x_1-a| \to 0 (n \to \infty)$
此处每次下标减 1 时,提出一个 $\frac{1}{4}$. 这里 $\frac{1}{4}$ 是压缩因子。
压缩因子 k 是常数,其满足 $0 < k < 1$.

例题 设 $f(x) = x + \ln(2 - x)$,

I. 求 f(x) 最大值;

II. 若 $x_1 = \ln 2, x_{n+1} = f(x_n), n \in \mathbb{N}$, 证明数列 $\{x_n\}$ 收敛, 并求其极限。

方法 i. 求导,最大值点为 x = 1, f(1) = 1.

ii. 数学归纳法证明 $\forall i \in N, x_i < 1$, 故其有上界。

$$x_{n+1} - x_n = f(x_n) - x_n = \ln(2 - x_n) > 0$$
, 故其单调递增。

故 $\{x_n\}$ 单调递增有上界,故收敛。两端取极限求极限值 $\lim_{n\to\infty} x_n = 1$.

ii. 假设数列收敛,两端取极限求极限值。

 $0 \le |x_{n+1} - 1| = |f(x_n) - f(1)| = |f'(\xi)| |x_n - 1| < \dots < 0$,故类似地,由夹逼定理证明数列收敛于上述极限值。

例题 见 T1.17.

方法 i. 假设数列收敛,两端取极限求极限值。分类证明 x_1 有不同的值时极限存在。(都用单调有界)或者使用压缩映射法。

ii.
$$x_{n+1} = \frac{c(1+x_n+c-c)}{c+x_n} = c + \frac{c-c^2}{c+x_n}$$
. 假设其收敛,两端取极限求极限值。

n 次根号下 n 项和 - T1.18

将 n 项设为 $\{x_n\}$ 的元素,利用夹逼准则,

构造形如 $\sqrt[n]{x_i} < 原式 < \sqrt[n]{nx_i}$ 的式子,使得 $\lim_{n \to \infty} \sqrt[n]{x_i}$, $\lim_{n \to \infty} \sqrt[n]{nx_i}$ 都存在;

其中 x_i 取 x_k 中最大的;利用单调性求最大值。

- n 项和: 夹逼准则结合定积分 T1.19
- n 项积: 取对数转化为 n 项和 T1.20-21

利用夹逼准则,使得 $g(n) \sum f(\frac{i}{n}) \frac{1}{n} <$ 原式 $< \sum f(\frac{i}{n}) \frac{1}{n}$,

其中 $\lim_{n\to\infty} g(n) = 1$.

Stolz 定理 - 数列洛必达

若数列 $\{x_n\}$, $\{y_n\}$ 满足

- $\{y_n\}$ 单调递减趋于零, $\lim_{n\to\infty}x_n=0$ 或者 $\{y_n\}$ 单调递增趋于正无穷; (即 $\frac{0}{0}$ 型或 $\frac{\square}{\infty}$ 型)
- $\lim_{n\to\infty} \frac{x_{n+1}-x_n}{y_{n+1}-y_n}$ 存在或为无穷,

则有

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \frac{x_{n+1} - x_n}{y_{n+1} - y_n}.$$

特别地,

$$\lim_{n \to \infty} \frac{x_n}{n} = \lim_{n \to \infty} (x_{n+1} - x_n).$$

达朗贝尔-柯西

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \exp(\lim_{n \to \infty} \frac{\ln a_n}{n}) = \exp[\lim_{n \to \infty} (\ln a_{n+1} - \ln a_n)]$$
$$= \exp(\lim_{n \to \infty} \ln \frac{a_{n+1}}{a_n}) = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}.$$

n 项积: 定积分 T1.22

任意区间,任意分割,任意取点,化简换元转化为[0,1],n等分,任意取点,即

$$\lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \frac{1}{n} = \int_0^1 f(x) dx$$

对介于 $\frac{i-1}{n}$, $\frac{i}{n}$ 的任意 ξ_i 都成立。

第二章

一元函数微分学

I. 导数应用求极值最值

求极值最值时,考虑 $\left\{ egin{array}{ll} \hline 定义 \\ 充分条件 (三个) \end{array} \right.$

极值与最值、驻点、拐点的关系

可导极值点一定是驻点,一定不是拐点。

极值必要条件

- f(x) 在 $x = x_0$ 可导, $x = x_0$ 为 f(x) 极值点, 则 $f'(x_0) = 0$;
- f(x) 在 $x = x_0$ 二阶可导, $x = x_0$ 为 f(x) 极小值点,则 $f'(x) = 0, f''(x) \ge 0$.

最值必要条件

设 f(x) 在 [a,b] 可导, $f(x_0) = \max_{[a,b]} f(x)$,

- $x_0 \in (a,b) \Rightarrow f'(x_0) = 0;$
- $x_0 = a \Rightarrow f'_+(a) \le 0;$
- $x_0 = b \Rightarrow f'_-(b) > 0$.

f(x) 与 x^k 商的极限

设 f(x) 在 x = 0 处连续, $\lim_{x \to 0} \frac{f(x)}{x^k}$, k > 1 存在,则 f(0) = f'(0) = 0.

II. 导数求凹凸性与拐点

求凹凸性与拐点时,考虑充分条件(三个)。

平方积函数极拐点个数 - T2.22

例题 求 $f(x) = x^2(x-1)^2(x-3)^2$ 拐点个数。

方法 令 g(x) = x(x-1)(x-3), 则有 $f(x) = g^2(x)$, f'(x) = 2g(x)g'(x).

由罗尔定理得 g'(x) 两零点 ξ_1, ξ_2 ,由其与 x=0, x=1, x=3 得 f''(x) 四个零点,由四个零点得 f''' 三个零点,由前二者多项式次数,知道 f''(x) 四个零点导数值都不为零,因此其均为 f(x) 的拐点横坐标。

事实上,曲线 $f(x) = \prod_{i=1}^{n} (x - x_i)^2$ 极值点个数为 2n - 1, 拐点个数为 2n - 2.

III. 导数应用证明不等式

Hadamard 不等式

设 f(x) 在 [a,b] 二阶可导,且 f''(x) > 0,则

• 凹凸性充分条件

$$\forall x_1 < x_2 \in [a,b], f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2};$$

拉格朗日 $\xi_1 \in (x_1, \text{mid}), \xi_2 \in (\text{mid}, x_2);$ 泰勒 $x=x_1, x=x_2$ 处展开证明。
也即曲线在切线上方,在割线下方。

• Hadamard 不等式

$$f\left(\frac{a+b}{2}\right) < \frac{1}{b-a} \int_a^b f(x) \mathrm{d}x < \frac{f(a)+f(b)}{2}.$$

凹凸性的充要条件

设 f(x) 可导,则

- f(x) 为凹函数;
- f'(x) 单调递增;
- $f(x) > f(x_0) + f'(x_0)(x x_0), x \neq x_0;$
- $f(x) < f(a) + \frac{f(b) f(a)}{b a}(x a), x \in (a, b);$ 互为充要条件。

IV. 导数定义求方程的根

补例 设
$$f_n(x) = \sum_{i=1}^n \sin^i(x)$$
,

- I. 证明方程 $f_n(x) = 1$ 在 $(\frac{\pi}{6}, \frac{\pi}{2})$ 内有一实根;
- II. 证明 $\lim_{n\to\infty} x_n$ 存在并求该极限值。

V. 罗尔中值定理证明题

考虑
$$\begin{cases} 观察法 - f'(\xi) + g'(\xi)f(\xi) = 0 \\ 原函数法 - 将题给条件作为微分方程求解 \end{cases}$$

罗尔定理推论

若 $f^{(n)}(x) \neq 0$, 则 f(x) 至多有 n 个零点。

总结

设 g(x) 在 [a,b] 有一阶连续导数, $\forall x \in (a,b), g'(x) \neq 0$. 若 f(x) 在 [a,b] 连续,且 $\int_a^b f(x) \mathrm{d}x = \int_a^b f(x) g(x) = 0$,则 f(x) 在 (a,b) 至少有两个零点。

$$f''(x) - f(x) = f''(x) - f'(x) + f'(x) - f(x).$$

VI. 拉格朗日中值定理证明

例题 设 f(x) 满足 $\lim_{x\to +\infty} f'(x)$ 存在,且 $\lim_{x\to +\infty} [f(x)+f'(x)]=l$,求 $\lim_{x\to +\infty} f(x)$.

方法 显然 $\lim_{x \to +\infty} f'(x)$ 与 $\lim_{x \to +\infty} f(x)$ 存在,由拉格朗日定理, $\forall x, \exists \xi \in (x, x+1)$ 使得 $f(x+1) - f(x) = f'(\xi)$,那么 $\lim_{x \to +\infty} [f(x+1) - f(x)] = 0 = \lim_{x \to +\infty} f'(\xi) = \lim_{x \to +\infty} f'(x)$,因此 $\lim_{x \to +\infty} [f(x) + f'(x)] = \lim_{x \to +\infty} f(x) = l$.

方法 由题设,

$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \frac{e^x f(x)}{e^x} \xrightarrow{\text{Add}: \frac{\square}{\infty}} \lim_{x\to +\infty} \frac{e^x [f(x)+f'(x)]}{e^x} = \lim_{x\to +\infty} [f(x)+f'(x)] = l.$$

VII. 泰勒中值定理

积分结合泰勒中值定理

例题 设 f(x) 在 [a,b] 上有二阶导数,则存在 $\xi \in (a,b)$ 使得 $\int_a^b f(x) \mathrm{d}x = f\left(\frac{a+b}{2}\right)(b-a) + \frac{f''(x)}{24}(b-a)^3$.

方法 由泰勒公式,存在 η 介于 x 与 $\frac{a+b}{2}$,使得

$$f(x) = f\left(\frac{a+b}{2}\right) + \left(x - \frac{a+b}{2}\right)f'\left(\frac{a+b}{2}\right) + \frac{(x - \frac{a+b}{2})^2}{2}f''(\eta)$$

那么

$$\int_{a}^{b} f(x) dx = f\left(\frac{a+b}{2}\right) (b-a) + \frac{1}{2} \int_{a}^{b} \overbrace{\left(x - \frac{a+b}{2}\right)^{2}}^{\cancel{x} + \cancel{y} + \cancel{y}} f''(\eta) dx$$

由广义积分中值定理,有 $\xi \in (a,b)$ 使得

$$\int_{a}^{b} f(x) dx = f\left(\frac{a+b}{2}\right) (b-a) + \frac{f''(\xi)}{2} \int_{a}^{b} (x - \frac{a+b}{2})^{2} dx$$

$$\Rightarrow \int_{a}^{b} f(x) dx = f\left(\frac{a+b}{2}\right) (b-a) + \frac{f''(\xi)}{24} (b-a)^{3}.$$

泰勒公式 x 在 x_0 处展开 - T2.44-45

不对特定点, 而是对函数定义域上任意一点展开。

$$f(x_0) = f(x) + f'(x)(x_0 - x) + \frac{f''(\xi)}{2}(x_0 - x)^2$$

例题 设 f(x) 在 [0,2] 上二阶可导,且 $|f(x)| \le 1$, $|f''(x)| \le 1$, 则 $|f'(x)| \le 2$.

方法 对任意 $x \in (0,2)$, 有 $\xi_1 \in (0,x), \xi_2 \in (x,2)$ 使得

$$f(0) = f(x) + (0 - x)f'(x) + \frac{(0 - x)^2}{2}f''(\xi_1)$$

 $f(2) = f(x) + (2 - x)f'(x) + \frac{(2 - x)^2}{2}f''(\xi_2)$

由上式减去下式,有

$$f'(x) = -\frac{1}{2}[f(0) - f(2)] + \frac{1}{4}[f''(\xi_1)x^2 - f''(\xi_2)(2 - x)^2]$$

由 $|f(x)| \le 1, |f''(x)| \le 1,$ 有

$$|f'(x)| \le \frac{1}{2}[|f(0)| + |f(2)|] + \frac{1}{4}[|f''(\xi_1)|x^2 + |f''(\xi_2)|(2-x)^2]$$

$$\le 1 + \frac{1}{4}[x^2 + (2-x)^2] \le 1 + \frac{1}{4} \cdot 4 = 2.$$

事实上,若 f(x) 在 [a, a+2] 上二阶可导,且 $|f(x)| \le 1, |f''(x)| \le 1, 则 |f'(x)| \le 2.$

例题 设 f(x) 满足 $\lim_{x \to \infty} f(x) = A$, $\lim_{x \to \infty} f'''(x) = 0$, 则 $\lim_{x \to \infty} f'(x) = \lim_{x \to \infty} f''(x) = 0$.

方法 由泰勒公式,存在 $\xi_1 \in (x-1,x), \xi_2 \in (x,x+1)$ 使得

$$f(x+1) = f(x) + f'(x) + \frac{1}{2}f''(x) + \frac{1}{6}f'''(\xi_1)$$
$$f(x-1) = f(x) - f'(x) + \frac{1}{2}f''(x) - \frac{1}{6}f'''(\xi_1)$$

通过加减上下式构造 f'(x), f''(x), 由 f(x), f'''(x) 极限求待求极限。

第三章

一元函数积分学

I. 定积分的计算

计算定积分时,考虑

反函数的积分 T3.15

$$\int_{a}^{b} g(y) dy \xrightarrow{y=f(x)} \int_{\alpha}^{\beta} \overbrace{g(f(x))}^{x} f'(x) dx$$

事实上,设 y=f(x) 在 [a,b] 上单调连续,反函数为 $x=f^{-1}(y)=g(y)$,且 f(a)=c,f(b)=d,则有

$$\int_{a}^{b} f(x) dx + \int_{c}^{d} g(y) dy = bd - ac.$$

反函数的二重积分,本质上是变限积分函数的积分。

平移变换结合奇偶性 T3.16

令 $x = \frac{a+b}{2} + t$, 使得区间变为对称区间,以便使用奇偶性。

区间再现公式

山穷水尽时,使用区间再现公式。

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx = \frac{1}{2} \int_{a}^{b} [f(x) + f(a+b-x)] dx$$

例题 求 $\int_0^{\frac{\pi}{2}} \ln \sin x dx = \int_0^{\frac{\pi}{2}} \ln \cos x dx.$

方法 可以知道

故
$$\int_0^{\frac{\pi}{2}} \ln \sin x dx = -\frac{\pi}{2} \ln 2.$$

例题 求 $\int_0^1 \frac{\ln(1+x)}{1+x^2} dx$.

方法 可以知道

$$\int_0^1 \frac{\ln(1+x)}{1+x^2} dx = \int_0^{\frac{\pi}{4}} \frac{\ln(1+\tan x)}{\sec^2 x} d\tan x = \int_0^{\frac{\pi}{4}} \ln(1+\tan x) dx$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{4}} \left[\ln(1+\tan x) + \ln(1+\tan(\frac{\pi}{4}-x)) \right] dx$$

$$= \int_0^{\frac{\pi}{4}} \left[\ln(1+\tan x) + \ln\left(1 + \frac{1-\tan x}{1+\tan x}\right) \right] dx$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{4}} \left[\ln(1+\tan x) + \ln\left(\frac{2}{1+\tan x}\right) \right] dx$$

$$= \frac{1}{2} \int_0^{\frac{\pi}{4}} \ln 2 dx = \frac{1}{2} \cdot \frac{\pi}{4} \ln 2 = \frac{\pi}{8} \ln 2.$$

此外,

$$\int_0^{\frac{\pi}{4}} \ln(1 + \tan x) dx = \int_0^{\frac{\pi}{4}} \ln \frac{\sin x + \cos x}{\cos x} dx = \int_0^{\frac{\pi}{4}} \ln \sqrt{2} + \ln \left[\sin(x + \frac{\pi}{4}) \right] - \ln \cos x dx$$

而后二项在积分完毕后正好相等。

Wallis 公式

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx.$$

证明: 递推公式 $I_n = \frac{n-1}{n} I_{n-2}$, 递推至 n=1 或 n=0 即可。

$$\lim_{n \to \infty} \frac{1}{2n+1} \left[\frac{(2n)!!}{(2n-1)!!} \right]^2 = \frac{\pi}{2}.$$

证明: 由 $\lim_{n\to\infty} \frac{I_{2n+1}}{I_{2n}} = 1$ 推出,右边由夹逼准则得到。

II. 变限积分函数的计算

经典错误:变限积分求导结合微分方程-T3.22

例题 设 f(x) 在 $(-1, +\infty)$ 内连续,且有 $f(x) \left[\int_0^x f(t) dt + 1 \right] = \frac{xe^x}{2(x+1)^2}$,求 f(x).

方法 此题不能求导,因为求导无法消出有效的微分方程。

令
$$F(x) = \int_0^x f(t)dt + 1$$
, 则有 $2F'(x)F(x) = (F(x)^2)' = \frac{xe^x}{(1+x)^2}$, 积分计算 $F^2(x) \Rightarrow F(x) \Rightarrow f(x)$.

对于
$$f(x) \int_0^x f(t) dt$$
, 令 $F(x) = \int_0^x f(t) dt$, 则有 $f(x) \int_0^x f(t) dt = \frac{1}{2} [F(x)^2]'$.

例题 设 f(x) 在 [0,1] 连续,且 $\int_0^1 f(x) = A$,求 $\int_0^1 dx \int_x^1 f(x) f(y) dy$.

方法 可以知道

$$\begin{split} \int_0^1 \mathrm{d}x \int_x^1 f(x) f(y) \mathrm{d}y &= \int_0^1 f(x) \int_x^1 f(y) \mathrm{d}y \mathrm{d}x \\ (\diamondsuit F(x) &= \int_x^1 f(y) \mathrm{d}y) = - \int_0^1 \frac{1}{2} \left[F(x)^2 \right]' \mathrm{d}x \\ &= -\frac{1}{2} \left[F(x)^2 \right] \Big|_0^1 = \frac{A^2}{2}. \end{split}$$

方法 可以知道

$$\iint\limits_{D_1} = \iint\limits_{D_2} = \frac{1}{2} \iint\limits_{D} = \frac{1}{2} \int_0^1 f(x) dx \int_0^1 f(y) dy = \frac{A^2}{2}.$$

此处利用轮换对称性的推广,即对D:(x,y)与D':(y,x),

$$\iint\limits_{D} f(x,y) dxdy = \iint\limits_{D'} f(y,x) dydx$$

III. 反常积分的计算

迪利克雷积分

$$\int_{0}^{+\infty} \frac{\sin x}{x} dx = \int_{0}^{+\infty} dx \int_{0}^{+\infty} e^{-xy} \sin x dy$$

$$= \int_{0}^{+\infty} dy \int_{0}^{+\infty} e^{-xy} \sin x dx$$

$$= -\int_{0}^{+\infty} \frac{e^{-xy} (y \sin x + \cos x)}{1 + y^{2}} \Big|_{0}^{+\infty} dy$$

$$= \int_{0}^{+\infty} \frac{dy}{1 + y^{2}} = \arctan y \Big|_{0}^{+\infty} = \frac{\pi}{2}.$$

$$\int_{0}^{+\infty} \frac{\sin^{2} x}{x^{2}} dx = -\int_{0}^{+\infty} \sin^{2} x d\frac{1}{x} = -\frac{\sin^{2} x}{x} \Big|_{0}^{+\infty} + \int_{0}^{+\infty} \frac{2 \sin x \cos x}{x} dx$$

$$= \int_{0}^{+\infty} \frac{\sin 2x}{2x} d2x = \frac{\pi}{2}.$$

IV. 定积分的几何应用

区域绕直线旋转的体积

区域 D 绕直线 L: Ax + By + C = 0 旋转一周所得旋转体的体积为

$$V = 2\pi \iint_{\mathcal{D}} r(x, y) d\sigma$$

其中 r(x,y) 为 D 中点到 L 距离 $\frac{|Ax+By+C|}{\sqrt{A^2+B^2}}$. 要求 D 与 L 无公共点。特别地,若 L:y-C=0,则有

$$V = 2\pi \iint_{D} (y - c) d\sigma = |2\pi(\bar{y} - C)S_{D}|$$

其中 \bar{y} 是 D 的形心, S_D 是其面积。注意,体积是非负的。

\mathbf{V} . 定积分物理应用

VI. 切比雪夫不等式和柯西不等式

切比雪夫不等式

设 f(x), g(x), p(x) 在 [a,b] 上连续, 且 p(x) 不变号,

• 若 f(x), g(x) 单调性相同,则有

$$\int_a^b f(x)p(x)\mathrm{d}x \int_a^b g(x)p(x)\mathrm{d}x \leq \int_a^b p(x)\mathrm{d}x \int_a^b f(x)g(x)p(x)\mathrm{d}x$$

• 若 f(x), g(x) 单调性不同,则有

$$\int_a^b f(x)p(x)\mathrm{d}x \int_a^b g(x)p(x)\mathrm{d}x \ge \int_a^b p(x)\mathrm{d}x \int_a^b f(x)g(x)p(x)\mathrm{d}x$$

柯西不等式

设 f(x), g(x) 在 [a,b] 连续,则有

$$\left[\int_a^b f(x)g(x) dx \right]^2 \le \int_a^b f^2(x) dx \int_a^b g^2(x) dx$$

第四章

微分方程

I. 一阶微分方程

 $y' = f(ax + by + c) \Rightarrow \Leftrightarrow u = ax + by + c.$

 $2yy' = (y^2)'; y' \cos y = (\sin y)'.$

微分方程解的极限 - T4.3

不定积分可以转化为变限积分函数。

$$\int f(t)dt \Rightarrow \int_0^x f(t)dt + C,$$

其中 $C \in \mathbb{R}$. 事实上,0 可以改为任何数,甚至 $-\infty$ (若其收敛)。

微分方程解的有界性与周期性 - T4.4

例题 若 f(x) 为 \mathbb{R} 上有界的连续函数,则

- 微分方程 y' + y = f(x) 在 \mathbb{R} 上存在一有界解;
- 若 f(x) 以 T 为周期,则前述解也以 T 为周期。

方法 题设方程的通解为 $e^{-x}\left[\int_{-\infty}^{x}e^{t}f(t)\mathrm{d}t+C\right]$,不妨令 C=0,则有一解 $y=e^{-x}\int_{-\infty}^{x}e^{t}f(t)\mathrm{d}t$. 由于 f(x) 有界即 $|f(x)|\leq M$,有

$$|y| = \left| e^{-x} \int_{-\infty}^{x} e^{t} f(t) dt \right|$$

$$\leq e^{-x} \int_{-\infty}^{x} e^{t} |f(t)| dt$$

$$\leq M e^{-x} \int_{-\infty}^{x} e^{t} dt = M.$$

因此 y 有界。

此时, 若 f(x) 周期为 T, 则有

$$y(x+T) = e^{-x-T} \int_{-\infty}^{x+T} e^t f(t) dt$$

$$= e^{-x-T} \int_{-\infty}^{x+T} e^t f(t) dt$$

$$= e^{-x-T} \int_{-\infty}^{u} e^{u+t} f(u+t) du(t=u+T)$$

$$= e^{-x-T+T} \int_{-\infty}^{u} e^u f(u) du = y(x).$$

II. 二阶线性微分方程

微分方程的逆问题

对给定通解, 求多阶导数, 直到能将所有任意常数都消去。

对给定多特解,做差求无关解,线性组合得齐次通解。齐次通解得到齐次方程,结合特解得非齐次方程。

也可以直接求非齐次通解再求导。

高阶常系数线性齐次方程 $(n \ge 3)$ - T4.7

对方程形如

$$y^{(n)} + p_1 y^{(n-1)} + \dots + p_n y = 0$$

解其特征方程

$$r^n + p_1 r^{n-1} + \dots + p_n = 0$$

其中, 若有

- k 重实根 $r = r_i$, 则通解中包含 ($C_0 + C_1 x + \cdots C_{k-1} x^{k-1}$) $e^{r_i x}$;
- k 重共轭复根 $r = \alpha \pm \beta i$, 则通解中包含 $e^{\alpha x}[(C_0 + C_1 x + \dots + C_{k-1} x^{k-1}) \sin \beta x + (D_0 + D_1 x + \dots + D_{k-1} x^{k-1}) \cos \beta x].$

T4.8

例题 设二阶可导函数 f(x) 满足 $f^{2}(x) - f^{2}(y) = f(x+y)f(x-y)$, 则

- f''(x)f(y) = f''(y)f(x);

方法 对题设关于 x 求偏导,有

$$2f(x)f'(x) = f(x+y)f'(x-y) + f'(x+y)f(x-y)$$

再关于 y 求偏导,有

$$0 = f'(x+y)f'(x-y) - f(x+y)f''(x-y) - f'(x-y)f'(x+y) + f(x-y)f''(x+y)$$

$$\Rightarrow f(x+y)f''(x-y) = f(x-y)f''(x+y)$$

令 u = x + y, v = x - y 即证。

对第一问结论, 令 y = 1, 则有 f''(x) - f(x) = 0, 又有 f(0) = 0, f(1) = 1, 可以解得 f(x).

非齐次项为分段函数 - T4.9

例题 求 $y'' + y' - 2y = \min\{e^x, 1\}$ 的通解。

方法 分段地讨论两个方程的通解,事实上,其为

$$y_1 = C_1 e^{-2x} + C_2 e^x + \frac{1}{3} x e^x; \quad y_2 = C_3 e^{-2x} + C_4 e^x - \frac{1}{2},$$

其中 $C_i \in \mathbb{R}$.

由于原方程通解在 x=0 处可导,有

$$\begin{cases} C_1 + C_2 = C_3 + C_4 - \frac{1}{2} \\ -2C_1 + C_2 + \frac{1}{3} = -2C_3 + C_4 \end{cases} \Rightarrow \begin{cases} C_3 = C_1 + \frac{1}{18} \\ C_4 = C_2 + \frac{4}{9} \end{cases}$$

代入,得到原方程通解,其中 $C_1, C_2 \in \mathbb{R}$.

III. 微分方程综合题

导函数 切法线 变限积分函数 定积分应用 偏导数 二重积分

T4.11

例题 设
$$f(x)$$
 满足 $f(x+y) = \frac{f(x) + f(y)}{1 - f(x)f(y)}, f'(0) = 1$, 求 $f(x)$.

方法 令
$$x=y=0$$
,有 $f(0)=\frac{2f(0)}{1-f^2(0)}\Rightarrow f(0)=0$. 而

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{f(x) + f(\Delta x)}{1 - f(x)f(\Delta x)} - f(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{f(x) + f(\Delta x) - f(x)(1 - f(x)f(\Delta x))}{\Delta x(1 - f(x)f(\Delta x))}$$
$$= \lim_{\Delta x \to 0} \frac{f(\Delta x)(1 + f^{2}(x))}{\Delta x} = 1 + f^{2}(x)$$

因此有
$$\int \frac{\mathrm{d}f(x)}{1+f^2(x)} = \int \mathrm{d}x$$
,解得 $\arctan f(x) = x + C$,而 $f(0) = 0$,故有 $f(x) = \tan x$.

T4.12

例题 设曲线 y=f(x) 位于第一象限且过 $(1,\sqrt{3})$, 其上任意一点 P(x,y) 的切线与 x 轴正半轴交点为 A, 且有 $\angle OPA=\frac{\pi}{4}$, 求 f(x).

方法 由题,设 P 切线倾斜角为 θ ,则有 $\theta = \frac{\pi}{4} + \arctan \frac{y}{x}$.那么,

$$y' = \tan \theta = \tan(\frac{\pi}{4} + \arctan \frac{y}{x}) = \frac{1 + \frac{y}{x}}{1 - \frac{y}{x}}.$$

求解上式即可。

变限积分函数结合微分方程 - T4.13

例题 设有连续函数 $f(x) = \int_0^x f(t)dt + \int_0^1 tf^2(t)dt, f(t) \neq 0,$ 求 f(x).

方法 显然 f(x) 无穷阶可导,对原式求导,有 $f'(x) = f(x) \Rightarrow f(x) = Ce^x$,其中 $C \in \mathbb{R}$.

若令
$$A = \int_0^1 t f^2(t) dt$$
, 则有 $f(0) = A$, 故 $C = A$, 即 $f(x) = Ae^x$.

那么将 x = 0 代入原式,则有

$$\int_0^1 t f^2(t) dt = A = A^2 \int_0^1 t e^{2t} dt = \frac{A^2}{4} (e^2 + 1)$$
$$\Rightarrow A \left(\frac{e^2 + 1}{4} A - 1 \right) = 0.$$

而由题, $f(x) \not\equiv 0 \Rightarrow a \not\equiv 0$, 因此 $a = \frac{4}{e^2 + 1}$, 即 $f(x) = \frac{4}{e^2 + 1}e^x$.

例题 设 f(x) 在 [a,b] 连续,满足

$$\frac{1}{x_2 - x_1} \int_{x_1}^{x_2} f(x) dx = \frac{1}{2} \left[f(x_1) + f(x_2) \right], \, x_1, x_2 \in [a, b]$$

求 f(x).

方法 令 $x_1 = a, x_2 = x \neq a$, 则有

$$2\int_{a}^{x} f(t)dt = (x-a)[f(x) - f(a)]$$

$$\Rightarrow 2f(x) = (x-a)f'(x) + f(x) - f(a)$$

$$\Rightarrow f(x) = C(x-a) + f(a), C \in \mathbb{R}.$$

例题 设 f(x) 在 $[0,\pi]$ 连续,满足

$$\int_0^{\pi} \min\{x, y\} f(y) \mathrm{d}y = 4f(x)$$

求 f(x).

方法 由题,可以知道

$$\int_0^x y f(y) dy + x \int_x^{\pi} f(y) dy = 4f(x)$$

$$\Rightarrow x f(x) - x f(x) + \int_x^{\pi} f(y) dy = 4f'(x)$$

$$\Rightarrow f''(x) + \frac{1}{4} f(x) = 0$$

$$\Rightarrow f(x) = C_1 \cos \frac{1}{2} x + C_2 \sin \frac{1}{2} x, C_1, C_2 \in \mathbb{R}.$$

而 f(0) = 0, 则有 $C_1 = 0$, 即 $f(x) = C \sin \frac{1}{2}x$, 其中 $C \in \mathbb{R}$.

例题 设连续函数 f(x) 满足

$$x = \int_0^x f(t)dt + \int_0^x tf(t-x)dt$$

求 f(x).

方法 由题,可以知道

$$x = \int_0^x f(t)dt - \int_0^{-x} (t - x)f(t)dt$$

$$\Rightarrow f(x) = 1 + \int_0^{-x} f(t)dt$$

$$\Rightarrow f'(x) = -f(-x) \Rightarrow f'(-x) = -f(x)$$

$$\Rightarrow f''(x) = f'(-x)$$

$$\Rightarrow f''(x) + f(x) = 0$$

$$\Rightarrow f(x) = A\sin x + B\cos x.$$

可以知道 f(0) = 1, f'(0) = -1, 故有 $f(x) = \cos x - \sin x$.

T4.14

当待解微分方程中出现形如 $x\int_0^x f(t)\mathrm{d}t$ 的式子时,不要直接求导,而应当设 $g(x)=\int_0^x f(t)\mathrm{d}t$ 后再计算。

T4.15

例题 设
$$f(x,y) = F(\frac{y}{x})$$
 有 $\frac{\partial^2 f}{\partial^2 x} + \frac{\partial^2 f}{\partial^2 y} = 0$, 求 $f(x,y)$.

方法 设
$$\frac{y}{x} = u$$
, 则

$$\begin{split} \frac{\partial f}{\partial x} &= -F'(u) \frac{y}{x^2} \\ \frac{\partial^2 f}{\partial^2 x} &= \frac{2y}{x^3} F'(u) + \frac{y^2}{x^4} F''(u) \\ \frac{\partial f}{\partial y} &= \frac{1}{x} F'(u) \\ \frac{\partial^2 f}{\partial^2 y} &= \frac{1}{x^2} F''(u) \end{split}$$

那么,可以知道

$$\frac{2y}{x^3}F'(u) + \frac{y^2}{x^4}F''(u) + \frac{1}{x^2}F''(u) = 0$$

$$\Rightarrow (1+u^2)F''(u) + 2uF'(u) = 0$$

$$\Rightarrow \left[(1+u^2)F'(u) \right]' = 0$$

$$\Rightarrow F'(u) = \frac{C_1}{1+u^2}$$

$$\Rightarrow F(u) = C_1 \arctan(u) + C_2,$$

即
$$f(x,y) = C_1 \arctan\left(\frac{y}{x}\right) + C_2$$
, 其中 $C_1, C_2 \in \mathbb{R}$.

第五章

二重积分

I. 交换积分次序

例题 T6.2.2

$$\begin{split} \lim_{t\to 0^+} \frac{1}{t^3} \int_0^t \mathrm{d}x \int_{x^2}^{t^2} \arctan(\cos(2x+3\sqrt{y})) \mathrm{d}y &= \lim_{t\to 0^+} \frac{1}{t^3} \iint_D \arctan(\cos(2x+3\sqrt{y})) \mathrm{d}x \mathrm{d}y \\ &= \lim_{t\to 0^+} \frac{1}{t^3} \arctan(\cos(2\xi+3\sqrt{\eta})) \cdot S_D\left(\xi,\eta \in D\right) \\ &= \lim_{t\to 0^+} \frac{1}{t^3} \arctan(\cos(2\xi+3\sqrt{\eta})) \cdot \frac{2}{3} t^3 \\ &= \frac{\pi}{4} \cdot \frac{2}{3} = \frac{\pi}{6}. \end{split}$$

例题 T6.3.2

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{x}} dx \int_{\sqrt{x}}^{\sqrt{\frac{\pi}{2}}} \frac{1}{1 + (\tan y^{2})^{\sqrt{2}}} dy = \int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{1}{1 + (\tan y^{2})^{\sqrt{2}}} dy \int_{0}^{y^{2}} \frac{1}{\sqrt{x}} dx$$

$$= \int_{0}^{\sqrt{\frac{\pi}{2}}} \frac{2y}{1 + (\tan y^{2})^{\sqrt{2}}} dy$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{dt}{1 + (\tan t)^{\sqrt{2}}}$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{(\cos t)^{\sqrt{2}} dt}{(\sin t)^{\sqrt{2}} + (\cos t)^{\sqrt{2}}}$$
区间再现 = $\frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4}$.

例题 T6.3.4

$$\int_0^1 \frac{x^b - x^a}{\ln x} dx = \int_0^1 dx \int_a^b x^y dy$$
$$= \int_a^b dy \int_0^1 x^y dx$$
$$= \int_a^b \frac{dy}{1+y} = \ln \frac{1+b}{1+a}.$$

例题 T6.3.5

此处以 $\theta - r$ 坐标系交换积分次序。

$$\int_0^{2\pi} (\theta^2 - 1) d\theta \int_{\frac{\theta}{2}}^{\pi} e^{r^2} dr = \int_0^{\pi} e^{r^2} dr \int_0^{2r} (\theta^2 - 1) d\theta$$
$$= \frac{8}{3} \int_0^{\pi} r^3 e^{r^2} dr - 2 \int_0^{\pi} r e^{r^2} dr$$
$$= \frac{1}{3} (4\pi^2 - 7) e^{\pi^2} + \frac{7}{3}.$$

II. 二重积分的计算

直角坐标系 极坐标变换 奇偶性 **转对称性 形心公式 平移变换 雅可比行列式

被积函数为齐次函数 $f(\frac{y}{x})$ **T6.6**

例题 设有区域
$$D=\{(x,y)|x|+|y|\leq 1\},$$
 计算 $\displaystyle\iint_D e^{\dfrac{|y|}{|x|+|y|}}\mathrm{d}x\mathrm{d}y.$

方法 可以知道,

原积分 =
$$4 \iint_{D_1} e^{\frac{y}{x+y}} dxdy$$

= $4 \int_0^{\frac{\pi}{2}} d\theta \int_0^{\frac{1}{\sin\theta + \cos\theta}} e^{\frac{\sin\theta}{\sin\theta + \cos\theta}} rdr$
= $2 \int_0^{\frac{\pi}{2}} e^{\frac{\sin\theta}{\sin\theta + \cos\theta}} \frac{1}{(\cos\theta + \sin\theta)^2} d\theta$
= $2 \int_0^{\frac{\pi}{2}} e^{\frac{\sin\theta}{\sin\theta + \cos\theta}} d\frac{\sin\theta}{\sin\theta + \cos\theta}$
= $2e^{\frac{\sin\theta}{\sin\theta + \cos\theta}} \Big|_0^{\frac{\pi}{2}} = 2(e-1).$

事实上,对于包含齐次函数 $f(\frac{y}{x})$ 的二重积分,都应该考虑利用极坐标变出 $\mathrm{d}\frac{A\sin\theta+B\cos\theta}{\sin\theta+\cos\theta}$. 对于 $f(\frac{y^2}{x^2}), f(\frac{ax+by}{x+y})$ 也是类似。

极坐标压轴题 - T6.7

例题 设 f(x,y) 在区域 $D=\{(x,y)|x^2+y^2\leq 1\}$ 上有一阶连续偏导数,在 D 的边界上 f(x,y) 恒为零,求

$$\lim_{\varepsilon \to 0^+} \iint_{\varepsilon^2 \le x^2 + y^2 \le 1} \frac{xf_x' + yf_y'}{x^2 + y^2} \mathrm{d}x \mathrm{d}y.$$

方法 引入极坐标,则有

$$\begin{split} \frac{\partial f}{\partial \rho} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \rho} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \rho} = f_x' \cos \theta + f_y' \sin \theta \\ \frac{\partial f}{\partial \theta} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = -f_x'(\rho \sin \theta) + f_y'(\rho \cos \theta) \\ \Rightarrow &\rho \frac{\partial f}{\partial \rho} = \rho \left[f_x' \cos \theta + f_y' \sin \theta \right] = x f_x' + y f_y'. \end{split}$$

那么,对于题设,有

原极限 =
$$\lim_{\varepsilon \to 0^+} \int_0^{2\pi} d\theta \int_{\varepsilon}^1 \frac{\partial f}{\partial \rho} d\rho$$

= $\lim_{\varepsilon \to 0^+} \int_0^{2\pi} f(\rho \cos \theta, \rho \sin \theta) \Big|_{\varepsilon}^1 d\theta$
= $-\lim_{\varepsilon \to 0^+} \int_0^{2\pi} f(\varepsilon \cos \theta, \varepsilon \sin \theta) d\theta$
= $-\int_0^{2\pi} f(0, 0) d\theta = -2\pi f(0, 0).$

极坐标逆问题 - T6.8

在极坐标不好做的情况下,将 (ρ,θ) 转换回 (x,y) 即可。

奇偶性 - T6.9-10

• 奇偶性的推广

设 f(x,y) 在区域 $D=D_1 \bigcup D_2$ 上连续,其中 D_1,D_2 关于原点对称,则

$$\iint_{D} f(x,y) dxdy = \begin{cases} 2 \iint_{D_{1}} f(x,y) dxdy, & f(-x,-y) = f(x,y) \\ 0, & f(-x,-y) = -f(x,y) \end{cases}$$

例题 设区域 D 由曲线 $y=x^3, y=x$ 围成。求

$$\iint\limits_{D} \left[e^{x^2} + \sin(x+y) \right] \mathrm{d}x \mathrm{d}y.$$

方法 由奇偶性,可以知道

原积分 =
$$2\int_0^1 dx \int_{x^3}^x e^{x^2} dy$$

= $2\int_0^1 e^{x^2} (x - x^3) dx$
= $\int_0^1 (1 - x^2) e^{x^2} dx^2 = e - 2$.

例题 对 $D = \{(x,y)|x^2 + y^2 \le 1, x + y \ge 0\}$, 求

$$\iint_{D} \frac{1 + 2x^2 + xy^2}{1 + x^2 + y^2} \mathrm{d}x \mathrm{d}y.$$

方法 原积分等于 $\iint_D \frac{1+2x^2}{1+x^2+y^2} \mathrm{d}x\mathrm{d}y + \iint_D \frac{xy^2}{1+x^2+y^2} \mathrm{d}x\mathrm{d}y$. 前一部分利用轮换对称性。对后一部分,以 y=x 将 D 划分为 D_1,D_2 ,以 y=0 将 D_1 划分为 D_{11},D_{12} . 那么,

后半部分积分 =
$$\iint_{D_1} + \iint_{D_2} \frac{xy^2}{1 + x^2 + y^2} dxdy$$

= $2 \iint_{D_1 2} \frac{xy^2}{1 + x^2 + y^2} dxdy$
= $2 \int_0^{\frac{\pi}{4}} d\theta \int_0^1 \frac{r^4 \sin^2 \theta \cos \theta}{1 + r^2} dr = \frac{1}{3\sqrt{2}} \left(\frac{\pi}{4} - \frac{2}{3}\right).$

轮换对称性的推广 - T6.11

• 轮换对称性的推广

$$\iint\limits_{D} f(x,y) d\sigma = \iint\limits_{D'} f(y,x) d\sigma$$

其中 $D' = \{(y, x) | (x, y) \in D\}.$