Introduction to Computer Security

Project 1: DNS Reflection and Amplification Attacks

Chi-Yu Li (2020 Spring)
Computer Science Department
National Chiao Tung University

Goals

 Understand how to launch DNS reflection and amplification attacks and then defend against them

- You will learn how to
 - □ program with raw sockets
 - □ generate IP packets with spoofed IP addresses
 - □ trace packets using Wireshark
 - □ fabricate DNS query messages
 - □ launch DNS reflection and amplification attacks

Requirements

- You need to develop/run your program in a given virtual machine
 - □ VMware Workstation Player: Please download it from <u>VMware</u>
 - □ VM image: Please download it from <u>Link</u>
 - Username/password: cs2020/cs2020
- The language you use must be C/C++
- You are allowed to team up. Each team has at most 2 students
 - ☐ Teams: discussions are allowed, but no collaboration
- Please submit your source codes and report to New E3

Your DNS Reflection Attack

Three Tasks

- Task I: DNS reflection attack (35%)
- Task II: DNS amplification attack (35%)
 - \square Amplification ratio: $R = S_r/S_q$
 - \blacksquare S_q : the packet size of the DNS query
 - \blacksquare S_r : the packet size of the DNS response
 - $\square 3 \le R < 6$: 20%, $6 \le R < 10$: 25%, $10 \le R$: 35%
- Task III: Report (30%)

Task I: DNS Reflection Attack

(Given a DNS server's IP and the victim's IP)

可以先用ICMP試試看victim能不能接收到攻擊 再去做DNS封包

 (Attacker) Fabricate a DNS query message in a UDP packet

(Victim) Use Wireshark to
 Attacker

 check whether a corresponding DNS response is received

Task II: DNS Amplification Attack

(Given a DNS server's IP and the victim's IP)

(Attacker) Fabricate a
 DNS query message
 that can trigger a large
 DNS response

 \Box Check the size of the UDP packet: S_a

• (Victim) Check the size of the corresponding DNS response: S_r

 \Box Obtain the amplification ratio: $R = S_r/S_q$

Hint I: How to Create IP Spoofing Packets?

- Using Raw Socket
 - □ Normal network sockets vs. Raw sockets

Hint I: How to Create IP Spoofing Packets? (Cont.)

Implementation based on raw socket

```
☐ Create a raw socket with the UDP protocol
```

□ Fabricate the IP header

fill in all the values in IP header byte by byte or field by field

☐ Fabricate the UDP header

```
sd = socket(PF_INET, SOCK_RAW, IPPROTO_UDP)
struct ipheader *ip = (struct ipheader *) buffer;
ip->iph_ihl = 5;
....
ip->iph_souceip = inet_addr(arhv[1]);
....
struct udpheader *udp = ...
udp->udph_srcport = htons(atoi(argv[2]));
....
```

- □ Calculate the checksum over IP and UDP headers 這裡可以直接拿網路上的code
- Create DNS query in the UDP payload
- Reference: <u>Tutorial</u>

Hint I: How to Create IP Spoofing Packets? (Cont.)

DNS/UDP/IP packet format

 ver
 hlen
 TOS
 pkt len

 identification
 flg
 fragment offset

 TTL
 protocol
 Header cksum

 Source IP address

 Destination IP address

 Source port
 Destination port

UDP cksum

32 bits

 Query ID
 Q code R code
 A T R R C D A
 Z rcode

 Question count
 Answer count

 Authority count
 Addl. Record count

UDP length

DNS question or answer data

這邊是做DNS query的重點

Hint 2: How to Create a DNS Query Message?

 Generate a DNS query (e.g., using ping) and then capture it using Wireshark

	dns						Expression
No.		Time	Source	Destination	Protocol	Length	Info
→	2374	11.583686	10.0.0.9	10.0.0.1	DNS	74	Standard query 0xf1a2 A www.google.com
	2380	11.592465	10.0.0.9	10.0.0.1	DNS	75	Standard query 0x87f6 A play.google.com
4	2381	11.592894	10.0.0.1	10.0.0.9	DNS	90	Standard query response 0xf1a2 A www.google.com A 172.217.24.4
	2389	11.607652	10.0.0.1	10.0.0.9	DNS	91	Standard query response 0x87f6 A play.google.com A 216.58.200.238

Hint 2: How to Create a DNS Query Message? (Cont.)

 Fill in the content of the query based on the observation from Wireshark

```
10.0.0.9
   2374 11.583686
                                          10.0.0.1
                                                              DNS
   2380 11.592465
                     10.0.0.9
                                          10.0.0.1
                                                              DNS
   2381 11.592894
                     10.0.0.1
                                          10.0.0.9
                                                              DNS
                                          10.0.0.9
    2389 11.607652
                      10.0.0.1
                                                              DNS
  Frame 2374: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) on
  Ethernet II, Src: IntelCor_96:0a:8c (fc:77:74:96:0a:8c), Dst: Netgear_a4:
 Internet Protocol Version 4, Src: 10.0.0.9, Dst: 10.0.0.1
  User Datagram Protocol, Src Port: 61039, Dst Port: 53
Domain Name System (query)
    Transaction ID: 0xf1a2
  > Flags: 0x0100 Standard query
    Questions: 1
    Answer RRs: 0
    Authority RRs: 0
    Additional RRs: 0
  ✓ Queries
    Name: www.google.com
         [Name Length: 14]
         [Label Count: 3]
         Type: A (Host Address) (1)
         Class: IN (0x0001)
     dc ef 09 a4 33 f0 fc 77 74 96 0a 8c 08 00 45 00
     00 3c f0 3c 00 00 80 11 36 6b 0a 00 00 09 0a 00
     00 01 ee 6f 00 35 00 28 7c a5 f1 a2 01 00 00 01
                                                       ---0-5-( |-----
      00 00 00 00 00 00 03 77 77 77 06 67 6f 6f 67 6c
                                                       ····w ww.googl
     65 03 63 6f 6d 00 00 01 00 01
                                                       e-com---
```

Important: How to Prepare Your Attack Program?

- Must provide a Makefile which compiles your source codes into one executable file, named dns_attack (Missing: -20%)
- Test requirements for the program (Missing: -10% each)
 - Must be run in the given VM without any additional tools or libraries
 - Must work for the test command: ./dns_attack <Victim IP> <UDP Source Port> <DNS Server IP>
 - E.g., ./dns_attack 10.0.0.2 7 8.8.8.8
 - □ After being executed, the program shall send 3 DNS queries and then terminate
 - ☐ Use the last 16 bits of your student ID in the Query ID of the DNS queries
 - Use the ID of only one member in your team
 - E.g., Student ID: 0756842 → Query ID in hex: 0x8C6A

Task III: Report

- Item 1 (10%): please give evidence that you have finished Tasks I and II
 Illustrate your results based on some snapshots
- Item 2 (10%): please explain how you amplify the DNS response
 No more than 200 English words
- Item 3 (10%): please propose a solution that can defend against the DoS attack based on the DNS reflection
 - No more than 200 English words

 mentioned in the course(check the slides)
- Note: the report must be written in English with font size 11 or 12 in Times New Roman. It must be submitted in one PDF file with a name "report.pdf."

Project Submission

- Due date: 4/9 11:55pm
- Submission rules
 - □ Put all your files into a directory and name it using your student ID(s)
 - If your team has two members, please concatenate your IDs separated by "-"
 - Please put the student ID used for the Query ID at the beginning of the name
 - □ Zip the directory and upload the zip file to New E3
 - ☐ A sample of the zip file: 01212112-02121221.zip
 - Makefile
 - dns_attack.cpp
 - report.pdf
 - dns_attack.h

Questions?