RTSM/QUIZ/3

Fill in the blanks (Numerical)

Date of Exam: 18th Nov, 2021

Time: 12:00 Noon to 1:00 pm am

Duration: 50min

No of questions: ALL Questions

Type: Random-sequential (navigation NOT allowed)

Each question carries 4 marks

November 18, 2021

1. Every time series is a stochastic process

ANSWER: TRUE

2. Normally distributed white noise is a dependent sequence

ANSWER :FALSE

3. I.I.D. sequence is always white noise.

ANSWER: FALSE

4. A binary process with values +1 and -1 can have maximum variance 0.5

ANSWER: FALSE

5. A random walk with zero mean is a white noise.

ANSWER:FALSE

6. A standard Brownian Motion is a Gaussian Process with variance t(1-t) at time 0 < t < 1.

ANSWER: FALSE

7. If (X_t, X_s) follows bivariate normal distribution N(0, 0, 1, 1, 0.5) for all integers t and s, the $\{X_n\}$ is a strongly stationary time series.

ANSWER: TRUE

8. Partial correlation coefficient measure the linear dependency among prediction error.

ANSWER:FALSE

9. $(I-B)^2 X_5 = \nabla_2 X_3$

ANSWER:FALSE

ANSWER: TRUE

10. When L_2 convergence holds then Weak Law of Large Number will also hold.

11. Conditional variance of $(X_t|X_{t-1})$ is always larger than variance of X_t ANSWER: FALSE

12. Let X_t be a MA(q) process with $\theta_j = (0.7)^j$ for $j = 0, 1, 2, 3, \ldots$. Find value the auto-covariance function $\gamma_X(2)$ when q = 500 variance of white noise is 4.

[Answer only within the error range ∓ 0.005 will get the credit]

ANS: 3.843137

$$(0.7)^2 * 4/(1 - 0.7^2) = 3.843137$$

13. Let $X_t = 0.5X_{t-1} + W_t$ where $W_t \sim WN(0,4)$ then the $Cov(\sqrt{n}(\hat{\rho}(1) - \rho(1)), \sqrt{n}(\hat{\rho}(2) - \rho(2)))$ is

[Answer only within the error range ∓ 0.005 will get the credit]

ANSWER: 1.5

$$1 + 2 * 0.5^2 = 1.5$$

14. Let $X_t = 0.25X_{t-1} + W_t$ where $W_t \sim WN(0,4)$ then the long run variance is

[Answer only within the error range ∓ 0.005 will get the credit]

ANSWER: 7.111

$$(2/(1-0.25)-1)*4/(1-0.25^2)=7.111$$

15. Let $X_t - 0.5X_{t-1} = W_t + 0.27W_{t-1}$ where $W_t \sim WN(0,9)$ then $\gamma_X(5)/\gamma_X(1)$ is

[Answer only within the error range ∓ 0.005 will get the credit]

ANSWER: 0.0625

RANGE: 0.005

16. Consider values of Z_t for t=1,2,...,10 as $\{0.00,0.99,-0.27,-0.92,0.52,0.77,-0.73,-0.57,0.89,0.33\}$. Find the value of $\nabla_2 \nabla Z_4$.

[Answer only within the error range ∓ 0.005 will get the credit]

ANSWER : -1.64
$$z[4] - z[3] - z[2] + z[1] = -1.64$$

17. Consider a weakly stationary time series X_t with zero mean. Suppose that the coefficient of the best linear predictor of X_{11} based on $\mathbf{X_{10:5}} = (X_{10}, X_9, ..., X_5)^T$ is $\mathbf{a_{10:5}} = (0.12, 0.32, 0.51, 0.64, 0.55, 0.11)^T$. Find the covariance between $(X_{11} - \mathbf{a_{10:5}^T} \mathbf{X_{10:5}})$ and $(X_{10} + 0.9X_8 + 1.1X_5)$

[Answer only within the error range ∓ 0.005 will get the credit]

ANSWER:0