★ Spé - St Joseph/ICAM Toulouse ★

Math. - CC 2 - S2 - Géométrie

vendredi 7 mai 2021 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

Dans l'espace euclidien \mathbb{R}^3 rapporté au repère orthonormé direct $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on considère la surface \mathscr{S} d'équation cartésienne

$$z = (y - 2\sqrt{2} x) y$$

ainsi que la surface paramétrée Σ définie par

$$\begin{cases} x = \sqrt{2} uv \\ y = (u+v)^2 \\ z = (u^2 - v^2)^2 \end{cases}, \quad (u,v) \in \mathbb{R}^2$$

On note M(u, v) le point de Σ de paramètres u et v.

1. A propos de \mathscr{S}

- i. Quelle est la nature de l'intersection de $\mathscr S$ avec un plan d'équation $y=\alpha$, où $\alpha\in\mathbb R$? On ne demande pas les caractéristiques.
 - ii. Qu'en déduit-on pour \mathscr{S} ?
- Quelle est la nature de l'intersection de \mathscr{S} avec un plan d'équation $x = \beta$, où $\beta \in \mathbb{R}$? On ne demande pas les caractéristiques.
- i. Quelles sont la nature et les caractéristiques de l'intersection \mathscr{C}_{γ} de \mathscr{S} avec un plan d'équation $z=\gamma$, où $\gamma \in \mathbb{R}$? Distinguer différents cas suivant les valeurs de γ .
 - ii. On note O_{γ} le point de coordonnées $(0,0,\gamma)$. Tracer, **au verso du sujet**, les courbes \mathscr{C}_{γ} dans le repère $\left(O_{\gamma}; \overrightarrow{i}, \overrightarrow{j}\right)$ pour $\gamma \in \{-2,0,1\}$.
 On pourra confondre les points O_{γ} et tracer les 3 courbes dans le même repère.

- d. Montrer que \mathscr{S} est régulière et déterminer une équation cartésienne du plan tangent à \mathscr{S} en un point M_0 de \mathcal{S} de coordonnées (x_0, y_0, z_0) . Cette équation ne devra pas dépendre de z_0 .
- Dans le cas particulier où M_0 est le point O, préciser la position relative de \mathscr{S} et du plan tangent.

2. Comparaison entre \mathscr{S} et Σ

- Vérifier que $\Sigma \subset \mathscr{S}$.
- A-t-on $\Sigma = \mathscr{S}$?

3. A propos de Σ

- Déterminer la nature géométrique de l'ensemble des points non réguliers de Σ .
- Soit M(u,v) un point régulier de Σ . Déterminer, en fonction des paramètres u et v, une équation cartésienne du plan tangent à Σ au point M(u, v).

Fin de l'énoncé de géométrie

Nom, Prénom:

À RENDRE AVEC LA COPIE

