Parishram (2025)

Physics

Current Electricity

DPP: 6

- **Q1** Twenty million electrons reaches from point X to point Y in two micro second. Direction and magnitude of the current is
 - (A) $1.5 imes 10^{-10}~A~$ from X to Y
 - (B) $1.6\times 10^{-6}~A~\text{from}~Y~\text{to}~X$
 - (C) $1.5 imes 10^{-13}~\mathrm{A}~\mathrm{from}~Y$ to X
 - (D) $1.6 imes 10^{-4}~A~\text{from}~X~\text{to}~Y$
- **Q2** In which conductors, positive and negative charges both can move?
 - (A) Non-electrolytic solution
 - (B) Electrolytic solution
 - (C) Both (1) and (2)
 - (D) Neither (1) and (2)
- Q3 The amount of charge Q passing in time t through a cross-section of a wire is $Q=5t^2+3t+1.$ The value of current at time $t=5~{
 m s}$ is
 - (A) 9 A
 - (B) 49 A
 - (C) 53 A
 - (D) None of these
- $\bf Q4$ A wire is stretched so as to change its diameter by 0.25%. The percentage change in resistance is
 - (A) 4.0%
- (B) 2.0%
- (C) 1.0%
- (D) 0.5%
- **Q5** A conductor with rectangular cross-section has dimensions $(a \times 2a \times 4a)$ as shown in figure. Resistance across AB is R_1 , across CD is R_2 and across EF is R_3 . Then

- (A) $R_1 = R_2 = R_3$
- (B) $R_1 > R_2 > R_3$
- (C) $R_2 > R_3 > R_1$
- (D) $R_1 > R_3 > R_2$
- Q6 A steady current flow in a metallic conductor of non-uniform cross-section. The quantity/ quantities constant along the length of conductor is/are
 - (A) current, electric field and drift speed
 - (B) only drift speed
 - (C) current and drift speed
 - (D) only current
- **Q7** If resistivity of copper conductor is $1.7 \times 10^{-8} \Omega m$ and electric fields is $100 V m^{-1}$, then current density will be
 - (A) $6 imes10^9\mathrm{Am}^{-2}$
 - (B) $1.7 \times 10^{-6} \mathrm{Am}^{-2}$
 - (C) $1.7 \times 10^{-10} \mathrm{Am}^{-2}$
 - (D) $6 \times 10^7 Am^{-2}$
- **Q8** Resistance of wire at 20°C is 20Ω and at 500°C is 60Ω . At what temperature its resistance is 25Ω ?
 - (A) 160°C
- (B) 250°C
- (C) 100°C
- (D) 80°C
- **Q9** The resistance across P and Q in the figure is

Q10 Consider the circuit shown in the figure. The

current i_3 is equal to

- (A) 5amp
- (B) 3amp
- (C) -3amp
- (D) -5/6amp

Answer Key

Q1	(B)
•	

