集合论与图论 第六讲 基数 (势)

孙猛

北京大学数学科学学院信息科学系

http://www.is.pku.edu.cn/~sunm sunmeng@math.pku.edu.cn

2013.4.2

基数(势)

- 集合的等势
- 有穷集合与无穷集合
- 基数
- 基数运算

定义

设A, B为两个集合,若存在从A到B的双射函数,则称A与B是等势的,记作 $A \approx B$ 。

例

设 $\mathbb{N}_{\mathsf{G}_{\mathsf{G}}} = \{ n \mid n \in \mathbb{N} \land n$ 为偶数 $\}$, $\mathbb{N}_{\hat{\sigma}_{\mathsf{G}}} = \{ n \mid n \in \mathbb{N} \land n$ 为奇数 $\}$, $\mathbb{N}_{2^{n}} = \{ x \mid x = 2^{n} \land n \in \mathbb{N} \}$,则 $\mathbb{N} \approx \mathbb{N}_{\mathsf{G}_{\mathsf{G}}}$, $\mathbb{N} \approx \mathbb{N}_{\hat{\sigma}_{\mathsf{G}}}$, $\mathbb{N} \approx \mathbb{N}_{2^{n}}$ 。

解: 取 $f: \mathbb{N} \to \mathbb{N}_{\mathbb{H}}, \ \forall n \in \mathbb{N}, \ f(n) = 2n; \ g: \mathbb{N} \to \mathbb{N}_{\hat{\sigma}}, \ \forall n \in \mathbb{N}, \ g(n) = 2n + 1; \ h: \mathbb{N} \to \mathbb{N}_{2^n}, \ \forall n \in \mathbb{N}, \ h(n) = 2^n$ 。 易知f, g, h都是双射函数,因而

 $\mathbb{N} \approx \mathbb{N}_{\mathbb{R}}$, $\mathbb{N} \approx \mathbb{N}_{\Delta}$, $\mathbb{N} \approx \mathbb{N}_{2^n}$

定义

设A, B为两个集合,若存在从A到B的双射函数,则称A与B是等势的,记作 $A \approx B$ 。

例

设 $\mathbb{N}_{\text{K}} = \{n \mid n \in \mathbb{N} \land n$ 为偶数 $\}$, $\mathbb{N}_{\hat{\sigma}} = \{n \mid n \in \mathbb{N} \land n$ 为奇数 $\}$, $\mathbb{N}_{2^n} = \{x \mid x = 2^n \land n \in \mathbb{N}\}$,则 $\mathbb{N} \approx \mathbb{N}_{\text{K}}$, $\mathbb{N} \approx \mathbb{N}_{\hat{\sigma}}$, $\mathbb{N} \approx \mathbb{N}_{2^n}$ 。

解: 取 $f: \mathbb{N} \to \mathbb{N}_{\mathbb{H}}, \ \forall n \in \mathbb{N}, \ f(n) = 2n; \ g: \mathbb{N} \to \mathbb{N}_{\mathring{\pi}}, \ \forall n \in \mathbb{N}, \ g(n) = 2n + 1; \ h: \mathbb{N} \to \mathbb{N}_{2^n}, \ \forall n \in \mathbb{N}, \ h(n) = 2^n$ 。 易知f, g, h都是双射函数,因而

 $\mathbb{N} \approx \mathbb{N}_{\mathfrak{A}}, \quad \mathbb{N} \approx \mathbb{N}_{\mathfrak{A}}, \quad \mathbb{N} \approx \mathbb{N}_{2^n}$

定义

设A,B为两个集合,若存在从A到B的双射函数,则称A与B是等势的,记作 $A \approx B$ 。

例

设 $\mathbb{N}_{\mathbb{K}} = \{n \mid n \in \mathbb{N} \land n$ 为偶数 $\}$, $\mathbb{N}_{\hat{\sigma}} = \{n \mid n \in \mathbb{N} \land n$ 为奇数 $\}$, $\mathbb{N}_{2^n} = \{x \mid x = 2^n \land n \in \mathbb{N}\}$,则 $\mathbb{N} \approx \mathbb{N}_{\mathbb{K}}$, $\mathbb{N} \approx \mathbb{N}_{\hat{\sigma}}$, $\mathbb{N} \approx \mathbb{N}_{2^n}$ 。

解: 取 $f: \mathbb{N} \to \mathbb{N}_{\mathfrak{A}}, \ \forall n \in \mathbb{N}, \ f(n) = 2n; \ g: \mathbb{N} \to \mathbb{N}_{\hat{\mathfrak{A}}}, \ \forall n \in \mathbb{N}, \ g(n) = 2n + 1; \ h: \mathbb{N} \to \mathbb{N}_{2^n}, \ \forall n \in \mathbb{N}, \ h(n) = 2^n$ 。 易知f, g, h都是双射函数,因而

 $\mathbb{N} \approx \mathbb{N}_{\text{dl}}, \qquad \mathbb{N} \approx \mathbb{N}_{\text{dr}}, \qquad \mathbb{N} \approx \mathbb{N}_{2^n}.$

定理

(1) $\mathbb{Z}\approx\mathbb{N};$ (2) $\mathbb{N}\times\mathbb{N}\approx\mathbb{N};$ (3) $\mathbb{N}\approx\mathbb{Q};$ (4) (0,1) $\approx\mathbb{R};$ (5) [0,1] \approx (0,1).

证明: (1) 取 $f: \mathbb{Z} \to \mathbb{N}$, 且 $\forall n \in \mathbb{Z}$,

$$f(n) = \begin{cases} 0, & n = 0 \\ 2n, & n > 0 \\ 2|n| - 1, & n < 0 \end{cases}$$

显然f是 \mathbb{Z} 到 \mathbb{N} 的双射函数,所以 $\mathbb{Z} \approx \mathbb{N}$ 。

(2) 取 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ \forall i, j \in \mathbb{N}, \ f(\langle i, j \rangle) = \frac{(m+n)(m+n+1)}{2} + m$ 是 $\mathbb{N} \times \mathbb{N}$ 到 \mathbb{N} 的双射系数,故 $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$

定理

(1) $\mathbb{Z} \approx \mathbb{N}$; (2) $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$; (3) $\mathbb{N} \approx \mathbb{Q}$; (4) (0,1) $\approx \mathbb{R}$; (5) [0,1] \approx (0,1).

证明: (1) 取 $f: \mathbb{Z} \to \mathbb{N}$, 且 $\forall n \in \mathbb{Z}$,

$$f(n) = \begin{cases} 0, & n = 0 \\ 2n, & n > 0 \\ 2|n| - 1, & n < 0 \end{cases}$$

显然f是 \mathbb{Z} 到 \mathbb{N} 的双射函数,所以 $\mathbb{Z} \approx \mathbb{N}$ 。

(2) 取 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ \forall i, j \in \mathbb{N}, \ f(\langle i, j \rangle) = \frac{(m+n)(m+n+1)}{2} + m$ 是 $\mathbb{N} \times \mathbb{N}$ 到 \mathbb{N} 的双射函数,故 $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$ 。

定理

(1) $\mathbb{Z}\approx\mathbb{N};$ (2) $\mathbb{N}\times\mathbb{N}\approx\mathbb{N};$ (3) $\mathbb{N}\approx\mathbb{Q};$ (4) (0,1) $\approx\mathbb{R};$ (5) [0,1] \approx (0,1).

证明: (1) 取 $f: \mathbb{Z} \to \mathbb{N}$, 且 $\forall n \in \mathbb{Z}$,

$$f(n) = \begin{cases} 0, & n = 0 \\ 2n, & n > 0 \\ 2|n| - 1, & n < 0 \end{cases}$$

显然f是 \mathbb{Z} 到 \mathbb{N} 的双射函数,所以 $\mathbb{Z} \approx \mathbb{N}$ 。

(2) 取 $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ \forall i, j \in \mathbb{N}, \ f(\langle i, j \rangle) = \frac{(m+n)(m+n+1)}{2} + m$ 是 $\mathbb{N} \times \mathbb{N}$ 到 \mathbb{N} 的双射函数,故 $\mathbb{N} \times \mathbb{N} \approx \mathbb{N}$

(3) 因为任何有理数都可以表示为分数,因而,对任意 $n \in \mathbb{N} - \{0\}$,列出 $\frac{n}{n}$, $m \in \mathbb{Z}$,见下图。从中找出全体既约分数,它们表示出了全体有理数,按图中所示路线将自然数与全体有理数一一对应起来,即 $\forall n \in \mathbb{N}$,f(n)为[n]旁边的有理数,易知f是双射的,所以 $\mathbb{N} \approx \mathbb{Q}$ 。

(4) $f:(0,1)\to\mathbb{R},\ \forall x\in(0,1),\ f(x)=tan\pi(\frac{2x-1}{2}),\ 则f是(0,1)到\mathbb{R}$ 的 双射函数,所以 $(0,1)\approx\mathbb{R}$ 。

(5) $f:[0,1] \to (0,1), \forall x \in [0,1],$

$$f(x) = \begin{cases} \frac{1}{4}, & x = 0\\ \frac{1}{2}, & x = 1\\ \frac{1}{2^{n+2}}, & x = \frac{1}{2^n}, n \ge 1\\ x, & \text{其他}. \end{cases}$$

易证f是[0,1]到(0,1)的双射函数,从而 $[0,1] \approx (0,1)$.

(4) $f:(0,1) \to \mathbb{R}$, $\forall x \in (0,1)$, $f(x) = tan\pi(\frac{2x-1}{2})$, 则 $f \not\in (0,1)$ 到 \mathbb{R} 的 双射函数, 所以 $(0,1) \approx \mathbb{R}$ 。

(5) $f:[0,1]\to(0,1), \forall x\in[0,1],$

$$f(x) = \begin{cases} \frac{1}{4}, & x = 0\\ \frac{1}{2}, & x = 1\\ \frac{1}{2^{n+2}}, & x = \frac{1}{2^n}, n \ge 1\\ x, & \text{ 其他}. \end{cases}$$

易证f是[0,1]到(0,1)的双射函数,从而[0,1] \approx (0,1)。

定理

设A为任意的集合,则 $\mathcal{P}(A)\approx (A\to \mathbf{2})$ 。其中 $(A\to \mathbf{2})$ 为 $\mathbf{2}^A$,即A到 $\mathbf{2}=\{0,1\}$ 的全体函数。

定理

设A, B, C为任意集合,则

- $A \approx A$:
- ② 若 $A \approx B$, 则 $B \approx A$:

定理

设A为任意的集合,则 $\mathcal{P}(A)\approx (A\to \mathbf{2})$ 。其中 $(A\to \mathbf{2})$ 为 $\mathbf{2}^A$,即A到 $\mathbf{2}=\{0,1\}$ 的全体函数。

定理

设A, B, C为任意集合,则

- \triangle $A \approx A$;
- ② 若 $A \approx B$, 则 $B \approx A$;
- ③ 若 $A \approx B$ 且 $B \approx C$,则 $A \approx C$ 。

康托定理

定理

- (1) $\mathbb{N} \not\approx \mathbb{R}$;
- (2)设A为任意的集合,则A ≉ $\mathcal{P}(A)$ 。

基数(势)

- 集合的等势
- 有穷集合与无穷集合
- 基数
- 基数运算

定义

若一个集合A与某个自然数n等势,即 $A \approx n$,则称A是有穷集合,否则称A 是无穷集合。

定理

不存在与自己的真子集等势的自然数。

定义

若一个集合A与某个自然数n等势,即 $A \approx n$,则称A是有穷集合,否则称A 是无穷集合。

定理

不存在与自己的真子集等势的自然数。

推论

不存在与自己的真子集等势的有穷集合。

推论

- (1)任何与自己的真子集等势的集合都是无穷集。
- (2) N是无穷集。

推论

任何有穷集合都与惟一的自然数等势。

推论

不存在与自己的真子集等势的有穷集合。

推论

- (1)任何与自己的真子集等势的集合都是无穷集。
- (2) N是无穷集。

推论

任何有穷集合都与惟一的自然数等势。

推论

不存在与自己的真子集等势的有穷集合。

推论

- (1)任何与自己的真子集等势的集合都是无穷集。
- (2) N是无穷集。

推论

任何有穷集合都与惟一的自然数等势。

定理

任何有穷集合的子集仍为有穷集合。

引理

设c为自然数n的真子集,则c与某个属于n的自然数等势。

定理

任何有穷集合的子集仍为有穷集合。

引理

设c为自然数n的真子集,则c与某个属于n的自然数等势。

基数(势)

- 集合的等势
- 有穷集合与无穷集合
- 基数
- 基数运算

基数

- 对于有穷集合A, A中的元素个数表示为|A|。
- 设A为任意一个集合,A中的元素"个数"表示为cardA,称cardA 为A的基数,并作以下5条规定:
 - ① 对于任意集合 $A \rightarrow B$,规定card A = card B当且仅当 $A \approx B$ 。
 - ② 对于任意有穷集合A,规定与A等势的自然数n为A的基数,记作cardA = n。
 - ③ 对于自然数集合N,规定cardN = ℵ₀。
 - 对于实数集合ℝ,规定cardℝ= N。
 - ⑤ 将 $0,1,2,\cdots,\aleph_0,\aleph$ 都称做基数,其中,自然数 $0,1,2,\cdots$ 称作<mark>有穷基数</mark>,而 \aleph_0,\aleph 称作无穷基数。并规定用希腊字母 κ 、 λ 和 μ 等表示任意的基数。

基数

例

设集合 $A = \{a, b, c\}, B = \{\{a\}, \{b\}, \{c\}\}, N_{\text{偶}} = \{n \mid n \in \mathbb{N} \land n$ 为偶数 $\}, N_{\hat{\sigma}} = \{n \mid n \in \mathbb{N} \land n$ 为奇数 $\}, 按基数的5条规定可知:$

$$\begin{split} \operatorname{card} & A = \operatorname{card} B = 3 \\ \operatorname{card} & \mathbb{N}_{\#} = \operatorname{card} \mathbb{N} = \aleph_0 \\ \operatorname{card} & [0,1] = \operatorname{card} (0,1) = \operatorname{card} \mathbb{R} = \aleph \end{split}$$

定义

设 κ 为任意基数,令 $K_{\kappa}=\{x\mid x$ 是集合且 $\mathrm{card}x=\kappa\}$ 。当 $\kappa=0$ 时, $K_0=\{\emptyset\}$ 为一个集合,当 $\kappa\neq0$ 时,称 K_{κ} 为基数为 κ 的集合的类,而不称 K_{κ} 为集合。

基数

例

设集合 $A = \{a, b, c\}, B = \{\{a\}, \{b\}, \{c\}\}, N_{\text{偶}} = \{n \mid n \in \mathbb{N} \land n$ 为偶数 $\}, N_{\hat{\sigma}} = \{n \mid n \in \mathbb{N} \land n$ 为奇数 $\}, 按基数的5条规定可知:$

$$\operatorname{card} A = \operatorname{card} B = 3$$

$$\operatorname{card} \mathbb{N}_{\#} = \operatorname{card} \mathbb{N}_{\#} = \operatorname{card} \mathbb{N} = \aleph_0$$

$$\operatorname{card} [0, 1] = \operatorname{card} (0, 1) = \operatorname{card} \mathbb{R} = \aleph$$

定义

设 κ 为任意基数,令 $K_{\kappa}=\{x\mid x$ 是集合且 $\mathrm{card}x=\kappa\}$ 。当 $\kappa=0$ 时, $K_0=\{\emptyset\}$ 为一个集合,当 $\kappa\neq0$ 时,称 K_{κ} 为基数为 κ 的集合的类,而不称 K_{κ} 为集合。

定义

设A, B为任意二集合,

- ① 若存在 $f: A \rightarrow B \coprod f$ 是单射的,则称B 优势于A,或称A 劣势于B,记作 $A \preceq \cdot B$ 。
- ② 若A ≼·B且A ≉ B,则称B绝对优势于A,或称A绝对劣势于B, 记作A ≺·B。

定理

设A, B为二集合,则A ≼·B当且仅当存在C ⊆ B,使得A ≈ C.

推论

设AR为二集合。

- (1) 若 $A \subset B$, 则 $A \preceq \cdot B$:
- (2) 若 $A \approx B$, 则 $A \preceq \cdot B$ 且 $B \preceq \cdot A$.

定义

设A, B为任意二集合,

- ① 若存在 $f: A \rightarrow B \coprod f \not\in A$,则称B优势于A,或称A劣势于B,记作 $A \preceq \cdot B$ 。
- ② 若A ≼·B且A ≉ B,则称B绝对优势于A,或称A绝对劣势于B, 记作A ≺·B。

定理

设A,B为二集合,则A ≼·B当且仅当存在C \subseteq B,使得A \approx C。

推论

设A B为二集合.

- (1) 若 $A \subset B$, 则 $A \preceq \cdot B$:
- (2) 若 $A \approx B$, 则 $A \preceq \cdot B$ 且 $B \preceq \cdot A$ 。

定义

设A, B为任意二集合,

- ① 若存在 $f: A \rightarrow B \coprod f$ 是单射的,则称B 优势于A,或称A 劣势于B,记作 $A \preceq \cdot B$ 。
- ② 若A ≼·B且A ≉ B,则称B绝对优势于A,或称A绝对劣势于B, 记作A ≺·B。

定理

设A, B为二集合,则A ≼·B当且仅当存在C \subset B,使得A \approx C。

推论

设A,B为二集合,

- (1) 若 $A \subseteq B$,则 $A \preceq \cdot B$;
- (2) 若 $A \approx B$, 则 $A \preceq \cdot B$ 且 $B \preceq \cdot A$ 。

定理

设A, B, C, D为4个集合, 已知 $A \preceq \cdot B, C \preceq \cdot D$, 则

- (1) 若 $B \cap D = \emptyset$,则 $A \cup C \preccurlyeq \cdot B \cup D$;
- (2) $A \times C \preceq B \times D$.

定理

设A.B.C为3个集合。

- $(1) A \preceq \cdot A$
- (2) 若 $A \preceq \cdot B$ 且 $B \preceq \cdot C$,则 $A \preceq \cdot C$ 。

定理

设A, B, C, D为4个集合,已知 $A \preceq \cdot B, C \preceq \cdot D$,则

- (1) 若 $B \cap D = \emptyset$,则 $A \cup C \preccurlyeq \cdot B \cup D$;
- (2) $A \times C \leq B \times D$.

定理

设A, B, C为3个集合。

- (1) $A \leq A$;
- (2) 若 $A \preceq \cdot B$ 且 $B \preceq \cdot C$,则 $A \preceq \cdot C$ 。

定理

战 A, B, C, D为4个集合,且 $\operatorname{card} A = \operatorname{card} C = \kappa$, $\operatorname{card} B = \operatorname{card} D = \lambda$,则 $A \preceq \cdot B$ 当且仅当 $C \preceq \cdot D$ 。

定义

 $战\kappa, \lambda$ 为二基数,A, B为二集合,且 $\mathrm{card} A = \kappa$, $\mathrm{card} B = \lambda$,则

- ① $\kappa \leq \lambda$ 当且仅当 $A \preccurlyeq \cdot B$
- ② $\kappa < \lambda$ 当且仅当 $A \prec \cdot B$ 。

定理

战 A, B, C, D为4个集合,且 $\operatorname{card} A = \operatorname{card} C = \kappa$, $\operatorname{card} B = \operatorname{card} D = \lambda$,则 $A \preceq \cdot B$ 当且仅当 $C \preceq \cdot D$ 。

定义

设 κ , λ 为二基数,A, B为二集合,且 $\operatorname{card} A = \kappa$, $\operatorname{card} B = \lambda$,则

- **①** $\kappa \leq \lambda$ 当且仅当 $A \preccurlyeq \cdot B$;
- ② $\kappa < \lambda$ 当且仅当 $A \prec \cdot B$ 。

例

设 κ,λ 为二基数,若 $\kappa \leq \lambda$,则存在集合A和B,使得 $A \subseteq B$ 且 $\mathrm{card}A = \kappa$, $\mathrm{card}B = \lambda$ 。

例

- (1)设 κ 为任意一个基数,则 $0 \le \kappa$;
- (2) 设n为自然数,则n < ℵ₀。

定理

设A为任意集合,则cardA < cardP(A)。

例

 $\mathcal{C}_{\kappa,\lambda,\mu}$ 为3个基数,则

- $(1) \kappa < \kappa$:
- (2) 若 $\kappa < \lambda$ 且 $\lambda < \mu$,则 $\kappa < \mu$ 。

例

设 κ,λ 为二基数,若 $\kappa\leq\lambda$,则存在集合A和B,使得 $A\subseteq B$ 且 $\mathrm{card}A=\kappa$, $\mathrm{card}B=\lambda$ 。

例

- (1)设 κ 为任意一个基数,则 $0 \le \kappa$;
- (2)设n为自然数,则n < ℵ₀。

定理

设A为任意集合,则cardA < cardP(A)。

例

 $设\kappa, \lambda, \mu$ 为3个基数,则

- $(1) \kappa < \kappa;$
- (2) 若 $\kappa < \lambda$ 且 $\lambda < \mu$,则 $\kappa < \mu$ 。

例

设 κ,λ 为二基数,若 $\kappa\leq\lambda$,则存在集合A和B,使得 $A\subseteq B$ 且 $\mathrm{card}A=\kappa$, $\mathrm{card}B=\lambda$ 。

例

- (1)设 κ 为任意一个基数,则 $0 \le \kappa$;
- (2)设n为自然数,则n < ℵ₀。

定理

设A为任意集合,则 $cardA < card\mathcal{P}(A)$ 。

例

 $设\kappa, \lambda, \mu$ 为3个基数,则

- $(1) \kappa < \kappa;$
- (2) 若 $\kappa \leq \lambda$ 且 $\lambda \leq \mu$,则 $\kappa \leq \mu$ 。

基数的次序

例

设 κ, λ 为二基数,若 $\kappa \leq \lambda$,则存在集合A和B,使得 $A \subseteq B$ 且 $cardA = \kappa$, $cardB = \lambda$ 。

例

- (1)设 κ 为任意一个基数,则 $0 \le \kappa$;
- (2)设n为自然数,则n < ℵ₀。

定理

设A为任意集合,则cardA < cardP(A)。

例

 $\mathcal{C}_{\kappa,\lambda,\mu}$ 为3个基数,则

- (1) $\kappa \leq \kappa$;
- (2) 若 $\kappa < \lambda$ 且 $\lambda < \mu$,则 $\kappa < \mu$ 。

Schröder-Bernsteir定理

- (1) 设A, B为二集合,若 $A \preceq \cdot B$ 且 $B \preceq \cdot A$,则 $A \approx B$;
- (2)设 κ , λ 为二基数,若 $\kappa \leq \lambda$,且 $\lambda \leq \kappa$,则 $\kappa = \lambda$ 。

Schröder-Bernsteir定理

定理

- (1)设A, B为二集合,若A ≼ · B且B ≼ · A,则A ≈ B;
- (2) 设 κ , λ 为二基数,若 $\kappa \leq \lambda$,且 $\lambda \leq \kappa$,则 $\kappa = \lambda$ 。

例

设A, B, C为三个集合,若 $A \subseteq B \subseteq C$,且 $A \approx C$,则 $A \approx B \approx C$

Schröder-Bernsteir定理

定理

- (1)设A, B为二集合,若A ≼ · B且B ≼ · A,则A ≈ B;
- (2) 设 κ , λ 为二基数,若 $\kappa \leq \lambda$,且 $\lambda \leq \kappa$,则 $\kappa = \lambda$ 。

例

战A, B, C为三个集合,若 $A \subseteq B \subseteq C$,且 $A \approx C$,则 $A \approx B \approx C$ 。

定理

 $\mathbb{R} \approx (\mathbb{N} \to \mathbf{2}).$

例

设 κ , λ , μ 为3个基数。

- (1) 若 $\kappa \le \lambda < \mu$,则 $\kappa < \mu$;
- (2) 若 $\kappa < \lambda < \mu$,则 $\kappa < \mu$ 。

定理

 $\mathbb{R} \approx (\mathbb{N} \to \mathbf{2})$.

例

设 κ , λ , μ 为3个基数。

- (1) 若 $\kappa \le \lambda < \mu$,则 $\kappa < \mu$;
- (2) 若 $\kappa < \lambda \le \mu$,则 $\kappa < \mu$ 。

定理

- ① 设A为任意的无穷集合,则N ≼·A;
- ② 设 κ 为任意的无穷基数,则 $\aleph_0 \le \kappa$ 。

推论

设κ为任意的基数, κ < χ0当且仅当κ是有穷基数。

推论

有穷集合的子集一定是有穷集合。

推论

设A是N的无穷子集,则cardA = %。

定理

- ① 设A为任意的无穷集合,则N ≼·A;
- ② 设κ为任意的无穷基数,则N₀≤κ。

推论

设 κ 为任意的基数, $\kappa < \aleph_0$ 当且仅当 κ 是有穷基数。

推论

有穷集合的子集一定是有穷集合。

推论

设A是N的无穷子集,则 $card A = \aleph_0$

定理

- ① 设A为任意的无穷集合,则N ≼·A;
- ② 设κ为任意的无穷基数,则N₀≤κ。

推论

设 κ 为任意的基数, $\kappa < \aleph_0$ 当且仅当 κ 是有穷基数。

推论

有穷集合的子集一定是有穷集合。

推论

设A是N的无穷子集,则cardA = %。

定理

- ① 设A为任意的无穷集合,则N ≼·A;
- ② 设 κ 为任意的无穷基数,则 $\aleph_0 \le \kappa$ 。

推论

设 κ 为任意的基数, $\kappa < \aleph_0$ 当且仅当 κ 是有穷基数。

推论

有穷集合的子集一定是有穷集合。

推论

设A是 \mathbb{N} 的无穷子集,则 $\operatorname{card} A = \aleph_0$ 。

定义

设A为一集合,若 $cardA < \aleph_0$,则称A为可数集或可列集。

集合A是可数集当且仅当A是有穷集或 $cardA = \aleph_0$ ($PA \approx N$)。

定理

集合A是无穷可数集当且仅当A可以写成形式:{a1,a2,···,an,···}。

- 可数集的子集是可数集。
- ② 可数个可数集的并集是可数集。
- ③ 若A为无穷集,则p(A)不是可数集。

定义

设A为一集合,若 $cardA < \aleph_0$,则称A为可数集或可列集。

集合A是可数集当且仅当A是有穷集或 $cardA = \aleph_0$ ($PA \approx \mathbb{N}$)。

定理

集合A是无穷可数集当且仅当A可以写成形式: $\{a_1, a_2, \cdots, a_n, \cdots\}$ 。

- 可数集的子集是可数集
- ② 可数个可数集的并集是可数集
- ③ 若A为无穷集,则℘(A)不是可数集。

定义

设A为一集合,若 $\operatorname{card} A < \aleph_0$,则称A为可数集或可列集。

集合A是可数集当且仅当A是有穷集或 $cardA = \aleph_0$ ($PA \approx \mathbb{N}$)。

定理

集合A是无穷可数集当且仅当A可以写成形式: $\{a_1,a_2,\cdots,a_n,\cdots\}$ 。

- ① 可数集的子集是可数集。
- ② 可数个可数集的并集是可数集。
- ③ 若A为无穷集,则℘(A)不是可数集。

定义

设A为一集合,若 $cardA < \aleph_0$,则称A为可数集或可列集。

集合A是可数集当且仅当A是有穷集或 $cardA = \aleph_0$ ($PA \approx \mathbb{N}$)。

定理

集合A是无穷可数集当且仅当A可以写成形式: $\{a_1,a_2,\cdots,a_n,\cdots\}$ 。

- 可数集的子集是可数集。
- ② 可数个可数集的并集是可数集。
- ③ 若A为无穷集,则℘(A)不是可数集。

基数(势)

- 集合的等势
- 有穷集合与无穷集合
- 基数
- 基数运算

基数运算

定理

设 K_1, K_2, L_1, L_2 为4个集合,若 $K_1 \approx K_2$, $L_1 \approx L_2$,则

- (2) $K_1 \times L_1 \approx K_2 \times L_2$;
- (3) $L_1 \rightarrow K_1 \approx L_2 \rightarrow K_2$.

基数运算

定理

设 K_1, K_2, L_1, L_2 为4个集合, 若 $K_1 \approx K_2$, $L_1 \approx L_2$, 则

- (1) 若 $K_1 \cap L_1 = K_2 \cap L_2 = \emptyset$,则 $K_1 \cup L_1 \approx K_2 \cup L_2$;
- (2) $K_1 \times L_1 \approx K_2 \times L_2$;
- (3) $L_1 \rightarrow K_1 \approx L_2 \rightarrow K_2$.

定义

 $设\kappa, \lambda$ 为二基数。

- ① $\kappa + \lambda = \operatorname{card}(K \cup L)$, 其中K, L是满足 $K \cap L = \emptyset$, 且 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合;
- ② $\kappa \cdot \lambda = \operatorname{card}(K \times L)$,其中K, L是满足 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合;
- ③ $\kappa^{\lambda} = \operatorname{card}(L \to K)$,其中K, L是满足 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合。

例

设0.1.2.3.4为基数,证明:

(1) 2 + 4 = 6; $(2) 2 \times 3 = 6;$ $(3) 3^2 = 9;$ $(4) 0^0 = 1$

定义

 $设\kappa, \lambda$ 为二基数。

- ① $\kappa + \lambda = \operatorname{card}(K \cup L)$, 其中K, L是满足 $K \cap L = \emptyset$, 且 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合;
- ② $\kappa \cdot \lambda = \operatorname{card}(K \times L)$, 其中K, L是满足 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合;
- ③ $\kappa^{\lambda} = \operatorname{card}(L \to K)$,其中K, L是满足 $\operatorname{card}K = \kappa$, $\operatorname{card}L = \lambda$ 的两个集合。

例

设0,1,2,3,4为基数,证明:

$$(1) 2 + 4 = 6; (2) 2 \times 3 = 6; (3) 3^2 = 9; (4) 0^0 = 1.$$

定理

- (1)设A为一集合,则 $2^{\operatorname{card} A} = \operatorname{card} \mathcal{P}(A)$;
- (2)设 κ 为一基数,则 κ < 2^{κ} 。

推论

- (1) $\operatorname{card} \mathcal{P}(\mathbb{N}) = 2^{\aleph_0}$;
- (2) $\operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\aleph};$
- $(3) \aleph = 2^{\aleph_0}.$

显然 $\operatorname{card} \mathcal{PP}(\mathbb{N}) = 2^{2^{\aleph_0}}, \ \cdots, \ \operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\aleph} = 2^{2^{\aleph_0}}, \ \operatorname{card} \mathcal{PP}(\mathbb{R}) = 2^{2^{\aleph}} = 2^{2^{\aleph_0}}, \ \cdots, \ 从而<math>0 < 1 < 2 < \cdots < \aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}} < \cdots, \ 且可知无最大基数存在。$

定理

- (1)设A为一集合,则 $2^{\operatorname{card}A} = \operatorname{card}\mathcal{P}(A)$;
- (2)设 κ 为一基数,则 κ < 2^{κ} 。

推论

- (1) $\operatorname{card} \mathcal{P}(\mathbb{N}) = 2^{\aleph_0}$;
- (2) $\operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\aleph}$;
- (3) $\aleph = 2^{\aleph_0}$.

显然
$$\operatorname{card} \mathcal{PP}(\mathbb{N}) = 2^{2^{\aleph_0}}, \ \cdots, \ \operatorname{card} \mathcal{P}(\mathbb{R}) = 2^{\aleph} = 2^{2^{\aleph_0}}, \ \operatorname{card} \mathcal{PP}(\mathbb{R}) = 2^{2^{\aleph}} = 2^{2^{2^{\aleph_0}}}, \ \cdots, \ 从而 $0 < 1 < 2 < \cdots < \aleph_0 < 2^{\aleph_0} < 2^{2^{\aleph_0}} < \cdots, \ 且可知无最大基数存在。$$$

定理

 $战\kappa,\lambda,\mu$ 是三个任意的基数,则

(1)
$$\kappa + \lambda = \lambda + \kappa$$
, $\kappa \cdot \lambda = \lambda \cdot \kappa$;

(2)
$$\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$$
, $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$;

(3)
$$\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$$
;

$$(4) \kappa^{\lambda + \mu} = \kappa^{\lambda} \cdot \kappa^{\mu};$$

(5)
$$(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu};$$

(6)
$$(\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}$$
.

推论

 $战\kappa,\lambda$ 为任意二基数,则

$$(1) \kappa + (\lambda + 1) = (\kappa + \lambda) + 1$$

(2)
$$\kappa \cdot (\lambda + 1) = \kappa \cdot \lambda + \kappa$$
;

$$(3) \, \kappa^{\lambda+1} = \kappa^{\lambda} \cdot \kappa.$$

定理

 $战\kappa,\lambda,\mu$ 是三个任意的基数,则

(1)
$$\kappa + \lambda = \lambda + \kappa$$
, $\kappa \cdot \lambda = \lambda \cdot \kappa$;

(2)
$$\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$$
, $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$;

(3)
$$\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$$
;

$$(4) \kappa^{\lambda + \mu} = \kappa^{\lambda} \cdot \kappa^{\mu};$$

(5)
$$(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$$
;

$$(6) (\kappa^{\lambda})^{\mu} = \kappa^{\lambda \cdot \mu}.$$

推论

 $战\kappa,\lambda$ 为任意二基数,则

$$(1) \kappa + (\lambda + 1) = (\kappa + \lambda) + 1;$$

(2)
$$\kappa \cdot (\lambda + 1) = \kappa \cdot \lambda + \kappa$$
;

(3)
$$\kappa^{\lambda+1} = \kappa^{\lambda} \cdot \kappa_{\circ}$$

定理

设 κ , λ , μ 是三个任意的基数, $\Xi \kappa \leq \lambda$, 则

- (1) $\kappa + \mu \leq \lambda + \mu$;
- (2) $\kappa \cdot \mu \leq \lambda \cdot \mu$;
- (3) $\kappa^{\mu} \leq \lambda^{\mu}$;
- $(4) \mu^{\kappa} \leq \mu^{\lambda}, \kappa, \mu$ 不同时为0。

定理

定理

设 κ 为任意的无穷基数,则 $\kappa + \kappa = \kappa \cdot \kappa = \kappa$, $\kappa^{\kappa} = 2^{\kappa}$

定理

设 κ , λ , μ 是三个任意的基数, $\Xi \kappa \leq \lambda$, 则

- (1) $\kappa + \mu \leq \lambda + \mu$;
- (2) $\kappa \cdot \mu \leq \lambda \cdot \mu$;
- (3) $\kappa^{\mu} \leq \lambda^{\mu}$;
- $(4) \mu^{\kappa} \leq \mu^{\lambda}, \kappa, \mu$ 不同时为0。

定理

定理

设 κ 为任意的无穷基数,则 $\kappa + \kappa = \kappa \cdot \kappa = \kappa$, $\kappa^{\kappa} = 2^{\kappa}$

定理

设 κ , λ , μ 是三个任意的基数, $\Xi \kappa \leq \lambda$, 则

- (1) $\kappa + \mu \leq \lambda + \mu$;
- (2) $\kappa \cdot \mu \leq \lambda \cdot \mu$;
- (3) $\kappa^{\mu} \leq \lambda^{\mu}$;
- $(4) \mu^{\kappa} \leq \mu^{\lambda}, \kappa, \mu$ 不同时为0。

定理

定理

设 κ 为任意的无穷基数,则 $\kappa + \kappa = \kappa \cdot \kappa = \kappa$, $\kappa^{\kappa} = 2^{\kappa}$.

作业

- ① 若A是所有半径为1,圆心在x轴上的圆周组成的集合,A的基数是什么?证明你的结论。
- ② 设 κ , λ 是基数,且 λ 是无穷的, $2 \le \kappa \le \lambda$,判断 $\kappa^{\lambda} = 2^{\lambda}$ 是否成立,并给出证明。
- ③ 由N和基数乘法的定义证明N·N=N。