Control Systems

G V V Sharma*

1

CONTENTS

	1.1	Introduction	1
2	Bode 2.1		1 1
3		Controller Introduction	2 2

Abstract—The objective of this manual is to introduce control system design at an elementary level.

Download python codes using

Polar Plot

1

svn co https://github.com/gadepall/school/trunk/control/ketan/codes

1 Polar Plot

1.1 Introduction

2 Bode Plot

- 2.1 Gain and Phase Margin
- 2.1. An aircraft roll control system can be represented by a block diagram shown in Fig. 2.2 with G(s) in feedback system, whose error $K_v = 5$. Determine K

$$G(s) = \frac{10K}{s(s+1)(s+5)}$$
 (2.1.1)

2.2. The block diagram is given by Fig.2.2

Fig. 2.2

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

2.3. **Solution:** For unity feedback we have Velocity error constant (K_{ν})

$$K_{v} = \lim_{s \to 0} sG(s) \tag{2.3.1}$$

$$\lim_{s \to 0} \left(\frac{10K}{(s+1)(s+5)} \right) = 5 \tag{2.3.2}$$

$$\implies K = 2.5 \tag{2.3.3}$$

It's Phase Margin = 3.94° and Gain Crossover Frequency = 2.03 rad/s Refer Fig. 2.3 for plot G(s).

codes/es17btech11002 1.py

Fig. 2.3

2.4. Design a Lag-Lead Compensator to yield a Phase margin(PM) of 60°

Solution: Compensator required phase angle (ϕ_m) and Phase Margin Frequency (ω_{pm}) ,

$$\phi_m = -(180^\circ + \theta) + PM + 5 = 65^\circ$$
 (2.4.1)

$$\omega_{pm} = 1.25 rad/s. \tag{2.4.2}$$

Attenuation factor $(\alpha\beta)$ is given by

$$\alpha = 0.5 \tag{2.4.3}$$

$$\beta = 20 \tag{2.4.4}$$

Lead and Lag Compensator Design Parameter is given in TABLE 2.4 And Compensator ob-

Zeros/Poles	Parameter	Value
Zlead	$\omega_{pm} \sqrt{\alpha}$	0.279
p_{lead}	$\frac{z_{lead}}{\alpha}$	5.590
Z_{lag}	$0.1\omega_{pm}$	0.125
p_{lag}	$\frac{z_{lag}}{\beta}$	0.00625

TABLE 2.4: Zeroes and Poles

tained has transfer function

$$G_c(s) = \frac{(s + 0.279)(s + 0.125)}{(s + 5.590)(s + 0.00625)}$$
 (2.4.5)

2.5. Plot the graph after adding Lead-Lag compensator.

Solution: Refer Fig2.5 for plot $G(s)G_c(s)$.

codes/es17btech11002_2.py

Fig. 2.5

NOTE: The idea of using a lead-lag network is to provide the attenuation of a phase-lag network and the lead-phase angle of a phase-lead network. This points should be noted while designing a controller, and parameters to be changed accordingly to get exact results.

3 PID Controller

3.1 Introduction