DataSci 400

lesson 9: performance measures

Seth Mottaghinejad

today's agenda

- performance measures for classification
 - o problems performance measures in classification
 - hard vs soft classifiers
 - dealing with class imbalance
 - binary classification
 - o multi-class classification
- performance measures for regression

hard vs. soft predictions

- hard classifiers only return the prediction for the class
- **soft classifiers** return the "probability" or confidence that prediction is in each class
 - example: 3 classes cat, dog, squirrel
 - hard prediction: dog, soft prediction: [0.12, 0.84, 0.04]
- most classifiers return soft predictions
- we can later set a threshold and obtain hard predictions
- most performance metrics depend on the choice of the threshold

class imbalance

- also sometimes referred to as rate events scenaro
- class imbalance is very common in many use-cases:
 - fraud detection (binary classification)
 - medical diagnosis (binary classification)
- class imbalance usually implies that not all errors (misclassification) should have the same importance
 - looking at accuracy (percent misclassifications) can be optimistic
 - o instead we look at other metrics, like precision, recall, or AUC

class imbalance visualized

- test is 92% correct if you have the disease, 75% if you don't have the disease
- you tested positive, what's the probability you're actually sick?
- image source: theconversation.com

the confusion matrix (two-class)

it's really not that confusing!

actual \ predicted	predicted positive	predicted negative	
actually positve	true positive TP	false negative FN	
actually negative	false positive FP	true negative TN	

- for TP / FP / TN / FN
 - the second letter indicates what the prediction was, and
 - the first letter indicates if the prediction was right or not

lab time

- we saw there a binary classification model can make two kinds of errors: FP and FN
- for the following scenarios, say what kind of error is more costly (use common sense)
 - credit card fraud detection: someone impersonates you to use your credit card
 - o medical diagnosis: finding out who has a disease
 - information retrieval: finding relevant web pages based on a search query

precision and recall

- accuracy is just the misclassification rate
- precision is the percentage of positive predictions that were actually positive
- recall is the percentage of positive cases that we correctly predicted as such
- image source:www.wikipedia.org

accuracy, precision and recall (two-class)

$$ullet$$
 accuracy $=rac{TP+TN}{TP+FP+TN+FN}$ $ullet$ precision $=rac{TP}{TP+FP}$

$$ullet$$
 recall $=rac{TP}{TP+FN}$

• for rare events usually TN far exceeds TP, FN, or FP, inflating accuracy, but precision and recall don't have TN in it

lab time

here's an analogy that to why we should evaluate a classification model's accuracy using **both** precision and recall:

- when you stand witness in a court of law, you are asked to tell the truth:
 - the whole truth: no lie of omission
 - nothing but the truth: no lies
- relate the above two statements to precision and recall

ROC curve

- good for comparing models (closer to top left corner means better model)
- TPR is true positive rate, i.e. recall
- FPR is false positive rate
- curve shows trade-offs in TPR and FPR as we vary the threshold

break time

the confusion matrix (multi-class)

we use 3-classes here **as an example**, but applies to any class size C

actual \ predicted	pred class 1	pred class 2	pred class 3	actual total
actual class 1	TP_1	FP_{12}	FP_{13}	A_1
actual class 2	FP_{21}	TP_2	FP_{23}	A_2
actual class 3	FP_{31}	FP_{32}	TP_3	A_3
predicted total	P_1	P_2	P_3	N

micro averages (multi-class)

- accuracy $=\frac{\sum_{i}TP_{i}}{N}$
- micro average ${\bf precision} = \frac{\sum_i TP_i}{\sum_i P_i}$ is the **same as accuracy** unless predictions are not mutually exclusive
- micro average $\mathbf{recall} = \frac{\sum_i TP_i}{\sum_i A_i}$ is the **same as accuracy** unless predictions are not collectively exhaustive
- micro average precision and recall are only relevant in multi-label classification

macro averages (multi-class)

- accuracy $=\frac{\sum_{i}TP_{i}}{N}$
- macro averages use one-vs-all to find precision and recall for each class and then averages them
- macro precision $= \frac{1}{C} \sum_i \frac{TP_i}{TP_i + FP_i}$
- macro recall $= \frac{1}{C} \sum_i \frac{TP_i}{TP_i + FN_i}$
- C is the class size
- we can use a weighted average if we want to emphasize certain classes

break time

performance measures for regression

- measuring performance in **regression** is more straight-forward
- errors or residuals are the difference between the model's predicted value and actual value (ground truth) for each row
- we use the hat notation: \hat{Y}_i is the prediction at ith row and Y_i is the actual, so $Y_i \hat{Y}_i$ is the error or the residual
- a good model should **minimize error** on the test data, and the error should look like **random noise** (nothing left to predict)

performance measures for regression

- ullet root mean squared error: RMSE $= \sqrt{rac{1}{N}\sum_i (Y_i \hat{Y}_i)^2}$
- ullet mean absolute error: MAE $=rac{1}{N}\sum_i |Y_i-\hat{Y}_i|$
- ullet coefficient of determination: R^2
 - \circ is 1 minus the ratio of $\sum_i (Y_i \hat{Y}_i)^2$ over $\sum_i (Y_i ar{Y})^2$ where $ar{Y}$ is the mean of Y
 - o represents the proportion of variation explained away by model
- adjusted \mathbb{R}^2 : lowers \mathbb{R}^2 in proportion of the number of features (discouraging us to just keep adding useless features)

the end