

Mansoura University Faculty of Computers and Information Sciences Department of Computer Science First Semester- 2020-2021

[CS212P/IT212] Computer Organization and

Architecture

Grade: 2nd General / 3rd Programs

Eng. Esraa Salah

NUMBER SYSTEMS

Many number systems are in use in digital technology.

The most common are:

- Decimal
- Binary
- Octal
- Hexadecimal

DECIMAL SYSTEM

- Composed of 10 numerals or symbols
- Using these symbols as digits of a number, can express any quantity.
- Called the base-10 system because it has 10 digits.
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

- 3.14₁₀
- 532₁₀
- 10824₁₀
- 649000₁₀

BINARY SYSTEM

- There are only two symbols or possible digit values, 0 and 1.
- This base-2 system can be used to represent any quantity that can be represented in decimal or other base system .

- III0₂
- 1011110₂

OCTAL SYSTEM

- The octal number system has a base of eight .
- Eight possible digits: 0, 1, 2, 3, 4, 5, 6, 7.

- 5410₈
- 765421₈
- 1047664₈
- 4123170137₈

HEXADECIMAL SYSTEM

- •The hexadecimal system uses base 16.
- It uses the digits 0 through 9 plus the letters A, B, C, D, E, and F as the 16 digit symbols.
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

- BD₁₆
- 452EA₁₆
- E451B2CD3₁₆
- 35412BABE₁₆

NUMBERING CONVERSION

NUMBERING CONVERSION

DECIMAL TO BINARY CONVERSION

Ex: 27₁₀

27/2 = 13 balance 1

13/2 = 6 balance 1

6/2 = 3 balance 0

3/2 = I balance I

I/2 = 0 balance I

Result : 27₁₀= 11011₂

Ex: 181₁₀

181/2 = 90 balance 1

90/2 = 45 balance 0

45/2 = 22 balance I

22/2 = 11 balance 0

II/2 = 5 balance I

5/2 = 2 balance I

2/2 = 1 balance 0

I/2 = 0 balance I

Result: $181_{10} = 10110101_2$

DECIMAL TO OCTAL CONVERSION

Ex : 177₁₀

177/8 = 22 balance I

22/8 = 2 balance 6

2/8 = 0 balance 2

Result : $177_{10} = 261_8$

Ex: 3985₁₀

3985/8 = 498 balance I

498/8 = 62 balance 2

62/8 = 7 balance 6

7/8 = 0 balance 7

Result: $3985_{10} = 7621_8$

DECIMAL TO HEXADECIMAL CONVERSION

378/16 = 23 balance 10 = (A)

23/16 = 1 balance 7

I/I6 = 0 balance I

Result: $378_{10} = 17A_{16}$

6942/16 = 433 balance 14 = (E)

433/16 = 27 balance I

27/16 = I balance II = (B)

I/I6 = 0 balance I

Result: $378_{10} = IBIE_{16}$

DECIMAL TO UNKNOWN BASE CONVERSION

Ex: 52₁₀ to Base 3

52/3 = 17 balance I

17/3 = 5 balance 2

5/3 = 1 balance 2

I/3 = 0 balance I

Result: $52_{10} = 1221_3$

NUMBERING CONVERSION

- Technique :
- Multiply each bit by x^n , where x is the
- "Base" and n is the "weight" of the bit.
- -The weight is the position of the bit, starting from 0 on the right.
- -Add the results.

BINARY TO DECIMAL CONVERSION

$$\begin{array}{rcl}
 101011_2 & \Rightarrow & 1 & \times 2^0 & = & 1 \\
 1 & \times 2^1 & = & 2 \\
 0 & \times 2^2 & = & 0 \\
 1 & \times 2^3 & = & 8 \\
 0 & \times 2^4 & = & 0 \\
 1 & \times 2^5 & = & 32 \\
 \hline
 43_{10}
 \end{array}$$

OCTAL TO DECIMAL CONVERSION

$$724_8 => 4 \times 8^0 = 4$$
 $2 \times 8^1 = 16$
 $7 \times 8^2 = 448$
 468_{10}

HEXADECIMAL TO DECIMAL CONVERSION

NUMBERING CONVERSION

BINARY TO OCTAL CONVERSION

0	1	2	3	4	5	6	7
000	001	010	011	100	101	110	111

Example:

- $100111010_2 = (100)(111)(010)_2 = 472_8$
- $1101010_2 = (001) (101) (010)_2 = 152_8$

Hint: $010_2 = 2_{10} = 2_8$

BINARY TO HEXADECIMAL CONVERSION

EXAMPLE:

- $1011101_2 = (0101)(1101)_2 = 5 D_{16}$
- $1110011011_2 = (0011) (1001) (1011)_2 = 39 B_{16}$
- $101100101111_2 = (1011) (0010) (1111)_2 = B2F_{16}$

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OCTAL TO BINARY CONVERSION

0	1	2	3	4	5	6	7
000	001	010	011	100	101	110	111

Example:

• 4 7
$$2_8$$
 = (100) (111) (010) $_2$ = 100111010 $_2$

•
$$152_8 = (001)(101)(010)_2 = 1101010_2$$

HEXADECIMAL TO BINARY CONVERSION

- 5 $D_{16} = (101) (1101)_2 = 1011101_2$
- 3 9 $B_{16} = (11) (1001) (1011)_2 = 1110011011_2$
- B 2 $F_{16} = (1011) (0010) (1111)_2 = 101100101111_2$

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

OCTAL TO HEXADECIMAL CONVERSION

- Technique :
- Use binary as an intermediary.

Example: $1076_8 = (?)_{16}$

Result: 1076₈=23E₁₆

HEXADECIMALTO OCTAL CONVERSION

- Technique :
- Use binary as an intermediary .

Example: $IFOC_{16}=(?)_8$

Result: 1F0C₁₆=17414₈

FRACTIONS

> Binary to decimal:

10.1011 => 1 x
$$2^{-4} = 0.0625$$

1 x $2^{-3} = 0.125$
0 x $2^{-2} = 0.0$
1 x $2^{-1} = 0.5$
0 x $2^{0} = 0.0$
1 x $2^{1} = 2.0$
2.6875

FRACTIONS

- \triangleright Decimal to binary: 3.703125₁₀
- Result: $3_{10} = 11_2$
- $0.703125_{10} = ?_2$

$$0.8125*2 = 1.625$$

Result: $0.703125_{10} = .101101_2$

Result: $3.703125_{10} = 11.101101_2$

FRACTIONS

- ➤ Decimal to binary: 263.3₁₀
- Result: 263₁₀= 100000111₂
- 0.3 ₁₀ = ? ₂

$$0.6*2=1.2$$

$$0.4*2=0.8$$

$$0.8*2=1.6$$

$$0.6*2=1.2$$

• Result : $0.3_{10} = .010011..._{2}$

Result: $263.3_{10} = 100000111.010011..._2$

EXAMPLE

 $> 312_4$ to base 7

```
1) 312_4 to DECIMAL :312_4 = 3*4^2 + 1*4^1 + 2*4^0 = 54_{10}

2) 54_{10} to base 7 :54_{10} = ?_7

54/7 = 7 balance 5

7/7 = 1 balance 0

1/7 = 0 balance 1 54_{10} = 105_7

Result :312_4 = 105_7
```

FLOATING POINT REPRESENTATION

FLOATING POINT REPRESENTATION

- > Express the following numbers in IEEE 32-bit floating point format
 - **21.75** 10
 - I. Convert to binary: $21.75_{10} = 10101.11_{2}$
 - 2. Normalize: = 1.010111×2^4 , Mantissa = 1
 - 3. Change exponent to biased exponent $4 + 127 = 131_{10} = 10000011_2$
 - 4. Format:

0	10000011	010111000000000000000000000000000000000
---	----------	---

In hex: = 41AE0000 H

FLOATING POINT REPRESENTATION

- > Express the following numbers in IEEE 32-bit floating point format
 - **-**0.4375 ₁₀
 - I. Convert to binary: $-0.4375_{10} = -0.0111_2$
 - 2. Normalize: = 1.11×2^{-2} , Mantissa = 1
 - 3. Change exponent to biased exponent -2 + $127 = 125_{10} = 1111101_2$
 - 4. Format:

1	01111101	110000000000000000000000000000000000000
---	----------	---

In hex: = BEE00000 H

THANKS •