Entropia

Informazione associata a valore x avente probabilitá p(x) é

$$i(x) = \log_2 \frac{1}{p(x)}$$

Nota: Eventi meno probabili danno maggiore informazione

Entropia di v.c. $X \sim P$: informazione media elementi di \mathcal{X}

$$H(X) = \sum_{x \in \mathcal{X}} p(x)i(x) = -\sum_{x \in \mathcal{X}} p(x)\log_2 p(x)$$

Rappresenta l'incertezza su esito X

Proprietà dell'entropia

- L'unitá di misura dell'entropia sono i bits (Usiamo log in base 2)
- Se si cambia la base del logaritmo, il valore dell'entropia cambia solo di un fattore costante

Lemma
$$H_b(X) = \frac{H(X)}{\lg b}$$

Dim.

$$H_b(X) = \sum_{x \in \mathcal{X}} p(x) \lg_b \frac{1}{p(x)} = \sum_{x \in \mathcal{X}} p(x) \frac{\lg \frac{1}{p(x)}}{\lg b}$$
$$= \frac{1}{\lg b} \sum_{x \in \mathcal{X}} p(x) \lg \frac{1}{p(x)} = \frac{H(X)}{\lg b}$$

Entropia Binaria (v.c. di Bernulli)

$$X = \begin{pmatrix} a & b \\ p & 1 - p \end{pmatrix}$$

$$X = \begin{pmatrix} a & b \\ p & 1-p \end{pmatrix} \qquad H(X) = p \lg \frac{1}{p} + (1-p) \lg \frac{1}{(1-p)} \stackrel{def}{=} h(p)$$

$$h'(p) = \lg \frac{1-p}{p}$$

$$h''(p) = -\frac{\log e}{p(1-p)}$$

$$h(p) \ge 2\min\{p, 1-p\}$$

Entropia congiunta

Def. Date due v.c. X e Y con d.d.p. congiunta p(x,y), definiamo *entropia congiunta* la quantità :

$$H(X,Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \lg \frac{1}{p(x,y)} = E\left[\lg \frac{1}{p(X,Y)}\right]$$

Entropia condizionata

Entropia condizionata H(Y/X):

$$H(Y/X) = \sum_{x \in \mathcal{X}} p(x) H(Y/X = x)$$

 $H\left(Y/X=x\right)$: entropia di Y sapendo che X=x

$$p(x,y)$$
 $y=0$
 $y=1$
 $p(x)$
 $H(Y/X=x)$
 $x=0$
 $1/2$
 $1/4$
 $3/4$
 $H(2/3,1/3)=h(1/3)$
 $x=1$
 $1/4$
 0
 $1/4$
 $H(1,0)=h(1)=0$

$$H(Y/X)=\tfrac34h\left(\tfrac13\right)+\tfrac14h\left(1\right)=\tfrac34h\left(\tfrac13\right) \qquad \qquad p(y/x)=\tfrac{p(x,y)}{p(x)}$$
 bits

Entropia condizionata

$$H(Y/X) = \sum_{x \in \mathcal{X}} p(x) H(Y/X = x)$$

$$= \sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y/x) \lg \frac{1}{p(y/x)}$$

$$= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x) p(y/x) \lg \frac{1}{p(y/x)}$$

$$= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x, y) \lg \frac{1}{p(y/x)} = E\left[\lg \frac{1}{p(y/x)}\right]$$

Entropia condizionata

$$H(Y/X) = \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x, y) \lg \frac{1}{p(y/x)} = E\left[\lg \frac{1}{p(y/x)}\right]$$

rappresenta l'informazione addizionale media di Y nota X.

Regola della catena

$$H(X,Y) = H(X) + H(Y/X)$$

$$\begin{split} H\left(X,Y\right) &= \sum_{x,y} p\left(x,y\right) \lg \frac{1}{p\left(x,y\right)} = \sum_{x,y} p\left(x,y\right) \lg \frac{1}{p\left(y/x\right) p(x)} \\ &= \sum_{x,y} p\left(x,y\right) \left[\lg \frac{1}{p\left(x\right)} + \lg \frac{1}{p\left(y/x\right)}\right] \\ &= \sum_{x,y} p\left(x,y\right) \lg \frac{1}{p\left(x\right)} + \sum_{x,y} p\left(x,y\right) \lg \frac{1}{p\left(y/x\right)} \\ &= \sum_{x} \left(\sum_{y} p\left(x,y\right)\right) \lg \frac{1}{p\left(x\right)} + H\left(Y/X\right) \\ &= \sum_{x} p\left(x\right) \lg \frac{1}{p\left(x\right)} + H\left(Y/X\right) = H\left(X\right) + H\left(Y/X\right) \end{split}$$

Regola della catena: dimostrazione alternativa

Consideriamo la sequente dimostrazione alternativa:

$$H(X,Y) = E\left[\lg \frac{1}{p(X,Y)}\right] = E\left[\lg \frac{1}{p(Y/X)p(X)}\right]$$

$$= E\left[\lg \frac{1}{p(X)} + \lg \frac{1}{p(Y/X)}\right]$$

$$= E\left[\lg \frac{1}{p(X)}\right] + E\left[\lg \frac{1}{p(Y/X)}\right]$$

$$= H(X) + H(Y/X)$$

Il log trasforma prodotti di probabilità in somme di entropie

Mutua Informazione

Date due v.c. X e Y con d.p. congiunta p(x,y), la *mutua informazione* è definita come

$$I(X;Y) \doteq H(X) - H(X|Y) = H(Y) - H(Y|X)$$

La mutua informazione rappresenta i bit di informazione che una delle variabili fornisce circa l'altra.

Nota: uso ";" (es $I(X,Z;Y) \neq I(X;Z,Y)$)

Mutua Informazione

Es. Lanciamo 10 monete:

X rappresenta i valori delle prime 7 monete,

Y quelli delle ultime 5.

$$H(X) = 7$$
 $H(Y) = 5$, $H(X/Y) = 5$ $H(Y/X) = 3$
 $\Rightarrow I(X;Y) = I(Y;X) = 2$

Mutua Informazione

$$I(X;Y) = H(X) - H(X/Y) = H(Y) - H(Y/X) = I(Y;X)$$

$$I(X;Y) - I(Y;X) = H(X) - H(X/Y) - H(Y) + H(Y/X)$$

$$= H(X) + H(Y/X) - (H(Y) + H(X/Y))$$

$$= H(X,Y) - H(X,Y) = 0$$

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$I(X;X) = H(X)$$

Mutua Informazione Condizionata

$$I(X; Y/Z) = H(X/Z) - H(X/YZ) = H(Y/Z) - H(Y/XZ)$$

Nota: Il condizionamento di Z si applica SIA ad X che ad Y

$$I(X; Y/Z) = H(X/Z) - H(X/YZ)$$

= $H(X/Z) - (H(X, Y/Z) - H(Y/Z))$
= $H(X/Z) + H(Y/Z) - H(X, Y/Z)$

Regola della catena per la mutua informazione

$$I(X_1, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y/X_1, \dots, X_{i-1})$$

Nota:

$$I(X_1, \ldots, X_n; Y) = H(X_1, \ldots, X_n) + H(Y) - H(X_1, \ldots, X_n, Y)$$

Riepilogo/Anteprima

N.B.: Le disugualianze saranno provate in seguito

Entropia
$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)}$$

- $H(X) \ge 0$, uguaglianza sse $\exists x \text{ t.c. } p(x) = 1$
- $H(X) \leq \log |\mathcal{X}|$, uguaglianza sse $p(x) = 1/|\mathcal{X}| \ \forall x \in \mathcal{X}$
- Il condizionamento non aumenta l'entropia $H(X/Y) \le H(X)$ uguaglianza sse X,Y indipendenti
- Regola della catena:

$$H(X,Y) = H(X) + H(Y/X) \le H(X) + H(Y),$$

uguaglianza sse X,Y indipendenti
 $H(X_1,\ldots,X_n) = \sum_{i=1}^n H(X_i/X_{i-1}\ldots x_1) \le \sum_{i=1}^n H(X_i),$
uguaglianza sse X_1,\ldots,X_n indipendenti

Riepilogo/Anteprima

Mutua Informazione:

$$I(X;Y) = H(X) - H(X/Y) = H(X) + H(Y) - H(X,Y)$$

• Simmetrica e positiva: $I(X;Y) = I(Y;X) \ge 0$, uguaglianza sse X,Y indipendenti

Infatti

$$I(X;Y) = H(X) - H(X/Y) \ge H(X) - H(X) = 0$$

con H(X/Y) = H(X) sse X, Y indipendenti

Funzioni concave/convesse

Def. Una funzione f(x) si dice concava su un intervallo (a,b) se $\forall x_1,x_2\in(a,b)$ e $\forall 0\leq\lambda\leq1$

$$f(\lambda \cdot x_1 + (1 - \lambda) \cdot x_2) \ge \lambda \cdot f(x_1) + (1 - \lambda) \cdot f(x_2)$$

f è strettamente concava se la disuguaglianza é stretta per $0 < \lambda < 1$.

Esempio $\lg x$ è una funzione strettamente concava di x.

Def. Una funzione f(x) si dice *convessa* su un intervallo (a,b) se -f(x) è concava sull' intervallo (a,b).

Esempio x^2 , $x \lg x$ sono funzioni strett. convesse di x.

Diseguaglianza di Jensen

$$X = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ p_1 & p_2 & \dots & p_n \end{pmatrix} \quad f \text{: funzione}$$

$$f(X) = \begin{pmatrix} f(x_1) & f(x_2) & \dots & f(x_n) \\ p_1 & p_2 & \dots & p_n \end{pmatrix}.$$

- Risulta $E[f(X)] \leq f(E[X]),$
- Se f strettamente concava: E[f(X)] = f(E[X]), sse X è concentrata in un' unico punto (cioé é costante)

La dimostrazione procede per induzione su $|\mathcal{X}|$.

Base induzione: $|\mathcal{X}| = 2$.

Si consideri la v.c.

$$X = \left(\begin{array}{cc} x_1 & x_2 \\ p_1 & p_2 \end{array}\right)$$

Per la definizione di funzione concava, si ha che

$$E[f(X)] = p_1 f(x_1) + p_2 f(x_2) \le f(p_1 x_1 + p_2 x_2) = f(E[X]).$$

Se f strett. concava l'uguaglianza vale sse $p_1=1$ oppure $p_2=1$.

Passo induttivo: Supponiamo che la disuguaglianza di Jensen sia verificata per $|\mathcal{X}| = k - 1$. Dimostriamo che la disuguaglianza è verificata per $|\mathcal{X}| = k$.

$$E[f(X)] = \sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + \sum_{i=1}^{k-1} p_i f(x_i)$$
$$= p_k f(x_k) + (1 - p_k) \left(\sum_{i=1}^{k-1} \frac{p_i}{(1 - p_k)} f(x_i) \right)$$

Osserviamo che $\sum\limits_{i=1}^{k-1} \frac{p_i}{(1-p_k)} f(x_i) = E[f(X')]$ dove X' è la v.c.

$$X' = \begin{pmatrix} x_1 & \dots & x_{k-1} \\ \frac{p_1}{1 - p_k} & \dots & \frac{p_{k-1}}{1 - p_k} \end{pmatrix}$$

L'ipotesi induttiva implica $E[f(X')] \leq f(E[X'])$ per cui risulta:

$$E[f(X)] \le p_k f(x_k) + (1 - p_k) f\left(\sum_{i=1}^{k-1} \frac{p_i}{1 - p_k} x_i\right).$$

Applichiamo la definizione di funzione concava al termine destro

Otteniamo

$$E[f(X)] \leq f\left(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} \frac{p_i}{1 - p_k} x_i\right)$$

$$= f\left(\sum_{i=1}^{k} p_i x_i\right) = f(E[X]).$$

Se f strettamente concava: uguaglianza sse tutti \leq sono =

- (= in def. f concava): $p_k = 1$ o $p_k = 0$ (cioé $\sum_{i=1}^{k-1} p_i = 1$) se $p_k = 1 \Rightarrow X$ concentrata in un'unico punto (cioé x_k)
- (= in i.i.): $p_k = 0$ e, per i.i., X' concentrata in un'unico punto
 - $\rightarrow X$ concentrata in un'unico punto (tra $x_1 \dots x_{k-1}$).

Proprietà dell'entropia

Lemma. Sia $X \sim P$ v.c. con alfabeto \mathcal{X} .

- 1. $H(X) \ge 0$; uguaglianza sse $\exists x \in \mathcal{X}$ t.c. p(x) = 1.
- 2. $H(X) \leq \lg |\mathcal{X}|$; l'uguaglianza vale sse X è uniformemente distribuita.

Dim. Punto 1.

•
$$0 \le p(x) \le 1$$
 $\Rightarrow \log \frac{1}{p(x)} \ge 0 \Rightarrow \sum_{x} p(x) \log \frac{1}{p(x)} \ge 0$

• Esiste $x \in \mathcal{X}$ con 0 < p(x) < 1 sse H(x) > 0

Dim. punto 2.

$$\begin{split} H(X) &= E\left(\lg\frac{1}{P(X)}\right) \\ &\leq \lg E\left(\frac{1}{P(X)}\right) \quad \text{disug. Jensen su } \lg \mathbf{e} \left(\begin{array}{cc} \cdots & \frac{1}{p(x)} & \cdots \\ \cdots & p(x) & \cdots \end{array}\right) \\ &= \lg \sum_{x \in \mathcal{X}} p(x) \frac{1}{p(x)} = \lg \sum_{x \in \mathcal{X}} 1 = \lg |\mathcal{X}|. \end{split}$$

La disuguglianza di Jensen vale con il segno di "=" sse $\frac{1}{p(x)} = c$ costante, $\forall x \in \mathcal{X}$.

$$\frac{1}{p(x)} = c \implies p(x) = \frac{1}{c} \implies 1 = \sum_{x \in \mathcal{X}} p(x) = \sum_{x \in \mathcal{X}} \frac{1}{c} = \frac{|\mathcal{X}|}{c}.$$

Quindi
$$c = |\mathcal{X}|$$
 e $p(x) = \frac{1}{c} = \frac{1}{|\mathcal{X}|}$.

Condizionamento non aumenta entropia

 $H(Y/X) \leq H(Y)$, uguaglianza sse X e Y indipendenti

$$\begin{split} H(Y/X) - H(Y) &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x,y) \lg \frac{1}{p(y/x)} - \sum_{y \in \mathcal{Y}} p(y) \lg \frac{1}{p(y)} \\ &= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x,y) \lg \frac{1}{p(y/x)} - \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x,y) \lg \frac{1}{p(y)} \\ &= \sum_{x,y} p(x,y) \lg \frac{p(y)}{p(y/x)} \le \lg \sum_{x,y} p(x,y) \frac{p(y)}{p(y/x)} \\ &= \lg \sum_{x,y} \frac{p(y/x)p(x)p(y)}{p(y/x)} = \lg \sum_{x,y} p(x)p(y) \\ &= \lg \sum_{x} p(x) \sum_{y} p(y) = \lg \sum_{x} p(x) = \lg 1 = 0 \end{split}$$

La disuguglianza di Jensen applicata a $\left(\begin{array}{ccc} \cdots & \frac{p(y)}{p(y/x)} & \cdots \\ \cdots & p(x,y) & \cdots \end{array}\right)$

vale con il segno di "=" sse $\frac{p(y)}{p(y/x)} = c$ costante, $\forall x, y$.

$$\frac{p(y)}{p(y/x)} = c$$
 \Rightarrow $p(y) = c \ p(y/x)$

Sommando su y

$$1 = \sum_{y \in \mathcal{Y}} p(y) = \sum_{y \in \mathcal{Y}} c \ p(y/x) = c \sum_{y \in \mathcal{Y}} p(y/x) = c$$

Quindi p(y) = p(y/x), $\forall x, y$, cioé X, Y sono indipendenti.

Corollario $H(X,Y) \leq H(X) + H(Y)$

Corollario

$$H(X, Y/Z) = \sum_{x,y,z} p(xyz) \log \frac{1}{p(xy/z)} = H(X/Z) + H(Y/X, Z)$$

Dim. (lasciata come esercizio)

Nota: In generale non è vero che H(X/Y) = H(Y/X).

Estensione Regola della catena

Teorema Siano X_1, \ldots, X_n n v.c. con d.d.p. $p(x_1, \ldots, x_n)$

$$H(X_1,...,X_n) = \sum_{i=1}^n H(X_i/X_{i-1}...X_1)$$

Dim.

Procediamo per induzione su n.

Per n=2, applicando la regola della catena abbiamo

$$H(X_1, X_2) = H(X_1) + H(X_2/X_1)$$

Iterando (assumiamo l'asserto vero per n-1)

$$H(X_{1},...,X_{n}) = H(X_{n}/X_{1},...,X_{n-1}) + H(X_{1},...,X_{n-1})$$

$$= H(X_{n}/X_{n-1}...X_{1}) + H(X_{n-1}/X_{n-2}...X_{1})$$

$$+...+H(X_{2}/X_{1}) + H(X_{1})$$

$$= \sum_{i=1}^{n} H(X_{i}/X_{i-1},...,X_{1})$$

Teorema

$$H(X_1, \dots, X_n) \le \sum_{i=1}^n H(X_i),$$

l'uguaglianza vale sse X_1, \ldots, X_n sono indipendenti. Dim.

$$H(X_1,...,X_n) = \sum_{i=1}^n H(X_i/X_1,...,X_{i-1}) \le \sum_{i=1}^n H(X_i)$$

L'ultima disuguaglianza vale con il segno di "=" sse X_1, \ldots, X_n sono indipendenti.

-n 30/49

Divergenza informazionale

Def. Date due d.d.p. p(x) e q(x), la divergenza informazionale (o entropia relativa, o distanza Kullback Leibler) D(p||q) di p(x) e q(x) è definita come

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \lg \frac{p(x)}{q(x)}$$

Divergenza $D\left(p||q\right)$ misura la distanza tra le due d.p. $p \in q$. Non é simmetrica, infatti in generale $D\left(p||q\right) \neq D\left(q||p\right)$

$D(p||q) \ge 0$ con l'uguaglianza sse p = q

Proviamo $-D(p||q) \le 0$ usando la disuguaglianza di Jensen:

$$-D(p||q) = \sum_{x \in \mathcal{X}} p(x) \lg \frac{q(x)}{p(x)} \le \lg \sum_{x \in \mathcal{X}} p(x) \frac{q(x)}{p(x)}$$
$$= \lg \sum_{x \in \mathcal{X}} q(x) = 0$$

dove dis. Jensen applicata a v.c. $\left(\begin{array}{ccc} \cdots & \frac{q(x)}{p(x)} & \cdots \\ \cdots & p(x) & \cdots \end{array}\right)$:

Uguaglianza sse $\frac{q(x)}{p(x)}=c$ =costante $\forall x$, da cui $1=\sum_x q(x)=c\sum_x p(x)=c$. Quindi c=1 e q(x)=p(x), $\forall x$.

Date due v.c. X e Y con probabilità congiunta p(x,y), la mutua informazione corrisponde all'entropia relativa tra p(x,y) e p(x)p(y):

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

$$= \sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} p(x,y) \lg \frac{p(x,y)}{p(x)p(y)}$$

$$= D(p(x,y)||p(x)p(y))$$

Esempio

Esempio

$Y \setminus X$	1	2	3	4
1	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{32}$
2	$\frac{1}{16}$	<u>1</u> 8	$\frac{1}{32}$	$\frac{1}{32}$
3	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$
4	$\frac{1}{4}$	0	0	0

Determiniamo le d.d.p. marginali.

Sommando le probabilità in ciascuna colonna:

$$X = \left(\begin{array}{cccc} 1 & 2 & 3 & 4\\ \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \end{array}\right)$$

Sommando le probabilità in ciascuna riga:

$$Y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

$$H(X/Y) = \sum_{i=1}^{4} p(y=i) H(X/Y=i)$$

$$= \frac{1}{4} H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) + \frac{1}{4} H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right)$$

$$+ \frac{1}{4} H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + \frac{1}{4} H(1, 0, 0, 0)$$

$$= \frac{1}{4} \left[\frac{1}{2} + \frac{1}{4} \cdot 2 + 2 \cdot \frac{1}{8} \cdot 3\right] 2 + \frac{1}{4} \lg 4 + \frac{1}{4} 0$$

$$= \frac{1}{4} \left[\frac{1}{2} + \frac{1}{2} + \frac{3}{4}\right] 2 + \frac{1}{2} = \frac{1}{2} \left[\frac{7}{4}\right] + \frac{1}{2} = \frac{11}{8}$$

$$H(Y/X) = \frac{13}{8}$$

$$H(X,Y) = H(Y) + H(X/Y) = 2 + \frac{11}{8} = \frac{27}{8}$$

$$I(X;Y) = H(X) - H(X/Y) = \frac{7}{4} - \frac{11}{8} = \frac{3}{8}$$

$$= H(Y) - H(Y/X) = 2 - \frac{13}{8} = \frac{3}{8}$$

Esercizio

Esercizio Dimostrare che, data la funzione f, risulta

$$H(X) \ge H(f(X))$$

Suggerimento: considerare H(X, f(X))

Esempio

Condizioni meteo modellate da v.c. $X = \begin{pmatrix} x_p & x_n \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$

Yari esce con ombrello in accordo alla v.c.

$$Y = \begin{pmatrix} y_o & y_n \\ p(y_o) & p(y_n) \end{pmatrix} \text{ con } [p(y/x)] = \begin{pmatrix} X \backslash Y & y_o & y_n \\ \hline x_p & \frac{1}{3} & \frac{2}{3} \\ \hline x_n & 1 & 0 \end{pmatrix}$$

Abbiamo
$$P(y_o)=p(x_p)p(y_o/x_p)+p(x_n)p(y_o/x_n)=2/3$$
, quindi $Y=\begin{pmatrix} y_o & y_n \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$

$$X = \begin{pmatrix} x_p & x_n \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad Y = \begin{pmatrix} y_o & y_n \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}, \quad \begin{array}{c|c} X \backslash Y & y_o & y_n \\ \hline x_p & \frac{1}{3} & \frac{2}{3} \\ x_n & 1 & 0 \end{array}$$

Risulta

$$H(X) = 1, H(Y) = h\left(\frac{1}{3}\right)$$

$$H(Y/X) = \sum_{x} p(x)H(Y/X = x) = \frac{1}{2}h\left(\frac{1}{3}\right) + \frac{1}{2}h(1) = \frac{1}{2}h\left(\frac{1}{3}\right)$$

$$I(X;Y) = H(Y) - H(Y/X) = h\left(\frac{1}{3}\right) - \frac{1}{2}h\left(\frac{1}{3}\right) = \frac{1}{2}h\left(\frac{1}{3}\right)$$

Zelda per indovinare che tempo fa osserva Yari:

- ullet Se Yari ha ombrello dice x_p
- Se Yari non ha ombrello, lancia una moneta: se testa dice x_n , altr. dice x_p

Previsione Zelda dipende solo dal comportamento di Yari!

Sia Z la v.c. che rappresenta la previsione di Zelda.

Per ogni x, y, z

$$p(z/xy) = p(z/y)$$

Previsione Z(elda) fornisce meno informazione su X che l'osservazione diretta comportamento di Y(ari)!,

Formalmente

$$I(X;Z) \le I(X;Y)$$

Catene di Markov

X,Y,Z formano una catena di Markov ($X \to Y \to Z$) sse

Z é condizionalmente indipendente da X noto Y, formalmente

$$p(z/xy) = p(z/y), \quad \forall x, y, z$$

Teorema del Data Processing

Esercizio: $X \to Y \to Z$ sse $Z \to Y \to X$

Teorema(Data Processing) Se $X \rightarrow Y \rightarrow Z$ allora

$$a)I(X;Z) \le I(X;Y)$$

$$b)I(X;Z) \le I(Z;Y)$$

Dim. Proviamo a).

Disuguaglianza b) segue applicando a) a $Z \rightarrow Y \rightarrow X$.

Se $X \to Y \to Z$ allora $I(X;Z) \leq I(X;Y)$

Poiché $X \to Y \to Z$

$$H(X/YZ) = E[-\lg p(x/yz)] = E[-\lg p(x/y)] = H(X/Y)$$

Da cui

$$I(X; YZ) = H(X) - H(X/YZ) = H(X) - H(X/Y) = I(X; Y)$$

Inoltre

$$I(X; YZ) = H(X) - H(X/YZ) \ge H(X) - H(X/Z) = I(X; Z)$$

Stima di v.c.

$$X = \begin{pmatrix} x_p & x_n \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}, \quad \frac{Y/X}{x_p} \quad \frac{1}{3} \quad \frac{2}{3} \\ x_n & 1 \quad 0 \end{pmatrix}, \quad Y = \begin{pmatrix} y_o & y_n \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

Zelda per indovinare che tempo fa osserva Yari:

- ullet Se Yari ha ombrello dice x_p
- ullet Se Yari non ha ombrello dice x_n
- v.c. Z =stima Zelda fa di X conoscendo Y.

$$Z = g(Y) = \begin{cases} x_p & \text{se } Y = y_o \\ x_n & \text{se } Y = y_n \end{cases}$$

Quale é la probabilità che Zelda fa una stima esatta di X?

Disuguaglianza di Fano

Siano X,Y v.c.. Vogliamo stimare X dall'osservazione di Y. Osserviamo Y, calcoliamo $g(Y)=\hat{X}$ (stima di X).

Probabilitá $X \neq \hat{X}$? Sia

$$P_e = Pr\{\hat{X} \neq X\}$$

Teorema (Disuguaglianza di Fano)

$$h(P_e) + P_e \lg(|\mathcal{X}| - 1) \ge H(X|Y)$$

Nota: Teorema implica $P_e \ge \frac{H(X|Y) - h(P_e)}{\lg(|\mathcal{X}| - 1)} \ge \frac{H(X|Y) - 1}{\lg(|\mathcal{X}|)}$

Nota: $P_e = 0 \Rightarrow H(X|Y) = 0$

Nota: $X \to Y \to \hat{X}$.

Dim. . Definiamo la v.c. errore E t.c.

$$E = \begin{cases} 1 & \text{se } X \neq \hat{X} \\ 0 & \text{se } X = \hat{X} \end{cases}, \quad \text{cio\'e} \quad E = \left(\begin{array}{cc} 1 & 0 \\ P_e & 1 - P_e \end{array} \right)$$

$$H(X|Y) = H(X|Y) + H(E|X,Y) = H(E,X|Y)$$

$$= H(E|Y) + H(X|E,Y)$$

$$\leq h(P_e) + H(X|E,Y)$$

con

$$H(X|E,Y) = Pr\{E=0\}H(X|E=0,Y) + Pr\{E=1\}H(X|E=1,Y)$$

$$\leq (1-P_e)0 + P_e \lg(|\mathcal{X}|-1) = P_e \lg(|\mathcal{X}|-1)$$

Riepilogo Misure di Informazione

Entropia:
$$H(X) = \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)}$$

- Limiti: $0 \le H(X) \le \log |\mathcal{X}|$,
- Il condizionamento non aumenta l'entropia: $H(X/Y) \le H(X)$
- Regola della catena:

$$H(X_1, \dots, X_n) = \sum_{i=1}^n H(X_i/X_{i-1} \dots x_1) \le \sum_{i=1}^n H(X_i),$$

 $H(X_1, \dots, X_n/Y_1, \dots, Y_n) \le \sum_{i=1}^n H(X_i/Y_i)$

Divergenza informazionale: $D\left(p||q\right) = \sum_{x \in \mathcal{X}} p(x) \lg \frac{p(x)}{q(x)} \ge 0$

Riepilogo Misure di Informazione

Mutua Informazione:

$$I(X;Y) = H(X) - H(X/Y) = H(X) + H(Y) - H(X,Y)$$

= $D(p(x,y)||p(x)p(y))$

- Simmetrica e positiva: $I(X;Y) = I(Y;X) \ge 0$,
- $X, Y \text{ indipendenti} \Rightarrow I(X; Y) = H(X) H(X/Y) = 0$
- $\blacksquare X \to Y \to Z \Rightarrow I(X;Z) \leq I(X;Y)$

Fano:

•
$$X \to Y \to \hat{X}, P_e = Pr\{\hat{X} \neq X\} \Rightarrow h(P_e) + P_e \lg(|\mathcal{X}| - 1) \ge H(X|Y)$$