Ονοματεπώνυμο......Α.Μ.....

1. Βρείτε το δεξί μέλος f έτσι ώστε η συνάρτηση u(x) = 4x(1-x) να λύνει το πρόβλημα συνοριαχών τιμών

(1)
$$-u''(x) + u(x) = f(x), \qquad u(0) = u(1) = 0,$$

Απάντηση: Έχουμε u''(x) = -8 και άρα $f(x) = -u''(x) + u(x) = 8 + 4x - 4x^2$.

2. Χρησιμοποιήστε το πρόγραμμα fem.py για να λύσετε το πρόβλημα δύο σημείων (1) με τη μέθοδο των πεπερασμένων στοιχείων και υπολογίστε το σφάλμα

$$||u - u_h||^2 = \int_0^1 [u(x) - u_h(x)]^2 dx,$$

για $h^{-1} = 16, 32, 48, 64$. Χρησιμοποιήστε (και συμπληρώστε) τη σχέση

$$\int_0^1 \left[u(x) - u_h(x) \right]^2 dx = \sum_{i=1}^{J+1} \int_{x_{i-1}}^{x_i} \left[u(x) - \sum_{j=1}^N U_j \phi_j(x) \right]^2 dx$$

Στο διάστημα $[x_{i-1},x_i]$ μόνο οι συναρτήσεις βάσης ϕ_{i-1} και ϕ_i είναι μη μηδενικές

$$= \sum_{i=1}^{J+1} \int_{x_{i-1}}^{x_i} \left[u(x) - (U_{i-1}\phi_{i-1}(x) + U_i\phi_i(x)) \right]^2 ds$$

Έχουμε $\phi_{i-1}(x)=(x_i-x)/h$ και $\phi_i(x)=(x-x_{i-1})/h$. Κάνουμε την αλλαγή μεταβλητής $x=x_{i-1}+sh$

$$= h \sum_{i=1}^{J+1} \int_0^1 \left[u(x_{i-1} + sh) - (U_{i-1}(1-s) + U_i s) \right]^2 ds$$

Μιχρές αλλαγές στον χώδικα fem.py παράγουν τα παρακάτω αποτελέσματα

h^{-1}	$ u-u_h $
16	0.0026759
32	0.0006689
48	0.0002973
64	0.0001672