Stat5504, Fall 2015: Homework 1

(Due on September 15th, 2015)

1. Consider the estimation of parameters $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)'$ in the Ridge regression:

$$\hat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \sum_{j=1}^{p} \lambda_j \beta_j^2 \right\},\,$$

where $\lambda_j > 0$. Suppose the design matrix $\boldsymbol{X} = (x_{ij})_{n \times p}$ is orthogonal, i.e., $\boldsymbol{X}^T \boldsymbol{X} = diag(s_1, \ldots, s_p)$ with $s_i > 0, i = 1, \ldots, p$. Please derive the explicit solution of $\hat{\boldsymbol{\beta}}$.

2. Let $X_1 \sim N(0, 1)$ and

$$X_2 = \begin{cases} -X_1, & \text{if } -c < X_1 < c ; \\ X_1, & \text{otherwise,} \end{cases}$$

for some c.

- (a) Show that X_2 also has N(0,1) distribution.
- (b) Do you think (X_1, X_2) has a bivariate normal distribution? Prove your conclusion (numerically or theoretically).
- (c) Show that there exists c > 0 such that $Cov(X_1, X_2) = 0$, but X_1 and X_2 are not independent.
- 3. Recall the logistic regression with the data $(\boldsymbol{x}_i, y_i), i = 1, ..., n$ where $\boldsymbol{x} \in \mathcal{R}^p$ and $y \in \{0, 1\}$. Note that the model is

$$y = \begin{cases} 1, & w.p. \ p(\boldsymbol{x}) \\ 0, & w.p. \ 1 - p(\boldsymbol{x}) \end{cases} \text{ with } p(\boldsymbol{x}) = \frac{\exp(\boldsymbol{x}'\boldsymbol{\beta})}{1 + \exp(\boldsymbol{x}'\boldsymbol{\beta})}.$$

Denote the log-likelihood function to be $\log L(\beta)$.

- (a) Derive the Fisher information matrix for $\log L(\boldsymbol{\beta})$, i.e., $-\frac{\partial^2 \log L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T}$.
- (b) Code the iterative reweighted least squares (IWLS) algorithm for estimating the parameter β . Examine your code using the iris flower data set. Please report the fitted model and classification error.

1

http://en.wikipedia.org/wiki/Iris_flower_data_set

- 4. Let $\mathbf{A} = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{pmatrix}$ be a partition matrix. Here $\mathbf{A}, \mathbf{A}_{11}, \mathbf{A}_{22}$ are $n \times n, n_1 \times n_1, n_2 \times n_2$ matrices, respectively.
 - (a) Show that matrix \boldsymbol{A} is symmetric if and only if \boldsymbol{A}_{11} and \boldsymbol{A}_{22} are symmetric and $\boldsymbol{A}_{12}' = A_{21}$.
 - (b) Assume that matrix A_{22} is nonsingular. Verify the following

$$\left(egin{array}{ccc} m{I} & -m{A}_{12}m{A}_{22}^{-1} \ m{0} & m{I} \end{array}
ight) \left(m{A}_{11} & m{A}_{12} \ m{A}_{21} & m{A}_{22} \end{array}
ight) \left(m{I} & m{0} \ -m{A}_{22}^{-1}m{A}_{21} & m{I} \end{array}
ight) = \left(m{A}_{11} - m{A}_{12}m{A}_{22}^{-1}m{A}_{21} & m{0} \ m{0} & m{A}_{22} \end{array}
ight),$$

where I denotes the identity matrix of an appropriate order. Show that

$$|m{A}| = |m{A}_{22}||m{A}_{11} - m{A}_{12}m{A}_{22}^{-1}m{A}_{21}|$$

(c) Show that

$$\boldsymbol{A}^{-1} = \left(\begin{array}{ccc} (\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21})^{-1} & -(\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21})^{-1} \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \\ -\boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21} (\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21})^{-1} & \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21} (\boldsymbol{A}_{11} - \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} \boldsymbol{A}_{21})^{-1} \boldsymbol{A}_{12} \boldsymbol{A}_{22}^{-1} + \boldsymbol{A}_{22}^{-1} \end{array} \right).$$