ASSIGNMENT #4

EPsy 8252

This assignment covers vector geometry and matrix algebra. Please submit your responses to each of the questions below in a printed document. Please adhere to the following guidelines for formatting your assignment:

- All graphics should be resized so that they do not take up more room than necessary and all should have an
 appropriate caption.
- Any typed mathematics (equations, matrices, vectors, etc.) should be appropriately typeset within the document using Equation Editor, Markdown, or Lag.X.
- All syntax included should be typeset in a monospaced font, appropriately commented and follow the Data Camp Style Guide (https://teach.datacamp.com/style-guide).

There are 17 points possible for the assignment. Each question is worth one point, unless otherwise noted.

Effects Coding...Redux

Using the data, *Sex-Discrimination.csv*, create two effects-coded vector for the sex variable, sexF and sexM, by weighting each of the variables by the *inverse of their conditional sample sizes*. In this variable sexF will be coded $\frac{1}{n_{\text{female}}}$ and male is coded $\frac{1}{n_{\text{male}}}$. Fit the linear model: salary $\sim 1 + \text{sexF}$.

- 1. Write out the **b** vector.
- 2. Interpret the intercept coefficient.
- 3. Interpret the slope coefficient.
- 4. Using matrices, compute the fitted values for a male and a female. Show your work. (2pts)
- 5. How do the marginal and conditional means of salary relate to the linear models fitted? Explain.

Fit the linear model: salary ~ 1 + sexM

- 6. Write out the **b** vector.
- 7. Interpret the intercept coefficient.
- 8. Interpret the slope coefficient.
- 9. Using matrices, compute the fitted values for a male and a female. Show your work. (2pts)
- 10. How do the marginal and conditional means of salary relate to the linear models fitted? Explain.

Regression through the Origin

Consider a regression through the origin carried out on four observations (X_i, Y_i) , where i = 1, ..., 4.

- 11. Write out the X and Y matrices.
- 12. Write out the **b** vector.
- 13. Express the elements from **b** as linear combinations of **X** and **Y**.
- 14. Write the expectation vector for $\boldsymbol{\epsilon}$

Final Exercise

15. Obtain an expression for the variance–covariance matrix of the fitted values, \hat{Y}_i , (where $i=1,\ldots,n$) in terms of the hat matrix \mathbf{H} .