Problem 1. Functions f, g, and h are twice-differentiable functions with g(5) = h(5) = 1. The line $y = 1 - \frac{5}{3}(x - 5)$ is tangent to both the graph of g at x = 5 and the graph of h at x = 5.

$$g'(5) = -\frac{5}{3}$$

(b) Let b be the function given by $b(x) = 2x^2g(x)$. Write an expression for b'(x). Find b'(5).

$$b'(x) = 4 kg(x) + 2 k^{2}g'(x)$$

$$b'(5) = 20(1) + 50(-\frac{5}{3})$$

$$= -\frac{190}{3}$$

(c) Let w be the function given by $w(x) = \frac{3h(x) - x}{2x + 1}$. Write an expression for w'(x). Find w'(5).

$$w'(x) = \frac{3h'(x)-1)(2x+1)-2(3h(x)-x)}{(2x+1)^2}$$

$$w'(5) = \frac{3(-\frac{5}{3})-1)(11)-2(3-5)}{11^2}$$

$$= -6\frac{2}{11^2}$$

Problem 1 (continued). Functions f, g, and h are twice-differentiable functions with g(5) = h(5) = 1. The line $y = 1 - \frac{5}{3}(x - 5)$ is tangent to both the graph of g at x = 5 and the graph of h at x = 5.

(d) Let
$$M(x) = \frac{d}{dx} \int_{0}^{2x} g(t) dt$$
. Write an expression for $M'(x)$. Find $M'(2.5)$.

Let $G(x) = \int_{0}^{x} g(t) dt$, T en $\frac{dG}{du} = g(u)$ by FTC .

Let $u = 2x$. So $M(x) = \frac{d}{dx}G(u) = \frac{dG}{du}dx = 2g(u)$.

So $M'(x) = \frac{d}{dx}2g(2x) = \frac{d}{dx}G(x)$.

So $M'(x) = \frac{d}{dx}2g(2x) = \frac{d}{dx}G(x)$.

(e) Let $M(x) = \frac{d}{dx} \left[\int_0^{2x} g(t) dt \right]$. It is known that c = 2.5 satisfies the conclusion of the Mean Value Theorem applied to M(x) on the interval $1 \le x \le 4$. Use M'(2.5) to find g(8) - g(2).

$$\frac{-20}{3} = M'(2.5) = M'(c) = \frac{M(4) - M(1)}{4 - 1}$$

$$= \frac{29(8) - 2q(2)}{3}$$

$$= \frac{3}{3}$$

Problem 1 (continued). Functions f, g, and h are twice-differentiable functions with g(5) = h(5) = 1. The line $g = 1 - \frac{5}{3}(x - 5)$ is tangent to both the graph of g at x = 5 and the graph of h at x = 5.

(f) The function g satisfies $g(x) = \frac{x + 5\cos\left(\frac{\pi}{5}x\right)}{3 - \sqrt{f(x)}}$ for $x \neq 5$. It is known that $\lim_{x \to 5} g(x)$ can be evaluated using L'Hospital's Rule. Use $\lim_{x \to 5} g(x)$ to find f(5) and f'(5). Show the work that leads to your answers.

Since the numerator and degree minuter at continuous,

We see lim x +5 cos ($\frac{17}{5}$ *) = 5 + 405 ($\frac{17}{5}$) = 0.

So, $O = \lim_{x \to 5} 3 - \sqrt{4(x)} = 3 - \sqrt{7(5)} =)$ f(5) = 9.

Now, since 9 is also continuous, $1 = g(5) = \lim_{x \to 5} \frac{x + 5\cos(\frac{7}{5}x)}{3 - \sqrt{7(5)}} = \lim_{x \to 7} \frac{1 - \pi \sin(\frac{7}{5}x)}{-\frac{7(x)}{2\sqrt{7(5)}}}$ $= \frac{1 - O}{5(5)} \cdot So \left(f'(5) = -6\right)$

(g) It is known that $h(x) \le g(x)$ for 4 < x < 6. Let k be a function satisfying $h(x) \le k(x) \le g(x)$ for 4 < x < 6. Is k continuous at x = 5? Justify your answer.

WTS: O + (5) = 1 (2) lim K(x) = 1 1 = h(5) = K(5) = g(5) = 1, thus K(5) = 1. A = lim h(x) and 1 = lim g(x), known that x = 1 x = 1 is analy are constant. x = 1 in x = 1. x = 1 in x = 1. x = 1 in x = 1. x = 1 in x = 1.

O gome pts
particle
sol-

Zero if you sun only !

spe da

Problem 2. Let f be the function defined by $f(x) = \sin(\pi x) + \ln(2 - x)$. Let g be a twice differentiable function. The table below gives values of g and its derivative g' at selected values of g. Let g be the function whose graph, consisting of five line segments, is shown in the figure below.

χ	g(x)	g'(x)	-				-
	10	-3					1
	5	-1			+		1
	2	4		+	_1		
	3	1	-		0	1	+
	1	-2 .			+		-
	0	-3					

(a) Find the slope of the line tangent to the graph of f at x = 1.

$$f'(x) = \pi \cos(\pi x) + \frac{-1}{2-x}$$

So $f'(1) = (-\pi - 1)$

(b) Let k be the function defined by k(x) = h(f(x) + 2). Find k'(1).

$$K'(x) = h'(f(x)+2)(f'(x))$$
So $K'(1) = h'(f(1)+2)f'(1)$

$$= h'(2)f'(1)$$

$$= (-\frac{1}{3})(-\pi - 1) = (3)$$

$$f(1) = 5h(\pi) + ln(2-1) = 0$$

Problem 2. Let f be the function defined by $f(x) = \sin(\pi x) + \ln(2 - x)$. Let g be a twice differentiable function. The table below gives values of g and its derivative g' at selected values of x. Let h be the function whose graph, consisting of five line segments, is shown in the figure below.

Х	g(x)	g'(x)
-5	10 •	3
-4	5	-1
-3	2	4
-2	3	1
-1	-1-	-2
0	0	-3

Graph of h

(c) Evaluate
$$\int_{-5}^{-1} g'(x) dx$$
.

By FTC,

$$\int_{-5}^{-1} g'(x) dx = g(-1) - g(-5)$$

$$= 1 - 10 = -9$$

(d) Rewrite $\lim_{n\to\infty} \sum_{k=1}^n \left(h\left(-1+\frac{5k}{h}\right)\right) \cdot \frac{5}{n}$ as a definite integral in terms of h(x) with a lower bound of x=-1. Evaluate the definite integral

Problem 2 (continued). Let f be the function defined by $f(x) = \sin(\pi x) + \ln(2 - x)$. Let g be a twice differentiable function. The table below gives values of g and its derivative g' at selected values of g. Let g be the function whose graph, consisting of five line segments, is shown in the figure below.

	0- I	A CONTRACTOR OF THE PARTY OF TH	V		- 0	, , ,	,	1	 414104
	Х	g(x)	g'(x)	1					 $ (N(x) \propto x$
	-5	10	-3						7-1
	-4	5	-1 1		_				_ *
	-3	2	4 4	1 1	/	1		1	1-2-/1)
ACCOUNT OF THE PARTY.	-2	3	1 "\	/ 	-11	0			+x 2 7 7 -1)
1	-1	1	-2					4	
1	0	0	-3						_
		-				Grap	h of h		

(e) What is the fewest number of horizontal tangents g(x) has on the interval -5 < x < 0? Justify your answer

Since q'is continuous, IVT says
g'hus a zero petween x=-4 and x=-3
and also between x=-2 and x=-1.

So, q' hus at least 2 zeros,
So, q hus at least 2 horizontal target3.