

School of Computing

The Tourist Problem:

(Problem Solving the CS Way)
Video 5.1

Hon Wai Leong

Department of Computer Science National University of Singapore

Email, FB: leonghw@comp.nus.edu.sg

Experience the fun of problem solving

In this segment sequence...

You experience how to solve problems the computer science way. You will see how we

- Analyze a problem,
- formulate, model, and solve a problem, and
- * analyze our solution.

We do these before we develop programs/sw

Often iterate this process for better solutions.

We constantly "Ask Questions"!

The Setting...

You are interning in Q-Tour.com

Your task:

To solve the Tourist Bus Scheduling Problem or Tourist Problem, in short.

The Tourist Problem...

GIVEN: A list of tourists; each tourist has a list of places to visit.

TO DO: Schedule bus trips for them so that

each tourist visits all the places in his list.

An Insta	ance of Tourist Problem	
Tourist Aaron	Places of Interest SZG, BG, JB	
Betty Cathy David	CG, JG, BG VC, SI, OR JG, CG, OR	8 tourists,
Evans Frances	CG, JG, SZG BG, SZG, JB	8 places
Gary Harry	CG, OR JG, CG	

Hon Wai Leong, SoC, NUS

Note:

- ☐ Tourist Bus Scheduling Problem
 - * Tourist Problem, TP
- ☐ An example problem of TP
 - * Called an *instance* of the TP
- **□** Solution of TP
 - Must solve all possible instances of TP
 - Not just some special cases;

Tourist Problem (Entities)

□ Good to know the entities we are dealing with...

The Tourists:

$$T = \{A, B, C, D, E, F, G, H\}$$

The Attractions (Places):

$$P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$$

Places of Attraction				
Place	Common Name	Place	Common Name	
BG	Botanical Gardens	CG	Chinese Gardens	
JB	Jurong Birdpark	JG	Japanese Gardens	
OR	Orchard Road	SI	Sentosa Island	
SZG	Spore Zoological Gardens	VC	VivoCity	

Tourist Problem (Analysis... 1)

Q: Can we derive any useful insights?

Consider

Aaron { SZG, BG, JB }
Frances { SZG, BG, JB }

An Instance of Tourist Problem

Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG
Frances	BC, SZC, JB
Gary	CG, OR
Harry	JG, CG

Useful Insight:

For our purpose of scheduling bus trips to the 8 places, we can "safely remove" Frances.

Why? (in a nutshell)

Frances can just follow Aaron and take all the trips that Aaron takes;

Tourist Problem (Analysis... 2)

Some Simplifications: Consider

* Aaron { SZG, BG, JB }
Frances { SZG, BG, JB }

Also consider

An Instance of Tourist Problem

Tourist	Places of Interest
Aaron	SZG, BG, JB
Betty	CG, JG, BG
Cathy	VC, SI, OR
David	JG, CG, OR
Evans	CG, JG, SZG
Frances	BG, SZG, JB
Gary	CG, OR
Harry	JG, CG

Cannot safely remove David. Why?

Can safely remove Gary.

Gary "follow" David, but only for the places in Gary's list.

Tourist Problem (Analysis... 3)

Some Simplifications: Consider

* Aaron { SZG, BG, JB }
Frances { SZG, BG, JB }

Also consider

An Instance of Tourist Problem

	All flistance of Tourist I Toblen	
	Tourist	Places of Interest
	Aaron	SZG, BG, JB
	Betty	CG, JG, BG
	Cathy	VC, SI, OR
	David	JG, CG, OR
	Evans	CG, JG, SZG
_	Frances	BG, SZG, JB
_	Gary	-CG, OR
_	Harry	JG, CG

Simplification Rule:

If $P(T_1) \subseteq P(T_2)$, then tourist T_1 can just "follows" tourist T_2 . Thus, we can omit T_1 from consideration.

Oh, can also omit Harry

♦ Betty { CG, JG, BG } Harry { CG, JG }

The (Reduced) Tourist Problem...

GIVEN: A list of tourists; each tourist has a list of places to visit.

TO DO: Schedule bus trips for them so that

each tourist visits all the places in his list.

An Insta	ance of Tourist Problem	
Tourist Aaron Betty	Places of Interest SZG, BG, JB CG, JG, BG	Every solution to this reduced instance
Cathy David Evans	VC, SI, OR JG, CG, OR CG, JG, SZG	is a solution to the original
		instance!

 $T = \{A, B, C, D, E\}$

 $P = \{BG, CG, JB, JG, OR, SI, VC, SZG\}$

Quick Summary:

- ☐ So far, we defined the Tourist Problem,
 - ☐ Seen an *instance* of TP and defined a *solution* for TP,
- □ We *analyzed* the instance, and
- ☐ Used *Simplification Rule* to reduce it to a smaller equivalent problem
- ☐ Along the way, we asked lots of question.

(End of video 5.1)

If you want to contact me,

Email: leonghw@comp.nus.edu.sg

School of Computing