Particle spectrograph

Wave operator and propagator

Spin-parity form Covariant form	ariant form	Multiplicities
#2 0+ \tau ==0	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta}=0$	1
#1 0+ r ==0	$\partial_{\beta}\partial_{\alpha} T^{\alpha\beta} == \partial_{\beta}\partial^{\beta} T^{\alpha}_{\alpha}$	1
$\int_{1}^{\#2} t^{\alpha} + 2 i k_{1}^{\#2} \sigma^{\alpha} = 0$	$\frac{\#^2}{1} \frac{\alpha}{\tau} + 2 i k_1^{\#2} \frac{\alpha}{\sigma} == 0 \qquad \partial_{\lambda} \partial_{\beta} \partial^{\alpha} t^{\beta \chi} == \partial_{\alpha} \partial^{\lambda} \partial_{\beta} t^{\alpha \beta} + 2 \partial_{\sigma} \partial^{\sigma} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	е
	$\partial_{\chi}\partial_{\rho}\partial^{\alpha}t^{eta\chi} == \dot{Q}\partial^{\chi}\partial_{\beta}t^{eta\alpha}$	8
$_{1^{+}\tau}^{\#1}\alpha^{\beta}+i^{k}\lambda_{1^{+}\sigma}^{\#2}\alpha^{\beta}=0$		м
$2^{*}_{1} {}_{1} \alpha \beta - 2 i k_{2}^{*} {}_{2} \alpha \beta = 0$	$ \sum_{k=1}^{\#+} {}^{\alpha\beta} - 2 \ i \ k_2^{\#+} \int_0^{\alpha\beta} = 0 \\ = 0 \\ = 3 \partial_\delta \partial^\beta \partial_\lambda \partial^{\Gamma} (^{\alpha X} - 3 \partial_\delta \partial^\beta \partial^{\alpha} \chi^{R\beta} + 3 \partial_\delta \partial^\beta \partial^{\alpha} \chi^{R\beta} + 3 \partial_\delta \partial^\beta \partial_\lambda \partial^{\alpha} \chi^{R\beta} + 3 \partial_\delta \partial^\alpha \partial^{\alpha} \chi^{R\beta} + 3 \partial_\delta \partial^\alpha \partial^\alpha \chi^{R\beta} + 3 \partial_\delta \partial^\alpha \chi^{$	2
	$3\partial_{o}\partial^{5}\partial_{\chi}\partial^{\chi}\tau^{eta a}+4$ i k^{χ} $\partial_{e}\partial_{\chi}\partial^{b}\partial^{a}\sigma^{\delta e}_{e}$ $_{\sigma}$ $_{6}$ i k^{χ} $\partial_{e}\partial_{s}\partial_{\chi}\partial^{a}\sigma^{eta \delta e}_{e}$ $_{6}$ $_{6}$ i $_{4}$ $_{7}$ $_{9}$ $_{2}$ $_{6}$ $_{9}$ $_{$	
	$6ik^{\lambda}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\lambda}\sigma^{\alpha\delta\delta}+6ik^{\lambda}\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial_{\lambda}\sigma^{\beta\delta\alpha}.$	
	$2 \ \eta^{\alpha\beta} \ \partial_e \partial^e \partial_\delta \partial^{\delta} v^{\chi}_{\chi} - 4 \ i \ \eta^{\alpha\beta} \ k^{\chi} \ \partial_\phi \partial^\phi \partial_e \partial_\chi \sigma^{\delta\epsilon}_{\delta}) = 0$	
Total expected gauge generators:	inerators:	16
# S	· · · · · · · · · · · · · · · · · · ·	į

		r ₅ (θ,Α, , , , , , , , , , , , , , , , , , ,	dydxdt	٥٠٤ عس - (٥٥٤ عس -	٢٥ (٥,٣ ٦ ق. ٥ ٣ ق. ٥ - ٥ هـ٣ ق. ٥ ٣ ق. ٥ - (٥ هـ٣ ق 2 ٥ ٣ ق. ٥) (٥ هـ٣ ق ٥ هـ٣ ق.) ١١) ١. 9, ١٤ قـ عـ قـ ١٧ قـ ٨ هـ وـ د	(' _())	1((
	#1	7 + 5	T++	#1	75	#1	7,7
•	$1^+ \sigma_{\alpha\beta}$		$1^+ \tau \alpha \beta$	$1^-\sigma_lpha$	$\Gamma \sigma_{lpha}$	$1^- \tau_{\alpha}$	$\Gamma \tau \alpha$
$^{\#1}_{1}$ $^{\alpha\beta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$^{#2}_{1}^{\alpha\beta}$	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{-2i \ \mathring{R} (2r_3+r_5)+i \ k \ \rlap{\cancel{\underline{t}}}}{(1+k^2)^2 t_1^2}$	0	0	0	0
$\frac{#1}{1}\tau + \alpha \beta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_3+r_5)-k\ t_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_3+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$^{#1}_{1}\sigma^{lpha}_{7}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} \left(k^2 + 2 k^4 \right) \left(r_1 - 2 r_3 \cdot r_5 \right)}$	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$
$\frac{#2}{1 \cdot \sigma^{\dagger}}$	0	0	0	$\frac{1}{\sqrt{2}\left(k^2 + 2k^4\right)\left(r_1 - 2r_3 - r_5\right)}$	$\frac{1}{-r_1 + 2r_2 + r_3} + \frac{6k^2}{r_1}$ $2(k + 2k^3)^2$	0	$\frac{i\left(6k^2\left(r_1{\text{-}}2r_3{\text{-}}r_5\right){\text{-}}t_1\right)}{\sqrt{2}k\left(1{+}2k^2\right)^2\left(r_1{\text{-}}2r_3{\text{-}}r_5\right)t_1}$
$\frac{#1}{1}\tau^{\alpha}$	0	0	0	0	0	0	0
#2 1- τ†	0	0	0	$\frac{\delta}{k(1+2k^2)(-r_1+2r_3+r_5)}$	$-\frac{i\left(6k^{2}\left(r_{1}\!-\!2r_{3}\!-\!r_{5}\right)\!+\!\!t_{1}\right)}{\sqrt{2}k\left(1\!+\!2k^{2}\right)^{2}\left(r_{1}\!-\!2r_{3}\!-\!r_{5}\right)t_{1}}$	0	$\frac{1}{\frac{\epsilon_{1}+2\epsilon_{3}+\epsilon_{3}}{(1+2k^{2})^{2}}} + \frac{6k^{2}}{\epsilon_{1}}$
	#1 1 ⁺	$\stackrel{\#1}{1^+}\mathcal{A}_{lphaeta} \qquad \stackrel{\#2}{1^+}\mathcal{A}_{\mathcal{C}}$	1^{+2}_{1} $\mathcal{A}_{lphaeta}$ $1^{+}f_{lphaeta}$	$_{1}^{*1}\mathcal{A}_{\alpha}$	$^{#2}_{1}$ $^{#1}_{\mathcal{A}\alpha}$ $^{#2}_{1}$ $^{#2}_{f\alpha}$	f_{α}	

	0	0	$\frac{t_1}{3\sqrt{2}}$	3		2 k tj	$0^{+1} \sigma +$	6 k ²	$\frac{1}{(-r_1+r_3)}$	0	0	0	
	J)	3 3	410		$-\frac{1}{3}i\sqrt{2}k$	^{#1} τ†		0	0	0	0	
0			+ 4		0		#2 0 ⁺ τ†		0	0	0	0	
			+ 1/5)	lia		k ŧ	^{#1} σ†		0 0	0		$-\frac{1}{t_1}$	
0			$k^2 (-r_1 + 2 r_3 + r_5) +$	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}ikt$			#1 2 ⁺ σα	ιβ	#1 2 ⁺ το	ιβ	#1 2 σ _{αβχ}
	0	0	k² (-r ₁				#1 2 ⁺ σ†	αβ	$\frac{2}{(1+2k^2)}$	2 t ₁	2 <i>i</i> √2 (1+2 <i>k</i> ²	$\frac{\sum k}{\left(\right)^{2}t_{1}}$	0
1 k ± √2	0	0		0			#1 2 ⁺ τ†	αβ	$\frac{2i\sqrt{2}}{(1+2k^2)}$		4 k ² 1+2 k ²	$\frac{1}{t_1}$	0
$\frac{t_1}{\sqrt{2}}$	0	0	0		0	0	$\frac{^{#1}}{2}\sigma$	βχ	0		0		2 2 k ² r ₁ +t ₁
			0	0	0	0			#1 0 ⁺ <i>A</i>		#1 0 ⁺ f	#2 0 ⁺ f	$\overset{\#1}{0}\mathscr{F}$
$1^{+1}_{1}\mathcal{A}_{1}^{+}$ $k^{2}(2r_{3}+r_{5})-\frac{t_{1}}{2}$	$\frac{t_1}{\sqrt{2}}$	i k <u>t</u> √2	0	0	0	0	#1 0 ⁺ <i>A</i> †	6 <i>k</i>	2 (-r ₁ +	⊦ r ₃)	0	0	0
2 (2 r ₃	'	1					^{#1} 0 ⁺ f†		0	O		0	0
αβ	αβ	$f + \alpha \beta$	+α	+α	+α	π+	#2 0 ⁺ f †		0	O		0	0
1+34+	$^{#2}_{1}$	1^{*1}	$\overset{\#1}{1} \mathscr{A} \dagger^{\alpha}$	$\frac{*2}{1^-\mathcal{A}}$	$\frac{*1}{1}f \dagger$	$\frac{#2}{1}f +$	# <u>1</u> 0		0	O		0	-t ₁

 $2^{+1} f \uparrow^{\alpha\beta}$

 $\overset{\#1}{0^+}\sigma$

 $\frac{2k^2t_1}{3}$

0

0

 $\frac{1}{3}i\sqrt{2}k\notin$

0

0

0 0

 $2^{+1}\mathcal{R}_{\alpha\beta}$ $2^{+}f_{\alpha\beta}$ $2^{+}\mathcal{R}_{\alpha\beta\chi}$

 $k^2 r_1 + \frac{t_1}{2}$

Massive and massless spectra

Parity:	Spin:	Square mass:	Pole residue:	Massive particle
Odd	2	$\frac{t_1}{2r_1} > 0$	$\frac{1}{r_1} > 0$	rticle

Unitarity conditions