Tutorial Exercises (Sheet 5)

Integer Linear Programming

Exercise 1. Consider the following (non-standard) Pure Integer Program:

$$\begin{array}{ll} \text{maximise} & \frac{1}{2}x_1 + \frac{2}{3}x_2 \\ \text{subject to} & x_1 - \frac{1}{3}x_2 = -2 \\ & x_1 \geq -\frac{2}{5} \\ & \frac{1}{3}x_1 \leq \frac{1}{4}x_2 \\ & x_1 \geq 0, \ x_2 \geq 0 \\ & x_1, \ x_2 \in \mathbb{N}_0 \end{array}$$

- (a) Reformulate the problem as a Mixed-Integer Linear Program (MILP) in standard form.
- (b) Reformulate the problem as a Pure Integer Linear Program (Pure ILP) in standard form.

Solution.

- (a) To reformulate the problem as an MILP in standard form, we
 - (i) multiply the objective function with -1 to obtain a minimisation objective,
 - (ii) multiply the first constraint with -1 to obtain a non-negative right-hand side,
 - (iii) multiply the second constraint with -1 to obtain a non-negative right-hand side,
 - (iv) add a (continuous!) slack variable x_3 to reformulate the second constraint as an equality,
 - (v) bring all variables in the third constraint to the left-hand side, and
 - (vi) add a (continuous!) slack variable x_4 to reformulate the third constraint as an equality.

The resulting MILP in standard form is:

- minimise
$$-\frac{1}{2}x_1 - \frac{2}{3}x_2$$
subject to
$$-x_1 + \frac{1}{3}x_2 = 2$$

$$-x_1 + x_3 = \frac{2}{5}$$

$$\frac{1}{3}x_1 - \frac{1}{4}x_2 + x_4 = 0$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$$

$$x_1, x_2 \in \mathbb{N}_0$$

(b) To reformulate the problem as a Pure ILP in standard form, we multiply the first constraint with 3, the second constraint with 5 and the third constraint with $3 \cdot 4 = 12$ in order to obtain integer coefficients for all constraints. We also scale the objective function by 6. The resulting problem is:

maximise
$$z = \frac{1}{2}x_1 + \frac{2}{3}x_2$$
subject to
$$3x_1 - x_2 = -6$$
$$5x_1 \ge -2$$
$$4x_1 \le 3x_2$$
$$x_1 \ge 0, x_2 \ge 0$$
$$x_1, x_2 \in \mathbb{N}_0$$

Now we take the same steps as in part (a) of the exercise to obtain the following Pure ILP in standard form:

- minimise
$$z' = -3x_1 - 4x_2$$

subject to $-3x_1 + x_2 = 6$
 $-5x_1 + x_3 = 2$
 $4x_1 - 3x_2 + x_4 = 0$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$
 $x_1, x_2, x_3, x_4 \in \mathbb{N}_0$

where we will remember that z = z'/6. Note that – contrary to part (a) of this exercise – all variables, including the auxiliary slack variables x_3 and x_4 , are integer. This is a requirement for Pure ILPs, and we are allowed to impose that requirement on x_3 and x_4 since all coefficients in the constraints are integer.

Exercise 2. Reformulate the requirement

$$x \in \{1, 3, 7\}$$

as a set of linear constraints using auxiliary binary variables.

Solution. This is a special instance of the 'k-allowed-values' type of logical constraints (see lecture notes):

$$x = 1$$
or $x = 3$
or $x = 7$.

Following the approach presented in the lecture, we can reformulate this requirement as follows.

$$x = 1y_1 + 3y_2 + 7y_3$$

$$y_1 + y_2 + y_3 = 1$$

$$y_1, y_2, y_3 \in \{0, 1\}.$$

By the way: we can actually eliminate one of the three binary variables in this constraint set. Can you see how this is possible?

Exercise 3. Consider the following set of constraints:

$$2x_1 - x_2 \le 8$$
$$3x_1 + x_2 \ge 4$$
$$x_1 - 2x_2 \le 1$$

- (a) Formulate a set of linear constraints (using auxiliary binary variables) that ensures that at least two of the above-mentioned constraints are satisfied.
- (b) Formulate a set of linear constraints (using auxiliary binary variables) that ensures that at most two of the above-mentioned constraints are satisfied as strict inequalities (that is, the first and last constraint as '<', and the second constraint as '>'). Hint: Rewrite this first as a requirement to satisfy at least some constraints!

Solution. Let M be a sufficiently large number.

(a) We follow the approach presented in the lecture notes and obtain:

$$2x_1 - x_2 \le 8 + My_1$$
$$3x_1 + x_2 \ge 4 - My_2$$
$$x_1 - 2x_2 \le 1 + My_3$$
$$y_1 + y_2 + y_3 \le 1$$

The logic is the following: if $y_i=1$, then the ith constraint is essentially 'switched off.' Since we should satisfy at least two of the three constraints, we are allowed to 'switch off' at most one constraint – hence the requirement that $y_1+y_2+y_3\leq 1$. Note that the second constraint is a ' \geq '-inequality, which is different to the setting in the lecture notes.

In that case, we must subtract My_2 to switch off the second constraint. Equally, we could have first multiplied the second constraint with -1 to bring the constraint into the form considered in the lecture notes.

(a) We want to satisfy at most two of these strict inequalities:

$$2x_1 - x_2 < 8$$
$$3x_1 + x_2 > 4$$
$$x_1 - 2x_2 < 1$$

Note that this is equivalent to the requirement that we satisfy *at least* one of the complementary inequalities:

$$2x_1 - x_2 \ge 8$$
$$3x_1 + x_2 \le 4$$
$$x_1 - 2x_2 \ge 1$$

Now we can use the technique from part (a) of the exercise to reformulate this constraint set:

$$2x_1 - x_2 \ge 8 - My_1$$
$$3x_1 + x_2 \le 4 + My_2$$
$$x_1 - 2x_2 \ge 1 - My_3$$
$$y_1 + y_2 + y_3 \le 2$$

Exercise 4. You are given the task of solving a mixed-integer linear program (MILP) involving the decision variable $x \in \{0, 1, ..., \delta\}$, for some $\delta \in \mathbb{N}$. Unfortunately, you only possess a solver for mixed-binary linear programs (MBLPs).

- (a) How can you convert your MILP into an MBLP involving δ auxiliary binary variables?
- (b) Challenge: Assume that $\delta = 2^{\theta} 1$ for some $\theta \in \mathbb{N}$ (for example, $\delta = 7 = 2^3 1$ for $\theta = 3$ or $\delta = 15 = 2^4 1$ for $\theta = 4$). How can you reduce the number of binary variables in the resulting MBLP?

Even more challenging: Is it possible to generalise this result even when $\delta \neq 2^{\theta} - 1$ for all $\theta \in \mathbb{N}$?

Solution.

(a) In order to convert the MILP into an MBLP involving δ binary variables, we can replace the integer variable x by a sum of δ binary variables $y_i \in \{0,1\}, i=1,\ldots,\delta$ as follows:

$$x = \sum_{i=1}^{\delta} y_i$$

We remark that using this representation, there are $\binom{\delta}{n}$ ways to model x = n for $n \in \{0, \dots, \delta\}$. This 'redundancy' typically slows down solution techniques (such as the branch-and-bound and cutting planes techniques discussed later in the lecture), and it indicates that we may be able to save some binary variables with a more clever formulation.

(b) Challenge: If $\delta = 2^{\theta} - 1$ for some $\theta \in \mathbb{N}$, then we can use the binary numeral system in order to represent the integer variable x using only θ binary variables $y_i \in \{0, 1\}, i = 0, \dots, \theta - 1$:

$$x = \sum_{i=0}^{\theta-1} 2^i y_i.$$

For example, $x \in \{0, 1, ..., 15\}$ can be reformulated using $\theta = 4$ binary variables $y_i \in \{0, 1\}, i = 0, ..., 3 = \theta - 1$ and

$$x = 1y_0 + 2y_1 + 4y_2 + 8y_3.$$

The choice x = 7, for example, is then represented by $y_0 = y_1 = y_2 = 1$ and $y_3 = 0$.

Even more challenging: When $\delta \neq 2^{\theta} - 1$ for all $\theta \in \mathbb{N}$, then the binary numeral system can still be used by representing x as the weighted sum of $|\log_2 \delta| + 1$ binary variables $y_i \in \{0, 1\}, i = 0, \dots, |\log_2 \delta|$:

$$x = \sum_{i=0}^{\lfloor \log_2 \delta \rfloor} 2^i y_i.$$

Let's have a look at some examples to see how it works:

$$\begin{array}{lllll} x \in \{0,1\} & \leadsto & \lfloor \log_2 \delta \rfloor + 1 = \lfloor 0 \rfloor + 1 = 1 & \leadsto & x = 1y_0, & y_0 \in \{0,1\} \\ x \in \{0,1,2\} & \leadsto & \lfloor \log_2 \delta \rfloor + 1 = \lfloor 1 \rfloor + 1 = 2 & \leadsto & x = 1y_0 + 2y_1, & y_0, y_1 \in \{0,1\} \\ x \in \{0,1,\ldots,3\} & \leadsto & \lfloor \log_2 \delta \rfloor + 1 \approx \lfloor 1.58 \rfloor + 1 = 2 & \leadsto & x = 1y_0 + 2y_1, & y_0, y_1 \in \{0,1\} \\ x \in \{0,1,\ldots,4\} & \leadsto & \lfloor \log_2 \delta \rfloor + 1 = \lfloor 2 \rfloor + 1 = 3 & \leadsto & x = 1y_0 + 2y_1 + 4y_2, & y_0, y_1, y_2 \in \{0,1\} \\ x \in \{0,1,\ldots,5\} & \leadsto & \lfloor \log_2 \delta \rfloor + 1 \approx \lfloor 2.32 \rfloor + 1 = 3 & \leadsto & x = 1y_0 + 2y_1 + 4y_2, & y_0, y_1, y_2 \in \{0,1\} \end{array}$$

Note that replacing x with $\sum_{i=0}^{\lfloor \log_2 \delta \rfloor} 2^i y_i$ everywhere is *not* enough in this case. Indeed, when $x \in \{0,1,\ldots,4\}$, replacing x with $1y_0+2y_1+4y_2,$ $y_0,y_1,y_2 \in \{0,1\}$, actually allows us to choose $x \in \{0,1,\ldots,7\}$! So we need the additional constraint that $x \leq \delta$, which – after replacing x – is equivalent to

$$\sum_{i=0}^{\lfloor \log_2 \delta \rfloor} 2^i y_i \le \delta.$$

We remark that using this alternative representation, there is a unique way to choose x = n for any integer $n \in \{0, ..., \delta\}$.

Exercise 5. In this exercise we illustrate an important property of *totally unimodular* matrices. A *unimodular* matrix is a matrix whose determinant A is +1 or -1. A totally unimodular matrix is a matrix for which every square non-singular submatrix is unimodular.

Assume the coefficient matrix A of an ILP to be a $m \times n$ matrix whose rows can be partitioned into two disjoint sets B and C. If the following sufficient conditions hold, we say that A is totally unimodular:

- Every column of A contains at most two non-zero entries;
- Every entry in A is 0, +1, or -1;
- If two non-zero entries in a column of A have the same sign, then the row of one is in B, and the other in C;
- If two non-zero entries in a column of A have opposite signs, then the rows of both are in B, or both in C.

A surprising property of ILPs with constraits Ax = b, where A is totally unimodular and x integer valued, is that the solution of the ILP and the solution of its LP relaxation are identical! This is therefore a special class of ILPs that can be solved using (continuous) LPs.

Tell if the following matrices respect the sufficient conditions for total unimodularity:

(a)
$$A = \begin{bmatrix} +3 & 0 \\ 0 & -1 \end{bmatrix}$$

(b)
$$A = \begin{bmatrix} 0 & +1 & 0 \\ +1 & -1 & 0 \\ +1 & 0 & 0 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 & -1 \end{bmatrix}.$$

(d)
$$A = \begin{bmatrix} +1 & +1 & 0 & 0 & 0 & +1 \\ +1 & 0 & -1 & -1 & 0 & 0 \\ 0 & +1 & +1 & 0 & -1 & 0 \\ 0 & 0 & 0 & +1 & +1 & +1 \end{bmatrix}.$$

(e)
$$A = \begin{bmatrix} +1 & -1 & 0 & 0 \\ 0 & +1 & -1 & 0 \\ 0 & 0 & +1 & -1 \\ 0 & 0 & 0 & +1 \end{bmatrix}$$

(f)
$$A = \begin{bmatrix} +1 & -1 & 0 & 0 \\ 0 & +1 & -1 & 0 \\ 0 & 0 & +1 & -1 \\ +1 & 0 & 0 & +1 \end{bmatrix}$$

Solution.

- (a) No, one entry is neither +1, 0, -1.
- (b) Yes. The indexes of the rows for the two sets are $B = \{1, 2\}$ and $C = \{3\}$.
- (c) Yes. The indexes of the rows for the two sets are $B=\{1,2,3,4\}$ and $C=\emptyset.$
- (d) Yes. The indexes of the rows for the two sets are $B=\{1\}$ and $C=\{2,3,4\}$.
- (e) Yes. The indexes of the rows for the two sets are $B=\{1,2,3,4\}$ and $C=\emptyset.$
- (f) No. This is similar to the previous case, but rows 1 and 4 would need to be in separate partitions due to column 1. This would violate the requirement that the first 4 rows need to be in the same partition, in order to match the conditions for non-zero entries with opposite signs.