PFLOCK Report

Andres Calderon

University of California, Riverside

August 28, 2020

I was wrong...

However, finding triangles, or much better cliques, could be very useful...

Maximal cliques instead of just triangles

- ▶ A clique, C, in an undirected graph G = (V, E) is a subset of the vertices, $C \subseteq V$, such that every two distinct vertices are adjacent.
- ▶ A maximal clique is a clique that cannot be extended by including one more adjacent vertex, that is, a clique which does not exist exclusively within the vertex set of a larger clique.

Maximal cliques instead of just triangles

A maximal cliques based approach Set of points

5/10

A maximal cliques based approach Finding pairs

6/10

A maximal cliques based approach

Finding maximal cliques

A maximal cliques based approach

Getting minimum bounding circles

Important notes

- ▶ It is required to perform additional processing if the radius of the minimum bounding circle is greater than $\frac{\varepsilon}{2}$.
- ▶ The cost of finding maximal cliques could be high (worst case $O(3^{\frac{n}{3}})$) but many algorithms reports to be practical in real-life graphs.
- ▶ The reduction on the number of candidate circles is significant (i.e. from 37272 to ≈ 1139 in just 0.804s).

A maximal cliques based approach

A large demo

