Downloaded from jeemain.guru

FUNCTION

2.	The domain of definition of $f(x) = sec^{-1}(cos^2 (A) m\pi, m \in I (C) \pi/4$		x) is (B) $\pi/2$ (D) none of these.			
7.			$A \rightarrow A$ are invertible, where $A = [-1,1]$: $A \rightarrow A$ are invertible, where $A = [-1,1]$: $A \rightarrow A$ are invertible, where $A = [-1,1]$: $A \rightarrow A$ are invertible, where $A = [-1,1]$:			
8	Solution of $0 < x-3 \le 5$ is (A) [-2,8] (B) [-3	2,3) U (3,8]	(C) [-2,3)	(D) none of these		
9.	Solution of $\frac{(x-3)(x+5)(x-7)}{ x-4 (x+6)} \le 0$ is					
	(A) (-6,-5] U [3, 7) U (4, 7)		(B) [3,7]			
	(C) (-6,-5]	(D) [3,4) (4,7]				
13	If $f(x) = \sin^{-1}\left(\frac{x^2}{1+x^2}\right)$ then the range of $f(x)$ is					
	(A) [-π/2,π/2] (C) [0,π/2)		(B) $[0,\pi/2]$ (D) $[-\pi/2,0)$			
14.	If the period of $\frac{\sin(nx)}{\tan(x/n)}$, where $n \in I$, is 6π , then					
	(A) n = 4 (C) n = 3		(B) n = -3 (D) none of the	nese		
19	Period of $ \sin 2x + \cos 8x $ (A) $\pi/2$ (C) $\pi/16$	is:	(B) π/8 (D) None of the	nese.		
40	Range of f(x) = $\sin^{-1} \sqrt{x^2 + x^2}$ (A) $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$ (C) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$	x+1 is	(B) $\left[\frac{\pi}{3}, \frac{\pi}{4}\right]$ (D) none of t	hese		
46	The function defined as $f:[0,\pi] \to [-1,1]$, $f(x) = \cos x$ is (A) one-one onto (B) many-one onto (C) one-one into (D) many-one into					
55.	Period of the function $ \cos 2\pi $	2x is	(B) π			
	(C) $\frac{\pi}{2}$		(B) $\frac{\pi}{4}$			
57.	If f (x) = x^2 , g (x) = \sqrt{x} , the (A) x (C) -x	n what is g o f (x	x) is (B) x (D) - x			

Downloaded from jeemain.guru

63. If
$$f(x) = \frac{1}{1-x}$$
, then $f[f(x)]$ is

(B)
$$1 - x$$

1.
$$\lim_{x\to 0} \frac{x \tan 2x - 2x \tan x}{(1-\cos 2x)^2}$$
 is

$$(B) -2$$

$$(D) -1/2$$

4.
$$f(x) = \begin{cases} ax^2 + bx + c, & |x| > 1 \\ x + 1, & |x| \le 1 \end{cases}$$
. If $f(x)$ is continuous for all values of x , then;

(A)
$$b = 1$$
, $a + c = 0$

(B)
$$b = 0$$
, $a + c = 2$

(C)
$$b = 1$$
, $a + c = 1$

5. The equation of the tangent to the curve
$$f(x) = 1 + e^{-2x}$$
 where it cuts the line $y = 2$ is

(A)
$$x + 2y = 2$$

(B)
$$2x + y = 2$$

(C)
$$x - 2y = 1$$

(D)
$$x - 2y + 2 = 0$$

10.
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
 is equal to

(A)
$$\pi$$

11
$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}$$
 is equal to

12.
$$\lim_{x\to 0} \frac{x}{\tan^{-1} 2x}$$
 is equal to

13. If
$$f(x) = (1 - x^n)^{1/n}$$
, $0 < x < 1$, n being an odd positive integer and $h(x) = f(f(x))$, then $h'\left(\frac{1}{2}\right)$ is

equal to

The number of points of non differentiability for the function
$$f(x) = |\log |x||$$
 are

$$\lim_{x \to 0} \frac{|x|}{x} =$$

$$(C) -1$$

Function
$$f(x) = \tan x$$
 is continuous in the interval

(A)
$$R - \left\{ (2n+1)\frac{\pi}{2} : n \in I \right\}$$

(B)
$$R - \{n\pi : n \in I\}$$

(D)
$$R - \{0\}$$

Downloaded from jeemain.guru

27	The value of $\lim_{x\to\infty} x \cos\left(\frac{\pi}{4x}\right) \sin\left(\frac{\pi}{4x}\right)$ is					
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{4}$	(C) 1	(D) π		
31	The value of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is					
	(A) $\log_e\left(\frac{a}{b}\right)$	(B) $\log_e\left(\frac{b}{a}\right)$	(C) log _e (ab)	(D) none of these		
32	If f (x) = $\begin{cases} mx + 1, \\ sin x + n, \end{cases}$	$x \le \frac{\pi}{2}$ is continuous $x > \frac{\pi}{2}$	ous at $x = \frac{\pi}{2}$, then			
	(A) $m = 1$, $n = 0$	(B) $m = \frac{n\pi}{2} + 1$	(C) $n = \frac{m\pi}{2}$	(D) $m = n = \frac{\pi}{2}$		
34.	The value of $\lim_{x\to\infty} \frac{\sqrt{1+x^4}-(1+x^2)}{x^2}$ is equal to					
	(A) 0 (C) 2		(B) -1 (D) 1			
3.	Area of the triangle formed by the positive x-axis and the normal and the tangent to					
	$x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is (A) $2\sqrt{3}$ sq. units	5	(B) $\sqrt{3}$ sq. units			
	(C) $4\sqrt{3}$ sq. units		(D) none of these			
4.	A tangent to the curve $y = \frac{x^2}{2}$ which is parallel to the line $y = x$ cuts off an intercept from the y-axis is					
	(A) 1 (C) 1/2	_	(B) -1/3 (D) -1/2			
5.	A particle moves on a co-ordinate line so that its velocity at time t is v (t) = $t^2 - 2t$ m/sec. Then distance travelled by the particle during the time interval $0 \le t \le 4$ is					
	(A) 4/3 (C) 16/3		(B) 3/4 (D) 8/3			
11.	The greatest and least values of the function $f(x) = ax + b \sqrt{x + c}$, when $a > 0$, $b > 0$, $c > 0$ in interval [0,1] are					
	(A) a+b+c and c		(B) a/2 $b\sqrt{2}+c$, c			
	(C) $\frac{a+b+c}{\sqrt{2}}$, c		(D) None of these			
12.	The absolute minimum (A) is equal to 5 (C) is equal to 7	(B) is	5 s equal to 3 loes not exist			
13.	Through the point P (or	hrough the point P (α, β) where $\alpha\beta>0$ the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is drawn so as to form with co-				
	ordinates axes a triangle (A) 2 α β (C) α β	e of area S. If ab >0, tl	a D nen the least value of S is (B) 1/2 αβ (D) None of these	S		