Game Architecture Linear Algebra 2

Welcome to the Matrix

Today's Agenda

- Anatomy of a Matrix
- Matrix Operations
- Linear Transforms
- Other Transforms

Anatomy of a matrix

- A matrix is a rectangular array of numbers. Usually shown surrounded by square brackets.
- The dimensions of the matrix are expressed as number of rows x number of columns (or m x n).

A 2x3 matrix:

 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$

Anatomy of a matrix

- The entries (or elements) are indexed first by row and then column.
 - An entry at row i and column
 j in matrix A is indexed with
 A:
- Indices begin at 1, not 0, at the top-left and increase to the right and down.

$$egin{bmatrix} m_{11} & m_{12} & m_{13} \ m_{21} & m_{22} & m_{33} \end{bmatrix}$$

Square Matrix

- A matrix where the number of rows equals the number of columns is called a square matrix.
- Typically we use 2x2 matrices when working in 2D and 3x3 matrices when working in 3D.
- We'll also find uses for 4x4 matrices. But more on that later.

```
\begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}
```

Square Matrix

- A matrix where the number of rows equals the number of columns is called a square matrix.
- Typically we use 2x2 matrices when working with 2D and 3x3 matrices when working in 3D.
- We'll also find uses for 4x4 matrices. But more on that later.

i	$\lceil m_{11} \rceil$	m_{12}	m_{13}
j	m_{21}	m_{22}	m_{23}
k	m_{31}	m_{32}	m_{33}

Identity Matrix

- A diagonal matrix is a square matrix that has non-zero elements only in the diagonal.
- A diagonal matrix whose diagonal elements are all equal to one is the *identity* matrix.
- The identity matrix in n
 dimensions is denoted as I_n (or
 just I if the dimensions can be
 inferred).

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Identity Matrix

- A diagonal matrix is a square matrix that has non-zero elements only in the diagonal.
- A diagonal matrix whose diagonal elements are all equal to one is the *identity* matrix.
- The identity matrix in n
 dimensions is denoted as I_n (or
 just I if the dimensions can be
 inferred).

Transpose

- The transpose of a matrix M with dimensions m, n is the matrix M^T with dimensions n, m.
- Substitute the the n^{th} row with the n^{th} column.
 - Alternatively, think of flipping the matrix along the diagonal.

Properties:

- The transpose is its own inverse
 - \circ $(\mathbf{M}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{M}$
- Transposing a diagonal matrix is a no-op.

$$o$$
 $\mathbf{D}^{\mathsf{T}} = \mathbf{D}$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{T} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

Scalar Multiplication

- You can multiply a matrix with a scalar.
- Just multiply each component by the scalar.
- Identical to scalar multiplication with vectors.

$$k \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = \begin{bmatrix} ka & kb & kc \\ kd & ke & kf \\ kg & kh & ki \end{bmatrix}$$

Matrix Multiplication

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix} = \begin{bmatrix} aj + bm + cp & ak + bn + cq & al + ba + cr \\ dh + em + fp & dk + en + fq & dl + eo + fr \\ gj + hm + ip & gk + hn + iq & gl + ho + ir \end{bmatrix}$$

Matrices for Transforming Data

Matrices for Transforming Data

Matrix Multiplication

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} j & k & l \\ m & n & o \\ p & q & r \end{bmatrix} = \begin{bmatrix} aj + bm + cp & ak + bn + cq & al + ba + cr \\ dh + em + fp & dk + en + fq & dl + eo + fr \\ gj + hm + ip & gk + hn + iq & gl + ho + ir \end{bmatrix}$$

$$a \cdot b = a_x b_x + a_y b_y + a_z b_z$$

Matrix Multiplication

- A vector is a 1xn matrix.
- Multiplying two matrices transforms one vector space into another.
- Multiplying a vector with a matrix is just a special case of transforming several vectors at once to only one.

Linear Transforms

- A linear transform is a mapping between vector spaces that preserves the operations of addition and scalar multiplication.
- More intuitively, a linear transformation is any transformation that preserves parallel lines.

Linear Transforms

- There is a one to one correspondence between matrices and linear transformations.
 - All linear transformations are represented by a matrix.
 - All matrices represent a linear transformation.

Linear Transforms

- There is a one to one correspondence between matrices and linear transformations.
 - All linear transformations are represented by a matrix.
 - All matrices represent a linear transformation.

Example

What does this 2D matrix do?

$$\mathbf{M} = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right]$$

What does this 2D matrix do?

What are the basis vectors?

$$\mathbf{M} = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right]$$

What does this 2D matrix do?

$$\mathbf{M} = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right]$$

• What are the basis vectors?

$$i = [2 \ 1]$$

 $j = [-1 \ 2]$

What does this 2D matrix do?

$$\mathbf{M} = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right]$$

• What are the basis vectors?

$$i = [2 \ 1]$$

 $j = [-1 \ 2]$

What does this 2D matrix do?

$$\mathbf{M} = \left[\begin{array}{cc} 2 & 1 \\ -1 & 2 \end{array} \right]$$

• What are our basis vectors?

```
\circ i =
```

$$\circ$$
 $j =$

• What are our basis vectors?

What are our transformed basis vectors?

```
\circ i =
```

$$\circ$$
 $j =$

What are our transformed basis vectors?

o
$$i = [2 \ 0]$$

What are our transformed basis vectors?

o
$$i = [2 \ 0]$$

• What is our matrix?

What are our transformed basis vectors?

o
$$i = [2 \ 0]$$

• What is our matrix?

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$

• Let's try a 45 degree rotation counter-clockwise.

- Let's try a 45 degree rotation counter-clockwise.
- What are our transformed basis vectors?
 - \circ i =
 - \circ j =

- Let's try a 45 degree rotation counter-clockwise.
- What are our transformed basis vectors?
 - \circ i =
 - \circ j =

- Let's try a 45 degree rotation counter-clockwise.
- What are our transformed basis vectors?
 - \circ **i** = [cos(45) sin(45)]
 - o **j** =

- Let's try a 45 degree rotation counter-clockwise.
- What are our transformed basis vectors?
 - \circ **i** = [cos(45) sin(45)]
 - **j** =

Rotation

- Let's try a 45 degree rotation counter-clockwise.
- What are our transformed basis vectors?

```
\begin{array}{ll}
\circ & \mathbf{i} = [\cos(45)\sin(45)] \\
\circ & \mathbf{j} = [\cos(90 + 45)\sin(90 + 45)] \\
& = [-\sin(45)\cos(45)]
\end{array}
```


Rotation

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} cos(45) & sin(45) \\ -sin(45) & cos(45) \end{bmatrix} = \begin{bmatrix} ? & ? \end{bmatrix}$$

Orthographic Projection

- Allows you to discard a dimension.
- So far the transformations we've looked at are all reversible. But here it is not.

Orthographic Projection

$$\mathbf{P}_x = \mathbf{S}\left(\begin{bmatrix} 0 & 1 \end{bmatrix}, 0\right) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\mathbf{P}_y = \mathbf{S}\left(\begin{bmatrix} 1 & 0 \end{bmatrix}, 0\right) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Shear

- Allows us to skew our vector space.
- Basis vectors no longer orthogonal.
- Angles are not preserved but area and volume is.

Shear

$$\mathbf{H}_x(s) = \left[\begin{array}{cc} 1 & 0 \\ s & 1 \end{array} \right],$$

$$\mathbf{H}_y(s) = \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array} \right].$$

Reflection

 Reflection is just a scaling by a negative factor.

- So far all of our transformations have been fixed around the origin.
- An affine transformation is the composition of a linear transform followed by a translation.

 All linear transforms are also affine transformations with translation c = 0.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t_x & t_y & t_z & 1 \end{bmatrix}$$

$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$[1 \ 0 \ 0 \ 0]$	$[1 \ 0 \ 0]$	0
		0 1 0	0
0 0 1 0	$ 0\ 0\ 1\ 0 =$	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0
1 2 3 1		3 6 11	1

$$\begin{bmatrix} x & y & z & w \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t_x & t_y & t_z & 1 \end{bmatrix} = \begin{bmatrix} ? & ? & ? & ? \end{bmatrix}$$

Transforming Point

$$\begin{bmatrix} x & y & z & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t_x & t_y & t_z & 1 \end{bmatrix} = \begin{bmatrix} (x + t_x) & (y + t_y) & (z + t_z) & 1 \end{bmatrix}$$

Transforming Vector

$$\begin{bmatrix} x & y & z & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ t_x & t_y & t_z & 1 \end{bmatrix} = \begin{bmatrix} x & y & z & 0 \end{bmatrix}$$

Homogenous Space