

Calibration and Simulation of Interest Rate Models

Kevin Shea, CFA kevin.shea@mathworks.com

Agenda

- Calibration to Market Data
- Calibration to Historical Data
- Simulation and Valuation
- Counterparty Credit Risk Analysis
- Questions and Answers

Interest Rate Models

Cox-Ingersoll-Ross

$$dr(t) = a(b - r)dt + \sigma \sqrt{r}dW(t)$$

Hull-White

$$dr(t) = (\theta(t) - ar)dt + \sigma dW(t)$$

G2++

$$r(t) = x(t) + y(t) + \varphi(t)$$

$$dx(t) = -ax(t)dt + \sigma dW_1(t)$$

$$dy(t) = -by(t)dt + \eta dW_2(t)$$

$$dW_1(t)dW_2(t) = \rho dt$$

Calibrate to Market Data

- Choose a set of liquid calibration instruments – typically caps, floors, swaptions.
- Find the set of model parameters that matches as closely as possible the observed prices.

$$\sum_{k=0}^{n} (P_i - \hat{P}_i(\theta))^2$$

P_i: Market Price

 \hat{P}_i : Model Price

 θ : Model Parameters

Calibrate CIR Model using MLE of Transition Density

$$dr(t) = a(b - r)dt + \sigma \sqrt{r}dW(t)$$

a: mean reversion speed

 σ : volatility of the short rate

b: level

Stochastic Differential Equation Models

- Suite of models including: bm, gbm, cir, hwv, heston, cev
- Simulate methods
- Framework for creating custom models

Calibrate using Kalman Filter

- Formulate models as state space systems.
- Use Kalman filter to estimate parameters.
- Estimate parameters from historical yield curves.

State Space formulation for G2++ Model

Transition Equation

Measurement Equation

$$x_t = Ax_{t-1} + B\mu$$
$$y_t = Cx_t + D\epsilon$$

$$A = \begin{bmatrix} e^{-a\Delta t} & 0 \\ 0 & e^{-b\Delta t} \end{bmatrix}$$

$$B = \begin{bmatrix} \sigma \sqrt{\frac{1 - e^{-2a\Delta t}}{2a}} & 0 \\ 0 & \eta \sqrt{\frac{1 - e^{-2b\Delta t}}{2b}} \end{bmatrix}$$

Park, F.C., "Implementing Interest Rate Models: A Practical Guide." Capital Markets & Portfolio Research, Inc. white paper, 2004

State Space Model

New state space model, ssm in Econometrics Toolbox™.

- Supports time-invariant and time-varying, linear statespace models.
- Perform univariate and multivariate time-series data analysis.
- Functionality to: estimate, filter, smooth, simulate, forecast

Interest Rate Model Simulation

Specify models and simulate entire term structure

- Support for Hull-White, G2++ and LIBOR Market Model.
- simTermStructs simulates entire term structure.

Swap Portfolio

- Store data in a MATLAB Table.
- Easy to read in data.
- Tabular display.

```
>> SwapPort = readtable('SwapPortfolio.xlsx')
SwapPort =
```

Notional	Maturity	RecType	PayType	RecRate	PayRate	RecReset	PayReset
1e+07	'1/15/2018'	1	0	0.031	10	12	12
5e+06	'2/15/2018'	0	1	20	0.032	12	12
1e+06	'3/15/2019'	1	0	0.033	30	12	12
2e+06	'4/15/2019'	0	1	40	0.034	12	12
1e+07	'5/15/2020'	1	0	0.036	50	12	12
7e+06	'6/15/2020'	0	1	65	0.036	12	12
7.5e+06	'7/15/2021'	1	0	0.0385	70	12	12
8e+06	'8/15/2021'	0	1	75	0.04	12	12
3e+06	'9/15/2022'	1	0	0.039	85	12	12
3.5e+06	'10/15/2022'	0	1	95	0.04	12	12

Valuing the Portfolio

- Value portfolio using swapbyzero
- Use parfor to loop over simulation dates.

Counterparty Credit Risk Functions

Compute exposures and CCR profiles

- Support for computing credit exposures.
- Support for computing various credit exposure profiles, including potential future exposure and expected exposure.


```
>> Exposures = creditexposures(Values);
>> Profiles = exposureprofiles(SimDates, Exposures);
```


Computing Credit Valuation Adjustment

- Compute exposure from exposureprofiles
- Compute default probabilities from cdsbootstrap

$$CVA = (1 - R) \int_0^T DiscExp(t) dPD(t)$$

Summary

- Calibration Approaches
 - Market Data: lsqnonlin, simulannealbnd
 - Historical Data: mle, ssm
- Monte Carlo Simulation in MATLAB
 - cir
 - HullWhite1F, LinearGaussian2F
- Counterparty Credit Risk
 - creditexposures, exposureprofiles
 - cdsbootstrap

