Homework 3: Geostatistics (Change of support)

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Exercise 1. (\star) Assume we wish to estimate the average value in a domain V

$$Z_V = \frac{1}{|V|} \int_V Z(s) \, \mathrm{d}s$$

with the average of n sample points $\{s_i; i = 1, ..., n\}$.

$$\hat{Z} = \frac{1}{n} \sum_{i=1}^{n} Z(s_i)$$

Show that the estimation variance (or else extension variance)

$$\operatorname{Var}\left(\hat{Z} - Z_{V}\right) = -\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \gamma\left(s_{i} - s_{j}\right) + \frac{1}{n\left|V\right|} \sum_{i=1}^{n} \int_{V} \gamma\left(s_{i} - x\right) dx - \frac{1}{\left|V\right|^{2}} \int_{x \in B} \int_{y \in B} \gamma\left(x - y\right) dx dy$$

Hint:: Consider as known that

$$\operatorname{Cov}\left(Z\left(t\right)-Z\left(s\right),Z\left(v\right)-Z\left(u\right)\right)=\gamma\left(t-u\right)+\gamma\left(s-v\right)-\gamma\left(s-u\right)-\gamma\left(t-v\right)$$

Solution.

Exercise 2. (*) Consider a statistical model which is a stochastic process $(Z_s)_{s\in\mathbb{R}}$ (so s has dimension 1), where $Z(\cdot) \sim \operatorname{GP}(\mu(\cdot), c(\cdot, \cdot))$ with mean function $\mu(s) = 1$ and covariance function $c(s,t) = \exp\left(-(s-t)^2\right)$ for any $s \in \mathbb{R}$ and $t \in \mathbb{R}$. Assume there is available a dataset $\{(Z_i, s_i)\}_{i=1}^n$ where $Z_i = Z(s_i)$ and $s_i \in \mathbb{R}$ are point sites.

- (1) Compute the length |v| of the block $v = [a, b] \subset \mathbb{R}$.
- (2) Compute the block mean $\mu(v)$ for some block $v = [a, b] \subset \mathbb{R}$ and point $s \in \mathbb{R}$.
- (3) Compute the block covariance function c(v,s) for some block $v=[a,b]\subset\mathbb{R}$ and point $s\in\mathbb{R}$.
- (4) Compute the block covariance function c(v, v') for some blocks $v = [a, b] \subset \mathbb{R}$ and $v' = [a', b'] \subset \mathbb{R}$.
- (5) Denote $Z = (Z_1, ..., Z_n)^{\top}$, and $S = \{s_1, ..., s_n\}$. Let $v = [a, b] \subset \mathbb{R}$ and $v' = [a', b'] \subset \mathbb{R}$ be two intervals. Compute the joint distribution of $(Z(v), Z(v'), Z)^{\top}$ as a function of $c(\cdot, \cdot)$, S, v, v', Z, and $\mu(\cdot)$. What is the name of the distribution and what are the parameter functions defining it?
- (6) (Bayesian Kriging) Compute the predictive stochastic process [Z(v)|Z] at blocks $v = [a, b] \subset \mathbb{R}$ with |v| > 0.

Hint-1:: Let $x_1 \in \mathbb{R}^{d_1}$, and $x_2 \in \mathbb{R}^{d_2}$. If

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathbf{N}_{d_1 + d_2} \left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_1 & \Sigma_{21}^\top \\ \Sigma_{21} & \Sigma_2 \end{bmatrix} \right)$$

then it is

$$x_2|x_1 \sim N_{d_2}(\mu_{2|1}, \Sigma_{2|1})$$

where

$$\mu_{2|1} = \mu_2 + \Sigma_{21} \Sigma_1^{-1} (x_1 - \mu_1) \text{ and } \Sigma_{2|1} = \Sigma_2 - \Sigma_{21} \Sigma_1^{-1} \Sigma_{21}^{\top}$$

Hint-2: You can use that $\int \operatorname{erf}(x) dx = x \operatorname{erf}(x) + \frac{\exp(-x^2)}{\sqrt{\pi}} + \operatorname{const}$, when $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x \exp(-t^2) dt$

Solution.