Algorithms Week 2 Problems & Worked Examples

Ishan Akhouri

Contents

1	Proving Big-O Relationships	2
	1.1 Example 1: Direct Definition Proof	2
2	Ordering Functions by Growth Rate	4
	2.1 Example 2: Function Ranking	4
3	Recursion Trees and Node Counting	6
	3.1 Example 3: Binary Recursion Tree	7
4	Master Theorem Applications	9
	4.1 Example 4: Divide-and-Conquer Analysis	S
5	Advanced Recursion Analysis	11
	5.1 Example 5: Non-Standard Recurrence	11
6	Quick Reference & Common Mistakes	13
	6.1 Master Theorem Quick Reference	13
	6.2 Function Growth Hierarchy	13
	6.3 Problem-Solving Strategy	13
7	Solutions to Practice Problems	14
	7.1 Section 1 Solutions: Proving Big-O Relationships	14
	7.2 Section 2 Solutions: Function Ordering	
	7.3 Section 4 Solutions: Master Theorem	

1 Proving Big-O Relationships

▶ Key Concept

What You Need to Know:

- Big-O Definition: $f \in O(g)$ if $\exists c > 0, n_0 \in \mathbb{N}$ such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$
- Choose constants strategically: pick c large enough to dominate all coefficients
- Alternative method: Use L'Hôpital's rule on $\lim_{n\to\infty}\frac{f(n)}{g(n)}$
- If the limit is finite (including 0), then $f \in O(g)$

1.1 Example 1: Direct Definition Proof

* Example

Problem: Prove that $f(n) = 3n^2 + 5n + 2 \in O(n^2)$ using the definition of Big-O.

Solution: We need to find constants c > 0 and $n_0 \ge 1$ such that:

$$3n^2 + 5n + 2 \le c \cdot n^2$$
 for all $n \ge n_0$

Choose c = 10 and $n_0 = 1$. For $n \ge 1$:

$$3n^2 \le 3n^2 \tag{1}$$

$$5n \le 5n^2 \text{ (since } n \le n^2 \text{ for } n \ge 1)$$
 (2)

$$2 \le 2n^2 \text{ (since } 1 \le n^2 \text{ for } n \ge 1)$$
 (3)

Adding these inequalities:

$$3n^2 + 5n + 2 \le 3n^2 + 5n^2 + 2n^2 = 10n^2$$

Therefore, $f(n) \in O(n^2)$ with c = 10 and $n_0 = 1$.

* Example

Problem: Prove that $f(n) = 2n^3 + 7n \in O(n^3)$ using L'Hôpital's rule.

Solution: We calculate:

$$\lim_{n \to \infty} \frac{2n^3 + 7n}{n^3} = \lim_{n \to \infty} \left(2 + \frac{7}{n^2} \right) = 2 + 0 = 2$$

Since the limit is finite, $f(n) \in O(n^3)$.

▶ Your Turn

Practice Problem 1A: Prove that $f(n) = 4n^2 + 3n + 1 \in O(n^2)$ using the definition.

Hint: Try c = 8 and find appropriate n_0 .

Practice Problem 1B: Prove that $f(n) = n \log n + 2n \in O(n \log n)$ using L'Hôpital's rule. **Hint:** Factor out $n \log n$ from the numerator first.

▶ Your Turn

Practice Problem 1C: Prove that $f(n) = 5n^3 + 2n^2 + 100 \in O(n^4)$ using BOTH methods. Challenge: Compare the choice of constants in each approach.

2 Ordering Functions by Growth Rate

▶ Key Concept

What You Need to Know:

- Hierarchy: Constants < Logarithmic < Polynomial < Exponential
- All logarithms are in the same class: $\log_a n \in \Theta(\log_b n)$
- For polynomials: higher degree grows faster
- For exponentials: larger base grows faster (different classes)
- Roots: $\sqrt[k]{n}$ grows slower as k increases

2.1 Example 2: Function Ranking

\star Example

Problem: Rank these functions from slowest to fastest growing:

- $f_1(n) = 2^n$
- $f_2(n) = n^3 + 2n^2$
- $f_3(n) = 100$
- $f_4(n) = \sqrt{n}$
- $f_5(n) = n \log n$
- $f_6(n) = 3^n$
- $f_7(n) = \log_2 n$

Solution: Applying the growth hierarchy:

- 1. $f_3(n) = 100 \text{ (constant)}$
- 2. $f_7(n) = \log_2 n$ (logarithmic)
- 3. $f_4(n) = \sqrt{n} = n^{1/2}$ (polynomial, degree $\frac{1}{2}$)
- 4. $f_5(n) = n \log n$ (linearithmic)
- 5. $f_2(n) = n^3 + 2n^2$ (polynomial, degree 3)
- 6. $f_1(n) = 2^n$ (exponential, base 2)
- 7. $f_6(n) = 3^n$ (exponential, base 3)

Practice Problem 2A: Rank from slowest to fastest:

•
$$n^4$$
, $2^{\sqrt{n}}$, $(\log n)^2$, $n!$, $\sqrt{n \log n}$, $n^2 \log n$

Hint: Be careful with $2^{\sqrt{n}}$ and n!.

▶ Your Turn

Practice Problem 2B: Group functions by asymptotic class (Θ) :

•
$$3n^2 + 5n$$
, $\log_2 n$, $7n^2 - 100n$, $\ln n + 5$, 4^n , $2 \cdot 4^n$

Hint: Some functions belong to the same Θ class.

▶ Your Turn

Practice Problem 2C: Prove or disprove: $n^{\log n} \in O((\log n)^n)$

Challenge: Use logarithms to simplify the comparison.

3 Recursion Trees and Node Counting

▶ Key Concept

What You Need to Know:

- Draw trees for small values of n (typically n = 4 or n = 8)
- Count nodes systematically: derive formula, prove by induction
- \bullet Height = maximum depth = memory complexity
- Total nodes = time complexity (if each activation is O(1))
- Use recurrence relations to verify your counting

3.1 Example 3: Binary Recursion Tree

* Example

Problem: Analyze this recursive algorithm:

```
int mystery(int n) {
    if (n <= 1)
        return 1;
    return mystery(n-1) + mystery(n-2) + 3;
}</pre>
```

Draw the recursion tree for n = 4 and find:

- 1. Formula for number of nodes
- 2. Height of the tree
- 3. Time and space complexity

Solution:

Recursion Tree for n = 4:

Node Count Formula: Let T(n) = number of nodes in recursion tree.

$$T(0) = T(1) = 1 (4)$$

$$T(n) = T(n-1) + T(n-2) + 1 \text{ for } n \ge 2$$
 (5)

By pattern recognition: $T(n) = F_{n+2}$ where F_k is the k-th Fibonacci number.

Proof by induction:

- Base: $T(0) = 1 = F_2$, $T(1) = 1 = F_3$
- Inductive: $T(n) = T(n-1) + T(n-2) + 1 = F_{n+1} + F_n + 1 = F_{n+2} \checkmark$

Height: h(n) = n (following left branch always) **Complexity:**

- Time: $\Theta(F_{n+2}) = \Theta(\phi^n)$ where $\phi = \frac{1+\sqrt{5}}{2}$
- Space: $\Theta(n)$

Practice Problem 3A: Analyze this algorithm:

```
int compute(int n) {
   if (n <= 2)
       return n;
   return compute(n-1) + compute(n-3);
}</pre>
```

Draw the tree for n = 6, find the node count formula, and prove it by induction.

Hint: The recurrence will be T(n) = T(n-1) + T(n-3) + 1.

▶ Your Turn

Practice Problem 3B: Triple recursion:

```
int triple(int n) {
   if (n <= 1)
       return 1;
   return triple(n-1) + triple(n-1);
}</pre>
```

Find the exact number of nodes and prove your formula.

Hint: This creates a complete ternary tree!

➤ Your Turn

Practice Problem 3C: Mixed recursion with different costs:

```
int mixed(int n) {
    if (n <= 1)
        return processing(n); // Takes O(n) time
    return mixed(n-1) + helper(n);
}

int helper(int n) {
    if (n <= 1)
        return 1;
    return helper(n-2) + helper(n-2);
}</pre>
```

Challenge: Account for non-constant processing time in your analysis.

4 Master Theorem Applications

▶ Key Concept

What You Need to Know:

- Form: T(n) = aT(n/b) + f(n) where $a \ge 1, b > 1$
- Critical exponent: $E = \log_b a$
- Case 1: If $f(n) = O(n^{E-\epsilon})$ for $\epsilon > 0$, then $T(n) = \Theta(n^E)$
- Case 2: If $f(n) = \Theta(n^E)$, then $T(n) = \Theta(n^E \log n)$
- Case 3: If $f(n) = \Omega(n^{E+\epsilon})$ and regularity holds, then $T(n) = \Theta(f(n))$

4.1 Example 4: Divide-and-Conquer Analysis

* Example

Problem: Solve using Master Theorem:

$$T(n) = 4T(n/2) + n^2$$

9

Solution:

- $a = 4, b = 2, f(n) = n^2$
- Compare $f(n) = n^2$ with $n^E = n^2$

Since $f(n) = \Theta(n^2) = \Theta(n^E)$, this is **Case 2**.

Therefore: $T(n) = \Theta(n^2 \log n)$

\star Example

Problem: Solve $T(n) = 8T(n/2) + n^2$.

Solution:

- $a = 8, b = 2, f(n) = n^2$
- Critical exponent: $E = \log_2 8 = 3$
- Compare $f(n) = n^2$ with $n^E = n^3$

Since $n^2 = O(n^{3-1}) = O(n^{3-\epsilon})$ with $\epsilon = 1 > 0$, this is **Case 1**.

Therefore: $T(n) = \Theta(n^3)$

Practice Problem 4A: Solve these recurrences:

1.
$$T(n) = 2T(n/2) + n$$

2.
$$T(n) = 3T(n/3) + n^2$$

3.
$$T(n) = 16T(n/4) + n^2$$

Hint: Calculate the critical exponent for each, then determine the case.

▶ Your Turn

Practice Problem 4B: Tricky cases:

1.
$$T(n) = 2T(n/2) + n \log n$$

2.
$$T(n) = 4T(n/2) + n^2 \log n$$

Hint: Be careful with logarithmic factors in Case 2.

▶ Your Turn

Practice Problem 4C: Case 3 with regularity condition:

$$T(n) = 2T(n/2) + n^3$$

Verify both the growth condition AND the regularity condition for Case 3.

Challenge: Show that $af(n/b) \le cf(n)$ for some c < 1.

5 Advanced Recursion Analysis

▶ Key Concept

What You Need to Know:

- Some recurrences don't fit Master Theorem (unequal subproblems, variable costs)
- Use recursion trees for row-sum analysis
- Substitution method: guess solution, prove by induction
- Akra-Bazzi theorem for more general cases

5.1 Example 5: Non-Standard Recurrence

* Example

Problem: Solve T(n) = T(n/3) + T(2n/3) + n.

Solution using Recursion Tree:

For this recurrence, subproblems have sizes n/3 and 2n/3.

Row Analysis:

• Level 0: Cost = n

• Level 1: Sizes n/3, 2n/3, Total cost = n/3 + 2n/3 = n

• Level 2: Sizes n/9, 2n/9, 2n/9, 4n/9, Total cost = n

Each level contributes exactly n to the total cost.

Height: The longest path follows the 2n/3 branch: $h = \log_{3/2} n = \Theta(\log n)$

Total Cost: $T(n) = \Theta(n \log n)$

▶ Your Turn

Practice Problem 5A: Solve T(n) = T(n/4) + T(3n/4) + n.

Hint: Analyze the row sums and find the height.

▶ Your Turn

Practice Problem 5B: Variable cost recursion:

$$T(n) = 2T(n/2) + n^2$$

But each recursive call also includes $\mathcal{O}(n)$ overhead for data copying.

Modify the recurrence and solve.

Hint: The actual recurrence becomes $T(n) = 2T(n/2) + n^2 + 2n$.

Practice Problem 5C: Prove by substitution:

$$T(n) = 3T(n/2) + n$$

Guess: $T(n) = \Theta(n^{\log_2 3})$. Prove this rigorously.

Challenge: Find the exact constants in the Θ bound.

6 Quick Reference & Common Mistakes

6.1 Master Theorem Quick Reference

For T(n) = aT(n/b) + f(n) where $a \ge 1, b > 1$:

- Critical Exponent: $E = \log_b a$
- Case 1: $f(n) = O(n^{E-\epsilon}) \Rightarrow T(n) = \Theta(n^E)$
- Case 2: $f(n) = \Theta(n^E \cdot (\log n)^k) \Rightarrow T(n) = \Theta(n^E \cdot (\log n)^{k+1})$
- Case 3: $f(n) = \Omega(n^{E+\epsilon}) + \text{regularity} \Rightarrow T(n) = \Theta(f(n))$

6.2 Function Growth Hierarchy

$$1 < \log n < (\log n)^k < n^{\epsilon} < n < n \log n < n^2 < n^k < 2^n < n! < n^n$$

\triangle Common Mistake

Common Mistakes to Avoid:

- 1. Big-O direction: $f \in O(g)$ means f grows no faster than g, not the reverse
- 2. Master Theorem misapplication: Check that recurrence has exact form aT(n/b) + f(n)
- 3. Logarithm confusion: All logarithms are in same asymptotic class regardless of base
- 4. Recursion tree errors: Count ALL nodes, not just leaves
- 5. Induction mistakes: Prove both base case AND inductive step rigorously
- 6. Case 3 regularity: Don't forget to verify $af(n/b) \le cf(n)$ for some c < 1

6.3 Problem-Solving Strategy

- 1. **Identify the type:** Big-O proof? Function ordering? Recurrence solving?
- 2. Choose your method: Definition vs. limits vs. Master Theorem vs. recursion trees
- 3. Set up carefully: Write recurrences correctly, draw trees systematically
- 4. Verify your answer: Check with small cases, ensure constants work
- 5. State complexity clearly: Use proper asymptotic notation

7 Solutions to Practice Problems

7.1 Section 1 Solutions: Proving Big-O Relationships

\star Example

Solution to Problem 1A: Choose c=8 and $n_0=1$. For $n\geq 1$:

$$4n^2 \le 4n^2 \tag{6}$$

$$3n \le 3n^2 \text{ (since } n \le n^2 \text{ for } n \ge 1)$$
 (7)

$$1 \le n^2 \text{ (since } 1 \le n^2 \text{ for } n \ge 1)$$
 (8)

Therefore: $4n^2 + 3n + 1 \le 4n^2 + 3n^2 + n^2 = 8n^2 \checkmark$

\star Example

Solution to Problem 1B:

$$\lim_{n\to\infty}\frac{n\log n+2n}{n\log n}=\lim_{n\to\infty}\left(1+\frac{2}{\log n}\right)=1+0=1$$

Since the limit is finite, $f(n) \in O(n \log n)$.

7.2 Section 2 Solutions: Function Ordering

* Example

Solution to Problem 2A: Ranking from slowest to fastest:

- 1. $(\log n)^2$ (polylogarithmic)
- 2. $\sqrt{n \log n} = \sqrt{n} \sqrt{\log n}$ (between \sqrt{n} and n)
- 3. $n^2 \log n$ (polynomial with log factor)
- 4. n^4 (polynomial)
- 5. $2^{\sqrt{n}}$ (subexponential)
- 6. n! (factorial)

7.3 Section 4 Solutions: Master Theorem

* Example

Solution to Problem 4A:

1.
$$T(n) = 2T(n/2) + n$$
: $E = \log_2 2 = 1$, $f(n) = n = \Theta(n^1) \rightarrow \text{Case } 2 \rightarrow \Theta(n \log n)$

2.
$$T(n) = 3T(n/3) + n^2$$
: $E = \log_3 3 = 1$, $f(n) = n^2 = \Omega(n^{1+1}) \to \text{Case } 3 \to \Theta(n^2)$

3.
$$T(n) = 16T(n/4) + n^2$$
: $E = \log_4 16 = 2$, $f(n) = n^2 = \Theta(n^2) \to \text{Case } 2 \to \Theta(n^2 \log n)$