7.2 Багатокрокові чисельні методи розв'язання задачі Коші

7.2.1 Поняття багатокрокового методу

Розглянуті раніше чисельні методи розв'язання задачі Коші для звичайних диференціальних рівнянь відносяться до **однокрокових методів**, оскільки при розрахунку поточного значення y_{i+1} на i-му кроці використовується тільки інформація на останньому відрізку $[x_i; x_{i+1}]$.

Все, що робилось на попередніх кроках методу, явно не використовується. Навпаки, є **багатокрокові методи** розв'язання задачі Коші (1), які використовують те, що було отримано на попередніх кроках методу явно. Такими є, наприклад, методи: Адамса — Башфорта, Адамса — Мултона, Гіра — Брайтона.

В цих методах для обчислення значення нової точки використовується інформація про декілька значень, що отримані раніше. Для цього використовуються дві формули: прогнозу і корекції. Алгоритм обчислення для всіх методів прогнозу і корекції однаковий. Вказані методи відрізняються лише формулами і не мають властивості «самостартування», оскільки вимагають знання попередніх значень. Перш ніж використовувати метод прогнозу і корекції, обчислюють початкові дані за допомогою будь-якого однокрокового методу. Часто для цього використовують метод Рунге – Кутта.

7.2.2 Метод Адамса (Адамса – Башфорта)

Нехай для рівняння

$$y' = f(x, y), \tag{1}$$

з початковою умовою $y(x_0) = y_0$ знайдені будь-яким методом (Ейлера, послідовних наближень, Рунге — Кутта та ін.) три послідовних значення невідомої функції («початковий відрізок»)

$$y_1 = y(x_1) = y(x_0 + h),$$

 $y_2 = y(x_2) = y(x_0 + 2h),$
 $y_3 = y(x_3) = y(x_0 + 3h).$

За допомогою цих значень обчислюємо величини

$$q_0 = h y_0' = h f(x_0, y_0),$$

$$q_1 = h y_1' = h f(x_1, y_1),$$

$$q_2 = h y_2' = h f(x_2, y_2),$$

$$q_3 = h y_3' = h f(x_3, y_3).$$

Записуємо числа x_k , y_k , y_k' , q_k (k=0, 1, 2, 3) в таблицю 1 та обчислюємо скінченні різниці величини q (числа над ламаною лінією в таблиці 1).

Тут

$$\Delta q_k = q_{k+1} - q_k$$
, $\Delta^{i+1} q_k = \Delta^i q_{k+1} - \Delta^i q_k$.

Враховуючи це, отримуємо:

$$\Delta q_{k-1} = q_k - q_{k-1}; \quad \Delta^2 q_{k-2} = \Delta q_{k-1} - \Delta q_{k-2}; \quad \Delta^3 q_{k-3} = \Delta^2 q_{k-2} - \Delta^2 q_{k-3}.$$

Таблиця 1 Схема методу Адамса

k	x_k	y _k	$\Delta y_k = y_{k+1} - y_k$	$y_k'=f(x_k, y_k)$	$q_k = hy_k'$	$\Delta q_k = q_{k+1} - q_k$	$\Delta^2 q_k$	$\Delta^{8}q_{k}$
0 1 2 3	$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix}$	y_0 y_1 y_2 y_3	$egin{array}{c} \Delta y_0 \ \Delta y_1 \ \Delta y_2 \ \hline \Delta y_3 \end{array}$	$f(x_0, y_0)$ $f(x_1, y_1)$ $f(x_2, y_2)$ $f(x_3, y_3)$	$egin{array}{c} q_0 & & & & & & & & & & & & & & & & & & &$	$egin{array}{c} \Delta q_0 \ \Delta q_1 \ \Delta q_2 \ \hline \Delta q_3 \end{array}$	$egin{array}{c} \Delta^2q_0 \ \Delta^2q_1 \ \hline \Delta^2q_2 \ \Delta^2q_3 \end{array}$	$egin{array}{c} \Delta^3q_0 \ \hline \Delta^3q_1 \ \Delta^3q_2 \ \hline \end{array}$
4 5 6	$\begin{bmatrix} x_4 \\ x_5 \\ x_6 \end{bmatrix}$	y ₄ y ₅ y ₆	$\Delta y_4 \ \Delta y_5$	$ \begin{array}{ccc} f(x_4, y_4) \\ f(x_5, y_5) \end{array} $	9 ₄ 9 ₅	Δq_4		

Метод Адамса полягає у продовженні обчислень (заповненні таблиці 1) за допомогою формули

$$\Delta y_k = q_k + \frac{1}{2} \Delta q_{k-1} + \frac{5}{12} \Delta^2 q_{k-2} + \frac{3}{8} \Delta^3 q_{k-3} \quad (k = 3, 4, ...),$$
 (2)

яка називається *екстраполяційною формулою Адамса*. Формула (2) застосовується для «прогнозування» значення

$$y_{k+1} = y_k + \Delta y_k.$$

Підраховане за цією формулою «прогнозоване» значення будемо позначати за $y_{k+1}^{nporh.}$.

Отримане за формулою (2) значення Δy_k необхідно ще уточнити. Для цього необхідно записати до таблиці значення x_{k+1} , y_{k+1} , y'_{k+1} , q_{k+1} , доповнити таблицю скінченних різниць, а далі виконати перерахунок за формулою «корекції»

$$\Delta y_k = q_k + \frac{1}{2} \Delta q_k - \frac{1}{12} \Delta^2 q_{k-1} - \frac{1}{24} \Delta^3 q_{k-2}, \qquad (3)$$

яка називається *інтерполяційною формулою Адамса*. Уточнене за формулою (3) значення будемо позначати за $y_{k+1}^{\kappa op.}$.

Формули (2) та (3) мають достатньо велику точність. Вони дають похибку порядку h^4 , але самі формули оцінки похибки достатньо складні.

При практичних обчисленнях зазвичай застосовують наступні міркування. Похибка більш точної формули корекції (3) складає приблизно 1/14 частину різниці між значеннями Δy_k , підрахованими за формулами (2) та (3). Тому, якщо вказана різниця ненабагато перевищує допустиму похибку розрахунку, то крок h вважають обраним вірно та розрахунок продовжують з обраним кроком. Якщо ж на деякому етапі розрахунку вказана різниця стає більшою (і при цьому нема помилок в самих розрахунках), то крок h потрібно зменшити. Рекомендується зменшувати крок в два рази.

Порядок заповнення таблиці 1.

- 1) Записуємо до таблиці 1 числа x_k , y_k , y_k' , q_k (k=0, 1, 2, 3) та обчислюємо скінченні різниці Δq_k (k=0,1,2), $\Delta^2 q_k$ (k=0,1), $\Delta^3 q_0$.
- 2) Використовуючи числа q_3 , Δq_2 , $\Delta^2 q_1$, $\Delta^3 q_0$, які знаходяться в таблиці скінченних різниць по діагоналі, визначаємо за формулою (2) при k=3

$$\Delta y_3 = q_3 + \frac{1}{2} \Delta q_2 + \frac{5}{12} \Delta^2 q_1 + \frac{3}{8} \Delta^3 q_0.$$

- 3) Обчислюємо $x_4 = x_3 + h$, $y_4 = y_3 + \Delta y_3$.
- 4) Записуємо значення x_4 , y_4 до таблиці 1, знаходимо $y_4' = f\left(x_4, y_4\right)$, $q_4 = h\,y_4'$ та підраховуємо наступні скінченні різниці $\Delta q_3,\ \Delta^2 q_2,\ \Delta^3 q_1.$
- 5) Використовуючи отримані значення скінченних різниць, уточнюємо величину Δy_3 за формулою (3) при k=3

$$\Delta y_3 = q_3 + \frac{1}{2} \Delta q_3 - \frac{1}{12} \Delta^2 q_2 - \frac{1}{24} \Delta^3 q_1.$$

6) Якщо кореговане значення Δy_3 відрізняється від прогнозованого значення Δy_3 на декілька одиниць найменшого зберігаємого розряду, то вносимо відповідні правки в значення Δy_3 та y_4 ,

перевіряємо, що ці правки не відобразяться суттєво на значенні q_4 , та продовжуємо розрахунок з обраним кроком. В протилежному разі обираємо менший крок.

Обчислення для k = 4, 5, ... здійснюють аналогічно.

Для обчислень на комп'ютері формули Адамса (2) та (3) зручніше застосовувати в іншій формі, виражаючи y_{k+1} не через скінченні різниці Δq , а безпосередньо через величини q. Так отримують *екстраполяційну* формулу Адамса у вигляді

$$y_{k+1}^{npoch.} = y_k + \frac{h}{24} \left(55y_k' - 59y_{k-1}' + 37y_{k-2}' - 9y_{k-3}' \right), \tag{4}$$

де
$$y'_k = f(x_k, y_k)$$
, $y'_{k-1} = f(x_{k-1}, y_{k-1})$, $y'_{k-2} = f(x_{k-2}, y_{k-2})$, $y'_{k-3} = f(x_{k-3}, y_{k-3})$,

та інтерполяційну формулу Адамса у вигляді

$$y_{k+1}^{\kappa op.} = y_k + \frac{h}{24} (9y_{k+1}' + 19y_k' - 5y_{k-1}' + y_{k-2}').$$
 (5)

Спочатку використовують формулу (4), а потім корегують за допомогою (5). Якщо результат уточненого значення не перевищує задану похибку обчислень, то крок h ϵ допустимим

$$\left| y_{k+1}^{\kappa op.} - y_{k+1}^{npoch.} \right| \le \varepsilon. \tag{6}$$

Приклад 1. Методом Адамса знайти на відрізку [0; 0,5] розв'язок диференціального рівняння

$$y' = \frac{\sinh(0.5y + x)}{1.5} + 0.5y \tag{7}$$

з початковою умовою у (0) = 0; крок взяти h = 0.05.

Розв'язання. Нехай за допомогою методу Рунге — Кутта обчислено три послідовні значення шуканої функції при $x_1 = 0.05$, $x_2 = 0.10$, $x_3 = 0.15$ (див. розд. 10.1). Скористаємося цими результатами і продовжимо обчислення за методом Адамса. Результати обчислень розташовано в двох таблицях: таблиця 2 — основна таблиця різниць, таблиця 3 — допоміжна таблиця обчислення правої частини рівняння (7).

Порядок заповнення таблиць.

- 1) Записуємо до таблиці 2 значення $x_0=0$, $x_1=0.05$, $x_2=0.10$, $x_3=0.15$ і відповідні їм значення y_k ($k=0,\ 1,\ 2,\ 3$), знаходимо $f\left(x_k,y_k\right)$, q_k і складаємо таблицю різниць.
 - 2) За формулою (2) при k = 3 знаходимо

$$\Delta y_3 = 0.005347 + \frac{1}{2}0.001865 + \frac{5}{12}0.000085 + \frac{3}{8}0.000007 = 0.006318$$
.

- 3) Обчислюємо $y_4 = 0.007838 + 0.006318 = 0.014156$.
- 4) Записуємо значення x_4 , y_4 в таблицю 3, знаходимо

$$y_4' = f(x_4, y_4) = \frac{2}{3} \operatorname{sh}(0, 5 \cdot 0, 014156 + 0, 2) + 0, 5 \cdot 0, 014156 = 0, 14612;$$
тоді

$$q_4 = hy_4' = 0.007306.$$

Записуємо отриманий результат в таблицю 2 і обчислюємо різниці $\Delta q_3,\ \Delta^2 q_2,\ \Delta^3 q_1.$

5) За формулою (3) обчислюємо кориговане значення

$$\Delta y_3 = 0,005347 + \frac{1}{2}0,001959 - \frac{1}{12}0,000094 - \frac{1}{24}0,000009 = 0,006318.$$

Так як кориговане значення Δy_3 співпадає з прогнозованим значенням Δy_3 , то продовжуємо розрахунок з обраним кроком вже без подальшої корекції.

6) За формулою (2) при k = 4 знаходимо

$$\Delta y_4 = 0,007306 + \frac{1}{2}0,001959 + \frac{5}{12}0,000094 + \frac{3}{8}0,000009 = 0,008329,$$
 i т.д.

Таблиця 2 **Розв'язання рівняння (7) методом Адамса**

k	\mathcal{X}_k	\mathcal{Y}_k	Δy_k	$q_k = hf\left(x_k, y_k\right)$	$\Delta q_{\scriptscriptstyle k}$	$\Delta^2 q_{_k}$	$\Delta^3 q_k$
0	0	0		0	0,001702	0,000078	0,000007
1	0,05	0,000846		0,001702	0,001780	0,000085	0,000009
2	0,10	0,003432		0,003482	0,001865	0,000094	0,000011
3	0,15	0,007838	0,006318	0,005347	0,001959	0,000105	0,000011
4	0,20	0,014156	0,008329	0,007306	0,002064	0,000116	0,000013
5	0,25	0,022485	0,010451	0,009370	0,002180	0,000129	0,000013
6	0,30	0,032936	0,012692	0,011550	0,002309	0,000142	0,000017
7	0,35	0,045628	0,015070	0,013859	0,002451	0,000159	
8	0,40	0,060698	0,017603	0,016310	0,002610		
9	0,45	0,078301	0,020295	0,018920			
10	0,50	0,098596					

Таблиця 3 **Обчислення правої частини рівняння (7**)

k	x _{ls}	y _k	$0.5y_k$	$0.5y_k + x_k$	$\left sh \left(0, 5y_k + x_k \right) \right $	$f(x_k, y_k)$
4	0,20	0,014156	0,007078	0,207078	0,20856	0,14612
5	0,25	0,022485	0,011242	0,261242	0,26422	0,18739
6	0,30	0,032936	0,016468	0,316468	0,32178	0,23099
7	0,35	0,045628	0,022814	0,378814	0,38151	0,27715
8	0,40	0,060698	0,030349	0,430349	0,44376	0,32619
9	0,45	0,078301	0,039150	0,489150	0,50889	0,37841

Приклад 2. Методом Адамса знайти на відрізку [0; 0,5] з точністю до 10^{-5} розв'язок диференціального рівняння

$$y' = 0,25y^2 + x^2 \tag{8}$$

з початковою умовою y(0) = -1.

Розв'язання. Нехай за допомогою методу Рунге — Кутта обчислено три послідовні значення шуканої функції при $x_1 = 0.05$, $x_2 = 0.10$, $x_3 = 0.15$ (див. приклад 2 попередньої лекції).

Подальші обчислення будемо вести на обчислювальній машині за формулою (4) з уточненням за формулою (5). Результати обчислень поміщені в двох таблицях: таблиця 4 — обчислення за формулою (4) з уточненням за формулою (5), таблиця 5 — обчислення правої частини. Через α_k і β_k в таблиці 4 позначені суми

$$\alpha_k = 55y'_k - 59y'_{k-1} + 37y'_{k-2} - 9y'_{k-3}, \quad \beta_k = 9y'_{k+1} + 19y'_k - 5y'_{k-1} + y'_{k-2}.$$

Таблиця 4 Розв'язання рівняння (8) методом Адамса

k	x_k	y_{lt}	y_k'	$\frac{\alpha_k}{24}$	$\frac{\beta_k}{24}$	$h\frac{\alpha_k}{24}$	$h\frac{\beta k}{24}$
0 1 2 3 4	0,0 0,1 0,2 0,3 0,4	-1 -0,97528 -0,94978 -0,92154 -0,88871 -0,88870 -0,84946 -0,84946	0,25 0,24779 0,26552 0,30232 0,35745 0,43040	0,32834 0,39237	0,32840 0,39246	0,03283 0,03924	0,03284 0,03925

Таблиця 5 Обчислення правої частини рівняння (8)

k	x	x2	y	0,25 <i>y</i> ²	$f(x, y) = 0,25y^3 + x^2$
0	0	0	1	0,25	0,25
1	0,1	0,01	-0,97528	0,23779	0,24779
2 3 4	0,2 0,3	0,04	-0,94978	0,22552	0,26552
3	0,3	0,09	-0,92154	0,21232	0,30232
4	0,4	0,16	-0,88871 $-0,88870$	0,19745	0,35745
5	0,5	0,25	-0,84946 $-0,84946$	0,18040	0,43040

Порядок заповнення таблиць.

1) Записуємо в таблицю 5 значення $x_0=0$, $x_1=0,1$, $x_2=0,2$, $x_3=0,3$ і відповідні значення y_k ($k=0,\ 1,\ 2,\ 3$). Обчислюємо по ним $y_k'=f\left(x_k,y_k\right)$.

2) Обчислюємо величину

$$\frac{\alpha_3}{24} = \frac{1}{24} \left(55y_3' - 59y_2' + 37y_1' - 9y_0' \right) = 0,32834,$$

записуємо її в таблицю 4 і за формулою (4) при k=4 знаходимо

$$y_4^{\text{пред}} = y_3 + h \frac{\alpha_3}{24} = -0.92154 + 0.1 \cdot 0.32834 = -0.88871.$$

3) Записуємо значення x_4, y_4 в таблицю 5 і обчислюємо по ним

$$y_4' = f(x_4, y_4) = 0.35745.$$

4) Обчислюємо величину

$$\frac{\beta_3}{24} = \frac{1}{24} (9y_4' + 19y_3' - 5y_2' + y_1') = 0.32840,$$

записуємо її в таблицю 4 при k=3 і уточнюємо значення y_4 за формулою (5):

$$y_4^{\text{Kop}} = y_3 + h \frac{\beta_3}{24} = -0.92154 + 0.1 \cdot 0.32840 = -0.88870.$$

5) Так як отримані значення y_4^{npozh} і $y_4^{\kappa op}$ відрізняються тільки на 10^{-5} , то вносимо виправлення в значення y_4 в таблиці 4 і в таблиці 5:

$$y_4 = -0.88870.$$

6) Записуємо отримане значення $y_4 = y_4^{\kappa op.}$ в таблицю 5, впевнюємося в тому, що внесене виправлення не змінює значення $y_4' = f\left(x_4, y_4\right)$

Обчислення для y_5 проводимо аналогічним чином.

7.2.3 Вибір методу розв'язання задачі Коші

Порівнюючи ефективність однокрокових і багатокрокових методів, виділяють такі особливості.

- 1. Багатокрокові методи вимагають більшого обсягу пам'яті ЕОМ, оскільки оперують більшою кількістю початкових даних.
- 2. При використанні багатокрокових методів існує можливість оцінювання похибки на кроці, тому значення кроку обирається оптимальним, а в однокрокових з деяким запасом, що знижує швидкодію.
- 3. При однаковій точності багатокрокові методи вимагають меншого обсягу обчислень. Наприклад, в методі Рунге Кутта четвертого порядку точності доводиться обчислювати чотири значення функції на кожному кроці, а для забезпечення

- збіжності методу Адамса того ж порядку точності достатньо двох.
- 4. Однокрокові методи на відміну від багатокрокових дозволяють одразу почати розв'язання задачі («самостартування») і легко змінювати крок в процесі обчислень.

Якщо задача Коші дуже складна, то зазвичай перевага надається методу Адамса, який має до того ж більш високу швидкодію. Початок розв'язання задачі при цьому проводиться за допомогою однокрокових методів.

Інколи на практиці вимагається мінімізувати час підготовки задачі до розв'язання. Тоді доцільно використовувати методи Рунге — Кутта.