意味推論

やったこと

- ·環境構築(ccg2lambda, coq)
- ・チュートリアルをやった

概要

- ・yamlファイルに以下のような規則を書く
- ・ccg構文はすでにgiven(candcとか)。以下のcaterogy やsemanticsに基づいてセマンティックパージングをする

```
ZU # existential type-raising from N to NP
21 - category: NP
22 rule: lex
23
   semantics: \E F1 F2. exists x. (E(x) \& F1(x) \& F2(x))
25 # Unary rule for negative NPs
26 - category: NP
   rule: lex
27
28 semantics: \C F1 F2. - exists x. (C(x) & F1(x) & F2(x))
29 child_any_base: few
30
31 # Unary rule for proportional NPs
32 - category: NP
33 rule: lex
34 semantics: \C. C
35 child_any_base: most
37 # existential type-raising for proper nouns from N to NP
38 - category: NP
39 rule: lex
40 semantics: \E F1 F2. exists x. ((x = E) & F1(E) & F2(E))
41 child0_pos: NNP
42
43 - category: NP
44 rule: lex
   semantics: \E F1 F2. exists x. ((x = E) \& F1(E) \& F2(E))
   child_any_pos: NNP
child_any_base: either
46
47
48
49 - category: N\N
50 rule: lex
51 semantics: \V F x. (V(\G1 G2.G2(x)) & F(x))
```

(semantic_templates_en_emnlp2015から抜粋)

- ・上を用い、n個の文,s1~snの各々に対し、文の「意味」を得る
- ・s1~s(n-1)を前提としたとき、snが結論として正しいか、(True / False / Unknown)を、coqを用いて出力

具体例

- Every boy likes a girl.
 Bobo does not like a girl. → unknown
- Every boy likes a girl.

Bobo is a boy.

Bobo does not like a girl. \rightarrow False

(暗黙知みたいなものも当然ながら明示する必要がある。)

Premise 0, tree s0_ccg0: Every boy likes a girl.

exists $x.((x = _bobo) \& TrueP \& exists z1.(_boy(z1) \& TrueP \& (_bobo = z1)))$

coqの補足

- ・coglib.vにはaxiom(公理)やltacが記述されている。
 - (例) \forall F. \forall G. (most(F,G) \rightarrow \exists x. (F(x) \land G(x))) \forall F. \forall G. (most(F,G) \rightarrow most(F, λ x. (F(x) \land G(x))))
- ・引数が、インスタンスxではなく、集合F→2回述語。 集合の集合の集合…も考えられ、いわゆる高階述語。

yamlの補足

- ・semantic_templates_en_emnlp2015.yamlにおいて、
- category: NP[nb=true]/N

semantics: $\E F1 F2 F3$. forall x. $(F1(x) \rightarrow (F2(x) \rightarrow F3(x)))$

surf: every

となっている。

論文<u>https://www.aclweb.org/anthology/D15-1244</u> では semantics: \E F1 F2 F3. forall x. (F1(x) ∧ F2(x) -> F3(x)) と書かれているが、論理同値なためどっちでも同じ。

• [nb=true]や[ng=true]などはラベルの役割。 同じ単語であっても、品詞が異なる場合がある(例えば what)ので、ラベルをもとに適用する規則を決める(?)。 (というより、品詞ラベルをさらに区別しているだ け。) ・semanticsを拡張し、適用できる例の範囲を増やしていく。

(例)

type-raising from N to NP

- category: NP

rule: lex

semantics: \E F. F(E)

child0_category: N

existential type-raising from N to NP

- category: NP

rule: lex

semantics: $\E F1 F2$. exists x. (E(x) & F1(x) & F2(x))

β簡約による意味表現獲得の例

例えば、Irunについて

 $(\lambda Q. Q(\lambda w.True) (\lambda x.run(x))) (\lambda F1. \lambda F2. \exists x. (I(x) \& F1(x) \& F2(x)))$

- \rightarrow (λ F1. λ F2. \exists x. (I(x) & F1(x) & F2(x))) (λ w.True) (λ x.run(x))
- \rightarrow 3 x. (I(x) & True & run(x))

で正しそう。