mathlandscape.com

【LaTeX】さまざまな行列のかき方一覧

数学の景色

12~15分

LaTeX における<u>行列</u>の書き方を一覧で紹介します。

なお、amsmath パッケージの使用は仮定しています。ほとんどの場合、読み込んでいると思うので問題ないでしょう。

目次

- 1. 行列のコマンド一覧
- 1 基本的な行列のコマンド一覧
- 2. mathtools パッケージを用いたさらなる行列一覧
- 3. 大きな行列の例・その他のコマンド一覧
- 1. <u>m×n行列</u>
- 2. <u>m×n行列(i,j)強調バージョン</u>
- 3. 行列に線を入れる
- **4**. <u>行列に様々な線を入れる</u>
- 5. 対角行列と大きな0
- 6. 上三角行列・下三角行列
- 7. 基本行列
- 8. 成分をまたいだ点々

- 9. ファンデルモンドの行列式
- 4. Physicsパッケージを用いた行列の書き方
- 2. その他の行列のコマンド
- 3. 他のLaTeXコマンドまとめ記事
- 4. 参考

行列のコマンド一覧

全て数式モードの中で使用します。

基本的な行列のコマンド一覧

行列	コマンド	備考
a b c d	\begin{array}{cc} a & b \\ c & d \end{array}	{cc} の c は center(中央揃え) を指す 他にも l (左揃え), r (右揃え)がある
a b c d	<pre>\begin{matrix} a & b \\ c & d \end{matrix}</pre>	
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$	<pre>\begin{pmatrix} a & b \\ c & d \end{pmatrix}</pre>	

行列	コマンド	備考
$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	\begin{bmatrix} a & b \\ c & d	
	\end{bmatrix}	
$ \left\{ \begin{array}{cc} a & b \\ c & d \end{array} \right\} $	<pre>\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}</pre>	
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$	<pre>\begin{vmatrix} a & b \\ c & d \end{vmatrix}</pre>	行列式
$ \begin{vmatrix} a & b \\ c & d \end{vmatrix} $	<pre>\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}</pre>	
a b c d	<pre>\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}</pre>	
	<pre>\bigl(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}</pre>	文中で使う

行列	コマンド	備考
	\bigl)	
A^{T}	A^\top	<u>転置行列</u>
A^{T}	A^T	転置行列
A^{\dagger}	A^\intercal	<u>転置行列</u>
A^{T}	A^\mathrm{T}	<u>転置行列</u>
A^*	A^*	随伴行列(共役転置)
A^{\dagger}	A^\dagger	随伴行列(共役転置)
^t A	{}^t\! A	<u>転置行列</u> \! によって間のスペース をなくしている
	IAI	行列式
A	\lvert A \rvert	行列式
det A	\det A	行列式

mathtools パッケージを用いたさらなる行列一覧

mathtools パッケージを用いることで、さらに多くの行列を出力することが可能です。

行列	コマンド	備考
$\begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$	<pre>\begin{pmatrix*}[l] a & -b \\ -c & d \end{pmatrix}</pre>	左揃え (left)

	行列 コマンド		備考	
$\begin{pmatrix} a \\ -c \end{pmatrix}$	$\begin{pmatrix} -b \\ d \end{pmatrix}$	<pre>\begin{pmatrix*}[c] a & -b \\ -c & d \end{pmatrix}</pre>	中央揃え (center), デフォルト。 上の pmatrix と同じ意味	
$\begin{pmatrix} a \\ -c \end{pmatrix}$	$\begin{pmatrix} -b \\ d \end{pmatrix}$	<pre>\begin{pmatrix*}[r] a & -b \\ -c & d \end{pmatrix}</pre>	右揃え (right)	

このように、行列の内部の整列位置を変えることができます。他 も同様なので、コマンドのみ挙げましょう。**col 部分は l (左揃え), c (中央揃え), r (右揃え) のいずれかが入ります。**

```
\begin{matrix*}[col] <contents> \end{matrix*}
\begin{pmatrix*}[col] <contents> \end{pmatrix*}
\begin{bmatrix*}[col] <contents> \end{bmatrix*}
\begin{Bmatrix*}[col] <contents> \end{Bmatrix*}
\begin{vmatrix*}[col] <contents> \end{vmatrix*}
\begin{Vmatrix*}[col] <contents> \end{Vmatrix*}
```

小さな行列も、さまざまなものを出力できます。

```
\begin{smallmatrix*}[col] <contents> \end{smallmatrix*}
\begin{psmallmatrix} <contents> \end{psmallmatrix}
\begin{psmallmatrix*}[col] <contents> \end{psmallmatrix*}
\begin{bsmallmatrix} <contents> \end{bsmallmatrix}
\begin{bsmallmatrix*}[col] <contents> \end{bsmallmatrix*}
\begin{Bsmallmatrix} <contents> \end{Bsmallmatrix}
\begin{Bsmallmatrix} <contents> \end{Bsmallmatrix*}
\begin{vsmallmatrix} <contents> \end{vsmallmatrix}
```

```
\begin{vsmallmatrix*}[col] <contents> \end{vsmallmatrix*}
\begin{Vsmallmatrix} <contents> \end{Vsmallmatrix}
\begin{Vsmallmatrix*}[col] <contents> \end{Vsmallmatrix*}
```

大きな行列の例・その他のコマンド一覧

大きな行列の入力方法を「行列自体」→「そのコマンド」の順に 記します。必要なものをコピペして使ってください。

m×n行列

$$egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \ \end{pmatrix}$$

```
\begin{pmatrix}

a_{11} & a_{12} & \dots & a_{1n} \\

a_{21} & a_{22} & \dots & a_{2n} \\
\vdots & \vdots & \ddots \\

a_{m1} & a_{m2} & \dots & a_{mn} \\

end{pmatrix}
```

m×n行列(i,j)強調バージョン

```
\begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{in} & \dots & a_{mn} \end{pmatrix}
```

```
begin{pmatrix}
  a_{11} & \dots & a_{1j} & \dots & a_{1n} \\
  \vdots & & \vdots & & \vdots \\
  a_{i1} & \dots & a_{ij} & \dots & a_{in} \\
  \vdots & & \vdots & & \vdots \\
  a_{m1} & \dots & a_{in} & \dots & a_{mn}
\end{pmatrix}
```

行列に線を入れる

$$\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \dots & a_{mn}
\end{pmatrix}$$

```
\begin{array}{c|ccc}

a_{11} & a_{12} & \dots & a_{1n} \\ \hline

a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\

a_{m1} & a_{m2} & \dots & a_{mn}

\end{array}
```

縦の線の位置をclccc で指定し、横の線の位置を \hline で指定しています。

行列に様々な線を入れる

$\int a$	b	c	d
e	f	g	h
i	j	k	\overline{l}
m	n	o	$\lceil p floor$

```
\left(
\begin{array}{c:c|c||c}

    a & b & c & d \\ \hdashline

    e & f & g & h \\ \hline

    i & j & k & l \\ \hline \hline

    m & n & o & p
\end{array}
\right)
```

対角行列と大きな0


```
\begin{pmatrix}
                                                           //
 a_{11}
         & a_{22}
                                     & \text{\huge{0}}}
                                                           //
                            &
         &
                            & \ddots
                                                           //
         & \text{\huge{0}} &
                                     & \ddots
                                                           //
                                                  & a_{nn}
         &
                            &
                                     &
\end{pmatrix}
```

対角行列の定義は<u>対角行列の定義と基本的な性質6つ</u>を確認してください。

上三角行列・下三角行列

$$egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ & a_{22} & \dots & a_{2n} \ & & \ddots & dots \ egin{pmatrix} & & & \ddots & dots \ & & & & \ddots & dots \end{pmatrix}$$

```
\begin{pmatrix}
    a_{11} & a_{12} & \dots & a_{1n} \\
    & a_{22} & \dots & a_{2n} \\
    & & \ddots & \vdots \\
    \text{\huge{0}} & & & & a_{nn} \\
    \end{pmatrix}
```

```
\begin{pmatrix}

a_{11} & & & \text{\huge{0}} \\
a_{21} & a_{22} & \\
\vdots & & \ddots & \\
a_{n1} & a_{n2} & \dots & a_{nn}
\end{pmatrix}[/katex]
```

上三角行列・下三角行列の定義は<u>上三角行列・下三角行列の定義</u>と性質6つを確認してください。

基本行列

```
\begin{pmatrix}
1 & & & & & & \\
& \ddots & & & & & \\
& & 1 & \dots & c & & \\
& & \ddots & \vdots & & \\
& & & 1 & & \\
& & & \ddots & \vdots & \\
& & & & 1
\end{pmatrix}
```

```
\begin{pmatrix}
 1
                                                  //
   & \ddots
                                                  //
             & 1 & \dots & c
                                                  //
    &
   &
                 & \ddots& \vdots
                                                  //
             &
   &
             &
                 &
                          & 1
                                                  //
   &
             &
                 &
                          &
                                    & \ddots
                                                  //
   &
             &
                 &
                          &
                                    &
                                              & 1
\end{pmatrix}
```

```
1
··.
0 ··. 1
··.
1 ··. 0
··.
1 ··. 1
```

&	& \vdots	&	& \vdots	\\
&	& 1	& \dots	& 0	\\
&	&	&	& & \ddots	\\
&	&	&	& &	& 1
pmatr	rix}			

$$\begin{pmatrix}
1 & & & & & & & \\
& \ddots & & & & & \\
& & c & & & & \\
& & \ddots & & & \\
& & & \ddots & & \\
& & & \ddots & & \\
& & & \ddots & & \\
& & & 1
\end{pmatrix}$$

```
\begin{pmatrix}
                                          //
 1
   & \ddots
                                          //
           & c &
                                          \\
   &
           & & \ddots
                                          //
   &
           &
   &
               &
                     & \ddots
                                          //
   &
           & &
                           & \ddots \\
                     &
           &
               &
   &
                     &
                              &
                                      & 1
\end{pmatrix}
```

基本行列の定義は、<u>行列の基本変形についてわかりやすく図解する</u>を参照してください。

成分をまたいだ点々

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \end{pmatrix}$$

$$\begin{pmatrix} \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

```
\begin{pmatrix}

a_{11} & \dots & a_{1n} \\
\hdotsfor{3} \\

a_{m1} & \dots & a_{mn}
\end{pmatrix}
```

\hdotsfor $\{n\}$ で n 行分の横ドットを出力します。また,\hdotsfor $[m]\{n\}$ とすればドット間隔を m 倍に広げることができます。以下,その例です。

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

```
\begin{pmatrix}
    a_{11} & \dots & a_{1n} \\
    \hdotsfor[2]{3} \\
    a_{m1} & \dots & a_{mn}
\end{pmatrix}
```

ファンデルモンドの行列式

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix}$$

```
\begin{vmatrix}

1  & x_1 & x_1^2 & \dots & x_1^{n-1} \\

1  & x_2 & x_2^2 & \dots & x_2^{n-1} \\
\vdots & \vdots & \vdots & \vdots \\

1  & x_n & x_n^2 & \dots & x_n^{n-1} \\
\end{vmatrix}
```

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \dots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}$$

ファンデルモンドの行列式について詳しくは<u>ファンデルモンドの</u> <u>行列式とその証明2つ</u>を参照してください。

Physicsパッケージを用いた行列の書き方

Physics パッケージを用いると、さまざまな行列が更に簡単に書けるようになります。

行列	コマンド	備考
a b c d	\mqty{a & b \\ c & d}	matrixquantity の略 とすると小サイズ になる
$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$	<pre>\mqty(a & b \\ c & d) \pmqty{a & b \\ c & d}</pre>	\smpty(), とすると小サイズ になる
$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} $	\mqty*(a & b \\ c & d) \Pmqty{a & b \\ c & d}	\smqty*(), とすると小サイズ になる
$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$	\mqty[a & b \\ c & d] \bmqty{a & b \\ c & d}	\smqty[], とすると小サイズ になる
$\begin{vmatrix} a & b \\ c & d \end{vmatrix}$	\mqtyla & b \\ c & dl \\vmqty{a & b \\ c & d} \\mdet{a & b \\ c & d}	\smqty , , とすると小サイズ になる

行列	コマンド	備考
1 0 0 0 1 0 0 0 1	\imat{3}	identity matrix 単位行列 \mqty(\imat{3}) のように上と組み 合わせて 使うとよい(以下そ うする)。
$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} $	\mqty(\imat{3})	
$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $	\mqty(\zmat{2}{3})	zero matrix <u>零行列</u>
$ \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} $	\mqty(\xmat{1} {2}{3})	
$ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} $	\mqty(\xmat* {a}{3}{2})	
$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	\mpty(\pmat{0})	パウリ行列(単位行 列) σ ₀
$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	\mqty(\pmat{1})	パウリ行列 σ ₁
$\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	\mqty(\pmat{2})	パウリ行列 σ ₂

行列	コマンド	備考
$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	\mqty(\pmat{3})	パウリ行列 <i>σ</i> ₃
$\begin{pmatrix} 1 & & \\ & 2 & \\ & & 3 \end{pmatrix}$	\mqty(\dmat{1,2,3})	diagonal matrix <u>対角行列</u>
$ \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} $	\mqty(\dmat[0] {1,2,3})	diagonal matrix 対角行列
$ \begin{pmatrix} 1 & & \\ & 2 & 3 \\ & 4 & 5 \end{pmatrix} $	\mqty(1, 2&3\\4&5})	カンマ毎に行列を 入れてもよい
$\begin{pmatrix} & & 1 \\ & 2 & \\ 3 & & \end{pmatrix}$	\mqty(\admat{1,2,3})	anti-diagonal matrix 反対角行列
$ \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix} $	\mqty(admat[0] {1,2,3})	anti-diagonal matrix 反対角行列
$ \begin{pmatrix} &&1\\2&3\\4&5\end{pmatrix} $	\mqty(1, 2&3\\4&5})	カンマ毎に行列を 入れてもよい

便利ですね。

その他の行列のコマンド

その他 rank など、定義されていないコマンドもあります。これは、\DeclareMathOperator を用いて自分で定義するとよいです。 プリアンブルに例えば以下のように書きます。

```
\DeclareMathOperator{\tr}{tr}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Det}{Det}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\rank}{rank}
\DeclareMathOperator{\rk}{rk}
\DeclareMathOperator{\diag}{diag}
\DeclareMathOperator{\corank}{corank}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\Coker}{coker}
\DeclareMathOperator{\Coker}{Coker}
```

こうすることで、\rank などとすれば、そのコマンドが使えるようになります。

\DeclareMathOperator の使い方は、以下の記事を参照してください。

他のLaTeXコマンドまとめ記事

- ギリシャ文字一覧とLaTeXでの出力方法
- 【LaTeX】四則演算(掛け算・割り算など)のコマンド16個一覧
- 【LaTeX】集合演算子のコマンド110個一覧
- 【LaTeX】矢印(写像,極限,同値)のコマンド107個一覧
- 【LaTeX】等号・不等号・近似記号に関するコマンド107個一覧
- 【LaTeX】大型演算子20個まとめ

- 【LaTeX】定義済み関数(max,lim,exp,log,sin等)38個一覧
- 【LaTeX】論理記号(否定,かつ,または,任意,存在など)一覧
- 【LaTeX】雑記号・特殊文字のコマンド98個一覧
- 【LaTeX】ドット・3点ドット記号11個一覧とその使い分け
- 【LaTeX】アクセント記号のコマンド22個+16個一覧

参考

- 1. 奥村晴彦, 黒木裕介「LaTeX 2e 美文書作成入門」(技術評論社, 第8版, 2020)
- 2. amsmath AMS mathematical facilities for LATEX
- 3. mathtools Mathematical tools to use with amsmath
- 4. physics Macros supporting the Mathematics of Physics