MECH 260

Ruiheng Su 2019

Cosine Law

$$c_L^2 = a_L^2 + b_L^2 - 2a_L b_L \cos(C_{\text{angle}})$$

Small Angle Approximation

$$\cos(\theta) \approx 1 - \frac{\theta^2}{2} \qquad \sin(\theta) \approx \theta \qquad \tan(\theta) \approx \theta$$

Polar Moment of Inertia

$$J=\iint r^2\,dA$$
 $r=$ Distance from Torsional Axis
$$J=\frac{\pi}{2}(r_{out}^4-r_{in}^4) {
m Hollow} \ {
m Shaft}$$

Second Moments

$$I_x = \iint y^2 dA$$
 $I_y = \iint x^2 dA$

For square cross sections

$$I_x = \frac{1}{12}bh^3$$
 $I_y = \frac{1}{12}hb^3$

For circular cross sections

$$I = \frac{\pi}{4}r^4$$

For composite areas:

$$I_y = \sum \bar{I}_y + Ad_x^2$$
 $I_x = \sum \bar{I}_x + Ad_y^2$

 $d_{x,y}$ is distance to a new axis, usually the computed \bar{y} τ_{max} and ϕ for non-circular cross sections

 τ_{max} ϕ

 $\frac{20 T}{a^3}$

 $\frac{46\ TL}{a^4G}$

Factor of Safety

$$\text{F.S.} = \frac{P_U}{P_A} = \frac{\sigma_U}{\sigma_A} = \frac{\tau_U}{\tau_A} \qquad \text{F.S.} \geq 1$$

Normal Stress σ and Strain ϵ

$$\sigma = \frac{F}{A} \qquad \epsilon = \frac{\delta}{L_o}$$

In Linear Elastic Region:

$$\sigma = E\epsilon$$

Mod of Toughness: Area under entire σ vs ϵ curve curve Up to yield point, in the linear region:

Mod of Resilience:
$$=\frac{\sigma_y\epsilon_y}{2}=\frac{\sigma_y^2}{2E}$$

Volume under a normal stress distribution gives resultant load

Constant Distribution: $P = \sigma A$

Varying Distribution:
$$P = \iint \sigma(x,y) \, dA$$

Ductile / Brittle

Ductile: Can be subjected to large strains before fracturing

% Elongation =
$$\frac{L_{\rm fracture} - L_o}{L_o}$$

% Reduction of Area =
$$\frac{A_o - A_{\text{fracture}}}{A_o}$$

Brittle: Can support little strain before fracturing on planes normal to tensile load. Support compression much better

Poisson's Ratio

Ratio of latitudinal ϵ and longitudinal ϵ

$$v = \frac{-\epsilon_y}{\epsilon_x}$$

Shear Stress τ and Strain γ

$$\gamma = \frac{\pi}{2} - \theta_{\mathsf{final}}$$

Up to proportional limit:

$$\tau = G\gamma$$

Axial Load

Linear elastic deformation of uniform rod:

$$\delta = \frac{PL}{AE}$$

Discontinuous cross sections

$$\delta = \sum \frac{P_i L_i}{A_i E_i}$$

Continuous varying cross section:

$$\delta = \int_0^L \frac{P(x)}{A(x)E(x)} \, dx$$

Thermal Effects

Thermal deformation:

$$\delta = \alpha(\Delta T)L$$
 $\delta = \int_0^L \alpha \Delta T \, dx$

Stress Concentration

At geometrical discontinuities,

$$K = rac{\sigma_{
m max}}{\sigma_{
m ave}} \qquad \sigma_{
m ave} = rac{P}{A_{
m smallest}}$$

Torsion

Angle of twist: ϕ

$$\gamma = r \frac{d\phi}{dx} \qquad \gamma_{max} = R \frac{\phi}{L}$$

Torsion Formula

$$\tau = r \frac{T(x)}{J(x)}$$

Maximum shear stress occurs at the outer surface

$$\tau_{max} = \frac{RT}{J} \qquad \tau = \tau_{max} \frac{r}{R}$$

Total ϕ :

$$\phi = \int_0^L \frac{T(x)}{J(x)G(x)} dx$$
 $\phi = \sum \frac{TL}{JG}$

T and ϕ when thumb in RHR is directed outward from shaft

Power: $2\pi fT$

Elastic Plastic

Elastic-plastic: The σ - ϵ curve is linear, then becomes constant beyond elastic limit.

Elastic-Plastic Torsion

$$T=rac{\pi au_{
m yield}}{6}(4R^3-r^3)$$
 $r={
m radius}$ of elastic core

When $r \to 0$, T is plastic torsion

Beam Bending

Sign convention:

- Shear Force: ↓ and ↑
- Moment is ccw on the left and cw on the right

Shear force and moment diagrams

$$\frac{dV}{dx} = w(x) \qquad w(x) \ \ \text{distributed load intensity}$$

$$\frac{dM}{dx} = V(x) \qquad \text{Slope of the } T \text{ diagram gives } V$$

Neutral axis (NA) separates the compression and tension regions, and passes though the centroidal axis. For composite areas

$$\bar{y} = \frac{\sum \hat{y}A}{\sum A}$$
 $\hat{y} = \text{distance to reference edge}$

Pure bending causes linear variation in ϵ and σ

$$\sigma = \frac{My}{I}$$
 y is the distance from the NA

Composite Beam

Stiffer material must decrease in width, softer must increase in width

$$n' = \frac{E_1}{E_2}$$
 $b' = bn'$ $\sigma = n'\sigma'$

Unsymmetric Bending

M makes θ with the +x axis. Break M into components

$$\sigma = -\frac{M_x y}{I_x} + \frac{M_y x}{I_y}$$

Orientation of NA, making α with +x axis

$$\tan(\alpha) = \frac{I_x}{I_y} \tan(\theta)$$

Inelastic Bending

Shape Factor
$$= \frac{M_p}{M_y}$$

Shear Stress in Beams

$$\tau = \frac{VQ(y)}{It}t \text{: Width of cross section}$$

A: Area of cross section a distance \bar{y} from NA au is max at the NA

$$Q = \iint y \, dA = \bar{y}A$$
 \bar{y} : Distance \bar{y} of A to NA

When cross section geometry suddenly changes, shear formula is inaccurate

Stress Transformation

A plane stress element with positive normal and shear stress.

Sign convention

- Shear is positive if it is positive in the first quadrant
- Compressive normal is negative, tensile is positive

$$\sigma'_{x} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) + \tau_{xy} \sin(2\theta)$$

$$\sigma'_{y} = \frac{\sigma_{x} + \sigma_{y}}{2} - \frac{\sigma_{x} - \sigma_{y}}{2} \cos(2\theta) - \tau_{xy} \sin(2\theta)$$

$$\tau'_{xy} = -\frac{\sigma_{x} - \sigma_{y}}{2} \sin(2\theta) + \tau_{xy} \cos(2\theta)$$

$$\sigma_{avg} = \frac{\sigma_{x} + \sigma_{y}}{2}$$

Principal Stresses

$$\sigma_1, \sigma_2 = \sigma_{avg} \pm \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2}$$

 σ_1, σ_2 are 90 degrees apart on plane diagram, and 180 apart on mohr circle

$$au_{max} = \sqrt{\left(rac{\sigma_x - \sigma_y}{2}
ight)^2 + au_{xy}^2}$$

Principal Angle

$$\tan(2\theta_p) = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$$

Mohr Circle

$$(\sigma_x' - \sigma_{avg})^2 + \tau_{xy}' = \tau_{max}^2$$

Positive shear is plotted by convention in the -y direction Rotation by 2θ on the circle rotates the plane element by θ in the same direction

Brittle Material Failure

Material fails when $\sigma \geq \sigma_U$

Ductile Material Failure

Material fails when $au_{
m absmax} \geq au_{max} = rac{\sigma_Y}{2}$ If we are trying to find a suitable If principal σ have the same sign

$$|\sigma_1| = \sigma_{\text{Allowed}}$$
 $|\sigma_2| = \sigma_{\text{Allowed}}$

If different signs

$$|\sigma_1 - \sigma_2| = \sigma_{ ext{Allowed}}$$
 $au_{ ext{absmax}} = rac{\sigma_{ ext{Allowed}}}{2}$

Maximum Distortion Energy Criterion We want σ_1 and σ_2 be such that

$$(\sigma_1^2 - \sigma 1 \sigma_2 + \sigma_2^2) \le \sigma_V^2$$