

sustavi školska godina 2012/2013 Cjelina 1.

Profesor Branko Jeren

Uvod u signale i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Signali i sustavi

Profesor Branko Jeren

4. ožujka 2013.

Profesor Branko Jeren

Uvod u signale i sustave

Signali kao funkcije Signali u frekvencijskor području Matematičko modeliranje sustava

ponavijanje kompleksni brojeva i kompleksne eksponencijalne funkcije

Signal

• izgovaram rečenicu (koja je ujedno i motivacijska):

'RECITE DA - SIGNALIMA I SUSTAVIMA'

- izgovorena rečenica je i napisana, pa je informaciju koju nosi moguće predati primatelju na dva načina:
 - kao zvučni signal
 - slušatelj prima informaciju kao varijaciju tlaka zraka koju njegovo uho osjeća, transformira i prosljeđuje prema mozgu gdje je odgovarajuće interpretirana
 - · kao signal slike
 - napisanu rečenicu čitatelj prima putem oka koje prima, transformira i prosljeđuje ovaj oblik signala prema mozgu koji ga odgovarajuće interpretira

Profesor Branko Jeren

Uvod u signale i sustave

Signali kao funkcije Signali u frekvencijsko području Matematičko

modeliranje sustava Kratko ponavljanje kompleksnih brojeva i

kompleksnil brojeva i kompleksne eksponencijalne funkcije

Govorni signal

- informacija prenesena iz mozga govornika, do mozga slušatelja, doživljava više transformacija
 - mozak govornika željenu poruku pretvara u neuronske signale koje upućuje prema njegovom vokalnom traktu gdje upravljaju s postupkom artikulacije
 - dijafragma, pluća i glasnice stvaraju strujanje zraka odgovarajuće frekvencije
 - jezik i usne moduliraju strujanje zraka, izazivlju odgovarajuću vremensku varijaciju tlaka okolnog zraka, i tako nastaje zvučni (akustički) signal koji nosi informaciju iz mozga govornika
 - zvučni signal propagira kroz zrak prema slušatelju
 - slušateljevi ušni bubnjići registriraju varijaciju tlaka, pretvaraju u živčane impulse, i upućuju prema mozgu

2012/2013

Uvod u signale i sustave

Signali kao funkcije Signali u frekvencijsko području Matematičko modeliranje

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne

Transformacije zvučnog signala

- zvučni signal generiran je govornikovim izgovorom a propagiranjem kroz zrak doživljava razne transformacije (prigušenje, jeka, . . .)
- otvara se pitanje kako odgovarajućim tehničkim postupcima i sustavima zvučni signal pojačati i učiniti ga dostupnim većem auditoriju
- zvučni (govorni) signal pojačan je i prenesen auditoriju uz pomoć audio sustava koji tvore mikrofon, pojačalo i zvučnici
- provode se sljedeće transformacije govornog signala:
 - mikrofon transformira varijaciju tlaka u varijaciju napona
 - varijaciju napona iz mikrofona elektroničko pojačalo transformira u varijaciju napona odnosno struje i pobuđuje zvučnik
 - varijaciju napona iz pojačala zvučnik finalno transformira u varijaciju tlaka okolnog zraka (dakako veće amplitude nego je to bila na ulazu u mikrofon)

Profesor Branko Jeren

Uvod u signale i sustave

Signali kao funkcije Signali u frekvencijskor području

Matematičko modeliranje sustava

kompleksnil brojeva i kompleksne eksponencijalne funkcije

Signal nosi informaciju

- naslovi i opisi prethodnih primjera sadrže ključne riječi koje se inače koriste u svakodnevnom govoru, a i u imenu su predmeta koji izučavamo,
 - signal
 - sustav
- u kontekstu ovih primjera, ali i sasvim generalno, možemo zaključiti:
 - signal nosi informaciju
 - obično je to varijacija fizikalne veličine koja može biti transformirana, pohranjena, ili prenesena nekim fizikalnim procesom
 - sustav transformira, pohranjuje ili prenosi signal

Uvod u signa i sustave

Signali kao funkcije

Signali u frekvencijskom području Matematičko modeliranje sustava

ponavljanje kompleksnil brojeva i kompleksne eksponencijalne funkcije

Signal kao funkcija

 zvuk je brza promjena tlaka zraka u vremenu i možemo ga prikazati kao funkciju

 $Zvuk: Vrijeme \rightarrow Tlak$

- Vrijeme je skup koji predstavlja vremenski interval u kojem definiramo signal i predstavlja područje definicije ili domenu signala (funkcije)
- ovdje je Tlak skup koji se sastoji od mogućih vrijednosti tlaka zraka i predstavlja područje vrijednosti ili kodomenu signala (funkcije)
- ako je područje definicije, ovdje označeno kao *Vrijeme*, kontinuirani interval oblika $[t_1, t_2] \subset \mathbb{R}$ tada signal nazivamo vremenski kontinuiranim signalom
- sukladno tome zvučni signal možemo promatrati kao vremenski kontinuiran signal

Profesor Branko Jeren

Uvod u sigr i sustave

Signali kao funkcije

Signali u

području Matematičko modeliranje

ponavljanje kompleksnih brojeva i kompleksne eksponenci-

Govorni signal prikazan kao funkcija

- reproduciramo u računalu pohranjeni signal govora (sl. 1)
 Reprodukciju, samo u edukativne svrhe, dozvolio autor.
- izgovoreni signal, u trajanju 4 sekunde, predstavljen je na slici kao varijacija tlaka zraka oko normalnog tlaka ambijenta (100000 N m⁻²)

Slika 1: Govorni signal prikazan kao funkcija

Profesor Branko Jeren

Uvod u sign

Signali kao funkcije

Signali u frekvencijskom području Matematičko

modeliranje sustava Kratko ponavljanje

kompleksni brojeva i kompleksne eksponencijalne funkcije

Signal glazbe

- neovisno o načinu nastanka slušatelj prima kao zvučni signal
- reproduciramo u računalu pohranjeni signal glazbe (sl. 2)

Slika 2: Prvih 7.7 sekundi pjesme "Bam bam ba lu bam" grupe "Mi". Reprodukciju, u edukativne svrhe, dozvolio autor.

Uvod u signa i sustave

Signali kao funkcije Signali u frekvencijsk

Signali u frekvencijskon području Matematičko modeliranje sustava

ponavljanje kompleksnil brojeva i kompleksne eksponencijalne

Vremenski kontinuirani i vremenski diskretni signali

 primjer signala glazbe je zvučni signal i možemo ga prikazati kao funkciju

 $\textit{BamBam}: \textit{Vrijeme} \rightarrow \textit{Tlak} \qquad \textit{Vrijeme} = [0,7.7] \subset \mathbb{R}$

- signal glazbe, BamBamDigital, pohranjen u računalu, je:
 - zbog ograničene raspoložive memorije računala, pohranjen kao konačan skup od 339571 trenutnih vrijednosti signala za diskretne trenutke vremena definiranih svakih 1/44100 sekundi,
 - kvantiziranih trenutnih vrijednosti zbog konačne dužine riječi (npr. 16 bita) računala, pa definiramo

```
BamBamDigital: DiskretnoVrijeme \rightarrow Cjelobrojni_{16}

DiskretnoVrijeme = \{0, 1/44100, \dots, 339571/44100\}

Cjelobrojni_{16} = \{-32768, -32767, \dots, 32767\}
```

• domena signala, *DiskretnoVrijeme*, je diskretan skup pa je signal *BamBamDigital* vremenski diskretan signal

Uvod u sign

Signali kao funkcije

frekvencijskon području Matematičko modeliranje sustava

Kratko ponavljanje kompleksnil brojeva i kompleksne eksponencijalne

Signal glazbe kao vremenski diskretan signal

 snimljeni signal glazbe prikazivan je kao vremenski kontinuirani signal, no, rastegnemo li prikaz signala na vrlo kratkom odsječku, možemo prepoznati da se radi o vremenski diskretnom signalu čije su trenutne vrijednosti definirane samo u diskretnim trenucima vremena (sl. 3)¹

Slika 3: Signal glazbe kao vremenski diskretni signal

¹na desnoj slici je vremenski diskretni signal dan u uobičajenom peteljkastor (eng. stem) prikazu

Profesor Branko Jeren

Uvod u signa i sustave Signali kao

funkcije Signali u frekvencijskom

području Matematičko modeliranje sustava

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne

Glazbena vilica

Glazbena vilica potaknuta na titranje izaziva varijaciju okolnog tlaka zraka (sl. 4) koju ljudsko uho registrira kao zvučni signal frekvencije 440 Hz što odgovara signalu glazbene note A-440 Hz.

Slika 4: Glazbena vilica

Profesor Branko Jeren

Uvod u signal i sustave Signali kao

Signali u frekvencijskom području Matematičko modeliranje

Matematičko modeliranje sustava

ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Signal glazbene vilice prikazan kao funkcija

prikazan je, sl. 5, dio snimljenog signala glazbene vilice

Slika 5: Dio signala glazbene vilice

 signal je sinusoidnog oblika i frekvencije je točno 440Hz i odgovara glazbenoj noti A

Profesor Branko Jeren

Uvod u signal i sustave Signali kao

Signali u frekvencijskom području

Matematički modeliranje sustava

ponavljanje kompleksnil brojeva i kompleksne eksponencijalne

Elektronička glazbena vilica

- notu A možemo generirati i numerički pomoću računala
- na sl.6 je prikaz numerički generiranog signala $0.58 \sin(2\pi \cdot 440t)$

Slika 6: Numerički generirani signal note A

Profesor Branko Jeren

Uvod u signal i sustave

Signali kao funkcije

Signali u frekvencijskom području Matematičko

području Matematičko modeliranje sustava

ponavljanje kompleksni brojeva i kompleksne eksponencijalne funkcije

Zbroj dva sinusoidna signala 1

- pokazano je kako je signal koji generira glazbena vilica sinusoidni signal frekvencije 440 Hz
- pokazano je da je sinusoidni signal te frekvencije možemo generirati računalom
- generirajmo sada sinusoidni signal frekvencije 523 Hz koji odgovara noti C
- istovremeno "sviranje" nota A i C kao rezultat daje 💵

sustavi školska godina 2012/2013 Cielina 1.

Profesor Branko Jeren

Signali kao

Signali u

frekvenciiskom području

Zbroj dva sinusoidna signala 2

• istovremeno "sviranje" nota A i C je zapravo zbroj sinusoidnih signala frekvencije 440Hz i 523Hz i njihov zbroj je prikazan na slici

Slika 7: Nota A + Nota C

Profesor Branko Jeren

Uvod u signa i sustave Signali kao

Signali kad funkcije

Signali u frekvenciiskom

području Matematičko modeliranje sustava

ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Signal je suma više sinusoida

podsjetimo li se kratkog odsječka signala glazbe

Slika 8: Signal glazbe

 možemo prepoznati da je i taj signal moguće prikazati kao zbroj više sinusoidnih signala različitih frekvencija

školska godina 2012/2013

Cjelina 1.

Profesor
Branko Jeren

Uvod u signa i sustave Signali kao

Signali u frekvencijskom području Matematičko modeliranje

ponavljanje kompleksnih brojeva i kompleksne eksponencijalne

Generiranje signala glazbe

- svakoj glazbenoj noti pridružuje se signal odgovarajuće frekvencije
- vrlo izravan, i vrlo pojednostavljen, način "sviranja" neke glazbe svodi se na generiranje "sinusoidnih" signala čija frekvencija odgovara potrebnim notama
- poslušajmo jednu takvu računalnu "svirku"
- svakoj glazbenoj noti pridružuje se sinusoidni signal odgovarajuće frekvencije
- kako note mogu biti različite duljine trajanja sinusoidni signal treba vremenski ograničiti odgovarajućim vremenskim otvorom
- za potrebe danog primjera korišten je vremenski ADSR otvor² prikazan na sl. 9

²ADSR - attack, decay, sustain, release

Profesor Branko Jeren

Uvod u signa i sustave

Signali kao funkcije Signali u

frekvencijskom području Matematičko modeliranie

ponavljanje kompleksnil brojeva i kompleksne eksponenciialne

Jedan način numeričkog generiranja glazbenih nota

 na slici je prikaz generacije note A modulacijom sinusoidnog signala frekvencije 440 Hz s vremenskim otvorom

Slika 9: Osminka note A

Profesor Branko Jeren

Uvod u signa i sustave

Signali kao funkcije Signali u

frekvencijskom području Matematičko

Matematičko modeliranje sustava

ponavljanje kompleksni brojeva i kompleksne eksponenci jalne funkcije

Signal glazbe u vremenskoj domeni

Slika 10: Signal glazbe u vremenskoj domeni

2012/2013

Uvod u signal i sustave

Signali kao funkcije

Signali u frekvencijskom području Matematičko

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponenciialne

Digital Sound Synthesis³

- Wavetable Synthesis
- Recorded or synthesized musical events stored in internal memory and played back on demand
- Playback tools consists of various techniques for sound variation during reproduction such as pitch shifting, looping, enveloping and filtering
- Example: Giga Sampler ■

³Dobrotom autora: Prof. dr. Sanjit Mitra, University of California, Santa Barbara

Profesor Branko Jeren

Uvod u signal i sustave Signali kao

funkcije Signali u

frekvencijskom području Matematičko modeliranje

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponenci-

Digital Sound Synthesis⁴

- Physical Modeling
- Models the sound production method
- Physical description of the main vibrating structures by partial differential equations
- Most methods based on wave equation describing the wave propagation in solids and in air
- Example: Tenor saxophone, (CCRMA, Stanford)
- više na:

https://ccrma.stanford.edu/~jos/pasp/

a više zvukova potražite na istoj adresi pod Sound Examples

⁴Dobrotom autora prikaznice: Prof. dr. Sanjit Mitra, University of California, Santa Barbara

Profesor Branko Jeren

i sustave Signali kao funkcije

Signali u frekvencijskom području Matematičko modeliranje sustava

ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Spektrogram

- prije prikazani signal glazbe za pjesmu "Popevke sam slagal" možemo interpretirati i na sljedeći način
- sintetiziraj vremenski ograničenu sinusoidu frekvencije koja odgovara prvoj noti u trajanju prve note, pa zatim sintetiziraj vremenski ograničenu sinusoidu frekvencije koja odgovara drugoj noti . . .
- ovaj postupak možemo prikazati i slikom i kasnije će biti objašnjeno kako se ovakav način prikaza signala zove spektrogram
- slika koja slijedi ilustrira kako notni zapisi po kojima ljudi sviraju slijede upravo ovaj način prikaza informacije koju nosi signal glazbe

Profesor Branko Jeren

Uvod u signa i sustave

Signali kao funkcije

Signali u frekvencijskom području Matematičko modeliranje sustava

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne

Note i spektrogram

 \blacktriangleleft))

Profesor Branko Jeren

Uvod u signa i sustave

Signali kao funkcije

Signali u frekvencijskom

području Matematičko modeliranje

ponavljanje kompleksnih brojeva i kompleksne

eksponenci jalne funkcije

Note i spektrogram

• usporedba vremenske domene i spektrograma

 $\blacktriangleleft 0)$

2012/2013

Uvod u signa i sustave

Signali kao funkcije Signali u frekvencijskoi

Matematičko modeliranje sustava

Kratko ponavljanje kompleksnil brojeva i kompleksne eksponencijalne funkcije

Jednadžba modela mehaničke glazbene vilice

- glazbena vilica je mehanički sustav i diferencijalna jednadžba koja predstavlja matematički model vilice dobije se iz ravnoteže sila
- neka je k koeficijent elastičnosti kraka vilice, b konstanta prigušenja zraka oko krakova, m je masa vilice i zahvaćenog zraka, F(t) sila koja djeluje na krak, a y je pomak kraka vilice iz ravnotežnog položaja
- ravnoteža sila na masu u titranju je:

$$my''(t) = F(t) - ky(t) - by'(t)$$

• pa je diferencijalna jednadžba za ovaj sustav:

$$y''(t) + \frac{b}{m}y'(t) + \frac{k}{m}y(t) = \frac{1}{m}F(t)$$

 gornja jednadžba predstavlja model sustava s ulazno-izlaznim varijablama

Profesor Branko Jeren

Uvod u sigr i sustave Signali kao

Signali kao funkcije Signali u frekvencijskoi

Matematičko modeliranje sustava

kompleksni brojeva i kompleksne eksponencijalne funkcije

Jednadžba jednostavnog električnog kruga

• iz

$$u(t) \stackrel{+}{\stackrel{+}{(+)}} \stackrel{C}{\stackrel{-}{\longrightarrow}} \stackrel{+}{\stackrel{+}{(+)}} y(t)$$

$$u(t) = L\frac{di(t)}{dt} + Ri(t) + y(t)$$

I

slijedi

$$i(t) = C \frac{dy(t)}{dt}$$

Slika 12: RLC krug

 $u(t) = LC\frac{d^2y(t)}{dt^2} + RC\frac{dy(t)}{dt} + y(t)$

- ulazni signal napon izvora u(t)
- izlazni signal napon na kapacitetu y(t)

i finalno

$$y''(t) + \frac{R}{L}y'(t) + \frac{1}{LC}y(t) = \frac{1}{LC}u(t)$$
(1)

• jednadžba predstavlja model sustava s ulazno-izlaznim varijablama

Profesor Branko Jeren

Uvod u signal i sustave Signali kao

Signali kao funkcije Signali u frekvencijskom području

Matematičko modeliranje sustava

ponavljanje kompleksnil brojeva i kompleksne eksponencijalne funkcije

Model ljubavnog odnosa Romea i Julije – 1

- razmatramo jednostavni model ljubavnog odnosa ⁵ Romea i Julije
- neka je R(t) stanje privrženosti (ili odbojnosti ako je R(t) < 0) Romea Juliji, a J(t) stanje privrženosti Julije Romeu u nekom trenutku
- mjera promjene privrženosti Romea proporcionalna je i njegovom i Julijinom emocionalnom stanju, te je modeliramo jednadžbom

$$\frac{dR(t)}{dt} = aR(t) + bJ(t) \tag{2}$$

• a mjera promjene privrženosti Julije je

$$\frac{dJ(t)}{dt} = cR(t) + dJ(t) \tag{3}$$

⁵preuzeto iz S. H. Strogatz: Nonlinear Dynamics and €haos >

Profesor Branko Jeren

Uvod u signa i sustave

Signali kao funkcije Signali u frekvencijskor

Matematičko modeliranje sustava

ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Model⁶ ljubavnog odnosa Romea i Julije – 2

parovi koeficijenta a, i b, odnosno c i d, u jednadžbama
 (2) i (3), predstavljaju tzv. romantične stilove⁷ Romea odnosno Julije

 $^6 v$ iše na http://sprott.physics.wisc.edu/pubs/paper277.pdf; i http://sprott.physics.wisc.edu/pubs/paper281.pdf

⁷Ovdje ne ulazimo u detalje ali Strogatz, prvenstveno njegovi studenti, definira četiri stila:

- 1 Eager beaver (gorljivi udvarač): a > 0, b > 0 (Romeo ohrabren svojim osjećajima kao i Julijinim)
- 2 Narcistički bedak: a > 0, b < 0 (Romeo hoće više od onoga što osjeća ali se istovremeno povlači na Julijine osjećaje)
- 3 Oprezni udvarač: a < 0, b > 0 (Romeo se boji svojih osjećaja ali je ohrabren Julijinim)
- 4 Pustinjak: a < 0, b < 0 (Romeo bježi od svojih osjećaja ali i Julijini osjećaja.)

Ista klasifikacija se primjenjuje za Julijine koeficijente c i d. Niz psihologa u svojim radovima daje preciznije definicije ovih parametara.

Profesor Branko Jeren

Uvod u signale i sustave

Signali kao funkcije Signali u frekvencijskor području

Matematičko modeliranje sustava

kompleksn brojeva i kompleksn eksponenc jalne funkcije

Model ljubavnog odnosa Romea i Julije – 3

 jednostavnim transformacijama jednadžbi (2) i (3) slijede diferencijalne jednadžbe drugog reda

$$\frac{d^2R(t)}{dt^2} - (a+d)\frac{dR(t)}{dt} + (ad-bc)R(t) = 0$$
 (4)

odnosno

$$\frac{d^2J(t)}{dt^2} - (a+d)\frac{dJ(t)}{dt} + (ad-bc)J(t) = 0$$
 (5)

2012/2013

Uvod u sign

Signali kao funkcije Signali u frekvencijskoi područiu

Matematičko modeliranje sustava

ponavljanje kompleksnil brojeva i kompleksne eksponencijalne funkcije

Diferencijalna jednadžba općeg sustava drugog reda

 glazbena vilica, RLC mreža, i ljubavni odnos R&J, modelirani su kao sustavi drugog reda i opisani su diferencijalnim jednadžbama drugog reda

$$y''(t) + \frac{b}{m}y'(t) + \frac{k}{m}y(t) = \frac{1}{m}F(t)$$

$$y''(t) + \frac{R}{L}y'(t) + \frac{1}{LC}y(t) = \frac{1}{LC}u(t)$$

$$R''(t) + (-a - d)R'(t) + (ad - bc)R(t) = 0$$

 linearne vremenski kontinuirane sustave drugog reda općenito možemo opisati diferencijalnom jednadžbom drugog reda

$$y''(t) + a_1y'(t) + a_2y(t) = b_0u''(t) + b_1u'(t) + b_2u(t)$$
 (6)

i prepoznajemo da se problem određivanja odziva y(t) na pobudu u(t) svodi na problem rješavanja ove jednadžbe

2012/2013

Uvod u signa

Signali kao funkcije Signali u frekvencijskor područiu

Matematičko modeliranje sustava

Kratko
ponavljanje
kompleksnil
brojeva i
kompleksne
eksponencijalne
funkcije

Odziv glazbene vilice

odziv glazbene vilice možemo odrediti rješavanjem diferencijalne jednadžbe

$$y''(t) + \frac{b}{m}y'(t) + \frac{k}{m}y(t) = \frac{1}{m}F(t)$$

• zanemarimo li, u prvoj aproksimaciji, prigušenje zraka oko krakova i analiziramo jednadžbu neposredno nakon primjene sile (vrlo kratkog udarca u krak u t=0) jednadžba prelazi u

$$t>0, \quad y''(t)+\frac{k}{m}y(t)=0 \quad \Rightarrow \quad y''(t)=-\frac{k}{m}y(t)$$

 rješenje ove jednadžbe je signal (funkcija) koja je proporcionalna svojoj drugoj derivaciji, a to je upravo sinusoida do koje smo došli snimanjem zvuka glazbene vilice

sustavi školska godina 2012/2013 Cjelina 1.

Profesor Branko Jeren

Uvod u sigi

Signali kao funkcije Signali u frekvencijsko

Matematičko modeliranje

Kratko ponavljanje kompleksnil brojeva i kompleksne eksponencijalne

Veza realni svijet – model

realnom vremenu

Slika 13: Realni svijet – model

sustavi školska godina 2012/2013 Cjelina 1.

Profesor Branko Jeren

Uvod u signi sustave

Signali kao funkcije Signali u frekvencijskom

Matematičko modeliranje

Kratko ponavljanje kompleksnih brojeva i kompleksne

jalne

DODATAK - SAMOSTALNI RAD STUDENATA

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Crtice iz povijesti kompleksnih brojeva⁸

- jednostavna jednadžba $x^2+1=0$ nema rješenja u realnom području, jer nema realnog broja kome bi kvadrat bio -1, kako je već u 9. stoljeću istakao indijski matematik MAHAVĪRA, a u 12. st. BHĀSKARA.
- Prvi koji je računao s kompleksnim brojevima bio je G. CARDANO (1501-1576); on je naišao u jednom geometrijskom problemu na čudan rezultat da je produkt $(5+\sqrt{-15})(5-\sqrt{-15})=40$, da dakle produkt dviju veličina koje nemaju značenja u realnom području može dati realan broj.
- Korijene iz negativnih brojeva Cardano naziva "izvještačenim" veličinama, kao čista bića razuma i uviđa da se u njima krije "neka treća skrovita narav", jer nisu ni pozitivni ni negativni.

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Crtice iz povijesti kompleksnih brojeva⁹

- DECARTES u svojoj Géométrie (1637.) govori o imaginarnim rješenjima algebarskih jednačaba; pri tome "imaginarno" znači kod Decartesa veličinu koja samo u misli postoji, a ne treba joj odgovarati nikakova realna veličina.
- LEIBNIZu su ove veličine "čudo analize, izrod idejnoga svijeta, gotovo neki dvoživac između bivstva i nebivstva" (1702.), i on ih zove "nemoguće ili imaginarne veličine" kojih je narav čudesna, a kojih se korist ipak ne smije prezreti te on s njima i računa.
- Carl Friedrich GAUSS¹⁰, osjetivši već rano (1796/7.)
 potrebu da se te veličine svedu na "jasne pojmove",
 izgradio je njihovu teoriju, zabacivši predodžbu o
 "nemogućim brojevima", i kompleksni brojevi su ušli u višu
 analizu kao sasvim ravnopravni realnim brojevima.

⁹iz Željko Marković: Uvod u višu analizu, Zagreb, 1947

¹⁰rođen 1777., dakle tada devetnaestogodišnjak (♂) (≥) (≥) (≥) (≥) (>) (<

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Crtice iz povijesti kompleksnih brojeva¹¹

- Od Gaussa potječe i naziv kompleksan broj, da se naglasi da je nastao spajanjem dvaju realnih brojeva.
- oznaku i za imaginarnu jedinicu¹² upotrijebio je EULER (1777.), no ona se proširila tek Gaussovim istraživanjima
- naziv konjugirano kompleksnog broja uveo je CAUCHY (1821.)

¹¹iz Željko Marković: Uvod u višu analizu, Zagreb, 1947

¹²U elektrotehnici je slovo *i* rezervirano za struju, pa je to razlog da u strukama bliskim elektrotehnici za imaginarnu jedinicu prevladava oznaka *j* a oznaka oznak

školska godina

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva

- kompleksni broj z je uređeni par realnih brojeva z=(a,b), gdje su $a={\rm Re}\{z\}$ realni dio, a $b={\rm Im}\{z\}$ imaginarni dio od z
- ullet kompleksni broj $z\in\mathbb{C}$ pišemo, u Kartezijevom zapisu, kao

$$z = a + jb$$

 kompleksni broj z prikazujemo točkom u kompleksnoj (Gaussovoj) ravnini čije su horizontalna i vertikalna koordinata realni i imaginarni dio broja

2012/2013

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva¹³

- drugi je način prikaza kompleksnog broja u polarnom zapisu, pri čemu je kompleksni broj prikazan vektorom duljine r=|z| i kutom θ koji taj vektor zatvara s pozitivnim dijelom realne osi (koristi se i oznaka $\angle z$)
- broj r=|z| nazivamo apsolutnom vrijednošću ili modulom kompleksnog broja z
- skup svih kutova $\theta = Arg(z) = arg(z) + 2k\pi$, $k \in \mathbb{Z}$, koji odgovaraju kompleksnom broju z nazivamo argumentom od z i označavamo Arg(z)
- pogodno je, i uobičajeno, služiti se s glavnom vrijednosti argumenta, arg(z) koja zadovoljava nejednakost

$$-\pi < arg(z) \le \pi$$
 ili $0 \le arg(z) < 2\pi$

¹³Preporuka studentima: Ponovite V. Čepulić, D. Žubrinić: MAT1, Realni i kompleksni brojevi

Uvod u signal i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva

• očigledne su veze a, b, r i θ

$$a = r\cos(\theta)$$
 i $b = r\sin(\theta)$ $|z| = r = \sqrt{a^2 + b^2}$ i $\angle z = \theta = \arctan\left(\frac{b}{a}\right)$

pa, uz korištenje Eulerove formule, slijedi

$$z = |z|e^{j\angle z} = re^{j\theta} = r\cos(\theta) + jr\sin(\theta) = a + jb$$

Profesor Branko Jeren

Uvod u signal i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva

• potreban oprez u određivanju arg(z)

$$arg(z) = \left\{ \begin{array}{cccc} \operatorname{arctg}\left(\frac{b}{a}\right), & a > 0 & \text{I i IV kvadrant} \\ \frac{\pi}{2}, & a = 0, \ b > 0 & \text{poz. dio imag. osi} \\ -\frac{\pi}{2}, & a = 0, \ b < 0 & \text{neg. dio imag. osi} \\ \pi + \operatorname{arctg}\left(\frac{b}{a}\right), & a < 0, \ b \geq 0 & \text{II kvadrant} \\ -\pi + \operatorname{arctg}\left(\frac{b}{a}\right), & a < 0, \ b < 0 & \text{III kvadrant} \end{array} \right.$$

z i z* su konjugirano kompleksni brojevi i vrijedi

$$z = re^{j\theta} = r\cos(\theta) + jr\sin(\theta) = a + jb$$

$$z^* = re^{-j\theta} = r\cos(\theta) - jr\sin(\theta) = a - jb$$

$$z + z^* = (a + jb) + (a - jb) = 2a = 2\text{Re}\{z\}$$

$$zz^* = (a + jb)(a - jb) = a^2 + b^2 = |z|^2$$

2012/2013

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva

- množe se dva kompleksna broja $z_1=a_1+jb_1=r_1e^{j\theta_1}$ i $z_2=a_2+jb_2=r_2e^{j\theta_2}$
- pogodnije je koristiti polarni oblik kompleksnog broja pa je produkt

$$z_3 = z_1 z_2 = r_1 e^{j\theta_1} r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

- množenje se ilustrira s dva primjera
- kompleksni broj $z_1 = r_1 e^{j\theta_1}$, množimo s
 - 1 kompleksnim brojem $z_2 = r_2 e^{j\theta_2}$ što daje rezultat kao gore

$$z_3 = z_1 z_2 = r_1 e^{j\theta_1} r_2 e^{j\theta_2} = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

2 kompleksnim brojem $z_2 = e^{j\theta_2}$ što daje rezultat

$$z_3 = z_1 z_2 = r_1 e^{j\theta_1} e^{j\theta_2} = r_1 e^{j(\theta_1 + \theta_2)}$$

ovdje treba uočiti da prvi kompleksni broj množimo s kompleksnim brojem čiji je modul jednak jedan

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Kratko ponavljanje kompleksnih brojeva

množenje ilustriramo grafički

• zaključujemo: ako jedan kompleksni broj prikažemo fiksnim vektorom u kompleksnoj ravnini tada množenje s drugim vektorom skalira dužinu prvog vektora s modulom drugog kompleksnog broja i rotira ga za kut drugog kompleksnog broja.

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

 vremenski kontinuiran kompleksni eksponencijalni signal definira se kao

$$\begin{split} f: \mathbb{R} &\to \mathbb{C} \\ s_0 &= \sigma_0 + j\omega_0 \in \mathbb{C}, \\ C &= Ae^{j\theta} \in \mathbb{C}, \quad A, \theta \in \mathbb{R}, \ \forall t \in \mathbb{R} \\ f(t) &= Ce^{s_0t} = Ae^{j\theta}e^{(\sigma_0 + j\omega_0)t} = Ae^{\sigma_0t}e^{j(\omega_0t + \theta)} \end{split}$$

 primjenom Eulerove relacije vremenski kontinuiran kompleksni eksponencijalni signal prikazujemo i kao

$$f: \mathbb{R} \to \mathbb{C}$$

$$f(t) = Ae^{\sigma_0 t}e^{j(\omega_0 t + \theta)} = Ae^{\sigma_0 t}[\cos(\omega_0 t + \theta) + j\sin(\omega_0 t + \theta)]$$

- na prikaznicama Cjelina 3 detaljno su razmotreni svi oblici kompleksne eksponencijale za razne σ_0 i ω_0 , dakle za $s_0 = \sigma_0 + j\omega_0$ u cijeloj kompleksnoj ravnini
- dalje se posebno razmatraju kompleksne eksponencijale za koje je σ₀ = 0 kompleksna frekvencija s₀ na jω osi

Profesor Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

• razmatramo kompleksni eksponencijalni signal definiran, za $orall t \in \mathbb{R}$, kao

$$z(t) = Ae^{j(\omega_0 t + \theta)} = A\cos(\omega_0 t + \theta) + jA\sin(\omega_0 t + \theta)$$

- treba naglasiti kako se radi o kompleksnoj funkciji realne varijable, gdje je modul |z(t)|=A, a $\angle(z)$ je $arg(z)=(\omega_0 t+\theta)$
- očigledno je kako je realni dio gornje kompleksne eksponencijale realni kosinusni signal, a imaginarni dio realni sinusni signal.

$$A\cos(\omega_0 t + \theta) = Re\{Ae^{j(\omega_0 t + \theta)}\}$$

odnosno $A\sin(\omega_0 t + \theta) = Im\{Ae^{j(\omega_0 t + \theta)}\}$

Profesor Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

- geometrijska interpretacija množenja kompleksnih brojeva omogućuje korisnu interpretaciju vremenski kontinuiranog kompleksnog signala pomoću kompleksnog vektora koji rotira kako vrijeme teče
- definiramo li kompleksni broj $X=Ae^{j\theta}$ tada kompleksnu eksponencijalu možemo pisati i kao

$$z(t) = Ae^{j(\omega_0 t + \theta)} = Xe^{j\omega_0 t},$$

dakle z(t) je produkt kompleksnog broja X i kompleksne funkcije $e^{j\omega_0t}$, pri čemu se X naziva kompleksna amplituda ili fazor

- očigledno je kako su kompleksna amplituda $X = Ae^{i\theta}$ i frekvencija ω_0 dovoljne za prikaz z(t), odnosno realnog kosinusnog signala $A\cos(\omega_0 t + \theta)$
- uporaba fazora razmatrana na predmetima Osnove elektrotehnike i Električni krugovi

2012/2013 Cjelina 1.

Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

razmotrimo još jednom kompleksni eksponencijalni signal

$$z(t) = Ae^{j(\omega_0 t + \theta)} = Xe^{j\omega_0 t} = Ae^{j\theta}e^{j\omega_0 t} = Ae^{j\theta(t)}$$
 gdje je $\theta(t) = \omega_0 t + \theta$ [radijana]

- za neki fiksni trenutak t, vrijednost kompleksnog eksponencijalnog signala, z(t), je kompleksni broj čiji je modul A, a argument je $\theta(t)$, i može biti grafički prikazan kao vektor u kompleksnoj ravnini
- vrh tog vektora leži na kružnici radijusa A
- kako t raste vektor z(t) rotira konstantnom brzinom, određenom kružnom frekvencijom ω_0
- dakle množenje fazora X s $e^{j\omega_0t}$ rezultira u rotaciji fazora, pa se kompleksnu eksponencijalu naziva i rotirajući fazor

Profesor Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

- za $\omega_0>0$ smjer rotacije će biti suprotan gibanju kazaljke na satu $(\theta(t)$ raste kako raste vrijeme) i za rotirajući fazor (kompleksnu eksponencijalu) kažemo da je pozitivne frekvencije
- za $\omega_0 < 0$ smjer rotacije će biti u smjeru gibanja kazaljke na satu $(\theta(t))$ se mijenja u negativnom smjeru kako raste vrijeme) i za tako rotirajući fazor (kompleksnu eksponencijalu) kažemo da je negativne frekvencije
- rotirajući fazor postiže jedan okret svaki puta kada se kut $\theta(t)$ promijeni za 2π , a vrijeme za koje se to dogodi jednako je periodi T_0 kompleksne eksponencijale

$$\omega_0 T_0 = (2\pi f_0) T_0 \quad \Rightarrow \quad T_0 = \frac{1}{f_0}$$

Profesor Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

- naredna slika (lijevi dio) ilustrira vezu jednog rotirajućeg fazora i realnog kosinusnog signala
- prikazuje se vektor (crveno) i njegov kut u trećem kvadrantu kompleksne ravnine koji predstavlja signal

$$z(t)=e^{j(t-\frac{\pi}{3})}$$

za $t=1.5\pi$

• horizontalni vektor (plavo) predstavlja realni dio vektora z(t) za $t=1.5\pi$

$$\mathsf{Re}\{z(1.5\pi)\} = \cos\left(1.5\pi - \frac{\pi}{3}\right) = \cos\left(\frac{7\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$

Uvod u signal

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

Profesor Branko Jeren

Uvod u signa i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

 korištenjem inverzne Eulerove formule moguće je realni kosinusni signal prikazati kao

$$A\cos(\omega_{0}t + \theta) = A\left(\frac{e^{j(\omega_{0}t + \theta)} + e^{-j(\omega_{0}t + \theta)}}{2}\right)$$
$$= \frac{1}{2}Xe^{j\omega_{0}t} + \frac{1}{2}X^{*}e^{-j\omega_{0}t}$$
$$= \frac{1}{2}z(t) + \frac{1}{2}z^{*}(t) = \text{Re}\{z(t)\}$$

• možemo zaključiti kako realni kosinusni signal frekvencije ω_0 možemo interpretirati kao zbroj dvaju kompleksnih eksponencijalnih signala: jednog, kompleksne amplitude $\frac{1}{2}X=\frac{1}{2}Ae^{j\theta}$ i pozitivne frekvencije ω_0 , te drugog s negativnom frekvencijom $-\omega_0$ i kompleksnom amplitudom $\frac{1}{2}X^*=\frac{1}{2}Ae^{-j\theta}$

2012/2013

Uvod u signal i sustave

Kratko ponavljanje kompleksnih brojeva i kompleksne eksponencijalne funkcije

Vremenski kontinuiran kompleksni eksponencijalni signal

- desna strana prethodne slike ilustrira vezu dva, konjugirano kompleksna, rotirajuća fazora i realnog kosinusnog signala
- vektor s kutom u trećem kvadrantu je kompleksni rotirajući fazor $\frac{1}{2}z(t)$ u trenutku $t=1.5\pi$, a s porastom t kut će rasti u smjeru suprotnom kazaljci na satu.
- vektor s kutom u drugom kvadrantu je kompleksni rotirajući fazor $\frac{1}{2}z^*(t)$ u trenutku $t=1.5\pi$, a s porastom t kut će rasti u smjeru kazaljke na satu.
- horizontalni vektor je suma gornjih konjugirano kompleksnih rotirajućih fazora