PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA 1MAT33 ANÁLISIS FUNCIONAL

Segunda Práctica Dirigida Primer semestre 2024

Indicaciones generales:

- Duración: 120 minutos.
- Materiales o equipos a utilizar: apuntes de clase.
- Está permitido el uso de material de consulta o equipo electrónico.
- La presentación, la ortografía y la gramática de los trabajos influirán en la calificación.

Puntaje total (tarea): 20 puntos.

Cuestionario:

Pregunta 1

Considere el espacio C[-1,1] de funciones reales continuas sobre el intervalo [-1,1]. Defina

$$||f||_1 = \int_{-1}^1 |f(x)| dx, \ f \in C[-1, 1].$$

Resuelva lo siguiente:

- a) Muestre que $||\cdot||_1$ es una norma.
- b) Muestre que C[-1,1] tiene dimensión infinita.
- c) Demuestre que C[-1,1], con la norma $||\cdot||_1$ no es completo.
- d) Proponga una norma tal que C[-1,1] es completo con dicha norma.
- a) Verificamos que

$$\int_{-1}^{1} |f(x)| dx = 0$$

si y solo si f(x) = 0 (la función idénticamente nula). Esto pues nos movemos en el espacio de las funciones continuas. Existe entonces $x_0 \in [-1,1]$ tal que $f(x_0) \neq 0$. Sin pérdida de generalidad, supongamos que $f(x_0) > 0$. Entonces, por la continuidad, existe una vecindad de x_0 , contenida en [-1,1], que denotamos $\mathcal{N}(x_0)$, en la cual f(x) > 0. En

efecto, de no ser el caso, por un lado, al ser f continua, dado $\varepsilon = \frac{f(x_0)}{2} > 0$, existe $\delta > 0$ tal que

$$|f(x) - f(x_0)| < \varepsilon, \ x \in B(x_0, \delta) \cap [-1, 1].$$

Empero, si suponemos que $f(x) \leq 0$ en toda vecindad de x (en particular en $\mathcal{N}(x_0) = B(x_0, \delta) \cap [-1, 1]$)

$$|f(x_0) - f(x)| \ge |f(x_0) - 0| = |f(x_0)| = f(x_0),$$

lo cual es una contradicción. Así, si $f \neq 0^1$ Luego,

$$||\lambda f||_1 = \int_{-1}^1 |\lambda f(x)| dx = \int_{-1}^1 |\lambda| \cdot |f(x)| dx = |\lambda| ||f||_1$$
$$||f + g||_1 = \int_{-1}^1 |f(x) + g(x)| dx \le \int_{-1}^1 |f(x)| + |g(x)| dx = ||f||_1 + ||g||_1.$$

- b) Para probar que C([-1,1]) tiene dimensión infinita usamos los siguientes resultados:
 - 1. Si E, espacio vectorial, posee una base que posee un número finito de elementos, entonces E es finito dimensional, y la dimensión de E es el número de elementos de la base². Si E no posee una base con cardinalidad finita, entonces E es infinito dimensional.
 - 2. Un espacio vectorial E es infinito dimensional si y solamente si para todo $n \in \mathbb{N}$ uno puede encontrar un conjunto de n vectores linealmente independientes.

Consideremos el siguiente conjunto que ciertamente está contenido en E = C([-1, 1])

$$\mathcal{P} = \left\{ p(x) : [-1, 1] \to \mathbb{R}, \ p \text{ polinomio}; \ p(x) = \sum_{k=0}^{n} a_k x^k, \ n \in \mathbb{N} \right\}.$$

Ahora, en \mathcal{P} consideremos $X=\{1,x,x^2,...\}=\{x^j\}_{j\in\mathbb{N}}$. Dado $n\in\mathbb{N}$, afirmamos que $\{1,...,x^n\}\subset X$ es linealmente independiente sin importar el $n\in\mathbb{N}$. Ciertamente $\{1\}$ lo es. Luego, dado $n\in\mathbb{N}$, supongamos que $\{1,...,x^n,x^{n+1}\}_{n\in\mathbb{N}}$ es linealmente dependiente. Podríamos escribir

$$x^{n+1} = \sum_{j=0}^{n} a_j x^j = q(x).$$

Sin embargo³,

$$\lim_{x \to \infty} \frac{q(x)}{x^{n+1}} = \lim_{x \to \infty} \frac{\sum_{j=0}^{n} a_j x^j}{x^{n+1}} = \sum_{j=0}^{\infty} a_j \left\{ \lim_{x \to n} \frac{x^j}{x^{n+1}} \right\} = 0.$$

¹Nótese que se está haciendo implícitamente uso del hecho que $\mathcal{N}(x_0)$ no tiene medida de Lebesgue nula.

²Un conjunto de vectores linealmente independientes y que generan el espacio.

³Si fuese el caso, $\lim_{x\to\infty} \frac{q(x)}{x^{n+1}} = 1$.

Esto pues $\lim_{x\to\infty}\frac{x^j}{x^{n+1}}=0$ para todo $j\in\{0,...,n\}$. Otra opción de demostrar este resultado es derivando $\sum_{j=0}^n a_j x^j$ e ir igualando los coeficientes a 0. En conclusión, $\{1,x,...,x^{n+1}\}$ es l.i. para cualquier $n\in\mathbb{N}$.

c) Consideremos el espacio de funciones continuas $(C[-1,1],||\cdot||_1)$ y consideremos la sucesión de funciones $\mathbf{f}_k:[-1,1]\to\mathbb{R}$ definidas por $\mathbf{f}_k(x)=1$ si $x\in[-1,1/2],\ \mathbf{f}_k(x)=1-k\left(x-\frac{1}{2}\right)$ si $x\in(1/2,1/2+1/k]$ y $\mathbf{f}_k(x)=0$ para $x\in(1/2+1/k,1],$ con $k\geq 3$. Para k=1,2 tomamos la función idénticamente nula. Veamos que esta sucesión es de Cauchy. Dado $\epsilon>0$, para m y ℓ suficientemente grandes, con $m>\ell$ tenemos

$$||\mathbf{f}_{m} - \mathbf{f}_{\ell}||_{1} \leq \int_{1/2}^{1/2+1/m} (m - \ell) \left(x - \frac{1}{2}\right) dx + \int_{1/2+1/m}^{1/2+1/\ell} \left(1 - \ell\left(x - \frac{1}{2}\right)\right) dx$$

$$= \frac{m - \ell}{2m^{2}} + \frac{1}{\ell} - \frac{1}{m} - \frac{\ell(m^{2} - \ell^{2})}{2m^{2}\ell^{2}}$$

$$\leq \frac{5}{\ell} < \epsilon.$$

En efecto, basta tomar $\ell > 1 + \lfloor 5/\epsilon \rfloor$. Luego, por definición, la sucesión es de Cauchy. Ahora bien, sea $\mathbf{f} \in C[-1,1]$. Para todo $k \in \mathbb{N}$

$$||\mathbf{f}_{k} - \mathbf{f}||_{1} = \int_{-1}^{1} |\mathbf{f}_{k}(x) - \mathbf{f}(x)| dx$$

$$= \int_{-1}^{1/2} |1 - \mathbf{f}(x)| dx + \int_{1/2}^{1/2 + 1/k} |\mathbf{f}_{k}(x) - \mathbf{f}(x)| dx + \int_{1/2 + 1/k}^{1} |\mathbf{f}(x)| dx$$
(2)

Supongamos que \mathbf{f}_k converge en la norma $||\cdot||_1$ a cierta $\mathbf{f} \in C[0,1]$. En dicho caso, como todos los términos son positivos en (2)

$$\lim_{k \to \infty} \int_{-1}^{1/2} |1 - \mathbf{f}(x)| dx = 0 \text{ y } \lim_{k \to \infty} \int_{1/2 + 1/k}^{1} |\mathbf{f}(x)| dx = 0.$$

Esto implica, dado que $\mathbf{f} \in C[0,1]$, que

$$\mathbf{f}(x) = 1, \ \forall \ x \in [-1, 1/2), \ y \ \mathbf{f}(x) = 0, \ \forall \ x \in (1/2, 1].$$

Sin embargo, para cualquier valor que se le asigne a $\mathbf{f}(1/2)$, \mathbf{f} sería discontinua (¿por qué?); lo cual es una contradicción pues supusimos que $\mathbf{f} \in C[-1,1]$. Así, no existe $\mathbf{f} \in C[-1,1]$ tal que $\mathbf{f}_k \to \mathbf{f}$ en la norma $||\cdot||_1$.

d) Considere la norma $||\cdot||_{\infty}$. Para probar que el espacio C[-1,1] de funciones continuas en el intervalo [-1,1] es completo con respecto a la norma del supremo, mostraremos que toda secuencia de Cauchy en C[-1,1] converge a una función en C[-1,1]. La norma del supremo, o norma uniforme, para una función f definida en [-1,1] se da por:

$$||f||_{\infty} = \sup_{x \in [-1,1]} |f(x)|.$$

Paso 1: Definiciones y Preliminares - Un espacio métrico es completo si toda secuencia de Cauchy en el espacio converge a un límite que también está en el espacio. -

Una secuencia (f_n) de funciones en C[-1, 1] es de Cauchy respecto a la norma del supremo si, para todo $\epsilon > 0$, existe un N tal que para todos $m, n \geq N$, tenemos:

$$||f_m - f_n||_{\infty} = \sup_{x \in [-1,1]} |f_m(x) - f_n(x)| < \epsilon.$$

- Esto significa que la diferencia entre cualquier dos funciones en la secuencia se vuelve arbitrariamente pequeña uniformemente sobre el intervalo [-1,1] a medida que m y n se hacen grandes.
- Paso 2: Convergencia Uniforme Dado que (f_n) es una secuencia de Cauchy en C[-1,1] con respecto a la norma del supremo, para cada $\epsilon > 0$, existe un N tal que para todos $m, n \geq N$, $|f_m(x) f_n(x)| < \epsilon$ para todo $x \in [-1,1]$. El criterio de convergencia uniforme establece que si (f_n) es una secuencia de funciones tal que $f_n \to f$ uniformemente, entonces f es continua si cada f_n es continua.
- Paso 3: Convergencia a una Función Límite Definimos una función f en [-1,1] tomando el límite puntual: $f(x) = \lim_{n\to\infty} f_n(x)$ para cada $x \in [-1,1]$. Debemos mostrar que este límite existe. Por el criterio de Cauchy para la convergencia, la secuencia $(f_n(x))$ es de Cauchy para cada x fijo, y dado que $\mathbb R$ es completo, el límite existe para cada x. Por lo tanto, f está bien definida.
- Paso 4: Continuidad de la Función Límite Para demostrar que f es continua, tome cualquier $x \in [-1,1]$ y cualquier $\epsilon > 0$. Ya que la secuencia (f_n) converge uniformemente a f, existe un N tal que para todos $n \geq N$ y todo $y \in [-1,1]$, $|f_n(y) f(y)| < \epsilon/3$. Además, f_N es continua, por lo que existe un $\delta > 0$ tal que si $|y x| < \delta$, entonces $|f_N(y) f_N(x)| < \epsilon/3$. Para $|y x| < \delta$, tenemos:

$$|f(y) - f(x)| \le |f(y) - f_N(y)| + |f_N(y) - f_N(x)| + |f_N(x) - f(x)| < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon.$$

- Así, f es continua.

Paso 5: Conclusión - Dado que f es el límite uniforme de una secuencia de funciones en C[-1,1] y es ella misma continua, $f \in C[-1,1]$. - Por lo tanto, C[-1,1] es completo bajo la norma del supremo.

Esto completa la prueba de que C[-1,1] es un espacio métrico completo con respecto a la norma del supremo.

Pregunta 2

Sea $M \subset E$ no vacío, E espacio normado. Pruebe que

$$M^{\perp} = \{ \varphi \in E : \varphi(x) = 0, \ \forall \ x \in M \}$$

es un subespacio cerrado de E'.

Para probar que M^{\perp} es cerrado en E', probamos que dada $\{\varphi_n\}_{n\in\mathbb{N}}$ sucesión en M^{\perp} que converge a un $\varphi\in E'$, se tiene que $\varphi\in M^{\perp}$. Primero, como $\varphi_n\to\varphi$ en $||\cdot||_{\mathcal{L}(E,\mathbb{K})}$ (la norma estándar en el espacio de operadores lineales), dado $x\in E$ y $\varepsilon>0$ existe $N\in\mathbb{N}$ tal que

$$|\varphi(x) - \varphi_n(x)| \le ||\varphi - \varphi_n|| \cdot ||x|| < \varepsilon ||x||, \ n > N.$$
(3)

Evaluando en un $x \in M$ (fijo pero arbitrario):

$$|\varphi(x)| < \varepsilon ||x||,$$

pues $\varphi_n(x) = 0$, $\forall x \in M$, $n \in \mathbb{N}$. Por el ε principio, $\varphi(x) = 0$. Además esto se nota del hecho que, a partir de (3)

$$\varphi(x) = \lim_{n} \varphi_n(x) = \lim_{n} 0 = 0, \ \forall \ x \in M.$$

O sea, $\varphi \in M^{\perp}$.

Pregunta 3

Sea $E = \mathbb{K}[x]$ con $\mathbb{K} = \mathbb{R}$ o \mathbb{C} , dotado de las operaciones usuales. Responda las siguientes cuestiones

- a) De una norma para E.
- b) Pruebe que E con cualquier norma no puede ser un espacio de Banach.
- a) Dado $p \in \mathbb{K}[x], p(x) = \sum_{k=0}^{n} a_k x^k, a_k \in \mathbb{K}, \text{ definamos}$

$$||p|| = \sum_{k=0}^{n} |a_k|.$$

Veamos que se trata de una norma.

- 1. Ciertamente $||p|| \ge 0$ pues $|a_k| \ge 0, \forall k = 0, ..., n$.
- 2. ||p|| = 0 si y solamente si p = 0 (polinomio nulo). En efecto, si p = 0, $a_k = 0$. Luego, $0 \le |a_k| \le \sum_{k=0}^n a_k = 0$. O sea, $||p|| = 0 \implies a_k = 0$, $\forall k$.
- 3. Dado $\lambda \in \mathbb{K}$: $\lambda p = \sum_{k=0}^{n} (\lambda a_k) x^k$. Así,

$$||p|| = \sum_{k=0}^{n} |\lambda a_k| = \sum_{k=0}^{n} |\lambda| \cdot |a_k| = |\lambda| \cdot \sum_{k=0}^{n} |a_k| = |\lambda| \cdot ||p||.$$

4. Finalmente, por la desigualdad triangular, sean $p = \sum_{k=0}^{n_1} a_k x^k$ y $q = \sum_{k=0}^{n_1} b_k x^k$ en $\mathbb{K}[x]$. Sin pérdida de generalidad supongamos que $n_1 \leq n_2$

$$||p+q|| = \sum_{k=0}^{n_1} |a_k + b_k| \sum_{k=n_1+1}^{n_2} |b_k| \le \sum_{k=0}^{n_1} |a_k| + \sum_{k=0}^{n_2} |b_k| = ||p|| + ||q||$$

con la salvedad que, si $n_1 = n_2$, $\sum_{k=n_1+1}^{n_2} |b_k| = 0$. Nótese que se hace uso de la desigualdad triangular en \mathbb{K} .

b) Supongamos que es posible encontrar una norma tal que $E = \mathbb{K}[x]$ sea de Banach. Consideremos los conjuntos $A_n = \{1, x, ..., x^n\}$ y $F_n = \langle A_n \rangle$. Primero, F_n es subespacio de dimensión finita. Por ende, es de Banach (Prop. 1). Por el supuesto de que E es de Banach, F_n es cerrado. También tiene interior vacío (para cualquier n) pues, caso

contrario, dado $p \in F_n$ existe $\delta > 0$ de forma que $B(p, \delta)$. Si tomamos $q \in E$, y definimos el polinomio $r = p + \frac{\delta q}{2||q||} \in B(p, \delta), q = \frac{2||q||(r-p)}{\delta} \in F_n$. Esto es imposible dado que F_n no genera $\mathbb{K}[x]$ (considerar x^{n+1}). De ahí,

$$\mathbb{K}[x] = \bigcup_{n \in \mathbb{N}} F_n.$$

Por el Teorema de Baire, existe F_{n_0} de interior no vacío. Sin embargo, esto es una contradicción. Por ende, no se puede tornar completo a $\mathbb{K}[x]$.

Proposición 1. Todo espacio normado de dimensión finita es de Banach.

Proof. Dado $\{x_j\}_{j\in\mathbb{N}}$ de Cauchy en un espacio de dimensión finita V, con base $\{e_1, ..., e_n\}$, puesto que dos normas son equivalentes en dimensión finita, dado $\varepsilon > 0$ existen $C_1 > 0$, $N \in \mathbb{N} : \ell, m > N$ tales que

$$C_1|x_{\ell k} - x_{mk}| \le C_1 \underbrace{\sum_{k=1}^n |x_{\ell k} - x_{mk}|}_{\|x_{\ell} - x_m\|_1} \le \|x_{\ell} - x_m\| < \varepsilon.$$

Acá $x_{\ell k}$ es la k-ésima coordenada de x_{ℓ} (lo mismo para x_m). Como \mathbb{K} es completo, $\forall k : \{x_{jk}\}_{\ell \in \mathbb{N}}$ es de Cauchy y convergente: $\lim_{j \to \infty} x_{kj} = x_k \in \mathbb{K}$. Definamos $x = (x_1, ..., x_n)$. Entonces, $x_j \to x \in V$. En efecto, nuevamente por la equivalencia de normas:

$$\lim_{j} ||x_{j} - x|| \le C_{2} \lim_{j} \sum_{k=1}^{n} |x_{jk} - x_{k}| = 0.$$

Pregunta 4

Sea E un espacio de Banach, F normado y $T \in \mathcal{L}(E, F)$ isometría lineal. Muestre que T(E) es cerrado en F.

Sea $y_n \in T(E)$. Veamos que $y_n \to y \in T(E)$. Como $y_n \in T(E)$, $y_n = T(x_n)$, $x_n \in E$. Luego, si $y_n \to y$, y_n es de Cauchy. Así, usando el hecho que T es isometría

$$||y_n - y_m|| = ||T(x_n) - T(x_m)|| = ||T(x_n - x_m)|| = ||x_n - x_m|| < \varepsilon.$$

E es de Banach. Así, $x_n \to x \in E$. Luego, $\{T(x_n)\}$ es de Cauchy. Ahora, como T es isometría, $||Tx|| \le 2||x||$, es continua. Así, $T(x_n) \to T(x)$. Por la unicidad del límite, $y_n \to T(x) = y \in T(E)$.

Pregunta 5

Sea E un espacio normado separable. Pruebe que existe una sucesión $(\varphi_n) \in E'$ tales que $||\varphi_n|| = 1$ para todo n y para todo $x \in E$, $||x|| = \sup_n |\varphi_n(x)|$ (cuando $\mathbb{K} = \mathbb{C}$) y $||x|| = \sup_n |\varphi_n(x)|$ en el caso $\mathbb{K} = \mathbb{R}$.

Sea $(x_n)_{n\geq 1}$ una secuencia densa en E. Existe $\varphi_n\in E'$ tal que $||\varphi_n||=1$ y $\varphi(x_n)=||x_n||$. Dado $x\in E$,

$$||x|| = \sup_{x \in B_E'} |\varphi(x)| \ge \sup_n |\varphi_n(x)|.$$

Por otro lado, la densidad garantiza que $x=x_j$ para algún j o que existe una sub-sucesión $x_{n_k} \to x$. En el primer caso:

$$||x|| = ||x_j|| = \varphi_j(x_j) = |\varphi_j(x_j)| \le \sup_n |\varphi_n(x_j)| = \sup_n |\varphi_n(x)|.$$

En el segundo caso, $x - x_{n_k} \to 0$ y por lo tanto, $\varphi_{n_k}(x - x_{n_k}) \to 0$ y $\varphi_{n_k}(x_{n_k}) = ||x_{n_k}|| \to ||x||$. Entonces,

$$\varphi_{n_k}(x) = \varphi_{n_k}(x - x_{n_k}) + \varphi_{n_k}(x_{n_k}) \to ||x||.$$

Se sigue que $|\varphi_{n_k}(x)| \to ||x||$. Así,

$$||x|| \ge \sup_{n} |\varphi_n(x)|.$$

Tarea

Entregar en Paideia hasta las 8pm del sábado 27 de abril.

- a) Supongamos que F es un subespacio de un espacio normado E y que $\varphi \in F'$. Muestre que el conjunto de todas las extensiones de Hahn-Banach de φ es convexo.
- b) Sea $(x_n)_{n\geq 1}$ una sucesión en un espacio de Banach E tal que $\sum_{n=1}^{\infty} |\varphi(x_n)| < \infty$ para todo $\varphi \in E'$. Muestre que $\sup_{||\varphi||\leq 1} \sum_{n=1}^{\infty} |\varphi(x_n)| < \infty$.

Profesor del curso: Percy Fernández.

San Miguel, 26 de abril del 2024.