GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 1^{st} / 2^{nd} EXAMINATION (NEW SYLLABUS) - SUMMER - 2017

•		Code: 2110015 Date:29/05/201	7	
Subject Name: Vector Calculus & Linear Algebra Time: 2:30 PM to 05:30 PM Total Marks: Instructions:				
	1. 2. 1	Question No. 1 is compulsory. Attempt any four out of remaining Six questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1		Objective Question (MCQ)	Mark	
	(a)		07	
	1.	Let A be a non singular matrix of order $n \times n$ then $ adj A$ is equal to		
	2	(a) 0 (b) 1 (c) 2 (d) $ A ^{n-1}$		
	2.	Let A be a skew symmetric matrix of odd order then A is equal to (a) 0 (b) 1 (c) 2 (d) -1		
	3.	The maximum possible rank of a singular matrix of order 3 is		
		(a) 0 (b) 1 (c) 2 (d) 3		
	4.	Let A be a square matrix of order n with rank r where $r < n$, then the number of		
		independent solutions of the homogeneous system of equation $AX = 0$ is		
	5.	(a) n (b) r (c) n - r (d) 1 The dimension of the polynomial space P ₃ is		
	٥.	(a) 1 (b) 2 (c) 3 (d) 4		
	6.	Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x, y) = (3x, 3y)$ then		
		T is classified as		
	_	(a) Reflection (b) Magnification (c) Rotation (d) Projection		
	7.	Let T: $\mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (y, -x, 0)$ then the dimension of $R(T)$ is		
		(a) 0 (b) 1 (c) 2 (d) 3		
	(b)		07	
		The product of the eigen values of $\begin{bmatrix} 1 & 4 & 3 \\ 0 & 2 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ is		
	1.	The product of the eigen values of $\begin{bmatrix} 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$ is		
		(a) 1 (b) 2 (c) 3 (d) 4		
	2.	Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ then the eigen values of $A + 3I$ are		
	3.	(a) 1, 3 (b) 2, 4 (c) 4, 6 (d) 2, 3 Let T: $\mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by $T(x, y) = (y, x)$ then it is		
	<i>J</i> .	(a) One to one (b) Onto (c) Both (d) Neither		
	4.	For vectors u and v , $ u + v ^2 - u - v ^2$ is		
		(a) $< u, v >$ (b) $2 < u, v >$ (c) $3 < u, v >$ (d) $4 < u, v >$		
	5.	If $ u+v ^2 = u ^2 + v ^2$, then the vectors u and v are		
	_	(a) Parallel (b) Orthogonal (c) dependent (d) Co linear		
	6.	The magnitude of the maximum directional derivative of the function $2x + x + 2x$ at the point $(1, 0, 0)$ is		
		2x + y + 2z at the point $(1, 0, 0)$ is (a) 0 (b) 1 (c) 2 (d) 3		
	7.	For vector point function \vec{F} , divergence of \vec{F} is obtained by		
	. •	(a) $\nabla \cdot \vec{F}$ (b) $\nabla \times \vec{F}$ (c) $\nabla \vec{F}$ (d) $\nabla^2 \vec{F}$		
		Express the matrix $\begin{bmatrix} 4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & 7 \end{bmatrix}$ as a sum of a symmetric and a		
Q.2	(a)	Express the matrix $\begin{vmatrix} 1 & 3 & -6 \end{vmatrix}$ as a sum of a symmetric and a	03	
		L-5 0 7 J skew–symmetric matrix.		
		okew byinnenie mania.		

		[2 1 3]	
	(b)	Find the inverse of $\begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$ using Gauss Jordan method	04
	(c)	Determine the values of k , for which the equations $3x - y + 2z = 1$, $-4x + 2y - 3z = k$, and $2x + z = k^2$ possesses solution. Find the solutions in each case.	07
Q.3	(a)	Show $(9, 2, 7)$ as a linear combination of $(1, 2, -1)$ and $(6, 4, 2)$	03
	(b)	Find a basis for the null space of $\begin{bmatrix} 2 & -1 & -2 \\ -4 & 2 & 4 \\ -8 & 4 & 8 \end{bmatrix}$	04
	(c)	Check whether the set of all ordered pairs of real numbers (x, y) with the operations defined as $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$ and $k(x, y) = (2kx, 2ky)$ is a vector space. If not, list all the axioms which are not satisfied.	07
Q.4	(a)	Check whether the vectors 1, sin^2x and $cox2x$ are linearly dependent or independent.	03
	(b)	Find the eigen values and eigen vectors of $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{bmatrix}$ Verify Cayley Hamilton theorem for $\begin{bmatrix} 6 & -1 & 1 \\ -2 & 5 & -1 \\ 2 & 1 & 7 \end{bmatrix}$ and hence find A ⁻¹	04
	(c)	Verify Cayley Hamilton theorem for $\begin{bmatrix} 0 & 1 & 1 \\ -2 & 5 & -1 \\ 2 & 1 & 7 \end{bmatrix}$ and hence find A^{-1} and A^{4} .	07
Q.5	(a)	Verify parallelogram law for $\begin{bmatrix} -1 & 2 \\ 6 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 0 \\ 3 & 2 \end{bmatrix}$ under the Euclidean inner product on M_{22}	03
	(b)	Let V be an inner product space. Prove that if u and v are orthogonal unit	04
	(c)	vectors of V then $ u-v = \sqrt{2}$. Let R^3 have Euclidean inner product. Transform the basis $S = \{u_1, u_2, u_3\}$ into an orthonormal basis using Gram Schmidt process, where $u_1 = (1, 0, 0)$, $u_2 = (3, 7, -2)$ and $u_3 = (0, 4, 1)$.	07
Q.6	(a)	Check whether T: $\mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(x, y, z) = (x + 3y, y, 2x + z)$ is linear. Is it one to one and onto?	07
	(b)	Let T: $R^2 o R^3$ be a linear transformation defined by $T(x, y) = (y, -5x + 13y, -7x + 16y)$. Find the matrix for T with respect to the bases $B_1 = \{u_1, u_2\}$ for R^2 and $B_2 = \{v_1, v_2, v_3\}$ for R^3 , where $u_1 = (3, 1)$, $u_2 = (5, 2)$, $v_1 = (1, 0, -1)$, $v_2 = (-1, 2, 2)$ and $v_3 = (0, 1, 2)$.	07
Q.7	(a) (b)	Find the directional derivative of $xy^2 + yz^3$ at the point $(2, -1, 1)$. If $\vec{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ then show that \vec{F} is both solenoidal and irrotational.	03 04
	(c)	Verify Green's theorem for $\oint_C (3x - 8y^2)dx + (4y - 6xy)dy$ where C is the boundary of the triangle with vertices $(0, 0)$, $(1, 0)$ and $(0, 1)$.	07