AE4132 - Finite Element Analysis

Spring 2021

Homework 2: Rayleigh-Ritz Method

Due Wednesday, February 24th 2021

Problem 1

Consider the bar depicted in Figure 1.

- 1. Derive the corresponding expression for the elastic potential.
- 2. Use the Rayleigh-Ritz method to find approximate solutions considering the following approximate displacement fields. Comment on your results.
 - (a) $\hat{u} = ax + b$
 - (b) $\hat{u} = ax^2 + bx + c$
 - (c) $\hat{u} = ax^3 + bx^2 + cx + d$
 - (d) $\hat{u} = ax + b$ for 0 < x < L/2 and cx + d for L/2 < x < L
- 3. The last case is what we call a piece-wise linear approximation, in this case for 2 segments. Write a generic expression for the potential corresponding to a piece-wise linear approximation resulting from dividing the bar into N identical segments of length L/N. Show that in the limit for $N \to \infty$ the approximate potential converges to the exact one. Comment on the implications of your result.
- 4. For the particular case where P=400 N, q=100 N/m, L=2 m, A=0.0003 m 2 , E = 70 GPa, and $\nu=0.3$, use your expression from part 3 to create and plot the solution for N=50 in Python. Include the source code.

Figure 1: Schematics for problem 1

Problem 2

Consider the bars you solved in the previous homework assignment, as shown in Figure 2. Based on your knowledge of the exact solution, propose \hat{u} such that, by using the Rayleigh-Ritz method, would allow you to recover the exact solution. Discuss your choice of \hat{u} and solve both cases using Rayleigh-Ritz.

For the first schematic, consider the case where q=1 lb_f/in, P=90 lb_f, L=8 ft, E=20 Mpsi, and A=5 in². Compute N(x) using a) your solution for \hat{u} and b) integrating the governing equation. Plot N vs x for both a) and b) on the same graph. Include your source code.

Note: If your plots overlap each other, use different line styles in the plots. For example, use plt.(x, y, ls='-') for the first line and plt.(x, y, ls='--') for the second to plot solid and dashed lines, respectively.

Figure 2: Schematics for problem 2

Problem 3

Consider the beam you solved in the previous homework assignment, as shown in Figure 3.

- 1. Derive the corresponding expression for the elastic potential.
- 2. Find an approximate solution via the Rayleigh-Ritz method using:
 - (a) $\hat{u} = ax^2 + bx + c$
 - (b) $\hat{u} = a\cos(bx) + c$
- 3. Consider the particular case where q=40 N/m, L=1 m, E=120 GPa, $\nu=0.4$, $I_{zz}=0.8$ cm 4 , and $P=\beta qL$. Calculate the total potential energy, Π , for cases (a) and (b) and plot Π vs β , for β values from -10 to 10. Include your source code.
- 4. Which solution do you think is better? Why?

Figure 3: Beam configuration for problem 3.