Recommender Systems: Content-based Systems & Collaborative Filtering

Example: Recommender Systems

Customer X

- Buys Metalica CD
- Buys Megadeth CD

Customer Y

- Does search on Metalica
- Recommender system suggests Megadeth from data collected from

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller:
 - http://www.wired.com/wired/archive/12.10/tail.html

The Long Tail

Sources: Erik Brynjolfsson and Jeffrey Hu, MIT, and Michael Smith, Carnegie Mellon; Barnes & Noble; Netflix; RealNetworks Source: Chris Anderson (2004)

Physical vs. Online

Types of Recommendations

Editorial and hand curated

- List of favorites
- Lists of "essential" items

Simple aggregates

Top 10, Most Popular, Recent Uploads

Tailored to individual users

– Amazon, Netflix, ...

Formal Model

- C = set of Customers
- S = set of Items
- Utility function $u: C \times S \rightarrow R$
 - -R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- Gathering "known" ratings for matrix
- Extrapolate unknown ratings from known ratings
 - Mainly interested in high unknown ratings
- Evaluating extrapolation methods

Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

Extrapolating Utilities

- Key problem: matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to Recommender Systems:
 - Content-based
 - Collaborative
 - Hybrid

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

User profile

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - <u>Text:</u> set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... feature
 - Document ... item

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in document (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF scores,
together with their scores

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item

— ...

• Prediction heuristic:

- Given user profile u and item profile i, estimate $u(u,i) = \cos(u,i) = u \cdot i / (|u||i|)$
- Need efficient method to find items with high utility: LSH!

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new and unpopular items
 - No first-rater problem
- Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users
- -: Recommendations for new users
 - How to build a user profile?

Collaborative Filtering

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Similar Users

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- Cosine similarity measure
 - $-\sin(x,y)=\cos(r_x,r_y)$
 - Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - $-S_{xy}$ = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})(r_{ys} - \bar{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \bar{r_x})^2 (r_{ys} - \bar{r_y})^2}}$$

Similarity Metric

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the mean

	l		HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
C		-		-5/3	1/3	4/3	
D		0		,			0

sim A,B vs. A,C:

0.092 > -0.559

Notice cos sim is correlation when data is centered at 30

Rating Predictions

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Possibilities for prediction for item s of user x:

$$-r_{xi} = 1/k \sum_{y \in N} r_{yi}$$

$$-r_{xi} = (\sum_{y \in N} \operatorname{sim}(x, y) r_{yi}) / (\sum_{y \in N} \operatorname{sim}(x, y))$$

- Other options?
- Many tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{ui} = \frac{\sum_{j \in N(i;u)} s_{ij} r_{uj}}{\sum_{j \in N(i;u)} s_{ij}}$$

$$s_{ij} \dots \text{ similarity of items } i \text{ and } j$$

$$r_{uj} \dots \text{ rating of user } u \text{ on item } j$$

$$N(i;u) \dots \text{ set items rated by } u \text{ similar to } i$$

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	ვ	4	2					2	5
	6	1		3		3			2			4	
- unknown rating - rating between 1 to 5 Slides by Jure Leskovec: Mining Massive Datasets										o 5			

							users	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

- estimate rating of movie 1 by user 5

1	C	Δ	rc
u		↽	1.5

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Œ	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Neighbor selection:

Identify movies similar to movie 1, rated by user 5

	_	_	
	C	$\boldsymbol{\cap}$	rc
	•	_	
_	_	_	

		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	ვ	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Compute similarity weights:

$$s_{13}=0.41, s_{16}=0.59$$

LICATO

	users												
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		2.6	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

 $r_{51} = (0.41*2 + 0.59*3)/(0.41 + 0.59) = 2.6$

Before: $r_{ui} = \frac{\sum_{j \in N(i;u)} s_{ij} r_{uj}}{\sum_{j \in N(i;u)} s_{ij}}$

CF: Common Practice

- Define similarity s_{ij} of items i and j
- Select k nearest neighbors N(i; u)
 - items most similar to i, that were rated by u
- Estimate rating r_{ui} as the weighted average:

$$r_{ui} = b_{ui} + \frac{\sum_{j \in N(i;u)} s_{ij} (r_{uj} - b_{uj})}{\sum_{j \in N(i;u)} s_{ij}}$$

baseline estimate for r_{ui}

$$b_{ui} = \mu + b_u + b_i$$

• μ = overall mean movie rating

• b_{ij} = rating deviation of user u

= avg. rating of user $u - \mu$

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that item-item often works better than user-user
- Why?
 - Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

Works for any kind of item

No feature selection needed

Cold Start:

Need enough users in the system to find a match

Sparsity:

 The user/ratings matrix is sparse. Hard to find users that have rated the same items

• First rater:

- Cannot recommend an item that has not been previously rated
- New items, Esoteric items

Popularity bias:

- Cannot recommend items to someone with unique taste
- Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Finding Similar Vectors

- Common problem that comes up in many settings
- Given a large number N of vectors in some high-dimensional space (M dimensions), find pairs of vectors that have high similarity
 - e.g., user profiles, item profiles
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)

Clustering Users and Items

- Hard to detect similarity among either items or users due to little information about useritem pairs.
- Solution: Cluster items and/or users
- Revise the utility matrix

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)
- Netflix Cinematch RMSE: 0.9514

Competition

- 2700+ teams
- \$1 million prize for 10% improvement on Cinematch

The Netflix Utility Matrix

17,700 movies

Utility Matrix: Evaluation

$$\mathbf{SSE} = \sum_{\text{Jure Lesk}} (r_{ui} - \hat{r}_{ui})^2$$

2/20/2014

BellKor Recommender System

Basically the winner of the Netflix Challenge

 Multi-scale modeling of the data: Combine top level, regional modeling of the data, with a refined, local view:

- Global:
 - Overall deviations of users/movies
- Factorization:
 - Addressing regional effects
- **CF** (k-NN):
 - Extract local patterns

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $-\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Precision at top 10:
 - % of those in top 10
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Collaborative Filtering: Complexity

- Expensive step is finding k most similar customers: O(|X|)
- Too expensive to do at runtime
 - Could pre-compute
- Naïve pre-computation takes time O(N·|C|)
- We already know how to do this!
 - Near-neighbor search in high dimensions (LSH)
 - Clustering
 - Dimensionality reduction

Tip: Add Data

- Leverage all the data
 - Don't try to reduce data size in an effort to make fancy algorithms work
 - Simple methods on large data do best
- Add more data
 - e.g., add IMDB data on genres
- More data beats better algorithms
 - http://anand.typepad.com/datawocky/2008/03/more-data-usual.html

Latent Factor Models for Web Recommender Systems

Bee-Chung Chen Deepak Agarwal, Pradheep Elango, Raghu Ramakrishnan Yahoo! Research & Yahoo! Labs

Web Recommender Systems

Recommend items to users to maximize some objective(s)

Web Recommender Systems

- Goal
 - Recommend items to users to maximize some objective(s)
- A new scientific discipline that involves
 - Machine Learning & Statistics (for learning user-item affinity)
 - Offline Learning
 - Online Learning
 - Collaborative Filtering
 - Explore/Exploit (bandit problems)
 - Multi-Objective Optimization
 - Click-rates (CTR), time-spent, revenue
 - User Understanding
 - User profile construction
 - Content Understanding
 - Topics, "aboutness", entities, follow-up of something, breaking news,...

CTR Curves for Two Days on Yahoo! Front Page

Each curve is the CTR of an item in the Today Module on www.yahoo.com over time

Traffic obtained from a controlled randomized experiment (no confounding) Things to note:

(a) Short lifetimes, (b) temporal effects, (c) often breaking news stories

Problem Definition

Algorithm selects item j with item features x_j

(keywords, content categories, ...)

User *i* visits with

user features **x**_i

(demographics, browse history, geo-location, search history, ...) → (*i*, *j*) : response *y_{ij}* (click/no-click)

Which item should we select?

- The one with highest predicted CTR Exploit
- The one most useful for improving the CTR prediction model

Model Choices

- Feature-based (or content-based) approach
 - Use features to predict response
 - User features: Age, gender, geo-location, visit pattern, ...
 - Item features: Category, keywords, topics, entities, ...
 - Linear regression, Bayes Net, SVM, tree/forest methods, mixture models, ...
 - Bottleneck: Need predictive features
 - Difficult to capture signals at granular levels: Cannot distinguish between users/items having same feature vectors
- Collaborative filtering (CF)
 - Make recommendation based on past user-item interaction
 - User-user, item-item, matrix factorization, ...
 - See [Adomavicius & Tuzhilin, TKDE, 2005], [Konstan, SIGMOD'08 Tutorial]
 - Good performance for users and items with enough data
 - Does not naturally handle new users and new items (cold-start)

Factorization Methods

Matrix factorization

Model each user/item as a vector of factors (learned from data)

Factorization Methods

Matrix factorization

Model each user/item as a vector of factors (learned from data)

rating that user
$$i$$
 gives item j $M = number of users$ $N = number of items$ $N = number of items$ $N = number of items$ $N = number of items$ factor vector of user i factor vector of item j

- Better performance than similarity-based methods [Koren, 2009]
- No factor for new items/users, and expensive to rebuild the model!!
- How to prevent overfitting
- How to handle cold-start
 - Use features (given) to predict the factor values

How to Prevent Overfitting

Loss minimization

Probabilistic model

$$\ell(\mathbf{u}, \mathbf{v}) = \frac{1}{2\sigma^{2}} \sum_{(i,j)} (y_{ij} - u'_{i}v_{j})^{2} \qquad y_{ij} \sim N(u'_{i}v_{j}, \sigma^{2}) + \frac{1}{2\sigma^{2}_{u}} \sum_{i} ||u_{i}||^{2} \qquad u_{i} \sim N(0, \sigma^{2}_{u}I) + \frac{1}{2\sigma^{2}_{v}} \sum_{i} ||v_{j}||^{2} \qquad v_{j} \sim N(0, \sigma^{2}_{v}I)$$

Given σ^2 , σ_u^2 , σ_v^2 , find equivalent $\arg\min_{\mathbf{u},\mathbf{v}} \ell(\mathbf{u},\mathbf{v}) \stackrel{\text{equivalent}}{\longleftrightarrow} \arg\max_{\mathbf{u},\mathbf{v}} \Pr[\mathbf{u},\mathbf{v} \mid \mathbf{y}]$ How to set σ^2 , σ_u^2 , σ_v^2 ?

Probabilistic Matrix Factorization

Probabilistic model

$$y_{ij} \sim N(u_i'v_j, \sigma^2)$$

$$u_i \sim N(0, \sigma_i^2 I)$$

$$v_j \sim N(0, \sigma_j^2 I)$$

Let
$$\Theta = (\sigma^2, \sigma_u^2, \sigma_v^2)$$

 $\log \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} | \Theta) = \text{constant}$
 $-\frac{1}{2\sigma^2} \sum_{(i,j)} (y_{ij} - u'_i v_j)^2 - R \log \sigma^2$
 $-\frac{1}{2\sigma_u^2} \sum_i ||u_i||^2 - Mr \log \sigma_u^2$
 $-\frac{1}{2\sigma_v^2} \sum_i ||v_j||^2 - Nr \log \sigma_v^2$

How to determine Θ ?

-Maximum likelihood estimate

$$\arg \max_{\Theta} \Pr(\mathbf{y} \mid \Theta) = \arg \max_{\Theta} \int \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} \mid \Theta) d\mathbf{u} d\mathbf{v}$$

-Use the EM algorithm

Model Fitting: EM Algorithm

Find

$$\hat{\Theta} = \arg \max_{\Theta} \Pr(\mathbf{y} \mid \Theta) = \arg \max_{\Theta} \int \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} \mid \Theta) d\mathbf{u} d\mathbf{v}$$

- Iterate between E-step and M-step until convergence
 - Let $\hat{\Theta}^{(n)}$ be the current estimate
 - E-step: Compute $f(\Theta) = E_{(\mathbf{u}, \mathbf{v} | \mathbf{y}, \hat{\Theta}^{(n)})}[\log \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} | \Theta)]$

$$-\frac{1}{2\sigma^{2}} \sum_{(i,j)} E[(y_{ij} - u'_{i}v_{j})^{2}] - \frac{1}{2\sigma_{u}^{2}} \sum_{i} E \|u_{i}\|^{2} - \frac{1}{2\sigma_{v}^{2}} \sum_{j} E \|v_{j}\|^{2} - R \log \sigma^{2} - Mr \log \sigma_{u}^{2} - Nr \log \sigma_{v}^{2}$$

- The expectation is not in closed form
- We draw Gibbs samples and compute the Monte Carlo mean

- M-step: Find
$$\hat{\Theta}^{(n+1)} = \arg \max_{\Theta} f(\Theta)$$

Example: timeSVD++

- Example of matrix factorization in practice
- Part of the winning method of Netflix contest [Koren 2009]

$$y_{ij,t} \sim \mu + b_i(t) + b_j(t) + u_i(t)'v_j$$
user bias user factors (preference)

$$b_i(t) = b_i + \alpha_i \operatorname{dev}_i(t) + b_{it}$$

distance to the middle rating time of i

$$b_{j}(t) = b_{j} + b_{j,\underbrace{\text{bin}(t)}}$$
 time bin

$$u_i(t)_k = u_{ik} + \alpha_{ik} \operatorname{dev}_u(t) + u_{ikt}$$

Model parameters: μ , b_i , α_i , b_{it} , b_j , b_{jd} , u_{ik} , α_{ik} , u_{ikt} , for all user i, item j, factor k, time t, time bin d

Subscript: user *i*, item *j* time *t*

How to Handle Cold Start?

- For new items and new users, their factor values are all 0
- Simple idea
 - Predict their factor values based on features
 - For new user i, predict u_i based on x_i (user feature vector)

An item may be represented by a bag of words (later)

RLFM: Regression-based Latent Factor Model

- Incorporate features into matrix factorization
 - $-x_i$: feature vector of user *i*
 - $-x_i$: feature vector of item j
- Probabilistic model

$$y_{ij} \sim N(u_i'v_j, \sigma^2)$$

$$u_i \sim N(Gx_i, \sigma_u^2 I)$$

$$v_j \sim N(Dx_j, \sigma_v^2 I)$$

Let
$$\Theta = (G, D, \sigma^2, \sigma_u^2, \sigma_v^2)$$

 $\log \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} | \Theta) = \text{constant}$
 $-\frac{1}{2\sigma^2} \sum_{(i,j)} (y_{ij} - u_i' v_j)^2 - R \log \sigma^2$
 $-\frac{1}{2\sigma_u^2} \sum_i ||u_i - Gx_i||^2 - Mr \log \sigma_u^2$
 $-\frac{1}{2\sigma^2} \sum_i ||v_j - Dx_j||^2 - Nr \log \sigma_v^2$

Find

$$\hat{\Theta} = \arg \max_{\Theta} \Pr(\mathbf{y} \mid \Theta) = \arg \max_{\Theta} \int \Pr(\mathbf{y}, \mathbf{u}, \mathbf{v} \mid \Theta) d\mathbf{u} d\mathbf{v}$$

Comparison

Zero-mean factorization

$$y_{ij} \sim N(u_i'v_j, \sigma^2)$$

$$u_i \sim N(0, \sigma_u^2 I)$$

$$v_i \sim N(0, \sigma_v^2 I)$$

Factorization with features (RLFM)

$$y_{ij} \sim N(u_i'v_j, \sigma^2) \qquad y_{ij} \sim N(x_i'G'Dx_j + \delta_i'Dx_j + x_i'G'\eta_j + \delta_i'\eta_j, \sigma^2)$$

$$u_i \sim N(Gx_i, \sigma_u^2 I) \qquad u_i = Gx_i + \delta_i, \quad \delta_i \sim N(0, \sigma_u^2 I)$$

$$v_j \sim N(Dx_j, \sigma_v^2 I) \qquad v_j = Dx_j + \eta_j, \quad \eta_j \sim N(0, \sigma_v^2 I)$$

Feature-only model

$$y_{ij} \sim N(x_i'G)Dx_j, \ \sigma^2$$

Illustration

Non-linear RLFM

rating that user
$$i$$
 $y_{ij} \sim b(x'_{ij}) + \alpha_i + \beta_j + u'_i v_j$ $x_i = \text{feature vector of user } i$ gives item j $x_{ij} = \text{feature vector of } (i, j)$

- Bias of user *i*: $\alpha_i = g(x_i) + \varepsilon_i^{\alpha}, \quad \varepsilon_i^{\alpha} \sim N(0, \sigma_{\alpha}^2)$
- Popularity of item *j*: $\beta_j = d(x_j) + \varepsilon_j^{\beta}$, $\varepsilon_j^{\beta} \sim N(0, \sigma_{\beta}^2)$
- Factors of user *i*: $u_i = G(x_i) + \varepsilon_i^u$, $\varepsilon_i^u \sim N(0, \sigma_u^2 I)$
- Factors of item *j*: $v_i = D(x_j) + \varepsilon_i^v$, $\varepsilon_i^v \sim N(0, \sigma_v^2 I)$

b, g, d, G, D are regression functions

Any regression model can be used here!!

fLDA: Factorization through LDA Topic Model

- An item is represented by a bag of word
- Model the rating y_{ij} that user i gives to item j as the user's affinity to the topics that the item has

$$y_{ij} = ... + \sum_{k}^{\mathbf{User}} \frac{i}{s} \operatorname{affinity to topic} k$$

Pr(item *j* has topic *k*) estimated by averaging the LDA topic of each word in item *j*

The topic distribution z_{jk} of a new item i is predicted based on the bag of words in the item

- Unlike regular unsupervised LDA topic modeling, here the LDA topics are learnt in a supervised manner based on past rating data
- These supervised topics are likely to be more useful for the prediction purpose

Supervised Topic Assignment

The topic of the *n*th word in item *j*

$$\Pr(z_{jn} = k \mid \text{Rest})$$

$$\propto \frac{Z_{kl}^{\neg jn} + \eta}{Z_{k}^{\neg jn} + W\eta} \left(Z_{jk}^{\neg jn} + \lambda \right) \cdot \prod_{i \text{ rated } j} f(y_{ij} \mid z_{jn} = k)$$

Same as unsupervised LDA

Likelihood of observed ratings by users who rated item j when z_{jn} is set to topic k

Probability of observing y_{ii}

given the model

Experimental Results (MovieLens)

- Task: Predict the rating that a user would give a movie
- Training/test split:
 - Sort observations by time
 - First 75% → Training data
 - Last 25% → Test data
- User cold-start scenario
 - 56% test data with new users
 - 2% new items in test data

Model	Test RMSE
RLFM	0.9363
fLDA	0.9381
Factor-Only	0.9422
FilterBot	0.9517
unsup-LDA	0.9520
MostPopular	0.9726
Feature-Only	1.0906
Constant	1.1190

Summary

- Factorization methods usually have better performance than pure feature-based methods
 - Netflix
 - Our experience
- Metadata (feature vector or bag of words) can be easily incorporated into matrix factorization
- Next step
 - Matrix factorization with social networks
 - Friendship: Address book
 - Communication: Instant messages, emails
 - Multi-application factorization
 - E.g., joint factorization of the (user, news article) matrix and the (user, query) matrix

Fast Online Learning for Time-sensitive Recommendation

- Examples of time-sensitive items
 - News stories, trending queries, tweets, updates, events ...
- Real-time data pipeline that continuously collects new ratings (clicks) on new items
- Modeling requirements:
 - Fast learning: Learn good models for new items using little data
 - Good initial guess (without ratings on new items)
 - Fast convergence
 - Fast computation: Build good models using little time
 - Efficient
 - Scalable
 - Parallelizable

FOBFM: Fast Online Bilinear Factor Model

Per-item
$$y_{ij} \sim u_i' \beta_j, \quad \beta_j \sim N(\mu_j, \Sigma)$$
 online model

Feature-based model initialization

$$\beta_{j} \sim N(Ax_{j}, \Sigma)$$
 \Leftrightarrow $y_{ij} \sim u_{i}'Ax_{j} + u_{i}'v_{j}$ predicted by features $v_{j} \sim N(0, \Sigma)$

Dimensionality reduction for fast model convergence

$$v_{j} = B\theta_{j}$$

$$\theta_{i} \sim N(0, \sigma_{\theta}^{2}I)$$

Subscript:

user i item i Data:

 y_{ii} = rating that

of user i

 x_i = feature vector of item *j*

user *i* gives item *j* u_i = offline factor vector

$$\begin{bmatrix} V_j & B & \theta_j \\ & & & \end{bmatrix}$$

Offline training: Determine A, B, σ_{θ}^2 (once per day)

FOBFM: Fast Online Bilinear Factor Model

Per-item
$$y_{ij} \sim u_i' \beta_j, \quad \beta_j \sim N(\mu_j, \Sigma)$$

Feature-based model initialization

$$\beta_{j} \sim N(Ax_{j}, \Sigma)$$
 \Leftrightarrow $y_{ij} \sim u'_{i}Ax_{j} + u'_{i}v_{j}$ predicted by features $v_{j} \sim N(0, \Sigma)$

Dimensionality reduction for fast model convergence

Fast, parallel online learning

$$y_{ij} \sim \underbrace{u_i'Ax_j}_{\text{offset}} + \underbrace{(u_i'B)}_{\text{p}}\theta_j$$
, where θ_j is updated in an online manner new feature vector (low dimensional)

- Online selection of dimensionality $(k = \dim(\theta_i))$
 - Maintain an ensemble of models, one for each candidate dimensionality

Subscript:

user *i* item *j* Data:

 y_{ii} = rating that

of user i

 x_j = feature vector of item j

user i gives item j u_i = offline factor vector

Experimental Results: My Yahoo! Dataset (1)

- My Yahoo! is a personalized news reading site
 - Users manually select news/RSS feeds
- ~12M "ratings" from ~3M users to ~13K articles
 - Click = positive
 - View without click = negative

Experimental Results: My Yahoo! Dataset (2)

Methods:

- No-init: Standard online regression with ~1000 parameters for each item
- Offline: Feature-based model without online update
- PCR, PCR+: Two
 principal component
 methods to estimate B
- FOBFM: Our fast online method
- Item-based data split: Every item is new in the test data
 - First 8K articles are in the training data (offline training)
 - Remaining articles are in the test data (online prediction & learning)
- Our supervised dimensionality reduction (reduced rank regression) significantly outperforms other methods

Experimental Results: My Yahoo! Dataset (3)

- Small number of factors (low dimensionality) is better when the amount of data for online leaning is small
- Large number of factors is better when the data for learning becomes large
- The online selection method usually selects the best dimensionality

Experimental Results: MovieLens Dataset

Training-test data split

- Time-split: First 75% ratings in training; rest in test
- Movie-split: 75% randomly selected movies in training; rest in test

Model	RMSE Time-split	RMSE Movie-split
FOBFM	0.8429	0.8549
RLFM	0.9363	1.0858
Online-UU	1.0806	0.9453
Constant	1.1190	1.1162

FOBFM: Our fast online method

RLFM: [Agarwal 2009]

Online-UU: Online version of user-user

collaborative filtering

Online-PLSI: [Das 2007]

False positive rate

Experimental Results: Yahoo! Front Page Dataset

Training-test data split

Time-split: First 75% ratings in training; rest in test

- –~2M "ratings" from ~30K frequent users to ~4K articles
 - •Click = positive
 - •View without click = negative
- Our fast learning method outperforms others

False positive rate

Summary

- Recommending time-sensitive items is challenging
 - Most collaborative filtering methods do not work well in cold start
 - Rebuilding models can incur too much latency when the numbers of items and users are large
- Our approach:
 - Periodically rebuild the offline model that
 - uses feature-based regression to predict the initial point for online learning, and
 - reduces the dimensionality of online learning
 - Rapidly update online models once new data is received
 - Fast learning: Low dimensional and easily parallelizable
 - Online selection for the best dimensionality

Important Problems Beyond Factor Models

- How to explore/exploit with small traffic, a large item pool, at a fine granularity
- Offline evaluation
- Multi-objective optimization under uncertainty
- Whole page optimization

Explore/Exploit

Determine $(x_1, x_2, ..., x_K)$ based on clicks and views observed before t in order to maximize the expected total number of clicks in the future

- Large number of items
- **Challenges** Small traffic
 - Deep personalization

Offline Evaluation

- Ultimate evaluation: Online bucket test
- Unbiased offline evaluation based on random-bucket data
 - [Lihong Li, WWW'10, WSDM'11]
 - Random bucket: A small user population to which we show each item with equal probability
 - Assumptions:
 - Single recommendation per visit (instead of top-K)
 - All the users respond to the recommended item in an iid manner
 - Replay-match methodology
- Challenges
 - How to handle non-random data
 - How to extend to top-K recommendation
 - How to capture users' "non-iid" behavior in a session

Multi-Objective Optimization

Maximize time-spent (or revenue) s.t. click drop < 5%

Challenges:

- Deep personalization
- Optimization in the presence of uncertainty

Whole Page Optimization

Challenge:
How to jointly
optimize all
these modules

- Diversity
- Consistency
- Relatedness