Лекція 5. Випадкова величина і її функція розподілу. Властивості функції розподілу.

План лекції	
1. Випадкова величина. Види випадкових величин.	2
2. Закон розподілу дискретної випадкової величини	2
3. Функція розподілу випадкової величини і її властивості	3
4. Щільність розподілу ймовірності та її властивості	5

Питання, що розглядаються:

Випадкова величина, дискретна випадкова величина, неперервна випадкова величина, закон розподілу випадкової величини, функція розподілу випадкової величини, щільність розподілу ймовірності.

1. Випадкова величина. Види випадкових величин.

Одним з найважливіших понять теорії ймовірності ϵ поняття випадкової величини.

Випадковою називають величину, яка в результаті випробування прийме одне і тільки одне можливе значення, наперед невідоме і залежне від випадкових причин, які заздалегідь не можуть бути враховані.

Приклад 1. Число хлопчиків, що народилися, серед ста новонароджених - випадкова величина, що має наступні можливі значення: 0, $1, \ldots, 100$.

Приклад 2. Відстань, яку пролетить снаряд при пострілі зі знаряддя, є випадковою величиною, яка залежить не лише від установки прицілу, але і від сили і напряму вітру, температури, вологості і так далі. Можливі значення цієї випадкової величини належать деякому проміжку (a, b).

Випадкова величина зазвичай позначається прописною латинською буквою (X,Y,Z,...), її конкретні значення - рядковими буквами (x,y,z,...). Більш строгіше формально-математичне визначення випадкової величини : випадковою величиною називається функція $X=X(\omega)$, визначена на множині елементарних подій Ω , . $\omega \in \Omega$

Випадкові величини діляться на дискретні і неперервні.

Дискретною (переривчастою) називають випадкову величину, яка набуває окремих, ізольованих можливих значень з певною вірогідністю. Число можливих значень дискретної випадкової величини може бути скінченним або нескінченним.

Неперервною називають випадкову величину, яка може набувати усіх значень з деякого скінченного або нескінченного проміжку. Очевидно, число можливих значень неперервної випадкової величини нескінченне.

2. Закон розподілу дискретної випадкової величини.

Законом розподілу випадкової величини називається відповідність між усіма можливими значеннями дискретної випадкової величини і їх ймовірностями, тобто сукупність пар чисел (x_i , p_i).

Закон розподілу можна задавати таблично, аналітично (у вигляді формули) і графічно. При табличному задаванні закону розподілу перший рядок таблиці містить можливі значення, а другий - їх ймовірності:

X	x_1	x_2	•••	\mathcal{X}_n
p	p_1	p_2	••	p_n

Оскільки в одному випробуванні випадкова величина приймає одне і тільки одне можливе значення, то події $X = x_1, X = x_2, X = x_n$ утворюють повну групу, у зв'язку з чим сума ймовірностей цих подій дорівнює одиниці:

$$\sum_{i=1}^{n} p_i = 1$$

Приклад. Нехай схожість насіння деякої рослини визначається ймовірністю 0,6. Знайти закон розподілу X - числа рослин, що з'явилися, з 5 посаджених насінин.

Розвязання: випадкова величина X може набувати значень 0,1,2,. 5. Завдання описується схемою випробувань Бернуллі з p = 0.6. Таким чином $P_n(k) = C_n^k p^k q^{n-k}$ і ми отримаємо

x_k	0	1	2	3	4	5
p_{k}	0,01	0,077	0,230	0,345	0,259	0,0778

3. Функція розподілу випадкової величини і її властивості.

Як вже відзначалося, дискретна випадкова величина може бути задана переліком усіх її можливих значень і їх ймовірностей. Такий спосіб непридатний для неперервних випадкових величин, оскільки неможливо скласти перелік усіх можливих значень, що заповнюють інтервал (a, b). У зв'язку з цим вводиться поняття функції розподілу ймовірності випадкової величини, придатне як для дискретної, так і для неперервної випадкової величини.

Нехай x - дійсне число. Ймовірність події, що полягає в тому, що X набуде значення, менше x, тобто ймовірність події x < X, позначимо через F(x). Зрозуміло, якщо x змінюється, то, взагалі кажучи, змінюється і F(x), тобто F(x) є функцією x.

Функцією розподілу називають функцію F(x), що визначає ймовірність того, що випадкова величина X в результаті випробування набуде значення, менше x:

$$F(x) = P(X < x)$$

Геометрично цю рівність можна представити так: F(x) є ймовірність того, що випадкова величина набуде значення, яке зображається на числовій осі точкою, що лежить лівіше x.

Розглянемо окремо випадки дискретної і неперервної випадкової величин.

1. Дискретна випадкова величина. Розглянемо функцію розподілу $F_X(x)$ дискретної випадкової величини X, що набуває значень $x_1, x_2, ... x_n$.
✓ Якщо $x \le x_1$, то F(x) = P(X < x) = 0, оскільки в цьому випадку подія (X < x) є неможливою.

- ✓ Якщо $x_1 < x \le x_2$, то подія (X < x) наступить тоді і тільки тоді, коли наступить подія $(X < x_1)$, тому $F(x) = P(X < x) = P(X = x_1) = p_1$.
- \checkmark Якщо $x_2 < x \le x_3$, то подія (X < x) дорівнює сумі подій $X = x_1$ і $X = x_2$ і $F(x) = P(X < x) = P(X = x_1) + P(X = x_2) = p_1 + p_2$.
- \checkmark Аналогічно, якщо $x_i < x \le x_{i+1}$, то $F(x) = p_1 + p_2 + ... + p_i$.

Таким чином, функція розподілу випадкової дискретної величини дорівнює $F_X(x) = \sum_{x_i < x} p_i$, де $p_i = P(X = x_i)$, і підсумовування ведеться по тих

i, для яких $x_i < x$.

Таким чином, в точках $x_1, x_2, ... x_n$ функція розподілу має стрибки.

2. Неперервна випадкова величина. На відміну від випадку дискретної випадкової величини в даному випадку X пробігає всю неперервну множину значень, а сама функція F(x) зростає монотонно.

Якщо ймовірність події $X < x_1$ дорівнює $F(x_1)$, а ймовірність події $X < x_2$ дорівнює $F(x_2)$, то ймовірність того, що випадкова величина X знаходиться між x_1 і x_2 , дорівнює різниці відповідних значень функції розподілу: $P(x_1 < X < x_2) = F(x_2) - F(x_1)$.

Ймовірність того, що неперервна випадкова величина X набуде одного певного значення, дорівнює нулю. Має сенс розглядати лише ймовірність попадання її в деякий інтервал, нехай навіть і скільки завгодно малий.

Графік функції розподілу для дискретної випадкової величини ϵ ступінчастою розривною функцією, а неперервної - монотонно зростаючою неперервною функцією.

Приклад. Нехай середньодушовий дохід в у.о. описується функцією розподілу

$$F(x) = \begin{cases} 0, \text{ якщо } x \le 25 \\ 1 - \exp(-\alpha \cdot (x - 25)), \text{ якщо } x > 25 \end{cases}$$

де $\alpha = 0{,}015$. Яка ймовірність того, що у випадково вибраній сім'ї сеедньодушовий дохід менше 200 у.о.? Ймовірність того, що середньодушовий дохід лежить в межах від 50 до 150 у.о.? Відповідь: а) , б) 0,534.

Приведемо ряд властивостей функції розподілу, що безпосередньо випливають з її означення.

- 1. Функція розподілу набуває значень з проміжку [0,1]: $0 \le F(x) \le 1$.
- 2. Функція розподілу неспадна функція, тобто $F(x_2) > F(x_1)$ при $x_2 > x_1$.

3. Ймовірність того, що випадкова величина набуде значення з напівінтервалу $[x_1, x_2)$, дорівнює різниці $F(x_2) - F(x_1)$

$$P(x_1 \le x < x_2) = F(x_2) - F(x_1)$$

- 4. $P{X \ge x} = 1 F(x)$.
- 5. Якщо $x \to \infty$, то $F(x) \to 1$
- 6. Якщо $x \to -\infty$, то $F(x) \to 0$.

4. Щільність розподілу ймовірності та її властивості.

Для неперервних випадкових величин, окрім функції розподілу вводиться також поняття щільності розподілу ймовірністі, або щільність ймовірністі.

Щільністно розподілу ймовірністі неперервної випадкової величини називається похідна від її функції розподілу

$$f(x) = F'(x).$$

Знаючи щільність розподілу ймовірністі, можна знайти функцію розподілу, інтегруючи щільність ймовірністі в загальному випадку від $-\infty$ до даного значення , тобто

$$F(x) = \int_{-\infty}^{x} f(x) dx.$$

Властивості щільності розподілу

1. $f(x) \ge 0$

Дійсно, оскільки функція розподілу неспадна функція, то її похідна - функція невідємна

2. Невласний інтеграл від щільності розподілу ймовірності в межах від $-\infty$ до $+\infty$ дорівнює одиниці:

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

Дійсно, цей невласний інтеграл виражає ймовірність події, що полягає в тому, що випадкова величина набуде значення, що належить інтервалу $(-\infty, +\infty)$. Оскільки така подія достовірна, то її ймовірність дорівнює одиниці.

3.
$$P(a \le X \le b) = \int_a^b f(x)dx$$

Імовірнісний зміст щільності розподілу ймовірності : ймовірність того, що випадкова величина набуде значення, що належить інтервалу (x, x+dx) приблизно дорівнює добутку щільності ймовірності в точці x на ширину інтервалу dx.

Приклад. Нехай дальність польоту снаряду при певній установці прицілу описується щільністю розподілу виду

$$f(x) = \begin{cases} -(x-15)^2 + 5, & \text{якщо} \quad 14,9 < x < 15,1 \\ 0 & \text{в інших випадках} \end{cases}$$

Яка ймовірність того, що при одному пострілі буде отриманий переліт в межах від 10 до 20 метрів?

Відповідь:
$$\int_{15,01}^{15,02} f(x) dx = 0,1$$

Питання для самоперевірки

- 1. Що таке випадкова величина?
- 2. Які є види випадкових величин?
- 3. Дати означення закону розподілу випадкової величини.
- 4. Що таке функція розподілу випадкової величини?
- 5. Сформулювати властивості функції розподілу.
- 6. Для яких випадкових величин вводиться поняття щільності розподілу?
- 7. Дати означення щільності розподілу.
- 8. Сформулювати властивості щільності розподілу.