COMP9334 Capacity Planning for Computer Systems and Networks

Assignment Project Exam Help

Week 4Bhttps://eduassistpro.githulatio/n (1)

Add WeChat edu_assist_pro

COMP9334

Week 4A: Queues with general arrival & service time

Queues with general inter-arrival and service time distributions

General Inter-arrivals time distribution General service time distribution

Assignment Project Exam Help

- M/G/1 queue
 - Can calculate d https://eduassistpro.github.io/ formula

Add WeChat edu_assist_pro

- G/G/1 queue
 - No explicit formula, get a bound or approximation

$$W \le \frac{\lambda(\sigma_a^2 + \sigma_s^2)}{2(1 - \rho)}$$

T1,2021 **COMP9334**

Analytical methods for queues

- You had learnt how to solve a number of queues analytically (= mathematically) given their
 - Inter-arrival time probability distribution
 - Service time probability distribution
- Queues that you can solve now include M/M/1, M/M/m, M/G/1, M/G/1 wi https://eduassistpro.github.io/
 - If you know the straightforwad way to well as sistem to well as sistem to straightforwad way to well as sistem to straightforwad way to well as sistem to
- Unfortunately, many queueing are still analytically intractable!
- What can you do if we have an analytically intractable queueing problem?

Lectures 4B, 5A, 5B: Discrete event simulation

- For a number of lectures, we look at the topic of using discrete event simulation for queueing problems
 - Simulation is an imitation of the operation of real-life system over time.

Assignment Project Exam Help

- The topics to be
 - (4B) What are dhttps://eduassistpro.github.io/
 - (4B) How to structure a discrete Add WeChat edu_assist_pro
 - For 5A and 5B
 - How to choose simulation parameters?
 - How to analyse data?
 - What are the pitfalls that you need to avoid?
 - How to generate pseudo-random numbers for simulation?
 - Reproducibility

Motivating example

 Consider a single-server queue with only one bufferspigner(ent Proje waiting room)

 If a customer arrives whttps://eduas buffer is occupied, the customer is rejected.

- Given the arrival times and service times in the table on the right, find
 - The mean response time
 - % of rejected customers
 Assuming an idle server at time = 0.

Customer number	Arrival time	Service time
1	3	4
e <mark>o</mark> t Exam F	le lp	3
sistpro.git	9 hub io/	4
sistpro.git	17	6
t edu_assi	st ₈ pro	3
6	19	2
7	20	2
8	25	3
9	27	2

Let us try a graphical solution

- In the graphical solution, we will keep track of
 - The status of the server: busy or idle
 - The status of the buffer: occupied or vacant

A graphical solution

T1,2021 COMP9334

Using the graphical solution (1)

Arrival pattern

We can find the response time of each customer & average response time

Departure from Server / Reject

Using the graphical solution (2)

From graphical solution to computer solution (1)

- How can we turn this graphical solution into a computer solution, i.e. a computer program that can solve the problem for us
- We need to keep track to Ptheestaltus of the status of the buf
 - This allows us https://eduassistpro.github.io/
 - E.g. If server is AUNIANTED Unit edu_assist pron arriving customer is rejected.
 - E.g. If server is BUSY and buffer is VACANT, an arriving customer goes to the buffer.
 - E.g. If server is IDLE, an arriving customer goes to the sever
- What this means: We need to keep track of the status of some variables in our computer solution.

From graphical solution to computer solution (2)

Observation #1:

 An arriving or departing customer causes the server or buffer status to change

Examples:

• At time = 3, the sample of Project Exam Help customer #1 c to switch from Ihttps://eduassistpro.github.io/

 At time = 7, the departure of customer #1 caused the servant edu_assist_pro to switch from BUSY to IDLE

 At time = 9, the arrival of customer #3 causes the buffer to switch from VACANT to OCCUPIED

• Etc.

,(2)(3)

From graphical solution to computer solution (3)

 Let us call the arrival of a customer or the departure of a customer an event

- Observation #2:
 - The status of the server of the status of the buff same between tw https://eduassistpro.github.io/events

• What this means: Add WeChat edu_assist_pro

- We need to keep track of the timing of the events
 - Events can cause status transitions
 - In between events, status remain the same

From graphical solution to computer solution (4)

- In our computer solution, we will use a master clock to keep track of the current time
- We will advance the master clock from event to event
- In order to see how the computer solution works, let us try it out on paparsing ment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

On paper simulation

- In our simulation, we keep track of a number of variables
 - MC = Master clock
 - Status of
 - Server: 1 = BUSY, 0 = IDLE
 - Buffer: 1 = OCCUPIED, 0 = VACANT
 - Event time:
 - Next arrival eigent and errival time of this departure
 - The (arrival time, https://eduassistpro.github.ic
 - In order to comp
 - The cumulative response time (T) edu_assist_pro
 Cumulative number of customers r

МС	Next an	rival	Next depa			Buffer status	Т	R
	Arrival time	Service time	Departure time	Arrival time of this departure	status	+ customer in buffer		
0	3	4	_	-	0	0	0	0
3	8	3	7	3	1	0	0	0
7	8	3	_	_	0	0	4	0

T1,2021 **COMP9334**

On paper simulation (To be completed)

МС	Next ar	rival	val Next departure Serve		Server	Buffer	Т	R
	Arrival time	Service time	Departure time	Arrival time of this departure	С	status + Customer in buffer		
		_				iii builei		
0	3	4	-	-	0	0	0	0
3	8	Ass	signmen	t Project Exam	Help	0	0	0
7	8	3	https://	eduassistpro. g		0	4	0
			πιρδ.//	eddassistpro.g	nti idb.it	JI		
			Add W	eChat edu_ass	sist_pro)		
						4		

Can you continue?

(Arrival time, service time) of the customer in the buffer.

On paper simulation

								\rightarrow
MC	Next an	rival	Next departure		Server	Buffer	Т	R
	Arrival	Service	Departure	Arrival time of this	status	status +		
	time	time	time	departure		Customer in buffer		
0	3	4	_	-	0	0	0	0
3	8	Ass	signm <i>e</i> n	t Project Exam	Help	0	0	0
7	8	3	https://	eduassistpro. g		0	4	0
8	9	4	πιρσ.//	Gudassistpro.g	1	0	4	0
9	17	6	Add₁₩	eChat edu_ass	$sist_{\mathtt{1}}pro$	1	4	0
						(9,4)		
11	17	6	15	9	1	10	7	0
15	17	6	-	-	0	,′ 0	13	0

Can you continue?

(Arrival time, service time) of the customer in the buffer.

Logic of the program (1)

 At each step, we advance to the next event that will take place

Assignment Project Exam Help

Departure event

- Update the cumulative response time
 - T ← T + current time arrival time of the departing customer

Assignment Project Exam Help

Buffer VACANT

https://eduassistpro.github.ioguffer occupied

- Change server status to Add WeChpd edu_assistuperevent with IDLE information of the customer in the buffer
- Next departure event becomes empty

- Next departure time =
 current time + service time of the
 customer in the buffer
- Change buffer status to VACANT

Discrete event simulation

- The above computer program is an example of a discrete event simulation
- It allows you to solve a queueing problem with one server and one buffer space
- You can generalisenthetalboyecproceduretp
 - Multi-server
 - Finite or infinit https://eduassistpro.github.io/
 - Different queuei Agla swild that edu_assist_pro
- Let us generalise it to the case of single-server with infinite buffer

Single server with infinite buffer simulation

- In this case, we will use buffer status to denote the number of customers in buffer
 - Buffer status = 0, 1, 2, 3, ...
- We also need to store all the (arrival time, service time) of all the customers in the truffect Exam Help
- Compare with th need to change https://eduassistpro.github.io/
 - An arrival eventAdd WeChat edu_assist_pro
 - A departing event

Handling an arrival event

Two cases according to the server status

- Add a departure eventigithment Project Exament pumber of customers departure time = curre in the buffer by 1
- service time of the arriv https://eduassistpro.githutived/time and
 Change server status to BUSY

 time
 al with

Change server status to BUSY Add WeChat edu_assistmation

Look up the list of arrival to fill in the information for the next arrival

Departure event

- Update the cumulative response time
 - T ← T + current time arrival time of the departing customer

Assignment Project Exam Help

Buffer = 0

https://eduassistpro.github.io/

Buffer ≠ 0

- IDLE
- Departure event becomes empty
- Change server status to Add Wechat edu_assist pro first custo
 - Next departure time = current time + service time of the first customer in the buffer
 - Delete first customer from buffer
 - Decrement number of customers in the buffer by 1

T1,2021 **COMP9334** 24

One missing piece

- We know how to write a discrete event simulation program to simulate a single-server queue with infinite buffer assuming that we have the arrival times and service times
- Where do ar Aivai gimes ta Proservice at imeter pome from?

https://eduassistpro.github.io/

- If we want to si
 - The inter-arrival And is expond edu_assistepro
 - The service time is exponentially distributed
- We can get the arrival times and service times if we can generate exponentially distributed random numbers

The Python random library

- The library can be used to generate random numbers from many probability distributions
- random.expovariate() can be used to generate exponentially distributed random numbers

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Exponential distributed random numbers

```
# To produce 10,000 numbers that are exponentially distributed
lamb = 2
n = 10000
x = []
for i in range(n):
    x.append(random.expovariate(lamb))
    Assignment Project Exam Help
```

- Generate 10,000
 exponentially
 distributed number
 and plot the histogram
 Add WeChat edu_assist_pro
- File: hist_random_expo.py
- Note: lambda is a
 Python keyword.
 Cannot use lambda as a variable name

Arrival and service times

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

T1,2021 COMP9334

Simulating M/M/1 queue

- In order to test how well our discrete event simulation program works, we will use it to simulate an M/M/1 queue and compare it with the expected result
- An M/M/1 simulation program is given in sim_mm1.py (available on the games repetite) xam Help
- We will:
 - Take a look at https://eduassistpro.github.io/
 - Run it and make Asom to be that edu_assist_pro

Observations from running the simulation

- The mean response time from simulation can be close to (but not equal to) the theoretical mean simulation time
- Each simulation run gives a different mean response time Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Trace driven simulation

We considered this example in the beginning of this lecture Assignment Proje

We simulated using

A sequence (or trace) on the house
A sequence of service the house

We call this trace driven simulatione Char

- Trace driven simulation is useful
 - You have a server and you have a log of the arrival time and service time of the job
 - You are considering changing to a new server
 - You can use the traces that you have and simulation to calculate the response time of the new server

Customer number	Arrival time	Service time
Hullibei		
1	3	4
<mark>eg</mark> t Exam F	_ <u>_</u>	3
ssistpro.git	9 hub io/	4
olotpro.git		6
t edu_assi	st ₈ pro	3
6	19	2
7	20	2
8	25	3
9	27	2

COMP9334 T1,2021 31

Trace driven simulation

- An example of trace driven simulation is in the file sim_1server_trace.py
 - Note that sim_1server_trace.py assumes infinite buffer rather than finite buffer
- Earlier we used random pumber generators to produce inter-arrival and
 - For trace drive https://eduassistpro.getlaubsien/vice time are read from the supplied trace
 Add WeChat edu_assist_pro

References

- Discrete event simulation of single-server queue
 - Winston, "Operations Research", Sections 23.1-23.2
 - Law and Kelton, "Simulation modelling and analysis", Section 1.4
- Generation of random numbers
 - Raj Jain, "The Aghor Entre Putgie Stytem Performance Analysis"
 - Sections 26.
 - Section 28.1https://eduassistpro.githdub.io/
- - Law and Kelton, "Simulation modelling and analysis"
 - Harry Perros, "Computer Simulation Techniques: The definitive introduction", an e-book that can be downloaded from
 - http://www4.ncsu.edu/~hp/files/simulation.pdf