Análise de sensibilidade (pós otimização)

Alexandre Checoli Choueiri

19/09/2023

- Motivação
- **2** O que veremos
- 3 Alteração no vetor de recursos b
- **4** Alterações nos coeficientes da função objetivo c^T c_T básico
- 6 Alterações em Ai

Onde estamos

O termo **análise de sensibilidade** (ou **pós-otimização**) se refere a análise do efeito que a alteração nos parâmetros do modelo causam na solução ótima encontrada.

Ou seja, considere o modelo de PL na forma padrão:

$$min z = \mathbf{c}^T \mathbf{x}$$
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \ge 0$$

Em que após a resolução, o vetor ${}^{1}x^{*}$ é a solução ótima, com valor ótimo z^{*} .

¹Por isso é chamado de pós-otimização (já temos a solução ótima)

Ou seja, considere o modelo de PL na forma padrão:

$$min z = \mathbf{c}^{\mathsf{T}} \mathbf{x}$$
$$\mathbf{A} \mathbf{x} = \mathbf{b}$$
$$\mathbf{x} \ge 0$$

Em que após a resolução, o vetor ${}^{1}x^{*}$ é a solução ótima, com valor ótimo z^{*} .

Estamos interessados nas alterações que ocorrem em \mathbf{x}^* e \mathbf{z}^* ao alteramos os parâmetros \mathbf{c}^T , A e b

¹Por isso é chamado de pós-otimização (já temos a solução ótima)

Mas por que é interessante estudar a alteração na ²solução em função da alteração dos parâmetros?

²O quão "sensível" é a solução ótima para pequenas alterações nos parâmetros, por isso, Análise de Sensibilidade

Exemplo

Vamos entender por meio de um exemplo:

Uma indústria de móveis produz 4 tipos de mesas. Cada mesa passa por dois processos, carpintaria e finalização. O número de horas/homem necessário em cada etapa é mostrado na Tabela 1; bem como a disponibilidade. A Tabela também aponta o lucro pela venda de cada unidade de mesa.

	Mesa 1	Mesa 2	Mesa 3	Mesa 4	Disponibilidade
Carpintaria	4	9	7	10	6000
Finalização	1	1	3	40	4000
Lucro (R\$/un.)	12	20	18	40	

Tabela 1: Horas/homem necessárias para produção das mesas em cada operação

Motivação Exemplo

O modelo do problema fica então (considerando a disponibilidade na escala 10³):

$$\max z = 12x_1 + 20x_2 + 18x_3 + 40x_4$$

$$4x_1 + 9x_2 + 7x_3 + 10x_4 \le 6$$

$$x_1 + x_2 + 3x_3 + 40x_4 \le 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Supondo que o plano ótimo de produção já está sendo executado.

Exemplo

As horas de mão de obra disponíveis (vetor **b**), são relacionadas com o número de funcionários contratados, sendo que a empresa pode contratar mão de obra extra (temporariamente). Supondo que após a realização da análise de sensibilidade, encontramos os **intervalos de b para os quais a solução atual permanece ótima**:

Exemplo

As horas de mão de obra disponíveis (vetor **b**), são relacionadas com o número de funcionários contratados, sendo que a empresa pode contratar mão de obra extra (temporariamente). Supondo que após a realização da análise de sensibilidade, encontramos os **intervalos de b para os quais a solução atual permanece ótima**:

$$\begin{cases} (\mathsf{CARPINTARIA}): & 3 \le b_1 \le 9 \\ (\mathsf{FINALIZA}\tilde{\mathsf{CAO}}): & 3.9 \le b_2 \le 4.1 \end{cases}$$

Exemplo

As horas de mão de obra disponíveis (vetor **b**), são relacionadas com o número de funcionários contratados, sendo que a empresa pode contratar mão de obra extra (temporariamente). Supondo que após a realização da análise de sensibilidade, encontramos os **intervalos de b para os quais a solução atual permanece ótima**:

$$\begin{cases} (\mathsf{CARPINTARIA}): & 3 \le b_1 \le 9 \\ (\mathsf{FINALIZA} \tilde{\mathsf{CAO}}): & 3.9 \le b_2 \le 4.1 \end{cases}$$

Percebemos que a solução ótima é muito mais sensível a uma alteração nas horas de FINALIZAÇÃO do que de CARPINTARIA. Com essa informação os gestores podem se prevenir (contratando mais funcionários, treinando mais pessoas na FINALIZAÇÃO, etc...).

Importância da análise de sensibilidade

1. Estabilidade da solução ótima em relação a alteração dos parâmetros pode ser crítica. Por exemplo, usando o ponto ótimo, uma pequena variação em um parâmetro pode resultar em uma grande alteração desfavorável na função objetivo. Em contrapartida a alteração de outro parâmetro pode ser grande sem alteração significativa na função objetivo. Nesse caso, a solução ótima é muito sensível a alteração do primeiro parâmetro.

Motivação Exemplo

Considere que a solução ótima mantenha as variáveis (produção de mesas 1 e 4):

$$x^T = [x_1, x_4]$$

Motivação Exemplo

Considere que a solução ótima mantenha as variáveis (produção de mesas 1 e 4):

$$x^T = [x_1, x_4]$$

Suponha que a empresa esteja interessada em vender as mesas do tipo 3 (por um excesso de peças em estoque por exemplo), porém, pela solução atual sabemos que qualquer quantidade da mesa 3 produzida implica em um lucro menor do que o atual.

Exemplo

Considere que a solução ótima mantenha as variáveis (produção de mesas 1 e 4):

$$x^T = [x_1, x_4]$$

Suponha que a empresa esteja interessada em vender as mesas do tipo 3 (por um excesso de peças em estoque por exemplo), porém, pela solução atual sabemos que qualquer quantidade da mesa 3 produzida implica em um lucro menor do que o atual.

O que poderia ser feito?

Exemplo

Olhando os parâmetros de x_3 :

$$\max z = 12x_1 + 20x_2 + \frac{18}{18}x_3 + 40x_4$$
$$4x_1 + 9x_2 + 7x_3 + 10x_4 \le 6$$
$$x_1 + x_2 + \frac{3}{18}x_3 + 40x_4 \le 4$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Exemplo

Olhando os parâmetros de x_3 :

$$\max z = 12x_1 + 20x_2 + \frac{(18 + \delta_1)x_3 + 40x_4}{4x_1 + 9x_2 + 7x_3 + 10x_4} \le 6$$
$$x_1 + x_2 + 3x_3 + 40x_4 \le 4$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Uma abordagem poderia ser **aumentar o preço de vendas da mesa 3**. Qual deveria ser o preço mínimo de venda de x_3 (18 + δ_1) para ser vantajoso incluí-lo na solução ótima (trabalho conjunto com marketing e vendas)?

Exemplo

Olhando os parâmetros de x_3 :

$$\max z = 12x_1 + 20x_2 + \frac{18}{3}x_3 + 40x_4$$
$$4x_1 + 9x_2 + \frac{7 - \delta_2}{3}x_3 + 10x_4 \le 6$$
$$x_1 + x_2 + \frac{3}{3}x_3 + 40x_4 \le 4$$
$$x_1, x_2, x_3, x_4 \ge 0$$

Outra abordagem poderia ser uma **melhoria nos processos de fabricação**, de forma a reduzir o tempo de processamento da mesa 3 na carpintaria ou finalização (δ_2) (trabalho conjunto com processos/qualidade).

Importância da análise de sensibilidade

- 1. Estabilidade da solução ótima em relação a alteração dos parâmetros pode ser crítica. Por exemplo, usando o ponto ótimo, uma pequena variação em um parâmetro pode pode resultar em uma grande alteração desfavorável na função objetivo. Em contrapartida a alteração de outro parâmetro pode ser grande sem alteração significativa na função objetivo. Nesse caso, a solução ótima é muito sensível a alteração do primeiro parâmetro (exemplo da hora extra).
- Os parâmetros são de alguma forma controlados. Dessa forma, pode-se definir como alterar os parâmetros para atingir determinado resultado (exemplo da venda da mesa 3).

Exemplo

Suponha que os parâmetros sejam **estimativas**, por exemplo, os tempos de produção em cada etapa das mesas:

$$\max z = 12x_1 + 20x_2 + 18x_3 + 40x_4$$

$$4x_1 + 9x_2 + 7x_3 + 10x_4 \le 6$$

$$x_1 + x_2 + 3x_3 + 40x_4 \le 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Exemplo

Suponha que os parâmetros sejam **estimativas**, por exemplo, os tempos de produção em cada etapa das mesas:

$$\max z = 12x_1 + 20x_2 + 18x_3 + 40x_4$$

$$4x_1 + 9x_2 + 7x_3 + 10x_4 \le 6$$

$$x_1 + x_2 + 3x_3 + 40x_4 \le 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Seria vantajoso encontrar os intervalos desses valores para os quais a solução permanece ótima, e para aqueles parâmetros em que a solução ótima é muito sensível, convém coletar estimativas mais precisas para os valores.

Importância da análise de sensibilidade

- 1. Estabilidade da solução ótima em relação a alteração dos parâmetros pode ser crítica. Por exemplo, usando o ponto ótimo, uma pequena variação em um parâmetro pode pode resultar em uma grande alteração desfavorável na função objetivo. Em contrapartida a alteração de outro parâmetro pode ser grande sem alteração significativa na função objetivo. Nesse caso, a solução ótima é muito sensível a alteração do primeiro parâmetro (exemplo da hora extra).
- Os parâmetros são de alguma forma controlados. Dessa forma, pode-se definir como alterar os parâmetros para atingir determinado resultado (exemplo da venda da mesa 3).
- Parâmetros aproximados. Se os parâmetros forem estimativas, é interessante encontrar quais são os mais influentes na função objetivo, para que esses possam ter uma estimativa mais acurada.

Importância da análise de sensibilidade

Conclusão

Além de fornecer o ponto ótimo de um modelo de PL, é possível extrair uma gama de informações nas vizinhanças da solução ótima. Uma boa análise de otimização sempre leva em conta a pós otimização (ou análise de sensibilidade), provendo mais robustez para as conclusões.

O que são os **preços-sombra**, como alterações em b alteram a função objetivo, ranges de b para os quais a solução atual permanece ótima.

Ao analisar c^T precisamos diferenciar entre valores de variáveis **básicas** e não **básicas**.

Da mesma forma com os elementos da matriz de coeficientes, porém só alteraremos valores **não básicos**.

A nossa principal ferramenta para realizar a análise de sensibilidade continua sendo a tabela simplex genérica (já com as atualizações mais generalistas apresentadas no método Simplex revisado):

A nossa principal ferramenta para realizar a análise de sensibilidade continua sendo a tabela simplex genérica (já com as atualizações mais generalistas apresentadas no método Simplex revisado):

\mathbf{x}_{B}	×N	-z
0	$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i \\ \mathbf{B}^{-1} \mathbf{A}_i$	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$
ı	$\mathbf{B}^{-1}\mathbf{A}_{i}$	$\mathbf{B}^{-1}\mathbf{b}$

A nossa principal ferramenta para realizar a análise de sensibilidade continua sendo a tabela simplex genérica (já com as atualizações mais generalistas apresentadas no método Simplex revisado):

\mathbf{x}_{B}	×N	-z
0	$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i \\ \mathbf{B}^{-1} \mathbf{A}_i$	$-\mathbf{c}_B^T\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$\mathbf{B}^{-1}\mathbf{A}_{i}$	$\mathbf{B}^{-1}\mathbf{b}$

OBS: Todos os *solvers* já fornecem um relatório de sensibilidade após a resolução de um modelo de PL, aprenderemos como interpretar os resultados do relatório do GUSEK.

Usaremos o próprio modelo da carpintaria (inicio da apresentação) como exemplo didático para a análise dos casos. A generalização dos cálculos que realizaremos é imediata. A tabela ótima para o modelo fica da seguinte forma:

	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	-z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x ₄	0	-1/30	1/30	1	-1/150	2/75	1/15

Alteração no vetor de recursos **b**

Alteração em b

Preços sombra (π)

A primeira análise que realizaremos é uma **interpretação econômica** da solução do problema dual π_i .

Preços sombra (π)

A primeira análise que realizaremos é uma **interpretação econômica** da solução do problema dual π_i .

Primal

$$\begin{aligned} \min \, \mathbf{z} &= \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

Dual

$$\mathbf{a}^{\mathsf{T}}\mathbf{b}$$

$$\mathbf{A}^{\mathsf{T}}\pi \leq \mathbf{c}$$

$$\pi \text{ irrestrito}$$

Preços sombra (π)

A primeira análise que realizaremos é uma **interpretação econômica** da solução do problema dual π_i .

Primal

$$\begin{aligned} \min \, \mathbf{z} &= \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &= \mathbf{b} \\ \mathbf{x} &\geq 0 \end{aligned}$$

Dual

$$\begin{aligned} \max \mathbf{v} &= \pi^T \mathbf{b} \\ \mathbf{A}^T \pi &\leq \mathbf{c} \\ \pi \text{ irrestrito} \end{aligned}$$

Sabemos, pelo teorema fraco da dualidade que se x_* e π_* são soluções ótimas para o par primal-dual, então:

$$z = v = \pi_*^T b$$

Preços sombra (π)

Ou seja, podemos pensar que a função objetivo do problema primal pode ser escrita como uma soma ponderada entre os recursos **b**. E os pesos de ponderação são dados pelos valores das variáveis duais.

$$z = \pi_*^T b$$

Preços sombra (π)

Ou seja, podemos pensar que a função objetivo do problema primal pode ser escrita como uma soma ponderada entre os recursos **b**. E os pesos de ponderação são dados pelos valores das variáveis duais.

$$z = \pi_*^T b$$

Isso nos possibilita identificar **como a função objetivo seria alterada se os recursos fossem alterados**. Por exemplo, o valor da função objetivo para um problema com duas restrições (2 valores duais) pode ser escrito como:

$$z = \pi_1 b_1 + \pi_2 b_2$$

Preços sombra (π)

Ou seja, podemos pensar que a função objetivo do problema primal pode ser escrita como uma soma ponderada entre os recursos **b**. E os pesos de ponderação são dados pelos valores das variáveis duais.

$$z = \pi_*^T b$$

Isso nos possibilita identificar como a função objetivo seria alterada se os recursos fossem alterados. Por exemplo, o valor da função objetivo para um problema com duas restrições (2 valores duais) pode ser escrito como:

$$z = \pi_1 b_1 + \pi_2 b_2$$

Qual seria a variação na função objetivo se aumentássemos o recurso b em 1 unidade?

$$z' = \pi_1(b_1 + 1) + \pi_2 b_2$$

Preços sombra (π)

Ou seja, podemos pensar que a função objetivo do problema primal pode ser escrita como uma soma ponderada entre os recursos **b**. E os pesos de ponderação são dados pelos valores das variáveis duais.

$$z = \pi_*^T b$$

Isso nos possibilita identificar como a função objetivo seria alterada se os recursos fossem alterados. Por exemplo, o valor da função objetivo para um problema com duas restrições (2 valores duais) pode ser escrito como:

$$z = \pi_1 b_1 + \pi_2 b_2$$

Qual seria a variação na função objetivo se aumentássemos o recurso b em 1 unidade?

$$z' = \pi_1(b_1 + 1) + \pi_2 b_2$$

Obviamente aumentamos a fo em uma unidade de π_1 ($z' = z + \pi_1$)!

Preços sombra (π)

Conclusão

Para determinar qual a taxa de variação da função objetivo em função de b (para pequenas alterações), basta encontrar a solução dual, cada variável dual se refere a uma restrição, e portanto a variação de um b_i . Por esse motivo os valores duais também são chamados de **preços-sombra** ou **valores marginais** (devido a essa relação econômica que eles tem com o valor de z do primal). Essa interpretação pe válida para **pequenas alterações do vetor b**.

Preços sombra (π)

EXEMPLO Considere que a empresa fabricante de mesas está disposta a contratar mais mão de obra para aumentar a disponibilidades de horas/homem em um dos dois processos (CARPINTARIA ou FINALIZAÇÃO). Em qual setor você recomendaria que eles realizassem o aumento?

Preços sombra (π)

Sabemos que os valores duais fornecem a taxa de variação da função objetivo ao alterarmos o vetor b (elemento a elemento). Também, que o negativo dos valores duais estão presentes no quadro ótimo Simplex (coeficientes das variáveis de folga ou artificiais):

Preços sombra (π)

Sabemos que os valores duais fornecem a taxa de variação da função objetivo ao alterarmos o vetor b (elemento a elemento). Também, que o negativo dos valores duais estão presentes no quadro ótimo Simplex (coeficientes das variáveis de folga ou artificiais):

	x_1	x_2	x ₃	x ₄	x ₅	x ₆	-z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
X 4	0	-1/30	1/30	1	-1/150	2/75	1/15

Preços sombra (π)

Sabemos que os valores duais fornecem a taxa de variação da função objetivo ao alterarmos o vetor b (elemento a elemento). Também, que o negativo dos valores duais estão presentes no quadro ótimo Simplex (coeficientes das variáveis de folga ou artificiais):

					$-\pi_1$	$-\pi_2$	
	x_1	x_2	x_3	x ₄	x ₅	x_6	-Z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
X 4	0	-1/30	1/30	1	-1/150	2/75	1/15

Assim, temos que:

$$\pi^T = (\pi_1, \pi_2) = (-44/15, -4/15)$$

Preços sombra (π)

Sabemos que os valores duais fornecem a taxa de variação da função objetivo ao alterarmos o vetor b (elemento a elemento). Também, que o negativo dos valores duais estão presentes no quadro ótimo Simplex (coeficientes das variáveis de folga ou artificiais):

					$-\pi_1$	$-\pi_2$	
	x_1	x_2	x ₃	x ₄	x ₅	x_6	-Z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
X 4	0	-1/30	1/30	1	-1/150	2/75	1/15

Assim, temos que:

$$\pi^T = (\pi_1, \pi_2) = (-44/15, -4/15)$$

Mas, como fizemos a transformação da função objetivo, temos:

$$\pi^T = (\pi_1, \pi_2) = (44/15, 4/15)$$

Preços sombra (π)

Ou seja, para cada "unidade" de tempo acrescida no setor de CARPINTARIA, o lucro aumenta na taxa de $\pi_1=44/15~(\approx 2.933)$. Já na área de FINALIZAÇÃO o acréscimo seria de $\pi_2=4/15~(\approx 0.2666)$.

Preços sombra (π)

$$\pi^T = (\pi_1, \pi_2) = (44/15, 4/15)$$
Taxa de variação relativa as as horas de carpintaria

Taxa de variação relativa as as horas de finalização

Ou seja, para cada "unidade" de tempo acrescida no setor de CARPINTARIA, o lucro aumenta na taxa de $\pi_1=44/15~(\approx 2.933)$. Já na área de FINALIZAÇÃO o acréscimo seria de $\pi_2=4/15~(\approx 0.2666)$.

Podemos concluir então que seria mais vantajoso a empresa adicionar horas no setor de **CARPINTARIA**, pois $\pi_1 > \pi_2$, e queremos maximizar a função objetivo.

Preços sombra (π)

- 1. Para ativar o relatório de sensibilidade no GUSEK clique em $Tools \rightarrow Generate$ Output File on Go.
- 2. A visualização dos preços-sombra, no entanto, é feita no relatório de saída normal.

Preços sombra (π)

Na primeira parte do relatório temos informações para cada restrição do problema. A última coluna (*Marginal*) indica os preços-sombra de cada restrição, como mostrado na Figura abaixo para o exemplo da carpintaria.

No. Row name	St Activity Lower bound Upper bound	Marginal
1·r.4·····	NU 6 6 1 4	2.93333
2 · r.5	NU · · · · · · · 4 · · · · · · · 4 · · · · · · · 4 · · · · · · · · · 4 ·	0.266667

Alterando valores de b

E se agora quiséssemos saber como a solução como um todo (valores de x e fo) se comportariam se alterássemos os valores do vetor \mathbf{b} ?

Alterando valores de b

E se agora quiséssemos saber como a solução como um todo (valores de x e fo) se comportariam se alterássemos os valores do vetor \mathbf{b} ?

Ao alterarmos os valores de $\bf b$ podemos infactibilizar a solução atual. Para verificar, simplesmente usamos a tabela genérica com a base atual, alterando um valor de $\bf b$.

\mathbf{x}_{B}	×N	-z
0	$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i \\ \mathbf{B}^{-1} \mathbf{A}_i$	$-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$\mathbf{B}^{-1}\mathbf{A}_{i}$	$\mathbf{B}^{-1}\mathbf{b}$

Alterando valores de b

E se agora quiséssemos saber como a solução como um todo (valores de x e fo) se comportariam se alterássemos os valores do vetor \mathbf{b} ?

Ao alterarmos os valores de $\bf b$ podemos infactibilizar a solução atual. Para verificar, simplesmente usamos a tabela genérica com a base atual, alterando um valor de $\bf b$.

\mathbf{x}_B	×N	-z
0	$\mathbf{c}_i^T - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_i \\ \mathbf{B}^{-1} \mathbf{A}_i$	$-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
1	$\mathbf{B}^{-1}\mathbf{A}_{i}$	$B^{-1}b$

Podemos coletar a matriz \mathbf{B}^{-1} pelo próprio quadro ótimo.

Alterando valores de b

	x_1	x_2	x ₃	x ₄	x ₅	x ₆	-Z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x ₄	0	-1/30	1/30	1	-1/150	2/75	1/15

Alterando valores de b

	x ₁	x ₂	X 3	X 4	X 5	x 6	-z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x_4	0	-1/30	1/30	1	-1/150	2/75	1/15

$$\mathbf{B^{-1}} = \left[egin{array}{ccc} 4/15 & -1/15 \ -1/150 & 2/75 \end{array}
ight]$$

Alterando valores de b

	x_1	x ₂	x 3	X 4	x ₅	x ₆	-Z
VB					44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x ₄		-1/30			-1/150	2/75	1/15

$$\mathbf{B}^{-1} = \left[\begin{array}{cc} 4/15 & -1/15 \\ -1/150 & 2/75 \end{array} \right]$$

O vetor \mathbf{b} atual é $\mathbf{b^T} = [6, 4]$. O aconteceria se a empresa decidisse aumentar tanto as horas da CARPINTARIA quanto da FINALIZAÇÃO para 10? Ou seja, um novo vetor \mathbf{b} :

$$\mathbf{b} = \left[\begin{array}{c} 10 \\ 10 \end{array} \right]$$

Alterando valores de b

Basta calcularmos como esse vetor \mathbf{b} ficaria no quadro final (tabela genérica), considerando a base atual, ou seja:

Alterando valores de b

Basta calcularmos como esse vetor \mathbf{b} ficaria no quadro final (tabela genérica), considerando a base atual, ou seja:

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/15 \end{bmatrix}$$

Considerando a solução básica da tabela ótima, o vetor b atualizado fica como mostrado acima. Como todos os elementos são positivos, a solução permanece factível, e portanto ótima.

Alterando valores de b

Basta calcularmos como esse vetor **b** ficaria no quadro final (tabela genérica), considerando a base atual, ou seja:

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 10 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 1/15 \end{bmatrix}$$

Considerando a solução básica da tabela ótima, o vetor b atualizado fica como mostrado acima. Como todos os elementos são positivos, a solução permanece factível, e portanto ótima.

OBS: O que deve ser feito para encontrarmos o novo valor da função objetivo?

Alterando valores de b

E o que aconteceria se a empresa usar o vetor $\mathbf{b^T} = [3, 15]$? Da mesma forma, basta usarmos a fórmula:

Alterando valores de b

E o que aconteceria se a empresa usar o vetor $\mathbf{b^T} = [3, 15]$? Da mesma forma, basta usarmos a fórmula:

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 3 \\ 15 \end{bmatrix} = \begin{bmatrix} -1/5 \\ 19/50 \end{bmatrix}$$

Alterando valores de b

E o que aconteceria se a empresa usar o vetor $\mathbf{b}^{\mathsf{T}} = [3, 15]$? Da mesma forma, basta usarmos a fórmula:

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 3 \\ 15 \end{bmatrix} = \begin{bmatrix} -1/5 \\ 19/50 \end{bmatrix}$$

Note que agora b < 0, ou seja, o problema é primal-infactível. Como os valores de ${\bf b}$ não afetam os custos da função objetivo, o quadro ótimo permanece dual-factível ($c^T \ge 0$). Dessa forma, o algoritmo **Dual-Simplex** pode ser executado com o quadro ótimo antigo e o novo vetor ${\bf b}$ atualizado (atualizar também a função objetivo).

Alterando valores de b

EXERCÍCIO: Reotimize o problema para encontrar qual será a solução ótima com vetor $\mathbf{b^T} = [3, 15]$, o quadro Simplex fica:

	x_1	x_2	x ₃	x ₄	x ₅	x_6	-z
VB	0	20/3	10/3	0	44/15	4/15	???
x_1	1	7/3	5/3	0	4/15	-1/15	-1/5
X 4	0	-1/30	1/30	1	-1/150	2/75	19/50

Alterando valores de b

Conclusão

Para alterarmos os valores de \mathbf{b} , basta usar a fórmula genérica e verificar como eles ficariam $(\mathbf{b'})$ em função da base atual:

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b}$$

E também atualizar o novo custo com a fórmula:

$$-z' = -\mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{b'}$$

Com o novo b' existem duas possibilidades:

- 1. $\mathbf{b'} \geq 0$: A solução continua factível, e portanto ótima.
- 2. $\mathbf{b'} \leq 0$: A solução é infactível aplicar o dual Simplex com a tabela atual para encontrar o novo ótimo.

Encontrando ranges para b

Será que é possível encontrar a **faixa de valores** (ranges) que os recursos **b** podem assumir, sem que a solução ótima se altere? (para os quais ela permanece factível?)

Encontrando ranges para b

Será que é possível encontrar a **faixa de valores** (ranges) que os recursos **b** podem assumir, sem que a solução ótima se altere? (para os quais ela permanece factível?)

Sim! Podemos usar a mesma fórmula genérica, porém ao invés de alterar um valor de b (como fizemos no exemplo anterior), **deixamos esse valor como uma variável** (θ), e ao final, impomos a condição de não negatividade (condição para a solução permanecer factível).

Encontrando ranges para b

Será que é possível encontrar a **faixa de valores** (ranges) que os recursos **b** podem assumir, sem que a solução ótima se altere? (para os quais ela permanece factível?)

Sim! Podemos usar a mesma fórmula genérica, porém ao invés de alterar um valor de b (como fizemos no exemplo anterior), deixamos esse valor como uma variável (θ), e ao final, impomos a condição de não negatividade (condição para a solução permanecer factível).

OBS: Esses cálculos devem ser feitos para encontrar um range por vez, ou seja, adicionase uma variável enquanto os outros $\mathbf{b_i}$ permanecem constantes.

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \left[egin{array}{cc} 4/15 & -1/15 \ -1/150 & 2/75 \end{array}
ight] \left[egin{array}{c} heta_1 \ 4 \end{array}
ight]$$

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{bmatrix}$$

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{bmatrix}$$

Sabemos que para ser factível, o vetor **b** deve ser positivo, então:

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{bmatrix}$$

Sabemos que para ser factível, o vetor **b** deve ser positivo, então:

$$\mathbf{b'} \geq 0 \Rightarrow \left[egin{array}{c} 4 heta_1/15 - 4/15 \ - heta_1/150 + 8/75 \end{array}
ight] \geq \left[egin{array}{c} 0 \ 0 \end{array}
ight]$$

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{bmatrix}$$

Sabemos que para ser factível, o vetor **b** deve ser positivo, então:

$$\mathbf{b'} \geq 0 \Rightarrow \left[\begin{array}{c} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{array} \right] \geq \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Rightarrow \begin{cases} 4\theta_1/15 - 4/15 \geq 0 \\ -\theta_1/150 + 8/75 \geq 0 \end{cases}$$

Encontrando ranges para b

Por exemplo, para encontrarmos o *range* para o primeiro recurso (HORAS DE CARPIN-TARIA), usamos o vetor **b** original, substituindo o primeiro recurso por θ_1 :

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_1 \\ 4 \end{bmatrix} = \begin{bmatrix} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{bmatrix}$$

Sabemos que para ser factível, o vetor **b** deve ser positivo, então:

$$\mathbf{b'} \geq 0 \Rightarrow \left[\begin{array}{c} 4\theta_1/15 - 4/15 \\ -\theta_1/150 + 8/75 \end{array} \right] \geq \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Rightarrow \begin{cases} 4\theta_1/15 - 4/15 \geq 0 \\ -\theta_1/150 + 8/75 \geq 0 \end{cases}$$

O que nos fornece:

$$\begin{cases} \theta_1 \geq 1 \\ \theta_1 \leq 16 \end{cases} \Rightarrow \mathbf{1} \leq \theta_1 \leq \mathbf{16} \; (\mathsf{range} \; \mathsf{de} \; b_1)$$

Encontrando ranges para b

Ou seja, para quaisquer valores de horas na CARPINTARIA, que estejam dentro do range:

$$1 \le \theta_1 \le 16$$

O mix da solução ótima **não é alterada** (produzir mesas do tipo 1 e 4), **porém** seus valores são alterados!

Encontrando ranges para b

Ou seja, para quaisquer valores de horas na CARPINTARIA, que estejam dentro do range:

$$1 \le \theta_1 \le 16$$

O mix da solução ótima **não é alterada** (produzir mesas do tipo 1 e 4), **porém** seus valores são alterados!.

Realizando os cálculos da mesma forma para encontrar o range das horas de FINALIZAÇÃO.

Encontrando ranges para b

$$\mathbf{b'} = \mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 6 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} 24/15 - \theta_2/15 \\ -6/150 + 2\theta_2/75 \end{bmatrix}$$

Sabemos que para ser factível, o vetor **b** deve ser positivo, então:

$$\mathbf{b'} \ge 0 \Rightarrow \left[\begin{array}{c} 24/15 - \theta_2/15 \\ -6/150 + 2\theta_2/75 \end{array} \right] \ge \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \Rightarrow \begin{cases} 24/15 - \theta_2/15 \ge 0 \\ -6/150 + 2\theta_2/75 \ge 0 \end{cases}$$

O que nos fornece:

$$\begin{cases} \theta_1 \geq 3/2 \\ \theta_1 \leq 24 \end{cases} \Rightarrow \mathbf{3/2} \leq \theta_2 \leq \mathbf{24} \text{ (range de } b_2\text{)}$$

Encontrando ranges para b

Os *ranges* podem ser visualizados na primeira parte do relatório de sensibilidade de GU-SEK, pela coluna **Activity range**.

Alterando valores de b

Conclusão

Para alterarmos encontrar os *ranges* de **b** que mantém a mesma solução na base, basta adicionar uma variável (θ) na elementos de **b** original, e usar a fórmula de atualização impondo a condição de ão negatividade:

$${\bf B}^{-1}{\bf b} \ge 0$$

Alterações nos coeficientes da função objetivo c^T

Ao alterarmos um custo c^T que é **não básico**, a solução atual **continua factível** (nenhuma restrição é alterada), no entanto, ela pode não ser mais ótima. Só precisamos calcular o custo atualizado do novo c_i^T e verificar se ele não é negativo.

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Ao alterarmos um custo c^T que é **não básico**, a solução atual **continua factível** (nenhuma restrição é alterada), no entanto, ela pode não ser mais ótima. Só precisamos calcular o custo atualizado do novo c_i^T e verificar se ele não é negativo.

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Com o novo custo atualizado, existem 2 possibilidades:

- 1. $\mathbf{c_i^T(novo)} \ge \mathbf{0}$: O que implica que a solução atual continua ótima (o novo valor não entra na base).
- 2. $c_i^T(novo) \le 0$: O método Simplex deve continuar a partir deste quadro, pois existe uma variável que entra na base.

EXEMPLO: Considere que o departamento de marketing da empresa precise aumentar o preço da mesa do tipo 3, passando a vende-la por 27 unidades (antes era 18). O que ocorre com a solução atual? A empresa continua fabricando a mesa 1 e 4?

- 1. Basta calcularmos como o novo custo ficaria em relação a base atual pela fórmula $c_i^T(novo) = c_i^T c_B^T B^{-1} A_i$
- 2. Então precisamos coletar c_B , B^{-1} , A_i e c_i^T

Alterações em c^T c^T não básicos

Pela tabela final coletamos B^{-1}

	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	-z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x ₄	0	-1/30	1/30	1	-1/150	2/75	1/15

Pela tabela final coletamos B^{-1}

	x_1	x_2	x ₃	x ₄	x ₅	x_6	-Z
VB	0	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x ₄	0	-1/30	1/30	1	-1/150	2/75	1/15

$$\mathbf{B}^{-1} = \left[egin{array}{ccc} 4/15 & -1/15 \ -1/150 & 2/75 \end{array}
ight]$$

E pela inicial c_B^T , A_i .

	x_1	x_2	x ₃	x ₄	x ₅	x ₆	-z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
x ₄	1	1	3	40	0	1	4

E pela inicial c_B^T , A_i .

	x_1	x_2	x ₃	x ₄	x ₅	x ₆	-z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
X4	1	1	3	40	0	1	4

$$c_B = \left[\begin{array}{c} -12 \\ -40 \end{array} \right]$$

E pela inicial c_B^T , A_i .

	x_1	x_2	x ₃	x ₄	x 5	x ₆	-Z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
x ₄	1	1	3	40	0	1	4

$$c_B = \left[\begin{array}{c} -12 \\ -40 \end{array} \right] A_i = \left[\begin{array}{c} 7 \\ 3 \end{array} \right]$$

E pela inicial c_B^T , A_i .

	x_1	x_2	x ₃	x ₄	x ₅	x ₆	-z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
x ₄	1	1	3	40	0	1	4

$$c_B = \begin{bmatrix} -12 \\ -40 \end{bmatrix} A_i = \begin{bmatrix} 7 \\ 3 \end{bmatrix} c_i = -27$$

Lembre que **vamos alterar o valor** de c_i , por isso não usamos o -18 da tabela, mas sim o -27 (novo preço da mesa 3).

Assim, pela fórmula de atualização:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Ou seja, se inicialmente o custo da mesa 3 fosse de 27 ao invés de 18, seu valor atualizado ao fim da otimização seria -17/3. Como é um valor negativo, **a solução atual não é ótima**, e o método Simplex pode continuar.

Assim, pela fórmula de atualização:

$$c_i^{T}(novo) = c_i^{T} - c_B^{T} B^{-1} A_i$$

$$\Rightarrow -27 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 7 \\ 3 \end{bmatrix} = -17/3$$

Ou seja, se inicialmente o custo da mesa 3 fosse de 27 ao invés de 18, seu valor atualizado ao fim da otimização seria -17/3. Como é um valor negativo, **a solução atual não é ótima**, e o método Simplex pode continuar.

EXERCÍCIO: Reotimize o problema a partir do novo quadro (com o custo de x_3 atualizado) para encontrar a nova solução ótima:

	x ₁	x ₂	x ₃	x ₄	x ₅	x ₆	-z
VB	0				44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x_4	0		1/30		-1/150	2/75	1/15

Ranges em c^T não básicos

Da mesma forma que fizemos com o vetor de recursos, podemos encontrar os **ranges** de c^T não básicos, para os quais a solução atual permanece ótima. Usamos a fórmula genérica de atualização de custos:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Mas ao invés de usar um c_i^T alterado, usamos um vetor de variáveis (c_i) , e novamente criamos a imposição de não negatividade.

Ranges em c^T

EXEMPLO: Encontre os ranges de custo das variáveis não básicas.

Ranges em c^T

EXEMPLO: Encontre os ranges de custo das variáveis não básicas.

Vamos usar a fórmula:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Ranges em c^T não básicos

EXEMPLO: Encontre os ranges de custo das variáveis não básicas.

Vamos usar a fórmula:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Já encontramos os valores de c_B^T e B^{-1} .

$$\mathbf{B}^{-1} = \left[egin{array}{cc} 4/15 & -1/15 \ -1/150 & 2/75 \end{array}
ight], c_B = \left[egin{array}{c} -12 \ -40 \end{array}
ight]$$

Já A_i devem se coletados da tabela inicial.

Ranges em c^T c^T não básicos

	x_1	x_2	x ₃	x ₄	x 5	x ₆	-Z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
x_4	1	1	3	40	0	1	4

Ranges em c^T c^T não básicos

	x_1	x_2	x ₃	x ₄	x 5	x ₆	-Z
VB	-12	-20	-18	-40	0	0	0
x_1	4	9	7	10	1	0	6
x_4	1	1	3	40	0	1	4

Temos que as variáveis não básicas são x_2, x_3, x_5 e x_6 , portanto A_i e c_i^T ficam:

$$A_i = \left[egin{array}{cccc} 9 & 7 & 1 & 0 \ 1 & 3 & 0 & 1 \end{array}
ight], c_i^T = \left[egin{array}{cccc} c_2 & c_3 & c_5 & c_6 \end{array}
ight]$$

Ranges em c^T

Impondo a condição de não negatividade e substituindo os dados:

$$c_i^T - c_B^T B^{-1} A_i \ge 0$$

$$\Rightarrow \begin{bmatrix} -c_2 & -c_3 & -c_5 & -c_6 \end{bmatrix} - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 9 & 7 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix} \ge 0$$

$$\Rightarrow \begin{bmatrix} -c_2 & -c_3 & -c_5 & -c_6 \end{bmatrix} - \begin{bmatrix} -80/3 & -64/3 & -44/15 & -4/15 \end{bmatrix} \ge 0$$

$$\begin{cases} c_2 \le 80/3 \\ c_3 \le 64/3 \\ c_5 \le 44/15 \\ c_6 \le 4/15 \end{cases}$$

OBS: Lembre de colocar os negativos de c_i , pela transformação da fo na forma padrão.

Ranges em c^T

O GUSEK mostra os ranges somente para as variáveis não básica originais, ou seja, sem as folgas e excessos. Nesse caso, somente para c_2 e c_3 . Os dados estão na coluna Obj. coef range, no relatório de sensibilidade.

Ao alterarmos um custo c^T que é **básico**, seu custo atualizado na fo deixará de ser 0 (antes era zero pois era uma **variável básica**). Assim, é necessário pivotear a tabela novamente para zerar esse elemento na fo e ver se alguma nova variável entraria na base, caso em que o Simplex deve continuar.

EXEMPLO: Considere que a empresa deseja alterar o preço de venda da mesa 1 (x_1) de 12 para 9. O que acontece com solução?

Usando a mesma fórmula para calcular o preço de x_1 atualizado:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

$$\Rightarrow c_i^T(novo) = -9 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \mathbf{3}$$

Agora temos que atualizar a tabela com esse novo valor na fo:

	x_1	x_2	x ₃	x ₄	x_5	x_6	-Z
VB	3	20/3	10/3	0	44/15	4/15	56/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x_4	0	-1/30	1/30	1	-1/150	2/75	1/15

Para atualizar a tabela realizamos as operações:

1.
$$L_1 \leftarrow L1 - 3L2$$

	x_1	x_2	x ₃	x ₄	x ₅	x_6	-Z
VB	0	-1/3	-5/3	0	32/15	7/15	44/3
x_1	1	7/3	5/3	0	4/15	-1/15	4/3
x_4	0	-1/30	1/30	1	-1/150	2/75	1/15

O novo quadro fica como mostrado acima. Note que com a atualização novos elementos ficaram negativos na função objetivo, de forma que a base atual não é mais ótima. O método Simplex pode continuar a partir desta tabela.

EXERCÍCIO: Encontre a nova solução ótima.

Ai não básicos

\mathbf{x}_B	×N	-z
0	$\mathbf{c}_{i}^{T} - \mathbf{c}_{B}^{T} \mathbf{B}^{-1} \mathbf{A}_{i}$ $\mathbf{B}^{-1} \mathbf{A}_{i}$	$-\mathbf{c}_{B}^{T}\mathbf{B}^{-1}\mathbf{b}$ $\mathbf{B}^{-1}\mathbf{b}$
ı	$\mathbf{B}^{-1}\mathbf{A}_{i}$	$\bar{B}^{-1}b$

Podemos notar pela tabela genérica que alterando valores de A_i não básicos, a factibilidade da solução não é alterada, mas sim o custo atualizado na função objetivo. Desta forma, ao alterar um elemento da matriz A_i , devemos recalcular o custo, e se ele for < 0 o método Simplex deve continuar a ser executado (lembre de também atualizar a nova coluna A_i !).

Ai não básicos

EXEMPLO: Considere que a empresa quer que a mesa do tipo 3 entre em produção, e portanto está tentanto reduzir o tempo que a mesma fica na carpintaria. Se o departamento de processos conseguir reduzir o tempo de 7 para 6, será vantajoso produzir a mesa do tipo 3?

	Mesa 1	Mesa 2	Mesa 3	Mesa 4	Disponibilidade
Carpintaria	4	9	7	10	6000
Finalização	1	1	3	40	4000
Lucro (R\$/un.)	12	20	18	40	

Tabela 2: Horas/homem necessárias para produção das mesas em cada operação

Ai não básicos

Para verificar se é vantajoso, precisamos calcular o novo custo de x_3 na função objetivo pela fórmula:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

Substituindo o valor de A_i na carpintaria para 6.

A: não básicos

Assim, pela fórmula de atualização:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

$$\Rightarrow -18 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 2/5$$

Ou seja, se inicialmente o tempo de processamento da mesa 3 na carpintaria fosse de 6, seu custo atualizado ao final do Simplex seria de 2/5. Como o valor continua > 0, a solução ótima permanece a mesma, e a mesa 3 **ainda não seria produzida**.

Ai não básicos

Assim, pela fórmula de atualização:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

$$\Rightarrow -18 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = 2/5$$

Ou seja, se inicialmente o tempo de processamento da mesa 3 na carpintaria fosse de 6, seu custo atualizado ao final do Simplex seria de 2/5. Como o valor continua > 0, a solução ótima permanece a mesma, e a mesa 3 **ainda não seria produzida**.

Ai não básicos

Vejamos o que aconteceria se conseguissem reduzir o tempo de 7 para 5:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

$$\Rightarrow -18 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = -38/15$$

Nesse caso o custo atualizado seria de -38/15, ou seja, seria vantajoso produzir a mesa 3 (incluir c_3 na base). Par o método Simplex continuar, é necessário atualizar a coluna A_i como um todo, pela fórmula $\mathbf{B}^{-1}\mathbf{A}_i$

Ai não básicos

Atualizando a coluna A_i :

$$A_i^T(novo) = B^{-1}A_i$$

$$\Rightarrow \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} 5 \\ 3 \end{bmatrix} = \begin{bmatrix} 17/15 \\ 7/150 \end{bmatrix}$$

Ai não básicos

A nova tabela atualizada fica:

	x ₁	x ₂	x 3	X 4	X 5	x 6	-z
VB	0	20/3	-38/15	0	44/15	4/15	56/3
x_1	1	7/3	17/15	0	4/15	-1/15	4/3
x ₄	0	-1/30	7/150	1	-1/150	2/75	1/15

E o Simplex continuaria a partir deste ponto.

EXERCÍCIO: Encontre a nova solução ótima.

Ai não básicos - ranges

Ainda, como para os recursos **b** e os custos \mathbf{c}^{T} , podemos encontrar os *ranges* de A_i para os quais a solução permanece ótima. Como alterar A_i altera os custos pela fórmula:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

E sabemos que, para que a solução atual permaneça ótima, todos os custos c_i devem ser positivos, nós simplemente impômos esta condição sobre o novo valor de c_i , usando A_i como uma variável:

$$c_i^T - c_B^T B^{-1} A_i \geq 0$$

Ai não básicos - ranges

Por exemplo, para encontrar o *range* de valores de valores para tempo que a mesa 3 fica na carpintaria, fazemos:

$$c_i^T(novo) = c_i^T - c_B^T B^{-1} A_i$$

$$\Rightarrow -18 - \begin{bmatrix} -12 & -40 \end{bmatrix} \begin{bmatrix} 4/15 & -1/15 \\ -1/150 & 2/75 \end{bmatrix} \begin{bmatrix} \theta_3 \\ 3 \end{bmatrix} \ge 0$$

$$\Rightarrow \theta_3 \ge 5.86$$

Ou seja, enquanto o tempo de produção da mesa 3 na carpintaria > 5.86, não é vantajoso vender esta mesa (ela não entra na base).

Onde chegamos!

