Forecasting Bixi rentals

By: Rima Bazerji

Introduction & Problem

Facts about BIXI

Bixi is a nonprofit organization created by the city of Montreal to manage its bike sharing system

7,250 bikes, 540 stations and 5,3M rides taken in 2018

Bike Sharing systems aim to reduce congestion, air and noise pollution in urban areas

One of the downside has been the lack of bike supplies for common routes and poor rebalancing of docks

Problem & Data

Forecasting hourly demand is a starting point to predicting at station level and help with dock rebalancing efforts as bikes tend to accumulate downtown

🚲 Data :

- bixi.com
- wunderground.com
- www.tpsgc-pwgsc.gc.ca/

Exploratory data analysis

Monthly pattern & Hour of the day usage

Exploratory data analysis

- Weekdays vs Weekends
- Rush Hour vs Not

Exploratory data analysis

- Casual members' behaviour is 10% more correlated with weather features
- Feels likes, Relative humidity, Uv index are amongst the most correlated with rentals
- Missing values (Backward fill)

Modeling Process

Base Model 1A: SARIMAX (1,0,2)(1,0,1)24

- AdFuller test for Stationarity
- Daily + Weekly seasonality
- Shifted distribution by 1 week (168 hrs)
- \bullet m = 24
- PACF to set AR parameters p and P

- ACF to set MA parameters q and Q
- Train test split 20%:
 - Test set starts September 21, 2018

Model 1B: SARIMAX (1,0,2)(2,0,3)24

- Optimized SARIMAX parameters (GridSearch and minimize AIC) – on the right
- Base Model below

	coef	std err	z	P> z
humidity	-3.0901	0.470	-6.580	0.000
feels_like	3.3516	0.426	7.874	0.000
precip_hrly	-28.7542	15.054	-1.910	0.056
ar.L1	0.7428	0.008	89.143	0.000
ma.L1	0.3150	0.014	21.848	0.000
ar.S.L24	0.9850	0.008	117.691	0.000
ma.S.L24	-0.9999	0.605	-1.654	0.098
sigma2	5.855e+04	3.5e+04	1.672	0.094

	coef	std err	z	P> z
humidity	-4.3268	0.501	-8.639	0.000
feels_like	5.7809	0.568	10.186	0.000
precip_hrly	-425.5591	11.893	-35.783	0.000
ar.L1	0.8194	0.014	57.286	0.000
ma.L1	0.1047	0.017	6.210	0.000
ma.L2	-0.1271	0.018	-6.877	0.000
ar.S.L24	-0.7948	0.035	-22.670	0.000
ar.S.L48	-0.7276	0.037	-19.920	0.000
ma.S.L24	0.9042	0.037	24.188	0.000
ma.S.L48	0.9143	0.033	27.421	0.000
ma.S.L72	0.1918	0.015	12.464	0.000
sigma2	6.546e+04	754.544	86.758	0.000

Model 1B: SARIMAX (1,0,2)(2,0,3)24

Forecast

Model 2: FB Prophet

- Curve fitting problem where time is a regressor
- GridSearch hyperparameters:
- Daily/Weekly Fourier Order (Increased -> Model can fit at higher frequency)
- Change point scale (trend)

Model 3: Random Forest Regressor

- Decompose Time into Descriptive Features
 - Hour, month, rush hour, off-peak season etc.
- Feature engineering based on EDA
- GridSearch

- GridSearch with pruned trees to avoid overfitting (max depth & Gamma)
- Best model based on RMSE

Stacked Model with Linear Regression

Weighted average with Linear Regression, where:

X = Predictions from all models &

y = Observed

Weights: RandomForestRegressor: 0.2955404138782251

XGBoost: 0.6192844978845874

SARIMAX: 0.08572847844921101

FB_Prophet: 0.12688710988303

Final Model: 0.3* RF + 0.62*XGBoost + 0.09*SARIMAX + 0.13*FB

Summary and Stacked model

Model	RMSE	R2
SARIMAX(1,0,2)(2,0,3)24	372.53	0.75
FB Prophet	405.55	0.72
Random Forest Regressor	266.48	0.80
XG Boost Regressor	255.65	0.85
Stacked Model	251.33	0.86

Takeaways & Next Steps

- General model can be applied to other cities
- Station Level demand
- Rebalancing efforts
- Typical Pickup & Delivery problem

Thank you