Solid State Microwave Devices and Applications

Course Project

Power Amplifier Design

Group:

Harshul Agarwal	15D070043
Mohak Sahu	15D070047
Om Kolhe	150070008
Ritesh Kumar	15D070033

Design Steps

Cascade the 2 stages and run S parameter simulation.

Fig: 2 stage amplifier

AIM:

- Get the combined S parameters.
- Check for stability.

S Parameter Simulation results:

freq	S(1,1)	S(1,2)	S(2,1)	S(2,2)
520.0 MHz	0.954 / -51.934	1.788E-4 / 12.589	10.175 / -175.692	0.734 / -135.415

Stability Factor:

freq	StabFact1	
520.0 M Hz	10.833	

Stability Circles:

Observation:

- K>1, $|\Delta|$ <1 means unconditional stability.
- Both source and load stability circles are outside the Smith chart

Conclusion: We are safe

Design Steps

Unilateral or Bilateral Design?

- > S_{12} is not 0.
- Check unilateral figure of merit.

freq	U	Error_min_dB	Error_max_dB
520.0 MHz	0.031	-0.261	0.269

Observation: 0.27dB error is tolerable

Conclusion: We will do unilateral design

Design Steps

- Since we don't have stability issues, we can go with any possible gain.
- \rightarrow $G_{TU}(dB) = G_{S}(dB) + G_{O}(dB) + G_{L}(dB)$

AIM:

- Find maximum possible gain.
- ullet Find the corresponding $\Gamma_{\rm S}$ and $\Gamma_{\rm L}$

Equations:

freq	Gs_max	G_0	GL_max
520.0 MHz	11.057	103.524	2.167

freq	Gs_max_db	Go_dB	GL_max_db
520.0 MHz	10.436	20.150	3.358

Design Step: Choosing Source and Load Gain

Result:

- Source gain circle selected for Gain = 10.3dB
- $\Gamma_{\rm S}$ chosen for $Z_{\rm S}$ = 50 * (0.169 + j2.024)
- Load gain circle selected for Gain = 3.2 dB
- Γ_1 chosen for $Z_1 = 50 * (0.262 + j0.397)$

Design Step: Design matching network

Using Smith Chart Utility tool to match

source impedance : 50 * (0.169 + j2.024)

Load impedance : 50 * (0.262 + j0.397)

Matching simulation Setup (without the s param file):

Matching result:

Setup for simulation with S param file:

S param plot:

Conclusion: Working

Design Step: Bias T design and simulation

AIM:

- DC bias the transistor for proper working
- Separate DC and RF signals with proper blocking

Used capacitors for DC blocking and inductors for AC short

Simulation with transmission lines

Simulation result:

Observation: Shift in peak frequency

Need to tune matching network elements to get the peaks at 520 MHz

Use tuner to tune L and C values of matching circuits

Tuner in ADS:

Final result after tuning:

Layout (in EAGLE):

RESULT:

Observations:

- The DC part of circuit is functioning properly.
- At Vgs= 3.3 V and Vds = 5.4V the circuit is drawing 105 mA current.
- S₂₁ observed -30DB

Improvements done during testing:

- Replaced 1uH inductor with 10uH (had better SRF) to avoid RF leaking into DC.
- Added 50 Ω resistors in the drain paths.