INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4049B buffers HEX inverting buffers

Product specification
File under Integrated Circuits, IC04

January 1995

HEX inverting buffers

HEF4049B buffers

DESCRIPTION

The HEF4049B provides six inverting buffers with high current output capability suitable for driving TTL or high capacitive loads. Since input voltages in excess of the buffers' supply voltage are permitted, the buffers may also be used to convert logic levels of up to 15 V to standard TTL levels. Their guaranteed fan-out into common bipolar logic elements is shown in the table below.

HEF4049BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4049BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4049BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America

Guaranteed fan-out in common logic families

DRIVEN ELEMENT	GUARANTEED FAN-OUT
standard TTL	2
74 LS	9
74 L	16

APPLICATION INFORMATION

Some examples of applications for the HEF4049B are:

- LOCMOS to DTL/TTL converter
- . HIGH sink current for driving 2 TTL loads
- HIGH-to-LOW level logic conversion

Input protection

FAMILY DATA, I_{DD} LIMITS category BUFFERS

See Family Specifications

Philips Semiconductors Product specification

HEX inverting buffers

HEF4049B buffers

DC CHARACTERISTICS

 $V_{SS} = 0 \text{ V}; V_I = V_{SS} \text{ or } V_{DD}$

HEF	V _{DD}	Vo	SYMBOL	T _{amb} (°C)						
ПЕГ	V	V	STWIBOL	-40		+25		+85		
				MIN.	MAX.	MIN.	MAX.	MN.	MAX.	
Output (sink)	4,75	0,4		3,5	_	2,9	_	2,3	_	mA
current LOW	10	0,5	I _{OL}	12,0	_	10,0	_	8,0	_	mA
	15	1,5		24,0	_	20,0	_	16,0	_	mA
Output (source)	5	4,6		0,52	-	0,44	_	0,36	_	mA
current HIGH	10	9,5	—Іон	1,3	_	1,1	_	0,9	_	mA
	15	13,5		3,6	_	3,0	_	2,4	_	mA
Output (source)										
current HIGH	5	2,5	—Іон	1,7	_	1,4	_	1,1	_	mA

HEC	V _{DD}	Vo	SYMBOL	T _{amb} (°C)						
HEC	V	V	STINIBUL	–55		+25		+125		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Output (sink)	4,75	0,4		3,6	_	2,9	_	1,9	_	mA
current LOW	10	0,5	I _{OL}	12,5	_	10,0	_	6,7	_	mA
	15	1,5		25,0	_	20,0	_	13,0	_	mA
Output (source)	5	4,6		0,52	_	0,44	_	0,36	_	mA
current HIGH	10	9,5	—Іон	1,3	_	1,1	_	0,9	_	mA
	15	13,5		3,6	_	3,0	_	2,4	_	mA

	V _{DD} V	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays	5		35	70	ns	26 ns + (0,18 ns/pF) C _L
$I_n \rightarrow O_n$	10	t _{PHL}	15	30	ns	11 ns + (0,08 ns/pF) C _L
HIGH to LOW	15		12	25	ns	9 ns + (0,05 ns/pF) C _L
	5		50	100	ns	23 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	25	50	ns	14 ns + (0,23 ns/pF) C _L
	15		20	40	ns	12 ns + (0,16 ns/pF) C _L
Output transition	5		20	40	ns	3 ns + (0,35 ns/pF) C _L
times	10	t _{THL}	10	20	ns	3 ns $+$ (0,14 ns/pF) C_L
HIGH to LOW	15		7	14	ns	2 ns + (0,09 ns/pF) C _L
	5		60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}	30	60	ns	9 ns + (0,42 ns/pF) C _L
	15		20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

HEX inverting buffers

HEF4049B buffers

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$2 500 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	11 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	35 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)