Chapter 1: The Database Environment

Modern Database Management
6th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

Definitions

Data: Meaningful facts, text, graphics, images, sound, video segments

Database: An organized collection of logically related data

Information: Data processed to be useful in decision making

Metadata: Data that describes data

Figure 1-1a Data in Context

Class Roster

Course: MGT 500 Semester: Spring 200X

Business Policy Large volume of facts, difficult

to interpret or make decisions

Section: 2 based on

Name	ID	Major	GPA
Baker, Kenneth D.	324917628	MGT	2.9
Doyle, Joan E.	476193248	MKT	3.4
Finkle, Clive R.	548429344	PRM	2.8
Lewis, John C.	551742186	MGT	3.7
McFerran, Debra R.	409723145	IS	2.9
Sisneros, Michael	392416582	ACCT	3.3

Figure 1-1b Summarized data

Useful information that managers can use for decision making and interpretation

Table 1-1 Metadata

Descriptions of the properties or characteristics of the data, including data types, field sizes, allowable values, and documentation

Table 1-1 Example Metadata for Class Roster

Da	ta Item		Val	ue	
Name	Туре	Length	Min	Max	Description
Course	Alphanumeric	30			Course ID and name
Section	Integer	1	1	9	Section number
Semester	Alphanumeric	10			Semester and year
Name	Alphanumeric	30			Student name
ID	Integer	9			Student ID (SSN)
Major	Alphanumeric	4			Student major
GPA	Decimal	3	0.0	4.0	Student grade point average

Disadvantages of File Processing

Program-Data Dependence

All programs maintain metadata for each file they use

Data Redundancy (Duplication of data)

Different systems/programs have separate copies of the same data

Limited Data Sharing

No centralized control of data

Lengthy Development Times

Programmers must design their own file formats

Excessive Program Maintenance

- 80% of of information systems budget Chapter 1

Figure 1-2 Three file processing systems at Pine Valley Furniture

Problems with Data Dependency

Each application programmer must maintain their own data

Each application program needs to include code for the metadata of each file

Each application program must have its own processing routines for reading, inserting, updating and deleting data

Lack of coordination and central control
Non-standard file formats

Problems with Data Redundancy

Waste of space to have duplicate data Causes more maintenance headaches The biggest Problem:

- When data changes in one file, could cause inconsistencies
- Compromises data integrity

SOLUTION: The DATABASE Approach

Central repository of shared data

Data is managed by a controlling agent

Stored in a standardized, convenient

form

Requires a Database Management System (DBMS)

Database Management System

A DBMS is a data storage and retrieval system which permits data to be stored non-redundantly while making it appear to the user as if the data is well-integrated.

Database Management System

Advantages of Database Approach

Program-Data Independence

- Metadata stored in DBMS, so applications don't need to worry about data formats
- Data queries/updates managed by DBMS so programs don't need to process data access routines
- Results in: increased application development and maintenance productivity

Minimal Data Redundancy

Leads to increased data integrity/consistency

Advantages of Database Approach

Improved Data Sharing

Different users get different views of the data

Enforcement of Standards

All data access is done in the same way

Improved Data Quality

Constraints, data validation rules

Better Data Accessibility/ Responsiveness

Use of standard data query language (SQL)

Security, Backup/Recovery, Concurrency

Disaster recovery is easier

Costs and Risks of the Database Approach

Up-front costs:

- Installation Management Cost and Complexity
- Conversion Costs

Ongoing Costs

- Requires New, Specialized Personnel
- Need for Explicit Backup and Recovery

Organizational Conflict

Old habits die hard

Chapter 1 © Prentice Hall, 2002

Chapter 1

Chapter 1

Chapter 1 © Prentice Hall, 2002

Figure 1-4 Order, Order_Line, Customer, and Product tables

Relationships established in special columns that provide links between tables

Figure 1-5
Client/server
system for
Pine Valley
Furniture
Company

Figure 1-6 Customer invoice (Pine Valley Furniture Company)

Application program functions:

inserting new data, updating existing data, deleting existing data, reading data for display

Chapter 1

The Range of Database Applications

Personal Database – standalone desktop database

Workgroup Database – local area network (<25 users)

Department Database – local area network (25-100 users)

Enterprise Database – wide-area network (hundreds or thousands of users)

Figure 1-7
Typical data
from a
personal
computer
database

Customer

Customer Name:

Multi Media, Inc.

Address:

1000 River Road

City:

San Antonio

State:

TΧ

Zip:

76235

Phone:

(219) 864-2000

Next Contact Date:

10/17/2000

Time: 10:30 AM

Contact History for Customer

Date	Time	Contact	Comments
08/04/2000	10:00 AM	Roberts	Review proposal
08/19/2000	MA 00:80	Roberts	Revise schedule
09/10/2000	09:00 AM	Pearson	Sign contract
09/21/2000	02:00 PM	Roberts	Follow up

Figure 1-8 Workgroup database with local area network

Figure 1-9 An enterprise data warehouse

Components of the Database Environment

CASE Tools – computer-aided software engineering

Repository – centralized storehouse of metadata

Database Management System (DBMS) – software for managing the database

Database – storehouse of the data

Application Programs – software using the data

User Interface – text and graphical displays to users

Data Administrators – personnel responsible for maintaining the database

System Developers – personnel responsible for designing databases and software

End Users – people who use the applications and databases

Figure 1-10 Components of the database environment

Evolution of DB Systems

Flat files - 1960s - 1980s

Hierarchical – 1970s - 1990s

Network – 1970s - 1990s

Relational – 1980s - present

Object-oriented – 1990s - present

Object-relational – 1990s - present

Data warehousing – 1980s - present

Web-enabled – 1990s - present