

Universitá di Pisa - Dipartimento di Matematica

GEOMETRIA I

Simmaco Di Lillo

dsimmaco@gmail.com

Rielaborazione delle lezioni di R. Benedetti

S. Manfredini

a.a. 2018-19

Indice

1	Spazi Vettoriali 1.1 Spazio di matrici	5
2	Sottospazi vettoriali 2.0.1 Somma di sottospazi	8 11
3		12
	ı	14
		15
	3.3 Alcune applicazioni sulle matrici	16
4	Basi e dimensioni	7
		21
	4.2 Coordinate	25
5	Matrice associata ad un'applicazione lineare	26
		28
6	SD-equivalenza 2	29
7	Sistemi lineari e algoritmo di Gauss	33
		33
	7.2 Algoritmo di Gauss	34
	7.2.1 Calcolo del rango	35
	7.2.2 Sistema omogeneo	36
	$oldsymbol{arphi}$	36
		37
	7.2.5 Vettori linearmente indipendenti	37
8	D-equivalenza 3	8
9	S-equivalenza 4	11
10	Spazio duale	12
	•	14
		46
11	Determinante	18
		52
		52
		53
12	Somma diretta multipla	54
13	Alcune nozioni sugli endomorfismi 5	55
		55
	13.2 Alcune propietá	56
	13.3 Ideali di un endomorfismo	57
		58
		59
	13.3.3 Polinomio minimo di un vettore	60

	1	61
		63
		65
		67
	13.5.1 Simultanea triangolazione	69
11	Endomorfismi coniugati	70
14		72
		73
		80
		83
	11.1 Calcolo della forma di gordani	
15	Complementi	84
	15.0.1 Centro degli endomorfismi	84
16		85
	1	85
	1 1	87
	1	88
	1	88
		90
		90
	1	92
		93 96
	0	90 96
	16.7.1 Congruenza	
	16.8 Teorema di estensione di Witt	
	16.8.1 Teorema di estensione - caso non degenere	
	16.8.2 Complementi non degeneri	
	16.8.3 Teorema di estensione caso generale	
	16.9 Gruppo ortogonale	
	16.9.1 Riflessioni parallele ad un vettore	
	16.10Prodotti scalari anisotropi	
	16.11Piano iperbolico	
	16.12Decomposizione di Witt	
	16.12.1 Caso complesso	
	16.12.2 Caso reale	
	16.13Teorema di rappresentazione	12
	16.14Aggiunto	
	16.15Teorema spettrale reale	.15
17		18
	17.1 Teorema spettrale e operatori normali	.19
10	Geometria Affine	20
10	18.1 Spazio affine	_
	18.2 Combinazione affine di punti	
	18.3 Sottospazio affine	
	18.3.1 Giaciture	
		$\frac{21}{30}$

1	8.5 Affinitá su uno spazio vettoriale	133
1	8.6 Affinitá in versione matriciale	136
1	8.7 Isometrie	138
1	8.8 Dimensione e indipendenza lineare	139
	18.8.1 Formula di Grassman per sottospazi affini	140
1	8.9 Rapporto semplice	141
	18.9.1 Caso complesso	141
1	8.10Caratterizzazione geometrica delle affinità	142
19 C	Coniche affini 1	44
1	9.1 Classificazione affine delle coniche	146
	19.1.1 Classificazione complessa	147
	19.1.2 Classificazione reale	149
1	9.2 Classificazione isometrica delle coniche reali	151

1 Spazi Vettoriali

Definizione 1.1 (Spazio vettoriale).

Sia \mathbb{K} un campo e sia V un insieme non vuoto sul quale sono definite 2 operazioni:

$$+: V \times V \to V$$

$$\cdot : \mathbb{K} \times V \to V$$

che verificano le seguenti proprietà:

1. (V, +) rende V un gruppo commutativo

2.
$$\forall \lambda_1, \lambda_2 \in \mathbb{K} \ \forall v \in V \ (\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v$$

3.
$$\forall \lambda \in \mathbb{K} \ \forall v_1, v_2 \in V \quad \lambda \cdot (v_1 + v_2) = \lambda \cdot v_1 + \lambda \cdot v_2$$

4.
$$\forall \lambda_1, \lambda_2 \in \mathbb{K} \ \forall v \in V \ (\lambda_1 \cdot \lambda_2) \cdot v = \lambda_1 \cdot (\lambda_2 \cdot v)$$

5.
$$\forall v \in \mathbb{K} \quad 1 \cdot v = v$$

Allora V è detto uno spazio vettoriale sul campo \mathbb{K} oppure un \mathbb{K} -spazio vettoriale

Osservazione 1. Gli elementi dello spazio vettoriale vengono chiamati vettori mentre gli elementi del campo scalari.

Usando la notazione di sopra la prima operazione prende il nome di somma di vettori mentre la seconda prodotto per scalari

Esempio 1.1. \mathbb{K}^n è uno spazio vettoriale su \mathbb{K} .

Le 2 operazioni sono così definite:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \vdots \\ \lambda \cdot x_n \end{pmatrix}$$

Esempio 1.2. $\mathbb{K}^E = \{f : E \to \mathbb{K}\}\ con\ le\ seguenti\ operazioni$

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda f)(x) = \lambda f(x)$$

è \mathbb{K} -spazio vettoriale.

Esempio 1.3. $\mathbb{K}[x]$ con le usuali somme e prodotto per uno scalare di polinomi è un \mathbb{K} -spazio vettoriale

1.1 Spazio di matrici

La matrice è una tabella di numeri organizzati in righe e colonne.

Denotiamo con $M(m, n, \mathbb{K})$ la matrice di taglia $m \times n$ (m righe, n colonne) a coefficienti in \mathbb{K} . Ogni elemento della matrice è denotato da 2 indici che indicano rispettivamente l'indice di riga e di colonna.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Definizione 1.2. Sia $A \in M(m, n, \mathbb{K})$

Denotiamo con:

- A_i la riga i-eisma
- A^j la colonna j-esima
- \bullet $[A]_{i,j}$ l'entrata di posto ij della matrice

Definizione 1.3 (Somma tra matrici).

La somma tra matrici si fa posto per posto.

Siano $A, B \in M(m, n, \mathbb{K})$ allora

$$\forall i = 1, \dots, m \quad \forall j = 1, \dots, n \quad [A + B]_{i,j} = [A]_{i,j} + [B]_{i,j}$$

Definizione 1.4 (Prodotto per scalari).

Il prodotto di una matrice per uno scalare si fa moltiplicando tutte le entrate della matrice per lo scalare.

Siano $A \in M(m, n, \mathbb{K})$ e $\lambda \in K$ allora:

$$\forall i = 1, \dots, m \quad \forall j = 1, \dots, n \quad [\lambda \cdot A]_{i,j} = \lambda [A]_{i,j}$$

Proposizione 1.4. L'insieme $M(m, n, \mathbb{K})$ con le 2 operazioni sopra definite è uno spazio vettoriale sul campo \mathbb{K}

Definizione 1.5 (Prodotto tra matrici).

Il prodotto tra 2 matrici è un operazione così definita:

$$M(m, k, \mathbb{K}) \times M(k, n, \mathbb{K}) \to M(m, n, \mathbb{K}) \qquad (A, B) \to AB$$

$$\forall i, j \quad [AB]_{ij} = \sum_{h=1}^{k} [A]_{ih} \cdot [B]_{hj}$$

Osservazione 2. Il prodotto tra matrici non è commutativo

Definizione 1.6 (Diagonale).

Sia $A \in M(m, n, \mathbb{K})$, la diagonale di A è

$$\{[A]_{ii} \mid 1 \le i \le \min(m, n)\}$$

Definizione 1.7. Sia $A \in M(m, n, \mathbb{K})$ diciamo che A è

- Diagonale se $\forall i \neq j \quad [A]_{ij} = 0$
- Triangolare superiore se $\forall i > j \quad [A]_{ij} = 0$
- Triangolare inferiore se $\forall i < j \quad [A]_{ij} = 0$

2 Sottospazi vettoriali

Definizione 2.1 (Sottospazio vettoriale). Sia V \mathbb{K} -spazio vettoriale. $W\subseteq V$ si dice sottospazio vettoriale di V se:

- 1. $0 \in W$ oppure $W \neq \emptyset$
- 2. $\forall w_1, w_2 \in W \quad w_1 + w_2 \in W \text{ (chiuso per somma)}$
- 3. $\forall \lambda \in \mathbb{K} \, \forall w \in W \quad \lambda \cdot w \in W \text{ (chiuso per prodotto per scalari)}$

Se W è un sottospazio vettoriale di V, W con l'operazione di somma e prodotto ristrette è uno spazio vettoriale

Proposizione 2.1. L' intersezione di 2 sottospazi vettoriali è un sottospazio vettoriale e più in generale l'intersezione numerabile di una famiglia di sottospazi è un sottospazio.

Dimostrazione.

• Essendo A e B sottospazi vettoriali

$$0 \in A \quad 0 \in B$$

dunque

$$0 \in A \cap B$$

• Siano $x, y \in A \cap B$. Essendo $A \in B$ sottospazi vettoriali

$$x + y \in A, x + y \in B$$

dunque

$$x + y \in A \cap B$$

• La dimostrazione della chiusura per prodotto di scalari è analoga alla precedente.

Osservazione 3. In generale, l'unione di sottospazi vettoriali non è un sottospazio vettoriale. In \mathbb{R}^2 due rette distinte passanti per l'origine sono sottospazi di \mathbb{R}^2 ma se consideriamo la loro unione essa non è chiusa per somma

Definizione 2.2 (Span X).

Sia V uno spazio vettoriale e sia X un suo sottoinsieme non vuoto

$$Span(X) = \bigcap_{\substack{X \subseteq W \\ W \text{ sottospazio vettoriale di } V}} W$$

Osservazione 4. Span(X) è un sottospazio vettoriale per la proposizione 2.1

Definizione 2.3 (Combinazione lineare).

Sia X un sottoinsieme di V (spazio vettoriale).

 $v \in V$ si esprime come combinazione lineare di elementi di X se

$$v = \sum_{x \in X} a_x x$$
 $a_x \in \mathbb{K}$ $\{x \mid a_x \neq 0\}$ è finito

Definizione 2.4 (Comb X).

$$Comb(X) = \{v \in V \mid v \text{ si esprime come c.i di } X\}$$

Teorema 2.2. Comb(X) è un sottospazio vettoriale.

Dimostrazione.

• Poichè $X \neq \emptyset$ consideriamo la combinazione lineare

$$\sum_{x \in X} 0 \cdot x$$

tale combinazione esprime il vettore nullo quindi $0 \in Comb(X)$

• Se $v, w \in Comb(X)$ allora

$$v = \sum_{x \in X} a_x x \quad w = \sum_{x \in X} b_x x$$

quindi

$$v + w = \sum_{x \in X} (a_x + b_x)x$$

da cui segue che $v + w \in Comb(X)$

• Se $v \in Comb(X)$ allora

$$v = \sum_{x \in X} a_x x$$

quindi $\forall \lambda \in \mathbb{K}$

$$\lambda v = \lambda \sum_{x \in X} a_x x = \sum_{x \in X} (\lambda a_x) x$$

ovvero $\lambda v \in Comb(X)$

Lemma 2.3 (Minimalitá di Comb X).

Sia V uno spazio vettoriale

Sia S un sottospazio vettoriale di V e X un sottoinsieme finito non vuoto di V

$$X \subset S \subseteq Comb(X) \quad \Rightarrow \quad S = Comb(X)$$

Dimostrazione.

$$\subseteq$$
 per tesi

$$\supseteq$$
 Sia $X = \{x_1, \dots, x_n\}$

$$\forall x \in Comb(X) \quad x = \lambda_1 x_1 + \dots + \lambda_n x_n \quad \text{dove } \lambda_i \in \mathbb{K} \quad \forall i = 1, \dots n$$

ora da $X \subset S$ segue che $x_i \in S$ e poichè S è un sottospazio vettoriale $\lambda_1 x_1 + \cdots + \lambda_n x_n \in S$ \square

Osservazione 5. Il lemma precedente ci dice che Comb(X) è il più piccolo (rispetto all'inclusione) sottospazio vettoriale che contiene l'insieme X

Teorema 2.4. Comb(X)=Span(X)

Dimostrazione.

- 1. $X \subseteq Span(X)$ infatti tutti i W che interseco per ottenere Span(X) contengono X, quindi anche la loro intersezione lo contiene
- 2. $Span(X) \subseteq Comb(X)$ infatti $X \subseteq Comb(X)$ in modo ovvio, dunque poichè l'intersezione è più piccola (rispetto l'inclusione) abbiamo la disuguaglianza

Dai 2 punti ottengo

$$X \subseteq Span(X) \subseteq Comb(X)$$

dunque per la minimalitá di Comb(X) (Lemma 2.3) segue la tesi.

2.0.1 Somma di sottospazi

Definizione 2.5 (Somma di sottospazi).

Siano W_1 e W_2 sottospazi vettoriali di un medesimo spazio. Allora

$$W_1 + W_2 = Span(W_1 \cup W_2)$$

Osservazione 6. Possiamo giustificare la notazione infatti

$$\forall v \in W_1 + W_2 \quad \exists w_1 \in W_1 \, w_2 \in W_2 \qquad v = w_1 + w_2$$

Definizione 2.6 (Somma diretta).

Se $W_1 \cap W_2 = \{0\}$ allora denotiamo $W_1 + W_2$ con

$$W_1 \oplus W_2$$

tale somma prende il nome di somma diretta

Teorema 2.5. Se la somma tra W_1 e W_2 è diretta allora

$$\forall z \in W_1 + W_2 \quad \exists! w_1 \in W_1 \ w_2 \in W_2 \quad z = w_1 + w_2$$

Dimostrazione. Supponiamo per assurdo che

$$z = w_1 + w_2 = w'_1 + w'_2 \text{ con } w_1, w'_1 \in W_1 \quad w_2, w'_2 \in W_2$$

allora $w_1-w_1'=w_2-w_2'$ quindi poiché W_1 e W_2 sono chiusi rispetto alla somma

$$w_1 - w_1' \in W_1 \quad w_2 - w_2' \in W_2$$

da ciò segue che

$$w_1 - w_1' = w_2 - w_2' \in W_1 \cap W_2 = \{0\} \implies w_1 = w_1' \quad w_2 = w_2'$$

3 Applicazioni lineari

Definizione 3.1 (Applicazione lineare).

Siano V e W spazi vettoriali su uno stesso campo K.

Una funzione $f: V \to W$ si dice lineare se

- 1. $\forall v, v' \in V \quad f(v+v') = f(v) + f(v')$ (rispetta la somma)
- 2. $\forall \lambda \in \mathbb{K}, \forall v \in V \quad f(\lambda \cdot v) = \lambda \cdot f(v)$ (rispetta il prodotto per scalari)

Diamo una definizione equivalente

Definizione 3.2. Sia f come sopra.

f è lineare se trasforma combinazioni lineari di V in combinazioni lineari di W con gli stessi coefficienti

Osservazione 7. Se f è lineare allora f(0) = 0.

$$f(0) = f(0+0) = f(0) + f(0) \Rightarrow f(0) = 0$$

Definizione 3.3 (Omomorfismi).

Siano V e W spazi vettoriali sullo stesso campo K.

$$Hom(V, W) = \{f : V \to W \mid \text{ lineare } \}$$

Proposizione 3.1. Hom(V, W) è un sottospazio vettoriale.

Definizione 3.4 (Endomorfismi).

Sia V uno spazio vettoriale.

Sia $f:V\to V$ un'applicazione lineare allora f prende il nome di endomorfismo di V. L'insieme degli endomorfismi di uno spazio vettoriale si indica con

$$End(V) = Hom(V, V)$$

Definizione 3.5 (Isomorfismi).

Sia $f \in Hom(V, W)$, f è un isomorfismo se

- f è bigettiva
- f^{-1} è lineare ovvero $f^{-1} \in Hom(W, V)$

Teorema 3.2. $Sia\ f \in Hom(V, W)$

$$f \ bigettiva \Rightarrow f \ e \ un \ isomorfismo$$

Dimostrazione. Chiamiamo $g = f^{-1}$

Essendo f bigettiva

$$\forall w_1, w_2 \in W \quad \exists ! v_1, v_2 \in V \quad \text{t. c.} \quad f(v_1) = w_1 \in f(v_2) = w_2$$

Dalla linearitá di f otteniamo

$$f(\lambda_1 v_1 + \lambda_2 v_2) = \lambda_1 w_1 + \lambda_2 v_2 \quad \forall \lambda_1, \lambda_2 \in \mathbb{K}$$

e applicando ad entrambi i membri g

$$\lambda_1 g(w_1) + \lambda_2 g(w_2) = g(\lambda_1 w_1 + \lambda_2 w_2) \quad \forall w_1, w_2 \in W \quad \forall \lambda_1, \lambda_2 \in \mathbb{K}$$

Teorema 3.3 (Composizione). Siano V, W, Z spazi vettoriali su uno stesso campo

$$f \in Hom(V, W) \ g \in Hom(W, Z) \implies f \circ g \in Hom(V, Z)$$

Dimostrazione. Dobbiamo provare che $g \circ f$ è lineare.

Mostriamo solamente che la composizione rispetta la somma (la verifica per il prodotto è analoga)

$$\forall v_1, v_2 \in V \quad (g \circ f)(v_1 + v_2) = g(f(v_1 + v_2))$$

sfruttando la linearitá di f

$$(g \circ f)(v_1 + v_2) = g(f(v_1) + f(v_2))$$

ora, anche g è lineare quindi:

$$(g \circ f)(v_1 + v_2) = (g \circ f)(v_1) + (g \circ f)(v_2)$$

Definizione 3.6 (Gruppo lineare di V).

$$GL(V) = \{ f \in End(V) \mid f \ invertibile \}$$

Teorema 3.4 ((($GL(V), \circ$) è un gruppo).

Dimostrazione.

- Se $f, g \in End(V)$ anche $f \circ g \in End(V)$. $f \circ g : V \to V$ e la composizioni di funzioni lineari è lineare
- • è associativa $g((f+h))(v) = g(f(v)+h(v)) = g \circ f(v) + g \circ h(v)$
- id_V è elemento neutro infatti $id_V \circ f = f \circ id_V = f$

Osservazione 8. In generale il gruppo lineare di V non è abeliano (non vale la proprietà commutativa)

3.1 Alcuni sottospazi indotti da f

Proposizione 3.5 (Immagine).

L'immagine della funzione lineare $f: V \to W$ è un sottospazio vettoriale.

Dimostrazione.

- 1. f(0) = 0 quindi $0 \in f(V)$
- 2. $w_1, w_2 \in f(V)$ \Rightarrow $\exists v_1, v_2 \in V$ $f(v_1) = w_1$ $f(v_2) = w_2$ $w_1 + w_2 = f(v_1) + f(v_2) = f(v_1 + v_2) \in f(V)$
- 3. La dimostrazione del fatto che sia chiuso rispetto al prodotto è analoga

Definizione 3.7 (Nucleo).

Sia $f \in Hom(V, W)$

$$Ker(f) = f^{-1}(\{0\}) = \{v \in V \mid f(v) = 0\}$$

Proposizione 3.6. Ker(f) è un sottospazio vettoriale di V

Dimostrazione.

- 1. $0 \in Ker(f)$ infatti se f è lineare f(0) = 0
- 2. Se $v_1, v_2 \in Ker(f)$ allora $f(v_1) = f(v_2) = 0$ dunque

$$f(v_1 + v_2) = f(v_1) + f(v_2) = 0$$

La somma di 2 elementi del nucleo appartiene al nucleo.

3. Se $v_1 \in Ker(f)$ allora $f(v_1) = 0$ dunque

$$f(\lambda v) = \lambda f(v) = \lambda \cdot 0 = 0$$

Il prodotto di un elemento di un nucleo per un qualsiasi scalare appartiene al nucleo.

Proposizione 3.7. Se f è una funzione lineare,

$$f \ \dot{e} \ iniettiva \Leftrightarrow Ker(f) = \{0\}$$

 $Dimostrazione. \Rightarrow$

Poichè f è lineare allora f(0) = 0.

Ora poichè f è iniettiva

$$\forall v \in V, v \neq 0 \quad f(v) \neq f(0) = 0$$

dunque $Ker(f) = \{0\} \Leftarrow Siano v_1, v_2 \in V \text{ tale che } f(v_1) = f(v_2) \text{ allora}$

$$f(v_1) - f(v_2) = f(v_1 - v_2) = 0 \implies v_1 - v_2 \in Ker(f)$$

Ora poichè il nucleo è ridotto al solo $\{0\}$ $v_1 - v_2 = 0$ ovvero $v_1 = v_2$

3.2 Matrici e applicazioni lineari

Proposizione 3.8. Ogni matrice induce un'applicazione lineare.

Dimostrazione. Sia $A \in M(m, n, \mathbb{K})$ allora definiamo

$$L_A: \mathbb{K}^n \to \mathbb{K}^m \quad X \to A \cdot X$$

l'applicazione appena definita è lineare poichè lo è la moltiplicazione di matrici

Proposizione 3.9. Ogni applicazione lineare è indotta da una matrice.

$$\forall g \in Hom(\mathbb{K}^m, \mathbb{K}^n) \quad \exists ! A \in M(n, m, \mathbb{K}) \quad t.c \quad g = L_A$$

Dimostrazione. Da

$$g(e_1) = A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = A^1$$

deduco che l'unica matrice possibile è della forma

$$A = (g(e_1), \cdots, g(e_m))$$

Verifichiamo che con questa scelta di A, si verifica che

$$g(X) = A \cdot X \quad \forall X \in \mathbb{K}^m$$

$$A \cdot X = x_1 g(e_1) + \dots + x_m g(e_m) = g(x_1 e_1 + \dots + x_m e_m) = g \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = g(X)$$

Mettendo insieme le proposizioni precedenti otteniamo

Proposizione 3.10.

$$M(m, n, \mathbb{K}) \cong Hom(\mathbb{K}^n, \mathbb{K}^m)$$

Data questa "uguaglianza" tra applicazioni lineari e matrici, a volte, useremo la notazione "la funzione A" sottintendendo la funzione lineare associata ad A (L_A)

3.3 Alcune applicazioni sulle matrici

Definizione 3.8 (Trasposta).

$$^{t}: M(m, n, \mathbb{K}) \to M(n, m, \mathbb{K}) \quad A \to A^{t}$$

$$\operatorname{con} [A^{t}]_{ii} = [A]_{ii}$$

Proposizione 3.11. La trasposta è lineare.

Definizione 3.9. Sia $A \in M(m, n, \mathbb{K})$ A si dice :

- simmetrico se $A^t = A$
- antisimmetrico se $A^t = -A$

Sia inoltre:

- $S_n = \{ A \in M(n, \mathbb{K}) \mid A^t = A \}$
- $\mathcal{A}_n = \{ A \in M(n, \mathbb{K}) \mid A^t = -A \}$

Proposizione 3.12. se in \mathbb{K} $2 \neq 0$ allora

$$M(n, \mathbb{K}) = \mathcal{S}_n \oplus \mathcal{A}_n$$

Dimostrazione.

• In modo ovvio vale che $S_n + A_n \subseteq M(n, \mathbb{K})$. Andiamo a mostrare l'altra inclusione

$$\forall B \in M(n, \mathbb{K}) \quad B + B^t \in \mathcal{S}_n \quad B - B^t \in \mathcal{A}_n$$

inoltre

$$B = (B + B^t) + (B - B^t)$$

• Sia $B \in \mathcal{S}_n \cap \mathcal{A}_n$ allora

$$B^t = B \quad B$$
 è simmetrica
$$B^t = -B \quad B$$
 è antisimmetrica

dunque

$$2A = 0$$
 $A = 0$

Definizione 3.10 (Traccia).

$$tr: M(n, \mathbb{K}) \to \mathbb{K} \quad tr(A) = \sum_{i=1}^{n} [A]_{ii}$$

Ovvero una funzione che associa ad ogni matrice la somma degli elementi della diagonale

Proposizione 3.13. La traccia è un'applicazione lineare

4 Basi e dimensioni

Definizione 4.1 (Finitamente generato).

Sia V un \mathbb{K} -spazio vettoriale.

V è finitamente generato se

$$\exists v_1, \ldots, v_n \in V$$
 t. c. $V = Span(v_1, \ldots, v_n)$

In tal caso $\{v_1, \ldots, v_n\}$ è detto insieme di generatori di V

Definizione 4.2 (Indipendenza lineare).

Siano $v_1, \ldots, v_n \in V$ (K-spazio vettoriale), essi sono linearmente indipendenti se

$$\forall \sum_{i=1}^{n} a_i v_i = 0 \quad \Rightarrow \quad a_i = 0 \quad \forall i = 1, \dots, n$$

ovvero se 0 si esprime come combinazione lineare di $\{v_1, \ldots, v_n\}$ allora tutti i coefficienti della combinazione devono essere nulli.

Proposizione 4.1. v_1, \ldots, v_n sono dipendenti $\Leftrightarrow \exists i \in [1, n] \quad v_i \in Span(v_1, \ldots, v_n)$

 $Dimostrazione. \Rightarrow$

Se v_1, \ldots, v_n sono dipendenti allora $a_1v_1+\cdots+a_nv_n=0$ e $\exists i \quad a_i\neq 0$

$$v_i = -a_i^{-1}(a_1v_1 + \dots + a_iv_i + \dots + a_nv_n)$$

 $Dimostrazione. \Leftarrow$

Supponiamo che quello v_1 appartenga allo Span degli altri.

$$v_1 = a_2 v_2 + \dots + a_n v_n$$

quindi se considero questa combinazione

$$a_1v_1 - (a_2v_2 + \cdots + a_nv_n) = 0$$

ma i coefficienti possono anche non essere tutti 0 $a_1 = 1$ e gli altri 1

Definizione 4.3 (Base).

Un insieme ordinato $\{v_1, \ldots, v_n\}$ di vettori di V è una base di V se

- v_1, \ldots, v_n sono linearmente indipendenti
- $\{v_1, \ldots, v_n\}$ è un insieme di generatori

Proposizione 4.2 (Algoritmo di estrazione ad una base).

Da ogni insieme finito di generatori non nulli si puó estrarre una base .

Sia $X = \{v_1, \ldots, v_n\}$ un insieme di generatori non nulli.

L'algoritmo è definito in modo induttivo, ad ogni passo dell'algoritmo si avrá una situazione del tipo

$$Y \mid X$$

• Passo 1

$$\begin{cases} Y_1 = \{v_1\} \\ X_1 = \{v_2, \dots, v_n\} \end{cases}$$

• Regola di passaggio.

Al passo m-esimo sia $X_m = \{x_0, \dots\}$

$$\begin{cases} Y_{m+1} = Y_m \\ X_{m+1} = X_m - \{x_0\} \end{cases}$$

$$- se \ x_0 \notin Span(Y_m)$$

$$\begin{cases} Y_{m+1} = Y_m \cup \{x_0\} \\ X_{m+1} = X_m - \{x_0\} \end{cases}$$

L'algoritmo termina quando si realizza la configurazione $Y \mid \emptyset$ e Y è la base voluta

Lemma 4.3. L'algoritmo che trasforma X in Y genera una base di V . Occorre dimostrare :

- 1. L'algoritmo termina
- 2. Y è linearmente indipendente
- 3. Y genera V

Dimostrazione.

Sia
$$Y = \{y_1, \dots, y_m\}$$
 dove $y_i = v_j \quad \forall i = 1, \dots, m$

1. L'algoritmo termina in un numero finito di passaggi infatti ad ogni passo

$$|X_{m+1}| = |X_m| - 1$$

2. Per assurdo suppongo che Y non è formato da vettori linearmente indipendenti allora

$$\exists \sum_{j=1}^{n} a_j y_j = 0 \quad \text{con} \quad a_j \neq 0$$

Sia $k = \max\{i \mid a_i \neq 0\}$ (k esiste perchè l'insieme non è vuoto)

$$\sum_{j=1}^{k} a_j y_j = 0 \quad \Rightarrow \quad a_k y_k = -\sum_{j=1}^{k-1} a_j v_j \quad \Rightarrow \quad y_k = \sum_{j=1}^{k-1} b_j y_j$$

quindi y_k è combinazione lineare dei vettori che lo precedono ma questo è assurdo per come funziona l'algoritmo

3. Y genera V poiché X genera V ed vettori di X che vengono esclusi da Y si possono ottenere come combinazione lineare di quelli che restano in Y

Proposizione 4.4 (Algoritmo di estensione ad una base).

Se lo spazio è finitamente generato, da ogni insieme finito di vettori linearmente indipendenti si si puó estrarre una base

Dimostrazione. Sia

$$X = \{x_1, \dots, x_n\}$$
 un insieme di vettori linearmente indipendenti

Sia V uno spazio vettoriale finitamente generato, quindi

$$\exists Z = \{z_1, \dots, z_k\}$$
 un insieme di generatori

Sia

$$\tilde{X} = \{x_1, \dots, x_n, z_1, \dots, z_k\}$$

tale insieme genera poichè contiene Z, dunque possiamo applicare l'algoritmo di estrazione ottenendo una base Y.

Inoltre per come opera l'algoritmo $X\subseteq Y$ dunque ho esteso X ad una base di V

Lemma 4.5 (Valori su una base).

Un'applicazione lineare $f \in Hom(V, W)$ è ben definita se si assegnano i valori di f solamente sui vettori di una base di V.

Dimostrazione. Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ una base di V. Supponiamo di aver assegnato

$$f(v_1) = w_1$$

$$\vdots$$

$$f(v_n) = w_n$$

$$con w_i \in W$$

Proviamo che $\forall v \in V$ è ben definito il valore di f(v). Dal fatto che \mathfrak{B} è una base di V ne segue che

$$\exists a_1, \dots, a_n \in \mathbb{K} \quad v = a_1 v_1 + \dots + a_n v_n$$

Dunque sfruttando la linearitá di f otteniamo

$$f(v) = a_1 f(v_1) + \dots + a_n f(v_n) = a_1 w_1 + \dots + a_n w_n$$

Osservazione 9. Il lemma precedente dimostra molto di più infatti dice che esiste un' unica applicazione lineare che manda una base in vettori preassegnati

4.1 Dimensioni

Proposizione 4.6. Sia V uno spazio vettoriale finitamente generato e siano

- X un insieme di generatori
- Z è linearmente indipendente

allora

$$|X| \ge |Z|$$

Dimostrazione. Siano

$$X = \{x_1, \dots, x_n\}$$
$$Z = \{z_1, \dots, z_k\}$$

Se considero l'insieme ordinato $z_1 \cup X$ genera poiché X genera; tale insieme non non è linearmente indipendente infatti $z_1 \in Span(X)$ (X genera).

Comincio ad applicare l'algoritmo di estrazione (comincio da z_1) finché non elimino il primo elemento (esiste poiché per quanto detto sopra l'insieme non è linearmente indipendente).

Aggiungo anche z_2 all'insieme ottenuto con il primo algoritmo e riapplico l'algoritmo (un altro x_i viene eliminato per lo stesso motivo di prima).

Iterando si possono verificare 2 diverse possibilità:

- 1. Introduco tutti gli z_i quindi $|Z| \leq |X|$
- 2. Se n < k riesco ad introdurre solamente z_1, \ldots, z_n . dunque $\{z_1, \ldots, z_n\}$ genera V quindi $z_{n+1} \in Span(z_1, \ldots, z_n)$ ma ciò è assurdo poiché l'insieme Z è linearmente indipendente.

Corollario 4.7. Se X e Y sono basi di V (spazio vettoriale finitamente generato) allora

$$|X| = |Y|$$

Dimostrazione.

• >

 \overline{X} è un insieme di generatori

Z è formato da vettori linearmente indipendenti

$$|X| \ge |Z|$$

• <

Z è un insieme di generatori

X è formato da vettori linearmente indipendenti

$$|X| \leq |Z|$$

Poiché valgono entrambe le disuguaglianze |X| = |Z|

Grazie al corollario precedente è possibile introdurre la seguente definizione:

Definizione 4.4 (Dimensione).

Sia V uno spazio vettoriale allora definiamo la dimensione di V

$$\dim V = |X|$$

dove X è una base arbitraria di V.

Proposizione 4.8 (Formula delle dimensioni).

 $Sia\ f \in Hom(V, W)\ allora$

$$\dim V = \dim Imf + \dim Kerf$$

Dimostrazione. Sia

$$\{z_1,\ldots,z_s\}$$
 una base del nucleo

estendiamola a

$$\{z_1, \dots, z_s, x_1, \dots, x_n\}$$
 base di V

Mostriamo che

$$\{f(v_1),\ldots,f(v_n)\}$$

è una base dell'immagine.

• L'insieme genera

$$\forall w \in Im(f) \quad \exists v \in V \quad w = f(v)$$

Dunque

$$w = f\left(\sum_{i=1}^{s} a_i z_i + \sum_{i=1}^{n} b_i v_i\right) = \sum_{i=1}^{s} a_i f(z_i) + \sum_{i=1}^{n} b_i f(v_i) = \sum_{i=1}^{n} b_i f(v_i)$$

• L'insieme è formato da vettori linearmente indipendenti. Sia

$$\sum_{i=1}^{n} a_i f(v_i) = 0$$

dunque per linearitá

$$f\left(\sum_{i=1}^{n} a_i v_i\right) = 0$$

ovvero $\sum_{i=1}^{n} a_i v_i \in Kerf$ da cui

$$\sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{s} b_i z_i$$

$$\sum_{i=1}^{n} a_i v_i - \sum_{i=1}^{s} b_i z_i = 0$$

L'ultima combinazione esprime il vettore nullo come combinazione lineare di elementi di una base quindi, in particolare, $a_i = 0 \quad \forall i = 1, \dots, n$ Ovvero

$$\sum_{i=1}^{n} a_i f(v_i) = 0 \quad \Rightarrow \quad a_i = 0 \quad \forall i = 1, \dots, n$$

Osservazione 10. La proposizione appena enunciata oltre a dimostrare la formula delle dimensioni ci fornisce anche un modo per poter costruire una base dell'immagine di f.

Corollario 4.9. $f \in Hom(V, W)$

f isomorfismo $\Leftrightarrow f$ manda una base di V in una base di W

Dimostrazione. \Rightarrow Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ una base di V.

Nella dimostrazione della formula delle dimensione abbiamo dimostrato che $f(\mathfrak{B})$ è una base dell'immagine di f, ora dal fatto che f è un isomorfismo segue che Imf = W da cui $f(\mathfrak{B})$ è una base di W

 \Leftarrow Sia \mathfrak{B} come sopra e sia $w_i = f(v_i) \quad \forall i = 1, \dots, n$.

Supponiamo che $\{w_1, \ldots, w_n\}$ è una base di W.

L'applicazione f risulta dunque invertibile infatti f ammette un' inversa g

$$g: W \to V \quad g(w_i) = v_i \quad \forall i = 1, \dots, n$$

Osserviamo che g è ben definita perchè è costruita assegnando i valori su una base

Proposizione 4.10 (Invariante completo isomorfismo).

$$V, W sono isomorfi \Leftrightarrow \dim V = \dim W$$

 $Dimostrazione. \Rightarrow$

Se V e W sono isomorfi allora esiste $f:V\to W$ isomorfismo e per il corollario 4.9 f manda una base di V in una di W da cui l'uguaglianza delle dimensioni

 $Dimostrazione. \Leftarrow$

Sia

$$\{v_1, \ldots, v_n\}$$
 base di V

е

$$\{w_1,\ldots,w_n\}$$
 base di W

Sia

$$f: V \to W$$

$$\sum_{i=1}^{n} a_i v_i \to \sum_{i=1}^{n} a_i w_i$$

• f è lineare

$$\forall v, w \in V \quad v = \sum_{i=1}^{n} a_i v_i \quad w = \sum_{i=1}^{n} b_i v_i$$
$$f(v+w) = f\left(\sum_{i=1}^{n} (a_i + b_i) v_i\right) = \sum_{i=1}^{n} (a_i + b_i) w_i = f(v) + f(w)$$

• f è biettiva infatti si puó costruire la funzione inversa

$$f^{-1}: W \to V \quad \sum_{i=1}^{n} a_i w_i \to \sum_{i=1}^{n} a_i v_i$$

Osservazione 11. Dalla proposizione segue che ogni spazio vettoriale è isomorfo ad uno spazio standard della stessa dimensione di V se dimV=n allora

$$V \cong \mathbb{K}^n$$

. - .

Infatti dim $\mathbb{K}^n = n$ poichè e_1, \dots, e_n è una sua base

Proposizione 4.11 (Formula di Grassman).

Siano W e Z sottospazi di V finitamente generato.

$$\dim(W+Z) = \dim W + \dim Z - \dim(W \cap Z)$$

Sia

$$\mathfrak{D} = \{t_1, \dots, t_s\}$$
 base di $V \cap Z$

estendiamola a

$$\mathfrak{B}_W = \{t_1, \ldots, t_s, w_1, \ldots, w_k\}$$
 base di W

e

$$\mathfrak{B}_Z = \{t_1, \dots, t_s, z_1, \dots, z_n\}$$
 base di Z

Mostriamo che $\mathfrak{B} = \mathfrak{B}_W \cup \mathfrak{B}_Z$ è base di W + Z

• B è un insieme di generatori.

$$\forall v \in W + Z \quad \exists w \in W \ z \in Z \quad v = w + z$$

Ora

$$w = \sum_{i=1}^{s} a_i t_i + \sum_{i=1}^{k} b_i w_i$$
$$z = \sum_{i=1}^{s} c_i t_1 + \sum_{i=1}^{n} d_i z_i$$

dunque

$$\forall v \in W + Z \quad v = w + z = \sum_{i=1}^{s} (a_i + c_i)t_1 + \sum_{i=1}^{k} b_i w_i + \sum_{i=1}^{n} d_i w_i$$

• L'insieme B è formato da vettori linearmente indipendenti. Supponiamo che

$$\sum_{i=1}^{s} a_i t_i + \sum_{i=1}^{k} b_i w_i + \sum_{i=1}^{n} c_i z_i = 0$$

allora

$$\sum_{i=1}^{s} a_i t_i + \sum_{i=1}^{k} b_i w_i = -\sum_{i=1}^{n} c_i z_i$$

dunque

$$\sum_{i=1}^{n} c_i z_i \in W \cap Z \quad \Rightarrow \quad \sum_{i=1}^{n} c_i z_1 = \sum_{i=1}^{s} d_i t_i \quad \Rightarrow \quad \sum_{i=1}^{n} c_i z_i - \sum_{i=1}^{s} d_i t_i = 0 \quad \Rightarrow \quad c_i = 0 \quad \forall i = 1, \dots, n \quad d_j = 0 \quad \forall j = 1, \dots, s$$

in oltre

$$\sum_{i=1}^{s} a_i t_i + \sum_{i=1}^{k} b_i w_i \in W \cap Z \quad \Rightarrow \quad \sum_{i=1}^{s} a_i t_i + \sum_{i=1}^{k} b_i w_i = -\sum_{i=1}^{s} d_i t_i \quad \Rightarrow$$

$$\sum_{i=1}^{s} (a_i + d_i) t_i + \sum_{i=1}^{k} b_i w_i = 0 \quad \Rightarrow \quad a_i = 0 \quad \forall i = 1, \dots, s \quad b_j = 0 \quad \forall j = 1, \dots, k$$

4.2 Coordinate

Proposizione 4.12 (Unicità della combinazione). Sia B una base di V con n elementi allora

$$\forall v \in V \quad v = \sum_{j=1}^{n} a_j v_j \ \hat{e} \ unica$$

Dimostrazione. Supponiamo che

$$v = \sum_{i=1}^{n} b_i v_i$$

Allora

$$\sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} b_i v_1 \quad \Rightarrow \quad \sum_{i=1}^{n} (a_i - b_i) v_i = 0 \quad \Rightarrow \quad a_i - b_i = 0 \quad \Rightarrow \quad a_i = b_i \quad \forall i = 1, \dots, n$$

Grazie alla precedente proposizione è possibile definire le coordinate

Definizione 4.5 (Coordinate).

Le coordinate del vettore v rispetto alla base \mathfrak{B} sono i coefficienti dell'unica combinazione lineare che esprime v.

Tale coordinate si indica con $[v]_{\mathfrak{B}}$

Proposizione 4.13.

$$[\,]_{\mathfrak{B}}:V\to\mathbb{K}^n\quad v\to[v]_{\mathfrak{B}}$$

è un isomorfismo di spazi vettoriali.

Dimostrazione. Fissiamo $\mathfrak{B} = \{v_1, \ldots, v_n\}$ base di V

• lineare.

Sia $v = a_1v_1 + \cdots + a_nv_n$ e $w = b_1v_1 + \cdots + b_nv_n$ allora

$$[v+w]_{\mathfrak{B}} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n + b_n \end{pmatrix} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = [v]_{\mathfrak{B}} + [w]_{\mathfrak{B}}$$

$$[\lambda v]_{\mathfrak{B}} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \lambda \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \lambda [v]_{\mathfrak{B}}$$

• iniettiva.

$$Ker[]_{\mathfrak{B}} = \left\{ v \in V \middle| [v]_{\mathfrak{B}} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \right\} = \{0\}$$

• suriettiva.

$$\forall \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \in \mathbb{K}^n \quad \exists v = a_1 v_1 + \dots + a_n v_n \quad [v]_{\mathfrak{B}} = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$$

5 Matrice associata ad un'applicazione lineare

Definizione 5.1 (Matrice associata a f rispetto a \mathfrak{B} e \mathfrak{D}).

Data $f \in Hom(V, W)$ e $\mathfrak B$ e $\mathfrak D$ basi rispettivamente di V e W è definita un unica applicazione lineare

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f): \mathbb{K}^n \to \mathbb{K}^n$$

che fa commutare il seguente diagramma

$$V \xrightarrow{f} V$$

$$\downarrow []_{\mathfrak{B}} \qquad \downarrow []_{\mathfrak{D}}$$

$$\mathbb{K}^{n} \xrightarrow{M_{\mathfrak{D}}^{\mathfrak{B}}(f)} \mathbb{K}^{m}$$

Osservazione 12. Se $\mathfrak{B} = \{v_1, \ldots, v_n\}$ allora

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) = ([f(v_1)]_{\mathfrak{D}}, \dots, [f(v_n)]_{\mathfrak{D}})$$

infatti poichè il diagramma commuta

Inoltre discende dalla definizione che

$$\forall v \in V$$
 $[f(v)]_{\mathfrak{D}} = M_{\mathfrak{D}}^{\mathfrak{B}}(f) \cdot [v]_{\mathfrak{B}}$

Proposizione 5.1 (Matrice associata alla composizione).

Siano $f \in Hom(V, W)$ e $g \in Hom(W, Z)$, dette \mathfrak{B} , \mathfrak{D} e \mathfrak{R} basi rispettivamente di V, W e Z segue che

$$M_{\mathfrak{R}}^{\mathfrak{B}}(g \circ f) = M_{\mathfrak{R}}^{\mathfrak{D}}(g) \cdot M_{\mathfrak{D}}^{\mathfrak{B}}(f)$$

Dimostrazione. $\forall v \in V$

$$[g(f(v)]_{\mathfrak{R}} = M_{\mathfrak{R}}^{\mathfrak{D}}(g) \cdot [f(v)]_{\mathfrak{D}} = M_{\mathfrak{R}}^{\mathfrak{D}}(g) \cdot M_{\mathfrak{D}}^{\mathfrak{B}}(f) \cdot [v]_{\mathfrak{B}}$$

Dove i passaggi sono giustificati dall'osservazione precedente.

Ora poichè vale $\forall v$ abbiamo l'uguaglianza voluta

Osservazione 13. Grazie alla proposizione sopra enunciata otteniamo che il seguente diagramma commuta

$$V \xrightarrow{f} W \xrightarrow{g} Z$$

$$\downarrow []_{\mathfrak{B}} \qquad \downarrow []_{\mathfrak{D}} \qquad \downarrow []_{\mathfrak{R}}$$

$$\mathbb{K}^{n} \xrightarrow{A} \mathbb{K}^{m} \xrightarrow{B} \mathbb{K}^{q}$$

$$\xrightarrow{B \cdot A}$$

dove

$$A = M_{\mathfrak{D}}^{\mathfrak{B}}(f) \qquad B = M_{\mathfrak{R}}^{\mathfrak{D}}(g)$$

Grazie alle matrici associate ad un applicazione lineare possiamo riprendere quanto detto in 3.2 e esplicitare l'isomorfismo tra $Hom(\mathbb{K}^n, \mathbb{K}^m)$ e $M(m, n, \mathbb{K})$

Teorema 5.2 $(M_{\mathfrak{D}}^{\mathfrak{B}})$ è un isomorfismo). Siano V e W spazi vettoriali Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ una base di V e $\mathfrak{D} = \{w_1, \ldots, w_m\}$ una base di W. Allora l'applicazione

$$M_{\mathfrak{D}}^{\mathfrak{B}}: Hom(V,W) \to M(m,n,\mathbb{K}) \qquad f \to M_{\mathfrak{D}}^{\mathfrak{B}}(f)$$

è un isomorfismo

Dimostrazione. Mostriamo che f è

• lineare. Siano $f, g \in Hom(V, W)$ allora

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f+g) = ([(f+g)(v_{1})]_{\mathfrak{D}}, \dots, [(f+g)(v_{n})]_{\mathfrak{D}}) =$$

$$([f(v_{1})+g(v_{1})]_{\mathfrak{D}}, \dots, [f(v_{n})+g(v_{n})]_{\mathfrak{D}}) =$$

$$= ([f(v_{1})]_{\mathfrak{D}}, \dots, [f(v_{n})]_{\mathfrak{D}}) + ([g(v_{1})]_{\mathfrak{D}}, \dots, [g(v_{n})]_{\mathfrak{D}}) = M_{\mathfrak{D}}^{\mathfrak{B}}(f) + M_{\mathfrak{D}}^{\mathfrak{B}}(g)$$

• Iniettiva. Se $f \in KerM_{\mathfrak{D}}^{\mathfrak{B}}$ allora

$$f(v_1) = \dots = f(v_n) = 0$$

Ora poichè abbiamo definito f su una base esse è ben definita ed è l'applicazione nulla, il nucleo, dunque, è ridotto al solo 0 di Hom(V, W)

• Suriettiva. $\forall A \in M(m, n, \mathbb{K})$ possiamo considerare una f che faccia commutare il diagramma

$$\begin{array}{ccc} V & \xrightarrow{f} & V \\ & \downarrow_{[]_{\mathfrak{B}}} & & \downarrow_{[]_{\mathfrak{D}}} \\ \mathbb{K}^n & \xrightarrow{A} & \mathbb{K}^m \end{array}$$

tale f esiste poichè $[]_{\mathfrak{D}}$ e $[]_{\mathfrak{D}}$ sono isomorfismi dunque invertibili. Dalla definizione data di matrice associata segue che $A=M_{\mathfrak{D}}^{\mathfrak{B}}(f)$

Corollario 5.3.

$$End(V) \cong M(n, \mathbb{K})$$

 $GL(V) \cong GL(n, \mathbb{K})$

Dimostrazione. Prendiamo in entrambi i casi come base in partenza ed in arriva la stessa base \mathfrak{B} di V dunque le matrici sono quadrate.

Inoltre per dimostrare il secondo isomorfismo, osserviamo che

$$f \in GL(V) \quad \Rightarrow \quad \exists f^{-1} \in GL(V)$$

ora per quanto visto sulla composizione di funzioni

$$M_{\mathfrak{B}}^{\mathfrak{B}}(f\circ f^{-1})=M_{\mathfrak{B}}^{\mathfrak{B}}(f)\cdot M_{\mathfrak{B}}^{\mathfrak{B}}(f^{-1})$$

Ma

$$M_{\mathfrak{B}}^{B}(f \circ f^{-1}) = M_{\mathfrak{B}}^{\mathfrak{B}}(id) = I_{n} \quad \Rightarrow \quad \left(M_{\mathfrak{B}}^{\mathfrak{B}}(f)\right)^{-1} = M_{\mathfrak{B}}^{\mathfrak{B}}(f^{-1})$$

5.1 Matrice cambiamento di base

Definizione 5.2 (Matrice cambiamento di base).

Siano \mathfrak{D} e \mathfrak{B} basi di V.

Definiamo matrice del cambiamento di base da $\mathfrak D$ a $\mathfrak B$ la matrice

$$M_{\mathfrak{D}}^{\mathfrak{B}}(id_V)$$

Lemma 5.4. Sia

$$q:V\to\mathbb{K}^n$$

Allora

$$\exists !\mathfrak{B} \ base \ di \ V \qquad t. \ c \ . \ g = []_{\mathfrak{B}}$$

Dimostrazione. Se una tale $\mathfrak B$ esiste allora poichè $[\]_{\mathfrak B}$ è invertibile anche g lo è dunque

$$\mathfrak{B} = \{g^{-1}(e_1), \dots, g^{-1}(e_n)\}$$

Osserviamo, inoltre, che una tale base soddisfa le richieste.

Proposizione 5.5. Sia V uno spazio vettoriale e sia \mathfrak{B} una sua base. Sia $A \in GL(n)$. Allora

- (i) $\exists ! \mathfrak{D}$ base di V tale che $A = M_{\mathfrak{D}}^{\mathfrak{B}}(id)$
- (ii) $\exists ! \mathfrak{T} \text{ base di } V \text{ tale che } A = M_{\mathfrak{B}}^{\mathfrak{T}}(id)$

Dimostrazione. (i) Le ipotesi creano un diagramma del genere

$$V \xrightarrow{id} V$$

$$\downarrow_{[]_{\mathfrak{B}}}$$

$$K^{n} \xrightarrow{A} K^{n}$$

Ponendo $g = A \circ []_{\mathfrak{B}}$ segue che il diagramma sottostante commuta

$$V \xrightarrow{id} V$$

$$\downarrow []_{\mathfrak{B}} \qquad \downarrow g$$

$$K^n \xrightarrow{A} K^n$$

Ora concludo applicando il lemma precedente

Osservazione 14. La proposizione precedente ci dice che ogni matrice invertibile puó essere interpretata come

- Un endomorfismo
- Una matrice di cambiamento di base (in avanti o in indietro)

6 SD-equivalenza

Definizione 6.1 (SD-equivalenza funzioni). Siano $f, g \in Hom(V, W)$

$$f \sim_{SD} g \quad \Leftrightarrow \quad \exists h \in GL(V), \quad \exists k \in GL(W) \quad g = k \circ f \circ h$$

ed in versione matriciale

Definizione 6.2 (SD-equivalenza matrici). Siano $A, b \in M(m, n, \mathbb{K})$ Allora

$$A \sim_{SD} B \quad \Leftrightarrow \quad \exists M \in GL(m), \quad \exists N \in Gl(n) \quad B = MAN$$

Osservazione 15. Le relazioni sopra definite sono di equivalenza

Proposizione 6.1. I seguenti fatti sono equivalenti

- (i) $f \sim_{SD} g$
- (ii) $\exists \mathfrak{B}$ base di V e $\exists \mathfrak{D}$ base di W tali che

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) \sim_{SD} M_{\mathfrak{D}}^{\mathfrak{B}}(g)$$

(iii) $\exists \mathfrak{B}, \mathfrak{B}'$ basi di V e $\exists \mathfrak{D}, \mathfrak{D}'$ basi di W tali che

$$M_{\mathfrak{D}'}^{\mathfrak{B}'}(f) = M_{\mathfrak{D}}^{\mathfrak{B}}(g)$$

Dimostrazione. Dimostriamo le varie implicazioni

(i) ⇒ (ii).
 Le ipotesi ci portano alla seguente situazione

Ora poichè $g=h\circ f\circ k$ ne segue per quanto detto in 5.1 che $M_{\mathfrak{D}}^{\mathfrak{B}}(g)=NAM.$ Ora

$$h \in GL(W) \quad \Rightarrow M \in GL(m,\mathbb{K})$$

$$k \in GL(V) \implies M \in GL(n, \mathbb{K})$$

da cui

$$M_{\mathfrak{D}}^{\mathfrak{B}}(g) = M M_{\mathfrak{D}}^{\mathfrak{B}}(f) N \quad \Rightarrow \quad M_{\mathfrak{D}}^{\mathfrak{B}}(g) \sim_{SD} M_{\mathfrak{D}}^{\mathfrak{B}}(f)$$

(ii) ⇒ (i)
 Le ipotesi ci portano alla seguente situazione

$$\begin{array}{cccc} V & \xrightarrow{--k} & V & \xrightarrow{f} & W & \xrightarrow{--h} & W \\ \downarrow_{[]_{\mathfrak{B}}} & & \downarrow_{[]_{\mathfrak{B}}} & & \downarrow_{[]_{\mathfrak{D}}} & \downarrow_{[]_{\mathfrak{D}}} \\ \mathbb{K}^n & \xrightarrow{N} & \mathbb{K}^n & \xrightarrow{A} & \mathbb{K}^m & \xrightarrow{M} & \mathbb{K}^m \end{array}$$

dove $MAN = M_{\mathfrak{D}}^{\mathfrak{B}}(g)$ ora poichè

$$M \in GL(m, \mathbb{K}) \quad \Rightarrow h \in GL(W)$$

$$N \in GL(n, \mathbb{K}) \implies M \in GL(V)$$

da cui

$$g = h \circ f \circ k \quad \Rightarrow \quad f \sim_{SD} g$$

• $(i) \Rightarrow (iii)$

L'ipotesi ci porta ad un diagramma come segue

$$\begin{array}{cccc} V & \xrightarrow{k} & V & \xrightarrow{f} & W & \xrightarrow{h} & W \\ \downarrow []_{\mathfrak{B}} & & \downarrow []_{\mathfrak{B}} & & \downarrow []_{\mathfrak{D}} & & \downarrow []_{\mathfrak{D}} \\ \mathbb{K}^n & -\stackrel{N}{\longrightarrow} & \mathbb{K}^n & \xrightarrow{A} & \mathbb{K}^m & -\stackrel{M}{\longrightarrow} & \mathbb{K}^m \end{array}$$

dove $M_{\mathfrak{D}}^{\mathfrak{B}}(g) = MAN$

Ora poichè M e N sono invertibili li posso interpretare come matrice di cambiamento di base quindi

$$\exists \mathfrak{B}'$$
 base di V —t. c . $M_{\mathfrak{B}}^{\mathfrak{B}'}(id_V) = N$

$$\exists \mathfrak{D}'$$
 base di W . t. c . $M_{\mathfrak{D}'}^{\mathfrak{D}}(id_W) = M$

otteniamo dunque

Dunque

$$M_{\mathfrak{D}'}^{\mathfrak{B}'}(f) = M_{\mathfrak{D}'}^{\mathfrak{B}'}(id_W \circ f \circ id_V) = MAN = M_{\mathfrak{D}}^{\mathfrak{B}}(g)$$

• (iii) \Rightarrow (ii) Sia $N=M_{\mathfrak{B}}^{\mathfrak{B}'}$ e $M=M_{\mathfrak{D}'}^{\mathfrak{D}}$ allora per quanto detto sopra

$$M_{\mathfrak{D}'}^{B'}(f) = NM_{\mathfrak{D}}^{\mathfrak{B}}(f)M$$

Ora poichè N e M sono matrici di cambiamento di basi sono invertibili dunque

$$M_{\mathfrak{D}'}^{B'}(f) \sim_{SD} M_{\mathfrak{D}}^{\mathfrak{B}}(f)$$

Ma per ipotesi $M_{\mathfrak{D}'}^{B'}(f) = M_{\mathfrak{D}}^{\mathfrak{B}}(g)$ dunque

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) \sim_{SD} M_{\mathfrak{D}}^{\mathfrak{B}}(g)$$

Per continuare a studiare la relazione è utile la seguente definizione

Definizione 6.3 (Rango).

Sia $f \in Hom(V, W)$, allora definiamo il rango di f come

$$rk(f) = \dim Im f$$

Proposizione 6.2 (Invariante completo per \sim_{SD}).

$$f \sim_{SD} g \quad \Leftrightarrow \quad rk(f) = rk(g)$$

 $Dimostrazione. \Rightarrow g = k \circ f \circ h$ con $k \in h$ isomorfismi. Poichè applicazioni lineari mandano sottospazi in sottospazi e gli isomorfismi preservano la dimensione si conclude che

$$\dim Imf = \dim Img$$

← Ripercorriamo quanto fatto nella dimostrazione della formula delle dimensioni di nucleo e immagine (vedi 4.8)

Siano $f, g \in Hom(V, W)$ con dim V = n e dim W = m e sia rk(f) = rk(g) = r. Sia

$$\{v_{r+1},\,\ldots,\,v_n\}$$
una base del nucleo di f

Estendiamolo a

$$\mathfrak{B} = \{v_1 \, \ldots, \, v_r, \, v_{r+1}, \, \ldots \, v_n\}$$
 base di V

Da fatti noti sappiamo che

$$\{f(v_1), \ldots, f(v_r)\}$$
 è una base dell'immagine di f

Estendiamola tale base a

$$\mathfrak{D} = \{ f(v_1), \dots, f(v_r), w_{r+1}, \dots, w_m \}$$
 base di W

Per come sono state costruite le basi risulta che

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Se ripercorriamo la costruzione, considerando g, otteniamo 2 basi \mathfrak{B}' (base di V) e \mathfrak{D}' (base di W) tale che

$$M_{\mathfrak{D}'}^{\mathfrak{B}'}(g) = \begin{pmatrix} I_r & 0\\ 0 & 0 \end{pmatrix}$$

Da ció segue che

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) = M_{\mathfrak{D}'}^{\mathfrak{B}'}(g) \quad \Rightarrow \quad f \sim_{SD} g$$

Osservazione 16. In ogni classe SD-equivalenza possiamo scegliere un rappresentante in forma normale $J_r(m,n)$ dove r è il rango.

$$J_r = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

Lemma 6.3.

$$M \in GL(n, \mathbb{K}) \quad \Rightarrow \quad M^t \in GL(n, \mathbb{K})$$

Dimostrazione. Essendo M invertibile

$$\exists M^{-1} \in GL(n.\mathbb{K})$$
 t. c. $MM^{-1} = I_n$

Ora applicando la trasposta e ricordando che $(AB)^t = B^t A^t$ otteniamo

$$\left(M^{-1}\right)^t M^t = I_n^t = I_n$$

ora se consideriamo anche $M^{-1}M=I_n$ e data l'unicitá dell'inversa otteniamo

$$\forall M \in GL(n, \mathbb{K}) \quad (M^t)^{-1} = (M^{-1})^t \quad \Rightarrow \quad M^t \in GL(n, \mathbb{K})$$

Corollario 6.4.

$$rk(A) = rk(A^t)$$

Dimostrazione. Sia $A\in M(m,n,\mathbb{K})$ e sia rK(A)=r . Poichè il rango è un invariante completo per \sim_{SD} allora

$$A \sim_{SD} J_r \quad \Rightarrow \quad \exists M, N \text{ invertibili} \quad \text{t. c.} \quad A = M \cdot J_r \cdot N$$

Dunque se consideriamo

$$A^t = N^t \cdot J_r^t \cdot M^t = N^t \cdot J_r \cdot M^t$$

Ora per il lemma precedente M^t e N^t sono invertibili dunque

$$A^t \sim_{SD} J_r \quad \Rightarrow \quad rk\left(A^t\right) = r = rk(A)$$

7 Sistemi lineari e algoritmo di Gauss

7.1 Sistemi lineari

Definizione 7.1. Definiamo il sistema lineare di m equazione in n incognite

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

Osservazione 17. Il sistema lineare puó essere scritto nella forma AX = B dove

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \in M(m, n, \mathbb{K}),$$

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n, \qquad B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{K}^m$$

Definizione 7.2. Se B = 0 il sistema si dice omogeneo.

Le soluzioni del sistema omogeneo sono

$$\{X \in \mathbb{K}^n \mid AX = 0\} = Ker(A)$$

Definizione 7.3. Sia AX = B.

Il sistema omogeneo associato è il sistema AX = 0

Proposizione 7.1. Dato un sistema AX = B.

Se il sistema ha soluzione, presa una particolare Y_B allora

$$Sol_B = \{Y_B + X \mid X \in Sol_0\}$$

Dimostrazione. \supseteq Sia $X \in Sol_0$

$$Y_B + X \in Sol_B \Leftrightarrow A(Y_B + X) = B \Leftrightarrow AY_B + AX = B + 0 = B$$

L'ultima implicazione è vera, dunque anche la prima

Dimostrazione. \subseteq Sia $X \in Sol_B$.

$$X = Y_B + (X - Y_B)$$
 $X - Y_B \in Sol_0$

infatti

$$A(X - Y_B) = AX - AY_B = B - B = 0$$

7.2 Algoritmo di Gauss

L'algoritmo agisce o sulle righe o sulle colonne, qui viene descritto sulle righe ma per le colonne é del tutto analogo.

L'algoritmo prende in input una matrice $A \in M(m, n, \mathbb{K})$ e ne restituisce un'altra denotata con $\hat{A}_R \in M(m, n, \mathbb{K})$, il pedice indica che la matrice è ottenuta mediante le righe.

L'algoritmo costa di operazioni elementari sulle righe, distinte in 3 tipi:

- I) Scambia tra loro 2 righe $A_i \leftrightarrow A_J$
- II) Moltiplica una riga per uno scalare $\neq 0$ $A_i \rightarrow cA_i$ $c \neq 0$
- III) Somma ad una riga un multiplo di un altra $A_i \rightarrow A_i + cA_j$

Specifichiamo come funziona l'algoritmo: Indichiamo con $A^1, \dots A^n$ le colonne di A.

Se A=0 allora $\hat{A}_R=0$ e l'algoritmo si interrompe.

Se $A \neq 0$ allora esiste una colonna non nulla, si consideri il più piccolo indice j tale che $A_j \neq 0$

Sia i il più piccolo indice di riga tale che $a_{ij} \neq 0$ in questo caso $A_i \leftrightarrow A_j$ Abbiamo ottenuto una matrice del genere

$$\begin{pmatrix} 0 & \cdots & 0 & 1 & \cdots \\ \vdots & & \vdots & ? & \vdots \\ 0 & \cdots & 0 & ? & \vdots \end{pmatrix}$$

Applichiamo operazione del secondo tipo in modo che sotto il primo 1 ci siano solamente 0

$$\begin{pmatrix} 0 & \cdots & 0 & 1 & \cdots \\ \vdots & & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \vdots \end{pmatrix}$$

A questo punto consideriamo la matrice \tilde{A} ottenuta dimenticando la prima riga, e applichiamo l'algoritmo finché é possibile.

Iteriamo il procedimento e otteniamo una matrice \overline{A}_R (simile a questa) detta matrici a scalini

$$\begin{pmatrix}
0 & 1 & ? & ? & ? & ? \\
0 & 0 & 0 & 1 & ? & ? \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Ora continuando ad applicare operazione del 3 tipo si riesce ad ottenere degli zeri sopra gli 1, ottenendo così la matrice \hat{A}_R detta a scalini completi

$$\begin{pmatrix}
0 & 1 & ? & 0 & ? & 0 \\
0 & 0 & 0 & 1 & ? & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Gli 1 vengono chiamati PIVOT di \hat{A}_R .

La matrice \hat{A}_R ha degli 0, sotto, sopra e destra dei pivot .

7.2.1 Calcolo del rango

Definizione 7.4 (Matrice R-elementare).

Sia F una matrice di taglia $n \times n$.

F si dice R-elementare se si ottiene applicando un' operazione R-elementare alla matrice identica I_n

Lemma 7.2. Sia A una matrice $m \times n$ e sia ω un'operazione elementare di un dato tipo.

$$A \xrightarrow{\omega} A'$$

$$I_m \xrightarrow{\omega} F_{\omega}$$

Allora

$$A' = F_{\omega}A$$

Lemma 7.3. Ogni matrice R-elementare è invertibile e la sua inversa è elementare dello stesso tipo

Osservazione 18. L'algoritmo applica una serie di operazione elementari quindi :

$$\hat{A}_R = F_k \cdots F_1 A$$

ma $F_k, \dots, F_1 \in GL(m, \mathbb{K})$ quindi anche il loro prodotto appartiene al gruppo lineare ne segue che

$$\hat{A}_R \sim_S A$$

Proposizione 7.4 (Rango).

$$rk(A) = rk(\hat{A})$$

Dimostrazione. Sia $A \in M(m, n, \mathbb{K})$. Essendo $\hat{A}_R \sim_S A$ allora $rango A = rango \hat{A}_R$ infatti possiamo vedere la relazione \sim_S come un caso particolare di \sim_{SD}

Osservazione 19. L'algoritmo di Gauss permette di calcolare facilmente il rango di una matrice, conoscendo la sua ridotta a scalini, infatti il rango di una matrice a scalini è dato dal numero di pivot.

7.2.2 Sistema omogeneo

Proposizione 7.5 (Nucleo).

$$\ker A = \ker \hat{A}_R$$

Dimostrazione. Se $A \sim_S D$ allora vale che D = QA. Mostriamo che valgono entrambe le inclusioni.

• Sia $x \in \ker A$

$$DX = (QA)X = Q(0) = 0$$
 ovvero $\ker A \subseteq \ker D$

• Sia $x \in \ker D$

$$DX = (QA)X = 0 \quad Q(A(X)) = 0$$

ma $Q \in GL$ quindi ammette inversa

$$AX = 0$$
 ovvero $\ker D \subseteq \ker A$

Valgono entrambe le disuguaglianze dunque $\ker A = \ker D$

Osservazione 20 (Equazione omogenea). Dalla proposizione osserviamo che invece che risolvere l'equazione AX=0 possiamo risolvere $\hat{A}_RX=0$

7.2.3 Sistema non omogeneo

Occupiamoci ora del sistema non AX = B con $B \neq 0$ quindi non omogeneo

Definizione 7.5 (Matrice completa del sistema). Consideriamo la matrice

$$(A \mid B)$$

tale matrice viene chiamata matrice completa del sistema e si ottiene dalla matrice A dei coefficienti aggiungendo la colonna B dei termini noti.

Proposizione 7.6 (Principio di Rouché - Capelli).

Il sistema AX = B ha soluzione se e solo se

$$rk(A) = rk(A \mid B)$$

 $Dimostrazione. \Rightarrow$

Sia $A = (A^1 \cdots A^n)$. Supponiamo che il sistema abbia soluzione dunque

$$\exists \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{K}^n \quad \text{t. c.} \quad B = x_1 A^1 + \dots + x_n A^n$$

dunque

$$Span(A^{1}, \dots, A^{n}) = Span(A^{1}, \dots, A^{n}, B) \implies rk(A) = rk(A \mid B)$$

 \Leftarrow in modo contro-nominale.

Supponiamo che il sistema non abbia soluzione quindi $B \neq AX \quad \forall X \in \mathbb{K}^n$ da cui

$$Span(A^{1}, \dots A^{n}) \subseteq Span(A^{1}, \dots, B) \Rightarrow rk(A) < rk(A \mid B)$$

7.2.4 Calcolo dell'inversa

Proposizione 7.7 (Matrici invertibili). Sia A una matrice di taglia $n \times n$

$$A \in GL(n, \mathbb{K}) \quad \Leftrightarrow \quad rk(A) = n$$

 $Dimostrazione. \Rightarrow$

Se $A \in GL(n)$ allora $\exists Q \in GL(n)$ tale che $QA = I_n$ quindi

$$A \sim_S I_n \Rightarrow rk(A) = rk(I_n) = n$$

 $Dimostrazione. \Leftarrow$

Se rk(A) = n allora

$$A \sim_S I_n \Rightarrow \exists Q \in GL(n)$$
 t. c. $QA = I \Rightarrow A \in GL(n)$

Osservazione 21. Per trovare la matrice inversa basta tenere conto delle operazione R-elementari per passare dalla matrice A a I_n ovvero

$$(A \mid I_n) \xrightarrow{R-Gauss} (I_n \mid Q)$$

infatti se A viene trasformata con R-Gauss in I_n

$$I_n = F_1 \cdots F_n \cdot A$$
 con F_i R-elementari

Pongo

$$Q = A^{-1} = F_1 \cdots F_n$$

Corollario 7.8. Ogni matrice invertibile è prodotto di matrici R-elementare

7.2.5 Vettori linearmente indipendenti

Proposizione 7.9. Estrazione di una base da un gruppo di generatori.

Dati $v_1, \ldots, v_n \in \mathbb{K}^n$, sia $A = (v_1 \mid \cdots \mid v_n)$.

Detta S una ridotta a scalini di A, se S^{a_1}, \dots, S^{a_r} sono le colonne dove sono presenti i pivot allora $\{v_{a_1}, \dots, v_{a_r}\}$ sono una base di $Span(v_1, \dots, v_n)$

8 D-equivalenza

Definizione 8.1 (D-equivalenza). Siano $A, B \in M(m, n, \mathbb{K})$ allora

$$A \sim_D B \quad \Leftrightarrow \quad \exists P \in GL(n) \quad B = AP$$

Osservazione 22. Lo spazio generato dalle colonne è invariante, quindi se $A \sim_D B$ allora Im(A) = Im(B) da cui anche rk(A) = rk(B)

Definizione 8.2. $\forall 0 \leq r \leq \min(m, n)$ allora definiamo

$$M_r(m, n, \mathbb{K}) = \{ A \in M(m, n, \mathbb{K}) \mid rk(A) = r \}$$

Lo spazio $M(m, n, \mathbb{K})$ è l'unione disgiunta degli insiemi $M_r(m, n, \mathbb{K})$ al variare del rango r, possiamo restringere la relazione \sim_D a ciascuna di essi.

Per semplicitá ci restringiamo nel caso di rango massimo ovvero $r = \min(m, n)$

Regime suriettivo

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^m$$

In questo caso $Im(A) = \mathbb{K}^m$ da cui rk(A) = m.

Essendo la funzione suriettiva vale che $n \geq m$ quindi se rk(A) = m è il massimo possibile . Considero \hat{A}_C dato che il rango è m ottengo che

$$\hat{A}_C = J_m(m, n) = \begin{pmatrix} I_m & | & 0_{m, n-m} \end{pmatrix}$$

Ne segue che il quoziente $M_m(m, n, \mathbb{K}) \setminus \sim_D$ è ridotto ad un solo punto e quindi $J_m(m, n)$ è il rappresentante normale dell'unica classe di equivalenza

Regime iniettivo

$$\mathbb{K}^n \xrightarrow{A} \mathbb{K}^m$$

In questo caso $Im(A) = \mathbb{K}^n$ da cui rk(A) = n.

Essendo la funzione iniettiva vale che $n \leq m$

Definizione 8.3 (Simbolo di Schubert).

Sia \hat{A}_C la matrice ottenuta applicando ad A l'algoritmo di Gauss (completo) rispetto alle colonne.

Se il rango di A è n la matrice a scalini avrá n pivot.

$$s(\hat{A}_C) = (s_1, \cdots, s_n)$$

dove s_j è uguale all'indice di riga del j-esimo pivot di \hat{A}_C

Poniamo $\forall j = 0, \dots, m$

$$p_j: \mathbb{K}^m \to \mathbb{K}^{m-j}$$
 $p_j \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} = \begin{pmatrix} x_1 \\ \vdots \\ x_{m-j} \end{pmatrix}$

Poniamo inoltre

$$d_i = \dim(p_i(Im(A)))$$

Proposizione 8.1. La dimensione d_j varia da n a 0 in modo monotono diminuendo di 1, passando da d_{s_i+1} a d_{s_i} .

Da ció segue che il simbolo dipende solo da Im(A) dunque puó essere definito anche

$$s(A) = s(Im(A)) \quad \forall A \in M_n(m, n, \mathbb{K})$$

Il simbolo resta costante, dunque sulla classe di equivalenza .

Dimostrazione. Segue immediatamente dalla forma della matrice a scalini

Poniamo $\forall s$ simbolo

$$M_{n,s}(m,n,\mathbb{K}) = \{ A \in M_n(m,n,\mathbb{K}) \mid s(A) = s \}$$

Proposizione 8.2. Fissato un simbolo s.

Siano $A, B \in M_{n,s}(m, n, \mathbb{K})$.

$$Im(A) = Im(B) \implies \hat{A}_C = \hat{B}_C$$

Dimostrazione. Poniamo L = Im(A).

Per la proposizione precedente segue che $s = s(L) = s(A) = s(\hat{A}_C)$. Sia

$$p_s: \mathbb{K}^m \to \mathbb{K}^n \qquad p_s(X) = \begin{pmatrix} x_{s_1} \\ \vdots \\ x_{s_n} \end{pmatrix}$$

è facile verificare che la restrizione di p_s ad L è un isomorfismo.

Le colonne di \hat{A}_C formano l'unica base di L che viene mandata dalla restrizione nella base canonica di \mathbb{K}^n ; da ció segue che \hat{A}_C è completamente determinato da L da cui segue la proposizione.

Mettendo insieme quanto detto fino ad ora

Corollario 8.3 (Invariante completo).

Siano $A, B \in M(m, n, \mathbb{K})$ allora

$$A \sim_D B \quad \Leftrightarrow \quad Im(A) = Im(B)$$

Per ogni A come sopra, \hat{A}_C è il rappresentante in forma normale della classe di equivalenza $[A]_D$

Possiamo riformulare quanto detto sopra.

Definizione 8.4 (Insieme di Grassman).

$$G_{m,n} = \{ L \in \mathbb{K}^m \mid \dim L = n \}$$

L'applicazione

$$\pi: M_n(m, n, \mathbb{K}) \to G_{n,m} \qquad \pi(A) = Im(A)$$

è suriettiva, inoltre $\pi(A) = \pi(B)$ se e solo se $A \sim_D B$ quindi l'insieme di Grassman puó essere identificato con il quoziente per la relazione \sim_D

$$G_{m,n} = M(m,n,\mathbb{K}) \setminus \sim_D$$

dunque π si identifica come la proiezione naturale al quoziente

Definizione 8.5. Per ognuno dei $\binom{m}{n}$ simboli s

$$B_s = \{ L \in G_{m,n} \mid s(L) = s \}$$

$$\mathcal{A}_{C,s} = \{\hat{A}_C \in M_n(m, n, \mathbb{K}) \mid s(\hat{A}_C) = s$$

Osservazione 23. $G_{m,n}$ è unione disgiunta dei B_s

Esplicitiamo la struttura di $\mathcal{A}_{C,s}$

Definizione 8.6. Sia J_s l' unica matrice in $\mathcal{A}_{C,s}$ le cui entrate diverse dai pivot sono uguali a zero.

Sia

$$\phi_s: \mathcal{A}_{C,s} \to M(m, n, \mathbb{K}) \qquad \phi_s(\hat{A}_C) = \hat{A}_C - J_s$$

Inoltre sia $\mathcal{V}_s = Im(\phi_s)$.

Chiaramente se

$$\phi_s: \mathcal{A}_{C,s} \to \mathcal{V}_s$$

è biettivo

Proposizione 8.4. Per ogni simbolo $s = (s_1, \dots, s_n, \mathcal{V}_s \text{ è un sottospazio vettoriale di } M(m, n, \mathbb{K})$ di dimensione

$$d_s = \dim \mathcal{V}_s = \sum_{j=1}^{n} (m - s_j - (n - j))$$

Dimostrazione. Ogni matrice di \mathcal{V}_s è caratterizzata da avere un pacchetto di entrate necessariamente nulle che dipendono dal simbolo, le altre entrate sono libere, la formula ha per j-esimo addendo il numero di parametri liberi sulla j-esima colonna.

 \mathcal{V}_s è detto cella di Schubert di $G_{m,n}$ di simbolo se dimensione d_s ed è uno spazio affine $\mathcal{A}_{C,s}=J_s+\mathcal{V}_s$

Osservazione 24. Alcune osservazioni sulle celle

- 1. La dimensione massima è $d_{max} = n(m-n)$ corrispondente al simbolo $s_{max} = (1, 2, 3, \dots, n)$
- 2. La dimensione minima è $d_{min} = 0$ corrispondente al simbolo $s_{min} = (m n + 1, \dots, n)$

9 S-equivalenza

Trasponendo e sostituendo ovunque "colonna" con "riga" abbiamo un trattamento "duale" della relazione per cui $A \sim_S B$ in particolare abbiamo

Proposizione 9.1.

$$A \sim_S B \Leftrightarrow Ker(A) = Ker(B)$$

Per ogni A, \hat{A}_R è il rappresentante in forma normale di $[A]_S$.

Nel regime iniettivo il quoziente è ridotto ad un solo punto e J_{s_max} è il rappresentante in forma normale dell'unica classe di equivalenza.

Nel regime suriettivo il quoziente si identifica con $G_{m,n-m}$

10 Spazio duale

Definizione 10.1. Sia V uno spazio vettoriale su \mathbb{K} , si definisce spazio duale

$$V^* = Hom(V, \mathbb{K})$$

Gli elementi $\varphi \in V^*$ sono detti funzionali.

Proposizione 10.1. Sia dim V = n allora dim $V^* = n$

$$V^* = Hom(V, \mathbb{K}) \cong Hom(\mathbb{K}^n, \mathbb{K}) = M(1, n, \mathbb{K})$$

dove il primo isomorfismo deriva tramite passaggio di coordinate rispetto ad una base arbitrale di V da cui

$$\dim V^* = \dim M(1, n, \mathbb{K}) = n$$

Definizione 10.2 (Base duale).

Fissiamo una base $\mathfrak{B} = \{v_1, \ldots, v_n\}$ di V.

Allora la base duale di \mathfrak{B}^* di \mathfrak{B}

$$\mathfrak{B}^* = \{v_1^*, \cdots, v_n^*\}$$

gli elementi v_i^* sono definiti dalla proprietá

$$v_j^* = \delta_{i,j} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

 $\delta_{i,j}$ viene chiamato delta di Kronecker.

Proposizione 10.2. Mostriamo che la base duale è una base dello spazio duale

Dimostrazione. Mostriamo che i funzionali sono linearmente indipendenti, se

$$a_1 v_1^* + \dots + a_n v_n^* = 0$$

dove lo 0 è inteso il funzionale identicamente nullo (manda a 0 gli elementi di una base)

$$\forall j \quad (a_1 v_1^* + \dots + a_n v_n^*)(v_j) = (a_j v_j^*)v_j = a_j = 0$$

Poichè i funzionali sono n e sono linearmente indipendenti, formano una base

Corollario 10.3. $\forall \mathfrak{B} \ base \ di \ V$.

$$\varphi_{\mathfrak{B}}: V \to V^* \qquad \varphi_{\mathfrak{B}}(v_i) = v_i^*$$

è un isomorfismo

Osservazione~25. L'isomorfismo sopra definito non è canonico perchè dipende dalla scelta della base ${\mathfrak B}$

Definizione 10.3 (Bi-duale).

Sia V uno spazio vettoriale.

$$(V^{\star})^{\star} = Hom(V^{*}, \mathbb{K})$$

Osservazione 26. Poichè essere isomorfi è una relazione di equivalenza e dato che, per il corollario precedente, uno spazio vettoriale è isomorfo al suo duale ne segue che

$$V \cong V^{\star} \quad V^{\star} \cong (V^{\star})^{\star} \quad \Rightarrow \quad V \cong (V^{\star})^{\star}$$

Proposizione 10.4. L'applicazione

$$\phi: V \to (V^*)^*$$
$$v \to \varphi_v$$

dove

$$\varphi_v: V^* \to \mathbb{K}$$
$$\psi \to \psi(v)$$

- (i) è un isomorfismo canonico
- (ii) $\forall \mathfrak{B} \ base \ di \ V \ , \ \varphi_{\mathfrak{B}^*} \circ \varphi_{\mathfrak{B}}$

Dimostrazione.

(i) — Mostriamo che $\forall v \in V$ la funzione φ_v è lineare.

$$\forall \psi_1, \psi_2 \in V^*$$

$$+ \psi_2(u) = \psi_2(u) + \psi_2(u) = \varphi_2(u) + \psi_2(u) + \psi_2(u) = \psi_2(u) + \psi_2(u)$$

 $\varphi_v(\psi_1 + \psi_2) = (\psi_1 + \psi_2)(v) = \psi_1(v) + \psi_2(v) = \varphi_v(\psi_1) + \varphi_v(\psi_2)$

Il prodotto per scalari è analoga

- Mostriamo che ϕ è lineare

$$\forall v_1, v_2 \in V$$

$$\phi(v_1+v_2) = \varphi_{v_1+v_2}(\psi) = \psi(v_1+v_2) = \psi(v_1) + \psi(v_2) = \varphi_{v_1}(\psi) + \varphi_{v_2}(\psi) = \phi(v_1) + \phi(v_2)$$

Il prodotto per scalari è analoga

 $-\phi$ è isomorfismo.

Poichè dim $V = \dim (V^*)^*$ basta dimostrare l'iniettivitá di ϕ

$$Ker\phi = \left\{ v \in V \,|\, \phi(v) = 0_{(V^*)^*} \right\} \Rightarrow \forall \psi \in V^* \quad \varphi_v(\psi) = 0 \Rightarrow \psi(v) = 0$$

Da cui segue che il kernel è ridotto al solo 0

Dai punti precedenti segue che ϕ è un isomorfismo canonico tra uno spazio ed il suo bi-duale

(ii) Sia

$$\mathfrak{B} = \{v_1, \ldots, v_n\}$$
 una base di V

Poichè una funzione è univocamente determinata dai valori che assume su una base, occorre dimostrare che

$$\phi(v_i) = \varphi_{\mathfrak{B}^*} \circ \varphi_{\mathfrak{B}}(v_i) \quad \forall i = 1, \dot{n}$$
$$\phi(v_i) = \varphi_{v_i}$$
$$\varphi_{\mathfrak{B}^*} \circ \varphi_{\mathfrak{B}}(v_i) = \varphi_{\mathfrak{B}^*}(v_i \star) = (v_i^{\star})^{\star}$$

Ora poichè \mathfrak{B}^* è una base di V^* basta provare che

$$\varphi_{v_i}(v_i^{\star}) = (v_i^{\star})^{\star} (v_i^{\star}) \quad \forall j = 1, \dots, n \quad \forall i = 1, \dots, n$$

Ora vale l'uguaglianza infatti entrambe valgono $\delta_{i,j}$

10.1 Annullatore e luogo di zeri

Definizione 10.4 (Annullatore).

Sia W un sottospazio vettoriale di V

$$Ann(W) = \{ \psi \in V^* \mid \forall w \in W \, \psi(w) = 0 \}$$

Proposizione 10.5. L'annullatore di W è un sottospazio di V^* di dimensione

$$\dim(Ann(W)) = \dim V - \dim W$$

Dimostrazione. Mostriamo che è un sottospazio

- \bullet il funzionale identicamente nullo, annulla tutti i vettori di V quindi anche quelli di W
- $\forall \psi, \varphi \in Ann(W) \quad \forall w \in W \ \psi(w) = \varphi(w) = 0 \text{ quindi}$

$$(\psi + \varphi)(w) = psi(w) + \varphi(w) = 0$$

In modo analogo si mostra la chiusura rispetto al prodotto scalare

Mostriamo che vale la formula sulle dimensioni.

Sia dim V = n e dim W = k con $n \ge k$.

Sia

$$\{w_1,\,\ldots,\,w_k\}$$
una base di

estendiamola a

$$\{w_1,\,\ldots,\,w_k,\,v_{k+1},\,\ldots,\,v_n\}$$
 base di V

L'insieme

$$\{v_{k+1}^*, \ldots, v_n^*\}$$

è una base dell'annullatore.

Poich'è tali vettori appartengono alla base duale, sono linearmente indipendenti, mostriamo che generano Ann(W)

 $\forall f \in Ann(W)$ poichè \mathfrak{B}^* è una base dello spazio duale

$$f = a_1 w_1^* + \dots + a_k w_k^* + a_{k+1} v_{k+1}^* + \dots + a_n v_n^*$$

Ora

$$f \in Ann(W) \Rightarrow f(w) = 0 \quad \forall w \in W \Rightarrow f(w_i) = 0 \quad \forall i = 1, \dots k$$

quindi

$$f(w_i) = (a_1 w_1^* + \dots + a_k w_k^* + a_{k+1} v_{k+1}^* + \dots + a_n v_n^*) w_i = a_i = 0$$

Da cui segue che

$$\forall f \in Ann(W) \quad f = a_1 v_{k+1} + \dots + a_n v_n$$

Definizione 10.5 (Luogo di zeri).

Sia U un sottospazio di V^* allora

$$Z(U) = \{ v \in V \mid \forall \psi \in U \quad \psi(v) = 0 \}$$

Posso vedere il luogo di zeri come una funzione

$$Z: G_{n-k}(V^*) \to G_k(V) \quad U \to Z(U)$$

Proposizione 10.6. Il luogo di zeri è un sottospazio di V, la dimostrazione è analoga all'annullatore

Proposizione 10.7. Alcune proprietá dell'annullatore e del luogo di zeri

(i)
$$S \subseteq T \Rightarrow Ann(T) \subseteq Ann(S)$$

(ii)
$$\forall f \in V^*$$
 $Ann(f) = \phi(Kerf) \ con \ \phi \ isomorfsmo \ canonico \ V \rightarrow (V^*)^*$

(iii)
$$\forall U \ sottospazio \ di \ V \quad Ann(Ann(U)) = \phi(U)$$

(iv)
$$Ann(Ann(W)) = W$$

(v)
$$Z(Ann(W)) = W$$

Dimostrazione.

(i)
$$f \in Ann(T) \Rightarrow f(v) = 0 \quad \forall v \in T \Rightarrow f(v) = 0 \quad \forall v \in S \Rightarrow f \in Ann(S)$$

(ii)
$$Ann(f) = \{ h \in (V^*)^* \mid h(f) = 0 \} = \{ \phi(x) \in (V^*)^* \mid \phi(x)(f) = f(x) = 0 \} = \phi \left(\{ x \in V \mid f(x) = 0 \} \right) = \phi(Kerf)$$

(iii) Sia dim V = n e U sottospazio di V allora

$$\dim Ann(U) = n - \dim U$$

$$\dim Ann(Ann(U)) = n - \dim Ann(U) = n - n + \dim U$$

Ma poichè $U \cong \phi(U)$ vale che

$$\dim \phi(U) = \dim U = \dim(Ann(Ann(U)))$$

Quindi poichè i due sottospazi hanno la stessa dimensione basta dimostrare una sola inclusione

$$\forall u \in U \quad \forall \psi \in Ann(U) \quad \phi(u)(\psi) = \psi(u) = 0$$

quindi vale che $\phi(U) \subseteq Ann(Ann(U))$

 $G_{k}(V) \xrightarrow{Ann} G_{k-n}(V^{*}) \xrightarrow{Ann} G_{k}((V^{*})^{*})$ $\downarrow^{Z} \qquad \qquad \downarrow^{Q} \qquad \qquad \downarrow^{Q}$

Il diagramma commuta dove ϕ è ottenuto dall'isomorfismo canonico tra uno spazio ed il suo bi-duale

10.2 Trasposta

Definizione 10.6 (Applicazione trasposta).

Sia $f:V\to W$ allora definiamo l'applicazione trasposta

$${}^t f: W^* \to V^* \qquad {}^t f(\psi) = \psi \circ f$$

Osservazione27. Osserviamo che la funzione è ben definita. Supponiamo che $\psi\in W^*$ allora $\psi:W\to \mathbb{K}$ quindi

$$V \xrightarrow{f} W \xrightarrow{\psi} \mathbb{K}$$

ovvero $\psi \circ f \in V^*$ quindi ${}^tf:\, W^* \to V^*$

Proposizione 10.8. La trasposta è lineare

Siano $\psi, \varphi \in W^*$ allora

$${}^{t}f(\psi+\varphi)=(\psi+\varphi)\circ f=\psi\circ f+\varphi\circ f={}^{t}f(\psi)+{}^{t}f(\varphi)$$

 $Sia\ a \in \mathbb{K}$

$$^{t}f(a\psi) = (a\psi) \circ f = a(\psi \circ f) = a \cdot ^{t}f(\psi)$$

Proposizione 10.9. Per l'applicazione trasposta sono veri i seguenti fatti

- $(i)^{t}(t(f)) = f$
- (ii) Se $h: W \to Z$ lineare allora

$${}^{t}(h \circ f) = {}^{t}f \circ {}^{t}h$$

- (iii) $Ker(^tf) = Ann(Im(f))$
- (iv) $Imm(^t f) = Ann(Ker(f))$
- (v) Se \mathfrak{B} base di V e \mathfrak{D} base di W allora

$$M_{\mathfrak{B}^*}^{\mathfrak{D}^*}\left({}^tf\right) = {}^t\left(M_{\mathfrak{D}}^{\mathfrak{B}}(f)\right)$$

Dimostrazione.

(i) $V \xrightarrow{f} W \downarrow^{\phi_{V}} \downarrow^{\phi_{W}} \downarrow^{\phi_{W}} (V^{*})^{*} \xrightarrow{t(t_{f})} (W^{*})^{*}$

Devo dimostrare che il diagramma commuta quindi che

$$\phi_W \circ f = {}^t({}^tf) \circ \phi_V \text{ ovvero}$$

 $\forall v \in V$

$$(\phi_W \circ f)(v) = (t(f) \circ \phi_V)(v)$$
 ovvero

 $\forall \psi \in W^*$

$$(\phi_W \circ f)(v)(\psi) = ({}^t ({}^t f) \circ \phi_V)(v)(\psi)$$

Mostriamo che è vera l'ultima uguaglianza

$$(\phi_W \circ f)(v)(\psi) = (\phi_W(f(v)))(\psi) = \psi(f(v)) = (\psi \circ f)(v)$$

$$({}^t(f) \circ \phi_V)(v)(\psi) = {}^t(f)(\phi_V(v))(\psi) = ({}^t(f) \circ \phi_V(v))(\psi) =$$

$$= (\phi_V \circ {}^t f)(\psi) = \phi_V(v)({}^t f \circ \psi) = ({}^t f \circ \psi)(v) = (\psi \circ f)(v)$$

- (ii) ${}^t(h \circ f) : Z^* \to V^*$ quindi $\forall \psi \in Z^*$ ${}^t(h \circ f)(\psi) = \psi \circ h \circ f = \left({}^th(\psi)\right) \circ f = {}^tf\left(\left({}^th(\psi)\right)\right) = \left({}^tf \circ {}^th\right)(\psi)$
- (iii) Mostriamo entrambe le inclusioni $\subseteq \forall \psi \in Ker(^tf)$ vale

$$({}^{t}f)(\psi) = 0 \Rightarrow (\psi \circ f) = 0 \Rightarrow \forall v \in V \ \psi(f(v)) = 0 \Rightarrow \psi \in Ann(Imm(f))$$

 $\supseteq \forall \psi \in Ann(Imm(f)) \text{ vale } \forall v \in V$

$$\psi(f(v)) = 0 \Rightarrow (\psi \circ f)(v) = 0 \Rightarrow {}^t f(\psi) = 0 \Rightarrow \psi \in Ker({}^t f)$$

(iv) Dalla (iii) $Ker(^{t}(^{t}f)) = Ann(Imm(^{t}f))$

Applicando l'annullatore

$$Im(^{t}f) = Ann(Ann(Imm(^{t}f))) = Ker(^{t}(^{t}f)) = Ker(f)$$

Corollario 10.10. Rango della trasposta

Dimostrazione.

$$rk(^{t}A) = \dim Im(^{t}A) = \dim Ann(Ker(f)) = n - \dim Ker(f) = rk(A)$$

11 Determinante

Definizione 11.1 (Determinante). Sia $n \in \mathbb{N}$

Il determinante è una funzione:

$$D: M(n, \mathbb{K}) \cong \underbrace{\mathbb{K} \times \dots \mathbb{K}^n}_{\text{n volte}} \to \mathbb{K}$$

che soddisfa queste 3 proprietá:

- (i) n-lineare rispetto alle colonne
- (ii) $D(\ldots, X, X, \cdots) = 0$
- (iii) $D(I_n) = 1$

Proposizione 11.1 (Propietá aggiuntive). Sia D un determinante allora

- 1. $D(\ldots, X, Y, \cdots) = -D(\ldots, Y, X, \cdots)$
- 2. D(..., X, ..., X...) = 0
- 3. $D(\ldots, X, \ldots, Y \cdots) = -D(\ldots, Y, \ldots, X \ldots)$

Dimostrazione.

1. Dalla propietá (ii) segue che

$$D(\ldots, X+Y, X+Y, \ldots) = 0$$

ora usando la linearitá rispetto alle colonne otteniamo

$$D(\ldots,X,X,\ldots)+D(\ldots,X,Y,\ldots)+D(\ldots,Y,X,\ldots)+D(\ldots,Y,Y,\ldots)=0$$

ovvero usando la propietá (ii)

$$D(\ldots, X, Y, \ldots) = -D(\ldots, Y, X, \ldots)$$

2. Applicando la propietá sopra dimostrata otteniamo che

$$D(..., X, ..., X ...) = (-1)^{i} D(..., X, X, ...) = 0$$

3. Ripercorriamo la prima dimostrazione ed otteniamo la tesi

Proposizione 11.2 (Unicitá di D).

Supponiamo che esista una funzione D con le propietá sopra descritte allora tale funzione è unica

Dimostrazione.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} = (a_{11}E^1 + a_{21}E^2 + \cdots + a_{n1}E^n, \dots, a_{1n}E^1 + a_{2n}E^2 + \cdots + a_{nn}E^n)$$

Calcoliamo D(A) e sviluppiamo con la multilinearitá:

$$D(A) = \sum_{\sigma \in S_n} a_{\sigma(1),1} \dots a_{\sigma(n),n} D\left(E^{\sigma(1)}, \dots, E^{\sigma(n)}\right)$$

Se D esiste allora è definita nel seguente modo:

$$D(A) = \sum_{\sigma \in S_n} (-1)^{P(\sigma)} a_{\sigma(1),1} \dots a_{\sigma(n),n}$$

Dove $P(\sigma)$ indica la paritá della permutazione.

Proposizione 11.3 (Esistenza).

Esiste una funzione che soddisfa le 3 propietá

Dimostrazione. Andrebbe dimostrato che la funzione sopra definita soddisfa veramente le propietá

Lemma 11.4.

$$\Lambda^2 = \{ \phi : M(n, \mathbb{K}) \to \mathbb{K} \mid \phi \text{ soddisfa (i) } e \text{ (ii)} \}$$

è un sottospazio vettoriale e il determinante è una base

Dimostrazione. La dimostrazione che Λ^2 è un sottospazio è lasciata come esercizio .

Sia $\phi \in \Lambda^2$ tale che $\phi(I_n) = \lambda$.

Ripercorrendo la dimostrazione dell'unicitá otteniamo

$$\phi(A) = \sum_{\sigma \in S_n} a_{\sigma(1),1} \dots a_{\sigma(n),n} \phi\left(E^{\sigma(1)}, \dots, E^{\sigma(n)}\right) = \sum_{\sigma \in S_n} (-1)^{P(\sigma)} a_{\sigma(1),1} \dots a_{\sigma(n),n} \phi\left(I_n\right) = \lambda D(A)$$

e poichè vale $\forall A \in M(n, \mathbb{K})$ allora

$$\forall \phi \in \Lambda^2 \quad \phi = \lambda \cdot D$$

Proposizione 11.5 (Formula di Binet).

$$D(AB) = D(A) \cdot D(B)$$

Dimostrazione. Sia $B \in M(n, \mathbb{K})$.

Consideriamo la funzione

$$\phi(A) = D(BA) = D(BA^1, \dots, BA^n)$$

Osserviamo che $\phi \in \Lambda^2$ infatti

• Il prodotto di matrici è lineare e la composizioni di lineari è lineare

$$\bullet \ \phi(\ldots, X, X, \ldots) = D(\ldots, BX, BX, \ldots) = 0$$

Ora per il lemma precedente

$$\phi(A) = \phi(I_n) \det(A) = D(BI_n) \cdot D(A) = D(B) \cdot D(A)$$

Osservazione 28. Essendo K un campo $D(B) \cdot D(A) = D(A) \cdot D(B)$ da cui

$$D(AB) = D(BA)$$

Corollario 11.6.

A invertibile
$$\Leftrightarrow D(A) \neq 0$$

 $Dimostrazione. \Rightarrow$

Se A è invertibile allora esiste A^{-1}

$$1 = D(I_n) = D(AA^{-1}) = D(A)D(A^{-1})$$

dunque D(A) è invertibile ovvero è diverso da 0

 \Leftarrow in modo contro nominale.

Supponiamo che A non sia invertibile allora esiste un indice j tale che

$$A^j = \sum_{\substack{i=1\\i\neq j}}^n a_i A^i$$

quindi

$$D(A) = D(A^{1}, \dots, A^{j}, \dots, A^{n}) = a_{i}D(A^{1}, \dots, A^{1}, \dots, A^{n}) + \dots + a_{n}D(A^{1}, \dots, A^{n}, \dots, A^{n}) = 0$$

Proposizione 11.7.

$$D(A) = D(A^t)$$

Dimostrazione.

$$D(A) = \sum_{\sigma \in S_n} (-1)^{P(\sigma)} a_{\sigma(1),1} \dots a_{\sigma(n),n}$$

Ora considerando l'involuzione di S_n che manda σ in σ^{-1} e facendola agire sulla formula otteniamo

$$D(A) = \sum_{\sigma \in S_n} (-1)^{P(\sigma^{-1})} a_{\sigma^{-1}(1),1} \dots a_{\sigma^{-1}(n),n} = D(A^t)$$

Proposizione 11.8 (Calcolo del determinante con Gauss). Sia $A \in M(n, \mathbb{K})$, applico C-Gauss e ottengo \hat{A}_C

- $Se \ rk\left(\hat{A}_C\right) = rk(A) < n \ allora \ DA = 0$
- Se $rk(\hat{A}_C) = rk(A) = n$ allora $\hat{A}_C = I_n$ da cui

$$AE_1 \cdots E_k = I_n$$

con E_1, \dots, E_k matrici C-elementari tali che $E_1, \dots, E_k = A^{-1}$ da cui

$$D\left(A^{-1}\right) = \prod_{i=1}^{k} D(E_i)$$

ma le matrici elementari corrispondono ad azioni di C-Gauss dei tre tipi

- 1. Scambio di colonne D(E) = -1
- 2. Moltiplico una colonna per costante D(E) = c
- 3. Somma di una colonna per un multiplo di un altra D(E) = 1

Da cui

$$D\left(A^{-1}\right) = (-1)^{\alpha} \cdot c_1 \cdot c_s$$

Dove α è il numero di operazioni del primo tipo e c_i sono le c-esime costanti per cui moltiplico

Forniamo una nuova dimostrazione della proposizione 11.7

Corollario 11.9. $\det A = \det^t A$

Dimostrazione.

- se A non è invertibile, tA non lo è da cui
- Se A è invertibile

$$A = E_1 \cdots E_k \quad D(A) = \prod_j E_j \Rightarrow D(A^t) = \prod_j D(E_j^t)$$

dove l'ultima implicazione è lasciata per esercizio e si puó verificare nei 3 casi

Formula di Cramer per sistemi lineari 11.1

Sia $A \in M(n, \mathbb{K})$.

Studiamo il sistema AX = B.

Sia
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 una soluzione allora

$$B = x_1 A^1 + \dots + x_n A^n$$

Consideriamo la matrice

$$M_j = (A^1, \cdots, B, \cdots, A^n)$$

dove la j-esima colonna di A e sostituita da B.

Il determinante di ${\cal M}_j$ si puó calcolare usando la multilinearitá dunque

$$\det M_j = x_1 \cdot \det A$$

Se det $A \neq 0$, la soluzione X esiste ed è unica

$$x_j = \frac{\det M_j}{\det A}$$

11.2 Calcolo dell'inversa

Sia $A \in GL(n, \mathbb{K})$.

Troviamo A^{-1} come soluzione X del sistema $AX = I_n$, tale sistema si puó scomporre

$$\begin{cases} AX^1 = e_1 \\ \vdots \\ AX^n = e_n \end{cases}$$

risolvibile con Cramer

L'inverso di una matrice è una speciale funzione razionale delle entrate della matrice di partenza.

11.3 Definizione ricorsiva

Definizione 11.2 (Sviluppo di Laplace rispetto ad una riga).

Diamo una definizione ricorsiva per la formula del determinante n-esimo

$$D_1\left(\left(a\right)\right) = a$$

Fissata una riga i

$$D_{n+1}(A) = \sum_{i=1}^{n+1} (-1)^{i+j} \cdot [A]_{ij} \cdot D_n(A_{ij})$$

Dove con la notazione $A_{ij} \in M(n-1, n-1)$ si indica la matrice ottenuta cancellando la *i*-esima riga e la *j*-esima colonna.

Per visualizzare i segni possiamo usare alla matrice del segni

$$\begin{pmatrix} 1 & -1 & 1 & -1 & \cdots \\ -1 & 1 & -1 & 1 & \cdots \\ \vdots & & & \vdots \end{pmatrix}$$

Proposizione 11.10. Comunque scelgo l'indice di riga, la funzione sopra definita verifica le tre propietá caratterizzanti del determinante

Dimostrazione. Procediamo per induzione il passo base è dato da n=2

1. Proviamo la linearitá rispetto alla k-esima colonna , ovvero dobbiamo provare che $\forall j$ il termine

$$(-1)^{i+j}a_{ij}D_{n-1}(A_{ij})$$

non dipende da k

Se j = k

Il termine a_{ij} è fissato dunque non dipende da k Il termine $D_{n-1}(A_{ij})$ non dipende da A^k quindi è costante.

Se $j \neq k$

La funzione è una composizione di applicazioni lineari infatti si utilizza la proiezione

$$A^k \to A^k_{ij}$$

che è lineare

2. $D(\dots, X, X, \dots) = 0$ dove le colonne uguali sono $k \in k + 1$. Sia $j \neq k, k + 1$ Anche in A_{ij} ci sono due colonne adiacente uguali da cui $D_{n-1}(A_{ij}) = 0$ Verifichiamo ora l'altro caso

$$a_{ik}D_{n-1}(A_{ik}) = a_{i,k+1}D_{n-1}(A_{i,k+1})$$

ora entrambe le colonne sono uguali quindi è vara l'uguaglianza

3. è lasciata come esercizio

12 Somma diretta multipla

Proposizione 12.1. Sia V uno spazio vettoriale e siano W_1, \dots, W_k sottospazi vettoriali. I sequenti fatti sono equivalenti

1.
$$\forall v \in W_1 + \dots + W_k$$

$$\exists ! v_1, \cdots, v_k \ con \ v_i \in W_i \quad v = v_1 + \cdots + v_k$$

2.

$$v_1 + \dots + v_k = 0 \land v_j \in W_j \Rightarrow v_1 = \dots = v_k = 0$$

3. Se \mathfrak{B}_j é base di W_j allora

$$\mathfrak{B} = \mathfrak{B}_1 \cup \cdots \cup \mathfrak{B}_k \ \text{\'e base di } W_1 + \cdots + W_k$$

4.

$$\dim(W_1 + \dots + W_k) = \dim W_1 + \dots + \dim W_k$$

La dimostrazione é lasciata come esercizio

Definizione 12.1 (Somma diretta multipla).

Se si verificano questi fatti W_1, \cdots, W_k sono in somma diretta e si scrive

$$W_1 \oplus \cdots \oplus W_k$$

13 Alcune nozioni sugli endomorfismi

Ricordiamo cosa é un endomorfismo

Definizione 13.1 (Endomorfismo).

Sia V uno spazio vettoriale allora definiamo endomorfismo una funzione $f:V\to V$ lineare Denotiamo inoltre con

$$End(V) = \{f : V \to V \mid \text{ endomorfismo } \}$$

Proposizione 13.1. $Se \dim V = n$. Allora

$$\dim(End(V)) = n^2$$

Dimostrazione. Fissata una base $\mathfrak{B} = \{v_1, \ldots, v_n\}$ di V, per definire un endomorfismo basta assegnare i vettori su una base.

Ogni vettore della base $\mathfrak B$ puó essere mandato in un qualsiasi altro vettore della base.

Per ogni vettore ho n scelte, i vettori sono n da cui n^2

13.1 Alcune definizioni

Definizione 13.2 (Autovalore e autovettore).

Sia $f \in End(V)$

 $\lambda \in \mathbb{K}$ si dice autovalore per f se

$$\exists v \in V \quad v \neq 0$$
 t. c. $f(v) = \lambda v$

In tal caso v é detto autovettore per λ

Definizione 13.3 (Spettro).

$$Sp(f) = \{\lambda \in \mathbb{K} \mid \lambda \text{ autovalore per } f\} = \{\lambda \in \mathbb{K} \mid \ker(f - \lambda id) \neq 0\}$$

Definizione 13.4 (Autospazio e molteplicitá geometrica). Sia λ autovalore per f

$$V_{\lambda} = \{ v \in V \mid f(v) = \lambda v \} = \ker(f - \lambda id)$$

L'autospazio V_{λ} é formato dagli autovettori per f

La dimensione dell'autospazio V_{λ} é detta molteplicitá geometrica di λ

$$m_a(\lambda) = \dim V_{\lambda}$$

Definizione 13.5 (Polinomio caratteristico).

Sia $A \in M(n, \mathbb{K})$

$$P_A(t) = \det(A - tI) \in \mathbb{K}[t]$$

Possiamo definire il polinomio anche sugli endomorfismi

$$P_f(t) = P_A(t)$$
 dove $A = M_{\mathfrak{B}}(f)$

con \mathfrak{B} base arbitraria di V

Definizione 13.6 (Molteplicitá algebrica). $\forall \lambda \in Sp(f)$

 $m_a(\lambda)$ é la molteplicitá algebrica di λ come radice del polinomio caratteristico

13.2 Alcune propietá

Proposizione 13.2. Gli autospazi sono in somma diretta multipla. Sia

$$\{\lambda_1, \dots, \lambda_s\} \subseteq Sp(f) \ con \ \lambda_i \neq \lambda_j \ se \ i \neq j$$

Allora

$$V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s}$$

Dimostrazione. Per induzione su $s\geq 1$ utilizzando la definizione 2 della somma diretta multipla (12.1) Il passo base é banale Sia

$$v_1 + \dots + v_s = 0 \tag{1}$$

applicando f alla (1) otteniamo

$$\lambda_1 v_1 + \dots + \lambda_s v_s = 0 \tag{2}$$

moltiplicando (1) per λ_k otteniamo

$$\lambda_k v_1 + \dots + \lambda_k v_s = 0 \tag{3}$$

Sottraendo (2) - (3) e raccogliendo otteniamo

$$(\lambda_1 - \lambda_k)v_1 + \dots + (\lambda_{k-1} - \lambda_k)v_{k-1} = 0$$

Quindi poiché gli autovettori sono distinti, applicando l'ipotesi induttiva vale $v_i = 0 \quad \forall i$

Proposizione 13.3. $\forall \lambda \in Sp(f)$

$$1 \le m_a(\lambda) \le m_a(\lambda) \le n = dim(V)$$

Dimostrazione. Poniamo $m_g(\lambda) = g$

$$\mathfrak{D} = \{v_1, \, \cdots, \, v_g\}$$
 una base di V_{λ}

Estendiamo, tale base a $\mathfrak B$ base di V

$$A = M_{\mathfrak{B}}(f) = \left(\begin{array}{c|c} \lambda I_g & M \\ \hline 0 & N \end{array}\right)$$

$$P_f(t) = P_A(t) = \det\left(\frac{(\lambda - t)I_{d_\lambda} \mid M}{0 \mid D - tI}\right) = (\lambda - t)^g P_D(t)$$

da cui segue che $m_a(\lambda) \geq g$

13.3 Ideali di un endomorfismo

Definizione 13.7 (Valutazione polinomio su endomorfismo). Sia V uno spazio vettoriale su \mathbb{K} e sia $f \in End(V)$

$$p(t) = a_0 t^0 + \dots + a_k t^k \in \mathbb{K}[t]$$

Allora definiamo $p(f) \in End(V)$ come

$$p(f) = a_0 f^0 + \dots + a_k f^k$$

dove indichiamo $f^0 = id_V$ e $f^i = \underbrace{f \circ \cdots \circ f}_{i \text{ volte}}$

Fissato $f \in End(V)$

$$\phi: \mathbb{K}[t] \to End(V) \quad \phi(p(t)) = p(f)$$

Ovvero valuta ogni polinomio in f

Esercizio 13.4. Dimostrare che ϕ é omomorfismo di anelli

Osservazione 29. Poiché $\mathbb{K}[t]$ un anello commutativo e ϕ é omomorfismo di anelli

$$p_1(f) \circ p_2(f) = p_2(f) \circ p_1(f)$$

Definizione 13.8 (Ideale di un endomorfismo).

Sia $f \in End(V)$ e sia ϕ come sopra allora definiamo l'ideale di f come

$$I(f) = \ker \phi = \{ p(t) \in \mathbb{K}[t] \mid p(f) = 0 \in End(V) \}$$

Lemma 13.5 (Gli ideali sono non banali).

$$\forall f \in End(V) I(f) \neq \{0\}$$

Dimostrazione. Poiché dim $End(V) = n^2$, fissato $m > n^2$ ne segue che

$$f^0, f^1, \cdots, f^m$$

non sono linearmente indipendenti (sono di piú della dimensione) da cui

$$\exists a_0 f^0 + \dots + a_m f^m = 0 \in End(V) \quad \text{tali che } \exists a_j \neq 0$$

Dunque

$$p(t) = a_0 + a_1 t + \dots + a_m t^m \in I(f)$$

inoltre visto che esiste almeno un coefficiente non nullo, $p(t) \neq 0$ ovvero $I(f) \neq \{0\}$

13.3.1 Teorema di Hamilton-Cayley

Lemma 13.6. Sia $f \in End(V)$ con polinomio caratteristico completamente fattorizzabile. Allora

$$p_f(t) \in I(f)$$

Dimostrazione. Sia

$$p_f(t) = (t - \mu_1) \cdots (t - \mu_n)$$

il polinomio caratteristico di f.

Per vedere che il polinomio valuto in f sia il polinomio nullo, basta osservare che esso annulla una base.

Prendiamo una base $\mathfrak{B} = \{v_1, \ldots, v_n\}$ tale che la $M_{\mathfrak{B}}(f)$ sia triangolare superiore (il motivo per cui tale base esiste viene dimostrato successivamente, quando parleremo di endomorfismi triangolabili) quindi

$$f(v_1) = \mu_1 v_1$$
$$f(v_2) = \mu_2 v_2 + \star v_1$$

Calcoliamo $p_f(f)$ su v_1

$$p_f(f)(v_1) = (f - \mu_1 Id) \circ \cdots \circ (f - \mu_n Id)(v_1) = (f - \mu_2 Id) \circ \cdots \circ (f - \mu_n Id) \circ (f - \mu_1 Id)(v_1) = 0$$

Dove il secondo uguale viene giustificato dall'osservazione 29 Calcoliamo su v_2

$$p_f(f)(v_2) = (f - \mu_1 Id) \circ \cdots \circ (f - \mu_n Id)(v_2) = (f - \mu_3 Id) \circ \cdots \circ (f - \mu_n Id) \circ (f - \mu_1 Id) \circ (f - \mu_2 Id)(v_2) = (f - \mu_3 Id) \circ \cdots \circ (f - \mu_n Id) \circ (f - \mu_1 Id)(\star v_1) = 0$$

Per induzione si dimostra che annulla una base e dunque vale la tesi

Mostriamo ora la generalizzazione del lemma precedente

Teorema 13.7 (Hamilton-Cayley).

 $\forall f \in End(V)$

$$p_f(t) \in I(f)$$

Dimostrazione. Possiamo considerare $\mathbb F$ campo di spezzamento del polinomio $p_f(t)$ in questo caso

$$\begin{array}{ccc} V & \stackrel{f}{\longrightarrow} V \\ \downarrow & & \downarrow \\ \mathbb{K}^n & \stackrel{A}{\longrightarrow} \mathbb{K}^m \\ \downarrow^i & & \downarrow^i \\ \mathbb{F} & \stackrel{A_{\mathbb{F}}}{\longrightarrow} \mathbb{F} \end{array}$$

Dove con $A_{\mathbb{F}} = A \in (M, n\mathbb{F})$.

Ora poiché \mathbb{F} é campo di spezzamento del polinomio caratteristico vale che $P_A(A) = 0 \in M(n, \mathbb{F})$ per il lemma precedente.

Ora l'uguaglianza precedente vale anche in K quindi vale la tesi

Lemma 13.8. $Sia\ p(t) \in I(f)$

$$\lambda \in Sp(f) \Rightarrow p(\lambda) = 0$$

Dimostrazione. Essendo λ un autovalore

$$\exists v \in V \ v \neq 0$$
 t. c. $f(v) = \lambda v$

Inoltre sappiamo p(f)(v)=0infatti p(t)appartiene all'ideale di f Inoltre

$$p(f)(v) = (a_0I + a_1f + \dots + a_kf^k)(v) = a_0v + \lambda a_1v + \dots + \lambda^k a_kv =$$
$$= v(a_0 + a_1\lambda + \dots + a_k\lambda^k)$$

Ora l'ultima espressione vale 0 inoltre essendo v autovettore $v \neq 0$ da cui il termine nella parentesi deve essere uguale a 0.

Ma il termine nella parentesi non é altro che $p(\lambda)$

13.3.2 Polinomio minimo

Essendo $\mathbb{K}[t]$ un PID, tutti i suoi ideali sono mono generati

Definizione 13.9 (Polinomio minimo di f).

Sia q_t il polinomio monico che genera I(f)

Osservazione 30. Possiamo applicare il lemma precedente al polinomio minimo. Sia $\lambda \in Sp(f)$ allora

$$P_f(t) = \pm (t - \lambda)^{m_{\lambda}} q(t)$$

dunque

$$q_t(f) = \pm (t - \lambda)^{r_{\lambda}} q_1(t) \quad 1 \le r_{\lambda} \le m_{\lambda}$$

13.3.3 Polinomio minimo di un vettore

Sia $v \in V$ e $f \in End(V)$ allora definiamo la valutazione in f(v) come

$$\mathbb{K}[t] \to End(V) \to V \qquad p \to p(f) \to p(f)(v)$$

Come per la valutazione su un endomorfismo possiamo considerare I(f,v) e considerare il polinomio minimo $\mu_{f,v}$ come il generatore monico dell'ideale

Lemma 13.9.

$$\mu_{f,v} \mid \mu_f$$

Dimostrazione. La divisibilità deriva dal fatto che $I(f) \subseteq I(f, v)$. Infatti

$$\forall p \in \mathbb{K}[t] \quad p(f) \equiv 0 \quad \Rightarrow \quad p(f)(v) = 0$$

Proposizione 13.10. Sia v_1, \ldots, v_n un insieme di generatori di V. Allora

$$\mu_f = m.c.m (\mu_{f,v_1}, \cdots, \mu_{f,v_n}) = m \ monico$$

Dimostrazione. Visto che $\mu_{f,v_i} | \mu_f$ allora $m | \mu_f$. Ora $m \in I(f)$ infatti

$$\forall i \quad \exists h_i \in \mathbb{K}[t] \quad m = h_i \mu_{f,v_i} \quad \text{e} \quad \forall v = \sum_{i=1}^n a_i v_i$$

$$m(f)(v) = m(f) \left(\sum_{i=1}^n a_i v_1 \right) = \sum_{i=1}^n a_i \cdot m(f)(v_i) = \sum_{i=1}^n a_1 \left(h_i \cdot \mu_{f,v_1} \right) \left(f(v_i) \right) =$$

$$= \sum_{i=1}^n a_1 \cdot (h_i(f) \circ \mu_{f,v_i})(v_1) = \sum_{i=1}^n a_1 \cdot (h_i(f)(\mu_{f,v_i}(v_1))) = 0$$

quindi $\mu_f | m$.

Poiché valgono entrambe le divisibilitá e poiché entrambi sono monici, vale la tesi. \Box

13.3.4 Calcolare il polinomio minimo

Primo metodo

Osservazione 31. Se il grado del polinomio minimo di f é d allora

$$id, f, f^2, \cdots, f^{d-1}$$
 sono linearmente indipendenti

Supponiamo che non siano indipendenti allora

$$a_0 \cdot i_d + a_1 f + \dots + a_{d-1} f^{d-1} = 0 \quad \exists a_i \neq 0$$

da cui segue che il polinomio $p(t) = a_0 + a_1 t + \cdots + a_{d-1} f^{d-1} \in I(f)$ ma ció é assurdo perché $p(t) \neq 0$ poiché $a_i \neq 0$ ed ha grado minore del polinomio minimo

Dunque per trovare il polinomio minimo, analizzo le prime potenze di f finché non trovo la prima lista di potenze non linearmente indipendenti.

Se noto che id, f, \dots, f^{d-1} sono linearmente indipendenti ma $id, f, \dots, f^{d-1}, f^d$ non lo é allora

$$f^d = a_0 id + a_1 f + \dots + a_{d-1} f^{d-1}$$

da cui il polinomio minimo di f é

$$t^d + a_{d-1}t^{d-1} + \cdots + a_0$$

Esercizio 13.11.

Sia $f \in End(V)$ uno spazio vettoriale reale e sia \mathfrak{B} una base di V tale che

$$A = M_{\mathfrak{B}}(f) = \begin{pmatrix} 0 & 1 & 1\\ 0 & 1 & 0\\ -1 & 1 & 2 \end{pmatrix}$$

Notiamo che A e I_3 sono linearmente indipendenti quindi grado del polinomio minimo ≥ 2

$$A^2 = \begin{pmatrix} -1 & 2 & 2 \\ 0 & 1 & 0 \\ -2 & 2 & 3 \end{pmatrix}$$

 $I_3, A \in A^2$ sono dipendenti? $\exists \alpha, \beta \in \mathbb{R}$ tale che $A^2 = \alpha I_3 + \beta A$?

$$\begin{pmatrix} -1 = \beta & 2 = \alpha & 2 = \alpha \\ 0 = 0 & 1 = \alpha + \beta & 0 = 0 \\ -2 = -\alpha & 2 = \alpha & 3 = 2\alpha + \beta \end{pmatrix}$$

$$A^2 = 2A - I \quad \Rightarrow \quad A^2 - 2A + I$$

quindi il polinomio minimo di f é

$$t^2 - 2 + 1$$

Secondo metodo So che il polinomio minimo, divide un qualsiasi elemento dell'ideale, in particolare posso prendere il polinomio caratteristico.

Se uso il polinomio caratteristico, so che hanno gli stessi fattori irriducibili

In questo capitolo il polinomio minimo verrá indicato con la lettera μ e non q

Terzo metodo Questo metodo sfrutta il polinomio minimo di un vettore

Esercizio 13.12.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \in M(3, \mathbb{R})$$

Prendo $\mathfrak{B} = \{e_1, e_2, e_3\}$ base di $M(3, \mathbb{R})$ e calcolo i 3 polinomi minimi μ_{A,e_i}

$$Ae_1 = e_1 \quad \Rightarrow \quad \mu_{f,e_1}(t) = t - 1$$

$$e_2 \xrightarrow{A} \begin{pmatrix} 2\\1\\0 \end{pmatrix} \xrightarrow{A} \begin{pmatrix} 4\\1\\0 \end{pmatrix} = 2 \begin{pmatrix} 2\\1\\0 \end{pmatrix} - \begin{pmatrix} 0\\1\\0 \end{pmatrix} \implies \mu_{f,e_2} = (t-1)^2$$

$$e_3 \xrightarrow{A} \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} \xrightarrow{A} \begin{pmatrix} 9 \\ 0 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \implies \mu_{f,e_3} = (t-1)(t-2)$$

Quindi per la proposizione 13.10 vale

$$\mu_f = (t-1)^2(t-2)$$

13.4 Endomorfismi diagonalizzabili

Prima della prossima proposizione ricordiamo una definizione data nel primo capitolo

Definizione 13.10. Una matrice A si dice diagonale se

$$\forall i \neq j \quad [A]_{ij} = 0$$

Proposizione 13.13. $Sia\ f \in End(V)$.

I seguenti fatti sono equivalenti

- (i) $\exists \mathfrak{B}$ base di V fatta di autovettori di f
- (ii) $\exists \mathfrak{B}$ base di V tale che $M_{\mathfrak{B}}(f)$ é diagonale

(iii)

$$V = \bigoplus_{\lambda \in Sp(f)} V_{\lambda}$$

(iv) Il polinomio caratteristico ha tutte le radici in K e

$$\forall \lambda \in Sp(f) \quad m_a(\lambda) = m_q(\lambda)$$

(v) Il polinomio minimo ha tutte le radici in K di molteplicitá 1

Dimostrazione.

- (i) ⇔(ii)
 La dimostrazione dell'equivalenza é immediata
- (i) ⇒(iii)

Per ipotesi $\exists \mathfrak{B}$ base di autovettori.

Suddivido

$$\mathfrak{B} = \mathfrak{B}_1 \cup \cdots \cup \mathfrak{B}_k \text{ con } \mathfrak{B}_i \subseteq V_{\lambda_i}$$

da cui

$$V = Span(\mathfrak{B}_i) \oplus \cdots \oplus Span(\mathfrak{B}_k) \subseteq V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$$

Poiché l'altra inclusione é sempre vera, ho la tesi

• (iii) \Rightarrow (i) Se \mathfrak{B}_i é base di V_{λ_i} allora

$$\mathfrak{B}_{\lambda_1} \cup \cdots \cup B_{\lambda_k}$$
 é base di V

infatti, segue dalla definizione di somma diretta multipla, inoltre se $v \in \mathfrak{B}_{\lambda_i}$ allora $v \in V_{\lambda_i}$ dunque é un autovettore.

Per quanto detto sopra \mathfrak{B} é una base di V composta da autovettori per f

• (ii) \Rightarrow (iv) $\exists \mathfrak{B}$ base di autovettori di f tale che

$$A = M_{\mathfrak{B}}(f) = \begin{bmatrix} \lambda_1 I_{d_1} & & \\ & \ddots & \\ & & \lambda_k I_{d_k} \end{bmatrix}$$

 $con d_1 + \dots + d_k = \dim V = n$

Allora

$$P_f(t) = \det(A - tI) = (\lambda_1 - t)^{d_1} \cdots (\lambda_k - t)^{d_k}$$

Da questo segue che $P_f(t)$ é completamente fattorizzabile.

Poiché $\mathfrak B$ contiene d_i vettori relativi a λ_i allora

$$m_q(\lambda_i) \ge d_i$$

Inoltre, per la proposizione 13.3

$$d_i = m_a(\lambda_i) \ge m_a(\lambda_i)$$

Poiché valgono entrambe le disuguaglianze, otteniamo l'uguaglianza voluta

• (iv) \Rightarrow (iii) So che

$$V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k} \subseteq V$$

ma

$$\dim (V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}) = \dim V_{\lambda_1} + \cdots + V_{\lambda_k} = \sum_{i=1}^k d_{\lambda_i} = \sum_{i=1}^k m_{\lambda_i} = n$$

Poiché vale una disuguaglianza e hanno la stessa dimensione, vale l'uguaglianza

Le altre implicazioni sono lasciate come esercizio

Definizione 13.11 (Diagonalizzabile).

 $f \in End(V)$ si dice diagonalizzabile se verifica una delle proprietá sopra elencate.

13.4.1 Simultanea diagonalizzabilitá

Definizione 13.12 (Simultaneamente diagonalizzabili).

 $f,g \in End(V)$ si dicono simultaneamente diagonalizzabili se ammettono una base comune di autovettori

Lemma 13.14. $f, g \in End(V)$

$$f \circ g = g \circ f \Rightarrow \forall \lambda \in Sp(f) \quad V_{\lambda}(f) \notin g\text{-invariante}$$

Dimostrazione. Sia $\lambda \in Sp(f)$

$$\forall v \in V_{\lambda}(f) = \ker(f - \lambda Id)$$

$$f(g(v)) = g(f(v)) = g(\lambda v) = \lambda g(v) \implies g(v) \in V_{\lambda}(f)$$

Proposizione 13.15. $f, g \in End(V)$ diagonalizzabili

f, g simultaneamente diagonalizzabili $\Leftrightarrow g \circ f = f \circ g$

 $Dimostrazione. \Rightarrow La possiamo fare in 2 modi$

(i) $\exists \mathfrak{B} = \{v_1, \ldots, v_n\}$ base di V con autovettori di $f \in g$

$$A = M_{\mathfrak{B}}(f) = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \star \\ & & \ddots & \\ & 0 & & \ddots & \\ & & & \lambda_n \end{pmatrix} \quad B = M_{\mathfrak{B}}(f) = \begin{pmatrix} \mu_1 & & & \\ & \mu_2 & & \star \\ & & & \ddots & \\ & 0 & & \ddots & \\ & & & \mu_n \end{pmatrix}$$

con $\lambda_i \in Sp(f)$ e $\mu_i \in Sp(g)$

$$M_{\mathfrak{B}}(f \circ g) = M_{\mathfrak{B}}(g \circ f) = \begin{pmatrix} \lambda_1 \mu_1 & & \star & \\ & \lambda_2 \mu_2 & & \star & \\ & & \ddots & & \\ & & & \lambda_n \mu_n \end{pmatrix}$$

(ii) Sia \mathfrak{B} come sopra.

 $f \circ g = g \circ f$ se sono uguali su una base quindi se

$$\forall v_i \in \mathfrak{B} \quad f(g(v_i)) = g(f(v_1))$$
$$f(g(v_i)) = f(\mu_i v_i) = \mu_i f(v_i) = \mu_i \lambda_i v_1$$
$$g(f(v_i)) = g(\lambda_i v_i) = \lambda_i g(v_i) = \mu_i \lambda_i v_1$$

Mostriamo ora la freccia ←

$$Sp(g) = \{\lambda_1, \dots, \lambda_k\}$$

$$f \text{ diagonalizzabile} \Leftrightarrow V = V_{\lambda_1}(f) \oplus \dots \oplus V_{\lambda_k}(f)$$

Ora possiamo considerare la restrizione di g su questi autospazi che per il lemma precedente sono g-invarianti.

g diagonalizzabile $\Rightarrow g_{|V_{\lambda_i}}$ diagonalizzabile $\Rightarrow \exists \mathfrak{B}_i base di V_{\lambda_i}$ di autovettori di g Ora la base \mathfrak{B}_i contiene sia autovettori di f (gli elementi dell'autospazio sono autovettori) che di g, dunque la base cercata é $\{\mathfrak{B}, \dots, \mathfrak{B}_k\}$

13.5 Endomorfismi triangolabili

Definizione 13.13 (Bandiera indotta da una base).

Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ una base di V.

 $\mathfrak B$ induce una bandiera di sottospazi

$$Span(v_1) \subseteq Span(v_1, v_2) \subseteq \cdots \subseteq Span\mathfrak{B} = V$$

Indicata con $\mathfrak{F}_{\mathfrak{B}}$.

Per comoditá nella trattazione, quando é presente una base, indicheremo con

$$V_1 = Span(v_1)$$

$$V_k = Span(v_1, \dots, v_k)$$

Definizione 13.14 (Sottospazio f-invariante). Sia $f \in End(V)$ e sia $W \subseteq V$ un sottospazio. W é un sottospazio f-invariante se

$$f(W) \subseteq W$$

Definizione 13.15 (Bandiera invariante).

Si dice che $\mathfrak{F}_{\mathfrak{B}}$ é f-invariante se

$$f(V_i) \subseteq V_i \quad \forall j = 1, \dots, n$$

Proposizione 13.16. $Sia\ f \in End(V)$.

I sequenti fatti sono equivalenza

- (i) $\exists \mathfrak{B}$ base di V tale che $M_{\mathfrak{B}}(f)$ é triangolare superiore
- (ii) $P_f(t)$ é completamente fattorizzabile
- (iii) $\exists \mathfrak{B}$ base di V tale che $\mathfrak{F}_{\mathfrak{B}}$ é f-invariante

Dimostrazione.

(i) ⇒ (ii)
 Dalla forma triangolare superiore della matrice otteniamo:

$$P_f(t) = (\mu_1 - t) \cdots (\mu_n - t)$$

• $(iii) \Rightarrow (ii)$

Dimostriamolo per induzione su dim $V = n \ge 1$

Per n=1 é ovvio

Supponiamo che valga per qualsiasi spazio vettoriale di dimensione n.

Sia W un sottospazio di dimensione n+1 e sia $f \in End(W)$.

Ora poiché il polinomio caratteristico di f é completamente fattorizzabile,

$$\exists \mu \in Sp(f) \Rightarrow \exists v \in V, v \neq 0 \text{ t. c. } f(v) = \mu v$$

Sia V tale che

$$W = Span(v) \oplus V$$

e sia $\mathfrak{D} = \{v\} \cup \mathfrak{B}$ una base adattala alla decomposizione, ne segue che

$$A = M_{\mathfrak{D}}(f) = \left(\begin{array}{c|c} \mu_1 & \star \\ \hline 0 & M_{\mathfrak{B}}(f_{|V}) \end{array}\right)$$

Ora poiché dim V=n e il polinomio caratteristico della restrizione é fattorizzabile, posso concludere con l'ipotesi induttiva

• (i) \Leftrightarrow (iii) Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ tale che $\mathfrak{F}_{\mathfrak{B}}$ é f-invariante allora

$$f(V_1) \in V_1 \Rightarrow f(v_1) = \mu_1 v_1$$
$$f(V_2) \in V_2 \Rightarrow f(v_2) = \star v_1 + \mu_2 v_2$$
$$f(V_3) \in V_3 \Rightarrow f(v_3) = \star v_1 + \star v_2 \mu_3 v_3$$

da cui procedendo per induzione otteniamo

$$M_{\mathfrak{B}}(f) = \begin{pmatrix} \mu_1 & & \star & \\ & \mu_2 & & \star & \\ & 0 & & \ddots & \\ & & & & \mu_n \end{pmatrix}$$

Allo stesso modo il viceversa

Definizione 13.16. Se $f \in End(V)$ verifica queste condizioni é detto triangolabile

Corollario 13.17. Se \mathbb{K} é algebricamente chiuso allora tutti gli endomorfismi di V sono triangolabili

13.5.1 Simultanea triangolazione

Definizione 13.17. $f, g \in End(V)$ si dicono simultaneamente triangolabili se esiste una base di V a bandiera sia per f che per g

Lemma 13.18. Sia $f \in End(V)$ triangolabile e sia $W \subseteq V$ f-invariante. Allora $f_{|W|}$ é triangolabile

Dimostrazione. Sia \mathfrak{D} una base di W estendiamola a \mathfrak{B} base di V. Allora chiamando $A = M_{\mathfrak{D}}(f_{|W})$ otteniamo

$$B = \left(\begin{array}{c|c} A & C \\ \hline 0 & D \end{array}\right)$$

Ora

$$p_f(t) = \det(B - TI) = \det(A - tI) \det(D - tI) = p_A(t) \cdot q(t)$$

ed essendo f triangolabile, p_f completamente fattorizzabile e dunque anche p_A lo é, consegue che $f_{|W}$ é triangolabile

Proposizione 13.19. Siano $f, g \in End(V)$ triangolabili tali che $f \circ g = g \circ f$. Allora

- (i) f e g ammettono un autovalore comune
- (ii) f e g sono simultaneamente triangolabili

Dimostrazione.

(i) f é triangolabile dunque $\exists V_{\lambda} \neq \{0\}$ Ora $\forall v \in V_{\lambda}$

$$f(g(v)) = g(f(v)) = \lambda(g(v)) \implies g(v) \in V_{\lambda}$$

e visto che vale $\forall v \in V_{\lambda}$ allora V_{λ} é g-invariante.

Per il lemma precedente, allora, $g_{|V_{\lambda}}$ é triangolabile dunque

$$\exists v \in V_{\lambda}$$
autovettore per $g_{|V_{\lambda}} \quad \Rightarrow \quad v$ autovettore per g

Ora $v \in V_{\lambda}$ quindi é autovettore sia per f che per g

14 Endomorfismi coniugati

Definizione 14.1 (Coniugati).

Siano $f, g \in End(V)$, f e g si dicono coniugati $f \sim g$ se

$$\exists h \in GL(V) \quad g = h^{-1} \circ f \circ h$$

Visto in versione matriciale

Definizione 14.2 (Simili).

Siano $A, B \in M(n, \mathbb{K}), A \in B$ si dicono simili $A \sim B$ se

$$\exists M \in GL(n, \mathbb{K}) \quad B = M^{-1} \cdot A \cdot M$$

Osservazione 32. Per alleggerire la notazione poniamo

$$M_{\mathfrak{B}} = M_{\mathfrak{B}}^{\mathfrak{B}}$$

Proposizione 14.1. I seguenti fatti sono equivalenti

- (i) $f \sim g$
- (ii) $\forall \mathfrak{B} \text{ base di } V, M_{\mathfrak{B}}(f) \sim M_{\mathfrak{B}}(g)$
- (iii) $\exists \mathfrak{B}, \mathfrak{D}$ basi di V tale che $M_{\mathfrak{B}}(f) = M_{\mathfrak{D}}(g)$

Questi fatti si possono dimostrare in modo analogo alle dimostrazioni fatte per SD-equivalenza

Mostriamo quali sono gli invarianti per la relazione studiata

Proposizione 14.2 (Invarianti).

La lista degli invarianti per coniugio e similitudine sono

- (i) Polinomio caratteristico
 - (ii) Spettro di f
 - (iii) Determinante di f
- (iv) Molteplicitá geometrica
 - (v) Rango di f

Dimostrazione. Mostriamo che valgono le seguenti implicazioni

- (i) \Rightarrow (ii) Se $P_f(t) = P_g(t)$ allora in particolare i 2 polinomi avranno in comune le radici che altro non sono che gli elementi dello spettro
- (i) ⇒ (iii)
 Dalla definizione di polinomio caratteristico segue che

$$P_A(t) = \det(A - tI)$$

quindi

$$\det A = P_A(0)$$

• $(iv) \Rightarrow (v)$ Infatti da

$$V_{\lambda} = \ker(f - \lambda id)$$

segue che

$$\ker f = V_0$$

quindi posso ricavarmi il rango di f dalla dimensione degli autospazi usando la formula per nucleo e immagine

$$\dim Im(f) = n - \dim \ker f = n - \dim V_0 = n - d_0$$

Da quanto detto sopra basta dimostrare solamente (i) e (iv)

(i) Se $B \sim A$ allora $B = PAP^{-1}$ dunque

$$B - \lambda I = PAP^{-1} - \lambda I = PAP^{-1} - \lambda PIP^{-1} = P(A - \lambda I)P^{-1}$$

Ora calcolando il determinante e usando la formula di Binet

$$P_B(t) = \det P \cdot P_A(t) \det P^{-1}$$

Ma essendo K un campo, vale la propietá commutativa dunque

$$P_B(t) = P_A(t)$$

(iv) Se $h \sim h'$

Essendo i 2 endomorfismi simili vale che $\exists \beta \in GL(W)$ tale che

$$h' = \beta \circ h \circ \beta^{-1}$$

 $\forall v \in \ker h$

$$h'(\beta(v)) = (\beta \circ h \circ \beta^{-1})(\beta(v)) = (\beta \circ h \circ \beta^{-1} \circ \beta)(v) = \beta(h(v) = \beta(0) = 0$$

Quindi $\beta(\ker h \subseteq \ker h')$, in modo analogo si mostra che vale l'altra inclusione. Essendo i 2 nuclei isomorfi, hanno la stessa dimensione

Osservazione 33. Il set di invarianti a nostra disposizione non é completo , infatti prendiamo come esempio

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

in questo caso il polinomio minimo é t^4 .

InoÎtre $V_0(A) = V_0(B) = 2$ ma essendo $A^2 \neq 0$ e $B^2 = 0$ non possono essere simili

14.1 Decomposizione primaria

Teorema 14.3 (Decomposizione primaria).

Sia
$$f \in End(V)$$
 e $p(t) \in I(f)$
Se

$$p(t) = a(t)b(t) \ con \ MCD(a(t), b(t)) = 1$$

Allora

$$V = \ker(a(f)) \oplus \ker(b(f))$$

inoltre entrambi gli addendi sono f-invarianti

Dimostrazione. Dall'identitá di Bezout segue che

$$1 = a(t)m(t) + b(t)n(t)$$

Ora valutando in f ottengo

$$id_V = a(f) \circ m(f) + b(f) \circ n(f)$$

 $\forall v \in V$

$$v = (a(f) \circ m(f))(v) + (b(f) \circ n(f))(v)$$

Osserviamo che $(a(f) \circ m(f)) \in \ker b(f)$ infatti

$$(b(f) \circ a(f) \circ m(f))(v) = m(f) \circ (p(f)(v)) = 0 \in End(V)$$

dove il primo uguale, viene giustificato dall'osservazione 29. In modo analogo si prova che $(b(f) \circ n(f)) \in \ker a(f)$ Da ció concludiamo che

$$V = \ker(a(f)) + \ker(b(f))$$

Mostriamo che l'intersezione tra i 2 sottospazi é ridotta al solo 0 Sia $w \in \ker(a(f)) \cap \ker(b(f))$ allora dalla formula precedente

$$w = (a(f) \circ m(f))(w) + (b(f) \circ n(f))(w) = 0$$

La f-invarianza é lasciata per esercizio

14.2 Caso triangolabile

Restringiamoci al caso triangolabile

Essendo f triangolabile

$$p_f(t) = \pm (t - \lambda_1)^{m_1} \cdots (t - \lambda_k)^{m_k}$$

Iterando la decomposizione primaria otteniamo

$$V = \bigoplus_{j=1}^{k} \ker((t - \lambda_j \cdot Id)^{m_j}) = \bigoplus_{j=1}^{k} W_j$$

con i W_i f-invarianti

Chiamiamo g_j la riduzione di f a W_j

Sia $\{\mathfrak{B}_1, \cdots, \mathfrak{B}_k\}$ una base di V adattata alla decomposizione ovvero \mathfrak{B}_i é base di W_i

$$M_{\mathfrak{B}}(f) = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_k \end{pmatrix}$$

dove ogni blocco ha come autovalore λ_i infatti

$$P_f(t) = P_{A_1}(t) \cdots P_{A_k}(t)$$

quindi $\forall j$ vale

$$P_{g_j} = \pm (t - \lambda_j)^{m_j}$$

da cui dim $W_i = m_i$

Ora come sappiamo il polinomio minimo ha le stesse radici del polinomio caratteristico dunque

$$q_f(t) = \pm (t - \lambda_1)^{r_1} \cdots (t - \lambda_k)^{r_k} \quad \text{con } 1 \le r_j \le m_j$$

E considerando la restrizione

$$q_{g_j}(t) = \pm (t - \lambda_j)^{\overline{r}_j} \quad \text{ con } 1 \le \overline{r}_j \le m_j$$

A priori sappiamo che $r_j \geq \overline{r}_j$ invece

Proposizione 14.4. $\forall j r_j = \overline{r}_j$

Dimostrazione. Supponiamo che $\bar{r}_1 < r_1$ invece i restanti sono uguali da cui

$$(t-\lambda_1)^{\overline{r}_1}(t-\lambda_2)^{r_2}\cdots(t-\lambda_k)^{r_k}$$

tale polinomio appartiene all'ideale ma ha grado minore del polinomio minimo. Assurdo dunque era assurda l'ipotesi $\overline{r}_1 < r_1$, dunque vale l'uguaglianza

Per quanto detto nella pagina precedente lo studio della relazione di similitudine nel caso di endomorfismi triangolabili, si riduce allo studio di endomorfismi "piú semplici" con questa proprietá

$$g: W \to W \quad con \dim W = m$$

$$P_g(t) = \pm (t - \lambda)^m$$

$$q_g(t) = \pm (t - \lambda)^r$$

dove resta da studiare i vari casi al variare di r tra $1 \le r \le m$

Per comoditá di esposizione, restringiamoci al caso di endomorfismi nilpotenti ovvero

Definizione 14.3 (Endomorfismo nilpotente).

 $g:W\to W$ si dice nilpotente se l'unico autovalore é 0 .

Osservazione 34. Una definizione equivalente di nilpotente. g é nilpotente se esiste $k\in\mathbb{N}$ tale che $g^k\equiv 0$

Dunque dopo aver applicato questa restrizione otteniamo

$$P_g(t) = t^m$$

$$q_g(t) = t^r \quad 1 \le r \le m$$

Mostriamo che la riduzione é fittizia Sia $g \in End(W)$ tale che $sp(g) = \{\lambda\}$

$$g = \lambda Id + (g - \lambda id) = \lambda id + h$$

dove $h = g - \lambda i d_v$ viene chiamata **parte nilpotente** di g.

Mostriamo che appunto h é nilpotente.

Essendo g triangolabile allora esiste una base $\mathfrak B$ di W tale che

$$M_{\mathfrak{B}} = \begin{pmatrix} \lambda & & \star \\ & \ddots & \\ 0 & & \lambda \end{pmatrix} = \lambda I_m + \begin{pmatrix} 0 & & \star \\ & \ddots & \\ 0 & & 0 \end{pmatrix} = M_{\mathfrak{B}}(\lambda i d_v) + M_{\mathfrak{B}}(h)$$

La matrice che rappresenta h é triangolare superiore e lungo la diagonale ha solo 0 quindi h é nilpotente

Proposizione 14.5. 2 endomorfismi sono simili se lo sono le loro classi nilpotenti

Dimostrazione. Supponiamo che

$$g = \lambda id + h$$
$$g' = \lambda id + h'$$

Se $g \sim g'$ allora

$$\exists \beta \in GL(W) \quad g' = \beta \circ g \circ \beta^{-1}$$

Quindi

$$g' = \beta \circ (\lambda id + h) \circ \beta^{-1} = \lambda id + \beta \circ h \circ h^{-1}$$

Dunque

$$h' = \beta \circ h \circ \beta^{-1} \quad \Rightarrow \quad h \sim h^{-1}$$

Dopo queste restrizioni, non resta che studiare cosa succede al variare di r

r = 1

$$q_h(t) = t$$

dunque

$$q_h(f) = h = 0 \in End(W) \Rightarrow h \text{ diagonalizzabile}$$

r = m

$$P_h(t) = q_h(t)$$

Essendo il polinomio minimo di grado m

$$t^{m-1}$$
 $\ln I(h)$

quindi

$$h^{m-1} \neq 0 \quad \Rightarrow \quad \exists v \in W \quad \text{t. c.} \quad h^{m-1}(v) \neq 0$$

Consideriamo i seguenti vettori

$$v, h(v), \cdots, h^{m-1}(v)$$

Lemma 14.6. $\{v, h(v), \dots, h^{m-1}(v)\}\ \acute{e}\ una\ base\ di\ W$

Dimostrazione. Per quanto detto sopra i vettori sono tutti diversi da 0, poiché sono dimW=mbasta mostrare che sono linearmente indipendenti. Sia

$$a_0v + a_1h(v) + \dots + a_{m-1}h^{m-1}(v) = 0$$

Ora se applichiamo h alla combinazione lineare otteniamo

$$a_0h(v) + a_1h^2(v) + \dots + a_{m-1}h^m(v) = 0$$

Notiamo che l'ultimo addendo é 0 infatti h^m é l'endomorfismo nullo. Iterando l'applicazione di h alla combinazione otteniamo

$$a_0 h^{m-1}(v) = 0$$

e poiché $h^{m-1}(v) \neq 0$ allora $a_0 = 0$

Risalendo si dimostra per induzione che

$$a_i = 0 \quad \forall j = 0, \cdots, m-1$$

dunque i vettori sono linearmente indipendenti e formano una base di W

Tale base viene chiamata base ciclica di h rispetto a v

$$\mathfrak{B} = \{h^{m-1}(v), h^{m-2}(v), \cdots, v\}$$

tale che

$$M_{\mathfrak{B}}(h) = \begin{pmatrix} \mathbf{0} & 1 & 0 & \cdots & 0 & 0 \\ 0 & \mathbf{0} & 1 & \cdots & 0 & 0 \\ 0 & 0 & \mathbf{0} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \mathbf{0} & 1 \\ 0 & 0 & 0 & \cdots & 0 & \mathbf{0} \end{pmatrix}$$

Tale matrice che ha tutti 0 sulla diagonale e 1 sulla sovra diagonale é detto **blocco di Jordan** di autovalore 0 e taglia m e si indica con J(0, m)

Possiamo riassumere quanto detto sopra con

Proposizione 14.7. Nel caso in cui r = m.

 $Siano\ f,g\ due\ endomorfismi\ di\ W\ nilpotenti\ allora$

$$f \sim g \quad \Leftrightarrow \quad \exists \mathfrak{B}, \mathfrak{D} \text{ basi di } W \qquad t. \ c \ . \quad M_{\mathfrak{B}}(f) = M_{\mathfrak{D}}(g) = J(0, m)$$

Osservazione 35. Nel caso in cui gli endomorfismi non siano nilpotenti ovvero

$$P_g(t) = q_g(t) = (t - \lambda)^m$$

Allora la forma matriciale normale é $J(\lambda,m)$ come nel caso nilpotente ma sulla diagonale invece di esserci 0 ci sará λ

Il set di invarianti a nostra disposizione non é sufficiente per studiare il caso generale ovvero quando 0 < r < m

Lemma 14.8 (Nuclei successivi).

 $Sia\ f \in End(V)\ allora$

$$\ker f^i = \ker f^{i+1} \quad \Rightarrow \quad \ker f^{i+1} = \ker f^{i+2}$$

Ovvero le dimensioni dei nuclei continuano a crescere finché non se ne trovano 2 successivi con la stessa dimensione

Dimostrazione. ker $f^{i+1} \subseteq \ker f^{i+2}$ in modo evidente

Mostriamo, dunque l'altra inclusione

$$\forall v \in \ker f^{i+2} \quad f^{i+2}(v) = 0 \quad \Rightarrow \quad f^{i+1}(f(v)) = 0 \quad \Rightarrow \quad f(v) \in \ker f^{i+1}(f(v)) = 0$$

Ore per ipotesi ker $f^{i+1} = \ker f^i$ quindi

$$f(v) \in \ker f^i \quad \Rightarrow f^i(f(v)) = 0 \quad \Rightarrow \quad f^{i+1}(v) = 0 \quad \Rightarrow \quad v \in \ker f^{i+1}$$

Consideriamo sempre

$$h: W \to W \quad Sp(h) = \{0\}$$

Allora possiamo considerare la stringa

$$d_1 < \dots < d_r = m$$
 $\forall j \ d_j = \dim \ker h^i$

Lemma 14.9 (Stringa di dimensioni invariante). Siano $h \sim h'$.

Allora h e h' hanno la stessa stringa di dimensioni

Dimostrazione. Essendo i 2 endomorfismi simili vale che $\exists \beta \in GL(W)$ tale che

$$h' = \beta \circ h \circ \beta^{-1}$$

 $\forall v \in \ker h$

$$h'(\beta(v)) = (\beta \circ h \circ \beta^{-1})(\beta(v)) = (\beta \circ h \circ \beta^{-1} \circ \beta)(v) = \beta(h(v)) = \beta(0) = 0$$

Quindi $\beta(\ker h) \subseteq \ker h'$, in modo analogo si mostra che vale l'altra inclusione. Essendo i 2 nuclei isomorfi, hanno la stessa dimensione

Osservazione 36. Nel caso in cui r=1 la stringa era $(d_1=m)$ invece nel caso r=m era $(1,2,\cdots,m)$

1 < r < m

Definizione 14.4 (Base di Jordan bene ordinata).

Una base di Jordan bene ordinate per h é una base \mathfrak{B} tale che $M_{\mathfrak{B}}(h)$

- (i) é diagonale a blocchi
- (ii) Ogni blocco lungo la diagonale é di Jordan $J(0, m_i)$
- (iii) $m_i \leq m_{i-1}$ scendendo lungo la diagonale si trovano via via blocchi di taglia minore o uguale del blocco precedente

Teorema 14.10 (Forma normale di Jordan - caso nilpotente).

Per ogni h endomorfismo nilpotente con stringa $(0 < d_1 < \cdots < d_r < m)$ esiste una base \mathfrak{B} di Jordan bene ordinata per h tale che la matrice in forma normale $M_{\mathfrak{B}}(h)$ é completamente determinata dalla stringa

Dimostrazione. Consideriamo le inclusioni

$$\ker h \subset \ker h^2 \subset \cdots \subset \underbrace{\ker h^{r-2} \subset \ker h^{r-1} \subset \ker h^r = W}_{\text{soffermandoci su questo}}$$

Facciamo ora una costruzione che andrá reiterata.

Essendo $\ker h^{r-1}$ un sottospazio di W considero U un complementare di $\ker h^{r-1}$ da cui

$$W = \ker h^{r-1} \oplus U$$

Notiamo che la scelta di U é arbitraria invece la sua dimensione é $t=d_r-d_{r-1}$. Fissiamo una base di U

$$u_1, \cdots, u_r$$

a applichiamo a questi vettori h ottenendo

$$h(u_1), \cdots, h(u_t)$$

Mostriamo che

• questi vettori appartengono al $\ker h^{r-1}$:

$$h^{r-1}(h(u_i)) = h^r(u) = 0$$
 esendo il polinomio minimo di h di grado r

• e sono linearmente indipendenti: supponiamo che

$$a_1h(u_1) + \cdots + a_th(u_t) = 0$$

allora applicando h^{r-2} e usando la inearitá di hottengo

$$h^{r-1}(a_1u_1 + \dots + a_tu_t) = 0$$

Ma $a_1u_1+\cdots+a_tu_t\in\ker h^{-1}\cap U$ quindi essendo i 2 spazi in somma diretta deve succedere che

$$a_1u_1 + \cdots + a_tu_t = 0 \implies a_1 = \cdots = a_t = 0$$
 i vettori u_i formano una base

Ora mi sposto e considero

$$\ker h^{r-3} \subset \ker h^{r-2} \subset \ker^{r-1}$$

e riapplicando la costruzione ottengo

$$\ker h^{r-1} = \ker h^{r-2} \oplus U'$$

ma questa volta impongo che la base di U' sia

$$h(u_1), \cdots, h(u_t), u_{t+1}, \cdots, u_{t'}$$

il numero dei vettori da aggiungere é univocamente determinato dalla stringa. Applico h alla base di U^\prime ottenendo

$$h^2(u_1), \cdots, h^2(u_t), h(u_{t+1}), \cdots, h(u_{t'})$$

Reitero finché possibile

Ho costruito una base di W arrangiata in questa tabella, dove le altezze e le lunghezze dei gradini dipendono solamente dalla stringa

Considerando le colonne $C_1, \dots C_s$ della tabella ottengo che

$$W = \bigoplus_{i=1}^{n} Span(C_i)$$

inoltre ogni $Span(C_i)$ é h-invariante ed i vettori di ogni colonna formano una base ciclica per h ristretta a questi Span.

Ora se riordino le colonne al contrario (basso verso alto) ottengo da ogni colonna una base di Jordan , in oltre l'altezza di ogni colonna diminuisce andando verso destra quin di sono ben ordinate. $\hfill\Box$

Corollario 14.11. La stringa é un invariante completo per la relazione di coniugio ristretta agli endomorfismi triangolarizzabili

Teorema 14.12 (Unicitá).

Siano B e B' due basi di Jordan bene ordinate per h Allora

$$M_{\mathfrak{B}}(h) = M_{\mathfrak{B}'}(h)$$

Data una matrice di Jordan, posso calcolare la stringa invariante.

14.3 Studio della coniugazione in \mathbb{R}

Nel caso di endomorfismi triangolabili, abbiamo studiato la relazione in modo esauriente, avendo trovato per ogni endomorfismo un suo rappresentante in forma normale per la relazione di coniugazione.

In un campo non algebricamente chiuso le cose sono più difficili perché non si conosce quali sono i polinomi irriducibili, fatta eccezione per \mathbb{R}

Complessificazione

Mostriamo un esempio di complessificazione che ci permetterà di trovare gli elementi irriducibile dell'anno dei polinomi a coefficienti reali.

Irriducibili in $\mathbb{R}[t]$ Su \mathbb{C} é definita la seguente funzione chiamata coniugio

$$\mathbb{C} \to \mathbb{C}$$
 $a+ib \to a+i(-b)=a-ib$

con le seguenti propietá

- (i) $\overline{z+w} = \overline{z} + \overline{w}$
- (ii) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- (iii) $\frac{z+\overline{z}}{2} = Rez$
- (iv) $\frac{z-z}{2i} = Imz$
- (v) $z \cdot \overline{z} = |z|^2 = Rez^2 + Imz^2$

Inoltre possiamo definire l'insieme dei numeri reali come

(vi)
$$\mathbb{R} = \{ z \in \mathbb{C} \mid z = \overline{z} \}$$

Ora siccome $\mathbb{R} \subset \mathbb{C}$ allora in particolare vale $\mathbb{R}[t] \subset \mathbb{C}[t]$ Sia $p[t] \in \mathbb{R}[t]$ che abbia una radice non reale α quindi

$$p(\alpha) = 0 \quad \Rightarrow \quad \overline{p(\alpha)} = \overline{0}$$

Ora utilizzando le propietá (i) (ii) e (vi) otteniamo

$$P(\overline{\alpha}) = 0$$

Da questo fatto segue che

$$p(t) = (t - \lambda_1)^{m_1} \cdots (t - \lambda_s)^{m_s} (t - \alpha_1)^{l_1} (t - \overline{\alpha_1})^{l_1} \cdots$$
 in \mathbb{C}

dove $\lambda_i \in \mathbb{R}$ invece $\alpha_i \neq \overline{\alpha_1}$ Ora consideriamo con $\alpha_1 = a_1 + ib_1$

$$Q_{\alpha_1}(t) = (t - \alpha_1)(t - \overline{\alpha_1}) = t^2 + (\alpha_1 + \overline{\alpha_1})t + \alpha_1\overline{\alpha_1}$$

Ora $(\alpha_1 + \overline{\alpha_1}) = 2a_1 \in \mathbb{R}$ e $\alpha_1 \overline{\alpha_1} = a_1^2 + b_1^2 \in R$

Da quanto detto sopra gli irriducibili in $\mathbb{R}[t]$ sono i polinomi di primo grado e quelli di secondo grado che non hanno radici reali

Complessificazione di uno spazio vettoriale

Sia V uno spazio vettoriale su \mathbb{R} .

Definiamo $V_{\mathbb{C}}$ (complessificato di V) come la coppia ordinata $(v, w) \in V \times V$. Per assonanza con i numeri complessi denotiamo la coppia (v, w) = v + iw

Muniamo $V_{\mathbb{C}}$ di 2 operazioni +, · che lo rendano uno spazio vettoriale su \mathbb{C}

$$+: V_{\mathbb{C}} \to V_{\mathbb{C}} \qquad (v, w) + (v', w') \to (v + v, w + w')$$

$$\cdot: \mathbb{C} \times V_{\mathbb{C}} \qquad (\alpha, (v, w)) \to (av - bw, aw + bv) \quad \text{supponendo } \alpha = a + ib$$

Proposizione 14.13. $V_{\mathbb{C}}$ con le 2 operazioni definite é uno spazio vettoriale su \mathbb{C} .

Definiamo anche su $V_{\mathbb{C}}$ un applicazione coniugio

$$V_{\mathbb{C}} \to V_{\mathbb{C}} \qquad (v, w) \to (v, -w)$$

inoltre $V\subset V_{\mathbb C}$ infatti $V=\{z\in V_{\mathbb C}\,|\,z=\overline{z}\}$

Lemma 14.14 (Base reale).

 $Se \mathfrak{B} = \{v_1, \ldots, v_n\} \text{ \'e una base di } V.$

Allora \mathfrak{B} é anche base di $V_{\mathbb{C}}$ detta base rea;e di $V_{\mathbb{C}}$

Dimostrazione. $\forall z = (v, w) \in V_{\mathbb{C}}$

$$z = (a_1v_1 + \dots + a_nv_n) + i(b_1v_1 + \dots + b_nv_n)$$

infatti $v, w \in V$.

Per quanto detto sopra ${\mathfrak B}$ genera $V_{\mathbb C}$

Mostriamo che i vettori sono linearmente indipendenti su \mathbb{C}

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0 + i0$$
 con $\alpha_i = a_i + ib_i \in \mathbb{C}$

Ora applicando la definizione di somma e prodotto in $V_{\mathbb{C}}$ otteniamo

$$a_1v_1 + \cdots + a_nv_n + i(b_1v_1 + \cdots + b_nv_n) = 0 + 0i$$

Dunque abbiamo 2 combinazioni reali nulle di vettori di una base dunque

$$a_1 = \dots = a_n = b_1 = \dots = b_n = 0$$

I vettori di \mathfrak{B} sono linearmente indipendenti su \mathbb{C}

Applicazione lineare complessificata

$$V \xrightarrow{f} W$$

$$\downarrow \qquad \qquad \downarrow$$

$$V_{\mathbb{C}} \xrightarrow{-f_{\mathbb{C}}} W_{\mathbb{C}}$$

Dove $f_{\mathbb{C}}$ é definita in modo che sia \mathbb{C} -lineare e renda commutativo il diagramma quindi

$$f_{\mathbb{C}}((v,w)) = (f(v), f(w))$$

Se fissiamo una base $\mathfrak B$ di V ed una base $\mathfrak D$ di W allora

$$M_{\mathfrak{D}}^{\mathfrak{B}}(f) = M_{\mathfrak{D}}^{\mathfrak{B}}(f_{\mathbb{C}}) \quad \Rightarrow \quad P_f(t) = P_{f_{\mathbb{C}}}(t) \in \mathbb{R}[t]$$

Relazione di coniugazione su \mathbb{R} Possiamo ora studiare la relazione di coniugio su End(V) e su $End(V_{\mathbb{C}})$

$$\mathbb{R}[t] \ni P_f(t) = \cdots (t - \lambda)^m \cdots Q_\alpha(t)^l(t) \cdots$$

Ora se guardiamo il polinomio in $\mathbb{C}[t]$ allora

$$\mathbb{C}[t] \ni P_{f_{\mathbb{C}}}(t) = \cdots (t - \lambda)^m \cdots (t - \alpha)^l (t - \overline{\alpha})^l \cdots$$

Possiamo applicare ad entrambi le fattorizzazioni la decomposizioni primaria

su
$$\mathbb{R}$$
 $V = \cdots \oplus \ker(f - \lambda id)^m \oplus \cdots \oplus \ker Q_n^l(f) \oplus \cdots$

su
$$\mathbb{C}$$
 $V_{\mathbb{C}} = \cdots \oplus \ker(f_{\mathbb{C}} - \lambda id)^m \oplus \cdots \oplus \ker(f_{\mathbb{C}} - \alpha id)^l \oplus (f_{\mathbb{C}} - \overline{\alpha} id)^l \oplus \cdots$

Proposizione 14.15. Valgono i seguenti fatti

- (i) $\ker(f_{\mathbb{C}} \lambda id)$ é il complessificato di $\ker(f \lambda id)$
- (ii) $\ker(f_{\mathbb{C}} \alpha id) \oplus \ker(f_{\mathbb{C}} \overline{\alpha} id)$ é il complessificato di $\ker Q_{\alpha}(f)$

Dal fatto (i) riesco a trovare una base di Jordan reale che sará anche una base di Jordan complesso.

Dal fatto (ii) posso prendere una base \mathfrak{B} di Jordan per $\ker(f_{\mathbb{C}} - \alpha id)$ e poi prendere $\overline{\mathfrak{B}}$ come base dell'altro sottospazio e poi considerare il cambiamento di base

$$\mathfrak{B}, \overline{\mathfrak{B}} \Longleftrightarrow Re\mathfrak{B}, ImB$$

La seconda base é chiamata base di Jordan reale.

I L'applicazione f ristretta a ker $Q_{\alpha}(f)$ rappresentata tramite la base $\mathfrak{B}, \overline{\mathfrak{B}}$ é della forma

$$\begin{pmatrix} J(\alpha, s) & 0 \\ 0 & J(\overline{\alpha}, s) & 0 \end{pmatrix} \in M(2s, \mathbb{C})$$

Invece tramite la base \mathbb{RB}, \mathbb{TB}

$$\begin{pmatrix}
A & I_2 & 0 & 0 \\
0 & \ddots & \ddots & 0 \\
\hline
0 & 0 & \ddots & I_2 \\
\hline
0 & 0 & 0 & A
\end{pmatrix}$$

dove

$$A = \begin{pmatrix} \Re(\alpha) & \Im(\alpha) \\ -\Im(\alpha) & \Re(\alpha) \end{pmatrix}$$

14.4 Calcolo della forma di Jordan

Un modo per calcolare facilmente la forma di Jordan é conoscere la dimensione dei nuclei successivi, questa proposizione é molto utile

Proposizione 14.16.

 $\dim \ker f^k - \dim \ker f^{k-1}$ é decrescente

Dimostrazione.

$$f^k = f \circ f^{k-1}$$

da questo segue che

$$\dim \ker f^k = \dim \ker f^{k-1} + \dim (\Im f^{k-1} \cup \ker f)$$

Questa successione é decrescente perché la dimensione delle immagine é decrescente

Inoltre valgono le seguenti considerazioni

- $m_a(\lambda_i)$
 - -nel polinomio caratteristico indica la somma delle taglie dei blocchi relativi a λ_i

- nel polinomio minimo indica la taglia massima dei blocchi relativi a λ_i
- $m_q(\lambda_i)$ indica il numero di blocchi relativi a λ_i
- $\bullet \ \ker(f-\lambda_i id)^\beta$ é generato dai primi β vettori di ogni blocco relativo a λ_i
- numero di blocchi relativi a λ_i di taglia α

$$2\dim \ker((f-\lambda_i Id)^{\alpha}) - \dim \ker((f-\lambda_i Id)^{\alpha+1}) - \dim \ker((f-\lambda_i Id)^{\alpha-1})$$

15 Complementi

15.0.1 Centro degli endomorfismi

Lemma 15.1. $f \in End(V)$

$$\forall v \in V \ v \neq 0 \quad v \ \'e \ autovettore \ per \ f \Leftrightarrow f \in Span(id_v)$$

 $Dimostrazione. \Rightarrow Sia \mathfrak{B} = \{v_1, \, \dots, \, v_n\}$ é una base di V, quindi é fatto di autovettori

$$M_{\mathfrak{B}}(f) = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \star \\ & & \ddots & \\ & 0 & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

Dobbiamo mostrare che tutti i λ_i siano uguali a λ_1

 $\forall i=2,\cdots,n\quad v_1+v_i$ é un autovettori quindi $\exists \lambda\in\mathbb{K}\quad$ t. c. $f(v_1+v_i)=\lambda(v_1+v_i)$

$$f(v_1 + v_i) = \lambda_1 v_1 + \lambda_i v_i = \lambda v_1 + \lambda v_i$$
$$v_1(\lambda_1 - \lambda) + v_i(\lambda_i - \lambda) = 0$$

Ora v_1 e v_1 appartengono ad una base quindi sono linearmente indipendenti da cui $\lambda = \lambda_1 = \lambda_i$ L'altra freccia é ovvia

Proposizione 15.2 (Centro delle matrici). Sia $A \in M(n, \mathbb{K})$

$$\forall B \in M(n, \mathbb{K}) \quad AB = BA \Rightarrow A \in Span(I_n I)$$

Dimostrazione. Basta vedere che tutti gli elementi di \mathbb{K}^n sono autovettori per A poi applicare il lemma

Sia $v \in \mathbb{K}^n$ $v \neq 0$ e completiamo a $\mathfrak{B} = \{v, v_2, \dots, v_n\}$ base di \mathbb{K}^n

Costruiamo l'applicazione relativa a B, in modo che v sia l'unico autovettore relativo ad 1

$$v \rightarrow v$$

$$v_i \to 0 \quad \forall i = 2, \cdots, n$$

Per come abbiamo costruito B é diagonalizzabile con spettro $\{1,0\}$ Ora AB = BA quindi per il lemma iniziale $V_1(B)$ é A-invariante

$$Av \in Span(v) \quad Av = \lambda v$$

dunque v é autovettore per A

16 Prodotti scalari

Definizione 16.1 (Prodotto scalare).

Sa V uno spazio vettoriale su $\mathbb K$ allora il prodotto scalare è una funzione

$$\phi: V \times V \to \mathbb{K}$$

con queste propietá

- (i) bilineare
- (ii) simmetrico $\forall (v, w) \in V \times V \quad \phi(v, w) = \phi(w, v)$

16.1 Matrici e prodotti scalari

Definizione 16.2 (Matrice associata ad un prodotto scalare). Sia $\phi \in PS(V)$ e sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ una base di V.

La matrice associata a ϕ rispetto alla base \mathfrak{B} é la matrice M_{ϕ}

$$[M_{\phi}]_{ij} = \phi(v_i, v_j)$$

Osservazione 37. In modo evidente si osserva che la matrice che rappresenta un prodotto scalare é simmetrica.

Proposizione 16.1 (Calcolo del prodotto scalare).

Sia ϕ un prodotto scalare e sia \mathfrak{B} una base di V, allora

$$\phi(v,w) = [v]_{\mathfrak{B}}^t M_{\phi} [w]_{\mathfrak{B}}$$

Dimostrazione. Sia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ allora

$$v = \sum_{i=1}^{n} a_i v_i \qquad w = \sum_{i=1}^{n} b_i v_i$$

$$\phi(v, w) = \phi\left(\sum_{i=1}^{n} a_i v_i, \sum_{i=1}^{n} b_i v_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i \cdot \phi(v_i, v_j) \cdot y_i = [v]_{\mathfrak{B}}^t M_{\phi}[w]_{\mathfrak{B}}$$

Osservazione 38. Dalla proposizione precedente segue che ogni matrice simmetrica puó essere interpretata come matrice che rappresenta un prodotto scalare

Proposizione 16.2 (Cambio di base).

Siano \mathfrak{B} e \mathfrak{D} due basi di (V, ϕ) allora

$$\exists P \in GL(V)$$
 $M_{\mathfrak{D}}(\phi) = P^t \cdot M_{\mathfrak{B}}(\phi) \cdot P$

Dimostrazione. Per comoditá chiamiamo $M_{\mathfrak{B}}(\phi) = A$ e $M_{\mathfrak{D}}(\phi) = B$. Essendo \mathfrak{B} e \mathfrak{D} due basi allora esiste $P \in GL(V)$ tale che

$$[v]_{\mathfrak{B}} = P[v]_{\mathfrak{D}} \quad \forall v \in V$$

$$\phi(v,w) = [v]_{\mathfrak{B}}^t \cdot A \cdot [w]_{\mathfrak{B}} = (P \cdot [v]_{\mathfrak{D}})^t \cdot A \cdot P \cdot [w]_{\mathfrak{D}} = [v]_{\mathfrak{D}}^t \cdot (P^t \cdot A \cdot P) \cdot [w]_{\mathfrak{D}}$$

Ma ora

$$\phi(v, w) = [v]_{\mathfrak{D}}^t B[w]_{\mathfrak{D}}$$

Quindi

$$[v]_{\mathfrak{D}}^t \cdot (P^t \cdot A \cdot P) \cdot [w]_{\mathfrak{D}} = [v]_{\mathfrak{D}}^t B[w]_{\mathfrak{D}} \quad \forall v, w \in V$$

Dunque poiché vale per tutti i vettori vale anche per $[v]_{\mathfrak{D}}=e_i$, $[w]_{\mathfrak{D}}=e_j$ quindi

$$B = P^t \cdot A \cdot P$$

16.2 Esempi di prodotti scalari

Siano
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
 e $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$

Usiamo la notazione (x, y) per indicare questo prodotto scalare che prende il nome di prodotto scalare euclideo standard su \mathbb{R}^2

$$(x,y) = x_1y_1 + x_2y_2 = {}^{t}XY = {}^{t}XI_2Y$$

Notiamo che questa funzione permette di trovare molti enti della geometria euclidea

$$||x|| = d(x,0) = \sqrt{x_1^2 + x_2^2}$$

$$d(x,y) = \sqrt{(x-y, x-y)}$$

Inoltre é possibile anche definire gli angoli infatti

$$(x,y) = ||x|| \cdot ||y|| \cos \theta$$

Da ció segue che (x,y)=0 se e solo se $x\perp y$

Mostriamo che questa funzione che abbiamo definito é veramente un prodotto scalare

- (i) é bilineare in modo ovvio
- (ii) $tXY \in \mathbb{K}$ quindi

$$X^t Y = \left(X^t Y\right)^t = Y^t X$$

Possiamo estendere la definizione a qualsiasi \mathbb{R}^n ottenendo il prodotto scalare standard su \mathbb{R}^n Un altro esempio di prodotto scalare (utile per la relativitá) su \mathbb{R}^{3+1} é cosí definito

$$<\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ t \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ s \end{pmatrix} > x_1y_1 + x_2y_2 + x_3y_3 - ts$$

In questo caso < x, x > non puó essere una norma euclidea infatti assume anche valori negativi. Possiamo distinguere 3 tipi di vettori in base a < x, x >

- 0 vettori di tipo luce o vettori isotropi
- > 0 vettori di tipo spazio
- < 0 vettori di tipo tempo

Questo spazio viene chiamato spazio di Minkowski

16.3 Radicale e prodotti non degeneri

Definizione 16.3 (Radicale di ϕ).

$$Rad(\phi) = \{ v \in V \mid \phi(v, w) = 0 \quad \forall w \in V \}$$

Definizione 16.4 (Vettore isotropo).

 $v \in (V, \phi)$ si dice isotropo se vale

$$\phi(v,v) = 0$$

Osservazione 39. I vettori del radicale (non nulli) sono isotropi ma i vettori isotropi, in generale, non appartengono al radicale

Definizione 16.5 (Prodotto scalare non degenere).

 ϕ non é degenere se $Rad(\phi) = \{0\}$

Lemma 16.3. $\exists \mathfrak{B} \ base \ di \ V$

$$A_{\mathfrak{B}}(\phi)$$
 é invertibile \Rightarrow ϕ non degenere

Dimostrazione. Se $w \in Rad(\phi)$ allora

$$\forall v \in V \quad \phi(v, w) = 0$$

Ma sfruttando la bilinearitá si ottiene che basta che annulli i vettori di una base di V quindi

$$\forall i = 1, \cdots, n \quad {}^{t}[v_i]_{\mathfrak{B}}A_{\mathfrak{B}}(\phi)[w]_{\mathfrak{B}} = {}^{t}E_1A_{\mathfrak{B}}(\phi)[w]_{\mathfrak{B}} = 0$$

Da cui il radicale é soluzione del sistema lineare

$$A_{\mathfrak{B}}(\phi)X = 0$$

quindi se $A_{\mathfrak{B}}(\phi)$ é invertibile, ha rango massimo ed il nucleo é ridotto al solo 0

Osservazione 40. La dimostrazione ci dice molto di più infatti sappiamo che

$$\dim Rad(\phi) = n - rg\left(A_{\mathfrak{B}}(\phi)\right)$$

16.3.1 Complementare del radicale

Proposizione 16.4. Sia ϕ un prodotto scalare su V.

$$V = Rad(\phi) \oplus U \quad \Rightarrow \quad \phi_{|U} \text{ non degenere}$$

Dimostrazione. Sia dim V = n e sia dim $Rad(\phi) = r$

Sia $\mathfrak{B}_1 = \{v_1, \dots, v_r\}$ una base del radicale estendiamola con $\mathfrak{B}_2 = \{w_1, \dots, w_n - r\}$ base di U .

Dunque data la somma diretta $\mathfrak{B} = B_1 \cup \mathfrak{B}_2$ é base di V

$$B = M_{\mathfrak{B}}(\phi) = \left(\begin{array}{c|c} 0 & 0\\ \hline 0 & A \end{array}\right)$$

Ora rk(B) = n - r = rk(A) ora A ha rango massimo dunque é invertibile ne consegue che $Rad(\phi_{|U}) = \{0\}$ ovvero la restrizione del prodotto scalare a U é non degenere.

Proposizione 16.5. Due complementari del radicale di ϕ sono canonicamente isomorfi.

Dimostrazione.

$$V = U_1 \oplus Rad(\phi) = U_2 \oplus Rad(\phi)$$

Dunque

$$\forall u \in U_1 \quad \exists! z \in Rad(\phi) \ u_2 \in U_2 \quad u = u + u_2$$

Definisco ora

$$g: U_1 \to U_2 \qquad u = z + u_2 \to u_2$$

Dimostriamo che g é un isometria

- Mostriamo che g é un isomorfismo. Essendo dim $U_1 = \dim U_2$ mostriamo che g é iniettiva. $u \in \ker g \iff u \in U \cap Rad(\phi)$ ma come abbiamo visto nella proposizione precedente $Rad(\phi_{|U}) = \{0\}$
- Mostriamo che g preserva il prodotto scalare. Siano $u, w \in U_1$ allora

$$u = z_1 + u_2 \qquad w = z_2 + w_2 \qquad \text{con } z_1, z_2 \in Rad(\phi) \text{ e } u_2, w_2 \in U_2$$

$$\phi(u, w) = \phi(z_1 + u_2, z_2 + w_2) = \phi(z_1, z_2) + \phi(u_2, z_2) + \phi(z_1, w_2) + \phi(u_2, w_2) = \phi(u_2, w_2) = \phi(g(u), g(w))$$

16.4 Sottospazio ortogonale

Definizione 16.6 (Sottospazio ortogonale).

Sia W un sottospazio di (V, ϕ) , definiamo l'ortogonale di W come

$$W^{\perp} = \{ v \in V \mid \phi(v, w) = 0 \quad \forall w \in W \}$$

Osservazione 41. Il radicale é l'ortogonale di tutto lo spazio vettoriale ovvero $Rad(\phi) = V^{\perp}$

Proposizione 16.6 (Propietá dell'ortogonale).

Siano $S, T \subseteq (V, \phi)$ sottospazi.

1.
$$S \subseteq T \implies T^{\perp} \subseteq S^{\perp}$$

2.
$$S^{\perp} = (Span(S))^{\perp}$$

3.
$$(S^{\perp}) \subseteq S$$
 se non degenere =

4.
$$(U + W)^{\perp} = U^{\perp} \cap W^{\perp}$$

5.
$$U^{\perp} + W^{\perp} \subseteq (U \cap W)^{\perp}$$

6.
$$W \cap W^{\perp} = Rad(\phi_{|W})$$
 se non degenere =

Dimostrazione. Le dimostrazioni delle propietá seguono in modo ovvio dalla definizione del sottospazio ortogonale.

16.4.1 Dimensione dell'ortogonale

Proposizione 16.7. $Sia\ W \subseteq V\ sottospazio.$

$$W \cap Rad(\phi) = \{0\} \implies \dim(W^{\perp}) = \dim V - \dim W$$

Dimostrazione. Siano $n = \dim V$, $m = \dim W$ e $k = \dim Rad(\phi)$.

Allora sia $\{z_1,\cdots,z_k$ base del radicale e $\{w_1,\cdots,w_m\}$ base di W possiamo ottenere

$$\mathfrak{B}=\{w_1,\cdots,w_m,v_1,\cdots v_{n-m-k},z_1,\cdots,z_k\}$$
 base di V

$$A = M_{\mathfrak{B}}(\phi) = \begin{pmatrix} A_1 & A_2 & 0 \\ \hline A_2^t & A_3 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \text{ con}$$

$$v \in W^{\perp} \quad \Leftrightarrow \quad \phi(v, w) = 0 \quad \forall w \in W \quad \Leftrightarrow \quad \phi(v, w_i) = 0 \quad \forall i = 1, \dots, m$$

Dunque

$$\phi(w_1, v) = \begin{pmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} A \cdot [v]_{\mathfrak{B}} = 0$$

:

$$\phi(w_m, v) = \begin{pmatrix} 0 & \cdots & 1 & 0 & \cdots & 0 \end{pmatrix} A \cdot [v]_{\mathfrak{B}} = 0$$

Dunque

$$W^{\perp} = \ker \left(\begin{pmatrix} I_m & | & 0 \end{pmatrix} A \right) = \ker \left(\begin{pmatrix} A_1 & 0 \\ \hline 0 & 0 \end{pmatrix} \right)$$

Ora la matrice

$$B = \left(\begin{array}{c|c} A_1 & A_2 \\ \hline A_2^t & A_3 \end{array}\right)$$

é invertibile infatti la restrizione di ϕ é non degenere (é un complementare del radicale) dunque rk(B) = n - k da cui ne segue che $rk(A_1) = m$ da cui

$$\dim W^{\perp} = \dim \ker \left(\frac{A_1 \mid 0}{0 \mid 0} \right) = n - m = \dim V - \dim W$$

Corollario 16.8 (Dimensione ortogonale).

$$\dim W^{\perp} = \dim V - \dim W + \dim(W \cap Rad(\phi))$$

Dimostrazione. Sia $W = (W \cap Rad(\phi)) \oplus U$ Allora

• Mostriamo che $W^{\perp} = U^{\perp}$ Poiché $U\subseteq W$ dalla propietá 1. dell'ortogonale segue che $W^\perp\subseteq U^\perp$ Andiamo a dimostrare l'altra inclusione ovvero $U^{\perp} \subseteq W^{\perp}$

$$\forall v \in U^{\perp}$$
 devo dimostrare che $\phi(v, w) = 0 \quad \forall w \in W$

Ora visto che $W = U \oplus (W \cap Rad(\phi))$ e

$$\phi(v, w) = 0 \quad \forall w \in U \text{ infatti } v \in U^{\perp}$$

e

$$\phi(v, w) = 0 \quad \forall w \in W \cap Rad(\phi)$$

ne segue che $\phi(v, w) = 0 \quad \forall w \in W$

• $U \cap Rad(\phi) = \{0\}$ infatti

$$U \cap (W \cap Rad(\phi)) = (U \cap W) \cap Rad(\phi)$$

ma $U \subseteq W$ da cui $U \cap W = U$ quindi

$$U \cap (W \cap Rad(\phi)) = U \cap Rad(\phi)$$

infatti sono in somma diretta

Dunque usando il caso precedente otteniamo

$$\dim W^{\perp} = \dim U^{\perp} = \dim V - \dim U = \dim V - \dim W + \dim(W \cap Rad(\phi))$$

Corollario 16.9.

$$\phi_{|W} \ non \ degenere \quad \Leftrightarrow \quad V = W \oplus W^{\perp}$$

 $Dimostrazione. \Rightarrow$

$$W \cap W^{\perp} = Rad(\phi_{|W}) = \{0\}$$

Ora $W \oplus W^{\perp} \subseteq V$ quindi $\dim(W + W^{\perp}) \leq \dim V$

Ma $\dim(V + V^{\perp}) = \dim V + \dim V^{\perp} = \dim V + \dim(W \cap Rad(\phi)) > \dim V$.

Valgono entrambe le disuguaglianze quindi $\dim(W + W^{\perp}) = \dim V$ \Leftarrow Se $W \oplus W^{\perp}$ allora

$$Rad(\phi_{|W}) = W \cap W^{\perp} = \{0\}$$

Osservazione 42. Se ϕ é non degenere

$$\dim W^{\perp} = n - \dim W$$

ma in generale

$$V \neq W \oplus W^{\perp}$$

91

16.5 Lemma di polarizzazione

Definizione 16.7 (Forma quadratica).

Sia ϕ un prodotto scalare, definiamo la funzione forma quadratica associata a ϕ

$$\varphi: V \to \mathbb{K} \qquad \varphi(v) = \phi(v, v)$$

Lemma 16.10 (di polarizzazione).

Se la caratteristica del campo $\mathbb{K} > 2$ (1 + 1 = 2 é invertibile).

Allora il prodotto scalare è determinato dalla sua forma quadratica e vale la sequente formula

$$\phi(v, w) = \frac{\varphi(v + w) - \varphi(v) - \varphi(w)}{2}$$

Dimostrazione. $\forall v, w \in V$

$$\varphi(v+w) = \phi(v+w, v+w) = \phi(v, v) + \phi(v, w) + \phi(w, v) + \phi(w, w) = \varphi(v) + \varphi(w) + 2\phi(v, w)$$

Da cui

$$2\phi(v,w) = \varphi(v+w) - \varphi(v) - \varphi(w)$$

Poiché 2 = 1 + 1 é invertibile

$$\phi(v, w) = 2^{-1}(\varphi(v + w) - \varphi(v) - \varphi(w))$$

Corollario 16.11. Se in \mathbb{K} 1 + 1 é invertibile.

 ϕ é totalmente isotropo \Leftrightarrow $\phi \equiv 0$

 $dove\ con \equiv si\ intende\ il\ prodotto\ scalare\ identicamente\ nullo$

 $Dimostrazione. \Leftarrow$ é ovvia se il prodotto scalare é totalmente isotropo allora ogni vettore é isotropo.

 \Rightarrow Se ogni vettore é isotropo , $\varphi(v)=0 \ \forall v\in V$ quindi per la formula ricavata nel lemma di polarizzazione si ha che $\phi\equiv 0$

16.6 Basi ortogonali e algoritmo di ortogonalizzazione

Definizione 16.8 (Base ortogonale).

Una base $\mathfrak{B}=\{v_1,\ldots,v_n\}$ di V si dice ortogonale per ϕ se $\phi(v_i,v_j)=0 \quad \forall i\neq j$. In modo equivalente

$$A_{\mathfrak{B}}(\phi)$$
 é diagonale

Teorema 16.12 (Esistenza di basi ortogonali).

Se in \mathbb{K} 1 + 1 é invertibile.

 $\forall (V, \phi) \ esiste \ una \ base \mathfrak{B} \ ortogonale \ per \ \phi$

Dimostrazione. Usiamo l'induzione su $n=\dim V\geq 1$

Il passo base é ovvio, ogni matrice di taglia 1×1 é ortogonale

Mostriamo ora che $n-1 \Rightarrow n$.

Distinguiamo 2 casi

- ϕ é totalmente isotropo quindi per il corollario 16.11 $\phi \equiv 0$ da cui $\forall \mathfrak{B}$ vale $M_{\mathfrak{B}}(\phi) = 0$
- ϕ non é totalmente isotropo, quindi $\exists v \in V \quad \phi(v, v) \neq 0$. Essendo v non isotropo per il corollario 16.9

$$V = Span(v) \oplus Span(v)^{\perp}$$

Ora dim $Span(v)^{\perp}=\dim W=n-1$ quindi posso utilizzare l'ipotesi induttiva su $(W,\phi_{|W}),$ quindi

$$\exists \mathfrak{B}' = \{w_1, \cdots, w_{n-1}\}$$
 base ortogonale

La base ortogonale di V cercata risulta dunque essere

$$\mathfrak{B} = \{v, w_1, \cdots, w_n\}$$

che é ortogonale infatti $w_1 \perp w_j$ perché sono una base ortogonale e $v \perp w_i$ per costruzione $(w_1 \in Span(v)^{\perp})$

Il teorema precedente ci dice che dato ϕ prodotto scalare su V spazio vettoriale su un campo di caratteristica diversa da 2 esiste una base ortogonale di ϕ ma non ci dice nulla su come ottenerla, l'algoritmo che andremo ad esporre ci fornisce un modo per calcolare tale base.

Definizione 16.9 (Coefficienti di Fourier).

Sia v un vettore non isotropo e sia w un generico vettore.

Definiamo coefficienti di Fourier di w rispetto a v lo scalare

$$c = \frac{\phi(v, w)}{\phi(v, v)}$$

Osservazione 43. c é ben definito perché essendo v non isotropo $\phi(v,v) \neq 0$ inoltre é di facile verifica che

$$w - cv \in Span(v)^{\perp}$$

se c é il coefficiente di Fourier di w rispetto a v

Algoritmo 16.13 (Algoritmo di Lagrange).

Sia \mathfrak{B} una base di V, ϕ .

L'algoritmo permette di trovare una base $\hat{\mathfrak{B}}$ ortogonale.

Partiamo da $\mathfrak{B} = \{v_1, \ldots, v_n\}$ e consideriamo

$$M = M_{\mathfrak{B}}(\phi) = (a_{ij} = \phi(v_i, v_j))_{\substack{i=1,\dots,n\\j=1,\dots,n}}$$

- Se $M_B \equiv 0 \implies \phi \equiv 0$, poniamo $\hat{\mathfrak{B}} = \mathfrak{B}$ e l'algoritmo termina
- La matrice non é identicamente nulla, in questo caso vogliamo ottenere un vettore non isotropo, distinguiamo 2 casi
 - (i) $\exists i \text{ tale che } a_{ii} \neq 0 \text{ ovvero tale che } \phi(v_i, v_i) \neq 0 \text{ dunque } v_i \text{ non isotropo.}$ Posso supporre dunque, a meno di riordinamenti della base che il primo vettore di \mathfrak{B} sia non isotropo.
 - (ii) Tutti i vettori di B sono isotropi (sulla diagonale di M ci sono solo 0). In questo caso prendo la prima entrata della matrice non nulla ovvero

$$\exists i, j$$
 t. c. $a_{ij} \neq 0 \Rightarrow \phi(v_i, v_j) \neq 0$

In questo caso il vettore $v = v_i + v_j$ non \(\epsilon \) isotropo infatti

$$\phi(v, v) = \phi(v_i, v_i) + \phi(v_j, v_j) + 2\phi(v_i, v_j) = 2\phi(v_i, v_j) \neq 0$$

Pongo dunque $\mathfrak{B}' = \{v, v_i, \cdots, y_i, v_j, \cdots, v_n\}$

Dunque a meno di modificare la base iniziale nel modo detto nei 2 casi possiamo supporre che

$$\mathfrak{B} = \{v_1, \ldots, v_n\}$$
 con v_1 non isotropo

Ora il teorema si concludeva dicendo che

$$V = Span(v_1) \oplus Span(v_1)^{\perp}$$

Quindi devo costruire una base \mathfrak{B}' di $W = Span(v_1)^{\perp}$, lo faccio sfruttando quando detto sui coefficienti di Fourier ponendo

$$v_2^{(i)} = v_2 - \frac{\phi(v_2, v_1)}{\phi(v_1, v_i)} \cdot v_1$$

$$v_n^{(i)} = v_n - \frac{\phi(v_n, v_1)}{\phi(v_1, v_i)} \cdot v_1$$

 $\mathfrak{B}^{(i)} = \{v_2^{(i)}, \cdots, v_n^{(i)}\}$ sono una base di W infatti sono $\dim W = n-1$ resta da provare l'indipendenza lineare.

Supponiamo che

$$a_2 v_2^{(i)} + \dots + a_n v_n^{(i)} = 0$$
 $\Rightarrow \sum_{i=2}^n a_i v_i + a_i \lambda_i v_i = \sum_{i=2}^n (a_i \lambda_i) v_i + a_2 v_2 + \dots + a_n v_n = 0$

L'ultima scrittura é una combinazione lineare nulla di vettori della base \mathfrak{B} dunque tutti i coefficienti devono essere nulli in particolare $a_2 = \cdots = a_n$.

Abbiamo ottenuto una base $\mathfrak{B} = \{v_1\} \cup \mathfrak{B}^{(i)}$ ortogonale

Dopo aver ortogonalizzato i vettori rispetto al primo, itero il procedimento sui vettori della base $\mathfrak{B}^{(i)}$ e cosi via

Osservazione 44. Se ϕ é anisotropo, ovvero $\forall v \in V, v \neq 0 \Rightarrow \phi(v,v) \neq 0$ l'algoritmo di semplifica infatti il primo vettore di \mathfrak{B} é sempre non isotropo. Questa semplificazione dell'algoritmo prende il nome di Gran-Schmdt.

Osservazione 45. L'ipotesi $1+1\neq 2$ é necessaria. Prendiamo come $\mathbb{K}=\mathbb{F}_2$ e $V=\mathbb{K}^2$ e il prodotto scalare cosí definito

$$\phi(X,Y) = X^t \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} Y$$

Ogni vettore é isotropo infatti $\forall X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in V$

$$\phi(X,X) = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = x_1 x_2 + x_1 x_2 = 0$$

Dunque se esistessero basi ortogonali allora

$$A_{\mathfrak{B}}(\phi) = \begin{pmatrix} c_1 & 0 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 essendo ogni vettore isotropo

Ma ció é assurdo perché $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ e $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ devono essere congruenti ma hanno rango diverso (la congruenza é una particolare SD-equivalenza quindi il rango é invariante)

Dunque abbiamo trovato un prodotto scalare con tutti i vettori isotropi ma non identicamente nullo e che non ammette basi ortogonali.

16.7 Isometrie e congruenze

Definizione 16.10. Siano (V,ϕ) e (W,ψ) K-spazi vettoriali.

 $f:V\to W$ lineare é un isometria se

- (i) f é un isomorfismo di spazi vettoriale
- (ii) f rispetta il prodotto scalare ovvero

$$\forall x, y \in V \quad \phi(x, y) = \psi(f(x), f(y))$$

Definizione 16.11. Se una tale f esiste allora (V, ϕ) e (W, ψ) si dicono isometrici.

Osservazione 46. L'essere isometrici é una relazione di equivalenza. Se (V, ϕ) e (W, ψ) sono isometrici, allora deve esistere

$$g:V\to W$$
 isomorfismo

Tramite g posso trasportare il prodotto scalare ψ su V infatti

$$\psi_V(v,w) = \psi(g(v),g(w))$$

Per studiare la relazione di isometria possiamo restringerci al caso di V fissato e variare il prodotto scalare

16.7.1 Congruenza

Definizione 16.12 (Congruenza).

Siano $A, B \in M(n, \mathbb{K}), A \in B$ si dicono congruenti se

$$\exists M \in GL(n, \mathbb{K})$$
 t. c. $A = M^tBM$

Osservazione 47. La relazione sopra descritta é una relazione di congruenza, ed é una particolare similitudine quindi il rango é un invariante.

Proposizione 16.14. Il segno del determinate é un invariante per congruenza

Dimostrazione. Sia A congruente a B allora

$$B = M^t \cdot A \cdot M \quad \Rightarrow \quad \det M = \det A \cdot (\det M)^2$$

Proposizione 16.15. Siano (V, ϕ) e (V, ψ) due spazi vettoriali.

I sequenti fatti sono equivalenti

- (i) (V, ϕ) $e(V, \psi)$ sono isometrici
- (ii) $\forall \mathfrak{B}$ base di V tale che $M_{\mathfrak{B}}(\phi)$ e $M_{\mathfrak{B}}(\psi)$ sono congruenti
- (iii) $\exists \mathfrak{B}, \mathfrak{B}'$ basi di V tali che $M_{\mathfrak{B}}(\phi) = M_{\mathfrak{B}'}(\psi)$

La dimostrazione é analoga a quella fatta per gli endomorfismi

16.7.2 Teorema di Sylvester

Caso complesso Sia (V, ϕ) un \mathbb{C} -spazio vettoriale di dimensione n. Sia dim $Rad(\phi) = n - r$ allora esiste una base $\mathfrak{B} = \{v_1, \ldots, v_n\}$ ortogonale tale che

$$M_{\mathfrak{B}}(\phi) = \begin{pmatrix} a_1 & & & \\ & \ddots & & 0 \\ & & a_r & \\ \hline & 0 & & 0 \end{pmatrix} \text{ dove } a_i \neq 0$$

Dunque possiamo costruire una nuova base

$$\mathfrak{B}' = \left\{ \frac{v_1}{\sqrt{a_1}}, \cdots, \frac{v_r}{\sqrt{a_r}}, \cdots, v_n \right\}$$

ora con questa base otteniamo

$$M_{\mathfrak{B}'}(\phi) = \left(\begin{array}{c|c} I_r & 0 \\ \hline 0 & 0 \end{array}\right)$$

Definizione 16.13. La base \mathfrak{B}' sopra costruita viene chiamata base ortogonale normalizzata per ϕ

Teorema 16.16 (Teorema di Sylvester complesso).

Il rango é un sistema di invarianti completi per l'isometria nel caso in cui $\mathbb{K} = \mathbb{C}$

$$(V,\phi)\ e\ (V,\psi)\ sono\ isometrici \qquad \Leftrightarrow \quad rk(\phi)=rk(\psi)$$

Dimostrazione. Come abbiamo visto in 16.15 allora

 (V,ψ) e (V,ϕ) sono isometrici \Leftrightarrow esistono \mathfrak{B} e \mathfrak{D} basi di tali che $M_{\mathfrak{B}}(\phi)=M_{\mathfrak{D}}(\psi)$

Infatti detto $r = rk(\psi) = rk(\phi)$ basta prendere

 \mathfrak{B} base ortonogonale normalizzata per ϕ

 \mathfrak{D} base ortogonale normalizzata per ψ

infatti

$$M_{\mathfrak{D}}(\phi) = M_{\mathfrak{D}}(\psi) = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$$

Corollario 16.17. Il rango é un invariante completo per la congruenza su $\mathbb C$

Caso reale e segnatura Se $\mathbb{K} = \mathbb{R}$ non possiamo reiterare il procedimento per costruire una base ortonormale, infatti in \mathbb{R} non sempre esiste la radice quadrata di un numero, possiamo peró modificare la costruzione.

Sia (V, ϕ) un \mathbb{R} -spazio vettoriale di dimensione n.

Sia dim $Rad(\phi) = n - r$ allora esiste una base $\mathfrak{B} = \{v_1, \ldots, v_n\}$ ortogonale tale che

$$M_{\mathfrak{B}}(\phi) = \begin{pmatrix} a_1 & & & \\ & \ddots & & 0 \\ & & a_r & \\ \hline & 0 & & 0 \end{pmatrix} \text{ dove } a_i \neq 0$$

Possiamo supporre senza perdere di generalitá che

$$a_i > 0 \quad \forall i = 1, \cdots, s$$

$$a_i < 0 \quad \forall i = s + 1, \cdots, r$$

Dunque costruiamo

$$\mathfrak{B}' = \left\{ \frac{v_1}{\sqrt{\phi(v_1, v_1)}}, \cdots, \frac{v_s}{\sqrt{\phi(v_s, v_s)}}, \frac{v_{s+1}}{\sqrt{-\phi(v_{s+1}, v_{s+1})}}, \cdots, \frac{v_r}{\sqrt{-\phi(v_r, v_r)}}, v_{r+1}, \cdots, v_n \right\}$$

ora con questa nuova base otteniamo

$$M_{\mathfrak{B}'}(\phi) = \left(\begin{array}{c|c} I_s & & \\ \hline & -I_{r-s} & \\ \hline & & 0 \end{array}\right)$$

Definizione 16.14. La base costruita prende il nome di base ortogonale normalizzata reale

Definizione 16.15. Sia (V, ϕ) un \mathbb{R} -spazio vettoriale. ϕ si dice

- definito positivo (risp. negativo) se $\phi(v,v) > 0$ (risp. < 0) $\forall v \in V \{0\}$
- definito se é definito positivo o negativo
- semidefinito positivo (risp. negativo) se $\phi(v,v) \geq 0$ (risp. ≤ 0) $\forall v \in V$
- semidefinito se é semidefinito positivo o negativo

Definizione 16.16 (Segnatura).

Sia (V, ϕ) un \mathbb{R} -spazio vettoriale, allora definiamo segnatura di ϕ la seguente terna di numeri

$$\sigma(\phi) = (i_{+}(\phi), i_{-}(\phi), i_{0}(\phi))$$

dove

• i_+ é l' Indice di positivitá

 $i_{+}(\phi) = \max\{\dim W \mid W \text{ sottospazio tale che } \phi_{|W} \text{ \'e definito positivo}\}$

• i_{-} é l'indice di negativitá

 $i_{-}(\phi) = \max\{\dim W \mid W \text{ sottospazio tale che } \phi_{|W} \text{ é definito negativo}\}$

• i_0 é l'indice di nullitá

$$i_0(\phi) = \dim Rad(\phi)$$

Osservazione 48. La segnatura é un invariante per isometria, infatti le isometrie preservano il prodotto scalare e dunque anche il segno di $\phi(v, v)$

Teorema 16.18 (Teorema di Sylvester reale).

Sia V un \mathbb{R} -spazio vettoriale e sia \mathfrak{B} una base ortonormale per ϕ tale che

$$M_{\mathfrak{B}}(\phi) = \left(\begin{array}{c|c} I_r & & \\ \hline & -I_s & \\ \hline & & 0 \end{array}\right)$$

Allora

$$r = i_+(\phi)$$
 $s = i_-(\phi)$

Dimostrazione. Sia

$$\mathfrak{B} = \{v_1, \cdots, v_r, v_{r+1}, \cdots, v_s, \cdots v_{s+1}, \cdots, v_n\}$$

- $\phi_{Span(v_1,\dots,v_r)}$ é definito positivo quindi $i_+(\phi) \geq r$
- Sia $Z = Span(v_{r+1}, \dots, v_n)$ $\phi_{|Z}$ é semidefinito negativo infatti

$$\forall z \in Z \quad z = \sum_{i=r+1}^{n} a_i v_i \quad \phi(z, z) = -\left(a_{r+1}^2 + \dots + a_{r+s}^2\right) \le 0$$

Sia W un sottospazio che realizza l'indice di positività allora W e Z sono in somma diretta infatti

$$\forall w \in W \quad \phi(w, w) > 0 \qquad \forall z \in Z \quad \phi(z, z) < 0$$

dunque

$$W \oplus Z \subseteq V \implies \dim W + \dim Z \le \dim V \implies i_+(\phi) \le r$$

Ora valgono entrambe le disuguaglianze quindi $i_+(\phi) = r$ Inoltre sappiamo che $i_+(\phi) + i_-(\phi) = rk(\phi) = r + s$ dunque $s = i_-(\phi)$

Corollario 16.19. La segnatura é un invariante completo per la relazione di isometria su \mathbb{R}

Definizione 16.17 (Base ortonormale).

Sia ϕ un prodotto scalare su V, \mathfrak{B} base di V si dice base ortonormale se $M_{\mathfrak{B}}(\phi) = I$

16.8 Teorema di estensione di Witt

Definizione 16.18 (Sottospazi congruenti).

Siano W_1, W_2 due sottospazi di (V, ϕ) .

 W_1 e W_2 sono congruenti se

$$\exists f \in O(\phi) \quad f(W_1) = W_2$$

Osservazione 49. Se una tale f esiste allora

$$f_1: W_1 \to W_2$$
 é un isometria

Quindi una condizione necessaria affinché due sottospazi siano congruenti é che esista un isometria tra di loro, il seguente teorema, ci dice che sotto alcune ipotesi, tale condizione é anche sufficiente

16.8.1 Teorema di estensione - caso non degenere

Teorema 16.20 (Teorema di estensione -caso non degenere). Sia $\phi_{|W_1}$ e $\phi_{|W_2}$ non degeneri.

$$\exists \beta: W_1 \to W_2 \text{ isometria} \quad \Rightarrow \quad \exists f \in O(\phi) \text{ tale che } f_{|W_1} = \beta$$

Dimostrazione. Per induzione su $k = \dim W$

Passo base k = 0.

Ogni $f \in O(\phi)$ estende β infatti f(0) = 0

$$n-1 \Rightarrow n$$

Sia

$$\{w_1,\ldots,w_k\}$$
 una base ortonormale di W_1

essendo $\phi_{|W_1}$ non degenere i vettori sono non isotropi.

Poiché β é un isomorfismo

$$\{u_1=\beta(w_1),\dots,u_k=\beta(w_k)\}$$
é una base ortonormale di W_2

Consideriamo

$$W_1' = Span(w_1, \dots, w_{k-1})$$

$$W_2' = Span(u_1, \dots, u_{k-1})$$

e

$$\beta': W_1' \to W_2' \qquad v_i = u_i \quad \forall i = 1, \dots, k-1$$

Ora poiché dim $W'_1 = n - 1$ possiamo usare l'ipotesi induttiva quindi

$$\exists g \in O(\phi) \quad g_{|W_1'} = \beta'$$

Ora si possono verificare 2 ipotesi

- $g(w_k) = u_k$ dunque poniamo f = g
- $\bullet \ g(w_k) = a_k \neq u_k.$

In questo caso essendo g un isometria $\phi(a_k, a_k) = \phi(w_k, w_k) \neq 0$

Per considerazioni fatte nella proposizione 16.24 basta comporre q con riflessioni parallela

16.8.2 Complementi non degeneri

Definizione 16.19 (Ampliamento non degenere).

Sia W un sottospazio vettoriale di (V, ϕ) e sia \hat{W} tale che

$$W \subseteq \hat{W} \subseteq V$$

 \hat{W} é detto un ampliamento non degenero di W se $\phi_{|\hat{W}}$ é non degenere

Definizione 16.20 (Completamento non degenere). Se \hat{W} é un ampliamento non degenere di W di dimensione minima, \hat{W} é detto completamento non degenere

Osservazione 50. Il completamento non degenere é ben definito infatti l'insieme degli ampliamenti non degeneri non é vuoto infatti V é un ampliamento algebrico di qualsiasi sottospazio.

Teorema 16.21.

Dato W sottospazio di (V, ϕ)

- (i) Esistenza costruttivi di completamenti non degeneri di W
- (ii) Se esistono 2 completamenti non degeneri sono congruenti (il completamento algebrico é unico a meno di isometrie)

Dimostrazione.

(i) Consideriamo $Z = Rad(\phi_{|W})$

Se
$$Z = \{0\}$$
 allora $\hat{W} = W$

Consideriamo ora il caso in cui dim $Z = s \neq 0$

$$W = U \perp Z$$

Fissiamo una base $\{u_1,\cdots,u_r,z_1,\cdots,z_s\}$ adattata alla decomposizione.

Mostriamo che esiste

$$\hat{W} = U \perp P_1 \perp \dots \perp P_s$$

dove i P_i sono piani iperbolici di V muniti di una base iperbolica $\{z_i,t_i\}$

Consideriamo la costruzione per s=1 per s>1 iteriamo la procedura. Sia

$$\mathfrak{B} = \{u_1, \cdots, u_r, z, v_1, \dots, v_n\}$$
 una base di V

Sia $z^\star \in V^\star$, ora poiché ϕ é non degenere per il teorema di rappresentazione

$$\exists d \in V$$
 t. c. $z^* = \varphi_d$

dunque in particolare

$$\phi(d,u_i)=0$$
infatti $z^\star(u_i)=0$

$$\phi(d,z)=1$$
infatti $z^{\star}(z)=1$

Mostriamo che

 $\{u_1,\ldots,u_r,z,d\}$ sono linearmente indipendenti

Supponiamo per assurdo che

$$d = \sum_{i=1}^{r} a_i u_i + az$$

Allora

$$\phi(d,z) = \sum_{i=1}^{r} a_1 \phi(u_i, z) + a\phi(z, z) = 0 \quad z \in Rad(\phi)$$

Dunque se i vettori sono dipendenti 0 = 1.

Ora ponendo P = Span(z, d) otteniamo che esso é un piano iperbolico, dunque esiste una base iperbolica $\{z, t\}$ per P.

$$\hat{W} = U \perp P$$

Abbiamo dimostrato che \hat{W} sopra costruito é un ampliamento, mostriamo che esso é un completamento.

Sia \hat{W}' un completamento non degenere.

Reiterando la costruzione ma estendiamo

$$\{u_1,\ldots,u_r,z\}$$

ad una base di \hat{W}' .

Essendo $\phi_{|\hat{W}'}$ non degenere giungiamo alle stesse conclusioni ovvero

$$W \subseteq \hat{W} \subseteq \hat{W}'$$

Ora poiché il completamento non degenere ha dimensione minima $\hat{W}=\hat{W}'$

(ii) Siano $W=U\perp Rad\left(\phi_{|W}\right)$ e consideriamo

$$\hat{W}_1 = U \perp P_1 \perp \cdots \perp P_s$$
 $\hat{W}_2 = U \perp P_1' \perp \cdots \perp P_s'$

dove i P_i hanno come base iperbolica $\{z_i, t_i\}$ e i P'_i hanno $\{z_i, t'_i\}$.

Consideriamo $\beta: \hat{W}_1 \to \hat{W}_2$ tale che $\beta(u_i) = u_i$ e $\beta(t_i) = t'_i$.

 β é un isometrie infatti manda U in se stesso e basi iperboliche in basi iperboliche.

Si conclude con il teorema di estensione nel caso non degenere

16.8.3 Teorema di estensione caso generale

Teorema 16.22.

$$\exists \beta: W_1 \to W_2 \text{ isometria} \Rightarrow \exists f \in O(\phi) \quad t. \ c. \ f_{|W_1} = \beta$$

Dimostrazione. Poniamo $Z = Rad\left(\phi_{|W_1}\right)$ e $S = Rad\left(\phi_{|W_1}\right)$ Sia

$$\{z_1,\ldots,z_k\}$$
 una base di Z

$$W = U \perp Z$$

Sia

$$U_2 = \beta(U_1)$$

$$s_i = \beta(z_i) \quad \forall i = 1, \dots, k$$

Poiché β é un isometria

$$\{s_1,\dots,s_k\}$$
 é una base di S
$$W_2=U_2\perp S$$

Andiamo a costruire i 2 completamenti non degeneri ottenendo

$$\hat{W}_1 = U_1 \perp P_1 \perp \dot{\perp} P_k \quad \{z_i, t_i\}$$
 base iperbolica per P_i

$$\hat{W}_2 = U_2 \perp P_1' \perp \dot{\perp} P_k' \quad \{s_i, t_i'\}$$
 base iperbolica per P_i'

Estendiamo β con β'

$$\beta': \hat{W_1} \to \hat{W_2}$$
 t. c. $\beta'_{|W_1} = \beta$ $\beta'(t_i) = t'_i$

Per costruzione β' risulta un isometria, quindi applicando il teorema nel caso non degenere otteniamo $f \in O(\psi)$ che estende β' dunque β

16.9 Gruppo ortogonale

Definizione 16.21 (Gruppo ortogonale).

Si definisce gruppo ortogonale di (V, ϕ) l'insieme

$$O(\phi) = \{ f \in GL(V) \mid f \text{ \'e isometria} \}$$

Possiamo anche vederlo in versione matriciale fissando una base di V (dim V=n)

$$\phi(X,Y) = X^t M Y$$
 $M = M^t$ $rk(M) = n$ [ϕ non degenere]

 $A \in GL(n, \mathbb{K})$

$$A \in O(\phi) \quad \Leftrightarrow \quad \forall X, Y \in \mathbb{K}^n \quad X^t M Y = (AX)^t M (AY) \quad \Leftrightarrow \quad X^t M Y = X^t (A^t M A) \quad \Leftrightarrow \quad M = A^t M A$$

Definizione 16.22 (Gruppo ortogonale matriciale).

Sia $M \in M(n, \mathbb{K})$ simmetrica di rango massimo

$$O(M) = \{ A \in GL(n, \mathbb{K}) \mid A^t M A = M \}$$

Specializziamolo nel caso in cui $\mathbb{K}=\mathbb{C}$ e prendiamo $\mathfrak B$ una base ortonormale. In questo caso M=I e possiamo definire

Definizione 16.23 (Gruppo ortogonale complesso classico).

$$O(n,\mathbb{C}) = \{ P \in GL(n,\mathbb{C}) \mid P^t = P^{-1} \}$$

In modo analogo con $\mathbb{K} = \mathbb{R}$

Definizione 16.24 (Gruppo ortogonale reale classico).

Sia ϕ definito positivo

$$O(n,\mathbb{R}) = \{ P \in GL(n,\mathbb{R}) \mid P^t = P^{-1}$$

Di particolare importanza sono anche i seguenti gruppi dove il prodotto scalare non é definito positivo.

Definizione 16.25.

$$O(s, n, \mathbb{R}) = \{ P \in GL(n, \mathbb{R}) \mid P^t I_{s,t} P = I_{s,t}$$

dove

$$I_{s,t} = \left(\begin{array}{c|c} I_s & 0 \\ \hline 0 & I_r \end{array}\right)$$

Sopratutto il gruppo di Lorentz $O(3,1,\mathbb{R})$ che rappresenta le simmetrie della relatività

16.9.1 Riflessioni parallele ad un vettore

Sia $v \in V$ non isotropo allora $Rad(\phi) \cap Span(v) = \{0\}$ quindi

$$V = Span(v) \oplus Span(v)^{\perp} = Span(v) \oplus W$$

$$\forall u \in V \quad \exists! \lambda \in \mathbb{K} \quad w \in W \quad \text{t. c.} \quad u = \lambda v + w$$

Definizione 16.26 (Riflessione parallela ad un vettore v).

$$\rho_v(u) = -\lambda v + w$$

Proposizione 16.23.

- (i) $\rho_v^2 = id$ ovvero \acute{e} un involuzione
- (ii) $\rho_v \in O(\phi)$
- (iii) −id é composizione di n riflessioni
- (iv) Sia w non isotropo. Se $\tilde{\rho_v}$ é una riflessione su $Span(w)^{\perp}$ questa si estende alla riflessione ρ_v su V
 - (i) Ovvia

Dimostrazione..

(ii) Siano $\lambda_1, \lambda_2 \in \mathbb{K}$ e $w_1, w_2 \in Span(v)^{\perp}$ allora

$$\phi(\rho_v(\lambda_1 v + w_1), \rho_v(\lambda_2 v + w_2)) = \phi(-\lambda_1 v + w_1, -\lambda_2 v + w_2) =$$

$$= \lambda_1 \lambda_2 \phi(v, v) - \lambda_1 \phi(v, w_2) - \lambda_2 \phi(v, w_1) + \phi(w_1, w_2)$$

Ora $w_1, w_2 \in Span(v)^{\perp}$ quindi

$$\phi(\rho_v(\lambda_1 v + w_1), \rho_v(\lambda_2 v + w_2)) = \lambda_1 \lambda_2 \phi(v, v) + \phi(w_1, w_2) = \phi(\lambda_1 v + w_1, \lambda_2 v + w_2)$$

(iii) Infatti sia $\{v_1, \ldots, v_n\}$ una base ortogonale di V allora

$$-id = \rho_{v_1} \circ \dots \circ \rho_{v_n}$$

infatti se $u \in V$ allora $u = a_1v_1 + \cdots + a_nv_n$ La riflessione ρ_{v_i} inverte solo la componente a_i

(iv)
$$V = Span(w) \oplus Span(w)^{\perp}$$

Ora v non é isotropo quindi

$$Span(w)^{\perp} = Span(v) \oplus T$$

Dove T é ortogonale di Span(v) in $Span(w)^{\perp}$ Dunque

$$V = Span(v) \oplus^{\perp} (Span(w) \oplus T)$$

Proposizione 16.24. $Siano w_1, w_2 \in V$

$$\phi(w_1, w_1) = \phi(w_2, w_2) \neq 0$$

Allora vale almeno una delle seguenti affermazioni

(i)
$$\exists v \in V$$
 t. c. $\rho_v(w_1) = w_2$

(ii)
$$\exists v \in V$$
 t. c . $\rho_v(w_1) = -w_2$

Dimostrazione. Consideriamo i vettori $w_1 + w_2$ e $w_1 - w_2$ essi sono ortogonali infatti

$$\phi(w_1 + w_2, w_1 - w_2) = \phi(w_2, w_2) - \phi(w_1, w_1) = 0$$

Mostriamo inoltre che non possono essere entrambi isotropi altrimenti

$$\begin{cases} \phi(w_1 + w_2, w_1 + w_2) = 0 \\ \phi(w_1 - w_2, w_1 - w_2) = 0 \end{cases} \begin{cases} \phi(w_1, w_1) + \phi(w_2, w_2) + 2\phi(w_1, w_2) = 0 \\ \phi(w_1, w_1) + \phi(w_2, w_2) - 2\phi(w_1, w_2) = 0 \end{cases} 4\phi(w_1, w_1) = 0$$

Ma l'ultima uguaglianza é assurda infatti $4 \neq 0$ per la caratteristica del campo e $\varphi(w_1) \neq 0$

Osservando che

$$w_1 = \frac{1}{2}(w_1 - w_2) + \frac{1}{2}(w_1 + w_2)$$

possiamo considerare

(i) $w_1 - w_2$ non isotropo da cui possiamo considerare la riflessione

$$\rho_{w_1-w_2}(w_1) = -\frac{1}{2}(w_1 - w_2) + \frac{1}{2}(w_1 + w_2) = w_2$$

(i) $w_1 + w_2$ non isotropo da cui possiamo considerare la riflessione

$$\rho_{w_1+w_2}(w_1) = \frac{1}{2}(w_1 - w_2) - \frac{1}{2}(w_1 + w_2) = -w_2$$

Corollario 16.25. Dati w_1, w_2 come sopra

$$\exists v \in V \quad \rho_v(Span(w_1)) = Span(w_2)$$

Teorema 16.26 (Teorema di struttura dell'ortogonale).

Ogni isometria f si puó scrivere come composizione di riflessione

Dimostrazione. Distinguiamo 2 casi

- f = id allora $id = \rho_v^2 \ \forall v$ non isotropo
- $f \neq id$ e dimostriamolo per induzione su $n = \dim V \geq 1$ Passo base n = 1

V = Span(v) e essendo ϕ non degenere v non é isotropo.

Ora poiché $f \in End(V)$ ne segue che $f(v) = \lambda_v$

Inoltre essendo un isometria

$$\phi(v,v) = \phi(f(v),f(v)) \Leftrightarrow \phi(v,v) = \lambda^2 \phi(v,v)$$

Ovvero $\lambda = \pm 1$ ma essendo $f \neq Id$

$$f = -Id \implies f = \rho_v$$

Proviamo ore che $n-1 \Rightarrow n$

Sia $w \in V$ non isotropo allora

$$V = Span(w) \oplus Span(w)^{\perp}$$
 denotiamo con $Z = Span(w)^{\perp}$

Consideriamo 2 casi

-f(w)=w.

Z é f-invariante e applicando l'ipotesi induttiva su Z con ϕ ristretto otteniamo

$$f_{|Z} = \tilde{\rho_{v_1}} \circ \cdots \circ \tilde{\rho_{v_k}}$$

ma per la propietá 16.23 (iv) vale

$$f = \rho_{v_1} \circ \cdots \circ \rho_{v_k}$$

 $-f(w) = w' \neq w$

Ora essendo f un isometria $\phi(w,w)=\phi(w',w')$ dunque dalla proposizione 16.24 si possono verificare 2 casi differenti

* $\exists v \ \rho_v(w') = w \text{ in questo caso}$

$$f = \rho_v \circ rho_{v_1} \circ \dots \circ \rho_{v_k}$$

* $\exists v \ \rho_v(w') = -w \text{ in questo caso}$

$$f = (-id) \circ rho_{v_1} \circ \cdots \circ \rho_{v_k}$$

ma -id si scrive come composizioni di riflessioni (16.23 (iii))

Corollario 16.27. $Sia(V, \phi) con n = \dim V$.

Allora $\forall f \in O(\phi) \ con \ f \neq id$

 $\exists c(n)$ tale che f si scrive come composizione di al più c(n) riflessioni

16.10 Prodotti scalari anisotropi

Definizione 16.27 (Anisotropo).

Sia V un \mathbb{R} -spazio vettoriale, ϕ si dice anisotropo se il cono isotropo é ridotto al solo 0 ovvero se

$$\forall v \in V \quad v \neq 0 \quad \Rightarrow \phi(v, v) \neq 0$$

Osservazione 51.

 ϕ anisotropo \Rightarrow ϕ non degenere

in generale non vale l'altra implicazione

Proposizione 16.28 (Caratterizzazione degli anisotropi). Sia V un K-spazio vettoriale e sia ϕ un prodotto scalare non degenere allora

- (i) Se $\mathbb{K} = \mathbb{C}$ vale
- $\phi \ anisotropo \Leftrightarrow \dim V = 1$
- (ii) Se $\mathbb{K} = \mathbb{R}$ vale
- ϕ anisotropo \Leftrightarrow ϕ definito

Dimostrazione.

(i) \Rightarrow in modo contro nominale.

Sia dim V=2 allora esiste una base $\mathfrak{B}=\{v_1,v_2\}$ ortogonale normalizzata per V. Il vettore $v=v_1+iv_2$ é isotropo infatti

$$\phi(v,v) = \phi(v_1,v_1) + 2i\phi(v_1,v_2) - \phi(v_2,v_2)$$

ma essendo la base ortogonale normalizzata segue che

$$\phi(v, v) = 1 + 0 - 1 = 0$$

 \Leftarrow Se dim V = 1 allora V = Span(v).

Ora $\forall w \in V \quad w = \lambda v$

$$\phi(w,w) = \lambda^2 \phi(v,v)$$

Ora $\phi(v,v) \neq 0$ infatti ϕ non degenere

(ii) \Rightarrow in modo contro nominale.

Supponiamo che ϕ non é definito allora esiste una base $\{v_1, \dots, v_p, v_{p+1}, \dots, v_n\}$ tale che che

$$M_{\mathfrak{B}}(\phi) = \left(\begin{array}{c|c} I_p & \\ \hline & -I_{n-p} \end{array}\right)$$

Dunque $\phi(v_1 + v_{p+1}, v_1, v_{p+1}) = 0$

 \Leftarrow Se ϕ é definito allora

$$\forall v \in V \ v \neq 0 \quad \phi(v,v) > 0 \text{ oppure } \phi(v,v) < 0$$

16.11 Piano iperbolico

Definizione 16.28. (P, ϕ) é un piano iperbolico se ha le seguenti propietá

- (i) $\dim P = 2$
- (ii) ϕ non degenere
- (iii) $\exists v \in P, v \neq 0$ isotropo

Definizione 16.29 (Base iperbolica).

Dato (P, ϕ) **3** é una base iperbolica per ϕ se

$$M_{\mathfrak{B}}(\phi) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Lemma 16.29. Sia (P, ϕ) un piano iperbolico con $v \neq 0$ isotropo. Allora esiste una base iperbolica per ϕ della forma $\{v, t\}$.

Dimostrazione. Essendo $v \neq 0$ lo possiamo estendere ad una base $\mathfrak{B} = \{v, f\}$ di P

$$M_{\mathfrak{D}}(\phi) = \begin{pmatrix} 0 & b \\ b & a \end{pmatrix}$$

Ora essendo il prodotto scalare non degenere la matrice é invertibile quindi $-b^2 \neq 0$ da cui $b \neq 0$

Per ottenere la matrice voluta considero questa trasformazione

$$\begin{cases} v = v \\ t = \lambda v + \alpha d \end{cases}$$

quindi imponendo le condizioni per ottenere una base iperbolica ottengo

$$\begin{cases} \phi(v, \lambda v + \alpha d) = 1 \\ \phi(\lambda v + \alpha d, \lambda v + \alpha d) = 0 \end{cases} \qquad \begin{cases} \alpha \phi(v, d) = 1 \\ 2\alpha \lambda \phi(v, d) + \alpha^2 \phi(d, d) = 0 \end{cases} \qquad \begin{cases} \alpha b = 1 \\ 2\lambda \alpha b + \alpha^2 d = 0 \end{cases}$$

Quindi

$$\begin{cases} \alpha = b^{-1} \\ \lambda = -(2b^2)^{-1} a \end{cases}$$

Osserviamo che tali valori hanno senso infatti $b \neq 0$

16.12 Decomposizione di Witt

Definizione 16.30 (Somma diretta ortogonale). Diremo che

$$W_1 \perp \cdots \perp W_k$$

se valgono contemporaneamente

- (i) $W_1 \oplus \cdots \oplus W_k$
- (ii) $\forall i \neq j \quad v_i \in W_i, v_i \in W_i \quad \phi(v_i, v_i) = 0$

Definizione 16.31. Sia ϕ non degenere allora chiamiamo decomposizione di Witt di (V, ϕ) una decomposizione

$$V = P_1 \perp \cdots \perp P_k \perp A$$

dove P_i sono piani iperbolici e A é anisotropo

Analizziamo le varie decomposizione possibili su \mathbb{C} e su \mathbb{R} sfruttando la caratterizzazione degli anisotropi (16.28)

16.12.1 Caso complesso

• $A = \{0\}$ dunque dim V = 2n. Sia $\mathfrak{B} = \{v_1, w_1, \dots, v_n, w_n\}$ una base ortonormale per ϕ allora

$$M_{\{v_i,w_i\}} \left(\phi_{|Span(v_i,w_j)} \right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

inoltre il vettore $v_i + iw_i$ é isotropo dunque: $P_i = Span(v_i, w_i)$ é un piano iperbolico inoltre segue che

$$V = P_1 | \cdots | P_n$$

• dim $A = \{1\}$ dunque dim V = 2n + 1. Possiamo considerare una base ortonormale $\mathfrak{B} = \{v_1, w_1, \dots, v_n, w_n, z\}$ e considerare

$$V = Span(v_1, w_1, \cdots, v_n, w_n) \perp Span(z)$$

Ora iterando il caso precedente al primo termine della somma otteniamo

$$V = P_1 \perp \cdots \perp P_n \perp Span(z)$$

Ora dim Span(z) = 1 quindi la decomposizione scritta é una decomposizione di Witt

16.12.2 Caso reale

• $p = i_+(\phi) \le i_-(\phi)$.

Sia
$$\mathfrak{B} = \{v_1, \dots, v_p, w_1, \dots, w_p, \dots, w_{n-p}\}$$

Sia
$$P_i = Span(v_i, w_i)$$
 per ogni $i = 1, \dots, p$ e $A = Span(w_{p+1}, \dots, w_{n-p})$.

Ora $v_i + w_i$ é isotropo dunque P_i é un piano iperbolico, inoltre $\phi_{|A}$ é definito negativo dunque é anisotropo.

Ne segue che

$$V = P_1 | \cdots | P_n | A$$

dove l'ultima decomposizione é una decomposizione di Witt

 $\bullet \ p=i_-(\phi) \leq i_-(\phi)$ La costruzione é analoga al caso precedente ma $\phi_{|A}$ é definito positivo

Possiamo riassumere quanto precedente detto in questo modo

Teorema 16.30. Sia ϕ un prodotto scalare non degenere, allora nel caso complesso reale e complesso esiste la decomposizione di Witt e vale

- $\mathbb{K} = \mathbb{C} \ e \ \text{dim} \ W = 2m \ allora \ \#P_i = m \ e \ \text{dim} \ A = 0$
- $\mathbb{K} = \mathbb{C} \ e \ \dim W = 2m+1 \ allora \ \#P_i = m \ e \ \dim A = 1$
- $\mathbb{K} = \mathbb{R} \ allora \ \#P_i = \min(i_+(\phi), i_-(\phi))$

Definizione 16.32 (Indice di Witt).

$$w(\phi) = \max\{\dim W \mid W \subseteq V \quad \phi_{|W} \equiv 0\}$$

Proposizione 16.31 (Propietá dell'indice di Witt).

- (i) Se ϕ non degenere allora $w(\phi) \leq \frac{\dim V}{2}$
- (ii) Se $V = P_1 \perp \cdots P_h \perp A$ é una decomposizione di Witt allora $h \leq w(\phi)$ inoltre se $\mathbb{K} = \mathbb{C}$ oppure $\mathbb{K} = \mathbb{R}$ allora $w(\phi) = h$

Teorema 16.32. Siano (V, ϕ) e (V, ψ) non degeneri.

 (V,ϕ) e (V,ψ) sono isometrici \Leftrightarrow $w(\phi)=w(\psi)$ e le parti anisotrope sono isometriche

16.13 Teorema di rappresentazione

Come abbiamo 10 osservato se dimV=n allora esiste un isomorfismo tra V e V^* , tale isomorfismo peró non é canonico poiché dipende dalla scelta arbitraria di una base.

Vediamo come ϕ prodotto scalare su V non degenere permette di individuare un isomorfismo canonico tra V ed il suo duale.

Teorema 16.33 (Teorema di rappresentazione di Riesz).

Sia V uno spazio vettoriale e sia ϕ un prodotto scalare non degenere.

Allora esiste un isomorfismo canonico tra V e il suo duale.

Dimostrazione.

$$F_{\phi}: V \to V^* \qquad F_{\phi}(v) = \varphi_v$$

Definisco $\varphi_v:\,V\to\mathbb{K}$ nel seguente modo

$$\forall w \in V \quad \varphi_v(w) = \phi(v, w)$$

Affinché sia un isomorfismo ben definito occorre

• φ_v é lineare.

$$\varphi_v(w_1 + w_2) = \phi(v, w_1 + w_2) = \phi(v, w_1) + \phi(v, w_2)$$

Dove abbiamo utilizzato la linearitá a destra del prodotto scalare

• F_{ϕ} é lineare

$$F_{\phi}(v_1+v_2)=\varphi_{v_1+v_2}$$

$$\forall w \in V \quad \varphi_{v_1 + v_2} = \phi(v_1 + v_2, w) = \phi(v_1, w) + \phi(v_2, w) = \varphi_{v_1}(w) + \varphi_{v_2}(w)$$

Dove abbiamo utilizzato la linearitá a sinistra del prodotto scalare

• F_{ϕ} sia iniettivo ($\dim V = \dim V^*$)

$$\ker F_{\phi} = \{ v \in V : \varphi_v \equiv 0 \}$$

$$\varphi_v \equiv 0 \quad \Rightarrow \quad \forall w \in V \quad \phi(v, w) = 0 \quad \Rightarrow \quad v \in Rad \, \phi$$

Quindi essendo ϕ non degenere

$$\ker F_{\phi} = Rad \, \phi = \{0\}$$

Osservazione 52. Il nome deriva perché ogni funzionale del duale si puó rappresentare con un vettore dello spazio tramite l'intermediazione del prodotto scalare

16.14 Aggiunto

Sia (V, ϕ) uno spazio vettoriale finitamente generato e ϕ non degenere. É utile ricordare come avevamo definito l'applicazione trasposta

Definizione 16.33 (Applicazione trasposta).

Sia

$$f: V \to V$$

Allora definiamo

$$f^t: V^* \leftarrow V^* \qquad \forall \psi \in V^* \quad f^t(\psi) = \psi \circ f$$

Tale applicazione ci permette di definire un isomorfismo tra

$$End(V) \to End(V^*) \qquad f \to f^t$$

e di identificare canonicamente

$$End(V) = End(V^{\star\star})$$

Dunque si ha

$$\forall f \in End(V) \quad f = f^{tt}$$

Inoltre per il teorema di rappresentazione possiamo costruire l'isomorfismo

$$F_{\phi}: V \to V^{\star} \qquad v \to \phi(v, \circ)$$

Definizione 16.34 (Aggiunto).

Dato $f \in End(V)$ definiamo l'endomorfismo ϕ -aggiunto di f una mappa f^* che faccia commutare

$$V \xleftarrow{f^{\star}} V$$

$$\downarrow^{F_{\phi}} \qquad \downarrow^{F_{\phi}}$$

$$V^{\star} \xleftarrow{f^{t}} V^{\star}$$

Osservazione 53. Dalla commutativitá del diagramma visto sopra si deduce che

$$\forall v, w \in V$$
 $\phi(v, f(w)) = \phi(f^*(v), w)$

Proposizione 16.34. L'aggiunto é l'unico endomorfismo con la propietá

$$\forall v, w \in V$$
 $\phi(v, f(w)) = \phi(f^*(v), w)$

Dimostrazione. Siano $f, g \in End(V)$ tale che

$$\phi(v, f(w)) = \phi(q(v), w) \quad \forall v, w \in V$$

Fissiamo una base \mathfrak{B} di V e ponendo

$$M_{\mathfrak{B}}(\phi) = M$$

$$M_{\mathfrak{B}}(f) = A$$

$$M_{\mathfrak{B}}(g) = B$$

$$[v]_{\mathfrak{B}} = X \quad [w]_{\mathfrak{B}} = Y$$

la precedente uguaglianza diventa

$$X^{t}M(AY) = (BX)^{t}MY \quad \Leftrightarrow \quad X^{t}(MA)Y = X^{t}(B^{t}M)Y$$

e poiché vale $\forall X, Y \in \mathbb{K}^n$

$$MA = B^t M \Leftrightarrow A^t M^t = M^t B \Leftrightarrow B = (M^t)^{-1} A^t M^t$$

Abbiamo provato che una tale g se esiste é unica; ora poiché l'aggiunto soddisfa tale propietá é l'unica funzione con tale caratteristica

Osservazione 54. Nel caso particolare in cui prendiamo una base $\mathfrak B$ ortonormale allora

$$M_{\mathfrak{B}}(\phi) = I \quad \Rightarrow \quad A^{\star} = A^{t}$$

Proposizione 16.35 (Propietá dell'aggiunto). .

- $\bullet (f^{\star})^{\star} = f$
- $\ker(f^*) = (Im(f))^{\perp}$
- $Im(f^*) = (\ker(f))^{\perp}$

Definizione 16.35 (Autoaggiunto). Se $f \in End(V)$ tale che

$$f = f^*$$

allora f si dice autoaggiunto

Osservazione 55. In questo caso se prendiamo $\mathfrak B$ base ortonormale, risulta

$$f = f^{\star} \Leftrightarrow A = A^t$$

16.15 Teorema spettrale reale

Sia V un \mathbb{R} -spazio vettoriale e ϕ un prodotto scalare definito positivo.

Sappiamo che esistono basi ortonormali tale che ϕ é rappresentato dalla matrice identitá e

$$f = f^{\star} \quad \Leftrightarrow A = A^t$$

Prima di dimostrare il teorema dimostriamo i seguente lemma

Lemma 16.36. Sia $A \in M(n, \mathbb{R})$ una matrice simmetrica, allora $Sp(A) \neq \emptyset$

Dimostrazione. Sia A vista come matrice complessa, ora in $\mathbb C$ il polinomio caratteristico é completamente fattorizzabile quindi

$$\exists \lambda \in \mathbb{C} \,\exists X \in \mathbb{C}^n$$
 t. c. $AX = \lambda X$

Coniugando

$$\overline{AX} = \overline{\lambda}\overline{X}$$

ma $A \in M(n, \mathbb{R})$ da cui

$$A\overline{X} = \overline{\lambda X}$$

Moltiplichiamo da entrambi i termini per X^t

$$X^t A \overline{X} = \overline{\lambda} X^t \overline{X}$$

Ora $X^t A = (A^t X)^t = (AX)^t = \lambda X^t$ quindi

$$\lambda X^t \overline{X} = \overline{\lambda} X^t \overline{X} \quad \Rightarrow \quad (\lambda - \overline{\lambda}) X^t \overline{X} = 0 \quad \Rightarrow \quad (\lambda - \overline{\lambda}) ||X||^2 = 0 \quad \Rightarrow \lambda = \overline{\lambda}$$

Dunque $\lambda \in \mathbb{R}$

Lemma 16.37. Sia $f \in End(V)$ autoaggiunto e sia $W \subseteq V$ un sottospazio

$$W \text{ f-invariante} \Rightarrow W^{\perp} \text{ f-invariante}$$

Dimostrazione. Devo dimostrare che $\forall x \in W^{\perp}$ vale che $f(x) \in W^{\perp}$

$$x \in W^{\perp} \quad \Rightarrow \quad \phi(x,w) = 0 \quad \forall w \in W \quad \Rightarrow \quad \phi(x,f(w)) = 0 \quad \forall w \in W$$

Dove l'ultima implicazione é data dal fatto che W é f-invariante.

$$\phi(x, f(w)) = 0 \quad \forall w \in W \quad \Rightarrow \quad \phi(f^*(x), w) = 0 \quad \forall w \in W \quad \Rightarrow \phi(f(x), w) = 0 \quad \forall w \in W \quad \Rightarrow f(x) \in W^{\perp}$$

Definizione 16.36 (Ortogonalmente diagonalizzabile).

 $f \in End(V)$ é ortogonalmente diagonalizzabile se

 $\exists \mathfrak{B}$ base di V ortonormale t. c. $M_{\mathfrak{B}}(f)$ é diagonale

Teorema 16.38 (Teorema spettrale caso reale).

Sia V un \mathbb{R} -spazio vettoriale e sia ϕ un prodotto scalare su ϕ definito positivo. $f \in End(V)$

 $f \in ortogonalmente \ diagonalizzabile \iff f = f^*$

 $Dimostrazione. \Rightarrow$ se fé ortogonalmente diagonalizzabile allora

 $\exists \mathfrak{B}$ base ortogonale t. c. $M_{\mathfrak{B}}(f) = D$ diagonale

Ora essendo la base ortogonale

$$D^{\star} = D^{t} = D$$
 infatti D é diagonale

Dunque $D = D^*$ ovvero $f = f^*$

 \Leftarrow per induzione su dim V=n

Il passo base n = 1 é ovvio.

Dimostriamo che $n-1 \Rightarrow n$

Per il lemma 16.36

$$\exists \lambda \exists v \neq 0$$
 t. c. $f(v) = \lambda v$

Ora essendo ϕ definito positivo, allora v non é isotropo dunque

$$V = Span(v) \perp Span(v)^{\perp}$$

Poiché Span(v) é f-invariante per il lemma 16.37 anche $Span(v)^{\perp}$ lo é Allora per ipotesi induttiva essendo dim $(Span(v)^{\perp}) = n - 1$

 $\exists \{v_2, \cdots, v_n\}$ base ortonormale di $Span(v)^{\perp}$ formata da aurovettori di f_{\parallel} e dunque di f

Concludiamo dicendo che $\left\{\frac{v}{||v||},v_2,\cdots,v_n\right\}$ é una base ortonormale formata da autovalori per f

Una formulazione equivalente nel caso matriciale

Teorema 16.39.

$$\exists P \in O(n, \mathbb{R}) \quad P^{-1}AP \ \'e \ diagonale \quad \Leftrightarrow \quad A = A^t$$

Teorema 16.40 (Teorema ortogonalizzazione simultanea).

Sia V un \mathbb{R} -spazio vettoriale e ϕ, ψ prodotti scalari su V

 ϕ definito positivo \Rightarrow $\exists \mathfrak{B}$ base di V, ortonormale per ϕ e ortogonale per ψ

Proposizione 16.41. $A \in M(n, \mathbb{R})$

$$A \ simmetrica \quad \Leftrightarrow \quad \begin{cases} A^t A = AA^t \\ A \ triangolabile \end{cases}$$

Proposizione 16.42 (Radice quadrata).

Sia $A \in M(n, \mathbb{R})$ simmetrica.

A definita positiva $\Leftrightarrow \exists ! S \in M(n, \mathbb{R})$ simmetrica e definita positiva $A = S^2$

Proposizione 16.43 (Decomposizione polare).

 $Sia\ A \in GL(n,\mathbb{R}),\ allora$

 $\exists ! S \in M(n, \mathbb{R})$ simmetrica e definita positiva e $P \in O(n)$ A = SP

17 Prodotti Hermitiani

Ricordiamo la definizione di applicazione lineare

Definizione 17.1 (Lineare).

Sia V un \mathbb{K} -spazio vettoriale.

 $f: V \to V$ c é lineare se

$$\forall x, y \in V \quad \forall a, b \in \mathbb{K} \quad f(ax + by) = af(x) + bf(y)$$

Definizione 17.2 (Antilineare).

Sia V un \mathbb{C} -spazio vettoriale. $f:V\to V$ di dice antilineare se

$$\forall x, y \in V \quad \forall a, b \in \mathbb{K} \quad f(ax + by) = \overline{a}f(x) + \overline{b}f(y)$$

Grazie a queste 2 definizione possiamo definire i prodotti Hermitiani

Definizione 17.3 (Prodotto Hermitiano).

Sia V un \mathbb{C} -spazio vettoriale, allora un prodotto scalare é su V una funzione

$$\phi: V \times V \to \mathbb{C}$$

tale che

- (i) ϕ é lineare sulla prima componente
- (ii) ϕ é antilineare sulla seconda componente

(iii)
$$\phi(v, w) = \overline{\phi(w, v)} \quad \forall v, w \in V$$

Definizione 17.4 (Sesquilineare).

Una funzione con solo le prime 2 propietá si chiama forma sesquilineare

Osservazione 56. Dalla propietá (iii) segue che $\phi(v,v) \in \mathbb{R}$ quindi possiamo estendere ai prodotti Hermitiani tutte quelle nozioni che abbiamo definito sui prodotti scalari reali (definito positivo, indice di positivitá, ...)

Nel caso dei prodotti scalari potevamo definire un prodotto scalare mediante una base $\mathfrak B$ e valeva che

$$\phi(v, w) = [v]_{\mathfrak{B}}^t \cdot A \cdot [w]_{\mathfrak{B}} \quad \text{con } A = M_{\mathfrak{B}}(\phi) = A^t$$

Possiamo reiterare il ragionamento per un prodotto Hermitiano ψ ottenendo

$$\psi(v, w) = [v]_{\mathfrak{B}}^t \cdot A \cdot \overline{[w]_{\mathfrak{B}}} \quad \text{con } A = \overline{A^t}$$

Definizione 17.5 (Basi unitarie).

Sia ϕ un prodotto Hermitiano, allora \mathfrak{B} é un base unitaria se $M_{\mathfrak{B}}(\phi) = I$

Definizione 17.6 (Gruppo unitario).

$$U(n)=\{P\in GL(n,\mathbb{C})\,|P^{-1}=\overline{P^t}`$$

Osservazione 57. Le basi unitarie corrispondono alle basi unitarie del prodotto scalare Il gruppo ortogonale é il corrispettivo del gruppo ortogonale dei prodotti scalari

17.1 Teorema spettrale e operatori normali

Definiamo l'aggiunto in modo analogo al caso dei prodotti scalari

Definizione 17.7 (Endomorfismi normali).

 $f \in End(V)$ si dice normale se commuta con il suo aggiunto ovvero

$$f \circ f^{\star} = f^{\star} \circ f$$

Alcuni operatori aggiunti sono

- Autoaggiunto se $f = f^*$
- Antiautoaggiunto se $f^* = -f$
- Unitario se $f^* = f^{-1}$

Teorema 17.1 (Teorema spettrale hermitiano).

Sia V un \mathbb{C} -spazio vettoriale e sia ϕ un prodotto Hermitiano su V definito positivo. $f \in End(V)$

f unitariamente diagonalizzabile \Leftrightarrow f \acute{e} normale

La seguente proposizione dá una spiegazione del perché il teorema 17.1 si chiama teorema spettrale

Proposizione 17.2. Sia (V, ϕ) con V uno spazio vettoriale su \mathbb{C} e ϕ definito positivo. Sia $f \in End(V)$ normale allora

- 1. $f \notin autoaggiunto \Leftrightarrow Sp(f) \subseteq \mathbb{R}$
- 2. $f \notin antiautoaggiunto \Leftrightarrow Sp(f) \subseteq \mathbb{C} \mathbb{R}$
- 3. f é unitario $\Leftrightarrow Sp(f)$ é unitario ovvero formato da autovalori di norma 1

Dimostrazione.

$$f$$
 normale \Rightarrow $\exists \mathfrak{B}$ unitaria t. c. $M_{\mathfrak{B}}(f) = D$ diagonale

Inoltre essendo ${\mathfrak B}$ unitaria vale che f^{\star} viene rappresentata da $\overline{D}^t=\overline{D}$

1.
$$f=f^{\star} \quad \Leftrightarrow \quad D=\overline{D} \quad \Leftrightarrow \quad D \text{ reale} \quad \Leftrightarrow \quad Sp(f)\subseteq \mathbb{R}$$

2.

$$f=f^{-1} \quad \Leftrightarrow \quad D=-\overline{D} \quad \Leftrightarrow \quad D$$
 immaginario puro $\quad \Leftrightarrow \quad Sp(f)$ immaginario puro

3. $f^{-1} = f^{\star} \quad \Leftrightarrow \quad D^{-1} = D^{\star} \quad \Leftrightarrow \quad I = D\overline{D}$

Ora se D ha sulla diagonale μ_1, \dots, μ_n allora $D\overline{D}$ avrá sulla diagonale $||\mu_1||^2, \dots, ||\mu_1||^2$ quindi

$$I = D\overline{D} \Leftrightarrow ||\mu_i|| = 1 \quad \forall i = 1, \dots, n$$

18 Geometria Affine

18.1 Spazio affine

Definizione 18.1 (Spazio affine astratto).

Uno spazio affine su uno spazio vettoriale V é una coppia (E,ϕ) con queste propietá

- (i) $E \neq \emptyset$
- (ii) $\phi: E \times E \to V$ denotiamo $\phi((P,Q))$ con \overrightarrow{PQ}
- (iii) $\forall P \in P \quad \overrightarrow{PP} = 0$
- (iv) $\forall P \in E \quad \phi_P : \{P\} \times E \to V \text{ \'e bigettiva}$
- (v) vale la chiusura dei triangoli $\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RP} = 0 \quad \forall P, Q, R \in E$

Lemma 18.1. Sia (E, ϕ) uno spazio affine astratto allora

$$\forall P,Q \in E \qquad \overrightarrow{PQ} = -\overrightarrow{QP}$$

Dimostrazione. Considero la terna di punti di $E\colon P,Q,R$ e applicando la chiusura del triangolo ottengo

 $\overrightarrow{PQ} + \overrightarrow{QQ} + \overrightarrow{Q,P} = 0 \quad \Rightarrow \quad \overrightarrow{PQ} + \overrightarrow{QP} = 0 \quad \Rightarrow \quad \overrightarrow{PQ} = -\overrightarrow{QP}$

Definizione 18.2 (Somma punto vettore).

Sia $P \in E$ e $v \in V$ allora definiamo

$$P + v \in E$$

come l'unico punto $Q \in E$ tale che $\overrightarrow{PQ} = v$

Osservazione 58. La definizione é ben definita infatti esiste un solo punto $Q = \phi_P^{-1}(v)$ poiché ϕ_P é biettiva

Lemma 18.2. $Sia\ P \in E\ e\ v, w \in V$.

Allora

$$P + (v + w) = (P + v) + w$$

Definizione 18.3 (Spazio affine standard).

Sia V uno spazio vettoriale, (E, ϕ) é uno spazio affine standard su V se

- E = V come insieme
- $\phi(P,Q) = Q P$ dove usiamo l'ambiguitá sul fatto che P,Q sono punti di E ma anche vettori di V

18.2 Combinazione affine di punti

Siano $P_0, \dots P_k \in E$ e $a_0, \dots, a_k \in \mathbb{K}$ vogliamo definire

$$\sum_{j=0}^{k} a_j P_j = P \in E$$

Fissiamo P_0 allora $F_{P_0}: E \to V$ é biettiva, quindi posso usarla per trasportare i punti di E in vettori di V infatti la somma voluta diventa

$$P = P_0 + \sum_{j=0}^{k} a_j \overrightarrow{P_0 P_j}$$

notiamo ora che questa somma é definita infatti la sommatoria é combinazione lineare di vettori e quindi é un vettore, otteniamo dunque una somma punto-vettore.

Questa definizione peró prevede una scelta arbitraria infatti se invece di P_0 fisso P_1 ottengo

$$P' = P_1 + \sum_{j=0}^{k} a_j \overrightarrow{P_1 P_j}$$

Troviamo una condizione sui coefficienti a_j in modo che P=P' $\forall j=0,\cdots,k$ consideriamo la terna P_0,P_1,P_k e usando la chiusura del triangolo otteniamo

$$\overrightarrow{P_0P_1} + \overrightarrow{P_1P_j} + \overrightarrow{P_jP_0} = 0$$

$$\overrightarrow{P_0P_1} + \overrightarrow{P_1P_j} = -\overrightarrow{P_jP_0}$$

$$\overrightarrow{P_0P_1} + \overrightarrow{P_1P_j} = \overrightarrow{P_0P_j}$$

quindi

$$P = P_0 + \sum_{j=0}^k \overrightarrow{P_0 P_j} = P_0 + \sum_{j=0}^k a_j \left(\overrightarrow{P_0 P_1} + \overrightarrow{P_1 P_j} \right) = P_0 + \left(\sum_{j=0}^k a_j \right) \overrightarrow{P_0 P_1} + \sum_{j=0}^k a_j \overrightarrow{P_1 P_j}$$

Visto che vale P = P' ne segue che

$$P_1 = P_0 + \left(\sum_{i=0}^k a_i\right) \overrightarrow{P_0 P_1}$$

dunque ne segue che $\sum_{j=0}^{k} = 1$ Riassumiamo quanto detto con la seguente proposizione

Proposizione 18.3. Siano $P_0, \dots, P_k \in E \ e \ a_0, \dots, a_k \in \mathbb{K}$.

$$Se \sum_{j=0}^{\kappa} a_j = 1 \ allora$$

$$P = \sum_{j=0}^{k} a_j P_j = P_i + \sum_{j=0}^{k} \overrightarrow{P_i P_j}$$

é ben definita ovvero non dipende dalla scelta di P_i tra P_0, \dots, P_k

Definizione 18.4. Nelle ipotesi della proposizione denotiamo

$$P = \sum_{j=0}^{k} a_j P_j$$

combinazione affine di punti

Definizione 18.5 (Baricentro).

Siano $P_1, \cdots, P_n \in E$, allora definiamo il baricentro come

$$G = \frac{1}{n}P_1 + \dots + \frac{1}{n}P_n$$

18.3 Sottospazio affine

Consideriamo sempre lo spazio affine (E, ϕ) su V spazio vettoriale

Definizione 18.6 (Sottospazio affine).

 $F\subseteq E$ si dice sottospazio affine di E se é chiuso per combinazioni affini di punti di F Osservazione 59. Non si esclude che E sia non vuoto

Osservazione 60. Nel caso in cui F é un sottospazio affine allora $(F, \phi_{|F})$ é uno spazio affine

Proposizione 18.4.

$$F = P_0 + W = \{P_0 + w | w \in W\}$$

é un sottospazio affine di $E \ \forall P_0 \in E \ e \ \forall W \subseteq V \ sottospazio vettoriale$

Dimostrazione. Dobbiamo mostrare che F é chiuso per combinazioni affini. Consideriamo i seguenti punti di F

$$P_1 = P_0 + w_1, \cdots, P_k = P_0 + w_k \quad w_i \in W$$

e i seguenti coefficienti appartenente al campo di scalari $\mathbb K$

$$a_i, \dots, a_k$$
 t. c. $\sum a_i = 1$

Dunque devo dimostrare che

$$P = \sum_{i=1}^{k} a_i P_i \in F$$

Aggiungo alla lista di punti anche P_0 con coefficiente $a_0=0$. Ora $P_0=P_0+0$ quindi $P_0\in F$

$$P = \sum_{i=1}^{k} a_i P_i = \sum_{i=0}^{k} a_i P_i = P_0 + \sum_{i=0}^{k} a_i \overrightarrow{P_0 P_i} = P_0 + \sum_{i=1}^{k} a_i \overrightarrow{P_0 P_i} = P_0 + \sum_{i=1}^{k} a_i w_i$$

Ora essendo W un sottospazio vettoriale é chiuso per combinazioni lineari dunque

$$w = \sum_{i=1}^{k} a_i w_i \in W \quad \Rightarrow \quad P = P_0 + w \quad \Rightarrow \quad P \in F$$

Proposizione 18.5. Sia $F \neq \emptyset \subseteq E$ un sottospazio affine $e P_0 \in F$ allora

$$W = \phi_{P_0}(F)$$
 é uno sottospazio vettoriale di V

Dimostrazione. Devo provare che W é chiuso per combinazione lineare Siano $w_1, \dots, w_k \in W$ e siano $a_1, \dots, a_k \in \mathbb{K}$ Devo provare che

$$w = \sum_{i=1}^{k} a_i w_i \in W$$

Considero i seguenti punti

$$P_0, P_1 = P_0 + w_1, \cdots, P_k = P_0 + w_k$$

essi appartengono a F per definizione di W.

Poiché voglio fare una combinazione affine impongo che

$$a_0 = 1 - \sum_{i=1}^{k} a_i$$

Sia

$$P = \sum_{i=0}^{k} a_{i} P_{j} = P_{0} + \sum_{i=1}^{k} a_{i} w_{i}$$

Ora per definizione di somma punto-vettore segue che $w = \phi_{P_0}(P)$ ma essendo F sottospazio affine $P \in F$ dunque $w \in \phi_{P_0}(F) = W$

Esempio 18.6. Prendiamo K^n spazio affine standard su \mathbb{K}^n Siano $A \in M(n, \mathbb{R})$ e $\mathfrak{B} \in \mathbb{K}^n$ con $B \neq 0$ allora consideriamo

$$F = Sol(AX = B)$$

F é un sottospazio affine e puó essere o vuoto oppure della forma

$$F = z_0 + \ker A$$

dove $z_0 \in \mathbb{K}^n$ é una soluzione particolare

Osservazione 61. Nell'esempio lo spazio vettoriale non dipendeva dalla scelta del punto, dimostriamo che questo fatto é vero sempre

Lemma 18.7. Sia $\emptyset \neq F \subseteq E$ un sottospazio affine e siano $P_0, P_1 \in F$.

$$F = P_0 + W_0 = P_1 + W_1 \implies W_0 = W_1$$

Dimostrazione. $\forall w_0 \in W_0$ il punto $P_0 + w_0 \in F$ quindi

$$\exists w_1 \in W_1$$
 t. c. $P_0 + w_0 = P_1 + w_1$

Ora anche $P_0 = P_0 + 0 \in F$ da cui

$$\exists w_1' \in W_1$$
 t. c. $P_0 = P_1 + w_1'$

Mettendo insieme le 2 relazioni otteniamo

$$P_1 + (w_1' + w_0) = P_1 + w_1$$

e sfruttando il fatto che ϕ_{P_1} é biettiva

$$w_1' + w_0 = w_1 \quad \Rightarrow \quad w_0 = w_1 - w_1' \in W_1$$

Quindi abbiamo provato che $W_0 \subseteq W_1$.

Possiamo rifare l'intera dimostrazione scambiando i ruoli di W_0 e W_1 ottenendo l'altra inclusione.

Riassumiamo quanto detto con il seguente teorema

Teorema 18.8. I seguenti fatti sono equivalenti

- (i) F é un sottospazio affine di E
- (ii) $\exists T(F)$ sottospazio vettoriale di V tale che

$$\forall P \in F \quad F = P + T(F)$$

T(F) viene detto spazio vettoriale tangente al sottospazio affine F o anche giacitura di F

Definizione 18.7. Sia $S \in E$ si dice chiuso per rette se

$$\forall P, Q \in S \quad Comb_a(P, Q) \subseteq S$$

Proposizione 18.9. Sia V un \mathbb{K} -spazio vettoriale, con \mathbb{K} di caratteristica 0.

$$F \subseteq E$$
 sottospazio affine \Leftrightarrow F é chiuso per rette

 $Dimostrazione. \Rightarrow$ Ovvia, se F é un sottospazio affine é chiuso per combinazione affine e a maggior ragione é chiuso per combinazioni affini di 2 punti (per rette)

 \Leftarrow Dimostriamo che la combinazione affine di k punti di F appartiene ancora a F, facendo induzione su k Per k=2 é la definizione di chiuso per rette.

Mostriamo che $k-1 \Rightarrow k$ Siano $Q_1, \dots, Q_k \in S$ e $\lambda_1, \dots, \lambda_k \in \mathbb{K}$ tali che $\sum \lambda_i = 1$

$$\sum_{i=1}^{k} \lambda_i Q_i = \lambda_1 Q_1 + \left(\sum_{i=2}^{k} \lambda_i\right) \left(\frac{\lambda_2}{\sum_{i=2}^{k} \lambda_i} Q_2 \cdots + \frac{\lambda_k}{\sum_{i=2}^{k} \lambda_i} Q_k\right)$$

Ora

$$Q = \left(\frac{\lambda_2}{\sum_{i=2}^k \lambda_i} Q_2 \cdots + \frac{\lambda_k}{\sum_{i=2}^k \lambda_i} Q_k\right)$$

é una combinazione affine di k-1 punti di F dunque $Q \in F$ da cui

$$\sum_{i=1}^{k} \lambda_i Q_i = \lambda_1 Q_1 + \sum_{i=2}^{n} \lambda_i Q_i$$

Si conclude poiché otteniamo una combinazione affine di 2 punti, ma F é chiuso per retta.

Osservazione 62. Nella dimostrazione ho diviso per $\sum_{i=2}^{k} \lambda_i$ senza sapere se tale numero fosse 0, nel caso che lo fosse posso considerare un altro indice da eliminare (invece di 1). Mostriamo che tale indice esiste

$$\forall h \in [1, k]$$
 $\sum_{\substack{i=1\\i \neq h}}^{k} \lambda_i = 0 \implies \lambda_h = 1$

Dunque visto che vale $\forall h$ allora $\lambda_1 = \cdots = \lambda_k = 1$ ma ció é assurdo infatti

$$1 = \sum_{i=1}^{k} \lambda_i = k \quad \Rightarrow k - 1 = 0$$

ma k > 2 dunque il campo non ha caratteristica 0

Definizione 18.8 (Somma di sottospazi affini). SianoF,G due sottospazi affini di E allora

$$F + G = Comb_a(F \cup G)$$

18.3.1 Giaciture

Sia F un sottospazio vettoriale di E allora

$$T(F) = \{ \overrightarrow{PQ} \mid P, Q \in E \}$$

Da questo segue che

$$F \subseteq G \quad \Rightarrow \quad T(F) \subseteq T(G)$$

Proposizione 18.10 (Giacitura dell'intersezione).

Siano F, G due sottospazi affini, allora

$$T(F \cap G) = T(F) \cap T(G)$$

 $Dimostrazione. \subseteq$

 $F \cap G \subseteq E$ e $F \cap G \subseteq E$ dunque

$$T(F \cap G) \subseteq T(F) \cap T(G)$$

 $\supseteq.$ Sia $P \in F \cap G$ allora

$$\forall v \in T(E) \cap T(F) \quad Q = P + v \in E \cap F$$

infatti $Q \in E$ poiché $P \in E$ e $v \in T(E)$ ed in modo analogo per F.

Dunque $v = \overrightarrow{PQ} \in T(E \cap F)$

Lemma 18.11. Siano F, G sottospazi affini di E

$$F \cap G = \emptyset \quad \Leftrightarrow \quad \overrightarrow{PQ} \notin T(F) + T(G)$$

 $Dimostrazione. \Rightarrow in modo contro nominale.$

Sia $PQ \in T(F) + T(G)$ allora

$$\overrightarrow{PQ} = v + w \quad \text{con } v \in T(F) \text{ e } w \in T(G)$$

$$P + v = P + (\overrightarrow{PQ} - w) = (P + \overrightarrow{PQ}) - w = Q - w$$

Dunque $P+v\in F$ ed in
oltre $Q-w\in G$ dunque $F\cap G\neq\emptyset$

 \Leftarrow in modo contro nominale.

Sia $R \in F \cap G/$

Sia $P \in F$ e $Q \in G$ allora dalla chiusura del triangolo otteniamo

$$\overrightarrow{PQ} + \overrightarrow{QR} + \overrightarrow{RP} = 0$$

$$\overrightarrow{PQ} = \overrightarrow{PR} + \overrightarrow{QR}$$

Ora $P, R \in \mathcal{F}$ quindi $\overrightarrow{PR} \in T(F)$, invece $Q, R \in G$ da cui $\overrightarrow{QR} \in T(G)$.

Dunque $\overrightarrow{PQ} \in T(F) + T(G)$

Proposizione 18.12 (Giacitura della somma).

Siano F, G due sottospazi affini di E

$$T(F+G) = T(F) + T(G) + Span(\overrightarrow{PQ})$$
 con $P \in F$ e $Q \in G$

 $Dimostrazione. \supset$

$$F, G \in F + G \implies T(F), T(F) \subseteq T(F) + T(G)$$

Inoltre $P, Q \in F + G \implies \overrightarrow{PQ} \in T(F + G)$ \subseteq Sia $v \in T(F + G)$ dunque

$$\exists R, R' \in F + G \quad v = \overrightarrow{RR'}$$

Se $R \in F + G$ allora

$$\exists F_1, \dots F_k \in F \quad \exists G_1, \dots, G_n \in G \quad \exists \lambda_1, \dots, \lambda_k, \mu_1, \dots, \mu_n \in \mathbb{K} \quad \text{con } \sum_{i=1}^k \lambda_i + \sum_{j=1}^n \mu_i = 1$$

tali che

$$R = \lambda_1 F_1 + \dots + \lambda_k F_k + \mu_1 G_1 + \dots + \mu_n G_n$$

in modo analogo

$$R = \lambda'_1 F'_1 + \dots + \lambda'_s F'_s + \mu'_1 G'_1 + \dots + \mu'_m G'_m$$

Dunque se $P \in F$ e $Q \in G$

$$\overrightarrow{RR'} = R' - R =$$

$$= \left[\left(\sum \lambda_i' F_i' + \left(1 - \sum \lambda_i' \right) P \right) - \left(\sum \lambda_i F_i + \left(1 - \sum \lambda_i \right) P \right) \right] +$$

$$+ \left[\left(\sum \mu_i' G_i' + \left(1 - \sum \mu_i' \right) Q \right) - \left(\sum \mu_i G_i + \left(1 - \sum \mu_i \right) Q \right) \right] +$$

$$+ \left[\sum \lambda_i' P - \sum \lambda_i P + \sum \mu_i' Q - \sum \mu_i Q \right]$$

Ora posso riscrivere il termine dentro l'ultima parentesi quadra ricordando che

$$\sum \lambda_i + \sum \mu_i = \sum \lambda_i' + \sum \mu_i'$$

ottenendo

$$\left(\sum \mu_i' - \sum \mu_i\right) (Q - P)$$

Il termine dentro la prima quadra appartiene a T(F) il secondo a T(G) ed il terzo allo $Span(\overrightarrow{PQ})$

Esempio 18.13 (Intersezione di rette).

Consideriamo lo spazio affine standard su \mathbb{R}^3 .

Dire se le rette sono sghembe o complanari.

$$l: \begin{pmatrix} 3\\1\\0 \end{pmatrix} + Span \begin{pmatrix} 1\\1\\0 \end{pmatrix}$$

$$r: \begin{pmatrix} 2\\1\\-1 \end{pmatrix} + Span \begin{pmatrix} 1\\1\\-1 \end{pmatrix}$$

Prendiamo

$$P = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \in l \quad Q = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \in r$$

Ora

$$T(l) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad T(r) = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Quindi

$$\overrightarrow{PQ} = \begin{pmatrix} -1\\0\\1 \end{pmatrix} \not\in Span \left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \right)$$

dunque le 2 rette sono sghembe per il lemma 18.11

18.4 Applicazioni affini

Definizione 18.9 (Applicazioni affini).

Siano V_1 , V_2 due K-spazi vettoriale ed E_1 , E_2 spazi affini su di loro.

$$f: E_1 \to E_2$$

é affine se manda combinazioni affini di punti di E_1 in combinazioni affini di punti di E_2 ovvero

$$\forall P = \sum_{i=1}^{k} a_i P_i \qquad f(P) = \sum_{i=1}^{k} a_i f(P_i)$$

Proposizione 18.14. Siano V_1 e V_2 due spazi vettoriali.

Sia (E_1, ϕ) uno spazio affine su V_1 e (E_2, ψ) uno spazio affine su V_2 .

Sia $g: V_1 \to V_2$ lineare, $P_0 \in E_0$ e $Q_0 \in E_1$

Allora la $f: E_1 \to E_2$ che fa commutare il seguente diagramma é affine

$$E_1 \xrightarrow{-f} E_2$$

$$\downarrow^{\phi_{P_0}} \qquad \downarrow^{\psi_{Q_0}}$$

$$V_1 \xrightarrow{g} V_2$$

Dimostrazione. Visto che f fa commutare il diagramma allora si puó scrivere come

$$f = \psi_{Q_0}^{-1} \circ g \circ \phi_{P_0}$$

Dunque se $P = P_0 + \overrightarrow{P_0P}$ allora

$$f(P) = Q_0 + g\left(\overrightarrow{P_0P}\right) \tag{4}$$

Mostriamo che é affine

Siano $P_1, \dots, P_k \in E_1$ e a_1, \dots, a_k i rispettivi coefficienti con $\sum a_i = 1$ allora devo dimostrare che

$$f\left(\sum_{i=1}^{k} a_i P_i\right) = \sum_{i=1}^{k} a_i f(P_i)$$

Aggiungo all'inizio della lista il punto P_0 con coefficiente $a_0 = 0$ allora

$$P = \sum_{i=1}^{k} a_i P_i = \sum_{i=0}^{k} a_i P_i = P_0 + \sum_{i=1}^{k} a_j \overrightarrow{P_0 P}$$

dunque da (4) segue

$$f(P) = Q_0 + g\left(\sum_{i=1}^k a_i \overrightarrow{P_0 P_i}\right)$$

ora dal fatto che g é lineare otteniamo

$$f(P) = Q_0 + \sum_{i=1}^k a_i g\left(\overrightarrow{P_0 P_i}\right) = \sum_{i=1}^k a_i f(P_i)$$

Proposizione 18.15. Siano V_1 e V_2 due spazi vettoriali.

Sia (E_1, ϕ) uno spazio affine su V_1 e (E_2, ψ) uno spazio affine su V_2 .

Sia $P_0 \in E_0$, $Q_0 \in E_1$ e $f: E_0 \to E_1$ affine tale che $f(P_0) = Q_0$

Allora la $g: V_1 \rightarrow V_2$ che fa commutare il seguente diagramma é lineare

$$E_1 \xrightarrow{f} E_2$$

$$\downarrow^{\phi_{P_0}} \qquad \downarrow^{\psi_{Q_0}}$$

$$V_1 \xrightarrow{g} V_2$$

Dimostrazione. La dimostrazione é analoga a quella fatta in 18.5

Ora iterando la procedura della prima proposizione otteniamo che $f(P) = Q_0 + g\left(\overrightarrow{P_0P}\right)$ Dunque abbiamo dimostrato che ogni applicazione affine si puó scrivere in questo modo

$$f = Q_0 + g$$

dove $Q_0 = f(P_0)$ e con la scrittura precedente intendiamo

$$f(P) = Q_0 + g\left(\overrightarrow{P_0P}\right)$$

Proposizione 18.16. Sia $f: E_1 \to E_2$ affine con $f(P_0) = Q_0$.

$$f = Q_0 + g_1 = Q_0 + g_2 \quad \Rightarrow \quad g_1 = g_2$$

Dimostrazione.

 $\forall v \in V_1 \quad f(P_0 + v) = Q_0 + g_1(v)$ prima scrittura

 $\forall v \in V_1 \quad f(P_0 + v) = Q_0 + g_2(v)$ seconda scrittura

Ora usando il fatto che ψ_{Q_0} é biettiva otteniamo

$$\forall v \in V_1 \quad q_1(v) = q_2(v)$$

Riassumiamo quanto detto con il seguente teorema

Teorema 18.17 (Struttura applicazioni affini).

 $\forall f: E_1 \rightarrow E_2 \ applicatione \ affine \ \exists ! \ df: V_1 \rightarrow V_2 \ lineare$

tale che

$$\forall P_0 \in E_1 \quad Q_0 = f(P_0) \qquad f = Q_0 + \mathrm{d}f$$

Definizione 18.10 (Isomorfismo affine).

 $f: E_1 \to E_2$ é un isomorfismo affine se

- (i) f é affine e biettiva
- (ii) f^{-1} é affine

Proposizione 18.18. Valgono i seguenti fatti

- (i) $f \notin biettiva \Leftrightarrow df \notin biettiva$
- (ii) f biettiva e affine $\Leftrightarrow f$ é isomorfismo affine

Definizione 18.11.

$$Aff(V) = \{f:\, E \to E \,|\, \text{ affini e invertibili}\}$$

Osservazione63. Aff(V) con la composizione é un gruppo di trasformazioni di ${\cal E}$

18.5 Affinitá su uno spazio vettoriale

Definizione 18.12 (Traslazione). Sia V uno spazio vettoriale e sia $v \in V$ allora definiamo la traslazione su V secondo il vettore v la funzione

$$\tau_v: V \to V \qquad \tau_v(w) = w + v$$

Osservazione 64. τ_v é lineare $\Leftrightarrow v = 0$

L'insieme delle traslazioni forma un gruppo T(V) con la composizione in particolare

$$\tau_v \circ \tau_{v'}(w) = (w + v') + v = \tau_{v+w}(v)$$
$$(\tau_v)^{-1} = \tau_{-v}$$

Adesso se consideriamo V non piú come spazio vettoriale me come gruppo con + allora

$$(V,+) \to (T(V),\circ) \qquad v \to \tau_v$$

é un isomorfismo di gruppi abeliani

Definizione 18.13 (Gruppo delle trasformazioni affini).

$$Aff(V) = \{g: V \to V \mid g \text{ \'e composizioni di finite trasformazioni } f_i \in GL(V) \cup T(V)\}$$

Cerchiamo un modo per normalizzare la scrittura di $g \in Aff(V)$

Proposizione 18.19.

$$Aff(V) = \{ g = \tau_v \circ f \mid v \in V \ f \in GL(V) \}$$

 $Dimostrazione. \supseteq in maniera ovvia$

 \subseteq per induzione su k numero di composizioni

se k = 1 allora

- $g \in T(V)$ \Rightarrow $g = \tau_v = \tau_v \circ Id$
- $g \in GL(V)$ \Rightarrow $g = \tau_0 \circ g$

se k=2 allora si possono verificare 2 situazioni

- $g = \tau_v \circ f$ in questo caso abbiamo concluso
- $g = f \circ \tau_v$ dunque g(w) = f(w+v) = f(w) + f(v) dunque $g = \tau_{f(v)} \circ f$

Mostriamo ora che $k-1 \Rightarrow k$ dunque sia

$$g = f_1 \circ f_2 \circ \cdots \circ f_k$$

per ipotesi induttiva sappiamo che $f_2 \circ \cdots \circ f_k$ si scrive come $\tau_v \circ f$. Quindi la funzione iniziale si scrive nella forma

$$q = f_1 \circ \tau_v \circ f$$

- se $f_1 \in T(V)$ abbiamo finito (somma di traslazioni é una traslazione)
- se $f_1 \in GL(V)$ allora usando il caso k=2 otteniamo $g=\tau_{f_1(v)}\circ f_1\circ f$ ma $f_1\circ f\in GL(V)$

Lemma 18.20 (Inversa dell'affine).

Sia
$$g = \tau_v \circ f \in Aff(V)$$
 allora

$$g^{-1} = \tau_{-f^{-1}(v)} \circ f^{-1}$$

Dimostrazione. Per la proposizione precedente

$$q^{-1} = \tau_u \circ h$$

Ora poiché $(g \circ g^{-1}) w = w \quad \forall w \in V$ otteniamo

$$g(g^{-1}(w)) = g(h(w) + u) = (f \circ)w + f(u) + v = w$$

Ció é vero se

$$\begin{cases} f \circ h = Id \\ f(u) + v = 0 \end{cases} \Rightarrow \begin{cases} h = f^{-1} \\ u = -f^{-1}(u) \end{cases}$$

Ora poiché l'inversa é unica

$$g^{-1} = \tau_{-f^{-1}(v)} \circ f^{-1}$$

Proposizione 18.21. L'espressione di g in forma normale é unica

Dimostrazione. Supponiamo che g si scriva in 2 modi differenti ovvero

$$g = \tau_v \circ f$$

$$g = \tau_w \circ h$$

Usiamo la seconda scrittura per calcolare g^{-1}

$$g^{-1} = \tau_{-h^{-1}(w)} \circ h^{-1}$$

Ora poiché $g^{-1} \circ g(u) = u \quad \forall u \in V$ otteniamo

$$g^{-1}(g(u)) = g^{-1}(f(u) + v) = h^{-1}(f(u) + v) - h^{-1}(w) = u$$

$$\begin{cases} h^{-1} \circ f = Id \\ v - w = 0 \end{cases} \Rightarrow \begin{cases} h = f \\ v = w \end{cases}$$

Supponiamo di avere $g_1, g_2 \in Aff(V)$ allora

$$g_1 = \tau_{v_1} \circ f_1$$

$$g_2 = \tau_{v_2} \circ f_2$$

Voglio calcolare $g_1 \circ g_2$

$$\forall w \in V \quad g_1 \circ g_2(w) = g_1(f_2(w) + v_2) = (f_1 \circ f_2)(w) + f_1(v_2) + v_1 = \tau_{f_1(v_2) + v_1} \circ (f_1 \circ f_2)(w)$$

Consideriamo il gruppo prodotto

$$GL(V) \times T(V)$$

che é isomorfo a

$$(GL(V), \circ) \circ (V, +)$$

Definiamo su questo prodotto un'operazione in modo che si adatti a come si comporta la composizione di applicazioni affini

$$(f_1, v_1) \star (f_2, v_2) = (f_1 \circ f_2, f_1(v_2) + v_1)$$

Con questo prodotto possiamo costruire un'isomorfismo di gruppi

$$((GL(V), \circ) \times (V, +), \star) \to (Aff(V), \circ) \qquad (f, v) \to \tau_v \circ f$$

Osservazione 65. Si dice che Aff(V) é un esempio di prodotto semidiretto di $GL(V)\times (V,+)$

18.6 Affinitá in versione matriciale

Specializzando quanto abbiamo visto precedentemente nel caso di $V=\mathbb{K}^n$ otteniamo

$$Aff(\mathbb{K}^n) = \{ f : \mathbb{K}^n \to \mathbb{K}^n \mid f(X) = AX + B \text{ con } A \in GL(n) \text{ e } B \in \mathbb{K}^n \}$$

Dunque possiamo codificare, in modo matriciale le trasformazioni affini con

$$(A \mid B)$$
 con $A \in M(n, \mathbb{K})$ e $B \in M(1, n, \mathbb{K})$

e dove la composizione si fá seguendo questa regola

$$(A \mid B) \circ (P \mid C) = (AP \mid AC + B)$$

Consideriamo una nuova codifica che fa uso di matrici quadrate.

Ogni volta che parleremo di \mathbb{K}^n lo considereremo immerso in \mathbb{K}^{n+1} mediante la seguente inclusione

$$\mathbb{K}^n \to K^{n+1} \qquad \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \to \begin{pmatrix} x_1 \\ \vdots \\ x_n \\ 1 \end{pmatrix}$$

Dunque

$$\mathbb{K}^n = \left\{ \begin{pmatrix} x_1 \\ \vdots \\ x_{n+1} \end{pmatrix} \in \mathbb{K}^{n+1} \quad \middle| \quad x_{n+1} = 1 \right\} \text{ \'e uno spazio affine di } \mathbb{K}^{n+1}$$

Consideriamo il seguente insieme

$$G = \{ f \in GL(n+1, \mathbb{K}) \mid f(\mathbb{K}^n) = \mathbb{K}^n \}$$

Osservazione 66. G é un sottogruppo di $GL(n+1,\mathbb{K})$

Sia $M \in G$ Ora

$$e^{n+1} \in \mathbb{K}^n$$

dunque poiché $f(\mathbb{K}^n) = \mathbb{K}^n$ allora

$$ME^{n+1} \in \mathbb{K}^n$$

da cui

$$M = \left(M^1 \middle| \cdots \middle| M^n \middle| \begin{pmatrix} b_1 \\ \vdots \\ b_n \\ 1 \end{pmatrix} \right)$$

Ora $e_1 + e_{n+1} \in \mathbb{K}^n$ da cui

$$M(e_1 + e_{n+1}) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \\ 1 \end{pmatrix}$$

Dunque

$$ME_1 = M^1 = \begin{pmatrix} a_{11} \\ \vdots \\ a_{n1} \\ 0 \end{pmatrix}$$

iterando con gli altri vettori della base canonica ottengo

$$M = \begin{pmatrix} A & B \\ \hline 0 & 1 \end{pmatrix} \quad \text{con } A \in M(n, \mathbb{K}) \in B \in \mathbb{K}^n$$

Ora $M \in G \subset GL(n+1,\mathbb{K})$ dunque $\det M \neq 0$ ma $\det M = \det A \neq 0$ ovvero

$$G = \left\{ \left(\begin{array}{c|c} A & B \\ \hline 0 & 1 \end{array} \right) \quad \middle| \quad B \in \mathbb{K}^n, \quad A \in GL(n, \mathbb{K}) \right\}$$

Dunque possiamo considerare l'applicazione

$$\varphi: Aff(\mathbb{K}^n) \to G \subseteq (GL(n+1,\mathbb{K}))$$

$$\left(\begin{array}{c|c}A & B\end{array}\right) \to \left(\begin{array}{c|c}A & B\\\hline 0 & 1\end{array}\right)$$

Osservazione 67. φ é un isomorfismo di gruppi, dove l'operazione su $Aff(\mathbb{K}^n)$ é il prodotto semidiretto, invece su G la consueta moltiplicazione tra matrici:

$$\varphi((A|B) \circ (P|C)) = \varphi(AP|AC + B) = \left(\begin{array}{c|c} AP & AC + B \\ \hline 0 & 1 \end{array}\right) = \left(\begin{array}{c|c} A & B \\ \hline 0 & 1 \end{array}\right) \left(\begin{array}{c|c} P & C \\ \hline 0 & 1 \end{array}\right)$$

18.7 Isometrie

Sia V un \mathbb{R} -spazio vettoriale e sia ϕ definito positivo

Definizione 18.14 (Distanza). $\forall v, v' \in V$

$$d(v, v') = \sqrt{\phi(v - v', v - v')}$$

Definizione 18.15.

$$Isom(V, d) = \{q : V \to V \mid d(v, v') = d(q(v), q(v')) \forall v, v' \in V\}$$

Osservazione 68. $g \in Isom(V, d)$ é chiaramente iniettiva

 $O(\phi) \subseteq Isom(V, d)$

 $T(V) \subseteq Isom(V, d)$

Teorema 18.22.

$$Isom(V, d) = O(\phi) \cup T(V)$$

Dimostrazione. \subseteq ovvia segue dall'osservazione 68

 \supseteq Sia $g \in Isom(V, d)$.

Se g(0) = v allora $(\tau_{-v} \circ g)(0)$

In altre parole, basta restringerci al caso in cui $f \in Isom(V, d)$ tale che f(0) = 0 e dimostrare che $f \in O(\phi)$.

• Mostriamo che f preserva il prodotto scalare

$$d^2(0,v) = \phi(v,v)$$

$$d^{2}(f(0), f(v)) = d^{2}(0, f(v)) = \phi(f(v), f(v))$$

quindi f preserva la norma e per il lemma di polarizzazione, preserva il prodotto scalare

• Mostriamo la linearitá di fSia $\mathfrak{B} = \{v_1, \ldots, v_n\}$ base ortonormale di (V, ϕ) . Siccome f preserva ϕ anche $g(\mathfrak{B})$ é ortonormale mostriamo che sono una base

$$\forall v \in V \quad v = a_1 v_1 + \dots + a_n v_n$$

$$q(v) = b_1 q(v_1) + \cdots + b_n q(v_n)$$

Ma gli $a_j = \phi(v, v_j) = \phi(g(v), g(v_j)) = b_j$

Osservazione 69. Questo teorema é un esempio di teorema di rigiditá, imporre che g preservi la distanza implica che g abbia una struttura ben definita

18.8 Dimensione e indipendenza lineare

Definizione 18.16 (Dimensione affine).

Sia $F \neq \emptyset$ un sottospazio affine allora definiamo

$$\dim_a F = \dim T(F)$$

Definizione 18.17 (Indipendenza affine).

 P_0, \cdots, P_k sono affinemente indipendenti se

$$\dim_a (Comb_a(P_0, \cdots, P_k)) = k$$

equivalentemente se

$$\overrightarrow{P_0P_1},\cdots,\overrightarrow{P_0P_k}$$
 sono linearmente indipendenti

Osservazione 70. La dimensione é k ma i punti sono k+1

Definizione 18.18 (Sistema di riferimento affine).

Sia E uno spazio affine di dimensione n.

Un sistema di riferimento affine su E é un insieme ordinato di n+1 punti P_0, \dots, P_n affinemente ordinati

Osservazione 71.

$$Span_a(P_0,\cdots,P_n)=E$$

Proposizione 18.23. Sia P_0, \dots, P_n un riferimento affine su E

$$f(P_0) = Q_0, \cdots, f(P_n) = Q_n \quad conQ_i \in E'$$

si estende in modo unico con una $f: E \to E'$

Corollario 18.24. Siano E e E' due spazi affini condim $_a E = \dim_a E' = n$. Sia $\{P_1, \dots, P_n\}$ un riferimento affine su E

 $f: E \to E'$ é isomorfismo affine $\Leftrightarrow \{f(P_0), \cdots, f(P_n)\}$ é un riferimento affine su E'

Estendiamo la nozione di isomorfismo indotto dalle coordinate agli spazi affini

Definizione 18.19 (Riferimento canonico affine di \mathbb{K}^n).

Consideriamo \mathbb{K}^n come spazio affine standard su \mathbb{K}^n .

Definiamo il riferimento affine canonico

$$\mathfrak{C}_a = \{0, e_1, \cdots, e_n\}$$

Definizione 18.20 (Isomorfismo indotto dal sistema di riferimento affine). Sia E uno spazio affine di dimensione n e sia \mathfrak{R} un sistema di riferimento affine su E

$$[\,]_{\mathbb{R}}:E\to\mathbb{K}^n$$

che manda $\mathbb{R} \to \mathfrak{C}_a$ e per quanto detto in 18.24 é un isomorfismo affine

18.8.1 Formula di Grassman per sottospazi affini

• $F \cap G \neq \emptyset$ \Rightarrow $\overrightarrow{PQ} \in T(F) + T(G)$ dal lemma 18.11 dunque $\dim_a(F+F) = \dim(T(F+G)) = \dim(T(F) + T(G)) = \dim T(F) + \dim T(G) - \dim T(F) \cap T(G)$

Dunque se l'intersezione non é vuota vale la stessa formula per i sottospazi vettoriali ovvero

$$\dim_a(F+G) = \dim_a F + \dim_a G - \dim_a F \cap G$$

• $F \cap G = \emptyset$ dobbiamo sommare la dimensione di $Span(\overrightarrow{PQ})$ dunque

$$\dim_a(F+G) = \dim_a F + \dim_a G - \dim_a F \cap G + 1$$

Osservazione 72. Per vedere se 2 sottospazi affini si intersecano, basta controllare se vale Grassman per le giaciture

18.9 Rapporto semplice

Supponiamo che la dimensione dello spazio affine E sia 1, in questo caso parleremo di retta affine.

Data una terna ordinata di punti distinti (P_0, P_1, P_2) sappiamo che (P_0, P_1) sono un riferimento affine dunque

$$P_2 = P_0 + \lambda \overrightarrow{P_0 P_1} \quad \text{con } \lambda \in \mathbb{K} \text{ e } \lambda \neq 0, 1$$

Ció è

$$\overrightarrow{P_0P_2} = \lambda \overrightarrow{P_0P_1}$$

Definizione 18.21. Il numero λ prende il nome di rapporto semplice della terna ordinata di punti e si indica

$$\lambda = [P_0, P_1, P_2]$$

Osservazione 73. Nel caso in cui $E=\mathbb{K}$ spazio affine standard

$$\lambda = \frac{P_2 - P_0}{P_1 - P_0}$$

Mostriamo come agisce S_3 sul rapporto semplice, ovvero detto

$$\lambda_{\sigma} = [P_{\sigma(0)}, P_{\sigma(1)}, P_{\sigma(2)}] \quad \forall \sigma \in S_3$$

trovare λ_{σ} in funzione di λ .

Consideriamo il caso standard

$$\begin{split} \frac{1}{\lambda} &= \frac{P_1 - P_0}{P_2 - P_0} = \lambda_{(1,2)} \\ \frac{1}{1 - \lambda} &= \frac{1}{1 - \frac{P_2 - P_0}{P_1 - P_0}} = \frac{P_0 - P_1}{P_2 - P_1} = \lambda_{(0,1,2)} \end{split}$$

Ora componendo in modo adeguato tricicli e trasposizioni otteniamo tutti le permutazioni

$$\lambda \quad \frac{1}{\lambda} \quad \frac{1}{1-\frac{1}{\lambda}} \quad \frac{1}{1-\frac{1}{1-\frac{1}{\lambda}}}$$

$$\frac{1}{1-\lambda} \quad \frac{1}{1-\frac{1}{1-\lambda}}$$

18.9.1 Caso complesso

Sia $E = \mathbb{C}$ spazio affine standard.

Siano z_0, z_1, z_2 una terna di punti distinti e a meno di traslazioni posso considerare $z_0 = 0$ dunque

$$\lambda = \frac{z_2}{z_1}$$

Ora con una rotazione (trasformazione affine) posso mandare z_i sull'asse reale e dividendo per $|z_1| \neq 0$ perché i punti z_1 e z_0 sono distinti (ho fatto un omotetia)

Sia z il risultato di z_3 dopo aver applicato queste trasformazioni affini

$$z = x + iy \quad \Rightarrow \quad \lambda = y$$

Dunque i 3 punti sono allineati se il rapporto semplice é reale.

Ora identificando \mathbb{C} con \mathbb{R}^2 otteniamo che:

Il rapporto semplice é lo spazio dei parametri dei triangoli euclidei orientati a meno di similitudini.

18.10 Caratterizzazione geometrica delle affinitá

Definizione 18.22 (Parallelismo).

Siano F_1 e F_2 due sottospazi affini di E.

$$F_1 \parallel F_2 \quad \Leftrightarrow \quad T(F_1) \subseteq T(F_2)$$

Osservazione 74. La relazione di parallelismo, sopra definita non é una relazione di equivalenza (non é simmetrica), per renderla tale ci dobbiamo restringere ai sottospazi affini di una data dimensione

Proposizione 18.25. Sia E uno spazio affine e $f \in Aff(E)$.

Valgono i seguenti fatti

- (i) f é biettiva
- (ii) se $F \subseteq E$ é sottospazio affine, allora f(F) é un sottospazio affine della stessa dimensione
- (iii) [caso particolare di (ii)] f manda rette (sottospazi affini di dimensione 1) in rette
- (iv) $[rafforza\ (iii)] \forall F\ retta\ affine\ f(F)\ \'e\ una\ retta\ affine\ e\ f\ ristretta\ a\ F\ preserva\ il\ rapporto\ semplice\ delle\ terne\ ordinate\ di\ punti$
- (v) Come (ii) e f preserva il parallelismo

Vogliamo trovare una caratterizzazione geometrica delle affinitá ovvero trovare il minimo numero di propietá da imporre a f per renderla un'affinitá

Teorema 18.26. Sia E uno spazio affine di dimensione 1.

$$f \in Aff(E) \Leftrightarrow \begin{cases} f \notin bigettiva \\ f \ preserva \ il \ rapporto \ semplice \end{cases}$$

Lemma 18.27. Sia $f: \mathbb{K}^2 \to \mathbb{K}^2$ biettiva e che manda rette in rette. Allora f manda rette parallele in rette parallele.

Dimostrazione. Siano l e r due rette parallele, e l^\prime e r^\prime le rispettive immagine tramite g. Se l^\prime e r^\prime non sono parallele allora

$$\exists P' \in l' \cap r' \quad \Rightarrow \quad \exists P = f^{-1}(P') \in l \cap r$$

Teorema 18.28. Sia E uno spazio affine di dimensione superiore o uquale a 2

$$f \in Aff(E) \Leftrightarrow \begin{cases} f \text{ \'e bigettiva} \\ f \text{ manda rette in rette} \\ \exists F \text{ retta affine tale che } f_{|} : F \to f(F) \text{ conserva il rapporto semplice} \end{cases}$$

Dimostrazione. Dimostriamo il teorema per il caso dim E=2

Sia $P_0 \in E$ allora possiamo, senza perditá di generalitá supporre che $f(P_0) = P_0$ infatti se cosí non fosse basta comporre per una traslazione infatti

$$\tau_v \circ f \in Aff(E) \implies \tau_v^{-1} \circ \tau_v \circ f = f \in Aff(E)$$

Consideriamo adesso il seguente diagramma

$$E \xrightarrow{\Phi_{P_0}} \mathbb{K}^2$$

$$\downarrow_f \qquad \downarrow_g$$

$$E \xrightarrow{\Phi_{P_0}} \mathbb{K}^2$$

Per come é definita g(0) = 0 e verifica le 3 propietá di f

Siano $v, w \in \mathbb{K}^2$ linearmente indipendenti e v', w' le loro immagini tramite g.

Ora v+w si ottiene come intersezione tra la retta parallela a 0v passante per w e la retta parallela a 0w passante per v.

Anche v' + w' si costruisce nel medesimo modo e dato che g mantiene il parallelismo per il lemma ne segue che

$$\forall v, w \in \mathbb{K}^2$$
 linearmente indipendenti $g(v+w) = g(v) + g(w)$

Supponiamo adesso che v e w sono linearmente indipendenti allora w = tv con $t \in \mathbb{K}$.

Ora poiché g manda rette in rette $g(tv) = \phi_v(t) \cdot g(v)$.

Mostriamo che l'applicazione ϕ_v sopra definita non dipende da v.

Siano $v, u \in \mathbb{K}^2$ linearmente indipendenti, consideriamo adesso la retta vu e quella passante per tv e tu, esse sono parallele.

Consideriamo le immagini delle 2 rette e per il lemma devono essere parallele dunque

$$\phi_v(t) = \phi_u(t) = \phi(t) \quad \forall v, u \quad \forall t \in \mathbb{K}$$

Supponiamo adesso che la retta su cui é preservato il rapporto semplice passi per 0 e sia $v \in \mathbb{K}^2$ che appartiene a tale retta

$$\phi_v(t) = \phi(t) = id$$
 $g(tv) = tg(v)$

Se tale retta non passa per 0 basta una traslazione.

Abbiamo dimostrato che se f ha tali propietá allora

$$f = P_0 + g$$
 dove g é lineare \Rightarrow $f \in Aff(E)$

Teorema 18.29. Sia E uno spazio affine su un campo $\mathbb{K} = \mathbb{R}$ di dimensione superiore di 2.

$$f \in Aff(E) \quad \Leftrightarrow \quad \begin{cases} f \ \'e \ bigettiva \\ f \ manda \ rette \ in \ rette \end{cases}$$

Dimostrazione. La dimostrazione ripercorre quella del teorema precedente ma per dimostrare che ϕ é l'identitá basta dimostrare che ϕ é un isomorfismo di campi e concludendo poiché solo l'identitá é un isomorfismo di campi da \mathbb{R} in \mathbb{R}

19 Coniche affini

Definizione 19.1 (Conica).

Sia $p \in \mathbb{K}[x_1, x_2]$ di secondo grado.

Allora C=Z(p) é detto una conica nello spazio affine \mathbb{K}^2 e in tal caso p é un equazione della conica

Esempio 19.1. Consideriamo $\mathbb{K} = \mathbb{R}$

- $Z(x_1^2 + 2x_2^2 1)$ ellisse
- $Z(x_1^2 x_2^2 1)$ iperbole
- $Z(x_2 x_1^2)$ parabola
- $Z(x_1^2 x_2^2)$ due rette incidenti
- $Z(x_1^2)$ retta "doppia"
- $Z(x_1^2 + x_2^2)$ un solo punto
- $Z(x_1^2 + x_2^2 + 1) = \emptyset$

Osservazione 75. Se $\mathbb{K} = \mathbb{C}$ i casi "punto" e " \emptyset " non sono possibili infatti

$$\forall p \in K[x_1, x_2] \quad \forall a \in \mathbb{C} \quad p(a, x_2) = 0 \quad \text{ per almeno un valore di } x_2$$

Sia \mathcal{E} l'insieme di tutti i polinomi in 2 indeterminate di secondo grado, definiamo

$$\varepsilon: \mathcal{E} \to \{ \text{ coniche} \}$$

Questa funzione per definizione di conica é suriettiva ma non iniettiva infatti

$$\forall \lambda \in \mathbb{K} \quad \lambda \neq 0 \quad Z(p) = Z(\lambda p)$$

Denotiamo con $P\mathcal{E}$ l'insieme \mathcal{E} modulo la relazione $p \sim \lambda p$ con $\lambda \in \mathbb{K}$ e $\lambda \neq 0$.

Consideriamo allora

$$P\mathcal{E} \to \{ \text{ coniche } \}$$

Proposizione 19.2. $\bar{\varepsilon}$ é suriettiva e

- é iniettiva su C
- su \mathbb{R} non lo é, gli unici esempi sono il caso "punto" e " \emptyset "

Un polinomio $p(x_1, x_2) \in \mathbb{K}[x_1, x_2]$ di secondo grado si scrive come

$$p(x_1, x_2) = d + 2b_1 x_1 + 2b_2 x_2 + a_{11} x_1^2 + 2a_{12} x_1 x_2 + a_{22} x_2^2$$
 con $(a_{11}, a_{12}, a_{22}) \neq (0, 0, 0)$

Definizione 19.2 (Omogenizzato).

Sia $p(x_1, x_2) \in K[x_1, x_2]$ un polinomio di secondo grado.

$$p(x_1, x_2) = d + 2 b_1 x_1 + 2 b_2 x_2 + a_{11} x_1^2 + 2 a_{12} x_1 x_2 + a_{22} x_2^2$$

Definiamo l'omogenizzato di p come

$$\overline{p}(x_1, x_2, x_3) = dx_3^2 + 2b_1 x_1 x_3 + 2b_1 x_2 x_3 + a_{11} x_1^2 + 2a_{12} x_1 x_2 + a_{22} x_2^2$$

Osservazione 76. Il polinomio \bar{p} é un polinomio omogeneo di secondo grado ed ogni monomio é di secondo grado.

Osserviamo inoltre che $p(x_1, x_2) = \overline{p}(x_1, x_2, 1)$

Dunque con l'inclusione $\mathbb{K}^2 \to \mathbb{K}^3$ usuale posso considerare

$$Z = (Z(p(x_1, x_2))) = \begin{cases} Z(\overline{p}(x_1, x_2, x_3)) \\ x_3 = 1 \end{cases}$$

ora essendo l'omogenizzato omogeneo segue che se $x_0 \neq 0$ appartiene al luogo di zero dell'omogenea anche λx_0 ci appartiene dunque $Z(\overline{p}(x_1, x_2, x_3))$ é un cono di centro 0.

Dunque possiamo considerare le coniche come l'intersezione di un cono con centro l'origine (luogo di zeri del polinomio omogenizzato) con il piano $x_3 = 1$ oppure fissare un cono e far variare il piano che lo interseca.

19.1 Classificazione affine delle coniche

Vogliamo studiare come le $Aff(\mathbb{K}^2)$ agiscono sulle coniche.

Tornando alla scrittura di polinomio di secondo grado in 2 indeterminate posso considerare

$$p(X) = d + 2B^t X + X^t A X$$

dove

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \quad B = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$

Dunque ho questa identificazione

$$\mathcal{E} = \left\{ M = \left(\begin{array}{c|c} A & B \\ \hline B^t & d \end{array} \right) = M^t \quad A \neq 0 \right\}$$

Ora considerando l'identificazione

$$Aff(\mathbb{K}^2) = \left\{ \left(\begin{array}{c|c} P & D \\ \hline 0 & 1 \end{array} \right) \in GL(3, \mathbb{K}) & P \in GL(2, \mathbb{K}) & D \in \mathbb{K}^2 \right\}$$

Dunque dobbiamo studiare il quoziente \mathcal{E} con la relazione \sim . \sim é generato da

- $M \sim \lambda M \quad \forall \lambda \neq 0$
- $M \sim Q^t M Q$ dove Q é la codifica matriciale di un'affine

Ora

$$M' = Q^t M Q = \left(\frac{P^t A P}{D^t A P + B^t P} \frac{P^t A + P^t B}{D^t A D + 2B^t D + d} \right)$$

dunque

Lemma 19.3. La coppia (rk(A), rk(M)) é un invariante per la relazione studiata

Osserviamo cosa succede alla conica se agisco con una traslazione .

La traslazione é identificata con la matrice $\left(\begin{array}{c|c} I & D \\ \hline 0 & 1 \end{array}\right)$ quindi ottengo

$$M' = \left(\begin{array}{c|c} \star & AD + B \\ \hline \star & \star \end{array}\right)$$

Ora posso chiedermi se esiste una traslazione (un D) tale che AD + B = 0 ovvero se il sistema AD = -B ammette soluzione.

Nel caso che ció accada

$$M' = \left(\begin{array}{c|c} A' & 0 \\ \hline 0 & d' \end{array}\right)$$

dunque se $x \in Z(M')$ allora $-x \in Z(M')$ infatti non compaiono termini di primo grado da cui Z(M') é invariante per la simmetria centrale di centro 0, da ció segue che Z(M) é invariante per la simmetria di centro D.

Riassumiamo quanto detto con questa definizione

Definizione 19.3. Sia M un polinomio con la codifica usuale.

- Z(M) é una conica a centro se esiste una traslazione $\left(\begin{array}{c|c} I & D \\ \hline 0 & 1 \end{array}\right)$ tale che AD+B=0
- Z(M) é una conica senza centro se tale traslazione non esiste

Osservazione 77. Avere o non avere un centro é un invariante per la relazione

19.1.1 Classificazione complessa

Sia $\mathbb{K} = \mathbb{C}$.

Consideriamo il caso che Z(M) sia a centro e assumiamo che M sia giá il traslato ovvero sia della forma

$$M = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & d \end{array}\right) \quad A \neq 0$$

Ora le varie coppie di ranghi possibili sono

	rk(A)	rk(M)
(a)	2	3
(b)	2	2
(c)	1	2
(d)	1	1

Analizziamo le varie coppie

• (2,3) Essendo rk(M) > rk(A) ne segue che $d \neq 0$ dunque dividendo per d e agendo con una Q lineare $\begin{pmatrix} P & 0 \\ \hline 0 & 1 \end{pmatrix}$ otteniamo

$$\left(\begin{array}{c|c} P^tAP & 0 \\ \hline 0 & 1 \end{array}\right)$$
 per la classificazione dei prodotti sclari in $\mathbb C$ segue $\left(\begin{array}{c|c} I & 0 \\ \hline 0 & 1 \end{array}\right)$

Dunque in questo caso la conica é $x_1^2 + x_2^2 + 1 = 0$ che prende il nome di ellisse complessa

 \bullet (2,2) Da rkA=rkM segue che d=0, facendo agire Q come sopra otteniamo

$$\begin{pmatrix} P^tAP & 0 \\ \hline 0 & 0 \end{pmatrix}$$
 per la classificazione dei prodotti sclari in $\mathbb C$ segue $\begin{pmatrix} I & 0 \\ \hline 0 & 0 \end{pmatrix}$

La conica é $x_1^2 + x_2^2 = (x_1 + ix_2)(x_1 - ix_2) = 0$ ovvero sono 2 rette incidenti.

 $\bullet \ (1,2)$ Facendo considerazioni analoghe al primo caso otteniamo la forma normale

$$\left(\begin{array}{c|c}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

La conica é $x_1^2 + 1 = (x_1 - i)(x_1 + i) = 0$ ovvero 2 rette parallele

• (1,1) in modo analogo

$$\left(\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

La conica é $x_1^2=0$ ovvero una retta doppia

Analizziamo il caso in cui la conica é non a centro. Il rango di A non puó essere 2 altrimenti il sistema

$$AD = -B$$
 ammetterebbe come soluzione $D = -A^{-1}B$

di conseguenza rk(A) = 1.

Facciamo agire un applicazione Q lineare e usando la classificazione dei prodotti scalari otteniamo

$$M = \begin{pmatrix} 1 & 0 & b_1 \\ 0 & 0 & b_2 \\ \hline b_1 & b_2 & d \end{pmatrix}$$

Ora se $b_2 = 0$ per il principio di Rouché-Capelli il sistema AD = -B ammetterebbe soluzione quindi $b_2 \neq 0$.

Ora det $M = -b_2^2 \neq 0$ quindi rkM = 3.

Osservazione 78. La coppia di ranghi distingue i casi a centro dai casi senza centro

Partendo dalla matrice M con 2 traslazioni posso assumere che $b_1=0$ e d=0 dunque ottengo

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & b \\
\hline
0 & b & 0
\end{pmatrix}$$
 dividendo per b $\begin{pmatrix}
\frac{1}{b} & 0 & 0 \\
0 & 0 & 1 \\
\hline
0 & 1 & 0
\end{pmatrix}$ con una lineare $\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
\hline
0 & 1 & 0
\end{pmatrix}$

La conica é $x_1^2 + 2x_2 = 0$ é che prende il nome di parabola complessa.

Riassumiamo tutto il discorso con il seguente teorema

Teorema 19.4 (Classificazione affine delle coniche complesse).

Ogni conica su \mathbb{C} é equivalente (in modo affine) ad una e una sola delle seguenti coniche e la coppia (rkA, rkM) é un sistema completo di invarianti

- (1,1) identifica $x_1^2 = 0$ (retta doppia)
- (1,2) identifica $x_1^2 + 1 = 0$ (2 rette parallele)
- (1,3) identifica $x_1^2 + 2x_2 = 0$ (parabola complessa)
- (2,2) identifica $x_1^2 + x_2^2 = 0$ (2 rette incidenti)
- (2,3) identifica $x_1^2 + x_2^2 + 1 = 0$ (ellisse complessa)

19.1.2 Classificazione reale

Osservazione 79. Nel caso in cui $\mathbb{K} = \mathbb{R}$ non possiamo ripetere lo stesso ragionamento applicato nel caso complesso infatti in \mathbb{C} il rango era un invariante completo per la congruenza, mentre in \mathbb{R} no.

Gli invarianti completi per congruenza in \mathbb{R} sono la segnatura e l'indice di Witt.

Ora la segnatura non é un invariante per \sim infatti se moltiplico per $\lambda < 0$ inverte i_+ con i_- , invece l'indice di Witt non viene modificato dalla moltiplicazione per uno scalare diverso da 0.

Andiamo a studiare le diverse forme al variare della quaterna (rkA, rkM, w(A), w(M)) ricalcando quanto fatto per il caso complesso ma specificandolo usando l'indice di Witt

• (2,3,0,0) ora $d \neq 0$ quindi posso dividere per -d ottenendo

$$\begin{pmatrix} A & 0 \\ \hline 0 & -1 \end{pmatrix}$$
 essendo $w(M) = 0$ M é definito quindi $\begin{pmatrix} -I & 0 \\ \hline 0 & -1 \end{pmatrix}$

La conica é $-x_1^2-x_2^2-1$ dunque \emptyset

 $\bullet \ (2,3,0,1)$ Dalla quaterna segue che Aé definito mentre Mno quindi

$$\begin{pmatrix} I & 0 \\ \hline 0 & -1 \end{pmatrix}$$

La conica é $x_1^2 + x_2^2 - 1$ che prende il nome di ellisse reale

• (2,3,1,1) A e M non sono definiti dunque

$$\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
0 & -1 & 0 \\
\hline
0 & -1
\end{array}\right)$$

La conica é $x_1^2 - x_2^2 - 1 = 0$ che prende il nome di iperbole reale

• (2,2,0,1) da cui A é definito dunque

$$\begin{pmatrix} I & 0 \\ \hline 0 & 0 \end{pmatrix}$$

La conica é $x_1^2 + x_2^2 = 0$ ovvero un punto

• (2,2,1,2) da cui A é non é definito allora

$$\left(\begin{array}{c|cc}
1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right)$$

La conica é $x_1^2 - x_2^2 = (x_1 + x_2)(x_1 - x_2) = 0$ ovvero 2 rette incidenti

• (1, 2, 1, 1)

$$\left(\begin{array}{c|cc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)$$

La conica é $x_1^2+1=0$ ovvero \emptyset

• (1, 2, 1, 2)

$$\left(\begin{array}{c|c|c}
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)$$

La conica é $x_1^2 - 1 = (x_1 - 1)(x_1 + 1) = 0$ ovvero 2 rette parallele

• (1,1,1,2)

$$\left(\begin{array}{c|c}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

La conica é $x_1^2 = 0$ ovvero una retta doppia

Andiamo a studiare il caso (1,3) ovvero quelle senza centro, ripercorrendo la dimostrazione fatta nel caso complesso otteniamo

$$\left(\begin{array}{cc|c}
\frac{1}{b} & 0 & 0 \\
0 & 0 & 1 \\
\hline
0 & 1 & 0
\end{array}\right)$$

A priori abbiamo 2 forme a seconda del segno di b infatti

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
\hline
0 & 1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
-1 & 0 & 0 \\
0 & 0 & 1 \\
\hline
0 & 1 & 0
\end{pmatrix}$$

Ma notiamo che le 2 coniche differiscono per la riflessione $Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ \hline 0 & 1 \end{pmatrix}$ quindi nel

caso non centrato abbiamo solo (1, 3, 1, 2).

La conice é $x_1^2 + 2x_2 = 0$ che prende il nome di parabola reale

Riassumiamo tutto il discorso con il seguente teorema

Teorema 19.5 (Classificazione affine delle coniche reali).

Ogni conica su \mathbb{R} é equivalente (in modo affine) ad una sola delle seguenti coniche e la quaterna (rkA, rkM, w(A), w(M)) é un sistema completo di invarianti

- (1,1,1,2) identifica $x_1^2 = 0$ (retta doppia)
- (1,2,1,1) identifica $x_1^2 + 1 = 0$ (\emptyset)
- (1,2,1,2) identifica $x_1^2 1 = 0$ (2 rette parallele)
- (1,3,1,2) identifica $x_1^2 + 2x_2 = 0$ (parabola reale)
- (2, 2, 0, 1) identifica $x_1^2 + x_2^2 = 0$ (punto)
- (2,2,1,2) identifica $x_1^2 x_2^2 = 0$ (2 rette incidenti)
- (2,3,0,0) identifica $x_1^2 + x_2^2 + 1 = 0$ (\emptyset)
- (2,3,0,1) identifica $x_1^2 + x_2^2 1 = 0$ (ellisse reale)
- (2,3,1,1) identifica $x_1^2 x_2^2 1 = 0$ (iperbole reale)

19.2 Classificazione isometrica delle coniche reali

Mostriamo solo il caso in cui la conica in esame é un ellisse, per le altre coniche si fanno in modo analogo.

Essendo $Isom(\mathbb{R}^2) \subseteq Aff(\mathbb{R}^2)$ allora la quaterna (rkA, rkM, w(A), w(M)) é un invariante.

Partendo da

$$\begin{pmatrix} A & B \\ \hline B^t & d \end{pmatrix}$$

sapendo che é un ellisse otteniamo

$$\begin{pmatrix} A & 0 \\ \hline 0 & -1 \end{pmatrix}$$
 con $rkA = 2$ e definita positiva

Dunque agendo con $\left(\begin{array}{c|c} P & 0 \\ \hline 0 & 1 \end{array}\right)$ dove $P \in O(2,\mathbb{R})$, e usando il teorema spettrale otteniamo

$$\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ \hline 0 & 0 & -1 \end{pmatrix} \quad \lambda_1 \ge \lambda_2 > 0$$

Dunque abbiamo trovato una forma normale per le ellissi a meno di isometrie.

Vogliamo trovare un modo per poter calcolare λ_1 e λ_2 direttamente dall'equazione data senza

dover ricorrere alla forma normale.

Se considero solo la relazione $M=Q^tMQ$ allora ottengo che la traccia e il determinante di A, così come il determinante di M sono invarianti. Invece

$$tr(\lambda A) = \lambda tr(A)$$
$$\det(\lambda A) = \lambda^2 \det A \quad A \in M(2, \mathbb{R})$$
$$\det(\lambda M) = \lambda^3 \det M \quad M \in M(3, \mathbb{R})$$

quindi essi non sono invarianti per \sim ma lo sono

$$\frac{trA \cdot \det A}{\det M} \qquad \frac{(\det A)^3}{(\det M)^2}$$

questi invarianti sono detti omogenei (stesso grado di λ al numeratore e al denominatore) Sappiamo che

$$M = \begin{pmatrix} A & B \\ \hline B^t & D \end{pmatrix} \sim M' = \begin{pmatrix} A' & 0 \\ \hline 0 & -1 \end{pmatrix}$$
 dove $A' = \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$

dunque

$$\det A' = \lambda_1 \lambda_2$$

$$trA' = \lambda_1 + \lambda_2$$

$$\det M' = -\lambda_1 \lambda_2$$

Da cui

$$\frac{\det A' \cdot trA'}{\det M'} = -(\lambda_1 + \lambda_2) = \frac{\det A \cdot trA}{\det M}$$
$$\frac{(\det A')^3}{(\det M')^2} = \lambda_1 \lambda_2 = \frac{(\det A)^3}{(\det M)^2}$$

Dunque abbiamo finito infatti λ_1 e λ_2 sono le radici del polinomio di secondo grado

$$t^2 - (\lambda_1 + \lambda_2)t + \lambda_1\lambda_2$$

di cui sappiamo calcolare i coefficienti partendo dalla conica (si usa il determinante e traccia) e poiché $\lambda_1 \geq \lambda_2 > 0$ ammette sempre 2 radici