## **TUGAS KALKULUS BAB 1: LIMIT**

- 1. Isilah garis kosong di bawah ini dan berikan alasannya atau cara pengerjaannya:
  - (a) Fungsi  $f(x) = \frac{x-4}{x^2-16}$  tidak terdefinisi di x=4, tapi  $\lim_{x\to 4} f(x) =$  \_\_\_\_\_.
  - (b) Jika  $\lim_{x\to c^+} f(x) = M$  dan  $\lim_{x\to c^-} f(x) = M$ , maka
  - (d) Menurut definisi limit, arti dari  $\lim_{x\to 2} x^2 = 4$  adalah \_\_\_\_\_  $\epsilon > 0$ , terdapat  $\delta > 0$  sehingga \_\_\_\_ mengakibatkan \_\_\_\_.
  - (e) Jika  $\lim_{x\to 0} f(x) = 2$ , maka  $\lim_{x\to 0} (x^2+2)f(x) = \underline{\qquad} dan$   $\lim_{x\to 0} \frac{x+1}{f(x)} = \underline{\qquad}.$
  - (f) Nilai dari  $\lim_{x\to 0^-} \sqrt{x}$  tidak dapat dihitung karena
  - (g) Garis x=1 bukan asimtot tegak dari fungsi  $f(x)=\frac{x-1}{x^2-1} \text{ karena} -----.$
  - (h) Jika  $\lim_{x\to\infty} f(x)=2$ , maka salah satu asimtot \_\_\_\_ dari f adalah garis \_\_\_\_.
  - (i) Jika f(c) = 1 dan  $\lim_{t \to c} f(t) = 1$ , maka f \_\_\_\_\_ di c.
  - (j) Misalkan f kontinu dimana-mana kecuali di x = 1 dan  $\lim_{x \to 1} f(x) = 3$ . Agar f menjadi fungsi yang kontinu di x = 1, fungsi f didefinisikan ulang di x = 1 dengan f(1) =.

2. Hitunglah

(a) 
$$\lim_{x \to -1} (x^2 - x + 1)$$
 (c)  $\lim_{u \to 3} \frac{u^2 - 9}{u - 3}$ 

(c) 
$$\lim_{u \to 3} \frac{u^2 - 9}{u - 3}$$

(b) 
$$\lim_{y \to 1} \sqrt{2y + 7}$$

(b) 
$$\lim_{y \to 1} \sqrt{2y+7}$$
 (d)  $\lim_{t \to 0} \left(\frac{1}{t} - \frac{1}{t(t+1)^2}\right)$ 

3. Hitunglah nilai limit berikut (jika ada) jika grafik fungsi f seperti terlihat dibawah ini.



(a) 
$$\lim_{x \to 1} f(x)$$

(c) 
$$\lim_{x \to 0} f(x)$$

(a) 
$$\lim_{x\to 1} f(x)$$
  
(b)  $\lim_{x\to 2^+} f(x)$ 

(d) 
$$\lim_{x \to \infty} f(x)$$

Jelaskan mengapa limit-limit berikut tidak ada.

(a) 
$$\lim_{x \to 1} \frac{1}{x - 1}$$

(b) 
$$\lim_{x \to 0} \frac{\sqrt{x^4 + x^2}}{2x}$$

5. Hitunglah

(a) 
$$\lim_{x \to 0} \frac{\sin 3x}{2x}$$

(d) 
$$\lim_{\theta \to \pi/4} \frac{\tan(4\theta - \pi)}{\sin(\theta - \pi/4)}$$

(b) 
$$\lim_{x \to 0} \frac{\sin^3 x}{2x^2}$$

(e) 
$$\lim_{t \to \pi/4} \frac{1 - \tan t}{\sin t - \cos t}$$

(c) 
$$\lim_{x\to 0} \frac{\cos(2x) - 1}{2x\sin(2x)}$$
 (f)  $\lim_{x\to 0} \frac{\sec^2 x - 1}{3x^2}$ .

(f) 
$$\lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2}$$

(a) 
$$\lim_{x \to \infty} (\sqrt{x-1} - \sqrt{x})$$
. (d)  $\lim_{x \to \infty} \frac{x^6 + x^2}{(4x^3 + 2x)^3}$ 

(a) 
$$\lim_{x \to \infty} (\sqrt{x-1} - \sqrt{x})$$
. (d)  $\lim_{x \to \infty} \frac{x^6 + x^2}{(4x^3 + 2x)^2}$   
(b)  $\lim_{x \to \infty} \left(\frac{1}{x} - \frac{1}{x-1}\right)$  (e)  $\lim_{x \to \infty} \frac{\sqrt{x^3 + 25x}}{5x - 2}$ .  
(c)  $\lim_{x \to -\infty} \frac{x + |x|}{x - |x|}$ . (f)  $\lim_{x \to -\infty} \frac{2x - 3}{\sqrt{16x^2 + 16x}}$ 

(c) 
$$\lim_{x \to -\infty} \frac{x + |x|}{x - |x|}$$
. (f)  $\lim_{x \to -\infty} \frac{2x - 3}{\sqrt{16x^2 + 16x^2}}$ 

Tentukan asimtot datar dan asimtot tegak dari fungsi berikut.

(a) 
$$f(x) = \frac{1}{x-2}$$
 (c)  $h(x) = \frac{x + \sin x}{2x}$ 

(b) 
$$g(x) = \frac{x-2}{x^2 - 3x + 2}$$
 (d)  $p(x) = \frac{4x}{\sqrt{16x^2 + 1}}$ 

Berikan penjelasan mengapa fungsi tidak kontinu di x = c untuk masing-masing fungsi yang grafiknya sebagai berikut.



9. Periksa apakah limit satu sisi berikut menghasilkan  $+\infty$  atau  $-\infty$ .

(a) 
$$\lim_{x \to 1^+} \frac{x^2 - x - 3}{x - 1}$$
 (c)  $\lim_{x \to 0^-} \frac{\csc(x)}{x^3}$ 

(c) 
$$\lim_{x \to 0^-} \frac{\csc(x)}{x^3}$$

(b) 
$$\lim_{x\to 0^-} \left(x^2 - \frac{1}{x}\right)$$
 (d)  $\lim_{x\to 0^-} \frac{(2x+1)^2}{(x(x-2))^2}$ 

(d) 
$$\lim_{x \to 0^-} \frac{(2x+1)^2}{(x(x-2))^2}$$