MA2202: PROBABILITY I

Markov chains

Spring 2021

Satvik Saha 19MS154

Indian Institute of Science Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India.

Definition 5.1 (Markov chain). Let $\{X_n\}_{n=0}^{\infty}$ be a sequence of random variables taking values in $\{0, 1, \ldots, N\}$ such that

$$P(X_{n+1} = s_{n+1} | X_n = s_n, \dots, X_0 = s_0) = P(X_{n+1} = s_{n+1} | X_n = s_n).$$

Then, the sequence $\{X_n\}$ is a Markov chain.

Definition 5.2 (Transition probabilities). We define

$$p_{ij} = P(X_{n+1} = j \mid X_n = i).$$

If p_{ij} does not depend on n, then it is called a stationary transition probability from the i^{th} state to the i^{th} state.

Remark. Note that

$$\sum_{i=0}^{N} P(X_{n+1} = j \mid X_n = i) = \sum_{i=0}^{N} p_{ij} = 1.$$

Definition 5.3 (Stochastic matrix). The stochastic matrix or transition probability matrix \mathbb{P} is defined such that $\mathbb{P}_{ij} = p_{ij}$, where $0 \leq i, j \leq N$.

Remark. Note that setting $\mathbf{1} = (1...1)^{\top}$, we have $\mathbb{P}\mathbf{1} = \mathbf{1}$.

Lemma 5.1. For a Markov chain with stationary transition probabilities,

$$P(X_n = s_n, \dots, X_0 = s_0) = p_{s_{n-1}s_n} p_{s_{n-2}s_{n-1}} \dots p_{s_0s_1} P(X_0 = s_0).$$

Definition 5.4 (*m*-stage probability matrix). We define $\mathbb{P}^{(m)}$ such that

$$\mathbb{P}_{ij}^{(m)} = P(X_m = j \,|\, X_0 = i).$$