Business Report - Time series Forecast

Problem 1:

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

1. Read the data as an appropriate Time Series data and plot the data.

Head for sparkling and rose as appropriate time series data

	Sparkling
YearMonth	
1980-01-01	1686
1980-02-01	1591
1980-03-01	2304
1980-04-01	1712
1980-05-01	1471

	Rose
YearMonth	
1980-01-01	112.0
1980-02-01	118.0
1980-03-01	129.0
1980-04-01	99.0
1980-05-01	116.0

From the above graphs we can see that the data set rose has some null values

By performing interpolation for the specific months, we can impute the values.

	Rose
YearMonth	
1994-01-01	30.0
1994-02-01	35.0
1994-03-01	42.0
1994-04-01	48.0
1994-05-01	44.0
1994-06-01	45.0
1994-07-01	NaN
1994-08-01	NaN
1994-09-01	46.0
1994-10-01	51.0
1994-11-01	63.0
1994-12-01	84.0

	Rose
YearMonth	
1994-01-01	30.000000
1994-02-01	35.000000
1994-03-01	42.000000
1994-04-01	48.000000
1994-05-01	44.000000
1994-06-01	45.000000
1994-07-01	45.333333
1994-08-01	45.666667
1994-09-01	46.000000
1994-10-01	51.000000
1994-11-01	63.000000
1994-12-01	84.000000

Graph of the interpolated view

Before interpolation

After interpolation

2.Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Sparkling monthly sales variation

Sparkling wine monthly sales

Sparkling wine monthly trend over years

Sparkling wine seasonal decomposition

Rose yearly wine sales variation

Rose monthly wine sales variation

Rose wine sales monthly

Rose wine monthly trend over years

Rose wine seasonal decomposition

3. Split the data into training and test. The test data should start in 1991.

Sparkling

The train spark split is (132, 1)The test spark split is (55, 1)

Rose

The train rose split is (132, 1)The test rose split is (55, 1)

4. Build various exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naïve forecast models, simple average models etc. should also be built on the training data and check the performance on the test data using RMSE.

Model 1: Linear Regression

For RegressionOnTime forecast on the Test Data for sparkling, RMSE is 1275.867

For RegressionOnTime forecast on the Test Data for rose wine, $\,$ RMSE is 51.433

Model 2: Naïve Approach

For RegressionOnTime forecast on the Test Data for sparkling wine, $\,$ RMS E is 3864.279

Rose

For RegressionOnTime forecast on the Test Data for rose wine, $\,$ RMSE is 79.719

Model 3: Simple Average

Sparkling Wine

For Simple Average forecast on the Test Data, RMSE is 1275.082

Rose Wine

For Simple Average forecast on the Test Data, RMSE is 53.461

Model 4: Moving Average (MA)

Sparkling Wine

For 2 point Moving Average Model forecast on the Training Data, RMSE is 813.401

For 4 point Moving Average Model forecast on the Training Data, RMSE is 1156.590

For 6 point Moving Average Model forecast on the Training Data, RMSE is 1283.927

For 9 point Moving Average Model forecast on the Training Data, RMSE is 1346.278

Rose Wine

For 2 point Moving Average Model forecast on the Training Data, RMS E is 11.529

For 4 point Moving Average Model forecast on the Training Data, RMS E is 14.451

For 6 point Moving Average Model forecast on the Training Data, RMS E is 14.566

For 9 point Moving Average Model forecast on the Training Data, RMS E is 14.728

Model 5 : Simple Exponential Smoothing Sparkling Wine

{'smoothing_level': 0.0,		Sparkling	predict
'smoothing_trend': nan,	YearMonth		
'smoothing_seasonal': nan, 'damping_trend': nan,	1991-01-01	1902	2403.783105
'initial_level': 2403.7831046174856, 'initial trend': nan,	1991-02-01	2049	2403.783105
'initial_seasons': array([], dtype=float64),	1991-03-01	1874	2403.783105
'use_boxcox': False, 'lamda': None,	1991-04-01	1279	2403.783105
'remove_bias': False}	1991-05-01	1432	2403.783105

The RMSE for the sparkling wine with simple exponential smoothing is 1275.0818138832155

Rose Wine

{'smoothing_level': 0.09,		Rose	predict
'smoothing_trend': nan,	YearMonth		
'smoothing_seasonal': nan, 'damping trend': nan,	1991-01-01	54.0	86.89235
'initial_level': 134.54293365709344,	1991-02-01	55.0	86.89235
'initial_trend': nan, 'initial_seasons': array([], dtype=float64),	1991-03-01	66.0	86.89235
'use_boxcox': False,	1991-04-01	65.0	86.89235
'lamda': None, 'remove bias': False}	1991-05-01	60.0	86.89235

The RMSE for the rose wine with simple exponential smoothing is 36.6041980

Model 6: Double Exponential Smoothing (Holt's method)

Sparkling

{'smoothing_level': 0.1,		Sparkling	predict
'smoothing_trend': 0.1, 'smoothing_seasonal': nan,	YearMonth		
'damping_trend': nan,	1991-01-01	1902	2848.795352
'initial_level': 2088.585790004531, 'initial trend': 12.744864084238706,	1991-02-01	2049	2875.806333
'initial_seasons': array([], dtype=float64),	1991-03-01	1874	2902.817313
'use_boxcox': False, 'lamda': None,	1991-04-01	1279	2929.828294
'remove_bias': False}	1991-05-01	1432	2956.839275

The RMSE for the Sparkling wine with simple exponential smoothing is 1779.4248454808503

Rose

```
{'smoothing_level': 0.1,
                                                                               Rose
                                                                                        predict
 'smoothing_trend': 0.01,
 'smoothing_seasonal': nan,
                                                                    YearMonth
 'damping_trend': nan,
'initial_level': 139.63025186099742,
                                                                    1991-01-01
                                                                                54.0 82.703413
 'initial_trend': -0.45711420196168084,
                                                                    1991-02-01
                                                                                55.0 82.327171
 'initial_seasons': array([], dtype=float64),
                                                                    1991-03-01
                                                                                66.0 81.950929
 'use_boxcox': False,
 'lamda': None,
                                                                    1991-04-01
                                                                                65.0 81.574686
 'remove_bias': False}
                                                                    1991-05-01
                                                                                60.0 81.198444
```


The RMSE for the rose wine with simple exponential smoothing is 23.5993312418369

Model 7: Triple Exponential Smoothing (Holt - Winter's method)

Sparkling

	Sparkling	predict	
YearMonth			
1991-01-01	1902	1574.366143	
1991-02-01	2049	1428.861569	
1991-03-01	1874	1837.102381	
1991-04-01	1279	1763.597882	
1991-05-01	1432	1623.465570	

The RMSE for the sparkling wine with triple exponential smoothing is 311.518103875142

Rose

Rose auto_predict

YearMonth		
1991-01-01	54.0	49.241377
1991-02-01	55.0	63.343905
1991-03-01	66.0	66.770776
1991-04-01	65.0	63.625766
1991-05-01	60.0	62.955944

The RMSE for the rose wine with triple exponential smoothing is 9.896240973299607

Model Comparison

Sparkling

	Test RMSE
RegressionOnTimeSpark	1275.887052
NaiveModel	3864.279352
SimpleAverageModel	1275.081804
2 TMA	813.400684
4 TMA	1156.589694
6 TMA	1283.927428
9 TMA	1346.278315
SES alpha =0.07	1275.081814
DES alpha 0.1 beta 0.1	1779.424845
TES alpha 0.4 beta 0.1 gamma 0.2	311.518104

- From the above we can infer that , triple exponential smoothing gives the best performance since the dataset has all three , level , trend and seasonality when alpha is 0.4 , beta is 0.1 and gamma is 0.2
- The second-best model for the sparkling wine dataset is the 2 point trailing moving average, which fits well and shows a light lag.

Rose

	lest RMSE
RegressionOnTime Rose	51.433312
NaiveModel	79.718773
SimpleAverageModel	53.460570
2 TMA	11.529278
4 TMA	14.451403
6 TMA	14.586327
9 TMA	14.727630
SES alpha 0.09	36.604198
DES alpha 0.1 beta 0.01	23.599331
TES alpha 0.1 beta 0.2 gamma 0.2	9.896241

- From the above we can infer that , triple exponential smoothing gives the best performance since the dataset has all three , level , trend and seasonality when alpha is 0.1 , beta is 0.2 and gamma is 0.2
- The second-best model following TES is 2 point trailing moving average.

5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

Sparkling

Checking Stationarity

Test Statistic -1.360497
p-value 0.601061
#Lags Used 11.000000
Number of Observations Used Critical Value (1%) -3.468280
Critical Value (5%) -2.878202
Critical Value (10%) -2.575653
dtype: float64

- We see that at 5% significant level the Time Series is non-stationary.
- Let us take a difference of order 1 and check whether the Time Series is stationary or not

We see that at α = 0.05 the Time Series is indeed stationary.

Difference of the log series

From the above the data is converted into stationary looking at the α value 0.05

Rose

Checking Stationarity

We see that at 5% significant level the Time Series is non-stationary. Let us take a difference of order 1 and check whether the Time Series is stationary or not.

By applying log diff the data is converted into stationary data

6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

Model 8: SARIMA

Sparkling Wine

AUTO SARIMA model

SARIMAX Results							
Dep. Varia	ble:		Spa	rkling No.	Observation:	s:	132
Model:		TMAX(3. 1.], 12) Log			-596.641
Date:	2	(2) 2)	Sat 25 Sa	p 2021 AIC			1213.283
Time:				:04:53 BIC			1237.103
Sample:				1-1980 HQI	C		1222.833
	_		- 12-0				
Covariance	Type:			opg			
	coef	std err	Z	P> z	[0.025	0.975]	
ar.L1	-1.6130	0.176	-9.175	0.000	-1.958	-1.268	
ar.L2	-0.6102	0.299	-2.039	0.041	-1.197	-0.024	
ar.L3	0.0871	0.161	0.542	0.588	-0.228	0.402	
ma.L1	0.9854	0.469	2.103	0.035	0.067	1.904	
ma.L2	-0.8740	0.166	-5.259	0.000	-1.200	-0.548	
ma.L3	-0.9465	0.486	-1.948	0.051	-1.899	0.006	
ar.S.L12	-0.4525	0.142	-3.195	0.001	-0.730	-0.175	
ar.S.L24	-0.2334	0.144	-1.617	0.106	-0.516	0.049	
ar.S.L36	-0.1003	0.121	-0.826	0.409	-0.338	0.138	
sigma2	1.839e+05	8.91e+04	2.063	0.039	9175.674	3.59e+05	
Ljung-Box	(L1) (Q):		0.01	Jarque-Bera	(JB):		4.08
Prob(Q):			0.93	Prob(JB):			0.13
Heterosked	asticity (H):	:	0.73	Skew:			0.48
Prob(H) (t	wo-sided):		0.41	Kurtosis:			3.54
========							

The residual seems to follow the properties of white noise

The RMSE for the sparkling wine with SAMRIMA model is 331.638348031837

Rose Wine

AUTO SARIMA model

	•				-1		
ep. Variab				,	Observations:		13
odel:	SARI			, 12) Log	Likelihood		-331.68
ate:		:		2021 AIC			681.36
ime:			15:	05:03 BIC			702.80
ample:				0 HQIC	-		689.95
	Tues			- 132			
ovariance	Type:			opg			
	coef	std err		P> z	[0.025	0.975]	
		364 611			[0.023	0.5/5]	
r.L1	0.0173	0.151	0.114	0.909	-0.279	0.314	
r.L2	-0.0426	0.141	-0.302	0.763	-0.319	0.234	
r.L3	-0.0574	0.119	-0.484	0.628	-0.290	0.175	
a.L1	-0.9388	0.085	-11.105	0.000	-1.105	-0.773	
r.S.L12	0.0907	0.126	0.721	0.471	-0.156	0.337	
r.S.L24	-0.0437	0.108	-0.406	0.684	-0.255	0.167	
r.S.L36	-3.645e-05	0.053	-0.001	0.999	-0.103	0.103	
a.S.L12	-1.0000	2169.358	-0.000	1.000	-4252.864	4250.864	
igma2	185.3957	4.02e+05	0.000	1.000	-7.88e+05	7.88e+05	
Ljung-Box (L1) (Q):			0.01		a (JB):		2.56
Prob(Q):				Prob(JB):			0.28
Heteroskedasticity (H):			0.56				0.42
Prob(H) (two-sided):			0.13	Kurtosis:			3.22

The residual seems to follow the properties of white noise

The RMSE for the rose wine with SAMRIMA model is 16.823783943392556

7. Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

Sparkling Wine

We see that our ACF plot at the seasonal interval (12) does not taper off quickly. So, we go ahead and take a seasonal differencing of the original series. Before that let us look at the original series.

- From the above ACF graph, there are 3 significant values so p = 3, d = 1 and q = 1
- From PACF graph, there is some seasonality at 12, so P = 1, and d = 1 and q = 1

SARIMAX Results Dep. Variable: No. Observations: 132 SARIMAX(3, 1, 1)x(1, 1, 1, 12) Sat, 25 Sep 2021 Log Likelihood Model: -772.847 AIC 1559.693 Date: Time: 15:05:07 BIC 1578,204 HQIC 1567.192 Sample: 0 - 132 Covariance Type: opg ______ coef std err P> | z | ar.L2 ar.L3 -0.9293 0.063 -14.673 0.000 -0.805 ma.L1 -1.053 -0.439 0.322 ar.5.L12 -0.0931 0.212 0.660 -0.509 -0.3787 0.074 -1.789 ma.S.L12 0.212 -0.794 0.036 1.9e+04 sigma2 1.658e+05 8.713 0.000 1.29e+05 2.03e+05 Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): Prob(Q): 0.96 Prob(JB): Heteroskedasticity (H): 1.14 Skew: 0.70 Prob(H) (two-sided): 0.70 Kurtosis: 5.14

The residual seems to follow the properties of a white noise

Prediction on test data

Rose Wine

Taking the difference and take auto correlation and plotting ACF and PACF

From above we can choose p = 4, q = 2 and d = 1, P = 0, D = 1, Q = 2, S = 12

SARTMAX Results Dep. Variable: No. Observations: 132 Model: SARIMAX(4, 1, 2)x(0, 1, 2, 12) Log Likelihood -384.369 Sat, 25 Sep 2021 Date: AIC 786.737 Time: 15:05:12 BIC 809.433 Sample: 0 HQIC 795.898 - 132 Covariance Type: opg _____ Z coef std err P> z [0.025 0.975] ______ 0.132 -6.814 0.000 -0.8967 -1.155 0.097 ar.L2 0.0165 0.171 0.923 -0.319 0.352 -0.1132 0.174 -0.650 0.515 -0.454 0.228 -0.387 ar.L4 -0.1598 0.116 -1.380 0.168 0.067 ma.L1 0.1508 0.174 0.866 0.387 -0.191 0.492 -0.8492 -5.166 -1.171 -0.527 ma.L2 0.164 0.000 ma.S.L12 -0.3907 0.102 -3.848 0.000 -0.590 -0.192 -0.0887 0.091 -0.977 -0.267 0.089 ma.5.L24 0.329 sigma2 238.9649 0.001 2.02e+05 0.000 238.963 238.967 Ljung-Box (L1) (Q): 0.06 Jarque-Bera (JB): 0.01 Prob(Q): 0.80 Prob(JB): 0.99 -0.01 Heteroskedasticity (H): 0.76 Skew: Prob(H) (two-sided): 0.46 Kurtosis:

8. Build a table (create a data frame) with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

	Test RMSE
TES alpha 0.4 beta 0.1 gamma 0.2	311.518104
AUTO SARIMA(3,1,3)x(3,1,0,12)	331.638348
SARIMA(3,1,1)x(1,1,1,12)	412.781138
2 TMA	813.400684
4 TMA	1156.589694
SimpleAverageModel	1275.081804
SES alpha =0.07	1275.081814
RegressionOnTimeSpark	1275.867052
6 TMA	1283.927428
9 TMA	1346.278315
DES alpha 0.1 beta 0.1	1779.424845
NaiveModel	3864.279352

	Test RMSE
TES alpha 0.1 beta 0.2 gamma 0.2	9.896241
2 TMA	11.529278
4 TMA	14.451403
6 TMA	14.566327
9 TMA	14.727630
SARIMA(4,1,2)x(0,1,2,12)	15.377252
AUTO SARIMA(3,1,1)x(3,1,1,12)	16.823784
DES alpha 0.1 beta 0.01	23.599331
SES alpha 0.09	36.604198
RegressionOnTime Rose	51.433312
SimpleAverageModel	53.460570
NaiveModel	79.718773

From all of the models the naïve model seems to be doing worse for both the datasets

9. Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands.

Taking the SARIMA model for the sparkling dataset

Forecast for the next 12 months

Using Triple Exponential Smoothing for forecasting rose

Forecast for the next 12 months

10. Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

SPARKLING

Mean sales of sparkling wine 2461 bottles expected in the next 12 months

Max sales of sparkling wine of 6148 on December ,1995
Min sales of sparkling wine of 1230 on January ,1996
Sales of sparkling wine in the year 1995 after August would be 17744
Sales of sparkling wine in the year 1996 till July would be 11792

ROSE

Mean sales of Rose wine 49 bottles expected in the next 12 months Max sales of Rose wine of 82 on December ,1995
Min sales of sparkling wine of 32 on January ,1996
Sales of Rose wine in the year 1995 after August would be 287
Sales of Rose wine in the year 1996 till July would be 11792

Inference from the models

- The model predicts an average sales of 2461 bottles of sparkling wine in the upcoming year
- The model predicts the max sales of 6148 bottles would be in the month December of 1995
- The model predicts the min sales of 1230 bottles would be in the month January of 1996
- The company can expect a sale of around 17744 bottles of sales in the year 1995 after August and around 11792 bottles till July
- The sales are usually high at the end of the year
- The wine company should look into why the sales of sparkling wine has no upward trend and make necessary promotions and marketing to get more profit and sales
- The model predicts on an average sale of 49 bottles in the upcoming 12 months
- The model predicts the max sales of 82 bottles would be in the month December of 1995
- The model predicts the minimum sales of 32 bottles would be in the month January of 1996
- From the insights rose wine sells very less and there is a negative trend on the product when compared to the sparkling wine.
- In case of the rose wine the company can only expect less sales, they can either make more promotions and offers or discontinue the product.