Domáca úloha číslo 01 – postupnosti, aritmetická a geometrická postupnosť

 Nájdite aspoň jeden spôsob rekurentného vyjadrenia nasledujúcich postupností, napíšte prvých 5 členov týchto postupností a skontrolujte, či váš rekurentný zápis určuje rovnakú postupnosť ako uzavretý tvar postupnosti.

a)
$$\{3n.(2-n)\}_{n=1}^{\infty}$$

b)
$$\{(3n-1).(3n+1)\}_{n=1}^{\infty}$$

c)
$$\left\{\frac{n+1}{n-3}\right\}_{n=4}^{\infty}$$

d)
$$\{n^3 - n^2 - n\}_{n=1}^{\infty}$$

$$e) \quad \left\{1 + \frac{1}{n}\right\}_{n=1}^{\infty}$$

f)
$$\left\{\sqrt{n^n}\right\}_{n=1}^{\infty}$$

g)
$$\left\{\frac{\left(n+1\right)^2}{n-1}\right\}_{n-1}^{\infty}$$

$$h) \quad \left\{ \frac{n^2 - n - 6}{n + 2} \right\}_{n = 1}^{\infty}$$

i)
$$\left\{ \binom{n}{2} - \binom{n}{3} \right\}_{n=3}^{\infty}$$

$$\mathbf{j)} \quad \left\{ \frac{1 + (-1)^n}{2} \right\}_{n=2}^{\infty}$$

k)
$$\left\{3.\left(1+\frac{(-1)^n}{2}\right)\right\}_{n=1}^{\infty}$$

$$1) \quad \left\{ \frac{1}{(n-1)!} \right\}_{n=2}^{\infty}$$

$$\mathsf{m)} \ \left\{ \sqrt{n+1} - \sqrt{n-1} \right\}_{n=1}^{\infty}$$

2. Zisti, či je daná postupnosť ohraničená, zdola ohraničená, alebo zhora ohraničená. Svoje tvrdenie zdôvodni.

a)
$$\left\{-\frac{1}{n}\right\}_{n=1}^{\infty}$$

b)
$$\left\{\frac{2}{n^2}\right\}_{n=1}^{\infty}$$

$$c) \quad \left\{\frac{n+2}{n-3}\right\}_{n=4}^{\infty}$$

d)
$$\{1-n^2\}_{n=1}^{\infty}$$

e)
$$\left\{\frac{n+1}{n}\right\}_{n=1}^{\infty}$$

f)
$$\left\{ n^2 - 4n + 3 \right\}_{n=1}^{\infty}$$

g)
$$\left\{\frac{n+1}{n^2-1}\right\}_{n=2}^{\infty}$$

h)
$$\left\{4.\left(1-\left(-1\right)^{n}\right)\right\}_{n=1}^{\infty}$$

$$i) \qquad \left\{1 + \frac{1}{n}\right\}_{n=1}^{\infty}$$

$$\mathbf{j)} \quad \left\{ \frac{1 + (-1)^n}{2} \right\}_{n=2}^{\infty}$$

$$\mathsf{k)} \quad \left\{ \frac{\left(n+1\right)^2}{n-1} \right\}_{n=1}^{\infty}$$

$$I) \qquad \left\{3.\left(1+\frac{(-1)^n}{2}\right)\right\}_{n=1}^{\infty}$$

3. Vyšetrite monotónnosť postupnosti (zisti či je daná postupnosť rastúca alebo klesajúca), ak

a)
$$a_{n+1} - a_n = 5$$
, $\forall n \in \mathbb{N}$

a)
$$a_{n+1}-a_n=5$$
, $\forall n\in\mathbb{N}$
b) $a_n-a_{n+1}=2n$, $\forall n\in\mathbb{N}$

$$j) \quad \left\{ \frac{n+4}{n-3} \right\}_{n=4}^{\infty}$$

c)
$$\frac{a_{n+1}}{a_n} = 3$$
, $\forall n \in \mathbb{N}$

$$k) \quad \left\{ \frac{n^2}{2 - 4n} \right\}_{n=1}^{\infty}$$

$$d) \quad \frac{a_n}{a_{n+1}} = \frac{1}{2}, \quad \forall n \in \mathbb{N}$$

$$\begin{cases} \left(1 + \frac{1}{n}\right)^2 \end{cases}_{n=1}^{\infty}$$

e)
$$\frac{a_n}{a_{n+1}} = (-1)^n$$
, $\forall n \in \mathbb{N}$

m)
$$\left\{\frac{1-(-1)^n}{4}\right\}_{n=1}^{\infty}$$

f)
$$\frac{a_{n+1}}{a_n} = (-1)^n \frac{1}{n}$$
, $\forall n \in \mathbb{N}$

n)
$$\left\{\frac{1+(-1)^n}{n}\right\}_{n=1}^{\infty}$$

$$g) \quad \left\{ \frac{3n+1}{2} \right\}_{n=1}^{\infty}$$

o)
$$\left\{ (-1)^n \frac{1}{n} \right\}^{\infty}$$

$$h) \quad \left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$$

p)
$$\left\{ (-1)^n \frac{2}{n^2} \right\}_{n=1}^{\infty}$$

i)
$$\left\{\frac{n^2-1}{n^2+1}\right\}_{n=1}^{\infty}$$

4. Ktoré z nasledujúcich postupností sú aritmetické. Zistite ich diferenciu d, a_1 a súčet prvých n členov

a)
$$\{9-6n\}_{n=1}^{\infty}$$

d)
$$\left\{\frac{n}{n+1}\right\}^{\infty}$$

b)
$$\{4-n^2\}_{n=1}^{\infty}$$

e)
$$\left\{\log_2 2^n\right\}_{n=1}^{\infty}$$

c) $\{7n+2\}_{n=1}^{\infty}$

5. Vypočítajte prvý člen a diferenciu aritmetickej postupnosti $\{a_n\}_{n=1}^{\infty}$, ak

a)
$$a_2 = 7$$
 a $a_3 = 8.5$

d)
$$a_3 = 2.a_4$$
 a $a_2 = -a_8$

b)
$$a_4 = -5$$
 a $a_6 = 15$

e)
$$a_2 - a_1 = 6$$
 a $a_{20} - a_{18} = 15$

c)
$$a_1 = 3$$
 a $a_3 = -12$

f)
$$a_4 + a_5 = 4$$
 a $a_4 \cdot a_5 = -5$

Ktoré z predchádzajúcich postupností sú rastúce / klesajúce ?

6. Súčet prvých troch členov aritmetickej postupnosti je 60, ich súčin je 7500. Určte diferenciu a prvý člen postupnosti

7. Z aritmetickej postupnosti $\{a_n\}_{n=1}^{\infty}$ vytvoríme postupnosť $\{b_n\}_{n=1}^{\infty}$ tak, aby pre všetky členy platilo:

a)
$$b_n = 6 + a_n$$

c)
$$b_n = 6 - a_n$$

b)
$$b_n = 6 . a_n$$

d)
$$b_n = 1/a_n$$

V ktorých prípadoch bude takto vytvorená postupnosť $\{b_n\}_{n=1}^{\infty}$ aritmetická ?

8. Vypočítajte súčet prvých n členov aritmetickej postupnosti, ak

a)
$$n=12$$
, $a_1=7$, $d=0,5$

c)
$$n = 100$$
, $c_1 = -15$, $d = 0.1$

b)
$$n = 25$$
, $b_1 = 70$, $d = -5$

d)
$$n = 20$$
, $a_1 = -7$, $d = 2$

Koľko členov postupnosti $\{a_n\}_{n=1}^{\infty}$ musíme sčítať, aby súčet bol 252 ?

Koľko členov postupnosti $\{b_n\}_{n=1}^{\infty}$ môžeme sčítať, aby ich súčet bol kladný ?

- 9. Vypočítajte súčet všetkých
 - a) Nepárnych dvojciferných čísel
 - b) Trojciferných čísel deliteľných 6
 - c) Trojciferných čísel deliteľných 4 a menších ako 700
- 10. Pre aritmetickú postupnosť doplňte tabuľku

a_1	d	n	a_n	S_n
2			18	330
0		11	5	
3	-0,5			0
		14	140	1050

11. Ktoré z nasledujúcich postupností sú geometrické? Zistite ich kvocient a prvý člen

a)
$$\left\{6^n\right\}_{n=1}^{\infty}$$

b)
$$\left\{n^2\right\}_{n=1}^{\infty}$$

c)
$$\left\{ \left(-\frac{2}{3}\right)^n \right\}_{n=1}^{\infty}$$

$$d) \quad \left\{\frac{n+2}{n}\right\}_{n=1}^{\infty}$$

$$e) \quad \left\{ \left(\sqrt{2}\right)^{n+2} \right\}_{n=1}^{\infty}$$

12. Vypočítajte prvý člen a kvocient geometrickej postupnosti $\left\{a_n\right\}_{n=1}^\infty$, ak

a)
$$a_2 = 1.5$$
 a $a_5 = 40.5$

d)
$$a_3 = 48$$
 a $a_7 = -3$

b)
$$a_4 = 5$$
 a $a_6 = 125$

e)
$$a_1 + a_2 = 4$$
 a $a_2 - a_4 = -24$

c)
$$a_1 = 3$$
 a $a_3 = -12$

f)
$$a_2 \cdot a_3 = 9$$
 a $a_2 + a_3 = 10$

Ktoré z predchádzajúcich postupností sú rastúce / klesajúce ?

- 13. Medzi čísla 8 a 648 vložte tri čísla tak, aby všetky spolu tvorili 5 po sebe idúcich členov geometrickej postupnosti. Vypočítajte jej prvý člen, kvocient a súčet prvých n členov.
- 14. Z geometrickej postupnosti $\{a_n\}_{n=1}^{\infty}$ vytvoríme postupnosť $\{b_n\}_{n=1}^{\infty}$ tak, aby pre všetky členy platilo:

a)
$$b_n = 6 + a_n$$

c)
$$b_n = \log a_n$$

b)
$$b_n = 6 . a_n$$

$$d) \quad b_n = 1/a_n$$

V ktorých prípadoch bude takto vytvorená postupnosť $\left\{b_n\right\}_{n=1}^{\infty}$ geometrická ?

15. Vypočítajte súčet prvých n členov geometrickej postupnosti ak

a)
$$n=12$$
, $a_1=7$, $q=2$

b)
$$n=5$$
, $b_1=70$, $q=-5$

c)
$$n=10$$
, $c_1=1500$, $q=0,2$

Koľko členov postupnosti $\{a_n\}_{n=1}^{\infty}$ musíme sčítať, aby súčet bol 1 785 ?

Koľko členov postupnosti $\{b_n\}_{n=1}^{\infty}$ musíme sčítať, aby súčet bol 35 470 ?

Koľko členov postupnosti $\left\{c_n\right\}_{n=1}^\infty$ musíme sčítať, aby súčet bol aspoň 2 000 ?

16. Pre geometrickú postupnosť doplňte tabuľku

a_1	q	n	a_n	S_n
90	1/3	5		
2	3		1458	
	-3	4	121,5	
	2		96	189

- 17. Napíšte prvé štyri členy geometrickej postupnosti, pre ktorú platí $a_1 + a_3 = \frac{10}{9}$ a $\frac{a_4}{a_2} = 9$.
- 18. V geometrickej postupnosti platí $a_1 = 1, q = \sqrt{2}, a_n = 32$. Určte n.
- 19. Určte a_1 a q geometrickej postupnosti, ak platí $a_1+a_4=18$ a $a_2+a_3=12$.
- 20. Nech $\left\{b_n\right\}_{n=1}^{\infty}$ je geometrická postupnosť. Určte b_1 a q , ak $b_1+b_2+b_3=31$, $b_1+b_3=26$.
- 21. Nech $\left\{b_n\right\}_{n=1}^{\infty}$ je geometrická postupnosť. Určte b_1 a q , ak $b_1+b_2+b_3=195$, $b_3-b_1=120$.
- 22. Nech $\left\{b_n\right\}_{n=1}^{\infty}$ je geometrická postupnosť. Určte b_1 a q , ak $b_3=18$, $S_3=26$.
- 23. Nech $\left\{b_n\right\}_{n=1}^{\infty}$ je geometrická postupnosť. Určte b_1 a q , ak $b_2-b_1=18$, $b_4-b_3=162$.
- 24. Nech $\left\{b_{n}\right\}_{n=1}^{\infty}$ je geometrická postupnosť. Určte S_{5} ak $S_{2}=4$ a $S_{3}=13$
- 25. Vypočítajte

$$\frac{1+2+2^2+...+2^{11}}{1+2+2^2+...+2^5}$$

26. Sčítajte

$$100^2 - 99^2 + 98^2 - 97^2 + ... + 2^2 - 1^2$$

27. Určte osemčlennú geometrickú postupnosť, ak súčet dvoch prostredných členov je 6 a súčin dvoch krajných členov je 5.