Filière: Développement Digital- Tronc commun Module N° 6 : Manipuler les bases de données

Groupe: Dev101

TD N°3

Exercice 1:

Parmi les axiomes d'Armstrong figure la transitivité. Considérons la relation R(ABCDEFGH)

qui satisfait les dépendances fonctionnelles suivantes:

 $A \rightarrow B$

CH→**A**

 $B \rightarrow E$

BD→**C**

 $A \rightarrow E$

EG→H

 $DE \rightarrow F$

Lesquelles des DFs suivantes sont également satisfaites?

BFG \rightarrow **AE**

ACG→**DH**

CEG \rightarrow **AB**

Astuce: prenez la partie gauche de la dépendance fonctionnelle et calculez par réflexivité et transitivité tous les attributs qui en sont déterminés. On appelle clôture transitive cet ensemble d'attributs et on le note S+, S étant l'ensemble des attributs de départ.

Exercice 2: Clôture transitive

Soit la relation **EmpDept (enum, nom, annéeNaiss, adresse, dnum, numDirecteur)** et les DF suivantes:

enum→nom,annéeNaiss,adresse,dnum

dnum→**numDirecteur**

Calculer enum+ et dnum+.

Exercice 3: Dépendances directes

Parmi les DF de l'exercice 2 précédent, lesquelles sont indirectes?

Trouvez une DF indirecte sur le schéma de la relation R de l'exercice 1.

Exercice 4: Augmentation et dépendances minimales

On considère la relation R(A, B, C, D) et la DF $A\rightarrow B$, C, D. Enumérez toutes les dépendances possibles obtenus par augmentation.

Exercice 5: En l'absence de toute dépendance fonctionnelle, quelle est la clé d'une relation?

Exercice 6: Comment calculer les clés d'une relation à partir d'un ensemble de DF?

Application: Soient les relations ci-dessous avec leurs clés correspondantes. Trouver les clés de chaque relation :

• R(A, B, C, D, E), A→B; C→D

Filière: Développement Digital- Tronc commun Module N° 6 : Manipuler les bases de données

Groupe: Dev101

• R(A, B, C, D, E), $A \rightarrow B$; $D \rightarrow E$; $E \rightarrow C$

• R(A, B, C, D, E), $A\rightarrow C,D; E\rightarrow C$

• R(A, B, C, D, E), A,D→E; E,B→C

• R(A, B, C, D, E), A,B→C; C,D→E; D,E→B

Exercice 7: argumenter sur la 3FN

Soit la relation R(ABCD) et les DF A --> B ; C--> D et B --> D

Donnez l'argument qui montre que cette relation n'est pas en troisième forme normale.

Exercice 8: Soit une table sur des logements et des activités.

code	nom	capacité	type	lieu	codeActivité	description
ca	Causses	45	Auberge	Cévennes	rando	Promenades
						faciles sur le
						plateau
ge	Génépi	134	Hôtel	Alpes	pisc	Nage en
						piscine
						olympique
						couverte
ge	Génépi	134	Hôtel	Alpes	ski	Toutes
						pratiques de
						glisse
pi	U Pinzutu	10	Gîte	Corse	rando	Trek engagés
						en montagne
pi	U Pinzutu	10	Gîte	Corse	pisc	Bassin à
						débordement
						face à la mer

On donne les dépendances suivantes:

code→nom,capacité,type,lieu

code,codeActivité→description

Quelle est la clé? Cette relation est-elle en 3FN?

Exercice 9: Soit une relation R(A, B, C, D, E, F, H, I, J) et les DFs suivantes :

- A,B→C
- A→D,E
- \bullet B \rightarrow F
- F→G,H
- D→I,J

Quelle est la clé ? Cette relation est-elle en 3FN ?

Exercice 10:

Voici une table sur les séjours

Filière: Développement Digital- Tronc commun Module N° 6 : Manipuler les bases de données

Groupe: Dev101

idVoyageur	nom	code	nomLogement	lieu	début	fin
10	Phileas	pi	U Pinzuttu	Corse	20	20
	Fogg					
20	Nicolas	pi	U Pinzuttu	Corse	22	23
	Bouvier					
10	Phileas	ca	Causses	Cévennes	12	15
	Fogg					
40	R-L	ca	Causses	Cévennes	34	36
	Stevenson					

Voici les dépendances fonctionnelles:

idVoyageur→nom

code→nomLogement,lieu

idVoyageur,code→début,fin

Ouelle est la clé ? Cette relation est-elle en 3FN.

Exercice 11: analyse des DF et clés

Soit la relation suivante, représentant des commandes d'un produit pour lequel on connaît le prix unitaire et le nombre (nb) d'exemplaires commandés.

Commande (idProduit, nomProduit, prixUnit, idClient, nomClient, date, nb, tauxTva, mtHT, mtTVA, mtTTC)

Le montant HT de la commande est le produit du nombre d'exemplaires et du prix unitaire. On sait par ailleurs que :

Le taux de TVA dépend du produit

Le montant TTC est la somme du montant HT et du montant TVA

Les commandes d'un même produit sont groupées quotidiennement par client

Les attributs id désignent bien sûr les identifiants du produit et du client

Donner toutes les DF et trouver la clé.

Une étude de cas

Dans l'ensemble des exercices qui suivent, on cherche à spécifier le système d'information d'un zoo, et on suppose que l'on se trouve dans la situation suivante: une personne peu avertie a créé en tout et pour tout une seule relation dans laquelle on trouve toutes les informations. Voici le schéma de cette table :

Filière: Développement Digital- Tronc commun Module N° 6 : Manipuler les bases de données

Groupe: Dev101

Zoo (animal, nom, année_naissance, espèce, gardien, prénom, salaire, classe, origine, emplacement, surface)

Chaque ligne correspond à un animal auquel on attribue un nom propre, une année de naissance et une espèce (Ours, Lion, Boa, etc.). Cet animal est pris en charge par un gardien (avec prénom et salaire) et occupe un emplacement dans le zoo dont on connaît la surface. Enfin chaque espèce appartient à une classe (les mammifères, poissons, reptiles, batraciens ou oiseaux) et on considère pour simplifier qu'elle provient d'une origine unique (Afrique, Europe, etc.). Tout cela est évidemment très approximatif. Essayons d'y mettre de l'ordre. Voici les dépendances fonctionnelles:

- animal → nom, année_naissance, espèce, emplacement.
- nom, espèce → animal.
- espèce → origine, classe.
- gardien → prénom, salaire.
- emplacement → surface, gardien.

Le but est d'identifier les anomalies et de trouver les clés.

Interprétation des dépendances

Supposons que le contenu de la table **z**oo respecte les dépendances fonctionnelles cidessus. Répondez aux questions suivantes:

- Deux animaux peuvent-ils avoir le même nom?
- Le nom d'un animal suffit-il pour l'identifier?
- Peut-on avoir deux animaux avec le même nom sur le même emplacement?
- Connaissant un animal, est-ce que je connais son origine?
- Connaissant un animal, est-ce que je sais quel est son gardien?
- Un gardien peut-il s'occuper de plusieurs emplacements?
- Un emplacement peut-il être pris en charge par plusieurs gardiens?
- Deux gardiens peuvent-ils avoir le même salaire?

* Recherche d'anomalies

On peut mettre n'importe quoi dans cette relation. Par exemple on pourrait y trouver le contenu de la table ci-dessous (on a simplifié le nombre de colonnes).

animal	nom	espèce	gardien	salaire	classe	origine	emplacement
10	Zoé	Girafe	Marcel	10 000	Poisson	Afrique	A
20	Martin	Ours	Marcel	9 000	Insecte	Europe	В
30	Martin	Girafe	Jules	12 000	Poisson	Afrique	A
20	Goupil	Renard	Marcel	10 000	Oiseau	Europe	В
40	Goupil	Renard	Jules	12 000	Insecte	Asie	A

- Citer (au moins) 5 anomalies qui rendent cette table incompatible avec les DFs données précédemment.
- Citer (au moins) 2 redondances qui pourraient être évitées.

Calcul des clés

- Montrer que animal et nom, Espèce sont des clés de la relation Zoo
- Montrer que ce sont les seules clés.
- Montrer que la table n'est pas en troisième forme normale.