REVISTA CIENCIA Y TECNOLOGÍA Para el Desarrollo - UJCM 2019; 5(10):34-43

# MÉTODO PARA LA FABRICACIÓN DE ESCALERA HELICOIDAL

Jhonatan R. Nina García <sup>1a</sup>

#### RESUMEN

**Objetivo**. Emplear el software dedicado de modelado CAD (diseño asistido por ordenador), para la realización física de los planos de un proyecto o prototipo, en la mejora de la productividad de las empresas. **Materiales y métodos**. Investigación aplicada. Para el método de fabricación se utiliza el diseño asistido por ordenador (CAD), utilizando el software Autodesk Inventor 2013. **Resultados**. Se obtuvieron las dimensiones de la escalera helicoidal. **Conclusión**. Al ser el diseño previo, podemos ver los posibles errores que pueden presentarse en campo, sobre todo en los costos de fabricación. Al aplicar el diseño asistido por ordenador (CAD), podemos ver los posibles errores que se presentan en campo y que influyen considerablemente en los costos de fabricación.

Palabras clave: Superficie helicoidal; Escaleras; Representaciones CAD.

# METHOD FOR MANUFACTURING HELICAL LADDER

#### **ABSTRACT**

The **objective** is to use the dedicated CAD modeling software (Computer Aided Design), using its computer tools that aim to help the technician in the physical realization of the plans of a project or prototype, in improving the productivity of companies. **Materials and methods** Applied research. Computer aided design (CAD) is used for the manufacturing method, using Autodesk Inventor Software 2013. The **Results**, we obtain the dimensions of the helical staircase. **Conclusion**, Being the previous design, we can see the possible design errors that may occur in the field, especially in manufacturing costs.

Keywords: Helical surface; Stairs; CAD representations.

Recibido:15-10-2019

Aprobado: 30-12-2019

<sup>&</sup>lt;sup>1.</sup> Empresa VOLKOV – Área Técnica

<sup>&</sup>lt;sup>a.</sup> Ingeniero de mecánica eléctrica.

# INTRODUCCIÓN

En este documento se presenta el método para representar una superficie helicoidal, con una aplicación práctica para construir una escalera helicoidal.

Desde la antigüedad las superficies helicoidales son muy comunes en aplicaciones técnicas. Una aplicación importante, es la bomba de agua de tornillo de Arquímedes, utilizada para el transporte de agua (278-212 a. C.). El tornillo (Figura 1), consiste en un tubo cilíndrico que tiene una hélice coaxial en su interior. Cuando el extremo del cilindro se coloca en un tanque de agua y se gira la hélice, el agua es empujada al nivel más alto <sup>(1)</sup>.



**Figura 1**. El tornillo de Arquímedes <sup>(1)</sup>.

El uso más popular de la superficie helicoidal en la arquitectura es la escalera. La mayor parte de la escalera de caracol tiene un polo central que ofrece una gran resistencia. Según el plano y la catenoide, el helicoide es la tercera superficie mínima, descubierta por Jean Baptiste Meusnier en 1776.

Las aplicaciones de la superficie helicoidal son la escalera de caracol y el tobogán helicoidal. La impresionante escalera de caracol arquitectónica está diseñada por Giuseppe Momo en 1932 y se encuentra en los museos del Vaticano.



**Figura 2.** La escalera de caracol en los museos del Vaticano <sup>(2)</sup>.

Las escaleras se componen de dos hélices separadas, una para subir y la otra para bajar. Las hélices separadas se retuercen juntas en una formación de doble hélice <sup>(2)</sup>. En la Figura 2 se puede observar la forma de esta escalera.

Otro ejemplo es el tanque de agua del sistema de lucha contra incendios (de 7,0m de diámetro por 9,0m de largo) de posición vertical (Figura 3), en la que se puede observar la forma helicoidal.



Figura 3. Tanque de agua.

Entre los grandes edificios del mundo con una forma retorcida se pueden mencionar al Torso Tower, Malmo, Suecia; Infinity Tower, Dubai, y Revolution Tower, Panamá

## **MATERIALES Y MÉTODOS**

#### Hélice cilíndrica

Para dibujar las proyecciones de la vista frontal y superior de la línea helicoidal descritas por el punto M (m, m') en la superficie de rotación cilíndrica, la longitud del paso p y la superficie del cilindro se dividen en ocho partes iguales.

Sabiendo que, para la rotación del generador con una división, el punto se mueve a lo largo de los generadores y también una división, se determinan las posiciones sucesivas del punto M. Las proyecciones de la línea helicoidal se obtienen uniendo los puntos. La proyección de la vista frontal de la línea de hélice tiene la forma de ondas sinusoidales y la vista superior se superpone con la proyección del cilindro.

Al desarrollar la superficie cilíndrica, la línea helicoidal se transforma en una línea derecha, porque el desplazamiento del punto M es constante.

La construcción gráfica de la hélice se resuelve dividiendo el círculo base en doce partes. En la Figura 4 se observa la representación gráfica de la hélice torcida en la mano derecha <sup>(4)</sup>.

El paso de hélice está determinado por el arco de hélice entre dos puntos de intersección consecutivos con el mismo generador. La hélice se determina cuando se dan los parámetros del cilindro, el origen, el paso, la dirección torcida o el ángulo de hélice.



**Figura 4.** Representación y desarrollo de líneas helicoidales <sup>(2)</sup>.

La superficie helicoidal generada por la línea recta es una superficie reglada, que está determinada por el eje helicoidal, el parámetro de movimiento helicoidal y la posición de la línea generadora.

Dependiendo del ángulo entre la línea de generación y el eje helicoidal, la superficie se puede llamar derecha u oblicua.

En el caso del helicoide derecho, el ángulo de la hélice es igual a 90°, y si el ángulo es diferente el helicoide es oblicuo. Por lo general, toda la escalera tiene un núcleo central, que refuerza la escalera. En la Figura 5, el núcleo central está representado por la superficie cilíndrica con diámetro (d).



**Figura 5**. Representación de la superficie helicoidal derecha <sup>(3)</sup>.

La superficie helicoidal se genera por la traza de los extremos del segmento AB. La sección plana de la superficie helicoidal está dada por los puntos A7B7 (a7, b7, a'7, b'7) (Figura 5).

#### Datos de escalera helicoidal

Se comienza con la obtención de datos del lugar a montar la escalera helicoidal, que son obtenidos por topografía (Figura 6).



Figura 6. Ubicación de escalera helicoidal

Tabla 1. Datos topográficos

| Descripción | Longitud.<br>horizontal<br>(mm) | Altura<br>(mm) | Diámetro(m<br>m) | Radio(mm) | Altura de<br>escalera<br>helicoidal(mm) |
|-------------|---------------------------------|----------------|------------------|-----------|-----------------------------------------|
| Arco mayor  | 10852                           | 1624           | 19752.988        | 9876.494  | 4407                                    |
| Arco menor  | 8524                            | 1252           | 15760.502        | 7880.251  | 4187                                    |

Tabla 2. Datos primer tramo

| Descripción | Diámetro(mm) | Radio(mm) | Angulo (deg.) | Separación<br>entre Arcos<br>(mm) | Altura(mm) |
|-------------|--------------|-----------|---------------|-----------------------------------|------------|
| Arco mayor  | 19752.988    | 9876.494  | 26 726        | 2000                              | 1874 054   |
| Arco menor  | 15760 502    | 7880 251  | 20.720        | 2000                              | 1074.034   |

Tabla 3. Datos segundo tramo (descanso)

| Descripción | Diámetro(mm) | Radio(mm) | Angulo<br>(deg.) | Separación<br>entre Arcos<br>(mm) | Altura(mm) |
|-------------|--------------|-----------|------------------|-----------------------------------|------------|
| Arco mayor  | 19752.988    | 9876.494  | 6.487            | 2000                              |            |
| Arco menor  | 15760.502    | 7880.251  | 0.407            | 2000                              |            |

Tabla 4. Datos tercer tramo

| Descripción | Diámetro(mm) | Radio(mm) | Angulo (deg.) | Separación<br>entre Arcos<br>(mm) | Altura(mm) |
|-------------|--------------|-----------|---------------|-----------------------------------|------------|
| Arco mayor  | 19752.988    | 9876.494  | 21.603        | 2000                              | 2087       |
| Arco menor  | 15760.502    | 7880.251  | 21.003        | 2000                              | 2007       |

Tabla 5. Datos cuarto tramo (descanso)

| Descripción | Diámetro(mm) | Radio(mm) | Angulo<br>(deg.) | Separación<br>entre Arcos<br>(mm) | Altura(mm) |
|-------------|--------------|-----------|------------------|-----------------------------------|------------|
| Arco mayor  | 19752.988    | 9876.494  | 13.25/13.22      | 2000                              |            |
| Arco monor  | 15760 502    | 7880 251  | 12 57/12 53      | 2000                              |            |

Dimensiones del perfil estructural a desarrollar



Figura 7. Perfil de tubo cuadrado estructural.

Tabla 6. Datos perfil cuadrado

| Descripción     | Alto(mm) | Ancho<br>(mm) | espesor (mm) | material |
|-----------------|----------|---------------|--------------|----------|
| Perfil cuadrado | 400      | 100           | 4.763(3/16") | ASTM A36 |

Para el método de fabricación se utiliza el diseño asistido por ordenador (CAD), utilizando el software Autodesk Inventor 2013.

#### Arco mayor

Comenzamos con el primer tramo del arco mayor, utilizando las herramientas como: 3D Skecht y Helical curve (5 y 6).



Figura 8. Creación 3D Skecht



Figura 9. Helical curve.

Es necesario crear la pieza en Sheet Metal, para poder extender la plancha con Flat Pattem.

Segundo tramo, creamos la pieza en Sheet Metal y 2D Sketch.

Tercer tramo del arco mayor, utilizando las herramientas como el 3D Skecht y Helical curve.

Cuarto tramo, creamos la pieza en Sheet Metal y 2D Sketch.



**Figura 10.** Resultado primer tramo (5 y 6). Figura 11. Resultado segundo tramo (desca



Figura 11. Resultado Figura 12. Resultado tercer segundo tramo (descanso) (5, tramo (5, 6).





Figura 13. Resultado cuarto tramo (5-10)

Luego de terminar las piezas del arco mayor, creamos un ensamble general para unir todas las piezas.

## Arco menor

Primer tramo del arco mayor, utilizando las herramientas como: 3D Skecht y Helical curve.



Figura 14. Resultado primer Figura 15. Resultado tramo.



segundo tramo (5-10).



Figura 16. Resultado tercer tramo (5-10).



Figura 17. Resultado cuarto tramo (5 y 6).

#### Peldaños escalera helicoidal

El diseño de los peldaños para escalera helicoidal es un proceso difícil, puesto que los arcos son diferentes y ambos arcos no parten de un mismo eje; para solucionar este inconveniente se emplea una herramienta llamada Make Layout, que nos aparece en archivo ensamble de extensión .iam, lo que nos permite hacer proyecciones de las piezas que conforman el ensamble.



**Figura 18.** Distribución de peldaños para primer tramo <sup>(5, 6).</sup>



Figura 19. Dimensión de peldaño para primer tramo (5-10)

Tabla 7. Datos de peldaño primer tramo

| Descripción | Diámetro(mm) | Angulo<br>(deg.) | Separación<br>entre Arcos<br>interior (mm) |
|-------------|--------------|------------------|--------------------------------------------|
| Arco menor  | 15960.502    | 2.5              | 1800                                       |

Para la distribución de los peldaños en el trayecto del primer tramo, utilizamos la herramienta iCopy, podemos observar el resultado en la Figura 20.



Figura 20. Resultado de primer tramo (5, 6).

Los peldaños para el segundo tramo lo creamos en Assemble, Create Component, Sheet Metal (mm), 2D Sketch, Face y Flange.



**Figura 21.** Dimensión de peldaño para segundo tramo<sup>(5, 6)</sup>.

**Tabla 8.** Datos de peldaño (descanso) segundo tramo.

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Distancia entre<br>arcos I(mm) |
|-------------|-----------------------------|------------|--------------------------------|
| Arco mayor  | 1467.16                     | 27.496     | 1772.237                       |
| Arco menor  | 1197.163                    | 22.481     | 1112.231                       |

Para el tercer tramo utilizamos la herramienta iCopy y obtenemos el resultado visto en la Figura 20.

Tabla 9. Datos de peldaño tercer tramo

| Descripción | Diámetro(mm) | Angulo<br>(deg.) | Separación<br>entre Arcos<br>interior (mm) |
|-------------|--------------|------------------|--------------------------------------------|
| Arco menor  | 15960.502    | 1.82             | 1800                                       |

Los peldaños para el cuarto tramo lo creamos en Assemble, Create Component, Sheet Metal (mm), 2D Sketch, Face y Flange.



**Figura 22.** Dimensión de peldaño para cuarto tramo (5, 6)

Tabla 10. Datos de peldaño cuarto tramo (descanso)

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Distancia entre arcos I(mm) | Desfase de<br>ejes (mm) |
|-------------|-----------------------------|------------|-----------------------------|-------------------------|
| Arco mayor  | 2077.325                    | 55.331     | 1742 997                    | 53.277                  |
| Arco menor  | 1608.227                    | 40.618     | 1742.997                    |                         |
| Tr.         |                             |            |                             |                         |

# **RESULTADOS**

Una vez obtenidas todas las partes como el arco mayor, el arco menor y peldaños, creamos un ensamble con extensión .iam, para obtener el siguiente resultado.



Figura 23. Escalera helicoidal (5, 6).



Figura 24. Escalera helicoidal fabricado e instalado.

Al tener el ensamble obtenemos las alturas de los arcos para ubicar la posición.

## Alturas para arco mayor



Figura 25. Alturas primer tramo (5, 6).

Tabla 11. Datos de altura primer tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |
|-------------|-----------------------------|------------|----------------------------------------------------------|
| h1          | 1001.083                    | 232.97     | 5.81                                                     |
| h2          | 1001.083                    | 640.373    | 5.81                                                     |
| h3          | 1001.083                    | 1047.776   | 5.81                                                     |
| h4          | 1001.083                    | 1455.179   | 5.81                                                     |

|      |      | 1455.179   |  |
|------|------|------------|--|
| (283 | 1700 | (1001.083) |  |
|      |      | (1001.512) |  |

**Figura 26.** Alturas segundo tramo <sup>(5, 6)</sup>.

Tabla 12. Datos de altura segundo tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |
|-------------|-----------------------------|------------|----------------------------------------------------------|
| h5          | 1001.083                    | 1700       | 5.81                                                     |



**Figura 27.** Alturas tercer tramo <sup>(5, 6)</sup>.

Tabla 13. Datos de altura tercer tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.)<br>5.81 |  |
|-------------|-----------------------------|------------|------------------------------------------------------------------|--|
| h6          | 1001.083                    | 1858.415   |                                                                  |  |
| h7          | 1001.083                    | 2419.701   | 5.81                                                             |  |
| h8 1001.083 |                             | 2980.987   | 5.81                                                             |  |
| h9          | 1001.083                    | 3542.274   | 5.81                                                             |  |
| 5           |                             |            |                                                                  |  |



**Figura 28.** Alturas cuarto tramo <sup>(5, 6)</sup>.

Tabla 14. Datos de altura cuarto tramo

| Descripción Longitud.<br>horizontal(mm) |          | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |  |
|-----------------------------------------|----------|------------|----------------------------------------------------------|--|
| h10                                     | 1001.083 | 3787       | 5.81                                                     |  |
| h11                                     | 1001.083 | 3787       | 5.81                                                     |  |

## Alturas para arco menor



**Figura 29.** Alturas primer tramo <sup>(5, 6)</sup>.

**Tabla 15.** Datos de altura primer tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |  |
|-------------|-----------------------------|------------|----------------------------------------------------------|--|
| h1          | 1001.963                    | 336.545    | 7.29                                                     |  |
| h2          | 1001.963                    | 847.727    | 7.29                                                     |  |
| h3          | 1001.963                    | 1358.909   | 7.29                                                     |  |



**Figura 30.** Alturas segundo tramo <sup>(5, 6)</sup>.

Tabla 16. Datos de altura segundo tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |
|-------------|-----------------------------|------------|----------------------------------------------------------|
| h4          | 1001.963                    | 1700       | 7.29                                                     |



**Figura 31.** Alturas tercer tramo <sup>(5, 6)</sup>.

Tabla 17. Datos de altura tercer tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |  |
|-------------|-----------------------------|------------|----------------------------------------------------------|--|
| h5          | 1001.963                    | 2011.659   | 7.29                                                     |  |
| h6 1001.963 |                             | 2715.924   | 7.29                                                     |  |
| h7          | 1001.963                    | 3420.189   | 7.29                                                     |  |
| 8           |                             |            |                                                          |  |



Figura 32. Alturas cuarto tramo (5, 6).

Tabla 18. Datos de altura cuarto tramo

| Descripción | Longitud.<br>horizontal(mm) | Altura(mm) | Angulo<br>equivalente a<br>Long.<br>Horizontal<br>(deg.) |  |
|-------------|-----------------------------|------------|----------------------------------------------------------|--|
| h8          | 1001.964                    | 3787       | 7.29                                                     |  |
| h9          | 1001.964                    | 3787       | 7.29                                                     |  |

## DISCUSIÓN

Con respecto a la obtención de datos, no se debe de confiar en los diseños aprobados para construcción del edificio, comúnmente se realizan variaciones en campo, que nos derivan a errores de diseño.

Siempre comparar los datos obtenidos topográficamente; en este caso, con los arcos de la escalera helicoidal (Tabla 19).

Tabla 19. Comparación de datos

| 2           | Datos de modificado             |                | Datos de plano<br>construcció |                | Variacio<br>(mm                 | 27             |
|-------------|---------------------------------|----------------|-------------------------------|----------------|---------------------------------|----------------|
| Descripción | Longitud.<br>horizontal<br>(mm) | Altura<br>(mm) | Longitud.<br>horizontal(mm)   | Altura<br>(mm) | Longitud.<br>horizontal<br>(mm) | Altura<br>(mm) |
| Arco mayor  | 11139                           | 1720           | 11287                         | 1832           | 148                             | 112            |
| Arco menor  | 8823                            | 1351           | 9018                          | 1456           | 195                             | 105            |

En la Tabla 19 se observa que en el arco mayor la longitud horizontal es de 148 mm y altura 112 mm, de diferencia son medidas considerables.

Al comparar los centros de origen de los arcos como el arco mayor y arco menor, vemos que no son concéntricos, es decir, no parten de un mismo origen, entonces por el método de geometría descriptiva sería difícil su desarrollo, demandaría tiempo. Si lo manejamos en producción de una empresa el tiempo es dinero. Este tema es un estudio pendiente para desarrollarlo por geometría descriptiva.

## CONCLUSIONES

Al tener un diseño previo es posible observar los posibles errores en el diseño que pueden presentarse en campo, sobre todo en aquellos que afecten los costos de fabricación.

Al tener el modelado podemos sacar muchas ventajas para la fabricación, también en la mejora de la escalera.

También se pretende demostrar que herramientas novedosas tales como Autodesk inventor, Solid Works o incluso juegos de simulación, mejoran el interés, el rendimiento, la imaginación y la motivación por aprender a diseñar

## Conflictos de interés

Declaramos que no existen conflictos de interés.

# REFERENCIAS BIBLIOGRÁFICAS

- Rorres, C. The turn of the screw: optimal design of an Archimedes screw. Journal of hydraulic engineering. 2000; 126: 72-80.
- Enache, I., Ivanceanu, T., Buzila, V. Descriptive geometry and technical drawing Syntheses and applications (Geometrie descriptiva si desentehnic-Sinteze si aplicatii). Bucharest: Didactic and peda-
- gogic; 1982.
- 3. Bodea, M., Scurtu, L. Descriptive geometry and technical drawing (Geometrie descriptivă și desen tehnic). Illustrated. Cluj -Napoca: Risoprint; 2016.
  - Orban, M. Descriptive geometry -Syntheses and applications (Geometrie descriptivă-Sinteze și aplicații). Cluj-Napoca: U.T. Press Publisher; 2004.
- Randy H. Shih. Learning Autodesk Inventor 2013. illustrated. Kansas, USA: SDC Publications; 2012.
- Daniel T. Banach, Travis Jones, Alan J. Kalameja. Autodesk Inventor 2009 Essentials Plus. illustrated. USA: Cengage Learning; 2008.