CS 771A: Intro to Machine Learning, IIT Kanpur				Quiz II (01 Apr 2025)	
Name	MELBO			20 marks	
Roll No	24007	Dept.	AWSM		Page 1 of 2

Instructions:

- 1. This question paper contains 1 page (2 sides of paper). Please verify.
- 2. Write your name, roll number, department above in block letters neatly with ink.
- 3. Write your final answers neatly with a blue/black pen. Pencil marks may get smudged.
- 4. Don't overwrite/scratch answers especially in MCQ such cases may get straight 0 marks.
- 5. Do not rush to fill in answers. You have enough time to solve this quiz.

Q1. (Tracing stuff) Let $\mathbf{u}_1, ..., \mathbf{u}_{100} \in \mathbb{R}^{100}$ be the left singular vectors of a full-rank matrix $B \in \mathbb{R}^{100 \times 100}$. Let \mathbf{p} , \mathbf{q} be random vectors with support $\{\mathbf{u}_1, ..., \mathbf{u}_{100}\}$. Find the following quantities (no derivations). *Hint 1*: linearity of expectation. *Hint 2*: trace is linear but rank is not.(1 x 5 = 5 marks)

2.1	$\mathbb{E}[\operatorname{trace}(\mathbf{pq}^{T})]$ if \mathbf{p} , \mathbf{q} are chosen uniformly but without replacement i.e. \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ and then \mathbf{q} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}\setminus\{\mathbf{p}\}$.	$0 \text{ as } \mathbb{E}[0] = 0$ $\operatorname{trace}(\mathbf{p}\mathbf{q}^{T}) = 0$ $\operatorname{as } \mathbf{p} \perp \mathbf{q}$
2.2	trace($\mathbb{E}[\mathbf{pq}^{T}]$) if \mathbf{p} , \mathbf{q} are chosen uniformly but without replacement i.e. \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ and then \mathbf{q} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}\setminus\{\mathbf{p}\}$.	0 because $\mathbb{E}[\operatorname{trace}(\mathbf{pq}^{T})] = \operatorname{trace}(\mathbb{E}[\mathbf{pq}^{T}])$
2.3	trace($\mathbb{E}[\mathbf{pq}^{T}]$) if \mathbf{p} , \mathbf{q} are chosen uniformly but with replacement i.e. \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ and then \mathbf{q} is chosen uniformly randomly from $\{\mathbf{u}_1,, \mathbf{u}_{100}\}$ independently of \mathbf{p} .	0.01 as once \mathbf{p} is chosen, w.p. 0.01 we get $\mathbf{q} = \mathbf{p}$
2.4	$\text{rank}(\mathbb{E}[pp^{T}]) \text{ if } \textbf{p} \text{ is chosen uniformly randomly from } \{\textbf{u}_1, \dots, \textbf{u}_{100}\}$	$100 \text{ as } \mathbb{E}[\mathbf{p}\mathbf{p}^{T}] = \\ 0.01 \cdot UU^{T} = \\ 0.01 \cdot I$
2.5	$\mathbb{E}[\mathrm{rank}(\mathbf{p}\mathbf{p}^{T})]$ if \mathbf{p} is chosen uniformly randomly from $\{\mathbf{u}_1,,\mathbf{u}_{100}\}$	1 as $\mathbb{E}[1] = 1$ rank($\mathbf{p}\mathbf{p}^{T}$) = 1 for every \mathbf{p}

Q2. (Kernel Smash) $K_1, K_2: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ are Mercer kernels i.e., for any $x, y \in \mathbb{R}$, we have $K_i(x,y) = \langle \phi_i(x), \phi_i(y) \rangle$ with the feature maps given below. Design a map $\phi_3: \mathbb{R} \to \mathbb{R}^9$ for kernel K_3 s.t. $K_3(x,y) = \left(K_1(x,y) + K_2(x,y)\right)^2$ for all $x,y \in \mathbb{R}$. No derivation needed. Note that ϕ_3 must not use more than 9 dimensions. If your solution does not require 9 dimensions then fill the rest of the dimensions with zero. (9 marks)

$$\phi_{1}(x) = \left(\frac{1}{x}, x\right), \phi_{2}(x) = \left(\frac{1}{x^{2}}, x^{2}\right)$$

$$\phi_{3}(x) = \left(\begin{array}{c} x^{-4}, \sqrt{2} \cdot x^{-3}, x^{-2}, \sqrt{2} \cdot x^{-1}, 2, \\ \sqrt{2} \cdot x, x^{2}, \sqrt{2} \cdot x^{3}, x^{4} \end{array}\right)$$

Q3. (True-False) Write T or F for True/False in the box on the right and a brief justification in the space below (brief proof if T, counterexample if F). A square matrix is termed diagonal if all of its off-diagonal entries are zero (its diagonal entries can be zero/-ve/+ve). (3 x (1+1) = 6 marks)

1 A diagonal matrix $A \in \mathbb{R}^{3\times 3}$ with all diagonal entries being non-zero must always have rank exactly equal to 3.

Т

Let $A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$ where $\mathbf{v}_i = a_i \cdot \mathbf{e}_i \in \mathbb{R}^3$, $a_i \neq 0$ and \mathbf{e}_i are the standard basis vectors. We claim that the three columns of A are linearly independent of each other. To see this, suppose for some non-zero constants p_i , we have $\sum_{i \in [3]} p_i \cdot \mathbf{v}_i = \mathbf{0}$. This means that $\sum_{i \in [3]} (p_i \cdot a_i) \cdot \mathbf{e}_i = \mathbf{0}$. However, the standard basis vectors are independent of each other which means $p_i \cdot a_i = 0$. Since we know that $a_i \neq 0$ this means that we must have $p_i = 0$. This means that \mathbf{v}_i are independent of each other and thus A has column rank (and hence rank) equal to 3.

It is possible for a diagonal matrix $B \in \mathbb{R}^{3\times3}$ to be positive semi-definite if it has two strictly positive diagonal entries and one strictly negative diagonal entry.

F

Let $B = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3]$ where $\mathbf{u}_i = b_i \cdot \mathbf{e}_i \in \mathbb{R}^3$, \mathbf{e}_i are the standard basis vectors and $b_1, b_2 > 0$ but $b_3 < 0$. Consider the vector $\mathbf{x} \stackrel{\text{def}}{=} [0,0,c]$. We have $\mathbf{x}^{\mathsf{T}} B \mathbf{x} = c^2 b_3 < 0$. This means B is not positive semi-definite.

For any Mercer kernel $K: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ and any vectors $\mathbf{x}_1, ..., \mathbf{x}_n \in \mathbb{R}^2$, the matrix $G = [g_{ij}] \in \mathbb{R}^{n \times n}$ defined as $g_{ij} \stackrel{\text{def}}{=} K(\mathbf{x}_i, \mathbf{x}_j)$ is always positive semi-definite.

Т

Let $\phi: \mathbb{R}^2 \to \mathcal{H}$ be the feature map for the kernel K. For any vector $\mathbf{v} \in \mathbb{R}^n$, we have

$$\mathbf{v}^{\mathsf{T}}G\mathbf{v} = \sum_{\substack{i \in [n] \\ j \in [n]}} v_i v_j g_{ij} = \sum_{\substack{i \in [n] \\ j \in [n]}} v_i v_j \phi(\mathbf{x}_i)^{\mathsf{T}} \phi(\mathbf{x}_j) = \left(\sum_{i \in [n]} v_i \phi(\mathbf{x}_i)\right)^{\mathsf{T}} \left(\sum_{j \in [n]} v_j \phi(\mathbf{x}_j)\right)$$

The last expression is just $\|\mathbf{p}\|_{\mathcal{H}}^2 > 0$ where $\mathbf{p} = \sum_{i \in [n]} v_i \phi(\mathbf{x}_i) \in \mathcal{H}$. This means that G is positive semi-definite.