A line has a starting point (9,18) and ending point (14,22). Apply the Bresenham's Line Drawing algorithm to plot a line.

Solution: We have two coordinates,

Starting Point = $(x_1, y_1) = (9,18)$

Ending Point = $(x_2, y_2) = (14,22)$

Step 1: First, we calculate $\triangle x$, $\triangle y$.

$$\triangle x = x_2 - x_1 = 14-9 = 5$$

$$\triangle y = y_2 - y_1 = 22-18 = 4$$

Step 2: Now, we are going to calculate the decision parameter (p_k)

$$p_k = 2 \Delta y - \Delta x$$

$$= 2 \times 4 - 5 = 3$$

The value of $p_k = 3$

Step 3: Now, we will check both the cases.

lf

$$p_k > = 0$$

Then

Case 2 is satisfied. Thus

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x = 3 + (2 \times 4) - (2 \times 5) = 1$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + 1 = 9 + 1 = 10$$

$$y_{k+1} = y_k + 1 = 18 + 1 = 19$$

Step 4: Now move to next step. We will calculate the coordinates until we reach the end point of the line.

$$\triangle x - 1 = 5 - 1 = 4$$

p _k	p _{k+1}	X k+1	y _{k+1}
		9	18
3	1	10	19
1	-1	11	20
-1	7	12	20
7	5	13	21
5	3	14	22

Step 5: Stop.

The Coordinates of drawn lines are-

- $P_1 = (9, 18)$
- $P_2 = (10, 19)$
- $P_3 = (11, 20)$
- $P_4 = (12, 20)$
- $P_s = (13, 21)$
- $P_6 = (14, 22)$