Network Security IV

CSE 565: Fall 2024

Computer Security

Xiangyu Guo (xiangyug@buffalo.edu)

Disclaimer

- We don't claim any originality of the slides. The content is developed heavily based on
 - Slides from Prof. Dan Boneh and Prof. Zakir Durumeric's lecture on Computer Security (https://cs155.stanford.edu/syllabus.html)
 - Slides from Prof Nick McKeown's lecture on Computer Network (https://vixbob.github.io/cs144-web-page/)
 - Slides from Prof Ziming Zhao's past offering of CSE565 (https://zzm7000.github.io/teaching/2023springcse410565/index.html)
 - Slides from Prof Hongxin Hu's past offering of CSE565

Announcement

• HW3 and Project3 due Tue, Nov 12, 23:59 pm.

Review of Last Lecture

- Denial-of-Service Attack: overwhelming the victim with huge network traffic
 - DoS via Amplification
 - Exploits asymmetries in network protocols: DNS, NTP
 - DoS via Flooding ("DDoS")
 - Generating traffic from many network devices ("botnet")
 - Getting more and more powerful due to the huge number of IoT devices today
 - Example: Mirai
 - DoS Defense

Today's Topic

- Network Defense
 - IPSec
 - VPN
 - TLS: Transport Layer Security
 - QUIC: TLS + (multiplexed) UDP
 - Firewall

Notation: On Path Attacker

Attacker has access to read, manipulate, and drop traffic because they are on the path that the traffic takes across the Internet

Notation: Off Path Attacker

Attacker can inject traffic (including from fake source addresses), but can't read/modify traffic

No security guarantees

- Confidentiality Ethernet, IP, UDP, and TCP do not provide any confidentiality. All traffic is in cleartext.
 - On-path attacker can do anything. ARP and BGP attacks allow an off-path attacker to become on-path and MITM connections.
- Integrity No guarantees that attacker hasn't modified traffic.
 Ethernet, IP and UDP have no protection against spoofed packets.
 TCP provides weak guarantee of source authentication against offpath attacker
- Availability Attackers can attempt to inject packets or launch "denial of service" attacks against services

Assume network is malicious

The network is out to get you.

Solution: Always use TLS if you want any protection against largescale eavesdropping or guarantee that data hasn't been modified or corrupted by an on-path (or off-path since less strong) attacker

Note! HTTPS and TLS aren't just for sensitive material! There have been attacks where malicious Javascript or malware is injected into websites.

Building a network protocol

Don't build network proto from scratch

- Never roll your own crypto
- Many opportunities to mess up parsing network packets
- gRPC: HTTP/2 + TLS 1.3 RPC framework
 - Safe parsing in 11 languages
 - Exceptionally efficient
 - Streaming/Sync/Async
 - TLS-based authentication
- Or, **REST** on top of HTTP/2 + TLS 1.3

```
syntax = "proto3";
package calc;
message AddRequest {
  int32 n1 = 1;
  int32 n2 = 2;
message AddReply{
  int64 res = 1;
service Calculator {
  rpc Add(AddRequest)
                             returns
(AddReply) {}
  rpc Substract(SubRequest) returns
(SubReply) {}
  rpc Multiply(MultRequest) returns
(MultReply) {}
  rpc Divide(DivideRequest) returns
(DivideReply) {}
```

Where to put the cryptos?

Internet Protocol Security (IPSec)

IP is insecure

- It's the most important: the only Network Layer protocol
- Yet tragically insecure
 - No data integrity or confidentiality
 - No encryption to protect payload (TCP, UDP, User data)
 - Source spoofing
 - No host authentication
 - Leads to all sorts of spoofing attacks (for protocols above Lv 3)

Internet Protocol Security (IPSec)

- IPSec is a set of protocols for Network Layer security
 - Below Transport Layer, hence transparent to applications
 - Can be transparent to end users
- Protects integrity and/or confidentiality of packets
- Authenticates sources of IP packets
- Applicable to use over LANs, across public & private WANs, and for the Internet
- Mandatory in IPv6, optional in IPv4

IPSec Main Components

- Authentication Header (AH) Protocol
 - Authenticates the whole IP packet, <u>including</u> the header
- Encapsulating Security Payload (ESP) Protocol
 - Encrypts the IP packet payload
 - Authenticates the (encrypted) payload (But <u>not</u> the header)
- Internet Key Exchange (IKE) Protocol
 - Session establishment: crypto algs to use, enc options, key exchange, etc.

IPSec Main Components

A simplified view

IPSec Modes

- Two modes for different scenarios
 - Transport Mode: for internal communications within a secure network
 - Tunnel Mode: securing traffic over untrusted networks, like the internet

Network Tunneling

- Packets from the original protocol (the "payload") are encapsulated within packets of a different protocol (the "carrier" or "transport" protocol).
 - Hides the payload protocol from intermediate devices on the network (e.g., routers or firewalls) that don't need to understand it.

 Transports data across a network using protocols that are not supported by that network

IPSec Modes

Feature	Transport Mode	Tunnel Mode
What is Encrypted	Only the IP payload (data)	Entire IP packet (header + payload)
Original IP Header	Visible to network	Hidden (encapsulated in new IP header)
Primary Use Case	Host-to-host communication in trusted networks	Site-to-site and remote- access VPNs across untrusted public networks
Security Level	Moderate (payload only)	High (entire packet, including IP header)

Authentication Header (AH)

Encapsulating Security Payload (ESP)

AH v.s. ESP

- AH provides Integrity, but no Confidentiality.
- ESP provides Confidentiality (and optionally Integrity), but only to the payload.
- AH and ESP can be combined freely.
- If you require <u>NAT-Traversal</u>, use ESP in <u>Transport mode</u> and do <u>not</u> use AH.
 - NAT will change IP Header, which causes AH integrity check to fail
 - If you really want both, use UDP Encapsulation (won't discuss here)

AH v.s. ESP

Internet Key Exchange (IKE)

- Includes 3 key-exchange protocols:Oakley, SKEME, ISAKMP
- Negotiate IPSec options
 - ESP and/or AH?
 - Encryption alg?
 - MAC alg?
 - Diffie-Hellman Key Exchange?

•

Virtual Private Network (VPN)

Alice is Traveling

- Alice works for the Mergers and Acquisitions (M&A) department of abc.com
- She is on a business trip taking over a plant
- She wants to access the M&A server and other servers at her company (confidentially of course)

 Problem: How do you provide secure communication for protocols across the public Internet?

Virtual Private Network

- VPNs create a fake shared private network
 - Virtual: It is not a physically distinct network
 - Private: Traffics are encrypted to provide confidentiality
- Two main purpose:
 - **Security**: Remote client (e.g., traveling Alice with laptop) to corporate network
 - **Privacy (Anonymity)**: Users try to hides their browsing activity, identity, location, etc.

VPN ≈ Secure Tunnel

• Essentially builds a secure tunnel between its user and endpoints

VPN for a Traveling Alice

VPN for a privacy fanatic

VPN Protocols

• A **Protocol** describes how the VPN operates: connection establishment, data encryption methods, authentication, handshake, etc.

Common examples

- L2TP/IPSec: L2TP build an (unencrypted) tunnel for Link Layer, and the encryption is provided by IPSec (transport mode) in Layer 3.
- OpenVPN: Most widely used; Highly secure; TLS for handshake; Run over TCP/UDP.
- Wireguard: Experimental; Simpler protocol; Utilizes modern cryptographic primitives
- Cisco AnyConnect: Widely Used in corporates, governments, & universities. TLS for handshake, DTLS for data transport.

Transport Layer Security (TLS)

Why encryption at another layer?

Why encryption at another layer?

 Application-Level Security: Necessary for applications that need direct encryption and integrity at the Application Layer

• **End-to-End Protection** in Complex Networks: Additional setups are needed to make IPSec work with firewalls and NAT, while TLS traffic (especially HTTPS) can traverse firewalls and NAT easily.

Transport Layer Security (TLS)

- A crypto protocol <u>on top of</u> the Transport Layer that provides encryption, authentication, and (message) integrity.
- Some related terms
 - SSL: predecessor of TLS. People often use SSL/TLS interchangeably.
 - HTTPS: secure HTTP build on top of TLS.
 - DTLS: TLS adopted for UDP ("vanilla" TLS is designed to secure TCP).

Use cases

- Web browsing: HTTPS (HTTP over TLS)
- **Email**: SMTP over TLS (sending email), IMAP over TLS (receiving email). Now the standard practice of email providers.
- VPN: OpenVPN, Cisco Any Connect
- Messaging and Chat Application: WhatsApp, secure VolP

•

Transport Layer Security (TLS)

Transport Layer Security (TLS)

Protocol Layer

 Specifies how to establish (Handshake) and maintain (ChageCipherSpec & Alert) the secure channel, and how to receive/pass data to the applications on top.

Record Layer

• Specifies how to actually securing the application data (using encryption, authentication, fragmentation) after a secure connection has been established.

TLS Handshake

TLS Handshake

Happened after one TCP handshake.

Main purpose

- Negotiate protocol options: e.g. what crypto alg & versions to use
- Verify (server's) identity: client checks server's certificate
 - (optional) Server verify client's certificate
- Encryption & MAC key exchange: Diffie-Hellman or RSA

TLS Record

- The data exchanged in TLS is wrapped in a TLS Record
- Authentication & Encryption are handled by TLS, transparent to applications
- When <u>sending</u> a record, it will be passed down to the Transport Layer (TCP/UDP).

Byte	+0	+1	+2	+3
0	Content type			
14	Version		Length	
5n	Payload			
nm	MAC			
mp	Padding (block ciphers only)			

QUIC

- A multiplexed transport over UDP with built-in security
 - The main change underlying HTTP/3
- Use TLS for handshake, encryption, and authentication

Attacks on TLS

- **BEAST (2011)**: exploits the predictable-IV vulnerability in TLS 1.0's usage of CBC mode.
- CRIME (2012) and BREACH (2013): Infer plaintext info by observing changes in the compressed size of encrypted data.
- Lucky Thirteen(2013): Timing attack on the padding of CBC-mode ciphers in TLS
- FREAK(2014): Tricks the server to use a older/weaker version of TLS
- **DROWN (2016)**: exploits misconfigured servers that support both SSLv2 (insecure) and modern TLS versions

Why you should (still) use TLS

- Continuously improved and patched. The up-to-date version (**TLS 1.3**) is secure against all known vulnerabilities.
 - The security community actively researches TLS, and any vulnerabilities discovered are promptly addressed in newer protocol versions or through configuration changes.
- End-to-End Encryption and Authentication.
 - One of the most effective way to combat MiTM: it checks certificates by default
- Industry standard: supported by all major web browsers, applications, and servers

Firewalls

Firewalls

Separate local area network (LAN) from the Internet. Only allow some traffic to transit.

Sometimes rules on a router. Sometimes a standalone device.

Basic Packet Filtering

- Uses transport and IP layer information only
 - IP Source Address, Destination Address
 - Protocol (TCP, UDP, ICMP, etc.)
 - TCP and UDP source and destination ports

• Examples:

- "Do not allow external hosts to connect to Windows File Sharing"
 - -> DROP ALL INBOUND PACKETS TO TCP PORT 445

IANA Port Numbering

- System or Well-Known Ports [1,1023]:
 - Common services, e.g., HTTP -> 80, SSH -> 22
- User or registered ports [1024, 49151]
 - Less well-known services
- Ephemeral/Dynamic/Private Ports [49152, 65535]
 - Short lived connections

Blocklists and Allowlists

- Two fundamental approaches for firewall rulesets
- **Blocklists**: All packets are *allowed* through *except* those that fit the rules defined specifically in a blocklist.
 - Assumes the network administrator can enumerate all of the properties of malicious traffic.
- Allowlists: packets are dropped or rejected *unless* they are specifically allowed by the firewall

What's the rule?

- What if you have a network with lots of servers but only want outsiders to be able to access a web server?
 - DROP ALL INBOUND PACKETS IF DEST PORT != 80

 All outbound connections also have a source port! Their responses will blocked!

Stateful Filtering

Firewall tracks outgoing connections and allows associated inbound traffic back through

Network Address Translation (NAT)

NATs map between two different address spaces. Most home routers are NATs and firewalls.

Private Subnets

10.0.0.0 - 10.255.255.255

172.16.0.0 — 172.31.255.255

192.168.0.0 — 192.168.255.255

Local vs. Network Firewall

- Firewalls we've discussed so far have all been network firewalls. Most have lived at the edge of the organization.
- Firewalls also run on individual hosts. Linux servers use **iptables**.
- Typically have a combination of network and host firewalls
- sudo iptables -A INPUT -m conntrack --ctstate ESTABLISHED, RELATED -j ACCEPT
- sudo iptables -A INPUT -p tcp --dport 22 -m conntrack --ctstate NEW, ESTABLISHED -j ACCEPT

Local vs. Network Firewall

- Organizations typically have a combination of network and host firewalls
 - Border (Network) Firewall will block malicious traffic from the outside and limit inbound traffic to accessing only servers intended to be accessed by the public
 - Host Firewalls protect hosts from other hosts (e.g., protect against internal compromise and malicious insiders)

• Think of firewall rules in terms of "Defense in Depth"

Next Generation Firewalls (NGFW)

- So far, firewalls operate by allowing access to a specific host or protocol—but what about malicious application traffic?
- Next Generation Firewalls (Industry term for Application-Layer firewall)s
 protect for attacks within L7 traffic
- For Example:
 - Virus scanning for SMTP
 - Need to understand protocol, MIME encoding, ZIP files, etc.
 - Look for SQL injection attacks in HTTP POSTs
 - Look for a large number of authentication attempts or malformed requests

Intrusion Detection Systems (IDS)

- Software/device to monitor network traffic for attacks or policy violations
- Violations are reported to a central security information and event management (SIEM) system where analysts can later investigate
- Signature Detection: maintains long list of traffic patterns (rules) associated with attacks
- Anomaly Detection: attempts to learn normal behavior and report deviations

Signature Detection

Signature Detection

Examples

- Failed login attempts may indicate password cracking attack
- IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds, IDS warns of attack
- Note that the warning is specific
 - Admin knows what attack is suspected
 - Admin can verify attack (or false alarm)

Signature Detection

Advantages

- Simple
- Detect known attacks
- Know which attack is happening at time of detection
- Efficient (if reasonable number of signatures)

Disadvantages

- Signature files must be kept up-to-date
- Number of signatures may become large
- Can only detect known attacks
- Variation on known attack may not be detected

Anomaly Detection

Anomaly Detection

- Anomaly detection systems look for <u>unusual</u> or <u>abnormal</u> behaviors
- There are (at least) two challenges
 - What is normal for this system?
 - How "far" from normal is abnormal?
- Statistics is obviously required here!
 - The mean defines normal
 - The variance indicates how far abnormal lives from normal

Anomaly Detection

Advantages

- Chance of detecting unknown attacks
- May be more efficient (since no signatures)

Disadvantages

- Reliability is unclear
- High false positive/false negative
- Anomaly detection indicates something unusual, but lack of specific info on possible attack!
- Should always be used with a signature detection system

Open Source IDS

Three Major Open Source IDS (and a tremendous number of commercial products)

- Snort
- Bro-Zeek
- Suricata

Example Snort Rule

Outbound Too!

- Organizations will often inspect outbound traffic as well
 - Block access to sites with known malicious behavior
 - Prevent exfiltrating data
 - Block services like bit torrent
- Be careful on enterprise networks! Sometimes companies will even install their own root certificates on employee workstations to monitor TLS traffic.

Questions?