Roundoff error propagation

If roundoff error caused by u stayed as big as $u \to \text{no problem!}$ Does it?

Example

Multiplication: Assignment Project Exam Help

$$(x \otimes y) \otimes z = \text{https://powcoder.com} [x \otimes y) \otimes z = \text{https://powcod$$

where $|\delta_i| < u$

Add WeChat powcoder
$$(x \otimes y) \otimes z = xyz(1 + \delta_1)(1 + \delta_2)$$

$$\left| \frac{(x \otimes y) \otimes z - xyz}{xyz} \right| = \left| (1 + \delta_1)(1 + \delta_2) - 1 \right| \leq (1 + u)^2 - 1 \approx 2u$$

no problem with floating point multiplication!

Error propagation

How about addition?

If x, y are machinesignification representation of the property of the propert

× https://powcoder.com
$$\delta_1$$
)

$$\frac{\text{Add We(Chat)}}{x+y} \underset{=}{\text{powcoder}} \\
\underset{=}{\text{powcoder}} \\$$

so no problem.

But what if they have roundoff errors from previous computations?

Floating point addition

$$|f|(x) \oplus f|(y) = [x(1+\delta_1) + y(1+\delta_2)](1+\delta_3)$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| \leq \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_3) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{|x-y|} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(y) - (x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_2) - 1|$$

$$|\frac{f|(x) \oplus f|(x+y)}{x}| = \frac{|x|}{x} |(1+\delta_1)(1+\delta_1)(1+\delta_2) - 1|$$

but $\frac{|x|+|y|}{|x+y|}$ can be large if x, y are nearly equal and opposite!

If 2 nearly equal numbers (with error) are subtracted, the relative error can be greatly magnified!

Error propagation

Severe cancellation or subtractive cancellation

can greatly magnify the relative error so lose lots of precision in final answer

Example

Assignment Project Exam Help

Estimating the budget surplus/deficit

https://powcoder.com
Remedy? → change formula/algorithm to avoid subtraction

Example

Add WeChat powcoder

quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

what if $b^2 \gg 4ac$?

Error propagation

Example

sample variance

Assignment Project Exam Help
$$n-1$$
 $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j}$ https://powcoder.com

Alternative form:

Add WeChat powcoder
$$s^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2} \right)$$

—Error propagation

 \Longrightarrow try to avoid calculations that rely on cancellation ... or use higher precision

Example

Assignment Project Exam Help

quadruple precision (patins MATOW oder.com

Example

Add WeChat powcoder

in a symbolic environment

(not possible for big problems)

L Errors

Error propagation

Stability of Algorithms

Since some errof projument eight Projument in the state of the state o where the error doesn't grow too fast Some growth is inevitables://powcoder.com

Example

 $S_n = \sum_{k=1}^n a_k$ typically has error $\sim n^{1/2}u$ and is guaranteed to have (absolute) error $<(n-1)u\sum_{k}|a_{k}|+O(u^{2})$

but exponential growth (error $\sim K^n u, K > 1$) is disastrous!

Error propagation

An unstable recurrence relation ...

To compute the integral $I = \int_0^1 \frac{x^{100}}{P_{roject}^{+2}} dx$, we can derive the recurrence relation for $I_n = \int_0^1 \frac{x^{100}}{x+2} dx$

https://powcoder.com $I_n = \frac{1}{n} - 2I_{n-1}$

and run for n = 1..100, starting from $l_0 = \log(3/2)$

• Demo BadRecurrence.m

Numerical Methods & Scientific Computing: lecture notes

Errors

Error propagation

Remedy?

Assignment Project Exam Help run recurrence backwards!

• Demo GoodRecufrepse//powcoder.com

Add WeChat powcoder

Roundoff vs. truncation error

Sometimes there is a tradeoff between truncation error and roundoff Assignment Project Exam Help

Example

forward difference approximation where f'(x) by $\frac{f(x+h)-f(x)}{\text{Add WeChat powcoder}}$

Demo ForwardDifference.m

—Error propagation

Explanation

In the absence of roundoff error, there is still a truncation error. Use Taylor series for f(x+h), assuming $f \in C^2$ \rightarrow truncation error f(x+h), assuming $f \in C^2$

In the absence of roundoff error, approximation becomes exact as h o 0

Using our model for roundoff error, get additional error $\leq K_2 u/h + K_3 u$ $(K_2, K_3 \text{ depend on } f \text{ and } x)$

Use bounds (worst case analysis) \to minimum total (absolute) error at an optimal $h \approx u^{1/2}$, ignoring constants

 \implies no point using h smaller than this!

Roundoff error sets a lower bound to achievable accuracy

Summary: main effects of roundoff error

after Afternotes on Numerical Analysis (Stewart)
Roundoff error

1 can accum Alatei gyernlængte Projections x amevillelep

Example

https://powcoder.com

sums

- 2 can reveal other expenses Weshellston Wcoder do the problem another way
- ${f 3}$ can grow so fast it swamps the actual answer o try to do the problem another way

Example

recurrence relations

Error propagation

Assignment Project Exam Help

End of Topic

https://powcoder.com

Add WeChat powcoder

—Error propagation

Assignment Project Exam Help

End of Lecture 8

https://powcoder.com

Add WeChat powcoder