

Soal

 \blacksquare Diberikan fungsi $f:(-1,1)\to\mathbb{R}$ yang didefinisikan sebagai berikut:

$$f(x) = \frac{x}{x^2 - 1}.$$

Buktikan bahwa $(-1,1) \sim \mathbb{R}.$

 $\fbox{\textbf{2}}$ Diberikan x dan y dua bilangan real. Buktikan bahwa

$$\frac{|x+y|}{1+|x+y|} \leq \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

- 3 Show that the following function define a metric on \mathbb{R} , $d(x,y) = \sqrt{|x-y|}$.
- 4 Discuss whether the following sets are open or closed. Determine the interior, closure, and boundary of each set.
 - (a) $(0,1) \subseteq \mathbb{R}$.
 - (b) $[1,2] \subseteq \mathbb{R}$.
 - (c) $\bigcap_{n=1}^{\infty} \left[-2, \frac{1}{n} \right) \subseteq \mathbb{R}.$

Diberikan fungsi $f:(-1,1)\to\mathbb{R}$ yang didefinisikan sebagai berikut:

$$f(x) = \frac{x}{x^2 - 1}.$$

Buktikan bahwa $(-1,1) \sim \mathbb{R}$.

Solusi:

Akan dibuktikan bahwa f fungsi 1-1, misalkan f(x) = f(y) yang berarti $\frac{x}{x^2 - 1} = \frac{y}{y^2 - 1}$. Ini setara dengan

$$xy^{2} - x = x^{2}y - y \iff y - x = x^{2}y - xy^{2} = xy(x - y).$$

Andaikan $x \neq y$, ini berarti xy = -1. Namun, $x,y \in (-1,1)$ sehingga -1 < xy < 1 yang tentu kontradiksi. Jadi, x = y sehingga terbukti.

Akan dibuktikan f onto, ambil sebarang $c \in \mathbb{R}$. Akan dibuktikan bahwa $x = \frac{1}{2c} - \sqrt{\frac{1}{4c^2} + 1} \in (-1,1)$. Tinjau bahwa

$$2 < \sqrt{\frac{1}{4c^2} + 4} \iff \frac{1}{4c^2} - \sqrt{\frac{1}{c^2} + 4} + 2 < \frac{1}{4c^2}$$

sehingga $\left(\sqrt{\frac{1}{4c^2}+1}-1\right)^2<\left(\frac{1}{2c}\right)^2$. Ini berarti

$$\sqrt{\frac{1}{4c^2}+1}-1<\frac{1}{2c}\iff -1<\frac{1}{2c}-\sqrt{\frac{1}{4c^2}+1}<0$$

sehingga terbukti. Di sisi lain, f(x)=c sehingga terbukti f onto. Terbukti $(-1,1)\sim\mathbb{R}.$

Diberikan x dan y dua bilangan real. Buktikan bahwa

$$\frac{|x+y|}{1+|x+y|} \leq \frac{|x|}{1+|x|} + \frac{|y|}{1+|y|}.$$

Solusi:

Perhatikan bahwa $\frac{a}{1+a}=1-\frac{1}{1+a}$, maka dalam hal ini ekivalen dengan membuktikan

$$\begin{split} 1 - \frac{1}{1 + |x + y|} & \leq 1 - \frac{1}{1 + |x|} + 1 - \frac{1}{1 + |y|} \\ \iff \frac{1}{1 + |x|} + \frac{1}{1 + |y|} & \leq 1 + \frac{1}{1 + |x + y|}. \end{split}$$

Akan digunakan ketaksamaan segitiga $|x+y| \leq |x| + |y|.$ Perhatikan bahwa

$$\begin{aligned} 1 + \frac{1}{1 + |x + y|} &\geq 1 + \frac{1}{1 + |x| + |y|} \\ &= \frac{2 + |x| + |y|}{1 + |x| + |y|} \\ &\geq \frac{2 + |x| + |y|}{1 + |x| + |y| + |xy|} \\ &= \frac{2 + |x| + |y|}{(1 + |x|)(1 + |y|)} \\ &= \frac{1}{1 + |x|} + \frac{1}{1 + |y|}. \end{aligned}$$

Terbukti.

Show that the following function define a metric on \mathbb{R} , $d(x,y) = \sqrt{|x-y|}$.

Solusi:

Akan dibuktikan tiga hal. Ambil sebarang $x,y,z\in\mathbb{R}.$

- Perhatikan bahwa $d(x,y) = \sqrt{|x-y|} \ge 0$ di mana $0 = d(x,y) = \sqrt{|x-y|}$ jika dan hanya jika x = y.
- Perhatikan bahwa $d(x,y) = \sqrt{|x-y|} = \sqrt{|y-x|} = d(y,x)$.
- Akan dibuktikan bahwa $d(x,y)+d(y,z)\geq d(x,z) \iff \sqrt{|x-y|}+\sqrt{|y-z|}\geq \sqrt{|x-z|}$. Misalkan a=|x-y|,b=|y-z|, dan c=|x-z|. Dari ketaksamaan segitiga diperoleh

$$c = |x - z| = |(x - y) + (y - z)| \le |x - y| + |y - z| = a + b \implies c \le a + b.$$

Perhatikan bahwa

$$\left(\sqrt{a} + \sqrt{b}\right)^2 = a + b + 2\sqrt{ab} \ge a + b \ge c$$

yang memberikan $\sqrt{a} + \sqrt{b} \ge \sqrt{c}$, terbukti.

Terbukti (\mathbb{R}, d) membentuk metrik.

Discuss whether the following sets are open or closed. Determine the interior, closure, and boundary of each set.

- (a) $(0,1) \subseteq \mathbb{R}$.
- (b) $[1,2] \subseteq \mathbb{R}$.
- (c) $\bigcap_{n=1}^{\infty} \left[-2, \frac{1}{n} \right) \subseteq \mathbb{R}.$

Solusi:

Misalkan A:=(0,1), B:=[1,2], dan $C:=\bigcap_{n=1}^{\infty}\left[-2,\frac{1}{n}\right).$

(a) Akan dibuktikan bahwa $A^o=(0,1)$. Ambil sebarang $x\in(0,1)$, pilih $r:=\frac{1}{2}\min\{x,1-x\}$. Ini berarti

$$x + r \le x + \frac{1 - x}{2} = \frac{1 + x}{2} < 1, \quad x - r \ge x - \frac{x}{2} = \frac{x}{2} > 0$$

yang menunjukkan $N_r(x)\subseteq A$, terbukti. Karena $A^o=A$, maka A terbuka.

Akan dibuktikan bahwa A'=[0,1]. Misalkan $y\in\mathbb{R}$. Andaikan y>1, untuk $\varepsilon:=\frac{y-1}{2}$ yang mana

$$y-\varepsilon=y-\frac{y-1}{2}=\frac{y+1}{2}>1$$

yang menunjukkan $N_{\varepsilon}(y)\cap A=\{y\}$ sehingga y bukan titik limit dari A. Andaikan y<0, pilih $\varepsilon:=-\frac{y}{2}$ sehingga $y+\varepsilon=\frac{y}{2}<0$ yang berarti $N_{\varepsilon}(y)\cap A=\{y\}$. Jadi, y bukan titik limit dari A. Jika y=0, tinjau bahwa $\varepsilon\in N_{\varepsilon}(0)\cap A$ untuk $\varepsilon\leq 1$ dan $\frac{1}{2}\in N_{\varepsilon}(0)\cap A$ untuk $\varepsilon>1$. Ini berarti $N_{\varepsilon}(0)\cap A$ mengandung anggota yang berbeda dengan 0 yang menunjukkan $0\in A'$. Jika y=1, tinjau $1-\varepsilon\in N_{\varepsilon}(1)\cap A$ untuk setiap $\varepsilon\leq 1$ dan $\frac{1}{2}\in N_{\varepsilon}(1)\cap A$ sehingga $1\in A'$. Jika 0< y<1, tinjau $(y+\varepsilon)\in N_{\varepsilon}(1)\cap A$ untuk $\varepsilon\leq \min\{y,1-y\}$. Jika $\varepsilon>y$ tinjau $\frac{y}{2}\in N_{\varepsilon}(y)\cap A$, sedangkan $\varepsilon>1-y$ tinjau pula $\frac{y+1}{2}\in N_{\varepsilon}(y)\cap A$. Ini berarti $N_{\varepsilon}(y)\cap A$ mengandung anggota lain selain y sehingga $y\in A'$. Jadi, A'=[0,1]. Tinjau boundary dari A adalah $\partial A=A'\setminus A^o=\{0,1\}$.

(b) Akan dibuktikan bahwa $B^o = (1, 2)$. Ambil sebarang $x \in (1, 2)$, pilih $r := \frac{1}{2} \min\{r - 1, 2 - r\}$ sehingga

$$x + r \le x + \frac{2 - x}{2} = \frac{2 + x}{2} < 2, \quad x - r \ge x - \frac{1 - x}{2} = \frac{x + 1}{2} > 1$$

yang menunjukkan $N_r(x) \subseteq B$. Jadi, $B^o = (1, 2)$.

Akan dibuktikan B'=[1,2]. Misalkan $y\in\mathbb{R}$. Andaikan y>2, untuk $\varepsilon:=\frac{y-2}{2}$ yang mana

$$y-\varepsilon=y-\frac{y-2}{2}=\frac{y+2}{2}>2\implies N_{\varepsilon}(y)\cap B=\{y\}$$

yang berarti $y \notin B'$. Andaikan y < 1, untuk $\varepsilon := \frac{1-y}{2}$ yang mana

$$y + \varepsilon = y - \frac{1-y}{2} = \frac{1+y}{2} < 1 \implies N_{\varepsilon}(y) \cap B = \{y\}$$

sehingga $y \notin B'$. Jika y = 1, tinjau $y + \varepsilon \in N_{\varepsilon}(1) \cap B$ untuk $\varepsilon \leq 1$ dan $\frac{3}{2} \in N_{\varepsilon}(1) \cap B$ untuk $\varepsilon > 1$ sehingga diperoleh $1 \in B'$. Jika y = 2, tinjau $y - \varepsilon \in B$ untuk $\varepsilon \leq 1$ dan $\frac{3}{2} \in B$ untuk $\varepsilon > 1$ sehingga $2 \in B'$. Jika 1 < y < 2, tinjau $(y + \varepsilon) \in N_{\varepsilon}(y) \cap B$ untuk $\varepsilon \leq \min\{2 - y, y - 1\}$. Jika $\varepsilon > y - 1$ tinjau $1 \in N_{\varepsilon}(y) \cap B$, sedangkan jika $\varepsilon > 2 - y$ tinjau $2 \in N_{\varepsilon}(y) \cap B$. Jadi, $y \in B'$ yang menunjukkan B' = [1, 2]. Karena B' = B, ini berarti B tertutup.

Diperoleh boundary dari B adalah $\partial B = B' \setminus B^o = \{1, 2\}.$

(c) Akan dibuktikan C=[-2,0]. Perhatikan $[-2,0]\subseteq C$ karena untuk setiap $p\in[-2,0]$ berlaku $p\in[-2,\frac{1}{n})$ untuk setiap $n\in\mathbb{N}$. Akan dibuktikan bahwa $C\subseteq[-2,0]$. Hal ini ekivalen dengan membuktikan bahwa tidak ada k>0 yang memenuhi $k\in C$. Misalkan k>0, dari properti Archimedes berlaku terdapat bilangan asli N>1 yang memenuhi $N>\frac{1}{k}\iff k>\frac{1}{N}$. Ini menunjukkan bahwa $k\notin[-2,\frac{1}{N})$ sehingga $k\notin C$. Terbukti bahwa $C\subseteq[-2,0]$ sehingga C=[-2,0]. Selanjutnya dapat dilakukan dengan cara yang sama seperti (b) dan diperoleh $B^o=(-2,0)$, B'=[-2,0], $\partial B=\{-2,0\}$ sehingga B tertutup.