

PCS: Private Cloud Services

Resumo

A crescente necessidade de controlo sobre dados e recursos leva muitas organizações a procurar alternativas às *clouds* públicas. Neste contexto, o presente projeto propõe e avalia uma solução de *Private Cloud* flexível, focada na virtualização, no armazenamento distribuído e na gestão eficiente de recursos.

A solução inclui um modelo técnico adaptável a diferentes contextos organizacionais, permitindo que entidades com necessidades específicas possam configurar e gerir internamente a sua própria infraestrutura de computação, de acordo com os seus requisitos operacionais.

Após a implementação da solução, os testes realizados demonstraram que esta oferece elevada escalabilidade, robustez e tolerância a falhas.

Objetivos

- Conceber, implementar e avaliar uma *Private Cloud* com recursos limitados.
- Garantir segurança, eficiência e controlo no acesso a serviços.
- Assegurar fiabilidade, escalabilidade e tolerância a falhas na solução implementada.

Contribuições

- Alternativa prática e segura face às clouds públicas.
- Integração prática e eficiente do Proxmox VE e Ceph em contexto de recursos limitados.
- Validação prática através de testes de desempenho, escalabilidade e tolerância a falhas.
- Modelo técnico adaptável a organizações com necessidades específicas.

Autores:

2222047 - João Tendeiro 2222397 - Miguel Lopes

Arquitetura Proposta

A arquitetura proposta é modular e composta por um ou mais *clusters*. Cada *cluster* integra pelo menos três servidores híbridos que combinam armazenamento distribuído com Ceph e execução de VMs/*containers*, e dois servidores dedicados a tarefas de IA/ML com GPUs. A rede é redundante, com *bonding*, switches duplos e UPSs. A infraestrutura garante alta disponibilidade, com replicação de dados, migração de serviços e monitorização centralizada.

Solução Desenvolvida

A solução desenvolvida consiste num *cluster* de virtualização distribuída baseado em Proxmox VE, com suporte a alta disponibilidade, tolerância a falhas, backups e gestão centralizada. A arquitetura encontra-se adaptada aos recursos disponíveis, integrando armazenamento distribuído com Ceph para garantir resiliência e desempenho. Concebida como prova de conceito funcional, esta infraestrutura demonstra a viabilidade da arquitetura proposta, explora o potencial de escalabilidade e serviu de base à realização de testes que validam a sua robustez em cenários reais.

Equipamentos Utilizados

Nó	CPU	Disco (sda)	Disco (sdb)	RAM
Proxmox node 1	Intel Core2 Quad CPU Q9550 @ 2.83GHz	250 GB	250 GB	8 GB
Proxmox node 2	Intel Core2 Quad CPU Q9400 @ 2.66GHz	500 GB	500 GB	8 GB
Proxmox node 3	Intel Core2 CPU 6600 @ 2.40GHz	500 GB	250 GB	8 GB

Testes

Tipo de teste	Objetivo Principal	
Alta Disponibilidade	Avaliar migração e recuperação de VMs/CTs	
Falhas de Disco	Comportamento do Ceph	
Expansão do <i>Cluster</i>	Integração de novos discos e OSDs	
Desempenho do Ceph	Escrita/leitura com 2 e 3 réplicas	

- Alta Disponibilidade: com a utilização de armazenamento distribuído (Ceph), o tempo de *downtime* foi reduzido, uma vez que, em caso de falha de um nó, apenas é necessário realocar a VM/CT noutro nó disponível.
- Falhas de Disco: o Ceph demonstrou resiliência a falhas de disco, garantindo a continuidade dos serviços através da replicação dos dados, com reposição automática das réplicas afetadas em novos OSDs.
- Expansão do *Cluster*: a integração de novos discos e OSDs ocorreu de forma transparente, permitindo escalar a capacidade de armazenamento e de desempenho sem impacto significativo nos serviços em execução.
- **Desempenho do Ceph:** o aumento do número de réplicas reduziu o desempenho devido ao maior tráfego de replicação, mas melhorou a tolerância a falhas.

Orientadores:

Professor Doutor António Pereira, Professor Doutor Daniel Fuentes, Professor Doutor David Safadinho, Professor Doutor João Ramos e Professor Doutor Luís Frazão