

Lecture 20: Message Integrity (contd), Pseudorandomness

Professor Adam Bates CS 461 / ECE 422 Fall 2019

Goals for Today

- Learning Objectives:
 - Briefly discuss midterm results
 - Conclude discussion of Message Integrity
- Announcements, etc:
 - Midterm grades released on Compass2G as of this morning.
 - MP3 Checkpoint #1: Oct 14 at 6pm

- Exams were graded on Wednesday evening by Instructional Team.
- Entered and analyzed by me over the weekend.
- Initially...

Median Score: 58%

Max Score: 88%

	Total
Mean (Raw)	60.82
Median (raw)	60
Min (Raw)	17
Max (Raw)	92
Mean (%)	58%
Median (%)	58%
Min (%)	16%
Max (%)	88%
Max Possible	104

Note: there was a typo on

Page 14; only 1 point (not 7) was possible on this page

Were the questions fair?

			Multiple	e Choice			Short Answer			MP1			MP2					
		Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Page 7	Page 8	Page 9	Page 10	Page 11	Page 12	Page 13	Page 14	Page 15	Page 16	
nce	Q1	90%	69%	60%	73%	92%	98%	77%	77%	79%	84%	83%	68%	40%	60%	92%	70%	
r.wa	Q2	86%	61%	50%	63%	85%	70%	68%	60%	71%	69%	69%	61%	29%	20%	93%	57%	
Perfo	Q3	76%	56%	43%	61%	78%	60%	67%	48%	59%	54%	50%	63%	20%	27%	78%	30%	
era	Q4	76%	62%	30%	58%	76%	56%	63%	27%	43%	43%	39%	46%	13%	30%	62%	27%	
ð	Q5	62%	48%	31%	54%	61%	42%	54%	14%	26%	5%	26%	45%	11%	11%	45%	7%	

- Were the questions fair?
 - For the most part, it looks like it best overall performers did well on a page-by-page basis with steady decrease in points awarded for lesser performers

			Multiple	e Choice		Short Answer				MP1		MP2						
		Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Page 7	Page 8	Page 9	Page 10	Page 11	Page 12	Page 13	Page 14	Page 15	Page 16	
nce	Q1	90%	69%	60%	73%	92%	98%	77%	77%	79%	84%	83%	68%	40%	60%	92%	70%	
orma	Q2	86%	61%	50%	63%	85%	70%	68%	60%	71%	69%	69%	61%	29%	20%	93%	57%	
Perfc	Q3	76%	56%	43%	61%	78%	60%	67%	48%	59%	54%	50%	63%	20%	27%	78%	30%	
eral	Q4	76%	62%	30%	58%	76%	56%	63%	27%	43%	43%	39%	46%	13%	30%	62%	27%	
۸٥	Q5	62%	48%	31%	54%	61%	42%	54%	14%	26%	5%	26%	45%	11%	11%	45%	7%	

- Were the questions fair?
 - For the most part, it looks like it best overall performers did well on a page-by-page basis with steady decrease in points awarded for lesser performers

			Multipl	e Choice		Short Answer			MP1			MP2					
		Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Page 7	Page 8	Page 9	Page 10	Page 11	Page 12	Page 13	Page 14	Page 15	Page 16
nce	Q1	90%	69%	60%	73%	92%	98%	77%	77%	79%	84%	83%	68%	40%	60%	92%	70%
orma	Q2	86%	61%	50%	63%	85%	70%	68%	60%	71%	69%	69%	61%	29%	20%	93%	57%
Perfc	Q3	76%	56%	43%	61%	78%	60%	67%	48%	59%	54%	50%	63%	20%	27%	78%	30%
eral	Q4	76%	62%	30%	58%	76%	56%	63%	27%	43%	43%	39%	46%	13%	30%	62%	27%
ò	Q5	62%	48%	31%	54%	61%	42%	54%	14%	26%	5%	26%	45%	11%	11%	45%	7%

Top 30 performers averaged 60% credit on page 3....

Top 30 performers averaged 40% credit on page 14....

This looks worst than it is; Page 14 is only 1 point.

 Since Page 3 and Page 13 were poor predictors of overall performance, I decided to drop those questions from the point total of the exam

			Multiple Choice				Short Answer			MP1			MP2						
		Page 1	Page 2	Page 3	Page 4	Page 5	Page 6	Page 7	Page 8	Page 9	Page 10	Page 11	Page 12	Page 13	Page 14	Page 15	Page 16		
nce	Q1	90%	69%	60%	73%	92%	98%	77%	77%	79%	84%	83%	68%	40%	60%	92%	70%		
orma	Q2	86%	61%	50%	63%	85%	70%	68%	60%	71%	69%	69%	61%	29%	20%	93%	57%		
Perfc	Q3	76%	56%	43%	61%	78%	60%	67%	48%	59%	54%	50%	63%	20%	27%	78%	30%		
eral	Q4	76%	62%	30%	58%	76%	56%	63%	27%	43%	43%	39%	46%	13%	30%	62%	27%		
ð	Q5	62%	48%	31%	54%	61%	42%	54%	14%	26%	5%	26%	45%	11%	11%	45%	7%		

Also dropping this page, i.e., another 6 point curve

- After curve...
 - Median Score: 67%
 - Max Score: 102%
- PICK-UP YOUR
 EXAMS IN
 DISCUSSION
 CLASS ON
 WEDNESDAY.

	Total
Mean (Raw)	60.82
Median (raw)	60
Min (Raw)	17
Max (Raw)	92
Mean (%)	68%
Median (%)	67%
Min (%)	19%
Max (%)	102%
Max Possible	90

VERIFY OUR WORK

- Our team graded 2,400 pages of exams in 4 hours... mistakes were caught, perhaps some weren't.
- Check that point totals on cover page match bottom corner of each question page
- We will not be releasing answer key; go to TA office hours if you have a question.
- Email regrade requests to me (<u>batesa@illinois.edu</u>) by
 Wednesday, July 23rd.

	Total
Mean (Raw)	60.82
Median (raw)	60
Min (Raw)	17
Max (Raw)	92
Mean (%)	68%
Median (%)	67%
Min (%)	19%
Max (%)	102%
Max Possible	90

Goal: Secure File Transfer

Alice wants to send file *m* to Bob (let's say, a 4 Gigabyte movie) Mallory wants to trick Bob into accepting a file Alice didn't send

Goal: Secure File Transfer

Alice wants to send file *m* to Bob (let's say, a 4 Gigabyte movie) Mallory wants to trick Bob into accepting a file Alice didn't send

Setup assumption: Securely transfer a short message!

Collision-Resistant Hash Function

Hash Function $h: \{0,1\}^* \rightarrow \{0,1\}^{256}$ (or other fixed number)

- 1. Alice computes $\mathbf{v} := \mathbf{h}(\mathbf{m})$
- 2. Alice transfers v over secure channel, m over insecure channel

3. Bob verifies that $\mathbf{v} = \mathbf{h}(\mathbf{m}')$, accepts file iff this is true

V

Function h? We're sunk if Mallory can compute $m' \neq m$ where h(m) = h(m')! A collision!

Contrast with: "checksums" e.g. CRC32.... defend against random errors, not a deliberate attacker!

Collision-Resistant Hash Function

Good hash functions should make it difficult to find ...

First pre-image:

given h(m), find m

Which of these properties implies which others?

Second pre-image:

given m_1 , find m_2 s.t. $h(m_1) = h(m_2)$

Collision:

find any $m_1 != m_2 \text{ s.t. } h(m_1) = h(m_2)$

SHA256

\$ sha256sum file.dat The SHA256 compression function, h

Cryptographic hash

Input: arbitrary length data

(No key)

Output: 256 bits

Built with compression function, *h* (256 bits, 512 bits) in → 256 bits out

Designed to be really hairy (64 rounds of this)!

Provides <u>Confusion</u> and <u>Diffusion</u>

One iteration in a SHA-2 family compression function. The blue components perform the following operations:

$$Ch(E, F, G) = (E \land F) \oplus (\neg E \land G)$$

$$Ma(A, B, C) = (A \land B) \oplus (A \land C) \oplus (B \land C)$$

$$\Sigma_0(A) = (A \ggg 2) \oplus (A \ggg 13) \oplus (A \ggg 22)$$

$$\Sigma_1(E) = (E \ggg 6) \oplus (E \ggg 11) \oplus (E \ggg 25)$$

How do you find a collision?

If Mallory finds an m' such that H(m') = v, they can swap m without m' without being detected... how to find?

- Pigeonhole principle: collisions must exist
 Input space {0,1}* larger than output {0,1}²⁵⁶
- Birthday attack: build a table with 2¹²⁸ entries With ~50% probability, have a collision
- Cycle finding: "Tortoise and hare" algorithm h(x), h(h(x)), h(h(x)), h(h(x)), h(h(x))

These are **generic**; actual attacks rely on **structure** of the particular function

Birthday Problem

n	Probability of two people sharing birthday
1	0.0%
5	2.7%
10	11.7%
20	41.1%
23	50.7%
30	70.6%
40	89.1%
50	97.0%
60	99.4%
70	99.9%
75	99.97%
100	99.99997%

Likelihood of Collision?

Most cryptographic primitives come with a **security parameter**... not the key, but an estimate of the difficulty of successful attack.

- Notation: Usually k, or λ
- Often corresponds to a key size

Cryptography protocols run in **polynomial** time i.e., as a function of λ , $O(poly(\lambda))$

In a good cryptosystem, we should be able to show that the chance of failure is **negligible**, or **vanishingly** small, as a function of λ , i.e., $O(\text{negl}(\lambda))$

Security Parameterization

How large of a hash digest size should we choose?

1. Estimate an attacker's budget

E.g., the entire NSA

2. Consider the best known attacks

Reduction from protocol to well-studied problem

3. Add a safety margin

If all goes well, adding 1 bit increases search space by 2x

Security Parameterization

SHA512 provides a 512 bit output size. The security parameter k=512 implies...

- k/2 bit collision resistance
- k bit preimage resistance
- k-N bit second presage resistance
 - N = log(target message length)

What's missing?

 In practice, we don't use a magically secure channel to send v over; it will have to traverse the same channel as m

• If Mallory intercepts m, v; they can calculate a new v' to pass along with the tampered message m'

Message Integrity

Alice wants to send message *m* to Bob Mallory wants to trick Bob into accepting a message Alice didn't send

Message Integrity

Alice wants to send message *m* to Bob Mallory wants to trick Bob into accepting a message Alice didn't send

Hash-Based MAC (HMAC)

HMAC-SHA256

see RFC 2104

$$HMAC_{k}(m) =$$

What are those two constant values for?

Why not just use SHA256?

Is this a PRF?

```
f_{k}(m) = SHA256(k | m1)
```

- On its own, SHA256 is not a strong PRF
- Length extension attacks: If an attacker knows the value of m1 and the length of k, they can produce a valid hash for some message m2 that is an extension of m1.
 - Problem for SHA2, addressed in SHA3 family.
- Can be used, e.g., to overwrite values for protocols that accept the last specified value for a field.

```
Original Data: count=10&lat=37.351&user_id=1&long=-119.827&waffle=eggo Desired New Data: count=10&lat=37.351&user_id=1&long=-119.827&waffle=eggo&waffle=liege
```

MAC Crypto Game

Game against Mallory

- 1. Give Mallory MAC(k, m_i) for all m_i in M In other words, Mallory has an *oracle* Mallory can choose next m_i after seeing answer
- 2. Mallory tries to discover MAC(k, m') for a new m' not in M

We can show the MAC game reduces to the PRF game. Mallory wins MAC game \rightarrow she wins PRF game.

This is a **Security Proof**

What is a security proof?

- A *reduction* from an *attack on your protocol* to an attack on a *widely studied, hard problem*
- Excludes large classes of attacks, guides composition
 - Proofs are in models. So, attack outside the model!
- It does **NOT** *prove* that your protocol is *secure*
- Also, we don't know if there are any hard problems!
- The field of **Modern Cryptography** is based on proofs
- Many widely used primitives (SHA-256, AES, DSA) have no security proof. We rely on them because they're widely studied

... so where do keys come from?

 To set up a MAC, we need a random key k... how do we generate?

True Randomness:

- Output of a physical process that is inherently random
- Scarce, and hard to get

Pseudorandom Function (PRF):

Sampled from a family of functions using a key

Pseudorandom Generator (PRG):

- Takes small seed that is really random
- Generates a stream (arbitrarily long sequence) of numbers that are "as good as random"

Pseudorandom Generator

Definition: **PRG** is secure if it's indistinguishable from a random stream of bits

Similar game to PRF definition:

- 1. We flip a coin secretly to get a bit **b**
- 2. If $\mathbf{b}=0$, let \mathbf{s} be a truly random stream If $\mathbf{b}=1$, let \mathbf{s} be $\mathbf{g}_{\mathbf{k}}$ for random secret \mathbf{k}
- 3. Mallory can see as much of the output of **s** as he/she wants
- Mallory guesses b,
 wins if guesses correctly

g is a secure PRG if no winning strategy for Mallory*

Pseudorandom Generator

Here's a simple PRG that works:

```
For some random k and PRF f, output: f_k(0) \parallel f_k(1) \parallel f_k(2) \parallel ...
```

Theorem: If f is a secure PRF, and g is built from f by this construction, then g is a secure PRG.

Proof: Assume f is a secure PRF, we need to show that g is a secure PRG.

Proof by contradiction:

- 1. Assume **g** is *not* secure; so Mallory can win the PRG game
- 2. This gives Mallory a winning strategy for the PRF game:
 - a. query the PRF with inputs 0, 1, 2, ...
 - b. apply the PRG-distinguishing algorithm
- 3. Therefore, Mallory can win PRF game; this is a contradiction
- 4. Therefore, g is secure

How do we get true randomness?

Want "indistinguishable from random" which means: adversary can't guess it

Gather lots of details about the computer that the adversary will have trouble guessing [Examples?]

Problem: Adversary can predict some of this

Problem: How do you know when you have enough randomness?

Modern OSes typically collect randomness, give you API calls to get it

e.g., Linux:

/dev/random a device that gives random bits, blocks until available
/dev/urandom gives output of a PRG, nonblocking, seeded from /
dev/random eventually

Review: Message Integrity

Integrity of message sent over an untrusted channel

Alice must append bits to message that only Alice (or Bob) can make

Idealized solution: Random function

Practical solution:

(Hash-based) MAC

 f_k is (we hope!) indistinguishable in practice from a random function, unless you know k