2022/2023 学年第一学期

2022 级硕士研究生《矩阵论》期末大作业

院(系)			班级		学号		姓名		序号	
题号	_	=	=	四	五	六	七	八	九	总分
得分										

一. (12 分) 在线性空间 $\mathbf{R}^{2\times 2}$ 的子空间 $V = \left\{ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \middle| a_{12} + a_{21} + a_{22} = 0 \right\}$ (按照 通常矩阵的加法和数乘)中,定义线性变换 $T(A) = A + A^T$, $\forall A \in V$.

(1) 求
$$T$$
在 $\mathbf{R}^{2\times 2}$ 的基 $E_1 = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$, $E_2 = \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$, $E_3 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 下的矩阵;

- (2) 分别求T的值域R(T)和核子空间Ker(T)的基与维数;
- (3) 问 R(T) + Ker(T) 是否为直和? 为什么?

- (1) 由基 $1, x-1, x^2-x$ 出发,求 $P_3[x]$ 的一组标准正交基;
- (2) 求 $h(x) = 2 + 2x 5x^2$ 的长度.

三. (12 分) 已知矩阵
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & a & c \\ 0 & 2 & b \\ 0 & 0 & -1 \end{pmatrix}. 求:$$

- (1) 求 A 的不变因子和初等因子,并求 A 的 Jordan 标准形及可逆矩阵 P 使得 $P^{-1}AP = J$;
- (2) 根据参数 a,b,c 不同取值讨论 B 的 Jordan 标准形,并指出参数 a,b,c 取何值时, $A \subseteq B$ 相似.

四. (8 分) 求矩阵 $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$ 的 QR 分解.

五. (8 分) 求矩阵 $A = \begin{pmatrix} 0 & -1 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ 的奇异值分解.

六. (12 分) 已知 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$, 求 e^A , $\cos(At)$, $||A||_F$.

学号	姓名	序号
----	----	----

4. (8分)设 $x = (x_1, x_2, \dots, x_n) \in C^n$,定义 $\|x\|_{[k]} = |x_{i_1}| + |x_{i_2}| + \dots + |x_{i_k}|$,其中 $|x_{i_1}| \ge |x_{i_2}| \ge \cdots \ge |x_{i_k}|, k = 1, 2, \cdots, n.$ $i_1, i_2, \cdots, i_n \not\equiv 1, 2, \cdots, n$ 的一个排列.

(1) 证明 $\|x\|_{[k]}$ 为 C^n 上的范数; (2) 说明 $\|x\|_{[k]}$, $\|x\|_1$, $\|x\|_\infty$, $k=1,2,\cdots,n$ 之间的关系.

八. (12 分) 已知线性方程组
$$\begin{cases} x_1 & -x_3 + x_4 = 2 \\ 2x_2 + 2x_3 + 2x_4 = -1. & 求: \\ -x_1 + 4x_2 + 5x_3 + 3x_4 = -1 \end{cases}$$

- (1) 用满秩分解的方法求该线性方程组系数矩阵的加号逆 A^{+} ;
- (2) 用广义逆矩阵方法判断该线性方程组是否相容?
- (3) 求该线性方程组的极小范数解或极小范数最小二乘解(指出所求的是哪种解).

学号	姓名	序号
----	----	----

得 分

- 九. (20分) (1) 结合自己的专业方向,阐述矩阵理论在本专业方向的具体应用;
- (2) 了解并介绍矩阵理论的前沿发展动态及其在相关领域的重要应用.

自觉遵守考试规则,诚信考试,绝不作数装 订 线 内 不 要 答 题

如纸张不够,可另附纸张,并填写另附_____张纸(没有填0).