TEORÍA DE SINGULARIDADES Y DEL RESIDUO.

1.1 SINGULARIDAD.-

Un punto z_0 es un punto singular o una singularidad deu na función F, si F es analítica en algún punto de toda variedad de z_0 , excepto en z_0 mismo. Existen Varios tipos de Singularidades.

1º **SINGULARIDAD AISLADA.**- El punto $z = z_0$ si $\exists \delta > 0$, tal que el círculo $\|$ $z-z_0 \parallel = \delta$ no encierra puntos singulares distintos de z_0 (es decir $\exists V_{\delta}(z_0)$ sin singularidad).

Si tal $\delta \mathbb{Z}$, decimos que z_0 es una singularidad no aislada.

Si z_0 no es un punto singular y si $\exists \delta > 0 / \|z - z_0\| = \delta$ no encierra puntos singulares, decimos que z_0 es un punto ordinario de F(z).

2º **POLOS.-** Si podemos encontrar un entero positivo n tal que $\lim_{z\to z} (z-z_0)^n$ $F(z) = A \neq 0$, entonces $z = z_0$ es llamado polo de orden n, si n = 1. z_0 es

llamado un polo simple. **Ejemplo.-** $f(z) = \frac{1}{(z-2)^3}$, se tiene un polo de orden tres en z=2. **Ejemplo.-** $f(z) = \frac{3z-2}{(z-1)^2(z+1)(z-4)}$; tiene un polo de orden dos en z=1 y polos simples en z=-1 y z=4

Si $y(z) = (z - z_0)^n F(z)$, de donde $F(z_0) \neq 0$ y n es un entero positivo, entonces $z = z_0$ es llamado un cero de orden n de y(z).

Si $n=1,\,z_0$ es llamado un cero simple, en tal caso z_0 es un polo de orden n de la función $\frac{1}{y(z)}$

- 3º LOS PUNTOS DE RAMIFICACIÓN.-Ejemplos.-
 - (a) $f(z) = (z-3)^{\frac{1}{2}}$ tiene un punto de ramificación en z=3
 - (b) $f(z) = ln(z^2 + z 2)$ tiene puntos de ramificación donde $z^2 + z 2 = 0$, es decir z = 1, z = -2.
- 4° **SINGULARIDADES REMOVIBLES.-** El punto singular z_0 es llamado una singularidad removible de F(z) si $\lim_{z \to z_0 f(z)}$ existe.

Ejemplo.- El punto singular z = 0, es una singularidad removible de

 $f(z) = \frac{sen(z)}{z}$, puesto que $\lim_{z \to z_0} \frac{sen(z)}{z} = 1$.

5º SINGULARIDADES ESENCIALES.- Una singularidad que no sea polo, ni punto de ramificiación, ni singularidad removible es llamado una singularidad esencial.

Ejemplo.- $f(z) = e^{z-1}$, tiene una singularidad esencial en z = 2 se una función unívoca tiene una singularidad, entonces las singularidades es un polo o una singularidad esencial, por esta razón un polo es llamado algunas veces una singularidad evitable.

Equivalentemente $z = z_0$ es una singularidad esencial si no podemos encontrar algún positivo n tal que: $\lim_{z \to z_0} (z - z_0)^n f(z) = A \neq 0$.

6º **SINGULARIDAD EN EL INFINITO.**- El tipo de singularidad de f(z) en $z=\inf$ (el punto en el infinito) es el mismo como el de $f(\frac{1}{w})$ en w=0.

Ejemplo.- La función $f(z) = z^3$ tiene como polo de tercer orden en $z = \inf$, ya que $f(\frac{1}{w}) = \frac{1}{w^3}$ tiene un polo de tercer orden en w = 0. **Ejemplo.**- Localizar y clasificar las singularidades

1)
$$f(z) = \frac{z}{(z^2+4)^2}$$

Desarrollo

$$f(z) = \frac{z}{(z^2 + 4)^2}$$

 $f(z) = \frac{z}{(z^2+4)^2}$ $\lim_{z \to 2i} (z-2i)^2 f(z) = \lim_{z \to 2i} \frac{z}{(z+2i)^2} = \frac{1}{8i} \neq 0, \text{ de donde } z = 2i \text{ es un polo de segundo orden, simultán meamente.}$

z = -2i es un polo de segundo orden.

Como se pueden encontrar $\delta > 0$ tal que ninguna singularidad distinta de z = 2i está dentro del círculo.

 $\parallel z-2i \parallel = \delta$ entonces z=2i es una singularidad aislada, simultáneamente para z = -2i es una singularidad aislada.

2)
$$f(z) = \frac{ln(z-2)}{(z^2+2z+2)^2}$$

Desarrollo

El punto z = 2 es un punto de ramificación y es una singularidad aislada, también $z^2 + 2z + 2 = 0$ de donde se tiene z = -1 + -2i y se dice que z = -1 + -2i son polos de cuarto orden de los culaes son singularidades aisladas.

3)
$$f(z) = \frac{sen(\sqrt{z})}{\sqrt{z}}$$

Desarrollo

Como $\lim_{z\to 0}f(z)=\lim_{z\to 0}\frac{sen(\sqrt{z})}{\sqrt{z}}=1\neq 0$, entonces z=0 es una singularidad removible.