Equações diferenciais

Antonio Carlos Nogueira

Preliminares

Nesta seção faremos uma discussão sobre equações diferenciais de ordem superior, começando com a noção de problema de valor inicial. Nossa atenção porém será concentrada nas equações lineares (mais precisamente as de segunda ordem)

Problema de valor inicial

Para uma equação diferencial (linear) de ordem n o problema

$$\begin{cases} Resolva: & a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x) \\ Sujeito a: & y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1} \end{cases}$$
(1)

Sujeito
$$a: y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$
 (1)

onde y_0, y_1, \dots, y_{n-1} são constantes arbitrárias, é chamado **problema** $\frac{q\times_{\nu}}{q_{\nu}+} \qquad t_{(\nu)} \qquad t_{i} \qquad t_{i,\nu} \qquad t_{(n)}$ de valor inicial.

 $y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$ são chamados **condições** iniciais.

Procuramos solução em algum intervalo I contendo x_0 .

No caso de uma equação linear de segunda ordem, uma solução para o problema de valor inicial

$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), \quad y(x_0) = y_0, y'(x_0) = y_1,$$

é uma função $\phi(x)$ definida em algum intervalo I contendo x_0 e que satisfaça a equação e as condições iniciais, ou seja,

$$a_2(x)\phi''(x) + a_1(x)\phi'(x) + a_0(x)\phi(x) = g(x)$$
 e $\phi(x_0) = y_0, \phi'(x_0) = y_1$.

Teorema 1 (Existência e unicidade) Sejam $a_0(x), a_1(x), \dots, a_n(x)$ e g(x) funções contínuas em um intervalo I com $a_n(x) \neq 0$ para todo $x \in I$. Se $x = x_0$ é algum ponto deste intervalo, então existe uma única solução y(x) para o problema de valor inicial (1) neste intervalo.

Exemplo 1

Verifique que a função $y=3e^{2x}+e^{-2x}-3x$ é uma solução para o problema de valor inicial $y''-4y=12x,\ y(0)=4,\ y'(0)=1.$

$$y'' - 4y = 12x, \ y(0) = 4, \ y'(0) = 1.$$

Como a equação diferencial é linear e os coeficientes bem como g(x) =12x são funções contínuas e $a_2(x) = 1 \neq 0$ em qualquer intervalo contendo x = 0, segue do teorema 1 que a função dada é a única solução do PVI.

Exemplo 2

A função $y = \frac{1}{4} \operatorname{sen} 4x$ é uma solução para o PVI

$$y'' + 16y = 0, \ y(0) = 0, \ y'(0) = 1.$$

Segue-se do terorema 1 que, em qualquer intervalo contendo x=0, a solução é única.

Observação 1 A continuidade das funções $a_{\underline{i}}(\underline{x}), i = 0, 1, \dots, n$ e a $hip\acute{o}tese\ a_n(x) \neq 0\ para\ to\underline{do}\ x \in I\ s\~{a}o\ ambas\ importantes.$ Especificamente, se $\widetilde{a_n(x)} = 0$ para algum x no intervalo, então a solução para um PVI linear pode não ser única ou nem existir.

Exemplo 3 Verifique que a função $y = cx^2 + x + 3$ é uma solução para o PVI $x^{2}y'' - (2x)y' + (2y) = 6 \quad y(0) = 3, \ y'(0) = 1,$ no intervalo $(-\infty, \infty)$ para qualquer escolha do parâmetro c. $Q_{2}(x) = \chi^{2}$

Solução: Como y' = 2cx + 1 e y'' = 2c, segue que

$$x^{2}y'' - 2xy' + 2y = x^{2}(2c) - 2x(2cx + 1) + 2(cx^{2} + x + 3)$$

$$= 2cx^{2} - 4cx^{2} - 2x + 2cx^{2} + 2x + 6$$

$$= 6$$

E ainda temos:

$$y(0) = c(0)^{2} + 0 + 3 = 3$$

 $y'(0) = 2c(0) + 1 = 1$

Problema de valor de contorno

Um outro tipo de problema consiste em resolver uma equação diferencial de ordem dois ou maior na qual a variável dependente y ou suas derivadas são especificadas em pontos diferentes. Um problema como

Resolva:
$$a_2(x)\frac{d^2y}{dx^2} + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Sujeito a:
$$\{y(a) = y_0, y(b) = y_1, \}$$

é chamado de **problema de valor de contorno**. Os valores especificados $y(a) = y_0$ e $y(b) = y_1$ são chamados de **condições de contorno** ou **condições de fronteira**. Uma solução para tal problema é uma função que satisfaça a equação diferencial em algum intervalo I, contendo a e b, cujo gráfico passe pelos pontos (a, y_0) e (b, y_1) .

Em contraste com a situação para problemas de valor inicial, um problema de valor de contorno pode ter

(i) várias soluções

- (ii) uma únic<u>a so</u>lução
- (iii) nenhuma solução

Exemplo 4

- a) A função $y = 3x^2 6x + 3$ é uma solução do probleme de valor de wetorno (ho intervolo (0, + 0)) $x^2y'' 2xy' + 2y = 6, y(1) = 0, y(2 = 3)$ (Verifique!!)
- b) A eq. y" + 1 by = 0 tim cono so lução gerel a femilia y= c, cos 4x + c, sulx.
 - b) Determinar a solução que sabis faça y(0)=0 e $y(\frac{\pi}{2})=0$

A primira wudicasi

J(0=0 => 0 = C, 600 + C2 Sm) => C_3=0 -: [y= C2 Sun4x]

 $y(\overline{z})=0 \Rightarrow 0=C_1 \operatorname{sm}(\overline{y})=C_2 \operatorname{sm}(\overline{y}$

b2)) probleme de valur de wordorns y"+16y=0, y(d=0, y(\frac{1}{2})=1)

no possoni i o locé o : y(0)=0 => C,=0; loos y= C2 sm 4x

e que x=\frac{1}{2}: 1=C2 sm(4.\frac{1}{2})=C2.0=0 (vontradição)

Dependência e independência linear

Os conceitos de dependência e independência linear são fundamentais para o estudo de equações diferenciais lineares.

Definição 1 (Dependência linear) Dizemos que um conjunto de funções $f_1(x), f_2(x), \dots, f_n(x)$ é **linearmente dependente (LD)** em um intervalo I se existem constantes c_1, c_2, \dots, c_n não todas nulas, tais que

valo I se existem constantes
$$c_1, c_2, \dots, c_n$$
 não todas nulas, tais que
$$\boxed{c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x)} = 0$$

para todo x no intervalo.

Definição 2 (Independência linear) Dizemos que um conjunto de funções $f_1(x), f_2(x), \dots, f_n(x)$ é linearmente independente (LI) em um intervalo I se ele não é linearmente dependente.

Em outras palavras, um conjunto de funções é l<u>inearmente independente em um intervalo se as únicas constantes para as quais</u>

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0,$$

para todo x no intervalo, são $c_1 = c_2 = \cdots = c_n = 0$.

No caso n=2, duas funções $f_1(x)$ e $f_2(x)$ são LD em um intervalo I se existem constantes, que não são ambas nulas, tais que, para todo $x\in I$,

$$c_1 f_1(x) + c_2 f_2(x) = 0.$$
 $C, f, (A = -C, f_2(x))$

Assim, se por exemplo, $c_1 \neq 0$, segue que

$$f_1(x) = -\frac{c_2}{c_1} f_2(x);$$

ou seja, uma é múltipla da outra. Reciprocamente, se $f_1(x) = cf_2(x)$ para alguma constante c, então

e, então
$$1 \cdot f_1(x) - cf_2(x) = 0$$

para todo x em algum intervalo I, ou seja, as funções são LD.

Concluímos asssim que duas funções são linearmente independentes quando nenhuma delas é múltipla da outra em qualquer intervalo.

Exemplo 5 a) $l_1(x) = cm2x c f_2(x) = cmx cax ≤ = 1.6$. $p_{p_{1}} c_{1} c_{2} c_{2} c_{3} c_{4} c_{4} c_{5} c_{5}$ $l_1 c_{2} c_{3} c_{4} c_{5} c_{5} c_{5} c_{5} c_{5}$ $l_2(x) = c_{2} c_{3} c_{4} c_{5} c$

(resit; duciji)

O wronskiano

O próximo teorema proporciona uma condição suficiente para a independência linear de n funções em um dado intervalo.

Teorema 2 (Critério para independência linear de funções) Suponha que as funções $f_1(x), f_2(x), \cdots, f_n(x)$, sejam diferenciáveis pelo menos n-1 vezes. Se o determinante

$$\begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix} \neq 0$$

for diferente de zero em pelo menos um ponto do intervalo I, então as funções $f_1(x), f_2(x), \dots, f_n(x)$ serão linearmente independentes em I.

O determinante do teorema anterior é denotado por

$$\bigvee W(f_1(x), f_2(x), \cdots, f_n(x))$$

e é chamado o **Wronskiano** das funções.

NZNCIW

Corolário 2.1 Se $f_1(x), f_2(x), \dots, f_n(x)$ são diferenciáveis pelo menos n-1 vezes e são linearmente dependentes em I, então

$$W(f_1(x), f_2(x), \cdots, f_n(x)) = 0$$

para todo $x \in I$.

a) As Images $f_1(x) = Sen^2 \times e f_2(x) = 1 - 10S2 \times Ses 1.d. em 12$ (Pois Smix + 100 \times x = 1 = 5 \text{Smix} \times 1 - 10S \times x, \text{10S} \times x = 10S \times x, \text{10S} \times x = 10S \times x. sen2x = 1-(1002x + sm2x) = [2 sm2x = 1-1002x] : W(suzx, 1-1022x) = 0 Ax E R 2 my -1+ ws2x=0 W(sinix, 1-102) = | Sinix 1-1022x | = 25en2x - 25enx x +25enx (102x (102x)) = | 25en2x - 25en2x - 25en2x +25enx (102x) = 2 suix suizx - suizx + suix ws2x = sui2x[2 suix-1+ ws2x] 0 = [0]. xsuz=

b)
$$f_{1}(x) = e^{m_{1}x} e^{m_{2}x} e^{m_{2}x} = e^{m_{1}x} e^{m_{2}x}, \quad m_{1} \neq m_{2}$$

$$W(e^{m_{1}x}, e^{m_{2}x}) = \left[e^{m_{1}x} e^{m_{2}x} e^{m_{2}x}\right] = m_{2}e^{(m_{1}+m_{2})x} - m_{1}e^{(m_{1}+m_{2})x} = (m_{2}-m_{1})e^{(m_{1}+m_{2})x} \neq 0$$

$$\forall x \in \mathbb{R}.$$

Logs, fietz son lik.

$$W(y_1,y_2) = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_1(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta_x)) - \beta e^{\alpha x} (\omega_2(\beta_x)) \right| = \left| e^{\alpha x} (\omega_2(\beta$$

= ex (0) [de xm bx + Bex (0)(bx)] - ex (bx) [de x (bx) [de x (bx)] =

=
$$\alpha e^{2\alpha x} (\omega x^{2} + (b e^{2\alpha x} \omega x^{2} + b) + (b e^{2\alpha x} + (b e^{2\alpha x} + b) + (b$$

$$\frac{\partial}{\partial x} = e^{x}, \quad f_{2}(x) = xe^{x} = f_{3}(x) = x^{2}e^{x} = xe^{x}$$

$$\frac{\partial}{\partial x} = e^{x}, \quad f_{2}(x) = xe^{x} = xe^{x}$$

$$\frac{\partial}{\partial x} = e^{x}, \quad f_{2}(x) = xe^{x} = xe^{x}$$

$$\frac{\partial}{\partial x} = e^{x}, \quad f_{2}(x) = xe^{x} = xe^{x}$$

$$\frac{\partial}{\partial x} = e^{x}, \quad f_{2}(x) = xe^{x}$$

$$\frac{\partial}{$$

$$= 2 + \lambda x + \lambda x$$

Soluções para equações lineares

Equações homogêneas

Uma equação diferencial linear de ordem n da forma

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = \underbrace{0}$$
 (2)

é chamada de equação **homogênea**, enquanto

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$
 (3)

com g(x) não identicamente nula, é chamada de **não homogênea**.

Exemplo 7 A equação 2y'' + 3y' - 5y = 0 é uma equação diferencial ordinária linear de segunda ordem homogênea.

Exemplo 8 A equação $x^3y'''2xy'' + 5y' + 6y = e^x$ é uma equação diferencial ordinária linear de terceira ordem não homogênea.

Veremos mais adiante que, para resolver uma equação não homogênea (3), devemos primeiro resolver a **equação homogênea associada** (2).

Princípio da superposição

O próximo teorema nos diz que a soma, ou **superposição**, de duas ou mais soluções para uma equação diferencial linear homogênea é também uma solução

Teorema 3 (Princípio da superposição-equações homogêneas) $Sejam y_1, y_2, \dots, y_k$ soluções para a equação diferencial linear de ordem n e homogênea (2) em um intervalo I. Então, a combinação linear

$$y = c_1 y_1 + c_2 y_2 + \dots + c_k y_k,$$

onde os c_i , $i = 1, 2, \dots, k$, são constantes arbitrárias, é também uma solução no intervalo I.

Prova:

Prova:

Corolário 3.1

- (i) Um múltiplo $y = c_1 y_1(x)$ de uma solução $y_1(x)$ para uma equação diferencial linear homogênea também é uma solução.
- (ii) Uma equação diferencial linear homogênea sempre possui a solução trivial y = 0.

Exemplo 9

Soluções linearmente independentes

Nosso objetivo agora é determinar quando n soluções y_1, y_2, \dots, y_n para a equação diferencial homogênea 2 são linearmente independentes.

Teorema 4 (Critério para independência linear de soluções) $Sejam y_1, y_2, \dots, y_n, n$ soluções para a equação diferencial linear homogênea (2) em um intervalo I. Então, o conjunto de soluções é linearmente independente em I se, e somente se,

$$W(y_1, y_2, \cdots, y_n) \neq 0$$

para todo $x \in I$.

Do teorema acima e do corolário (2.1) segue que quando y_1, y_2, \dots, y_n são n soluções para a equação (2) em um intervalo I, o Wronskiano é identicamente nulo ou nunca se anula no intervalo.

Definição 3 (Conjunto fundamental de soluções) Qualquer conjunto y_1, y_2, \dots, y_n de n soluções linearmente independentes para a equação diferencial linear homogênea 2 em um intervalo I é chamado de **conjunto** fundamental de soluções no intervalo I.

Teorema 5 Sejam y_1, y_2, \dots, y_n n soluções linearmente independentes para a equação diferencial linear homogênea (2) em um intervalo I. Então, qualquer solução Y(x) para (2) é uma combinação linear das n soluções linearmente independentes y_1, y_2, \dots, y_n , ou seja, podemos encontrar constantes C_1, C_2, \dots, C_n , tais que

$$Y(x) = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x).$$

Prova:

O seguinte teorema responde a questão básica de existência de um conjunto fundamental de soluções para uma equação linear.

Teorema 6 Existe um conjunto fundamental de soluções para a equação diferencial linear homogênea (2) em um intervalo I.

Prova:

Do teorema 5 segue a seguinte definição.

Definição 4 (Solução geral - equações homogêneas) $Sejam y_1, y_2, \dots, y_n$ n soluções linearmente independentes para a equação diferencial homogênea (2) em um intervalo I. A solução geral para a equação no intervalo I é dada por

$$y = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x),$$

onde c_1, c_2, \cdots, c_n são constantes arbitrárias.

Exemplo 10

A equação de segunda ordem y'' - 9y = 0 possui duas soluções

$$y_1(x) = e^{3x}$$
 e $y_2(x) = e^{-3x}$.

Como

$$W(e^{3x}, 3^{-3x}) = \begin{vmatrix} e^{3x} & e^{-3x} \\ 3e^{3x} & -3e^{-3x} \end{vmatrix} = -6 \neq 0$$

para todo valor de x, segue que y_1 e y_2 formam um conjunto fundamental de soluções em $(-\infty, \infty)$. Assim, a solução geral para a equação diferencial é dada por

$$y = c_1 e^{3x} + c_2 e^{-3x}.$$

Exemplo 11

As funções $y_1 = e^x$, $y_2 = e^{2x}$ e $y_3 = e^{3x}$ satisfazem a equação de terceira ordem (Verifique!!!)

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

Como

$$W(e^{x}, e^{2x}, e^{3x}) = \begin{vmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{vmatrix} = 2e^{6x} \neq 0$$

para todo valor de x, segue que y_1 , y_2 e y_3 formam um conjunto fundamental de soluções em $(-\infty, infty)$. Concluimos que

$$y = c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$$

é a solução geral para a equação diferencial.