UPS

Cvičení 5

http://siroky.cz/vyuka/ups/

Opakování

- ISO/OSI
- TCP/IP
- porty, IP adresy
- TCP/UDP
- TCP stream
- UDP datagram
- proces/vlákno

Přenosový kanál

Skládání signálů, skokové změny

Kapacita kanálu

- B šířka pásma, bandwidth [Hz]
 - Telefon 300-3400Hz = 3100Hz
- C kapacita kanálu [bit/s]
- L počet úrovní signálu
- $C = B \log_2 (1 + P_{signál}/P_{sum}) Shannon$
- $C = 2 B log_2(L) Nyquist$
- $v_{přenos} = v_{modulace} log_2(L)$

Příklady

- pásmo 500-1200Hz, C = 5600 bps, L = ?
- pásmo 1500-3000Hz, C = 5600 bps, L = ?
- přenosová rychlost = 1500 bps, naráz přenést 3 bity, jaká musí být modulační rychlost?

- přenos v základním pásmu
 - 10BASE-T
 - přenáší se pulzy (digitální technika)
 - kratší vzdálenosti (menší vliv rušení, zkreslení)
- přenos v přeloženém pásmu
 - analogový modem
 - signál je modulovaný (analogový přenos)
 - delší vzdálenosti

Modulace

$$y = A * sin (\omega t + \phi)$$

- amplitudová
 - mění se parametr A
- frekvenční
 - mění se parametr ω
- fázová
 - mění se parametr

Modulace

Kombinace modulací

QAM

Příklady

 Navrhněte a nakreslete, jak bude vypadat frekvenčně modulovaný signál pro zprávu 01001110.

Bit vs. Baud

- bit jednotka informace (1 nebo 0)
- baud jednotka modulace (počet stavů/s)
- obecně: bit/sec nerovná se baud
- vícestavová modulace

1 bit potřebuje víc změn (např. Ethernet)

Přenosová rychlost

- bity/s, bps
- $v_{prenos} = v_{modulace} log_2(L)$

přenosová rychlost [bitů/s]	modulační rychlost [Bd]	počet rozlišovaných stavů	bitů/ změnu	standard
2400	600	16	4	V.22bis
9600	2400	16	4	V.32
14400	2400	64	6	V.32bis
28800, 33600	2400-3200	512	9	V.34
56000	8000	128	7	V.90,V.92

Příklady

 Ethernet potřebuje 2 změny na 1 bit, jaký je poměr v_{přenos}/v_{modulace}?

zde příjemce vzorkuje hodnotu jednotlivých bitů

příjemce je synchronizován příjemce ztratil synchronizaci

Typy přenosů

- Asynchronní mezi příjemcem a vysílajícím neexistuje žádná synchronizace, speciální značky, přenos jednoho bitu může trvat, libovolně dlouhou dobu.
- Arytmický mezi příjemcem a vysílajícím existuje synchronizace, na začátku a na konci přenosu bloku bitů, START/STOP bity, délka přenosu znaku je pevná, pauzy mezi znaky jsou proměnlivé.
- Synchronní mezi vysílajícím a přijímajícím existuje synchronizace, po celou dobu, hodiny jsou zakódovány do přenášených dat: RZ, diferenciální manchester, ...

- asynchronní oddělovací prvky
 - extra úroveň pro oddělení bitů

- arytmický start/stop bity označující hranice
 - Ticho po pěšině ... a najednou start bit!

Synchronní

