

INSTITUTO FEDERAL FLUMINENSE

Química – 3º Ano – EMI Profa. Maysa Zampa

Semana 3 – MOL

Massa molecular

Por exemplo: Queima de uma substância com oxigênio do ar

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

⇒ Mas como relacionar o n° de átomos e moléculas com as quantidades medidas em laboratório? *Conhecimento de suas Massas!!!!*

Massa Molecular (MM)

É a soma das massas atômicas (MA) de cada átomo na fórmula química.

MM
$$(H_2SO_4) = 2(MA \text{ do } H) + (MA \text{ do } S) + 4(MA \text{ do } O)$$

= $2(1,0 u) + (32,1 u) + 4(16,0 u)$
= $98,1 u$

MM de
$$C_6H_{12}O_6$$
) = $6(12,0 u) + 12(1,0 u) + 6(16,0 u) = 180,0 u$

O mol

Mol (Quantidade de Matéria):

- Unidade de contagem especial para descrever **n° grandes** de átomos e moléculas, criada pelos químicos;
- 1 mol de algo = $6,0221421 \times 10^{23}$ daquele algo.
- Experimentalmente, 1 mol de ¹²C tem uma massa de 12 g.

Esta fotografia mostra 1 mol do sólido NaCl, 1 mol do líquido H₂O e 1 mol do gás O₂.

```
1 mol NaCl = 6,02 \times 10^{23} unidades de NaCl 6,02 \times 10^{23} íons Na<sup>+</sup> 6,02 \times 10^{23} íons Cl<sup>-</sup>
```

1 mol de $H_2O = 6,02 \times 10^{23}$ moléculas de água $2(6,02 \times 10^{23} \text{ átomos de H})$

Massa Molar

1 mol = tem sempre o mesmo n°: <u>6,02x10²³</u>, mas um mol de diferentes substâncias terá <u>diferentes massas</u>!!

A massa de um único átomo de um elemento (em u) é numericamente igual à massa (em gramas) de 1 mol daquele elemento!!

Massa molar

É a massa (em gramas) de 1 mol de substância. Unidades: g/mol, g.mol⁻¹ Amostra de escala laboratorial

Relações molares

TABELA 3.2	Relações	molares
TADLLA 3.Z	relações	moiares

Nome	Fórmula	Massa molecular (<i>u</i>)	Massa molar (g/mol)	Número e tipo de partículas em um mol
Nitrogênio atômico	N	14,0	14,0	$6,022 \times 10^{23}$ átomos de N
Nitrogênio molecular	N_2	28,0	28,0	$\begin{cases} 6,022 \times 10^{23} \text{ moléculas de N}_2 \\ 2(6,022 \times 10^{23}) \text{ átomos de N} \end{cases}$
Prata	Ag	107,9	107,9	$6,022 \times 10^{23}$ átomos de Ag
Íons prata	Ag^+	107,9ª	107,9	$6,022 \times 10^{23}$ fons Ag ⁺
Cloreto de bário	BaCl ₂	208,2	208,2	$\begin{cases} 6,022 \times 10^{23} \text{ unidades de BaCl}_2 \\ 6,022 \times 10^{23} \text{ fons Ba}^{2+} \\ 2(6,022 \times 10^{23}) \text{ fons Cl}^{-} \end{cases}$

1 mol NaCl =
$$1(23) + 1(35,5) = 58,5$$
 g
1 mol de $H_2O = 2(1) + 1(16) = 18$ g
1 mol de $O_2 = 2(16) = 32$ g

Conversões entre massas, mols e número de partículas

- Massa molar: é a soma das massas molares dos átomos: massa molar de $N_2 = 2 \times (a \text{ massa molar de } N)$.
- Massas molares para os elementos ⇒ encontradas na **tabela periódica!**
- As massas moleculares são numericamente iguais às massas molares.

- -Um disco de cobre, que pesa 3g, deve ser fabricado por uma empresa. Considerando que ele seja 100% de cobre, encontre o n° de átomos existentes neste disco. (R: $3x10^{22}$ átomos de Cu)
- -Qual é a quantidade de matéria de glicose (C₆H₁₂O₆) existente em 5,38 g de
- $C_6H_{12}O_6$? (R: 0,03 mol de $C_6H_{12}O_6$) *qtidade de matéria = n^o mol