

5

10

20

30

CLAIMS

1. A process for oxidizing organic compounds comprising:

contacting, in a zone of reaction, an oxidizable organic compound with a peroxide selected from the group consisting of hydrogen peroxide and organic hydroperoxides, in the presence of a catalytically effective amount of an insoluble catalyst comprising silicon oxide and an oxide of at least one peroxide-activating metal prepared by sol-gel techniques, wherein said catalyst is characterized by (i) the silicon to peroxide-activating atomic ratio is less than 10,000 to 1; (ii) is x-ray amorphous; (iii) possesses a Si-C infrared band; and (iv) has a surface area greater than 500 m²/g, a pore volume greater than 0.5 mL/g and an average pore diameter of greater than 4 nm.

- 2. The process of Claim 1 wherein the organic compound is selected from the group consisting of:
- (a) cyclic olefins and olefins according to the formula $R^1R^2C=CR^3R^4$,

wherein R¹, R², R³ and R⁴ are each independently -H; alkyl, wherein the alkyl group has from 1 to 16 carbon atoms; alkylaryl, wherein the alkylaryl group has from 7 to 16 carbon atoms; cycloalkyl, wherein the cycloalkyl group has from 6 to 10 carbon atoms; or alkylcycloalkyl, wherein the alkylcycloalkyl group has from 7 to 16 carbon atoms; and wherein said olefin can optionally containing halogen atoms;

- (b) cyclic ketones according to the formula wherein n is an integer from 2 to 9;
- (c) compounds of the formula C₆H₅R⁵, wherein R⁵ is -H, -OH; C₁
 to C₃ straight chain, saturated or unsaturated hydrocarbon radicals, -CO₂H; -CN; -COC_m, wherein m is an integer from 1 to 6; -OC_m, wherein m is an integer from 1 to 6; or NR⁶R⁷, where R⁶ and R⁷ are each independently -H or C₁ to C₃ alkyl groups;
 - (d) alicyclic hydrocarbons according to the formula R⁸R⁹CH₂, wherein R⁸ and R⁹ together from a link of (-CH₂-)_p, wherein p is an integer from 4 to 11;
 - (e) aliphatic hydrocarbons of the formula C_qH_{2q+2} , wherein q is an integer from 1 to 20; and
- (f) alcohols according to the formula R¹⁰R¹¹CHOH, wherein R¹⁰ and R¹¹ are each independently -H; alkyl, wherein the alkyl group has from 1 to 16 carbon atoms; alkylaryl, wherein the alkylaryl group has from 7 to 16 carbon

5

10

20

25

atoms; cycloalkyl, wherein the cycloalkyl group has from 6 to 10 carbon atoms; cycloalkyl wherein R^{10} and R^{11} taken together form a link containing 4 to 11 -CH₂- groups; or alkylcycloalkyl, wherein the alkylcycloalkyl group has from 7 to 16 carbon atoms.

- 3. The process of Claim 1 wherein the peroxide-activating metal is selected from the group consisting of silver, cobalt, cerium, manganese, iron, copper, molybdenum, tungsten, vanadium, titanium, chromium and mixtures thereof.
- 4. The process of Claim 3 wherein the peroxide-activating metal is tetrahedrally coordinated titanium.
 - 5. The process of Claim 1 wherein the catalyst is an amorphous titania/silica aerogel wherein the weight ratio of TiO₂ to SiO₂ is between 0.0005:1 and 0.5:1.
- 6. A process for the preparation of an aerogel catalyst comprising oxides of silicon and a peroxide-activating metal comprising:
 - (i) preparing a sol-gel containing silicon and a peroxide-activating metal;
 - (ii) extracting the gel with a solvent to remove substantially all of the water from the gel and optionally removing the solvent;
 - (iii) washing the gel with a solvent for the silylating agent;
 - (iv) treating the gel with a silylation agent;
 - (v) drying the treated gel at a temperature of from about ambient to about 130°C; and, optionally,
 - (vi) calcining the gel,
 - at a temperature of less than about 400°C.
 - 7. The process of Claim 6 wherein the silicon in step (i) is in the form of a silicate selected from the group consisting of $Si(OR^{12})_4$ and $SiR^{14}(OR^{13})_3$ where R^{12} is a C_1 to C_4 alkyl group, R^{13} is a C_1 to C_8 alkyl group and R^{14} is H, C_6H_5 or R^{13} , where C_6H_5 is a phenyl group.
- 8. The process of Claim 6 wherein the peroxide-activating metal is selected from the group consisting of silver, cobalt, cerium, manganese, iron, copper, molybdenum, tungsten, vanadium, titanium, chromium and mixtures thereof.
- 9. The process of Claim 6 wherein the silylating agent is selected from the group consisting of organosilanes, organosilylamines and organosilazanes.
 - 10. The process of Claim 9 wherein the silylating agent is selected from the group consisting of chlorotrimethylsilane ((CH₃)₃SiCl), dichlorodimethylsilane ((CH₃)₂SiCl₂), bromochlorodimethylsilane ((CH₃)₂SiBrCl), chlorotriethylsilane ((C₂H₅)₃SiCl), chlorodimethylphenylsilane

 $((CH_3)_2Si(C_6H_5)Cl)$, 1,2-diethyldisilazane $(C_2H_5SiH_2NHSiH_2C_2H_5)$,

- 1,1,2,2-tetramethyldisilazane ((CH₃)₂SiHNHSiH(CH₃)₂),
- 1,1,1,2,2,2-hexamethyldisilazane ((CH₃)₃SiNHSi(CH₃)₃),
- 1,1,2,2-tetraethyldisilazane $(C_2H_5)_2$ SiHNHSiH $(C_2H_5)_2$ and
- 5 1,2-diisopropyldisilazane ((CH₃)₂CHSiH₂NHSiH₂CH(CH₃)₂).
 - 11. The process of Claim 9 wherein the silylating agent is selected from the group consisting of the silazanes and N₀-bis(trimethylsilyl)trifluoroacetamide $(CF_3C(OSi(CH_3)_3)=NSi(CH_3)_3).$
- 12. The process of Claim 6 wherein the water is removed in step ii by either a protic solvent or an aprotic solvent. 10
 - 13. The process of Claim 12 wherein the protic solvent is alcohol.
 - 14. The process of Claim 12 wherein the aprotic solvent is selected from the group consisting of acetone and tetrafuran.
- 15. A catalyst composition comprising silica and an oxide of at least one peroxide-activating metal characterized by: 15
 - (i) having a silicon to peroxide-activating atomic ratio of less than 10,000 to 1;
 - (ii) being x-ray amorphous;
 - (iii) possessing a Si-C infrared band; and
- (iv) having a surface area greater than 500 m²/g, a pore volume greater 20 than 0.5 mL/g and an average pore diameter of greater than 4 nm.
 - 16. The process of Claim 15 wherein the peroxide-activating metal is selected from the group consisting of silver, cobalt, cerium, manganese, iron, copper, molybdenum, tungsten, vanadium, titanium, chromium and mixtures thereof.

25