Math 444 Review

Leslie Rodriguez

June 17, 2015

Chapters 1 and 2.

Equivalence Relations.

Let X be a nonempy set. A relation on X is a subset of $X \times X$, where $X \times X$ is the set of ordered pairs $\{(x,y): x,y \in X\}$. We write $x \sim y$ if and only if (x,y) is a member of this relation. A relation on X that satisfies the following properties:

- Reflexivity. For each $x \in X$, we have that $x \sim x$.
- Symmetry. If $x \sim y$ for some $x, y \in X$, then it follows that $y \sim x$.
- Transitivity. If $x \sim y$ and $y \sim z$ for some $x, y, z \in X$, then it follows that $x \sim z$.

is said to be an equivalence relation.

Exercise 1.

Prove that if n is a natural number, then

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$
 (1)

Proof. We shall proceed by induction.

Base Case. n = 1. Since $1 = \frac{1(1+1)(2\cdot 1+1)}{6}$, it follows that (1) holds whenever n is 1.

Inductive Hypothesis. Suppose that (1) holds for some positive integer k. That is,

$$1^{2} + 2^{2} + \dots + k^{2} = \frac{k(k+1)(2k+1)}{6}.$$
 (2)

To complete the proof, we must now show that (1) holds for k + 1. Thus

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)(2k^{2} + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)((k+1) + 1)(2(k+1) + 1)}{6},$$
[From (2)]

so that (1) holds for k+1; thus it follows by Mathematical Induction that (1) for all natural numbers.

Functions.

Let $f: X \to Y$ be a function. Then this function is

- injective (or one-to-one) if $f(x_1) = f(x_2)$, with $x_1, x_2 \in X$, then $x_1 = x_2$.
- surjective (or onto) if for every $y \in Y$, there exists an $x \in X$ such that f(x) = y.
- well defined if $x_1 = x_2$, with $x_1, x_2 \in X$, then $f(x_1) = f(x_2)$.

A function $h: S \to T$ is called an *identity* on S if h(s) = s for all $s \in S$. Now consider the functions $f: X \to Y$ and $g: Y \to X$. The function g is an inverse function of f if $f \circ g$ is an identity on Y and if $g \circ f$ is an identity on X.