Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}$	0	0	0	0	0	0	0
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^-}^{\#1}$ $\sigma_{1^-}^{\#2}$ $\sigma_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1^{ ext{-}}lpha}^{\#1}$	0 0		0	$\frac{1}{k^2 r_3}$	0	0	0
$\tau_{1}^{\#1}\alpha\beta$	$-\frac{i\sqrt{2}}{kr_3+k^3r_3}$	$\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	$\frac{3k^2r_3+2t_2}{(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{3k^2r_3+2t_2}{(k+k^3)^2r_3t_2}$	$-\frac{i(3k^2r_3+2t_2)}{k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 r_3}$	$-\frac{\sqrt{2}}{k^2 r_3 + k^4 r_3}$	$\frac{i\sqrt{2}}{kr_3+k^3r_3}$	0	0	0	0
	$\sigma_1^{\#1} + ^{lphaeta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_1^{\#1} +^{lpha}$	$\sigma_1^{\#2} + ^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

$f_{1}^{\#2}$	0	0	0	0	0	0	0
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{lpha}$ f	0	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_3$	0	0	0
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	(2 2	$-\frac{1}{3}\bar{l}kt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 r_3 + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1^{\bar{-}}}^{\#1} \dag^{\alpha}$	$\omega_{1}^{\#2} \dag^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{lpha}$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$		#1	c#1	c#2	#1
$\sigma_{0^{+}}^{\sharp 1}$ †	$\frac{1}{6 k^2 r_3}$	0	0	0		$\omega_{0}^{\#1}$		<i>f</i> = 0 +	$\omega_0^{\sharp 1}$
	6 k - r3				$\omega_{0}^{\#1}$ †	$6 k^2 r_3$	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0	$f_{0+}^{\#1}$ †	0	0	0	0
$ au_{0^{+}}^{#2}$ †	0	0	0	0	£#2 +	0	0	0	
	_			1) ₀ + 1	U	U	U	U
$\sigma_{0}^{#1}$ †	Ü	Ü	U	$\overline{k^2 r_2 + t_2}$	$\omega_{0^{-}}^{#1}$ †	0	0	0	$k^2 r_2 + t_2$
					-				

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{\#2} == 0$	1				
$\tau_{0+}^{\#1} == 0$	1				
$\tau_{1}^{\#2\alpha} == 0$	3				
$\tau_{1}^{\#1\alpha} == 0$	3				
$\sigma_{1}^{\#2\alpha} == 0$	3]#]#			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3	7			
$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	5	r #1			
$\tau_{2+}^{\#1\alpha\beta} == 0$	5	# # †			
$\sigma_{2^{+}}^{\sharp 1 \alpha \beta} = 0$	5				
Total constraints:	29				

			-			
0	0	0				
0	0	0		$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_2^{\#1}{}_{lphaeta\chi}$
0	0	0	$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	0	0	0
$+^{\alpha\beta}$	$+^{\alpha\beta}$	αβχ	$f_{2+}^{#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_2^{\#1}$	$\tau_2^{\#1}$	$\sigma_{2}^{\#1}\dagger$	$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	0
	$\sigma_{2^+}^{\#1} + ^{\alpha eta}$ 0 0 0		T T	$g_{\alpha} g_{\alpha} \chi_{\beta} f_{2}^{\#1} + \alpha^{\beta}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Massive and massless spectra

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

(No massless particles)

Unitarity conditions