SEMINARUL 8

Lema substituției

1. În \mathbb{R} -spațiul vectorial \mathbb{R}^4 considerăm sistemul de vectori $\mathfrak{a} = [\nu_1, \nu_2, \nu_3, \nu_4]$, unde

$$v_1 = (1, 2, -1, 2), v_2 = (1, 2, 1, 4), v_3 = (2, 3, 0, -1), v_4 = (1, 3, -1, 0).$$

Arătați că $\mathfrak a$ este o bază a lui $\mathbb R^4$ peste $\mathbb R$ și determinați coordonatele lui $\mathfrak v=(2,3,2,10)$ în aceasta bază.

2. În \mathbb{Z}_5 - spaţiul vectorial \mathbb{Z}_5^3 se consideră vectorii $\nu_1 = (\widehat{2}, \widehat{3}, \widehat{1}), \nu_2 = (\widehat{1}, \widehat{2}, \widehat{4}), \nu_3 = (\widehat{0}, \widehat{1}, \widehat{1}), \nu_4 = (\widehat{4}, \widehat{2}, \widehat{1})$

Arătați că v_1, v_2, v_3 formează o bază și calculați coordonatele lui v în această bază

3. Arătați că matricile $B_1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $B_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $B_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, $B_2 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ formează o bază \mathbb{R} - spațiului vectorial $M_2(\mathbb{R})$.

Determinați coordonatele matricii $A=\left(\begin{array}{cc} -2 & 3 \\ 4 & -2 \end{array}\right)$ în această bază.

- 4. În \mathbb{R} -spațiul vectorial \mathbb{R}^4 se consideră vectorii
 - (a) (0,1,3,2), (1,0,5,1), (-1,0,1,1), (3,-1,-3,-4), (2,0,1,-1);
 - (b) (1,2,3,0), (0,1,-1,1), (3,7,8,1), (1,3,2,1);
 - (c) (1,2,-1,2), (2,3,0,-1), (2,4,0,6), (1,2,1,4), (3,6,-1,-1), (1,3,-1,0).

Determinați care dintre acești vectori formează o bază a subspațiului generat de ei, și eventualele relații de dependență .

5. Considerăm aplicația \mathbb{R} liniară f: $\mathbb{R}^5 \to \mathbb{R}^4$,

$$f(x, y, z, t, w) = (y - z + 3t + 2w, x - t, 3x + 5y + z - 3t + w, 2x + y + z - 4t - w).$$

Determinaţi Ker f.

6. Considerăm aplicația $\mathbb R$ liniară $\mathfrak f\colon \mathbb R^4 \to \mathbb R^3$

$$f(x, y, z, t) = (x - y + z - t, -2x + y - z, y - 2z + 3t).$$

Determinați Ker f.

- 7. Considerăm aplicațiile \mathbb{R} liniare
 - (a) $f: \mathbb{R}^4 \to \mathbb{R}^4$, f(x, y, z, t) = (x + 2y + z t, x + 2y z + t, x + 2y, z t).
 - (b) $f: \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (x + 2y, y + z, x 2z).

Determinați câte o bază pt Imf și Kerf.

- 8. Fie sistemul $\begin{cases} 2x + y + z = 0 \\ x + 2y z = 0 \end{cases}$
 - (a) Determinați o bază a subspațiului $S\subseteq\mathbb{R}^3$ al soluților sistemului și determinați dimensiunea \mathbb{R}^3/S .

1

(b) Definiți $f\in End_{\mathbb{R}}(\mathbb{R}^3)$ astefl încât $S=\mathrm{Ker}\,f$ și să se verifice

$$\dim_{\mathbb{R}} \operatorname{Ker} f + \dim_{\mathbb{R}} \operatorname{Im} f = \dim_{\mathbb{R}} \mathbb{R}^3 = 3.$$