

Search for Resonances in the Mass Spectrum of Events with *b*-Tagged Jets with the ATLAS Detector at 13 TeV

S. Chekanov^a, A. Coccaro^b, J. Dandoy^c, F. Guescini^b, G. Facini^c, A. Korn^d, T. LeCompte^a, J. Love^a, <u>L. McClymont</u>^d, J. Proudfoot^a, S. Ryu^a, R. Wang^a, N. Zhou^e, Nishu^e

^aHEP Division, Argonne National Laboratory
^bSection de Physique, Universite de Geneve
^cUniversity of Chicago, Enrico Fermi Institute
^dUniversity College London
^eTsinghua University

Exotics Plenary Meeting
27 November 2015

- b-Tagged di-jet resonance search
- Aiming for a paper for Moriond
- Documentation in Place
 - CDS Entry
 - SVN Area
- Ed Board Assembled
 - A. Glazov (Chair), F. Parodi, L. Tompkins
 - First Ed Board Meet 11th November
 - Agenda can be found here
- Plots shown today are still preliminary

3 Analysis Strategy

- Follow similar analysis strategy to inclusive di-jet analysis.
 - Search for resonance in invariant mass spectrum.
 - Fit QCD background using smoothly falling function.
 - Same event selection as di-jet search.
 - This allows us to share much of the framework.
- In addition, b-tagging is applied.
 - Three categories 0, 1 and 2 b-tags
- Search for generic di-jet resonance
 - Gaussian with width similar to benchmark models.
 - Two Benchmark models, which we will set limits on.
 - 1) Z' => bb, double b-jet final state.
 - 2) b* => bg, single b-jet final state.

4 **Motivation**

- Many BSM models predict heavy particles that decay into bb or bg.
 - Z', b*, RS Graviton...
 - b-Tagging can be used to reduce light dominated QCD background
 - Hence increased sensitivity to these models.
- Generic search performed searching for high mass resonance decaying to b-tagged jets.
 - Performed at CDF and CMS (<u>CMS-PAS-EXO-12-023</u>)
 - No ATLAS result from Run-1

5 Data and Event/Jet Selection

Data Used

- 25ns data with luminosity of 3.27 fb⁻¹ (Periods D-J)
- Exclude runs with IBL Off Due to huge drop in b-tagging performance.
- GRL: data15_13TeV.periodAllYear_DetStatus-v70-pro19-04_ DQDefects-00-01-02_PHYS_StandardGRL_All_Good_25ns.xml

Trigger

HLT_j360, lowest unprescaled single jet trigger

Event Selection

- Reject events with problematic calo. reconstruction (LAr, Tile and Core Errors)
- At least two jets.
- Leading-jet p_T > 440 GeV, Subleading jet p_T > 50 GeV
- m_{jj} > 1100 GeV, such that we are on the trigger plateau.
- $|y^*| < 0.6$, where $y^*=0.5^*(y_1 y_2)$
 - Central region more sensitive to BSM physics.

Jet Selection

- Standard jet calibration (with JES correction applied)
- 2015 loose jet quality cuts applied.

B-Tagging

- MV2c20 Fixed cut 85% efficiency working point
 - MV2c20 > -0.7887
 - Calibrated and supported by flavour tagging group
 - Loose WP provides best sensitivity compared to others.
- b-jet efficiency ~ 50% at jet-p_T ~ 1 TeV
- Light-jet rejection ~ 30
 - Approximately flat, good for background modelling.
- Flat b-jet efficiency also being considered.
 - Shows promise of improving signal sensitivity of high mass resonances
 - Need to understand background modelling for this as not flat light-jet rej.

b-Jet Energy Scale

- Calculate using ratio of tracks within jet cone to reconstructed calo jet.
 - Use a double ratio between b-tagged jets and inclusive jets
- Below 1% on top of JES for p_T < 600 GeV
 - Then increases to ~10% as p_T increases.
- Ongoing study
 - Further work required
 - Study in to if there is a component in bJES due to tracks not entering the ratio.
- Regularly presented in JES/JER Meetings

$$R' = \frac{< r_{bjet}^{trk}>_{Data}/< r_{bjet}^{trk}>_{MC}}{< r_{inc}^{trk}>_{Data}/< r_{inc}^{trk}>_{MC}}$$
 where
$$r^{trk} = \frac{\sum \vec{p_T}^{trk}}{p_T^{jet}}$$

Data/MC Comparisons

- Compare Data to Monte Carlo
 - Pythia8 and Powheg+Herwig
- Scale factors still to be applied
 - Expect better agreement after SFs applied
- Good shape agreement with Pythia8 for...
 - Leading and Subleading Jet p_T
 - m_{jj} distributions
 - In both one b-tag and two b-tags

9 **Background Modelling**

• Fit to background using smoothly falling function:

$$f(x) = p_1 (1-x)^{p_2} (x)^{p_3+p_4 \ln x + p_5 \ln x^2}$$
 where, $x = m_{jj}/\sqrt{s}$

- Default option is 3 parameter (p₄, p₅ = 0)
 - Use Wilks' statistic to determine if we need to change to 4-parameter fit
 - 3 Parameter sufficient to 10 fb⁻¹ with MC

- Performing cross-checks confirming that we are robust to changes in flavour fraction
 - At high mass background is dominated by lights.

10 **Signal Models**

- Two benchmark models We can set limits here.
 - **Z' => bb** 1.25, 2, 3 and 4 TeV
 - b* => b+X 1.25, 2, 3, 4 and 5 TeV
 - Templates taken from MC samples

- q* 2.5, 3, 3.5 and 4.5 TeV
- Generic search performed for a Gaussian signal.
 - Resonance width taken from the benchmark

11 Sensitivity Studies

LUCL

Low sensitivity to Z'

- Low cross section
- Search for 1.25 TeV Z' slowly converging towards signal value at 30 fb⁻¹
- Also want to include Z' => cc and
 Z' => light-jet signals.

Discovery potential for b*

- Larger cross-section than Z'
- Fit is stable for single b-tag
- Sensitivity curve is not smooth
- Under investigation

12 Results - Bump Hunter

- Mass spectra in three tag categories
 - 3.27 fb⁻¹ of data, full data set.
 - Background fitted with 3 parameter function.
- Bump Hunter searches for resonances
 - Looks for a Gaussian signal
 - Searches for statistically significant deviations.
- No deviation found more significant than 2σ

13 Limit Setting - b*

- Machinery up and running, using Di-jet statistical package
 - Deviations found by bump-hunter, test statistics by running pseudo-experiments.
 - 95% C.L. upper limiting
 - Use Bayesian approach for limit setting.
 - No Correction for acceptance.
- Systematics: Some still need to be added to the limit setting program.
 - ✓ Luminosity uncertainty 9%
 - ✓ JES uncertainty 1σ up and down
 - ✓ JER uncertainty 1σ up and down
 - → BJES uncertainty to be added
 - B-tagged scale factor uncertainties to be added

14 Limit Setting - Z'

- Machinery up and running, using Di-jet statistical package
 - Deviations found by bump-hunter, test statistics by running pseudo-experiments.
 - 95% C.L. upper limiting
 - Use Bayesian approach for limit setting.
 - No Correction for acceptance.
- Systematics: Some still need to be added to the limit setting program.
 - ✓ Luminosity uncertainty 9%
 - ✓ JES uncertainty 1σ up and down
 - ✓ JER uncertainty 1σ up and down
 - → BJES uncertainty to be added
 - → B-tagged scale factor uncertainties to be added

15 **Summary**

LUCL

- b-tagged di-jet search following di-jet analysis
 - Shared cuts and framework
 - In addition applying b-tagging (1 b-tag and 2 b-tags)
- 3.27 fb⁻¹ of data used for this analysis.
 - Show good agreement with QCD MC
 - We find no deviations from the background fit with significance greater than 2σ.
 - 95% C.L. upper limits set for b* and Z'
 - No acceptance correction
 - Some systematics need to be added
- Many studies ongoing...
 - Further sensitivity studies
 - Robustness of fit to flavour fraction
 - More systematic studies (b-tag. uncertainties)
 - BJES finalisation.
 - Inclusion of Z' => cc and light. (Ready to request)
- On course for Moriond!
 - Ed. board and documentation in place.

Backup!

17 **Systematics**

- Luminosity 9% uncertainty
- Background
 - Fit function and fit parameters
- Signal
 - JES Uncertainty
 - Branches available in analysis nTuple
 - < 4%
 - JER Uncertainty
 - Assume to be negligible
 - JER Uncertainty
 - Studies performed, large for high p_T jet (p_T > 800 GeV)
 - B-tagging scale factor uncertainty
- Studies to be carried out
 - Then will be added to limit setting procedure.

BJES Uncertainty

Events

[GeV]

