第三章

数据通信的基本原理

第三章 数据通信的基本原理

3. 1 数据通信的理论基础 傅立叶分析 3. 1. 1 有限带宽信号 3. 1. 2 信道的最大数据传输速率 3. 1. 3 数据通信技术 3. 2 数据通信系统的基本结构 3. 2. 1 数据编码技术 3. 2. 2 多路复用技术 3. 2. 3 通信线路的通信方式 3, 2, 4 通信交换技术 3. 3 电路交换 3. 3. 1 报文交换 3. 3. 2 分组交换 3. 3. 3

3.1 数据通信的理论基础(1)

主要内容:信号在通信信道上传输时的数学表示及其所受到的限制。

3.1.1 傅立叶分析

任何一个周期为T的有理周期性函数 g(t) 可分解为若干项(可能无限多项)正弦和余弦函数之和:

$$g(t) = \begin{bmatrix} \frac{1}{c_2} \\ -t \end{bmatrix} + \begin{bmatrix} \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) \\ -t \end{bmatrix} + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

从题目来看这里怎么考

$$f = 1/T$$
 基本频率

a_n, b_n n次谐波项的正弦和余弦振幅值

3.1 数据通信的理论基础(2)

己知 g(t),求 c, a_n, b_n

1) 将等式两边从 0 到 T 积分可得c

$$\mathbf{c} = \frac{2}{T} \int_0^T g(t)dt$$

2) 用sin(2πkft)乘等式两边,并从 0 到 T 积分,可得 a_n

$$a_{n} = \frac{2}{T} \int_{0}^{T} g(t) \sin(2\pi n f t) dt$$

3)用cos(2πkft)乘等式两边,并从 0 到 T 积分,可得 b_n

$$b_{n} = \frac{2}{T} \int_{0}^{T} g(t) \cos(2\pi n f t) dt$$

3.1 数据通信的理论基础(3)

3.1.2 有限带宽信号 (Bandwidth Limited Signals)

对于二进制编码 0 1 1 0 0 0 1 0, 其输出电压波形为:

$$g(t) = \begin{cases} 0 & 0 < t \le \frac{T}{8} \\ 1 & \frac{T}{8} < t \le \frac{3T}{8} \\ 0 & \frac{3T}{8} < t \le \frac{6T}{8} \\ 1 & \frac{6T}{8} < t \le \frac{7T}{8} \\ 0 & \frac{7T}{8} < t < T \end{cases}$$

3.1 数据通信的理论基础(4)

其傅立叶分析的系数为:

$$a_n = \frac{1}{\pi n} \left[\cos(\pi n/4) - \cos(3 \pi n/4) + \cos(6 \pi n/4) - \cos(7 \pi n/4) \right]$$

$$b_n = \frac{1}{\pi n} \left[\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7 \pi n/4) - \sin(6 \pi n/4) \right]$$

$$c = 3/4$$
 Fig. 2-1

- 信号在信道上传输时的特性:
 - 对不同傅立叶分量的衰减不同,因此引起输出失真;
 - 信道有截止频率 f_c , $0 \sim f_c$ 的振幅不衰减, f_c 以上的振幅衰减厉害,这主要由信道的物理特性决定, $0 \sim f_c$ 称为信道的有效带宽;
 - 实际使用时,可以接入滤波器,限制用户的带宽;
 - 通过信道的谐波次数越多,信号越逼真。

Fig. 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)-(e) Successive approximations to the original signal.

3.1 数据通信的理论基础(5)

- 波特率(baud)和比特率(bit)的关系:
 - 波特率: 信号每秒钟变化的次数, 也称调制速率。
 - 比特率: 每秒钟传送的二进制位数。
 - 波特率与比特率的关系取决于信号值与比特位的关系。

例:每个信号值可表示 3 位,则比特率是波特率的 3 倍;

每个信号值可表示1位,则比特率和波特率相同。

对于比特率为 B bps的信道,发送 8 位所需的时间为 8/B秒,若 8 位为一个周期 T ,则一次谐波的频率是:

$$f_1 = B/8 Hz$$

能通过信道的最高次谐波数且为:

$$N = f_c / f_1$$

每个信号值表示几位, 比特率就是波特率的几倍。

3.1 数据通信的理论基础(6)

音频线路的截止频率为3000Hz

$$N = f_c / f_1 = 3000/(B/8) = 24000/B$$

Fig. 2-2

最高速谐波的数目有这么多,就是说最高次谐波有这么多次。

结论:即使对于完善的信道,有限的带宽限制了数据的传输速率。

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Fig. 2-2. Relation between data rate and harmonics.

3.1 数据通信的理论基础(7)

3.1.3 信道的最大数据传输速率

• 1924年,奈魁斯特(H. Nyquist)推导出**无噪声有限带宽信道**的最大数据传输率公式: 这个计算题必须要看。

最大数据传输率 = $2Hlog_2V$ (bps)

任意信号通过一个带宽为H的低通滤波器,则每秒采样2H次就能完整地重现该信号,信号电平分为V级。

• 1948年,香农(C. Shannon)把奈魁斯特的工作扩大到信道受到 **随机(热)噪声**干扰的情况。

热噪声出现的大小用信噪比(信号功率与噪声功率之比)来衡量。

S: <u>信号功率</u>,

N: 噪声功率

 $10\log_{10}S/N$

单位:分贝(db)

3.1 数据通信的理论基础(8)

香农的主要结论是:

带宽为 H 赫兹, 信噪比为S/N的任意信道的最大数据传输率为:

最大数据传输率 = $Hlog_2(1 + S/N)$ (bps)

- 电话系统的典型信噪比为30db;
- 此式是利用信息论得出的,具有普遍意义;
- 与信号电平级数、采样速度无关;
- 此式仅是上限,难以达到。

两个最大数据传输率的公式。

3.2 数据通信技术(1)

主要内容:数据在通信信道上的各种传输方式及其所采用的技术。

- 3.2.1 数据通信系统的基本结构
- 基本结构

数据传输

3.2 数据通信技术(2)

数据:传递某种含义的实体。

信号发送:沿着某种介质传播信号的技术。

数据传输:通过传输和处理信号而进行的数据通信。

- 数据表示和传输方式
 - 数据表示

数据: 模拟数据 (Analog Data) 连续值

数字数据 (Digital Data) 离散值

- 数据传输方式

信号: 模拟信号 (Analog Signals)

数字信号 (Digital Signals)

信号发送方式: 模拟信号发送(模拟信道)

数字信号发送(数字信道)

3.2 数据通信技术(3)

数字信号发送的优点是:价格便宜,对噪声不敏感;

缺点是: 易受衰减,频率越高,衰减越厉害。

3.2 数据通信技术(4)

3.2.2 数据编码技术

研究数据在信号传输过程中如何进行编码(变换)

• 数字数据的数字传输(基带传输) 基带:基本频带,指传输变换前所占用的频带,是原始信号所固有的频带。

基带传输: 在传输时直接使用基带信号。

- 基带传输是一种最简单最基本的传输方式,一般用低电平表示"0",高电平表示"1"。
- 适用范围: 低速和高速的各种情况。
- 限制: 因基带信号所带的频率成分很宽, 所以对传输线有一定的要求。

3.2 数据通信技术(5)

常用的几种编码方式:

- 1) 不归零制码 (NRZ: Non-Return to Zero)
- 原理: 用两种不同的电平分别表示二进制信息 "0"和 "1", 低电平表示 "0", 高电平表示 "1"。
- 缺点: a难以分辨一位的结束和另一位的开始;
 - b 发送方和接收方必须有时钟同步;
 - c 若信号中"0"或"1"连续出现,信号直流分量将累加。
- 结论: 容易产生传播错误。
- 2) 曼彻斯特码(Manchester),也称相位编码
- 原理:每一位中间都有一个跳变,<u>从低跳到高表示"0</u>", <u>从高跳到低表示"1</u>"。
- 优点:克服了NRZ码的不足。每位中间的跳变即可作为数据,又可作为时钟,能够自同步。

上升延表示0,下降延表示1

3.2 数据通信技术(6)

- 3) 差分曼彻斯特码(Differential Manchester)
 - 原理: 每一位中间都有一个跳变,每位开始时有跳变表示"0",无跳变表示"1"。位中间跳变表示时钟,位前跳变表示数据。
 - 优点: 时钟、数据分离, 便于提取。
- 4) <u>逢"1"变化的NRZ码</u>
 - 原理: 在每位开始时,逢"1"电平跳变,逢"0"电平不跳变。
- 5) <u>逢"0"变化的NRZ码</u>
 - 原理: 在每位开始时,逢"0"电平跳变,逢"1"电平不跳变。

3.2 数据通信技术(7)

- 数字数据的模拟传输(频带传输)
 - 频带传输:指在一定频率范围内的线路上,进行载 波传输。用基带信号对载波进行调制,使其变为适 合于线路传送的信号。
 - 调制 (Modulation): 用基带脉冲对载波信号的某些参量进行控制, 使这些参量随基带脉冲变化。
 - 解调(Demodulation):调制的反变换。
 - 调制解调器MODEM(modulation-demodulation) 根据载波 $Asin(\omega t + \varphi)$ 的三个特性:幅度、频率、相位, 产生常用的三种调制技术:
 - 幅移键控法 Amplitude-shift keying (ASK)
 - 频移键控法 Frequency-shift keying (FSK)
 - 相移键控法 Phase-shift keying (PSK)

3.2 数据通信技术(8)

1) 幅移键控法(调幅)

幅移就是把频率、相位作为常量,而把振幅作为变量,即:

$$\begin{cases} \omega(t) = \omega 0 \\ \varphi(t) = \varphi 0 \end{cases}$$
$$A(t) = A1, A2, \dots AN$$

A(t) 取不同的值表示不同的信息码。 例如: A(t) 取 A_1 , A_2 , A_1 表示"0", A_2 表示"1"。 Fig. 2-18

3.2 数据通信技术(9)

2) 频移键控法(调频)

频移就是把振幅、相位作为常量,而把频率作为变量,即:

$$\begin{cases} A(t) = A0 \\ \varphi(t) = \varphi 0 \end{cases}$$

$$\omega(t) = \omega_1, \omega_2, \dots \omega_N$$

ω(t) 取不同的值表示不同的信息码。

例如: $\omega(t)$ 取 ω_1 , ω_2 , ω_1 表示 "0", ω_2 表示 "1"。 Fig. 2-18

3.2 数据通信技术(10)

3) 相移键控法(调相)

相移就是把振幅、频率作为常量,而把相位作为变量,即:

$$\begin{cases} A(t) = A0 \\ \omega(t) = \omega 0 \end{cases}$$
$$\varphi(t) = \varphi_1, \varphi_2, \dots \varphi_N$$

φ(t) 取不同的值表示不同的信息码。

例如: $\phi(t)$ 取 ϕ_1 , ϕ_2 , ϕ_1 表示 "0", ϕ_2 表示 "1"。 Fig. 2-18

Fig. 2-18. (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.

3.2 数据通信技术(11)

• 模拟数据数字传输

解决模拟信号数字化问题,也称为脉冲代码调制PCM(Pulse Code Modulation)。

根据Nyquist原理进行采样。

- 1)常用的PCM技术
 - 将模拟信号振幅分成多级(2ⁿ),每一级用 n 位表示。
- 例如: 贝尔系统的 T1 载波将模拟信号分成128级,每次采样用7位二进制数表示。
- 2) 差分脉冲代码调制
 - 原理: 不是将振幅值数字化,而是根据前后两个采样值的差进行编码,输出二进制数字。
- 3) δ调制
 - 原理:根据每个采样值与前一个值之间差 "+1"或 "-1"来决定输出二进制 "1"或 "0"。
 - 缺点:编码速度跟不上变化太快的信号。

Fig. 2-27. Delta modulation.

Fig. 2-17. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.

3.2 数据通信技术(12)

3.2.3 多路复用技术

由于一条传输线路的能力远远超过传输一个用户信号所需的能力,为了提高线路利用率,经常让多个信号同时共用一条物理线路。

常用的有三种方法:

- <u>时分复用 TDM</u> (Time Division Multiplexing) 主要用于数字数据传输 T1载波,分成 24 个信道 Fig. 2-26
- <u></u> 频分复用 FDM (Frequency Division Multiplexing)
 Fig. 2-24
- 波分复用 WDM (Wavelength Division Multiplexing)
 Fig. 2-25

Fig. 2-26. The T1 carrier (1.544 Mbps).

Fig. 2-24. Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.

Fig. 2-25. Wavelength division multiplexing.

3.2 数据通信技术(13)

- 3.2.4 通信线路的通信方式
- 连接方式为适应不同的需要,通信线路采用不同的连接方式。
 - <u>点</u> <u>点方式</u>

- 多点方式

3.2 数据通信技术(13)

• 通信方式

从信息传送方向和时间的关系角度研究。

单工通信方式信息只能单向传输,监视信号可回送。

- 半双工通信方式

信息可以双向传输,但在某一时刻只能单向传输。

3.2 数据通信技术(14)

全双工通信方式信息可以同时双向传输,一般采用四线式结构。

3.2 数据通信技术(15)

• 同步方式

目的:接收方必须知道每一位信号的开始及其宽度,以便正确的采样接收。

在基于字符的信息传送中,可以采用异步方式,也可以 采用同步方式。

1) 异步方式

- 信息是以字符为单位传送的;
- 每个字符由发送方异步产生,有随机性;
- 字符一般采用5,6,7或8位二进制编码;
- 需要辅助位,每个字符可能需要用10位或11位才能传送,例如:
 - 起始位,1位;
 - 字符编码,7位;
 - 奇偶校验位,1位;
 - 终止位, 1~2位。

3.2 数据通信技术 (16)

特点:

- 传输效率低;
- 主要用于字符终端与计算机之间的通信。

3.2 数据通信技术(17)

2) 同步方式

- 信息是以报文为单位传送的;
- 传输开始时,以同步字符使收发双方同步;
- 从传输信息中抽取同步信息,修正同步,保证正确 采样。

SYN SYN	信	息	SYN SYN
---------	---	---	---------

特点:

- 可以不间断地传输信息, 传输效率较高;
- 字符间减少了辅助信息;
- 传输的信息中不能有同步字符出现,透明性较差。

3.2 数据通信技术(18)

- 3) 基于位的传送中,采用同步方式。
 - 信息以二进制位流为单位传送;
 - 传输过程中收发双方以位为单位同步;
 - 传输的开始和结束由特定的八位二进制位同步。

标记 二进制位流	标记	
----------	----	--

特点:

- 传输效率高;
- 通明性好。

3.3 通信交换方式(1)

在多结点通信网络中,为有效利用通信设备和线路,一般希望动态地设定通信双方间的线路。动态地接通或断开通信线路,称为"交换"

交换方式分类:

- 电路交换
- 报文交换 存储转发方式
- 分组交换(包交换) 存储转发方式
- 混合交换

3.3.1 电路交换 (circuit switching)

原理:直接利用可切换的物理通信线路,连接通信双方。特点:

- 在发送数据前,必须建立起点到点的物理通路;
- 建立物理通路时间较长,数据传送延迟较短;

分为: 空分电路交换, 时分电路交换

3.3 通信交换方式(2)

3.3.2 报文交换 (message switching)

原理: 信息以报文(逻辑上完整的信息段)为单位进行存储转发。

Fig. 2-35

特点: 1线路利用率高;

- 2要求中间结点(网络通信设备)缓冲大;
- 3延迟时间长。

3.3.3 分组交换 (packet switching)

原理:<u>信息以分组为单位进行存储转发。</u>源结点把报文分为分组, 在中间结点存储转发,目的结点把分组合成报文。

分组: 比报文还小的信息段,可定长,也可变长。

Fig. 2-34

Fig. 2-35

特点: 1线路利用率高;

- 2 结点存储器利用率高;
- 3 延迟短;
- 4额外信息增加。

3.3 通信交换方式(3)

分组交换的两种细分

分组交换分为:数据报(datagram)和虚电路(virtual circuit)数据报:每个分组均带有全称网络地址(源、目的),可走不同的路径。

虚电路: 分三个阶段

- 建立: 发带有全称网络地址的呼叫分组,建立虚电路;

- 传输: 沿建立好的虚电路传输数据;

- 拆除: 拆除虚电路。

Fig. 2-43

电路交换与分组交换的比较

Fig. 2-36

3.3 通信交换方式(4)

• 结论:

- 电路交换适用于实时信息和模拟信号传送,在线路带宽比较低的情况下使用比较经济;
- 报文交换适用于线路带宽比较高的情况,可靠灵活,但延迟大;
- 分组交换缩短了延迟,也能满足一般的实时信息传送。<u>在高带宽的通信中更为经济、合理、可靠。是目前公认较(最)好的一种交换技术</u>。

Fig. 2-34. (a) Circuit switching. (b) Packet switching.

Fig. 2-35. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.

Fig. 2-43. The dotted line shows a virtual circuit. It is simply defined by table entries inside the switches.

Item	Circuit-switched	Packet-switched
Dedicated "copper" path	Yes	No
Bandwidth available	Fixed	Dynamic
Potentially wasted bandwidth	Yes	No
Store-and-forward transmission	No	Yes
Each packet follows the same route	Yes	No
Call setup	Required	Not needed
When can congestion occur	At setup time	On every packet
Charging	Per minute	Per packet

Fig. 2-36. A comparison of circuit-switched and packet-switched networks.

小结

- 数据通信基本理论
 - 信号在信道上传输的特性
 - 波特率和比特率的关系
 - 能通过信道的最高谐波数目 $N = f_c/f_1$ 。
 - 信道的最大传输速率: 奈魁斯特定律和香农定律。
- 数据表示和传输方式,以及它们之间的四种组合。
- 数据编码技术
 - 基带传输及其编码方式
 - 频带传输及其调制技术
 - 模拟数据数字传输及其编码方式。
- 多路复用技术
 - TDM、FDM、WDM,了解T1信道编码方式。

小结

- 通信线路的连接方式
 - 点到点方式
 - 多点方式。
- 通信方式:
 - 单工、半双工、双工
 - 异步方式和同步方式。
- 交换方式:
 - 电路交换
 - 报文交换
 - 分组交换(数据报交换和虚电路交换)。