Chapter 5: Real-Valued Functions of a Real Variable: Limits and Continuity

Background Let $D \subseteq \mathbb{R}$.

A function f from D into $\mathbb R$ is a rule which associates with each $x \in D$ one and only one $y \in \mathbb R$. Notation: $f:D \to \mathbb R$.

D is called the **domain** of the function.

If $x \in D$, then the element $y \in \mathbb{R}$ which is associated with x is called the **value of** f **at** x or the **image of** x **under** f. y is denoted by f(x).

If $U \subseteq D$, then

 $f(U) = \{ y \in \mathbb{R} \mid y = f(x) \text{ for some } x \in U \}.$

If U = D, then f(D) is called the range of f.

If $y \in \mathbb{R}$, then

$$f^{-1}(y) = \{x \in D \mid f(x) = y\}.$$

Note: 1. $f^{-1}(y)$ might be \emptyset . (y is not in the range of f.)

- 2. $f^{-1}(y)$ might have more than one element.
- 3. f has an **inverse function** if for each $y \in f(D)$ there is one and only one $x \in f^{-1}(y)$.

Let $V \subseteq \mathbb{R}$. Then

$$f^{-1}(V) = \{x \in D \mid f(x) \in V\}.$$

Operations on functions

1. Arithmetic: $f, g: D \to \mathbb{R}$

a.
$$(f \pm g)(x) = f(x) \pm g(x)$$

b.
$$(f \cdot g)(x) = f(x) \cdot g(x)$$

c.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \quad g(x) \neq 0$$

2. Composition:

Let $f:D\to\mathbb{R}$ and let $g:E\to\mathbb{R}$.

If $f(D)\subseteq E$, then g composed with f is the function $g\circ f:D\to \mathbb{R}$ defined by

$$(g \circ f)(x) = g[f(x)].$$

The Elementary Functions

1. Polynomial functions:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where n is a nonnegative integer, $a_n, \ldots a_1, a_o \in \mathbb{R}, \ a_n \neq 0.$

2. Rational functions:

$$r(x) = \frac{p(x)}{q(x)}, \quad p(x), q(x) \text{ polynomials.}$$

3. Trigonometric functions and inverse trigonometric functions.

4. Exponential and logarithmic functions.

5. Combinations of the above.

Section 20: Limits of Functions

Def. Let $f:D\to\mathbb{R}$ and let c be an accumulation point of D. A number L is the **limit of** f at c if to each $\epsilon>0$ there corresponds a $\delta>0$ such that

$$|f(x) - L| < \epsilon$$

whenever

$$x \in D$$
 and $0 < |x - c| < \delta$.

Equivalently:

Def. Let $f:D\to\mathbb{R}$ and let c be an accumulation point of D. A number L is the **limit of** f at c if to each neighborhood V of L there corresponds a deleted neighborhood U of c such that $f(U\cap D)\subset V$.

Notation $\lim_{x \to c} f(x) = L$.

THEOREM 20.1: Let $f: D \rightarrow$

 \mathbb{R} and let c be an accumulation point of D. If $\lim_{x \to c} f(x) = L$ exists, then it is unique. That is, f can have only one limit at c.

Examples:

1.
$$\lim_{x \to 3} (5x - 3) = 12$$
.

2.
$$\lim_{x \to 2} \frac{2x^2 + 4x - 16}{x - 2} = 12.$$

3.
$$\lim_{x \to 5} (x^2 - 3x + 1) = 11.$$

THEOREM 20.2: Let $f: D \rightarrow$

 ${\mathbb R}$ and let c be an accumulation point of D. Then

$$\lim_{x \to c} f(x) = L$$

if and only if for every sequence (s_n) in D such that $s_n \to c, \ s_n \neq c$ for all $n, \ f(s_n) \to L.$

THEOREM 20.3: Let $f: D \rightarrow$

 \mathbb{R} and let c be an accumulation point of D. The following are equivalent:

1. $\lim_{x \to c} f(x)$ does not exist.

2. There exists a sequence (s_n) in D such that $s_n \to c$, but $(f(s_n))$ does not converge.

THEOREM 20.4: If

$$\lim_{x \to c} f(x) = L,$$

then there exists a neighborhood N(c) of c, such that f is bounded on N(c). That is, there is a number M such that

$$|f(x)| \le M$$
 for all $x \in D \cap N(c)$.

THEOREM 20.5: (Arithmetic)

Let $f, g: D \to \mathbb{R}$ and let c be an accumulation point of D. If

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M,$$

then

1.
$$\lim_{x \to c} [f(x) + g(x)] = L + M$$
,

2.
$$\lim_{x \to c} [f(x) - g(x)] = L - M$$
,

3.
$$\lim_{x \to c} [f(x)g(x)] = LM$$
,

4
$$\lim_{x \to c} [k f(x)] = kL$$
, k constant,

$$5 \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M} \quad \text{provided } M \neq 0.$$

THEOREM 20.6: ("Pinching

Theorem") Let $f, g, h: D \to \mathbb{R}$ and let c be an accumulation point of D. Suppose that

$$f(x) \le g(x) \le h(x)$$

for all $x \in D$, $x \neq c$. If

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L,$$

then $\lim_{x \to c} g(x) = L$.

Some basic limits:

1. $\lim_{x \to c} k = k$ for any constant k.

$$2. \lim_{x \to c} x = c.$$

3.
$$\lim_{x \to c} |x| = |c|$$
.

4. For any positive number c,

$$\lim_{x \to c} \sqrt{x} = \sqrt{c}.$$

5. $\lim_{x \to c} p(x) = p(c)$ for any polynomial function p(x).

6. $\lim_{x \to c} R(x) = R(c)$ for any rational function R(x), provided $R(c) \neq 0$.

7.
$$\lim_{x\to 0} \sin x = 0$$

8.
$$\lim_{x \to 0} \cos x = 1$$

THEOREM 20.7: The following

are equivalent:

$$\lim_{x \to c} f(x) = L, \qquad \lim_{h \to 0} f(c+h) = L,$$

$$\lim_{x \to c} (f(x) - L) = 0, \qquad \lim_{x \to c} |f(x) - L| = 0.$$

9. $\lim_{x \to c} \sin x = \sin c$

10.
$$\lim_{x \to c} \cos x = \cos c$$

THEOREM 20.8: Let $f: D \rightarrow$

 ${\mathbb R}$ and let c be an accumulation point of D. If

$$\lim_{x \to c} f(x) = L > 0,$$

then there exists a deleted neighborhood $N^*(c)$ of c such that f(x)>0 for all $x\in N^*(c)\cap D$.

One-sided limits:

Def. Let $f:D\to\mathbb{R}$ and let c be an accumulation point of D. A number L is the **right-hand limit** of f at c if to each $\epsilon>0$ there exists a $\delta>0$ such that

$$|f(x) - L| < \epsilon$$

whenever

$$x \in D$$
 and $c < x < c + \delta$.

Notation:
$$\lim_{x \to c^+} f(x) = L$$
.

A number M is the **left-hand limit** of f at c if to each $\epsilon>0$ there exists a $\delta>0$ such that

$$|f(x) - M| < \epsilon$$

whenever

$$x \in D$$
 and $c - \delta < x < c$.

Notation:
$$\lim_{x \to c^{-}} f(x) = M$$
.

THEOREM 20.9: $\lim_{x\to c} f(x) = L$ if and only if each of the one-sided

limits
$$\lim_{x \to c^+} f(x)$$
 and $\lim_{x \to c^-} f(x)$ exists, and

$$\lim_{x \to c^{+}} f(x) = \lim_{x \to c^{-}} f(x) = L.$$

Section 21: Continuous Functions

Def. Let $f:D\to\mathbb{R}$ and let $c\in D$. Then f is continuous at c if to each $\epsilon>0$ there is a $\delta>0$ such that

$$|f(x)-f(c)|<\epsilon$$
 whenever $|x-c|<\delta,\ x\in D.$

(c.f. the definition of $\lim_{x\to c} f(x)$.)

Let $S \subseteq D$. Then f is **continuous** on S if it is continuous at each point $c \in S$. f is **continuous** if f is continuous on D.

Equivalent definition:

f is continuous at c if to each neighborhood V of f(c) there is a neighborhood U of c such that $f(U\cap D)\subseteq V$.

See the definitions on pp. 8, 9.

THEOREM 21.1: (Characterizations of Continuity). Let $f:D\to\mathbb{R}$ and let $c\in D$. The following are equivalent:

- 1. f is continuous at c.
- 2. If $\{x_n\}$ is a sequence in D such that $x_n \to c$, then

$$f(x_n) \to f(c)$$
.

Furthermore, if c is an accumulation point of D, then ${\bf 1}$ and ${\bf 2}$ are equivalent to:

$$3. \quad \lim_{x \to c} f(x) = f(c).$$

See Theorem 20.2.

What's the problem here??

If c is an isolated point of D, then f is continuous at c.

Examples:

1. Let p(x) be a polynomial. Then

$$\lim_{x \to c} p(x) = p(c) \quad \text{for every } c \in \mathbb{R}$$

- "polynomials are continuous functions."
- 2. Let $R(x) = \frac{p(x)}{q(x)}$ be a rational function. Then

$$\lim_{x \to c} R(x) = R(c)$$

for every $c \in \mathbb{R}$ such that $q(c) \neq 0$.

3. Since

$$\lim_{x\to c}\sin\,x=\sin\,c$$

and

$$\lim_{x \to c} \cos x = \cos c$$

for every $c \in \mathbb{R}$, sine and cosine are continuous functions.

THEOREM 21.2: Let $f: D \to \mathbb{R}$ and let $c \in D$. Then f is discontinuous at c if and only if there is a sequence $\{x_n\}$ in D such that $x_n \to c$ but $\{f(x_n)\}$ does not converge to f(c).

See Theorem 20.3.

Combinations of Functions

THEOREM 21.3: (Arithmetic)

Let $f, g: D \to \mathbb{R}$ and $c \in D$. If f and g are continuous at c, then

- 1. $f \pm g$ is continuous at c.
- 2. fg is continuous at c; kf is continuous at c for constant k.
- 3. f/g is continuous at c provided $g(c) \neq 0$.

THEOREM 21.4: (Composition) Let $f:D\to\mathbb{R}$ and $g:E\to\mathbb{R}$ be functions such that $f(D)\subseteq E$. If f is continuous at $c\in D$ and g is continuous at $f(c)\in E$, then the composition of g with f, $g\circ f$: $D\to\mathbb{R}$, is continuous at c.

THEOREM 21.5: A function

 $f:D o\mathbb{R}$ is continuous on D if and only if for each open set G in \mathbb{R} there is an open set H in \mathbb{R} such that $H\cap D=f^{-1}(G)$.

Corollary: A function $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if $f^{-1}(G)$ is open whenever G is open.

THEOREM 21.6: Let $f:D \to \mathbb{R}$ be continuous. If f(c) > 0, then there is a neighborhood N(c) of c such that f(x) > 0 for all $x \in N(c), x \in D$.

See Theorem 20.8.

Section 22. Properties of Continuous Functions

Def. A function $f:D\to\mathbb{R}$ is **bounded** if there exists a number M such that $|f(x)|\leq M$ for all $x\in D$. That is, f is bounded if f(D) is a bounded subset of \mathbb{R} .

Examples:

1. $f(x) = \sin x$ and $g(x) = \cos x$ are bounded functions on $D = \mathbb{R}$.

 $|\sin x| \le 1$, $|\cos x| \le 1$ for all $x \in \mathbb{R}$.

2. $f(x) = \frac{1}{1-x}$, $x \in [0,1)$ is not bounded.

3. Polynomial functions of degree $n \geq 1$ on $D = \mathbb{R}$ are not bounded.

The Extreme-Value Theorem.

THEOREM 22.1: Let $f: D \rightarrow$

 \mathbb{R} be continuous. If D is compact, then f(D) is compact.

Def. Let $f:D\to\mathbb{R}$. $f(x_0)$ is the **minimum value** of f on D if $f(x_0)\leq f(x)$ for all $x\in D$; $f(x_1)$ is the **maximum value** of f on D if $f(x)\leq f(x_1)$ for all $x\in D$.

Corollary 1. If $f:D\to\mathbb{R}$ is continuous and D is compact, then f has a maximum value and a minimum value. That is, there exist points $x_0,\ x_1\in D$ such that

$$f(x_0) \le f(x) \le f(x_1)$$
 for all $x \in D$.

Corollary 2. If $f:D\to\mathbb{R}$ is continuous and D is compact, then f(D) is closed and bounded.

THEOREM 22.2: Let $f:[a,b] \rightarrow$

 \mathbb{R} be continuous. If f(a) and f(b) have opposite sign, then there is at least one point $c \in (a,b)$ such that f(c)=0.

The Intermediate-Value Theorem.

THEOREM 22.3: Let $f:[a,b] \to \mathbb{R}$ be continuous and suppose that $f(a) \neq f(b)$. If k is a number between f(a) and f(b) then there is at least one point $c \in (a,b)$ such that f(c) = k.

Corollary 1. If $f:D\to\mathbb{R}$ is continuous and $I\subseteq D$ is an interval, then f(I) is an interval.

Corollary 2. If $f:D\to\mathbb{R}$ is continuous and $I\subseteq D$ is a compact interval, then f(I) is a compact interval.

Examples:

1. Suppose $f:[a,b] \to [a,b]$ is continuous. Then there is at least one point $x \in [a,b]$ such that

$$f(x) = x$$
.

Such a point x is called a **fixed** point of f

2. If $f,g:[a,b]\to [a,b]$ are continuous, then there is at least one point $x\in [a,b]$ such that

$$f(x) = g(x).$$

WHAT????

2. If $f,g:[a,b] \to [a,b]$ are continuous, and if $f(a) \leq g(a)$ and $f(b) \geq g(b)$, then there is at least one point $x \in [a,b]$ such that

$$f(x) = g(x).$$

3. Prove that there is a least one real number r such that $r^2 = 2$.

4. Prove that if p is a polynomial of odd degree, then there is at least one real number c such that p(c)=0.

5. Let \mathcal{R} be the set of all rectangles with perimeter P=10. Prove that there is a member of \mathcal{R} that has maximum area.