

Fundamentals of Data mining- IT3051

Mini Group Project

Table of Content

1.Background Introduction	3
2.Problem Definition	4
3. Variable List	5
4.Data Preparation	6
5.Data Preprocessing	7
01.Importing Dataset, Feature Selection & Split Dataset	7
6.Data Visualization	11
01.Explore dataset using Jupyter Notebook	11
7.Model Building	15
01.Build a classifier using dataset to train the models	15
01.Decision Tree	16
02.Logistic Regression	16
03.Naive Bayes	17
04.KNeighborsClassifier	17
05.Random Forest Classifier	18
06.Support Vector Classifier	18
02.Conclusion	19
After calculating accuracy of each model, the best model for predicting the most accurate result is the logistic regression algorithm.	19
08.Front End Development	20
01.Interface of the System	20
09.Deliverables	23
10.Group Contribution	24

1.Background Introduction

This Final Project document is based on the mini project for the fundamentals of data mining module at Sri Lanka Institute of Information Technology. Mainly this project focuses on solving a real world problem that affects the human beings using data mining or machine learning technologies. As per the instruction we as a team found a problem that affected people in their lives.

Heart diseases are frequent these days. There are so many people that are suffering from heart diseases. As the prevention is better than curing, we as a team decided to train a model that classifies the people who are in risk to have a heart disease in the next 10 years. From that model people can check their health and take necessary precautions to prevent it from happening.

So, This project can save lives and minimize the risks of having heart diseases in human beings. We as a team think that it increases the quality of life of people.

2. Problem Definition

Framingham Heart Study, long-term research project developed to identify risk factors of cardiovascular disease, the findings of which had far-reaching impacts on medicine. Indeed, much common knowledge about heart disease—including the effects of smoking, diet, and exercise—can be traced to the Framingham study. The study's findings further emphasized the need for preventing, detecting, and treating risk factors of cardiovascular disease in their earliest stages.

So we plan to create an app for detecting patients who can be future cardiovascular patients.for detecting the ones, we get 10 years of cardiovascular patients details and analyze the dataset and build our prediction model.in here, we take few information of patient to analyze whether is he or she in critical stage or not. In other words we analyze if he or she has a chance to victimize the cardiovascular disease or not.

As final output, we expect to show the particular patient has the chance to have cardiovascular disease or not in future.

3. Variable List

Code List								
Var.#	Variable Name	Description	Data type					
1	age	Patient Age	numeric					
2	sysBP	Systolic Blood Pressure(mmHg)	numeric					
3	diaBP	Diastolic Blood Pressure(mmHg)	numeric					
4	glucose	Glucose Level	numeric					
5	Option->male	Patient's Gender is male	binary					
6	Option->female	Patient's Gender is female	binary					
7	Option2->yes	Taking Blood Pressure Medications	binary					
8	Option2->no	Not Taking Blood Pressure Medications	binary					
9	totChol	Total Cholesterol Level(mg/dL)	numeric					
10	ВМІ	BMI (Body Mass Index)	numeric					
11	Option3->yes	Had Prevalent Stroke	binary					
12	Option3->no	Had not Prevalent Stroke	binary					
13	Option4->yes	Had Prevalent Hypertension	binary					
14	Option4->no	Had not Prevalent Hypertension	binary					
15	PregnantNo	Number of times been pregnant	numeric					
16	plasmaGluecoseConc	Plasma Glucose Concentration	numeric					
17	tricepsThickness	Triceps Thickness	numeric					
18	SeriumInsulin	Serum Insulin	numeric					
19	diabPedigreeFunc	Diabetic Pedigree Function	numeric					

4.Data Preparation

- The data set is partitioned into,
 - 1. Training set 75% of the records
 - 2. Testing set 25% of the records

5.Data Preprocessing

01.Importing Dataset, Feature Selection & Split Dataset


```
In [15]: rawDataset1=rawDataset.dropna(subset=['cigsPerDay', 'BPMeds'])
In [16]: rawDataset1.isnull().sum()
Out[16]: male
                             0
         age
         currentSmoker
                             0
         cigsPerDay
                             0
         BPMeds
                             0
         prevalentStroke
                             0
         prevalentHyp
                             0
         diabetes
                             0
         totChol
                            49
         sysBP
                             0
         diaBP
                             0
         BMI
                            19
         heartRate
         glucose
TenYearCHD
                            382
                             0
         dtype: int64
```

```
In [17]: #replacing total cholestorol column missing values with mean
            pd.options.mode.chained_assignment = None
mean_value_totChol=rawDataset1['totChol'].mean()
rawDataset1['totChol']=rawDataset1['totChol'].fillna(mean_value_totChol)
rawDataset1.isnull().sum()
Out[17]: male
             age
currentSmoker
                                         0
                                         0
             cigsPerDay
                                         0
             BPMeds
             prevalentStroke
             prevalentHyp
             diabetes
             totChol
                                         0
             sysBP
                                         0
             diaBP
                                         0
             BMI
                                        19
             heartRate
                                         1
             glucose
TenYearCHD
                                       382
                                         0
             dtype: int64
```

```
In [18]: #replacing BMI column missing values with mean
         mean_value_bmi=rawDataset1['BMI'].mean()
rawDataset1['BMI']=rawDataset1['BMI'].fillna(mean_value_bmi)
         rawDataset1.isnull().sum()
Out[18]: male
                                0
          age
                                0
          currentSmoker
                                0
          cigsPerDay
                                0
          BPMeds
                                0
          prevalentStroke
                                0
          prevalentHyp
                                0
          diabetes
          totChol
                                0
         sysBP
                                0
          diaBP
                                0
          BMI
                                0
          heartRate
          glucose
                              382
          TenYearCHD
                                0
          dtype: int64
```

0 1 39 0 0.0 0.0 0 0 195.0 106.0 70.0 26.97 80.0 77.000000 1 0 46 0 0.0 0.0 0 0 250.0 121.0 81.0 28.73 95.0 76.000000 2 1 48 1 20.0 0.0 0 0 245.0 127.5 80.0 25.34 75.0 70.000000 3 0 61 1 30.0 0.0 0 1 0 225.0 150.0 95.0 28.58 65.0 103.000000 4 0 46 1 23.0 0.0 0 0 285.0 130.0 84.0 23.10 85.0 85.000000	Out[21]:		male	age	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	heartRate	glucose	TenYear
2 1 48 1 20.0 0.0 0 0 0 245.0 127.5 80.0 25.34 75.0 70.000000 3 0 61 1 30.0 0.0 0 1 0 225.0 150.0 95.0 28.58 65.0 103.000000 4 0 46 1 23.0 0.0 0 0 285.0 130.0 84.0 23.10 85.0 85.000000 4234 1 51 1 43.0 0.0 0 0 207.0 126.5 80.0 19.71 65.0 68.00000 4236 0 44 1 15.0 0.0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0		0	1	39	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	80.0	77.000000	
3 0 61 1 30.0 0.0 0 1 0 225.0 150.0 95.0 28.58 65.0 103.000000 4 0 46 1 23.0 0.0 0 0 285.0 130.0 84.0 23.10 85.0 85.000000 4234 1 51 1 43.0 0.0 0 0 0 207.0 126.5 80.0 19.71 65.0 68.000000 4236 0 44 1 15.0 0.0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000		1	0	46	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	95.0	76.000000	
4 0 46 1 23.0 0.0 0 0 0 285.0 130.0 84.0 23.10 85.0 85.000000 4234 1 51 1 43.0 0.0 0 0 0 207.0 126.5 80.0 19.71 65.0 68.000000 4236 0 44 1 15.0 0.0 0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000	In [22]:	2	1	48	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	75.0	70.000000	
4234 1 51 1 43.0 0.0 0 0 0 207.0 126.5 80.0 19.71 65.0 68.000000 4236 0 44 1 15.0 0.0 0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000		3	0	61	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	65.0	103.000000	
4234 1 51 1 43.0 0.0 0 0 0 207.0 126.5 80.0 19.71 65.0 68.000000 4236 0 44 1 15.0 0.0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000		4	0	46	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	85.0	85.000000	
4236 0 44 1 15.0 0.0 0 0 0 210.0 126.5 87.0 19.16 86.0 81.935117 4237 0 52 0 0.0 0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000			12.2			122	1929	53.0	100	111	822	1		522	22.0	122	
4237 0 52 0 0.0 0.0 0 0 0 269.0 133.5 83.0 21.47 80.0 107.000000 4238 1 40 0 0.0 0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000		4234	1	51	1	43.0	0.0	0	0	0	207.0	126.5	80.0	19.71	65.0	68.000000	
4238 1 40 0 0.0 0.0 0 1 0 185.0 141.0 98.0 25.60 67.0 72.000000		4236	0	44	1	15.0	0.0	0	0	0	210.0	126.5	87.0	19.16	86.0	81.935117	
		4237	0	52	0	0.0	0.0	0	0	0	269.0	133.5	83.0	21.47	80.0	107.000000	
4239 0 39 1 30.0 0.0 0 0 196.0 133.0 86.0 20.91 85.0 80.000000		4238	1	40	0	0.0	0.0	0	1	0	185.0	141.0	98.0	25.60	67.0	72.000000	
		4239	0	39	1	30.0	0.0	0	0	0	196.0	133.0	86.0	20.91	85.0	80.000000	
		4															+
		·			awDataset1.re			A .									

```
In [29]: finalFeaturedDataset = finalDataset[['age', 'sys8P','prevalentHyp','diaBP','glucose','diabetes','male','BPMeds','totChol','BMI',

In [30]: from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))

#assign scaler to column:
finalFeaturedDataset_scaled = pd.DataFrame(scaler.fit_transform(finalFeaturedDataset), columns=finalFeaturedDataset.columns)

In [45]: #Splitting data into testing and training
Y = finalFeaturedDataset_scaled['TenYearCHD']
X = finalFeaturedDataset_scaled.drop(['TenYearCHD'], axis = 1)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.25, random_state=42)
```

6.Data Visualization

01.Explore dataset using Jupyter Notebook

02. Explore dataset using Azure machine Learning

7. Model Building

01. Build a classifier using dataset to train the models

01.Decision Tree

```
In [46]: from sklearn.tree import DecisionTreeClassifier

In [47]: clf = DecisionTreeClassifier(criterion='gini', max_depth=3, random_state=0) clf.fit(X_train, y_train)

Out[47]: DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=3, max_depth=3, max_depth=3, max_leaf_nodes=Nlone, min_inpurity_decrease=0.0, min_inpurity_split=Nlone, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='deprecated', random_state=0, splitter='best')

In [48]: y_pred_gini = clf.predict(X_test)

In [49]: from sklearn.metrics import accuracy_score print('Nodel accuracy score with decision tree classifier: ', accuracy_score(y_test, y_pred_gini))

Model accuracy score with decision tree classifier: 0.8394230769230769
```

02.Logistic Regression

```
Logistic Regression

In [50]:
    from sklearn.linear_model import LogisticRegression
    logreg=LogisticRegression()
    logreg.fit(X_train,y_train)
    y_pred1 =logreg.predict(X_test)

from sklearn import metrics

print('Model accuracy score with logistic regression classifier: ', metrics.accuracy_score(y_test,y_pred1))
    #print(metrics.classification_report(y_test,y_pred)),metrics.confusion_matrix(y_test,y_pred)

Model accuracy score with logistic regression classifier: 0.8432692307692308
```

03. Naive Bayes

```
Naive Bayes

In [51]: #Import Gaussian Naive Bayes model from sklearn.naive_bayes import GaussianNB

#Create a Gaussian Classifier gnb = GaussianNB()

#Train the model using the training sets gnb.fit(X_train, y_train)

#Predict the response for test dataset y_pred2 = gnb.predict(X_test)

#Import scikit-learn metrics module for accuracy calculation from sklearn import metrics

# Model Accuracy, how often is the classifier correct? print("Accuracy: ",metrics.accuracy_score(y_test, y_pred2))

Accuracy: 0.8105769230769231
```

04.KNeighborsClassifier

```
In [52]: from sklearn.neighbors import KNeighborsClassifier
    from sklearn import metrics
    Range_k = range(1,15)
    scores = {}
    scores_list = []
    for k in Range_k:
        classifier = KNeighborsClassifier(n_neighbors=k)
        classifier_fit(X_train, y_train)
        y_pred3 = classifier.predict(X_test)
        scores[k] = metrics.accuracy_score(y_test,y_pred3))
        scores_list.append(metrics.accuracy_score(y_test,y_pred3)))

print("Accuracy:",metrics.accuracy_score(y_test, y_pred3)))

Accuracy: 0.8365384615384616
```

05.Random Forest Classifier

06. Support Vector Classifier

```
Support vector classifier

In [54]: from sklearn.svm import SVC

model = SVC(kernel='rbf', C=1, gamma=0.001, random_state=1)
model.fit(X_train, y_train)

from sklearn.metrics import accuracy_score

y_predict = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_predict))

Accuracy: 0.8384615384615385
```

02.Conclusion

- ❖ After calculating accuracy of each model, the best model for predicting the most accurate result is the logistic regression algorithm.
- Therefore we use this logistic regression algorithm for further activities.

08. Front End Development

01.Interface of the System

09.Deliverables

In our final output, we present our prediction model as software.so it has a smooth interface and users can easily enter the relevant attributes to get the final prediction. Our App link is mentioned below.

https://fdm-disease-predictorr.herokuapp.com/

10.Group Contribution

Index Number	Name
IT18154054	Wijekoon W.H.M.R.M.
IT18058024	K.S.Koralage
IT18024814	B.G.K.Madushani
IT18116366	Wijekoon R.T.P.W.W.M.P.M.B.
IT18006230	Perera T.R.D.
IT18003574	Ekanayaka W.E.M.D.S.
IT18157888	Chamodya Lakshani A.K.Y