The Space-Time Cost of Purifying Quantum Computations

Mark Zhandry

NTT Research

Let's start with a purely classical question ...

Irreversible (typical) computing

AND is logically irreversible: if output is **0**, inputs could be **00,01,10**

Reversible computing

T is logically reversible: $T^2 = I$

[Landauer'61]: logically irreversible operations must dissipate energy → in principle, reversible more energy efficient than irreversible

Making Computations Reversible: The Easy Way

Easy Thm: Time **T** irreversible comp \rightarrow Time **O(T)**

reversible comp

Making Computations Reversible: The Easy Way

Easy Thm: Time **T**, Space **S** irreversible comp \rightarrow Time **O(T)**, Space **O(T)** reversible comp

Making Computations Reversible: Preserving Space and Time

Thm [Bennett'89]:

Time **T**, Space **S** irreversible comp \rightarrow Time **T**^{O(1)}, Space **O(S log T)** reversible comp

Back to quantum ...

Quantum computing

I'm going to call anything non-unitary a "measurement"

Problems with (intermediate) measurements:

- → Subject to Landauer's Principle
- → Not amenable to certain algorithmic techniques (e.g. amplitude amplification)
- → Not directly handled by many query complexity lower bounds
- → Not applicable to certain cryptographic proof techniques (e.g. rewinding)

Making Quantum Computations Unitary: **Delayed Measurements**

Principle of Delayed Measurements:

Time **T** comp w/ measurements → Time **O(T)**

unitary comp

Making Quantum Computations Unitary: **Delayed Measurements**

Principle of Delayed Measurements:

Time **T**, Space **S** comp w/ measurements → Time **O(T)**, Space **O(T)** unitary comp

Making Quantum Computations Unitary: Preserving Space

Thm [Fefferman-Remscrim'21, Girish-Raz-Zhan'21]:

Time T, Space S w/ measurements \rightarrow Time Poly(T,2 s), Space O(S) unitary

Thm [Girish-Raz'22]:

Time **T**, Space **S unital comp** → Time **Poly(T)**, Space **O(S log T)** unitary

For intermediate space (**log T << S << T**), existing results for general measurements give huge blowup in time or space

Q: Can (intermediate) measurements be eliminated in a simultaneously space- and time-efficient way?

Def: "Black Box" Purifier:

Transformation must

- (1) Work for any unitary O (but can depend arbitrarily on O)
- (2) Preserve functionality
- (3) Eliminate all non-unitary gates

Observation: Delayed measurements, FR'21, GRZ'21, RS'22, natural quantum analogs of Bennett'89 are all black box

Main Result

Thm: For any "Black Box" purifier:

Time **T**, Space **S** w/ general measurements \rightarrow Time $2^{\Omega(S)}$ or Space $\Omega(T)$

Prior work essentially optimal given current techniques

Note: Unconditional lower bound unlikely:

BQL=BQP → can eliminate measurements efficiently in both space and time

Intuition:

t iterations, O(S) gates / iteration (single qubit reset gate)

For general **O**, only way to perform computation requires either:

- (1) Storing all the $|\phi_i\rangle$ \rightarrow space $\Omega(T)$
- (2) Having the full description of the $|\phi_i\rangle$ baked into the circuit \rightarrow size $2^{\Omega(S)}$

Proof Idea

Observation: Existing quantum space lower bound techniques work for both unitary and non-unitary computation

- → Usually, this is a good thing!
- → We need a technique that works for unitary, but fails for non-unitary

Step 1: Simulation

 $\begin{array}{c} \mathbf{O} & \operatorname{desc}(|\psi_1\rangle) \\ & \operatorname{desc}(|\psi_2\rangle) \\ & \operatorname{desc}(|\psi_3\rangle) \\ & \operatorname{desc}(|\phi_1\rangle) \\ & \operatorname{desc}(|\phi_2\rangle) \\ & \operatorname{desc}(|\phi_3\rangle) \end{array}$

 $\mathbf{S} \quad |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle \\ |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle \\ |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle \\ |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle \\ |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle \\ |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle$

Step 1: Simulation

$$|\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle$$

$$|\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle$$

$$|\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle$$

$$|\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle$$

$$|\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle$$

$$|\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle$$

Step 1: Simulation

$$|\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle$$

$$|\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle$$

$$|\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle$$

$$|\phi_{1}\rangle \leftarrow |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle$$

$$|\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle$$

$$|\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle$$

Step 1: Simulation

$$|\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle$$

$$|\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle$$

$$|\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle$$

$$|0\rangle \rightarrow \qquad |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle$$

$$|\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle$$

$$|\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle$$

Step 1: Simulation

$$|\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle |\psi_{1}\rangle$$

$$|\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle |\psi_{2}\rangle$$

$$|\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle |\psi_{3}\rangle$$

$$|\phi_{2}\rangle \leftarrow |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle |\phi_{1}\rangle$$

$$|\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle |\phi_{2}\rangle$$

$$|\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle |\phi_{3}\rangle$$

Step 2: Simulator's space decreases

Let $\,c_i$ be number of $|\psi_i
angle$ given out, d_i the number of $|\phi_i
angle$

Lemma: (whp, assuming $\#(\mathbf{O}) \ll 2^{s}$)

$$c_i, d_i > 0$$

$$c_i, d_i \ge 0 \qquad d_{i+1} = d_i - c_i$$

Cor: if algorithm ever computes $|\psi_t
angle$, must have

$$d_1, \cdots, d_t \geq 1$$

 \rightarrow space of simulator decreases by $\Omega(tS)$

[Ji-Liu-Song'18]

+ [Z'19]

+ Haar random

Step 3:

Thm: For unitary algorithms, simulator's space + algorithm's space can't decrease

Cor: algorithms space must be $\Omega(tS) = \Omega(T)$

Thanks!