Process for conditioning waste gas

Publication number: DE19611332 **Publication date:**

1997-09-25

Inventor:

KOGELSCHATZ ULRICH DR (CH)

Applicant:

ABB RESEARCH LTD (CH)

Classification:

- International:

B01D51/10; B03C3/013; B01D51/00; B03C3/00; (IPC1-

7): B01D51/10; B01D53/86; B03C3/013; B01D135/50

- European:

B01D51/10; B03C3/013

Application number: DE19961011332 19960322

Priority number(s): DE19961011332 19960322

Report a data error here

Abstract of **DE19611332**

The process for conditioning waste gases comprises reacting SO3 with the waste gas and removing the particles in the waste gas in an electrostatic filter (3). The waste gas is fed through a gas discharge path (4) before it enters the filter (3). The gas discharge path has electrodes arranged across the waste gas stream, which are connected to a high voltage source (8). At least one of the electrodes, preferably high voltage electrodes (6), is provided with a dielectric (8), in which are produced OH radicals from the water vapour in the waste gas, which react with the SO2 in the waste gas to form SO3. The novelty is that the electrodes (5,6) are provided with a catalytic coating (9) on the surfaces facing the waste gas channel (2).

Data supplied from the esp@cenet database - Worldwide

DEUTSCHES

PATENTAMT

21) Aktenzeichen: 2 Anmeldetag:

198 11 332.6 22. 3.96

Offenlegungstag:

25. 9.97

(7) Anmelder:

ABB Research Ltd., Zürich, CH

(74) Vertreter:

Rupprecht, K., Dipl.-Ing., Pat.-Anw., 61476 Kronberg

② Erfinder:

Kogelschatz, Ulrich, Dr., Hausen, CH

Für die Beurteilung der Patentfähigkeit in Betracht zu ziehende Druckschriften:

35 62 127

44 10 213 C1 DE DE 34 30 016 C2 DE 42 09 198 A1 DE 37 23 544 A1 DE 29 19 812 A1 US 50 11 516 35 81 483 US US

- (S) Verfahren zur Konditionierung von Abgesen
- Zur Konditionierung von Abgasen wird bisher Schwefeldioxid durch katalytische Umsetzung in Schwefeltrioxid umgewandelt und dieses in den Abgasstrom eingebrecht. oder diese Umwandlung zwecks Konditionierung erfolgt durch stille elektrische Entladungen. Zur Erhöhung der Abscheideleistung im Filter ist vorgesehen, die Konditionierung durch eine kombinierte Behandlung mit einem Katalysator und zugleich mit stillen elektrischen Entisdungen durchzuführen.

Beschreibung

Technisches Gebiet

Die Erfindung bezieht sich auf ein Verfahren zur Konditionierung von Abgasen gemäß dem Gattungsbegriff des Anspruchs 1.

Ein Verfahren dieser Gattung ist beispielsweise aus der DE-PS 44 10 213 bekannt.

Technologischer Hintergrund und Stand der Technik

Für die Entstaubung von Abgasen werden neben verwendet. Die Abscheideleistung dieser Elektrofilter ist u. a. von der Zusammensetzung der Flugasche abhängig. Bei Flugasche mit geringer elektrischer Leitfähigkeit (spezifischer elektrischer Widerstand > 1011 Ohm cm) nimmt die Abscheideleistung drastisch ab. Der 20 Grund für diese Abnahme der Abscheideleistung liegt darin, daß die auf den Abscheideelektroden im Filter abgeschiedene Staubschicht (Filterkuchen) ein Hindernis für den zwischen Sprüh- und Abscheideelektroden fließenden Strom darstellt. Die Staubschicht wird dann 25 so dick und hat einen derart hohen elektrischen Widerstand, daß an ihr ein merklicher Anteil der Spannung abfällt, so daß Spannungsüberschläge im Filterkuchen auftreten. Diese Spannungsüberschläge führen zu Gasentladungen an den Abscheideelektroden, ein Effekt, 30 der in der Literatur mit Rücksprühen (engl. back corona oder back ionization) bezeichnet wird. Die Folge dieser (unerwünschten) Entladungen ist, daß Ionen mit entgegengesetzter Polarität freigesetzt werden, die sich in Richtung der Sprühelektroden bewegen und die Ladung 15 der entgegenkommenden Staubpartikel erniedrigen. Ein weiterer unerwünschter Effekt ist darin zu sehen, daß durch das Rücksprühen bereits abgeschiedene Staubpartikel aus dem Filterkuchen herausgeschleudert

Die geschilderten Vorgänge treten insbesondere bei der Abgasreinigung von kohlebefeuerten Kraftwerken auf, in denen Kohle mit niedrigem Schwefelgehalt ver-

Um die Abscheideleistung der Abgasreinigungsanla- 45 ge derartiger Kraftwerke zu erhöhen, wird seit langem dem Abgas vor dem Elektrofilter Wasserdampf, Schwefeltrioxid oder Ammoniak zugesetzt. Diese Zusätze in vergleichsweise geringer Dosierung zugesetzt - erhöhen die elektrische Leitfähigkeit der Flugasche um 30 eine oder mehrere Größenordnungen, haben jedoch den Nachteil, daß aufwendige Zusatzeinrichtungen zur Lagerung, Aufbereitung und Einbringen des Zusatzes in das Abgas vor dem Elektrofilter notwendig sind. So wird z. B. in dem Konferenzbericht von William G. Han- 55 kins und Ray E. George A Novel, Energy-efficient SO3 Flue Gas Conditioning Process", 10th Particulate Control Symposium, Washington D.D., April 5-8, 1993, Session B4 (Ash Properties and Particulate Collector Performance) zunächst elementarer Schwefel zu Schwefeldioxid verbrannt und anschließend in einem Katalysator in Schwefeltrioxid umgewandelt, wobei komplizierte Randbedingungen eingehalten werden müssen. Hinzu kommt, daß an einigen Standorten die Konditionierung durch Zusatz von Chemikalien nicht erwünscht oder gar durch gesetzliche Vorschriften nicht gestattet ist.

Bei einem anderen aus der US-A-5,011,516 bekannten Verfahren wird vor dem elektrostatischen Filter ein Teil

des Schwefeldioxid enthaltenden heißen Abgasstroms katalytisch in Schwefeltrioxid umgewandelt und der so behandelte Teilstrom wieder in den Gashauptstrom eingedüst, der vor der Eindüsstelle auf eine niedrigere Temperatur herabgekühlt wurde.

Einen anderen Weg beschreitet das aus der DE-PS 44 10 213 bekannte Verfahren. Anstelle einer katalytischen Umsetzung des Schwefeldioxids in Schwefeltrioxid erfolgt die Umwandlung in der Weise, daß das 10 Abgas vor dem Eintritt in den elektrostatischen Filter durch eine Gasentladungsstrecke mit stillen elektrischen Entladungen geführt wird. In der Entladung werden aus dem im Abgas mitgeführten Wasserdampf OH-Radikale erzeugt, die mit dem im Abgas stets vorhande-Schlauchfiltern hauptsächlich elektrostatische Filter 15 nen Schwefeldioxid zu Schwefeltrioxid reagieren. Dieses wiederum reagiert mit Wasserdampf zu Schwefelsäure, die auf den Partikeln kondensiert und zu einer Erhöhung der elektrischen Leitfähigkeit des auf den Abscheideelektroden des Elektrofilters abgeschiedenen Filterkuchen führt. Auf diese Weise wird die Abscheideleistung im Filter auch bei der Abgasreinigung von Verbrennungsanlagen für schwefelarme Brennstoffe wesentlich verbessert, ohne daß Chemikalien dem Abgas zugesetzt werden müssen.

Kurze Darstellung der Erfindung

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Konditionierung von Abgasen anzugeben, das die Abscheideleistung im nachgeschalteten elektrostatischen Filter auch bei vergleichsweise geringen Schwefelkonzentrationen im Abgas erhöht und darüber hinaus ohne chemische Zusätze auskommt und einfach und wirtschaftlich durchzuführen ist.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß als Masse- und/oder Hochspannungselektroden solche verwendet werden, die auf ihren dem Abgaskanal zugewandten Oberfläche(n) mit einer katalytischen Beschichtung versehen sind.

Der Vorteil der Erfindung ist dabei insbesondere darin zu sehen, daß die durch die stillen elektrischen Entladungen initiierte Umwandlung von Schwefeldioxid zu Schwefeltrioxid durch die Anwesenheit eines Katalysators in unvorhersehbarer Weise gesteigert wird, weil an der Katalysatoroberfläche zusätzlich SO2 zu SO3 oxidiert wird. Die optimale Arbeitstemperatur des Katalysators kann dabei vorteilhaft durch die elektrische Leistung in der stillen elektrischen Entladung eingestellt werden.

Die Erzeugung von OH-Radikalen aus Wasserdampf im Abgas und die anschließende Umwandlung von SO2 in SO3 erfolgt dabei in der Weise, daß in der stillen elektrischen Entladung OH-Radikale entstehen, diese einen Teil des SO2 über die Zwischenstufe HSO3 zu SO3 und schließlich zu H2SO4 umwandeln. H2SO4 kondensiert auf den abzuscheidenden Staub- oder Aschepartikel und führt auf diese Weise zu einer Erhöhung der Leitfähigkeit des Filterkuchens auf den Abscheideelektroden des Elektrofilters.

H₂O in Form von Wasserdampf ist im Abgas reichlich vorhanden (typisch 6-9% und mehr). Der Hauptbestandteil des Abgases ist Stickstoff mit zwischen 70 und 75%. Wird in einem solchen Gasgemisch eine Gasentladung initiiert, so bilden sich in erster Linie positive Ionen N2+ und H2O+. OH-Radikale entstehen durch Dissoziation von Wassermolekülen durch Kollisionen mit Elektronen

$$e + H_2O \rightarrow e + H + OH$$
 (1)

und durch Ionen-Rekombinationen

$$H_2O^+ + H_2O \rightarrow H_3O^+ + OH$$
 (2)

Die am häufigsten vorkommenden Ionenart N_2 + geht dabei nicht verloren, sondern gibt ihre Ladung an Wassermoleküle ab und nimmt damit an der Reaktionskette (2) teil:

$$N_2^+ + H_2O \rightarrow H_2O^+ + N_2$$
 (3)

Zusätzlich zu diesen Reaktionen bilden sich aus den Spezies N₂* und O(¹D) OH-Radikale:

$$N_2^* + H_2O \rightarrow OH + N_2 + O$$
 (4)

$$O(^1D) + H_2O \rightarrow OH + OH$$
 (5)

Reaktionen von OH-Radikalen und SO₂ führen in einer sehr schnellen Dreierstoßreaktion zu HSO₃:

$$SO_2 + OH + M \rightarrow HSO_3 + M$$
 (6)

worin M einen dritten Reaktionspartner bedeutet. Dieser kann irgendein Gasmolekül im Gasgemisch oder irgendeine Oberfläche sein, z. B. ein Flugaschepartikel sein. HSO₃ wird durch folgende Reaktionen sehr schnell in SO₃ umgewandelt:

$$HSO_3 + OH \rightarrow SO_3 + H_2O$$
 (7)

$$HSO_3 + O_2 \rightarrow SO_3 + H_2O$$
 (8)

Das so gebildete HSO₃ führt bei den im Abgas herrschenden Bedingungen unmittelbar zur Bildung von H₂SO₄:

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (9).

Kurze Beschreibung der Zeichnung

In der Zeichnung sind Ausführungsbeispiele der Erfindung schematisch dargestellt, und zwar zeigt:

Fig. 1 einen stark vereinfachten Längsschnitt durch einen Abgaskanal mit integrierter Entladungsstrecke, wobei Masse- und Hochspannungselektroden mit einem Dielektrikum und einer darüberliegenden Katalysatorschicht beschichtet sind,

Fig. 2 einen vereinfachten Querschnitt durch die Entladungsstrecke gemäß Fig. 1.

Wege zur Ausführung der Erfindung

In Fig. 1 der Zeichnung gelang mit Partikeln beladenes Abgas aus einer Verbremungsanlage 1, z. B. ein kohlebefeuerter Kessel eines Kraftwerks, über eine Abgasleitung 2 zu einem elektrostatischen Filter 3. In der Abgasleitung 2 ist eine generell mit der Bezugsziffer 4 bezeichnete Entladungsstrecke vorgesehen, deren Aufbau aus Fig. 2 hervorgeht.

Quer zur Strömungsrichtung des Abgases sind im Beispielsfall abwechselnd drei Hochspannungselektroden 5 und zwei Masseelektroden 6 eingebaut. In der 65 Praxis ist die Anzahl der Elektroden erheblich größer. Alle Elektroden 5, 6 weisen einen metallischen Kern auf und sind mit einem Dielektrikum 7 beschichtet. Die Elektroden können wie in Fig. 1 dargestelk kreisrunden Querschnitt haben. Sie können jedoch auch plattenförmig sein, wobei dann die Platten parallel zur Strömungsrichtung des Abgases verlaufen. Das Dielektrikum 7 besteht aus Glas, Quarz, Email, Keramik oder einem gefüllten Kunststoff, also Materialien, wie sie auch beim Bau von Ozonerzeugern seit vielen Jahren verwendet werden. Weil es ausreicht, wenn nur ein Elektrodentyp mit einem Dielektrikum 7 beschichtet ist. Alternativ können auch nur die Hochspannungselektroden 5 oder die Masseelektroden 6 mit einem Dielektrikum versehen sein.

Der Abstand zwischen benachbarten Elektroden beträgt wenige Millimeter bis 50 mm. Die Masseelektro-15 den 6 sind jeweils parallelgeschaltet und mit dem einen auf Erdpotential liegenden Anschluß einer Hochspannungsquelle 8 verbunden. Die Abgasleitung liegt ebenfalls auf Erdpotential. Die Hochspannungselektroden 5 sind gleichfalls parallelgeschaltet und an den anderen Pol der Hochspannungsquelle 8 angeschlossen. Die Hochspannungsquelle 8 liefert eine Wechselspannung, deren Spannung so hoch ist, daß sich zwischen den Masse- und Hochspannungselektroden 6 bzw. 5 stille elektrische Entladungen ausbilden, also typischerweise im Bereich 10-100 kV. Die Frequenz der Wechselspannungsquelle liegt vorzugsweise im Bereich zwischen 10 kHz und einigen 10 MHz, einem Frequenzbereich, den moderne Schaltnetzteile (engl. switch-mode power supply) liefern können.

Bei einer praktischen Realisierung der Erfindung ist die Entladungsstrecke 4 vorzugsweise als separate Baueinheit ausgebildet und kann leicht in den Abgaskanal eingebaut werden.

Erfindungsgemäß sind nun die Elektroden 5,6 außen 35 mit einer Katalysatorschicht 9 versehen. Weil das Katalysatormaterial selbst dielektrische Eigenschaften aufweist, kann dabei bei den Elektroden das eigentliche Dielektrikum 7 entfallen.

Die Katalysatorschicht 9 besteht im wesentlichen aus Vanadiumpentoxid. Generell können Katalysatormaterialien verwendet werden, die unter Abgasbedingungen Schwefeldioxid in Schwefeltrioxid umwandeln, z. B. solche, wie sie auch in der eingangs genannten US-A-5,011,516 verwendet werden.

Im Betrieb und bei eingeschalteter Hochspannung laufen bei allen Ausführungsformen die eingangs anhand von Summenreaktionen geschilderten Vorgänge ab. Der im Abgas stets vorhandene Wasserdampf reagiert — initiiert durch die Entladungen in der Entlasso dungsstrecke 4 — mit dem ebenfalls vorhandenen Schwefeldioxid zu Schwefeltrioxid und schließlich zu Schwefelsäure, die auf den Staubpartikel kondensiert und letztendlich die Leitfähigkeit des Filterkuchens erhöht, der sich auf den Abscheideelektroden des elektrosstatischen Filters 2 bildet.

Bezugszeichenliste

- 1 Verbrennungsanlage
- 60 2 Abgasleitung
 - 3 elektrostatisches Filter
 - 5 Hochspannungselektroden
 - 6 Masseelektroden
 - 7 Dielektrikum
- 8 Hochspannungsquelle
- 9 Kat-Schicht auf 5 bzw. 6

Patentansprüche

1. Verfahren zur Konditionierung von Abgasen durch Einwirken von Schwefeltrioxid auf das Abgas und anschließende Abscheidung der im Abgas 5 mitgeführten Partikel in einem elektrostatischen Filter (3), wobei das Abgas vor dem Eintritt in den elektrostatischen Filter (3) durch eine Gasentladungsstrecke (4) mit stillen elektrischen Entladungen geführt wird, welche Gasentladungsstrecke 10 quer zum Abgasstrom angeordneten stab- oder gitterförmige Hochspannungs- (5, 5a, 10) und Masseelektroden (6; 9a, 9b) aufweist, die an eine Hochspannungsquelle (8) angeschlossen sind, wobei mindestens eine der Elektrodenarten, vorzugsweise die 15 Hochspannungselektroden, mit einem Dielektrikum (8) versehen sind, in welcher Gasentladungsstrecke im wesentlichen aus dem im Abgas mitgeführten Wasserdampf OH-Radikale erzeugt werden, die mit dem im Abgas stets vorhandenen 20 Schwefeldioxid zu Schwefeltrioxid reagieren, dadurch gekennzeichnet, daß als Masse- und/oder Hochspannungselektroden (6, 5) solche verwendet werden, die auf ihren dem Abgaskanal (2) zugewandten Oberfläche(n) mit einer katalytischen Be- 25 schichtung (9) versehen sind. 2 Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Katalysator auf der Basis von Vanadiumpentoxid verwendet wird.

Hierzu 1 Seite(n) Zeichnungen

30

55

60

65

- Leerseite -

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 196 11 332 A1

25. September 1997

Fig.2

702 039/381