Chapter 2: The Real Number System

Author: Meng-Gen Tsai Email: plover@gmail.com

Problem 2.1. *Show that* $1 \in P$.

Proof. By the field axioms,

- (1) $1 \in \mathbb{R}$ such that $1 \neq 0$.
- $(2) -1 \in \mathbb{R}.$
- (3) $(-1) \cdot (-1) = 1$.

By the axioms of order, 1=0 or $1\in P$ or $-1\in P$. Consider three possible cases,

- (1) 1 = 0, contrary to the field axioms $1 \neq 0$.
- (2) $1 \in P$.
- (3) $-1 \in P$. By the axioms of order, $(-1)(-1) \in P$. Since (-1)(-1) = 1 by the field axioms, $1 \in P$. By the axioms of order, $-1 \notin P$, contrary to $-1 \in P$.

By (1)(2)(3), $1 \in P$. \square

Applying the similar argument to $\sqrt{-1}$, we get $\sqrt{-1} \notin \mathbb{R}$ as our expectation.