Black Hole fusion made easy

Roberto Emparan
ICREA & UBarcelona

w/ Marina Martínez

CQG 33, 155003 (2016)

arXiv:1603.00712

Iberian Relativity Meeting ERI 2016 Lisboa

What this talk is all about

$$ds^{2} = -\left(1 - \frac{2GM}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{2GM}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

13 Jan 1916

Frankfurt 9 Oct 1873 Potsdam 11 May 1916

"mathematics, physics, and astronomy constitute one knowledge, ... which is only comprehended as a perfect whole"

In <u>1900</u> he put astronomical bounds on the curvature radius of space
64 light-years if hyperbolic
1600 light-years if elliptic

1914: volunteers for war

Belgium: weather station

France, Russia: artillery trajectories

March 1916: sent back home, ill with pemphigus—dies in May

K Schwarzschild to A Einstein (letter dated **22 December 1915**)

"I made at once by good luck a search for a full solution. A not too difficult calculation gave the following result: ..."

$$ds^{2} = \left(1 - \frac{\gamma}{R}\right)dt^{2} - \frac{dR^{2}}{1 - \frac{\gamma}{R}} - R^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

A Einstein to K Schwarzschild (early **January 1915**)

"I had not expected that one could formulate the exact solution of the problem in such a simple way. Next Thursday I shall present the work to the Academy"

Two more articles before he dies:

GR: interior solution for star

Quantum Theory

A Einstein to M Besso (14 May 1916)

"Schwarzschild is a real loss. He would have been a gem, had he been as decent as he was clever"

Schwarzschild's solution has been rediscovered many times over

J Droste May 1916 same coordinates

(part of PhD thesis under Lorentz – first worked on 1913 *Entwurf* theory)

P Painlevé 1921, A Gullstrand 1922

P-G coordinates (didn't realize it was the same as Schw's)

and others

Long, complex, painful path to correct interpretation

Black holes exist in Nature

Governed by conceptually simple and beautiful equations

Governed by conceptually simple and beautiful equations

$$R_{\mu\nu}=0$$

but exceedingly hard to solve

Merger is most complicated of all

Involves non-linearity of Einstein's equations at its most fiendish

Merger is most complicated of all

Involves non-linearity of Einstein's equations at its most fiendish

or maybe not—not always

This is what you'd see (lensing)

Not a black hole, but its shadow

What is a black hole?

Spacetime region from which not even light can ever escape

Event Horizon

Collapsed Star

BLACK HOLE

Null hypersurface

3-dimensional in 4-dimensional spacetime

Event horizon is found by tracing a family of light rays in a given spacetime

"pants" surface

head-on (axisymmetric)

equal masses

Cover of *Science*, November 10, 1995

Binary Black Hole Grand Challenge Alliance (Matzner et al)

Owen et al, Phys.Rev.Lett. 106 (2011) 151101

Cohen et al, Phys.Rev. D85 (2012) 024031

Surely the fusion of horizons can only be captured with supercomputers

Surely the fusion of horizons can only be captured with supercomputers

or so it'd seem

∃ limiting (but realistic) instance where horizon fusion can be described exactly

It involves only elementary ideas and techniques

Equivalence Principle (1907)

Schwarzschild solution & Null geodesics (1916)

Notion of Event Horizon (1950s/1960s)

Extreme-Mass-Ratio (EMR) merger

EMR mergers in the Universe

$$\frac{m}{M} \simeq \frac{1}{30}$$
 (or even less) may be detected with LIGO

$$\frac{m}{M} \simeq 10^{-4} - 10^{-8}$$
 or less may be detected with LISA

Fusion of horizons involves scales $\sim m$

m finite

Very large black hole / Very close to the horizon

Very close to a Black Hole

Horizon well approximated by null plane in Minkowski space

This follows from the Equivalence Principle

At short enough scales, geometry is equivalent to flat Minkowski space

Curvature effects become small, but horizon remains

Locally gravity is equivalent to acceleration

Locally black hole horizon is equivalent to acceleration horizon

Falling into very large bh = crossing a null plane in Minkowski space

Small Black Hole falling into a Large Black Hole

 $M \to \infty$

m fixed

Both are made of lightrays

in rest frame of small black hole

Somehow, lightrays must merge to form a "pants-like" surface

"oversized leg"

"thin leg"

How?

EH is a family of lightrays in spacetime

Curvature of small black hole is not zero: Schwarzschild solution with mass m

To find the "pants" surface:

Trace a family of null geodesics in the

Schwarzschild solution

that approach a null plane at infinity

All the equations you need to solve

$$t_q(r) = \int \frac{r^3 dr}{(r-1)\sqrt{r(r^3 - q^2(r-1))}}$$

$$\phi_q(r) = \int \frac{qdr}{\sqrt{r(r^3 - q^2(r-1))}}$$

with appropriate final conditions:

null plane at infinity

q = impact parameter of lightrays at infinity

All the equations you need to solve

$$t_q(r) = \int \frac{r^3 dr}{(r-1)\sqrt{r(r^3 - q^2(r-1))}}$$

$$\phi_q(r) = \int \frac{qdr}{\sqrt{r(r^3 - q^2(r-1))}}$$

elliptic integrals

not very nice, but explicit

\mathcal{Z} "Pants" surface z \boldsymbol{x} small black hole big black hole \boldsymbol{x}

Sequence of constant-time slices

Sequence of constant-time slices

 r_0 = small horizon radius

Sequence of constant-time slices

made with *Mathematica* on a laptop computer

Pinch-on: Criticality

Pinch-on: Criticality

Opening angles of cones $\sim |t|^{1/2}$

same behavior in 5D: universal?

Pinch-on: Criticality

Throat growth $\sim t$

same behavior in 5D: universal?

Gravitational waves?

When $M \rightarrow \infty$ the radiation zone is pushed out to infinity

No gravitational waves in this region

GWs reappear if we introduce corrections for small $\frac{m}{M}$

Change Schwarzschild → Kerr

Fusion of any Black Hole binary in the Universe

to leading order in $\frac{m}{M} \ll 1$

Final remarks

Can we *observe* this?

Maybe not

Then, what is it good for?

Fusion of Black Hole Event Horizons is a signature phenomenon of General Relativity

Equivalence Principle allows to capture and *understand* it easily in a (realistic) limit

Exact result:

Benchmark for detailed numerical studies

• First step in expansion in $\frac{m}{M} \ll 1$ (matched asymptotic expansion)

Equivalence Principle magic: Get 2 black holes out of a geometry with only 1

This could have been done (at least) 50 years ago!

