# Deep Learning

Week 2 Session

01

Deep Learning Structure

02

Optimization

03

BackPropagation

# Deep LearningStructure

Week 2 & Week 3 내용 요약



Week 2 & Week 3 내용 요약



# Deep Learning Graph Representation

Input Layer : 데이터 입력 층

Hidden Layer : 은닉 층

Output Layer : 데이터 출력 층

Connection : weight를 반영

$$f^{(n)}\left(f^{n-1}\left(\dots\left(f^{2}(f^{1}(x))\right)\right)\right) = f(x)$$
$$y \approx f^{*}(x) = \hat{y}$$



#### Neuron Importance Neuron Interpretation



01

#### Non-Linearity

$$y = f(x; \theta, w) = \phi(x; \theta)^T w$$

Deep Learning : Finding  $\phi(x;\theta)$  (linear or non-linear) with proper parameter  $\theta$ , w





sigmoid = 
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

01

#### Non-Linearity

$$y = f(x; \theta, w) = \phi(x; \theta)^T w$$

Non-linear  $\phi(x; \theta)$ 

Convexity를 포기!

## Linear



### Nonlinear



#### **Hidden Layer Specification**

$$x \to f(W^T x + b)$$



#### **Activation Function**

Neuro-Science 개념에서 착안

Neuron이 다른 Neuron으로 신호를 변환하여 보내는 것과 비슷한 개념



A cartoon drawing of a biological neuron (left) and its mathematical model (right).



# Activation Function

Layer별로 다른 Activation Function

나타내고 싶은 형태에 따라, 상황에 따라 선택!

| Name                            | Formula                                                                | Derivative                                                                                                                                                       | Graph                   | Range  |
|---------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|
| sigmoid<br>(logistic function)  | $\sigma(a) = \frac{1}{1 + e^{-a}}$                                     | $\frac{\partial \sigma(a)}{\partial a} = \sigma(a)(1 - \sigma(a))$                                                                                               | 0.5                     | (0,1)  |
| TanH<br>(hyperbolic tangent)    | $\tanh(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$                         | $\frac{\partial \tanh(a)}{\partial a} = \frac{4}{(e^a + e^{-a})^2}$                                                                                              | 0 0                     | (-1,1) |
| ReLu<br>(rectified linear unit) | relu(a) = max(0,a)                                                     | $\frac{\partial \operatorname{relu}(a)}{\partial a} = \begin{cases} 0, & \text{if } a \leq 0 \\ 1, & \text{if } a > 0 \end{cases}$                               | 0 0                     | (0,∞)  |
| softmax                         | $\sigma_{\mathbf{i}}(\boldsymbol{a}) = \frac{e^{a_i}}{\sum_j e^{a_j}}$ | $rac{\partial \sigma_{f i}(m{a})}{\partial a_j} = \sigma_{m i}(m{a}) \left(\delta_{ij} - \sigma_{\!j}(m{a}) ight)$ Where $\delta_{ij}$ is 1 if i=j, 0 otherwise | different<br>every time | (0,1)  |

Activation Function

Layer별로 다른 Activation Function

나타내고 싶은 형태에 따라, 상황에 따라 선택!

### Hidden Layer

#### ReLU를 주로 사용!



1 Sigmoid s(z) Derivative s'(z) 0.6 0.4 0.2 0.2 4 6 Weighted sum

- 1. Sparsity (computationally efficient) (Dropout과 비슷한 효과)
- 2. 미분 계산 빨라짐 (computationally efficient) (fast convergence)
- 3. Vanishing Gradient Exploding Gradient 문제 해결 "Deep" Learning

## Output Layer

출력하려는 Output의 형태에 따라!

Regression: ReLU

Binary Classification: Tanh / Sigmoid

Multiple Classification : Softmax

Layer 1: 
$$h^{(1)} = g^{(1)}(W^{(1)T}x + b^{(1)})$$

Layer 2: 
$$h^{(2)} = g^{(2)}(W^{(2)T}h^{(1)} + b^{(2)})$$

#### Deep Learning Architecture Representation

Layer별로 다른 Activation Function 나타내고 싶은 형태에 따라, 상황에 따라 선택!

$$f^{(n)}\left(f^{n-1}\left(...\left(f^{2}(f^{1}(x))\right)\right)\right) = f(x) = y$$

Universal Approximation Theorem (non-affine activation, arbitrary depth, constrained width). Let  $\mathcal{X}$  be a compact subset of  $\mathbb{R}^d$ . Let  $\sigma:\mathbb{R}\to\mathbb{R}$  be any non-affine continuous function which is continuously differentiable at at-least one point, with non-zero derivative at that point. Let  $\mathcal{N}_{d,D:d+D+2}^{\sigma}$  denote the space of feed-forward neural networks with d input neurons, D output neurons, and an arbitrary number of hidden layers each with d+D+2 neurons, such that every hidden neuron has activation function  $\sigma$  and every output neuron has the identity as its activation function, with input layer  $\phi$ , and output layer  $\rho$ . Then given any  $\varepsilon>0$  and any  $f\in C(\mathcal{X},\mathbb{R}^D)$ , there exists  $\hat{f}\in\mathcal{N}_{d,D:d+D+2}^{\sigma}$  such that

$$\sup_{x\in\mathcal{X}}\left\|\hat{f}\left(x
ight)-f(x)
ight\|$$

In other words,  $\mathcal N$  is dense in  $C(\mathcal X;\mathbb R^D)$  with respect to the uniform topology. $^{[disambiguation\ needed]}$ 

# Deep Learning Architecture Function Existence

Following the Universal Approximation Theorem

# Deep Learning Architecture Function Implementation

There are many limitations

#### 존재성의 보장은 가능! But...

- 1. 최적화 알고리즘 => 최적의 파라미터를 찾지 못할수도!
  - 2. Over-fitting : 다른 알고리즘
- 3. Theorem 자체가 깊이에 관한 조건을 제시해주지 않는다!
  => 효율성의 문제

#### Residual Network



Deep Learning Architecture

ResNet

Fully connected Layer is not necessary

# Optimization



#### Overview

# Second-order Numerical Optimization

# First-order Numerical Optimization

Newton's method

**Gradient Descent** 

| 항목           | Newton's method                                                    | Gradient descent                               |  |
|--------------|--------------------------------------------------------------------|------------------------------------------------|--|
| Memory       | $O(n^2)(n 	imes n$ $	extstyle   	extstyle hessian matrix) storage$ | O(n)( $n$ -dimensional gradient) storage       |  |
| Computation  | $O(n^3)$ flops $(n 	imes n$ 의 선형시스템 계산)                            | O(n) flops( $n$ -dimensional vector의<br>선형 결합) |  |
| Backtracking | O(n)                                                               | O(n)                                           |  |
| Conditioning | Affine invariant 등, conditioning에 크게 영<br>향받지 않음                   | 큰 영향을 받을 가능성 존재                                |  |
| Fragility    | bugs나 numerical errors에 민감                                         | newton's method보다 비교적 강건                       |  |



#### **Gradient Descent**

Deep Learning Optimization method

$$heta = heta - \eta \cdot \overbrace{
abla_{ heta} J( heta; \, x, \, y)}^{ ext{Backpropagation}}$$

#### Types of critical points





# Gradient descent algorithm

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

$$(\text{for } j = 1 \text{ and } j = 0)$$

}

#### **Gradient Descent**

Deep Learning Optimization method





$$x^{(k)} = x^{(k-1)} - t_k \nabla f(x^{(k-1)}), k = 1, 2, 3, ..., t_k > 0$$

#### Interpretation

$$f(y)pprox f(x)+
abla f(x)^T(y-x)+rac{1}{2}
abla^2 f(x)\parallel y-x\parallel_2^2$$

$$f(y)pprox f(x) + 
abla f(x)^T(y-x) + rac{1}{2t}\parallel y-x\parallel_2^2$$
 Linear approximation of f

**Proximity Term** 

fixed step size  $t \leq 1/L$ 

1/t를 eigenvalue로 갖는 hessian matrix를 2차항의 계수로 갖는 2차식으로 근사

$$\min_{y} f(x) + \nabla f(x)^{T}(y-x) + \frac{1}{2t} ||y-x||_{2}^{2} \longrightarrow x^{+} = x - t \nabla f(x) \quad \text{when } \nabla f(y) = 0$$

$$oldsymbol{x}^+ = oldsymbol{x} - oldsymbol{t} oldsymbol{
abla} f(oldsymbol{x})$$
 when  $extstyle extstyle f(oldsymbol{y}) = oldsymbol{t} oldsymbol{x}$ 

$$x^+ = \operatorname*{argmin}_y f(x) + 
abla f(x)^T (y-x) + rac{1}{2t} \parallel y-x \parallel_2^2$$

#### Convergence

f is convex, differentiable, and Lipschitz continuous

**Gradient Descent** 

$$f(x^{(k)}) - f^* \leq rac{\|x^{(0)} - x^*\|_2^2}{2tk}$$

convergence rate O(1/k)

when  $f(x^{(k)}) - f^* < \epsilon$ 

 $O(1/\epsilon)$  Iterations needed

**Convergence Analysis** 



**Algorithm 8.1** Stochastic gradient descent (SGD) update at training iteration k

**Require:** Learning rate  $\epsilon_k$ .

**Require:** Initial parameter  $\theta$ 

while stopping criterion not met do

Sample a minibatch of m examples from the training set  $\{x^{(1)}, \ldots, x^{(m)}\}$  with corresponding targets  $y^{(i)}$ .

Compute gradient estimate:  $\hat{\boldsymbol{g}} \leftarrow +\frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ 

Apply update:  $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \epsilon \hat{\boldsymbol{g}}$ 

end while

$$\epsilon_k = (1 - \alpha)\epsilon_0 + \alpha\epsilon_{\tau}$$
 iteration  $\tau$ 

$$\alpha = \frac{k}{\tau}$$

#### **Stochastic Gradient Descent**

Deep Learning Optimization method

$$\sum_{k=1}^\infty \epsilon_k = \infty \qquad \sum_{k=1}^\infty \epsilon_k^2 < \infty \qquad \longrightarrow \qquad \text{Sufficient Condition}$$
 for Convergence

$$ext{SGD Cycle rule}: \quad x^{(k+1)} = x^{(k)} - t_k \cdot \sum_{i=1}^m 
abla f_i(x^{(k+i-1)})$$

$$ext{GD Batch}: \quad x^{(k+m)} = x^{(k)} - t_k \cdot \sum_{i=1}^m 
abla f_i(x^{(k)})$$

Difference : 
$$\sum_{i=1}^m [
abla f_i(x^{(k+i-1)}) - 
abla f_i(x^{(k)})]$$

If  $f_i$  is Lipschitz continuous,

#### Stochastic Gradient Descent

I.e.  $f_i$  가 x에 따라 크게 변하지 않는다면,

**Convergence Analysis** 

#### SGD도 GD처럼 Convergence

경험적으로, SGD는 최적점 근처에 다다랐을 때, 잘 수렴하지 않는 단점!

Stochastic Gradient Descent



**Gradient Descent** 



#### **Stochastic Gradient Descent**

Deep Learning Optimization method



#### SGD 장/단점

- 1. 장점
- Local minimum에 빠질 가능성 적음
- 걸리는 시간 단축, 빠른 수렴
- 2. 단점
- global minimum을 못 찾을수도..
- GPU 사용 제한 (하나씩 수행)

# Homework 표에 나타난 Optimizer들이 어떤 원리로 작동하는지 조사해주세요! SGD Adaptive learning rate Momentum based gradient AdaGrad Momentum RMSProp AdaDelta Nesterov Adam AMSGrad Nadam AdaMax



Learning rate Scheduler



Adaptive Learning rate Selection

Deep Learning Optimization

$$lr_{\mathrm{epoch}} = lr_{\mathrm{initial}} * Lambda(epoch)$$

# 0.0008 - 0.0004 - 0.0002 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0

#### MultiplicativeLR

$$lr_{\text{epoch}} = lr_{\text{epoch-1}} * Lambda(epoch)$$



### **StepLR**

$$lr_{
m epoch} = \left\{ egin{aligned} Gamma * lr_{
m epoch - 1}, & ext{if epoch \% step\_size} = 0 \ lr_{
m epoch - 1}, & ext{otherwise} \end{aligned} 
ight.$$



Learning rate Scheduler



Adaptive Learning rate Selection

# BackPropagation



#### Overview



Backpropagation(역전파)



## Backpropagation(역전파)

$$z_{11} = egin{bmatrix} x_1 \ x_2 \end{bmatrix} imes egin{bmatrix} w_{11}^0 & w_{21}^0 \end{bmatrix}$$



$$z_{10} = x_1 w_{10}^0 + x_2 w_{20}^0 = (0.2 \times 0.1) + (0.5 \times 0.3) = 0.02 + 0.15 = 0.17$$

 $z_{11} = x_1 w_{11}^0 + x_2 w_{21}^0 = (0.2 \times 0.2) + (0.5 \times 0.1) = 0.04 + 0.05 = 0.09$ 

# Backpropagation(역전파)

$$a_{10} = \sigma(z_{10}) = 0.54$$

$$a_{11}=\sigma(z_{11})=0.52$$



## Backpropagation(역전파)

$$z_{21} = 0.43$$

$$a_{21} = 0.61$$

$$E = \frac{1}{2} \sum (t_i - y_i)^2$$

$$E=rac{1}{2}((t_1-a_{20})^2+(t_2-a_{21})^2)$$

$$rac{\partial E}{\partial w_{10}^1} = rac{\partial E}{\partial a_{20}} rac{\partial a_{20}}{\partial z_{20}} rac{\partial z_{20}}{\partial w_{10}^1}$$

$$\frac{\partial E}{\partial a_{20}} = (t_1 - a_{20}) * -1 + 0 = (0.2 - 0.57) \times -1 = 0.37$$

$$E = \frac{1}{2} \sum_{i=1}^{n} (t_i - y_i)^2$$

$$E=rac{1}{2}((t_1-a_{20})^2+(t_2-a_{21})^2)$$

$$rac{\partial E}{\partial w_{10}^1} = rac{\partial E}{\partial a_{20}} rac{\partial a_{20}}{\partial z_{20}} rac{\partial z_{20}}{\partial w_{10}^1}$$

$$\frac{\partial a_{20}}{\partial z_{20}} = a_{20} \times (1 - a_{20}) = 0.57 \times (1 - 0.57) = 0.25$$

$$E = \frac{1}{2} \sum_{i=1}^{n} (t_i - y_i)^2$$

$$E = \frac{1}{2}((t_1 - a_{20})^2 + (t_2 - a_{21})^2)$$

$$rac{\partial E}{\partial w_{10}^1} = rac{\partial E}{\partial a_{20}} rac{\partial a_{20}}{\partial z_{20}} rac{\partial z_{20}}{\partial w_{10}^1}$$

$$\frac{\partial z_{20}}{\partial w_{10}^1} = a_{10} + 0 = 0.54$$

$$E = \frac{1}{2} \sum_{i=1}^{n} (t_i - y_i)^2$$

$$E = \frac{1}{2}((t_1 - a_{20})^2 + (t_2 - a_{21})^2)$$

$$rac{\partial E}{\partial w_{10}^1} = rac{\partial E}{\partial a_{20}} rac{\partial a_{20}}{\partial z_{20}} rac{\partial z_{20}}{\partial w_{10}^1}$$

$$\frac{\partial E}{\partial w_{10}^1} = 0.37 \times 0.25 \times 0.54 = 0.049$$

$$E = \frac{1}{2} \sum (t_i - y_i)^2$$



By the Gradient Descent,

$$w_{10}^{1+} = w_{10}^1 - (L*rac{\partial E}{\partial w_{10}^1}) = 0.4 - (0.3 imes 0.049) = 0.3853$$



$$= -(0.2-0.57) \times 0.57 \times (1-0.57) \times 0.4$$

Deep Learning Architecture

= 0.03627



$$rac{\partial E_t}{\partial w_{10}^0} = (rac{\partial E_1}{\partial a_{10}} + ar{rac{\partial E_2}{\partial a_{10}}}) rac{\partial a_{10}}{\partial z_{10}} rac{\partial z_{10}}{\partial w_{10}^0}$$

$$rac{\partial E_2}{\partial a_{10}} = rac{\partial E_2}{\partial a_{21}} rac{\partial a_{21}}{\partial z_{21}} rac{\partial z_{21}}{\partial a_{10}}$$

$$= -(t_2 - a_{21}) imes a_{21} imes (1 - a_{21}) imes w_{11}^1$$

$$= -(0.7-0.61)\times0.61\times(1-0.61)\times0.5$$

Deep Learning Architecture

=-0.0107



$$\frac{\partial E_t}{\partial w_{10}^0} = (\frac{\partial E_1}{\partial a_{10}} + \frac{\partial E_2}{\partial a_{10}}) \frac{\partial a_{10}}{\partial z_{10}} \frac{\partial z_{10}}{\partial w_{10}^0}$$

$$rac{\partial E_t}{\partial w_{10}^0} = (rac{\partial E_1}{\partial a_{10}} + rac{\partial E_2}{\partial a_{10}}) rac{\partial a_{10}}{\partial z_{10}} rac{\partial z_{10}}{\partial w_{10}^0}$$

$$=(0.03627+(-0.0107))\times0.2484\times0.54$$

= 0.0034



$$w_{10}^{0+} = w_{10}^0 - (L*rac{\partial E_t}{\partial w_{10}^0}) = 0.1 - (0.3 imes 0.0034) = 0.09897$$

Deep Learning Architecture

$$\nabla_{\mathbf{x}} z = \left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)^{\top} \nabla_{\mathbf{y}} z_{i}$$

$$\nabla_{\mathbf{x}} z = \sum_{j} (\nabla_{\mathbf{x}} Y_{j}) \frac{\partial z}{\partial Y_{j}}$$



$$\frac{\partial E}{\partial w_{ji}} = \sum_{n} \frac{\partial E_{n}}{\partial w_{ji}}$$

$$w_{ji}^{+} = w_{ji} - \gamma \frac{\partial E}{\partial w_{ji}}$$

- Optimizer
- Learning rate
- Loss function

Deep Learning Architecture

#### **XOR Problem**



Input Space

Projected Space



#