SOLUCION EXAMEN 1

Ejercicio 1 – Figura 1

Elemento e₁

Matriz de rigidez:

0.3	-0.64
1.0	-1.3
-1.3	1.94
	0.5

Elemento e₂

Matriz de rigidez:

	_	
0.7462	-0.5538	-0.1923
-0.5538	0.7462	-0.1923
-0.1923	-0.1923	0.3846

Vector de cargas:

21.6667	
21.6667	
21.6667	

Tempe	eratura
T ₁	100.0
T ₂	100.0
T ₃	153.9501
T ₄	181.7922
T ₅	162.1104

Elemento e₃

Matriz de rigidez:

	_	
0.34	-0.64	0.3
-0.64	1.94	-1.3
0.3	-1.3	1.0

-1.667

-1.667
-1.667
8.333

Vector de cargas:

Matriz global

1.0862	-0.5538	0.0	0.1077	-0.64
-0.5538	1.0862	-0.64	0.1077	0.0
0.0	-0.64	1.94	-1.3	0.0
0.1077	0.1077	-1.3	2.3846	-1.3
-0.64	0.0	0.0	-1.3	1.94

Vector de cargas:

30.0
20.0
-1.6667
44.1643
14.1643

Temperatura y flujo de calor en (0.5; 0.5)

$$N_1(x, y) = 1 - x - 0.3846y$$

$$N_2(x, y) = x - 0.3846y$$

$$N_3(x, y) = 0.7692y$$

 $T(0.5,0.5) = N_1(0.5,0.5)T_1 + N_2(0.5,0.5)T_2 + N_3(0.5,0.5)T_4$

T(0.5,0.5) = 0.3077 * 100 + 0.3077 * 100 + 0.3846 * 181.7922 =**131.4585**

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_1 + \frac{\partial N_2}{\partial x}T_2 + \frac{\partial N_3}{\partial x}T_4\right) = -1(-1*100 + 1*100 + 0*181.7922) = \mathbf{0}$$

$$q_y = -k\left(\frac{\partial N_1}{\partial y}T_1 + \frac{\partial N_2}{\partial y}T_2 + \frac{\partial N_3}{\partial y}T_4\right) = -1(-0.3846*100 - 0.3846*100 + 0.7692*181.7922) = -\mathbf{62.9171}$$

Elemento e₁

Matriz de rigidez:

1.0	-0.5	-0.5
-0.5	0.5	0.0
-0.5	0.0	0.5

Vector de cargas:

16.667
16.667
16.667

Elemento e₂

Matriz de rigidez:

1	0.5	-0.5	0
	-0.5	1.0	-0.5
	0	-0.5	0.5

Vector de cargas:

6.667	ı
6.667	l
16.667	l

T ₁	100.0
T ₂	100.0
T ₃	157.6348
T ₄	173.1605
T ₅	175.6890

Elemento e₃

Matriz de rigidez:

0.5667	-0.8333	0.2667
-0.8333	1.6667	-0.8333
0.2667	-0.8333	0.5667

Vector de cargas:

5.0
10.8310
10.8310

Matriz global

1.0 -0.5 0.0

1.0	-0.5	0.0	0.0	-0.5
-0.5	1.0	-0.5	0.0	0.0
0.0	-0.5	1.5667	-0.833	-0.233
0.0	0.0	-0.833	1.667	-0.833
-0.5	0.0	-0.233	-0.833	1.5667

Vector de cargas:

16.667
23.333
11.667
10.8310
44.1643

Temperatura y flujo de calor en (0.5; 0.5)

$$N_1(x, y) = 1 - x - y$$

$$N_2(x,y) = x$$

$$N_3(x,y) = y$$

$$T(0.5,0.5) = N_1(0.5,0.5)T_1 + N_2(0.5,0.5)T_2 + N_3(0.5,0.5)T_5$$

$$T(0.5,0.5) = 0 * 100 + 0.5 * 100 + 0.5 * 175.6890 =$$
137.8445

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_1 + \frac{\partial N_2}{\partial x}T_2 + \frac{\partial N_3}{\partial x}T_4\right) = -1(-1*100 + 1*100 + 0*181.7922) = \mathbf{0}$$

$$q_y = -k\left(\frac{\partial N_1}{\partial y}T_1 + \frac{\partial N_2}{\partial y}T_2 + \frac{\partial N_3}{\partial y}T_4\right) = -1(-0.3846*100 - 0.3846*100 + 0.7692*181.7922) = -62.9171$$

Corroboración elemento e_2 : (misma temperatura en el nodo, distinto flujo por discontinuidad)

$$N_1(x, y) = 1 - y$$

$$N_2(x, y) = -1 + x + y$$

$$N_3(x,y) = 1 - x$$

$$T(0.5,0.5) = N_1(0.5,0.5)T_2 + N_2(0.5,0.5)T_3 + N_3(0.5,0.5)T_5$$

$$T(0.5,0.5) = 0.5 * 100 + 0 * 157.6348 + 0.5 * 175.6890 = 137.8445$$

$$q_x = -k\left(\frac{\partial N_1}{\partial x}T_2 + \frac{\partial N_2}{\partial x}T_3 + \frac{\partial N_3}{\partial x}T_5\right) = -1(0*100 + 1*157.6348 - 1*175.6890) = \mathbf{18.0542}$$

$$q_y = -k \left(\frac{\partial N_1}{\partial y} T_2 + \frac{\partial N_2}{\partial y} T_3 + \frac{\partial N_3}{\partial y} T_5 \right) = -1(-1*100 + 1*157.6348 + 0*181.7922) = -57.6348$$

Ejercicio 2

Punto (0.75; 0.75) asociado al elemento triangular (6 5 8)

$$N_{1}(x,y) = 1.2 - 0.8x - 0.4y$$

$$N_{2}(x,y) = 0.8 + 0.8x - 1.6y$$

$$N_{3}(x,y) = -1 + 2y$$

$$u(0.75,0.75) = N_{1}(0.75,0.75)u_{6} + N_{2}(0.75,0.75)u_{5} + N_{3}(0.75,0.75)u_{8} = 0.3 * 0.0 + 0.2 * 0.40925 - 0.5 * 0.13365 = 0.015$$

$$v(0.75,0.75) = N_{1}(0.75,0.75)v_{6} + N_{2}(0.75,0.75)v_{5} + N_{3}(0.75,0.75)v_{8} = 0.3 * 0.0 + 0.2 * 0.8922 + 0.5 * 0.45779 = 0.4073$$

$$\varepsilon_{x} = b_{1}u_{6} + b_{2}u_{5} + b_{3}u_{8} = -0.8 * 0.0 + 0.8 * 0.40925 + 0.0 * 0.13365 = 0.3274$$

$$\varepsilon_{y} = c_{1}v_{6} + c_{2}v_{5} + c_{3}v_{8} = -0.4 * 0.0 - 1.6 * 0.8922 + 2 * 0.4578 = -0.5120$$

$$\varepsilon_{xy} = c_{1}u_{6} + c_{2}u_{5} + c_{3}u_{8} + b_{1}v_{6} + b_{2}v_{5} + v_{3}b_{8} = -0.2083$$

$$\begin{bmatrix} \tau_{x} \\ \tau_{y} \\ \tau_{xy} \end{bmatrix} = \overline{D_{3x3}} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{xy} \end{bmatrix} = 1e8 \begin{bmatrix} 4.0110 \\ -9.5481 \\ -1.6826 \end{bmatrix}$$

Punto (1.5; 0.75) asociado al elemento cuadrangular (5 4 9 8)

$$N_1(x,y) = 5.333 - 2.666x - 5.333y + 2.666xy$$

$$N_2(x,y) = -3.333 + 2.666x + 3.333y - 2.666xy$$

$$N_3(x,y) = 1 - x - 2y + 2xy$$

$$N_4(x,y) = -2 + x + 4y - 2xy$$

$$\begin{split} u(1.5,0.75) &= N_1(1.5,0.75)u_5 + N_2(1.5,0.75)u_4 + N_3(1.5,0.75)u_9 + N_4(1.5,0.75)u_8 \\ u(0.5,0.75) &= 0.333*0.4093 + 0.1667*0.5589 + 0.25*0.1701 - 0.25*0.1337 = \textbf{0.2387} \\ v(1.5,0.75) &= N_1(1.5,0.75)v_5 + N_2(1.5,0.75)v_4 + N_3(1.5,0.75)v_9 + N_4(1.5,0.75)v_8 \\ v(0.5,0.75) &= 0.333*0.8922 + 0.1667*1.7722 + 0.25*3.9252 + 0.25*0.4578 = \textbf{1.6885} \\ \varepsilon_x &= b_1u_5 + b_2u_4 + b_3u_9 + b_4u_8 + (d_1u_5 + d_2u_4 + d_3u_9 + d_4u_8)y|_{0.75} = \textbf{0.2516} \\ \varepsilon_y &= c_1u_5 + c_2u_4 + c_3u_9 + c_4u_8 + (d_1v_5 + d_2v_4 + d_3v_9 + d_4v_8)x|_{1.5} = \textbf{2.0119} \\ \varepsilon_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} = \textbf{1.4385} \\ \begin{bmatrix} \tau_x \\ \tau_y \\ \tau_{xy} \end{bmatrix} &= \overline{D_{3x3}} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_{xy} \end{bmatrix} = \textbf{1e9} \begin{bmatrix} \textbf{1.9736} \\ \textbf{4.8171} \\ \textbf{1.1619} \end{bmatrix} \end{split}$$

Ejercicio 3

$$\begin{split} K_{lm} &= -\left(\frac{(2*m-1)\pi}{2}\right)^2 \sin\left(\frac{(2*m-1)\pi x}{2}\right)\Big|_{x_l} \\ &\begin{bmatrix} -0.9442 & -20.5162 & -56.9895 \\ -1.7447 & -15.7024 & 43.6179 \\ -2.2796 & 8.4981 & 23.6058 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 10 \end{bmatrix} \quad \Rightarrow \quad \underline{a} = \begin{bmatrix} -5.2953 \\ -0.1461 \\ -0.0351 \end{bmatrix} \\ \widehat{\theta} &= x + 1 - 5.2953 \sin\left(\frac{\pi x}{2}\right) - 0.1461 \sin\left(\frac{3\pi x}{2}\right) - 0.0351 \sin\left(\frac{5\pi x}{2}\right) \end{split}$$

 $\widehat{\emptyset} = \psi + \sum_{m=1}^{3} a_m N_m; \qquad \psi = x + 1; \ N_m = \sin\left(\frac{(2*m-1)\pi x}{2}\right)$

