

Report No. : EED32K00140003 Page 1 of 75

TEST REPORT

Product : Beyond Tablet Mini Edition

Trade mark : Beyond Screen

Model/Type reference : BYM002

Serial Number : N/A

 Report Number
 : EED32K00140003

 FCC ID
 : 2AK5X-BTM6362

Date of Issue : Jul. 03, 2018

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Beyond Screen Limited
Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street,
Beijing, 100102, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Combiled 6

Report Seal

Tested By:

Peter (Test Project)

Reviewed by:

Date:

Kevin yang (Reviewer)

Jul. 03, 2018

Tom chen (Project Engineer)

, , ,

Sheek Luo (Lab supervisor)

Check No.:1022500401

Page 2 of 75

2 Version

Version No.	Date	(6	Description	·
00	Jul. 03, 2018		Original	
	100	12	75	/3
		(4/2)		

Report No. : EED32K00140003 Page 3 of 75

3 Test Summary

5 rest Guillinary		()	
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

The Beyond Tablet Mini Edition has two color appearance, the electrical circuit design, layout, and operational principle were identical for two color appearance, only the color is different.

Report No. : EED32K00140003 Page 4 of 75

4 Content

· Comone			
1 COVER PAGE			1
2 VERSION			2
TEST SUMMARY			
4 CONTENT			
TEST REQUIREMENT			5
5.1 TEST SETUP 5.1.1 For Conducted test setu 5.1.2 For Radiated Emissions 5.1.3 For Conducted Emissio 5.2 TEST ENVIRONMENT	test setupns test setup		
GENERAL INFORMATION			
6.1 CLIENT INFORMATION	JT JECTIVE TO THIS STANDARD NITS ARD CONDITIONS STED BY THE CUSTOMER		
7 EQUIPMENT LIST			10
RADIO TECHNICAL REQUIREM			
Appendix A): Conducted Pea Appendix B): 6dB Occupied E Appendix C): Band-edge for I Appendix D): RF Conducted a Appendix E): Power Spectral Appendix F): Antenna Requir Appendix G): AC Power Line Appendix H): Restricted band Appendix I): Radiated Spurior	Bandwidth	ncy (Radiated)	18 23 27 36 41 42
PHOTOGRAPHS OF TEST SETU	P		75
PHOTOGRAPHS OF EUT CONST	RUCTIONAL DETAILS		75

Report No. : EED32K00140003 Page 5 of 75

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		
Temperature:	26.4 °C	
Humidity:	60% RH	 -1-
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test channel:

Toot Mode	Tv/Dv	RF Channel				
Test Mode	Tx/Rx	Low(L)	Middle(M)	High(H)		
902 11b/a/a/LIT20)	2412MHz ~2462 MHz	Channel 1	Channel 6	Channel11		
802.11b/g/n(HT20)	24 12NIDZ ~2402 NIDZ	2412MHz	2437MHz	2462MHz		
000 44×/UT40)	2422MH - 2452 MH-	Channel 1	Channel 4	Channel7		
802.11n(HT40)	2422MHz ~2452 MHz	2422MHz	2437MHz	2452MHz		
TX mode:	The EUT transmitted the continuous signal at the specific channel(s).					

Report No. : EED32K00140003 Page 7 of 75

Test mode:

Pre-scan under all rate at lowest channel 1

Mode				302.11b						
Data Rate		1Mbps	s 2Mbp	s 5.5Mbp	s 11Mbp	s				
Power(dBm)		13.78	3 14.2	1 14.87	37 15.06	14.87 15.06				
Mode	16	10	802				2.11g			
Data Rate	10	6Mbp	s 9Mb _l	Mbps 12Mbps 18Mbps 24Mbps 36Mbps 48M		s 48Mbps	54Mbps			
Power(dBm)	14.53	3 14.0	0 13.85	13.85 13.64 13.25 13.04 12.98		12.64			
Mode					802.11n	(HT20)	·			
Data Rate	6.5	Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps 52Mbps 58.5Mbps 65Mbps				
Power(dBm)	1	3.63	13.21	13.00	12.85	12.47	12.22	12.00	11.85	
Mode	802.11n (HT40)									
Data Rate 13.5Mbps 27Mbps 40.5Mbps 54Mbps 81Mb		81Mbps	108Mbps	121.5Mbps	135Mbps					
Power(dBm)	/1	3.37	13.12	12.85	12.55	12.12	12.00	11.85	11.64	
	16			- 100			100			

Through Pre-scan, 11Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

6 General Information

6.1 Client Information

Applicant:	Beyond Screen Limited
Address of Applicant:	Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Manufacturer:	Beyond Screen Limited
Address of Manufacturer:	Suite 603, Building 6, Fulltech Plaza, No. 33 North Guangshun Street, Beijing, 100102, China
Factory:	Shenzhen RuiYi Electronic Science and Technology Co., Ltd.
Address of Factory:	4th Floor, No.1, Area A, Tangtou Third Industrial Park, Shiyang Village, Baoan District, Shenzhen City, Guangdong Province, 518108, China

6.2 General Description of EUT

Beyond Tablet Mini Edition		
BYM002		
Beyond Screen		(3)
Wi-Fi: 802.11 b/g/n(20M)/n(40M) , 2412MHz-2462MHz BT:4.0 BT Dual mode, 2402MHz to 2480MHz		6.
DC 12V and AC 120V/60Hz		
BY3.LRB_V1.0, BY3.TB_V0.3(manufacturer declare)	75	
V1.0(manufacturer declare)	(45)	
Jun. 04, 2018	6	
Jun. 04, 2018 to Jun. 29, 2018		
	BYM002 Beyond Screen Wi-Fi: 802.11 b/g/n(20M)/n(40M), 2412MHz-2462MHz BT:4.0 BT Dual mode, 2402MHz to 2480MHz DC 12V and AC 120V/60Hz BY3.LRB_V1.0, BY3.TB_V0.3(manufacturer declare) V1.0(manufacturer declare) Jun. 04, 2018	BYM002 Beyond Screen Wi-Fi: 802.11 b/g/n(20M)/n(40M), 2412MHz-2462MHz BT:4.0 BT Dual mode, 2402MHz to 2480MHz DC 12V and AC 120V/60Hz BY3.LRB_V1.0, BY3.TB_V0.3(manufacturer declare) V1.0(manufacturer declare) Jun. 04, 2018

6.3 Product Specification subjective to this standard

Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz IEEE 802.11n(HT40): 2422MHz to 2452MHz
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels IEEE 802.11n HT40: 7 Channels
Channel Separation:	5MHz
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE for 802.11g :OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE for 802.11n(HT20 and HT40) : OFDM (64QAM, 16QAM, QPSK,BPSK)
Sample Type:	Portable production
Test Power Grade:	N/A(manufacturer declare)
Test Software of EUT:	Realtek 11n 8723B USB WLAN MP Version 30.06.20150417(manufacturer declare)
Antenna Type:	PCB Antenna
Antenna Gain:	1.5dBi
Power Source:	Battery: 8.4V, 8000mAh
Test Voltage:	DC 12V and AC 120V/60Hz
USB cable:	100cm

Report No.: EED32K00140003 Page 9 of 75

Operation	Frequency ea	ch of chann	el(802.11b/g/n	HT20)	10			3				
Channel	Frequency	Channel	Frequency	Channel	Fred	quency	Channel	Frequency				
1	2412MHz	4	2427MHz	7	2442MHz		10	2457MHz				
2	2417MHz	5	2432MHz	8	244	7MHz	11	2462MHz				
3	2422MHz	6	2437MHz	9	245	2MHz						
Operation	Frequency ea	ch of chann	el(802.11n HT4	10)		193		105				
Channe	Channel Frequency		Channel	Frequency Cha		Chan	nel l	requency				
1	2422	MHz	4	2437MH	7MHz		Hz 7		2437MHz 7		/	2452MHz
2	2427	MHz	5	2442MH	lz							
3	2432	MHz	6	2447MH	lz							

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 3368 3668 Fax:+86 (0) 755 3368 3385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Padiated Spurious emission test	4.5dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
4	Conduction emission	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

Report No. : EED32K00140003 Page 10 of 75

7 Equipment List

		RF tes	t system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4	(-31)	01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
power meter & power sensor	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	158060006	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100009	05-25-2018	05-24-2019		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019		
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018	05-10-2019		

Page 11 of 75

3M Semi/full-anechoic Chamber						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019	
TRILOG Broadband Antenna	SCHWARZBEC K	VULB9163	9163-617	03-29-2018	03-28-2019	
Preamplifier	JS Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019	
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018	
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019	
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Multi device Controller	maturo	NCD/070/107 11112)	05-02-2018	05-01-2019	
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019	
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019	
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019	
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019	
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019	
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002)	01-10-2018	01-09-2019	

8 Radio Technical Requirements Specification

Reference documents for testing:

Γ			
	No.	Identity	Document Title
	1	FCC Part15C	Subpart C-Intentional Radiators
١	2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

ot itocaito Liot.				
Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix A)
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00140003 Page 13 of 75

Appendix A): Conducted Peak Output Power

Result Table

Mode	Channel	Conducted Peak Output Power [dBm]	Verdict
11B	LCH	15.06	PASS
11B	MCH	15.56	PASS
11B	HCH	16.1	PASS
11G	LCH	14.53	PASS
11G	MCH	14.98	PASS
11G	HCH	15.63	PASS
11N20SISO	LCH	13.63	PASS
11N20SISO	MCH	14.03	PASS
11N20SISO	HCH	14.5	PASS
11N40SISO	LCH	13.37	PASS
11N40SISO	MCH	13.71	PASS
11N40SISO	НСН	14	PASS

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No.: EED32K00140003 Page 14 of 75

Test Graph

Page 16 of 75

Page 17 of 75

Appendix B): 6dB Occupied Bandwidth

Result Table

Mode	Channel	6dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
11B	LCH	10.04	15.019	PASS	(3)
11B	MCH	9.097	15.000	PASS	(0,
11B	НСН	10.07	15.021	PASS	
11G	LCH	16.34	16.500	PASS	
11G	MCH	16.34	16.501	PASS	
11G	нсн	16.35	16.493	PASS	Peak
11N20SISO	LCH	17.57	17.700	PASS	detector
11N20SISO	MCH	17.57	17.685	PASS	200
11N20SISO	нсн	17.58	17.678	PASS	
11N40SISO	LCH	35.47	36.007	PASS	6
11N40SISO	MCH	35.47	36.006	PASS	
11N40SISO	нсн	35.72	36.044	PASS	

Report No. : EED32K00140003 Page 19 of 75

Test Graph

Page 20 of 75

11N20SISO/LCH 17.700 MHz 163.38 kHz 11N20SISO/MCH 17.685 MHz Center Free 11N20SISO/HCH 17.678 MHz 166.15 kHz 17.58 MHz

Appendix C): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
11B	LCH	3.206	-50.101	-26.79	PASS
11B	HCH	3.567	-49.640	-26.43	PASS
11G	LCH	-4.688	-50.264	-34.69	PASS
11G	HCH	-3.214	-49.904	-33.21	PASS
11N20SISO	LCH	-5.263	-50.395	-35.26	PASS
11N20SISO	HCH	-4.661	-50.154	-34.66	PASS
11N40SISO	LCH	-8.786	-49.840	-38.79	PASS
11N40SISO	HCH	-8.062	-50.179	-38.06	PASS

Test Graph

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
11B	LCH	3.292	<limit< td=""><td>PASS</td></limit<>	PASS
11B	MCH	3.596	<limit< td=""><td>PASS</td></limit<>	PASS
11B	НСН	4.11	<limit< td=""><td>PASS</td></limit<>	PASS
11G	LCH	-4.531	<limit< td=""><td>PASS</td></limit<>	PASS
11G	MCH	-4.295	<limit< td=""><td>PASS</td></limit<>	PASS
11G	нсн	-3.63	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	LCH	-5.578	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	MCH	-4.714	<limit< td=""><td>PASS</td></limit<>	PASS
11N20SISO	НСН	-4.21	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	LCH	-8.627	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	MCH	-8.193	<limit< td=""><td>PASS</td></limit<>	PASS
11N40SISO	НСН	-7.887	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32K00140003 Page 28 of 75

Test Graph

Puw/11B/MCH

Report No. : EED32K00140003 Page 30 of 75

Report No.: EED32K00140003 Page 32 of 75

Report No.: EED32K00140003 Page 33 of 75

Report No. : EED32K00140003 Page 35 of 75

Report No.: EED32K00140003 Page 36 of 75

Appendix E): Power Spectral Density

Result Table

Mode	Mode Channel Power Spectral Density[dBm/3		Limit [dBm/3kHz]	Verdict	
11B	LCH	-9.950	8	PASS	
11B	MCH	-9.760	8	PASS	
11B	HCH	-10.709	8	PASS	
11G	LCH	-17.966	8	PASS	
11G	MCH	-17.038	8	PASS	
11G	НСН	-18.007	8	PASS	
11N20SISO	LCH	-18.994	8	PASS	
11N20SISO	MCH	-19.574	8	PASS	
11N20SISO	НСН	-17.772	8	PASS	
11N40SISO	LCH	-23.238	8	PASS	
11N40SISO	MCH	-22.544	8	PASS	
11N40SISO	НСН	-22.675	8	PASS	

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Test Graph

Report No.: EED32K00140003 Page 41 of 75

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1.5dBi.

Report No.: EED32K00140003 Page 42 of 75

Appendix G)	: AC Power Line Conducted Emission
Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground
	reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
(0)	4) The test was performed with a vertical ground reference plane. The rear of the EUT

shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.

5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

	V 0000	10.0				
Fraguancy rango (MHz)	Limit (dBµV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333

Page 43 of 75

GE0151U-050300

Live line:

		Read	ding_Le	vel	Correct	M	leasuren	nent	Lin	nit	Mai	rgin		
No.	Freq.	(dBu∀)		Factor		(dBuV)		(dB	uV)	(0	lB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	53.08	50.26	38.25	9.77	62.85	60.03	48.02	65.99	55.99	-5.96	-7.97	Р	
2	0.2140	43.58	40.22	23.77	9.72	53.30	49.94	33.49	63.04	53.04	-13.10	-19.55	Р	
3	0.3740	42.31	39.66	26.75	9.76	52.07	49.42	36.51	58.41	48.41	-8.99	-11.90	Р	
4	0.5780	45.04	41.42	30.76	9.74	54.78	51.16	40.50	56.00	46.00	-4.84	-5.50	Р	
5	0.7019	43.84	37.64	28.85	9.75	53.59	47.39	38.60	56.00	46.00	-8.61	-7.40	Р	
6	16.6020	49.52	45.30	36.14	10.03	59.55	55.33	46.17	60.00	50.00	-4.67	-3.83	Р	

Page 44 of 75

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1500	49.74	46.38	34.20	9.77	59.51	56.15	43.97	65.99	55.99	-9.84	-12.02	Р	
2	0.3820	38.90	35.69	21.41	9.76	48.66	45.45	31.17	58.23	48.23	-12.78	-17.06	Р	
3	0.6102	45.11	35.85	23.59	9.75	54.86	45.60	33.34	56.00	46.00	-10.40	-12.66	Р	
4	0.6820	46.15	35.50	22.93	9.75	55.90	45.25	32.68	56.00	46.00	-10.75	-13.32	Р	
5	11.1780	44.37	41.28	25.98	9.84	54.21	51.12	35.82	60.00	50.00	-8.88	-14.18	Р	
6	15.8300	50.17	43.23	33.53	10.02	60.19	53.25	43.55	60.00	50.00	-6.75	-6.45	Р	

Page 45 of 75

QC01

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	N	leasuren (dBu∀)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.2060	52.97	49.12	33.89	9.71	62.68	58.83	43.60	63.36	53.36	-4.53	-9.76	Р	
2	0.2980	46.24	42.58	25.17	9.78	56.02	52.36	34.95	60.30	50.30	-7.94	-15.35	Р	
3	0.4020	41.71	37.84	24.00	9.75	51.46	47.59	33.75	57.81	47.81	-10.22	-14.06	Р	
4	0.6260	39.46	36.12	20.05	9.75	49.21	45.87	29.80	56.00	46.00	-10.13	-16.20	Р	
5	0.8260	38.19	34.59	18.95	9.74	47.93	44.33	28.69	56.00	46.00	-11.67	-17.31	Р	
6	3.1220	35.36	32.10	16.87	9.68	45.04	41.78	26.55	56.00	46.00	-14.22	-19.45	Р	

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	IV	leasuren (dBuV)		Lin (dB			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1980	50.76	47.43	30.40	9.71	60.47	57.14	40.11	63.69	53.69	-6.55	-13.58	Р	
2	0.3060	43.52	40.10	26.88	9.78	53.30	49.88	36.66	60.08	50.08	-10.20	-13.42	Р	
3	0.3980	38.89	35.24	20.46	9.75	48.64	44.99	30.21	57.89	47.89	-12.90	-17.68	Ρ	
4	0.6940	37.76	35.10	17.55	9.75	47.51	44.85	27.30	56.00	46.00	-11.15	-18.70	Р	
5	2.0100	35.08	32.55	14.95	9.72	44.80	42.27	24.67	56.00	46.00	-13.73	-21.33	Р	
6	2.6940	33.43	30.17	14.82	9.70	43.13	39.87	24.52	56.00	46.00	-16.13	-21.48	Ρ	

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Naulateu)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak 1	120kHz	300kHz	Quasi-peak	
	Above 4011	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	(3
Test Procedure:	Below 1GHz test procedu	ire as below:	6	/		16
	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 me was mounted on the to c. The antenna height is determine the maximum polarizations of the antenna was turned from 0 deg. e. The test-receiver systems and the systems and width with Maxim.	n the top of a rotate choic camber. The of the highest radiaters away from the p of a variable-heignaried from one me an value of the field enna are set to manission, the EUT we to heights from 1 rees to 360 degreem was set to Peak	table was ation. e interfere ght anten eter to found strength, ake the managemeter to desire to find the strength.	ence-receina tower. ur meters a . Both hor easurement ged to its was a the maxim	of the property of the protect	, which
	f. Place a marker at the e frequency to show com bands. Save the spect for lowest and highest	end of the restricted apliance. Also mea rum analyzer plot. channel	sure any	emissions	s in the restric	
	f. Place a marker at the e frequency to show com bands. Save the spect	end of the restricted appliance. Also mean analyzer plot. In channel we as below: We is the test site, of the change form to the change form to the channel, the ments are performed found the X axis	change from the change from th	emissions or each po om Semi- neter to 1. ter). channel /, Z axis p ng which it	Anechoic Ch .5 meter(Abo	ambe ove
Limit:	f. Place a marker at the end frequency to show combands. Save the spectron for lowest and highest. Above 1GHz test procedured g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low ii. The radiation measure Transmitting mode, and	end of the restricted appliance. Also mean analyzer plot. In channel we as below: We is the test site, of the change form to the change form to the channel, the ments are performed found the X axis	change from the change from th	emissions or each po om Semi- meter to 1. ter). channel /, Z axis p ng which it	Anechoic Ch .5 meter(Abo	ambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedure. g. Different between above to fully Anechoic Chamman 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedure.	end of the restricted apliance. Also mea rum analyzer plot. In channel we as below: The as below: The is the test site, of the change form to a meter and table west channel, the ments are performed found the X axis res until all frequents.	change from the change from th	emissions or each poor each poor semi-meter to 1. ter). Channel /, Z axis pong which it asured wa	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete.	ambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectra for lowest and highest. Above 1GHz test procedured. G. Different between above to fully Anechoic Chamman 18GHz the distance is how the fully Anechoic Chamman 18GHz the EUT in the low in the radiation measure the Transmitting mode, and in the procedure frequency.	end of the restricted pliance. Also mea rum analyzer plot. Inchannel we is the test site, of the change form to the change form to the change form to the change form to the channel, the ments are performed found the X axis res until all frequents the change form the channel of the the channel of the the change form the channel of the the	change from the change from th	emissions or each po om Semi- neter to 1. ter). channel /, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Ch.5 meter(Abover and more an	ambe ove
Limit:	f. Place a marker at the efrequency to show combands. Save the spectror for lowest and highest Above 1GHz test procedured. g. Different between above to fully Anechoic Chammand 18GHz the distance is h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedured. Frequency 30MHz-88MHz	end of the restricted pliance. Also mea rum analyzer plot. In channel we as below: If it is the test site, of the change form to the change form to the channel west channel, the ments are performed found the X axis res until all frequent Limit (dBµV/m 40.0)	change from the change from th	emissions or each po om Semi- meter to 1. ter). channel /, Z axis p ng which it asured wa Rer Quasi-pe	Anechoic Ch. 5 meter (About 15 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 5 meter (About 15 meter) Anechoic Ch. 6 meter (About 15 meter) Anechoic Ch. 7 m	ambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectron for lowest and highest. Above 1GHz test procedured. G. Different between above to fully Anechoic Chamman 18GHz the distance is horizontal frequency. The radiation measure Transmitting mode, and procedured. Frequency 30MHz-88MHz 88MHz-216MHz	end of the restricted apliance. Also mea rum analyzer plot. Inchannel we as below: The as below: The is the test site, of the change form to the change form to the channel, the ments are performed found the X axis res until all frequent to the channel of the ch	change from the change from th	emissions or each po om Semi- meter to 1. ter). channel /, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe	Anechoic Ch .5 meter(Abo positioning for t is worse cas as complete. mark eak Value	ambe ove
Limit:	f. Place a marker at the ending frequency to show combands. Save the spectron for lowest and highest. Above 1GHz test procedured g. Different between above to fully Anechoic Chammand 18GHz the distance is how the fully Anechoic Chammand 18GHz the EUT in the low in the radiation measure Transmitting mode, and journal of the procedure frequency 30MHz-88MHz 88MHz-216MHz 216MHz 216MHz	end of the restricted pliance. Also mean analyzer plot. In the channel we as below: If it is the test site, of the change form to the channel west channel, the ments are performed found the X axis res until all frequental to the channel of the c	change from the change from th	emissions or each po om Semi- neter to 1. ter). channel (, Z axis p ng which it asured wa Rer Quasi-pe Quasi-pe Quasi-pe	Anechoic Ch. 5 meter (About the Societioning for the Societion in the So	ambe ove

Page 48 of 75

Test plot as follows:

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Report No.: EED32K00140003 Page 49 of 75

Worse case mode:	802.11b (11Mbps)	(8.5)	(8.72)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Report No. : EED32K00140003 Page 50 of 75

Worse case mode:	802.11b (11Mbps)	(241)	(2)
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Report No. : EED32K00140003 Page 51 of 75

Worse case mode:	802.11b (11Mbps)	(62.)	(62.)
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11b (11Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Page 52 of 75

Worse case mode:	802.11g (6Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode: 802.11g (6Mbps)

Frequency: 2412MHz Test channel: Lowest Polarization: Horizontal Remark: Average

	Freq					Limit Line		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Horizontal Horizontal	_

Page	53	of 75	
raye	S	01/5	

Worse case mode:	802.11g (6Mbps)	(5,5)	(35)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

	Freq					Limit Line		Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1 2 pp								Vertical Vertical		

Report No. : EED32K00140003 Page 54 of 75

Worse case mode:	802.11g (6Mbps)	(2,5)	(85)
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Average

Report No. : EED32K00140003 Page 55 of 75

Worse case mode:	802.11g (6Mbps)	(5,5)	(5,5)
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11g (6Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Page 56 of 75 Report No.: EED32K00140003

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average

Report No.: EED32K00140003 Page 57 of 75

Worse case mode:	802.11n(HT20) (6.5Mbp	s)	(25)
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2412MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

Report No. : EED32K00140003 Page 58 of 75

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak	

Worse case mode:	802.11n(HT20) (6.5Mb	ps)	
Frequency: 2462MHz	Test channel: Highest	Polarization: Horizontal	Remark:Average

Page 59 of 75

Worse case mode:	802.11n(HT20) (6.5Mbps)			
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak	

Worse case mode:	802.11n(HT20) (6.5Mbps)		
Frequency: 2462MHz	Test channel: Highest	Polarization: Vertical	Remark: Average

Report No.: EED32K00140003 Page 60 of 75

Worse case mode:	802.11n(HT40) (6.5Mbp	(25)	
Frequency: 2422MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (6.5Mbps)			
Frequency: 2422MHz	Test channel: Lowest	Polarization: Horizontal	Remark: Average	

	Freq					Limit		Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2390.000	32.53	3.07	10.83	46.43	54.00	-7.57	Horizontal	Average
2 pp	2416.960	32.59	3.08	43.99	79.66	54.00	25.66	Horizontal	Average

Page 61 of 75

Worse case mode:	802.11n(HT40) (6.5Mbp	os)	
Frequency: 2422MHz	Test channel: Lowest	Polarization: Vertical	Remark: Peak

	Freq		Cable Loss				Over Limit	Pol/Phase	Remark
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 2 pp								Vertical Vertical	

Worse case mode:	802.11n(HT40) (6.5Mbps)		
Frequency: 2422MHz	Test channel: Lowest	Polarization: Vertical	Remark: Average

	Freq	Factor	Loss	Level	Level	Line	Limit	Pol/Phase	Remark	
	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			_
1	2390.000	32.53	3.07	10.48	46.08	54.00	-7.92	Vertical	Average	
2 pp	2413.529	32.58	3.08	37.15	72.81	54.00	18.81	Vertical	Average	

Report No. : EED32K00140003 Page 62 of 75

Worse case mode:	802.11n(HT40) (6.5Mb	ps)	(35)
Frequency: 2452MHz	Test channel: Highest	Polarization: Horizontal	Remark: Peak

Worse case mode:	802.11n(HT40) (6.5Mb	ps)	
Frequency: 2452MHz	Test channel: Highest	Polarization: Horizontal	Remark:Average

Freq		Cable Loss					Pol/Phase	Remark
MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
							Horizontal Horizontal	

Page	63	of	75	

Worse case mode:	802.11n(HT40) (6.5Mb	ps)	
Frequency: 2452MHz	Test channel: Highest	Polarization: Vertical	Remark: Peak

Worse case mode:	802.11n(HT40) (6.5Mb	ps)	
Frequency: 2452MHz	Test channel: Highest	Polarization: Vertical	Remark:Average

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0755-33681700 \\$

Page 64 of 75

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40), and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter)..
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

ın	nıt	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-		300
0.490MHz-1.705MHz	24000/F(kHz)	-		30
1.705MHz-30MHz	30	-	0	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

30MHz~1GHz (QP)			
Test mode:	Transmitting	Vertical	

	Freq					Line		Pol/Phase	Remark	
_	MHz	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		-	_
1 pp	53.505	14.04	0.15	21.52	35.71	40.00	-4.29	Vertical	QP	
2	75.446	9.39	0.35	20.77	30.51	40.00	-9.49	Vertical	QP	
3	151.067	8.87	0.62	15.01	24.50	43.50	-19.00	Vertical	QP	
4	336.035	14.14	1.25	11.75	27.14	46.00	-18.86	Vertical	QP	
5	560.693	18.00	1.60	10.31	29.91	46.00	-16.09	Vertical	QP	
6	807.429	20.03	2.46	10.17	32.66	46.00	-13.34	Vertical	QP	

Page 67 of 75

Transmitter Emission above 1GHz

Test mode:	802.11b(11	Mbps)	Test F	requency:	2412MHz	Remark: Po	eak	(2)	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1561.221	30.99	2.36	43.93	49.05	38.47	74.00	-35.53	Pass	Horizontal
3192.366	33.43	3.54	44.68	51.15	43.44	74.00	-30.56	Pass	Horizontal
4821.757	34.73	6.02	44.60	49.64	45.79	74.00	-28.21	Pass	Horizontal
6078.644	35.94	7.42	44.51	48.81	47.66	74.00	-26.34	Pass	Horizontal
7236.000	36.42	6.94	44.80	46.17	44.73	74.00	-29.27	Pass	Horizontal
9648.000	37.93	7.01	45.57	45.70	45.07	74.00	-28.93	Pass	Horizontal
1805.005	31.40	2.64	43.68	48.01	38.37	74.00	-35.63	Pass	Vertical
3534.541	33.14	3.83	44.64	49.98	42.31	74.00	-31.69	Pass	Vertical
4824.000	34.73	6.02	44.60	48.49	44.64	74.00	-29.36	Pass	Vertical
5204.399	35.28	6.61	44.58	49.13	46.44	74.00	-27.56	Pass	Vertical
7236.000	36.42	6.94	44.80	47.04	45.60	74.00	-28.40	Pass	Vertical
9648.000	37.93	7.01	45.57	46.59	45.96	74.00	-28.04	Pass	Vertical

Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	37MHz	Remark: P	emark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis		
1329.894	30.52	2.06	44.21	49.32	37.69	74.00	-36.31	Pass	Horizontal		
3291.385	33.34	3.63	44.67	50.96	43.26	74.00	-30.74	Pass	Horizontal		
4874.000	34.84	6.12	44.60	49.58	45.94	74.00	-28.06	Pass	Horizontal		
6109.670	35.96	7.41	44.51	49.01	47.87	74.00	-26.13	Pass	Horizontal		
7311.000	36.43	6.86	44.86	48.73	47.16	74.00	-26.84	Pass	Horizontal		
9748.000	38.03	7.10	45.55	46.53	46.11	74.00	-27.89	Pass	Horizontal		
1521.981	30.91	2.32	43.97	48.45	37.71	74.00	-36.29	Pass	Vertical		
3184.250	33.43	3.53	44.68	52.81	45.09	74.00	-28.91	Pass	Vertical		
3625.669	33.07	3.91	44.63	50.33	42.68	74.00	-31.32	Pass	Vertical		
4874.000	34.84	6.12	44.60	48.69	45.05	74.00	-28.95	Pass	Vertical		
7311.000	36.43	6.86	44.86	47.45	45.88	74.00	-28.12	Pass	Vertical		
9748.000	38.03	7.10	45.55	46.66	46.24	74.00	-27.76	Pass	Vertical		

Page 69 of 75

_ //			123						
Test mode:	802.11b(11	Mbps)	Test Freq	uency: 24	62MHz	Remark: P	eak	638	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
2102.853	31.93	2.90	43.65	47.67	38.85	74.00	-35.15	Pass	Horizontal
3507.652	33.17	3.81	44.65	50.14	42.47	74.00	-31.53	Pass	Horizontal
4924.000	34.94	6.22	44.60	48.18	44.74	74.00	-29.26	Pass	Horizontal
5850.919	35.79	7.29	44.51	48.26	46.83	74.00	-27.17	Pass	Horizontal
7386.000	36.44	6.78	44.92	47.84	46.14	74.00	-27.86	Pass	Horizontal
9848.000	38.14	7.19	45.53	47.11	46.91	74.00	-27.09	Pass	Horizontal
2102.853	31.93	2.90	43.65	47.67	38.85	74.00	-35.15	Pass	Vertical
3507.652	33.17	3.81	44.65	50.14	42.47	74.00	-31.53	Pass	Vertical
4924.000	34.94	6.22	44.60	48.18	44.74	74.00	-29.26	Pass	Vertical
5850.919	35.79	7.29	44.51	48.26	46.83	74.00	-27.17	Pass	Vertical
7386.000	36.44	6.78	44.92	47.84	46.14	74.00	-27.86	Pass	Vertical
9848.000	38.14	7.19	45.53	47.11	46.91	74.00	-27.09	Pass	Vertical

Test mode:	802.11g(6N	lbps)	Test Freq	uency: 24	12MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1593.340	31.04	2.40	43.89	47.67	37.22	74.00	-36.78	Pass	Horizontal
3308.185	33.33	3.64	44.67	50.49	42.79	74.00	-31.21	Pass	Horizontal
4824.000	34.73	6.02	44.60	48.20	44.35	74.00	-29.65	Pass	Horizontal
5434.559	35.47	6.86	44.55	48.91	46.69	74.00	-27.31	Pass	Horizontal
7236.000	36.42	6.94	44.80	47.21	45.77	74.00	-28.23	Pass	Horizontal
9648.000	37.93	7.01	45.57	46.20	45.57	74.00	-28.43	Pass	Horizontal
1846.834	31.47	2.69	43.64	47.66	38.18	74.00	-35.82	Pass	Vertical
3200.502	33.42	3.55	44.68	52.47	44.76	74.00	-29.24	Pass	Vertical
4824.000	34.73	6.02	44.60	47.75	43.90	74.00	-30.10	Pass	Vertical
5895.771	35.82	7.34	44.51	48.73	47.38	74.00	-26.62	Pass	Vertical
7236.000	36.42	6.94	44.80	47.66	46.22	74.00	-27.78	Pass	Vertical
9748.000	38.03	7.10	45.55	46.21	45.79	74.00	-28.21	Pass	Vertical

			100		/ 3				
Test mode:	802.11g(6N	(lbps)	Test Fred	quency: 24	37MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1860.992	31.49	2.70	43.62	47.61	38.18	74.00	-35.82	Pass	Horizontal
3208.660	33.41	3.55	44.68	50.57	42.85	74.00	-31.15	Pass	Horizontal
4874.000	34.84	6.12	44.60	49.24	45.60	74.00	-28.40	Pass	Horizontal
5504.170	35.52	6.93	44.55	49.09	46.99	74.00	-27.01	Pass	Horizontal
7311.000	36.43	6.86	44.86	47.05	45.48	74.00	-28.52	Pass	Horizontal
9748.000	38.03	7.10	45.55	46.12	45.70	74.00	-28.30	Pass	Horizontal
1777.646	31.36	2.61	43.70	47.97	38.24	74.00	-35.76	Pass	Vertical
3192.366	33.43	3.54	44.68	54.06	46.35	74.00	-27.65	Pass	Vertical
4874.000	34.84	6.12	44.60	47.83	44.19	74.00	-29.81	Pass	Vertical
5850.919	35.79	7.29	44.51	49.26	47.83	74.00	-26.17	Pass	Vertical
7311.000	36.43	6.86	44.86	46.87	45.30	74.00	-28.70	Pass	Vertical
9748.000	38.03	7.10	45.55	46.84	46.42	74.00	-27.58	Pass	Vertical

Test mode:	802.11g(6N	1bps)	Test Freq	uency: 24	62MHz	Remark: P	eak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1809.605	31.41	2.65	43.67	47.85	38.24	74.00	-35.76	Pass	Horizontal
3342.042	33.30	3.67	44.66	49.87	42.18	74.00	-31.82	Pass	Horizontal
4924.000	34.94	6.22	44.60	47.91	44.47	74.00	-29.53	Pass	Horizontal
6109.670	35.96	7.41	44.51	48.79	47.65	74.00	-26.35	Pass	Horizontal
7386.000	36.44	6.78	44.92	47.38	45.68	74.00	-28.32	Pass	Horizontal
9848.000	38.14	7.19	45.53	47.27	47.07	74.00	-26.93	Pass	Horizontal
1823.477	31.43	2.66	43.66	47.99	38.42	74.00	-35.58	Pass	Vertical
3200.502	33.42	3.55	44.68	51.53	43.82	74.00	-30.18	Pass	Vertical
4924.000	34.94	6.22	44.60	47.63	44.19	74.00	-29.81	Pass	Vertical
6032.401	35.92	7.43	44.50	48.93	47.78	74.00	-26.22	Pass	Vertical
7386.000	36.44	6.78	44.92	47.25	45.55	74.00	-28.45	Pass	Vertical
9848.000	38.14	7.19	45.53	48.09	47.89	74.00	-26.11	Pass	Vertical

Report No.: EED32K00140003 Page 71 of 75

Test mode:	802.11n(H	Γ20)(6.5N	(lbps)	Test Frequ	ency: 2412M	lHz	Rema	ark: Peak	(12)	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Lim (dBµ\	-	Over Limit (dB)	Result	Antenna Polaxis
1724.166	31.27	2.56	43.76	48.80	38.87	74.0	00	-35.13	Pass	Horizontal
3192.366	33.43	3.54	44.68	51.95	44.24	74.0	00	-29.76	Pass	Horizontal
4824.000	34.73	6.02	44.60	46.71	42.86	74.0	00	-31.14	Pass	Horizontal
6315.233	36.07	7.36	44.53	48.80	47.70	74.0	00	-26.30	Pass	Horizontal
7236.000	36.42	6.94	44.80	46.77	45.33	74.0	00	-28.67	Pass	Horizontal
9648.000	37.93	7.01	45.57	46.15	45.52	74.0	00	-28.48	Pass	Horizontal
1913.838	31.57	2.76	43.58	47.86	38.61	74.0	00	-35.39	Pass	Vertical
3184.250	33.43	3.53	44.68	50.80	43.08	74.0	00	-30.92	Pass	Vertical
4824.000	34.73	6.02	44.60	47.58	43.73	74.0	00	-30.27	Pass	Vertical
5925.863	35.85	7.37	44.51	48.80	47.51	74.0	00	-26.49	Pass	Vertical
7236.000	36.42	6.94	44.80	47.35	45.91	74.0	00	-28.09	Pass	Vertical
9648.000	37.93	7.01	45.57	46.83	46.20	74.0	00	-27.80	Pass	Vertical

Test mode:	802.11n(H7	Γ20)(6.5N	1bps) T	est Frequ	ency: 2437M	lHz F	Rema	ark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limi (dBµV		Over Limit (dB)	Result	Antenna Polaxis
3489.840	33.18	3.80	44.65	50.12	42.45	74.0	0	-31.55	Pass	Horizontal
4191.816	33.28	4.65	44.60	49.84	43.17	74.0	0	-30.83	Pass	Horizontal
4874.000	34.84	6.12	44.60	48.28	44.64	74.0	0	-29.36	Pass	Horizontal
6645.070	36.23	7.27	44.57	49.19	48.12	74.0	0	-25.88	Pass	Horizontal
7311.000	36.43	6.86	44.86	47.31	45.74	74.0	0	-28.26	Pass	Horizontal
9748.000	38.03	7.10	45.55	46.44	46.02	74.0	0	-27.98	Pass	Horizontal
1577.198	31.01	2.38	43.91	48.67	38.15	74.0	0	-35.85	Pass	Vertical
3184.250	33.43	3.53	44.68	51.83	44.11	74.0	0	-29.89	Pass	Vertical
4874.000	34.84	6.12	44.60	47.37	43.73	74.0	0	-30.27	Pass	Vertical
6078.644	35.94	7.42	44.51	48.49	47.34	74.0	0	-26.66	Pass	Vertical
7311.000	36.43	6.86	44.86	46.88	45.31	74.0	0	-28.69	Pass	Vertical
9748.000	38.03	7.10	45.55	45.89	45.47	74.0	0	-28.53	Pass	Vertical

Test mode:	802.11n(H	Γ20)(6.5N	(lbps)	Test Freque	ency: 2462M	Hz Re	mark: Peak		
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m	Over Limit (dB)	Result	Antenna Polaxis
1800.416	31.40	2.64	43.68	47.59	37.95	74.00	-36.05	Pass	Horizontal
3543.550	33.14	3.84	44.64	50.41	42.75	74.00	-31.25	Pass	Horizontal
4924.000	34.94	6.22	44.60	48.52	45.08	74.00	-28.92	Pass	Horizontal
5895.771	35.82	7.34	44.51	48.81	47.46	74.00	-26.54	Pass	Horizontal
7386.000	36.44	6.78	44.92	46.92	45.22	74.00	-28.78	Pass	Horizontal
9848.000	38.14	7.19	45.53	47.23	47.03	74.00	-26.97	Pass	Horizontal
1828.125	31.44	2.67	43.66	48.08	38.53	74.00	-35.47	Pass	Vertical
3419.491	33.24	3.74	44.65	50.44	42.77	74.00	-31.23	Pass	Vertical
4924.000	34.94	6.22	44.60	47.29	43.85	74.00	-30.15	Pass	Vertical
5880.782	35.81	7.32	44.51	48.37	46.99	74.00	-27.01	Pass	Vertical
7386.000	36.44	6.78	44.92	46.82	45.12	74.00	-28.88	Pass	Vertical
9848.000	38.14	7.19	45.53	46.47	46.27	74.00	-27.73	Pass	Vertical

Test mode: 802.11n(HT40)(13.5Mbps)				Test Frequency: 2422MHz			Rema	Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis	
1842.139	31.46	2.68	43.64	47.67	38.17	74.00		-35.83	Pass	Horizontal	
3192.366	33.43	3.54	44.68	52.12	44.41	74.00		-29.59	Pass	Horizontal	
4844.000	34.77	6.06	44.60	47.12	43.35	74.00		-30.65	Pass	Horizontal	
5560.500	35.57	6.99	44.54	48.79	46.81	74.00		-27.19	Pass	Horizontal	
7266.000	36.43	6.91	44.82	46.78	45.30	74.00		-28.70	Pass	Horizontal	
9688.000	37.97	7.05	45.56	47.03	46.49	74.00		-27.51	Pass	Horizontal	
1842.139	31.46	2.68	43.64	47.67	38.17	74.00		-35.83	Pass	Vertical	
3192.366	33.43	3.54	44.68	52.12	44.41	74.00		-29.59	Pass	Vertical	
4844.000	34.77	6.06	44.60	47.12	43.35	74.00		-30.65	Pass	Vertical	
5560.500	35.57	6.99	44.54	48.79	46.81	74.00		-27.19	Pass	Vertical	
7266.000	36.43	6.91	44.82	46.78	45.30	74.00		-28.70	Pass	Vertical	
9688.000	37.97	7.05	45.56	47.03	46.49	74.00		-27.51	Pass	Vertical	

Page 73 of 75

Test mode:	802.11n(HT	T40)(13.5	Mbps) T	Test Frequency: 2437MHz			Remark: Peak			
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1809.605	31.41	2.65	43.67	48.08	38.47	74.00		-35.53	Pass	Horizontal
3225.037	33.40	3.57	44.67	50.65	42.95	74.00		-31.05	Pass	Horizontal
4874.000	34.84	6.12	44.60	47.77	44.13	74.00		-29.87	Pass	Horizontal
5560.500	35.57	6.99	44.54	48.88	46.90	74.00		-27.10	Pass	Horizontal
7311.000	36.43	6.86	44.86	47.33	45.76	74.00		-28.24	Pass	Horizontal
9748.000	38.03	7.10	45.55	46.60	46.18	74.00		-27.82	Pass	Horizontal
1809.605	31.41	2.65	43.67	48.17	38.56	74.	00	-35.44	Pass	Vertical
3200.502	33.42	3.55	44.68	54.03	46.32	74.00		-27.68	Pass	Vertical
4874.000	34.84	6.12	44.60	48.32	44.68	74.00		-29.32	Pass	Vertical
5352.186	35.40	6.77	44.56	49.61	47.22	74.00		-26.78	Pass	Vertical
7311.000	36.43	6.86	44.86	47.07	45.50	74.00		-28.50	Pass	Vertical
9748.000	38.03	7.10	45.55	46.30	45.88	74.00		-28.12	Pass	Vertical

Test mode:	802.11n(HT	Mbps)	Test Frequency: 2452MHz			Remark: Peak				
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Final test level (dBµV/m)	Limit (dBµV/m)		Over Limit (dB)	Result	Antenna Polaxis
1553.293	30.97	2.35	43.94	48.59	37.97	74.00		-36.03	Pass	Horizontal
3598.087	33.09	3.88	44.64	49.90	42.23	74.00		-31.77	Pass	Horizontal
4906.000	34.90	6.18	44.60	47.46	43.94	74.00		-30.06	Pass	Horizontal
6428.771	36.12	7.33	44.54	48.78	47.69	74.00		-26.31	Pass	Horizontal
7356.000	36.44	6.81	44.90	48.30	46.65	74.00		-27.35	Pass	Horizontal
9808.000	38.10	7.16	45.54	46.95	46.67	74.00		-27.33	Pass	Horizontal
1818.842	31.43	2.66	43.66	47.69	38.12	74.00		-35.88	Pass	Vertical
3507.652	33.17	3.81	44.65	50.34	42.67	74.00		-31.33	Pass	Vertical
4906.000	34.90	6.18	44.60	47.58	44.06	74.00		-29.94	Pass	Vertical
6251.257	36.03	7.37	44.53	49.00	47.87	74.00		-26.13	Pass	Vertical
7356.000	36.44	6.81	44.90	47.37	45.72	74.00		-28.28	Pass	Vertical
9808.000	38.10	7.16	45.54	46.94	46.66	74.00		-27.34	Pass	Vertical

Note:

- 1) Through Pre-scan transmitting mode and charge+transmitter mode with all kind of modulation and data rate, find the 11Mbps of rate is the worst case of 802.11b; 6Mbpsof rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40),and then Only the worst case is recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: EED32K00140003 Page 75 of 75

PHOTOGRAPHS OF TEST SETUP

Refer to appendix for EUT Test setup-1.

PHOTOGRAPHS OF EUT Constructional Details

Refer to appendix for EUT external and internal photos.

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

