· bilocerae racer

	>			ы			.5	, ,		_
GGGCTGAAAC	CACGGCCCAG CACGGGCCAG HisGlyProGly		ACACCATATC TGTGGTATAG YHISHISILE	AGGTGTGATT TCCACACTAA ArgCysAspSer	AGATGTGCCG TCTACACGGC lumetCysArg	CATCATCATA GTAGTAGTAT yllellelle	ATCTGCTCAG TAGACGAGTC IlecysserGly	AGCCACCA TCGGGTGGGT InProThrGln	ACCGGCAGAA TGGCCGTCTT uProalaglu	GACTTGGTGC CTGAACCACG ASpleuvalpro
TCTACTTTAA AGATGAAATT	CCGGAAAAGG GGCCTTTTCC AArgLysArg	TTGGTCTCAG AACCAGAGTC LeuValserA	GTCCACCTGG CAGGTGGACC ysProProGl	GCGCTGCACC CGCGACGTGG uArgCysThr	GATTCTCCTC CTAAGAGGAC AspserProG	AAGAÁTCAGG TTCTTAGTCC YSGluSerGl	CCTGAAAGGC GGACTTTCCG rLeulyscly	AGTATCTTGC TCATAGAACG SerlleLeuG	ATCTGCTGGA TAGACGACCT isLeuLeuGl	TGACTTTGCA ACTGAAACGT PA8pPheAla
CGATGCCCGA GCTACGGGCT	CTTCGGGGGC GAAGCCCCCG laserGlyal	GGTCCTGCTG CCAGGACGAC aValLeuLeu	GAGGGATTGT CTCCCTAACA GluGlyLeuC	TTTTCTGCTT AAAAGACGAA euPheCysLe	CCGGGAAGAA GGCCCTTCTT eArgGluGlu	TGTGTCCACA ACACAGGTGT CysValhisL	TCCTTCCTTA AGGAAGGAAT AlbeuProTy	TGAGATCGTG ACTCTAGCAC nGluileVal	GAGTCAGAGC CTCAGTCTCG GluserGluH	AGTGCTTCGA TCACGAAGCT InCysPheAs
AATACACCGA TTATGTGGCT	GCCCCGGCCG CGGGGCCGC	TTGTCGCCGC AACAGCGGCG alvalAlaAl	CAGCCCCTCA GTCGGGGAGT rSerProser	AATGACCTCC TTACTGGAGG AsnAspLeul	AAGGCACCTT TTCCGTGGAA luGlyThrPh	TGACATCGAA ACTGTAGCTT rAspileglu	TGGAAGAAAG ACCTTCTTTC TrpLysLysV	ATGTCCTCAA TACAGGAGTT snValleuAs	GTCCCCCGGG CAGGGGGCCC uSerProGly	ACTCTGAGAC TGAGACTCTG ThrLeuArgG
GCGCCCACAA	GGGACAGAAC CCCTGTCTTG gGlyGlnAsn	CTTGTGCTCG GAACACGAGC LeuValleuV	AAAAGAGGTC TTTTCTCCAG lnLysArgse	CACTCACTGG GTGAGTGACC rThrHisTrp	CAGTGCGAAG GTCACGCTTC GlnCysGluG	CACCCTGGAG GTGGGACCTC hrProTrpse	GTCTTTACTG CAGAAATGAC sSerLeuLeu	GCTGAGGACA CGACTCCTGT AlaGluAspA	TCAACATGTT AGTTGTACAA alasnMetLe	TGCCACTGAG AGGGTGACTC PProThrGlu
CGCAATCTCT GCGTTAGAGA	TGGAACAACG ACCTTGTTGC etGluGlnAr	CCCCAAGACC GGGGTTCTGG lProLysThr	GCCCCACAAC CGGGGTGTTG AlaProGlnG	AGGACTATAG TCCTGATATC lnAspTyrSe	CACAGTGTGT GTGTCACACA nThrValCys	GGTGATTGTA CCACTAACAT GlyaspCysT	TTGTTTGCAA AACAAACGTT heValCysLy	ACGACCTGGG TGCTGGACCC nArgProGly	CCAACAGGTG GGTTGTCCAC ProThrGlyV	ATGAAGGTGA TACTTCCACT BnGluGlyAs
CGGAGAACCC	CCTACCGCCA GGATGGCGGT	GGCTCCGGGT CCGAGGCCCA lyLeuArgva	GCAGAGAGCG CGTCTCTCGC nGlnArgAla	AAATATGGAC TTTATACCTG LysTyrGlyG	CGACCAGAAA GCTGGTCTTT hrThrargas	GGTCAAGGTC CCAGTTCCAG tValLysVal	GTGGCTGTGT CACCGACACA ValalavalP	GAAGCTCACA CTTCGAGTGT rgsersergl	GCCAGCAGAG CGGTCGTCTC uProAlaGlu	GTTCCAGCAA CAAGGTCGTT ValProAlaA
AGCACGCGC TCGTGCGCCG	AAGAGCGTTC TTCTCGCAAG	GCCAGGCCTG CGGTCCGGAC AlaargProG	TAGCTCCCCA ATCGAGGGGT eualaProGl	CATCTCCTGC GTAGAGGACG slleSerCys	CCCTGCACCA GGGACGTGGT ProCysThrT	CCAGAGGGAT GGTCTCCCTA roargGlyme	AGTCTTGATT TCAGAACTAA lValLeuile	CGTGTGGACA GCACACCTGT Argvalaspa	AAGTCCAGGA TTCAGGTCCT luvalgingi	GAGGCTGCTG CTCCGACGAC gArgleuleu
CGCATAAATC GCGTATTTAG	GAGAGACTAT CTCTCTGATA	GGCGCGGGGA CCGCGCCCT uAlaargGly	CAACAAGACC GIIGIITCIGG GluGluAspi	GTAGAGATTG CATCTCTAAC lyargaspcy	GGAGCTAAGT CCTCGATTCA 1GluLeuser	ACAGGGTGTC TGTCCCACAG ThrGlyCysP	TTGCAGCCGT AACGTCGGCA alalaalava	GGACCCTGAG CCTGGGACTC YASPFroGlu	CAGGAAATGG GTCCTTTACC GlnGluMetG	CTCAGAGGAG GAGTCTCCTC erGlnArgAr
CCCACGCGTC GGGTC	CCACGGGCCT GGTGCCCGGA	GACCCAGGGA CTGGGTCCCT ProArgGl	TCTGATCACC AGACTAGTGG Leuilethr	TCAGAAGACG AGTCTTCTGC SerGluAspG	CAGGTGAAGT GTCCACTTCA GlyGluVa	GAAGTGCCGC CTTCACGGCG LysCysArg	GGAGTCACAG CCTCAGTGTC Glyvalthrv	Greerecree Caccaccace GlyGlyGl	GGTCCCTGAG CCAGGGAG CCAGGGACTC C	GCTGAAAGGT CGACTTTCCA Alagluargs
	101	201	301	401	501	601	701	801	901 0	1001

GACCCTCGGC GAGTACTCCT TCAACCCGGA GTARGIGINAL GTGTATHING AGGGATTIGG ACTCCGTCGC CCGGTGTCCC TGTGGAACAT TTTPG1uPro LeuMetArgl ysLeuGlyLe uMetAspAsh GluileLysV alalabysAl aclualala GlyHsArga spihrLeuTyr lyGluArgle uAlaLysGln TAAGAGAAGT CCTTCACTCT CAGIGIACIG GCCAIGACCI ICITIGAGAG ACGGTTCGTC GGAAGTGAGA GATACCTTTA ATTATTAT TGCCAAGCAG CGGTACTGGA AGAAACTCTG GGCCACAGGG ACACCTTGTA TAAATAATA CCGCCGCCC TGAGATCTCA GCTGGACGTC TTCGAACCGG CGGTACCGG ATTCTCTTCA GAGAGAGACT CTCTCTCTGA TCGTGAAAA ATAGGATTAC ATTTACGAAA TTATTCCTGT TAAATGCTTT AAGCTTGGCC AATAAGGACA AlaSerValH isThrLeule uAspAlaLeu GluThrLeuG CCTAAGTGTG GGATTCACAC GAGACGCIGG GTCACATGAC GGCGGCCGC ACTCTAGAGT CGACCTGCAG TGAGGCAGCG CTCTGCGACC TATCCTAATG TCAATCTCAT ACTTACACTA SerAlaXqqS eroG* CTGGGAGCCG CTCATGAGGA AGTTGGGCGT CATGGACAAT GAGATAAAGG TGGCTAAAGC GCCTCTGTCC ACACCCTGCT GGATGCCTTG TCTGCCWTGT ATTACGICTG AGACGGAACA TCCCACAATT ACCCTCTTAA AGCACTTTTT TGTGGGACGA CCTACGGAAC AACCGTAATA AAAATATTCG TTTATAGG TAATGCAGAC AGTAGGAAAG yAsnAlaAsp TCATCCTTTC TIGGCATTAT TTGTTTTCAC AACAAAAGTG CGGAGACAGG ATCTAGAAGG TAGATCTTCC yrLeuGluGl GACTCCAGTC CTGAGGTCAG TTCACTGCAC AAGTGACGTG TGGGATGTCA ACCCTACAGT AAAAAAAAG TTTTTTTC CGGGCGAGAT rGlyArgAsp AAGTTCATGT GCCCGCTCTA TTCAAGTACA LysPheMetT AGCCCAACTG AAAAAAAAA TCGGGTTGAC CCTGTAACTT AGATTTGGTT TCTAAACCAA GGACATTGAA TTTTTTTT alAsnLysTh TCAACAAAAC GAGCTCTGGA uSerSerGly TTCTGGAAAA GATGGAACAT AGTIGITITE CTCGAGACCT AAATGGAAAA AAGACCTTTT CTACCTTGTA GCGTACTTTG CATCTACAAA CGCATGAAAC GTAGATGTTT IleLysTrpV TTTACCTTTT TTCCGTTTGT ATAAAGTGGG TATTTCACCC AACCCGATGT AACATTCTAG ACCACTTGTT TCACCCAGTG TIGGGCTACA TIGIAAGAIC TGGTGAACAA spHisLeuLe AGTGGGTCAC AAGGCAAACA PheAspsa 110) CCTTTGACTC GGAACTGAG "ThrmetLeu CACGATGCTG AAGATTGAGG TTCTAACTCC Lysiledlua CCTTCCCTGG GGAAGGGACC GGTAGGTTGT GICIGGAICA CÁGACCTAGT GTCCTACGAC CCATCCAACA 1091 388 1401 1701 1501

The second second

Fig. 1 (cont.)

Fig.

SGEVELSPCTTTRNTVCQCEÉGTFRÉEDSPEMCRKCRTGCPRGMVKVGDCTPWSDIECVE LAPQQRAAPQQKRSSPSEGLCPPGHHISEDGRDCISCKYGQDYSTHWNDLLFCLRCTRCD KESGIIIGVTVAAVVLIVAVFVCKSLIMKKVLPYLKGICSGGGGDPERVDRSSQRPGAED nvlneivsiloptovpeoemevoepaeptgvnmlspgesehllepaeaersorrrllvpa <u>MEQRGONAPAASGARKREGPGPREARGARPGLRVPKTLVLVVAAVLLLVSAESALITQQD</u> NEGDPTETTROCFDDFADIVPFD<u>SWEPIMRKIGIMDNEIKVAKABAAGHRDTLYTMLIKW</u> VNKTGRDASVHTLLDALETLGERLAKQKIEDHLISSGKFMYLEGNADSALS 61 121 181 241 301

FDSWEPLMEKTGH MENETKWAKAEAA - - GHROTH FDSMDQLMEQHDH TKNETDVVRAGTA - - GPGDAL ARRWKEEVRTEGREBETEAVEVETGE - - FFLDOO PLRAKERWKEEVREDGESDHEIDRIELONGR - CLREFO LSOVKGEVEKNGVNEAKIDEIKNDNVODTAEOKV INGVMTLSOV VVENCEPLRE Apo3/DR3 Fas/Apol TNFRI Apo2 DR4

IKTGRD-RSVHTTIDALETLGEBLAKOKÎED IKTGRN-ASIHTLIDALERMEERHAKEKIOD 100P----RGTGAVYAALERMGDDGCVBDLRS RRTPHRDATIELEGRVDRDMDLLGCLEDTEE 11 HGKKEAY-DTLIKDLKKANICTLAEKIOT YAMINAKWAKTORNI- AS YEKIKRAKOOOF - J- AC YSMDATARRRIPPIRDA Apo3/DR3 Fas/Apol TNFRI Apo2 DR4

locky of thorat

Vector Apos DŘ4

EoqA

SoqA 4AG

Vector

SogA 4AG EogA

Vector

1 18

nlabelled probe Labelled probe Antt-p65

реэц * . prain placenta նսոլ ||ver zk mnacje **Kjquqe** pancreas ableen ខាយវុជា f estate eitest Ovary sm intest colon ьвг

> ulsid bunj IJAGL kiquqeλ

Fig. 6B

Fig. 7

ì

Fig. 8

Fig. 9

1

Fig: 10

 $\{1\}$

Fig. 11

ì

Fig. 12A

Fig. 12B

Fig. 12C

Fig. 138

Fig. 13C

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCGAG GTGCAGCTGG TGCAGTCTGG GGGAGGTGTG 150 GAACGGCCGG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTCAC 200 CTTTGATGAT TATGGCATGA GCTGGGTCCG CCAAGCTCCA GGGAAGGGGC 250 TGGAGTGGGT CTCTGGTATT AATTGGAATG GTGGTAGCAC AGGATATGCA 300 GACTCTGTGA AGGGCCGAGT CACCATCTCC AGAGACAACG CCAAGAACTC 350 CCTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCCGTATATT 400 ACTGTGCGAA AATCCTGGGT GCCGGACGGG GCTGGTACTT CGATCTCTGG 450 GGGAAGGGGA CCACGGTCAC CGTCTCGAGT GGTGGAGGCG GTTCAGGCGG 500 AGGTGGCAGC GGCGGTGGCG GATCGTCTGA GCTGACTCAG GACCCTGCTG 550 TGTCTGTGGC CTTGGGACAG ACAGTCAGGA TCACATGCCA AGGAGACAGC 600 CTCAGAAGCT ATTATGCAAG CTGGTACCAG CAGAAGCCAG GACAGGCCCC 650 TGTACTTGTC ATCTATGGTA AAAACAACCG GCCCTCAGGG ATCCCAGACC 700 GATTCTCTGG CTCCAGCTCA-GGAAACACAG CTTCCTTGAC CATCACTGGG 750 GCTCAGGCGG AAGATGAGGC TGACTATTAC TGTAACTCCC GGGACAGCAG 800 TGGTAACCAT GTGGTATTCG GCGGAGGGAC CAAGCTGACC GTCCTAGGTG 850 CGGCCGCACA TCATCATCAC CATCACGGGG CCGCAGAACA AAAACTCATC 900 TCAGAAGAG ATCTGAATGG GGCCGCATAG 930

Fig. 15A

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCGGG GTGCAGCTGG TGGAGTCTGG GGGAGGCTTG 150 GTCCAGCCTG GGGGGTCCCT GAGACTCTCC TGTGCAGCCT CTGGATTCAC 200 CTTTAGTAGC TATTGGATGA GCTGGGTCCG CCAGGCTCCA GGGAAGGGGC 250 TGGAGTGGGT GGCCAACATA AAGCAAGATG GAAGTGAGAA ATACTATGTG 300 GACTCTGTGA AGGGCCGATT CACCATCTCC AGAGACACG CCAAGAACTC 350 ACTGTATCTG CAAATGAACA GCCTGAGAGC CGAGGACACG GCTGTGTATT: 400 ACTGTGCGAG AGATCTTTTA AAGGTCAAGG GCAGCTCGTC TGGGTGGTTC 450 GACCCCTGGG GGAGAGGGAC CACGGTCACC GTCTCGAGTG GTGGAGGCGG 500 TTCAGGCGGA GGTGGTAGCG GCGGTGGCGG ATCGTCTGAG CTGACTCAGG 550 ACCCTGCTGT GTCTGTGGCC TTGGGACAGA CAGTCAGGAT CACATGCCAA 600 GGAGACAGCC TCAGAAGCTA TTATGCAAGC TGGTACCAGC AGAAGCCAGG 650 ACAGGCCCCT GTACTTGTCA TCTATGGTAA AAACAACCGG CCCTCAGGGA 700 TCCCAGACCG ATTCTCTGGC TCCAGCTCAG GAAACACAGC TTCCTTGACC 750 ATCACTGGGG CTCAGGCGGA AGATGAGGCT GACTATTACT GTAACTCCCG 800 GGACAGCAGT GGTAACCATG TGGTATTCGG CGGAGGGACC AAGCTGACCG 850 TCCTAGGTGC GGCCGCACAT CATCATCACC ATCACGGGGC CGCAGAACAA 900 AAACTCATCT CAGAAGAGGA TCTGAATGGG GCCGCATAG 939

Fig. 158

ATGACCATGA TTACGCCAAG CTTTGGAGCC TTTTTTTTGG AGATTTTCAA 50 CGTGAAAAA TTATTATTCG CAATTCCTTT AGTTGTTCCT TTCTATGCGG 100 CCCAGCCGGC CATGGCCCAG GTGCAGCTGG TGCAGTCTGG GGGAGGCGTG 150 GTCCAGCCTG GGCGGTCCCT GAGACTCTCC TGTGCAGCTT CTGGGTTCAT 200 TTTCAGTAGT TATGGGATGC ACTGGGTCCG CCAGGCTCCA GGCAAGGGGC 250 TGGAGTGGGT GGCAGGTATT TTTTATGATG GAGGTAATAA ATACTATGCA 300 GACTCCGTGA AGGGCCGATT CACCATCTCC AGAGACAATT CCAAGAACAC 350 GCTGTATCTG CAAATGAACA GCCTGAGAGC TGAGGACACG GCTGTGTATT 400 ACTGTGCGAG AGATAGGGGC TACTACTACA TGGACGTCTG GGGCAAAGGG 450 ACCACGGTCA CCGTCTCCTC AGGTGGAGGC GGTTCAGGCG GAGGTGGCTC 500 TGGCGGTGGC GGATCGCAGT CTGTGTTGAC GCAGCCGCCC TCAGTGTCTG 550 GGGCCCCAGG ACAGAGGGTC ACCATCTCCT GCACTGGGAG AAGCTCCAAC 600 ATCGGGGCAG GTCATGATGT ACACTGGTAC CAGCAACTTC CAGGAACAGC 650 CCCCAAACTC CTCATCTATG ATGACAGCAA TCGGCCCTCA GGGGTCCCTG 700 ACCGATTCTC TGGCTCCAGG TCTGGCACCT CAGCCTCCCT GGCCATCACT 750 GGGCTCCAGG CTGAAGATGA GGCTGATTAT TACTGCCAGT CCTATGACAG 800 CAGCCTGAGG GGTTCGGTAT TCGGCGGAGG GACCAAGGTC ACTGTCCTAG 850 GTGCGGCCGC ACATCATCAT CACCATCACG GGGCCGCAGA ACAAAAACTC 900 ATCTCAGAAG AGGATCTGAA TGGGGCCGCA TAG 933

Fig. 15C

	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	signal Heavy chain 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAEVQLVQSGGGV 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAGVQLVESGGGL 1 MIMITPSFGAFFLEIFNVKKLLFAIPLVVPFYAAQPAMAQVQLVQSGGGV	7 J
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR1 CDR2 51 ERPGSLRLSCAASGFTFDDYGMSWRQAPGKGLEWVSGINMNGGSTGYA 51 VQPGGSLRLSCAASGFTFSSYWMSWVRQAPGKGLEWVANTKQDGSEKYYV 51 VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGTFYDGGNKYYA	7
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR3 101 <u>DSVKG</u> RVTISRDNAKNSLYLQMNSLRAEDTAVYYCAK <u>ILGAGRGWY</u> 101 <u>DSVKG</u> RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR <u>DLLKVKGSSSGW-</u> 101 <u>DSVKG</u> RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR <u>DRGYY</u>	-
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	Light chain 147 <u>F-DL</u> WGKGTTVIVSSGGGSGGGGGGGGGGGS-SELTQDPAVSVALGQTVRI 150 <u>F-DP</u> WGRGTTVIVSSGGGSGGGGGGGGGGGS-SELTQDPAVSVALGQTVRI 143 <u>YMDV</u> WGKGTTVIVSSGGGGGGGGGGGGGGGGGGSQSVLTQPPSVSGAPGQRVTI	•
W. third Charle	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR1 CDR2 195 TC <u>QCDSLRSYYAS</u> WYQQKPGQAPVLVTY <u>GKNNRPS</u> GIPDRFSGSSSG 198 TC <u>QCDSLRSYYAS</u> WYQQKPGQAPVLVIY <u>GKNNRPS</u> GIPDRFSGSSSG 193-SC <u>TGRSSNIGAGHDVH</u> WYQQLPGTAPKILTY <u>DDSNRPS</u> GVPDRFSGSRSG	,
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	CDR3 242 NTASLTITGAQAEDEADYYC <u>NSRDSSCNHVV</u> FGGGIKLTVLGAAAHHHHH 245 NTASLTITGAQAEDEADYYC <u>NSRDSSCNHVV</u> FGGGIKLTVLGAAAHHHHH 243 TSASLAITGLQAEDEADYYC <u>OSYDSSLRGSV</u> FGGGIKVIVLGAAAHHHHH	I
	Apo-2.16E2.his Apo-2.20E6.his Apo-2.24C4.his	292 HGAAEQKLISEEDLNGAA 295 HGAAEQKLISEEDLNGAA 293 HGAAEQKLISEEDLNGAA	

Fig. 16