

# Detecting change-points and trends in the petrol consumption and petrol prices

Abdul Muqsit Farooqi September 2, 2025

#### Outline

- 1. Introduction
- 2. Data Pre-Processing
- 3. Time Series
- 4. Change-points
  - 4.1 Methods
  - 4.2 Results
- 5. Trends
  - 5.1 Methods
  - 5.2 Results

## Introduction – Objectives

#### **Basic Problem**

- · Two fuel logbooks: grau and karriert
- · Five variables each: date, odometer, price (paid), currency, liters filled
- One extra variable in *karriert*: consumption (liters / 100 km)
- Goal: Analyze time series for consumption and petrol prices (€/liter)
- Detect change-points and trends in both series

#### **Further Questions**

- · Is fuel consumption affected by car changes?
- Is the Euro introduction reflected in petrol prices?

# Data Pre-Processing

| Category                    | Action                                             | Example(s)                                        | Count |
|-----------------------------|----------------------------------------------------|---------------------------------------------------|-------|
| Date Corrections            | Fixed incorrect /<br>missing dates                 | 2001-06-05 changed to 2014-05-26                  | 7     |
| Currency<br>Standardization | Converted all prices to EUR using historical rates | DM, ATS, CZK, ITL, Zloty, Dinar                   | 47    |
| Price Corrections           | Fixed typos or inconsistent values                 | Dinar price changed from 12.6 to 12600            | 2     |
| Missing Data<br>Handling    | Interpolated or re-<br>moved                       | Median of 1987-06-13 and 1987-06-09 is 1987-06-11 | 10    |



Figure 1: Time series of fuel consumption for grau in liters per 100 km.



Figure 2: Time series of petrol prices for grau in Euro per liter.



Figure 3: Time series of petrol consumption for *karriert* in liter per 100 km.



Figure 4: Time series of petrol prices for *karriert* in Euro per liter.

## Changepoint Detection Method: PELT

**PELT** (Pruned Exact Linear Time): Identify structural changes (changepoints) in the time series.

• Detects multiple changepoints by minimizing a penalized cost function:

$$\min_{\{\tau_1,\ldots,\tau_m\}} \left\{ \sum_{i=1}^{m+1} \mathcal{C}(y_{\tau_i-1:\tau_i}) + \beta m \right\}$$

#### where:

- $\tau_i$ : changepoints (unknown time indices where the statistical properties change)
- $\cdot$   $\mathcal{C}(\cdot)$ : cost function for each segment (e.g., sum of squared errors)
- $\beta$ : linear penalty to avoid overfitting (controls number of changepoints)
- Uses pruning to reduce computational cost.

# Changepoint Detection Method: Binary Segmentation (BinSeg)

**Binary Segmentation**: fast and simple method to detect multiple changepoints in time series data. It works recursively:

- Start with the full data interval [1, n]
- $\mathcal{C}(y_{1:\tau}) + \mathcal{C}(y_{(\tau+1):n}) + \beta < \mathcal{C}(y_{1:n}) \longrightarrow \text{changepoint } \tau \text{ found}$
- If a changepoint is found, split the series into  $[1, \tau]$  and  $[\tau + 1, n]$  and repeat
- · Stop when no further significant changes are detected

Computationally efficient but less accurate with smaller changes.



Figure 5: Changepoints for petrol consumption of logbook grau



Figure 6: Changepoints for petrol consumption of logbook karriert



Figure 7: Changepoints for petrol price of logbook grau



Figure 8: Changepoints for petrol price of logbook karriert

#### Trend Detection Methods: LOESS

**LOESS** (Locally Estimated Scatterplot Smoothing): A nonparametric method for visualizing and estimating smooth trends in time series.

Model:

$$y_i = g(x_i) + \epsilon_i, \quad i = 1, \dots, n$$

where g(x) is a smooth function and  $\epsilon_i$  are independent errors with  $\mathbb{E}(\epsilon_i) = 0$  and constant variance.

# LOESS algorithm

#### Algorithm (for each $x_i$ ):

- 1. Compute kernel weights  $w_k(x_i)$  using a weight function that satisfies certain conditions
- 2. Fit weighted polynomial regression of degree d to attain regression coefficients  $\hat{\beta}_0(x_i), \ldots, \hat{\beta}_d(x_i)$  and the smoothed value  $\hat{y}_i = \sum_{i=0}^d \hat{\beta}_i(x_i) x_i^j$

#### Robustness Step (optional):

- 1. Compute residuals:  $r_i = y_i \hat{y}_i$
- 2. Compute robustness weights  $\delta_k$  using another weight function and the median of all residuals
- 3. Update weights:

$$\tilde{W}_k(x_i) = \delta_k \cdot W_k(x_i)$$

- and refit the local polynomial regression using the updated weights.
- 4. Repeat the robustness step for a fixed number of iterations (typically t=2).

# LOESS Trends in petrol consumption



 $\textbf{Figure 9:} \ \, \textbf{LOESS trend in petrol consumption for} \, \, \textit{grau}$ 

# LOESS Trends in petrol consumption



Figure 10: LOESS trend in petrol consumption for *karriert* 

# LOESS Trends in petrol price



Figure 11: LOESS trend in petrol price for grau

# LOESS Trends in petrol price



Figure 12: LOESS trend in petrol price for *karriert* 

#### Mann-Kendall Test

A non-parametric test used to detect a monotonic trend (increasing or decreasing) in a time series.

· Two-sided hypotheses:

$$H_0: \mathbb{P}(X_j > X_k) = \mathbb{P}(X_j < X_k)$$
 vs.  $H_1: \mathbb{P}(X_j > X_k) \neq \mathbb{P}(X_j < X_k)$  for all  $j > k$ 

- Test statistic:  $S = \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \operatorname{sgn}(X_j X_k)$  counts the number of increasing and decreasing pairs of observations.
- · Standardized test statistic:

$$Z = \begin{cases} \frac{S-1}{\sqrt{\text{Var}(S)}}, & S > 0\\ 0, & S = 0\\ \frac{S+1}{\sqrt{\text{Var}(S)}}, & S < 0 \end{cases}$$

• Decision rule: Under  $H_0$ ,  $Z \sim \mathcal{N}(0,1)$ . Reject  $H_0$  if  $|Z| > z_{1-\alpha/2}$ .

#### Modified Mann-Kendall Test

The standard Mann-Kendall test assumes that the data are **serially uncorrelated**. When **autocorrelation** is present, it inflates the Type I error rate. To address this, the **variance of the test statistic** is adjusted.

Variance Correction:

$$Var^*(S) = Var(S) \cdot \frac{n}{n^*}$$

- n is the actual sample size (ASS)
- $\cdot$   $n^*$  is the effective sample size (ESS), adjusted for autocorrelation

**Effective Sample Size (ESS)**  $n^*$  must be estimated from the data.

The R package modifiedmk provides the mmkh function.

### Autocorrelation

The acf() function in R computes and plots the sample autocorrelation function (ACF).

Sample autocorrelation at lag t:

$$r_t = \frac{c_t}{c_0}$$
 where  $c_t = \frac{1}{n} \sum_{s=1}^{n-t} (X_{s+t} - \bar{X})(X_s - \bar{X})$ 

- $\cdot \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$  is the sample mean
- $\cdot$   $c_0$  is the sample variance (i.e. autocovariance at lag 0)

# Autocorrelation in petrol consumption



Figure 13: Autocorrelation in petrol consumption of grau

# Autocorrelation in petrol consumption



Figure 14: Autocorrelation in petrol consumption of *karriert* 

# Autocorrelation in petrol price



Figure 15: Autocorrelation in petrol price of grau

# Autocorrelation in petrol price



Figure 16: Autocorrelation in petrol price of karriert

### Mann-Kendall Test Results

| Time series          | p-value                  | Test result                               |
|----------------------|--------------------------|-------------------------------------------|
| consumption grau     | $8.4655 \times 10^{-7}$  | $H_0$ rejected $\Rightarrow$ trend        |
| consumption karriert | 0.1190                   | $H_0$ not rejected $\Rightarrow$ no trend |
| price grau           | $1.7500 \times 10^{-17}$ | $H_0$ rejected $\Rightarrow$ trend        |
| price karriert       | $5.0373 \times 10^{-6}$  | $H_0$ rejected $\Rightarrow$ trend        |

Table 1: The p-values from the modified Mann-Kendall tests for all four time series.

## Summary

- Extensively cleaned and standardized time-series data by correcting dates, converting currencies, and resolving missing or inconsistent values for accurate time-based analysis.
- · One changepoint detected for petrol consumption in grau when car changes
- Many changepoints for petrol prices but not at the introduction of Euro
- The Mann-Kendall test detects a trend for 3 out of 4 time series (no trend in consumption of *karriert*)