

Министерство науки и высшего образования Российской Федерации федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» (ТПУ)

Инженерная школа природных ресурсов Направление подготовки Химическая технология Отделение химической инженерии

РҮТНО ДЛЯ ЗАДАЧ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Отчет по лабораторной работе № 5 Введение в библиотеку Pandas

Выполнил студент гр. 2ДМ24	(Подпись)	Иванцов П.С.
	_	2023 г.
Отчет принят:		
Преподаватель доцент ОХИ ИШПР, к.т.н.	(Подпись)	В.А. Чузлов
		2023 г

Задание 1

Дана база данных по индивидуальным компонентам и их физикохимическим параметрам в виде электронной таблицы с расширением файла .xlsx . В столбце class содержится информация о классе углеводорода, к которому принадлежит данный компонент: 'P' - парафиновые, 'N' нафтеновые, 'A' - ароматические углеводороды.

Описание других важных полей базы данных приведено в таблице:

Наименование поля	Описание
'MolecularWeight'	Молярная масса компонента, г/моль
'NormalBoilingPoint'	Температура кипения при атмосферном давлении, °С
'StdLiquidDensity'	Плотность компонента по жидкости при стандартных условиях, кг/м ³
'C'	Число атомов углерода в молекуле углеводорода

- 1. Считайте данную базу в объект pandas. Data Frame.
- 2. Из полученного объекта pandas. Data Frame получите данные для компонентов, приналежащих классам парафировых, нафтеновых и ароматических углевдородов и сохраните эти данные в отдельный объект pandas. Data Frame.
- 3. Для углеводородов указанных выше классов усредните значения молярной массы, плотности и температуры кипения в соответствии с числом атомов углерода и классом углеводорода.
- 4. Постройте точечную диаграммму (scatter) зависимости плотности жидкости от температуры кипения для каждого класса углеводородов (на одном графике).

Программная реализация:

```
import pandas as pd
import matplotlib.pyplot as plt

file_path = '/Users/ADMIN/Downloads/compounds_data.xlsx'
compounds_df = pd.read_excel(file_path)

filtered_df = compounds_df[compounds_df['class'].isin(['P', 'N', 'A'])]

relevant_columns = ['class', 'MolecularWeight', 'NormalBoilingPoint', 'StdLiquidDensity', 'C']
filtered_relevant_df = filtered_df[relevant_columns]

grouped_df = filtered_relevant_df.groupby(['class', 'C']).mean()
grouped_df.reset_index(inplace=True)
```

Ответ:

Рисунок 1 — Зависимость плотности от температуры кипения для различных классов углеводородов

На рисунке 1 представлено подробное сравнение температур кипения и плотности жидкостей для различных классов углеводородов: парафиновых, нафтеновых и ароматических.