One hidden layer is enough to represent (not learn) an approximation of any function to an arbitrary degree of accuracy.

XOR, perceptron, and Multilayer Neural Networks

Why can't a perceptron model handle XOR, but multi-layer neural networks can?

ENLP 2025 Spring Xiulin Yang

XOR

XOR (exclusive OR) returns true if and only if one of the two conditions is true, but not both.

OR				XOR			
x1	x2	у	_	x1	x2	у	
0	0	0	_	0	0	0	
	1	1		0	1	1	
1	0	1		1	0	1	
1	1	1		1	1	0	

XOR

XOR (exclusive OR) returns true if and only if one of the two conditions is true, but not both.

	AND			OR			XOR	
x 1	x2	у	x 1	x2	у	x 1	_x2	у
0	0	0		0			0	
0	1	0	0	1	1	0	1	1
1	0	0		0			0	
1	1	1	1	1	1	1	1	0

XOR

XOR (exclusive OR) returns true if and only if one of the two conditions is true, but not both.

AND				OR			XOR		
X	1 x2	у	x1	x2	у		x 1	x2	у
0	0	0		0			0	0	0
0	1	0	0	1	1			1	
1	0	0		0			1	0	1
1	1	1	1	1	1		1	1	0

Why perceptron fails?

- A perceptron can handle and & or
- This is because a perceptron is essentially a *linear* classifier.

AND			
x 1	x2	у	y = a(X1*w1+x2*w2+b)
0	0	0	0*1+0*1-1 =-1 →0
0	0 1	0	0*0+1*1-1 =0 → 0
1	0	0	1*1+0*1-1 =0 →0
1	1	1	1*1+1*1-1 =1 →1

perceptron

step function

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Why perceptron fails?

- A perceptron can handle and & or
- This is because a perceptron is essentially a *linear* classifier.

AND			
x 1	x2	у	y = a(X1*w1+x2*w2+b)
0	0	0	0*1+0*1-1 =-1 →0
0	0 1	0	0*0+1*1-1 =0 → 0
1	0	0	1*1+0*1-1 =0 →0
1	1	1	1*1+1*1-1 =1 →1

perceptron

step function

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

Why perceptron fails?

- A perceptron can handle and & or
- This is because a perceptron is essentially a *linear* classifier.

AND			
	x2	_	y = a(X1*w1+x2*w2+b)
0	0 1 0 1	0	0*1+0*1-1 =-1 → 0
0	1	0	0*0+1*1-1 =0 → 0
1	0	0	1*1+0*1-1 =0 →0
1	1	1	1*1+1*1-1 =1 →1

perceptron

step function

$$y = \begin{cases} 0, & \text{if } \mathbf{w} \cdot \mathbf{x} + b \le 0 \\ 1, & \text{if } \mathbf{w} \cdot \mathbf{x} + b > 0 \end{cases}$$

problem?

	XOR					
x1	x2	у				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

$$\begin{aligned} &\text{h1 = ReLU}(\mathbf{x}_1 * W_{11}^{(1)} + \mathbf{x}_2 \, W_{21}^{(1)} + b_1^{(1)}) \\ &\text{h2 = ReLU}(\mathbf{x}_1 * W_{12}^{(1)} + \mathbf{x}_2 \, W_{22}^{(1)} + b_2^{(1)}) \\ &\text{y = ReLU}(\mathbf{h}_1 * W_{21}^{(2)} + \mathbf{h}_2 \, W_{22}^{(2)} + b_1^{(2)}) \end{aligned}$$

i: the neuron index from the previous layer; j the neuron index of the current layer

Rectified linear unit, also called the ReLU

$$y = ReLU(z) = max(z, 0)$$

problem?

2	XOR						
x1	x2	у					
0	0	0					
0	1	1					
1	0	1					
1	1	0					

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)
h2 = ReLU($x_1*W_{12}^{(1)} + x_2 W_{22}^{(1)} + b_2^{(1)}$)
y = ReLU($h_1*W_{21}^{(2)} + h_2 W_{22}^{(2)} + b_1^{(2)}$)
h1 = ReLU(0*1+0*1+0)=0
h2 = ReLU(0*1+0*1-1)=0

y = ReLU(0*1+0*(-2)+0) = 0

problem?

XOR

0

0

x1 x2

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)

h2 = ReLU(
$$x_1*W_{12}^{(1)}+x_2W_{22}^{(1)}+b_2^{(1)}$$
)

y = ReLU(
$$h_1*W_{21}^{(2)}+h_2W_{22}^{(2)}+b_1^{(2)}$$
)

$$y = ReLU(0*1+0*(-2)+0) = 0$$

$$y = ReLU(1*1+0*(-2)+0) = 1$$

problem?

XOR

0

0

x1 x2

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)

h2 = ReLU(
$$x_1*W_{12}^{(1)}+x_2W_{22}^{(1)}+b_2^{(1)}$$
)

y = ReLU(
$$h_1*W_{21}^{(2)}+h_2W_{22}^{(2)}+b_1^{(2)}$$
)

$$y = ReLU(0*1+0*(-2)+0) = 0$$

$$y = ReLU(1*1+0*(-2)+0) = 1$$

problem?

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)
h2 = ReLU($x_1*W_{12}^{(1)} + x_2 W_{22}^{(1)} + b_2^{(1)}$)
y = ReLU($h_1*W_{21}^{(2)} + h_2 W_{22}^{(2)} + b_1^{(2)}$)

y = ReLU(0*1+0*(-2)+0) = 0

problem?

XOR

0

0

0

x1 x2

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)
h2 = ReLU($x_1*W_{12}^{(1)} + x_2 W_{22}^{(1)} + b_2^{(1)}$)

y = ReLU(
$$h_1*W_{21}^{(2)}+h_2W_{22}^{(2)}+b_1^{(2)}$$
)

$$y = ReLU(0*1+0*(-2)+0) = 0$$

$$y = ReLU(1*1+0*(-2)+0) = 1$$

$$y = ReLU(1*1+0*(-2)+0) = 1$$

problem?

			h2 = ReLU(
2	XOR		y = ReLU(h
x 1	x2	у	,
0	0	0	y = ReLU(0
0	1	1	y = ReLU(1
1	0	1	y = ReLU(1
1	1	•	-

$$\begin{aligned} &\text{h1} = \text{ReLU}(\mathbf{x}_1 * W_{11}^{(1)} + \mathbf{x}_2 \, W_{21}^{(1)} + b_1^{(1)}) \\ &\text{h2} = \text{ReLU}(\mathbf{x}_1 * W_{12}^{(1)} + \mathbf{x}_2 \, W_{22}^{(1)} + b_2^{(1)}) \\ &\text{y} = \text{ReLU}(\mathbf{h}_1 * W_{21}^{(2)} + \mathbf{h}_2 \, W_{22}^{(2)} + b_1^{(2)}) \end{aligned}$$

$$y = ReLU(0*1+0*(-2)+0) = 0$$

 $y = ReLU(1*1+0*(-2)+0) = 1$

$$y = ReLU(1*1+0*(-2)+0) = 1$$

problem?

h1 = ReLU(
$$x_1*W_{11}^{(1)} + x_2 W_{21}^{(1)} + b_1^{(1)}$$
)
h2 = ReLU($x_1*W_{12}^{(1)} + x_2 W_{22}^{(1)} + b_2^{(1)}$)
y = ReLU($h_1*W_{21}^{(2)} + h_2 W_{22}^{(2)} + b_1^{(2)}$)
y = ReLU($0*1+0*(-2)+0$) = 0

XOR

$$y = ReLU(1*1+0*(-2)+0) = 1$$

 $y = ReLU(2*1+1*(-2)+0) = 0$

y = ReLU(1*1+0*(-2)+0) = 1

Why can a multilayer NNs solve the XOR problem?

a) The original x space

b) The new (linearly separable) h space

Code

https://colab.research.google.com/drive/1Dkr6GSFfD6klrdpkH5bw0YeO5H9FzeAT?usp=sharing