Deniable Liasons

Abhinav Narain, Prof. Nick Feamster, Prof. Alex Snoeren (UCSD)

College of Computing School of Computer Science Georgia Institute of Technology

Monday 28th April, 2014

Communication is Observable

- There is an increasing need for private communication in public places
- Unfortunately, most communication is observable, even if it is confidential
 - Phone calls
 - Internet traffic
 - Face-to-face meetings

Deniable communication

Motivating Examples

- Covert message passing between activists for public protest
- Whistleblower in an office environment
- Message exchange by a spy and a handler in coffee shop

Communication in proximity is still Observable

- Dead drops
- Normal conversations
- Physical media exchange

Existing techniques

- on Wide Area Networks
 - Generate benign, legitimate cover traffic
 - Transmit the actual traffic between it
 - Can provide Anonymity, but not Deniability
- on Wireless LANs
 - Timing Covert channels

Wireless is Noisy

- Non stationary process
- Has characteristic of being truly random
- Idea: Use inherent randomness of noisy wireless channel to hide secret messages

Packet Corruption in Wifi

- Ubiquitous, naturally occurring phenomenon
- Difficult to model
- Caused by
- Interference
 - Multipath
 - Non-wifi
- Collisions
- Hidden terminals
- Low signal strength

A New covert Channel

- Wireless broadcast medium
- Ubiquitous and natural phenomenon of packet corruption in Wifi
- Hide messages in corrupted frames
- Challenge: Make message indistinguishable from natural corruption

Chaffing and Winnowing

- Chaff is the actual corrupted frames on the channel due to packet corruption¹
- Grain is the crafted SSL frames which are deliberately corrupted by the sender for the secret communication

¹Rivest et. al Chaffing and Winnowing: Confidentiality without Encryption, CryptoBytes (RSA Laboratories), volume 4, number 1 (summer 1998), 12–17.

Environment Setting

Security Goals

- Deniable
 - Ability to deny the communication
- Anonymous
 - Cannot be identified specifically
- Confidential
 - Adversary cannot recover message
- Robustness
 - Cannot be disrupted

Prototype Implementation

- Write custom tool which runs on Alice and Bob's wireless devices
- Dual wireless chips on a laptop
 - Pre existing (AR9485), USB based (AR9170)
 - Modify inbuilt wireless driver so that it transmits frames with incorrect FCS
 - USB wireless chip works functions as usual

Two Modifications

Communication Channel

- Sender encrypts message using recipient's public key and hides message in existing SSL cover stream
- Wireless interface adds incorrect checksum to packet
 - Access Point discards corrupted frames
 - Recipient overhears corrupted frames and can separate grain from chaff

Embedding Secret Messages

- The secret messages from the application are encrypted using public key cryptography
- Encrypted message is embedded in SSL payload of the 802.11 frame
- Incorrect checksum at Layer 2 is attached to the while it is transmitted in the air

Sending a Message

- Hidden message sent through TUN device (fix no item)
- Combined with duplicate copies of real application traffic to generate corrupted duplicates
- Corrupted frames sent on second interface

Receiving a message

Steps in Protocol

Traffic Characteristics

- Packet error rates
- Higher packet error rates, higher the chances of deniability
- Higher the packet corruption rate, better the performance of Denali

Corruptions in frames: Considerations

- Corruption of bits occur in blocks
 - Channel is not memoryless
 - Interference occurs in bursts
- Bits further into the frame are more likely to be corrupted
 - Lack of receiver-sender synchronization

Evaluation

- Present the error distribution patterns to the adversary indicating two worlds
 - in presence of secret communication
 - in absence of secret communication
- Error distributions should be indistinguishable
 - Bit Error distribution
 - Packet Error distribution

Quantifying Deniability

- Let f'(x) be the discrete probability error distribution with secret communication
- Let f(x) be the discrete probability error distribution without secret communication
- $\epsilon = \frac{1}{B} \cdot \Sigma |f'(x) f(x)|$
- ullet is the bitwise L1 distance between two distributions
- B is the size of the packet in bits
- $\sum_{x=0}^{B} |f'(x) f(x)|$ is the normalized L1 distance between the distributions
- ullet The lower the ϵ , the more deniable the communication

Bit Error Distribution with Denali

23 / 29

Matching Bit Error Distribution

Deniability vs Throughput

- As we inject more packets into the channel, the L1 distance of the new distribution is going to increase from the noise (assume the distribution of corrupted bits is same)
- The more the throughput, the higher the chances of secret messages being detected

Deniability vs Throughput

Conclusion and Future Work

- Denali provides Deniability, Confidentiality, Robustness
- Main idea: Hide messages in corrupted frames
- Sender and receiver can separate chaff
- Overhead is significant, but existing traffic can provide the cover
- Extending Denali to Mobile devices and Multi-hop Networks

Thanks!

Questions

References I