LTL in MCC Definition of Semantics

Karsten Wolf

One-Step Reachability Relation

Assume for the whole document that N is a fixed (PT or CP) net. Let m, m' be markings of N.

Define $m \rightarrow m'$ if

- (PT net:) there is a transition t such that firing t in m leads to m'
- (CP net:) there is a transition t and a binding d of t such that firing (t,d) in m leads to m'

m is called *deadlock* if there is no m' with m \rightarrow m'

Trace

A trace is an infinite sequence of markings connected by the one-step firing relation. The sequence may contain a deadlock marking which is then repeated forever.

Formally:

Infinite sequence of markings $(m_1 m_2 m_3)$ is a *trace* if, for all $i \ge 1$:

- $m_i \rightarrow m_{i+1}$, or
- m_i is a deadlock and $m_{i+1}=m_i$

Suffix

A suffix of a trace is obtained from a given trace by removing the first n markings of the sequence, for some natural number n.

Formally:

Let $\pi = (m_1 m_2 m_3)$ be a trace and $n \ge 0$ a natural number.

Trace π +n is defined as $(m_{n+1} m_{n+2} m_{n+3} ...)$

For all n, π +n is called *suffix* of π .

Satisfaction of LTL formulas in traces

Let $\pi = (m_1 m_2 m_3 ...)$ be a trace.

- For an atomic proposition a, $\pi \models$ a iff $m_1 \models$ a (" $m \models$ a" is defined elsewhere in the MCC manual)
- $\pi \vDash \varphi \land \psi$ iff $\pi \vDash \varphi$ and $\pi \vDash \psi$
- $\pi \vDash \varphi \lor \psi$ iff $\pi \vDash \varphi$ or $\pi \vDash \psi$
- $\pi \vDash \neg \varphi$ iff not $\pi \vDash \varphi$
- $\pi \models X \varphi$ iff $\pi+1 \models \varphi$ (X "nextstep" operator)
- $\pi \models F \varphi$ iff there exists an i, $i \ge 0$ with $\pi + i \models \varphi$ (F "finally" / "future" operator)
- $\pi \models G \varphi$ iff for all i, $i \ge 0$: $\pi + i \models \varphi$ (G "globally" / "invariantly" operator)
- $\pi \models \varphi \cup \psi$ iff there exists an i, $i \ge 0$ with $\pi + i \models \psi$ and, for all j $(0 \le j < i)$: $\pi + j \models \varphi$ (U "until" operator)

Satisfaction of LTL Formula in Petri Net

Let m_0 be the initial marking of N.

Trace $\pi = (m_1 m_2 m_3 ...)$ is called *initial trace* if $m_0 = m_1$.

For an LTL formula φ , $N \models \varphi$ (equivalently: $N \models A\varphi$, where A is the universal path quantifier) if, for all initial traces π , $\pi \models \varphi$.

LTL category in MCC

Problem description:

Given

- A (PT or CP) net N and
- an LTL formula φ ,

decide whether $N \models \varphi!$

Remarks

Our definitions implicitly transform the reachability graph of N into a Kripke structure. A Kripke structure is a transition system where every state has at least one successor state. The transformation consists of adding, for each deadlock marking m, m as its own successor (self-loop). We have implemented this transformation in our definition of "trace". For Kripke structures, the definition of LTL semantics is undisputed, to our best knowledge.