University of Southern California Ming Hsieh Department of Electrical Engineering EE 348L - Electronic Circuits Spring 2016

Homework 1 Solutions

1.1 (a)
$$I = \frac{V}{R} = \frac{5 \text{ V}}{1 \text{ k}\Omega} = 5 \text{ mA}$$

(b)
$$R = \frac{V}{I} = \frac{5 \text{ V}}{1 \text{ mA}} = 5 \text{ k}\Omega$$

(c)
$$V = IR = 0.1 \text{ mA} \times 10 \text{ k}\Omega = 1 \text{ V}$$

(d)
$$I = \frac{V}{R} = \frac{1 \text{ V}}{100 \Omega} = 0.01 \text{ A} = 10 \text{ mA}$$

Note: Volts, milliamps, and kilohms constitute a consistent set of units.

1.3 (a)
$$V = IR = 5 \text{ mA} \times 1 \text{ k}\Omega = 5 \text{ V}$$

$$P = I^2 R = (5 \text{ mA})^2 \times 1 \text{ k}\Omega = 25 \text{ mW}$$

(b)
$$R = V/I = 5 \text{ V}/1 \text{ mA} = 5 \text{ k}\Omega$$

$$P = VI = 5 \text{ V} \times 1 \text{ mA} = 5 \text{ mW}$$

(c)
$$I = P/V = 100 \text{ mW}/10 \text{ V} = 10 \text{ mA}$$

$$R = V/I = 10 \text{ V}/10 \text{ mA} = 1 \text{ k}\Omega$$

(d)
$$V = P/I = 1 \text{ mW}/0.1 \text{ mA}$$

$$= 10 \text{ V}$$

$$R = V/I = 10 \text{ V}/0.1 \text{ mA} = 100 \text{ k}\Omega$$

(e)
$$P = I^2 R \Rightarrow I = \sqrt{P/R}$$

$$I = \sqrt{1000 \text{ mW}/1 \text{ k}\Omega} = 31.6 \text{ mA}$$

$$V = IR = 31.6 \text{ mA} \times 1 \text{ k}\Omega = 31.6 \text{ V}$$

Note: V, mA, $k\Omega$, and mW constitute a consistent set of units.

1.7 Use voltage divider to find V_0

$$V_0 = 5\frac{2}{2+3} = 2 \text{ V}$$

Equivalent output resistance R_0 is

$$R_0 = (2 k\Omega \parallel 3 k\Omega) = 1.2 k\Omega$$

The extreme values of V_0 for $\pm 5\%$ tolerance resistor are

$$V_{Omin} = 5 \frac{2(1 - 0.05)}{2(1 - 0.05) + 3(1 + 0.05)}$$

= 1.88 V

$$V_{Omax} = 5 \frac{2(1+0.05)}{2(1+0.05) + 3(1-0.05)}$$

= 2.12 V

The extreme values of R_0 for $\pm 5\%$ tolerance resistors are $1.2 \times 1.05 = 1.26 \text{ k}\Omega$ and $1.2 \times 0.95 = 1.14 \text{ k}\Omega$.

Thévenin equivalent: $(20//32) = 12.31 \text{ k}\Omega$

Now, when a resistance of 3 $k\Omega$ is connected between node 4 and ground,

$$I = \frac{0.77}{12.31 + 3}$$
$$= 0.05 \text{ mA}$$

1.19 Refer to Fig. P1.19. Using the voltage divider rule at the input side, we obtain

$$\frac{v_{\pi}}{v_s} = \frac{r_{\pi}}{r_{\pi} + R_s} \tag{1}$$

At the output side, we find v_o by multiplying the current $g_m v_\pi$ by the parallel equivalent of r_o and R_L ,

$$v_o = -g_m v_\pi (r_o \parallel R_L) \tag{2}$$

Finally, v_0/v_s can be obtained by combining Eqs. (1) and (2) as

$$\frac{v_o}{v_s} = -\frac{r_\pi}{r_\pi + R_s} g_m(r_o \parallel R_L)$$

Done

1.28

Case	ω (rad/s)	f(Hz)	T(s)		
a	3.14×10^{10}	5 × 10 ⁹	0.2×10^{-9}		
b	2×10^{9}	3.18×10^{8}	3.14×10^{-9}		
c	6.28×10^{10}	1×10^{10}	1×10^{-10}		
d	3.77×10^{2}	60	1.67×10^{-2}		
e	6.28×10^{4}	1×10^{4}	1×10^{-4}		
f	6.28×10^{5}	1×10^{5}	1×10^{-5}		

1.39 (a)
$$A_v = \frac{v_O}{v_I} = \frac{10 \text{ V}}{100 \text{ mV}} = 100 \text{ V/V}$$

or $20 \log 100 = 40 \, dB$

$$A_i = \frac{i_O}{i_I} = \frac{v_O/R_L}{i_I} = \frac{10 \text{ V}/100 \Omega}{100 \text{ } \mu\text{A}} = \frac{0.1 \text{ A}}{100 \text{ } \mu\text{A}}$$

$$= 1000 A/A$$

or $20 \log 1000 = 60 \, dB$

$$A_p = \frac{v_0 i_0}{v_1 i_1} = \frac{v_0}{v_1} \times \frac{i_0}{i_1} = 100 \times 1000$$

$$= 10^5 \text{ W/W}$$

or
$$10 \log 10^5 = 50 \, dB$$

(b)
$$A_v = \frac{v_O}{v_I} = \frac{1 \text{ V}}{10 \,\mu\text{V}} = 1 \times 10^5 \text{ V/V}$$

or
$$20 \log 1 \times 10^5 = 100 \text{ dB}$$

$$A_i = \frac{i_O}{i_I} = \frac{v_O/R_L}{i_I} = \frac{1 \text{ V}/10 \text{ k}\Omega}{100 \text{ nA}}$$

$$=\frac{0.1 \text{ mA}}{100 \text{ nA}} = \frac{0.1 \times 10^{-3}}{100 \times 10^{-9}} = 1000 \text{ A/A}$$

or
$$20 \log A_i = 60 \, dB$$

$$A_p = \frac{v_O i_O}{v_I i_I} = \frac{v_O}{v_I} \times \frac{i_O}{i_I}$$

$$= 1 \times 10^5 \times 1000$$

$$= 1 \times 10^{8} \text{ W/W}$$

or
$$10 \log A_P = 80 \text{ dB}$$

(c)
$$A_v = \frac{v_0}{v_i} = \frac{5 \text{ V}}{1 \text{ V}} = 5 \text{ V/V}$$

or
$$20 \log 5 = 14 \, dB$$

$$A_i = \frac{i_O}{i_I} = \frac{v_O/R_L}{i_I} = \frac{5 \text{ V}/10 \Omega}{1 \text{ mA}}$$

= $\frac{0.5 \text{ A}}{1 \text{ mA}} = 500 \text{ A/A}$

or
$$20 \log 500 = 54 dB$$

$$A_p = \frac{v_O i_O}{v_I i_I} = \frac{v_O}{v_I} \times \frac{i_O}{i_I}$$

$$= 5 \times 500 = 2500 \text{ W/W}$$

or
$$10 \log A_p = 34 \text{ dB}$$

1.43
$$v_o = A_{vo}v_i \frac{R_L}{R_L + R_o}$$
$$= A_{vo} \left(v_s \frac{R_i}{R_i + R_s} \right) \frac{R_L}{R_L + R_o}$$

Thus

$$\frac{v_o}{v_s} = A_{vo} \frac{R_i}{R_i + R_s} \frac{R_L}{R_L + R_o}$$

(a)
$$A_{vo} = 100, R_i = 10R_s, R_L = 10R_o$$
:

$$\frac{v_o}{v_s} = 100 \times \frac{10R_s}{10R_s + R_s} \times \frac{10R_o}{10R_o + R_o}$$

= 82.6 V/V or 20 log 82.6 = 38.3 dB

(b)
$$A_{vo} = 100, R_i = R_s, R_L = R_o$$
:

$$\frac{v_o}{v_s} = 100 \times \frac{1}{2} \times \frac{1}{2} = 25 \text{ V/V or } 20 \log 25 = 28 \text{ dB}$$

(c)
$$A_{vo} = 100 \text{ V/V}, R_i = R_s/10, R_L = R_o/10$$
:

$$\frac{v_o}{v_s} = 100 \frac{R_s/10}{(R_s/10) + R_s} \frac{R_o/10}{(R_o/10) + R_o}$$

$$= 0.826 \text{ V/V} \text{ or } 20 \log 0.826 = -1.7 \text{ dB}$$

1.71 The given measured data indicate that this amplifier has a low-pass STC frequency response with a low-frequency gain of 40 dB, and a 3-dB frequency of 10⁴ Hz. From our knowledge of the Bode plots for low-pass STC networks [Fig. 1.23(a)], we can complete the table entries and sketch the amplifier frequency response.

f (Hz)	T (dB)	∠ <i>T</i> (°)		
0	40	0		
100	40	0		
1000	40	0		
10^{4}	37	-45°		
10 ⁵	20	-90°		
10 ⁶	0	-90°		

1.72 From our knowledge of the Bode plots of STC low-pass and high-pass networks, we see that this amplifier has a midband gain of 40 dB, a low-frequency response of the high-pass STC type with $f_{3dB} = 10^2$ Hz, and a high-frequency response of the low-pass STC type with $f_{3dB} = 10^6$ Hz. We thus can sketch the amplifier frequency response and complete the table entries as follows.

f(Hz)	1	10	10 ²	10 ³	104	10 ⁵	106	107	108
T (dB)	0	20	37	40	40	40	37	20	0