

SAR Test Report

Product Name : N_One Wireless Cardbus Adapter

Model No. : WPC-0600

Applicant : Digital Data Communications Asia, Co., Ltd

Address: 8F, No.41, Lane221, Kang-Chien Rd.,

Neihu Dis., Taipei 115, Taiwan R.O.C.

Date of Receipt : 2007/08/30

Issued Date : 2007/08/31

Report No. : 079054R-HP-US-P09V01

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Page: 1 of 23 Version:1.0

Report No: 079054R-HP-US-P09V01

Test Report Certification

Issued Date: 2007/08/31

Report No.:079054R-HP-US-P09V01

QuieTek

Product Name : N_One Wireless Cardbus Adapter

Applicant : Digital Data Communications Asia, Co., Ltd

Address : 8F, No.41, Lane221, Kang-Chien Rd., Neihu Dis., Taipei

115, Taiwan R.O.C.

Manufacturer : Digital Data Communications Asia, Co., Ltd

Model No. : WPC-0600

Trade Name : LevelOne

Applicable Standard : FCC Oet65 Supplement C June 2001

Test Result : Max. SAR Measurement (1g)

802.11b: 0.31 W/kg

802.11g: 0.186 W/kg

Application Type Certification

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

:

Documented By

Nicole Huang

(Engineering Adm. Assistant / Nicole

Huang)

Tested By

Shine Msu

(Senior Engineer / Shine Hsu)

Approved By

thing 4

(Deputy Manager Vincent Lin)

Page: 2 of 23 Version:1.0

TABLE OF CONTENTS

Desc 1.	cription Conoral Information	Page
1.	General Information	
	1.2 Test Environment	
2.	SAR Measurement System	
	2.1 ALSAS-10U System Description	
	2.1.1 Applications	
	2.1.2 Area Scans.	
	2.1.3 Zoom Scan (Cube Scan Averaging)	
	2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty	
	2.2 Isotropic E-Field Probe	
	2.2.1 Isotropic E-Field Probe Specification	
	2.3 Boundary Detection Unit and Probe Mounting Device	
	2.4 Daq-Paq (Analog to Digital Electronics)	
	Amplifier Range	
	2.5 Axis Articulated Robot	10
	2.6 ALSAS Universal Workstation	11
	2.7 Universal Device Positioner.	11
	2.8 Phantom Types	11
	2.8.1 APREL SAM Phantoms	12
	2.8.2 APREL Laboratories Universal Phantom	12
3.	Tissue Simulating Liquid	13
	3.1 The composition of the tissue simulating liquid	
	3.2 Tissue Calibration Result	13
	3.3 Tissue Dielectric Parameters for Head and Body Phantoms	14
4.	SAR Measurement Procedure	15
	4.1 SAR System Validation	15
	4.1.1 Validation Dipoles	15
	4.1.2 Validation Result	15
	4.2 SAR Measurement Procedure	
5.	SAR Exposure Limits	
6. 7	Test Equipment List	
7. 8.	Measurement UncertaintyTest Results	
8.	Test Results	
	8.1 SAR Test Results Summary	

Report No: 079054R-HP-US-P09V01

Appendix	23
Appendix A. SAR System Validation Data	
Appendix B. SAR measurement Data	
Appendix C. Test Setup Photographs & EUT Photographs	
Appendix D. Probe Calibration Data	
Appendix E. Dipole Calibration Data	

Page: 4 of 23 Version:1.0

1. General Information

1.1 EUT Description

Product Name	N_One Wireless Cardbus Adapter		
Trade Name	LevelOne		
Model No.	WPC-0600		
FCC ID	ULT540560070602		
TX Frequency	2412MHz ~ 2462MHz		
Number of Channel	11		
Type of Modulation	DSSS/OFDM		
Antenna Type	Internal		
Device Category	Portable		
RF Exposure Environment	Uncontrolled		
Transfer Rate	802.11b: 11Mbps		
	802.11g: 54Mbps		
	802.11n MIMO: 144Mbps		
Max. Output Power	802.11b: 17.49dBm		
(Conducted)	802.11g: 14.04dBm		
	802.11n MIMO: 16.36dBm		

1.2 Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	23.6
Humidity (%RH)	30-70	54

Page: 5 of 23 Version:1.0

2. SAR Measurement System

2.1 ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller.

ALSAS-10U uses the latest methodologies and FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

2.1.1 Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR

maxima are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

2.1.3 Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 5x5x8 (8mmx8mmx5mm) providing a volume of 32mm in the X & Y axis, and 35mm in the Z axis.

2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + {x'}^2 + {y'}^2} \cdot \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

2.2 Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

Calibration Frequency	Air Calibration	Tissue Calibration	
2450MHz	Waveguide	Temperature	

Page: 7 of 23 Version:1.0

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

2.2.1 Isotropic E-Field Probe Specification

Calibration in Air	Frequency Dependent		
Calibration in All			
	Below 2GHz Calibration in air performed in a TEM Cell		
	Above 2GHz Calibration in air performed in waveguide		
Sensitivity	$0.70 \ \mu V/(V/m)^2 \ to \ 0.85 \ \mu V/(V/m)^2$		
Dynamic Range	0.0005 W/kg to 100W/kg		
Isotropic Response	Better than 0.2dB		
Diode Compression point	Calibration for Specific Frequency		
(DCP)			
Probe Tip Radius	< 5mm		
Sensor Offset	1.56 (+/- 0.02mm)		
Probe Length	290mm		
Video Bandwidth	@ 500 Hz: 1dB		
	@1.02 KHz: 3dB		
Boundary Effect	Less than 2% for distance greater than 2.4mm		
Spatial Resolution	Diameter less than 5mm Compliant with Standards		

2.3 Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq.

2.4 Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5µV to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

ADC	12 Bit	
Amplifier Range	20mV to 200mV and 150mV to 800mV	
Field Integration	Local Co-Processor utilizing proprietary integration algorithms	
Number of Input Channels	4 in total 3 dedicated and 1 spare	
Communication	Packet data via RS232	

2.5 Axis Articulated Robot

ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

Robot/Controller Manufacturer	Thermo CRS		
Number of Axis	Six independently controlled axis		
Positioning Repeatability	0.05mm		
Controller Type	Single phase Pentium based C500C		
Robot Reach	710mm		
Communication	RS232 and LAN compatible		

Page: 10 of 23 Version:1.0

2.6 ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

2.7 Universal Device Positioner

The universal device positioner allow complete freedom of movement of the EUT. Developed to hold a EUT in a free-space scenario any additional loading attributable to the material used in the construction of the positioner has been eliminated. Repeatability has been enhanced through the linear scales which form the design used to indicate positioning for any given test scenario in all major axes. A 15° tilt indicator is included for the of aid cheek to tilt movements for head SAR analysis. Overall uncertainty for measurements have been reduced due to the design of the Universal device positioner, which allows positioning of a device in as near to a free-space scenario as possible, and by providing the means for complete repeatability.

2.8 Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528, Universal Phantom, and Universal Flat.

Page: 11 of 23 Version:1.0

2.8.1 APREL SAM Phantoms

The SAM phantoms developed using the IEEE SAM CAD file. They are fully compliant with the requirements for both IEEE 1528 and FCC Supplement C. Both the left and right SAM phantoms are interchangeable, transparent and include the IEEE 1528 grid with visible NF and MB lines.

2.8.2 APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of

handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.

3. Tissue Simulating Liquid

3.1 The composition of the tissue simulating liquid

INGREDIENT	900MHz	1800MHz	2450MHz	2450MHz
(% Weight)	Head	Head	Head	Body
Water			46.7	73.2
Salt			0.00	0.04
Sugar			0.00	0.00
HEC			0.00	0.00
Preventol			0.00	0.00
DGBE			53.3	26.7

3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Anritsu MS4623B Vector Network Analyzer.

Head Tissue Simulant Measurement						
Frequency	Description	Dielectric F	Parameters	Tissue Temp.		
[MHz]	Description	8 _r	σ [s/m]	[°C]		
	Reference result	39.2	1.8	NI/A		
2450MHz	± 5% window	37.24 to 41.16	1.71 to 1.89	IN/A		
	14-Aug-06	38.23	1.848	23.1		
	•			•		

Body Tissue Simulant Measurement						
Frequency	Description	Dielectric F	Tissue Temp.			
[MHz]	Description	8 r	σ [s/m]	[°C]		
	Reference result	52.7	1.95	N/A		
2450MHz	± 5% window	50.065 to 55.335	1.8525 to 2.0475	IN/A		
	14-Aug-06	51.29	1.979	23.1		
2412 MHz	Low channel	51.61	2.012	23.1		
2437 MHz	Mid channel	51.39	1.991	23.1		
2462 MHz	High channel	51.22	1.967	23.1		

Page: 13 of 23 Version:1.0

3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Head		Body	
(MHz)	٤ _٢	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page: 14 of 23 Version:1.0

4. SAR Measurement Procedure

4.1 SAR System Validation

4.1.1 Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6

4.1.2 Validation Result

System Performance Check at 2450MHz

Validation Kit: ASL-D-2450-S-2

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 5% window	52.4 49.78 to 55.02	24 22.8 to 25.2	N/A
	14-Aug-06	52.92	24.004	23.1

Note: All SAR values are normalized to 1W forward power.

Page: 15 of 23 Version:1.0

4.2 SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

Page: 16 of 23 Version:1.0

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

Page: 17 of 23 Version:1.0

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Last	Next
				Calibration	Calibration
Data Acquisition Package	Aprel	ALS-DAQ-PAQ-2	QTK-337	Nov. 2006	only once
Aprel Laboratories Probe	Aprel	ALS-E020	261	Apr. 2007	Apr. 2008
Aprel Reference Dipole 835Mhz	Aprel	ALS-D-835-S-2	QTK-315	Jun. 2006	Jun. 2008
Aprel Reference Dipole 1900Mhz	Aprel	ALS-D-1900-S-2	QTK-318	Jun. 2006	Jun. 2008
Aprel Reference Dipole 2450Mhz	Aprel	ALS-D-1800-S-2	QTK-319	Jun. 2006	Jun. 2008
Boundary Detection Sensor System	Aprel	ALS-PMDPS-2	QTK-336	N/A	N/A
Dielectric Probe Kit	Aprel	ALS-PR-DIEL	QTK-296	N/A	N/A
Universal Work Station	Aprel	ALS-UWS	QTK-326	N/A	N/A
Device Holder 2.0	Aprel	ALS-H-E-SET-2	QTK-294	N/A	N/A
Left Ear SAM Phantom	Aprel	ALS-P-SAM-L	QTK-292	N/A	N/A
Right Ear SAM Phantom	Aprel	ALS-P-SAM-R	QTK-288	N/A	N/A
Universal Phantom	Aprel	ALS-P-UP-1	QTK-246	N/A	N/A
Aprel Dipole Spacer	Aprel	ALS-DS-U	QTK-295	N/A	N/A
SAR Software	Aprel	ALSAS-10	Ver. 2.3.2	N/A	N/A
CRS C500C Controller	Thermo	ALS-C500	RCF0404433	N/A	N/A
CRF F3 Robot	Thermo	ALS-F3	RAF0412222	N/A	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-20	N/A	N/A
Directional Coupler	Agilent	778D-012	50550	N/A	N/A
Universal Radio	Rohde &	CMU 200	104846	Mar. 2007	Mar. 2008
Communication Tester	Schwarz				
Radio Communication	Anritsu	MT8820A	6200323183	Apr. 2007	Apr. 2008
Analyzer					
Vector Network	Anritsu	MS4623B	992801	Apr. 2007	Apr. 2008
Signal Generator	Anritsu	MG3692A	042319	Jun. 2007	Jun. 2008
Power Meter	Anritsu	ML2487A	6K00001447	Apr. 2007	Apr. 2008
Wide Bandwidth Sensor	Anritsu	MA2491	030677	Apr. 2007	Apr. 2008

Page: 18 of 23 Version:1.0

7. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c,' (1-g)	(10-g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	√3	(1- cp) ^{1/2}	(1- cp) ^{3/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	√3	√cp	√cp	4.4	4.4
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6
Linearity	4.7	rectangular	√3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	√3	1	1	0.5	0.5
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2
n							
Restriction	2.0		-5	,			
Probe Positioning with respect to Phantom Shell	2.9	rectangular	√3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	√3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	4.7	rectangular	√3	1	1	2.7	2.7
Phantom and Setup							
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	√3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	√3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	normal	1	0.7	0.5	0.1	0.0
Liquid Permittivity(target)	2.0	rectangular	√3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	2.6	normal	1	0.6	0.5	1.6	1.3
Combined Uncertainty		RSS				9.6	9.5
Combined Uncertainty (coverage factor=2)		Normal(k=2)				19.3	18.9

Page: 19 of 23 Version:1.0

8. Test Results

8.1 SAR Test Results Summary

SAR MEASUREMENT

Ambient Temperature (°C): 23.6 ±2 Relative Humidity (%): 54

Liquid Temperature (°C): 23.1 ±2 Depth of Liquid (cm):>15

Product: N_One Wireless Cardbus Adapter

Test Mode: 802.11b

Test Position Ante	Antenna	Frequency		Conducted	SAR 1g	Limit
Body	Position	Channel	MHz	Power (dBm)	(W/kg)	(W/kg)
Front	Fixed	1	2412	16.85	0.149	1.6
Front	Fixed	6	2437	16.94	0.222	1.6
Front	Fixed	11	2462	17.49	0.175	1.6
Back	Fixed	1	2412	16.85	0.183	1.6
Back	Fixed	6	2437	16.94	0.31	1.6
Back	Fixed	11	2462	17.49	0.192	1.6
Тор	Fixed	1	2412	16.85	0.089	1.6
Тор	Fixed	6	2437	16.94	0.068	1.6
Тор	Fixed	11	2462	17.49	0.072	1.6

Page: 20 of 23 Version:1.0

SAR MEASUREMENT

Ambient Temperature (°C): 23.6 ± 2 Relative Humidity (%): 54

Liquid Temperature (°C): 23.1 ± 2 Depth of Liquid (cm):>15

Product: N_One Wireless Cardbus Adapter

Test Mode: 802.11g

Test Position Antenna	Antenna	Frequency		Conducted	SAR 1g	Limit
Head	Position	Channel	MHz	Power (dBm)	(W/kg)	(W/kg)
Front	Fixed	1	2412	12.78	0.132	1.6
Front	Fixed	6	2437	13.54	0.118	1.6
Front	Fixed	11	2462	14.04	0.186	1.6
Back	Fixed	1	2412	12.78	0.113	1.6
Back	Fixed	6	2437	13.54	0.112	1.6
Back	Fixed	11	2462	14.04	0.142	1.6
Тор	Fixed	1	2412	12.78	0.053	1.6
Тор	Fixed	6	2437	13.54	0.05	1.6
Тор	Fixed	11	2462	14.04	0.057	1.6

SAR MEASUREMENT

Ambient Temperature (°C): 23.6 ± 2 Relative Humidity (%): 54

Liquid Temperature (°C): 23.1 \pm 2 Depth of Liquid (cm):>15

Product: N_One Wireless Cardbus Adapter

Test Mode: 802.11n,MIMO

Test Position Antenna	Antenna	Frequency		Conducted	SAR 1g	Limit
Head	Position	Channel	MHz	Power (dBm)	(W/kg)	(W/kg)
Front	Fixed	1	2412	14.89	0.081	1.6
Front	Fixed	6	2437	15.71	0.089	1.6
Front	Fixed	11	2462	16.36	0.093	1.6
Back	Fixed	1	2412	14.89	0.18	1.6
Back	Fixed	6	2437	15.71	0.179	1.6
Back	Fixed	11	2462	16.36	0.173	1.6
Тор	Fixed	1	2412	14.89	0.087	1.6
Тор	Fixed	6	2437	15.71	0.074	1.6
Тор	Fixed	11	2462	16.36	0.081	1.6

Page: 22 of 23 Version:1.0

Appendix

Appendix A. SAR System Validation Data

Appendix B. SAR measurement Data

Appendix C. Test Setup Photographs & EUT Photographs

Appendix D. Probe Calibration Data

Appendix E. Dipole Calibration Data

Page: 23 of 23 Version:1.0

Appendix A. SAR System Validation Data

ALSAS-10U VER 2.3.1 APREL Laboratories

SAR Test Report

Report Date : 14-Aug-2006 Measurement Date : 14-Aug-2006

Product Data

: Dipole-2450

Device Name : Dipole-2450
Type : Dipole
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 51.5 mm Length Width : 3.6 mm
Depth : 30.4 mm

Power Drift-Start : 11.798 W/kg Power Drift-Finish: 11.928 W/kg

Power Drift (%) : 1.099

Phantom Data

Name : APREL-Uni Type : Uni-Finance...

Size (mm) : 280 x 280 x 200

Location : Center

Tissue Data

Type : HEAD
Serial No. : 325-H
Frequency : 2450.00 MHz Last Calib. Date: 14-Aug-2006 Temperature : 23.10 °C

Ambient Temp. : 23.60 °C Humidity : 54.00 RH% Epsilon : 38.23 F/m Sigma : 1.848 S/m Density : 1000.00 kg

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 264
Model : E020
Type : E-Field Tr
Serial No. : 264

: E-Field Triangle

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

> Page: 1 of 3 Version:1.0

Measurement Data

Crest Factor : 1 Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 5x5x1 : Measurement x=12mm, y=12mm, z=4mm: 7x7x7 : Measurement x=5mm, y=5mm, z=5mmZoom Scan

Frequency : 2450

1 gram SAR value : 13.230 W/kg 10 gram SAR value : 6.001 W/kg Area Scan Peak SAR : 15.354 W/kg Zoom Scan Peak SAR : 27.924 W/kg

> Page: 2 of 3 Version:1.0

This is previous page plot (zoom in)

Page: 3 of 3 Version:1.0

Appendix B. SAR measurement Data

ALSAS-10U VER 2.3.1APREL Laboratories

SAR Test Report (802.11b)

Report Date : 14-Aug-2006 Measurement Date : 14-Aug-2006

Product Data

Device Name : Belkin Type : Other

Model : WPC-0600

Frequency : 2450.00 MHz

Length : 120 mm : Other Width : 54 mm
Depth : 4.4 mm
Antenna Type : Internal

Phantom Data

Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Location : Center

Tissue Data
Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz Last Calib. Date: 14-Aug-2006 Temperature : 23.10 °C Ambient Temp. : 23.60 °C

Humidity : 54.00 RH%

Epsilon : 51.29 F/m

Sigma : 1.979 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : Probe 264
Model : E020
Type : ---

Type Type : E-Field Triangle Serial No. : 264

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data Crest Factor : 1

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.078 W/kg Power Drift-Finish: 0.080 W/kg

Power Drift (%) : 2.655

DUT Position : 802.11b-EUT Front

Channel : 1

1 gram SAR value : 0.149 W/kg 10 gram SAR value : 0.095 W/kg Area Scan Peak SAR : 0.128 W/kg Zoom Scan Peak SAR : 0.134 W/kg

Page: 2 of 60 Version:1.0

This is previous page plot (zoom in)

Measurement Data

Crest Factor : 1

Tissue Temp. : 23.10 °C
Ambient Temp. : 23.60 °C

: 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Area Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm Zoom Scan

Power Drift-Start : 0.070 W/kg Power Drift-Finish: 0.072 W/kg

Power Drift (%) : 2.891

DUT Position : 802.11b-EUT Front

Channel : 6

1 gram SAR value : 0.222 W/kg 10 gram SAR value : 0.127 W/kg Area Scan Peak SAR : 0.117 W/kg Zoom Scan Peak SAR : 0.350 W/kg

> Page: 4 of 60 Version:1.0

This is previous page plot (zoom in)

Measurement Data Crest Factor : 1

: 23.10 °C Tissue Temp. Ambient Temp. : 23.60 °C

: 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Area Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm Zoom Scan

Power Drift-Start : 0.069 W/kg Power Drift-Finish: 0.071 W/kg

Power Drift (%) : 2.235

DUT Position : 80 : 802.11b-EUT Front

1 gram SAR value : 0.175 W/kg 10 gram SAR value : 0.118 W/kg Area Scan Peak SAR: 0.123 W/kg Zoom Scan Peak SAR : 0.220 W/kg

This is previous page plot (zoom in)

Measurement Data Crest Factor : 1

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.157 W/kg Power Drift-Finish: 0.163 W/kg

Power Drift (%) : 3.691

DUT Position : 802.11b- EUT Back Channel : 1

1 gram SAR value : 0.183 W/kg 10 gram SAR value : 0.109 W/kg Area Scan Peak SAR: 0.195 W/kg Zoom Scan Peak SAR: 0.390 W/kg

> Page: 8 of 60 Version:1.0

This is previous page plot (zoom in) Area Scan

Measurement Data Crest Factor : 1

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.182 W/kg Power Drift-Finish: 0.183 W/kg

Power Drift (%) : 0.909

DUT Position : 802.11b- EUT Back Channel : 6

1 gram SAR value : 0.310 W/kg 10 gram SAR value : 0.178 W/kg Area Scan Peak SAR : 0.208 W/kg Zoom Scan Peak SAR : 0.387 W/kg

> Page: 10 of 60 Version:1.0

This is previous page plot (zoom in) Area Scan

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.177 W/kg Power Drift-Finish: 0.182 W/kg

Power Drift (%) : 2.831

DUT Position : 802.11b- EUT Back Channel : 11

1 gram SAR value : 0.192 W/kg 10 gram SAR value : 0.112 W/kg Area Scan Peak SAR : 0.243 W/kg Zoom Scan Peak SAR : 0.370 W/kg

> Page: 12 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x5x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.076 W/kg Power Drift-Finish: 0.078 W/kg

Power Drift (%) : 2.595

DUT Position : 802.11b- EUT Top Channel : 1

1 gram SAR value : 0.089 W/kg 10 gram SAR value : 0.065 W/kg Area Scan Peak SAR: 0.076 W/kg Zoom Scan Peak SAR: 0.160 W/kg

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x5x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.069 W/kg Power Drift-Finish: 0.070 W/kg

Power Drift (%) : 1.053

DUT Position : 802.11b- EUT Top Channel : 6

1 gram SAR value : 0.068 W/kg 10 gram SAR value : 0.057 W/kg Area Scan Peak SAR : 0.102 W/kg Zoom Scan Peak SAR : 0.103 W/kg

> Page: 16 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x5x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.064 W/kg Power Drift-Finish: 0.063 W/kg Power Drift (%) : -1.154

DUT Position : 802.11b- EUT Top Channel : 11

1 gram SAR value : 0.072 W/kg 10 gram SAR value : 0.063 W/kg Area Scan Peak SAR : 0.081 W/kg Zoom Scan Peak SAR : 0.130 W/kg

> Page: 18 of 60 Version:1.0

ALSAS-10U VER 2.3.1APREL Laboratories SAR Test Report (802.11g)

Report Date : 14-Aug-2006 Measurement Date : 14-Aug-2006

Product Data

Device Name : Belkin
Type : Other Type : Other
Model : WPC-0600
Frequency : 2450.00 MHz
Length : 120 mm

Width : 54 mm
Depth : 4.4 mm
Antenna Type : Internal

Phantom Data

Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Location : Center

Tissue Data

Type : BODY
Serial No. : 325-B
Frequency : 2450.00 MHz Type : BODY

Last Calib. Date: 14-Aug-2006 Temperature : 23.10 °C Ambient Temp. : 23.60 °C

Humidity : 54.00 RH%

Epsilon : 51.29 F/m

Sigma : 1.979 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 264
Model : E020
Type : E-Field Tr
Serial No. : 264

: E-Field Triangle

Last Calib. Date : 21-Mar-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV Offset : 1.56 mm

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.078 W/kg Power Drift-Finish: 0.076 W/kg Power Drift (%) : -1.375

DUT Position : 802.11g- EUT Front Channel : 1

1 gram SAR value : 0.132 W/kg 10 gram SAR value : 0.088 W/kg Area Scan Peak SAR : 0.121 W/kg Zoom Scan Peak SAR : 0.153 W/kg

> Page: 21 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.081 W/kg Power Drift-Finish: 0.084 W/kg

Power Drift (%) : 4.248

DUT Position : 802.11g- EUT Front Channel : 6

1 gram SAR value : 0.118 W/kg 10 gram SAR value : 0.095 W/kg Area Scan Peak SAR : 0.116 W/kg Zoom Scan Peak SAR : 0.138 W/kg

> Page: 23 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.079 W/kg Power Drift-Finish: 0.082 W/kg

Power Drift (%) : 3.541

DUT Position : 802.11g- EUT Front Channel : 11

1 gram SAR value : 0.186 W/kg 10 gram SAR value : 0.129 W/kg Area Scan Peak SAR : 0.119 W/kg Zoom Scan Peak SAR : 0.270 W/kg

> Page: 25 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.093 W/kg Power Drift-Finish: 0.090 W/kg Power Drift (%) : -3.060

DUT Position : 802.11g- EUT Back Channel : 1

1 gram SAR value : 0.113 W/kg 10 gram SAR value : 0.082 W/kg Area Scan Peak SAR : 0.115 W/kg Zoom Scan Peak SAR : 0.150 W/kg

> Page: 27 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.108 W/kg Power Drift-Finish: 0.111 W/kg

Power Drift (%) : 2.726

DUT Position : 802.11g- EUT Back Channel : 6

1 gram SAR value : 0.112 W/kg 10 gram SAR value : 0.092 W/kg Area Scan Peak SAR : 0.137 W/kg Zoom Scan Peak SAR : 0.139 W/kg

> Page: 29 of 60 Version:1.0

Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x6x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.109 W/kg Power Drift-Finish: 0.111 W/kg

Power Drift (%) : 2.427

DUT Position : 802.11g- EUT Back Channel : 11

1 gram SAR value : 0.142 W/kg 10 gram SAR value : 0.103 W/kg Area Scan Peak SAR : 0.149 W/kg Zoom Scan Peak SAR : 0.300 W/kg

> Page: 31 of 60 Version:1.0

Tissue Temp. : 23.10 °C Ambient Temp. : 23.60 °C

Area Scan : 6x5x1 : Measurement x=12mm, y=12mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=5mm, y=5mm, z=5mm

Power Drift-Start : 0.041 W/kg Power Drift-Finish: 0.041 W/kg Power Drift (%) : -1.377

DUT Position : 802.11g- EUT Top Channel : 1

1 gram SAR value : 0.053 W/kg 10 gram SAR value : 0.047 W/kg Area Scan Peak SAR : 0.051 W/kg Zoom Scan Peak SAR : 0.054 W/kg

> Page: 33 of 60 Version:1.0

Version:1.0