Advanced Cryptography

Lesson 5

RSA digital signature

Samantha Victor

Key Creation

Choose secrete primes p, q Choose verification exponent v with gcd(v, (p-1)(q-1)) = 1

Publish N = pq and v

Signing

Compute s satisfying $s \equiv 1 \pmod{(p-1)(q-1)}$ Sign document D by computing $S \equiv D^s \pmod{N}$

Verification

Compute S_v mod N and Verify that it is equal to D

Elliptic curves over F₂ and over F₂^k

Theorem (Hasse). With $E(F_p^k)$, $\#E(F_p^k) = p^k + 1 - t_p^k$ with t_p^k satisfying $|t_p^k| \le 2p^{k/2}$.

 $\#E(F_2) = 5$, so $\#E(F_2)$ is not useful for cryptographic purposes.

Definition. An elliptic curve E is the set of solutions to a generalized Weierstrass equation (E): $Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$, together with an extra point O. the coefficients a_1 , ..., a_6 are required to satisfy $\Delta \neq 0$, where the discriminant Δ is defined as follows:

•
$$b_2 = a_1^2 + 4a_2$$
, $b_2 = 2a_4 + a_1a_3$, $b_6 = a_3^2 + 4a_6$,

•
$$b_8 = a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2$$
,

•
$$\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6$$
.

ElGamal digital signatures

Public Parameter Creation

A trusted party chooses and publishes a large prime p and primitive root g modulo p

Samatha Victor

Key creation

Choose secret signing key $1 \le s \le p - 1$.

Compute $v \equiv g^s \pmod{p}$.

Publish the verification key v.

Signing

Choose document D mod p.

Choose ephemeral key e mod p.

Compute signature

.
$$S_1 \equiv g^e \pmod{p}$$
.

$$S_2 \equiv (D - sS_1)e^{-1} \pmod{p-1}$$

Verification

Compute $v_1^S S_1^S S_2 \mod p$. Verify that it is equal to $g^D \mod p$.

DSA – digital signature algorithm

Public Parameter Creation

A trusted party chooses and publishes a large primes p and q satisfying $p \equiv 1 \pmod{q}$ and an element g of order q modulo p

Samatha Victor

Key creation

Choose secret signing key $1 \le s \le q - 1$.

Compute $v \equiv g^s \pmod{p}$.

Publish the verification key v.

Signing

Choose document D mod p.

Choose ephemeral key e mod p.

Compute signature

.
$$S_1 \equiv g^e \pmod{p}$$
.

$$S_2 \equiv (D + sS_1)e^{-1} \pmod{p-1}$$

Verification

Compute $DS_{12}^{S} \mod p$ and $V_2 \equiv S_1 S_2^{-1} \pmod q$. Verify that $(g_1^{V} v_2^{V} \mod p) \mod q = S_1$.