Electric Fields Past Paper Questions Jan 2002—Jan 2010 (old spec)

1	(a)		lectron moves p gure 1.	parallel to, but	in the op	posite (lirection	to, a uniform e	lectric field, as shown
				electro	an •→			_	Q4 Jan 2002
			electric	• Ciccirc	,11 ·			_	
			field]	Figure 1				
		(i)	State the direct	ction of the for	ce that a	acts on t	he electi	on due to the e	lectric field.
		(ii)	What is the e	ffect of this for	rce on th	e motio	n of the	electron?	
					•••••	••••••	••••••	••••••	(2 marks
	(b)		lectron, which ric field as show			ontal pa	th at con	stant speed, ent	ers a uniform vertica
			e	electron •					
								electric field	
								neid	
					Figu	ire 2	'		
		(i)	Sketch on Fig	gure 2 the path	followe	ed by the	e electro	n.	
		(ii)	Explain the m	notion of the el	ectron w	vhilst in	this fiel	d.	
						•••••			
						•••••			

(3 marks)

3 The mass of the nucleus of an isolated copper atom is 63 u and it carries a charge of +29e. The diameter of the atom is 2.3×10^{-10} m.

P is a point at the outer edge of the atom.

Q3 Jan 2003

(a)	Cal	culate
-----	-----	--------

(i)	the electric field strength at P due to the nucleus,
(ii)	the gravitational potential at P due to the nucleus.
	(5 marks)

(b) Draw an arrow on the above diagram to show the direction of the electric field at the point P. (1 mark)

2	(a)	Complete the table of quantities related to fields. In the second column, write an SI unit for each
		quantity. In the third column indicate whether the quantity is a scalar or a vector.

quantity	SI unit	scalar or vector
gravitational potential		
electric field strength		
magnetic flux density		

Q2 Jan 2004

(3 marks)

(i) A charged particle is held in equilibrium by the force resulting from a vertical electric field. The mass of the particle is 4.3×10^{-9} kg and it carries a charge of magnitude 3.2×10^{-12} C. Calculate the strength of the electric field.	(i)
ii) If the electric field acts upwards, state the sign of the charge carried by the particle.	(ii)
(3 marks)	
(3 marks)	

5 (a) An electron travels at a speed of 3.2×10^7 m s⁻¹ in a horizontal path through a vacuum. The electron enters the uniform electric field between two parallel plates, 30 mm long and 15 mm apart, as shown in **Figure 2**. A potential difference of 1400 V is maintained across the plates, with the top plate having positive polarity. Assume that there is no electric field outside the shaded area.

(i)	Show that the electric field strength between the plates is $9.3 \times 10^4 \mathrm{V m^{-1}}$.						
(ii)	Calculate the time taken by the electron to pass through the electric field.						
(iii)	Show that the acceleration of the electron whilst in the field is $1.6 \times 10^{16} \mathrm{m s^{-2}}$ and						
	state the direction of this acceleration.						

(5 marks)

(b)	Determine the magnitude and direction of the velocity of the electron at the point where it leaves the field.
	(3 marks)
	(3 marks)

3	(a)	(i)	Define the <i>electric field strength</i> , E, at a point in an electric field.
			Q3 Jun 2006
		(!!)	Contract to the contract to th
		(ii)	State whether E is a scalar or a vector quantity.
			(3 marks)
	(b)	Poin	t charges of $+4.0\mathrm{nC}$ and $-8.0\mathrm{nC}$ are placed 80 mm apart, as shown in Figure 2 .
			Figure 2
			→ 80 mm
		+	$4.0\mathrm{nC}$ \bullet $-8.0\mathrm{nC}$
			P •
		(i)	Calculate the magnitude of the force exerted on the $+4.0\mathrm{nC}$ charge by the $-8.0\mathrm{nC}$ charge.

(ii)	Determine the distance from the +4.0 nC charge to the point, along the straight line between the charges, where the electric potential is zero.				
			(4 marks)		
Poi	nt P i	in Figure 2 is equidistant from the two charges.			
(i)	ma	raw two arrows on Figure 2 at P to represent the direct agnitudes of the components of the electric field at P charges.			
(ii)		ence draw an arrow, labelled R , on Figure 2 at P to re e resultant electric field at P .	present the direction of (3 marks)		
		Figure 4	Q4 Jun 2007		
		$\begin{array}{c} \bullet \longrightarrow \\ \alpha \text{ particle} \end{array}$	gold nucleus		
straig Figu	tht linr e 4 .	erford scattering experiment, an α particle approaches a gene joining their centres and comes momentarily to rest at ticle then returns along its previous path.	_		
(a)		distance from the centre of the gold nucleus $^{197}_{79}$ Au, to the	ne point P is 3.0×10^{-14} m.		
	For t	the point P			
	(i)	show that the strength of the electric field associated w is $1.3 \times 10^{20} V m^{-1}$,	ith the charge of the nucleus		
	(ii)	calculate the magnitude of the force acting on the α pa	rticle,		
	(iii)	calculate the electric potential due to the charge of the	nucleus.		
			(5 marks)		

(c)

4

(b)	(i)	State the energy changes of the α particle during its interaction with the gold nucleus.
	(ii)	Calculate the initial kinetic energy, in J, of the α particle, explaining your reasoning.
		(4 marks)

	direction of the force that acts on a moving electron, and cron's subsequent motion.	describe and explain the
	may be awarded additional marks to those shown in bracen communication in your answer. Q3	kets for the quality of Jan 2008
(i)	An electron enters a uniform electric field that is directed electron's velocity at the point of entry.	ed at right angles to the
(ii)	An electron enters a uniform electric field whose directive the electron's velocity at the point of entry.	on is the same as that of
		(5 marks)

(a) Electrons experience forces in electric fields. In each of the following cases, state

3

(b) **Figure 2** shows two parallel metal plates, 44 mm apart, which have a pd of 110 V applied across them, with an electron between them.

Calculate

(i)	the electric field strength between the plates,
(ii)	the magnitude of the force on the electron when it is between the plates,
(iii)	the kinetic energy, in J, that is gained by the electron when it starts from rest at one plate and crosses to the other plate.
	(4 marks)

4	(a)	In order for fusion of two nuclei to take place, they have to be brought together to a separation of about 2 fm. Q4 Jan 2008			
		(i)	Show that the electrostatic potential energy of a system deuterium $\binom{2}{1}$ H) nuclei at a separation of 2 fm is about 1		
	No	te thi	s question is a little off topic but maybe useful	for other modules	
		(ii)	Two deuterium nuclei may be brought to this separation collide with equal and opposite velocities. Calculate the by each nucleus for the system to have the potential enematical (a)(i).	e minimum speed required	
				(5 marks)	

		${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{1}^{3}H + {}_{1}^{1}p$	
	(i)	Calculate the energy released, in J, by this reaction.	
		mass of ${}_{1}^{2}$ H nucleus = 2.01355 u	
		mass of ${}_{1}^{3}$ H nucleus = 3.01550 u	
		mass of proton $= 1.00728 \mathrm{u}$	
			•••••
			••••••
	(ii)	How much energy is released, in J, from 1 kg of reactant in the above fusi reaction?	on
		(4	4 marks)
(c)	an er	e two reasons why fusion reactions would be preferable to fission reactions nergy resource, provided the necessary conditions required for continuous f d be maintained.	
	•••••	(2	2 marks)

(b) One reaction that can occur when deuterium nuclei undergo fusion is

4	(a)	(i)	With the aid of a diagram, describe the electric field around an isolated point negative charge (shown below as $-Q$).
			Q4 Jun 2009
			<i>O</i>
			• ~

(a) (ii) Draw a dashed line (-----) on your diagram, along which a small charge could be moved without changing its potential energy. Label this line L.

(4 marks)

- 4 (b) (i) Point P is 40 mm from a point charge of -0.80 nC.

 Calculate the magnitude of the electric field strength at P.
- 4 (b) (ii) Insert your value for the electric field strength at P, from part (b)(i), on **Figure 4**. Then complete, as accurately as you can, a graph on **Figure 4** to show how the magnitude of the electric field strength varies with distance, for points which are at distances greater than 40 mm from the -0.80 nC charge.

Figure 4

(5 marks)

2 Figure 3 shows graphs of the electric field strength and of the electric potential caused by a point charge. On each graph the vertical axis has a linear scale.

Q2 Jan 2010

2 (a) Which of the graphs, **A** or **B**, shows the variation of *electric field strength* against distance?

(1 mark)

2 (b) State why, in the regions marked **R**, the shapes of the graphs are different from each other.

2 (c) At a point where the distance, r, from the point charge is 40 mm, the electric field strength is $3.6 \times 10^4 \text{ Vm}^{-1}$. Calculate the potential at this point.

(2 marks)