

دانشگاه صنعتی امیرکبیر (پلیتکنیک تهران) دانشکده مهندسی کامپیوتر و فناوری اطلاعات

> پایاننامه کارشناسیارشد گرایش شبکههای کامپیوتری

زنجیرهسازی کارکردهای مجازی سرویس شبکه با لحاظ محدودیت منابع مدیریتی

نگارش

پرهام الواني

استاد راهنما

دکتر بهادر بخشی

شهریور ۱۳۹۸

صفحه فرم ارزیابی و تصویب پایان نامه- فرم تأیید اعضاء کمیته دفاع

در این صفحه فرم دفاع یا تایید و تصویب پایان نامه موسوم به فرم کمیته دفاع- موجود در پرونده آموزشی- را قرار دهید.

نكات مهم:

- نگارش پایان نامه/رساله باید به زبان فارسی و بر اساس آخرین نسخه دستورالعمل و راهنمای تدوین پایان نامه های دانشگاه صنعتی امیر کبیر باشد.(دستورالعمل و راهنمای حاضر)
- رنگ جلد پایان نامه/رساله چاپی کارشناسی، کارشناسی ارشد و دکترا باید به ترتیب مشکی، طوسی و سفید رنگ باشد.
 - چاپ و صحافی پایان نامه/رساله بصورت پشت و رو(دورو) بلامانع است و انجام آن توصیه می شود.

به نام خدا

تعهدنامه اصالت اثر

اینجانب پرهامالوانی متعهد می شوم که مطالب مندرج در این پایاننامه حاصل کار پژوهشی اینجانب تحت نظارت و راهنمایی اساتید دانشگاه صنعتی امیر کبیر بوده و به دستاوردهای دیگران که در این پژوهش از آنها استفاده شده است مطابق مقررات و روال متعارف ارجاع و در فهرست منابع و مآخذ ذکر گردیده است. این پایاننامه قبلاً برای احراز هیچ مدرک هم سطح یا بالاتر ارائه نگردیده است.

در صورت اثبات تخلف در هر زمان، مدرک تحصیلی صادر شده توسط دانشگاه از درجه اعتبار ساقط بوده و دانشگاه حق پیگیری قانونی خواهد داشت.

کلیه نتایج و حقوق حاصل از این پایاننامه متعلق به دانشگاه صنعتی امیرکبیر میباشد. هرگونه استفاده از نتایج علمی و عملی، واگذاری اطلاعات به دیگران یا چاپ و تکثیر، نسخهبرداری، ترجمه و اقتباس از این پایان نامه بدون موافقت کتبی دانشگاه صنعتی امیرکبیر ممنوع است. نقل مطالب با ذکر مآخذ بلامانع است.

پرهامالوانی امضا

این رساله هرچند کوچک را تفدیم میکنم به:

. دکتر بخشی که از عرسال شاکر دی و به کاری ایشان برای من مایه افتخار بود

. دوستانم در دانشگاه امیرکبیر که امروز بسیاری شان از پیش مار فته اند اما خاطرشان همواره دریادم می ماند

. په کارانم در تیم چارلی که نور جدیدی به زندگی من دادند

سپاس گزاری

در اینجا لازم میدانم از راهنماییها و مساعدتهای اساتید عزیز و گرانقدرم جناب آقای دکتر بخشی صمیمانه قدردانی و سپاس گزاری نمایم. در ادامه از دوست خوبم بهروز فرکیانی که همواره من را راهنمایی کرده و از پدر و مادرم که همواره من را حمایت کردهاند تشکر میکنم.

در نهایت جا دارد از دوست، همکار و مدیر خوبم سینا سعیدی مدیریت فنی تیم منابع مشترک شرکت ایده گزین ارتباطات روماک تشکر کنم که بدون حمایتهای ایشان نگارش این پایان نامه ممکن نبود.

پرهم الوانی شرپور ۱۳۹۸

چکیده

مسالهی مجازی سازی توابع شبکه سعی دارد توابع شبکه را به صورت مجازی در شبکه جایگذاری نمایند و در ادامه با برقراری ارتباط میان آنها سرویسهایی را فراهم آورد. یکی از مسائل در این روش پذیرش سرویسها و قرار دادن آنها بر روی زیرساخت است که در کارهایی زیادی به آن پرداخته شده است ولی یکی از اجزا معماری مجازی سازی کارکردهای شبکه بخش مدیریتی است که میبایست در کنار سرویسها بر روی زیرساخت مستقر شود. در این رساله ما قصد داریم جایگذاری سرویسها با لحاظ منابع مدیریتی را مدلسازی و حل نماییم.

واژههای کلیدی:

مجازی سازی کارکردهای شبکه، زنجیرهسازی کارکردهای مجازی سرویس شبکه،بهینهسازی، بهینهسازی خطی صحیح

فحه	فهرست مطالب	••
-00	وان	
١	مقدمه	١
٣	۱-۱ تعریف صورت مساله	
٣	۲–۱ اهمیت مساله	
٣	۱-۳ نوآوری	
٣	۴-۱ ساختار گزارش	
۴	مفاهيم پايه	۲
۵	۱-۲ مقدمه	
۶	۲-۲ مجازی سازی کارکرد شبکه	
٧	۳-۲ معماری NFV	
٧	NFVI زیرساخت مجازیسازی کارکردهای شبکه یا $NFVI$	
٨	۲-۳-۲ کارکردهای مجازی شبکه	
٩	ΕΜ ۳-۳-۲	
٩		
٩	NFV MANO Δ-٣-٢	
١.	کارهای مرتبط	٣
۱۳	تعريف مساله	۴
14	۱–۴ مساله	
۱۵	۴-۲ فرمول بندی	
۲.	راهحل پیشنهادی	۵
۲۱	الگوريتم مكاشفهاي	
77	ارزيابي	۶
73	۱-۶ مقدمه	
73	۲-۶ محیط ارزیابی	
74	8-۳ معیارهای ارزیابی	
74	۶-۳-۴ نسبت سود به هزینه	
	۲-۳-۶ سود	
	۶–۳–۳ تعداد زنجیرههای پذیرفته شده	
۲۵	۴-۳-۶ تعداد VNFMهای استفاده شده	
۲۵	۶-۶ محیط ارزیابی	

ىت مطالب

٣.																															جع	، مرا	بع و	منا
79	•	•		•			•	•			•	•	•	•	 	•	•	•	•	. J	JS	ne	et ,	وژی	وپولو	ر تو	عا د	برەھ	زنج	۴	-Δ -3	۶		
۲۸															 					Fa	ιtΤ	re	e	وژی	وپولو	ر تو	ما د	برەھ	زنج	٣	- Δ−	۶		
۲٧															 									نه.	هزي	به	سود	ت د	نسب	۲	- Δ-	۶		
۲٧															 										. م	نيو	ل ب	ر ح	زمار	١	- Δ-	۶		
۲٧					•			•		•									•									•	یابی	ارز	نايج	۵ نا	/- 8	

فحه	ص													Ĺ	ال	کا	ئن	اذ	ت	ىد	ٍىد	یهر	ۏ												شكل
۶																																	-		
٨						•																بكه	ش	ی	،ھا	کرد	کار	۔ ی	ساز	یں	جاز	ں م	ماري	د ه	7-7
۲۱						•								•								•		[۴	-]	می	دگا	چن	ف .	گرا	، با	ازی	السا	مد	۱-۵
۲۳				•														•						F	∃a1	tTr	ee	ته	ِياف	فتار	سا-	ی	پولوژ	تو	1-8
																																			۲-۶
27																											نه	يو	نم ب	ورين	الگر	عل	ان ح	زم	٣-۶
۲۸								نه	زيا	ھ	به	٥	ىبو	، د	ف	نتل	خ	ه ر	ناي	ته	ب	ِ نس	در	[۴]	ی و	اد	ئىنچ	پیث	تم	ؙۅڔؠ	الگ	رآيي	کا	4-8
۲۸																		[۴]	و	ی	علو	شن	پي	،م	نيو	ى ب	هاء	بتم	گور	, ال	ہایی	ود نھ	سر	۵-۶
۲٩									۴]]	، و	نی	ہاد	نې	بش	پ	٠٩	ين	بھ	ای	ھا	ِيتہ	گور	الگ	ده	۰ ش	فته	دير	، پذ	های	یره	ٍنج	داد ز	تع	8-8
۲٩														[1	۴]	و	ی	ادو	نها	بشا	پی	بنه،	٠.	ی ب	هاء	بتم	وري	الگ	ای	Vھ	NI	FM	داد]	تع	٧-۶

صفحه	ج _{دول} فهرست جداول	
۱۲ .	۱-۳ مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس	

فصل اول مقدمه

راه اندازی و استقرار سرویس در صنعت مخابرات به طور سنتی بر این اساس است که اپراتورهای شبکه سختافزارهای اختصاصی فیزیکی و تجهیزات لازم برای هر کارکرد در سرویس را در زیرساخت خود مستقر کنند. فراهم کردن نیازمندیهایی مانند پایداری و کیفیت بالا منجر به اتکای فراهم کنندگان سرویس بر سختافزارهای اختصاصی میشود. این درحالی است که نیازمندی کاربران به سرویسهای متنوع و عموما با عمرکوتاه و نرخ بالای ترافیک افزایش یافته است. بنابراین فراهم کنندگان سرویسها باید مرتبا و به صورت پیوسته تجهیزات فیزیکی جدید را خریده، انبارداری کرده و مستقر کنند. تمام این عملیات باعث افزایش هزینه های فراهم کنندگان سرویس می شود. با افزایش تجهیزات، پیدا کردن فضای فیزیکی برای استقرار تجهیزات جدید به مرور دشوارتر می شود. علاوه بر این باید افزایش هزینه و تاخیر ناشی از آموزش کارکنان برای کار با تجهیزات جدید را نیز در نظر گرفت. بدتر این که هر چه نوآوری سرویسها و فناوری شتاب بیشتری میگیرد، چرخه عمر سختافزارها کوتاهتر میشود که مانع از ایجاد نوآوری در سرویسهای شبکه میشود.

در روش سنتی استقرار سرویس شبکه، ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند تا یک مسیر پردازش ترافیک ایجاد شود. در حال حاضر این کارکردها به صورت سختافزاری به یکدیگر متصل هستند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت می شود. چالش اصلی این روش در این است که استقرار و تغییر ترتیب کارکردها دشوار است. به عنوان مثال، به مرور زمان با تغییر شرایط شبکه نیازمند تغییر همبندی و یا مکان کارکردها برای سرویسدهی بهتر به کاربران هستیم که نیاز به جا به جایی کارکردها و تغییر جداول مسیریابی دارد. در روش سنتی این کار سخت و هزینهبر است که ممکن است خطاهای بسیاری در آن رخ دهد. از جنبه دیگر، تغییر سریع سرویسهای مورد نظر کاربران نیازمند تغییر سریع در ترتیب کارکردها است که در روش فعلی این تغییرات به سختی صورت گیرد. بنابراین اپراتورهای شبکه نیاز به شبکه های قابل برنامه ریزی و ایجاد زنجیره سرویس کارکردها به صورت پویا پیدا کرده اند.

در سالهای اخیر دو تکنولوژی شبکههای نرمافزارمحور و مجازیسازی شبکه بسیار مورد توجه قرار گرفتهاند. پیشتر در ارائه سرویسهای شبکه، از سختافزارهای اختصاصی که توسط سازندگان اختصاصی ارائه میشد و به آنها middle box گفته میشد استفاده می گشت. تنوع و تعداد رو به افزایش سرویسهای جدیدی که توسط کاربران تقاضا می گردد باعث هزینههای زیاد برای خرید و نگهداری middle box اپراتورها شده است. به تازگی فراهم آورندگان شبکه شروع به حرکت به سوی مجازیسازی و نرمافزاری کردن بسترهای شبکه کردهاند، به این ترتیب آنها قادر خواهند بود سرویسهای نوآورانهای به کاربران ارائه بدهند. این روند به سرویس دهندگان اجازه می دهد که ارائه سرویسهای دلخواهشان وابسته به سختافزارهای اختصاصی نباشد و هزینههای راهاندازی و نگهداری فراهم آوردندگان سرویس را کاهش می دهد. با نرمافزاری سازی کارکردها، وابستگی آنها به سخت افزار اختصاصی کاهش یافته و به سرعت می توان آنها را افزایش /کاهش مقیاس داد. مجازی سازی کارکردهای شبکه و زنجیره سازی کارکرد سرویس راهکاریهایی هستند که برای همین منظور پیشنهاد شدهاند.

ایده ی اصلی مجازی سازی توابع شبکه جداسازی تجهیزات فیزیکی شبکه از کارکردهایی میباشد که بر روی آنها اجرا می شوند. به این معنی که یک کارکرد شبکه مانند دیوار آتش می تواند بر روی سرورهای HVS به عنوان یک نرمافزار ساده مستقر شود. با این روش یک سرویس می تواند با استفاده از کارکردهای مجازی شبکهای که می توانند به صورت نرمافزاری پیاده سازی شده و روی یک یا تعدادی سرور استاندارد فیزیکی اجرا شوند، استقرار یابد. کارکردهای مجازی شبکهای می توانند در مکانهای مختلف بازمکان یابی یا نمونه سازی شوند بدون آنکه نیاز به خریداری و نصب تجهیز جدیدی باشد. [۱۲]

High Volume Server\

۱-۱ تعریف صورت مساله

مسالهی جاسازی کارکردهای مجازی شبکه یکی از چالشهای مهم در تخصیص منابع به زنجیرههای کارکرد سرویس میباشد. مساله جاسازی کارکردهای مجازی شبکه به دو زیر مسالهی نگاشت گرههای مجازی و نگاشت یالهای تقسیم میشود که میبایست به صورت توامان در نظر گرفته شوند.

البته محدودیتهای زیادی وجود دارد که باید هنگام نگاشت در نظر گرفته شود. منابع فیزیکی انتخاب شده از شبکه زیرساخت باید نیازمندیهای کارکرد شبکه مجازی را تامین کنند به عنوان مثال قدرت پردازشی کارکردهای مجازی باید کمتر یا مساوی با قدرت پردازشی گره فیزیکی باشد که نگاشت روی آن انجام شده است.

علاوه بر این، مجموعهای از محدودیتها وجود دارد که مختص زنجیرههای کارکرد سرویس میباشد. یکی از این موارد وجود VNFM در این شبکههای میباشد که به علت اهمیت میزان تاخیر ارتباط بین کاکرد مجازی شبکه و VNFM میبایست در مکان مناسبی جایابی شود بنابراین زیرمسالهی جدیدی به مسالهی اصلی اضافه میشود.

۱-۲ اهمىت مساله

مسالهی جاسازی زنجیرههای کارکرد سرویس از اهمیت زیادی برخوردار است و پروژهشهای زیادی بر روی آن صورت پذیرفته است. در کنار این جاسازی مساله مدیریت و مانیتورینگ این زنیجرهها نیز مطرح است که این پروژه برای اولین بار این موضوع را نیز مدنظر قرار داده است که باعث می شود اهمیت مساله دو چندان شود.

امروزه هزینهی زیادی صرف مانیتورینگ دیتاسنترها میشود و مانیتورینگ برای سرویسها بسیار امر مهمی است. در بسیاری از موارد مانیتورینگ امری است که در آینده به آن فکر میشود و آسیبهای زیادی در پی دارد. این پژوهش قصد دارد نیازمندی مانیتورینگ برای سرویسها را در زمان نگاشت آنها مدنظر قرار دهد تا از خسارتهای نبود مانیتورینگ برای سرویسها جلوگیری کند.

۱-۳ نوآور*ی*

ایده ی اصلی این پروژهش، ارائه ی یک راه حل جامع و کامل که تمامی ابعاد مساله ی جاسازی زنجیرههای کارکرد سرویس را در بربگیرد، است. در واقع در این مساله علاوه بر در نظر گرفتن ابعاد اصلی مساله ی جاسازی مکانیزم کنترل پذیرش، قابل اعمال بودن راه حل به توپولوژیهای مختلف و وجود محدودیتهای گره و یال ابعاد دیگری نیز در نظر گرفته شده است. به علت وجود VNFM به عنوان یک گره خاص و اهمیت تاخیر اتصالات کارکرد مجازی شبکه و VNFM یک مرحله جایابی و نگاشت به مساله ی اصلی اضافه شده است. در ادامه محدودیتهایی برای اتصالات بین کارکرهای مجازی شبکه و VNFM در نظر گرفته شده است و فرض شده است برای مدیریت تعداد مشخصی از کارکرهای مجازی نیاز به تهیه مجوز با هزینهای مشخص است.

۱-۲ ساختار گزارش

در ادامه معماری NFV را معرفی می کنیم و به چالشهایی که در MANO وجود دارد می پردازیم. در فصل سوم کارهای مرتبط مرور می شوند و در فصل چهارم مساله تعریف شده بیان می گردد. در فصل پنجم در مورد راه حل پیشنهادی برای مساله بحث خواهد شد. در آخر در فصل ششم راه حل پیشنهادی ارزیابی می گردد.

فصل دوم مفاهیم پایه

۱-۲ مقدمه

راه اندازی و استقرار سرویس در صنعت مخابرات به طور سنتی بر این اساس است که اپراتورهای شبکه سختافزارهای اختصاصی فیزیکی و تجهیزات لازم برای هر کارکرد در سرویس را در زیرساخت خود مستقر کنند. فراهم کردن نیازمندیهایی مانند پایداری و کیفیت بالا منجر به اتکای فراهم کنندگان سرویس بر سختافزارهای اختصاصی میشود. این درحالی است که نیازمندی کاربران به سرویسهای متنوع و عموما با عمرکوتاه و نرخ بالای ترافیک افزایش یافته است. بنابراین فراهم کنندگان سرویسها باید مرتبا و به صورت پیوسته تجهیزات فیزیکی جدید را خریده، انبارداری کرده و مستقر کنند. تمام این عملیات باعث افزایش هزینه های فراهم کنندگان سرویس می شود. با افزایش تجهیزات، پیدا کردن فضای فیزیکی برای استقرار تجهیزات جدید به مرور دشوارتر می شود. علاوه بر این باید افزایش هزینه و تاخیر ناشی از آموزش کارکنان برای کار با تجهیزات جدید را نیز در نظر گرفت. بدتر این که هر چه نوآوری سرویسها و فناوری شتاب بیشتری میگیرد، چرخه عمر سختافزارها کوتاهتر میشود که مانع از ایجاد نوآوری در سرویسهای شبکه میشود.

در روش سنتی استقرار سرویس شبکه، ترافیک کاربر باید از تعدادی کارکرد شبکه به ترتیب معینی عبور کند تا یک مسیر پردازش ترافیک ایجاد شود. در حال حاضر این کارکردها به صورت سختافزاری به یکدیگر متصل هستند و ترافیک با استفاده از جداول مسیریابی به سمت آنها هدایت می شود. چالش اصلی این روش در این است که استقرار و تغییر ترتیب کارکردها دشوار است. به عنوان مثال، به مرور زمان با تغییر شرایط شبکه نیازمند تغییر همبندی و یا مکان کارکردها برای سرویسدهی بهتر به کاربران هستیم که نیاز به جا به جایی کارکردها و تغییر جداول مسیریابی دارد. در روش سنتی این کار سخت و هزینهبر است که ممکن است خطاهای بسیاری در آن رخ دهد. از جنبه دیگر، تغییر سریع سرویسهای مورد نظر کاربران نیازمند تغییر سریع در ترتیب کارکردها است که در روش فعلی این تغییرات به سختی صورت گیرد. بنابراین اپراتورهای شبکه نیاز به شبکه های قابل برنامه ریزی و ایجاد زنجیره سرویس کارکردها به صورت پویا پیدا کرده اند.

دو فناوری برای پاسخگویی به این چالشها مطرح شد:

- مجازی سازی کار کرد شبکه یا NFV
- زنجیرهسازی کارکردهای سرویس یا SFC

با استفاده از مجازی سازی کار کردهای شبکه و اجرای آنها بر روی سرورهای استاندارد با توان بالا، امکان اجرای کار کردها بر روی سخت افزارهای عمومی را فراهم کرده است تا نیاز به تجهیزات سخت افزاری خاص منظوره کاهش یابد. از طرف دیگر SFC امکان تعریف زنجیره کار کردها را ارائه می کند که ایجاد و انتخاب مسیرهای متفاوت برای پردازش ترافیک به صورت پویا و بدون ایجاد تغییر در زیرساخت فیزیکی را امکان پذیر می کند با توجه به این فناوری ها، مسائل تحقیقاتی جدیدی مطرح شدند که از مهم ترین آنها می توان تخصیص منابع بهینه به سرویس در خواستی کاربر را نام برد.

از آنجایی که از مفاهیم این فناوری ها برای طراحی و تعریف مساله در این رساله استفاده شده است، نیازمند آشنایی با مفاهیم ابتدایی و اصول اولیه آن ها خواهیم بود.

بنابراین در این فصل به صورت خلاصه اجزای این فناوری ها را مرور خواهیم کرد و کاربردها، چالش ها و مسائل تحقیقاتی که در هر یک از این معماری ها وجود دارد را مورد بررسی قرار خواهیم داد.

۲-۲ مجازیسازی کارکرد شبکه

مجازی سازی کارکرد شبکه اصل جداسازی کارکرد شبکه به وسیله انتزاع سختافزاری مجازی از سخت افزاری مجازی سازی کارکرد شبکه تغییر روش اپراتورهای شبکه در طراحی شبکه با تکامل مجازی سازی استاندارد فناوری اطلاعات به منظور تجمیع تجهیزات شبکه در سرورهای استاندارد سوییچها و ذخیره سازی ابالا است. یک سرور استاندارد با توان بالا سروری است که توسط اجزای استاندارد شده TI، مانند معماری 86x، ساخته شده و در تعداد بالایی، مانند میلیون، فروخته می شود. ویژگی اصلی این سرورها این است که اجزای آنها به راحتی از فروشندگان مختلف قابل خریداری و تعویض است. این تجهیزات می توانند در مراکز داده، گرههای شبکه، یا مکان کاربران انتهایی قرار بگیرند. این روند در شکل ۲-۱ نیز توصیف شده است.

شکل ۲-۱: رویکرد NFV

با استفاده از NFV، انواع کار کردهای شبکه مانند دیواره آتش و NAT را می توان به صورت یک برنامه نرمافزاری از فروشندگان مختلف تهیه کرد و آنها را بر روی سرورهای با توان بالا اجرا کرد که نیاز به نصب تجهیزات خاص منظوره و جدید را برطرف می سازد.

مزایا و اهداف اساسی که NFV برای تحقق و دستیابی به آنها شکل گرفته است عبارتند از:

- کاهش هزینههای تجهیزات و مصرف انرژی از طریق تجمیع کارکردها بر روی سرورها و در نتیجه کاهش تعداد تجهیزات
- کاهش نیاز به آموزش کارکنان، افزایش دسترسی پذیری به سخت افزار و کاهش زمان بازیابی از خرابی سخت افزار به علت استفاده از سخت افزارهای استاندارد و عمومی
- افزایش سرعت عرضه محصول به بازار با کوتاهکردن چرخه نوآوری و تولید. در واقع NFV به اپراتورهای شبکه کمک میکند تا چرخه بلوغ محصول را به اندازه قابل توجهی کاهش دهند.
- امکانپذیر بودن تعریف سرویس مورد نظر بر اساس نوع مشتری یا محل جغرافیایی. مقیاس سرویسها میتواند
 به سرعت، بر اساس نیاز، گسترش یا کاهش یابد.

- تشویق به ایجاد نوآوری و ارائه سرویسهای جدید و دریافت جریانهای درآمدی تازه با سرعت بالا و ریسک پایین.
- افزایش توانایی مقابله با خرابی کارکردها، قابلیت به اشتراک گذری منابع بین کارکرد ها و پشتیابی از چند مشتری

سازمانهای استانداردگذاری متعددی در استانداردسازی فناوری NFV دخیل هستند که شاخص ترین آنها موسسه استانداردهای مخابراتی اروپا (ETSI) است. در اواخر سال ۲۰۱۲ FTSI NFV ISG توسط هفت اپراتور جهانی شبکه به منظور ارتقا ایده مجازی سازی کارکرد شبکه تأسیس شد. NFV ISG تبدیل به یک بستر صنعتی اصلی برای توسعه چارچوب معماری NFV و نیازمندیهای آن شده است و اکنون بیش از ۲۵۰ سازمان با آن همکاری میکنند. اسناد معماری NFV به صورت عمومی و رایگان توسط ETSI NFV ISG منتشر می شود. ما در این رساله برای توصیف معماری NFV از اسناد ارائه شده این سازمان استفاده می کنیم.

NFV معماری ۳-۲

در این بخش مؤلفههای تشکیل دهنده معماری NFV شرح داده میشوند. هر یک از اجزای معماری میتوانند توسط تولید کنندگان متفاوتی تأمین شوند و به وسیله واسط هایی که توسط معماری NFV توصیف شدهاند با یکدیگر در ارتباط باشند. بنابراین معماری NFV توصیف شده توسط ETSI راه حلی با قابلیت مشارکت و هماهنگی چندین تولید کننده مختلف را دارد. با توجه به استاندارد ETSI معماری NFV از سه عنصر کلیدی تشکیل شده است. زیرساخت مجازیسازی کارکردهای شبکه، کارکردهای مجازی شبکهای و NFV MANO این اجزا در شکل ۲-۲ نمایش داده شدهاند.

- NFVI: شامل منابع سخت افزاری و نرمافزاری لازم برای اجرای VNFها
- ◆ Service: شامل VNFهاا که کار کردهای شبکه را پیاده سازی کردهاند، EMS برای مدیریت VNF ها و OSS/BSS برای ارتباط با سیستم های مدیریت سنتی
- NFVO که وظیفه مدیریت و هماهنگی سرویسها و تخصیص منابع را برعهده دارد و از سه بخش NFVO.
 VIFM و VIFM تشکیل شده است.

۱-۳-۲ زیرساخت مجازیسازی کارکردهای شبکه یا NFVI

زیرساخت مجازیسازی کارکردهای شبکه ترکیبی از منابع نرمافزاری و سختافزاری است که محیطی برای نصب کارکردهای مجازی شبکه فراهم میآورد. منابع سختافزاری شامل منابع محاسباتی، ذخیرهسازها و شبکه (شامل لینکها و گرهها) هستند که پردازش، ذخیرهسازی و ارتباط را برای کارکردهای مجازی شبکه فراهم میآورند. منابع مجازی انتزاعی از منابع شبکهای، پردازشی و ذخیرهسازی هستند. به وسیله انتزاع از طریق لایهی مجازیسازی (بر پایهی مجازی قرار میگیرند که این منابع شامل منابع محاسباتی، شبکهای و ذخیرهسازی میباشند.

در مراکز دادهای ممکن است منابع پردازشی و ذخیرهسازی تحت عنوان یک یا چند ماشین مجازی نمایش داده شوند در حالی که شبکههای مجازی از لینکها و گرههای مجازی تشکیل میشوند. شبکههای مجازی پیش از بحث مجازیسازی کارکردهای شبکه مدنظر بودهاند و روی آنها کار شده است. در واقع از شبکههای مجازی در

شکل ۲-۲: معماری مجازی سازی کارکردهای شبکه

مراکز دادهای جهت فراهم آوردن شبکههای مختلف و مجزا که به کاربران مختلفی تعلق دارند استفاده شده است. راهحلهای مختلفی برای پیادهسازی این شبکهها وجود دارد. در بحث مجازیسازی کارکردهای شبکه، زیرساخت ارتباطی مورد نیاز برای کارکردهای مجازی از طریق همین شبکههای مجازی فراهم آورده میشود. یعنی مسائلی که پیشتر در بحث جایگذاری شبکههای مجازی مطرح بود امروز جزئی از مسائل جایگذاری زنجیرههای کارکرد سرویس میباشند.

۲-۳-۲ کارکردهای مجازی شبکه

یک کارکرد شبکه، یک بلوک عملیاتی در زیرساخت شبکه است که عملکرد رفتاری و رابطهای ارتباط با خارج خوش تعریف دارد. مثالهایی از کارکردهای شبکه می تواند شامل DHCP یا pirewall و ... باشد. با این توضیحات کارکرد مجازی شبکه، پیادهسازی یک کارکرد شبکه است که می تواند روی منابع مجازی شده اجرا شود. از هر کارکرد شبکه می توان نمونه ساخت. این نمونهها می توانند برای کارکرد شبکه مستقر ساخت. این نمونهها می توانند برای سرویس دهی به زنجیرههای مختلف استفاده شوند. از آنجایی که هر نمونه توان پردازشی محدودی دارد با افزایش تعداد نمونهها می توان پردازشی یک کارکرد را نیز افزایش داد.

EM **7-7-7**

این مولفه کارکردهای FCAPS را برای VNF ها انجام می دهد که شامل مدیریت خطا، پیکربندی، امنیت، حسابداری و کارایی برای کارکردی است که VNF ارائه می دهد. این مولفه ممکن است آگاه از مجازی کارکرد باشد و با همکاری VNFM عملکردهای خودش را انجام بدهد.

OSS/BSS F-T-T

این مولفه، ترکیبی از سایر بخش های عملکردهای اپراتور است که در چارچوب معماری NFV ارائه شده از طرف ETSI قرار نمیگیرند. به عنوان مثال می تواند شامل مدیریت سیستم های Legacy باشد.

NFV MANO $\Delta - \Upsilon - \Upsilon$

بر اساس چهارچوب پیشنهادی ETSI وظیفهی NFV MANO فراهم آوردن کارکردهای لازم برای تدارک و فرآیندهای مشابه مانند تنظیم کردن و ... کارکردهای مجازی شبکه است. NFV MANO شامل هماهنگ کننده و مدیریت کننده چرخهی زندگی منابع سختافزاری و نرمافزاری که مجازی سازی زیرساخت را پشتیبانی می کنند، است. هر زنجیره نیاز دارد که حداقل توسط یک VNFM مدیریت شود تا مثلا خطاهای آن را تحت نظر قرار دهد و در صورت نیاز در قسمت دیگری از شبکه استقرار یابد. مسالهی جایگذاری زنجیرهها بسیار مورد مطالعه قرار گرفته است، اما در این بین توجه لازم به نیاز این زنجیرهها به یک VNFM صورت نپذیرفته است.

فصل سوم کارهای مرتبط در [۶] نویسندگان قصد دارند با در نظر گرفتن محدودیت ظرفیت لینکها و محدودیت پردازشی نودها بیشترین تعداد زنجیره ی کارکرد را بپذیرند. برای این کار یک مساله ی ILP طراحی می کنند و ثابت می کنند که این مساله NP-Hard می باشد. با توجه به NP-Hard بودن مساله الگوریتم مکاشفه ای MASRN پیشنهاد می گردد.این الگوریتم حریصانه می باشد که براساس منابع سرورها و بار لینکها جایگذاری را انجام می هد. در این مقاله وجود VNFM برای زنجیره ها در نظر گرفته نشده است.

در [Y] نویسندگان استفاده از VNFM را مدنظر قرار دادهاند . در این مقاله فرض شده است که جایگذاری SFC ها صورت گرفته است و میخواهیم VNFMها را به گونهای استقرار دهیم که با رعایت شدن نیازمندیهای کارآیی، هزینهی عملیاتی سیستم حداقل شود. مساله مطرح شده به صورت ILP مدلسازی می شود. این مقاله هزینهی عملیاتی سیستم را تحت چهار عنوان دسته بندی می کند: هزینهی مدیریت چرخه ی زندگی، هزینهی منابع محاسباتی، هزینه ی مهاجرت و هزینه ی بازنگاشت. در این مقاله فرض می شود که هر نمونه از VNFMها می تواند به تعداد مشخصی از نمونههای VNF سرویس دهی کند و این سرویس دهی به نوع نمونه وابسته نیست. این مقاله محدودیتهای پردازشی و ظرفیتی را مدنظر قرار می دهد.

در $[\Lambda]$ نویسندگان سه مرحله برای عملیات جایگذاری زنجیرههای کارکرد سرویس معرفی میکنند: انتخاب، جابگذاری و مسیریابی. در این مقاله فرض می شود برای هر نوع VNF چند مدل مختلف با مصرف منابع مختلف وجود دارند که می توان از آنها نمونه ساخت، در این مرحله مشخص می شود از کدام مدل نمونه سازی صورت می گیرد. این مقاله جایگذاری یک SFC را مدل سازی می کند، در این مقاله فرض می شود جریان ورودی و خروجی از هر نمونه برابر بوده و در واقع VNF تغییری بر روی ترافیک ایجاد نمی کند. در مدل سازی این مقاله که به صورت LP می باشد هدف کاهش هزینه در جایگذاری SFC داده شده می باشد. با در نظر گرفتن مدل های مختلف برای VNF ها در این مقاله در صورتی که نیاز به پردازش ترافیک زیادی باشد، چند نمونه از یک نوع VNF ساخته می شود و ترافیک بین آن ها تقسیم می شود.

در [۱۴] نویسندگان برای اولینبار مسالهی Traffic Streering با در نظر گرفتن QoS و Pos فرمولبندی کردهاند. این مقاله کاربرد NFV را در شبکههای موبایل مدنظر قرار داده است. در این مقاله مساله به صورت Link-Path مدلسازی شده است و فرض شده است که مسیرهای ممکن برای جایگذاری کلاسهای ترافیکی از پیش تعیین شدهاند. در این مقاله منظور از کیفیت سرویس تاخیر و گذردهی کلاسهای ترافیکی میباشد و برای فراهم آوردن قابلیت اطمینان فرض میشود که خرابیها به صورت دلخواه بوده و در صورت خرابی بخشی از پهنای باند از دست میرود.

در [۹] نویسندگان مساله ی جایگذاری و مسیریابی زنجیرههای کارکرد سرویس را به صورت توامان مدل سازی میکنند، در این مساله نویسندگان تاثیر دو پارامتر Coordination Effect و Coordination Effect را نیز مدنظر قرار دادهاند. زمانی که چند VM در پیادهسازی یک کارکرد شبکه استفاده می شوند نیاز است که بین این ماشینهای مجازی هماهنگی صورت بگیرد. برای این هماهنگی ارتباطاتی صورت می گیرد که دارای سربار بوده و به این سربار Coordination Effect می گویند. هر کارکرد شبکه می تواند روی ترافیک ورودی خود تاثیر گذاشته و نرخ آن را تغییر دهد که این موضوع را با Traffic-Change Effect بیان می کنند.

در [۵] نویسندگان قصد دارند به صورت قطعی کیفیت سرویس را گارانتی نمایند. این مقاله پیادهسازی NFV را با استفاده از SDN هدف قرار می دهد و برای محاسبهی تاخیر، تاخیر پیامهای کنترلی SDN و تاخیر جابجایی بستهها را در نظر می گیرد. برای پیشنهاد یک راه حل قطعی از Network Calculus استفاده می شود که شرایط مرزی را بررسی می کند. این شرایط مرزی برای پیامهای کنترلی محاسبه شده و از آن تاخیر مورد نظر در جابجایی بستهها بدست می آید که با استفاده از آن یک مسالهی بهینه سازی با هدف رعایت تاخیر بدست آمده حاصل

مىشود.

در [۱۱] نویسندگان پیادهسازی NFV با NDN را هدف قرار دادهاند و جایگذاری sbmiddle box با هدف توزیعبار را فرمول بندی کردهاند. در واقع bomiddle box در این مقاله به صورت مجازی بوده و همان کارکردهای مجازی شبکه میباشند. مدلسازی صورت گرفته به صورت mode link صورت پذیرفته است. هدف مساله مسیریابی چند مسیره برای تقاضا به صورتی است که در آن link load ratio برای تمام لینکها مینیمم شود. این مقاله تغییر ترافیک توسط کارکردها را نیز مدنظر قرار داده است.

در [۱۰] مسالهی جایگذاری زنجیرههای کاکرد سرویس با دو هدف کاهش مصرف انرژی و افزایش نرخ جریان پذیرفته شده مدلسازی میشود. این مدلسازی با توجه به معماری IETF SFC صورت پذیرفته است. در مدلسازی این مقاله جزئیات زیادی مورد توجه قرار گرفته است که این امر باعث پیچیده شدن فرمولبندی شده است.

در [V] نویسندگان ابتدا مساله ی جایگذاری و مسیریابی VNFها را در اوج ترافیک حل می کنند. در ادامه آنها فرض می کنند که ترافیک به صورت دوره ای – ثابت می باشد به این معنا که ترافیک در تعداد متناهی بازه ی زمانی تعریف شده و تکرار می شود. با این فرض در ادامه مقاله مساله ی دیگری مبنی بر مهاجرت نمونه ها با توجه به تغییر ترافیک را مطرح می کند. در این مهاجرت ها مقاله از توان مصرفی در مهاجرت صرف نظر کرده و تلاش می کند جریمه ای که بابت قطعی سرویس پرداخت می شود و توان مصرفی کل سیستم را بهینه کند.

در [۱۳] نویسندگان مساله ی توزیعبار در NFV را بررسی می کنند، آنها در این مساله ویژگیهای پایهای NFV در کنار استفاده از روش ECMP مدنظر قرار می دهد. در روش ECMP بار بین مبدا و مقصد به صورت یکسان بین تمام مسیرها تقسیم می گردد. در این مساله تعدادی تقاضا در نظر گرفته می شود که کوتاهترین مسیرها بین مبدا و مقصد آنها مشخص است و در نهایت بار در این مسیرها توزیع شده و کار کردها شبکهای نیز در این مسیرها مستقر می شوند.

	تخصیر NFM	٠	اشتراک نمونه		انتساب کار کرد		نگاشت کارکرد و لینک		برخط یا برون خط	ن	محدود ظرفیت پردازش نمونه			Ü	منابع تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد		یک نمونه	، لینک	کارکرد	برون خط	برخط	ندارد	دارد	CPU	BW !	MEM	other	#
√	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	_	[۶]
\checkmark	_	✓		✓		✓	✓	✓		_	✓	✓	✓		_	[٨]
\checkmark		✓		✓		✓	✓	✓		_	✓	✓	✓		_	[٩]
√		✓			✓	✓	✓	✓	_	_	✓	✓	✓	✓		پژوهش حاضر

جدول ۳-۱: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

همانطور که در کارهای بیان شده دیده می شود، مساله ی تخصیص منابع مدیریتی در پذیرش زنجیرههای کارکرد مورد بررسی قرار نگرفته است و در پژوهش حاضر قصد داریم این مورد را بررسی نماییم.

فصل چهارم تعریف مساله

۱-۴ مساله

بیشینه کردن سود حاصل از پذیرفتن تقاضای زنجیره کارکرد سرویس با در نظر گرفتن انتساب هر نمونه کارکرد مجازی شبکه به یک VNFM. همانطور که در مستند [۱] نیز آمده است، نیاز است که هر یک نمونههای کارکردهای مجازی شبکه توسط حداقل یک VNFM مدیریت شوند. در این مساله قصد داریم مساله پذیرش تقاضاهای زنجیرههای کارکرد سرویس را با نظر گرفتن این نیازمندی در کنار نیازمندیهای پردازشی و پهنای باند هر یک از تقاضاها حل کنیم. در ادامه به صورت خلاصه شرایط مساله را بررسی می کنیم:

- توپولوژی زیرساخت شامل پهنای باند لینکها و ظرفیت NFVI-PoPها¹ موجود است.
 - n تقاضای زنجیره کار کرد سرویس به صورت کامل و از پیش مشخص شده داریم.
- هر تقاضا شامل نوع و تعداد نمونههای مجازی، پنهای باند لینکهای مجازی و توپولوژی نمونههای مجازی می باشد.
- F نوع کارکرد مجازی شبکه تعریف شده است که هر یک مقدار مشخصی از حافظه و توان پردازشی را مصرف F می کنند.
- تعداد پردازندههایی که به هر نمونه تخصیص مییابد با توجه به ترافیک ورودی نمونه مشخص میشود. این امر توسط اپراتور در زمان تعریف مساله ورودی صورت می گیرد.
 - نمونهها بین زنجیرهها به اشتراک گذاشته نمی شوند.
 - محدودیت ظرفیت لینکها
 - محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها
- برای مدیریت یکدست و آسان تر زنجیرهها و در عین حال جمع آوری راحت تر خطاها، برای هر زنجیره یک VNFM فیزیکی تخصیص می دهیم.
 - ♦ VNFMها مىتوانند بين زنجيره به اشتراك گذاشته شوند.
 - هر نمونه از VNFMها می تواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
 - برای ارتباط میان هر نمونه از VNFMها و VNFها پهنای باند مشخصی رزرو می گردد.
- در صورتی که NFVI-PoP بتواند از VNFM پشتیبانی نماید میتوان به هر تعداد که ظرفیت آن اجازه میدهد بر روی آن VNFM مستقر کرد.
 - هر نمونه از VNFM جهت استفاده نیاز به تهیه جواز $^\intercal$ دارد.
 - توپولوژی می تواند دارای تعداد گرهی ورودی و خروجی باشد.

NFVI Point of Presence

license'

ingress*

egress*

 هر زنجیره می تواند دارای تعدادی نقطه ی ورودی و خروجی باشد که می بایست بر روی گرههای ورودی و خروجی نگاشته شوند.

اگر جایگذاری VNFMها به صورت غیر برنامهریزی شده صورت بپذیرد ممکن است به تاخیرهای غیرقابل تحمل منجر شده و به این ترتیب تاثیر منفی بر روی کارآیی سیستم داشته باشد.

یکی از وظایف VNFMها جمع آوری پیامهای خطا میباشد، برای این امر نیاز است که پهنای باند کوچک اما اختصاصی به VNFMها تخصیص داده شود بنابراین نمی توان جایگذاری آنها را با روشهای سابق و مانند سایر کارکردهای مجازی شبکه فرض کرد.

از آنجایی که VNFMها نیاز به مجوز دارند میتوان با به اشتراک گذاشتن آنها در هزینههای سیستم صرفهجویی کرد.

در نظر گرفتن VNFM همراه با VNFها مسالهی جدیدی است.

۲-۴ فرمولبندی

هدف اصلی مساله پذیرش بیشترین تعداد تقاضا میباشد. در اینجا فرض میکنیم پذیرش هر تقاضا سودی منحصر به فرد خواهد داشت. بنابراین تابع هدف به شکل زیر میباشد:

$$max \sum_{h=1}^{T} c_h x_h - \sum_{w \in V_s^{PN}} licenseFee * \bar{y}_w$$
 (4-1)

memory(k)	required RAM of VNF instance with type k in GB
core(k)	required CPU cores of VNF instance with type k
$me\hat{m}ory$	required RAM of VNFM in GB
côre	required CPU cores of VNFM
capacity	maximum number of VNF instances that VNFM can handle
len(h)	number of VNF instances in hth SFC request
type(v,k)	assuming the value 1 if the VNF instance v has type k
bandwidth(u,v)	required bandwidth in link from VNF instance u to v
$band\hat{w}idth$	required bandwidth in managmeent link
radius	maximum neighborhood distance for instance management
licenseFee	VNFM license fee that must pay for each VNFM
vnfSupport(w)	assuming the value 1 if the physical server w can support
	VNF instances
is Manageable(k)	assuming the value 1 if the type k needs a manager
notManagableBy(w1,w2)	assuming the value 1 if the physical server $w1$ cannot man-
	age by physical server $w2$

x_h	binary variable assuming the value 1 if the h th SFC request
	is accepted; otherwise its value is zero
y_{wk}	the number of VNF instances of type k that are used in server
	$w \in V_s^{PN}$
z_{vw}^k	binary variable assuming the value 1 if the VNF node $v \in$
	$\cup_{i=1}^T V_{i,F}^{SFC}$ is served by the VNF instance of type k in the
	server $w \in V_s^{PN}$
\bar{y}_w	the number of VNFMs (each vnfm has its capacity and li-
	cense fee) that are used in server $w \in V_s^{PN}$
\bar{z}_{hw}	binary variable assuming the value 1 if hth SFC is assigned
	to VNFM on server $w \in V_s^{PN}$

برای هر نود اندازهی مشخصی از حافظه RAM در نظر گرفته میشود که هر نمونهی کارکرد با توجه به نوع آن مقدار مشخصی از این حافظه را مصرف میکند.

Node Memory Constraint:

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
(4-2)

برای هر نود تعداد مشخصی از هستههای پردازنده در نظر گرفته می شود که هر نمونهی کارکرد با توجه به نوع آن مقدار مشخصی از تعداد هستههای پردازنده را مصرف می کند. VNFM نیز مقدار مشخصی از تعداد هستههای پردازنده را مصرف می کند.

Node CPU Constraint:

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} c\bar{ore} \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
(4-3)

k نوع v VNF instance توسط v voice نوع v اگر v اگر v اگر v اگر v نوع v voice v نوع v voice v توصد وی سرور v فعال شود. توجه شود که اشتراک گذاری v اگذاری v اگذاری v نوع v نو

Service Place Constraint:

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} z_{vw}^k \le y_{wk} \quad \forall w \in V_s^{PN}, \forall k \in [1, \dots, F]$$

$$\tag{4-4}$$

اگر تقاضای الم پذیرفته شده باشد میبایست تمام VNF nodeهای آن سرویس شده باشند. یک VNF حداکثر یکبار سرویس داده شود.

Service Constraint:

$$x_h = \sum_{k=1}^F \sum_{w \in V_s^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$

$$\tag{4-5}$$

اگر تقاضای hام پذیرفته شده باشد می بایست توسط یک VNFM سرویس شده باشد.

Manage Constraint:

$$x_h = \sum_{w \in V^{PN}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (4-6)

محدودیت ظرفیت سرویسدهی VNFM این محدودیت براساس تعداد ماشینهای محازی که هر VNFM سرویس می دهد تعیین شده است. در نظر داشته باشید که ممکن است برخی از انواع VNFها نیازی به مدیریت شدن نداشته باشند.

Manage Capacity Constraint & Manage Place Constraint:

$$\sum_{i=1}^{T} \bar{z}_{iw} * (len(i) - \sum_{v \in V_{i,F}^{SFC}} \sum_{k \in [1,\dots,F]} type(v,k) * isManageable(k)) \le capacity * \bar{y}_{w} \quad \forall w \in V_{s}^{PN}$$

$$(4-7)$$

اگر v ، v توسط instance نوع v , v روی سرور v سرویس شود میبایست خود از نوع v , v

$$z_{vw}^{k} \le type(v,k) \quad \forall w \in V_{s}^{PN}, \forall k \in [1,\dots,F], \forall v \in \bigcup_{i=1}^{T} V_{i,F}^{SFC}$$
 (4-8)

در صورتی که سرور w توانایی اجرای نمونههای VNF را نداشته باشد نباید نمونهای روی آن قرار گیرد. VNF support constraint

$$\sum_{k \in [1,\dots,F]} y_{wk} = M * vnfSupport(w) \quad w \in V_s^{PN}$$
(4-9)

برخی از سرورهای نمی توانند توسط سرورهای مشخصی مدیریت شوند. این ویژگی به ادمین شبکه امکان مدیریت بیشتری می دهد و او می تواند با دست باز تمامی سیاستهای مورد نظرش را اعمال نماید.

Manager to node support constraint

$$1 - z_{vw_1}^k + \bar{z}_{hw_2} = 0 \quad \forall w_1 \in V_s^{PN} \forall w_2 \in V_s^{PN} notManagable By(w_1, w_2) = 1$$
$$\forall h \in [1, \dots, T], \forall v \in V_{h,F}^{SFC}, \forall k \in [1, \dots, T]$$
(4-10)

$ au_{ij}^{(u,v)}$	binary variable assuming the value 1 if the virual link (u, v)
	is routed on the physical network link (i, j)
$ar{ au}_{ij}^v$	binary variable assuming the value 1 if the managemnt of
	VNF node v is routed on the physical network link (i, j)

محدودیت زیر بقای جریان در لینکهای مورد تقاضای کاربر را تضمین میکند.

Flow Conservation:

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1,\dots,T]$$
(4-11)

محدودیت زیر بقای جریان در لینکهای مدیریتی را تضمین میکند.

Management flow Conservation:

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{v} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, \dots, T]$$
(4-12)

محدوديت ظرفيت لينكها

Link Bandwidth Constraint:

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} \bar{\tau}_{ij}^v * bandwidth + \sum_{(u,v) \in \cup_{i=1}^T E_i^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \le C_{ij}$$

$$\forall (i,j) \in E^{PN} \qquad (4-13)$$

شعاع همسایگی تضمین می کند که زمان سرویسدهی توسط VNFMها در یک بازه مشخص (از نظر تعداد هاب) خواهد بود.

Radius Constraint

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^v \le radius \quad \forall v \in \cup_{i=1}^T V_{i,F}^{SFC}$$
(4-14)

فصل پنجم راهحل پیشنهادی مسالهی بیان شده به صورت ILP مدلسازی میشود. در [۶] مسالهی جایگذاری SFCها با هدف حداکثرسازی ایماله NP-Hard تعداد درخواستهای پذیرفته شده به صورت ILP مدلسازی شده و اثبات شده است که مسالهی حاضر NPNFMها میباشد. مسالهای که در اینجا مدلسازی میشود از آن مساله پیچیده تر میباشد زیرا در نظر گرفتن NFMها را نیز شامل میشود. برای این مساله می توان یک راه حل مکاشفهای با زمان چند جملهای پیشنهاد داد.

۱-۵ الگوریتم مکاشفهای

مساله از دو قسمت تشکیل شده است. قسمت اول مساله ی جایگذاری لینکها و نمونهها می باشد و قسمت دوم جایگذاری VNFM برای زنجیره است. برای قسمت اول راه حلهای مکاشفه ای زیادی ارائه شده است که ما در اینجا از راه حل [۴] استفاده می کنیم. در این راه حل برای قرار گیری هر زنجیره یک گراف چند گامی شگل می گیرد. هر گام این گراف نماینده یک نمونه از زنجیره است که می بایست قرار گیرد. در نظر داشته باشید که در مساله ای اصلی نیازی نیست که حتما زنجیره ها به صورت خطی باشند اما در این راه حل این فرض وجود دارد که البته فرضی نزدیک به واقعیت می باشد. در هر گام از این گراف مجموعه ای از نودهای فیزیکی امکان پذیر شکل می گیرد. با توجه به وضعیت مسیریابی این مجموعه با مجموعه بعدی نود فیزیکی برای نمونه مورد نظر از زنجیره انتخاب می شود.

شكل ۵-۱: مدلسازي با گراف چندگامي [۴]

منظور از وضعیت مسیریابی به شرح زیر است. برای هر یک از گامها از الگوریتم جستجوی اول سطح یا BFS استفاده می کنیم و به این ترتیب مسیرهای فیزیکی که می توان از آنها برای جایابی لینک مجازی استفاده کرد پیدا می کنیم. از این بین گرهای که مسیرهای فیزیکی امکان پذیر بیشتری دارد انتخاب می گردد. با این روش مجموعه امکان پذیر گام بعدی بزرگتر می شود و امکان حذف زنجیره به دلیل نبود مسیر فیزیکی برای جایابی لینک مجازی کمتر می گردد.

در ادامه یک گام به این الگوریتم اضافه می کنیم که در آن برای هر زنجیره بعد از قرار گرفتن یک WNFM تخصیص می دهیم. برای اینکار مجموعه ای امکان پذیر از نودهای فیزیکی را انتخاب می کنیم و سعی می کنیم از بین آنها انتخاب کنیم. در روند این انتخاب از اصول زیر پیروی می کنیم:

- اولویت با نود فیزیکی است که روی آن VNFM با ظرفیت خالی وجود دارد.
- از بین نودهایی که ظرفیت خالی دارند اولویت با نودی است که منابع پردازشی بیشتری دارد.

از آنجایی که مسالهی طرح شده به صورت آفلاین میباشد میتوان با بررسی ورودیهای الگوریتم کارآیی آن را بهبود داد. برای این منظور زنجیرههای ورودی را برحسب اندازهی آنها مرتب میکنیم. در این مرتبسازی تلاش میشود که زنجیرههای بزرگتر که سود بیشتری دارند زودتر جایابی شوند. به این ترتیب برای زنجیرههایی که سود بیشتری دارند منابع بیشتری در اختیار الگوریتم قرار دارد.

فصل ششم ارزیابی در این مساله هدف بیشینه کردن سود حاصل از پذیرش تقاضاهای زنجیره یکارکرد سرویس میباشد که به این ترتیب معیار مقایسه نیز همین پارامتر خواهد بود. این پارامتر در ارزیابی با سایر مقالات مقایسه میشود ولی باید در نظر داشت که نیازمندیهای مدیریتی که در این پژوهش مدنظر است در سایر پژوهشها مدنظر نبوده است. راهحل پیشنهادی بهینه نبوده و به همین علت کارآیی آن در سناریوهایی با حل بهینه مقایسه میشود. سایر پارامترهایی چون تعداد زنجیرههای پذیرفته شده و ... نیز در این پژوهش ارزیابی می گردند.

*۱−*۶ مقدمه

همانطور که پیشتر بیان شد مساله ی اصلی راه حل چندجملهای ندارد. این مساله با استفاده از چهارچوب CPLEX و با زبان جاوا توسعه پیدا کرده است و برای حل توسعه یافته است. چهارچوب CLPEX توسط شرکت CLPEX توسعه پیدا کرده است و برای حل مسائل خطی استفاده می گردد. این چهارچوب به صورت کلی برای حل مسائل CLPEX استفاده می کند. پیاده سازی فرمول بندی این مساله در این چهارچوب در پیوست آمده است.

۶-۲ محیط ارزیابی

به صورت کلی در تمامی ارزیابیهای این رساله از دو توپولوژی FatTree و USnet استفاده شده است. توپولوژی FatTree و FatTree یک توپولوژی سازمانیافته است که در ادامه ساختار آن را میبینید.

شكل ۶-۱: توپولوژی ساختاریافته FatTree

توپولوژی FatTree با مقدار k یک توپولوژی ۳ لایه (هسته، تجمعی و لبه) میباشد که:

- هر غلاف از $(k/2)^2$ سرور و ۲ لایه k/2تایی سوئیچ k پورت تشکیل شده است.
 - هر سوئیچ لبه به k/2 سرور و k/2 سوئیچ تجمعی متصل است.
 - هر سوئیچ تجمعی به k/2 سوئیچ لبه و k/2 سوئیچ هسته متصل است.

- سوئیچ هسته که هر کدام به k غلاف متصل هستند. $(k/2)^2$
- سوئیچهای هسته گرههای ورودی و خروجی این توپولوژی هستند.

توپولوژی USnet یک تولوپوژی تصادفی میباشد که از ۲۴ نود و ۴۳ لینک تشکیل شده است. در پیادهسازی فرض شده است که همه ک ۲۴ نود سرور هستند و میتوانند به عنوان گرهی ورودی و خروجی اعمال نقش کنند. این تولوژی ساختاریافته نبوده و میتوان آن را تصادفی فرض کرد.

شکل ۶-۲: توپولوژی تصادفی USnet

۶-۳ معیارهای ارزیابی

همانطور که پیشتر بیان شد معیار اصلی ارزیابی سود حاصل از جایگذاری زنجیرهها میباشد. پارامترهای زیادی در مساله موثر هستند که در این قسمت به مرور آنها میپردازیم.

۶-۳-۶ نسبت سود به هزینه

یکی از ویژگیهای مهم مسالهای طرح شده در نظر گرفتن نیازمندیهای مدیریتی است. یکی از این نیازمندیها که در تابع هدف هم وجود دارد نیاز به تهیه گواهی برای هر VNFM است. این گواهی هزینهای در بردارد و نیاز است که از آن به درستی استفاده شود و تاجایی که امکان دارد VNFM با ظرفیت خالی نداشت.

برای اینکه تخمین درستی از این پارامتر داشته باشیم و بتوانیم از آن در ارزیابیهای پیشرو استفاده کنیم، موارد زیر را تعریف می کنیم:

- هزینه سرشکن شده گواهی برای هر نمونه = ظرفیت / قیمت گواهی
- قیمت سرشکن شده برای هر نمونه = طول زنجیره / قیمت زنیجره
- سود نمونه = هزینه سرشکن شده گواهی برای هر نمونه قیمت سرشکن شده برای هر نمونه

در نهایت یکی از پارامترهایی که برای ارزیابی راه حل پیشنهادی وجود دارد نسبت سود نمونه به هزینه سرکشن شده گواهی برای هر نمونه میباشد. این پارامتر در واقع باعث می شود مساله ی پیشنهادی آسانتر یا سختر شود. در زمانی که این نسبت عددی کوچک است استفاده نادرست از گواهی ها ضرر زیادی می زند و شاید بهتر باشد

فصل ششم: ارزيابي

زنجیرههای کمتری پذیرفته شوند که این امر باعث سختی مساله می شود. در حالتی که این نسبت عدد بزرگی باشد می توان از این هزینه ها صرفنظر کرده و تنها منابع مصرفی اجزای مدیریتی مدنظر خواهند بود که مساله ساده تر می شود. در ادامه از این پارامتر تحت عنوان نسبت سود به هزینه یاد می کنیم.

۶-۳-۶ سود

سود، اختلاف میان مجموع قیمت زنجیرههای پذیرفته شده و هزینههایی است که برای گواهیها پرداخت شده است. سود دقیقا همان تابع هدف مساله است که ارزیابی بر اساس آن صورت می گیرد. قیمت زنجیرهها پیش از جایگذاری آنها مشخص شده است و فرض می کنیم این قیمت با تعداد نمونههای داخل زنجیره نسبت مستقیم دارد.

$\gamma-\gamma$ تعداد زنجیرههای پذیرفته شده

تعداد زنجیرههایی است که جایگذاری آنها با موفقیت انجام شده و برای آنها منابع مدیریت نیز تخصیص داده شده است. این معیار در زمانی که پارامتر نسبت سود به هزینه پایین باشد نمود خوبی از عملکرد الگوریتم نمی باشد.

استفاده شده m VNFM تعداد m VNFM

تعداد VNFMهایی که برای مدیریت زنجیرهها تخصیص داده میشوند نمایش دهنده ی تعداد گواهیهای استفاده شده است. این معیار در زمانی که پارامتر نسبت سود به هزینه بالا باشد نمود خوبی از عملکرد الگوریتم نمی باشد.

۶-۴ محیط ارزیابی

برای ارزیابی از زنجیرههای تصادفی استفاده میشود و هر نمونه از ارزیابی میانگین ۱۰ اجرا میباشد. برای تولید زنجیرههای تصادفی از ابزاری استفاده میشود که برای همین پژوهش توسعه یافته است و زنجیرههای خطی با طول تصادفی تولید میکند. نمونههای داخل زنجیرهها دارای نوع میباشند که به صورت تصافدی از لیست زیر انتخاب میشوند:

types:

- name: ingress

cores: 0

ram: 0

ingress: true

manageable: false

- name: egress

cores: 0

ram: 0

egress: true

manageable: false

- name: vFW

cores: 2

ram: 2

manageable: true

- name: vNAT

cores: 2

ram: 4

manageable: true

- name: vIDS

cores: 2

ram: 2

manageable: true

- name: vDPI

cores: 2

ram: 4

manageable: true

زنجیرههای تولید شده دارای گرهی آغازی و پایانی میباشند. تنظیمات زیر برای VNFMها در نظر گرفته شده است.

ram: 4

cores: 2

capacity: 10

radius: 100

bandwidth: 1

licenseFee: 100

تمامی ارزیابیها روی سیستمی با مشخصات زیر انجام شدهاند:

- AMD Ryzen Threadripper 1950X 16-Core Processor
- 22 GB of RAM
- 100 GB of non-SSD Storage

در نهایت برای بازتولید نتایج تمامی کدها و تنظیمات در [۳] موجود است.

۵-۶ نتایج ارزیابی

۶-۵-۶ زمان حل بهینه

با استفاده از ۱۳۰ زنجیره ی تصادفی که طولی بین ۳ تا ۷ دارند و توپولوژی FatTree با مقدار k برابر ۸ قصد داریم زمان حل راه حل بهینه و گپ 1 آن را ارزیابی کنیم. برای این ارزیابی نسب سود به هزینه برابر ۹ فرض شده است.

شكل ۶-۳: زمان حل الگوريتم بهينه

گپ برای ۱۰۰ زنیجره در ۱۵ دقیقه با شرایط فوق برابر با ۴ درصد میباشد بنابراین در سایر ارزیابیها الگوریتم بهینه را تا ۱۵ دقیقه محدود کرده و تعداد زنجیرهها را از ۱۰۰ افزایش نمیدهیم.

همانطور که در نمودار ۶-۳ مشاهده می شود زمان حل مساله ی بهینه برای ۱۳۰ زنجیره نسبت به ۱۰۰ زنجیره جهش بزرگی داشته و بعد از ۴ ساعت ما به گپ زیر ۱۰ درصد می رسیم. به این ترتیب استفاده از راه حل بهینه ممکن است زمان بر باشد و نیاز به پیاده سازی یک راه حل مکاشفه ای می باشد.

2-3 نسبت سود به هزینه -3

در ادامه راهحل پیشنهادی و راهحل $\{f\}$ را با نسبتهای مختلف سود به هزینه مورد آزمون قرار می دهیم. در این آزمونها از ۱۰۰ زنجیره با طولهای تصادفی f تا ۷ استفاده می کنیم. توپولوژی مورد استفاده استفاده می کنیم. توپولوژی مورد استفاده شده و در f برابر با ۸ می باشد. در این آزمایشها نسبت سود حاصل از هر الگوریتم به الگوریتم بهینه سنجیده شده و در نمودار آمده است. در نظر داشته باشید که این نسبت به صورت عددی بین f تا ۱ گزارش شده است. مساله بهینه با زمان ۱۵ دقیقه محدود شده است.

همانطور که در نمودار ۶-۴ دیده می شود الگوریتم پیشنهادی بهتر از الگوریتم [۴] عمل می کند. این امر زمانی که نسبت سود به هزینه بزرگتر است بیشتر دیده می شود. در ادامه برای تمامی ارزیابی ها از نسبت سود به هزینه ۹ استفاده می کنیم که هم از نظر فنی عدد معقولی بوده و تاثیر در نظر گرفتن هزینه گواهی را از بین نمی برد.

Optimality Gap\

شکل ۶-۴: کارآیی الگوریتم پیشنهادی و [۴] در نسبتهای مختلف سود به هزینه

۶–۵–۳ زنجیرهها در توپولوژی **FatTree**

در تمامی این ارزیابیها از نسبت سود به هزینه ۹ استفاده کرده و زنجیرهها را در توپولوژی FatTree جایگذاری می کنیم. در این ارزیابی تعداد زنجیرهها را تغییر می دهیم اما همواره طول زنجیرهها بین ۳ تا ۷ می باشد. همانطور که بیان شد الگوریتم بهینه برای تمامی حالتها تا ۱۵ دقیقه محدود شده است، برای حالت ۱۳۰ برای رسیدن به گپ معقول نیاز به ۴ ساعت زمان است.

شکل ۶-۵: سود نهایی الگوریتمهای بهینه، پیشنهادی و [۴]

همانطور که در نمودار ۶-۵ مشخص است با افزایش تعداد زنجیرهها الگوریتم [۴] از الگوریتم پیشنهادی بدتر عمل می کند، به این ترتیب که سود حاصل از پذیرفتن زنیجرهها در الگوریتم پیشنهادی بیشتر است. یکی از موارد مهم در زمانی که ۱۳۰ زنجیره وجود دارد نزدیکی جواب بهینه به جواب الگوریتم پیشنهادی است. در این حالت به علت پیچیدگی مساله همانطور که صحبت شد تولید جواب با گپ مناسب زمان زیادی می برد، بنابراین جوابی که در این حالت استفاده شده است نسبت به سایر نقاط ۲ درصد گپ بیشتری دارد.

نمودارهای ۶-۶ و ۷-۷ بیشتر جنبهی اطلاعی دارند و تعداد زنجیرههای پذیرفته شده و تعداد VNFMهای

شکل ۶-۶: تعداد زنجیرههای پذیرفته شده الگوریتمهای بهینه، پیشنهادی و [۴]

شکل ۶-۷: تعداد VNFMهای الگوریتمهای بهینه، پیشنهادی و [۴]

استفاده شده را نشان میدهند. همانطور که در تعریف مساله نیست گفته شده است، این دو پارامتر در سود نهایی تاثیر دارند اما سود نهایی به ضرایب آنها نیز وابسته است.

۴-۵-۶ زنجیرهها در توپولوژی ۴-۵

در تمامی این ارزیابیها از نسبت سود به هزینه ۹ استفاده کرده و زنجیرهها را در توپولوژی USnet جایگذاری میکنیم. در این ارزیابیها تعداد زنجیرهها را تغییر میدهیم اما همواره طول زنجیرهها بین ۳ تا ۷ میباشد. همانطور که بیان شد این توپولوژی نزدیک به حالت تصادفی میباشد. از آنجایی که تعداد لینکها و نودهای این توپولوژی کم میباشد الگوریتمهای پیشنهادی و [۴] هر دو مشابه یکدیگر عمل میکنند.

منابع و مراجع

- [1] Etsi gs nfv-man 001 v1.1.1: Network function virtualization (nfv): Management and orchestration. Technical report, december 2014.
- [2] Abu-Lebdeh, Mohammad, Naboulsi, Diala, Glitho, Roch, and Tchouati, Constant Wette. On the placement of VNF managers in large-scale and distributed NFV systems. *IEEE Transactions on Network and Service Management*, 14(4):875–889, dec 2017.
- [3] Alvani, Parham. The road to master of science degree, 2019.
- [4] Bari, Md. Faizul, Chowdhury, Shihabur Rahman, Ahmed, Reaz, and Boutaba, Raouf. On orchestrating virtual network functions. In 2015 11th International Conference on Network and Service Management (CNSM). IEEE, November 2015.
- [5] Chen, Yu-Jia, Wang, Li-Chun, Lin, Feng-Yi, and Lin, Bao-Shuh Paul. Deterministic quality of service guarantee for dynamic service chaining in software defined networking. *IEEE Transactions on Network and Service Management*, 14(4):991–1002, dec 2017.
- [6] Eramo, V., Tosti, A., and Miucci, E. Server resource dimensioning and routing of service function chain in NFV network architectures. *Journal of Electrical and Computer Engineering*, 2016:1–12, 2016.
- [7] Eramo, Vincenzo, Miucci, Emanuele, Ammar, Mostafa, and Lavacca, Francesco Giacinto. An approach for service function chain routing and virtual function network instance migration in network function virtualization architectures. *IEEE/ACM Transactions on Networking*, 25(4):2008–2025, aug 2017.

- [8] Ghaznavi, Milad, Shahriar, Nashid, Kamali, Shahin, Ahmed, Reaz, and Boutaba, Raouf. Distributed service function chaining. *IEEE Journal on Selected Areas in Communications*, 35(11):2479–2489, nov 2017.
- [9] Huang, Huawei, Li, Peng, Guo, Song, Liang, Weifa, and Wang, Kun. Near-optimal deployment of service chains by exploiting correlations between network functions. *IEEE Transactions on Cloud Computing*, pages 1–1, 2017.
- [10] Jang, Insun, Suh, Dongeun, Pack, Sangheon, and Dan, Gyorgy. Joint optimization of service function placement and flow distribution for service function chaining. *IEEE Journal on Selected Areas in Communications*, 35(11):2532–2541, nov 2017.
- [11] Ma, Wenrui, Beltran, Jonathan, Pan, Zhenglin, Pan, Deng, and Pissinou, Niki. SDN-based traffic aware placement of NFV middleboxes. *IEEE Transactions on Network and Service Management*, 14(3):528–542, sep 2017.
- [12] Mijumbi, Rashid, Serrat, Joan, Gorricho, Juan-Luis, Bouten, Niels, Turck, Filip De, and Boutaba, Raouf. Network function virtualization: State-of-the-art and research challenges. *IEEE Communications Surveys & Tutorials*, 18(1):236–262, 2016.
- [13] Pham, Tuan-Minh, Nguyen, Thi-Thuy-Lien, Fdida, Serge, and Binh, Huynh Thi Thanh. Online load balancing for network functions virtualization. In *2017 IEEE International Conference on Communications (ICC)*. IEEE, may 2017.
- [14] Yu, Ruozhou, Xue, Guoliang, and Zhang, Xiang. QoS-aware and reliable traffic steering for service function chaining in mobile networks. *IEEE Journal on Selected Areas in Communications*, 35(11):2522–2531, nov 2017.

Amirkabir University of Technology (Tehran Polytechnic)

Department of Computer Engineering & Information Technology

MSc Thesis

Virtualized Network Service Function Chaining Subject to Management Resource Constraint

By Parham Alvani

Supervisor Prof. Bahador Bakhshi

September 2019