METODY NUMERYCZNE - LABORATORIUM

Zadanie 4 Implementacja metody aproksymacji oparta o wielomiany Hermite'a

Opis rozwiązania

Celem tego zadania było zaimplementowanie metody aproksymacji oparta o wielomiany Hermite'a. Wielomiany te są zapisywane za pomocą równania rekurencyjnego, gdzie $H_0(x) = 1$; $H_1 = 2x$; $H_k(x) = 2xH_{k-1}(x)-2(k-1)H_{k-2}(x)$, dla k=2,3,...

Przy aproksymacji wykorzystano kwadraturę Gaussa-Hermite'a z przedziału ($-\infty$, $+\infty$). Kwadratura ta ma postać:

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{i=0}^{2} H_i f(x_i)$$

Błąd aproksymacji został obliczony dzięki pierwiastkowi sumy arytmetycznej potęgi kwadratowej różnicy wartości funkcji bazowej i aproksymowanej między równoodległymi węzłami znajdującymi się w podanym przedziale.

Wyniki

Używane funkcje były rysowane na przedziale (-4,4) z 5 węzłami całkującymi.

Funkcja	Stopnie wielomianu Hermite'a	Funkcja aproksymowana	Błąd aproksymacji
	0	+ 1.000000	25.2982
4x+1	1	+ 3.999985x + 1.000000	9.27792e-05
	2	+ 3.999985x + 1.000001	0.000117707
	3	- 0.000015x^3 + 4.000007x + 1.000001	0.00129076
	4	- 0.000015x^3 + 4.000007x + 1.000001	0.00129631
	5	- 0.000022x^3 + 4.000012x + 1.000001	0.000240951
	6	- 0.000022x^3 + 4.000012x + 1.000001	0.000540497
	7	+ 4.000001x + 1.000001	0.00870579
	0	0	89.9111
	1	0	89.9111
4x2-2	2	+ 3.999970x^2 - 1.999991	0.000689419
	3	+ 3.999970x^2 - 1.999991	0.000689419
	4	- 0.000011x^4 + 4.000002x^2 - 1.999999	0.00382673
	5	- 0.000011x^4 + 4.000002x^2 - 1.999999	0.00382673
	6	- 0.000040x^4 + 4.000046x^2 - 2.000007	0.00923677
	7	- 0.000040x^4 + 4.000046x^2 - 2.000007	0.00923677

Funkcja	Stopnie wielomianu Hermite'a	Funkcja aproksymowana	Błąd aproksymacji
×	0	+ 0.471235	5.459
	1	+ 0.471235	5.459
	2	+ 0.682426x^2 + 0.130022	10.0433
	3	+ 0.682426x^2 + 0.130022	10.0433
	4	- 0.173361x^4 + 1.202510x^2	41.2107
	5	- 0.173361x^4 + 1.202510x^2	41.2107
	6	+ 0.057787x^6 - 0.606766x^4 + 1.852617x^2 - 0.108350	151.18
	7	+ 0.057787x^6 - 0.606766x^4 + 1.852617x^2 - 0.108350	151.18
	0	0	1.67306
	1	+ 0.778781x	5.55195
	2	+ 0.778781x	5.55195
ain/v)	3	- 0.128986x^3 + 0.972259x	5.10423
sin(x)	4	- 0.128986x^3 + 0.972259x	5.10423
	5	- 0.128987x^3 + 0.972260x	5.10395
	6	- 0.128987x^3 + 0.972260x	5.10395
	7	+ 0.012284x^7 - 0.128984x^5 + 0.193474x^3 + 0.811030x	121.013
cos(2x+1)	0	+ 0.199125	1.75442
	1	- 0.614065x + 0.199125	3.62077
	2	- 0.410647x^2 - 0.614065x + 0.404448	9.3768
	3	+ 0.364190x^3 - 0.410647x^2 - 1.160350x + 0.404448	28.9161
	4	+ 0.181139x^4 + 0.364190x^3 - 0.954064x^2 - 1.160350x + 0.540302	52.6636
	5	+ 0.181139x^4 + 0.364191x^3 - 0.954064x^2 - 1.160351x + 0.540302	52.6635
	6	- 0.060380x^6 + 0.633986x^4 + 0.364191x^3 - 1.633334x^2 - 1.160351x + 0.653514	158.571
	7	- 0.034685x^7 - 0.060380x^6 + 0.364189x^5 + 0.633986x^4 - 0.546281x^3 - 1.6333334x^2 - 0.705115x + 0.653514	363.74

Funkcja: **f(x) = 4x+1** Stopień wielomianu Hermite'a: **2**

Funkcja: f(x) = 4x+1

Stopień wielomianu Hermite'a: 3

Funkcja: f(x) = 4x+1 Stopień wielomianu Hermite'a: 4

Funkcja: f(x) = 4x+1Stopień wielomianu Hermite'a: 6

Funkcja: f(x) = 4x+1

Stopień wielomianu Hermite'a: 7

Funkcja: $f(x) = 4x^2-2$ Stopień wielomianu Hermite'a: 0

Funkcja: $f(x) = 4x^2-2$ Stopień wielomianu Hermite'a: 1

Funkcja: $f(x) = 4x^2-2$ Stopień wielomianu Hermite'a: 2

Funkcja: $f(x) = 4x^2-2$

Stopień wielomianu Hermite'a: 3

Funkcja: $f(x) = 4x^2-2$

Stopień wielomianu Hermite'a: 5

Funkcja: $f(x) = 4x^2-2$ Stopień wielomianu Hermite'a: 6

Funkcja: $f(x) = 4x^2-2$ Stopień wielomianu Hermite'a: 7

Funkcja: f(x) = |x|Stopień wielomianu Hermite'a: 0

Funkcja: f(x) = |x|Stopień wielomianu Hermite'a: 1

Funkcja: f(x) = |x| Stopień wielomianu Hermite'a: 2

Funkcja: f(x) = |x|Stopień wielomianu Hermite'a: 3

Funkcja: **f(x) = |x|** Stopień wielomianu Hermite'a: **4**

Funkcja: f(x) = |x|Stopień wielomianu Hermite'a: 5

Funkcja: f(x) = |x|Stopień wielomianu Hermite'a: 7

Funkcja: f(x) = sin(x) Stopień wielomianu Hermite'a: 2

Funkcja: $f(x) = \sin(x)$ Stopień wielomianu Hermite'a: 4

Funkcja: f(x) = sin(x) Stopień wielomianu Hermite'a: 7

Funkcja: f(x) = cos(2x+1) Stopień wielomianu Hermite'a: 5

Funkcja: f(x) = cos(2x+1) Stopień wielomianu Hermite'a: 6

Funkcja: f(x) = cos(2x+1)

Stopień wielomianu Hermite'a: 7

Wnioski

- Metoda aproksymacji przy pomocy wielomianów Hermite'a jest metodą efektywną dla prostych funkcji na wąskim przedziale wielomianu.
- Uzyskiwany błąd zmniejszał się wraz ze wzrostem stopnia wielomianu aproksymującego.
- Funkcje, które łatwiej aproksymować wielomianami to przede wszystkich funkcje ograniczone na wąskim przedziale im mniejszy przedział tym mniejsza przestrzeń funkcji, które należy uwzględnić przy konstrukcji wielomianu aproksymacyjnego.
- Gwałtowne zmiany wartości funkcji mogą wymagać mniejszej ilości punktów do efektywnej aproksymacji. Są to obszary, w których występują duże zmiany, które można łatwo przybliżyć za pomocą wielomianu o odpowiednio wysokim stopniu.
- Dla funkcji f(x) = |x| zwiększenie stopnia wielomianu aproksymującego nie zawsze dawało lepszy wynik aproksymacji.
- Możemy zauważyć, że dla większego stopnia wielomianu aproksymującego błąd zwiększa się względem poprzedniego stopnia.
- Najlepsze wyniki udało nam się uzyskać aproksymując funkcję liniową i wielomianową.