Семинар 4

Алексеев Василий

28 февраля + 7 марта 2025

Содержание

1	Эрэ		1
	1.1	Предел функции (продолжение)	1
		1.1.1 C3, §2, №54	
	4.0	1.1.2 C3, §2, $\mathbb{N}^{\circ}62(5)$	
	1.2	Производные. Дифференциал	4
		1.2.1 Производная и дифференциал на прямой (вспоминание)	4
		1.2.2 Производная и дифференциал в многомерии	(
		1.2.3 C3, §3, №3(6)	8
		1.2.4 C3, §3, №12	8
		1.2.5 C3, §3, №15(7)	
		1.2.6 C3, §3, №19(2)	
		1.2.7 C3, §3, №39(1)	
	1.3	Формула Тейлора	6
		1.3.1 C3, §4, №2(1)	7
		1.3.2 C3, §4, \mathbb{N}° 15(2)	8
		1.3.3 C3, §4, №71(2)	
		1.3.4 C3.84 N974(4)	ſ

1. Эрэн

1.1. Предел функции (продолжение)

Так же, как в случае \mathbb{R} , вводится понятие *непрерывности функции в точке*. Функция непрерывна в точке, если значение функции в этой точке "предсказуемо" по её значениям в близких точках. Так, функция $f: X \to \mathbb{R}, X \subset \mathbb{R}^n$ называется непрерывной в точке $\mathbf{x}_0 \in X$ (внутренней для X), если:

$$\forall \varepsilon > 0 \ \exists \delta : \ \forall x : \ \rho(x, x_0) < \delta \rightarrow |f(x) - f(x_0)| < \varepsilon$$

Или, в терминах окрестностей:

$$\forall \varepsilon > 0 \; \exists \delta : \; \forall \mathbf{x} \in U_{\delta}(\mathbf{x}_0) \to f(\mathbf{x}) \in U_{\delta}(f(\mathbf{x}_0))$$

Если функция f не является непрерывной в точке \mathbf{x}_0 , то она *разрывна* в ней. Разрыв может быть в случаях, если (1):

- функция не определена в точке (устранимый разрыв): $\nexists f(x_0)$;
- значение функции отличается от предела в точке (тоже устранимый разрыв): $f(x_0) \neq \lim_{x \to x_0} f(x)$;
- не существует предела функции в точке (неустранимый разрыв): $\nexists \lim_{x \to x_0} f(x)$.

Рис. 1: Варианты разрывов функции $f: X \to \mathbb{R}$ в точке. (Картинка нарисована как будто для функции одной переменной, но можно считать, что это просто такой "упрощённый" вариант изобразить ситуацию на \mathbb{R}^n ("набросок", дающий простор для фантазии читателя).)

Кроме "просто" непрерывности, может рассматриваться непрерывность по какомуто множеству. Например, по множеству определения функции. Так, функция f непрерывна в \mathbf{x}_0 по множеству X, если:

$$\forall \varepsilon > 0 \; \exists \delta : \; \forall \mathbf{x} \in U_{\delta}(\mathbf{x}_0) \cap \mathbf{X} \to f(\mathbf{x}) \in U_{\delta} \big(f(\mathbf{x}_0) \big)$$

то есть смотрятся близкие точки не из всего пространства, а только из X. По такому определению можно говорить и о непрерывности функции в *изолированных* точках X (функция будет в них непрерывна).

1.1.1. C3, §2, №54

Дана функция:

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0\\ a, & x = y = 0 \end{cases}$$

Найти значение a, при котором f(x, y) в точке (0, 0) будет

• непрерывной по прямой

$$l: \begin{cases} x = \alpha t \\ y = \beta t \end{cases}, \quad \alpha^2 + \beta^2 \neq 0$$

- непрерывной по кривой $y = \alpha x^2$
- "просто" непрерывной

Решение. Что значит, что функция $f: X \to \mathbb{R}$ непрерывна в некоторой точке $\mathbf{x}_0 \in \mathbb{R}^n$:

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = f(\mathbf{x}_0)$$

Однако в случае, если \mathbf{x}_0 не является внутренней точкой множества X, говорить о пределе $\lim_{\mathbf{x}\to\mathbf{x}_0}$, по-хорошему, нельзя (так как "подходить" к \mathbf{x}_0 в данном случае не получится по произвольной "траектории"). Но можно говорить о пределе *по множеству определения* функции:

$$\lim_{\substack{\mathbf{x} \to \mathbf{x}_0 \\ \mathbf{x} \in X}} f(\mathbf{x}) = f(\mathbf{x}_0)$$

А вообще, можно рассматривать пределы функций по произвольным множествам $X' \subset X$:

$$\lim_{\substack{x \to x_0 \\ x \in X'}} f(x) = f(x_0)$$

Если предел функции в точке x_0 существует, то он будет таким же и по любому множеству. Но если хотя бы по какому-то множеству в точке x_0 нет предела (или если можно привести два множества, по которым пределы в точке существуют, но отличаются), то "просто" предела у функции в этой точке не будет.

Итак, проверка непрерывности в точке по прямой l будет заключаться в проверке равенства:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in l}} f(x,y) \stackrel{?}{=} f(0,0)$$

Или, если подробнее:

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in l}} \frac{x^2y}{x^4 + y^2} \stackrel{?}{=} a$$

Вычислим предел. Для этого можно выразить x и y через t из уравнений прямой и подставить в выражение под пределом (при этом $(x,y) \to (0,0) \Leftrightarrow t \to 0$):

$$\lim_{\substack{(x,y)\to(0,0)\\(x,y)\in I}} \frac{x^2y}{x^4+y^2} = \lim_{t\to 0} \frac{(\alpha t)^2\beta t}{(\alpha t)^4+(\beta t)^2} = \lim_{t\to 0} \frac{\alpha^2\beta\cdot t}{\alpha^4\cdot t^2+\beta^2} = 0$$

 $^{^{1}}$ Точнее, по произвольным множествам, для которых точка \pmb{x}_{0} является предельной.

(предел равен нулю вне зависимости от того, равен β нулю или нет).

Таким образом, чтобы функция была непрерывна в нуле по прямой, должно выполняться условие a=0.

Перейдём к случаю непрерывности по кривой $y = \alpha x^2$. Для начала можно заметить, что при $\alpha = 0$ кривая становится прямой — этот случай уже был рассмотрен ранее (и получилось, что в этом случае должно быть a = 0).

Если же $\alpha \neq 0$, то кривая $y = \alpha x^2$ будет описывать параболу.

Для проверки непрерывности по рассматриваемой кривой, можно выразить y через x и подставить в выражение под пределом (при этом $(x,y) \to (0,0) \Leftrightarrow x \to 0$):

$$\lim_{\substack{(x,y)\to(0,0)\\y=\alpha x^2}} \frac{x^2 y}{x^4 + y^2} = \lim_{x\to 0} \frac{\alpha x^4}{x^4 + \alpha^2 x^4} = \frac{\alpha}{1 + \alpha^2}$$

Таким образом, непрерывность в нуле по параболе $y = \alpha x^2$ будет при условии:

$$a = \frac{\alpha}{1 + \alpha^2}$$

Также можно заметить, что для разных парабол, скажем, для $y=x^2$ и $y=-x^2$, значения a, дающие непрерывность, будут разными.

Из сказанного получаем, что "просто" непрерывной в нуле функция ни при каких a не будет (разные a для прямых и парабол, разные a для разных парабол — для разных множеств условия непрерывности отличаются).

1.1.2. C3, §2, Nº62(5)

Найти все точки разрыва (устранимого и нет) функции двух переменных:

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x + y}, & \text{если } x + y \neq 0\\ 3, & \text{если } x + y = 0 \end{cases}$$

Решение. В каждой точке (x_0, y_0) не на прямой l: x+y=0 функция задаётся "нормальной" (не кусочной) формулой (в каждой точке, а также в некоторой её окрестности). Формулой, которая, очевидно, задаёт непрерывную функцию:

$$f(x, y) = \frac{x^3 + y^3}{x + y} = x^2 - xy + y^2, \quad x + y \neq 0$$

Вопросы возникают только по поводу точек прямой l.

Пусть $(x_0, y_0) \in l$. Будем проверять непрерывность в точке по определению:

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \stackrel{?}{=} f(x_0,y_0)$$

Очевидно, если считать предел в точке прямой l по самой прямой l, то непрерывность будет:

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\in l}} f(x,y) = 3 = f(x_0,y_0)$$

Посмотрим на "просто" предел:²

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = \lim_{(x,y)\to(x_0,y_0)} x^2 - xy + y^2 = x_0^2 - x_0y_0 + y_0^2 \xrightarrow{x_0+y_0=0} 3x_0^2 \stackrel{?}{=} 3$$

Видно условие непрерывности в точке на прямой: $x_0^2=1 \leftrightarrow x_0=\pm 1$. Только в точках прямой с такими x-координатами функция f будет непрерывна. Эти точки: $(\pm 1, \mp 1)$. В остальных точках прямой l функция терпит устранимый разрыв (предел есть, но не равен значению функции в точке).

1.2. Производные. Дифференциал

1.2.1. Производная и дифференциал на прямой (вспоминание)

Вспомним производную и дифференциал, какие они были для числовых функций. Производная функции $f: \mathbb{R} \to \mathbb{R}$ показывает "скорость" её изменения в точке x_0 :

$$\frac{df}{dx} \equiv f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \\
= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \tag{1}$$

Производная несёт информацию, с одной стороны, о том, как быстро меняется функция (модуль производной), но также рассказывает о "характере" изменения: увеличивается функция при проходе через x_0 или, наоборот, уменьшается (знак производной).

Геометрический смысл производной — тангенс угла наклона касательной к графику функции y = f(x) в точке x_0 (касательная — как предел секущей при $x \to x_0$).

Вообще же, в "близкой" окрестности точки x_0 график функции "в некотором приближении" представим как раз как график касательной в точке x_0 (2), — чем ближе окрестность, тем точнее такое представление — то есть приращение $\Delta f(x_0) = f(x) - f(x_0)$ в точке x_0 функции можно "оценить" так:

$$f(x) - f(x_0) \approx f'(x_0) \cdot (x - x_0)$$

Оказывается, что можно написать и "нормальное" (строгое) равенство без приближений:

$$f(x) - f(x_0) = f'(x_0) \cdot (x - x_0) + o(x - x_0), \quad x \to x_0$$

где $o(x-x_0)$ есть o-малая от $x-x_0$, то есть некоторая функция g(x), для которой верно, что $\lim_{x\to x_0}\frac{g(x)}{x-x_0}=0$. (Поправка, отвечающая за "точность" приближения приращения функции как линейной функции от приращения аргумента — чем ближе к x_0 , тем точнее.) Итого, для значения f(x) функции в некоторой точке x можно записать:

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0), \quad x \to x_0$$

Из этого соотношения возникают два понятия.

 $^{^2}$ На самом деле это тоже не "просто" предел — тоже предполагаем, что сходимся к точке по множеству — по множеству, не включающему в себя точки прямой l (ведь только для них работает формула, которая стоит под пределом). Если же всё-таки посмотреть на предел в целом, без ограничения по множеству, то что может получиться: при $x \to x_0$ встречаются как точки на прямой l, так и вне её. С точками на прямой уже показали, что по ним f(x) сходится к 3. Чтобы предел существовал, 3 должна в пределе получаться и для значений функции на точках вне прямой.

³Источник: МА-1, семинар про дифференциал (шестой).

Рис. 2: Вблизи точки x_0 значение функции $f(x) \approx f(x_0) + f'(x_0) \cdot (x - x_0)$.

Дифференциалом независимой переменной называется её приращение:

$$dx = \Delta x = x - x_0$$

 \mathcal{L}_{0} Дифференциалом функции в точке x_{0} называется линейная по dx часть приращения функции в этой точке (линейное "приближение" приращения функции):

$$df(x_0) = f'(x_0) \, dx \tag{2}$$

А дифференцированием называется процесс взятия производной функции. При этом получение дифференциала (2) по сути тоже сводится к взятию производной. И правила дифференцирования функций во многом повторяют соответствующие правила для производных. Например, дифференциал константы $c \in \mathbb{R}$ равен нулю dc = 0. Дифференциал суммы равен сумме дифференциалов. Константу как множитель можно выносить за знак дифференциала.

Дифференциал произведения (распишем его подробнее):

$$d(fg) = df \cdot g + f \cdot dg$$

так как, с одной стороны:

$$d(fg) = (fg)' dx = (f'g + fg') dx$$

и, с другой стороны:

$$df \cdot g + f \cdot dg = f' dx \cdot g + f \cdot g' dx = (f'g + fg') dx$$

Дифференциал частного:

$$d\left(\frac{f}{g}\right) = \frac{df \cdot g - f \cdot dg}{g^2}$$

1.2.2. Производная и дифференциал в многомерии

В многомерном пространстве формула (1) не применима и обобщить её не очень понятно, как: ведь теперь "движение" от x к x_0 происходит в \mathbb{R}^n , и разность $x-x_0$ будет вектором. Можно бы было посчитать длину этого вектора и поставить в знаменателе (1) — но тогда это уже была бы не производная, потому что потерялась бы информация о направлении движения от x к x_0 ($|x-x_0|$ — это лишь часть информации об изменении аргумента).

То есть основная "проблема" в том, что переменных теперь много, они все могут меняться.

Поэтому можно (немного "искусственно") упростить картину так, чтобы всё-таки можно было ввести производную аналогично (1) (и при этом ввести её так, чтобы она обобщала производную в \mathbb{R}). Будем следить за изменением функции не сразу по всем переменным, а только по одной.

Рассмотрим для наглядности функцию на плоскости: f(x,y), где (x,y) — это компоненты двумерного вектора: $\mathbf{x}=(x,y)$. Пусть есть точка (x_0,y_0) . Зафиксируем координату y_0 , тогда разность $f(x,y_0)-f(x_0,y_0)$ будет показывать изменение функции только при изменении x. Получается так, словно f — это теперь функция одной переменной x (на самом деле функция многих переменных, просто при зафиксированных всех, кроме одной), поэтому можно посчитать её производную так же, как в $\mathbb R$. Таким образом посчитанная производная называется y_0 0 но y_0 1 но y_0 2.

$$\frac{\partial f}{\partial x} \equiv f'_x = \lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0}$$
$$= \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Аналогичным образом рассчитываются частные производные и по другим переменным (в данном случае — только по y):

$$\frac{\partial f}{\partial y} \equiv f_y' = \lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0}$$
$$= \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Частные производные не дают полной информации о "динамике" изменения функции при $x \to x_0$, но они показывают скорость изменения функции в x_0 вдоль соответствующих осей.

Функция в \mathbb{R}^2 называется $\partial u \phi \phi$ еренцируемой в точке (x_0, y_0) , если в её окрестности верна формула:

$$f(x,y) = f(x_0,y_0) + A\Delta x + B\Delta y + o(\rho), \ \rho \to 0, \quad \rho \equiv \sqrt{(x-x_0)^2 + (y-y_0)^2} \eqno(3)$$

где $A, B \in \mathbb{R}$, а $\Delta x = x - x_0$ и $\Delta y = y - y_0$. То есть если приращение функции линейно зависит от приращений аргументов при $\rho \to 0$.

И если функция дифференцируема, то:

$$f(x,y) = f(x_0, y_0) + \underbrace{\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y + o(\rho), \ \rho \to 0}_{df(x_0, y_0)}$$
(4)

где $df(x_0, y_0)$ — дифференциал функции в точке (линейное приближение её приращения в точке). (Но в \mathbb{R}^n из того, что у функции в точке есть частные производные, вообще ещё не следует, что она дифференцируема — подробнее см. номер (1.2.4).

Кроме "просто" дифференциала, можно рассмотреть дифференциалы по отдельным переменным (при всех остальных фиксированных). Так, например, при константной $y \equiv y_0$ будет:

$$d_x f(x_0, y_0) \equiv df(x_0, y_0)|_{y=y_0} = \frac{\partial f}{\partial x}(x_0, y_0) dx$$

И в таком случае можно выразить частную производную через *отношение дифференциалов*:

$$\frac{\partial f}{\partial x} = \frac{d_x f}{dx}$$

А дифференциал функции в точке можно записать в виде суммы дифференциалов по отдельным переменным:

$$df = d_x f + d_y f$$

Кроме частных производных, для функций в \mathbb{R}^n рассматриваются *производные по направлению*. Производная по направлению рассчитывается при "движении" к точке вдоль проходящей через неё прямой, которая задаётся вектором $a \in \mathbb{R}^n$ (3). В отличие от частных производных (где "движение" к точке происходит вдоль оси), изменение функции будет определяться изменением *сразу по нескольким* переменным. Что тогда поставить в знаменателе дроби (предел которой будет производной)? При движении по прямой к точке в качестве изменения аргумента можно считать просто *расстояние* от текущей точки x до "нулевой" x_0 — причём расстояние со знаком: с "плюсом", если точка x получается из x_0 движением в направлении вектора a (то есть $(x-x_0) \uparrow a$), и с "минусом", если точка x лежит с другой стороны от x_0 (то есть $(x-x_0) \uparrow a$).

Рис. 3: К производной по направлению в точке (x_0, y_0) вдоль вектора a.

Итак, распишем на примере \mathbb{R}^2 производную функции f(x, y) вдоль вектора $a = (a_x, a_y)$:

$$\frac{\partial f}{\partial \mathbf{a}}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + ta_x, y_0 + ta_y) - f(x_0, y_0)}{t|\mathbf{a}|}$$

 $^{^4}$ Существует и другой подход к расчёту производной вдоль вектора: когда единичный "шаг" полагается равным длине вектора (шагаем к точке x_0 вдоль вектора с шагом длиной в вектор).

Если вектор a единичный (|a| = 1), то производная вдоль него:

$$\frac{\partial f}{\partial a}(x_0, y_0) = \lim_{t \to 0} \frac{f(x_0 + ta_x, y_0 + ta_y) - f(x_0, y_0)}{t} \tag{5}$$

Таким образом, производная по направлению — это не что-то "другое совсем новое" — она обобщает понятие частной производной: частные производные — это производные вдоль направлений осей координат.

1.2.3. C3, §3, №3(6)

Найти частные производные первого порядка функции:

$$f(x, y, z) = \left(\frac{x}{y}\right)^z$$

Решение. Частные производные — производные по одной переменной. Чтобы их найти, можно просто дифференцировать по нужной переменной формулу, которой задаётся функция, считая все остальные переменные как бы постоянными (константами):

$$\frac{\partial f}{\partial x} = z \left(\frac{x}{y}\right)^{z-1} \cdot \frac{1}{y} = \frac{z}{x} f(x, y, z)$$

$$\frac{\partial f}{\partial y} = z \left(\frac{x}{y}\right)^{z-1} \cdot \left(-\frac{x}{y^2}\right) = -\frac{z}{y} f(x, y, z)$$

$$\frac{\partial f}{\partial z} = \left(\exp\left\{z \cdot \ln\frac{x}{y}\right\}\right)' = f(x, y, z) \ln\frac{x}{y}$$

1.2.4. C3, §3, №12

Верны ли для функции $f(x), x \in \mathbb{R}^n$ следующие утверждения?

- В Если функция в некоторой точке имеет частные производные по всем переменным, то она непрерывна в этой точке.
- oxdots Если функция в каждой точке пространства \mathbb{R}^n имеет частные производные по всем переменным, то она непрерывна в \mathbb{R}^n .
- Если функция дифференцируема в некотором точке, то в этой точке у функции существуют частные производные по всем переменным.
- В Если у функции в некоторой точке существуют частные производные по всем переменным, то она дифференцируема в этой точке.
- **Ж** Если функция дифференцируема в некотором точке, то в этой точке у функции существуют *непрерывные* частные производные по всем переменным.

Решение.

Если функция в некоторой точке имеет частные производные по всем переменным, то она непрерывна в этой точке?

В случае функции одной переменной — это правда, потому что частная производная для неё — это такая производная, которая строится по оценке "общего" изменения функции в окрестности точки. Непрерывность — тоже про про поведение функции вблизи точки "в целом".

$$\exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \quad \Rightarrow \quad \lim_{x \to x_0} f(x) = f(x_0)$$

Но для функций в пространстве \mathbb{R}^n , $n \geq 2$ утверждение вообще перестаёт работать. Потому что теперь частные производные — характеризующие изменения функции только вдоль соответствующих осей — не говорят о поведении функции в окрестности точки "в целом" (если про функцию ничего дополнительно не требовать).

Для большей конкретики рассмотрим пример функции в пространстве \mathbb{R}^2 :

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x = y = 0 \end{cases}$$
 (6)

Очевидно, у этой функции "интересная" точка — это $(0,0) \equiv (x_0,y_0)$ (в остальных точках точно всё "хорошо"). Поэтому проверим для неё: наличие частных производных и непрерывность.

Частные производные (считаем по определению):

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{0 - 0}{\Delta x} = 0$$

$$\frac{\partial f}{\partial y}(x_0, y_0) = /\text{аналогично}/$$

$$= 0$$

Но непрерывна ли данная функция в нуле?

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) \stackrel{?}{=} f(x_0,y_0)$$

Если предел в нуле существует, то можно попробовать его посчитать по некоторым "удобным" множествам...

$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2 + y^2} = \begin{cases} \lim_{x\to 0} \frac{x^2}{2x^2} = \frac{1}{2} \\ \lim_{x\to 0} \frac{-x^2}{2x^2} = -\frac{1}{2} \\ \lim_{x\to 0} \frac{0}{x^2} = 0 \\ \lim_{x\to 0} \frac{0}{x^2} = 0 \\ \dots \end{cases}$$

Уже по двум прямым $y = \pm x$ предел в точке (0,0) получился разным. Значит, "просто" предела в точке у функции нет. (Если бы он был, он был бы таким же по любому множеству, "касающемуся" точки.)

Если функция в каждой точке пространства \mathbb{R}^n имеет частные производные по всем переменным, то она непрерывна в \mathbb{R}^n ?

В случае функции на ℝ утверждение снова верное.

С функцией на \mathbb{R}^n , вообще говоря, можно бы было и задуматься (не является ли требование наличия частных производных *во всех* точках настолько сильным: ведь если в данной точке есть частные производные и во всех точках сколь угодно близко к ней — тоже, то нельзя ли отсюда сделать положительный вывод о непрерывности?..)

Однако пример из прошлого пункта (6) показывает, что в \mathbb{R}^n сказанное в общем случае тоже не верно.

Если функция дифференцируема в некотором точке, то в этой точке у функции существуют частные производные по всем переменным?

Очевидно, пункт снова верен для функций на \mathbb{R} : дифференцируемость для них равносильна существованию производной:

$$f(x) = f(x_0) + A\Delta x + o(\Delta x), \ \Delta x \to 0 \quad \Leftrightarrow \quad \exists \frac{df}{dx}(x_0) = A$$

Потому что:

$$\begin{split} A &= f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{\Delta x} \in \mathbb{R} \\ &\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{\Delta x} - A = 0 \\ &\Leftrightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0) - A\Delta x}{\Delta x} = 0 \Leftrightarrow f(x) - f(x_0) - A\Delta x = o(\Delta x), \ \Delta x \to 0 \end{split}$$

Оказывается, что утверждение остаётся верным и для функций на \mathbb{R}^n ! Попытаться объяснить это "на пальцах" можно следующим образом. Дифференцируемость — это комплексное понятие, описывающее возможность линейного приближения функции в окрестности точки; дифференцируемость — про то, что можно "предсказать" значение f(x) по значению $f(x_0)$ и разницам (покоординатным) между x и x_0 . Таким образом, в определении дифференцируемости уже как бы лежит возможность оценки общего изменения функции по её "отдельным" изменениям вдоль каждой из осей.

Покажем на примере функции на \mathbb{R}^2 , что существование частных производных следует из дифференцируемости так же, как и в \mathbb{R} . Функция f(x, y) дифференцируема в точке (x_0, y_0) , если:

$$\Delta f(x_0,y_0) = A\Delta x + B\Delta y + o(\rho), \ \rho \rightarrow 0, \quad \rho \equiv \sqrt{(x-x_0)^2 + (y-y_0)^2}$$

Но тогда, например, при $y \equiv y_0 = \text{const}$ будет:

$$\Delta_x f(x_0, y_0) = A\Delta x + 0 + o(\Delta x), \ \Delta x \to 0$$

где в качестве $\Delta_x f$ обозначено приращение функции при условии, что все переменные (в данном случае всего одна), кроме x, считаются константными и равными соответствующим "нулевым" значениям. Отсюда и из рассмотренного ранее случая $\mathbb R$ сразу видно, что:

$$A = \lim_{\Delta x \to 0} \frac{\Delta_x f}{\Delta x}(x_0, y_0) = \frac{d_x f}{dx}(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)$$

где как $d_x f$ обозначен дифференциал функции по переменной x.

Аналогично с частной производной по у в точке.

Если у функции в некоторой точке существуют частные производные по всем переменным, то она дифференцируема в этой точке?

В случае $\mathbb R$ дифференцируемость равносильна наличию конечной производной, поэтому данное утверждение в $\mathbb R$ также выполняется.

Но покажем на примере, что в \mathbb{R}^n ($n \ge 2$) из существования всех частных производных (скоростей изменения функции вдоль осей) дифференцируемость ("предсказуемость" изменения функции в окрестности) вообще не следует.

Вспомним (6) такую функцию на плоскости (4):

$$f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0\\ 0, & x = y = 0 \end{cases}$$

Рис. 4: График функции (6), у которой есть частные производные в нуле, но которая не дифференцируема в нуле. (Похож на лист бумаги, согнутый так, что ровно по осям он на нуле, а в других местах (особенно по "диагоналям") изогнут сильно — то есть глядя только на оси нельзя ничего сказать об изменении в районе нуля в целом. Отметим также, что если "повернуть" график, рассмотрев таким образом, например, функцию $f(x,y) = \frac{(x-y)(x+y)}{(x-y)^2+(x+y)^2}$, то у неё в нуле не будет даже частных производных.)

В сюжете про непрерывность (её отсутствие) у этой функции в нуле уже показали, что частные производные в нуле существуют и равны нулю. Проверим теперь дифференцируемость (её отсутствие) в нуле.

Если функция дифференцируема в нуле $(0,0) \equiv (x_0,y_0)$, то можно записать:

$$f(x,y)=f(x_0,y_0)+\frac{\partial f}{\partial x}(x_0,y_0)\Delta x+\frac{\partial f}{\partial y}(x_0,y_0)\Delta y+o(\rho),\ \rho\to 0,\quad \rho\equiv\sqrt{(x-x_0)^2+(y-y_0)^2}$$

Подставляя значение функции и частных производных в нуле, получаем:

$$\frac{xy}{x^2 + v^2} = 0 + 0 + 0 + o(\rho) = o(\rho), \ \rho \to 0$$

Верно ли это равенство? Иными словами, надо проверить, верно ли, что:

$$\lim_{\rho \to 0} \left(\frac{xy}{x^2 + y^2} \middle/ \rho \right) = 0 \quad \Leftrightarrow \quad \lim_{(x,y) \to (0,0)} \frac{xy}{(x^2 + y^2)^{3/2}} = 0$$

(Сверху стоит что-то квадратичное относительно x и y, степень же снизу $2 \cdot 3/2 = 3$, поэтому сомнительно, чтобы в пределе получился ноль, ведь в пределе одной переменной x^2/x^3 при $x \to 0$ нуля не будет.)

Рассмотрим этот предел по множеству y = x:

$$\lim_{\substack{(x,y)\to(0,0)\\y=x}} \frac{xy}{(x^2+y^2)^{3/2}} = \lim_{x\to 0} \frac{x^2}{2^{3/2}x^3} = \infty \neq 0$$

Значит, "просто" предел, без указания конкретного множества сходимости — это точно не ноль.

Если функция дифференцируема в некоторой точке, то в этой точке у функции существуют непрерывные частные производные по всем переменным?

(Сразу не очень понятно, почему частные производные вдруг должны ещё оказаться непрерывными, то есть утверждение заранее вызывает сомнения...)

Рассмотрим пример функции на \mathbb{R}^2 :

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right), & x^2 + y^2 \neq 0\\ 0, & x = y = 0 \end{cases}$$
 (7)

Проверим, что функция дифференцируема (в нуле — из формулы (7) видно, что интерес будет представлять эта точка), но что хотя бы одна частная производная (а раз одна, то и другая, потому что формула (7) симметрична относительно переменных x и y) не будет непрерывной в нуле.

Частные производные:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{f(0+\Delta x,0) - f(0,0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x^2 \sin\left(\frac{1}{|\Delta x|}\right)}{\Delta x} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = /\text{аналогично}/$$

$$= 0$$

Дифференцируемость (проверяем отдельно):

$$f(x,y) \stackrel{?}{=} f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(\rho), \ \rho \to 0, \quad \rho \equiv \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

$$f(x,y) = 0 + 0 + 0 + o(\rho), \ \rho \to 0$$

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\rho} = \lim_{(x,y)\to(0,0)} \sqrt{x^2 + y^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) = 0$$

так как $(x, y) \rightarrow (0, 0) \Leftrightarrow \sqrt{x^2 + y^2} \rightarrow 0$.

И наконец — проверим непрерывность частной производной (например, по у) в нуле:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{\partial f}{\partial y}(x,y) \stackrel{?}{=} \frac{\partial f}{\partial y}(x_0,y_0)$$

Находим частную производную по y в точке просто по формуле функции (7) (ведь $(x,y) \neq (0,0)$) и подставляем под предел:

$$\lim_{(x,y)\to(x_0,y_0)} \frac{\partial f}{\partial y}(x,y) = \lim_{(x,y)\to(0,0)} \left\{ 2y \cdot \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) - \frac{y}{\sqrt{x^2 + y^2}} \cdot \cos\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \right\} = 0 + \textcircled{2}$$

первое слагаемое под пределом стремится к нулю, второе же ни к чему не стремится, потому что имеет вид $\cos\phi(x,y)\cdot\cos\left(\frac{1}{\sqrt{x^2+y^2}}\right)$ — то есть ограничено, но при $(x,y)\to(0,0)$ может "скакать" туда-сюда (чтобы было не так "рокомахательно", можно, к примеру, рассмотреть предел от второго слагаемого по прямой y=x — или даже лучше по прямой x=0).

Таким образом, частные производные не являются непрерывными в нуле.

На самом деле... можно бы было придумать пример и для случая \mathbb{R})

Возьмём "аналог" рассмотренной только что функции, только теперь на прямой:

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Читателю предлагается в качестве упражнения проверить, что она дифференцируема в нуле, но что её производная в нуле непрерывной не является.

Если у функции в некоторой точке существуют непрерывные частные производные по всем переменным, то она дифференцируема в этой точке?

На прямой ${\mathbb R}$ утверждение верно и без требования непрерывности частных производных.

Оказывается же, что непрерывность частных производных обеспечивает дифференцируемость и в случае \mathbb{R}^n !

Не будем приводить здесь доказательства этого утверждения. Но предложим некоторую "интуицию", помогающую (возможно) принять этот факт.

Как уже отмечалось, дифференцируемость — про изменение функции в окрестности точки "в целом". Частные производные же смотрят на изменения только по осям. А область между осями остаётся как бы "белым пятном". Но непрерывность ("предсказуемость") частных производных приводит к тому, что по ним можно сделать вывод и об изменении функции "в целом", и на осях, и в районе между осями — во всей окрестности.

1.2.5. C3, §3, №15(7)

Дана функция:

$$f(x, y) = \arctan \frac{y}{1 + x^2}$$

Найти её дифференциал в точке (1, -1).

Решение. (Видно, что функция "хорошая", поэтому она дифференцируема, во всех точ-ках \mathbb{R}^2 .)⁵

Можно искать дифференциал "по действиям" по формуле (4): найти значение функции в точке, частные производные в точке, подставить в формулу.

А можно — считать "каскадно", раскручивать дифференциал по цепочке, пользуясь

 $^{^5}$ Понятно, что частные производные по каждой из переменных будут непрерывными во всех точках \mathbb{R}^2 , отсюда и следует дифференцируемость (1.2.4).

правилом взятия производной сложной функции. 6 Пойдём этим путём.

$$df(x, y) = d \arctan \frac{y}{1 + x^2}$$

$$= \arctan y}$$

$$= \arctan y}$$

$$= \frac{1}{1 + \left(\frac{y}{1 + x^2}\right)^2} \cdot \frac{dy \cdot (1 + x^2) - y \cdot d(1 + x^2)}{(1 + x^2)^2} = \frac{(1 + x^2) dy - 2xy dx}{(1 + x^2)^2 + y^2}$$

(При желании можно проверить, что то, что получилось перед dx и dy — это частные производные функции по соответствующим переменным.)

И значение дифференциала в точке:

$$df(1,-1) = \frac{2\,dy + 2\,dx}{5} = \frac{2}{5}\,dx + \frac{2}{5}\,dy = \frac{2}{5}(x-1) + \frac{2}{5}(y+1)$$

(Коэффициенты перед dx и dy — это значения частных производных в указанной точке.)

1.2.6. C3, §3, №19(2)

Доказать, что функция f дифференцируема в точке (0,0), если:

$$f(x, y) = |y| \sin x$$

Решение. Функция дифференцируема в точке (x_0, y_0) — значит, должна быть верна формула (3), при этом в качестве коэффициентов перед дифференциалами переменных обязательно будут выступать значения частных производных по этим переменным в точке. Поэтому план доказательства такой: найти частные производные в точке, составить формулу (4) и проверить, что она верна.

Чтобы найти частную производную по x, достаточно просто продифференцировать по x формулу, задающую функцию:

$$\frac{\partial f}{\partial x} = |y| \cos x \quad \Rightarrow \quad \frac{\partial f}{\partial x}(0,0) = 0$$

Чтобы найти частную производную по y... Продифференцировать формулу?... Так как там стоит модуль |y|, найти производную в нуле путём дифференцирования формулы не получится. Поэтому попробуем найти её по определению: 8

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{f(0,0 + \Delta y) - f(0,0)}{\Delta y} = 0$$

$$\frac{\partial F}{\partial x} = \frac{df}{dg} \cdot \frac{\partial g}{\partial x}$$
$$\frac{\partial F}{\partial y} = \frac{df}{dg} \cdot \frac{\partial g}{\partial y}$$

И тогда для дифференциала получаем:

$$dF = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy = \frac{df}{dg} \left(\frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy \right) = f' dg \tag{8}$$

⁶Точнее, тут будет использоваться правило взятия частной производной сложной функции: если F(x,y) = f(g(x,y)), то

 $^{^{7}}$ Могло бы даже показаться, что функция вообще не дифференцируема по $\it y$ в нуле)

 $^{^{8}}$ Так как это функция двух переменных, то есть надежда, что производная по y всё-таки существует в нуле (если не за счёт y, которая под модулем, то, может, хотя бы за счёт x).

Значение частной производной по y в нуле тоже найдено. Теперь проверим дифференцируемость (4):

$$f(x,y) \stackrel{?}{=} f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + o(\rho), \ \rho \to 0, \quad \rho \equiv \sqrt{(x - x_0)^2 + (y - y_0)^2}$$

$$|y| \sin x = o(\rho), \ \rho \to 0$$

Заметим, что $\lim_{\rho \to 0} f(x, y) = 0$, однако необходимо проверить более сильное свойство:

$$\lim_{(x,y)\to(0,0)} \frac{|y|\sin x}{\sqrt{x^2 + y^2}} \stackrel{?}{=} 0$$

Оценим функцию под пределом по модулю (раз хочется доказать *сходимость* к нулю, то надо бы оценить *сверху*):

$$\left| \frac{|y| \sin x}{\sqrt{x^2 + y^2}} \right| = \frac{||y| \sin x|}{\sqrt{x^2 + y^2}} \le \frac{|y||x|}{\sqrt{x^2 + y^2}} = \spadesuit$$

(Сверху стоит что-то квадратичное по x, y, а снизу — степени $1/2 \cdot 2 = 1...$)

1.2.7. C3, §3, №39(1)

Найти производную функции f по направлению вектора $\boldsymbol{a} = \left(-1/\sqrt{2}, 1/\sqrt{2}\right)$ в точке (1,1), если:

$$f(x,y) = 3x^2 + 5y^2$$

Решение. Проверим длину вектора (единичная?):

$$|a| = \sqrt{\frac{1}{2} + \frac{1}{2}} = 1$$

(если бы оказалась не единичная, можно бы было отнормировать.) Считаем производную вдоль вектора в точке (5):

$$\begin{split} \frac{\partial f}{\partial \boldsymbol{a}}(x_0, y_0) &= \lim_{t \to 0} \left. \frac{f(x_0 + a_x t, y_0 + a_y t) - f(x_0, y_0)}{t} \right|_{(x_0, y_0) = (1, 1)} \\ &= \lim_{t \to 0} \frac{\left(3 \cdot (1 - t/\sqrt{2})^2 + 5 \cdot (1 + t/\sqrt{2})^2 \right) - \left(3 + 5 \right)}{t} \\ &= \lim_{t \to 0} \left(-3\sqrt{2} + 5\sqrt{2} + \frac{3}{2}t + \frac{5}{2}t \right) = 2\sqrt{2} \end{split}$$

⁹В качестве демонстрации того, что может быть стремление f(x,y) к нулю, но без стремления к нулю отношения $f(x,y)/\rho$, можно посмотреть на функцию $f(x,y) = \sqrt{x}$: у неё $\lim_{(x,y)\to(0,0)} \frac{\sqrt{x}}{\sqrt{x^2+y^2}}$.

1.3. Формула Тейлора

О формуле Тейлора можно думать как о способе приблизить в некотором смысле "хорошую" функцию с помощью многочлена в окрестности точки с любой желаемой точностью (функция должна быть дифференцируема в точке нужное число раз). Формула Тейлора — это продолжение формулы (4), где приращение функции оценивалось с помощью дифференциала.

Вспомним формулу Тейлора для случая функции в \mathbb{R} :

$$f(x) = f(x_0) + df(x_0) + \frac{1}{2}d^2f(x_0) + \frac{1}{3!}d^3f(x_0) + \dots + \frac{1}{n!}d^nf(x_0) + o((x - x_0)^n), x \to x_0$$

Для функции в \mathbb{R}^n формула Тейлора будет выглядеть точно так же! ("верхнеуровнево"):

$$f(\mathbf{x}) = f(\mathbf{x}_0) + df(\mathbf{x}_0) + \frac{1}{2} d^2 f(\mathbf{x}_0) + \frac{1}{3!} d^3 f(\mathbf{x}_0) + \dots + \frac{1}{n!} d^n f(\mathbf{x}_0) + o(\rho(\mathbf{x}, \mathbf{x}_0)^n), \ \rho(\mathbf{x}, \mathbf{x}_0) \to 0$$

Вопрос только в том, как считать дифференциалы более высоких порядков.

Для простоты и наглядности рассмотрим функцию на \mathbb{R}^2 и её разложение по Тейлору до второго порядка:

$$f(x,y) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2} d^2 f(x_0, y_0) + o(\rho^2), \ \rho \to 0, \quad \rho \equiv \sqrt{(x - x_0)^2 + (y - y_0)^2} \quad (9)$$

Дифференциалы высших порядков определяются рекурсивно. Так, второй дифференциал — дифференциал от первого:

$$d^2f = d(df) = \Phi$$

Раз функция дифференцируема, её дифференциал первого порядка выражается через частные производные (4):

Можно расписать дифференциал суммы как сумму дифференциалов. При этом в \mathbb{R}^n действует то же "правило", что и в \mathbb{R} , что дифференциалы независимых переменных порядка второго и выше равны нулю: $d^2x = 0$, $d^2y = 0$.

$$\diamondsuit = d\left(\frac{\partial f}{\partial x}\right)dx + d\left(\frac{\partial f}{\partial y}\right)dy = \blacktriangle$$

Частные производные — это тоже функции двух переменных, поэтому их первые дифференциалы считаются по тому же правилу (4):

где $\frac{\partial^2 f}{\partial x \partial x} = \frac{\partial^2 f}{\partial x^2} \equiv f''_{xx}$ и $\frac{\partial^2 f}{\partial y^2} \equiv f''_{yy}$ есть повторные частные производные, а $\frac{\partial^2 f}{\partial y \partial x} \equiv f''_{xy}$ и $\frac{\partial^2 f}{\partial x \partial y} \equiv f_{yx}''$ — смешанные частные производные. 10

Смешанные частные производные вообще могут принимать разные значения в точке, но в случае достаточно "хороших" функций они будут совпадать. 11

Итого, для второго дифференциала получаем выражение (общее, и "упрощённое", верное для "хороших" функций):

$$d^{2}f = \frac{\partial^{2}f}{\partial x^{2}} dx^{2} + \left(\frac{\partial^{2}f}{\partial y \partial x} + \frac{\partial^{2}f}{\partial x \partial y}\right) dx dy + \frac{\partial^{2}f}{\partial y^{2}} dy^{2}$$

$$= \frac{\partial^{2}f}{\partial x^{2}} dx^{2} + 2\frac{\partial^{2}f}{\partial x \partial y} dx dy + \frac{\partial^{2}f}{\partial y^{2}} dy^{2}$$
(10)

1.3.1. C3, §4, Nº2(1)

Вычислить частные производные второго порядка функции f в точке $(x_0, y_0) \equiv (1, 0)$, если:

$$f(x, y) = \frac{x}{x + y}$$

Решение. Частные производные первого порядка:

$$\frac{\partial f}{\partial x} = \left(\frac{x}{x+y}\right)'_{x} = \frac{y}{(x+y)^{2}}$$
$$\frac{\partial f}{\partial y} = \left(\frac{x}{x+y}\right)'_{y} = -\frac{x}{(x+y)^{2}}$$

Частные производные второго порядка — повторные:

$$\frac{\partial^2 f}{\partial x^2} = \left(\frac{y}{(x+y)^2}\right)_x' = -\frac{2y}{(x+y)^3}$$
$$\frac{\partial^2 f}{\partial y^2} = \left(-\frac{x}{(x+y)^2}\right)_y' = \frac{2x}{(x+y)^3}$$

и смешанные:12

$$\frac{\partial^2 f}{\partial y \partial x} = \left(\frac{y}{(x+y)^2}\right)_y' = \frac{1}{(x+y)^2} - \frac{2y}{(x+y)^3} = \frac{x-y}{(x+y)^3}$$
$$\frac{\partial^2 f}{\partial x \partial y} = \left(-\frac{x}{(x+y)^2}\right)_x' = -\frac{1}{(x+y)} + \frac{2x}{(x+y)^3} = \frac{x-y}{(x+y)^3}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

Индексы же в другом обозначении производной располагаются более "естественно": слева-направо:

$$\frac{\partial^2 f}{\partial v \partial x} = f''_{xy}$$

 $^{^{10}}$ "Общепринятый" порядок "дельт" в знаменателе смешанной производной — справа-налево, потому что более развёрнуто часто пишут так:

 $[\]frac{\partial^2 f}{\partial y \partial x} = f_{xy}''$ ¹¹Если смешанные частные производные, отличающиеся порядком дифференцирования, непрерывны в точке, то они совпадают в этой точке (см. С3, §4).

 $^{^{12}}$ Должны получиться равными, потому что, очевидно, они будут непрерывными во всех точках множества определения функции.

И значения производных в точке (1,0):

$$\frac{\partial^2 f}{\partial x^2}(1,0) = 0$$

$$\frac{\partial^2 f}{\partial y^2}(1,0) = 2$$

$$\frac{\partial^2 f}{\partial y \partial x}(1,0) = \frac{\partial^2 f}{\partial x \partial y}(1,0) = 1$$

1.3.2. C3, §4, №15(2)

Найти второй дифференциал функции f в точке (1,1):

$$f(x, y) = e^{x^2/y}$$

Решение. Посчитаем второй дифференциал по формуле (10):

$$d^2 f = \frac{\partial^2 f}{\partial x^2} dx^2 + 2 \frac{\partial^2 f}{\partial y \partial x} + \frac{\partial^2 f}{\partial y^2}$$

(в формуле уже учтено, что смешанные производные функции равны, потому что, очевидно, будут непрерывны). Теперь задача свелась к поиску вторых частных производных.

А чтобы их найти, надо начать с частных производных первого порядка:

$$\frac{\partial f}{\partial x} = e^{x^2/y} \cdot \frac{2x}{y}$$
$$\frac{\partial f}{\partial y} = e^{x^2/y} \cdot \left(-\frac{x^2}{y^2}\right)$$

И теперь второго:

$$\frac{\partial^{2} f}{\partial x^{2}} = \left(\frac{2x}{y} \cdot e^{x^{2}/y}\right)'_{x} = \frac{2}{y} \cdot e^{x^{2}/y} + \left(\frac{2x}{y}\right)^{2} \cdot e^{x^{2}/y}$$

$$\frac{\partial^{2} f}{\partial y^{2}} = \left(-\frac{x^{2}}{y^{2}} \cdot e^{x^{2}/y}\right)'_{y} = \frac{2x^{2}}{y^{3}} \cdot e^{x^{2}/y} + \left(-\frac{x^{2}}{y^{2}}\right)^{2} \cdot e^{x^{2}/y}$$

$$\frac{\partial^{2} f}{\partial y \partial x} = \left(\frac{2x}{y} \cdot e^{x^{2}/y}\right)'_{y} = -\frac{2x}{y^{2}} \cdot e^{x^{2}/y} + \frac{2x}{y} \cdot \left(-\frac{x^{2}}{y^{2}}\right) \cdot e^{x^{2}/y}$$

Значения производных второго порядка в точке (1,1):

$$\frac{\partial^2 f}{\partial x^2}\Big|_{(1,1)} = 2e + 4e = 6e$$

$$\frac{\partial^2 f}{\partial y^2}\Big|_{(1,1)} = 2e + e = 3e$$

$$\frac{\partial^2 f}{\partial y \partial x}\Big|_{(1,1)} = -2e - 2e = -4e$$

Тогда второй дифференциал функции в точке (1, 1):

$$df(1,1) = 6e dx^2 + 2 \cdot (-4e) dx dy + 3e dy^2 = 6e(x-1)^2 - 8e(x-1)(y-1) + 3e(y-1)^2$$

1.3.3. C3, §4, Nº71(2)

Разложить функцию f(x, y) по формуле Тейлора в окрестности точки $(x_0, y_0) = (0, 0)$ до $o(\rho^2)$, где $\rho \equiv \sqrt{(x - x_0)^2 + (y - y_0)^2}$:

$$f(x, y) = \arctan \frac{1+x}{1+y}$$

Решение. Разложение по формуле Тейлора (9):

$$f(x,y) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2), \ \rho \to 0$$

Таким образом, чтобы его получить, надо знать значение функции в точке, и значения дифференциалов: первого и второго.

Функция в точке:

$$f(x_0, y_0) = f(0, 0) = \arctan \left(\frac{1+x}{1+y}\right|_{(x,y)=(0,0)} = \frac{\pi}{4}$$

А при поиске дифференциалов, в отличие от номера (1.3.2), где искали "составные части" дифференциала по отдельности, пойдём "цепочечным" путём: будем искать дифференциалы сразу целиком, просто дифференцируя формулу, которая задаёт функцию, пользуясь правилом дифференцирования сложной функции (8).

Так, первый дифференциал (аналогично (1.2.5)):

$$df = d \arctan \frac{1+x}{1+y} = \arctan t dt \Big|_{t=\frac{1+x}{1+y}} \cdot d\left(\frac{1+x}{1+y}\right) = \dots = \frac{(1+y) dx - (1+x) dy}{(1+x)^2 + (1+y)^2}$$

Дифференциал в точке:

$$df(x_0, y_0) = df(0, 0) = \frac{dx - dy}{2}$$

Второй дифференциал:

$$d^{2}f = d(df) = d\left(\frac{(1+y)dx - (1+x)dy}{(1+x)^{2} + (1+y)^{2}}\right)$$

$$= \frac{0 - \left((1+y)dx - (1+x)dy\right) \cdot \left(2(1+x)dx + 2(1+y)dy\right)}{\left((1+x)^{2} + (1+y)^{2}\right)^{2}}$$

Не будем его до конца "причёсывать", а просто сразу подставим координаты точки:

$$d^2 f(x_0, y_0) = d^2 f(0, 0) = -\frac{(dx - dy)(2 dx + 2 dy)}{4} = -\frac{1}{2}(dx^2 - dy^2)$$

В итоге разложение по Тейлору в окрестности точки (x_0, y_0) :

$$f(x,y) = \frac{\pi}{4} + \frac{1}{2} dx - \frac{1}{2} dy - \frac{1}{4} dx^2 + \frac{1}{4} dy^2 + o(\rho^2), \ \rho \to 0$$

при этом dx = (x - 0) = x и dy = (y - 0) = y.

1.3.4. C3, §4, Nº74(4)

Разложить f по формуле Маклорена до $o(\rho^4)$, где $\rho \equiv \sqrt{x^2 + y^2}$:

$$f(x, y) = \frac{\sin x}{\cos y}$$

Решение. Видно, что в формуле функции переменные x и y сидят как бы "отдельно". Точнее, функция двух переменных имеет вид $f(x,y) = \frac{f_1(x)}{f_2(y)}$. В этом случае для поиска разложения по Тейлору можно поступить так.

Раз разложение ищется при $\rho \to 0$ — это равносильно $x \to 0$ и $y \to 0$ одновременно. Таким образом, можно разложить по формуле Тейлора "однопеременные составляющие" f(x,y). Каждое из таких разложений будет содержать дифференциал соответствующей переменной: dx или dy. "Причёсывая" далее формулу и оставляя только члены с суммарной степенью dx и dy не выше четвёртой, получим разложение по Тейлору f(x,y) до $o(\rho^4)$.

Итак:

$$f(x,y) = \frac{\sin x}{\cos y} = \frac{x - \frac{x^3}{6}}{1 - \frac{y^2}{2} + \frac{y^4}{4!}} = \left(x - \frac{x^3}{6}\right) \cdot \left(1 + \left(\frac{y^2}{2} - \frac{y^4}{4!}\right) + \frac{y^4}{4}\right) = x - \frac{x^3}{6} + \frac{xy^2}{2}$$