Curso de Verão de Álgebra Linear Parte 2 - Aula 08

Cleber Barreto dos Santos

10 de fevereiro de 2020

Definição 1. Seja V um espaço vetorial real ou complexo. Uma forma (sesquilinear) em V é uma função $f: V \times V \longrightarrow \mathbb{K}$ tal que

- (1) $f(\alpha u + v, w) = \alpha f(u, w) + f(v, w);$
- (2) $f(u, \alpha v + w) = \overline{\alpha}f(u, v) = f(u, w)$.

Definição 2. Seja V um \mathbb{R} -espaço vetorial e f uma forma sesquilinear. Diremos que f é uma forma bilinear.

Teorema 3. Seja V um espaço de dimensão finita com produto interno e seja f uma forma em V. Então existe um único operador linear T em V tal que

$$f(v, w) = \langle T(v), w \rangle$$

para quaisquer $v,w\in V$. A aplicação $f\longmapsto T$ é um isomorfismo do espaço de formas em V em $\mathcal{L}(V,V)$.

Demonstração. Seja $w \in V$ um vetor. Então a aplicação $v \longmapsto f(v, w)$ é um funcional linear. Logo existe um único vetor $w' \in V$ tal que $f(v, w) = \langle v, w' \rangle$ para qualquer $v \in V$. Assim definimos uma função $U: V \longrightarrow V$ através de U(w) = w'. Então

$$f(v, \alpha w_1 + w_2) = \langle v, U(\alpha w_1 + w_2) \rangle$$

$$= \overline{\alpha} f(v, w_1) + f(v, w_2)$$

$$= \overline{\alpha} \langle v, U(w_1) \rangle + \langle v, U(w_2) \rangle$$

$$= \langle v, \alpha U(w_1) + U(w_2) \rangle$$

para quaisquer $v, w_1, w_2 \in V$ e escalares em \mathbb{K} . Então U é um operador linear em V e seja $T = U^*$ é um operador tal que $f(v, w) = \langle T(v), w \rangle$. Segue que $f(v, w) = \langle T(v), w \rangle$. Além disso, vemos que se $f(v, w) = \langle T'(v), w \rangle$ para qualquer $w \in V$ então T' = T. A associação entre os operadores bilineares e as formas bilineares em V é linear. \square

Definição 4. Se f é uma forma e $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ é uma base ordenada de V, a matriz A de entradas $A_{jk} = f(v_k, v_j)$ é chamada de **matriz de** f **na base ordenada** \mathcal{B} .

Definição 5. Uma forma em V é dita **Hermitiana** se para quaisquer $v, w \in V$ temos que $f(v, w) = \overline{f(w, v)}$.

Teorema 6. Seja V um espaço vetorial complexo e f uma forma em V tal que f(v, v) é real para cada $v \in V$. Então f é Hermitiana;

Demonstração. Sejam $v, w \in V$. Queremos verificar $f(v, w) = \overline{f(w, v)}$. Veja que f(v + w, v + w) = f(v, v) + f(v, w) + f(w, v) + f(w, w).

Como f(v+w,v+w)=f(v,v), f(w,w) são números reais, temos que f(v,w)+f(w,v) é um número real. Fazendo o mesmo raciocínio para v+iw no lugar de v+w. Com as informações acima obtemos que $f(v,w)=\overline{f(w,v)}$.

Corolário 7. Seja T um operador linear em um espaço vetorial complexo V de dimensão finita. Então T é auto-adjunto se, e somente se, $\langle T(v), v \rangle$ é real para cada $v \in V$.

Definição 8. Uma forma f em um espaço vetorial real ou complexo V é:

- (1) não-negativa se $f(v, v) \ge 0$ para cada $v \in V$;
- (2) positiva se f(v, v) > 0 para cada $v \neq 0$;
- (3) não-positiva se $f(v, v) \leq 0$ para cada $v \in V$;
- (4) negativa se f(v, v) < 0 para cada $v \neq 0$.

Definição 9. Seja V um espaço vetorial e f uma forma bilinear em V. Dizemos que:

- (1) f é alternada se f(v, v) = 0 para cada $v \in V$;
- (2) f é antissimétrica se f(u, v) = -f(v, u) para quaisquer $u, v \in V$;
- (3) $f \in \mathbf{sim\acute{e}trica} \ \mathrm{se} \ f(u,v) = f(v,u) \ \mathrm{para} \ \mathrm{quaisquer} \ u,v \in V$

Exercícios - 10 de fevereiro de 2020

Exercício 1. Seja $V = \mathbb{C}^2$ e sejam $v = (x_1, x_2), w = (y_1, y_2) \in V$ Identifique quais funções definidas abaixo são formas (sesquilineares) em V.

- (1) f(v, w) = 1.
- (2) $f(v, w) = (x_1 \overline{y_1})^2 + x_2 \overline{y_2}$
- (3) $f(v,w) = (x_1 + \overline{y_1})^2 (x_1 \overline{y_1})^2$.
- (4) $f(v,w) = x_1\overline{y_2} \overline{x_2}y_1$.

Exercício 2. Seja f a forma em \mathbb{R}^2 definida por

$$f((x_1, y_1), (x_2, y_2)) = x_1y_1 + x_2y_2.$$

Encontre a matriz de f em cada uma das seguintes bases:

- (1) $\{(1,0);(0,1)\};$
- (2) $\{(1,-1);(1,1)\};$
- (3) $\{(1,2);(3,4)\}.$

Exercício 3. Seja f a forma em \mathbb{R}^2 dada por

$$f((x_1, x_2), (y_1, y_2)) = x_1 y_1 + 4x_2 y_2 + 2x_1 y_2 + 2x_2 y_1.$$

Encontre uma base ordenada de V na qual f que é representada por uma matriz diagonal.

Exercício 4. Dizemos que uma forma f em um espaço vetorial V é **não-degenerada** se $f(v,w)=0, \ \forall w\in V \Leftarrow v=0.$

Mostre que f é não-degenerada se, e somente se, o operador T (que é o operador tal que $f(v,w)=\langle T(v),w$ para quaisquer $v,w\in V$) é não-singular.

Exercício 5. Seja A uma matriz complexa quadrada não-singular. Mostre que $H=A^*A$ é Hermitiana e positiva definida.