B. E. First Semester (All)/SOE18-19_Rev_FY-201 Examination

Course Code: GE 101 Course Name: Engineering Mathematics

Time: 2 Hours [Max. Marks: 40

Instructions to Candidates :-

- (1) Attempt any Four questions out of Six.
- (2) All questions carry **Ten** marks.
- (3) Assume suitable data wherever necessary.
- (4) All questions carry marks as indicated.
- (5) Illustrate your answers wherever necessary with the help of neat sketches.
- (6) Use of non-programmable calculator are permitted.
- 1. Solve Either A-Part or B-Part:
 - (A) (A1) If $y = \sin^{-1}x$, prove that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} n^2y_n = 0$ 4(CO1)
 - (A2) Find the radius of curvature for the curve $y = xe^{-x}$ at the point at maximum value of y. 6(CO1)

OR

(B) (B1) Use Machaurin's theorem to show that

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$
4(CO1)

(B2) If $y = e^{m\cos -1}x$, prove that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (m^2 + n^2)y_n = 0$$
 Hence find $(y_n)_0$.
6(CO1)

2. Solve Either A-Part Or B-Part:

(A) (A1) If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 find the value of
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$
 4(CO2)

ARDR/2KTT/OT-12001

Contd.

(A2) An open rectangular tank is to have a capacity 256 cu. Meter. Find the dimension of the tank so that its surface area is minimum. 6(CO2)

OR

(B) (B1) If
$$u = \frac{yz}{x} v = \frac{xz}{y}$$
, $w = \frac{xy}{z}$ then find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$ 4(CO2)

(B2) If $x + y = 2e\theta$ cos and $x - y = 2ie\theta$ sin φ , then show that

$$\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial \phi^2} = 4xy \frac{\partial^2 u}{\partial x \partial y}$$
 6(CO2)

3. Solve Either A-Part OR B-Part:

(B) (A1) Prove that
$$\int_{0}^{\infty} \frac{xc}{cx} dx = \frac{\overline{c+1}}{(\log c)^{\overline{c+1}}}$$
 4(CO3)

(A2) Use differentiate under the integral sign and evaluate

$$\int_0^1 \frac{x^a - x^b}{\log x} dx \text{ where } a, b > 0$$
6(CO3)

OR

(B) (B1) Prove that

$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi/2} \sqrt{\sin \theta} d\theta = \pi$$
4(CO3)

- (B2) Trace the curve $y^2(a + x) = (a x)^3$. Find the area between the Curve and its asymptote. 6(CO3)
- 4. Solve Either A-Part Or B-Part:
 - (A) (A1) Evaluate $\iint_{\mathbf{R}} \frac{xy}{\sqrt{1-y^2}} dxdy$, where R is the region of circle $x^2 + y^2 = 1$ in first quadrant. 4(CO3)
 - (A2) Find the smaller area bounded by the ellipse $4x^2 + 9y^2 = 36$ and the straight line 2x = 3y = 6 6(CO3)

- (B) (B1) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} xe^{-x^{2/y}} dy dx$ by changing order of integration. $\int_{0}^{\infty} \int_{0}^{\infty} xe^{-x^{2/y}} dy dx$ by changing order of integration.
 - (B2) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} xyz dz dy dx$
- 5. Solve Either A-Part Or B-Part:
 - (A) (A1) Find the directional derivative of the function $\varphi = xy^2 + yz^3$ at the point (2, -1, 1) in the direction of the normal to the surface $x \log z y^2 + 4 = 0$ at (-1, 2, 1) 5(CO4)
 - (A2) Show that $\overline{F} = (2xy + z^3)\hat{i} + (x^2)\hat{j} + (3xz^2)\hat{k}$ is a conservative vecor field and find a function such that $\overline{F} = \nabla \Phi$. 5(CO4)

OR

(B) (B1) A particle moves along the curve $\overline{r} = (t^3 - 4t)\hat{i} + (t^2 + 4t)\hat{j} + (8t^2 - 3t^3)\hat{k}.$

where t is the time. Find the magnitude of tangential components of its acceleration at t = 2. 5(CO4)

- (B2) Find the constant a and b so that the surfaces $5x^2 2yz 9x = 0$ and $ax^2 bz^3 = 4$ may cut orthogonally at point (1, -1, 2) 5(CO4)
- 6. Solve Either A-Part Or B-Part:
 - (A) (A1) Evaluate $\int_C \overline{F}.d\overline{r}$ where $\overline{F} = (x^2 + y^2)\hat{i} 2xy\hat{j}$ and C is the rectangle bounded by y = 0, x = a, y = b and x = 0 in XY-plane.
 - (A2) Evaluate $\iint_S \overline{F}$. \overline{F} . \widehat{n} ds over the surface of a sphere $x^2 + y^2 + z^2 = 1$ in the positive octant, where $\overline{F} = yz\hat{i} + xz\hat{j} + xy\hat{k}$ 5(CO4)

(B) (B1) Apply stokes theorem to evaluate

$$\oint_{\mathbb{C}}[(x+y)dx+(2x-z)dy+(y+z)dz]$$

where c is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6) 5(CO4)

(B2) Evaluate $\oint_C [(3x^2 + 2y)dx - (x + 3cosy)dy]$ by Green's theorem, where C is parallelogram with vertices (0, 0), (2, 0), (3, 1), (1, 1)

