# MODELOS TEÓRICOS DISCRETOS

Prof. José Fletes UFSC

# Introdução

#### Modelos discretos:

- Bernoulli e Binomial;
- Poisson;
- Aproximação da Binomial pela Poisson.

#### Outros Modelos discretos:

- Geométrica e Binomial Negativa
- Hipergeométrica

**Ea:** observação da ocorrência numa situação dicotômica (BINÁRIA)





**Ea:** observação da ocorrência numa situação dicotômica (BINÁRIA)

$$X = 1$$
 se ocorre SUCESSO .... (5)  
 $X = 0$  se ocorre INSUCESSO .... (5')

$$P(X = 1) = p e P(X = 0) = 1 - p = q$$

Exemplos: lançamento da moeda uma única vez. lançamento do dado uma única vez.

Considere uma prova Bernoulli

 Observe que a soma das probabilidades é igual à unidade: eventos excludentes

$$(p+q)=1$$

| Evento | Variável<br>X | Prob.<br>P(X=x) |  |
|--------|---------------|-----------------|--|
| S      | X=1           | р               |  |
| S'     | X=0           | q               |  |
| TOTAL  |               | p+q = 1         |  |



Modelo Matemático

$$P(X = x) = p^{x} (1 - p)^{1-x}$$

COMPROVAÇÃO:

$$P(X = 1) = p^{1} * (1 - p)^{1-1} = p$$

$$P(X = 0) = p^{0} * (1 - p)^{1-0} = q$$

#### Propriedades:

1- O valor esperado da distribuição bernoulli é:

$$E(X) = p$$

2-A variância é:

$$V(X) = p^* (1 - p) = p^*q$$

Demonstração: próximo slide.

| Evento | Х | p(x) | x*p(x) | (x-p) <sup>2</sup> *p(x)              |
|--------|---|------|--------|---------------------------------------|
| S      | 1 | р    | 1*p    | (1-p) <sup>2</sup> *p                 |
| S'     | 0 | q    | 0*q    | (0-p) <sup>2</sup> *q                 |
| SOMA   |   | 1    | р      | q <sup>2</sup> *p + p <sup>2</sup> *q |

pq(q+p) = p\*q

Ea: número de sucessos que ocorrem em n experiências tipo Bernoulli.

Y = {n° de <u>sucessos</u> em n provas tipo Bernoulli}

n

$$Y = \{0; 1; 2; 3; .....; n\} = \sum_{i=1}^{n} X_{i}$$

Isto é, a variável Y representa a SOMA DE VARIÁVEIS ALEATÓRIAS INDEPENDENTES, IDENTICAMENTE DISTRIBUÍDAS

onde cada  $X_i$  é binário (0; 1)

**Ea:** observação da ocorrência em **n=2** provas tipo Bernoulli (X1;X2)

<u>Eventos</u> <u>Variáveis</u> <u>Prob</u>





- Considere duas provas Bernoulli: n=2
- Observe que a soma das probabilidades sendo igual à unidade reproduz o binômio:

$$(p+q)^2 = p^2 + 2*pq + q^2$$

| Evento   | <b>Variável</b><br>Y=X1+X2 | Prob.               |
|----------|----------------------------|---------------------|
| (S ∩ S)  | Y=1+1=2                    | p*p =p <sup>2</sup> |
| (S ∩ S') | Y=1+0=1                    | p*q= <b>pq</b>      |
| (S' ∩ S) | Y=0+1=1                    | q*p= <b>pq</b>      |
| (S'∩ S') | Y=0+0=0                    | $q*q=q^2$           |

- Cada termo do binômio representa a probabilidade de um determinado número de sucessos e pode ser calculada utilizando a expressão abaixo que define a <u>função massa de</u> <u>probabilidade</u>, p(y):
- $P(Y=y) = p(y) = \binom{n}{y} * p^{y} * q^{(n-y)}$

A função massa de probabilidade binomial dá a probabilidade para um número exato de "sucessos" em n ensaios independentes, onde a probabilidade de sucesso p em uma única tentativa é constante.

$$P(y=y) = p(y) = {\binom{y}{y}}^* p^y * q^{(n-y)}$$
  
em que:  ${\binom{y}{y}}^* = n!/[y!*(n-y)!]$ 

#### Propriedades:

1- O valor esperado da distribuição binomial é:

$$E(Y) = n*p$$

2-A variância é:

$$V(Y) = n^*p^*(1-p) = n^*p^*q$$

#### Obs. Importante:

Parâmetros característicos do Modelo

Binomial -> n e p

## Problema 1

Suponha que 25% de todos os motoristas habilitados de SC não possuam seguro. Em uma amostra aleatória de 50 motoristas, qual a probabilidade de **no máximo 10** não terem seguro?

Modelo-Base: Bernoulli --> X = {ter seguro} = 1 -> p=0,25

Dados:

$$n = 50; p=0.25 \rightarrow Y = \sum X_{i}$$

#### Aplicando Binomial:

$$P(Y \le 10) = \Sigma P(Y = y)$$
  
=  $P(Y = 0) + P(Y = 1) + ... + P(Y = 5) + .... + P(Y = 10)$   
=  $0,000001 + 0,000009 + .... + 0,004938 + .... + 0,098518$   
=  $0,2622$ 

(Veja tabela no próximo slide onde com os cálculos realizados no Excel aplicando a função: **DISTR.BINOM**)

## Problema 1 - Cálculos

| У  | P(y)     |
|----|----------|
| 0  | 0,000001 |
| 1  | 0,000009 |
| 2  | 0,000077 |
| 3  | 0,000411 |
| 4  | 0,001610 |
| 5  | 0,004938 |
| 6  | 0,012345 |
| 7  | 0,025865 |
| 8  | 0,046341 |
| 9  | 0,072087 |
| 10 | 0,098518 |

**Total** 

0,262202

# Modelo Binomial - Simulações



Nas figuras acima, simulam-se duas situações que nos permite concluir que:

- a distribuição binomial é <u>assimétrica</u> quando p se aproxima de 0 ou 1 e <u>simétrica</u> quando p =0,5. (Os slides a seguir mostram a visualização)

# Modelo Binomial - Simulações n = 5 e p=0,1

| X    | p(x)    |
|------|---------|
|      | P\/\/   |
| 0    | 0,59049 |
| 1    | 0,32805 |
| 2    | 0,07290 |
| 3    | 0,00810 |
| 4    | 0,00045 |
| 5    | 0,00001 |
| soma | 1,00    |



# Modelo Binomial - Simulações n = 5 e p=0,9

| Х    | p(x)    |
|------|---------|
| 0    | 0,00001 |
| 1    | 0,00045 |
| 2    | 0,00810 |
| 3    | 0,07290 |
| 4    | 0,32805 |
| 5    | 0,59049 |
| soma | 1,00    |



# Modelo Binomial - Simulações n = 10 e p=0,5

| X    | p(x)   |
|------|--------|
| 0    | 0,0010 |
| 1    | 0,0098 |
| 2    | 0,0439 |
| 3    | 0,1172 |
| 4    | 0,2051 |
| 5    | 0,2461 |
| 6    | 0,2051 |
| 7    | 0,1172 |
| 8    | 0,0439 |
| 9    | 0,0098 |
| 10   | 0,0010 |
| soma | 1,00   |



## Problema 2

- Registros mostram que há uma probabilidade de 0,33 de uma pessoa, ao fazer compras em um supermercado, adquirir uma promoção especial de creme dental.
- Determine a probabilidade de que, dentre dez (10) pessoas que estão fazendo compras no supermercado: a) três (3) adquiram a promoção; b) no mínimo duas (2) adquiram a promoção.

Dados: n = 10 e p = 0.33Aplicando o modelo binomial, se obtém a probabilidade para:

• a) P(Y=3) = 0.26014 ou aproximadamente 26%;

b) 
$$P(Y \ge 2) = 1 - [P(Y=0) + P(Y=1)] = 1 - (2x0,0182) = 0,9636$$



## Problema 3

- Uma grande remessa de peças de uma compra é recebida em um armazém e uma amostra de 10 peças é retirada para o controle de qualidade.
- O fabricante declara que haverá no máximo 3% de peças defeituosas.
- Qual a probabilidade de encontrar no máximo uma (1) peças defeituosas na amostra? Dados: n = 10 e  $p \le 0.03$  (aplicar com o limite)
- Aplicando o modelo binomial, se obtém a probabilidade para  $P(Y \le 1) = 0$ , 96549 ou aproximadamente 96,55%.



## Modelo Poisson

Aproximação da Binomial por Poisson Na prática:

$$\mathbf{n} \to \infty$$
 (n>30) e  $\mathbf{p} \to \mathbf{0}$  (eventos raros: p<0,10)  
A Média da Binomial = n\*p  $\to \lambda$  = n\*p  $\to$  p =  $\lambda/n$   
Substituindo o valor " $\mathbf{p} = \lambda/n$ " de no Modelo Binomial  
Obtém-se no limite

$$P(Y=y) = p(y) = e^{-\lambda *}(\lambda^{y}/y!)$$

$$E(Y) = V(Y) = \lambda$$

## Problema 4: Modelo Poisson

Avalia-se uma amostra aleatória de 50 peças da produção de uma máquina em que, sabe-se historicamente que 2% de produção defeituosa, qual a probabilidade de encontrar no máximo duas (2) peças defeituosas?

Aplique o modelo Binomial e a aproximação por Poisson.

Dados: n= 50 e p=0,03 
$$\rightarrow \lambda = n*p = 50*0,03 = 1,5$$

1) Por Binomial: 
$$P(Y \le 2) = P(Y=0) + P(Y=1) + P(Y=2)$$

2) Por Poisson: 
$$P(Y \le 2) = P(Y=0) + P(Y=1) + P(Y=2)$$

3) Erro relativo entre os modelos: ( $\epsilon_r$ )

| У                            | 0      | 1      | 2      | P(Y≤2) |
|------------------------------|--------|--------|--------|--------|
| P(y)_Bin                     | 0,3642 | 0,3716 | 0,1858 | 0,9216 |
| P(y)_Poi                     | 0,3679 | 0,3679 | 0,1839 | 0,9197 |
| Erro Rel. ( € <sub>r</sub> ) |        |        |        | 0,20%  |



## Problema 5: Modelo Poisson

Um telefone recebe em média 0,25 chamadas/h.

- Qual é a probabilidade de em 4 horas
- a) receber no máximo 2 chamadas? P(Y≤2)=?

Média = 
$$\lambda$$
 = 4\*0,25 = 1,0

| у        | 0      | 1      | 2      | P(Y≤2) |
|----------|--------|--------|--------|--------|
| P(y)_Poi | 0,3679 | 0,3679 | 0,1839 | 0,9197 |

b) receber no mínimo 3 chamadas?  $P(Y \ge 3) = 1 - P(Y < 3) = ?$  $P(Y \ge 3) = 1 - P(Y \le 2) = 0.0803$ 

