Linear Models

ENTMLGY 6707 Entomological Techniques and Data Analysis

GROOMING VS. TIME IN GRAD SCHOOL

What happens when you realize nobody's paying attention.

JORGE CHAM © 2009

WWW.PHDCOMICS.COM

Learning objectives

- 1) Understand when to conduct a simple linear regression
- 2) Interpret the outcome of a simple linear regression
- 3) Evaluate assumptions of simple linear regression

Simple linear regression

Table 4.1 Examples of the Generalized Linear Model as a Function of Independent Variable and Dependant Variable Type

		Responses				
		Continuous DV	Binary DV	Unordered Multicategory DV	Ordered Categorical DV	Count DV
Predictors	Continuous IV Mixed continuous and categorical IV	OLS regression	Binary logistic regression	Multinomial logistic regression	Ordinal logistic	OLS, Poisson regression
	Binary/ categorical IV only	ANOVA and <i>t</i> -test	Log-linear models	Log-linear models	regression	Log-linear models

ANOVA, analysis of variance; DV, dependent variable; IV, independent variable; OLS, ordinary least squares.

Chapter 4: Simple Linear Models With Continuous Dependent Variables: Simple ANOVA Analyses In: Regression & Linear Modeling: Best Practices and Modern Methods

Linear regression

$$y = b + mx$$

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Linear regression

$$y = b + mx$$

Example: size of orange trees

Example: size of orange trees

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Example: size of orange trees

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Linear regression in R

```
fit_oranges_1 <- lm(circumference~age, data=OT)</pre>
   summary(fit_oranges_1)
   ##
   ## Call:
   ## lm(formula = circumference ~ age, data = OT)
   ##
e_i \rightarrow \# Residuals:
   ## -4.052 -5.873 8.461 8.759 -4.736 5.775 -8.335
   ##
   ## Coefficients:
   ##
                 Estimate Std. Error t value Pr(>|t|)
\beta_0 + (Intercept) 24.437847 6.543311 3.735 0.0135 *
\beta_1 + \# age
          ## ---
   ## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
   ##
   ## Residual standard error: 8.056 on 5 degrees of freedom
   ## Multiple R-squared: 0.9711, Adjusted R-squared: 0.9654
   ## F-statistic: 168.3 on 1 and 5 DF, p-value: 4.852e-05
```

Assumptions

- 1. The relationship between response and predictor is linear
- 2. Residuals are independent
- 3. Residuals are normally distributed
- 4. Residuals are homoscedastic (i.e., the variance in Y does not increase or decrease as X increases or decreases)

Linear regression in R

plot(fit_oranges_1)

Residual plots

Leverage

Linear regression model coefficients

	Coefficient	Value
1	Intercept	0.04516
2	Slope	-0.42981

Influence measures for the adjustable point

	Measure	Value
1	hatvalue	0.41424
2	residual	4.51638
3	dfbeta.1	0.50038
4	dfbeta.x	-5.41604

Interpolation vs. extrapolation

Interpolation vs. extrapolation

Example simple linear regression

RESEARCH ARTICLE

Ecology and Evolution WILEY

Evolutionary and plastic variation in larval growth and digestion reveal the complex underpinnings of size and age at maturation in dung beetles

Patrick T. Rohner D | Armin P. Moczek

