Exercice 1.

1. On traduit la situation par l'arbre pondéré ci-dessous :

- 2. On a $P(M \cap T) = P(M) \times P_M(T) = 0.4 \times 0.9 = 0.36$ donc la probabilité que le chat soit porteur de la maladie et que son test soit positif est égale à 0.36.
- 3. M et \overline{M} forment une partition de l'univers, donc d'après la formule des probabilités totales :

$$P(T) = P(M \cap T) + P(\overline{M} \cap T)$$

$$= 0.36 + P(\overline{M}) \times P_{\overline{M}}(T)$$

$$= 0.36 + 0.6 \times 0.15$$

$$= 0.45$$

Donc la probabilité que le test du chat soit positif est bien égale à 0,45.

4. On cherche $P_T(M)$.

$$P_T(M) = \frac{P(M \cap T)}{P(T)}$$
$$= \frac{0.36}{0.45}$$
$$= 0.8$$

Ainsi, sachant que le test est positif, la probabilité que le chat soit porteur de la maladie est égale à 0,8.

5. On a $P_T(M) = 0.8$ et P(M) = 0.4 donc $P_T(M) \neq P(M)$ ce qui prouve que les événements M et T ne sont pas indépendants : ils sont donc liés.

Exercice 2.

Soit \mathscr{P}_n : « $u_n = 2^{n+1} + 1$ ».

Initialisation: si n=1 on a d'après l'énoncé $u_1=5$ et $2^2+1=5$ donc \mathscr{P}_1 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}: soit n \in \mathbb{N}^*.$

Supposons \mathscr{P}_n vraie $(u_n = 2^{n+1} + 1)$ et montrons que \mathscr{P}_{n+1} est vraie $(u_{n+1} = 2^{n+2} + 1)$.

D'après l'énoncé, on a : $u_{n+1} = 2u_n - 1$ et par hypothèse de récurrence, on a $u_n = 2^{n+1} + 1$, on en déduit alors que :

$$u_{n+1} = 2(2^{n+1} + 1) - 1$$

= $2^{n+2} + 2 - 1$
= $2^{n+2} + 1$

 \mathscr{P}_{n+1} est donc vraie.

<u>Conclusion</u>: \mathscr{P}_1 est vraie et \mathscr{P}_n est héréditaire à partir du rang n=1, on en déduit que \mathscr{P}_n est vraie pour tout n de \mathbb{N}^* :

$$\forall n \in \mathbb{N}^*, \quad u_n = 2^{n+1} + 1$$

Exercice 3.

Soit
$$\mathscr{P}_n$$
: $\ll u_n = \frac{2}{2n+1} \gg$.

Initialisation: si n=0 on a d'après l'énoncé $u_0=2$ et $\frac{2}{2\times 0+1=2}$ donc \mathscr{P}_0 est vraie.

 $H\acute{e}r\acute{e}dit\acute{e}: soit n \in \mathbb{N}.$

Supposons \mathscr{P}_n vraie $(u_n = \frac{2}{2n+1})$ et montrons que \mathscr{P}_{n+1} est vraie $(u_{n+1} = \frac{2}{2n+3})$.

D'après l'énoncé, on a : $u_{n+1} = \frac{u_n}{1 + u_n}$ et par hypothèse de récurrence, on a $u_n = \frac{2}{2n+1}$, on en déduit alors que :

$$u_{n+1} = \frac{\frac{2}{2n+1}}{1 + \frac{2}{2n+1}}$$

$$= \frac{\frac{2}{2n+1}}{\frac{2n+1}{2n+3}}$$

$$= \frac{2}{2n+1} \times \frac{2n+1}{2n+3}$$

$$= \frac{2}{2n+3}$$

 \mathscr{P}_{n+1} est donc vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n=0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \quad u_n = \frac{2}{2n+1}$$

Exercice 4.

On choisit un individu au hasard dans la population. On définit les événements :

V: « l'individu a été vacciné »;

M: « l'individu est malade ».

L'énoncé se traduit alors ainsi :

$$\mathbb{P}(V) = \frac{1}{4} \quad \mathbb{P}_M(V) = \frac{1}{5} \quad \mathbb{P}_M(\overline{V}) = \frac{4}{5} \quad \mathbb{P}_V(M) = \frac{1}{12}$$

On en déduit rapidement que $\mathbb{P}(\overline{V}) = 1 - \mathbb{P}(V) = \frac{3}{4}$.

On cherche $\mathbb{P}_{\overline{V}}(M)$:

$$\mathbb{P}_{\overline{V}}(M) = \frac{\mathbb{P}(\overline{V} \cap M)}{\mathbb{P}(\overline{V})}$$
 par définition
$$= \frac{\mathbb{P}(M) \times \mathbb{P}_{M}(\overline{V})}{\mathbb{P}(\overline{V})}$$
 par formule du cours
$$= \frac{(\mathbb{P}(V) \times \mathbb{P}_{V}(M) + \mathbb{P}(\overline{V}) \times \mathbb{P}_{\overline{V}}(M)) \times \mathbb{P}_{M}(\overline{V})}{\mathbb{P}(\overline{V})}$$
 par la formule des probabilités totales

Notons $x = \mathbb{P}_{\overline{V}}(M)$. Alors en remplaçant on obtient l'équation suivante que l'ont résout :

$$x = \frac{\left(\frac{1}{4} \times \frac{1}{12} + \frac{3}{4} \times x\right) \times \frac{4}{5}}{\frac{3}{4}} \Leftrightarrow \frac{3}{4}x = \frac{1}{60} + \frac{3}{5}x$$

$$\Leftrightarrow \frac{3}{4}x - \frac{3}{5}x = \frac{1}{60}$$

$$\Leftrightarrow \frac{15 - 12}{20}x = \frac{1}{60}$$

$$\Leftrightarrow \frac{3}{20}x = \frac{1}{60}$$

$$\Leftrightarrow x = \frac{1}{60} \times \frac{20}{3} = \frac{1}{9}$$

Ainsi, la probabilité de tomber malade pour un individu non-vacciné est $\frac{1}{9}$.