- BİRİMLER ve VEKTÖRLER
 - 1.1 Boyutlar ve Birimler
 - 1.2 Hata Payı Anlamlı Hane Sayısı
 - 1.3 Vektörler

Daha iyi sonuç almak için, Adobe Reader programını **Tam Ekran** modunda çalıştırınız. **Sayfa çevirmek/Asağısını görmek** için, farenin sol/sağ tuslarını veya PageUp/PageDown tuslarını kullanınız.

1.1 BOYUTLAR ve BİRİMLER

Ölçme \implies Doğa bilimlerinin başlangıcı ightharpoonup

1.1 BOYUTLAR ve BİRİMLER

Ölçme \implies Doğa bilimlerinin başlangıcı •

Boyut \implies Niceliklerin ölçme açısından ortak karakteri 🔻

1.1 BOYUTLAR ve BİRİMLER

Ölçme \implies Doğa bilimlerinin başlangıcı •

Boyut \implies Niceliklerin ölçme açısından ortak karakteri ${f \cdot}$

Fiziksel nicelik		Boyut
mesafe, genişlik, derinlik, boy	}	uzunluk
gün, ay, yıl, mevsim, periyot,	}	zaman

Birim \implies Kararlaştırılan ölçme standardı (Arşın, mil, yarda ...)

Yüzey alanı =
$$en \times boy = (uzunluk)^2$$

Hacim = $en \times boy \times y$ ükseklik = $(uzunluk)^3$

• Her ölçümün sonucu birimli olarak ifade edilmelidir! •

```
Yüzey alanı = en×boy = (uzunluk)<sup>2</sup>
Hacim = en×boy×yükseklik = (uzunluk)<sup>3</sup>
```

- Her ölçümün sonucu birimli olarak ifade edilmelidir!
- Fizik formüllerinde eşitliğin her iki tarafındaki terimlerin birimleri aynı olmalıdır!

```
Yüzey alanı = en×boy = (uzunluk)<sup>2</sup>
Hacim = en×boy×yükseklik = (uzunluk)<sup>3</sup>
```

- Her ölçümün sonucu birimli olarak ifade edilmelidir!
- Fizik formüllerinde eşitliğin her iki tarafındaki terimlerin birimleri aynı olmalıdır!
- Çok sayıda birim arasından hangileri **temel birimler** olarak alınmalıdır?

7 adet temel birim: •

7 adet temel birim: •

Boyut	Birim	Kısaltma
Zaman	saniye	S
Uzunluk	metre	m
Kütle	kilogram	kg
Elektrik akımı	amper	A
Sıcaklık	kelvin	K
Işık şiddeti	kandela	cd
Madde miktarı	mol	mol

7 adet temel birim: •

Boyut	Birim	Kısaltma
Zaman	saniye	S
Uzunluk	metre	m
Kütle	kilogram	kg
Elektrik akımı	amper	A
Sıcaklık	kelvin	K
Işık şiddeti	kandela	cd
Madde miktarı	mol	mol

• Metre: Işığın boşlukta 1/299 792 458 saniyede aldığı yol. •

7 adet temel birim: •

Boyut	Birim	Kısaltma
Zaman	saniye	S
Uzunluk	metre	m
Kütle	kilogram	kg
Elektrik akımı	amper	A
Sıcaklık	kelvin	K
Işık şiddeti	kandela	cd
Madde miktarı	mol	mol

- Metre: Işığın boşlukta 1/299 792 458 saniyede aldığı yol. 🔻
- **Saniye**: Cs¹³³ atomunun belirli bir titreşim periyodunun 9 192 631 770 katı. •

7 adet temel birim: •

Boyut	Birim	Kısaltma
Zaman	saniye	S
Uzunluk	metre	m
Kütle	kilogram	kg
Elektrik akımı	amper	A
Sıcaklık	kelvin	K
Işık şiddeti	kandela	cd
Madde miktarı	mol	mol

- Metre: Işığın boşlukta 1/299 792 458 saniyede aldığı yol. 🔻
- **Saniye**: Cs¹³³ atomunun belirli bir titreşim periyodunun 9 192 631 770 katı. •
- **Kilogram**: Paris'te BIPM kurumunda saklanan platin-iridyum alaşımı silindirin kütlesi.

Bazı türetilmiş birimler			
nicelik	tanımı	birimi	kısaltması
Alan	en×boy	(metre) ²	m^2
Hacim	en×boy×yükseklik	(metre) ³	m^3
Hız	yol/zaman	metre/saniye	m/s
İvme	hız/zaman	metre/(saniye) ²	m/s^2
Kuvvet	kütle×ivme	kilogram×metre/(saniye)²	$kg \cdot m/s^2$
İş	kuvvet×yol	kilogram×metre²/(saniye)²	$kg \cdot m^2/s^2$

Bazı türetilmiş birimler			
nicelik	tanımı	birimi	kısaltması
Alan	en×boy	(metre) ²	m^2
Hacim	en×boy×yükseklik	$(metre)^3$	m^3
Hız	yol/zaman	metre/saniye	m/s
İvme	hız/zaman	metre/(saniye) ²	m/s^2
Kuvvet	kütle×ivme	kilogram×metre/(saniye)²	$kg \cdot m/s^2$
İş	kuvvet×yol	kilogram×metre²/(saniye)²	$kg \cdot m^2/s^2$

	Üskatlar			Askatlar	
adı	kısaltma	miktarı	adı	kısaltma	miktarı
kilo	k	10 ³	santi	С	10^{-2}
mega	M	10^{6}	mili	m	10^{-3}
ciga	G	10^{9}	mikro	μ	10^{-6}
tera	T	10^{12}	nano	n	10^{-9}

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. •

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. ▼

Mutlak hata (Δx) \implies Bir ölçü aletinin ölçebildiği en küçük değer. ${f v}$

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. ▼

Mutlak hata (Δx) \implies Bir ölçü aletinin ölçebildiği en küçük değer. ightharpoonup

Örnek: Milimetrik cetvel \implies $\Delta L = 1 \text{ mm}$

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. •

Mutlak hata (Δx) \implies Bir ölçü aletinin ölçebildiği en küçük değer. \checkmark

Örnek: Milimetrik cetvel \implies $\Delta L = 1 \text{ mm}$

Kitabın boyu \implies L = 294 mm

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. •

Mutlak hata (Δx) \implies Bir ölçü aletinin ölçebildiği en küçük değer. ullet

Örnek: Milimetrik cetvel \implies $\Delta L = 1 \text{ mm}$

Kitabın boyu \implies $L = 294 \, \text{mm}$

Ölçmenin ifadesi \implies $L \pm \Delta L = 294 \pm 1 \text{ mm}$

Hata payı ⇒ Bir niceliğin gerçek değeri ile ölçülen değeri arasındaki fark. •

Mutlak hata (Δx) \implies Bir ölçü aletinin ölçebildiği en küçük değer. \checkmark

Örnek: Milimetrik cetvel \implies $\Delta L = 1 \text{ mm}$

Kitabın boyu \implies $L = 294 \, \text{mm}$

Ölçmenin ifadesi $\implies L \pm \Delta L = 294 \pm 1 \text{ mm}$

Bağıl hata $\implies \frac{\Delta L}{L}$ Yüzde (%) olarak ifade edilir.

Hesaplarda hata payı

• Toplama ve çıkarmada mutlak hatalar toplanır:

$$z = a \pm b \implies \Delta z = \Delta a + \Delta b$$

1

Hesaplarda hata payı

• Toplama ve çıkarmada mutlak hatalar toplanır:

$$z = a \pm b \implies \Delta z = \Delta a + \Delta b$$

•

• Çarpma ve bölmelerde bağıl hatalar toplanır:

$$y = \begin{cases} ab \\ a/b \end{cases} \implies \frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b}$$

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi $m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$ \Longrightarrow anlamlı 3 hane \uparrow (bu haneye kadar ölçülebilmiş) \checkmark

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi $m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$ \Longrightarrow anlamlı 3 hane \uparrow (bu haneye kadar ölçülebilmis) \checkmark

Mutlak hata: Son hanenin alabileceği en küçük değer \implies $\Delta m = 0.1\,\mathrm{g}$

Diğer örnekler:

1.2398

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi $m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$ \Longrightarrow anlamlı 3 hane \uparrow

Mutlak hata: Son hanenin alabileceği en küçük değer \implies $\Delta m = 0.1 \,\mathrm{g}$

(bu haneye kadar ölçülebilmiş) •

Diğer örnekler:

1.2398 Anlamlı hane sayısı: 5

0.00000039

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi
$$m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$$
 \Longrightarrow anlamlı 3 hane \uparrow (bu haneye kadar ölçülebilmis) $_{\mathbf{v}}$

Mutlak hata: Son hanenin alabileceği en küçük değer \implies $\Delta m = 0.1 \,\mathrm{g}$

Diğer örnekler:

1.2398 Anlamlı hane sayısı: 5

0.00000039 Anlamlı hane sayısı: 2

3.00007

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi
$$m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$$
 \Longrightarrow anlamlı 3 hane \uparrow (bu haneye kadar ölçülebilmis) $_{\bullet}$

Mutlak hata: Son hanenin alabileceği en küçük değer \implies $\Delta m = 0.1\,\mathrm{g}$

Diğer örnekler:

1.2398 Anlamlı hane sayısı: 5
 0.00000039 Anlamlı hane sayısı: 2
 3.00007 Anlamlı hane sayısı: 6
 2.70

Bir niceliğin hata payı, niceliği belirten sayının **anlamlı hane sayısı** ile de anlaşılır. •

Örnek: Cismin kütlesi
$$m=76.4\,\mathrm{g}=0.0764\,\mathrm{kg}$$
 \Longrightarrow anlamlı 3 hane \uparrow (bu haneye kadar ölçülebilmis) \checkmark

Mutlak hata: Son hanenin alabileceği en küçük değer \implies $\Delta m = 0.1\,\mathrm{g}$

Diğer örnekler:

1.2398	Anlamlı hane sayısı: 5
0.00000039	Anlamlı hane sayısı: 2
3.00007	Anlamlı hane sayısı: 6
2.70	Anlamlı hane sayısı: 3

• Toplama ve çıkarmada, ondalık basamak sayısı en az olan korunur: •

•

• Toplama ve çıkarmada, ondalık basamak sayısı en az olan korunur: •

$$3.2339 + 5.4 = 8.6339 = 8.6$$

$$9.12 - 5.4317 = 3.6883 = 3.69$$

•

• Toplama ve çıkarmada, ondalık basamak sayısı en az olan korunur: 🔻

$$3.2339 + 5.4 = 8.6339 = 8.6$$

 $9.12 - 5.4317 = 3.6883 = 3.69$

• Çarpma ve bölmede, anlamlı hane sayısı en az olan korunur:

$$3.4567 \times 2.7 = 9.33309 = 9.3$$

 $15.67 \times 0.00012 = 0.0018804 = 0.0019$

1. 3 VEKTÖRLER

Skaler nicelikler ⇒ Sadece büyüklüğü (veya şiddeti) ile belirtilir. (Sıcaklık, enerji, direnç…) •

1. 3 VEKTÖRLER

```
Skaler nicelikler \implies Sadece büyüklüğü (veya şiddeti) ile belirtilir. (Sıcaklık, enerji, direnç...) \checkmark Vektörel nicelikler \implies Hem büyüklük hem de yön ile belirtilir. (Hız, kuvvet, elektrik alan ...) \checkmark
```

1. 3 VEKTÖRLER

Skaler nicelikler ⇒ Sadece büyüklüğü (veya şiddeti) ile belirtilir. (Sıcaklık, enerji, direnç…) •

Vektörel nicelikler ⇒ Hem büyüklük hem de yön ile belirtilir. (Hız, kuvvet, elektrik alan ...) •

Vektörlerin gösterimi: $\implies \vec{a}, \vec{F}, \vec{E} \dots$

Vektörün büyüklüğü (şiddeti) a, F, E...

À

1. 3 VFKTÖRLER

- Skaler nicelikler ⇒ Sadece büyüklüğü (veya şiddeti) ile belirtilir. (Sıcaklık, enerji, direnç...) •
- Vektörel nicelikler ⇒ Hem büyüklük hem de yön ile belirtilir. (Hız, kuvvet, elektrik alan ...) •
- $\implies \vec{a}, \vec{F}, \vec{E} \dots$ Vektörlerin gösterimi:

- Vektörün büyüklüğü (şiddeti)
 - a, F, E
- Skaler ile çarpma:

İki Vektörün Toplamı

 Paralelkenar kuralı: Her iki vektör, yönleri korunarak, aynı noktaya kaydırılır. Herbir vektörün bitiş noktasından diğerine paralel doğrular çizilerek bir paralelkenar oluşturulur.

Paralelkenarın vektörler arasında kalan köşegeni $\vec{A} + \vec{B}$ vektörü olur.

İki Vektörün Toplamı

 Paralelkenar kuralı: Her iki vektör, yönleri korunarak, aynı noktaya kaydırılır. Herbir vektörün bitiş noktasından diğerine paralel doğrular çizilerek bir paralelkenar oluşturulur.

Paralelkenarın vektörler arasında kalan köşegeni $\vec{A} + \vec{B}$ vektörü olur.

• Üçgen kuralı: Vektörlerden biri $(\vec{A} \text{ veya } \vec{B})$, kendisine paralel kaydırılarak diğer vektörün bitiş noktasına kadar getirilir. Birinci vektörün (\vec{A}) başlangıç noktasından ikinci vektörün (\vec{B}) bitiş noktasına çizilen vektör $\vec{A} + \vec{B}$ olur.

• Üçgen kuralı daha kullanışlıdır.

• Üçgen kuralı daha kullanışlıdır.

• İki vektörün farkı:

$$\vec{A} - \vec{B} = \vec{A} + (-\vec{B}) \implies$$

Bir Vektörün Bileşenleri

• 2-boyutta: \vec{A} vektörünün uç noktasından x- ve y-eksenlerine çizilen paralellerin eksenleri kestiği uzunluklar \vec{A} vektörünün A_x ve A_y bileşenleri olurlar.

 $\vec{A}:(A_x,A_y)$

Bir Vektörün Bileşenleri

• 2-boyutta: \vec{A} vektörünün uç noktasından x- ve y-eksenlerine çizilen paralellerin eksenleri kestiği uzunluklar \vec{A} vektörünün A_x ve A_y bileşenleri olurlar.

$$\vec{\boldsymbol{A}}:(A_x,A_y)$$

• 3-boyutta: $\vec{A}: (A_x, A_y, A_z)$

• Bileşenler birer cebirsel sayıdırlar.

Dik üçgende trigonometrik bağıntılar:

$$\sin \theta = \frac{b}{c}$$
, $\cos \theta = \frac{a}{c}$, $\tan \theta = \frac{b}{a}$

Dik üçgende trigonometrik bağıntılar:

$$\sin \theta = \frac{b}{c}$$
, $\cos \theta = \frac{a}{c}$, $\tan \theta = \frac{b}{a}$

$$A_x = A \cos \theta$$
 $A = \sqrt{A_x^2 + A_y^2}$
 $A_y = A \sin \theta$ $\tan \theta = \frac{A_y}{A_x}$

Birim Vektörler

Eksenler boyunca birim (1) uzunlukta vektörler:

$$\hat{i}$$
: $(1,0,0)$, \hat{j} : $(0,1,0)$, \hat{k} : $(0,0,1)$

Birim Vektörler

Eksenler boyunca birim (1) uzunlukta vektörler:

$$\hat{i}$$
: $(1,0,0)$, \hat{j} : $(0,1,0)$, \hat{k} : $(0,0,1)$

Her vektör, bileşenleri ve birim vektörler cinsinden daima şöyle yazılabilir:

2-boyutta:
$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath}$$

3-boyutta:
$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_y \hat{k}$$

• Örnek:

$$\vec{D} = 3\hat{\imath} - 5\hat{\jmath} + 6\hat{k}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$D_x \quad D_y \quad D_z$$

• Örnek:

$$\vec{D} = 3\hat{\imath} - 5\hat{\jmath} + 6\hat{k}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$D_x \quad D_y \quad D_z$$

• Vektör Bileşenleriyle Toplama:

$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k}$$

$$\vec{C} = \vec{A} + \vec{B}$$

Örnek:

$$\vec{D} = 3\hat{\imath} - 5\hat{\jmath} + 6\hat{k}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$D_x \quad D_y \quad D_z$$

• Vektör Bileşenleriyle Toplama:

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$

$$\vec{B} = B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k}$$

$$\vec{C} = \vec{A} + \vec{B}$$

$$\vec{C} = (A_x + B_x)\hat{\imath} + (A_y + B_y)\hat{\jmath} + (A_z + B_z)\hat{k}$$

$$\vec{C} = C_x \hat{\imath} + C_y \hat{\jmath} + C_z \hat{k}$$

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

(Skaler çarpım)

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

(Skaler çarpım)

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

(Skaler çarpım)

Özellikleri: •

• Sonuç cebirsel bir sayıdır. İki vektör arasındaki açı 90° den küçükse çarpım pozitif, büyükse çarpım negatif olur. •

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

(Skaler çarpım)

- Sonuç cebirsel bir sayıdır. İki vektör arasındaki açı 90° den küçükse çarpım pozitif, büyükse çarpım negatif olur. ▼
- Sıra değiştirme: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Dağılma: $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$ •

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

(Skaler çarpım)

- Sonuç cebirsel bir sayıdır. İki vektör arasındaki açı 90° den küçükse çarpım pozitif, büyükse çarpım negatif olur. •
- Sıra değiştirme: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Dağılma: $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$ •
- $\theta = 90^\circ$ (cos $90^\circ = 0$) ise, birbirine dik iki vektörün skaler çarpımı sıfır olur (diklik koşulu). •

$$\vec{A} \cdot \vec{B} = A B \cos \theta$$

(Skaler çarpım)

- \bullet Sonuç cebirsel bir sayıdır. İki vektör arasındaki açı 90° den küçükse çarpım pozitif, büyükse çarpım negatif olur. ${}_\bullet$
- Sıra değiştirme: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Dağılma: $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$ •
- $\theta = 90^\circ$ (cos $90^\circ = 0$) ise, birbirine dik iki vektörün skaler çarpımı sıfır olur (diklik koşulu). •
- $\vec{A} \cdot \vec{A} = A A \cos 0^{\circ} = A^2$ veya, bir vektörün kendisiyle skaler çarpımı şiddetinin karesini verir.

$$\hat{\imath} \cdot \hat{\imath} = 1.1. \cos 0 = 1$$
 \Longrightarrow $\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = 1$
 $\hat{\imath} \cdot \hat{\jmath} = 1.1. \cos 90^{\circ} = 0$ $\hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{k} = \hat{k} \cdot \hat{\imath} = 0$

$$\hat{\imath} \cdot \hat{\imath} = 1.1. \cos 0 = 1$$
 \Longrightarrow $\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = 1$
 $\hat{\imath} \cdot \hat{\jmath} = 1.1. \cos 90^{\circ} = 0$ $\hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{k} = \hat{k} \cdot \hat{\imath} = 0$

• Skaler çarpımın bileşenler cinsinden ifadesi:

$$\vec{A} \cdot \vec{B} = A_x B_x (\hat{\imath} \cdot \hat{\imath}) + A_x B_y (\hat{\imath} \cdot \hat{\jmath}) + A_x B_z (\hat{\imath} \cdot \hat{k}) +$$

$$+ A_y B_x (\hat{\jmath} \cdot \hat{\imath}) + A_y B_y (\hat{\jmath} \cdot \hat{\jmath}) + A_y B_z (\hat{\jmath} \cdot \hat{k}) +$$

$$+ A_z B_x (\hat{k} \cdot \hat{\imath}) + A_z B_y (\hat{k} \cdot \hat{\jmath}) + A_z B_z (\hat{k} \cdot \hat{k})$$

$$\hat{\imath} \cdot \hat{\imath} = 1.1. \cos 0 = 1$$
 \Longrightarrow $\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = 1$
 $\hat{\imath} \cdot \hat{\jmath} = 1.1. \cos 90^{\circ} = 0$ $\hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{k} = \hat{k} \cdot \hat{\imath} = 0$

• Skaler çarpımın bileşenler cinsinden ifadesi:

$$\vec{\boldsymbol{A}} \cdot \vec{\boldsymbol{B}} = A_x B_x (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}}) + A_x B_y (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\jmath}}) + A_x B_z (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{k}}) + \\ + A_y B_x (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{\imath}}) + A_y B_y (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{\jmath}}) + A_y B_z (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{k}}) + \\ + A_z B_x (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{\imath}}) + A_z B_y (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{\jmath}}) + A_z B_z (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}})$$

$$\vec{\boldsymbol{A}} \cdot \vec{\boldsymbol{B}} = A_x B_x + A_y B_y + A_z B_z$$

$$\hat{\imath} \cdot \hat{\imath} = 1.1. \cos 0 = 1$$
 \Longrightarrow $\hat{\imath} \cdot \hat{\imath} = \hat{\jmath} \cdot \hat{\jmath} = \hat{k} \cdot \hat{k} = 1$
 $\hat{\imath} \cdot \hat{\jmath} = 1.1. \cos 90^{\circ} = 0$ $\hat{\imath} \cdot \hat{\jmath} = \hat{\jmath} \cdot \hat{k} = \hat{k} \cdot \hat{\imath} = 0$

Skaler çarpımın bileşenler cinsinden ifadesi:

$$\vec{\boldsymbol{A}} \cdot \vec{\boldsymbol{B}} = A_x B_x (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\imath}}) + A_x B_y (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{\jmath}}) + A_x B_z (\hat{\boldsymbol{\imath}} \cdot \hat{\boldsymbol{k}}) + \\ + A_y B_x (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{\imath}}) + A_y B_y (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{\jmath}}) + A_y B_z (\hat{\boldsymbol{\jmath}} \cdot \hat{\boldsymbol{k}}) + \\ + A_z B_x (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{\imath}}) + A_z B_y (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{\jmath}}) + A_z B_z (\hat{\boldsymbol{k}} \cdot \hat{\boldsymbol{k}})$$

$$\vec{\boldsymbol{A}} \cdot \vec{\boldsymbol{B}} = A_x B_x + A_y B_y + A_z B_z$$

Özet:

Skaler Çarpım :
$$\vec{A} \cdot \vec{B} = \begin{cases} A B \cos \theta \\ \text{veya} \\ A_x B_x + A_y B_y + A_z B_z \end{cases}$$

$$\vec{A} \times \vec{B} = \vec{C}$$

- Sonuç bir vektördür.
- **Şiddeti**: $C = AB \sin \theta$
- Yönü: \vec{A} ve \vec{B} nin oluşturduğu düzleme dik doğrultuda ve sağ-el kuralı yönünde.

$$\vec{A} \times \vec{B} = \vec{C}$$

- Sonuç bir vektördür.
- **Siddeti**: $C = AB \sin \theta$
- Yönü: \vec{A} ve \vec{B} nin oluşturduğu düzleme dik doğrultuda ve sağ-el kuralı yönünde.

 $\vec{C} = \vec{A} \times \vec{B}$

$$\vec{A} \times \vec{B} = \vec{C}$$

- Sonuç bir vektördür.
- **Şiddeti**: $C = AB \sin \theta$
- Yönü: \vec{A} ve \vec{B} nin oluşturduğu düzleme dik doğrultuda ve sağ-el kuralı yönünde.

Özellikleri: •

• Sıra değiştirmez! $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$ •

$$\vec{A} \times \vec{B} = \vec{C}$$

- Sonuç bir vektördür.
- **Şiddeti**: $C = AB \sin \theta$
- Yönü: \vec{A} ve \vec{B} nin oluşturduğu düzleme dik doğrultuda ve sağ-el kuralı yönünde.

- Sıra değiştirmez! $\vec{B} \times \vec{A} = -\vec{A} \times \vec{B}$ •
- Dağılma: $\vec{A} \times (\vec{B} + \vec{C}) = \vec{A} \times \vec{B} + \vec{A} \times \vec{C}$
- İki vektör paralel ($\theta=0$) veya anti-paralel ($\theta=180^{\circ}$) ise, sinüsler sıfır olacağından, vektörel çarpımın sonucu sıfır olur. Özel olarak, bir vektörün kendisiyle vektörel çarpımı sıfırdır: $\vec{A} \times \vec{A} = 0$

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k}, \quad \hat{\jmath} \times \hat{k} = \hat{\imath}, \quad \hat{k} \times \hat{\imath} = \hat{\jmath}$$

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k}, \quad \hat{\jmath} \times \hat{k} = \hat{\imath}, \quad \hat{k} \times \hat{\imath} = \hat{\jmath}$$

$$\hat{\jmath} \times \hat{\imath} = -\hat{k}, \dots$$

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k}, \quad \hat{\jmath} \times \hat{k} = \hat{\imath}, \quad \hat{k} \times \hat{\imath} = \hat{\jmath}$$

$$\hat{\jmath} \times \hat{\imath} = -\hat{k}, \dots$$

• Vektörel çarpımın bileşenler cinsinden ifadesi:

$$\vec{\boldsymbol{C}} = \vec{\boldsymbol{A}} \times \vec{\boldsymbol{B}} = (A_x \hat{\boldsymbol{\imath}} + A_y \hat{\boldsymbol{\jmath}} + A_z \hat{\boldsymbol{k}}) \times (B_x \hat{\boldsymbol{\imath}} + B_y \hat{\boldsymbol{\jmath}} + B_z \hat{\boldsymbol{k}})$$

$$\begin{split} \hat{\imath} \times \hat{\imath} &= \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0 \\ \hat{\imath} \times \hat{\jmath} &= \hat{k}, \quad \hat{\jmath} \times \hat{k} = \hat{\imath}, \quad \hat{k} \times \hat{\imath} = \hat{\jmath} \\ \hat{\jmath} \times \hat{\imath} &= -\hat{k}, \dots \end{split}$$

• Vektörel çarpımın bileşenler cinsinden ifadesi:

$$\vec{C} = \vec{A} \times \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$= A_x B_x (\hat{\imath} \times \hat{\imath}) + A_x B_y (\hat{\imath} \times \hat{\jmath}) + A_x B_z (\hat{\imath} \times \hat{k}) +$$

$$+ A_y B_x (\hat{\jmath} \times \hat{\imath}) + A_y B_y (\hat{\jmath} \times \hat{\jmath}) + A_y B_z (\hat{\jmath} \times \hat{k}) +$$

$$+ A_z B_x (\hat{k} \times \hat{\imath}) + A_z B_y (\hat{k} \times \hat{\jmath}) + A_z B_z (\hat{k} \times \hat{k})$$

$$\hat{\jmath}$$

$$\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$$

$$\hat{\imath} \times \hat{\jmath} = \hat{k}, \quad \hat{\jmath} \times \hat{k} = \hat{\imath}, \quad \hat{k} \times \hat{\imath} = \hat{\jmath}$$

$$\hat{\jmath} \times \hat{\imath} = -\hat{k}, \dots$$

• Vektörel çarpımın bileşenler cinsinden ifadesi:

$$\vec{C} = \vec{A} \times \vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$$

$$= A_x B_x (\hat{\imath} \times \hat{\imath}) + A_x B_y (\hat{\imath} \times \hat{\jmath}) + A_x B_z (\hat{\imath} \times \hat{k}) +$$

$$+ A_y B_x (\hat{\jmath} \times \hat{\imath}) + A_y B_y (\hat{\jmath} \times \hat{\jmath}) + A_y B_z (\hat{\jmath} \times \hat{k}) +$$

$$+ A_z B_x (\hat{k} \times \hat{\imath}) + A_z B_y (\hat{k} \times \hat{\jmath}) + A_z B_z (\hat{k} \times \hat{k})$$

$$\hat{\jmath} \qquad \hat{C}$$

$$\vec{C} = (A_y B_z - A_z B_y) \hat{\imath} + (A_z B_x - A_x B_z) \hat{\jmath} + (A_x B_y - A_y B_x) \hat{\imath}$$

• Döner permütasyon tekniği

$$x \to y \to z$$
, $y \to z \to x$, $z \to x \to y$

$$y \to z \to x$$
,

$$z \to x \to y$$

Döner permütasyon tekniği

$$x \to y \to z$$
, $y \to z \to x$, $z \to x \to y$
 $C_{11} = A_{11}B_{12} - A_{12}B_{13}$ $C_{12} = A_{12}B_{13} - A_{13}B_{23}$

$$\underbrace{C_x = A_y B_z}_{x \to y \to z} - A_z B_y \,, \qquad \underbrace{C_y = A_z B_x}_{y \to z \to x} - A_x B_z \,, \qquad \underbrace{C_z = A_x B_y}_{z \to x \to y} - A_y B_x$$

$$\underbrace{C_z = A_x B_y}_{z \to x \to y} - A_y B_x$$

• Döner permütasyon tekniği

• Determinant şeklinde yazım:

$$\vec{A} \times \vec{B} = \det \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

• Döner permütasyon tekniği

$$x \to y \to z$$
, $y \to z \to x$, $z \to x \to y$

$$\underbrace{C_x = A_y B_z - A_z B_y}_{x \to y \to z}$$
, $\underbrace{C_y = A_z B_x - A_x B_z}_{y \to z \to x}$, $\underbrace{C_z = A_x B_y - A_y B_x}_{z \to x \to y}$

• Determinant şeklinde yazım:

$$\vec{A} \times \vec{B} = \det \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$$

* * * 1. Bölümün Sonu * * *