Subject Code	Subject Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ECC305	Electronic Instrumentation & Control Systems	03			03	13		03

Subject	Subject	Examination Scheme								
Code	Name	Theory Marks				Exam		Practical	Total	
		Internal assessment		End	Duration	Term	And Oral			
		Test1	Test2	Avg. of Test 1 and Test 2	Sem. Exam	(in Hrs.)	Work			
ECC305	Electronic Instrumen- tation & Control Systems	20	20	20	80	03	-		100	

Course pre-requisites:

FEC105 – Basic Electrical Engineering

Course Objectives:

- 1. To provide basic knowledge about the various sensors and transducers
- To provide fundamental concepts of control system such as mathematical modeling, time response and Frequency response.
- To develop concepts of stability and its assessment criteria.

Course Outcomes:

After successful completion of the course student will be able to:

- Identify various sensors, transducers and their brief performance specification.
- Understand the principle of working of various transducer used to measure temperature, displacement, level, pressure and their application in industry
- Determine the models of physical systems in forms suitable for use in the analysis and design of control systems.
- 4. Obtain the transfer functions for a given Control system.
- Understand the analysis of systems in time domain and frequency domain.
- 6. Predict stability of given system using appropriate criteria.

Module No.	Unit No.	Topics	Hrs.
1		Principle of Measurement, Testing and Measuring instruments	04
	1.1	Introduction to Basic instruments: Components of generalized measurement system Concept of accuracy, precision, linearity, sensitivity, resolution, hysteresis, calibration.	
	1.2	Measurement of Resistance: Kelvin's double bridge, Wheatstone bridge and Mega ohm bridge Measurement of Inductance: Maxwell bridge and Hey bridge Measurement of Capacitance: Schering bridge	
2		Sensors and Transducers	06
	2.1	Basics of sensors and Transducers-Active and passive transducers, characteristics and selection criteria of transducers	
	2.2	Displacement and pressure- Potentiometers, pressure gauges, linear Variable differential transformers (LVDT) for measurement of pressure and displacement strain gauges	
	2.3	Temperature Transducers- Resistance temperature detectors (RTD). Thermistors and thermocouples, their ranges and applications	
3		Introduction to control system Analysis	08
	3.1	Introduction: Open and closed loop systems, example of control systems	
	3.2	Modelling: Modelling, Transfer function model	
	3.3	Block diagram reduction techniques and Signal flow graph	
4		Response of control system	04
	4.1	Dynamic Response: Standard test signals, transient and steady state behavior of first and second order systems, steady state errors in feedback control systems and their types	
	4.2	Concept of lag and lead compensator.	
5		Stability Analysis in Time Domain	08
	5.1	Concept of stability: Routh and Hurwitz stability criterion	
	5.2	Root locus Analysis: Root locus concept, general rules for constructing root-locus, root locus analysis of control system	
		Stability Analysis in frequency domain	09
	6.1	Introduction: Frequency domain specification, Relationship between time and frequency domain specification of system, stability margins	
	6.2	Bode Plot: Magnitude and phase plot, Method of plotting Bode plot, Stability margins and analysis using bode plot. Frequency response analysis of RC, RL, RLC circuits	
	6.3	Nyquist Criterion: Concept of Polar plot and Nyquist plot, Nyquist stability criterion, gain and phase margin	
		Total	39

Textbooks:

- A.K. Sawhney, "Electrical & Electronic Measurement & Instrumentation" DRS .India
- B.C Nakra, K.K. Cahudhary, Instrumentation Measurement and Analysis, Tata Mc Graw Hill.
- 3. W.D. Cooper, "Electronic Instrumentation And Measuring Techniques" PHI
- 4. Nagrath, M.Gopal, "Control System Engineering", Tata McGrawHill.
- Rangan C. S., Sarma G. R. and Mani V. S. V., "Instrumentation Devices And Systems", Tata McGraw-Hill, 2nd Ed., 2004.
- 6. K.Ogata, "Modern Control Engineering, Pearson Education", Illrd edition.

Reference Books:

- Helfrick&Copper, "Modern Electronic Instrumentation & Measuring Techniques" – PHI
- M.M.S. Anand, "Electronic Instruments and instrumentationTechnology".
- Gopal M., "Control Systems Principles and Design", Tata McGraw Hill Publishing Co. Ltd.New Delhi, 1998.
- Benjamin C.Kuo, "Automatic Control Systems, Eearson education", VIIthedition
- Doeblin E.D., Measurement system, Tata Mc Graw Hill., 4th ed, 2003.Madan Gopal, "Control Systems *Principles and Design*", Tata McGraw hill, 7th edition, 1997.
- 6. Normon, "Control System Engineering", John Wiley & sons, 3rdedition.

NPTEL/ Swayam Course:

 Course: Control Systems By Prof. C. S. Shankar Ram (IIT Madras); https://swayam.gov.in/nd1_noc20_ee90/preview

Internal Assessment (20-Marks):

Internal Assessment (IA) consists of two class tests of 20 marks each. IA-1 is to be conducted on approximately 40% of the syllabus completed and IA-2 will be based on remaining contents (approximately 40% syllabus but excluding contents covered in IA-I). Duration of each test shall be one hour. Average of the two tests will be considered as IA marks.

End Semester Examination (80-Marks):

Weightage to each of the modules in end-semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- Question No: 01 will be compulsory and based on entire syllabus wherein 4 to 5 sub-questions will be asked.
- Remaining questions will be mixed in nature and randomly selected from all the modules.
- Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.
- 5. Total 04 questions need to be solved.