SRM VALLIAMMAI ENGINEERING COLLEGE

SRM Nagar, Kattankulathur – 603 203.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

SUBJECT : CS8603-DistributedSystems

SEM / YEAR: VI / III

UNIT I - INTRODUCTION

Introduction: Definition –Relation to computer system components –Motivation –Relation to parallel systems – Message-passing systems versus shared memory systems –Primitives for distributed communication –Synchronous versus asynchronous executions –Design issues and challenges. A model of distributed computations: A distributed program –A model of distributed executions –Models of communication networks –Global state – Cuts –Past and future cones of an event –Models of process communications. Logical Time: A framework for a system of logical clocks –Scalar time –Vector time – Physical clock synchronization: NTP.

D	٨	\mathbf{D}	r	
\mathbf{r}	Δ	к	_	- 2

Q. No	Questions	BT Level	Competence
1.	Define distributed systems.	BTL 1	Remember
2.	What is middleware?	BTL 1	Remember
3.	Explain distributed execution/computation or run.	BTL 5	Evaluate
4.	List middleware standards in distributed systems.	BTL 1	Remember
5	Develop hamming distance with example.	BTL 3	Apply
6	Illustrate coupling.	BTL 2	Understand
7	Describe parallelism/concurrency in distributed systems.	BTL 2	Understand
8	Compare centralized and distributed system.	BTL 4	Analyze
9	State the various classes of multiprocessor/multicomputer operating systems.	BTL 2	Understand
10	Compare shared memory Vs distributed shared memory.	BTL 2	Understand
11	Compose different forms of load balancing.	BTL 6	Create
12	List the issues arise in determining the performance of DS.	BTL 1	Remember
13	Analyze briefly on ubiquitous computing.	BTL 4	Analyze
14	What is happened before or causal precedence?	BTL 3	Apply
15	Illustrate five reasons why to build distributed System.	BTL 3	Apply
16	Define granularity.	BTL 1	Remember
17	Discuss about peer-to-peer computing.	BTL 6	Create
18	Measure some examples of problems requiring synchronization.	BTL5	Evaluate
19	Classify the security challenges faced by the distributed systems.	BTL 4	Analyze
20	What is distributed data mining?	BTL 1	Remember
	PART – B		
1.	Design in detail about application domains where distributed system is applied. (13)	BTL 6	Create

2.	i) Explain the characteristics of distributed systems. (7) ii)List the features of distributed systems(6)	BTL 4	Analyze
3.	i) Summarize the distributed computer system components (7) ii) Explain the requirements of distributed systems (6)	BTL 5	Evaluate
4.	Write a brief note on the key algorithmic challenges in distributed computing. (13)	BTL 1	Remember
5.	 i)Draw the omega and butterfly networks for n = 16 inputs and outputs. (7) ii) Elaborate the functions need to address while designing a distributed computing system. (6) 	BTL 2	Understand
6.	Discuss the primitives for distributed communication.(13)	BTL 3	Apply
7.	i) What are the processing modes of flynn taxonomy? (7) ii) Examine various MIMD architectures in terms of coupling.(6)	BTL 1	Remember
8.	Explain about the synchronous versus asynchronous executions in a message-passing system with examples. (13)	BTL 2	Understand
9.	 i) Describe the capabilities and rules for implementation of logical clocks. (7) ii) Define lamport scalar time (6) 	BTL 1	Remember
10.	Identify and explain the basic properties of scalar time.(13)	BTL 3	Apply
11.	List and explain the basic properties of vector time. (13)	BTL 1	Remember
12.	i) Point out in detail the recent trends in distributed Systems. (6) ii) What are the design issues to be considered in designing distributed system? Explain in detail about each of them. (7)	BTL 4	Analyze
13.	Discuss about load balancing.(7) Describe Performance metrics in DS. (6)	BTL 2	Understand
14.	Summarize NTP for synchronizing system of physical clocks in distributed systems.(13)	BTL 4	Analyze
	PART – C (15 MARKS)		
1	A user arrives at a railway station that she has never visited before, carrying a PDA that is capable of wireless networking. Suggest how the user could be provided with information about the local services and amenities at that station, without entering the station's name or attributes. What technical challenges must be overcome? Discuss in detail. (15)	BTL 4	Analyze
2	Explain the practical applicability of the load –balancing approach as a scheduling scheme for the following types of distributed systems: a) A LAN-based distributed system b) A WAN-based distributed system c) A distributed system based on the processor-pool model. d) A distributed system based on the workstation-server model.(15)	BTL 4	Analyze
3	Design the requirements and aspects needed for reliable and fault-tolerant distributed systems.(15)	BTL 6	Create
4	Show that all events on the surface of the past cone of an event are message send events. Likewise, show that all events on the surface of the future cone of an event are message receive events.(15)	BTL 5	Evaluate

UNIT II - MESSAGE ORDERING & SNAPSHOTS

SYLLABUS- Message **ordering and group communication:** Message ordering paradigms –Asynchronous execution with synchronous communication –Synchronous program order on an asynchronous system –Group communication – Causal order (CO) - Total order. **Global state and snapshot recording algorithms:** Introduction –System model and definitions –Snapshot algorithms for FIFO channels.

PART-A

Q.No	Questions	BT Level	Competence
1.	What are the message ordering paradigms?	BTL 1	Remember
2.	Compare closed group Vs open group algorithm.	BTL 4	Analyze
3.	State crown criterion theorem.	BTL 4	Analyze
4.	Explain message broadcast.	BTL 5	Evaluate
5.	Define time stamp.	BTL 1	Remember
6.	Discuss multiway rendezvous and binary rendezvous.	BTL 2	Understand
7.	Design the roles and responsibilities of distributed systems.	BTL 6	Create
8.	What are the characteristics of multicast communication?	BTL 1	Remember
9.	Differentiate multicasting Vs unicasting. GINEE	BTL 2	Understand
10.	Identify the two popular orders for the delivery of messages in group communication.	BTL 3	Apply
11.	Identify consistent snapshot.	BTL 3	Apply
12.	Evaluate the criteria that must be met by a causal ordering protocol.	BTL 5	Evaluate
13.	What are the necessary conditions to satisfy the consistent global state?	BTL 6	Create
14.	State the property for causal delivery of messages.	BTL 4	Analyze
15.	Sketch an interpretation in terms of a cut.	BTL 2	Understand
16.	What is consistent cut?	BTL 1	Remember
17.	Outline marker sending rule.	BTL 2	Understand
18.	What is marker receiving rule?	BTL 1	Remember
19.	What is complexity?	BTL 1	Remember
20.	Show how to prove the correctness of the algorithm.	BTL 3	Apply
	PART - B		
1.	i)Design FIFO and non-FIFO executions.(7) ii)Discuss on causally ordered executions (6)	BTL 6	Create
2.	Show with an equivalent timing diagram of a synchronous execution on an asynchronous system.(13)	BTL 1	Remember
3.	Show with an equivalent timing diagram of a asynchronous execution on a synchronous system.(13)	BTL 2	Understand
4.	Illustrate realizable with synchronous communication (RSC) execution.(13)	BTL 3	Apply
5.	i) Explain the hierarchy of execution classes. (7) ii) Examine the crown test to determine the existence of cyclic dependencies among messages.(6)	BTL 1	Remember
6.	Explain the channels to simulate an execution using asynchronous primitives on a synchronous system.(13)	BTL 4	Analyze

7.	Analyse the channels to simulate an execution using synchronous primitives on an asynchronous system.(13)	BTL 5	Evaluate
8.	Explain a simple algorithm defined by Bagrodia.13)	BTL 2	Understand
9.	Explain chandy and lamport algorithm (13)	BTL 1	Remember
10.	Examine the two possible executions of the snapshot algorithm for money transfer.(13)	BTL 3	Apply
11.	Examine the necessary and sufficient conditions for causal ordering. (13)	BTL 4	Analyze
12.	Analyze in detail about the centralized algorithm to implement total order and causal order of messages. (13)	BTL 4	Analyze
13.	Discuss in detail about the distributed algorithm to implement total order and causal order of messages. (13)	BTL 2	Understand
14.	i) Describe any two issues need to be addressed in recording of a consistent global snapshot of a distributed system.(7) ii) How to record a consistent global state of a distributed system with a banking example.(6)	BTL 1	Remember
	PART-C		
1	Create a simplified implementation of synchronous order. Develop the for the process Pi $,1 \le i \le n.(15)$	BTL 6	Create
2	Illustrate the asynchronous executions and of crowns. (a) Crown of size 2. (b) Another crown of size 2. (c) Crown of size 3. (15)	BTL 4	Analyze
3	Consider a distributed system where every node has its physical clock and all physical clocks are perfectly synchronized. Develop an algorithm to record global state assuming the communication network is reliable.(15)	BTL 5	Evaluate
4	What good is a distributed snapshot when the system was never in the state represented by the distributed snapshot? Give an application of distributed snapshots.(15)	BTL 5	Evaluate

UNIT III DISTRIBUTED MUTEX & DEADLOCK

SYLLABUS- Distributed mutual exclusion algorithms: Introduction – Preliminaries – Lamport's algorithm – Ricart-Agrawala algorithm – Maekawa's algorithm – Suzuki–Kasami's broadcast algorithm. Deadlock detection in distributed systems: Introduction – System model – Preliminaries – Models of deadlocks – Knapp's classification – Algorithms for the single resource model, the AND model and the OR model.

PART - A				
Q.No	Questions	BT Level	Competence	
1.	What are the three basic approaches for implementing distributed mutual exclusion?	BTL 1	Remember	
2	Explain idle token.	BTL 4	Analyze	
3	Discuss the conditions for maekawa's algorithm.	BTL 2	Understand	
4	List the three types of messages for Deadlock handling.	BTL 4	Analyze	
5	What is deadlock?	BTL 3	Apply	
6	Define the two design issues for suzuki–kasami's.	BTL 1	Remember	
7	How ricart–agrawala algorithm achieves mutual exclusion.	BTL 2	Understand	
8	Explain maekawa's algorithm achieves mutual exclusion.	BTL 4	Analyze	
9	Express in diagram the wait for graph (WFG).	BTL 2	Understand	
10	What are the states in a process.?	BTL 1	Remember	

11	Explain the three strategies for handling deadlocks.	BTL 5	Evaluate
12	What is broadcast algorithm?	BTL 1	Remember
13	Give the conditions to satisfy deadlock detection algorithm.	BTL 2	Understand
14	What is deadlock resolution?	BTL 1	Remember
15	Develop the facts of global state detection-based deadlock detection?	BTL 6	Create
16	Define the features of Mitchell and Merritt's algorithm.	BTL 1	Remember
17	Apply how maekawa's algorithm handles deadlocks?	BTL 3	Apply
18	Formulate the advantage of edge-chasing algorithms?	BTL 6	Create
19	List the four classes of knapp's classification of distributed deadlock detection algorithms.	BTL 5	Evaluate
20	Demonstrate the basic idea for Chandy–Misra–Haas algorithm.	BTL 3	Apply
	PART – B		
1.	 i) List and Explain the following properties to satisfy a mutual exclusion algorithm. (7) ii) What are the performance metrics of mutual exclusion algorithms? (6) 	BTL 1	Remember
2	Explain about the lamport distributed mutual exclusion algorithm.(13)	BTL 5	Evaluate
3	Illustrate with a case study explain ricart–agrawala algorithm. (13)	BTL 3	Apply
4	Analyze in detail about maekawa's quorum-based mutual exclusion algorithm. (13)	BTL 4	Analyze
5	i) State the Example of a WFG. (7) ii)Discuss the Issues in deadlock detection.(6)	BTL 2	Understand
6	Examine suzuki–kasami's broadcast algorithm.(13)	BTL 1	Remember
7	What is deadlock? Explain the models of deadlocks.(13)	BTL 4	Analyze
8	Formulate the mitchell and merritt's algorithm for the single-resource model. (13)	BTL 6	Create
9	Describe the distributed deadlock detection algorithms in detail. (13)	BTL 2	Apply
10	Conclude in brief about knapp's classification of distributed deadlock detection algorithms.(13)	BTL 4	Analyze
11	Briefly describe about the chandy–misra–haas algorithm for the AND model (13)	BTL 1	Remember
12	Define and explain the following: i) AND Model(3) ii) OR Model(3) iii) AND – OR Model(3) iv) (p/q) Model(4)	BTL 1	Remember
13	Express with neat sketch and explain chandy–misra–haas algorithm for the OR model.(13)	BTL 2	Understand
	i) Discuss on unrestricted model with necessary examples.(10)	BTL 3	Understand
14	ii) Discuss the single resource model.(3)		

1	Show that in the ricart–agrawala algorithm the critical section is accessed in increasing order of timestamp. Does the same hold in maekawa's algorithm?(15)	BTL 4	Analyze
2	What is the purpose of a REPLY message in lamport's algorithm? Note that it is not necessary that a site must always return a REPLY message in response to a REQUEST message. State the condition under which a site does not have to return REPLY message. Also, give the new message complexity per critical section execution in this case.(15)	BTL 5	Evaluate
3	Suppose all the processes in the system are assigned priorities which can be used to totally order the processes. Modify chand yet al.'s algorithm for the AND model so that when a process detects a deadlock, it also knows the lowest priority deadlocked process.(15)	BTL 4	Analyze
4	Consider the following simple approach to handle deadlocks in distributed systems by using "time-outs": a process that has waited for a specified period for a resource declares that it is deadlocked and aborts to resolve the deadlock. Explain what are the shortcomings of using this method?(15)	BTL 5	Evaluate

UNIT IV RECOVERY & CONSENSUS

SYLLABUS- Check **pointing and rollback recovery:** Introduction – Background and definitions – Issues in failure recovery – Checkpoint-based recovery – Log-based rollback recovery – Coordinated check pointing algorithm – Algorithm for asynchronous check pointing and recovery. **Consensus and agreement algorithms:** Problem definition – Overview of results – Agreement in a failure –free system – Agreement in synchronous systems with failures.

PART - A

Q.No	Questions	BT Level	Competence
1.	Define the terms: rollback propagation.	BTL 1	Remember
2	Describe local check pointing?	BTL 2	Understand
3	What is meant by "outside world process (OWP)."?	BTL 1	Remember
4	Point out the phases of min-process check pointing algorithms.	BTL 4	Analyze
5	Define rollback recovery.	BTL 1	Remember
6	Compare coordinated check pointing versus uncoordinated check pointing.	BTL 2	Understand
7	List the categories of checkpoint-based rollback-recovery techniques.	BTL 5	Evaluate
8	Give the use of piggybacking.	BTL 2	Understand
9	Formulate the different types of messages.	BTL 6	Create
10	Illustrate what is concurrency control? Give its use.	BTL 3	Apply
11	Point out the phases of min-process check pointing algorithms	BTL 4	Analyze
12	Define Z-dependency.	BTL 1	Remember
13	Discuss the two types of log storage?	BTL 2	Understand
14	What are the two kinds of checkpoints for checkpoint algorithm?	BTL 1	Remember
15	Explain the two types of communication-induced check pointing?	BTL 4	Analyze

16	State the notation and data structure for recovery algorithm.	BTL 1	Remember
17	Relate between the agreement problem and the consensus problem.	BTL 3	Apply
18	State the conditions for byzantine agreement problem.	BTL 6	Create
19	Explain agreement.	BTL 5	Evaluate
20	Illustrate authenticated vs. non-authenticated messages.	BTL 3	Apply
	PART - B		
1.	What is rollback? and explain the several types of messages for rollback. (13)	BTL 1	Remember
2	Examine briefly about global states with examples. (13)	BTL 4	Analyze
3	Describe the issues involved in a failure recovery with the help of a distributed computation. (13)	BTL 2	Understand
4	Elaborate the various checkpoint-based rollback-recovery techniques.(13)	BTL 6	Create
5	Describe the pessimistic logging , optimistic logging and casual logging.(13)	BTL 4	Analyze
6	i) What are min-process check pointing algorithms? Explain it detail.(7) ii) Examine Deterministic and non-deterministic events. (6)	BTL 1	Remember
7	i) Summarize the koo–toueg coordinated check pointing algorithm.(7) ii) Explain the rollback recovery algorithm. (6)	BTL 2	Understand
8	Demonstrate in detail about the juang-venkatesan algorithm for asynchronous check pointing and recovery.(13)	BTL 3	Apply
9	Discuss in detail about some assumptions underlying the study of agreement algorithms. (13)	BTL 1	Remember
10	What is byzantine agreement problem? Explain the two popular flavours of the byzantine agreement problem.	BTL 2	Understand
11	Develop an overview of the results and lower bounds on solving the consensus problem under different assumptions.	BTL 3	Apply
12	Explain agreement in (message-passing) synchronous systems with failures.(13)	BTL 5	Evaluate
13	Give byzantine agreement tree algorithm and illustrate with an example. (13)	BTL 1	Remember
14	Analyze on phase-king algorithm for consensus.(13)	BTL 4	Analyze
	PART-C		
1	Design a system model of distributed system consisting of four processes and explain the interactions with the outside world.(15)	BTL 6	Create
2	Explain with examples of consistent and inconsistent states of a distributed system.(15)	BTL 5	Evaluate

3	Consider the following simple check pointing algorithm. A process takes a local checkpoint right after sending a message. Create that the last checkpoint at all processes will always be consistent. What are the trade-offs with this method?(15)	BTL 6	Create
4	Give and analyse a rigorous proof of the impossibility of a min- process, non blocking check pointing algorithm.(15)	BTL 4	Analyze

UNIT V - P2P & DISTRIBUTED SHARED MEMORY

SYLLABUS- Peer-to-peer computing and overlay graphs: Introduction – Data indexing and overlays – Chord – Content addressable networks – Tapestry. **Distributed shared memory:** Abstraction and advantages – Memory consistency models –Shared memory Mutual Exclusion.

	PART – A				
Q.No	Questions	BT Level	Competence		
1.	Define churn.	BTL 1	Remember		
2	Classify the characteristics of peer to peer system.	BTL 3	Apply		
3	What are the performance features of P2P systems?	BTL 1	Remember		
4	Draw the pictorial representation of distributed hash table scheme.	BTL 1	Remember		
5	List the P2P overlay and its types	BTL 1	Remember		
6	What are the two steps involved in chord protocol?	BTL 1	Remember		
7	Discuss content addressable networks (CAN)?	BTL 6	Create		
8	List the three core components of a CAN design.	BTL 1	Remember		
9	Analyze the three basic operations which supports CAN.	BTL 4	Analyze		
10	Examine the performance factors for CAN Optimizations?	BTL 4	Analyze		
11	Explain distributed shared memory.	BTL 2	Understand		
12	Measure the properties of weak consistency.	BTL 5	Evaluate		
13	Assess memory consistency model.	BTL 5	Evaluate		
14	Give memory coherence.	BTL 2	Understand		
15	Show the detailed abstract view of DSM	BTL 3	Apply		
16	Discuss the two instructions to perform hardware support for mutual exclusion.	BTL 2	Understand		
17	Point out the three requirements of the critical section problem.	BTL 4	Analyze		
18	Show how to provide barrier synchronization in release consistency?	BTL 3	Apply		
19	Discuss the three properties of weak consistency.	BTL 2	Understand		
20	What is entry consistency?	BTL 6	Create		
	PART - B		,		
1.	i) What is meant by napster legacy? Explain.(7)ii) Give a brief account on Indexing mechanisms. (6)	BTL 1	Remember		

2	Explain the structured overlays and unstructured overlays in distributed indexing. (13)	BTL 5	Evaluate
3	Examine the chord protocol with simple key lookup algorithm.(13)	BTL 4	Analyze
4	Illustrate in detail about A scalable object location algorithm in chord.(13)	BTL 3	Apply
5	Discuss on managing churn in chord.(13)		Create
6	Describe briefly about the following: i) Content-Addressable Network (CAN) initialization (6) ii) CAN routing (7).	BTL 2	Understand
7	Point out tapestry P2P overlay network and its routing with an example. (13)	BTL 4	Analyze
8	Discuss the CAN maintenance and CAN optimizations. (13)	BTL 2	Understand
9	State about the consistency models: entry consistency, weak consistency, and release consistency.(13)	BTL 1	Remember
10	Summarize in detail how node insertion and node deletion are applied in tapestry. (13)	BTL 2	Understand
11	i)Illustrate the advantages and disadvantages of DSM.(6) ii) Point out the main issues in designing a DSM system (7)	BTL 3	Apply
12	Examine how to implement linearizability (LIN) using total order broadcasts.(13)	BTL 1	Remember
13	Analyse how to implement Sequential consistency in a distributed system.(13)	BTL 4	Analyze
14	Describe lamport's bakery algorithm lamport's WRWR mechanism and fast mutual exclusion. (13)	BTL 1	Remember
	PART C		
1	User 'A' in delhi wishes to send a file for printing to user 'B' in florida, whose system is connected to a printer; while user 'C' from tokyo wants to save a video file in the hard disk of user 'D' in london. Analyze and discuss the required peer-to-peer network architecture.(15)	BTL 4	Analyze
2	Evaluate a formal proof to justify the correctness of algorithm that implements sequential consistency using local read operations.(15)	BTL 5	Evaluate
3	Develop a detailed implementation of causal consistency, and provide a correctness argument for your implementation.(15)	BTL 6	Create

	ine the steps for the query: lookup (K8) initiated at node 28, own in Figure for simple key lookup algorithm.(15) N119 N119 N119 N119 N119 N119 N119 N1	BTL 5	Evaluate
--	--	-------	----------

