DETERMINIZING FIELDS

ROSS TATE

CEYLON: INTERSECTION TYPES

$$\frac{t_i <: t'}{t_1 \cap t_2 <: t'}$$

$$\frac{t <: t'_1 \quad t <: t'_2}{t <: t'_1 \cap t'_2}$$

instr:
$$[t_i^*] \rightarrow [t_o^*]$$
 and instr: $[t_i^*] \rightarrow [t_o'^*]$ implies instr: $[t_i^*] \rightarrow [(t_o \cap t_o')^*]$

Restores principal typing for instructions

INTERSECTION TYPES AND EQUI-RECURSIVE TYPES

Non-Deterministic Equi-Recursive Subtyping

Non-Deterministic Finite Automata Simulation

PSPACE-Complete

Quadratic Time

ITALX: CONCRETE UPPER BOUNDS

- iTalX is a typed assembly language for C#
 - Fields are accessed via numeric offsets.
 - Field type of Instance(α) determined by *concrete* upper bound of α
 - E.g. String or other C# class types
- If α has multiple concrete upper bounds, then either
 - One dominates all others (due to single inheritance of classes)
 - α cannot exist and we can determine the state is unreachable (\perp)

Relies on total knowledge of class hierarchy

Ensures principal types for fields

JVM/CLI: NOMINAL FIELDS

- Instruction specifies a "nominal" field identifier (rather than an offset)
- Field identifier specifies a receiver class and a field type
 - Generics: field type might refer to type parameters of receiver class
- Instruction checks if receiver has specified class, resulting in specified field type
 - Generics: substitutes receiver's type arguments for that class
- Geneircs: Multiple upper bounds can cause receiver to have multiple sets of type arguments for a given class
 - Principle-instantiation inheritance lets one combine sets of type arguments
 - Equivalence constraints for invariant parameters, intersection types for covariant parameters, union types for contravariant parameters

Ensures principal types for fields

SOIL PROPOSAL: REFINABLE NOMINAL FIELDS

Need to revisit limited use cases for alternative design solutions

- Subclasses can refine read-only field types
- Multiple upper bounds: which refinement to use? <</p>

Non-determinism returns!