

Precision 500 mA regulators

Datasheet - production data

Features

- Output current to 0.5 A
- Output voltages of 5; 6; 8; 9; 10; 12; 15; 24 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- Output voltage tolerance: 2% (AB and AC versions) or 4% (C version)
- Guaranteed in extended temperature range

Description

The L78M series of three-terminal positive regulators is available in TO-220, TO-220FP, DPAK and IPAK packages and with several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shutdown and safe area protection, resulting it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

Contents L78M

Contents

1	Diagram 3
2	Pin configuration 4
3	Maximum ratings
4	Test circuits 6
5	Electrical characteristics 7
6	Typical performance
7	Applications information247.1 Design considerations24
8	Package mechanical data
9	Packaging mechanical data
10	Order codes
11	Revision history

L78M Diagram

1 Diagram

Figure 1. Block diagram

Pin configuration L78M

2 Pin configuration

Figure 2. Pin connections (top view)

Figure 3. Schematic diagram

L78M Maximum ratings

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter		Value	Unit
V	DC input voltage	for V _O = 5 to 18 V	35	V
V _I	DC input voltage	for V _O = 20, 24 V	40]
Io	Output current		Internally limited	mA
P _D	Power dissipation		Internally limited	mW
T _{STG}	Storage temperature range		- 65 to 150	°C
		for L78MxxAC	0 to 125	
T _{OP}	Operating junction temperature range	for L78MxxAB	-40 to 125	°C
		for L78MxxC	0 to 150	

Note:

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK	IPAK	Unit
R _{thJC}	Thermal resistance junction-case	5	5	8	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	60	100	100	°C/W

Figure 4. Application circuit

Test circuits L78M

4 Test circuits

Figure 5. DC parameter

Figure 6. Load regulation

Figure 7. Ripple rejection

Refer to the test circuits, T_J = 25 °C, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 3. Electrical characteristics of L78M05C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		4.8	5	5.2	V
V _O	Output voltage	I _O = 5 to 350 mA, V _I = 7 to 20 V	4.75	5	5.25	V
ΔV _O	Line regulation	$V_1 = 7 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}$			100	- mV
740		$V_1 = 8 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			50	1110
۸٧,-	ΔV _O Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			100	mV
ΔνΟ		I_O = 5 to 200 mA, T_J = 25 °C			50	IIIV
I _d	Quiescent current				6	mA
AI.	Quiescent current change	I _O = 5 to 350 mA			0.5	- mA
Δl _d	Quiescent current change	I_{O} = 200 mA, V_{I} = 8 to 25 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 8 \text{ to } 18 \text{ V, f} = 120 \text{ Hz, I}_O = 300 \text{ mA}$	62			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		40		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		300		mA

Refer to the test circuits, V_I = 10 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 4. Electrical characteristics of L78M05A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	4.9	5	5.1	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 7 \text{ to } 20 \text{ V}$	4.8	5	5.2	V
4)/	Line regulation	$V_{I} = 7 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			100	m\/
ΔV _O	Line regulation	$V_{I} = 8 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			50	mV
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			100	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			50	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
41	Quippont current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 8 to 25 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 8 \text{ to } 18 \text{ V, f} = 120 \text{ Hz, I}_O = 300 \text{ mA,}$ $T_J = 25^{\circ}\text{C}$	62			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		40		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		300		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 5. Electrical characteristics of L78M06C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		5.75	6	6.25	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 8 \text{ to } 21 \text{ V}$	5.7	6	6.3	٧
A)/	Co Line regulation	V _I = 8 to 25 V, I _O = 200 mA			100	mV
ΔV _O		$V_1 = 9 \text{ to } 25 \text{ V}, I_0 = 200 \text{ mA}$			50	IIIV
ΔV_{O}	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			120	mV
	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			60	1117
I _d	Quiescent current				6	mA
AI.	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I_{O} = 200 mA, V_{I} = 9 to 25 V			0.8	ША
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_1 = 9 \text{ to } 19 \text{ V, f} = 120 \text{ Hz, I}_O = 300 \text{ mA}$	59			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		45		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		270		mA

Refer to the test circuits, V_I = 11 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 6. Electrical characteristics of L78M06A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	5.88	6	6.12	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 8 \text{ to } 21 \text{ V}$	5.75	6	6.3	V
41/	Contract Line regulation	$V_I = 8 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			100	mV
ΔV _O		$V_{I} = 9 \text{ to } 25 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			30	IIIV
AV/ -	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			120	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			60	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quippent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 9 to 25 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 9 \text{ to } 19 \text{ V, f} = 120 \text{ Hz, I}_O = 300 \text{ mA,}$ $T_J = 25^{\circ}\text{C}$	59			dB
eN	Output noise voltage	B =10 Hz to 100 kHz		45		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		270		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 7. Electrical characteristics of L78M08C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		7.7	8	8.3	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 10.5 \text{ to } 23 \text{ V}$	7.6	8	8.4	V
4)/	Line regulation	V _I = 10.5 to 25 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 11 to 25 V, I _O = 200 mA			50	IIIV
A)/	Load regulation	I_{O} = 5 to 500 mA, T_{J} = 25 °C			160	mV
ΔνΟ	ΔV _O Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			80	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 10.5 to 25 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz, I _O = 300 mA	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		52		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

Refer to the test circuits, V_I = 14 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 8. Electrical characteristics of L78M08A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	7.84	8	8.16	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 10.5 \text{ to } 23 \text{ V}$	7.7	8	8.3	V
ΔV _O	Line regulation	$V_I = 10.5 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA},$ $T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 11 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			160	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			80	1110
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	m A
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 10.5 to 25 V			0.8	mA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 11.5 to 21.5 V, f = 120 Hz I _O = 300 mA, T _J = 25°C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		52		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	T _J = 25°C, V _I = 35 V		250		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 9. Electrical characteristics of L78M09C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage		8.65	9	9.35	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 11.5 \text{ to } 24 \text{ V}$	8.55	9	9.45	V
4)/	Line regulation	V _I = 11.5 to 25 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 12 to 25 V, I _O = 200 mA			50	IIIV
4)/	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			180	mV
ΔV_{O}	AV _O Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			90	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 12.5 \text{ to } 23 \text{ V, f} = 120 \text{ Hz,}$ $I_O = 300 \text{ mA}$	56			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		58		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		250		mA

Refer to the test circuits, V_I = 15 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 10. Electrical characteristics of L78M09A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	8.82	9	9.18	V
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 11.5 \text{ to } 24 \text{ V}$	8.64	9	9.36	V
ΔV _O	Line regulation	$V_I = 11.5 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA},$ $T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 12 \text{ to } 25 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			180	mV
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			90	1110
I _d	Quiescent current	T _J = 25°C			6	mA
4.1	Quiescent current change	I _O = 5 to 350 mA			0.5	m A
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 11.5 to 25 V			0.8	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	V _I = 12.5 to 23 V, f = 120 Hz, I _O = 300 mA, T _J = 25°C	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		52		μV
V _d	Dropout voltage	T _J = 25°C		2		V
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		250		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Refer to the test circuits, V_I = 16 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 11. Electrical characteristics of L78M10A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage	T _J = 25°C	9.8	10	10.2	V
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 12.5 to 25 V	9.6	10	10.4	٧
ΔV _O	Line regulation	$V_I = 12.5 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$			100	mV
		$V_I = 13 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30	
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			200	mV
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			100	IIIV
I _d	Quiescent current	T _J = 25°C			6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 12.5 to 30 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-0.5		mV/°C
SVR	Supply voltage rejection	$V_I = 13.5 \text{ to } 24 \text{ V, f} = 120 \text{ Hz,}$ $I_O = 300 \text{ mA, } T_J = 25^{\circ}\text{C}$	56			dB
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		64		μV
V _d	Dropout voltage	T _J = 25°C		2		٧
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		245		mA
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA

Refer to the test circuits, T_J = 25 °C, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 12. Electrical characteristics of L78M12C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		11.5	12	12.5	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 14.5 \text{ to } 27 \text{ V}$	11.4	12	12.6	V
4)/	Line regulation	V _I = 14.5 to 30 V, I _O = 200 mA			100	mV
ΔV_{O}	Line regulation	V _I = 16 to 30 V, I _O = 200 mA			50	IIIV
4)/	Load regulation	I_O = 5 to 500 mA, T_J = 25 °C			240	m\/
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			120	mV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	$V_1 = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_0 = 300 \text{ mA}$	55			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		75		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 19 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 13. Electrical characteristics of L78M12A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	11.75	12	12.25	V	
Vo	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 14.5 \text{ to } 27 \text{ V}$	11.5	12	12.5	V	
ΔV_{O}	Line regulation	$V_I = 14.5 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$			100	mV	
		$V_I = 16 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30		
4)/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			240	mV	
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			120	IIIV	
I _d	Quiescent current	T _J = 25°C			6	mA	
4.1	Quiescent current change	I _O = 5 to 350 mA			0.5	m A	
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 14.5 to 30 V			0.8	— mA	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
SVR	Supply voltage rejection	$V_I = 15 \text{ to } 25 \text{ V}, f = 120 \text{ Hz}, I_O = 300 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$	55			dB	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		75		μV	
V _d	Dropout voltage	T _J = 25°C		2		V	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA	
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA	

Refer to the test circuits, T_J = 25 °C, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 14. Electrical characteristics of L78M15C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		14.4	15	15.6	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 17.5 \text{ to } 30 \text{ V}$	14.25	15	15.75	V
AV/ -	Line regulation	V _I = 17.5 to 30 V, I _O = 200 mA			100	mV
ΔV_{O}	Line regulation	V _I = 20 to 30 V, I _O = 200 mA			50	IIIV
AV/ -	Load regulation	I_{O} = 5 to 500 mA, T_{J} = 25 °C			300	mV
ΔV_{O}	Load regulation	I_O = 5 to 200 mA, T_J = 25 °C			150	IIIV
I _d	Quiescent current				6	mA
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	$I_O = 5$ mA, $T_J = 0$ to 125 °C		-1		mV/°C
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 300 mA	54			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		90		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 23 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 15. Electrical characteristics of L78M15A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	T _J = 25°C	14.7	15	15.3	V	
Vo	Output voltage	I _O = 5 to 350 mA, V _I = 17.5 to 30 V	14.4	15	15.6	V	
ΔV _O	Line regulation	$V_I = 17.5 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, $ $T_J = 25^{\circ}\text{C}$			100	mV	
		$V_I = 20 \text{ to } 30 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			30		
41/	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			300	m\/	
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			150	- mV	
I _d	Quiescent current	T _J = 25°C			6	mA	
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mΛ	
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 17.5 to 30 V			0.8	mA	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1		mV/°C	
SVR	Supply voltage rejection	V _I = 18.5 to 28.5 V, f = 120 Hz, I _O = 300 mA, T _J = 25°C	54			dB	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		90		μV	
V _d	Dropout voltage	T _J = 25°C		2		V	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA	
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA	

Refer to the test circuits, T_J = 25 °C, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F unless otherwise specified.

Table 16. Electrical characteristics of L78M24C

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _O	Output voltage		23	24	25	V
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 27 \text{ to } 38 \text{ V}$	22.8	24	25.2	V
A\/ -	Line regulation	V _I = 27 to 38 V, I _O = 200 mA			100	mV
ΔV _O	Line regulation	V _I = 28 to 38 V, I _O = 200 mA			50	IIIV
A\/ -	Load regulation	I_{O} = 5 to 500 mA, T_{J} = 25 °C			480	m\/
ΔV _O	Load regulation	I _O = 5 to 200 mA, T _J = 25 °C			240	mV
I _d	Quiescent current				6	mA
Al	Quippont current change	I _O = 5 to 350 mA			0.5	mA
ΔI_d	Quiescent current change	I _O = 200 mA, V _I = 27 to 38 V			0.8	IIIA
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA, T _J = 0 to 125 °C		-1.2		mV/°C
SVR	Supply voltage rejection	$V_1 = 28 \text{ to } 38 \text{ V}, f = 120 \text{ Hz}, I_O = 300 \text{ mA}$	50			dB
eN	Output noise voltage	B = 10 Hz to 100 kHz		170		μV
V _d	Dropout voltage			2		V
I _{sc}	Short circuit current	V _I = 35 V		240		mA

Refer to the test circuits, V_I = 33 V, I_O = 350 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, T_J = -40 to 125 °C (AB), T_J = 0 to 125 °C (AC) unless otherwise specified.

Table 17. Electrical characteristics of L78M24A

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _O	Output voltage	T _J = 25°C	23.5	24	24.5	V	
V _O	Output voltage	$I_{O} = 5 \text{ to } 350 \text{ mA}, V_{I} = 27 \text{ to } 38 \text{ V}$	23	24	25	V	
4)/	Line regulation	$V_I = 27 \text{ to } 38 \text{ V}, I_O = 200 \text{ mA}, T_J = 25^{\circ}\text{C}$			100	mV	
ΔV_{O}	Line regulation	$V_{I} = 28 \text{ to } 38 \text{ V}, I_{O} = 200 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			30	IIIV	
AV/ -	Load regulation	I _O = 5 to 500 mA, T _J = 25°C			480	mV	
ΔV_{O}	Load regulation	I _O = 5 to 200 mA, T _J = 25°C			240	IIIV	
I _d	Quiescent current	T _J = 25°C			6	mA	
Al	Quiescent current change	I _O = 5 to 350 mA			0.5	mA	
Δl _d	Quiescent current change	I _O = 200 mA, V _I = 27 to 38 V			0.8	IIIA	
$\Delta V_O/\Delta T$	Output voltage drift	I _O = 5 mA		-1.2		mV/°C	
SVR	Supply voltage rejection	$V_I = 28 \text{ to } 38 \text{ V}, f = 120 \text{ Hz}, I_O = 300 \text{ mA}, $ $T_J = 25 ^{\circ}\text{C}$	50			dB	
eN	Output noise voltage	B =10 Hz to 100 kHz, T _J = 25°C		170		μV	
V _d	Dropout voltage	T _J = 25°C		2		V	
I _{sc}	Short circuit current	V _I = 35 V, T _J = 25°C		240		mA	
I _{scp}	Short circuit peak current	T _J = 25°C		700		mA	

Typical performance L78M

6 Typical performance

Figure 8. Dropout voltage vs. junction temp.

Figure 9. Dropout characteristics

Figure 10. Peak output current vs. input-output differential voltage

Figure 11. Output voltage vs. junction temperature

22/46 DocID2146 Rev 20

L78M Typical performance

Figure 12. Supply voltage rejection vs. frequency

Figure 13. Quiescent current vs. junction temperature

Figure 14. Load transient response

Figure 15. Line transient response

Figure 16. Quiescent current vs. input voltage

7 Applications information

7.1 Design considerations

The L78M series of fixed voltage regulators are designed with thermal overload protection that shuts down the circuit when subjected to an excessive power overload condition, internal short-circuit protection that limits the maximum current the circuit will pass, and output transistor safe-area compensation that reduces the output short-circuit as the voltage across the pass transistor is increased. In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

 $V_{1} \circ V_{0}$ $C_{1} = 0.33 \mu F$ $C_{0} = 0.1 \mu F$

DocID2146 Rev 20

Figure 17. Fixed output regulator

Note:

Although no output capacitor is need for stability, C_0 improve transient response if present. C_1 is required if regulator is located an appreciable distance from power supply filter.

577

 $I_{O} = V_{XX}/R_{1}+I_{d}$ $I_{O} = V_{XX}/R_{1}+I_{d}$ $I_{O} = V_{XX}/R_{1}+I_{d}$ $I_{O} = V_{XX}/R_{1}+I_{d}$

Figure 18. Constant current regulator

Figure 19. Circuit for increasing output voltage

Figure 20. Adjustable output regulator (7 to 30 V)

47/

Figure 21. 0.5 to 10 V regulator

Figure 22. High current voltage regulator

Figure 23. High output current with short circuit protection

57/

Figure 24. Tracking voltage regulator

Figure 25. High input voltage circuit

Figure 26. Reducing power dissipation with dropping resistor

Figure 27. Power AM modulator (unity voltage gain, $I_0 \le 0.5$)

Note: The circuit performs well up to 100 kHz.

Figure 28. Adjustable output voltage with temperature compensation

Note: Q_2 is connected as a diode in order to compensate the variation of the Q_1 V_{BE} with the temperature. C allows a slow rise time of the V_O .

57/

8 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 29. TO-220 (single gauge) drawing

Table 18. TO-220 (single gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	0.51		0.60
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 30. TO-220 (dual gauge) drawing

Table 19. TO-220 (dual gauge) mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 31. TO-220FP drawing

Table 20. TO-220FP mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
Α	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
E	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

E -THERMAL PAD c2 - *E1* L2 Ď1 Н L4 A 1 <u>b(</u>2x) R e 1-С SEATING PLANE <u>A2</u> (L1) *V2* 0068772_P

Figure 32. DPAK drawing

Table 21. DPAK mechanical data

	mm					
Dim.		T	T			
	Min.	Тур.	Max.			
Α	2.20		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	5.20		5.40			
С	0.45		0.60			
c2	0.48		0.60			
D	6.00		6.20			
D1		5.10				
E	6.40		6.60			
E1		4.70				
е		2.28				
e1	4.40		4.60			
Н	9.35		10.10			
L	1.00		1.50			
(L1)		2.80				
L2		0.80				
L4	0.60		1.00			
R		0.20				
V2	0°		8°			

Figure 33. DPAK footprint (a)

a. All dimensions are in millimeters

"GATE" Note 6 Ε c2 *L2* D L4 A 1 Note 7 <u>b(</u>2x) – e 1-CSEATING PLANE A2 *V2* GAUGE PLANE 0,25 0068772_P_F

Figure 34. DPAK type F drawing

Table 22. DPAK (TO-252) type F mechanical data

Dim		mm				
Dim.	Min.	Тур.	Max.			
Α	2.18		2.40			
A1	0.90		1.10			
A2	0.03		0.23			
b	0.64		0.90			
b4	4.95		5.46			
С	0.46		0.61			
c2	0.46		0.60			
D	5.97		6.22			
E	6.35		6.73			
e1	4.40		4.70			
Н	9.35		10.34			
L	1.00		1.78			
L2			1.27			
L4	0.60		1.02			
V2	0°		8°			

Figure 35. IPAK drawing - Eb4-L2 , D L1 *b2 (3x)* Н **b** (3x) V1 -*B5*

0068771_K

-e1—

Table 23. IPAK mechanical data

DIM		mm.	
Dilli	min.	typ.	max.
А	2.20		2.40
A1	0.90		1.10
b	0.64		0.90
b2			0.95
b4	5.20		5.40
B5		0.30	
С	0.45		0.60
c2	0.48		0.60
D	6.00		6.20
Е	6.40		6.60
е		2.28	
e1	4.40		4.60
Н		16.10	
L	9.00		9.40
L1	0.80		1.20
L2		0.80	1.00
V1		10°	

9 Packaging mechanical data

Top cover tolerance on tape +/- 0.2 mm

Top co

Figure 36. Tape for DPAK and D²PAK

Figure 37. Reel for DPAK and D²PAK

Table 24. DPAK and D²PAK tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
	Min.	Max.		Min.	Max.	
A0	6.8	7	Α		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1				
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Order codes L78M

10 Order codes

Table 25. Order codes

Order codes						
TO-220 (single gauge)	TO-220 (dual gauge)	TO-220FP	DPAK	IPAK	Output voltages	
L78M05ABV	L78M05ABV-DG		L78M05ABDT-TR		5 V	
			L78M05ACDT-TR			
L78M05CV	L78M05CV-DG	L78M05CP	L78M05CDT-TR	L78M05CDT-1	5 V	
			L78M06ABDT-TR		6 V	
			L78M06CDT-TR		6 V	
			L78M08ABDT-TR		8 V	
L78M08CV	L78M08CV-DG		L78M08CDT-TR		8 V	
			L78M09ABDT-TR		9 V	
L78M09CV	L78M09CV-DG		L78M09CDT-TR		9 V	
			L78M10ABDT-TR		10 V	
			L78M12ABDT-TR		12 V	
			L78M12ACDT-TR		12 V	
L78M12CV	L78M12CV-DG		L78M12CDT-TR		12 V	
L78M15ABV	L78M15ABV-DG		L78M15ABDT-TR		15 V	
L78M15CV	L78M15CV-DG		L78M15CDT-TR		15 V	
			L78M24ABDT-TR		24 V	
			L78M24ACDT-TR		24 V	
L78M24CV	L78M24CV-DG		L78M24CDT-TR		24 V	

L78M Revision history

11 Revision history

Table 26. Document revision history

Date	Revision	Changes		
21-Jun-2004	6	Document updating.		
30-Aug-2006 7		Order codes updated.		
29-Nov-2006 8		DPAK mechanical data updated and add footprint data.		
06-Jun-2007	9	Order codes updated.		
10-Dec-2007 10		Added Table 25.		
19-Feb-2008 11		Modified: Table 25 on page 44.		
15-Jul-2008	12	Modified: Table 25 on page 44 and Table 26 on page 45.		
07-Apr-2009	13	Modified: Figure 9 on page 22 and Figure 15 on page 23.		
14-Jun-2010 14		Added: Table 18 on page 26, Figure 29 on page 27, Figure 30 on page 28, Figure 31 and Figure 32 on page 29.		
11-Nov-2010	15	Modified: R _{thJC} value for TO-220 <i>Table 2 on page 5</i> .		
08-Feb-2012 16		Added: order codes L78M05CV-DG, L78M12CV-DG and L78M15CV-DG Table 25 on page 44.		
09-Mar-2012	17	Added: order codes L78M08CV-DG and L78M09CV-DG Table 25 on page 44		
15-May-2012	18	Added: order codes L78M24CV-DG Table 25 on page 44.		
19-Apr-2013	19	Removed: Available on request footnote 2 Table 25 on page 44.		
04-Jun-2014	20	Part numbers L78MxxAB, L78MxxAC and L78MxxC changed to L78M. Updated the title and the features in cover page. Cancelled Table 1.Device summary. Updated Section 3: Maximum ratings, Section 5: Electrical characteristics, Section 6: Typical performance and Section 8: Package mechanical data. Added Section 7: Applications information and Section 9: Packaging mechanical data. Minor text changes.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time without notice

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

