VEHICLE DETECTION AND TRACKING USING KALMAN FILTER

1D- 0

1 - D Model:

My project VEHICLE DETECTION TRACKING

- Proces: o Initializes a detecte and a brocker
 - @ Next, the detected localines the vehicles in each video frame
 - 1 The knowku is then updated with edetection results.
 - 1 Tinally the knocka results are annotated and displayed in a video frame

* Model used

we use a pre-learned mobilenet-coco madel

A single stage object eletection model that goes straight from image pixels to bounding box co-dolinates and class. Probabilities

Trained with (MS-coco) clataset: a clataset for image recognition, Agmentation and captioning, consisting of > 3 00000 images and so obj classes

Equations.

fosition:
$$\chi_{k} = \chi_{k-1} + \dot{\chi}_{k-1} \Delta t + \frac{1}{2} \dot{\chi}_{k-1} (\Delta t)^{2}$$

velocity:
$$\dot{\chi}_{\mathcal{K}} = \dot{\chi}_{\mathcal{K}-1} + \ddot{\chi}_{\mathcal{K}-1}(\Delta t)$$

Since the state vector 16 200 contains the position and velocity, we can model the example as

$$\mathbf{X}_{K} = \begin{bmatrix} \mathbf{x}_{K} \\ \dot{\mathbf{x}}_{K} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{K-1} + \dot{\mathbf{x}}_{K-1} \Delta t + \frac{1}{2} \ddot{\mathbf{x}}_{K-1} (\Delta t)^{2} \\ \dot{\mathbf{x}}_{K-1} + \ddot{\mathbf{x}}_{K-1} \Delta t \end{bmatrix}$$

This linear equation can be written in matrix form as $P_{K} \left[\begin{array}{c} X_{K} \\ \dot{x}_{K} \end{array} \right] = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{K-1} \\ \dot{x}_{K-1} \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \left(\Delta t \right)^{2} \\ \dot{x}_{K-1} \end{bmatrix} \ddot{x}_{K-1} + W_{K}$ This can also be written cas: $P_{K}(X_{K}) = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} X_{K-1} + \begin{bmatrix} \frac{1}{2} (\Delta t)^{2} \\ 0 & 1 \end{bmatrix} \hat{\chi}_{K-1} + \hat{\chi}_{K}$ $\longrightarrow 0 \qquad \text{to avoid}$ $\longrightarrow 0 \qquad \text{confusion}.$ We already know that The Kalman fitter is intended to estimate the state of a system at time 'K' using a linear stochastic difference equation cassuming that the Islate of a system at a time 'k' evolved from the prior state no iss state matrix $X_{K} = A \times_{K-1} + B \times_{K-1} + W_{K-1}$ and cat time K-1 can be written as It is always paired with the measurement control input matrix to the optional control input ukmodel ZK that idescribes a relationship between Equation given as $Z_K = HX_K + V_K$ $\Rightarrow 3$ transformation matrix that $X_K = C_K X_K Y_K$ measurement noise the measurement domain $X_{K+1} = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix} X_K + \begin{bmatrix} \frac{1}{2} \Delta t^2 \\ \Delta t \end{bmatrix} U_K + U_K$ * From Eq O and O, A=[1 st] control: UK = aK $B = \left[\frac{1}{2} \left(\Delta t^2 \right) \right]$ * From B, $Z_K = [i \quad o] \begin{bmatrix} a_K \\ \dot{a}_K \end{bmatrix} + V_K$ Noise: WK : H = [1 0]

(10)

R is a scalar and is equal to the variance of the measurement noise. $R = \sqrt{2}$

* Measurement of Noise Covariance matrix: (R)

2 - D MODEL:

Transformation mat xix . H : [0 0 0 0] Dopplers effect, which 14 considered 19 Ausplane and Satellite toacking system

Process noise covariance matrix

where, of is magnitude of sound darivation of the acceleration those is basically the pocess moise communic matrix

Measurement noise covariance matrix

In 2D, We suppose that both measurement positions a and y are independent. : covariance $\frac{1}{2}$ we and $\frac{1}{2}$ = 0 we look at only the variance in $\frac{1}{2}$ and $\frac{1}{2}$

PREDICTION AND UPDATION:

*	Prediction iquation: In time update equation we calculate the predicta estimate (a priori state estimate) $\hat{\mathcal{R}}_{\kappa}$ and predicted error covariance (a priori end covariance estimate) $\hat{\mathcal{R}}_{\kappa}$ where $\hat{\mathcal{R}}_{\kappa}$ is previous estimated state estimate) Exist covariance makin $ \hat{\mathcal{R}}_{\kappa} = A \hat{\mathcal{R}}_{\kappa-1} + B u_{\kappa-1} $ where $\hat{\mathcal{R}}_{\kappa-1}$ is the previous estimated state estimated state estimated state estimated state estimated state estimated state estimated evaluations.
*	Updote equation : We campute Kalman gain as:
	Measurement residual $(z_{K} - H\hat{x}_{K})$ where, z_{K} is actual/free measurement $H\hat{x}_{K}$ is previous estimated measurement λ_{K} is previous estimated λ_{K} is previous estimated λ_{K} measurement λ_{K} λ_{K} is previous estimated λ_{K}
	ypdated even covariance (P_K) $P_K = (I - K_K H) P_K$ where I is an identity matrix

	(n pto g)
* Examining End:	
Gaussian is characterized by two primited of the Gaussian, variance	anometers: $mean(m\mu)$ and (σ^2)
The quadratic difference In	query point & cand relative to u is,
$g(x) = c \cdot e^{-\frac{1}{2}(\frac{\chi - \mu}{\sigma})^2}$	
The lask in KF is to mountain u the location of the object we	i and σ^2 as but estimate of are trying to find.
* The KF represents and distributions by Gaussians and motion iterations over two different things:	MEASUREMENT UPDATES (Collector equations) With a product Time update (predictor MOTION UPDATES ** Involves ** Involves ** Involves ** Involves ** Involves ** Invol
	performing a
* Designing a KF: to time step	matrix (state transition) matrix (acceleration
Initial stage -> Previous state	-> NEW predicted state
X_0, P_0 X_{t-1}, P_{t-1}	$X_t^{\bullet} = AX_{t-1} + Bu_t + W_t$
Xo = state matria Po = Process cov. matria	Pt = APt-1 AT + Q1
1 Repeat	P = malria has been updated with a new prediction
	Calculate K Gain(K) and measureds
$X_{t} = X_{t-1}$ $P_{t} = P_{t-1}$	$K = \frac{P_t^P H^T}{H P_t^P H^T + R}, \forall t = C Y_t^m + 2$
Current state	vpolate process and state meters
becomes previous state	Pt = (I - KH) Pt P
	$X_t = X_t^P + K[Y - HX_t^P]$

VEHICLE DETECTION PROJECT:

