Semántica Distribucional

Word Embeddings

Semántica Distribucional

- Busca cuantificar y categorizar la similitud entre elementos linguisticos: palabras, frases, oraciones, textos.
- Se basa en la llamada hipótesis distribucional: items linguisticos con distribuciones similares, tienen significados similares.
- Para el caso de palabras: palabras que ocurren dentro del mismo contexto tienen el mismo significado. "A word is characterized by the company it keeps".

Latent Semantical Analysis

- Se construye una matriz término-documento
- Cada fila representa un documento y cada columna un término dentro del vocabulario.
- La intersección fila columna es una medida de la presencia de la palabra en el documento.
- Dicha medida puede ser la cantidad de veces que ocurre, o el tf-idf:

$$\operatorname{tf}(t,d) = \frac{\operatorname{f}(t,d)}{\max\{\operatorname{f}(t,d): t \in d\}} \qquad \operatorname{idf}(t,D) = \log \frac{|D|}{|\{d \in D: t \in d\}|}$$

$$\operatorname{tfidf}(t,d,D) = \operatorname{tf}(t,d) \times \operatorname{idf}(t,D)$$

Latent Semantical Analysis

- Una vez construída la matriz, cada fila representa a cada documento, con un número de dimensiones constantes.
- Para bajar la dimensionalidad se aplica TruncatedSVD.

De esta manera se generan representaciones de baja dimensionalidad de documentos.

Matriz de coocurrencia palabra-palabra

- Se define la coocurrencia según:
 - Ventana de Contexto
 - Oración
 - Párrafo
 - Documento
- Luego se aplica Truncated SVD.

De esta manera tenemos representaciones vectoriales de palabra de baja dimensionalidad.

,,	1	love	Program ming	Math	tolerate	Biology	*
1	0	2	0	0	1	0	2
love	2	0	1	1	0	0	0
Program ming	0	1	0	0	0	0	1
Math	0	1	0	0	0	0	1
tolerate	1	0	0	0	0	1	0
Biology	0	0	0	0	1	0	1
	1	0	1	1	0	1	0

Matriz de PMI (Pointwise Mutual Information)

$$\operatorname{pmi}(x;y) \equiv \log rac{p(x,y)}{p(x)p(y)} = \log rac{p(x|y)}{p(x)} = \log rac{p(y|x)}{p(y)}$$

- Es otra forma de medir coocurrencia entre palabras.
- En teoría de la información, la PMI es la información que me dá sobre la ocurrencia de una palabra, que haya ocurrido otra, con respecto a palabras que se presentan independientemente.
- los valores negativos de PMI en general no aportan mucho y suelen haber mucha varianza en su estimación, por lo que los valores de PMI menores que cero suelen ser desestimados. A esta matriz se la llama PPMI (Positive PMI).
- Sobre la representación obtenida, se suelen cumplir los test de analogía.
- Lo normal es aplicar SVD a la matriz de PPMI para generar una representación de palabra de baja dimensionalidad.

Tests de Analogía

- Son tests que miden qué tan estructurada la representación de las palabras.
- Rey (w1) -> Reina(w2), Príncipe (w3) -> Princesa (w4)
- cos_sim(w2 w1 + w3, wi) es máximo cuando wi = w4?
- Mencionar la mentira de los tests de analogía
- Semántico / Morfológico

Glove

 Involucran la información que brinda el cociente de la coocurrencia de dos palabras:

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Glove

La función de costo incorpora esta información de manera de mejorar los tests de analogía. Para ver el detalle se recomienda ver el paper o el siguiente blog:

https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010

Paper:

https://nlp.stanford.edu/pubs/glove.pdf

Glove

- Función de costo:

$$J(\theta) = \frac{1}{2} \sum_{i,j=1}^{W} f(P_{ij}) (u_i^T v_j - \log P_{ij})^2$$

 la función f es una medida de cuán vinculados están los términos ij, según otras palabras que actúen como elementos en común. Se calcula a partir de los cocientes de probabilidad vistos anteriormente.

Word2Vec

- PROJECTION OUTPUT w(t-2) w(t-1) w(t+2)
 - Skip-gram

- CBOW: a partir de las palabras de contexto, predice la probabilidad de la palabra central (target).
- SKIP-GRAM: a partir de la palabra central predice la probabilidad de las palabras de contexto.

Word2Vec

- CBOW loss:

$$J_{ heta} = rac{1}{T} \sum_{t=1}^{T} \; \log p(w_t \mid w_{t-n}, \cdots, w_{t-1}, w_{t+1}, \cdots, w_{t+n})$$

- SKIP-GRAM Loss:

$$J_{ heta} = rac{1}{T} \sum_{t=1}^{T} \sum_{-n \leq j \leq n,
eq 0} \log p(w_{t+j} \mid w_t)$$

Word2vec

- Skipgram model:

$$p(w_{t+j} \mid w_t) = rac{\exp(h^ op v_{w_{t+j}}')}{\sum_{w_i \in V} \exp(h^ op v_{w_i}')}$$

- ¿Qué pasa cuando se calcula el gradiente con el denominador?
- Hay una batería de soluciones a este problema:

http://ruder.io/word-embeddings-softmax/index.html

Optimizaciones de la Softmax	APPROACH	SPEED-UP	DURING TRAINING?	DURING TESTING?	PERFORMANCE (SMALL VOCAB)	PERFORMANCE (LARGE VOCAB)	PROPORTION OF
	Softmax	1x	ā	15	very good	very poor	100%
	Hierarchical Softmax	25x (50-100x)	X	34	very poor	very good	100%
	Differentiated Softmax	2x	Х	х	very good	very good	< 100%
	CNN-Softmax	3	X	@	2	bad - good	30%
	Importance Sampling	(19x)	X	<u></u>	H	8-	100%
	Adaptive Importance Sampling	(100x)	х	ল	EL .	st.	100%
	Target Sampling	2x	х	·	good	bad	100%
	Noise Contrastive Estimation	8x (45x)	х	e.	very bad	very bad	100%
	Negative Sampling	(50-100x)	Х	es .	3	65	100%
	Self-Normalisation	(15x)	X	34	22	5	100%
	Infrequent Normalisation	6x (10x)	х	*	very good	good	100%

Word2Vec (Negative Sampling)

Cost Function:

$$J_{\theta}' = -\sum_{w_i \in V} [\log \frac{1}{1 + \exp(-v_{w_t}v_{w_{t+j}}')} + \sum_{i=1}^k \log \frac{1}{1 + \exp(-v_{w_t}v_{w_{ij}}')}]$$

- El contexto y la palabra central se samplean con la distribución de ocurrencia de cada palabra, mas smoothing de parámetro alfa.

$$P_{\alpha}(w_i) \propto P(w_i)^{\alpha}$$

Particularidades de Word2Vec

Subsampleo de palabras frecuentes:

$$p = 1 - \sqrt{\frac{t}{f}}$$

- Levy and Goldberg (2014) demostraron que W2V converge a una factorización de la matriz de PMI, con las siguiente salvedades:
 - Shifted PPMI (SPPMI):

$$SPPMI(w, c) = \max(PMI(w, c) - \log k, 0)$$

Context distribution sampling:

$$PMI(w,c) = \log \frac{p(w,c)}{p(w)p_{\alpha}(c)}$$
 where $p_{\alpha}(c) = \frac{f(c)^{\alpha}}{\sum_{c} f(c)^{\alpha}}$ and $f(x)$ is the frequency of word x

Particularidades de Word2Vec

- Dynamical Context Window:
 - Se suelen considerar palabras mas cercanas al target mas importantes que las mas lejanas.
 - Para hacer esto, habría que asignar un coeficiente a cada una de las palabras.
 - Otra opción es samplear el tamaño de ventana entre 1 y k para cada palabra.

Blog super recomendado:

http://ruder.io/word-embeddings-1/index.html

FastText

Paper: https://arxiv.org/abs/1607.04606

- Es muy similar a Word2Vec pero trabaja no solo a nivel de palabra, sino a nivel de ngrams de letra.
- De esta forma se pueden obtener los word vectors de palabras desconocidas. Si n=3:
 - <matter> = "<ma", "mat", "att", "tte", "ter">
- El embedding propuesto para la palabra se obtiene de sumar el embedding para cada uno de los ngramas.
- En la implementación original se utiliza n desde 3 a 6.

FastText

Suppose that you are given a dictionary of ngrams of size G. Given a word w, let us denote by $G_w \subset \{1, \ldots, G\}$ the set of n-grams appearing in w. We associate a vector representation \mathbf{z}_g to each n-gram g. We represent a word by the sum of the
vector representations of its n-grams. We thus obtain the scoring function:

$$s(w, c) = \sum_{g \in G_w} \mathbf{z}_g^{\mathsf{T}} \mathbf{v}_c.$$

Contextual Embeddings

- Son embeddings que tienen en cuenta no solo el significado de la palabra de manera general, sino su acepción dentro de un contexto.
- Consideran el problema de desambiguación para la representación de palabras.