ZHEJIANG UNIVERSITY - UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

ECE 310 DIGITAL SIGNAL PROCESSING

Homework 5

Prof. Zhi-Pei Liang Due: March 19, 2021

1. Evaluate the following integrals:

(a)
$$\int_{-\infty}^{\infty} (t^2 + 5t - 1)\delta(t)dt =$$

(b)
$$\int_{1}^{\infty} (t^2 + 5t - 1)\delta(t)dt =$$

$$\int_{-\infty}^{\infty} \varphi(t) S^{n}(t-t) dt$$

$$= (-1)^{n} \varphi^{n}(t)$$

- (c) $[e^{-t}u(t)] * \delta(5t 15) =$, where u(t) is a unit step function.
- 2. Determine the Fourier transform of the following functions:
 - (a) $\delta(2t 3)$
 - (b) $\sin(\Omega_0 t + \phi_0)$, where Ω_0 and ϕ_0 are known real numbers.
 - (c) u(t) u(t T), where T is a constant.
- 3. Compute the discrete-time Fourier transform (DTFT) of the following sequence. $x[n] = \alpha^n \sin(\omega_0 n) u[n]$, where α and ω_0 are real constants with $|\alpha| < 1$.
- 4. Let $X_d(\omega)$ denote the DTFT of the complex valued signal x[n], where the real and imaginary parts of x[n] are given below. Perform the following calculations **without** explicitly evaluating $X_d(\omega)$.
 - a) Evaluate $X_d(0)$
 - b) Evaluate $X_d(\pi)$
 - c) Evaluate $\int_{-\pi}^{\pi} X_d(\omega) d\omega$
 - d) Determine and sketch the signal whose DTFT is $X_d^*(-\omega)$

- 5. Let x[n] be an arbitrary sequence, not necessarily real-valued, with DTFT $X_d(\omega)$. Express the DTFT of the following sequences in terms of $X_d(\omega)$
 - a) $x^*[n]$
 - b) $x^*[-n]$
- 6. Consider the complex sequence x[n] = (u[n] u[n N])/N.
 - a) Find closed-form expressions for $|X_d(\omega)|$ and $\angle X_d(\omega)$.
 - b) For N=5, plot $|X_d(\omega)|$; How will the shape of $|X_d(\omega)|$ change if N increases.
 - c) For N=5, plot $\angle X_d(\omega)$; How will the shape of $\angle X_d(\omega)$ change if N increases.

P1.

a)
$$\int_{-\infty}^{\infty} t^{\frac{1}{2}} t^{\frac{1}{2}} t^{\frac{1}{2}} - 1 = 0$$

= $t^{\frac{1}{2}} + 5t^{-1} = 0$

= -1

b) $\int_{-\infty}^{\infty} t^{\frac{1}{2}} t^{\frac{1}{2}} + 5t^{-1} = 0$
 $t^{\frac{1}{2}} = 0$
 $t^{\frac{1}{2}} = 0$
 $t^{\frac{1}{2}} = 0$

in the domain of $t^{\frac{1}{2}} = 0$

c) $\left[e^{-t} \cdot u(t) \right] * 815t^{-1} = 0$

$$\begin{array}{l} (c) \left[e^{-t} \text{ wit} \right] * 815t - 15) \\ = \left[e^{-k} \text{ wit} \right]$$

$$\xrightarrow{FT} \chi_{d(W)} = \sum_{n=-\infty}^{\infty} \chi^n sin(w_0 n) w[n] e^{-jwn}$$

P4.
a)
$$X diwi = \sum_{n=-\infty}^{\infty} X[n] e^{-jwn} = \sum_{n=-\infty}^{\infty} \{ le\{x[n]\} \}$$

$$e^{-jwn}$$

$$= \sum_{n=0}^{\infty} \chi[n]$$

$$= |t2+3+3+27| - 3j+j-2j+2j-j+3j$$

b)
$$Xd(\bar{n}) = \sum_{n=-\infty}^{\infty} X(\bar{n}) e^{-jn\bar{n}}$$

$$= \sum_{n=-\infty}^{\infty} X(\bar{n}) \cdot (\bar{n})$$

$$= \sum_{n=-\infty}^{\infty} X(\bar{n}) \cdot (\bar{n})$$

C)
$$\chi(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi dnw e^{iwn} dw$$

let
$$n=0$$

$$\chi[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi dw e^{\alpha} dw$$

d)
$$\chi'(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \chi' dl - w$$
) $e^{iwn} dw$
when $\chi'(n)$ is real-valued,
 $\chi d^{\dagger}(-w) = \chi_{d}(w)$

P5.

$$X[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} x dw e^{jwn} dw$$

 $x^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^* dw e^{-jwn} dw$
 $x^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^* dw e^{-jwn} dw$
 $x^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^* dw e^{-jwn} dw$

$$P6. \times dW = \sum_{n=0}^{\infty} \times [n] e^{-jwn}$$

$$= \sum_{n=0}^{\infty} (1 - 1/N) e^{-jwn} + \sum_{n=0}^{\infty} (1 - 0)/N e^{-jwn}$$

$$= \sum_{n=0}^{N-1} \frac{1}{N} e^{-jWn}$$

$$= \frac{1}{N} \frac{1 - e^{-jwN}}{1 - e^{-jw}}$$

$$=\frac{1}{N}\frac{e^{-j\frac{w}{2}N}(e^{j\frac{w}{2}N}-e^{-j\frac{w}{2}N})}{e^{-j\frac{w}{2}}(e^{j\frac{w}{2}N}-e^{-j\frac{w}{2}N})}$$

$$= e^{-\frac{iW}{N}(N-1)} \frac{1}{N} \frac{\sin(\frac{W}{2}N)}{\sin(\frac{W}{2})} =$$

$$|\chi_{\text{dlw}}| = \frac{1}{N} \left| \frac{\sin(\frac{5}{2}w)}{\sin(\frac{w}{2})} \right|$$

As N increase, the shape of |Xd/w| will be more compact to the y-axis and its intersection points with w-axis will be closer to the y-axis. I looked as they dotted line shows)

c)
$$L \times dLW = -\frac{W}{2}(5-1) = -2W$$

As Nincrease's the inclination of Lyalw)s shape will be larger. (As red dotted Magnitude: $|Xdw| = \frac{1}{N} \frac{|sm(\frac{N}{2}N)|}{|sm(\frac{N}{2})|}$ shows)