Algorithms and Datastructures Static Arrays, Dynamic Arrays, Amortized Analysis

Albert-Ludwigs-Universität Freiburg

Prof. Dr. Rolf Backofen

Bioinformatics Group / Department of Computer Science Algorithms and Datastructures, December 2018

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Static Arrays

- Static arrays exist in nearly every programming language
- They are initialized with a fixed size n
- Problem: The needed size is not always clear at compile time

Tabelle: Static array with size n = 5

Python:

- We have dynamic sized lists
- Python does automatic resizing when needed

```
# Creates a list of "0"s with init. size 10
numbers = [0] * 10
# Prints number at index 7 ("0")
print("%d" % numbers[7])
# Saves number 42 at index 8
numbers[8] = 42
# Prints the number at index 8 ("42")
print("%d" % numbers[8])
```

- The name "static array" has nothing to do with the keyword static from Java / C++
- Nor is the array allocated before the program starts
- The size of the array is static and can not be changed after creation
- The name "fixed-size array" would be more appropiate

Structure

Static Arrays

Dynamic Arrays Introduction Amortized Analysis

Dynamic Arrays Introduction

Dynamic arrays:

- The array is created with an initial size
- The size can be dynamically modified
- **Problem:** We need a dynamic structure to store the data

Python:

```
greetings = ["Good morning", "ohai"]
greetings.append("Guten morgen")
greetings.append("bonjour")

# Prints text at index 2 ("Guten morgen")
print("%s" % greetings[2])

# Removes all elements
greetings.clear();
```

Dynamic Arrays Implementation 1

We store the data in a fixed-size array with the needed size

■ Append:

- Create fixed-size array with the needed size
- Copy elements from the old to the new array

Remove:

- Create fixed-size array with the needed size
- Copy elements from the old to the new array

Dynamic Arrays Implementation 1

First implementation:

- We resize the array before each append
- We choose the size exactly as needed

```
class DynamicArray:
    def __init__(self):
        self.size = 0
        self.elements = []
    def capacity(self):
        return len(self.elements)
```

```
class DynamicArray:
    def append(self, item):
        newElements = [0] * (self.size + 1)
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
        newElements[self.size] = item
        self.size += 1
```

■ Why is the runtime quadratic?

Dynamic Arrays

Implementation 1

Runtime:

Ō	<i>O</i> (1)	write 1 element
0 1	O(1 + 1)	write 1 element, copy 1 element
012	O(1 + 2)	write 1 element, copy 2 elements
0 1 2 3	O(1 + 3)	write 1 element, copy 3 elements
0 1 2 3 4	<i>O</i> (1 + 4)	write 1 element, copy 4 elements
0 1 2 3 4 5	<i>O</i> (1 + 5)	write 1 element, copy 5 elements

Analysis:

- \blacksquare Let T(n) be the runtime of n sequential append operations
- Let T_i be the runtime of each i-th operation
 - Then $T_i = A \cdot i$ for a constant A
 - We have to copy i-1 element

$$T(n) = \sum_{i=1}^{n} T_i = \sum_{i=1}^{n} (A \cdot i) = A \cdot \sum_{i=1}^{n} i = A \cdot \frac{n^2 + n}{2}$$
$$= O(n^2)$$

- Better resize strategy
- We allocate more space than needed
- We over-allocate a constant amount of elements
 - Amount: C = 3 or C = 100

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] * (self.size + 100)
        for i in range(0, self.size - 1):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

Implementation 2

Why is the runtime still quadratic?

Dynamic Arrays

Cala

Implementation 2

Runtime for C = 3:

_		
Ö	<i>O</i> (1)	write 1 element
0 1	<i>O</i> (1)	write 1 element
0 1 2	<i>O</i> (1)	write 1 element
0 1 2 3	O(1 + 3)	write 1 element, copy 3 elements
0 1 2 3 4	<i>O</i> (1)	write 1 element
0 1 2 3 4 5	<i>O</i> (1)	write 1 element
0 1 2 3 4 5 6	O(1 + 6)	write 1 element, copy 6 elements

Implementation 2

Analysis:

- \blacksquare Most of the append operations now just cost O(1)
- Every C steps the costs for copying are added: $C, 2 \cdot C, 3 \cdot C, \dots$ this means:

$$T(n) = \sum_{i=1}^{n} A \cdot 1 + \sum_{i=1}^{n/C} A \cdot i \cdot C$$

$$= A \cdot n + A \cdot C \cdot \sum_{i=1}^{n/C} i$$

$$= A \cdot n + A \cdot C \cdot \frac{\frac{n^2}{C^2} + \frac{n}{C}}{2}$$

$$= A \cdot n + \frac{A}{2 \cdot C} \cdot n^2 + \frac{A}{2} \cdot n = O(n^2)$$

The factor of n^2 is getting smaller

ldea:

Implementation 3

Double the size of the array

```
def append(self, item):
    if self.size >= len(self.elements):
        newElements = [0] \
             * \max(1, 2 * \text{self.size})
        for i in range(0, self.size):
            newElements[i] = self.elements[i]
        self.elements = newElements
    self.elements[self.size] = item
    self.size += 1
```

■ Now the runtime is linear with some bumps. Why?

Ō	<i>O</i> (1)	write 1
01	O(1 + 1)	write 1, copy 1 element
0 1 2	O(1 + 2)	write 1, copy 2 elements
0 1 2 3	<i>O</i> (1)	write 1
0 1 2 3 4	O(1 + 4)	write 1, copy 4 elements
0 1 2 3 4 5	<i>O</i> (1)	write 1
0 1 2 3 4 5 6	<i>O</i> (1)	write 1
0 1 2 3 4 5 6 7	<i>O</i> (1)	write 1
0 1 2 3 4 5 6 7 8	O(1+8)	write 1, copy 8 elements

Implementation 3

Analysis:

- Now all appends cost O(1)
- Every 2^i steps we have to add the cost $A \cdot 2^i$ (for i = 0, 1, 2, ..., k with $k = floor(log_2(n-1))$
- In total that accounts to:

$$T(n) = n \cdot A + A \cdot \sum_{i=0}^{k} 2^{i} = n \cdot A + A(2^{k+1} - 1)$$

$$\leq n \cdot A + A \cdot 2^{(k+1)}$$

$$= n \cdot A + 2 \cdot A \cdot 2^{(k)}$$

$$\leq n \cdot A + 2 \cdot A \cdot n$$

$$= 3 \cdot A \cdot n$$

$$= O(n)$$

How do we shrink the array?

- Like for the extension of the array, we can shrink the array by half, if it is half-full
- If we append directly after shrinking we have to extend the array again
 - We only shrink the array to 75%

Analysis:

- **Difficult:** We have a random number of *append / remove* operations
- We can not exactly predict when resizing is happening

Structure

Static Arrays

Dynamic Arrays
Introduction
Amortized Analysis

Abbildung: Static array with capacity c_i

Notation:

- We have *n* instructions $O = \{O_1, ..., O_n\}$
- The size after operation i is s_i , with $s_0 := 0$
- The capacity after operation i is c_i , with $c_0 := 0$
- The cost of operation i is $cost(O_i)$ (previously named T_i)

Reallocation: $cost(O_i) \le A \cdot s_i$, Insert / Delete (Update): $cost(O_i) \le A$,

Operation		Size s _i	Capactity c _i	Costs $cost(O_i)$	
<i>O</i> ₁	append	realloc.	$s_1 = 1$	<i>c</i> ₁ = 3	$A \cdot s_1$
O_2	append		$s_2 = 2$	$c_2 = c_1$	A
O_3	append		$s_3 = 3$	$c_3 = c_1$	Α
<i>O</i> ₄	remove		$s_4 = 2$	$C_4 = C_1$	Α
<i>O</i> ₅	remove	realloc.	s ₅ = 1	$c_5 = \frac{2}{3}c_1 = 2$	$A \cdot s_5$
O_6	append		$s_6 = 2$	$c_6 = c_5$	Α
O_7	remove		<i>s</i> ₇ = 1	$c_7 = c_5$	Α
<i>O</i> ₈	append		<i>s</i> ₈ = 2	$c_8 = c_5$	Α
<i>O</i> ₉	append	realloc.	$s_9 = 3$	$c_9 = 3 \cdot c_5 = 6$	$A \cdot s_9$
O _n	append		s _n	Cn	Α

Implementation:

■ If O_i is an append operation and $s_{i-1} = c_{i-1}$:

⇒ Resize array to
$$c_i = \left\lfloor \frac{3}{2} s_i \right\rfloor$$

⇒ $cost(O_i) = A \cdot s_i$

$$S_{i-1} = 7$$

$$0 | 1 | 2 | 3 | 4 | 5 | 6$$

$$C_{i-1} = S_{i-1} = 7$$

$$S_i = S_{i-1} + 1$$

$$0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8$$

$$C_i = \frac{3}{2}S_i = 13$$

Abbildung: Append operation with reallocation

Implementation:

- If O_i is an *remove* operation and $s_{i-1} \leq \frac{1}{3}c_{i-1}$:
 - \Rightarrow Resize array to $c_i = \left\lfloor \frac{3}{2}s_i \right\rfloor$
 - $\Rightarrow cost(O_i) = A \cdot s_i$

Abbildung: Remove operation with reallocation

Idea for prove:

- Expansive are only those operations, where reallocations are necessary.
- If we just reallocated, it takes some time until the next reallocation is required.
- After a costly reallocation of size X we have at least X operations of runtime O(1)
- Total cost of n operations is maximally $2 \cdot n$

Op	eration	Size	Capacity	Costs
(a	ppend)	Si	Ci	$cost(O_i)$
<i>O</i> ₁	realloc.	$s_1 = 1$	$c_1 = 4$	$C_1 \cdot s_1$
O_2		$s_2 = 2$	$c_2 = c_1$	C_2
<i>O</i> ₃		$s_3 = 3$	$c_3 = c_1$	C_2
O_4		$s_4 = 4$	$c_4 = c_1$	C_2
<i>O</i> ₅	realloc.	<i>s</i> ₅ = 5	$c_5 = \frac{3}{2}s_5 = 7$	$C_1 \cdot s_5$
O_6		$s_6 = 6$	$c_6 = c_5$	C_2
<i>O</i> ₇		$s_7 = 7$	$c_7 = c_5$	C_2
<i>O</i> ₈	realloc.	s ₈ = 8	$c_8 = \frac{3}{2}s_8 = 12$	$C_1 \cdot s_8$
		•••	•••	•••

distance $4 \ge \left| \frac{s_1}{2} \right|$

distance

$$3 \ge \left\lfloor \frac{s_5}{2} \right\rfloor$$

To show:

- **Lemma:** If a *reallocation* occurs at O_i the nearest reallocation is at O_j with $j i > \frac{s_i}{2}$
- Corollary: $cost(O_1) + \cdots + cost(O_n) \le 4A \cdot n$

Tabelle: Case 1: $\frac{1}{2}s_i$ appends

Proof of lemma:

- If a reallocation happens at O_i and then again at O_j , then $j-i \ge s_j/2$
- After operation O_i the capacity is

$$c_i = \text{floor}\left(\frac{3}{2} \cdot s_i\right)$$

- Lets consider a operation O_k to O_i with $k-i \le \frac{S_i}{2}$:
 - Case 1: Since the *reallocation* we have inserted at maximum floor $\left(\frac{1}{2} \cdot s_i\right)$ elements

$$s_k \le s_i + \left| \frac{s_i}{2} \right| = \left| \frac{3}{2} s_i \right| = c_i$$
 no reallocation needed

Amortized Analysis

Proof of lemma - continued:

■ Case 2: Since the *reallocation* we have removed at maximum floor $\left(\frac{1}{2} \cdot s_i\right)$ elements

$$s_k \ge s_i - \left\lfloor \frac{s_i}{2} \right\rfloor = \left\lceil \frac{1}{2} s_i \right\rceil$$

 $\Rightarrow 3 \cdot s_k \ge \left\lceil \frac{3}{2} s_i \right\rceil \ge \left\lfloor \frac{3}{2} s_i \right\rfloor = c_i$

no reallocation needed

Corollary:

$$cost(O_1) + \cdots + cost(O_n) \le 4A \cdot n$$

- Let the *reallocations* be at operations $cost(O_{i_1}), ..., cost(O_{i_\ell})$
- The cost of all *reallocations* are $A \cdot (s_{i_1} + \cdots + s_{i_\ell})$
- With the lemma we know:

$$i_2 - i_1 > \frac{s_{i_1}}{2}, \quad i_3 - i_2 > \frac{s_{i_2}}{2}, \quad \dots, \quad i_{\ell} - i_{\ell-1} > \frac{s_{i_{\ell-1}}}{2}$$

We can conclude that:

$$egin{array}{lll} i_2 - i_1 > rac{s_{i_1}}{2} & \Rightarrow & s_{i_1} < 2(i_2 - i_1) \ i_3 - i_2 > rac{s_{i_2}}{2} & \Rightarrow & s_{i-2} < 2(i_3 - i_2) \ & dots \ i_{\ell} - i_{\ell-1} > rac{s_{i_{\ell-1}}}{2} & \Rightarrow & s_{i_{\ell-1}} < 2(i_{\ell} - i_{\ell-1}) \ & s_{i_{\ell}} < n & (ext{trivial}) \end{array}$$

$$\begin{aligned} cost(realloc.) &= A \cdot \left(s_{i_1} + \dots + s_{i_{\ell}} \right) \\ &< A \cdot \left(2(i_2 - i_1) + 2(i_3 - i_2) + \dots + 2(i_{\ell} - i_{\ell-1}) + n \right) \\ &= A \cdot \left(2(i_{\ell} - i_1) + n \right) \\ &\leq A \cdot (2n + n) = 3A \cdot n \end{aligned}$$

■ Additionally we have to consider the respective constant costs for a normal append or remove: $\leq A \cdot n$ therefore in total $\leq 4 \cdot A \cdot n$

Dynamic Arrays

Amortized Analysis - Alternate Proof of Corollary

Tabelle: Case 1: $\frac{1}{2}s_i$ appends

- Total costs of $A \cdot \frac{3}{2} \cdot s_i$ for $\frac{s_i}{2} + 1$ operations
- Cost per operation:

$$\frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i + 1} \le \frac{\frac{3}{2}A \cdot s_i}{\frac{1}{2}s_i} = 3 \cdot A = \text{const.}$$

Runtime analysis for local worst-case sequence
 Array Costs

Same total cost as previous slide

Bank account paradigm:

- Idea: "Save first, spend later"
- For each operation we deposit some coins on an "bank account"
 - We still have constant costs.
- When we have a linear (reallocation) operation we pay with the coins from our "bank account"
- For the Duplication strategy we have to pay two coins per operation.

Dynamic Arrays

Amortized Analysis - Yet Another Proof of Corollary

Double the size:	$cost(O_i)$	deposit / withdraw	account value
Ö	<i>O</i> (1)	+2	2
0 1	O(1 + 1)	+2 -1	3
0 1 2	O(1 + 2)	+2 -2	3
0 1 2 3	<i>O</i> (1)	+2	5
0 1 2 3 4	O(1 + 4)	+2 -4	3
0 1 2 3 4 5	<i>O</i> (1)	+2	5
0 1 2 3 4 5 6	<i>O</i> (1)	+2	7
0 1 2 3 4 5 6 7	‰(1)	+2	9
0 1 2 3 4 5 6 7 8	O(1 + 8)	+2 -8	3
			• • •

Abbildung: Array after realloc. (insert) operation

Why do we need to deposit 2 coints per operation?

- Each newly inserted element has to be copied later (first coin)
- Due to the factor of two there is for each new element also an old one in the array that also has to be copied (second coin)

Dynamic Arrays

Amortized Analysis - Yet Another Proof of Corollary

Abbildung: Array after realloc. (remove) operation

Shrinking strategy: if array 1/4 full shrink by half

- How many coins do we need per remove operation?
- Worst case: The previous remove operation triggered a reallocation
 - ⇒ Array is half full
- The nearest *reallocation* is after removing $\frac{1}{4}c_i$ elements
- We have to copy $\frac{1}{4}c_i$ elements
 - \Rightarrow 1 coin per operation is enough

General

- [CRL01] Thomas H. Cormen, Ronald L. Rivest, and Charles E. Leiserson. Introduction to Algorithms.
 - MIT Press, Cambridge, Mass, 2001.
- Kurt Mehlhorn and Peter Sanders. [MS08] Algorithms and data structures, 2008. https://people.mpi-inf.mpg.de/~mehlhorn/ ftp/Mehlhorn-Sanders-Toolbox.pdf.

Amortized Analysis

```
[Wik] Amortized analysis
    https:
    //en.wikipedia.org/wiki/Amortized_analysis
```