You have 20 minutes to complete this quiz. Eyes on your own paper and good luck!

1. Definitions/Concepts.

(a) (3 pts) The function f is **continuous at the point** a means it satisfies the Continuity Checklist:

SOLUTION:

- 1. f(a) is defined (a is in the domain of f).
- 2. $\lim_{x\to a} f(x)$ exists.
- 3. $\lim_{x\to a} f(x) = f(a)$ (the value of f equals the limit of f at a).
- (b) (2 pts) "The limit of f(x) as x approaches a equals L" means that for any positive number ϵ , there is another positive number δ such that

 $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$. SOLUTION:

2. Questions/Problems. Suppose $\lim_{x\to 3} f(x) = 4$, where f is the function in Figure 1.

Figure 1: f(x) (Briggs, W. and Cochran, L. Calculus: Early Transcendentals, p. 116)

What must δ equal in order to satisfy $|f(x)-4|<\epsilon$ whenever $0<|x-3|<\delta$, for

(a) (1 pt) $\epsilon = 2$?

SOLUTION: 2

(b) (1 pt) $\epsilon = \frac{1}{2}$?

SOLUTION: $\frac{1}{2}$

(c) (1 pt) Write a formula for δ in terms of ϵ that works, once ϵ gets small enough.

SOLUTION: $\delta = \epsilon$

(d) (ChAlLeNgE pRoBlEm) Justify your answer to (c).

SOLUTION: To the left of x=3, f(x) is linear, so $\delta \sim \epsilon$. To the right of x=3, f(x) is quadratic, so $\delta \sim \sqrt{\epsilon}$. Once ϵ gets smaller than 1, $\sqrt{\epsilon} > \epsilon$. This means the smaller value for δ will be on the linear side of x=3.

3. Computations/Algebra. (2 pts) Let

$$g(x) = \begin{cases} \frac{x^2 + 3x + 2}{x + 1} & x \neq -1 \\ k & x = -1 \end{cases}.$$

Using the Continuity Checklist, find the value of k that makes g continuous at the point -1.

SOLUTION: In the Continuity Checklist, g(-1) is defined (as k). We compute,

$$\lim_{x \to -1} g(x) = \lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 1}$$

$$= \lim_{x \to -1} \frac{(x + 2)(x + 1)}{x + 1}$$

$$= \lim_{x \to -1} x + 2$$

$$= (-1) + 2 = 1 \quad \text{exists};$$

and finally we set

$$g(-1) = k = \lim_{x \to -1} g(x) = 1.$$