TABLE ONE AND PLOTS

Asabere Asante

```
library(MASS)
library(tidyverse)
library(finalfit)
library(gtsummary)
library(patchwork)
library(broom)
#library(conflicted)
library(gt)
#conflict_prefer("select", "dplyr")
rakai = read_csv("rakai_updated.csv")
dim(rakai)
[1] 2839 79
#glimpse(rakai)
#missing_glimpse(rakai)
df1 <- rakai %>%
  select(ageyrs,sex,locate,occup1,currmarr,evermarr,mobility,
          artdays,artwks,artmos,artyrs,comm_num,educyrs,religion)
df2 <- rakai %>%
  select(ageyrs,sex,locate,occup1,currmarr,evermarr,mobility,
  artdays,artwks,artmos,artyrs,comm_num,artrunbc,artstrbc,hivac,copies,new_copies)
df3 <- df1 %>%
  mutate(ageyrs = ageyrs %>% ff_label("Age (years)"),
         sex = if_else(sex == "F", "Female", "Male") %>%
           as_factor() %>%
```

```
fct relevel("Female") %>%
  ff label("Sex"),
mobility = case when(
 mobility %in% c(3,8,10) ~ "In-migrant",
  .default = "Long-term resident") %>%
 fct_relevel("In-migrant") %>%
 ff_label("Migration"),
community_type = case_when(
  comm_num %in% c(38,770,771,774) ~ "Fishing community",
                            .default = "Inland Community") %>%
 fct_relevel("Inland Community") %>%
 ff_label("Community type"),
fishing_comm = if_else(community_type == "Fishing Community",1,0) %>%
  ff_label("Lake Victoria Fishing Community"),
primary_occupation = case_when(
  occup1 %in% c(1,2,5) ~ "Agriculture/Homebrewing",
  occup1 %in% c(10,11) ~ "Trading or shopkeeping",
  occup1 %in% c(12,18) ~ "Bar work or waitressing",
  occup1 %in% c(2,3,4) ~ "House work",
  occup1 == 7 ~ "Fishing-related occupation",
  .default = "Other") %>%
 fct relevel("Agriculture/Homebrewing", "Trading or shopkeeping") %%
 ff_label("Primary Occupation"),
age_cat = case_when(
                    ageyrs < 30 ~ "<30",
                    ageyrs \geq 30 \& ageyrs \leq 39 \sim "30-39",
                    ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
  fct_relevel("<30") %>%
 ff_label("Age group"),
current_marital_status = case_when(
  currmarr == 1 ~ "Currently married",
  currmarr == 2 ~ "Previously married",
  currmarr == 8 ~ "Never married"
  ) %>%
 fct relevel("Never married", "Currently married") %>%
 ff_label("Current marital status"),
art_duration = case_when(
  artyrs >= 1 & artyrs < 2 ~ "1-2 years",
```

```
artyrs > 2 & artyrs <= 5 ~ "2-5 years",
  artyrs > 5 ~ ">5 years",
  .default = "<1 year"</pre>
  fct_relevel("<1 year","1-2 years","2-5 years") %>%
  ff_label("Time on ART"),
education_level = case_when(
  educyrs == 8 ~ "No formal education",
  educyrs %in% c(1,2) ~ "Primary",
  educyrs %in% c(3,4) ~ "Secondary",
  educyrs %in% c(5,6,7,10,11) ~ "Technical/University"
 ) %>%
  fct_relevel("No formal education") %>%
  ff_label("Educational attainment"),
religion = case_when(
  religion %in% c(1,6) ~ "Other or none",
  religion %in% c(2,3,4) ~ "Catholic/Christian",
  religion == 5 ~ "Muslim"
) %>%
  ff_label("Religion")
```

```
df4 <- df3 %>%
  select(
    ageyrs,age_cat,sex,current_marital_status,education_level,primary_occupation,
    mobility,community_type,art_duration
)
```

Table One

```
df4 %>%
  tbl_summary(
    by = sex,
    statistic = list(
       all_categorical() ~ "{n} ({p}%)",
```

```
all_continuous() ~ "{median} ({IQR})"
),
digits = list(
   all_categorical() ~ 0,
   all_continuous() ~ 0
)
) %>%
add_overall() %>%
bold_labels() %>%
italicize_levels() %>%
modify_spanning_header(
   update = all_stat_cols() ~ "**Sex**"
)
```

```
df6 <- df5 %>%
  mutate(
    sex = if_else(sex == "F", "Female", "Male") %>%
     as_factor() %>%
     fct_relevel("Female") %>%
      as_factor() %>%
     ff_label("Sex"),
   hivac = if_else(hivac ==1, "Yes","No") %>%
    ff_label("Missed scheduled visit for HIV care") %>%
      as_factor(),
    hivbc = if_else(hivbc ==1, "Yes", "No") %>%
    ff_label("Missed scheduled visit for HIV care") %>%
    as_factor(),
    artrunac = if_else(artrunac ==1, "Yes", "No") %>%
    as_factor() %>%
    ff_label("Run out of ART before next refill"),
   artrunbc = if_else(artrunbc ==1, "Yes", "No") %>%
    as_factor() %>%
```

	\mathbf{Sex}				
Characteristic	Overall $N = 2.839^1$	Female $N = 1,824^{1}$	Male $N = 1,015^3$		
Age (years)	38 (11)	37 (11)	39 (9)		
Age group	, ,	` ,	. ,		
<30	437 (15%)	347 (19%)	90 (9%)		
30-39	1,229(43%)	809 (44%)	420 (41%)		
40-49	1,173 (41%)	668 (37%)	505 (50%)		
Current marital status	, ,	,	,		
Never married	142 (5%)	96 (5%)	46 (5%)		
Currently married	1,720~(61%)	1,036(57%)	684 (67%)		
Previously married	977 (34%)	692 (38%)	285 (28%)		
Educational attainment		,	,		
No formal education	266 (9%)	174 (10%)	92 (9%)		
Primary	1,931~(68%)	1,193(65%)	738 (73%)		
Secondary	406 (14%)	287 (16%)	119 (12%)		
Technical/University	236 (8%)	170 (9%)	66 (7%)		
Primary Occupation	,	,	,		
Agriculture/Homebrewing	709 (25%)	529 (29%)	180 (18%)		
Trading or shopkeeping	543 (19%)	430 (24%)	113 (11%)		
Bar work or waitressing	282 (10%)	278 (15%)	4 (0%)		
Fishing-related occupation	504 (18%)	3 (0%)	501 (49%)		
$House\ work$	287 (10%)	283 (16%)	4 (0%)		
Other	514 (18%)	301 (17%)	213 (21%)		
Migration		,	,		
$In ext{-}migrant$	637 (22%)	464 (25%)	173 (17%)		
Long-term resident	2,202(78%)	$1,360\ (75\%)$	842 (83%)		
Community type	, , ,	, , ,	,		
Inland Community	1,284 (45%)	943 (52%)	341 (34%)		
Fishing community	1,555 (55%)	881 (48%)	674 (66%)		
Time on ART	, ('-')	()	()		
<1 year	222 (8%)	152 (8%)	70 (7%)		
1-2 years	79 (3%)	50 (3%)	29 (3%)		
2-5 years	750 (26%)	446 (24%)	304 (30%)		
>5 years	1,788 (63%)	1,176 (64%)	612 (60%)		

 $[\]overline{{}^{I}\mathrm{Median}}$ (IQR); n (%)

```
ff_label("Run out of ART before next refill"),

artstrac = if_else(artstrac ==1,"Yes","No") %>%
    as_factor() %>%
    ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),

artstrbc = if_else(artstrbc ==1,"Yes","No") %>%
    as_factor() %>%
    ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
)
```

Viral Load Suppression

```
df_vl_supp <- df7 %>%
  mutate(
    suppbc = if_else(viral_load_b4 == "Viral Load Suppression", 1, 0),
    suppac = if_else(viral_load_after == "Viral Load Suppression", 1, 0)
) %>%
  select(-c(copies,new_copies))%>%
  pivot_longer(
    cols = c(viral_load_b4,viral_load_after),
    names_to = "variable",
    values_to = "viral_load"
```

```
) %>%
 mutate(
   time = if_else(grepl("b4$", variable), "Before Covid-19", "After Covid-19"),
df_vl_summary <- df_vl_supp %>% filter(!is.na(viral_load)) %>%
 group_by(time, viral_load) %>%
 summarise(
   n_{suppressed} = n(),
    .groups = "drop"
 ) %>%
 mutate(time = as_factor(time) %>% fct_relevel("Before Covid-19"),
         viral_load = as_factor(viral_load) %>%
           fct_relevel("Viral Load Suppression"))
df_vl_summary <- df_vl_summary %>%
 group_by(time) %>%
 summarise(n = sum(n_suppressed)) %>%
 left_join(df_vl_summary,join_by(time))
df_vl_summary <- df_vl_summary %>%
 mutate(
   proportion = n_suppressed / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
df_vl_summary
```

time	n	viral_load	n_suppress	ефroportion	se	lower	upper
Before Covid-19	2779	Viraemia	135	0.0485786	0.0040782	0.0405854	1 0.0565718
Before Covid-19	2779	Viral Load Sppression	2644	0.9514214	0.0040782	0.9434282	2 0.9594146
After Covid-19	2780	Viraemia	135	0.0485612	0.0040767	0.0405707	7 0.0565516
After Covid-19	2780	Viral Load Sppression	2645	0.9514388	0.0040767	0.9434484	1 0.9594293

```
ggplot(df_vl_summary, aes(x = viral_load, y = proportion, fill = time)) +
 geom_bar(
   stat = "identity",
   position = position_dodge(width = 0.7),
   width = 0.5
 ) +
 geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 0.5
 ) +
 scale_y_continuous(labels = scales::percent_format()) +
 labs(x = "Viral Load",
      y = "Proportion of individuals",
      fill = "Time",
      title = "Viral Load Levels") +
 theme_minimal()+
 theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
```


Proportion taking ART pills less frequently / in smaller amounts by Sex

df6 %>% group_by(sex,artstrbc) %>%
 count()

sex	$\operatorname{artstrbc}$	n
Female	No	-1799
Female	Yes	21
Male	No	1003
Male	Yes	11

df6 %>% group_by(sex,artstrac) %>%
 count()

sex	artstrac	\mathbf{n}
Female	No	$-\frac{1}{1775}$
Female	Yes	45
Male	No	985

```
\frac{\text{sex}}{\text{Male}} \quad \frac{\text{artstrac}}{\text{Yes}} \quad \frac{\text{n}}{29}
```

```
df_artstr <- df6 %>%
 pivot_longer(
   cols = c(artstrbc, artstrac),
   names_to = "variable",
    values_to = "response"
  ) %>%
 mutate(
   time = if_else(grep1("bc$", variable), "Before Covid-19", "After Covid-19")
df_artstr_summary <- df_artstr %>%
  group_by(time,sex) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_artstr_totals <- df_artstr %>%
  group_by(time) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n()
   .groups = "drop"
  )
df_artstr_summary <- bind_rows(df_artstr_summary, df_artstr_totals) %>%
 mutate(
   proportion = n_yes / n,
    se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
    upper = proportion + 1.96 * se
  ) %>%
  mutate(time = as_factor(time) %>%
          fct_relevel("Before Covid-19"),
         sex= if_else(is.na(sex), "Total", sex))
```

```
df_artstr_summary <- df_artstr_summary %>%
  mutate(
   time = as_factor(time) %>%
     fct_relevel("Before Covid-19"),
   sex = as_factor(sex)
)
```

```
reduced_art_intake_plot \leftarrow ggplot(df_artstr_summary, aes(x = sex, y = proportion, fill = times)
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20))+
    title = "Reduced ART Intake",
    x = "Sex",
    y = "Proportion of Individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
  )
reduced_art_intake_plot
```


Run out of ART before next refill by Sex

df6 %>% group_by(sex,artrunbc) %>%
 count()

sex	$\operatorname{artrunbc}$	n
Female	No	1777
Female	Yes	43
Male	No	990
Male	Yes	24

df6 %>% group_by(sex,artrunac) %>%
 count()

sex	artrunac	n
Female	No	$-\frac{1}{1714}$
Female	Yes	106
Male	No	968

 $\begin{array}{ccc} \underline{\text{sex}} & \underline{\text{artrunac}} & \underline{n} \\ \underline{\text{Male}} & \underline{\text{Yes}} & \underline{46} \end{array}$

```
df_artrun <- df6 %>%
 pivot_longer(
   cols = c(artrunbc, artrunac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19"),
   variable = "Run out of ART before next refill"
 )
df_artrun_summary <- df_artrun %>%
 group_by(time,sex) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_artrun_totals <- df_artrun %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_artrun_totals
```

time n_ye	s n	
After Covid-19	152	2834
Before Covid-19	67	2834

```
df_artrun_summary <- bind_rows(df_artrun_summary, df_artrun_totals) %>%
    mutate(
    proportion = n_yes / n,
    se = sqrt(proportion * (1 - proportion) / n),
    lower = proportion - 1.96 * se,
    upper = proportion + 1.96 * se
)%>%
    mutate(time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
        sex= if_else(is.na(sex), "Total", sex))

df_artrun_summary <- df_artrun_summary %>%
    mutate(
    time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
        sex = as_factor(sex)
)
```

```
run_out_of_art_plot <- ggplot(df_artrun_summary, aes(x = sex, y = proportion, fill = time)) +</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
   aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20)) +
  labs(
    title = "Run Out of ART",
    x = "Sex",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
```

```
legend.justification = c(0, 1),
  legend.direction = "horizontal"
)
run_out_of_art_plot
```


Missed Scheduled Visits by Sex

```
df6 %>% group_by(sex,hivbc) %>%
  count()
```

sex	hivbc	n
Female	No	-1763
Female	Yes	57
Male	No	976
Male	Yes	38

```
df6 %>% group_by(sex,hivac) %>%
  count()
```

sex	hivac	n
Female	No	1642
Female	Yes	178
Male	No	917
Male	Yes	97

```
df_hiv <- df6 %>%
 pivot_longer(
   cols = c(hivbc, hivac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19"),
   variable = "Missed Scheduled Visits"
 )
df_hiv_summary <- df_hiv %>%
 group_by(time,sex) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_hiv_totals <- df_hiv %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_hiv_summary <- bind_rows(df_hiv_summary, df_hiv_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 )%>%
 mutate(time = as_factor(time) %>%
```

```
fct_relevel("Before Covid-19"),
    sex= if_else(is.na(sex),"Total",sex))

df_hiv_summary <- df_hiv_summary %>%
    mutate(
    time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
    sex = as_factor(sex)
)
```

```
missed_scheduled_visit_plot <- ggplot(df_hiv_summary, aes(x = sex, y = proportion, fill = t
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
   width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20)) +
   title = "Missed Scheduled Visits",
   x = "Sex",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
  )
missed_scheduled_visit_plot
```

Missed Scheduled Visits

Combined Plots

```
ps1 <- ggplot(df_hiv_summary, aes(x = sex, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20)) +
    title = "Missed Scheduled Visits",
   x = "Sex",
   y = "Proportion of individuals",
   fill = "Time"
  theme minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
```

```
axis.title.y = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10),
legend.text = element_text(size = 10),
legend.position = c(0, 1),
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
ps1 ## Missed scheduled visits
```

Missed Scheduled Visits


```
### Reduced pill intake
ps2 <- ggplot(df_artstr_summary, aes(x = sex, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
    ) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20))+
    labs(
        title = " Reduced ART Intake",
        x = "Sex",</pre>
```

```
y = "Proportion of Individuals",
fill = "Time"
) +
theme_minimal() +
theme(
  plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
  axis.title.x = element_text(face = "bold", size = 10),
  axis.title.y = element_text(face = "bold", size = 10),
  legend.title = element_text(face = "bold", size = 10),
  legend.text = element_text(size = 10),
  legend.position = c(0, 1),
  legend.justification = c(0, 1),
  legend.direction = "horizontal"
)
ps2
```

Reduced ART Intake


```
## Run out of pills
ps3 <- ggplot(df_artrun_summary, aes(x = sex, y = proportion, fill = time)) +
geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),</pre>
```

```
width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20)) +
   title = "Run Out of ART",
   x = "Sex",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
ps3
```


Combined plot
(ps1 + ps2)/ps3

SUBPLOTS

Community Type

```
df_com <- rakai %>%
  select(comm_num,artrunbc,artrunac,
```

```
hivac, hivbc, copies, new_copies, artstrac, artstrbc) %>%
 filter(hivac !=8, hivbc!=8, artrunbc!=8, artstrac!=8, artstrbc!=8, artrunac!=8) %>%
 mutate(
   community_type = case_when(
      comm_num %in% c(38,770,771,774) ~ "Fishing community",
      .default = "Inland Community") %>%
     fct_relevel("Inland Community") %>%
     ff_label("Community type"),
   hivac = if_else(hivac ==1, "Yes","No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
     as_factor(),
    hivbc = if_else(hivbc ==1, "Yes", "No") %>%
    ff_label("Missed scheduled visit for HIV care") %>%
    as_factor(),
    artrunac = if_else(artrunac ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Run out of ART before next refill"),
  artrunbc = if_else(artrunbc ==1, "Yes", "No") %>%
   as factor() %>%
   ff_label("Run out of ART before next refill"),
 artstrac = if_else(artstrac ==1,"Yes","No") %>%
    as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),
 artstrbc = if_else(artstrbc ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
 ) %>%
 select(-comm_num)
```

df_com

Reduced ART intake by Community

```
df_com %>% group_by(community_type,artstrbc) %>%
  count()
```

community_type	artstrbc	n
Inland Community	No	1272
Inland Community	Yes	11
Fishing community	No	1530
Fishing community	Yes	21

```
df_com %>% group_by(community_type,artstrac) %>%
count()
```

community_type	artstrac	n
Inland Community	No	1268
Inland Community	Yes	15
Fishing community	No	1492
Fishing community	Yes	59

```
df_com_artstr <- df_com %>%
 pivot_longer(
   cols = c(artstrbc, artstrac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_com_artstr_summary <- df_com_artstr %>%
 group_by(time,community_type) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
```

```
df_com_artstr_totals <- df_com_artstr %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n()
    .groups = "drop"
 )
df_com_artstr_summary <- bind_rows(df_com_artstr_summary, df_com_artstr_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 ) %>%
 mutate(time = as_factor(time) %>%
           fct_relevel("Before Covid-19"),
         community_type = if_else(is.na(community_type), "Total", community_type))
df_com_artstr_summary
```

time	community_type n_y	yes	n	proportion	se	lower	upper
After	Inland 1	15	1283	0.0116913	0.0030010	0.0058094	0.0175733
Covid-19	Community						
After	Fishing 5	59	1551	0.0380400	0.0048573	0.0285197	0.0475602
Covid-19	community						
Before	Inland	11	1283	0.0085737	0.0025739	0.0035287	0.0136186
Covid-19	Community						
Before	Fishing 2	21	1551	0.0135397	0.0029345	0.0077880	0.0192913
Covid-19	community						
After	Total	74	2834	0.0261115	0.0029955	0.0202403	0.0319827
Covid-19							
Before	Total 3	32	2834	0.0112915	0.0019848	0.0074013	0.0151816
Covid-19							

```
reduced_art_intake_by_community_plot <- ggplot(df_com_artstr_summary, aes(x = community_type
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),</pre>
```

```
width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.12))+
   title = " Reduced ART Intake",
   x = "Community Type",
   y = "Proportion of Individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
reduced_art_intake_by_community_plot
```


Missed Scheduled Visits by Community

df_com %>% group_by(community_type,hivbc) %>%
count()

community_type	hivbc	n
Inland Community	No	$\frac{1}{1257}$
Inland Community	Yes	26
Fishing community	No	1482
Fishing community	Yes	69

df_com %>% group_by(community_type,hivac) %>%
 count()

community_type	hivac	n
Inland Community	No	1198
Inland Community	Yes	85
Fishing community	No	1361

```
community_type hivac n
Fishing community Yes 190
```

```
df_com_hiv <- df_com %>%
 mutate(
   hivbc = as.character(hivbc),
   hivac = as.character(hivac)
 ) %>%
 pivot_longer(
   cols = c(hivbc, hivac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_com_hiv_summary <- df_com_hiv %>%
 group_by(time,community_type) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
 )
df_com_hiv_totals <- df_com_hiv %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
df_com_hiv_summary <- bind_rows(df_com_hiv_summary, df_com_hiv_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 )%>%
 mutate(time = as_factor(time) %>%
```

time	community_type n	_yes	n	proportion	se	lower	upper
After	Inland	85	1283	0.0662510	0.0069438	0.0526411	0.0798608
Covid-19	Community						
After	Fishing	190	1551	0.1225016	0.0083251	0.1061845	0.1388188
Covid-19	community						
Before	Inland	26	1283	0.0202650	0.0039338	0.0125547	0.0279753
Covid-19	Community						
Before	Fishing	69	1551	0.0444874	0.0052352	0.0342265	0.0547484
Covid-19	community						
After	Total	275	2834	0.0970360	0.0055603	0.0861377	0.1079343
Covid-19							
Before	Total	95	2834	0.0335215	0.0033811	0.0268946	0.0401485
Covid-19							

```
missed_scheduled_visit_by_community_type_plot <- ggplot(df_com_hiv_summary, aes(x = community_type_plot)
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.15)) +
   title = "Missed Scheduled Visits",
   x = "Community Type",
   y = "Proportion of individuals",
    fill = "Time"
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
```

```
axis.title.y = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10),
legend.text = element_text(size = 10),
legend.position = c(0, 1),
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
missed_scheduled_visit_by_community_type_plot
```

Missed Scheduled Visits

Run out of ART by Community

```
df_com %>% group_by(community_type,artrunbc) %>%
  count()
```

community_type	artrunbc	n
Inland Community	No	$\frac{1}{1253}$
Inland Community	Yes	30
Fishing community	No	1514

```
\frac{\text{community\_type} \quad \text{artrunbc} \quad n}{\text{Fishing community} \quad \text{Yes}} 37
```

```
df_com %>% group_by(community_type,artrunac) %>%
count()
```

artrunac	n
No	$\frac{1}{1225}$
Yes	58
No	1457
Yes	94
	No Yes No

```
df_com_artrun <- df_com %>%
 mutate(
    artrunbc = as.character(artrunbc),
    artrunac = as.character(artrunac)
  ) %>%
 pivot_longer(
   cols = c(artrunbc, artrunac),
   names_to = "variable",
   values_to = "response"
  ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
df_com_artrun_summary <- df_com_artrun %>%
  group_by(time,community_type) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_com_artrun_totals <- df_com_artrun %>%
  group_by(time) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
```

```
.groups = "drop"
)

df_com_artrun_summary <- bind_rows(df_com_artrun_summary, df_com_artrun_totals) %>%
    mutate(
    proportion = n_yes / n,
    se = sqrt(proportion * (1 - proportion) / n),
    lower = proportion - 1.96 * se,
    upper = proportion + 1.96 * se
) %>%
    mutate(time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
        community_type = if_else(is.na(community_type), "Total", community_type))
```

time	$community_type \ n_$	_yes	n	proportion	se	lower	upper
After	Inland	58	1283	0.0452065	0.0058002	0.0338382	0.0565749
Covid-19	Community						
After	Fishing	94	1551	0.0606061	0.0060587	0.0487311	0.0724810
Covid-19	community						
Before	Inland	30	1283	0.0233827	0.0042189	0.0151137	0.0316517
Covid-19	Community						
Before	Fishing	37	1551	0.0238556	0.0038748	0.0162610	0.0314501
Covid-19	community						
After	Total 1	152	2834	0.0536344	0.0042321	0.0453396	0.0619293
Covid-19							
Before	Total	67	2834	0.0236415	0.0028539	0.0180478	0.0292352
Covid-19							

```
run_out_of_art_by_community_plot <- ggplot(df_com_artrun_summary, aes(x = community_type, y = geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,</pre>
```

```
size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.12)) +
   title = "Run Out of ART",
   x = "Community Type",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
run_out_of_art_by_community_plot
```



```
pc1 <- ggplot(df_com_artstr_summary, aes(x = community_type, y = proportion, fill =time)) +</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.25)) +
    title = "Reduced ART Intake",
    x = "Community Type",
    y = "Proportion of individuals",
    fill = "Time"
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
pc1 ##
```

Reduced ART Intake


```
pc2 <- ggplot(df_com_hiv_summary, aes(x = community_type, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.25)) +
  labs(
   title = "Missed Scheduled Visits",
   x = "Community Type",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
```

```
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
pc2 ## Missed scheduled visits
```



```
## Run out of pills
pc3 <- ggplot(df_com_artrun_summary, aes(x = community_type, y = proportion, fill =time)) +</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.25)) +
    title = "Run Out of ART",
    x = "Community Type",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
```

```
theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
)
```

Run Out of ART


```
### Combined plot
(pc1 + pc2)/pc3
```


Mobility

```
mobility = case_when(
          mobility %in% c(3,8,10) \sim "In-migrant",
           .default = "Long-term resident") %>%
          fct_relevel("In-migrant") %>%
          ff_label("Migration"),
   hivac = if_else(hivac ==1, "Yes","No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
     as_factor(),
    hivbc = if_else(hivbc ==1, "Yes", "No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
    as_factor(),
    artrunac = if_else(artrunac ==1,"Yes","No") %>%
   as_factor() %>%
   ff_label("Run out of ART before next refill"),
  artrunbc = if_else(artrunbc ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Run out of ART before next refill"),
 artstrac = if_else(artstrac ==1, "Yes", "No") %>%
    as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),
 artstrbc = if_else(artstrbc ==1,"Yes","No") %>%
    as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
```

Run Out of ART by mobility

```
df_mob %>% group_by(mobility,artrunbc) %>%
  count()
```

mobility	artrunbc	n	
In-migrant	No		610
In-migrant	Yes		22
Long-term reside	nt No		2157
Long-term reside	nt Yes		45

```
df_mob %>% group_by(mobility,artrunac) %>%
count()
```

mobility	artrunac	n	
In-migrant	No		582
In-migrant	Yes		50
Long-term residen	nt No		2100
Long-term residen	nt Yes		102

```
df_mob_artrun <- df_mob %>%
 mutate(
   artrunbc = as.character(artrunbc),
   artrunac = as.character(artrunac)
 ) %>%
 pivot_longer(
   cols = c(artrunbc, artrunac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_mob_artrun_summary <- df_mob_artrun %>%
 group_by(time,mobility) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
 )
df_mob_artrun_totals <- df_mob_artrun %>%
 group_by(time) %>%
```

```
summarise(
    n_yes = sum(response == "Yes", na.rm = TRUE),
    n = n(),
    .groups = "drop"
)

df_mob_artrun_summary <- bind_rows(df_mob_artrun_summary, df_mob_artrun_totals) %>%
    mutate(
    proportion = n_yes / n,
    se = sqrt(proportion * (1 - proportion) / n),
    lower = proportion - 1.96 * se,
    upper = proportion + 1.96 * se
) %>%
    mutate(time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
        mobility = if_else(is.na(mobility), "Total", mobility))
```

time	mobility	n_yes	n	proportion	se	lower	upper
After	In-migrant	50	632	0.0791139	0.0107367	0.0580700	0.1001579
Covid-19							
After	Long-term	102	2202	0.0463215	0.0044790	0.0375426	0.0551004
Covid-19	resident						
Before	In-migrant	22	632	0.0348101	0.0072912	0.0205193	0.0491009
Covid-19							
Before	Long-term	45	2202	0.0204360	0.0030151	0.0145263	0.0263456
Covid-19	resident						
After	Total	152	2834	0.0536344	0.0042321	0.0453396	0.0619293
Covid-19							
Before	Total	67	2834	0.0236415	0.0028539	0.0180478	0.0292352
Covid-19							

```
run_out_of_art_by_mobility_plot <- ggplot(df_mob_artrun_summary, aes(x = mobility, y = propos
geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(</pre>
```

```
aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.12)) +
   title = "Run Out of ART",
   x = "Mobility",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
run_out_of_art_by_mobility_plot
```


reduced ART Intake by mobility

df_mob %>% group_by(mobility,artstrbc) %>%
 count()

mobility	artstrbc	n	
In-migrant	No	62	5
In-migrant	Yes		7
Long-term residen	t No	217	7
Long-term residen	t Yes	2	

df_mob %>% group_by(mobility,artstrac) %>%
 count()

mobility	artstrac	n	
In-migrant	No		611
In-migrant	Yes		21
Long-term reside	ent No		2149

```
df_mob_artstr <- df_mob %>%
 pivot_longer(
   cols = c(artstrbc, artstrac),
   names_to = "variable",
   values_to = "response"
  ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
df_mob_artstr_summary <- df_mob_artstr %>%
  group_by(time,mobility) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_mob_artstr_totals <- df_mob_artstr %>%
  group_by(time) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_mob_artstr_summary <- bind_rows(df_mob_artstr_summary, df_mob_artstr_totals) %>%
  mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
    upper = proportion + 1.96 * se
  ) %>%
  mutate(time = as_factor(time) %>%
           fct_relevel("Before Covid-19"),
         mobility = if_else(is.na(mobility), "Total", mobility))
df_mob_artstr_summary
```

time	mobility	n_yes	n	proportion	se	lower	upper
After	In-migrant	21	632	0.0332278	0.0071294	0.0192542	0.0472015
Covid-19							
After	Long-term	53	2202	0.0240690	0.0032661	0.0176675	0.0304706
Covid-19	resident						
Before	In-migrant	7	632	0.0110759	0.0041631	0.0029163	0.0192356
Covid-19							
Before	Long-term	25	2202	0.0113533	0.0022577	0.0069282	0.0157785
Covid-19	resident						
After	Total	74	2834	0.0261115	0.0029955	0.0202403	0.0319827
Covid-19							
Before	Total	32	2834	0.0112915	0.0019848	0.0074013	0.0151816
Covid-19							

```
reduced_art_intake_by_mobility_plot <- ggplot(df_mob_artstr_summary, aes(x = mobility, y = p)</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.20))+
    title = " Reduced ART Intake",
    x = "Mobility",
    y = "Proportion of Individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
```

reduced_art_intake_by_mobility_plot

Missed scheduled visits by mobility

mobility	hivbc n	
In-migrant	No	595
In-migrant	Yes	37
Long-term reside	nt No	2144
Long-term reside	nt Yes	58

df_mob %>% group_by(mobility,hivac) %>%
 count()

mobility hi	ivac n	
In-migrant	No	534
In-migrant	Yes	98
Long-term resident	No	2025
Long-term resident	Yes	177

```
df_mob_hiv <- df_mob %>%
 mutate(
   hivbc = as.character(hivbc),
   hivac = as.character(hivac)
 ) %>%
 pivot_longer(
   cols = c(hivbc, hivac),
   names_to = "variable",
   values to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
df_mob_hiv_summary <- df_mob_hiv %>%
 group_by(time,mobility) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_mob_hiv_totals <- df_mob_hiv %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_mob_hiv_summary <- bind_rows(df_mob_hiv_summary, df_mob_hiv_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
```

time	community_type n_	yes	\mathbf{n}	proportion	se	lower	upper
After	Inland	85	1283	0.0662510	0.0069438	0.0526411	0.0798608
Covid-19	Community						
After	Fishing 1	90	1551	0.1225016	0.0083251	0.1061845	0.1388188
Covid-19	community						
Before	Inland	26	1283	0.0202650	0.0039338	0.0125547	0.0279753
Covid-19	Community						
Before	Fishing	69	1551	0.0444874	0.0052352	0.0342265	0.0547484
Covid-19	community						
After	Total 2	75	2834	0.0970360	0.0055603	0.0861377	0.1079343
Covid-19							
Before	Total	95	2834	0.0335215	0.0033811	0.0268946	0.0401485
Covid-19							

```
missed_scheduled_visit_by_mobility_plot <- ggplot(df_mob_hiv_summary, aes(x = geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.2)) +
labs(
    title = "Missed Scheduled Visits",
    x = "Mobility",
    y = "Proportion of individuals",
    fill = "Time"
) +
theme_minimal() +</pre>
```

```
theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
)

missed_scheduled_visit_by_mobility_plot
```



```
pm1 <- ggplot(df_mob_artstr_summary, aes(x = mobility, y = proportion, fill =time)) +
    geom_col(position = position_dodge(width = 0.7), width = 0.5) +
    geom_errorbar(
        aes(ymin = lower, ymax = upper),
        position = position_dodge(width = 0.7),
        width = 0.2,
        size = 1
    ) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +</pre>
```

```
labs(
    title = "Reduced ART Intake",
    x =  "Mobility",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
pm1 ##
```

Reduced ART Intake


```
pm2 <- ggplot(df_mob_hiv_summary, aes(x = mobility, y = proportion, fill = time)) +
    geom_col(position = position_dodge(width = 0.7), width = 0.5) +
    geom_errorbar(</pre>
```

```
aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.25)) +
    caption = "Missed Scheduled Visits",
   x = "Mobility",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.caption = element_text(hjust = 0, face = "bold", size = 10),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
pm2 ## Missed scheduled vis
```



```
pm3 <- ggplot(df_mob_artrun_summary, aes(x = mobility, y = proportion, fill =time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1),limits = c(0, 0.25)) +
  labs(
   title = "Run Out of ART",
   x = "Mobility",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
```

```
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
pm3
```



```
### Combined plot
(pm1 + pm2)/pm3
```


Age Categories

```
age_cat = case_when(
                             ageyrs < 30 ~ "<30",
                             ageyrs >= 30 & ageyrs <= 39 ~ "30-39",
                             ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
           fct relevel("<30") %>%
           ff_label("Age group"),
   hivac = if_else(hivac ==1, "Yes","No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
     as_factor(),
    hivbc = if_else(hivbc ==1, "Yes", "No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
    as_factor(),
    artrunac = if_else(artrunac ==1, "Yes", "No") %>%
    as_factor() %>%
   ff_label("Run out of ART before next refill"),
  artrunbc = if_else(artrunbc ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Run out of ART before next refill"),
 artstrac = if_else(artstrac ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),
 artstrbc = if_else(artstrbc ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
  ) %>%
 select(-ageyrs)
```

```
# df_age
```

Run out of ART by Age Category

```
df_age %>% group_by(age_cat,artrunbc) %>%
count()
```

	age_	_cat	artrunbc	n
<	(30		No	421
<	(30		Yes	12
3	0-39		No	1198
3	0-39		Yes	31
4	0-49		No	1148
4	0-49		Yes	24

```
df_age %>% group_by(age_cat,artrunac) %>%
  count()
```

age	_cat	artrunac	n
< 30		No	401
< 30		Yes	32
30-39)	No	1158
30-39)	Yes	71
40-49)	No	1123
40-49)	Yes	49

```
df_age_artrun <- df_age %>%
  mutate(
    artrunbc = as.character(artrunbc),
    artrunac = as.character(artrunac)
) %>%
  pivot_longer(
    cols = c(artrunbc, artrunac),
    names_to = "variable",
    values_to = "response"
) %>%
  mutate(
    time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
)

df_age_artrun_summary <- df_age_artrun %>%
  group_by(time, age_cat) %>%
```

```
summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_age_artrun_totals <- df_age_artrun %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
df_age_artrun_summary <- bind_rows(df_age_artrun_summary, df_age_artrun_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 ) %>%
 mutate(
   time = as_factor(time) %>%
     fct_relevel("Before Covid-19"),
   age_cat = if_else(is.na(age_cat), "Total", age_cat)
df_age_artrun_summary
```

time	age cat	n yes	n	proportion	se	lower	upper
A.C. C. :1.10			499		0.0105700	0.0400012	
After Covid-19	< 30	32	433	0.0739030	0.0125723	0.0492613	0.0985447
After Covid-19	30-39	71	1229	0.0577705	0.0066551	0.0447265	0.0708146
After Covid-19	40-49	49	1172	0.0418089	0.0058465	0.0303497	0.0532680
Before	< 30	12	433	0.0277136	0.0078886	0.0122520	0.0431753
Covid-19							
Before	30-39	31	1229	0.0252238	0.0044728	0.0164570	0.0339905
Covid-19							
Before	40-49	24	1172	0.0204778	0.0041370	0.0123693	0.0285863
Covid-19							
After Covid-19	Total	152	2834	0.0536344	0.0042321	0.0453396	0.0619293

time	age_cat	n_yes	n	proportion	se	lower	upper
Before Covid-19	Total	67	2834	0.0236415	0.0028539	0.0180478	0.0292352

```
run_out_of_art_by_age_plot <- ggplot(df_age_artrun_summary, aes(x = age_cat, y = proportion,
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.16)) +
  labs(
   title = "Run Out of ART",
   x =  "Age Category",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
run_out_of_art_by_age_plot
```


Missed Scheduled Visits by Age Category

age_	_cat hivbc	n
< 30	No	411
<30	Yes	22
30-39	No	1186
30-39	Yes	43
40-49	No	1142
40-49	Yes	30

age_cat	hivac	n
<30	No	

	$\overline{\mathrm{age}}_{-}$	_cat	hivac	n
<	<30		Yes	 50
3	0-39		No	1095
3	0-39		Yes	134
4	0-49		No	1081
4	0-49		Yes	91

```
df_age_hiv <- df_age %>%
 mutate(
   hivbc = as.character(hivbc),
   hivac = as.character(hivac)
 ) %>%
 pivot_longer(
   cols = c(hivbc, hivac),
   names to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_age_hiv_summary <- df_age_hiv %>%
 group_by(time, age_cat) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_age_hiv_totals <- df_age_hiv %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_age_hiv_summary <- bind_rows(df_age_hiv_summary, df_age_hiv_totals) %%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
```

```
lower = proportion - 1.96 * se,
    upper = proportion + 1.96 * se
) %>%
mutate(
    time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
        age_cat = if_else(is.na(age_cat), "Total", age_cat)
)

df_age_hiv_summary
```

time	age_cat	n_yes	n	proportion	se	lower	upper
After Covid-19	<30	50	433	0.1154734	0.0153586	0.0853705	0.1455764
After Covid-19	30-39	134	1229	0.1090317	0.0088906	0.0916061	0.1264573
After Covid-19	40-49	91	1172	0.0776451	0.0078170	0.0623237	0.0929664
Before	< 30	22	433	0.0508083	0.0105536	0.0301233	0.0714934
Covid-19							
Before	30-39	43	1229	0.0349878	0.0052414	0.0247146	0.0452610
Covid-19							
Before	40-49	30	1172	0.0255973	0.0046132	0.0165554	0.0346391
Covid-19							
After Covid-19	Total	275	2834	0.0970360	0.0055603	0.0861377	0.1079343
Before	Total	95	2834	0.0335215	0.0033811	0.0268946	0.0401485
Covid-19							

```
missed_scheduled_visit_by_age_plot <- ggplot(df_age_hiv_summary, aes(x = age_cat, y = proport
geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.16)) +
labs(
    title = "Missed Scheduled Visits",
    x = "Age Category",
    y = "Proportion of individuals",
    fill = "Time"
) +</pre>
```

```
theme_minimal() +
theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
)
missed_scheduled_visit_by_age_plot
```


Reduced ART Intake by Age Category

```
df_age %>% group_by(age_cat,artstrbc) %>%
  count()
```

	age_cat	artstrbc	n
<	(30	No	426
<	<30	Yes	7
3	0-39	No	1213
3	0-39	Yes	16
4	0-49	No	1163
4	0-49	Yes	9

```
df_age %>% group_by(age_cat,artstrac) %>%
count()
```

	age_	_cat	artstrac	n
<	(30		No	418
<	(30		Yes	15
3	0-39		No	1190
3	0-39		Yes	39
4	0-49		No	1152
4	0-49		Yes	20

```
df_age_artstr <- df_age %>%
 pivot_longer(
   cols = c(artstrbc, artstrac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_age_artstr_summary <- df_age_artstr %>%
 group_by(time, age_cat) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_age_artstr_totals <- df_age_artstr %>%
 group_by(time) %>%
```

```
summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n()
    .groups = "drop"
df_age_artstr_summary <- bind_rows(df_age_artstr_summary, df_age_artstr_totals) %>%
  mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 ) %>%
 mutate(
   time = as_factor(time) %>%
     fct_relevel("Before Covid-19"),
   age_cat = if_else(is.na(age_cat), "Total", age_cat)
df_age_artstr_summary
```

time	age_cat	n_yes	n	proportion	se	lower	upper
After Covid-19	<30	15	433	0.0346420	0.0087882	0.0174171	0.0518670
After Covid-19	30-39	39	1229	0.0317331	0.0050001	0.0219329	0.0415333
After Covid-19	40-49	20	1172	0.0170648	0.0037831	0.0096499	0.0244798
Before	< 30	7	433	0.0161663	0.0060607	0.0042873	0.0280452
Covid-19							
Before	30-39	16	1229	0.0130187	0.0032334	0.0066812	0.0193562
Covid-19							
Before	40-49	9	1172	0.0076792	0.0025499	0.0026814	0.0126769
Covid-19							
After Covid-19	Total	74	2834	0.0261115	0.0029955	0.0202403	0.0319827
Before	Total	32	2834	0.0112915	0.0019848	0.0074013	0.0151816
Covid-19							

```
reduced_art_intake_by_age_plot <- ggplot(df_age_artstr_summary, aes(x = age_cat, y = proport
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
  aes(ymin = lower, ymax = upper),
  position = position_dodge(width = 0.7),</pre>
```

```
width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.16)) +
   title = "Reduced ART Intake",
   x = "Age Category",
   y = "Proportion of Individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
reduced_art_intake_by_age_plot
```

Reduced ART Intake


```
pa1 <- ggplot(df_age_artstr_summary, aes(x = age_cat, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
  labs(
   title = "Reduced ART Intake",
   x = "Age Category",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
```

```
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
pa1
```

Reduced ART Intake


```
pa2 <- ggplot(df_age_hiv_summary, aes(x = age_cat, y = proportion, fill = time)) +</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
  labs(
    title = "Missed Scheduled Visits",
    x = "Age Category",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
```

```
plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
)
```



```
pa3 <- ggplot(df_age_artrun_summary, aes(x = age_cat, y = proportion, fill = time)) +
    geom_col(position = position_dodge(width = 0.7), width = 0.5) +
    geom_errorbar(
        aes(ymin = lower, ymax = upper),
        position = position_dodge(width = 0.7),
        width = 0.2,
        size = 1
    ) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
    labs(</pre>
```

```
title = "Run Out of ART",
    x = "Age Category",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
  )
pa3
```

Run Out of ART


```
### Combined plot
(pa1 + pa2)/pa3
```


ART Duration

```
mutate(
 art_duration = case_when(
    artyrs >= 2 \& artyrs <= 5 ~ "2-5 years",
   artyrs > 5 ~ ">5 years",
    .default = "<2 years"</pre>
 ) %>%
   fct_relevel("<2 years","2-5 years") %>%
   ff_label("Time on ART"),
   hivac = if_else(hivac ==1, "Yes","No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
     as_factor(),
    hivbc = if_else(hivbc ==1, "Yes", "No") %>%
   ff_label("Missed scheduled visit for HIV care") %>%
    as_factor(),
    artrunac = if_else(artrunac ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Run out of ART before next refill"),
  artrunbc = if_else(artrunbc ==1, "Yes", "No") %>%
   as factor() %>%
   ff_label("Run out of ART before next refill"),
 artstrac = if_else(artstrac ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply"),
 artstrbc = if_else(artstrbc ==1, "Yes", "No") %>%
   as_factor() %>%
   ff_label("Taken ART pills less frequently / in smaller
amounts to conserve supply")
 ) %>%
 select(-artyrs)
```

```
# df_dur
```

```
df_dur %>% group_by(art_duration,artstrbc) %>%
count()
```

art duration	artstrbc	n
<2 years	No	 166
<2 years	Yes	1
2-5 years	No	868
2-5 years	Yes	12
>5 years	No	1768
>5 years	Yes	19

```
df_dur %>% group_by(art_duration,artstrac) %>%
count()
```

	art_	_duration	artstrac	n
<	$< 2 \text{ y} \epsilon$	ears	No	163
<	<2 ye	ears	Yes	4
2	2-5 ye	ears	No	852
2	2-5 ye	ears	Yes	28
>	>5 ye	ears	No	1745
>	>5 ye	ears	Yes	42

Reduced ART intake by ART duration

```
df_dur_artstr <- df_dur %>%
  pivot_longer(
    cols = c(artstrbc, artstrac),
    names_to = "variable",
    values_to = "response"
) %>%
  mutate(
    time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
)

df_dur_artstr_summary <- df_dur_artstr %>%
  group_by(time, art_duration) %>%
  summarise(
    n_yes = sum(response == "Yes", na.rm = TRUE),
    n = n(),
    .groups = "drop"
)
```

```
df_dur_artstr_totals <- df_dur_artstr %>%
 group_by(time) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
df_dur_artstr_summary <- bind_rows(df_dur_artstr_summary, df_dur_artstr_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
   lower = proportion -1.96 * se,
   upper = proportion + 1.96 * se
 ) %>%
 mutate(
   time = as_factor(time) %>%
     fct_relevel("Before Covid-19"),
   art_duration = if_else(is.na(art_duration), "Total", art_duration) %>%
     fct_relevel("<2 years","2-5 years"),</pre>
    lower = if_else(lower < 0,0,lower)</pre>
  )
df_dur_artstr_summary
```

time	art_duration	n_yes	\mathbf{n}	proportion	se	lower	upper
After Covid-19	<2 years	4	167	0.0239521	0.0118318	0.0007619	0.0471423
After Covid-19	2-5 years	28	880	0.0318182	0.0059166	0.0202216	0.0434148
After Covid-19	>5 years	42	1787	0.0235031	0.0035837	0.0164790	0.0305272
Before	<2 years	1	167	0.0059880	0.0059701	0.0000000	0.0176894
Covid-19							
Before	2-5 years	12	880	0.0136364	0.0039095	0.0059737	0.0212991
Covid-19							
Before	>5 years	19	1787	0.0106323	0.0024262	0.0058769	0.0153877
Covid-19							
After Covid-19	Total	74	2834	0.0261115	0.0029955	0.0202403	0.0319827
Before	Total	32	2834	0.0112915	0.0019848	0.0074013	0.0151816
Covid-19							

```
reduced_art_intake_by_duration_plot <- ggplot(df_dur_artstr_summary, aes(x = art_duration, y
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.20)) +
   title = "Reduced ART Intake",
   x = "ART Duration",
   y = "Proportion of Individuals",
   fill = "Time"
  ) +
  theme minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
reduced_art_intake_by_duration_plot
```


Run out of ART by ART Duration

df_dur %>% group_by(art_duration,artrunbc) %>%
 count()

	art_duration	artrunbc	n
<	2 years	No	165
<	2 years	Yes	2
2	-5 years	No	864
2	-5 years	Yes	16
>	5 years	No	1738
>	5 years	Yes	49

df_dur %>% group_by(art_duration,artrunac) %>%
 count()

art_duration	artrunac	n
< vears	No	${157}$

artrunac	n
Yes	10
No	826
Yes	54
No	1699
V_{es}	88
	Yes No Yes

```
df_dur_artrun <- df_dur %>%
 mutate(
   artrunbc = as.character(artrunbc),
   artrunac = as.character(artrunac)
 ) %>%
 pivot_longer(
   cols = c(artrunbc, artrunac),
   names to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
 )
df_dur_artrun_summary <- df_dur_artrun %>%
 group_by(time, art_duration) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_dur_artrun_totals <- df_dur_artrun %>%
 group_by(time) %>%
 summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
 )
df_dur_artrun_summary <- bind_rows(df_dur_artrun_summary, df_dur_artrun_totals) %>%
 mutate(
   proportion = n_yes / n,
   se = sqrt(proportion * (1 - proportion) / n),
```

```
lower = proportion - 1.96 * se,
    upper = proportion + 1.96 * se
) %>%
mutate(
    time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
    art_duration = if_else(is.na(art_duration), "Total", art_duration)%>%
        fct_relevel("<2 years","2-5 years"),
    lower = if_else(lower < 0,0,lower)
)
df_dur_artrun_summary</pre>
```

time	$\operatorname{art_duration}$	n_yes	n	proportion	se	lower	upper
After Covid-19	<2 years	10	167	0.0598802	0.0183601	0.0238944	0.0958660
After Covid-19	2-5 years	54	880	0.0613636	0.0080903	0.0455067	0.0772206
After Covid-19	>5 years	88	1787	0.0492445	0.0051186	0.0392121	0.0592770
Before	<2 years	2	167	0.0119760	0.0084175	0.0000000	0.0284743
Covid-19							
Before	2-5 years	16	880	0.0181818	0.0045039	0.0093541	0.0270095
Covid-19							
Before	>5 years	49	1787	0.0274203	0.0038631	0.0198486	0.0349919
Covid-19							
After Covid-19	Total	152	2834	0.0536344	0.0042321	0.0453396	0.0619293
Before	Total	67	2834	0.0236415	0.0028539	0.0180478	0.0292352
Covid-19							

```
run_out_of_art_by_duration_plot <- ggplot(df_dur_artrun_summary, aes(x = art_duration, y = properties)
geom_col(position = position_dodge(width = 0.7), width = 0.5) +
geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.20)) +
labs(
    title = "Run Out of ART",
    x = "ART Duration",
    y = "Proportion of individuals",</pre>
```

```
fill = "Time"
) +
theme_minimal() +
theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
)
```


Missed Scheduled visit by ART Duration

```
df_dur %>% group_by(art_duration,hivbc) %>%
  count()
```

hivbc	n
No	164
Yes	3
No	849
Yes	31
No	1726
Yes	61
	No Yes No Yes No

```
df_dur %>% group_by(art_duration,hivac) %>%
count()
```

art_duration	hivac	n
<2 years	No	149
<2 years	Yes	18
2-5 years	No	788
2-5 years	Yes	92
>5 years	No	1622
>5 years	Yes	165

```
df_dur_hiv <- df_dur %>%
 mutate(
   hivbc = as.character(hivbc),
   hivac = as.character(hivac)
 ) %>%
 pivot_longer(
   cols = c(hivbc, hivac),
   names_to = "variable",
   values_to = "response"
 ) %>%
 mutate(
   time = if_else(grepl("bc$", variable), "Before Covid-19", "After Covid-19")
  )
df_dur_hiv_summary <- df_dur_hiv %>%
 group_by(time, art_duration) %>%
  summarise(
   n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
   .groups = "drop"
```

```
df_dur_hiv_totals <- df_dur_hiv %>%
  group_by(time) %>%
  summarise(
    n_yes = sum(response == "Yes", na.rm = TRUE),
   n = n(),
    .groups = "drop"
  )
df_dur_hiv_summary <- bind_rows(df_dur_hiv_summary, df_dur_hiv_totals) %>%
  mutate(
    proportion = n_yes / n,
    se = sqrt(proportion * (1 - proportion) / n),
    lower = proportion -1.96 * se,
    upper = proportion + 1.96 * se
  ) %>%
  mutate(
   time = as_factor(time) %>%
     fct_relevel("Before Covid-19"),
    art_duration = if_else(is.na(art_duration), "Total", art_duration)%>%
      fct_relevel("<2 years","2-5 years"),</pre>
    lower = if_else(lower < 0,0,lower)</pre>
  )
df_dur_hiv_summary
```

time	art_duration	n_yes	n	proportion	se	lower	upper
After Covid-19	<2 years	18	167	0.1077844	0.0239969	0.0607506	0.1548183
After Covid-19	2-5 years	92	880	0.1045455	0.0103141	0.0843297	0.1247612
After Covid-19	>5 years	165	1787	0.0923335	0.0068483	0.0789109	0.1057561
Before	<2 years	3	167	0.0179641	0.0102780	0.0000000	0.0381089
Covid-19							
Before	2-5 years	31	880	0.0352273	0.0062146	0.0230467	0.0474078
Covid-19	· ·						
Before	>5 years	61	1787	0.0341354	0.0042953	0.0257165	0.0425543
Covid-19	Ü						
After Covid-19	Total	275	2834	0.0970360	0.0055603	0.0861377	0.1079343
Before	Total	95	2834	0.0335215	0.0033811	0.0268946	0.0401485
Covid-19							

```
missed_scheduled_visit_by_duration_plot <- ggplot(df_dur_hiv_summary, aes(x = art_duration, )</pre>
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
   size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.20)) +
    title = "Missed Scheduled Visits",
    x = "ART Duration",
    y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
   legend.direction = "horizontal"
missed_scheduled_visit_by_duration_plot
```

Missed Scheduled Visits


```
pd1 <- ggplot(df_dur_artstr_summary, aes(x = art_duration, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
    width = 0.2,
    size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
  labs(
   title = "Reduced ART Intake",
   x = "ART Duration",
   y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
```

```
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
pd1
```

Reduced ART Intake


```
pd2 <- ggplot(df_dur_hiv_summary, aes(x = art_duration, y = proportion, fill = time)) +
    geom_col(position = position_dodge(width = 0.7), width = 0.5) +
    geom_errorbar(
        aes(ymin = lower, ymax = upper),
        position = position_dodge(width = 0.7),
        width = 0.2,
        size = 1
) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
    labs(
        title = "Missed Scheduled Visits",
        x = "ART Duration",
        y = "Proportion of individuals",
        fill = "Time"
) +
    theme_minimal() +</pre>
```

```
theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
)
```

Missed Scheduled Visits


```
pd3 <- ggplot(df_dur_artrun_summary, aes(x = art_duration, y = proportion, fill = time)) +
    geom_col(position = position_dodge(width = 0.7), width = 0.5) +
    geom_errorbar(
        aes(ymin = lower, ymax = upper),
        position = position_dodge(width = 0.7),
        width = 0.2,
        size = 1
    ) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +</pre>
```

```
labs(
    title = "Run Out of ART",
    x = "ART Duration",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
  )
pd3
```

Run Out of ART


```
### Combined plot
(pd1 + pd2)/pd3
```


Any disruption subplots

```
df_disruption <- rakai %>%
   select(ageyrs,sex,mobility,arthoac,artrunac,artstrac,
   artyrs,comm_num,artrunbc,artstrbc,hivac,hivbc,copies,new_copies) %>%
   mutate(
```

```
age_cat = case_when(
  ageyrs < 30 ~ "<30",
  ageyrs >= 30 \& ageyrs <= 39 ~ "30-39",
  ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
  fct relevel("<30") %>%
  ff_label("Age group"),
sex = if_else(sex == "F", "Female", "Male") %>%
  as_factor() %>%
  fct_relevel("Female") %>%
  ff_label("Sex"),
mobility = case_when(
  mobility %in% c(3,8,10) ~ "In-migrant",
  .default = "Long-term resident") %>%
  fct_relevel("In-migrant") %>%
  ff_label("Migration"),
community_type = case_when(
  comm_num %in% c(38,770,771,774) ~ "Fishing community",
  .default = "Inland Community") %>%
  fct_relevel("Inland Community") %>%
  ff label("Community type"),
fishing_comm = if_else(community_type == "Fishing Community",1,0) %%
  ff_label("Lake Victoria Fishing Community"),
art_duration = case_when(
  artyrs >= 2 & artyrs <= 5 ~ "2-5 years",
  artyrs > 5 \sim ">5 years",
  .default = "<2 years"</pre>
) %>%
 fct_relevel("<2 years","2-5 years") %>%
  ff_label("Time on ART"),
hivac = if_else(hivac == 1, 1, 0) %>%
  ff_label("Missed scheduled visit for HIV care"),
hivbc = if_else(hivbc == 1, 1, 0) %>%
 ff_label("Missed scheduled visit for HIV care"),
artrunac = if_else(artrunac == 1, 1, 0) %>%
  ff_label("Run out of ART before next refill"),
```

```
artrunbc = if_else(artrunbc == 1, 1, 0) %>%
       ff_label("Run out of ART before next refill"),
     artstrac = if_else(artstrac == 1, 1, 0) %>%
       ff_label("Taken ART pills less frequently / in smaller amounts to conserve supply"),
     artstrbc = if else(artstrbc == 1, 1, 0) %>%
       ff_label("Taken ART pills less frequently / in smaller amounts to conserve supply"),
df_disruption <- df_disruption %>%
  select(sex,age_cat,community_type,art_duration,mobility,hivac,artrunac,artstrac,hivbc,arts
df_disruption <- df_disruption %>%
mutate(any_disruption_b4 = if_else(rowSums(across(hivbc:artrunbc),na.rm = TRUE) > 0,1,0),
any_disruption_after = if_else(rowSums(across(hivac:artstrac),na.rm = TRUE) > 0,1,0))
table(df_disruption$any_disruption_b4)
   0
        1
2699 140
table(df_disruption$any_disruption_after)
   0
        1
2457 382
prepare_data <- function(data, group_var) {</pre>
  grouped_data <- data %>%
    group_by({{ group_var }}) %>%
    summarise(
     n_b4 = sum(any_disruption_b4, na.rm = TRUE),
     total_b4 = n(),
      n_after = sum(any_disruption_after, na.rm = TRUE),
      total_after = n(),
      .groups = "drop"
```

```
) %>%
 mutate(
    proportion_b4 = n_b4 / total_b4,
   proportion_after = n_after / total_after,
   se_b4 = sqrt(proportion_b4 * (1 - proportion_b4) / total_b4),
    se_after = sqrt(proportion_after * (1 - proportion_after) / total_after),
   lower_b4 = proportion_b4 - 1.96 * se_b4,
   upper_b4 = proportion_b4 + 1.96 * se_b4,
   lower_after = proportion_after - 1.96 * se_after,
   upper_after = proportion_after + 1.96 * se_after
  ) %>%
 pivot_longer(
    cols = starts_with("proportion"),
   names_to = "time",
   values_to = "proportion"
 ) %>%
 mutate(
   time = if_else(time == "proportion_b4", "Before Covid-19", "After Covid-19"),
   lower = if_else(time == "Before Covid-19", lower_b4, lower_after),
   upper = if_else(time == "Before Covid-19", upper_b4, upper_after)
  ) %>%
  select({{ group_var }}, time, proportion, lower, upper)
total_data <- data %>%
  summarise(
   n_b4 = sum(any_disruption_b4, na.rm = TRUE),
   total_b4 = n(),
   n_after = sum(any_disruption_after, na.rm = TRUE),
   total_after = n(),
    .groups = "drop"
  ) %>%
 mutate(
   proportion_b4 = n_b4 / total_b4,
   proportion_after = n_after / total_after,
    se_b4 = sqrt(proportion_b4 * (1 - proportion_b4) / total_b4),
    se_after = sqrt(proportion_after * (1 - proportion_after) / total_after),
    lower_b4 = proportion_b4 - 1.96 * se_b4,
   upper_b4 = proportion_b4 + 1.96 * se_b4,
   lower_after = proportion_after - 1.96 * se_after,
   upper_after = proportion_after + 1.96 * se_after
  ) %>%
```

```
pivot_longer(
     cols = starts_with("proportion"),
     names_to = "time",
     values_to = "proportion"
   ) %>%
   mutate(
     time = if_else(time == "proportion_b4", "Before Covid-19", "After Covid-19"),
     lower = if_else(time == "Before Covid-19", lower_b4, lower_after),
     upper = if_else(time == "Before Covid-19", upper_b4, upper_after),
     {{ group_var }} := "Total" # Add "Total" to the group variable
    ) %>%
    select({{ group_var }}, time, proportion, lower, upper)
 bind_rows(grouped_data, total_data)
summary_by_sex <- prepare_data(df_disruption, sex)</pre>
summary_by_age <- prepare_data(df_disruption, age_cat)</pre>
summary_by_mobility <- prepare_data(df_disruption, mobility)</pre>
summary_by_community <- prepare_data(df_disruption, community_type)</pre>
summary_by_art_duration <- prepare_data(df_disruption,art_duration)</pre>
summary_by_age <- summary_by_age %>%
 mutate(age_cat = as_factor(age_cat) %>%
           fct_relevel("<30","30-39","40-49"),
         time = as factor(time) %>%
           fct_relevel("Before Covid-19"))
summary_by_community <- summary_by_community %>%
 mutate(
  time = as_factor(time) %>%
          fct_relevel("Before Covid-19"),
  community_type = as_factor(community_type) %>%
     fct_relevel("Fishing community")
summary_by_mobility <- summary_by_mobility %>%
 mutate(
   time = as_factor(time) %>%
          fct relevel("Before Covid-19"),
   mobility = as_factor(mobility) %>%
```

```
fct_relevel("In-migrant","Long-term resident")
)
```

```
summary_by_sex <- summary_by_sex %>%
mutate(
   time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
   sex = as_factor(sex) %>%
        fct_relevel("Female","Male")
)
```

```
summary_by_art_duration <- summary_by_art_duration %>%
mutate(
   time = as_factor(time) %>%
        fct_relevel("Before Covid-19"),
   art_duration = as_factor(art_duration) %>%
   fct_relevel("<2 years","2-5 years", ">5 years","Total")
)
```

Any Disruption by Sex

```
pr1 <- summary_by_sex %>%
ggplot(aes(x = sex, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.20)) +
  labs(
   title = "Any Disruption",
   x = "Sex",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
```

```
axis.title.x = element_text(face = "bold", size = 10),
axis.title.y = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10),
legend.text = element_text(size = 10),
legend.position = c(0, 1),
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
```


Any disruption by community type

```
pr2 <- summary_by_community %>%
ggplot(aes(x = community_type, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
  aes(ymin = lower, ymax = upper),
  position = position_dodge(width = 0.7),
  width = 0.2,
```

```
size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
    title = "Any Disruption",
    x = "Community Type",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
pr2
```


Any disruption by age category

```
pr3 <- summary_by_age %>%
ggplot(aes(x = age_cat, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
   aes(ymin = lower, ymax = upper),
   position = position_dodge(width = 0.7),
   width = 0.2,
    size = 1
  ) +
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.25)) +
  labs(
   title = "Any Disruption",
   x = "Age Category",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 14),
   axis.title.x = element_text(face = "bold", size = 10),
   axis.title.y = element_text(face = "bold", size = 10),
   legend.title = element_text(face = "bold", size = 10),
   legend.text = element_text(size = 10),
   legend.position = c(0, 1),
   legend.justification = c(0, 1),
   legend.direction = "horizontal"
pr3
```


Any Disruption By Mobility

```
pr4 <- summary_by_mobility %>%
ggplot(aes(x = mobility, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
    aes(ymin = lower, ymax = upper),
    position = position_dodge(width = 0.7),
   width = 0.2,
   size = 1
  scale_y_continuous(labels = scales::percent_format(accuracy = 1), limits = c(0, 0.26)) +
  labs(
   title = "Any Disruption",
   x = "Mobility",
   y = "Proportion of individuals",
   fill = "Time"
  ) +
  theme_minimal() +
  theme(
   plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
```

```
axis.title.x = element_text(face = "bold", size = 10),
axis.title.y = element_text(face = "bold", size = 10),
legend.title = element_text(face = "bold", size = 10),
legend.text = element_text(size = 10),
legend.position = c(0, 1),
legend.justification = c(0, 1),
legend.direction = "horizontal"
)
```


Any Disruption by ART duration

```
pr5 <- summary_by_art_duration %>%
ggplot(aes(x = art_duration, y = proportion, fill = time)) +
  geom_col(position = position_dodge(width = 0.7), width = 0.5) +
  geom_errorbar(
  aes(ymin = lower, ymax = upper),
  position = position_dodge(width = 0.7),
  width = 0.2,
```

```
size = 1
  ) +
  scale y continuous(labels = scales::percent format(accuracy = 1), limits = c(0, 0.25)) +
    title = "Any Disruption",
    x = "ART Duration",
    y = "Proportion of individuals",
    fill = "Time"
  ) +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, face = "bold", size = 12),
    axis.title.x = element_text(face = "bold", size = 10),
    axis.title.y = element_text(face = "bold", size = 10),
    legend.title = element_text(face = "bold", size = 10),
    legend.text = element_text(size = 10),
    legend.position = c(0, 1),
    legend.justification = c(0, 1),
    legend.direction = "horizontal"
  )
pr5
```


Combined Plots

Age category

Community type

Combined plot (pc1 + pc2)/(pc2 + pr2)

Mobility

Combined plot (pm1 + pm2)/(pm3 +pr4)

ART Duration

Combined plot (pd1 + pd2)/(pd3 + pr5)

Sex

Combined plot (ps1 + ps2)/(ps3 + pr1)

VIRAEMIA PREVALENCE

```
df_rakai_reg <- rakai %>%
  select(ageyrs,sex,mobility,arthoac,artrunac,artstrac,
         artyrs,comm_num,artrunbc,artstrbc,hivac,hivbc,copies,new_copies) %>%
 filter(copies != "INV.IC ",!is.na(copies),!is.na(new_copies)) %>%
 mutate(
   copies = str_remove_all(copies, "<\\s*"),</pre>
   copies = if_else(copies == "BD", "0", copies),
   copies = as.numeric(copies),
   new_copies = str_remove_all(new_copies, "<\\s*"),</pre>
   new_copies = if_else(new_copies == "BD", "0", new_copies),
   new_copies = as.numeric(new_copies)
 mutate(viral_load_b4 = if_else(copies < 200, "Viral Load Sppression", "Viraemia") %>%
           ff_label("HIV RNA viral load, in copies/ml"),
         viral_load_after = if_else(new_copies < 200, "Viral Load Sppression", "Viraemia") %>%
           ff_label("HIV RNA viral load, in copies/ml")) %>%
 mutate(
    suppbc = if_else(viral_load_b4 == "Viral Load Suppression", 1, 0),
    suppac = if_else(viral_load_after == "Viral Load Suppression", 1, 0)
 ) %>%
mutate(
   age_cat = case_when(
     ageyrs < 30 ~ "<30",
      ageyrs >= 30 \& ageyrs <= 39 ~ "30-39",
      ageyrs >=40 & ageyrs <= 49 ~ "40-49") %>%
     fct_relevel("<30") %>%
     ff_label("Age group"),
    sex = if_else(sex == "F", "Female", "Male") %>%
     as_factor() %>%
     fct_relevel("Female") %>%
     ff_label("Sex"),
   mobility = case_when(
     mobility %in% c(3,8,10) ~ "In-migrant",
      .default = "Long-term resident") %>%
     fct_relevel("In-migrant") %>%
```

```
ff_label("Migration"),
community_type = case_when(
  comm_num %in% c(38,770,771,774) ~ "Fishing community",
  .default = "Inland Community") %>%
  fct_relevel("Inland Community") %>%
  ff_label("Community type"),
fishing_comm = if_else(community_type == "Fishing Community",1,0) %>%
  ff_label("Lake Victoria Fishing Community"),
art_duration = case_when(
  artyrs \ge 2 \& artyrs \le 5 \sim "2-5 years",
  artyrs > 5 \sim ">5 years",
  .default = "<2 years"</pre>
) %>%
  fct_relevel("<2 years","2-5 years") %>%
  ff_label("Time on ART"),
hivac = if_else(hivac == 1, 1, 0) %>%
  ff_label("Missed scheduled Visit"),
hivbc = if_else(hivbc == 1, 1, 0) %>%
  ff_label("Missed Scheduled Visit"),
artrunac = if_else(artrunac == 1, 1, 0) %>%
  ff_label("Run out of ART1"),
artrunbc = if_else(artrunbc == 1, 1, 0) %>%
  ff_label("Run out of ART"),
artstrac = if_else(artstrac == 1, 1, 0) %>%
  ff_label("Reduced ART Intake"),
artstrbc = if_else(artstrbc == 1, 1, 0) %>%
  ff_label("Reduced ART Intake"),
```

```
df_viraemia <- df_rakai_reg %>%
    select(sex,age_cat,mobility,community_type,art_duration,
          hivbc,artrunbc,artstrbc,hivac,artrunac,artstrac,viral_load_b4,
          viral_load_after,suppbc,suppac) %>%
```

```
mutate(any disruption b4 = if_else(rowSums(across(hivbc:artrunbc),na.rm = TRUE) > 0,1,0)
            ff_label("Any ART Disruption"),
  any_disruption_after = if_else(rowSums(across(hivac:artstrac),na.rm = TRUE) > 0,1,0)%>%
  ff_label("Any ART Disruption"))
df_viraemia <- df_viraemia %>%
  mutate(
    viraemia_after_covid = if_else(viral_load_after == "Viraemia", "Yes", "No") %>%
      fct_relevel("No") %>%
     ff_label("Viraemia"),
    viraemia_after_dum = if_else(viral_load_after == "Viraemia",1,0) %>%
      ff_label("Viraemia"),
    viraemia_b4_covid = if_else(viral_load_b4 == "Viraemia","Yes","No") %>%
      fct relevel("No") %>%
      ff_label("Viraemia"),
   viraemia_b4_dum = if_else(viral_load_b4 == "Viraemia",1,0) %>%
      ff_label("Viraemia"),
     art_disruption_b4 = if_else(any_disruption_b4 == 1, "Yes", "No") %>%
     fct_relevel("No") %>%
      ff_label("Any ART Disruption pre-covid"),
    art_disruption_after = if_else(any_disruption_after == 1,"Yes","No") %>%
     fct_relevel("No") %>%
      ff_label("Any ART Disruption post-covid")
prr_table_full <- df_viraemia %>%
  select(art_disruption_b4,sex,age_cat,mobility,community_type,
         art_duration,viraemia_after_covid,art_disruption_after) %>%
  tbl_summary(
  by = viraemia_after_covid,
 percent = "row",
  include = c(art_disruption_after,art_disruption_b4,sex,age_cat,mobility,community_type,
              art_duration, viraemia_after_covid)
) %>%
modify_spanning_header(
 all_stat_cols() ~ "**Viraemia After COVID**" # Add a header for the `by` variable
)
prr_table_full
```

	Viraemia After COVID			
Characteristic	$No N = 2,650^{1}$	Yes $N = 135^{1}$		
Any ART Disruption post-covid	347 (93%)	28 (7.5%)		
Any ART Disruption pre-covid	115 (91%)	11 (8.7%)		
Sex				
Female	1,714 (96%)	66 (3.7%)		
Male	936 (93%)	69 (6.9%)		
Age group	` ,	, ,		
<30	390 (90%)	44 (10%)		
30-39	1,136 (94%)	67 (5.6%)		
40-49	1,124 (98%)	24(2.1%)		
Migration	,	, ,		
In-migrant	596 (95%)	34 (5.4%)		
Long-term resident	2,054 (95%)	101(4.7%)		
Community type	,	, ,		
Inland Community	1,212 (96%)	48 (3.8%)		
Fishing community	1,438 (94%)	87 (5.7%)		
Time on ART				
<2 years	160 (95%)	8 (4.8%)		
2-5 years	810 (93%)	57 (6.6%)		
>5 years	1,680 (96%)	70 (4.0%)		

¹n (%)

```
tbl_combined <- tbl_merge(
   tbls = list(prr_table_full, tbl_ureg), # Tables to combine
   tab_spanner = c("**Viraemia After COVID**", "**Prevalence Risk Ratios**") # Headers for ea
)
# Display the combined table
tbl_combined</pre>
```

Viraemia Post Covid-19 (n, %)

Characteristic	No (N = 2,650)	Yes $(N = 135)$	PRR	95% CI
Any ART Disruption	347 (93%)	28 (7.5%)	1.68	(1.09, 2.51)
post-covid Any ART Disruption pre-covid	115 (91%)	11 (8.7%)	1.87	(0.95, 3.31)
Sex Female Male	1,714 (96%) 936 (93%)	66 (3.7%) 69 (6.9%)	1.85	(1.32, 2.60)
Age group	390 (90%)	44 (10%)		
30-39	1,136 (94%)	67~(5.6%)	0.55	(0.38, 0.81)

40-49	1,124 (98%)	24 (2.1%)	0.21	(0.12, 0.34)
Migration				
In-migrant	596~(95%)	34 (5.4%)		
Long-term	2,054 (95%)	$101 \ (4.7\%)$	0.87	(0.60, 1.30)
resident				
Community				
\mathbf{type}				
Inland	$1,212\ (96\%)$	48 (3.8%)		
Community				
Fishing	87~(5.7%)	$1438 \ (94.3\%)$	1.50	(1.06, 2.15)
community				

MULTIVARIABLE REGRESSION

```
model_nb1 <-df_viraemia %>%
   glm.nb(viraemia_after_dum ~ any_disruption_after + any_disruption_b4 + sex +
        age_cat+ mobility+community_type + art_duration, data = .)
model_nb1 %>% tidy(exponentiate = TRUE,conf.int = TRUE)
```

						
term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	0.0491133	0.3960171	-	0.0000000	0.0209455	0.1006322
			7.6098368			
any_disruption_after	1.4772637	0.2336166	1.6702215	0.0948756	0.9170111	2.2973503
any_disruption_b4	1.3979012	0.3431297	0.9762256	0.3289527	0.6785373	2.6356719
sexMale	2.2657061	0.1809734	4.5193734	0.0000062	1.5887687	3.2340908
$age_cat30-39$	0.4736388	0.2029918	-	0.0002319	0.3192814	0.7090184
			3.6814811			
$age_cat40-49$	0.1736700	0.2695405	-	0.0000000	0.1010904	0.2921329
			6.4947518			
mobilityLong-term	1.0877313	0.2091751	0.4020273	0.6876639	0.7297095	1.6605676
resident						
$community_typeFishing$	1.1570889	0.1856366	0.7859836	0.4318771	0.8079466	1.6756067
community						
art_duration2-5 years	1.4508306	0.3837690	0.9696881	0.3322020	0.7243206	3.3263437
art_duration>5 years	1.2176168	0.3824050	0.5148873	0.6066318	0.6103776	2.7867867

Characteristic	N	\mathbf{IRR}^1	95% CI 1
Any ART Disruption post-covid	2,785		
No			
Yes		1.68	1.09, 2.51
Sex	2,785		
Female			
Male		1.85	1.32, 2.60
Age group	2,785		
<30			
30-39		0.55	0.38, 0.81
40-49		0.21	0.12, 0.34
Migration	2,785		
In-migrant			
Long-term resident		0.87	0.60, 1.30
Community type	2,785		
Inland Community			
Fishing community		1.50	1.06, 2.15
Time on ART	2,785		
<2 years			
2-5 years		1.38	0.70, 3.13
>5 years		0.84	0.43, 1.89
Any ART Disruption pre-covid	2,785		
No			
Yes		1.87	0.95, 3.31

 $^{{}^{}I}\!\!\operatorname{IRR}=$ Incidence Rate Ratio, CI = Confidence Interval

	Viraemia Af	Prevalence Risk Ratios			
Characteristic	$\overline{\text{No N}} = 2,650^{1}$	$Yes N = 135^{1}$	$\overline{\mathbf{N}}$	IRR^2	95% CI ²
Any ART Disruption post-covid	347 (93%)	28 (7.5%)	2,785		
No	, ,	,			
Yes				1.68	1.09, 2.51
Any ART Disruption pre-covid	115 (91%)	11~(8.7%)	2,785		
No					
Yes				1.87	0.95, 3.31
Sex			2,785		
Female	1,714 (96%)	66 (3.7%)		_	
Male	936 (93%)	69 (6.9%)		1.85	1.32, 2.60
Age group			2,785		
< 30	390 (90%)	44 (10%)			
30-39	1,136 (94%)	67~(5.6%)		0.55	0.38, 0.81
40-49	1,124 (98%)	24 (2.1%)		0.21	0.12, 0.34
Migration			2,785		
In-migrant	596 (95%)	34 (5.4%)			
Long-term resident	2,054 (95%)	$101 \ (4.7\%)$		0.87	0.60, 1.30
Community type			2,785		
Inland Community	1,212 (96%)	48 (3.8%)			
Fishing community	1,438 (94%)	87 (5.7%)		1.50	1.06, 2.15
Time on ART			2,785		
<2 years	160~(95%)	8 (4.8%)			
2-5 years	810~(93%)	57 (6.6%)		1.38	0.70, 3.13
>5 years	$1,680 \ (96\%)$	$70 \ (4.0\%)$		0.84	0.43, 1.89

¹n (%)

 $^{{}^{\}varrho}\mathrm{IRR}=$ Incidence Rate Ratio, CI = Confidence Interval

```
df_forest <- model_nb1 %>% tidy(exponentiate = TRUE,conf.int = TRUE)%>%
  filter(term != "(Intercept)") %>%
  mutate(term = case_when(
    term == "any_disruption_after" ~ "ART Disruption After (Yes)",
    term == "any_disruption_b4" ~ "ART Disruption Before (Yes)",
    term == "sexMale" ~ "Sex (Male vs Female)",
    term == "age_cat30-39" ~ "Age: 30-39 vs <30",
    term == "age_cat40-49" ~ "Age: 40-49 vs <30",
    term == "mobilityLong-term resident" ~ "Mobility (Long-term Resident)",
    term == "community_typeFishing community" ~ "Community Type (Fishing)",
    term == "art_duration2-5 years" ~ "ART Duration: 2-5 years",
    term == "art_duration>5 years" ~ "ART Duration: >5 years",
    TRUE ~ term
)) %>%
  arrange(desc(estimate))
```

```
ggplot(df_forest, aes(y = reorder(term, estimate), x = estimate)) +
  geom_point(size = 3, color = "blue") +
  geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0.2, color = "black") +
  geom_vline(xintercept = 1, linetype = "dashed", color = "red") +
  theme_minimal() +
  labs(
    title = "Forest Plot of Regression Results",
    x = "Prevalence Ratio (95% CI)",
    y = "Variables"
) +
  theme(
    axis.text.y = element_text(size = 12),
    axis.text.x = element_text(size = 10),
    plot.title = element_text(hjust = 0.5, face = "bold"),
    panel.grid.major.y = element_blank()
)
```

Forest Plot of Regression Results

model stratified by sex

```
model_nb_sex %>% select(sex, results,ci)
```