Analysis II - 2014.03.24

Erinnerung: Kritischer Punkt: $\nabla f = 0$, nicht ausgeartet: det $\nabla^2 f \neq 0$, etc. See prev. doc.

Beispiel: Zwei Partikel an den Stellen 0 < x < y < 1 mit Abstossungskräften proportional zum Kehrwert des Abstandes zum Rand und dem anderen Partikel. Wo ist ein Gleichgewicht, und ist es stabil?

Lösung: Energie:
$$E = \log \frac{1}{x} + 2 \log \frac{1}{y-x} + \log \frac{1}{1-y} = -\log x - 2 \log(y-x) - \log(1-y)$$

 $\nabla E = (-\frac{1}{x} + \frac{2}{y-x}, \frac{-2}{y-x} + \frac{1}{1-x})$
Krit. Punkte: $\frac{1}{x} = \frac{2}{y-x} \iff y-x = 2x, \frac{1}{1-y} = \frac{2}{y-x} \iff y-x = 2(1-y) \Rightarrow x = \frac{1}{4} \land y = \frac{3}{4}$
 $\nabla^2 E = \begin{pmatrix} \frac{1}{x^2} + \frac{2}{(y-x)^2} & \frac{-2}{(y-x)^2} \\ \frac{-2}{(y-x)^2} & \frac{2}{(y-x)^2} + \frac{1}{(1-y)^2} \end{pmatrix} \Rightarrow \nabla^2 E(\frac{1}{4}, \frac{3}{4}) = 8 \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$
 $\Rightarrow \begin{vmatrix} 3-\lambda & -1 \\ -1 & 3-\lambda \end{vmatrix} = (3-\lambda)^2 - (-1)^2 = \lambda^2 - 6\lambda + 8 = (\lambda-2)(\lambda-4) \Rightarrow \text{EWe} > 0 \Rightarrow \text{pos.def.}$
 $\Rightarrow \text{E hat isoliertes, lokales Minimum in } (\frac{1}{4}, \frac{3}{4}) \Rightarrow \text{stabil.}$

 \Rightarrow E hat isoliertes, lokales Minimum in $(\frac{1}{4}, \frac{3}{4}) \Rightarrow$ stabil.

Globale Extrema

Erinnerung: Jede stetige Funktion $f: K \to \mathbb{R}$ für $\emptyset \neq K \subset \mathbb{R}^n$ kompakt hat ein Minimum und ein Maximum.

Fakt: Sei f diff'bar. Jede Extremalstelle von f ist entweder ein kritischer Punkt von $f \mid K^{\circ}$ (Inneres) oder eine Extremalstelle von $f \mid \partial K$ (Rand). Für den Rand teilen wir ∂K in Stücke auf und eliminieren auf jedem eine Variable.

Beispiel: Finde die Extrema von $f(x,y) := x^3 - 18x^2 + 81x + 12y^2 - 144y + 24xy$ auf $B := \{(x, y) \mid x \ge 0, y \ge 0, x + y \le 10\}$

Lösung: Auf B° : $\nabla f = (3x^2 - 36x + 81 + 24y, 24y - 144 + 24x)$ Kritische Punkte: Diff: $3x^2 - 36x + 81 + 144 - 24x = 0 \Rightarrow x^2 - 20x + 75 = 0 \Rightarrow (x-5)(x-15) = 0$ Da 15 sowieso nicht im Bereich liegt, müssen wir nur 5 probieren: $24(-6+5)=0 \Rightarrow y=1$ \Rightarrow Kandidat (5,1)

Auf Teilmenge $y = 0, \ 0 < x < 10, \ f(x,0) = x^3 - 18x^2 + 81x \Rightarrow \frac{\partial}{\partial x}(x,0) = 3(x-3)(x-9)$ \Rightarrow Kandidaten (3,0) (9,0)() | c() |

4 ATT 11	(x,y)	f(x,y)	
Auf Teilmenge $x = 0, 0 < y < 10$	(5, 1)	68	
\Rightarrow Kandidaten $(0,6)$ $(0,0)$	(3,0)	108	
	(9,0)	0	
Auf Teilmenge $x + y = 10, 0 < y < 10$	(0,6)	-432	MIN
\Rightarrow Kandidaten $(5,5)$	(5,5)	260	MAX
	(0, 0)	0	
\Rightarrow Eckpunkte $(0,10)$ $(10,0)$ $(0,0)$	(10, 0)	10	
	(0, 10)	-240	

Implizite Funktionen

Sei $U \subset \mathbb{R}^{n+1}$ offen und $f: U \to \mathbb{R}$ $k \ge 1$ mal stetig diff'bar. Definition: Ein Punkt $x \in U$ mit $\nabla f(x) \ne (0..0)$ heisst regulärer Punkt von f.

Satz: Sei $\xi = (\xi_1..\xi_{n+1})$ ein regulärer Punkt von f mit $\frac{\partial f}{\partial x_{n+1}}(\xi) \neq 0$ und $\xi \in G := \{x \in U \mid f(x) = 0\}$. Dann existieren eine offene Teilmenge $V \times I \subset U$ mit $\xi \in V \times I$ mit $V \subset \mathbb{R}^n$, $I \subset \mathbb{R}$ und eine k-mal stetig diff'bare Funktion $\varphi : V \to I$, sodass $\operatorname{Graph}(\varphi) = G \cap (V \times I)$ ist. Für die gilt also $\varphi(\xi_1..\xi_n) = \xi_{n+1}$ und $\forall 1 \leq i \leq n : \frac{\partial \varphi}{\partial x_i}(\xi_1..\xi_n) = -\frac{\partial f}{\partial x_i}(\xi)/\frac{\partial f}{\partial x_{n+1}}(\xi)$

Beispiel: $G := \{(x,y) \in \mathbb{R}^2 \mid f(x,y) = 0\}$ und $f(x,y) := x^3 + y^3 - 3xy$

Die maximalen Zweige von G, die Graph einer Funktion sind, sind $\{(x,y) \in G \mid x < 0\}$, $\{"\mid x>0 \land y<0\}, \quad \{"\mid 0< x<\sqrt[3]{4} \land 0< y<\sqrt{x}\}, \quad \{"\mid 0< x<\sqrt[3]{4} \land y>\sqrt{x}\}$

$$\begin{array}{l} (\xi,\eta) = (\frac{2}{3},\frac{4}{3}) \Rightarrow f(\xi,\eta) = (\frac{2}{3})^3 + (\frac{4}{3})^3 - 3\frac{2}{3}\frac{4}{3} = 0 \Rightarrow (\xi,\eta) \in G \\ \nabla f = (3x^2 - 3y,\ 3y^2 - 3x) \quad \nabla f(\xi,\eta) = (-\frac{8}{3},\ \frac{10}{3}) \quad \frac{d\varphi}{dx}(\xi) = -(-\frac{8}{3})^3/(\frac{10}{3})^3 = \frac{4}{5} \end{array}$$

 $f(x,y) = f(\xi,\eta) + \nabla f(\xi,\eta)(x-\xi,\ y-\eta) + o(|(x-\xi,\ y-\eta)|)$ \Rightarrow Falls $\nabla f(\xi,\eta) \neq (0,0)$ ist, ist $f(\xi,\eta) + \nabla f(\xi,\eta)(x-\xi,y-\eta) = 0$ die Gleichung der Tangente an die Kurve f(x,y) = 0 in (ξ,η) .