Práctica 0 Preliminares de Análisis

Pablo Brianese

23 de mayo de 2021

1. Convolución y Mollifiers

Definición 1. Dadas $f,g:\mathbb{R}^n\to\mathbb{R}$ ambas en $L(\mathbb{R}^n)$, definimos la convolución de la siguiente manera

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$
 (1)

Ejercicio 1. Probar que si $f, g, h \in L^1(\mathbb{R}^n)$ y $\lambda \in \mathbb{R}$, entonces valen:

- 1. f * g = g * f
- 2. f * (g + h) = f * g + f * h a la vez que (g + h) * f = g * f + h * f
- 3. f * (g * h) = (f * g) * h
- 4. $\lambda(f * q) = (\lambda f) * q = f * (\lambda q)$
- 5. $||f * g||_1 \le ||f||_1 ||g||_1$

Observación 1. Las propiedades anteriores se pueden resumir diciendo que $(L^1(\mathbb{R}^n), \|-\|_1)$ es un álgebra de Banach conmutativa con la convolución como producto.

Lema propio 1. $\int_{\mathbb{R}^n} h(y) dy = \int_{\mathbb{R}^n} h(x-y) dy$ para toda $h \in L^1(\mathbb{R}^n)$.

Demostración. Sea H la clase formada por las funciones $h \in L^1(\mathbb{R}^n)$ que verifican el enunciado. Por la linealidad de la integral, la combinación $\alpha h_1 + \beta h_2$ pertenece a H siempre que $h_1, h_2 \in H$ y $\alpha, \beta \in \mathbb{R}$. Por el teorema de convergencia monótona, si $\{h_m\}_m \subseteq H$ es una sucesión nodecreciente de funciones nonegativas que converge a una función integrable g, entonces $g \in H$. Para concluir, debemos probar que las funciones características integrables están en H. Supongamos que $h \in L^1(\mathbb{R}^n)$ es la función característica $h = \mathbbm{1}_A$ de un conjunto medible $A \subseteq \mathbb{R}^n$ de medida finita. Observemos que $\mathbbm{1}_A(x-y) = \mathbbm{1}_{x-A}(y)$ para

todo par $x,y\in\mathbb{R}^n.$ A partir de esta relación pordemos calcular como, para todo $x\in\mathbb{R}^n$

$$\int_{\mathbb{R}^n} \mathbb{1}_A(y) \mathrm{d}y = \lambda(A) \qquad \int_{\mathbb{R}^n} \mathbb{1}_A(x - y) \mathrm{d}y = \int_{\mathbb{R}^n} \mathbb{1}_{x - A}(y) \mathrm{d}y = \lambda(x - A) \qquad (2)$$

Ahora la ecuación que necesitamos se sigue de la invarianza por traslaciones (+x) y reflexiones (-) de la medida de Lebesgue, una propiedad que es facil de ver en el caso de los rectángulos que generan su σ -álgebra. Concretamente, sucede $\lambda(A) = \lambda(x - A)$ para todo $x \in \mathbb{R}^n$.

Demostración. 1 Para todo $x \in \mathbb{R}^n$, como consecuencia del lema 1

$$f * g(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$
 (3)

$$= \int_{\mathbb{R}^n} f(x-y)g(x-(x-y))dy \tag{4}$$

$$= \int_{\mathbb{R}^n} g(y)f(x-y)\mathrm{d}y \tag{5}$$

$$= g * f(x) \tag{6}$$

Demostraci'on.2 Por la ley distributiva de los números reales y la linealidad de la integral, para todo $x \in \mathbb{R}^n$

$$f * (g+h)(x) = \int_{\mathbb{R}^n} f(y)(g+h)(x-y) dy$$
 (7)

$$= \int_{\mathbb{D}_n} f(y)g(x-y) + f(y)h(x-y)dy \tag{8}$$

$$= \int_{\mathbb{R}^n} f(y)g(x-y)dy + \int_{\mathbb{R}^n} f(y)h(x-y)dy$$
 (9)

$$= f * g(x) + f * h(x) \tag{10}$$

La demostración del enunciado (g+h)*f=g*f+h*f es similar. \square

Demostración. 4 Sea $x \in \mathbb{R}^n$ arbitrario. Por la linealidad de la integral

$$(\lambda(f*g))(x) = \lambda \int_{\mathbb{R}^n} f(y)g(x-y)dy = \int_{\mathbb{R}^n} \lambda(f(y)g(x-y))dy$$
 (11)

Pero por asociatividad del producto entre números reales

$$(\lambda f) * g(x) = \int_{\mathbb{R}^n} (\lambda f(x)) g(x - y) dy = \int_{\mathbb{R}^n} \lambda (f(y)g(x - y)) dy$$
 (12)

$$f * (\lambda g)(x) = \int_{\mathbb{R}^n} f(x)(\lambda g(x-y)) dy = \int_{\mathbb{R}^n} \lambda(f(y)g(x-y)) dy$$
 (13)

Comparando los extremos derechos de las desigualdades se obtiene $\lambda(f*g) = (\lambda f)*g = f*(\lambda g).$

Lema propio 2 (Convergencia monótona para convoluciones). Si $f \in L^1(\mathbb{R}^n)$, $y \{g_m\}_m$ es una sucesión nodecreciente de funciones nonegativas que convergen puntualmente a una $g \in L^1(\mathbb{R}^n)$, entonces $\lim_{m\to\infty} f * g_m = f * g y$ de forma $similar \lim_{m\to\infty} g_m * f = g * f$.

Demostración. Sea $x \in \mathbb{R}^n$ arbitrario. Si f^+ y f^- son las partes nonegativa y negativa de f, y f^\pm es cualquiera de ellas entonces por el teorema de convergencia monótona

$$\lim_{m \to \infty} f^{\pm} * g_m(x) = \lim_{m \to \infty} \int_{\mathbb{R}^n} f^{\pm}(y) g_m(x - y) dy$$
 (14)

$$= \int_{\mathbb{R}^n} \lim_{m \to \infty} f^{\pm}(y) g_m(x - y) \mathrm{d}y \tag{15}$$

$$= \int_{\mathbb{R}^n} f^{\pm}(y)g(x-y)\mathrm{d}y \tag{16}$$

$$= f^{\pm} * g(x) \tag{17}$$

En consecuencia el límite de las convoluciones es la convolución con el límite

$$\lim_{m \to \infty} f * g_m(x) = \lim_{m \to \infty} f^+ * g_m(x) - \lim_{m \to \infty} f^- * g_m(x)$$
 (18)

$$= f^{+} * g(x) - f^{-} * g(x)$$
(19)

$$= f * g(x) \tag{20}$$

La demostración del enunciado $\lim_{m\to\infty} g_m * f(x) = g * f(x)$ es idéntica a la que recién presentamos.

Demostración. 5 Sean $f, g \in L^1(\mathbb{R}^n)$. Una primera desigualdad es simple

$$||f * g||_1 = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(y)g(x - y) dy \right| dx \le \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x - y)| dy dx \qquad (21)$$

El teorema de Tonelli nos permite intercambiar el orden de integración para obtener

$$\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(y)g(x-y)| dy dx = \int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x-y)| dx dy$$
 (22)

El lema propio 1 simplifica esta integral mediante $\left\|g\right\|_1 = \int_{\mathbb{R}^n} |g(x-y)| \mathrm{d}x$

$$\int_{\mathbb{R}^n} |f(y)| \int_{\mathbb{R}^n} |g(x-y)| dx dy = \int_{\mathbb{R}^n} |f(y)| ||g||_1 dy = ||f||_1 ||g||_1$$
 (23)

Lema propio 3. Si $f \in L^1(\mathbb{R}^n)$ y $\psi \in C_c(\mathbb{R}^n)$ entonces $f * \psi$ es uniformemente continua.

Demostración. Sean $x, x' \in \mathbb{R}^n$. Una primera desigualdad es sencilla

$$|f * \psi(x) - f * \psi(x')| = \left| \int_{\mathbb{R}^n} f(y)\psi(x - y) dy - \int_{\mathbb{R}^n} f(y)\psi(x' - y) dy \right|$$
(24)

$$= \left| \int_{\mathbb{R}^n} f(y) (\psi(x-y) - \psi(x'-y)) dy \right| \tag{25}$$

$$\leq \int_{\mathbb{R}^n} |f(y)| |\psi(x-y) - \psi(x'-y)| \mathrm{d}y \tag{26}$$

Ahora bien, dado $\varepsilon > 0$, existe un $\delta > 0$ tal que $|\psi(u) - \psi(u')| < \varepsilon$ si $||u - u'|| < \delta$ porque ψ , al ser continua de soporte compacto, es uniformemente continua. Luego $||x - x'|| < \delta$ implica

$$|f * \psi(x) - f * \psi(x')| \le \int_{\mathbb{R}^n} |f(y)| |\psi(x - y) - \psi(x' - y)| dy$$
 (27)

$$<\varepsilon \int_{\mathbb{R}^n} |f(y)| \mathrm{d}y$$
 (28)

$$=\varepsilon \|f\|_1 \tag{29}$$

Siendo que $||f||_1 < \infty$, podemos conluir que $f*\psi$ es uniformemente continua. \square

Ejercicio 2. Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ y $\psi \in C_c(\mathbb{R}^n)$ entonces $f * \psi$ es continua.

Demostración. Sean $B_m = \bar{B}_m(0)$ las bolas cerradas de radio m centradas en 0. Aproximamos f mediante $f_m = f \mathbbm{1}_{B_m}$ $(m \in \mathbb{N})$. La integrabilidad local de f hace de cada f_m una función integrable. Por el lema 3, las funciones $f_m * \psi$ son uniformemente continuas. Además, se da la convergencia uniforme en compactos $f_m * \psi \to f * \psi$. Para verlo fijemos un conjunto compacto $K \subseteq \mathbb{R}^n$. Existe un $M \in \mathbb{N}$ lo suficientemente grande, dependiendo de K, tal que $K \subseteq B_M$. Luego, para todo $x \in K$ y para todo $x \in K$ y para todo $x \in K$

$$f_m * \psi(x) = \int_{\mathbb{R}^n} f_m(y)\psi(x - y) dy$$
 (30)

$$= \int_{\mathbb{D}_n} f(y) \mathbb{1}_{B_m}(y) \psi(x-y) dy \tag{31}$$

$$= \int_{\mathbb{R}^n} f(y)\psi(x-y)\mathrm{d}y \tag{32}$$

$$= f * \psi(x) \tag{33}$$

Queda probada la convergencia uniforme en compactos. Pero el límite, en este caso $f*\psi$, uniforme en compactos de una sucesión de funciones uniformemente continuas, aquí las f_m , es continuo. Por lo tanto $f*\psi$ es una función continua.

Ejercicio 3. Probar que si $f \in L^1_{loc}(\mathbb{R}^n)$ y $\psi \in C_c^{\infty}(\mathbb{R}^n)$ entonces $\partial_{x_i}(\psi * f) = f * \partial_{x_i}\psi$.

Observación 2. Como consecuencia $f * \psi \in C^{\infty}(\mathbb{R}^n)$.

Demostración. Sea $x \in \mathbb{R}^n$ un vector fijo. Calculamos

$$\partial_{x_i}(f * \psi)(x) = \lim_{h \to 0} h^{-1}((f * \psi)(x + he_i) - (f * \psi)(x))$$
(34)

$$= \lim_{h \to 0} \int_{\mathbb{R}^n} f(y) \frac{\psi(x + he_i - y) - \psi(x - y)}{h} dy$$
 (35)

El análisis de este límite constará de tres partes. Primero acotamos la región de integración. Definimos $\phi_h(y) = h^{-1}(\psi(x + he_i - y) - \psi(x - y))$ para $y \in \mathbb{R}^n$ y $h \in \mathbb{R} \setminus 0$. Podemos probar que el soporte de las todas las funciones ϕ_h está contenido en una bola si nos restringimos a los desplazamientos $h \in [-1, 1]$. Sabemos que ψ tiene soporte compacto, por lo cual se anula en $\mathbb{R}^n \setminus B_r$, el complemento de la bola centrada en 0 de radio r. Escogiendo r' = r + ||x|| + 1 podemos asegurar que $||y|| \geq r'$ implica

$$r = r' - ||x|| - 1 r = r' - ||x|| - 1 (36)$$

$$\leq ||y|| - ||x|| - 1$$
 $\leq ||y|| - ||x|| - 1$ (37)

$$\leq ||y|| - ||x + he_i|| \qquad \qquad \leq ||y|| - ||x|| \tag{38}$$

$$\leq |||x + he_i|| - ||y||| \qquad \leq |||x|| - ||y||| \tag{39}$$

$$\leq \|x + he_i - y\| \qquad \qquad \leq \|x - y\| \tag{40}$$

y estas desigualdades a su vez nos permiten deducir $\psi(x+he_i-y)=\psi(x-y)=0$. En conclusión, las funciones ϕ_h con $h\in[-1,1]$ se anulan sobre el conjunto $\mathbb{R}^n\setminus B_{r'}$.

En segundo lugar controlamos el integrando. Por el teorema del valor medio $|\psi(x+he_i-y)-\psi(x-y)| \leq \|\partial_{x_i}\psi\|_{\infty}|h|$ para todo $y \in \mathbb{R}^n$. Pero $\partial_{x_i}\psi \in C_c^{\infty}(\mathbb{R}^n)$ porque $\psi \in C_c^{\infty}(\mathbb{R}^n)$. Luego $C = \|\partial_{x_i}\psi\|_{\infty} < \infty$. Esto asegura $|\phi_h| \leq C$ para todo $h \in \mathbb{R} \setminus 0$.

En tercer y último lugar, aplicamos el teorema de convergencia dominada. En el primer y segundo paso probamos que $|\phi_h| \leq C \mathbbm{1}_{B_r}$, para todo $h \in [-1,1]$. Partiendo de esto, el integrando $f \phi_h$ está dominado por una función $g = C|f|\mathbbm{1}_{B_{r'}}$. Esta g resulta integrable porque f es localmente integrable. Luego el teorema de la convergencia dominada implica

$$\lim_{h \to 0} \int_{\mathbb{R}^n} f(y)\phi_h(y) dy = \int_{\mathbb{R}^n} f(y) \lim_{h \to 0} \phi_h(y) dy$$
 (41)

Pero $\psi \in C^{\infty}(\mathbb{R}^n)$, entonces

$$\lim_{h \to 0} \phi_h(y) = \partial_{x_i} \psi(x - y) \qquad (\forall y \in \mathbb{R}^n)$$
 (42)

Es decir

$$\partial_{x_i}(f * \psi)(x) = f * (\partial_{x_i}\psi)(x) \tag{43}$$

Con la conmutatividad de la convolución podemos llegar al enunciado preciso del ejercicio. $\hfill\Box$

Definición 2. Dada una función ϕ diremos que es un mollifier si satisface las siguientes propiedades

- a) $\phi(x) \geq 0$;
- b) $\phi \in C^{\infty}(\mathbb{R}^n)$;
- c) $sop(\phi) = \overline{B_1(0)}$.
- d) $\int_{\mathbb{R}^n} \phi(x) dx = 1$.

Denotamos $\phi_{\delta}(x) = \delta^{-n}\phi(x/\delta)$, donde $\delta > 0$.

Ejercicio 4. ¿Cuáles son las propiedades que satisface ϕ_{δ} ?

Respuesta. Las propiedades que podemos observar son

- a) $\phi_{\delta} \geq 0$;
- b) $\phi_{\delta} \in C^{\infty}(\mathbb{R}^n);$
- c) $sop(\phi_{\delta}) = \overline{B_{\delta}(0)};$
- d) $\int_{\mathbb{R}^n} \phi_{\delta}(x) dx = 1$.

Sea $T:\mathbb{R}^n\to\mathbb{R}^n$ la transformación lineal dada por $Tx=\delta x$ para todo $x\in\mathbb{R}^n$. La propiedad a) se debe a que el producto de números nonegativos es un número nonegativo. b) se debe a la regla de la cadena, y a la suavidad de las funciones ϕ y la aplicación T^{-1} . c) se debe a que T es un homeomorfismo, y en consecuencia se puede calcular

$$sop(\phi_{\delta}) = \{ y \in \mathbb{R} : \phi_{\delta}(y) = 0 \}^{-}$$

$$(44)$$

$$= \{ y \in \mathbb{R} : \delta^{-n} \phi(y/\delta) = 0 \}^{-} \tag{45}$$

$$= \{ y \in \mathbb{R} : \phi(y/\delta) = 0 \}^- \tag{46}$$

$$= \{\delta(y/\delta) :, y \in \mathbb{R}^n, \phi(y/\delta) = 0\}^- \tag{47}$$

$$= \{ \delta x : x \in \mathbb{R}^n, \phi(x) = 0 \}^-$$
 (48)

$$= (\delta \cdot \{x \in \mathbb{R}^n : \phi(x) = 0\})^- \tag{49}$$

$$= \delta \cdot \{x \in \mathbb{R}^n : \phi(x) = 0\}^- \tag{50}$$

$$= \delta \cdot \operatorname{sop}(\phi) \tag{51}$$

además de la ecuación $\overline{B_{\delta}(0)} = \delta \cdot \overline{B_{1}(0)}$ particular a las bolas. d) se debe al

teorema de cambio de variable aplicado a la transformación lineal T

$$\int_{\mathbb{R}^n} \phi_{\delta}(x) dx = \int_{\mathbb{R}^n} \delta^{-n} \phi(x/\delta) dx \tag{52}$$

$$= \delta^{-n} \int_{\mathbb{R}^n} \phi(T^{-1}x) \mathrm{d}x \tag{53}$$

$$= \delta^{-n} \int_{\mathbb{R}^n} \phi(y) |\det T| \mathrm{d}y \tag{54}$$

$$= \delta^{-n} \int_{\mathbb{R}^n} \phi(y) \delta^n dy$$
 (55)

$$= \delta^{-n} \delta^n \int_{\mathbb{R}^n} \phi(y) \mathrm{d}y \tag{56}$$

$$=1\cdot 1\tag{57}$$

Ejercicio 5. Si $f: \mathbb{R}^n \to \mathbb{R}^n$ es continua luego $f_{\delta} = f * \phi_{\delta} \to f$ uniformemente en compactos de \mathbb{R}^n .

Demostración. Sea $x \in \mathbb{R}^n$ un vector. Calculamos usando la conmutatividad de la convolución

$$f(x) - f * \phi_{\delta}(x) = f(x) - \phi_{\delta} * f(x) = f(x) - \int_{\mathbb{R}^n} \phi_{\delta}(y) f(x - y) dy \qquad (58)$$

Usando la propiedad $\int_{\mathbb{R}^n} \phi_{\delta}(y) dy = 1$, que mostramos en el ejercicio 4, vemos

$$f(x) - f * \phi_{\delta}(x) = \int_{\mathbb{R}^n} \phi_{\delta}(y) dy \cdot f(x) - \int_{\mathbb{R}^n} \phi_{\delta}(y) f(x - y) dy$$
 (59)

$$= \int_{\mathbb{R}^n} \phi_{\delta}(y) f(x) dy - \int_{\mathbb{R}^n} \phi_{\delta}(y) f(x-y) dy$$
 (60)

$$= \int_{\mathbb{D}^n} \phi_{\delta}(y) (f(x) - f(x - y)) dy$$
 (61)

También en el ejercicio 4, probamos que sop $(\phi_{\delta}) = \overline{B_{\delta}}$. Luego

$$f(x) - f * \phi_{\delta}(x) = \int_{\overline{B_{\delta}}} \phi_{\delta}(y) (f(x) - f(x - y)) dy$$
 (62)

Esto dice que la diferencia $f(x) - f * \phi_{\delta}(x)$ en la izquierda depende del control que tengamos sobre el cambio de f sobre el conjunto $x + \overline{B_{\delta}}$.

Sabiendo esto, consideremos un compacto $K \subseteq \mathbb{R}^n$ y restrinjamos $x \in K$. Este conjunto K está contenido en una bola $B_r \subseteq \mathbb{R}^n$ centrada en 0. Luego $x + \overline{B_\delta} \subseteq \overline{B_{r+\delta}}$ para todo $\delta > 0$. Si imponemos $\delta \le 1$, entonces $x + \overline{B_\delta} \subseteq \overline{B_{r+1}}$. Pero f, al ser continua, es uniformemente continua en la bola compacta $\overline{B_{r'}}$ donde r' = r + 1. Luego, para todo $\varepsilon > 0$, podemos elegir $\delta \in]0,1]$ de modo tal que para todo $\delta' \in]0, \delta]$ y todo $y \in \overline{B_{\delta'}}$ se verifica la cota $|f(x) - f(x - y)| < \varepsilon$ independientemente de $x \in K$. Con esta información estimamos

$$|f(x) - f * \phi_{\delta}(x)| = \left| \int_{\overline{B_{\delta}}} \phi_{\delta}(y) (f(x) - f(x - y)) dy \right|$$
 (63)

$$\leq \int_{\overline{B_{\delta}}} |\phi_{\delta}(y)| |f(x) - f(x - y)| \mathrm{d}y \tag{64}$$

$$\leq \varepsilon \int_{\overline{B_{\delta}}} |\phi_{\delta}(y)| \mathrm{d}y \tag{65}$$

Rematamos el cálculo usando las propiedades de nonegatividad $\phi_{\delta} \geq 0$, del soporte $\operatorname{sop}(\phi_{\delta}) = \overline{B_{\delta}}$, y la integral $\int_{\mathbb{R}^n} \phi_{\delta}(y) \mathrm{d}y = 1$, todas vistas en el ejercicio 4. A partir de estas $\int_{\overline{B_{\delta}}} |\phi_{\delta}(y)| \mathrm{d}y = 1$. En conclusión, dado un conjunto compacto $K \subseteq \mathbb{R}^n$ y un $\varepsilon > 0$, existe un $\delta > 0$ tal que para todo $\delta' \in]0, \delta]$ y todo $x \in K$, se verifica la cota $|f(x) - f * \phi_{\delta}(x)| \leq \varepsilon$. Es decir, $f * \phi_{\delta} \to f$ uniformemente en compactos.

Teorema 1. Sea X un espacio topológico Hausdorff localmente compacto, entonces $C_c(X)$ es denso en $L^p(\mu)$ para $1 \leq p < \infty$.

Demostración. Sea s una función medible simple definida en X tal que $\mu(\{x:s(x)\neq 0\})<\infty$. Dado $\varepsilon>0$, existe una función $g\in C_c(X)$ tal que g(x)=s(x) excepto en un conjunto de medida menor a ε , y $|g|\leq ||s||_{\infty}$ (Teorema de Lusin). Por lo tanto $||g-s||_p\leq 2\varepsilon^{1/p}||s||_{\infty}$. Dado que la familia de las funciones s es densa en $L^p(\mu)$, esto completa la prueba.

Definición propia 1. Si f es una función sobre \mathbb{R}^n y $x \in \mathbb{R}^n$, definimos la función $T_x f$ mediante $T_x f(y) = f(x+y)$.

Lema propio 4. Si $g \in C_c(\mathbb{R}^n)$, entonces $T_x g \to g$ en norma L^p cuando $x \to 0$.

Demostración. Porque $g \in C_c(\mathbb{R}^n)$, también es uniformemente continua. Entonces $T_x g \to g$ uniformemente cuando $x \to 0$. Dado que g y g_x donde $|x| \le 1$ estan soportadas en un conjunto compacto que les es común, también se sigue que $||g - T_x g||_p \to 0$.

Lema propio 5. $Si \ 1 \le p < \infty \ y \ f \in L^p(\mathbb{R}^n)$, entonces $\lim_{x\to 0} \|f - T_x f\|_p = 0$.

Demostración. Dada $f \in L^p(\mathbb{R}^n)$ y $\varepsilon > 0$, usando el resultado de densidad 1 elegimos una g continua de soporte compacto tal que $||f - g||_p < \varepsilon/3$. Entonces también $||T_x f - T_x g||_p < \varepsilon/3$, de modo que para la norma L^p

$$||f - T_x f|| \le ||f - g|| + ||g - T_x g|| + ||T_x f - T_x g|| < ||g - T_x g|| + \frac{2}{3}\varepsilon$$
 (66)

Pero por el lema 4, $\|g-T_xg\|_p<\varepsilon/3$ para x lo suficientemente pequeño. Luego $\|f-T_xf\|_p<\varepsilon$.

Lema propio 6. Si $f \in L^p(\mathbb{R}^n)$, $1 \leq p < \infty$, entonces

$$||f - f_{\delta}||_{p}^{p} \le \int_{\mathbb{R}^{n}} ||f - T_{-\delta w} f||_{p}^{p} \phi(w)^{p} dw$$
 (67)

Demostración. Primero observamos que la integral $\int \phi_{\delta} = 1$ implica

$$(f - f_{\delta})(x) = \int_{\mathbb{R}^n} (f(x) - f(x - y))\phi_{\delta}(y) dy$$
 (68)

Luego el cambio de variable $y\mapsto \delta w$ nos lleva a

$$(f - f_{\delta})(x) = \int_{\mathbb{R}^n} (f(x) - f(x - \delta w))\phi(w) dw = \int_{\mathbb{R}^n} (f - T_{-\delta w} f)(x)\phi(w) dw$$
(69)

Por la convexidad de la aplicación $t\mapsto |t|^p$ cuando $p\geq 1$, la desigualdad de Jensen nos dice que

$$|f - f_{\delta}|^{p}(x) \le \int_{\mathbb{R}^{n}} |f - T_{-\delta w} f|^{p}(x) \phi(w)^{p} dw$$

$$(70)$$

Integramos sobre x y aplicamos el Teorema de Tonelli del lado derecho para intercambiar el orden de la integración. Obtenemos

$$\|f - f_{\delta}\|_{p}^{p} \le \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} |f - T_{-\delta w} f|^{p}(x) \phi(w)^{p} dw dx \tag{71}$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f - T_{-\delta w} f|^p(x) dx \phi(w)^p dw$$
 (72)

$$= \int_{\mathbb{R}^n} \|f - T_{-\delta w} f\|_p^p \phi(w)^p dw \tag{73}$$

Ejercicio 6. Si $f \in L^p$, $1 \le p < \infty$, entonces $f * \phi_{\delta} \to f$ en norma L^p cuando $\delta \to 0$

Demostración. Por el lema 6

$$||f - f_{\delta}||_{p}^{p} \le \int_{\mathbb{R}^{n}} ||f - T_{-\delta w}f||_{p}^{p} \phi(w)^{p} dw$$
 (74)

Pero $\|f_{-\delta y} - f\|_p$ está acotada por $2\|f\|_p$ y tiende a cero cuando $\delta \to 0$ para cada y, por el lema 5. Además $\|\phi\|_p^p < \infty$ porque $\phi \in C_c^\infty(\mathbb{R}^n)$. Por lo tanto, la convergencia $\|f - f_\delta\|_p \to 0$ cuando $\delta \to 0$ se sigue del Teorema de Convergencia Dominada.

2. Series de Fourier

3. Espacio de Schwartz