Fonctions de hachage

Gardons à l'esprit qu'un algorithme de recherche de collisions (resp. préimages, secondes préimages) est un algorithme probabiliste, qui n'a besoin que de réussir en moyenne.

Soit $H:\{0,1\}^* \to \{0,1\}^n$ une fonction de hachage résistante aux collisions. Soit H' la fonction suivante :

$$H' : \begin{cases} \{0,1\}^* \to \{0,1\}^{n+1} \\ x \mapsto \begin{cases} 0||x \text{ si } |x| = n \\ 1||H(x) \text{ sinon} \end{cases}$$

Où | est une concaténation.

Question 1. Montrer que H' est résistante aux collisions.

Question 2. Montrer que H' n'est pas résistante aux préimages.

Autour des définitions

Soit (KeyGen, Sign, Verify) un schéma de signature sûr sur l'espace de messages $\{0,1\}^n$. On définit un nouveau schéma de signature (KeyGen', Sign', Verify') utilisant deux paires de clés de signature / vérification (pk_0 , sk_0) et (pk_1 , sk_1).

Question 3. Dans cette question on sépare le message m en deux et on signe ses moitiés :

$$\begin{cases} m := m_0 \| m_1 \\ \mathsf{Sign'}((\mathsf{sk}_0, \mathsf{sk}_1), m)) := \mathsf{Sign}(\mathsf{sk}_0, m_0) \,, \mathsf{Sign}(\mathsf{sk}_1, m_1) \\ \mathsf{Verify'}((\mathsf{pk}_0, \mathsf{pk}_1), m, (\sigma_0, \sigma_1))) := \mathsf{Verify}(\mathsf{pk}_0, m_0, \sigma_0) \wedge \mathsf{Verify}(\mathsf{pk}_1, m_1, \sigma_1) \end{cases}$$

Est-ce que ce schéma est sûr?

On définit maintenant un schéma qui accepte si une des deux signatures est valide:

$$\begin{cases} \mathsf{Sign'}((\mathsf{sk}_0,\mathsf{sk}_1),m)) := \mathsf{Sign}(\mathsf{sk}_0,m) \,, \mathsf{Sign}(\mathsf{sk}_1,m) \\ \mathsf{Verify'}((\mathsf{pk}_0,\mathsf{pk}_1),m,(\sigma_0,\sigma_1))) := \mathsf{Verify}(\mathsf{pk}_0,m,\sigma_0) \vee \mathsf{Verify}(\mathsf{pk}_1,m,\sigma_1) \end{cases}$$

On va démontrer que ce schéma est sûr.

Question 4. Soit \mathcal{B} un adversaire dans le jeu EUF-CMA pour la signature (Sign', Verify'). On définit un adversaire \mathcal{A} dans le jeu EUF-CMA pour la signature (Sign, Verify), qui joue le rôle de challenger pour \mathcal{B} .

- Initialisation : \mathcal{A} reçoit la clé pk de \mathcal{C} . Iel tire un bit b au hasard, ainsi qu'une clé $(\mathsf{pk'},\mathsf{sk'})$, et définit : $\mathsf{pk}_b := \mathsf{pk}, \mathsf{pk}_{1-b} = \mathsf{pk'}, \mathsf{sk}_{1-b} = \mathsf{sk'}$.
- Requêtes : lorsque \mathcal{B} effectue une requête de signature sur le message m, \mathcal{A} transfère la requête à \mathcal{C} et reçoit $\sigma = \mathsf{Sign}(\mathsf{sk}, m)$. \mathcal{A} renvoie alors à \mathcal{B} :
 - σ , Sign(sk₁, m) dans le cas b = 0
 - $\operatorname{Sign}(\operatorname{sk}_0, m), \sigma \ dans \ le \ cas \ b = 1$
- Finalisation : \mathcal{B} renvoie $(m, (\sigma_0, \sigma_1))$. \mathcal{A} renvoie (m, σ_b) .

Montrer que :

$$\Pr\left[\mathsf{Verify}(\mathsf{pk}, m, \sigma_b) = 1\right] \geq \frac{1}{2}\Pr\left[\mathsf{Verify}'((\mathsf{pk}_0, \mathsf{pk}_1), m, (\sigma_0, \sigma_1))) = 1\right] \ .$$

Conclure.

Ce type d'argument s'applique à plus que deux copies : \mathcal{A} devine à l'avance sur quelle clé l'attaque va avoir lieu. Cela permet de prouver génériquement la sécurité en "multiclés" ou "multi-utilisateurs" des schémas que l'on utilise.

DSA

L'algorithme de signature DSA ("Digital Signature Algorithm") a été standardisé par le NIST en 1991. Aujourd'hui on le retrouve plus couramment sous sa version ECDSA, utilisant des courbes elliptiques.

On considère un grand nombre premier p tel que p-1 est divisible par un nombre premier q de taille « moyenne » . Soit g' un générateur de \mathbb{Z}_p^* , et $g=(g')^{(p-1)/q}$. On a donc $g^q = 1 \mod p$.

On considère une fonction de hachage $H: \{0,1\}^* \to \mathbb{Z}_q$.

DSA

KeyGen

- $x \leftarrow U(\mathbb{Z}_q^*)$
- $\mathsf{pk}, \mathsf{sk} := g^x, x$

Sign(sk, m)

- Calculer h = H(m)
- $k \leftarrow U(\mathbb{Z}_q^*)$ $r \leftarrow (g^k \pmod{p}) \pmod{q}$
- $s \leftarrow (h + \mathsf{sk}r)k^{-1} \pmod{q}$
- Renvoyer (r, s)

Verify(pk, m, (r, s))

- Calculer h = H(m)
- $a \leftarrow hs^{-1} \pmod{q}$
- $b \leftarrow rs^{-1} \pmod{q}$
- $v \leftarrow (q^a \cdot h^b \pmod{p}) \pmod{q}$
- Renvoyer 1 ssi v = r.

Question 5. Prouver que la signature DSA est correcte.

Question 6. Peut-on réutiliser la valeur k pour plusieurs signatures?