Metal Foam Technology in Rocket Engine Designa

Nasr M. Ghaniem UCL A

APEX Kickoff Meeting

UCLA

Oct. 15-17, 1997

- In the early mineties, NASA initialed the "National Launch System Effort".
- The goals are to develop reliable, low-cost, liquid hydrogen/oxygen Rocket emines.
- · Testing at Pratt & Whitney and at Rocke tolyne
 - A new initiative is funded through SBIR to utilize metal frams.

Foams are manufactured by a CVD process.

7) Polyerythane is used as a starting skeleton, and the Structure is built up from the gas phase by thickening the ligaments.

Foam Cellular Structure

Single Cell Dodecahedron

Geometrical Parameters of Interest

- Permeability, ĸ
- Effective hydraulic diameter, d_h
- Specific surface area, S_w
- Volumetric porosity, ϵ
- Surface porosity, ϵ_s

Strut Parameters			
Foam	Radius, r	Length, 1	
100 ppi	0.02 mm	0.19 mm	
65 ppi	0.03 mm	0.32 mm	
20 ppi	0.05 mm	0.65 mm	

n - sided faces	%
n = 6	10
n = 5	71
n = 4	19

Desired Characteristic Length

$$L_c = \frac{4\epsilon}{S_w}$$

ULTRAMET Silicon Carbide Foams Compressions © 1000°C WA 4200

CHAMBER DESCRIPTION

Single pass heat exchanger Inlet at the Nozzle

Boeing North American Rocketdyne Division

Chamber Description

Operating Parameters

Parameter	Nominal	
Chamber Pressure:	600 psia	
Chamber Diameter:	5.66 in	
Throat Diameter:	3.26 in	
Area Ratio:	7.0	
L':	17.0 in	
MR	6.0	
Wdot F:	3.0 lbm/s	
Wdot Ox:	18.0 lbm/s	
Coolant Flow of F:	3.0 lbm/s	

2.4 Thermal and Mechanical Loading

In addition to the high heat flux loading, an internal stress of 700 psi is applied to the inner surface Re-Ir layer. The distribution of the internal heat flux on the inner-most Ir layer is shown in the figure below.

P242-023 Heat Flux Along The Chamber Axial

SBIR Engine Heat Load

Heat Flux

Heat Load

Section

Area

	(in**2) (Btu/in**2-sec°F	R) (Btu/sec)
Chamber (barrel)	258.0	10.5	2700.
Throat (conv.)	52.0	18.8	['] 980.
Nozzle (div.)	95.0	6.0	570. 4250 Btu/sec.
dT(max) =	Q/(w*Cp)	= (4250 Bt	u/sec)

Maximum Hydrogen Temperature Gain = 373°R = 207 K (based on 1360 R wall temp. heat flux)

(3.0 lbm/sec)*(3.8 Btu/lbm²R)

Maximum Hydrogen Temperature Gain = 292°R = /62 K (based on calculated SBIR wall temps)

Figure 4 Flange Support Region Meshing Details.

Figure 5 Throat Region Meshing Details.

A plot of the temperature-dependent mechanical properties used in the ALGOR FEM analysis is also shown in the figure below.

Yield Strength vs. Temperature

4.2 Von-Mises Stress Nodal Plots

Stress Distribution On Layer 1 Surface After 0.1 sec. Firing

With 0.7 Kei. Pressure Applied On Layer 1 Surface

Figure 25