Response: Given R(A, B, C, D, E, G) and the following decomposition: $R_1 = (A, B, C, G), R_2 = (A, D, E)$ with functional dependencies $F = \{A \to B, A \to C, CD \to E, B \to D, E \to A\}$, the decomposition is lossless if it satisfies the following:

- 1. $R_1 \cup R_2 = R : R_1 \cup R_2 = (A, B, C, D, E, G) = R \checkmark$
- 2. $R_1 \cap R_2 \neq \emptyset$: $R_1 \cap R_2 = (A) \neq \emptyset$ \checkmark
- 3. $(R_1 \cap R_2)^+$ forms a superkey for either R_1 or R_2 : Looking at $(R_1 \cap R_2)^+$, we have $A^+ = ABCDE$, which forms a superkey for $R_2 = (A, D, E)$.

$$B \in A^+$$
 by $A \to B$.

$$C \in A^+$$
 by $A \to C$.

$$D \in A^+$$
 by $A \to B \to D$.

$$E \in A^+ \text{ by } A \to C, A \to B \to D \implies A \to CD \to E. \ \checkmark$$

The decomposition is **lossless**.

Response: Given the following relation

$$\begin{array}{c|cccc} A & B & C \\ \hline a_1 & b_1 & c_2 \\ a_1 & b_1 & c_1 \\ a_2 & b_1 & c_1 \\ a_2 & b_1 & c_3 \\ \end{array}$$

The non-trivial functional dependencies satisfied by the relation are:

 $A \to B$ since $a_1 \mapsto b_1$.

 $\begin{array}{l} C \rightarrow B \text{ since } c_1 \mapsto b_1, c_2 \mapsto b_1, c_3 \mapsto b_1. \\ AC \rightarrow B \text{ since } (a_1, c_1) \mapsto b_1, (a_1, c_2) \mapsto b_1, (a_2, c_1) \mapsto b_1, (a_2, c_3) \mapsto b_1. \end{array}$

Response: Given the following relation:

A	B	$\mid C$	D
Name	Class	Score	Grade
Ted E. Bear	CS111	65	В
Ted E. Bear	CS143	78	В
Wile E. Coyote	CS111	91	A
Joe Bruin	CS118	31	F
Josie Bruin	CS131	89	A

The candidate key in the context of the problem is AB. The functional dependencies are

 $AB \to C$, $AB \to D$ since AB is a superkey.

 $C \to D$ since there is only one score/grade per class.

R is in 2NF if for every attribute in R, either (1) it is part of a candidate key or (2) the attribute depends on the entire candidate key. Clearly, A, B are in the candidate key AB. The non-prime attributes C, D both depend on the entire candidate key AB, so **this relation is in 2NF**.

This relation is not in 3NF because D can be determined through C, so there is a transitive dependency $AB \to C \to D$.

Response: If we add another column called CourseName that is determined by the Class column, it would no longer be 2NF since there would be a partial dependency $B \to E$, assuming CourseName column is named E.

Response: R(A, B, C, D, E, G) with functional dependencies $F = \{A \to B, A \to C, C \to E, B \to D\}$.

Note that $A^+ = ABCDE$, $B^+ = BD$, $C^+ = CE$. By the union property, we have $F = \{A \to BC, C \to E, B \to D\}$.

- $A \to BC$: (i) $A \to BC$ is not trivial. (ii) A is not a superkey. \mathbf{x}
- $C \to E$: (i) $C \to E$ is not trivial. (ii) C is not a superkey. \mathbf{x}
- $B \to D$: (i) $B \to D$ is not trivial. (ii) B is not a superkey. \mathbf{x}

All three dependencies violate BCNF. Decomposing on $B \to D$, we get $R_1(A, B, C, E, G), R_2(B, D)$.

Looking at R_1 :

- $A \to BC$: (i) $A \to BC$ is not trivial. (ii) A is not a superkey. \mathbf{x}
- $C \to E$: (i) $C \to E$ is not trivial. (ii) C is not a superkey. \mathbf{x}

Both dependencies violate BCNF. Decomposing on $C \to E$, we get $R_3(A, B, C, G), R_4(C, E), R_2(B, D)$.

Looking at R_3 :

• $A \to BC$: (i) $A \to BC$ is not trivial. (ii) A is not a superkey. \mathbf{x}

 $A \to BC$ violates BCNF. Decomposing on $A \to BC$, we get $R_5(A,B,C)$, $R_6(A,G)$, $R_4(C,E)$, $R_2(B,D)$.

Reindexing the decomposition, we get $R_1(A, G)$, $R_2(C, E)$, $R_3(B, D)$, $R_4(A, B, C)$. Recall the following attribute closures: $A^+ = ABCDE$, $B^+ = BD$, $C^+ = CE$, $D^+ = D$, $E^+ = E$, $G^+ = G$. Then,

• $B \rightarrow D$:

Iteration 1:

$$result = B$$

$$t = (B \cap R_1)^+ \cap R_1 = (B \cap AG)^+ \cap AG = \emptyset \rightarrow result = B$$

$$t = (B \cap R_2)^+ \cap R_2 = (B \cap CE)^+ \cap CE = \emptyset \rightarrow result = B$$

$$t = (B \cap R_3)^+ \cap R_2 = (B \cap BD)^+ \cap BD = BD \cap BD = BD \rightarrow result = BD \checkmark$$

short circuit

We derived D, so $B \to D$ is preserved.

• $C \rightarrow E$:

Iteration 1:

$$result = C$$

$$t = (C \cap R_1)^+ \cap R_1 = (C \cap AG)^+ \cap AG = \emptyset \rightarrow result = C$$

$$t = (C \cap R_2)^+ \cap R_2 = (C \cap CE)^+ \cap CE = CE \cap CE = CE \rightarrow result = CE \checkmark$$

short circuit

We derived E, so $C \to E$ is preserved.

• $A \rightarrow BC$:

Iteration 1:

$$result = A$$

$$t = (A \cap R_1)^+ \cap R_1 = (A \cap AG)^+ \cap AG = ABCDE \cap AG = A \rightarrow result = A$$

$$t = (A \cap R_2)^+ \cap R_2 = (A \cap CE)^+ \cap CE = \emptyset \rightarrow result = A$$

$$t = (A \cap R_3)^+ \cap R_3 = (A \cap BD)^+ \cap BD = \emptyset \rightarrow result = A$$

$$t = (A \cap R_4)^+ \cap R_4 = (A \cap ABC)^+ \cap ABC = ABCDE \cap ABC = ABC \rightarrow result = ABC$$

short circuit

We derived BC, so $A \to BC$ is preserved.

Because every functional dependency was preserved, this decomposition is dependency preserving.