

Operations Strategy OPERATIONS STRATEGY

Manufacturing Strategy

Alberto PORTIOLI STAUDACHER
Dipartimento Ing. Gestionale
Politecnico di Milano
Dep. Management, Economics and Industrial Engineering alberto.portioli@polimi.it

This material and what the Professors say in class are intended for didactical use only and cannot be used ouside such context, nor to imply professors' specific believes or opinion

Strategy

All companies, to survive over time, have to build and keep a specific advantage that differentiate them from competitors.

Managing this differentiating advantage is the essence of strategy.

Strategic levels

Corporate: resource allocation between different markets and products

(in which business?)

- Business Unit: what are the markets' needs and how to satisfy them
 (how do we compete?)
- Functional: support the company in satisfying market needs

Traditional approach

Traditional approach

Wrong beliefs about Operations

- Operations are mostly technical
- Operative aspects are details

For the operations system there is a one best way of improvement: managerial choices are not necessary

There are forces of change

Relevant factors **outside** the company:

- Offer > Demand
- Customisation
- Globalisation
- Speed of technological development

There are forces of change

Factors influencing company's resources:

- Economical (wealth increase)
- Cultural (education level)
- Social (authority acknowledgment)
- Technological innovation
- ICT

Innovative approach

Functional strategies can neither be independent one from another, nor can they be the sequential outcome of the Business strategy; rather VPs of main Functions have to communicate and interact to define the strategy at the Business Unit and Corporate level.

Integration & Bi-direction

Strategy

Strategy

Why is strategy important?

To create a sustainable advantage it's necessary to have a significant amount of time

This advantage is rarely the outcome of just one excellent critical choice. It's the outcome of many little good choices

To take many little good choices a clear line is needed

In highly turbulent environments it's not possible to plan everything in advance:

Strategy

The voice of the customer

- 1. Time (delivery speed; delivery reliability,..)
- 2. Price (cost)
- 3. Quality
- 4. Flexibility (product, customization, variety, plan,...)
- 5. Service

1. Time

- Time to formulate the offer
- Time to confirm the order
- Time to deliver (Delivery speed)
- Delivery reliability (Timeliness)

• ...

2. Price

- Purchase
- Usage
- Maintenance
- Update/Upgrade/Expansion
- Disposal

3. Quality

- Quality of Design (specifications)
- Quality Conformace (NB: only in field)

4. Flexibility

- Product
- Customization
- Variety
- Plan

5. Service

• DELIVERY (MTS)

Goods availability at the warehouse

OTHER AREAS

Training

Technological improvement

After-sale support ...

Operations' objectives

Time

Price (cost)

Quality

Flexibility

Service

These are targets **difficult to achieve** and it is not possible to reach the optimum value in all dimensions

It's necessary to align Operations and Market

Market-operations aligment

Customer needs

Market positioning

Analysis of competitors' actions

Desired performances

Operations strategy: desired performances

Operations strategy: achievable performances

Stake-holders

MARKET	D esired Perf. OP S	

A chievable	I FVFR S		
I .			
Perf. OPS	Technological	Organizational	Managerial
	/plant design		
	-Production	– Responsability	– Operations
	capacity sizing	allocation and	planning
	and division	de centralization	systems
	-Strategic	level	- Cap acity
	Make/Buy	- Team	management
_	-Technological	vs individu als	systems
	process	 Incentivisation 	- Mainteinance
_ <	-Layout <	systems	polites
	-Automation	- Info m ation	– Quality control
	level	flows between	- Costs control
		different levels	proce dure s

Objectives alignment: reconciliation

Strategic levers

- 1. Structural design
- 2. Infrastructural design
- 3. Delivery (managing the...)

1. Structural design choices

- Overall production capacity, its division and localization (coming up next)
- Strategic Make or Buy
- Technologic process and equipments
- Mechanization/automation grade
- Plant system configuration (coming up next)
- Supply chain configuration
 (eg. choosing the distribution channel)

Capacity sizing, division and localization

Entry barriers
Face demand variability

Economies of scale Volume flexibility Minimum unit of increase/decrease

Work cost
Competences availability, services,...
Response time
Closeness to market

Plant design: types of production systems

2. Infrastructural design choices

- Competences needed and their management
- Responsabilty allocation
- Team vs individuals
- Managing by objectives or process
- •Functions integration (Design and Manufacturing, Marketing and Planning, ...)
- Incentive system
- •Information flows between:
 - Different functions
 - Different hierarchical levels

. . .

3. Delivery management choices

- Operations planning and control system
- Choice of how to meet demand (eg. MTS, ATO, MTO)
- Choice of how to realize the product
- Supply chain coordination systems
- Maintenance managing and realization systems
- Continuous improvement systems

. . .

