Chapter 7, Solution 64

Determine the value of $i_L(t)$ and the total energy dissipated by the circuit from t = 0 sec to $t = \infty$ sec. The value of $v_{in}(t)$ is equal to [40-40u(t)] volts.

Solution

Step 1. Determine the Thevenin equivalent circuit to the left of the inductor. This means we need to find $v_{oc}(t)$ and $i_{sc}(t)$ which gives us $v_{Thev}(t) = v_{oc}(t)$ and $R_{eq} = v_{oc}(t)/i_{sc}(t)$ (note, this only works for resistor networks in the time domain). This leads to the second circuit shown above.

Now, with this circuit, we can use the generalized solution to a first order differential equation, $i_L(t) = Ae^{-(t-0)/\tau} + B$ where, $t_0 = 0$, $\tau = L/R$, $A + B = i_L(0)$ and $0 + B = i_L(\infty)$. Finally, we can use $w = (1/2) \text{Li}_L(t)^2$ to calculate the energy dissipated by the circuit ($w = [(1/2) \text{Li}_L(\infty)^2 - (1/2) \text{Li}_L(0)^2]$.

- Step 2. We now determine the Thevenin equivalent circuit. First we need to pick a reference node and mark the unknown voltages, as seen above. With the inductor out of the circuit, the node equation is simply $[(v_1-v_{in}(t))/40] + [(v_1-0)/40] + 0$ (since the inductor is out of the circuit, there is an open circuit where it was) = 0. This leads to $[(1/40)+(1/40)]v_1 = (1/40)v_{in}(t)$ or $2v_1 = v_{in}(t)$ or $v_1 = 0.5v_{in}(t) = [20-20u(t)]v_{oc}(t) = v_{Thev}(t)$. Now to short the open circuit which produces $v_1 = 0$ and $i_{sc} = -[(0-v_{in}(t))/40] = v_{in}(t)/40 = 0.025v_{in}(t)$ A.
- Step 3. Now, everything comes together, $R_{eq} = v_{oc}(t)/i_{sc}(t) = 0.5v_{in}(t)/[0.025v_{in}(t)] = 0.5/0.025 = 20 \ \Omega$. Next we find $\tau = L/R_{eq} = 10/20 = (1/2)$ sec. At $t = 0^-$, $v_{in}(0^-) = [10-0]$ V (note u(t) = 0 until t = 0). Since it has been at this value for a very long time, the inductor can be considered a short and the value of the current is equal to 20/20 or $i_L(0^-) = 1$ amp. Since you cannot change the current instantaneously, $i_L(0) = 1$ amp = A+B. Since $v_{Thev}(t) = 20-20 = 0$ for all t > 0, all the energy in the inductor will be dissipated by the circuit and $i_L(\infty) = 0$ = B which means that A = 1 and $i_L(t) = [e^{-2t}] u(t)$ amps. The total energy dissipated from t = 0 to ∞ sec is equal to $[(1/2)Li_L(0)^2-(1/2)Li_L(\infty)^2] = (0.5)10(1)^2-0 = 5 J$.