Causality Graphical Causal Models

Alireza Nouri

Sharif University

2024

- 1 Causality vs. Association
- 2 Graphical Model for Confounding Bias

- 1 Causality vs. Association
- ② Graphical Model for Confounding Bias

Causality vs. Association

Association:

- Definition: Relationship between two variables, without implying cause.
- Example: Ice cream sales and drowning incidents.

Causality vs. Association

Association:

- Definition: Relationship between two variables, without implying cause.
- Example: Ice cream sales and drowning incidents.

Causality:

- Definition: One event directly influences another.
- Example: Smoking causes lung cancer.

Causality vs. Association

Association:

- Definition: Relationship between two variables, without implying cause.
- Example: Ice cream sales and drowning incidents.

Causality:

- Definition: One event directly influences another.
- Example: Smoking causes lung cancer.

Key Difference:

 Association identifies a relationship, causality confirms the influence.

Causality vs. Association Example

Individual Treatment Effect with the do(.) Operator

Definition: The do(.) operator allows you to express the **individual treatment effect**, which measures the impact of a treatment on the outcome for an individual unit *i*.

Formal Representation:

$$\tau_i = Y_i \mid \mathsf{do}(T = t_1) - Y_i \mid \mathsf{do}(T = t_0)$$

Understanding the Individual Treatment Effect

Interpretation:

- τ_i represents the effect of switching from treatment t_0 to t_1 for unit i.
- This effect is calculated as the difference in the outcome of unit i under treatment t₁ compared to t₀.

In Words: "The effect, τ_i , of going from treatment t_0 to t_1 for unit i is the difference in the outcome of that unit under t_1 compared to t_0 ."

Addressing the Fundamental Problem of Causal Inference

Problem Statement:

• The Fundamental Problem of Causal Inference: You can never know the **individual treatment effect** τ_i because only one of the potential outcomes is observable.

Moving Forward:

- Despite this limitation, there are other causal quantities that can be estimated from data.
- One key quantity is the Average Treatment Effect (ATE).

Average Treatment Effect (ATE)

Definition of ATE:

 The ATE is defined as the expected value of the individual treatment effects:

$$ATE = E[\tau_i],$$

• Alternatively, it can be expressed as:

$$ATE = E[Y_{1i} - Y_{0i}],$$

Or using the do(.) operator:

$$ATE = E[Y \mid do(T = 1)] - E[Y \mid do(T = 0)],$$

Interpretation: The ATE represents the average impact of the treatment T across all units.

11 / 33

Estimating the ATE from Data

Estimation Approach:

- Although individual effects τ_i are unknown, the ATE can be estimated using sample averages from the data.
- This involves replacing the expectation with sample means.

Key Insight: While individual impacts vary, the ATE provides a meaningful average effect of the treatment across a population.

Confounding Bias in ATE: Understanding the Pitfalls with an Example

	i	y0	у1	t	X	У	te
0	1	200	220	0	0	200	20
1	2	120	140	0	0	120	20
2	3	300	400	0	1	300	100
3	4	450	500	1	0	500	50
4	5	600	600	1	0	600	0
5	6	600	800	1	1	800	200

The table shows data with unit identifier i, outcome y, potential outcomes y_0 and y_1 , treatment indicator t, and covariate x (time until Christmas). Observations are from one week before and during Christmas.

Example Analysis of Confounding Bias

Example Analysis:

- With complete information on AmountSold₀ and AmountSold₁, calculating causal quantities is straightforward.
- The Average Treatment Effect (ATE) is:

$$ATE = \frac{20 + 20 + 100 + 50 + 0 + 200}{6} = 65$$

This indicates an average increase of 65 units in sales due to the treatment.

Data and Real-World Challenges: Part 1

	i	y0	у1	t	X	У	te
0	1	200.0	NaN	0	0	200	NaN
1	2	120.0	NaN	0	0	120	NaN
2	3	300.0	NaN	0	1	300	NaN
3	4	NaN	500.0	1	0	500	NaN
4	5	NaN	600.0	1	0	600	NaN
5	6	NaN	800.0	1	1	800	NaN

Misinterpreting Association as Causation:

 Directly comparing the mean sales of treated vs. untreated groups to estimate the Average Treatment Effect (ATE) can be misleading.

Data and Real-World Challenges: Part 2

Example Calculation:

$$\mathsf{ATE} = \frac{500 + 600 + 800}{3} - \frac{200 + 120 + 300}{3} = 426.67$$

Key Points:

- This method overlooks differences between groups.
- Treated businesses might have inherently higher sales potential.
- Proper causal inference methods are needed to account for these differences and accurately estimate the treatment effect.

Association vs. Causation

Association:

Measured by:

$$E[Y \mid T = 1] - E[Y \mid T = 0]$$

where $E[Y \mid T=1]$ is the average outcome for treated units and $E[Y \mid T=0]$ is for untreated units.

Causation:

Measured by:

$$E[Y1 - Y0] \text{ or } E[Y \mid do(T = 1)] - E[Y \mid do(T = 0)]$$

which is the difference in potential outcomes under treatment and no treatment.

Key Point: Association may not accurately reflect causation due to inherent differences between treated and control groups.

17 / 33

The Bias Equation

Bias Equation:

$$E[Y \mid T = 1] - E[Y \mid T = 0] = E[Y1 \mid T = 1] - E[Y0 \mid T = 0]$$

$$= \underbrace{E[Y1 - Y0 \mid T = 1]}_{ATT} + \underbrace{E[Y0 \mid T = 1] - E[Y0 \mid T = 0]}_{BIAS}$$

Implications:

- ATT (Average Treatment Effect on the Treated):
 Reflects the treatment effect for those who received treatment.
- **Bias**: Represents the difference in outcomes between treated and control groups, regardless of treatment.

Introduction to Randomized Experiments

Randomized Experiments:

- Purpose: To determine causal relationships between variables.
- Key Components:
 - Random Assignment: Participants are randomly assigned to treatment or control groups.
 - **Treatment Implementation:** The treatment is administered to the treatment group.
 - Outcome Measurement: Outcomes are measured and compared between groups.
- Objective: To isolate the effect of the treatment and control for confounding variables.

Measuring Causation

Randomized Experiments and Causation:

- Control for Confounding: Random assignment isolates the treatment effect.
- Average Treatment Effect (ATE):

$$ATE = E[Y1 - Y0] \tag{1}$$

where:

- **Y1** = Outcome with treatment
- **Y0** = Outcome without treatment
- Example:
 - Treatment Group: Receives a new drug
 - Control Group: Receives a placebo
 - Compare average outcomes to measure the effect of the drug.

Example Calculation

Calculation of ATE:

- Treatment Group Average Reduction: $\bar{Y}1 = 10 \text{ mmHg}$
- Control Group Average Reduction: $\bar{Y0} = 5 \text{ mmHg}$
- Average Treatment Effect (ATE):

ATE =
$$\bar{Y}1 - \bar{Y}0 = 10 - 5 = 5 \text{ mmHg}$$
 (2)

• **Interpretation:** The drug reduces blood pressure by an average of 5 mmHg compared to the placebo.

Weaknesses and Summary

Weaknesses of Randomized Experiments:

- Ethical Concerns: May be unethical to deny treatment.
- Practical Constraints: Expensive and logistically challenging.
- External Validity: Results may not generalize to other settings.
- Attrition and Noncompliance: Dropouts can bias results.
- **Limited Scope:** Often focuses on short-term outcomes.

Summary:

- Randomized Experiments: A powerful method for causal inference.
- Controls for confounding factors and provides clear treatment effect measurement.
- Limitations: Ethical issues, practical constraints, and potential biases.

- 1 Causality vs. Association
- 2 Graphical Model for Confounding Bias

Common Cause Graph

d-separation (Backdoor Path)

Mathematical Representation:

$$T \perp \!\!\!\perp Y \mid C$$

This notation means that T and Y are conditionally independent given C.

- Explanation:
 - In the graph $T \leftarrow C \rightarrow Y$, conditioning on C blocks the path between T and Y.
 - Therefore, T and Y are d-separated by C, which implies:

$$P(T, Y \mid C) = P(T \mid C) \cdot P(Y \mid C)$$

Alireza Nouri Sharif University Causality

Identifying Causal Effects with CIA

- Concept: The Conditional Independence Assumption (CIA) enables us to identify causal effects using observable data.
- Approach: If treatment is random within groups defined by X, we can compare treated and untreated groups within each X group.

Adjustment Formula

Formula:

$$\mathsf{ATE} = \mathbb{E}_X \left[\mathbb{E}[Y \mid T=1] - \mathbb{E}[Y \mid T=0] \right]$$

$$ATE = \sum_{x} \{ (\mathbb{E}[Y \mid T = 1, X = x] - \mathbb{E}[Y \mid T = 0, X = x]) P(X = x) \}$$

• **Explanation**: The ATE is the weighted average of differences between treated and control groups within each *X* group.

Conditionality Principle

- Key Idea: By conditioning on X, we can identify the average treatment effect (ATE) as a weighted average of in-group differences.
- **Importance**: Conditioning on *X* blocks non-causal paths, making causal quantities like ATE identifiable.

Backdoor Adjustment

- Definition: The process of closing backdoor paths by adjusting for confounders.
- Purpose: This adjustment ensures that the causal effect is correctly identified, removing bias from non-causal associations.

An example from Backdoor Path

	profits_prev_6m	consultancy	profits_next_6m
0	1.0	0	1.0
1	1.0	0	1.1
2	1.0	1	1.2
3	5.0	0	5.5
4	5.0	1	5.7
5	5.0	1	5.7

Alireza Nouri

Sharif University

Graphical Model

Calculation of Average Treatment Effect (ATE)

Given the data:

- $\mathbb{E}[Y \mid T = 1, X = 1.0] = 1.2$
- $\mathbb{E}[Y \mid T = 0, X = 1.0] = 1.05$
- $\mathbb{E}[Y \mid T = 1, X = 5.0] = 5.7$
- $\mathbb{E}[Y \mid T = 0, X = 5.0] = 5.5$

Formula for ATE:

ATE =
$$\frac{1}{2} (\mathbb{E}[Y \mid T = 1, X = 1.0] - \mathbb{E}[Y \mid T = 0, X = 1.0])$$

$$+\frac{1}{2} \left(\mathbb{E}[Y \mid T = 1, X = 5.0] - \mathbb{E}[Y \mid T = 0, X = 5.0] \right)$$

=0.175

Alireza Nouri

32 / 33

References

- Pearl, J. (2009). Causality: Models, Reasoning, and Inference.
 Cambridge University Press.
- Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction. Cambridge University Press.
- Gelman, A., & Hill, J. (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models. Cambridge University Press.
- Hernán, M. A., & Robins, J. M. (2020). Causal Inference: What If. Chapman & Hall/CRC.
- Rosenbaum, P. R. (2002). Observational Studies. Springer.
- Angrist, J. D., & Pischke, J. S. (2009). Mostly Harmless Econometrics: An Empiricist's Companion. Princeton University Press.