PATENT 60303.3

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Hirokazu KANEKIYO et al.

Serial No.: 09/986,390

Filed: November 8, 2001

Title: NANOCOMPOSITE MAGNET AND METHOD FOR PRODUCING SAME

Art Unit: 1742

Examiner: J. Sheehan

DECLARATION UNDER 37 C.F.R. § 1.132

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

We hereby declare that we are the inventors of the present application.

We hereby declare that we invented all of the subject matter disclosed in U.S. Patent Application No. 09/986,390.

We hereby provide attached Exhibit A that clearly further illustrates and establishes the substantially improved magnetic properties, B_r , H_{cl} , and $(BH)_{max}$, of our claimed invention in the present application.

We hereby declare that the entries in the Table of Exhibit A are accurate.

We hereby declare that Examples 2, 4, and 8-13 in the Table of Exhibit A correspond to Examples 2, 4, and 8-13 in Tables 7 and 8 of our originally filed Specification and are included in the scope of the present claimed invention.

We hereby declare that Examples 21-26 in the Table of Exhibit A are newly provided to further illustrate and establish the substantially improved magnetic properties, B_{n} , H_{ω} , and $(BH)_{max}$, of our claimed invention in the present application.

We further declare that Examples 21-26 in the Table of Exhibit A are included within the scope of the originally filed specification of the present application and included in the scope of the present claimed invention.

Serial No. 09/986.390 March 17, 2004 Page 2 of 2

We hereby declare that Comparative Examples 1-10 are newly provided to clearly illustrate the substantially improved magnetic properties achieved by the present claimed invention.

We hereby declare that that the substantially improved magnetic properties of our claimed invention were unexpected.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both under 18 U.S.C. 1001 and that such willful false statements may jeopardize the validity of the application or any patent Issued thereon.

Sample No			Compo	Composition (at%)			Surface	Heat treatment	×	Magnetic properties	erties
000000							velocity	temperature	Ψ,	돧	(BH)max
2	No	- 7	u	C		£	m/sec.	ငိ	(mT)	(kA/m)	(kJ/m3)
7 aiduexe	9.0	8	14.0	,	3.0	Nb1.0	. 15	720	867	946	115
example 4	0.8	bal	14.0	,	4.0	Nb1.5	15	860	888	925	113
comparative (0.0	bal	14.0		0.0	₽	15	620	780	580	71
example 8	0.8	bal	12.6	1.4	4.0	0	15	760	810	987	107
example 9	0.8	bal	11.2	2.8	4.0	Cu0.4	15	740	770	868	on s
comparative 2	9.0	bal	11.2	2.8	0	Cu0,4	15	740	730	380	2 3
example 10	9.0	bal	9.9	1.1	3.0	Nb0.5	15	70 0	200	700	2
comparative 3	9.0	led	9.9		0	Nb0.5	15	700	100	8	124
example 11	9.0	bal	11.7	1.3	3.0	a	5	005	È	100	6
comparative 4	9.0	bal	11.7	1.3	0	0	5	780	200	ž į	S
example 12	9.0	bal	12.6	1.4	5.0	Si1	15	740	780	955	100
comparative 5	9.0	bal	12.6	1.4	0	Ci3	55	740	650	345	3 8
example 13	9.0	bal	13.3	0.7	3.0	NP1	15	600	810	ingo	100
comparative 6	9.0	bal	13.3	0.7	0	Nb1	15	640	620	412	49
example 21	9.08	bal	10,31		2	0	15	660	877	723	121
oxample 22	37.0	1 180	1.6	'	د	0	55	700	883	892	124
C. Birthing	0.75		- E	,	4	0	15	700	869	786	120
, sansadilos	3.00	: pg	10.31	,	°	0	15	740	868	488	9
Comparative 8	30.0	Dal	0.31		2	3	15	640	845	648	102
example 25	3 3	2	200		, c	3	15	_	850	579	89
Comparative 0	200	<u> </u>	3 8		ه ا د	2	15	660	815	660	\$
example 98	S S	2 5	3000		,	3	15	660	797	534	80
comparative (0	800		3 20.00		> \ \	1 5	15		750	527	88
	2.00	2	10.00		٥	15	55	700	720	484	7.4