Course: Comtemporary Algorithms T.II/2019-20

Lecture 16: Max Flow = Min Cut

2 March 2020

Lecturer: Dr. Kanat T.

Scribe: Pitipat C. & Nuttapat K.

Let denote

$$P_{st} = \text{set of all } s \longrightarrow t \text{ path}$$

in which P_{st} can be exponential. For example,

1 Max Flow (Primal)

Maximize

$$\sum_{p \in P_{st}} f_p$$

Subj to

•

$$\forall (u, v) \in E, \sum_{(u, v) \in p} f_p \le C_{u \longrightarrow v}$$

•

$$\forall p, f_p \geq 0$$

2 Min Cut (Dual)

Minimize

$$\sum_{e \in E} y_e c_e$$

Subj to

$$\forall p \in P_{st} \sum_{e \in p} y_e \ge 1$$

$$\forall e \in E, y_e \ge 0$$

3 Cut

Definition 3.1. For a graph G=(V,E), a **cut** (S,\bar{S}) , $S\subseteq V$, is a set of edges where each edge e crosses the cut S to \bar{S}

Definition 3.2. For a cut (S, \bar{S}) , the **capacity** of a cut is

$$\sum_{e \in (S, \bar{S})} c_e$$

Lemma 3.3. The dual LP has a feasible solution \vec{x} such that

$$\sum x_e c_e = size \ of \ the \ min \ cut$$

Proof. Let (S^*, \bar{S}^*) be a min cut, then set

$$x_e \begin{cases} 1 & e \in (S^*, \bar{S}^*) \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_e x_e c_e = \sum_{e \in (S^*, \bar{S^*})} c_e = \min \operatorname{cut}$$

and since every path must go through (S^*, \bar{S}^*) , any path from $s \longrightarrow t$ must go across the cut. Hence, each edge has $x_e = 1$ implies $\sum_{e \in p} x_e \ge 1$

Lemma 3.4. If \vec{x} is a feasible solution to Dual LP, then there is a cut whose size is $\leq_e x_e c_e$

Proof. View x_e as the length of edge e. Find the shortest path from s to the rest. d(v) = S.P from s (eg d(s) = 0, $d(t) \ge 1$. Let $S_\rho = \{v \in V | d(v) \le \rho\}$, then (S_ρ, \bar{S}_ρ) is a cut.

Claim 3.5. $\mathbb{E}_{\rho \in [o,d(t)]}[c(S_{\rho},\bar{S}_{\rho})] \leq \sum_{e} x_e c_e$

(of Claim).

$$\mathbb{E}_{\rho}[c(S_{\rho}, \bar{S}_{\rho})] = \mathbb{E}_{\rho}[\sum_{e} c_{e} \underbrace{\{S_{\rho}, \bar{S}_{\rho}\}}_{\text{indicator random var}}]^{\mathbb{I}}$$

$$= \sum_{e} c_{e} Pr_{\rho}[e \in (S_{\rho}, \bar{S}_{\rho})]$$

$$= \sum_{e} c_{e} \frac{x_{e}}{d(t)} \leq \sum_{e} c_{e} x_{e}$$

Claim 3.6. $\exists \rho \text{ such that } c(S_{\rho}, \bar{S}_{\rho}) \leq \sum_{e} x_{e} c_{e}$

In which this claim get implied from the previous claim. If $\mathbb{E}_A[X] \leq t$ then $\exists A$ such that $X(A) \leq t$ Thus, we are done according to claims

Theorem 3.7. The solution of the dual LP is size of the min-cut

Proof. • Lemma 1 show Dual OPT \leq Dual feasible \leq min-cut

Lemma 2 shows since Dual OPT is feasible, min-cut ≤ Dual OPT Therefore, Dual OPT = min-cut

4 Methods to solve LP

- 1. Fourier-Motzkin (bad)
- 2. Simplex (technically exponential in running time, but good in practice)
- 3. Ellipsoid
- 4. Interior Pt. Method (2^{nd} order methods because depends on 2^{nd} derivatives

5 Hedge

Theorem 5.1. Let $0 < \epsilon < 1$. Hedge (ϵ) satisfies

$$\sum_{t=0}^{T-1} < p^{(t)}, m^{(t)}) \le \sum_{t=0}^{T-1} m_i^{(t)} + \frac{\ln N}{\epsilon} + \epsilon T$$

where N = number of experts

If we have a LP max c^Tx such that $Ax \leq b, x \geq 0$. We can turn it into the problem:

$$k(g) = \{x | Ax \le b, x \ge 0, c^T x = g\}$$