Домашнее задание 2

- **1.** Пусть \mathcal{R} система подмножеств множества Ω , которая удовлетворяет условиям (r1) $\Omega \in \mathcal{R}$,
- (r2) если $A_1, A_2 \in \mathcal{R}$, то $A_1 \cap A_2 \in \mathcal{R}$,
- (r3) если $A_1, A_2 \in \mathcal{R}$, то $A_1 \Delta A_2 \in \mathcal{R}$.

Докажите, что в этом случае \mathcal{R} является алгеброй.

- **2.** Пусть $\Omega = \mathbb{R}$. Рассмотрим систему подмножеств \mathcal{A} множества Ω , состоящую из всех множеств $A \subseteq \Omega$, таких, что либо само множество A является конечным, либо его дополнение A^c является конечным.
 - (a) Докажите, что A является алгеброй.
 - (b) Докажите, что \mathcal{A} не является σ алгеброй.
- **3.** Пусть $\Omega = [0; 1]$. Опишите минимальную σ алгебру, содержащую множества [1/4; 3/4) и [1/2; 1]. Сколько она содержит элементов?
 - 4. Докажите, что следующие подмножества числовой прямой являются борелевскими:
 - (a) $C_1 := \{x = 0.x_1x_2x_3... \in [0;1]: x_1 \neq 6\}$ множество точек отрезка [0;1], в разряде десятых десятичного разложения которых отсутствует цифра «6»;
 - (b) $C_2 := \{x = 0.x_1x_2x_3... \in [0;1]: x_2 \neq 6\}$ множество точек отрезка [0;1], в разряде сотых десятичного разложения которых отсутствует цифра «6»;
 - (c) $C_3 := \{x = 0.x_1x_2x_3... \in [0;1]: x_3 \neq 6\}$ множество точек отрезка [0;1], в разряде тысячных десятичного разложения которых отсутствует цифра «6»;
 - (d) $C_k := \{x = 0.x_1x_2x_3... \in [0;1]: x_k \neq 6\}$ множество точек отрезка [0;1], в k ом $(k \geq 2)$ разряде десятичного разложения которых отсутствует цифра «6»;
 - (e) множество C_* точек отрезка [0; 1], десятичное разложение которых не оканчивается цифрой «6» в периоде;

множество C^* точек отрезка [0;1], в десятичном разложении которых встречается цифра «6» конечное число раз.

5. Пусть все числа из отрезка [0; 1] представлены в виде бесконечных десятичных дробей. Из данного отрезка наудачу извлекается одна точка. Найдите вероятность того, что десятичное разложение выбранной точки не содержит цифры «1» и «9».