TADs are 3D structural units of higher-order chromosome organization in Drosophila

By Szabo, Q. et al. at Science Advances 4, eaar8082 (2018).

黄 宇秀 | 邱 淦均 | 李 柏漢 | 林 穎彥

BioInformatics 113 2025.1.2

Table of Contents

- Paper Introduction
- Experiment
- Experiment Objectives
- Data & Used Tools Description
- Experiment Results
- Cooperation

Paper Introduction

What is Topologically Associating Domains (TADs)?

Fundamental units of the three-dimensional genome structure

3D Genome Architecture

proteins and histones

What is Topologically Associating Domains (TADs)?

Key features of TADs:

- Well-defined boundaries: TADs are separated by clear boundaries, often marked by specific proteins such as CTCF and structural factors like the cohesin complex.
- 2. **High internal interactions**: Within a TAD, DNA fragments interact more frequently, facilitating regulatory interactions between genes and elements like enhancers and promoters.
- Conservation: TADs are often conserved across cell types and species, indicating their functional importance in genome organization and gene regulation.

Why Topologically Associating Domains (TADs) so important?

TADs play crucial roles in regulating gene expression, maintaining genome stability, and organizing the chromatin in the nucleus.

Disruptions in TAD boundaries are associated with various diseases, including cancers and developmental disorders.

Chromosome Conformation Capture (Hi-C)

What can we tell from the HI-C Map

Chromatin is organized in a series of discrete 3D nanocompartments

3-Mb (chr2L: 9935314-12973080) region comprises three main types of Drosophila epigenetic domains:

- active chromatin (Red) enriched in trimethylation of histone 3 lysine 4 (H3K4me3), H3K36me3, and acetylated histones
- Polycomb group (PcG) protein repressed domains (Blue), defined by the presence of PcG proteins and H3K27me3
- 3. inactive domains (Black), which are not enriched in specific epigenetic components

Chromatin is organized in a series of discrete 3D nanocompartments

Chromatin is organized in a series of discrete 3D nanocompartments

TAD-based 3D nanocompartments undergo dynamic cis and trans contact events

- Tetraploid S2R+ cells versus diploid embryonic (12 to 16 hours) cells
- R2(195kb),R3(805kb),and R4(495kb),covering two,three,and four repressed TADs, respectively

TAD-based 3D nanocompartments undergo dynamic cis and trans contact events

TAD-based 3D nanocompartments undergo dynamic cis and trans contact events

Repressed TADs form physical and structural chromosomal units

1. Single cell analysis revealed that intra-TAD distances are considerably shorter than inter-TAD distances

Repressed TADs form physical and structural chromosomal units

2. Despite variable intra- and inter-TAD contacts in each cell, the physical TAD-based compartmentalization of the chromatin fiber is a general feature of chromosomal domains.

Polymer modeling recapitulates the physical partitioning of chromosomes into TADs

Polymer modeling using parameters that fit Hi-C maps supports the frequent folding of the two TADs into well-separated nanocompartments.

Polymer modeling recapitulates the physical partitioning of chromosomes into TADs

The fraction of intra-TAD distances larger than the inter-TADs counterparts is explained by the dynamic relative positioning of the two TADs.

Large-scale chromatin folding reflects highly heterogeneous yet specific, long-range interdomain contacts

- Sixteen-to 18-hour embryo Hi-C map of a 14-Mb region.
- Labeling chromatin
 domains of different
 epigenetic states and
 studied their relative
 3D spatial organization.

Large-scale chromatin folding reflects highly heterogeneous yet specific, long-range interdomain contacts

The analysis revealed the presence of discrete interdomain contacts, with preference for contacts among TADs of the same epigenetic type.

Large-scale chromatin folding reflects highly heterogeneous yet specific, long-range interdomain contacts

The inter-TAD contacts are regulated, as the disruption of the polyhomeotic (ph) PcG gene specifically affects Pc inter-TAD contacts without affecting contacts between other domains.

In Summary

This paper provides an integrative view of chromatin folding in Drosophila:

- 1. Repressed TADs form a succession of discrete nanocompartments.
- Single-cell analysis revealed stable TAD-based chromatin compartmentalization, with some heterogeneity in intra-TAD conformations and cis/trans inter-TAD contact events.

Sequencing data

Data we are using

Where to download it?

How big in terms of GB? in terms of reads?

☑ X	▲ Run	⇒ BioProject ²	♦ BioSample	♦ AvgSpotLen	♦ Bases	♦ Bytes
_ 1	SRR5579160	PRJNA387323	SAMN07146998	65	9.05 G	7.81 Gb
_ 2	SRR5579161	PRJNA387323	SAMN07146998	65	8.76 G	7.57 Gb
_ 3	SRR5579162	PRJNA387323	SAMN07146998	65	7.94 G	6.85 Gb
_ 4	SRR5579163	PRJNA387323	SAMN07146998	65	7.83 G	6.79 Gb
_ 5	SRR5579164	PRJNA387323	SAMN07146998	65	9.11 G	7.83 Gb
_ 6	SRR5579165	PRJNA387323	SAMN07146998	65	8.79 G	7.61 Gb
_ 7	SRR5579166	PRJNA387323	SAMN07146998	65	8.43 G	7.29 Gb
8	SRR5579167	PRJNA387323	SAMN07146997	98	19.36 G	11.73 Gb
_ 9	SRR5579168	PRJNA387323	SAMN07146997	98	17.35 G	10.54 Gb
10	SRR5579169	PRJNA387323	SAMN07146997	98	17.63 G	10.84 Gb
_ 11	SRR5579170	PRJNA387324	SAMN07147000	98	15.74 G	9.56 Gb
12	SRR5579171	PRJNA387324	SAMN07147000	98	15.50 G	9.40 Gb
13	SRR5579172	PRJNA387324	SAMN07147000	98	15.73 G	9.57 Gb
14	SRR5579173	PRJNA387324	SAMN07147000	98	15.70 G	9.53 Gb
15	SRR5579174	PRJNA387324	SAMN07146999	98	17.43 G	10.51 Gb
16	SRR5579175	PRJNA387324	SAMN07146999	98	17.34 G	10.43 Gb
17	SRR5579176	PRJNA387324	SAMN07146999	98	17.70 G	10.83 Gb
18	SRR5579177	PRJNA387300	SAMN07147001	100	30.13 G	15.40 Gb
✓ 19	SRR5579178	PRJNA387300	SAMN07147002	100	31.13 G	16.21 Gb

	SRR5579178.sra	
檔案類型:	SRA 檔案 (.sra)	
開啟檔案:	→ 挑選應用程式 變更 (C)	
位置:	D:\yy\sratoolkit.3.1.1-win64\sratoolkit.3.1.1-win64\l	
大小:	16.2 GB (17,408,170,696 位元組)	
磁碟大小:	16.2 GB (17,408,172,032 位元組)	
建立日期:	2024年12月16日, 下午 07:25:57	
修改日期:	2024年12月17日, 上午 11:38:31	
存取日期:	2024年12月17日, 下午 07:03:05	
屬性:	□ 唯讀(R) □ 陽藏(H) 進階(D)	

Any other data besides sequencing data?

Supplementary file	Size	
GSE99106_nm_none_10000.bins.txt.gz	92.7 Kb	(
GSE99106_nm_none_10000.n_contact.txt.gz	115.6 Mb	(
GSE99106_nm_none_160000.bins.txt.gz	6.0 Kb	(
GSE99106_nm_none_160000.n_contact.txt.gz	4.9 Mb	(
GSE99106_nm_none_20000.bins.txt.gz	46.6 Kb	(
GSE99106_nm_none_20000.n_contact.txt.gz	46.4 Mb	(
GSE99106_nm_none_40000.bins.txt.gz	23.3 Kb	(
GSE99106_nm_none_40000.n_contact.txt.gz	65.4 Mb	(
GSE99106_nm_none_5000.bins.txt.gz	174.7 Kb	(
GSE99106_nm_none_5000.n_contact.txt.gz	233.9 Mb	(
GSE99106_nm_none_80000.bins.txt.gz	12.0 Kb	(
GSE99106_nm_none_80000.n_contact.txt.gz	17.9 Mb	(
CDA Dun Calacter [2]		

cbin chr

2L

2L

2L

2L

2L

2L

from, coord

10000

15000

20000 11

25000

30000 26

35000 30

40000

45000

50000

55000

65000

70000 75000

80000 85000

100000

5000

10000

15000

25000

30000

35000

40000

45000

50000

60000

65000

75000

80000 85000

95000

to.coord

count

Experiment Objectives: What we want to recreate?

Figure 1A Hi-C Contact Map

NGS Workflow

Annotation

Visualization

Prioritization

Storage

Analysis pipeline

Stage

Laboratory work

Next-generation sequencing

Discovery of relevant variants

Software: PolyPhen-2, VEP, VAAST

Deposit data in ENA, SRA, dbGaP

Examples/explanation

Experimental design

Enrichment (capture)

Platforms include Illumina,

SOLID, Pacific Biosciences, other

Library preparation

Trimming, filtering

Software: FastQC

File formats

Output: FASTQ-Sanger,

FASTQ-Illumina

Reference: FASTA

Output: SAM/BAM

Variant Call Format

(VCF/BCF)

FASTO

VCF

BAM, VCF

Overview Data Processing Steps

Preparing Raw Data

- SRA to FASTQ
- Reference Genome: Dm3

Data Processing

- Trimming & Filtering
- Alignment

Visualize Data

- Generate/Normalize Contact Matrix
- Visualize Contact Map

Environment - Docker with WSL

Preparing Raw Data - 1

Download SRA File

Convert SRA to FASTQ

Quality Control

Docker image:

- ncbi/sra-tools

CLI: prefetch

- Input: -
- Output: SRR5579177

Docker image:

ncbi/sra-tools

CLI: fasterq-dump

- Input: SRR5579177
- Output: SRR5579177_1.fastq / SRR5579177 2.fastq

Docker image:

- ubuntu:24.04

CLI: fastqc

- Input: SRR5579177_1.fastq
 / SRR5579177_2.fastq
- Output:
 SRR5579177_1_fastqc.html
 /
 SRR5579177 2 fastqc.html

Preparing Raw Data - 2

Download Reference Genome

Build Bowtie Index

Check Index

Docker image:

- ubuntu:24.04

CLI:wget / gunzip

- Input: dm3.fa.gz
- Output: dm3.fa

(Drosophila melanogaster: fruit fly)

Docker image:

ubuntu:24.04

CLI: bowtie-build

- Input: dm3.fa
- · Output:

dm3_index.1.ebwt

dm3 index.2.ebwt

dm3_index.3.ebwt

dm3 index.4.ebwt

dm3_index.rev.1.ebwt

dm3_index.rev.2.ebwt

Docker image:

ubuntu:24.04

CLI: bowtie-inspect

- Output:

SA-Sample 1 in 32

FTab-Chars 10

Sequence-1 chr2L 23011544

Sequence-2 chr2LHet 368872

Sequence-3 chr2R 21146708

Sequence-4 chr2RHet 3288761

Sequence-5 chr3L 24543557

Sequence-6 chr3LHet 2555491

Sequence-7 chr3R 27905053

.

Data Processing - 1

(backward)

Build Pairs -Alignment **Trimming** Prepare Size File Docker image: Docker image: Docker image: ubuntu:24.04 ubuntu:24.04 ubuntu:24.04 CLI: bowtie CLI: cutadapt CLI: wget Input: 2 fastq / adapter Input: 2 fastq / Output: dm3.chrom.sizes sequence / score threshold dm3_index / output / length threshold SAM format / only unique alignment Output: trimmed reads SRR5579177 1.fastq Output: (forward) alignment.sam trimmed_reads_SRR5579177 2.fastq

Data Processing - 2

Build Pairs -Find Ligation Pairs

Build Pairs -Sort Pairs

Build Pairs -Remove Duplicates

Docker image:

- ubuntu:24.04

CLI: pairtools parse

- Input: dm3.chrom.sizes / alignment.sam
- Output: alignment.pairsam

Docker image:

ubuntu:24.04

CLI: pairtools sort

- Input: alignment.pairsam
 - Output: sort alignment.pairsam

Docker image:

ubuntu:24.04

CLI: pairtools dedup

- Input: alignment.pairsam
- Output: dedup alignment.pairsam

Data Processing - 3

Build Pairs Select Pairs

Docker image: Dock
- ubuntu:24.04
CLI: pairtools select Expe
- Input: alignment.pairsam /

pair type: UU

(unique-unique)

Output: alignment.pairs

Docker image:

ubuntu:24.04

Preparing data for

Contact Matrix

Expect Programming: R

- Bin:

GSE99104_nm_none_160000

.bins.txt

Pairs: alignment.pairs

Docker image:

ubuntu:24.04

Store SAM

CLI: samtools view

- Input:

alignment.sam

- Output:

alignment.bam

Visualize Data

Create Contact File

Build Contact Matrix

Visualize Contact Map

```
Env: windows Program:
```

```
contact_file_generate.R
```

- Input:

```
GSE99104_nm_none_160000
.bins.txt /
alignment.pairs
```

- Output:

```
n_contact.txt
```

Env: windows

Program:

contact_file_generate.R

Processing:

- Input:

n_contact.txt

Output:

2L_contact_matrix.txt

Env: windows

Program:

contact_map_generate.R

Processing:

Lib: ggplot2 / reshape2

- Input:

2L_contact_matrix.txt

- Output:

contact heatmap.png

HI-C Contact Map

Data Overview - 1

File Types: Source		Actual Files	Sizes	
1	SRA: NCBI/NIH	SRR5579177	• 15.3 GB	
2	FASTQ	SRR5579177_1.fastq SRR5579177_2.fastq	• 68.5 GB Each	
3	FASTA: UCSC Genome Browser	dm3.fa	• 164 MB	
4	Bowtie Index	dm3_index.1.ebwt dm3_index.4.ebwt dm3_index.2.ebwt dm3_index.rev.1.ebwt dm3_index.3.ebwt dm3_index.rev.2.ebwt	• 1 KB ~ 161 MB	
5	SAM	alignment.sam	• 115 GB	

Data Overview - 2

File Types: Source		Actual Files	Sizes	
6	Sizes: UCSC Genome Browser	dm3.chrom.sizes	• 1 KB	
7	PairSAM	alignment.pairsam sort_alignment.pairsam dedup_alignment.pairsam	133 GB60.8 GB	
8	Pairs	alignment.pairs	• 60.8 GB	
9	BINS: NCBI/NIH	GSE99104_nm_none_160000.bins.txt	• 332 KB	

	Stage	Examples/explanation	File formats
Tools Overview - 1	Laboratory work	Experimental design Library preparation Enrichment (capture)	
	Next-generation sequencing	Platforms include Illumina, SOLID, Pacific Biosciences, other	Output: FASTQ-Sanger, FASTQ-Illumina
FastQC cutadapt	Quality assessment	Trimming, filtering Software: FastQC	FASTQ
Bowtie	Alignment to reference genome	Software: BWA, Bowtie2	Reference: FASTA Output: SAM/BAM
samtools	Alignment to reference genome Variant identification	Single nucleotide variants (SNVs), structural variants (e.g. indels) Software: GATK, SAMTools Realignment, recalibration	Variant Call Format (VCF/BCF)
	Annotation	Comparison to public database (dbSNP, 1000 Genomes); functional consequence scores	
R: ggplot2	Visualization	Variant visualization; read depth; comparison to other samples Software: IGV, BEDTools, BigBED	
reshape2	Prioritization	Discovery of relevant variants Software: PolyPhen-2, VEP, VAAST	VCF
samtools	Storage	Deposit data in ENA, SRA, dbGaP	BAM, VCF

Tools Overview - 2

Paper Data Processing

bowtie → discard Unmapped or non-unique mapped reads → divide to 4 groups SS: reads mapping to the same restriction fragment, or to two adjacent restriction fragments)

S2: reads in which both ends mapped precisely on the DpnII site

S1: reads in which one of the ends mapped precisely on the DpnII site

S0: reads in which both ends did not map precisely to a DpnII site

 \rightarrow discard SS, S2, S1 \rightarrow

Interpreting Hi-C data: normalization

- The observed read counts (O) are typically normalized using a second matrix with expected read counts (E).
- Matrix E is derived by calculating average read counts as a function of genomic distance.
- This results in observed/expected ratios (R), indicating which interactions are enriched/depleted in the data.

Cooperation

黄 宇秀: Paper, Contact Matrix

邱 淦均: Paper, Contact Map

李 柏漢: Paper, Contact Map

林 穎彥: Data Processing, Docs