

26020 Chemistry (Polytechnical Foundation)

Plan for today:

- 1. About the course
- 2. Chemistry in society
- 3. Atoms, molecules, ions, and stoichiometry
- 4. The Periodic table
- 5. Energies of reactions
- 6. A bit of naming of compounds
- 7. Size of molecules

Overview of the course

Book:

Chang, Goldsby: General Chemistry: The Essential Concepts, McGraw-Hill. 7th Ed.

Exercises: Monday 8:00-10:00 in building 324 rooms 20, 40, 50, 60, 70 and the surrounding lobby (areas 3, 4, 5, and 8). Building 306 room 31. We have 324 seats in 324 and 58 in 306. We are 386 registered students (as of Wednesday 24.8.)

Bhaskar Reddy Sudireddy bhsu@dtu.dk
Ming Chen minc@dtu.dk

Ming Chen minc@dtu.dk

Lecture: Monday 10:15-12 in Building 306. auditorium 34 (194 seats) in each auditorium

Stream: live streaming in Building 306 auditorium 35 or elsewhere go the course

DTUlearn homepage and go into Video & Streaming.

Afterwards available on panopto in the 26020 folder

Course responsible

Kristoffer Almdal kral@dtu.dk

Flipped classroom

- We do exercises in the subject in front of the lectures that deal with them
- The TA will help communicate subjects to receive special attention in the lecture to the lecture we will use slido for this

• We will use the circulation of carbon on earth to illustrate how chemistry can be used to evaluate current debates an gain chemistry based quantitative and

qualitative insights

Science Education Resource Center.
Retrieved 31-7-2023 from
https://serc.carleton.edu/download/images/56944/global_carbon_cycle_1427132279.jpg under CC
BY-NC-SA license

Kristoffer Almdal

Kristoffer Almdal kral@dtu.dk DTU Chemistry, Building 206 room 042

A - polydimethylsiloxane B - poly(1,4-isoprene)

Teaches:

- Several Materials Science courses
- Chemistry (polytechnical foundation)
- Polymer physics and chemistry

Research:

- Self-organizing soft materials
- Polymer syntheses
- Block copolymer and applications of them
- Structuring of surfaces
- Polymer degradation
- Extensional flow

Course plan

Course plan - 26020 Chemistry (Polytechnical Foundation)

Lecturer: Krisotffer Almdal, E-mail: kral@dtu.dk

Exercises: Bhaskar Reddy Sudireddy bhsu@dtu.dk

Book: Chang, General Chemistry: The Essential Concepts, 7th Ed., McGraw-Hill.

Exercises: Monday 08-10, B324: rooms 20, 40, 50, 60, 70 and the surrounding lobby (areas 3, 4, 5,

and 8). Building 306 room 31.

Lectures: Mondays 10:15-12. Aud. 34, B306 and streaming in Aud 35

Lecture	Chapters and topics	Keywords
1	Ch. 2+3: Atoms,	atoms, elements, periodic table, formula, molar weight,
	molecules, stochiometry	nomenclature, stoichiometry
2		to be announced
3		to be announced
4		to be announced
5		to be announced
6		to be announced
7		to be announced
8		to be announced
9		to be announced
10		to be announced
11		to be announced
12		to be announced
13	Repetition: Highlights: What did we learn?	Reptition of difficult topics questions in class

Chapter 1 is presumed known.

What is Chemistry 1?

Encyclopedia Britannica:

the science that deals with the properties, composition, and structure of substances (defined as elements and compounds), the transformations they undergo, and the energy that is released or absorbed during these processes

Wikipedia:

Chemistry is the scientific study of the properties and behavior of matter this definition is very broad – materials science - solid state physic - chemistry

Common perception:

You easily find statements:

chemical free beauty tips

On the WEB

A paper was submitted to Nature Chemistry with the title

A comprehensive overview of chemical-free consumer products (it was not published)

What is Chemistry 2?

Historical:

developed from alchemy – concerned with several objectives, most known is the wish to produce gold

Modern view:

Chemistry is the science of the behavior of substances and their reactions and the effort to rationalize this behavior based on experimental observations and theoretical considerations

Organic chemistry: Chemistry involving the element carbon

Inorganic Chemistry: Chemistry of all the other molecules and compounds – often

compounds containing elements that are metals

Physical Chemistry: Laws describing the properties of chemical compounds and

their state of matter. A physical approach to chemistry –

includes thermodynamics and quantum mechanics

Biochemistry: Chemistry related to processes in living organisms

Analytical Chemistry: Development and use of method to identify and quantify

elements and compounds

Chemistry can achieve many things – good and less good

Here are some of the positives:

- Clean drinking water for everybody
- Effective, healthy, and sustainable **food**
- Plenty, cheap, and clean energy for all
- Materials for houses, tools, devices (yes, incl. your smartphone!), etc.
- Effective use of **resources**, e.g. metals,
- Cleaner and more "green" ways to **produce**
- Medical challenges and health
- Climate and environment

Resources on a global scale:

- O Plastics use 5% of all crude oil produces
- O Chemical industry (besides the polymers) use ~ another 5%
- Production of ammonia (for fertilizers production) use 1-3% of the worlds energy consumption
- Most of the rest is used for transportation and heating and cooling of houses

Chemistry is important for all engineers

- Chemistry is a fundamental part of our understanding of our world and thus required to understand the phenomena of our society and surroundings.
- Some examples where chemistry affects other areas of engineering science:
 - Building materials for houses and bridges
 - Sustainable food
 - Water quality and pollutants in environment
 - Medicine is chemical compounds
 - New designed proteins and enzymes
 - Corrosion of surfaces and materials
 - Electronic devices are chemical designs
 - Batteries for your laptop / smart phone
 - Climate science is very much about chemistry

The three states of matter

Most matter is either in the form of gas, solid, or fluid.

By changing temperature or pressure, one can convert from one to another.

These different macroscopic forms represent distinct molecular worlds.

to

Classification of Matter

History of Chemistry up to the idea of atom

12 26020 Chemistry (Polytechnical Foundation)

atoms

DIL

Greek philosopher **Democritos**: "Everything is made of atoms." A-tomos – indivisible

In 1808 this theory was rediscovered by Dalton.

- 1. Elements consists of very small, elementary parts called atoms.
- 2. All atoms in an element are the same but differ from the atoms of other elements
- 3. Molecules consist of atoms. The distribution between different atoms is a simple relationship, e.g. 1:2 (like O:H in water)
- 4. A chemical reaction redistributes atoms among molecules, but does not create or destroy atoms themselves.

In the opinion of Nobel laureate Richard Feynman this is the most important scientific accomplishment ever

Democrit (ca. 460 – 370)

John Dalton (1766-1844)

The atomic nucleus

DTU

Rutherford, 1910:

- When a beam of α -particles (He nuclei) are passed through a thin gold foil:
- a) The was majority goes straight through
- A few gets deflected

This shows that there is a solid core (nucleus) within the gold

Why did Rutherford use gold for his experiment?

Ernest Rutherford (1871-1937)

https://en.wikipedia.org/wiki/Geiger%E2 %80%93Marsden_experiments#/media/F ile:Ernest_Rutherford2.jpg (CC BY-SA 3.0)

Atomic structure

Nucleus consisting of protons (charge +1) and neutrons (neutral) Electrons (charge -1) circulate around the nucleus in a cloud

Mass and Charge of subatomic particles

		Charge			
Particle	Mass/g	Coulomb	Charge unit		
Electron	9.10938×10 ⁻²⁸	-1.6022×10 ⁻¹⁹	-1		
Proton	1.67262×10 ⁻²⁴	-1.6022×10 ⁻¹⁹	+1		
Electron	1.67493×10 ⁻²⁴	0	0		

Classification of atoms: The atomic number Z

- Every element has a **different number of protons Z**: Example: hydrogen (1), helium (2), carbon (6), gold (79)
- There may be different isotopes of the same element (with different number of neutrons)
 - hydrogen, ¹H, deuterium ²H, tritium ³H
 - uranium: ²³⁵U og ²³⁸U.
- Chemical reactivity is almost the same for different isotopes
 The electrons responsible for the chemistry —
 interact with the nucleus through electrostatics not gravity

The periodic Table

- Categorization of matter has historically been pursued.
- Ancient Greek system:

```
earth
wind
fire
water
(cosmos)
```

The Periodic Table

- In 1869 Siberian born chemist Dmitri Mendeleev arranged the then known 63 elements in a table according to atomic weight.
 - This arrangement grouped elements with similar physical and chemical properties.
 - Empty slots in Mendeleev's table were needed to achieve this.
 - In every main group the elements resemble each other there will be trends when moving strictly in one direction.
 - 4 relatively light unknown elements were correctly predicted:
 - Scandium (eka-boron)
 - Gallium (eka-aluminium)
 - Technetium (eka-manganese)
 - Germanium (eka-silicon)
 - A number of heavier elements including Hafnium were also predicted.

Mendeleev periodic table

Reiben	Gruppo I.	Gruppo II.	Gruppo III,	Gruppe 1V.	Groppe V.	Gruppe VI.	Gruppe VII.	Gruppo VIII.
ä	R*O	R0	R*0*	RO*	R*05	RO'	R*0*	RO4
1	II=1							
2	Li=7	Be=9,4	B=11	C=12	N=14	O==16	F=19	
8	Na=28	Mg == 24	Al=27,8	Si=28	P=31	8=32	Cl=35,5	
4	K=39	Ca=40	-=44	Ti== 48	V=51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Cu=63)	Zn==65	-=68	-=72	As=75	So=78	Br=80	
6	Rb == 86	Sr=87	?Yt=88	Zr=90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag≈108)	Cd=112	In=113	Sn==118	Sb=122	Te==125	J=127	
8	Cs== 133	Ba=137	?Di=138	?Co==140	l —	_	-	
9	(-)	_	_	_	_	_	_	
10	-	-	?Er=178	?La=180	Ta=182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au=199)	Hg=200	Tl== 204	Pb=207	Bi==208	_	-	
12	-	-	_	Th=231	-	U==240	_	

Dmitri Mendeleev (1834-1907)

4 relatively light unknown elements were correctly predicted:

Scandium (eka-boron) (1879)

Gallium (eka-aluminium) (1875)

Technetium (eka-manganese) (1937)

Germanium (eka-silicon) (1869)

The periodic Table

By Sandbh - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.p hp?curid=132619705

The periodic table

1																	18
1 H 1.008	2											13	14	15	16	17	2 He 4.0026
3 Li 6.94	4 Be 9.0122											5 B 10.81	6 C 12.011	7 N 14.007	8 O 15.999	9 F 18.998	10 Ne 20.180
11 Na 22.990	12 Mg 24.305	3	4	5	6	7	8	9	10	11	12	13 Al 26.982	14 Si 28.085	15 P 30.974	16 S 32.06	17 Cl 35.45	18 Ar 39.948
19 K 39.098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54.938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.97	35 Br 79.904	36 Kr 83.798
37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91.224	41 Nb 92.906	42 Mo 95.95	43 Tc (98)	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 I 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57-71 *	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 Tl 204.38	82 Pb 207.2	83 Bi 208.98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 #	104 Rf (265)	105 Db (268)	106 Sg (271)	107 Bh (270)	108 Hs (277)	109 Mt (276)	110 Ds (281)	111 Rg (280)	112 Cn (285)	113 Nh (286)	114 F1 (289)	115 Mc (289)	116 Lv (293)	117 Ts (294)	118 Og (294)
	* Lanti seri		57 La 138.91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97
	# Actir serie		89 Ac (227)	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)

https://iupac.qmul.ac.uk/AtWt/table.html World Wide Web version prepared by G. P. Moss

The periodic Table

- Manny form available on the WEB:
- Crystal structures:
 https://en.wikipedia.org/wiki/Periodic_table_(crystal_structure)
- Interactive Royal Society version:
 https://www.rsc.org/periodic-table
- ACS downloads in different formats (free): https://www.acs.org/education/whatischemistry/periodictable.html
- And many more

Until ...

Molecular formula

Many ways to describe the structure of a molecule: molecular H_2 NH_3 $\mathrm{CH_4}$ H_2O formula Н----Н H—N—H Η Н—О—Н structural formula ball-andstick model spacefilling model

What is 1 mol?

DTI

- 1 mol equals 6.022 x 10²³
- Definition: the number of C atoms in 12 grams of the isotope $_{12}^{6}$ C.
- C has atomic mass 12.01

H has 1.0008

O has 15.999

N has 14.007

• How many moles are there approximately in a 1-kg package of sugar?

• A: ~0.03 moles; B: ~0.3 moles; C: ~3 moles; D: ~30 moles; E: ~300 moles

$1 \text{ mol} = 6.022 \text{ x } 10^{23}$: Two more examples

A 623 g heat deflector M_{Cu} =63.5g ~10 mol

 $\frac{1}{2}$ l water (500g) $M_{\text{water}} = 18g$ $\sim 28 \text{ mol}$

Empirical Formula

- Only provides the ratio between elements in the molecule (not total count)
- Thus, there will be molecules with the same ratio but different number of atoms in total.
- Both glucose and formaldehyde have the empirical formula CH₂O:

More compounds with same empirical formula

Examples of compounds with empirical formula CH₂O (composition by mass 40.0% C, 6.71% H, 53.3% O

Name	Molecular	Whole-number	M/(g/mol)	use or function
	formula	multiple		
Formaldehyde	CH ₂ O	1	30.03	Disinfectant; biological preservative
Acetic acid	$C_2H_4O_2$	2	60.06	Acetate polymers, vinegar (5% solution); cleaning
lactic acid	$C_3H_6O_3$	3	90.08	causes milk to sour, forms in muscles during anaerobic work; polymers
erythrose	$C_4H_8O_4$	4	120.10	forms during sugar metabolismpart of RNA and DNA
ribose	$C_5H_{10}O_5$	5	150.13	part of RNA and DNA and vitamin B2
glucose	$C_6H_{12}O_6$	6	180.16	Major sugar in carbohydrate metabolism, the sweetener in some fruits
H O	OH OH	ОН	ОН	HO OH OH

Calculating the empirical formula

Endothermic & exothermic

Reactions can be classified as either **endothermic** (take up heat/energy) or **exothermic** (release heat/energy).

Units of energy

Energy	conversion	tables	
--------	------------	--------	--

1 calorie (cal) = 4.184 joule (J)
1 Calorie (Cal) = 1000 calories (cal)
1 kilowatt hour (kWh) = 3.6×10⁶ joule (J)

unit	energy to raise	Energy to run a 1000	total daily energy
	temperature of 1 g	lumen light-bulb for	use of a Danish
	of water by 1°C	1 hour	citizen
joule (J)	4.18	4.68×10^4	3.26×10^{8}
calorie (cal)	1	1.12×10^4	7.78×10^7
Calorie (Cal)	0.001	11.2	7.78×10^4
kilowatt-hour (kWh)	1.16×10^{-6}	0.013	90.5

Salts: Nomenclature

DTL

Positive ions – the cation - first

sodium Na⁺

potassium K⁺

magnesium Mg²⁺

ammonium NH₄⁺

Negative ions - the anion - last:

oxide, O^{2-}

sulfide, S²-

fluoride, F

bromide, Br

carbonate, CO₃²-

dihydrogen phosphate, H₂PO₄

e.g. NaBr: sodiumbromide

Some common anions

nonmetal	symbol	base	anion
	for ion	name	name
fluorine	F-	fluor-	fluoride
chlorine	C1	chlor-	chloride
bromine	Br ⁻	brom-	bromide
iodine	I-	iod-	iodide
oxygen	O^{2-}	OX-	oxide
sulfur	S^{2-}	sulf-	sulfide
nitrogen	N^{3-}	nitr-	nitride

More anion names

Some common polyatomic ions

name	formula	name	formula
acetate	$C_2H_3O_2^-$	hypochlorite	ClO-
carbonate	CO_3^{2-}	chlorite	ClO_2^-
hydrogen carbonate (bicarbonate)	HCO_3^-	chlorate	ClO_3^-
hydroxide	OH-	perchlorate	ClO ₄ -
nitrite	NO_2^-	permanganate	MnO_4
nitrate	NO_3	sulfite	SO_3^{2-}
chromate	CrO_4^{2-}	hydrogen sulfite (bisulfite)	HSO ₃ -
dichromate	$Cr_2O_7^{2-}$	sulfate	SO_4^{2-}
phosphate	PO_4^{3-}	hydrogen sulfate (bisulfate)	HSO ₄ -
hydrogen phosphate	HPO_4^{2-}	oxide	O_2^{2-}
ammonium	NH ₄ ⁺	cyanide	CN-

Increasing oxidation state:

hypo-; -ite;- ate; per-

Names of oxyanions

Some common oxyacids and the corresponding oxyanions

acid	formula	oxyanion	formula
nitrous acid	HNO ₂	nitrite	NO_2^-
nitric acid	HNO_3	nitrate	NO_3^-
sulfurous	H_2SO_3	sulfite	SO_3^{2-}
sulfuric	H_2SO_4	sulfate	SO_4^{2-}
chlorous	$HClO_2$	chlorite	ClO_2^-
chloric	$HClO_3$	chlorate	ClO_3
perchloric acid	HClO ₄	perchlorate	ClO_4
acetate	C_2H_4O	acetate	$C_2H_3O^{2-}$
carbonic acid	H ₂ CO ₃	carbonate	CO_3^{2-}

Increasing oxidation state: hypo-; ous;- ic; per-

Structure of solids: NaCl

- NaCl is crystalline with Na⁺ and Cl⁻ arranged in a periodic lattice structure
- This enables electrostatic stabilization of the structure

https://commons.wikimedia.org/wiki/File:NaCl bonds.svg

Halite Location: Wieliczka Salt Mine, UNESCO World Heritage Site, Wieliczka, Małopolskie, Poland Size 16×15×13 cm CC BY-SA 4.0 https://commons.wikimedia.org/wiki/File:Selpologne.jpg#/media/File: Selpologne.jpg

What happens when NaCl get in contact with water?

Nomenclature in general

DTU

write up the structures with element symbols and charge let the charges cancel (molecular formula):

How to visualize molecules

Most important examples:

Sizes of molecules

Some structural formulas

$$\begin{array}{c} H_2 \\ C \\ OH \end{array}$$
 ethanol

Test: Molar mass: Calculate for caffeine

Summary

- On the perception of chemistry
- Structure of atoms and molecules
- Conversion between # of molecules and mass
- Representation of chemical structures in drawings
- The organization of the elements in the periodic table
- Introductory nomenclature naming of compounds
- Relating to molecular size

Questions and comments

- Question are nice
 - Tough with 300 400 students in the audience but we try
 - Whoever speaks learns the most
 - Se you next week