PYTHONFOR DATA ANALYSIS


```
# Install required Python libraries
# !pip install pandas
# !pip install matplotlib
# !pip install numpy
# !pip install seaborn
# import python libraries

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # visualizing data matplotlib inline
import seaborn as sns
# import csv file
df = pd.read_csv('Sales Data.csv', encoding='unicode_escape')

df.shape
(11251, 15)
```

df.head()

df.info()

	User _ID	Cust_n ame	Produc t_ID	Gen der	Age Gro up	A ge	Marital_ Status	State	Zone	Occupa tion	Product_C ategory	Ord ers	Amo unt	Stat us	unna med1
0	1002 903	Sanskri ti	P00125 942	F	26- 35	28	0	Maharash tra	West ern	Healthc are	Auto	1	2395 2.0	Na N	NaN
1	1000 732	Kartik	P00110 942	F	26- 35	35	1	Andhra Pr adesh	South ern	Govt	Auto	3	2393 4.0	Na N	NaN
2	1001 990	Bindu	P00118 542	F	26- 35	35	1	Uttar Pradesh	Centr al	Automo bile	Auto	3	2392 4.0	Na N	NaN
3	1001 425	Sudevi	P00237 842	M	0-17	16	0	Karnataka	South ern	Constru ction	Auto	2	2391 2.0	Na N	NaN
4	1000 588	Joni	P00057 942	M	26- 35	28	1	Gujarat	West	Food Processi ng	Auto	2	2387 7.0	Na N	NaN

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11251 entries, 0 to 11250 Data columns (total 13 columns): Non-Null Count Dtype Column --------User ID 11251 non-null int64 0 11251 non-null object 11251 non-null object 11251 non-null object Cust name 1 Product_ID 11251 non-null object
Gender 11251 non-null object
Age Group 11251 non-null int64 2 3 5 Age
Marital_Status 11251 non-null int64
State 11251 non-null object
Zone 11251 non-null object 6 7 8 Occupation 11251 non-null object 9 10 Product_Category 11251 non-null object 11 Orders 11251 non-null int64
12 Amount 11239 non-null floate 11239 non-null float64 dtypes: float64(1), int64(4), object(8) memory usage: 1.1+ MB

pd.isnull(df)

	User_ ID	Cust_na me	Product_ ID	Gend er	Age Gro up	Age	atus	te	e	on	Product_Cate gory	Orde rs	Amou nt
0	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False
1	False	False	False	False		-	False	Fals e	Fals e	False	False	False	False
2	False	False	False	False			False	e	e	Faise	False	False	False
3	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False
4	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False
•••							•••				•••		
112 46	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False
112 47	False	False	False	False	False	e	raise	Fals e	Fals e	False	False	False	False
112 48	False	False	False	False	False	Fals e	False	e	e	raise	False	False	False
112 49	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False
112 50	False	False	False	False	False	Fals e	False	Fals e	Fals e	False	False	False	False

$11251 \text{ rows} \times 13 \text{ columns}$

```
State
Zone
Occupation
Product Category
Orders
                            0
Amount
                          12
dtype: int64
df.shape
(11251, 13)
# drop null values
df.dropna(inplace=True)
df.shape
pd.isnull(df).sum()
User ID
Cust name
Product ID
                          0
Gender
Age Group
                           0
Age
                           0
Marital_Status 0
State
Zone
Occupation 0
Product_Category 0
Orders
                           Ω
Amount
                           0
dtype: int64
df.info()
<class 'pandas.core.frame.DataFrame'>
Index: 11239 entries, 0 to 11250
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
---

      0
      User_ID
      11239 non-null int64

      1
      Cust_name
      11239 non-null object

      2
      Product_ID
      11239 non-null object

      3
      Gender
      11239 non-null object

      4
      Age Group
      11239 non-null int64

      5
      Age
      11239 non-null int64

      6
      Marital_Status
      11239 non-null int64

      7
      State
      11239 non-null object

      8
      Zone
      11239 non-null object

                               -----
 8 Zone 11239 non-null object
9 Occupation 11239 non-null object
 10 Product_Category 11239 non-null object
 11 Orders 11239 non-null int64
12 Amount 11239 non-null float
                               11239 non-null float64
dtypes: float64(1), int64(4), object(8)
memory usage: 1.2+ MB
# change data type
df['Amount'] = df['Amount'].astype('int')
df['Amount'].dtypes
dtype('int32')
df.columns
Index(['User ID', 'Cust name', 'Product ID', 'Gender', 'Age Group', 'Age',
          'Marital Status', 'State', 'Zone', 'Occupation', 'Product Category',
          'Orders', 'Amount'],
        dtype='object')
df['Marital Status'].values
#rename column
df.rename(columns= {'Marital Status':'Shaadi'})
# describe() method returns description of the data in the DataFrame (i.e. count, mean, std, etc)
df.describe()
```

	User_ID	Age	Marital_Status	Orders	Amount
count	1.123900e+04	11239.000000	11239.000000	11239.000000	11239.000000
mean	1.003004e+06	35.410357	0.420055	2.489634	9453.610553
std	1.716039e+03	12.753866	0.493589	1.114967	5222.355168
min	1.000001e+06	12.000000	0.000000	1.000000	188.000000
25%	1.001492e+06	27.000000	0.000000	2.000000	5443.000000
50%	1.003064e+06	33.000000	0.000000	2.000000	8109.000000
75%	1.004426e+06	43.000000	1.000000	3.000000	12675.000000
max	1.006040e+06	92.000000	1.000000	4.000000	23952.000000

use describe() for specific columns
df[['Age', 'Orders', 'Amount']].describe()

	Age	Orders	Amount
count	11239.000000	11239.000000	11239.000000
mean	35.410357	2.489634	9453.610553
std	12.753866	1.114967	5222.355168
min	12.000000	1.000000	188.000000
25%	27.000000	2.000000	5443.000000
50%	33.000000	2.000000	8109.000000
75%	43.000000	3.000000	12675.000000
max	92.000000	4.000000	23952.000000

Exploratory Data Analysis

Gender

```
df.shape
# plotting a bar chart for Gender and it's count
ax = sns.countplot(x = 'Gender', data = df)
for bars in ax.containers:
    ax.bar label(bars)
```


plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().sort_values(by='Amount',
ascending=False)

```
sns.barplot(x = 'Gender', y= 'Amount' , data = sales gen)
```

```
<Axes: xlabel='Gender', ylabel='Amount'>
```


From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

Age

Total Amount vs Age Group
sales_age = df.groupby(['Age Group'], as_index=False)['Amount'].sum().sort_values(by='Amount',
ascending=False)

```
sns.barplot(x = 'Age Group', y= 'Amount' ,data = sales_age)
<Axes: xlabel='Age Group', ylabel='Amount'>
```


From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

State

```
# total number of orders from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Orders'].sum().sort_values(by='Orders', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State', y= 'Orders')
# total amount/sales from top 10 states
sales_state = df.groupby(['State'], as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False).head(10)
sns.set(rc={'figure.figsize':(15,5)})
sns.barplot(data = sales_state, x = 'State', y= 'Amount')
```

From above graphs we can see that most of the orders & total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

Marital Status

```
ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
for bars in ax.containers:
    ax.bar_label(bars)
```



```
sales_state = df.groupby(['Marital_Status', 'Gender'],
as_index=False)['Amount'].sum().sort_values(by='Amount', ascending=False)
sns.set(rc={'figure.figsize':(6,5)})
sns.barplot(data = sales_state, x = 'Marital_Status',y= 'Amount', hue='Gender')
<Axes: xlabel='Marital_Status', ylabel='Amount'>
```


From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

Occupation

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Occupation')
for bars in ax.containers:
    ax.bar_label(bars)
```



```
sales_state = df.groupby(['Occupation'], as_index=False)['Amount'].sum().sort_values(by='Amount',
ascending=False)
```

```
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Occupation',y= 'Amount')
<Axes: xlabel='Occupation', ylabel='Amount'>
```

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

Product Category

```
sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Product_Category')
for bars in ax.containers:
    ax.bar label(bars)
```


From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

```
sales_state = df.groupby(['Product_ID'], as_index=False)['Orders'].sum().sort_values(by='Orders',
ascending=False).head(10)
```

```
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_ID',y= 'Orders')
<Axes: xlabel='Product ID', ylabel='Orders'>
```


top 10 most sold products (same thing as above)

```
fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).sort_values(ascending=False).plot(kind='bar')
<Axes: xlabel='Product_ID'>
```


Conclusion:

Married women age group 26-35 yrs from UP, Maharastra and Karnataka working in IT, Healthcare and Aviation are more likely to buy products from Food, Clothing and Electronics category

Thank you!