Reaction Engineering, Problem Sheet-3, 2017

- Q1. The homogeneous gas phase reaction $A \rightarrow 3R$ satisfactorily follows second-order kinetics. For a feed rate of 4 m³/h of pure A at 350°C and 5 atm, an experimental reactor(size: 25 mm IDpipe × 2 meter length) gives 60% conversion of A. A commercial plant is to be designed to process 320 m³/h of feed containing 50 mole % A and 50 mole% inerts at 350 °C and 25 atm for obtaining 80% conversion of A.
- (i) How many 2-m lengths of 25 mm ID pipes are needed for 80% conversion?
- (ii) Should they (pipes) be arranged in parallel or in series? (Assume ideal gas behavior and plug flow in the pipe)

Q2. The following kinetic data on the reaction, $A \rightarrow R$ are obtained in an experimental packed bed reactor using various amounts of catalyst and a fixed rate, F_{A0} = 10 kg-mol/hr.

W, Cat	kg	1	2	3	4	5	6	7
X _A		0.12	0.20	0.27	0.33	0.37	0.41	0.44

- (a) Find the reaction rate at 40% conversion.
- (b) For alarge packed bed reactor with afeed rate F_{A0} = 400 kg-mol/hr, how much catalyst would be needed for 40% conversion?
- (c) How much catalyst would be needed in part(b) if the reactor employed a very large recycle reactor?
- Q3. Kinetic experiments on the solid catalyzed gas-phase reaction $A \rightarrow 3R$ with pure A are conducted at 8 atm and $700^{\circ}C$ in a basket reactor of 960 cm³ in volume and containing 1 gm of catalyst of diameter $d_P = 3$ mm. Feed consisting of pure A is introduced at various rates in the reactor and partial pressure of A in the exit stream measured for each feed rate. The results are

Feed rate,	100	22	4	1	0.6
liters/hr					
$p_{A,out}/p_{A,in}$	0.8	0.5	0.2	0.1	0.05

Find a rate equation to represent the rate of reaction for the above catalyst.

Q4. The second order reaction A→ R is studied in a recycle reactor with very large recycle ratio, and the following data are recorded.

Void volume of reactor: 1 liter; weight of catalyst: 3 gm; Feed to the reactor: $C_{A0}=2$ mol/liter, $v_0=1$ liter/hr, $C_{A,out}=0.5$ mol/liter.

- (a) Find the rate constant for this reaction.
- (b) How much catalyst is needed in a packed bed reactor for 80% conversion of 1000 liter/hr of feed of concentration $C_{A0}=1$ mol/liter?