Diskrete Mathematik

Cédric Volk

November 14, 2024

Contents

1	\mathbf{Z} ah	llenmengen
	1.1	Natürliche Zahlen
	1.2	Ganze Zahlen
	1.3	Rationale Zahlen
	1.4	Reelle Zahlen
2	Zah	llensysteme
3	Prä	dikate
	3.1	Aussagen
	3.2	Quantoren
		3.2.1 Allquantor
		3.2.2 Existenzquantor
	3.3	Junktoren
		3.3.1 Negation
		3.3.2 Konjunktion
		3.3.3 Disjunktion
		3.3.4 Implikation
		3.3.5 Äquivalenz
4	Len	nmas
	4.1	Lemma 1 - Transitivität der Implikation
	4.2	Lemma 2 - Kontraposition

1 Zahlenmengen

1.1 Natürliche Zahlen

 $\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, \ldots\}$

1.2 Ganze Zahlen

 $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$

1.3 Rationale Zahlen

 $\mathbb{Q} = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{5}{4}, -\frac{3}{7}, 0, 1, -2, \dots \right\}$

1.4 Reelle Zahlen

 $\mathbb{R} = \{-2, 0, 1.5, \sqrt{2}, \pi, e, \ldots\}$

2 Zahlensysteme

3 Prädikate

- 3.1 Aussagen
- 3.2 Quantoren
- 3.2.1 Allquantor

 $\forall A$

3.2.2 Existenzquantor

 $\exists A$

3.3 Junktoren

3.3.1 Negation

 $A \neg B$

3.3.2 Konjunktion

 $A\wedge B$

3.3.3 Disjunktion

 $\vee A$

3.3.4 Implikation

 $B \Rightarrow A$

3.3.5 Äquivalenz

 $B \Leftrightarrow A$

4 Lemmas

4.1 Lemma 1 - Transitivität der Implikation

Für alle Prädikate mit A,B und C mit $A \Rightarrow B$ und $B \Rightarrow C$ gilt $A \Rightarrow C$.

4.2 Lemma 2 - Kontraposition

Für alle Prädikate mit A und B gilt $A\Rightarrow B\Leftrightarrow \neg B\Rightarrow \neg A.$ Beweis. Wir wenden die Junktorenregeln an:

	$A \Rightarrow B$
Definition von A \rightarrow B	$\Leftrightarrow \neg A \vee B$
Kommutativität	$\Leftrightarrow B \vee \neg A$
Doppelte Negation	$\Leftrightarrow \neg \neg B \vee \neg A$
Definition von $\neg B \rightarrow \neg A$	$\Leftrightarrow \neg B \Rightarrow \neg A$