Trauma Informed Care (TIC) Data Analysis

Andrew Goldstein, Claire Guo, Erin Lipman, Zhi Rong Tan, Patrick Walker

Abstract

In effort to address the issue of gun violence on the South Side of Chicago, a new curriculum in Trauma Informed Care (TIC) was developed and taught to healthcare works at the University of Chicago's medical centers.

The training consisted of a 1.5-hour session on (A) safety, (B) screening, (C) contextualizing behavior, (D) avoiding re-traumatization, and (E) discharge planning; participants self-reported their comfort, on a 10-point scale, with each of the five areas before and after training with a 78% completion rate for those that attended.

Here we investigated four questions: (1) whether there was a significant improvement in the overall (summed) score, (2) which of the five sub-categories saw the most and least improvement, (3) how a participant's role, department, and training levels affects the improvement, (4) and which groups of people were most likely to complete both surveys.

What is Trauma Informed Care (TIC)?

- Sensitively providing healthcare to those affected by violence and trauma
- Taught in a 1.5 hour workshop
- Participation was voluntary
- 5 topics:
 - a. Safety;
 - b. Screening;
 - c. Contextualizing behavior;
 - d. Avoiding re-traumatization;
 - e. Discharge planning.
- Dataset is self-reported scores (1-10) of how comfortable the participant is with each of the 5 topics (before and after workshop)

Dataset (n = 341, post-cleaning)

Variable Name	Variable Type	Example	
ID	String	MI161102	
Data Attended	Date	8/10/2017	
Department	Factor (9)	Emergency Medicine	
Role	Factor (9)	MD	
Level	Factor (5)	Resident	
Complete	Logical	TRUE	
Pre(A/B/C/D/E)	Integer (1-10)	8	
Post(A/B/C/D/E)	Integer (1-10)	10	

Main Questions

- Did the study improve how comfortable the participants are with each of the 5 topics?
- How does a person's role, department, etc affect their improvement?
- How does a person's role, department, etc affect if they completed the workshop?
 - E.g. Attendings are busy, maybe had to leave part-way through

Statistical Issues

- Participation in the seminars was voluntary
 - E.g. Participants who are unfamiliar with the material chose to attend
- Missing data (not missing at random)
- Subjective survey data might be difficult to compare across individuals
- Survey data might not be very reliable
- Heterogeneity in individuals extends far beyond what is available in the data
- Multiple testing
- Correlated response variables
- Bounded response variables
 - E.g. If you scored yourself a perfect 50 before the workshop, it's impossible to improve

Analysis of Individual Changes Overview

- The leftmost graph shows the spread of responses on the 5 question pretraining
- The middle shows the spread for post training
- The rightmost the spread of changes.

Analysis of Individual Changes

- The change boxplot can be condensed into the following statistics
- We can see that the changes are in general positive, but that the spread ranges from somewhat negative to almost a jump that covers the whole scale
- We need to ensure that these changes are normally distributed

```
A B C D E change_min -2 -2 -2 -1 -2 change_q25 0 1 1 1 1 1 change_median 2 2 2 2 2 change_q75 3 4 3 4 3 change_max 8 9 8 7 7
```

```
A B C D E change_mean 1.76 2.34 1.85 2.38 2.39 change_sd 1.72 1.75 1.80 1.79 1.74
```

Normality of Individual Changes

- The histograms and quantile plots are for the changes of A,B,C,D, and E
- We can see that the changes are in fact skewed to the right, something that we need to be aware of during out t-tests

T Tests and CIs for Individual Changes

Here we show the 95% confidence intervals for the change in responses and the accompanying p-value for a paired (one-sample) t-test

All confidence intervals do not include 0, indicating that the changes are significant

This is further supported by the remarkably low p-values, indicating that the variables are both significant and mitigating our concern over the non-normality aspects of the changes

```
lower upper p
A 1.54 1.97 1.3e-40
B 2.12 2.55 3.9e-59
C 1.63 2.07 3.0e-42
D 2.16 2.60 1.1e-58
E 2.18 2.61 1.6e-60
```

Analysis of Mean Change - normality checks

Analysis of mean changes - hypothesis tests

Parametric (T-test)

• CI: [1.96, 2.32]

P-value: 5.5 x 10⁻⁶⁵

Nonparametric (bootstrap)

• Cl: [1.98, 2.33]

P-value: 0

Histogram of bootsrap

Correlation Plot

Pearson

Correlation 1.0

0.5

0.0

-0.5

-1.0

Correlation analysis

- High positive correlation within pre blocks
- High positive correlation within post blocks
- Moderate positive correlation within change block
- Positive correlations between pre and post scores (especially diagonal)
- Pre and change are moderately negatively correlated (especially diagonal)
- Little correlation between post and change (small positive on diagonal)

Analysis of Response by Department, Level & Role

Box Plot of Mean Change separated by Department and Role

Analysis of Response by Department, Level & Role

Only observations where Roles = "MD" or "Student" have Level

Role= "Student" → Level = "St"

Box Plot of mean change separated by Level

One-Way ANOVA

Are mean changes affected by any of the 3 factors?

Department, Level, Role

- Ran one-way linear regression model for mean change on either one of the factors, and performed ANOVA on them
- From the high p-values in each of the ANOVA tables, no evidence any of these factors (on their own) is significant predictor of change

Factor	Department	Role	Level
ANOVA P-Value	0.2113	0.3443	0.644

Analysis of Variance Tables (One-Way)

ANOVA Table for Department

```
Df Sum Sq Mean Sq F value Pr(>F) tic$Department 7 19.44 2.7767 1.3873 0.2113 Residuals 236 472.35 2.0015
```

ANOVA Table for Role

```
Df Sum Sq Mean Sq F value Pr(>F) tic$Role 7 15.96 2.2802 1.1309 0.3443 Residuals 236 475.83 2.0162
```

ANOVA Table for Level

```
Df Sum Sq Mean Sq F value Pr(>F)
tic$Level 3 3.81 1.2696 0.5572 0.644
Residuals 155 353.15 2.2784
```

Two-Way ANOVA

- Are mean changes affected by 2-way interactions of the factors?
- Ran two-way linear regression model for mean change on pairs of the factors, and performed ANOVA on them
- From the high p-values in each of the ANOVA tables, no evidence any pair of these factors is significant predictor of change

```
Response: mean_change
                                                     Df Sum Sq Mean Sq F value Pr(>F)
Department:Role
                            tic$Department
                                                        19.44 2.77674
                            tic$Role
                                                                       0.9708 0.4242
                            tic$Department:tic$Role
                                                          1.20 0.59861
                                                                       0.2972 0.7432
                            Residuals
                                                    230 463.33 2.01449
                            Response: mean_change
Department:Level
                                                         Sum Sq Mean Sq F value Pr(>F)
                            tic$Department
                            tic$Level
                            tic$Department:tic$Level
                                                                         1.8525 0.09289
                            Residuals
```

Analysis of completion rates

Chi-Squared Tests

- Are certain characteristics associated with completeness?
 - Department
 - Role
 - Level
 - MD Students vs. all others
 - Doctors vs. all others
 - Doctors and MD students vs. all others
 - Doctor, MD student, and nurses vs. all others
 - Surger, Pediatrics, Emergency Medicine, and students vs. all other departments
 - Surgery vs. all others

Chi-Squared Tests

- Are certain characteristics associated with completeness?
 - o Department: p-value = 3.9 * 10⁻⁵
 - Role: p-value = 0.009
 - Level
 - MD Students vs. all others
 - Doctors vs. all others: p-value = 0.053
 - Doctors and MD students vs. all others: p-value = 8.4 * 10⁻⁵
 - Doctor, MD student, and nurses vs. all others: p-value = 0.0001
 - Surgery, Pediatrics, Emergency Medicine, and students vs. all other departments
 - Surgery vs. all others: p-value = 4.8 * 10⁻⁵
- Bonferroni correction for multiple testing: p-value/# of tests
 - 11 tests → almost all stay significant
 - New threshold approx p=0.005

Summary

- The changes in each content area were found to be positive at a 0.05 significance level using one-sample t-tests backed up by a nonparametric bootstrap
- 2) The overall change was not found to be impacted by department, level, or role in one and two-way ANOVA regression
- 3) The completion rate was found to be affected by Department, being a doctor/student/nurse, and being in surgery by using chi-squared tests on two-way tables, and correcting for multiple comparisons