Indoor Positioning via Wi-Fi Fingerprinting

Agenda

- Location Intelligence & Analytics
- Project Introduction and Goals
- Data Security & Management
- The Dataset
- Dataset Challenges
- Algorithms & Model Parameters
- Model Comparisons
- Indoor Positioning Systems Compared
- Recommendations / Next Steps

Location Intelligence & Analytics

- WAPs (wireless access points) the enabling technology that facilitates the connectivity of smart devices to a WiFi network
 - Eg. Network of WAPS in a mall facilitates the tracking of smartphones as a customer moves
- The aggregation of tracking data creates a digital footprint known (footfall traffic patterns) businesses can analyze to gain useful insight into customer traffic patterns and behavior

Project Goals

Client Request: Investigate the feasibility of determining indoor location on large industrial sites using WiFi fingerprinting.

What We Did: Analyzed the data and evaluated the application of various machine learning algorithms to determine if a model could be constructed that would achieve the desired accuracy.

What We Found: We were able to construct a model that predicts indoor location with 90% or greater accuracy. However, other methods may be more accurate and already in production.

Data Security & Management

At IOT we use a combination of the NIST cyber-security framework and IT best practices to manage and protect data.

- 1. **Identify** Data, hardware, & software
- 2. **Protect** Proper measures to protect data
- 3. **Detect** Ability to detect anomalies and cyber-attacks
- 4. **Response** Respond to attacks based on policies and tools in place
- 5. **Recover** Recover affected areas and return to service promptly

The Dataset

- Covers 3 Buildings of the Universitat Jaume I in Castellón, Spain with 4 or more floors (almost 110k square meters)
- Created in 2013 by more than 20 different users and 25 android devices
- Approximately 20k observations of 529 attributes that captured:
 - WiFi fingerprints Received Signal Strength Intensity (RSSI) corresponding to each detected Wireless Access Point (WAP)
 - Latitude and longitude
 - Building, floor, and relative space
 - User and timestamp information

Dataset Challenges

- Number of Features
 - Solution: Eliminate the features that are not useful for predicting the indoor location i.e. Longitude, Latitude, User ID, Phone ID, and Timestamp
- Feature Variance
 - Solution: Identify and remove features with zero variance
- Dependent variable
 - Solution: Create one dependent variable that is a combination of Building, Floor, Space ID, and Relative Position
- Size
 - Solution: Eliminate irrelevant classes in the dependant variable and lower computational cost by dividing the dataset using building ID

Algorithms & Model Parameters

- Each building dataset was partitioned into training/testing datasets using a 75/25 ratio
- A set seed of 123 was used prior to running each model
- The following three classification algorithms were selected:
 - o knn: k- Nearest Neighbors (tuning parameter = k)
 - C5.0: C5.0 (tuning parameter = trials, model, winnow)
 - RF: Random Forest (tuning parameter = mtry)
- 10 fold Cross-validation with repeats set to 1 was applied for all the models
- Models were autotuned with Tunelength limited to 5

WiFi Fingerprinting Model Comparison by Accuracy

WiFi Fingerprinting Model Comparison (Building 1)

Indoor Positioning Systems Compared

ACCURACY / COST

	Bluetooth	Magnetic Positioning	WiFi Fingerprinting	Acoustics	Visible Light	Ultra Wide Band (UWB)
Pros	- High reception range - Low energy use	- High accuracy - Low cost	- High accuracy - Widely available - Low cost	- Very high accuracy	- Very high room-level accuracy	- Very high accuracy - Immune to interference
Cons	- Low accuracy - Prone to noise	- Local magnetic field is affected by moving metal objects (eg. elevators)	- Prone to noise - Requires complex processing algorithms	- Affected by sound pollution - Requires addtl. Hardware - Expensive to retrofit	- High power consumption - Expensive to retrofit - Does not work well for large open spaces (eg. shopping malls)	- Very high cost - Shorter range - Requires addtl. hardware

Recommendations / Next Steps

- WiFi Fingerprinting strikes a balance between costs and location accuracy for initial location analytics investment
 - Assumes similar building types and accuracy needs across projects
 - Ensure consistent data collection standards in order to see similar results and maintain accuracy
- Existing app Anyplace free, highly accurate WiFi fingerprinting app
- Best solution is likely a hybrid of WiFi Fingerprinting and MEMS sensors - combines location with direction
- Also recommend deployment of WiFi analytic applications such as Purple and Aisle 411 to monetize acquired WAPS data

