Таблица 10.3. – Формирование отпускной цены нового изделия на основе полной себестоимости

Показатель	Формула/таблица для расчёта	Сумма, р.
1. Материалы	Таблица 10.1	29,1
2. Покупные комплектующие изделия	Таблица 10.2	553,8
3. Накладные расходы	$P_{\text{накл}} = \frac{(29,1+553,8)\cdot 54}{100}$	314,8
4. Полная себестоимость	$C_{\pi} = 29.1 + 553.8 + 314.8$	897,7
5. Плановая прибыль	$\Pi_{\rm eg} = \frac{897,7 \cdot 25}{100}$	224,4
6. Отпускная цена изделия	Ц _{отп} = 897,7 + 224,4	1122,1

По итогу расчетов отпускная цена изделия составляет 1122,1 руб.

10.3 Расчет экономического эффекта от производства и реализации новых изделий

Экономическим эффектом от производства и реализации новых изделий является прирост чистой прибыли, полученной от их реализации.

Расчет прироста чистой прибыли у предприятия—производителя от реализации новых изделий (при формировании цены на основе полных затрат) осуществляется по формуле:

$$\Delta\Pi_{\rm q} = N_{\rm n} \cdot \Pi_{\rm eg} \left(1 - \frac{H_{\rm n}}{100} \right) [p].$$
 (10.7)

где N_{Π} – прогнозируемый годовой объём производства и реализации, шт.

 $\Pi_{E\!A\!J}$ – плановая прибыль, приходящаяся на единицу изделия, р.;

 H_Π — ставка налога на прибыль согласно действующему законодательству, % (H $_\Pi$ = 18 %).

В первый год реализации проекта запланирована разработка и производство первой партии в объеме 500 шт. дистанционно управляемого источника питания СВЧ магнетрона и их реализация.

Используя данные из (табл. 10.3) получим следующее значение для прироста чистой прибыли за первый год реализации проекта:

$$\Delta\Pi_{\text{H}_1} = 500 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 92004 \text{ p.,}$$

В последующие годы реализации проекта запланирована производство и реализация партий в объеме 1000 шт, ввиду отсутствия затрат на разработку и тестирование.

Тогда прирост чистой прибыли за следующий год по формуле (10.7) составит:

$$\Delta\Pi_{4_{2-3}} = 1000 \cdot 224,4 \cdot \left(1 - \frac{18}{100}\right) = 184008 \text{ p.,}$$

10.4 Расчет инвестиций в производство нового изделия

Инвестиции в разработку нового изделия будем оценивать исходя из затрат на разработку нового изделия инженерами следующим образом:

1. Расчет основной заработной платы по следующей формуле:

$$3_{o} = K_{np} \sum_{i=1}^{n} 3_{Hi} \cdot T_{i} [p].,$$
 (10.8)

где $K_{\Pi P}$ – коэффициент премий ($K_{\Pi P}=1,3$);

n – категории исполнителей, занятых разработкой усовершенствованного изделия;

 $3_{днi}$ – дневная заработная плата исполнителя і-й категории, р.;

 ${\rm T}_i$ – продолжительность участия в разработке исполнителя і-й категории, д.

Расчет основной заработной платы по формуле (10.8) приведен в табличной форме (табл. 10.4).

Таблица 10.4 – Расчет заработной платы разработчиков нового изделия

Категория исполни-теля	Числен- ность исполни- телей, чел.	Месяч- ный оклад, р.	Дневной оклад, р.	Продолжи- тель-ность участия в раз- работке, д.	Сумма, р.
1 Руководитель проекта	1	1900	90,47	21	2000,00
2 Инженер- конструктор	1	1570	74,76	15	1121,40
3 Инженер- технолог	1	1500	71,43	10	571,40
4 Нормо- контролёр	1	1200	57,14	7	571,40
5 Сборщик	1	900	42,85	3	219,05
Итого	5	7070	336,66	56	4264,25
Премия и иные с	1279,28				
Всего основная з	5543,53				

2. Расчет дополнительной заработной платы разработчиков по формуле:

$$3_{\rm g} = \frac{3_{\rm o} \cdot H_{\rm g}}{100}, [p]. \tag{10.9}$$

где $H_{\text{д}}$ – норматив дополнительной заработной платы, ($H_{\text{д}}$ = 10%).

3. Отчисления на социальные нужды рассчитываются по формуле:

$$P_{\text{cou}} = \frac{(3_0 + 3_{\text{д}}) \cdot H_{\text{cou}}}{100} [p]. \tag{10.10}$$

где $H_{\text{СОЦ}}$ – ставка отчислений в ΦC3H и Белгосстрах, % ($H_{\text{СОЦ}}$ = 34,6 %).

Расчет инвестиций на разработку нового изделия проводится по формуле:

$$\mathsf{M}_{\mathsf{p}} = \, \mathsf{3}_{\mathsf{o}} + \, \mathsf{3}_{\mathsf{d}} + \, \mathsf{P}_{\mathsf{cou}}[\mathsf{p}]. \tag{10.11}$$

Результат расчета затрат на разработку нового изделия приведен в таблице 10.5.

Таблица 10.5 – Расчет инвестиций на разработку нового изделия

Наименование статьи затрат	Формула/таблица для расчёта	Сумма, р.
1. Основная заработная плата разработчиков	Таблица 10.4	5543,53
2. Дополнительная заработная плата разработчиков	$3д = \frac{5543,53 \cdot 10}{100}$	554,35
3. Отчисления на социальные нужды	$P_{\text{cou}} = \frac{(5543,53 + 554,35) \cdot 34,6}{100}$	2109,87
4. Инвестиции на разработку нового изделия	$M_p = 5543,53 + 554,35 + 2109,87$	8207,75

Инвестиции в прирост основного капитала не требуются, т. к. производство нового изделия планируется осуществлять на действующем оборудовании в связи с наличием на предприятии—производителе свободных производственных мощностей.

Расчёт инвестиций в прирост собственного оборотного капитала приведен ниже.

Годовая потребность в материалах определяется по формуле:

$$\Pi_{\rm M} = P_{\rm M} \cdot N_{\rm \Pi} = 29.1 \cdot 1000 = 29100 \,\mathrm{p}.$$
 (10.12)

Годовая потребность в комплектующих изделиях рассчитывается по формуле:

$$\Pi_{K} = P_{K} \cdot N_{\Pi} = 553.8 \cdot 1000 = 553800 \text{ p.}$$
 (10.13)

Инвестиции в прирост собственного оборотного капитала в процентах от годовой потребности в материалах и комплектующих изделиях (исходя из среднего уровня по экономике: 20–30 %) рассчитываются по формуле:

$$M_{\text{cok}} = (0.25) \cdot (\Pi_{\text{M}} + \Pi_{\text{K}}) = 0.25 \cdot (29100 + 553800) = 145725 \text{ p.}$$
 (10.14)

Общая сумма инвестиций рассчитывается по следующей формуле:

$$\mathsf{M}_{\mathsf{o}\mathsf{6}\mathsf{i}\mathsf{i}\mathsf{i}\mathsf{j}} = \mathsf{M}_{\mathsf{p}} + \mathsf{M}_{\mathsf{c}\mathsf{o}\mathsf{k}} = 8207,75 + 145725 = 153932,75 \,\mathsf{p}.$$
(10.15)

Оценка экономической эффективности инвестиций в производство нового изделия осуществляется на основе расчета простой нормы прибыли (рентабельности инвестиций (затрат)) по формуле:

$$P_{\mu} = \frac{\Pi_{\nu} - M_{000000}}{\Pi_{\nu}} \cdot 100 \%$$
 (10.16)

где $\rm {\it H}_{\rm oбщ}$ – общая сумма инвестиций в производство нового изделия, р.

 $\Pi_{\rm q}$ — чистая прибыль, получаемая от производства нового изделия, р.

Найдем среднюю норму рентабельности инвестиций по следующей формуле (10.16):

$$P_{_{\mathrm{H}}} = \frac{184008 - 153932,75}{153932,75} \cdot 100 \% = 19,54\%,$$

Средняя норма рентабельности инвестиций превысила ставку рефинансирования, равную 15%, откуда можно сделать вывод об экономической эффективности инвестиций в производство дистанционно управляемого источника питания СВЧ магнетрона.

По итогу проведения технико-экономического обоснования инвестиций в разработку дистанционно управляемого источника питания СВЧ магнетрона были получены следующие результаты:

- 1. Проектируемое устройство конкурентоспособно на рынке среди аналогов;
 - 2. Общие инвестиции в разработку составили 153932,75 руб.;
- 3. Себестоимость единицы изделия 897,7 руб., а отпускная цена составила 1122,1 руб.;
- 4. При производстве партии устройств в 1000 шт. предприятие-производитель получит экономический эффект в виде чистой прибыли 184008 руб.;

Средняя норма рентабельности инвестиций P_u =19,54 % превысила ставку рефинансирования, равную 15%, следовательно, разработка в производство дистанционно управляемого источника питания СВЧ магнетрона экономически целесообразны.

ЗАКЛЮЧЕНИЕ

В результате выполнения дипломного проекта спроектирована конструкция дистанционно управляемого СВЧ магнетрона средней мощности, электрические параметры которого: $U_{\pi}-220$ B, $I_{\text{H}\ max}-10$ A, $I_{\text{a}}-0.3$ A, $P_{\text{max}}-1$ кВт, $U_{\text{ah}}-3.8$ кВ, $U_{\text{H}}-3.3$ В.

Проведены анализ литературно — патентных исследований, конструктивных и схемотехнических особенностей импульсных источников питания СВЧ магнетрона; проведено общетехническое обоснование разработки устройства, которое включает в себя анализ исходных данных и формирование основных технических требований; разработаны электрическая принципиальная и структурная схемы устройства.

Разработана конструкция дистанционно управляемого СВЧ магнетрона средней мощности. Осуществлен выбор и обоснование элементной базы; выбор типа электрического монтажа, элементов крепления и фиксации; выбор способов обеспечения нормального теплового режима устройства; выбор и обоснование метода изготовления печатной платы; проведен расчет конструктивно — технологических параметров проектируемого изделия, включающий расчет теплового режима, расчет на механические воздействия, расчет конструктивно-технологических параметров печатных плат, расчет электромагнитной совместимости.

Максимальная температура нагрева элементов устройства выходит за пределы диапазона рабочих температур элементов, устройство подвержено воздействию высоких температур. Решением является применения принудительного воздушного охлаждения, которое обеспечивает исправную работу устройства

Устройство обладает высокой вероятностью безотказной работы за 1000 часов, и хорошей гамма–процентной наработкой до отказа при γ=95%.

Для проектирования устройства применены САПР: Altium Designer, SolidWorks, AutoCAD.

Спроектированная модель является адекватной и пригодной для использования при условии эксплуатации устройства в пределах допустимых значений воздействующих факторов.

Разработана технологическая схема сборки проектируемого устройства. Разработано программное обеспечение для дистанционного управления

источником питания.

Проведено технико-экономическое обоснование разработки и производства дистанционно управляемого СВЧ магнетрона средней мощности. Инвестиции в производство нового изделия будут экономически эффективными, т. к. рентабельность инвестиций превышает 100 % и составляет 119,54%, и, следовательно, разработка нового изделия является целесообразной.

Разработана графическая часть к дипломному проекту (6 чертежей A1 и соответствующая к ним документация).

Конструкторская документация оформлена с применением пакета прикладного программного обеспечения AutoCAD.

Результаты выполнения дипломного проекта могут быть использованы при разработке источника питания.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Алексеев В.Ф. Электронный ресурс по учебной дисциплине «Проектирование электронных модулей, устройств и систем». Комплекс для студентов специальности 1–39 02 01 «Моделирование и компьютерное проектирование РЭС» / В.Ф. Алексеев, Г.А. Пискун // ЭРУД БГУИР [Электронный ресурс] / БГУИР. Минск, 2016.
- [2] Патентные исследования: виды, порядок и стоимость проведения [Электронный ресурс]— Режим доступа: https://patentural.ru/zhurnal/patentnii-issledovania/
- [3] Источник питания для магнетрона [Электронный ресурс] Режим доступа: https://www.freepatent.ru/patents/2575166
- [4] Источник питания магнетрона [Электронный ресурс]— Режим доступа:
- https://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=2& ND=3&adjacent=true&locale=en_EP&FT=D&date=20211116&CC=CN&NR=21 4736058U&KC=U
- [5] Блок питания магнетронов непрерывного генерирования [Электронный ресурс]— Режим доступа: http://allpatents.ru/patent/2450414.html
- [6] Блок питания магнетронов непрерывного генерирования [Электронный ресурс]— Режим доступа: [http://apelvac.com/catalog/groups/27/]
- [7] Магнетрон [Электронный ресурс]. 2021. Режим доступа: https://www.elremont.ru/svch/bt_rem23.php
- [8] Магнетрон [Электронный ресурс]— Режим доступа: http://electricalschool.info/spravochnik/eltehustr/1247-kak-ustroen-i-rabotaet-magnetron.html
- [12] ГОСТ 18953-73. Источники питания электрические. Общие технические требования. Введ. 1974–07–01. М.: Изд-во стандартов, 1985. 9 с.
- [13] ГОСТ 15150–69. Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды. Введ. 1971–01–01. М.: Изд-во стандартов, 1969. 58 с.
- [14] ГОСТ 11487–88 «Аппаратура радиоэлектронная бытовая. Нормы и методы испытаний на воздействие внешних механических и климатических факторов». Введ. 1989—07—01— М.: Изд-во стандартов, 1988. 40 с.
- [15] ГОСТ 12.2.007.0-75 «Изделия электротехнические. Общие требования безопасности» Введ.— 1978—01—01— М.: Стандартинформ, 2008. 55 с
- [16] ГОСТ 29254-91 «Совместимость технических средств электромагнитная. Аппаратура измерения, контроля и управления технологическими процессами. Технические требования и методы испытаний на помехоустойчивость» Введ.— 1993—01—01— М.: Изд-во стандартов, 1992.—57 с

- [17] ГОСТ 21317-87 «Аппаратура радиоэлектронная бытовая. Методы испытаний на надежность». Введ.— 1989—01—01— М.: Изд-во стандартов, 1990. 74 с
- [18] ГОСТ 28002–88. Аппаратура радиоэлектронная бытовая. Общие требования по защите от электростатических разрядов и методы испытаний. Введ. 1991–01–01. М.: Изд-во стандартов, 1989.— 42 с.
- [19] ГОСТ Р 51317.6.1-99 «Совместимость технических средств электромагнитная. Устойчивость к электромагнитным помехам технических средств, применяемых в жилых, коммерческих зонах и производственных зонах с малым энергопотреблением. Требования и методы испытаний». Введ. 2002—01—01. М.: Изд-во стандартов, 2000 48 с.
- [20] ГОСТ 27.003—90. Надежность в технике. Состав и общие правила задания требований по надежности. Введ. 1990—29—12. М.: Изд-во стандартов, 1991. 19 с.
- [21] ГОСТ 12.2.007.0 75. Система стандартов безопасности труда (ССБТ). Изделия электротехнические. Общие требования безопасности. Введ. 1978-01-01. М.: Изд-во стандартов, 1975. -11 с.
- [22] ГОСТ 22782.0 81. Электрооборудование взрывозащищенное. Общие технические требования и методы испытаний. Введ. 1982-07-01. М.: Изд-во стандартов, 1982.
- [23] ГОСТ Р 51515-99 Совместимость технических средств электромагнитная. Помехоустойчивость радиовещательных приемников, телевизоров и другой бытовой радиоэлектронной аппаратуры. Требования и методы испытаний. [Электронный ресурс]. 2022 Режим доступа: http://www.normacs.ru/Doclist/doc/143F.html
- [24] ГОСТ 27570.0—87. Безопасность бытовых и аналогичных электрических приборов. Общие требования и методы испытаний. Введ. 1988—01—07. М.: Изд-во стандартов, 1987. 88 с.
- [25] ГОСТ 12.2.049–80. Система стандартов безопасности труда (ССБТ). Оборудование производственное. Общие эргономические требования. Введ. 1982–01–01. М.: Изд-во стандартов, 2001. 88 с.
- [26] ГОСТ 15.009—91. Система разработки и постановки продукции на производство (СРПП). Непродовольственные товары народного потребления. Введ. 1991—07—01. М.: Изд-во стандартов, 1991. 6 с.
- [27] ШИМ генератор сигналов [Электронный ресурс] Режим доступа: https://freedelivery.company/p/1207518159-generator-shim-signala-signalov-zhk-1gc-150kgc-3-3-30v-xy-lpwm/
- [28] Схема электрическая принципиальная [Электронный ресурс] Режим доступа: http://monitor.espec.ws/files/inv_sch_680.png

- [29] Выходная характеристика диодного моста [Электронный ресурс] Режим доступа: https://electroandi.ru/elektronika/vypryamiteli/diodnyj-most-printsip-raboty-i-skhema.html
- [30] Конструирование и технология электронных систем: пособие к курсовому проектированию для студентов специальности «Электронно–оптические системы и технологии» / А. А. Костюкевич [и др.]. М. БГУИР, 2011. 119 с.
- [31] *Chipdip* // Конденсатор керамический (SMD) 0805 [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/grm2165c1h1r1c
- [32] *Chipdip* // Конденсатор электролитический [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product0/9000188149
- [33] $\it Chipdip$ // Диодный мост [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/kbpc5010-yangjie
- [34] *Chipdip* // Регулятор напряжения [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/ld1117as33tr
- [35] *Chipdip* // Импульсный регулятор напряжения [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/tny264pn
- [36] *Chipdip* // Микросхема управления питанием [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/tca785
- [37] Трансформатор импульсный [Электронный ресурс]. 2017. Режим доступа: https://www.tme.eu/by/ru/details/ti-ee16-1534/transformatory-pcb/feryster/
- [38] *Chipdip* // Чип резистор (SMD) [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/0.125w-0805-1-om-5
- [39] *Chipdip* // Резистор подстроечный [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/3006p-1-501
- [40] *Chipdip* // Трансформатор импульсный [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/alt3232m-151-t001-2
- [41] *Chipdip* // Трансформатор [Электронный ресурс]. 2017. Режим доступа: https://www.transled.ru/catalog/transformers/open/TPA_20/
- [42] *Chipdip* // Транзистор, N-канал [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/2n7002-fairchild
- [43] *Chipdip* // Биполярный транзистор [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/kt819a-2
- [44] *Chipdip* // Транзистор IGBT [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/gt60n321
- [45] $\it Chipdip$ // Транзистор NPN [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/2sc2785

- [46] *Chipdip* // Диод Шоттки [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/1n5819-2
- [47] Chipdip // Диод импульсный [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/fr207
- [48] *Chipdip* // Диод Шоттки [Электронный ресурс]. 2017. Режим доступа: https://www.chipdip.by/product/sb3100
- [49] Электротехнические материалы. Диэлектрики [Электронный ресурс]. 2022. Режим доступа: https://rep.bntu.by/bitstream/handle/data/4637/EHlektrotekhnicheskie_materialy_Diehlektriki.pdf;jsessionid=B6E70A4645 4B344ABCBD62CF0A61B917?sequence=1
- [50] ГОСТ 26246.5-89. Материал электроизоляционный фольгированный нормированной горючести для печатных плат на основе стеклоткани, пропитанной эпоксидным связующим. Технические условия Введ. 1991—01—01. М.: ИПК Издательство стандартов, 2002
- [51] Радиоэлектронная аппаратура и основы ее конструкторского проектирования: учебно—методическое пособие для студентов спец. «Моделирование и компьютерное проектирование РЭС» и «Проектирование и производство РЭС» / Н. И. Каленкович [и др.]. М.: БГУИР, 2008. 200 с.
- [52] ГОСТ Р 55693-2013. Платы печатные жесткие. Технические требования Введ. 2014-06-01. М.: Стандартинформ, 2014
- [53] Пирогова, Е.В. Проектирование и технология печатных плат: учебник / Е.В. Пирогова. М.: Изд во ФОРУМ, 2005. 560 с.
- [54] Монтаж электронных модулей. Варианты реализации [Электронный ресурс]. 2022. Режим доступа: http://www.compitech.ru/html.cgi/arhiv/01 05/stat 80.htm.
- [55] Роткоп, Л. Обеспечение тепловых режимов при конструировании радиоэлектронной аппаратуры/ Л. Роткоп. М.: Сов. радио, 1976.–232с.
- [56] ГОСТ 23751–86. Платы печатные. Основные параметры конструкции. Введ. 1989–01–04. М.: Изд-во стандартов, 1986. –7 с.
- [57] ГОСТ 10317–79. Платы печатные. Основные размеры. Введ. 1980–01–01. М.: Изд-во стандартов, 1985. –3 с.
- [58] Комбинированные методы изготовления печатных плат [Электронный ресурс]. 2022. Режим доступа: https://pcbdesigner.ru/sposobiizgotovleniya-pechatnih-plat/kombinirovannye-metody-izgotovleniya-pechatnyh-plat.html
- [60] Алексеев В.Ф. Электронный ресурс по учебной дисциплине «Программное обеспечение инженерного моделирования физических процессов».

- Комплекс для студентов специальности 1–39 02 01 «Моделирование и компьютерное проектирование РЭС» / В.Ф. Алексеев, Н.А. Голубов, А.П. Горбач // ЭРУД БГУИР [Электронный ресурс] / БГУИР. Минск, 2016.
- [61] Информационные технологии в моделировании и проектировании технических объектов [Электронный ресурс] 2021. Режим доступа: https://www.tstu.ru/book/elib3/mm/2017/maistrenko/t4.html.
- [62] Система автоматизированного проектирования *SolidWorks* [Электронный ресурс]. 2021. Режим доступа: https://seniga.ru/sapr/ssapr/62-solidworks.html
- [63] Преимущества *SOLIDWORKS Simulation* [Электронный ресурс]. 2021. Режим доступа: https://www.solidworks.com/ru/product/solidworks-simulation
- [64] SolidWorks // [Электронный ресурс] 2021. Режим доступа: https:/SolidWorks product/solidworks.
- [65] Программный пакет *ANSYS* [Электронный ресурс]. 2021. Режим доступа: https://studbooks.net/2194693/tehnika/opisanie_podsistemy_ansys_workbench
- [66] *Altium* [Электронный ресурс]. Режим доступа: https://www.altium.com/altium-designer/ru.
- [67] Описание подсистемы ANSYS Workbench [Электронный ресурс]. 2021. Режим доступа: https://www.autodesk.ru/solutions/finite-element-analysis.
- [68] *Autodesk* [Электронный ресурс]. Режим доступа: https://www.autodesk.ru.
- [69] *Elcut* [Электронный ресурс]. 2021. Режим доступа: https://www.tadviser.ru/index.php/%D0%9F%D1%80%D0%BE%D0%B4%D1%83%D0%BA%D1%82:Elcut.
- [70] Инспекционный конвейер ETA SC-50 [Электронный ресурс]. Режим доступа: https://www.etasmt.com.sg/viewproduct.aspx?pid=30.
- [71] Загрузчик печатных плат KAYO-50P [Электронный ресурс]. Режим доступа: https://www.kayosmt.ru/catalog/oborudovanie-dlya-transportirovki-plat-v-linii/kayo-50p.
- [72] Разгрузчик печатных плат KATO-50S [Электронный ресурс]. Режим доступа: https://www.kayosmt.ru/catalog/oborudovanie-dlya-transportirovki-plat-v-linii/kayo-50p.
- [73] *ESP01S* [Электронный ресурс]. 2021. Режим доступа: https://pdf1.alldatasheet.com/datasheet-pdf/view/1179098/ETC2/ESP-01.html
- [74] Горюшкин, А.А. Технико-экономическое обоснование дипломных проектов (работ): метод. Указания для студ. техн. спец. / А.А. Горюшкин, А.В. Грицай, В.Г. Горовай. Минск, 2020. 86 с.