Math 3012 - Applied Combinatorics Lecture 3

William T. Trotter trotter@math.gatech.edu

Binomial Coefficients Everywhere

Foundational Enumeration Problem

Given a set of m identical objects and n distinct cells, the number of ways they can be distributed with the requirement that no cell is empty is

$$\binom{m-1}{n-1}$$

Explanation

m objects, m-1 gaps. Choose n-1 of them. In this example, there are 23 objects and 6 cells. We have illustrated the distribution (6, 2, 4, 7, 1, 3).

Equivalent Problem

Restatement

How many solutions in positive integers to the equation:

$$X_1 + X_2 + X_3 + ... X_n = m$$

Given a set of m identical objects and n distinct cells, the number of ways they can be distributed with the requirement that no cell is empty is

$$\binom{m-1}{n-1}$$

Building on What We Know

Restatement

How many solutions in non-negative integers to the equation:

$$X_1 + X_2 + X_3 + ... X_n = m$$

Answer

$$\binom{m+n-1}{n-1}$$

Explanation Add n artificial elements, one for each variable.

Mixed Problems

Problem How many integer solutions in non-negative integers to the equation:

$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 = 142$$

Subject to the constraints:

$$x_1, x_2, x_5, x_7 \ge 0; \quad x_3 \ge 8; \quad x_4 > 0; \quad x_6 > 19$$

Answer

$$\binom{119}{6}$$

Good = All - Bad

Problem How many integer solutions in non-negative integers to the equation:

$$x_1 + x_2 + x_3 + x_4 = 63$$

Subject to the constraints:

$$x_1, x_2 \ge 0; 2 \le x_3 \le 5; x_4 > 0$$

Answer

$$\binom{63}{3}$$
 - $\binom{59}{3}$

Lattice Paths (1)

Restriction Walk on edges of a grid. Only allowable moves are R (right) and U (up), i.e., no L (left) and no D (down) moves are allowed.

Lattice Paths (2)

Observation The number of lattice paths from (0,0) to (m,n) is $\binom{m+n}{m}$.

Explanation A lattice path corresponds to a choice of m horizontal moves in a sequence of m + n moves. Here the choices are: RUURRRURUR

Lattice Paths - Not Above Diagonal

Question How many lattice paths from (0,0) to (n,n) never go above the diagonal?

Good

Bad

Lattice Paths - Not Above Diagonal

Solution The number of lattice paths from (0,0) to (n, n) which never go above the diagonal is the Catalan Number:

$$\frac{\binom{2n}{n}}{n+1}$$

Observation The first few Catalan numbers are:

1, 1, 2, 5, 14. What is the next one?

Parentheses and Catalan Numbers

Basic Problem How many ways to parenthesize an expression like:

$$X_1 * X_2 * X_3 * X_4 * ... * X_n$$

For example, when n = 4, we have 5 ways:

$$x_1 * (x_2 * (x_3 * x_4))$$

 $x_1 * ((x_2 * x_3) * x_4))$
 $(x_1 * x_2) * (x_3 * x_4)$
 $((x_1 * x_2) * x_3) * x_4$
 $(x_1 * (x_2 * x_3)) * x_4$

Can you verify that there are 14 ways when n = 5?

Using Recurrence Equations (1)

Basic Problem How many regions are determined by n lines that intersect in general position?

Answer

$$d_1 = 2$$

 $d_{n+1} = d_n + n+1$ when $n \ge 0$.

So
$$d_2 = 2 + (1+1) = 4$$

 $d_3 = 4 + (2+1) = 7$
 $d_4 = 7 + (3+1) = 11$

What are d_5 and d_6 ?

Using Recurrence Equations (2)

Basic Problem How many regions are determined by n circles that intersect in general position?

Answer

$$d_1 = 2$$

 $d_{n+1} = d_n + 2n$ when $n \ge 0$.

So
$$d_2 = 2 + 2*1 = 4$$

 $d_3 = 4 + 2*2 = 8$
 $d_4 = 8 + 2*3 = 14$

What are d_5 and d_6 ?

Using Recurrence Equations (3)

Basic Problem How many ways to tile a $2 \times n$ grid with dominoes of size 1×2 and 2×1 ?

Answer

$$d_1 = 1$$

 $d_2 = 2$
 $d_{n+2} = d_{n+1} + d_n$ when $n \ge 0$.

So
$$d_3 = 2 + 1 = 3$$

 $d_4 = 3 + 2 = 5$

What are d_5 and d_6 ?

Challenge Problem (4)

Basic Problem How many ways to tile a $3 \times n$ grid with tiles of the four shapes illustrated here?

Partial Answer

$$d_1 = 1$$

$$d_2 = 2$$

$$d_3 = 4$$

What are d_5 and d_6 ?

Cash Prize One dollar to first person who can correctly evaluate d_{20} .

Using Recurrence Equations (5)

Basic Problem How ternary sequences do not contain 01 in consecutive positions?

Answer

$$t_1 = 3$$

 $t_2 = 8$
 $t_n = 3t_{n-1} - t_{n-2}$ when $n \ge 2$.

So
$$t_3 = 3 \times 8 - 3 = 21$$

 $t_4 = 3 \times 21 - 8 = 55$

What is t_5 ?

Critical Question

Question If you know that:

```
a_1 = 14
a_2 = 23
a_3 = -96
a_4 = 52 and
```

 $a_{n+4} = 9 a_{n+3} - 7 a_{n+2} + 8 a_{n+1} + 13 a_n$ when $n \ge 1$, then you can calculate a_n for any positive integer n. Is this good enough, or would you like to know even more about a_n ?

Basis for Long Division

Theorem If m and n are positive integers, there are unique integers q and r with $q \ge 0$ and $0 \le r < m$ so that

$$n = q m + r$$

Question Is this obvious or does it require an explanation/proof?