$\begin{cases} 16 \cdot 2^{x} = 4^{x-y} & \text{a pour} \\ 5 \cdot 25^{2x-1} = 5^{2x-1} \end{cases}$ Le système formé par les équations

ensemble-solution:
1.{(3,-2)} 3.{
$$\left(-2,\frac{-7}{2}\right)$$
} 5. $\left\{\left(\frac{-7}{2},-3\right)\right\}$
2.{(-2,3)} 4. $\left\{\left(-3,\frac{-7}{2}\right)\right\}$

201. L'ensemble-solution de l'inéquation logarithmique (lnx)²+lnx-6<0 est :

L'ensemble-solution de l'inéquation logarithmique (IIIX) + IIX 0 0 0 0 0 1 1.
$$\left[\frac{1}{1}, e^2\right]$$
 3. $\left[\frac{1}{e^3}, e^2\right]$ 5. $\left[\frac{1}{e^2}, e^3\right]$ (M-2011)

2.
$$\int_{0}^{1} e^{3} \left[4. \right] \frac{4}{e^{2}}$$
,
202. $\lim_{x \to \infty} \left[\ln(2x+1) - \ln(x+2) \right] = 0$

$$\frac{x^{2} - 1}{1} = \frac{x^{2} - 1}{x - 1} = \frac$$

1.
$$\frac{1}{4}$$
 2. 4 3. $\frac{1}{2}$ 4. 1 5. $-\frac{1}{4}$ (M-2011)

$$\frac{1}{4}$$
 2. 4 2 2 4 2 2 204.L'ensemble des solutions de l'équation exponentielle $8e^{2x}-6e^x+1=0$ est:

204.L ensemble des solutions
$$\frac{1}{2} \ln 2$$
 5. $\{\ln 2, \frac{1}{2} \ln 2\}$
2. $\{-\ln 2, -2\ln 2\}$ 4. $\{\ln 2, 2\ln 2\}$ (M-2011)
205. L'équation $\ln(x + 1) = \ln[\ln(2x + 1) - \ln(x + 2)]$ pour ensemble

205. L'equation
$$In(x + 1) = In{a/(2 + 1)} =$$

206. La fonction f est définie dans R par
$$f(x) = e^{2x} + \frac{3x-1}{6x+3}$$
.
La limite lorsque x tend vers $-\infty$ de $f(x)$ est :

1.
$$-\infty$$
 2. -1 3. $\frac{1}{2}$.4. 1 5. $+\infty$ (B-201)