Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Electrical Engineering
(Applicable from the academic session 2018-2019)

Name of the course		ENGINEERING MI	ECHANICS		
Course Code: ES-ME 301		Semester: 3rd			
Duration: 6 months		Maximum Marks: 1	00		
Teaching Scheme		Examination Schem	e		
Theory: 3 hrs/week		Mid Semester Exam:	15 Marks		
Tutorial: 0 hr/week		Assignment & Quiz:	10 Marks		
Practical: 0 hrs/week		Attendance:	05 Marks		
Credit Points: 3		End Semester Exam:	70 Marks		
Obje	ctive:				
1.	To understand the basic mathematical tools to deal with the physical bodies.				
2.	To learn different mathematical technique	athematical techniques to analyze physical bodies.			
2.	To learn analysis techniques of rigid bodies.				
2.	To solve problem of general motion.				
	Requisite				
1.	Physics (BS-PH-101)				
2.	Mathematics (BS-M102, BS-M202)				
Unit	Content		Hrs	Marks	
1	Introduction to vectors and tensor	s and co-ordinate	5		
	systems				
	Introduction to vectors and tensors and				
	Vector and tensor algebra; Indical nota				
	anti-symmetric tensors; Eigenvalues and I	Principal axes.			
2	Three-dimensional Rotation		4		
	Three-dimensional rotation: Euler's t				
	formulation and Euler angles; Coordina	ite transformation of			
	vectors and tensors.				
3	Kinematics of Rigid Body		6		
	Kinematics of rigid bodies: Dentition and				
	body; Rigid bodies as coordinate systems	, ,			
	a rigid body, and its rate of change; Dist				
	and three dimensional rotational motion;				
	velocity to find orientation; Motion relati	ive to a rotating rigid			
1	body: Five term acceleration formula.		5		
4	Kinetics of Rigid Bodies		5		
	Kinetics of rigid bodies: Angular mome				
	Inertia tensor: Dentition and computation	-			
	and axes of inertia, Parallel and perpend	icular axes theorems;			

Maulana Abul Kalam Azad University of Technology, West Bengal

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Electrical Engineering

(Applicable from the academic session 2018-2019)

	Mass moment of inertia of symmetrical bodies, cylinder,		
	sphere, cone etc., Area moment of inertia and Polar moment of		
	inertia, Forces and moments; Newton-Euler's laws of rigid		
	body motion.		
5	Free Body Diagram (1 hour)	1	
	Free body diagrams; Examples on modelling of typical		
	supports and joints and discussion on the kinematic and kinetic		
	constraints that they impose.		
6	General Motion	9	
	Examples and problems. General planar motions. General 3-D		
	motions. Free precession, Gyroscopes, Rolling coin.		
7	Bending Moment	5	
	Transverse loading on beams, shear force and bending moment		
	in beams, analysis of cantilevers, simply supported beams and		
	overhanging beams, relationships between loading, shear force		
	and		
	bending moment, shear force and bending moment diagrams.		
8	Torsional Motion	2	
	Torsion of circular shafts, derivation of torsion equation, stress		
	and deformation in circular and hollow shafts.		
9	Friction	3	
	Concept of Friction; Laws of Coulomb friction; Angle of		
	Repose; Coefficient of friction.		

Text books:

- 1. J. L. Meriam and L. G. Kraige, "Engineering Mechanics: Dynamics", Wiley, 2011.
- 2. M. F. Beatty, "Principles of Engineering Mechanics", Springer Science & Business Media, 1986.
- 3. Manoj K. Harbola, "Engineering Mechanics", Cengage Learning India Pvt. Ltd, 2018
- 4. D.S. Bedi & M.P. Poonia, "Engineering Mechanics", Khanna Publishing House, 2019
- 5. R.S. Khurmi, "Engineering Mechanics", S.Chand Publications
- 6. R.K. Bansal, "Engineering Mechanics", Laxmi Publications

Course Outcome: After completion of this course, the learners will be able to

- 1. explain the co-ordinate system, principle of three dimensional rotation, kinematics and kinetics of rigid bodies.
- 2. elaborate the theory of general motion, bending moment, torsional motion and friction.
- 3. develop free body diagram of different arrangements.