PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-282795

(43)Date of publication of application: 29.10.1993

(51)Int.Cl.

G11B 20/12 G11B 7/013 611B 11/10 G11B 19/12

(21)Application number : 04-105374

(71)Applicant: SONY CORP

(72)Inventor: SAKO YOICHIRO

YAMAGAMI TAMOTSU

(54) RECORDING MEDIUM

(57)Abstract:

(22)Date of filing:

PURPOSE: To constantly perform optimum recording and regeneration matched with the ability of a recording medium and a recording/regenerating device by deciding a recording system and a regenerating system in reference to a table recorded on the recording medium.

CONSTITUTION: The table TB is recorded on the recording medium. The recording system and the regenerating system such as a nonreturn zero(NRZ) or a partial response(PR) systems corresponding to a parameter λ/(NA) derived from a laser wavelength λ and a numerical aperture of a lens NA are stored. Consequently, by selecting the recording system and the regenerating system referring to the table TB, good recording and regeneration by the optimum system without interference between codes, etc., is performed.

D (MED) COS	.o. s	0. 55	c. 6	0. 65	C, 7
1. 2	PR	PR.	PR	PR	PR
j.	PR	PR.	T.B.	NEZ	NHZ
n. 8	ę z	SRZ	NUZ	NRZ	NRZ
	1.8				

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-282795

(43)公開日 平成5年(1993)10月29日

(51)Int.CL ⁵		識別記号	庁内整理番号	FI	技術表示箇所
G 1 1 B	20/12		7033-5D		
	7/013		9195-5D		
	11/10	Α	9075-5D		
	19/12	N	7525-5D		

		審査請求 未請求 請求項の数 2(全 12 頁)
(21)出願番号	特願平4-105374	(71)出願人 000002185 ソニー株式会社
(22)出願日	平成 4 年(1992) 3 月31日	東京都品川区北品川6丁目7番35号
		(72)発明者 佐古 曜一郎
		東京都品川区北品川 6 丁目 7 番35号 ソニー 一株式会社内
		(72)発明者 山上 保
		東京都品川区北品川 6 丁目 7 番35号 ソニ ー株式会社内
		(74)代理人 弁理士 佐藤 正美

(54) 【発明の名称 】 記録媒体

(57)【要約】

【目的】 記録媒体の性能、記録再生装置デバイスの性 能に応じた最適な記録再生を常に行える。

【構成】 記録ないし再生装置の記録能力ないし再生能 力に関する情報と、最適な記録方式ないし再生方式との 関係に関するテーブルTBを記録媒体に記録する。記録 ないし再生装置は、記録ないし再生に先立ち、このテー ブルTBを読み込み、最適な記録ないし再生方式を、こ のテーブルから決定する。

D (協定級 合語D)	0. 5	0. 55	0. 6	0. 65	0. 7
1. 2	PR	PR	PR	PR	PR
1	PR	PR	PR	NRZ	NR Z
0. 8	PR	NRZ	NRZ	NRZ	NRZ

【特許請求の範囲】

【請求項1】 記録ないし再生装置の記録能力ないし再 生能力に関する情報と、最適な記録方式ないし再生方式 との関係に関するテーブルが記録されてなる記録媒体。

【請求項2】 少なくとも再生が光学式に行われる記録 媒体であって、前記テーブルの情報の1つとして、光学 ヘッドのレーザ光源のレーザ波長と、レンズ開口数が記 録されてなる記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、例えば光ディスクや 磁気ディスクなどの記録媒体に関する。

[00002]

【従来の技術】ディスク記録媒体にデジタル信号を記録 する方法としてNRZ記録、NR2I記録が広く用いら れている。NRZ記録は、デジタル信号の"0"を "L" レベル、"1" を"H" レベルに対応させ、NR Z I 記録は、デジタル信号の"O"を"H"レベル→ "H" レベルまたは "L" レベル→ "L" レベルという 非反転、"1"をビットセルの中央での反転に対応させ 20 ている。このNR2記録やNRZI記録を行う場合に、 その前にEFMや8-10変調などの変調を行う場合も あるし、直接記録の場合もある。

【0003】このようにデジタル信号が記録されたディ スク記録媒体を再生する場合には、前記"H"レベルと "L"レベルとを検出することができればデジタル信号 の検出をすることができる。すなわち、"H"レベルと "L"レベルとの中間のレベルとしてスレッショールド レベルを設定したNR Z 2 値検出方式により信号検出す ることができる。

【0004】しかし、最近は高密度記録化が進み、ディ スク記録媒体における記録信号の符号間干渉の問題がク ローズアップされている。すなわち、図6Aに示すよう なデジタル信号の再生波形は、なまった波形となるが、 記録密度が低い場合には、符号間干渉はほとんど生じ ず、図6Bに示すような波形となり、所定のスレッショ ールドレベル thによる2値検出により信号検出を容易 に行うことができる。しかしながら、記録密度が高くな ると、図6Aの"H"レベルと"H"レベルで挟まれる 領域が近づくため、符号間干渉が生じ、"H"レベルと "H"レベルとの間の"L"レベルのデータが"H"レ ベルに近づいてしまい、NRZ2値検出では、検出誤り を生じやすくなる。

【0005】以上のような高記録密度化に伴う符号間干 渉の関係を再生RF信号(高周波信号)についてのアイ パターンでみると、図8に示すようになる。すなわち、 再生RF信号のアイパターンは、記録密度が高くなるに 従って図8A→図8B→図8Cのように変化し、記録密 度が高くなると符号間干渉が増加することが分かる。

うな高密度記録のディスクの再生に当たっては、信号検 出方式として、パーシャルレスポンス(以下PRと略称 する)による信号検出方式が提案されている。この検出 方式は、符号間干渉を積極的に利用した手法で、例え ば、デジタル2値信号を2つのスレッショールドレベル を用いて3値検出して信号検出する方法などがある。

【0007】そして、従来、再生時の信号検出方式とし て、PR3値検出方式を使用する場合には、記録時にお いて、いわゆる変調(NRZIを含む)の際に、PR3 10 値検出をすることが容易になるようなプリエンコードを 行う場合が多い。このプリエンコードの方法としては、 いくつか報告されているが、PR (1, 1)では、以下 の演算式を満たすように形成される。

[0008] すなわち、出力を $C_k(k=0, 1, 2,$ …)、入力をdょとしたとき、

$C_k = d_k + d_{k-1}$

を満足するようにされる。これを実現するプリエンコー ド回路は、図9に示すように、加算回路51と、この加 算回路51の出力を1サンプル分(1ビット)だけ遅延 する遅延回路52とで構成できる。つまり、このプリエ ンコードは、符号間干渉を生じやすいように、記録デー タが"1"のときには、その後はできるだけ"1"が続 くようにエンコードするものである。このPR (1,

1) のプリエンコードは、NRZデータをNRZIデー 夕に変換することに等しくなる。

【0009】従来、再生時の信号検出方式として、NR 22値検出方式と、パーシャルレスポンス3値検出方式 のいずれを用いるかは、記録密度に依存しており、シス テム毎に決定されていた。

30 【0010】すなわち、図7は、上記2種の信号検出方 式の線記録密度に対する検出の位相マージン(位相マー ジンは図8におけるアイパターンにおいて、Wi/Wo に相当する値で、信号検出クロックの検出窓マージンで あり、この位相マージンは再生時のデータ誤り率が所定 値以下となるための検出窓の位相の許容範囲を示す) の 関係の一例を示すもので、実線aはNRZ2値検出の場 合の特性曲線、破線bはPR3値検出の場合の特性曲線

【0011】この図7においては、横軸の線記録密度は 40 最小ピットDminの線方向のピット長dで示してい る。この図7から明らかなように、最小ピット長dが大 きく、記録密度が低い時には、符号間干渉が少なく、N R22値検出方式がPR3値検出方式に比べて位相マー ジンが大きくなり、信号検出方式として優位である。し かしながら、図7の例の場合においては、最小ピット長 dが約0.6μm以下の高記録密度になると、符号間干 渉のためPR3値検出方式の方が位相マージンが高くな り、信号検出方式として優位になることが分かる。

【0012】従来、この図7の特性を参照して、システ 【0006】そこで、従来、符号間干渉を生じやすいよ 50 ム毎に、フォーマットで決められる記録密度により、再 3

生時にNRZ2値検出を行うか、PR3値検出を行うか が決定されていた。

[0013]

【発明が解決しようとする課題】ところで、光ディスクシステムの伝達特性を表す指標の一つであるOTF(Optical Transfer Function)は、空間周波数に対して図10に示すようなフィルタ特性を有する。図10から明らかなように、この周波数フィルタのカットオフ周波数fcは、

$f c = 2 NA/\lambda$

となる。ただし、NAはレンズの関ロ数、えは光学へッドのレーザ光源のレーザ波長である。 【0014】したがって、光ディスクシステムの高記録

の短板技化、レンスの開口級N Aの同主、また、破気ティスクであればヘッドギャップの狭ギャップ化などの努力がなされている。このような記録媒体の改良や記録再生装置デバイスの改良がなされると、記録信号に符号間干渉が生じる線記録密度に変化が生じる。このため、前記図7における2種の信号検出方法の特性曲線のクロス点に変化が生じることになる。

【0016】PR3値検出方式は、前述したように符号間干渉を利用したものであって、符号間干渉がないと反対に不利になる特徴を有している。上述のような装置デバイスの改良やディスクの改良による符号間干渉が生じ 30 る線記録密度に変化は、この不利に当たり、改良されたデバイスで従来通りのディスクを再生したとき、信号検出誤りが生じるなど不都合を生じるおそれがある。また、光ディスクの光反射率の改善などの記録媒体の改良によっても同様の問題が生じるおそれがある。

【0017】以上のように、記録媒体の改良やデバイスの改良により、前記2種の信号検出方式間の優位性の分岐点に変化が生じ、従来はPR3値検出方式が優位であった高記録密度のディスクの再生であっても、NR22値検出する方が優位になるという事態も生じる。

【0018】そこで、それまでPR3値検出方式で再生を行っていたディスクの再生もNRZ2値検出方式で再生することが考えられる。ところが、従来、PR3値検出方式により再生を行おうとするディスクの場合、上述したように、記録はプリエンコードを行っている。しかしながら、このプリエンコードは、再生時にPR3値検出を行って始めてその効果を発揮するもので、このプリエンコードを行って記録したデータを、NRZ2値検出で再生する場合には、符号間干渉を積極的に利用しようとしたためのエラーの伝播が問題になる。

【0019】以上のことから、従来は、記録媒体の改良 や再生装置の改良を、ディスクシステムの再生時の信号 検出精度の向上に関し、有効に反映させることができな かった。

【0020】さらに、1枚のディスクであっても、その回転駆動方式が角速度一定(CAV)のディスク配録再生においては、図7にも示すように、ディスクの半径方向の位置により記録密度が異なることになり、ディスクの内周側と外周側では優位である信号検出方法は異な

10 る。しかし、従来は、いづれか1つの信号検出方式のみを用いているため、ディスクの内周側の記録密度を、採用する信号検出方式によって生じる信号誤りの発生率を所定以下にできるような記録密度に設定しており、ディスク全体としての記録容量が限定されてしまう欠点があった。また、所定値以下の誤り率を確保するためにディスク記録媒体の品質管理を厳しくすることが必要であり、さらに再生回路も高品質のものが要求され、装置のコストアップを招いていた。

【0021】そこで、出願人は、特願平2-32076 4号として、CAV方式でのディスク再生において、外 周側と内周側とで信号検出方式をNRZ2値検出方式と PR3値検出方式を切り換える再生方法を提案した。

【0022】しかし、この信号検出方式の切り換え再生方法において、NRZ2値検出方式とPR3値検出方式との切り換え点は、前述のことから分かるように、装置デバイスの改良、記録媒体の改良により変化する。そこで、この切り換え点をどのようにして決定するかが問題となる。

【0023】この発明の第1の目的は、記録媒体や記録 再生再生装置デバイスの能力や性能を十分に発揮できる ようにした記録媒体を提供することである。この発明の 第2の目的は、CAV方式のディスクシステムにおい て、常に最適の記録再生を行うことができるようにする 記録媒体を提供することである。

[0024]

【課題を解決するための手段】上記課題を解決するため、この発明においては、記録ないし再生装置の記録能力ないし再生能力に関する情報と、最適な記録方式ないし再生方式との関係に関するテーブルが記録されてなる 記録媒体を提供する。記録媒体が、光記録媒体であるときには、前記テーブルの情報の1つとしては、光学ヘッドのレーザ光源のレーザ波長と、レンズ開口数が記録される。

[0025]

【作用】上述の構成のこの発明による記録媒体を用いた 記録または再生においては、記録または再生に先立っ て、記録媒体からテーブル情報が読み出され、そのテー ブル情報から最適の記録方式または再生方式が決定され る。したがって、記録媒体及び装置の性能を十分に考慮 50 した最適な記録再生を行うことができる。 5

[0026]

【実施例】以下、この発明の一実施例を、記録媒体が光磁気ディスクの場合を例にとって図を参照しながら説明する。先ず、この例の光磁気ディスクが記録再生されるディスク記録再生システムの全体の構成を図2を参照しながら説明する。

【0027】 [ディスク記録再生システムの全体の構成] 図2は、光ディスク装置の記録再生系のブロック図である。同図において、1はデータ書き換え可能な光磁気ディスクである。2はスピンドルモータで、これは、サーボ回路5からのサーボ信号を受けて、ディスク1を例えば一定の角速度(CAV)で回転駆動する。

【0028】ディスク1の一面側には、光学ヘッド3が設けられている。また、ディスク1の光学ヘッド3と対向する面とは反対側の面と対向する位置には、磁気ヘッド6が設けられている。光学ヘッド3と磁気ヘッド6とは、同期してディスク1の半径方向に沿って移動するように構成されている。

【0029】光学ヘッド3は、レーザ光源及び光ディテクタを備え、レーザ光源はレーザ駆動回路4からの駆動 20 信号により駆動され、光ディテクタはディスク1からの反射光を受け、再生情報をこれより得る。レーザ駆動回路4は、また、光学ヘッド3のレーザ光源の出力パワーを制御し、記録時には再生時より大きなパワーのレーザ光をレーザ光源から発生させるようにする。

【0030】また、光学ヘッド3には、サーボ回路5からのサーボコントロール信号が供給され、これによりフォーカス制御やトラッキング制御がなされる。これらのサーボ制御のため、予め、ディスク1には、光スポットコントロール用のプリグルーブ(プリピット)が形成され、このプリグルーブにトラッキング用のウォブリング信号に重量して絶対時間コード(絶対アドレス)が記録されている。このプリフォーマットにより、記録密度は決定される。しかし、NRZ2値検出を再生時に使用する方が有利か、PR3値検出を再生時に使用する方が有利かは、さらには、ディスク1のいずれの半径位置で両検出方式を切り換えるのが最適であるのかは、図7及び図10から明らかなように装置デバイスや記録媒体の性能により変わる。

【0031】光学ヘッド3でディスク1から再生された 40 RF信号(高周波信号)は、ヘッドアンプ11を介して サーボ回路5に供給される。サーボ回路5は、このRF 信号からフォーカスエラー、トラッキングエラー等を形成し、これより光学ヘッド3及びスピンドルモータ2に 供給するサーボ制御信号を形成する。

【0032】そして、12は変調/復調回路で、図の例の場合には信号検出回路を含む。そして、信号検出回路としては、この例においては、NRZ2値検出回路と、PR3値検出回路との2種が設けられる。

【0033】13は記録データ及び再生データを処理す 50 たデータ性能値と、その性能値での前記2種の検出方式

るために、データを一時蓄えるためのRAMである。また、14は、記録データ及び再生データを他の部位とやり取りするためのインターフェイスで、この例の場合には、SCSIインターフェイスの構成とされている。このインターフェイス14は、RAM13のコントローラも含んでいる。

【0034】このシステムにおいて、記録は、次のようになされる。すなわち、インターフェイス14からの記録データは、RAM13に一時蓄えられる。そして、システムコントローラ10からの指示により適宜読み出されて、変調/復調回路12に供給されて変調がなされ、磁気ヘッド駆動回路15は、記録データに応じた変調磁界をディスク1に印加するように磁気ヘッド6を駆動して記録を行う。このとき、前述したようなサーボコントロールがなされる。

【0035】再生時には、サーボコントロールを行いながら光学ヘッド3の光ディテクタから再生RF信号が得られ、これがヘッドアンプ11を通じて変調/復調回路12に供給されて復調され、その復調データがRAM13に蓄積される。そして、適宜、インターフェイス14を介して再生データ処理部に転送される。

【0036】 [この発明による記録媒体の実施例] 光磁気ディスク1の最内周(あるいは最外周)の位置には、予め、コントロールトラックが形成されている。このコントロールトラックには、ディスク素材の情報(ディスク材料や、光反射率)、記録密度情報(ディスク全体のセクタ割り、1セクタが512バイトか1024バイトか等)などの記録媒体に関する情報が記録されるが、この発明においては、このコントロールトラックに、さらに、記録再生装置の記録能力ないし再生能力に関する情報と、最適な記録方式ないし再生方式との関係に関するテーブルが記録される。

【0037】このテーブルは、この例では次のようにして作成されている。すなわち、図7に示した、NRZ2値検出方式とPR3値検出方式の位相マージンに関する特性曲線の交点として示される両検出方式の優位性の逆転の分岐点は、前述したように、主としてレーザ波長 2と、レンズの開口数NAにより、2/NAをパラメータとして変化する。したがって、このパラメータと線記録密度Dとから、ディスクと装置デバイスとを含むシステムの性能が、信号再生時に符号間干渉を排除できるレベルであるか、符号間干渉を利用した方がよいかを判定することができる。換言すれば、信号再生時に、どちらの信号検出回路を使用するのが有利かを判定すると共に、記録時には、その信号検出回路に適合する変調方式(ブリエンコードを含む)を選定することができる。

【0038】そこで、デバイスの性能を示す前記パラメータ 1/NAに、必要に応じて他のパラメータを加味したデータ性能値と、その性能値での前記 2 種の検出方式

30

の優位性の逆転の分岐点を線記録密度として示した値と のテーブルを作成し、それをコントロールトラックに記 録しておく。このようにすれば、記録時あるいは再生時 に先立ってこのコントロールトラックのテーブルを参照 して、自己のシステムの性能に対する前記分岐点の線記 録密度を知ることができ、対象となるディスクの線記録 密度の情報(例えばコントロールトラックの情報から得 る) から最適の変調方式及び再生信号検出方式を選定す ることができることになる。

【0039】ここで説明する例の場合には、さらにこの 10 考えを進めて、図1に示すように、線記録密度Dと、A /NA(λは光学ヘッド3の光源のレーザ波長、NAは 光学ヘッド3のレンズ開口数)とに対して、再生時の信 号検出方式としてNRZ2値検出方式(図1ではNRZ と表示)とPR3値検出方式(図1ではPRと表示)の どちらを選択するのがよいかのテーブルTBを作成し、 これをコントロールトラックに記録する。なお、図1に は示されていないが、両検出方式のどちらでもよいとい う選択枝(NRZ/PR)があってもよい。これらNR Z, PR, NRZ/PRという選択枝は、それぞれ2ビ 20 ットのコードで現すことが可能である。

【0040】なお、図1のテーブルTBにおいては、パ ラメータ λ / N A は、レーザ波長 λ = 780 μ m、N A =0.5のとき、1/NA=1として正規化して示して ある。すなわち、 $\lambda = 680 \mu m$ 、NA=0.6である 場合には、A/NA=0.73というように決定され

【0041】 [この発明による記録媒体を用いた記録再 生方法の例] 次に、上述したように、コントロールトラ ックに図1のテーブルTBが記録された光磁気ディスク を用いた記録再生方法の実施例について説明する。図3 は、この例の記録媒体の記録再生を実施する記録再生部 の要部の構成のブロック図である。

【0042】図3において、記録データは変調回路21 において、例えばEFM等の変調がなされ、その変調デ ータがスイッチ回路22に供給される。そして、このス イッチ回路22が端子A側に切り換えられる時には、変 調データがそのまま磁気ヘッド駆動回路15に供給さ れ、スイッチ回路22が端子B側に切り換えられる時に は、変調データはプリエンコード回路23によりプリエ 40 ンコードされた後、磁気ヘッド駆動回路15に供給され る。プリエンコード回路23としては、例えば前述した 図9の回路を使用することができる。

【0043】また、100はNRZ2値検出回路、20 0はPR3値検出回路である。そして、ヘッドアンプ1 1からの再生RF信号は、再生イコライザ回路41に供 給されると共に、イコライザ係数検出回路42に供給さ れる。イコライザ係数検出回路42は、各セクタのリフ ァアレンスエリアに書き込まれているイコライザ係数を

に供給する。再生イコライザ回路41は、このイコライ ザ係数で再生RF信号に対する再生イコライジングを行 う。この再生イコライザ回路41の出力信号はNRZ2 値検出回路100及びPR3値検出回路200に供給さ

【0044】そして、これらNR22値検出回路100 の出力と、PR3値検出回路200の出力は、スイッチ 回路43により切り換えられる。このスイッチ回路43 の切り換えにより選択された検出回路100または20 0の出力は、ECCデコーダ44に供給され、エラー訂 正デコードなどの処理がなされる。

【0045】NR22値検出回路100は、再生RF信 号を所定のスレッショールド値と比較し、その比較出力 を再生信号に同期したクロックで同期をとる構成で実現 することができる。

【0046】PR3値検出回路200は、例えば図4に 示すような構成のものとすることができる。 図5はその 動作説明のためのタイミングチャートである。図の場合 には、NR Zデータ (図5A) がプリエンコードされて NRZIデータ(図5B)として記録されており、符号 間干渉のため、その再生RF信号SRFは図5Cのよう になっている。

【0047】すなわち、符号間干渉の増加により、再生 RF信号SRFは、図5Cに示すように、"1"が連続 するときは、"1"が単独のときのピーク値P1より大 きいピーク値がP2(P2>P1)になる。そして、こ のようにピーク値がP2になると、次の"0"の信号に 対してボトム値がB2になり、"1"が連続せず、単独 のときのボトム値B1より高いレベルとなってしまう。 【0048】この再生RF信号SRFは、図4に示すよ うに、回路200の入力端201を通じて比較回路20 2及び203に供給される。そして、信号SRFは、比 較回路202において、ピーク値P2とボトム値B2の ほぼ中央値とされた第1のスレッショールドレベル th B(図5C参照)と比較され、また、比較回路203に おいて、ピーク値P1とボトム値B1のほぼ中央値とさ れた第2のスレッショールドレベルthC (図5C参 照)と比較される。そして、両比較回路202及び20 3の出力CB (図5D) 及びCC (図5E) は、ノアゲ ート204に供給されて、これより両者の論理和出力N or (図5F) が得られる。

【0049】このノアゲート204の出力NorはDフ リップフロップ回路205に供給される。このDフリッ プフロップ回路205からは、入力端206を通じてこ のDフリップフロップ回路205に供給されている同期 クロックCLK1 (図5G) に同期した出力D4 (図5 H) が得られる。このDフリップフロップ回路205の 出力D4は、Dフリップフロップ回路207に供給され て、クロックCLK1により1クロック分遅延された出 検出し、このイコライザ係数を再生イコライザ回路 4.1 50 カD 5 (図 5.1) とされる。そして、このDフリップフ

ロップ回路207の出力がDフリップフロップ回路20 8に供給される。このDフリップフロップ回路208に は、クロックCLK1がインバータ209により反転さ れたクロックCLK2(図5 J)が供給されており、こ のDフリップフロップ回路208からは、このクロック CLK2に同期した出力D6が得られ、出力端210に 導出される。出力D6は、図5Kから明らかなように、 元のNRZデータの検出出力となっている。

【0050】次に、記録時にプリエンコードを行うか否 タイミング及び再生時に検出回路100と200とのど ちらを使用するかを選択するスイッチ回路43の切換状 態及び切り換えタイミングは、ディスク1のコントロー ルトラックに記録されたテーブルTBの情報に基づい て、実際の記録または再生に先立って決定される。

【0051】すなわち、図3において、30はスイッチ 回路22に供給する切換信号を形成する回路で、この例 では、コントロールトラック読み込み回路31と、例え ばマイクロコンピュータを備える切換決定回路32とを 備える。

【0052】そして、記録または再生に先立ち、例えば システム起動時に、ディスクの最内周のコントロールト ラックのデータの読み込みを行う。回路30のコントロ ールトラック読み込み回路31は、このとき、ヘッドア ンプ11よりの再生RF信号から、コントロールトラッ クデータを得て、それをデコードする。そして、そのデ コードしたコントロールトラックデータを切換決定回路 32に供給する。

【0053】切換決定回路32は、コントロールトラッ クのデータからテーブルTBの情報を抽出すると共に、 光磁気ディスク 1 の線記録密度 (CAV駆動のディスク では内周から外周にゆくにしたがって線記録密度は低く なっている)を検知する。そして、この線配録密度の情 報と、自己の装置の光学ヘッドのレーザ波長えとレンズ 開口数NA (これらは既知である) とから、テーブルT Bを参照して、再生時に使用すべき推奨の信号検出方式 を検知し、再生時のスイッチ回路43の切り換え状態や 切り換えタイミングを決定する。また、記録時には、そ の検知した信号検出方式に応じて、プリエンコードをす るか否かを決定し、記録時のスイッチ回路22の切り換 40 え状態や切り換えタイミングを決定する。

【0054】この場合において、再生時にディスク全体 について1種の信号検出方式のみを使用するようにする 場合には、ディスク全体に対してプリエンコードをする かしないかの決定をするようにする。しかし、CAV駅 動方式のディスク装置の場合には、前述したように、デ ィスクの半径方向の位置により線記録密度が異なるの で、ディスクの所定の半径方向の再生位置で信号検出回 路を切り換えた方がよい場合もある。その場合には、プ リエンコードをする記録トラック領域と、プリエンコー 50 クのコントロールトラックのテーブル情報を読み込み、

ドをしない記録トラック領域の切り換え位置(切り換え タイミング) もその都度決定されるものである。

【0055】そして、記録時には、以上のようにして予 め切換決定回路33で決定され、形成された切換信号に よりスイッチ回路22が切り換えられる。すなわち、シ ステムの性能が信号再生時に符号間干渉を排除できるレ ベルのときには、また、CAV駆動のディスクにおい て、符号間干渉を排除できるエリアにおいては、スイッ チ回路22は端子A側に切り換えられ、記録データはプ かを決定するスイッチ回路22の切換状態及び切り換え 10 リエンコードなしで記録される。また、システムの性能 が信号再生時に符号間干渉を利用した方がよいレベルの ときには、また、CAV駆動のディスクにおいて、符号 間干渉を利用した方が有利であるエリアにおいては、ス イッチ回路22は端子B側に切り換えられ、変調回路2 1からの記録データはプリエンコード回路23でプリエ ンコードされて記録される。

> 【0056】なお、上述の例は、記録時にプリエンコー ドを行うか否かを選択決定する例であるが、プリエンコ ードの前の変調方式自体を複数通り使用できるようにし 20 ておいて、その変調方式自体を選択決定するようにする こともできる。

> 【0057】また、再生に際しては、同様にして、上記 のように実際の再生に先立ち予め切換決定回路33で決 定され、形成された切換信号によりスイッチ回路43が 切り換えられる。すなわち、システムの性能が信号再生 時に符号間干渉を排除できるレベルのときには、また、 CAV駆動のディスクにおいて、符号間干渉を排除でき るエリアにおいては、スイッチ回路43は端子A側に切 り換えられ、NRZ2値検出回路100が選択されて、 30 信号検出がなされる。また、システムの性能が信号再生 時に符号間干渉を利用した方がよいレベルのときには、 また、CAV駆動のディスクにおいて、符号間干渉を利 用した方が有利であるエリアにおいては、スイッチ回路 43は端子B側に切り換えられ、PR3値検出回路20 0が選択されて信号検出がなされる。

【0058】したがって、この装置で記録されたディス クの再生の際には、記録時にプリエンコードされたディ スクあるいは記録エリアの記録データの再生では、PR 3値検出回路200が選択され、記録時にプリエンコー ドが行われなかったディスクあるいは記録エリアの記録 データの再生では、NRZ2値検出回路100が選択さ れる。すなわち、記録時のプリエンコードと、再生時の 信号検出方式とは、信号検出精度が最良になるような組 み合わせで、選択されるものである。

【0059】以上のようにして、ディスクのコントロー ルトラックに、ディスクの性能及び記録再生装置のデバ イスの性能に対する最適な記録方式及び再生方式との対 応テーブルを記録しておくことによって、記録または再 生に先立って(例えばシステム起動時に)、このディス

11

このテーブルに基づいて当該システムで使用する記録方 式及び/再生方式を選定することができるので、システ ムとして最適の信号記録再生を行なうことができる。

【0060】この場合に、システムは、使用する記録媒 体の性能と、記録再生装置のデバイスの性能を勘案し て、システムとして最高の性能を発揮できる記録再生態 様を決定することになるので、記録媒体や記録再生装置 のデバイスの性能向上にも対応して最適の記録再生を行 うことができる。

【0061】なお、前記の切り換えの決定情報、すなわ 10 ち、記録時にプリエンコードをするか否かの選択情報 (再生時にはNR22値検出方式とPR3値検出方式の

いずれを使用するかの選択情報となる)あるいはディス ク上のどの範囲でプリエンコードが行われるかの情報

(再生の際には、どの範囲がNRZ2値検出で、どの範 囲がPR3値検出かの情報となる)を、コントロールト ラックに書き込んでおくようにしてもよい。その場合に は、その後は、同じ記録再生装置で記録再生を行うので あれば、このコントロールトラックに記録された前記決 定情報を用いてスイッチ回路22及びスイッチ回路43 20 の切換信号を形成することができ、上述したようなテー ブルTBを用いた判定動作は不要となる。なお、記録再 生装置が変われば、再設定が必要となるのは、もちろん である。このため、コントロールトラックに記録された 前記決定情報が、当該記録再生装置のものであるか否か を識別するために、前記情報には記録再生装置の識別信 号を合わせて記録しておくとよい。

【0062】 [他の例] 以上の例では、テーブルTB は、線記録密度Dとパラメータ A/NAとの各組み合わ せに対する2種の信号検出方式の対応を示したものであ 30 ージンの関係を示す特性図である。 るが、CAV駆動のディスクシステムの場合であれば、 各パラメータル/NAに対して、どのトラックからNR 22値検出で、それより内側はPR3値検出であるとい う選択信号との対応テーブルを、コントロールトラック に記録するようにしても良い。

【0063】光磁気ディスクの場合、前述もしたよう に、ディスクには予めアドレスデータ等がプリピットと いう形でプリフォーマットされている。そこで、このプ リピットとして記録されているアドレスデータを、記録 に先立ち再生し、その再生信号から記録密度を予め知っ 40 ておくようにすることもできる。

【0064】また、この発明は、上述したようなCAV 駆動方式のディスクシステムに限らず、CLV(線速度 一定)駆動方式のディスクシステムにも適用可能であ

【0065】また、再生時の信号検出方式は、NRZ2 値検出方式、PR3値検出方式に限らず、他の検出方式 も採用可能であり、3種以上の信号検出回路を再生時に 選択して使用するようにすることもできる。また、記録 時の変調方式も複数種用意し、再生時の信号検出方式で 50 100 NRZ2値検出回路

12

最適の信号再生ができるように、それらを切り換え選択 するようにしてももちろんよい。

【0066】なお、この発明は、光磁気ディスクのみで なく、磁気ディスクにも適用可能であり、さらに、記録 媒体としてはディスク記録媒体のみに限らない。

[0067]

【発明の効果】以上説明したように、この発明によれ ば、記録媒体と再生装置の能力により規定されるシステ ム全体としての能力に応じた変調方式及び再生方式を、

記録媒体に記録されたテーブルから決定して選択するこ とができ、システムとして最適な記録再生をすることが できる。

【0068】このため、記録媒体やデバイスがグレード アップしたときにも、それに応じた最適の記録再生がで きるようになる。

【図面の簡単な説明】

【図1】この発明による記録媒体に記録するテーブルの --例を示す図である。

【図2】この発明の対象となるディスク装置の全体の概 要を示すブロック図である。

【図3】この発明による記録媒体を記録再生するディス ク装置の要部の一実施例のブロック図である。

【図4】 PR3値検出回路の一実施例のブロック図であ

【図5】図4のPR3値検出回路の動作説明のためのタ イミングチャートである。

【図6】記録密度に応じて発生する符号間干渉を説明す 、るための図である。

【図7】 記録密度に対する2種の信号検出方式の位相マ

【図8】記録密度に応じた再生RF信号のアイパターン を示す図である。

【図9】PR3値検出方式に有利なようにプリエンコー ドする回路の一例のプロック図である。

【図10】ディスク装置の再生能力を示す特性図であ る。

【符号の説明】

- 1 光磁気ディスク
- 2 スピンドルモータ
- 3 光学ヘッド
- 6 磁気ヘッド
- 15 磁気ヘッド駆動回路
- 2 1 変調回路
- 22 スイッチ回路
- 23 プリエンコード回路
- 30 切換信号の形成回路
- コントロールトラック読み込み回路 3 1
- 3 2 切換決定回路
- 43 スイッチ回路

200 PR (パーシャルレスポンス) 3値検出回路

[図1]

D (銀記録 宏度)	0. 5	0. 55	0. 6	0. 65	0. 7
1. 2	PR	PR	PR	PR	PR
1	PR	PR	PR	NR2	NRZ
0. 8	PR	NRZ	NRZ	NRZ	NRZ
			TB	·	

[図4]

【図5】

110010110001100

S1 DL

【図9】

B (NRZI)

【図6】

[図10]

[図3]

【図7】

[図8]

【手続補正書】

【提出日】平成4年6月3日

【手続補正1】

【補正対象勘類名】明細書

【補正対象項目名】0059

【補正方法】変更

【補正内容】

【0059】以上のようにして、ディスクのコントロールトラックに、ディスクの性能及び記録再生装置のデバイスの性能に対する最適な記録方式及び再生方式との対応テーブルを記録しておくことによって、記録または再生に先立って(例えばシステム起動時に)、このディスクのコントロールトラックのテーブル情報を読み込み、このテーブルに基づいて当該システムで使用する記録方式及び再生方式を選定することができるので、システムとして最適の信号記録再生を行なうことができる。

【手統補正2】

【補正対象審類名】図面

【補正対象項目名】図8

【補正方法】変更

【補正内容】

[図8]

