R/mpMap Workshop

Part 4: Advanced Topics

Emma Huang TAMU, 3 Sep. 2015

CHOOSE YOUR OWN ADVENTURE

CHOOSE FROM HUNDREDS OF POSSIBLE ENDINGS!

SOFTWARE PROJECT SUCCESS OR FAILURE

You have the power...

Plan

10:30-11:30

- Part 4: Advanced Topics (45 min)
 - Imputation
 - Selective phenotyping
 - Simulation/Recombination
 - Visualization
- Exercises (10 min)
- · Questions (5 min)

Imputation of Missing Data

Missing Data

- Causes
 - GBS alignment
 - Quality
 - SNP hets not called
 - Different platforms

Typical Approaches

Software	Release Date	Author	Institu
(fast)PHASE	2001/2006	Stephens	Chica
MACH	2007	Abecasis	Michig
BEAGLE	2007	Browning	Washin
Alphalmpute	2011	Hickey	Rosli
IMPUTE(2)	2009/2012	Marchini	Oxfor
SHAPEIT(2)	2011/2013	Delaneau	CNAI

High-density reference panel

High-density reference panel

Phasing

Low-density targets

- HMM
- Pedigree

Probabilities

- Phases
- Imputation

Good performance

Spacing (/cM)	N	%MISS	%B	%M	%K
1	200	30	93.7	96.3	79.8
1	200	40	93.0	95.5	78.8
1	200	50	92.0	94.8	77.5
1	400	30	94.3	96.3	80.3
1	400	40	93.8	95.5	79.4
1	400	50	92.6	94.8	78.2
2	200	30	96.7	98.3	83.5
2	200	40	96.3	98.0	82.3
2	200	50	95.4	97.6	80.8
2	400	30	97.0	98.3	84.1
2	400	40	96.5	98.0	83.1
2	400	50	96.0	97.6	81.8

But what if the reference panel is incomplete?

Simplest solution: get more data

- Higher coverage
- Different platform
- More replicates
- •
- But sometimes that's not possible

Impute using all data

Prog

Impu

Simulation results

Spacing (/cM)	N	%MISS	%F0	%FC	%FK
1	200	30	46.9	100	86.6
1	200	40	24.5	100	85.4
1	200	50	9.8	99.6	83.9
1	400	30	47.3	100	88.4
1	400	40	24.9	100	87.4
1	400	50	10.1	100	86.2
2	200	30	47.1	100	90.7
2	200	40	24.8	100	89.5
2	200	50	10.0	100	87.8
2	400	30	47.1	100	92.1
2	400	40	24.9	100	91.3
2	400	50	10.0	100	90.1

Dataset simulated with missing data

```
load('MissingData.RData')
  table(apply(missdat$founders, 2, function(x) sum(is.na(x)))

##
## 0 1 2 3 4 5
## 15 29 31 19 5 2

nmiss <- apply(missdat$finals, 1, function(x) sum(is.na(x))</pre>
```

50% missing for all lines; 25% missing per founder

hist(nmiss, breaks=20, col="tomato")

Histogram of nmiss

Implementation of imputation

- mpimpute
 - options for founders, finals, or both
 - relies on founder probability calculation

```
impdat <- mpimpute(missdat)</pre>
```

```
## [1] "No chromosomes specified, will default to all"
## Using map groupings for groups. Remove map object if you
## --Read the following data:
## 200 individuals
## 101 markers
## 2 phenotypes
```

How much could we impute?

```
table(apply(impdat$founders, 2, function(x) sum(!is.na(x))

##
## 8
## 101

nmissi <- apply(impdat$finals, 1, function(x) sum(is.na(x) sum(nmissi>0)
```

[1] 0

How accurate was the imputation?

```
sum(is.na(impdat$founders))
## [1] 0
  sum(impdat$founders!=dat$founders)
## [1] 0
  sum(is.na(impdat$finals))/prod(dim(impdat$finals))
## [1] 0
  sum(impdat$finals!=dat$finals, na.rm=T)/sum(is.na(missdat$
## [1] 0.08916084
```

In practice

- May want to test on your known data
 - Mask out some percentage, try imputation and estimate accuracy
- Affected by
 - marker density/spacing
 - sample size
 - type of genotyping platform
 - level of heterozygosity, etc.

Selective Phenotyping

Costs

- Phenotyping has overtaken genotyping in cost
 - done many times
 - at multiple scales
 - in multiple environments
 - for multiple traits
 - ...
- So how do we best select a sample for phenotyping from a large set of genotyped individuals?

Goal

- A selection method which
 - is general, flexible and robust
 - best captures the genetic information of the population
 - maximized diversity, avoids genetic duplication
- Previous options (Jin et al. 2004, Jannink 2005) focused on specific designs, could not handle missing data

SPCLUST

- Step 1: Compute pairwise distances between all individuals
- Step 2: Cluster distances into k groups
- Step 3: Select representative from each cluster

2-stage SPCLUST

- Multiple stages of selection to refine QTL position
- Genomewide -> candidate gene level
- · Selected lines will
 - have higher genetic diversity, so
 - are more likely to have recombination
 - and better resolve QTL location

2-stages

Stage 1: Selection of lines based on full genome

Detection of broad QTL regions

Stage 2 Selection of line on QTL reg genotype

Refine QTL po

QTL Support intervals

Implementation

- R package spclust
- Functions to
 - compute distance (spdist)
 - select lines (spclust, single- or multi-stage)
 - visualize (plot.spclust)

Example

```
library(spclust)
load('SimulatedSP.RData')
selLines <- spclust(dat, nlines=20, method="average")

## [1] "No chromosomes specified, will default to all"
## Using map groupings for groups. Remove map object if you
## --Read the following data:
## 200 individuals
## 255 markers
## 2 phenotypes
## No required lines input; will only select a single-stage</pre>
```

Plot of output

plot(selLines, type=2)

Cluster Dendrogram

distmat hclust (*, "average")

Simulation

What have we seen so far?

- General MAGIC simulation
 - varying map
 - varying pedigree
 - varying QTL
- Missing data

What can you do with this?

- Assess imputation quality in your data
- Compare different designs
 - number of generations of advanced intercrossing
 - DH vs. RIL
 - MAGIC vs. NAM
- Test power for different approaches
- Generate empirical significance thresholds
- Estimate power for your map/data/founders
- See how theory compares to reality

Comparison of designs

- Generate different pedigrees
- Generate data from them
- Compare number of recombinations, size of haplotype blocks

```
ped4 <- sim.mpped(4, 3, 200) # MAGIC4RIL

ped8 <- sim.mpped(8, 30, 200) # MAGIC8RIL, 30 funnels

ped8ai2 <- sim.mpped(8, 1, 200, iripgen=2) # MAGIC8AI2RIL

ped26nam <- generateNAMpedigree(26, 100) #NAMRIL</pre>
```

Whole genome data

- AlphaMPSim (Hickey et al. 2014)
- Written in Fortran/R
- Faster and more memory efficient than using sim.mpcross
- For very large-scale simulations (>30K markers)

Estimation of power

- Need to set up larger scale scripts
- Generate multiple datasets
 - Could keep observed founder genotypes, map, new progeny
 - Could keep observed progeny genotypes as well new phenotype
 - Depends on how generalizable results need to be
- Analyze each dataset as you would observed data
- How often are QTL of different sizes detected?
- See Kover et al. (2009) for more details on procedure

Recombination

Counting recombination events

```
load('datfinalPart2.RData')
## Based just on highest probability allele
nrecEst <- lapply(mppEst$estfnd, function(x)
    apply(x, 1, function(y) return(sum(diff(y[!is.na(y)])!=0))
mean(rowSums(do.call("cbind", nrecEst)))

## [1] 12.44

## Errors in the map can cause additional recombination even
load('Part2.RData')
nrecTrue <- lapply(mppTrue$estfnd, function(x)
    apply(x, 1, function(y) return(sum(diff(y[!is.na(y)])!=0)))
mean(rowSums(do.call("cbind", nrecTrue)))</pre>
```

[1] 11.954

Alternate method of counting

```
## Based on forward-backward algorithm with penalty
source('nrec.R')
mean(nrec(mppEst, penalty=0)$totrec)

## [1] 13.797

mean(nrec(mppEst, penalty=1)$totrec)

## [1] 12.055

mean(nrec(mppEst, penalty=2)$totrec)

## [1] 10.941
```

Simulation of recombination events

Counting per chromosome

```
nr <- nrec(mppEst, penalty=1)
boxplot(do.call("cbind", nr$nrec), col="tomato")</pre>
```


QTL mapping with recombination events

```
mppEst$pheno$nrec <- nrec(mppEst, penalty=1)$totrec
mprec <- mpIM(object=mppEst, responsename="nrec", ncov=0)
## No QTL found - but possible in real data</pre>
```

Visualization

Additional libraries

- ggplot2
- lattice
- RCircos
- Heatplus
- LDheatmap

•

mpMap/Interactive

- Works on OS/X and Windows
- · Uses:
 - Grouping markers, combining groups
 - Removing markers
 - Flipping blocks of markers
 - Re-ordering chunks of markers
- Note: currently only works for mpcross objects, but could relatively easily be extended to more general crosses

Plot functions for most objects

- plot.mpcross
 - Linkage map
 - Histogram of phenotype(s)
 - RF/LOD heatmap
- · plot.mpprob
 - Percent of chromosome inherited from each founder
 - Haplotype mosaics for each chromosome
 - Founder inheritance across genome
- plot.mpqtl
 - QTL profile
 - Support interval

plot.mpcross

```
load('datfinalPart2.RData')
plot(datfinal)
```


plot.mpprob

```
mpp <- mpprob(datfinal, program="qtl")
plot(mpp)</pre>
```


plot.mpprob (cont'd)

Comparisons of maps - validation

- mapcomp function
 - subsets down to common markers/chromosomes
 - compares positions of markers with the same names
 - identifies markers with conflicting chromosomes
- summary.mapcomp
 - summarizes number of markers in each map and in common
 - identifies duplicated markers in each map
 - correlations between chromosomes in each map
- plot.mapcomp
 - scatterplot of markers positions for the two maps

mapcomp

```
load('Part2.RData')
mc <- mapcomp(dat, datfinal)
summary(mc)

## Number of markers in map1 is 505

## Number of markers in map2 is 505

## Number of common markers is 505

## Number of duplicated markers in map1 is 0

## Number of duplicated markers in map2 is 0

## Number of markers with differing chromosomes between maps

## Correlations between chromosomes are:

## 0.999142 0.991306 -0.999554 -0.9988986 0.9987963
```

plot.mapcomp

plot(mc)

Interactions

Circle plot code

```
library(RCircos)
source('CircularIntx.R')
pmatrix <- matrix(runif(505*505, 0, 1), nrow=505)
plotCircIntx(pmatrix, threshold=1e-4, map=datfinal$map, file</pre>
```


Exercises

Imputation

Selective Phenotyping

Simulation

Very basic simulation - generate 10 datasets each from 4-parent and 8-parent with these parameters - same map, 5 chromosomes, 51 markers per chromosome, 100 cM, evenly spaced - QTL + Chr 1, 47 cM, size=.5 + Chr 2, 13 cM, size=.3 + Chr 3, 81 cM, size=.1 - How often is each QTL detected?

Recombination

For one of the 4-parent and 8-parent datasets generated for the simulation, what's the average number of recombinations?

Plot a histogram of the recombinations for each dataset.

Visualization

References (1/2)

Jin et al. 2004, Selective phenotyping for increased efficiency in genetic mapping studies. Genetics 168:2285-2293. doi: 10.1534/genetics.104.027524

Jannink 2005, Selective phenotyping to accurately map quantitative trait loci. Crop Science 45:901-908. doi: 10.2135/cropsci2004.0278

Hickey et al. 2014, AlphaMPSIM: flexible simulation of multi-parent crosses. Bioinformatics 30:2686-2688. doi: 10.1093/bioinformatics/btu206

Huang et al. 2013, Selecting subsets of genotyped experimental populations for phenotyping to maximize genetic diversity. TAG 126: 379-388. doi: 10.1007/s00122-012-1986-4

References (2/2)

Huang et al. 2014, Efficient imputation of missing markers in low-coverage genotyping-by-sequencing data from multiparental crosses. Genetics 197:401-404. doi: 10.1534/genetics.113.158014

Kover et al. 2009, A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genetics doi: 10.1371/journal.pgen.1000551

Questions

Contact me:

b.emma.huang@gmail.com

github.com/behuang/mpMap for updates

The End!