

ITM618 Final Course Project

Paul Nguyen, Faraz Ali, Aidan Ranjitsingh, Nehal Patel

Project Objective

- Determine if a client would subscribe to a term deposit or not by implementing an algorithm on the target class "Subscribed".
- Explored the shape and size of the training dataset.
- Cleaned the values of the training set and used it on the test set.
- Implemented classification models to visualize data.
- Applied classification models to get enhanced results.

Data Exploration

- There were 14 attributes + 1 target attribute (Subscribed):
 - ▶ 5 numeric (age, duration, campaign, pdays, nr.employed).
 - ▶ 6 nominal.
 - E.g., job, marital, education, housing, loan, contact,
 - 3 ordinal
 - E.g., month, day_of_week, poutcome.
- Number of elements present in the dataset was 439,065 items.
- The dimensions of the dataset represented in the form of a tuple was (29271, 15).

Data Cleaning

- Found partial, noisy, and duplicate data in the training set.
- Implemented a df.dropna function on the flawed data:
 - Identified 2,964 unknown values in the train set.
 - ▶ Identified 1,157 unknown values in the test set.
- Dropped rows with errors in:
 - "job"
 - "marital"
 - "education"
 - "housing"
 - "loan"

Learning Method 1

- Implemented KNN model.
 - Helped to predict if most of the target attribute was subscribed or not.
 - ▶ The use of y_predicted and y_real functions helped to detail the number of subscriptions.

```
[ ] y_predicted

array([1, 1, 1, ..., 1, 1, 1])

[ ] y_real = testData['Subscribed'].values
    y_real

array(['yes', 'yes', 'yes', ..., 'no', 'no'], dtype=object)
```


Learning Method 2

- Implemented decision tree.
 - Gave a visualization of how the prediction algorithm worked.
 - It helped to map out all the attributes and visualized the outcome of each attribute.
 - Provided a generalization of whether a client will subscribe or not.

Evaluation

The following are a representation of values comparing the test results to the predicted results using the confusion matrix.

	p	n
Y	282	146
N	158	2990

- Accuracy
 - **91.45%**
- Precision
 - **65.89%**

- Error rate
 - **8.5%**
- Recall
 - **64.1%**

Evaluation

- The accuracy rate of 91.45% indicated the correctness of the test predictions to the test results.
- The error rate of 8.5% is an inverse of the accuracy rate demonstrating the errors the prediction model had compared to the test results.
- The precision rate of 65.89% represents the positivity of the values that were labelled as actually positive.
- The recall rate of 64.1% signifies that the values that were selected as positive were classified as positive.

Discussions

- What did you find about your models?
 - The KNN model was more effective than the decision tree as it generated the same results with less resources.
 - ▶ The decision tree helped to visualize how predictions were made.
 - ▶ The use of a confusion matrix was inefficient with a decision tree.

Conclusion and Future Work

- Summary
 - ▶ Both methods drew similar prediction accuracies. The decision tree gave a visual representation whereas KNN put all the data into a readable array.
- What would you do in future to improve the models?
 - ▶ We would reduce redundancy in the data. Removing this data would allow for a more accurate result based off the actual data.