Solution of DPP #8

TARGET: JEE (ADVANCED) 2015

CHEMISTRY

1. (A) There is irregular trend in the first ionisation enthalpy of the 3d metals.

3.
$$\operatorname{AgNO}_3 \longrightarrow \operatorname{Ag} + \operatorname{NO}_2 + \frac{1}{2} \operatorname{O}_2$$
 ; $\operatorname{Cu(NO}_3)_2 \longrightarrow \operatorname{CuO} + 2\operatorname{NO}_2 + \frac{1}{2} \operatorname{O}_2$

$$\text{Pb} \big(\text{NO}_3 \big)_2 \longrightarrow \text{PbO} + 2 \text{NO}_2 + \frac{1}{2} \text{O}_2 \qquad ; \qquad \quad 2 \text{Al} \big(\text{NO}_3 \big)_2 \longrightarrow \text{Al}_2 \text{O}_3 + 6 \text{NO}_2 + \frac{3}{2} \text{O}_2$$

4.
$$2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$$

5.
$$V_2O_5 + NaOH \longrightarrow 2Na_3VO_4 + 3H_2O$$

6. Pb²⁺ + S²⁻
$$\longrightarrow$$
 PbS \downarrow (black)

$$PbS + HNO_3 \longrightarrow Pb(NO_3)_3 + H_2S \uparrow$$

$$SO_4^{2-} + Pb(NO_3)_2 \longrightarrow PbSO_4 \downarrow \text{ (white precipitate)}$$

7._ PbCl₂ dissolves
$$\xrightarrow{\text{Cooled}}$$
 PbCl₂ white ppt. in hot water $\xrightarrow{\text{NH}_3 \text{ Sol.}}$ [Ag(NH₃)₂]Cl (soluble) dissolve in hot water Clear solution

8.
$$Ni^{2+} + S^{2-} \longrightarrow NiS \downarrow (black)$$

$$NiS + HNO_3 + 3HCI \longrightarrow Ni^{2+} + S \downarrow + NOCI \uparrow + 2CI^- + 2H_2O$$

$$Ni^{2+} + 2 \xrightarrow[CH_3 - C = N - OH]{} \xrightarrow[CH_3 - C = N - OH]{} \xrightarrow[NH_4OH]{} [Ni(dmg)_2] \downarrow (red) + 2H^+$$

- 9. Carbon monoxide is better reducing agent than carbon below 983 K.
- (a) → van Arkel method for Zr Hg
 → Based on volatile nature of halides of methods.

12. (A)
$$Al_2O_3(s) + 3H_2O(\ell) + 2NaOH(aq) \xrightarrow{Leaching} 2Na[Al(OH)_4](aq)$$

$$2Na[Al(OH)_4](aq) + CO_2(g) \longrightarrow Al_2O_3 \cdot xH_2O(s) + 2NaHCO_3(aq)$$

$$Al_2O_3 \cdot xH_2O(s) \xrightarrow{\frac{1470 \text{ K}}{Calcination}} Al_2O_3(s) + xH_2O(g)$$

Electrolytic reduction of molten pure Al_2O_3 mixed with Na_3AlF_6 or CaF_2 Method is known as Hall-Heroult process

Cathode:
$$Al^{3+}$$
 (melt) + $3e^{-} \longrightarrow Al(l)$

Anode:
$$C(s) + O^{2-}(melt) \longrightarrow CO(q) + 2e^{-}$$

$$C(s) + 2O^{2-} (melt) \longrightarrow CO_2(g) + 4e^{-}$$

$$Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S$$

$$Na_2S + 2O_2 \longrightarrow Na_2SO_4$$

Displacement by zinc in aqueous solution:

$$2Na[Ag(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$$

(C) Roasting:

$$2PbS + 3O_2 \xrightarrow{\Delta} 2PbO + 2SO_2$$

Self reduction:

2PbO + PbS
$$\longrightarrow$$
 3Pb + SO₂

(D) Calcination:

$$MgCl_2$$
. $6H_2O \xrightarrow{\Delta(calcination)} MgCl_2 + 6H_2O$

It is not made anhydrous by simple heating because it gets hydrolysed

$$MgCl_2$$
. $6H_2O \xrightarrow{\Delta} MgO + 5H_2O + 2HCI$

Electrolytic reduction:

Electrolytic reduction of molten anhydrous carnallite.

$$MgCl_2 \longrightarrow Mg^{2+} + 2Cl^{-}$$

At cathode: $Mg^{2+} + 2e^{-} \longrightarrow Mg(99\% \text{ pure})$;

At anode : $2CI^- \longrightarrow CI_2 + 2e^-$

- **13.** HgCl₂ due to covalent characters, sufficient chloride ions are not obtained.
- **16.*** (D) Oxidation state of iron in Mohr's salt, FeSO₄.(NH₄)₂SO₄.6H₂O is +2

17.* (A)
$$2Cu^{2+} + 5I^{-} \longrightarrow Cu_{2}I_{2}$$
 (white) $+I_{3}^{-}$; $Pb^{2+} + 2I^{-} \longrightarrow PbI_{2} \downarrow$ (yellow)

(B)
$$Cu^{2+} + 4NH_3 \longrightarrow [Cu(NH_3)_d]^{2+}$$
 (deep blue solution)

$$Pb^{2+} + 2NH_3 + 2H_2O \longrightarrow Pb(OH)_2 \downarrow (white) + 2NH_4 + (Pb^{2+} does not form soluble complex)$$

(C)
$$Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_{2} \downarrow (blue)$$
; $Pb^{2+} + 2OH^{-} \longrightarrow Pb(OH)_{2} \downarrow (white)$

 $Pb(OH)_2 \downarrow + 2OH^- \longrightarrow [Pb(OH)_4]$ soluble complex.

(D)
$$Pb^{2+} + 2Cl^{-} \longrightarrow PbCl_{2} \downarrow$$
 (white); $Cu^{2+} + 2Cl^{-} \longrightarrow CuCl_{2}$ (green solution).

18.* $Na_3[AIF_6] \longrightarrow 3NaF + AIF_3$

NaF and AlF_3 both are ionic compounds and so ionise to give ions. This increases the electrical conductivity and lowers the melting point of Al_2O_3 .

At cathode : Al^{3+} (melt) + $3e^{-} \longrightarrow Al$.

$$\text{At anode:} \quad \text{C(s) + O$^{2-}$ (melt)} \longrightarrow \text{CO (g) + 2e$^-$}; \qquad \text{C(s) + 2O$^{2-}$ (melt)} \longrightarrow \text{CO}_2 \text{ (g) + 4e$^-$}.$$

19.* $ZnCO_3 \xrightarrow{\Delta} ZnO + CO_2 \uparrow$. ZnO is yellow when hot.

(white)

$$Co(NO_3)_2.6H_2O \xrightarrow{\Delta} CoO (black) + 2NO_2\uparrow + \frac{1}{2}O_2\uparrow + 6H_2O\uparrow$$

$$2\text{FeSO}_4.6\text{H}_2\text{O} \xrightarrow{\Delta} \text{Fe}_2\text{O}_3 \text{ (brown)} + \text{SO}_2^{\uparrow} + \text{SO}_3^{\uparrow} + 6\text{H}_2\text{O}^{\uparrow}$$

$$3\mathsf{MnSO_4} \qquad \qquad \longrightarrow \qquad \qquad \mathsf{Mn_3O_4} + 2\mathsf{SO_2} \uparrow + \mathsf{SO_3} \uparrow$$

(faint pink) (black)

- 20.*-Cyanide process used for Au and Ag comlexes formed in this, are: Na[Au(CN)2], Na[Ag(CN)2], Na2[Zn(CN)2].
- 23. Due to common ion effect the concentrations of OH-ions is just sufficient to precipitate the cations of III group as their hydroxides. (As they have low K_{sp} values).
- $NH_4NO_2 \xrightarrow{\Delta} N_2 + 2H_2O$ 30. NO₂- gives brown vapours of NO₂ with dil H₂SO₄
- 31. $2MnO_4^-(Y) + 3Mn^{2+}(Z) + 2H_2O \longrightarrow 5MnO_2 + 4H^+$

This reaction is Vohhard method for estimation of manganese carried out in presence of ZnSO₄ or suspended ZnO which catalyses the oxidation.

- $3 \stackrel{+6}{MnO_4^{2-}} + H^+ \longrightarrow 2 \stackrel{+7}{MnO_4^{-}} + \stackrel{+4}{MnO_2} + 2 H_2 O$ 32.
- $2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O \longrightarrow 2MnO_4^{-} + 10SO_4^{2-} + 16H_2^{+}$ 33. Mn(VII) - [Ar]¹⁸ 3d^o. No unpaired electron so 'spin only' magnetic moment of compound is .
- $Ti^{3+} 3d^1$ (purple); $V^{4+} 3d^1$ (blue); $Cr^{3+} 3d^3$ (Green), $Pb^{2+} (colourless)$; $Fe^{2+} 3d^6$ (green); $Zn^{2+} 3d^{10}$ 34. (colourless); Ni^{2+} – $3d^8$ (green); Sc^{3+} – $3d^0$ (colourless); Hg^{2+} (colourless).
- All except BaCl₂ 35.

36.
$$X = CrO_2Cl_2$$
 "sp³"

37.
$$K_2Cr_2O_7 \xrightarrow{H_2O_2} CrO_5 \xrightarrow{H^+} Cr^{3+} + O_2 \uparrow$$

So the answer is 3.

- ${}^{+2}_{\text{Fe}}\text{S}_{2}, \; {}^{+3}_{\text{Fe}^{2}}\text{O}_{3}, \; \text{Fe}_{3}\text{O}_{4} \left({}^{+2}_{\text{Fe}}\text{O} + \text{Fe}_{2}\text{O}_{3} \right), \; [{}^{+1}_{\text{Fe}}\left(\text{H}_{2}\text{O})_{5}(\text{NO}) \right]^{2+}, \; \text{Na}_{2}[{}^{+2}_{\text{Fe}}\left(\text{CN})_{5}(\text{NO}) \right], \; {}^{+3}_{\text{Fe}}[{}^{+3}_{\text{Fe}}\left(\text{CN})_{6} \right], \; {}^{+3}_{\text{Fe}}\left({}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}\left({}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}\left({}^{+3}_{\text{Fe}}\left(\text{CN}\right)_{6} \right), \; {}^{+3}_{\text{Fe}}$ 38. $K_{2}^{+2} = [E_{\bullet}^{+2} (CN)_{6}], E_{\bullet}^{+2} (C_{5}H_{5})_{2}, E_{\bullet}^{+2} WO_{4}$
- $2I^- + Pb^{2+} \longrightarrow Pbl_2 \downarrow (yellow) + 2K^+$ 39.

$$2NH_3 + 2H_2O + Pb^{2+} \longrightarrow Pb(OH)_2 \downarrow (white) + 2NH_4$$

 $2Pb^{2+} + 2CO_3^{2-} + H_2O \longrightarrow Pb(OH)_2 \downarrow (white) + PbCO_3 \downarrow (white) + CO_2 \uparrow$

 $\begin{array}{l} \mathsf{Pb^{2^{+}}} + \mathsf{CrO_4^{2^{-}}} \longrightarrow \mathsf{PbCrO_4} \downarrow (\mathsf{yellow}) \\ \mathsf{Pb^{2^{+}}} + 2\mathsf{Cl^{-}} \longrightarrow \mathsf{PbCl_2} \downarrow (\mathsf{white}) \end{array}$

 $Pb^{2+} + SO_3^{2-} \longrightarrow PbSO_3 \downarrow \text{ (white)}$

 $Pb^{2+} + S^{2-} \longrightarrow PbS \downarrow (black)$

 $Pb^{2+} + KNO_3 \longrightarrow No \text{ precipitate is formed.}$

Pb(ClO₄)₂ is water soluble.

40.
$$Al_2O_3 + 2NaOH + 2H_2O \xrightarrow{\Delta} 2NaAlO_2 + 3H_2O$$
 ; $Ag_2S + 2CN^- \longrightarrow [Ag(CN)_2]^- + S^{2-1}O$

$$\text{Au} + 2\text{CN}^- + 2\text{H}_2\text{O} + \text{O}_2 \longrightarrow [\text{Au}(\text{CN})_2]^- + 4\text{OH}^- \qquad ; \qquad \text{CuFeS}_2 \longrightarrow \text{No leaching}$$

$$\mathsf{PbS} \longrightarrow \mathsf{No} \ \mathsf{leaching} \ \ ; \ \mathsf{MgCl}_2 \longrightarrow \mathsf{No} \ \mathsf{leaching} \quad \ ; \qquad \ \mathsf{FeCO}_3 \longrightarrow \mathsf{No} \ \mathsf{leaching}$$

$$2Cu_2O(s) + 4H_2SO_4(aq) + O_2(g) \longrightarrow 4CuSO_4(aq) + 4H_2O(\ell)$$
; HgS \longrightarrow No leaching

41. At 500 – 800 K (lower temperature range in the blast furnace)

$$3 \operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2 \operatorname{Fe_3O_4} + \operatorname{CO_2}$$

$$\operatorname{Fe_3O_4} + \operatorname{CO} \longrightarrow 3\operatorname{Fe} + 4 \operatorname{CO_2}$$

$$\operatorname{Fe_2O_3} + \operatorname{CO} \longrightarrow 2\operatorname{FeO} + \operatorname{CO_2}$$

At 900 – 1500 K (higher temperature range in the blast furnace):

$$C + CO_2 \longrightarrow 2 CO$$
; FeO + CO \longrightarrow Fe + CO₂

42. (A)
$$FeSO_4 \longrightarrow Fe_2O_3 + SO_2 + SO_3$$

(B)
$$NH_4NO_3 \longrightarrow N_2O + 2H_2O$$

(C)
$$Ba(N_3)_2 \longrightarrow N_2 + Ba$$

(D)
$$MgCl_2$$
. $6H_2O \longrightarrow MgO + 2HCI + 5H_2O$

43. (A)
$$S_2O_3^{2-} + H^+ \longrightarrow S + SO_2$$

(B)
$$2Cu^{2+} + 4I^{-} \xrightarrow{\Delta} Cu_2I_2 \downarrow + I_2$$

(C)
$$2 \text{ CrO}_4^{2-} + 2 \text{H}^+ \longrightarrow \text{Cr}_2 \text{O}_7^{2-} + \text{H}_2 \text{O}_7^{2-}$$

(D) 2 Mg(NH₄)VO₄
$$\longrightarrow$$
 Mg₂V₂O₇ + 2NH₃ \uparrow + H₂O \uparrow

44. (A)
$$Pb^{2+} + CrO_4^{2-} \longrightarrow PbCrO_4 \downarrow (yellow)$$
; $Pb^{2+} + 2l^- \longrightarrow Pbl_2 (yellow)$

- (B) $Zn^{2+} + 2OH^{-} \longrightarrow Zn(OH)_{2} \downarrow (White)$; $Zn(OH)_{2} \downarrow + 2OH^{-} \longrightarrow [Zn(OH)_{4}]^{2-}$ soluble $Zn^{2+} + 2NH_{3} + 2H_{2}O \longrightarrow Zn(OH)_{2} \downarrow (White) + 2NH_{4}^{+}$
- (C) $Ni^{2+} + 2OH^- \longrightarrow Ni(OH)_2 \downarrow (Green)$; $Ni^{2+} + 2NH_3 + 2H_2O \longrightarrow Ni(OH)_2 \downarrow (Green) + 2NH_4^+$ $Ni^{2+} + 2CN^- \longrightarrow Ni(CN)_2 \downarrow (Green)$
- (D) $Cu^{2+} + 2OH^{-} \longrightarrow Cu(OH)_{2} \downarrow \text{ (blue)}$ $Cu^{2+} + 2NH_{3} + 2H_{2}O \longrightarrow Cu(OH)_{2} \downarrow \text{ (blue)} + 2NH_{4}^{-}$