修士論文

ボランティアコンピューティングによるクラウドゲーミングシステム

前田 健登

2021年1月25日

奈良先端科学技術大学院大学 先端科学技術研究科 情報科学領域

本論文は奈良先端科学技術大学院大学先端科学技術研究科情報科学領域に 修士(工学)授与の要件として提出した修士論文である。

前田 健登

審査委員:

飯田 元 教授 (主指導教員)

藤川 和利 教授 (副指導教員)

市川 昊平 准教授 (副指導教員)

髙橋 慧智 助教 (副指導教員)

ボランティアコンピューティングによるクラウドゲーミングシステ ム*

前田 健登

内容梗概

人類がこの地上に現われて以来、πの計算には多くの関心が払われてきた。

本論文では、太陽と月を利用してπを低速に計算するための画期的なアルゴリズムを与える。

ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。

ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。ここには内容梗概を書く。

キーワード

ネットワーク, クラウド, クラウドゲーミング, ボランティアコンピューティング

^{*} 奈良先端科学技術大学院大学 先端科学技術研究科 情報科学領域 修士論文, 2021 年 1 月 25 日.

Cloud Gaming System by Volunteer Computing*

Kento Maeda

Abstract

The calculation of π has been paid much attention since human beings appeared on the earth. This thesis presents novel low-speed algorithms to calculate π utilizing the sun and the moon. This is a sample abstract. This is a sample abstract.

This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract. This is a sample abstract.

abstract. This is a sample abstract. This is a sample abstract.

Keywords:

network, cloud, cloud gaming, volunteer computing

^{*} Master's Thesis, Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, January 25, 2021.

目次

参考文献

1.	はじめに	1
2.	背景	1
2.1	クラウドゲーミング	1
2.2	ボランティアコンピューティング	1
3.	設計	1
3.1	提案システムの概要	1
3.2	VC コントローラ	1
3.3	VC クライアントエージェント	1
3.4	VC ホストエージェント	1
3.5	クラウドゲームサーバ/クライアント	1
4.	実装	1
4.1	実装上の課題	1
4.2	VC コントローラとエージェントの連携	1
4.3	クラウドゲームサーバ・クライアント間の P2P 通信	1
4.4	システム動作	1
5.	評価	1
5.1	評価環境	1
5.2	クラウドゲームサーバ・クライアント間の通信性能	1
5.3	ゲームプレイ時のフレームレート	1
6.	まとめと今後の課題	2
謝辞		3

4

図目次

1	EdgeVPN リンクに対する遅延挿入の影響	2
2	EdgeVPN リンクへの遅延挿入の帯域への影響	3
3	EdgeVPN を使用していないリンクへの遅延挿入の帯域への影響	3
4	帯域制限下でのゲームプレイ時のフレームレートの変化 (Albion Online	
	(MMORPG) プレイ時)	4
5	帯域制限下でのゲームプレイ時のフレームレートの変化 (Red Ecliplse 2 (FPS,	
	Action) プレイ時)	5
6	帯域制限下でのゲームプレイ時のフレームレートの変化 (Simply Chess (ボード	
	ゲーム) プレイ時)	6

表目次

1. はじめに

従来のゲームプレイは、プレイヤーがゲームハードやゲーミング PC を所有し、その上でゲームを動作させることによって実現されている。クラウドゲーミングは、クラウドサーバ上でゲームを動作させてその画面をクライアントであるプレイヤーの端末にストリーミングすることで、ゲームをネットワーク越しにプレイすることを可能にするサービスである。プレイヤーの使用する端末は、クラウドサーバより送信されるゲーム画面の再生とプレイヤーの操作のサーバへの送信だけを行う。この仕組みによって、スマートフォンやタブレットなどの性能が貧弱なデバイスでも高価なゲームハードやゲーミング PC でプレイするのと同様の高品質なゲーム体験を得られることが期待できる。(この辺の出典どうしよう)

商用のクラウドゲーミングサービスも展開されており、Google の Google Stadia、SONY の PlayStation NOW、NVIDIA の GeForce NOW などがある。(もうちょっと膨らませたい気が する)

(この辺で Gaming Anywhere の話とかする?)

(クラウドゲーミングは遅延が課題ですという話を論文引用しながら書く)(サーベイ論文使ったらもっといろんな課題の話できるな) クラウドゲーミングの課題はユーザ目線で高品質な画質の担保、十分なネットワーク帯域幅の確保、伝送データ圧縮・ストリーミング技術、画面表示や操作の遅延の最小化など。プロバイダ目線でゲーム環境の仮想化、サーバにおける負荷分散

(ボランティアコンピューティングの話は BOINC の引用でいいかな)

(研究目的を書く) クラウドのデータセンターの配置次第で著しく遅延が大きい環境でプレイする プレイヤーが存在する可能性あり。ボランティアが提供する地理的に近傍の遊休コンピュータのリ ソースを利用するクラウドゲーミングフレームワークを提案。プレイヤーから見て近傍の遊休コン ピュータ上でクラウドゲームサーバを動作させる。ネットワーク遅延削減によりプレイヤーが体験 する遅延を減少させる

??節では、過去における研究について述べ、6章では、現状と今後の課題について述べる。また、付録??におまけその1を添付する。

過去における研究としては [1] などがある。

2. 背景

2.1 クラウドゲーミング

Gaming Anywhere: An Open Cloud Gaming System

Placing Virtual Machines to Optimize Cloud Gaming Experience

2.2 ボランティアコンピューティング

High-Performance Task Distribution for Volunteer Computing (EdgeVPN(TinCan) の話は実装の章で)

3. 設計

3.1 提案システムの概要

プレイヤーの PC から最も近い利用可能な遊休コンピュータを探し、クラウドゲームサーバをホストさせるシステム

(図) プレイヤー PC 上の VC クライアントエージェントがクラウド上の VC コントローラにゲームプレイをリクエスト。 VC コントローラが遊休コンピュータに VC ホストエージェントにクラウドゲームのホスティングをリクエスト。遊休コンピュータでクラウドゲームサーバとゲームが起動し、プレイヤー PC 上のクラウドゲームクライアントと通信してゲームをする。

- 3.2 VC コントローラ
- 3.3 VC クライアントエージェント
- 3.4 VC ホストエージェント
- 3.5 クラウドゲームサーバ/クライアント

4. 実装

4.1 実装上の課題

通常ユーザーコンピュータは NAT/FW の背後にあるため、直接通信ができない 1. クラウドから 遊休コンピュータへ直接命令を送れない 2. 遊休コンピュータ・プレイヤー PC 間で双方向的な直接 通信ができない

4.2 VC コントローラとエージェントの連携

gRPC Response Streaming Google が開発しているオープンソースの RPC. 異なるコンピュータで動作するサービス間で情報をやりとりするのに使われる。単一のリクエストに対して複数のレスポンスを返すことができるので、VC ホストの完了報告などを受け取れる。

4.3 クラウドゲームサーバ・クライアント間の P2P 通信

GamingAnywhere クラウドゲームサーバとクラウドゲームクライアントとして GamingAnywhere を使用する

EdgeVPN P2P 型のオーバーレイネットワークツール。ネットワークのユーザ/グループ管理が可能。TinCan の論文引用して紹介する。

VM で EdgeVPN のパフォーマンス測った話もこの辺に入れる?

4.4 システム動作

5. 評価

5.1 評価環境

評価の目的・手法・実験環境

5.2 クラウドゲームサーバ・クライアント間の通信性能

tc を使って任意に遅延を挿入し、ping の値で遅延の増え方に影響がないか見る。遅延が増えたときの遅延の増え方が線形みたいなことを言う。遅延が増えたときの帯域の減り方の話をする。

tc を使って任意に遅延を挿入し、iperf で帯域の減り方への影響を見る遅延が増えたときの帯域の減り方の話をする。

5.3 ゲームプレイ時のフレームレート

tc を使って帯域に制限をかけて、実際に複数のゲームをプレイしたときのフレームレートへの影響を見る。使用したゲームは Steam で公開されている Albion Online(MMORPG)、Red Eclipse 2(FPS, Action)、Simply Chess(Board Game)

図1 EdgeVPN リンクに対する遅延挿入の影響

6. まとめと今後の課題

今後、ボランティアクラウドゲームコントローラの実装。遊休コンピュータ、プレイヤー PC の数を増やしての動作での負荷試験。

図 2 EdgeVPN リンクへの遅延挿入の帯域への影響

図3 EdgeVPN を使用していないリンクへの遅延挿入の帯域への影響

謝辞

図 4 帯域制限下でのゲームプレイ時のフレームレートの変化 (Albion Online (MMORPG) プレイ時)

参考文献

[1] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in Neural Information Processing Systems* 25(NIPS'12), pages 1097–1105, 2012.

図 5 帯域制限下でのゲームプレイ時のフレームレートの変化 (Red Ecliplse 2 (FPS, Action) プレイ時)

図 6 帯域制限下でのゲームプレイ時のフレームレートの変化 (Simply Chess (ボードゲーム) プレイ時)