1 Definitions

Chapter 5

5.1

A linear operator T on a finite dimensional vector space V is called *diagonalizable* if there exists an ordered basis β of V such that $[T]_{\beta}$ is diagonal. A square matrix A is called diagonalizable if L_A is diagonalizable.

Given a linear operator T on a vector space V, an eigenvector is a non-zero vector x such that $T(x) = \lambda x$, for some $\lambda \in F$. This λ is called the eigenvalue corresponding to eigenvector x.

For a square matrix A, the characteristic polynomial of A is the polynomial $f(t) = \det(A - tI)$. The characteristic polynomial of a linear operator T is the polynomial $f(t) = \det([T]_{\beta} - tI)$, for any basis β of V.

5.2

A polynomail f(t) splits over a field F if it can be expressed as a product of linear terms. That is, $f(t) = \prod_i (\lambda_i - t)$ for $\lambda_i \in F$.

The algebraic multiplicity of a root λ of a polynomial f(t) is the greatest m such that $(t - \lambda)^m$ divides f(t).

The eigenspace of an eigenvalue λ for a linear operator $T:V\to V$ is the subspace $E_{\lambda}=\{x:T(x)=\lambda x\}.$

The geometric multiplicity of an eigenvalue λ is the dimension of E_{λ} .

Given a vector space V and an arbitrary family of subspaces $(W_{\alpha})_{\alpha \in A}$, the sum of subspaces, denoted by $\sum_{\alpha \in A} W_{\alpha}$ is the set of vectors $\{\sum_{\alpha \in A} x_{\alpha} : x_{\alpha} \in W_{\alpha}\}$.

The sum $\sum_{\alpha \in A} W_{\alpha}$ is called *direct* if it decomposes the vector space V uniquely. Explicitly, for an arbitrary $x \in V$, if $x = \sum_{\alpha \in A} \zeta_{\alpha} w_{\alpha}$, then the scalars ζ_{α} are unique.

5.3

For a linear operator T on a vector space V, a subsapce W is called T-invariant if T(W) = W. In other words, $x \in W \Rightarrow T(x) \in W$.

For a vector $x \in V$, The *T-cyclic subspace generated by* v is the subspace given by $\text{Span}\{x, T(x), T^2(x), \ldots\}$.

For a linear operator T on a vector space V and some T-invariant subspace W, define $\overline{T}: V/W \to V/W$ by $x+W \mapsto T(x)+W$ for $x \in V$.

Chapter 6

6.1

Given a vector space V over field F, we define an *inner product* to be a function $\langle x, y \rangle : V \times V \mapsto F$ field which is

- 1. Linear in the first component,
- 2. Symmetric under complex conjugation,
- 3. Positive definite.

Note that conjugate linearity in the second component follows immediately from these properties.

If $F = \mathbb{R}$ or $F = \mathbb{C}$ and the $V = F^n$, we call the inner product $\langle x, y \rangle = \sum_i x_i \overline{y_i}$ the standard inner product on F^n .

For a square matrix A, the *conjugate transpose* of A, denoted A^* , is the matrix given by $A_{ij}^* = \overline{A_{ji}}$. Note that if $F = \mathbb{R}$, $A^* = A^t$.

A vector space V over F, endowed with a specific inner product is called an inner product space. Naturally, if $F = \mathbb{R}$, it is a real inner product space and if $F = \mathbb{C}$ it is a complex inner product space.

The length of a vector v in an inner product space V, denoted by ||x||, is given by $||x|| = \sqrt{\langle x, x \rangle}$.

Two vectors in an inner product space V are called *orthogonal* if $\langle x, y \rangle = 0$. A subset $S \subset V$ is called orthogonal if $\langle x, y \rangle = 0$ for all distinct $x, y \in S$. A *unit* vector is a vector with length one. An *orthonormal* subset S is an orthogonal set of unit vectors. Equivalently, S is orthonormal if $\langle x, y \rangle = \delta_{xy}$.

6.2

An *orthonormal basis* is a basis of a inner product space V which is orthonormal.

Given a subset S of an inner product space V, we obtain a natural subspace called the *orthogonal complement* of S, denoted by S^{\perp} , which is the set $S^{\perp} = \{x \in V : \langle x, y \rangle = 0, \ \forall y \in S\}$. If V is finite dimensionl, and W a subspace,

the sum $W + W^{\perp}$ is direct.

For a vector x in an inner product space We defined the *orthogonal projection* of x onto W by $x \mapsto y$, where x = y + z for $y \in W^{\perp}$ and $z \in W$ Moreover, $y = x_{W^{\perp}}$ is the unique vector in W^{\perp} such that $x - y \in W$.

6.3

For a finite dimensional inner product space V, the *adjoint* of a linear operator $T:V\to V$ is the unique linear operator $T^*:V\to V$ such that $\langle T(x),y\rangle=\langle x,T^*(y)\rangle$ for all $x,y\in V$.

6.4

For a finite dimensional inner product space V, a linear operator T is called *normal* if it commutes with its adjoint. That is, $TT^* = T^*T$. A matrix A is normal if $AA^* = A^*A$.

With V as before, a linear operator T is called *self-adjoint* if it is its own adjoint: $T = T^*$. A matrix A is called *self-adjoint* if $A = A^*$. Hermitian is a synonym for self-adjoint.

A square matrix A with $F = \mathbb{R}$ is called *Gramian* if there exists a real matrix B such that $A = B^t B$.

With V as before, a linear operator T is called *positive definite* if T is self-adjoint and $\langle T(x), x \rangle > 0$ for all $x \neq 0$. A linear operator T is called *semi-positive definite* if T is self-adjoint and $\langle T(x), x \rangle \geq 0$ for all $x \neq 0$. The definitions for matrices are analogous in the obvious way.

2 Theorems

Chapter 5

5.1

Theorem 5.2 A scalar λ is an eigenvalue of a square matrix A if and only if $det(A - \lambda I) = 0$.

5.2

Theorem 5.5 For a linear operator T over n-dimensional V with distinct eigenvalues λ_i , for v_i an eigenvector corresponding to λ_i , the set $\{v_i\}$ is linearly independent. Consequently, if T has n distinct eigenvalues, it is diagonalizable.

Theorem 5.9 A linear operator T over V with a splitting characteristic polynomial is diagonalizable if and only if its geometric and algebraic multiplicities are equal. Furthermore, the union of the bases of the eigenspaces form a basis for V.

Theorem 5.11 A linear operator T on a finite dimensionly vector space V is diagonalizably if and only if its eigenspaces form a direct decomposition.

5.4

Theorem 5.22 If T is a linear operator over a k-dimensional vector space V, and W is the cyclic subspace generate by a non-zero vector x, then the set $\{x, T(x), \dots T^{k-1}(x)\}$ is a basis for W and the scalars ζ_i in the linear combination $\sum_i \zeta_i T^i(x) = -T^k(x)$ give the characteristic polynomial of T_w by $f(t) = (-1)^k \sum_i a_i t^i$

Cayley-Hamilton Theorem A linear operator on a finite dimensional vector space satisfies its characteristic polynomial. The same holds for square matrices.

Chapter 6

6.1

Theorem 6.1 (e) If $\langle x, y \rangle = \langle x, z \rangle$ for all $x \in V$, then y = z.

Cauchy-Schwarz Inequality $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ with equality when $x = \lambda y$. Triangle Inequality $||x + y|| \le ||x|| + ||y||$ with equality when x and y are orthogonal.

6.2

Theorem 6.3 If V is an inner product space and $S = \{x_i : i = 1, ..., k\}$ is an orthogonal subset such that $v_i \neq 0$, then, if $y \in \operatorname{Span} S$, then

$$y = \sum_{i=1}^{k} \frac{\langle y, x_i \rangle}{\langle x_i, x_i \rangle} v_i$$

Gram-Schmidt Orthogonalization Process With V and S as above, if we define $S' = \{v_i : 1, ..., k\}$ by $v_1 = x_1$, and otherwise by

$$v_i = x_i - \sum_{j=1}^{k-1} \frac{\langle x_i, v_j \rangle}{\langle v_j, v_j \rangle} v_j$$

Then S' is orthogonal and $\operatorname{Span} S = \operatorname{Span} S'$.

Theorem 6.6 If W is a finite dimensional subspace of an inner product space V, then x = V can uniquely be expressed as a sum of vectors from W and W^{\perp} . If V is finite dimensional.

$$W \oplus W^{\perp} = V$$

6.3

Theorem 6.8 Every linear functional $g: V \to F$ is some inner product $g(x) = \langle x, y \rangle$ for a fixed $y \in V$.

Theorem 6.9 If dim $V < \infty$, Given $T : V \to V$, there exists a linear function $T^* : V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$.

Theorem 6.10 If β is an orthonormal basis of V, then $[T^*]_{\beta} = ([T]_{\beta})^*$.

6.4

Lemma If T, a linear operator on a finite-dimensional inner product space, has an eigenvector, then so does T^* .

Theorem 6.14 (Schur) With T as above, if the characteristic polynomial of T splits then there is an orthonormal basis β of V such that $[T]_{\beta}$ is upper triangular.

Spectral Theorem(s) If T is a linear operator on a finite-dimensional vector space V over field F, if $F = \mathbb{R}$ and T is self adjoint OR if $f = \mathbb{C}$ and T is normal, then V has an orthonormal basis of eigenvectors. Furthermore, the converse is also true, in both cases.