- 1. Conjuntos, elementos pertenencia: $S, x, x \in S$
- 2. Descripción de conjuntos:
 - (a) Numeración: $S = \{2, 4, 6\}$
 - (b) Regla de membresía: $S = \{x \in \mathbb{N}, (x \text{ es par}(x \le 6))\}$

$$S = \{x \in \Omega : P(x)\}$$

donde $\Omega = \text{conj.}$ universal; $\phi = \text{conj.}$ vacío

- 3. Algunos conj numéricos:
 - (a) $\mathbb{N} \equiv \{1, 2, \ldots\}$
 - (b) $\mathbb{Z} \equiv \{0, \pm 1, \pm 2, \ldots\}$
 - (c) $\mathbb{Q} \equiv \left\{ \frac{r}{s} : (r, s \in Z)(s \neq 0) \right\}$
 - (d) $\mathbb{R} \equiv \text{números reales.}$
- 4. S = T sii $\forall s \in S \rightarrow s \in T$ y $\forall t \in T \rightarrow t \in S$
- 5. $S \subset T$ sii $\forall s \in S \Rightarrow s \in T$ Entonces: S = T sii $S \subset T$ y $T \subset S$. Note $\phi \subset S \forall S \subset \Omega$
- 6. Una familia de conjuntos es un conjunto cuyos elementos son conjuntos:

$$A \equiv \{A_i \subset \Omega : i \in I\}$$

 $I \equiv \text{conj. de índices}$

Un ejemplo es el conjunto potencia de S

$$2^S \equiv \{S_i' \subset \Omega : S_i' \subset S\}$$

7. $\bigcup_{i \in I} S_i = \{ s \in \Omega : (\exists i \in I) (s \in S_i) \}$

$$\bigcap_{i \in I} S_i = \{ s \in \Omega : (\forall i \in I) (s \in S_i) \}$$

8. Una familia de conjuntos $A \equiv \{A_i \subset \Omega : i \in I\}$. Luego los elementos de A son di

- muto amente exclusivos si son disjuntos de a pares: $A_i \cap A_j = \emptyset \ (i \neq j)$
- 9. Una partición de S es una familia de conjuntos disjuntos con unión igual a S:

$$\{S_i : i \in I\}$$
 tal que $\forall i \neq j \ S_i \cap S_j = \emptyset \ y \ U_{i \in I}S_i = S$

•
$$S^0 = \{x \in \Omega : x \notin S\}$$
 y $S - T = \{x \in \Omega : (x \in S)(x \notin T)\}$. Note: $S^0 = \Omega - S$

1 Relacionas y Productos cartesiano:

 $S = \{s_1, s_2\} = \{s_2, s_1\} \implies$ orden no 'cuenta'. Por el contrario (a, b) = (c, d) sii a = c y b = d. Llame a (s, t) par ordencdo y a s el 'primes' lamento de (s, t). Dados S y T:

$$S \times T \equiv \{(s, t) : s \in S, t \in T\}$$

text not clear una familia $(S_i)_{i \in I}$:

$$\underset{i \in I}{X} S_i \equiv \{(s_1, \dots, s_I\} : \ s_i \in S_i$$

(a) Dados S y T una relación ente S y T un subconjunto de $S \times T$:

$$f \subset S \times T$$

y, $s \in S$ si relacione a $t \in T$ sii $(s,t) \in f$. Intuitivamente f asocia algunos elementos & S a uno es mas elementos de T. Llame si t la imagen de s (par so puesto cuando $(s,t) \in f$). El conjunto imagen de $s \in S$ es

$$rng(s) = \{t \in T : (s, t) \in f\}$$

text not clear $A \subset S$, luego:

$$\operatorname{rng}(A): \{t \in T: (\exists s \in A)(s,t) \in f\} = \underset{s \in A}{\cup} \operatorname{rng}(s)$$

Dado f defina

$$f^{-1} \equiv \{(t,s) : (s,t) \in f\}$$
 (inversa de f)

a imagen inversa de $B \subset T$ es

$$f^{-1}(B) = \{ s \in S : (\exists t \in B)(s, t) \in f \} = \bigcup_{t \in B} f^{-1}(t)$$

Así

$$\operatorname{dom} f \equiv \{ s \in S : (\exists \ t \in T)((s, t) \in f) \}$$

$$\operatorname{rng} f \equiv \{t \in T : (\exists \ s \in S) \, ((s, t) \in f)\}$$

Ejemplo: $S = \{a, b, c\}$ y $T = \{c, d, e\}$ Luego $S \times T$ es 'representado' por el conjunto de 'caldas' del arreglo rectangular debajo:

e	(a,e)	(b,c)	(c,e)
d	(a,d)	(b,d)	(c,d)
c	(a,c)	(b,c)	(a,c)
$t\uparrow$			
$s \rightarrow$	a	b	c

Lea f= precede en el diccionario \Rightarrow $(s,t) \in f \Leftrightarrow s$ orene primero en el alfabeto que t. En este caso:

- dom $f = \{a, b, c\}$
- $\operatorname{rng} f = \{c, d, e\}$
- $rng(a) = \{c, d, e\}, rng(b) = \{c, d, e\} \ y \ rng(c) = \{d, e\}$
- Sea $A = \{b, c\}$. Luego $\operatorname{rng}(A) = \{c, d, e\} = \operatorname{rng}(b) \cup \operatorname{rng}(c)$.

- $f^{-1}(c) = \{a, b\}, f^{-1}(d) = f^{-1}(e) = \{a, b, c\}$
- Sea $B = \{c, d\}$. Luego $f^{-1}(B) = \{a, b, c\}$

Si S=T decimos que f es una relación en S. Sea f una relación en S. Luego:

- (i) reflexión si $\forall s \in S, (s, s) \in f$
- (ii) simétrica si cuando el par $(x_1, x_2) \in f$ luego $(x_2, x_1) \in f$
- (iii) antisimétrica si $\forall x_1, x_2 \in S, ((x_1, x_2) \in f \ y \ (x_2, x_1) \in f) \Rightarrow x_1 = x_2$
- (iv) transition si $\forall x_1, x_2, x_3 \in S$, $(x_1, x_2) \in f$ y $(x_2, x_1) \in f \Rightarrow (x_1, x_3) \in f$
- (v) completa si $(x_1, x_2) \in f \circ (x_2, x_1) \in f$

Ejemplos: Sea $S = \{1, 2, 3\}$

- (a) $f \equiv \langle \Rightarrow (x, y) \in f \text{ si } x < y \rangle$
- (b) $f \equiv \geq \Rightarrow (x, y) \in f \sin x \geq y$
- (c) $f \equiv =$

Propiedades

- (i) No es reflexión y a que un meno no puede ser menor a si mismo.
- (ii) No es simétrica y a que un meno no puede ser mayor y menor que otro
- (iii) No es antisimétrica
- (iv) Es transition y a $(1,2) \in f, (2,3) \in f$ y $(1,3) \in f$.
- (v) No es complete y a que par $j(2,2) \notin f$.

Propiedades

- (i) Es reflexión
- (ii) Ne es simétrica ya que par ejemplo $(2,1) \in$ $f \text{ pero } (1,2) \not \in f$
- (iii) Es completa ya que $(i,i) \in f \ \forall i \in S$. Luego si $(i,j) \not \in f$, Fiene que $(j,i) \in f$

FUNCIONES:

Sean S y T dos conjuntos no vacíos. Una función de S es 1

$$f: S \to T$$

Es una relación de valor único:

$$(s,t) \in f \ y \ (s,t') \in f \quad \Rightarrow \quad t = t'$$

En lugar de escribir $(s,t) \in f$ escribimos t = f(s) y decimos que t es la imagen de S.

 $S\equiv$ dominio, $T\equiv$ conjunto de llegada. El conjunto de todas las funciones con dominio S y conj. de llegada T se denote con T^S .

• Sea $A \subset S$, luego la imagen de A bajo f es

$$f(A) = \{t \in T : (\exists s \in A)(s, t) \in f\} = \{f(a) : a \in A\} = \bigcup_{s \in A} f(s)$$
$$rng f = \{t \in T : (\exists s \in S)(s, t) \in f\} = f(s) \subset G$$

$$grf = \{(s,t) : (s \in S)(t \in T)(s,t) \in f\}$$
$$= \{(s,t) : (s \in S)(t \in f(s))\}$$

• Sea $B \subset T$, luego la imagen inversa de B bajo f es

$$f^{-1}(B) = \{s \in S : (t \in B)(t = f(s))\} = \{s \in S : f(s) = B\}$$

 $B = \{b\}$ escribimos:

$$f^{-1}(b) \equiv f^{-1}\left(\{b\}\right)$$

f es inyectiva si no repite las imágenes; en otras palabras si $\forall t \in T$, existe como máximo ún ni elemento de S tal que f(s) = t. Formalmente; las tres cara eterizaciones son nítidas.

- 1. fes inyectiva sii $\forall~x_1,x_2\in S$ tal que $f(x_1)=f(x_2)~\Rightarrow~x_1=x_2$
- 2. fes inyectiva si
i $\forall x_1,x_2 \in S, \ x_1 \neq x_2 \ \Rightarrow \ f(x_1) \neq f(x_2)$
- 3. $\forall t \in T$ se tiene que $f^{-1}(t)$ es on conjunto unitario o vacío.

f es suprayectiva si $f(s) = \operatorname{rng} f = T$. Alternativamente f suprayectiva si $\forall t \in T, \ f^{-1}(t) \neq \phi$.

Ejemplos

Si f es suprayectiva e inyectiva, decimos que f es biyectiva:

$$f^{-1}(t) = \{S\} \quad \forall t \in T$$

• $\forall t \in T, \exists !$ (existe exactamente) un elemento en S.

<u>DEF:</u> Sea $f: S \to T$. f es biyectiva sii $(\forall t \in T)(\exists ! s \in S)$ tal que t = f(s)

Si f es biyectiva $\exists !$ función S inversa:

$$f^{-1}:T\to S$$

OBSV: Si rng $f \neq T$, defines

$$X\equiv\operatorname{rng} f$$

y luego si f es inyectiva, g es biyectiva

$$g: S \to X$$

y por lo tanto ∃ una función inversa

$$q^{-1}: X \to S$$

Una correspondencia de S en T

$$F:S \rightrightarrows T$$

Es una función que asigna a todo $s \in S$ un subconjunto de T

$$f: S \to 2^T$$

El dominio efectivo de F es un conjunto $X \subset S$ tal que $\forall x \in X, \ F(x) \neq \phi$. Para toda correspondencia F, \exists relación $R_F \subset S \times T$ tal que $(s,t) \in R_F$ sii $t \in F(S)$. Mentar similar, a toda relación $R \subset S \times T$ podemos a saciar una correspondencia $F_R : S \rightrightarrows T$ tal que $F_R(s) = \{t \in T : (s,t) \in R\}$

 \mathbb{R}^n : Linear y planos: El conjunto de todos los números reales es

$$\mathbb{R} = \{ x | -\infty < x < +\infty \}$$

balizando n veces el producto cartesianas de $\mathbb R$ consigo mismo:

$$\underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{n \text{ 'veces'}} \equiv \mathbb{R}^n = \{(x_1, x_2, \ldots, x_n) : x_i \in \mathbb{R}, \ \forall i = 1, \ldots, n\}$$

Todo entonces que $x \in \mathbb{R}^n$ es una lista ordenada de números y el numero x_i es la i-ésima componente le x.

insidere \mathbb{R}^2 . Luego $x^0=(x_1^0,x_2^0)$ se representa como.

(a) Punto (ORDENAROS)

(b) Vector

<u>Vectors:</u> Recuerde que 2 vectores $x\ y\ z$ son iguale sii

$$(x_1,\ldots,x_n)=(z_1,\ldots,z_n); \quad \vec{o}=(0,0,\ldots,0)$$

Operaciones vectoriales:

(i)
$$x + z = (x_1 + z_1, \dots, x_n + z_n) = z + x$$

(ii)
$$x + \vec{o} = x$$

(iii)
$$k(x_1, \ldots, x_n) = kx = (kx_1, \ldots, kx_n) \quad \forall k \in \mathbb{R}$$

La geometría vectorial: Sea $a \in \mathbb{R}^n$. Luego podamos interpretarlos como 'puntos' en \mathbb{R}^n .

Pero las operaciones vectoriales cuando consideraran a un vector como un punto no hacen mucho sentido. Conviene entroncar interpretar a los vectores como desplazamiento.

Mas precisamente interpretamos al vector $z \in \mathbb{R}^n$ mediante un segmento lineal dirigido desde el origen \vec{o} al punto en cuestión. Tales vectores se denominar vectores de posición:

y pensamos en el punto \vec{o} como punto de partida y al punto z como punto terminal o ambo. De esta manera \mathbb{R}^2 como el conj. de todos los vectores posicionales uno por cada $x \in \mathbb{R}^2 = n\mathbb{R}^n$.

Ahora bien podemos generalizar esta idea y permitir que el punto de partida sea diferente al origen:

entonces, el segmento lineal corresponde en este caso a un desplazan lento de $A \subset \mathbb{R}^2$ a $B \in \mathbb{R}^2$. es un 'comando' compuesto de dos órdenes;

01: Desplazace z_1 unidades hacia la 'derecha' ('iza') de A

02: Desplazace z_2 unidades hacia 'arriba' ('abajo') de A para arriba a B.

En goal, dados 2 puntos A y B en \mathbb{R}^2 , el vector desplazamiento desde A or B es

$$\vec{AB} = (b_1 - a_1, \dots, b_n - a_n)$$

donde
$$B = (b_1, ..., b_n)$$
 y $A = (a_1, ..., a_n)$.

Podemos usar vectores para representar linear en $\mathbb{R}^2, \mathbb{R}^3, \dots, \mathbb{R}^n$. Para elles conviene representar geométricamente las operaciones vectoriales.

v+zse obtiene 'aplicando' a $B({\bf a}\;A)$ el vector v (el vector z), Note que llamamos al desplazamiento paralelo de $v,\,v'$

Produoro ESCALAR: 1 < k

 $KZ=(kz_1,kz_2)$ observe que el segmento lineal que representa a z tiene pendiente igual

$$\frac{z_2 - 0}{z_1 - 0} = \frac{z_2}{z_1} = \frac{\Delta Y}{\Delta X}$$

De manera similar el segmento lineal que representa a $z'=(kz_1,kz_2)$ tiene perdiente igual a $\frac{\Delta Y}{\Delta X}=\frac{z_2}{z_1}$

KZ es una 'prolongación' de z

Observe que -v = (-1, v), luego:

$$z - v = z + (-v)$$

DIFERENCIA DE VECTORES: z-v

Luego (z-v) es el vector tal que al sumarre a v resulta en z. De allí la representación text unclear.

Linear: Ecuaciones vectoriales y paramétricas

Una curva en \mathbb{R}^2 (el gráfico de una función) se puede representas como el conjunto es puntos (x,y) como función de un parámetro t:

$$x = f(t)$$

$$y = g(t)$$

Podemos pensar en una función

$$F: \mathbb{R} \to \mathbb{R}^2$$

definida par
$$\begin{pmatrix} f(t) \\ g(t) \end{pmatrix}$$
.

Concretamente, recuerde que el gráfico de y=mx+c es una linea recta:

Como podemos representas $A \in l$ mediante vectores? Simplemente como

$$v \equiv \left(\begin{array}{c} 1\\ m \end{array}\right)$$

que $v \equiv v - 0$, y el punto B lo podemos obtener a través la multiplicación scaler de v para t > 1

$$t\begin{pmatrix} 1\\ m \end{pmatrix} = \begin{pmatrix} x_0\\ mx_0 \end{pmatrix} = x_0 \begin{pmatrix} 1\\ m \end{pmatrix} \quad \Rightarrow \quad t = x_0$$

Como x_0 es arbitrario la ecuación de l
 se puede representar: vectorialmente como

$$x = \left(\begin{array}{c} x \\ y \end{array}\right) = t \left(\begin{array}{c} 1 \\ m \end{array}\right) = tv$$

iote que x(t) = t, y(t) = tm. Denote entonces

$$x = tv$$

onde x(t) = (x(t), y(t))

y definimos

$$l \equiv \left\{ x \in \mathbb{R}^2 : x = tv \text{ para } -\infty < t < \infty \right\}$$

Suponga ahora que c > 0:

Llame v al vector que sumado al vector (0, c) resulta en A:

$$\begin{pmatrix} 0 \\ c \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 \\ c+m \end{pmatrix}$$

$$\Rightarrow v = \begin{pmatrix} 1 \\ 1 \\ m \end{pmatrix}$$

y el punto $A \in l$ se puede obtener sumando:

$$\underbrace{\left(\begin{array}{c}0\\c\end{array}\right)}_{p} + \underbrace{\left(\begin{array}{c}1\\m\end{array}\right)}_{v}$$

El punto B le podemos obtener

$$\begin{pmatrix} 0 \\ c \end{pmatrix} + t \begin{pmatrix} 1 \\ m \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ c \end{pmatrix}}_{p} + \begin{pmatrix} x_{0} \\ mx_{0} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 \\ c \end{pmatrix}}_{p} + \underbrace{x_{0}}_{x_{0}v} \begin{pmatrix} 1 \\ m \end{pmatrix}$$

Como x_0 os arbitrario tenemos:

$$l \equiv \{x \in \mathbb{R}^2 : x = P + tv \text{ para } -\infty < t < \infty\}$$
 (ECUACIÓN VECTORIAL)

Note que v = (1, m) es un vector 'paralelo' a l que se llama vector de dirección. y:

$$x = p_0 + tv_0$$

 $y = p_1 + tv_1$ Ecuaciones perimétricas

y $t \equiv$ parámetro. En general:

DEFINICIÓN: La forma vectorial de la ecuación de una linea $l \in \mathbb{R}$ es:

$$x = p + tv$$

Londe p= punto sobre la linea y $v\neq 0$, es el vector de dirección

Ejemplo: Suponga que y = 4x - 5. Luego:

$$P = \begin{pmatrix} 0 \\ -5 \end{pmatrix}$$

$$v = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$

Entonces:

$$x = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -5 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{ para } -\infty < t < \infty.$$

Si $x=2 \Rightarrow y=8-5=3 \Rightarrow x=(2,3)$ y usando t=2 obtenemos el mis no resultado. Observe que también otras parametrizaciones; Por ejemplo:

$$x = \begin{pmatrix} 0 \\ -5 \end{pmatrix} + s \begin{pmatrix} 2 \\ 8 \end{pmatrix}$$

entonces s = q corresponde a (2,3).

Luego $v = x^0 - x^1$ y partiendo de x^1 :

$$x = x^1 + t(x^0 + x^1)$$

$$x = tx^0 + (1 - t)x^1$$

la linea que contiene x^0 y x^1 es (generalizando a \mathbb{R}^n):

$$l = \{ x \in \mathbb{R}^n : x = tx^0 + (1 - t)x^1, -\infty < t < \infty \}$$

note que el segmento lineal entra x^0 y x^1 es:

$$[x^0, x^1] = \{x \in \mathbb{R}^n : x = tx^0 + (1 - t)x^1, \ 0 \le t \le 1\}$$

A point $x = tx^0 + (1 - t)x^1$ se le llama combinación convexa de x^0 y x^1 . El conjunto de todas combinaciones convexa de $[x^0, x^1] = l[x_0, x_1]$

Dador dos puntos $x^0, x^1 \in \mathbb{R}^n$, a cualquier punto $x \in \mathbb{R}^n$ dedo por

$$x = tx^0 + (1 - t)x^1$$

Para $0 \leq t \leq 1$ le llamamos combinación convexa. Recuerde def. de intérnale.

<u>DEF</u>: $S \subset \mathbb{R}^n$ es convexo si para todos los pares de puntos $x^0, x^1 \in S$, el segmento lineal $l[x_0, x_1] \subset S$. En otras palabras, S es convexo si contiene todas las combinaciones convexas de todas los paras de sus elementos; S es convexo sii $\forall x^0 y x^1$

$$x = tx^0 + (1-t)x^1 \in S$$

 $0 \leq t \leq 1$

Ejemplos:

Proposición: Sea $(S_i)_{i\in\mathbb{N}}$ una colección de conjuntos convexos. Luego:

$$\bigcap_{i\in\mathbb{N}} S$$

es un conjunto convexo.

<u>Demost:</u> Si $\cap_{i\in\mathbb{N}}S_i=\phi$ es vacía, no hay nada que demostrar. Considere ahora S_1 y S_2 . Llame $S=S_1\cap S_2$. Considere dos elementos cualesquiera de S, x^0 y x^1 . Debemos demostrar que:

$$x^t \equiv tx^0 + (1-t)x^1 \in S$$

 $\forall 0 \leq t \leq 1$. Dado que x^0 y $x^1 \in S_i$ para i = 1, 2 (debido a que $x^j \in S$ para j = 0, 1) y S_i i = 1, 2 es convexo se tiene por definición que

$$x^{t} \equiv tx^{0} + (1-t)x^{1} \in S_{i} \text{ para } i = 1, 2$$

 $\Rightarrow x^t \in S. \ \forall t \in [0,1].$

Suponga ahora que $\bigcap_{i=1}^{n-1} S_i$ es un conjunto convexo. Llame $S \equiv \bigcap_{i=1}^{n-1}$. Dehemos demostrar que

$$\bigcap_{i=1}^{n-1} \cap S_i$$

Es convexo Dado que $\cap_{i=1}^{n-1}S$ es convexo $\to S\cap S_n$ es convexo por la 1º parte de lo demostración

unión de conjuntar convexos no es necesariamente convexa. Por $j[0,1] \cup [2,3]$.

<u>DEF:</u> Sea $f: I \to \mathbb{R}$, luego f es creciente en I si $\forall x_1, x_2 \in I$ tal que $x_1 < x_2$, se tiene que $f(x_1) \le f(x_2)$. f es est. creciente en I si $\forall x_1, x_2 \in I$ tal que $x_1 < x_2$, se tiene que $f(x_1) < f(x_2)$.

<u>ejemplo:</u> $f(x) = x^2 \ \forall x \in [0, \infty)$. Recuerde que $x^0 \ge x^1 \ \text{sii} \ x_i^0 \ge x_i^1 \ \forall i \ \text{y que} \ x^0 \gg x^1 \ \text{sii} \ x + i^0 > x_i^1 \ \forall i$ Sea ahora $f: S \to \mathbb{R}$ para $S \subset \mathbb{R}^n$. Luego:

- (i) f es creciente si $f(x^0) \ge f(x^1)$ cuando $x^0 \ge x^1$.
- (ii) f es estrictamente creciente si es creciente y $f(x^0) > f(x^1)$ cuando $x^0 \gg x^1$.
- (iii) f es fuertemente creciente si $f(x^0) > f(x^1)$ cuando $x^0 \neq x^1$ y $x^0 \geq x^1$.

Observaciones:

1. f es creciente si el valor de la función no decrece cuando se incremente uno o mas componentes de x

Ejemplos:

- (i) $f(x) = c \ \forall \ x \in \mathbb{R}^n$ (creciente)
- (ii) $f(x_1, x_2) = \min\{x_1, x_2\}$ es estrictamente creciente; $x \in \mathbb{R}^n_+$
- (iii) $f(x_1, x_2) = x_1 x_2$ para $x \in \mathbb{R}_+$ es fuertemente creciente.

Conjuntos relacionados a funciones

<u>DEF 1:</u> Sea $f: S \to \mathbb{R}$. Luego el conjunto de nivel de f para $y_0 \in \mathbb{R}$ es:

$$L(y_0) \equiv \{x \in S | f(x) = y_0\}$$

Lerna tira mente el conj. de nivel de f relativo a $x^0 \in \mathbb{R}^n$ es

$$L(x^0) \equiv \left\{ x \in S | f(x) = f(x^0) \right\}$$

Observe que usando conjuntos de nivel podemos representas toda la función al en cuento oder $y \in f(S)$. Note también que $L(y_0) \subset S \to \downarrow$ la dimensional necesaria para representar f en una unidad.

Se
a $y_0\neq y_1.$ Luego $L(y_0)\cap L(y_1)=\phi.$ Si la intersección no para vací
a $\Rightarrow~\exists$

 $z \in L(y_0)$ y $z \in L(y_1) \implies f(z) = y_0 = y_1$ lo que es imposible por definición de función.

Ejemplos:

1. $y = x_1^{0.5} x_2^{0.5} \Rightarrow L(y_0) = \{(x_1, x_2) : x_1^{0.5} x_2^{0.5} = y_0\}$. Podemos gráficas, 'despejando' 2 para obtener

$$x_2 = \frac{(y_0)}{x_1} = \frac{k}{x_1}$$

2. $\pi(x,p) = p_1x_1 - p_2x_2$. Luego $L(\pi_0) = \{x \in \mathbb{R}^2 | p_1x_2 + p_2x_2 = \pi_0 \}$

$$\Rightarrow = (x_1, x_2) \in L(\pi_0) \iff x_2 = \frac{p_1}{p_2} \cdot x_1 - \frac{\pi_0}{p_2}$$

3. $y(x) = \min\{x_1, x_2\} \Rightarrow L(y_0) \equiv \{x \in \mathbb{R}^0_+ : \min\{x_1, x_2\} = y_0\}$

Note:

•
$$f(x^2) < f(x^0) < f(x^1)$$

•
$$f(x^4) < f(x^0) < f(x^3)$$

Entonces:

1. $S(y^0) \equiv \{x | x \in X, \ f(x) \ge y^0\}$ (Conj. superior, Contorno superior)

2. $S'(y^0) \equiv \{x | x \in X, \ f(x) > y^0\}$ (Cont. superior estricto)

3. $I(y^0) \equiv \{x | x \in X, \ f(x) \le y^0\}$ (Contorno inferior)

4. $I'(y^0) \equiv \{x | x \in X, \ f(x) < y^0\}$ (Contorno inferior estricto)

Proposición: Para cualquier $f: X \to \mathbb{R}, y^0 \in \mathbb{R}$:

•
$$L(y^0) \subset S(y^0)$$

$$\bullet \ L(y^0) \subset I(y^0)$$

$$L(y^0) = S(y^0) \cap I(y^0)$$

•
$$S'(y^0) \subset S(y^0)$$

$$\bullet \ I'(y^0) \subset I(y^0)$$

$$\bullet \ S'(y^0) \cap L(y^0) = \phi$$

•
$$I'(y^0) \cap L(y^0) = \phi$$

• $S'(y^0) \cap I'(y^0) = \phi$

UNCIONES CÓNCAVAS:

• $f:X\to\mathbb{R}$ y $X\subset\mathbb{R}^n$ es CONVEXO. Para $x^0,x^1\in X$

$$x^t \equiv tx^0 + (1-t)x^1$$

para $t \in [0,1]$ denota la combinación convexa de x^0 y $x^1.$ Observe que $x^t \in X.$

 $\underline{\mathrm{DEF:}}\ f:X\to\mathbb{R}$ es uno función cóncava si para todo par $x^0,x^1\in X$

$$f(x^t) \ge t f(x^0) + (1 - t) f(x^1) \quad \forall t \in [0, 1]$$

Note:

- $f(x^t) \equiv$ valor de f para la combinación convexa x^t
- $tf(x^0) + (1-t)f(x^1) \equiv$ combinación convexa de dos valores de f

 $X \subset \mathbb{R}$. Luego

- Note $f(x^t) \ge y^t$.
- f es convexa sii para todo par de puntos $(x^0, y^0), (x^1, y')$ en su gráico, la linea recta que une los mismos se encuentra uno por debajo de su gráico.

Efinición: Llame al conjunto

$$A \equiv \{(x,y)|x \in X, f(x) \geq y\} \subset \mathbb{R}^{n+1}$$

grafo inferior o subgrafo y:

$$B = \{(x, y) | x \in X, f(x) \le y\} \subset \mathbb{R}^{n+1}$$

Supergrafo de f

Proposición:

fes concava Aes convexo

Demostración:

- 1. f es cóncava $\Rightarrow A$ es convexo.
- 2. inca: Demostrar que para puntor arbitrarios $z^i = \left(x^i,y^i\right) \ i=1,2$ en A, luego $z^t \in A \ \forall \ t \in [0,1]$
- 3. Que implica 2? Por definición de A debemos mostrar que $(x^t, y^t) \in A$.
- 4. Como demostrar que $x^t \in A$? Dado que f es cóncava, sabemos que X es convexo y por lo tanto $x^t \in A \ \forall \ t \in [0,1]$
- 5. Solo nos falta de mostrar que $y^t \leq f(x^t) \ \forall \ t \in [0,1]$. Observe
 - (a) $y^t = ty^0 + (1-t)y' \le tf(x^0) + (1-t)f(x^1) \quad \forall \ t \in [0,1]$

Dado que como $z^i \in A$, se tiene que $y^i \leq f(x^i)$. Luego por def. de concavidad:

- (b) $y^t \leq tf(x^0) + (1-t)f(x^1) \leq f(x^t) \quad \forall \ t \in [0,1]$ $\Rightarrow \ y^t \leq f(x^t)$ y por lo tanto $z^t \in A$. Como z^i para i=1,2 son puntar arbitrarios, lemas demostrado la primera parte.
- A es convexo $\Rightarrow f$ es cóncava
- 1. idea: Considere dos puntar arbitrarios $z^i \equiv (x^i, y^i) \in A$, luego

$$f(x^t) \ge t f(x^0) + (1-t)f(x^1)$$

2. Sea $z^i \in A.$ Luego dado que A es convexo.

$$z^t \equiv (x^t, y^t) \in A \quad \forall \ t \in [0, 1]$$

- 3. El punto (2) implica pos definicion de A que
 - i) $x^0, x^1 y x^t \in \forall t \in [0, 1]$
 - ii) $y^t \le f(x^t) \ \forall \ t \in [0, 1]$
- 4. Dado que $z^i \in A$, tenemos que
 - iii) $y^i \le f(x^i)$ para i = 1, 2.
- 5. Dado que debemos tomar puntos en el gráfico de f podemos 'ajustar' (iii) y:
 - iv) $y' = f(x^i)$ para i = 1, 2
- 6. Usando (iv):

v)
$$ty^0 + (1-t)y' = tf(x^0) + (1-t)f(x^1) \equiv y^t$$

7. Usando (ii) y (v)

$$tf(x^0) + (1-t)f(x^1) \le f(x^t) \quad \forall \ t \in [0,1]$$

Observe que la def permite segmentos lineales:

Definimos entonces:

DEF:

 $f:X\Rightarrow R$ es estrictamente cóncava si
i $\forall\; x^0\neq x^1\in X$

$$f(x^t) > tf(x^0) + (1-t)f(x^1) \quad \forall t \in (0,1)$$

Proposición: Sea $f:X\to\mathbb{R}$ cóncava. Luego $S(y)\subset X$ es convexo para todo $y\in\mathbb{R}.$

Demostración: Recuerde que

$$S(y) = \{x \in X | f(x) \ge y\}$$

Paros:

- 1. Sean x^0 y $x^1 \in S(y)$. Bebemos demostrar que $x^t \in X$ y que $f(x^t) \geq y$.
- 2. Dado que X es convexo $\Rightarrow x^t \in X$.
- 3. Dado que $x^i \in S(y)$ para i = 1, 2:
 - (i) $f(x^0) \ge y$

(ii)
$$f(x^1) \ge y$$

4. (i),(iii):

(iii)
$$tf(x^0) + (1-t)f(x^1) \ge y$$

5. (iii) $\Rightarrow \ f(x^t) \geq y$ dado que fes cóncava \Box

Observación: La implicancia es en un solo sentido, i.e. S(y) es convexo $\Rightarrow f$ sea cóncava

 $\underline{\mathrm{DEF}} \colon f: X \to \mathbb{R}$ cuasicóncava si
i $\forall \ x^0, x^1 \in X$

$$f(x^t) \ge \min \left[f(x^0), f(x^1) \right] \quad \forall \quad t \in [0, 1]$$

- $f(x^t) \equiv$ value of function at the convex combination of x^0, x^1 .
- $\min [f(x^0), f(x^1)] \equiv \text{valor menor de la función entre e sos puntos.}$
- Esta def. es general; i.e. $X \subset \mathbb{R}^n$ para $\forall n \in \mathbb{N}$.

Proposición: $f: x \to \mathbb{R}$ es cuasi-cóncava si
iS(y) es convexo $\forall \ y \in \mathbb{R}$

Demostración:

- f es cuasicóncava $\Rightarrow S(y)$ es convexo $\forall y \in \mathbb{R}$.
 - 1. idea: debemos de mostrar que si $x^0, x^1 \in S(y)$, luego $x^t \in S(y) \ \forall \ t \in [0, 1]$. Para ello debemos valemos la def. anterior.
 - 2. Primero note que como $x^i \in S(y) \Rightarrow x^i \in X$ par def. de S(y)
 - 3. Segundo, nos que da entonces mostrar que $f(x^t) \geq y \ \forall \ t \in [0,1]$. Que into tenemos? Como $x^i \in S(y)$

(i)
$$f(x^i) \ge y$$
 para $i = 1, 2$.

4. (3)-(i)
$$\Rightarrow$$

(ii)
$$\min\{f(x^0), f(x^1)\} \ge y$$

Sando la def. anterior y (3)-(ii) tenemos que

$$f(x^t) \ge y$$
. \Rightarrow $S(y)$ es convexo.

S(y)es convexo $\forall \ y \in \mathbb{R} \Rightarrow f$ es cuasi-cóncava.

- 1. Sean $x^0, x^1 \in S(y)$. Entonces por def. de $S(y) \Rightarrow x^1 \in X$ para i=1,2 Como X es convexo $\Rightarrow x^t \in X$.
- 2. Suponga que $f(x^0) \ge f(x^1)$. Llame $y^0 \equiv f(x^0)$, $y' \equiv f(x^1)$. Note ahora que S(y') es convexo. Es obvio que x^0 y $x^1 \in S(y')$. Entonces dado que S(y') es convexo se tiene que $x^t \in S(y')$. Por def. de $S(y') \Rightarrow f(x^t) \ge f(x^1)$. Se sigue entonces que f es cuasi-cóncava ya que

$$f(x^t) \ge f(x^1) \equiv \min \left\{ f(x^0), f(x^1) \right\}$$

Entonces:

fes cuasi-cóncava $\Rightarrow \ S(y)$ is convexo $\forall \ y \in \mathbb{R}$

S(y) es convexo $\forall y \in \mathbb{R} \implies f$ es cuasi-cóncava

Los conj. Superiores pulden tenor segmentos lineales:

 $\underline{\mathrm{DEF}} \colon f: x \to \mathbb{R}$ es
 estrictamente cuasicóncava si
i $\forall \ x^0 \neq x^1 \in X$

$$f(x^t) > \min \left[f(x^0), f(x^1) \right] \quad \forall t \in [0, 1]$$

Observe el contraste:

inalmente:

Proposición:

f es (estrictamente) cóncava $\Rightarrow f$ (estrictamente) cuasicóncava.

Emostración: ya lemos demostrado que si tes (est.) cóncava $\Rightarrow S(y)$ es convexo. Otra demostración le siguiente. Asume que x^0 y $x^1 \in X$. Luego por def de concaoided:

$$f(x^t) \geq tf(x^0) + (1-t)f(x^1) \geq \min \left[f(x^0), f(x^1) \right] t + \min \left[f(x^0), f(x^1) \right]$$
$$(1-t) = \min \left[f(x^0), f(x^1) \right]$$

 $\underline{\mathrm{Def:}}\ f:x\to\mathbb{R}\ \mathrm{es}$

- (i) Convexa si f es cóncava
- (ii) est. convexa si f es convexa.
- (iii) (est) cuasicónvexa si f es cuasicónvexa

Observación:

- $f(x) = x^2 \ \forall \ x \in [0, \infty)$ es cuasi-cóncava pero no es cóncava.
- $f(x) = x_1x_2 \ \forall \ x \in \mathbb{R}_+$ es cuasi-cóncava pero no es cóncava

Formalmente sea $C_0 = \{f : X \to \mathbb{R} | f \text{ es cóncava}\}$ y $Q_0 = \{f : X \to \mathbb{R} | f \text{ es cuasicóncava}\}$; $C_0' \equiv \{f : X \to \mathbb{R} | f \text{ es est. cóncava}\}$ y $Q_0' \equiv \{f : X \to \mathbb{R} | f \text{ est. cuasicóncava}\}$. Luego Luego:

- 1. $C_0'\subset C_0$: Si fes est. cóncava $\Rightarrow f$ es cóncava
- 2. $C_0 \subset Q_0$: Si f es cóncava $\Rightarrow f$ es cuasicóncava.
- 3. $C_0' \subset Q_0'$: Si f es est. cóncava $\Rightarrow f$ es est. cuasi-cóncava.
- 4. $Q_0'\subset Q_0$: Si f es est. cuasi-cóncava $\Rightarrow~f$ es cuasi-cóncava.

Torología: Nociones ELE MENTOLES

- 1. métrica: medida de distancia
- 2. Un espacio métrico es un conjunto y una medida de distancia entresus elementos
- 3. (\mathbb{R}, d) para

$$d(x^0, x^1) = |x^0 - x^1|$$

- 4. Note que:
 - P1: $0 \le d(x^0, x^1) < \infty \quad \forall x^0, x^1 \in \mathbb{R}$.
 - P2: $d(x^0, x^1) = d(x^1, x^0) \quad \forall x^0, x^1 \in \mathbb{R}$
 - P3: $d(x^0, x^1) = 0$ sii $x^0 \equiv x^1$
 - P4: $d(x^0, x^2) \leq d(x^0, x^1) + d(x^1, x^2)$ (desigualdad triangular)

5. Recuerde que:

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0. \end{cases}$$

6. Entonces:

$$||x|| = \left(\sum_{i=1}^{n} (x_i - 0)^2\right)^{\frac{1}{2}}$$

$$\Rightarrow ||x|| = d(x,0)$$

7. Entonces, en general:

$$d(x,z) = ||x - z|| = ||z - x||$$

8. Dada una métrica, podemos hacer precisos los conceptos de 'cercanía' entre puntos.

 $\underline{\mathrm{Def:}}$

(i) La bola abierta con centro $x^0 \in \mathbb{R}^n$ y radio $\varepsilon > 0$ es

$$B_{\varepsilon}(x^0) \equiv \left\{ x \in \mathbb{R}^n | d(x^0, x) M \varepsilon \right\}$$

(ii) La bola cerrada con centro en $x^0 \in \mathbb{R}^n$ y radio $\varepsilon > 0$ es

$$B_{\varepsilon}^*(x^0) \equiv \left\{ x \in \mathbb{R}^n | d(x^0, x) \le \varepsilon \right\}$$

Note que $B_{\varepsilon}(x^0)$ y $B_{\varepsilon}^*(x^0) \subset \mathbb{R}^n$. Luego:

- 1. Sea $X \subset \mathbb{R}^n$. Decimos que $x \in X$ es un punto interior de X si existe algún $\varepsilon > 0$, tal que $B_{\varepsilon}(x) \subset X$. El conjunto de todos los puntos interiores de X se denomine el interior de X y denotamos con X^0
- 2. Un conjunto $X \subset \mathbb{R}^n$ es abierto si $X = X^0$

Ejemplos:

- 1. $\phi = \phi^0$
- $2. \ \mathbb{R}^n = \mathbb{R}^n$
- 3. $I = (a, b) = \mathring{I}$
- 4. $A \equiv \{1, 2, \dots, n\} \subset \mathbb{R}$. Luego $\mathring{A} = \phi \neq A$.
- 5. $\mathring{B}_{\varepsilon}(x^0) = B_{\varepsilon}(x^0)$ (idea: $\varepsilon' = \varepsilon d(x^0, x) \ \forall \ x \in B_{\varepsilon}(x^0)$).

Proposición: Sea $A_i = \mathring{A}_i \ \forall \ i \in \mathbb{N}$. Luego:

- (i) $\bigcup_{i=1}^{\infty} A_i$ es abierto (arbitraria)
- (ii) $\cap_{i=1}^n A_i$ es abierto (finita)

Demostración:

1. Debemos demostrar que $(\bigcup_{i=1}^{\infty} A_i)^0 = (\bigcup_{i=1}^{\infty} A_i)$, Esto implica demostrar que todo punto en $(\bigcup_{i=1}^{\infty} A_i)$ es interior. Para demostrar esto, debemos mostrar que $\forall \times \varepsilon (\bigcup_{i=1}^{\infty} A_i)$ es posible encontrar $B_{\varepsilon}(x) \subset (\bigcup_{i=1}^{\infty} A_i)$.

Sea $x \in (\bigcup_{i=1}^{\infty} A_i) \Rightarrow \exists$ al menos on conjunto A_j tal que $x \in A_j$. Luego dado que $A_j = A_j^0$, tiene que \exists un $\varepsilon > 0$ tal que $B_{\varepsilon}(x) \subset A_j$. Par def de unión $\Rightarrow B_{\varepsilon}(x) \subset (\bigcup_{i=1}^{\infty} A_i)$ y estamos

2. Debemos demostrar que $(\bigcap_{i=1}^n A_i) = (\bigcap_{i=1}^n A_i)^{\circ} \Rightarrow \forall x \in (\bigcap_{i=1}^{\infty} A_i)$ es interior $\Rightarrow x \in (\bigcap_{i=1}^{\infty} A_i)$ existe una $B_{\varepsilon}(x) \subset (\bigcap_{i=1}^n A_i)$.

Sea $x \in (\cap_{i=1}^n A_i) \Rightarrow x \in A_i \ \forall \ i=1,2,\ldots,n$ (def. de intersección). Luego dada que $A_i=A_i^0 \ \forall i=1,2,\ldots,n$

 $E\mathbb{N} \Rightarrow \exists \text{ un } \varepsilon > 0 \text{ tal que } B_{\varepsilon}(x) \subset A_i \ \forall \ i \in \mathbb{N}. \text{ Por def. de intersección} \Rightarrow B_{\varepsilon}(x) \subset (\cap_{i=1}^n A_i)$

Par qué no podemos extender (ii) se $i \in \mathbb{N}$? Considere $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right) \subset \mathbb{R}$. Luego $A_n = A_n^0$

 $\forall n \in \mathbb{N}$. Observe que

- Sea $X\subset\mathbb{R}^n$. Decimos que $z\in\mathbb{R}^n$ es un punto frontera de X sii $\forall \varepsilon>0$:
 - (i) $B_{\varepsilon}(z) \cap X \neq \phi$
 - (ii) $B_{\varepsilon}(z) \cap X^0 \neq \phi$

El conjunto de todos los puntos frontera de X se denota con ∂X

 \bullet EL conjunto clausura de X es

$$C_x \equiv X \cup \partial X$$

unimos que X es cerrado sii

$$X = C_x$$

Note que $X \subset C_x$ y $X = C_x$ sii $\partial X \in X$ entonces $X \subset \mathbb{R}^n$ es cerrado sii

$$\partial X \subset X$$

es difícil demostrar que:

Prop: $X \subset \mathbb{R}^n$ es cerrado sii X^0 es abiertos

$$\partial X \subset C \Leftrightarrow \mathbb{R}^n - X = X^c = \mathring{X}^c$$
(X es cerrado) \Leftrightarrow (X^c abierto)

Observe que como $\partial X \subset X$ si X es cerrado, luego $\partial X \not\subset X^c$ y como $\mathring{X}^c = X^c$

$$X = X^0 \Leftrightarrow \partial X \not\subset X$$

 $(X \text{ es abierto}) \Leftrightarrow (X \text{ no contiene ninguno de sus puntos frontera})$

Entonces:

$$X$$
es cerrado si
i $X=X^0\cup\partial S$

Clustración

Luego cabemos que $A \cup B$ es abierto $\Rightarrow X$ ex cerrado dado que $X = \mathbb{R} - (A \cup B) = (A \cup B)^c$ Observe que $\partial X = \{a,b\} = \partial A = \partial B$ pero $\partial A \not\subset A$ y $\partial B \not\subset B$ y como $\partial X \subset X \Rightarrow X$ es cerrado.

• $A = \{1, 2, \dots, n\}$

Note que $\mathring{A}=\phi$ y $\phi\subset A$ pero $A\neq\phi,$ A no es abierto, Es A cerrado? Note que

$$\partial A = \{1, 2, 3\} = A = C_A = A \cup \partial A = A^0 \cup \partial S$$

EN \mathbb{R}^n

Define:

$$A_1 \equiv \left\{ X \in \mathbb{R}^2 L(x_1, c) \text{ y } (a \le x_1 \le b) \right\}$$

$$A_2 \equiv \left\{ X \in \mathbb{R}^2 : (x_1, d) \text{ y } (a \le x_1 \le b) \right\}$$

$$A_3 \equiv \left\{ x \in \mathbb{R}^2 : (a, x_2) \text{ y } (c \le x_2 \le d) \right\}$$

$$A_4 \equiv \left\{ x \in \mathbb{R}^2 : (b, x_2) \text{ para } c \le x_2 \le d \right\}$$

$$\partial X = \partial Z = \bigcup_{i=1}^n A_i$$

Pero $\partial X \subset X$ y $\partial Z \not\subset Z$. Note que

ts cerrado ni abierto.

Como ϕ y \mathbb{R}^n son abiertos $\Rightarrow \phi$ y \mathbb{R}^n son abiertos y cerrados:

$$X$$
 puede ser
$$\left\{ egin{array}{l} {
m Abierto} \\ {
m Cerrado} \\ {
m Abierto} \ {
m y} \ {
m errado} \\ {
m Ni \ abierto} \ {
m ni} \ {
m cerrado} \end{array} \right.$$

Finalmente:

Prop:

(i) Sea X_i cerrado $\forall i \in \mathbb{N}$, luego:

$$\bigcap_{i=1}^{\infty} X_i$$

es un conjunto cerrado.

(ii) Sea X_i cerrado para $\forall i \leq n$. Entonces

$$\bigcup_{i=1}^{n} X_i$$

cerrado

Demost:

- (i) Sea $X \in \partial(X_1 \cap X_2)$. Luego $x \in X_1$ y $x \in X_2$ dedo que X_1 y X_2 son cerrados $\Rightarrow X \in (X_1 \cap X_2)$ son cerrados $\Rightarrow x \in (X_1 \cap X_2) \Rightarrow \bigcap_{i=1}^2 X_i$ es cerrado. Usando inducción, se obtiene el todo.
- (ii) Sea $x \in \partial \left(\bigcup_{j=1}^n X_i \right) \Rightarrow \exists$ al meno un i'tal que $x \in X_i$, dado que X_i es cerrado para todo $i \Rightarrow x \in \bigcup_{i=1}^n X_i$ pos def. de unión.

<u>DEF</u>: Sea $A \subset \mathbb{R}^n$. A es acotado sii existieron $\varepsilon > 0$ tal que $A \subset B_{\varepsilon}(x)$ para algún $x \in \mathbb{R}^n$.

Observe que si A es acotado entonces $A \subset B_{\varepsilon'}(x)$. para x = 0. Entonces A es acotado sii $A \subset B_{\varepsilon}(0)$ para $0 \in \mathbb{R}^n \Rightarrow A$ es acotado si existe una distancia ε talque $\forall a \in A, d(o, a) < \varepsilon$.

Observe:

$$A \equiv [a, b]$$
 y $B \equiv (a, b)$ son a cotados

En \mathbb{R} conviene introducía nuera vocabulario. Sea $A \subset \mathbb{R}$. Luego cualquier número real l tal que $l \leq a \forall a \in A$ se llama cota inferior de A. Cualquier número real i'tal que $a \leq u \ \forall \ a \in A$ se llama cota superior de A. Decimos que A es a cotado interiormente (superiormente) si tiene al menos una cota inferior (cota superior). A es cotado si esta.

tanto acotado inferior como superiormente.

Observe que si A esta a cotado inf. (sup.) luego A tiene mer de una cota inferior (superior)

Note que o es una cota inf
 y \bot es una cota superior. Entonces decimos que
 $x\in U$ es la minima cota superior de Asi

- $x \in U$ (x es una cota superior)
- Si $x' \in U$, luego $x \le x'$

mínima cota superior de A se denota con M y la máxima cota inf la denotamos con $m \forall A \subset \mathbb{R}$:

 $m \leq M$ El $A_0 \subset \mathbb{R}$ garantiza la existe, de m y $M \forall A \subset \mathbb{R}$ que es acotado.

Llamamos a M(m) el máximo de A (mínimo) sii $M(m) \in A$. Observe que

A nu time máximo; pero

tiene máximo. Asume que A es acotado. Luego:

TEOREMA:

- (i) Sea $A \subset \mathbb{R}$ abierto. Luego m y $M \notin A$; A no posee máximo ni mínimo.
- (ii) Sea $A \subset \mathbb{R}$ cerrado. Luego m y $M \in A$; A posee máximo y mínimo.

Demostración:

(i) Supongo que $M \in A$:

Entonces como $A = \mathring{A}, \exists \text{ un } \varepsilon > 0$ tal que $B_{\varepsilon}(M) \subset A$. Luego considere $a = M + \frac{1}{2}\varepsilon' \Rightarrow a \in B_{\varepsilon}(M) \underset{m}{\Rightarrow} a \in A \text{ y } M < a \rightarrow M /\!\!/ U \Rightarrow M$ no pose de con la menos de todas los cotas superiores.

(ii) Suponga que A es cerrado:

y que $M \not\in A \Rightarrow M \in A^c$ y $A^c = \mathring{A}^c \Rightarrow \exists \varepsilon > 0$ tal que $x \in B_{\varepsilon}(M) \subset A^c \Rightarrow x^1 = x - \frac{1}{2}\varepsilon > a \ \forall \ a \in A \text{ pero } x' < M \text{ la coal contradia que } M \in U.$

 $\underline{\mathsf{DEF}} : \mathsf{Decimor}$ que A es comacto sii

- (i) $M \in A$
- (ii) $m \in A$

Es decir si A contiene tanto su máximo como so mínimo

Note que A debe ser entonces a cotado y cambo.

Limitis y continuidad

DEF: Una conocería de números reales es una función

$$f: \mathbb{N} \to \mathbb{R}$$

Ejemplos:

- 1. $f(n) = n^2$
- 2. $f(n) = (-1)^n$
- $3. \ f(n) = \frac{1}{n}$
- 4. $f(n) = 1 + \frac{1}{n}$

Notation: Se usa

$$x: \mathbb{N} \to \mathbb{R}$$

y es denote $\{x_n\}_{n=1}^{\infty}$. Note que x_n es el numero que toma x cuando se coalva en. De esa forma x_n es el enésimo termino de la función x. Note también que $\{x_n\}_{n=1}^{\infty}$ es difenente del rango de x

$$\{x_n|x_n=f(n) \text{ para } n\in\mathbb{N}\}$$

Ejemplos:

1.
$$\{x_n\}_{n=1}^{\infty} = \{n^2\}_{n=1}^{\infty}$$

2.
$$\{x_n\}_{n=1}^{\infty} = \{(-1)^n\}_{n=1}^{\infty} \quad \{x_n\} \text{ para } x_n = (-1)^n \ \forall \ n \in \mathbb{N}$$

3.
$$\{x_n\}_{n=1}^{\infty} = \{\frac{1}{b}\}_{n=1}^{\infty}$$

4.
$$\{x_n\}_{n=1}^{\infty} = \left\{1 + \frac{1}{n}\right\}_{n=1}^{\infty}$$
.

Gráfico de x es:

Segunda secuencia converge a cero mientras qui la primera diverge:

<u>DEF:</u> El limite de $\{K_n\}_{n=1}^{\infty}$ es $a \in \mathbb{R}$ denota de pos $\lim_{n \to \infty} x_n = a$ o $x_n \to a$ si $\forall \varepsilon > 0$ existe un N_{ε} tal que

$$|x_n - a| = d(x_n, a) < \varepsilon$$

 $\forall n \geq N_{\varepsilon}$

Ejemplo: Sea

$$\{x_n\}_{n=1}^{\infty} = \left\{\frac{1}{(-2)^n}\right\}_{n=1}^{\infty}$$

Note:

Entonces:

Proposition: $\{x_n\}_{n=1}^{\infty} \to 0$

Demost: Sea $\varepsilon>0$ arbitrario. Escoja $N_\varepsilon\in\mathbb{N}$ tal que $2^{N_\varepsilon}>\frac{1}{\varepsilon}$. Lea $n\in\mathbb{N}$ y $n\geq N_\varepsilon$. Luego si

•
$$n \text{ es par} \Rightarrow \left| +\frac{1}{(-2)^n} \right| = \frac{1}{2^n} \text{ y luego}$$

$$\frac{1}{2^n} < \varepsilon \ \forall \ \varepsilon > 0 \ \mathrm{sii} \ n \geq N_{\varepsilon}$$

•
$$n \text{ es impar} \Rightarrow \left| \frac{1}{(-2)^n} \right| = \frac{1}{2^n}$$

La idea es similar para funciones en general.

• Sea I un intervalo abierto en \mathbb{R} . Sea $a \in I$. Suponga que f está definida en I excepto posiblemente en a. Sea entonces $I - \{a\} \equiv X$. Dado un número $L \in \mathbb{R}$ escribimos

$$\lim_{x \to a} f(x) = L$$

 Si

 $\forall \varepsilon>0, \ \exists \ \mathrm{un} \ \delta>o, \ \mathrm{tal} \ \mathrm{que} \ |f(x)-L|=d(x,L)<\varepsilon \ \mathrm{cuando} \ x \ \mathrm{satisface} \ 0<|x-a|\equiv d(x,a)<\delta$ Observe que la condición $n\geq N_\varepsilon$ se reemplaza por la condición $d(x,a)<\delta$ or ejemplo:

(i) f(x) = 1 + x para $x \in [0, \infty)$ y a = 1. Entonces L = 2

Formalmente i sea $\varepsilon >$ arbitrario, luego

$$\lim_{x \to a} f(x) = 1 + a$$

Sea $\varepsilon > 0$ arbitrario. Escoja $\delta = \varepsilon$. Luego

$$d(1+x, 1+a) = |x-a|$$

y si
$$x - a > 0 \implies x - a < a \iff x < 0 + a$$

Ejemplo:

$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{para } x \neq 1 \\ 6 & \text{si} \end{cases} \quad x = 1$$

Note que

$$f(x) = \begin{cases} x+1 & \text{para } x \neq 1 \\ 6 & \text{si} \end{cases} \quad x = 1$$

L=2. Sea $\varepsilon>$ arbitrario. Luego

$$\lim_{x \to 1} f(x) = L = 2$$

Scoga $\varepsilon=1$

Sea ahora $F:X\to\mathbb{R}$ para $X\subset\mathbb{R}^n$. Luego décimas que $L\in\mathbb{R}$ es el limite de F(x) y escribimos (X no necesariamente precluye a)

$$\lim_{x \to a} F(x) = L$$

 $(a \in \mathbb{R}^b)$

 \sin

$$\left\{ \begin{array}{l} \forall \ \varepsilon > 0, \ \exists \ \mathrm{un} \ \delta > 0 \ \mathrm{tal} \ \mathrm{que} \ \mathrm{si} \\ \\ 0 < d(x,a) \equiv \|x-a\| < \delta \\ \\ \mathrm{Luego} \ d(f(x),a) = |F(x)-a| < \varepsilon. \end{array} \right.$$

 $\underline{\mathrm{DEF}} \colon \mathrm{Sea}\ F : X \to \mathbb{R}\ (X \ \mathrm{incluye}\ a).$ Decimos que F es continúa en a si

$$\lim_{x \to a} f(x) = F(a)$$

o:

$$\left\{ \begin{array}{l} \forall \ \varepsilon>0, \ \exists \ \mathrm{un} \ \delta>0 \ \mathrm{tal} \ \mathrm{que} \ \mathrm{si} \\ \\ d(x,a)=\|x-a\|<\delta \ \mathrm{luego} \ d(f(x),F(a))=|F(x)-F(a)|<\varepsilon. \end{array} \right.$$

Note que la continuidad $\not\Rightarrow$ suavidad o diferenciabilidad. Por ej:

$$f(x) = |x|$$
 para $-\infty < x < \infty$

Luego:

Luego F(0)=0 y escoge $\delta=\varepsilon.$ F es continúa pero no diferenciable en x=0.

Finalmente:

<u>TEOREMA MAXIMO:</u> Sea $X\subset \mathbb{R}^n$ compacto y $F:X\to \mathbb{R}$ continua en X. Luego \exists points $x^0,x^1\in D$ tal que

$$f(x^0) \le f(x) \le f(x^1) \quad \forall x \in X$$

OBS: Proveo cond. suf. Pero nada día si no se cumplen lar cond.

Ejemplos:

1. Sea
$$X = \mathbb{R}$$
 y $F(x) = x^3 \ \forall \ \mathbb{R}$.

Como X no es compacto $\Rightarrow F(x) = \mathbb{R} \quad \Rightarrow \ x^0 \ \text{y} \ x^1$ No existen.

2. Sea X=(0,1) y F(x)=x. Luego:

Entonces
$$F(x) = (0,1)$$
 $\Rightarrow x^0 \ y \ x^1$ no existen.
3. $X = [-1,1] \ y \ F(x) = \begin{cases} 0 & \text{si} \quad x = -1 \ \text{o} \ x = 1 \\ x & \text{si} \quad -1 < x < 1 \end{cases}$

$$F(x) = (-1, 1) \Rightarrow \text{ ni } x^0, \text{ ni } x^1 \text{ existen.}$$

Calculo y Optimización:

1. F es Cóncava

2.
$$F''(x) \le 0 \quad \forall x \in \mathring{X}$$

3.
$$\forall x^0 \in X : F(x) \le F(x^0) + F'(x^0)(x - x^0) \quad \forall x \in X.$$

4. Si
$$F''(x) < 0 \quad \forall x \in \mathring{X} \quad \Rightarrow F$$
 is est. Cóncava

Si $F: X \subset \mathbb{R}^n \to R$, se tiene que:

$$F_i(x) = \frac{\lim_{h \downarrow 0} F(x_{-i}, x_i + h) - F(x_{-i}, x_i)}{h} \equiv \text{derivada parcial}$$

El varctor gradiente es

$$\nabla F(x) = (F_1(x), \dots, F_n(x))$$

Recuerde que:

$$F_{ij} = \frac{\partial}{\partial x_j} (F_i(x)) = \frac{\partial^2 F(x)}{\partial x_i \partial x_j}$$

Entonces

$$\nabla F_i(x) = (F_{i1}(x), \dots, F_{ii}(x), \dots, F_{in}(x)) \quad i = 1, 2, \dots, n.$$

Luego

$$H(x) = \begin{pmatrix} \nabla F_1(x) \\ \nabla F_2(x) \\ \vdots \\ \nabla F_n(x) \end{pmatrix}$$

Hesiano (Segunda derivada)

Asumimos que $F_{ij} = F_{ji}$ (Young theorem). Luego en \mathbb{R}^n

- 1. F es cóncava
- 2. H(x) es semi-definida negativa $\forall x \in \mathring{X}$

3.
$$\forall x^0 \in X : F(x) \le F(x^0) + \nabla F(x^0)(x - x^0) \ \forall x \in X$$

4. Si H(x) es definida negativa $\forall x \in X$, luego F es estr. cóncava

TEST:

Los menores precipites de H(x) son

$$D_{1}(x) = |F_{11}| = F_{11}$$

$$D_{2}(x) = \begin{vmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{vmatrix}$$

$$\vdots = \begin{vmatrix} F_{11} & F_{12} & \cdots & F_{1i} \\ \vdots & & & & \\ F_{i1} & F_{i2} & \cdots & F_{ii} \end{vmatrix}$$

Luego:

- 1. Si $(-1)^i D_i > 0$, i = 1, 2, ..., n, H(x) es definida negativa en x, Si H(x) es DN $\forall x \in X \Rightarrow F$ es est cóncava
- 2. Si $D_i(x) > 0 \ \forall i = 1, 2, ..., n, \ H(x)$ es definida positiva en x, Si H(x) es DP $\forall x \in X \Rightarrow F$ es est. cónvexa.

Defina:

1.
$$\max_{x} F(x)$$
$$x \in \mathbb{R}$$

Luego asomiento que el conj. de soluciones es No sacía:

* Sie s es un max local de F, luego F'(x) = 0

Entoicion: $F(s+h) - F(s) \approx dy = F'(x)h$.

Note que $(*) \rightarrow$ la solución s pertena al conjunto de puntos coticos de F:

$${x: F'(x) = 0}$$

Luego:

** Si F'(s) = 0 y $F''(s) < 0 \Rightarrow F$ tiene un unico max. local en s

Intuición: Como $f''(s) < 0 \implies \exists B_{\varepsilon}(s)$ tal que f'(x) > 0 para $\forall x \in (s - \varepsilon, s)$ y $F'(x) < 0 \ \forall \varepsilon(s, s + \varepsilon)$

*** Si F'(s) = 0 y F es est. concava en $\Rightarrow s$ el unico max global de F en \mathbb{R}^n .

2. Defina

$$\max F(x)$$

$$x \in \mathbb{R}^n$$

* Si F alcanza un óptimo local en x^* , luego x^* resudare:

$$\nabla F(x^*) = 0$$

Ej:
$$F(x) = x_2 - 4x_1^2 + 3x_1x_2 - x_2^2 \implies x_1^* = \frac{3}{7} \text{ y } x_2^* = \frac{8}{7}$$
. Luego:

** Si $\nabla F(x^*) = 0$ y H(x) en $x = x^*$ es Def. negativa $\Rightarrow F$ alcanza un max local en x^*

Ej:
$$H(x) = \begin{pmatrix} -8 & 3 \\ 3 & -2 \end{pmatrix}$$
 y $D_1(x) = -8 < 0$ y $D_2(x) = 7 > 0 \Rightarrow x^*$ es un max. local.

TEOREMA LOCAL-GLOBAL:

Sea $F: \mathbb{R}^n \to \mathbb{R}$ cóncava. Luego los siguientes incisos con equivalentes:

- (i) $\nabla F(x^*) = 0$
- (ii) F alcanza en max local en x^*
- (iii) F alcanza un max global en x^*
- $(iii) \Rightarrow (ii) \Rightarrow (i)$. Ahora mostramos que $(i) \Rightarrow (iii)$. Sabemos que:

$$F(x) \le F(x^*) + \nabla F(x^*)(x - x^*) \quad \Rightarrow \quad F(x) \le F(x^*) \quad \forall x$$

Sea $F: \mathbb{R}^n \to \mathbb{R}$ Cóncava. Luego

$$\operatorname*{argmax}_{x}\{F(x):x\in X\}$$

Convexo.

 $S \equiv \left\{x \in \mathbb{R}^n | F(x) \geq F(x^1) \ \forall x^1 \in \mathbb{R}^n \right\}$. Sean x^* y $x^{**} \in S$. Luego:

$$F(tx^* + (1-t)x^{**}) \ge F(x^*) \implies F(x^t) \ge F(x^*) \implies F(x^t) = F(x^*)$$

TEOREMA: Si x^* maximiza F que es est. cóncava, luego

$$F(x^*) > F(x) \quad \forall x \neq x^*$$

Suponga que no $\Rightarrow F(x') = F(x^*) \ \forall \ x' \neq x^*$. Luego:

$$F(x^t) > tF(x^1) + (1 - t)F(x^*) \ \forall \ t \in (0, 1)$$
$$F(x^t) > F(x^1)$$

 $\Rightarrow x^1$ no es un max. global.

<u>TEOREMA:</u> Si F es est. cóncava y $\nabla F(x^*) = 0 \implies x^*$ es el onico max global.

Programación NO-LINEAL

Sea

$$F: \mathbb{R}^n \to \mathbb{R}$$

$$X \subset \mathbb{R}^n$$

Luego nuestro problema es:

$$\max F(x)$$

$$x \in X$$

 $F \equiv$ función objetivo

 $X \equiv \text{conj. factible}$

 $C \equiv$ variables elección.

Sumimos:

A1: F es diferenciable en \mathbb{R}^n y X es compacto

garantiza que (P) tiene al menos q solución. Ahora decimos que un punto factible $x^* \in X$

- $x^* \in X$ es un max global si $F(x^*) \ge F(x) \ \forall \ x \in X$
- $x^* \in X$ es un max. local si existe una bola abierta $B_{\varepsilon}(x^*) \cap X \neq \phi$ tal que $F(x^*) \geq F(x)$

 $x \in X \cap B_{\varepsilon}(x^*)$, Recuerde que:

$$B_{\varepsilon}(x^*) \equiv \{x \in \mathbb{R}^n : d(x, x^*) < \varepsilon\}$$

Luego:

• x^* es un max local (global) estricto 0 unico si:

$$F(x^*) > F(x) \; \forall \; x \in B_{\varepsilon}(x^*) \cap X$$
MAX LOCAL ESTRICTO)

$$F(x^*) > F(x) \ \forall x \in X \text{ MAX. GLOBAL ESTRICTO}$$

En economía, en general, X se caracteriza en términos de rest. funcionales. Sea $G^j: \mathbb{R}^n \to \mathbb{R}$ para $n=1,2,\ldots,m$. Luego se asume en general:

$$G^{j}(x) \le c_{j}$$
 $j = 1, 2, \dots, m$
 $x_{j} \ge 0$

Entonces en general:

$$X \equiv \left\{ x \in \mathbb{R}^n | G^j(x) \le c_j \quad j = 1, 2, \dots, m; \quad x \ge 0 \right\}$$

Finalmente:

(P)
$$\max_{x} F(x)$$
$$x \in X \equiv \left\{ x \in \mathbb{R}^{n} | G^{j}(x) \le c_{j}, \ j = 1, 2, \dots, m, \quad x \ge 0 \right\}$$

Ejemplos:

1. Problema del consumidor:

(i)
$$F(x) = u(x)$$
; $x \ge 0$ y $\sum_{i=1}^{n} p_i x_i \le y$

2. Minimización castor:

(a)
$$F(x) = \sum_{i=1}^{n} w_i x_i, \ x \ge 0 \text{ y } f(x) \ge y \text{ es } -f(x) \le -y \ \Rightarrow \ G(x) \le c \text{ es } -f(x) \le -y$$

We will assume that $X = \phi$

X puede ser gráficamente representado par ej:

REST. DE IGUALDAD: Ahora consideramos

$$\max_x F(x)$$

$$X \equiv \left\{x \in \mathbb{R}^2: \ G(x) = c\right\}$$

Vea notas para este caso. En general:

<u>TEOREMA LAGRANGE</u>: Sea $F: \mathbb{R}^n \to \mathbb{R}$ y $G^j: \mathbb{R}^n \to \mathbb{R}$ funcionas diferenciables. Suponga que es un óptimo (máximo-mínimo) o solución de:

$$\max_{x} F(x)$$

$$x \in X \equiv \left\{ x \in \mathbb{R}^{n} : G^{j}(x) = c_{j} \quad \forall \ j = 1, 2, \dots, m \right\}$$

m < nLuego si:

• $\nabla G^j(x^*),\ j=1,2,\ldots,m$ son linealmente: adependientes, existen m números $A_j^*\quad j=1,2,\ldots,m \text{ tal que:}$

$$\frac{\partial L(x^*, \lambda^*)}{\partial x_i} = F_i(x^*) - \sum_{j=1}^m \lambda_j G_i^j(x^*) = 0 \quad i = 1, 2, \dots, n$$

usa obtener la solución tenemos un sistema de r+m reacciones

$$(E_i) \quad \frac{\partial L(x^*, \lambda^*)}{\partial x_i} = 0 \quad i = 1, 2, \dots, n$$

$$(E_j) \quad \frac{\partial L(x^*, \lambda^*)}{\partial \lambda_j} = G^j(x^8) - c^j = 0 \quad j = 1, 2, \dots, m$$

Podemos evalúan F en tolas aquellos puntos que satisfagan simultáneamente E_i y E_j .

EL SIGNIFICADO DEL MULTIPLICADON

ea

$$\max_{x \in X} F(x_1, x_2)$$

$$X(c) \equiv \left\{ x \in \mathbb{R}^2 | g(x_1, x_2) = c \right\}$$

$$c \in C \subset \mathbb{R}$$

Ejemplo:

•
$$F(x_1, x_2) = x_1 + x_2 - \frac{1}{2} \cdot x_2^2 - x_1^2$$

 $g(x) = x_1 + x_2 = c, \quad c \in [0, 1]$
 \Rightarrow CPO:

$$1 - 2x_1 - \lambda = 0 \tag{1}$$

$$1 - x_2 - \lambda = 0 \tag{2}$$

$$x_1 + x_2 = c \tag{3}$$

D2 (1) y (2):

$$1 - 2x_1 = \lambda = 1 - x_2 \quad \Rightarrow \quad x_2 = 2x_1$$
 (4)

Sando (4) en (3):

$$3x_1 = c \implies x_1^* = \frac{c}{3}; \ x_2^* = \frac{2}{3}c$$

$$y \lambda^* = \frac{(3-2c)}{3}$$

Note que:

$$x_i^*(c), \ \lambda^*(c) \quad i = 1, 2$$

y
$$v(c) = F(x_1^*(c), x_2^*(c)) = c - \frac{3}{9}c^2 \implies v(c) = c\left(1 - \frac{3}{9} \cdot c\right)$$

Es decir

$$v(c) = \max_x \left\{ F(x) | g(x) = c \right\} = F(x_1^*(c), x_2^*(c))$$

<u>TEOREMA:</u> Sean F y g funciones C^1 . La solución para un determinado valor de c es $(x_1^*(c), x_2^*(c), \lambda^*(c))$. Su ponga que $x_i^*(c)$ y $\lambda^*(c)$ son funciones c^1 de c. Luego:

$$\lambda^*(c) = \frac{d}{dc}F(x^*(c)) = v^1(c)$$

Demostración: Usando la Regla de la cadena:

- 1. $v'(c) = F_1(x^*(c))x_1'(c) + F_2(x'(c))x_2'(c)$ luego las CPO son:
- 2. $F_i(x^*(c)) \lambda^*(c)g_i(x^*(c)) = 0$ i = 1, 2

Entonces: (2) en (1)

$$v'(c) = \lambda^*(c)g_1(x^*(c)) + x_1'(c) + \lambda^*(c)g_2(x^*(c))x_2'(c)$$
$$= \lambda^*(c) \left[g_1(x^*(c)) \frac{dx_1^*(c)}{dc} + g_2(x^*(c)) \frac{dx_2^*(c)}{dc} \right]$$

pero como $g(x_1^*(c), x_2^*(c)) = c$ se tiene que:

$$g_1(x^*(c))\frac{dx_1^*(c)}{dc} + g_2(x^*(c))\frac{dx_2^*}{dc}(c) = 1$$

 $\Rightarrow v'(c) = \lambda^*(c)$

En nuestro ejemplo:

$$v'(c) = 1 - \frac{6}{9}c \quad \Rightarrow \quad v'(c) = 1 - \frac{2}{3}c = \lambda^*(c)$$

Si hay m restricciones de igualdad:

$$\lambda_j^*(c_1, c_2, \dots, c_m) = v_j'(c_1, \dots, c_m)$$

Kohn-Tucker: Suponga que $F:\mathbb{R}^n \to \mathbb{R}$ y considere

$$\max_{x \in X} F(x)$$

$$X \equiv \{x \in \mathbb{R}^n | g(x) \le c\}$$

Suponga que n=2. Considere:

El Lagrangiano es

$$L(x) = F(x) - \lambda(g(x) - c)$$

Luego:

• Si $g(x^*) = c$, entonces $L_i(x^*) = 0 \quad \forall i = 1, 2, \dots, n$

• Si $g(x^*) < c$, Luego $F'_i(x^*) = 0 \quad \forall i$

Proposición: $\lambda^* \geq 0$

Caso 1: Si $\lambda^* < 0 \implies v'(c) < 0 \implies x^* \in \mathring{X} \implies$ contradice x^* es óptimo. En el caso 2, $\lambda^* = 0$

Entonces: en el caso 2, $F_i'(x^\ast) = L_i'(x^\ast).$ Ahora

Caso 1: $\lambda^* \geq 0$ y $g(x^*) = c$

Caso 2: $\lambda^* = 0$ y $g(x^*) < c$

Luego podemos resumin:

$$L_i(x^*) = 0 \quad \forall \ i = 1, 2, \dots, n$$

$$\lambda^* \ge 0, \ g(x^*) \le c \ y \ \lambda^* = 0 \ o \ g(x^*) - c = 0$$

 \Rightarrow

$$L_i(x^*) = 0 \quad \forall \ i$$

$$\lambda^* \ge 0, \ g(x^*) \le c \ y \ \lambda^*(g(x^*) - c) = 0$$

En general:

$$L(x) = F(x) - \sum_{j=1}^{m}, \ \lambda_j(g^j(x) - c)$$

lar condiciones de Kuhn-Tocker para

(P)
$$\max_{x \in X} F(x)$$
$$X \equiv \left\{ x \in \mathbb{R}^2 | g^j(x) \le c_j \quad \forall \ j = 1, 2, \dots, m \right\}$$

un

$$\begin{split} K_i'(x^*) &= 0 \quad \forall \ i \\ \lambda_j &\geq 0, \ g_j(x^*) \leq c \ \text{y} \ \lambda_j \left[g^j(x^*) - c \right] = 0 \quad \forall \ j = 1, 2, \dots, m \end{split}$$

Si x^* satisface las condiciones de K-T, resuelve x^* el problema?? El siguiente teorema responde a esta pregunta.

TEOREMA 1: Sean F y g^j para $j=1,2,\ldots,m$ differenciables. Asuma que:

- (i) F es cóncava
- (ii) g^j para $\forall j$ es lineal o g^j para $\forall j$ es convexa y existe on $x \in \mathbb{R}^n$ tal que $g^j(x) < c_j \ \forall j$ Luego x^* resuelve (P) sii x^* satisface las K T condiciones de K T

TEOREMA 2: Asuma que:

F es cuasi-cóncava y que g^j es lineal $\forall j$

Luego si x^* resuelve (P), existe un vector λ^* que es unico y que (x^*, λ^*) satisface los condicionar le K-T y si (x^*, λ) satisface los condiciones de K-T y $F_i'(x^*) \neq o \ \forall \ i, \ x^*$ resuelve P.

Ejemplos:

$$\max_{x \in X} \left[-(x-2)^2 \right]$$

$$X \equiv \left\{ x \in \mathbb{R} | x \ge 1 \right\}$$

Note que
$$F(x) = -(x-2)^2$$
 \Rightarrow $F'(x) = -2(x-2)$ \Rightarrow $F'(x) = 0$ \Leftrightarrow $x = 2$ y $F''(x) = -2 < 0$

Entonces:

 $x^* = 2.$

Usando K-Tnote que

$$\max_{x \in X} \left[-(x-2)^2 \right]$$

$$X \equiv \{x \in \mathbb{R} | 1 - x \le 0\}$$

F es cóncava y g(x) es lineal. Entonces:

$$-2(x-2) + \lambda = 0 \tag{1}$$

$$\lambda \ge 0, \ x - 1 \ge 0 \text{ y } \lambda(x - 1) = 0$$
 (2)

Suponga que $x = 1 \implies \lambda \ge 0$ y de (1):

 $2 + \lambda = 0$ imposible.

Entonces sea $x > 1 \implies \lambda = 0$ y $x^* = 2$

$$\max_{x \in X} \left[-(x_1 - 4)^2 - (x_2 - 4)^2 \right]$$

$$X \equiv \left\{ x \in \mathbb{R}^2 : \ x_1 + x_2 \le 4 \text{ y } x_1 + 3x_2 \le 9 \right\}$$

Las condiciones de K-T son:

$$-2(x_1 - 4) - \lambda_1 - \lambda_2 = 0 \tag{1}$$

$$-2(x_2 - 4) - \lambda_1 - 3\lambda_2 = 0 \tag{2}$$

$$x_1 + x_2 \le 4, \ \lambda_1 \ge 0 \ \text{y} \ \lambda_1(x_1 + x_2 - 4) = 0$$
 (3)

$$x_1 + 3x_2 \le 9, \ \lambda_2 \ge 0 \ \text{y} \ \lambda_2(x_1 + 3x_2 - 9) = 0$$
 (4)

Usando K-T note que

$$\max_{x \in X} \left[-(x-2)62 \right]$$

$$X \equiv \left\{ x \in \mathbb{R} | 1 - x \le 0 \right\}$$

 ${\cal F}$ es cóncava y g(x)es lineal. Entonces:

$$-2(x-2) + \lambda = 0 \tag{1}$$

$$\lambda \ge 0, \ x - 1 \ge 0 \text{ y } \lambda(x - 1) = 0$$
 (2)

Suponga que $x = q \implies \lambda \ge 0$ y de (1):

$$2 + \lambda = 0$$
 imposible

Entonces sea $x > 1 \implies \lambda = 0$ y $x^* = 2$

$$\max_{x \in X} \left[-(x_1 - 4)^2 - (x_2 - 4)^2 \right]$$

$$X \equiv \left\{ x \in \mathbb{R}^2 : \ x_1, x_2 \le 4 \text{ y } x_1 + 3x_2 \le 9 \right\}$$

Las condiciones de K-T son:

$$-2(x_1 - 4) - \lambda_1 - \lambda_2 = 0 \tag{1}$$

$$-2(x_2 - 4) - \lambda_1 - 2\lambda_2 = 0 \tag{2}$$

$$x_1 - x_2 \le 4, \ \lambda_1 \ge 0 \ \text{y} \ \lambda_1(x_1, x_2 - 4) = 0$$
 (3)

$$x_1 + 3x_2 \le 0, \ \lambda_2 \ge 0 \text{ y } \lambda_2(x_1 + 3x_2 - 9) = 0$$
 (4)

Luego:

1. $(I,I) \Rightarrow \lambda_1 = 0 = \lambda_2.$ Luego de (1) y (2)

$$-2(x_1 - 4) = 0$$

$$-2(x_2 - 4) = 0 \implies x_1 = x_2 = 4$$

Pero luego g_1 no se satiface.

2. $(A, A) \Rightarrow \lambda_i \geq 0 \ \forall i \text{ y que:}$

$$x_1 + x_2 = 4 \implies x_2 = 4 - x_2$$

 $x_1 + 3x_2 = 9 \implies x_1 = 9 - 3x_2$

Entonces

$$x_2 = 4 - (9 - 3x_2) = -5 + 3x_2$$

 $2x_2 = 5 \implies x_2 = \frac{5}{2} \quad \text{y} \quad x_1 = \frac{3}{2}$

Luego (1) y (2)

$$-2\left(\frac{3}{2} - 4\right) - \lambda_1 - \lambda_2 = 0$$

$$-2\left(-\frac{5}{2}\right) = \lambda_1 + \lambda_2$$

$$5 = \lambda_1 + \lambda_2 \implies \lambda_1 = 5 - \lambda_2$$

$$3 = \lambda_1 + 3\lambda_2$$

$$3\lambda_2 + 5 - \lambda_2 = 3 \implies 2\lambda_2 + 5 = 3 \implies 2\lambda_2 = -2 \text{ (imposible)}$$

(I, A) Luego:

$$x_1 + x_2 < 4, \ \lambda_1 = 0$$

 $x_1 + x_2 \cdot 3 = 9 \text{ y } \lambda_2 \ge 0$

En (1), (2)

$$-2(x_1 - 4) = \lambda_2$$
 (a)
 $-2(x_2 - 4) = 3\lambda_2$ (b)
 $x_1 + 3x_2 = 9$ (c)

Usando (a) en (b):

$$-2(x_2 - 4) = 3(-2(x_1 - 4))$$

$$-2(x_2 - 4) = -6(x_1 - 4)$$

$$-2x_2 + 8 = -6x_1 + 24$$

$$2x_2 - 8 = 6x_1 - 24$$

$$2x_2 = 6x_1 - 16$$

$$x_2 = 3x_1 - 8$$

En (c):

$$x_1 + 9x_1 - 24 = 9 \implies 10x_1 = 33 \implies x_1 = 33/10 \text{ y } x_2 = 19/10$$

pero
$$\frac{33}{10} + \frac{19}{10} = 4.9 > 4$$

 $(A, I) \Rightarrow x_1 + x_2 = 4, \ \lambda_1 \ge 0 \text{ y } \lambda_2 = 0 \text{ Entonces:}$

$$-2(x_1 - 4) = \lambda_1
-2(x_2 - 4) = \lambda_1 \Rightarrow x_1^* = x_2^* = 2 ; \lambda_1^* > 0$$

Donde
$$g'_1(x) = x_1 + x_2 = 4 \Rightarrow x_2 = 4 - x_1$$

 $g^2(x) = 3x_2 + x_1 = 9 \Rightarrow x_2 = 3 - \frac{1}{3}x_1$

TEOREMAS DE LA ENVOLVENTE:

1. Sea $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ dada pos F(x, a) para $a \in \mathbb{R}$. Considere

$$\max_{x \in \mathbb{R}^n} F(x, a)$$

y assuma que $x^*(a)$ es la solución del problema. Suponga que x^* es C^1 . Luego:

$$v'(a) = \frac{d}{da} \cdot F(x^*(a), a) = F_a(x^*(a), a) = \frac{\partial F(x^*(a), a)}{\partial a}$$

Demostración: Usando la RC:

$$v'(a) = \sum_{i=1}^{n} F_i(x^*(a), a) \frac{dx_i^*}{da} + F_a(x^*(a), a)$$
$$= F_a(x^*(a), a)$$

que
$$\nabla F_i(x^*, a) = 0$$

Ejemplos:

(a)
$$F(x,a) = -x^2 + 2ax + 4a^2$$

Entonces:

$$F'_{x}(x,a) = -2x + 2a = 0 \implies x^{*}(a) = a$$

$$v(a) = 5a^2 \text{ y } v'(a) = 10a$$

Usando el TE:

$$\frac{\partial F}{\partial a}(x^*(a), a) = F_a(x^*(a), a) = 2x^*(a) + 8a = 10a$$

2. Sean F y $g^i:\mathbb{R}^n\times\mathbb{R}\to\mathbb{R}$ funciones C^1 y $x^*(a)=(x_1^*(a),\dots,x_2^*(a))$ sea a solución de

$$\max_{x \in X} F(x, a)$$

$$X \equiv \left\{ x \in \mathbb{R}^n | g^j(x, a) = 0 \right\}$$

Luego:

$$v'(a) = \frac{dF(x^*(a), a)}{da} = \frac{\partial L}{\partial a}(x^*(a), \lambda^*(a), a)$$

Demostración:

(a)
$$\frac{dF(x^*(a), a)}{da} = \sum_{i=1}^n F_i'(x^*(a), a) \frac{dx_1^*(a)}{da} + F_a'(x^*(a), a)$$

(b) Las CPO con:

$$F_i(x^*(a), a) - \sum_{i=1}^m \lambda_j^* g_i^j(x^*(a), a) = 0$$

(c) Entonces:

$$v'(a) = \sum_{i=1}^{n} \sum_{j=1}^{m} \lambda_{j}^{*} g_{i}^{j}(x^{*}(a), a) \frac{dx_{i}^{*}}{da} + F_{a}'(x^{*}(a), a)$$
$$= \sum_{j=1}^{m} \lambda_{j}^{*} \left(\sum_{i=1}^{n} g_{i}^{j} \frac{x_{i}^{*}}{da} \right) + F_{a}'(x^{*}(a), a)$$

(d) Luego

$$g^{j}(x^{*}(a), a) = 0 \qquad \Rightarrow$$

$$\sum_{i=1}^{n} g_{i}^{j} \frac{dx_{i}^{*}}{da} + g_{a}^{j} = 0 \quad \Rightarrow \quad \sum_{i=1}^{n} g_{i}^{j} \frac{dx_{i}^{*}}{da} = -g_{a}^{j}(x^{*}(a), a)$$

(e) Use en 3:

$$v'(a) = -\sum_{j=1}^{m} \lambda_j^* g_a^j(x^*(a), a) + F_a'(x^*(a), a)$$
(*)

(f)
$$L(a) - F(x^*(a), a) - \sum_{j=1}^{m} \lambda_j^* g^j(x^*(a), a)$$

$$y: \frac{\partial L(a)}{\partial a} = F'_a(x^*(a), a) - \sum_{j=1}^m \lambda_j^* g_a^j(x^*(a), a)$$
 (**)