# Hopf Algebras

•

August 17, 2023

### Algebras

An (associative unital) algebra A over some commutative ring R is an R-module with a multiplication that is R-bilinear and associative with a unit element  $1 \in A$ .

### Algebras

An (associative unital) algebra A over some commutative ring R is an R-module with a multiplication that is R-bilinear and associative with a unit element  $1 \in A$ . To make this definition more "categorical", we define

#### Definition (Algebras)

An **algebra** A over some commutative ring R is an R-module equipped with an R-module map  $\mu: A \otimes A \to A$  and a unit  $\iota: R \to A$  such that

## Algebras

An (associative unital) algebra A over some commutative ring R is an R-module with a multiplication that is R-bilinear and associative with a unit element  $1 \in A$ . To make this definition more "categorical", we define

### Definition $\overline{\text{(Algebras)}}$

An **algebra** A over some commutative ring R is an R-module equipped with an R-module map  $\underline{\mu:A\otimes A\to A}$  and a unit  $\underline{\iota:R\to A}$  such that

$$\mu \circ (\mathrm{id} \otimes \iota) = \mu \circ (\iota \otimes \mathrm{id}) = \mathrm{id} \qquad \text{(identity)}$$

$$\mu \circ (\mathrm{id} \otimes \mu) = \mu \circ (\mu \otimes \mathrm{id}) \qquad \text{(associativity)}$$



## Coalgebras

In algebraic terms, the unit map sends  $r \in R$  to  $\iota(r) = r1$  in A. To construct the dual diagrams of algebra structures, we may define a coalgebra to be

#### Definition (Colgebras)

A coalgebra A over some commutative ring R is an R-module equipped with an R-linear map  $\Delta:A\to A\otimes A$  and a counit map  $\varepsilon:A\to R$  such that

# Coalgebras

In algebraic terms, the unit map sends  $r\in R$  to  $\iota(r)=r1$  in A. To construct the dual diagrams of algebra structures, we may define a coalgebra to be

#### Definition (Colgebras)

A **coalgebra** A over some commutative ring R is an R-module equipped with an R-linear map  $\Delta:A\to A\otimes A$  and a counit map  $\varepsilon:A\to R$  such that

# Structures on algebras and coalgebras

Let  $\sigma: A \otimes A \to A \otimes A$  be the *R*-bilinear map  $\sigma(a_1 \otimes a_2) = a_2 \otimes a_1$ .

# Structures on algebras and coalgebras

Let  $\sigma: A \otimes A \to A \otimes A$  be the *R*-bilinear map  $\sigma(a_1 \otimes a_2) = a_2 \otimes a_1$ .

#### Definition

Let A be an (co)algebra. It is said to be **(co)commutative** if the composition of  $\sigma$  and the (co)multiplication map is the (co)multiplication map itself.

# Structures on algebras and coalgebras

Let  $\sigma: A \otimes A \to A \otimes A$  be the *R*-bilinear map  $\sigma(a_1 \otimes a_2) = a_2 \otimes a_1$ .

#### Definition

Let A be an (co)algebra. It is said to be **(co)commutative** if the composition of  $\sigma$  and the (co)multiplication map is the (co)multiplication map itself.



An algebra homomorphism is an R-linear map  $\varphi:A\to B$  such that  $\varphi\circ\mu_A=\mu_B\circ(\varphi\otimes\varphi)$  and  $\varphi\circ\iota_A=\iota_B$ . Naturally a coalgebra homomorphism is a map  $\psi:A\to B$  such that  $\Delta_B\circ\psi=(\psi\otimes\psi)\circ\Delta_A$  and  $\varepsilon_B\circ\psi=\varepsilon_A$ . A **coideal** I of a coalgebra A is a submodule such that  $\Delta(I)\subseteq I\otimes A+A\otimes I$  and  $\varepsilon(I)=0$ .

Q: Why are coideals defined in this way?

Q: Why are coideals defined in this way?

A: Because we want quotients by coideals to be coalgebras.

Q: Why are coideals defined in this way?

A: Because we want quotients by coideals to be coalgebras. Let

 $f:A\to A$  be an endomorphism of some coalgebra. Then if  $x\in\ker f$ ,

 $\Delta(f(x)) = 0$  which means

Q: Why are coideals defined in this way? A: Because we want quotients by coideals to be coalgebras. Let  $f:A\to A$  be an endomorphism of some coalgebra. Then if  $x\in\ker f$ ,  $\Delta(f(x))=0$  which means

But  $\ker(f\otimes f)=\ker f\otimes A+A\otimes\ker f$  so we must have

Q: Why are coideals defined in this way?

A: Because we want quotients by coideals to be coalgebras. Let  $f:A\to A$  be an endomorphism of some coalgebra. Then if  $x\in\ker f$ ,

$$\Delta(f(x)) = 0 \text{ which means} \\ \left( \text{fof} \right) \left( \mathbf{A}(x) \right) = \mathbf{0} \quad \text{and} \quad \left( \text{fof} \right)$$

But 
$$\ker(f \otimes f) = \ker f \otimes A + A \otimes \ker f$$
 so we must have  $\Delta(x) \in \ker f \otimes A + A \otimes \ker f$ 

$$\Delta(1) \subseteq \mathbb{I} \otimes A + A \otimes \mathbb{I}$$

Exercise: using the same argument, show that to achieve our goal, we must have  $\varepsilon(I)=0$ .

# Hopf Algebras

#### Definition

An R-module A is a **Hopf algebra** if it is both an algebra and a coalgebra such that  $\frac{1}{2}$ 

- f 0 The multiplication  $\mu$  and unit  $\iota$  maps are coalgebra homomorphisms.
  - The comultiplication  $\Delta$  and counit  $\varepsilon$  maps are algebra homomorphisms.
- There is an bijective R-bilinear **antipode** map  $S:A\to A$  such that

$$\bigvee_{\mu \circ (\operatorname{id} \otimes S)} \bigvee_{\circ \Delta} \bigvee_{\omega = \mu \circ (S \otimes \operatorname{id})} \circ \Delta = \iota \circ \varepsilon$$

An ideal I of the Hopf algebra is an ideal and a coideal of A such that  $S(I) \subseteq I$ .

# Hopf Algebras

#### Definition

An R-module A is a **Hopf algebra** if it is both an algebra and a coalgebra such that

- ${\bf 0}$  The multiplication  $\mu$  and unit  $\iota$  maps are coalgebra homomorphisms.
- 2 The comultiplication  $\Delta$  and counit  $\varepsilon$  maps are algebra homomorphisms.
- **1** There is an bijective R-bilinear **antipode** map  $S:A\to A$  such that

$$\mu \circ (\mathrm{id} \otimes S) \circ \Delta = \mu \circ (S \otimes \mathrm{id}) \circ \Delta = \iota \circ \varepsilon$$

An ideal I of the Hopf algebra is an ideal and a coideal of A such that  $S(I)\subseteq I.$ 

We sometimes call the Hopf algebras "quantum groups", but usually the term refers to a Hopf algebra that is neither commutative nor cocommutative.

# Some easy exercises to help you understand the formalism

- Show that given Condition 3, Condition 1 is equivalent to Condition 2 in the previous definition.
- A homomorphism of Hopf algebra is a map that is both an algebra and a coalgebra homomorphism. Show that it must commute with the antipode.
- $\bullet$  If a Hopf algebra is commutative or cocommutative then the antipode map satisfies  $S^2=\mathrm{id}.$
- Prove that the vector space dual of a finite-dimensional Hopf algebra over some field k is a Hopf algebra. [Hint: pullback the structure maps of the original bialgebra;  $(V \otimes V)^* = V^* \otimes V^*$ .]

# Examples: global sections of group schemes and group algebras of finite groups I

We first set up some group objects. Let k be a nice enough field and R a finitely generated commutative k-algebra.

$$G = \operatorname{Spec} R$$
 or a finite group

# Examples: global sections of group schemes and group algebras of finite groups I

We first set up some group objects. Let k be a nice enough field and R a finitely generated commutative k-algebra.

$$G = \operatorname{Spec} R$$
 or a finite group

and they naturally have the associated algebras:

$$\Gamma(G, \mathcal{O}_G) = R$$
 or {functions  $f: G \to k$ }

# Examples: global sections of group schemes and group algebras of finite groups I

We first set up some group objects. Let k be a nice enough field and R a finitely generated commutative k-algebra.

$$G = \operatorname{Spec} R$$
 or a finite group

and they naturally have the associated algebras:

$$\Gamma(G, \mathcal{O}_G) = R$$
 or {functions  $f: G \to k$ }

The algebraic group is equipped with three morphisms:

$$\mu: G \times_k G \to G, i: G \to G, e: \operatorname{Spec} k \to G$$

corresponding to the group structure on the finite group has

$$\cdot: G \times G \to G, \text{inv}: G \to G, 1_G$$

(the "normal" group operations on finite groups).

# Examples: global sections of group schemes and group algebras of finite groups II

Since G is affine,  $\Gamma(G\times_k G)=\Gamma(G)\otimes\Gamma(G)$ . Thus, the three morphisms induce the following pullbacks on k-modules:

$$\Delta: R \to R \otimes R, \varepsilon: R \to k, S: R \to R$$

# Examples: global sections of group schemes and group algebras of finite groups II

Since G is affine,  $\Gamma(G \times_k G) = \Gamma(G) \otimes \Gamma(G)$ . Thus, the three morphisms induce the following pullbacks on k-modules:

$$\Delta: R \to R \otimes R, \varepsilon: R \to k, S: R \to R$$

If 
$$G$$
 is a finite group, then we can define 
$$(\mathbf{g} \circ \mathbf{f})(\mathbf{x}, \mathbf{y}) = \mathbf{f}(\mathbf{y})$$
 
$$\Delta: f \mapsto f \otimes f, \varepsilon: f \mapsto f(1_G), S: f \mapsto f \circ \text{inv}$$

In any case,  $\Gamma(G)$  is a Hopf algebra.

# Examples: global sections of group schemes and group algebras of finite groups II

Since G is affine,  $\Gamma(G \times_k G) = \Gamma(G) \otimes \Gamma(G)$ . Thus, the three morphisms induce the following pullbacks on k-modules:

$$\Delta: R \to R \otimes R, \varepsilon: R \to k, S: R \to R$$

If G is a finite group, then we can define

$$\Delta: f \mapsto f \otimes f, \varepsilon: f \mapsto f(1_G), S: f \mapsto f \circ \text{inv}$$

In any case,  $\Gamma(G)$  is a Hopf algebra.

Exercise: Using relations of the three morphisms on the algebraic group G (or the usual group structure on a finite group), show that  $(R,\Delta,\varepsilon,S)$  is a Hopf algebra.

# Universal enveloping algebras I

Let  $\mathfrak{g}$  be a Lie algebra over a field k.

# Universal enveloping algebras I

Let  $\mathfrak{g}$  be a Lie algebra over a field k.

#### **Definition**

An **enveloping algebra** of  $\mathfrak g$  is a pair  $(U,\varphi)$  where U is a unital associative algebra equipped with the Lie bracket [a,b]=ab-ba and  $\varphi:\mathfrak g\to U$  a Lie algebra homomorphism (regarding U as a Lie algebra). A **universal enveloping algebra** is an enveloping algebra  $(U(\mathfrak g),\Phi)$  with the universal property (in the category of enveloping algebras of  $\mathfrak g$ ).

# Universal enveloping algebras I

Let  $\mathfrak{g}$  be a Lie algebra over a field k.

#### Definition

An **enveloping algebra** of  $\mathfrak g$  is a pair  $(U,\varphi)$  where U is a unital associative algebra equipped with the Lie bracket [a,b]=ab-ba and  $\varphi:\mathfrak g\to U$  a Lie algebra homomorphism (regarding U as a Lie algebra). A **universal enveloping algebra** is an enveloping algebra  $(U(\mathfrak g),\Phi)$  with the universal property (in the category of enveloping algebras of  $\mathfrak g$ ).

Clearly a universal enveloping algebra is unique up to isomorphism if it exists.

#### Lemma

There exists a universal enveloping algebra of any Lie algebra  $\mathfrak{g}$ .

Construction: Let  $T=k\oplus \mathfrak{g}\oplus (\mathfrak{g}\otimes \mathfrak{g})\oplus \cdots$ . Define  $U(\mathfrak{g})=T/\sim$  where the equivalence relation is given by  $a\otimes b-b\otimes a=[a,b]$  for  $a,b\in \mathfrak{g}$ .

# Universal enveloping algebras II

If  $\mathfrak g$  is finite dimensional, let  $X_1,\dots,X_n$  be a basis of  $\mathfrak g$ . Write  $[X_i,X_j]=\sum c_{ijk}X_k.$ 

## Universal enveloping algebras II

If  $\mathfrak g$  is finite dimensional, let  $X_1,\ldots,X_n$  be a basis of  $\mathfrak g$ . Write  $[X_i,X_j]=\sum c_{ijk}X_k$ . Then  $U(\mathfrak g)$  is the associative unital algebra generated by generators  $x_1,\ldots,x_n$  and relations  $x_ix_j-x_jx_i=\sum c_{ijk}x_k$ .

#### Theorem (Poincaré-Birkhoff-Witt)

Given a Lie algebra  $\mathfrak g$  and an ordered basis  $\{x_1, x_2, \ldots\}$  of  $\mathfrak g$ , the monomials  $x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$  form a basis of  $U(\mathfrak g)$ . In particular, the basis of  $\mathfrak g$  is linearly independent in  $U(\mathfrak g)$ , so the map  $\Phi: \mathfrak g \to U(\mathfrak g)$  is injective.

## Universal enveloping algebras II

If  $\mathfrak g$  is finite dimensional, let  $X_1,\ldots,X_n$  be a basis of  $\mathfrak g$ . Write  $[X_i,X_j]=\sum c_{ijk}X_k$ . Then  $U(\mathfrak g)$  is the associative unital algebra generated by generators  $x_1,\ldots,x_n$  and relations  $x_ix_j-x_jx_i=\sum c_{ijk}x_k$ .

#### Theorem (Poincaré-Birkhoff-Witt)

Given a Lie algebra  $\mathfrak g$  and an ordered basis  $\{x_1, x_2, \dots\}$  of  $\mathfrak g$ , the monomials  $x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$  form a basis of  $U(\mathfrak g)$ . In particular, the basis of  $\mathfrak g$  is linearly independent in  $U(\mathfrak g)$ , so the map  $\Phi: \mathfrak g \to U(\mathfrak g)$  is injective.

Exercise: Won the universal enveloping algebra of  $\mathfrak{g}$ , let  $\Delta(x) = x \otimes 1 + 1 \otimes x$ , S(x) = -x and  $\varepsilon(x) = 0$ . Show that  $U(\mathfrak{g})$  is a cocommutative Hopf algebra.

 $\mathbb{R}^2$ 

Let's consider a particle moving on a line. In classical mechanics, we study the **state space** of the position x and momentum p and the **algebra of observables**  $\mathcal{O}(X)=\mathbb{C}[x,p]$  generated by differentiable complex functions on X. The Poisson bracket of the generators is  $\{x,p\}=1$ , and the observables commute.

Let's consider a particle moving on a line. In classical mechanics, we study the **state space** of the position x and momentum p and the **algebra of observables**  $\mathcal{O}(X)=\mathbb{C}[x,p]$  generated by differentiable complex functions on X. The Poisson bracket of the generators is  $\{x,p\}=1$ , and the observables commute. In quantum mechanics,  $\mathcal{O}(X)$  is generated by operators on X and we have the **canonical commutation relation**  $[x,p]=i\hbar\{x,p\}$ . The algebra  $\mathcal{O}(X)$  is now noncommutative. So the idea is: given a commutative algebra of functions, **quantize** it to get a noncommutative algebra.

Let's consider a particle moving on a line. In classical mechanics, we study the **state space** of the position x and momentum p and the **algebra of observables**  $\mathcal{O}(X)=\mathbb{C}[x,p]$  generated by differentiable complex functions on X. The Poisson bracket of the generators is  $\{x,p\}=1$ , and the observables commute. In quantum mechanics,  $\mathcal{O}(X)$  is generated by operators on X and we have the **canonical commutation relation**  $[x,p]=i\hbar\{x,p\}$ . The algebra  $\mathcal{O}(X)$  is now noncommutative. So the idea is: given a commutative algebra of functions, **quantize** it to get a noncommutative algebra.

#### Slogan for quantizaion

To make quantum is to make less commutative than before.

Moyal, Weyl and Groenewold: on the algebra of functions, define a noncommutative product  $\star_h$  such that  $[f_1, f_2]_{\star_h} = ih\{f, \{\!\!\!\ p \!\!\!\ \}\} + O(h^3)$ .

Let's consider a particle moving on a line. In classical mechanics, we study the **state space** of the position x and momentum p and the **algebra of observables**  $\mathcal{O}(X)=\mathbb{C}[x,p]$  generated by differentiable complex functions on X. The Poisson bracket of the generators is  $\{x,p\}=1$ , and the observables commute. In quantum mechanics,  $\mathcal{O}(X)$  is generated by operators on X and we have the **canonical commutation relation**  $[x,p]=i\hbar\{x,p\}$ . The algebra  $\mathcal{O}(X)$  is now noncommutative. So the idea is: given a commutative algebra of functions, **quantize** it to get a noncommutative algebra.

#### Slogan for quantizaion

To make quantum is to make less commutative than before.

Moyal, Weyl and Groenewold: on the algebra of functions, define a noncommutative product  $\star_h$  such that  $[f_1,f_2]_{\star_h}=ih\{f_{\!\!\!/},f_{\!\!\!/}\}+O(h^3)$ . Drinfeld: when X is replaced by a Poisson-Lie group G, we deform the "dual" of  $C^\infty(G)$ .

Some (not necessarily equivalent) dualities between geometry and algebra:

- Affine k-schemes  $\leftrightarrow$  Finitely generated commutative k-algebras
- **2** Compact topological space  $\leftrightarrow C^*$ -algebras of continuous  $\mathbb{C}$ -functions
- $\textbf{ § Smooth manifolds} \leftrightarrow \textbf{Smooth functions} \hookrightarrow \textbf{Commutative algebras}$

Some (not necessarily equivalent) dualities between geometry and algebra:

- **①** Affine k-schemes  $\leftrightarrow$  Finitely generated commutative k-algebras
- $\textbf{@} \ \, \mathsf{Compact} \ \, \mathsf{topological} \ \, \mathsf{space} \ \, \leftrightarrow C^*\text{-algebras} \ \, \mathsf{of} \ \, \mathsf{continuous} \ \, \mathbb{C}\text{-functions}$
- $\textbf{ § Smooth manifolds} \leftrightarrow \textbf{Smooth functions} \hookrightarrow \textbf{Commutative algebras}$

**Fact:** Given a Lie group G, there is an injection of commutative algebras  $C^{\infty}(G) \hookrightarrow U(\mathfrak{g})^*$  where  $\mathfrak{g}$  is the Lie algebra of G.

Some (not necessarily equivalent) dualities between geometry and algebra:

- **①** Affine k-schemes  $\leftrightarrow$  Finitely generated commutative k-algebras
- $\textbf{ @ Compact topological space} \leftrightarrow C^*\text{-algebras of continuous $\mathbb{C}$-functions }$
- $\textbf{ § Smooth manifolds} \leftrightarrow \textbf{Smooth functions} \hookrightarrow \textbf{Commutative algebras}$

**Fact:** Given a Lie group G, there is an injection of commutative algebras  $(C^{\infty}(G) \hookrightarrow U(\mathfrak{g})^*)$  where  $\mathfrak{g}$  is the Lie algebra of G.

**Fact:** Given a semisimple, connected and simply-connected linear algebraic group G over an algebraically closed field of char zero,  $\Gamma(G,\mathcal{O}_G)$  is isomorphic to the **restricted dual** 

$$U(\mathfrak{g})^{\circ} = \{ \alpha \in U(\mathfrak{g})^* : \mu^*(\alpha) \in U(\mathfrak{g})^* \otimes U(\mathfrak{g})^* \}$$

Some (not necessarily equivalent) dualities between geometry and algebra:

- **1** Affine k-schemes  $\leftrightarrow$  Finitely generated commutative k-algebras
- 2 Compact topological space  $\leftrightarrow C^*$ -algebras of continuous  $\mathbb{C}$ -functions
- $\odot$  Smooth manifolds  $\leftrightarrow$  Smooth functions  $\hookrightarrow$  Commutative algebras

**Fact:** Given a Lie group G, there is an injection of commutative algebras  $C^{\infty}(G) \hookrightarrow U(\mathfrak{g})^*$  where  $\mathfrak{g}$  is the Lie algebra of G.

Fact: Given a semisimple, connected and simply-connected linear algebraic group G over an algebraically closed field of char zero,  $\Gamma(G, \mathcal{O}_G)$  is isomorphic to the restricted dual

$$U(\mathfrak{g})^\circ = \{\alpha \in U(\mathfrak{g})^* : \mu^*(\alpha) \in U(\mathfrak{g})^* \otimes U(\mathfrak{g})^* \}$$
 Less Gmautative  $G$ , we may deform  $U(\mathfrak{g})^*$  containing  $C^\infty(G)$ , which is

equivalent to the quantum deformation of  $U(\mathfrak{g})$ .

Kulish and Sklyanin: Let  $q=e^\hbar\in\mathbb{C}$  nonzero, not equal to  $\pm 1$ . Let  $U_q(\mathfrak{sl}_2)$  be the quantum deformation generated by  $E,F,K=q^H$  and  $K^{-1}$  such that

Kulish and Sklyanin: Let  $q=e^{\hbar}\in\mathbb{C}$  nonzero, not equal to  $\pm 1$ . Let  $U_q(\mathfrak{sl}_2)$  be the quantum deformation generated by  $E,F,K=q^H$  and  $K^{-1}$  such that

th that 
$$[E,F] = \frac{K-K^{-1}}{q-q^{-1}}, \quad KX = q^2XK, KY = q^{-2}YK$$

with 
$$\Delta(E)=E\otimes K+1\otimes E$$
,  $\Delta(F)=F\otimes 1+K^{-1}F$  and  $\Delta(K)=K\otimes K$ ;  $\varepsilon(E)=\varepsilon(F)=0$  and  $\varepsilon(K)=1$ .

Kulish and Sklyanin: Let  $q=e^\hbar\in\mathbb{C}$  nonzero, not equal to  $\pm 1$ . Let  $U_q(\mathfrak{sl}_2)$  be the quantum deformation generated by  $E,F,K=q^H$  and  $K^{-1}$  such that

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}, \quad KX = q^2 X K, KY = q^{-2} Y K$$

with 
$$\Delta(E)=E\otimes K+1\otimes E$$
,  $\Delta(F)=F\otimes 1+K^{-1}F$  and  $\Delta(K)=K\otimes K$ ;  $\varepsilon(E)=\varepsilon(F)=0$  and  $\varepsilon(K)=1$ .

Note that the generator  $K=q^H$  here is just an abstract generator, and we want it to have the properties of  $q^H$ :

$$q^{H} = \sum_{n=0}^{\infty} \frac{H^{n} \log(q)^{n}}{n!}, [H, E] = 2E, [H, F] = -2F$$

Kulish and Sklyanin: Let  $q=e^{\hbar}\in\mathbb{C}$  nonzero, not equal to  $\pm 1$ . Let  $U_q(\mathfrak{sl}_2)$  be the quantum deformation generated by  $E,F,K=q^H$  and  $K^{-1}$  such that

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}, \quad KX = q^2 X K, KY = q^{-2} Y K$$

with 
$$\Delta(E)=E\otimes K+1\otimes E$$
,  $\Delta(F)=F\otimes 1+K^{-1}F$  and  $\Delta(K)=K\otimes K$ ;  $\varepsilon(E)=\varepsilon(F)=0$  and  $\varepsilon(K)=1$ .

Note that the generator  $K=q^H$  here is just an abstract generator, and we want it to have the properties of  $q^H$ :

$$q^{H} = \sum_{n=0}^{\infty} \frac{H^{n} \log(q)^{n}}{n!}, [H, E] = 2E, [H, F] = -2F$$

Exercise: derive the last two relations using the expansion of  $q^H$  and the relations of E, F, H in  $\mathfrak{sl}_2$ . Show that  $\lim_{\hbar \to 0} U_q(\mathfrak{sl}_2) = U(\mathfrak{sl}_2)$ .

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A$ -Mod  $\to$  Vec $_k$ . Then  $\operatorname{End}(\mathcal{F})\cong A$  as associative unital algebras.

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A$ -Mod  $\to \mathsf{Vec}_k$ . Then  $\mathsf{End}(\mathcal{F})\cong A$  as associative unital algebras. We can require more structures on this monoidal category to get stronger isomorphisms.

fiber functor

 $(\dagger) \ \mathcal{F} \ \text{is exact faithful} \implies \operatorname{End}(\mathcal{F}) \cong A \ \text{as bialgebras}$ 

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A$ -Mod  $\to \mathsf{Vec}_k$ . Then  $\mathrm{End}(\mathcal{F})\cong A$  as associative unital algebras. We can require more structures on this monoidal category to get stronger isomorphisms.

(†) 
$$\mathcal{F}$$
 is exact faithful  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as bialgebras

Assuming  $(\dagger)$ , we have

 $A\operatorname{\mathsf{-Mod}}$  is rigid  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as Hopf algebras

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A$ -Mod  $\to \mathsf{Vec}_k$ . Then  $\mathrm{End}(\mathcal{F})\cong A$  as associative unital algebras. We can require more structures on this monoidal category to get stronger isomorphisms.

(†) 
$$\mathcal{F}$$
 is exact faithful  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as bialgebras

Assuming  $(\dagger)$ , we have

 $A\text{-Mod is rigid} \implies \operatorname{End}(\mathcal{F}) \cong A \text{ as Hopf algebras}$   $A\text{-Mod is rigid and symmetric} \implies \operatorname{End}(\mathcal{F}) \text{ is cocommutative}$ 

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A\operatorname{-Mod}\to\operatorname{Vec}_k$ . Then  $\operatorname{End}(\mathcal{F})\cong A$  as associative unital algebras. We can require more structures on this monoidal category to get stronger isomorphisms.

(†) 
$$\mathcal{F}$$
 is exact faithful  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as bialgebras

Assuming (†), we have

 $A\operatorname{-Mod} \text{ is rigid} \implies \operatorname{End}(\mathcal{F}) \cong A \text{ as Hopf algebras}$   $A\operatorname{-Mod} \text{ is rigid and symmetric} \implies \operatorname{End}(\mathcal{F}) \text{ is cocommutative}$   $A\operatorname{-Mod} \text{ is rigid and braided} \implies \text{What structures on } \operatorname{End}(\mathcal{F}) \cong A?$ 

Suppose we are working with a Hopf algebra A over some algebraically closed field k. On the category A-Mod and we have a forgetful functor  $\mathcal{F}:A\text{-Mod}\to \operatorname{Vec}_k$ . Then  $\operatorname{End}(\mathcal{F})\cong A$  as associative unital algebras. We can require more structures on this monoidal category to get stronger isomorphisms.

(†) 
$$\mathcal{F}$$
 is exact faithful  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as bialgebras

Assuming  $(\dagger)$ , we have

 $A\operatorname{\mathsf{-Mod}}$  is rigid  $\implies \operatorname{End}(\mathcal{F}) \cong A$  as Hopf algebras

A-Mod is rigid and symmetric  $\implies \operatorname{End}(\mathcal{F})$  is cocommutative

A-Mod is rigid and braided  $\implies$  What structures on  $\operatorname{End}(\mathcal{F}) \cong A$ ?

The algebra  $\operatorname{End}(\mathcal{F})\cong A$  has a **quasi-triangular structure** that satisfies the quantum Yang-Baxter equation! This structure is called the **universal** R-matrix of A and it measures the non-cocommutativity of the algebra.