

Documents et calculatrices interdits. Durée : 2 heures.

Toute réponse doit être soigneusement justifiée.

Exercice 1

Soient x_1, x_2, x_3 trois nombres complexes.

- 1. (Question de cours) Donner la définition des fonctions symétriques élémentaires de x_1, x_2, x_3 , que l'on notera σ_1, σ_2 et σ_3 .
- 2. On suppose que $\sigma_1 = 0$, $\sigma_2 = -2$ et $\sigma_3 = -1$.
 - (a) En déduire le polynôme unitaire $P \in \mathbb{C}[X]$ de degré 3 qui admet x_1, x_2 et x_3 comme racines.
 - (b) Montrer que 1 est racine de P.
 - (c) En déduire les valeurs de x_1 , x_2 et x_3 .

[Exercice 2] Division euclidienne

Soit $(\lambda, \mu) \in \mathbb{R}^2$. On pose

$$P = X^4 - 2X^3 + \lambda X^2 + \mu X + 4.$$

- 1. Déterminer λ et μ pour que P soit divisible par $(X-2)^2$.
- 2. Montrer qu'alors $\alpha = -1$ est racine d'ordre de multiplicité 2 de P.
- 3. En déduire une factorisation de P en produits de polynômes irréductibles de $\mathbb{R}[X]$.

Exercice 3

On pose

$$P = 1 + X + X^2 + X^3 + X^4 + X^5 + X^6 + X^7 \quad \text{ et } \quad Q = 1 + X^2 + X^4 + X^6 + X^8 + X^{10} + X^{12} + X^{14}.$$

- 1. Montrer que si $z \in \mathbb{C}$ vérifie $z^8 = 1$ et $z \neq 1$, alors z est une racine de P.
- 2. En déduire l'ensemble des racines de P.
- 3. Décomposer P en produits de facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$.
- 4. En déduire une décomposition de Q en produits de facteurs irréductibles dans $\mathbb{C}[X]$. Indication : on pourra poser $Y=X^2$.
- 5. En déduire que

$$\prod_{\substack{k=1\\k\neq 8}}^{15} e^{i\frac{k\pi}{8}} = 1.$$

Exercice 4

Fractions rationnelles

On pose

$$F = \frac{X^5 - X^4 + 1}{X^4 + X^2}.$$

- 1. Décomposer F en éléments simples dans $\mathbb{C}(X)$.
- 2. En déduire sa décomposition en éléments simples dans $\mathbb{R}(X)$.
- 3. Soit $t \geqslant 1$. Calculer l'intégrale suivante

$$I(t) = \int_1^t \frac{x^5 - x^4 + 1}{x^4 + x^2} dx.$$