

Teoria dos Grafos e Computabilidade

— Divide and conquer —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Teoria dos Grafos e Computabilidade

— Mergesort —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Break up a problem into several parts.

- ► Break up a problem into several parts.
- ► Solve each part recursively.

- ► Break up a problem into several parts.
- ► Solve each part recursively.
- ► Solve base cases by brute force.

- ► Break up a problem into several parts.
- ► Solve each part recursively.
- ► Solve base cases by brute force.
- ► Efficiently combine solutions for sub-problems into final solution.

- ► Break up a problem into several parts.
- ► Solve each part recursively.
- ► Solve base cases by brute force.
- ► Efficiently combine solutions for sub-problems into final solution.
- ► Common use:
 - ▶ Partition problem into two equal sub-problems of size n/2.
 - ► Solve each part recursively.
 - ▶ Combine the two solutions in O(n) time.
 - ▶ Resulting running time is $O(n \log n)$.

Mergesort

SORT

INSTANCE Nonempty list $L = x_1, x_2, ..., x_n$ of integers.

SOLUTION A permutation $y_1, y_2, ..., y_n$ of $x_1, x_2, ..., x_n$ such that $y_i \le y_{i+1}$, for all $1 \le i < n$.

Mergesort

SORT

INSTANCE Nonempty list $L = x_1, x_2, ..., x_n$ of integers.

SOLUTION A permutation $y_1, y_2, ..., y_n$ of $x_1, x_2, ..., x_n$ such that $y_i \le y_{i+1}$, for all $1 \le i < n$.

- ► Mergesort is a divide-and-conquer algorithm for sorting.
 - 1. Partition *L* into two lists *A* and *B* of size $\lfloor n/2 \rfloor$ and $\lceil n/2 \rceil$ respectively.
 - 2. Recursively sort A.
 - 3. Recursively sort B.
 - 4. Merge the sorted lists A and B into a single sorted list.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

-	4	_	_	_		
- 1	4	×	u	≺ .	h	
		U	9	J	9	

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

1	4	8	9

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

input : $A = a_1, a_2, \dots, a_k$ and $B = b_1, b_2, \dots b_l$. **output**: The distances of the vertices from s

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the *current* pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

1

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Algorithm: Intercalation

```
input : A = a_1, a_2, \dots, a_k and B = b_1, b_2, \dots b_l.
output: The distances of the vertices from s
```

- 1 Maintain a current pointer for each list;
- 2 Initialise each pointer to the front of the list;
- 3 while both lists are nonempty do
- 4 Let a_i and b_j be the elements pointed to by the current pointers;
 - Append the smaller of the two to the output list;
- 5 Advance the current pointer in the list that the smaller element belonged to;
- 6 end
- 7 Append the rest of the non-empty list to the output.

Running time of this algorithm is O(k+1).

Analysing Mergesort

- Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \blacktriangleright Assume *n* is a power of 2.

Analysing Mergesort

- Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \blacktriangleright Assume *n* is a power of 2.

$$T(n) \leq 2T(n/2) + cn, n > 2$$

 $T(2) \leq c$

Analysing Mergesort

- Worst-case running time for n elements (T(n)) is at most the sum of the worst-case running time for $\lfloor n/2 \rfloor$ elements, for $\lceil n/2 \rceil$ elements, for splitting the input into two lists, and for merging two sorted lists.
- \blacktriangleright Assume *n* is a power of 2.

$$T(n) \le 2T(n/2) + cn, n > 2$$

 $T(2) \le c$

- ► Three basic ways of solving this recurrence relation:
 - 1. "Unroll' ' the recurrence (somewhat informal method).
 - 2. Guess a solution and substitute into recurrence to check.
 - 3. Guess solution in O() form and substitute into recurrence to determine the constants.

Unrolling the recurrence

- ightharpoonup Recursion tree has $\log n$ levels.
- ► Total work done at each level is *cn*.
- ightharpoonup Running time of the algorithm is $cn \log n$.

Substituting a Solution into the Recurrence

- ▶ Guess that the solution is $cn \log n$ (logarithm to the base 2).
- ► Use induction to check if the solution satisfies the recurrence relation.
- ▶ Base case: n = 2. Is $T(2) = c \le 2c \log 2$? Yes.
- ▶ Inductive step: assume $T(m) \le cm \log_2 m$ for all m < n. Therefore, $T(n/2) \le (cn/2) \log n cn/2$.

$$T(n) \leq 2T(n/2) + cn$$

$$\leq 2((cn/2)\log n - cn/2) + cn$$

$$= cn\log n$$

Partial Substitution

- ▶ Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of *k* will satisfy the recurrence relation.
- ▶ $k \ge c$ will work.

Partial Substitution

- Guess that the solution is $kn \log n$ (logarithm to the base 2).
- Substitute guess into the recurrence relation to check what value of *k* will satisfy the recurrence relation.
- ▶ k > c will work.
- ▶ Divide into q sub-problems of size n/2 and merge in O(n) time. Two distinct cases: q = 1 and q > 2.
- ▶ Divide into two sub-problems of size n/2 and merge in $O(n^2)$ time.

Teoria dos Grafos e Computabilidade

— Counting inversions —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Divide and Conquer Algorithms

- ► Study three divide and conquer algorithms:
 - ► Counting inversions.
 - ► Finding the closest pair of points.
 - ► Integer multiplication.
- ► First two problems use clever conquer strategies.

Divide and Conquer Algorithms

- ► Study three divide and conquer algorithms:
 - ► Counting inversions.
 - ► Finding the closest pair of points.
 - ► Integer multiplication.
- ► First two problems use clever conquer strategies.
- ► Third problem uses a clever divide strategy.

► Collaborative filtering match one user's preferences to those of other users.

- ► Collaborative filtering match one user's preferences to those of other users.
- ► Meta-search engines merge results of multiple search engines to into a better search result.

- Collaborative filtering match one user's preferences to those of other users.
- Meta-search engines merge results of multiple search engines to into a better search result.
- ► Fundamental question: how do we compare a pair of rankings?

- Collaborative filtering match one user's preferences to those of other users.
- Meta-search engines merge results of multiple search engines to into a better search result.
- ► Fundamental question: how do we compare a pair of rankings?
- ► Suggestion: two rankings are very similar if they have few inversions .

- Collaborative filtering match one user's preferences to those of other users.
- Meta-search engines merge results of multiple search engines to into a better search result.
- ► Fundamental question: how do we compare a pair of rankings?
- ► Suggestion: two rankings are very similar if they have few inversions .
 - \blacktriangleright Assume one ranking is the ordered list of integers from 1 to n.
 - ▶ The other ranking is a permutation $a_1, a_2, ..., a_n$ of the integers from 1 to n.
 - ► The second ranking has an inversion if there exist i, j such that i < j but $a_i > a_i$.
 - ► The number of inversions s is a measure of the difference between the rankings.

COUNTING INVERSIONS

INSTANCE A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

COUNTING INVERSIONS

INSTANCE A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

COUNTING INVERSIONS

INSTANCE A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

$$5-4, 5-2, 4-2, 8-2, 10-2$$

$$6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7$$

COUNTING INVERSIONS

INSTANCE A list $L = x_1, x_2, \dots, x_n$ of distinct integers between 1 and n.

$$5-4, 5-2, 4-2, 8-2, 10-2$$

$$6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7$$

$$5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7$$

▶ How many inversions can be there in a list of *n* numbers?

► How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.

- ► How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ► Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?

- ▶ How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ► Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- ► Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in A.
 - 3. Recursively count the number of inversions in B. and one element in B.

- ► How many inversions can be there in a list of n numbers? $\Omega(n^2)$. We cannot afford to compute each inversion explicitly.
- ► Sorting removes all inversions in $O(n \log n)$ time. Can we modify the Mergesort algorithm to count inversions?
- ► Candidate algorithm:
 - 1. Partition L into two lists A and B of size n/2 each.
 - 2. Recursively count the number of inversions in A.
 - 3. Recursively count the number of inversions in B. and one element in B.

Key idea: problem is much easier if A and B are sorted!

Counting Inversions: Conquer Step

```
Algorithm: Sort and count
   input: The list L of elements
   output: The number of inversion and the sorted list L
 1 if |L| = 1 then
       there is no inversions:
 3 else
       Divide the list into two halves: A and B;
       (r_A, A) = \text{sort-and-count}(A);
      (r_B, B) = \text{sort-and-count}(B);
      (r, L) = merge-and-count(A, B);
 8 end
 9 r = r_A + r_B + r
```

```
Algorithm: Sort and count

input: The list L of elements
output: The number of inversion and the sorted list L

1 if |L| = 1 then
2 | there is no inversions;
3 else
4 | Divide the list into two halves: A and B;
5 | (r_A, A) = \text{sort-and-count}(A);
6 | (r_B, B) = \text{sort-and-count}(B);
7 | (r, L) = \text{merge-and-count}(A, B);
8 end
9 r = r_A + r_B + r
```

Running time T(n) of the algorithm is $O(n \log n)$ because $T(n) \le 2T(n/2) + O(n)$.

Teoria dos Grafos e Computabilidade

— Some exercises —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Finding element

Let A be an array with n numbers. Design a divide-and-conquer algorithm for finding the position of the largest element in the array A.

11 12 7 4 8 5 9 3

Finding element

Let A be an array with n numbers. Design a divide-and-conquer algorithm for finding both the smallest and largest elements in the array A.

11 12 7 4 8 5 9 3

Tromino puzzle

Tromino puzzle

A tromino is an L-shaped tile formed by adjacent 1-by-1 squares. The problem is to cover any 2^n -by- 2^n chessboard with one missing square (anywhere on the board) with trominoes. Trominoes should cover all the squares of the board except the missing one with no overlaps.

Teoria dos Grafos e Computabilidade

— Integer Multiplication —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

MULTIPLY INTEGERS

INSTANCE Two *n*-digit binary integers *x* and *y*

MULTIPLY INTEGERS

INSTANCE Two *n*-digit binary integers *x* and *y*

SOLUTION The product *xy*

► Multiply two *n*-digit integers.

Multiply Integers

INSTANCE Two n-digit binary integers x and y

- ► Multiply two *n*-digit integers.
- ▶ Result has at most 2*n* digits.

MULTIPLY INTEGERS

INSTANCE Two *n*-digit binary integers *x* and *y*

- ► Multiply two *n*-digit integers.
- ▶ Result has at most 2n digits.
- ► Algorithm we learnt in school takes

	1100
	$\times 1101$
12	1100
\times 13	0000
36	1100
12	_1100
156	10011100

Multiply Integers

INSTANCE Two *n*-digit binary integers *x* and *y*

- ► Multiply two *n*-digit integers.
- ▶ Result has at most 2*n* digits.
- Algorithm we learnt in school takes $O(n^2)$ operations. Size of the input is not 2 but 2n

	1100
	$\times 1101$
12	1100
\times 13	0000
36	1100
12	1100
156	10011100

- ► Assume integers are binary.
- ► Let us use divide and conquer

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy =$$

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0.$

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

► Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- ► Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- ► Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

$$T(n) \leq 4T(n/2) + cn$$

- ► Assume integers are binary.
- Let us use divide and conquer by splitting each number into first n/2 bits and last n/2 bits.
- Let x be split into x_0 (lower-order bits) and x_1 (higher-order bits) and y into y_0 (lower-order bits) and y_1 (higher-order bits).

$$xy = (x_1 2^{n/2} + x_0)(y_1 2^{n/2} + y_0)$$

= $x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0.$

- ► Each of x_1, x_0, y_1, y_0 has n/2 bits, so we can compute x_1y_1, x_1y_0, x_0y_1 , and x_0y_0 recursively, and merge the answers in O(n) time.
- ▶ What is the running time T(n)?

$$T(n) \leq 4T(n/2) + cn$$

 $< O(n^2)$

► Four sub-problems lead to an $O(n^2)$ algorithm.

► Four sub-problems lead to an $O(n^2)$ algorithm.

► Four sub-problems lead to an $O(n^2)$ algorithm.

- Four sub-problems lead to an $O(n^2)$ algorithm.
- ▶ What is the running time T(n)?

Final Algorithm

Teoria dos Grafos e Computabilidade

— Closest Pair of Points —

Silvio Jamil F. Guimarães

Graduate Program in Informatics – PPGINF Laboratory of Image and Multimedia Data Science – IMScience Pontifical Catholic University of Minas Gerais – PUC Minas

Computational Geometry

- ► Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- ▶ Started in 1975 by Shamos and Hoey.
- ► Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

Computational Geometry

- ► Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- Started in 1975 by Shamos and Hoey.
- ► Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

CLOSEST PAIR OF POINTS

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in *P* that are the closest to each other.

Computational Geometry

- ► Algorithms for geometric objects: points, lines, segments, triangles, spheres, polyhedra, ldots.
- ► Started in 1975 by Shamos and Hoey.
- ► Problems studied have applications in a vast number of fields: ecology, molecular biology, statistics, computational finance, computer graphics, computer vision, . . .

CLOSEST PAIR OF POINTS

INSTANCE A set P of n points in the plane

SOLUTION The pair of points in *P* that are the closest to each other.

- ▶ At first glance, it seems any algorithm must take $\Omega(n^2)$ time.
- ► Shamos and Hoey figured out an ingenious $O(n \log n)$ divide and conquer algorithm.

▶ Let
$$P = \{p_1, p_2, ..., p_n\}$$
 with $p_i = (x_i, y_i)$.

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j .

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j .
- ► Goal: find the pair of points p_i and p_j that minimize $d(p_i, p_j)$.

- ▶ Let $P = \{p_1, p_2, ..., p_n\}$ with $p_i = (x_i, y_i)$.
- ▶ Use $d(p_i, p_j)$ to denote the Euclidean distance between p_i and p_j .
- ► Goal: find the pair of points p_i and p_j that minimize $d(p_i, p_j)$.

1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_1 be the distance computed for Q, δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_1 be the distance computed for Q, δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.
- 4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and d(q, r) is the smallest possible.
 - ▶ How do we implement this step in O(n) time?

- 1. Divide P into two sets Q and R of n/2 points such that each point in Q has x-coordinate less than any point in R.
- 2. Recursively compute closest pair in Q and in R, respectively.
- 3. Let δ_1 be the distance computed for Q, δ_2 be the distance computed for R, and $\delta = \min(\delta_1, \delta_2)$.
- 4. Compute pair (q, r) of points such that $q \in Q$, $r \in R$, $d(q, r) < \delta$ and d(q, r) is the smallest possible.
 - ▶ How do we implement this step in O(n) time?

Assignment

Implement the problem to find the closest pair in a plane.