Entanglement Entropy and Holography

T. Bourton

Swansea University

29th May 2015

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 2 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- **5** Summary

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- 5 Summary

Density Matrices

- The most general quantum state can be entangled & mixed. A pure state alone cannot describe the statistical mixing of states.
- The density matrix ρ for a state $|\psi\rangle \implies \rho = |\psi\rangle\langle\psi|$.
- Mixed state density matrix \Longrightarrow weighted sum of pure density matrices $\rho^{mix} = \sum_i p_i \rho^{pure} = \sum_i p_i |\psi_i\rangle \langle \psi_i|$.
- $p_i \implies$ probability to measure subsystem in state $|\psi_i\rangle$.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- 5 Summary

Entanglement Entropy

- A measure of how strongly entangled two systems are is the entanglement entropy.
- $|\Psi\rangle$ with full density matrix ρ divided into two subsystems A & B.
- Subsystem A individually described by its reduced density matrix ρ_A .
- ρ_A for subsystem A obtained by "tracing out" degrees of freedom in B $\rho_A = -Tr_B(\rho_{Tot})$.
- Then the Entanglement Entropy of subsystem A with subsystem B is $S(\rho_A) = -Tr(\rho_A \log \rho_A)$.

Entanglement Entropy

- Wish to use entanglement entropy to probe QFT's.
- ullet Calculating entanglement entropy's for arbitrary QFT \Longrightarrow difficult in general.
- ullet QFT \Longrightarrow Large/Infinite number of degrees of freedom \Longrightarrow tracing out process hard.
- Holography provides a prescription to calculate entanglement entropy.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 2 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- 5 Summary

Holography

- Holography describes a duality between a theory on a d+1-dimensional manifold M to a different theory of the d-dimensional boundary ∂M .
- Boundary theory degrees of freedom are completely described by degrees of freedom in bulk.
- The most famous form of Holography is the Anti-de Sitter(AdS)/Conformal Field Theory(CFT) correspondence.

- AdS/CFT: Quantum gravity on $AdS_{d+2} \Leftrightarrow CFT_{d+1}$ on $\mathbb{R}^{1,d}$.
- Proposed by Maldacena (1984) arising from string theory on $AdS_5 \times \mathbf{S}^5 \Leftrightarrow \mathcal{N} = 4$ supersymmetric SU(N) Yang-Mills.
- Yang-Mills: $\mathcal{L} = \frac{1}{g_{YM}^2} \operatorname{Tr} (F_{\mu\nu} F^{\mu\nu}).$
- 't Hooft coupling $\lambda = Ng_{YM}^2 = \textit{fixed}$ as $N \to \infty$, $g_{YM} \to 0$.
- ullet The string coupling $g_{st} \propto g_{YM}^2$
- The "holographic dictionary": Weakly coupled gravity $(g_{st} \ll 1) \Leftrightarrow$ Large-N $\mathcal{N}=4$ Yang-Mills.

- Conformal field theory: Special type of QFT with additional symmetries called conformal symmetries.
- On $\mathbb{R}^{1,d}$ they consist of:

Translations :
$$x^{\mu} \rightarrow x^{\mu} + a^{\mu}$$

Rotations :
$$x^{\mu} \rightarrow \omega^{\nu}_{\mu} x^{\nu}$$

Boosts:
$$x^{\mu} \rightarrow \lambda x^{\mu}$$

Special Conformal Transformations :
$$x^{\mu} \rightarrow \frac{x^{\mu} + b^{\mu}x^2}{1 + 2b.x + b^2x^2}$$
.

• In d > 2 conformal transformations form a finite dimensional group spanned by SO(2, d+1) (in d < 2 the number of generators of the conformal algebra is infinite).

• Anti-de Sitter space: Solution to Einsteins equations, in (d+2) dimensions, with action

$$S = \frac{1}{16\pi G_N^{(d+2)}} \int d^{d+2} y (R - 2\Lambda). \tag{1}$$

• Such a solution can be embedded in a (d+3)-dimensional coordinate system with $\Lambda=-\frac{(d)(d+1)}{2\alpha^2}$

$$\sum_{i=1}^{d+1} \chi_i^2 - \chi_{d+2}^2 - \chi_{d+3}^2 = -\alpha^2, \tag{2}$$

• \implies SO(2, d+1) symmetry.

- AdS_{d+2} boundary is a copy of $\mathbb{R}^{1,d}$.
- AdS_{d+2} in the half space Poincaré coordinates

$$ds^{2} = \frac{1}{y^{2}} \left(dy^{2} - dt^{2} + \sum_{i=1}^{d} dx_{i}^{2} \right).$$
 (3)

• AdS boundary $y \to 0$

$$ds^2 \to -dt^2 + \sum_{i=1}^d dx_i^2. \tag{4}$$

- AdS_{d+2} boundary conformally equivalent to $\mathbb{R}^{1,d}$.
- \Longrightarrow two ways to build SO(2, d+1) theory: QFT on AdS or CFT $\partial (AdS)$.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 2 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - \bullet Calculations in AdS_{2+1}/CFT_{1+1}
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- 5 Summary

Entanglement Entropy & the AdS/CFT Correspondence

- Proposal by Ryu and Takayanagi: entanglement entropy obeys an area law.
- Entanglement entropy of CFT region A is given by the area of the minimal area surface γ_A extending from A into bulk AdS

$$S_A = \frac{Area\left(\gamma_A\right)}{4G_N^{(d+2)}}. (5)$$

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - \bullet Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- Summary

Infinite Line in AdS_{2+1}/CFT_{1+1}

- CFT₁₊₁ on $\mathbb{R}^{1,1}$ entanglement entropy, fixed time slice on a region A of length ℓ .
- In AdS_{2+1} minimal area surface γ_A is given by geodesic in AdS_{2+1} .
- AdS₂₊₁ Poincaré coordinates (3)

Infinite Line in AdS_{2+1}/CFT_{1+1}

• The geodesic length is given by minimising the action

Length
$$(\gamma_A) = 2R \int_{\epsilon}^{\frac{\ell}{2}} \frac{1}{z} \sqrt{1 + \left(\frac{dx}{dz}\right)^2} dz = 2R \log\left(\frac{\ell}{\epsilon}\right).$$
 (6)

Applying (5) the entanglement entropy is

$$S_A = \frac{c}{3} \log \left(\frac{\ell}{\epsilon} \right). \tag{7}$$

- UV cutoff ϵ imposed close to boundary $z \to 0$.
- c is the CFT central charge or conformal anomaly.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- Summary

CFT_{d+1}/AdS_{d+2} Infinite Strip

- Entanglement entropy of infinite strip of CFT_{d+1} region A of length $L \to \infty$ in (d-1) spatial dimensions, finite width ℓ in the remaining spatial dimension.
- Poincaré coordinates (3), minimal area hypersurface γ_A given by minimising

$$Area(\gamma_A) = 2 \int_0^L dx_2 ... \int_0^L dx_d \int_0^{z_0} \sqrt{g|_{induced}} dz$$
 (8)

$$=2R^{d}L^{d-1}\int_{0}^{z_{0}}\frac{1}{z^{d}}\sqrt{1+\left(\frac{dx_{1}}{dz}\right)^{2}}dz.$$
 (9)

$$S_{A} = \frac{R^{d}}{2(d-1)G_{N}^{(d+2)}} \left[\left(\frac{L}{\epsilon} \right)^{d-1} - 2^{d-1} \pi^{d/2} \left(\frac{\Gamma\left(\frac{d+1}{2d}\right)}{\Gamma\left(\frac{1}{2d}\right)} \right)^{d} \left(\frac{L}{\ell} \right)^{d-1} \right]. \tag{10}$$

- Minimal surfaces in AdS space with compact boundaries exhibit some interesting behaviour.
- Examine a spherical strip of CFT_{2+1} on S^2 geometry at fixed t.
- A is a spherical strip of height ℓ for AdS_{3+1}/CFT_{2+1} .

- Periodicity $\ell \sim \ell + \pi \implies$ phase transition in minimal surfaces.
- Solve numerically \implies 3 classes of solutions:
- Two connected solutions: one close to the boundary, another extending deep into bulk close to r=0. Latter solution unfavoured as it does not minimize the action.
- One disconnected solution appearing as two unconnected caps in each hemisphere.

$$Area(\gamma_A) = 4\pi R^2 \int_{r_0}^{\infty} r \sin \theta \sqrt{\frac{1}{1+r^2} + r^2 \left(\frac{d\theta}{dr}\right)^2} dr.$$
 (11)

Figure: $Area(\gamma_A)$ as a function of ℓ : (Blue) Connected, (Red) Disconnected, (Inset) zoomed near transition point.

- Indicative of a first order phase transition of minimal surfaces for $\ell = \ell_{crit} \simeq 0.27\pi$.
- Interpretation on CFT side unclear.
- Similar type of picture to surfaces found by Klebanov, Kutasov, and Murugan (http://arxiv.org/abs/0709.2140).

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- Summary

Finite temperature CFT's

- The entanglement entropy prescription applied to CFT's at thermal equilibrium at inverse temperature β_{CFT} .
- Holographic dual to such a CFT is given by a black hole in AdS.

CFT_{1+1} at finite temperature

• Holographic dual to a CFT $_{1+1}$ at inverse temperature $\beta_{\it CFT}$ is the non-rotating Euclidean BTZ black hole

$$ds^{2} = \frac{r^{2} - r_{+}^{2}}{R^{2}}dt^{2} + \frac{R^{2}}{r^{2} - r_{+}^{2}}dr^{2} + r^{2}dx^{2}.$$
 (12)

- To ensure a smooth geometry the periodicity $t \sim t + \frac{2\pi R}{r_+}$ is imposed to obtain a $S^1 \times \mathbb{R}^1$ boundary geometry.
- Taking the boundary limit $r \to \infty$, $\beta_{CFT} = \frac{2\pi R}{r_+}$.

CFT¹⁺¹ at finite temperature

- The entangled region A is of length ℓ on $\mathbb{R}^{1,1}$ at fixed t.
- The geodesics length is

Length
$$(\gamma_A) = 2 \int_{r_0}^{\frac{\beta_{CFT}r_+}{2\pi\epsilon}} \sqrt{\frac{R^2}{r^2 - r_+^2} + r^2 \left(\frac{dx}{dr}\right)^2} dr.$$
 (13)

$$S_A = \frac{c}{3} \log \left[\frac{\beta_{CFT}}{\pi \epsilon} \sinh \left(\frac{\pi \ell}{\beta_{CFT}} \right) \right]. \tag{14}$$

- For empty AdS $\beta_{CFT} \to \infty$ and $S_A \to \frac{c}{3} \log \frac{\ell}{\epsilon}$ (the vacuum result).
- Large $\ell \implies S_A$ becomes extensive quantity, thermal entropy.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- 5 Summary

Quantum Quench

- Apply entanglement entropy prescription to dynamical backgrounds to study a CFT undergoing a quantum quench.
- Quantum quench \implies process of taking a state $|\psi(0)\rangle$ and suddenly changing a parameter in the Hamiltonian at t=0 \implies pushes system far away from equilibrium.
- Entanglement entropy used to track entanglement propagation over time as the system thermalises to a new equilibrium state $|\psi(t)\rangle$.
- Causality

 system cannot reach true thermal equilibrium. System relaxes to an equilibrium-like state locally.

Quantum Quench

- The holographic dual to such a process described by AdS-Vaidya solutions.
- AdS-Vaidya describes infall of null dust along an ingoing lightcone coordinate v resulting in the formation of a black hole.
- AdS_{d+1} -Vaidya solution to Einstein's equations with metric, boundary $\mathbb{R}^{1,d-1}$

$$ds^{2} = -\left(r^{2} - \frac{m(v)}{r^{d-1}}\right)dv^{2} + 2dvdr + r^{2}\sum_{i=1}^{d-1}dx_{i}^{2}.$$
 (15)

Black hole formation

Pick a mass function to interpolate smoothly between 0 and m

$$m(v) = m \frac{1 + \tanh\left(\frac{v}{a}\right)}{2}.$$
 (16)

Parameter a controls gradient of the black hole formation process.

Figure: Apparent horizon location in AdS_{2+1} -Vaidya for $a = \frac{1}{3}, \frac{1}{2}, 1, 2$.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- Summary

- Repeat analysis by Abajo-Arrastia, Aparicio, and Lopez (arxiv.org/abs/1006.4090).
- AdS_{2+1} -Vaidya models a CFT₁₊₁ perturbed from it's vacuum state at boundary time t=0.
- Geometry models a CFT without a mass gap \implies infinite correlation length \implies excitations spread over entire length of system for $t \to \infty$.
- ullet CFT₁₊₁ admits holomorphic factorisation \Longrightarrow left and right moving modes move away from each other and are non-interacting.
- Conformal invariance \implies excitations move with velocity $v^2=1$ and causality \implies after time t excitations a distance $\zeta=2t$ apart.

- Entanglement entropy is determined by the minimal area surface γ_A in bulk extending from a region of length ℓ
- Geodesic length

$$L(\ell,t) = \int_0^\ell \sqrt{r^2 + 2r'v' - (r^2 - m(v))v'^2} dx.$$
 (17)

 Minimising we see the geodesic length can be written in a compact form

$$L(\ell,t) = \frac{2}{r_0} \int_{\epsilon}^{\frac{\ell}{2}} r(x)^2 dx.$$
 (18)

• Solve numerically with boundary conditions $v(0) = v(\ell) = t$, $r(0) = r(\ell) = \infty$.

CFT_{1+1} Quantum Quench

Figure: Plot of the UV independent part of the AdS_3 -Vaidya geodesic length $\tilde{L}(t,\ell)$ against ℓ for t=0,2,4,6,8 (bottom to top) the dot-dashed line represents the vacuum result and the dashed line the thermal result.

Deduce thermalisation time in CFT₁₊₁ is

$$t_{T} \simeq \frac{\ell}{2}.\tag{19}$$

- Holomorphic factorisation \implies excitations after time t spread over a region $\zeta = 2t = \ell \implies t_T = \frac{\ell}{2}$.
- Excitations are non-interacting.
- Result expected and decided entirely by CFT₁₊₁ kinematics & causality.
- Analysis closely matches analytical results found by P.Calabrese and J.Cardy arxiv.org/abs/cond-mat/0503393.

- Density Matrices & Entanglement Entropy
 - Density Matrices
 - Entanglement Entropy
- 4 Holography
 - Holography
 - Entanglement Entropy & the AdS/CFT Correspondence
- 3 Entanglement Entropy Calculations
 - Calculations in AdS₂₊₁/CFT₁₊₁
 - Higher Dimension Calculations
 - Finite Temperature CFT's
- 4 Holographic Quantum Quenches
 - Quantum Quench
 - CFT₁₊₁ Quantum Quench.
 - CFT₂₊₁ Quantum Quench
- Summary

- Leads to studying a less trivial theory.
- Repeat quantum quench analysis on infinite strip geometry of length $L \to \infty$, width ℓ for a CFT₂₊₁.
- CFT's in > (1+1)-dimensions \implies no holomorphic factorisation \implies interacting excitations.

- In this geometry excitations spread across entire length of *L* for all *t*.
- Causality \implies excitations after a time t spread over a maximum area $\zeta \leq 2tL$.

Figure: Plot of the UV independent part of the AdS_4 -Vaidya minimal surface area $\tilde{A}(t,\ell)$ against ℓ for $a=\frac{1}{3}$ and t=0,1,...,8 (bottom to top) the dashed line represents the vacuum result and the solid black line the thermal result.

• Plotting ℓ for which the entanglement entropy thermalises gives the thermalisation time.

$$t_T = f(\beta, \ell) \simeq \frac{2}{3}\ell \tag{20}$$

- Infer no β dependence, cannot build a dimensionless quantity from ℓ and β with $t_T \propto \ell$.
- Additionally, L cannot be used either as t_T is invariant under scaling of L as L is purely a large multiplicative constant to the entanglement entropy.

- The value of $t_T = \frac{2}{3}\ell \implies$ excitations interact.
- Causality: $\zeta \leq 2tL$.
- Evaluated at $t=t_T$: $\zeta \leq 2t_T L = \frac{4}{3}\ell L$.
- Causality

 excitations must interact which induces longer thermalisation time.

Summary

- Applied and reproduced entanglement entropy's for some static geometries.
- Applied the prescription to a geometry with a compact boundary
 phase transition between minimal surfaces.
- Used holographic entanglement entropy to model a CFT₁₊₁ undergoing a quantum quench to and reproduced previously found result $t_T = \frac{1}{2}\ell$.
- Repeated the quantum quench analysis for a more interesting geometry for a CFT₂₊₁ to find $t_T \simeq \frac{2}{3}\ell \implies$ possibly follows $t_T \simeq \frac{d-1}{d}\ell$.