

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

4/30

FIG. 7

6/30

7/30

FIG. 9

8/30

FIG. 10

FIG. 11

9/30

FIG. 12

2011 PTE 20 = SOURCE DOCUMENT

FIG. 13

FIG. 14

SEED LIFT (mm/min.)

SHOULDER

320 mm 525 mm 700 mm

10/30

FIG. 15

2011 RELEASE UNDER E.O. 14176

12/30

FIG. 16a

13/30

8

FIG. 17

FIG. 18

FIG. 19

17/30

8

18/30

8

20 T.F. 20° 50% SiO₂ 200°C

FIG. 21

FIG. 22

20/30 = 20% SOLUTE CONC

FIG. 23

AXIAL POSITION
600 μm
AGGLOMERATED
(INTERSTITIAL DEFECTS, 28
PULL RATE

VACANCY
DOMINATED, 8

20/30

8

FIG.24

G VARIATION VS Z FOR VARIOUS HOT ZONES

FIG.25

TEMPERATURE PROFILES FOR VARIOUS HOT ZONES

FIG. 26

FIG. 27

LPD RADIAL DISTRIBUTION
(BEFORE Ar ANNEALING: 0.09–0.11 um)

FIG. 28

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.09–0.11 μm)

FIG. 29

LPD RADIAL DISTRIBUTION
(BEFORE: 0.11–0.13 μm)

FIG. 30

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.11-0.13 um)

FIG. 31

LPD RADIAL DISTRIBUTION
(BEFORE: 0.13–0.15 μm)

FIG. 32

LPD RADIAL DISTRIBUTION
(AFTER Ar ANNEALING: 0.13–0.15 um)

FIG. 33a

FIG. 33b

CASE I, [V] MUCH
HIGHER THAN
CASE II [V]

FIG. 33c

