Deep Hashing with Active Pairwise Supervision

Ziwei Wang¹

Quan Zheng¹

Jiwen Lu¹

Jie Zhou¹

¹Department of Automation, Tsinghua University, China

i-VisionGroup@Tsinghua

Motivation

Conventional passive deep hashing: unsupervised, supervised and semi-supervised

Methods	Annotation	Weakness				
Unsupervised	None	Low discriminative power				
Supervised	Full	Heavy annotation cost				
Semi- supervised	Random	Ineffective supervision				

Deep Hashing with Active Pairwise Supervision

 Active deep hashing: selecting samples that provide effective supervision for the Oracle to label

Generalizing Structural Risk Minimization principle for sample selection:

$$\mathbb{E}(J)\leqslant \hat{\mathbb{E}}_{M}(J)+\varPhi+MMD_{S}(p(\mathcal{X}),p(\mathcal{M}))$$
 True risk of all data labeled data Complexity discrepancy Data distribution query data distribution

Optimizing the upper bound of Structure Risk:

$$\min_{\mathcal{Q},\mathcal{H}} \quad \frac{1}{l+q} \sum_{\boldsymbol{x} \in \mathcal{L} \cup \mathcal{Q}} J + \lambda ||\mathcal{H}||_F^2 + MMD_S[p(\mathcal{X}), p(\mathcal{L} \cup \mathcal{Q})]$$
 Objective for deep hashing Regularization MMD between all data and labeled&query data

i-VisionGroup@Tsinghua

Designing the Acquisition Function

Defining the distance measure between hash codes of sample pairs:

$$d(\mathcal{H}(\boldsymbol{x}), \mathcal{H}(\boldsymbol{t})) = \inf_{k} ||\mathcal{H}(\boldsymbol{x}) - \mathcal{T}_{k}(\mathcal{H}(\boldsymbol{t}))||_{F}$$

$$= \min(||\mathcal{H}(\boldsymbol{x}_{a}) - \mathcal{H}(\boldsymbol{t}_{a})||_{F} + ||\mathcal{H}(\boldsymbol{x}_{b}) - \mathcal{H}(\boldsymbol{t}_{b})||_{F},$$

$$||\mathcal{H}(\boldsymbol{x}_{b}) - \mathcal{H}(\boldsymbol{t}_{a})||_{F} + ||\mathcal{H}(\boldsymbol{x}_{a}) - \mathcal{H}(\boldsymbol{t}_{b})||_{F})$$

- Subscript a and b mean different samples in one pair
- Rewriting the MMD between two sets:

$$\inf_{\mathbf{k}_{1},\mathbf{k}_{2}} \left\| \frac{1}{l+q} \sum_{i=1}^{l+q} \mathcal{T}_{k_{1,i}}(\mathcal{H}(\mathbf{x}_{1,i})) - \frac{1}{u-q} \sum_{i=1}^{u-q} \mathcal{T}_{k_{2,i}}(\mathcal{H}(\mathbf{x}_{2,i})) \right\|_{F}^{2}$$

Enumerating pairs from two sets to obtain the minimum distance

Decoupling the acquisition function:

$$Uncertainty: \qquad s_1 = rac{1}{l+q} \sup_y \sum m{J} m{lpha}$$
 $Representativeness: \qquad s_2 = -rac{l+q}{n} m{1}^u m{K}_{UU} m{lpha}$

Diversity:
$$s_3 = \frac{1}{2} \boldsymbol{\alpha}^T \boldsymbol{K}_{UU} \boldsymbol{\alpha} + \frac{u-q}{n} \mathbf{1}^l \boldsymbol{K}_{LU} \boldsymbol{\alpha}$$

J: objective, α : sample selection indicator, K_{UU} : Self-correlation of unlabeled, K_{LU} : correlation between labeled pairs and the unlabeled pairs, (l,q,n): The number of labeled, query and all pairs

- Uncertainty: Hard pairs acquire label information to provide effective supervision.
- Representativeness: Query pairs are comprehensively similar to all pairs
- Diversity: Providing sufficient information without redundacy

Experimental Results

Table 1. Comparisons of performance in different code length and annotation cost

Methods	CIFAR-10			NUS-WIDE			ImageNet-100					
	12b	24b	32b	48b	12b	24b	32b	48b	12b	24b	32b	48b
Unsupervised Hashing												
DH	22.3	23.0	23.6	23.7	22.5	23.1	23.4	23.3	12.5	13.8	14.0	14.2
GraphBit	26.9	27.2	27.0	27.3	26.7	27.0	27.2	27.4	12.9	14.5	14.7	15.1
Semi-supervised Hashing												
SSH [†]	35.3	37.0	38.1	38.2	30.0	31.6	35.8	32.6	19.9	21.0	21.6	23.1
SSDH	80.1	81.3	81.2	81.4	77.3	77.9	77.8	77.8	_	_	_	-
PTS ³ H	79.8	82.8	83.5	84.3	75.2	77.4	78.3	78.9	66.1	67.5	68.0	69.7
Supervised Hashing												
DSH	61.6	65.6	66.1	67.3	54.5	55.3	55.9	56.0	47.9	50.3	50.7	51.4
DPSH	71.3	72.7	74.4	75.7	79.4	82.2	83.8	85.1	_	_	_	-
SDSH	93.9	93.9	93.9	93.4	_	81.7	82.1	82.1	_	-	-	-
Active Hashing												
DH-APS (1%)	30.5	31.9	32.6	32.8	30.1	30.6	31.2	31.8	17.9	18.1	19.5	19.6
DH-APS (*)	44.9	46.4	47.8	47.7	36.0	36.8	38.5	38.8	24.9	25.1	26.3	26.8
DH-APS (10%)	47.2	48.6	49.5	49.7	38.1	39.6	40.2	40.7	26.1	27.3	27.8	28.0
DH-APS (30%)	61.8	62.4	63.5	64.3	51.8	53.0	53.5	54.3	43.5	43.6	45.2	46.9
DH-APS+PTS ³ H	82.1	85.3	86.7	86.9	79.1	81.1	82.2	82.3	68.9	70.0	70.3	71.8

Figure 1. Comparisons on precision @ distance less than 2 and top-k precision

Figure 2. (a) t-SNE of sample selection and (b) visualization of chosen samples

