SPATIOTEMPORAL MODELING OF BACTERIAL CO-CULTURE USING PARTIAL DIFFERENTIAL EQUATIONS

Mohammad Taha Farooqui

Supervisor: Brian Ingalls, Brenda Lee

University of Waterloo

PHYS 437A

GOAL OF THE PROJECT

- Incorporate experimental data on monoculture growth and parameter estimates into the model
- Use the model to investigate how the presence of a second bacterial strain affects the growth and spatial distribution of the first strain
- Compare the model predictions with experimental observations of co-cultured bacteria growing on agar pads
- Explore the impact of different growth conditions and initial conditions on the dynamics of the bacterial co-culture
- Develop a quantitative understanding of the factors that influence the spatial organization
 of bacterial co-cultures.

MOTIVATION

- Bioremediation
- Agriculture
- Biofuel
- Wastewater treatment
- Bioproduction (such as medicine, food, chemicals)

FLORESCENT MARKERS

ABSORB AND EMIT LIGHT

BIOLOGICAL LABELING

SPECIFIC TARGETS

DYNAMIC IMAGING

CHEATERS VS COOPERATORS

METHOD Incubate at 37C Centrifuge OD600 = 0.5?

RESULTS

Time-lapse of CFP and Cy3 strains growing

CFP isolated

Cy3 isolated

COFFEE-RING EFFECT

PDE MODELING

•
$$\frac{\partial C}{\partial \epsilon} = \alpha_0(D(C)\nabla c) + M$$

$$D(C) = pq + C\left(p\frac{\partial q}{\partial C} - q\frac{\partial p}{\partial C}\right)$$

$$M = M_1c_1 + M_2c_2$$

$$M_1 = \mu_1\left(\frac{s}{K_s + s}\right)\left(\frac{1}{1 + \left(\frac{A_2}{IC_{50,2}}\right)^{n_2}}\right)$$

$$M_2 = \mu_2\left(\frac{s}{K_s + s}\right)\left(\frac{1}{1 + \left(\frac{A_1}{IC_{50,1}}\right)^{n_1}}\right)$$

M: Reaction term, related to growth rate p and q are density dependent dispersal terms c_1 and c_2 are cell densities of the 2 strains

 A_1 : Kanamycin concentration (antibiotic 1) A_2 : Chloramphenicol concentration (Antibiotic 2) IC_{50} : Half response for either antibiotic

 ${\rm K}_s$: reaction kinetic constant for uptake of glucose n_1 and n_2 related to steepness of Km and Cm responsive curves

PDE MODELING

$$\frac{\partial C}{\partial t} = \alpha_0 (p \nabla_2 (C_q) - Cq \nabla^2 p) + M$$

$$\frac{\partial C}{\partial t} = \delta_0(p\nabla^2(Mq) - Mq\nabla^2p) + Mp$$

$$\frac{\partial c_1}{\partial t} = \delta_0 \left(p \nabla^2 \frac{Mqc_1}{c_1 + c_2} - \frac{Mqc_2}{c_1 + c_2} \nabla^2 p \right) + M_1 c_1 p$$

$$\frac{\partial c_2}{\partial t} = \delta_0 \left(p \nabla^2 \frac{Mqc_2}{c_1 + c_2} - \frac{Mqc_2}{c_1 + c_2} \nabla^2 p \right) + M_2 c_2 p$$

 δ_0 : Dispersal constant

 δ_{A_1} : Diffusion constant for Km

 δ_{A_2} : Diffusion constant for Cm

$$\frac{\partial s}{\partial t} = \delta_s \nabla^2 S - \frac{M}{Y}$$

$$\frac{\partial A_1}{\partial t} = \delta_{A_1} \nabla^2 A_1 - V_{\text{max,1}} \frac{A_1 c_1}{k_{m,1} + A_1}$$

$$\frac{\partial A_2}{\partial t} = \delta_{A_2} \nabla^2 A_2 - V_{\text{max,2}} \frac{A_2 c_2}{k_{m,2} + A_2}$$

Initial vector field of CFP at t=0

Vector field of CFP at t=24h

Simulation Timelapse

SIMULATIONS

Initial vector field of Cy3 at t=0

Vector field of Cy3 at t=24h

Simulation Timelapse

SIMULATIONS

LIMITATIONS AND FUTURE WORK

- Model predicts the experimental data
- Parameters estimation through model is a long process

• Enzyme kinetics experiments to determine parameters more accurately