PandaRec - A Recipe-Based Recommendation System for the Pandas Library

Frederick Vandermoeten

- Introduction
- Approach
- Evaluation
- Conclusion
- References

Introduction: Pandas

Pandas

- Python library for data manipulation and analysis
- Works with DataFrames
- Existing recommendation systems don't work well with Pandas

Code Recommendation Systems

- Help developers to write code
- Design dimensions:
 - Input
 - Recommendation Engine
 - Output
 - User Feedback

Existing Code Recommendation Systems

- Code completion
 - Part of most IDEs
 - not that useful for Pandas
- Code generation
 - Boilerplate automation
 - Generative Al
 - ChatGPT
 - Copilot

- Introduction
- Approach
- Evaluation
- Conclusion
- References

Approach: My Solution

My Solution

- Jupyter Notebook
- Recipe-based recommendation system
- Swappable recommendation engine

Jupyter Notebook

Approach: Recipes

Recipes

- A data structure that describes a task
- Contains:
 - Name
 - Code snippet
 - Description
- saved in JSON format
- Generated from: dir() function, existing code snippets, handwritten

The Recommendation Engine

- Strategy pattern
- Gets current context
- Search function that returns a ranked list of recipes

Ranking Strategies: Lexical Search

- Name Search
- Fuzzy Search
 - Levenshtein distance
- Index Search
 - Lemmatize words
 - Build an inverted index

Ranking Strategies: Semantic Search

- Use a NLP model to calculate the similarity between the query and the recipe descriptions
- BERT: Bidirectional Encoder Representations from Transformers
- Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks

Ranking Strategies: Other

- OpenAl Embeddings
- OpenAl Chat Completion
- Websocket

- Introduction
- Approach
- Evaluation
- Conclusion
- References

Evaluation: Metrics

Metrics

- Speed:
 - Setup and search time
 - Under 100ms for search time is acceptable
- Accuracy:
 - NDCG

Evaluation: Metrics

NDCG

- Normalized Discounted Cumulative Gain
- Measures the ranking quality

$$DCG = \sum_{i=1}^k rac{gains}{log_2(i+1)}$$

$$NDCG = rac{DCG}{IDCG}$$

Last rank k is important: NDCG@k

Speed

Name	Setup Delay	Search Delay
Name Search	68 ns \pm 0.2ns	6.53µs \pm 0.08µs
Fuzzy Name Search	68.4 ns \pm 0.5 ns	756μs \pm 1.3μs
Fuzzy Description Search	276ns \pm 0.8ns	10ms \pm 0.05ms
Index Search	7.87 s \pm 0.08 s	1.74ms \pm 0.01ms
Semantic Search	85s \pm 1s	38.2ms \pm 0.9ms
OpenAl Embedding	$3 extsf{s} \pm 1 extsf{s}$	668ms ± 949ms
OpenAl Chat Completion	530ns \pm 14.9ns	$27.4s\pm3.7s$
Saved Index/ Embedding		
Index Search	$1.5 \mathrm{ms} \pm 0.03 \mathrm{ms}$	-
Semantic Search	$682 \mathrm{ms} \pm 10 \mathrm{ms}$	-
OpenAl Embedding	$27.5 \mathrm{ms} \pm 0.25 \mathrm{ms}$	-

Evaluation: Accuracy

Accuracy

Name	NDCG@5
Name Search	0.0
Fuzzy Name Search	0.41
Fuzzy Description Search	0.27
Index Search	0.22
Semantic Search	0.64
OpenAl Embedding	0.57

- Introduction
- Approach
- Evaluation
- Conclusion
- References

Conclusion