

PROGRAMA DE ASIGNATURA¹

NOMBRE ASIGNATURA: Procesamiento digital de señales

Código: ACUS099-17

	Identificación general					
Docente responsable Correo electrónico	Dr. Víctor Poblete Ramírez vpoblete@uach.cl	Ayudante Correo electrónico	Diego Espejo Alquinta diego.espejo@alumnos.uach.cl			
Horario y sala de clases	Lunes, miércoles y jueves: III Período – 11:30 – 13:00 horas.					
Año y semestre	2019 Semestre otoño					

Antecedentes de la asignatura, según proyecto curricular de la carrera

Programa de Asignatura aprobado por Vicerrectoría Académica, Resolución N°140, 2014.

Unidad Académica	Instituto de Ac	ústica	Carrera	Ingeni	ería Civil <i>i</i>	Acústica	Semestr	e en plan de	V	
Asignaturas- requisito (con código)	Física: ondas y electromagnetismo (BAIN085-14)		las y electromagnetismo (BAIN085-14)			Créditos	SCT-Chile	7		
Horas cronológicas semestre	Teóricas presenciales	51	Práctic		25,5	Trabajo Autónomo	114,75	Total		191,25
Ciclo formativo	Bachillerato		Licenci	atura	X	Profesional				
Área de formación	Especialidad		Genera	ıl	Х	Vinculante- profesional		Optativa		
Descripción de la asignatura	La asignatura Procesamiento digital de señales tiene como principal propósito que los estudiantes apliquen conocimientos en el área de procesamiento y análisis de señales, y fundamentando conceptualmente el procesamiento en el dominio digital en contextos de trabajo multidisciplinario.									

Aporte de la asignatura al Perfil de Egreso, según proyecto curricular de la carrera					
Competencias	Nivel de dominio que alcanza la competencia en la asignatura				
-Específicas: C4: Diseñar soluciones para el control de ruido y vibraciones con enfoque multidisciplinar e innovador elaborando el correspondiente informe, en el ámbito de la construcción, industria y el medio socio-ambiental.	Básico	Medio	X	Superior	Avanzado
C7: Operar sistemas de audio profesional, aplicando criterios técnicos y musicales en el ámbito de la industria musical, audiovisual y del entretenimiento.			X		
C9: Diseñar soluciones de acondicionamiento acústico y sistemas de refuerzo sonoro, aplicando criterios tecnológicos y de calidad acústica en el ámbito de la construcción y la industria del entretenimiento			X		
-Genéricas: C3: Manifestar compromiso ético sustentado en principios y valores de justicia, bien común y de dignidad a expresarse en el contexto profesional e interprofesional de la Ingeniera/ el Ingeniero Civil Acústica.	Básico	Medio	X	Superior	Avanzado
- Sello: C1: Demostrar compromiso con el conocimiento, la naturaleza y el desarrollo sustentable, en el contexto formativo del desarrollo personal y profesional del estudiante con sello UACh	Básico	Medio	x	Superior	Avanzado

		Programación	por Unidades de Apre	endizaje		
	Unidades de Aprendizaje	Resultados de aprendizaje Es capaz de	Estrategias de enseñanza y aprendizaje	Estrategias de evaluación de los aprendizajes y ponderación	Horas presenciales cronológicas	Horas de trabajo autónomo
tiem	dad I: Secuencias y emas en el dominio del po discreto. manas.	Reconocer la terminología utilizada en procesamiento digital de señales.	Clases expositiva- activa, con énfasis en el uso del método de pregunta y	Proyecto (P1): Suma de Convolución, (20%).	12 horas (teóricas). 6 horas (prácticas)	27 horas.
1	Secuencias (señales) básicas en tiempo discreto: Impulso unitario, escalón unitario, exponencial real, exponencial compleja, senoidal, cosenoial, periódicas y aperiódicas, combinación de secuencias.	Aplicar lenguaje matemático para caracterizar señales acústicas en tiempo discreto. Aplicar lenguajes matemático y de programación (Matlab y Python) para resolver ejercicios y problemas	también a través del método de pensamiento lógico y uso de lenguajes de programación (Matlab y Python) y de pensamiento matemático para representar secuencias y sistemas en tiempo discreto.	Construir un código en Python que muestre una animación, paso paso, del proceso de suma de convolución entre dos secuencias. Debe mostrar gráficamente tres secuencias: las dos secuencias a	(prácticas).	
3	Sistemas discretos en el tiempo. Sistemas lineales y no lineales. Sistemas invariantes en el tiempo. Sistemas lineales e invariantes en el tiempo. Respuesta al impulso.	prácticos que involucren señales acústicas y sistemas lineales e invariantes en el tiempo. Implementar a través de lenguajes matemático y de programación, en	Clases prácticas- guiadas: enfatizando el método del aprendizaje basado en problemas prácticos de señales	convolucionar y la tercera es la secuencia resultante convolucionada. Se aplica lenguaje matemático y lenguaje de programación.		
5	Suma de convolución.	Matlab y Python, la operación de suma de	y sistemas, y uso de lenguajes de	código tiene que estar bien		
4	Respuesta en frecuencia de sistemas lineales e invariantes en el tiempo.	convolución, ilustrando en una animación el proceso y la señal convolucionada.	programación Matlab y Python. Trabajo autónomo: en base a guías de	organizado y con comentarios. Debe funcionar para cualquier señal acústica que se		

		aprendizaje y al desarrollo de scripts en Matlab y Python (no presencial).	Pimera evaluación (EV1) de procedimiento teórico-práctico (10%). Se resuelve autónomamente un problema práctico en clases. El procedimiento incluye uso ejercicios de teoría y prácticos de programación Python. El trabajo considera guía de ejercicios y pauta de evaluación.		
Unidad II: Secuencias y sistemas en dominio de la frecuencia. 4 semanas. 1 Transformada de Fourier aplicada a secuencias. Respuesta impulso expresada como la transformada inversa de Fourier de la función de respuesta en frecuencia. Uso de ventanas. 2 Propiedades, teoremas, y	terminología utilizada para el análisis de señales en el dominio de la frecuencia. Aplicar lenguaje matemático para caracterizar señales acústicas en el dominio de frecuencia. Aplicar lenguajes matemático y de	Clases expositiva- activa, con énfasis en el uso del método de pregunta y también a través del método de pensamiento lógico y uso de lenguajes de programación (Matlab y Python) y de pensamiento matemático para analizar secuencias y sistemas en el dominio de la	Proyecto (P2): Segmentar una señal acústica en tiempos cortos y construir espectrograma (20%). Construir un código en Python que genere una matriz la cual contenga una señal segmentada en tiempo corto. A cada segmento, aplicar una ventana.	12 horas (teóricas). 6 horas (prácticas).	27 horas.
2 Propiedades, teoremas, y parejas de transformadas	programación (Matlab y	•	aplicar una ventana, por ejemplo,		

			I		1	
	de Fourier.	ejercicios y problemas		Hamming, y calcular		
		prácticos que involucren	Clases prácticas-	la Transformada de		
3	Teorema de modulación y	el análisis en frecuencia	guiadas:	Fourier. Debe		
	teorema del muestreo	de señales acústicas y	enfatizando el	representar además,		
	(Nyquist).	sistemas lineales e	método del	la magnitud		
		invariantes en el tiempo.	aprendizaje basado	cuadrática de cada		
4	Transformada discreta de		en problemas	segmento a lo largo		
	Fourier (DFT).	Implementar a través de	prácticos de señales	del tiempo		
	Transformada inversa	lenguajes matemático y	y sistemas en el	(espectrograma). Se		
	discreta de Fourier (IDFT).	de programación, en	dominio de la	aplica lenguaje		
	Transformada rápida de	Matlab y Python,	frecuencia, y uso de	matemático y		
	Fourier (FFT).	algoritmos para analizar	lenguajes de	lenguaje de		
	• •	en frecuencia señales	programación	programación.		
		acústicas y visualizar las	Matlab y Python.			
		respuestas del proceso.		Segunda		
		·	Trabajo autónomo:	evaluación (EV2)		
			en base a guías de	de procedimiento		
			aprendizaje y al	teórico-práctico		
			desarrollo de scripts	(10%).		
			en Matlab y Python	Se resuelve		
			(no presencial).	autónomamente un		
			,	problema práctico		
				en clases. El		
				procedimiento		
				incluye uso		
				ejercicios de teoría y		
				prácticos de		
				programación		
				Python. El trabajo		
				considera guía de		
				ejercicios y pauta de		
				evaluación.		
				3.333010111		
Unic	lad III: Transormada z.	Reconocer la	Clases expositiva-	Tercera evaluación	12 horas	27 horas.
	sformada z inversa.	terminología utilizada	activa, con énfasis	(EV3) de	(teóricas).	
	os en tiempo discreto.	para la representación	en el uso del método	procedimiento	-/	
	manas.	de la transformada z, de	de pregunta y	teórico-práctico	6 horas	
		una secuencia.	también a través del	· -	(prácticas).	
					\i	

 Ecuaciones en diferencias lineales con coeficientes constantes. Plano complejo z, región de convergencia. Función del sistema o función de transferencia. Análisis de polos y ceros de la función de transferencia. Diseño de filtros en tiempo discreto: pasa bajo, pasa banda, pasa altos. 	Aplicar lenguaje matemático para representar en el plano z la región de convergencia. Aplicar lenguajes matemático y de programación (Matlab y Python) para resolver ejercicios y problemas prácticos que involucren la transformada z de secuencias. Implementar a través de lenguajes matemático y de programación, en Matlab y Python, filtros en tiempo discreto, para analizar secuencias en el dominio de frecuencia y visualizar las respuestas de estos sistemas.	método de pensamiento lógico y uso de lenguajes de programación (Matlab y Python) y de pensamiento matemático para aplicar la transformada z y diseñar filtros en tiempo discreto. Clases prácticasguiadas: enfatizando el método del aprendizaje basado en problemas prácticos de transformada z y diseño filtros en tiempo discreto, usando de lenguajes de programación Matlab y Python. Trabajo autónomo: en base a guías de aprendizaje y al desarrollo de scripts en Matlab y Python (no presencial).	Se resuelve autónomamente un problema práctico en clases. El procedimiento incluye uso ejercicios de teoría y prácticos de programación Python. El trabajo considera guía de ejercicios y pauta de evaluación.		
Unidad IV: Nociones básicas de procesamiento digital de señales aleatorias. 4 semanas.	Integrar conceptos de procesamiento de señales y sistemas, a señales degradas por ruido o vibraciones.	Clases expositiva- activa, con énfasis en el uso del método de pregunta y también a través del	Representaciones para una señal acústica sin	12 horas (teóricas).6 horas (prácticas).	27 horas.

1	Señales discretas		método de	degradada por	
	randómicas en el tiempo.	Aplicar lenguajes	pensamiento lógico	ruido o vibración	
	•	matemático y de	y uso de lenguajes	(20%).	
2	Señales degradas con	programación (Matlab y	de programación	Construir un código	
_	ruido aleatorio por	Python) para resolver	(Matlab y Python) y	en Python que	
	procesos de ruido o	ejercicios y problemas	de pensamiento	permita hacer	
	vibraciones.	prácticos que involucren	matemático, para el	representaciones de	
		la señales ruidosas.	procesamiento de	una señal acústica	
3	Densidad espectral de		señales aleatorias.	sin distorsión y	
	potencia usando FFT.	Aplicar la función de		degradada por ruido	
	potoriola adamad 11 11	autocorrelación y la	Clases prácticas-	o vibración. Analizar	
4	Función de	transformada de Fourier	guiadas: .	las representaciones	
	autocorrelación.	inversa, para analizar el	enfatizando el	en tiempo y	
	Transformada de Fourier	pitch o frecuencia	método del	frecuencia, y usar	
	de la autocorrelación y	fundamental de una	aprendizaje basado	Transformada de	
	espectro de potencia.	señal acústica (musical o	en problemas	Fourier, filtros,	
		de voz), usando lenguaje	prácticos de para el	espectrogramas, e	
		programación, en Matlab	procesamiento de	histogramas. Se	
		y Python.	señales aleatorias,	aplica lenguaje	
			usando de lenguajes	matemático y	
			de programación	lenguaje de	
			Matlab y Python.	programación.	
			Trabajo autónomo:	Cuarta evaluación	
			en base a guías de	(EV4) de	
			aprendizaje y al	procedimiento	
			desarrollo de scripts	teórico-práctico	
			en Matlab y Python	(10%).	
			(no presencial).	Se resuelve	
				autónomamente un	
				problema práctico	
				en clases. El	
				procedimiento	
				incluye uso	
				ejercicios de teoría y	
				prácticos de	
				programación	
				Python. El trabajo	

			considera guía de ejercicios y pauta de evaluación.		
--	--	--	---	--	--

Requisitos de aprobación

- Asistencia Libre.
- Evaluaciones (fechas y ponderaciones)
 - 1) Pimera evaluación (EV1) de procedimiento teórico-práctico (10%). Lunes 04 de Mayo de 2020.
 - 2) **Proyecto (P1) Suma de Convolución (20%).** Entrega a más tardar, el lunes 18 de Mayo, 16 horas. Cumplida la fecha de entrega, se descontará un punto por día de atraso. La entrega se hace mediante correo electrónico enviado al Profesor y al ayudante.
 - 3) Segunda evaluación (EV2) de procedimiento teórico-práctico (10%). Lunes 18 de Mayo de 2020.
 - 4) **Proyecto (P2) Segmentar una señal acústica en tiempos cortos y construir espectrograma (20%)**. Entrega a más tardar, el lunes 8 de Junio, 16 horas. Cumplida la fecha de entrega, se descontará un punto por día de atraso. La entrega se hace mediante correo electrónico enviado al Profesor y al ayudante.
 - 5) Tercera evaluación (EV3) de procedimiento teórico-práctico (10%). Lunes 01 de Junio de 2020.
 - 6) Proyecto (P3) Representaciones para una señal acústica sin distorsión y degradada por ruido o vibración (20%). Entrega a más tardar, el lunes 29 de Junio, 16 horas. Cumplida la fecha de entrega, se descontará un punto por día de atraso. La entrega se hace mediante correo electrónico enviado al Profesor y al ayudante.
 - 7) Cuarta evaluación (EV4) de procedimiento teórico-práctico (10%). Lunes 15 de Junio de 2020.
 - 8) El promedio de las evaluaciones se calcula como:

 NotaFinal = (EV1)*0.1 + (EV2)*0.1 + (EV3)*0.1 + (EV4)*0.1 + (P1)*0.2 + (P2)*0.2 + (P3)*0.2
 - 9) Se aprueba con **NotaFinal >= 4.0**.

Recursos de aprendizaje

Programa y contenidos de la asignatura en:

- https://github.com/vpobleteacustica/ACUS099-Procesamiento-digital-de-senales

Bibliografía:

- Charbit, M. (2017). Digital Signal Processing with Python Programming. John Wiley & Son, Inc. USA.
- Unpingco, J. (2014). Python for Signal Processing. Featuring IPython Notebook. Springer International Publishing Switzerland.
- Oppenheim, A. V., Schafer, R., W. (1989). Discrete-Time Signal Processing. Prentice Hall, Inc. New Jersey.
- Oppenheim, A. V., Schafer, R., W. (2000). Tratamiento de Señales en Tiempo Discreto. Segunda Edición, Prentice Hall, Madrid.

Software, Librerías y Tutoriales

- Lenguaje: Python 3.8.2 documentation
- Ambiente: IPython Jupyter
- Librerías para computación científica: Numpy, Pandas, Scipy
- Librerías para visualización: Matplotlib
- Librerías para análisis de audio y música: LibROSA
- Tutorial introducción para Markdown y GitHub Markdown Help, LaTeX

Otros recursos: No aplica.

ANEXO: Indicadores de desempeño				
Indicadores de desempeño	Nivel medio (m)			
Competencia	específica N°4			
d.1 Domina conceptos y procedimientos de las ciencias de la ingeniería involucrados en la implementación de soluciones para el control de ruido y vibraciones en el ámbito de la construcción, industria y medio socio-ambiental.	Es capaz de reconocer, en forma colaborativa y guiada, lenguaje técnico, relacionando fundamentos teóricos y procedimientos elementales de las ciencias de la ingeniería en problemas de ruido y vibraciones en el ámbito de la construcción, industria y el medio socio-ambiental.			
Competencia	específica N°7			
d.1 Domina conceptos y procedimientos de las ciencias de la ingeniería involucrados en el manejo de sistemas de audio profesional en el ámbito de la industria musical, audiovisual y del entretenimiento.	Es capaz de reconocer, en forma colaborativa y guiada, lenguaje técnico, relacionando fundamentos teóricos y procedimientos elementales de las ciencias de la ingeniería y/u otras disciplinas, del manejo de sistemas de audio profesional el ámbito de la industria musical, audiovisual y del entretenimiento.			
d.4 Maneja sistemas de audio profesional, aplicando criterios técnicos y musicales en el ámbito de la industria musical, audiovisual y del entretenimiento.	Es capaz de manipular, en forma colaborativa y guiada, sistemas de audio compuestos por uno o varios transductores de entrada, preamplificadores, mezclador y transductores de salida de acuerdos a principios de funcionamiento, y etapa de aplicación en el ámbito de la industria musical, audiovisual y del entretenimiento.			
Competencia	específica N°9			
d.1 Determinar conceptos y procedimientos de las ciencias de la ingeniería involucrados en la implementación de soluciones de acondicionamiento acústico y sistemas de refuerzo sonoro en el ámbito de la construcción y la industria del entretenimiento	Es capaz de reconocer, en forma colaborativa y guiada, lenguaje técnico, relacionando fundamentos teórico y procedimientos elementales de las ciencias de la ingeniería existentes en las necesidades de acondicionamiento acústico y refuerzo sonoro en el ámbito de la construcción y/o industria del entretenimiento.			
Competencia	genérica N°3			
d.1 Examina escenarios que ejemplifican problemáticas y medidas de solución, asociadas a acciones de compromiso ético, en el contexto de las experiencias formativas que la UACh ofrece a los estudiantes.	Es capaz de analizar "casos" de situaciones problemáticas que afectan el compromiso con la libertad y el respeto por la diversidad, considerando sus principales causas y efectos, tanto en contextos rutinarios como en contextos profesionales.			

d.2 Asume posturas críticas frente a las acciones de **compromiso ético**, en el contexto de las experiencias formativas que la UACh ofrece a los estudiantes.

Es capaz de exponer su opinión frente a diversos "casos", que afectan el compromiso ético, justificando su postura de acuerdo a las experiencias que posee y al tipo de contexto en que se presentan.

Competencia sello N°1

d.1 Examina escenarios que ejemplifican problemáticas y medidas de solución, asociadas a acciones de **compromiso con el conocimiento, la naturaleza y el desarrollo sustentable**, en el contexto de las experiencias formativas que la UACh ofrece a los estudiantes.

Es capaz de analizar "casos" de situaciones problemáticas que afectan el *compromiso con el conocimiento, la naturaleza y el desarrollo sustentable*, considerando sus principales causas y efectos, tanto en contextos rutinarios como en contextos profesionales.

d.2 Asume posturas críticas frente a las acciones de *compromiso con el conocimiento, la naturaleza y el desarrollo sustentable*, en el contexto de las experiencias formativas que la UACh ofrece a los estudiantes.

Es capaz de exponer su opinión frente a diversos "casos", que afectan el *compromiso con el conocimiento, la naturaleza y el desarrollo sustentable*, justificando su postura de acuerdo a las experiencias que posee y al tipo de contexto en que se presentan.

Nivel Medio (m): Aplicación frente a una gama significativa de actividades de trabajo variadas, realizadas en una variedad de contextos. Algunas de estas actividades son complejas y hay cierta autonomía y responsabilidad del individuo.