Scilab Textbook Companion for Analog Communication by V. Chandrasekar¹

Created by
S. Vijay Krishnan
BTech
Electronics Engineering
Sastra University
College Teacher
None
Cross-Checked by
Chaya Ravindra

June 3, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Analog Communication

Author: V. Chandrasekar

Publisher: Oxford University Press

Edition: 1

Year: 2010

ISBN: 0198061854

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Li	st of Scilab Codes	4
2	Signals An Introduction	6
3	Amplitude Modulation	13
4	Angle Modulation	24
5	Pulse Modulation	36
6	Noise	41
7	Introduction to Digital Communication	51
8	Information theory	55
9	Introduction to Probability Random variable and Random processes	61

List of Scilab Codes

Exa 2.1.A	Periodicity
Exa 2.2.A	Even and Odd Part of function
Exa 2.2	Real and Imaginary part
Exa 2.3.A	Power and Rms power of Signal
Exa 2.3	Energy of Signal
Exa 2.5	Properties of Impulse Signal
Exa 2.10	Laplace Transform
Exa 2.11	Z transform
Exa 3.1.A	AM Sidebands
Exa 3.1	amplitude modulation
Exa 3.2.A	Amplitude Modulation
Exa 3.2	Total power of AM wave
Exa 3.3.A	Efficiency of DSBFC
Exa 3.3	Modulation index
Exa 3.4.A	DSBFC
Exa 3.4	Modulation index and power
Exa 3.5.A	Amplitude Modulation
Exa 3.5	Peak Envelope Power and average power 21
Exa 3.7.A	Diagonal Clipping
Exa 3.8.A	Sideband Frequencies
Exa 4.1.A	Frequency Deviation
Exa 4.1	phase and frequency deviation
Exa 4.2.A	Power in FM system
Exa 4.2	Peak Frequency Deviation
Exa 4.3.A	BAndwidth of FM
Exa 4.3	Peak Phase Deviation
Exa 4.4.A	Peak Deviation in FM
Exa 4.4	Frequency Modulation

Exa 4.5.A	side frequencies and Aplitudes	29
Exa 4.5	CArson Bandwidth	29
Exa 4.6.A	Carson Bandwidth	30
Exa 4.6	Average Power of signal	30
Exa 4.7.A	Unmodulated Carrier Power	31
Exa 4.7	Phase Modulation	31
Exa 4.8.A		32
Exa 4.9.A	Frequency Deviation	33
Exa 4.10.A	Angle Modulation	34
Exa 1.A		36
Exa 5.1		37
Exa 5.2.A		38
Exa 5.2		38
Exa 5.3.A		39
Exa 5.4.A		40
Exa 6.A		41
Exa 6.1		42
Exa 6.2.A		42
Exa 6.2	Noise voltage	43
Exa 6.3.A		43
Exa 6.3		45
Exa 6.4.A		45
Exa 6.4		46
Exa 6.5.A		46
Exa 6.5	•	47
Exa 6.6.A		47
Exa 6.6		48
Exa 6.7.A		48
Exa 6.8.A		49
Exa 6.9.A		49
		51
Exa 7.1		51
Exa 7.2.A		52
Exa 7.2		52
Exa 7.3.A		53
Exa 7.3		53
Exa 7.4.A		54
	0 1	55

Exa	8.2.A	ShannonFano and Huffman coding
Exa	8.3.A	Gaussian Channel
Exa	8.5.A	Throughput efficiency
Exa	8.6.A	Rate of source
Exa	8.7.A	entropy of equiprobable source
Exa	8.8.A	Self Information
Exa	8.10.A	SNR
Exa	9.1.A	Multiplication Theoram 61
Exa	9.1	Conditional Probability 62
Exa	9.2.A	Theoram of Total Probability 62
Exa	9.2	Conditional Probability 63
Exa	9.3.A	Error Probability
Exa	9.3	Bayes Theoram
Exa !	9.4.A	Density Function

List of Figures

3.1	AM Sidebands	14
3.2	Amplitude Modulation	16

Chapter 2

Signals An Introduction

Scilab code Exa 2.1.A Periodicity

```
2 clear;
3 clc;
             //a) periodicity os 5\sin(6t-pi/4)
5 t=0:0.001:1;
6 \text{ w=6};
7 theta=%pi/4;
8 T = 2 * \%pi/w;
9 x = \cos(t*w + theta);
10 y = cos((t+T)*w+theta);
11 if ceil(x) == ceil(y) then
       disp('a) cos(6t+pi/4) is periodic with T=2*pi/6
12
            (sec) ')
13
14 else
       disp('nonperiodic')
15
16 \text{ end}
17
18
             //b) periodicity of e^(j3t)
19
20
```

```
21
     w=3;
22
     t=0:0.001:1;
23
     T=2*\%pi/w;
24
     x = exp(3*\%i*t);
25
     y = exp(3*\%i*(t+T));
      if ceil(x)==ceil(y) then
26
        disp('b) exp(j3t) is periodic with T=2*pi/3 (
27
           sec) ')
28
29 else
        disp('nonperiodic')
30
31 end
32
33
          //c) periodicity of \cot(3t+theta)
34
35
36
       t=0:0.001:1;
37 \text{ w=5};
38 \quad T = \% pi/w;
39
40
     x = cotg(t*w+theta);
     y = \cot g((t+T)*w+theta);
41
42 if ceil(x) = ceil(y) then
        disp(' c) cot(3t+Theta) is periodic with T=pi/5
43
           (sec) ')
44
45 else
        disp('nonperiodic')
46
47 end
```

Scilab code Exa 2.2.A Even and Odd Part of function

```
1 clc;
2 clear;
3 t = 0:1:10;
```

```
4
5 \text{ for i = } 1:length(t)
     x(i) = (t(i)^6) + 2*(t(i)^4) + 3*(t(i)^2) + 4;
7 end
8
9 	 for i = 1:length(t)
     y(i) = ((-t(i))^6) + 2*((-t(i))^4) + 3*((-t(i))^2) + 4
11 end
12
13 // checking if the function is even x(t)=x(-t)
14 if x==y then
15
       disp("the function is even");
16 end
17 //odd part of the signal = 0.5(x(t)-x(-t))
18
19 z=0.5*(x-y);
20 if z==0 then
21
       disp("the odd part is 0")
22 \text{ end}
```

Scilab code Exa 2.2 Real and Imaginary part

```
1 clc;
2 clear;
3
4 /// e^j(*2*pi*f*t+theta)
5
6 syms pi f0 t theta A
7 K=2*pi*f0*t+theta;
8
9 disp("the given signal is complex");
10 disp("e^(j*theta) can be written as");
11 disp("cos(theta)+j*sin(theta)");
12
```

```
13 Re=A*cos(K);
14 Img=A*sin(K);
15 mag=sqrt(Re^2+Img^2);
16
17 disp(Re, "real part is ");
18 disp(Img, "the imaginary part ");
19 disp(mag, "Magnitude of signal is |A|=");
20 disp(K, "phase of the signal ");
```

Scilab code Exa 2.3.A Power and Rms power of Signal

Scilab code Exa 2.3 Energy of Signal

```
1 clc;
2 clear;
3 4 //x(t)=2 over an interval of (-2,2)
```

Scilab code Exa 2.5 Properties of Impulse Signal

```
1 clc;
2 clear;
3
5 //delta(t)
6
     for j = 1:1000
8
            if j==1
            delta(j)=1;
9
10
        else
11
            delta(j)=0;
12
         end
13
        end
14
15 // a)
16 figure (1)
17
    t = -1;
    plot2d4(t,0);
18
19
        for j=1:1:10
20
            t=t+1;
21
           z(j) = (cosd(j-1)*delta(j));
            plot2d3(t,z(j));
22
23
            disp(z(j));
24
25
        end
26
27
```

```
28 //b)
29 figure(2)
   t=1.5;
30
    plot2d4(t,0);
31
32
       for j=3:1:10
            t=t+1;
33
            z(j) = abs(cosd(2.5)*delta(2*j-5));
34
            plot2d3(t,z(j));
35
36
37
       end
38
39 / (c)
40 syms t;
41
42 A = (-1) * exp(-1*t); //property 8
43 disp(diff(A,t));
44
45 disp("when t=3");
46
47 A = \exp(-3);
48 disp(A);
```

Scilab code Exa 2.10 Laplace Transform

```
1
2
3 //x(t) = del(t)
4 syms t s;
5
6 L =laplace('delta(t)',t,s)
7 disp(L)
8 // x(t) = u(t)
9
10 L1 =laplace('1',t,s);
11 disp(L1)
```

```
12 //x(t) = sin(w0*t)u(t)

13

14 L2 =laplace('sin(w0*t)',t,s);

15 disp(L2)
```

Scilab code Exa 2.11 Z transform

```
1
2 clc;
3 clear;
4
5 // a) z-transform of unit impulse function
6 syms n z;
7 x=1;
8 X=symsum(x*(z^-n),n,0,0);
9 disp(X,'X(z)=');
10
11 //b) z-transform of unit step function
12
13 y=ones(1);
14 Y=symsum(y*(z^-n),n,0,%inf);
15 disp(Y,'Y(z)=');
```

Chapter 3

Amplitude Modulation

Scilab code Exa 3.1.A AM Sidebands

```
1 clc;
2 clear;
3 Fc=500; // carrier frequency in kHz
4 Fm=1; // message signal frequency in kHz
5 / (a)
6
7 USB=Fc+Fm;
8 LSB=Fc-Fm;
9 disp(USB, "USBI(in kHZ)=");
10 disp(LSB, "LSB(in kHz)=");
11
12 / b)
13
14 Bandwidth=USB-LSB;
15 disp(Bandwidth, "Bandwidth(in kHZ)=")
16 / (c)
17
18 Fm=1.5; //message signal frequency in kHz
19
```


Figure 3.1: AM Sidebands

```
20  USB1=Fc+Fm;
21  LSB1=Fc-Fm;
22  disp(USB1,"USB(in kHz)=");
23  disp(LSB1,"LSB(in kHZ)=");
24  
25  
26  //d)
27  Amplitude=[0 0 0 0 0 0 0 0 5 10 5 0]; //sample values as denoted in textbook
29  frequency=490:1:502;
30  plot2d3(frequency, Amplitude);
31  plot2d3(frequency(in kHZ)");
32  xlabel("Frequency(in kHZ)");
33  ylabel("Amplitude(in V)");
```

Scilab code Exa 3.1 amplitude modulation

```
clc;
clear;
Vm=3;// amplitude of message signal in V
Vc=5;//amplitude of carrier signal in V
m=Vm/Vc; // modulation index
disp("modulation index");
disp(m,"=");
disp("Upper Sideband Frequency(in MHz)");
Fm=4;//Frequency in KHz
Fc=5;//Frequency in MHz
disp(Fc+(Fm*10^(-3)),"=");
disp("Lower Sideband Frequency(in MHz)");
disp(Fc-(Fm*10^(-3)),"=");
disp(Fc-(Fm*10^(-3)),"=");
disp("AMplitude of each Sideband(in V)");
disp(m*Vc/2,"=");
```


Figure 3.2: Amplitude Modulation

Scilab code Exa 3.2.A Amplitude Modulation

```
1 clear;
2 clc;
3
4
5 Fm=3; //frequency of message signal
6 Fc=8; //frequency of carrier signal
7 Ea=5;
8 Eb=10;
```

```
9 m=Ea/Eb; //modulation index
10
11 disp(m,"m=");
12 USf=Fc+Fm*10^(-3); // Upper Sideband frequency
13 LSf=Fc-Fm*10^(-3); //Lower sideband frequency
14 disp(USf,"USf(Mhz)=");
15 \operatorname{disp}(\operatorname{LSf}, \operatorname{"LSf}(\operatorname{Mhz}) = ");
16 Amp=m*Eb/2; // amplitude of each sideband
17 \operatorname{disp}(\operatorname{Amp}, \operatorname{"amp}(v) = ");
18
19
20
21
   function[x,Vm,Vc] = ampmod(Ea,Eb,m,Fc,Fm)
22
        t=0:0.005:5;
23
        Vm = Ea*sin(2*\%pi*Fm*t);
24
        Vc = Eb*sin(2*\%pi*Fc*t);
25
26
        x = ((Eb+Ea*sin(2*%pi*Fm*t))).*(sin(2*%pi*Fc*t))
27
            ;
28
        subplot(3,1,2);
29
        plot2d(t,x);
30
        title('Amplitude Modulated Signal');
31
32 endfunction
33
34 ampmod(Ea, Eb, m, Fc, Fm) // amplitude modulation
```

Scilab code Exa 3.2 Total power of AM wave

```
1 clc;
2 clear;
3 Pc=300;// Power of the carrier in W
4 m=0.6// modulation index
5 Pt=Pc*(1+(m^2)/2); //total power
```

```
6 disp("Total power in the modulated wave(in W) is");
7 disp(Pt);
```

Scilab code Exa 3.3.A Efficiency of DSBFC

```
1 clc;
2 clear;
3 disp("efficiency(n)=(useful power/total power)*100%"
                =total sideband power/(total sideband
4 disp("
     power+carrier power) *100%");
5
6 syms m Pc
7 N = [((m^2)*Pc/2)/(Pc*(1+(m^2)/2))];
8 \text{ disp}("*100\%",N);
9
10 disp("
     ");
11 m=0.7 // modulation index
12
13
14 n = [m^2/(m^2+2)]*100; //efficiency
15 disp(n," the percentage of useful power is ");
```

Scilab code Exa 3.3 Modulation index

```
1 clc;
2 clear;
3 Pt=11.5;//Total power in kW
4 Pc=10;// Carrier power in kW
5 //a)
```

```
7  m_square=2*((Pt/Pc)-1);
8  m=sqrt(m_square);// modulation index
9
10  //b)
11  m2=0.5;
12  mt=sqrt(m^2 +m2^2);
13  Pt=Pc*(1+mt^2/2); // total power in kW
14
15  disp(m," modulation index is ");
16  disp(Pt," Total carrier power(in kW) ");
```

Scilab code Exa 3.4.A DSBFC

```
1 clc;
2 clear;
3 Vc=8; // carrier signal voltage in V
4 m=1; // modulation index
5 R=8; //resistance in ohms
6 / (a)
7
8 Pc=Vc^2/(2*R);
9 disp(Pc, "power of the carrier(in W) is");
10 Ps=m^2*Pc/4;
11 disp(Ps, "Power in each Side-Bands(in W)");
12
13 / b
14 disp(2*Ps, "Total sideband Power(in W)");
15
16 / (c)
17 disp(Pc+2*Ps, "Total Power of Modulated wave(in W)");
18
19 / d
20 disp(2*Ps/(Pc+2*Ps)*100, "Efficiency Percentage");
```

Scilab code Exa 3.4 Modulation index and power

```
1 clc;
2 clear;
3 m1=0.3;
4 m2 = 0.4;
5 m3=0.5;
6 m4=0.6; //modulation indices
7 Pc=150; //power of carrier in Watts
9 mt=sqrt(m1^2+m2^2+m3^2+m4^2); //total modulation
     index
10
11 Pt=Pc*(1+mt^2/2);//Total transmitted power in Watts
12
13 Ps=(mt^2)*Pc/4; //Sideband Power in Watts
14
15 disp(mt, "Total Modulation index");
16
17 disp(Pt, "Total Transmitted Power (in W)");
18
19 //change in answer as compared to book , due to
      approximation error..
20 disp(Ps, "Sideband Power(in W)")
```

Scilab code Exa 3.5.A Amplitude Modulation

```
1 clc;
2 clear;
3 m1=0.3;
4 m2=0.4;
5 m3=0.5;
```

```
6 m4=0.6; //modulation indices
7 Pc=80; // Power in carrier signal
9 mt = sqrt(m1^2+m2^2+m3^2+m4^2);
10
11 / (a)
12 disp(mt, "Total Coefficient of Modulation");
13
14 //calculation error in book
15
16 / (b)
17 Ps=(mt^2)*Pc/2;
18 disp(Ps, "Sideband powers(in W)");
19
20 / c
21 disp(Pc+2*Ps, "Total Transmitted Power(in W)");
22
23 / d
24 disp((Ps/(Pc+2*Ps))*100, "Efficiency Percentage");
```

Scilab code Exa 3.5 Peak Envelope Power and average power

```
1 clc;
2 clear;
3 fLSB1=395;
4 fLSB22=397.5; // Two LSB frequencies in kHz
5 E1=4;
6 E2=3; // peak voltages of modulating signal in V
7 R=60; // resistor in ohms
8
9 Et=sqrt(E1^2+E2^2);
10
11 Erms=Et*0.707;
12
13 PEP=((Et*0.707)^2)/R; // Pak Envelope Power in W
```

```
14
15 Avg_Power=PEP/2;
16
17 disp(PEP, "Peak Envelope Power(in W)");
18 disp(Avg_Power, "Average Power(in W)");
```

Scilab code Exa 3.7.A Diagonal Clipping

```
1 clc;
2 clear;
3 Fc=10;//carrier Frequency in kHz
4 R=15;//Resistance in Kohms
5 C=660;//Capacitance in pF
6 a=1/R;
7 b=2*%pi*Fc*10^(3)*C*10^(-12);
8 Y=a+%i*b;
9 Z=1/abs(Y);
10 //after rounding off
11 Z=12.83//Impedence in Kohms
12 m=Z/(R);//modulation index
13 disp(m,"MAximum modulation index to avoid diagonal clipping is");
```

Scilab code Exa 3.8.A Sideband Frequencies

```
1 clc;
2 clear;
3 4
5 syms Ec Fc Fm pi t
6 7 Wave=Ec*cos(2*pi*Fm*t)*cos(2*pi*Fc*t)+Ec*sin(2*pi*Fm*t)*sin(2*pi*Fc*t);
```

```
disp("when the wave is");
disp(Wave);

f_upper=Ec*cos(2*pi*(Fc+Fm)*t);
disp("We get the upper sideband as");
disp(f_upper);

f_lower=Ec*cos(2*pi*(Fc-Fm)*t);
disp("We get the lower sideband as");
disp("We get the lower sideband as");
disp(f_lower);
```

Chapter 4

Angle Modulation

Scilab code Exa 4.1.A Frequency Deviation

```
clc;
clear;
Freq_dev=6; //Frequency Deviation in kHz
Vm=3; //Modulating Voltage in V

Dev=Freq_dev*10^(3)/Vm;

// for Vm=6V

Vm=6;
Freq_dev_new=Dev*Vm;

disp(Freq_dev_new,"the new deviation(in Hz)");
```

Scilab code Exa 4.1 phase and frequency deviation

```
1 clc;
```

```
2 clear;
3
4 t=0:0.01:1;
5 Freq=2*%pi*10^(5)+3*2*%pi*100*cos(2*%pi*100*(t));//
      Phase=2*\%pi*10^(5)*t+3*\sin(2*\%pi*100*t);
7 t1=0.4; // time in ms
8 Ang_Freq=2*%pi*10^(5)+3*2*%pi*100*cos(2*%pi*100*(t1
      *10^(-3)));
9 Freq=Ang_Freq/(2*%pi);
10
11 //change in answer due to calculation error in book
12 disp(Freq, "Instantaneous Frequency(in Hz) at (t=0.4)
     ms)N = ");
13
14
15 Max_pha_Dev=3; //\max(3\sin(2*\%pi*100t))
16
17 disp(Max_pha_Dev, Maximum Phase Deviation(in rad) =
     ");
18
19 Max_fre_Dev=6*%pi*100; //\max(6*pi*100*\cos(2*pi*100t))
20
21
22
23 disp(Max_fre_Dev/(2*%pi), "MAximum Frequency Detation
      (in Hz)");
```

Scilab code Exa 4.2.A Power in FM system

```
1 clc;
2 clear;
3 Wc=8*10^(8);// Angular Frequency of Carrier Signal
4 fc=Wc/(2*%pi);
5
```

```
6 Wm=1300; // Angular Frequency of Message Signal
7 fm=Wm/(2*%pi);
8
9 B=3; // Modulation Index
10 R=12;
11 Vc_rms=15/sqrt(2);
12
13 Max_dev=B*fm;
14 Power=Vc_rms^(2)/R;
15
16 disp(Power, "Power Dissipated (in W) is");
```

Scilab code Exa 4.2 Peak Frequency Deviation

```
clc;
clear;
a=3;//amplitude in volts

Dev_sen=4;// deviation sensitivity in KHz/volts
fm=1.5;// frequency modulating signal in KHz

f=Dev_sen*10^(3)*3;//peak frequency deviation
B=f/(fm*10^3);

disp(f,"Peak Frequency Deviation( in Hz) ");
disp(B,"modulation index ");
```

Scilab code Exa 4.3.A BAndwidth of FM

```
1 clc;
2 clear;
3 fm=3; //Modulating Frequency in kHZ
4 Max_Dev=18; //MAximum Deviation in kHz
```

```
B=Max_Dev/fm; // modulation index

J=12; // from Bessel Table, for B=6
Bw=fm*J*2*10^(3);

disp(Bw,"The Bandwidth (in Hz) is");
```

Scilab code Exa 4.3 Peak Phase Deviation

```
1 clc;
2 clear;
3 Dev_sen=3.5; // Deviation Sensitivity in rad/volt
4 a=2.5; // amplitude in volts
5 B=a*Dev_sen; //Peak Phase Deviation
7 disp(B,"Peak Phase Deviation( in rad)");
```

Scilab code Exa 4.4.A Peak Deviation in FM

```
clc;
clear;
wm=18850;//Angular Frequency of message signal
fm=Wm/(2*%pi);
a=3;// amplitude of message signal

Dev_sen=6;//Deviation Sensitivity in kHz/V
Max_Freq_Dev=a*Dev_sen*10^(3);

B=Max_Freq_Dev/(fm);

disp(Max_Freq_Dev, "Maximum Frequency Deviation(in Hz)");
```

Scilab code Exa 4.4 Frequency Modulation

```
1 clc;
2 clear;
3 a=3; //amplitude in Volts
4 Dev=4; // Deviation in kHz
5 fm=1; // modulating frequency in kHz
6
7 Dev_sen=Dev*10^(3)/a; // Deviation Sensitivity
8 B=Dev/fm; // Modulation Index
9
10 disp(Dev_sen, "Deviation Sensitivity (in kHz/V)");
11 disp(B, "Modulation Index");
12
13 / (a)
14 a=5;
15 Dev_sen_1=a*Dev_sen;
16 B=Dev_sen_1/(fm*10^(3));
17
18 disp(Dev_sen_1, "Deviation Sensitivity for 5V (in Hz)
      ");
19 disp(B, "Modulation index");
20
21
22 //b)
23 a = 10;
24 \text{ fm} = 400;
25 Dev_sen_2=a*Dev_sen;
26 B=Dev_sen_2/fm;
27
28
29 disp(Dev_sen_2, "Deviation Sensitivity for 10V (in Hz
      )");
```

Scilab code Exa 4.5.A side frequencies and Aplitudes

```
1 clc;
2 clear;
3 disp("for B=2, The number of significant frequencies are 6");
4 disp("They are J1, J2, J3, J4, J5 and J6");
5 disp('Their amplitudes with carriers are');
6 J0= 0.224*8;
7 J1= 0.577*8;
8 J2= 0.353*8;
9 J3= 0.129*8;
10 J4= 0.034*8;
11 J5= 0.007*8;
12 J6= 0.001*8;
13 disp(J6, J5, J4, J3, J2, J1, J0, "they are (in V)");
```

Scilab code Exa 4.5 CArson Bandwidth

```
1 clc;
2 clear;
3 fm=3; //Modulating Frequency in kHZ
4 Max_dev=15; // Maximum Deviatin in kHZ
5
6 B=Max_dev/fm;
7
8 J=8; // Bessel table, the highest J coefficient
9 BW=J*fm*10^(3); //Bandwidth in kHz
10
11 BW1=2*(fm+Max_dev)*10^(3); // According to carson rule, BAndwidth
```

```
12
13 disp(BW, "Bandwidth required (in Hz)");
14 disp(BW1, "According to Carsons rule, Bandwidth(in Hz)");
```

Scilab code Exa 4.6.A Carson Bandwidth

Scilab code Exa 4.6 Average Power of signal

```
6 disp(" For B=5 from the Bessel table, The Bessel
      Function is taken upto J9");
7 disp(Pt," Hence the average power of the modulated
      signal (in W) is");
8 disp("Hence, the average power of the modulated
      signal is equal to ");
9 disp("unmodulated carrier power");
```

Scilab code Exa 4.7.A Unmodulated Carrier Power

```
1 clc;
2 clear:
3 a=8;// amplitude in V
4 r=30; //resistance in ohms
6 Pc_unmodulated=a^2/(2*r);
7 Pt=1.792^2/(2*30) +2*(4.616) ^2/(2*30) +2*(2.824^2)
     /(2*30)+2*(1.032)^2/(2*30)+2*(0.272)^2/(2*30)
     +2*(0.056)^2/(2*30) +2*(0.008)^2/(2*30);
  // change in answer due to approximations in the
     book
10
11 disp(Pc_unmodulated,"Unmodulated Power Carrier(in W)
12 disp(Pt, "Total Power in modulated wave(in W)=");
13 disp("Power in the modulated wave is equal to");
14 disp("power in the unmodulated wave");
15 disp("Small error due to rounded off values in
     Bessel functions");
```

Scilab code Exa 4.7 Phase Modulation

```
clc;
clear;
syms t pi;

Pha_dev=3; //Phase_Deviation constant in rad/V

// Phase Modulation Function

Pha_function=Pha_dev*4*sin(2*pi*1.5*10^(3)*t);
Mod_wave=8*cos(2*pi*10^(4)*t) +Pha_function

disp( Pha_function," the Phase Modulation Function = ");

disp(Mod_wave ,"The Modulated Wave Function = ");
```

Scilab code Exa 4.8.A Balanced Modulator

```
1 clc;
2 clear;
3
4 initial_Freq_Dev=5; //frequency in kHz
5 B_initial=0.5; //modulation index
6 fm_initial=10; // message signal frequency in kHz
7 fc_initial=800; //carrier frequency in kHz
8
9 disp("The outputs of the balanced modulator for these parameters");
10 disp("are same as the inputs");
11 disp("They remain unaltered");
12
13 //at the output of the multiplier
14
15 m=12; // multiplication factor
16
```

```
final_Freq_Dev=initial_Freq_Dev*m;
B_final=0.5*m;
fm_final=10; // modulating signal remains unaltered
fc_final=800*m;

disp("At the output of the Multiplier,");
disp(fc_final,"Fc(in kHz)=",fm_final,"Fm(in kHz)=", B_final,"B=");
disp(final_Freq_Dev," Frequency Deviation(in kHz)=");
;
```

Scilab code Exa 4.9.A Frequency Deviation

```
1 clc;
2 clear;
3 ft=100.2; //final carrier frequency in MHz
4 Freq_Dev_ft=60; // Frequency Deviation in KHz at
      power amplifier
5 fm=10; // modulating frequency in KHz
6 m=25; // multiplication factor
8 / (a)
9 fc=ft/25;
10
11 / b
12 Freq_Dev=Freq_Dev_ft/25;
13
14 / c
15 B=Freq_Dev/fm;
16
17 / d
18 Bt=B*m;
19
20 disp(fc, "a) MAster Oscillator Centre Frequency(in
     MHz) = ");
```

```
21 disp(Freq_Dev, "b) Frequency Deviation at the output
      of modulator(in KHz)=");
22 disp(B,"c) Devaition ratio at the output of modulator
      ");
23 disp(Bt,"d) deviation ratio at power amplifier");
```

Scilab code Exa 4.10.A Angle Modulation

```
1 clc;
2 clear;
4 //f(t) = 5\cos(Wc*t + 3\sin(2000*t) + 5\sin(2000*pi*t))
6 fm=2000*%pi/(2*%pi); //bandwidth is the highest
      frequency component
7
8 / (a)
10 Freq_dev=(6000+10000*%pi)/(2*%pi);
11
12 / b
13
14 B=Freq_dev/fm;
15
16 / (c)
17 Phase_dev=8; // Highest value of [3 \sin (2000 t) + 5 \sin (2000 t)]
      (2000*pi*t)
18
19 / d
20 Bw = 2*(fm+Freq_dev);
21
22 disp(Freq_dev," a) Frequency Deviation(in Hz)=");
23 disp(B," b) Devaition Ratio=");
24 disp(Phase_dev, "c) Phase Deviation(in rad)=");
25 disp(Bw, "d) Bandwidth(in Hz)=")
```

Chapter 5

Pulse Modulation

Scilab code Exa 1.A Sample and Hold

```
1 clear;
2 clc;
3 //("current through the capacitor is i=C(dv/dt)");
5 t=15; //acquisition time in us
6 i=5; //current in mA
7 v=5; //maximum voltage across capacitor in V
9
10 // to satisfy current requirement
11 disp("to satisfy current requirement");
12 C_current_req=i*t/v;
13 \operatorname{disp}(C_{\operatorname{current\_req}}, C(nF)=);
14
15 //to satisfy accuracy requirement
16 disp("to satisfy accuracy requirement");
17
18 C_accuracy_req=t/(6.9*15)*1000;// to convert into "
      nanoFarad"
19
20 disp(C_accuracy_req, "C(nF)=");
```

```
21
22 disp("to satisfy both requirements, smaller of the
    two can b taken");
```

Scilab code Exa 5.1 Sampling

```
1 clear;
2 clc;
3 disp("for 8-KHz sampling, the frequencies present are
      ...(in KHz)");
5 Fs=8; //sampling frequency
6 Fst=3.5 //single tone frequency
8 disp(Fst);
9 disp(-Fst);
10 disp(Fs-Fst);
11 disp(-(2*Fs+Fst),(2*Fs+Fst),-(Fs+Fst),(Fs+Fst),(Fs-
     Fst));
12 disp("...etc...");
13
14 disp("in this case, if the LPF is designed with cut-
      off frequency (8/2 = 4-KHz)");
15 disp("then the maximum passable frequency is 3.5-KHz
     "):
16 disp("for 5-KHz sampling, the frequencies present are
      ...(in KHz)");
17
18 Fs=5; //new sampling frequency
19 disp(Fst);
20 disp(-Fst);
21 disp(Fs-Fst);
22 \quad disp(-(2*Fs+Fst),(2*Fs+Fst),-(Fs+Fst),(Fs+Fst),(Fs-Fst))
     Fst));
23 disp("...etc...");
```

Scilab code Exa 5.2.A Aliasing Frequency

```
clc;
clear;
clear;
F_audio=5; //Audio input Frequency in kHz

F_sampling=2*F_audio;

disp(F_sampling,"The Minimum Sampling Frequency (in kHz)");

disp("When the audio Frequency of 6 Khz enters the Sample and Hold circuit");

disp("it will overlap the audio spectrum, and the alaising frequency is 4 kHz");
```

Scilab code Exa 5.2 Sampling Rate

```
1 clc;
2 clear;
3 
4 //x(t)=2sin(4000*pi*t)+3sin(5000*pi*t)+4sin(8000*pi*t)
5 
6 fh=8000/2;
7 fl=4000/2;
8
```

```
disp(fh,"a) Highest Frequency component(in Hz)");
disp(fl,"Lowest Frequency component(in Hz)");

fs=2*fh;
disp(fs," Minimum Sampling frequency(in Hz)");

Bw=fh-fl;
disp(Bw," b)Bandwidth(in Hz) is");

n=fh/Bw;
disp(n,"integer factor");

Fs_new=2*fh/n;
disp(Fs_new,"Required Sampling frequency in this case(in Hz) is");
```

Scilab code Exa 5.3.A PCM system

```
1 clc;
2 clear;
3 fm=5;// maximum analog frequency in kHz
4 Min_dyna_range=35;
5 Vr=3; //Voltage in the receiver in V
6
7 / (a)
8 F_sampling=2*fm;
9
10 / b
11 n=Min_dyna_range/6;
12 k=(Vr-(-Vr)+1);// inclusive of sign bit
13
14 / c
15 Resolution=Vr/(2^{(7)});
16
17 / (d)
```

```
18 Max_quant_Error=Resolution/2
19
20 disp(F_sampling,"a)Minimum Sampling Rate(in kHz) =")
;
21 disp(n,"b) Minimum dynamic Range is");
22 disp(" But Closest whole number is 6. Henc,6 bits
    must be used for amplitude");
23 disp("But the amplitude range is from -3 to +3 V,
    hence a sign bit also ");
24 disp(k,"becomes necessary.. Therefore, the total
    number of bits");
25 disp(Resolution,"c) Resolution(in V) =");
26 disp(Max_quant_Error," d)MAximum Quantization Error
    (in V) ");
```

Scilab code Exa 5.4.A Bandwidth of PCM system

```
1 clc;
2 clear;
3 n=16;// Number of telephone lines
4 m=256;//Quantization levels
5 q=8;// since 2^(q)=256
6
7 fs=10;//Sampling frequency in kHz
8
9 Bw=[(16*9)+1]*10*10^(3);
10
11 disp(Bw,"Bandwidth (in Hz ) is");
```

Chapter 6

Noise

Scilab code Exa 6.A Thermal Noise Power

```
1 clc;
2 clear;
3 T=290; // Temperature in K
4 B=15; //Bandwidth in KHz
5 \text{ k=1.38*10^(-23)}; //Boltzman constant}
6 R=60; //resistance in ohms
8 N=k*T*B*10^(3); //Therman Noise Power in watts
9 N_dBm = 10 * log 10 (N/0.001); //in dBm
10
11 Vrms=sqrt(4*R*k*T*B*10^(3));
12
13 disp("thermal noise power (in watts) is");
14 disp(N);
15 disp("thermal noise power (in dBm) is");
16 disp(N_dBm);
17 disp("RMS noise voltage (in Volts) is");
18 disp(Vrms);
```

Scilab code Exa 6.1 Thermal Noise

```
1 clear;
2 clc;
3 T=290; // temperature in kelvin
4 k=1.38*10^(-23); // Boltzman constant
5 B=1; // bandwidth in MHz
6
7 P=k*T*B*10^(6); // thermal noise power
8 disp("the thermal noise power (in watts) is ");
9 disp(P);
```

Scilab code Exa 6.2.A SNR and Noise Figure

```
1 clc;
2 clear;
3
4 Inp_sig_pow=1.5*10^(-9); //Input Signal Power in
     Watts
5 Inp_noi_pow=1.5*10^(-18); //Input Noise Power in
     Watts
6 Pow_gain=10^(6);
7 int_noi=4*10^(-12); //internal noise in watts
8
9 / (a)
10 Inp_SNR=10*log10(Inp_sig_pow/Inp_noi_pow); // input
     SNR in dB
11
12 / b
13 Nout=Pow_gain*Inp_noi_pow+int_noi //output output
     noise power
14
15 Pout=Pow_gain*Inp_sig_pow //output signal power
16
17 SNR=Pout/Nout; // Signal to Noise ratio
```

```
18  SNRout=10*log10(SNR); // Output SNR in dB
19
20  //c)
21  F=10^(9)/(273*10^(6)); // Noise factor
22  NF=10*log10(F); // Noise figure in dB
23
24  disp("Input SNR (in dB) is");
25  disp(Inp_SNR);
26  disp("Output SNR ( in dB) is");
27  disp(SNRout);
28  disp("Noise factor");
29  disp(F);
30  disp("Noise Figure(in dB)");
31  disp(NF);
```

Scilab code Exa 6.2 Noise voltage

```
1 clc;
2 clear;
3 T=290;// temperature in kelvin
4 R=60;//resistance in ohms
5 k=1.38*10^(-23);
6
7 Esquare=4*R*T*k;
8 E=sqrt(Esquare); //noise voltage
9
10 disp("the noise voltage( in volts) is")
11 disp(E);
```

Scilab code Exa 6.3.A Noise Voltage

```
1 clc;
2 clear;
```

```
3 q=1.6*10^(-19);// electron charge
4 Ieq=5; //equivalent shot noise current in uA
5 Bn=8; //bandwidth in MHz
6 Rn = 200;
7 Rs=100; //resistance in ohms
8 k=1.38*10^(-23);// boltzman constant
9 T=290; //temperature in K
10 Vs=10// RMS signal source volatage in uV
11
12 In=sqrt (2*Ieq*q*Bn);
13
14 Vni=Rs*In;//shot noise voltage
15
16 Vns=sqrt (4*Rs*k*T*Bn*10^(6)); //thermal noise volatge
       from source
17
18 //change in answer due to calculation error in book
19 Vne=sqrt(4*Rn*k*T*Bn*10^(6)); //noise voltage by
      equivalent noise resistance
20
21 Vn=sqrt(Vni^2+Vns^2+Vne^2);// total noise voltage
22
23 SNR = 20 * log 10 (Vs * 10^{(-6)} / Vn);
24
25 disp("shot noise voltage(in V) is ");
26 disp(Vni);
27 disp("thermal noise voltage from source(in V) is");
28 disp(Vns);
29 disp("noise voltage by equivalent noise resistance(
     in V) is");
30 disp(Vne);
31 disp("total noise voltage at the input(in V) is");
32 disp(Vn);
33 disp("SNR (in dB) is");
34 disp(SNR);
```

Scilab code Exa 6.3 Thermal Noise Voltage

```
1 clear;
2 clc;
3 B=150; // bandwidth in KHz
4 R1=30;
5 R2=60; // both resistors R1 and R2 in K-ohms
6 k=1.38*10^(-23);// boltzman constant
7 T=290; //temperature in Kelvin
9 Esquare=4*R1*10^(3)*k*B*10^(3)*T;
10 E=sqrt(Esquare);
11
12 disp("series combination Rseries(in K-ohms)=");
13 disp(R1+R2);
14 Eseries=E*sqrt(3);
15 disp("the thermal noise voltage (in volts) is");
16 disp(Eseries);
17
18 disp("series combination Rseries(in K-ohms)=");
19 disp(R1*R2/(R1+R2));
20 Eparallel=E*sqrt(2/3);
21 disp("the thermal noise voltage (in volts) is");
22 disp(Eparallel);
```

Scilab code Exa 6.4.A Output SNR

```
1 clc;
2 clear;
3 S=4;//number of stages
4 SNR_input=55;//input Signal to Noise ratio in dB
```

```
6 SNR_output=SNR_input-10*log10(S);
7
8 disp("Output SNR( in dB) is");
9 disp(SNR_output);
```

Scilab code Exa 6.4 Shot Noise

```
1 clc;
2 clear;
3
4 Idc=2; //direct current in mA
5 q=1.6*10^(-19); // electron charge
6 B=3; //bandwidth in MHz
7
8 Isquare=2*Idc*10^(-3)*q*B*10^6;
9 I=sqrt(Isquare); //shot noise component
10
11 disp("the shot noise component(in amperes) is");
12 disp(I);
```

Scilab code Exa 6.5.A Output SNR

```
1 clc;
2 clear;
3 F=5; //noise figure in dB
4 SNR_input=55; //Input Signal to noise ratio in dB
5 SNR_output=SNR_input-F;
6 disp("Output SNR (in dB) is");
7 disp(SNR_output);
```

Scilab code Exa 6.5 Output SNR

```
1 clc;
2 clear;
3 Np1=60; // Noise-Power ratio of first system in dB
4 Np2=40; // Noise-Power ratio of second system in dB
5 Np3=30; // Noise-Power ratio of third system in dB
6 Np4=50; // Noise-Power ratio of fourth system in dB
7
8
   P1=10^(-6); //power ratio of first system
9
   P2=10^(-4); //power ratio of second system
10
    P3=10^(-3); //power ratio of third system
11
    P4=10^(-5);//power ratio of fourth system
12
    SNR=(P1+P2+P3+P4); // Overall Signal to Noise ratio
13
14
     disp("SNR ratio is");
15
     disp(SNR);
16
17
    N_final=30; //since SNR is 10^{(-3)}
18
19
    disp("overall SNR (in dB) is");
20
    disp(N_final);
21
22
    disp("the overall SNR is equal to that of the worst
        system")
```

Scilab code Exa 6.6.A Noise Figure

```
1 clc;
2 clear;
3 F=16; // Power ratio in dB
4 k=1.38*10^(-23); // boltzman constant
5 T=290; //temperature in K
6 B=5; //Bandwidth in MHz
7
```

```
8 P=(F-1)*k*T*B*10^(6);
9 disp(" Amplifier Inout noise power (in watts) is");
10 disp(P);
```

Scilab code Exa 6.6 Output SNR

```
1 clc;
2 clear;
3 N_figure=8;//Noise figure in dB
4 SNR_in=45; //Signal to Noise ratio in dB
5
6 SNR_out=SNR_in-N_figure //output Signal to Noise ratio
7
8 disp("the Output SNR(in dB) is ");
9 disp(SNR_out);
```

Scilab code Exa 6.7.A Overall noise figure

```
1 clc;
2 clear;
3 Nf1=7; //Noise figure of first stage in dB
4 F1=5.01; //first power ratio
5 Nf2=25; //Noise figure of second stage in dB
6 F2=316.22; //second power ratio
7 pG=15; //power gain in dB
8 G1=31.62; //power ratio
9
10 F=F1+(F2-1)/G1;
11 disp("overall noise factor");
13 disp(F);
14 disp("Overall noise factor in dB")
```

```
15 disp(10*log10(F));
```

Scilab code Exa 6.8.A Noise Temperature

```
1 clc;
2 clear;
3 Nf=15; //noise figure in dB
4 F=31.62; //power ratio
5 T=290; //Temperature in K
6 T_em = (F-1) *T
7
8 G1=10^(6); //power ratio
9 N_t=80; //Noise temperature in K
10 T_e=N_t+T_em/G1;
11
12 disp("Noise temperature of receiver (in K)");
13 disp(T_em);
14
15 // change in answer....the calculation in the book
     is wrong
16
17 disp("Overall Noise temperature of receiving system(
     in K) is");
18 disp(T_e);
```

Scilab code Exa 6.9.A Noise Temperature

```
1 clc;
2 clear;
3 ENR=31.62; //10^(1.5);
4 Y=6.30; //10^(0.8);
5 T=290; //temperature in K
6 T_h=T*(ENR+1);
```

```
7
8 T_e=(T_h-Y*(T))/(Y-1);
9 disp("Equivalent Noise Temperature (in K) is");
10 disp(T_e);
```

Chapter 7

Introduction to Digital Communication

Scilab code Exa 7.1.A Baud Rate and Bandwidth

```
1 clc;
2 clear;
3 bin_signal=20; //binary signal in kbps
4 N=1; //since ASK
5
6 Bw=bin_signal*10^(3);
7 Baud=bin_signal*10^(3);
8
9 disp(Bw, "Bandwidth(in Hz)=");
10 disp(Baud, "Baud rate=");
```

Scilab code Exa 7.1 Baud Rate

```
1 clc;
2 clear;
3 N=1;// since ASK
```

```
4 Bin_Sig=15; // Binary signal in kbps
5
6 BW=Bin_Sig*10^(3)/N;
7 Baud=Bin_Sig*10^(3)/N;
8 disp(BW, "Bw=");
9 disp(Baud, "Baud=");
```

Scilab code Exa 7.2.A Bandwidth and Baud Rate

```
1 clc;
2 clear;
3 mark_f=59; //MArk Frequency in Hz
4 space_f=61; //space frequency in Hz
5 input_rate=5; //input rate in kbps
6
7 Peak_Frq_Dev=abs((mark_f-space_f)/2);
8 Bw=2*(Peak_Frq_Dev+input_rate)*10^(3);
9 baud=input_rate*10^(3);
10
11 disp(Peak_Frq_Dev, "Peak Frequency Deviation (in KHz) =");
12 disp(Bw, "Minimum BW (in Hz)=");
13 disp(baud, "Baud=");
```

Scilab code Exa 7.2 Baud Rate and Bandwidth

```
1 clc;
2 clear;
3 mark_f=60; //Mark Frequency in KHz
4 space_f=63; //Space Frequency in KHz
5 input_bit_rate=3; // input bit rate
6
7 Peak_Frq_Dev=abs((mark_f-space_f)/2);
```

```
8 B=2*(Peak_Frq_Dev+input_bit_rate);
9 Baud=input_bit_rate*10^(3);
10
11 disp(Peak_Frq_Dev, "Peak Frequency Deviation(in KHz)=
        ");
12 disp(B, "Minimum Bandwidth(in KHz)=");
13 disp(Baud, "Baud rate=");
```

Scilab code Exa 7.3.A Bandwidth and Baud Rate

```
1 clc;
2 clear;
3 N=3;// since 8-PSK
4 bit_rate=36;// in kbps
5
6 Bw=bit_rate*10^(3)/N;
7 baud=bit_rate*10^(3)/N;
8 n=bit_rate*10^(3)/Bw;
9
10 disp(Bw," Minimum Bandwidth(in Hz)=");
11 disp(baud,"Baud rate=");
12 disp(n,"Bandwidth efficiency(in bits per second per cycle of bandwidth)=");
```

Scilab code Exa 7.3 Baud Rate and Bandwidth

```
1 clc;
2 clear;
3 bit_rate=36; // information bit rate in Kbps
4 m=3; // since 8-PSK
5
6 Baud=bit_rate*10^(3)/m;
7 Bw=36*10^(3)/m;
```

```
8  n=36000/12000;
9
10  disp(Baud, "Baud=");
11  disp(Bw, "BW=");
12  disp(n, "Bandwidth efficiency(in bits/cycle)=");
```

Scilab code Exa 7.4.A Nyquist Bandwidth

```
1 clc;
2 clear;
4 Input_bit=5; //Input bit rate in Mbps
6 //bit rate in I,Q,C channels is one-third of input
     bit rate
7
8 fbI=Input_bit/3;//bit rate in I channel
9 fbC=Input_bit/3;//bit rate in C channel
10 fbQ=Input_bit/3;///bit rate in I channel
11
12 Baud=fbI; //Baud in Mbps
13
14 fa=fbC/2;
15
16 //Output from Modulator is
17 // 0.5 \cos(2*pi*49.17MHz) - 0.5 \cos(2*pi*50.83MHz)
18
19 Nyquist=50.83-49.17;
20
21 disp(Nyquist, "Minimum Nyquist Bandwidth(in MHz)=");
```

Chapter 8

Information theory

Scilab code Exa 8.1.A Information Rate

Scilab code Exa 8.2.A ShannonFano and Huffman coding

```
1 clc;
2 clear;
3 m1=0.2;
4 m2=0.3;
5 m3=0.2;
6 \text{ m4} = 0.15;
7 m5=0.15; // probability of 5 source messages
9 H=m1*log2(1/m1)+m2*log2(1/m2)+m3*log2(1/m3)+m4*log2
      (1/m4)+m5*log2(1/m5);//Average information in
      bits
10
11 //a) Shannon-fano coding
12
                          //coding
           0.2
13 // m1
                0 0
                              00
           0.3
                              01
14 // m2
                0 \quad 1
           0.2
                1 0
15 // m3
                              10
16 // m4
           0.15 \ 1 \ 1 \ 0
                              110
           0.15 \ 1 \ 1 \ 1
17 / m5
                              111
18
19 L=(0.2*2)+(.3*2)+(0.2*2)+(2*0.15*3) // Average code
      word length (in bits)=probability *coding length
20
21 n=H/L;
22
23 disp(n*100, "Coding efficiency for Shannon Fano
      coding is");
24
         Huffman coding
25
  //b)
26
                  01
27 / m1 0.2
28 // m2 0.3
                  00
29 // m3 0.2
                   11
30 // m4 0.15
                  010
31 // m5 0.15
                  110
32
33 L=(0.2*2)+(.3*2)+(0.2*2)+(2*0.15*3) //Average code
      word length (in bits)=probability *coding length
```

```
34
35 n=H/L;
36
37 disp(n*100, "Coding efficiency for Huffman coding is"
    );
38
39 //change in answer due to rounded off value in text-
    book
```

Scilab code Exa 8.3.A Gaussian Channel

```
1 clc;
2 clear;
4 PSD=10^{(-9)}; //noise PSD in W/Hz
5 Bw=4000; // Wandwidth in Hz
6
7 / (a)
8 E=0.1 //Energy in Joules
9 C=Bw*log2(1+E/(2*PSD*Bw));
10 disp(C,"a) Capacity of the gaussian channel (in bits/
      s) when E is 0.1 J=");
11
12 / b
13 E=0.001 //Energy in Joules
14 C=Bw*log2(1+E/(2*PSD*Bw));
15 disp(C,"b) Capacity of the gaussian channel (in bits/
      s) when E is 0.001 J=");
16
17 / c
18 Bw=10000;
19 C=Bw*log2(1+E/(2*PSD*Bw));
20 disp(C,"d) Capacity of the gaussian channel (in bits/
     s) when Bw is 10Khz=");
21
```

```
22 disp("100 times fall in Energy when the BW is increased by 2.5 times");
```

Scilab code Exa 8.5.A Throughput efficiency

```
1 clc;
2 clear;
3 k=973;
4 n=1023;
5 \text{ Pa=0.99};
6 Tw = 10 * 10^{(-6)};
7 T1=40*10^{(-6)};
8 N = 4;
10 N_sw=(k/n)*(Pa/(1+T1/Tw)); // efficiency of stop and
      wait algorithm
11 N_{sgpull}=(k/n)*(1/(1+N*(1-Pa)/Pa)); // efficiency of
      go-back-N algorithm
12 Nsr=(k/n)*Pa; // efficiency of selective repeat
      algorithm
13
14 disp(N_sw,"N s&w");
15 disp(N_sgpull, "Nsgpull");
16 disp(Nsr, "Nsr");
```

Scilab code Exa 8.6.A Rate of source

```
1 clc;
2 clear;
3 p1=1/2;
4 p2=1/4;
5 p3=1/8;
6 p4=1/16;
```

Scilab code Exa 8.7.A entropy of equiprobable source

```
1 clc;
2 clear;
3
4 // probability of all the events are same
5 syms N;
6
7 H_X=N*[(-1/N)*log(1/N)]; //H(X)=(-1/N)log(1/N)+(-1/N)log(1/N)+...N times
8
9 disp(H_X,"H(X)=");
```

Scilab code Exa 8.8.A Self Information

```
1 clc;
2 clear;
3 P0=2/3; //P(X=0)
4 P1=2/3; //P(Y=0)
5 H_x=0.919;
6 H_y=0.919;
7 H_b=0.919; //Hb(2/3)
```

Scilab code Exa 8.10.A SNR

```
1 clc;
2 clear;
3 W=3000;
4 SNR_db=39; // 10log (SNR_ratio)=SRN_db
5 SNR_ratio=7943; //10^(3.9)
6
7 C=W*log2(1+SNR_ratio);
8
9 disp(C, "Capacity (in bits/s) =");
```

Chapter 9

Introduction to Probability Random variable and Random processes

Scilab code Exa 9.1.A Multiplication Theoram

```
1 clc;
2 clear;
3
4 P_white=5/8; //P(ball is white)
5
6 //white ball is removed, the remaining balls are four white and three green
7
8 P_green=3/7; //P(ball is green)
9
10 P_tot=P_white*P_green;
11
12 disp(P_tot," Desired Probability using multiplication theoram=")
```

Scilab code Exa 9.1 Conditional Probability

```
1 clear;
2 clc;
3 // f2 be the event that " a two occurs"
5
6 tot=6; //total number of possible outcomes
7 f_2=1; // number of desired outcomes
8 M=3; // number of even outcomes
9
10 ///// a)
11
12 P_A=f_2/tot; //P(A)
13
14 //// b)
15 P_M=M/tot; //P(M)
16
17 ///// c)
18 P_AintersectionM=P_A/P_M; //P(A intersection M)
19
20 disp(P_A, "a) P(A) = ");
21 disp(P_M,"b) P(M)=");
22 disp(P_AintersectionM=P_A/P_M, "c) P(A intersection M
     )=");
```

Scilab code Exa 9.2.A Theoram of Total Probability

```
1 clc;
2 clear;
3 P_box1=0.25; //P(box1)
4 P_box2=0.25; //P(box2)
5 P_box3=0.25; //P(box3)
6 P_box4=0.25; //P(box4)
```

Scilab code Exa 9.2 Conditional Probability

```
1 clc;
2 clear;
3
4 white_ball=3;
5 red_ball=2;
6 total=white_ball+red_ball;
7 P_W=white_ball/total;
8
9 P_SRFW=1/2; //Prob. of second red given first white
10
11 P_FWSR=P_W *P_SRFW// prob. of first white and second red
12
13 disp(P_FWSR," P(First Ball is White and second is red)=");
```

Scilab code Exa 9.3.A Error Probability

```
1 clc;
```

```
2 clear;
3
4 P_1=0.3; //P( 1 is transmitted)
5 Pe_1=10^(-3); //P(detecting an error when 1 is transmitted)
6 P_0=0.7; //P( 0 is transmitted)
7 Pe_0=10^(-7); //P(detecting an error when 0 is transmitted)
8
9 error_prob=P_1*Pe_1+P_0*Pe_0;
10
11 disp(error_prob, "Error Probabillity of the channel");
;
```

Scilab code Exa 9.3 Bayes Theoram

```
1 clc;
2 clear;
3 P_box1=0.25; //P(box1)
4 P_box2=0.25; //P(box2)
5 P_box3=0.25; //P(box3)
6 P_box4=0.25; //P(box4)
8 Pdef_1=0.05; //P(defective/box1)
9 Pdef_2=0.4; //P(defective/box2)
10 Pdef_3=0.10; //P(defective/box3)
11 Pdef_4=0.10; //P(defective/box4)
12
13 / (a)
14
15 Pcomp_def = (P_box1*Pdef_1) + (P_box2*Pdef_2) + (P_box3*Pdef_2)
      Pdef_3)+(P_box4*Pdef_4); //Theoram of total
      probability
16
17 / (b)
```

Scilab code Exa 9.4.A Density Function

```
1 clc;
2 clear;
3 //Y is a Gaussian Random Variable
5 syms y;
6
7 x = 5;
8 m = -3*(x) + 5; //mean
9 disp(m, "mean");
10
11 var=4*7; //variance
12 disp(var, "variance");
13
14 Y = \exp(-\{(y+10)^2\}/56)/\operatorname{sqrt}(56*\%pi);
15
16 disp("Y is an N\{-10,28\} random variable");
17 disp(Y, "density function f(y) = ");
```