

به نام خدا

تمرین سری هفتم

درس سیگنالها و سیستمها دکتر اخوان

در شکل x[n] دارای تبدیل فوریه $X(e^{jw})$ میباشد. قسمت های حقیقی و موهومی سیگنال x[n] در شکل در نشان داده شده است. (خارج از بازه نشان داده شده سیگنال صفر است)

محاسبات زیر را بدون محاسبه صریح تبدیل فوریه این سیگنال انجام دهید.

. الف
$$X(e^{j\omega})|_{w=0}$$
 الف $X(e^{j\omega})$

ىيد. امحاسبه كنيد
$$X(e^{j\omega})|_{w=\pi}$$

ج) محاسبه کنید.
$$\int_{-\pi}^{\pi} X(e^{j\omega})d\omega$$
 ج

.ه.
$$X(e^{-j\omega})$$
 باشد. که تبدیل فوریه ی آن برابر و رسم کنید که تبدیل فوریه ی

ه) سیگنالی را تعیین و رسم کنید که تبدیل فوریه ی آن برابر
$$j\,Im\{X(e^{j\omega})\}$$
 باشد.

۲- تبدیل فوریه معکوس

اندازه و فاز تبدیل فوریه ی سیگنال x[n] در شکل زیر نشان داده شده است. (گاهی اوقات Ω را برای نمایش فرکانس حوزه ی گسسته به کار می برند). سیگنال x[n] را تعیین و رسم کنید.

۳۔ تعمیم رابطه ی پارسوال

سیگنال های مختلط مقدار $X(e^{j\omega})$ و $X(e^{j\omega})$ با تبدیل فوریه های $X(e^{j\omega})$ و مفروض اند.

 $X(e^{j\omega})Y^*(e^{j\omega})$ آن $Y^*(e^{j\omega})$ به وسیله ی استفاده از ویژگی های مناسب تبدیل فوریه ی گسسته، سیگنالی که تبدیل فوریه آن $Y^*(e^{j\omega})Y^*(e^{j\omega})$ است را بر حسب سیگنالی های $Y^*(e^{j\omega})Y^*(e^{j\omega})$ بیابید.

ب) به وسیله ی نتیجه ی قسمت قبل نشان دهید.

$$\sum_{n=-\infty}^{+\infty} x[n]y^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Y^*(e^{j\omega})d\omega$$

این رابطه حالت عمومی تری از رابطه ی پارسوال است که در درس دیده اید.

ج) به کمک نتیجه ی قسمت قبل حاصل مجموع عددی زیر را به دست آورید.

$$\sum_{n=-\infty}^{+\infty} \frac{\sin\left(\frac{\pi n}{4}\right)}{2\pi n} \frac{\sin\left(\frac{\pi n}{6}\right)}{5\pi n}$$

۴۔ خواص تبدیل فوریه

اگر سیگنال x[n] مطابق

$$x[n]=(1-j)\delta[n+1]-\delta[n]+(3+j)\delta[n-1]+2\delta[n-2]$$
 . عبریف شده باشد، حاصل انتگرال $\int_{-\pi}^{\pi}\left|\frac{d}{d\omega}Im\{X(e^{j\omega})\}\right|^2d\omega$ را بیابید.

۵ توصیف رفتار سیستم ها و سیگنال ها براساس تبدیل فوریه ی گسسته

. در تمامی موارد برای سیستم شکل زیر، $G(e^{j\omega})$ را رسم کرده و y[n]

$$\begin{array}{c|c}
x[n] & g[n] \\
\hline
w[n] & \\
\end{array}$$

$$\begin{array}{c|c}
h[n] = \frac{\sin(\frac{n\pi}{2})}{n\pi} & y[n] \\
\end{array}$$

$$x[n] = \frac{\sin(\frac{\pi n}{2})}{n\pi}$$
 . $w[n] = (-1)^n$ (الف

$$x[n] = \delta[n] - \frac{\sin(\frac{\pi n}{2})}{n\pi}$$
 . $w[n] = (-1)^n$ (ب

$$x[n] = \frac{\sin(\frac{\pi n}{2})}{n\pi}$$
 . $w[n] = \left(\cos(\frac{\pi n}{2})\right)^n$ (\varepsilon)

$$x[n] = 1 + sin\left(\frac{n\pi}{8}\right) + 2cos\left(\frac{3\pi n}{4}\right).$$
 $w[n] = cos\left(\frac{\pi n}{2}\right)$ (3)

۶- به دست آوردن اطلاعات سیگنال از روی تبدیل فوریه

سیگنال x[n] = f[n] که در آن x[n] یک سیگنال متناوب با دوره ی تناوب x[n] = x[n] است را در نظر بگیرید. چنانچه تبدیل فوریه x[n] به صورت

$$X(e^{j\omega}) = \sum_{k=0}^{3} \frac{\left(\frac{1}{2}\right)^k}{1 - \frac{1}{4}e^{-j\left(\omega - \frac{k\pi}{2}\right)}}$$

باشد، α و N را محاسبه کرده و حقیقی یا غیر حقیقی بودن x[n] را با بیان علت بررسی کنید.

۷_ شناسایی سیستم

 $y[n]=x[n]=1+\cos\left(2\pi f_0n+rac{\pi}{3}
ight)$ در یک سیستم با پاسخ ضربه ی h[n] ، پاسخ سیستم به ورودی $x[n]=1+\cos\left(2\pi f_0n+rac{\pi}{3}
ight)$ به صورت $j-e^{j2\pi f_0n}$ به دست آمده است. حاصل مجموع زیر را بیابید.

$$\sum_{n=-\infty}^{+\infty} Re\{h[n]\}sin(2\pi f_0 n)$$

۸_ سیستم های باز فاز خطی

 $0 \leq n \leq M$ یا پاسخ ضربه ی h[n] با طول محدود در نظر بگیرید، که در آن h[n] فقط در بازه ی h[n] با سیستم مقدار ناصفر دارد. (M عددی فرد است) اگر پاسخ ضربه ی این سیستم دارای تقارن حول نقطه $\frac{M}{2}$ باشد، نشان دهید این سیستم دارای فاز خطی است.

۹- تبدیل فوریه ی پیوسته - نمونه برداری

شکل زیر را با فرض $x(t)=\cos(\frac{\pi}{3}t)$ و $w_c=\frac{5\pi}{12}$ در نظر بگیرید (بهره ی فیلتر در باند عبور برابر یک است):

الف) با فرض
$$y_1(t)$$
 را به دست آورید. $\omega_S=rac{2\pi}{T_S}=rac{\pi}{2}$ را به دست آورید.

ب) با فرض
$$\omega_{\scriptscriptstyle S}=rac{2\pi}{T_{\scriptscriptstyle S}}=\pi$$
 ، سیگنال خروجی $y_2(t)$ را به دست آورید.

ج) کدام یک از سیگنال های $y_1(t)$ یا $y_2(t)$ مشابه سیگنال ورودی x(t) است؟ با ذکر دلیل مختصر توضیح دهید در کدام یک از موارد، مرز نرخ نمونه برداری نایکوئیست رعایت شده است.