PHY 211 Recitation 11

February 19, 2020

1 Motion on a curve

Consider a car travelling along a curved road at a constant speed.

Problem 1(a). Pick an origin for your xy coordinate system, then draw and label it \mathbf{O} on the figure to the right. Draw the position vector at the start of the curve, and draw another one near the end of the curve. Then find the displacement $\Delta \vec{\mathbf{x}}$.

Along what direction does the average velocity vector point?

Problem 1(b). Now, on the figure to the right, draw instantaneous velocity vectors at the same two points you used above. Draw the change in velocity $\Delta \vec{\mathbf{v}}$. Along what direction does the average acceleration point?

Problem 1(c). Repeat the previous exercise, but make your second point much closer to the first. If you could continue to shrink Δt , which direction would the instantaneous acceleration point?

2 Circular motion

Problem 3(d). What force causes this acceleration?