Chapter 7

Dynamic Programming

7 -2

Outline

- Introduction
- The resource allocation problem
- The traveling salesperson (TSP) problem
- Longest common subsequence problem
- 0/1 knapsack problem
- The optimal binary tree problem
- Matrix Chain-Products

Fibonacci sequence

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21

$$F_{i} = i$$
 if $i \le 1$
 $F_{i} = F_{i-1} + F_{i-2}$ if $i \ge 2$

 $F_i = F_{i-1} + F_{i-2}$ if $i \ge 2$ Solved by a recursive program:

- Much replicated computation is done.
- It should be solved by a simple loop.

7-4

Dynamic Programming

the solution to a problem may be viewed as the result of a sequence of decisions design method that can be used when Dynamic Programming is an algorithm

The shortest path

To find a shortest path in a multi-stage graph

Apply the greedy method: the shortest path from S to T

$$1 + 2 + 5 = 8$$

The shortest path in multistage graphs

e.g.

- The greedy method can not be applied to this case: (S, A, D, T) 1+4+18 = 23.
 - The real shortest path is: (S, C, F, T) 5+2+2 = 9

Dynamic programming approach

Dynamic programming approach

 $d(S, T) = min\{1+d(A, T), 2+d(B, T), 5+d(C, T)\}$

Dynamic programming

 $d(B, T) = min\{9+d(D, T), 5+d(E, T), 16+d(F, T)\}$ $= min\{9+18, 5+13, 16+2\} = 18.$

 $d(C, T) = min\{ 2+d(F, T) \} = 2+2 = 4$

 $d(S, T) = min\{1+d(A, T), 2+d(B, T), 5+d(C, T)\}$ $= min\{1+22, 2+18, 5+4\} = 9.$

The above way of reasoning is called

backward reasoning.

Forward reasoning

- d(S, A) = 1
- d(S, B) = 2
- d(S, C) = 5
- $d(S,D)=min\{d(S, A)+d(A, D),d(S, B)+d(B, D)\}$ $= min\{ 1+4, 2+9 \} = 5$
 - $d(S,E)=\min\{d(S, A)+d(A, E),d(S, B)+d(B, E)\}$
- $= min\{ 1+11, 2+5 \} = 7$
- $d(S,F)=min\{d(S, A)+d(A, F),d(S, B)+d(B, F)\}$ $= min\{ 2+16, 5+2 \} = 7$

Principle of optimality

- decisions D_1 , D_2 , ..., D_n . If this sequence is optimal, then the last k decisions, 1 < k < nPrinciple of optimality: Suppose that in solving a problem, we have to make a sequence of must be optimal.
- e.g. the shortest path problem
- If i, i_1 , i_2 , ..., j is a shortest path from i to j, then i_1 , i_2 , ..., j must be a shortest path from i_1 to j
- In summary, if a problem can be described by a multistage graph, then it can be solved by dynamic programming.

Dynamic programming

- Forward approach and backward approach:
- Note that if the recurrence relations are formulated using the forward approach then the relations are solved backwards i.e., beginning with the last decision
- On the other hand if the relations are formulated using the backward approach, they are solved forwards.
- To solve a problem by using dynamic programming:
- Prove the optimality
- Find out the recurrence relations.
- Represent the problem by a multistage graph.

7-1 The resource allocation problem

m resources, n projects

profit p(i, j): j resources are allocated to project

i. P(i, 0)=0 for each i

maximize the total profit.

	3	6	_	4	2
	2	8	9	4	4
	1	2	S	4	7
Resource	Project	1	2	3	4

To make a sequence of decision to determine the number Resources to be allocated to project i.

The multistage graph solution

The resource allocation problem can be described as a multistage graph.

(i, j): i resources allocated to projects1, 2, ..., j

e.g. node H=(3, 2): 3 resources allocated to projects 1, 2.

■To get the maximum profit = find the longest path from S to T

FIGURE 7-10 The longest paths from I, J, K and L to T.

(2) Having obtained the longest paths from I, J, K and L to T, we can obtain the longest paths from E, F, G and H to T easily. For instance, the longest path from E to T is determined as follows:

$$d(E, T) = \max\{d(E, I) + d(I, T), d(E, I) + d(I, T), d(E, I) + d(I, I), d(E, I) + d(I, I)\}$$

$$= \max\{0 + 5, 4 + 4, 4 + 2, 4 + 0\}$$

$$= \max\{5, 8, 6, 4\}$$

$$= 8$$

The longest paths from E, F, G and H to T. FIGURE 7-11

(3) The longest paths from A, B, C and D to T respectively are found by the same method and shown in Figure 7-12.

FIGURE 7–12 The longest paths from A, B, C and D to T.

(4) Finally, the longest path from S to T is obtained as follows:

$$d(S, T) = \max\{d(S, A) + d(A, T), d(S, B) + d(B, T),$$

$$d(S, C) + d(C, T), d(S, D) + d(D, T)\}$$

$$= \max\{0 + 11, 2 + 9, 8 + 5, 9 + 0\}$$

$$= \max\{11, 11, 13, 9\}$$

$$= 13.$$

The longest path is

$$S \to C \to H \to L \to T$$
.

- -

- Find the longest path from S to T:
- (S, C, H, L, T), 8+5+0+0=13
- 2 resources allocated to project 1.
- 0 resource allocated to projects 3, 4.

1 resource allocated to project 2.

7 -19

The traveling salesperson (TSP) problem

e.g. a directed graph :

Cost matrix:

The multistage graph solution

- A multistage graph can describe all possible tours of a directed graph.
- Find the shortest path: (1, 4, 3, 2, 1) 5+7+3+2=17

The representation of a node

- Suppose that we have 6 vertices in the graph.
- We can combine $\{1, 2, 3, 4\}$ and $\{1, 3, 2, 4\}$ into one node.

(3),(4,5,6) means that the last vertex visited is 3 and the remaining vertices to be visited are (4, 5, 6).

The dynamic programming approach

- vertex i, going through all vertices in S and terminating Let g(i, S) be the length of a shortest path starting at at vertex 1.
- The length of an optimal tour:

$$g(1, V - \{1\}) = \min_{2 \le k \le n} \{c_{1k} + g(k, V - \{1, k\})\}$$

The general form:

$$g(i,S) = \min_{j \in S} \{c_{ij} + g(j,S - \{j\})\}$$

Time complexity:

e complexity:

$$n + \sum_{k=2}^{n} (n-1) \binom{n-2}{n-k} (n-k)$$
 $\binom{(1,(1))}{n-k}$ $\binom{(n-k)}{(n-1)\binom{n-2}{n-k}}$

subsequence (LCS) problem 7-2 The longest common

- A string: A = b a c a d
- symbols from A (not necessarily consecutive). A subsequence of A: deleting 0 or more
 - e.g. ad, ac, bac, acad, bacad, bcd.
- Common subsequences of A = b a c a d and B = a c c b a d c b: ad, ac, bac, acad.
- The longest common subsequence (LCS) of A and B:

a cad.

Determine the length of the LCS

- subsequence, let us try to determine the length of Instead of finding the longest common the LCS.
- Then tracking back to find the LCS.
- Consider $a_1a_2...a_m$ and $b_1b_2...b_n$.
- have to find the LCS of $a_1a_2...a_{m-1}$ and $b_1b_2...b_{n-1}$. Case 1: a_m=b_n. The LCS must contain a_m, we
 - Case 2: $a_m \neq b_n$. We have to find the LCS of $a_1a_2...a_{m-1}$ and $b_1b_2...b_n$, and $a_1a_2...a_m$ and

7 -25

The LCS algorithm

- Let $A = a_1 a_2 ... a_m$ and $B = b_1 b_2 ... b_n$
- Let L_{i,j} denote the length of the longest common subsequence of $a_1 \ a_2 \ \dots \ a_i$ and $b_1 \ b_2$
- $\label{eq:linear} \begin{array}{ll} \mathsf{L}_{i,j} = \left\{ \mathsf{L}_{i-1,j-1} + 1 & \text{if } a_i = b_j \\ & \text{max} \{ \mathsf{L}_{i-1,j}, \mathsf{L}_{i,j-1} \} & \text{if } a_i \neq b_j \\ & \mathsf{L}_{0,0} = \mathsf{L}_{0,j} = \mathsf{L}_{i,0} = 0 & \text{for } 1 \leq i \leq m, \ 1 \leq j \leq n. \end{array}$ if $a_i = b_i$

Solving approach: Find L_{1,1}

The dynamic programming approach for solving the LCS problem:

Time complexity: O(mn)

Tracing back in the LCS algorithm

e.g. A = bacad, B = accbadcb

						1					
	·		a	C	၁	p	a	q	C	p	
		0	0	0	0	0	0	0	0	0	
	p	0	P	0	0	—	\leftarrow		1 1	\leftarrow	
	а	0		+1			7	7	7	7	
A	၁	0	-	7	\bigcirc	~2×	7	7	ω	α	
	а	0		7		7	9	3	\mathcal{C}	\mathcal{C}	
	q	0	$\overline{}$	7	7	7	~ m	\bigoplus	4<	4-	

After all L_{i,j}'s have been found, we can trace back to find the longest common subsequence of A and B.

0/1 knapsack problem

n objects, weight W_1 , W_2 , ..., W_n maximize $\sum_{1 \le i \le n \atop 1 \le i \le n} P_i x_i$ subject to $\sum_{1 \le i \le n \atop 1 \le i \le n} \overline{W}_i x_i \le M$ $\mathbf{x}_i = 0$ or 1, $1 \le i \le n$ profit P₁, P₂, ..., P_n capacity M

е <u>9</u>

0/1 knapsack problem

becomes a modified 0/1 knapsack problem where M becomes $M-W_1$. In There are a sequence of actions to be taken. Let X_i be the variable denoting whether object i is chosen or not. That is, we let $X_i = 1$ if object i is chosen and 0 if it is not. If X₁ is assigned 1 (object 1 is chosen), then the remaining problem general, after a sequence of decisions represented by X_1, X_2, \dots, X_l are made, the problem will be reduced to a problem involving decisions $X_{i+1}, X_{i+2}, \ldots, X_n$ and

$$M' = M - \sum_{j=1}^{l} X_j W_j$$
. Thus, whatever the decisions X_1, X_2, \dots, X_l are, the rest of

decisions $X_{i+1}, X_{i+2}, \dots, X_n$ must be optimal with respect to the new knapsack

The multistage graph solution

The 0/1 knapsack problem can be described by a multistage graph.

The dynamic programming approach

The longest path represents the optimal solution:

$$x_1=0, x_2=1, x_3=1$$

$$\sum_{i} P_i x_i = 20+30 = 50$$

Let f_i(Q) be the value of an optimal solution to objects 1, 2, 3,..., i with capacity Q.

$$f_{i}(Q) = \max\{ f_{i-1}(Q), f_{i-1}(Q-W_{i}) + P_{i} \}$$

The optimal solution is $f_n(M)$.

32

The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
- b_i a positive benefit
- w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are **not** allowed to take fractional amounts, then this is the 0/1 knapsack problem.
- In this case, we let T denote the set of items we take

$$\sum_{i \in T} b_i$$

$$\sum w_i \leq W$$

Example

- Given: A set S of n items, with each item i having
- b_i a positive benefit
- w_i a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.

A 0/1 Knapsack Algorithm, First Attempt

- S_k : Set of items numbered 1 to k.
- Define B[k] = best selection from S_k .
- Problem: does not have subproblem optimality:
- Consider $S=\{(3,2),(5,4),(8,5),(4,3),10,9)\}$ weight-benefit pairs

Best for S₄:

Best for S₅:

A 0/1 Knapsack Algorithm, Second Attempt

- $\mathbf{S}_{\mathbf{k}}$: Set of items numbered 1 to k.
- Define $B[k,w] = best selection from S_k with weight$ exactly equal to w
- Good news: this does have subproblem optimality:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

the best subset of S_{k-1} w/ weight w or the best subset I.e., best subset of S_k with weight exactly w is either of S_{k-1} w/ weight w-w_k plus item k.

The 0/1 Knapsack Algorithm

Recall definition of B[k,w]:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{e} \end{cases}$$

- Since B[k,w] is defined in terms of B[k-1,*], we can reuse the same array
- Running time: O(nW).
- Not a polynomial-time algorithm if W is large
- This is a pseudo-polynomial time algorithm

-1, w] if w_k > w [k - 1, w - w_k] + b_k else Algorithm 01Knapsack(S, W): Input: set S of items w/ benefit b_i and weight w_i; max. weight W Output: benefit of best subset with weight at most W for w ← 0 to W do B[w] ← 0 for k ← 1 to n do for w ← W downto w_k do if B[w-w_k] + b_k > B[w] then

 $B[w] \leftarrow B[w - w_k] + b_k$

Optimal binary search trees

e.g. binary search trees for 3, 7, 9, 12;

7 -38

Optimal binary tree

- Identifiers stored close to the root of the tree can be searched rather quickly.
- For each identifier a_i, associated with probability p_i.
- For each identifier not stored in tree also given probability q_i.

7 -39

Optimal binary search trees

n identifiers: a₁ < a₂ < a₃ < ... < a_n

P_i, 1≤i≤n : the probability that a_i is searched.

where $a_i < x < a_{i+1} (a_0 = -\infty, a_{n+1} = \infty)$. Q_i, 0≤i≤n : the probability that x is searched

$$\sum_{i=1}^{n} P_i + \sum_{i=1}^{n} Q_i = 1$$

Identifiers: 4, 5, 8, 10, 11, 12, 14 Internal node: successful search, P_i

unsuccessful search, Qi External node:

The expected cost of a binary tree:

 The optimal binary tree is a tree with minimal cost.

The dynamic programming approach

- Select an identifier, a_k , to be the root of the tree, all dentifier $\langle a_k \rangle$ will constitute the left (right) descendant.
- Let C(i, j) denote the cost of an optimal binary search tree containing a_i,...,a_j.
- The cost of the optimal binary search tree with a_k as its

$$C(1,n) = \min_{1 \le k \le n} \left\{ P_k + \left[Q_0 + \sum_{i=1}^{k-1} \left(P_i + Q_i \right) + C(1,k-1) \right] + \left[Q_k + \sum_{i=k+1}^n \left(P_i + Q_i \right) + C(k+1,n) \right] \right\}$$

7 -41

First step for construct a binary tree

FIGURE 7-23 A binary tree with a certain identifier selected as the root.

- (a) A subtree containing 1 and 2 with 1 as its root.
- (b) A subtree containing 1 and 2 with 2 as its root.
- (c) A subtree containing 4 and 5 with 4 as its root.
- (d) A subtree containing 4 and 5 with 5 as its root.

Consider 1, 2, 3, 4

- (1) We start by finding

- $(1, 1 \rightarrow 2)$ $(2, 1 \rightarrow 2)$ $(2, 2 \rightarrow 3)$ $(3, 2 \rightarrow 3)$ $(3, 3 \rightarrow 4)$
 - $4, 3 \rightarrow 4$

tree containing identifier ai to ai and with a_k as its root.

(ak, ai->ai) denote an optimal binary

- (a_i->a_i) denote the optimal binary tree containing identifiers a; to a;
- (2) Using the above results, we can determine
- $(1 \rightarrow 2)$ (Determined by $(1, 1 \rightarrow 2)$ and $(2, 1 \rightarrow 2)$) $(2 \rightarrow 3)$
- (3) We then find
- $(1, 1 \rightarrow 3)$ (Determined by $(2 \rightarrow 3)$) $(2, 1 \rightarrow 3)$ $(3, 1 \rightarrow 3)$ $(2, 2 \rightarrow 4)$

- $(3, 2 \to 4)$
- $(4, 2 \rightarrow 4)$.
- (4) Using the above results, we can determine
- $(1 \rightarrow 3)$ (Determined by $(1, 1 \rightarrow 3)$, $(2, 1 \rightarrow 3)$ and $(3, 1 \rightarrow 3)$)

- (5) We then find
- (1, 1 → 4) (Determined by (2 → 4))
 (2, 1 → 4)
 (3, 1 → 4)
 (4, 1 → 4).

- (6) Finally, we can determine(1 → 4)because it is determined by

- $(1, 1 \to 4)$ $(2, 1 \to 4)$ $(3, 1 \to 4)$ $(4, 1 \to 4)$.

General formula

$$C(i, j) = \min_{i \le k \le j} \left\{ P_k + \left[Q_{i-1} + \sum_{m=i}^{k-1} (P_m + Q_m) + C(i, k-1) \right] + \left[Q_k + \sum_{m=k+1}^{j} (P_m + Q_m) + C(k+1, j) \right] \right\}$$

$$= \min_{i \le k \le j} \left\{ C(i, k-1) + C(k+1, j) + Q_{i-1} + \sum_{m=i}^{j} (P_m + Q_m) \right\}$$

Computation relationships of subtrees

e.g. n=4

Each C(i, j) with j-i=m can be computed in O(m) time. when j-i=m, there are (n-m) C(i, j)'s to compute. Time complexity: O(n³)

$$O(\sum_{i=1}^{n} m(n-m)) = O(n^3)$$

Exercise

EXAMPLE OF RUNNING THE ALGORITHM

weights $p_1 = 10$, $p_2 = 3$, $p_3 = 9$, $p_4 = 2$, $p_5 = 0$, $p_6 = 10$; $q_0 = 5$, $q_1 = 6$, $q_2 = 4$, q_3 = 4, q_4 = 3, q_5 = 8, q_6 = 0. The following figure shows the arrays as they ! Find the optimal binary search tree for N = 6, having keys $k_1 \dots k_6$ and would appear after the initialization and their final disposition.

Initial array values:

26	7						
2	28	13	4				
1	21	9					
0	2						
*	0	1	2	3	4	S	9
9						9	
2					2		
4				4			
e			က				
7		2					
Н	Н						
0							
~	0	1	2	m	4	2	9

S	5	m	3	7	Н	ω			
4	46	31	22	6	c				
3	41	26	17	4					
2	28	13	4					9	
1	21	9						2	
0	2							4	
>	0	1	2	3	4	5	9	m	
	I	1	ı	ı	ı		í	2	
9						9		1	

U	0	1	2	3	4	5	9
0							
1							
2							
ന							
4						5	
2							
9							

The values of the weight matrix have been computed according to the formulas previously stated, as follows:

$$W(0, 0) = q0 = 5$$

$$W(1, 1) = q1 = 6$$

$$W(2, 2) = q2 = 4$$

$$W(3, 3) = q3 = 4$$

$$W(4, 4) = q4 = 3$$

$$W(5, 5) = q5 = 8$$

$$W(6, 6) = q6 = 0$$

W (0, 1) =
$$q0 + q1 + p1 = 5 + 6 + 10 = 21$$

W (0, 2) = W (0, 1) + $q2 + p2 = 21 + 4 + 3 = 28$
W (0, 3) = W (0, 2) + $q3 + p3 = 28 + 4 + 9 = 41$
W (0, 4) = W (0, 3) + $q4 + p4 = 41 + 3 + 2 = 46$
W (0, 5) = W (0, 4) + $q5 + p5 = 46 + 8 + 0 = 54$
W (0, 6) = W (0, 5) + $q6 + p6 = 54 + 0 + 10 = 64$
W (1, 2) = W (1, 1) + $q2 + p2 = 6 + 4 + 3 = 13$

--- and so on ---

until we reach:

$$W(5, 6) = q5 + q6 + p6 = 18$$

The elements of the cost matrix are afterwards computed following a pattern of lines that are parallel with the main diagonal.

11
0
0
\leq
=

$$C(1, 1) = W(1, 1) = 6$$

$$C(2, 2) = W(2, 2) = 4$$

 $C(3, 3) = W(3, 3) = 4$

$$C(4, 4) = W(4, 4) = 3$$

$$C(5, 5) = W(5, 5) = 8$$

$$C(6, 6) = W(6, 6) = 0$$

9							0
2						_∞	
4					3		
3				4			
2			4				
1		9					
0	2						
O	0	1	2	က	4	2	9
- 4		× ×		10		10	

$$C(0, 1) = W(0, 1) + (C(0, 0) + C(1, 1)) = 21 + 5 + 6 = 32$$

 $C(1, 2) = W(0, 1) + (C(1, 1) + C(2, 2)) = 13 + 6 + 4 = 23$
 $C(2, 3) = W(0, 1) + (C(2, 2) + C(3, 3)) = 17 + 4 + 4 = 25$
 $C(3, 4) = W(0, 1) + (C(3, 3) + C(4, 4)) = 9 + 4 + 3 = 16$
 $C(4, 5) = W(0, 1) + (C(4, 4) + C(5, 5)) = 11 + 3 + 8 = 22$
 $C(5, 6) = W(0, 1) + (C(5, 5) + C(6, 6)) = 18 + 8 + 0 = 26$

*The bolded numbers represent the elements added in the root matrix.

9						9	
5					2		
4				4			
3			3				
2		2					
1	1						
0							
R	0	1	2	3	4	2	9
9		S (9				26	0
5					22	œ	
4				16	3		
3			25	4			
2		23	4				
1	32	9					
0	2						
C	0	1	2	3	4	2	9

= W $(0, 2)$ + min $(C(0, 0) + C(1, 2), C(0, 1) + C(2, 2))$ = 28 + min $(28, 36)$ = 56	= W(1, 3) + min(C(1, 1) + C(2, 3), C(1, 2) + C(3, 3)) = 26 + min(31, 27) = 53	C(2, 4) = W(2, 4) + min(C(2, 2) + C(3, 4), C(2, 3) + C(4, 4)) = 22 + min(20, 28) = 42	= W (3, 5) + min (C (3, 3) + C (4, 5), C (3, 4) + C (5, 5)) = 17 + min (26, 24) = 41	= W (4, 6) + min (C (4, 4) + C (5, 6), C (4, 5) + C (6, 6)) = 21 + min (29, 22) = 43	
C(0, 2) = W(0)	C(1,3) = W(1)	C(2,4) = W(2)	C(3, 5) = W(3)	C(4, 6) = W(4)	

9					9	9	
2				2	2		
4			3	4			
က		3	3				
2	1	2					
—	1						
0							
œ	0	1	2	3	4	2	9
9			28 6		43	26	0
2				41	22	∞	
4			42	16	က		
က		23	25	4			
7	26	23	4				
П	32	9					
	2						
0		1					

Final array values:

9	188	140	108	89	43	26	0
2	151	103	75	41	22	00	
4	118	70	42	16	3		
3	86	53	25	4			
2	26	23	4				
1	32	9					
0	2						
U	0	-	2	n	4	2	9

9	m	3	4	9	9	9	0
2	3	3	3	2	2	0	
4	3	3	3	4	0		
3	2	3	3	0			
7	1	2	0				
1	1	0					
0	0				100		
æ	0	1	2	3	4	2	9

The resulting optimal tree is shown in the bellow figure and has a weighted path length of 188.

Computing the node positions in the tree:

- The root of the optimal tree is R(0, 6) = k3;
- The root of the left subtree is R(0, 2) = k1;
- The root of the right subtree is R(3, 6) = k6;
- The root of the right subtree of k1 is R(1, 2) = k2

The root of the left subtree of k6 is R(3, 5) = k5

- The root of the left subtree of k5 is R(3, 4) = k4
- http://software.ucv.ro/~cmihaescu/ro/laboratoare/SDA/

docs/arboriOptimali_en.pdf

Code example

```
e紀錄expected cost, root紀錄選擇結果
                                                                                                                                                                                                                                                                                                                                                                  \Theta(n^3)
                                                                                                                                                                                                                                                                  t=e[i, r-1]+e[r+1, j]+w[i, j]
                                                                                                                                                 填表: 兩層迴圈, 對角線順序
Optimal_BST(p,q,n)
let e[1..n+1,0..n],w[1..n+1,0..n],and
root[1..n,1..n] be new tables
                                                                                                                                                                                                                                                                                                                                         root[i,j]=r
                                                                                                                                                                                                                       W[\dot{1},\dot{]}]=W[\dot{1},\dot{]}-1]+p_j+q_j
                                                                                                                                                                                                                                                                                            if t<e[i,j]</pre>
                                                            for i=1 to n+1 e[i,i-1]=q_{i-1} w[i,i-1]=q_{i-1} for <math>l=1 to n
                                                                                                                                                                                                                                               for r=i to j
                                                                                                                                                      for i=1 to n-l+1
                                                                                                                                                                                                e[i,j]=\infty
                                                                                                                                                                           j = i + 1 - 1
                                                                                                                                                                                                                                                                                                                                                               return e and root
```

https://www.youtube.com/watch?v=8d0pazeCpgE

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
- Rather than give the general structure, let us first give a motivating example:
- **Matrix Chain-Products**
- Review: Matrix Multiplication.

$$C = A*B$$

• $A ext{ is } d ext{ } xe ext{ and } B ext{ is } e ext{ } xf$

$$C[i,j] = \sum_{k=0}^{e-1} A[i,k] * B[k,j]$$

O(def) time

Dynamic Programming

補充 Matrix-chain multiplication

n matrices A₁, A₂, ..., A_n with size

$$p_0 \times p_1$$
, $p_1 \times p_2$, $p_2 \times p_3$, ..., $p_{n-1} \times p_n$

To determine the multiplication order such that # of scalar multiplications is minimized.

To compute $A_i \times A_{i+1}$, we need $p_{i-1}p_ip_{i+1}$ scalar multiplications.

 $(A_1 \times A_2) \times (A_3 \times A_4)$, # of scalar multiplications: $((A_1 \times A_2) \times A_3) \times A_4$, # of scalar multiplications: $(A_1 \times (A_2 \times A_3)) \times A_4$, # of scalar multiplications: e.g. n=4, A_1 : 3×5 , A_2 : 5×4 , A_3 : 4×2 , A_4 : 2×5 3*5*4+3*4*2+3*2*5=1143*5*2+5*4*2+3*2*5=1003*5*4+3*4*5+4*2*5=160

7 -55

 $\binom{n-1}{n-1}$ /n 種可能的配對組合 ▶ Note: n個matrix相乘有 $C_{n-1} = \left| \frac{2(n-1)}{n} \right| / n$

(括號方式)

■ Ex: 以下有四個矩陣相乘:

$$A \times B \times C \times D$$
$$20 \times 2 \times 30 \quad 30 \times 12 \quad 12 \times 8$$

由Note得知共有五種不同的相乘順序,不同的順序需要不同的乘法 次數:

$$A(B(CD))$$
 $30 \times 12 \times 8 + 2 \times 30 \times 8 + 20 \times 2 \times 8 = 3,680$
 $(AB)(CD)$ $20 \times 2 \times 30 + 30 \times 12 \times 8 + 20 \times 30 \times 8 = 8,880$
 $A((BC)D)$ $2 \times 30 \times 12 + 2 \times 12 \times 8 + 20 \times 2 \times 8 = 1,232$
 $((AB)C)D$ $2 \times 30 \times 12 + 2 \times 12 \times 8 + 20 \times 12 \times 8 = 10,320$
 $(A(BC)D)$ $2 \times 30 \times 12 + 20 \times 2 \times 12 + 20 \times 12 \times 8 = 3,120$

其中,以第三組是最佳的矩陣相乘順序。

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A=A_0*A_1*...*A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize?

Example

- B is 3×100
- $C \text{ is } 100 \times 5$
- D is 5×5
- (B*C)*D takes 1500 + 75 = 1575 ops
- **B***(C*D) takes 1500 + 2500 = 4000 ops

An Enumeration Approach

Matrix Chain-Product Alg.:

Try all possible ways to parenthesize

$$A=A_0*A_1*...*A_{n-1}$$

- Calculate number of ops for each one
- Pick the one that is best

Running time:

- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost
- This is a terrible algorithm!

A Greedy Approach

- Idea #1: repeatedly select the product that uses (up) the most operations.
 - Counter-example:
- A is 10×5
- $B is 5 \times 10$
- $C is 10 \times 5$
- $Dis 5 \times 10$
- Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
- A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
- A is 101×11
- $B is 11 \times 9$
- $C \text{ is } 9 \times 100$
- D is 100×99
- Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
- (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.

◆六個矩陣相乘的最佳乘法順序可以分解成以下的其中一種

1. A₁ (A₂A₃A₄A₅A₈)

2. (A₁A₂) (A₃A₄A₅A₆)

3. (A₁A₂A₃) (A₄A₅A₆)

4. (A₁A₂A₃A₄) (A₅A₆)

5. (A₁A₂A₃A₄A₅) (A₆)

Az, ..., Ak和Akr, ..., As)各自所需乘法數目的最小值相加,再 第k個分解型式所需的乘法總數,爲前後兩部份(一爲A, 加上相乘這前後兩部份矩陣所需的乘法數目。

 $M[1][6] = minimum(M[1][k] + M[k+1][6] + d_0d_kd_6).$

A "Recursive" Approach

Define subproblems:

- Find the best parenthesization of A_i*A_{i+1}*...*A_i.
- Let N_{i,j} denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0,n-1}$.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^*...*A_i)^*(A_{i+1}^*...*A_{n-1})$.
- subproblems, N_{0,i} and N_{i+1,n-1} plus the time for the last multiply. Then the optimal solution N_{0,n-1} is the sum of two optimal
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing

Equation

- optimal subproblems, depending on where the final The global optimal has to be defined in terms of multiply is at.
- Let us consider all possible places for that final multiply:
- Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
- So, a characterizing equation for N_{i,j} is the following:

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems
 overlap, we don't use
 recursion.
- Instead, we construct optimal subproblems "bottom-up."
- $N_{i,i}$'s are easy, so start with them
- Then do length 2,3,... subproblems, and so on.
- Running time: O(n³)

Algorithm matrixChain(S):

Input: sequence S of n matrices to be multiplied

Output: number of operations in an optimal paramethization of *S*

for
$$i \leftarrow 1$$
 to n - l do
$$N_{i,i} \leftarrow 0$$
for $b \leftarrow 1$ to n - l do
$$for \ i \leftarrow 0 \text{ to } n$$
- b - l do
$$j \leftarrow i$$
+ b

$$N_{i,j} \leftarrow + \text{infinity}$$

$$for \ k \leftarrow i \text{ to } j$$
- l do

 $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$

A Dynamic Programming Algorithm Visualization

The bottom-up construction fills in the N array by diagonals

N_{i,j} gets values from pervious entries in i-th row and j-th column

Filling in each entry in the N table takes O(n) time.

Total run time: O(n³)

Getting actual parenthesization can be done by remembering "K" for each N entry

Let m(i, j) denote the minimum cost for computing
$$A_i \times A_{i+1} \times ... \times A_j$$

$$A_i \times A_{i+1} \times ... \times A_j$$

$$m(i,j) = \begin{cases} 0 & \text{if } i = j \\ \min\{m(i,k) + m(k+1,j) + p_{i-1}p_kp_i\} & \text{if } i < j \end{cases}$$

Computation sequence:

Time complexity: O(n³)

◆ Matrix Chain的憑迴式

$$M[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min \{M[i,k] + M[k+1,j] + d_{i-1}d_kd_j\} & \text{if } i < j \end{cases}$$

◆ Example: A¹₃ҳ₃, A²₃ҳӆ, A³ҳҳ, A⁴ҳҳ₀, A⁵ҳҳӣ 求此五矩陣的最小乘 法次數。

Š

建立兩陣列 M[1...5, 1...5] 及P[1...4, 2...5]

- diagonal = 1,二只有1個矩陣、二不會執行乘法動作
- 陣列M的中間對角線為 , 庫列P則不填任何數值

diagonal = 1

Case (When diagonal > 1)

- diagonal = 2,有2個矩陣相乘
- 當 i = 1及 j = 2,爲A'及A²矩陣 相乘,此時:

 $M[1, 2] = M[1,1]+M[2,2]+3\times3\times7 = 63$

其中 A' 及A²的分割點 k 如下:

分割點k=1

Case (When diagonal > 1)

- diagonal = 3,有3個矩陣相乘
- 當 i = 2及 j = i+diagnal-1 = 2+3-1=4,爲A²至A4間的所有矩陣相乘,此時:

2			3	4
4	****	3	3	
3	1	2		
2	ı			
<u> </u>	1	2	3	4

Case (When diagonal > 1)

- diagonal = 4,有4個矩庫
- 當!=1及}=4,爲A'至A4間的所有矩陣相乘,此時:

8				
2		3	3	4
4	3	3	3	
3	1	2		
2	1			
۵	-	2	3	4

分割點 k =1	分割點的=2	分割點格=3
$M[1,1]+M[2,4]+3\times3\times9=177$	$M[1,2] + M[3,4] + 3 \times 7 \times 9 = 378$	$M[1,3] + M[4,4] + 3 \times 2 \times 9 = 114,$
	M[1,4] = min∢	

Case ② (When diagonal > 1)

- diagonal = 5,有5個矩陣
- 當!=1及}=5,爲A'至A5間所有矩陣相乘,此時;

	diagonal = 5						
5	156	138	128	72	0		
4	114	96	126	0			
3	09	42	0				
2	63	0					
_	0						
Σ	1	2	3	4	5		

2	8	3	3	4
4	3	3	3	
3	1	2		
2	ı			
Δ,	1	2	3	4

| M[1,2] + M[3,5] + 3×7×4 = 275,分割點k = 2 M[1,3]+M[4,5]+3×2×4=156, 分割點k=3 [M[1,4]+M[5,5]+3×9×4=222, 分割點k=4 [M[1,1]+M[2,5]+3×3×4=174, 分割點k=1 M[1,5] = min

7 -71

◆[Note]此演算法的概念如下:

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
 - We can make n calls to Dijkstra's algorithm (if no negative edges), which takes O(nmlog n) time.
- Likewise, n calls to Bellman-Ford would take $O(n^2m)$ time.
- We can achieve O(n³) time using dynamic programming (similar to the Floyd-Warshall algorithm).

```
Algorithm AllPair(G) {assumes vertices 1,...,n} for all vertex pairs (i,j) if i=j if i=j D_{\theta}[i,i] \leftarrow \theta else if (i,j) is an edge in G D_{\theta}[i,j] \leftarrow weight \ of \ edge \ (i,j) else D_{\theta}[i,j] \leftarrow +\infty for k \leftarrow I to n do for i \leftarrow I to n do for \ i \leftarrow I \ to \ n \ do for \ i \leftarrow I \ to \ n \ do for \ i \leftarrow I \ to \ n \ do P_{k}[i,j] \leftarrow \min\{D_{k-1}[i,j], D_{k-1}[i,k] + D_{k-1}[k,j]\} return D_{\omega}
```

Uses only vertices numbered 1,...,k
Uses only vertices

numbered 1,...,k-1

numbered 1,...,k-1

numbered 1,...,k-1