Teoria: Przestrzeń sprzężona (dualna) $V^* = Hom(V, \mathbb{R})$ funkcjonałów liniowych na V. Baza sprzężona \mathcal{B}^* do bazy \mathcal{B} . Izomorfizm $f: V \to V^*$, gdy $dim(V) < \infty$ (niekanoniczny). Zbiór Aut(V) automorfizmów liniowych V, związek z $GL(n, \mathbb{R})$. Macierz odwracalna: definicja, własności. Ker(F) i Im(F) dla $F: V \to W$ liniowego: definicja, własności. F jest 1-1 $\iff Ker(F) = \{0\}$.

dim(V) = dim(Ker(F)) + dim(Im(F)). Wn: gdy $dim(V) < \infty$ i $F : V \to V$ liniowe, to F jest 1-1 $\iff F$ jest "na". Macierz kwadratowa A wymiaru $n \times n$ jest odwracalna iff kolumny A są liniowo niezależne.

Permutacje: definicja, zapis dwuwierszowy, składanie, permutacja odwrotna, transpozycja, cykl. Cykle rozłączne, ich komutowanie. Rozkład permutacji na iloczyn cykli rozłącznych. Każda permutacja jest złożeniem pewnej liczby transpozycji liczb sąsiednich. Inwersja w permutacji. Permutacje parzyste/nieparzyste. Znak permutacji $sgn(\sigma\tau) = sgn(\sigma)sgn(\tau), sgn(\sigma^{-1}) = sgn(\sigma).$

V oznacza przestrzeń liniowa nad \mathbb{R} , U < V.

Ćwiczenia (do samodzielnego wykonania, nie deklaruje się ich).

- 1. Niech $B = \{1, X, X^2, X^3\}$, $C = \{X^3, X^2, X, 1\}$. Znaleźć macierze $m_{BC}(F)$ i $m_{CB}(F)$ dla następujących odwzorowań liniowych $F : \mathbb{R}_3[X] \to \mathbb{R}_3[X]$.
 - (a) F(W(X)) = W(2X), (b) F(W(X)) = 2W(X), (c) F(W(X)) = W(X-1),
 - (d) F(W(X)) = W(X) W(1).

Następnie obliczyć macierz $m_{BB}(F \circ F)$ na dwa sposoby:

- (1) jako iloczyn $m_{CB}(F)m_{BC}(F)$,
- (2) wyprowadzić wzór na złożenie $F^2 = F \circ F$ i obliczyć $m_{BB}(F^2)$ wprost z definicji, obliczając współrzędne w bazie B wielomianów $F^2(W)$ dla $W \in B$. Podobnie sprawdzić, że $m_{CC}(F \circ F) = m_{BC}(F)m_{CB}(F)$. Porównać $m_{CC}(F^2)$ i $m_{BB}(F^2)$.
- 2. Niech $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 4 & 3 & 1 & 8 & 7 & 6 \end{pmatrix}$.
 - (a) Przedstawić σ w postaci iloczynu cykli rozłącznych.
 - (b) Czy σ jest parzysta?
- 3. Narysować w układzie współrzędnych obraz siatki $(\mathbb{R} \times \mathbb{Z}) \cup (\mathbb{Z} \times \mathbb{R})$ względem przekształcenia liniowego $\mathbb{R}^2 \to \mathbb{R}^2$ o macierzy

(a)
$$\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$
, (b) $\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$,

(c)
$$\begin{pmatrix} -2 & 1 \\ -3 & 3 \end{pmatrix}$$
.

- 4. Znaleźć macierz przekształcenia liniowego płaszczyzny F wiedząc, że
 - (a) F(5,0) = (3,1), F(0,7) = (-2,3),
 - (b) F(4,1) = (2,3), F(1,-1) = (0,1).

Zadania. Zadań oznaczonych minusem nie omawiamy na ćwiczeniach.

- 1. (a)– Sprawdzić, że przekształcenie $F: V \to V/U$ określone przez F(v) = v + U jest liniowe. (przekształcenia takie nazywamy przekształceniami ilorazowymi) (b) Udowodnić, że dim(V) = dim(U) + dim(V/U) (korzystając z punktu (a) i twierdzenia z wykładu).
- 2. (Bazy sprzężone) Niech $b_1 = E_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $b_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\mathcal{B} = \{b_1, b_2\}$, zaś $\mathcal{E} = \{E_1, E_2\}$ (są to dwie bazy \mathbb{R}^2 o wspólnym pierwszym wektorze). Wyznaczyć wzory na b_1^* i E_1^* jako funkcjonały liniowe $\mathbb{R}^2 \to \mathbb{R}$, elementy baz sprzężonych \mathcal{B}^* i \mathcal{E}^* .
- 3. Udowodnić, że dla $A, B \in M_{n \times n}(\mathbb{R})$, jeśli AB = I, to BA = I (bez używania wyznacznika i bez rachunków). W szczególności takie macierze są odwracalne i są wzajemnymi odwrotnościami.
- 4. Niech $b_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, b_3 = E_3 \in \mathbb{R}^3$. Niech $V_0 = Lin(b_1, b_2), V_1 = Lin(E_3), zaś <math>F : \mathbb{R}^3 \to \mathbb{R}^3$ będzie rzutem na V_0 wzdłuż V_1 . Wyznaczyć macierz F w bazie $\mathcal{B} = \{b_1, b_2, E_3\}, (tzn. m_{\mathcal{BB}}(F))$ i w bazie standardowej \mathcal{E} (tzn. macierz $m_{\mathcal{EE}}(F)$ (bez odwoływania sie do macierzy przejścia).
- 5. (a) Załóżmy, że $\Pi < \mathbb{R}^3$ jest płaszczyzną o równaniu parametrycznym $X = tb_1 + sb_2$, $t, s \in \mathbb{R}$, gdzie wektory b_1 i b_2 są liniowo niezależne, zaś $F : \mathbb{R}^3 \to \mathbb{R}^3$ jest przekształceniem liniowym takim, że $Im(F) = \Pi$ oraz $F|_{\Pi} = id_{\Pi}$. Niech V = Ker(F). Udowodnić, że F jest rzutem na Π wzdłuż V.
 - (b) W przypadku gdy $b_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, podać przykład liniowych $F, G : \mathbb{R}^3 \to \mathbb{R}^3$ takich, że $Im(F) = Im(G) = \Pi$, F jest rzutem na Π (wzdłuż pewnej podprzestrzeni), zaś G nie jest rzutem na Π . Podać macierze F i G, w bazie standardowej.
- 6. Macierz $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$ jest macierzą obrotu \mathbb{R}^3 wokół pewnej osi przechodącej przez O. Znaleźć tę oś (równanie w postaci parametrycznej).
- 7. Znaleźć jądra i obrazy przekształceń liniowych $F:\mathbb{R}^3\to\mathbb{R}^3$ o następujących macierzach:

(a) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 5 \end{bmatrix}$, (b)- $\begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 2 & -2 \end{bmatrix}$

Znaleźć bazy tych podprzestrzeni. Napisać równania tych podprzestrzeni w postaci parametrycznej. (wskazówka: Im(F) jest generowany przez $F(E_1)$, $F(E_2)$, $F(E_3)$, Ker(F) jest zbiorem rozwiązań układu równań liniowych)

- 8. Czy istnieje przekształcenie liniowe F takie, że Im(F) = Ker(F)?
 - (a)– $F: \mathbb{R}^2 \to \mathbb{R}^2$, (b)– $F: \mathbb{R}^3 \to \mathbb{R}^3$, (c)(i) $F: \mathbb{R}^4 \to \mathbb{R}^4$, (ii) $F: \mathbb{R}^5 \to \mathbb{R}^5$,

 - $(d)^* F : \mathbb{R}[X] \to \mathbb{R}[X].$
- 9. Podać przykład przekształcenia liniowego $F: \mathbb{R}[X] \to \mathbb{R}[X]$, które
 - (i) jest 1-1, lecz nie jest "na"
 - (ii) jest "na", lecz nie jest 1-1.
- 10. Załóżmy, że $\sigma \in S_n$. Udowodnić, że $\sigma = id$, jeśli
 - a) $\sigma(i) \ge i$ dla wszystkich i lub
 - b)– $\sigma(i) \leq i$ dla wszystkich i.
- 11. Dla $\alpha \in S_4$ określamy przekształcenie liniowe $T_\alpha: \mathbb{R}^4 \to \mathbb{R}^4$ wzorem:
 - $T_{\alpha}(x_1, x_2, x_3, x_4) = (x_{\alpha(1)}, x_{\alpha(2)}, x_{\alpha(3)}, x_{\alpha(4)}).$
 - (a) Znaleźć macierz $m_{\mathcal{E}}(T_{\alpha})$ (w bazie standardowej, macierze tej postaci nazywamy macierzami permutacji)
 - (b) Udowodnić, że dla $\alpha, \beta \in S_4$, $T_{\alpha} \circ T_{\beta} = T_{\beta\alpha}$. (c) Udowodnić, że $(T_{\alpha})^{-1} = T_{\alpha^{-1}}$.