Exercise 12 - TFY4345 Classical Mechanics

2020

1 Generating function F_4

The generating function F is given by

$$F = q_i p_i - Q_i P_i + F_4(p, P, t).$$

This means the time derivative can be written as

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \dot{p}_i q_i + p_i \dot{q}_i - \dot{P}_i Q_i - P_i \dot{Q}_i + \frac{\mathrm{d}F(p, P, t)}{\mathrm{d}t}.$$

Inserting this into the relation between the original Hamiltonian H and the new one, K

$$p_i \dot{q}_i - H(q, p, t) = P_i \dot{Q}_i - K(Q, P, t) + \frac{\mathrm{d}F}{\mathrm{d}t}$$

gives

$$p_{i}\dot{q_{i}} - H(q, p, t) = P_{i}\dot{Q_{i}} - K(Q, P, t) + \dot{p}_{i}q_{i} + p_{i}\dot{q_{i}} - \dot{P}_{i}Q_{i} - P_{i}\dot{Q_{i}} + \frac{\mathrm{d}F(p, P, t)}{\mathrm{d}t}$$
$$\dot{p}_{i}q_{i} + H(q, p, t) = \dot{P}_{i}Q_{i} + K(Q, P, t) - \frac{\mathrm{d}F_{4}(p, P, t)}{\mathrm{d}t}$$

We can expand

$$\frac{\mathrm{d}F_4(p,P,t)}{\mathrm{d}t} = \frac{\partial F_4}{\partial t} + \frac{\partial F_4}{\partial p_i}\dot{p}_i + \frac{\partial F_4}{\partial P_i}\dot{P}_i,$$

which gives

$$\dot{p}_i q_i + H(q, p, t) = \dot{P}_i Q_i + K(Q, P, t) - \left(\frac{\partial F_4}{\partial t} + \frac{\partial F_4}{\partial p_i} \dot{p}_i + \frac{\partial F_4}{\partial P_i} \dot{P}_i\right).$$

This only holds if

$$K=H+\frac{\partial F_4}{\partial t}, \quad q_i=-\frac{\partial F_4}{\partial p_i}, \quad Q_i=\frac{\partial F_4}{\partial P_i},$$

which is the equations we were looking

2 The Poisson bracket

The Hamiltonian for the harmonic oscillator is

$$H = \frac{1}{2m} \left(p^2 + m^2 \omega^2 q^2 \right),$$

and we have the canonical transformations

$$q = \sqrt{\frac{2P}{m\omega}}\sin(Q), \quad p = \sqrt{2Pm\omega}\cos(Q), \quad H = \omega P.$$

The Poisson bracket in the original is

$$[q, H]_{q,p} = \underbrace{\frac{\partial q}{\partial q}}_{=1} \underbrace{\frac{\partial H}{\partial p}}_{=1} - \underbrace{\frac{\partial q}{\partial q}}_{=0} \underbrace{\frac{\partial H}{\partial p}}_{=0} = \frac{\partial H}{\partial p} = \frac{p}{m}.$$

In the new coordinates the bracket is

$$[q,H]_{Q,P} = \frac{\partial q}{\partial Q} \frac{\partial H}{\partial P} - \frac{\partial q}{\partial P} \underbrace{\frac{\partial H}{\partial Q}}_{=0} = \frac{\partial q}{\partial Q} \frac{\partial H}{\partial P},$$

where

$$\begin{split} \frac{\partial q}{\partial Q} &= \frac{\partial}{\partial Q} \left(\sqrt{\frac{2P}{m\omega}} \sin(Q) \right) = \sqrt{\frac{2P}{m\omega}} \cos(Q) \cdot \frac{\sin(Q)}{\sin(Q)} = q \cot(Q), \\ \frac{\partial H}{\partial P} &= \omega, \quad \cot(Q) = \frac{\cos(Q)}{\sin(Q)} = m\omega \frac{p}{q}. \end{split}$$

This gives

$$[q,H]_{Q,P} = \omega q \cot Q = \frac{p}{m} = [q,H]_{q,p}.$$

The fact that $[q, H] \neq 0$ means that q is not a constant of motion.

3 The symplectic condition

4 Free particle