K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Power Amplifier Circuits

Q1. In a class AB push pull power amplifier, load is 16Ω , supply voltage $V_{CC}=16\mathrm{V},\,V_{EE}$ = -16V. AC input is 14V peak, frequency is 1000Hz. Calculated the efficiency of the circuit. Select suitable power transistor having rating: $I_C = 5$ A and $V_{CEO} = 30$ V

Figure 1: Circuit 1

Solution:

 R_1 and R_2 are used to improve efficieny of the power amplifier $V_m = 14V$

$$P_{out(AC)} = \frac{V_m^2}{2R_L} = \frac{14^2}{32} = \mathbf{6.125W}$$

Also, $I_m = \frac{V_m}{R_L} = 14/16 = \mathbf{0.875A}$

Now, DC input power is given as

$$P_{in(DC)} = \frac{2V_{CC} \times I_m}{\pi} = \frac{32 \times 0.875}{\pi} =$$
8.9126W

$$P_{in(DC)} = \frac{2V_{CC} \times I_m}{\pi} = \frac{32 \times 0.875}{\pi} = \textbf{8.9126W}$$
 Efficiency(%) = $\frac{P_{out(AC)}}{P_{in(DC)}} \times 100 = \frac{6.125}{8.9125} \times 100 = \textbf{68.7229}$ %

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows

Figure 2: Circuit schematic 1

Figure 3: Output load voltage and load current Waveform

${\bf Comparsion\ between\ Simulated\ and\ theoretical\ values:}$

Parameters	Simulated	Theoretical
Input DC power	8.7797W	8.9126W
Output AC power	5.9219W	6.125W
Efficieny	67.6039%	68.7229%

Table 1: Numerical 1

