Relatório Científico: Otimização do Problema do Caixeiro Viajante com Algoritmos Genéticos

D. Cavalcanti¹

¹Universidade Tuiuti do Paraná Curitiba – PR

diego.cavalcanti@utp.br

Resumo. Este trabalho apresenta a aplicação de Algoritmos Genéticos (AGs) para resolver o Problema do Caixeiro Viajante (TSP), com o objetivo de analisar o impacto de diferentes configurações dos operadores genéticos no desempenho do algoritmo. Foram testadas combinações de operadores de crossover (um ponto, dois pontos e uniforme), taxas de mutação (1%, 5% e 10%), métodos de inicialização da população (aleatório e heurístico) e critérios de parada (número fixo de gerações e convergência). Os resultados mostraram que todos os tipos de crossover obtiveram soluções de qualidade semelhantes, mas o crossover de dois pontos, combinado com inicialização heurística, taxa de mutação de 5% e critério de parada por convergência, proporcionou melhor equilíbrio entre desempenho e tempo de execução. Conclui-se que a escolha adequada dos operadores pode melhorar significativamente a eficiência do AG na resolução de problemas combinatórios como o TSP.

1. Introdução

O Problema do Caixeiro Viajante (Traveling Salesman Problem - TSP) é um dos problemas mais estudados da teoria da otimização combinatória. O desafio consiste em encontrar o menor caminho possível que permita a um caixeiro visitar uma lista de cidades exatamente uma vez e retornar à cidade de origem. É um problema NP-difícil, o que implica que não existe algoritmo conhecido capaz de resolvê-lo em tempo polinomial para qualquer instância. Algoritmos Genéticos (AGs) são técnicas metaheurísticas baseadas nos mecanismos da seleção natural e da genética biológica. Eles se mostram promissores para resolver problemas de otimização complexos como o TSP, pois podem explorar eficientemente grandes espaços de solução e evitar mínimos locais por meio de operações como mutação e crossover.

2. Descrição do Algoritmo Genético

O Algoritmo Genético (AG) implementado neste trabalho segue uma estrutura clássica baseada em populações de soluções representadas como permutações das cidades do Problema do Caixeiro Viajante (TSP). A seguir, descreve-se cada etapa do algoritmo:

1. Inicialização da população:

- Aleatória: cada indivíduo é uma permutação gerada de forma randômica;
- *Heurística (Nearest Neighbor)*: a rota começa por uma cidade aleatória e segue sempre para a cidade mais próxima ainda não visitada.

- 2. **Avaliação de fitness:** a aptidão de cada indivíduo é definida pela soma das distâncias entre cidades consecutivas, incluindo o retorno à cidade inicial. Soluções com menor distância total são consideradas melhores.
- 3. **Seleção:** é utilizado o método de torneio com três candidatos. A cada iteração, três indivíduos são sorteados e o de melhor fitness é selecionado como pai.
- 4. **Crossover:** dois pais geram dois filhos com base em operadores que garantem a validade das permutações. Foram testados:
 - Um ponto: metade do primeiro pai combinada com os genes restantes do segundo;
 - Dois pontos: um segmento intermediário fixo herdado de um dos pais, completado com os genes do outro;
 - Uniforme: cada gene é herdado aleatoriamente de um dos pais, com consistência na ordem.
- 5. **Mutação:** com uma taxa configurável (1%, 5% ou 10%), dois genes da permutação são trocados para manter diversidade na população.

6. Critério de parada:

- *Número fixo de gerações:* o algoritmo é executado por uma quantidade pré-definida (ex: 1000 gerações);
- *Convergência*: o algoritmo encerra quando não há melhoria no melhor indivíduo após 50 gerações consecutivas.

Essa estrutura permite que o AG explore eficientemente o espaço de busca, equilibrando exploração e intensificação, e é particularmente adequada para problemas como o TSP devido à sua natureza combinatória e ao grande número de soluções possíveis.

3. Metodologia

O algoritmo genético foi implementado na linguagem Python, utilizando as bibliotecas *numpy*, *pandas* e *csv* para manipulação de dados e análise de resultados. O processo de execução do AG seguiu as seguintes etapas:

- Inicialização da população: duas abordagens foram testadas uma aleatória, gerando permutações puramente randômicas das cidades, e outra heurística, baseada na vizinhança mais próxima (Nearest Neighbor);
- Avaliação de fitness: a aptidão de cada indivíduo foi calculada com base na distância total percorrida no tour;
- **Seleção:** os indivíduos mais aptos foram escolhidos por meio do método de torneio, que avalia subconjuntos aleatórios da população;
- **Crossover:** foram testados três métodos de recombinação: crossover de um ponto, crossover de dois pontos e crossover uniforme;
- **Mutação:** realizada por meio da troca de duas cidades dentro de um indivíduo, com taxas de mutação ajustadas em 1%, 5% e 10%;
- Critério de parada: o algoritmo foi executado com dois critérios distintos: um número fixo de gerações (1000) e uma condição de convergência baseada na ausência de melhorias por 50 gerações consecutivas.

O experimento foi automatizado para testar todas as combinações entre os parâmetros mencionados, utilizando instâncias do TSP com tamanhos variados. Os resultados foram registrados no arquivo results.csv para posterior análise quantitativa.

4. Análise dos Resultados Experimentais

Os resultados obtidos a partir das execuções do algoritmo genético foram analisados com base em duas métricas principais: o tempo de execução e a qualidade da solução (comprimento total do tour). As análises foram realizadas a partir dos dados registrados no arquivo results.csv, que contém os resultados para todas as combinações de operadores genéticos e configurações testadas.

A seguir, destacam-se as principais observações:

- Qualidade das Soluções: As variações entre os operadores de crossover (um ponto, dois pontos, uniforme) apresentaram pouca diferença na qualidade final das soluções. A distância média encontrada se manteve praticamente constante para cada instância, indicando que todos os métodos foram eficazes em encontrar boas soluções.
- **Desempenho Temporal:** O tempo de execução foi impactado significativamente pelos critérios de parada e pelo método de inicialização. A inicialização heurística, por gerar soluções melhores desde o início, permitiu uma convergência mais rápida. Já o critério de parada por convergência, quando comparado a um número fixo de gerações, resultou em menor tempo médio sem prejuízo da qualidade.
- Taxas de Mutação: As taxas mais altas (10%) aumentaram a variabilidade, mas não garantiram melhor desempenho. Em alguns casos, resultaram em maior tempo de execução devido ao maior número de alterações nos indivíduos e instabilidade na convergência.
- Configuração Ideal: A combinação que apresentou melhor equilíbrio entre tempo e qualidade foi: inicialização heurística, crossover de dois pontos, taxa de mutação de 5% e critério de parada por convergência.

Esses resultados demonstram que, embora os operadores genéticos apresentem desempenhos similares em qualidade de solução, suas combinações influenciam significativamente a eficiência do algoritmo. A escolha adequada dos parâmetros é, portanto, essencial para alcançar bons resultados com tempo de execução reduzido.

5. Precisão da Solução

Para avaliar a qualidade das soluções encontradas pelo algoritmo genético, foi calculado o desvio percentual em relação ao valor ótimo conhecido ou estimado para cada instância do TSP. A Tabela 1 apresenta o desvio médio percentual obtido com as diferentes configurações de operadores genéticos.

Tabela 1. Precisão média da solução: desvio percentual em relação ao ótimo

Instância	Crossover	Inicialização	Mutação	Desvio (%)
tsp_1.csv	Dois pontos	Heurística	5%	0.00%
tsp_2.csv	Um ponto	Aleatória	1%	1.25%
tsp_3.csv	Uniforme	Heurística	10%	0.67%
tsp_4.csv	Dois pontos	Heurística	5%	0.00%
tsp_5.csv	Uniforme	Aleatória	5%	1.10%

Os resultados mostram que a abordagem heurística combinada com crossover de dois pontos e taxa de mutação moderada (5%) alcançou soluções muito próximas do

ótimo, com desvios inferiores a 1%. Isso demonstra a capacidade do algoritmo genético de se aproximar de soluções ótimas mesmo em instâncias de média complexidade.

6. Resultados

Foram executadas várias combinações de parâmetros do Algoritmo Genético para resolver a instância tsp_1.csv. Os principais achados experimentais incluem:

- Todas as combinações retornaram o mesmo melhor valor de solução: 123,66;
- A abordagem com critério de parada por convergência foi consideravelmente mais rápida (por exemplo, 0,02s) em comparação ao uso de número fixo de gerações (por exemplo, 0,50s);
- O método **heurístico de inicialização** apresentou convergência ligeiramente mais rápida do que a abordagem aleatória.

Esses dados indicam que a qualidade da solução é estável independentemente das configurações testadas, mas o tempo de execução varia de forma significativa em função dos operadores genéticos escolhidos.

7. Discussão

Com base nos resultados experimentais, é possível realizar uma análise crítica sobre o impacto dos diferentes operadores genéticos e critérios utilizados:

- Inicialização: A estratégia heurística baseada na vizinhança mais próxima não proporcionou melhorias na qualidade final das soluções, mas contribuiu para uma convergência mais rápida do algoritmo, reduzindo o tempo total de execução;
- **Crossover:** Os três métodos de recombinação (um ponto, dois pontos e uniforme) apresentaram desempenhos semelhantes em termos de qualidade da solução. No entanto, o crossover de dois pontos demonstrou ser ligeiramente mais estável, gerando soluções consistentes com menor variabilidade;
- Mutação: Aumentar a taxa de mutação para valores mais altos (como 10%) levou a uma maior diversidade populacional e exploração do espaço de busca, mas não resultou necessariamente em soluções melhores. Em alguns casos, isso aumentou o tempo de execução devido à instabilidade na convergência;
- Critério de parada: O uso da convergência dinâmica (ausência de melhorias em um número fixo de gerações) mostrou-se mais eficiente em termos de tempo de execução, sem prejuízo da qualidade das soluções finais.

Esses pontos reforçam a importância da escolha cuidadosa dos operadores e critérios em algoritmos evolutivos, especialmente quando se busca um equilíbrio entre desempenho computacional e qualidade de solução.

8. Conclusão

Este trabalho demonstrou a eficácia dos Algoritmos Genéticos na resolução do Problema do Caixeiro Viajante (TSP), especialmente em instâncias de pequena e média escala. Através da experimentação com diferentes configurações de operadores genéticos, foi possível avaliar o impacto individual de cada parâmetro sobre o desempenho do algoritmo.

A melhor configuração observada durante os testes foi composta por:

- Inicialização heurística;
- Crossover de dois pontos;
- Taxa de mutação de 5%;
- Critério de parada por convergência.

Essa combinação apresentou um bom equilíbrio entre tempo de execução e qualidade da solução, atingindo consistentemente os melhores resultados com menor custo computacional.

Como sugestões para trabalhos futuros, destaca-se a possibilidade de:

- Aplicar algoritmos híbridos, combinando AGs com outras metaheurísticas como Simulated Annealing ou GRASP;
- Explorar AGs multiobjetivo para considerar simultaneamente múltiplos critérios, como tempo de execução, estabilidade e robustez da solução;
- Ampliar os testes para instâncias maiores e mais complexas do TSP, avaliando a escalabilidade da abordagem.

Os resultados reforçam o potencial dos AGs como ferramenta flexível e eficiente para problemas combinatórios, desde que adequadamente parametrizados.