

Appendix 3

Quantum Harmonic Oscillator (量子谐振子)

Objectives

> To learn the quantum description of harmonic oscillator.

> To understand the properties of quantum harmonic oscillator.

- ➤ Simple Harmonic Oscillator (简谐振子)
 - ❖ Hook's law (胡克定律):

$$F = -Kx$$

- ➤ Description of Classical Mechanics (经典力学描述)
 - **A** Equation of motion:

$$m\frac{d^2x}{dt^2} = F = -Kx$$

$$\frac{d^2x}{dt^2} + \omega^2 x = 0 \qquad \omega \equiv \sqrt{K/m}$$

▶ Description of Classical Mechanics (经典力学描述)

❖ Solution:

$$x = Ae^{i(\omega t + \varphi)}$$

➤ Description of Quantum Mechanics (量子力学描述)

❖ Kinetic energy:

$$T = \frac{1}{2m}p^2 \qquad \longrightarrow \qquad \widehat{T} = \frac{1}{2m}\widehat{p}^2$$

❖ Potential energy:

$$V = \frac{1}{2}Kx^2 \qquad \longrightarrow \qquad \widehat{V} = \frac{1}{2}m\omega^2\widehat{x}^2$$

Hamiltonian:

$$\widehat{H} = \widehat{T} + \widehat{V} = \frac{1}{2m}\widehat{p}^2 + \frac{1}{2}m\omega^2\widehat{x}^2$$

- **▶** Description of Quantum Mechanics (量子力学描述)
 - ❖ The stationary Schrodinger equation (定态薛定谔方程):

$$\widehat{H}\psi = E\psi$$

$$\longrightarrow$$
 E ? ψ ?

Algebraic Method (代数解法)

➤ Algebraic Method (代数解法)

 \clubsuit For the Hamiltonian $\widehat{H}=\frac{1}{2m}\widehat{p}^2+\frac{1}{2}m\omega^2\widehat{x}^2$, we can define a new pair of operators:

$$\widehat{a} = \sqrt{rac{m\omega}{2\hbar}} \Big(\widehat{x} + rac{i}{m\omega} \widehat{p} \Big) \qquad \widehat{a}^+ = \sqrt{rac{m\omega}{2\hbar}} \Big(\widehat{x} - rac{i}{m\omega} \widehat{p} \Big)$$

$$\widehat{x} = \sqrt{\frac{\hbar}{2} \frac{1}{m\omega}} (\widehat{a}^{+} + \widehat{a}) \qquad \widehat{p} = i \sqrt{\frac{\hbar}{2}} m\omega (\widehat{a}^{+} - \widehat{a})$$

Note that \widehat{a}^+ and \widehat{a} are not Hermitian!

➤ Algebraic Method (代数解法)

lacktriangle By applying the new forms of \widehat{x} and \widehat{p} to the Hamiltonian \widehat{H} , we can obtain:

$$\widehat{H} = \hbar \omega \left(\widehat{a}^{+} \widehat{a} + \frac{1}{2} \right)$$

Note that a commuting relation $[\hat{a}, \hat{a}^+] = 1$ is used.

❖ Then, the Schrödinger equation reads:

$$\hbar\omega\left(\widehat{a}^{+}\widehat{a}+\frac{1}{2}\right)\psi=E\psi$$

➤ Algebraic Method (代数解法)

• Properties of operators \hat{a}^+ and \hat{a} :

If ψ satisfies the Schrödinger equation with eigenvalue E,

- $\hat{a}^+\psi$ satisfies the Schrödinger equation with eigenvalue $E+\hbar\omega$;
- $\hat{a}\psi$ satisfies the Schrödinger equation with eigenvalue $E-\hbar\omega$;

As a result, \hat{a}^+ and \hat{a} are also called **ladder operators (阶梯算符)!** \hat{a}^+ is called the **raising operator** (升算符);

 \hat{a} is called the **lowering operator** (降算符).

- ➤ Algebraic Method (代数解法)
 - � The **ground state** (基态) ψ_0 of the harmonic oscillator:

If \widehat{a} is repeatedly applied to ψ , it would end up with a state with energy less than zero, which is meaningless.

lacktriangle Thus, the lowest possible state $oldsymbol{\psi}_0$ (i.e., the **ground state**) of the harmonic oscillator must satisfy:

$$\widehat{a}\psi_0=0$$

➤ Algebraic Method (代数解法)

� The **ground state** (基态) ψ_0 of the harmonic oscillator:

$$\widehat{a}\psi_0 = \sqrt{\frac{m\omega}{2\hbar}} \left(\widehat{x} + \frac{i}{m\omega} \widehat{p} \right) \psi_0 = 0$$

$$\widehat{p} = -i\hbar \frac{\partial}{\partial x} \qquad \qquad \frac{d\psi_0}{dx} = -\frac{m\omega}{\hbar} x \psi_0$$

$$\psi_0(x) = A_0 e^{-\frac{m\omega}{2\hbar}x^2} \qquad E_0 = \frac{1}{2}\hbar\omega$$

- ➤ Algebraic Method (代数解法)
 - � The **excited states** (激发态) ψ_n of the harmonic oscillator:
 - All the states higher in energy than the ground state, i.e., the **excited states**, can be obtained by repeatedly applying \widehat{a}^+ to ψ_0 :

$$\psi_n(x) = A_n(\widehat{a}^+)^n e^{-\frac{m\omega}{2\hbar}x^2}$$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
 $n = 0, 1, 2, 3, \cdots$

➤ Algebraic Method (代数解法)

 \clubsuit If we define a number operator $\widehat{N}=\widehat{a}^{+}\widehat{a}$ and let $\psi_{n}=|n\rangle$, it can be obtained that:

$$\widehat{H}=\hbar\omega\left(\widehat{N}+\frac{1}{2}\right)$$

$$\widehat{N}|n\rangle=n|n\rangle$$

$$\widehat{a}^+|n\rangle = \sqrt{n+1}|n+1\rangle$$
 $\widehat{a}|n\rangle = \sqrt{n}|n-1\rangle$

$$|n\rangle = \frac{(\widehat{a}^+)^n}{\sqrt{n!}}|0\rangle$$

Analytic Method (解析解法)

- ➤ Analytic Method (解析解法)
 - ❖ In the **position representation** (位置表象), the Schrödinger equation reads:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2} + \frac{1}{2}m\omega^2x^2\psi = E\psi$$

By introducing two dimensionless variables:

$$\xi = \sqrt{\frac{m\omega}{\hbar}}x$$
 $\varepsilon = \frac{2E}{\hbar\omega}$

$$\frac{d^2\psi}{d\xi^2} = (\xi^2 - \varepsilon)\psi$$

➤ Analytic Method (解析解法)

� Given the fact that $\psi \to 0$ when $x \to \pm \infty$, by applying some complicated mathematical techniques (omitted here), the **normalized stationary states** (归一化定态) and the corresponding **eigenvalues** of the harmonic oscillator are:

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}$$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
 $n = 0, 1, 2, 3, \cdots$

Here, $H_n(\xi)$ denotes the so-called **Hermite polynomials** (厄米多项式), e.g.,

$$H_0(\xi) = 1$$
 $H_1(\xi) = 2\xi$ $H_2(\xi) = 4\xi^2 - 2$ $H_3(\xi) = 8\xi^3 - 12\xi$...

- ➤ Analytic Method (解析解法)
 - * The spatial distribution of the wave functions:

➤ Analytic Method (解析解法)

❖ The spatial distribution of the wave functions:

- ➤ Analytic Method (解析解法)
 - ❖ The spatial distribution of the wave functions:

➤ Analytic Method (解析解法)

❖ The spatial distribution of the wave functions:

Summary (总结)

➤ Summary (总结)

The quantum description of harmonic oscillator.

$$\widehat{H}\psi = E\psi \qquad \qquad \widehat{H} = \frac{1}{2m}\widehat{p}^2 + \frac{1}{2}m\omega^2\widehat{x}^2$$

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$
 $n = 0, 1, 2, 3, \cdots$

- Algebraic method: ladder operators
- Analytic method: wave functions