Domain model vs. ER Diagram

- → ISO/IEC/IEEE 24765 : Systems and software engineering defines the vocabulary as:
 - → domain model "a product of domain analysis that provides a representation of the requirements of the domain."
 - → entity-relationship diagram "a diagram that depicts a set of real-world entities and the logical relationships among them."
- → But a domain model can evolve into an ER diagram.

The process

- → DBMS independent works with entities and concepts.
- → DBMS specific works with SQL and Tables.
- → The mapping in the middle is the process of working from the ER diagrams to the table mapping.

In relation to UP

Phase	Artifact
Business Modelling	Domain Model (None from DM)
Requirements	(None from DM)
Analysis	ER, EER, UML (Entities only)
Design	UML (Tables)
Implementation	SQL Creation Script
Test	(None from DM)
Deployment	(None from DM)

ER Components 1/3

Weak Entity

Relationship

Indentifying Relationship

Attribute

ER Components 2/3

Key Attribute

Multivalued Attribute

 $\rightarrow \dots$

Composite Attribute

Derived Attribute

ER Components 3/3

Total Participation of E_2 in R

Cardinality Ratio 1: N for E_1 : E_2 in R

Structural Constraint (min, max) on Participation of *E* in *R*

- → Total participation can also be understood as E2 HAS to have one entry.
 - → Example, a teacher MUST teach a class (or they are not a teacher).

Cardinalities

Crow's foot notation

- \rightarrow 1 * , one to many, 1:N
- \rightarrow * 1, many to one, N:1
- → * *, many to many M:N
- \rightarrow 1 1, one to one 1:1
- \rightarrow 0..1 1, zero/one to one, 0..1:1

And there are many alternatives

ER Diagram Example

- → Entity types (strong/weak)
- → Relationship types (Identifying or not)
- → Recursive relationship
- → Attribute types (composite, key, derived, multiple values, etc.)
- → Cardinalities

Alternative structural constraints

→ Min, Max notation

N-ary

- → Multiple relationships in one
- → Results in table with multiple foreign keys

EER: Enhanced entityrelationship diagram

- → Expands with the following components:
 - → Attribute or relationship inheritances
 - → Category or union types
 - → Specialization and generalization
 - → Subclasses and superclasses

with multiple inheritance for a UNIVERSITY The specialization lattice with multiple inheritance inheritance for a UNIVERSITY The specialization lattice with multiple inheritance inheri

- → Disjoint
 - \rightarrow Is one of
- → Overlapping
 - → Can be any of, and more than one.

UML Notation

- → Often preferred due to the common use of UML for class diagrams.
- → Notation differs.
- → Not the main notation for this class!
- → At the exam use the notation shown prior to UML in these slides.

<<Entity>> Students + Name + Email <<Entity>> Course + Name

UML Entity vs Table

- → If no << >> is present, we are talking about an entity.
- → Please be <u>explicit</u> in this course about what type it is!

Standard UML Notation

Source: Applying UML and Patterns, Larman, 2009

Jakob Hviid

Sample UML Notation

1..40

Class

1..*

Class

one to

forty

one or

more

zero or

more:

"many"

*

Class

exactly

five

Class

Attributes in UML

Cardinalities in UML - 1/2

Cardinalities in UML – 2/2

EER in UML – 1/2

EER in UML – 2/2

ownerNo {FK}

branchNo {FK}

staffNo

#sdudk

Mapping ER to Tables

- → Step 1: Mapping of Regular Entity Types.
- → Step 2: Mapping of Weak Entity Types.
- → Step 3: Mapping of Binary 1:1 Relationship Types.
 - → Foreign key approach
 - → Merged relation approach
 - → Cross-reference or relationship relation approach
- → Step 4: Mapping of Binary 1:N Relationship Types.
 - → The foreign key approach.
 - → The relationship relation approach.
- → Step 5: Mapping of Binary M:N Relationship Types.
- → Step 6: Mapping of Multivalued Attributes.
- → Step 7: Mapping of N-ary Relationship Types.

Figure 9.3

Illustration of some mapping steps.

- (a) *Entity* relations after step 1.
- (b) Additional *weak entity* relation after step 2.
- (c) Relationship relations after step 5.
- (d) Relation representing multivalued attribute after step 6.

(a) EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary
-------	-------	-------	-----	-------	---------	-----	--------

DEPARTMENT

Dname	<u>Dnumber</u>
-------	----------------

PROJECT

Pname	Pnumber	Plocation
-------	---------	-----------

(b) DEPENDENT

Essn Dependent_name	Sex	Bdate	Relationship
---------------------	-----	-------	--------------

(c) WORKS_ON

Essn	<u>Pno</u>	Hours
------	------------	-------

(d) DEPT_LOCATIONS

<u>Dnumber</u>	Dlocation
----------------	-----------

Maturing the UML diagram to tables (mixed example!)

(a) EMPLOYEE

(b) CAR

TRUCK

(c) EMPLOYEE

(d) PART

In relation to UP – Repeated

Phase	Artifact
Business Modelling	Domain Model (None from DM)
Requirements	(None from DM)
Analysis	ER, EER, UML (Entities only)
Design	UML (Tables)
Implementation	SQL Creation Script
Test	(None from DM)
Deployment	(None from DM)

sdu.dk

ER model vs Relational Model (Tables)

 Table 9.1
 Correspondence between ER and Relational Models

ER MODEL RELATIONAL MODEL

Entity type Entity relation

1:1 or 1:N relationship type Foreign key (or *relationship* relation)

M:N relationship type Relationship relation and two foreign keys

n-ary relationship type *Relationship* relation and *n* foreign keys

Simple attribute Attribute

Composite attribute Set of simple component attributes

Multivalued attribute Relation and foreign key

Value set Domain

Key attribute Primary (or secondary) key

Process Recap

