Në varësi nga tensioni P, do të na formohen një numër i caktuar barqesh, ku kemi dy barqe dhe tri nyje. Meqënëse barqet janë krejtësisht të njëjta, atëherë në qoftë se do të matnim gjatësinë $AK = I_2$ për dy barqe, atëherë formula do të shkruhej:

$$f = \frac{2}{2l_2} \sqrt{\frac{P}{\rho}} \tag{12}$$

Në rastin e përgjithshëm për n barqe do të shkruanim:

$$f = \frac{n}{2l_n} \sqrt{\frac{P}{\rho}} \tag{13}$$

2.2 Pjesa eksperimentale

- 1. Pasi të vendoset në pjatë një peshë P gjejmë me anë të pykës K pozicionin e parë ku fillon të lëkunded teli, në këtë rast n = 1. Matet gjatësia e telit të pjesës $AK = I_1$.
- 2. Zhvendoset pyka K dhe përcaktohen pozicionet e reja një e nga dhe më pas plotësohet tabela. Sonometër ku fillon të lëkundet teli dhe matet l_2 për të cilën n=2, l_3 për të cilën n=3 e kështu me radhë.
- 3. Përseritet eksperimenti 1 dhe 2 me pesha të ndryshme, duke i vendosur ato me radhë.

$$m = 50g$$
 $P = 0.5N$

$$\sqrt{\frac{P}{\rho}} = \sqrt{\frac{0.5}{1.56 \cdot 10^{-3}}} = 17.9029 \text{ s}^{-1}$$

n	l_n (mes)	$rac{n}{2l_n}$	$f = \frac{n}{2l_n} \sqrt{\frac{P}{\rho}}$
1	$16.6~\mathrm{cm}$	$\frac{1}{2 \cdot 0.166} = 3.012$	53.9243 Hz
2	$35.5~\mathrm{cm}$	$\frac{2}{2 \cdot 0.355} = 2.8169$	71.3197 Hz
3	58.8 cm	$\frac{3}{2 \cdot 0.588} = 2.551$	79.1038 Hz
4	78.3333 cm	$\frac{4}{2 \cdot 0.7833} = 2.5532$	91.4189 Hz

$$m = 100$$
g $P = 1$ N $\sqrt{\frac{P}{\rho}} = \sqrt{\frac{1}{1.56 \cdot 10^{-3}}} = 25.3185 \text{ s}^{-1}$

n	l_n (mes)	$rac{n}{2l_n}$	$f = \frac{n}{2l_n} \sqrt{\frac{P}{\rho}}$
1	$23.6~\mathrm{cm}$	$\frac{1}{2 \cdot 0.236} = 2.1186$	37.9298 Hz
2	$45.3~\mathrm{cm}$	$\frac{2}{2 \cdot 0.453} = 2.2075$	55.8907 Hz
3	68.1 cm	$\frac{3}{2 \cdot 0.681} = 2.2026$	68.3011 Hz
4	103.3 cm	$\frac{4}{2 \cdot 1.033} = 1.9361$	69.3238 Hz

$$m = 150g$$

$$P = 1.5N$$

$$\sqrt{\frac{P}{\rho}} = \sqrt{\frac{1.5}{1.56 \cdot 10^{-3}}} = 31.0087 \text{ s}^{-1}$$

n	l_n (mes)	$rac{n}{2l_n}$	$f = \frac{n}{2l_n} \sqrt{\frac{P}{\rho}}$
1	28.5333 cm	$\frac{1}{2 \cdot 0.2853} = 1.7523$	31.3719 Hz
2	56.1667 cm	$\frac{2}{2 \cdot 0.5617} = 1.7804$	45.0774 Hz
3	87.1 cm	$\frac{3}{2 \cdot 0.871} = 1.7222$	53.4019 Hz
4	-	-	-

$$m = 200$$
g $P = 2$ N $\sqrt{\frac{P}{\rho}} = \sqrt{\frac{2}{1.56 \cdot 10^{-3}}} = 35.8057 \text{ s}^{-1}$

n	l_n (mes)	$rac{n}{2l_n}$	$f = \frac{n}{2l_n} \sqrt{\frac{P}{\rho}}$
1	$29.5~\mathrm{cm}$	$\frac{1}{2 \cdot 0.295} = 1.6949$	30.3439 Hz
2	$63.7667~\mathrm{cm}$	$\frac{2}{2 \cdot 0.6377} = 1.5682$	39.7049 Hz
3	93.8 cm	$\frac{3}{2 \cdot 0.938} = 1.5991$	49.5874 Hz
4	-	-	-

3.2 Pjesa eksperimentale

3.2.1 Përshkrimi i aparaturës

Në qendër të një sistemi të përbërë nga 1 përcjellës (ose N përcjellësa), të vendosur në planin vertikal, vendoset horizontalisht një gjilpërë magnetike: të fushës B_l të përcjellësit rrethor (ose përcjellësave rrethorë) dhe atë të B_H të fushës magnetike të Tokës. Në qoftë se pozicioni i sistemit të përcjellësave rrethorë është i tillë që induksioni i fushës magnetike të krijuar prej tyre (B_l) është pingul me përbërësen horizontale të fushës magnetike të Tokës B_H , atëherë gjilpëra do të orientohet sipas fushës magnetike rezultante B_R . Shënojmë me α këndin e formuar midis vektorëve $\overline{B_R}$ dhe $\overline{B_H}$. Kemi:

$$\begin{split} \frac{B_l}{B_H} &= \tan \alpha \\ B_H &= \frac{B_l}{\tan \alpha} \end{split} \tag{5}$$

Duke zëvendësuar B_l nga formula (4) marrim:

$$B_H = \frac{\mu_0 I N}{2R \tan \alpha} \tag{6}$$

3.3 Ushtrimi 1. Përcaktimi i induksionit B_H

- 1. Që të mund të zbatojmë formulën (6), duhet që induksioni $\overrightarrow{B_l}$ i fushës së krijuar nga përcjellësat rrethorë të jetë pingul me përbërësen horizontale të fushës së Tokës $\overrightarrow{B_H}$, pra plani i përcjellësave duhet të përputhet me planin e meridianit magnetik, që kalon në pikën 0.
- 2. Mbyllim çelësin dhe nëpërmjet reostatit vendosen vlera të ndryshme të intensitetit të rrymës në qark. Për çdo vlerë të rrymës lexojmë në busull këndin α dhe nëpërmjet formulës (6) llogaritim B_H . Ndërrojmë drejtimin e rrymës në të kundërt dhe përsëriten matjët. Pas llogaritjeve plotësojmë tabelën.

$$\begin{split} B_l &= I \frac{\mu_0}{2R} \\ \frac{\mu_0}{2R} &\approx 1.0472 \cdot 10^{-5} \text{ H/m}^2 \\ B_l &\approx I \cdot 1.0472 \cdot 10^{-5} \\ B_H &= \frac{B_l}{\tan \alpha} \\ B_H &= I \frac{\mu_0}{2R} \frac{1}{\tan \alpha} \\ B_H &\approx \frac{I}{\tan \alpha} 1.0472 \cdot 10^{-5} \end{split}$$
 (7)

Nr.	I	α_1	$ an lpha_1$	$\frac{I}{\tan\alpha_1}$	B_l	B_H
1	0.2A	30°	0.57735	0.34641	$2.0944 \cdot 10^{-6} \text{ T}$	$3.6276 \cdot 10^{-6} \text{ T}$
2	0.3A	45°	1	0.3	$3.1416 \cdot 10^{-6} \text{ T}$	$3.1416 \cdot 10^{-6} \text{ T}$
3	0.4A	50°	1.19175	0.33564	$4.1888 \cdot 10^{-6} \text{ T}$	$3.5148 \cdot 10^{-6} \text{ T}$
4	0.5A	57°	1.53986	0.3247	$5.236 \cdot 10^{-6} \text{ T}$	$3.4003 \cdot 10^{-6} \text{ T}$
5	0.6A	60°	1.73205	0.34641	$6.2832 \cdot 10^{-6} \text{ T}$	$3.6276 \cdot 10^{-6} \text{ T}$

Nr.	I	α_2	$\tan\alpha_2$	$\frac{I}{\tan\alpha_2}$	B_l	B_H
1	0.2A	30°	0.57735	0.34641	$2.0944 \cdot 10^{-6} \text{ T}$	$3.6276 \cdot 10^{-6} \text{ T}$
2	0.3A	41°	0.86929	0.34511	$3.1416 \cdot 10^{-6} \text{ T}$	$3.614 \cdot 10^{-6} \text{ T}$
3	0.4A	50°	1.19175	0.33564	$4.1888 \cdot 10^{-6} \text{ T}$	$3.5148 \cdot 10^{-6} \text{ T}$
4	0.5A	55°	1.42815	0.3501	$5.236 \cdot 10^{-6} \text{ T}$	$3.6663 \cdot 10^{-6} \text{ T}$
5	0.6A	60°	1.73205	0.34641	$6.2832 \cdot 10^{-6} \text{ T}$	$3.6276 \cdot 10^{-6} \text{ T}$