Reactions 3

What's the science story?

Chemical reactions are how new forms of matter are made. While nuclear reactions also may produce new matter, nearly all the substances you encounter in daily life are the result of chemical changes. Chemical reactions help us understand the properties of matter.

Previous knowledge:	Next steps	. 7
<u>KS2</u>	<u>KS4</u>	۲,
Reactions – Chemical vs physical	C1 – Atomic structure & PT	Ť
<u>KS3</u>	C4 – Chemical changes	**
Reactions 1 and 2	C5 – Energy changes	•
	C10 – Using resources	
Keywords		

	Reactivity	Reactants
Thermal	Alkali	Products
Decomposition	Hydroxide	
Combustion	Equation	Exothermic
Chemical	Salt	Ore
Physical	Oxidation	Ceramics
	Polymers	Composites

Working scientifically skills:	Assessments:
WS3 – Make predictions	Exit tickets x 2
WS8 – Working with a method	ET 1 – Metals and acids
WSQ - Variables	ET 2 – Carbonates and oxides
WS10 – Using equipment correctly.	Li Z – Carbonates and Oxides
WS16 – Using equations	

Key Skills:	
New vocabulary introduced	Reading given texts
Discussions	Concluding - deducting

KS3 – Year 8

Assessment grid

Working Towards	Age Related Expectations	At Greater Depth
State simply what a decomposition reaction is	Predict products of combustion reactions	Construct balanced formula equation for some combustion reactions.
State that mass is conserved in a chemical reaction	Categorise oxidation reactions as useful or not	Write balanced formula equations for decomposition reactions
Identify a reaction as endothermic and exothermic	Use a pattern to predict products of decomposition reactions	Compare decomposition reactions with combustion reactions
Describe what happens when metals react with acids.	Calculate masses of reactants and products.	Apply the conservation of mass in unfamiliar situations, giving a reasoned explanation.
Identify state symbols from an equation.	Describe the characteristics of exothermic and endothermic changes	Predict and explain whether the mass within a reaction vessel will stay the same from word and formula equations.
State the product of the reaction between metals and oxygen	Explain the test for hydrogen gas	Apply temperature changes to exothermic and endothermic changes in unfamiliar situations
State the products of the reaction between metals and water	Use state symbols in balanced formula equations	Use word and formula equations to explain the test for hydrogen gas
State where different metals are found in the reactivity series	Use the reactivity series to predict reactions	Construct balanced equations that include state symbols
Calculate the percentage of waste material in a metal ore.	Use the reactivity series to explain displacement reactions.	Link a metal's reaction with its place in the reactivity series.
List the properties and uses of ceramics	Use the reactivity series to decide which metals can be extracted from their ores by heating with carbon	Use particle models and diagrams to represent displacement reactions
State some uses of polymers	Calculate the amounts of metals in ores	Explain why metals can be extracted using carbon, using the idea of displacement
State some uses of composite materials	Explain why properties of ceramics make them suitable for their uses	Convert amounts of metals within ores from masses to percentages, or vice versa.
	Explain how polymer properties make them suitable for their uses	Distinguish between chemical and physical properties of ceramics
	Explain why composite properties make them suitable for their uses.	Suggest advantages and disadvantages of composite properties

Lesson No. and Title	Learning objectives	Skills	Practical equipment
Chemical reactions	ARE – Describe what thermal decomposition and combustion are. AGD – Compare decomposition reactions with combustion.	WS8 – Working with a method WS10 – Using equipment correctly.	DEMO – Thermal decomposition of copper carbonate PRAC – Decomposition of other metal carbonates. Metal carbonate samples, test tubes, bungs with side arms, limewater
2. Metals with water	ARE – Plan and run a practical to compare the reactivity of three metals. AGD – Suggest metals for particular jobs based on suitability.	WS8 – Working with a method WS9 - Variables	DEMO – Alkali metals with water PRAC – Metals reactivity 3 metals, test tubes
3. Metals with acids ET 1 – Metals & acids	ARE – Predict names of products formed in metal and acid reactions. AGD – Suggest how temperature changes may be linked with reactivity.	WS3 – Make predictions	DEMO – Test for hydrogen PRAC – Metals reactivity with acid Magnesium, zinc, iron, hydrochloric acid, test tubes, measuring cylinders
4. Metals with oxygen ET 2 – Carbonates & Oxides	ARE – Calculate masses of reactants and products and predict products of oxidation reactions. AGD – Apply conservation of mass to different situations.	WS10 – Using equipment correctly.	PRAC – Oxidation of magnesium Magnesium ribbon, balances, crucibles, tongs
5. Balancing equations	ARE – Use state symbols in balanced formula equations. AGD – To write balanced formula equations.		
6. Endothermic and Exothermic	ARE – Describe the characteristics of exothermic and endothermic changes. AGD – Apply temperature changes to predict the type of reaction.		PRAC – Endo or exo Potassium chloride, citric acid, sodium hydrogen carbonate, hydrochloric acid, sodium hydroxide, magnesium ribbon, test tubes, 250ml beaker, measuring cylinder, thermometer

KS3 – Year 8

7.	Extraction	ARE – Use reactivity series to predict reduction reactions. AGD – Explain why metals can be extracted using carbon, using the idea of displacement.	WS8 – Working with a method	PRAC – Reducing copper oxide Copper (II) oxide, charcoal powder, test tubes, spatulas
8.	Metals in Ores	ARE – Model how metal ores are mined. AGD - Convert amounts of metals within ores from masses to percentages, or vice versa.	WS16 – Using equations	PRAC – Cookie mining Cookies, tweezers, paper towels
9.	Ceramics, Polymers & Composites	ARE – Explain properties of ceramics, polymers and composites. AGD – Suggest advantages and disadvantages of each.		