试卷代号:1080

座位号

国家开放大学(中央广播电视大学)2016年秋季学期"开放本科"期末考试

工程数学(本) 试题(半开卷)

2017年1月

题	号	 =	Ξ	四	总	分
分	数					

得	分	评卷人

-、单项选择题(每小题 3 分,共 15 分)

- 1. 设 A, B 都是 n 阶方阵,则下列命题中正确的是().
 - A. $(A+I)(A-I) = A^2 I$
 - B. 若 AB=O,则 A=O 或 B=O
 - C. 若 AB = AC,且 $A \neq O$,则 B = C
 - D. $(A+B)(A-B)=A^2-B^2$
- 2. 若齐次线性方程组 AX=O 只有零解,则非齐次线性方程组 AX=b 的解的情况是().
 - A. 有唯一解

B. 有无穷多解

C. 可能无解

- D. 有非零解
- 3. 设 A,B 是两个随机事件,则下列等式中不正确的是().
 - A. P(A+B) = P(A) + P(B) P(AB) B. P(AB) = P(A)P(B)

C. $P(A)=1-P(\overline{A})$

D. $P(A|B) = \frac{P(AB)}{P(B)}$

4.	袋中有3	个红球,2个	~白球,第一次取出	球后放回,第二次	大再取一球,则两	次都取到红
球的概	率是().				
	A. $\frac{3}{10}$					
	B. $\frac{3}{20}$					
	C. $\frac{6}{25}$					
	D. $\frac{9}{25}$					
5.	对于单个	正态总体 2	$(\sim N(\mu,\sigma^2),\sigma^2$ 未知	时,关于均值 μ ί	的假设检验应采	用().
	A. F 检	验法		B. U 检验法		
	C. χ² 检	验法		D. t 检验法		
得分) 评卷/	=	、填空题(毎小题 3 分	,共 15 分)		
6.	设 A,B;	是3阶方阵	,其中 A =3, B =	2,则 2A'B-1 =	=	
7.	设A为n	1 阶方阵,若	存在数 λ 和非零 n 组	向量 X ,使得 A	$X = \lambda X, $	为 A 相应于
特征值	λ的		•			
8.	若 r(A):	=1,则3元	齐次线性方程组 AX	=0 的一个基础;	解系中含有	个解向
量.						

9. $\overrightarrow{A} P(A+B) = 0.9, P(\overline{AB}) = 0.3, P(A\overline{B}) = 0.5, \text{ m} P(AB) = _____.$

10. 设随机变量 X,若 E(X)=3,则 E(2X+1)=_____.

得	分	评卷人

三、计算题(每小题 16 分,共 64 分)

11. 解矩阵方程
$$AX = B$$
,其中 $A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 3 & -1 \\ 1 & 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 2 \end{bmatrix}$.

12. λ 为何值时,下列方程组有解? 有解时求出其全部解.

$$\begin{cases} x_1 + x_2 - 3x_3 = 1 \\ -x_1 - 2x_2 + x_3 = 2 \\ 2x_1 + 3x_2 - 4x_3 = \lambda \end{cases}$$

- 13. 设 $X \sim N(2,25)$, 试求:(1)P(12 < X < 17);(2)P(X > -3).(已知 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$, $\Phi(3) = 0.9987$)
- 14. 据资料分析,某厂生产的砖的抗断强度 X 服从正态分布 N(32.5,1.21). 今从该厂最近生产的一批砖中随机地抽取了 9 块,测得抗断强度(单位:kg/cm²)的平均值为 31.18. 假设标准差没有改变,在 0.05 的显著性水平下,问这批砖的抗断强度是否合格.($u_{0.975}$ =1.96)

得	分	评卷人

四、证明题(本题6分)

15. 设 n 阶方阵 A 满足 $A^2+A-3I=O$,试证方阵 A-I 可逆.

试卷代号:1080

ŀ

国家开放大学(中央广播电视大学)2016 年秋季学期"开放本科"期末考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2017年1月

一、单项选择题(每小题 3 分,共 15 分)

- 1. A
- 2. C 3. B
- 4. D
- 5. D

二、填空题(每小题3分,共15分)

- 6. 12
- 7. 特征向量
- 8. 2
- 9. 0.1
- 10. 7

三、计算题(每小题 16 分,共 64 分)

11. 解:利用初等行变换可得

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 2 & 3 & -1 & 0 & 1 & 0 \\ 1 & 4 & 0 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 4 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & -5 & -1 & 0 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -4 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 5 & 1 & -2 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 0 & -4 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -5 & -1 & 2 \end{bmatrix} \qquad 因此, A^{-1} = \begin{bmatrix} -4 & 0 & 1 \\ 1 & 0 & 0 \\ -5 & -1 & 2 \end{bmatrix}. \qquad \cdots (10 分)$$

于是,由矩阵乘法可得

$$X = A^{-1}B = \begin{bmatrix} -4 & 0 & 1 \\ 1 & 0 & 0 \\ -5 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -9 & 2 \\ 2 & 0 \\ -15 & 3 \end{bmatrix}.$$
(16 \(\frac{1}{2}\))

12. 解:将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & 1 & -3 & 1 \\ -1 & -2 & 1 & 2 \\ 2 & 3 & -4 & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -3 & 1 \\ 0 & -1 & -2 & 3 \\ 0 & 1 & 2 & \lambda - 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -5 & 4 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & \lambda + 1 \end{bmatrix}$$

此时,由最后一个行简化阶梯阵得方程组的一般解为:

$$\begin{cases} x_1 = 5x_3 + 4 \\ (其中 x_3 为自由元) \\ x_2 = -2x_3 - 3 \end{cases}$$
 ……(10 分)

令 $x_3 = 0$,得方程组的一个特解 $X_0 = (4 - 3 0)'$(12 分)

不计最后一列,令 $x_3=1$,得到相应的齐次线性方程组的一个基础解系

$$X_1 = (5 -2 1)'$$
(14 \(\frac{1}{2}\))

于是,方程组的全部解为 $X=X_0+kX_1$ (其中 k 为任意常数).(16 分)

13.
$$\#:(1)P(12 < X < 17) = P(\frac{12-2}{5} < \frac{X-2}{5} < \frac{17-2}{5}) = P(2 < \frac{X-2}{5} < 3)$$

$$=\Phi(3)-\Phi(2)=0.9987-0.9772=0.0215$$
(8 \Re)

$$(2)P(X>-3) = P\left(\frac{X-2}{5}> \frac{-3-2}{5}\right) = P\left(\frac{X-2}{5}> -1\right) = \Phi(1) = 0.8413$$

……(16分)

14. 解:零假设 $H_0: \mu = 32.5$; $H_1: \mu \neq 32.5$.

由于标准差没有改变,故已知 σ3=1.21,选取样本函数

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} \sim N(0, 1) \qquad \cdots (5 \text{ 分})$$

由已知, $\bar{x}=31.18$, $\mu_0=32.5$, $\sigma_0=1.1$,n=9,于是得

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{31.18 - 32.5}{1.1 / \sqrt{9}} = -3.6$$
(10 分)

在 0.05 的显著性水平下, $\left|\frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}}\right|=3.6>1.96$,因此拒绝零假设 H_0 ,即这批赛的抗断

强度不合格.

……(16分)

四、证明题(本题6分)

座位号	
-----	--

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

工程数学(本) 试题(半开卷)

2017年6月

题	号	_	 iii	四	总	分
分	数					

得	分	评卷人

一、单项选择题(每小题3分,共15分)

- 1. 下列命题中不正确的是().
 - A. A 与 A'有相同的特征多项式
 - B. 若 λ 是 A 的特征值,则($\lambda I A$)X = O 的非零解向量必是 A 相应于 λ 的特征向量
 - C. 若 $\lambda = 0$ 是 A 的一个特征值,则 AX = 0 必有非零解
 - D. A 的特征向量的线性组合仍为 A 的特征向量
- 2. 若 A 是对称矩阵,则等式()成立.

A.
$$AA'=I$$

B. A' = A

C.
$$A' = A^{-1}$$

D. $A^{-1} = A$

- 3. n 元非齐次线性方程组 AX = b 有解的充分必要条件是().
 - A. r(A) < n
 - B. r(A) = n
 - C. $r(A) = r([A \mid b])$
 - D. 相应的齐次线性方程组 AX = O 有解

4. 设袋中有 6 只红球,4 只白球,从其中不放回地任取两次,每次取 1 只,则两次都取到红球的概率是().

A.
$$\frac{1}{3}$$

B.
$$\frac{9}{25}$$

C.
$$\frac{3}{5}$$

D.
$$\frac{3}{10}$$

5. 设 A,B 是两个随机事件,则下列等式中正确的是().

A.
$$P(AB) = P(A)P(B)$$

B.
$$P(A)=1-P(\overline{A})$$

C.
$$P(A+B) = P(A) + P(B)$$

D.
$$P(AB) = P(B)P(B|A)$$

得	分	评卷人

二、填空题(每小题 3 分,共 15 分)

6. 当
$$\lambda =$$
_____时,方程组
$$\begin{cases} x_1 - x_2 = 1 \\ & \text{ 有无穷多解}. \\ -2x_1 + \lambda x_2 = -2 \end{cases}$$

7. 设 A 为 n 阶方阵, 若存在数 λ 和非零 n 维向量 X, 使得 $AX = \lambda X$, 则称数 λ 为 A 的

9. 设随机变量
$$X \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ & & & \\ 0.3 & 0.4 & 0.1 & 0.2 \end{bmatrix}$$
,则 $P(X < 3) =$ ______.

10. 设随机变量 X,若 D(X)=2,则 D(3X+2)=____.

得	分	评卷人

三、计算题(每小题 16 分,共 64 分)

11. 解矩阵方程
$$X = AX + B$$
,其中 $A = \begin{bmatrix} 2 & -3 \\ 4 & -5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

12. 求线性方程组

$$\begin{cases} x_1 - 2x_2 + 4x_3 = -5 \\ 2x_1 + 3x_2 + x_3 = 4 \\ 3x_1 + 8x_2 - 2x_3 = 13 \\ 4x_1 - x_2 + 9x_3 = -6 \end{cases}$$

的通解.

13. 设 $X \sim N(2,3^2)$, 试求: (1) P(-4 < X < 5); (2) P(X > -1). (已知 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$, $\Phi(3) = 0.9987$)

14. 设某种零件长度 X 服从正态分布 $N(\mu, 2.25)$, 今从中任取 100 个零件抽检, 测得平均长度为 84.5cm, 试求此零件长度总体均值的置信度为 0.95 的置信区间($u_{0.975}=1.96$).

得	分	评卷人

四、证明题(本题6分)

15. 设 A 为 n 阶方阵,且满足 AA'=I, |A|=-1,证明 |I+A|=0.

试卷代号:1080

国家开放大学(中央广播电视大学)2017年春季学期"开放本科"期末考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2017年6月

一、单项选择题(每小题 3 分,共 15 分)

- 1. D
- 2. B
- 3. C 4. A
- 5. B

二、填空顯(每小題 3 分,共 15 分)

- 6. 2
- 7. 特征值
- 8, 0, 2
- 9. 0.7
- 10.18

三、计算题(每小题 16 分,共 64 分)

11. 解:由 X = AX + B 可得(I - A)X = B.

……(3分)

由已知可得
$$(I-A)$$
= $\begin{bmatrix} -1 & 3 \\ -4 & 6 \end{bmatrix}$.

……(5 分)

利用初等行变换可得

$$\begin{bmatrix} -1 & 3 & 1 & 0 \\ -4 & 6 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -1 & 0 \\ 0 & -6 & -4 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 & -\frac{1}{2} \\ 0 & 1 & \frac{2}{3} & -\frac{1}{6} \end{bmatrix}$$

因此,
$$(I-A)^{-1} = \begin{bmatrix} 1 & -\frac{1}{2} \\ \frac{2}{3} & -\frac{1}{6} \end{bmatrix}$$
. (也可由伴随矩阵法求得)(13 分)

于是,
$$X = (I - A)^{-1}B = \begin{bmatrix} 1 & -\frac{1}{2} \\ \frac{2}{3} & -\frac{1}{6} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} & 0 \\ \frac{1}{6} & \frac{2}{3} \end{bmatrix}$$
(16 分)

12. 解:将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & -2 & 4 & -5 \\ 2 & 3 & 1 & 4 \\ 3 & 8 & -2 & 13 \\ 4 & -1 & 9 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 4 & -5 \\ 0 & 7 & -7 & 14 \\ 0 & 14 & -14 & 28 \\ 0 & 7 & -7 & 14 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 4 & -5 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

方程组的一般解为
$$\begin{cases} x_1 = -2x_3 - 1 \\ (其中 x_3 为自由元). \end{cases}$$
(7 分)

令
$$x_3 = 0$$
,得到方程组的一个特解为 $X_0 = (-1 \ 2 \ 0)'$(10 分)

不计最后一列,令 $x_3=1$,得到相应的齐次线性方程组的一个基础解系

$$X_1 = (-2 \ 1 \ 1)'$$
 ······(13 分)

于是,方程组的通解为 $X=X_0+kX_1$ (其中 k 为任意常数).(16 分)

13.
$$\Re (1)P(-4 < X < 5) = P(\frac{-4 - 2}{3} < \frac{X - 2}{3} < \frac{5 - 2}{3}) = P(-2 < \frac{X - 2}{3} < 1)$$

$$= \Phi(1) - \Phi(-2) = \Phi(1) - (1 - \Phi(2))$$

$$= 0.8413 - (1 - 0.9772) = 0.8185 \qquad \cdots (8 \%)$$

(2)
$$P(X > -1) = P\left(\frac{X-2}{3} > \frac{-1-2}{3}\right) = P\left(\frac{X-2}{3} > -1\right) = \Phi(1) = 0.8413$$
(16 $\frac{4}{3}$)

14. 解:由于已知σ²,故选取样本函数

零件长度总体均值的置信度为 0.95 的置信区间为

$$\left[\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}}\right] \qquad \cdots (10 \ \text{f})$$

由已知, $\overline{x}=84.5$, $\sigma=1.5$,n=100, $u_{0.975}=1.96$,于是可得

$$\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}} = 84.5 - 1.96 \times \frac{1.5}{\sqrt{100}} = 84.206$$

$$\overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}} = 84.5 + 1.96 \times \frac{1.5}{\sqrt{100}} = 84.794$$

因此,此零件长度总体均值的置信度为 0.95 的置信区间为[84.206,84.794].

……(16分)

四、证明题(本题6分)

15. 证明:因为

$$|I+A| = |AA'+A| = |A(A'+I)| = |A||A'+I| = |A||I+A| = -|I+A|$$
 所以 $|I+A| = 0$(6 分)

国家开放大学(中央广播电视大学)2017年秋季学期"开放本科"期末考试

工程数学(本) 试题(半开卷)

2018年1月

题	号	 	 四	总	分
分	数				

得	分	评卷人

一、单项选择题(每小题3分,共15分)

- 1. 若 A, B 都是 n 阶矩阵,则等式()成立.
 - A. |A+B| = |A| + |B|
 - B. |AB| = |BA|
 - C. AB = BA
 - D. $(A+B)(A-B)=A^2-B^2$
- 2. 设 $A \neq n$ 阶方阵, 当条件()成立时, n 元线性方程组 AX = b 有唯一解.
 - A. b = 0
 - B. |A| = 0
 - C. r(A) < n
 - D. r(A) = n
- 3. 下列命题中不正确的是().
 - A. A 与 A'有相同的特征多项式
 - B. A 的特征向量的线性组合仍为 A 的特征向量
 - C. 若 $\lambda = 0$ 是 A 的一个特征值,则 AX = O 必有非零解
 - D. 若 λ 是 A 的特征值,则($\lambda I A$)X=O 的非零解向量必是 A 对应于 λ 的特征向量

4. 若事件 A, B 满足(),则 A 与 B 是相互独立的.

A.
$$P(B) = P(A)P(B|A)$$

B.
$$P(A-B) = P(A) - P(B)$$

C.
$$P(AB) = P(A)P(B)$$

D.
$$P(A) = P(B)P(A|B)$$

- 5. 对正态总体 $N(\mu,\sigma^2)$ 的假设检验问题中,U 检验解决的问题是().
 - A. 已知方差,检验均值
 - B. 未知方差,检验均值
 - C. 已知均值,检验方差
 - D. 未知均值,检验方差

二、填空题(每小题 3 分,共 15 分)

6. 设 A,B 均为 2 阶矩阵,且|A|=3,|B|=2,|3AB|=____.

7. 当
$$\lambda =$$
 _____时,矩阵 $\begin{bmatrix} 1 & 2 & 3 & 4 \\ -1 & -1 & -5 & -4 \\ 0 & 2 & -4 & \lambda \end{bmatrix}$ 的秩最小.

- 8. 若 P(A)=0.7,P(B)=0.8,且 A,B 相互独立,则 P(AB)=____.
- 9. 设随机变量 X,且 E(X)=2, $E(X^2)=9$,那么 D(X)=_____.
- 10. 设 x_1, x_2, \dots, x_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则 $\frac{1}{n} \sum_{i=1}^n x_i \sim$ _______.

三、计算题(每小题 16 分,共 64 分)

11. 设矩阵
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & -3 & 5 \\ 3 & -2 & 4 \end{bmatrix}$$
,求(1) $|A|$,(2) A^{-1} .

12. 求线性方程组

$$\begin{cases} x_1 - 3x_2 + x_3 - x_4 = 1 \\ -2x_1 + 7x_2 - 2x_3 + x_4 = -2 \\ x_1 - 4x_2 + 3x_3 + 2x_4 = 1 \\ 2x_1 - 4x_2 + 8x_3 + 2x_4 = 2 \end{cases}$$

的全部解。

13. 设 $X \sim N(3,4)$, 试求(1)P(5 < X < 9);(2)P(X > 7).(已知 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$, $\Phi(3) = 0.9987$)

14. 已知某种零件重量 $X \sim N(15,0.09)$,采用新技术后,取了 9 个样品,测得重量(单位:kg)的平均值为 14.9,已知方差不变,问平均重量是否仍为 $15(\alpha=0.05,u_{0.975}=1.96)$?

得	分	评卷人

四、证明题(本题6分)

15. 设 A, B 为随机事件,试证: P(A-B) = P(A) - P(AB).

试卷代号:1080

国家开放大学(中央广播电视大学)2017 年秋季学期"开放本科"期末考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2018年1月

方程组相应的齐次方程的一般解为

$$\begin{cases} x_1 = 5x_4 \\ x_2 = x_4 \\ x_3 = -x_4 \end{cases}$$
 (其中 x_4 为自由未知量)

令 $x_4 = 1$,得到方程的一个基础解系 $X_1 = (5 \ 1 \ -1 \ 1)'$.

⋯⋯13 分

于是,方程组的全部解为

$$X=X_0+kX_1$$
(其中 k 为任意常数)

……16 分

13.
$$\#:(1)P(5 < X < 9) = P(\frac{5-3}{2} < \frac{X-3}{2} < \frac{9-3}{2}) = P(1 < \frac{X-3}{2} < 3)$$

$$=\Phi(3)-\Phi(1)=0.9987-0.8413=0.1574$$
8 分

$$(2)P(X>7) = P(\frac{X-3}{2} > \frac{7-3}{2})$$

$$= P(\frac{X-3}{2} > 2) = 1 - P(\frac{X-3}{2} \le 2)$$

$$=1-\Phi(2)=1-0.9772=0.0228$$
16 \Leftrightarrow

14. 解:零假设 $H_0: \mu=15$. 由于已知 $\sigma^2=0.09$,故选取样本函数

已知 $\overline{x} = 14.9$,经计算得

$$\frac{\sigma}{\sqrt{9}} = \frac{0.3}{3} = 0.1, \left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = \left| \frac{14.9 - 15}{0.1} \right| = 1$$
10 分

由已知条件 $u_{0.975}=1.96$,

$$\left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = 1 < 1.96 = u_{0.975}$$

故接受零假设,即零件平均重量仍为15.

……16分

四、证明题(本题6分)

15. 证明:由事件的关系可知

$$A = AU = A(B + \overline{B}) = AB + A\overline{B} = AB + (A - B)$$

 $\Pi(A-B)(AB) = \emptyset$,故由概率的性质可知

$$P(A) = P(A-B) + P(AB)$$

即

$$P(A-B)=P(A)-P(AB)$$
 证毕 ······6 分

335

试卷代号:1080

座位号

国家开放大学(中央广播电视大学)2018年春季学期"开放本科"期末考试

工程数学(本) 试题(半开卷)

2018年7月

题	号	 1	Ξ	四	垉	分
分	数					j

得	分	评卷人

一、单项选择题(每小题 3 分,共 15 分)

- A. 3
- B. 2
- C. -3
- D. -2
- 2. 设 $A \in \mathbb{R}$ 阶方阵, 当条件()成立时, n 元线性方程组 AX = b 有唯一解.
 - A. b = 0
 - B. |A| = 0
 - C. r(A) = n
 - D. r(A) < n
- 3. 设 $A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$,那么 A 的特征值是()
 - A. -4,6
 - B. 1,1
 - C.1,5
 - D. 5,5

- 4. 设 A, B 是两事件,则下列等式中()是不正确的.
 - A. P(AB) = P(A)P(B|A),其中 $P(A) \neq 0$
 - B. P(AB) = P(B)P(A|B),其中 $P(B) \neq 0$
 - C.P(AB) = P(A)P(B),其中 A,B 相互独立
 - D. P(AB) = P(A)P(B),其中 A,B 互不相容
- 5. 在对单正态总体 $N(\mu,\sigma^2)$ 的假设检验问题中,T 检验法解决的问题是().
 - A. 已知方差,检验均值
 - B. 未知方差,检验均值
 - C. 已知均值,检验方差
 - D. 未知均值,检验方差

得	分	评卷人

二、填空题(每小题3分,共15分)

- 6. 设 A,B 均为 n 阶矩阵,则 $(A+B)^2=A^2+2AB+B^2$ 成立的充分必要条件是
- 7. 当 $\lambda =$ ______ 时,齐次线性方程组 $\begin{cases} x_1 x_2 = 0 \\ & \text{有非零解}. \end{cases}$
- 8. 若 P(A)=0.7,P(B)=0.8,且 A,B 相互独立,则 P(AB)=______
- 9. 设随机变量 $X \sim B(100, 0.15)$,则 $E(X) = _____.$
- 10. 设 x_1, x_2, \dots, x_{10} 是来自正态总体 $N(\mu, 4)$ 的一个样本,则 $\frac{1}{10} \sum_{i=1}^{10} x_i \sim$ ______.

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$AX = B$$
,其中 $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 5 & 8 & 10 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ 5 & -1 \\ 0 & 1 \end{bmatrix}$,求 X .

12. 当λ取何值时,线性方程组

$$\begin{cases} x_1 - x_2 + x_4 = 2 \\ x_1 - 2x_2 + x_3 + 4x_4 = 3 \\ 2x_1 - 3x_2 + x_3 + 5x_4 = \lambda + 2 \end{cases}$$

有解,在有解的情况下求方程组的全部解.

13. 设
$$X \sim N(3,4)$$
, 试求:(1) $P(X < -1)$:(2) $P(5 < X < 9)$.

(已知
$$\Phi(1)=0.8413,\Phi(2)=0.9772,\Phi(3)=0.9987$$
)

14. 据资料分析,某厂生产的一批砖,其抗断强度 $X \sim N(32.5,1.21)$,今从这批砖中随机地抽取了 9 块,测得抗断强度(单位: kg/cm^2)的平均值为 31.12,问这批砖的抗断强度是否合格(α =0.05, $u_{0.975}$ =1.96)?

得	分	评卷人

四、证明题(本题6分)

15. 设向量组 $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的,证明, $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$ 也线性无关.

试卷代号:1080

国家开放大学(中央广播电视大学)2018 年春季学期"开放本科"期末考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2018年7月

一、单项选择题(每小题 3 分,共 15 分)

1. D

2. C 3. A 4. D 5. B

二、填空题(每小题3分,共15分)

6. AB = BA 7. -1 8. 0.56 9. 15 10. $N(\mu, \frac{4}{10})$

三、计算题(每小题 16 分.共 64 分)

11. 解:利用初等行变换得

$$(A \ I) = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & 5 & 7 & 0 & 1 & 0 \\ 5 & 8 & 10 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -3 & 1 & 0 \\ 0 & -2 & -5 & -5 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 & -1 & 0 \\ 0 & 0 & -1 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 4 & -6 & 3 \\ 0 & 1 & 0 & 5 & -5 & 2 \\ 0 & 0 & 1 & -1 & 2 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -6 & 4 & -1 \\ 0 & 1 & 0 & 5 & -5 & 2 \\ 0 & 0 & 1 & -1 & 2 & -1 \end{bmatrix}$$

即
$$A^{-1} = \begin{bmatrix} -6 & 4 & -1 \\ 5 & -5 & 2 \\ -1 & 2 & -1 \end{bmatrix}$$
 ……10 分

$$X = A^{-1}B = \begin{bmatrix} -6 & 4 & -1 \\ 5 & -5 & 2 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 5 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 8 & -5 \\ -15 & 7 \\ 8 & -3 \end{bmatrix} \qquad \dots 16$$

12. 解: 将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 1 & -2 & 1 & 4 & 3 \\ 2 & -3 & 1 & 5 & \lambda + 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 3 & 1 \\ 0 & -1 & 1 & 3 & \lambda - 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 & \lambda - 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & -1 & -3 & -1 \\ 0 & 0 & 0 & \lambda - 3 \end{bmatrix}$$

由此可知当 $\lambda \neq 3$ 时,方程组无解,当 $\lambda = 3$ 时,方程组有解.

-----8分

此时相应的齐次方程组化为

$$\begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = x_3 + 3x_4 \end{cases}$$

分别令 $x_3=1, x_4=0$ 及 $x_3=0, x_4=1,$ 得齐次方程组的一个基础解系

$$X_1 = [1 \ 1 \ 1 \ 0]', X_2 = [2 \ 3 \ 0 \ 1]'$$

令 $x_3=0, x_4=0$,得非齐次方程组的一个特解

$$X_0 = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}'$$

由此得原方程组的全部解为

$$X = X_0 + k_1 X_1 + k_2 X_2$$
 (其中 k_1, k_2 为任意常数)16 分

13.
$$\#:(1)P(X<-1)=P(\frac{X-3}{2}<\frac{-1-3}{2})=P(\frac{X-3}{2}<-2)=\Phi(-2)$$

$$=1-\Phi(2)=1-0.9772=0.0228$$
8 \Rightarrow

$$(2)P(5 < X < 9) = P(\frac{5-3}{2} < \frac{X-3}{2} < \frac{9-3}{2}) = P(1 < \frac{X-3}{2} < 3)$$

$$=\Phi(3)-\Phi(1)=0.9987-0.8413=0.1574$$
16 \Re

14. 解:零假设 $H_0: \mu = 32.5$. 由于已知 $\sigma^2 = 1.21$,故选取样本函数

已知 $\bar{x} = 31.12$,经计算得

$$\frac{\sigma}{\sqrt{9}} = \frac{1.1}{3} = 0.37, \left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = \left| \frac{31.12 - 32.5}{0.37} \right| = 3.73$$
10 \(\frac{\pi}{3}\)

由已知条件 $u_{0.975}=1.96$,

$$\left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = 3.73 > 1.96 = u_{0.975}$$

故拒绝零假设,即这批砖的抗断强度不合格.

……16分

四、证明题(本题6分)

15. 证明:设有一组数 k_1 , k_2 , k_3 , 使得 $k_1(\alpha_1+\alpha_2)+k_2(\alpha_2+\alpha_3)+k_3(\alpha_1+\alpha_3)=0$ 成立,即 $(k_1+k_3)\alpha_1+(k_1+k_2)\alpha_2+(k_2+k_3)\alpha_3=0$,由已知 α_1 , α_2 , α_3 线性无关,故有

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases}$$

该方程组只有零解,得 $k_1=k_2=k_3=0$,故 $\alpha_1+\alpha_2$, $\alpha_2+\alpha_3$, $\alpha_1+\alpha_3$ 是线性无关的,证毕.

-----6分

国家开放大学(中央广播电视大学)2018年秋季学期"开放本科"期末考试

工程数学(本) 试题(半开卷)

2019年1月

题	号	 	Ξ	四	总	分
分	数					

得	分	评卷人

一、单项选择题(每小题 3 分,共 15 分)

1. 设 A,B 均为 n 阶可逆矩阵,则下列等式成立的是().

A.
$$(A+B)^{-1}=A^{-1}+B^{-1}$$

B.
$$|A+B| = |A| + |B|$$

C.
$$|-2AB| = 2^n |A| |B|$$

D.
$$(AB)^{-1} = B^{-1}A^{-1}$$

- 2. 向量组 α_1 = [1,0,0], α_2 = [1,2,0], α_3 = [0,0,3], α_4 = [1,2,3]的秩是().
 - A. 1
 - B. 2
 - C. 3
 - D. 4
- 3. 矩阵 $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ 的特征值为 0,2,则 3A 的特征值为().
 - A. 0,2
 - B. 0,6
 - C. 0,0
 - D. 2,6

- 4. 设 A, B 是两事件,则下列等式中()是不正确的.
 - A. P(AB) = P(A)P(B|A), $\sharp + P(A) \neq 0$
 - B. P(AB) = P(B)P(A|B), $\sharp P(B) \neq 0$
 - C.P(AB)=P(A)P(B),其中 A, B 相互独立
 - D. P(AB) = P(A)P(B),其中 A,B 互不相容
- 5. 设 x_1, x_2, \dots, x_n 是来自正态总体 N(5,1) 的样本,则检验假设 $H_0: \mu=5$ 采用统计量 U=().
 - A. $\frac{\overline{x}-5}{\sqrt{5}}$
 - B. $\frac{\overline{x} 5}{1/\sqrt{5}}$
 - C. $\frac{\overline{x}-5}{1/\sqrt{n}}$
 - D. $\frac{\overline{x}-5}{1}$

得	分	评卷人

二、填空题(每小题 3 分,共 15 分)

- 6. 设行列式 | 6 7 9 | e0,则 k=____.
 -1 0 1
- 7. 当 $\lambda =$ ______时,方程组 $\begin{cases} x_1 + x_2 = 1 \\ -x_1 \lambda x_2 = -1 \end{cases}$ 有无穷多解.
- 8. 若 P(A)=0.2,P(B)=0.3,且 A 与 B 互不相容,则 P(A+B)=_____.
- 9. 设随机变量 X 服从二项分布 B(n,p),则 $E(X) = _____.$
- 10. 设总体 $X \sim N(\mu, \sigma^2)$,且 σ^2 未知,用样本假设检验 $H_0: \mu = \mu_0$ 时可采用统计量

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$X = AX + B$$
,其中 $A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix}$,求 X .

12. 求线性方程组

$$\begin{cases} x_1 - 3x_2 - 2x_3 - x_4 = 1 \\ 3x_1 - 8x_2 - 4x_3 - x_4 = 0 \\ -2x_1 + x_2 - 4x_3 + 2x_4 = 1 \\ -x_1 - 2x_2 - 6x_3 + x_4 = 2 \end{cases}$$

的全部解.

13. 设 $X \sim N(1,0.04)$,试求:(1)P(X < 1.2);(2)P(0.7 < X < 1.1).

(已知 $\Phi(0.5)=0.6915$, $\Phi(1)=0.8413$, $\Phi(1.5)=0.9332$, $\Phi(3)=0.9987$)

14. 某一批零件重量 $X \sim N(\mu, 0.04)$,随机抽取 4 个测得重量(单位:千克)为

可否认为这批零件的平均重量为 15 千克(α =0.05)(已知 $u_{0.975}$ =1.96)?

得	分	评卷人

四、证明题(本题6分)

15. 设随机事件 A,B 相互独立,试证 \overline{A},B 也相互独立.

试券代号:1080

国家开放大学(中央广播电视大学)2018年秋季学期"开放本科"期末考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2019年1月

一、单项选择题(每小题 3 分,共 15 分)

4. D 5. C

二、填空题(每小题3分,共15分)

$$9. n_i$$

6. 4 7. 1 8. 0.5 9.
$$np$$
 10. $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

三、计算题(每小题 16 分, 共 64 分)

11.
$$\mathbf{M}: X = (I - A)^{-1}B$$

$$\mathbb{H}(I-A\ I) = \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 1 & -2 & -1 & 0 & 1 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$

$$(I-A)^{-1} = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

由矩阵乘法得

$$X = (I - A)^{-1}B = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ -2 & 4 \\ -3 & 3 \end{bmatrix}$$
16

12. 解: 将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & -3 & -2 & -1 & 1 \\ 3 & -8 & -4 & -1 & 0 \\ -2 & 1 & -4 & 2 & 1 \\ -1 & -2 & -6 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -2 & -1 & 1 \\ 0 & 1 & 2 & 2 & -3 \\ 0 & -5 & -8 & 0 & 3 \\ 0 & -5 & -8 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & -2 & -1 & 1 \\ 0 & 1 & 2 & 2 & -3 \\ 0 & 0 & 2 & 10 & -12 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

此时齐次方程组化为

$$\begin{cases} x_1 = 15x_4 \\ x_2 = 8x_4 \\ x_3 = -5x_4 \end{cases}$$

令 $x_4=1$,得齐次方程组的一个基础解系

$$X_1 = [15 \ 8 \ -5 \ 1]'$$

……12 分

令 $x_4=0$,得非齐次方程组的一个特解

$$X_0 = [16 \ 9 \ -6 \ 0]'$$

由此得原方程组的全部解为

$$X = X_0 + kX_1$$
 (其中 k 为任意常数)

·····16 ታ

13. 解:(1)
$$P(X<1.2)=P(\frac{X-1}{0.2}<\frac{1.2-1}{0.2})=P(\frac{X-1}{0.2}<1)=\Phi(1)=0.8413$$
 ……8分

$$(2)P(0.7 < X < 1.1) = P(\frac{0.7 - 1}{0.2} < \frac{X - 1}{0.2} < \frac{1.1 - 1}{0.2}) = P(-1.5 < \frac{X - 1}{0.2} < 0.5)$$

$$=\Phi(0.5)+\Phi(1.5)-1=0.6915+0.9332-1=0.6247$$
16 $\%$

14. 解:零假设 $H_0: \mu=15$. 由于已知 σ^2 ,故选取样本函数

经计算得

$$\overline{x} = 14.95, \left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = \left| \frac{14.95 - 15}{0.2 / \sqrt{4}} \right| = 0.5$$
10 \$\frac{\pi}{2}\$

已知 $u_{0.975}=1.96$,

$$\left|\frac{\overline{x}-\mu}{\sigma/\sqrt{n}}\right|=0.5 \le 1.96=u_{0.975}$$

故接受零假设,即可以认为这批零件的平均重量为 15 千克.

……16 分

四、证明题(本题6分)

15. 证明:因为
$$P(\overline{A}B) = P(B) - P(AB) = P(B) - P(A)P(B) = P(B)(1 - P(A))$$

= $P(\overline{A})P(B)$

所以 \overline{A} ,B 也相互独立,证毕,

-----6分

国家开放大学2019年春季学期期末统一考试

工程数学(本) 试题(半开卷)

2019年7月

题	号	_	 Ξ	四	总	分
分	数					

得	分	评卷人

一、单项选择题(每小题 3 分.共 15 分)

1. 若 A, B 都是 n 阶矩阵,则下列运算关系正确的是().

A.
$$|A + B| = |A| + |B|$$

B.
$$|AB| = |BA|$$

C.
$$AB = BA$$

D.
$$|2A| = 2|A|$$

- 2. 若向量组 α_1 , α_2 ,…, α , 线性相关,则向量组内()可被该向量组内其余向量线性表出.
 - A. 任何一个向量

B. 没有一个向量

C. 至少有一个向量

D. 至多有一个向量

- 3. 矩阵 $A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ 的特征值为().
 - A. 0,0

B. 0,2

C. 2,6

- D. 0,6
- 4. 掷两颗均匀的骰子,事件"点数之和为 4"的概率是().
 - A. $\frac{1}{36}$

B. $\frac{1}{18}$

C. $\frac{1}{12}$

D. $\frac{1}{11}$

- 5. 对正态总体 $N(\mu,\sigma^2)$ 的假设检验问题中, U 检验解决的问题是().
 - A. 已知方差,检验均值
- B. 未知方差,检验均值

C. 已知均值,检验方差

D. 未知均值,检验方差

得	分	评卷人

二、填空题(每小题3分,共15分)

$$\begin{vmatrix} 2 & -1 & 0 \\ 1 & -4 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \underline{\hspace{1cm}}.$$

- 8. 若 P(A) = 0.7, P(B) = 0.8, 且事件 A,B 相互独立,则 $P(\overline{A}B) =$.
- 9. 如果随机变量 $X \sim B(20,0.3)$,则 $E(X) = _____.$
- 10. 设 x_1, x_2, \dots, x_n 是来自正态总体 $N(\mu, \sigma^2)$ 的一个样本,则 $\frac{1}{n} \sum_{i=1}^n x_i$ ~

得 分 评卷人

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$AX = B$$
,且 $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 5 & 7 \\ 5 & 8 & 10 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 1 & -1 \\ 0 & 1 \end{bmatrix}$,求 X .

12. 求 k 为何值时,线性方程组

$$\begin{cases} 2x_1 - x_2 + x_3 + x_4 = 1\\ x_1 + 2x_2 - x_3 + 4x_4 = 2\\ x_1 + 7x_2 - 4x_3 + 11x_4 = k \end{cases}$$

有解,并求出全部解.

13. 设 $X \sim N(3,4)$,试求(1) P(5 < X < 9);(2) P(X > 7). (已知 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$, $\Phi(3) = 0.9987$)

234

14. 某一批零件重量 $X \sim N(\mu, 0.04)$,随机抽取 4 个测得重量(单位:千克)分别为 14.7, 15.1, 14.8, 15.2

可否认为这批零件的平均重量为 15 千克 ($\alpha = 0.05$)(已知 $u_{0.975} = 1.96$)?

得	分	评卷人

四、证明题(本题6分)

15. 设A,B为同阶对称矩阵,试证:AB+BA也是对称矩阵.

试券代号:1080

国家开放大学2019年春季学期期末统一考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2019年7月

一、单项选择题(每小题 3 分,共 15 分)

1. B

2. C 3. D 4. C 5. A

二、填空题(每小题 3 分,共 15 分)

6. -7

7.
$$\begin{bmatrix} 2 & -1 \\ -6 & 1 \end{bmatrix}$$

8.0.24

9.6

10.
$$N(\mu, \frac{\sigma^2}{n})$$

三、计算题(每小题 16 分,共 64 分)

11. 解:利用初等行变换得

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 3 & 5 & 7 & 0 & 1 & 0 \\ 5 & 8 & 10 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -3 & 1 & 0 \\ 0 & -2 & -5 & -5 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 0 & -1 & -2 & -3 & 1 & 0 \\ 0 & 0 & -1 & 1 & -2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 4 & -6 & 3 \\ 0 & -1 & 0 & -5 & 5 & -2 \\ 0 & 0 & 1 & -1 & 2 & -1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & -6 & 4 & -1 \\ 0 & 1 & 0 & 5 & -5 & 2 \\ 0 & 0 & 1 & -1 & 2 & -1 \end{bmatrix}$$

12. 解: 将方程组的增广矩阵化为阶梯形

$$\overline{A} = \begin{bmatrix} 2 & -1 & 1 & 1 & 1 \\ 1 & 2 & -1 & 4 & 2 \\ 1 & 7 & -4 & 11 & k \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & -5 & 3 & -7 & -3 \\ 0 & 5 & -3 & 7 & k - 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & 4 & 2 \\ 0 & -5 & 3 & -7 & -3 \\ 0 & 0 & 0 & k - 5 \end{bmatrix}$$

当 k=5 时,方程组有解,且方程组的一般解为

$$\begin{cases} x_1 = \frac{4}{5} - \frac{1}{5}x_3 - \frac{6}{5}x_4 \\ x_2 = \frac{3}{5} + \frac{3}{5}x_3 - \frac{7}{5}x_4 \end{cases}$$
 (其中 x_3 , x_4 为自由未知量)

令 $x_3 = x_4 = 0$,得到方程组的一个特解 $X_0 = (\frac{4}{5} \quad \frac{3}{5} \quad 0 \quad 0)'$.方程组相应的齐次方程组的一般解为

在上式中分别令自由未知量 $x_3 = -5$, $x_4 = 0$ 和 $x_3 = 0$, $x_4 = -5$ 得到齐次方程组的一个基础解系

13. 解:(1)
$$P(5 < X < 9) = P(\frac{5-3}{2} < \frac{X-3}{2} < \frac{9-3}{2}) = P(1 < \frac{X-3}{2} < 3)$$

= $\Phi(3) - \Phi(1) = 0.9987 - 0.8413 = 0.1574$ 8分

14. 解:零假设 $H_0: \mu = 15$. 由于已知 σ^2 , 故选取样本函数

$$U = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

经计算得

$$\overline{x} = 14.95, \left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = \left| \frac{14.95 - 15}{0.2 / \sqrt{4}} \right| = 0.5$$

已知 $u_{0.975} = 1.96$,

$$\left| \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \right| = 0.5 \le 1.96 = u_{0.975}$$

故接受零假设,即可以认为这批零件的平均重量为 15 千克. ················ 16 分四、证明题(本题 6 分)

15. 证明:因

$$(AB + BA)' = (AB)' + (BA)' = B'A' + A'B' = BA + AB = AB + BA$$
 所以 $AB + BA$ 是对称矩阵、证毕、 6 分

国家开放大学2019年秋季学期期末统一考试

工程数学(本) 试题(半开卷)

2020年1月

题	号		 	四	总	分
分	数	· ·				

得	分	评卷人

一、单项选择题(每小题3分,共15分)

A. 2

B. 3

 $C_{2} = 3$

D. -2

- 2. 以下结论正确的是().
 - A. 方程的个数小于未知量的个数的线性方程组一定有解
 - B. 方程的个数等于未知量的个数的线性方程组一定有唯一解
 - C. 方程的个数大于未知量的个数的线性方程组一定有无穷多解
 - D. 齐次线性方程组一定有解

3. 设
$$A = \begin{bmatrix} 1 & 5 \\ 5 & 1 \end{bmatrix}$$
,那么 A 的特征值是().

A. -4,6

B. 1,1

C.1.5

D. 5,5

4. 掷两颗均匀的骰子,事件"点数之和为5"的概率是().

A.
$$\frac{1}{36}$$

B. $\frac{1}{18}$

C. $\frac{1}{9}$

D. $\frac{1}{12}$

- 5. 在对单正态总体 $N(\mu,\sigma^2)$ 的假设检验问题中, t 检验法解决的问题是().
 - A. 已知方差,检验均值

B. 未知方差,检验均值

C. 已知均值,检验方差

D. 未知均值,检验方差

得	分	评卷人

二、填空题(每小题3分,共15分)

- 7. 设 A,B 均为 n 阶矩阵, I-B 可逆, 则矩阵方程 A+BX=X 的解 X=
- 8. 若随机变量 $X \sim N(5,16)$,则 Y = ~ N(0,1).
- 9. 设随机变量 $X \sim B(n,p)$,则 $E(X) = _____.$
- 10. 若参数 θ 的估计量 $\hat{\theta}$ 满足 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的_____

得	分	评卷人

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$XA = B$$
,其中 $A = \begin{bmatrix} 1 & -3 & 2 \\ 0 & 1 & 1 \\ 1 & -2 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}$,求 X .

12. 设齐次线性方程组
$$\begin{cases} x_1 - 3x_2 + x_3 = 0 \\ 2x_1 - 5x_2 + 3x_3 = 0 \end{cases}$$
,问当 λ 取何值时方程组有非零解,
$$3x_1 - 8x_2 + \lambda x_3 = 0$$

并求出全部解.

- 13. 设 A , B 是两个随机事件,已知 P(A) = 0.6 , P(A + B) = 0.84 , $P(A\overline{B}) = 0.4$, 计算 P(B) .
 - 14. 已知某零件的重量服从正态分布,随机抽取 9 个样品,重量分别为

求零件重量均值的置信区间.(置信度 $1-\alpha=0.95$, $t_{0.05}(8)=2.306$)

得 分 评卷人

四、证明题(本题6分)

15. 设随机事件 A , B 相互独立,试证: \overline{A} , B 也相互独立.

国家开放大学2019年秋季学期期末统一考试

工程数学(本) 试题答案及评分标准(半开卷)

(供参考)

2020年1月

一、单项选择题(每小题3分,共15分)

- 1. A
- 2. D 3. A
- 4. C
- 5. B

二、填空题(每小题3分,共15分)

6.
$$\begin{bmatrix} -2 & 3 \\ 4 & -6 \end{bmatrix}$$

7.
$$(I - B)^{-1}A$$

8.
$$\frac{X-5}{4}$$

- 9. np
- 10. 无偏估计

三、计算题(每小题 16 分,共 64 分)

11. 解:利用初等行变换得

$$\begin{bmatrix} 1 & -3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & -2 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -3 & 2 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 0 & 3 & 2 & -2 \\ 0 & 1 & 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix}
1 & 0 & 0 & 6 & 8 & -5 \\
0 & 1 & 0 & 1 & 2 & -1 \\
0 & 0 & 1 & -1 & -1 & 1
\end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 6 & 8 & -5 \\ 1 & 2 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$
 10 \mathcal{D}

由此得

12. 解:将方程组的系数矩阵化为阶梯形

$$\begin{bmatrix} 1 & -3 & 1 \\ 2 & -5 & 3 \\ 3 & -8 & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & \lambda - 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -3 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \lambda - 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & \lambda - 4 \end{bmatrix}$$

所以,当λ=4时方程组有非零解,…… 9分

且方程组的一般解为

$$\begin{cases} x_1 = -4x_3 \\ x_2 = -x_3 \end{cases}$$

其中 x。为自由未知量,

在上式中令自由未知量 $x_3=1$,得方程组的一个基础解系

于是,方程组的全部解为

13. 解:
$$P(AB) = P(A) - P(A\overline{B}) = 0.6 - 0.4 = 0.2$$
 8 分

14.
$$M: \alpha = 0.05, n = 9$$
. 选用统计量 $\iota = \frac{\overline{x} - \mu}{s} \sqrt{n} \sim \iota(n-1)$,

代入样本值计算

$$\overline{x} = \frac{1}{9} \sum_{i=1}^{9} x_i = 18, s^2 = \frac{1}{8} \sum_{i=1}^{9} (x_i - \overline{x})^2 = 1.5$$

$$\sqrt{\frac{s^2}{9}} = \sqrt{\frac{1.5}{9}} = \frac{1}{\sqrt{6}}$$
 12 \Re

已知 $t_{0.05}(8) = 2.306$

于是,重量的均值 μ 的置信区间为

$$\left[\overline{x} - t_{0.05}(8) \sqrt{\frac{s^2}{n}}, \overline{x} + t_{0.05}(8) \sqrt{\frac{s^2}{n}}\right] = \left[18 - \frac{2.306}{\sqrt{6}}, 18 + \frac{2.306}{\sqrt{6}}\right] = \left[17.06, 18.94\right]$$

四、证明题(本题6分)

15. 证明:
$$P(\overline{A}B) = P(B) - P(AB) = P(B) - P(A)P(B) = P(B)(1 - P(A))$$

= $P(\overline{A})P(B)$

所以 \overline{A} , B 也相互独立. 证毕. ······ 6 分

国家开放大学2020年春季学期期末统一考试

工程数学(本) 试题

2020年7月

题	号	· · ·	 三	四	总	分
分	数		ч		-	

得	分	评卷人

一、单项选择题(每小题 3 分,共 15 分)

1. 设 A, B 均为 n 阶可逆矩阵,则下列等式成立的是()

A.
$$(A+B)^{-1} = A^{-1} + B^{-1}$$

B.
$$|A + B| = |A| + |B|$$

C.
$$|-2AB| = 2^n |A| |B|$$

D.
$$(AB)^{-1} = B^{-1}A^{-1}$$

2. 乘积矩阵 $C = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} -1 & 0 & 3 \\ 5 & 2 & 1 \end{bmatrix}$ 中的元素 $c_{23} = ($).

B.
$$-4$$

C. 7

3. 设 X_1, X_2 为线性方程组 AX = B 的两个解,则下列向量中()一定是 AX = B 的解.

A.
$$X_1 + X_2$$

B.
$$X_1 - X_2$$

C.
$$X_1 - 2X_2$$

D.
$$2X_2 - X_1$$

- 4. 掷两颗均匀的骰子,事件"点数之和为3"的概率是().
 - A. $\frac{1}{36}$

B.
$$\frac{1}{18}$$

C. $\frac{1}{12}$

D. $\frac{1}{11}$

5. 设 x_1, x_2, \dots, x_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,则()是 μ 的无偏估计.

A.
$$\frac{1}{5}x_1 + \frac{1}{5}x_2 + \frac{3}{5}x_3$$

B.
$$\frac{1}{5}x_1 + \frac{1}{5}x_2 + \frac{1}{5}x_3$$

C.
$$\frac{2}{5}x_1 + \frac{2}{5}x_2 + \frac{2}{5}x_3$$

D.
$$x_1 + x_2 + x_3$$

得 分 评卷人

二、填空题(每小题 3 分,共 15 分)

6. 设 A,B 是 3 阶矩阵,其中 |A|=3,|B|=2,则 |2A'B-1|=____.

7.
$$abla A = \begin{bmatrix} 2 & -1 & 2 \\ 4 & 0 & 2 \\ 0 & -3 & 3 \end{bmatrix}$$
, $abla r(A) = \underline{\qquad}$.

- 8. 若 P(A) = 0.7, P(B) = 0.8, 且事件 A, B 相互独立, 则 $P(A\overline{B}) = _____.$
- 9. 设 f(x) 是连续型随机变量 X 的密度函数,则对任意 a < b 都有 P(a < X < b) =

10. 设 x_1, x_2, \dots, x_{10} 是来自正态总体 $N(\mu, 4)$ 的一个样本,则 $\frac{1}{10} \sum_{i=1}^{10} x_i$ ~

1	导	分	评卷人

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$X = AX + B$$
,其中 $A = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix}$,求 X .

12. 当λ取何值时,线性方程组

$$\begin{cases} x_1 - x_2 + x_4 = 2\\ x_1 - 2x_2 + x_3 + 4x_4 = 3\\ 2x_1 - 3x_2 + x_3 + 5x_4 = \lambda \end{cases}$$

有解,在有解的情况下求方程组的全部解.

13. 已知
$$P(A) = \frac{1}{4}$$
, $P(B|A) = \frac{1}{3}$, $P(A|B) = \frac{1}{2}$, 求 $P(A+B)$.

14. 据资料分析,某厂生产的砖的抗断强度 X 服从正态分布 N(32.5,1.21). 今从该厂最近生产的一批砖中随机地抽取了 9 块,测得抗断强度(单位:kg/cm²)的平均值为 31.18. 假设标准差没有改变,在 0.05 的显著性水平下,问这批砖的抗断强度是否合格 $.(u_{0.975}=1.96)$

得	分	评卷人

四、证明题(本题6分)

15. 设 $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的,证明 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_1 + \alpha_3$ 也线性无关.

国家开放大学2020年春季学期期末统一考试

工程数学(本) 试题答案及评分标准

(供参考)

2020年7月

一、单项选择题(每小题 3 分,共 15 分)

1. D

2. C

3. D

4. B

5. A

二、填空题(每小题3分,共15分)

6.12

7.2

8.0.14

9.
$$\int_a^b f(x) \, \mathrm{d}x$$

10.
$$N(\mu, \frac{4}{10})$$

三、计算题(每小题 16 分,共 64 分)

其中
$$I - A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & -2 \end{bmatrix}$$

利用初等行变换得

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 & 1 & 0 \\ 1 & 0 & -2 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 1 & -2 & -1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & -1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 2 & -1 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & 1 & -1 \end{bmatrix}$$

由矩阵乘法得

$$X = (I - A)^{-1}B = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 2 & -1 \\ 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ -2 & 4 \\ -3 & 3 \end{bmatrix} \qquad \dots \qquad 16 \ \%$$

12. 解:将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 1 & -2 & 1 & 4 & 3 \\ 2 & -3 & 1 & 5 & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 3 & 1 \\ 0 & -1 & 1 & 3 & \lambda - 4 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 & 2 \\ 0 & -1 & 1 & 3 & 1 \\ 0 & 0 & 0 & \lambda - 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -2 & 1 \\ 0 & 1 & -1 & -3 & -1 \\ 0 & 0 & 0 & \lambda - 5 \end{bmatrix}$$

由此可知当 $\lambda \neq 5$ 时,方程组无解.当 $\lambda = 5$ 时,方程组有解. … 8 分 此时方程组相应的齐次方程组的一般解为

$$\begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = x_3 + 3x_4 \end{cases}$$
 $(x_3, x_4$ 是自由未知量)

分别令 $x_3 = 1, x_4 = 0$ 及 $x_3 = 0, x_4 = 1,$ 得齐次方程组的一个基础解系

$$X_1 = \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}', X_2 = \begin{bmatrix} 2 & 3 & 0 & 1 \end{bmatrix}'$$

令 $x_3=0$, $x_4=0$, 得非齐次方程组的一个特解

$$X_0 = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}'$$

由此得原方程组的全部解为

13.
$$\mathbf{M}: P(AB) = P(A)P(B|A) = \frac{1}{12}$$

$$P(B) = \frac{P(AB)}{P(A|B)} = \frac{1}{6}$$
 8 分

于是
$$P(A+B) = P(A) + P(B) - P(AB) = \frac{1}{4} + \frac{1}{6} - \frac{1}{12} = \frac{1}{3}$$
 16 分

14. 解:零假设 $H_0: \mu = 32.5$; $H_1: \mu \neq 32.5$.

由于标准差没有改变,故已知 $\sigma_0^2 = 1.21$,选取样本函数

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} \sim N(0, 1) \quad \cdots \quad 5 \,$$

由已知, $\bar{x}=31.18$, $\mu_0=32.5$, $\sigma_0=1.1$,n=9,于是得

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{31.18 - 32.5}{1.1 / \sqrt{9}} = -3.6$$
 10 分

在 0.05 的显著性水平下, $\left|\frac{\overline{x}-\mu_0}{\sigma_0/\sqrt{n}}\right|$ = 3.6 > 1.96,因此拒绝零假设 H_0 ,即这批砖的抗断

四、证明题(本题6分)

15. 设有一组数 k1,k2,k3,使得

$$k_1(\alpha_1 + \alpha_2) + k_2(\alpha_2 + \alpha_3) + k_3(\alpha_1 + \alpha_3) = 0$$

成立,即 $(k_1+k_3)\alpha_1+(k_1+k_2)\alpha_2+(k_2+k_3)\alpha_3=0$,由已知 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故有

$$\begin{cases} k_1 + k_3 = 0 \\ k_1 + k_2 = 0 \\ k_2 + k_3 = 0 \end{cases}$$

国家开放大学2020年春季学期期末统一考试

工程数学(本) 试题

•	题	号	 = .	=	四	总	分
	分	数					

得	分	评卷人

单项选择题(每小题3分,共15分)

1. 若 A, B 都是 n 阶可逆矩阵,则下列等式正确的是(

A.
$$(A+B)^2 = A^2 + 2AB + B^2$$
 B. $(AB)^{-1} = B^{-1}A^{-1}$

B.
$$(AB)^{-1} = B^{-1}A^{-1}$$

C.
$$(A+B)^{-1} = A^{-1} + B^{-1}$$

D.
$$|2A| = 2|A|$$

2. 设 $A = (1 \ 2), B = (-1 \ 3), I$ 是单位矩阵,则 A'B - I = ().

A.
$$\begin{bmatrix} -1 & 3 \\ -2 & 6 \end{bmatrix}$$

B.
$$\begin{bmatrix} -1 & -2 \\ 3 & 6 \end{bmatrix}$$

C.
$$\begin{bmatrix} -2 & 3 \\ -2 & 5 \end{bmatrix}$$

D.
$$\begin{bmatrix} -2 & -2 \\ 3 & 5 \end{bmatrix}$$

3. 设 A,B 为n 阶矩阵, λ 既是A 又是B 的特征值,x 既是A 又是B 的属于 λ 的特征向 量,则结论()正确.

 $A.\lambda$ 是 AB 的特征值

B. λ 是 A + B 的特征值

 $C.\lambda$ 是 A-B 的特征值

D.x 是A+B 的特征向量

- 4. 掷两颗均匀的骰子,事件"点数之和为2"的概率是().
 - A. $\frac{1}{36}$

B.
$$\frac{1}{18}$$

C. $\frac{1}{12}$

D. $\frac{1}{9}$

5. 设 x_1, x_2, \dots, x_n 是来自正态总体 $N(\mu, \sigma^2)$ (μ, σ^2 均未知)的样本,则()是统计量.

A.
$$x_1$$

B.
$$x_1 + \mu$$

C.
$$\mu x_1$$

D.
$$\frac{x_1^2}{\sigma^2}$$

得	分	评卷人

二、填空题(每小题 3 分,共 15 分)

$$6. \begin{vmatrix} 2 & -1 & 0 \\ 1 & -4 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \underline{\hspace{1cm}}.$$

7. 当
$$\lambda =$$
 _____ 时,方程组
$$\begin{cases} x_1 + x_2 = 1 \\ -x_1 + \lambda x_2 = -1 \end{cases}$$
 有无穷多解.

- 8. 若 P(A) = 0.7, P(B) = 0.8,且事件 A,B 相互独立,则 $P(\overline{A}\overline{B}) = _____.$
- 9. 评价估计量好坏的两个重要标准是__________和有效性.
- 10. 设总体 $X \sim N(\mu, \sigma^2)$,且 σ^2 未知,用样本检验假设 $H_0: \mu = \mu_0$ 是否成立时可采用统计量

三、计算题(每小题 16 分,共 64 分)

11. 已知
$$AX = B$$
 ,其中 $A = \begin{bmatrix} -13 & -6 & -3 \\ -4 & -2 & -1 \\ 2 & 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{bmatrix}$,求 X .

12. 设线性方程组
$$\begin{cases} x_1 - 2x_2 + 3x_3 - 4x_4 = 5\\ 2x_1 - 3x_2 + x_3 + x_4 = 1\\ 3x_1 - 5x_2 + 4x_3 - 3x_4 = 6 \end{cases}$$
, 当 λ 为何值时, 方程组有解,
$$x_1 - x_2 - 2x_3 + 5x_4 = \lambda$$

并求出全部解:

13. 设随机变量 $X \sim N(8,4)$,求 P(7 < X < 9)和 P(X > 9).(其中 $\Phi(0.5) = 0.6915$, $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$).

14. 设随机变量 $X \sim N(\mu, \sigma^2)$, $\sigma^2 = 0.04$,取 X 的样本 x_1, x_2, \cdots, x_{25} ,若 $\overline{x} = 11.2$,求 μ 的置信度为 95%的置信区间($u_{0.975} = 1.96$).

得	分	评卷人

四、证明题(本题6分)

15. 设 A , B 为随机事件,试证: P(A - B) = P(A) - P(AB).

国家开放大学2020年春季学期期末统一考试

工程数学(本) 试题答案及评分标准

(供参考)

2020年9月

一、单项选择题(每小题 3 分,共 15 分)

1. B

2. C 3. D

4. A

5. A

二、填空题(每小题3分,共15分)

6. - 7

7. - 1

8.0.06

9. 无偏性

10.
$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

三、计算题(每小题 16 分,共 64 分)

11. 解:利用初等行变换得

$$\begin{bmatrix} -13 & -6 & -3 & 1 & 0 & 0 \\ -4 & -2 & -1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 0 & 7 \\ 0 & 0 & 1 & 0 & 1 & 2 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 & -4 & -1 \\ 0 & 1 & 0 & 2 & -7 & -1 \\ 0 & 0 & 1 & 0 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 & 3 & 0 \\ 0 & 1 & 0 & 2 & -7 & -1 \\ 0 & 0 & 1 & 0 & 1 & 2 \end{bmatrix}$$

12. 解:将方程组的增广矩阵化为阶梯形

$$\begin{bmatrix} 1 & -2 & 3 & -4 & 5 \\ 2 & -3 & 1 & 1 & 1 \\ 3 & -5 & 4 & -3 & 6 \\ 1 & -1 & -2 & 5 & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 3 & -4 & 5 \\ 0 & 1 & -5 & 9 & -9 \\ 0 & 1 & -5 & 9 & -9 \\ 0 & 1 & -5 & 9 & \lambda -5 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 3 & -4 & 5 \\ 0 & 1 & -5 & 9 & -9 \\ 0 & 0 & 0 & 0 & \lambda + 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -7 & 14 & -13 \\ 0 & 1 & -5 & 9 & -9 \\ 0 & 0 & 0 & 0 & \lambda + 4 \end{bmatrix}$$

所以,当 $\lambda = -4$ 时方程组有解,且有无穷多解

且方程组的一般解为

令 $x_3 = x_4 = 0$,得到方程组的一个特解 $X_0 = (-13 - 9 \ 0 \ 0)'$.

相应的齐次方程组的一般解为

$$\begin{cases} x_1 = 7x_3 - 14x_4 \\ x_2 = 5x_3 - 9x_4 \end{cases}$$
 (其中 x_3 , x_4 为自由未知量)

13.
$$M: P(7 < X < 9) = P(\frac{7-8}{2} < \frac{X-8}{2} < \frac{9-8}{2})$$

= $P(-0.5 < \frac{X-8}{2} < 0.5) = 2\Phi(0.5) - 1$

$$P(X > 9) = P(\frac{X - 8}{2} > \frac{9 - 8}{2}) = 1 - \Phi(0.5) = 1 - 0.6915 = 0.3085$$
 16 $\frac{1}{2}$

14.
$$\mathbf{M}: \mathbf{D} \mathbf{M} \sigma^2 = 0.04, \sigma = 0.2, n = 25, \overline{x} = 11.2$$

得到置信度为 95%的 μ 的置信区间为

$$[\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}}]$$

$$\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}} = 11.2 - 1.96 \times \frac{0.2}{5} = 11.1216$$

$$\overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}} = 11.2 + 1.96 \times \frac{0.2}{5} = 11.2784$$

因此,所求 μ 的置信度为 95%的置信区间为 [11. 1216,11. 2784] ················· 16 分四、证明题(本题 6 分)

15. 证明:由事件的关系可知

$$A = AU = A(B + \overline{B}) = AB + A\overline{B} = AB + (A - B)$$

而 $(A-B)(AB) = \emptyset$,故由概率的性质可知

$$P(A) = P(A - B) + P(AB)$$

即

国家开放大学2020年秋季学期期末统一考试

工程数学(本) 试题

2021年1月

题	号	 	Ξ.	四	总 分
分	数				

得	分	评卷人

一、单项选择题(每小题 3 分,共 15 分)

1. 设 A, B 均为 n 阶方阵,则下列命题中正确的是().

A. 若
$$AB = O$$
,则 $A = O$ 或 $B = O$ B. 若 $AB = I$,则 $A = I$ 或 $B = I$

B. 若
$$AB = I$$
,则 $A = I$ 或 $B = I$

C.
$$|AB| = |A| |B|$$

D.
$$AB = BA$$

2. 设 $A = A \times B$ 分别代表非齐次线性方程组AX = B 的系数矩阵和增广矩阵,若这个 方程组有解,则().

$$A. r(A) = r(\lceil A : B \rceil)$$

$$B. r(A) < r(\lceil A \mid B \rceil)$$

D.
$$r(A) = r([A : B]) - 1$$

3. 矩阵 $A = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$ 的特征值为().

A.
$$-1,2$$

B.
$$-1,4$$

$$C.1, -1$$

4. 掷两颗均匀的骰子,事件"点数之和为5"的概率是().

A.
$$\frac{1}{36}$$

B.
$$\frac{1}{18}$$

C.
$$\frac{1}{12}$$

$$D \cdot \frac{1}{9}$$

5. 设 x_1,x_2,\cdots,x_n 是来自正态总体 $N(\mu,\sigma^2)(\mu,\sigma^2$ 均未知)的样本,则()是统计量.

A.
$$\overline{x} + \mu$$

B.
$$\mu x_1$$

$$C. x_1$$

D.
$$\frac{x_1-\mu}{\sigma}$$

二、填空题(每小题 3 分,共 15 分)

- 6. 设 A, B 均为 3 阶矩阵,且 |A| = -1, |B| = 2,则 $|-A'B^{-1}| =$.
- 7. 设线性方程组 AX=0 中有 5 个未知量,且秩(A)=2,则 AX=0 的基础解系中线性无关的解向量有 个.
 - 8. 若 P(A) = 0.4, P(B) = 0.3, 且事件 A, B 相互独立,则 <math>P(A+B) = .
 - 9. 设随机变量 $X \sim B(20,0.4)$,则 $E(X) = _____.$
 - 10. 如果参数 θ 的估计量 $\hat{\theta}$ 满足 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的

得	分	评卷人

三、计算题(每小题 16 分,共 64 分)

11. 设矩阵
$$A = \begin{bmatrix} 1 & 2 & 2 \\ -1 & -1 & 0 \\ 1 & 3 & 5 \end{bmatrix}$$
 , $B = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 4 & 0 \end{bmatrix}$, 已知 $AX = B$,求 X .

12. 求齐次线性方程组
$$\begin{cases} x_1 - x_2 + 3x_3 - x_4 = 0 \\ 2x_1 - x_2 - x_3 + 4x_4 = 0 \text{的一个基础解系和通解}. \\ x_1 - 4x_3 + 5x_4 = 0 \end{cases}$$

- 13. 设 $X \sim N(20, 2^2)$, 试求:(1)P(22 < X < 26);(2)P(X > 24).
- (已知 $\Phi(1) = 0.8413, \Phi(2) = 0.9772, \Phi(3) = 0.9987$)
- 14. 设某一批零件重量 X 服从正态分布 $N(\mu,0.6^2)$,随机抽取 9 个测得平均重量为 5(单位:千克),试求此零件重量总体均值的置信度为 0.95 的置信区间(已知 $u_{0.975}=1.96$).

得	分	评卷人

四、证明题(本题6分)

15. 对任意方阵 A,试证 A + A' 是对称矩阵.

国家开放大学2020年秋季学期期末统一考试工程数学(本) 试题答案及评分标准

(供参考)

2021年1月

一、单项选择题(每小题 3 分,共 15 分)

5. C

二、填空题(每小题3分,共15分)

6.
$$\frac{1}{2}$$

7.3

8, 0, 58

9.8

10. 无偏估计量

三、计算题(每小题 16 分,共 64 分)

11. 解:利用初等行变换可得

$$[A \quad I] = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 3 & 5 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 1 & 3 & -1 & 0 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 1 & 0 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 5 & 2 & -2 \\ 0 & 1 & 0 & 5 & 3 & -2 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & 0 & -5 & -4 & 2 \\ 0 & 1 & 0 & 5 & 3 & -2 \\ 0 & 0 & 1 & -2 & -1 & 1 \end{bmatrix}$$

$$\oplus \begin{bmatrix} -5 & -4 & 2 \\ 5 & 3 & -2 \\ -2 & -1 & 1 \end{bmatrix}.$$

$$(10 \%)$$

于是由矩阵乘法可得

$$X = A^{-1}B = \begin{bmatrix} -5 & -4 & 2 \\ 5 & 3 & -2 \\ -2 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 4 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 6 \\ 0 & -7 \\ 1 & 3 \end{bmatrix}.$$
 (16 $\frac{4}{3}$)

12. 解:将齐次线性方程组的系数矩阵化为阶梯形

$$A = \begin{bmatrix} 1 & -1 & 3 & -1 \\ 2 & -1 & -1 & 4 \\ 1 & 0 & -4 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & -1 \\ 0 & 1 & -7 & 6 \\ 0 & 1 & -7 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 3 & -1 \\ 0 & 1 & -7 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -4 & 5 \\ 0 & 1 & -7 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

方程组的一般解为
$$\begin{cases} x_1 = 4x_3 - 5x_4 \\ (其中 x_3, x_4 是自由未知量). \end{cases}$$
 (7分)

令 $x_3 = 1, x_4 = 0$,得相应的解向量为

$$X_1 = \begin{bmatrix} 4 & 7 & 1 & 0 \end{bmatrix}', \tag{10 }$$

令 $x_3 = 0$, $x_4 = 1$, 得相应的解向量为

$$X_2 = \lceil -5 -6 \quad 0 \quad 1 \rceil'$$

于是,
$$\{X_1,X_2\}$$
 即为方程组的一个基础解系. (13 分)

方程组的通解为
$$k_1X_1 + k_2X_2$$
 (其中 k_1, k_2 为任意常数). (16 分)

13.
$$M: (1)P(22 < X < 26) = P(\frac{22 - 20}{2} < \frac{X - 20}{2} < \frac{26 - 20}{2}) = P(1 < \frac{X - 20}{2} < 3)$$

$$=\Phi(3)-\Phi(1)=0.9987-0.8413=0.1574.$$
 (8 \Re)

$$(2)P(X > 24) = 1 - P(X \leqslant 24) = 1 - P(\frac{X - 20}{2} \leqslant \frac{24 - 20}{2}) = 1 - P(\frac{X - 20}{2} \leqslant 2)$$

$$=1-\Phi(2)=1-0.9772=0.0228.$$
 (16 $\%$)

14. 解:由于已知 σ^2 ,故选取样本函数

$$U = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \tag{5 }$$

零件重量总体均值的置信度为 0.95 的置信区间为

$$\left[\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}}\right]. \tag{10 }$$

由已知, $\overline{x}=5$, $\sigma=0$.6,n=9, $u_{0.875}=1.96$,于是可得

$$\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}} = 5 - 1.96 \times \frac{0.6}{\sqrt{9}} = 4.608$$

$$\overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}} = 5 + 1.96 \times \frac{0.6}{\sqrt{9}} = 5.392,$$

因此,零件重量总体均值的置信度为 0.95 的置信区间为[4.608,5.392]. (16 分)

四、证明题(本题6分)

15. 证明:由已知条件和对称矩阵的性质

$$(A + A')' = A' + (A')' = A' + A = A + A'$$

所以 A + A' 是对称矩阵. (6 分)

座位号

田 家开放大学2021年春季学期期末统一考试

工程数学(本) 试题

2021年7月

H	題
数	担
	Į į
	lu
	71
	斑
	#

爭 4 评卷人

一、单项选择题(每小题3分,共15分)

设方阵 A 可逆,则下列命题中不正确的是().

C. $|A| \neq 0$

B. 线性方程组 AX = 0 必有非零解

D. 矩阵 A' 可逆

若向量组 $a_1,a_2,\cdots a_n$ 线性相关,则向量组内()可被该向量组内其余向量线性表出.

C. 至多一个向量 A. 任何一个向量 D. 至少有一个向量 B. 没有一个向量

3. 设 A,B 均为 n 阶方阵,则下列结论正确的是(

A. 若 λ 既是 A ,又是 B 的特征值,则必是 A+B 的特征值

B. 若 λ 既是 A, 又是 B 的特征值,则必是 AB 的特征值

C. 若x 既是A,又是B 的特征向量,则必是A+B 的特征向量

D. A 的特征向量的线性组合仍为 A 的特征向量

4. 设袋中有 3 个红球, 2 个白球, 现从中随机抽取 2 个球, 则 2 个球恰好不同色的概

率是(

对单正态总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知时,关于均值 μ 的假设检验应采用(

5

C.U 检验法

D. $\frac{7}{10}$ ₿. 5 2

(1080号)工程数学(本)试题第1页(共6页)

D. x² 检验法

7. 9. 设随机变量 $X \sim N(2,4^2)$,则随机变量 $Y = ____$ 10. 设随机变量 X,若 E(X) = 4,则 E(2X - 1) = 1

4 | 评卷人

二、填空题(每小题 3 分,共 15 分)

6. 设 A 为 3×5 矩阵, B 为 4×3 矩阵, 且乘 AC'B 有意义,则 C 为

 $\begin{bmatrix} x_1 + \lambda x_2 = 1 \\ -\pi, 非齐次线性方程组 \\ 3x_1 - 6x_2 = 3 \end{bmatrix}$

设 A,B 是两个随机事件,若 $P(A) = 0.7, P(A\overline{B}) = 0.3, 则 <math>P(AB) =$

 $\sim N(0,1)$.

4 评卷人

三、计算题(每小题 16 分,共 64 分)

11. 解矩阵方程 AX - X = B,其中 $A = \begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(1080号) 工程数学(本) 试题第2页(共6页)

(1080号) 工程数学(本) 试题第3页(共6页)

13. $\forall X \sim N(3,2^2), \exists x: (1) P(X < 5); (2) P(X > 9).$

(已知 $\Phi(1) = 0.8413, \Phi(2) = 0.9772, \Phi(3) = 0.9987$)

$$\begin{cases} x_1 + 2x_2 + x_3 = 0 \\ 4x_1 + 5x_2 + \lambda x_3 = 0 \end{cases}$$

$$3x_1 + 7x_2 + 2x_3 = 0$$

有非零解? 在有非零解的情况下求方程组的通解.

(1080号) 工程数学(本) 试题第4页(共6页)

壐 容 逶 业

Ø

新 桂

鎏

密	封	线	内	不	要	答	题

14. 为了对完成某项工作所需时间建立一个标准,工厂随机抽查了 16 名工人分别去完成这项工作,结果发现他们所需的平均时间为 15 分钟,样本标准差为 3 分钟. 假设完成这项工作所需的时间服从正态分布,在标准差不变的情况下,试确定完成此项工作所需平均时间的置信度为 0.95 的置信区间(已知 $u_{0.975}=1.96$).

	得
	分
	评卷人

四、证明题(本题6分)

15. 设随机事件 A 与 B 相互独立,试证 A 与 \overline{B} 也相互独立.

H 家开放大学2021年春季 学期期末统一 老浜

工程数学(本) 试题答案及评分标准

2021年7月

一、单项选择题(每小题 3 分,共 15 分)

二、填空题(每小题3分,共15分)

6. 4 × 5 7. -2 8. 0. 4

9. $\frac{X-2}{4}$

三、计算题(每小题 16 分,共 64 分)

11. 解:由 AX - X = B 可得(A - I)X = B

由已知条件可得
$$A-I=\begin{bmatrix} 3 & 5 \\ 5 & 8 \end{bmatrix}$$

(5分)

(3分)

利用初等行变换可得

$$\begin{bmatrix} A - I & I \end{bmatrix} = \begin{bmatrix} 3 & 5 & 1 & 0 \\ 5 & 8 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 25 & 5 & 0 \\ 15 & 24 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 25 & 5 & 0 \\ 0 & -1 & -5 & 3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 15 & 0 & -120 & 75 \\ 0 & 1 & 5 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -8 & 5 \\ 0 & 1 & 5 & -3 \end{bmatrix}$$
因此, $(A - I)^{-1} = \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix}$
于是由矩阵乘法可得

因此,
$$(A-I)^{-1} = \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix}$$

$$X = (A - I)^{-1}B = \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 4 \\ -4 & -2 \end{bmatrix}.$$
 (16 \mathcal{H})

(1080号) 工程数学(本) 答案第1页(共2页)

12. 解:将齐次线性方程组的系数矩阵化为阶梯形

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 4 & 5 & \lambda \\ 3 & 7 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & \lambda - 4 \\ 0 & 1 & -1 \end{bmatrix}} \xrightarrow{\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & \lambda - 7 \end{bmatrix}}$$

故当 \ = 7 时,方程组有非零解.

(7分)

方程组的一般解为
$$\begin{cases} x_1 = -3x_3 \\ (x_2 = x_3 \end{cases}$$
 (10 分)

$$\Leftrightarrow x_3 = 1$$
,得方程组的一个基础解系 $X_1 = [-3 \ 1 \ 1]'$. (13 分)于是,方程组的通解为 kX_1 (其中 k 为任意常数). (16 分)

(16分)

13.
$$\#_1(1)P(X < 5) = P(\frac{X-3}{2} < \frac{5-3}{2}) = P(\frac{X-3}{2} < 1)$$

$$=\Phi(1)=0.8413.$$
 (8 \Re)

$$(2)P(X > 9) = 1 - P(X \le 9) = 1 - P(\frac{X - 3}{2} \le \frac{9 - 3}{2}) = 1 - P(\frac{X - 3}{2} \le 3)$$

$$=1-\Phi(3)=1-0.9987=0.0013.$$

(16分)

$$U = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1), \tag{5 }$$

完成此项工作所需平均时间的置信度为 0.95 的置信区间为

$$\left[\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}}\right]. \tag{10 }$$

由已知, $\overline{x}=15$, $\sigma=3$,n=16, $u_{0.975}=1.96$,于是可得

$$\overline{x} - u_{0.975} \frac{\sigma}{\sqrt{n}} = 15 - 1.96 \times \frac{3}{\sqrt{16}} = 13.53,$$

$$\overline{x} + u_{0.975} \frac{\sigma}{\sqrt{n}} = 15 + 1.96 \times \frac{3}{\sqrt{16}} = 16.47,$$

因此,完成此项工作所需平均时间的置信度为 0.95 的置信区间为[13.53,16.47]

(16分)

、证明题(本题6分)

(13分)

 $P(A)P(\overline{B})$ 15. 证明:因为 $P(A\overline{B}) = P(A) - P(AB) = P(A) - P(A)P(B) = P(A)(1 - P(B))$

(6分)

(1080号) 工程数学(本) 答案第2页(共2页)

座位号

田 家开放大学2022年春季学期期末统 考试

工程数学(本) 近 题

2022年9月

#	閿
数	号
	[1
	111
	13
	ĢIK
	#

串 弁 评卷人

一、单项选择题(每小题 3 分,共 15 分)

设 A, B 都是 n 阶可逆方阵,则下列等式中正确的是().

:

C. (AB)' = A'B'A. AB = BA

2.

A. 任何一个向量

B. $(AB)^{-1} = B^{-1}A^{-1}$

若向量组 α1,α2,…,α, 线性相关,则向量组内()可被该向量组内其余向量线性表出. D. $(A+B)^{-1} = A^{-1} + B^{-1}$

没有一个向量

D. 至少有一个向量

A. $\lambda = 1$

0-0-0-

密

封

D. $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3$

设 A,B 为两个随机事件,下列事件运算关系正确的是().

A. $B = BA + B\overline{A}$

C. $B = BA + \overline{B}A$

5. 设 $X \sim N(-1,3^2)$,则随机变量(

 $\sim N(0,1).$

D. $B = B\overline{A} + \overline{B}A$ B. $B = \overline{BA} + \overline{BA}$

A. $\frac{X-1}{3}$ C. $\frac{X+1}{3}$

 $B. \frac{X-1}{9}$ $\frac{X+1}{9}$

(1080号)工程数学(本)试题第1页(共6页)

串 4 评卷人

二、填空题(每小题3分,共15分)

6. 设 A,B 均为 3 阶矩阵,且 | A |=-1, | B |=2,则 |-A'B-1 |=

7. 矩阵 | -2 2 -2 | 的秩为_____.

8. 若 P(A)=0.5,P(B)=0.2,且事件 A 与 B 互不相容,则 P(A+

9. 设随机变量 $X \sim \begin{bmatrix} 0 & 1 & 3 \\ 0.5 & 0.35 & 0.15 \end{bmatrix}$,则 P(X < 2) = 0.5

10. 不含未知参数的样本函数称为__

分 评卷人

三、计算题(每小题 16 分,共 64 分)

11. 解矩阵方程 XA = B,其中 $A = \begin{bmatrix} 3 & 5 \\ 5 & 8 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(1080号)工程数学(本)试题第2页(共6页)

容

壐

逶

 Ψ

树

彩

桂

湿

12. 入为何值时,下列方程组有解?有解时求出其通解.

$$\begin{cases} x_1 + x_2 - 3x_3 = 1 \\ -x_1 - 2x_2 + x_3 = 2 \\ 2x_1 + 3x_2 - 4x_3 = \lambda \end{cases}$$

(已知 $\Phi(1) = 0.8413, \Phi(2) = 0.9772, \Phi(3) = 0.9987$).

13. 设 $X \sim N(1,2^2)$,试求:(1)P(X < 3);(2)求常数 a,使得 P(|X-1)

|< a > = 0.9974

密封线内不要答题

14. 据资料分析,某厂生产的砖的抗断强度 X 服从正态分布 $N(32.5,1.1^2)$. 令从该厂最近生产的一批砖中随机地抽取了 9 块,测得抗断强度(单位: kg/cm^2)的平均值为 31.18. 假设标准差没有改变,在 0.05 的显著性水平下,问这批砖的抗断强度是否合格.($u_0.975=1.96$)

得
分
评卷人

四、证明题(本题6分)

15. 已知随机事件 A, B 满足 $A \supset B$, 试证: P(A - B) = P(A) - P(B).

(1080 号)工程数学(本)试题第 5 页(共 6 页)

(1080号)工程数学(本)试题第6页(共6页)

2022年春季学期考试

工程数学(本) 参考答案

2022年9月

一、单项选择题(每小题 3 分,共 15 分)

1. B 2. D 3. D 4. A 5. C

二、填空题(每小题 3 分,共 15 分)

6.
$$\frac{1}{2}$$

- 7. 1
- 8. 0. 7
- 9. 0.85
- 10. 统计量

三、计算题(每小题 16 分,共 64 分)

11. 解:用伴随矩阵法求 A⁻¹.

$$|A| = \begin{vmatrix} 3 & 5 \\ 5 & 8 \end{vmatrix} = -1 \neq 0$$
, 说明 A 可逆. (3 分)

伴随矩阵
$$A^* = \begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix}$$
. (8分)

因此,
$$A^{-1} = \frac{A^*}{|A|} = -1 \cdot \begin{bmatrix} 8 & -5 \\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix}$$
. (10 分)

于是,
$$X = BA^{-1} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -4 & 3 \end{bmatrix}$$
. (16 分)

注:用初等行变换法求 A-1 正确也可得分.

12. 解:将方程组的增广矩阵化为阶梯形

$$[A : B] = \begin{bmatrix} 1 & 1 & -3 & 1 \\ -1 & -2 & 1 & 2 \\ 2 & 3 & -4 & \lambda \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -3 & 1 \\ 0 & -1 & -2 & 3 \\ 0 & 1 & 2 & \lambda - 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -5 & 4 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & \lambda + 1 \end{bmatrix}$$
 (7 $\%$)

由阶梯阵可知: 当 $\lambda+1=0$ 即 $\lambda=-1$ 时,方程组有解.

此时,由最后一个行简化阶梯阵得方程组的一般解为:

$$\begin{cases} x_1 = 5x_3 + 4 \\ x_2 = -2x_3 - 3 \end{cases}$$
, (其中 x_3 为自由未知数). (10 分)

令
$$x_3 = 0$$
,得方程组的一个特解 $X_0 = \begin{bmatrix} 4 & -3 & 0 \end{bmatrix}$. (12 分)

不计最后一列,令 $x_3 = 1$,得到相应的齐次线性方程组的一个基础解系

$$X_1 = \begin{bmatrix} 5 & -2 & 1 \end{bmatrix}' \tag{14 \%}$$

于是,方程组的通解为:

$$X = X_0 + kX_1$$
,(其中 k 是任意常数). (16 分)

(1080号)工程数学(本)答案第1页(共2页)

13.
$$\Re:(1) P(X < 3) = P(\frac{X-1}{2} < \frac{3-1}{2}) = P(\frac{X-1}{2} < 1) = \Phi(1) = 0.8413.$$
 (8 $\Re:(1) P(X < 3) = P(\frac{X-1}{2} < \frac{3-1}{2}) = P(\frac{X-1}{2} < \frac{3-1}{2}) = \Phi(1) = 0.8413.$

(2)
$$P(\mid X-1 \mid < a) = P(1-a < X < 1+a) = P(-\frac{a}{2} < \frac{X-1}{2} < \frac{a}{2})$$

$$=\Phi(\frac{a}{2}) - \Phi(-\frac{a}{2}) = 2\Phi(\frac{a}{2}) - 1 = 0.9974$$
 (12 分)

因此,
$$\Phi(\frac{a}{2}) = 0.9987 = \Phi(3)$$
,故 $\frac{a}{2} = 3$,从而 $a = 6$. (16 分)

14. 解:零假设 H_0 : $\mu = 32.5$; H_1 : $\mu \neq 32.5$.

由于标准差没有改变,故已知 $\sigma_0 = 1.1$,选取样本函数

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} \tag{5 }$$

由已知, \overline{x} =31.18, μ_0 =32.5, σ_0 =1.1,n=9,于是得

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{31.18 - 32.5}{1.1 / \sqrt{9}} = -3.6$$
 (10 分)

在 0.05 的显著性水平下, $\left| \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} \right| = 3.6 > 1.96$,因此拒绝零假设 H_0 ,即这批砖的抗断强度不合格.

(16分)

四、证明题(本题6分)

15. 证明:已知 $A \supset B$,由事件的关系可知 A = (A - B) + B,

而 $(A - B)B = \emptyset$,故由概率的性质可知 P(A) = P(A - B) + P(B),

即
$$P(A - B) = P(A) - P(B)$$
. (6分)

H 家开放大学2022年秋季学期期末统一考试

工程数学(本) 试题

2023年1月

Ħ	恩
X	40
	1
	11
	111
	Д
	źΙΚ
	#

串 华 评卷人

一、单项选择题(每小题 3 分,共 15 分)

1. 设 A,B 均为 n 阶方阵,则下列命题中正确的是().

A. 若
$$AB = O$$
,则 $A = O$ 或 $B = O$

|AB| = |A| |B|

B.
$$|-2AB|=2|A||B|$$

线性方程组的系数矩阵
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

B.
$$|-2AB| = 2 | AB|$$

D. $AB = BA$

2. 设齐次线性方程组的系数矩阵 $A = \begin{bmatrix} 1 \\ \lambda \end{bmatrix}$ $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$,则当 $\lambda = ($) 时,该线性方程组有非

を解・

B. 0

D. 2

C. -1

3. 矩阵 $A = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$ 的特征值为(

A. -1,2

B. -1,4 D. 1,4

若事件 A 与 B 互斥,则下列等式中正确的是().

B. P(B) = 1 - P(A)D. P(A+B) = P(A) + P(B)

A. P(AB) = P(A)P(B)

C. P(A) = P(A | B)

A. U 检验法

C. F 检验法

对单正态总体 $X \sim N(\mu, \sigma^2), \sigma^2$ 已知时,关于均值 μ 的假设检验应采用(

B. t检验法

(11080号)工程数学(本)试题第1页(共6页) D. χ² 检验法

> 軒 分 评卷人

座位号

二、填空题(每小题3分,共15分)

设三阶矩阵 A 的行列式 | A |=2,则 | 2A-1 |=

二= / 原 $_$ 时,非齐次线性方程组 $egin{cases} (x_1+\lambda x_2=1\ & ext{1} \end{pmatrix}$ 有无穷多解 $. \ (x_1-x_2=1)$

7.

6.

若 P(A)=0.3,P(B)=0.4,且事件 A 与 B 互不相容,则 P(A+ B) =

设随机变量 $X \sim N(2,4^2)$,则随机变量 Y =____ $\sim N(0,1).$

10. 如果参数 θ 的估计量 $\hat{\theta}$ 满足 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 为 θ 的

串 华 评卷人

三、计算题(每小题 16 分,共 64 分)

11. 解矩阵方程 AX - X = B,其中 $A = \begin{bmatrix} 4 & 5 \\ 5 & 9 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

(11080号)工程数学(本)试题第2页(共6页)

(11080 号)工程数学(本)试题第 4 页(共 6 页)

13. 设 $X \sim N(20,2^2)$, 试求:(1)P(22 < X < 26);(2)P(X > 24).

(已知 $\Phi(1) = 0.8413, \Phi(2) = 0.9772, \Phi(3) = 0.9987$)

的通解: $3x_1 + 8x_2 - 2x_3 = 13$

 $4x_1 - x_2 + 9x_3 = -6$

12. 求线性方程组~

 $\int 2x_1 + 3x_2 + x_3 = 4$

 $(x_1 - 2x_2 + 4x_3 = -5$

不 內

桂

密

逶

颐

容

新

14. 某校全年级学生的期末考试成绩服从正态分布 N(85,10²),现随机抽取该年级某班 16 名学生的该次考试成绩,得平均分为 x=80. 假设标准差没有改变,在显著性水平 $\alpha=0$. 05下,问能否认为该班的英语平均成绩为 85 分(已知 $u_{0.975}=1$. 96).

得 分 评卷人

四、证明题(本题6分)

15. 设 A,B 是同阶对称矩阵,试证:AB+BA 也是对称矩阵.

(11080 号)工程数学(本)试题第 5 页(共 6 页)

(11080号)工程数学(本)试题第6页(共6页)

2022年秋季 业 콾 ₩ 其

工程数学(本) 参光答案

2023年1月

一、单项选择题(每小题3分,共15分)

二、填空题(每小题 3 分,共 15 分)

7. -1

8. 0.7

9. $\frac{X-2}{4}$

10. 无偏估计

三、计算题(每小题 16 分,共 64 分)

11. 解:由
$$AX - X = B$$
 可得 $(A - I)X = B$

由已知条件可得
$$A-I=\begin{bmatrix} 3 & 5 \\ 5 & 8 \end{bmatrix}$$

利用初等行变换可得
$$\begin{bmatrix} A - I \vdots I \end{bmatrix} = \begin{bmatrix} 3 & 5 & 1 & 0 \\ 5 & 8 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 25 & 5 & 0 \\ 15 & 24 & 0 & 3 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 15 & 25 & 5 & 0 \\ 0 & -1 & -5 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 15 & 0 & -120 & 75 \\ 0 & 1 & 5 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -8 & 5 \\ 0 & 1 & 5 & -3 \end{bmatrix}$$
因此, $(A - I)^{-1} = \begin{bmatrix} -8 & 5 \\ 5 & -3 \end{bmatrix}$

于是由矩阵乘法可得

$$X = (A - I)^{-1}B = \begin{bmatrix} -8 & 5 & 1 & 2 \\ 5 & -3 & 3 & 4 \end{bmatrix} = \begin{bmatrix} 7 & 4 \\ -4 & -2 \end{bmatrix}.$$
 (16 $\frac{1}{2}$)

注:用伴随矩阵法求(A-I)-1 正确也可得分

(11080号)工程数学(本)答案第1页(共2页)

方程组的一般解为
$$\begin{pmatrix} x_1 = -2x_3 - 1 \\ x_2 = x_3 + 2 \end{pmatrix}$$
 (其中 x_3 为自由未知数). (7分)

$$\Leftrightarrow x_3 = 0$$
,得到方程组的一个特解为 $X_0 = [-1 \ 2 \ 0]'$. (10 分) 不计最后一列, $\Leftrightarrow x_3 = 1$,得到相应的齐次线性方程组的一个基础解系

$$X_1 = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}' \tag{13 }$$

 $X_1 = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}'$ 于是,方程组的通解为 $X = X_0 + kX_1$ (其中 k 为任意常数).

13.
$$\#_{\bullet}(1)P(22 < X < 26) = P(\frac{22 - 20}{2} < \frac{X - 20}{2} < \frac{26 - 20}{2}) = P(1 < \frac{X - 20}{2} < 3)$$

$$= \Phi(3) - \Phi(1) = 0.9987 - 0.8413 = 0.1574.$$
 (8)

$$(2) P(X > 24) = 1 - P(X \le 24) = 1 - P(\frac{X - 20}{2} \le \frac{24 - 20}{2}) = 1 - P(\frac{X - 20}{2} \le 2)$$

$$P(X > 24) = 1 - P(X \le 24) = 1 - P(\frac{X - 20}{2} \le \frac{24 - 20}{2}) = 1 - P(\frac{X - 20}{2} \le \frac{X - 20}{2}) = 1 - P(\frac{X - 20}{2$$

 $=1-\Phi(2)=1-0.9772=0.0228.$

 $(3 \cancel{3})$

由于标准差没有改变,故已知 60=10,选取样本函数

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} \tag{5 }$$

由已知, $\overline{x}=80$, $\mu_0=85$, $\sigma_0=10$,n=16, $u_{0.975}=1.96$,于是可得

$$U = \frac{\overline{x} - \mu_0}{\sigma_0 / \sqrt{n}} = \frac{80 - 85}{10 / \sqrt{16}} = -2$$
 (10 $\frac{4}{2}$)

不能认为该班的英语平均成绩为85分. 在显著性水平 $\alpha = 0.05$ 下, $\mid U \mid = \left| \frac{\bar{x} - \mu_0}{\sigma_0 / \sqrt{n}} \right| = 2 > u_{0.975} = 1.96$,因此拒绝零假设 H_0 ,即

(16 %)

15. 证明:因为

$$(AB + BA)' = (AB)' + (BA)' = B'A' + A'B' = BA + AB = AB + BA$$
 所以 $AB + BA$ 是对称矩阵 . (6 分)

(11080号)工程数学(本)答案第2页(共2页)