INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

NAME OF DEPT./CENTRE:	Electronics an	d Computer Engineering
1. Subject Code: EC – 556N	Course Title: Adv	anced Computer Architecture
2. Contact Hours:	L:3 T:0	P:0
3. Examination Duration (Hrs.):	Theory 0 3	Practical 0 0
4. Relative Weight: CWS 15	PRS 00 MTE	35 ETE 50 PRE 00
5. Credits: 0 3 6. Sem	ester: Autumn	√ Both

7. Pre-requisite: **EC - 252**

8. Subject Area: MSC

9. Objective: To expose students to advanced techniques of computer design such as pipelining, vector processing and multiprocessing.

10. Details of the Course:

Sl. No.	Contents	Contact Hours
1.	Fundamentals of computer design, measuring and reporting performance.	2
2.	Principles of linear pipelining; Instruction level parallelism and instruction pipelines, speedup, data dependency hazards, remedial measures, branch handling; Arithmetic pipelines; Pipeline control methods; Job sequencing, collision prevention and pipeline chaining; Case study of pipelined systems.	8
3.	Loop unrolling, software pipelining and trace scheduling techniques for exposing instruction level parallelism.	4
4.	Dynamic scheduling algorithms, exploiting ILP using static scheduling and dynamic scheduling, hardware based speculation, multiple issues, and speculation.	8
5.	Vector processing characteristics and requirements, pipelined vector processing, vectorization methods, examples of vector processing.	4
6.	Array processing, SIMD array processors, communication between PEs, SIMD interconnection networks, algorithms for array processing.	4
7.	Data and control parallelism, concurrency, scalability, speedup and Amdahl's law, PRAM model of parallel computation, parallel algorithms.	4

7.	Total	42
9.	Overview of parallel programming using MPI and Open MP.	2.
	mesh, binary tree, hypercube; Shared memory and message passing systems; Mapping and Scheduling: Embedding of task graphs in processor graphs, dilation and loading, load balancing, models for static and dynamic scheduling.	
8.	Multiprocessors and multi-computers; Processor organizations:	6

11. Suggested Books:

Sl.	Name of Books / Authors	Year of
No.		Publication
1.	Hennessy, J. L. and Patterson, D. A., "Computer Architecture", 4 th Ed.,	2007
	Morgan Kaufmann.	
2.	Sima, D., Fountain, T. and Kacsuk, P., "Advanced Computer	2007
	Sima, D., Fountain, T. and Kacsuk, P., "Advanced Computer Architecture: A Design Space Approach", Pearson Education.	
3.	Michael, J.Q., "Parallel Computing: Theory and Practice", Tata	2002
	McGraw-Hill.	
4.	Hwang, K., "Advanced Computer Architecture", Tata McGraw-Hill.	2003