Лабораторная работа №1. Создание "истории о данных"

Задание:

Создать "историю о данных" в виде юпитер-ноутбука, с учетом следующих требований:

- 1. История должна содержать не менее 5 шагов (где 5 рекомендуемое количество шагов). Каждый шаг содержит график и его текстовую интерпретацию.
- 2. На каждом шаге наряду с удачным итоговым графиком рекомендуется в юпитер-ноутбуке оставлять результаты предварительных "неудачных" графиков.
- 3. Не рекомендуется повторять виды графиков, желательно создать 5 графиков различных видов.
- 4. Выбор графиков должен быть обоснован использованием методологии data-to-viz. Рекомендуется учитывать типичные ошибки построения выбранного вида графика по методологии data-to-viz. Если методология Вами отвергается, то просьба обосновать Ваше решение по выбору графика.
- 5. История должна содержать итоговые выводы. В реальных "историях о данных" именно эти выводы представляют собой основную ценность для предприятия.

In [1]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
```

In [2]:

```
data = pd.read_csv('C:/Users/user/Downloads/insurance.csv', sep=',')
data = data.dropna()
data.head()
```

Out[2]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [3]:

```
data_features = list(zip(
# признаки
[i for i in data.columns],
zip(
# типы колонок
[str(i) for i in data.dtypes],
# проверим есть ли пропущенные значения
[i for i in data.isnull().sum()]
)))
# Признаки с типом данных и количеством пропусков
data_features
```

Out[3]:

```
[('age', ('int64', 0)),
  ('sex', ('object', 0)),
  ('bmi', ('float64', 0)),
  ('children', ('int64', 0)),
  ('smoker', ('object', 0)),
  ('region', ('object', 0)),
  ('charges', ('float64', 0))]
```

In [4]:

```
fig, ax = plt.subplots(figsize=(20,20))
sns.heatmap(data.corr(), annot=True, fmt='.3f')
```


In [7]:

```
fig, ax = plt.subplots(1, 3)
sns.histplot(data['age'], ax=ax[0])
sns.histplot(data['children'], ax=ax[1])
sns.histplot(data['smoker'], ax=ax[2])
fig.show()
```

<ipython-input-7-939f5eb9f65a>:5: UserWarning: Matplotlib is currently usi
ng module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so
cannot show the figure.

fig.show()

In [9]:

```
sns.boxplot(x=data["age"], y=data["smoker"])
```

Out[9]:

<AxesSubplot:xlabel='age', ylabel='smoker'>

In [13]:

```
sns.scatterplot(y=data["age"], x=data["children"], hue=data["smoker"], legend=True)
plt.legend(bbox_to_anchor=(1.02, 1), loc='upper left', borderaxespad=0)
```

Out[13]:

<matplotlib.legend.Legend at 0x1b78daa49d0>

In [26]:

sns.scatterplot(data=data, x="age", y="region", size="children", legend=False, sizes=(20,

Out[26]:

<AxesSubplot:xlabel='age', ylabel='region'>

In []: