Marek Schönherr

Institute for Particle Physics Phenomenology, Durham University

CERN, 11 Jun 2024

THE ROYAL SOCIETY

Before we begin

Parton showers are an **active field of research**, though we have the experience of over four decades of development.

Many issues are currently actively debated and developed. In many cases, there is no final answer yet.

I am an author of the SHERPA Monte-Carlo event generator. Although I endevour to be agnostic, this will invariably influence my point of view and choice of examples to some extent.

Many thanks to S. Höche for letting meal steal many plots/sketches/illustrations from his lectures in the MCnet School '21.

What to expect

Approximate higher-order corrections

- A basic understanding of what a parton shower is, its features and its limitations.
- The underlying concepts of matching and merging, used in most theory predictions for collider experiments today.
- The background that allows you to follow the discussions in the past, present, and (hopefully) future parton shower literature.

What not to expect

 All the latest and greatest plots, as well as a survey of all possible algorithms. This could fill the entire time of the school.

- R. K. Ellis, W. J. Stirling, B. R. Webber QCD and Collider Physics Cambridge University Press, 2003
- R. D. Field Applications of Perturbative QCD Addison-Wesley, 1995
- M. E. Peskin, D. V. Schroeder An Introduction to Quantum Field Theory Westview Press, 1995
- T. Sjöstrand, S. Mrenna, P. Z. Skands PYTHIA 6.4 Physics and Manual JHEP 05 (2006) 026
- S. Höche, Introduction to parton-shower event generators TASI lectures, 2014

Overview of lectures

- 1) Introduction to parton showers
 - approximate higher-order corrections
 - building a parton shower
- 2) Improving parton showers
 - assessing the properties of a parton shower
 - NLL accuracy and beyond
- 3) Matching and merging
 - matching
 - merging

Introduction to parton showers

- Approximate higher-order corrections
- 2 The parton branching process
- Monte-Carlo methods
- 4 Effects

Approximate higher-order corrections

5 Summary

Approximate higher-order corrections

Approximate higher-order corrections

•00000

Leading order cross section

• hadron collider cross section for production of system Y (think $Y = \ell^+\ell^-$, $t\bar{t}$, W^+W^- , dijets, ...)

$$d\sigma_{pp\to Y\to X} = \sum_{a,b\in\{q,g\}} dx_a dx_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ d\Phi_n \ \frac{d\hat{\sigma}_{ab\to Y\to X}(\Phi,\mu_F^2)}{d\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, *n*-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab o Y+X} \propto |\mathcal{M}_{ab o Y}^{\mathsf{tree}}|^2$$

Note: every cross-section is inclusive in <u>some</u> additional particles. The leading order cross section does not contain them explicitly. Higher-order corrections must allow additional radiation.

Leading order cross section

Approximate higher-order corrections

000000

 hadron collider cross section for production of system Y (think $Y = \ell^+\ell^-$, $t\bar{t}$, W^+W^- , dijets, ...)

$$d\sigma_{pp\to Y+X} = \sum_{a,b\in\{q,g\}} dx_a dx_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ d\Phi_n \ \frac{d\hat{\sigma}_{ab\to Y+X}(\Phi,\mu_F^2)}{d\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, n-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab o Y + X} \propto |\mathcal{M}_{ab o Y}^{\mathsf{tree}}|^2$$

Note: every cross-section is inclusive in some additional particles. The leading order cross section does not contain them explicitly.

Leading order cross section

• hadron collider cross section for production of system Y (think $Y = \ell^+\ell^-$, $t\bar{t}$, W^+W^- , dijets, ...)

$$d\sigma_{pp\to Y+X} = \sum_{a,b\in\{q,g\}} dx_a dx_b \ f_a(x_a,\mu_F^2) f_b(x_b,\mu_F^2) \ d\Phi_n \ \frac{d\hat{\sigma}_{ab\to Y+X}(\Phi,\mu_F^2)}{d\Phi_n}$$

- PDFs $f_i(x_i, \mu_F^2)$, *n*-particle phase space element $d\Phi_n$
- partonic cross section at LO

$$\mathrm{d}\hat{\sigma}_{ab o Y + X} \propto |\mathcal{M}_{ab o Y}^{\mathsf{tree}}|^2$$

Note: every cross-section is inclusive in <u>some</u> additional particles. The leading order cross section does not contain them explicitly. Higher-order corrections must allow additional radiation.

• partonic cross section at NLO

$$\mathrm{d}\hat{\sigma}_{ab\to n+X} \propto \underbrace{|\mathcal{M}_{ab\to n}^{\mathsf{tree}}|^2}_{\mathsf{Born}} + \underbrace{2\mathcal{R}e\left\{\mathcal{M}_{ab\to n}^{\mathsf{loop}}\mathcal{M}_{ab\to n}^{\mathsf{tree}}\right\}}_{\mathsf{virtual \; corr.}} + \underbrace{|\mathcal{M}_{ab\to n+1}^{\mathsf{tree}}|^2}_{\mathsf{real \; corr.}}$$

real and virtual correction separately diverging (infrared singularities caused by soft or collinear parton emission) sum is finite due to Kinoshita-Lee-Nauenberg (KLN) theorem

infrared limit is universal, depends only on external states, construct

$$\mathrm{d}\hat{\sigma}_{n+1}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_n \otimes \sum_{i,k} \mathrm{d}V_{ii}$$

some splitting function V_{ik} , ik o ijk

partonic cross section at NLO

$$\mathrm{d}\hat{\sigma}_{ab\to n+X} \propto \underbrace{|\mathcal{M}_{ab\to n}^{\mathsf{tree}}|^2}_{\mathsf{Born}} + \underbrace{2\mathcal{R}e\left\{\mathcal{M}_{ab\to n}^{\mathsf{loop}}\mathcal{M}_{ab\to n}^{\mathsf{tree}}\right\}}_{\mathsf{virtual \; corr.}} + \underbrace{|\mathcal{M}_{ab\to n+1}^{\mathsf{tree}}|^2}_{\mathsf{real \; corr.}}$$

real and virtual correction separately diverging (infrared singularities caused by soft or collinear parton emission) sum is finite due to Kinoshita-Lee-Nauenberg (KLN) theorem

infrared limit is universal, depends only on external states, construct

$$\mathrm{d}\hat{\sigma}_{n+1}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_n \otimes \sum_{i,k} \mathrm{d}V_{ik}$$

some splitting function V_{ik} , $ik \rightarrow ijk$

000000

Collinear approximation

• collinear splitting function $F_{ab}(z,\phi)$, $a \to bj$

$$\mathrm{d}V_{ak} \to \frac{\mathrm{d}t}{t}\,\mathrm{d}z\,\frac{\mathrm{d}\phi}{2\pi}\frac{\alpha_s}{2\pi}\,\mathit{F}_{ab}(z,\phi) \overset{\phi\;\mathsf{av.}}{\longrightarrow} \frac{\mathrm{d}t}{t}\,\mathrm{d}z\frac{\alpha_s}{2\pi}\,\mathit{P}_{ab}(z)$$

- azimuthal average: $F_{ab}(z,\phi) \to P_{ab}(z)$ Altarelli-Parisi splitting functions
- azimuthally averaged collinear limit of n+1 matrix element
- dropped spin-correlations in splitting, $o \mathrm{d} V_{ak}$ is purely multiplicative factor

Soft approximation

• limit of soft gluon emission

$$\mathrm{d}V_{ik} \to \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_{ik} \, \frac{p_i \cdot p_k}{p_i \cdot q \, p_k \cdot q}$$

- kinematics decsribed by Eikonal
- colour factor in general matrix valued, but

$$C_{ik} = -\mathbf{T}_i \mathbf{T}_k \xrightarrow{\text{large-}N_c} \left\{ \begin{array}{l} \mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = q \\ \frac{1}{2} \mathbf{T}_i^2 + \mathcal{O}(1/N_c^2) & \text{for } i = g \end{array} \right\} \equiv C$$

 large-N_c colour factor not matrix-valued any longer and only depends on parton i

Soft approximation

• limit of soft gluon emission

$$\mathrm{d}V_{ik} \to \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_{ik} \, \frac{p_i \cdot p_k}{p_i \cdot q \, p_k \cdot q}$$

- kinematics decsribed by Eikonal
- colour factor in general matrix valued, but

$$C_{ik} = -\mathbf{T}_{i}\mathbf{T}_{k} \xrightarrow{\text{large-}N_{c}} \left\{ \begin{array}{c} \mathbf{T}_{i}^{2} + \mathcal{O}(1/N_{c}^{2}) & \text{for } i = q \\ \frac{1}{2}\mathbf{T}_{i}^{2} + \mathcal{O}(1/N_{c}^{2}) & \text{for } i = g \end{array} \right\} \equiv C_{i}$$

 large-N_c colour factor not matrix-valued any longer, and only depends on parton i

partial-fractioning the Eikonal

$$\frac{p_i \cdot p_k}{p_i \cdot q \, p_k \cdot q} \to \frac{1}{p_i \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q} + \frac{1}{p_k \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

with this, we get

$$\mathrm{d}V_{ik} \to \mathrm{d}V_i = \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_i \, W^i_{ijk}$$

- a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit
- combine with coll. limit to soft-collinear (dipole) splitting functions

• partial-fractioning the Eikonal

$$\frac{p_i \cdot p_k}{p_i \cdot q p_k \cdot q} \to \frac{1}{p_i \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q} + \frac{1}{p_k \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

The parton branching process

· with this, we get

$$\mathrm{d}V_{ik} \to \mathrm{d}V_i = \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_i \, W^i_{ijk}$$

a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit

combine with coll. limit to soft-collinear (dipole) splitting functions

• partial-fractioning the Eikonal

$$\frac{p_i \cdot p_k}{p_i \cdot q \ p_k \cdot q} \rightarrow \frac{1}{p_i \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q} + \frac{1}{p_k \cdot q} \frac{p_i \cdot p_k}{(p_i + p_k)q}$$

The first term contains the soft singularity associated with the region collinear to p_i , while the second that collinear to p_k .

· with this, we get

$$\mathrm{d}V_{ik} \to \mathrm{d}V_i = \omega \mathrm{d}\omega \, \frac{\mathrm{d}\Omega}{2\pi} \, \frac{\alpha_s}{2\pi} \, C_i \, W^i_{ijk}$$

a real-number-valued multiplicative factor of the soft gluon-emission correction in the large- N_c limit

• combine with coll. limit to soft-collinear (dipole) splitting functions

Higher-order corrections and parton branchings The heuristic view

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

include

unresolvable, $t < t_c$, finite

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

include

- Assumption: corrections from resolvable and unresolvable branchings add up to zero, true for divergent leading logarithms (KLN theorem), amounts to saying that integrated higher-order corrections vanish
- ⇒ parton branchings can be interpreted probabilistically, either a parton branches resolvably with a probability given by the resolvable branching process or it does not

 parton branchings are IR divergent, introduce a resolution parameter to regulate the branching process t_{res}

include

Approximate higher-order corrections

- Assumption: corrections from resolvable and unresolvable branchings add up to zero, true for divergent leading logarithms (KLN theorem), amounts to saying that integrated higher-order corrections vanish
- ⇒ parton branchings can be interpreted probabilistically, either a parton branches resolvably with a probability given by the resolvable branching process or it does not

 \rightarrow same as nuclear decay

- The consequence is Poisson statistics
 - let the branching probability be λ
 - assume indistinguishable particles \rightarrow naïve probability for n emissions

$$P_{\text{na\"ive}}(n,\lambda) = \frac{\lambda^n}{n!}$$

- probability conservation (unitarity) implies a no-emission probability

$$P(n,\lambda) = \frac{\lambda^n}{n!} \exp\{-\lambda\}$$
 \longrightarrow $\sum_{n=0}^{\infty} P(n,\lambda) = 1$

• introduce Sudakov form factor $\Delta = \exp\{-\lambda\}$

branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$$

$$P_{gg}(z) = C_A \left[\frac{2z}{1-z} + z(1-z) \right] + (z \leftrightarrow 1-z)$$

• branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$\lambda \to \int_{t}^{Q^{2}} d\bar{t} \frac{d}{d\bar{t}} \left[\frac{\sigma_{n+1}(\bar{t})}{\sigma_{n}} \right] \approx \sum_{\text{jets}} \int_{t}^{Q^{2}} d\bar{t} \int dz \frac{\alpha_{s}}{2\pi \bar{t}} P(z)$$

ullet Altarelli-Parisi splitting functions P(z), spin- and colour dependent

$$P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$$

$$P_{gg}(z) = C_A \left[\frac{2z}{1-z} + z(1-z) \right] + (z \leftrightarrow 1-z)$$

branching process conserves momentum, colour, and on-shellness

Approximate higher-order corrections

Radiative corrections as a branching process

• branching probability for parton state at scale Q^2 in collinear limit in terms of resolution variable t

$$\lambda \to \int_{t}^{Q^{2}} d\bar{t} \frac{d}{d\bar{t}} \left[\frac{\sigma_{n+1}(\bar{t})}{\sigma_{n}} \right] \approx \sum_{\text{jets}} \int_{t}^{Q^{2}} d\bar{t} \int dz \frac{\alpha_{s}}{2\pi \bar{t}} P(z)$$

• Altarelli-Parisi splitting functions P(z), spin- and colour dependent

$$P_{qq}(z) = C_F \left[\frac{2z}{1-z} + (1-z) \right] \qquad P_{gq}(z) = T_R \left[z^2 + (1-z)^2 \right]$$

$$P_{gg}(z) = C_A \left[\frac{2z}{1-z} + z(1-z) \right] + (z \leftrightarrow 1-z)$$

branching process conserves momentum, colour, and on-shellness

Colour flow

- quark propagator in fundamental representation δ_{ii} contains $N_c = 3$ colour states

$$\underbrace{\delta^{ab}}_{\text{standard}} = 2 \operatorname{Tr} (T^a T^b) = 2 T^a_{ij} T^b_{ji} = T^a_{ij} \underbrace{2 \delta_{ik} \delta_{jl}}_{\text{slave}} T^b_{jk}$$

Colour flow

- quark propagator in fundamental representation δ_{ij} contains $N_c=3$ colour states
- gluon propagator in adjoint representation δ^{ab} contains $N_c^2 1 = 8$ colour states

using completeness relations

$$\underbrace{\delta^{ab}}_{\text{standard}} = 2\operatorname{Tr}(T^aT^b) = 2T^a_{ij}T^b_{ji} = T^a_{ij}\underbrace{2\delta_{ik}\delta_{jl}}_{\text{colour flow}}T^b_{lk}$$

Approximate higher-order corrections

Quark-gluon vertex

$$T_{ij}^{a}T_{kl}^{a}=\frac{1}{2}\left(\delta_{il}\delta_{jk}-\frac{1}{N_{c}}\delta_{ij}\delta_{kl}\right)$$

Gluon-gluon vertex

$$f^{abc}T^a_{ij}T^b_{kl}T^c_{mn}=\delta_{il}\delta_{kn}\delta_{mj}-\delta_{in}\delta_{ml}\delta_{kj}$$

The improved large- N_c approximation

leading colour approximation

Approximate higher-order corrections

• this overestimates the colour charge of the quark: Consider process $q \to qg$ attached to some larger diagram $|\mathcal{M}|^2$

The improved large- N_c approximation

• leading colour approximation

Approximate higher-order corrections

• this overestimates the colour charge of the quark: Consider process q o qg attached to some larger diagram $|\mathcal{M}|^2$

• improved large- N_c approx.: keep colour charge of quarks at C_F

Monte-Carlo methods: Poisson distributions

- assume branching process described by g(t)
- branching can happen only if it has not happened already, must account for survival probability \leftrightarrow Poisson distribution

$$\mathcal{G}(t) = g(t)\Delta(t,t_0) \qquad ext{where} \qquad \Delta(t,t_0) = \exp\left\{-\int_t^{t_0} \mathrm{d}t'\,g(t')
ight\}$$

• if G(t) is known, then we also know the integral of G(t)

$$\int_t^{t_0} \mathrm{d}t' \mathcal{G}(t') = \int_t^{t_0} \mathrm{d}t' \; \frac{\mathrm{d}\Delta(t',t_0)}{\mathrm{d}t'} = 1 - \Delta(t,t_0)$$

• can generate events by requiring $1 - \Delta(t, t_0) = 1 - R$ $(R \in [0, 1])$

$$t = G^{-1} \Big\lceil G(t_0) + \log R \Big\rceil$$

Veto algorithm – importance sampling for Poisson dists

Parton shower branching probability $f(t) \propto \frac{\alpha_s(t)}{t} P(z)$ **Problem:** we do not know F(t)

$$\mathcal{G}(t) = g(t) \exp \left\{ -\int_t^{t_0} dt' g(t') \right\}$$

Veto algorithm – importance sampling for Poisson dists

Parton shower branching probability $f(t) \propto \frac{\alpha_s(t)}{t} P(z)$ **Problem:** we do not know F(t)

Solution: veto algorithm

Approximate higher-order corrections

1 find overestimate $g(t) \ge f(t) \ \forall t \in [t_c, t_0]$, generate event according to

$$\mathcal{G}(t) = g(t) \exp \left\{ -\int_t^{t_0} \mathrm{d}t' \, g(t') \right\}$$

- 2 accept with w(t) = f(t)/g(t)
- 3 if rejected, continue starting from t

Does this give the correct distribution?

probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$\frac{f(t)}{g(t)}g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$f(t) \exp\left\{-\int_{t}^{t_0} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_0} dt' \left[g(t') - f(t')\right]\right]$$
$$= f(t) \exp\left\{-\int_{t}^{t_0} dt' f(t')\right\}$$

Does this give the correct distribution?

probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

Approximate higher-order corrections

$$\frac{f(t)}{g(t)}\,g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

$$f(t) \exp\left\{-\int_{t}^{t_0} \mathrm{d}t' \, g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_0} \mathrm{d}t' \left[g(t') - f(t')\right]\right]$$
$$= f(t) \exp\left\{-\int_{t}^{t_0} \mathrm{d}t' \, f(t')\right\}$$

Does this give the correct distribution?

probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

Approximate higher-order corrections

$$\frac{f(t)}{g(t)}\,g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_{t}^{t_0} \int_{t_1}^{t_0} \dots \int_{t_{n-1}}^{t_0}$

$$f(t) \exp\left\{-\int_{t}^{t_0} \mathrm{d}t' \, g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_0} \mathrm{d}t' \left[g(t') - f(t')\right]\right]$$
$$= f(t) \exp\left\{-\int_{t}^{t_0} \mathrm{d}t' \, f(t')\right\}$$

Does this give the correct distribution?

probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

Approximate higher-order corrections

$$\frac{f(t)}{g(t)} g(t) \int_{t}^{t_0} \mathrm{d}t_1 \exp\left\{-\int_{t}^{t_1} \mathrm{d}t' \, g(t')\right\} \left(1 - \frac{f(t_1)}{g(t_1)}\right) g(t_1) \exp\left\{-\int_{t_1}^{t_0} \mathrm{d}t' \, g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_{t}^{t_0} \int_{t_1}^{t_0} \dots \int_{t}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$f(t) \exp\left\{-\int_{t}^{t_0} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_0} dt' \left[g(t') - f(t')\right]\right]^{n}$$

$$= f(t) \exp\left\{-\int_{t}^{t_0} dt' f(t')\right\}$$

Does this give the correct distribution?

probability for immediate acceptance of emission at scale t

$$\frac{f(t)}{g(t)}g(t)\exp\left\{-\int_t^{t_0}\mathrm{d}t'\,g(t')\right\}$$

Approximate higher-order corrections

$$\frac{f(t)}{g(t)}\,g(t)\int_t^{t_0}\mathrm{d}t_1\exp\left\{-\int_t^{t_1}\mathrm{d}t'\,g(t')\right\}\left(1-\frac{f(t_1)}{g(t_1)}\right)g(t_1)\exp\left\{-\int_{t_1}^{t_0}\mathrm{d}t'\,g(t')\right\}$$

- For *n* rejections we obtain *n* nested integrals $\int_{t}^{t_0} \int_{t_1}^{t_0} \dots \int_{t}^{t_0}$
- disentangling yields 1/n!, summing over all possible rejections gives

$$f(t) \exp\left\{-\int_{t}^{t_0} dt' g(t')\right\} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\int_{t}^{t_0} dt' \left[g(t') - f(t')\right]\right]^{n}$$

$$= f(t) \exp\left\{-\int_{t}^{t_0} dt' f(t')\right\} \qquad \checkmark$$

Veto algorithm

Approximate higher-order corrections

What have we achieved?

 we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0)$$
 with $\Delta(t, t_0) = \exp \left\{ -\int_t^{t_0} \mathrm{d}t' \, f(t') \right\}$
 $f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi \, t} \, P(z)$

$$\mathrm{d}\hat{\sigma}_{\mathrm{NLO}}^{\mathrm{approx}} = \mathrm{d}\hat{\sigma}_{n} \left[\Delta(t_{c},t_{0}) + \int_{t_{c}}^{t_{0}} \!\!\!\mathrm{d}t \; f(t) \, \Delta(t,t_{0}) \right]$$

Veto algorithm

Approximate higher-order corrections

What have we achieved?

 we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0)$$
 with $\Delta(t, t_0) = \exp \left\{ -\int_t^{t_0} \mathrm{d}t' \, f(t') \right\}$ $f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi t} \, P(z)$

 the no-branching probability implies a virtual correction (including unresolved real emissions) of $\Delta(t_c, t_0)$

Note: The Sudakov form factor Δ resums logs to all orders

$$\mathrm{d}\hat{\sigma}_{\mathsf{NLO}}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_{n} \left[\Delta(t_c, t_0) + \int_{t_c}^{t_0} \!\! \mathrm{d}t \; f(t) \, \Delta(t, t_0)
ight]$$

Veto algorithm

Approximate higher-order corrections

What have we achieved?

 we have generated a parton branching (real resolved emission) according to

$$f(t) \Delta(t, t_0)$$
 with $\Delta(t, t_0) = \exp \left\{ -\int_t^{t_0} dt' f(t') \right\}$

$$f(t) \equiv f(t, z) = \frac{\alpha_s}{2\pi t} P(z)$$

 the no-branching probability implies a virtual correction (including unresolved real emissions) of $\Delta(t_c, t_0)$

Note: The Sudakov form factor Δ resums logs to all orders

$$\mathrm{d}\hat{\sigma}_{\mathsf{NLO}}^{\mathsf{approx}} = \mathrm{d}\hat{\sigma}_{\mathit{n}} \left[\Delta(t_c, t_0) + \int_{t_c}^{t_0} \!\! \mathrm{d}t \; f(t) \, \Delta(t, t_0)
ight]$$

$$\Delta(t,t_0) = \prod_{i=1}^n \Delta_i(t,t_0) \;, \qquad \qquad \Delta_i(t,t_0) = \prod_{j=q,g} \Delta_{i o j}(t,t_0)$$

Approximate higher-order corrections

$$\Delta(t,t_0) = \prod_{i=1}^n \Delta_i(t,t_0) \;, \qquad \qquad \Delta_i(t,t_0) = \prod_{j=q,g} \Delta_{i o j}(t,t_0)$$

- 2) find new scale t where next branching occurs using veto algorithm
 - generate t using overestimate $g_{ab}(t) \propto \alpha_s^{\text{max}} P_{ab}^{\text{max}}(z)$
 - determine "winner" parton i and select new flavor i
 - accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\text{max}}P_{ab}^{\text{max}}(z)$

Approximate higher-order corrections

$$\Delta(t,t_0) = \prod_{i=1}^n \Delta_i(t,t_0) \;, \qquad \qquad \Delta_i(t,t_0) = \prod_{j=q,g} \Delta_{i o j}(t,t_0)$$

- 2) find new scale t where next branching occurs using veto algorithm
 - generate t using overestimate $g_{ab}(t) \propto \alpha_s^{\text{max}} P_{ab}^{\text{max}}(z)$
 - determine "winner" parton i and select new flavor i
 - accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\text{max}}P_{ab}^{\text{max}}(z)$
- 3) construct splitting kinematics and update event record

$$\Delta(t,t_0) = \prod_{i=1}^n \Delta_i(t,t_0) \;, \qquad \qquad \Delta_i(t,t_0) = \prod_{j=q,g} \Delta_{i o j}(t,t_0)$$

- 2) find new scale t where next branching occurs using veto algorithm
 - generate t using overestimate $g_{ab}(t) \propto \alpha_s^{\text{max}} P_{ab}^{\text{max}}(z)$
 - determine "winner" parton i and select new flavor i
 - accept point with weight $f_{ab}/g_{ab} = \alpha_s(k_T^2)P_{ab}(z)/\alpha_s^{\text{max}}P_{ab}^{\text{max}}(z)$
- 3) construct splitting kinematics and update event record
- 4) continue until $t < t_c$, t_c infrared cut-off

Effects

•000

Effects of the parton shower

Effects of the parton shower

• Thrust and Durham 2 \rightarrow 3-jet rate in $e^+e^- \rightarrow$ hadrons

The parton branching process

• hadronisation region to the right (left) in left (right) plot

Effects of the parton shower

- Drell-Yan lepton pair production at Tevatron
- if hard cross section computed at leading order, then parton shower is only source of transverse momentum
- starting scale of evolution chosen as $Q^2 = m_{\mu\nu}^2$

Effects

0000

Monte-Carlo methods

This lecture:

Approximate higher-order corrections

- parton showers encode approximate higher-order corrections
 - → build upon universal soft-collinear approximation (Altarelli-Parisi splitting functions, large- N_c , spin-averaged)
- implemented as a statistical branching process, ordered in evolution variable t ($k_{\rm T}^2$, \tilde{q}^2 , etc.)
- produce resolved final state up to scale $t_{res} \approx \Lambda_{QCD}$
 - → further evolution needs hadrons as degrees of freedom

Next lectures:

limitations of parton showers and how to overcome them