Neural-Pragmatic Natural Language Generation

Learning goals

- 1. Understand the basics of Gradient Descent.
- 2. Get familiar with variations of GD.
- 3. Learn how to us GD to optimize an RSA model.

Stochastic Gradient Descent

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

```
g_t \leftarrow 
abla_{	heta} f_t(	heta_{t-1})
       	heta_t \leftarrow 	heta_{t-1} - \gamma g_t
```

for t = 1 to ... do

 $\overline{{f return}\, heta_{f t}}$

Stochastic Gradient Descent

```
input : \gamma (lr), \theta_0 (params), f(\theta) (objective), \lambda (weight decay), \mu (momentum), \tau (dampening), nesterov, maximize
```

```
for t = 1 to ... do
      g_t \leftarrow 
abla_{	heta} f_t(	heta_{t-1})
      if \lambda \neq 0
             g_t \leftarrow g_t + \lambda 	heta_{t-1}
      if \mu \neq 0
             if t > 1
                   \mathbf{b}_t \leftarrow \mu \mathbf{b}_{t-1} + (1-	au)g_t
             else
                   \mathbf{b}_t \leftarrow g_t
             if nesterov
                   g_t \leftarrow g_t + \mu \mathbf{b}_t
             else
                    g_t \leftarrow \mathbf{b}_t
      if maximize
            	heta_t \leftarrow 	heta_{t-1} + \gamma g_t
      else
             	heta_t \leftarrow 	heta_{t-1} - \gamma g_t
```

 $\mathbf{return}\, heta_{\mathbf{t}}$

Common optimization algorithms

Rational Speech Act (RSA) model

LITERAL INTERPRETATION

$$P_{lit}(s \mid u) \propto \mathcal{L}(u, s)$$

PRAGMATIC SPEAKER

$$P_{S}(u \mid s) = SM \left(log P_{lit}(s \mid u) - C(u) \right)$$

PRAGMATIC INTERPRETATION

$$P_L(s \mid u) \propto P_{sal}(s) P_S(u \mid s)$$

"square"	.5	0	.5
"circle"	0	1	Ο
"green"	0	0	1
"blue"	.5	.5	0

"square"	"circle"	"green"	"blue"
.5	0	O	.5
0	.89	0	.11
.11	0	.89	0

"square"	.82	0	.18
"circle"	0	1	0
"green"	0	0	1
"blue"	.82	.18	0

Human experiments with reference games

- 1. speaker production condition choose an utterance for a given referent
- 2. listener interpretation condition choose a referent for a given utterance
- 3. salience prior elicitation condition choose a referent for a given utterance you do not know the meaning of

$$P_L(s \mid u) \propto P_{sal}(s) P_S(u \mid s)$$

Speaker production condition

choose an utterance for a given referent

blue	circle	green	square
9	135	0	0
0	0	119	25
63	0	0	81

Listener interpretation condition

choose a referent for a given utterance

blue	66	0	115
square	0	117	62

Salience prior elicitation condition choose a referent for a given utterance you do not

know the meaning of

blue	71	139	30

$$P_L(s \mid u) \propto P_{sal}(s) P_S(u \mid s)$$