

מבוא לתכנות מערכות – 234124 תרגיל בית מספר 5 סמסטר חורף 23/24 (אודיסיאה)

תאריך פרסום: 28/01/2024

תאריך הגשה: 11/02/2024 בשעה 23:59

1. הערות כלליות

- תרגיל זה מהווה 4% מהציון הסופי
 - התרגיל להגשה בזוגות בלבד
- מענה לשאלות בנוגע לתרגיל יינתן אך ורק בפורום התרגיל בפיאצה או בסדנאות. לפני פרסום שאלה בפיאצה אנא בדקו אם כבר נענתה.
- קראו את התרגיל עד סופו לפני שאתם מתחילים לממש. חובה להתעדכן בעמוד הפיאצה של התרגיל, הכתוב שם מחייב.
- העתקות קוד בין סטודנטים ובפרט גם העתקות מסמסטרים קודמים תטופלנה. עם זאת מומלץ
 ומבורך להתייעץ עם חברים על ארכיטקטורת המימוש.
 - הבא: GitHub Repository קבצי התרגיל נמצאים

https://github.com/cs234124-odyssey/ex5.git

- המסמך נכתב בלשון זכר מטעמי נוחות בלבד ומיועד לשני המינים.
 - מטרת תרגיל זה היא היכרות עם תכנות ב-Python.

2. מחלקת DNA

2.1. רקע

ה-DNA היא המולקולה המאחסנת את הקוד הגנטי בכל היצורים החיים (כמעט) והיא מורכבת מרצפים של "בסיסים" (נקראים גם – נוקלאוטידים). מכיוון שבמולקולת DNA סטנדרטית קיימים רק 4 בסיסים, ניתן לייצג רצפי DNA ארוכים כמחרוזות המורכבות מארבעת התווים: A, T, C, G.

בנוסף, מאפיין עיקרי של מולקולת ה-DNA הוא העובדה שהיא מורכבת מ-2 "גדילים" משלימים – ניתן לחשוב על מולקולת ה-DNA כמעין סולם עם שלבים כאשר כל שלב מורכב מ-2 חלקים (אחד מכל צד של הסולם) שמתחברים יחד. על כן, מול כל בסיס A יופיע תמיד בסיס T ומול כל בסיס C יופיע תמיד בסיס G.

2.2. מחלקת DNASequence

ממשו את המחלקה 'DNASequence' שמכילה את המתודות הבאות:

- 1. (self, nucleotides) בנאי שמקבל רצף של בסיסי DNA בנאי שמקבל (list) של תווים init_(self, nucleotides) ומאתחל עצם שמכיל את הרצף.
- . . get_sequence(self) מתודה שמחזירה את רצף ה-DNA השמור בעצם כרשימה של תווים.
 - 3. **get_length(self)** מתודה שמחזירה את אורך רצף ה-DNA השמור בעצם.
- .4 **get_complement(self)** מתודה שמחזירה את רצף ה-DNA ה**משלים** לרצף השמור בעצם get_complement(self) .4 (מחליפה A ב-C ,T ,Z ב-C ,T ב-A ו-C ב-C ,C ברשימה של תווים.
- index. מתודה שמקבלת **get nucleotide(self, index)** .5
- ם (string) ומחזירה את **find_alignment(self, seq)** .6 המחוזת (string) מתודה שמקבלת רצף של בסיסים כמחרוזת (index החופע הראשון של רצף הבסיסים ב-DNA המופע הראשון של רצף הבסיסים ב-ATATATGCATG" ב-"ATG" הוא ב-4 index".
- על מנת replace_sequence(self, seq) .7 מתודה שמקבלת רצף DNA חדש (ברשימה של תווים) על מנת להחליף את הרצף הקיים.

<u>הערות:</u>

- מבין המתודות 4, 6 ו-7, יש לממש לפחות 2 מתודות כ-one-liners.
- מומלץ לממש את פונקציית העזר 'Complement' שמקבלת תו המייצג בסיס ב-DNA ומחזירה את הבסיס המשלים לו.
 - לא חובה להשתמש בכל המתודות בסעיפים הבאים.

3. מחלקות אנזימים

3.1. רקע

בטבע, אנזימים הם חלבונים שגורמים לתגובות כימיות ביצורים חיים. בתרגיל זה, הריאקציות ישפיעו על מבנה ה-DNA (שלב 2.2).

האנזים DNA מייצר את הגדיל המשלים לו: DNA הוא אנזים אמיתי שבהינתן רצף

האנזים *Mutase* הוא אנזים אמיתי גם כן אבל אנחנו נתעלם מהפעולה האמיתית שלו. בתרגיל זה, האנזים DNA הוא אנזים שלו. ב-n ב-n ישנה ב- *Mutase* ישנה כל בסיס n-י ב-n ב- שלו. למשל, עבור n-3: לבסיס המשלים שלו. למשל, עבור n=3:

הקומפלקס *CRISPR/Cas9* הוא שילוב של האנזימים *Cas9* ו-*CRISPR* שיחד יכולים לזהות רצפים ספציפיים ב-ב-DNA ולערוך אותם. בתרגיל זה, האנזים *CRISPR* יחליף את רצף המטרה שלו עם הבסיס W והקומפלקס יחליף את הנוקלאוטיד W ברצף חדש. למשל עבור רצף המטרה TG והרצף החדש

הערה: שימו לב שהבסיס המשלים ל-W הוא הבסיס M הוא הבסיס המשלים ל-W המשלים לבסיס המשלים לרצף החדש.

3.2. מחלקת Enzyme והמחלקות היורשות ממנה

3.2.1. המחלקה Enzyme

ממשו את המחלקה **'Enzyme'** שמכילה את המתודות הבאות:

- 1. (self) בנאי, למחלקה 'Enzyme' אין שדות. __init__(self)
- ומבצעת **'DNASequence'** מתודה שמקבלת עצם מטיפוס process(self, dna_sequence) .2 עליו פעולה (בהתאם לסוג האנזים, האנזים הבסיסי לא מבצע אף פעולה).

3.2.2. המחלקות היורשות מ-Enzyme

עדכנו את הבנאים של המחלקות הבאות:

- עבור המחלקה 'Mutase' הבנאי צריך לקבל את המספר 'freq' שמציין את תדירות המוטציות
 שהאנזים יגרום.
- עבור המחלקה 'CRISPR' הבנאי צריך לקבל את המחרוזת 'seq' שמציינת את הרצף ש-CRISPR' יחליף ב-DNA.

בנוסף, ממשו את המתודה process עבור המחלקות הבאות:

- עבור המחלקה 'Polymerase' המתודה מדמה את הפעולה של אנזים ה-Polymerase ומחזירה
 את הרצף המשלים ל-DNA שהתקבל.
- עבור המחלקה 'Mutase' המתודה מדמה את הפעולה של אנזים ה-Mutase' המתודה מדמה את הפעולה של אנזים ה-freq' שהתקבל, בבסיס המשלים לו.
 - עבור המחלקה 'CRISPR' המתודה מדמה את הפעולה של אנזים ה-CRISPR' ומחליפה את כל "CRISPR" ומחליפה את כל המופעים של רצף המטרה ('seg' שהתקבל בבנאי) ב-DNA שהתקבל, בבסיס "Seq'.

3.2.3. המחלקה CRISPR_Cas9 היורשת מ-3.2.3

עדכנו את המחרוזת 'new_seq' בך שיקלוט את הרצף 'CRISPR_Cas9' בך שיקלוט את המחרוזת 'new_seq' המציינת את הרצף שאליו יחליף הקומפלקס את בסיסי ה-W.

בנוסף, ממשו את המתודה process למחלקה 'CRISPR_Cas9' כך שתבצע את הפעולות הבאות:

- המתודה תקרא למימוש של process שמופיע במחלקה **'CRISPR'** (באמצעות super) על מנת להחליף את כל המופעים של **'seq'** בבסיס W.
 - המתודה תחליף את כל המופעים של הבסיס W ברצף 'new seg'.
 - .'new_seq'-ו ברצף המשלים ל-M ברצף המשלים ל- 'new_seq'. המתודה תחליף את כל המופעים של הבסיס

4. מערכת לביצוע פרוטוקול ניסוי

בחלק זה, נממש מערכת שתקרא אנזימים ורצפי DNA מתוך קבצי טקסט ותבצע פעולות על פי פרוטוקול ניסוי.

ממשו את הפונקציה 'processData(dir_path)' שמבצעת את הפעולות הבאות:

- 1. הפונקציה קוראת את הקובץ **'DNA.json'** שנמצא בתיקייה **'dir_path'**. הקובץ מכיל שמות של DNA.json' ואת הרצפים עצמם.
 - . מחלק לאחסן את מנת לאחסן את 'DNASequence' חובה להשתמש במחלקה *
- 2. הפונקציה קוראת את הקובץ 'protocol.txt' שנמצא בתיקייה 'dir_path'. כל שורה בקובץ מכילה שם של רצף DNA ושם של אנזים (ואת הארגומנטים לאנזים אם יש צורך) באופן הבא:

DNA1 Polymerase

DNA2 Mutase [freq]

DNA3 CRISPR [seq]

DNA4 CRISPR/Cas9 [seq] [new seq]

הערה: ניתן להשתמש בפונקציה ()split בחלק זה – נסו אותה!

- 3. עבור כל שורה בקובץ **'protocol.txt'**, הפונקציה תבצע את הפעולות הבאות:
- a. תיצור עצם מהמחלקה הרלוונטית שיורשת ממחלקת 'Enzyme' בהתאם לשם האנזים שמופיע בקובץ.
- הפעיל את מתודת ה-process של האנזים על רצף ה-DNA ששמו מופיע באותה השורה .b
 יש להחליף את ה-DNA הקיים ב-DNA החדש (קחו בחשבון שאותו DNA יכול להופיע מספר פעמים בקובץ והשינויים בו מצטברים).
- 4. הפונקציה תיצור קובץ ששמו 'ModifiedDNA.json' בתוך התיקייה 'dir_path'. הקובץ יהיה זהה 'dir_path'. הקובץ יהיה זהה 'dir_path'. במבנהו ל-'DNA.json' אך יכיל את הרצפים המעודכנים.

5. הרצת הקוד

כתבו פונקציית main שתקבל path לתיקייה כארגומנט ותריץ את הפונקציה 'processData(dir_path)'. שימו לב שפעולה זו תתבצע רק אם קובץ ה-Python שבו ה-main נמצאת, מורץ ישירות.

6. בונוס

חלק מרצפי ה-DNA מהטסטים שנמצאים ב-git הם למעשה הודעות מוצפנות! האם תוכלו לפענח אותן?

דמק: "N" :TAGC=1032

7. הערות

- בכל התרגיל אין להשתמש במספרי קסם למעט 0/1.
 - . ניתן להניח כי הקלט תקין בכל התרגיל.
- וודאו כי אתם מריצים פייתון גרסה 3.6. שימו לב כי גרסה זו אינה גרסת ברירת המחדל על השרת.
 כדי להריץ פייתון 3.6 השתמשו בפקודה python3.
 - פתרון התרגיל צריך לעבוד בכל מערכת הפעלה.
 - מסופקים לכם עם התרגיל מספר טסטים אשר נועדו לבדוק בכלליות את התוכנית שלכם.
 - ס אל תסמכו על טסטים אלו! כתבו טסטים ובדקו את התוכנית שלכם. ○

8. הגשה

את ההגשה יש לבצע דרך את המודל של הקורס. הקפידו על הדברים הבאים:

- יש להגיש את קבצי הקוד מכווצים לקובץ zip (לא פורמט אחר).
- ניתן להגיש את התרגיל מספר פעמים, רק ההגשה האחרונה נחשבת.
- על מנת לבטח את עצמכם נגד תקלות בהגשה האוטומטית, שימרו עותק של התרגיל בענן לפני
 ההגשה ואל תשנו אותו אחריה (שינוי של הקובץ יגרום לשינוי חתימת הזמן של העדכון האחרון).
 - . כל אמצעי אחר לא יחשב הוכחה לקיום הקוד לפני ההגשה. ⊙

בהצלחה!