

Classification

Classification vs. regression

In supervised learning we try to find a function f, which systematically produces the output values y_m associated with the input values X_{m_i} :

$$f(X_{m,:}) \to y_m$$

Classification

Target variable y: categorical

$$y_m \in \{C_1, C_2, \dots, C_K\}$$

Regression

Target variable *y*: numerical - continuous

Text classification

Categorize text documents into predefined categories. For example, categorize news into 'sports', 'politics', 'science', etc.

Character recognition

School of Engineering

für Angewandte Wissenschaften

Identify handwritten characters: classify each image of a character into one of 10 categories '0', '1', '2' ...

Types of classicifation problems

Binary: 2 possible classes

Structured data

Images

Hot Dog No Hot Dog

Text

Sentiment analysis:

positive negative «Bad service – «Great pasta and never again!» perfect location!»

Spam detection: spam/ham

Multinomial (multi-class):

>2 possible classes

Zürcher Fachhochschule

6

Classification algorithms

Generative classifiers e.g. Naive Bayes

$$p(C_c|x) \propto p(C_c) \prod_{n=1}^{N} p(x_n|C_c)$$

Decision Trees

Support Vector Machines (SVM)

Logistic regression

Neural networks

Logistic Regression

Logistic regression solves a binary classification task

Logistic regression, although termed for classification!

- Given are M training samples $(X_{m,:}, y_m)$
- Each $X_{m,:}$ is a N-dimensional **feature vector** the features (independent variables) can be continuous or discrete
- y_m ∈ {0, 1} are the discrete labels.
 Binary classification: 0/1, i.e. true/false, positive/negative ...

Zürcher Fachhochschule

9

Why not regression?

The hypothesis in logistic regression

Logistic Function (or "Sigmoid Function"):

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

with
$$z = \theta_0 + \theta_1 x = \boldsymbol{\theta}^T \boldsymbol{X}_{m,:}$$

Properties of the sigmoid σ :

- smooth distribution between 0 and 1
- $\sigma(z) = 0.5$
- convenient derivatives:

$$\sigma'(z) = \sigma(z) \cdot (1 - \sigma(z))$$

Hypothesis: $h(X_{m,:}, \theta) = \sigma(\theta^T X_{m,:})$

Effect of the parameters in logistic Function

 $\sigma(z)$

 $\frac{1}{1 + e^{-(0+1 \cdot x)}}$

$$\frac{1}{1+e^{-(0+20\cdot x)}}$$

$$\frac{1}{1 + e^{-(50 + 20 \cdot x)}}$$

Logistic regression for one sample, N features

The loss function in logistic regression

For the N-dimensional training example $X_{m,:}$ the model yields a value $0 < \hat{y}_m < 1$ If the corresponding label y_m is 1, the likelihood of y_m being the positive class according to the model, is given by \hat{y}_m . If y_m is 0, the likelihood of y_m being the class 0 is given by $1 - \hat{y}_m$ This leads to the likelihood of the M (independent) training samples according to the model:

$$L(\boldsymbol{\theta}) = \prod_{i=1}^{N} (\hat{y}_m)^{y_m} (1 - \hat{y}_m)^{1 - y_m}$$

The log likelihood is more practical:

$$\log L(\boldsymbol{\theta}) = \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

Log is strictly increasing \rightarrow any θ that maximize the log likelihood also maximise the likelihood, and vice versa.

The base of the logarithm is not important, but needs to be applied consistently

The cross entropy loss

The cross-entropy loss (CE) is the negative log-likelihood

$$\mathcal{L}_{CE}(\boldsymbol{\theta}) = -\sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

with y_m : binary $\{0,1\}$, \hat{y}_m scalar in the interval [0,1]

With natural logarithm:

y_m	$\widehat{\mathbf{y}}_{m}$	L _{CE}
0	0.0001	0.0001
0	0.2	0.2231
0	0.5	0.6931
0	0.8	1.6094
0	0.9999	9.2103
1	0.9999	0.0001
1	0.8	0.2231
1	0.5	0.6931
1	0.2	1.6094
1	0.0001	9.2103

The cost function in logistic regression

Average cross entropy over all training samples:

$$J(\boldsymbol{\theta}) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

$$= -\frac{1}{M} \sum_{m=1}^{M} y_m \log \left(\frac{1}{1 + e^{-\theta^T X_{m,:}}} \right) + (1 - y_m) \log \left(1 - \frac{1}{1 + e^{-\theta^T X_{m,:}}} \right)$$

Linear regression vs. logistic Regression

Linear Regression

Hypothesis: $h(X_{m,:}, \boldsymbol{\theta}) = \boldsymbol{\theta}^T X_{m,:}$

Cost Function: Average sum of squared residuals

$$J(\boldsymbol{\theta}) = \frac{1}{2M} \sum_{i=1}^{m} (y_m - \hat{y}_m)^2$$
$$= \frac{1}{2M} \sum_{m=1}^{M} (y_m - \boldsymbol{\theta}^T \boldsymbol{X}_{m,:})^2$$

Gradient of the cost function with respect to the parameters:

$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_n} = \frac{1}{M} \sum_{m=1}^{M} (y_m - \hat{y}_m)(-x_{mn})$$

Logistic Regression

$$h(\boldsymbol{X}_{m,:},\boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^T \boldsymbol{X}_{m,:})$$

Average cross entropy

$$J(\boldsymbol{\theta}) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

$$= -\frac{1}{M} \sum_{m=1}^{M} y_m \log \left(\frac{1}{1 + e^{-\theta^T X_{m,:}}} \right) + (1 - y_m) \log \left(1 - \frac{1}{1 + e^{-\theta^T X_{m,:}}} \right)$$

$$\frac{\partial J(\theta)}{\partial \theta_n} = \frac{1}{M} \sum_{m=1}^{M} (y_m - \hat{y}_m) (-x_{mn})$$

Gradient Descent for Logistic Regression

Cost function:
$$J(\theta) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

This leads¹ to the following update rule in Gradient Descent *Repeat until convergence:*

$$\theta_n = \theta_n - \alpha \frac{\partial}{\partial \theta_n} J(\boldsymbol{\theta}) \longrightarrow \theta_n = \theta_n - \alpha \frac{1}{M} \sum_{m=1}^M (y_m - \hat{y}_m) (-x_{mn})$$

This is similar to the Least Mean Squares Update Rule in Linear Regression, except that here we use a **non-linear function** in the hypothesis to compute the outputs.

Logistic regression is a linear model for binary classification problems

It learns linear decision boundaries between two classes by minimising the cross entropy loss

$$J(\boldsymbol{\theta}) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

with respect to the model parameters θ using gradient descent

It fails with data, that is not linearly separable

Multinomial Classification

Multinomial (Multi-class) Classification

Binary vs multinomial classification

- Examples of multinomial classification
 - Visual digit recognition in OCR
 - Obstacle recognition in autonomous driving

One-vs-Rest approach for multinomial classification

- C classes
- ullet binary classification problem: each class vs all the others
- $\it C$ probabilities $\it p_c$
- Choose the highest probability to predict the class.

One vs. One

- assume C classes and learn all C(C-1)/2 pairwise comparisons
- classify unknown instance by majority vote among all pairwise comparisons

Softmax regression

The labels are now also encoded in matrix form

Example with M=4 samples and C=3 classes $\{1,2,3\}$:

$$\mathbf{y}_{M \times 1} := \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix} \xrightarrow{\text{one-hot encoding}} \mathbf{Y}_{M \times C} := \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

M training samples, *C* classes

$$\mathbf{Y}_{M \times C} := \begin{pmatrix} y_{11} & y_{12} & \cdots & y_{1C} \\ y_{21} & y_{22} & \cdots & y_{2C} \\ \vdots & \vdots & \ddots & \vdots \\ y_{M1} & y_{M2} & \cdots & y_{MC} \end{pmatrix}$$

m-th row (encoded as a column vector)

$$Y_{m,:} = \begin{pmatrix} y_{m1} \\ y_{m2} \\ \vdots \\ y_{mc} \end{pmatrix}$$
 is the one-hot encoding of the label for sample m , so $y_{mc} = \mathbb{I}(y_m = c)$

Softmax regression

Zürcher Hochschule

The learning in softmax regression

The loss function for multinomial logistic regression generalises the loss function for binary logistic regression from 2 to \mathcal{C} classes:

$$\begin{split} \mathcal{L}_{\text{CE}}(\boldsymbol{\theta}) &= -\frac{1}{M} \sum_{m=1}^{M} \sum_{c=1}^{C} y_{mc} \log \hat{y}_{mc} \\ &= -\frac{1}{M} \sum_{m=1}^{M} y_{mk} \log \hat{y}_{mk} \text{ (where } k \text{ is the correct class index for sample } m) \\ &= -\frac{1}{M} \sum_{m=1}^{M} 1 \cdot \log \frac{\exp(z_k)}{\sum_{c=1}^{C} \exp(z_c)} = -\frac{1}{M} \sum_{m=1}^{M} \log \frac{\exp(\boldsymbol{\theta}_{k,:}^T \boldsymbol{X}_{m,:})}{\sum_{c=1}^{C} \exp(\boldsymbol{\theta}_{c,:}^T \boldsymbol{X}_{m,:})} \end{split}$$

→ Minimisation by gradient descent

Softmax regression for multinomial classification

Example: 3 Classes sampled from a multivariate normal distribution

Softmax Logistic Regression still learns linear decision boundaries

Softmax regression fails non non-linear problems

Softmax vs One-vs-rest

One-vs-rest

Each class has its own model

Softmax

One model for all classes

Zürcher Fachhochschule

31

Nearest Neighbor Classification

Instance Based Classification: K-Nearest Neighbor (KNN)

- The (input,output)-pairs of the training data $\{(X_{m,:},y_m)\big|1\leq m\leq M\}$ is saved in a search structure
- *k*: user defined hyperparameter
- To label an unknown data point, the most frequent label among the k closest training samples is determined → red
- Requires a distance metric!
 - E.g. cosine distance

2 Classes: $y_m \in \{\text{red, blue}\}\$

11 training samples: M = 11

Evaluation metrics for classification

Can we estimate quantitatively how well the model generalises beyond the training data?

General for supervised machine learning: Split the available data into a training and independent test set

All Data

Training

Test

Estimate the generalisation error based on the independent test set

Classification Error and Accuracy - example

inputs	expected outputs	-	$\mathbb{I}(\hat{y}_m \neq y_m)$
x_m	y_m	$\widehat{\mathcal{Y}}_m$	
	1	1	
	0	0	
	1	1	
	1	0	
STOP I	1	0	
	1	0	
	0	1	

Error =
$$\frac{1}{M} \sum_{m=1}^{M} \mathbb{I}(\hat{y}_m \neq y_m)$$

M = ?

$$Accuracy = 1 - Error =$$

Zürcher Fachhochschule

36

Classification error and accuracy

The misclassification error for one sample
$$x_m: \mathbb{I}(\hat{y}_m \neq y_m) = \begin{cases} 1 \text{ if } \hat{y}_m \neq y_m \\ 0 \text{ otherwise} \end{cases}$$

delivers a loss of 1 if the predicted value \hat{y}_m does not agree with the expected value y_m . The misclassification rate (standard error) is the average over all samples:

Error =
$$\frac{1}{M} \sum_{m=1}^{M} \mathbb{I}(\hat{y}_m \neq y_m)$$

$$Accuracy = 1 - Error$$

Classification error and accuracy do not distinguish between the different types of errors – some might be more severe than others.

Types of classification errors

Binary classification problem: 0/1

predicted		avv
expected $y \downarrow / \hat{y} \rightarrow$	Not Hot Dog (0)	Hot Dog (1)
Not Hot Dog (0)	TN	FP
Hot Dog (1)	FN	TP

- True Positives (TP hit): The actual class was 1 (true) and the predicted is also 1 (true)
- True Negatives (TN): The actual class was 0 (false) and the predicted is also 0 (false)
- False Positives (FP false alarm, type-I error): The actual class was 0 (false) and the predicted is 1 (true)
- False Negatives (FN miss, type-II error): The actual class was 1 (true) and the predicted is 0 (false)

Types of classification errors

Depending on the use case the types of errors in classification have different impact. This has to be reflected in the selection of the evaluation metrics.

Evaluation metrics for classification

Accuracy and Error

• Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

- Error = 1 Accuracy
- Do not take into account different «costs» of errors

Recall

- Recall = $\frac{TP}{TP+FN}$ penalises FN, but ignores FP
- Fraction of correctly predicted positive elements in relation to all positive elements (relevant)

Precision

- Precision = $\frac{TP}{TP+FP}$ penalises FP, but ignores FN
- Fraction of correctly predicted positive elements in relation to all positive predicted elements (selected)

ROC Curve and Precision-Recall Curve Plot

no skill

100%

P(FP), FPR

False Positive Rate

$$FP / #neg = FP / (TN + FP)$$

True Positive Rate (Recall)

$$TP/\#pos = TP/(TP + FN)$$

Zürcher Fachhochschule

P(TP), TPR

0%

ROC Curve & PR curve

ROC Curve

PR curve

Evaluation metrics for classification: F-Score

Combination of recall and precision

Definition of the general F_{β} -Score:

$$F_{\beta} = (1 + \beta^2) * \frac{\text{Precision} \cdot \text{Recall}}{(\beta^2 \cdot \text{Precision}) + \text{Recall}}$$

 F_1 -Score:

$$F_1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

A smaller β value, such as 0.5, gives more weight to precision and less to recall, whereas a larger β value, such as 2.0, gives less weight to precision and more weight to recall in the calculation of the F-score

Multi-Class Confusion Matrix

	truck	923	9	1	39	2			20	3	3
	ship	10	931	1	10	2		1	37	4	4
	horse	4	2	915	1	3	22	17	9	14	13
	automobile	15	5	1	972				5	2	
	frog		1	1		943	3	4	5	16	27
ass	deer	1	2	14	1	14	898	13	5	28	24
True Class	dog	3		17	2	13	18	801	7	28	111
Ī	airplane	6	23	5	4	5	4	1	923	21	8
	bird	3	4	5	2	17	13	8	26	892	30
	cat	7	5	12	4	30	24	48	12	32	826

92.3%	7.7%
93.1%	6.9%
91.5%	8.5%
97.2%	2.8%
94.3%	5.7%
89.8%	10.2%
80.1%	19.9%
92.3%	7.7%
89.2%	10.8%
82.6%	17.4%

	95.0%	94.8%	94.1%	93.9%	91.6%	91.4%	89.7%	88.0%	85.8%	79.0%
	5.0%	5.2%	5.9%	6.1%	8.4%	8.6%	10.3%	12.0%	14.2%	21.0%
٧	uck ,	shiP h	orse	bile	6001	966L	girp dog	lane	bird	cat

Predicted Class

Evaluation metrics for multi-class classification

Medical diagnosisin C = 3 classes: {Healthy, Cold, Flue} 100 test results:

Predicted label

Metrics per class:

bel	
<u>е</u>	
True	

С	Healthy	Cold	Flue	Support of <i>c</i>
Healthy	60	8	2	70
Cold	4	12	4	20
Flue	0	2	8	10
				100

$$Precision_c = \frac{TP_c}{TP_c + FP_c}$$

$$Recall_c = \frac{TP_c}{TP_c + FN_c}$$

 $F1_c = 2 \frac{\text{Precision}_c \cdot \text{Recall}_c}{\text{Precision}_c + \text{Recall}_c}$

Average metrics:

$$Metric_{macro} = \frac{\sum_{c=1}^{C} Metric_{c}}{C}$$

$$\mathsf{Metric}_{\mathsf{macro}} = \frac{\sum_{c=1}^{C} \mathsf{Metric}_{c}}{C} \qquad \mathsf{Metric}_{\mathsf{weighted}} = \sum_{c=1}^{C} \frac{\mathsf{Metric}_{c}}{\mathsf{Support}_{c}} \qquad \mathsf{Accuracy} = \frac{\sum_{c=1}^{C} TP_{c}}{\sum_{c=1} \mathsf{Support}_{c}}$$

$$Accuracy = \frac{\sum_{c=1}^{C} TP_c}{\sum_{c=1} Support_c}$$

Evaluation metrics for multi-class classification

Medical diagnosis in C = 3 classes: {Healthy, Cold, Flue} 100 test results:

Predicted label

Irue label

С	Healthy	Cold	Flue	Support of c
Healthy	60	8	2	70
Cold	4	12	4	20
Flue	0	2	8	10

Precision	Recall	F ₁ -Score
0.94	0.86	0.9
0.54	0.6	0.57
0.57	0.8	0.67

100

Unweighted: Macro average	0.68	0.75	0.71
Weighted average			
Accuracy			