מבוא לטופולוגיה – סיכום

2025 במאי 26

תוכן העניינים

תוכן העניינים

4	24.3.2025-1 זר	שיעו	1
4	מבוא	1.1	
7	25.3.2025 - 2 Tr	שיעו	2
7	טופולוגיה — המשך	2.1	
9	31.3.2025 - 3 or	לטילזו	3
9		3.1	Ü
10	השלמות לרציפות	3.2	
10	השלמות לו ביפות	3.2	
12	7.4.2025-4 זור		4
12	אקסיומות ההפרדה	4.1	
15	אר 5 – 8.4.2025 – 5 דר	שיעו	5
15		5.1	
16	21.4.2025-6 ור	לווללוו	6
16		6.1	Ū
17	היים ב- היים ב קשירות		
1,		0.2	
19	ור 7 – 22.5.2025 – 7 יור	שיעו	7
19	קשירות – המשך	7.1	
20	28.4.2025 - 8 זר	שיעו	8
20	קשירות — סגירת פינות	8.1	
20	קומפקטיות	8.2	
22	קומפקטיות במרחבים מטריים	8.3	
23	29.4.2025-9 דר	שיעו	9
23		9.1	
25	5.5.2025-10 זר		10
			10
25	ַ קומפקטיות — משפט טיכונוף	10.1	
28	6.5.2025-11 איר	שיעו	11
29	12.5.2025-12 דר	שיעו	12
29		12.1	
31	ור 13.5.2025 — 13	לווללור	12
31	ה של מות לקומפקטיזציה		13
31	משחק מזור		
31	מבוא לטופולוגיה אלגבריתמבוא לטופולוגיה אלגברית		
33	רר 14 – 19.5.2025 – 14 19.5.2025 – 14	ייזרנזר	1/1
	19.5.2025 — 14 החבורה היסודית		14
33	. מבוא לטופולוגיה אלגבו יוד — החבוד היהיטרו יוד	14.1	

תוכן העניינים		זוכן העניינים

36	20.5.2025 - 15	שיעור	15
36	החבורה היסודית	15.1	
37	26.5.2025 - 16	שיעור	16
37	חבורה יסודית וכוויצות	16.1	
37	מרחבי כיסוי והעתקות כיסוי	16.2	

24.3.2025 - 1 שיעור 1

מבוא 1.1

 $f:\mathbb{R} o\mathbb{R}$ ומערים, באינפי 1 מתבוננים ב \mathbb{R} והגדרנו את מושג הגבול של סדרות, ולאחריו את המושג של פונקציה רציפה בעפר דיברנו על מרחבים מטריים, באינפי 1 המושג באינפי 3 כבר ראינו את את ווו $\lim_{n \to \infty} f(x_n) = f(x)$ מתקיים מתקיים אם ולכל $x \in \mathbb{R}$ אם לכל אם לכל הייתה ש־f תיקרא המושג הכללי והרחב יותר של רציפות במרחבים מטריים. ניזכר בהגדרה של מרחב מטרי.

המקיימת, מטריקה) הנקראת מטריקה (הנקראת מטרי(X,d) באשר א קבוצה לא ריקה (מרחב מטרי) מרחב מטרי(X,d) האשר א המקיימת,

- $x,y \in X$ לכל d(x,y) = d(y,x) .1
- $d(x,y)=0\iff x=y$ וכך $\forall x,y\in X, d(x,y)\geq 0$.2
- $\forall x,y,z\in X, d(x,y)\leq d(x,y)+d(y,z)$ אי־שוויון המשולש, .3

דוגמה 1.1 נראה דוגמות למרחבים מטריים,

- d(x,y)=|x-y| יחד עם \mathbb{R} .1 $d_2(ar{x},ar{y})=\sqrt{\sum_{i=1}^n|x_i-y_i|^2}$ המוגדרת על־ידי (\mathbb{R}^n,d_2) .2
- $d_{\infty}(\bar{x},\bar{y})=\max_{1\leq i\leq n}|x_i-y_i|$, אינסוף, ואת מטריקת $d_p(\bar{x},\bar{y})=\left(\sum_{i=1}^n|x_i-y_i|^p\right)^{rac{1}{p}}$ את מוכל עבור \mathbb{R}^n נוכל עבור 3.
- $ho(f,g) = \sup_{x \in [a,b]} |f(x) g(x)|$ קבוצת את המטריקה עבור $[a,b] o \mathbb{R}$ עבור הרציפות הפונקציות הרציפות עבור $[a,b] o \mathbb{R}$

נראה את ההגדרה הפורמלית של רציפות,

קדים $\delta>0$ קיים $\epsilon>0$ עבור אם לכל הא רציפה שיf רציפה אז נאמר שיf עבור f:X o Y עבור f:X o Y עבור הגדרה 1.2 (רציפות) אז נאמר שי $\rho(f(x'), f(x)) < \epsilon$ אז $d(x', x) < \delta$ מאם

אבל יותר קל לדבר במונחים של קבוצות פתוחות.

 $B(r,x) = B_r(x) = \{z \in X \mid d(x,z) < r\}$ הגדרה מטרי, נסמן מרחב מטרי, עבור עבור (בדור) 1.3 הגדרה 1.3

 $A \in B(x,r) \subseteq U$ ש־ע $a \in B(x,r) \subseteq U$ קיים $b \in U$ קיים אם לכל עד מטרי, תת-קבוצה מטרי, תת-קבוצה עדרה 1.4 (קבוצה פתוחה) או מרחב מטרי, תת-קבוצה עדרה באווי עדרה שווי מידר מעריה שריים מידר מעריה מידר מעריה מעריה מידר מעריה מע $f^{-1}(V)=\{x\in X\mid f(x)\in T$ מתקיים ב־Y מתקיים אם לכל עביפות הגדרה אברה אברה לרציפות תיקרא אויקרא תיקרא אביפה אם לכל אם לכל וואר הגדרה 1.5 מתקיים לרציפות היקרא אויקרא אביפה אם לכל אביפה אם לכל אויקרא מתקיים אויקרא אויקרא אביפה אם לכל אביפה אביפה אביפה אויקרא אביפה אבים אביפה אביפה אביפה אבים אביפה אבים אביפה אביבה אביבה אביבה אביבה אביב אוביבה אביבה אביבה אביבה אביבה אביבה אביבה אביבה אביבה אביבה א X- קבוצה פתוחה ב־V

הבאים, התנאים התנאים התנאים, au כך שמתקיימים התנאים הבאים, טופולוגיה, על au הגדרה 1.6 (טופולוגיה), חהי au קבוצה (לא ריקה), טופולוגיה על au היא אוסף

- $\bigcup_{\alpha\in I}U_{\alpha}\in au$ אז $\forall lpha\in I,U_{lpha}\in au$ כך שיס, I כך אינדקסים לקבוצת אינדקסים א אוז כלומר אם סגור לאיחוד, כלומר אם 2.
 - $U\cap V\in au$ מתקיים מופיים, כלומר לכל לכל טומר סופיים, סופיים מוכים סגור לחיתוכים au .3

. הגדרה אל מרחב טופולוגיה על X, יקרא א קבוצה אר קבוצה לא קבוצה לא היקה ו־X טופולוגיה על אוגי (מרחב טופולוגי) זוג אוגרה (מרחב טופולוגי

 $U\in\Omega$ לכל $f^{-1}(U)\in au$ בעשם הגדרנו כבר מתי פונקציה f:X o Y עבור מרחבים טופולוגיים (X, au), איז היא רציפה, כאשר בעצם הגדרנו לכל מ סימון 1.8 איברי au יקראו קבוצות פתוחות.

הא היא קבוצה אם A איז המשלים של A או מרחב המשלים אם A, כלומר המשלים אם האברה אם הגורה, אברה אם האברה או היא קבוצה המשלים של האחר המשלים או מרחב טופולוגי אז תת־קבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז תת־קבוצה האברה או האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי אז התרקבוצה או האברה אם האברה אם האברה או מרחב טופולוגי או האברה או האברה או האברה או מרחב טופולוגי או האברה או האב פתוחה.

דוגמה באופן טריוויאלי כנביעה ערי, כלומר נגדיר טופולוגיה אין $au=\{U\subseteq X\mid \forall x\in U\exists r>0, B(x,r)\subseteq U\}$ יהי מטרי, נגדיר זה מטרי, נגדיר אין דוגמה 1.2 יהי מהמרחב המטרי.

תרגיל 1.1 הוכיחו כי אכן זהו מרחב טופולוגי.

. יהי X קבוצה כלשהי, אז ניתן להגדיר על X טופולוגיה $\{\emptyset,X\}$ יהי עופולוגיה טופולוגיה טופולוגיה זו נקראת טופולוגיה אז ניתן להגדיר על X

. בולה אבול הדיסקרטית, עבור קבוצה X, גם קבוצה או היא טופולוגיה, והיא נקראת בילוגיה עבור $au_1=\mathcal{P}(X)$

24.3.2025 - 1 שיעור 1 מבוא 1.1

f: מתי איז שהיא רציפה התשובה היא שהיא היא הוא f: מתי א היא f: ווהי א רציפה תמיד. ווהי רציפה מתיד. מתי א מתי f: ווהי חלי. ווהי רציפה מתיד. מתי א דוגמה 1.5 מתי א מתיד. רציפה, תלוי בהגדרת הפונקציה, אבל במקרה שבו היא אכן רציפה, אז היא רציפה לעומה ההיא. לעומת אבל במקרה אבל האריא. לעומת האריא רציפה (Y, au) רציפה לעומת האריא. רציפה. $f:(X,\tau_1) o (Y, au)$

הערה לא כל טופולוגיה נובעת ממטריקה. לדוגמה הטופולוגיה הטריוויאלית על מרחב עם לפחות 2 נקודות.

. הקבוצה פתוחה קבוצה B(x,r) הקבוצה פתוחה.

 $\mathcal{F}=\{A\subseteq\mathbb{C}^n\mid\exists\{f_i\}_{i\in I}\subseteq\mathbb{C}[x_1,\ldots,x_n],A=\{(p_1,\ldots,p_n)\mid\forall i\in\mathbb{N}$ עבור איזשהו $X=\mathbb{C}^n$ נגדיר 1.6 נגדיר 1.6 נגדיר $I, f_i(p_1, \ldots, p_n) = 0\}$

, בסיס לטופולוגיה של X של תתי־קבוצות של בסיס לטופולוגיה בס

 $x \in B$ כך ש־ $B \in \mathcal{B}$ יש $x \in X$.1

 $x \in C \subseteq A \cap B$ יש כך כך שי $x \in A \cap B$ ולכל $A, B \in \mathcal{B}$.2

טענה 1.11 עבור בסיס \mathcal{B} היא טופולוגיה, $au_{\mathcal{B}} = \{U \subseteq X \mid U \text{ is a union of elements of } \mathcal{B}\}$ היא טופולוגיה,

$$\forall \alpha \in I, B_{\alpha} \in \mathcal{B}, U = \bigcup_{\alpha \in I} B_{\alpha}$$

, אז מתקיים, אז איז סופי, אז איז סופי, אז אם ער וכן וכן $U=\bigcup_{lpha\in I}B_lpha\in\mathcal{B}$ אז אז אז אם סופי, אז אז סופי, אז אז מתקיים, מכיוון ש־ $au_\mathcal{B}$ סגורה לחיתוך סופי, אז אם אז מתקיים,

$$U \cap V = (\bigcup_{\alpha \in I} B_{\alpha}) \cap (\bigcup_{\beta \in J} A_{\beta}) = \bigcup_{\alpha, \beta \in I \times J} B_{\alpha} \cap A_{\beta} = D$$

 $U\cap V=(\bigcup_{\alpha\in I}B_\alpha)\cap(\bigcup_{\beta\in J}A_\beta)=\bigcup_{\alpha,\beta\in I\times J}B_\alpha\cap A_\beta=D$ כך ש־ $C_{\alpha_0,\beta_0}\subseteq \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם $C_{\alpha_0,\beta_0}\in \mathcal{B}$ ישנם אבל מהגדרת הבסיס פוימת קבוצה אבל מהגדרת הבסיס פוימת הבסיס פו . סופי. לכן הזיתות מצאנו בהתאם התאם ובהתאם $D\subseteq igcup_{(x,lpha,eta)} C_{x,lpha,eta}$ לכן לכן $B_{lpha_0}\cap A_{eta_0}$

 $\{B(x,rac{1}{n})\subseteq X\mid x\in$ אם מטרי, אז $\{B(x,r)\subseteq X\mid x\in X, r>0\}$ הוא טופולוגיה. אבל עכשיו נוכל להגדיר גם את מטרי, אז הערה . המטרי לטופולוגיה שהגדרנו למרחב הטופולוגיה לאותה לטופולוגיה לטופולוגיה לטופולוגיה לאותה לטופולוגיה לאותה לטופולוגיה לאותה לאותה לטופולוגיה ל

תרגיל 1.2 הוכיחו שזהו אכן בסיס עבור המרחב הטופולוגי הנתון.

 $C = \{a + d\mathbb{Z} \mid a, d \in \mathbb{Z}, d \neq 0\}$, נניח ש" $\mathbb{Z} = \mathbb{Z}$, ונגדיר את הבסיס להיות אוסף הסדרות האריתמטיות הדו־צדדיות, כלומר $X = \mathbb{Z}$ $p\in p+dq\mathbb{Z}\subseteq$ אז $p\in (a+d\mathbb{Z})\cap (b+q\mathbb{Z})$, וננים כי זהו אכן בסיס (לטופולוגיה). נתבונן בזוג קבוצות ב $a+d\mathbb{Z},b+q\mathbb{Z}$, וננים כי זהו אכן בסיס (לטופולוגיה). אנו $. au_C$ נגדיר טופולוגיית. ($a+d\mathbb{Z}$) \cap ($b+q\mathbb{Z}$)

קבוצות סגורות הן משלימים לקבוצות פתוחות.

כל סדרה אריתמטית דו־צדדית אינסופית היא גם פתוחה וגם סגורה. בפרט חיתוך סופי של סדרות אריתמטיות הוא סגור. לכן המשלים שלו הוא פתוח. מסקנה 1.12 (משפט אוקלידס) יש אינסוף מספרים ראשוניים.

לכן את קבוצה פתוחה קבוצה לכן, את נניח בשלילה כי של ראשוניים, או עבור עבור p_1,\dots,p_k עבור עבור אישוניים, אוהי בשלילה כי שלילה כי של ראשוניים, אוהי אוהים עבור אוווים, אוהי אוהים בשלילה כי של אוווים, אוהי אוהים בשלילה כי של ראשוניים, אורה, אורה,

$$\bigcup_{i=1}^k p_i \mathbb{Z} = \mathbb{Z} \setminus \{-1, 1\}$$

ולכן נובע ש־ $\{-1,1\}$ קבוצה פתוחה וזו כמובן סתירה.

טענה 1.13 (צמצום מרחב טופולוגי) עניח ש(X, au) מרחב טופולוגי, לכל $\emptyset
eq Y \subseteq X$ מרחב טופולוגי, מרחב טופולוגיט נניח ש(X, au) מרחב טופולוגיה. $. au_Y = \{W \in au \mid W \subseteq Y\}$ אז $Y \in au$ אם $Y \in au$

טענה 1.14 (טופולוגיית מכפלה) נניח ש־ (X_1, au_1) ו־ (X_2, au_2) מרחבים טופולוגיים, אז נגדיר טופולוגיית מכפלה (X_1, au_1, au_1) על־ידי

$$\tau_{1,2} = \{ U_1 \times U_2 \mid U_1 \in \tau_1, U_2 \in \tau_2 \}$$

אז בסיס והטופולוגיית על־ידו נקראת על־ידו המכפלה. המכפלה דיטופולוגיית המכפלה דוא ד $au_{1,2}$ אז

דוגמה 1.8 נוכל לבנות כך מכפלה של כמות סופית או אינסופית של מכפלות טופולוגיות. עבור אוסף אינסופי (בן־מניה או לא בהכרח) אנו צריכים

24.3.2025 - 1 שיעור 1 1.1 מבוא

אז נגדיר ($\alpha \in I$ עבור (X_{α}, au_{α}) אז נגדיר להיזהר, נניח ש

$$au_b=\{\prod_{lpha\in I}U_lpha\mid oralllpha\in I, U_lpha\in au_lpha\}$$
 אם בסיס לטופולוגיה שנקרא טופולוגיית הקופסה. לעומת זאת נוכל להגדיר גם את

$$\tau_p = \{ \prod_{\alpha \in I} U_\alpha \mid U_\alpha = X_\alpha \text{ for almost all } \alpha \in I \}$$

$$.\prod_{\alpha\in I}=\{f:I\to\bigcup_{\alpha\in I}X_\alpha\mid \forall \alpha\in I, f(x)\in X_\alpha\}$$
 כלומר

25.3.2025 - 2 שיעור 2

2.1 טופולוגיה – המשד

Z=בשיעור הקודם דיברנו על מכפלה של טופולוגיות, אמרנו שאם I קבוצת אינדקסים ולכל $lpha\in I$ גם lpha מרחב טופולוגי, אז נתבונן ביlpha בשיעור הקודם דיברנו על מכפלה של טופולוגיה על lpha.

הערה מגדירים.

$$\prod_{\alpha \in I} X_{\alpha} = \{ f : I \to \bigcup_{\alpha \in I} X_{\alpha}, \forall \alpha \in I, f(\alpha) \in X_{\alpha} \}$$

לאחר מכן נוכל להגדיר טופולוגיית מכפלה,

הגדרה 2.1 (טופולוגיית מכפלה) נגדיר את הבסיס,

$$\mathcal{B}_{\text{box}} = \{ \prod_{\alpha \in I} U_{\alpha} \mid \forall \alpha \in I, U_{\alpha} \subseteq X_{\alpha}, U_{\alpha} \in \tau_{\alpha} \}$$

ואת הבסיס.

$$\mathcal{B}_{\text{prod}} = \{ \prod_{\alpha \in I} V_{\alpha} \mid \forall \alpha \in I, V_{\alpha} \in \tau_{\alpha}, V_{\alpha} \subseteq X_{\alpha}, |\{\beta \in I \mid V_{\beta} \neq X_{\beta}\}| < \infty, V_{\alpha} = X_{\alpha} \text{ for almost every } \alpha \}$$

אלו הן מכפלות של טופולוגיות המהוות טופולוגיה.

$$\pi_lpha(f)=f(lpha)$$
 אז שנן הטלהו ל $lpha\in I,\pi_lpha:Z o X_lpha$ הטלות שנן אז ל $Z=\prod_{lpha\in I}X_lpha$ אז הגדרה (העתקות הטלה) אז הגדרה

 $\pi_{lpha}^{-1}(U_{lpha})\in au$ יתקיים תהינה ב־ X_{lpha} יתקיים שכל ההטלות עריך שלכל הרוצים אכן יקיימו אכן יקיימו עריים אכן יקיימו הביס, ערכל ההטלות הביס, אנו רוצים אכן יקיימו אכן יקיימו אכן יקיימו אכן יקיימו אכן יתקיים אכן יתקיים ערכל בחין כי ערכל בחין כי $\pi_{lpha}^{-1}(U_{lpha})=U_{lpha} imes\prod_{eta
eqlpha}X_{eta}$ יתקיים ערכל יתקיים ערכל המקור יהיה קבוצה פתוחה ב־ π_{lpha} .

$$C = \{ U_{\alpha} \times \prod_{\beta \neq \alpha} X_{\beta} \mid \pi_{\alpha}^{-1}(U_{\alpha}) \in \tau \}$$

.] C=Xע כך של תת־קבוצות של X תהי קבוצה X קבוצה תהי קבוצה תהיקבוצות של עד תר־קבוצות הגדרה (מת־בסיס לטופולוגיה).

נגדיר את הסופיים הסופיים של איברי אוסף להיות כלומר $\mathcal{B}_C = \{\bigcap A \mid A \subseteq C, |A| < \infty\}$ הייות של איברי מתחבסים המושרה אוסף פתוחות) פתוחות פתוחות הוא בסים.

 $au_1\subseteq au_2$ אם אם au_2 הותר חלשה יותר שר אומרים על אומרים על au_1 שם אם קבוצה au_1 אם אומרים על אומרים על אומרים אם au_1

, במכפלתם, נרצה להתבונן מושרה מתאים טופולוגי מרחב ונגדיר (X_i, au_i) ונגדיר לכל ($X_i,
ho_i$) כלל (רצה להתבונן מרחב מטריים (X_i, au_i) מהגדרנו זה עתה. אז נוכל להתבונן ב־ $(\prod X_i, au_{\mathrm{prod}})$ שהגדרנו זה עתה.

 $x,y\in Z$ לכל $Z=\prod_{i\in\mathbb{N}}X_i$ עם מטריקה מצוא מטריקה מרצה מרצה מטריים מטריים מטריים מטריים בהינתן מכפלה) מרצה אז נגדיה (מטריקה מכפלה) באשר אז נגדיר, אז נגדיר,

$$\rho(x,y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

ברור שפונקציה זו מוגדרת, וברור אף כי היא מקיימת את התכונה השנייה של מטריקות, אך לא ברור שהיא מקיימת את אי־שוויון המשולש, זהו תרגיל שמושאר לקורא.

. \mathcal{B}_{prod} טענה שווה ל-מכפלה שורית עם מטריקת מרכפלה מרחבים מרחבים עבור (X_i, au_i) עבור עבור $Z = \prod_{i=1}^\infty X_i$ שענה 2.6 מענה

 $au_
ho=\mathcal{B}_{
m prod}$ בסיס, אז נוכל להגדיר טופולוגיה (Z,
ho) מרחב מטרי, ו־ $\mathcal{B}_
ho=\{B(x,r)\mid x\in Z, r>0\}$ בסיס, אז נוכל להגדיר שטופולוגיה נקבעת ביחידות על־ידי בסיס שלה, לכן מספיק להראות שכל $B\in\mathcal{B}_{
m prod}$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת ל $C\in\mathcal{B}_
ho$ שייכת את שקילות הבסיסים.

נתחיל בתנאי הראשון, ונקבע $U_k\in au_k$ כלשהו. מספיק להראות שקבוצה מהצורה $U_k imes\prod_{i\neq k}X_i$ פתוחה בי0 עבור $U_k\in \mathbb{N}$ בית עבור בונסם ביל להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 1 על להרחיב הוכחה זו באופן סיסטמתי להיות על כל קבוצה סופית של קבוצות פתוחות. יהי 1 ועישנו 1 על מרחב זה 1 שישנו 1 על מרחב זה 1 על מרחב 1 שישנו 1 על מרחב ביתוחה ולכן ישנו 1 ביות פתוח בי1 ביתוחה בי1 מדר פתוח בי1 ביתוחה ולכן ישנו 1 ביתוחה שישנו 1 ביתוח בי1 ביתוח בי

25.3.2025 - 2 שיעור 2 25.3.2025 טופולוגיה – המשך

קיים $Z=\prod_{i\in\mathbb{N}}X_i$ סביב x ב־ $\frac{s}{2^k}$ סביב את הכדור בחדיוס , ולכן נבחן את המכפלה כולו. או מרחב מתקיים ומתקיים בחול איז או או אין או אין את המטרה שלנו היא לבסיס. נניח ש" $(y_i)_{i\in\mathbb{N}}\in B_{\frac{s}{2^k}}(x)$ אז המטרה שלנו היא להראות שהכדור שעתה בחרנו מקיים את התנאי לבסיס. נניח ש"כול מקיים את התנאי לבסיס.

$$\frac{s}{2^k} > \rho(x, y) = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} \ge \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\implies s > \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)}$$

$$\implies \rho_k(x_k, y_k) < r$$

$$\implies y_k \in B_r(x_k) \subseteq U_k$$

, נעבור לתנאי השני, נתבונן בכדור הפתוח סביב Z סביב, $B_r(x)$, $x\in Z$ כאשור השני, נתבונן בכדור הפתוח מוגדר להיות,

$$B_r(x) = \left\{ y \in Z \mid \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{\rho_i(x_i, y_i)}{1 + \rho_i(x_i, y_i)} < r \right\}$$

, אליידי, המוגדרת על-ידי, כלומר הזנב של את טור הזנב לומר נחסום את כלומר המוגדרת אר המוגדרת על האוגדרת על האו

$$V = \left\{ (y_1,\ldots,y_M) \in \prod_{i=1}^M \mid \sum_{i=1}^M rac{1}{2^i} rac{
ho_i(x_i,y_i)}{1+
ho_i(x_i,y_i)} < rac{r}{2}
ight\}$$
ואנו טוענים כי $V imes \prod_{i=M+1}^\infty X_i \subseteq B_r(x)$ ואנו טוענים כי

П

31.3.2025 - 3 שיעור 3

3.1 סגירות

בדיוק כמו במרחבים מטריים, גם במרחב טופולוגי נרצה לדון במניפולציות על קבוצות במרחב, נתחיל בהגדרת הקונספט של סגור של קבוצה במרחב מופולוני

A של הסגור את הסגור. נגדיר על קבוצה $A\subseteq X$ הגדרה ותהי קבוצה מרחב טופולוגי) היי היי (סגור של קבוצה כשלהי. הסגור של $A\subseteq X$ מרחב טופולוגי) מרחב טופולוגיA את את הסגור המכילה את A, כלומר,

$$\overline{A} = \bigcap_{X \setminus F \in \tau} F$$

בהתאם נקבל מספר תכונות ראשוניות ודומות לתכונות שראינו בעבר,

למה 3.2 התכונות הבאות מתקיימות.

$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 .1

. כאשר במקרה זה אין בהכרח שוויון. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. 2

, אז מתקיים, אז מתקיים, $A=\mathbb{Q}, B=\mathbb{R}\setminus\mathbb{Q}$ וכן $X=\mathbb{R}$ שוויון, נגדיר שוויון, מתקיים, אז מתקיים, אז מתקיים,

$$\emptyset = \overline{\emptyset} = \overline{A \cap B} \subsetneq \overline{A} \cap \overline{B} = \mathbb{R} \cap \mathbb{R} = \mathbb{R}$$

טענה 3.3 אם (X, au) מרחב טופולוגי ו(X, au) אז,

$$x \in \overline{A} \iff \forall U \in \tau, x \in U \to U \cap A \neq \emptyset$$

Aאם ורק אם כל קבוצה פתוחה ביב הנקודה לא Aאם ורק אם כל קבוצה פתוחה סביב הנקודה לא A

 $x
otin \overline{A}\iff \exists U\in au, x\in U\land U\cap A=\emptyset$ הטענה, כלומר שלילת את נראה הוכחה. נראה הוכחה

Aל-אבל מהגדרתה וזרה פתוחה אבל $x\in X\setminus \overline{A}$ ולכן ולכן נניח שי $x\notin \overline{A}$ אבל נניח נניח אבל

 $x
otin \overline{A}\subseteq F$ בכיוון השני אם יש $x
otin \overline{A}\subseteq F$ פתוחה כך ש־ $U\cap A=\emptyset$ אז ע $U\cap A=\emptyset$ ובהכרח בכיוון השני אם יש

 $A^\circ = igcup_{U \in au, U \subset A} U$, הגדרה את הפנים את נגדיר את נגדיר ושפה) אנדרה 3.4 הגדרה

כלומר הפנים הוא איחוד כל הקבוצות הפנימיות הפתוחות של A, ובשל הסגירות של הטופולוגיה לאיחוד, נקבל כך את הקבוצה הפתוחה הגדולה ביותר שחלקית ל- $A = \overline{A} \setminus A^\circ$ היותר $A = \overline{A} \setminus A^\circ$

נבחין בהגדרה של סביבה ונשתמש בהגדרה זו כדי להגדיר מונח חדש.

 $.x \in U \subseteq L$ יש כך ער פרימת קבוצה פתוחה $t \in U \subseteq L$ יש כל נקודה) נאמר של היא מכיבה של היא מכיבה של נקודה נאמר ב $t \in L$

אם אם הצטברות של היא נקודת הצטברות $x\in A$ ו תת־קבוצה כלשהי, והי $x\in A$ ו נקודת הצטברות של חדוב טופולוגי, תהי $x\in A$ ו תת־קבוצה כלשהי, ו־ $x\in A$ ו נקודה מ־x שונה מ־x, כלומר,

$$\forall U \in \tau, x \in U \implies \exists y \in (U \setminus \{x\}) \cap A$$

A את קבוצת נקודות ההצטברות של A' נסמן ב-

נרצה להסתכל על נקודות הצטברות כנקודות שלא משנה כמה קרוב אנחנו מסתכלים אליהן, עדיין נוכל למצוא בסביבתן נקודות נוספות. במובן הזה ברור שהן נמצאות בקרבת נקודות בפנים, אך עלולות להיות גם נקודות לא פנימיות שמקיימות טענה כזו.

 $\overline{A}=A\cup A'$ מענה 3.7 מתקיים

היא אוסף כל \overline{A} היא אוסף הטענה ש־ \overline{A} או או $x\in A\subseteq \overline{A}$ אז או אוסף היא אוסף כל $x\in A$ שונה מ \overline{A} או אוסף היא אוסף כל $x\in A\cup A'$ או אוסף כל $x\in A\cup A'\subseteq \overline{A}$ או הנקודות שבכל סביבה שלהן המכילה את $x\in A\cup A'\subseteq \overline{A}$ היא אוסף כל העובע ש־ $x\in A\cup A'\subseteq \overline{A}$

בכיוון השני נניח ש־ $X \in A$ אז לכל $x \notin A$ אז לכל $x \in A$ אז לכל $x \in A$ אז מתקיים $x \in A$ אז מתקיים $x \in A$ אז מעאנו ש־ $X \in A$ אז מצאנו ש־ $X \in A$ אז מצאנו ש־ $X \in A$ ונובע משני $X \in A$ כך ש־ $X \in A$ אז מצאנו ש־ $X \in A$ מובע משני $X \in A$ נובע משל $X \in A$ וובע משני $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$ אז מצאנו ש־ $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$ החלקים ש־ $X \in A$

31.3.2025 - 3 שיעור 3 שיעור 3

3.2 השלמות לרציפות

f:X o Y היונקפט לדון בקונספט של רציפות באופן רחב יותר. בהינתן (Y, au_Y) מרחב טופולוגי ו־X קבוצה כלשהי, ופונקציה רחב יותר. בהינתן ניזכר בהגדרה 1.2 לדון בקונספט של רציפה.

X איא מהבסיס משרית מושרית עליו ולהגדיר לבסיס ולהרחיבה הרחיבה היא תת־בסיס, היא הת־בסיס, ואפשר הרחיבה לבסיס ולהגדיר עליו $\{f^{-1}(U) \mid U \in au_Y\}$

מענה 3.8 מענה X עבורה f רציפה עבור טופולוגיה זו, וזו הטופולוגיה ווז חלשה f עבורה f רציפה.

 $\{U\subseteq Y\mid f^{-1}(U)\in au_X\}$ את נוכל להגדיר f:X o Y נוכל עם פונקציה עם יחד עם וקבוצה לשהי ווו ויוו הטופולוגיה וווו הטופולוגיה ביותר על עם ביותר על עם עם עם ועם ועם לבנות בסיס וטופולוגיה על f באופן דומה ביותר על עם ביותר ע

טענה 3.9 (שקילות לרציפות) יהיו מרחבים טופולוגיים (X, au_X), ותהי אז התנאים הבאים שקולים, יהיו מרחבים טופולוגיים (שקילות לרציפות)

- 1.2 רציפה לפי f .1
- X^{-1} סגורה $f^{-1}(F)$, $F\subseteq Y$ סגורה ב-2. .2 הגדרה זו עוזרת לנו לדון בקבוצות סגורות במקום פתוחות
- Xבסיס לטופולוגיה של $f^{-1}(B)$ מתקיים ש $B\in\mathcal{B}$ אז לכל Y אז לכל פתוחה ב-3 הגדרה זו מאפשרת לנו לדון בבסיסים ובכך לפשט את העבודה עם טופולוגיות
- x של סביבה $f^{-1}(W)$ מתקיים שf(x) של $W\subseteq Y$ סביבה של $x\in X$ לכל .4
- רציפה. $f\mid_{U_{\alpha}}:U_{\alpha}\to Y$ מתקיים $\alpha\in\Omega$ מתקיים γ , ער γ , ער γ , ער אומר γ , כלומר אווער γ , ער כלומר אווער γ , ער אווער אווער ביסוי פתוח γ , ער אווער אווער ביסוי פתוח γ , ער אווער ביסוי פתוח אווער אווער אווער ביסוי פתוח אווער אווער אווער אווער ביסוי פתוח אווער איינער אווער אווער אווער איינער אווער איינער אווער אווער אווער אווער אווער אווער אווער איינער אווער אווער אווער אווער אווער אווער אווער אווער איינער אווער איינער אווער איינער איינער איינער איינער איינער אווער איינער איינער אייער איינער איינער איינער איינער איינער איינער איינער איינער איינע
 - . רציפה. $f\mid_{F_i}:F_i\to Y$ כך שכל $1\leq i\leq n$ סגורות עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$ עבור $1\leq i\leq n$
 - $f(\overline{A}) \subseteq \overline{f(A)}$ מתקיים $A \subseteq X$ לכל.

. תוחות שירות על קבוצות הרציפות של משלימים הגדרה שירות מהגדרה על קבוצות פתוחות. בובע 3

- היא איחוד השני כל קבוצה הטענה. לכיוון השני כך להראות היא קבוצה פתוחה, ונוכל כך להראות את נכונות הטענה. לכיוון השני כל קבוצה היא איחוד $f^{-1}(\bigcup U_{\alpha}) = \bigcup f^{-1}(U_{\alpha})$, של קבוצות מהבסיס, U_{α} , ור
- $x\in f^{-1}(U)\subseteq$ ש־ט פתוחה, לכן נובע ש־ט $f(x)\in U\subseteq W$ אז קיימת אז קיימת של $f(x)\in W\subseteq Y$ וכן $f(x)\in W\subseteq Y$ אז פתוחה. $f^{-1}(U)$ כאשר כאשר $f^{-1}(U)$
- היא $f^{-1}(U)$ הנחה אז צריך להראות ש $f^{-1}(U)$ פתוחה. תהי תהי $f^{-1}(U)$ אם צריך להראות שבריך להראות או צריך להראות פתוחה. בא $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה. בא $f^{-1}(U)=\bigcup_{x\in f^{-1}(U)}V_x$ פתוחה.
 - . נוכל לבחור כיסוי טריוויאלי. נוכל לבחור נוכל כיסוי נוכל וויאלי. ביסוי נוכל לבחור נוכל לבחור נוכל לבחור נוכל לבחור כיסוי טריוויאלי.
- - . נבחר את לכיסוי סגור של עצמה. $1 \Longrightarrow 6$
- עששינו החוכחה דומה למהלך עששינו $f\mid_{F_i}:F_i\to Y$, ונניח גם שלכל של כיסוי סגור כיסוי סגור כיסוי $X=\bigcup_{i=1}^nF_i$ רציפה. כעת החוכחה למהלך שעשינו $X=\bigcup_{i=1}^nF_i$ ב־5, אבל כעת אפיון רציפות בעזרת X, ואיחוד סופי על סגורות הוא סגור.
- - סגורה, אז, $F \subseteq Y$ מגורה, אז, $7 \implies 2$

$$f(\overline{f^{-1}(F)}) \overset{\text{finith}}{\subseteq} \subseteq \overline{F} \overset{\text{finith}}{=} F \ \Longrightarrow \ \overline{f^{-1}(F)} \subseteq f^{-1}(F)$$

31.3.2025 - 3 שיעור 3 שיעור 3

, לכן, $f^{-1}(F)\subseteq\overline{f^{-1}(F)}$ מהגדרת סגור נוכל להסיק ש

$$\overline{f^{-1}(F)} = f^{-1}(F)$$

Xב סגורה סגורה $f^{-1}(F)$ ובפרט

נבחן תכונה מעניינת שלא תשרת אותנו רבות, אך כן מעלה שאלות,

 $x\mapsto x_1$ הקבועה הקבועה לוכן וכן $f_0=Id$ נסמן, נקביל לאבועה הקבועה לאביה הקבועה נסמן, נסמן גם נסמן גם לאביה הקבועה ולאביה לאבי

f(t,x)=(1-t)x נגדיר על־ידי המוגדרת f:I imes I o I ואת את מה 3.2 נגדיר 3.2 נגדיר

. באותו באותו באותו $\mathbb R$ כוויצה $\mathbb R$ נגדיר $f:I imes \mathbb R$ על־ידי על $f:I imes \mathbb R$ ונקבל שגם $X=\mathbb R$ נגדיר

. תרגיל 3.1 הראו כי S^1 לא כוויץ.

נחזור לדבר על פונקציות רציפות.

f(x)(i)=xכך לכל $f:(\mathbb{R}, au_\mathbb{R}) o(\mathbb{R}^\mathbb{N}, au)$ לכל לכל 3.2 נתבונן בי

הקופסה. עופולוגיית אי לא רציפה הופלוגיית המכפלה, טופולוגיית הקופסה כהעתקה כאשר לא רציפה או לא רציפה הראו ש־f

פתרון בתבונן ב T_n בעופולוגיית הקופסה היא לא קבוצה פתוחה, אך עד הקופסה היא לא פתרון פתרון אדן אדי קבוצה פתוחה, אך T_n בעופר פתוחה, אך בעופר היא לא רציפה. רציפה, לכן בטופולוגיית הקופסה היא לא רציפה.

לעומת זאת בטופולוגיית המכפלה היא אכן רציפה.

רציפה ערכית די־חד ערכית $f:X\to Y$ היא העתקה איז מופולוגיים שני מרחבים בין שני מרחבים הומיאומורפיזם (הומיאומורפיזם הומיאומורפיזם בין שני מרחבים טופולוגיים X,Y היא היא.

ביניהן. f:X o Y ביניהן הומיאומורפיות אם ביניהן ביניהן יקראו יקראו די ביניהן. X

אנו נרצה להסתכל על הומיאומורפיזם כאיזומורפיזם של מרחבים טופולוגיים.

$$f'(x) = \frac{e^x(e^x + 1) - e^x e^x}{(e^x + 1)^2} = \frac{e^x}{(e^x + 1)^2} > 0$$

. ולכן המרחבים המרחבים על, ואכן היא הול ולכן $f(x) \xrightarrow{x \to -\infty} 0, f(x) \xrightarrow{x \to \infty} 1$ ולכות, ואף הד-חד ערכית, לבסוף ולכות ולכן ולכן היא גם על, ואכן המרחבים הומיאומורפים.

 $z\mapsto rac{z-i}{z+i}$ על־ידי $\psi:\eta o D$ נגדיר גם $D=\{z\in\mathbb{C}\mid |z|<1\}$ ואת ואת $\eta=\{z=x+iy\in\mathbb{C}\mid x,y\in\mathbb{R},y>0\}$ נגדיר את נגדיר את הוכחה כי זהו אכן הומיאומורפיזם מושארת לקורא.

נבחין כי הדוגמה האחרונה אינה אלא העתקת מביוס, העתקה קונפורמית ואנליטית.

נבחן אבל חד־חד ערכית $[0,2\pi) o S^1$ השני השני השני ערכית, לא חד־חד ערכית לדוגמה, לדוגמה, לדוגמה, לדוגמה, לא חד־חד לא לדוגמה, לא חד־חד לדוגמה, לה

נניח שיש העתקה חד־חד ערכית אך מן הצד מיJיהוציא מיJנקודה יחידה, אז נקבל איחוד זר של שתי קבוצות זרות, אך מן הצד השני הוצאת נקודה יחידה מהמעגל משאיר אותו כקבוצה קשירה. ההוכחה המלאה אומנם סבוכה יותר, אך הצבענו פה על הבדל מהותי בין שני המרחבים.

. הראו כי \mathbb{R}^2 לא הומיאומורפים תרגיל 3.3 הראו כי

?האם גם \mathbb{R}^2 ו- \mathbb{R}^3 הומיאומורפים

 $f(U)\subseteq Y$ מתקיים (סגורה) פתוחה לכל אם לכל (סגורה) העתקה תיקרא העתקה f:X o Y העתקה העתקה פתוחה (סגורה) ב-3.12 העתקה פתוחה (סגורה) ב-Y

. המוגדרת ולא סגורה היא רציפה, היא היא $f(x)=x^2$ ידי על-ידי המוגדרת המוגדר העיפה, זוגמה היא הוגדרת לידי המוגדרת המוג

. האבל אבל אבר רציף, הוא הוא $x\mapsto x$ ידי על־ידי המוגדר ($0,1)\hookrightarrow\mathbb{R}$ השיכון 3.7 השיכון

. ביפה. אך אך אד סגורה, סגורה היא טריוויאלית טריוויאלית המוגדרת $\{a,b\} o \{a,b\}$

 \Box

7.4.2025 - 4 שיעור 4

אקסיומות ההפרדה 4.1

מטרתנו היא לאפיין את הקונספט של הפרדה, כלומר מתי אנו יכולים לחסום חלקים שונים במרחב הטופולוגי בקבוצות פתוחות. במקרים המטריים אף ראינו בעבר כמה הפרד היא מועילה, היא פתח לדיון נרחב.

הגדרה אם להפרדה אם x,y ניתנים להפרדה אם קיימות קבוצות שה $x,y \in X$. נאמר ש $x,y \in X$ ניתנים להפרדה אם קיימות קבוצות פתוחות $x,y \in X$ כך שהקבוצות האלה זרות, וכן $x,y \in X$

עבור $x \in U, A \subseteq V$ אם להפרדה ניתנים והאיבר שהקבוצה נאמר נאמר $x \in X, A \subseteq X$ עבור

. וזרות. $A\subseteq U, B\subseteq V$ ביתנות להפרדה ניתנות $A\cap B=\emptyset$ כך ש־ $A, B\subseteq X$ לבסוף נאמר ש

עתה משהגדרנו את הקונספט הכללי של הפרדה, נגדיר באופן בהיר ועקבי סוגים שונים של "רמת" ההפרדה שמרחב טופולוגי מקיים.

האקסיומות את עבור $i\in\{0,1,2,3,4\}$ עבור עבור את מקיים את מקיים את יקרא מרחב איקרא יקרא מרחב מופולוגי א יקרא מרחב א יקרא מרחב T_i אם הוא מקיים את האקסיומות מרחב א יקרא יקרא מרחב וופולוגי א יקרא מרחב א יקרא מר

- אחרת אך את הנקודות אחת שמכילה פתוחה פתוחה קבוצה $x,y\in X$ לכל , T_0
- הענייה את הנקודה המכילה את המכילה את המכילה את אחת הנקודות את אחת המכילה את קיימת פתוחה את אחת אחת אחת אחת אחת $x,y\in X$ קיימת פתוחה אם אז קיימת עד עד אז אז אז קיימת בך עד עד עד אז אז הראשונה. כלומר אם אז קיימת בעד עד עד עד עד עד אוויים אוויים אחת אחת המכילה את אחת המכילה את אחת המכילה את אחת המכילה את ה
- - ניתנות להפרדה x, אונם X בותנות להפרדה x, אונם X בותנות להפרדה x, אונם X ביתנות להפרדה המרחב הוא T_1
 - ניתנות להפרדה $A,B\subseteq X$ אם המרחב אם שכל זוג תלי, כלומר כלומר ניתנות להפרדה אם T_1 אם המרחב הוא T_4

נעבור למספר טענות הנוגעות לסוגי ההפרדה השונים.

סגורה. $\{x\}\subseteq X$ סגורה אם חלקיים אם מתקיים אם T_1

U=u בקבל שגם $x\notin U_y$ כך ש $U_y\subseteq X$ פתוחה קבוצה פתוחה בקבימת לכל $x\notin X$ אז לכל $x\in X$ אז לכל איז נקבל שגם $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה. אבל מההגדרה שסיפקנו ל-U נקבל ש $U^C=\{x\}$ היא קבוצה פתוחה. לכן סגורה.

טענה 4.4 אם מרחב מטרי הוא T_n אז הוא גם $T_1 \Rightarrow T_3 \Rightarrow T_2 \Rightarrow T_1 \Rightarrow T_0$ מענה 4.4 אז הוא גם T_n אז הוא גם T_n אז הוא גם ווענה 4.4 אקסיומות ההפרדה) מענה T_n אז הוא גם ווענה T_n אז הוא גם ווענה א

בעוד שלא נוכיח טענה זו, נבהיר כי היא נובעת ישירות מהגדרת ההפרדה. נבחין כי המספור הוא עתה לא ארעי כפי שאולי היינו שוגים לחשוב, אלא האקסיומות מסודרות לפי "כוחן" בהפרדת דברים במרחב. נמשיך ונראה טענה שתיצוק משמעות למרחבים נורמליים.

V סענה $A\subseteq U$ קיימת למרחב וורמלי) אם ורק אם לכל קבוצה סגורה A וורמלי אם ורק אם לכל קבוצה פתוחה אם מענה $A\subseteq U$ מרחב מרחב וורמלי) אם $A\subseteq V\subseteq \overline{V}\subseteq U$

כלומר לכל קבוצה סגורה וקבוצה פתוחה שמכילה אותה, יש קבוצה פתוחה ביניהן כך שגם הסגור שלה ביניהן.

תוחות פתוחות, ולכן יש קבוצות וזרות, ולכן יש פתוחות בקבוצה פתוחות. בכיוון הראשון נניח שX נורמלי וכן ש $A\subseteq U$ קבוצה סגורה אוכלת בקבוצה פתוחות. בכיוון הראשון נניח ש $A\subseteq V\subseteq V\subseteq X\setminus W\subseteq U$ כך ש $A\subseteq V\subseteq V\subseteq X\setminus W\subseteq U$ נובע ש $A\subseteq V\subseteq V$ כך ש $A\subseteq V\subseteq V$ כך של אוכן מוחות פתוחות.

, כך שמתקיים, פתוחה על קיימת קבוצה פתוחה על אז קיימת קבוצה על גויח השני, נניח ש $A,B\subseteq X\setminus B$ בכיוון זרות ולכן אז קבוצות סגורות סגורות ולכן אז קיימת פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז קבוצות פתוחה אז המתקיים,

$$A \subset V \subset \overline{V} \subset X \setminus B$$

 $V\cap (X\setminus \overline{V})=\emptyset$ ונובע גם ונובע $B\subseteq X\setminus \overline{V}$ ולכן

טענה 4.6 (תX imes X) שקול למרחב האוסדורף, X imes X מרחב האוסדורף, כלומר מרחב X imes X מענה פולוגיית המכפלה.

7.4.2025-4 שיעור 4 שיעור 4

, כי, נבחין כי, $U_{x,y}\cap V_{x,y})\cap \Delta_X=\emptyset$ מרחב האוסדות, כלומר $y\in V_{x,y}$ וי $x\in U_{x,y}$ שי x
eq y לכל לכל מרחב האוסדורף. לכל מרחב האוסדורף. לכל מרחב האוסדורף. לכל מרחב האוסדורף. לכל מרחב האוסדורף.

$$X \times X \setminus \Delta_X = \bigcup_{x \neq y} (U_{x,y} \times V_{x,y})$$

ובטופולוגיית המכפלה זוהי קבוצה פתוחה.

בכיוון השני נניח ש־ $(x,y)\in (X\times X)\setminus \Delta_X$ או א x
eq y פתוחה, אם $X\times X\setminus \Delta_X$ או הגדרת טופולוגיית בכיוון השני נניח ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ ואף ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$ פתוחות כך ש־ $(x,y)\in U\times V\subseteq X^2\setminus \Delta_X$

 T_i טענה Y_i או גם אז גם אז גם Y_i הוא מרחב אז גם א גם א גם א גם א גם א גם או גם אז גם אז גם אז גם אז מרחב אז גם אז מרחב אז גם אז מרחב אז גם א

. T_3 בעבור הטענה נובעת ישירות מהגדרת אקסיומות ההפרדה עבור הטענה נובעת ישירות הטענה וובעת אקסיומות ההפרדה וובעת ישירות מהגדרת אקסיומות החובעת ישירות מהגדרת אקסיומות אקסיומות וובעת ישירות הטענה וובעת ישירות מהגדרת אקסיומות החובעת ישירות הטענה וובעת ישירות המענה עבור החובעת ישירות המענה עבור החובעת ישירות החובעת החובעת החובעת החובעת ישירות החובעת הח

המחבים דוגמות דוגמות שבו נוכל מענה אל Tounter examples in Topology $.T_4$ הארה מענה זו לא נכונה עבור למצוא דוגמות רבות למרחבים באלה.

X אוז גם $X \times Y$ אז גם $i \in \{1,2,3\}$ טענה X אם מרחבים אם אוז מכפלה) אם אוז מרחבי מכפלה אז גם X אוז גם אוז מרחבי

הקבוצה, את נוכל להגדיר אז $(x,y)\in X imes Y$ אם עבור T_1 אם הוכחה.

$$(X \times (Y \setminus \{y\})) \cup ((X \setminus \{x\}) \times Y)$$

זוהי קבוצה סגורה מהגדרת טופולוגיית המכפלה.

. רגולריX imes Y בניח שלינו להראות ועלינו T_1 ורגולריים הם X,Y הם בניח עניח הטענה עבור להוכחת הטענה בל המX,Y הם המX,Y

 $z\in V, C\subseteq W, Z\setminus W\subseteq$ בי כך כך אורות זרות מגורות סגורה, $z\notin C$ סגורה, נטמן בעבור להוכחת הלמה, לכיוון הראשון בעבור להוכחת הלמה, בעבור להוכחת הלמה, לכיוון הראשון בעבור לכיוון הראשון בעבור לכיוון הראשון בעבור בעבור בעבור בעבור לכיוון הראשון בעבור בעבור בעבור בעבור בעבור בעבור לכיוון הראשון בעבור ב

האפיון האחרון והחשוב שנראה עתה למרחבים המקיימים אקסיומות הפרדה הוא הקשר למרחבים מטריים.

 T_4 מענה (אז מטריי, אז הוא מטריים) אם מטריים מטריי, אז הוא מרחב מטרי, אז הוא מענה

הוכחה. נניח ש $X \subseteq X$ תת־קבוצה כלשהי ו $X \in X$. נרחיב את הגדרת המטריקה להגדרת הקוטר, כלומר נאמר שמתקיים,

$$\rho(x, E) = \inf\{\rho(x, y) \mid y \in E\}$$

.3 מטענה מטענה כמסקנה כמסקנה אז p(x,E)>0 אז או $x\notin E$ רה סגורה ב

 $V=igcup_{b\in B}B_{
ho(b,A)}(b)$ ו בניח ש $U=igcup_{a\in A}B_{
ho(a,B)}(a)$ אז אי $a\in A,\
ho(a,B)>0, \forall b\in B,\
ho(b,A)>0$ בניח זרות. $A,B\subseteq X$ הן פתוחות וזרות.

נעיר שהכיוון ההפוך נקרא מרחב מטריזבילי, ונעסוק בנושא זה בהמשך הקורס. נעבור לדוגמות.

 T_1 אבל א T_2 אבל הוא מרחב X הוא במקרה הא X במקרה אבל א $X=\{x,y\}$ עם הטופולוגיה אבל א גדיר $X=\{x,y\}$

7.4.2025-4 שיעור 4 שיעור 4 4

במקרה הה בסיס של כל הקבוצות שמשלימן סופי, כלומר מהבסיס של המושרית מהבסיס של במקרה מהבסיס על נגדיר אבל נגדיר במקרה מהבסיס של כל הקבוצות שמשלימן במקרה $X=\mathbb{R}$ במקרה המושרית המושרית המושרית מהבסיס של כל הקבוצות שמשלימן האבל לא במקרה המושרית מהבסיס של כל הקבוצות שמשלימן המושרית מהבסיס של כל הקבוצות המושרית המושרית מהבסיס של כל הקבוצות שמשלימן המושרית המושרית המושרית המושרית המושרית מהבסיס של כל הקבוצות שמשלימן המושרית המושרית מהבסיס של כל הקבוצות שמשלימן המושרית המושרית המושרית המושרית מהבסיס של כל הקבוצות שמשלימן המושרית המושרית

, יחד עם הבסיס, \mathbb{R} הקבוצה מעל כמרחב כמרחב הטופולוגי הבסיס, נגדיר את נגדיר נגדיר הטופולוגי $\mathbb{R}_{\frac{1}{m}}$

$$\mathcal{B} = \{(a,b) \in \mathbb{R}^2 \mid a < b\} \cup \{(a,b) \setminus \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \mid x, y \in \mathbb{R}, x < y\}$$

ההוכחה ש־ \mathcal{B} מושארת לקורא.

. נבחין אוסדורף, שגם שגם שגם להסיק לכן נוכל מרחב האוסדורף, וזו האחרונה היא תחב האוסדורף, אוסדורף, לכן נוכל מיתר של $\mathbb{R}_{\frac{1}{n}}$ מרחב האוסדורף.

נראה ש־ $\mathbb{R}_{\frac{1}{n}}$ לא $\mathbb{R}_{\frac{1}{n}}$ (כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־ $0\in U$ בחין כי $\{\frac{1}{n}\mid n\in\mathbb{N}\}$ סגורה, ונראה כי לא ניתן להפריד בינה לבין 0. נניח ש־0 כו 0 כי 0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה מהצורה 0 עבור 0 עבור 0 פתוחה אז 0 ש־0 פתוחה אז 0 מכילה איבר בסיס, לכן 0 מכילה קבוצה לבן 0 מכילה 0 בינה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 פתוחה אז 0 פתוחה איבר בסיס, לכן 0 מכילה איבר בסיס, לכן 0 מכילה בסיס, לכן 0 מכילה איבר בסיס, לוביה בסיס, לוביה

$.T_4$ אבל אבל אברחב שהוא למרחב נראה נראה 4.5 נראה דוגמה

 $\mathbb{R}_L imes \mathbb{R}_L$ אז T_3 בפרט גם לכן בפרט אז הוא \mathbb{R}_L אז הוא $L=\{[a,b)\mid a< b, a,b\in\mathbb{R}\}$ עם הבסיס עם הנוצרת על \mathbb{R}_L אז הטפולוגיה הנוצרת על מכפלות מרחבי הפרדה.

היא הטופולוגיה הדיסקרטית, ולכן כל תת־קבוצה ה' מושרית על מ' \mathbb{R}^2_L היא מושרית כל תת־קבוצה בחין כי הטופולוגיה הדיסקרטית, ולכן כל תת־קבוצה ברצה להראות ב' \mathbb{R}^2_L , בשיעור הבא נראה את המשך הסתירה ל' T_4 :

8.4.2025 - 5 שיעור 5

אקסיומות ההפרדה — המשך 5.1

נמשיך בהוכחת הסתירה עבור הדוגמה האחרונה מהשיעור הקודם.

. ערכית, ולכן הד־חד שהיא שהכיח לנו להוכיח ונותר מתירה, ולכן מקבלת ערכית, ולכן ψ

וזה בלתי $\mathcal{P}(L)\hookrightarrow\mathcal{P}(D)\hookrightarrow L$ אז נוכל לבנות איז $|\mathbb{R}|=|L|$ אבל שיכון שיכון שיכון \mathbb{R} . יש לנו שיכון שיכון שיכון $\mathcal{P}(D)\hookrightarrow\mathbb{R}$ אפשרי.

 T_4 במרחבי במיוחד משמעותית נסיים עם למה

f:X o [0,1] אם X מרחב טופולוגי T_4 , אז לכל זוג קבוצות סגורות זרות $C,D\subseteq X$, קיימת פונקציה רציפה T_4 , אז לכל זוג קבוצות סגורות T_4 , אז לכל זוג קבוצות סגורות אוריסון אם f:X o [0,1] אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון אם T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון אם T_4 מרחב טופולוגי אז לכל זוג קבוצות סגורות זרות T_4 אוריסון אוריסון T_4 מרחב טופולוגי מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 אוריסון T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 מרחב טופולוגי T_4 מרחב טופולוגי T_4 אז לכל זוג קבוצות סגורות זרות T_4 מרחב טופולוגי T_4 מרחב עדים טופולוגי עדים טו

קהוח, עבור ווער C_0 כי סטורה C_0 נניח ש־ C_0 מניח ש־ C_0 נניח ש־ C_0 וכן C_0 וכן C_0 וכן C_0 סטורה אלכן פרוחה. נניח ש־ C_0 מרחב באופן רקורסיבי קבוצות מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות C_0 שוב מדובר בקבוצה סגורה ובקבוצה פתוחה. נגדיר כך באופן רקורסיבי קבוצות ווער מדי מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה פתוחה. מדובר בקבוצה בקבוצה מדובר בקבוצה בקבוצה מדובר בקבוצה מדובר בקבוצה מדובר בקבוצה בקבוצה בקבוצה מדובר בקבוצה בקבוצה

$$C_0 \subseteq V_{\frac{1}{2n}} \subseteq C_{\frac{1}{2n}} \subseteq V_{\frac{2}{2n}} \subseteq C_{\frac{2}{2n}} \dots$$

ונגדיר לכל $x \in X$ את הפונקציה,

$$f(x) \begin{cases} \inf\{t \in [0,1] \mid x \in V_t\} & \exists t, x \in V_t \\ 1 & \text{else} \end{cases}$$

אנו טוענים ש־f מקיימת את האמור, כלומר f(x)=C לכל f(x)=1, וכן f(x)=f(x)=0 הציפה. נשים לב ש־f(x)=f(x)=0 אנו טוענים ש־f(x)=f(x)=0 מקיימת את האמור, כנחין גם שעבור f(x)=x נובע ש־f(x)=x לאף f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־f(x)=x נובע ש־להראות רציפות. אנו יודעים בחיל מקור של קבוצה שכל מקור של קבוצה של f(x)=x מספיק לבדוק את הרציפות עבור תת־בסיס של הקטע, שכל מקור של קבוצה פתוחה הוא פתוח. נבחר את תת־הבסיס f(x)=x ווא לכל f(x)=x מספיק לבדוק את הרציפות עבור ב"f(x)=x מחוח. בחר את תת־הבסיס f(x)=x ווא לכל שביע מספיק לבדוק את הרציפות עבור ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של הקטע, שכל מספיק לבדוק את הרציפות ב"f(x)=x מספיק לבדוק את הרציפות עבור תת־הבסיס של האמרקיים,

$$x \in f^{-1}([0,b))$$

 $f^{-1}([0,b))\subseteq$ אז נובע ש $f^{-1}([0,b))\subseteq$ אז לכן קיים $f^{-1}([0,b))$ מספר דיאדי (מהצורה הדרושה). לכן $f^{-1}([0,b])$ לכן קיים $f^{-1}([0,b])$ מספר דיאדי (מהצורה $f^{-1}([0,b])$ נניח שר $f^{-1}([0,b])$ אז שו מצאנו ש $f^{-1}([0,b])$ ווע שר $f^{-1}([0,b])$ אז מצאנו ש $f^{-1}([0,b])$ אז $f^{-1}([0,b])$ או $f^{-1}([0,b])$

21.4.2025 - 6 שיעור 6

6.1 אקסיומות מנייה

ראינו עד כה מספר שימושים לבסיסים של טופולוגיה, הגדרה 1.10. עתה נגדיר הגדרה משלימה לבסיס בהקשר מקומי.

בהתאם נגדיר את ההגדרה המהותית הראשונה שעוסקת במנייה.

הגדרה 6.3 (אקסיומת המנייה השנייה) נאמר שמרחב X מקיים את אקסיומת המנייה השנייה השנייה (אקסיומת המנייה באים בן־מניה ל־X

הגדרה 6.4 מרחב לינדולף) X יקרא מרחב לינדולף, אם לכל כיסוי פתוח של X יש כיסוי בן־מניה.

 $X\subseteq \bigcup_{lpha\in J}U_lpha$ בלומר אם כך כיסוי פתוח, אז פייסוי כיסוי אב כלומר אב כלומר כיסוי אז כיסוי פתוח, אז פייסוי

. עתה משהגדרנו שפה לדבר בה על הקונספט של מנייה במרחבים טופולוגיים, נוכל לעבור למספר טענות.

טענה 6.6 מרחב רגולרי המקיים את אקסיומת המנייה השנייה הוא נורמלי.

 T_4 המקיים את אקסיומת המנייה השנייה ד T_3 בפרט מרחב

הוכחה. נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות נורמליות, נניח ש־X רגולרי המקיים את אקסיומת המנייה השנייה. יהי \mathcal{B} בסיס בן־מניה. אנו רוצים להראות וואנו רוצים למצוא להן הפרדה. לכל $a\in A$ כך ש־ $a\notin B$ יש קבוצה פתוחה $a\in U_a\subseteq \overline{U}_a\subseteq X\setminus B$ כאשר $a\in U_a\subseteq A$ (כאשר $a\in A$), כאשר $a\in A$ וואכן האוסף $a\in A$ האוסף $a\in A$ האוסף $a\in A$ הווע על־ידי $a\in A$ (בחור את בן־מניה, ונוכל לכתוב אותו על־ידי $a\in A$ (באות אופן אפשר למצוא קיבלנו ש־ $a\in A$ באותו אופן $a\in A$ האוסף $a\in A$ (באומף אומף אומף בוצות פתוחות $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כך ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ וסדרה $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ כר ש־ $a\in A$ וסדרה $a\in A$ וסדרם ש־ $a\in A$ וסדרם ווחות $a\in A$ ווחות מורב במור ווחות מורב במורב במור ווחות מורב במור ווחות מורב במורב במור ווחות מורב במורב במורב

לכל $S=\bigcup_{k\in\mathbb{N}}S_k$ נגדיר בהתאם $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{U}_{a_k}$ וכן $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ נגדיר בהתאם לכל $S_k=U_{a_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדיר אז $K\in\mathbb{N}$ אז החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ אם החיתוך לא ריק, אז $T=\bigcup_{k\in\mathbb{N}}T_k$ בי אלה קבוצות פתוחות. נבחין כי $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ונבדוק ש־ $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ אם החיתוך לא ריק, אז $T_k=U_{b_k}\setminus\bigcup_{i=1}^k\overline{V}_{b_i}$ ולכן נובע,

$$S_m = U_{b_k} \setminus \bigcup_{i=1}^k \overline{T}_i \supseteq T_n$$

וזו סתירה.

נרצה לדון בקשר שבין מרחבים מטריים למרחבים טופולוגיים.

הגדרה 6.7 (מרחב מטריזבילי) מרחב טופולוגיX נקרא מטריזבילי אם קיימת מטריקה על X שמשרה את הטופולוגיה.

כבר ראינו שכל מטריקה משרה טופולוגיה שמקיימת את T_4 , עתה נרצה להבין מתי בדיוק טופולוגיה אכן מושרית מאיזושהי מטריקה. T_4 תת־מרחב של מרחב מטריזבילי הוא מטריזבילי.

משפט 6.8 (משפט המטריזביליות של אורסון) אם X מרחב טופולוגי T_{i} המקיים את אקסיומת המנייה, אז X מטריזבילי.

, המכפלה עם המכפלה וויע סופולוגיית עם במרחב מטרי במרחב במרחב המכפלה הוא הכללי הרעיון הכללי הוא לשכן במרחב מטרי ב

$$d(x,y) = \sum_{n=1}^{\infty} \frac{|x_n - y_n|}{2^n}$$

 $\psi(X)$ ל־ל מ־ל העתקה ערכית ערכית לי ע $\psi:X o [0,1]^{\mathbb{N}}$ ולבנות העתקה

 $x\in V_{xy}\subseteq$ בסיס בחצות למצוא ניתן ניתן $x\in U_{xy},y\in W_{xy}$ כך כך ער ער x
eq yיש פתוחות זרות $x\neq y$ יש פתוחות לכל לכל

21.4.2025 - 6 שיעור 6 6.2 קשירות

אוריסון קיימת של אוריסון בת־מניה. הברמניה. אז $\Lambda=\{(u,u)\in\mathcal{B}^2\mid\emptyset\not\subseteq V\subseteq\overline{V}\subseteq U\}$ אוריסון באוסף כל מבונן באוסף $\overline{V}_{xy}\subseteq U_{xy}$. נגדיר (גדיר $\{g_k\mid k\in\mathbb{N}\}=\{f_{(u,v)}\mid (u,v)\in\Lambda\}$ כדרת פונקציות אנו מקבלים דרת ו־ $f\mid_{\overline{V}}=0$ ר־ $f\mid_{X\setminus U}=1$ כך ש־ $f\mid_{X\setminus U}=1$ כדרת פונקציות ריש ביי רציפות. רציפות איא הומיאומורפיזם. על־ידי $\psi:X o\psi(X)$ על־ידי ערכית טוענים כי ψ היא היא ענים כי ψ היא הומיאומורפיזם. על־ידי $\psi:X o[0,1]^\mathbb{N}$ בטופולוגיית המכפלה שקולה לרציפות בכל קורדינטה, לכן מרציפות g_k לכל g_k מרציפות בכל קורדינטה, לכן מרציפות שלכל g_k לכל מרציפות בכל הציפות שלכל אוניית המכפלה בכל הציפות מכך שלכל אוניית במופולוגיית המכפלה בכל הציפות מכך שלכל אוני במופולוגיית במופולוגיית המכפלה במופולוגיית בכל המרציפות אוני במופולוגיית במופולוגית במופולוגיית במופולוגית ש"ע $g_k(y)=1, g_k(x)=0$ ו־ם. אנו $g_k=f_{(v,u)}$ יש $x\in V\subseteq \overline{V}, y\in X\setminus U$ בראות הומיאומורפיזם. אנו $x\in V\subseteq V$ $W\subseteq X$ אלכל צריך להראות אלכל ביץ, כלומר באיפה כאשר איז $\psi^{-1}:E o X$ יודעים שלכל אריד, וצריך להראות שלכל ש $k(x)\in\mathbb{N}$ יהי $x\in V\subseteq\overline{V}$ בר ש־ $V\in\mathcal{B}$ כך שימת $X\in U\subseteq W$ כך שימת ער קיימת $X\in U\subseteq W$ פתוחה ב־ $X\in U$ לכל היימת $X\in U\subseteq W$ כך שימת פתוחה, שגם $\int_{x\in W}g_{k(x)}^{-1}([0,1))=W$ ונובע ש־ $x\in g^{-1}([0,1))\subseteq U\subseteq W$ אז $g_{k(x)}\mid_{X\setminus U}=1$ וכן ומתקיים, $g_{k(x)}(x)=0$ וכן ש־ $g_{k(x)}=f_{(v,u)}$ אז מרש ,ולכן, $g_{k(x)}^{-1}=\psi^{-1}\circ\pi_{k(x)}^{-1}$ ולכן ולכן $g_{k(x)}=\pi_{k(x)\circ\psi}$

$$W = \bigcup_{x \in W} \psi^{-1}(\pi_{k(x)}^{-1}([0,1))) = \psi^{-1}(\bigcup_{x \in W} \pi_{k(x)}^{-1}([0,1)))$$

 $.\psi(W)=(igcup_{x\in W}\pi_{k(x)}^{-1}([0,1)))\cap E$ ונובע

6.2 קשירות

הגדרה 6.9 (קשירות) מרחב טופולוגי X יקרא קשיר אם לא ניתן להציג אותו כאיחוד של שתי קבוצות פתוחות זרות לא ריקות.

הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. זאת שכם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות אורה. הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של קבוצות סגורות. הערה באופן שקול גם אם לא ניתן להציג את המרחב כאיחוד זר של הביעות המרחב באופן שקול אם אם אורה באופן שקול גם אם אורה באופן שקול אם המרחב באופן שקול אם המרחב באופן שקול אם המרחב באופן שקול אם המרחב באופן שקול אם אם אורה באופן שקול אם המרחב באופן שקול אם אורה באופן שקול אם המרחב באופן שקול אופן של המרחב באופן באופן של המרחב באופן באופן באופן באופן באופן באופן תו. פתוחות, U^C , V^C וכמובן $U^C \cup V^C = X$ אז $U \cap V = \emptyset$

(a,b),[a,b],(a,b],[a,b] מהן תתי־הקבוצות של \mathbb{R} התשובה היא קטעים, (a,b), מהן תתי־הקבוצות הקשירות של

היא קבועה. היא קשיר אם היסקרטית, היא הדיסקרטית, עם היא או או הדיסקרטית, היא קבועה. הערה מרחב מרחב מרחב או ורק אם כל פונקציה כל פונקציה הציפה להיא או היא קבועה.

טענה 6.10 (תכונות של קשירות) התכונות הבאות מתקיימות,

- קשירה f(X) אם f:X o Y קשיר f:X o Y אם .1
 - קשירה אז \overline{A} קשירה אז $A\subseteq X$ השירה.
- קשירה $\bigcup_{\alpha\in I}A_{\alpha}$ אז $\alpha\in I$ כך ש־ $A_{\alpha}\cap A_{\beta}
 eq\emptyset$ כך ש־ $\beta\in I$ כך שירה קשירות וקיים $\{A_{\alpha}\}_{\alpha\in I}$ אז מת כוכב, אם $\{A_{\alpha}\}_{\alpha\in I}$
 - קשירה $Y=\prod_{\alpha\in I}X_{\alpha}$ אם קשירים או מרחבים טופולוגיים קבוצת אם $\{X_{\alpha}\}_{\alpha\in I}$.4

אבל $f(A)=\{0\}$ אבל הכלליות נניח ש־ \overline{A} לא קשירה, לכן נובע שיש $f:\overline{A} o \{0,1\}$ לא קבועה. בלי הגבלת ש־ \overline{A} לא קשירה, לכן נובע שיש . חזו סתירה ולכן $\overline{A}\subseteq f^{-1}(\{0\})$ שי סגורה ונובע אילכן חזו סתירה ולכן $A\subseteq f^{-1}(\{0\})$ סגורה ולכן וזו סתירה.

A imes B אז שירים קשירים טופולוגיים מרחבים אם A,B אם עדר. שיר להראות ונרצה ונרצה טופולוגיים מרחבים או מרחבים ל $\{X_{lpha}\}_{lpha \in I}$ מרחבים או נעבור להוכחת טענה A,B מרחבים טופולוגיים ונרצה להראות ש קשיר, כנביעה מטענה 3, שכן,

$$A \times B = (\bigcup_{a \in A} \{a\} \times B) \cup (\bigcup_{b \in B} A \times \{b\})$$

 $A\times B=(\bigcup_{a\in A}\{a\}\times B)\cup (\bigcup_{b\in B}A\times \{b\})$ נרצה למצוא תת־קבוצה של $f:I\to \bigcup X_\alpha$ כאשר קבע, $f\in Y$ נקבע, נגדיר. נגדיר אפופה של אתריקבוצה של למצוא הבחירה. נקבע $P_F = \{h \in Y \mid h(\alpha) = f(\alpha) \forall \alpha \notin F\}$ כאשר $Z = \{h \in Y \mid |\{\alpha \in I \mid h(\alpha) \neq f(\alpha)\}| < \infty\} = \bigcup_{F \subseteq I, |F| < \infty} P_F$ אנו טוענים שתי שרא שרC קשירה היא שרC קשירה היא שרC קשירה היא שרכל קשירה היא שרבר קשירה, השנייה היא שרבר קשירה אנו טוענים שתי טענות, הראשונה היא שלכל P_F . מהגדרת מופולוגיית מהגדרת מהגדרת אהכפלה. $P_F\cong\prod_{y\in F}X_y$

נבהיר שמטרתנו הייתה למצוא קבוצה צפופה על ולהשתמש בטענה על סגור על סגור על צפופה. צפופה צפופה צפופה צפופה בטענה על ולהשתמש בטענה על אוג בהיר שמטרתנו הייתה למצוא אפופה אובה בטענה על האחתמש בטענה על אובה במענה על האחתמש בטענה בטע $Z_F=\{h\in\prod_{lpha\in I}X_lpha=Y\mid$ נגדיר גדיר הבא הכוכב. בשלב הבא המכפלה קשירה המכפלה קשירה המכפלה הבא הכוכב. בשלב הבא הכוכב. בשלב הבא המכפלה המכפלה המכפלה אורה המכפלה המכפל המכפלה המכפלה המכפלה המכפ אם נגדיר , $f_F(lpha)=f(lpha)$, או $f_F:I\setminus F o igcup_{lpha\in I\setminus F}X_lpha$ עבור $Y_F imes\{f_F\}$, אם נגדיר טוג של שווה ל־ $Y_F imes\{f_F\}$ אם נגדיר או אין איז איז איז פעצם סוג של שווה ל־ נקונן מספיק להתבונן אפופה ולכן קבוצה שכן אפופה לכל על מתקיימים מתקיימים לכל $f\in Z_F$ אשכן שכן קבוצה קשירה, אפופה ולכן לכל ב $Z=\bigcup_{F\subseteq I, |F|<\omega} Z_F$ בבסים שהגדרנו בעזרתו את טופולוגיית מתכפלה, כל מתקיים $\emptyset
eq B \in \mathcal{B}$ מתקיים שלכל של הטופולוגיית שלכל בסים שהגדרנו בעזרתו את מתקיים שלכל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים שלכל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים שלכל מתקיים שלכל של הטופולוגיית המכפלה, כל מתקיים של הטופולוגיית המכפלה, בתחום של הטופולוגיית המכפלה, בתחום של הטופולוגיית המכפלה, בתחום של הטופולוגיית הטופולוגית הטופולוגיית הטופולוגיית הטופולוגיית הטופולוגית הט g(eta)=f(eta)כך ש־ $g\in B$ כך לכל $\emptyset
eq U_lpha\subseteq X_lpha$ סופית ו $F\subseteq I$ סופית כאשר הוא מהצורה $G\in B$ כך ש־ $G\in B$ סופית ו $G\in B$ סופית ו $G\in B$ סופית ו

21.4.2025 - 6 שיעור 6 6.2

, אז נגדיר, או היושהי איזושהי מ־ $\emptyset
eq \emptyset$, מ־ $\emptyset : A \notin F$ לכל

$$B \ni g(\alpha) = \begin{cases} h(\alpha) & \alpha \in F \\ f(\alpha) & \alpha \notin F \end{cases}$$

 $g\in Z_F\subseteq Z$ נטען כי $g\in Z$, זאת שכן

22.5.2025 - 7 שיעור 7

7.1 קשירות – המשך

התוחה וקשירה $x\in X$ אם לכל סביבה W של $x\in X$ אם לכל קשיר מקומית בנקודה אוא קשיר מקומית אם און נאמר שהמרחב הטופולוגי הוא קשיר מקומית לכל $x\in X$ האמר שx קשיר מקומית אם x קשיר מקומית לכל $x\in X$

x את מכילה אשר המקסימלית הקשירות הקבוצה הת-הקבוצה במרחב במרחב x במרחב במרחב רכיב קשירות) רכיב הקשירות של

. $\bigcup_{x \in Z \subset X} Z$ את אכן קיימת אכן הטופולוגיה, לאיחוד אסגירות הסגירות בשל הסגירות אכן אורה אכן הערה

. $\{\frac{1}{3}\}$ ־ש היא התשובה התשובה ב־ \mathbb{Q} ? ב־לוגמה 7.1 מה הוא רכיב הקשירות של

lpha(a) ל־lpha(a) נאמר שזוהי מסילה ביA היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל־lpha(a) הגדרה lpha(a) מסילה lpha(a) היא פונקציה רציפה lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lpha(a) האמסילה lpha(a) מסילה בין lpha(a) היא פונקציה רציפה lpha(a) ל-lpha(a) כך ש־lpha(a) כך ש־lpha(a) נאמר שזוהי מסילה בין lpha(a) ל-lpha(a) ל-lp

כך $x\in U\subseteq W$ המרחה של x יש קבוצה לכל סביבה אם לכל מקומית קשיר מסילתית המרחב א קשיר מסילתית מקומית ב־x אם לכל סביבה איש של על המרחב א קשירה מסילתית.

 $x \in X$ קשיר מסילתית מקומית אם x קשיר מסילתית מקומית לכל בהתאם

נתעניין להבין מה הקשר בין ארבעת מושגי הקשירות שראינו זה עתה. נתחיל בתכונה חשובה של קשירות מסילתית.

מסילתית אחf(X) אם אז $f:X\to Y$ ו מסילתית אסילתית אם 7.6 אם 7.6 מענה

lpha(0)=p' כך ש־ lpha:[0,1] o X הוכחה. יהיו f(p')=p, f(q')=q כך ער p', $q'\in X$ כך ש־ p', אז קיימות נקודות a יהיו a כך ש־ a כך ש־ a כך ש־ a כך ש־ a כר יהיא רציפות היא רציפות היא רציפות היא רציפות המקשרת את a ל־ a מסילה מסילה a מילה המקשרת את a ל־ a הרכבת פונקציות רציפות היא רציפות היא רציפות היא רציפות היא רציפות המקשרת את a ל־ a מסילה המקשרת את a ל־ a כר ש־ a כר ש- a כר ש־ a כר ש־

עתה נראה את הקשר בין קשירות וקשירות מסילתית.

. מענה 7.7 אם X קשיר מסילתית אז X קשיר

לא קשיר $f(X)=\{0,1\}$ אבל $f(X)=\{0,1\}$ אבל דיסקרטית כך שי $f:X \to \{0,1\}$ אבל אבל אבל קשיר אז אם אם הוכחה. אם לא קשיר אז יש פונקציה רציפה לו אבל היים הטופולוגיה הדיסקרטית כך לא קשיר.

נבחין כי קשירות לא גוררת קשירות מסילתית, נראה דוגמה מתאימה.

X=0 נבחין כי \mathbb{R}^2 נבחין ארף הסגור של גרף הסגור של \mathbb{R}^2 , ונניח של \mathbb{R}^2 , ווהי תת-קבוצה של \mathbb{R}^2 , זוהי תת-קבוצה של \mathbb{R}^2 , ונניח של הסגור אל קשיר מסילתית, א קיימת מסילה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה \mathbb{R}^2 , סגור של קבוצה קשירה הוא קשיר ולכן סגור זה אכן קשיר. מהצד השני הוא א קשיר מסילתית, א קיימת מסילה $\alpha(0)=(0,0), \alpha(1)=(1,\sin 1)$ כך שר $\alpha:[0,1]\to X$

28.4.2025 - 8 שיעור 8

- קשירות פינות - 8.1

דוגמה 8.1 נראה מרחב קשיר אך איננו קשיר מקומית. זהו מרחב המסרק,

$$(\{0\}\times[0,1])\cup\{[0,1]\times\{0\}\}\bigcup_{n\in\mathbb{N}}\{\frac{1}{n}\}\times[0,1]$$

מן הצד השני ראינו גם כי קשירות לא גוררת קשירות מסילתית.

,(0,1]ב־ $\sin \frac{1}{x}$ של גרף של \mathbb{R}^2 הצמצום אב **8.2** הצמצום אונמה

$$Y = (\{0\} \times [0,1]) \cup \{(x, \sin\frac{1}{x}) \mid 0 < x \leq 1\}$$

מרחב זה הוא קשיר שכן הוא צמצום של מרחב קשיר והגרף רציף כתמונה של פונקציה רציפה ממרחב קשיר (קטע).

,נניח בשלילה שY קשיר מסילתית ולכן יש בפרט מסילה $\alpha:[0,1] o Y$ כך שמתקיים,

$$\alpha(0) = (0,0), \qquad \alpha(1) = (1, \sin 1)$$

נמצא . $lpha_1(t_1)=rac{1}{2}$ כך ש־ $rac{1}{2}$ ס כך $t_1<1$ ממשפט ערך הביניים קיים $lpha_1(t_1)=0$ ולכן $\delta(t)=(lpha_1(t),lpha_2(t))$ ממשפט ערך הביניים קיים $\delta(t)=(lpha_1(t),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ נמצא $lpha_1(t_1)=(lpha_1(t_1),lpha_2(t))$ משמתקיים,

$$\alpha(t_2) = (?, -1)$$

ואכן מאפיון ענקבל שלנקודות האה נקודות ככה סדרה של לבנות ככה מדרה של נוכל לבנות אלה יש גבול ($\alpha(t_3)=(?,1)$ שלנקודות היינה לגבולות נקבל.

$$\alpha(0) = \lim_{n \to \infty} t_n = \lim_{n \to \infty} (-1)^n$$

אבל גבול זה לא קיים.

מענה 8.1 אם X קשיר וקשיר מסילתית מקומית אז X קשיר מסילתית.

, הותוחה, אנו יודעים גם אנו יודעים אנו אנו יודעים ש־ $A \neq \emptyset$ ולכן אנו יודעים ש־ $A \neq 0$ ונתבונן במחלקת הקשירות של $a \in A$ ונסמנו אנו יודעים מסילתית ולכן בפרט ישנה סביבה של $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$ אנו יודעים כי $a \in A$

נטען גם כי A סגורה, הראינו שבמרחב קשיר מסילתית מקומית כל רכיב קשירות מסילתית הוא קבוצה פתוחה, אבל זה גורר שכל רכיב קשירות מסילתית האחרים. מסילתית האחרים.

A=Xאבל $x_0\in A$ אבל אבל $A\in\{X,\emptyset\}$ אז

8.2 קומפקטיות

. הגדרה של X יש תת־כיסוי פופי. אם לכל כיסוי פתוח של א יש תת־כיסוי סופי. מרחב טופולוגי א יקרא קומפקטי אם לכל כיסוי פתוח של א יש תת־כיסוי סופי.

 $X=igcup_{lpha\in I_0}U_lpha$ שים סופי כך אז קיים $X=igcup_{lpha\in I}U_lpha$ כך שר $X=igcup_{lpha\in I}U_lpha$ כך ער $X=igcup_{lpha\in I}U_lpha$ כך שר $X=igcup_{lpha\in I}U_lpha$ כך שהמכיל את את מרחב המכיל את את היא מרחב קומפקטית אם היא מרחב קומפקטי כתת־מרחב של האוב בעוב באופן דומה עבור כיסוי פתוח המכיל את את היא מרחב היא מרחב קומפקטית אם היא מרחב היא מרחב

נראה הגדרה שקולה בניסוח של קבוצות סגורות,

את להן שיש סגורות ב־X כך שיש להן את לקומפקטיות) את לכל אוסף אם לכל אוסף אם לכל אוסף מרחב טופולוגי קומפקטיות מרחב אורק אם לכל אוסף אם לכל אוסף אם לכל אוסף או של $I_0\subseteq I$ או יש להן אין איש להן סגורה לכל מופית, אם $I_0\subseteq I$ סופית כך שמתקיים, מרחב לכל מורה לכל מופית, אם $I_0\subseteq I$ או יש לכל אוסף לכל מופית, אם סגורה לכל מופית, אם סגורה לכל שמתקיים, אם סגורה לכל מופית, אם סגורה לכל מופית, אם סגורה לכל מופית, אם מופית, אם מופית, אם מופית, אם מופית כך שמתקיים, אם מופית, כלומר שי

$$\bigcap_{\alpha \in I_0} F_\alpha = \emptyset$$

. הטומה אסורה אם ורק אם ורק אם היא קומפקטית היא $A\subseteq\mathbb{R}^n$ העת־קבוצה שתת־קבונה האינו בקורסים בקורסים שתת־קבוצה או היא היא קומפקטית אם האינו בקורסים אורה וחסומה.

עבור המקרה של $A \subseteq \mathbb{R}$ עבור המקרה של

$$A\subseteq\bigcup_{n\in\mathbb{N}}(-n,n)=\mathbb{R}$$

28.4.2025 - 8 שיעור 8

$$V \cap (\bigcup_{i=1}^{N} U_{a_n}) = \emptyset$$

. בהמשך. יותר כללית ולכן $V\subseteq\mathbb{R}\setminus A$ ולכן ולכן ענה יותר ההפוך ולכן ער ולכן א ולכן ולכן ולכן ער אונובע ער ולכן ולכן ולכן ולכן אולכן ולכן אונובע ש

היא סגורה, אוסדורף X היא טענה מופרים במרחב במרחב הומפקטית לל היא היותר, כל היא סגורה, הוכחנו כרגע מענה הזקה יותר, כל תת־קבוצה קומפקטית

היא $A=\{a\}$ הטריוויאלית, אז הטריוויאלית, קיימים מרחבים איימה קיימים אינה סגורה. לדוגמה האינה קומפקטית עם תת־קבוצה קומפקטית אינה סגורה. לדוגמה אבל לא סגורה.

טענה A אם X קומפקטית ו $A\subseteq X$ סגורה אז א קומפקטית.

אוסף את את מכסות כך שהן אוסף אוסף אוסף אוסף אוסף אוסף אוסף גניח כי נניח כי אוסף אוסף אוסף אוסף אוסף אוסף אוסף או

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I} U_{\alpha}$$

וקיבלנו כי יש למרחב תת־סיכוי סופי. כלומר יש $I_0\subseteq I$ סופית כך שמתקיים,

$$X = (X \setminus A) \cup \bigcup_{\alpha \in I_0} U_{\alpha}$$

 $A \subseteq \bigcup_{\alpha \in I_{\alpha}} U_{\alpha}$ ולכן

טענה X מרחב איז פונקציה רציפה של מרחב f:X o Y מרחב אם מרחב לומר אם אם למרחב ווייע למרחב מופולוגי מרחב אומפקטית. f:X o Y אז אז $f(X)\subseteq Y$ אז אז אומפקטית.

טענה 8.6 אם X מרחב האוסדורף קומפקטי אז X מרחב רגולרי.

 $.b \notin A$ ונקודה סגורה סגורה בין להפריד אפשר וגן אפשר חב ורק אם ורק אם מתקיימת רגולריות הוכחה. רגולריות אפשר אפ

 U_a,V_a עבור $a\in U_a,b\in V_a$ שיש פתוחות פובע שיש פתוחות כל $a\in A$ כך שי $a\in A$ קומפקטית, נובע שיA קומפקטית, או נובע שי $A\in U$ סגורה עבור $A\subseteq U$ סגורה עבור או נובע שי $A\subseteq U$ ולכן קיימות נקודות בקודות $A\subseteq U$ שיש בA בין או ולכן קיימות נקודות בקודות בחוחות בחוחות זרות כך שי $A\subseteq U$ ולכן קיימות נקודות בקודות בחוחות בחוחות בקודות בקודות בקודות בקודות בקודות בקודות בקודות בחוחות בקודות בק

. היא הומיאומורפיזם ערכית ערכית ערכית הד-חד ערכית f:X o Y , מסקנה מופולוגי מחדם מחדם ערכית ערכית או מסקנה ערכית ערכית או מסקנה או מסק

עלינו עלינו להראות רק ש־f מקיימת ש־ f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכל תת־קבוצה סגורה f^{-1} רציפה, ונקבל שכלל התנאים להומיאומורפיזם חלים. לכן מקיימת ש־ f^{-1} סגורה. f^{-1} סגורה אבל f^{-1} סגורה ולכן היא קומפקטית ולכן נובע ש־ f^{-1} סגורה. f^{-1} סגורה להראות ש־ f^{-1} סגורה.

. מרחב מרחב אז א מרחב האוסדורף קומפקטי אז א מרחב נורמלי. אם אם 8.8 מענה

 $B\subseteq$ ו זרות, זרות, אז לכל $b\notin A$ מתקיים $b\notin A$ מתקיים $b\in B$ פתוחות זרות, אז לכל $A,B\in X$ קתי קבוצות סגורות וזרות, אז לכל $B\subseteq U_b$ מתקיים $A,B\in X$ קתי קבוצות הללו מפרידות הללו מפרידות הללו מפרידות הא סגורה במרחב קומפקטי ולכן $B\subseteq \bigcup_{i=1}^n V_{b_i}$ כיסוי פתוח סופי, וכן $A,B\subseteq X$ ושתי הקבוצות הללו מפרידות בין A ל $B\subseteq X$ ופתוחות.

טענה $f:X o\mathbb{R}$ רציפה, אז, רציפה, אז מרחב מופולוגי קומפקטי וX

- הסומה (וסגורה) הסומה f(X) .1
- מקסימום ומינימום f^- מקסימום 2.
- . נניח X מטריזבילי ותהי ρ המטריקה אז f רציפה במידה שווה.

הוכחה. נוכיח את הטענות,

. היא סגורה חסומה. \mathbb{R} היא קומפקטית ותת-קבוצה קומפקטית $f(X)\subseteq\mathbb{R}$ היא היא סגורה וחסומה.

2. נניח ש־A ולכן כל A מקיים של A ולכן כל A הוא הסופרימום של A ולכן כל עם מקיים מער מחקבל וסופי, נסמן גם A מקיים A מקיים A מתקבל וסופי, נסמן גם A בA מתקבל ובע אם כך ש־A בובע אם כך ש־A בובע אם כך ש־A בובע אם כך ש־A לכל A בובע אם כך ש־לכל בובע אם כך ש־לכל בובע אם כך ש־לכל בובע אם בוב

$$\bigcup_{i=1}^{n} F_{\epsilon_i} = A \cap [M - \delta, M]$$

עבור $\delta = \min\{\epsilon_1, \dots, \epsilon_n\}$ נובע אם כך,

$$A\cap\{M\}=\bigcap_{\epsilon>0}(A\cap[M-\epsilon,M])=\bigcap_{\epsilon>0}F_\epsilon\neq\emptyset$$

 $M\in A=f(X)$ ולכן נסיק ולכן ולכן

3. מושאר כתרגיל, אבל רמז הוא מספר לבג לכיסוי.

8.3 קומפקטיות במרחבים מטריים

לא נגדיר אך ניזכר במספר הגדרות חשובות מעולם המרחבים המטריים, הן סדרות קושי, שלמות, חסימות לחלוטין. בהינתן שאנו מכירים את המונחים הללו. נעבור למשפט, אך לפני זה נגדיר מונח חדש שיעזור לנו בהוכחת משפט זה.

הכיסוי אם הכיסוי לבג אז (מספר לבג) אז $\lambda>0$ אז אז X אז פיסוי פתוח של הכיסוי מטרי, ויהי ויהי אמפר לבג של מספר לבג אז מספר לבג של הכיסוי אם הגדרה 8.11 אז $B_\lambda(x)\subseteq U_\alpha$ בך ש־ $\alpha\in I$ לכל לבל אז קיים X

 $lpha\in I$ לכל $U_lpha
ot\equiv B_{rac{1}{n}}(x)$ כך שי $x\in X$ שי $n\in\mathbb{N}$ לכל לראות זאת, לכל מספר לבג. כדי לראות מספר לבג. כדי לראות מספר מסריים מטריים מטריים קומפקטיים, תמיד שמספר לבג. כדיר מקומפקטיים סדרתית ונקבל סתירה.

הערה באופן כללי קומפקטיות לא גוררת קומפקטיות סדרתית וגם לא להיפך.

X בואה דוגמה שמצביה שקומפקטיות סדרתית לא גוררת קומפקטיות. נגדיר I=[0,1] וכן I=[0,1] עם טופולוגיית המכפלה. אוכרת דוגמה אוכרים של משפט טיכונוף שנוכיח בהמשך. נגדיר $Y=\{x=(x_i)_{i\in I}\in X\mid |\{\alpha\in I\mid x=1\}|\leq \aleph_0\}$ כתת־מרחב של עם הטופולוגיה המושרית ממנו. אנו טוענים כי Y קומפקטי סדרתית אבל לא קומפקטי.

 $(\alpha,\alpha_1,\ldots,\alpha_n\in I$ נסמן לכל מצד שני, לכל $Y\subseteq igcup_{lpha\in I}U_lpha$ וכן פתוחה, וכן $U_lpha=\{x\in X\mid x_lpha=0\}$ נסמן לכל מצד מצר לא קומפקטי, לכל ל

$$Y \not\subseteq \bigcup_{i=1}^n U_{\alpha_i}$$

 $y_n\in\{0,1\}^J$ עבור $J=igcup_{n=1}^\infty J_n$ עבור lpha
otin J לכל לכל $y_n(lpha)=0$ בת־מניה בת־מניה בת־מניה לכל לכל לכל לכל עבור $J_n\subseteq[0,1]$ עבור לכל מטריים) אז התנאים הבאים שקולים, אז התנאים מטריים מטריים מטריים מטריים מטריים.

- קומפקטיX .1
- קומפקטי סדרתית X .2
- שלם וחסום לחלוטין X .3

 $1\implies 2\implies 3\implies 2\implies 1$ הסדר את המשפט הסדר בו נוכיח את הסדר בו הסדר

29.4.2025 - 9 שיעור 9

- קומפקטיות קומפקטיות 9.1

נמשיך במתן דוגמות,

דוגמה 2.1 נגדיר X, X קומפקטי ממשפט טיכונוף שנוכיח בהמשך. פראה דוגמה למרחב קומפקטי סדרתית שאינו קומפקטי. נגדיר I=[0,1] וכן I=[0,1] וכן I=[0,1] שנוכיח בהמשפט טיכונוף שנוכיח בהמשפט $\alpha\in I$ בגדיר גם $Y=\{x=(x_i)_{i\in I}\in X\mid |\{\alpha\in I\mid x=1\}|\leq\aleph_0\}$ אנו טוענים כי Y אנו טוענים כי Y אנו און על־ידי קבוצות Y, על־ידי קבוצות של Y, על־ידי קבוצות של Y, על־ידי קבוצות של Y, אות שכן אם Y בוצה פתוחה, וכן זהו כיסוי של Y, ביסוי של Y, אות שכן אם Y בוצה פתוחה, אז, על־ידי קבוצות אז,

$$\bigcup_{i=1}^{n} U_{\alpha_i} \subseteq \{x \in X \mid \exists 1 \le i \le n, x_{\alpha} = 0\}$$

,ובמקרה זה נבחר $Z=Z_{lpha}$ עבור,

$$Z_{\alpha} = \begin{cases} 1 & \alpha = \alpha_i, 1 \leq i \leq n \\ 0 & \text{else} \end{cases}$$

, לכל $y^n=(y^n_\alpha)_{\alpha\in I}$ כאשר $\{y^n\}_{n=1}^\infty\subseteq Y$ תהי סדרתית. תהי קומפקטית עתה כי עתה כי $J_n=\{\alpha\in I\mid y^n_\alpha=1\}$

ונבחין כי \aleph_0 נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$ נתבונן במרחב הטופולוגי $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם $J=\bigcup_{n\in\mathbb{N}}J_n$, נגדיר גם מטרי. רעינו שיש מטריקה על $\{0,1\}^I\to\{0,1\}^I\to\{0,1\}^I$ שמתאימה לטופולוגיית המכפלה. נגדיר את ההטלות $J=\bigcup_{n\in\mathbb{N}}J_n$ כאשר $J=\bigcup_{n\in\mathbb{N}}J_n$ מתכנסת. מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$ מדרם מטרי קומפקטי הוא קומפקטי סדרתית ולכן יש תת-סדרה $J=\bigcup_{n\in\mathbb{N}}J_n$

דוגמה 9.2 נראה דוגמה למרחב קומפקטי שאינו קומפקטי סדרתית.

 $f_n:[0,1] o$ לאשר $\{f_n\}_{i=1}^\infty\subseteq X$ כלומר $\{f_n\}_{i=1}^\infty\subseteq X$ מטיכונוף שוב $\{f_n\}$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty\subseteq T$ מקיימת $\{f_n\}_{i=1}^\infty$ מטיכונוף שוב $\{f_n\}_{i=1}^\infty$ קומפקטי. נגדיר סדרת איברים $\{f_n\}_{i=1}^\infty$ ניתן לכתוב כפיתוח בינארי, $\{f_n\}_{i=1}^\infty$ עבור $\{f_n\}_{i=1}^\infty$ ומתקיים, $\{f_n\}_{i=1}^\infty$ נוכל למשל לבחור את הפיתוח שמחלצות את הספרה ה־ $\{f_n\}_{i=1}^\infty$ מהמספר שהן מקבלות. נניח של $\{f_n\}_{i=1}^\infty$ יש כאשר, נגדיר עתה מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$ נגדיר עדור מתכנסת $\{f_n\}_{k=1}^\infty\subseteq \{f_n\}_{k=1}^\infty$

$$s_m = \begin{cases} 1 & m = n_{2k} \\ 0 & \text{else} \end{cases}$$

ונחשב,

$$f_{n_k}(s) = \begin{cases} 1 & k \in 2\mathbb{N} \\ 0 & k \in 2\mathbb{N} + 1 \end{cases}$$

. ולכן f_{n_k} לא מתכנסת

מצאנו שתי דוגמות שאכן מעידות על זה שקומפקטיות וקומפקטיות סדרתית לא גוררות אחת את השנייה במרחבים כלליים.

 $\prod_{lpha\in I} X_lpha$ אז $lpha\in I$ אז מכפלה של מרחב משפט סיכונוף) משפט חימון היא קומפקטיים היא קומפקטיים, כלומר אם מכפלה של מרחבים טופולוגיים קומפקטיים היא קומפקטיי. עם טופולוגיית המכפלה הוא קומפקטי.

 $Y=W_\omega$ אבל ש־בים אבל שאכן X_1,X_2 מרחבים אבל ארניים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. נניח בשלילה שאכן X_1,X_2 מרחבים טופולוגיים קומפקטיים, ונוכיח ש־ $X_1\times X_2$ קומפקטי. לכן יש $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לא קומפקטי. לכן יש $Y=(a,b)\in Y$ כיסוי פתוח של $Y=(a,b)\in Y$ לא קומפקטי. לכן יש $Y=(a,b)\in Y$ בסיס פתוחה שמכילה את $Y=(a,b)\in Y$ אשר ניתנת לכיסוי על־ידי מספר סופי של קבוצות מהאוסף $Y=(a,b)\in Y$, וזה בלתי אפשרי כי $Y=(a,b)\in Y$ פתוחה ולכן מכילה קבוצת בסיס שמכילה את $Y=(a,b)\in Y$

נטען כי יש $A\in X_1$ כך שלא קיימת קבוצה פתוחה $A\in X_2$ כך ש־ $a\in U$ כך ש־ $a\in U$ נניח בשלילה פרוצות מרסים. נניח באלא קיימת קבוצה פתוחה בתוחה בתוחה על אינים על על־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצות מהכיסוי הנתון. נבחן את $a\in X_1$ של־ידי קבוצות מהכיסוי הנתון. נבחן את על־ידי קבוצה פתוחה, ולכן קיימות עלכן קיימות עלכן קיימות $A=U_a$ כיסוי פתוח, אבל על קומפקטית ולכן קיימות על־ידי בשל ההנחה כי אין תת־כיסוי סופי על־ $A=U_a$ זאת כמובן סתירה בשל ההנחה כי אין תת־כיסוי סופי.

29.4.2025 - 9 שיעור 9 9 שיעור 9

עתה נטען כי יש $b\in X_2$ כך שלכל קבוצה פתוחה $a\in U\subseteq X_1$ ולכל פתוחה $b\in V\subseteq X_2$, הקבוצה לגיתנת לכיסוי סופי על־ידי קבוצות על־ידי קבוצות $a\in U\subseteq X_1$ ביתנת לכיסוי סופי על־ידי קבוצות אלכל של ביתנת לכיסוי סופי כזה. לכן $b\in X_2$ ו־ $X_2=\bigcup_{b\in X_2}V_b$ ניתנת לכיסוי $U_b\times V_b$ ביתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times\bigcup_{i=1}^kV_{b_i}\subseteq\bigcup_{i=1}^kU_{b_i}\times V_{b_i}$ מחקיים על בחירת מהטענה הקודמת. ער ביתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_2$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_1=U\times X_2$ ניתנת לכיסוי סופי, ולכן קיבלנו ש־ $X_2=U\times X_1$

5.5.2025 - 10 שיעור 10

10.1 קומפקטיות – משפט טיכונוף

ניזכר בכמה הגדרות שמגיעות אליהו מתורת הקבוצות.

הגדרה 10.1 (קבוצה סדורה) סדר על קבוצה, או קבוצה סדורה, הוא הזוג הסדור (X,\leq) , כאשר X קבוצה ו־ (X,\leq) יחס דו־מקומי רפלקסיבי, אנטי־סימטרי וטרנזיטיבי.

הגדרה בקבוצה, וכן שלכל תת-קבוצה של X יש יחס לפחות לאחד הכיוונים בין כל שני איברים בקבוצה, וכן שלכל תת-קבוצה של X יש מינימלי ביחס הסדר.

עיקרון הסדר הטוב מעיד שלכל קבוצה יש סדר טוב כלשהו שמוגדר עליה, והוא שקול לאקסיומת הבחירה.

בשיעור הקודם הוכחנו את משפט טיכונוף למקרה הסופי, עתה נראה את ההוכחה עבור המקרה הכללי. נבחין כי משפט טיכונוף שקול לאקסיומת הבחירה (ולעיקרון הסדר הטוב), ולכן במהלך ההוכחה נהיה מחויבים להשתמש באקסיומה.

באינדוקציה באינדוקציה. נניח בשלילה ש־ $Y=\prod_{\alpha\in I}X_{\alpha}$ אינה קומפקטית, כלומר של כיסוי פתוח שאין לו תת־כיסוי סופי, נסמן את הכיסוי הזה $Y=\prod_{\alpha\in I}X_{\alpha}$ נבנה באינדוקציה לכל Y=T איזשהו בסיס טופולוגי ל-Y, המכילה תת־הקבוצה,

$$\prod_{\alpha \le \gamma} \{X_{\alpha}\} \times \left(\prod_{\gamma < \alpha} X_{\alpha}\right) \tag{1}$$

או את,

$$\prod_{\alpha<\gamma}\{a_\alpha\}\times\prod_{\gamma\leq\alpha}X_\alpha \tag{2}$$
אז אינה ניתנת לכיסוי על־ידי אוסף סופי של a_α . נבנה את באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את על לכל על־ידי אוסף סופי של U אינה ניתנת לכיסוי על־ידי אוסף סופי של

אז a_{α} אז a_{γ} אנה ניתנת לכיסוי על־ידי אוסף סופי של A_{γ} . נבנה את a_{γ} באינדוקציה טרנספיניטית (אינדוקציה על סודרים). נניח שהגדרנו את a_{γ} או בנה את a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה ניתנת לכיסוי על־ידי תת־אוסף סופי מ־ A_{γ} (ונבהיר, זו הנחת a_{γ} אינה בסיס שמכילה את a_{γ} אינרים, יהיו סודרים עוקבים, אלו שמתקבלים מהוספת 1 לאיבר קיים כלשהו, ויש איברים גבוליים, עליהם נסתכל כאיברים אינסופיים, גבול בראי החיבור של איברים אחרים. כדי להתמודד עם הקושי הזה ולהשתמש באינדוקציה טרנספיניטית, מסתכלים על איברים גבוליים אלה או כאיברים מינימליים בקבוצה המתאימה להם, או כסופרימום של קבוצת האיברים הכיוונים.

ענדרש. \mathcal{F} אנח סופי של \mathcal{F} ואז מצאנו אנח לכיסוי על־ידי תת־אוסף סופי של פוצת בסיס המקיימת אנח בסיס מפרימת על־ידי תת־אוסף סופי של \mathcal{F} וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ וויש ל־ $W_{a_\gamma}=1$ על או שיש קבוצה בסיס בסיס מפרימת שלילת הטענה. בסיס בחין כי,

$$a_{\gamma} \in \pi \gamma(W_{a_{\gamma}})$$

קבוצה פתוחה, אז מתקיים,

$$X_{\gamma} = \bigcup_{\alpha_{\gamma} \in X_{\gamma}} \pi_{\gamma}(W_{a_{\gamma}})$$

אז יש תת־כיסוי סופי,

$$X_{\gamma} = \bigcup_{i=1}^{k} \pi_{\gamma}(W_{a_{\gamma}^{i}})$$

,נגדיר, יש תת־כיסוי סופי על־ידי איברי $igcup_{i=1}^k W_{a^i_\gamma}$ לכן לקבוצה

$$V_i = \left(\prod_{j=1}^k \pi_{\gamma^<}(W_{a^i_\gamma})\right) \times \pi_{\gamma}(W_{a^i_\gamma}) \times \prod_{\alpha > \gamma} X_\alpha$$

, אז, $\pi_{\gamma^<}:Y o\prod_{lpha<\gamma}X_lpha$ כאשר

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^<}(W_{a_\gamma^j})\right) \times \left(\bigcup \pi_{\gamma}(W_{a_\gamma^i})\right) \times \prod_{\alpha > \gamma} X_\gamma$$

ולכן,

$$\bigcup_{i=1}^k V_i = \left(\bigcap_{j=1}^k \pi_{\gamma^{<}}(W_{a_\gamma^i})\right) \times \left(\prod_{\alpha \ge \gamma} X_\alpha\right)$$

וקיבלנו סתירה כי הנחנו שהקבוצה הזו לא ניתנת לכיסוי סופי בעזרת איברי ${\mathcal F}$, ובכל זאת מצאנו כיסוי סופי כזה.

, מתקיים, טרנספיניטית לכל אכל לכל לכל מקבלים טרנספיניטית טרנספיניטית לכן לכל אכל לכן מקבלים טרנספיניטית לכן אינדוקציה לכן אינדוקציה אינ

$$Y = \prod_{\alpha \in I} X_{\alpha} \ni f = (a_{\gamma})_{\gamma \in I}$$

מתקיים $\alpha>\gamma_0$ כך שלכל $\gamma_0\in I$ יש איבר בסיס איבר $S_lpha=X_lpha$, ולכמעט כל $W=\prod_{lpha\in I}S_lpha$ כך שלכל $f\in W\subseteq L$ סתקיים ולכן יש איבר בסיס, $S_lpha=X_lpha$ ולכן קיבלנו איבר בסיס,

$$\prod_{\alpha \le \gamma_0} \{a_\alpha\} \times \prod_{\alpha > \gamma_0} X_\alpha \subseteq L$$

וסתירה.

אנו כבר יודעים כי אנו יכולים לראות קומפקטיות גם כך שאם Z קומפקטי אז לכל L אוסף סופי של קבוצות סגורות ב־Z עם תכונת החיתוך הסופי, יש חיתוך לא טריוויאלי.

הגדרה 10.3 (תכונת החיתוך הסופי) נאמר שלאוסף L של תתי-קבוצות של קבוצה Z יש את תכונת החיתוך הסופי, אם לכל תת-קבוצה סופית של יש חיתוך לא טריוויאלי. L

יהיה נוח להסתכל על אפיון אחר,

טענה 10.4 (שקילות לקומפקטיות) מרחב טופולוגי Z הוא קומפקטי אם לכל אוסף L של תתי־קבוצות Z עם תכונת החיתוך הסופי, מתקיים D ש־D D ש-D .

נעבור למספר טענות לקראת משפט שנראה בהמשך.

טענה 10.5 אם לאוסף קבוצות $L_{eta}=\{\pi_{eta}(A)\mid A\in L\}$ יש את תכונת החיתוך הסופי, אז גם לי $L\subseteq\prod_{lpha\in I}X_{lpha}$ יש את תכונת החיתוך הסופי ביחס לי- X_{eta} .

אומנם לא נוכיח טענה זו, אבל נשים לב שהיא נובעת באופן ישיר מהאפיון הנוסף לקומפקטיות ושימוש בקבוצות הסגורות המושרות מהסגור שהגדרנו על L.

טענה 10.6 אם L אוסף תתי־קבוצות של Y המקיים את תכונת החיתוך הסופי, אז L מוכל באוסף תתי־הקבוצות של Y עם תכונת החיתוך הסופי, כך שהאוסף מקסימלי.

החורה החיתוך הסופי, זו קבוצה את תכונת המקיימות המקיימות את המקיימות את ריקה החיתוך הסופי, זו קבוצה את ריקה החיתוך המקטימות החיתוך המקטימות החיתוך החיתות החיתוך החיתות החיתוך החיתות החית החיתות החיתות החיתות החיתות החיתות החי

נראה טענה כללית נוספת ובעלת חשיבות.

 $\bigcap_{i=1}^n A_i \in M$ גם $A_1, \ldots, A_m \in M$ ולכל $m \in \mathbb{N}$.1

 $B\in M$ אז $A\cap B
eq\emptyset$ אם $A\in M$ אז $B\subseteq R$ אז $B\subseteq A$ אם .2

גם כאן, ההוכחה היא ברורה ונובעת מהמקסימליות, ומושארת כתרגיל לקורא.

נעבור להוכחה נוספת למשפט טיכונוף, תוך שימוש בטענות שראינו זה עתה.

עם אסימלי עם $L\subseteq M\subseteq \mathcal{P}(Y)$ יש הסופי. עם תכונת החיתוך עם הכל עם אכל לכל לכל לכל לכל לכל אין איז הסופי. עם עם החיתוך הסופי. איז לכל לכל לכל לכל לכל איז איז החיתוך הסופי. איז החיתוך הסופי.

 $M_{\alpha} = \{\pi_{\alpha}(A) \mid A \in M\}$ לכל α נגדיר

 $y_lpha\in igcap_{A\in M_lpha}\overline{A}$ את lpha את הכונת החיתוך הסופי. נובע ש־ X_lpha קומפקטי ו־ $X_lpha=0$. נבחר לכל את $M_lpha\subseteq \mathcal{P}(X_lpha)$ ל-

, מקיימת $y=(y_\alpha)_{\alpha\in I}\in\prod_{\alpha\in I}X_\alpha=Y$ הנקודה כי נוכיח אנו נוכיח אנו

$$y\in\bigcap_{B\in M}\overline{B}\subseteq\bigcap_{A\in L}\overline{A}$$

שמקיימת $y\in W\subseteq Y$ כסיס $y\in \overline{B}$ ונראה שכל קבוצת בסיס $y\in W$ בסיס מחוחה שמכילה את חותכת את חותכת את חותכת שכל קבוצת בסיס $y\in W$ בסיס היא חיתוך של מספר סופי של קבוצות $y\in W$ באוסף עבור $y\in W$ עבור בסיס $y\in W$ פתוחה. מטענה 10.7 באוסף $y\in W$ בסיס של חיתוך של מספר סופי של קבוצה $y\in W$ באוסף $y\in W$ מקסימלי ולכן אם $y\in W$ כזו כך ש־ $y\in W$ כזו כך ש־ $y\in W$ ביבר ב־ $y\in W$ מספר סופי של $y\in W$ מספר סופי של $y\in W$ חותך כל איבר ב־ $y\in W$ נובע ש־ $y\in W$ נובע ש־ $y\in W$ כי היא חיתוך של מספר סופי של $y\in W$ אך אלה ב־ $y\in W$ חותך כל איבר ב- $y\in W$

אז גם $y_{\beta}\in\pi_{\beta}(D)$ גם $D\in M$ נובע שלכל $A=\pi_{\beta}(D),D\in M$ וכן $y_{\beta}\in\bigcap_{A\in M_{\beta}}\overline{A}$ אז גם $y_{\beta}\in Z_{\beta}$ עבור $y_{\beta}\in Z_{\beta}$ פתוחה, ולכן $y_{\beta}\in\pi_{\beta}(D)$ גם $y_{\beta}\in Z_{\beta}$ וויתוך זה לא ריק, כפי שרצינו להראות. $y_{\beta}\in\pi_{\beta}(Z_{\beta})=y_{\beta}\cap D$ גם אז גם $y_{\beta}\in\pi_{\beta}(D)$ אז גם $y_{\beta}\in Z_{\beta}$ פרט חיתוך זה לא ריק. לכן גם $y_{\beta}\in\pi_{\beta}(D)$

6.5.2025 - 11 שיעור 11

בהינתן מרחב טופולוגי X האם יש מרחב קומפקטי שמכיל את X? נענה על שאלה זו בהרצאה הקרובה. נתחיל בהגדרת הרעיון באופן פורמלי.

 $X=\overline{X}$ וגם $X\subseteq Y$ בך שר Y כך מרחב קומפקטיזציה אוגם X של X של אוגם X היא מרחב קומפקטיזציה (קומפקטיזציה) אוגם

ועתה משיש לנו טרמינולוגיה מתאימה, נוסיף הגדרה שתעזור לנו.

הגדרה 11.2 (מרחב טופולוגי קומפקטי מקומית) מרחב טופולוגי $x\in X$ הגדרה 11.2 (מרחב טופולוגי קומפקטית) מרחב טופולוגי $x\in X$ יש סביבה הגדרה הגדרה מקומית X-ב-תוחה $x\in W\subseteq C$ היימת וקיימת $x\in C\subseteq X$ פתוחה ב-

. [0,1]ו־ן S^1 הם X, הם קומפקטיזציה להצוא שני מרחבים שני מרחבים שני X, הם למצוא קומפקטיזציה ל-X, הם הם דוגמה 11.1 נגדיר את

 $\hat{X}=Y=X\cup\{\infty\}$ משפט 11.3 (תנאי מרחב קומפקטי מקומית לקומפקטיות) אם X מרחב טופולוגי קומפקטי מקומית והאוסדורף, אז המרחב עבור עם הטופולוגיה, דשה חדשה לקודה הטופולוגיה, $\infty \notin X$

$$\hat{\tau} = \tau \cup \{Y \setminus K \mid K \subseteq X, K \text{ is compact}\}$$

הוא מרחב קומפקטי והאוסדורף.

 $\{V_{lpha}\mid V_{lpha}=$ י שקולה זו שקולה ל"כוצה ע"ל, או פופי. נניח ש"ל סופי. לאיחודים וסגורה לאיחודים וסגורה לחיתוך סופי. נניח הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. בראה ל"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה שקולה ל"כומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה לאיחודים וסגורה לחיתוך סופי. ביא הילה ש"ל טופולוגיה, כלומר סגורה להילה ש"ל טופולוגיה, כלומר סגורה לומר , כי, נבחין השנייה השניה העונה Ω ואת זו הראשונה העמפקטית. נסמן את קומפקטית. כאשר אינ השנייה העניה או הראשונה הער $K_{\alpha}\subseteq X$

$$\bigcup_{\alpha \in I} V_{\alpha} = \bigcup_{V \in \Lambda} V \cup \bigcup_{V \in \Omega} V = U \cup \bigcup_{U \in \Omega} U$$

,כך שמתקיים, בל מההגדרה קיימת $J\subseteq I$

$$\bigcup_{\alpha \in J} (Y \setminus K_{\alpha}) = Y \setminus \bigcap_{\alpha \in J} K_{\alpha}$$

 $V\cup igcup_{U\in\Omega} U=V\cup (Y\setminus K)$ נובע ש־נבע האוסדורף ולכן סגורה, לכן גם סגורה, לכן גם סגורה ולכן קומפקטית כמוכלת האוסדורף וכל $\bigcap K_lpha$ היא סגורה, לכן גם עבור K קומפקטית.

. סגורה לחיתוכים סופיים, כנביעה מהשלמה לאיחודים $\hat{ au}$

 $V\in au$ אם $A=X\cap V$ שי $V\in\hat au$ על א משרה את au על א משרה בטופולוגיה בטופולוגיה בטופולוגיה את אם יש פתוחה בעופולוגיה המושרית את auאז, $V=Y\setminus K$ אם $AX\cap V=V\in au$ אז, אז בוודאי

$$A = X \cap V = X \cap (Y \setminus K) = X \setminus K \in \tau$$

כי X סגורה, זאת שכן K קומפקטית ו־X האוסדורף.

מרחב האוסדורף כי אם $U,W\in au\subseteq \hat{ au}$ הוחות פתוחות אז קיימות כלומר $y,y'\neq \infty$ ו המפרידות את $y,y'\neq \infty$ ו מרחב האוסדורף כי אם $y,y'\neq \infty$ ו המפרידות את מרחב האוסדורף כי אם אוסדורף כי אוסדורף בי אוסדורף בי אוסדורף כי אוסדורף כי אוסדורף בי אוסד $\hat{\tau}$ והן פתוחות ב

על פתוח של $\{V_{lpha}\cap X\mid V_{lpha}\in L\}$ קולכן $\infty\in V_{lpha_0}=Y\setminus K$ יש אל ביסוי פתוח של כיסוי נניח של עלה ער $\{V_{lpha}\}=L$ כיסוי פתוח של כיסוי פתוח של , כך שמתקיים, כיסוי פתוח של א שכן שכן מוס פתוח של כיסוי פתוח של כיסוי כיסוי ל $\{V_{lpha}\cap X\mid V_{lpha}\in L\}$. $K\subseteq X$

$$K \subseteq \bigcup_{i=1}^{N} (V_{\alpha_i} \cap X)$$

 $.Y = igcup_{i=1}^N V_{lpha_i}$ ונסיק ש־

מצאנו קומפקטיזציה על־ידי הוספת נקודה יחידה.

. בלבד, ו־ ∞ נקודה בלבד, בלבד, אחרת אחרת או קומפקטי אז אינו קומפקטי או בלבד, אחרת אחרת או אינו הערה אם אינו קומפקטי אז

z:X o z, ב־ $X\hookrightarrow X$ כך ש־X כך שX כך ב־X כך מרחב האוסדורף קומפקטי מקומי אז יש מרחב האוסדורף אוסדורף מקומי אז יש מרחב האוסדורף אוסדורף קומפקטי מקומי אז יש מרחב האוסדורף אוסדורף קומפקטי מקומי אז יש מרחב האוסדורף אוסדורף קומפקטי מקומי אז יש מרחב האוסדורף אוסדורף או z(X), F=C(X,[0,1]) וכן שכל פונקציה רציפה וחסומה של X ניתנת להרחבה לפונקציה של $\overline{z}(X)=X$. נגדיר (גדיר עיפה $\overline{z}(X)$ אוסף כל הפונקציות הרציפות מ־ $X \in F$ ולכל $x \in X$ ולכל $x \in X$ אוסף כל הפונקציות המכפלה, אז נקבל שלכל $x \in X$ ולכל $x \in X$ אוסף כל הפונקציות המכפלה, אז נקבל שלכל $x \in X$ ולכל Z(X) של אם הסגור קומפקטיזציה ב־ \dot{X} תסומן ב־z(X) הסגור של התמונה .

12.5.2025 - 12 שיעור 12

12.1

נמשיך עם המשפט שדנו בו בשיעור הקודם.

משפט 12.1 (סטון־צ'ק) אם X מרחב טופולוגי האוסדורף קומפקטי מקומית אז קיים מרחב טופולוגי קומפקטי האוסדורף Y כך שקיים שיכון משפט X ניתנת לפונקציה רציפה על T כך שההרחבה יחידה. T וכל פונקציה רציפה וחסומה על T ניתנת להרחבה לפונקציה רציפה על T כך שהארחבה יחידה.

הרחב המכפלה $[0,1]^F$ ממשפט טיכונוף זהו מרחב X o [0,1] נתבונן הרציפות הרציפות אוסף הפונקציות הרציפות הרציפות X o [0,1] נתבונן במרחב המכפלה F = C(X,[0,1]) ממשפט טיכונוף זהו מרחב $X o [0,1]^F$ קומפקטי וכמו־כן הוא האוסדורף. נגדיר העתקה $X o [0,1]^F$ על־ידי $X o [0,1]^F$ על־ידי גדיר גם $X o [0,1]^F$ נגדיר גם $X o [0,1]^F$ קומפקטית כי היא תת־קבוצה סגורה של מרחב קומפקטי, וכן $X o [0,1]^F$ היא האוסדורף כתת־מרחב של מרחב האוסדורף.

. בדוק, אז הומיאומורפיזם, איז הוכך ערכית ערכית דר־חד העתקה היא הומיאומורפיזם, איז שיכון ערכית איז ערכית ערכית אז היא שיכון אם איכון אז בדוק.

עבור חד־חד ערכיות תהינה $f(x_1)\neq f(x_2)$ כך שי $f\in F$ אנו טוענים כי $x_1,x_2\in X$ בהינתן טענה זו נסיק עבור חד־חד ערכיות תהינה $\iota(x_1)\neq\iota(x_2)$ ולכן $\iota(x_1)(f)\neq\iota(x_2)(f)$

יש בחורף. עבור מרחב קומפקטי והאוסדורף. ניזכר בלמה של אוריסון, עבור מרחב קומפקטי והאוסדורף. ניזכר $U_1 \cap U_2 = \emptyset$ מהאוסדורף עבור מרחב כך שריסון U_1, U_2 פתוחות ב־ $U_1, U_2 \in U_1$ בננה פונקציה רציפה על $U_1, U_2 \in U_1$ קבוצות סגורות קומפקטיות סביב $U_1, U_2 \in U_1$, כך שמהלמה של אוריסון יתקיים $U_1, U_2 \in U_1$ נבנה פונקציה רציפה על $U_1, U_2 \in U_1$

נותר להראות ש־ $\iota(X) = \iota(X)$ היא הומיאומורפיזם. כלומר צריך להראות שכל קבוצה פתוחה ש $\iota: X \to \iota(X)$ מקיימת ש $\iota: X \to \iota(X)$ היא פתוחה, וגם להראות ש־ $\iota: X \to \iota(X)$

ער שיש $x\in W$ פתוחה ולא ריקה, אנו רוצים להראות ש־ $\iota(W)$ פתוחה. תהי עt(W) פתוחה ולא ריקה, אנו רוצים להראות שt(W) פתוחה ולא t(X) פתוחה ולא t(X) עבור עt(X) שיש t(X) וכן ש־t(X) עבור עt(X)

 $\pi_f: [0,1]^F o [0,1]$ בהיר כי $\iota(x) \in V \cap \iota(X) \subseteq \iota(W)$ היא פתוחה כך היא פתוחה כי $V = \pi_f^{-1}([0,1])$. נמשיך ונטען כי

 $x\in X$ לכל $|g(x)|\leq M$ כך ש־M>0 נסמן חסומה ונסמן g אנו יודעים כי X אנו יודעים כי X אנו יודעים כי S אנו יודעים פונקציה S לראות לכל S המוגדרת על־ידי S המוגדרת על־ידי S נגדיר גם בפונקציה S בפונקציה S בפונקציה S המוגדרת על־ידי S המוגדרת על־ידי S הרחבה רציפה של S

 $a_f=\inf\{f(x)\mid x\in X\}, b_f=$ עבור עבור את נבחן את $ilde{F}=\{f:X o\mathbb{R}\mid f ext{ is bounded and continuous}$ היו $\sup\{f(x)\mid x\in X\}$

eta(X)סימון ב-נינו ב־ממן את המרחב א נסמן 12.2 סימון

משפט 12.3 (הרחבה רציפה לפונקציות במרחבים קומפקטיים מקומית) יהי X מרחב קומפקטי מקומית האוסדורף, G קומפקטי והאוסדורף. אז כל $\hat{\varphi}: \beta(X) o C$ ניתנת להרחבה רציפה $\varphi: X o C$

הורחיב $g_j=\pi_j\circ \varphi:X o [0,1]$ יש פונקציה $f\in J$ יש פונקציה על הרחיב G אז ניתן להרחיב פרן שיש שיכון $g(\beta(X))\subseteq C$ אז $g_j=\pi_j\circ \varphi:X o [0,1]$ יש פונקציה הרציפה באופן רציף. נסמן $g(\beta(X))\subseteq C$ אז $g_j=g(X)$ הפונקציה הרציפה באופן רציף. נסמן $g_j=g(X)$ באופן רציף. נסמן $g_j=g(X)$ אנו מסיקים ש־ $g(X)\subseteq C$ באשר בוחנים את $g(X)\subseteq C$ באופן של $g(X)\subseteq C$ אנו מסיקים ש־ $g(X)\subseteq C$ אנו מסיקים של $g(X)\subseteq C$

טענה $X\hookrightarrow Y_i$ נניח ש־ $X\hookrightarrow Y_i$ מרחב האוסדורף קומפקטי מקומית ו־ Y_1,Y_2 קומפקטיות האוסדורף עם שיכונים $X\hookrightarrow Y_i$ צפופים כך שכל פונקציה רציפה וחסומה מ־X ל־X ניתנת להרחבה רציפה של Y_1,Y_2 , אז Y_1,Y_2 הומיאומורפים.

. פנים שלה שלה לסגור לסגור לסגור, $\overline{(A)}^\circ=\emptyset$ אם דלילה אם תיקרא קבוצה עופולוגי. קבוצה מרחב מופולוגי. קבוצה אם אם 12.5 מרחב מופולוגי. קבוצה אם אם מרחב מופולוגי

. דלילות). ב־ \mathbb{R} הן דלילות). ב־ \mathbb{R} בילות). ב־ \mathbb{R} בילות).

מהצד השני $\mathbb{Q} \subset \mathbb{R}$ לא דלילה.

הגדרה 12.6 (קטגוריה ראשונה ושנייה) קבוצה תיקרא מהקטגוריה הראשונה אם היא איחוד בן־מניה של קבוצות דלילות, אחרת נאמר שהיא מהקטגוריה השנייה.

משפט 12.7 בייר) האוסדורף או מרחב קומפקטי האוסדורף או מרחב מטרי שלם,

אז לכל אוסף בן־מניה $\bigcup_{n=1}^{\infty}A_n$ של קבוצות דלילות מתקיים שלאיחוד של $\{A_n\}_{n=1}^{\infty}$ יש פנים ריק.

12.5.2025 - 12 קומפקטיזציה 12 שיעור 12

. בפופה $\bigcap_{n=1}^\infty U_n$ אז וצפופות פתוחות קבוצות הן $\left\{U_n\right\}_{n=1}^\infty$ שאם שקול לטענה המשפט הערה הערה הערה און $\left\{U_n\right\}_{n=1}^\infty$

הוכחה. המשפט הוא למעשה שני משפטים על שני תנאים שונים, אנו נוכיח את המקרה של מרחב קומפקטי האוסדורף, והמקרה השני מושאר כתרגיל ומשתמש בעקרונות דומים.

$$a_n \in V_n \subseteq \overline{V}_n \subseteq U_{n-1}$$

, ולכן, אוסף מביניהן סופי מספר שכל המקיימות סגורות קבוצות אוסף אוסף האוסף האוסף האוסף האוסף $\{\overline{V}_n\}$ האוסף האוסף האוסף ולכן, האוסף האוס

$$\bigcap_{n=1}^{\infty} \overline{V}_n \neq \emptyset$$

 $.U \not\subseteq \bigcup_{n=1}^\infty A_n$ נסיק ש $.b \in U$ אבל אבל , $b \notin \bigcup_{n=1}^\infty A_n$ נסיק ש $.b \in \bigcap \overline{V}_n$ ויהי

 $X\setminus\{x\}$ האטברות הצטברות היא היא בקודה אם כל נקודה מושלם מרחב מרחב (מרחב מושלם) מרחב הגדרה 12.8 הגדרה

מסקנה אז X אז אז לא בן־מניה. מסקנה אוסדורף מרחב מרחב מרחב נניח ש־X

הגדרה 12.10 (תכונת בייר) נאמר שמרחב X הוא מרחב בייר אם מתקיים שלאיחוד בן־מניה של קבוצות דלילות אין פנים.

מתקיים $x_0\in X$ מתקיים על X כך שלכל X כך מלכל נניח ש־X היא סדרת פונקציות רציפות על מרחב בייר ו־X מתקיים מטרי, ונניח ש־X מרחב מטרי, ונניח ש־X מתקיים מרחב בייר ו־X מרחב מטרי, אז X רציפה בקבוצה צפופה של נקודות.

X= מתקיים $\epsilon>0$ אז לכל $B_n(\epsilon)=\{x\in X\mid \forall m,n\in\mathbb{N},\ d(f_n(x),f_m(x))\leq\epsilon\}$ אז לכל $\epsilon>0$ אז לכל פנים. t=0 מתקיים אז לכל t=0 אז לכל t=0 מתקיים פנים. t=0 אז לכל t=0 מתקיים פנים. t=0 אז לכל פונים, ולכן לאיזושהי קבוצה באיחוד אמור להיות פנים.

13.5.2025 - 13 שיעור 13

13.1 השלמות לקומפקטיזציה

לניח (כלשהי, ונניח $f:X \to Y$ ווניח בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש־Y מרחב מטרי וגם ש $f:X \to Y$ בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש $f:X \to Y$ או $\lim_{n \to \infty} f_n(x) = f(x)$ גם $f:X \to Y$ גם גום $f:X \to Y$ או $f:X \to Y$ או נניח שלכל $f:X \to Y$ בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח שלכל מרחב בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה של דלילות יש פנים ריק). נניח ש"ל בייר (לאיחוד בן־מניה בן־מנ

הוכחה. תת־קבוצה פתוחה של מרחב בייר היא מרחב בייר (ביחס לטופולוגיה המושרית עליה), נגדיר גם,

$$\forall \epsilon > 0, N \in \mathbb{N}, \ B_N(\epsilon) = \{ x \in X \mid \forall n, m \ge N, \ |f_n(x) - f_m(x)| \le \epsilon \}$$

אז $\bigcup_{k=1}^\infty U(rac{1}{k})$ וכן נובע ש־ $B_N^\circ = U(\epsilon) = U(\epsilon)$ פתוחה וצפופה. f רציפה ב־ $B_N^\circ = U(\epsilon)$ צפופה כי X מרחב בייר. $U(\epsilon) = U(\epsilon)$ מרחב בייר. סוף ההוכחה מושאר כתרגיל.

משחק מזור 13.2

עתה נדון במשחק מזור (Mazur).

סגור קטע בוחר בוחר אנו מניחים כי יש לנו שני שחקנים, א' וב'. נניח גם כי קיימת $A\subseteq [0,1]=I_0$ משחק מזור) אנו מניחים כי יש לנו שני שחקנים, א' וב'. נניח גם כי קיימת $I_1\subseteq I_2$ או וב' יבחר אר $I_1\subseteq I_2$ וב' יבחר בוחר או וב' יבחר אר $I_1\subseteq I_2$ וב' יבחר שחקן א' מנצח אם ורק אם $I_1\subseteq I_2$ וב' יבחר אר מנצח אם ורק אם מנצח אם ורק אם מנצח אור בוחר קטע סגור וב' יבחר אר מנצח אם ורק אם מנצח אם ורק אם מנצח אור בוחר קטע סגור וב' יבחר אר מנצח אם ורק אם מנצח אור בוחר המנצח אור מנצח אם מנצח המנצח אור מנצח אור מנצח אור מנצח המנצח המנצח

תרגיל 13.1 האם יש אסטרטגיית ניצחון? אם יש, מה התנאים שלה ולמי?

13.3 מבוא לטופולוגיה אלגברית

Xעל שקילות שקירות יחס אררב איז וויט מרחב מרחב עניח מנייה. נניח אלמרחבי מתחב מרחב מרחב מנייה. נניח איז ווי

סימון 23.2 נסמן מחלקות שקילות של X ב־X על־ידי,

$$[x] = [x]_R = \{ y \in X \mid (x, y) \in R \}$$

וכן נסמן,

$$X/R = \{ [x] \mid x \in X \}$$

 $\pi(x) = [x]$ על־ידי $\pi: X o X/R$ וכן

אנו רוצים למצאו טופולוגיה על X/R החזקה ביותר כך ש־ π היא רציפה. נגדיר $L\subseteq X/R$ להיות פתוחה אם ורק אם $\pi^{-1}(L)\subseteq X$ פתוחה. X/R שהיא על T שהיא על T שהיא על T באופן דומה נוכל להגדיר בצורה כזו טופולוגיה בהינתן פונקציה T שהיא על T

. מעגל. אינהג למעשה ([0,1] בהינתן X/R בהינתן X/R בהינתן $X=\{0,1\}$ ונקבל ש $X=\{0,1\}$ ונקבל $X=\{0,1\}$ יתנהג למעשה כמו מעגל.

 \mathbb{R}/\sim עבור \mathbb{R}/\mathbb{Z} עבור למעגל שוב. נהוג לסמן עבור אוב לכל $x\sim x+n$ עבור לכל עבור עבור אוב. $X=\mathbb{R}$

קס $x\in U\subseteq X$ יש סביבה פתוחה אם לכל $x\in X$ אם לכל ממימד (ממימד אוקלידי הקרא אוקלידי מקומית) מרחב מופולוגי אוקלידי מקומית אוקלידי מקומית ממימד מאחקיים,

- \mathbb{R}^n ב- הפתוח היחידה לכדור לכדור הומיאומורפית ל
 - \mathbb{R}^{n} הומיאומורפית ל- U
 - \mathbb{R}^n ב פתוחה לקבוצה הומיאומורפית הומיאומורפי

כאשר התנאים הללו שקולים.

הבאות, ממימד n אם מתקיימות התכונות הבאות, יריעה איריעה ופולוגית מחב טופולוגית מחב ופולוגית אם התכונות הבאות, אותר הבאות, אותר מחב אותר התכונות הבאות, אותר הבאותר ה

- n אוקלידי מקומית ממימד X .1
 - האוסדורף X .2
 - מרחב מנייה שנייה X .3

13.5.2025 - 13 שיעור 13 מבוא לטופולוגיה אלגברית מבוא 13.5.2025 מבוא מבוא אלגברית

נראה מספר דוגמות ליריעות.

n ממימד מופולוגית יריעה איז היא של פתוחה פתוחה כל תת־קבוצה כל 13.3 היא דוגמה כל כל ה

. היא א יריעה, היא שפת למעשה מעשה $\mathbb{T}^2=\mathbb{R}^2/\mathbb{Z}^2$ כבחין בחין 13.4 דוגמה 13.4

דוגמה 13.5 בקבוק קליין הוא יריעה.

, כלומר, הוא יריעה, ועבור $U\subseteq\mathbb{R}^n$ עבור $f:U o\mathbb{R}$ רציפה רציפה של 13.6 גרף או

$$\{(x, f(x)) \in \mathbb{R}^{n+1} \mid x \in U\}$$

היא יריעה טופולוגית.

נבחין כי עבור n=1 יש רק סוג אחד של יריעה קומפקטית, המעגל. עבור n=2 יש לנו את הספירה, את הטורוס, מתומן הקסם ואת בקבוק קליין. בהרצאות הבאות ניכנס לתחום הטופולוגיה האלגברית, ונפתח כלים לאפיון של מרחבים כאלה.

19.5.2025 - 14 שיעור 14

היסודית - מבוא לטופולוגיה אלגברית - מבוא לטופולוגיה אלגברית

המטרה שלנו היא להיות מסוגלים לענות על השאלה הבאה,

תרגיל השאלה האם בין מרחבים לענות על השאלה שנתונים X,Y מרחבים לענות על השאלה האם בין מרחבים טופולוגיים? כלומר, נניח שנתונים בין מרחבים טופולוגיים? הומיאומורפיים

בעולם של אלגברה לינארית לדוגמה אפיינו בצורה מדויקת שקילות של מרחבים לינאריים, פה המצב מורכב ומסועף יותר, ונצטרך להבין לעומק האובייקטים שאנו דנים בהם כדי שנוכל לאפיין אותם.

. האם S^2 האם הומיאומורפיים הטורוס הדו־מימדי הדו־מימדי החספירה הדו־מימדי החספירה הדו־מימדי האם S^2

. פתרון באותו לכווץ לכווץ לכווץ למסילה אבל לא כל מסילה לכווץ לכווץ באותו בי S^2 ביתן לכווץ באותו כל מסילה כל מסילה לא כל מסילה לכווץ באותו האופן.

וחחיל כהגדרות

הציפה היא העתקה ה f_0 ל־ f_0 היא הומוטופיה אז הומוטופיה היהין היא העתקה האחבים וופולוגיים האדרה $f_0,f_1:X\to Y$ היא העתקה האחבים האדרה וופיה היהים אז הומוטופיה היהים אופיה. $H:[0,1]\times X\to Y$

$$\forall x \in X, \ H(0,x) = f_0(x), H(1,x) = f_1(x)$$

 $H_s(x) = H(s,x)$ לפעמים נכתוב אם

 $x_0 \in X$ עבור $f_1(x) = x_0$ להעתקה קבועה $f_0(x) = x$ בהרצאות אם יש הומוטופיה שמרחב כוויץ אם יש הומוטופיה מהעתקת הזהות בהרצאות קודמות הגדרנו שמרחב כוויץ אם יש הומוטופיה מהעתקת הזהות בהעתקה להעתקה קבועה אם יש הומוטופיה בהעתקת הזהות בהעתקת הזהות בהעתקה הזהות אם בהעתקת הזהות בהעתקה בהעת בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהעתקה בהע

סימון $p,q\in X$ ובהינתן $\gamma:[0,1]\to X$ ידי מסילה מסילה אז הגדרנו 14.2 סימון

$$\Omega(X,p,q) = \{\gamma: [0,1] \rightarrow X \mid \gamma(0) = p, \gamma(1) = q, \gamma \text{ is continuous path} \}$$

 q^{-1} מרחב כל המסילות הרציפות מ

H: אם קיימת ביניהן, כלומר אם שה וש הומוטופיות אם א הומוטופיות מסילות מסילות מסילות מסילות חומוטופיות אם א הגדרה $\gamma_0,\gamma_1\in\Omega(X,p,q)$ הומוטופית מסילות הומוטופית מסילות $t\in[0,1]$ ביניהן, כלומר אם $t\in[0,1]$ ביניהן, כלומר אם קיימת $t\in[0,1]$ ביניהן, כלומר אם קיימת $t\in[0,1]$ ביניהן, כלומר אם קיימת מסילות מ

$$H(0,t) = \gamma_0(t), \quad H(1,t) = \gamma_1(t), \quad \forall s \in [0,1], \ H(s,0) = p = \gamma_0(0) = \gamma_1(0), H(s,1) = q = \gamma_0(1) = \gamma_1(1)$$

הרעיון הוא שיש לנו דרך "להעביר" כל מסילה בין הנקודות באופן רציף מאחת לשנייה. הרעיון לא זר למי שלמד אנליזה על יריעות, שם השתמשנו בכלי דומה לזה כדי לאפיין קשר בין מסילות, ראינו שאם כל שתי מסילות הומוטופיות בשדה משמר מקומית, אז הוא משמר.

סענה 14.4 היחס על (X,p,q), המוגדר על־ידי $\gamma_0\sim\gamma_1$ אם ורק אם קיימת הומוטופיה ביניהן, הוא חס שקילות.

 $H(s,t)=\gamma(t)$ נבחר $\gamma\in\Omega(X,p,q)$ בהינתן הוכחה. רפלקסיביות,

 $\gamma_1\sim\gamma_0$ על המעידה המעידה אז זו הומוטופיה, גניח שי $\gamma_0\sim\gamma_1$ אז על כך. בגדיר על כך. נגדיר אז זו הומוטופיה המעידה אז זו הומוטופיה המעידה על כך. נגדיר סימטריה, נניח ש

, נגדיר על־ידי, $\gamma_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ מנים ש־ $\eta_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ נגדיר על־ידי, ננים ש־ $\eta_0 \sim \gamma_1, \gamma_1 \sim \gamma_2$ נגדיר על־ידי, ננים ש־

$$F(s,t) = \begin{cases} H(2s,t) & s \in [0,\frac{1}{2}] \\ G(2s-1,t) & \text{otherwise} \end{cases}$$

עלינו לבדוק שאכן F הומוטופיה מלמת ההדבקה, אותה נגדיר אות שי $s=rac{1}{2}$ אותה לבדוק את המלמת היטב, כלומר לבדוק שאכן F הומוטופיה לבדוק את המקרה לבדוק את המקרה ולהראות שילו עלינו לבדוק אתה ההדבקה, אותה נגדיר ונוכיח עתה.

למה 14.5 (למת הדבקה) נניח שY מרחב טופולוגי ונניח ש $A\cup B=Y$ עבור קבוצות סגורות. תהי $Y\to G$ פונקציה כך ש $A\cup B=Y$ רציפה וכן $A\cup B=Y$ רציפה. אז נובע ש $A\cup B=Y$ רציפה.

, אבל, גם כן. אבל סגורה אבריך מתקיים $f^{-1}(C)$ מתקיים מורה אבל שלכל סגורה אבל,

$$f^{-1}(C)(f^{-1}(C) \cap A) \cup (f^{-1}(C) \cap B) = (f \upharpoonright A)^{-1}(C) \cup (f \upharpoonright B)^{-1}(C)$$

ולכן הטענה נובעת ישירות.

 $\pi_1(X,p,q)=\Omega(X,p,q)/\sim$ נסמן, Fundamental group הגדרה של מרחב של מרחב של מרחב (החבורה היסודית של החבורה היסודית של החבורה היסודית של החבורה היסודית האומרים, באנגלית

 $\pi_1(X,p)=\Omega(x,p)/\sim$ אם $\Omega(X,p)=\Omega(x,p,p)$ אז נסמן גם p=q אם $\Omega(X,p)=\Omega(x,p,p)$ אז נסמן גם

 $\pi_1(X,p)$ המנוקב המרחב של היסודית החבורה $\pi_1(X,p)$ נגדיר

נשים לב כי זוהי הגדרה אפריורית, כלומר לא הראינו בשום צורה שזוהי אכן חבורה, וכרגע זהו רק שם. אנו רוצים עתה להראות שזו אכן חבורה ושהגדרה זו תלויה בטופולוגיה שלנו בלבד.

, נוכל להגדיר, γ_0,γ_1 לכל לכל γ_0,γ_1 בוכל להגדיר, או מסילות מ־q לq לי מסילות מסילות כל גובר וב-2p ובר p ובר להגדיר, נוכל להגדיר, זאת שכן לכל מידיר, זאת שכן לכל להגדיר, דוגמה

$$H(s,t) = \gamma_1(t) \cdot s + \gamma_0(t) \cdot (1-s)$$

נראה דוגמה למרחב בו לא כל המסילות הומוטופיות.

דוגמה 14.3 נבחן הפעם את לנו עדיין את היכולת להוכיח אלו $\gamma_1(t)=1+e^{\pi i-\pi it}$ ולמרות היכולת להוכיח את נבחן נבחן נבחן נבחן הפעם את אי־השקילות. את הקורס פונקציות מרוכבות כבר יודע שמהגרסה המורחבת למשפט האינטגרל של קושי נובע שהאינטגרל המסילות שתי המסילות שונה, ובהמשך נראה טיעון שדומה לטיעון זה עבור הוכחת אי־השקילות.

ניזכר בהגדרת החבורה,

, המתקיים, כך שמתקיים, כד $G^2 o G$ היא ופעולה קבוצה הכולל היא זוג הכורה (תבורה) אורה הגדרה הגדרה הגדרה (תבורה)

- $a\cdot (b\cdot c)=(a\cdot b)\cdot c$ מתקיים $a,b,c\in G$ לכל. .1
- $g \in G$ לכל $e \cdot g = g \cdot e = g$ כך שי $e \in G$ לכל ליכל איבר ניטרלי, קיים איבר פוום איבר $e \in G$
- לייטרלי האיבר e עבור $g \cdot h = h \cdot g = e$ כך שים $h \in G$ קיים קיים לכל .3

. האיבר ההופכי של $g \in G$ הוא יחיד.

אז נגדיר מסילה . $lpha\in\Omega(X,a,b),eta\in\Omega(X,b,c)$ נניח ש- $a,b,c\in X$ מוניח ש-פופולוגי וניח ש- $a,b,c\in X$ מרחב טופולוגי וניח ש- $a*\beta:[0,1]\to X$ מוגדרת על־ידי, $\alpha*\beta:[0,1]\to X$ בין ש- $\alpha*\beta:[0,1]\to X$ מוגדרת על־ידי,

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & 0 \le t \le \frac{1}{2} \\ \beta(st - 1) & \text{otherwise} \end{cases}$$

נבחין כי $\alpha * \beta$ מוגדרת היטב מלמת ההדבקה.

 $lpha*(eta*\gamma), (lpha*eta)*\gamma\in$ אז א $lpha\in\Omega(X,x_0,x_1), eta\in\Omega(X,x_1,x_2), \gamma\in\Omega(X,x_2,x_3)$ הערה נניח ש־ $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה שות. $lpha*(\beta*\gamma), (lpha*\beta)*\gamma\in$ ותהינה שות.

 $lpha*eta\simlpha'*eta'$ אז $eta\simlpha'$ אז $eta\simlpha'\in\Omega(X,b,c)$ יטענה 14.9 נניח שי

את ההוכחה לא נראה, אבל היא נובעת ישירות מהגדרת מחלקות השקילות.

מסקנה 14.10 אפשר להגדיר את פעולת השרשור על מחלקות הומוטופיה, כלומר הפעולה מוגדרת היטב על מחלקות שקילות.

נסמן במקרה זה $[\alpha]*[\beta]=[\alpha*\beta]$ נסמן במקרה זה נסמן

סענה 14.11 לכל $\gamma \in \pi_1(X,x_2,x_3)$ י ו' $[eta] \in \pi(X,x_1,x_2)$, $[lpha] \in \pi_1(X,x_0,x_1)$ לכל 14.11 לכל

$$([\alpha] * [\beta]) * [\gamma] = [\alpha] * ([\beta] * [\gamma])$$

הגדרה של α אם קיימת של מסילה. מסילה מסילה מסילה מסילה על מסילה מסילה

 $\alpha = [eta]$ טענה 14.13 אם eta רפרמטריזציה של lpha אז $lpha \sim eta$ אז $lpha \sim eta$ אם 14.13 מענה

הוכחה. $\psi \in \Omega([0,1],0,1)$ אז $\psi = \iota \circ \psi$ ומתקיים ומתקיים, $\iota(t) = t$ מסילות, כל שתי מסילות על המכפלה על המכפלה $\psi : [0,1] \to [0,1] \to [0,1]$ מסילות

עם אותן קבוצה קמורה, קבוצה קמורה, ונגדיר, אם כך lpha, eta: [0,1] o A עבור קמורה, ונגדיר, ונגדיר, אותן נקודות קצה בקבוצה קמורה אותן נקודות האותן נקודות אותן האותן האותן אותן האותן האותן אותן האותן ה

$$H(s,t) = s\beta(t) + (1-s)\alpha(t) \in A$$

 $lpha\sim eta$ אז מבדיקה ולכן היא הומוטופיה אהל שאכן שאכן אז מבדיקה אז מבדיקה שאכן

. השרשור הער יחד חבורה היא $\pi_1(X,x_0)$ 14.14 מסקנה מסקנה

. מקיים אסוציאטיביות. u(vw)=(uv)w מתקיים $u,v,w\in\pi_1(X,x_0)$ מקיימת שלכל מקיימת שלכל אסוציאטיביות. הפעולה $\pi_1(X,x_0)$ לכל $\pi_1(X,x_0)$ לכל היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $e=[c_{x_0}]$ ונבחין כי לכל $t\in[0,1]$ היא איבר ניטרלי ביחס $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $e=[c_{x_0}]$ ונבחין כי לכל $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר $t\in[0,1]$ היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל מקרים היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל מקרים היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל מקרים היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל מקרים היא איבר ניטרלי ביחס לפעולה, כלומר נגדיר ובחין כי לכל מקרים היא איבר ניטרלי ביחס לפעולה הקבועה היא איבר ניטרלי ביחס לפעולה היא איבר ניטרלי ביחס לפעולה הקבועה היא איבר ניטרלי ביחס לפעולה היא איבר ניטרלי ביחס לפעולה הקבועה היא איבר ניטרלי ביחס לפעולה היא איבר ניטרלי ביחס לפעול ביחס לפע

 $u\in\pi_1(X,x_0)$ כלומר לכל $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\overline{\alpha}(t)=\alpha(1-t)$ על־ידי $\overline{\alpha}\in\Omega(\Omega,x_1,x_0)$ נגדיר מסילה מסילה $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\alpha*\overline{\alpha}=c_{x_0}$ ולכן $\alpha*\overline{\alpha}=c_{x_0}$ כלומר לכל $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה $\alpha*\overline{\alpha}=c_{x_0}$ נגדיר מסילה $\alpha*\overline{\alpha}=c_{x_0}$ בהינתן מסילה לכל מסילה מ

נסיים בטענה המושארת כתרגיל לקורא.

. טענה 14.15 אם אם מרחב כוויץ אז $\pi_1(X,x_0)$ אז מרחב מרחב אם 14.15 טענה

20.5.2025 - 15 שיעור 15

15.1 החבורה היסודית

 $\pi_1(X,x_1)$ ו- $\pi_1(X,x_0)$ אז החבורות $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ נניח ש $\alpha\in\Omega(X,x_0,x_1)$ ו- α

על־ידי, $f_{\alpha}:\Omega(X,x_{0}) \rightarrow \Omega(X,x_{1})$ על־ידי, נגדיר העתקה

$$f_{\alpha}(\gamma) = \overline{\alpha} * \gamma * \alpha$$

לכל γ וכאשר הזו נראה שההעתקה הזו משרה העתקה זו משרה העתקה הזו היא ההפוכה ל $\overline{\alpha}$ וכאשר $\gamma \in \Omega(X,x_0)$ לכל ולבסוף נראה שאף איזומורפיזם.

כדי להראות שאם $\gamma,\gamma'\in\Omega(X,x_0)$ שאם להראות אז מספיק להראות הומוטופיות הומוטופיות אז מספיק להראות הומוטופיות העתקה $\hat{f}_{lpha}:\pi_1(X,x_0)\to\pi_1(X,x_1)\to\pi_1(X,x_1)$ מסילות הומוטופיות אז גם $\hat{f}_{lpha}([\gamma])=[\overline{lpha}*\gamma*lpha]$ למעשה אנו כבר יודעים זאת ישירות מהעובדה ש־ $\pi_1(X,x_0)$ חבורה, ולכן נוכל להגדיר $\pi_1(X,x_0)$ אם $\hat{f}_{lpha}([\gamma])$ אז, $[\gamma_1],[\gamma_2]\in\pi_1(X,x_0)$

$$\hat{f}_{\alpha}([\gamma_1][\gamma_2]) = \hat{f}_{\alpha}([\gamma_1 * \gamma_2]) = [\overline{\alpha} * \gamma_1 * \gamma_2 * \alpha]$$

ומהצד השני,

$$\hat{f}_{\alpha}([\gamma_1])\hat{f}_{\alpha}([\gamma_2]) = [\overline{\alpha} * \gamma_1 * \alpha] \cdot [\overline{\alpha} * \gamma_2 * \alpha] = [\overline{\alpha} * \gamma_1 * \alpha * \overline{\alpha} * \gamma_2 * \alpha] = [\overline{\alpha} * \gamma_1 * \gamma_2 * \alpha]$$

ונסיק כי זהו הומומורפיזם.

 $\hat{g}_{lpha}\circ\hat{f}_{lpha}$ בעבור לבדיקת איזומורפיזם. נניח ש־ $\hat{g}_{lpha}:\pi_1(X,x_1)\to\pi_1(X,x_1)$ נגדיר נגדיר לבדיקת איזומורפיזם. נניח ש־ $e=\hat{f}_{lpha}([\gamma])$ איבר היחידה ב־ $e=\hat{f}_{lpha}([\gamma])$ נובע, נניח ש־ $\hat{f}_{lpha}\circ\hat{g}_{lpha}=\mathrm{id}_{\pi_1(X,x_1)}$ לכל ל $\hat{g}_{lpha}(\beta)=[lpha*\beta*\overline{lpha}]$ וכן $[eta]\in\pi_1(X,x_1)$ נובע, נניח ש־ $\hat{f}_{lpha}\circ\hat{g}_{lpha}=\mathrm{id}_{\pi_1(X,x_1)}$

$$(\hat{g}_{\alpha} \circ \hat{f}_{\alpha})(\gamma) = \hat{g}_{\alpha}(\hat{f}_{\alpha})(\gamma) = \hat{g}_{\alpha}([\overline{\alpha} * \gamma * \alpha]) = [\alpha * \overline{\alpha} * \gamma * \alpha * \overline{\alpha}] = [\gamma]$$

. ולכן נסיק שאכן \hat{f}_{lpha} איזומורפיזם. $\hat{g}_{lpha}\circ\hat{f}_{lpha}=\mathrm{id}_{\pi_{1}(X,x_{0})}$ איזומורפיזם.

ניזכר בהגדרה 3.10, המדברת על כוויצות.

. טריוויאלית אם $\pi_1(X,x_0)$ אז כוויץ מרחב אם X אם הערה

 $x_0\in X$ ל־ל $\pi_1(X,x_0)=\{e\}$ מרחב מסילתית הX פשוט קשר ש־X פשוט קשר) נאמר הגדרה 15.2 מרחב פשוט קשר) אבדרה

הגדרה זו היא בעצם הרעיון שאנו יכולים לצמצם באופן רציף את המרחב שלנו.

. כוויץ אז X אז X אז עיוות של Y ו־ $Y = \{y_0\}$ אם 15.1 דוגמה

 $x_0 \in X$ ל־ל מ־ל מיש נסג עיוות מ־ל כוויץ אז יש נסג כוויץ אז יש האם 15.1 תרגיל

ונרצה $\alpha:[0,1] \to X$ ונרשה של הכיווץ. נניח ש $\alpha:[0,1] \to X$ על־ידי ההעתקה של הכיווץ. נניח של הכיווץ. נניח ש $\alpha:[0,1] \to X$ על־ידי ההעתקה של הכיווץ. נגדיר את ההעתקה, $\alpha:[0,1] \to X$

$$G(s,t) = \begin{cases} \alpha(2t) & 0 \le t \le \frac{s}{2} \\ H(s, \gamma(\frac{t - \frac{s}{2}}{1 - s})) & \frac{s}{2} \le t \le 1 - \frac{s}{2}, s < 1 \\ \alpha(2 - 2t) & \frac{s}{2} \le t \le 1 \end{cases}$$

אנו טוענים כי G היא העתקה רציפה, ובמקרה זה G מגדירה הומוטופיה בין γ ל־ $\alpha*\overline{\alpha}\sim c_{x_0}$. כדי להראות זאת נשתמש בעובדה ש־G מגדירה הומוטופיה בין וומפקטית גם כן.

26.5.2025 - 16 שיעור 16

16.1 חבורה יסודית וכוויצות

נמשיך ונדון בבעיה שהצגנו בפעם הקודמת. X כוויץ אם יש נקודה יחידה כך שיש הומוטופיה מכל המרחב לנקודה הזו. מהצד השני מרחב הוא נסג עיוות אם מתקיים מצב דומה עם תת־מרחב. הפעם נאמר שכל מרחב שהוא נסג עיוות לנקודה גורר שהוא כוויץ לנקודה, אבל גם נראה דוגמה נגדית למצב ההפוד.

משפט 16.1 אם X כוויץ אז X פשוט קשר.

הכיווץ. $F:I\times X o X$ של הכיווץ.

 $eta_y(s) = \alpha_x(t) = F(t,x)$ המקיימות מסילות מסילות בשרשור מסילתית. לכל זוג נקודות $x,y \in X$, נתבונן בשרשור $\alpha_x * \beta_y$ שתי מסילתית של $x,y \in X$ ו־ב $x,y \in X$ השרשור שלהן כמובן מעיד על קשירות מסילתית של $x,y \in X$

, נגדיר, קודם לכן. שהגדרנו שהגדרנו שה המסילה $lpha=lpha_{x_0}$ את ונבחן $\gamma\in\Omega(X,x_0)$ תהי תהי $1=|\pi_1(X,x_0)|$

$$G(s,t) = \begin{cases} \alpha(t) & 0 \le t \le \frac{s}{2} \\ F(s, \gamma(\frac{t-\frac{s}{2}}{1-s})) & \frac{s}{2} \le t \le 1 - \frac{s}{2}, s < 1 \\ \alpha(2-2t) & 1 - \frac{s}{2} \le t \le 1 \end{cases}$$

העתקה זו מעבירה את המסילה ל־lpha ולכן מוכיחה שיש רכיב יחיד בחבורה היסודית של המרחב, אבל עלינו להראות שהיא בכלל רציפה. בבירור היא העתקה זו מעבירה את המסילה ל־lpha ולכן מוכיחה שיש רכיב יחיד בנפרד, זאת כהרכבת העתקות רציפות. נותר לנו לבדוק את שתי הנקודות שמחברות את הקטעים הללו. אם s < 1 או בראה $t = 1 - rac{s}{2}$ אז הרציפות נובעת מלמת ההדבקה. נותר עלינו לבדוק את $t = 1 - rac{s}{2}$ אז יש סביבה פתוחה כלשהי t < 1 - 1 ומתקיים t < 1 - 1 ומתקיים t < 1 - 1 אז יש סביבה פתוחה באופן דומה עם t < 1 - 1 אז נוכל לפעול באופן דומה עם t < 1 - 1 וכים סביבה פתוחה דומה. אם t < 1 - 1 אז נוכל לפעול באופן דומה עם t < 1 - 1

$$F(1,y) \in U$$

יש ולכן של סיסוי פתוח של $\{W_x\}_{x\in\gamma(I)}$ א פתוחה. אז $x\in W_x\subseteq X$ ו־ $r_x<1$ כאשר על כאשר $V_x=(r_x,1]\times W_x$ כיסוי פתוח בלי הגבלת הכלליות $V_x=(r_x,1]\times V_x$ פתוחה. אז $V_x=(r_x,1]\times V_x$ קומפקטית ולכן יש הגבלת הכלליות אוני ביסוי סופי ולכל על פיים $V_x=(r_x,1]\times V_x$ קומפקטית ולכן יש הגבלת הכלליות אוני ביסוי פתוח של $V_x=(r_x,1]\times V_x$

$$F(p,x) \in U$$

 $G(p,q) \in U$ גם $rac{p}{2} < q < 1 - rac{p}{2}$ ורי $r כך שיר <math>(p,q) \in I imes I$ גם תובע שלכל

מרחבי כיסוי והעתקות כיסוי 16.2

$$p^{-1}(U) = \biguplus_{\alpha \in \Omega} V_{\alpha}$$

כך שלכל $p\mid_{V_{lpha}}:V_{lpha}
ightarrow U$, $lpha\in\Omega$ כך שלכל

p מכוסה על־ידי אחידה על־ידי מכוסה על־ידי מ

B נקרא מרחב כיסוי של בקרא למרחב למרחב ל

טענה 16.3 כל העתקת כיסוי היא העתקה פתוחה.

 $y\in V_{lpha_0}$.p(y)=x ש־ש $y\in W$ ותהי $x\in p(W)$ תהי פתוחה. עב הראות שגם שגם להראות שגם שגם אותהי שגם אותהי $p(W)\subseteq B$ פתוחה. עב הראות שגם אותהי אותרפיזם. אותרפיזם.

נעבור לדוגמות.

. ביסוי העתקת הזהות, היא וול $\mathrm{id}_B:B o B$ ביסוי ווגמה דוגמה וול $\mathrm{id}_B:B o B$

. העתקת היא העתקת הצמצום, העתקת העתקת $p: B imes \{1, 2, \dots, n\} o B$ ווגמה 16.2 דוגמה

. העתקת הישר למעגל, אף היא העתקת ($t\mapsto (\cos(2\pi t),\sin(2\pi t))$ או לחלופין או $t\mapsto e^{2\pi it}$ אף היא העתקת הישר 16.3 דוגמה

. נכחן העתקת זו העתקת אר בידי על-ידי $p:\mathbb{C}\to\mathbb{C}\setminus\{0\}$ את נכחן הבחן 16.4 דוגמה 16.4 בהן את

הגדרות ומשפטים

הגדרות ומשפטים

4	גדרה 1.1 (מרחב מטרי)
4	1.2 נדרה 1.2 (רציפות) מדרה בארות בארות וויינים בארות באות בארות באות בארות בארות באות באות באות באות באות באות באות בא
4	1.3 נדרה 1.3 (כדור)
4	גדרה 1.4 (קבוצה פתוחה)
4	גדרה 1.5 (הגדרה שקולה לרציפות)
4	גדרה 1.6 (טופולוגיה)
4	נדרה 1.7 (מרחב טופולוגי)
4	1.9 נדרה 1.9 (קבוצה סגורה)
5	נדרה 1.10 (בסיס לטופולוגיה)
5	ענה 1.13 (צמצום מרחב טופולוגי)
5	ענה 1.14 (טופולוגיית מכפלה)
7	גדרה 2.1 (טופולוגיית מכפלה)
7	נדרה 2.2 (העתקות הטלה)
7	גדרה 2.3 (תת־בסיס לטופולוגיה)
7	נדרה 2.4 (טופולוגיה חלשה)
7	גדרה 2.5 (מטריקת מכפלה)
9	נדרה 3.1 (סגור של קבוצה במרחב טופולוגי)
9	3.4 (פנים ושפה) אונים ושפה) נדרה אונים ושפה) נדרה אונים ושפה
9	נדרה 3.5 (סביבה של נקודה)
9	גדרה 3.6 (נקודת הצטברות)
10	ענה 3.9 (שקילות לרציפות)
11	גדרה 3.10 (מרחב כוויץ)
11	
11	נדרה 3.12 (העתקה פתוחה וסגורה)
12	גדרה 4.1 (איברים ניתנים להפרדה)
12	גדרה 4.2 (אקסיומות הפרדה)
12	ענה 4.4 (גרירת אקסיומות ההפרדה)
12	ענה 4.5 (שקילות למרחב נורמלי)
12	ענה 4.6 (תנאי שקול למרחב האוסדורף)
13	ענה 4.7 (אקסיומות הפרדה בתתי־מרחבים)
13	ענה 4.8 (אקסיומות הפרדה במרחבי מכפלה)
13	ענה 4.9 (הפרדה במרחבים מטריים)
16	נדרה 6.1 (בסיס לטופולוגיה בנקודה)
16	נדרה 6.2 (אקסיומת המנייה הראשונה)
16	גדרה 6.3 (אקסיומת המנייה השנייה)
16	גדרה 6.4 (מרחב לינדולף)
16	גדרה 6.5 (מרחב ספרבילי)
16	נדרה 6.7 (מרחב מטריזבילי)
16	שפט 6.8 (משפט המטריזביליות של אורסון)
17	\ldots נדרה 6.9 (קשירות)
17	ענה 6.10 (תכונות של קשירות)
19	נדרה 7.1 (קשירות מקומית)

הגדרות ומשפטים

19	\ldots (רכיב קשירות)	הגדרה 2.
19	7 (מסילה)	הגדרה 3.
19	7 (קשירות מסילתית)	הגדרה 4.
19	7 (קשירות מסילתית מקומית)	הגדרה 5.
20	8 (קומפקטיות)	הגדרה 2.
20	8 (שקילות לקומפקטיות)	הגדרה 3.
22		הגדרה 10
22		הגדרה 11
22		משפט 12
23	? (משפט טיכונוף)	משפט 1.0
25		הגדרה 1.
25		הגדרה 2.
26		
26	י	0.4 טענה
28		
28		
28		
29		
29	12 (הרחבה רציפה לפונקציות במרחבים קומפקטיים מקומית)	
29		
29	(קב-הייה)	
29	12 (בייר)	
30	(- כ –)	
30	ב. ב. (
31	13 (משחק מזור)	
31	13 (אוקלידיות מקומית)	
31	13 (יריעה טופולוגית)	
33	14 (הומוטופיה)	
33	11 (יונייטנט וויניות)	
34	14 (החבורה היסודית של מרחב טופולוגי)	
34	14 (חובור היה או היה של פור הב טופורוג)	
34	14 (שרשור של מסילות)	
34	14. (רפרמטריזציה של מסילה)	
36	14. (ו פו מטו רוציה של מטילה)	
36	15 (נסג עיוות)	
37		
37	16 (העתקת כיסוי)	הגדרה ∠.