

Unit 5: Other data mining tasks

06/11/19 09:44 CIB Research Group 1/8

Section 1: Association Analysis: Basic Concepts and Algorithms

Association Rule Mining

Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

{Diaper} \rightarrow {Beer}, {Milk, Bread} \rightarrow {Eggs,Coke}, {Beer, Bread} \rightarrow {Milk},

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

> Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- K-itemset
 - An itemset that contains K items
- Support count (ZZ)
 - Frequency of occurrence of an itemset
 - E.g. $ZZ(\{Milk, Bread, Diaper\}) = 2$
- Support
 - Fraction of transactions that contain an itemset
 - E.g. $s(\{Milk, Bread, Diaper\}) = 2/5$
- > Frequent Itemset
 - An itemset whose support is greater than or equal to a minsup threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Definition: Association Rule

Association Rule

- An implication expression of the form
 X, Y, where X and Y are itemsets
- Example: {Milk, Diaper} -> {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fvaction of transactions that contain both X and Y
- Confidence (c)

Measures how often items
appear in transactions that
contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

$$s = \frac{\sigma(X \cup Y)}{|T|} = \frac{\sigma(\text{Milk, Diaper,Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(X \cup Y)}{\sigma(X)} = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association vules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)

{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)

{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)

{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)

{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)

{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

Observations:

All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}

Rules originating from the same itemset have identical support but can have different confidence

Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1) Frequent Itemset Generation
 - Genevate all itemsets whose support >= minsup
 - 2) Rule Generation
 - Genevate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

Frequent Itemset Generation

Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database

- Match each transaction against every candidate
- Complexity $\sim O(NNw) => Expensive since M = 24 |||$

computational complexity

Given d unique items:

- Total number of itemsets = 2d
- Total number of possible association rules:

$$R = \sum_{k=1}^{d-1} \left[dk \times \sum_{j=1}^{d-k} (d-kj) \right] = 3^{d} - 2^{d+1} + 1$$

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y:(X\subseteq Y)\Rightarrow s(X)\geq s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Illustrating Apriori Principle

Illustrating Apriori Principle

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Pairs (2-itemsets)

(No need to generate candidates involving Coke or Eggs)

Minimum Support = 3

Triplets (3-itemsets)

Itemset	Count
{Bread,Milk,Diaper}	3

Apriori Algorithm

Method $Fk-1 \times F1$:

- Genevate frequent itemsets of length 1
- To generate frequent K-itemsets:
 - Merge frequent (K-1)-itemsets with all frequent items
- The methods is complete: All frequent itemsets are generated
- Many infrequent itemsets are generated
 - Heuristic pruning
- Complexity:

$$O(\sum_{k} k|F_{k-1}||F_1|)$$

Complexity of brute force:

$$O\left|\sum_{k=1}^{d} k \times \left|\frac{d}{k}\right|\right| = O\left(d \cdot 2^{d-1}\right)$$

Apriori Algorithm

Method $Fk-1 \times Fk-1$:

- Merge two frequent (K-1)-itemsets iif their first K-2 items are common
- Complete and genevate less infrequent itemsets
- (K-1) subsets must be frequent
- (K-2) subsets must be test in a pruning step.

Reducing Number of Comparisons

Candidate counting:

- Scan the database of transactions to determine the support of each candidate itemset
- To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets

Transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Hash Structure

Buckets

Subset Operation

Given a transaction t, what are the possible subsets of size 3?

Generate Hash Tree

- Suppose you have 15 candidate itemsets of length 3:
 - {145}, {124}, {457}, {125}, {458}, {159}, {136}, {234}, {567}, {345}, {356}, {357}, {689}, {367}, {368}
- You need:
 - Hash function
 - Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node).
 - In the example: 3

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Association Rule Discovery: Hash tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Subset Operation Using Hash Tree

Factors Affecting Complexity

- Choice of minimum support threshold
 - loweving support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - move space is needed to stove support count of each item.
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - tvansaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

compact Representation of Frequent Itemsets

Some itemsets are redundant because they have identical support as their supersets

ALESSE!												204		45				1 2 5		BEE OF	196									
TID	A1	A2	A3	A4	A5	A6	A7	A8	Α9	A10	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0-	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
111		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

Number of frequent itemsets $= 3 \times \sum_{k=1}^{10} {10 \choose k}$ Need a compact representation

Maximal frequent itemsets

- An itemset is maximal frequent if none of its immediate supersets is frequent
 - Maximal frequent internsets are a compact representation of all frequent internsets
 - All frequents itemsets are either:
 - Maximal frequent itemsets
 - Subsets of maximal frequent itemsets.

Maximal Frequent Itemset

closed Itemset

An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
$\{C,D\}$	3

Itemset	Support
{A,B,C}	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
$\{A,B,C,D\}$	2

Maximal vs closed Itemsets

06/11/19 09:44 CIB Research Group 32/87

33/87

Maximal vs closed Frequent Itemsets

06/11/19 09:44 CIB Research Group

Maximal vs closed Itemsets

Redundant association rules

- An association rule $X \square Y$ is redundant if:
 - Exists another association rule X' U' with, at least, the same support and confidence
 - \bullet $X'\subseteq X$ and $Y\subseteq Y'$

Non redundant rules

- Example:
 - $\{a\} \rightarrow \{c, f\}$ is vedundant if $\{a\} \rightarrow \{c, e, f\}$ has the same support and confidence
 - $\{a,b\} -> \{e,f\}$ is vedundant if $\{a\} -> \{e,f\}$ has the same support and confidence
- Using only closed itemsets redundant rules are not considered

Alternative Methods for Frequent Itemset Generation

- Traversal of Itemset Lattice
 - Geneval-to-specific vs Specific-to-geneval

Alternative Methods for Frequent Itemset Generation

- > Traversal of Itemset Lattice
 - Equivalent Classes

Alternative Methods for Frequent Itemset Generation

- > Traversal of Itemset Lattice
 - Breadth-first vs Depth-first

(a) Breadth first

(b) Depth first

Alternative Methods for Frequent Itemset Generation

- Representation of Database
 - hovizontal vs vertical data layout

Horizontal

Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Ш
1	1	2 3	2	1
1 4 5 6	1 2 5 7 8 10	3	4 5 9	1 3 6
5	5	4 8 9	5	6
6	7	8	9	
7	8	9		
8	10			
9				

FP-growth Algorithm

- Use a compressed representation of the database using an FPtree
- Once an FP-tree has been constructed, it uses a recursive divideand-conquer approach to mine the frequent itemsets

FP-tree construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	$\{A,B,D\}$
10	{B,C,E}

After reading TID=2:

FP-Tree Construction

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	{A,D,E}
5	{A,B,C}
6	{A,B,C,D}
7	{B,C}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Header table

Item	Pointer
Α	
В	
С	
D	
Е	

null

Pointers are used to assist frequent itemset generation

FP-growth


```
Conditional Pattern base for D:
```

```
P = {(A:1,B:1,C:1),
(A:1,B:1),
(A:1,C:1),
(A:1),
(B:1,C:1)}
```

Recursively apply FP-growth on P

Frequent Itemsets found (with sup > 1):

AD, BD, CD, ACD, BCD

Tree Projection

Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
 - Itemset for node P
 - List of possible lexicographic extensions of P: E(P)
 - Pointer to projected database of its ancestor node
 - Bitvector containing information about which transactions in the projected database contain the itemset

Projected Database

Original Database:

TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	{B,C,E}

Projected Database for node A:

TID	Items
1	{B}
2	{}
3	$\{C,D,E\}$
4	{D,E}
5	{B,C}
6	{B,C,D}
7	{}
8	{B,C}
9	{B,D}
10	{}

For each transaction T, projected transaction at node A is $T \cap E(A)$

ECLAT

For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	C	D	Е
1	1	2 3	2	1
4	2 5	3	2 4 5	3
1 4 5 6	5	4	5	6
	7	8 9	9	
7	8	9		
8	10			
9				

TID-list

ECLAT

Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

Α		В		AB
1		1		1
4		2		5
5		5	\rightarrow	7
6		7	THE STATE OF	8
7		8		9
8		10		
9	8 - M. T.			

- > 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Rule Generation

- Given a frequent itemset L, find all non-empty subsets $f \subset L$ such that $f \to L f$ satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

$$ABC \rightarrow D$$
, $ABD \rightarrow C$, $ACD \rightarrow B$, $BCD \rightarrow A$, $A \rightarrow BCD$, $B \rightarrow ACD$, $C \rightarrow ABD$, $D \rightarrow ABC$
 $AB \rightarrow CD$, $AC \rightarrow BD$, $AD \rightarrow BC$, $BC \rightarrow AD$, $BD \rightarrow AC$, $CD \rightarrow AB$,

If |L| = k, then there are $2^k - 2$ candidate association rules (ignoring L \rightarrow 0 and 0 \rightarrow L)

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In geneval, confidence does not have an anti-monotone property $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$
 - But confidence of vules genevated from the same itemset has an anti-monotone property
 - e.g., L = {A,B,C,D}:

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

Confidence is anti-monotone w.v.t. number of items on the RHS of the rule

Rule Generation for Apriori Algorithm

06/11/19 09:44

52/87

Rule Generation for Apriori Algorithm

- Candidate rule is generated by merging two rules that share the same prefix in the rule consequent
- join(CD=>AB,BD=>AC) would produce the candidate rule D => ABC
- Prune rule D=>ABC if its
 subset AD=>BC does not have
 high confidence

Effect of Support Distribution

Many real data sets have skewed support distribution

Support distribution of a retail data set

Effect of Support Distribution

- How to set the appropriate minsup threshold?
 - If minsup is set too high, we could miss itemsets involving interesting vave items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large
- Using a single minimum support threshold may not be effective

06/11/19 09:44 CIB Research Group 54/8

Multiple Minimum Support

- How to apply multiple minimum supports?
 - MS(i): minimum support for item i
 - e.g.: $MS(Nilk)=5^{\circ}/_{\circ}$, $MS(Coke)=3^{\circ}/_{\circ}$, $MS(Bvoccoli)=0.1^{\circ}/_{\circ}$, $MS(Salmon)=0.5^{\circ}/_{\circ}$
 - MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))= 0.1%
 - Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and
 Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk, Coke} is infrequent but {Milk, Coke, Broccoli} is frequent

Multiple Minimum Support

Item	MS(I)	Sup(I)
	0.10%	0.25%
Α	0.10%	0.25%
В	0.20%	0.26%
	0.2070	0.2070
С	0.30%	0.29%
D	0.50%	0.05%
L	20/	4.2007
E	3%	4.20%

Multiple Minimum Support

MS(I)	Sup(I)
IVIC(I)	σαρ(ι)
0.10%	0.25%
0 20%	0.26%
0.2090	0.2090
0.30%	0.29%
0.500%	0.05%
0.50%	0.05%
3%	4.20%
	0.50%

Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Bvoccoli)=0.1%, MS(Salmon)=0.5%
 - Ovdeving: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
 - L₁: set of frequent items
 - F_1 : set of items whose support is $\geq MS(1)$ where MS(1) is min_i(MS(i))
 - C₂: candidate itemsets of size 2 is generated from F₁ instead of L₁

Multiple Minimum Support (Liu 1999)

Modifications to Apriori:

- In traditional Apriori,
 - A candidate (K+1)-itemset is genevated by mevging two fveguent itemsets of size K
 - The candidate is pruned if it contains any infrequent subsets of size K
- Pruning step has to be modified:
 - Prune only if subset contains the first item.
 - e.g.: Candidate={Bvoccoli, CoKe, MilK} (ovdeved according to minimum support)
 - {Bvoccoli, CoKe} and {Bvoccoli, MilK} ave frequent but {CoKe, MilK} is infrequent
 - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if $\{A,B,C\} \rightarrow \{D\}$ and $\{A,B\} \rightarrow \{D\}$ have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

Application of Interestingness Measure

computing Interestingness Measure

Given a rule $X \to Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \to Y$

	Y	Y	
X	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f _{oo}	f _{o+}
	f ₊₁	f ₊₀	T

 f_{11} : support of X and Y

 f_{10} : support of X and Y

 f_{01} : support of X and Y

f₀₀: support of X and Y

Used to define various measures

support, confidence, lift, Gini,
 J-measure, etc.

Drawback of Confidence

>HIDDEN VARIABLES

Spurious rules due to unconsidered variables

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence=
$$P(Coffee | Tea) = 0.75$$

⇒ Although confidence is high, rule is misleading

$$\Rightarrow$$
 P(Coffee | Tea) = 0.9375

Problem with confidence

 \rightarrow Confidence of X \rightarrow Y:

$$c = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

- The support of the consequent $\sigma(Y)$ is not considered in the formula
- What happens if: $\sigma(Y)$ is high?

Statistical Independence

Population of 1000 students

- 600 students Know how to swim (S)
- 700 students Know how to bike (B)
- 420 students Know how to swim and bike (S,B)
- $P(S^B) = 420/1000 = 0.42$
- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- $P(S^B) = P(S) \times P(B) => Statistical independence$
- $P(S^B) > P(S) \times P(B) => Positively covvelated$
- $P(S^B) < P(S) \times P(B) => Negatively covvelated$

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y|X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\varphi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

- For binary variables lift & interest are equivalent
- Example:
 - Association Rule: Tea Coffee
 - Confidence= P(Coffee|Tea) = 0.75
 - but P(Coffee) = 0.9
 - Lift = 0.75/0.9 = 0.8333 (< 1, therefore is negatively associated)

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

$$I(A,B) \left\{ \begin{array}{l} = 1, & \text{if A and B are independent;} \\ > 1, & \text{if A and B are positively correlated;} \\ < 1, & \text{if A and B are negatively correlated.} \end{array} \right.$$

Drawback of Lift & Interest

	Y	Y	
X	10	0	10
X	0	90	90
	10	90	100

Y

$$\overline{Y}$$

 X
 90
 0
 90

 \overline{X}
 0
 10
 10

 90
 10
 100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$$

	#	Measure	Formula
	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j} \max_{k} P(A_{j}, B_{k}) + \sum_{k} \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
;	4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{=\underline{\alpha-1}}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} + P(A,B)P(\overline{A},B)}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
THERE ARE LOTS OF MEASURES PROPOSED IN THE LITERATURE	6	Kappa (κ)	$\frac{P(A,B)+P(\overline{A},\overline{B})-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
	7	Mutual Information (M)	$\frac{\sum_{i} \sum_{j} P(A_i, B_j) \log \frac{P(A_i, B_j)}{P(A_i)P(B_j)}}{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
SOME MEASURES ARE SOOR	8	J-Measure (J)	$\max\Big(P(A,B)\log(rac{P(B A)}{P(B)}) + P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}),$
SOME MEASURES ARE GOOD FOR CERTAIN APPLICATIONS,			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(A)})\Big)$
BUT NOT FOR OTHERS	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2]\right)$
BOT NOT TOK OTTLERS			$-P(B)^2-P(\overline{B})^2,$
			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
What criteria should we			$-P(A)^2-P(\overline{A})^2\Big)$
USE TO DETERMINE WHETHER	10	Support (s)	P(A,B)
A MEASURE IS GOOD OR BAD?	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(rac{NP(A,B)+1}{NP(A)+2},rac{NP(A,B)+1}{NP(B)+2} ight)$
	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
WHAT ABOUT APRIORI-STYLE	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
SUPPORT BASED PRUNING? HOW DOES IT AFFECT THESE	15	cosine(IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
MEASURES?	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
公共 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
是 为这个人的名词	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
06/11/19 09:44	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

Properties of A Good Measure

- > Piatetsky-Shapiro:
 - 3 properties a good measure M must satisfy:
 - \bullet M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Comparing Different Measures

10 examples of contingency tables:

Example	f ₁₁	f ₁₀	f ₀₁	f ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

	and the second		and the state of		A TOWNS	Action 10 to 10			A CONTRACTOR OF THE PARTY OF TH	C. AND STREET	10 TO A 1 THE REAL PROPERTY.	Light benefit.	CA HI WALL	and and the	E STATE AND						Mary Village
#	φ	λ	α	Q	Y	κ	M	J	G	8	c	L	V	I	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1	10	10	5	1	10	10	7

Property under Variable Permutation

	В	$\overline{\mathbf{B}}$		A	$\overline{\mathbf{A}}$
A	p	q	В	р	r
$\overline{\mathbf{A}}$	r	S	$\overline{\mathbf{B}}$	q	S

Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

confidence, conviction, Laplace, J-measure, etc.

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76

2x 10x

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation

	Α	В	С	D		E	F	
Transaction 1	1	0	0	1		0	0	
	0	0	1	1		1	0	
	0	0	1	1		1	0	
	0	0	1	1		1	0	
	0	1	1	0		1	1	
	0	0	1	1		1	0	
	0	0	1	1		1	0	
	0	0	1	1		1	0	
	0	0	1	1	生物。在	1	0	
Transaction N	1	0	0	1		0	0	
						TENER.		
	(a	1)	(1	o)			(c)	

Example: ϕ -coefficient

φ-coefficient is analogous to correlation coefficient for continuous variables

	Y	Y	
Χ	60	10	70
X	10	20	30
	70	30	100

$$\varphi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$

$$= 0.5238$$

$$\varphi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$

$$= 0.5238$$

φ Coefficient is the same for both tables

Property under Null Addition

В	$\overline{\mathbf{B}}$			В	$\overline{\mathbf{B}}$
p	q		A	р	q
r	S	V	$\overline{\mathbf{A}}$	r	s + k
	B p r	B B p q r s	B B r s	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

correlation, Gini, mutual information, odds ratio, etc

Different Measures have Different Properties

Symbol	Measure	Range	P1	P2	Р3	01	O2	О3	O3'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
К	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
М	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
1	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	01	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	01	No	Yes	Yes	Yes	No	No	No	Yes
Κ	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}} - 1\right) \left(2 - \sqrt{3} - \frac{1}{\sqrt{3}}\right) \dots 0 \dots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

Support-based Pruning

- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- > Study effect of support pruning on correlation of itemsets
 - Genevate 10000 vandom contingency tables
 - Compute support and pairwise covvelation for each table
 - Apply support-based pruning and examine the tables that are removed

Support-based pruning eliminates mostly negatively correlated itemsets

- Investigate how support-based pruning affects other measures
- Steps:
 - Genevate 10000 contingency tables
 - Rank each table according to the different measures
 - Compute the pair-wise correlation between the measures

06/11/19 09:44 CIB Research Group 81/87

Without Support Pruning (All Pairs)

- Red cells indicate correlation between the pair of measures > 0.85
- 40.14% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

• $0.5\% \le \text{support} \le 50\%$

• 61.45% pairs have correlation > 0.85

Scatter Plot between Correlation & <u>Jaccard Measure</u>:

• $0.5\% \le \text{support} \le 30\%$

76.42% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

Subjective Interestingness Measure

Objective measure:

- Rank patterns based on statistics computed from data
- e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).

Subjective measure:

- Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

Interestingness via Unexpectedness

Need to model expectation of users (domain knowledge)

- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- + Expected Patterns
- Unexpected Patterns

sers with evidence from data (i.e.,

Interestingness via Unexpectedness

- Web Data (Cooley et al 2001)
 - Domain Knowledge in the form of site structure
 - Given an itemset $F = \{X_1, X_2, ..., X_k\}$ $(X_i : Web pages)$
 - L: number of links connecting the pages
 - Ifactor = $L/(K \times K-1)$
 - cfactor = 1 (if graph is connected), 0 (disconnected graph)
 - Structure evidence = cfactor X Ifactor
 - Usage evidence $= \frac{P(X_1 \cap X_2 \cap ... \cap X_k)}{P(X_1 \cup X_2 \cup ... \cup X_k)}$
 - Use Dempster-Shafev theory to combine domain Knowledge and evidence from data