MATLAB Section

This section will provide the code and results for all relevant MATLAB problems for the midterm.

Code

The relevant code used to solve each problem is shown here. Note that the code is broken up and labeled by applicable problem.

```
%
  File: midterm.m
%
  Author: Thomas Kost
%
  Date: 06 February 2021
%
%
  Obrief MATLAB solution to relevant midterm problems
clc, close all, clear;
%% Problem 4:
t= linspace(-0.75,0.25,7);
y1 = 0;
y2 = -0.1;
y3 = 0.5;
y5 = 1;
y6 = 0.8;
y7 = 0.5;
b = [y1, y2, y3, y5, y6, y7, 0, 0]';
vand_p = fliplr(vander(t(1:4)));
vand_q = fliplr(vander(t(4:7)));
vand_t4 = vand_p(4,:);
vand_p = vand_p(1:3,:);
vand_q = vand_q(2:4,:);
t4 = t(4);
t4\_prime\_vand = [0,1,2*t4, 3*(t4^2)];
A = [vand_p, zeros(3,4); zeros(3,4), vand_q; vand_t4, -vand_t4;...
    t4_prime_vand, -t4_prime_vand];
x = A \setminus b;
%% plot results
x_axis = linspace(-0.75, 0.25, 1000);
p = zeros(1,length(x_axis));
```

```
q = zeros(1,length(x_axis));
for m= 1:4
    p = p + (x_axis.^(m-1))*x(m);
    q = q + (x_axis.^(m-1))*x(m+4);
end
fig1 =figure;
hold on;
plot(x_axis, p);
plot(x_axis, q);
legend("p(t)", "q(t)");
title("Plotting p(t) and q(t)");
xlabel("t");
ylabel("t");
saveas(fig1, "polynomial_plot.jpg");
```

Results

4B: The resulting plot shows the graphs generated from solving the system of linear equations derived in the problem. We can see the two polynomials resulting plotted in the graph below:

Figure 1: Figure 1

Our results make sense as at time step t_4 we can see that the graphs are tangent and coincident.