Advanced Numerical Analysis

Vladimir Kazeev

April 17, 2025

1 Linear algebra

1.1 Vectors and matrices

In this section the field \mathbb{F} is \mathbb{R} or \mathbb{C} . m and n always denote natural numbers.

Definition 2.1. Let V be a vector space over \mathbb{F} . A function $\|\cdot\|:V\to\mathbb{R}$ is called a norm on V if for all $v,w\in V$ and $\alpha\in\mathbb{F}$ the following properties hold:

- 1. $||v|| \ge 0$
- $2. ||v|| \neq 0 \quad \forall v \neq 0$
- 3. $\|\alpha v\| = |\alpha| \|v\|$
- 4. $||v + w|| \le ||v|| + ||w||$

Example 2.2. Let $V = \mathbb{F}^n$

- $\|\cdot\|_{\infty}: V \to \mathbb{R}: \|v\|_{\infty} = \max_{i=1}^{n} |v_i| \quad \forall v \in V$
- $\|\cdot\|_p: V \to \mathbb{R}: \|v\|_p = \sqrt[p]{\sum_{i=1}^n |v_i|^p} \quad \forall v \in V \text{ and } p \in [1, \infty)$

Also $\lim_{p\to\infty} ||v||_p = ||v||_\infty$

Example 2.3. $V = \mathbb{F}^{m \times n}$. Then we define $\|\cdot\|_{\max}, \|\cdot\|_{\mathrm{F}} : \mathbb{F}^{m \times n} \to \mathbb{R}$ as follows:

- $||A||_{\max} = \max_{i,j} |a_{ij}|$ (maximum absolute value norm / Chebyshev norm)
- $||A||_{\mathcal{F}} = \sqrt{\sum_{i,j} |a_{ij}|^2}$ (Frobenius norm)

Proposition 2.4. Let V, U be \mathbb{F} -vector spaces. \mathcal{L} denotes the space of continuous $(w.r.t. \|\cdot\|_V, \|\cdot\|_U)$ linear mappings from V to U. Then $\|\cdot\|: \mathcal{L} \to \mathbb{R}$ given by

$$\|\varphi\| = \sup_{\substack{v \in V \\ \|v\|_V = 1}} \|\varphi(v)\|_U \quad \forall \varphi \in \mathcal{L}$$

is a norm.

Definition 2.5. The norm given in Proposition 2.4 is called the *operator norm* on \mathcal{L} induced by the norms $\|\cdot\|_V$ and $\|\cdot\|_U$.

Definition 2.6. $V = \mathbb{F}^n$, $U = \mathbb{F}^m$. \mathcal{L} is identified with $W = \mathbb{F}^{m \times n}$ using the standard basis.

$$\varphi \in \mathcal{L} \quad \longleftrightarrow \quad A = \operatorname{Mat}(\varphi) \in W$$

$$\varphi(v) = Av$$

Let $\|\cdot\|$ be the operator norm on \mathcal{L} induced by $\|\cdot\|_V$ and $\|\cdot\|_U$. Then $\|\cdot\|\cdot \operatorname{Mat}^{-1}: \mathbb{F}^{m\times n} \to \mathbb{R}$ is called the *matrix operator norm* induced by $\|\cdot\|_V$ and $\|\cdot\|_U$.

Example 2.7. For $p, q \in [1, \infty], W = \mathbb{F}^{m \times n}$

$$\|\cdot\|_{p,q}:\ W\to\mathbb{R}$$
 given by $\|A\|_{p,q}=\max_{\substack{v\in\mathbb{F}^n\\\|v\|_q=1}}\|Av\|_p\quad\forall A\in W$

is an (matrix) operator norm induced by $\|\cdot\|_p$ and $\|\cdot\|_q$.

Definition 2.8. For $p = q \in [1, \infty]$ we write $\|\cdot\|_{p,q} = \|\cdot\|_p$ and $\|\cdot\|_p$ is called the matrix p-norm on $\mathbb{F}^{m \times n}$.

Proposition 2.9. $\mathbb{F}^{n\times 1} \simeq \mathbb{F}^n$. The matrix p-norm on $\mathbb{F}^{n\times 1}$ coincides with the vector p-norm on \mathbb{F}^n .

Proposition 2.10. For $A \in \mathbb{F}^{m \times n}$ the following holds:

$$||A||_{1} = \max_{j=1,\dots,n} \sum_{i=1}^{m} |a_{ij}| \qquad (column \ sum \ norm)$$

$$||A||_{\infty} = \max_{i=1,\dots,m} \sum_{j=1}^{n} |a_{ij}| \qquad (row \ sum \ norm)$$

$$||A||_{2} = \sqrt{\lambda_{\max}(A^*A)} = \sigma_{\max}(A) \quad (spectral \ norm)$$

$$= \max_{\substack{u \in \mathbb{F}^{n} \\ v \in \mathbb{F}^{n} \\ ||u||_{2} = 1}} u^*Av$$

where λ_{max} is the largest eigenvalue and σ_{max} is the largest singular value of A.

Definition 2.11. $U = \mathbb{F}^{k \times m}, V = \mathbb{F}^{m \times n}, W = \mathbb{F}^{k \times n}$. Let $\|\cdot\|_U, \|\cdot\|_V, \|\cdot\|_W$ be norms on U, V, W respectively. These norms are called *consistent* (or *submultiplicative*) if

$$||AB||_W < ||A||_U ||B||_V \quad \forall A \in U, B \in V$$

For U=V=W and $\|\cdot\|_U=\|\cdot\|_V=\|\cdot\|_W$ this reduces to

$$||AB||_W \le ||A||_W ||B||_W \quad \forall A, B \in W.$$

Proposition 2.12.

- p-norm on $\mathbb{F}^{n\times n}$ is consistent for $p\in\{1,2,\infty\}$
- Frobenius norm on $\mathbb{F}^{n\times n}$ is consistent
- Chebyshev norm on $\mathbb{F}^{n\times n}$ is not consistent

e.g.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
: $\|A \cdot A\|_{\max} = \|\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}\|_{\max} = 2 \nleq 1 = \|A\|_{\max} \|A\|_{\max}$

Proposition 2.13. $U \in \mathbb{F}^{n \times n}$ invertible and $\|\cdot\|$ a norm on $\mathbb{F}^{n \times n}$. Consider $\|\cdot\|_*$, $\|\cdot\|_{**}$, $\|\cdot\|_{***}$: $\mathbb{F}^{n \times n} \to \mathbb{R}$ given by $\|A\|_* = \|UA\|$, $\|A\|_{**} = \|AU\|$, $\|A\|_{***} = \|U^{-1}AU\|$. These 3 functions are norms on $\mathbb{F}^{n \times n}$ and they are consistent if $\|\cdot\|$ is consistent.

1.2 Eigenvalues of matrices

Definition 2.14. $A \in F^{n \times n}, \lambda \in \mathbb{F}$. If $\ker(A - \lambda I) \neq \{0\}$ then λ is called an eigenvalue of A and every non-zero vector from $\ker(A - \lambda I)$ is called an eigenvector of A associated with the eigenvalue λ .

Definition 2.15. $A \in \mathbb{F}^{n \times n}$. $\chi_A : \mathbb{F} \to \mathbb{F}$ given by $\chi_A(\lambda) = \det(A - \lambda I) \ \forall \lambda \in \mathbb{F}$ is called *characteristic polynomial*.

Proposition 2.16. $A \in \mathbb{F}^{n \times n}$. χ_A is an algebraic polynomial of degree n with leading coefficient $(-1)^n$. For any $\lambda \in \mathbb{F}$, λ is an eigenvalue of A if and only if $\chi_A(\lambda) = 0$.

Definition 2.17. $A \in \mathbb{F}^{n \times n}, \lambda \in \mathbb{F}$ eigenvalue of A. The algebraic multiplicity of λ is the multiplicity of λ as a root of χ_A .

Definition 2.18. The geometric multiplicity of λ is the dimension of $\ker(A - \lambda I)$. λ is called defective if its geometric multiplicity is less than its algebraic multiplicity. If the geometric multiplicity of λ is equal to its algebraic multiplicity then λ is called non-defective eigenvalue of A.

Example. $A = I \in \mathbb{F}^{n \times n}$. $\chi_A(\lambda) = \det(I - \lambda I) = (1 - \lambda)^n$. So $\lambda = 1$ is the only eigenvalue of I with algebraic multiplicity n. We have that $\dim(\ker(A - I)) = \dim(\ker(0)) = n$.

If $A \in \mathbb{F}^{n \times n}$ is a Jordan block of size $n \geq 2$, then there is only one eigenvalue, $\lambda = 1$, with algebraic multiplicity n and geometric multiplicity $\dim(\ker(A - I)) = 1 < n$. So $\lambda = 1$ is a defective eigenvalue of A.

1.3 Schur canonical form

Definition 2.19. $A \in \mathbb{C}^{n \times n}$. Assume that $Q \in \mathbb{C}^{n \times n}$ is unitary and that $T = Q^*AQ$ (which is equivalent to $A = QTQ^*$) is upper triangular. Then the factorization $A = QTQ^*$ is called a Schur decomposition of A and T is called a Schur canonical form.

Proposition 2.20. In the context of the previous definition, the diagonal entries of T are the eigenvalues of A repeated according to their algebraic multiplicities.

Theorem 2.21. Let $A \in \mathbb{C}^{n \times n}$, $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of A repeated according to their algebraic multiplicities. Then there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that $T = Q^*AQ$ is upper triangular with diagonal entries $\lambda_1, \ldots, \lambda_n$.

Proof. Let x_1 be a normalized eigenvector of A associated with λ_1 . Consider a matrix $X = \begin{bmatrix} x_1 & X_1 \end{bmatrix} \in \mathbb{C}^{n \times n}$ unitary (with $X_1 \in \mathbb{C}^{n \times (n-1)}$). Then

$$X^*AX = \begin{bmatrix} x_1^* \\ \overline{X_1} \end{bmatrix} A \begin{bmatrix} x_1 | X_1 \end{bmatrix} = \begin{bmatrix} x_1^*Ax_1 & x_1^*AX_1 \\ \overline{X_1^*Ax_1} & \overline{X_1^*AX_1} \end{bmatrix}$$
$$= \begin{bmatrix} X^*Ax_1 & x_1^*AX_1 \\ X_1^*AX_1 & \overline{X_1^*AX_1} \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1}{0} & x_1^*AX_1 \\ \overline{X_1^*AX_1} & \overline{X_1^*AX_1} \end{bmatrix} = \begin{bmatrix} \frac{\lambda_1}{0} & t_1^* \\ \overline{X_1^*AX_1} & \overline{X_1^*AX_1} \end{bmatrix}$$

where $t_1 = X_1^* A^* x_1 \in \mathbb{C}^{n-1}$ and $A_1 = X_1^* A X_1 \in \mathbb{C}^{(n-1) \times (n-1)}$. For any $\lambda \in \mathbb{C}$, we have that $\det(A - \lambda I) = \det(X^* A X - \lambda I) = (\lambda_1 - \lambda) \det(A_1 - \lambda I)$. The following are equivalent for all $\lambda \in \mathbb{C}$, $m \in \mathbb{N}$:

(i) λ is a root of χ_A of multiplicity m

(ii)
$$\lambda$$
 is a root of χ_{A_1} of multiplicity
$$\begin{cases} m & \text{if } \lambda \neq \lambda_1 \\ m-1 & \text{if } \lambda = \lambda_1 \end{cases}$$

Then by Proposition 2.16 and Definition 2.17 $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A repeated according to their algebraic multiplicities. Assume that there exists a unitary

matrix $Q_1 \in \mathbb{C}^{(n-1)\times(n-1)}$ such that $T_1 = Q_1^*A_1Q_1$ is upper triangular with diagonal entries $\lambda_2, \ldots, \lambda_n$. Then $Q = X \begin{bmatrix} 1 & 1 & 1 \\ 1 & Q_1 \end{bmatrix}$ and $T = \begin{bmatrix} \lambda_1 & t_1^*Q_1 \\ 1 & T_1 \end{bmatrix}$ fullfill the claim for A:

$$Q^*AQ = \begin{bmatrix} 1 & \\ & Q_1^* \end{bmatrix} X^*AX \begin{bmatrix} 1 & \\ & Q_1 \end{bmatrix} = \begin{bmatrix} 1 & \\ & Q_1^* \end{bmatrix} \begin{bmatrix} \lambda_1 & t_1^* \\ & A_1 \end{bmatrix} \begin{bmatrix} 1 & \\ & Q_1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & t_1^*Q_1 \\ & T_1 \end{bmatrix}$$

For n=1: Q=[1], T=A fullfill the claim. By induction the claim holds (for any $n \in \mathbb{N}$).

Remark. For square matrices $A \in \mathbb{C}^{n \times n}$ and $S \in \mathbb{C}^{n \times n}$ invertible, the following holds:

$$\det(S^{-1}AS) = \det(S^{-1})\det(A)\det(S) = \det(A)$$
$$\chi_{S^{-1}AS}(\lambda) = \det(S^{-1}AS - \lambda I) = \det(S^{-1}(A - \lambda I)S)$$
$$= \det(S^{-1})\det(A - \lambda I)\det(S) = \det(A - \lambda I) = \chi_A(\lambda)$$

That is, the eigenvalues of A and $S^{-1}AS$ coincide.

Theorem (Spectral theorem). Let $n \in \mathbb{N}$. $A \in \mathbb{F}^{n \times n}$ is diagonalizable by ...

 $\mathbb{F} = \mathbb{C}$: ... an unitary similarity transformation $\Leftrightarrow A$ is normal

 $\mathbb{F} = \mathbb{R}$: ... an orthogonal similarity transformation $\Leftrightarrow A$ is symmetric

Remark. There can be non-hermitian normal matrices, e.g. $A = \begin{pmatrix} i & 1 \\ 0 & i \end{pmatrix}$

Remark 3.1. For $A \in \mathbb{C}^{n \times n}$. By theorem 2.21 A has a Schur form T. It is easy to check that A is normal if and only if T is normal.

$$(A = QTQ^*, \text{ so } A^*A - AA^* = Q(T^*T - TT^*)Q^* = 0 \Leftrightarrow T^*T = TT^*)$$

It is left as an exercise to show that

T is normal $\Leftrightarrow T$ is diagonal.

So the Schur form is a generalization of diagonalization by unitary similarity transformations for normal matrices to abitrary matrices.

1.4 Spectral radius of a matrix: The behavior of matrix powers

Definition 3.2. For $A \in \mathbb{F}^{n \times n}$ the set of eigenvalues of A is called the *spectrum* of A. We will denote the spectrum of A by $\lambda(A)$. (i.e., $\lambda(A)$ is the zero set of χ_A).

Definition 3.3. For $A \in \mathbb{F}^{n \times n}$, $\rho(A) = \max_{\lambda \in \lambda(A)} |\lambda|$ is called the *spectral radius* of A. Any $\lambda \in \lambda(A)$ with $|\lambda| = \rho(A)$ is called a *dominant eigenvalue* of A.

Lemma 3.4. Let $\|\cdot\|$ be a consistent norm on $\mathbb{F}^{n\times n}$. Then $\rho(A) \leq \|A\|$ for all $A \in \mathbb{F}^{n\times n}$.

Proof. (Auxiliary result: Consider $y \in \mathbb{C}^n$ non-zero. Let $\|\cdot\|_* : \mathbb{F}^n \to \mathbb{R}$ be given by $\|x\|_* = \|xy^*\| \quad \forall x \in \mathbb{F}^n$. Then $\|Ax\|_* = \|(Ax)y^*\| = \|A(xy^*)\| \le \|A\|\|xy^*\| = \|A\|\|x\|_*$. So the norms $\|\cdot\|_*, \|\cdot\|_* \| \cdot \|_*$ are consistent norms.)

Let $\|\cdot\|_*$ be a norm on $\mathbb{F}^{n\times n}$ with which $\|\cdot\|$ is consistent (i.e. $\|\cdot\|_*, \|\cdot\|_*, \|\cdot\|_*$ are consistent). Let $\lambda \in \mathbb{F}$ be an eigenvalue of A and $x \in \mathbb{F}^n$ an associated eigenvector of unit length w.r.t. $\|\cdot\|_*$. Then $\|A\| = \|A\| \|x\|_* \ge \|Ax\|_* = \|\lambda x\|_* = |\lambda| \|x\|_* = |\lambda|$. \square

Lemma 3.5. Let $A \in \mathbb{F}^{n \times n}$ and $\varepsilon > 0$. Then there exists a consistent norm $\| \cdot \|_{A,\varepsilon}$ on $\mathbb{F}^{n \times n}$ such that $\|A\|_{A,\varepsilon} \leq \rho(A) + \varepsilon$.

If the dominant eigenvalues of A are non-defective, then there exists a consistent norm $\|\cdot\|_A$ on $\mathbb{F}^{n\times n}$ such that $\|A\|_A = \rho(A)$.

Proof. By theorem 2.21, A has a Schur decomposition $A = QTQ^*$ with $Q \in \mathbb{C}^{n \times n}$ unitary and $T \in \mathbb{C}^{n \times n}$ upper triangular. Let $\Lambda = \operatorname{diag}(T)$ and $U = T - \Lambda = \operatorname{offdiag}(T)$ (so $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ in the context of theorem 2.21, U is strictly upper triangular).

For $\eta > 0$ consider $D_{\eta} = \operatorname{diag}(\eta^0, \eta^1, \dots, \eta^{n-1}) \in \mathbb{C}^{n \times n}$ then, for all $i, j \in \{1, \dots, n\}$, we have

$$(D_{\eta}^{-1}UD_{\eta})_{ij} = \eta^{1-i}U_{ij}\eta^{j-1} = \begin{cases} 0 & \text{if } i \ge j\\ \eta^{j-i}U_{ij} & \text{if } i < j \end{cases}$$

So there exists $\eta_* > 0$ such that $||D_{\eta_*}^{-1}UD_{\eta_*}||_{\infty} < \varepsilon$. Let $D = D_{\eta_*}$. Then

$$||D^{-1}Q^*AQD||_{\infty} = ||D^{-1}\Lambda D + D^{-1}UD||_{\infty} = ||\Lambda + D^{-1}UD||_{\infty}$$

$$\leq ||\Lambda||_{\infty} + ||D^{-1}UD||_{\infty} < \rho(A) + \varepsilon$$

Let us define $\|\cdot\|_{A,\varepsilon}: \mathbb{C}^{n\times n} \to \mathbb{R}$ by $\|B\|_{A,\varepsilon} = \|D^{-1}Q^*BQD\|_{\infty}$. By proposition 2.13 $\|\cdot\|_{A,\varepsilon}$ is a consistent norm on $\mathbb{C}^{n\times n}$. On the other hand, $\|\cdot\|_A < \rho(A) + \varepsilon$.

For the second claim, let us assume that $\lambda_1, \ldots, \lambda_k$ with $k \in \{1, \ldots, n\}$ are the dominant eigenvalues of A (i.e. $|\lambda_1| = \ldots = |\lambda_k| = \rho(A) > |\lambda_{k+1}|, \ldots, |\lambda_n|$) and that they are non-defective.

If $\rho(A) = 0$, then $\lambda_1 = \ldots = \lambda_n = 0$, so 0 is a non-defective eigenvalue of A with algebraic multiplicity = geometric multiplicity = n, so A = 0. Then any consistent norm fullfills the claim.

If k = n, all eigenvalues are non-defective. Then A is diagonalizable, i.e. there is $S \in \mathbb{C}^{n \times n}$ invertible such that $A = S\Lambda S^{-1}$ with $\Lambda = S^{-1}AS$ diagonal. Let $\|\cdot\|_A : \mathbb{C}^{n \times n} \to \mathbb{R}$ be given by $\|B\|_A = \|S^{-1}BS\|_{\infty}$ for all $B \in \mathbb{C}^{n \times n}$. As discussed earlier, $\|\cdot\|_A$ is a consistent norm and $\|A\|_A = \|\Lambda\|_{\infty} = \rho(A)$.

For the remainder of the proof, assume that k < n. Let $\Lambda_1 = \operatorname{diag}(\lambda_1, \ldots, \lambda_k) \in \mathbb{C}^{k \times k}$ and $\Lambda_2 = \operatorname{diag}(\lambda_{k+1}, \ldots, \lambda_n) \in \mathbb{C}^{(n-k) \times (n-k)}$. Then $\Lambda = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix} \in \mathbb{C}^{n \times n}$. We consider a Schur decomposition $A = QTQ^*$ with Q unitary and T upper triangular with $\operatorname{diag}(T) = \Lambda$. Partition T as $T = \begin{bmatrix} T_1 & T_{12} \\ & T_2 \end{bmatrix}$ with $T_{11} \in \mathbb{C}^{k \times k}$. We have:

- (i) Every dominant eigenvalue of A is not an eigenvalue of T_2 but is an eigenvalue of T_1 .
- (ii) For all $\lambda \in \{\lambda_1, \dots, \lambda_k\}$, $T_2 \lambda I$ is invertible, so we have $\dim(\ker(A \lambda I)) = \dim(\ker(T \lambda I)) = \dim(\ker(T_1 \lambda I))$.

So T_1 is diagonalizable: $\exists S_1 \in \mathbb{C}^{k \times k}$ invertible such that $S_1^{-1}T_1S_1 = \Lambda_1$. Let us consider the matrix $S = \begin{bmatrix} S_1 & \\ & I_2 \end{bmatrix}$ with $I_2 \in \mathbb{C}^{(n-k) \times (n-k)}$ the identity matrix. We have

$$S^{-1}Q^*AQS = S^{-1}TS = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix} + \begin{bmatrix} 0 & T_{12} \\ 0 & U_2 \end{bmatrix}$$

where $U_2 = T_2 - \Lambda_2 = \text{offdiag}(T_2)$ is strictly upper triangular.

Consider $\eta > 0, D = \operatorname{diag}(\eta^0, \dots, \eta^{n-1}) = \begin{bmatrix} D_1 & D_2 \\ & D_2 \end{bmatrix}$ with $D_1 \in \mathbb{C}^{k \times k}$.

$$D^{-1}S^{-1}Q^*AQSD = \begin{bmatrix} \Lambda_1 & \\ & \Lambda_2 \end{bmatrix} + \begin{bmatrix} 0 & Z_{12} \\ \hline & 0 & Z_2 \end{bmatrix}$$

where $Z_{12} = D_1^{-1}T_{12}D_2$ and $Z_2 = D_2^{-1}U_2D_2$. We will consider $\|\cdot\|_A : \mathbb{C}^{n\times n} \to \mathbb{R}$ given by $\|B\|_A = \|D^{-1}S^{-1}Q^*BQSD\|_1$ for all $B \in \mathbb{C}^{n\times n}$. Again, $\|\cdot\|_A$ is a consistent norm.

Block Z_2 : U_2 is strictly upper triangular, so Z_2 is strictly upper triangular. For all $i, j \in \{1, \ldots, n-k\}$ such that i < j we have

$$(Z_2)_{ij} = \eta^{j-i} (U_2)_{ij} \xrightarrow{\eta \to 0} 0$$

Block Z_{12} : For all $i \in \{1, ..., k\}$ and $j \in \{1, ..., n-k\}$ we have

$$(Z_{12})_{ij} = \frac{\eta^{k+j}}{\eta^i} (T_{12})_{ij} = \eta^{k-i} \eta^j (T_{12})_{ij} \xrightarrow{\eta \to 0} 0$$

So $\left\| \left[\frac{Z_{12}}{Z_2} \right] \right\|_1 \xrightarrow{\eta \to 0} 0$. So there exists $\eta_* > 0$ such that $\left\| \left[\frac{Z_{12}}{Z_2} \right] \right\|_1 < \frac{1}{2} (\|\Lambda_1\|_1 - \|\Lambda_2\|_1)$. For D defined with $\eta = \eta_*$ we have

$$||A||_A = ||D^{-1}S^{-1}Q^*AQSD||_1 = \left\| \left[\frac{\Lambda_1}{\Lambda_2} \right] + \left[\frac{0 |Z_{12}|}{0 |Z_2|} \right] \right\|_1$$
$$= \max \left\{ ||\Lambda_1||_1, \left\| \left[\frac{Z_{12}}{\Lambda_2 + Z_2} \right] \right\|_1 \right\} = ||\Lambda_1||_1 = \rho(A)$$

where we used

$$\left\| \left[\frac{Z_{12}}{\Lambda_2 + Z_2} \right] \right\|_1 \le \|\Lambda_2\|_1 + \left\| \left[\frac{Z_{12}}{Z_2} \right] \right\|_1 < \|\Lambda_2\|_1 + \frac{1}{2} (\|\Lambda_1\|_1 - \|\Lambda_2\|_1)$$

$$= \frac{1}{2} (\|\Lambda_1\|_1 + \|\Lambda_2\|_1) < \|\Lambda_1\|_1 = \|\Lambda\|_1 = \rho(A)$$

Lemma 3.6. Let $A \in \mathbb{C}^{n \times n}$ and $\|\cdot\|$ be a norm on $\mathbb{C}^{n \times n}$, $\varepsilon > 0$, then there exists c > 0 (depending on n, $\|\cdot\|$, but not on A or ε) and C > 0 (depending on n, $\|\cdot\|$, A and ε) such that

$$c\rho^k \le ||A^k|| \le C(\rho + \varepsilon)^k \quad \forall k \in \mathbb{N} \quad where \ \rho = \rho(A).$$

If the dominant eigenvalues of A are non-defective, the same holds with $\varepsilon = 0$.

- Proof. (i) For the lowerbound, consider a dominant eigenvalue $\lambda \in \mathbb{C}$ of A and a corresponding eigenvector, s.t. $||x||_2 = 1$. Then $||A^k x||_2 = ||\lambda^k x||_2 = |\lambda|^k ||x||_2 = \rho^k$. By the equivalence of norms, there exists c > 0 such that $c||B||_2 \le ||B||$ for all $B \in \mathbb{C}^{n \times n}$. So $||A^k|| \ge c||A^k x||_2 = c\rho^k$ for all $k \in \mathbb{N}$.
- (ii) For the upperbound: Let $\|\cdot\|_{A,\varepsilon}$ be a consistent norm on $\mathbb{C}^{n\times n}$ such that $\|A\|_{A,\varepsilon} \leq \rho(A) + \varepsilon$ (Lemma 3.5). Consistency yields $\|A^k\|_{A,\varepsilon} \leq \|A\|_{A,\varepsilon}^k$, so $\|A^k\|_{A,\varepsilon} \leq (\rho + \varepsilon)^k$ for all $k \in \mathbb{N}$.

By the equivalence of norms, there exists C > 0 (depending on n, $\|\cdot\|$, A and ε) such that $\|B\| \le C\|B\|_{A,\varepsilon}$ for all $B \in \mathbb{C}^{n \times n}$. So $\|A^k\| \le C\|A^k\|_{A,\varepsilon} \le C(\rho + \varepsilon)^k$ for all $k \in \mathbb{N}$.

(iii) If the dominant eigenvalues of A are non-defective, the same holds with $\varepsilon = 0$.

Remark. Taking k-th root and limit $k \to \infty$ in the previous lemma yields

$$\rho(A) \le \lim_{k \to \infty} ||A^k||^{1/k} \le \rho(A) + \varepsilon$$

if the middle limit exists.

Definition 3.7. $A \in \mathbb{C}^{n \times n}$ is called

• row-wise (non-)strictly diagonally dominant if

$$|a_{ii}| > (\geq) \sum_{j \in \{1,\dots,n\} \setminus \{i\}} |a_{ij}| \quad \forall i \in \{1,\dots,n\}$$

• column-wise (non-)strictly diagonally dominant if

$$|a_{jj}| > (\geq) \sum_{i \in \{1,\dots,n\} \setminus \{j\}} |a_{ij}| \quad \forall j \in \{1,\dots,n\}$$

Theorem 3.8 (Levy-Desplanques). For any $A \in \mathbb{C}^{n \times n}$, if A is row-wise or columnwise strictly diagonally dominant, then it is invertible.

TODO: Proof

Definition 3.9 (Gerschgorin dishes). Let $A \in \mathbb{C}^{n \times n}$. For each $k \in \{1, \dots, n\}$

$$\mathcal{R}_k = \left\{ z \in \mathbb{C} : |z - a_{kk}| \le \sum_{j \in \{1, \dots, n\} \setminus \{k\}} |a_{kj}| \subset \mathbb{C} \right\}$$

$$\mathcal{C}_k = \left\{ z \in \mathbb{C} : |z - a_{kk}| \le \sum_{i \in \{1, \dots, n\} \setminus \{k\}} |a_{ik}| \subset \mathbb{C} \right\}$$

are called the k-th row-wise and column-wise Gerschgorin dishes of A.

Theorem 3.10 (1st Gerchgorin theorem). Let $A \in \mathbb{C}^{n \times n}$. Then

$$\lambda(A) \subseteq \bigcup_{k=1}^n \mathcal{R}_k, \ \lambda(A) \subseteq \bigcup_{k=1}^n \mathcal{C}_k.$$

TODO: Proof

2 Iterative methods for linear systems

We consider the problem of finding a solution $x \in \mathbb{F}^n$ of the linear system Ax = b with $A \in \mathbb{F}^{n \times n}$ the matrix of the linear system and $b \in \mathbb{F}^n$ the right-hand side. A and b is the data of the problem. We assume that A is invertible, so the system has a unique solution $x = A^{-1}b$.

Iterative methods (in contrast to direct methods) perform a sequence of computation steps (iterations) that produce an *approximation* (an approximate solution, an iterate) to the the exact solution x. The main question is:

How close is the approximate solution to the exact solution?

 $k \in \mathbb{N}$ will denote the iteration index. An iterative method produces iterates $(x_1, x_2, \ldots) = (x_k)_{k \in \mathbb{N}}$ from an *initial guess* (initial approximation) $x_0 \in \mathbb{F}^n$. We are interested in the errors $e_k = x_k - x \in \mathbb{F}^n$. So the above question is how $||e_k||$ behaves w.r.t. $k \in \mathbb{N}$, where $||\cdot||$ is a norm on \mathbb{F}^n .

2.1 Linear iterative methods

 $e_k = T_k \cdot e_{k-1}$ for all $k \in \mathbb{N}$, where $T_k \in \mathbb{F}^{n \times n}$ is the *iteration matrix* at iteration k. For some methods we have $T_k = T$ for all $k \in \mathbb{N}$, where $T \in \mathbb{F}^{n \times n}$ – those are stationary methods.

Let $A_1, A_2 \in \mathbb{F}^{n \times n}$ be such that $A = A_1 + A_2$. Then the linear system Ax = b can be rewritten as

$$A_{1}x + A_{2}x = b$$

$$\Leftrightarrow A_{1}x = b - A_{2}x$$

$$\Leftrightarrow A_{1}x_{k} = b - A_{2}x_{k-1} = b - Ax_{k-1} + A_{1}x_{k-1}$$

$$\Leftrightarrow x_{k} = A_{1}^{-1}(b - A_{2}x_{k-1})$$

For each $k \in \mathbb{N}$, let x_k be given by the above equation. Also we can see:

$$x_k = x_{k-1} + A_1^{-1}(b - Ax_{k-1})$$

$$= (I - A_1^{-1}A)x_{k-1} + A_1^{-1}b$$

$$= (I - A_1^{-1}A)(x + e_{k-1}) + A_1^{-1}b = x + (I - A_1^{-1}A)e_{k-1}$$

$$\Rightarrow e_k = (I - A_1^{-1}A)e_{k-1} = -A_1^{-1}A_2e_{k-1}$$

Consider $A \in \mathbb{F}^{n \times n}$ invertible. Let $D, L, U \in$ be the diagonal, strictly lower triangular and upper triangular part of A respectively. I.e.

$$D_{ij} = \begin{cases} A_{ij} & \text{if } i = j \\ 0 & \text{else} \end{cases}, \quad L_{ij} = \begin{cases} A_{ij} & \text{if } i > j \\ 0 & \text{else} \end{cases}, \quad U_{ij} = \begin{cases} A_{ij} & \text{if } i < j \\ 0 & \text{else} \end{cases}$$

Then A = D + L + U.

Jacobi iteration	Gauss-Seidel iteration
$A_1 = D, A_2 = L + U$	$A_1 = D + L, A_2 = U$

 A_1 is invertible \Leftrightarrow the diagonal entries of A are all non-zero

$$x_k = D^{-1}(b - (L + U)x_{k-1})$$
 $x_k = (D + L)^{-1}(b - Ux_{k-1})$ $e_k = x_k - x = Te_{k-1}$ with $e_k = x_k - x = Te_{k-1}$ with $T = -D^{-1}(L + U)$ $T = -(D + L)^{-1}U$

So
$$||e_k|| = ||T^k e_0|| \le ||T||^k ||e_0||$$
 for a consistent norm.

Let us denote the iteration matrices as follows

$$J = -D^{-1}(L+U), \quad G = -(D+L)^{-1}U.$$

We assume that A (and therefore D and D + L) has no zeroes on the diagonal.

Theorem 4.1. Let $A \in \mathbb{C}^{n \times n}$ be row-wise and column-wise strictly diagonally dominant. Then D and D + L are invertible and $\rho(J) < 1$ and $\rho(G) < 1$.

TODO: Proof

Corollary 4.2. Let $A \in \mathbb{C}^{n \times n}$ be row-wise and column-wise strictly diagonally dominant. Then the linear system Ax = b has a unique solution $x \in \mathbb{C}^n$ and the Jacobi and Gauss-Seidel iterations converge to x for any initial guess $x_0 \in \mathbb{C}^n$. Furthermore, for any norm $\|\cdot\|$ on \mathbb{C}^n and for either method, the iterates $(x_k)_{k \in \mathbb{N}}$ satisfy with any $\varepsilon \in (0, 1 - \rho)$, where $\rho = \rho(T) < 1$ and C positive constant:

$$||x_k - x|| \le C(\rho + \varepsilon)^k ||x_0 - x||$$

with $x_{k-1} - x = T^k(x_0 - x)$.

Example 4.3. TODO

Towards generalization: consider a splitting $A = P_k - N_k$ with $P_k \in \mathbb{F}^{n \times n}$ invertible and the associated iteration

$$x_k = P_k^{-1}(N_k x_{k-1} + b) = P_k^{-1} N_k x_{k-1} + P_k^{-1} b = B_k x_{k-1} + P_k^{-1} b$$

with $B_k = P_k^{-1} N_k = I - P_k^{-1} A$, the kth iteration matrix for all $k \in \mathbb{N}$. Also note

$$x_k = (I - P_k^{-1}A)x_{k-1} + P_k^{-1}b = P_k^{-1}(P_kx_{k-1} - Ax_{k-1} + b) = x_{k-1} + P_k^{-1}r_{k-1}$$

where $r_{k-1} = b - Ax_{k-1} = Ae_{k-1}$ is the residual vector at step k. Also

$$e_k = x_k - x = x_{k-1} - x + P_k^{-1} A(x_{k-1} - x) = (I - P_k^{-1} A)(x_{k-1} - x) = B_k e_{k-1}$$

If $||B_k|| \leq \rho$ for all $k \in \mathbb{N}$ and for some $\rho \in (0,1)$ and a norm $||\cdot||$ on \mathbb{F}^n , then this yields the exponential convergence of the iterates $(x_k)_{k \in \mathbb{N}}$ to the exact solution x.

2.2 Stationary linear iterative schemes

 P_k is the same for all $k \in \mathbb{N}$ (so are N_k and B_k).

When is such a method efficient?

- $U \mapsto P^{-1}U$ should be easy to evaluate
- P should approximate A in the sense that $P^{-1}A \approx I$ (precisely, $\rho(B)$, should be as small as possible)

P is often called a preconditioner for A.

Example 5.1.

- Jacobi iteration: $U \mapsto D^{-1}U$ takes $\mathcal{O}(n)$ operations
- Gauss-Seidel iteration: $U \mapsto (D+L)^{-1}U$ takes $\mathcal{O}(n^2)$ operations

After K iterations $\sim Kn$ operations for Jacobi and $\sim Kn^2$ operations for Gauss-Seidel, which is $\ll n^3$ if $K \ll n$

Example 5.2 (related stationary linear iterative schemes).

- Backwards Gauss-Seidel method: P = D + U. The analysis and behavior are analogous to the Gauss-Seidel method.
- Jacobi over-relaxation (JOR)

 $P = \frac{1}{\omega}D, \ \omega > 0$ is a relaxation parameter ("learning rate")

$$x_k = x_{k-1} + \omega D^{-1} r_{k-1}$$

• Successive over-relaxation (SOR)

$$P = \frac{1}{\omega}D + L, \quad x_k = x_{k-1} + \omega(D + \omega L)^{-1}r_{k-1} \ \forall k \in N$$

- (i) does not change for any $\omega \in (0,2]$
- (ii) If A is symmetric positive definite, the SOR iteration converges for any $\omega \in (0,2)$.

Remark 5.3 (Any b? Any x_0 ?). The behaviour of the $(x_k)_{k\in\mathbb{N}}$ is determined by $(P_k)_{k\in\mathbb{N}}$ and

- the initial residual or
- the initial error

For any RHS $b \in \mathbb{F}^n$ and for all $k \in \mathbb{N}$ we have

$$x_k = x_{k-1} + P_k^{-1} r_{k-1}$$

$$r_k = b - Ax_k = b - Ax_{k-1} - AP_k^{-1} r_{k-1} = (I - AP_k^{-1}) r_{k-1}$$

$$e_k = A^{-1} r_k = (I - P_k^{-1} A) e_{k-1}$$

 $b \leftarrow b - Ax_0$ and $x_0 \leftarrow 0$ (does not effect initial residual and the initial error)

Theorem 5.4. $A \in \mathbb{C}^{n \times n}$. A stationary linear iterative scheme associated with $P \in \mathbb{C}^{n \times n}$ invertible converges for a zero initial guess to the solution of Ax = b with any $b \in \mathbb{C}^n$ if and only if $\rho(I - P^{-1}A) < 1$.

Proof. Let $\rho = \rho(I - P^{-1}A)$. Consider a norm $\|\cdot\|$ on \mathbb{C}^n and the corresponding operator norm $\|\cdot\|$ on $\mathbb{C}^{n\times n}$. Then $\|B^k u\| \leq \|B\|^k \|u\|$ for all $u \in \mathbb{C}^n$. If $\rho < 1$, then the upper bound given by 3.6 with $\varepsilon = \frac{1}{2}(1-\rho)$ (s.t. $\rho + \varepsilon < 1$) yields that the method converges exponentially to any RHS $b \in \mathbb{C}^n$.

 \to if $\rho \geq 1$, consider an eigenvector $u \in \mathbb{C}^n$ of the iteration matrix B corresponding to a dominant eigenvalue λ . Then $||B^k u||_k = \rho^k ||u||$ for all $k \in \mathbb{N}$. So $B^k u \nrightarrow 0$ as $k \to \infty$. So the method does not converge when $e_0 = u$ (i.e. for $x_0 = 0$ and b = Au).

Remark 5.5. For stationary methods we can first precondition the problem and then consider an iterative scheme with preconditioned I.

Define $\tilde{A} = P^{-1}A$ and $\tilde{b} = P^{-1}b$. Then for all $x \in \mathbb{C}^n$ we have $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$. The residuals, for any $x \in \mathbb{C}^n$ are r = b - Ax, $\tilde{r} = \tilde{b} - \tilde{A}x = P^{-1}r$. A linear iterative

scheme for the original system with preconditioner P

$$x_k = x_{k-1} + P^{-1}r_{k-1}$$

is equivalent to a linear iterative scheme for the preconditioned system with preconditioner I:

$$\tilde{x}_k = \tilde{x}_{k-1} + \tilde{r}_{k-1}$$

that is, $\tilde{x}_k = x_k \ \forall k \in \mathbb{N} \text{ if } \tilde{x}_0 = x_0.$

2.3 Richardson iteration

Definition 5.6. $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^n$. The stationary Richardson method for Ax = b with an initial guess $x_0 \in \mathbb{F}^n$ is given by

$$x_k = x_{k-1} + \alpha r_{k-1} \quad \forall k \in \mathbb{N}$$

where $r_{k-1} = b - Ax_{k-1}$ is the residual vector and $\alpha \in \mathbb{R} \setminus \{0\}$ is a relaxation parameter.

The non-stationary Richardson method is given by

$$x_k = x_{k-1} + \alpha_k r_{k-1} \quad \forall k \in \mathbb{N}$$

with $\alpha_k \in \mathbb{R} \setminus \{0\}$.

The iteration matrix is given by $T_k = I - \alpha_k A$.

Theorem 5.7. Let $A \in \mathbb{C}^{n \times n}$. The stationary Richardson method with zero initial guess converges (for any linear system Ax = b) if and only if

$$\frac{2\operatorname{Re}\lambda}{\alpha|\lambda|^2} > 1 \quad \forall \lambda \in \lambda(A)$$

Proof. TODO

Theorem 5.8. Let $A \in \mathbb{C}^{n \times n}$, $\lambda(A) = \{\lambda_1, \dots, \lambda_n\} \subset \mathbb{R}$ with $\lambda_1 \geq \dots \geq \lambda_n > 0$. Then the stationary Richardson scheme for Ax = b converges with any $b \in \mathbb{C}^n$ if and only if $\alpha \in (0, \frac{2}{\lambda_1})$.

Furthermore, $\alpha_* = \frac{2}{\lambda_1 + \lambda_n}$ is the unique minimizer of $\rho(B)$ with respect to $\alpha \in \mathbb{R} \setminus \{0\}$, and it yields $\rho(B) = \frac{\kappa - 1}{\kappa + 1} = \frac{\lambda_1 - \lambda_n}{\lambda_1 + \lambda_n}$.

 $(\kappa = \frac{\lambda_1}{\lambda_n} \text{ is the spectral condition number of } A)$

Proof. \mathbf{TODO}

2.4 Iteration methods for systems with symmetric positive matrices

 $\lambda(A) = {\{\lambda_k\}_{k=1}^n \subseteq \mathbb{R} \text{ with } \lambda_1 \ge \ldots \ge \lambda_n}$. Then A is positive definite if and only if

$$\min_{x \in \mathbb{R}^n \setminus \{0\}} \frac{x^* A x}{x^* x} = \lambda_n > 0$$

Ax = b for $x \in \mathbb{R}^n$ is the (necessary and !sufficient!) 1st order optimality condition for minimizing $J : \mathbb{R}^n \to \mathbb{R}$ given by

$$J(x) = \frac{1}{2}x^T A x - b^T x \quad \forall x \in \mathbb{R}^n$$

Note:

$$\nabla J(x) = Ax - b = -r(x) \quad \forall x \in \mathbb{R}^n$$
$$\nabla^2 J(x) = A \quad \forall x \in \mathbb{R}^n$$

But A is positive definite $\Leftrightarrow J$ is strictly convex $\Leftrightarrow J$ has a unique minimum (sufficient condition).

For any $e \in \mathbb{R}^n$ and the exact solution x, we have

$$J(x+e) - J(x) = \frac{1}{2}(x+e)^{T}A(x+e) - b^{T}(x+e) - \frac{1}{2}x^{T}Ax + b^{T}x$$
$$= \frac{1}{2}e^{T}Ae + \underbrace{x^{T}Ae - b^{T}e}_{=-e^{T}r(x)} = \frac{1}{2}e^{T}Ae$$

Since A is SPD the function $\|\cdot\|_A: \mathbb{R}^n \to \mathbb{R}$ given by $\|u\|_A = \sqrt{u^T A u}$ is a norm on \mathbb{R}^n . Then

$$J(x+e) - J(x) = \frac{1}{2} ||e||_A^2$$

Gradient-type methods for systems with SPD matrices.

Solve $Ax = b, b \in \mathbb{R}^n$ with $A \in \mathbb{R}^{n \times n}$ SPD and $x_0 \in \mathbb{R}^n$ an initial guess. The gradient descent method is given by

$$x_k = x_{k-1} - \alpha_k \nabla J(x_{k-1}) \quad \forall k \in \mathbb{N},$$

where $\nabla J(x_{k-1}) = -r(x_{k-1})$.

For the steepest gradient method, choose α_k so as to minimize J along $\nabla J(x_{k-1})$:

$$J(x_{k-1} + \alpha_k r_k) = \frac{1}{2} \alpha_k^2 r_{k-1}^T A r_{k-1} + \alpha_k r_{k-1}^T A x_{k-1} + \frac{1}{2} x_{k-1}^T A x_{k-1} - \alpha_k b^T r_{k-1} - b^T x_{k-1} \quad \forall \alpha_k \in \mathbb{N}$$

The optimal value of α_k is given by

$$\alpha_k = \frac{(b - Ax_{k-1})^T r_{k-1}}{r_{k-1}^T A r_{k-1}} = \frac{r_{k-1}^T r_{k-1}}{r_{k-1}^T A r_{k-1}} = \frac{\|r_{k-1}\|_2^2}{\|r_{k-1}\|_A^2}$$

Lemma 6.1. $A \in \mathbb{R}^{n \times n}$ is SPD. Then there is a unique SPD matrix $B \in \mathbb{R}^{n \times n}$ such that $B^2 = A$.

Proof. A is SPD $\Rightarrow \exists \Lambda \in \mathbb{R}^{n \times n}$ diagonal, $Q \in \mathbb{R}^{n \times n}$ orthogonal s.t. $A = Q^* \Lambda Q$ with positive diagonal entries. W.L.O.G. let $\Lambda = \operatorname{diag}(\lambda_1 I_{s_1}, \dots, \lambda_r I_{s_r})$ with $\lambda_1, \dots, \lambda_r$ distinct positive and s_1, \dots, s_r in \mathbb{N} such that $s_1 + \dots + s_r = n$.

For $B = Q\Lambda^{\frac{1}{2}}Q^T$ where $\Lambda^{\frac{1}{2}} = \operatorname{diag}(\sqrt{\lambda_1}I_{s_1}, \dots, \sqrt{\lambda_r}I_{s_r})$ we have $B^2 = Q\Lambda Q^T = A$.

Let $\tilde{B} \in \mathbb{R}^{n \times n}$ be an SPD matrix such that $\tilde{B}^2 = A$. Since \tilde{B} is SPD there exists a spectral decomposition $\tilde{B} = \tilde{Q}D\tilde{Q}^T$.

 $\tilde{B}^2 = A \Rightarrow \tilde{Q}D^2\tilde{Q}^T = A$, D^2 is similar to A and hence to Λ . D^2 and Λ are diagonal, so the diagonal entries coincide up to a permutation.

W.L.O.G assume $D^2 = \Lambda$. Then $A = Q\Lambda Q^T = \tilde{Q}\Lambda \tilde{Q}^T$.

Partition Q and \tilde{Q} : $Q = [Q_1, \dots, Q_r]$ and $\tilde{Q} = [\tilde{Q}_1, \dots, \tilde{Q}_r]$ with Q_k , $\tilde{Q}_k \in \mathbb{R}^{n \times s_k} \quad \forall k \in \{1, \dots, r\}$.

For each $k \in \{1, ..., r\}$, the columns of Q_k and the columns of \tilde{Q}_k form an orthogonal basis for the same subspace, the eigenspace corresponding to λ_k .

$$\Rightarrow \exists V_k \in \mathbb{R}^{s_k \times s_k} \text{ orthogonal s.t. } \tilde{Q}_k = Q_k V_k \forall k \in \{1, \dots, r\}. \text{ So } \tilde{Q} = Q \begin{bmatrix} V_1 & & \\ & \ddots & \\ & & V_r \end{bmatrix}$$

$$\tilde{B} = \tilde{Q}\Lambda^{\frac{1}{2}}\tilde{Q}^T = QV\Lambda^{\frac{1}{2}}V^TQ^T = Q\Lambda^{\frac{1}{2}}Q^T = B$$

because

$$V\Lambda^{\frac{1}{2}}V^{T} = \begin{pmatrix} V_{1}\sqrt{\lambda_{1}}I_{s_{1}}V_{1}^{T} & & & \\ & \ddots & & \\ & & V_{r}\sqrt{\lambda_{r}}I_{s_{r}}V_{r}^{T} \end{pmatrix} = \begin{pmatrix} \sqrt{\lambda_{1}}I_{s_{1}} & & & \\ & & \ddots & & \\ & & & \sqrt{\lambda_{r}}I_{s_{r}} \end{pmatrix}$$

B is called the principle square root of A or the SPD square root of A. \Box

Theorem 6.2. Let $A, M \in \mathbb{R}^{n \times n}$ be commuting SPD matrices. Then the Richardson iteration for Ax = b with $b \in \mathbb{R}^n$ satisfies

$$||e_k||_M \le ||I - \alpha_n A||_2 ||e_{k-1}||_M \text{ and}$$

 $||e_k||_M \le ||(I - \alpha_k A) \cdots (I - \alpha_1 A)||_2 ||e_0||_M \quad \forall k \in \mathbb{N}$

Proof. TODO

I don't really know how to put the following things in the notes.

Gradient descent with α_n optimal for the given extreme eigenvalues.

 $_{
m VS}$

Steepest gradient descent with $\alpha_k = \frac{\|r_{k-1}\|_2^2}{\|r_{k-1}\|_A^2}$

Richardson iteration: $x_k = x_{k-1} + \alpha_k r_{k-1}$,

Start $x_0 \in \mathbb{F}^n$

$$r_k = b - Ax_k$$

 α_k are relaxation parameters.

Let $\mathcal{K}_k = \mathcal{K}_k(A, r_0) = \operatorname{span}\{A_j r_0\}_{j=0}^{k-1} = \operatorname{span}\{r_0, Ar_0, \dots, A^{k-1} r_0\}$. Obviously $\mathcal{K}_k \subseteq \mathcal{K}_{k+1} \forall k \in \mathbb{N}$.

Remark 6.3. $r_{k-1} \in \mathcal{K}_k$ and $x_k - x_0 \in \mathcal{K}_k \quad \forall k \in \mathbb{N}$.

TODO: Proof

Remark 6.4. At step k, we, update the current iterate along the current residual, $x_{k-1} - x_0 \in \mathcal{K}_{k-1}, x_k - x_{k-1} \in span\{r_{k-1}\}$. So $\mathcal{K}_k = \mathcal{K}_{k-1} + span\{r_{k-1}\}$ $\forall k \in \mathbb{N}$.

Remark 6.5. For all $k \in \mathbb{N}$,

$$e_k = (I - \alpha_k A) \dots (I - \alpha_1 A) e_0 = q_k(A) e_0$$

where $q_k(A) \in P_k$, an algebraic polynomials of degree k given by

$$q_k = (1 - \alpha_k t) \cdots (1 - \alpha_1 t) = \sum_{j=0}^k c_j t^j \ \forall t \in \mathbb{F}$$

We have

$$q_k(A) = \sum_{j=0}^k c_j A^j = (I - \alpha_k A) \cdots (I - \alpha_1 A) \ \forall A \in \mathbb{F}^{n \times n}$$

Denote $Q_k = \{q \in P_k : deg(q) = k, q(0) = 1\} \subset P_k$. The iterative method implies

$$e_k = q_k(A)q(A)e_0$$
 with $q_k \in Q_k$

On the other hand: For $\mathbb{F} = \mathbb{C}$, if $\tilde{q}_k \in Q_k$, then 0 is not a root of \tilde{q}_k . So

$$\tilde{q}_k(t) = \prod_{j=1}^k (1 - \tilde{\alpha}_j t) \ \forall t \in \mathbb{C} \text{ with some } \tilde{\alpha}_1, \dots, \tilde{\alpha}_k \in \mathbb{C} \setminus \{0\}$$

and the iteration $x_k = x_{k-1} + \tilde{\alpha}_k r_{k-1}$ satisfies $e_k = \tilde{q}_k(A)e_0$.

Remark 6.6. Let $q_k \in Q_k$ be such that $e_k = q_k(A)e_0 \ \forall k \in \mathbb{N}$. Then

$$x_k - x_0 = e_k - e_0 = -(I - q_k(A))e_0$$

= $(I - q_k(A))A^{-1}r_0 = \pi_k(A)r_0 \quad \forall k \in \mathbb{N}_0$

where $\pi_0 = 0 \in P_0$ and $\pi_k \in P_{k-1}$ (due to $q_k \in Q_k$) is given by

$$\pi_k(t) = \frac{1}{t}(1 - q_k(t)) \quad \forall t \in \mathbb{F}$$

so
$$x_k = x_0 + \underbrace{\pi_k(A)r_0}_{\in \mathcal{K}_k}$$
.

For $\mathbb{F} = \mathbb{R}$, consider $M \in \mathbb{R}^{n \times n}$ commuting with A. By Theorem 6.2 $||e_k||_M \leq ||q_k(A)||_2 ||e_0||_M$. If A is SPD, it has a spectral decomposition $A = Q\Lambda Q^T$ with Q orthogonal and Λ diagonal. Then

$$q_k(A) = Qq_k(\Lambda)Q^T$$
 and $||q_k(A)||_2 = ||q_k(\Lambda)||_2 = \max_{t \in \lambda(A)} |q_k(t)|$

Definition 7.1. Let $A \in \mathbb{F}^{n \times n}$, $b \in \mathbb{F}^n$. For each $k \in \mathbb{N}_0$,

$$\mathcal{K}_k(A,b) = \operatorname{span}\{A^j b\}_{j=0}^{k-1} \subseteq \mathbb{F}^n$$

is the kth Krylov subspace of A generated by b. In particular,

$$\mathcal{K}_k(A,b) = \mathcal{K}_{k-1}(A,b) + \operatorname{span}\{A^{k-1}b\}$$

with $\mathcal{K}_0(A, b) = \text{span}\{0\}$ and dim $\mathcal{K}_0(A, b) = 0$, so we have $\mathcal{K}_{k-1} \subseteq K_k$ and dim $\mathcal{K}_k \le k$ for all $k \in \mathbb{N}$.

Remark. • Jacobi: $x_k - x_0 \in \mathcal{K}(D^{-1}A, D^{-1}(b - Ax_0))$

• Gauß-Seidel: $x_k - x_0 \in \mathcal{K}((D+U)^{-1}A, (D+U)^{-1}(b-Ax_0))$

Proposition 7.2. $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^n, k \in \mathbb{N}$. Then

$$\mathcal{K}_k(A,b) = \{ \pi(A) : \pi \in P_{k-1} \}$$

Remark 7.3. $A \in \mathbb{F}^{n \times n}, b \in \mathbb{F}^n, x_0 \in \mathbb{F}^n, r_0 = b - Ax_0$ Consider $k \in \mathbb{N}_0$.

if
$$k = 0$$
, let $\pi_k = 0 \in P_0$

if $k \in \mathbb{N}$, assume $\pi_k \in P_{k-1}$ is of degree k-1. Consider $x_k = x_0 + \pi_k(A)r_0$, we have

$$e_k = x_k - x = \pi_k(A)r_0 - (x - x_0)$$

= $\pi_k(A)A(x - x_0) - (x - x_0) = -(I - \pi_k(A)A)(x - x_0)$
= $q_k(A)e_0$

with $q_k \in P_k$ given by

$$q_k(t) = 1 - \pi_k(t)t \quad \forall t \in \mathbb{F}$$
 (*)

(*) implies that $q_k(0) = 1$ and $deg(q_k) = k$, i.e. $q_k \in Q_k$.

Choose $\pi_k \in P_{k-1} \setminus P_{k-2} \implies \text{get } q_k \in Q_k$.

If $q_k \in Q_k$, then $\pi_k \in P_{k-1}$ given by $\pi_k(t) = \frac{1}{t}(1 - q_k(t))$ satisfies $\deg(\pi_k) = k - 1$ and $e_k = q_k(A)e_0$ implies $x_k - x_0 = \pi_k(A)r_0$.

Conjugate-gradient method

 $A \in \mathbb{F}^{n \times n}$ Hermitian positive definite ($\mathbb{F} = \mathbb{R}$: symmetric) and $b, x_0 \in \mathbb{F}^n$. As A is Hermitian positive definite, it induces an inner product

$$\langle u, v \rangle_A : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$$
 given by $\langle u, v \rangle_A = u^* A v \quad \forall u, v \in \mathbb{F}^n$

 $(\|\cdot\|_A = \sqrt{\langle\cdot,\cdot\rangle_A} \text{ is the induced norm})$

The conjugate gradient method for Ax = b starting at x_0 generates $(x_k)_{k \in \mathbb{N}}$ such that

$$y_k = x_k - x_0 = \operatorname{argmin}_{y \in \mathcal{K}_k(A, r_0)} \| \underbrace{y - (x - x_0)}_{(x_0 + y) - x} \|_A$$

$$= \prod_{\substack{A, \mathcal{K}_k(A, r_0) \\ \text{orth. proj.}}} (x - x_0)$$

using an A-orthogonal basis for $\mathcal{K}_k(A, r_0)$.

Lemma 7.4. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $r_0 \in \mathbb{F}^n$, $k \in \mathbb{N}$, $y_k = \operatorname{argmin}_{y \in \mathcal{K}_k(A, r_0)} ||y - A^{-1}r_0||_A$ and $r_k = r_0 - Ay_k$. Then

$$r_k \perp \mathcal{K}_k(A, r_0)$$
.

Proof. The optimality of y_k is characterized by the $y_k \perp_A \mathcal{K}_k(A, r_0)$, i.e.

$$A(y_k - A^{-1}r_0) \perp \mathcal{K}_k(A, r_0)$$
, i.e. $r_k \perp \mathcal{K}_k(A, r_0)$

Lemma 7.5. Let $n \in \mathbb{N}$, $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $r_0 \in \mathbb{F}^n$, $k \in \mathbb{N}_0, r_k \in \mathcal{K}_{k+1}(A, r_0)$ be non-zero and orthogonal to $\mathcal{K}_n(A, r_0)$. Let $p_{k+1} \in \mathcal{K}_{k+1}$ be non-zero and A-orthogonal to $\mathcal{K}_k(A, r_0)$. When $k \in \mathbb{N}$, assume additionaly that $p_k \in \mathcal{K}_k(A, r_0)$ is a non-zero vector A-orthogonal to $\mathcal{K}_{k-1}(A, r_0)$.

Let $\gamma_k = \frac{r_k^* p_{k+1}}{r_k^* r_k}$. Then $p_{k+1} = \gamma_k r_k$ if k = 0 and $p_{k+1} = \gamma_k (r_k + \beta_k p_k)$ with $\beta_k = -\frac{p_k^* A r_k}{p_k^* A p_k}$ if $k \in \mathbb{N}$.

Proof. Since dim $\mathcal{K}_{k+1}(A, r_0) \leq \dim \mathcal{K}_k(A, r_0) + 1$ and $r_k \in \mathcal{K}_{k+1}(A, r_0) \setminus \mathcal{K}_k(A, r_0)$, we have $\mathcal{K}_{k+1}(A, r_0) = \mathcal{K}_k(A, r_0) + \operatorname{span}\{r_k\}$. When k = 0, this gives $\mathcal{K}_1(A, r_0) = \operatorname{span}\{r_0\}$, so $p_1 \in \operatorname{span}\{r_0\}$. Then the coefficient of p_1 along r_0 is γ_0 , so $p_1 = \gamma_0 r_0$.

When $k \in \mathbb{N}$, we have $p_k \in \mathcal{K}_k(A, r_0) \setminus \mathcal{K}_{k-1}(A, r_0)$, so, since $\dim \mathcal{K}_k(A, r_0) \leq \dim \mathcal{K}_{k-1}(A, r_0) + 1$, we have $\mathcal{K}_k(A, r_0) = \mathcal{K}_{k-1}(A, r_0) + \operatorname{span}\{p_k\}$. Then $\mathcal{K}_{k+1}(A, r_0) = \mathcal{K}_{k-1}(A, r_0) + \operatorname{span}\{r_k, p_k\}$.

Due to $p_{k+1} \in \mathcal{K}_{k+1}(A, r_0)$, there exists $u_k \in \mathcal{K}_{k-1}(A, r_0)$, $\mu_k, \nu_k \in \mathbb{F}$ such that $p_{k+1} = u_k + \mu_k r_k + \nu_k p_k$

Since $A\mathcal{K}_{k-1}(A, r_0) \subseteq \mathcal{K}_k(A, r_0)$, we have $r_k \perp_A \mathcal{K}_{k-1}(A, r_0)$ since $r_k \perp \mathcal{K}_k(A, r_0)$. Further, $p_k \perp_A \mathcal{K}_{k-1}(A, r_0)$. Finally, recall that $p_{k+1} \perp_A \mathcal{K}_k(A, r_0)$ and hence $p_{k+1} \perp_A \mathcal{K}_{k-1}(A, r_0)$.

This yields $u_k = p_{k+1} - \mu_k r_k - \nu_k p_k \perp_A \mathcal{K}_{k-1}(A, r_0)$, i.e., $u_k = 0$.

Project p_{k+1} onto p_k w.r.t. the A-inner product: using the A-orthogonality of p_{k+1} to $\mathcal{K}_k(A, r_0)$, we optain $0 = p_k^* A p_{k+1} = \mu_k p_k^* A r_k + \nu_k p_k^* A p_k$.

Project p_{k+1} onto r_k w.r.t. the standard inner product: $r_k^* p_{k+1} = \mu_k r_k^* r_k$ because $r_k \perp \mathcal{K}_k(A, r_0)$, so $\mu_k = \gamma_k$ and $\nu_k = -\mu_k \frac{p_k^* A r_k}{p_k^* A p_k} = \gamma_k \beta_k$.

Lemma 7.6. Let $n \in \mathbb{N}$, $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $r_0 \in \mathbb{F}^n$, $k \in \mathbb{N}$

$$y_i = \operatorname{argmin}_{y \in \mathcal{K}_i(A, r_0)} ||y - A^{-1}r_0||_A \text{ and } r_i = r_0 - Ay_i \text{ for } i \in \{k - 1, k\}$$

Let $p_k \in \mathcal{K}_k(A, r_0)$ be a non-zero vector A-orthogonal to $\mathcal{K}_{k-1}(A, r_0)$. Then $y_k = y_{k-1} + \alpha_k p_k$ with $\alpha_k = \frac{p_k^* r_{k-1}}{p_k^* A p_k}$

Proof. Since dim $\mathcal{K}_k(A, r_0) \leq \dim \mathcal{K}_{k-1}(A, r_0) + 1$ and $p_k \in \mathcal{K}_k(A, r_0) \setminus \mathcal{K}_{k-1}(A, r_0)$, so dim $\mathcal{K}_k(A, r_0) = \dim \mathcal{K}_{k-1}(A, r_0) + 1$ and hence $\mathcal{K}_k(A, r_0) = \mathcal{K}_{k-1}(A, r_0) \oplus_{\perp_A} \operatorname{span}\{p_k\}$. Since y_k, y_{k-1} are A-orthogonal projections of $A^{-1}r_0$ onto \mathcal{K}_k and \mathcal{K}_{k-1} , we have $y_k = y_{k-1} + \alpha_k p_k$ with $\alpha_k = \frac{p_k^* A(A^{-1}r_0)}{p_k^* A p_k} = \frac{p_k^* r_0}{p_k^* A p_k}$.

Since $r_k \perp \mathcal{K}_k(A, r_0)$ (Lemma 7.4) and $r_{k-1} = r_0 - Ay_{k-1}$ and $Ay_{k-1} \in A\mathcal{K}_{k-1}(A, r_0) \subseteq \mathcal{K}_k(A, r_0)$, we have that $p_k^* r_0 = p_k^* r_{k-1}$. So $\alpha_k = \frac{p_k^* r_{k-1}}{p_k^* A p_k}$.

Theorem 7.7. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $r_0 \in \mathbb{F}^n$, $m \in \mathbb{N}$ and set $r_k = r_0 - Ay_k$ for any $k \in \{1, \ldots, m\}$ and $r_{k-1} \neq 0$. We also assume that $p_1, \ldots, p_m \in \mathbb{F}^n$ be A-orthogonal and such that $p_k^* r_{k-1} = r_{k-1}^* r_{k-1}$ $(\gamma_{k-1} = 1)$ and p_1, \ldots, p_k is a basis for $\mathcal{K}_k(A, r_0)$. And $y_k = \operatorname{argmin}_{y \in \mathcal{K}_k(A, r_0)} ||y - A^{-1} r_0||_A$. Then

$$y_k = y_{k-1} + \alpha_k p_k \text{ and } r_k = r_{k-1} - \alpha_k A p_k \text{ with } \alpha_k = \frac{r_{k-1}^* r_{k-1}}{p_k^* A p_k} \ \forall k \in \{1, \dots, m\}$$

$$and \ p_{k+1} = r_k + \beta_k p_k \text{ with } \beta_k = \frac{r_k^* r_k}{r_{k-1}^* r_{k-1}} \ \forall k \in \{1, \dots, m-1\}$$

Proof. By Lemma 7.6, we have $y_k = y_{k-1} + \alpha_k p_k$ with $\alpha_k = \frac{p_k^* r_{k-1}}{p_k^* A p_k}$, so $\alpha_k = \frac{r_{k-1}^* r_{k-1}}{p_k^* A p_k}$ for any $k \in \{1, ..., m\}$. This implies $r_k = r_{k-1} - A(x_k - x_{k-1}) = r_{k-1} - \alpha_k A p_k \ \forall k \in \{1, ..., m\}$

 $\{1, \ldots, m\}$. Finally, for each $k \in \{1, \ldots, m-1\}$, by Lemma 7.5, we have $p_{k+1} = r_k + \beta_k p_k$ with $\beta_k = -\frac{p_k^* A r_k}{p_k^* A p_k}$. Since $r_{k-1} \neq 0$, we have $\alpha_k \neq 0$ and hence $A_{p_k} = \frac{1}{\alpha_k} (r_{k-1} - r_k)$. Then $r_k^* A p_k = \frac{1}{\alpha_k} (\underbrace{r_k^* r_{k-1}}_{k-1} - r_k^* r_k) = -\frac{1}{\alpha_k} r_k^* r_k$. So $\beta_k = \frac{r_k^* r_k}{p_k^* A p_k} \cdot \frac{1}{\overline{\alpha_k}} = \frac{r_k^* r_k}{p_k^* A p_k} \cdot \frac{1}{\alpha_k} = \frac{r_k^* r_k}{p_k^* A p_k} \cdot \frac{1}{\alpha_k} = \frac{r_k^* r_k}{r_{k-1}^* r_{k-1}}$.

Algorithm 7.8 (The conjugate gradient method).

Given: $A \in \mathbb{F}^{n \times n}$ Hermitian positive definite, $b \in \mathbb{F}^n$ and $x_0 \in \mathbb{F}^n$ s.t. $b - Ax_0 \neq 0$.

Initialize: set $r_0 = b - Ax_0$ and $p_1 = r_0$.

Iterate for $k = 1, 2, \ldots$:

set
$$\alpha_k = \frac{r_{k-1}^* r_{k-1}}{p_k^* A p_k}$$
, set $x_k = x_{k-1} + \alpha_k p_k$

set
$$r_k = r_{k-1} - \alpha_k A p_k$$

if r_k is zero (or "small"), then terminate

set
$$\beta_k = \frac{r_k^* r_k}{r_{k-1}^* r_{k-1}}$$
, set $p_{k+1} = r_k + \beta_k p_k$.

Remark. Only need to store x_k , r_k , p_k (and Ap_k maybe) and compute only one matrix-vector product Ap_k per iteration.

Remark 8.1. $A \in \mathbb{F}^{n \times n}$ Hermitian positive definite, $b, x_0 \in \mathbb{F}^n$ and $r_0 = b - Ax_0$. Let $k \in \mathbb{N}$ be such that $\dim \mathcal{K}_k(A, r_0) = k$. Then $\dim \mathcal{K}_j(A, r_0) = j$ for all $j \in \{1, \dots, k\}$. The CG method produces x_j with $j \in \{1, \dots, k\}$. By Proposition 7.2 these are generated by polynomials $\pi_j \in P_{j-1} \setminus P_{j-2}$ $(P_0 = \{0\}, P_{-1} = \emptyset)$ with $j \in \{1, \dots, k\}$:

$$x_j = x_0 + \pi_j(A)r_0 \quad \forall j \in \{1, \dots, k\}$$

Let $\pi_0 = 0$, so that $x_j = x_0 + \pi_j(A)r_0$ holds also for j = 0. Let $\sigma_j = \pi_j - \pi_{j-1}$. Then $\sigma_j \in P_{j-1} \setminus P_{j-2}$ and $x_j - x_{j-1} = \sigma_j(A)r_0$ for all $j \in \{1, \ldots, k\}$.

The A-orthogonality of p_1, \ldots, p_k , due to

$$x_j - x_{j-1} = \alpha_j p_j \quad \forall j \in \{1, \dots, k\},\$$

is equivavalent to the orthogonality of of $\sigma_1, \ldots, \sigma_k$ w.r.t. to a suitable inner product.

Indeed, let $\langle \cdot, \cdot \rangle : P_{k-1} \times P_{k-1} \to \mathbb{F}$ be given by $\langle u, v \rangle = (u(x)r_0)^*A(v(x)r_0)$. This function is an inner product on P_{k-1} (A is Hermitian positive definite and?). Then

 $p_i^*Ap_j = \langle \sigma_i, \sigma_j \rangle \frac{1}{\alpha_i \alpha_j} \ \forall i, j \in \{1, \dots, k\}$ and hence $\langle \sigma_i, \sigma_j \rangle = 0 \ \forall i, j \in \{1, \dots, k\}$ such that $i \neq j$.

The inner product $\langle \cdot, \cdot \rangle$ is an L^2 inner product on P_{k-1} w.r.t. to a suitable Stieltjes measure.

Consider a spectral decomposition of A: $A = Q\Lambda Q^T$ with $Q \in \mathbb{F}^{n \times n}$ unitary and $\Lambda \in \mathbb{F}^{n \times n}$ diagonal. Let $W = Q^*r_0$. Then

$$\langle u, v \rangle = (u(A)r_0)^* A(v(A)r_0) = (Qu(\Lambda)Q^*r_0)^* Q\Lambda Q^*(Qv(\Lambda)Q^*r_0)$$
$$= (u(\Lambda)W)^* \Lambda(v(\Lambda)W) = \sum_{i=1}^n |w_i|^2 \lambda_i u(\lambda_i)$$
$$= \int_{\mathbb{R}} u(t)v(t)d\Theta(t) = \langle u, v \rangle_{L_{\Theta}^2(\mathbb{R})}$$

where

$$\Theta = \sum_{i=1}^{n} \lambda_i |w_i|^2 \Theta_{\lambda_i}$$

Here, for any $\lambda \in \mathbb{R}$, $\Theta_{\lambda} : \mathbb{R} \to \mathbb{R}$ is the Heaviside function jumping at λ :

$$\Theta_{\lambda}(t) = \begin{cases} 1, & t \ge \lambda \\ 0, & t < \lambda \end{cases} \quad \forall t \in \mathbb{R}$$

In terms of generalized functions: $\Theta'_{\lambda} = \delta_{\lambda} \ \forall \lambda \in \mathbb{R}$, so that

$$d\Theta(t) = \sum_{i=1}^{n} \lambda_i |w_i|^2 \delta_{\lambda_i}(t) dt$$

For a system $\{\sigma_j\}_{j=0}^{\infty}$ of polynomials $(\sigma_j \in P_j \text{ of degree } j \ \forall j \in \mathbb{N}_0)$, orthogonality w.r.t. a Stieltjes measure is a equivalent to a theree-term recurrence relation: $\exists \{\xi_j\}_{j\in\mathbb{N}}, \{\eta_j\}_{j\in\mathbb{N}}, \{\zeta_j\}_{j\in\mathbb{N}}$ such that

$$\sigma_{j+1}(t) = (\xi_{j+1} + \eta_{j+1}t)\sigma_j(t) + \zeta_{j+1}\sigma_{j-1}(t) \quad \forall t \in \mathbb{R}, \ j \in \mathbb{N}$$

The coefficients correspond to the inner product.

Example. • Chebyshev polynomials:

$$T_{j+1}(t) = 2tT_j(t) - T_{j-1}(t) \quad \forall t \in \mathbb{R}, \ j \in \mathbb{N}$$

 $(T_j)_{j=0}^{k-1}$ are orthogonal w.r.t. $\int_{-1}^1 u(t)v(t)\frac{dt}{\sqrt{1-t^2}} \quad \forall u,v \in P_{k-1}$.

• Legendre polynomials:

$$(j+1)P_{j+1}(t) = (2j+1)tP_j(t) - jP_{j-1}(t) \quad \forall t \in \mathbb{R}, \ j \in \mathbb{N}$$

 $(P_j)_{j=0}^{k-1}$ are orthogonal w.r.t. $\int_{-1}^1 u(t)v(t)dt \quad \forall u, v \in P_{k-1}$.

Lemma 8.1 (A). Let $A \in \mathbb{F}^{n \times n}$ be invertible, $r_0 \in \mathbb{F}^n$ be non-zero.

Let $m = \max_{k \in \mathbb{N}} \dim \mathcal{K}_k(A, r_0) \in \mathbb{N}$. Then

- (i) dim $\mathcal{K}_k(A, r_0) = \min\{k, m\} \ \forall k \in \mathbb{N}$
- (ii) $A^{-1}r_0 \in \mathcal{K}_m(A, r_0) \setminus \mathcal{K}_{m-1}(A, r_0)$.
- Proof. (i) Since $r_0 \neq 0$, we have $\dim \mathcal{K}_1(A, r_0) = \dim \operatorname{span}\{r_0\} = 1$, so that $\dim \mathcal{K}_1(A, r_0) = \dim \mathcal{K}_0(A, r_0) + 1$. Let $\mathcal{M} = \{k \in \mathbb{N} : \dim \mathcal{K}_k(A, r_0) = \dim \mathcal{K}_{k-1}(A, r_0) + 1\}$.

Note: $1 \in \mathcal{M}$ and \mathcal{M} is bounded because dim $\mathcal{K}_k(A, r_0) \leq n$.

Let $\tilde{m} = \max \mathcal{M}$. Then $\mathcal{M} = \{1, \dots, \tilde{m}\}$! Indeed, for $k \in \{1, \dots, \tilde{m}\}$, we had $k \notin \mathcal{M}$, we would have $\mathcal{K}_j(A, r_0) = \mathcal{K}_k(A, r_0)$ for all $j \in \mathbb{N}$ such that $j \geq k$, hence $\tilde{m} \notin \mathcal{M}$. So dim $\mathcal{K}_k(A, r_0) = k \ \forall k \in \{1, \dots, \tilde{m}\}$.

On the other hand, $\dim \mathcal{K}_k(A, r_0) = \dim \mathcal{K}_{\tilde{m}}(A, r_0) \ \forall k \in \mathbb{N}$ such that $k \geq \tilde{m}$. Then $m = \tilde{m}$ and $\dim \mathcal{K}_k(A, r_0) = \min\{k, \tilde{m}\} \ \forall k \in \mathbb{N}$.

(ii) Since $\mathcal{K}_{m+1}(A, r_0) = \mathcal{K}_m(A, r_0)$, we have $A^m r_0 \in \mathcal{K}_m(A, r_0)$. Due to $r_0 \neq 0$, this means $A^m r_0 = \sum_{k=\ell}^m c_k A^{k-1} r_0$ for some $\ell \in \{0, \ldots, m\}$ and $c_\ell, \ldots, c_m \in \mathbb{F}$ s.t. $c_\ell \neq 0$. Then

$$A^{-1}r_0 = A^{-\ell}(A^{\ell-1}r_0) = A^{-\ell}\frac{1}{c_\ell}(A^m r_0 - \sum_{k=\ell+1}^m c_k A^{k-1}r_0)$$
$$= \frac{1}{c_\ell}A^{m-\ell}r_0 - \frac{1}{c_\ell}\sum_{k=\ell+1}^m c_k A^{k-\ell-1}r_0$$
$$\Rightarrow A^{-1}r_0 \in \mathcal{K}_m(A, r_0)$$

proven: $A^{-1}r_0 \in \mathcal{K}_m(A, r_0)$. Further, let us consider $\tilde{m} = \min\{k \in \mathbb{N} : A^{-1}r_0 \in \mathcal{K}_k(A, r_0)\}$ $(A^{-1}r_0 \in \mathcal{K}_{\tilde{m}}(A, r_0) \setminus \mathcal{K}_{\tilde{m}-1}(A, r_0))$. The set is nonempty (m is in the set), so $\tilde{m} \in \{1, \ldots, m\}$.

It remains to show that $\tilde{m} = m$: $\dim \mathcal{K}_{\tilde{m}}(A, r_0) \leq \dim \mathcal{K}_{\tilde{m}-1}(A, r_0) + 1$, so $\dim \mathcal{K}_{\tilde{m}}(A, r_0) = \operatorname{span}\{A^{-1}r_0\} + \mathcal{K}_{\tilde{m}-1}(A, r_0)$.

$$\Rightarrow A\mathcal{K}_{\tilde{m}}(A, r_0) = A\mathcal{K}_{\tilde{m}-1}(A, r_0) + \operatorname{span}\{r_0\}$$

$$\subseteq \mathcal{K}_{\tilde{m}}(A, r_0) + \mathcal{K}_{\tilde{m}}(A, r_0) = \mathcal{K}_{\tilde{m}}(A, r_0)$$

So $\mathcal{K}_{\tilde{m}+1}(A, r_0) = \mathcal{K}_{\tilde{m}}(A, r_0)$ and hence $\mathcal{K}_m(A, r_0) = \mathcal{K}_{\tilde{m}}(A, r_0) \ \forall k \in \mathbb{N}$ such that $k \geq \tilde{m}$. This means $\tilde{m} = m$.

Lemma 8.1 (B). Let $A \in \mathbb{F}^{n \times n}$ be diagonalizable, $A = S\Lambda S^{-1}$ be an eigenvalue decomposition of A ($\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$). Let $r_0 \in \mathbb{F}^n$, $\omega \in S^{-1}r_0$. Assume that $\dim \mathcal{K}_k(A, r_0) = k$ for some $k \in \mathbb{N}$. Then

$$\# \{\lambda_i \mid i \in \{1, \dots, n\}, \omega_i \neq 0\} \ge k$$

(Note:
$$S^{-1}e_0 = S^{-1}(x_0 - x) = -S^{-1}A^{-1}r_0 = -\Lambda^{-1}\omega$$
 (if A is invertible))

Proof. Note that $\mathcal{K}_k(A, r_0) = S\mathcal{K}_k(\Lambda, \omega)$ and hence dim $\mathcal{K}_k(\Lambda, \omega) = k$ since S is invertible. So

$$\dim \mathcal{K}_k(\Lambda, \omega) = \operatorname{rank} \begin{pmatrix} \omega_1 & \lambda_1 \omega_1 & \lambda_1^2 \omega_1 & \cdots & \lambda_1^{k-1} \omega_1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \omega_n & \lambda_n \omega_n & \lambda_n^2 \omega_n & \cdots & \lambda_n^{k-1} \omega_n \end{pmatrix} = k$$

 $\Rightarrow \exists i_1, \dots, i_k \in \{1, \dots, n\}$ distinct such that the matrix

$$\begin{pmatrix} \omega_{i_1} & \lambda_{i_1}\omega_{i_1} & \lambda_{i_1}^2\omega_{i_1} & \cdots & \lambda_{i_1}^{k-1}\omega_{i_1} \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \omega_{i_k} & \lambda_{i_k}\omega_{i_k} & \lambda_{i_k}^2\omega_{i_k} & \cdots & \lambda_{i_k}^{k-1}\omega_{i_k} \end{pmatrix}$$

is non-singular. Then $\omega_{i_1}, \ldots, \omega_{i_k}$ are all non-zero and $\lambda_{i_1}, \ldots, \lambda_{i_k}$ are distinct. \square

Remark 8.2 (in the notations of Remark 8.1). Consider $j \in \{2, ..., k-1\}$, then $p_{j+1} = r_j + \beta_j p_j$ and $p_j = r_{j-1} + \beta_{j-1} p_{j-1}$, where $r_j = r_{j-1} - \alpha_j A p_j$. Expressing $r_j = p_{j+1} - \beta_j p_j$, $r_{j-1} = p_j - \beta_{j-1} p_{j-1}$ and substituting those expressions into the recurrence for residuals, we obtain:

$$p_{j+1} - \beta_j p_j = p_j - \beta_{j-1} p_{j-1} - \alpha_j A p_j.$$
 (*)

Since $p_i = \frac{1}{\alpha_i} \sigma_i(A) r_0$ for all $i \in \{0, \dots, k\}$, where we set $\alpha = 0$ for convenience, (*) gives us $\frac{1}{\alpha_{j+1}} \sigma_{j+1}(A) r_j$ TODO: There is some error, find correct remark

Lemma 8.2 (A). Let $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite. Assume that $\lambda(A) \subseteq [\lambda, \Lambda]$ for some $\lambda, \Lambda \in \mathbb{R}$ with $0 < \lambda < \Lambda$. Consider

$$\phi: \mathbb{F} \to \mathbb{F}, \ given \ by \ \phi(t) = -\frac{2t - (\Lambda + \lambda)}{\Lambda - \lambda} \quad \forall t \in \mathbb{F}$$

and set $\tau = \frac{\Lambda + \lambda}{\Lambda - \lambda}$. Then for each $k \in \mathbb{N}$, $q_k = \frac{T_k \circ \phi}{T_k(\tau)}$, where T_k is the degree k Chebyshev polynomial of the first kind, satisfies $q_k \in Q_k$ $(q_k \in P_k \text{ and } q_k(0) = 1)$ and $\|q_k(A)\|_2 \leq 2(\frac{\sqrt{a}-1}{\sqrt{a}+1})^k$, where $a = \frac{\Lambda}{\lambda} \geq \operatorname{cond}_2(A)$.

TODO: Proof

Theorem 8.3. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $b, x_0 \in \mathbb{F}^n$ and $r_0 = b - Ax_0$. Then for each $k \in \mathbb{N}$, the k-th CG-iteration for Ax = b and initial guess $x_0, x_k = x_0 + \operatorname{argmin}_{y \in \mathcal{K}_k(A, r_0)} ||y - A^{-1}r_0||_A$, satisfies

$$||x_k - x||_A \le 2\left(\frac{\sqrt{a} - 1}{\sqrt{a} + 1}\right)^k ||x_0 - x||_A,$$

where $a = \frac{\Lambda}{\lambda}$ and $\lambda(A) \subseteq [\lambda, \Lambda]$ for $0 < \lambda < \Lambda$.

Proof. Due to the optimality of x_k , we have

$$||x_k - x||_A = ||(x_k - x_0) + (x_0 - x)||_A \le ||y_k - A^{-1}r_0||_A \quad \forall y_k \in \mathcal{K}_k(A, r_0)$$

 q_k be given as in Lemma 8.2 and $\pi_k \in P_{k-1}$ be given by

$$\pi_k(t) = \frac{1}{t}(1 - q_k(t)) \quad \forall t \in \mathbb{F} \quad \text{(see Remark 7.3)}$$

Then $\pi_k(A)r_0 \in \mathcal{K}_k(A, r_0)$ by Proposition 7.2. So

$$||x_k - x||_A \le ||\pi_k(A)r_0 - A^{-1}r_0||_A = ||A^{-1}r_0 - A^{-1}q_k(A)r_0||_A$$

$$\le ||q_k(A)||_2 ||x - x_0||_A \le 2\left(\frac{\sqrt{a} - 1}{\sqrt{a} + 1}\right)^k ||x - x_0||_A \quad \forall k \in \mathbb{N}$$

Remark. Improvement over gradient descent:

Instead of $(\frac{a-1}{a+1})^k$, we have $(\frac{\sqrt{a}-1}{\sqrt{a}+1})^k$.

Preconditioned CG-iteration

Our assumptions: $k \in \mathbb{N}$, $A \in \mathbb{F}^{n \times n}$ Hermitian positive definite, λ, Λ - spectral bounds, maybe unfavorable

Example.

$$A = \begin{pmatrix} 2 & -1 & & \\ -1 & \ddots & \ddots & \\ & \ddots & \ddots & -1 \\ & & -1 & 2 \end{pmatrix}, \quad \kappa = \frac{\Lambda}{\lambda} \sim n^2$$

Ax = b, P (invertible) as preconditioner $\rightsquigarrow P^{-1}Ax = P^{-1}b$.

Problem: $P^{-1}A$ might not be Hermitian positive definite.

Let us assume P is Hermitian positive definite (P^{-1} is so as well, so it has a Cholesky decomposition) and $C \in \mathbb{F}^{n \times n}$ is non-singular such that $P^{-1} = CC^*$.

Or: Take $(P^{-1})^{1/2}$, the HPD square root

Then
$$Ax = b \Rightarrow C^*AC(C^{-1}x) = C^*b \rightsquigarrow \tilde{A}\tilde{x} = \tilde{b}$$

symmetric two-sided preconditioning

If \tilde{x} solves the preconditioned system, $x = C\tilde{x}$ solves the original system.

$$||C\tilde{x}_k - x|| = ||C(\tilde{x}_k - \tilde{x})|| \le ||C|| ||\tilde{x}_k - \tilde{x}||$$

Easy to check: \tilde{A} is Hermitian positive definite (check $x^*\tilde{A}x > 0$ and $\tilde{A}^* = \tilde{A}$), so we can apply the CG method to $\tilde{A}\tilde{x} = \tilde{b}$.

(i) accuracy: If \tilde{x}_k is an approximation of \tilde{x} , then $x_k = C\tilde{x}_k$ satisfies

$$||x_k - x||_A = \sqrt{(\tilde{x}_k - \tilde{x})^* C^* A C(\tilde{x}_k - \tilde{x})} = ||\tilde{x}_k - \tilde{x}||_{\tilde{A}}$$

So the CG method for the preconditioned system minimizes also the A-norm of the error of the initial system.

(ii) conditioning: $\operatorname{cond}_2 \tilde{A} = \operatorname{cond}_2 P^{-1} A$ by the following result

Proposition 9.1. Let $A \in \mathbb{F}^{n \times n}$ be Hermitian non-singular and $C \in \mathbb{F}^{n \times n}$ be non-singular. Then

$$\operatorname{cond}_2 C^*AC \le \operatorname{cond}_2 CC^*A$$

Proof. Let $P = (CC^*)^{-1}$, $\tilde{A} = C^*AC$ and $B = P^{-1}A$. For each $k \in \mathbb{N}$, we have

$$\tilde{A}^k = C^{-1}(CC^*A)^kC = C^{-1}B^kC$$
 and $\|\tilde{A}^{-1}\|_2^k = \|\tilde{A}^{-k}\|_2 \quad \forall k \in \mathbb{N}$

Then

$$\|\tilde{A}\|_{2}^{k} = \|\tilde{A}^{k}\|_{2} \le \|C^{-1}\|_{2}\|C\|_{2}\|B\|_{2}^{k} \text{ and } \|\tilde{A}^{-1}\|_{2}^{k} = \|\tilde{A}^{-k}\|_{2} \le \|C^{-1}\|_{2}\|C\|_{2}\|B^{-1}\|_{2}^{k}.$$

Taking the k-th root and passing to $k \to \infty$, we get $\|\tilde{A}\|_2 \le \|B\|_2$ and $\|\tilde{A}^{-1}\|_2 \le \|B^{-1}\|_2$. So

$$\operatorname{cond}_2 \tilde{A} \leq \operatorname{cond}_2 B$$

Proposition 9.2. Let $A \in \mathbb{F}^{n \times n}$ be HPD, $R \in \mathbb{F}^{n \times n}$ be Hermitian such that $\rho(I - RA) < 1$. Then R is positive definite and, if $R = CC^*$ for some $C \in \mathbb{F}^{n \times n}$, then $\tilde{A} = C^*AC$ satisfies

$$\lambda_{\max}(\tilde{A}) \le 1 + \rho, \ \lambda_{\min}(\tilde{A}) \ge 1 - \rho \quad (\Rightarrow \operatorname{cond}_2 \tilde{A} = \frac{\lambda_{\max}}{\lambda_{\min}} \le \frac{1 + \rho}{1 - \rho})$$

Proof. Let $U \in \mathbb{F}^{n \times n}$ be non-singular such that $A = UU^*$ (e.g. the Cholesky factor of A). Then $I - U^*RU = U^*(I - RA)U^{-*}$. So $\rho(I - U^*RU) = \rho(I - RA) < 1$

 U^*RU is Hermitian $\to \lambda(U^*RU) \subset \mathbb{R}$ and hence $\lambda(U^*RU) \subset [1-\rho, 1+\rho] \subset (0,2)$, where $\rho = \rho(I-RA)$. So U^*RU is positive definitem so R is as well. Let $C \in \mathbb{F}^{n \times n}$ be such that $R - CC^*$ then $\rho(I - \tilde{A}) = \rho(I - C^*AC) = \rho(I - RA) = \rho$. Since \tilde{A} is Hermitian, this implies $\lambda(\tilde{A}) \subset [1-\rho, 1+\rho]$.

Remark (Reformulation of CG algorithm for $\tilde{A}\tilde{x}=\tilde{b}$). We consider $P\in\mathbb{F}^{n\times n}$ Hermitian positive definite such that $P^{-1}=CC^*$. For x_0 (Initial guess), we set $r_0=b-Ax_0,\ \tilde{x_0}=C^{-1}x_0$. Algorithm 7.8 for $\tilde{A}\tilde{x}=\tilde{b}$ starting at $\tilde{x_0}$:

$$\tilde{r}_0 = \tilde{b} - \tilde{A}\tilde{x_0}, \ \tilde{p}_1 = \tilde{r}_0$$

Note that $\tilde{r}_0 = C^*b - C^*ACC^{-1}x_0 = C^*r_0$. For $k \in \mathbb{N}$, the k-th iteration takes the

form:

$$\tilde{\alpha}_{k} = \frac{\tilde{r}_{k-1}^{*} \tilde{r}_{k-1}}{\tilde{p}_{k}^{*} \tilde{A} \tilde{p}_{k}}$$

$$\tilde{x}_{k} = \tilde{x}_{k-1} + \tilde{\alpha}_{k} \tilde{p}_{k}$$

$$\tilde{r}_{k} = \tilde{r}_{k-1} - \tilde{\alpha}_{k} \tilde{A} \tilde{p}_{k} \quad (\tilde{r}_{k} = 0 \rightarrow \text{ terminate})$$

$$\tilde{\beta}_{k} = \frac{\tilde{r}_{k}^{*} \tilde{r}_{k}}{\tilde{r}_{k-1}^{*} \tilde{r}_{k-1}}$$

$$\tilde{p}_{k+1} = \tilde{r}_{k} + \tilde{\beta}_{k} \tilde{p}_{k}$$

First,

$$\tilde{\alpha}_{k} = \frac{\tilde{r}_{k-1}^{*}C^{-1}\overbrace{CC^{*}}^{*}C^{-*}\tilde{r}_{k-1}}{\tilde{p}_{k}^{*}C^{*}AC\tilde{p}_{k}} = \frac{(C^{-*}\tilde{r}_{k-1})^{*}P^{-1}(C^{-*}\tilde{r}_{k-1})}{(C\tilde{p}_{k})^{*}A(C\tilde{p}_{k})}$$

$$r_{k} = C^{-*}\tilde{r}_{k} = C^{-*}\tilde{r}_{k-1} - \tilde{\alpha}_{k}C^{-*}C^{*}AC\tilde{p}_{k} = C^{-*}\tilde{r}_{k-1} - \tilde{\alpha}_{k}A\underbrace{C\tilde{p}_{k}}_{v_{k}}$$

$$v_{k+1} = C\tilde{p}_{k+1} = C\tilde{r}_{k} + \tilde{\beta}_{k}C\tilde{p}_{k} = CC^{*}C^{-*}\tilde{r}_{k} + \tilde{\beta}_{k}C\tilde{p}_{k} = P^{-1}\underbrace{C^{-*}\tilde{r}_{k}}_{v_{k}} + \tilde{\beta}_{k}\underbrace{C\tilde{p}_{k}}_{v_{k}}$$

$$x_{k} = C\tilde{x}_{k} = \underbrace{C\tilde{x}_{k-1}}_{x_{k-1}} + \tilde{\alpha}_{k}C\tilde{p}_{k}$$

 $(\to r_k = b - Ax_k \text{ holds})$

TODO: Ask about the $\tilde{x_k}$ definition. Kazeev did write \tilde{p}_{k-1} instead of \tilde{p}_k

$$\tilde{\alpha}_k = \frac{r_{k-1}^* P^{-1} r_{k-1}}{p_k^* A p_k}$$
 and $\tilde{\beta}_k = \frac{r_k^* P^{-1} r_k}{r_{k-1}^* P^{-1} r_{k-1}}$

We can evaluate

$$z_0 = P^{-1}r_0$$
, $v_1 = C\tilde{p}_1 = C\tilde{r}_0 = P^{-1}r_0 = z_0$.

For $k \in \mathbb{N}$, assuming $z_{k-1} = P^{-1}r_{k-1}$ and $v_k = C\tilde{p}_k$ have been evaluated, we define

$$z_k = P^{-1}r_k \quad \text{ and } \quad v_{k+1} = C\tilde{p}_{k+1}$$

Algorithm 9.3 (The preconditioned CG method, PCG).

Given: $A, P \in \mathbb{F}^{n \times n}$ Hermitian positive definite, $b, x_0 \in \mathbb{F}^n$ such that $b - Ax_0 \neq 0$

Initialize: set $r_0 = b - Ax_0$, $z_0 = P^{-1}r_0$, $v_1 = z_0$

Iterate for $k = 1, 2, \ldots$:

set
$$\tilde{\alpha}_k = \frac{r_{k-1}^* z_{k-1}}{v_k^* A v_k}$$

set
$$x_k = x_{k-1} + \tilde{\alpha}_k v_k$$

$$\operatorname{set} r_k = r_{k-1} - \tilde{\alpha}_k A v_k$$

if $r_k = 0$, then terminate

$$set z_k = P^{-1}r_k$$

set
$$\tilde{\beta}_k = \frac{r_k^* z_k}{r_{k-1}^* z_{k-1}}$$

set
$$v_{k+1} = z_k + \tilde{\beta}_k v_k$$

Proposition 9.4. Let $A, P \in \mathbb{F}^{n \times n}$ be Hermitian positive definite, $b, x_0 \in \mathbb{F}^n$ such that $b - Ax_0 \neq 0$. $C \in \mathbb{F}^{n \times n}$ be such that $P^{-1} = CC^*$. Let $\tilde{x}_0 = C^{-1}x_0$. Let $\tilde{x}_1, \ldots, \tilde{x}_k \in \mathbb{F}^{n \times n}$ and $x_1 = C\tilde{x}_1, \ldots, x_k = C\tilde{x}_k$.

Then the following statements are equivalent:

- (i) Algorithm 7.8 applied to $(C^*AC)x = C^*b$ produces iterates x_1, \ldots, x_k .
- (ii) Algorithm 9.3 applied to Ax = b with preconditioner P produces iterates $\tilde{x}_1, \ldots, \tilde{x}_k$.

Proof. Given above. \Box

Note that $||x_k - x||_A = ||\tilde{x_k} - \tilde{x}||_A$