Sample Syllabus 1 (AP Computer Science A)

Bekki George

James E. Taylor High School Katy, Texas rebeccageorge@katyisd.org http://schools.katyisd.org/campus/ths/index.htm

School Profile

Location and Environment: James E. Taylor High School is located 25 miles west of downtown Houston in a suburban area near Katy, Texas, a town with a population of 12,000. The Katy Independent School District itself encompasses a large area consisting of approximately 65,000 households and 41,500 students. The socioeconomic level is predominantly middle to upper-middle class.

Grades: 9–12

Type: Public school

Total Enrollment: 2,770

Ethnic Diversity: Asian American 10.0 percent

Hispanic/Latino 7.2 percent
African American 3.4 percent
Native American 0.1 percent

College Record: 71 percent attend four-year colleges

17 percent attend community colleges

Personal Philosophy

I want my students to enjoy computer science as much as I do. I get very excited when they understand what I'm teaching. Every day, I hear "All right!" or a squeal of delight when one of my kids gets something difficult to work. Their enthusiasm is contagious. My reward comes when students can apply the programming tools they have learned to real-life examples on their own. Computer science is more than just programming. Students should leave my class with a clear understanding of Java and the ability to adapt to any new programming language that they are taught in college. I want them to have the confidence to tackle any problem-solving obstacles they encounter.

Class Profile

Five sections (27 students per section) Classes meet for 50 minutes each school day.

Course Overview

AP Computer Science 1 (the official name for my course) is both a college-prep course for potential computer science majors and a foundation course for students planning to study in other technical fields such as engineering, physics, chemistry, and geology. The course emphasizes programming methodology, procedural abstraction, and in-depth study of algorithms, data structures, and data abstractions, as well as a detailed examination of a large case study program. Instruction includes preparation for the AP Computer Science A Exam.

Texts

Bergin, Joseph et al. *Karel J Robot: A Gentle Introduction to the Art of Object-Oriented Programming in Java*. Redwood City, Calif.: Dreamsongs Press, 2005. http://csis.pace.edu/~bergin/KarelJava2ed/Karel%2B%2BJavaEdition.html. Introduces objects and inheritance.

College Board. *AP Marine Biology Simulation Case Study*. New York: College Entrance Examination Board, 2002. Download from the Course Home Pages: apcentral.collegeboard.com/compscia or apcentral.collegeboard.com/compsciab.

Horstmann, Cay. Big Java. Hoboken, N.J.: Wiley, 2002.

Lambert, Ken, and Martin Osborne. *Fundamentals of Java, Comprehensive Course.* 2nd ed. Boston: Course Technology, 2002.

Course Planner

The Resources listings include the following text references: *Karel J Robot* (KJR), *Marine Biology Simulation Case Study* (MBS), *Big Java* (BJ), and *Fundamentals of Java* (FJ).

Unit (Weeks)	Title, Topics, and Student Objectives	Resources, Assessments, and Strategies
1 (0-3)	Karel J Robot	Resource:
	Topics:	• KJR
	Objects	Assessments:
	 Classes Looping Conditionals Objectives: Write and use simple classes with Karel J Robot Learn the basics of conditionals and looping 	 Program-specific tasks for Karel Create a SmartRobot Class to teach Karel more commands: turnRight(), turnAround(), climbStair(). Clear a field of beepers (using loops). Redistribute a field of beepers (using loops and conditionals). Run a hurdle race: same height and equally spaced; different heights and unequally spaced.
2 (4)	Java Basics	Resource:
	 Topics: Java basics Using the compiler Input and output Objectives: Understand terminology: compiler, IDE, JVM Edit, compile, and run a simple program in Java Understand the different compile time errors, runtime errors, and logic errors Use BufferedReader for input Use output with System.out and 	 FJ: lesson 3, Critical thinking Assessments: Labs: Triangle, Rectangle, Square: Area, and perimeter program Get input for the registrar's office program. Strategies: Assign a lot of small programs that illustrate different types of input and output—make sure students have used every type of input and displayed it in different ways.

Unit (Weeks)	Title, Topics, and Student Objectives	Resources, Assessments, and Strategies
3 (5)	Defining Variables, Arithmetic Expressions Topics: Using and understanding variables Comments Arithmetic expressions in Java programs Objectives: Understand terminology: comments, variables, constants, reserved words, literals Declare and initialize variables and constants in Java Understand mathematical expressions in Java and their precedence Use casting to make their data more accurate	Resource: • FJ: lesson 3, Projects Assessments: Labs: • Paycheck program; have employee information entered and calculate pay. • Modify the paycheck program to also include any overtime hours in the calculations. Strategies: • Students need practice with how the different types, double and int, relate when they are used in mathematical operations. • Worksheets are helpful here. • Present a lot of small program examples in which they have to find the errors.
4 (6-7)	 Use the assignment operator correctly Introduction to Classes and OOP Topics: Creating and using classes Objectives: Understand terminology: constructor, accessor, mutator, instance variable, and more Understand the difference between public and private access in a class Use and comprehend the DecimalFormat class and the Random class Write classes from scratch 	Resource: • BJ: chapter 3 Assessments: Labs: Purse class and StampMachine class Strategies: • Go slowly and show as many examples as possible. • Start with very simple examples. • Give students classes to complete.
5 (8-12)	Conditionals and Looping Topics: if, if-else, while, for Objectives: Understand terminology: control statements, counter, infinite loop, iteration, nested loops, logical operators, truth tables Construct syntactically correct loops and conditional statements Understand the different errors that may occur with loops Use logical operators to make programs more robust Construct truth tables	Resources: FJ: lessons 4 and 6, Projects Assessments: Labs: Approximate PI using Leibniz's method Base Conversion; convert from base 10 to base 2 Guess My Number game Euclidean algorithm program Perimeter and area of rectangles using all combinations of certain range Strategies: This unit needs a lot of programs. Students need practice writing different types of loops and conditionals. Worksheets that focus on the output of certain statements are very helpful here.

Unit (Weeks)	Title, Topics, and Student Objectives	Resources, Assessments, and Strategies
6 (13-14)	The String Class	Resource:
	Topic:	• FJ: lesson 10.1
	String class	Assessments:
	Objectives:	• FJ: exercise 10.1
	Instantiate String objects	• Lab: LineEditor Class (AP CS Course Description)
	Understand that Strings are	Strategies:
	immutable	Work several examples using the substring method.
	Use appropriate String methods to solve problems	
7 (15–17)	ArrayList	Resources:
	Topic:	• FJ: lesson 10.7
	Using ArrayList class	• BJ: 13.1 and 13.2
	Objective:	Assessments:
	Use the ArrayList methods	BJ: exercise p.13.1
		• WordList (2004 AP CS A Exam, Free-Response Question 1, AP Central)
		Strategies:
		Stress the difference between add and set.
		Draw pictures of the ArrayList after add, set, and
		remove have been performed.
8 (18)	Arrays	Resource:
	Topics:	FJ: lesson 8, Projects
	Declaring and initializing arrays	Assessments:
	Manipulating arrays with loops	Lab: For one-dimensional arrays, read in numbers
	Creating parallel arrays	and place each one in an even, odd, and/or negative
	Objectives:	list.
	• Understand terminology: array, element, index, logical size, physical	Strategies:
	size, parallel arrays	• Students need practice manipulating loops that work with arrays.
	Declare one-dimensional arrays in	Worksheets where they show the output from
	Java	sample programs are always helpful here.
	Use initializer lists when declaring	Students also need to be reminded about the
	arrays	indexing of arrays beginning at zero.
	Manipulate arrays using loops and array indices	
	 Use the physical and logical size of 	
	an array together to guarantee they	
	do not go beyond the bounds of their	
	array	
	Understand how parallel arrays can be useful when processing certain	
	types of data	
	Work with arrays of primitive data	
	types as well as arrays of objects	

Unit (Weeks)	Title, Topics, and Student Objectives	Resources, Assessments, and Strategies
9 (19-21)	 Searching and Sorting Arrays Topics: Bubble, Selection, Insertion sorts Sequential and Binary searches Objectives: Write a method for searching an array Perform insertions and deletions at given positions in arrays Trace through sorting and searching algorithms Understand the algorithms behind each of the following searching and sorting techniques: bubble, selection, and insertion sorts; sequential search and binary search Understand the efficiency of each sort and search and when it is desirable to use each one 	Resource: • FJ: lesson 10 Assessments: Lab: Students make their own "utility" class that includes all of these sorts and searches. Strategies: • Students need practice tracing through sorts and searches. • Worksheets: show the sort or search at a certain "pass." • Students also do well with a worksheet that talks about the efficiency of each of the strategies they have learned, efficiency for a sorted versus unsorted list, and "best," "worst," and "average" efficiency. (See appendix B for lab and worksheets.)
10 (22-24)	 MBS (chapters 1-3) Topics: Experimenting with a large program Using classes Modifying classes Objectives: Run the case study and analyze output Experiment with the Simulation Understand the Fish Class, Simulation Class, and the Environment Interface Modify the Fish Class 	Resource: MBS: chapters 1–3 Assessments: Exercises and analysis from the text Strategies: Read the manual thoroughly. Be familiar with all the classes and interfaces discussed.
11 (25-27)	More on Classes, Inheritance, Interfaces Topics: Classes Inheritance Abstract classes Interfaces Objectives: Demonstrate inheritance by extending a class Understand polymorphism and know when it is appropriate to override methods in a super class Create and extend an abstract class Implement an interface	Resources: BJ: chapter 11 FJ: lessons 9.5 and 9.6 Assessments: Create an abstract Shape class. Pet Parade (2004 AP CS A Exam: Free-Response Question 2, on AP Central) Strategies: Draw pictures of the inheritance hierarchy. Note: This unit could be moved to after unit 12 if you wish to use the MBS to introduce inheritance.

Unit (Weeks)	Title, Topics, and Student Objectives	Resources, Assessments, and Strategies
12 (28-29)	MBS (chapter 4)	Resource:
	Topic:	MBS: chapter 4
	Inheritance	Assessments:
	Objective:	Exercises and analysis from the text
	Use inheritance to extend the	Strategies:
	Fish Class	Have fun with this chapter.
		• Allow the students to be creative after working through the exercises and analysis.
		Create different kinds of fish or other objects.
13 (30-31)	Recursion (and Merge Sort)	Resources:
	Topics:	• FJ: lesson 11.1
	Recursion	BJ: section 18.4
	Merge Sort	Assessments:
	Objectives:	Factorial program
	Create a recursive method to solve a	Rewrite loop programs with recursion.
	problem	Strategies:
	Understand the difference between	Students need lots of practice on recursion.
	recursive and iterative solutions to a problem	• Mathematical worksheets on recursion help introduce this topic.
	Understand and use the Merge Sort.	Do a lot of examples and ask, "What is returned by this method?"
		(See appendix B for worksheets and notes.)
14 (32-36)	Review	Resources:
	Topics:	Previous free-response questions from
	Review AP Computer Science A	AP Central
	topics	Barron's test-prep book for the AP Exams
	Objective:	Assessments:
	Prepare for the AP CS A Exam	Practice exams
	by reviewing material and taking practice exams	Strategies:
	Practice exams	Give as many practice exams as possible.

Teaching Strategies

I try to create a learning environment that is comfortable for all students. Those who have never touched a computer should be as at ease in my class as those who have taught themselves how to program. I aim to foster critical thinking, a lifelong skill, and I accomplish this by giving challenging, yet not impossible, assignments. When new topics are introduced, I like to use a hands-on approach of having students see and run examples. While the novices ask questions, more experienced students can make changes to the examples and experiment with different outcomes.

I measure the effectiveness of my teaching by monitoring student work and giving many short quizzes, in order to gauge students' knowledge before I test them on a topic. Experienced programmers help the novices in a mentoring program after school. This promotes student leadership and propels in-class learning.