Final

Commission Nationale des Compétitions de Sciences

Olympiades Nationales de Mathématiques 2019 Niveau 7C

17 mars 2019 Durée 3 h

L'épreuve est notée sur 100 points. Elle est composée de cinq exercices indépendants ; Toute réponse doit être justifiée et les solutions partielles seront examinées ; Calculatrice non autorisée

Exercice 1: (20 points)

Dans la figure ci-contre, ABC est un triangle rectangle isocèle avec BA = BC = a.

Calculer l'aire grisée.

Exercice 2: (20 points) Soit un entier $n \ge 2$.

3) Montrez que pour n'importe quel entier n, il y a toujours un nombre fini de valeurs entières m pour lesquelles $m^2 + n^2 + 1$ est divisible par m-n+1 et par m+n+1.

Exercice 3: (20 points)

L'objectif est de déterminer la valeur de l'intégrale $I = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\sqrt{1 + \sin x \cos x}} dx$

1) On pose
$$g(x) = \sin x$$
 avec $x \in \left[0; \frac{\pi}{2}\right]$. Calculer $(g^{-1})'(x)$.

2) En posant
$$x = \frac{\pi}{4} + y$$
, vérifier que $I = 2 \int_0^{\frac{\pi}{4}} \frac{\cos y}{\sqrt{2 + \cos(2y)}} dy$

3) En posant
$$z = \sin y$$
, montrer que $I = 2 \int_0^{\frac{1}{\sqrt{2}}} \frac{dz}{\sqrt{3 - 2z^2}}$

4) Exprimer alors la valeur de I en utilisant g⁻¹

Exercice 4: (20 points)

Soit f la fonction définie par
$$f(t) = \frac{t-1}{t \ln t}$$
 si $t \in \mathbb{R}_+ \setminus \{0,1\}$ et $f(1) = 1$.

1) Montrer que f'est continue sur $\mathbb{R}_+ \setminus \{0\}$ puis justifier l'existence de l'intégrale $\int_x^x \frac{1}{\ln t} dt$ pour $\mathbf{x} \in \mathbb{R}_+ \setminus \{0,1\}.$

2) Utiliser
$$\int_{x}^{x^{2}} f(t)dt$$
 pour calcular $\lim_{x \to 1} \left(\int_{x}^{x^{2}} \frac{1}{\ln t} dt \right)$.

Exercice 5: (20 points)

ABC est un triangle d'angles aigus et dont les hauteurs [AD] et [BE] se coupent en H. soit [M] le milieu de [AB]. Les cercles circonscrits aux triangles DEM et ABH se coupent en P et Q avec P est le point situé dans le demi-plan délimité par (CH) contenant A. On désigne par R le point d'intersection de (ED) et (PH).

- 1) Montrer que RDA = RPA puis déduire que les points B, P, R et E sont cocycliques.
- 2) Montrer que R appartient au cercle circonscrit au triangle ABC
- 3) Montrer que les droites (ED), (PH) et (MQ) sont concourantes en R.

FIN.

Niveau 7C