xAutoML Course Project 2

Automating Process Discovery with AutoML for Optimal Algorithm Selection and Hyperparameter Tuning

Team 6

Institute of Computer Science, University of Tartu

Agenda

- 1. Motivation and Problem Statement
- 2. Dataset Description
- 3. Project Methodology
- 4. Results and Discussion

Problem Statement

- Automated Algorithm Selection and Hyper-parameter tuning for process discovery in process mining.
- Search space is defined through 3 foundation process discovery algorithms:
 - Alpha Miner
 - Heuristic Miner
 - Inductive Miner

Dataset Description

- Travel Permit Data BPIC Challenge 2020 including all related events of relevant prepaid travel cost declarations and travel declarations:
 - 7,065 cases,
 - o 86,581 events

XAutoML - Project 2 University of Tartu Dec 11, 2024

Dataset Description

- Filtration:
 - Start Activity: Permit Submitted by Employee
 - End Activity: Payment Handled
- 6319 Traces are remaining

- Baselines with default hyper-parameters:
 - Alpha Miner
 - Heuristic Miner
 - Inductive Miner

- Experiments:
 - AutoML Frameworks:
 - Deap
 - Optuna
 - Time Budgets:
 - 5 minutes
 - 15 minutes
 - 30 minutes
 - 60 minutes
 - Search Space:
 - Alpha Miner:
 - remove_loops, ignore_noise
 - Heuristic Miner
 - dependency_thresh, noise_thresh, and_thresh
 - Inductive Miner
 - activity_freq_filter, noise_thresh, variant

- Evaluation Metrics:
 - Fitness
 - Generalization
 - Simplicity

- Statistical Test
 - o Friedman Nemenyi Test

- Baselines with default hyper-parameters:
 - Alpha Miner
 - Heuristic Miner
 - Inductive Miner

Approach	Fitness	Generalization	Simplicity
Alpha Miner	0.4199	0.419	0.8553
Heuristic Miner	0.8892	0.4768	0.6057
<u>Inductive Miner</u>	1	0.5947	0.8617

- Evaluation Metrics:
 - Fitness
 - Generalization
 - Simplicity

Obje ctive	Time Budget	Approach	Fitnes s	Generali zation	Simplicit y	Best Algorithm	
Fitne ss	5	Deap/HyperOpt	1	0.9857	1	Inductive Miner	
		Optuna	0.883	0.5736	0.4901	Heuristic Miner	
	15	Deap/HyperOpt	1	0.9857	1		
		Optuna	1	0.9857	1		
	30	Deap/HyperOpt	1	0.9857	1	Inductive Miner	
		Optuna	1	0.9857	1	inductive Miller	
	60	Deap/HyperOpt	1	0.9857	1		
		Optuna	1	0.9857	1		

Inductive Miner	1	0.5947	0.8617
Heuristic Miner	0.8892	0.4768	0.6057
Alpha Miner	0.4199	0.419	0.8553
Approach	Fitness	Generalization	Simplicity

Experiments:

- AutoML Frameworks:
 - Deap
 - Optuna
- Time Budgets:
 - 5,15,30,60 minutes
- Search Space:
 - Alpha Miner:
 - remove_loops, ignore_noise
 - Heuristic Miner
 - dependency_thresh, noise_thresh, and_thresh
 - Inductive Miner
 - activity_freq_filter, noise_thresh, variant

Evaluation Metrics:

- Fitness
- Generalization
- Simplicity

Statistical Test

o Friedman Nemenyi Test

XAutoML - Project 2 University of Tartu Dec 11, 2024

Objecti ve	Time Budget	Approach	Fitnes s	Generali zation	Simplicit y	Best Algorithm
Fitness +Gener		Deap	1	0.9857	1	la desakira Mirana
alizatio n+Simp 5	Hyperopt	1	0.9857	1	Inductive Miner	
licity	licity	Optuna	0.906	0.7131	0.5356	Heuristic Miner
	15	Deap/Optun a/hyperopt	1	0.9857	1	
	30	Deap/Optun a/hyperopt	1	0.9857	1	Inductive Miner
	60	Deap/ Optuna/ hyperopt	1	0.9857	1	

Alpha Miner	0.4199	0.419	0.8553
Heuristic Miner	0.8892	0.4768	0.6057
Inductive Miner	1	0.5947	0.8617

Experiments:

- AutoML Frameworks:
 - Deap
 - Optuna
- Time Budgets:
 - 5,15,30,60 minutes
- Search Space:
 - Alpha Miner:
 - remove_loops, ignore_noise
 - Heuristic Miner
 - dependency_thresh, noise thresh, and thresh
 - Inductive Miner
 - activity_freq_filter, noise_thresh, variant

Evaluation Metrics:

- Fitness
- Generalization
- Simplicity

Statistical Test

Friedman Nemenyi Test

10

- Friedman Nemenyi Test:
 - Defaults Vs HPO Frameworks at 5 Min time budget

Conclusions

- Search space for process discovery is not huge like machine learning.
- Hyper-parameter optimization does not enhance the models performance.
- Most of the hyper-parameters does not affect the performance.
- Algorithm Selection step is the most important stage (at least for all BPIC datasets).
 - Can be solved by some defined rules
 - Can be solved with Meta-Learning and algorithm selection Only
- The dataset selection was not a good one for this task as we do not have variants for the same process.

Conclusions

12

- Search space for process discovery is not huge like machine learning.
- Hyper-parameter optimization does not enhance the models performance.

XAutoML - Project 1 University of Tartu Nov 11, 2024

Thanks for your attention!

Team Members:

- Ahmed Wael
- 2. Noel Bosch
- 3. Mohamed Maher

Find more about our work:

Source Code:

Project Items

- 1. Dataset Exploration Preparation and Cleansing → A.Wael
 - a. BPIC
 - b. HelpDesk
- 2. Algorithms:
 - a. Alpha Miner
 - b. Heuristic Miner
 - c. Inductive Miner
- 3. Baselines Benchmarking (Algorithms with Default Hyper-parameters) \rightarrow A.Wael (Eo Wednesday)
- 4. Definition of the Configuration Space \rightarrow Maher, Noel
- 5. Auto CASH for
 - a. Approaches:
 - i. Optuna → Maher (Eo Saturday)
 - ii. Hyper-Opt → Noel (Eo Saturday)
 - b. Time Budgets:
 - i. 15 min,
 - ii. 30min,
 - iii. 60min
 - c. Metrics:
 - i. Multi-objective (Fitness, simplicity and generalization) 1 + 1 + 1
 - ii. Single objective (Fitness)
- 6. Statistical Test (60 min) \rightarrow Noel (Eo Sunday)
- 7. Presentation Preparation → Maher (Sunday)