

Mark Scheme (Results)

June 2011

International GCSE

Mathematics (4PM0) Paper 02

PEARSON

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask**The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UG027963
All the material in this publication is copyright
© Edexcel Ltd 2011

Q.	Scheme	Marks
1.	$\sum = \frac{15}{2} (9+37), = 345$	M1A1,A1 (3)
3.	$v = 3t^{2} + 4t - 3$ $12 = 3t^{2} + 4t - 3$ $0 = 3t^{2} + 4t - 15$ $0 = (3t - 5)(t + 3)$ $t = \frac{5}{3}$ (a) $\frac{\sin C}{5} = \frac{\sin 25}{3}$ $\sin C = \frac{5\sin 25}{3}$ $C = 135.2 = 135$ (b) $CD = 2 \times 3\cos 44.8$ $CD = 4.257 = 4.26 \text{ cm}$	M1A1 M1 A1 (4) M1A1 A1 A1 M1A1ft
		A1 (6)
4.	(a) $x = -4$ $0 = (-4)^3 + 2(-4)^2 - 11(-4) - m$ $m = -64 + 32 + 44 = 12$ * (b) $x^3 + 2x^2 - 11x - 12 = (x+4)(x^2 - 2x - 3)$ = (x+4)(x-3)(x+1)	M1 A1 cso B1 M1A1
5.	(c) $b = -1$ $d = 3$ (a) $\frac{5 \times 1 + 2q}{3} = 13$ $2q = 39 - 5$ $q = 17$ $\frac{p + 2 \times 12}{3} = 10$ $p = 30 - 24 = 6$ (b) $A = \frac{3}{3} = \frac{2}{5} = \frac{E}{5}$ $17\mathbf{i} + 12\mathbf{j} = \frac{2(5\mathbf{i} + 6\mathbf{j}) + 3\mathbf{e}}{5}$ $85\mathbf{i} + 60\mathbf{j} = 10\mathbf{i} + 12\mathbf{j} + 3$ $3\mathbf{e} = 75\mathbf{i} + 48\mathbf{j}$ $\mathbf{e} = 25\mathbf{i} + 16\mathbf{j}$	M1A1 A1
		A1 A1 (6)

Q.	Scheme	Marks
6	(a) $8\theta = 6$ $\theta = \frac{3}{4}$ (accept 0.75) oe	M1A1
	(b) $\frac{1}{2}r^2\theta = \frac{1}{2} \times 8^2 \times \frac{3}{4} = 24 \text{ cm}^2$	M1A1
	(c) Area of $\triangle ABC = \frac{1}{2} \times 8^2 \times \sin AOB = 21.81$	M1A1
	Area of segment = $24 - 21.81 = 2.187 = 2.19 \text{ cm}^2$	A1ft (7)
7.	(a) $V = 3x^2h = 30$	B1
	$S = 3x^2 + 2xh + 2 \times 3xh$	B1
	$xh = \frac{10}{x} \Rightarrow S = 3x^2 + 2 \times \frac{10}{x} + 6 \times \frac{10}{x}$	M1
	$S = 3x^2 + \frac{80}{x}$	A1
	(b) $\frac{dS}{dx} = 6x - \frac{80}{x^2}$	M1
	$\frac{dS}{dx} = 0 6x^3 = 80 x = \sqrt[3]{\frac{40}{3}} (= 2.371)$	M1A1
	$S_{\min} = 3 \left(\sqrt[3]{\frac{40}{3}} \right)^2 + \frac{80}{\sqrt[3]{\frac{40}{3}}} = 50.60 = 50.6 \text{ cm}^3$	M1A1
	(c) $\frac{d^2S}{dx^2} = 6 + \frac{160}{x^3} > 0 \text{ for } x > 0$ ∴ minimum	M1 A1ft (11)

Q.	Scheme	Marks
8.	(a) $a + ar^2 = 100$, $ar + ar^2 = 60$ $\frac{1+r^2}{r+r^2} = \frac{100}{60}$	M1,A1
	$6+6r^2 = 10r+10r^2 2r^2+5r-3=0$	
	$(2r-1)(r+3) = 0$ $r = \frac{1}{2} r = -3$	M1
	(b) $r = \frac{1}{2}$ $a = \frac{100}{1 + (\frac{1}{2})^2} = 80$	A1A1
	(c) $S_n = \frac{a(1-r^n)}{1-r} = \frac{80\left(1-\left(\frac{1}{2}\right)^n\right)}{1-\frac{1}{2}} > 159.9$	M1A1
	2	M1A1
	$\frac{159.9}{160} < 1 - \left(\frac{1}{2}\right)^n$	
	$\left(\frac{1}{2}\right)^n = 1 - \frac{159.9}{160}$	
	$n\log 0.5 < \log \left(1 - \frac{159.9}{160}\right)$	
	$n > \frac{\log\left(1 - \frac{159.9}{160}\right)}{\log 0.5} = 10.6$	M1
	n=11	
		A1 (11)

Q.	Scheme	Marks
9	(a) $\left(1 - \frac{3x}{4}\right)^{\frac{1}{3}} = 1 + \left(\frac{1}{3}\right)\left(-\frac{3x}{4}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(-\frac{3x}{4}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(-\frac{3x}{4}\right)^3$	M1
	$=1-\frac{x}{4}-\frac{x^2}{16}-\frac{5x^3}{192}$	A1A1
	(b) $\left(1+\frac{3x}{4}\right)^{-\frac{1}{3}} = 1 + \left(-\frac{1}{3}\right)\left(\frac{3x}{4}\right) + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{2!}\left(\frac{3x}{4}\right)^2 + \frac{\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)\left(-\frac{7}{3}\right)}{3!}\left(\frac{3x}{4}\right)^3$	M1
	$=1 - \frac{x}{4} + \frac{x^2}{8} - \frac{7x^3}{96}$ (c) $ x < \frac{4}{3}$	A1A!
		B1
	(d) $\left(\frac{4-3x}{4+3x}\right)^{\frac{1}{3}} = \left(\frac{1-\frac{3x}{4}}{1+\frac{3x}{4}}\right)^{\frac{1}{3}} = \left(1-\frac{x}{4}-\frac{x^2}{16}-\frac{5x^3}{192}\right)\left(1-\frac{x}{4}+\frac{x^2}{8}-\frac{7x^3}{96}\right)$	M1
	$= 1 - \frac{x}{4} + \frac{x^2}{8} - \frac{7x^3}{96} - \frac{x}{4} + \frac{x^2}{16} - \frac{x^3}{32} - \frac{x^2}{16} + \frac{x^3}{64} - \frac{5x^3}{192}$ $= 1 - \frac{x}{2} + \frac{x^2}{8} - \frac{11x^3}{96}$	M1
	2 8 90	A1
	(e) $\int_0^{0.5} \left(\frac{4 - 3x}{4 + 3x} \right)^{\frac{1}{3}} dx = \int_0^{0.5} \left(1 - \frac{x}{2} + \frac{x^2}{8} - \frac{11x^3}{96} \right) dx$	
	$= \left[x - \frac{x^2}{4} + \frac{x^3}{24} - \frac{11x^4}{384} \right]_0^{0.5}$	M1A1ft
	$=0.5 - \frac{0.5^2}{4} + \frac{0.5^3}{24} - \frac{11 \times 0.5^4}{384} = 0.4409 = 0.441$	M1A1
10	(a) $\alpha + \beta = -6$ $\alpha\beta = 2$	(14) B1
10	(i) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 36 - 4 = 32$	M1A1
	(ii) $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2 = 32^2 - 8 = 1016$	M1A1
	(b) $(\alpha - \beta)^2 = \alpha^2 - 2\alpha\beta + \beta^2 = 32 - 4 = 28$	M1A1
	$\alpha - \beta = \sqrt{28} = 2\sqrt{7}$	A1
	(c) $\alpha^4 - \beta^4 = (\alpha^2 + \beta^2)(\alpha^2 - \beta^2), = (\alpha^2 + \beta^2)(\alpha + \beta)(\alpha - \beta)$ (d) $\alpha^4 - \beta^4 = 32 \times (-6) \times 2\sqrt{7} = -384\sqrt{7}$	M1,A1
	(e) $(\alpha^4 + \beta^4) - (\alpha^4 - \beta^4) = 2\beta^4$	M1A1
	$2\beta^4 = 1016 + 384\sqrt{7}$	M1
	$\beta^4 = 508 + 192\sqrt{7}$	
		A1 (14)

Q.	Scheme	Marks
11.	(a) $x^2 + 6x + 8 = (x+3)^2 - 9 + 8 = (x+3)^2 - 1$	M1A1A1
	(b) $f(x)$ is least when $x = -3$ least value is -1	B1 B1
	(c) $x^2 + 6x + 8 = 2 - x$ $x^2 + 7x + 6 = 0$	M1
	$(x+6)(x+1) = 0$ $x = -6 x = -1$ (d) $x^{2} + 6x + 8 = 0$	M1 A1A1
	$(x+2)(x+4) = 0$ $x = -2 \qquad x = -4$	M1A1
	(e) y	B1 B1
	(f) Area = $\int_{-6}^{-1} \left\{ 2 - x - \left(x^2 + 6x + 8 \right) \right\} dx$ = $\left[-\frac{x^3}{3} - \frac{7x^2}{2} - 6x \right]_{-6}^{-1}$	M1 M1A1
	$= \left(\frac{1}{3} - \frac{7}{2} + 6\right) - \left(\frac{6^3}{3} - \frac{7 \times 6^2}{2} + 6^2\right)$ $= 20\frac{5}{6} \text{ or awrt } 20.8$	M1
		A1
		(18)

Further copies of this publication are available from International Regional Offices at www.edexcel.com/international

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com}$

Alternatively, you can contact Customer Services at www.edexcel.com/ask or on + 44 1204 770 696

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE