线

华南农业大学期末考试试卷(A卷)

	2019-2020 学年	第2学期	考试科目:	女字电子技术
	考试类型:(闭	用卷)考试	考试时间:_	120 分钟
学与	<u>1</u> J	_姓名	年级专业	
	选择题(本大题共			
1.	周期性数字波形的高	高电平、低电平持续	读时间分别为 3ms 和	和 5ms,则占空比为()。
	A. 60%	B. 40%	C. 62.5%	D. 37.5%
2	下列常见的二进制作	代码中()是有	有权码。	
	A. 5421BCD 码	B. 余3循环码	C. 格雷码 D.	余3码
3. 逻	逻辑式 $Y = ACD + 1$	_ <i>BCD</i> + <i>ĀB</i> 的化简	结果为()。	
	A. $Y = ACD + \overline{B}CD$	B. $Y = CD + \overline{A}\overline{B}$	\overline{B} C. $Y = \overline{B}CD$	$+ \overline{A}\overline{B}$ D. $Y = ACD + \overline{A}\overline{B}$
4. j	逻辑式 $L = A\overline{C} + AB$	的最小项表达式为	() 。	
	A. $L = \sum m(5, 6, 7)$	B. $L = \sum m(1,2,4)$	$(6,7)$ C. $L = \sum m$	(4,6,7) D. $L = \sum m(1,5,6,7)$
5. 以	人下电路中可以实现	1"线与"功能的有	() 。	
	A. 与非门	B. 传输门	C. 或非门	D. OD 🏹
6. ļ	以下电路中常用于总	总线应用的有() 。	
	A. 三态门	B. OC 门	C. NMOS 与非门	D. CMOS 与非门
7. 茗	告在编码器中有 102	个编码对象,则要	京输出二进制代码	位数为()位。
	A. 6	B. 7	C. 8	D. 102
8. 为	p实现将 JK 触发器	转换为 D 触发器,	应使 ()。	
A.	$J=D, K=\overline{D}$	B. $K = D$, $J = \overline{D}$	C. J = K = D	D. $J = K = \overline{D}$
9. ‡	某移位寄存器的时钟	中脉冲频率为 10001	dHz,欲将存放在该	医寄存器中的数左移 16 位,完
成该	操作需要()	时间。		
-	A.16μs Ι	3.16ms (C.10μs	D. 80ms
10.	以下四种电路,具艺	有定时功能的电路	为()。	
A	A. 单稳态触发器	B. 施密特触发	器 C. 多谐振荡	荡器 D. 移位寄存器
二、	填空题(本大题共	10空,每空1分,其	共10分)	
1. 十	一进制数 33.25 转换)	成二进制数为	,转为84	21BCD码为。
o +⊧	3 据 6 凉 扣 刚	· · · · · · · · · · · · · · · · · · ·	7 D 的地域来 <i>I</i> -	- 相提对個

规则,其对偶式 $L' = _____$ 。

3. 逻辑函数 $\overline{AB}(A+C)$ 的最小项表达式为_____、最简与或式

为_____。

- 4. 三态输出门的三个状态有高电平、低电平和____。
- 5. 正逻辑体系中的"或非"对应负逻辑体系中的____。
- 6. N 个触发器组成的计数器最多可以组成______进制的计数器。
- 7. 石英晶体多谐振荡器的突出优点是。

三、化简题(6分)

1. 用卡诺图化简逻辑函数 $L(A,B,C,D)=\sum m(0,1,6,8,9,14)+\sum d(2,3,5,7,10,11,15)$

四、分析作图题(共40分)

1. 逻辑电路如图 1 所示, 试分析其逻辑功能。(8分)

2. 如图2所示逻辑电路,根据相应的CP和A的波形,画出 Q_1 端、 Q_2 端的输出波形,设初态

 $Q_1 = Q_2 = 0$ 。 (10分)

3. 试用逻辑门和 1 片同步 16 进制计数器 74LVC161 设计如下一个 12 进制计数器,并简要说明设计原理。(10 分)

表 1 74LVC161 功能表

		输出				
清零 CR	预置 	使能 CEP CET	时钟 <i>CP</i>	预置数输入 D₃ D₂ D₁ D₀	Q3 Q2 Q1 Q0	进位 TC
L H H H	ж L Н Н	* * * L H H	*	x x x x D ₃ D ₂ D ₁ D ₀ x x x x x x x x	L L L L D ₃ D ₂ D ₁ D ₀ 保 持 保 持 计 数	L # # L #

 $TC = CET \cdot Q_3Q_2 Q_1Q_0$

- 4. 分析如图 4 所示的时序电路。 (12 分)
- (1) 写出激励方程组、转换方程和输出方程;
- (2) 列出转换表并画出状态图。

图 4

五、综合题(共24分)

- 1. 试设计 1 位二进制全减器(提示:全减器输入端为被减数、减数、来自低位的借位,输出端为差、向高位的借位)(14分)
- (1) 列出真值表、逻辑表达式;
- (2) 试用逻辑门设计满足上述要求的逻辑电路;
- (3) 试用 74HC138 及必要的门电路实现满足上述要求的逻辑电路。

表 2 74HC138 功能表

输 入					输 出								
E3	$\overline{\mathtt{E}}_2$	$\overline{E_1}$	A2	A 1	A ₀	$\overline{Y_0}$	$\overline{Y_1}$	$\overline{Y_2}$	\overline{Y}_3	\overline{Y}_{4}	$\overline{Y_5}$	\overline{Y}_6	\overline{Y}_7
×	Н	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
×	×	Н	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
L	×	×	×	×	×	Н	Н	Н	Н	Н	Н	Н	Н
H	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
H	L	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
H	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
H	L	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
H	L	L	Н	L	Н	Н	Н	H	Н	Н	L	Н	Н
Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

图 5

2. 由 555 定时器组成的电路如图 6 所示,分析:(1)555 定时器构成何种电路?(2)计算输出信号 v_o 的周期、频率?(3)画出 v_c 和 v_o 的波形图。**(10 分)**

表 3 555 定时器功能表

٠	输	А	输出			
	v ₁ (6 脚)	v₂ (2 脚)	ル (3 脚)	T (7 脚)		
	$<\frac{2}{3}V_{\rm CC}$	$<\frac{1}{3}V_{\rm CC}$	1	截止		
	$> \frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	0	导通		
٠	$<\frac{2}{3}V_{\rm CC}$	$> \frac{1}{3}V_{\rm CC}$	不变	不变		