Math 321 Lecture 1

Yuchong Pan

January 2, 2019

1 Pointwise and Uniform Convergence

1.1 Definitions

Let (X, d) and (Y, ρ) be two metric spaces. Given $f_n, f: X \to Y, n \ge 1$.

Definition 1. Say $f_n \xrightarrow{n \to \infty} f$ **pointwise on** X if $f_n(x) \xrightarrow{n \to \infty} f(x)$ in Y for every $x \in X$;

i.e., for every $x \in X$, $\rho(f_n(x), f(x)) \to 0$ as $n \to \infty$;

i.e., for every $x \in X$ and every $\epsilon > 0$, there exists $N = N(\epsilon, x) \ge 1$ such that $\rho(f_n(x), f(x)) < \epsilon$ whenever $n \ge N$.

Definition 2. Say $f_n \to f$ uniformly on X if $\sup[\rho(f_n(x), f(x)) : x \in X] \xrightarrow{n \to \infty} 0$;

i.e., for every $\epsilon > 0$, there exists $N = N(\epsilon) \ge 1$ such that $\sup_{x \in X} \rho(f_n(x), f(x)) < \epsilon$ for all $n \ge N$;

i.e., for every $\epsilon > 0$, there exists $N = N(\epsilon) \ge 1$ such that $\rho(f_n(x), f(x)) < \epsilon$ for all $n \ge N$ and for all $x \in X$.

Exercise 1. Show that if $f_n \to f$ uniformly, then $f_n \to f$ pointwise.

1.2 Motivation of Math 321

Examples of metric spaces:

- \bullet \mathbb{R} with the usual Euclidean metric;
- \mathbb{R} with the discrete metric;
- C[0,1] with the supremum norm metric:

$$C_{\mathbb{R}}[0,1] = \left\{ f : [0,1] \xrightarrow{\text{continuous}} \mathbb{R} \right\},$$

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| = ||f - g||_{\infty};$$

 $\ell^1(\mathbb{R}) = \left\{ \text{infinite real sequences } \vec{a} = (a_1, a_2, a_3, \ldots) \text{ that are absolutely summable; i.e., } \sum_{n=1}^{\infty} |a_n| < \infty \right\},$

$$\|\vec{a}\|_1 = \sum_{n=1}^{\infty} |a_n|, \qquad d(\vec{a}, \vec{b}) = \sum_{n=1}^{\infty} |a_n - b_n| \quad \text{(finite on } \ell^1(\mathbb{R})\text{)}.$$

Math 321 Lecture 1 Yuchong Pan

This term, we will explore special properties of metric spaces like C[0,1], or more generally C(X) (for a metric space (X,d), $C(X) = \{f: X \xrightarrow{\text{continuous}} \mathbb{R} \text{ or } \mathbb{C}\}$). The intended applications involve properties of C[0,1] not necessarily enjoyed by general metric spaces.

Remark 1. Note that the notion of uniform convergence, though meaningful in any metric space, takes on a special meaning in C[0,1], or C[a,b], $a < b, a, b \in \mathbb{R}$.

If $f_n, f \in (C[0,1], \|\cdot\|_{\infty}), f_n, f : [0,1] \xrightarrow{\text{continuous}} \mathbb{R}$, then $f_n \xrightarrow{n \to \infty} f$ uniformly if and only if $\|f_n - f\|_{\infty} \xrightarrow{n \to \infty} 0$; i.e., $f_n \xrightarrow{n \to \infty} f$ on C[0,1].

1.3 Example

 $g_n(x)$ is a continuous, piecewise linear function on [0,1].

1. Does $\{g_n\}$ have a pointwise limit?

We claim $g_n \to g \equiv 0$ pointwise. We need to check: For every $x \in [0,1]$, $g_n(x) \xrightarrow{n \to \infty} 0$.

This is easy for x = 0 and x = 1 because $g_n(0) = g_n(1) = 0$ for all n.

Fix any $x \in (0,1)$. Then there exists $N \ge 1$ such that $\frac{1}{n} < x$ for all $n \ge N$ (by the archimedean property of real numbers).

2. Does $g_n \to 0$ uniformly? No! If possible, this would mean

- (a) $\sup_{x \in [0,1]} |g_n(x) g(x)| \xrightarrow{n \to \infty} 0;$
- (b) $\sup_{x \in [0,1]} |g_n(x)| \ge g_n(\frac{1}{2n}) = 2n \xrightarrow{n \to \infty} \infty.$
- (a) contradicts (b).

3.

$$\int_0^1 g_n(x)dx = 1 \longrightarrow \int_0^1 g(x)dx = 0.$$