AAE 440: Spacecraft Attitude Dynamics

PS7

Dr. Howell

School of Aeronautical and Astronautical
Purdue University

Tomoki Koike March 13, 2020 **Problem 1:** During assembly of a space station, the partially finished structure $(m \ll M_{\oplus})$ has a shape that resembles two thin rods oriented as indicated below. The long rod is of length 2L and the total length of the short rod is L/2; they cross at the center

- (a) Let R (Earth \rightarrow B*) = 6488 km, that is, an orbit altitude of 110 km. Also, assume that L = 50 km. (Large!) Determine the resultant gravity force and locate the c.g. What is the distance between the c.m. and the c.g.?
 - On the sketch, indicate the relative positions of the c.m. and the c.g.
 - Do you think the attitude is "stable"? Why or why not?

Given properties
$$R = Re + h = 6378 \text{ km} + 110 \text{ km} = 6488 \text{ km}$$
 $G = 6.6743 \times 10^{-11} \frac{\text{m}}{\text{kg-s}^2}$ $L = 50 \text{ km}$

First we will find the \(\frac{\mathbb{E}}{\mathbb{B}}\) of this structure, but since 2 rods are passing through its CM we can consider the rods separately and compute each moment of inertia and sum them up to get the answer

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \frac{1}{2} = \frac{m(2L)^{2}}{12} (\hat{b}_{3}\hat{b}_{3} + \hat{b}_{3}\hat{b}_{3}) $ $ = \frac{mL^{2}}{3} (\hat{b}_{3}\hat{b}_{2} + \hat{b}_{3}\hat{b}_{3}) $
	$(^{\wedge}C^{\sharp})^{\top}$ $0 0 0 C_{0} S_{0} 0$ $0 \frac{\text{ml}^{2}}{3} 0 -S_{0} C_{0} 0$ $0 0 \frac{\text{ml}^{2}}{3} 0 0$
$\frac{m \frac{1}{5} \sin^{2}\theta}{3} = \frac{m \frac{1}{5} \cos \theta \sin \theta}{3}$ $= \frac{m \frac{1}{5} \cos \theta \sin \theta}{3} = \frac{m \frac{1}{5} \cos \theta \sin \theta}{3}$	3 0 1
thus, $Q \theta = 90^{\circ} = \frac{E}{2}$ $= \frac{mL^{2}}{3} 0 0$ $= \frac{V^{*}}{3} 0 0$ $= 0 0 0$ $= 0 0 0$, 三松*= ML (â,â,+ â,â,)

$$\begin{array}{l} + hus, \\ = \overline{\pm}^{kpk} = \overline{\pm}^{kpk} + \overline{\pm}^{kpk} = \frac{\ln L^{2}}{48} (\hat{a}_{s}\hat{a}_{s} + \hat{a}_{s}\hat{a}_{s}) + \frac{\ln L^{2}}{3} (\hat{a}\hat{a}_{l} + \hat{a}_{s}\hat{a}_{s}) \\ = \overline{\pm}^{kpk} = \ln L^{2} (\frac{1}{3}\hat{a}_{l}\hat{a}_{l} + \frac{1}{48}\hat{a}_{s}\hat{a}_{s} + \frac{17}{48}\hat{a}_{s}\hat{a}_{s}) \\ = \ln L^{2} (\frac{1}{3}\hat{a}_{l}\hat{a}_{l} + \frac{1}{48}\hat{a}_{s}\hat{a}_{s} + \frac{17}{48}\hat{a}_{s}\hat{a}_{s}) \\ = -\frac{Gmm'}{R^{2}} (\hat{a}_{l} + \frac{22}{48} + \frac{7}{48}m) \\ = -\frac{Gmm'}{R^{2}} (\hat{a}_{l} + \frac{22}{48} + \frac{7}{48}m) \\ = \frac{3}{2} \left[\ln L^{2} + \frac{mL^{2}}{48} + \frac{17}{48} + \frac{17}{48} - \frac{80}{48} + \frac{3L}{48} \right] \hat{a}_{l} \\ = \frac{3}{2} \ln L^{2} \left[\frac{14}{48} + \frac{1}{48} + \frac{17}{48} - \frac{80}{48} + \frac{3L}{48} \right] \hat{a}_{l} \\ = \frac{3}{2} \ln L^{2} \left[-\frac{14}{48} \right] \hat{a}_{l} \\ = -\frac{7}{16} \ln L^{2} \hat{a}_{l} \end{aligned}$$

neglect the higher order terms of
$$f^{CU}(\hat{x} = 2)$$

Thus,
$$F = -\frac{GM_{\odot}m}{R^{2}} \hat{a}_{1} - \frac{GM_{\odot}m}{R^{2}} \cdot \frac{1}{mR^{2}} (-\frac{7}{16}mL^{2}) \hat{a}_{1}$$

$$= -\frac{GM_{\odot}m}{R^{2}} (1 - \frac{7mL^{2}}{16mR^{2}}) \hat{a}_{1}$$

$$= -\frac{GM_{\odot}m}{R^{2}} (1 - \frac{7mL^{2}}{16mR^{2}}) \hat{a}_{1}$$

$$= -\frac{GM_{\odot}m}{R^{2}} (1 - \frac{7mL^{2}}{16mR^{2}}) \hat{a}_{1}$$

$$= -\frac{GM_{\odot}m}{L \ll Re} L \approx 50 \times 10^{3} \text{ [m]}$$

$$\therefore F = (-9.4692 \hat{a}_{1}) N$$

$$= \frac{GM_{\odot}m}{1Fl} = \frac{(9.4692 N)}{(9.4692 N)} (1 + 49) = \frac{6488.084.29 m}{6488.084.29 m}$$

$$= -\frac{6488.084.29 m}{6488.084.29 m}$$

(c) Now assume that the space station is in a different orientation such that the vehicle is reoriented relative to the orbit as observed on the next page. However, \hat{a}_1 still passes through the center of mass. The angle γ measures the orientation between \hat{a}_1 and one of the principal directions. Let $\gamma = 30^\circ$. Now compare the principal directions \hat{b}_i with the orbit-fixed directions \hat{a}_i .

Compute the approximate gravity force at this instant. Locate the cg relative to the cm at this instant.

Using
$$\overline{f}^{(2)} = \frac{3}{mR^2} \left\{ \frac{1}{2} \left[I_1 (1 - 3C_{11}^2) + I_2 (1 - 3C_{12}^2) + I_3 (1 - 3C_{13}^2) \right] \hat{a}_1 + \left[I_1 C_{21} C_{11} + I_2 C_{22} C_{12} + I_3 C_{23}^2 C_{13} \right] \hat{a}_2 + \left[I_1 C_{31} C_{11} + I_2 C_{22} C_{12} + I C_{33} C_{13} \right] \hat{a}_3 \right\} \\
= \frac{3}{mR^2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[I_1 (1 - 3C_{11}^1) + I_2 (1 - 3C_{12}^2) + I_3 \right] \hat{a}_1 \\
+ \left[I_1 C_{21} C_{11} + I_2 C_{22} C_{12} \right] \hat{a}_2 \right\} \\
= \frac{3}{mR^2} \int_{-\frac{1}{2}}^{\frac{1}{2}} \left[I_1 (1 - 3C_{11}^1) + I_2 (1 - 3C_{12}^2) + I_3 \right] \hat{a}_1 \\
+ \left[I_1 C_{21} C_{11} + I_2 C_{22} C_{12} \right] \hat{a}_2 \right] \hat{a}_2$$

Since C_{3j} equals the corresponding DCM elements above, and also using the corresponding elements from \overline{B}_{j}^{R} (Compute using MATLAB)

$$\overline{f}^{(2)} = \left(-5.28146 \times (0^{-6} \hat{a}_1 - 2.49484 \times (0^{-5} \hat{a}_2) N \right)$$

Thus, (using MATLAB) we compute

$$\overline{F} = -\frac{G_{11}M_{12}}{F_{12}} \left(\hat{a}_1 + \overline{f}^{(2)} \right)$$

(d) Compute the gravity moment about B^* for R = 6488 km.

The moment will cause the structure to rotate in which direction?

Is this direction consistent with the previous class discussion of "stability"?

say the origin is the conver of the farth
$$\overline{\Gamma}^{cg} = R^{cg} - \overline{\overline{\Gamma}}$$

now compute using MATLAB

$$\frac{-cy}{N} = (-1.564232 \times 10^{2} \hat{a}_{3}) N - m$$
out of the page clockwise

The direction is congruent with the fact that the lower half which is closer to Earth is where the cy is located. This is where the stability is the most veinforced. Honever, with targue the structure deviates from the initial CM so it is unstable.

Problem 2: Recall that in PS5, it was assumed that a rigid body B can move in an inertial torque-free environment N.

$$\overline{\overline{I}}^{s/s} = 400\hat{u}_1\hat{u}_1 + 100\hat{u}_2\hat{u}_2 + 400\hat{u}_3\hat{u}_3 \text{ kg-met}^2$$

Let \hat{n}_i be fixed in the inertial frame N and \hat{u}_i define body-fixed unit vectors parallel to central principal axes of inertia.

(a) For this vehicle, compute the semi-diameters of the corresponding inertia ellipsoid. Plot three planar projections of the energy ellipsoid: $\hat{u}_1 - \hat{u}_3$, $\hat{u}_1 - \hat{u}_2$, $\hat{u}_2 - \hat{u}_3$. (Use the same scale for each.) Can you plot a 3D image in Matlab? One of the projections is circular. What does that tell you? Is this body more "rod-like" or "disk-like"?

It is given that	
the DCM is	NCV û û ûs ho Car Cas
	No Ca1 Ca2 Ca3 Nb Cb1 Ch2 Ch3 Nc Cc1 Cc2 Cc3

$R = k I_{aa}^{-1}$ χ_{1}^{2} χ_{2}^{2} χ_{3}^{2}
$T_{aa} = \frac{\chi_{1}^{2}}{(k T_{0a}^{-\frac{1}{2}} T_{1}^{-\frac{1}{2}})^{2}} + \frac{\chi_{2}^{2}}{(k T_{0a}^{-\frac{1}{2}} T_{1}^{-\frac{1}{2}})^{2}} + \frac{\chi_{3}^{2}}{(k T_{0a}^{-\frac{1}{2}} T_{3}^{-\frac{1}{2}})^{2}}$
$ \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \\ \\ \end{array} \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ \end{array} \\ & \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ $
then the semi-diameters are
$\int d_1 = k I_1^{-\frac{1}{2}}$
$\int_{A} \int_{A} z = k I_{\lambda}^{-\frac{1}{2}}$
d, = I, -\frac{1}{2}
504 K= 1 then d = 0.05
$d_{2} = 0.05$
$A_3 = 0.05$
the ellipsoid becomes

ellipsoid

Procession

Because $\hat{U}_1 - \hat{U}_3$ is a circle we can tell that the mass distribution on the $\hat{U}_1 - \hat{U}_3$ plane is equally distributed.

Also because 400 = I > J = 100 this is a rod-like structure.

(b) Assume that the vehicle inertia characteristics are modified to be

$$\overline{\overline{I}}^{s/s} = 200\hat{u}_1\hat{u}_1 + 600\hat{u}_2\hat{u}_2 + 300\hat{u}_3\hat{u}_3 \text{ kg-met}^2$$

Now compute the semi-diameters of the corresponding inertia ellipsoid for these new vehicle characteristics. Again plot three planar projections of the energy ellipsoid: $\hat{u}_1 - \hat{u}_3$, $\hat{u}_1 - \hat{u}_2$, $\hat{u}_2 - \hat{u}_3$. (Use the same scale.) Can you plot a 3D image in Matlab?

Is the again a circular projection? Why or why not? What does that tell you? Is this body more "rod-like" or "disk-like"?

There is no circular projection for this because $I_1 \neq I_2 \neq I_3$ and this indicates that no plane has mass distributed equally. Moreover, since $600 = J > I_1 = 200$ and $600 = J > I_3 = 300$ this is a disk-like structure.

Problem 3: Assume that a rigid body B can move in an inertial <u>torque-free</u> environment N. Define some inertia characteristics that might be similar to a spacecraft like Cassini:

$$\bar{\bar{I}}^{B_{B^*}} = 4000 \hat{b}_1 \hat{b}_1 + 9000 \hat{b}_2 \hat{b}_2 + 9000 \hat{b}_3 \hat{b}_3 \text{ kg-met}^2$$

Let \hat{n}_i be fixed in the inertial frame N and \hat{b}_i define body-fixed unit vectors parallel to central principal axes of inertia. At the <u>initial time</u> (t = 0), $|{}^N \overline{\omega}^B| = 3$ rad/s and ${}^N \overline{\omega}^B$ is directed as shown, in the $\hat{b}_1 - \hat{b}_3$ plane.

(c) For this vehicle, compute the semi-diameters of the corresponding inertia ellipsoid. Plot three planar projections of the energy ellipsoid: $\hat{b_1} - \hat{b_3}$, $\hat{b_1} - \hat{b_2}$, $\hat{b_2} - \hat{b_3}$. One of the plots is circular. What does that tell you? Is this body more "rod-like" or "disk-like"?

moment inertia: $\bar{I}^{8/8}$ = 4000 $\hat{b}_1\hat{b}_1$ + 9000 $\hat{b}_2\hat{b}_3$ + 9000 $\hat{b}_3\hat{b}_3$ semi-diameters $d_1 = kI_1^{-\frac{1}{2}} = 0.0/58 k$ $d_2 = kI_3^{-\frac{1}{2}} = 0.0/05 k$ $d_3 = kI_3^{-\frac{1}{2}} = 0.0/05 k$ where k is an arbitrary scalar

3b ellipsoid

Discussion

The b₂-b₃ cross-section is circular.

This implies that the body is a cylinder with an equal wass distribution about b₁ while b₁ is the axis of notation.

This implies that the body is a cylinder with an equal wass distribution about b₁ while b₁ is the axis of notation.

This implies that the body is a cylinder with an equal wass distribution about b₁ while b₁ is the axis of notation.

(d) Use the plot of the inertia ellipsoid in the $\hat{b}_1 - \hat{b}_3$ projection, but note that it proportionally represents the energy ellipsoid. Add the following vectors and other quantities to the plot:

$$N \overline{H}^{B/B^*}$$
 $N \overline{\omega}^B$

invariable plane π nutation angle

$$\Rightarrow = 3\left(\frac{1}{2}\hat{\beta}_1 - \frac{3}{2}\hat{\beta}_2\right)$$

$$N_{\omega}^{-B} = \frac{3}{2} \hat{\beta}_1 - \frac{3\sqrt{3}}{2} \hat{\beta}_2$$

Angular Momentum

ĥ

60°

NΩB

Invariable plane To

this plane is perpendicular to $H^{BB^{*}}$ and tangent to the energy ellipsoid.

(e) Given a figure similar to the one on the next page, sketch the orientation of the unit vectors \hat{c}_1 and \hat{c}_3 with respect to \hat{n}_1 and \hat{n}_3 at an arbitrary time. Define ξ as the angle the angle between between \hat{n}_1 and \hat{b}_1 . Where is ξ in the sketch? Determine the following quantities at t = 0.4 sec; 3.0 sec, 6.0 sec:

precession, nutation, spin angles precession, nutation, and spin rates

	0.4	3.0	6.0	Time [s]
NUTATION	75.6084	75.6084	75.6084	
PRECESSSION	61.4726	101.0442	202.0883	
SPIN	19.0986	143.2394	286.4789	
[deg]				

(d) What are the Euler parameters ${}^{N}\overline{\varepsilon}^{B}$, ${}^{N}\varepsilon_{4}^{B}$ that correspond to these orientations at the specified times?

Write the Euler vector in terms of unit vectors \hat{c} as well as body-fixed unit vectors \hat{b} .

Using
$$N_{\Xi}^{B} = N_{\Xi}^{C} c_{\Xi}^{B} + C_{\Xi}^{B} N_{\Xi}^{C} + C_$$

$$\begin{array}{lll}
N_{\xi_{ij}^{B}} & \nu_{\xi_{ij}^{C}} \in \mathcal{E}_{ij}^{B} - \nu_{\xi_{ij}^{C}} \cdot \mathcal{E}_{ij}^{C} \cdot \mathcal{E}_{ij}^{B} \\
&= \cos(\frac{p_{ij}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2}) \cdot \hat{h} \cdot \hat{C}_{i} \\
& \cdot \cdot \cdot \hat{h} \cdot \hat{C}_{ij} = \cos \varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2}) - \sin(\frac{p_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\sin(\frac{s_{ij}^{C}}{2})\cos\varphi \\
&= \cos(\frac{p_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}{2})\cos(\frac{s_{ij}^{C}}$$

use DCM to convert to B-frame
$ \begin{array}{c} C \\ C \\ C \end{array} $ $ \begin{array}{c} C \end{array} $ $ C $
$CB = 0 \cos(st) -\sin(st)$ $0 \sin(st) \cos(st)$
N_B N_B C_B C C C C C C C C C
Q x=0,4 N=8 = 0,2679 €1 - 0,2373 €2 - 0,4344 €3
A +- 30
N=B= -0.66 38 Ĉ1 - 0.4273 Ĉ2 - 0.6135 Ĉ3
@ t = 6.0
V=B= -0.3101Ĉ,-0.8917Ĉ, -0.3295Ĉ3
NE H = CONST.

(e) What is the maximum value of ξ ? Can you determine the time when the max value first occurs? What are the Euler parameters at that time?

Max(3)=24=2x1.3196 rad=2.6392 rad

P = 2.6822 rul/s

t mux = 1 = 1,1713 s

The euler parameter= are using same method in (d) $N-\beta = 0.2(95\hat{c}_1 - 0.4542\hat{c}_2 - 0.8555\hat{c}_3)$

NEB = -0-1165

prec	$\begin{array}{ccc} d_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$	1 = 202, 0883° 3 = 286, 4781°		
prec	essilh — O	1 = 202, 0883° 3 = 286, 4781°		
prec Spi	n → 0	3 = 286.4784°		
المع	n → 8	3 = 286, 4181		
		JI.		
		W Pl	un-ib A-	
	Bec	lg-two 1-2-(P	0 5	
Dade	4 1 2 1			
Body	-two: 1-2-1			-
	b ₁	b ₂	b,	-
21	C2	\$253	\$2C3	
a 2	5152	-s ₁ c ₂ s ₃ + c ₃ c ₁		
2 3	-c ₁ s ₂	C ₁ C ₂ S ₃ + C ₃ S ₁	C1C2C3 - S3S1	-
		T	- 09.88	0.2748
		0,2483	-0, (200	0(2)0
	ل	NC = 0,2485 0,3642 0,8475	1 -0/3272	-0/06-0
		0	- D.1141	-0.4259
		10/84.15	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	`
		10.86.19		
		10.86.19		
		1.0%		
pace-t	hree: 3-1-2			
pace-t			b ₃	-
	hree: 3-1-2			-
	hree: 3-1-2	b ₂	b ₃	-

-5, = -0.8626
0 = 59,5456°
C1C2 = -0-3525
$\theta_1 = \arccos\left(\frac{0.3525}{\cos\theta_1}\right)$
0, = -134.0593
$\theta_1 = \tau - \arcsin\left(\frac{-0.3642}{\cos\theta_L}\right)$
O1 = -134,0593
C2C3 = -0.4254
B3 - arccos (-0.4159)
2 147.(73 9°
$\theta_3 = \pi - \arcsin\left(\frac{0.2748}{\cos\theta_2}\right)$
= [47, 17, 40]

Appendix

AAE440 PS7 Problem 1

```
clear all; close all; clc;
format long e
digits(100)
```

```
syms m L theta
I_rod = [0 0 0; 0 m*L^2/3 0; 0 0 m*L^2/3];
C_AB = [cos(theta) -sin(theta) 0; sin(theta) cos(theta) 0; 0 0 1];
I_h = C_AB*I_rod*transpose(C_AB)
I_h = subs(I_h, theta, pi/2)
I_v = subs(I_rod, theta, pi/2)
clear all;
```

(a) & (b)

```
% Define given properties
M_e = 5.9723e24; % [kg]
R_e = 6378e3; % [m]
R = R e + 110e3
G = 6.6743015e-11; % [m3kg-1s-2]
m = 1;
L = 50e3;
% Resultant gravity force
m_{horz} = m;
m \text{ vert} = m;
1_{horz} = L/2;
1 \text{ vert} = 2*L;
I horz = m horz*l horz^2/12*[0\ 0\ 0;\ 0\ 1\ 0;\ 0\ 0\ 1];
I_vert = m_vert*l_vert^2/12*[1 0 0; 0 0 0; 0 0 1];
I_body = (I_horz + I_vert);
F_g = resultant_Gforce(M_e,m,R,I_body)
R_cg = distance2cg(M_e,m,F_g)
delta_cm_cg = R - R_cg
```

(c)

(d)

```
r_cg = -F_g_new/norm(F_g_new)*R_cg_new
```

```
r_cm = [R 0 0]
r_cm_cg = r_cg - r_cm
Mmt_cg = cross(r_cm_cg,F_g_new)
```

AAE440 PS7 Problem 2

```
clear all; close all; clc;
```

```
fdir = 'C:\Users\Tomo\Desktop\studies\2020-Spring\AAE440\MATLAB\outputs\HW7';
set(groot, 'defaulttextinterpreter',"latex");
set(groot, 'defaultAxesTickLabelInterpreter',"latex");
set(groot, 'defaultLegendInterpreter',"latex");
```

```
% ellipsoid
I_body = [400 0 0; 0 100 0; 0 0 400];
k = 1;
d1 = k*I_body(1,1)^(-0.5)
d2 = k*I_body(2,2)^(-0.5)
d3 = k*I_body(3,3)^(-0.5)
```

```
% Plotting
theta = 0:0.1:360;
theta = deg2rad(theta);
% u1-u3
fig1 = figure("Renderer", "painters");
plot(d1*cos(theta), d3*sin(theta))
title('$\hat{u}_1$-$\hat{u}_3$ Ellipse - By: Tomoki Koike')
xlabel('\$\hat{u}_1$')
ylabel('\$\hat{u}_3$')
grid on; grid minor; box on; axis equal;
saveas(fig1, fullfile(fdir, 'u1_u3_ellipse.png'));
% u1-u2
fig2 = figure("Renderer", "painters");
plot(d1*cos(theta), d2*sin(theta), 'g')
title('$\hat{u}_1$-$\hat{u}_2$ Ellipse - By: Tomoki Koike')
xlabel('$\hat{u}_1$')
ylabel('\$\hat{u}_2$')
grid on; grid minor; box on; axis equal;
saveas(fig2, fullfile(fdir, 'u1_u2_ellipse.png'));
% u1-u2
fig3 = figure("Renderer", "painters");
plot(d2*cos(theta), d3*sin(theta), 'r')
title('$\hat{u}_2$-$\hat{u}_3$ Ellipse - By: Tomoki Koike')
xlabel('\$\hat{u}_2$')
```

```
ylabel('$\hat{u} 3$')
grid on; grid minor; box on; axis equal;
saveas(fig3, fullfile(fdir, 'u2_u3_ellipse.png'));
% Ellipsoid
fig4 = figure("Renderer", "painters");
ellipsoid(0,0,0,d1,d2,d3,50)
title('Inertia Ellipsoid - By: Tomoki Koike')
xlabel('$\hat{u}_1$')
ylabel('$\hat{u} 2$')
zlabel('\$\hat{u}_3$')
grid on; grid minor; box on; axis equal;
saveas(fig4, fullfile(fdir, 'ellipsoid.png'));
clear all; close all;
fdir = 'C:\Users\Tomo\Desktop\studies\2020-Spring\AAE440\MATLAB\outputs\HW7';
set(groot, 'defaulttextinterpreter',"latex");
set(groot, 'defaultAxesTickLabelInterpreter',"latex");
set(groot, 'defaultLegendInterpreter', "latex");
% ellipsoid
I_{body} = [200\ 0\ 0;\ 0\ 600\ 0;\ 0\ 0\ 300];
k = 1;
d1 = k*I body(1,1)^{(-0.5)}
d2 = k*I body(2,2)^{(-0.5)}
d3 = k*I_body(3,3)^(-0.5)
% Plotting
theta = 0:0.1:360;
% u1-u3
fig5 = figure("Renderer", "painters");
plot(d1*cos(theta), d3*sin(theta))
title('$\hat{u}_1$-$\hat{u}_3$ Ellipse - By: Tomoki Koike')
xlabel('$\hat{u} 1$')
ylabel('\$\hat{u}_3$')
grid on; grid minor; box on; axis equal;
saveas(fig5, fullfile(fdir,'u1_u3_ellipse2.png'));
% u1-u2
fig6 = figure("Renderer", "painters");
plot(d1*cos(theta), d2*sin(theta), 'g')
title('$\hat{u}_1$-$\hat{u}_2$ Ellipse - By: Tomoki Koike')
xlabel('$\hat{u} 1$')
ylabel('\$\hat{u}_2$')
grid on; grid minor; box on; axis equal;
```

```
saveas(fig6, fullfile(fdir, 'u1 u2 ellipse2.png'));
% u1-u2
fig7 = figure("Renderer", "painters");
plot(d2*cos(theta), d3*sin(theta), 'r')
title('$\hat{u}_2$-$\hat{u}_3$ Ellipse - By: Tomoki Koike')
xlabel('$\hat{u}_2$')
ylabel('\$\hat{u}_3$')
grid on; grid minor; box on; axis equal;
saveas(fig7, fullfile(fdir, 'u2_u3_ellipse2.png'));
% Ellipsoid
fig8 = figure("Renderer", "painters");
ellipsoid(0,0,0,d1,d2,d3,50)
title('Inertia Ellipsoid - By: Tomoki Koike')
xlabel('\$\hat{u}_1$')
ylabel('$\hat{u}_2$')
zlabel('\$\hat{u}_3$')
grid on; grid minor; box on; axis equal;
saveas(fig8, fullfile(fdir, 'ellipsoid2.png'));
AAE 440 PS7 p3
clear all; close all; clc;
fdir = 'C:\Users\Tomo\Desktop\studies\2020-Spring\AAE440\MATLAB\outputs\HW7';
set(groot, 'defaulttextinterpreter',"latex");
set(groot, 'defaultAxesTickLabelInterpreter', "latex");
set(groot, 'defaultLegendInterpreter',"latex");
% Draw Arrow Function
drawArrow = @(x,y,varargin) quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0,
varargin(:));
% Setting given properties
I body = [4000 \ 0 \ 0; \ 0 \ 9000 \ 0; \ 0 \ 9000];
k = 1;
d 1 = k*I body(1,1)^{(-0.5)};
d_2 = k*I_body(2,2)^{(-0.5)};
d_3 = k*I_body(3,3)^(-0.5);
theta = 0:0.01:2*pi;
<a>>
% Plotting
% b1-b3
```

```
fig1 = figure("Renderer", "painters");
    plot(d_1*cos(theta), d_3*sin(theta), 'r')
    title('$\hat{b}_1$-$\hat{b}_3$ Planer Prjection - By: Tomoki Koike')
    xlabel('$\hat{b}_1$')
   ylabel('$\hat{b} 3$')
    grid on; grid minor; box on; axis equal;
saveas(fig1, fullfile(fdir, 'b1_b3_ellipse3.png'));
% b1-b2
fig2 = figure("Renderer", "painters");
    plot(d_1*cos(theta), d_2*sin(theta), 'b')
   title('$\hat{b}_1$-$\hat{b}_2$ Planer Prjection - By: Tomoki Koike')
    xlabel('$\hat{b}_1$')
   ylabel('$\hat{b}_2$')
    grid on; grid minor; box on; axis equal;
saveas(fig2, fullfile(fdir, 'b1_b2_ellipse3.png'));
% b2-b3
fig3 = figure("Renderer", "painters");
    plot(d_2*cos(theta), d_3*sin(theta), 'g')
    title('$\hat{b}_2$-$\hat{b}_3$ Planer Prjection - By: Tomoki Koike')
    xlabel('$\hat{b}_2$')
   ylabel('$\hat{b}_3$')
    grid on; grid minor; box on; axis equal;
saveas(fig3, fullfile(fdir,'b2 b3 ellipse3.png'));
% Ellipsoid
fig4 = figure("Renderer", "painters");
    ellipsoid(0,0,0,d_1,d_2,d_3,100)
   title('Inertia Ellipsoid - By: Tomoki Koike')
    xlabel('$\hat{b}_1$')
   ylabel('$\hat{b}_2$')
    zlabel('$\hat{b} 3$')
    grid on; grid minor; box on; axis equal;
saveas(fig4, fullfile(fdir, 'ellipsoid3.png'));
<b>
% Defining properties
T = 0; % Torque [N-m]
I cm = [4000 0 0; 0 9000 0; 0 0 9000];  % Inertia Dyadic [kg-m2]
I = 9000;
J = 4000;
% Defining the angular velocity
w_mag = 3; % Magnitude of angular velocity
ang = deg2rad(60); % [rad]
w_NB = [w_mag*cos(ang) 0 - w_mag*sin(ang)];
```

```
% Angular Momentum
H_NB = I_cm*w_NB';
% Replotting b1-b3 and adding vectors and quantities
fig5 = figure("Renderer", "painters");
    plot(d_1*cos(theta), d_3*sin(theta))
    title('$\hat{b}_1$-$\hat{b}_3$ with vectors and other quantities - By: Tomoki
Koike')
    xlabel('$\hat{b} 1$')
    ylabel('$\hat{b}_3$')
    hold on; grid on; grid minor; box on; axis equal;
    xlim([-0.025, 0.025]); ylim([-0.020, 0.020]);
saveas(fig5, fullfile(fdir,'b1_b3_ellipse_new.png'));
<C>
% angles @ t = 1
p = norm(H_NB)/I; % precession rate
s = (I-J)/I*w_NB(1); % spin rate
phi = acos(J/norm(H_NB)*w_NB(1)); % nutation angle = constant
% t = 0.4, 3.0, 6.0
t = [0.4 \ 3.0 \ 6.0];
p_rad = p.*t;
s_rad = s.*t;
phi_deg = rad2deg(phi)
p_deg = rad2deg(p_rad)
s_deg = rad2deg(s_rad)
```

<d>

```
% Euler Parameters
e_04_c = EulerPara_from_OrientAngs(0.4,p,s,phi);
e_30_c = EulerPara_from_OrientAngs(3.0,p,s,phi);
e_60_c = EulerPara_from_OrientAngs(6.0,p,s,phi);

% t = 0.4s
t = 0.4;
e_04_c = [e_04_c(1) e_04_c(2) e_04_c(3)];
C_CB_04 = [1 0 0; 0 cos(s*t) -sin(s*t); 0 sin(s*t) cos(s*t)];
e_04_b = e_04_c*C_CB_04

% t = 3.0s
t = 3.0;
e_30_c = [e_30_c(1) e_30_c(2) e_30_c(3)];
C_CB_30 = [1 0 0; 0 cos(s*t) -sin(s*t); 0 sin(s*t) cos(s*t)];
e_30_b = e_30_c*C_CB_30
```

```
% t = 6.0s
t = 6.0;
e_60_c = [e_60_c(1) e_60_c(2) e_60_c(3)];
C_CB_60 = [1 0 0; 0 cos(s*t) -sin(s*t); 0 sin(s*t) cos(s*t)];
e_60_b = e_60_c*C_CB_60
```

<e>

```
% maximum of zeta
zeta = 2*phi;

% time corresponding to the maximum zeta
t_maxzeta = pi/p;

% Euler parameters corresponding
e_maxzeta = EulerPara_from_OrientAngs(t_maxzeta,p,s,phi)
```

<f>

```
% t = 6.0 s
C = DCM_Body(1, 2, 1, p_rad(3), phi, s_rad(3));
theta2 = asin(-C(2,3))
theta1 = -acos(C(2,2)/cos(theta2))
theta1 = -pi-asin(C(2,1)/cos(theta2))
theta3 = pi-asin(C(1,3)/cos(theta2))
theta3 = acos(C(3,3)/cos(theta2))
theta1 = rad2deg(theta1)
theta2 = rad2deg(theta2)
theta3 = rad2deg(theta3)
function epsilons = EulerPara_from_OrientAngs(t,p,s,phi)
    e1 = cos(phi)*sin(p*t/2)*cos(s*t/2)+cos(p*t/2)*sin(s*t/2);
    e2 = -\sin(phi)*\sin(s*t/2)*\sin(p*t/2);
    e3 = -\sin(phi)*\sin(p*t/2)*\cos(s*t/2);
    e4 = cos(p*t/2)*cos(s*t/2)-cos(phi)*sin(p*t/2)*sin(s*t/2);
    epsilons = [e1 \ e2 \ e3 \ e4];
end
```