systèmes mécaniques , équilibre d'un solide soumis à 3 forces (2)

Exercice n° 1:

On considère un solide (S), de masse m = 200 g, accroché à un ressort (R) et à un fil (F) comme l'indique la figure dans le document joint.

Le ressort, de constante de raideur k = 40 N.m-1, est incliné d'un angle $2 = 30^{\circ}$ par rapport à la verticale. On prendra = 10 N.kg-1. g

- 1) Représenter les forces extérieures qui s'exercent sur le solide (S).
- 2) Choisir un système d'axes orthonormés et représenter le sur la figure.
- 3) Ecrire les composantes de chacune des forces qui s'exercent sur le solide (S).
- 4) Ecrire la condition d'équilibre du solide (S).
- 5) Donner l'expression de la tension du ressort en fonction de m, et 2. TR g
- 6) Calculer la tension du ressort.
- 7) Déduire l'allongement 🛚 du ressort à l'équilibre.

Exercice n° 2:

I/Un solide (S) de masse 5kg est en équilibre avec frottement sur un plan incliné d'un angle $\alpha = 120^{\circ}$ par rapport à la verticale (voir figure)

- 1- a- Représenter les forces exercées sur le solide (S).
- 2- b- Donner les composantes de ces forces suivant les axes (xx', yy')

On donne $\sin 30^{\circ} = 0.5$ $\cos 30^{\circ} = 0.866$

- 3- a- donner la condition d'équilibre du solide (S)
 - **b-** Déduire les valeurs
 - -de composante normale de la réaction
 - -la valeur de la force de frottement.

II/ le meme solide est en équilibre un plan horizontal

On exerce une force F horizontale de valeur 50 N

- 1- donner la condition d'équilibre du solide (S)
- 2- Déduire les valeurs
- a-de composante normale de la réaction
- b-la valeur de la force de frottement.
- c-la valeur de la réaction du plan horizontal

Exercice n°3:

Un solide **(S)** de poids $\|\vec{P}\|=5N$ est suspendu à un ressort dont l'autre extrémité est fixée au Point O d'un mur vertical (voir figure)

On exerce sur (S) une force horizontale \vec{F} , à l'équilibre l'axe du ressort fait un angle α = 45° avec

la verticale.

- 1- Reproduire la figure et représenter tous les forces qui s'exercent sur (S)
- 2- a- Ecrire la condition d'équilibre du solide (S).
- **b-** Donner les composantes de chaque force dans le repère (O, \vec{x}, \vec{y}) (**méthode de projection**).
 - **3-** Calculer.
 - a- La valeur de la tension du ressort.
 - b- La valeur de la force $ec{F}: \left(\! \left\| ec{F}
 ight\| \!
 ight)$

On donne cos 45° = sin 45° = 0,707

Exercice n°4:

On prendra ||g|| = 10N.kg.

On dispose d'un ressort de raideur K = 50 N.m dont l'allongement est proportionnel à la valeur dela tension et de longueur à vide I = 25 cm.

1)Un solide S de masse m = 200 g est accroché à l'extrémité A du ressort, l'autre extrémitéest fixe, l'ensemble est posé sur un plan parfaitement lisse incliné de 🛽 sur l'horizontale etreste en équilibre l'axe du ressort parallèle au plan incliné.

a)Faire le bilan des forces qui agissent sur le solide S.

b) Quelles relations existe-t-il entre ces forces à l'équilibre?

c)Calculer la valeur de la tension du ressort à l'équilibre pour 2 = 30°. En déduire lalongueur l du ressort.

d)Calculer la valeur de la réaction R exercée par le plan incliné sur le solide (S).

2)L'axe du ressort n'est plus parallèle au plan incliné, mais il fait avec celui-ci un angle∑.

a)La longueur du ressort devient I = 27,2 cm. Calculer l'angle ?.

b)Calculer la valeur de l'intensité de la réaction R' du plan incliné?

figure (1)

