Temă

Problem 1. Given the non-collinear vectors \mathbf{a} and \mathbf{b} , prove that the system of vectors $\mathbf{m} = 3\mathbf{a} - \mathbf{b}$, $\mathbf{n} = 2\mathbf{a} + \mathbf{b}$, $\mathbf{p} = \mathbf{a} + 3\mathbf{b}$ is linearly dependent, and that the vectors \mathbf{n} and \mathbf{p} are non-collinear. Express the vector \mathbf{m} in terms of the vectors \mathbf{n} and \mathbf{p} .

Problem 2. Check whether the points A(1,2,-1), B(0,1,5), C(-1,2,1) and D(2,1,3) are coplanar.

Problem 3. Find the equation of the line passing through the point A(8,9), for which the segment on the line between the lines x - 2y + 5 = 0 and x - 2y = 0 has a length of 5.

Problem 4. Determine the equation of the plane passing through the origin and the line x = 1 + 3t, y = -2 + 4t, z = 5 - 2t.

Problem 5. From the point A(5,9) tangents are drawn to the parabola $y^2 = 5x$. Determine the equation of the chord joining the points of tangency.

Problem 6. Find the equation of the conoidal surface generated by a line that remains parallel to the plane x + z = 0, rests on the Ox axis and on the circle $x^2 + y^2 = 1$, z = 0.

Problem 7. Find the points of the skew curve

$$\mathbf{r}(t) = \left(\frac{1}{t}, t, 2t^2 - 1\right)$$

at which the binormals are perpendicular on the line D of equations

$$\begin{cases} x + y = 0 \\ 4x - z = 0 \end{cases} .$$

Problem 8. Find the evolute of the curve

$$\begin{cases} x = a \left(\cos t + \ln \operatorname{tg} \frac{t}{2} \right), \\ y = a \sin t, \end{cases}$$

with a > 0 (the tractrix).

Problem 9. Write the equation of the tangent plane at the torus

$$\mathbf{r}(u, v) = ((7 + 5\cos u)\cos v, (7 + 5\cos u)\sin v, 5\sin u)$$

at the point $M(u_0, v_0)$ for which $\cos u_0 = 3/5$ and $\cos v_0 = 4/5$, where $0 < u, v < \pi/2$.

Problem 10. Find the asymptotic lines of the surface

$$\mathbf{r}(u,v) = (3(u+v), 3(u^2+v^2), 2(u^3+v^3)). \tag{0.0.1}$$