STAT5030 Linear Models (Final Exam 2019-2020)

11 May 2020

1. (30 marks) Consider a linear model

$$Y = X\beta + \epsilon$$

where Y is $n \times 1$, X is an $n \times p$ fixed design matrix, β is a p-vector of regression coefficient and ϵ has mean $\mathbf{0}$ and known positive definite covariance matrix V.

- (a) When X is of full rank, find the covariance of the best linear unbiased estimates (BLUE) of $p^{\top}\beta$ and $q^{\top}\beta$, where $p \in \mathbb{R}^p$ and $p \in \mathbb{R}^p$ are constant vectors.
- (b) When X is not of full rank, find a sufficient and necessary condition for $c^{\top}\beta$ to be estimable, where $c \in \mathbb{R}^p$.
- (c) When X is not of full rank, find the covariance of the best linear unbiased estimates (BLUE) of two estimable functions $p^{\top}\beta$ and $q^{\top}\beta$, where $p \in \mathbb{R}^p$ and $p \in \mathbb{R}^p$ are constant vectors.
- 2. (15 marks) Let $\boldsymbol{x} = (X_1, \dots, X_k)^{\top} \sim N_k(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu}$ is a $k \times 1$ constant vector and $rank(\Sigma) = k$.
 - (a) What is the distribution of $U = (\boldsymbol{x} \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} \boldsymbol{\mu})$?
 - (b) Let $\boldsymbol{A} = \boldsymbol{\Sigma}^{-1} (\boldsymbol{\Sigma}^{-1} \boldsymbol{1}_k \boldsymbol{1}_k^{\top} \boldsymbol{\Sigma}^{-1}) / (\boldsymbol{1}_k^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{1}_k)$. Here $\boldsymbol{1}_k$ is a $k \times 1$ vector with all elements being 1. Find the distribution of $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$.
- 3. (20 marks) Consider the model

$$y_{ij} = \mu + \tau_i + \epsilon_{ij}, \quad i = 1, 2, 3, 4, \quad j = 1, 2, 3, 4,$$

where ϵ_{ij} are independently distributed as $N(0, \sigma^2)$.

- (a) Let $\boldsymbol{\beta} = (\mu, \tau_1, \tau_2, \tau_3, \tau_4)^{\top}$. Find a set of 4 linearly independent estimable functions of $\boldsymbol{\beta}$.
- (b) Derive a test to test the null hypothesis $H_0: \tau_1 \tau_2 = \tau_3 \tau_4$.
- (c) Is $2\tau_1 + \tau_2$ estimable? Why?
- 4. (30 marks) Consider a linear regression model

$$y_i = x_{i1}\beta_1 + x_{i2}\beta_2 + \dots + x_{ip}\beta_p + \epsilon_i = \sum_{j=1}^p x_{ij}\beta_j + \epsilon_i, \quad i = 1, \dots, n.$$
 (1)

By convention, the response and covariates are centered and standardized. The ridge regression is to apply squared penalty on the least square estimate by minimizing

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2,$$

where $\lambda \geq 0$ is a tuning parameter, $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_p)^{\top}$. The resulting estimate is denoted by $\hat{\boldsymbol{\beta}}^{\text{ridge}}$.

- (a) Show that $\|\hat{\boldsymbol{\beta}}^{\text{ridge}}\|$ increases as the tuning parameter $\lambda \to 0$.
- (b) Zou and Hastie (2005) introduced the elastic-net penalty

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1 - \alpha)|\beta_j|),$$

a different compromise between ridge and lasso with $0 \le \alpha \le 1$. Consider the elastic-net optimization problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2 + \lambda [\alpha \|\boldsymbol{\beta}\|_2^2 + (1 - \alpha) \|\boldsymbol{\beta}\|_1],$$

where $\mathbf{y} = (y_1, y_2, \dots, y_n)^{\top}$, $\mathbf{X} = (x_1, x_2, \dots, x_p)_{n \times p}$, $\|\cdot\|_2$ and $\|\cdot\|_1$ are the L_2 norm and L_1 norm, respectively. For any $\alpha \in [0, 1]$, show how one can turn this into a lasso problem.

(c) The novel fused lasso penalty is of the following form

$$\lambda_F \sum_{j=2}^p |\beta_j - \beta_{j-1}|,$$

which is to penalize the sum of the absolute differences all pairs of successive regression coefficients. For model (1), one can estimate the regression parameters by minimizing

$$\min_{\beta} \sum_{i=1}^{n} (y_i - \sum_{j=1}^{p} x_{ij}\beta_j)^2 + \lambda_F \sum_{j=2}^{p} |\beta_j - \beta_{j-1}|, \tag{2}$$

where λ_F is the tuning parameter. Show the fused lasso optimization problem in (2) can be turned into a lasso problem.