do not. For example, we can define the relation "is less than" on the set of entities $\{1,2,3\}$ by defining the set of ordered pairs $\mathbb{S} = \{(1,2),(1,3),(2,3)\}$. Once this relation is defined, we can use it like a verb. Because $(1,2) \in \mathbb{S}$, we say that 1 is less than 2. Because $(2,1) \notin \mathbb{S}$, we can not say that 2 is less than 1. Of course, the entities that are related to one another need not be numbers. We could define a relation is_a_type_of containing tuples like (dog, mammal).

In the context of AI, we think of a relation as a sentence in a syntactically simple and highly structured language. The relation plays the role of a verb, while two arguments to the relation play the role of its subject and object. These sentences take the form of a triplet of tokens

$$(\text{subject}, \text{verb}, \text{object})$$
 (12.21)

with values

$$(\text{entity}_i, \text{relation}_j, \text{entity}_k).$$
 (12.22)

We can also define an **attribute**, a concept analogous to a relation, but taking only one argument:

$$(\text{entity}_i, \text{attribute}_j). \tag{12.23}$$

For example, we could define the has_fur attribute, and apply it to entities like dog.

Many applications require representing relations and reasoning about them. How should we best do this within the context of neural networks?

Machine learning models of course require training data. We can infer relations between entities from training datasets consisting of unstructured natural language. There are also structured databases that identify relations explicitly. A common structure for these databases is the **relational database**, which stores this same kind of information, albeit not formatted as three token sentences. When a database is intended to convey commonsense knowledge about everyday life or expert knowledge about an application area to an artificial intelligence system, we call the database a **knowledge base**. Knowledge bases range from general ones like Freebase, OpenCyc, WordNet, or Wikibase, etc. to more specialized knowledge bases, like GeneOntology. Representations for entities and relations can be learned by considering each triplet in a knowledge base as a training example and maximizing a training objective that captures their joint distribution (Bordes et al., 2013a).

¹Respectively available from these web sites: freebase.com, cyc.com/opencyc, wordnet. princeton.edu, wikiba.se
²geneontology.org