

SEQUENCE LISTING

<110> Genentech, Inc Ashkenazi, Avi Botstein, David Desnoyers, Luc Eaton, Dan L. Ferrara, Napoleone Filvaroff, Ellen Fong, Sherman Gao, Wei-Qiang Gerber, Hanspeter Gerritsen, Mary E. Goddard, A. Godowski, Paul J. Grimaldi, Christopher J. Gurney, Austin L. Hillan, Kenneth, J. Kljavin, Ivar J. Mather, Jennie P. Pan, James Paoni, Nicholas F. Roy, Margaret Ann Stewart, Timothy A. Tumas, Daniel Williams, P. Mickey Wood, William, I.

- <120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same
- <130> 10466-14
- <140> 09/665,350
- <141> 2000-09-18
- <150> PCT/US00/04414
- <151> 2000-02-22
- <150> US 60/143,048
- <151> 1999-07-07
- <150> US 60/145,698
- <151> 1999-07-26
- <150> US 60/146,222
- <151> 1999-07-28
- <150> PCT/US99/20594
- <151> 1999-09-08
- <150> PCT/US99/20944
- <151> 1999-09-13
- <150> PCT/US99/21090
- <151> 1999-09-15

```
<150> PCT/US99/21547
 <151> 1999-09-15
 <150> PCT/US99/23089
 <151> 1999-10-05
 <150> PCT/US99/28214
 <151> 1999-11-29
 <150> PCT/US99/28313
 <151> 1999-11-30
 <150> PCT/US99/28564
 <151> 1999-12-02
 <150> PCT/US99/28565
 <151> 1999-12-02
 <150> PCT/US99/30095
<151> 1999-12-16
 <150> PCT/US99/30911
 <151> 1999-12-20
 <150> PCT/US99/30999
 <151> 1999-12-20
 <150> PCT/US00/00219
 <151> 2000-01-05
 <160> 423
 <210> 1
 <211> 1825
 <212> DNA
 <213> Homo sapiens
 <400> 1
 actgcacctc ggttctatcg attgaattcc ccggggatcc tctagagatc cctcgacctc 60
 gacccacgcg tccgggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgtctt 120
 cccgcagcgc tacccgccat gcgcctgccg cgccgggccg cgctggggct cctgccgctt 180
 etgetgetge tgeegeeege geeggaggee geeaagaage egaegeeetg ceaeeggtge 240
 cgggggctgg tggacaagtt taaccagggg atggtggaca ccgcaaagaa gaactttggc 300
 ggcgggaaca cggcttggga ggaaaagacg ctgtccaagt acgagtccag cgagattcgc 360
 ctgctggaga tcctggaggg gctgtgcgag agcagcgact tcgaatgcaa tcagatgcta 420
 gaggcgcagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
 ttattcgagt ggttttgtgt gaagacactg aaagtgtgct gctctccagg aacctacggt 540
 cccgactgtc tcgcatgcca gggcggatcc cagaggccct gcagcgggaa tggccactgc 600
 agcggagatg ggagcagaca gggcgacggg tcctgccggt gccacatggg gtaccagggc 660
 ccgctgtgca ctgactgcat ggacggctac ttcagctcgc tccggaacga gacccacagc 720
 atctgcacag cctgtgacga gtcctgcaag acgtgctcgg gcctgaccaa cagagactgc 780
 ggcgagtgtg aagtgggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
 gcggccgagc cgcctccctg cagcgctgcg cagttctgta agaacgccaa cggctcctac 900
 acgtgcgaag agtgtgactc cagctgtgtg ggctgcacag gggaaggccc aggaaactgt 960
 aaagagtgta tetetggeta egegagggag caeggacagt gtgeagatgt ggacgagtge 1020
 tcactagcag aaaaaacctg tgtgaggaaa aacgaaaact gctacaatac tccagggagc 1080
 tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccggca 1140
```

```
gaggetgaag ccacagaagg agaaageeeg acacagetge ceteeegega agacetgtaa 1200
tgtgccggac ttacccttta aattattcag aaggatgtcc cgtggaaaat gtggccctga 1260
qqatqccqtc tcctgcagtg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
ttctcatttg tcccttaaac agctgcattt cttggttgtt cttaaacaga cttgtatatt 1380
aaaaaaaaaa aaagggcggc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1500
qcccaacttg tttattgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
cacaaataaa gcattttttt cactgcattc tagttgtggt ttgtccaaac tcatcaatgt 1620
atcttatcat gtctggatcg ggaattaatt cggcgcagca ccatggcctg aaataacctc 1680
tgaaagagga acttggttag gtaccttctg aggcggaaag aaccagctgt ggaatgtgtg 1740
tcagttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
ctcaattagt cagcaaccca gtttt
<210> 2
<211> 353
<212> PRT
<213> Homo sapiens
<400> 2
Met Arg Leu Pro Arg Arg Ala Ala Leu Gly Leu Leu Pro Leu Leu Leu
                 5
Leu Leu Pro Pro Ala Pro Glu Ala Ala Lys Lys Pro Thr Pro Cys His
Arg Cys Arg Gly Leu Val Asp Lys Phe Asn Gln Gly Met Val Asp Thr
                            40
Ala Lys Lys Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Lys Thr
                        55
Leu Ser Lys Tyr Glu Ser Ser Glu Ile Arg Leu Leu Glu Ile Leu Glu
Gly Leu Cys Glu Ser Ser Asp Phe Glu Cys Asn Gln Met Leu Glu Ala
                                    90
                85
Gln Glu Glu His Leu Glu Ala Trp Trp Leu Gln Leu Lys Ser Glu Tyr
                               105
           100
Pro Asp Leu Phe Glu Trp Phe Cys Val Lys Thr Leu Lys Val Cys Cys
                           120
Ser Pro Gly Thr Tyr Gly Pro Asp Cys Leu Ala Cys Gln Gly Gly Ser
    130
Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
               165
                                   170
                                                      175
Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
           180
His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
                           200
                                              205
       195
```

```
Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
    210
                        215
Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
                                                             240
                    230
                                        235
Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
                                    250
Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
                                                    270
            260
                                265
Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
        275
                            280
Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
                        295
                                            300
Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
305
                    310
                                        315
Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
                                    330
Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
                                345
Leu
<210> 3
<211> 2206
<212> DNA
<213> Homo sapiens
<400> 3
caggiccaac igcaccicgg tictatcgat igaaticccc ggggatccic tagagatccc 60
tegacetega eccaegegte egecaggeeg ggaggegaeg egeceageeg tetaaaeggg 120
aacageeetg getgagggag etgeagegea geagagtate tgaeggegee aggttgegta 180
ggtgcggcac gaggagtttt cccggcagcg aggaggtcct gagcagcatg gcccggagga 240
gegeetteee tgeegeegeg etetggetet ggageateet eetgtgeetg etggeaetge 300
gggcggaggc cgggccgccg caggaggaga gcctgtacct atggatcgat gctcaccagg 360
caagagtact cataggattt gaagaagata tcctgattgt ttcagagggg aaaatggcac 420
cttttacaca tgatttcaga aaagcgcaac agagaatgcc agctattcct gtcaatatcc 480
attccatgaa ttttacctgg caagctgcag ggcaggcaga atacttctat gaattcctgt 540
ccttgcgctc cctggataaa ggcatcatgg cagatccaac cgtcaatgtc cctctgctgg 600
gaacagtgcc tcacaaggca tcagttgttc aagttggttt cccatgtctt ggaaaacagg 660
atggggtggc agcatttgaa gtggatgtga ttgttatgaa ttctgaaggc aacaccattc 720
tccaaacacc tcaaaatgct atcttcttta aaacatgtca acaagctgag tgcccaggcg 780
ggtgccgaaa tggaggcttt tgtaatgaaa gacgcatctg cgagtgtcct gatgggttcc 840
acggacctca ctgtgagaaa gccctttgta ccccacgatg tatgaatggt ggactttgtg 900
tgactcctgg tttctgcatc tgcccacctg gattctatgg agtgaactgt gacaaagcaa 960
actgctcaac cacctgcttt aatggaggga cctgtttcta ccctggaaaa tgtatttgcc 1020
ctccaggact agagggagag cagtgtgaaa tcagcaaatg cccacaaccc tgtcgaaatg 1080
gaggtaaatg cattggtaaa agcaaatgta agtgttccaa aggttaccag ggagacctct 1140
gttcaaagcc tgtctgcgag cctggctgtg gtgcacatgg aacctgccat gaacccaaca 1200
```

```
aatgccaatg tcaagaaggt tggcatggaa gacactgcaa taaaaggtac gaagccagcc 1260
tcatacatgc cctgaggcca gcaggcgccc agctcaggca gcacacgcct tcacttaaaa 1320
aggccgagga gcggcgggat ccacctgaat ccaattacat ctggtgaact ccgacatctg 1380
aaacgtttta agttacacca agttcatagc ctttgttaac ctttcatgtg ttgaatgttc 1440
aaataatgtt cattacactt aagaatactg gcctgaattt tattagcttc attataaatc 1500
actgagetga tatttactet teettttaag tittetaagt aegtetgtag catgatggta 1560
tagattttct tgtttcagtg ctttgggaca gattttatat tatgtcaatt gatcaggtta 1620
aaattttcag tgtgtagttg gcagatattt tcaaaattac aatgcattta tggtgtctgg 1680
gggcagggga acatcagaaa ggttaaattg ggcaaaaatg cgtaagtcac aagaatttgg 1740
atggtgcagt taatgttgaa gttacagcat ttcagatttt attgtcagat atttagatgt 1800
ttaccattat tccagagatt cagtattaaa aaaaaaaaa ttacactgtg gtagtggcat 1920
ttaaacaata taatatatto taaacacaat gaaataggga atataatgta tgaacttttt 1980
ttttatactg tttgtatgta taaaataaag gtgctgcttt agttttttgg aaaaaaaaa 2100
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa gggcggccgc gactctagag tcgacctgca 2160
gaagettgge egecatggee caacttgttt attgeagett ataatg
<210> 4
<211> 379
<212> PRT
<213> Homo sapiens
<400> 4
Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser
                 5
                                  10
Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
            20
                               25
Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
        35
                           40
Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile
                   70
                                      75
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln
                85
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly
                              105
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Gly Thr Val Pro
       115
                          120
                                             125
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln
                                         140
   130
                      135
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu
                  150
                                     155
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr
                                                    175
               165
                                  170
```

Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys 180 185 Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His 200 Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys 220 . 210 215 Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn 235 Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys 250 Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys 280 Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu 290 295 300 Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys 305 310 315 His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His 330 Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala 340 345 Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu 360 Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp 375 <210> 5 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 5 45 agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca <210> 6 <211> 21 <212> DNA <213> Artificial Sequence

<220>

<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> agagt	6 gtatc tctggctacg c	21
<210><211><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> taagt	7 ccggc acattacagg tc	22
<210><211><212><212><213>	49	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cccac	8 gatgt atgaatggtg gactttgtgt gactcctggt ttctgcatc	49
<210><211><212><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> aaagad	9 egcat ctgegagtgt ce	22
<210><211><212><213>	23	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tgctga	10 atttc acactgctct ccc	23
<210><211><212>	2197	

```
<400> 11
eggacgegtg ggegteegge ggtegeagag ceaggaggeg gaggegegeg ggeeageetg 60
ggccccagcc cacaccttca ccagggccca ggagccacca tgtggcgatg tccactgggg 120
ctactgctgt tgctgccgct ggctggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcaccggg tctgcacctg cggggcatcc gggacgcggg aggccggtac 240
tgccaggagc aggacctgtg ctgccgcggc cgtgccgacg actgtgccct gccctacctg 300
ggcgccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgccctgac 360
ttctgggact tctgcctcgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt cttgggaacg tactgggaca actgtaaccg ttgcacctgc 480
caggagaaca ggcagtggca tggtggatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tegetacege etgggeacea teegeceate tteeteggte atgaacatge atgaaattta 660
tacagtgctg aacccagggg aggtgcttcc cacagccttc gaggcctctg agaagtggcc 720
caacctgatt catgageete ttgaccaagg caactgtgca ggeteetggg cettetecae 780
agcagctgtg gcatccgatc gtgtctcaat ccattctctg ggacacatga cgcctgtcct 840
gtcgccccag aacctgctgt cttgtgacac ccaccagcag cagggctgcc gcggtgggcg 900
tctcgatggt gcctggtggt tcctgcgtcg ccgaggggtg gtgtctgacc actgctaccc 960
cttctcgggc cgtgaacgag acgaggctgg ccctgcgccc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacate taccaggtca etectgteta eegeetegge tecaaegaca aggagateat 1140
gaaggagctg atggagaatg gccctgtcca agccctcatg gaggtgcatg aggacttctt 1200
cctatacaag ggaggcatct acagccacac gccagtgagc cttgggaggc cagagagata 1260
tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct ggggcgagag 1380
gggccacttc cgcatcgtgc gcggcgtcaa tgagtgcgac atcgagagct tcgtgctggg 1440
cgtctggggc cgcgtgggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
ggggtccggc ctgggatcca ggctaagggc cggcggaaga ggccccaatg gggcggtgac 1560
eccageeteg eeegacagag eeeggggege aggegggege eagggegeta ateeeggege 1620
gggttccgct gacgcagcgc cccgcctggg agccgcgggc aggcgagact ggcggagccc 1680
ccagacetee cagtggggae ggggeaggge etggeetggg aagageaeag etgeagatee 1740
caggeetetg gegeeecae teaagaetae caaageeagg acaeeteaag tetecageee 1800
caatacccca ccccaatccc gtattctttt ttttttttt ttagacaggg tcttgctccg 1860
ttgcccaggt tggagtgcag tggcccatca gggctcactg taacctccga ctcctgggtt 1920
caaqtqaccc tcccacctca qcctctcaaq taqctqqqac tacaqqtqca ccaccacacc 1980
tggctaattt ttgtattttt tgtaaagagg ggggtctcac tgtgttgccc aggctggttt 2040
cgaactcctg ggctcaagcg gtccacctgc ctccgcctcc caaagtgctg ggattgcagg 2100
catgagecae tgeacecage cetgtattet tattetteag atatttattt ttetttteae 2160
tgttttaaaa taaaaccaaa gtattgataa aaaaaaa
                                                                2197
<210> 12
<211> 164
<212> PRT
<213> Homo sapiens
<400> 12
Met Trp Arg Cys Pro Leu Gly Leu Leu Leu Leu Pro Leu Ala Gly
  1
                                                        15
His Leu Ala Leu Gly Ala Gln Gln Gly Arg Gly Arg Glu Leu Ala
            20
Pro Gly Leu His Leu Arg Gly Ile Arg Asp Ala Gly Gly Arg Tyr Cys
                            40
Gln Glu Gln Asp Leu Cys Cys Arg Gly Arg Ala Asp Asp Cys Ala Leu
```

50 55 60

Pro Tyr Leu Gly Ala Ile Cys Tyr Cys Asp Leu Phe Cys Asn Arg Thr 65 70 75 80

Val Ser Asp Cys Cys Pro Asp Phe Trp Asp Phe Cys Leu Gly Val Pro 85 90 95

Pro Pro Phe Pro Pro Ile Gln Gly Cys Met His Gly Gly Arg Ile Tyr
100 105 110

Pro Val Leu Gly Thr Tyr Trp Asp Asn Cys Asn Arg Cys Thr Cys Gln 115 120 125

Glu Asn Arg Gln Trp His Gly Gly Ser Arg His Asp Gln Ser His Gln 130 135 140

Pro Gly Gln Leu Trp Leu Ala Gly Trp Glu Pro Gln Arg Leu Leu Gly
145 150 155 160

His Asp Pro Gly

<210> 13

<211> 533

<212> DNA

<213> Homo sapiens

<220>

<221> modified_base

<222> (33)..(33)

<223> a, t, c or g

<220>

<221> modified_base

<222> (37)..(37)

<223> a, t, c or g

<220>

<221> modified_base

<222> (80)..(80)

<223> a, t, c or g

<220>

<221> modified_base

<222> (94)..(94)

<223> a, t, c or g

<220>

<221> modified_base

<222> (144)..(144)

<223> a, t, c or g

<220>

<221> modified_base

<222> (188)..(188)

<223> a, t, c or g

```
<400> 13
aggeteettg gecettttte cacageaage ttntgenate eegattegtt gteteaaate 60
caattetett gggacacatn acgeetgtee tttngceeca gaacetgetg tettgtacae 120
ccaccagcag cagggctgcc gcgntgggcg tctcgatggt gcctggtggt tcctgcgtcg 180
ccgagggntg gtgtctgacc actgctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgtatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaacagct atgttaataa caatgacatc taccaggtca ctcctgtcta 360
ccgcctcggc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcatg aggacttctt cctatacaag ggaggcatct acagccacac 480
                                                                   533
gccagtgagc cttgggaggc cagagagata ccgccggcat gggacccact cag
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 14
ttcgaggcct ctgagaagtg gccc
                                                                   24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 15
                                                                   22
ggcggtatct ctctggcctc cc
<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 16
                                                                   50
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg
<210> 17
<211> 960
<212> DNA
<213> Homo sapiens
<400> 17
gctgcttgcc ctgttgatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60
ctcctgcaaa gcccaggtga gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
gggggagcag tgctggaccg cgcgcatccg cgcagttggc ctcctgaccg tcatcagcaa 180
```

```
aggetgeage ttgaactgeg tggatgacte acaggactae taegtgggea agaagaacat 240
cacqtqctqt qacaccqact tqtqcaacqc caqcqqqqcc catqccctqc agccqqctqc 300
egecatectt gegetgetee etgeaetegg eetgetgete tggggaeeeg geeagetata 360
ggctctgggg ggccccgctg cagcccacac tgggtgtggt gccccaggcc tctgtgccac 420
tecteacaga cetggeecag tgggageetg teetggttee tgaggeacat cetaacgeaa 480
gtctgaccat gtatgtctgc acccctgtcc cccaccctga ccctcccatg gccctctcca 540
ggacteceae eeggeagate agetetagtg acacagatee geetgeagat ggeeeeteea 600
accetetetg etgetgttte catggeecag cattetecae cettaaceet gtgeteagge 660
acctettece ecaggaagee tteeetgeee acceeateta tgaettgage eaggtetggt 720
ccgtggtgtc ccccgcaccc agcaggggac aggcactcag gagggcccag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtcgac gtgagttcct gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggccaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gtaggccctt aataaacacc tgttggataa gccaaaaaaa 960
<210> 18
<211> 189
<212> PRT
<213> Homo sapiens
<400> 18
Met Thr His Arg Thr Thr Trp Ala Arg Arg Thr Ser Arg Ala Val
Thr Pro Thr Cys Ala Thr Pro Ala Gly Pro Met Pro Cys Ser Arg Leu
             20
                                 25
Pro Pro Ser Leu Arg Cys Ser Leu His Ser Ala Cys Cys Ser Gly Asp
                             40
         35
Pro Ala Ser Tyr Arg Leu Trp Gly Ala Pro Leu Gln Pro Thr Leu Gly
                                             60
Val Val Pro Gln Ala Ser Val Pro Leu Leu Thr Asp Leu Ala Gln Trp
                     70
                                         75
                                                              80
 65
Glu Pro Val Leu Val Pro Glu Ala His Pro Asn Ala Ser Leu Thr Met
Tyr Val Cys Thr Pro Val Pro His Pro Asp Pro Pro Met Ala Leu Ser
                                105
Arg Thr Pro Thr Arg Gln Ile Ser Ser Ser Asp Thr Asp Pro Pro Ala
        115
                            120
                                                125
Asp Gly Pro Ser Asn Pro Leu Cys Cys Phe His Gly Pro Ala Phe
                        135
Ser Thr Leu Asn Pro Val Leu Arg His Leu Phe Pro Gln Glu Ala Phe
145
                                                             160
                    150
                                        155
Pro Ala His Pro Ile Tyr Asp Leu Ser Gln Val Trp Ser Val Val Ser
                                    170
                                                        175
Pro Ala Pro Ser Arg Gly Gln Ala Leu Arg Arg Ala Gln
                                185
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 19
                                                                   24
tgctgtgcta ctcctgcaaa gccc
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 20
                                                                   24
tgcacaagtc ggtgtcacag cacg
<210> 21
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 21
                                                                   44
agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg
<210> 22
<211> 1200
<212> DNA
<213> Homo sapiens
<400> 22
cccacgcgtc cgaacctctc cagcgatggg agccgcccgc ctgctgccca acctcactct 60
gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgagggacc agggcgccat 120
gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
caagcacgtg caggtcaccg ggcgtcgcat ctccgccacc gccgaggacg gcaacaagtt 240
tgccaagctc atagtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
gagtgagaag tacatctgta tgaacaagag gggcaagctc atcgggaagc ccagcgggaa 360
gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg ccttccagaa 420
cgcccggcac gagggctggt tcatggcctt cacgcggcag gggcggcccc gccaggcttc 480
ccgcagccgc cagaaccagc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
gcccttcccc aaccacgccg agaagcagaa gcagttcgag tttgtgggct ccgccccac 600
ccgccggacc aagcgcacac ggcggcccca gccctcacg tagtctggga ggcagggggc 660
agcagecect gggeegeete eecaceeett teeettetta atecaaggae tgggetgggg 720
tggcgggagg ggagccagat ccccgaggga ggaccctgag ggccgcgaag catccgagcc 780
cccagctggg aaggggcagg ccggtgcccc aggggcggct ggcacagtgc ccccttcccg 840
gacgggtggc aggccctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
tgccggcctc ccagccgggc tcctgaagcc cgctgaaagg tcagcgactg aaggccttgc 960
```

agacaaccgt ctggaggtgg ctgtcctcaa aatctgcttc tcggatctcc ctcagtctgc 1020 ccccagcccc caaactcctc ctggctagac tgtaggaagg gacttttgtt tgtttgtttg 1080 tttcaggaaa aaagaaaggg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140 acgacccagg cctgcacccc acccccaact cccagcccg gaataaaacc attttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23

Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser
35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
195 200 205

<210> 24

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 24
                                                                   28
cagtacgtga gggaccaggg cgccatga
<210> 25
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 25
                                                                   24
ccggtgacct gcacgtgctt gcca
<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<220>
<221> modified_base
<222> (21)..(21)
<223> a, t, c or g
<400> 26
                                                                   41
geggatetge egeetgetea netggteggt eatggegeee t
<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens
<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcag caaagagggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagttc tggacttcaa cagaacccca 180
tccagtcatt ttgattttgc tgtttatttt ttttttcttt ttctttttcc caccacattg 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
cttttttcct gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tectggeetg ceetagtgtg tgeegetgeg acaggaaett tgtetaetgt aatgagegaa 420
gcttgacctc agtgcctctt gggatcccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgctgga tttcctgcag aactgcacaa tgtacagtcg gtgcacacgg 540
tctacctgta tggcaaccaa ctggacgaat tccccatgaa ccttcccaag aatgtcagag 600
ttctccattt gcaggaaaac aatattcaga ccatttcacg ggctgctctt gcccagctct 660
tgaagettga agagetgeac etggatgaca actecatate cacagtgggg gtggaagaeg 720
gggccttccg ggaggctatt agcctcaaat tgttgttttt gtctaagaat cacctgagca 780
gtgtgcctgt tgggcttcct gtggacttgc aagagctgag agtggatgaa aatcgaattg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagctt ggagcgtctt attgtggacg 900
ggaacctcct gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
aggaattttc aattgtacgt aattcgctgt cccaccctcc tcccgatctc ccaggtacgc 1020
```

```
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140
aaqqqqtttt tgataatctc tccaacctga agcagctcac tgctcggaat aacccttggt 1200
tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcatctctca 1260
acgtgcgggg tttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcagggaat 1320
taaatatgaa tettitgiee tgieecacea egaceeeegg eetgeetete tieaeeeeag 1380
ccccaagtac agetteteeg accaeteage eteceaceet etetatteea aaccetagea 1440
gaagctacac gcctccaact cctaccacat cgaaacttcc cacgattcct gactgggatg 1500
gcagagaaag agtgacccca cctatttctg aacggatcca gctctctatc cattttgtga 1560
atgatacttc cattcaagtc agctggctct ctctcttcac cgtgatggca tacaaactca 1620
catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
gtgagaagca acacctgagc ctggttaact tagagccccg atccacctat cggatttgtt 1740
tagtgccact ggatgctttt aactaccgcg cggtagaaga caccatttgt tcagaggcca 1800
ccacccatgc ctcctatctg aacaacggca gcaacacagc gtccagccat gagcagacga 1860
cgtcccacag catgggctcc ccctttctgc tggcgggctt gatcgggggc gcggtgatat 1920
ttgtgctggt ggtcttgctc agcgtctttt gctggcatat gcacaaaaag gggcgctaca 1980
cctcccagaa gtggaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
ccaagaagga caactccatc ctggagatga cagaaaccag ttttcagatc gtctccttaa 2100
ataacqatca acteettaaa qqaqatttea qaetqeagee catttacace ecaaatgggg 2160
gcattaatta cacagactgc catatcccca acaacatgcg atactgcaac agcagcgtgc 2220
cagacctgga gcactgccat acgtgacagc cagaggccca gcgttatcaa ggcggacaat 2280
tagactettg agaacacact egtgtgtgca cataaagaca egcagattae atttgataaa 2340
tgttacacag atgcatttgt gcatttgaat actctgtaat ttatacggtg tactatataa 2400
tgggatttaa aaaaagtgct atcttttcta tttcaagtta attacaaaca gttttgtaac 2460
tctttgcttt ttaaatctt
<210> 28
<211> 660
<212> PRT
<213> Homo sapiens
<400> 28
Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
  1
                  5
                                     10
                                                         15
Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
                             40
Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
     50
                         55
                                             60
Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
                                         75
Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
                                                         95
                 85
                                     90
Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
            100
                                105
                                                    110
Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
                            120
```

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser

2479

atctgatcag gctctatttg caggacaacc agataaacca cattcctttg acagccttct 1080

Ile 145	Ser	Thr	Val	Gly	Val 150	Glu	Asp	Gly	Ala	Phe 155	Arg	Glu	Ala	Ile	Ser 160
Leu	Lys	Leu	Leu	Phe 165	Leu	Ser	Lys	Asn	His 170	Leu	Ser	Ser	Val	Pro 175	Val
Gly	Leu	Pro	Val 180	Asp	Leu	Gln	Glu	Leu 185	Arg	Val	Asp	Glu	Asn 190	Arg	Ile
Ala	Val	Ile 195	Ser	Asp	Met	Ala	Phe 200	Gln	Asn	Leu	Thr	Ser 205	Leu	Glu	Arg
Leu	Ile 210	Val	Asp	Gly	Asn	Leu 215	Leu	Thr	Asn	Lys	Gly 220	Ile	Ala	Glu	Gly
Thr 225	Phe	Ser	His	Leu	Thr 230	Lys	Leu	Lys	Glu	Phe 235	Ser	Ile	Val	Arg	Asn 240
Ser	Leu	Ser	His	Pro 245	Pro	Pro	Asp	Leu	Pro 250	Gly	Thr	His	Leu	Ile 255	Arg
Leu	Tyr	Leu	Gln 260	Asp	Asn	Gln	Ile	Asn 265	His	Ile	Pro	Leu	Thr 270	Ala	Phe
Ser	Asn	Leu 275	Arg	Lys	Leu	Glu	Arg 280	Leu	Asp	Ile	Ser	Asn 285	Asn	Gln	Leu
Arg	Met 290	Leu	Thr	Gln	Gly	Val 295	Phe	Asp	Asn	Leu	Ser 300	Asn	Leu	Lys	Gln
Leu 305	Thr	Ala	Arg	Asn	Asn 310	Pro	Trp	Phe	Cys	Asp 315	Cys	Ser	Ile	Lys	Trp 320
Val	Thr	Glu	Trp	Leu 325	Lys	Tyr	Ile	Pro	Ser 330	Ser	Leu	Asn	Val	Arg 335	Gly
Phe	Met	Cys	Gln 340	Gly	Pro	Glu	Gln	Val 345	Arg	Gly	Met	Ala	Val 350	Arg	Glu
Leu	Asn	Met 355	Asn	Leu	Leu	Ser	Cys 360	Pro	Thr	Thr	Thr	Pro 365	Gly	Leu	Pro
Leu	Phe 370	Thr	Pro	Ala	Pro	Ser 375	Thr	Ala	Ser	Pro	Thr 380	Thr	Gln	Pro	Pro
Thr 385	Leu	Ser	Ile	Pro	Asn 390	Pro	Ser	Arg	Ser	Tyr 395	Thr	Pro	Pro	Thr	Pro 400
Thr	Thr	Ser	Lys	Leu 405	Pro	Thr	Ile	Pro	Asp 410	Trp	Asp	Gly	Arg	Glu 415	Arg
Val	Thr	Pro	Pro 420	Ile	Ser	Glu	Arg	Ile 425	Gln	Leu	Ser	Ile	His 430	Phe	Val
Asn	Acn	Thr	Ser	Tle	Gln	Val	Ser	Tro	Len	Ser	Len	Phe	Thr	Va1	Met

435 440 445

Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly 450 455 460

Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu 465 470 475 480

Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu 485 490 495

Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala 500 505 510

Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser 515 520 525

His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala 530 540

Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser 545 550 555 560

Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys 565 570 575

Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly 580 585 590

Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln 595 600 605

Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu 610 615 620

Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His 625 635 640

Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu 645 650 655

His Cys His Thr 660

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 29

cggtctacct gtatggcaac c

```
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 30
gcaggacaac cagataaacc ac
                                                                22
<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 31
                                                                22
acgcagattt gagaaggctg tc
<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 32
                                                                46
ttcacgggct gctcttgccc agctcttgaa gcttgaagag ctgcac
<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens
<400> 33
acttggagca agcggcggcg gcggagacag aggcagaggc agaagctggg gctccgtcct 60
gaggaagacc cgggtggctg cgcccttgcc tcgcttccca ggcgccggcg gctgcagcct 180
tgcccctctt gctcgccttg aaaatggaaa agatgctcgc aggctgcttt ctgctgatcc 240
teggacagat egteeteete eetgeegagg eeagggageg gteaegtggg aggteeatet 300
ctaggggcag acacgctcgg acccacccgc agacggccct tctggagagt tcctgtgaga 360
acaagcgggc agacctggtt ttcatcattg acagctctcg cagtgtcaac acccatgact 420
atgcaaaggt caaggagttc atcgtggaca tcttgcaatt cttggacatt ggtcctgatg 480
tcacccgagt gggcctgctc caatatggca gcactgtcaa gaatgagttc tccctcaaga 540
ccttcaagag gaagtccgag gtggagcgtg ctgtcaagag gatgcggcat ctgtccacgg 600
gcaccatgac tgggctggcc atccagtatg ccctgaacat cgcattctca gaagcagagg 660
gggcccggcc cctgagggag aatgtgccac gggtcataat gatcgtgaca gatgggagac 720
ctcaggactc cgtggccgag gtggctgcta aggcacggga cacgggcatc ctaatctttg 780
ccattggtgt gggccaggta gacttcaaca ccttgaagtc cattgggagt gagccccatg 840
aggaccatgt cttccttgtg gccaatttca gccagattga gacgctgacc tccgtgttcc 900
agaagaagtt gtgcacggcc cacatgtgca gcaccctgga gcataactgt gcccacttct 960
```

```
gcatcaacat ccctggctca tacgtctgca ggtgcaaaca aggctacatt ctcaactcgg 1020
atcagacgac ttgcagaatc caggatctgt gtgccatgga ggaccacaac tgtgagcagc 1080
tctgtgtgaa tgtgccgggc tccttcgtct gccagtgcta cagtggctac gccctggctg 1140
aggatgggaa gaggtgtgtg gctgtggact actgtgcctc agaaaaccac ggatgtgaac 1200
atgagtgtgt aaatgctgat ggctcctacc tttgccagtg ccatgaagga tttgctctta 1260
acccagatga aaaaacgtgc acaaggatca actactgtgc actgaacaaa ccgggctgtg 1320
agcatgagtg cgtcaacatg gaggagagct actactgccg ctgccaccgt ggctacactc 1380
tggaccccaa tggcaaaacc tgcagccgag tggaccactg tgcacagcag gaccatggct 1440
gtgagcagct gtgtctgaac acggaggatt ccttcgtctg ccagtgctca gaaggcttcc 1500
tcatcaacga ggacctcaag acctgctccc gggtggatta ctgcctgctg agtgaccatg 1560
gttgtgaata ctcctgtgtc aacatggaca gatcctttgc ctgtcagtgt cctgagggac 1620
acgtgctccg cagcgatggg aagacgtgtg caaaattgga ctcttgtgct ctgggggacc 1680
acggttgtga acattcgtgt gtaagcagtg aagattcgtt tgtgtgccag tgctttgaag 1740
gttatatact ccgtgaagat ggaaaaacct gcagaaggaa agatgtctgc caagctatag 1800
accatggctg tgaacacatt tgtgtgaaca gtgacgactc atacacgtgc gagtgcttgg 1860
agggattccg gctcgctgag gatgggaaac gctgccgaag gaaggatgtc tgcaaatcaa 1920
cccaccatgg ctgcgaacac atttgtgtta ataatgggaa ttcctacatc tgcaaatgct 1980
cagagggatt tgttctagct gaggacggaa gacggtgcaa gaaatgcact gaaggcccaa 2040
ttgacctggt ctttgtgatc gatggatcca agagtcttgg agaagagaat tttgaggtcg 2100
tgaagcagtt tgtcactgga attatagatt ccttgacaat ttcccccaaa gccgctcgag 2160
tggggctgct ccagtattcc acacaggtcc acacagagtt cactctgaga aacttcaact 2220
cagccaaaga catgaaaaaa gccgtggccc acatgaaata catgggaaag ggctctatga 2280
ctgggctggc cctgaaacac atgtttgaga gaagttttac ccaaggagaa ggggccaggc 2340
ccctttccac aagggtgccc agagcagcca ttgtgttcac cgacggacgg gctcaggatg 2400
acgtctccga gtgggccagt aaagccaagg ccaatggtat cactatgtat gctgttgggg 2460
taggaaaagc cattgaggag gaactacaag agattgcctc tgagcccaca aacaagcatc 2520
tcttctatgc cgaagacttc agcacaatgg atgagataag tgaaaaactc aagaaaggca 2580
tctgtgaagc tctagaagac tccgatggaa gacaggactc tccagcaggg gaactgccaa 2640
aaacggtcca acagccaaca gaatctgagc cagtcaccat aaatatccaa gacctacttt 2700
cctgttctaa ttttgcagtg caacacagat atctgtttga agaagacaat cttttacggt 2760
ctacacaaaa gctttcccat tcaacaaaac cttcaggaag ccctttggaa gaaaaacacg 2820
atcaatgcaa atgtgaaaac cttataatgt tccagaacct tgcaaacgaa gaagtaagaa 2880
aattaacaca gcgcttagaa gaaatgacac agagaatgga agccctggaa aatcgcctga 2940
gatacagatg aagattagaa atcgcgacac atttgtagtc attgtatcac ggattacaat 3000
gaacgcagtg cagagcccca aagctcaggc tattgttaaa tcaataatgt tgtgaagtaa 3060
aacaatcagt actgagaaac ctggtttgcc acagaacaaa gacaagaagt atacactaac 3120
ttgtataaat ttatctagga aaaaaatcct tcagaattct aagatgaatt taccaggtga 3180
gaatgaataa gctatgcaag gtattttgta atatactgtg gacacaactt gcttctgcct 3240
catcctgcct tagtgtgcaa tctcatttga ctatacgata aagtttgcac agtcttactt 3300
ctgtagaaca ctggccatag gaaatgctgt ttttttgtac tggactttac cttgatatat 3360
gtatatggat gtatgcataa aatcatagga catatgtact tgtggaacaa gttggatttt 3420
ttatacaata ttaaaattca ccacttcag
                                                                  3449
<210> 34
<211> 915
<212> PRT
<213> Homo sapiens
<400> 34
Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
```

Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu 35 40 45

Ser	Ser 50	Cys	Glu	Asn	Lys	Arg 55	Ala	Asp	Leu	Val	Phe 60	Ile	Ile	Asp	Ser
Ser 65	Arg	Ser	Val	Asn	Thr 70	His	Asp	Tyr	Ala	Lys 75	Val	Lys	Glu	Phe	Ile 80
Val	Asp	Ile	Leu	Gln 85	Phe	Leu	Asp	Ile	Gly 90	Pro	Asp	Val	Thr	Arg 95	Val
Gly	Leu	Leu	Gln 100	Tyr	Gly	Ser	Thr	Val 105	Lys	Asn	Glu	Phe	Ser 110	Leu	Lys
Thr	Phe	Lys 115	Arg	Lys	Ser	Glu	Val 120	Glu	Arg	Ala	Val	Lys 125	Arg	Met	Arg
His	Leu 130	Ser	Thr	Gly	Thr	Met 135	Thr	Gly	Leu	Ala	Ile 140	Gln	Tyr	Ala	Leu
Asn 145	Ile	Ala	Phe	Ser	Glu 150	Ala	Glu	Gly	Ala	Arg 155	Pro	Leu	Arg	Glu	Asn 160
Val	Pro	Arg	Val	Ile 165	Met	Ile	Val	Thr	Asp 170	Gly	Arg	Pro	Gln	Asp 175	Ser
Val	Ala	Glu	Val 180	Ala	Ala	Lys	Ala	Arg 185	Asp	Thr	Gly	Ile	Leu 190	Ile	Phe
Ala	Ile	Gly 195	Val	Gly	Gln	Val	Asp 200	Phe	Asn	Thr	Leu	Lys 205	Ser	Ile	Gly
Ser	Glu 210	Pro	His	Glu	Asp	His 215	Val	Phe	Leu	Val	Ala 220	Asn	Phe	Ser	Gln
Ile 225	Glu	Thr	Leu	Thr	Ser 230	Val	Phe	Gln	Lys	Lys 235	Leu	Cys	Thr	Ala	His 240
Met	Cys	Ser	Thr	Leu 245	Glu	His	Asn	Cys	Ala 250	His	Phe	Cys	Ile	Asn 255	Ile
Pro	Gly	Ser	Tyr 260	Val	Cys	Arg	Cys	Lys 265	Gln	Gly	Tyr	Ile	Leu 270	Asn	Ser
Asp	Gln	Thr 275	Thr	Cys	Arg	Ile	Gln 280	Asp	Leu	Cys	Ala	Met 285	Glu	Asp	His
Asn	Cys 290	Glu	Gln	Leu	Cys	Val 295	Asn	Val	Pro	Gly	Ser 300	Phe	Val	Cys	Gln
Cys 305	Tyr	Ser	Gly	Tyr	Ala 310	Leu	Ala	Glu	Asp	Gly 315	Lys	Arg	Cys	Val	Ala 320
Val	Asp	Tyr	Cys	Ala 325	Ser	Glu	Asn	His	Gly 330	Cys	Glu	His	Glu	Cys 335	Val

Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu

Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys 395 Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe 420 425 Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu 440 Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser 450 460 455 Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys 475 470 Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu 490 His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu 500 Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp 530 535 540 Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp 550 Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly 570 Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys 580 585 Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys 600 Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser 615 Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile 625 630 Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu

650

Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn 660 665 670

Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly 675 680 685

Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser 690 695 700

Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg 705 710 715 720

Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu 725 730 735

Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly 740 745 750

Val Gly Lys Ala Ile Glu Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro 755 760 765

Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu 770 775 780

Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln 805 810 815

Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu 820 825 830

Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp 835 840 845

Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser 850 855 860

Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu 865 870 875 880

Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln 885 890 895

Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
900 905 910

Arg Tyr Arg 915

<210> 35

<211> 23

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 35
                                                                   23
gtgaccctgg ttgtgaatac tcc
<210> 36
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 36
                                                                   22
acagccatgg tctatagctt gg
<210> 37
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 37
                                                                  45
gcctgtcagt gtcctgaggg acacgtgctc cgcagcgatg ggaag
<210> 38
<211> 1813
<212> DNA
<213> Homo sapiens
<400> 38
ggagccgccc tgggtgtcag cggctcggct cccgcgcacg ctccggccgt cgcgcagcct 60
cggcacctgc aggtccgtgc gtcccgcggc tggcgccct gactccgtcc cggccaggga 120
gggccatgat ttccctcccg gggcccctgg tgaccaactt gctgcggttt ttgttcctgg 180
ggctgagtgc cctcgcgccc ccctcgcggg cccagctgca actgcacttg cccgccaacc 240
ggttgcaggc ggtggaggga ggggaagtgg tgcttccagc gtggtacacc ttgcacgggg 300
aggtgtcttc atcccagcca tgggaggtgc cctttgtgat gtggttcttc aaacagaaag 360
aaaaggagga tcaggtgttg tcctacatca atggggtcac aacaagcaaa cctggagtat 420
ccttggtcta ctccatgccc tcccggaacc tgtccctgcg gctggagggt ctccaggaga 480
aagactetgg ceetacage tgeteegtga atgtgeaaga caaacaagge aaatetaggg 540
gccacagcat caaaacctta gaactcaatg tactggttcc tccagctcct ccatcctgcc 600
gtctccaggg tgtgccccat gtgggggcaa acgtgaccct gagctgccag tctccaagga 660
gtaagecege tgtecaatae eagtgggate ggeagettee ateetteeag actitetitg 720
caccagcatt agatgtcatc cgtgggtctt taagcctcac caacctttcg tcttccatgg 780
ctggagtcta tgtctgcaag gcccacaatg aggtgggcac tgcccaatgt aatgtgacgc 840
tggaagtgag cacagggcct ggagctgcag tggttgctgg agctgttgtg ggtaccctgg 900
ttggactggg gttgctggct gggctggtcc tcttgtacca ccgccggggc aaggccctgg 960
aggagecage caatgatate aaggaggatg ceattgetee eeggaceetg eeetggeeca 1020
agageteaga cacaatetee aagaatggga eeettteete tgteacetee geacgageee 1080
teeggeeace ceatggeet eccaggeetg gtgeattgae ecceaegeee agteteteea 1140
gccaggccct gccctcacca agactgccca cgacagatgg ggcccaccct caaccaatat 1200
```

```
cccccatccc tgqtqqqqtt tcttcctctq gcttgagccg catgggtgct gtgcctgtga 1260
tggtgcctgc ccagagtcaa gctggctctc tggtatgatg accccaccac tcattggcta 1320
aaggatttgg ggtctctcct tcctataagg gtcacctcta gcacagaggc ctgagtcatg 1380
ggaaagagte acacteetga ceettagtae tetgeeceea cetetetta etgtgggaaa 1440
accatctcag taagacctaa gtgtccagga gacagaagga gaagaggaag tggatctgga 1500
attgggagga gcctccaccc acccctgact cctccttatg aagccagctg ctgaaattag 1560
ctactcacca agagtgaggg gcagagactt ccagtcactg agtctcccag gcccccttga 1620
totgtacccc accordatet aacaccaccc ttggctccca etccagetcc etgtattgat 1680
ataacctgtc aggctggctt ggttaggttt tactggggca gaggataggg aatctcttat 1740
taaaactaac atgaaatatg tgttgttttc atttgcaaat ttaaataaag atacataatg 1800
tttgtatgaa aaa
<210> 39
<211> 390
<212> PRT
<213> Homo sapiens
<400> 39
Met Ile Ser Leu Pro Gly Pro Leu Val Thr Asn Leu Leu Arg Phe Leu
                                     10
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln
                                 25
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Glu Val
Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln
                         55
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys
 65
                     70
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro
                                     90
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg
                                105
                                                    110
Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val
        115
                            120
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr
                        135
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu
145
                    150
                                                             160
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser
                165
                                    170
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro
                                185
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser
        195
                            200
                                                205
```

210 215 Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu 230 Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly 250 Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His 260 265 Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp 280 Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile 295 300 Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg 310 315 Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser 330 325 Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly 340 345 350 Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser 360 Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser 370 375 380 Gln Ala Gly Ser Leu Val 385 390 <210> 40 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 40 22 agggtctcca ggagaaagac tc <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

Leu Ser Leu Thr Asn Leu Ser Ser Met Ala Gly Val Tyr Val Cys

<400> 41 attgtgggcc ttgcagacat agac	24
<210> 42 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 42 ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc	50
<210> 43 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 43 gtgtgacaca gcgtgggc	18
<210> 44 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 44 gaccggcagg cttctgcg	18
<210> 45 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 45 cagcagcttc agccaccagg agtgg	25
<210> 46 <211> 24 <212> DNA <213> Artificial Sequence	
<220>	

.

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 46
                                                                  24
ctgagccgtg ggctgcagtc tcgc
<210> 47
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 47
                                                                  45
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc
<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens
<400> 48
cgccaccact gcggccaccg ccaatgaaac gcctcccgct cctagtggtt ttttccactt 60
tgttgaattg ttcctatact caaaattgca ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaatt gaagcctgct attgcaacat gggattttca ggaaatggtg 180
tcacaatttg tgaagatgat aatgaatgtg gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttatt attgtatgtg tgtacctggc ttcagatcca 300
gcagtaacca agacaggttt atcactaatg atggaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgcaaatat taataaaact ttaacaaaaa 420
tcagatccat aaaagaacct gtggctttgc tacaagaagt ctatagaaat tctgtgacag 480
atctttcacc aacagatata attacatata tagaaatatt agctgaatca tcttcattac 540
taggttacaa gaacaacact atctcagcca aggacaccct ttctaactca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggatac atttgtagtt tgggacaagt 660
tatctgtgaa tcataggaga acacatctta caaaactcat gcacactgtt gaacaagcta 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaaat tcaacggata 780
tagctctcaa agttttcttt tttgattcat ataacatgaa acatattcat cctcatatga 840
atatggatgg agactacata aatatatttc caaagagaaa agctgcatat gattcaaatg 900
gcaatgttgc agttgcattt ttatattata agagtattgg tcctttgctt tcatcatctg 960
acaacttctt attgaaacct caaaattatg ataattctga agaggaggaa agagtcatat 1020
cttcagtaat ttcagtctca atgagctcaa acccacccac attatatgaa cttgaaaaaa 1080
taacatttac attaagtcat cgaaaggtca cagataggta taggagtcta tgtgcatttt 1140
ggaattactc acctgatacc atgaatggca gctggtcttc agagggctgt gagctgacat 1200
actcaaatga gacccacacc tcatgccgct gtaatcacct gacacatttt gcaattttga 1260
tgtcctctgg tccttccatt ggtattaaag attataatat tcttacaagg atcactcaac 1320
taggaataat tatttcactg atttgtcttg ccatatgcat ttttaccttc tggttcttca 1380
gtgaaattca aagcaccagg acaacaattc acaaaaatct ttgctgtagc ctatttcttg 1440
ctgaacttgt ttttcttgtt gggatcaata caaatactaa taagctcttc tgttcaatca 1500
ttgccggact gctacactac ttctttttag ctgcttttgc atggatgtgc attgaaggca 1560
tacatctcta tctcattgtt gtgggtgtca tctacaacaa gggatttttg cacaagaatt 1620
tttatatctt tggctatcta agcccagccg tggtagttgg attttcggca gcactaggat 1680
acagatatta tggcacaacc aaagtatgtt ggcttagcac cgaaaacaac tttatttgga 1740
gttttatagg accagcatgc ctaatcattc ttgttaatct cttggctttt ggagtcatca 1800
tatacaaagt ttttcgtcac actgcagggt tgaaaccaga agttagttgc tttgagaaca 1860
taaggtettg tgcaagagga geeetegete ttetgtteet teteggeace acetggatet 1920
ttggggttct ccatgttgtg cacgcatcag tggttacagc ttacctcttc acagtcagca 1980
```

```
atgettteea ggggatgtte attittitat teetgiggigt titatetaga aagatteaag 2040
aagaatatta cagattgttc aaaaatgtcc cctgttgttt tggatgttta aggtaaacat 2100
aqaqaatggt ggataattac aactgcacaa aaataaaaat tccaagctgt ggatgaccaa 2160
tqtataaaaa tqactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagttttt ctgtttatgc tataggaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgtttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg teetgaagga aaccaetgge ttgatattte tgtgaetegt 2460
gttgcctttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataagagaa tgaaggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtatttt 2580
gaatgaactg ttttttctgt agactagctg agaaattgtt gacataaaat aaagaattga 2640
agaaacacat tttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tgtttctttt tctaatattc taaaaaaaaa aaaaaggttt 2760
aa
<210> 49
<211> 690
<212> PRT
<213> Homo sapiens
<400> 49
Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
                                    10
Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
                                25
Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
        35
                            40
                                                45
Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
                    70
                                        75
Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
                                    90
                85
Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
                               105
Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
       115
                           120
                                               125
Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
                       135
                                           140
Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
                   150
                                       155
Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Leu Leu Gly Tyr Lys
               165
                                   170
                                                      175
Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr
                                                   190
           180
                               185
```

(Glu	Phe	Val 195	Lys	Thr	Val	Asn	Asn 200	Phe	Val	Gln	Arg	Asp 205	Thr	Phe	Val
٦	Val	Trp 210	Asp	Lys	Leu	Ser	Val 215	Asn	His	Arg	Arg	Thr 220	His	Leu	Thr	Lys
	Leu 225	Met	His	Thr	Val	Glu 230	Gln	Ala	Thr	Leu	Arg 235	Ile	Ser	Gln	Ser	Phe 240
(Gln	Lys	Thr	Thr	Glu 245	Phe	Asp	Thr	Asn	Ser 250	Thr	Asp	Ile	Ala	Leu 255	Lys
٦	Val	Phe	Phe	Phe 260	Asp	Ser	Tyr	Asn	Met 265	Lys	His	Ile	His	Pro 270	His	Met
i	Asn	Met	Asp 275	Gly	Asp	Tyr	Ile	Asn 280	Ile	Phe	Pro	Lys	Arg 285	Lys	Ala	Ala
•	Гуr	Asp 290	Ser	Asn	Gly	Asn	Val 295	Ala	Val	Ala	Phe	Leu 300	Tyr	Tyr	Lys	Ser
	Ile 305	Gly	Pro	Leu	Leu	Ser 310	Ser	Ser	Asp	Asn	Phe 315	Leu	Leu	Lys	Pro	Gln 320
1	Asn	Tyr	Asp	Asn	Ser 325	Glu	Glu	Glu	Glu	Arg 330	Val	Ile	Ser	Ser	Val 335	Ile
;	Ser	Val	Ser	Met 340	Ser	Ser	Asn	Pro	Pro 345	Thr	Leu	Tyr	Glu	Leu 350	Glu	Lys
	Ile	Thr	Phe 355	Thr	Leu	Ser	His	Arg 360	Lys	Val	Thr	Asp	Arg 365	Tyr	Arg	Ser
]	Leu	Cys 370	Ala	Phe	Trp	Asn	Tyr 375	Ser	Pro	Asp	Thr	Met 380	Asn	Gly	Ser	Trp
	Ser 385	Ser	Glu	Gly	Cys	Glu 390	Leu	Thr	Tyr	Ser	Asn 395	Glu	Thr	His	Thr	Ser 400
(Cys	Arg	Cys	Asn	His 405	Leu	Thr	His	Phe	Ala 410	Ile	Leu	Met	Ser	Ser 415	Gly
]	Pro	Ser	Ile	Gly 420	Ile	Lys	Asp	Tyr	Asn 425	Ile	Leu	Thr	Arg	Ile 430	Thr	Gln
]	Leu	Gly	Ile 435	Ile	Ile	Ser	Leu	Ile 440	Cys	Leu	Ala	Ile	Cys 445	Ile	Phe	Thr
]	Phe	Trp 450	Phe	Phe	Ser	Glu	Ile 455	Gln	Ser	Thr	Arg	Thr 460	Thr	Ile	His	Lys
	Asn 465	Leu	Cys	Cys	Ser	Leu 470	Phe	Leu	Ala	Glu	Leu 475	Val	Phe	Leu	Val	Gly 480
	Ile	Asn	Thr	Asn	Thr 485	Asn	Lys	Leu	Phe	Cys 490	Ser	Ile	Ile	Ala	Gly 495	Leu

```
Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
            500
                                 505
Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
        515
                            520
                                                 525
Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
                        535
Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
                                         555
                    550
Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
                                     570
                565
Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
            580
                                 585
Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
                            600
                                                 605
Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
                                             620
Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
                    630
                                         635
Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
                645
                                     650
Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
                                                     670
            660
                                 665
Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
                            680
                                                 685
Leu Arg
    690
<210> 50
<211> 589
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (61)..(61)
<223> a, t, c or g
<400> 50
tggaaacata tcctccctca tatgaatatg gatggagact acataaatat atttccaaag 60
ngaaaagccg gcatatggat tcaaatggca atgttgcagt tgcattttta tattataaga 120
gtattggtcc ctttgctttc atcatctgac aacttcttat tgaaacctca aaattatgat 180
aattctgaag aggaggaaag agtcatatct tcagtaattt cagtctcaat gagctcaaac 240
ccacccacat tatatgaact tgaaaaaata acatttacat taagtcatcg aaaggtcaca 300
```

gataggtata ggagtctatg tggcattttg gaatactcac ctgataccat gaatggcagc 360

tggtcttcag agggctgtga gctgacatac tcaaatgaga cccacacctc atgccgct aatcacctga cacattttgc aattttgatg tcctctggtc cttccattgg tattaaag tataatattc ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttg atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga	at 480
<210> 51 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 51 ggtaatgagc tccattacag	20
<210> 52 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 52 ggagtagaaa gcgcatgg	18
<210> 53 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 53 cacctgatac catgaatggc ag	22
<210> 54 <211> 18 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 54 cgagctcgaa ttaattcg	18
<210> 55 <211> 18 <212> DNA <213> Artificial Sequence	

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 55
ggatctcctg agctcagg
                                                                  18
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 56
                                                                  23
cctagttgag tgatccttgt aag
<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 57
                                                                  50
atgagacca cacctcatgc cgctgtaatc acctgacaca ttttgcaatt
<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens
<400> 58
gctcccagcc aagaacctcg gggccgctgc gcggtgggga ggagttcccc gaaacccggc 60
cgctaagcga ggcctcctcc tcccgcagat ccgaacggcc tgggcggggt caccccggct 120
gggacaagaa gccgccgct gcctgcccgg gcccggggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcgggtg tcttgggcac ctacccgtgg ggcccgtaag gcgctactat ataaggctgc 300
cggcccggag ccgccgcgcc gtcagagcag gagcgctgcg tccaggatct agggccacga 360
ccatcccaac ccggcactca cagccccgca gcgcatcccg gtcgccgccc agcctcccgc 420
acceccateg eeggagetge geeggaggee eeagggaggt geeatgegga gegggtgtgt 480
ggtggtccac gtatggatcc tggccggcct ctggctggcc gtggccgggc gccccctcgc 540
cttctcggac gcggggcccc acgtgcacta cggctggggc gaccccatcc gcctgcggca 600
cctgtacacc tccggccccc acgggctctc cagctgcttc ctgcgcatcc gtgccgacgg 660
cgtcgtggac tgcgcgggg gccagagcgc gcacagtttg ctggagatca aggcagtcgc 720
tctgcggacc gtggccatca agggcgtgca cagcgtgcgg tacctctgca tgggcgccga 780
cggcaagatg caggggctgc ttcagtactc ggaggaagac tgtgctttcg aggaggagat 840
ccgcccagat ggctacaatg tgtaccgatc cgagaagcac cgcctcccgg tctccctgag 900
cagtgccaaa cagcggcagc tgtacaagaa cagaggcttt cttccactct ctcatttcct 960
gcccatgctg cccatggtcc cagaggagcc tgaggacctc aggggccact tggaatctga 1020
catgttctct tcgcccctgg agaccgacag catggaccca tttgggcttg tcaccggact 1080
ggaggccgtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
```

```
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg cttctacaag aacagtcctg 1200
agtccacgtt ctgtttagct ttaggaagaa acatctagaa gttgtacata ttcagagttt 1260
tccattggca gtgccagttt ctagccaata gacttgtctg atcataacat tgtaagcctg 1320
tagettgeee agetgetgee tgggeeecea ttetgeteee tegaggttge tggaeaaget 1380
gctgcactgt ctcagttctg cttgaatacc tccatcgatg gggaactcac ttcctttgga 1440
aaaattetta tgtcaagetg aaatteteta atttttete ateaetteee caggageage 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgta aaacagcagg 1560
taaatttcac tcaaccccat gtgggaattg atctatatct ctacttccag ggaccatttg 1620
cccttcccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcctggag ccccactcca gccctgggac aacttgagaa ttccccctga 1740
ggccagttct gtcatggatg ctgtcctgag aataacttgc tgtcccggtg tcacctgctt 1800
ccatctccca gcccaccage cctctgccca cctcacatgc ctccccatgg attggggcct 1860
atttgaagac cccaagtctt gtcaataact tgctgtgtgg aagcagcggg ggaagaccta 1980
gaaccettte eccageaett ggtttteeaa eatgatattt atgagtaatt tattttgata 2040
tgtacatete ttattttett acattattta tgcccccaaa ttatatttat gtatgtaagt 2100
gaggtttgtt ttgtatatta aaatggagtt tgtttgt
<210> 59
<211> 216
<212> PRT
<213> Homo sapiens
<400> 59
Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
                                    10
Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
                                25
His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
                            40
                                                45
        35
Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
                85
                                    90
Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
                               105
Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Glu Ile Arg Pro
                           120
                                               125
       115
Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
                       135
    130
Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
                   150
                                       155
Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
                                                       175
               165
                                   170
```

```
Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
                                 185
            180
Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
                             200
Val Arg Ser Pro Ser Phe Glu Lys
    210
                        215
<210> 60
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 60
                                                                   26
atccgcccag atggctacaa tgtgta
<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 61
                                                                   42
gcctcccggt ctccctgagc agtgccaaac agcggcagtg ta
<210> 62
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 62
                                                                   22
ccagtccggt gacaagccca aa
<210> 63
<211> 1295
<212> DNA
<213> Homo sapiens
<400> 63
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc tcgacctcct 60
cagagcagcc ggctgccgcc ccgggaagat ggcgaggagg agccgccacc gcctcctct 120
gctgctgctg cgctacctgg tggtcgccct gggctatcat aaggcctatg ggttttctgc 180
cccaaaagac caacaagtag tcacagcagt agagtaccaa gaggctattt tagcctgcaa 240
aaccccaaag aagactgttt cctccagatt agagtggaag aaactgggtc ggagtgtctc 300
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg agatgataga 360
```

```
tttcaatatc cggatcaaaa atgtgacaag aagtgatgcg gggaaatatc gttgtgaagt 420
tagtgcccca tctgagcaag gccaaaacct ggaagaggat acagtcactc tggaagtatt 480
agtggctcca gcagttccat catgtgaagt accetettet getetgagtg gaactgtggt 540
agagetaega tgteaagaea aagaagggaa teeageteet gaataeacat ggtttaagga 600
tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca gctcatacac 660
aatgaataca aaaactggaa ctctgcaatt taatactgtt tccaaactgg acactggaga 720
atattcctgt gaagcccgca attctgttgg atatcgcagg tgtcctggga aacgaatgca 780
agtagatgat ctcaacataa gtggcatcat agcagccgta gtagttgtgg ccttagtgat 840
ttccgtttgt ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa atgtgcagtg 960
gctcacgcct gtaatcccag cactttggaa ggccgcggcg ggcggatcac gaggtcagga 1020
gttctagacc agtctggcca atatggtgaa accccatctc tactaaaata caaaaattag 1080
ctgggcatgg tggcatgtgc ctgcagttcc agctgcttgg gagacaggag aatcacttga 1140
accegggagg eggaggttge agtgagetga gateaegeea etgeagteea geetgggtaa 1200
tgtagaattc ttacaataaa tatagcttga tattc
<210> 64
<211> 312
<212> PRT
<213> Homo sapiens
<400> 64
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg Tyr
                 5
                                    10
Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser Ala Pro
            20
Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
     50
                        55
                                            60
Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65
                    70
Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
                85
                                    90
Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
           100
                               105
                                                   110
Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
       115
                           120
                                               125
Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
                       135
Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
145
                   150
                                       155
Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
               165
                                   170
Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
```

180 185 190

Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp 200 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg 215 220 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile 230 235 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu 250 245 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser 265 Phe Gln Lys Ser Asn Ser Ser Ser Lys Ala Thr Thr Met Ser Glu Asn 280 285 275 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala 295 300 Gly Gly Ser Arg Gly Gln Glu Phe 310 <210> 65 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 65 22 atcgttgtga agttagtgcc cc <210> 66 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 66 23 acctgcgata tccaacagaa ttg <210> 67 <211> 48 <212> DNA <213> Artificial Sequence

<223> Description of Artificial Sequence: Synthetic

<220>

```
<400> 67
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc
                                                                  48
<210> 68
<211> 2639
<212> DNA
<213> Homo sapiens
<400> 68
gacatcggag gtgggctagc actgaaactg cttttcaaga cgaggaagag gaggagaaag 60
agaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata ttttacttct 180
aaataaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaagta 240
catcaatatt atatcattaa ggaaatagta accttctctt ctccaatatg catgacattt 300
ttggacaatg caattgtggc actggcactt atttcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat cttccttatc aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagtac 540
aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttggt 600
ttacacccag atccatttat atggaagcat ctacagtgga ttgtaatgat ttaggtcttt 660
taactttccc agccagattg ccagctaaca cacagattct tctcctacag actaacaata 720
ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcctttctg 840
tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
acttacaaga actctatatt aatcacaact tgctttctac aatttcacct ggagccttta 960
ttggcctaca taatcttctt cgacttcatc tcaattcaaa tagattgcag atgatcaaca 1020
gtaagtggtt tgatgctctt ccaaatctag agattctgat gattggggaa aatccaatta 1080
tcagaatcaa agacatgaac tttaagcctc ttatcaatct tcgcagcctg gttatagctg 1140
gtataaacct cacagaaata ccagataacg ccttggttgg actggaaaac ttagaaagca 1200
tctcttttta cgataacagg cttattaaag taccccatgt tgctcttcaa aaagttgtaa 1260
atctcaaatt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttta 1320
gcaatatgct acacttaaaa gagttgggga taaataatat gcctgagctg atttccatcg 1380
atagtettge tgtggataac etgecagatt taagaaaaat agaagetaet aacaacceta 1440
qattqtctta cattcacccc aatqcatttt tcaqactccc caagctggaa tcactcatgc 1500
tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaacctca 1560
aggaaatcag catacacagt aaccccatca ggtgtgactg tgtcatccgt tggatgaaca 1620
tgaacaaaac caacattcga ttcatggagc cagattcact gttttgcgtg gacccacctg 1680
aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgtctcc 1740
ctcttatagc tcctgagagc tttccttcta atctaaatgt agaagctggg agctatgttt 1800
cettteactg tagagetact geagaaceae ageetgaaat etactggata acacettetg 1860
gtcaaaaact cttgcctaat accctgacag acaagttcta tgtccattct gagggaacac 1920
tagatataaa tggcgtaact cccaaagaag ggggtttata tacttgtata gcaactaacc 1980
tagttggcgc tgacttgaag tctgttatga tcaaagtgga tggatctttt ccacaagata 2040
acaatqqctc tttqaatatt aaaataaqaq atattcaggc caattcagtt ttggtgtcct 2100
ggaaagcaag ttctaaaatt ctcaaatcta gtgttaaatg gacagccttt gtcaagactg 2160
aaaattctca tgctgcgcaa agtgctcgaa taccatctga tgtcaaggta tataatctta 2220
ctcatctgaa tccatcaact gagtataaaa tttgtattga tattcccacc atctatcaga 2280
aaaacagaaa aaaatgtgta aatgtcacca ccaaaggttt gcaccctgat caaaaagagt 2340
atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
gtgtgatatg tettateage tgeetetete cagaaatgaa etgtgatggt ggacacaget 2460
atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
taaatctctg ggaagcagga aaagaaaaaa gtacatcact gaaagtaaaa gcaactgtta 2580
taggtttacc aacaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639
```

```
<211> 708
```

<212> PRT

<213> Homo sapiens

<400> 69

Met Lys Asp Met Pro Leu Arg Ile His Val Leu Leu Gly Leu Ala Ile 1 5 10 15

Thr Thr Leu Val Gln Ala Val Asp Lys Lys Val Asp Cys Pro Arg Leu 20 25 30

Cys Thr Cys Glu Ile Arg Pro Trp Phe Thr Pro Arg Ser Ile Tyr Met 35 40 45

Glu Ala Ser Thr Val Asp Cys Asn Asp Leu Gly Leu Leu Thr Phe Pro
50 55 60

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Gln Thr Asn Asn 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys 580 585 590

Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn 595 600 Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn 615 620 Asn Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile 625 630 635 Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp 650 Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala 665 Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys 675 680 685 Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro 690 695 700 Thr Asn Met Ser 705 <210> 70 <211> 1305 <212> DNA <213> Homo sapiens <400> 70 gcccgggact ggcgcaaggt gcccaagcaa ggaaagaaat aatgaagaga cacatgtgtt 60 agctgcagcc ttttgaaaca cgcaagaagg aaatcaatag tgtggacagg gctggaacct 120 ttaccacgct tgttggagta gatgaggaat gggctcgtga ttatgctgac attccagcat 180 gaatctggta gacctgtggt taacccgttc cctctccatg tgtctcctcc tacaaagttt 240 tgttcttatg atactgtgct ttcattctgc cagtatgtgt cccaagggct gtctttgttc 300 ttcctctggg ggtttaaatg tcacctgtag caatgcaaat ctcaaggaaa tacctagaga 360 tetteeteet gaaacagtet taetgtatet ggaeteeaat eagateacat etatteecaa 420 tgaaattttt aaggacctcc atcaactgag agttctcaac ctgtccaaaa atggcattga 480 gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tggacttgtc 540 cgacaatcgg attcaaagtg tgcacaaaaa tgccttcaat aacctgaagg ccagggccag 600 aattgccaac aacccctggc actgcgactg tactctacag caagttctga ggagcatggc 660 gtccaatcat gagacagccc acaacgtgat ctgtaaaaacg tccgtgttgg atgaacatgc 720 tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaa 780 taccgattat gccatgctgg tcaccatgtt tggctggttc actatggtga tctcatatgt 840 ggtatattat gtgaggcaaa atcaggagga tgcccggaga cacctcgaat acttgaaatc 900 cctgccaagc aggcagaaga aagcagatga acctgatgat attagcactg tggtatagtg 960 tccaaactga ctgtcattga gaaagaaaga aagtagtttg cgattgcagt agaaataagt 1020 ggtttacttc tcccatccat tgtaaacatt tgaaactttg tatttcagtt ttttttgaat 1080 tatgccactg ctgaactttt aacaaacact acaacataaa taatttgagt ttaggtgatc 1140 caccccttaa ttgtaccccc gatggtatat ttctgagtaa gctactatct gaacattagt 1200 tagatccatc tcactattta ataatgaaat ttatttttt aatttaaaag caaataaaag 1260

1305

<210> 71 <211> 259

<212> PRT <213> Homo sapiens

<400> 71

Met Asn Leu Val Asp Leu Trp Leu Thr Arg Ser Leu Ser Met Cys Leu 1 5 10 15

Leu Leu Gln Ser Phe Val Leu Met Ile Leu Cys Phe His Ser Ala Ser 20 25 30

Met Cys Pro Lys Gly Cys Leu Cys Ser Ser Ser Gly Gly Leu Asn Val 35 40 45

Thr Cys Ser Asn Ala Asn Leu Lys Glu Ile Pro Arg Asp Leu Pro Pro 50 55 60

Glu Thr Val Leu Leu Tyr Leu Asp Ser Asn Gln Ile Thr Ser Ile Pro 65 70 75 80

Asn Glu Ile Phe Lys Asp Leu His Gln Leu Arg Val Leu Asn Leu Ser 85 90 95

Lys Asn Gly Ile Glu Phe Ile Asp Glu His Ala Phe Lys Gly Val Ala 100 105 110

Glu Thr Leu Gln Thr Leu Asp Leu Ser Asp Asn Arg Ile Gln Ser Val 115 120 125

His Lys Asn Ala Phe Asn Asn Leu Lys Ala Arg Ala Arg Ile Ala Asn 130 135 140

Asn Pro Trp His Cys Asp Cys Thr Leu Gln Gln Val Leu Arg Ser Met 145 150 155 160

Ala Ser Asn His Glu Thr Ala His Asn Val Ile Cys Lys Thr Ser Val 165 170 175

Leu Asp Glu His Ala Gly Arg Pro Phe Leu Asn Ala Ala Asn Asp Ala 180 185 190

Asp Leu Cys Asn Leu Pro Lys Lys Thr Thr Asp Tyr Ala Met Leu Val 195 200 205

Thr Met Phe Gly Trp Phe Thr Met Val Ile Ser Tyr Val Val Tyr Tyr 210 215 220

Val Arg Gln Asn Gln Glu Asp Ala Arg Arg His Leu Glu Tyr Leu Lys 225 230 235 240

Ser Leu Pro Ser Arg Gln Lys Lys Ala Asp Glu Pro Asp Asp Ile Ser 245 250 255

Thr Val Val

<210> 72 <211> 2290

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Leu Val Leu Gly
20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala 55 Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His 90 85 Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro 100 105 Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser 120 Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn 135 130 Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp 150 Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp 170 Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser 185 190 Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr 200 Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His 220 210 215 Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg 230 Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr 250 Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His 260 Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly 290 295 300 Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly 310 Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr 330 Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu 340 345 350

Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser 360 355 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu 390 395 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro 410 Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln 425 Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala 440 Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly 470 475 Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu 485 490 Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu 505 His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr 520 515 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr 535 540 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala 550 555 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu 565 570 Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn 585 Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser 595 600 605 Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile 615 620 610

<210> 74

<211> 22

<212> DNA

<213> Artificial Sequence

	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 74 tcacctggag cctttattgg cc	22
	<210> 75 <211> 23 <212> DNA <213> Artificial Sequence	
	<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe</pre>	
	<400> 75 ataccagcta taaccaggct gcg	23
	<210> 76 <211> 52 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 76 caacagtaag tggtttgatg ctcttccaaa tctagagatt ctgatgattg gg	50 52
	<210> 77 <211> 22 <212> DNA <213> Artificial Sequence	
•	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 77 ccatgtgtct cctcctacaa ag	22
	<210> 78 <211> 23 <212> DNA <213> Artificial Sequence	
	<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
	<400> 78 gggaatagat gtgatctgat tgg	23

```
<210> 79
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 79
cacctgtagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg
                                                                   50
<210> 80
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 80
                                                                   22
agcaaccgcc tgaagctcat cc
<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 81
                                                                   24
aaggcgcggt gaaagatgta gacg
<210> 82
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 82
                                                                   50
gactacatgt ttcaggacct gtacaacctc aagtcactgg aggttggcga
<210> 83
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 83
cccacgcgtc cgcacctcgg ccccgggctc cgaagcggct cggggggcgcc ctttcggtca 60
acatcgtagt ccacccctc cccatcccca gccccgggg attcaggctc gccagcgccc 120
agccagggag ccggccggga agcgcgatgg gggccccagc cgcctcgctc ctgctcctgc 180
```

```
tectgetgtt egeetgetge tgggegeeeg geggggeeaa eeteteeeag gaegaeagee 240
agccctggac atctgatgaa acagtggtgg ctggtggcac cgtggtgctc aagtgccaag 300
tgaaagatca cgaggactca tccctgcaat ggtctaaccc tgctcagcag actctctact 360
ttggggagaa gagagccctt cgagataatc gaattcagct ggttacctct acgccccacg 420
ageteageat cageateage aatgtggeee tggeagaega gggegagtae acetgeteaa 480
tetteaetat geetgtgega aetgeeaagt eeetegteae tgtgetagga atteeaeaga 540
agcccatcat cactggttat aaatcttcat tacgggaaaa agacacagcc accctaaact 600
gtcagtcttc tgggagcaag cctgcagccc ggctcacctg gagaaagggt gaccaagaac 660
tccacggaga accaacccgc atacaggaag atcccaatgg taaaaccttc actgtcagca 720
gctcggtgac attccaggtt acccgggagg atgatggggc gagcatcgtg tgctctgtga 780
accatgaatc tctaaaggga gctgacagat ccacctctca acgcattgaa gttttataca 840
caccaactgc gatgattagg ccagacctc cccatcctcg tgagggccag aagctgttgc 900
tacactgtga gggtcgcggc aatccagtcc cccagcagta cctatgggag aaggagggca 960
gtgtgccacc cctgaagatg acccaggaga gtgccctgat cttccctttc ctcaacaaga 1020
gtgacagtgg cacctacggc tgcacagcca ccagcaacat gggcagctac aaggcctact 1080
acacceteaa tgttaatgae eecagteegg tgeeeteete etceageace taceaegeea 1140
tcatcggtgg gatcgtggct ttcattgtct tcctgctgct catcatgctc atcttccttg 1200
gccactactt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
atgctccaga cgcggacacg gccatcatca atgcagaagg cgggcagtca ggaggggacg 1320
acaagaagga atatttcatc tagaggcgcc tgcccacttc ctgcgccccc caggggccct 1380
gtggggactg ctggggccgt caccaacccg gacttgtaca gagcaaccgc agggccgccc 1440
ctcccgcttg ctccccagcc cacccaccc cctgtacaga atgtctgctt tgggtgcggt 1500
ccctttccgt ggcttctctg catttgggtt attattattt ttgtaacaat cccaaatcaa 1620
atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
                                                                1685
aaaca
<210> 84
<211> 398
<212> PRT
<213> Homo sapiens
<400> 84
Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Leu Phe Ala
Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
                                                    30
                                25
Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
        35
                            40
                                               45
Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
                                        75
65
```

Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile 100 105 110

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly

120

90

125

85

115

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu His Cys Glu Gly
245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn 290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser 305 310 315 320

Pro Val Pro Ser Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile 325 330 335

Val Ala Phe Ile Val Phe Leu Leu Ile Met Leu Ile Phe Leu Gly 340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys 355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu 370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile 385 390 395

<210> 85

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe										
<400>		22									
<210>											
<211>											
<212>											
<213>	Artificial Sequence										
<220>											
	Description of Artificial Sequence: Synthetic										
-220	oligonucleotide probe										
<400>											
aaccto	ggaat gtcaccgagc tg	22									
<210>	27										
<211>											
<212>											
	Artificial Sequence										
<220>											
<223>	Description of Artificial Sequence: Synthetic										
	oligonucleotide probe										
<400>	97										
		26									
cccage	acag tgacgaggga cttggc	20									
<210>	88										
<211>	50										
<212>	DNA										
<213>	Artificial Sequence										
<220>	Description of Autificial Company, Completion										
<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe										
	origonacreotide probe										
<400>	88										
aagaca	acago caccotaaac tgtcagtott otgggagoaa gootgcagoo	50									
<210>											
<211>											
<212>											
<213>	Artificial Sequence										
<220>											
	Description of Artificial Sequence: Synthetic										
	oligonucleotide probe										
<400>		_									
gccct	gcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt	50									
<210>	90										
<211>											
<212>											

```
<400> 90
gggggttagg gaggaaggaa tccaccccca ccccccaaa cccttttctt ctcctttcct 60
ggcttcggac attggagcac taaatgaact tgaattgtgt ctgtggcgag caggatggtc 120
gctgttactt tgtgatgaga tcggggatga attgctcgct ttaaaaatgc tgctttggat 180
totgttgctg gagacgtoto tttgttttgc cgctggaaac gttacagggg acgtttgcaa 240
agagaagatc tgttcctgca atgagataga aggggaccta cacgtagact gtgaaaaaaa 300
gggcttcaca agtctgcagc gtttcactgc cccgacttcc cagttttacc atttatttct 360
gcatggcaat teceteacte gaetttteee taatgagtte getaactttt ataatgeggt 420
tagtttgcac atggaaaaca atggcttgca tgaaatcgtt ccgggggctt ttctggggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtcttttc gaaagcagac 540
ttttctgggg ctggacgatc tggaatatct ccaggctgat tttaatttat tacgagatat 600
agacccgggg gccttccagg acttgaacaa gctggaggtg ctcattttaa atgacaatct 660
catcagcacc ctacctgcca acgtgttcca gtatgtgccc atcacccacc tcgacctccg 720
gggtaacagg ctgaaaacgc tgccctatga ggaggtcttg gagcaaatcc ctggtattgc 780
ggagateetg etagaggata accettggga etgeacetgt gatetgetet eeetgaaaga 840
atggctggaa aacattccca agaatgccct gatcggccga gtggtctgcg aagcccccac 900
cagactgcag ggtaaagacc tcaatgaaac caccgaacag gacttgtgtc ctttgaaaaa 960
ccgagtggat tctagtctcc cggcgccccc tgcccaagaa gagacctttg ctcctggacc 1020
cctqccaact cctttcaaqa caaatqqqca aqaqqatcat qccacaccag ggtctgctcc 1080
aaacggaggt acaaagatcc caggcaactg gcagatcaaa atcagaccca cagcagcgat 1140
agcgacgggt agctccagga acaaaccctt agctaacagt ttaccctgcc ctgggggctg 1200
cagctgcgac cacatcccag ggtcgggttt aaagatgaac tgcaacaaca ggaacgtgag 1260
cagcttggct gatttgaagc ccaagctctc taacgtgcag gagcttttcc tacgagataa 1320
caagatccac agcatccgaa aatcgcactt tgtggattac aagaacctca ttctgttgga 1380
tctgggcaac aataacatcg ctactgtaga gaacaacact ttcaagaacc ttttggacct 1440
caggtggcta tacatggata gcaattacct ggacacgctg tcccgggaga aattcgcggg 1500
gctgcaaaac ctagagtacc tgaacgtgga gtacaacgct atccagctca tcctcccggg 1560
cactttcaat gccatgccca aactgaggat cctcattctc aacaacaacc tgctgaggtc 1620
cctgcctgtg gacgtgttcg ctggggtctc gctctctaaa ctcagcctgc acaacaatta 1680
cttcatgtac ctcccggtgg caggggtgct ggaccagtta acctccatca tccagataga 1740
cctccacgga aacccctggg agtgctcctg cacaattgtg cctttcaagc agtgggcaga 1800
acgcttgggt tccgaagtgc tgatgagcga cctcaagtgt gagacgccgg tgaacttctt 1860
tagaaaggat ttcatgctcc tctccaatga cgagatctgc cctcagctgt acgctaggat 1920
ctcqcccacq ttaacttcqc acaqtaaaaa cagcactggg ttggcggaga ccgggacgca 1980
ctccaactcc tacctagaca ccagcagggt gtccatctcg gtgttggtcc cgggactgct 2040
gctggtgttt gtcacctccg ccttcaccgt ggtgggcatg ctcgtgttta tcctgaggaa 2100
ccgaaagcgg tccaagagac gagatgccaa ctcctccgcg tccgagatta attccctaca 2160
gacagtetgt gactetteet actggcacaa tgggcettae aacgcagatg gggcecacag 2220
agtgtatgac tgtggctctc actcgctctc agactaagac cccaacccca ataggggagg 2280
gcagagggaa ggcgatacat ccttccccac cgcaggcacc ccgggggctg gaggggcgtg 2340
tacccaaatc cccgcgccat cagcctggat gggcataagt agataaataa ctgtgagctc 2400
gcacaaccga aagggcctga ccccttactt agctccctcc ttgaaacaaa gagcagactg 2460
tggagagctg ggagagcgca gccagctcgc tctttgctga gagccccttt tgacagaaag 2520
cccagcacga ccctgctgga agaactgaca gtgccctcgc cctcggcccc ggggcctgtg 2580
gggttggatg ccgcggttct atacatatat acatatatcc acatctatat agagagatag 2640
atatctattt ttcccctgtg gattagcccc gtgatggctc cctgttggct acgcagggat 2700
gggcagttgc acgaaggcat gaatgtattg taaataagta actttgactt ctgac
<210> 91
```

<211> 696 <212> PRT <213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala

1

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn 20 Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu 90 Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His 100 Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly 120 Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp 135 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile 150 155 145 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr 165 170 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu 180 185 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu 200 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys 215 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val 230 235 240 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr 250 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro 270 260 265 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr 280 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala 295

Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg

Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn Leu Ile Leu Leu Asp Leu Gly Asn Asn Ile Ala Thr Val Glu Asn Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu

610 615 620

Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val 625 630 635 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser 650 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr 665 670 Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 680 675 Cys Gly Ser His Ser Leu Ser Asp <210> 92 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 92 gttggatctg ggcaacaata ac 22 <210> 93 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 93 24 attgttgtgc aggctgagtt taag <210> 94 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 94 45 ggtggctata catggatagc aattacctgg acacgctgtc ccggg <210> 95 <211> 2226 <212> DNA

<213> Homo sapiens

```
<400> 95
agtegactge gteccetgta eeeggegeea getgtgttee tgaceeeaga ataacteagg 60
gctgcaccgg gcctggcagc gctccgcaca catttcctgt cgcggcctaa gggaaactgt 120
tggccgctgg gcccgcgggg ggattcttgg cagttggggg gtccgtcggg agcgagggcg 180
gaggggaagg gagggggaac cgggttgggg aagccagctg tagagggcgg tgaccgcgct 240
ccagacacag ctctgcgtcc tcgagcggga cagatccaag ttgggagcag ctctgcgtgc 300
ggggcctcag agaatgaggc cggcgttcgc cctgtgcctc ctctggcagg cgctctggcc 360
cgggccgggc ggcggcgaac accccactgc cgaccgtgct ggctgctcgg cctcgggggc 420
ctgctacagc ctgcaccacg ctaccatgaa gcggcaggcg gccgaggagg cctgcatcct 480
gcgaggtggg gcgctcagca ccgtgcgtgc gggcgccgag ctgcgcgctg tgctcgcgct 540
cctgcgggca ggcccagggc ccggaggggg ctccaaagac ctgctgttct gggtcgcact 600
ggagcgcagg cgttcccact gcaccctgga gaacgagcct ttgcggggtt tctcctggct 660
gtcctccgac cccggcggtc tcgaaagcga cacgctgcag tgggtggagg agccccaacg 720
ctcctgcacc gcgcggagat gcgcggtact ccaggccacc ggtggggtcg agcccgcagg 780
ctggaaggag atgcgatgcc acctgcgcgc caacggctac ctgtgcaagt accagtttga 840
ggtcttgtgt cctgcgccgc gccccggggc cgcctctaac ttgagctatc gcgcgccctt 900
ccagctgcac agegeegete tggaetteag tecacetggg acegaggtga gtgegetetg 960
ccqqqqacaq ctcccqatct caqttacttq catcqcqqac gaaatcgqcg ctcgctggga 1020
caaactctcg ggcgatgtgt tgtgtccctg ccccgggagg tacctccgtg ctggcaaatg 1080
cgcagagctc cctaactgcc tagacgactt gggaggcttt gcctgcgaat gtgctacggg 1140
cttcgagctg gggaaggacg gccgctcttg tgtgaccagt ggggaaggac agccgaccct 1200
tggggggacc ggggtgccca ccaggcgccc gccggccact gcaaccagcc ccgtgccgca 1260
gagaacatgg ccaatcaggg tcgacgagaa gctgggagag acaccacttg tccctgaaca 1320
agacaattca gtaacatcta ttcctgagat tcctcgatgg ggatcacaga gcacgatgtc 1380
taccetteaa atgteeette aageegagte aaaggeeact ateaceeeat cagggagegt 1440
gatttccaag tttaattcta cgacttcctc tgccactcct caggetttcg actcctcctc 1500
tgccgtggtc ttcatatttg tgagcacagc agtagtagtg ttggtgatct tgaccatgac 1560
agtactgggg cttgtcaagc tctgctttca cgaaagcccc tcttcccagc caaggaagga 1620
gtctatgggc ccgccgggcc tggagagtga tcctgagccc gctgctttgg gctccagttc 1680
tgcacattgc acaaacaatg gggtgaaagt cggggactgt gatctgcggg acagagcaga 1740
gggtgccttg ctggcggagt cccctcttgg ctctagtgat gcatagggaa acaggggaca 1800
tgggcactcc tgtgaacagt ttttcacttt tgatgaaacg gggaaccaag aggaacttac 1860
ttgtgtaact gacaatttct gcagaaatcc cccttcctct aaattccctt tactccactg 1920
aggagctaaa tcagaactgc acactccttc cctgatgata gaggaagtgg aagtgccttt 1980
aggatggtga tactggggga ccgggtagtg ctggggagag atattttctt atgtttattc 2040
ggagaatttg gagaagtgat tgaacttttc aagacattgg aaacaaatag aacacaatat 2100
aatttacatt aaaaaataat ttctaccaaa atggaaagga aatgttctat gttgttcagg 2160
ctaggagtat attggttcga aatcccaggg aaaaaaataa aaataaaaaa ttaaaggatt 2220
                                                                  2226
gttgat
<210> 96
<211> 490
<212> PRT
<213> Homo sapiens
<400> 96
Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
                                                         15
  1
                                     10
Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
             20
Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
                             40
```

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val

Arg 65	Ala	Gly	Ala	Glu	Leu 70	Arg	Ala	Val	Leu	75	Leu	Leu	Arg	Ala	80 GIA
Pro	Gly	Pro	Gly	Gly 85	Gly	Ser	Lys	Asp	Leu 90	Leu	Phe	Trp	Val	Ala 95	Leu
Glu	Arg	Arg	Arg 100	Ser	His	Cys	Thr	Leu 105	Glu	Asn	Glu	Pro	Leu 110	Arg	Gly
Phe	Ser	Trp 115	Leu	Ser	Ser	Asp	Pro 120	Gly	Gly	Leu	Glu	Ser 125	Asp	Thr	Leu
Gln	Trp 130	Val	Glu	Glu	Pro	Gln 135	Arg	Ser	Cys	Thr	Ala 140	Arg	Arg	Cys	Ala
Val 145	Leu	Gln	Ala	Thr	Gly 150	Gly	Val	Glu	Pro	Ala 155	Gly	Trp	Lys	Glu	Met 160
Arg	Cys	His	Leu	Arg 165	Ala	Asn	Gly	Tyr	Leu 170	Cys	Lys	Tyr	Gln	Phe 175	Glu
Val	Leu	Cys	Pro 180	Ala	Pro	Arg	Pro	Gly 185	Ala	Ala	Ser	Asn	Leu 190	Ser	Tyr
Arg	Ala	Pro 195	Phe	Gln	Leu	His	Ser 200	Ala	Ala	Leu	Asp	Phe 205	Ser	Pro	Pro
Gly	Thr 210	Glu	Val	Ser	Ala	Leu 215	Cys	Arg	Gly	Gln	Leu 220	Pro	Ile	Ser	Val
Thr 225	Cys	Ile	Ala	Asp	Glu 230	Ile	Gly	Ala	Arg	Trp 235	Asp	Lys	Leu	Ser	Gly 240
Asp	Val	Leu	Cys	Pro 245	Cys	Pro	Gly	Arg	Tyr 250	Leu	Arg	Ala	Gly	Lys 255	Cys
Ala	Glu	Leu	Pro 260	Asn	Cys	Leu	Asp	Asp 265	Leu	Gly	Gly	Phe	Ala 270	Суѕ	Glu
Cys	Ala	Thr 275	Gly	Phe	Glu	Leu	Gly 280	Lys	Asp	Gly	Arg	Ser 285	Cys	Val	Thr
Ser	Gly 290	Glu	Gly	Gln	Pro	Thr 295	Leu	Gly	Gly	Thr	Gly 300	Val	Pro	Thr	Arg
Arg 305	Pro	Pro	Ala	Thr	Ala 310	Thr	Ser	Pro	Val	Pro 315	Gln	Arg	Thr	Trp	Pro 320
Ile	Arg	Val	Asp	Glu 325	Lys	Leu	Gly	Glu	Thr 330	Pro	Leu	Val	Pro	Glu 335	Gln
Asp	Asn	Ser	Val 340	Thr	Ser	Ile	Pro	Glu 345	Ile	Pro	Arg	Trp	Gly 350	Ser	Gln
Ser	Thr	Met	Ser	Thr	Leu	Gln	Met	Ser	Leu	Gln	Ala	Glu	Ser	Lys	Ala

355 360 365

Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr 375 370 Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ser Ala Val Val Phe 390 395 Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr 410 415 Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln 420 425 Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu 440 Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val 450 455 Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu 470 475 465 Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala 485 <210> 97 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 97 24 tggaaggaga tgcgatgcca cctg <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 98 20 tgaccagtgg ggaaggacag <210> 99 <211> 20 <212> DNA <213> Artificial Sequence <220>

<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```
<400> 99
                                                                   20
acagagcaga gggtgccttg
<210> 100
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 100
                                                                   24
tcagggacaa gtggtgtctc tccc
<210> 101
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 101
tcagggaagg agtgtgcagt tctg
                                                                   24
<210> 102
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 102
                                                                   50
acageteceg ateteagtta ettgcatege ggaegaaate ggegeteget
<210> 103
<211> 2026
<212> DNA
<213> Homo sapiens
<400> 103
cggacgcgtg ggattcagca gtggcctgtg gctgccagag cagctcctca ggggaaacta 60
agcgtcgagt cagacggcac cataatcgcc tttaaaagtg cctccgccct gccggccgcg 120
tatccccgg ctacctgggc cgcccgcgg cggtgcgcgc gtgagaggga gcgcgcgggc 180
agccgagcgc cggtgtgagc cagcgctgct gccagtgtga gcggcggtgt gagcgcggtg 240
ggtgcggagg ggcgtgtgtg ccggcgcgcg cgccgtgggg tgcaaacccc gagcgtctac 300
gctgccatga ggggcgcgaa cgcctgggcg ccactctgcc tgctgctggc tgccgccacc 360
cagctctcgc ggcagcagtc cccagagaga cctgttttca catgtggtgg cattcttact 420
ggagagtctg gatttattgg cagtgaaggt tttcctggag tgtaccctcc aaatagcaaa 480
tgtacttgga aaatcacagt tcccgaagga aaagtagtcg ttctcaattt ccgattcata 540
gacctcgaga gtgacaacct gtgccgctat gactttgtgg atgtgtacaa tggccatgcc 600
```

```
aatggccagc gcattggccg cttctgtggc actttccggc ctggagccct tgtgtccagt 660
ggcaacaaga tgatggtgca gatgatttct gatgccaaca cagctggcaa tggcttcatg 720
gccatgttct ccgctgctga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagacett ceggetettt taaaacecec aactggecag acegggatta eeetgeagga 840
gtcacttgtg tgtggcacat tgtagcccca aagaatcagc ttatagaatt aaagtttgag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gtttaatggc 960
qqqqaaqtca acqatqctaq aaqaattqqa aagtattgtg gtgatagtcc acctgcgcca 1020
attgtgtctg agagaaatga acttcttatt cagtttttat cagacttaag tttaactgca 1080
gatgggttta ttggtcacta catattcagg ccaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg ggtttaaaac ccaccgtggc cttgtgtcaa 1200
caaaagtgta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
gccggcactg ttatcacaac catcactcgc gatgggagtt tgcacgccac agtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgcc 1380
aggctgactg tcgtctgcaa gcagtgccct ctcctcagaa gaggtctaaa ttacattatt 1440
atgggccaag taggtgaaga tgggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gccttaaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgccat tgcctttgaa agatctatgt tctctcagta 1620
gaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactcttc acatgatgga ggtatgaggc ctccgagata gctgagggaa gttctttgcc 1740
tgctgtcaga ggagcagcta tctgattgga aacctgccga cttagtgcgg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgtttattt atacatctct gtaaaaggat 1860
attttagaat tgagttgtgt gaagatgtca aaaaaagatt ttagaagtgc aatatttata 1920
gtgttatttg tttcaccttc aagcetttge cetgaggtgt tacaatettg tettgegttt 1980
tctaaatcaa tgcttaataa aatattttta aaggaaaaaa aaaaaa
<210> 104
<211> 415
<212> PRT
<213> Homo sapiens
<400> 104
Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
                                                     30
             20
                                 2.5
Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
                         55
Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65
                     70
Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
                                     90
His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
            100
                                105
                                                    110
Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
                                                125
        115
                            120
Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
                                            140
    130
                        135
```

Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg 150 Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro 170 Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu 185 Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys 200 Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Glu Val Asn Asp Ala 215 220 Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val 230 235 Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu 245 250 Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu Pro Thr Thr Glu Gln Pro Val Thr Thr Phe Pro Val Thr Thr 280 Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr 295 Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly 315 Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val 330 335 325 Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro 360 Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu 370 Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys 410

<210> 105

<211> 22

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 105
                                                                   22
ccgattcata gacctcgaga gt
<210> 106
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 106
                                                                   22
gtcaaggagt cctccacaat ac
<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt
                                                                   45
<210> 108
<211> 1838
<212> DNA
<213> Homo sapiens
<400> 108
cggacgcgtg ggcggacgcg tgggcggccc acggcgcccg cgggctgggg cggtcgcttc 60
ttccttctcc gtggcctacg agggtcccca gcctgggtaa agatggcccc atggcccccg 120
aagggeetag teecagetgt getetgggge eteageetet teeteaacet eecaggaeet 180
atctggctcc agccctctcc acctccccag tcttctcccc cgcctcagcc ccatccgtgt 240
catacctgcc ggggactggt tgacagcttt aacaagggcc tggagagaac catccgggac 300
aactttggag gtggaaacac tgcctgggag gaagagaatt tgtccaaata caaagacagt 360
gagacccgcc tggtagaggt gctggagggt gtgtgcagca agtcagactt cgagtgccac 420
cgcctgctgg agctgagtga ggagctggtg gagagctggt ggtttcacaa gcagcaggag 480
gccccggacc tcttccagtg gctgtgctca gattccctga agctctgctg ccccgcaggc 540
accttcgggc cctcctgcct tccctgtcct gggggaacag agaggccctg cggtggctac 600
gggcagtgtg aaggagaagg gacacgaggg ggcagcgggc actgtgactg ccaagccggc 660
tacgggggtg aggcctgtgg ccagtgtggc cttggctact ttgaggcaga acgcaacgcc 720
agccatctgg tatgttcggc ttgttttggc ccctgtgccc gatgctcagg acctgaggaa 780
tcaaactgtt tgcaatgcaa gaagggctgg gccctgcatc acctcaagtg tgtagacatt 840
gatgagtgtg gcacagaggg agccaactgt ggagctgacc aattctgcgt gaacactgag 900
ggctcctatg agtgccgaga ctgtgccaag gcctgcctag gctgcatggg ggcagggcca 960
ggtcgctgta agaagtgtag ccctggctat cagcaggtgg gctccaagtg tctcgatgtg 1020
gatgagtgtg agacagaggt gtgtccggga gagaacaagc agtgtgaaaa caccgagggc 1080
ggttatcgct gcatctgtgc cgagggctac aagcagatgg aaggcatctg tgtgaaggag 1140
cagatcccag agtcagcagg cttcttctca gagatgacag aagacgagtt ggtggtgctg 1200
```

```
cagcagatgt tctttggcat catcatctgt gcactggcca cgctggctgc taagggcgac 1260
ttggtgttca ccgccatctt cattggggct gtggcggcca tgactggcta ctggttgtca 1320
gagcgcagtg accgtgtgct ggagggcttc atcaagggca gataatcgcg gccaccacct 1380
gtaggacctc ctcccaccca cgctgccccc agagcttggg ctgccctcct gctggacact 1440
caggacaget tggtttattt ttgagagtgg ggtaagcace eetacetgee ttacagagea 1500
gcccaggtac ccaggcccgg gcagacaagg cccctggggt aaaaagtagc cctgaaggtg 1560
gataccatga gctcttcacc tggcggggac tggcaggctt cacaatgtgt gaatttcaaa 1620
agtttttcct taatggtggc tgctagagct ttggcccctg cttaggatta ggtggtcctc 1680
acaggggtgg ggccatcaca gctcctcct gccagctgca tgctgccagt tcctgttctg 1740
tgttcaccac atccccacac cccattgcca cttatttatt catctcagga aataaagaaa 1800
ggtcttggaa agttaaaaaa aaaaaaaaa aaaaaaaa
<210> 109
<211> 420
<212> PRT
<213> Homo sapiens
<400> 109
Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
             20
                                 25
                                                      30
Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
                             40
Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
                         55
Arg Asp Asn Phe Gly Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65
                     70
Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
                                105
                                                    110
            100
Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
        115
                            120
Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
145
                    150
                                                             160
Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
                165
                                    170
Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys
                                185
Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
        195
                            200
                                                205
```

1838

230 235 Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys 250 245 Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg 265 Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg 280 Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr 325 330 335 Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala 345 Gly Phe Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln 360 365 Met Phe Phe Gly Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys 370 375 Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met 390 395 Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe 410 Ile Lys Gly Arg 420 <210> 110 <211> 50 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 110 50 cctggctatc agcaggtggg ctccaagtgt ctcgatgtgg atgagtgtga <210> 111 <211> 22

<212> DNA

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro

Glu Glu Ser Asn Cys Leu Gln Cys Lys Lys Gly Trp Ala Leu His His

215

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 111
                                                                22
attctgcgtg aacactgagg gc
<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 112
                                                                22
atctgcttgt agccctcggc ac
<210> 113
<211> 1616
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1461)..(1461)
<223> a, t, c or g
<400> 113
tgagaccete etgeageett eteaagggae ageeceacte tgeetettge teeteeaggg 60
cagcaccatg cagcccctgt ggctctgctg ggcactctgg gtgttgcccc tggccagccc 120
cggggccgcc ctgaccgggg agcagctcct gggcagcctg ctgcggcagc tgcagctcaa 180
agaggtgccc accctggaca gggccgacat ggaggagctg gtcatcccca cccacgtgag 240
ggcccagtac gtggccctgc tgcagcgcag ccacggggac cgctcccgcg gaaagaggtt 300
cagccagagc ttccgagagg tggccggcag gttcctggcg ttggaggcca gcacacacct 360
gctggtgttc ggcatggagc agcggctgcc gcccaacagc gagctggtgc aggccgtgct 420
gcggctcttc caggagccgg tccccaaggc cgcgctgcac aggcacgggc ggctgtcccc 480
gcgcagcgcc cgggcccggg tgaccgtcga gtggctgcgc gtccgcgacg acggctccaa 540
ccgcacctcc ctcatcgact ccaggctggt gtccgtccac gagagcggct ggaaggcctt 600
cgacgtgacc gaggccgtga acttctggca gcagctgagc cggccccggc agccgctgct 660
gctacaggtg tcggtgcaga gggagcatct gggcccgctg gcgtccggcg cccacaagct 720
ggtccgcttt gcctcgcagg gggcgccagc cgggcttggg gagccccagc tggagctgca 780
caccetggac ettggggact atggagetea gggegaetgt gaccetgaag caccaatgac 840
cgagggcacc cgctgctgcc gccaggagat gtacattgac ctgcagggga tgaagtgggc 900
cgagaactgg gtgctggagc ccccgggctt cctggcttat gagtgtgtgg gcacctgccg 960
gcagcccccg gaggccctgg ccttcaagtg gccgtttctg gggcctcgac agtgcatcgc 1020
ctcggagact gactcgctgc ccatgatcgt cagcatcaag gagggaggca ggaccaggcc 1080
ccaggtggtc agcctgccca acatgagggt gcagaagtgc agctgtgcct cggatggtgc 1140
gtgtgtgttt ctgaagtgtt cgagggtacc aggagagctg gcgatgactg aactgctgat 1260
ggacaaatgc tctgtgctct ctagtgagcc ctgaatttgc ttcctctgac aagttacctc 1320
acctaatttt tgcttctcag gaatgagaat ctttggccac tggagagccc ttgctcagtt 1380
ttctctattc ttattattca ctgcactata ttctaagcac ttacatgtgg agatactgta 1440
acctgagggc agaaagccca ntgtgtcatt gtttacttgt cctgtcactg gatctgggct 1500
```

<210> 114

<211> 366

<212> PRT

<213> Homo sapiens

<400> 114

Met Gln Pro Leu Trp Leu Cys Trp Ala Leu Trp Val Leu Pro Leu Ala 1 5 10 15

Ser Pro Gly Ala Ala Leu Thr Gly Glu Gln Leu Leu Gly Ser Leu Leu
20 25 30

Arg Gln Leu Gln Leu Lys Glu Val Pro Thr Leu Asp Arg Ala Asp Met
35 40 45

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu
50 55 60

Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln 65 70 75 80

Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr 85 90 95

His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu 100 105 110

Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala 115 120 125

Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg 130 135 140

Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr 145 150 155 160

Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys 165 170 175

Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg 180 185 190

Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu 195 200 205

Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln 210 215 220

Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu 225 230 235 240

Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro 245 250 255

Met	Thr	Glu	Gly 260	Thr	Arg	Cys	Cys	Arg 265	Gln	Glu	Met	Tyr	Ile 270	Asp	Leu	
Gln	Gly	Met 275	Lys	Trp	Ala	Glu	Asn 280	Trp	Val	Leu	Glu	Pro 285	Pro	Gly	Phe	
Leu	Ala 290	Tyr	Glu	Cys	Val	Gly 295	Thr	Cys	Arg	Gln	Pro 300	Pro	Glu	Ala	Leu	
Ala 305	Phe	Lys	Trp	Pro	Phe 310	Leu	Gly	Pro	Arg	Gln 315	Cys	Ile	Ala	Ser	Glu 320	
Thr	Asp	Ser	Leu	Pro 325	Met	Ile	Val	Ser	Ile 330	Lys	Glu	Gly	Gly	Arg 335	Thr	
Arg	Pro	Gln	Val 340	Val	Ser	Leu	Pro	Asn 345	Met	Arg	Val	Gln	Lys 350	Cys	Ser	
Cys	Ala	Ser 355	Asp	Gly	Ala	Leu	Val 360	Pro	Arg	Arg	Leu	Gln 365	Pro			
<210> 115 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
<400> 115 aggactgcca taacttgcct g														21		
<211 <212	<210> 116 <211> 22 <212> DNA <213> Artificial Sequence															
<220 <223	3> De		iptio nucle				cial	Sequ	ience	e: Sy	ynthe	etic				
)> 11 ıgagt		aagca	agcgo	ct go	2										22
<211 <212)> 11 > 45 > DI > A1	ō NA	icial	l Sed	quenc	ce										
<220 <223	> De		iptic nucle				cial	Seqı	uence	e: Sy	ynthe	etic				
)> 1: jtgga		agad	cgagt	g co	cgcta	accgo	c tac	ctgco	cagc	accg	JC		•		45

```
<211> 1857
<212> DNA
<213> Homo sapiens
<400> 118
gtctgttccc aggagtcctt cggcggctgt tgtgtcagtg gcctgatcgc gatggggaca 60
aaggcgcaag tcgagaggaa actgttgtgc ctcttcatat tggcgatcct gttgtgctcc 120
ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcagaat tcctgagaat 180
aatcctgtga agttgtcctg tgcctactcg ggcttttctt ctccccgtgt ggagtggaag 240
tttgaccaag gagacaccac cagactcgtt tgctataata acaagatcac agcttcctat 300
gaggaccggg tgaccttctt gccaactggt atcaccttca agtccgtgac acgggaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtcaag 420
gtcaagctca tcgtgcttgt gcctccatcc aagcctacag ttaacatccc ctcctctgcc 480
accattggga accgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctggt tcaaagatgg gatagtgatg cctacgaatc ccaaaagcac ccgtgccttc 600
agcaactett cetatgteet gaateecaca acaggagage tggtetttga teecetgtea 660
qcctctqata ctqqaqaata caqctqtqaq qcacqqaatq qqtatqqqac acccatqact 720
tcaaatgctg tgcgcatgga agctgtggag cggaatgtgg gggtcatcgt ggcagccgtc 780
cttgtaaccc tgattctcct gggaatcttg gtttttggca tctggtttgc ctatagccga 840
ggccactttg acagaacaaa gaaagggact tcgagtaaga aggtgattta cagccagcct 900
agtgcccgaa gtgaaggaga attcaaacag acctcgtcat tcctggtgtg agcctggtcg 960
gctcaccgcc tatcatctgc atttgcctta ctcaggtgct accggactct ggcccctgat 1020
gtctgtagtt tcacaggatg ccttatttgt cttctacacc ccacagggcc ccctacttct 1080
teggatgtgt ttttaataat gteagetatg tgeeceatee teetteatge eeteecteee 1140
tttcctacca ctgctgagtg gcctggaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatcct gggtatgcca ttgacttccc ttctaagtag acagcaaaaa 1260
tggcgggggt cgcaggaatc tgcactcaac tgcccacctg gctggcaggg atctttgaat 1320
aggtatettg agettggtte tgggetettt eettgtgtae tgaegaecag ggeeagetgt 1380
tctagagcgg gaattagagg ctagagcggc tgaaatggtt gtttggtgat gacactgggg 1440
teetteeate tetggggeee actetettet gtetteeeat gggaagtgee actgggatee 1500
ctctgccctg tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agctcttgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgctc taaagaaaag aaaactggag gctgggcgca gtggctcacg cctgtaatcc 1680
cagaggctga ggcaggcgga tcacctgagg tcgggagttc gggatcagcc tgaccaacat 1740
ggagaaaccc tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtagtccc 1800
agctgctcag gagcctggca acaagagcaa aactccagct caaaaaaaaa aaaaaaa
<210> 119
<211> 299
<212> PRT
<213> Homo sapiens
<400> 119
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Cys Leu Phe Ile
  1
                                                         15
Leu Ala Ile Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
             20
                                                     30
Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
                             40
Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
     50
                         55
                                             60
```

<210> 118

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr 65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe 85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro 145 150 155 160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly 195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val 290 295

<210> 120

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 120

tcgcggagct gtgttctgtt tccc

<210><211><212><213>	50		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> tgatco	121 gcgat ggggacaaag gcgcaagctc gagaggaaac tgttgtgcct	50	
<210> <211> <212> <213>	20		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> acacct	122 Eggtt caaagatggg	20	
<210><211><211><212><213>	24		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> taggaa	123 agagt tgctgaaggc acgg	24	
<210><211><211><212><213>	20		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> ttgcct	124 ctact caggtgctac	20	
<210><211><211><212><213>	20		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe		

•

```
<400> 125
                                                                  20
actcagcagt ggtaggaaag
<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens
<400> 126
cagcgcgtgg ccggcgccgc tgtggggaca gcatgagcgg cggttggatg gcgcaggttg 60
gagegtggeg aacagggget etgggeetgg egetgetget getgetegge eteggaetag 120
gcctggaggc cgccgcgagc ccgctttcca ccccgacctc tgcccaggcc gcaggcccca 180
gctcaggctc gtgcccaccc accaagttcc agtgccgcac cagtggctta tgcgtgcccc 240
tcacctggcg ctgcgacagg gacttggact gcagcgatgg cagcgatgag gaggagtgca 300
ggattgagcc atgtacccag aaagggcaat gcccaccgcc ccctggcctc ccctgcccct 360
gcaccggcgt cagtgactgc tctgggggaa ctgacaagaa actgcgcaac tgcagccgcc 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccaccca gactgtcccg actccagcga cgagctcggc tgtggaacca 540
atgagatect eceggaaggg gatgecacaa ceatggggee eeetgtgaee etggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggccccctgt gaccctggag agtgtcccct 660
ctgtcgggaa tgccacatcc tcctctgccg gagaccagtc tggaagccca actgcctatg 720
gggttattgc agctgctgcg gtgctcagtg caagcctggt caccgccacc ctcctcttt 780
tqtcctqqct ccqaqcccag qagcqcctcc gcccactggg gttactggtg gccatgaagg 840
agtecetget getgteagaa cagaagaeet egetgeeetg aggacaagea ettgeeacea 900
ccgtcactca gccctgggcg tagccggaca ggaggagagc agtgatgcgg atgggtaccc 960
gggcacacca gccctcagag acctgagttc ttctggccac gtggaacctc gaacccgagc 1020
tcctgcagaa gtggccctgg agattgaggg tccctggaca ctccctatgg agatccgggg 1080
agctaggatg gggaacctgc cacagccaga actgaggggc tggccccagg cagctcccag 1140
ggggtagaac ggccctgtgc ttaagacact ccctgctgcc ccgtctgagg gtggcgatta 1200
                                                                  1210
aagttgcttc
<210> 127
<211> 282
<212> PRT
<213> Homo sapiens
<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
                                 25
Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
         35
Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
            100
                                105
                                                    110
```

Val	Ser	Asp 115	Cys	Ser	Gly	Gly	Thr 120	Asp	Lys	Lys	Leu	Arg 125	Asn	Cys	Ser	
Arg	Leu 130	Ala	Cys	Leu	Ala	Gly 135	Glu	Leu	Arg	Cys	Thr 140	Leu	Ser	Asp	Asp	
Cys 145	Ile	Pro	Leu	Thr	Trp 150	Arg	Cys	Asp	Gly	His 155	Pro	Asp	Cys	Pro	Asp 160	
Ser	Ser	Asp	Glu	Leu 165	Gly	Cys	Gly	Thr	Asn 170	Glu	Ile	Leu	Pro	Glu 175	Gly	
Asp	Ala	Thr	Thr 180	Met	Gly	Pro	Pro	Val 185	Thr	Leu	Glu	Ser	Val 190	Thr	Ser	
Leu	Arg	Asn 195	Ala	Thr	Thr	Met	Gly 200	Pro	Pro	Val	Thr	Leu 205	Glu	Ser	Val	
Pro	Ser 210	Val	Gly	Asn	Ala	Thr 215	Ser	Ser	Ser	Ala	Gly 220	Asp	Gln	Ser	Gly	
Ser 225	Pro	Thr	Ala	Tyr	Gly 230	Val	Ile	Ala	Ala	Ala 235	Ala	Val	Leu	Ser	Ala 240	
Ser	Leu	Val	Thr	Ala 245	Thr	Leu	Leu	Leu	Leu 250	Ser	Trp	Leu	Arg	Ala 255	Gln	
Glu	Arg	Leu	Arg 260	Pro	Leu	Gly	Leu	Leu 265	Val	Ala	Met	Lys	Glu 270	Ser	Leu	
Leu	Leu	Ser 275	Glu	Gln	Lys	Thr	Ser 280	Leu	Pro							
<210> 128 <211> 24 <212> DNA <213> Artificial Sequence																
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe																
)> 12 :tcca	-	gccgo	cacca	ıg to	ıgc										24
<211 <212)> 12 .> 24 !> DN !> Ar	l IA	icial	L Sec	quenc	:e										
<220 <223	> De		_	on of		ific cobe	ial	Sequ	ience	e: Sy	nthe	etic				
<400)> 12	9														

ttggttccac agccgagctc gtcg

24

```
<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 130
                                                                  50
gaggaggagt gcaggattga gccatgtacc cagaaagggc aatgcccacc
<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (1837)..(1837)
<223> a, t, c or g
<400> 131
cccacgcgtc cggtctcgct cgctcgcgca gcggcggcag cagaggtcgc gcacagatgc 60
gggttagact ggcggggga ggaggcggag gagggaagga agctgcatgc atgagaccca 120
cagactettg caagetggat geeetetgtg gatgaaagat gtateatgga atgaaceega 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcag tcccccaga 240
gactettgge egtgateetg tggttteage tggegetgtg etteggeeet geacagetea 300
cgggcgggtt cgatgacctt caagtgtgtg ctgaccccgg cattcccgag aatggcttca 360
ggacccccag cggaggggtt ttctttgaag gctctgtagc ccgatttcac tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tgtgtttgaa gcattttaat ggaaccctag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgccgtatc cctcaaatcg 540
aagatgetga gatteataac aagacatata gacatggaga gaagetaate ateaettgte 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgtcgcgatg 660
atggaacgtg gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatetet gageteeaga eeteetteee ggtggggaet gtgateteet 780
atcgctgctt tcccggattt aaacttgatg ggtctgcgta tcttgagtgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctgga agcccaagtc tgtccactac 900
ctccaatggt gagtcacgga gatttcgtct gccacccgcg gccttgtgag cgctacaacc 960
acggaactgt ggtggagttt tactgcgatc ctggctacag cctcaccagc gactacaagt 1020
acatcacctg ccagtatgga gagtggtttc cttcttatca agtctactgc atcaaatcag 1080
agcaaacgtg gcccagcacc catgagaccc tcctgaccac gtggaagatt gtggcgttca 1140
cggcaaccag tgtgctgctg gtgctgctgc tcgtcatcct ggccaggatg ttccagacca 1200
agttcaaggc ccactttccc cccagggggc ctccccggag ttccagcagt gaccctgact 1260
ttgtggtggt agacggcgtg cccgtcatgc tcccgtccta tgacgaagct gtgagtggcg 1320
gettgagtge ettaggeece gggtacatgg cetetgtggg ecagggetge eeettaceeg 1380
tggacgacca gagccccca gcataccccg gctcagggga cacggacaca ggcccagggg 1440
agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
ctcccaggtg ccaagagagc acccacctg cttcggacaa ccctgacata attgccagca 1560
cggcagagga ggtggcatcc accagcccag gcatccatca tgcccactgg gtgttgttcc 1620
taagaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680
gttgatctgt ggagttgatt cctttccttc tcttggtttt agacaaatgt aaacaaagct 1740
ctgatcctta aaattgctat gctgatagag tggtgagggc tggaagcttg atcaagtcct 1800
gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa
                                                                  1843
```

```
<211> 490
```

<212> PRT

<213> Homo sapiens

<400> 132

Met Tyr His Gly Met Asn Pro Ser Asn Gly Asp Gly Phe Leu Glu Gln
1 5 10 15

Gln Gln Gln Gln Gln Pro Gln Ser Pro Gln Arg Leu Leu Ala Val 20 25 30

Ile Leu Trp Phe Gln Leu Ala Leu Cys Phe Gly Pro Ala Gln Leu Thr 35 40 45

Gly Gly Phe Asp Asp Leu Gln Val Cys Ala Asp Pro Gly Ile Pro Glu 50 55 60

Asn Gly Phe Arg Thr Pro Ser Gly Gly Val Phe Phe Glu Gly Ser Val 65 70 75 80

Ala Arg Phe His Cys Gln Asp Gly Phe Lys Leu Lys Gly Ala Thr Lys 85 90 95

Arg Leu Cys Leu Lys His Phe Asn Gly Thr Leu Gly Trp Ile Pro Ser

Asp Asn Ser Ile Cys Val Gln Glu Asp Cys Arg Ile Pro Gln Ile Glu
115 120 125

Asp Ala Glu Ile His Asn Lys Thr Tyr Arg His Gly Glu Lys Leu Ile 130 135 140

Ile Thr Cys His Glu Gly Phe Lys Ile Arg Tyr Pro Asp Leu His Asn 145 150 155 160

Met Val Ser Leu Cys Arg Asp Asp Gly Thr Trp Asn Asn Leu Pro Ile 165 170 175

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn 180 185 190

Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr 195 200 205

Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys 210 215 220

Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu 225 230 235 240

Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe 245 250 255

Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val 260 265 270

Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr

275 280 285

Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys 290 295 Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr 310 315 Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu 325 330 Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His 340 345 Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe 360 Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val 390 395 Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr 405 410 Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys 420 425 Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro 440 Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile 450 455 460 Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His 465 470 475

<210> 133

<211> 23

<212> DNA

<213> Artificial Sequence

His Ala His Trp Val Leu Phe Leu Arg Asn 485 490

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

23

<400> 133

atctcctatc gctgctttcc cgg

<210> 134

<211> 23

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 134
                                                                  23
agccaggatc gcagtaaaac tcc
<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 135
                                                                  50
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct
<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens
<400> 136
cccacqcqtc cqctccqcqc cctcccccc qcctcccqtg cggtccgtcg gtggcctaga 60
gatgctgctg ccgcggttgc agttgtcgcg cacgcctctg cccgccagcc cgctccaccg 120
ccgtagcgcc cgagtgtcgg ggggcgcacc cgagtcgggc catgaggccg ggaaccgcgc 180
tacaggeegt getgetggee gtgetgetgg tggggetgeg ggeegegaeg ggtegeetge 240
tgagtgcctc ggatttggac ctcagaggag ggcagccagt ctgccgggga gggacacaga 300
ggccttgtta taaagtcatt tacttccatg atacttctcg aagactgaac tttgaggaag 360
ccaaagaagc ctgcaggagg gatggaggcc agctagtcag catcgagtct gaagatgaac 420
agaaactgat agaaaagttc attgaaaacc tcttgccatc tgatggtgac ttctggattg 480
ggctcaggag gcgtgaggag aaacaaagca atagcacagc ctgccaggac ctttatgctt 540
ggactgatgg cagcatatca caatttagga actggtatgt ggatgagccg tcctgcggca 600
gcgaggtctg cgtggtcatg taccatcagc catcggcacc cgctggcatc ggaggcccct 660
acatgttcca gtggaatgat gaccggtgca acatgaagaa caatttcatt tgcaaatatt 720
ctgatgagaa accagcagtt ccttctagag aagctgaagg tgaggaaaca gagctgacaa 780
cacctgtact tccagaagaa acacaggaag aagatgccaa aaaaacattt aaagaaagta 840
gagaagetge cttgaatetg geetacatee taateeceag catteecett etecteetee 900
ttgtggtcac cacagttgta tgttgggttt ggatctgtag aaaaagaaaa cgggagcagc 960
cagaccctag cacaaagaag caacacacca tctggccctc tcctcaccag ggaaacagcc 1020
cggacctaga ggtctacaat gtcataagaa aacaaagcga agctgactta gctgagaccc 1080
ggccagacct gaagaatatt tcattccgag tgtgttcggg agaagccact cccgatgaca 1140
tgtcttgtga ctatgacaac atggctgtga acccatcaga aagtgggttt gtgactctgg 1200
tgagcgtgga gagtggattt gtgaccaatg acatttatga gttctcccca gaccaaatgg 1260
ggaggagtaa ggagtctgga tgggtggaaa atgaaatata tggttattag gacatataaa 1320
aaactgaaac tgacaacaat ggaaaagaaa tgataagcaa aatcctctta ttttctataa 1380
ggaaaataca cagaaggtct atgaacaagc ttagatcagg tcctgtggat gagcatgtgg 1440
tececaegae etectgttgg acceecaegt tittggetgta teetitatee eagecagtea 1500
tccagctcga ccttatgaga aggtaccttg cccaggtctg gcacatagta gagtctcaat 1560
aaatgtcact tggttggttg tatctaactt ttaagggaca gagctttacc tggcagtgat 1620
aaaqatqqqc tqtqqaqctt qqaaaaccac ctctqttttc cttqctctat acagcagcac 1680
atattatcat acagacagaa aatccagaat cttttcaaag cccacatatg gtagcacagg 1740
ttggcctgtg catcggcaat tctcatatct gtttttttca aagaataaaa tcaaataaag 1800
                                                                  1815
agcaggaaaa aaaaa
```

```
<210> 137
<211> 382
<212> PRT
<213> Homo sapiens
<400> 137
Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu
                                     10
Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
                                 25
Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
                             40
Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
                         55
Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gln Leu Val Ser
 65
Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Arg Glu
Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
                            120
                                                 125
Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
                        135
Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
                                        155
                    150
                                                             160
145
Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
                                    170
Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
                                185
Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
        195
Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
                    230
                                        235
                                                             240
Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
```

Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys

265

Lys	Gln	His 275	Thr	Ile	Trp	Pro	Ser 280	Pro	His	Gln	Gly	Asn 285	Ser	Pro	Asp		
Leu	Glu 290	Val	Tyr	Asn	Val	Ile 295	Arg	Lys	Gln	Ser	Glu 300	Ala	Asp	Leu	Ala		
Glu 305	Thr	Arg	Pro	Asp	Leu 310	Lys	Asn	Ile	Ser	Phe 315	Arg	Val	Cys	Ser	Gly 320		
Glu	Ala	Thr	Pro	Asp 325	Asp	Met	Ser	Cys	Asp 330	Tyr	Asp	Asn	Met	Ala 335	Val		
Asn	Pro	Ser	Glu 340	Ser	Gly	Phe	Val	Thr 345	Leu	Val	Ser	Val	Glu 350	Ser	Gly		
Phe	Val	Thr 355	Asn	Asp	Ile	Tyr	Glu 360	Phe	Ser	Pro	Asp	Gln 365	Met	Gly	Arg		
Ser	Lys 370	Glu	Ser	Gly	Trp	Val 375	Glu	Asn	Glu	Ile	Tyr 380	Gly	Tyr				
<211 <212)> 13 l> 5(!> Dl !> Ar) JA	lcial	l Sec	quenc	e											
<220 <223	3> De			on of			cial	Segu	ience	e: S <u>)</u>	nthe	etic		,			
)> 13		acct	ctto	jc ca	tctg	gatgo	j tga	cttc	tgg:	atto	ggct	ca			50	
<211 <212)> 13 -> 24 !> DN !> Ar	l IA	.cial	l Sec	quenc	:e											
<220 <223	> De			on of			cial	Sequ	ience	e: Sy	nthe	etic					
)> 13 caaa		ıgcct	gcaç	ıg aç	ıgg										24	
<211 <212	> 14 > 24 > DN > Ar	l JA	.cial	. Seq	quenc	:e											
<220 <223	> De			on of			ial	Sequ	ience	e: Sy	nthe	tic					
	> 14		taaa	agat.c	rc to	ac										24	

```
<211> 1514
<212> DNA
<213> Homo sapiens
<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcatcegcag gttcccgcgg acttgggggc gcccgctgag ccccggcgcc cgcagaagac 120
ttgtgtttgc ctcctgcagc ctcaacccgg agggcagcga gggcctacca ccatgatcac 180
tggtgtgttc agcatgcgct tgtggacccc agtgggcgtc ctgacctcgc tggcgtactg 240
cctgcaccag cggcggttgg ccctggccga gctgcaggag gccgatggcc agtgtccggt 300
cgaccgcagc ctgctgaagt tgaaaatggt gcaggtcgtg tttcgacacg gggctcggag 360
tcctctcaag ccgctcccgc tggaggagca ggtagagtgg aacccccagc tattagaggt 420
cccaccccaa actcagtttg attacacagt caccaatcta gctggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctgggca 540
gctgaccaag gtgggcatgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtggaagac attccctttc tttcaccaac cttcaaccca caggaggtct ttattcgttc 660
cactaacatt tttcggaatc tggagtccac ccgttgtttg ctggctgggc ttttccagtg 720
tcagaaagaa ggacccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780
caactaccaa agctgctgga gcctgaggca gagaaccaga ggccggaggc agactgcctc 840
tttacagcca ggaatctcag aggatttgaa aaaggtgaag gacaggatgg gcattgacag 900
tagtgataaa gtggacttct tcatcctcct ggacaacgtg gctgccgagc aggcacacaa 960
cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
cacateettg tacatactge ecaaggaaga cagggaaagt etteagatgg cagtaggeec 1080
attectecae atectagaga geaacetget gaaageeatg gaetetgeea etgeeeega 1140
caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctcttaat 1200
gaccctgggg atttttgacc acaaatggcc accgtttgct gttgacctga ccatggaact 1260
ttaccagcac ctggaatcta aggagtggtt tgtgcagctc tattaccacg ggaaggagca 1320
ggtgccgaga ggttgccctg atgggctctg cccgctggac atgttcttga atgccatgtc 1380
agtttatacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
agttggaaat gaagagtaac tgatttataa aagcaggatg tgttgatttt aaaataaagt 1500
gcctttatac aatg
<210> 142
<211> 428
<212> PRT
<213> Homo sapiens
<400> 142
Met Ile Thr Gly Val Phe Ser Met Arg Leu Trp Thr Pro Val Gly Val
                  5
                                     10
Leu Thr Ser Leu Ala Tyr Cys Leu His Gln Arg Arg Val Ala Leu Ala
             20
Glu Leu Gln Glu Ala Asp Gly Gln Cys Pro Val Asp Arg Ser Leu Leu
Lys Leu Lys Met Val Gln Val Val Phe Arg His Gly Ala Arg Ser Pro
Leu Lys Pro Leu Pro Leu Glu Glu Gln Val Glu Trp Asn Pro Gln Leu
Leu Glu Val Pro Pro Gln Thr Gln Phe Asp Tyr Thr Val Thr Asn Leu
                 85
                                     90
```

<210> 141

Ala Gly Gly	Pro Lys 100	Pro Ty	r Ser	Pro 105	Tyr	Asp	Ser	Gln	Tyr 110	His	Glu
Thr Thr Leu 115	Lys Gly	Gly Me	t Phe 120	Ala	Gly	Gln	Leu	Thr 125	Lys	Val	Gly
Met Gln Gln 130	Met Phe	Ala Le 13	_	Glu	Arg	Leu	Arg 140	Lys	Asn	Tyr	Val
Glu Asp Ile 145	Pro Phe	Leu Se 150	r Pro	Thr	Phe	Asn 155	Pro	Gln	Glu	Val	Phe 160
Ile Arg Ser	Thr Asn 165	Ile Ph	e Arg	Asn	Leu 170	Glu	Ser	Thr	Arg	Cys 175	Leu
Leu Ala Gly	Leu Phe 180	Gln Cy	s Gln	Lys 185	Glu	Gly	Pro	Ile	Ile 190	Ile	His
Thr Asp Glu 195	Ala Asp	Ser Gl	u Val 200	Leu	Tyr	Pro	Asn	Туг 205	Gln	Ser	Cys
Trp Ser Leu 210	Arg Gln	Arg Th 21	_	Gly	Arg	Arg	Gln 220	Thr	Ala	Ser	Leu
Gln Pro Gly 225	Ile Ser	Glu As 230	o Leu	Lys	Lys	Val 235	Lys	Asp	Arg	Met	Gly 240
Ile Asp Ser	Ser Asp 245	Lys Va	l Asp	Phe	Phe 250	Ile	Leu	Leu	Asp	Asn 255	Val
Ala Ala Glu	Gln Ala 260	His As	n Leu	Pro 265	Ser	Cys	Pro	Met	Leu 270	Lys	Arg
Phe Ala Arg 275	Met Ile	Glu Gl	n Arg 280	Ala	Val	Asp	Thr	Ser 285	Leu	Tyr	Ile
Leu Pro Lys 290	Glu Asp	Arg Gl		Leu	Gln	Met	Ala 300	Val	Gly	Pro	Phe
Leu His Ile 305	Leu Glu	Ser As:	n Leu	Leu	Lys	Ala 315	Met	Asp	Ser	Ala	Thr 320
Ala Pro Asp	Lys Ile 325	Arg Ly	s Leu	Tyr	Leu 330	Tyr	Ala	Ala	His	Asp 335	Val
Thr Phe Ile	Pro Leu 340	Leu Me	t Thr	Leu 345	Gly	Ile	Phe	Asp	His 350	Lys	Trp
Pro Pro Phe 355	Ala Val	Asp Le	Thr 360	Met	Glu	Leu	Tyr	Gln 365	His	Leu	Glu

Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val

Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn

Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys 405 410 415	
Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu 420 425	
<210> 143 <211> 24 <212> DNA <213> Artificial Sequence	·
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	~
<400> 143 ccaactacca aagctgctgg agcc	24
<210> 144 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 144 gcagctctat taccacggga agga	24
<210> 145 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 145 tccttcccgt ggtaatagag ctgc	24
<210> 146 <211> 45 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 146 ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg	45
<210> 147 <211> 1686	

```
<212> DNA
<213> Homo sapiens
<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60
cttaaatttc agctcatcac cttcacctgc cttggtcatg gctctgctat tctccttgat 120
ccttqccatt tqcaccaqac ctqqattcct aqcqtctcca tctqqaqtqc qqctqqtqqq 180
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt ggggcaccgt 240
gtgtgatgac ggctgggaca ttaaggacgt ggctgtgttg tgccgggagc tgggctgtgg 300
agctgccagc ggaaccccta gtggtatttt gtatgagcca ccagcagaaa aagagcaaaa 360
ggtcctcatc caatcagtca gttgcacagg aacagaagat acattggctc agtgtgagca 420
agaagaagtt tatgattgtt cacatgatga agatgctggg gcatcgtgtg agaacccaga 480
gagetettte tecceagtee cagagggtgt caggetgget gaeggeeetg ggeattgeaa 540
gggacgcgtg gaagtgaagc accagaacca gtggtatacc gtgtgccaga caggctggag 600
cctccgggcc gcaaaggtgg tgtgccggca gctgggatgt gggagggctg tactgactca 660
aaaacgctgc aacaagcatg cctatggccg aaaacccatc tggctgagcc agatgtcatg 720
ctcaggacga gaagcaaccc ttcaggattg cccttctggg ccttggggga agaacacctg 780
caaccatgat gaagacacgt gggtcgaatg tgaagatccc tttgacttga gactagtagg 840
aggagacaac ctctgctctg ggcgactgga ggtgctgcac aagggcgtat ggggctctgt 900
ctgtgatgac aactggggag aaaaggagga ccaggtggta tgcaagcaac tgggctgtgg 960
gaagteette teteetteet teagagaeeg gaaatgetat ggeeetgggg ttggeegeat 1020
ctggctggat aatgttcgtt gctcagggga ggagcagtcc ctggagcagt gccagcacag 1080
attttggggg tttcacgact gcacccacca ggaagatgtg gctgtcatct gctcagtgta 1140
ggtgggcatc atctaatctg ttgagtgcct gaatagaaga aaaacacaga agaagggagc 1200
atttactgtc tacatgactg catgggatga acactgatct tcttctgccc ttggactggg 1260
acttatactt ggtgcccctg attctcaggc cttcagagtt ggatcagaac ttacaacatc 1320
aggictagit cicaggical cagacatagi tiggaactac atcaccacci ticctatgic 1380
tccacattgc acacagcaga ttcccagcct ccataattgt gtgtatcaac tacttaaata 1440
catteteaca cacacaca cacacacaca cacacacaca cacacataca ccattegec 1500
tgtttctctg aagaactctg acaaaataca gattttggta ctgaaagaga ttctagagga 1560
acggaatttt aaggataaat tttctgaatt ggttatgggg tttctgaaat tggctctata 1620
atctaattag atataaaatt ctggtaactt tatttacaat aataaagata gcactatgtg 1680
ttcaaa
<210> 148
<211> 347
<212> PRT
<213> Homo sapiens
<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
                  5
Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
     50
                         55
Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
 65
```

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys

90

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
100 105 110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
115 120 125

Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro 130 135 140

Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr 145 150 155 . 160

Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys 165 170 175

Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn 180 185 190

Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
195 200 205

Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly 210 215 220

Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp 225 230 235 240

Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
245 250 255

Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn 260 265 270

Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly 275 280 285

Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly 290 295 300

Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln 305 310 315 320

Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr 325 330 335

His Gln Glu Asp Val Ala Val Ile Cys Ser Val 340 345

<210> 149

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

```
<400> 149
                                                                  24
ttcagctcat caccttcacc tgcc
<210> 150
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 150
                                                                   24
ggctcataca aaataccact aggg
<210> 151
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 151
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt
                                                                  50
<210> 152
<211> 1427
<212> DNA
<213> Homo sapiens
<400> 152
actgcactcg gttctatcga ttgaattccc cggggatcct ctagagatcc ctcgacctcg 60
acceaegegt eegeggaege gtgggeggae gegtgggeeg getaeeagga agagtetgee 120
gaaggtgaag gccatggact tcatcacctc cacagccatc ctgcccctgc tgttcggctg 180
cctgggcgtc ttcggcctct tccggctgct gcagtgggtg cgcgggaagg cctacctgcg 240
gaatgctgtg gtggtgatca caggcgccac ctcagggctg ggcaaagaat gtgcaaaagt 300
cttctatgct gegggtgcta aactggtgct ctgtggeegg aatggtgggg cectagaaga 360
gctcatcaga gaacttaccg cttctcatgc caccaaggtg cagacacaca agccttactt 420
ggtgaccttc gacctcacag actctggggc catagttgca gcagcagctg agatcctgca 480
gtgctttggc tatgtcgaca tacttgtcaa caatgctggg atcagctacc gtggtaccat 540
catggacacc acagtggatg tggacaagag ggtcatggag acaaactact ttggcccagt 600
tgctctaacg aaagcactcc tgccctccat gatcaagagg aggcaaggcc acattgtcgc 660
catcagcagc atccagggca agatgagcat tccttttcga tcagcatatg cagcctccaa 720
gcacgcaacc caggctttct ttgactgtct gcgtgccgag atggaacagt atgaaattga 780
ggtgaccgtc atcagccccg gctacatcca caccaacctc tctgtaaatg ccatcaccgc 840
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gccctgtgga 900
ggtggcccag gatgttcttg ctgctgtggg gaagaagaag aaagatgtga tcctggctga 960
cttactgcct tccttggctg tttatcttcg aactctggct cctgggctct tcttcagcct 1020
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagtact ctgaccagcc 1080
agggccaggg cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140
ttqttqaqac tttaatqqaq atttqtctca caaqtqqqaa agactgaaga aacacatctc 1200
gtgcagatct gctggcagag gacaatcaaa aacgacaaca agcttcttcc cagggtgagg 1260
ggaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320
tctcaaacag taaaaaaaaa aaaaaagggc ggccgcgact ctagagtcga cctgcagaag 1380
```

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met Asp Phe Ile Thr Ser Thr Ala Ile Leu Pro Leu Leu Phe Gly Cys
1 5 10 15

Leu Gly Val Phe Gly Leu Phe Arg Leu Leu Gln Trp Val Arg Gly Lys
20 25 30

Ala Tyr Leu Arg Asn Ala Val Val Ile Thr Gly Ala Thr Ser Gly
35 40 45

Leu Gly Lys Glu Cys Ala Lys Val Phe Tyr Ala Ala Gly Ala Lys Leu 50 55 60

Val Leu Cys Gly Arg Asn Gly Gly Ala Leu Glu Glu Leu Ile Arg Glu 65 70 75 80

Leu Thr Ala Ser His Ala Thr Lys Val Gln Thr His Lys Pro Tyr Leu 85 90 95

Val Thr Phe Asp Leu Thr Asp Ser Gly Ala Ile Val Ala Ala Ala Ala 100 105 110

Glu Ile Leu Gln Cys Phe Gly Tyr Val Asp Ile Leu Val Asn Asn Ala 115 120 125

Gly Ile Ser Tyr Arg Gly Thr Ile Met Asp Thr Thr Val Asp Val Asp 130 135 140

Lys Arg Val Met Glu Thr Asn Tyr Phe Gly Pro Val Ala Leu Thr Lys 145 150 155 160

Ala Leu Leu Pro Ser Met Ile Lys Arg Gln Gly His Ile Val Ala 165 170 175

Ile Ser Ser Ile Gln Gly Lys Met Ser Ile Pro Phe Arg Ser Ala Tyr 180 185 190

Ala Ala Ser Lys His Ala Thr Gln Ala Phe Phe Asp Cys Leu Arg Ala 195 200 205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr 210 215 220

Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg 225 230 235 240

Tyr Gly Val Met Asp Thr Thr Thr Ala Gln Gly Arg Ser Pro Val Glu 245 250 255

Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val

260 265 270

Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu 275 280 Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu 295 300 Arg Lys Ser Lys Asn Ser 305 310 <210> 154 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 154 24 ggtgctaaac tggtgctctg tggc <210> 155 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 155 cagggcaaga tgagcattcc 20 <210> 156 <211> 24 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 156 tcatactgtt ccatctcggc acgc 24 <210> 157 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 157

```
<210> 158
<211> 1771
<212> DNA
<213> Homo sapiens
<400> 158
cccacgcgtc cgctggtgtt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
aaaaaaaaaa acacaccaaa cgctcgcagc cacaaaaggg atgaaatttc ttctggacat 120
cctcctgctt ctcccgttac tgatcgtctg ctccctagag tccttcgtga agctttttat 180
tectaagagg agaaaateag teaceggega aategtgetg attacaggag etgggeatgg 240
aattgggaga ctgactgcct atgaatttgc taaacttaaa agcaagctgg ttctctggga 300
tataaataag catggactgg aggaaacagc tgccaaatgc aagggactgg gtgccaaggt 360
tcataccttt gtggtagact gcagcaaccg agaagatatt tacagctctg caaagaaggt 420
gaaggcagaa attggagatg ttagtatttt agtaaataat gctggtgtag tctatacatc 480
agatttgttt getacacaag atceteagat tgaaaagaet tttgaagtta atgtaettge 540
acatttctgg actacaaagg catttcttcc tgcaatgacg aagaataacc atggccatat 600
tgtcactgtg gcttcggcag ctggacatgt ctcggtcccc ttcttactgg cttactgttc 660
aagcaagttt gctgctgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
aataactgga gtcaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
aaatccaagt acaagtttgg gacccactct ggaacctgag gaagtggtaa acaggctgat 840
gcatgggatt ctgactgagc agaagatgat ttttattcca tcttctatag cttttttaac 900
aacattggaa aggatccttc ctgagcgttt cctggcagtt ttaaaacgaa aaatcagtgt 960
taagtttgat gcagttattg gatataaaat gaaagcgcaa taagcaccta gttttctgaa 1020
aactgattta ccaggtttag gttgatgtca tctaatagtg ccagaatttt aatgtttgaa 1080
cttctgtttt ttctaattat ccccatttct tcaatatcat ttttgaggct ttggcagtct 1140
tcatttacta ccacttgttc tttagccaaa agctgattac atatgatata aacagagaaa 1200
tacctttaga ggtgacttta aggaaaatga agaaaaagaa ccaaaatgac tttattaaaa 1260
taatttccaa gattatttgt ggctcacctg aaggctttgc aaaatttgta ccataaccgt 1320
ttatttaaca tatattttta tttttgattg cacttaaatt ttgtataatt tgtgtttctt 1380
tttctgttct acataaaatc agaaacttca agctctctaa ataaaatgaa ggactatatc 1440
tagtggtatt tcacaatgaa tatcatgaac tctcaatggg taggtttcat cctacccatt 1500
gccactctgt ttcctgagag atacctcaca ttccaatgcc aaacatttct gcacagggaa 1560
gctagaggtg gatacacgtg ttgcaagtat aaaagcatca ctgggattta aggagaattg 1620
aaaaaaaaa aaaaaaaaaa a
                                                              1771
<210> 159
<211> 300
<212> PRT
<213> Homo sapiens
<400> 159
Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val
 1
                 5
                                   10
                                                      15
Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys
Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
                           40
Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
    50
                       55
```

Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys 70 Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn 90 Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly 100 105 110 Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp 120 Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn 135 Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr 150 155 145 Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His 170 165 Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile 200 Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu 230 235 Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met 245 250 Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile 260 265 Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln 290 295 300

280

<210> 160

<211> 23

<212> DNA

<213> Artificial Sequence

275

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 160 ggtgaaggca gaaattggag atg

```
<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 161
atcccatgca tcagcctgtt tacc
                                                                  24
<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 162
gctggtgtag tctatacatc agatttgttt gctacacaag atcctcag
                                                                  48
<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens
<400> 163
cccacgcgtc cgcggacgcg tgggtcgact agttctagat cgcgagcggc cgcccgcggc 60
tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttggtgccat gtggaaggtg 120
attgtttcgc tggtcctgtt gatgcctggc ccctgtgatg ggctgtttcg ctccctatac 180
agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct caccccttac 240
attgaagctg ggaagatcca aaaaggaaga gaattgagtt tggtcggccc tttcccagga 300
ctgaacatga agagttatgc cggcttcctc accgtgaata agacttacaa cagcaacctc 360
ttcttctggt tcttcccagc tcagatacag ccagaagatg ccccagtagt tctctggcta 420
cagggtgggc cgggaggttc atccatgttt ggactctttg tggaacatgg gccttatgtt 480
gtcacaagta acatgacctt gcgtgacaga gacttcccct ggaccacaac gctctccatg 540
ctttacattg acaatccagt gggcacaggc ttcagtttta ctgatgatac ccacggatat 600
gcagtcaatg aggacgatgt agcacgggat ttatacagtg cactaattca gtttttccag 660
atatttcctg aatataaaaa taatgacttt tatgtcactg gggagtctta tgcagggaaa 720
tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
aacctgaacg gaattgctat tggagatgga tattctgatc ccgaatcaat tatagggggc 840
tatgcagaat tcctgtacca aattggcttg ttggatgaga agcaaaaaaa gtacttccag 900
aagcagtgcc atgaatgcat agaacacatc aggaagcaga actggtttga ggcctttgaa 960
atactggata aactactaga tggcgactta acaagtgatc cttcttactt ccagaatgtt 1020
acaggatgta gtaattacta taactttttg cggtgcacgg aacctgagga tcagctttac 1080
tatgtgaaat ttttgtcact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
tttaatgatg gaactatagt tgaaaagtac ttgcgagaag atacagtaca gtcagttaag 1200
ccatggttaa ctgaaatcat gaataattat aaggttctga tctacaatgg ccaactggac 1260
atcatcgtgg cagctgccct gacagagcgc tccttgatgg gcatggactg gaaaggatcc 1320
caggaataca agaaggcaga aaaaaaagtt tggaagatct ttaaatctga cagtgaagtg 1380
gctggttaca tccggcaagc gggtgacttc catcaggtaa ttattcgagg tggaggacat 1440
attttaccct atgaccagcc tctgagagct tttgacatga ttaatcgatt catttatgga 1500
aaaggatggg atccttatgt tggataaact accttcccaa aagagaacat cagaggtttt 1560
cattgctgaa aagaaaatcg taaaaacaga aaatgtcata ggaataaaaa aattatcttt 1620
```

```
tcatatctgc aagatttttt tcatcaataa aaattatcct tgaaacaagt gagcttttgt 1680
ttttgggggg agatgtttac tacaaaatta acatgagtac atgagtaaga attacattat 1740
ttaacttaaa ggatgaaagg tatggatgat gtgacactga gacaagatgt ataaatgaaa 1800
ttttagggtc ttgaatagga agttttaatt tcttctaaga gtaagtgaaa agtgcagttg 1860
taacaaacaa agctgtaaca tctttttctg ccaataacag aagtttggca tgccgtgaag 1920
gtgtttggaa atattattgg ataagaatag ctcaattatc ccaaataaat ggatgaagct 1980
ataatagttt tggggaaaag attctcaaat gtataaagtc ttagaacaaa agaattcttt 2040
gaaataaaaa tattatatat aaaagtaaaa aaaaaa
<210> 164
<211> 476
<212> PRT
<213> Homo sapiens
<400> 164
Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
                                 25
Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
                             40
Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val
                     70
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Phe Pro Ala Gln
                 85
                                     90
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro
            100
                                105
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val
                            120
                                                 125
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr
                        135
                                             140
    130
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser
                                        155
                    150
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala
                165
                                    170
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu
            180
                                185
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys
                            200
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg
```

215

220

210

Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser 225 230 235 240

Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile 245 250 255

Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His
260 265 270

Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu 275 280 285

Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr 290 295 300

Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys 305 310 315 320

Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro 325 330 335

Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly 340 345 350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu 385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly 465 470 475

<210> 165

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

```
<400> 165
                                                                24
ttccatgcca cctaagggag actc
<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 166
                                                                24
tggatgaggt gtgcaatggc tggc
<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 167
                                                                24
agctctcaga ggctggtcat aggg
<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
<400> 168
                                                                50
gtcggccctt tcccaggact gaacatgaag agttatgccg gcttcctcac
<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens
<400> 169
cgagggcttt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60
attittccct ttcctaacaa gttctaacag ctgttctaac agctagtgat caggggttct 120
tcttgctgga gaagaaaggg ctgagggcag agcagggcac tctcactcag ggtgaccagc 180
tccttgcctc tctgtggata acagagcatg agaaagtgaa gagatgcagc ggagtgaggt 240
gatggaagtc taaaatagga aggaattttg tgtgcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagctttca aaaaacagga gcgacttcca 360
ctgggctggg ataagacgtg ccggtaggat agggaagact gggtttagtc ctaatatcaa 420
attgactggc tgggtgaact tcaacagcct tttaacctct ctgggagatg aaaacgatgg 480
tatagcataa aggctagaga ccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaagtat gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggaccetggg teaggeeage etetttgete eteceggaaa ttatttttgg 720
```

```
caqatgagca cacacaggag ccqtctcctc accqccgccc ctctcagcat ggaacagagg 840
cagecetgge eeeggeeet ggaggtggae ageegetetg tggteetget eteagtggte 900
tgggtgctgc tggccccccc agcagccggc atgcctcagt tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccag aagaggacaa caagtctcgt tacccgcccc tcatcgtgca gccctgcagc 1140
gaagtgctca ccctcaccaa caatgtcaac aagctgctca tcattgacta ctctgagaac 1200
cgcctgctgg cctgtgggag cctctaccag ggggtctgca agctgctgcg gctggatgac 1260
ctcttcatcc tggtggagcc atcccacaag aaggagcact acctgtccag tgtcaacaag 1320
acgggcacca tgtacggggt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatgggaa gcaggattac ttcccgaccc tgtccagccg gaagctgccc 1440
cgagaccctg agtcctcagc catgctcgac tatgagctac acagcgattt tgtctcctct 1500
ctcatcaaga tecetteaga caccetggee etggteteee aetttgacat ettetacate 1560
tacggetttg ctagtggggg ctttgtctac tttctcactg tccagcccga gacccctgag 1620
ggtgtggcca tcaactccgc tggagacctc ttctacacct cacgcatcgt gcggctctgc 1680
gtggaatacc gcctcctgca ggctgcttac ctggccaagc ctggggactc actggcccag 1800
gccttcaata tcaccagcca ggacgatgta ctctttgcca tcttctccaa agggcagaag 1860
cagtatcacc acccgcccga tgactctgcc ctgtgtgcct tccctatccg ggccatcaac 1920
ttgcagatca aggagcgcct gcagtcctgc taccagggcg agggcaacct ggagctcaac 1980
tggctgctgg ggaaggacgt ccagtgcacg aaggcgcctg tccccatcga tgataacttc 2040
tgtggactgg acatcaacca gcccctggga ggctcaactc cagtggaggg cctgaccctg 2100
tacaccacca gcagggaccg catgacctct gtggcctcct acgtttacaa cggctacagc 2160
gtggtttttg tggggactaa gagtggcaag ctgaaaaagg taagagtcta tgagttcaga 2220
tgctccaatg ccattcacct cctcagcaaa gagtccctct tggaaggtag ctattggtgg 2280
agatttaact ataggcaact ttattttctt ggggaacaaa ggtgaaatgg ggaggtaaga 2340
aggggttaat tttgtgactt agcttctagc tacttcctcc agccatcagt cattgggtat 2400
gtaaggaatg caagcgtatt tcaatatttc ccaaacttta agaaaaaact ttaagaaggt 2460
acatctgcaa aagcaaa
<210> 170
<211> 552
<212> PRT
<213> Homo sapiens
<400> 170
Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr
Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
                                25
Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
        35
                            40
                                                45
Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
                        55
Leu Glu Val Asp Ser Arg Ser Val Val Leu Leu Ser Val Val Trp Val
                    70
                                        75
Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
                85
                                    90
Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
           100
                                                   110
                               105
```

2477

tetgaceaet etgeettgtg tittgeagaa teatgigagg geeaaceggg gaaggiggag 780

Thr	Gly	Ala 115	Val	Tyr	Val	Gly	Ala 120	Ile	Asn	Arg	Val	Tyr 125	Lys	Leu	Thr
Gly	Asn 130	Leu	Thr	Ile	Gln	Val 135	Ala	His	Lys	Thr	Gly 140	Pro	Glu	Glu	Asp
Asn 145	Lys	Ser	Arg	Tyr	Pro 150	Pro	Leu	Ile	Val	Gln 155	Pro	Cys	Ser	Glu	Val 160
Leu	Thr	Leu	Thr	Asn 165	Asn	Val	Asn	Lys	Leu 170	Leu	Ile	Ile	Asp	Туг 175	Ser
Glu	Asn	Arg	Leu 180	Leu	Ala	Cys	Gly	Ser 185	Leu	Tyr	Gln	Gly	Val 190	Cys	Lys
Leu	Leu	Arg 195	Leu	Asp	Asp	Leu	Phe 200	Ile	Leu	Val	Glu	Pro 205	Ser	His	Lys
Lys	Glu 210	His	Tyr	Leu	Ser	Ser 215	Val	Asn	Lys	Thr	Gly 220	Thr	Met	Tyr	Gly
Val 225	Ile	Val	Arg	Ser	Glu 230	Gly	Glu	Asp	Gly	Lys 235	Leu	Phe	Ile	Gly	Thr 240
Ala	Val	Asp	Gly	Lys 245	Gln	Asp	Tyr	Phe	Pro 250	Thr	Leu	Ser	Ser	Arg 255	Lys
Leu	Pro	Arg	Asp 260	Pro	Glu	Ser	Ser	Ala 265	Met	Leu	Asp	Tyr	Glu 270	Leu	His
Ser	Asp	Phe 275	Val	Ser	Ser	Leu	Ile 280	Lys	Ile	Pro	Ser	Asp 285	Thr	Leu	Ala
Leu	Val 290	Ser	His	Phe	Asp	Ile 295	Phe	Tyr	Ile	Tyr	Gly 300	Phe	Ala	Ser	Gly
Gly 305	Phe	Val	Tyr	Phe	Leu 310	Thr	Val	Gln	Pro	Glu 315	Thr	Pro	Glu	Gly	Val 320
Ala	Ile	Asn	Ser	Ala 325	Gly	Asp	Leu	Phe	Tyr 330	Thr	Ser	Arg	Ile	Val 335	Arg
Leu	Cys	Lys	Asp 340	Asp	Pro	Lys	Phe	His 345	Ser	Tyr	Val	Ser	Leu 350	Pro	Phe
Gly	Cys	Thr 355	Arg	Ala	Gly	Val	Glu 360	Tyr	Arg	Leu	Leu	Gln 365	Ala	Ala	Tyr
Leu	Ala 370	Lys	Pro	Gly	Asp	Ser 375	Leu	Ala	Gln	Ala	Phe 380	Asn	Ile	Thr	Ser
Gln 385	Asp	Asp	Val	Leu	Phe 390	Ala	Ile	Phe	Ser	Lys 395	Gly	Gln	Lys	Gln	Tyr 400
His	His	Pro	Pro	Asp 405	Asp	Ser	Ala	Leu	Cys 410	Ala	Phe	Pro	Ile	Arg 415	Ala

Ile	Asn	Leu	Gln 420	Ile	Lys	Glu	Arg	Leu 425	Gln	Ser	Cys	Tyr	Gln 430	Gly	Glu	
Gly	Asn	Leu 435	Glu	Leu	Asn	Trp	Leu 440	Leu	Gly	Lys	Asp	Val 445	Gln	Cys	Thr	
Lys	Ala 450	Pro	Val	Pro	Ile	Asp 455	Asp	Asn	Phe	Cys	Gly 460	Leu	Asp	Ile	Asn	
Gln 465	Pro	Leu	Gly	Gly	Ser 470	Thr	Pro	Val	Glu	Gly 475	Leu	Thr	Leu	Tyr	Thr 480	
Thr	Ser	Arg	Asp	Arg 485	Met	Thr	Ser	Val	Ala 490	Ser	Tyr	Val	Tyr	Asn 495	Gly	
Tyr	Ser	Val	Val 500	Phe	Val	Gly	Thr	Lys 505	Ser	Gly	Lys	Leu	Lys 510	Lys	Val	
Arg	Val	Туг 515	Glu	Phe	Arg	Cys	Ser 520	Asn	Ala	Ile	His	Leu 525	Leu	Ser	Lys	
Glu	Ser 530	Leu	Leu	Glu	Gly	Ser 535	Tyr	Trp	Trp	Arg	Phe 540	Asn	Tyr	Arg	Gln	
Leu 545	Tyr	Phe	Leu	Gly	Glu 550	Gln	Arg									
<211 <212 <213 <220)>) NA rtif:		l Sec			rial	Sem	1ence	2 · S	zn t he	etic				
	0.	ligor	_	eotic			.101	beq	261106	. Dj	y II CII C	cic				
)> 1 aatad		cctc	ctgca	ag											20
<211 <212)> 17 L> 24 2> Di B> Ai	1 NA	icia:	l Sec	quenc	cei										
<220 <223	3> De		-	on of			cial	Seq	ience	∋: S <u>}</u>	/nthe	etic				
)> 1 ctgc	_	tgga	agaag	ga to	ggc										24
<211 <212)> 1' L> 4: 2> Di 3> Ai	3 NA	icial	l Sec	quenc	ce										

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 173
                                                                  43
ggactcactg gcccaggcct tcaatatcac cagccaggac gat
<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens
<220>
<221> modified base
<222> (1683)..(1683)
<223> a, t, c or g
<400> 174
aggctcccgc gcgcggctga gtgcggactg gagtgggaac ccgggtcccc gcgcttagag 60
aacacgcgat gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactcctgc 120
tgctggtcgt cttgggcttc ctggtgctcc gcaggctgga ctggagcacc ctggtccctc 180
tgcggctccg ccatcgacag ctggggctgc aggccaaggg ctggaacttc atgctggagg 240
attccacctt ctggatcttc gggggctcca tccactattt ccgtgtgccc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttgaa caccctcacc acctatgttc 360
cgtggaacct gcatgagcca gaaagaggca aatttgactt ctctgggaac ctggacctgg 420
aggccttcgt cctgatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggcccct 480
acatctgcag tgagatggac ctcgggggct tgcccagctg gctactccaa gaccctggca 540
tgaggctgag gacaacttac aagggcttca ccgaagcagt ggacctttat tttgaccacc 600
tqatqtccaq ggtggtgcca ctccagtaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaag accccgcata catgccctac gtcaagaagg 720
cactggagga ccgtggcatt gtggaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggga gtcttggcca ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac cacctttctc ttcaacgtcc aggggactca gcccaagatg gtgatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
ttttgaaaac cgtgtctgcc attgtggacg ccggctcctc catcaacctc tacatgttcc 1020
acggaggcac caactttggc ttcatgaatg gagccatgca cttccatgac tacaagtcag 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cggcgattac acggccaagt 1140
acatgaagct togagactto ttoggctoca totoaggcat coctotocot coccoactg 1200
accttcttcc caagatgccg tatgagccct taacgccagt cttgtacctg tctctgtggg 1260
acgccctcaa gtacctgggg gagccaatca agtctgaaaa gcccatcaac atggagaacc 1320
tgccagtcaa tgggggaaat ggacagtcct tcgggtacat tctctatgag accagcatca 1380
cctcgtctgg catcctcagt ggccacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgtccccctg atccagggtt 1500
acaccgtgct gaggatcttg gtggagaatc gtgggcgagt caactatggg gagaatattg 1560
atgaccagcg caaaggetta attggaaate tetatetgaa tgatteacce etgaaaaaet 1620
tcagaatcta tagcctggat atgaagaaga gcttctttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgctttctt cttgggtagc ttgtccatca 1740
gctccacgcc ttgtgacacc tttctgaagc tggagggctg ggagaagggg gttgtattca 1800
tcaatggcca gaaccttgga cgttactgga acattggacc ccagaagacg ctttacctcc 1860
caggtccctg gttgagcagc ggaatcaacc aggtcatcgt ttttgaggag acgatggcgg 1920
gccctgcatt acagttcacg gaaacccccc acctgggcag gaaccagtac attaagtgag 1980
cggtggcacc ccctcctgct ggtgccagtg ggagactgcc gcctcctctt gacctgaagc 2040
ctggtggctg ctgccccacc cctcactgca aaagcatctc cttaagtagc aacctcaggg 2100
actgggggct acagtctgcc cctgtctcag ctcaaaaccc taagcctgca gggaaaggtg 2160
ggatggctct gggcctggct ttgttgatga tggctttcct acagccctgc tcttgtgccg 2220
aggctgtcgg gctgtctcta gggtgggagc agctaatcag atcgcccagc ctttggccct 2280
```

```
gactcaggcg tgctctttgc tggttcctgg gaggcttggc cacatccctc atggccccat 2400
tttatccccg aaatcctggg tgtgtcacca gtgtagaggg tggggaaggg gtgtctcacc 2460
tgagetgaet ttgttcttcc ttcacaacct tctgagectt ctttgggatt ctggaaggaa 2520
ctcggcgtga gaaacatgtg acttcccctt tcccttccca ctcgctgctt cccacagggt 2580
gacaggctgg gctggagaaa cagaaatcct caccctgcgt cttcccaagt tagcaggtgt 2640
ctctggtgtt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct cacatgtgag 2880
tcctggcaga agccatggcc catgtctgca catccaggga ggaggacaga aggcccagct 2940
cagtggcccc cgctccccac ccccacgcc cgaacagcag gggcagagca gccctccttc 3000
gaagtgtgtc caagtccgca tttgagcctt gttctggggc ccagcccaac acctggcttg 3060
ggctcactgt cctgagttgc agtaaagcta taaccttgaa tcacaa
<210> 175
<211> 636
<212> PRT
<213> Homo sapiens
<220>
<221> MOD_RES
<222> (539)
<223> Any amino acid
<400> 175
Met Thr Trp Ser Leu Arg Arg Pro Ala Arg Thr Leu Gly Leu
                  5
  1
                                     10
Leu Leu Val Val Leu Gly Phe Leu Val Leu Arg Arg Leu Asp Trp
                                 25
Ser Thr Leu Val Pro Leu Arg Leu Arg His Arg Gln Leu Gly Leu Gln
         35
                             40
                                                 45
Ala Lys Gly Trp Asn Phe Met Leu Glu Asp Ser Thr Phe Trp Ile Phe
Gly Gly Ser Ile His Tyr Phe Arg Val Pro Arg Glu Tyr Trp Arg Asp
Arg Leu Leu Lys Met Lys Ala Cys Gly Leu Asn Thr Leu Thr Thr Tyr
                 85
Val Pro Trp Asn Leu His Glu Pro Glu Arg Gly Lys Phe Asp Phe Ser
                                105
Gly Asn Leu Asp Leu Glu Ala Phe Val Leu Met Ala Ala Glu Ile Gly
        115
                            120
                                                125
Leu Trp Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ser Glu Met Asp
    130
                        135
Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
                    150
                                        155
Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
```

cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340

His	Leu	Met	Ser 180	Arg	Val	Val	Pro	Leu 185	Gln	Tyr	Lys	Arg	Gly 190	Gly	Pro
Ile	Ile	Ala 195	Val	Gln	Val	Glu	Asn 200	Glu	Tyr	Gly	Ser	Tyr 205	Asn	Lys	Asp
Pro	Ala 210	Tyr	Met	Pro	Tyr	Val 215	Lys	Lys	Ala	Leu	Glu 220	Asp	Arg	Gly	Ile
Val 225	Glu	Leu	Leu	Leu	Thr 230	Ser	Asp	Asn	Lys	Asp 235	Gly	Leu	Ser	Lys	Gly 240
Ile	Val	Gln	Gly	Val 245	Leu	Ala	Thr	Ile	Asn 250	Leu	Gln	Ser	Thr	His 255	Glu
Leu	Gln	Leu	Leu 260	Thr	Thr	Phe	Leu	Phe 265	Asn	Val	Gln	Gly	Thr 270	Gln	Pro
Lys	Met	Val 275	Met	Glu	Tyr	Trp	Thr 280	Gly	Trp	Phe	Asp	Ser 285	Trp	Gly	Gly
Pro	His 290	Asn	Ile	Leu	Asp	Ser 295	Ser	Glu	Val	Leu	Lys 300	Thr	Val	Ser	Ala
Ile 305	Val	Asp	Ala	Gly	Ser 310	Ser	Ile	Asn	Leu	Tyr 315	Met	Phe	His	Gly	Gly 320
Thr	Asn	Phe	Gly	Phe 325	Met	Asn	Gly	Ala	Met 330	His	Phe	His	Asp	Tyr 335	Lys
Ser	Asp	Val	Thr 340	Ser	Tyr	Asp	Tyr	Asp 345	Ala	Val	Leu	Thr	Glu 350	Ala	Gly
Asp	Tyr	Thr 355	Ala	Lys	Tyr	Met	Lys 360	Leu	Arg	Asp	Phe	Phe 365	Gly	Ser	Ile
Ser	Gly 370	Ile	Pro	Leu	Pro	Pro 375	Pro	Pro	Asp	Leu	Leu 380	Pro	Lys	Met	Pro
Туг 385	Glu	Pro	Leu	Thr	Pro 390	Val	Leu	Tyr	Leu	Ser 395	Leu	Trp	Asp	Ala	Leu 400
Lys	Tyr	Leu	Gly	Glu 405	Pro	Ile	Lys	Ser	Glu 410	Lys	Pro	Ile	Asn	Met 415	Glu
Asn	Leu	Pro	Val 420	Asn	Gly	Gly	Asn	Gly 425	Gln	Ser	Phe	Gly	Tyr 430	Ile	Leu
Tyr	Glu	Thr 435	Ser	Ile	Thr	Ser	Ser 440	Gly	Ile	Leu	Ser	Gly 445	His	Val	His
Asp	Arg 450	Gly	Gln	Val	Phe	Val 455	Asn	Thr	Val	Ser	Ile 460	Gly	Phe	Leu	Asp
Tyr	Lys	Thr	Thr	Lys	Ile	Ala	Val	Pro	Leu	Ile	Gln	Gly	Tyr	Thr	Val

465 470 475 480

Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn 485 490 495

Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp 500 505 510

Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser 515 520 525

Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr 530 540

Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr 545 550 555 560

Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val 565 570 575

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr 610 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys 625 630 635

<210> 176

<211> 2505

<212> DNA ·

<213> Homo sapiens

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctaggtgta ggggtggacg ggtcccagga 60 ccctggtgag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120 aaggggagca aagccgggct cggcccgagg cccccaggac ctccatctcc caatgttgga 180 ggaatccgac acgtgacggt ctgtccgccg tctcagacta gaggagcgct gtaaacgcca 240 tggctcccaa gaagctgtcc tgccttcgtt ccctgctgct gccgctcagc ctgacgctac 300 tgctgcccca ggcagacact cggtcgttcg tagtggatag gggtcatgac cggtttctcc 360 tagacggggc cccgttccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420 tgctttgggc cgaccggctt ttgaagatgc gatggagcgg cctcaacgcc atacagtttt 480 atgtgccctg gaactaccac gagccacagc ctggggtcta taactttaat ggcagccggg 540 acctcattgc ctttctgaat gaggcagctc tagcgaacct gttggtcata ctgagaccag 600 gaccttacat ctgtgcagag tgggagatgg ggggtctccc atcctggttg cttcgaaaac 660 ctgaaattca tctaagaacc tcagatccag acttccttgc cgcagtggac tcctggttca 720 aggtettget geceaagata tateeatgge tttateacaa tgggggeaac ateattagea 780 ttcaggtgga gaatgaatat ggtagctaca gagcctgtga cttcagctac atgaggcact 840 tggctgggct cttccgtgca ctgctaggag aaaagatctt gctcttcacc acagatgggc 900 ctgaaggact caagtgtggc tccctccggg gactctatac cactgtagat tttggcccag 960 ctgacaacat gaccaaaatc tttaccctgc ttcggaagta tgaaccccat gggccattgg 1020 taaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacggt 1080 ctgtgtcagc tgtaaccaaa ggactagaga acatgctcaa gttgggagcc agtgtgaaca 1140

```
tgtacatgtt ccatggaggt accaactttg gatattggaa tggtgccgat aagaagggac 1200
gcttccttcc gattactacc agctatgact atgatgcacc tatatctgaa gcaggggacc 1260
ccacacctaa gctttttgct cttcgagatg tcatcagcaa gttccaggaa gttcctttgg 1320
gacctttacc tcccccgagc cccaagatga tgcttggacc tgtgactctg cacctggttg 1380
agcatttact agettteeta gaettgettt geeceegtgg geecatteat teaatettge 1440
caatgacett tgaggetgte aageaggace atggetteat gttgtacega acetatatga 1500
cccataccat ttttgagcca acaccattct gggtgccaaa taatggagtc catgaccgtg 1560
cctatgtgat ggtggatggg gtgttccagg gtgttgtgga gcgaaatatg agagacaaac 1620
tatttttgac ggggaaactg gggtccaaac tggatatctt ggtggagaac atggggaggc 1680
tcagctttgg gtctaacagc agtgacttca agggcctgtt gaagccacca attctggggc 1740
aaacaatcct tacccagtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtggt 1800
ggtttcccct ccagttgcca aaatggccat atcctcaagc tccttctggc cccacattct 1860
actccaaaac atttccaatt ttaggctcag ttggggacac atttctatat ctacctggat 1920
qqaccaaqqq ccaaqtctgg atcaatgggt ttaacttggg ccggtactgg acaaagcagg 1980
ggccacaaca gaccctctac gtgccaagat tcctgctgtt tcctagggga gccctcaaca 2040
aaattacatt gctggaacta gaagatgtac ctctccagcc ccaagtccaa tttttggata 2100
agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160
atacactgag tgcctctgaa ccaatggagt taagtgggca ctgaaaggta ggccgggcat 2220
ggtggctcat gcctgtaatc ccagcacttt gggaggctga gacgggtgga ttacctgagg 2280
tcaggacttc aagaccagcc tggccaacat ggtgaaaccc cgtctccact aaaaatacaa 2340
aaattagccg ggcgtgatgg tgggcacctc taatcccagc tacttgggag gctgagggca 2400
ggagaattgc ttgaatccag gaggcagagg ttgcagtgag tggaggttgt accactgcac 2460
tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaa
                                                                  2505
<210> 177
<211> 654
<212> PRT
<213> Homo sapiens
<400> 177
Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Pro Leu
                                     10
                                                         15
  1
Ser Leu Thr Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
                                 2.5
Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr
                             40
                                                 45
Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
                         55
     50
Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
                 85
```

Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala

Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp 115 120 125

Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His

135

105

140

100

Leu Arg Thr 145	Ser Asp	Pro As 150) Phe	Leu	Ala	Ala 155	Val	Asp	Ser	Trp	Phe 160
Lys Val Leu	Leu Pro 165	Lys Il	e Tyr	Pro	Trp 170	Leu	Tyr	His	Asn	Gly 175	Gly
Asn Ile Ile	Ser Ile 180	Gln Va	l Glu	Asn 185	Glu	Tyr	Gly	Ser	Туг 190	Arg	Ala
Cys Asp Phe 195	Ser Tyr	Met Ar	7 His 200	Leu	Ala	Gly	Leu	Phe 205	Arg	Ala	Leu
Leu Gly Glu 210	Lys Ile	Leu Let 21		Thr	Thr	Asp	Gly 220	Pro	Glu	Gly	Leu
Lys Cys Gly 225	Ser Leu	Arg Gly 230	/ Leu	Tyr	Thr	Thr 235	Val	Asp	Phe	Gly	Pro 240
Ala Asp Asn	Met Thr 245	Lys Il	e Phe	Thr	Leu 250	Leu	Arg	Lys	Tyr	G1u 255	Pro
His Gly Pro	Leu Val 260	Asn Se	c Glu	Tyr 265	Tyr	Thr	Gly	Trp	Leu 270	Asp	Tyr
Trp Gly Gln 275	Asn His	Ser Th	280	Ser	Val	Ser	Ala	Val 285	Thr	Lys	Gly
Leu Glu Asn 290	Met Leu	Lys Let 29		Ala	Ser	Val	Asn 300	Met	Tyr	Met	Phe
His Gly Gly 305	Thr Asn	Phe Gly	y Tyr	Trp	Asn	Gly 315	Ala	Asp	Lys	Lys	Gly 320
Arg Phe Leu	Pro Ile 325	Thr Th	s Ser	Tyr	Asp 330	Tyr	Asp	Ala	Pro	11e 335	Ser
Glu Ala Gly	340			345					350		
Ser Lys Phe 355			360	_				365			
Lys Met Met 370	Leu Gly	Pro Val		Leu	His	Leu	Val 380	Gly	His	Leu	Leu
Ala Phe Leu 385	Asp Leu	Leu Cy:	s Pro	Arg	Gly	Pro 395	Ile	His	Ser	Ile	Leu 400
Pro Met Thr	Phe Glu 405	Ala Va	l Lys	Gln	Asp 410	His	Gly	Phe	Met	Leu 415	Tyr
Arg Thr Tyr	Met Thr 420	His Th	: Ile	Phe 425	Glu	Pro	Thr	Pro	Phe 430	Trp	Val
Pro Asn Asn 435	Gly Val	His As	Arg 440	Ala	Tyr	Val	Met	Val 445	Asp	Gly	Val

Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr 455 Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg 470 Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro 490 Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu 505 Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys 520 Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr 530 535 Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly 550 555 Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr 565 570 Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu 580 585 Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu 600 Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu 615 610 Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala 625 630 635 Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His 645 650 <210> 178 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

24

<400> 178

tggctactcc aagaccctgg catg

<210> 179

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tggaca	179 maatc cccttgctca gccc	24
<210><211><211><212><213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> gggcti	180 tcacc gaagcagtgg acctttattt tgaccacctg atgtccaggg	50
<210><211><212><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> ccagct	181 tatga ctatgatgca cc	22
<210><211><212><212><213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> tggcad	182 cccag aatggtgttg gctc	24
<210><211><212><212><213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> cgagai	183 igtca tcagcaagtt ccaggaagtt cctttgggac ctttacctcc	50
<210><211><211><212>	1947	

```
<400> 184
qctttgaaca cgtctgcaag cccaaagttg agcatctgat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttgaaaa agcttctcat cagttacata tccattattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattettt egaaaaagte agagaagaga geagttttag tgacatteea gatgteaaaa 240
acquitting qttccttctt cacatggtag accagtatga ccagctatat tccaagcgtt 300
ttggtgtgtt cttgtcagaa gttagtgaaa ataaacttag ggaaattagt ttgaaccatg 360
agtggacatt tgaaaaactc aggcagcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcatctgtt catgctgtcg ggggtgcccg atgctgtctt tgacctcaca gacctggatg 480
tgctaaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctqqqtqta tttqctcaaa aaccttcgag agttqtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagttccct ccaacattac agatgtggct ccacatctta 840
caaaqttaqt cattcataat qacqqcacta aactcttqqt actqaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtc caataacatt cgcacaattg 1020
aggaaatcat cagtttccag catttaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tatteeteec tetattaeee atgteaaaaa ettggagtea etttatttet 1140
ctaacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattg cttcagaacc 1260
tgcagcattt gcatatcact gggaacaaag tggacattct gccaaaacaa ttgtttaaat 1320
gcataaagtt gaggactttg aatctgggac agaactgcat cacctcactc ccagagaaag 1380
ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttg gaccgcctgc 1440
cageceaget gggeeagtgt eggatgetea agaaaagegg gettgttgtg gaagateace 1500
tttttgatac cctgccactc gaagtcaaag aggcattgaa tcaagacata aatattccct 1560
ttgcaaatgg gatttaaact aagataatat atgcacagtg atgtgcagga acaacttcct 1620
agattgcaag tgctcacgta caagttatta caagataatg cattttagga gtagatacat 1680
cttttaaaat aaaacagaga ggatgcatag aaggctgata gaagacataa ctgaatgttc 1740
aatgtttgta gggttttaag tcattcattt ccaaatcatt ttttttttc ttttggggaa 1800
agggaaggaa aaattataat cactaatctt ggttcttttt aaattgtttg taacttggat 1860
gctgccgcta ctgaatgttt acaaattgct tgcctgctaa agtaaatgat taaattgaca 1920
ttttcttact aaaaaaaaa aaaaaaa
<210> 185
<211> 501
<212> PRT
<213> Homo sapiens
<400> 185
Met Ala Tyr Met Leu Lys Lys Leu Leu Ile Ser Tyr Ile Ser Ile Ile
  1
                  5
                                                         15
Cys Val Tyr Gly Phe Ile Cys Leu Tyr Thr Leu Phe Trp Leu Phe Arg
                                 25
Ile Pro Leu Lys Glu Tyr Ser Phe Glu Lys Val Arg Glu Glu Ser Ser
                             40
Phe Ser Asp Ile Pro Asp Val Lys Asn Asp Phe Ala Phe Leu Leu His
     50
Met Val Asp Gln Tyr Asp Gln Leu Tyr Ser Lys Arg Phe Gly Val Phe
 65
                                         75
```

Leu	Ser	Glu	Val	Ser 85	Glu	Asn	Lys	Leu	Arg 90	Glu	Ile	Ser	Leu	Asn 95	His
Glu	Trp	Thr	Phe 100	Glu	Lys	Leu	Arg	Gln 105	His	Ile	Ser	Arg	Asn 110	Ala	Gln
Asp	Lys	Gln 115	Glu	Leu	His	Leu	Phe 120	Met	Leu	Ser	Gly	Val 125	Pro	Asp	Ala
Val	Phe 130	Asp	Leu	Thr	Asp	Leu 135	Asp	Val	Leu	Lys	Leu 140	Glu	Leu	Ile	Pro
Glu 145	Ala	Lys	Ile	Pro	Ala 150	Lys	Ile	Ser	Gln	Met 155	Thr	Asn	Leu	Gln	Glu 160
Leu	His	Leu	Суз	His 165	Суз	Pro	Ala	Lys	Val 170	Glu	Gln	Thr	Ala	Phe 175	Ser
Phe	Leu	Arg	Asp 180	His	Leu	Arg	Суѕ	Leu 185	His	Val	Lys	Phe	Thr 190	Asp	Val
Ala	Glu	Ile 195	Pro	Ala	Trp	Val	Tyr 200	Leu	Leu	Lys	Asn	Leu 205	Arg	Glu	Leu
Tyr	Leu 210	Ile	Gly	Asn	Leu	Asn 215	Ser	Glu	Asn	Asn	Lys 220	Met	Ile	Gly	Leu
Glu 225	Ser	Leu	Arg	Glu	Leu 230	Arg	His	Leu	Lys	Ile 235	Leu	His	Val	Lys	Ser 240
Asn	Leu	Thr	Lys	Val 245	Pro	Ser	Asn	Ile	Thr 250	Asp	Val	Ala	Pro	His 255	Leu
Thr	Lys	Leu	Val 260	Ile	His	Asn	Asp	Gly 265	Thr	Lys	Leu	Leu	Val 270	Leu	Asn
Ser		Lys 275	Lys	Met	Met	Asn	Val 280	Ala	Glu	Leu	Glu	Leu 285	Gln	Asn	Cys
Glu	Leu 290	Glu	Arg	Ile	Pro	His 295	Ala	Ile	Phe	Ser	Leu 300	Ser	Asn	Leu	Gln
Glu 305	Leu	Asp	Leu	Lys	Ser 310	Asn	Asn	Ile	Arg	Thr 315	Ile	Glu	Glu	Ile	Ile 320
Ser	Phe	Gln	His	Leu 325	Lys	Arg	Leu	Thr	Cys 330	Leu	Lys	Leu	Trp	His 335	Asn
Lys	Ile	Val	Thr 340	Ile	Pro	Pro	Ser	Ile 345	Thr	His	Val	Lys	Asn 350	Leu	Glu
Ser	Leu	Tyr 355	Phe	Ser	Asn	Asn	Lys 360	Leu	Glu	Ser	Leu	Pro 365	Val	Ala	Val
Phe	Ser 370	Leu	Gln	Lys	Leu	Arg 375	Cys	Leu	Asp	Val	Ser 380	Tyr	Asn	Asn	Ile

Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu 385 390 395 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys 405 410 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser 425 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu 435 440 Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg 455 460 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr 470 475 Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro 485 490 495 Phe Ala Asn Gly Ile 500 <210> 186 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 186 21 cctccctcta ttacccatgt c <210> 187 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 187 24 gaccaacttt ctctgggagt gagg <210> 188 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

```
<210> 189
<211> 2917
<212> DNA
<213> Homo sapiens
<400> 189
cccacgcgtc cggcctt
```

cccacgcgtc cggccttctc tctggacttt gcatttccat tccttttcat tgacaaactg 60 actititita titettitit tecatetetg ggecagettg ggateetagg eegecetggg 120 aagacatttg tgttttacac acataaggat ctgtgtttgg ggtttcttct tcctcccctg 180 acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240 gcacttatct gcctaggtac atcgaagtct tttgacctcc atacagtgat tatgcctgtc 300 atcgctggtg gtatcctggc ggccttgctc ctgctgatag ttgtcgtgct ctgtctttac 360 ttcaaaatac acaacgcgct aaaagctgca aaggaacctg aagctgtggc tgtaaaaaat 420 cacaacccag acaaggtgtg gtgggccaag aacagccagg ccaaaaccat tgccacggag 480 tcttgtcctg ccctgcagtg ctgtgaagga tatagaatgt gtgccagttt tgattccctg 540 ccaccttgct gttgcgacat aaatgagggc ctctgagtta ggaaaggctc ccttctcaaa 600 gcagagccct gaagacttca atgatgtcaa tgaggccacc tgtttgtgat gtgcaggcac 660 agaagaaagg cacagctccc catcagtttc atggaaaata actcagtgcc tgctgggaac 720 cagctgctgg agatccctac agagagcttc cactgggggc aacccttcca ggaaggagtt 780 ggggagagag aaccctcact gtggggaatg ctgataaacc agtcacacag ctgctctatt 840 ctcacacaaa tctaccctt gcgtggctgg aactgacgtt tccctggagg tgtccagaaa 900 gctgatgtaa cacagagcct ataaaagctg tcggtcctta aggctgccca gcgccttgcc 960 aaaatggagc ttgtaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020 gagctgacaa tggcggaggc tgaaggcaat gcaagctgca cagtcagtct agggggtgcc 1080 aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140 tggacaatag aaagaccaga aaacaaaagc atcagaatta tcttttccta tgtccagctt 1200 gatccagatg gaagctgtga aagtgaaaac attaaagtct ttgacggaac ctccagcaat 1260 gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttcctgtatt tgaatcatca 1320 tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtcttt 1380 qtcttctact acttcttctc tcctaacatc tctattccaa actgtggcgg ttacctggat 1440 accttggaag gatccttcac cagccccaat tacccaaagc cgcatcctga gctggcttat 1500 tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560 ttcctagaaa tagacaaaca gtgcaaattt gattttcttg ccatctatga tggcccctcc 1620 accaactctg gcctgattgg acaagtctgt ggccgtgtga ctcccacctt cgaatcgtca 1680 tcaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740 gcttcctaca cctcaattta tgcagaaaac atcaacacta catctttaac ttgctcttct 1800 gacaggatga gagttattat aagcaaatcc tacctagagg cttttaactc taatgggaat 1860 aacttgcaac taaaagaccc aacttgcaga ccaaaattat caaatgttgt ggaattttct 1920 gtccctctta atggatgtgg tacaatcaga aaggtagaag atcagtcaat tacttacacc 1980 aatataatca cettitetge atceteaact tetgaagtga teaccegtea gaaacaacte 2040 cagattattg tgaagtgtga aatgggacat aattctacag tggagataat atacataaca 2100 gaagatgatg taatacaaag tcaaaatgca ctgggcaaat ataacaccag catggctctt 2160 tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220 caaactettt ttgttcaagt tagtetgeac aceteagate caaatttggt ggtgtttett 2280 gatacctgta gagcctctcc cacctctgac tttgcatctc caacctacga cctaatcaag 2340 agtggatgta gtcgagatga aacttgtaag gtgtatccct tatttggaca ctatgggaga 2400 ttccagttta atgcctttaa attcttgaga agtatgagct ctgtgtatct gcagtgtaaa 2460 gttttgatat gtgatagcag tgaccaccag tctcgctgca atcaaggttg tgtctccaga 2520 agcaaacgag acatttcttc atataaatgg aaaacagatt ccatcatagg acccattcgt 2580 ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttc agcatgaaac acatgcggaa 2640 gaaactccaa accagccttt caacagtgtg catctgtttt ccttcatggt tctagctctg 2700 aatgtggtga ctgtagcgac aatcacagtg aggcattttg taaatcaacg ggcagactac 2760 aaataccaga agctgcagaa ctattaacta acaggtccaa ccctaagtga gacatgtttc 2820

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser 1 5 10 15

Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys 20 25 30

Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met 35 40 45

Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
50 55 60

Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp 65 70 75 80

Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr 85 90 95

Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr 100 105 110

Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val 115 120 125

Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe 130 140

Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr 145 150 155 160

Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu 165 170 175

Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile 180 185 190

Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys 195 200 205

Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu 210 215 220

Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser 225 230 235 240

Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg 245 250 255

Gly	Phe	Ser	Ala 260	Ser	Tyr	Thr	Ser	Ile 265	Tyr	Ala	Glu	Asn	Ile 270	Asn	Thr
Thr	Ser	Leu 275	Thr	Cys	Ser	Ser	Asp 280	Arg	Met	Arg	Val	Ile 285	Ile	Ser	Lys
Ser	Tyr 290	Leu	Glu	Ala	Phe	Asn 295	Ser	Asn	Gly	Asn	Asn 300	Leu	Gln	Leu	Lys
Asp 305	Pro	Thr	Cys	Arg	Pro 310	Lys	Leu	Ser	Asn	Val 315	Val	Glu	Phe	Ser	Val 320
Pro	Leu	Asn	Gly	Cys 325	Gly	Thr	Ile	Arg	Lys 330	Val	Glu	Asp	Gln	Ser 335	Ile
Thr	Tyr	Thr	Asn 340	Ile	Ile	Thr	Phe	Ser 345	Ala	Ser	Ser	Thr	Ser 350	Glu	Val
Ile	Thr	Arg 355	Gln	Lys	Gln	Leu	Gln 360	Ile	Ile	Val	Lys	Суs 365	Glu	Met	Gly
His	Asn 370	Ser	Thr	Val	Glu	Ile 375	Ile	Tyr	Ile	Thr	Glu 380	Asp	Asp	Val	Ile
Gln 385	Ser	Gln	Asn	Ala	Leu 390	Gly	Lys	Tyr	Asn	Thr 395	Ser	Met	Ala	Leu	Phe 400
Glu	Ser	Asn	Ser	Phe 405	Glu	Lys	Thr	Ile	Leu 410	Glu	Ser	Pro	Tyr	Туг 415	Val
Asp	Leu	Asn	Gln 420	Thr	Leu	Phe	Val	Gln 425	Val	Ser	Leu	His	Thr 430	Ser	Asp
Pro	Asn	Leu 435	Val	Val	Phe	Leu	Asp 440	Thr	Cys	Arg	Ala	Ser 445	Pro	Thr	Ser
Asp	Phe 450	Ala	Ser	Pro	Thr	Tyr 455	Asp	Leu	Ile	Lys	Ser 460	Gly	Cys	Ser	Arg
Asp 465	Glu	Thr	Cys	Lys	Val 470	Tyr	Pro	Leu	Phe	Gly 475	His	Tyr	Gly	Arg	Phe 480
Gln	Phe	Asn	Ala	Phe 485	Lys	Phe	Leu	Arg	Ser 490	Met	Ser	Ser	Val	Туг 495	Leu
Gln	Cys	Lys	Val 500	Leu	Ile	Cys	Asp	Ser 505	Ser	Asp	His	Gln	Ser 510	Arg	Cys
Asn	Gln	Gly 515	Cys	Val	Ser	Arg	Ser 520	Lys	Arg	Asp	Ile	Ser 525	Ser	Tyr	Lys
Trp	Lys 530	Thr	Asp	Ser	Ile	Ile 535	Gly	Pro	Ile	Arg	Leu 540	Lys	Arg	Asp	Arg
Ser 545	Ala	Ser	Gly	Asn	Ser 550	Gly	Phe	Gln	His	Glu 555	Thr	His	Ala	Glu	Glu 560

Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val 570 565 Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe 580 585 Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr 600 <210> 191 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 191 tctctattcc aaactgtggc g 21 <210> 192 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 192 22 tttgatgacg attcgaaggt gg <210> 193 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 193 47 ggaaggatcc ttcaccagcc ccaattaccc aaagccgcat cctgagc <210> 194 <211> 2362 <212> DNA <213> Homo sapiens <400> 194 gacggaagaa cagcgctccc gaggccgcgg gagcctgcag agaggacagc cggcctgcgc 60 egggacatge ggeeceagga geteceeagg etegegttee egttgetget gttgetgttg 120 ctgctgctgc cgccgccgcc gtgccctgcc cacagcgcca cgcgcttcga ccccacctgg 180 gagtecetgg acgeecgeca getgeecgeg tggtttgace aggeeaagtt eggeatette 240 atccactggg gagtgttttc cgtgcccagc ttcggtagcg agtggttctg gtggtattgg 300 caaaaggaaa agataccgaa gtatgtggaa tttatgaaag ataattaccc tcctagtttc 360

```
aaatatgaag attttggacc actatttaca gcaaaatttt ttaatgccaa ccagtgggca 420
qatatttttc aggcctctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
tttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccaag 540
agggacattg tcaaggaact tgaggtagcc attaggaaca gaactgacct gcgttttgga 600
ctqtactatt ccctttttga atggtttcat ccgctcttcc ttgaggatga atccagttca 660
ttccataagc ggcaatttcc agtttctaag acattgccag agctctatga gttagtgaac 720
aactatcagc ctgaggttct gtggtcggat ggtgacggag gagcaccgga tcaatactgg 780
aacagcacag gcttcttggc ctggttatat aatgaaagcc cagttcgggg cacagtagtc 840
accaatgate gttggggage tggtageate tgtaageatg gtggetteta tacctgeagt 900
gatcgttata acccaggaca tcttttgcca cataaatggg aaaactgcat gacaatagac 960
aaactgtcct ggggctatag gagggaagct ggaatctctg actatcttac aattgaagaa 1020
ttggtgaagc aacttgtaga gacagtttca tgtggaggaa atcttttgat gaatattggg 1080
cccacactag atggcaccat ttctgtagtt tttgaggagc gactgaggca agtggggtcc 1140
tggctaaaag tcaatggaga agctatttat gaaacctata cctggcgatc ccagaatgac 1200
actgtcaccc cagatgtgtg gtacacatcc aagcctaaag aaaaattagt ctatgccatt 1260
tttcttaaat ggcccacatc aggacagctg ttccttggcc atcccaaagc tattctgggg 1320
gcaacagagg tgaaactact gggccatgga cagccactta actggatttc tttggagcaa 1380
aatggcatta tggtagaact gccacagcta accattcatc agatgccgtg taaatggggc 1440
tgggctctag ccctaactaa tgtgatctaa agtgcagcag agtggctgat gctgcaagtt 1500
atgtctaagg ctaggaacta tcaggtgtct ataattgtag cacatggaga aagcaatgta 1560
aactggataa gaaaattatt tggcagttca gccctttccc tttttcccac taaatttttc 1620
ttaaattacc catgtaacca ttttaactct ccagtgcact ttgccattaa agtctcttca 1680
cattgatttg tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
gaattggtgg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
tatatagtta tgcatcactt aatatgggga tattttctgg gaaatgcatt gctagtcaat 1860
ttttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagcctacta 1920
cacacctaat gtgtatggta tagactgttg ctcctaggct acagacatat acagcatgtt 1980
actgaatact gtaggcaata gtaacagtgg tatttgtata tcgaaacata tggaaacata 2040
gagaaggtac agtaaaaata ctgtaaaata aatggtgcac ctgtataggg cacttaccac 2100
gaatggaget tacaggactg gaagttgete tgggtgagte agtgagtgaa tgtgaaggee 2160
taggacatta ttgaacactg ccagacgtta taaatactgt atgcttaggc tacactacat 2220
ttataaaaaa aagtttttct ttcttcaatt ataaattaac ataagtgtac tgtaacttta 2280
caaacgtttt aatttttaaa acctttttgg ctcttttgta ataacactta gcttaaaaca 2340
taaactcatt gtgcaaatgt aa
                                                                  2362
<210> 195
<211> 467
<212> PRT
<213> Homo sapiens
<400> 195
Met Arg Pro Gln Glu Leu Pro Arg Leu Ala Phe Pro Leu Leu Leu
 1
Leu Leu Leu Leu Pro Pro Pro Pro Cys Pro Ala His Ser Ala Thr
Arg Phe Asp Pro Thr Trp Glu Ser Leu Asp Ala Arg Gln Leu Pro Ala
Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe
```

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro

Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu Glu Asp Glu Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu

385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
405

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu $\stackrel{\checkmark}{}$ 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr 450 455 460

Asn Val Ile 465

<210> 196

<211> 23 <212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196

tggtttgacc aggccaagtt cgg 23

<210> 197 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 197

ggattcatcc tcaaggaaga gcgg 24

<210> 198 <211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 198

aacttgcagc atcagccact ctgc 24

<210> 199

<211> 45

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe <400> 199 45 ttccgtgccc agcttcggta gcgagtggtt ctggtggtat tggca <210> 200 <211> 2372 <212> DNA <213> Homo sapiens <400> 200 agcagggaaa tccggatgtc tcggttatga agtggagcag tgagtgtgag cctcaacata 60 gttccagaac tctccatccg gactagttat tgagcatctg cctctcatat caccagtggc 120 catctgaggt gtttccctgg ctctgaaggg gtaggcacga tggccaggtg cttcagcctg 180 gtgttgcttc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtgca 240 qaaqagettt ccatccaggt gtcatgcaga attatgggga tcaccettgt gagcaaaaag 300 qcqaaccaqc agctgaattt cacagaagct aaggaggcct gtaggctgct gggactaagt 360 ttqqccqqca aggaccaagt tgaaacagcc ttgaaagcta gctttgaaac ttgcagctat 420 ggctgggttg gagatggatt cgtggtcatc tctaggatta gcccaaaccc caagtgtggg 480 aaaaatgggg tgggtgtcct gatttggaag gttccagtga gccgacagtt tgcagcctat 540 tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccaccaaa 600 gatcccatat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660 acctactegg tggcatecee ttactetaca atacetgeee etactactae teeteetget 720 ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agtttttatg 780 gaaactagca ccatgtctac agaaactgaa ccatttgttg aaaataaagc agcattcaag 840 aatgaagetg etgggtttgg aggtgteece aeggetetge tagtgettge teteetette 900 tttggtgctg cagctggtct tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960 tttacaaaca agaatcagca gaaggaaatg atcgaaacca aagtagtaaa ggaggagaag 1020 qccaatqata qcaaccctaa tqaqqaatca aagaaaactg ataaaaaccc agaagagtcc 1080 aaqaqtccaa qcaaaactac cqtqcqatqc ctqqaaqctq aagtttagat gagacagaaa 1140 tgaggagaca cacctgaggc tggtttcttt catgctcctt accctgcccc agctggggaa 1200 atcaaaaggg ccaaagaacc aaagaagaaa gtccaccctt ggttcctaac tggaatcagc 1260 tcaggactgc cattggacta tggagtgcac caaagagaat gcccttctcc ttattgtaac 1320 cctgtctgga tcctatcctc ctacctccaa agcttcccac ggcctttcta gcctggctat 1380 gtcctaataa tatcccactg ggagaaagga gttttgcaaa gtgcaaggac ctaaaacatc 1440 tcatcagtat ccagtggtaa aaaggcctcc tggctgtctg aggctaggtg ggttgaaagc 1500 caaggagtca ctgagaccaa ggctttctct actgattccg cagctcagac cctttcttca 1560 gctctgaaag agaaacacgt atcccacctg acatgtcctt ctgagcccgg taagagcaaa 1620 agaatggcag aaaagtttag cccctgaaag ccatggagat tctcataact tgagacctaa 1680 tctctqtaaa qctaaaataa aqaaatagaa caaggctgag gatacgacag tacactgtca 1740 gcagggactg taaacacaga cagggtcaaa gtgttttctc tgaacacatt gagttggaat 1800 cactgtttag aacacacac cttacttttt ctggtctcta ccactgctga tattttctct 1860 aggaaatata ettttacaag taacaaaaat aaaaactett ataaatttet atttttatet 1920 gagttacaga aatgattact aaggaagatt actcagtaat ttgtttaaaa agtaataaaa 1980 ttcaacaaac atttgctgaa tagctactat atgtcaagtg ctgtgcaagg tattacactc 2040 tgtaattgaa tattattcct caaaaaattg cacatagtag aacgctatct gggaagctat 2100 ttttttcagt tttgatattt ctagcttatc tacttccaaa ctaattttta tttttgctga 2160 gactaatctt attcattttc tctaatatgg caaccattat aaccttaatt tattattaac 2220 atacctaaga agtacattgt tacctctata taccaaagca cattttaaaa gtgccattaa 2280 caaatgtatc actagccctc ctttttccaa caagaaggga ctgagagatg cagaaatatt 2340 2372 tgtgacaaaa aattaaagca tttagaaaac tt <210> 201

<211> 322

```
<212> PRT
<213> Artificial sequence
<220>
<223> Synthetic protein
<400> 201
Met Ala Arg Cys Phe Ser Leu Val Leu Leu Thr Ser Ile Trp Thr
Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
                             40
Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
                         55
Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
                     70
 65
Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
                                105
Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
        115
                            120
```

145

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr

Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser

Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
180 185 190

Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu

Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala

Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu

Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Gly Leu Gly Phe

Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn

265

200

215

230

245

260

155

220

235

170

150

165

195

```
Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
        275
                             280
Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
    290
                        295
Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
                    310
                                         315
Glu Val
<210> 202
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 202
                                                                    24
gagctttcca tccaggtgtc atgc
<210> 203
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 203
                                                                    22
gtcagtgaca gtacctactc gg
<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 204
                                                                    24
tggagcagga ggagtagtag tagg
<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
```

```
<400> 205
                                                                   50
aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt
<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens
<220>
<221> modified_base
<222> (973)..(973)
<223> a, t, c or g
<220>
<221> modified base
<222> (977)..(977)
<223> a, t, c or q
<220>
<221> modified_base
<222> (996)..(996)
<223> a, t, c or g
<220>
<221> modified_base
<222> (1003)..(1003)
<223> a, t, c or g
<400> 206
agatggcggt cttggcacct ctaattgctc tcgtgtattc ggtgccgcga ctttcacgat 60
ggctcgccca accttactac cttctgtcgg ccctgctctc tgctgccttc ctactcgtga 120
ggaaactgcc gccgctctgc cacggtctgc ccacccaacg cgaagacggt aacccgtgtg 180
actitigacti gagagaagti gagateetga titteteag tigeeattigtig atgatigaaga 240
accgcagatc catcactgtg gagcaacata taggcaacat tttcatgttt agtaaagtgg 300
ccaacacaat tetttette egettggata ttegeatggg cetaetttac ateacactet 360
gcatagtgtt cctgatgacg tgcaaacccc ccctatatat gggccctgag tatatcaagt 420
acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
tggagttctt tgccaattgg tctaatgact gccaatcatt tgcccctatc tatgctgacc 540
tctcccttaa atacaactgt acagggctaa attttgggaa ggtggatgtt ggacgctata 600
ctgatgttag tacgcggtac aaagtgagca catcacccct caccaagcaa ctccctaccc 660
tgatcctgtt ccaaggtggc aaggaggcaa tgcggcggcc acagattgac aagaaaggac 720
gggctgtctc atggaccttc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gagcagcctg 840
tggcttcaac ccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
actitggcag tgcttcctct cctgtcaatt ccaggctctt tccataacca caagcctgag 960
gctgcagcct ttnattnatg ttttcccttt ggctgngact ggntggggca gcatgcagct 1020
tctgatttta aagaggcatc tagggaattg tcaggcaccc tacaggaagg cctgccatgc 1080
tgtggccaac tgtttcactg gagcaagaaa gagatctcat aggacggagg gggaaatggt 1140
ttccctccaa gcttgggtca gtgtgttaac tgcttatcag ctattcagac atctccatgg 1200
tttctccatg aaactctgtg gtttcatcat tccttcttag ttgacctgca cagcttggtt 1260
agacctagat ttaaccctaa ggtaagatgc tggggtatag aacgctaaga attttccccc 1320
aaggactett getteettaa geeettetgg ettegtttat ggtetteatt aaaagtataa 1380
gcctaacttt gtcgctagtc ctaaggagaa acctttaacc acaaagtttt tatcattgaa 1440
gacaatattg aacaacccc tattttgtgg ggattgagaa ggggtgaata gaggcttgag 1500
actttccttt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560
acatactccc cacacccagt tgatggcttt ccgtaataaa aagattggga tttccttttg 1620
```

```
<210> 207
<211> 296
<212> PRT
<213> Homo sapiens
<400> 207
Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg
Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu
                                 25
Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly
                             40
Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg
Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn
                     70
                                         75
Arg Arg Ser Ile Thr Val Glu Gln His Ile Gly Asn Ile Phe Met Phe
Ser Lys Val Ala Asn Thr Ile Leu Phe Phe Arg Leu Asp Ile Arg Met
                                105
Gly Leu Leu Tyr Ile Thr Leu Cys Ile Val Phe Leu Met Thr Cys Lys
Pro Pro Leu Tyr Met Gly Pro Glu Tyr Ile Lys Tyr Phe Asn Asp Lys
Thr Ile Asp Glu Glu Leu Glu Arg Asp Lys Arg Val Thr Trp Ile Val
145
                    150
                                        155
                                                             160
Glu Phe Phe Ala Asn Trp Ser Asn Asp Cys Gln Ser Phe Ala Pro Ile
                165
                                    170
Tyr Ala Asp Leu Ser Leu Lys Tyr Asn Cys Thr Gly Leu Asn Phe Gly
                                185
Lys Val Asp Val Gly Arg Tyr Thr Asp Val Ser Thr Arg Tyr Lys Val
        195
                            200
Ser Thr Ser Pro Leu Thr Lys Gln Leu Pro Thr Leu Ile Leu Phe Gln
                        215
                                             220
Gly Gly Lys Glu Ala Met Arg Arg Pro Gln Ile Asp Lys Lys Gly Arg
                    230
                                        235
Ala Val Ser Trp Thr Phe Ser Glu Glu Asn Val Ile Arg Glu Phe Asn
                245
                                    250
```

Leu Asn Glu Leu Tyr Gln Arg Ala Lys Lys Leu Ser Lys Ala Gly Asp
260 265 270

Asn Ile Pro Glu Glu Gln Pro Val Ala Ser Thr Pro Thr Thr Val Ser 275 280 285	
Asp Gly Glu Asn Lys Lys Asp Lys 290 295	
<210> 208 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 208 gcttggatat tcgcatgggc ctac	24
<210> 209 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 209 tggagacaat atccctgagg	20
<210> 210 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 210 aacagttggc cacagcatgg cagg	24
<210> 211 <211> 50 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide probe	
<400> 211 ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag	50
<210> 212 <211> 1985	

```
<212> DNA
<213> Homo sapiens
<400> 212
ggacageteg eggeeeega gagetetage egtegaggag etgeetgggg aegtttgeee 60
tgqqqcccca qcctqqcccq gqtcaccctg gcatgaggag atgggcctgt tgctcctggt 120
cccattgctc ctgctgcccg gctcctacgg actgcccttc tacaacggct tctactactc 180
caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
gaagctggtg gtggagacac ccgaggagac cctgttcacc taccaagggg ccagtgtgat 300
cctgccctgc cgctaccgct acgagccggc cctggtctcc ccgcggcgtg tgcgtgtcaa 360
atggtggaag ctgtcggaga acggggcccc agagaaggac gtgctggtgg ccatcgggct 420
gaggcaccgc tcctttgggg actaccaagg ccgcgtgcac ctgcggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggatctgcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctggtggag ctggagctgc ggggtgtggt 600
ctttccttac cagtccccca acgggcgcta ccagttcaac ttccacgagg gccagcaggt 660
ctgtgcagag caggctgcgg tggtggcctc cttttgagcag ctcttccggg cctgggagga 720
gggcctggac tggtgcaacg cgggctggct gcaggatgct acggtgcagt accccatcat 780
gttgcccgg cagcctgcg gtggcccagg cctggcacct ggcgtgcgaa gctacggccc 840
ccgccaccgc cgcctgcacc gctatgatgt attctgcttc gctactgccc tcaaggggcg 900
ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
ggaagatgat gccacgatcg ccaaggtggg acagctcttt gccgcctgga agttccatgg 1020
cctggaccgc tgcgacgctg gctggctggc agatggcagc gtccgctacc ctgtggttca 1080
cccgcatcct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
gcagagccgc ttgtacggtg tttactgcta ccgccagcac taggacctgg ggccctcccc 1200
tgccgcattc cctcactggc tgtgtattta ttgagtggtt cgttttccct tgtgggttgg 1260
agccatttta actgttttta tacttctcaa tttaaatttt ctttaaacat ttttttacta 1320
ttttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc ccactccagg 1380
aatcatgctt gctcccctgg gccatttgcg gttttgtggg cttctggagg gttccccgcc 1440
atccaggctg gtctccctcc cttaaggagg ttggtgcca gagtgggcgg tggcctgtct 1500
agaatgccgc cgggagtccg ggcatggtgg gcacagttct ccctgcccct cagcctgggg 1560
gaagaagagg gcctcggggg cctccggagc tgggctttgg gcctctcctg cccacctcta 1620
cttctctgtg aagccgctga ccccagtctg cccactgagg ggctagggct ggaagccagt 1680
tctaggcttc caggcgaaat ctgagggaag gaagaaactc ccctccccgt tccccttccc 1740
ctctcggttc caaagaatct gttttgttgt catttgtttc tcctgtttcc ctgtgtgggg 1800
aggggccctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgccaa 1860
1985
aaaaa
<210> 213
<211> 360
<212> PRT
<213> Homo sapiens
<400> 213
Met Gly Leu Leu Leu Val Pro Leu Leu Leu Pro Gly Ser Tyr
 1
                                                      15
Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
```

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala

60

55

50

Ser 65	Val	Ile	Leu	Pro	Cys 70	Arg	Tyr	Arg	Tyr	Glu 75	Pro	Ala	Leu	Val	Ser 80
Pro	Arg	Arg	Val	Arg 85	Val	Lys	Trp	Trp	Lys 90	Leu	Ser	Glu	Asn	Gly 95	Ala
Pro	Glu	Lys	Asp 100	Val	Leu	Val	Ala	Ile 105	Gly	Leu	Arg	His	Arg 110	Ser	Phe
Gly	Asp	Туг 115	Gln	Gly	Arg	Val	His 120	Leu	Arg	Gln	Asp	Lys 125	Glu	His	Asp
Val	Ser 130	Leu	Glu	Ile	Gln	Asp 135	Leu	Arg	Leu	Glu	Asp 140	Tyr	Gly	Arg	Tyr
Arg 145	Cys	Glu	Val	Ile	Asp 150	Gly	Leu	Glu	Asp	Glu 155	Ser	Gly	Leu	Val	Glu 160
Leu	Glu	Leu	Arg	Gly 165	Val	Val	Phe	Pro	Tyr 170	Gln	Ser	Pro	Asn	Gly 175	Arg
Tyr	Gln	Phe	Asn 180	Phe	His	Glu	Gly	Gln 185	Gln	Val	Cys	Ala	Glu 190	Gln	Ala
Ala	Val	Val 195	Ala	Ser	Phe	Glu	Gln 200	Leu	Phe	Arg	Ala	Trp 205	Glu	Glu	Gly
Leu	Asp 210	Trp	Cys	Asn	Ala	Gly 215	Trp	Leu	Gln	Asp	Ala 220	Thr	Val	Gln	Tyr
Pro 225	Ile	Met	Leu	Pro	Arg 230	Gln	Pro	Cys	Gly	Gly 235	Pro	Gly	Leu	Ala	Pro 240
Gly	Val	Arg	Ser	Tyr 245	Gly	Pro	Arg	His	Arg 250	Arg	Leu	His	Arg	Tyr 255	Asp
Val	Phe	Cys	Phe 260	Ala	Thr	Ala	Leu	Lys 265	Gly	Arg	Val	Tyr	Туг 270	Leu	Glu
His	Pro	Glu 275	Lys	Leu	Thr	Leu	Thr 280	Glu	Ala	Arg	Glu	Ala 285	Суѕ	Gln	Glu
Asp	Asp 290	Ala	Thr	Ile	Ala	Lys 295	Val	Gly	Gln	Leu	Phe 300	Ala	Ala	Trp	Lys
Phe 305	His	Gly	Leu	Asp	Arg 310	Cys	Asp	Ala	Gly	Trp 315	Leu	Ala	Asp	Gly	Ser 320
Val	Arg	Tyr	Pro	Val 325	Val	His	Pro	His	Pro 330	Asn	Cys	Gly	Pro	Pro 335	Glu
Pro	Gly	Val	Arg 340	Ser	Phe	Gly	Phe	Pro 345	Asp	Pro	Gln	Ser	Arg 350	Leu	Tyr
Gly	Val	Tyr 355	Cys	Tyr	Arg	Gln	His 360								

```
<210> 214
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 214
                                                                    18
tgcttcgcta ctgccctc
<210> 215
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 215
ttcccttgtg ggttggag
                                                                    18
<210> 216
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 216
                                                                    18
agggctggaa gccagttc
<210> 217
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 217
                                                                    18
agccagtgag gaaatgcg
<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
```

```
<400> 218
                                                                24
tgtccaaagt acacacacct gagg
<210> 219
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide probe
                                                                45
gatgccacga tcgccaaggt gggacagctc tttgccgcct ggaag
<210> 220
<211> 1503
<212> DNA
<213> Homo sapiens
<400> 220
ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
gcttctgttg ctactgaggc acggggccca ggggaagcca tccccagacg caggccctca 120
tggccagggg agggtgcacc aggcggcccc cctgagcgac gctccccatg atgacgccca 180
cgggaacttc cagtacgacc atgaggcttt cctgggacgg gaagtggcca aggaattcga 240
ccaactcacc ccagaggaaa gccaggcccg tctggggcgg atcgtggacc gcatggaccg 300
cgcgggggac ggcgacggct gggtgtcgct ggccgagctt cgcgcgtgga tcgcgcacac 360
gcagcagcgg cacatacggg actcggtgag cgcggcctgg gacacgtacg acacggaccg 420
cgacgggcgt gtgggttggg aggagctgcg caacgccacc tatggccact acgcgcccgg 480
tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
gcggcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
agecttectg cacecegagg agttecetca catgegggae ategtgattg etgaaacect 660
qqaqqacctg gacagaaaca aagatggcta tgtccaggtg gaggagtaca tcgcggatct 720
gtactcagcc gagcctgggg aggaggagcc ggcgtgggtg cagacggaga ggcagcagtt 780
ccqqqacttc cqqqatctqa acaaggatgg gcacctggat gggagtgagg tgggccactg 840
ggtgctgccc cctgcccagg accagccct ggtggaagcc aaccacctgc tgcacgagag 900
cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctgggtaatt ggaacatgtt 960
tgtgggcagt caggccacca actatggcga ggacctgacc cggcaccacg atgagctgtg 1020
agcaccgcgc acctgccaca gcctcagagg cccgcacaat gaccggagga ggggccgctg 1080
tggtctggcc ccctccctgt ccaggccccg caggaggcag atgcagtccc aggcatcctc 1140
ctgccctgg gctctcaggg accccctggg tcggcttctg tccctgtcac acccccaacc 1200
ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctga ctgagtctcc 1260
cagcccagac ccagggaccc ttggccccaa gctcagctct aagaaccgcc ccaaccctc 1320
cagetecaaa tetgageete caccacatag aetgaaacte eeetggeece ageeetetee 1380
tgcctggcct ggcctgggac acctcctct tgccaggagg caataaaagc cagcgccggg 1440
1503
aaa
<210> 221
<211> 328
<212> PRT
<213> Homo sapiens
<400> 221
Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Leu Arg His
 1
                 5
                                    10
                                                       15
```

- Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly 25 Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala 40 His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val 50 55 Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp 90 Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg 100 105 His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp 120 Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly
- His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr
- Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp
- Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu 180 185
- His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr 200
- Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu 215
- Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Pro Ala 225 230
- Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn 250
- Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro 260 265 270
- Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu 280
- Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly 295
- Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp 305 310 315

```
325
<210> 222
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 222
                                                                    20
cgcaggccct catggccagg
<210> 223
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 223
gaaatcctgg gtaattgg
                                                                    18
<210> 224
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 224
                                                                    23
gtgcgcggtg ctcacagctc atc
<210> 225
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 225
                                                                    44
ccccctgag cgacgctccc ccatgatgac gcccacggga actt
<210> 226
<211> 2403
<212> DNA
<213> Homo sapiens
```

Leu Thr Arg His His Asp Glu Leu

<400> 226

```
qqqqccttqc cttccqcact cgggcgcagc cgggtggatc tcgagcaggt gcggagcccc 60
qqqcqqcqqq cqcqqqtqcq aqggatccct gacgcctctg tccctgtttc tttgtcgctc 120
ccagcctgtc tgtcgtcgtt ttggcgcccc cgcctccccg cggtgcgggg ttgcacaccg 180
atcctgggct tcgctcgatt tgccgccgag gcgcctccca gacctagagg ggcgctggcc 240
tggagcagcg ggtcgtctgt gtcctctctc ctctgcgccg cgcccgggga tccgaagggt 300
geggggetet gaggaggtga egegegggge etecegeace etggeettge eegeattete 360
cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccggctc 420
teggeetegg tgtgtgtetg etgetgetge eggggeeege gggeagegag ggageegete 480
ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
tctgcccagg gggctgccct cttgaggaat tctctgtgta tgggaacata gtatatgctt 600
ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
ctgtacgagt ctatagccta cctggtcgag aaaactattc ctcagtagat gccaatggca 720
tccagtctca aatgctttct agatggtctg cttctttcac agtaactaaa ggcaaaagta 780
gtacacagga ggccacagga caagcagtgt ccacagcaca tccaccaaca ggtaaacgac 840
taaagaaaac acccgagaag aaaactggca ataaagattg taaagcagac attgcatttc 900
tgattgatgg aagctttaat attgggcagc gccgatttaa tttacagaag aattttgttg 960
qaaaaqtqqc tctaatqttq qqaattqqaa cagaaqqacc acatqtqqqc cttqttcaaq 1020
ccagtgaaca tcccaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
tqtttqccat aaaqqaaqta qqtttcaqaq qqggtaattc caatacagga aaagccttga 1140
agcatactgc tcagaaattc ttcacggtag atgctggagt aagaaaaggg atccccaaag 1200
tggtggtggt atttattgat ggttggcctt ctgatgacat cgaggaagca ggcattgtgg 1260
ccagagagtt tggtgtcaat gtatttatag tttctgtggc caagcctatc cctgaagaac 1320
tggggatggt tcaggatgtc acatttgttg acaaggctgt ctgtcggaat aatggcttct 1380
tctcttacca catgcccaac tggtttggca ccacaaaata cgtaaagcct ctggtacaga 1440
agctgtgcac tcatgaacaa atgatgtgca gcaagacctg ttataactca gtgaacattg 1500
cctttctaat tgatggctcc agcagtgttg gagatagcaa tttccgcctc atgcttgaat 1560
ttgtttccaa catagccaag acttttgaaa tctcggacat tggtgccaag atagctgctg 1620
tacagtttac ttatgatcag cgcacggagt tcagtttcac tgactatagc accaaagaga 1680
atgtcctagc tgtcatcaga aacatccgct atatgagtgg tggaacagct actggtgatg 1740
ccatttcctt cactgttaga aatgtgtttg gccctataag ggagagcccc aacaagaact 1800
tectagtaat tgteacagat gggeagteet atgatgatgt ecaaggeeet geagetgetg 1860
cacatgatgc aggaatcact atcttctctg ttggtgtggc ttgggcacct ctggatgacc 1920
tgaaagatat ggcttctaaa ccgaaggagt ctcacgcttt cttcacaaga gagttcacag 1980
gattagaacc aattgtttct gatgtcatca gaggcatttg tagagatttc ttagaatccc 2040
agcaataatg qtaacatttt gacaactgaa agaaaaagta caaggggatc cagtgtgtaa 2100
attgtattct cataatactg aaatgcttta gcatactaga atcagataca aaactattaa 2160
gtatgtcaac agccatttag gcaaataagc actcctttaa agccgctgcc ttctggttac 2220
aatttacagt gtactttgtt aaaaacactg ctgaggcttc ataatcatgg ctcttagaaa 2280
ctcaggaaag aggagataat gtggattaaa accttaagag ttctaaccat gcctactaaa 2340
tgtacagata tgcaaattcc atagctcaat aaaagaatct gatacttaga ccaaaaaaaa 2400
                                                                  2403
aaa
<210> 227
<211> 550
<213> Homo sapiens
<400> 227
```

<212> PRT

Met Ser Ala Ala Trp Ile Pro Ala Leu Gly Leu Gly Val Cys Leu Leu 1

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile 25

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val 35 40

Leu	Cys 50	Pro	Gly	Gly	Cys	Pro 55	Leu	Glu	Glu	Phe	Ser 60	Val	Tyr	Gly	Asn
Ile 65	Val	Tyr	Ala	Ser	Val 70	Ser	Ser	Ile	Cys	Gly 75	Ala	Ala	Val	His	Arg 80
Gly	Val	Ile	Ser	Asn 85	Ser	Gly	Gly	Pro	Val 90	Arg	Val	Tyr	Ser	Leu 95	Pro
Gly	Arg	Glu	Asn 100	Tyr	Ser	Ser	Val	Asp 105	Ala	Asn	Gly	Ile	Gln 110	Ser	Gln
Met	Leu	Ser 115	Arg	Trp	Ser	Ala	Ser 120	Phe	Thr	Val	Thr	Lys 125	Gly	Lys	Ser
Ser	Thr 130	Gln	Glu	Ala	Thr	Gly 135	Gln	Ala	Val	Ser	Thr 140	Ala	His	Pro	Pro
Thr 145	Gly	Lys	Arg	Leu	Lys 150	Lys	Thr	Pro	Glu	Lys 155	Lys	Thr	Gly	Asn	Lys 160
Asp	Cys	Lys	Ala	Asp 165	Ile	Ala	Phe	Leu	Ile 170	Asp	Gly	Ser	Phe	Asn 175	Ile
Gly	Gln	Arg	Arg 180	Phe	Asn	Leu	Gln	Lys 185	Asn	Phe	Val	Gly	Lys 190	Val	Ala
Leu	Met	Leu 195	Gly	Ile	Gly	Thr	Glu 200	Gly	Pro	His	Val	Gly 205	Leu	Val	Gln
Ala	Ser 210	Glu	His	Pro	Lys	Ile 215	Glu	Phe	Tyr	Leu	Lys 220	Asn	Phe	Thr	Ser
Ala 225	Lys	Asp	Val	Leu	Phe 230	Ala	Ile	Lys	Glu	Val 235	Gly	Phe	Arg	Gly	Gly 240
Asn	Ser	Asn	Thr	Gly 245	Lys	Ala	Leu	Lys	His 250	Thr	Ala	Gln	Lys	Phe 255	Phe
Thr	Val	Asp	Ala 260	Gly	Val	Arg	Lys	Gly 265	Ile	Pro	Lys	Val	Val 270	Val	Val
Phe	Ile	Asp 275	Gly	Trp	Pro	Ser	Asp 280	Asp	Ile	Glu	Glu	Ala 285	Gly	Ile	Val
Ala	Arg 290	Glu	Phe	Gly	Val	Asn 295	Val	Phe	Ile	Val	Ser 300	Val	Ala	Lys	Pro
Ile 305	Pro	Glu	Glu	Leu	Gly 310	Met	Val	Gln	Asp	Val 315	Thr	Phe	Val	Asp	Lys 320
Ala	Val	Cys	Arg	Asn 325	Asn	Gly	Phe	Phe	Ser 330	Tyr	His	Met	Pro	Asn 335	Trp
Phe	Gly	Thr	Thr 340	Lys	Tyr	Val	Lys	Pro 345	Leu	Val	Gln	Lys	Leu 350	Cys	Thr

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg 370 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala Ala His Asp Ala Gly Ile Thr Ile 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met 500 . 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp 530 535 540

Phe Leu Glu Ser Gln Gln 545 550

<210> 228

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 228

tggtctcgca caccgatc

18

<210> 229

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400> ctgctq	229 gtcca caggggag			18
<210><211><212><212><213>	18			
<220> <223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400> ccttga	230 aagca tactgctc			18
<210><211><212><213>	18			
<220> <223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400> gagata	231 agcaa tttccgcc			18
<210><211><212><212><213>	18			
<220> <223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400> ttcctd	232 caaga gggcagcc			18
<210> <211> <212> <213>	24			
<220> <223>	Description of Artificial oligonucleotide probe	Sequence:	Synthetic	
<400> cttggd	233 cacca atgtccgaga tttc			24
<210><211><211><212>	45			

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe
<400> 234
                                                                  45
gctctgagga aggtgacgcg cggggcctcc gaacccttgg ccttg
<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens
<400> 235
egeogegete eegeacege ggeeegeeca eegegeeget eeegeatetg caceegeage 60
ccggcggcct cccggcggga gcgagcagat ccagtccggc ccgcagcgca actcggtcca 120
gtcggggcgg cggctgcggg cgcagagcgg agatgcagcg gcttggggcc accctgctgt 180
gcctgctgct ggcggcggcg gtccccacgg cccccgcgcc cgctccgacg gcgacctcgg 240
ctccagtcaa gcccggcccg gctctcagct acccgcagga ggaggccacc ctcaatgaga 300
tgttccgcga ggttgaggaa ctgatggagg acacgcagca caaattgcgc agcgcggtgg 360
aagagatgga ggcagaagaa gctgctgcta aagcatcatc agaagtgaac ctggcaaact 420
tacctcccag ctatcacaat gagaccaaca cagacacgaa ggttggaaat aataccatcc 480
atgtgcaccg agaaattcac aagataacca acaaccagac tggacaaatg gtcttttcag 540
agacagttat cacatctgtg ggagacgaag aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tgggcccagc atgtactgcc agtttgccag cttccagtac acctgccagc 660
catgccgggg ccagaggatg ctctgcaccc gggacagtga gtgctgtgga gaccagctgt 720
gtgtctgggg tcactgcacc aaaatggcca ccaggggcag caatgggacc atctgtgaca 780
accagaggga ctgccagccg gggctgtgct gtgccttcca gagaggcctg ctgttccctg 840
tgtgcacacc cctgcccgtg gagggcgagc tttgccatga ccccgccagc cggcttctgg 900
acctcatcac ctgggagcta gagcctgatg gagccttgga ccgatgccct tgtgccagtg 960
gcctcctctg ccagccccac agccacagcc tggtgtatgt gtgcaagccg accttcgtgg 1020
ggaqccgtga ccaagatggg gagatcctgc tgcccagaga ggtccccgat gagtatgaag 1080
ttqqcaqctt catgqaqqaq qtqcqccagg agctggagga cctggaggag agcctgactg 1140
aagagatggc gctgggggag cctgcggctg ccgccgctgc actgctggga ggggaagaga 1200
tttagatctg gaccaggctg tgggtagatg tgcaatagaa atagctaatt tatttcccca 1260
ggtgtgtgct ttaggcgtgg gctgaccagg cttcttccta catcttcttc ccagtaagtt 1320
teceetetgg ettgacagea tgaggtgttg tgeatttgtt eageteeece aggetgttet 1380
ccaggettea cagtetggtg ettgggagag teaggeaggg ttaaactgca ggageagttt 1440
gccacccctg tccagattat tggctgcttt gcctctacca gttggcagac agccgtttgt 1500
tctacatggc tttgataatt gtttgagggg aggagatgga aacaatgtgg agtctccctc 1560
tgattggttt tggggaaatg tggagaagag tgccctgctt tgcaaacatc aacctggcaa 1620
aaatgcaaca aatgaatttt ccacgcagtt ctttccatgg gcataggtaa gctgtgcctt 1680
cagctgttgc agatgaaatg ttctgttcac cctgcattac atgtgtttat tcatccagca 1740
gtgttgctca gctcctacct ctgtgccagg gcagcatttt catatccaag atcaattccc 1800
tctctcagca cagcctgggg agggggtcat tgttctcctc gtccatcagg gatctcagag 1860
gctcagagac tgcaagctgc ttgcccaagt cacacagcta gtgaagacca gagcagtttc 1920
atctggttgt gactctaagc tcagtgctct ctccactacc ccacaccagc cttggtgcca 1980
ccaaaagtgc tccccaaaag gaaggagaat gggatttttc ttgaggcatg cacatctgga 2040
attaaqqtca aactaattct cacatccctc taaaaqtaaa ctactgttag gaacagcagt 2100
gttctcacag tgtggggcag ccgtccttct aatgaagaca atgatattga cactgtccct 2160
ctttggcagt tgcattagta actttgaaag gtatatgact gagcgtagca tacaggttaa 2220
cctgcagaaa cagtacttag gtaattgtag ggcgaggatt ataaatgaaa tttgcaaaat 2280
cacttagcag caactgaaga caattatcaa ccacgtggag aaaatcaaac cgagcagggc 2340
tgtgtgaaac atggttgtaa tatgcgactg cgaacactga actctacgcc actccacaaa 2400
tgatgttttc aggtgtcatg gactgttgcc accatgtatt catccagagt tcttaaagtt 2460
taaagttgca catgattgta taagcatgct ttctttgagt tttaaattat gtataaacat 2520
```

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala 1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val 20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys 65 70 . 75 80

Ala Ser Ser Glu Val Asn Leu Ala Asn Leu Pro Pro Ser Tyr His Asn 85 90 95

Glu Thr Asn Thr Asp Thr Lys Val Gly Asn Asn Thr Ile His Val His
100 105 110

Arg Glu Ile His Lys Ile Thr Asn Asn Gln Thr Gly Gln Met Val Phe
115 120 125

Ser Glu Thr Val Ile Thr Ser Val Gly Asp Glu Glu Gly Arg Arg Ser 130 135 140

His Glu Cys Ile Ile Asp Glu Asp Cys Gly Pro Ser Met Tyr Cys Gln 145 150 155 160

Phe Ala Ser Phe Gln Tyr Thr Cys Gln Pro Cys Arg Gly Gln Arg Met 165 170 175

Leu Cys Thr Arg Asp Ser Glu Cys Cys Gly Asp Gln Leu Cys Val Trp 180 185 190

Gly His Cys Thr Lys Met Ala Thr Arg Gly Ser Asn Gly Thr Ile Cys 195 200 205

Asp Asn Gln Arg Asp Cys Gln Pro Gly Leu Cys Cys Ala Phe Gln Arg 210 215 220

Gly Leu Leu Phe Pro Val Cys Thr Pro Leu Pro Val Glu Gly Glu Leu 225 230 235 240

Cys His Asp Pro Ala Ser Arg Leu Leu Asp Leu Ile Thr Trp Glu Leu 245 250 255

```
Glu Pro Asp Gly Ala Leu Asp Arg Cys Pro Cys Ala Ser Gly Leu Leu
            260
                                265
Cys Gln Pro His Ser His Ser Leu Val Tyr Val Cys Lys Pro Thr Phe
                            280
Val Gly Ser Arg Asp Gln Asp Gly Glu Ile Leu Leu Pro Arg Glu Val
    290
                        295
                                             300
Pro Asp Glu Tyr Glu Val Gly Ser Phe Met Glu Val Arg Gln Glu
                    310
Leu Glu Asp Leu Glu Arg Ser Leu Thr Glu Glu Met Ala Leu Gly Glu
                                    330
                325
Pro Ala Ala Ala Ala Ala Leu Leu Gly Gly Glu Glu Ile
            340
                                345
<210> 237
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 237
                                                                    17
 ggagctgcac cccttgc
<210> 238
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 238
                                                                   49
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg
<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 239
                                                                   24
gcagagcgga gatgcagcgg cttg
<210> 240
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Synthetic Oligonucleotide Probe
<400> 240
                                                                   18
ttggcagctt catggagg
<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 241
                                                                   18
cctgggcaaa aatgcaac
<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 242
ctccagctcc tggcgcacct cctc
                                                                    24
<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 243
                                                                    45
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg
<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien
<400> 244
aaggaggctg ggaggaaaga ggtaagaaag gttagagaac ctacctcaca 50
 tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
cactctcctt ccctcccaaa cacacatgtg catgtacaca cacacataca 150
cacacataca cetteetee etteactgaa gaeteacagt cacteactet 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggcctggcc 250
attacctctg cagctccttt ggcttgttga gtcaaaaaac atgggagggg 300
 ccaggcacgg tgactcacac ctgtaatccc agcattttgg gagaccgagg 350
```

tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400 agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450 aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500 gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550 gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600 ggggtagata ctgcttctct gcaacctcct taactctgca tcctcttctt 650 ccagggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700 agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccg 750 gtgtagaatg actgccctgg gagggtggtt ccttgggccc tggcagggtt 800 gctgaccctt accctgcaaa acacaaagag caggactcca gactctcctt 850 gtgaatggte ceetgeeetg cageteeace atgaggette tegtggeeee 900 actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggtac 950 cctggcatgt tccctgcccc cctcagtgtg cctgccagat ccggccctgg 1000 tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050 cctattcctg acggcagtcc ccccggcact ccccgcaggc acacagaccc 1100 tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctgggc 1150 tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200 tgcccgagac tgtgatttcc atgccctgcc ccagctgctg agcctgcacc 1250 tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggctg 1300 gccagcctac aggaactcta tctcaaccac aaccagctct accgcatcgc 1350 ccccagggcc ttttctggcc tcagcaactt gctgcggctg cacctcaact 1400 ccaacctcct gagggccatt gacagccgct ggtttgaaat gctgcccaac 1450 ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500 gaacttccgg cccctggcca acctgcgtag cctggtgcta gcaggcatga 1550 acctgcggga gatctccgac tatgccctgg aggggctgca aagcctggag 1600 agcctctcct tctatgacaa ccagctggcc cgggtgccca ggcgggcact 1650 ggaacaggtg cccgggctca agttcctaga cctcaacaag aacccgctcc 1700 agegggtagg geegggggae tttgeeaaca tgetgeaect taaggagetg 1750

ggactgaaca acatggagga gctggtctcc atcgacaagt ttgccctggt 1800 gaacctcccc gagetgacca agetggacat caccaataac ccacggetgt 1850 ccttcatcca ccccgcgcc ttccaccacc tgccccagat ggagaccctc 1900 atgeteaaca acaaegetet cagtgeettg caccageaga eggtggagte 1950 cctgcccaac ctgcaggagg taggtctcca cggcaacccc atccgctgtg 2000 actgtgtcat ccgctgggcc aatgccacgg gcacccgtgt ccgcttcatc 2050 gageegeaat ceaceetgtg tgeggageet eeggacetee agegeeteee 2100 ggtccgtgag gtgcccttcc gggagatgac ggaccactgt ttgcccctca 2150 tctccccacg aagettcccc ccaagectcc aggtagccag tggagagagc 2200 atggtgctgc attgccgggc actggccgaa cccgaacccg agatctactg 2250 ggtcactcca gctgggcttc gactgacacc tgcccatgca ggcaggaggt 2300 accgggtgta ccccgagggg accctggagc tgcggagggt gacagcagaa 2350 gaggcagggc tatacacctg tgtggcccag aacctggtgg gggctgacac 2400 taagacggtt agtgtggttg tgggccgtgc tctcctccag ccaggcaggg 2450 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500 atcctgctat cttgggtcac cccacccaac acagtgtcca ccaacctcac 2550 ctggtccagt gcctcctccc tccggggcca gggggccaca gctctggccc 2600 gcctgcctcg gggaacccac agctacaaca ttacccgcct ccttcaggcc 2650 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700 gttggcttgt gtatgggcca ggaccaaaga ggccacttct tgccacagag 2750 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800 ctcctggcag ctgggctagc ggcccacctt ggcacaggcc aacccaggaa 2850 gggtgtgggt gggaggcggc ctctccctcc agcctgggct ttctggggct 2900 ggagtgcccc ttctgtccgg gttgtgtctg ctcccctcgt cctgccctgg 2950 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050 atcactagga ctacttttta ccaaaagaga agcagtctgg gccagatgcc 3100 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctgggc 3150 caagacagat ggggctttgt ggccctgggg gtgcttctgc agccttgaaa 3200 aagttgeet tacetectag ggteacetet getgeeatte tgaggaacat 3250 etecaaggaa caggagggae tttggetaga geeteetgee teeceatett 3300 etetetgee agaggeteet gggeetgget tggetgteee etacetgtgt 3350 eeeegggetg caceeettee tettetett etetgtacag teteagttge 3400 etgetetgt geeteetgg caagggetga aggaggeeae teeateteae 3450 eteggggge tgeeeteaat gtgggagtga eeeeageeag atetgaagga 3500 eatttgggag agggatgee aggaacgeet cateteagea geetgggete 3550 ggeatteega agetgaett etataggeaa ttttgtaeet ttgtggagaa 3600 atgtgteace teeeeeace egatteaete tttteteetg ttttgtaaaa 3650 aataaaaata aataataaca ataaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

Ala Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser 35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu 50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly 80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe 95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu 110 115 120

Ser Leu His Leu Glu Glu Asn Gln Leu Thr Arg Leu Glu Asp His
125 130 135

Ser Phe Ala Gly Leu Ala Ser Leu Gln Glu Leu Tyr Leu Asn His 140 145 150

Asn	Gln	Leu	Tyr	Arg 155	Ile	Ala	Pro	Arg	Ala 160	Phe	Ser	Gly	Leu	Ser 165
Asn	Leu	Leu	Arg	Leu 170	His	Leu	Asn	Ser	Asn 175	Leu	Leu	Arg	Ala	Ile 180
Asp	Ser	Arg	Trp	Phe 185	Glu	Met	Leu	Pro	Asn 190	Leu	Glu	Ile	Leu	Met 195
Ile	Gly	Gly	Asn	Lys 200	Val	Asp	Ala	Ile	Leu 205	Asp	Met	Asn	Phe	Arg 210
Pro	Leu	Ala	Asn	Leu 215	Arg	Ser	Leu	Val	Leu 220	Ala	Gly	Met	Asn	Leu 225
Arg	Glu	Ile	Ser	Asp 230	Tyr	Ala	Leu	Glu	Gly 235	Leu	Gln	Ser	Leu	Glu 240
Ser	Leu	Ser	Phe	Tyr 245	Asp	Asn	Gln	Leu	Ala 250	Arg	Val	Pro	Arg	Arg 255
Ala	Leu	Glu	Gln	Val 260	Pro	Gly	Leu	Lys	Phe 265	Leu	Asp	Leu	Asn	Lys 270
Asn	Pro	Leu	Gln	Arg 275	Val	Gly	Pro	Gly	Asp 280	Phe	Ala	Asn	Met	Leu 285
His	Leu	Lys	Glu	Leu 290	Gly	Leu	Asn	Asn	Met 295	Glu	Glu	Leu	Val	Ser 300
Ile	Asp	Lys	Phe	Ala 305	Leu	Val	Asn	Leu	Pro 310	Glu	Leu	Thr	Lys	Leu 315
Asp	Ile	Thr	Asn	Asn 320	Pro	Arg	Leu	Ser	Phe 325	Ile	His	Pro	Arg	Ala 330
Phe	His	His	Leu	Pro 335	Gln	Met	Glu	Thr	Leu 340	Met	Leu	Asn	Asn	
Ala	Leu	Ser	Ala	Leu 350	His	Gln	Gln	Thr	Va1 355	Glu	Ser	Leu	Pro	Asn 360
Leu	Gln	Glu	Val	Gly 365	Leu	His	Gly	Asn	Pro 370	Ile	Arg	Cys	Asp	Cys 375
Val	Ile	Arg	Trp	Ala 380	Asn	Ala	Thr	Gly	Thr 385	Arg	Val	Arg	Phe	Ile 390
Glu	Pro	Gln	Ser	Thr 395	Leu	Cys	Ala	Glu	Pro 400	Pro	Asp	Leu	Gln	Arg 405
Leu	Pro	Val	Arg	Glu 410	Val	Pro	Phe	Arg	Glu 415	Met	Thr	Asp	His	Cys 420
Leu	Pro	Leu	Ile	Ser 425	Pro	Arg	Ser	Phe	Pro 430	Pro	Ser	Leu	Gln	Val 435

Ala Ser	Gly	Glu	Ser 440	Met	Val	Leu	His	Cys 445	Arg	Ala	Leu	Ala	Glu 450
Pro Glu	Pro	Glu	Ile 455	Tyr	Trp	Val	Thr	Pro 460	Ala	Gly	Leu	Arg	Leu 465
Thr Pro	Ala	His	Ala 470	Gly	Arg	Arg	Tyr	Arg 475	Val	Tyr	Pro	Glu	Gly 480
Thr Leu	Glu	Leu	Arg 485	Arg	Val	Thr	Ala	Glu 490	Glu	Ala	Gly	Leu	Tyr 495
Thr Cys	Val	Ala	Gln 500	Asn	Leu	Val	Gly	Ala 505	Asp	Thr	Lys	Thr	Val 510
Ser Val	Val	Val	Gly 515	Arg	Ala	Leu	Leu	Gln 520	Pro	Gly	Arg	Asp	Glu 525
Gly Gln	Gly	Leu	Glu 530	Leu	Arg	Val	Gln	Glu 535	Thr	His	Pro	Tyr	His 540
Ile Leu	Leu	Ser	Trp 545	Val	Thr	Pro	Pro	Asn 550	Thr	Val	Ser	Thr	Asn 555
Leu Thr	Trp	Ser	Ser 560	Ala	Ser	Ser	Leu	Arg 565	Gly	Gln	Gly	Ala	Thr 570
Ala Leu	Ala	Arg	Leu 575	Pro	Arg	Gly	Thr	His 580	Ser	Tyr	Asn	Ile	Thr 585
Arg Leu	Leu	Gln	Ala 590	Thr	Glu	Tyr	Trp	Ala 595	Cys	Leu	Gln	Val	Ala 600
Phe Ala	Asp	Ala	His 605	Thr	Gln	Leu	Ala	Cys 610	Val	Trp	Ala	Arg	Thr 615
Lys Glu	Ala	Thr	Ser 620	Cys	His	Arg	Ala	Leu 625	Gly	Asp	Arg	Pro	Gly 630
Leu Ile	Ala	Ile	Leu 635	Ala	Leu	Ala	Val	Leu 640	Leu	Leu	Ala	Ala	Gly 645
Leu Ala	Ala	His	Leu 650	Gly	Thr	Gly	Gln	Pro 655	Arg	Lys	Gly	Val	Gly 660
Gly Arg	Arg	Pro	Leu 665	Pro	Pro	Ala	Trp	Ala 670	Phe	Trp	Gly	Trp	Ser 675
Ala Pro	Ser	Val	Arg 680	Val	Val	Ser	Ala	Pro 685	Leu	Val	Leu	Pro	Trp 690
Asn Pro	Gly	Arg	Lys 695	Leu	Pro	Arg	Ser	Ser 700	Glu	Gly	Glu	Thr	Leu 705
Leu Pro	Pro	Leu	Ser 710	Gln	Asn	Ser							

```
<210> 246
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 246
 aacaaggtaa gatgccatcc tg 22
<210> 247
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 247
aaacttgtcg atggagacca gctc 24
<210> 248
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 248
 aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45
<210> 249
<211> 3401
<212> DNA
<213> Homo Sapien
<400> 249
 gcaagccaag gcgctgtttg agaaggtgaa gaagttccgg acccatgtgg 50
 aggagggga cattgtgtac cgcctctaca tgcggcagac catcatcaag 100
 gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150
 catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
 accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250
 gcgtccttct acatcagcct agtcatcttc tacggcctca tctgcatgta 300
 cacactgtgg tggatgctac ggcgctccct caagaagtac tcgtttgagt 350
 cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
 ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
```

gcgcttcgcc gtcttcctgt cggaggtgag tgagaacaag ctgcggcagc 500 tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550 aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600 ccctgacact gtgtttgacc tggtggagct ggaggtcctc aagctggagc 650 tgatccccga cgtgaccatc ccgcccagca ttgcccagct cacgggcctc 700 aaggagctgt ggctctacca cacagcggcc aagattgaag cgcctgcgct 750 ggccttcctg cgcgagaacc tgcgggcgct gcacatcaag ttcaccgaca 800 tcaaggagat cccgctgtgg atctatagcc tgaagacact ggaggagctg 850 cacctgacgg gcaacctgag cgcggagaac aaccgctaca tcgtcatcga 900 cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950 taagcaagct gccacaggtg gtcacagatg tgggcgtgca cctgcagaag 1000 ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050 gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100 gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150 aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200 gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250 ccatccagat cggcaacctc accaacctgg agcgcctcta cctgaaccgc 1300 aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350 ctacctggac ctcagccaca acaacctgac cttcctccct gccgacatcg 1400 gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450 acgctccctc cggagctctt ccagtgccgg aagctgcggg ccctgcacct 1500 gggcaacaac gtgctgcagt cactgccctc cagggtgggc gagctgacca 1550 acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600 gagetgggeg agtgeecaet geteaagege ageggettgg tggtggagga 1650 ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggaggg 1700 ctgacaagga gcaggcctga gcgaggccgg cccagcacag caagcagcag 1750 gaccgctgcc cagtcctcag gcccggaggg gcaggcctag cttctcccag 1800 aactcccgga cagccaggac agcctcgcgg ctgggcagga gcctggggcc 1850 gcttgtgagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900

ttttctccct ctgagactca cgtcccccag ggcaagtgct tgtggaggag 1950 agcaagtete aagagegeag tatttggata atcagggtet cetecetgga 2000 ggccagctct gccccagggg ctgagctgcc accagaggtc ctgggaccct 2050 cactttagtt cttggtattt atttttctcc atctcccacc tccttcatcc 2100 `agataactta tacattccca agaaagttca gcccagatgg aaggtgttca 2150 gggaaaggtg ggctgccttt tccccttgtc cttatttagc gatgccgccg 2200 ggcatttaac acccacctgg acttcagcag agtggtccgg ggcgaaccag 2250 ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcggtcc 2300 acgggagage aggeeteeag etggaaagge caggeetgga gettgeetet 2350 aaacaatttt ttttaaaaaa aagctttgaa aatggatggt ttgggtatta 2450 aaaagaaaaa aaaaacttaa aaaaaaaaag acactaacgg ccagtgagtt 2500 ggagtctcag ggcagggtgg cagtttccct tgagcaaagc agccagacgt 2550 tgaactgtgt ttcctttccc tgggcgcagg gtgcagggtg tcttccggat 2600 ctggtgtgac cttggtccag gagttctatt tgttcctggg gagggaggtt 2650 tttttgtttg ttttttgggt ttttttggtg tcttgttttc tttctcctcc 2700 atgtgtcttg gcaggcactc atttctgtgg ctgtcggcca gagggaatgt 2750 tctggagctg ccaaggaggg aggagactcg ggttggctaa tccccggatg 2800 aacggtgete cattegeace teceeteete gtgeetgeee tgeeteteea 2850 cgcacagtgt taaggagcca agaggagcca cttcgcccag actttgtttc 2900 cccacctcct gcggcatggg tgtgtccagt gccaccgctg gcctccgctg 2950 cttccatcag ccctgtcgcc acctggtcct tcatgaagag cagacactta 3000 gaggctggtc gggaatgggg aggtcgccc tgggagggca ggcgttggtt 3050 ccaagccggt tcccgtccct ggcgcctgga gtgcacacag cccagtcggc 3100 acctggtggc tggaagccaa cctgctttag atcactcggg tccccacctt 3150 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200 gagtetettg tettaatgat tatgteeate egtetgteeg teeatttgtg 3250 ttttctgcgt cgtgtcattg gatataatcc tcagaaataa tgcacactag 3300

cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350 agactcggtc acagtatcaa ataaaatcta taacagaaaa aaaaaaaaa 3400 a 3401

<210> 250

<211> 546

<212> PRT

<213> Homo Sapien

<400> 250

Met Arg Gln Thr Ile Ile Lys Val Ile Lys Phe Ile Leu Ile Ile 1 5 10 15

Cys Tyr Thr Val Tyr Tyr Val His Asn Ile Lys Phe Asp Val Asp 20 25 30

Cys Thr Val Asp Ile Glu Ser Leu Thr Gly Tyr Arg Thr Tyr Arg
35 40 45

Cys Ala His Pro Leu Ala Thr Leu Phe Lys Ile Leu Ala Ser Phe 50 55 60

Tyr Ile Ser Leu Val Ile Phe Tyr Gly Leu Ile Cys Met Tyr Thr
65 70 75

Leu Trp Trp Met Leu Arg Arg Ser Leu Lys Lys Tyr Ser Phe Glu 80 85 90

Ser Ile Arg Glu Glu Ser Ser Tyr Ser Asp Ile Pro Asp Val Lys 95 100 105

Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro 110 115 120

Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu
125 130 135

Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp 140 145 150

Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu 155 160 165

Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp
170 175 180

Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val 185 190 195

Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu 200 205 210

Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala 215 220 225

Phe	Leu	Arg	Glu	Asn 230	Leu	Arg	Ala	Leu	His 235	Ile	Lys	Phe	Thr	Asp 240
Ile	Lys	Glu	Ile	Pro 245	Leu	Trp	Ile	Tyr	Ser 250	Leu	Lys	Thr	Leu	Glu 255
Glu	Leu	His	Leu	Thr 260	Gly	Asn	Leu	Ser	Ala 265	Glu	Asn	Asn	Arg	Tyr 270
Ile	Val	Ile	Asp	Gly 275	Leu	Arg	Glu	Leu	Lys 280	Arg	Leu	Lys	Val	Leu 285
Arg	Leu	Lys	Ser	Asn	Leu	Ser	Lys	Leu	Pro	Gln	Val	Val	Thr	Asp
				290					295					300
Val	Gly	Val	His	Leu 305	Gln	Lys	Leu	Ser	Ile 310	Asn	Asn	Glu	Gly	Thr 315
Lys	Leu	Ile	Val	Leu 320	Asn	Ser	Leu	Lys	Lys 325	Met	Ala	Asn	Leu	Thr 330
Glu	Leu	Glu	Leu	Ile 335	Arg	Суѕ	Asp	Leu	Glu 340	Arg	Ile	Pro	His	Ser 345
Ile	Phe	Ser	Leu	His 350	Asn	Leu	Gln	Glu	Ile 355	Asp	Leu	Lys	Asp	Asn 360
Asn	Leu	Lys	Thr	Ile 365	Glu	Glu	Ile	Ile	Ser 370	Phe	Gln	His	Leu	His 375
Arg	Leu	Thr	Cys	Leu 380	Lys	Leu	Trp	Tyr	Asn 385	His	Ile	Ala	Tyr	Ile 390
Pro	Ile	Gln	Ile	Gly 395	Asn	Leu	Thr •	Asn	Leu 400	Glu	Arg	Leu	Tyr	Leu 405
Asn	Arg	Asn	Lys	Ile 410	Glu	Lys	Ile	Pro	Thr 415	Gln	Leu	Phe	Tyr	Cys 420
Arg	Lys	Leu	Arg	Tyr 425	Leu	Asp	Leu	Ser	His 430	Asn	Asn	Leu	Thr	Phe 435
Leu	Pro	Ala	Asp	Ile 440	Gly	Leu	Leu	Gln	Asn 445	Leu	Gln	Asn	Leu	Ala 450
Ile	Thr	Ala	Asn	Arg 455	Ile	Glu	Thr	Leu	Pro 460	Pro	Glu	Leu	Phe	Gln 465
Cys	Arg	Lys	Leu	Arg 470	Ala	Leu	His	Leu	Gly 475	Asn	Asn	Val	Leu	Gln 480
Ser	Leu	Pro	Ser	Arg 485	Val	Gly	Glu	Leu	Thr 490	Asn	Leu	Thr	Gln	Ile 495
Glu	Leu	Arg	Gly	Asn	Arg	Leu	Glu	Cys	Leu	Pro	Val	Glu	Leu	Gly

500 505 510

Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp 515 520 525

Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg
530 535 540

Ala Asp Lys Glu Gln Ala 545

<210> 251

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 251

caacaatgag ggcaccaagc 20

<210> 252

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 252

gatggctagg ttctggaggt tctg 24

<210> 253

<211> 47

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 253

caacctgcag gagattgacc tcaaggacaa caacctcaag accatcg 47

<210> 254

<211> 1650

<212> DNA

<213> Homo Sapien

<400> 254

gcctgttgct gatgctgccg tgcggtactt gtcatggagc tggcactgcg 50

gegetetece greegeggt ggttgetget getgeegetg etgetgggee 100

tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150

tgggattatg tgacggtccg caaggatgcc tacatgttct ggtggctcta 200

ttatgccacc aactcctgca agaacttctc agaactgccc ctggtcatgt 250 ggcttcaggg cggtccaggc ggttctagca ctggatttgg aaactttgag 300 gaaattgggc cccttgacag tgatctcaaa ccacggaaaa ccacctggct 350 ccaggctgcc agtctcctat ttgtggataa tcccgtgggc actgggttca 400 gttatgtgaa tggtagtggt gcctatgcca aggacctggc tatggtggct 450 tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500 ccagacagtt ccattctaca ttttctcaga gtcctatgga ggaaaaatgg 550 cagctggcat tggtctagag ctttataagg ccattcagcg agggaccatc 600 aagtgcaact ttgcgggggt tgccttgggt gattcctgga tctcccctgt 650 tgattcggtg ctctcctggg gaccttacct gtacagcatg tctcttctcg 700 aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800 agaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900 cagagecace tagtttgtet ttgtcagege caegtgagae acetacaaeg 950 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150 tcgtagatac catgggtcag gaggcctggg tgcggaaact gaagtggcca 1200 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250 taaatctttg gaaacatctg cttttgtcaa gtcctacaag aaccttgctt 1300 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagattttt 1600

```
<210> 255
<211> 452
<212> PRT
<213> Homo Sapien
<400> 255
 Met Glu Leu Ala Leu Arg Arg Ser Pro Val Pro Arg Trp Leu Leu
                   5
Leu Leu Pro Leu Leu Gly Leu Asn Ala Gly Ala Val Ile Asp
 Trp Pro Thr Glu Glu Gly Lys Glu Val Trp Asp Tyr Val Thr Val
Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
 Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
 Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
 Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
                 95
                                     100
Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
                                     115
                 110
 Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
                 125
Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
 Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
                 155
Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
                 170
                                                         180
Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
                                     205
                                                         210
                 200
 Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
                230
                                     235
Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
```

245 250 255

Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
260 265 270

Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser 275 280 285

Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
290 295 300

Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly 305 310 315

Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp 320 325 330

Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe 335 340 345

Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly
350 355 360

Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp 365 370 375

Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu 380 385 390

Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp 395 400 405

Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn 410 415 420

Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser 425 430 435

Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln 440 445 450

Gln Glu

<210> 256

<211> 1100

<212> DNA

<213> Homo Sapien

<400> 256

ggccgcggga gaggaggcca tgggcgcgc cggggcgctg ctgctggcgc 50
tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100
ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcatcgtggg 150
tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200

tgtgggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctgggca 250 ctcacggcgg cgcactgctt tgaaacctat agtgacctta gtgatccctc 300 cgggtggatg gtccagtttg gccagctgac ttccatgcca tccttctgga 350 gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400 cctcqctacc tggggaattc accctatgac attgccttgg tgaagctgtc 450 tgcacctgtc acctacacta aacacatcca gcccatctgt ctccaggcct 500 ccacatttga gtttgagaac cggacagact gctgggtgac tggctggggg 550 tacatcaaag aggatgaggc actgccatct ccccacaccc tccaggaagt 600 tcaggtcgcc atcataaaca actctatgtg caaccacctc ttcctcaagt 650 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700 caaggeggga aggatgeetg etteggtgae teaggtggae eettggeetg 750 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800 gctgtggtcg gcccaatcgg cccggtgtct acaccaatat cagccaccac 850 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900 cccctcctgg ccactactct ttttccctct tctctgggct ctcccactcc 950 tggggccggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000 agtcaggccc tggttctctt ctgtcttgtt tggtaataaa cacattccag 1050

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg
1 5 10 15

Ala Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser

20 25 30

Gly Pro Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Gly 35 40 45

Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg
50 55 60

Leu Trp Asp Ser His Val Cys Gly Val Ser Leu Leu Ser His Arg

Trp	Ala	Leu	Thr	Ala 80	Ala	His	Cys	Phe	Glu 85	Thr	Tyr	Ser	Asp	Leu 90
Ser	Asp	Pro	Ser	Gly 95	Trp	Met	Val	Gln	Phe 100	Gly	Gln	Leu	Thr	Ser 105
Met	Pro	Ser	Phe	Trp 110	Ser	Leu	Gln	Ala	Tyr 115	Tyr	Thr	Arg	Tyr	Phe 120
Val	Ser	Asn	Ile	Tyr 125	Leu	Ser	Pro	Arg	Туг 130	Leu	Gly	Asn	Ser	Pro 135
Tyr	Asp	Ile	Ala	Leu 140	Val	Lys	Leu	Ser	Ala 145	Pro	Val	Thr	Tyr	Thr 150
Lys	His	Ile	Gln	Pro 155	Ile	Cys	Leu	Gln	Ala 160	Ser	Thr	Phe	Glu	Phe 165
Glu	Asn	Arg	Thr	Asp 170	Суѕ	Trp	Val	Thr	Gly 175	Trp	Gly	Tyr	Ile	Lys 180
Glu	Asp	Glu	Ala	Leu 185	Pro	Ser	Pro	His	Thr 190	Leu	Gln	Glu	Val	Gln 195
Val	Ala	Ile	Ile	Asn 200	Asn	Ser	Met	Cys	Asn 205	His	Leu	Phe	Leu	Lys 210
Tyr	Ser	Phe	Arg	Lys 215	Asp	Ile	Phe	Gly	Asp 220	Met	Val	Cys	Ala	Gly 225
Asn	Ala	Gln	Gly	Gly 230	Lys	Asp	Ala	Cys	Phe 235	Gly	Asp	Ser	Gly	Gly 240
Pro	Leu	Ala	Cys	Asn 245	Lys	Asn	Gly	Leu	Trp 250	Tyr	Gln	Ile	Gly	Val 255
Val	Ser	Trp	Gly	Val 260	Gly	Cys	Gly	Arg	Pro 265	Asn	Arg	Pro	Gly	Val 270
Tyr	Thr	Asn	Ile	Ser 275	His	His	Phe	Glu	Trp 280	Ile	Gln	Lys	Leu	Met 285
Ala	Gln	Ser	Gly	Met 290	Ser	Gln	Pro	Asp	Pro 295	Ser	Trp	Pro	Leu	Leu 300
Phe	Phe	Pro	Leu	Leu 305	Trp	Ala	Leu	Pro	Leu 310	Leu	Gly	Pro	Val	

<210> 258

 $\verb|cccacgcgtc| | cgcggacgcg| | tgggaagggc| | agaatgggac| | tccaagcctg| | 50$

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cctcctaggg ctctttgccc tcatcctctc tggcaaatgc agttacagcc 100 cggagcccga ccagcggagg acgctgccc caggctgggt gtccctgggc 150 cgtgcggacc ctgaggaaga gctgagtctc acctttgccc tgagacagca 200 gaatgtggaa agactctcgg agctggtgca ggctgtgtcg gatcccagct 250 ctcctcaata cggaaaatac ctgaccctag agaatgtggc tgatctggtg 300 aggecatece caetgaceet ceacaeggtg caaaaatgge tettggeage 350 cggagcccag aagtgccatt ctgtgatcac acaggacttt ctgacttgct 400 ggctgagcat ccgacaagca gagctgctgc tccctggggc tgagtttcat 450 cactatgtgg gaggacctac ggaaacccat gttgtaaggt ccccacatcc 500 ctaccagett ccacaggeet tggcccccca tgtggacttt gtggggggac 550 tgcaccgttt tcccccaaca tcatccctga ggcaacgtcc tgagccgcag 600 gtgacaggga ctgtaggcct gcatctgggg gtaaccccct ctgtgatccg 650 taagcgatac aacttgacct cacaagacgt gggctctggc accagcaata 700 acagccaagc ctgtgcccag ttcctggagc agtatttcca tgactcagac 750 ctggctcagt tcatgcgcct cttcggtggc aactttgcac atcaggcatc 800 ccagtctaga tgtgcagtac ctgatgagtg ctggtgccaa catctccacc 900 tgggtctaca gtagccctgg ccggcatgag ggacaggagc ccttcctgca 950 gtggctcatg ctgctcagta atgagtcagc cctgccacat gtgcatactg 1000 tgagctatgg agatgatgag gactccctca gcagcgccta catccagcgg 1050 gtcaacactg agctcatgaa ggctgccgct cggggtctca ccctgctctt 1100 cgcctcaggt gacagtgggg ccgggtgttg gtctgtctct ggaagacacc 1150 agttccgccc taccttccct gcctccagcc cctatgtcac cacagtggga 1200 ggcacatcct tccaggaacc tttcctcatc acaaatgaaa ttgttgacta 1250 tatcagtggt ggtggcttca gcaatgtgtt cccacggcct tcataccagg 1300 aggaagctgt aacgaagttc ctgagctcta gcccccacct gccaccatcc 1350 agttacttca atgccagtgg ccgtgcctac ccagatgtgg ctgcactttc 1400 tgatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450 gaacctcggc ctctactcca gtgtttgggg ggatcctatc cttgatcaat 1500

gagcacagga teettagtgg eegeceeet ettggettte teaacccaag 1550 gctctaccag cagcatgggg caggtctctt tgatgtaacc cgtggctgcc 1600 atgagteetg tetggatgaa gaggtagagg geeagggttt etgetetggt 1650 cctggctggg atcctgtaac aggctgggga acaccaactt cccagctttg 1700 ctgaagactc tactcaaccc ctgacccttt cctatcagga gagatggctt 1750 gtcccctgcc ctgaagctgg cagttcagtc ccttattctg ccctgttgga 1800 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatctccct 1850 aaccctqaaa tqctqtqaqc ttgacttgac tcccaaccct accatgctcc 1900 atcatactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950 gtaactagca ttttttgaat gcctctccct ccgcatctca tctttctctt 2000 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050 acttgatatt cattccccaa ttcactgcaa ggagacctct actgtcaccg 2100 tttactcttt cctaccctga catccagaaa caatggcctc cagtgcatac 2150 ttctcaatct ttgctttatg gcctttccat catagttgcc cactccctct 2200 ccttacttag cttccaggtc ttaacttctc tgactactct tgtcttcctc 2250 tctcatcaat ttctgcttct tcatggaatg ctgaccttca ttgctccatt 2300 tgtagatttt tgctcttctc agtttactca ttgtcccctg gaacaaatca 2350 ctgacatcta caaccattac catctcacta aataagactt tctatccaat 2400 aatgattgat acctcaaatg taaaaaa 2427

```
<210> 259
```

<400> 259

Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu 1 5 10 15

Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr
20 25 30

Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu
35 40 45

Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg
50 55 60

<211> 556

<212> PRT

<213> Homo Sapien

Leu	Ser	Glu	Leu	Val 65	Gln	Ala	Val	Ser	Asp 70	Pro	Ser	Ser	Pro	Gln 75
Tyr	Gly	Lys	Tyr	Leu 80	Thr	Leu	Glu	Asn	Val 85	Ala	Asp	Leu	Val	Arg 90
Pro	Ser	Pro	Leu	Thr 95	Leu	His	Thr	Val	Gln 100	Lys	Trp	Leu	Leu	Ala 105
Ala	Gly	Ala	Gln	Lys 110	Cys	His	Ser	Val	Ile 115	Thr	Gln	Asp	Phe	Leu 120
Thr	Cys	Trp	Leu	Ser 125	Ile	Arg	Gln	Ala	Glu 130	Leu	Leu	Leu	Pro	Gly 135
Ala	Glu	Phe	His	His 140	Tyr	Val	Gly	Gly	Pro 145	Thr	Glu	Thr	His	Val 150
Val	Arg	Ser	Pro	His 155	Pro	Tyr	Gln	Leu	Pro 160	Gln	Ala	Leu	Ala	Pro 165
		_		170	Gly				175					180
		-		185	Pro				190					195
				200	Thr				205					210
				215	Val				220					225
	_			230	Leu			_	235					240
				245	Leu				250					255
				260	Val				265	-				270
				275	Asp				280					285
				290	Val	-			295					300
				305	Gln				310					315
				320	His				325					330
ser	Leu	ser	ser	335	Tyr	TIE	GIN	arg	741 340	ASN	rnr	GIU	ьeu	Met 345

Lys	Ala	Ala	Ala	Arg 350	Gly	Leu	Thr	Leu	Leu 355	Phe	Ala	Ser	Gly	Asp 360
Ser	Gly	Ala	Gly	Cys 365	Trp	Ser	Val	Ser	Gly 370	Arg	His	Gln	Phe	Arg 375
Pro	Thr	Phe	Pro	Ala 380	Ser	Ser	Pro	Tyr	Val 385	Thr	Thr	Val	Gly	Gly 390
Thr	Ser	Phe	Gln	Glu 395	Pro	Phe	Leu	Ile	Thr 400	Asn	Glu	Ile	Val	Asp 405
Tyr	Ile	Ser	Gly	Gly 410	Gly	Phe	Ser	Asn	Val 415	Phe	Pro	Arg	Pro	Ser 420
Tyr	Gln	Glu	Glu	Ala 425	Val	Thr	Lys	Phe	Leu 430	Ser	Ser	Ser	Pro	His 435
Leu	Pro	Pro	Ser	Ser 440	Tyr	Phe	Asn	Ala	Ser 445	Gly	Arg	Ala	Tyr	Pro 450
Asp	Val	Ala	Ala	Leu 455	Ser	Asp	Gly	Tyr	Trp 460	Val	Val	Ser	Asn	Arg 465
Val	Pro	Ile	Pro	Trp 470	Val	Ser	Gly	Thr	Ser 475	Ala	Ser	Thr	Pro	Val 480
Phe	Gly	Gly	Ile	Leu 485	Ser	Leu	Ile	Asn	Glu 490	His	Arg	Ile	Leu	Ser 495
Gly	Arg	Pro	Pro	Leu 500	Gly	Phe	Leu	Asn	Pro 505	Arg	Leu	Tyr	Gln	Gln 510
His	Gly	Ala	Gly	Leu 515	Phe	Asp	Val	Thr	Arg 520	Gly	Cys	His	Glu	Ser 525
Cys	Leu	Asp	Glu	Glu 530	Val	Glu	Gly	Gln	Gly 535	Phe	Cys	Ser	Gly	Pro 540
Gly	Trp	Asp	Pro	Val 545	Thr	Gly	Trp	Gly	Thr 550	Pro	Thr	Ser	Gln	Leu 555

Cys

<210> 260

<211> 1638

<212> DNA

<213> Homo Sapien

<400> 260

gccgcgcgct ctctccggc gcccacacct gtctgagcgg cgcagcgagc 50 cgcggcccgg gcgggctgct cggcgcggaa cagtgctcgg catggcaggg 100 attccagggc tcctcttct tctctttt ctgctctgtg ctgttgggca 150 agtgagccct tacagtgccc cctggaaacc cacttggcct gcataccgcc 200

tccctgtcgt cttgccccag tctaccctca atttagccaa gccagacttt 250 ggagccgaag ccaaattaga agtatcttct tcatgtggac cccagtgtca 300 taagggaact ccactgccca cttacgaaga ggccaagcaa tatctgtctt 350 atgaaacgct ctatgccaat ggcagccgca cagagacgca ggtgggcatc 400 tacatectca geagtagtgg agatggggee caacacegag acteagggte 450 ttcaggaaag tctcgaagga agcggcagat ttatggctat gacagcaggt 500 tcagcatttt tgggaaggac ttcctgctca actacccttt ctcaacatca 550 gtgaagttat ccacgggctg caccggcacc ctggtggcag agaagcatgt 600 cctcacagct gcccactgca tacacgatgg aaaaacctat gtgaaaggaa 650 cccagaagct tcgagtgggc ttcctaaagc ccaagtttaa agatggtggt 700 cgaggggcca acgactccac ttcagccatg cccgagcaga tgaaatttca 750 gtggatccgg gtgaaacgca cccatgtgcc caagggttgg atcaagggca 800 atgccaatga catcggcatg gattatgatt atgccctcct ggaactcaaa 850 aagccccaca agagaaaatt tatgaagatt ggggtgagcc ctcctgctaa 900 gcagctgcca gggggcagaa ttcacttctc tggttatgac aatgaccgac 950 caggcaattt ggtgtatcgc ttctgtgacg tcaaagacga gacctatgac 1000 ttgctctacc agcaatgcga tgcccagcca ggggccagcg ggtctggggt 1050 ctatgtgagg atgtggaaga gacagcagca gaagtgggag cgaaaaatta 1100 ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150 gatttcaacg tggctgtcag aatcactcct ctcaaatatg cccagatttg 1200 ctattggatt aaaggaaact acctggattg tagggagggg tgacacagtg 1250 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300 ccaaattgtt ttttgtcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350 tgtgtgtaag gtgtcttata atcttttacc tatttcttac aattgcaaga 1400 tgactggctt tactatttga aaactggttt gtgtatcata tcatatatca 1450 tttaagcagt ttgaaggcat acttttgcat agaaataaaa aaaatactga 1500 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgtttttg 1550 caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600

atatttggca tacaagagat atgaaaaaaa aaaaaaaa 1638

<210: <211: <212: <213:	> 380 > PR	3 r	apier	n										
<400 Met 1		l Gly	Ile	Pro 5	Gly	Leu	Leu	Phe	Leu 10	Leu	Phe	Phe	Leu	Leu 15
Cys	Ala	Val	Gly	Gln 20	Val	Ser	Pro	Tyr	Ser 25	Ala	Pro	Trp	Lys	Pro 30
Thr	Trp	Pro	Ala	Tyr 35	Arg	Leu	Pro	Val	Val 40	Leu	Pro	Gln	Ser	Thr 45
Leu	Asn	Leu	Ala	Lys 50	Pro	Asp	Phe	Gly	Ala 55	Glu	Ala	Lys	Leu	Glu 60
Val	Ser	Ser	Ser	Cys 65	Gly	Pro	Gln	Cys	His 70	Lys	Gly	Thr	Pro	Leu 75
Pro	Thr	Tyr	Glu	Glu 80	Ala	Lys	Gln	Tyr	Leu 85	Ser	Tyr	Glu	Thr	Leu 90
Tyr	Ala	Asn	Gly		Arg	Thr	Glu	Thr		Val	Gly	Ile	Tyr	
				95					100					105
Leu	Ser	Ser	Ser	Gly 110	Asp	Gly	Ala	Gln	His 115	Arg	Asp	Ser	Gly	Ser 120
Ser	Gly	Lys	Ser	Arg 125	Arg	Lys	Arg	Gln	Ile 130	Tyr	Gly	Tyr	Asp	Ser 135
Arg	Phe	Ser	Ile	Phe 140	Gly	Lys	Asp	Phe	Leu 145	Leu	Asn	Tyr	Pro	Phe 150
Ser	Thr	Ser	Val	Lys 155	Leu	Ser	Thr	Gly	Cys 160		Gly		Leu	Val 165
Ala	Glu	Lys	His	Val 170	Leu	Thr	Ala	Ala	His 175	Cys	Ile	His	Asp	Gly 180
Lys	Thr	Tyr	Val	Lys 185	Gly	Thr	Gln	Lys	Leu 190	Arg	Val	Gly	Phe	Leu 195
Lys	Pro	Lys	Phe	Lys 200	Asp	Gly	Gly	Arg	Gly 205	Ala	Asn	Asp	Ser	Thr 210
Ser	Ala	Met	Pro	Glu 215	Gln	Met	Lys	Phe	Gln 220	Trp	Ile	Arg	Val	Lys 225
Arg	Thr	His	Val	Pro 230	Lys	Gly	Trp	Ile	Lys 235	Gly	Asn	Ala	Asn	Asp 240

The Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro 255

His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys 270

Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp 285

Arg Pro Gly Asn Leu 290 Val Tyr Arg Phe Cys Asp Val Lys Asp Glu 300

Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala 315

Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp

Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln

Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg 350 355 360

Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly 365 370 375

Asn Tyr Leu Asp Cys Arg Glu Gly 380

320

<210> 262

<211> 1378

<212> DNA

<213> Homo Sapien

<400> 262

geategeet gggteteteg ageetgetge etgeteeee geeeaceag 50 ceatggtggt teetggageg ecceageee tgggtggggg etgeteegge 100 acetteacet ecctgetget getggegteg acagecatee teaatgegge 150 caggatacet gtteeceag ectgtgggaa geeecageag etgaaceggg 200 ttgtgggggg egaggacage actgacageg agtggeeetg gategtgage 250 atecagaaga atgggaeea ecaetgegaa ggttetetge teaecageeg 300 etgggtgate actgetgee actgtteaa ggacaacetg aacaaaceat 350 acetgttete tgtgetgetg ggggeetgge agetggggaa ecetggetet 400 eggteecaga aggtggtgt tgeetgggtg gageeceaee etgtgtatte 450 etggaaggaa ggtgeetgtg eagacattge eetggtgegt etegageget 500 ecatacagtt eteagagegg gteetgeea tetgeetaee tgatgeete 550

atccacctcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600 ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650 ttcctatcat cgactcggaa gtctgcagcc atctgtactg gcggggagca 700 ggacagggac ccatcactga ggacatgctg tgtgccggct acttggaggg 750 ggagcgggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800 tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850 gccgagcgca acaggcccgg ggtctacatc agcctctctg cgcaccgctc 900 ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950 ggggtggggc cctcagggca ccgagccagg gctctggggc cgccgcgcgc 1000 tcctagggcg cagcgggacg cggggctcgg atctgaaagg cggccagatc 1050 cacatctgga tctggatctg cggcggcctc gggcggtttc ccccgccgta 1100 aataggetea tetaceteta eetetggggg eeeggaegge tgetgeggaa 1150 aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200 catcaggccc cgcccaacgg cctcatgtcc ccgccccac gacttccggc 1250 cccgccccg ggccccagcg cttttgtgta tataaatgtt aatgattttt 1300 ataggtattt gtaaccctgc ccacatatct tatttattcc tccaatttca 1350 ataaattatt tattctccaa aaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met Val Val Ser Gly Ala Pro Pro Ala Leu Gly Gly Cys Leu
1 5 10 15

Gly Thr Phe Thr Ser Leu Leu Leu Leu Ala Ser Thr Ala Ile Leu 20 25 30

Asn Ala Ala Arg Ile Pro Val Pro Pro Ala Cys Gly Lys Pro Gln
35 40 45

Gln Leu Asn Arg Val Val Gly Gly Glu Asp Ser Thr Asp Ser Glu
50 55 60

Trp Pro Trp Ile Val Ser Ile Gln Lys Asn Gly Thr His His Cys
65 70 75

Ala	Gly	Ser	Leu	Leu 80	Thr	Ser	Arg	Trp	Val 85	Ile	Thr	Ala	Ala	His 90
Cys	Phe	Lys	Asp	Asn 95	Leu	Asn	Lys	Pro	Tyr 100	Leu	Phe	Ser	Val	Leu 105
Leu	Gly	Ala	Trp	Gln 110	Leu	Gly	Asn	Pro	Gly 115	Ser	Arg	Ser	Gln	Lys 120
Val	Gly	Val	Ala	Trp 125	Val	Glu	Pro	His	Pro 130	Val	Tyr	Ser	Trp	Lys 135
Glu	Gly	Ala	Cys	Ala 140	Asp	Ile	Ala	Leu	Val 145	Arg	Leu	Glu	Arg	Ser 150
Ile	Gln	Phe	Ser	Glu 155	Arg	Val	Leu	Pro	Ile 160	Cys	Leu	Pro	Asp	Ala 165
Ser	Ile	His	Leu	Pro 170	Pro	Asn	Thr	His	Cys 175	Trp	Ile	Ser	Gly	Trp 180
Gly	Ser	Ile	Gln	Asp 185	Gly	Val	Pro	Leu	Pro 190	His	Pro	Gln	Thr	Leu 195
Gln	Lys	Leu	Lys	Val 200	Pro	Ile	Ile	Asp	Ser 205	Glu	Val	Cýs	Ser	His 210
Leu	Tyr	Trp	Arg	Gly 215	Ala	Gly	Gln	Gly	Pro 220	Ile	Thr	Glu	Asp	Met 225
Leu	Cys	Ala	Gly	Tyr 230	Leu	Glu	Gly	Glu	Arg 235	Asp	Ala	Суѕ	Leu	Gly 240
Asp	Ser	Gly	Gly	Pro 245	Leu	Met	Cys	Gln	Val 250	Asp	Gly	Ala	Trp	Leu 255
Leu	Ala	Gly	Ile	Ile 260	Ser	Trp	Gly	Glu	Gly 265	Cys	Ala	Glu	Arg	Asn 270
Arg	Pro	Gly	Val	Tyr 275	Ile	Ser	Leu	Ser	Ala 280	His	Arg	Ser	Trp	Val 285
Glu	Lys	Ile	Val	Gln 290	Gly	Val	Gln	Leu	Arg 295	Gly	Arg	Ala	Gln	Gly 300
Gly	Gly	Ala	Leu	Arg 305	Ala	Pro	Ser	Gln	Gly 310	Ser	Gly	Ala	Ala	Ala 315

Arg Ser

<210> 264

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

```
<400> 264
 gtccgcaagg atgcctacat gttc 24
<210> 265
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 265
 gcagaggtgt ctaaggttg 19
<210> 266
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 266
 agctctagac caatgccagc ttcc 24
<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 267
 gccaccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45
<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 268
 ggggaattca ccctatgaca ttgcc 25
<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 269
```

```
gaatgccctg caagcatcaa ctgg 24
<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50
<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 271
gcggaagggc agaatgggac tccaag 26
<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 272
cagccctgcc acatgtgc 18
<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 273
tactgggtgg tcagcaac 18
<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 274
```

ggcgaagagc agggtgagac cccg 24

```
<210> 275
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 275
gccctcatcc tctctggcaa atgcagttac agcccggagc ccgac 45
<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 276
gggcagggat tccagggctc c 21
<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 277
ggctatgaca gcaggttc 18
<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 278
tgacaatgac cgaccagg 18
<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 279
gcatcgcatt gctggtagag caag 24
<210> 280
```

```
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 280
 ttacagtgcc ccctggaaac ccacttggcc tgcataccgc ctccc 45
<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 281
cgtctcgagc gctccataca gttcccttgc ccca 34
<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 282
 tggagggga gcgggatgct tgtctgggcg actccggggg cccctcatg 50
 tgccaggtgg a 61
<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
 gcagccatct gtactggcgg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119
<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien
<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gcttctgctg 50
```

ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100 agatgaggag aaacgtttga tggtggagct gcacaacctc taccgggccc 150 aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200 ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt ggggccacaa 250 caaggagcgc gggcgccgcg gcgagaatct gttcgccatc acagacgagg 300 gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350 tacaacctca gcgccgccac ctgcagccca ggccagatgt gcggccacta 400 cacgcaggtg gtatgggcca agacagagag gatcggctgt ggttcccact 450 tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500 tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550 ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600 tctgtgaacc catcggaagc ccggaagatg ctcaggattt gccttacctg 650 gtaactgagg ccccatcctt ccgggcgact gaagcatcag actctaggaa 700 aatgggtact ccttcttccc tagcaacggg gattccggct ttcttggtaa 750 cagaggtete aggeteeetg geaaceaagg etetgeetge tgtggaaace 800 caggececaa etteettage aacgaaagae eegeeeteea tggeaacaga 850 ggctccacct tgcgtaacaa ctgaggtccc ttccattttg gcagctcaca 900 gcctgccctc cttggatgag gagccagtta ccttccccaa atcgacccat 950 gttcctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000 ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050 caagggaact cctaccccat gcccaggagg aggctgaggc tgaggctgag 1100 ttgcctcctt ccagtgaggt cttggcctca gtttttccag cccaggacaa 1150 gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200 agtecetgee caattteece aatacetetg ceaeegetaa tgeeaegggt 1250 gggcgtgccc tggctctgca gtcgtccttg ccaggtgcag agggccctga 1300 caagectage gttgtgtcag ggetgaacte gggeeetggt catgtgtggg 1350 gccctctcct gggactactg ctcctgcctc ctctggtgtt ggctggaatc 1400 ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450 catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500 ggccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550 atcctggagg cacaaggcct ggctggctgc gagctcagga ggccgcctga 1600 ggactgcaca ccgggcccac acctctcctg cccctccctc ctgagtcctg 1650 ggggtgggag gatttgaggg agctcactgc ctacctggcc tggggctgtc 1700 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgta gctggggatg 1750 gggattccta ggggcagatg aaggacaagc cccactggag tggggttctt 1800 tgagtgggg aggcagggac gagggaagga aagtaactcc tgactctca 1850 ataaaaacct gtccaacctg tgaaa 1875

```
<210> 285
```

<400> 285

Met	His	Gly	Ser	Cys	Ser	Phe	Leu	Met	Leu	Leu	Leu	Pro	Leu	Leu
1				5					10					15

Leu Leu Val Ala Thr Thr Gly Pro Val Gly Ala Leu Thr Asp
20 25 30

Glu Glu Lys Arg Leu Met Val Glu Leu His Asn Leu Tyr Arg Ala 35 40 45

Gln Val Ser Pro Thr Ala Ser Asp Met Leu His Met Arg Trp Asp
50 55 60

Glu Glu Leu Ala Ala Phe Ala Lys Ala Tyr Ala Arg Gln Cys Val
65 70 75

Trp Gly His Asn Lys Glu Arg Gly Arg Arg Gly Glu Asn Leu Phe 80 85 90

Ala Ile Thr Asp Glu Gly Met Asp Val Pro Leu Ala Met Glu Glu 95 100 105

Trp His His Glu Arg Glu His Tyr Asn Leu Ser Ala Ala Thr Cys \$110\$ \$115\$ \$120

Ser Pro Gly Gln Met Cys Gly His Tyr Thr Gln Val Val Trp Ala 125 130 135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu 140 145 150

Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr 155 160 165

Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly

<211> 463

<212> PRT

<213> Homo Sapien

				170					175					180
Thr	Pro	Cys	Ser	Gln 185	Cys	Pro	Ser	Gly	Туг 190	His	Cys	Lys	Asn	Ser 195
Leu	Cys	Glu	Pro	Ile 200	Gly	Ser	Pro	Glu	Asp 205	Ala	Gln	Asp	Leu	Pro 210
Tyr	Leu	Val	Thr	Glu 215	Ala	Pro	Ser	Phe	Arg 220	Ala	Thr	Glu	Ala	Ser 225
Asp	Ser	Arg	Lys	Met 230	Gly	Thr	Pro	Ser	Ser 235	Leu	Ala	Thr	Gly	Ile 240
Pro	Ala	Phe	Leu	Val 245	Thr	Glu	Val	Ser	Gly 250	Ser	Leu	Ala	Thr	Lys 255
Ala	Leu	Pro	Ala	Val 260	Glu	Thr	Gln	Ala	Pro 265	Thr	Ser	Leu	Ala	Thr 270
Lys	Asp	Pro	Pro	Ser 275	Met	Ala	Thr	Glu	Ala 280	Pro	Pro	Cys	Val	Thr 285
Thr	Glu	Val	Pro	Ser 290	Ile	Leu	Ala	Ala	His 295	Ser	Leu	Pro	Ser	Leu 300
Asp	Glu	Glu	Pro	Val 305	Thr	Phe	Pro	Lys	Ser 310	Thr	His	Val	Pro	Ile 315
Pro	Lys	Ser	Ala	Asp 320	Lys	Val	Thr	Asp	Lys 325	Thr	Lys	Val	Pro	Ser 330
Arg	Ser	Pro	Glu	Asn 335	Ser	Leu	Asp	Pro	Lys 340	Met	Ser	Leu	Thr	Gly 345
Ala	Arg	Glu	Leu	Leu 350	Pro	His	Ala	Gln	Glu 355	Glu	Ala	Glu	Ala	Glu 360
Ala	Glu	Leu	Pro	Pro 365	Ser	Ser	Glu	Val	Leu 370	Ala	Ser	Val	Phe	Pro 375
Ala	Gln	Asp	Lys	Pro 380	Gly	Glu	Leu	Gln	Ala 385	Thr	Leu	Asp	His	Thr 390
Gly	His	Thr	Ser	Ser 395	Lys	Ser	Leu	Pro	Asn 400	Phe	Pro	Asn	Thr	Ser 405
Ala	Thr	Ala	Asn	Ala 410	Thr	Gly	Gly	Arg	Ala 415	Leu	Ala	Leu	Gln	Ser 420
Ser	Leu	Pro	Gly	Ala 425	Glu	Gly	Pro	Asp	Lys 430	Pro	Ser	Val	Val	Ser 435
Gly	Leu	Asn	Ser	Gly 440	Pro	Gly	His	Val	Trp 445	Gly	Pro	Leu	Leu	Gly 450
Leu	Leu	Leu	Leu	Pro	Pro	Leu	Val	Leu	Ala	Gly	Ile	Phe		

455 460

```
<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 286
tcctgcagtt tcctgatgc 19
<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 287
ctcatattgc acaccagtaa ttcg 24
<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 288
 atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45
<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien
<400> 289
 gtaactgaag tcaggctttt catttgggaa gccccctcaa cagaattcgg 50
 tcattctcca agttatggtg gacgtacttc tgttgttctc cctctgcttg 100
 ctttttcaca ttagcagacc ggacttaagt cacaacagat tatctttcat 150
 caaggcaagt tccatgagcc accttcaaag ccttcgagaa gtgaaactga 200
 acaacaatga attggagacc attccaaatc tgggaccagt ctcggcaaat 250
 attacacttc tctccttggc tggaaacagg attgttgaaa tactccctga 300
 acatctgaaa gagtttcagt cccttgaaac tttggacctt agcagcaaca 350
 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400
```

tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450 tttggccaac acactccttg tgttaaagct gaacaggaac cgaatctcag 500 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattg 550 aaccgaaaca agattaaaaa tgtagatgga ctgacattcc aaggccttgg 600 tgctctgaag tctctgaaaa tgcaaagaaa tggagtaacg aaacttatgg 650 atggagcttt ttgggggctg agcaacatgg aaattttgca gctggaccat 700 aacaacctaa cagagattac caaaggctgg ctttacggct tgctgatgct 750 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800 cctgggagtt ctgccagaag ctcagtgagc tggacctaac tttcaatcac 850 ttatcaaggt tagatgattc aagcttcctt ggcctaagct tactaaatac 900 actgcacatt gggaacaaca gagtcagcta cattgctgat tgtgccttcc 950 gggggctttc cagtttaaag actttggatc tgaagaacaa tgaaatttcc 1000 tggactattg aagacatgaa tggtgctttc tctgggcttg acaaactgag 1050 gcgactgata ctccaaggaa atcggatccg ttctattact aaaaaagcct 1100 tcactggttt ggatgcattg gagcatctag acctgagtga caacgcaatc 1150 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200 gcatttaaat acatcaagcc ttttgtgcga ttgccagcta aaatggctcc 1250 cacagtgggt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300 gcccatcctc agctgctaaa aggaagaagc atttttgctg ttagcccaga 1350 tggctttgtg tgtgatgatt ttcccaaacc ccagatcacg gttcagccag 1400 aaacacagtc ggcaataaaa ggttccaatt tgagtttcat ctgctcagct 1450 gccagcagca gtgattcccc aatgactttt gcttggaaaa aagacaatga 1500 actactgcat gatgctgaaa tggaaaatta tgcacacctc cgggcccaag 1550 gtggcgaggt gatggagtat accaccatcc ttcggctgcg cgaggtggaa 1600 tttgccagtg aggggaaata tcagtgtgtc atctccaatc actttggttc 1650 atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700 ccaagaccc catggatctc accatccgag ctggggccat ggcacgcttg 1750 gagtgtgctg ctgtggggca cccagccccc cagatagcct ggcagaagga 1800 tgggggcaca gacttcccag ctgcacggga gagacgcatg catgtgatgc 1850

ccgaggatga cgtgttcttt atcgtggatg tgaagataga ggacattggg 1900 gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950 aactctgact gtcctagaaa caccatcatt tttgcggcca ctgttggacc 2000 gaactgtaac caagggagaa acagccgtcc tacagtgcat tgctggagga 2050 agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattggtggt 2100 aaccgagagg cacttttttg cagcaggcaa tcagcttctg attattgtgg 2150 actcagatgt cagtgatgct gggaaataca catgtgagat gtctaacacc 2200 cttggcactg agagaggaaa cgtgcgcctc agtgtgatcc ccactccaac 2250 ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300 ccactgtggg tgtcgtgatc atagccgtgg tttgctgtgt ggtgggcacg 2350 tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400 ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450 gttatttgtc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500 tcttcagaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550 atttttctta ccacaacatg acagtagtgg gacctgccat attgacaata 2600 gcagtgaagc tgatgtggaa gctgccacag atctgttcct ttgtccgttt 2650 ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700 tccttttgaa acatatcata caggttgcag tcctgaccca agaacagttt 2750 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800 tgttctcatc cttcagaaga atcctgcgaa cggagcttca gtaatatatc 2850 gtggccttca catgtgagga agctacttaa cactagttac tctcacaatg 2900 aaggacctgg aatgaaaaat ctgtgtctaa acaagtcctc tttagatttt 2950 agtgcaaatc cagagccagc gtcggttgcc tcgagtaatt ctttcatggg 3000 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050 ttggacagcc atcagattgt cagccaagag ccttttattt gaaagctcat 3100 tcttccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150 agattttcag gaagaaaatc acatttgtac ctttaaacag actttagaaa 3200 actacaggac tccaaatttt cagtcttatg acttggacac atagactgaa 3250

tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa cttttattta 3300 aaagagagag aatcttatgt tttttaaatg gagttatgaa ttttaaaagg 3350 ataaaaatgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400 aaatttttat actgggaatg atgctcatat aagaatacct ttttaaacta 3450 ttttttaact ttgttttatg caaaaaagta tcttacgtaa attaatgata 3500 taaatcatga ttatttatg tattttata atgccagatt tcttttatg 3550 gaaaatgagt tactaaagca ttttaaataa tacctgcctt gtaccattt 3600 ttaaatagaa gttacttcat tatattttgc acattatatt taataaaatg 3650 tgtcaatttg aa 3662

<210> 290

<211> 1059

<212> PRT

<213> Homo Sapien

<400> 290

Met Val Asp Val Leu Leu Leu Phe Ser Leu Cys Leu Leu Phe His

1 5 10 15

Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys 20 25 30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu 35 40 45

Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
50 55 60

Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu 65 70 75

Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu 80 85 90

Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro 95 100 105

Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr 110 115 120

Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu 125 130 135

Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys 140 145 150

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

155 160 165

Lys	Ile	Lys	Asn	Val 170	Asp	Gly	Leu	Thr	Phe 175	Gln	Gly	Leu	Gly	Ala 180
Leu	Lys	Ser	Leu	Lys 185	Met	Gln	Arg	Asn	Gly 190	Val	Thr	Lys	Leu	Met 195
Asp	Gly	Ala	Phe	Trp 200	Gly	Leu	Ser	Asn	Met 205	Glu	Ile	Leu	Gln	Leu 210
Asp	His	Asn	Asn	Leu 215	Thr	Glu	Ile	Thr	Lys 220	Gly	Trp	Leu	Tyr	Gly 225
Leu	Leu	Met	Leu	Gln 230	Glu	Leu	His	Leu	Ser 235	Gln	Asn	Ala	Ile	Asn 240
Arg	Ile	Ser	Pro	Asp 245	Ala	Trp	Glu	Phe	Cys 250	Gln	Lys	Leu	Ser	Glu 255
Leu	Asp	Leu	Thr	Phe 260	Asn	His	Leu	Ser	Arg 265	Leu	Asp	Asp	Ser	Ser 270
Phe	Leu	Gly	Leu	Ser 275	Leu	Leu	Asn	Thr	Leu 280	His	Ile	Gly	Asn	Asn 285
Arg	Val	Ser	Tyr	Ile 290	Ala	Asp	Cys	Ala	Phe 295	Arg	Gly	Leu	Ser	Ser 300
Leu	Lys	Thr	Leu	Asp 305	Leu	Lys	Asn	Asn	Glu 310	Ile	Ser	Trp	Thr	Ile 315
Glu	Asp	Met	Asn	Gly 320	Ala	Phe	Ser	Gly	Leu 325	Asp	Lys	Leu	Arg	Arg 330
Leu	Ile	Leu	Gln	Gly 335	Asn	Arg	Ile	Arg	Ser 340	Ile	Thr	Lys	Lys	Ala 345
Phe	Thr	Gly	Leu	Asp 350	Ala	Leu	Glu	His	Leu 355	Asp	Leu	Ser	Asp	Asn 360
Ala	Ile	Met	Ser	Leu 365	Gln	Gly	Asn	Ala	Phe 370	Ser	Gln	Met	Lys	Lys 375
Leu	Gln	Gln	Leu	His 380	Leu	Asn	Thr	Ser	Ser 385	Leu	Leu	Cys	Asp	Cys 390
Gln	Leu	Lys	Trp	Leu 395	Pro	Gln	Trp	Val	Ala 400	Glu	Asn	Asn	Phe	Gln 405
Ser	Phe	Val	Asn	Ala 410	Ser	Cys	Ala	His	Pro 415	Gln	Leu	Leu	Lys	Gly 420
Arg	Ser	Ile	Phe	Ala 425	Val	Ser	Pro	Asp	Gly 430	Phe	Val	Суѕ	Asp	Asp 435
Phe	Pro	Lys	Pro	Gln 440	Ile	Thr	Val	Gln	Pro 445	Glu	Thr	Gln	Ser	Ala 450

•

Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu 470 475 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln 485 Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu 500 505 Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn 520 His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn 530 535 540 Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg 545 550 Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro 560 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro 575 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val 590 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr 620 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp 640 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala 650 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser 665 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln 680 685 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr 695 700 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val 715 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met

705	720	735
725	730	/ (5
143	730	,,,,

Thr	Ala	Pro	Ser	Leu 740	Asp	Asp	Asp	Gly	Trp 745	Ala	Thr	Val	Gly	Val 750
Val	Ile	Ile	Ala	Val 755	Val	Cys	Суѕ	Val	Val 760	Gly	Thr	Ser	Leu	Val 765
Trp	Val	Val	Ile	Ile 770	Tyr	His	Thr	Arg	Arg 775	Arg	Asn	Glu	Asp	Cys 780
Ser	Ile	Thr	Asn	Thr	Asp	Glu	Thr	Asn	Leu	Pro	Ala	Asp	Ile	Pro
				785					790					795
Ser	Tyr	Leu	Ser	Ser 800	Gln	Gly	Thr	Leu	Ala 805	Asp	Arg	Gln	Asp	Gly 810
Tyr	Val	Ser	Ser	Glu 815	Ser	Gly	Ser	His	His 820	Gln	Phe	Val	Thr	Ser 825
Ser	Gly	Ala	Gly	Phe 830	Phe	Leu	Pro	Gln	His 835	Asp	Ser	Ser	Gly	Thr 840
Cys	His	Ile	Asp	Asn 845	Ser	Ser	Glu	Ala	Asp 850	Val	Glu	Ala	Ala	Thr 855
Asp	Leu	Phe	Leu	Cys 860	Pro	Phe	Leu	Gly	Ser 865	Thr	Gly	Pro	Met	Tyr 870
Leu	Lys	Gly	Asn	Val 875	Tyr	Gly	Ser	Asp	Pro 880	Phe	Glu	Thr	Tyr	His 885
Thr	Gly	Суѕ	Ser	Pro 890	Asp	Pro	Arg	Thr	Val 895	Leu	Met	Asp	His	Tyr 900
Glu	Pro	Ser	Tyr	Ile 905	Lys	Lys	Lys	Glu	Cys 910	Tyr	Pro	Cys	Ser	His 915
Pro	Ser	Glu	Glu	Ser 920	Cys	Glu	Arg	Ser	Phe 925	Ser	Asn	Ile	Ser	Trp 930
Pro	Ser	His	Val	Arg 935	Lys	Leu	Leu	Asn	Thr 940	Ser	Tyr	Ser	His	Asn 945
Glu	Gly	Pro	Gly	Met 950	Lys	Asn	Leu	Cys	Leu 955	Asn	Lys	Ser	Ser	Leu 960
Asp	Phe	Ser	Ala	Asn 965	Pro	Glu	Pro	Ala	Ser 970	Val	Ala	Ser	Ser	Asn 975
Ser	Phe	Met	Gly	Thr 980	Phe	Gly	Lys	Ala	Leu 985	Arg	Arg	Pro	His	Leu 990
Asp	Ala	Tyr	Ser	Ser 995	Phe	Gly	Gln		Ser L000	Asp	Cys	Gln	_	Arg 1005

Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1010 1015 1020

Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1025 1030 1035

His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro 1040 1045 1050

Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1055

<210> 291

<211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50 ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100 tggaaccgaa cgcaatggat aaactgattg tgcaagagag aaggaagaac 150 gaagettttt ettgtgagee etggatetta acacaaatgt gtatatgtge 200 acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250 ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300 ccaccccaa aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350 agaaaaaagt atgttcattt ttctctataa aggagaaagt gagccaagga 400 gatatttttg gaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450 aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550 gcagattgag gcattgattg ggggagagaa accagcagag cacagttgga 600 tttgtgccta tgttgactaa aattgacgga taattgcagt tggatttttc 650 ttcatcaacc tcctttttt taaattttta ttccttttgg tatcaagatc 700 atgcgttttc tcttgttctt aaccacctgg atttccatct ggatgttgct 750 gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800 ataaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850 ataggtccta ggtttaacag ggccctattt gaccccctgc ttgtggtgct 900 gctggctctt caacttcttg tggtggctgg tctggtgcgg gctcagacct 950 gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgtgtt 1000 cggaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050 gctgaacctc catgagaacc aaatccagat catcaaagtg aacagcttca 1100 agcacttgag gcacttggaa atcctacagt tgagtaggaa ccatatcaga 1150 accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200 actctttgac aatcgtctta ctaccatccc gaatggagct tttgtatact 1250 tgtctaaact gaaggagctc tggttgcgaa acaaccccat tgaaagcatc 1300 ccttcttatg cttttaacag aattccttct ttgcgccgac tagacttagg 1350 ggaattgaaa agactttcat acatctcaga aggtgccttt gaaggtctgt 1400 ccaacttgag gtatttgaac cttgccatgt gcaaccttcg ggaaatccct 1450 aacctcacac cgctcataaa actagatgag ctggatcttt ctgggaatca 1500 tttatctgcc atcaggcctg gctctttcca gggtttgatg caccttcaaa 1550 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgccttt 1600 gacaaccttc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700 atttacatca caaccettgg aactgtaact gtgacatact gtggctcagc 1750 tggtggataa aagacatggc cccctcgaac acagcttgtt gtgcccggtg 1800 taacactcct cccaatctaa aggggaggta cattggagag ctcgaccaga 1850 attacttcac atgctatgct ccggtgattg tggagccccc tgcagacctc 1900 aatgtcactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950 cctgacatct gtatcttgga ttactccaaa tggaacagtc atgacacatg 2000 gggcgtacaa agtgcggata gctgtgctca gtgatggtac gttaaatttc 2050 acaaatgtaa ctgtgcaaga tacaggcatg tacacatgta tggtgagtaa 2100 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150 ccactactcc tttctcttac ttttcaaccg tcacagtaga gactatggaa 2200 ccgtctcagg atgaggcacg gaccacagat aacaatgtgg gtcccactcc 2250 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300 gcacaaggtc gacagagaaa accttcacca tcccagtgac tgatataaac 2350 agtgggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400 tgggtgtttt gtggccatca cactcatggc tgcagtgatg ctggtcattt 2450
tctacaagat gaggaagcag caccatcggc aaaaccatca cgccccaaca 2500
aggactgttg aaattattaa tgtggatgat gagattacgg gagacacacc 2550
catggaaagc cacctgccca tgcctgctat cgagcatgag cacctaaatc 2600
actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
ataaattcaa tacacagttc agtgcatgaa ccgttattga tccgaatgaa 2700
ctctaaagac aatgtacaag agactcaaat ctaaaacatt tacagagtta 2750
caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800
tgactggct aaatctactg tttcaaaaaa gtgtctttac aaaaaaacaa 2850
aaaagaaaag aaatttattt attaaaaatt ctattgtgat ctaaagcaga 2900
caaaaa 2906

<210> 292

<211> 640

<212> PRT

<213> Homo Sapien

<400> 292

Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu 20 25 30

Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln
35 40 45

Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val
50 55 60

Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser 65 70 75

Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile 80 85 90

Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu
95 100 105

Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe 110 115 120

Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg 125 130 135

Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu 140 145 150

Lys	Glu	Leu	Trp	Leu 155	Arg	Asn	Asn	Pro	Ile 160	Glu	Ser	Ile	Pro	Ser 165		
Tyr	Ala	Phe	Asn	Arg 170	Ile	Pro	Ser	Leu	Arg 175	Arg	Leu	Asp	Leu	Gly 180		
Glu	Leu	Lys	Arg	Leu 185	Ser	Tyr	Ile	Ser	Glu 190	Gly	Ala	Phe	Glu	Gly 195		
Leu	Ser	Asn	Leu	Arg 200	Tyr	Leu	Asn	Leu	Ala 205	Met	Cys	Asn	Leu	Arg 210		
Glu	Ile	Pro	Asn	Leu 215	Thr	Pro	Leu	Ile	Lys 220	Leu	Asp	Glu	Leu	Asp 225		
Leu	Ser	Gly	Asn	His 230	Leu	Ser	Ala	Ile	Arg 235	Pro	Gly	Ser	Phe	Gln 240		
Gly	Leu	Met	His	Leu 245	Gln	Lys	Leu	Trp	Met 250	Ile	Gln	Ser	Gln	Ile 255		
Gln	Val	Ile	Glu	Arg 260	Asn	Ala	Phe	Asp	Asn 265	Leu	Gln	Ser	Leu	Val 270		
Glu	Ile	Asn	Leu	Ala 275	His	Asn	Asn	Leu	Thr 280	Leu	Leu	Pro	His	Asp 285		,
Leu	Phe	Thr	Pro	Leu 290	His	His	Leu	Glu	Arg 295	Ile	His	Leu	His	His 300		
Asn	Pro	Trp	Asn	Cys 305	Asn	Cys	Asp	Ile	Leu 310	Trp	Leu	Ser	Trp	Trp 315		
Ile	Lys	Asp	Met	Ala 320	Pro	Ser	Asn	Thr	Ala 325	Cys	Cys	Ala	Arg	Cys 330		
Asn	Thr	Pro	Pro	Asn 335	Leu	Lys	Gly	Arg	Tyr 340	Ile	Gly	Glu	Leu	Asp 345	÷	
Gln	Asn	Tyr	Phe	Thr 350	Cys	Tyr	Ala	Pro	Val 355	Ile	Val	Glu	Pro	Pro 360		
Ala	Asp	Leu	Asn	Val 365	Thr	Glu	Gly	Met	Ala 370	Ala	Glu	Leu	Lys	Cys 375		
Arg	Ala	Ser	Thr	Ser 380	Leu	Thr	Ser	Val	Ser 385	Trp	Ile	Thr	Pro	Asn 390		
Gly	Thr	Val	Met	Thr 395	His	Gly	Ala	Tyr	Lys 400	Val	Arg	Ile	Ala	Val 405		
Leu	Ser	Asp	Gly	Thr 410	Leu	Asn	Phe	Thr	Asn 415	Val	Thr	Val	Gln	Asp 420		
Thr	Gly	Met	Tyr	Thr 425	Cys	Met	Val	Ser	Asn 430		Val	Gly	Asn	Thr 435		

Thr	Ala	Ser	Ala	Thr 440	Leu	Asn	Val	Thr	Ala 445	Ala	Thr	Thr	Thr	Pro 450
Phe	Ser	Tyr	Phe	Ser 455	Thr	Val	Thr	Val	Glu 460	Thr	Met	Glu	Pro	Ser 465
Gln	Asp	Glu	Ala	Arg 470	Thr	Thr	Asp	Asn	Asn 475	Val	Gly	Pro	Thr	Pro 480
Val	Val	Asp	Trp	Glu 485	Thr	Thr	Asn	Val	Thr 490	Thr	Ser	Leu	Thr	Pro 495
Gln	Ser	Thr	Arg	Ser 500	Thr	Glu	Lys	Thr	Phe 505	Thr	Ile	Pro	Val	Thr 510
Asp	Ile	Asn	Ser	Gly 515	Ile	Pro	Gly	Ile	Asp 520	Glu	Val	Met	Lys	Thr 525
Thr	Lys	Ile	Ile	Ile 530	Gly	Cys	Phe	Val	Ala 535	Ile	Thr	Leu	Met	Ala 540
Ala	Val	Met	Leu	Val 545	Ile	Phe	Tyr	Lys	Met 550	Arg	Lys	Gln	His	His 555
Arg	Gln	Asn	His	His 560	Ala	Pro	Thr	Arg	Thr 565	Val	Glu	Ile	Ile	Asn 570
Val	Asp	Asp	Glu	Ile 575	Thr	Gly	Asp	Thr	Pro 580	Met	Glu	Ser	His	Leu 585
Pro	Met	Pro	Ala	Ile 590	Glu	His	Glu	His	Leu 595	Asn	His	Tyr	Asn	Ser 600
Tyr	Lys	Ser	Pro	Phe 605	Asn	His	Thr	Thr	Thr 610	Val	Asn	Thr	Ile	Asn 615
Ser	Ile	His	Ser	Ser 620	Val	His	Glu	Pro	Leu 625	Leu	Ile	Arg	Met	Asn 630
Ser	Lys	Asp	Asn	Val 635	Gln	Glu	Thr	Gln	Ile 640					

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgtt gcagttggca gttctttcg 50 gtttccctcc tgctgtttgg gggcatgaaa gggcttcgcc gccgggagta 100 aaagaaggaa ttgaccggc agcgcgaggg aggagcgcg acgcgaccgc 150 gagggcggc gtgcaccctc ggctggaagt ttgtgccggg ccccgagcgc 200

gcgccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250 gegegeegag ceteegtgeg egegeegegg ggttgggget getgetgtge 300 gcggtgctgg ggcgcgctgg ccggtccgac agcggcggtc gcggggaact 350 egggeagece tetggggtag eegeegageg eecatgeece actaeetgee 400 gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgtctt 450 cccgagccac tcccgtcctg ggtcgctcgg ctggacttaa gtcacaacag 500 attatctttc atcaaggcaa gttccatgag ccaccttcaa agccttcgag 550 aagtgaaact gaacaacaat gaattggaga ccattccaaa tctgggacca 600 gtctcggcaa atattacact tctctccttg gctggaaaca ggattgttga 650 aatactccct gaacatctga aagagtttca gtcccttgaa actttggacc 700 ttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750 ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggaacctgg 800 gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850 accgaatctc agctatccca cccaagatgt ttaaactgcc ccaactgcaa 900 catctcgaat tgaaccgaaa caagattaaa aatgtagatg gactgacatt 950 ccaaggcctt ggtgctctga agtctctgaa aatgcaaaga aatggagtaa 1000 cgaaacttat ggatggagct ttttgggggc tgagcaacat ggaaattttg 1050 cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100 cttgctgatg ctgcaggaac ttcatctcag ccaaaatgcc atcaacagga 1150 tcagccctga tgcctgggag ttctgccaga agctcagtga gctggaccta 1200 actttcaatc acttatcaag gttagatgat tcaagcttcc ttggcctaag 1250 cttactaaat acactgcaca ttgggaacaa cagagtcagc tacattgctg 1300 attgtgcctt ccgggggctt tccagtttaa agactttgga tctgaagaac 1350 aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggct 1400 tgacaaactg aggcgactga tactccaagg aaatcggatc cgttctatta 1450 ctaaaaaagc cttcactggt ttggatgcat tggagcatct agacctgagt 1500 gacaacgcaa tcatgtcttt acaaggcaat gcattttcac aaatgaagaa 1550 actgcaacaa ttgcatttaa atacatcaag ccttttgtgc gattgccagc 1600

taaaatggct cccacagtgg gtggcggaaa acaactttca gagctttgta 1650 aatgccagtt gtgcccatcc tcagctgcta aaaggaagaa gcatttttgc 1700 tgttagccca gatggctttg tgtgtgatga ttttcccaaa ccccagatca 1750 cggttcagcc agaaacacag tcggcaataa aaggttccaa tttgagtttc 1800 atctgctcag ctgccagcag cagtgattcc ccaatgactt ttgcttggaa 1850 aaaagacaat gaactactgc atgatgctga aatggaaaat tatgcacacc 1900 tccgggccca aggtggcgag gtgatggagt ataccaccat ccttcggctg 1950 cgcgaggtgg aatttgccag tgaggggaaa tatcagtgtg tcatctccaa 2000 tcactttggt tcatcctact ctgtcaaagc caagcttaca gtaaatatgc 2050 ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100 atggcacgct tggagtgtgc tgctgtgggg cacccagccc cccagatagc 2150 ctggcagaag gatgggggca cagacttccc agctgcacgg gagagacgca 2200 tgcatgtgat gcccgaggat gacgtgttct ttatcgtgga tgtgaagata 2250 gaggacattg gggtatacag ctgcacagct cagaacagtg caggaagtat 2300 ttcagcaaat gcaactctga ctgtcctaga aacaccatca tttttgcggc 2350 cactgttgga ccgaactgta accaagggag aaacagccgt cctacagtgc 2400 attgctggag gaagccctcc ccctaaactg aactggacca aagatgatag 2450 cccattggtg gtaaccgaga ggcacttttt tgcagcaggc aatcagcttc 2500 tgattattgt ggactcagat gtcagtgatg ctgggaaata cacatgtgag 2550 atgtctaaca cccttggcac tgagagagga aacgtgcgcc tcagtgtgat 2600 ccccactcca acctgcgact cccctcagat gacagcccca tcgttagacg 2650 atgacggatg ggccactgtg ggtgtcgtga tcatagccgt ggtttgctgt 2700 gtggtgggca cgtcactcgt gtgggtggtc atcatatacc acacaaggcg 2750 gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800 cagatattcc tagttatttg tcatctcagg gaacgttagc tgacaggcag 2850 gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900 ttcaggtgct ggatttttct taccacaaca tgacagtagt gggacctgcc 2950 atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000 ctttgtccgt ttttgggatc cacaggccct atgtatttga agggaaatgt 3050

gtatggctca gatccttttg aaacatatca tacaggttgc agtcctgacc 3100 caagaacagt tttaatggac cactatgagc ccagttacat aaagaaaaag 3150 gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200 cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250 acteteacaa tgaaggacet ggaatgaaaa atetgtgtet aaacaagtee 3300 tctttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350 ttctttcatg ggtacctttg gaaaagctct caggagacct cacctagatg 3400 cctattcaag ctttggacag ccatcagatt gtcagccaag agccttttat 3450 ttgaaagctc attcttcccc agacttggac tctgggtcag aggaagatgg 3500 gaaagaaagg acagattttc aggaagaaaa tcacatttgt acctttaaac 3550 agactttaga aaactacagg actccaaatt ttcagtctta tgacttggac 3600 acatagactg aatgagacca aaggaaaagc ttaacatact acctcaagtg 3650 aacttttatt taaaagagag agaatcttat gttttttaaa tggagttatg 3700 aattttaaaa ggataaaaat gctttattta tacagatgaa ccaaaattac 3750 aaaaagttat gaaaattttt atactgggaa tgatgctcat ataagaatac 3800 ctttttaaac tatttttaa ctttgtttta tgcaaaaaag tatcttacgt 3850 aaattaatga tataaatcat gattatttta tgtattttta taatgccaga 3900 tttcttttta tqqaaaatqa qttactaaag cattttaaat aatacctgcc 3950 ttgtaccatt ttttaaatag aagttacttc attatatttt gcacattata 4000

aaa 4053

<210> 294 <211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met Ser Ala Pro Ser Leu Arg Ala Arg Ala Ala Gly Leu Gly Leu 1 5 10 15

Leu Leu Cys Ala Val Leu Gly Arg Ala Gly Arg Ser Asp Ser Gly $20 \\ 25 \\ 30$

Gly Arg Gly Glu Leu Gly Gln Pro Ser Gly Val Ala Ala Glu Arg

Pro	Cys	Pro	Thr	Thr 50	Cys	Arg	Cys	Leu	Gly 55	Asp	Leu	Leu	Asp	Cys 60	
Ser	Arg	Lys	Arg	Leu 65	Ala	Arg	Leu	Pro	Glu 70	Pro	Leu	Pro	Ser	Trp 75	
Val	Ala	Arg	Leu	Asp 80	Leu	Ser	His	Asn	Arg 85	Leu	Ser	Phe	Ile	Lys 90	
Ala	Ser	Ser	Met	Ser 95	His	Leu	Gln	Ser	Leu 100	Arg	Glu	Val	Lys	Leu 105	
Asn	Asn	Asn	Glu	Leu 110	Glu	Thr	Ile	Pro	Asn 115	Leu	Gly	Pro	Val	Ser 120	
Ala	Asn	Ile	Thr	Leu 125	Leu	Ser	Leu	Ala	Gly 130	Asn	Arg	Ile	Val	Glu 135	
Ile	Leu	Pro	Glu	His 140	Leu	Lys	Glu	Phe	Gln 145	Ser	Leu	Glu	Thr	Leu 150	
Asp	Leu	Ser	Ser	Asn 155	Asn	Ile	Ser	Glu	Leu 160	Gln	Thr	Ala	Phe	Pro 165	
Ala	Leu	Gln	Leu	Lys 170	Tyr	Leu	Tyr	Leu	Asn 175	Ser	Asn	Arg	Val	Thr 180	
Ser	Met	Glu	Pro	Gly 185	Tyr	Phe	Asp	Asn	Leu 190	Ala	Asn	Thr	Leu	Leu 195	
Val	Leu	Lys	Leu	Asn 200	Arg	Asn	Arg	Ile	Ser 205	Ala	Ile	Pro	Pro	Lys 210	
Met	Phe	Lys	Leu	Pro 215	Gln	Leu	Gln	His	Leu 220	Glu	Leu	Asn	Arg	Asn 225	
Lys	Ile	Lys	Asn	Val 230	Asp	Gly	Leu	Thr	Phe 235	Gln	Gly	Leu	Gly	Ala 240	
Leu	Lys	Ser	Leu	Lys 245	Met	Gln	Arg	Asn	Gly 250	Val	Thr	Lys	Leu	Met 255	
Asp	Gly	Ala	Phe	Trp 260	Gly	Leu	Ser	Asn	Met 265	Glu	Ile	Leu	Gln	Leu 270	
Asp	His	Asn	Asn	Leu 275	Thr	Glu	Ile	Thr	Lys 280	Gly	Trp	Leu	Tyr	Gly 285	
Leu	Leu	Met	Leu	Gln 290	Glu	Leu	His	Leu	Ser 295	Gln	Asn	Ala	Ile	Asn 300	
Arg	Ile	Ser	Pro	Asp 305	Ala	Trp	Glu	Phe	Cys 310	Gln	Lys	Leu	Ser	Glu 315	
Leu	Asp	Leu	Thr	Phe 320	Asn	His	Leu	Ser	Arg 325	Leu	Asp	Asp	Ser	Ser 330	

Phe	Leu	Gly	Leu	Ser 335	Leu	Leu	Asn	Thr	Leu 340	His	Ile	Gly	Asn	Asn 345
Arg	Val	Ser	Tyr	Ile 350	Ala	Asp	Cys	Ala	Phe 355	Arg	Gly	Leu	Ser	Ser 360
Leu	Lys	Thr	Leu	Asp 365	Leu	Lys	Asn	Asn	Glu 370	Ile	Ser	Trp	Thr	Ile 375
Glu	Asp	Met	Asn	Gly 380	Ala	Phe	Ser	Gly	Leu 385	Asp	Lys	Leu	Arg	Arg 390
Leu	Ile	Leu	Gln	Gly 395	Asn	Arg	Ile	Arg	Ser 400	Ile	Thr	Lys	Lys	Ala 405
Phe	Thr	Gly	Leu	Asp 410	Ala	Leu	Glu	His	Leu 415	Asp	Leu	Ser	Asp	Asn 420
Ala	Ile	Met	Ser	Leu 425	Gln	Gly	Asn	Ala	Phe 430	Ser	Gln	Met	Lys	Lys 435
Leu	Gln	Gln	Leu	His 440	Leu	Asn	Thr	Ser	Ser 445	Leu	Leu	Cys	Asp	Cys 450
Gln	Leu	Lys	Trp	Leu 455	Pro	Gln	Trp	Val	Ala 460	Glu	Asn	Asn	Phe	Gln 465
Ser	Phe	Val	Asn	Ala 470	Ser	Cys	Ala	His	Pro 475	Gln	Leu	Leu	Lys	Gly 480
Arg	Ser	Ile	Phe	Ala 485	Val	Ser	Pro	Asp	Gly 490	Phe	Val	Cys	Asp	Asp 495
Phe	Pro	Lys	Pro	Gln 500	Ile	Thr	Val	Gln	Pro 505	Glu	Thr	Gln	Ser	Ala 510
Ile	Lys	Gly	Ser	Asn 515	Leu	Ser	Phe	Ile	Cys 520	Ser	Ala	Ala	Ser	Ser 525
Ser	Asp	Ser	Pro	Met 530	Thr	Phe	Ala	Trp	Lys 535	Lys	Asp	Asn	Glu	Leu 540
Leu	His	Asp	Ala	Glu 545	Met	Glu	Asn	Tyr	Ala 550	His	Leu	Arg	Ala	Gln 555
Gly	Gly	Glu	Val	Met 560	Glu	Tyr	Thr	Thr	Ile 565	Leu	Arg	Leu	Arg	Glu 570
Val	Glu	Phe	Ala	Ser 575	Glu	Gly	Lys	Tyr	Gln 580	Cys	Val	Ile	Ser	Asn 585
His	Phe	Gly	Ser	Ser 590	Tyr	Ser	Val	Lys	Ala 595	Lys	Leu	Thr	Val	Asn 600
Met	Leu	Pro	Ser	Phe 605	Thr	Lys	Thr	Pro	Met 610	Asp	Leu	Thr	Ile	Arg 615

A	la	Gly	Ala	Met	Ala 620	Arg	Leu	Glu	Cys	Ala 625	Ala	Val	Gly	His	Pro 630
A	la	Pro	Gln	Ile	Ala 635	Trp	Gln	Lys	Asp	Gly 640	Gly	Thr	Asp	Phe	Pro 645
A	la	Ala	Arg	Glu	Arg 650	Arg	Met	His	Val	Met 655	Pro	Glu	Asp	Asp	Val 660
P)	he	Phe	Ile	Val	Asp 665	Val	Lys	Ile	Glu	Asp 670	Ile	Gly	Val	Tyr	Ser 675
C	ys	Thr	Ala	Gln	Asn 680	Ser	Ala	Gly	Ser	Ile 685	Ser	Ala	Asn	Ala	Thr 690
L	eu	Thr	Val	Leu	Glu 695	Thr	Pro	Ser	Phe	Leu 700	Arg	Pro	Leu	Leu	Asp 705
A	rg	Thr	Val	Thr	Lys 710	Gly	Glu	Thr	Ala	Val 715	Leu	Gln	Cys	Ile	Ala 720
G	ly	Gly	Ser	Pro	Pro 725	Pro	Lys	Leu	Asn	Trp 730	Thr	Lys	Asp	Asp	Ser 735
P	ro	Leu	Val	Val	Thr 740	Glu	Arg	His	Phe	Phe 745	Ala	Ala	Gly	Asn	Gln 750
L	eu	Leu	Ile	Ile	Val 755	Asp	Ser	Asp	Val	Ser 760	Asp	Ala	Gly	Lys	Tyr 765
T	hr	Cys	Glu	Met	Ser 770	Asn	Thr	Leu	Gly	Thr 775	Glu	Arg	Gly	Asn	Val 780
A:	rg	Leu	Ser	Val	Ile 785	Pro	Thr	Pro	Thr	Cys 790	Asp	Ser	Pro	Gln	Met 795
T	hr	Ala	Pro	Ser	Leu 800	Asp	Asp	Asp	Gly	Trp 805	Ala	Thr	Val	Gly	Val 810
V	al	Ile	Ile	Ala	Val 815	Val	Cys	Cys	Val	Val 820	Gly	Thr	Ser	Leu	Val 825
T:	rp	Val	Val	Ile	Ile 830	Tyr	His	Thr	Arg	Arg 835	Arg	Asn	Glu	Asp	Cys 840
Se	er	Ile	Thr	Asn	Thr 845	Asp	Glu	Thr	Asn	Leu 850	Pro	Ala	Asp	Ile	Pro 855
Se	er	Tyr	Leu	Ser	Ser 860	Gln	Gly	Thr	Leu	Ala 865	Asp	Arg	Gln	Asp	Gly 870
T	yr	Val	Ser	Ser	Glu 875	Ser	Gly	Ser	His	His 880	Gln	Phe	Val	Thr	Ser 885
Se	er	Gly	Ala	Gly	Phe 890	Phe	Leu	Pro	Gln	His 895	Asp	Ser	Ser	Gly	Thr 900

Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His 940 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr 955 Glu Pro Ser Tyr Ile Lys Lys Glu Cys Tyr Pro Cys Ser His 965 970 975 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp 980 985 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn 995 1000 1005 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu 1010 1015 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn 1030 1025 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu 1040 1045 1050 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg 1055 1060 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly 1070 1075 1080 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn 1085 1090 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro 1100 1105 1110

Asn Phe Gln Ser Tyr Asp Leu Asp Thr 1115

<210> 295

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 295

ggaaccgaat ctcagcta 18

```
<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 296
cctaaactga actggacca 19
<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 297
 ggctggagac actgaacct 19
<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 298
acagctgcac agctcagaac agtg 24
<210> 299
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 299
cattcccagt ataaaaattt tc 22
<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 300
 gggtcttggt gaatgagg 18
<210> 301
```

```
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 301
 gtgcctctcg gttaccacca atgg 24
<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 302
 gcggccactg ttggaccgaa ctgtaaccaa gggagaaaca gccgtcctac 50
<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 303
gcctttgaca accttcagtc actagtgg 28
<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 304
 ccccatgtgt ccatgactgt tccc 24
<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 305
 tactgcctca tgacctcttc actcccttgc atcatcttag agcgg 45
<210> 306
<211> 24
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 306
 actccaagga aatcggatcc gttc 24
<210> 307
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 307
 ttagcagctg aggatgggca caac 24
<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 308
actccaagga aatcggatcc gttc 24
<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 309
gccttcactg gtttggatgc attggagcat ctagacctga gtgacaacgc 50
<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien
<400> 310
caaaacttgc gtcgcggaga gcgcccagct tgacttgaat ggaaggagcc 50
cgagcccgcg gagcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgccgctcg gcgccggggc gcagcaggga aggggaagct gtggtctgcc 150
 ctgctccacg aggcgccact ggtgtgaacc gggagagccc ctgggtggtc 200
```

ccgtccccta tccctccttt atatagaaac cttccacact gggaaggcag 250 cggcgaggca ggagggctca tggtgagcaa ggaggccggc tgatctgcag 300 gcgcacagca ttccgagttt acagattttt acagatacca aatggaaggc 350 gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400 atotgacteg geacecettg caggeaceat ggeecagage egggtgetge 450 tgctcctgct gctgctgccg ccacagctgc acctgggacc tgtgcttgcc 500 gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550 agagaacgaa tttgcggagg aggagccggt gctggtactg agccctgagg 600 agcccgggcc tggcccagcc gcggtcagct gcccccgaga ctgtgcctgt 650 teecaggagg gegtegtgga etgtggeggt attgaeetge gtgagtteee 700 gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750 tggaaaagat ctaccctgag gagctctccc ggctgcaccg gctggagaca 800 ctgaacctgc aaaacaaccg cctgacttcc cgagggctcc cagagaaggc 850 gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900 tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950 gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000 aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050 tgccggacaa catgttcaac ggctccagca acgtcgaggt cctcatcctg 1100 tecageaact teetgegeea egtgeecaag cacetgeege etgeeetgta 1150 caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200 tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg 1250 actgacgagg gcctggacaa cgagaccttc tggaagctct ccagcctgga 1300 gtacctggat ctgtccagca acaacctgtc tcgggtccca gctgggctgc 1350 cgcgcagcct ggtgctgctg cacttggaga agaacgccat ccggagcgtg 1400 gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450 cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500 tcaagcggtt gcacacggtg cacctgtaca acaacgcgct ggagcgcgtg 1550 cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600 gatcacaggc attggccgcg aagactttgc caccacctac ttcctggagg 1650 ageteaacet cagetacaac egeateacea geceacaggt geacegegae 1700 gccttccgca agctgcgcct gctgcgctcg ctggacctgt cgggcaaccg 1750 gctgcacacg ctgccacctg ggctgcctcg aaatgtccat gtgctgaagg 1800 tcaagcgcaa tgagctggct gccttggcac gaggggcgct ggcgggcatg 1850 gctcagctgc gtgagctgta cctcaccagc aaccgactgc gcagccgagc 1900 cctgggcccc cgtgcctggg tggacctcgc ccatctgcag ctgctggaca 1950 tcgccgggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000 gagtacctgt acctgcagaa caacaagatt agtgcggtgc ccgccaatgc 2050 cttcgactcc acgcccaacc tcaaggggat ctttctcagg tttaacaagc 2100 tggctgtggg ctccgtggtg gacagtgcct tccggaggct gaagcacctg 2150 caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200 aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300 gatggaccgc cggactcttt tctgcagcac acgcctgtgt gctgtgagcc 2350 ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400 teccaeatga caegggetga caeagtetea tatecceaec cetteccaeg 2450 gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500 ageteageea cacacaacta ceetecaaac caccacagte tetgteacac 2550 ccccactacc gctgccacgc cctctgaatc atgcagggaa gggtctgccc 2600 ctgccctggc acacacaggc acccattccc tcccctgct gacatgtgta 2650 tgcgtatgca tacacaccac acacacaca atgcacaagt catgtgcgaa 2700 cageceteca aageetatge caeagacage tettgeecea gecagaatea 2750 gccatagcag ctcgccgtct gccctgtcca tctgtccgtc cgttccctgg 2800 agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850 ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900 ageetteagg actgetggee tggeetggee caecetgete etceaggtge 2950 tgggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000 caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

```
cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
 ctgggctgag ccagggagga aggacccagc tgcacctagg agacaccttt 3150
 gttcttcagg cctgtggggg aagttccggg tgcctttatt ttttattctt 3200
 ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgttata 3250
 gaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296
<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 311
gcattggccg cgagactttg cc 22
<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 312
gcggccacgg tccttggaaa tg 22
<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45
<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien
<400> 314
 gggaggggc teegggegee gegeageaga eetgeteegg eegegeeet 50
 cgccgctgtc ctccgggagc ggcagcagta gcccgggcgg cgagggctgg 100
 gggttcctcg agactctcag aggggcgcct cccatcggcg cccaccaccc 150
 caacctgttc ctcgcgcgcc actgcgctgc gccccaggac ccgctgccca 200
```

acatggattt teteetggeg etggtgetgg tateeteget etacetgeag 250 geggeegeeg agttegaegg gaggtggeee aggeaaatag tgteategat 300 tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350 gccagtcttg gggacagtgt cagcctgtgt gccaaccacg atgcaaacat 400 ggtgaatgta tcgggccaaa caagtgcaag tgtcatcctg gttatgctgg 450 aaaaacctgt aatcaagatc taaatgagtg tggcctgaag ccccggccct 500 gtaagcacag gtgcatgaac acttacggca gctacaagtg ctactgtctc 550 aacggatata tgctcatgcc ggatggttcc tgctcaagtg ccctgacctg 600 ctccatggca aactgtcagt atggctgtga tgttgttaaa ggacaaatac 650 ggtgccagtg cccatccct ggcctgcacc tggctcctga tgggaggacc 700 tgtgtagatg ttgatgaatg tgctacagga agagcctcct gccctagatt 750 taggcaatgt gtcaacactt ttgggagcta catctgcaag tgtcataaag 800 gcttcgatct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850 gaatgctcac ttggtcagta tcagtgcagc agctttgctc gatgttataa 900 cgtacgtggg tcctacaagt gcaaatgtaa agaaggatac cagggtgatg 950 gactgacttg tgtgtatatc ccaaaagtta tgattgaacc ttcaggtcca 1000 atteatgtae caaagggaaa tggtaecatt ttaaagggtg acacaggaaa 1050 taataattgg attcctgatg ttggaagtac ttggtggcct ccgaagacac 1100 catatattcc tcctatcatt accaacaggc ctacttctaa gccaacaaca 1150 agacctacac caaagccaac accaattect actecaccac caccaccace 1200 cctgccaaca gagctcagaa cacctctacc acctacaacc ccagaaaggc 1250 caaccaccgg actgacaact atagcaccag ctgccagtac acctccagga 1300 gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350 agatgtgttc agtgttctgg tacacagttg taattttgac catggacttt 1400 gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450 gacccagcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500 gggaaaagct gcacgcttgg tgctacctct cggccgcctc atgcattcag 1550 gggacctgtg cctgtcattc aggcacaagg tgacggggct gcactctggc 1600 acactccagg tgtttgtgag aaaacacggt gcccacggag cagccctgtg 1650

					4000
gggaagaaat	ggtggccatg	gctggaggca	aacacagatc	accttgcgag	1700
gggctgacat	caagagcgaa	tcacaaagat	gattaaaggg	ttggaaaaaa	1750
agatctatga	tggaaaatta	aaggaactgg	gattattgag	cctggagaag	1800
agaagactga	ggggcaaacc	attgatggtt	ttcaagtata	tgaagggttg	1850
gcacagagag	ggtggcgacc	agctgttctc	catatgcact	aagaatagaa	1900
caagaggaaa	ctggcttaga	ctagagtata	agggagcatt	tcttggcagg	1950
ggccattgtt	agaatacttc	ataaaaaaag	aagtgtgaaa	atctcagtat	2000
ctctctctct	ttctaaaaaa	ttagataaaa	atttgtctat	ttaagatggt	2050
taaagatgtt	cttacccaag	gaaaagtaac	aaattataga	atttcccaaa	2100
agatgttttg	atcctactag	tagtatgcag	tgaaaatctt	tagaactaaa	2150
taatttggac	aaggcttaat	ttaggcattt	ccctcttgac	ctcctaatgg	2200
agagggattg	aaaggggaag	agcccaccaa	atgctgagct	cactgaaata	2250
tctctccctt	atggcaatcc	tagcagtatt	aaagaaaaaa	ggaaactatt	2300
tattccaaat	gagagtatga	tggacagata	ttttagtatc	tcagtaatgt	2350
cctagtgtgg	cggtggtttt	caatgtttct	tcatggtaaa	ggtataagcc	2400
tttcatttgt	tcaatggatg	atgtttcaga	tttttttt	tttaagagat	2450
ccttcaagga	acacagttca	gagagatttt	catcgggtgc	attctctctg	2500
cttcgtgtgt	gacaagttat	cttggctgct	gagaaagagt	gccctgcccc	2550
acaccggcag	acctttcctt	cacctcatca	gtatgattca	gtttctctta	2600
tcaattggac	tctcccaggt	tccacagaac	agtaatattt	tttgaacaat	2650
aggtacaata	gaaggtcttc	tgtcatttaa	cctggtaaag	gcagggctgg	2700
agggggaaaa	taaatcatta	agcctttgag	taacggcaga	atatatggct	2750
gtagatccat	ttttaatggt	tcatttcctt	tatggtcata	taactgcaca	2800
gctgaagatg	aaaggggaaa	ataaatgaaa	attttacttt	tcgatgccaa	2850
tgatacattg	cactaaactg	atggaagaag	ttatccaaag	tactgtataa	2900
catcttgttt	attatttaat	gttttctaaa	ataaaaaatg	ttagtggttt	2950
tccaaatggc	ctaataaaaa	caattatttg	taaataaaaa	cactgttagt	3000
aat 3003					

```
<211> 509
<212> PRT
<213> Homo Sapien
<400> 315
Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
  1
                                      10
Gln Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val
Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys
Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys
Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys
Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu
                  80
                                      85
Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met
                  95
                                     100
                                                          105
Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met
                 110
Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met
Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg
                 140
                                     145
Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg
                 155
Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
                170
                                     175
Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
                 185
Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
                 200
                                     205
Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
                 215
Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
                230
                                                         240
Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
                                     250
```

<210> 315

Ile	Pro	Lys	Val	Met 260	Ile	Glu	Pro	Ser	Gly 265	Pro	Ile	His	Val	Pro 270
Lys	Gly	Asn	Gly	Thr 275	Ile	Leu	Lys	Gly	Asp 280	Thr	Gly	Asn	Asn	Asn 285
Trp	Ile	Pro	Asp	Val 290	Gly	Ser	Thr	Trp	Trp 295	Pro	Pro	Lys	Thr	Pro 300
Tyr	Ile	Pro	Pro	Ile 305	Ile	Thr	Asn	Arg	Pro 310	Thr	Ser	Lys	Pro	Thr 315
Thr	Arg	Pro	Thr	Pro 320	Lys	Pro	Thr	Pro	Ile 325	Pro	Thr	Pro	Pro	Pro 330
Pro	Pro	Pro	Leu	Pro 335	Thr	Glu	Leu	Arg	Thr 340	Pro	Leu	Pro	Pro	Thr 345
Thr	Pro	Glu	Arg	Pro 350	Thr	Thr	Gly	Leu	Thr 355	Thr	Ile	Ala	Pro	Ala 360
Ala	Ser	Thr	Pro	Pro 365	Gly	Gly	Ile	Thr	Val 370	Asp	Asn	Arg	Val	Gln 375
Thr	Asp	Pro	Gln	Lys 380	Pro	Arg	Gly	Asp	Val 385	Phe	Ser	Val	Leu	Val 390
His	Ser	Cys	Asn	Phe 395	Asp	His	Gly	Leu	Cys 400	Gly	Trp	Ile	Arg	Glu 405
Lys	Asp	Asn	Asp		His	Trp	Glu	Pro		Arg	Asp	Pro	Ala	
				410	_	_	_		415	_ •	_			420
Gly	Gln	Tyr	Leu	Thr 425	Val	Ser	Ala	Ala	Lys 430	Ala	Pro	Gly	Gly	Lys 435
Ala	Ala	Arg	Leu	Val 440	Leu	Pro	Leu	Gly	Arg 445	Leu	Met	His	Ser	Gly 450
Asp	Leu	Cys	Leu	Ser 455	Phe	Arg	His	Lys	Val 460	Thr	Gly	Leu	His	Ser 465
Gly	Thr	Leu	Gln	Val 470	Phe	Val	Arg	Lys	His 475	Gly	Ala	His	Gly	Ala 480
Ala	Leu	Trp	Gly	Arg 485	Asn	Gly	Gly	His	Gly 490	Trp	Arg	Gln	Thr	Gln 495
Ile	Thr	Leu	Arg	Gly 500	Ala	Asp	Ile	Lys	Ser 505	Glu	Ser	Gln	Arg	
~210×	. 214													

<210> 316

<211> 24

<212> DNA

<213> Artificial Sequence

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 316
gatggttcct gctcaagtgc cctg 24
<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 317
ttgcacttgt aggacccacg tacg 24
<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 318
ctgatgggag gacctgtgta gatgttgatg aatgtgctac aggaagagcc 50
<210> 319
<211> 2110
<212> DNA
<213> Homo Sapien
<400> 319
 cttctttgaa aaggattatc acctgatcag gttctctctg catttgcccc 50
 tttagattgt gaaatgtggc tcaaggtctt cacaactttc ctttcctttg 100
 caacaggtgc ttgctcgggg ctgaaggtga cagtgccatc acacactgtc 150
 catggcgtca gaggtcaggc cctctaccta cccgtccact atggcttcca 200
 cactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
 caatgcccaa atacttactg ggctctgtga ataagtctgt ggttcctgac 300
 ttggaatacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
 tatcaaccca ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
 acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450
 gttgatgatc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtgggga acatgacct gacatgccat gtggaagggg 550
```

gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600 agetecacet acteetttte tecceaaaac aataceette atattgetee 650 agtaaccaag gaagacattg ggaattacag ctgcctggtg aggaaccctg 700 tcagtgaaat ggaaagtgat atcattatgc ccatcatata ttatggacct 750 tatggacttc aagtgaattc tgataaaggg ctaaaagtag gggaagtgtt 800 tactgttgac cttggagagg ccatcctatt tgattgttct gctgattctc 850 atcccccaa cacctactcc tggattagga ggactgacaa tactacatat 900 atcattaagc atgggcctcg cttagaagtt gcatctgaga aagtagccca 950 gaagacaatg gactatgtgt gctgtgctta caacaacata accggcaggc 1000 aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050 cttgcacaga aaggaaaatc attgtcacct ttagcaagta taactggaat 1100 atcactattt ttgattatat ccatgtgtct tctcttccta tggaaaaaat 1150 atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200 gaatacagga aagctcaaac attttcaggc catgaagatg ctctggatga 1250 cttcggaata tatgaatttg ttgcttttcc agatgtttct ggtgtttcca 1300 ggattccaag caggtctgtt ccagcctctg attgtgtatc ggggcaagat 1350 ttgcacagta cagtgtatga agttattcag cacatccctg cccagcagca 1400 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450 ttctgaagaa acattttaag gaaaaacagt ggaaaagtat attaatctgg 1500 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttcctttaca 1550 tgcagaatag aggcatttat gcaaattgaa ctgcaggttt ttcagcatat 1600 acacaatgtc ttgtgcaaca gaaaaacatg ttggggaaat attcctcagt 1650 ggagagtcgt tctcatgctg acggggagaa cgaaagtgac aggggtttcc 1700 tcataagttt tgtatgaaat atctctacaa acctcaatta gttctactct 1750 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800 tggaaacttt acattgttcg atttttcagc agactttgtt ttattaaatt 1850 tttattagtg ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgtcacaaaa 1950 acaaaactat gccttctctt ttttttcaat caccagtagt atttttgaga 2000 agacttgtga acacttaagg aaatgactat taaagtctta tttttatttt 2050 tttcaaggaa agatggattc aaataaatta ttctgttttt gcttttaaaa 2100 aaaaaaaaaa 2110

uuu														
<2112 <212	<210> 320 <211> 450 <212> PRT <213> Homo Sapien													
<400 Met 1			Lys	Val 5	Phe	Thr	Thr	Phe	Leu 10	Ser	Phe	Ala	Thr	Gly 15
Ala	Cys	Ser	Gly	Leu 20	Lys	Val	Thr	Val	Pro 25	Ser	His	Thr	Val	His 30
Gly	Val	Arg	Gly	Gln 35	Ala	Leu	Tyr	Leu	Pro 40	Val	His	Tyr	Gly	Phe 45
His	Thr	Pro	Ala	Ser 50	Asp	Ile	Gln	Ile	Ile 55	Trp	Leu	Phe	Glu	Arg 60
Pro	His	Thr	Met	Pro 65	Lys	Tyr	Leu	Leu	Gly 70	Ser	Val	Asn	Lys	Ser 75
Val	Val	Pro	Asp	Leu 80	Glu	Tyr	Gln	His	Lys 85	Phe	Thr	Met	Met	Pro 90
Pro	Asn	Ala	Ser	Leu 95	Leu	Ile	Asn	Pro	Leu 100	Gln	Phe	Pro	Asp	Glu 105
Gly	Asn	Tyr	Ile	Val 110	Lys	Val	Asn	Ile	Gln 115	Gly	Asn	Gly	Thr	Leu 120
Ser	Ala	Ser	Gln	Lys 125	Ile	Gln	Val	Thr	Val 130	Asp	Asp	Pro	Val	Thr 135
Lys	Pro	Val	Val	Gln 140	Ile	His	Pro	Pro	Ser 145	Gly	Ala	Val	Glu	Tyr 150
Val	Gly	Asn	Met	Thr 155	Leu	Thr	Cys	His	Val 160	Glu	Gly	Gly	Thr	Arg 165
Leu	Ala	Tyr	Gln	Trp 170	Leu	Lys	Asn	Gly	Arg 175	Pro	Val	His	Thr	Ser 180
Ser	Thr	Tyr	Ser	Phe 185	Ser	Pro	Gln	Asn	Asn 190	Thr	Leu	His	Ile	Ala 195
Pro	Val	Thr	Lys	Glu 200	Asp	Ile	Gly	Asn	Tyr 205	Ser	Cys	Leu	Val	Arg 210
Asn	Pro	Val	Ser	Glu 215	Met	Glu	Ser	Asp	Ile 220	Ile	Met	Pro	Ile	Ile 225

	Tyr	Tyr	Gly	Pro	Tyr 230	Gly	Leu	Gln	Val	Asn 235	Ser	Asp	Lys	Gly	Leu 240
	Lys	Val	Gly	Glu	Val 245	Phe	Thr	Val	Asp	Leu 250	Gly	Glu	Ala	Ile	Leu 255
	Phe	Asp	Cys	Ser	Ala 260	Asp	Ser	His	Pro	Pro 265	Asn	Thr	Tyr	Ser	Trp 270
	Ile	Arg	Arg	Thr	Asp 275	Asn	Thr	Thr	Tyr	Ile 280	Ile	Lys	His	Gly	Pro 285
	Arg	Leu	Glu	Val	Ala 290	Ser	Glu	Lys	Val	Ala 295	Gln	Lys	Thr	Met	Asp 300
	Tyr	Val	Cys	Cys	Ala 305	Tyr	Asn	Asn	Ile	Thr 310	Gly	Arg	Gln	Asp	Glu 315
	Thr	His	Phe	Thr	Val 320	Ile	Ile	Thr	Ser	Val 325	Gly	Leu	Glu	Lys	Leu 330
	Ala	Gln	Lys	Gly	Lys 335	Ser	Leu	Ser	Pro	Leu 340	Ala	Ser	Ile	Thr	Gly 345
	Ile	Ser	Leu	Phe	Leu 350	Ile	Ile	Ser	Met	Cys 355	Leu	Leu	Phe	Leu	Trp 360
	Lys	Lys	Tyr	Gln	Pro 365	Tyr	Lys	Val	Ile	Lys 370	Gln	Lys	Leu	Glu	Gly 375
	Arg	Pro	Glu	Thr	Glu 380	Tyr	Arg	Lys	Ala	Gln 385	Thr	Phe	Ser	Gly	His 390
	Glu	Asp	Ala	Leu	Asp 395	Asp	Phe	Gly	Ile	Tyr 400	Glu	Phe	Val	Ala	Phe 405
	Pro	Asp	Val	Ser	Gly 410	Val	Ser	Arg	Ile	Pro 415	Ser	Arg	Ser	Val	Pro 420
	Ala	Ser	Asp	Cys	Val 425	Ser	Gly	Gln	Asp	Leu 430	His	Ser	Thr	Val	Tyr 435
	Glu	Val	Ile	Gln	His 440	Ile	Pro	Ala	Gln	Gln 445	Gln	Asp	His	Pro	Glu 450
<	210>	> 323	l												

<210> 321

<223> Synthetic Oligonucleotide Probe

<400> 321

gatcctgtca caaagccagt ggtgc 25

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

```
<210> 322
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 322
cactgacagg gttcctcacc cagg 24
<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 323
ctccctctgg gctgtggagt atgtggggaa catgaccctg acatg 45
<210> 324
<211> 2397
<212> DNA
<213> Homo Sapien
<400> 324
gcaagcggcg aaatggcgcc ctccgggagt cttgcagttc ccctggcagt 50
cctggtgctg ttgctttggg gtgctccctg gacgcacggg cggcggagca 100
acgttcgcgt catcacggac gagaactgga gagaactgct ggaaggagac 150
 tggatgatag aattttatgc cccgtggtgc cctgcttgtc aaaatcttca 200
accggaatgg gaaagttttg ctgaatgggg agaagatctt gaggttaata 250
 ttgcgaaagt agatgtcaca gagcagccag gactgagtgg acggtttatc 300
ataactgctc ttcctactat ttatcattgt aaagatggtg aatttaggcg 350
ctatcagggt ccaaggacta agaaggactt cataaacttt ataagtgata 400
aagagtggaa gagtattgag cccgtttcat catggtttgg tccaggttct 450
gttctgatga gtagtatgtc agcactcttt cagctatcta tgtggatcag 500
gacgtgccat aactacttta ttgaagacct tggattgcca gtgtggggat 550
catatactgt ttttgcttta gcaactctgt tttccggact gttattagga 600
ctctgtatga tatttgtggc agattgcctt tgtccttcaa aaaggcgcag 650
accacagoca tacccataco ottoaaaaaa attattatoa gaatotgoac 700
```

aacctttgaa aaaagtggag gaggaacaag aggcggatga agaagatgtt 750 tcagaagaag aagctgaaag taaagaagga acaaacaaag actttccaca 800 gaatgccata agacaacgct ctctgggtcc atcattggcc acagataaat 850 cctagttaaa ttttatagtt atcttaatat tatgattttg ataaaaacag 900 aagattgatc attttgtttg gtttgaagtg aactgtgact tttttgaata 950 ttgcagggtt cagtctagat tgtcattaaa ttgaagagtc tacattcaga 1000 acataaaagc actaggtata caagtttgaa atatgattta agcacagtat 1050 gatggtttaa atagttctct aatttttgaa aaatcgtgcc aagcaataag 1100 atttatgtat atttgtttaa taataaccta tttcaagtct gagttttgaa 1150 aatttacatt tcccaagtat tgcattattg aggtatttaa gaagattatt 1200 ttagagaaaa atatttctca tttgatataa tttttctctg tttcactgtg 1250 tgaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300 agaaatgtgt atttcagtga caatttcgtg gtctttttag aggtatattc 1350 caaaatttcc ttgtattttt aggttatgca actaataaaa actaccttac 1400 attaattaat tacagttttc tacacatggt aatacaggat atgctactga 1450 tttaggaagt ttttaagttc atggtattct cttgattcca acaaagtttg 1500 attttctctt gtatttttct tacttactat gggttacatt ttttattttt 1550 caaattggat gataatttct tggaaacatt ttttatgttt tagtaaacag 1600 tatttttttg ttgtttcaaa ctgaagttta ctgagagatc catcaaattg 1650 aacaatctgt tgtaatttaa aattttggcc acttttttca gattttacat 1700 cattettget gaactteaac ttgaaattgt ttttttttt tttttggatg 1750 tgaaggtgaa cattcctgat ttttgtctga tgtgaaaaag ccttggtatt 1800 ttacattttg aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850 caggaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900 atacagaaag ttcttaattg attttacagt ctgtaatgct tgatgtttta 1950 aaataataac atttttatat tttttaaaag acaaacttca tattatcctg 2000 tgttctttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050 gtaggatgga acattttagt gtatttttac tccttaaaga gctagaatac 2100 atagttttca ccttaaaaga agggggaaaa tcataaatac aatgaatcaa 2150 ctgaccatta cgtagtagac aatttetgta atgteeett etttetagge 2200 tetgttgetg tgtgaateea ttagatttae agtategtaa tatacaagtt 2250 ttetttaaag eeetteett tagaatttaa aatattgtae eattaaagag 2300 tttggatgtg taaettgtga tgeettagaa aaatateeta ageacaaaat 2350 aaaeetttet aaceaettea ttaaagetga aaaaaaaaa aaaaaaa 2397

<210> 325

<211> 280

<212> PRT

<213> Homo Sapien

<400> 325

Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val
1 5 10 15

Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn 20 25 30

Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
35 40 45

Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln 50 55 60

Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
65 70 75

Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly
80 85 90

Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
95 100 105

Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys 110 115 120

Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile 125 130 135

Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser 140 145 150

Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys 155 160 165

His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser 170 175 180

Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu 185 190 195

```
Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys
                 200
                                     205
 Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Leu Leu
                 215
                                     220
 Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
                 230
                                     235
Ala Asp Glu Glu Asp Val Ser Glu Glu Glu Ala Glu Ser Lys Glu
                                     250
                 245
 Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
                 260
                                     265
Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
                 275
<210> 326
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 326
tgaggtgggc aagcggcgaa atg 23
<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 327
tatgtggatc aggacgtgcc 20
<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 328
tgcagggttc agtctagatt g 21
<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic Oligonucleotide Probe
<400> 329
 ttgaaggaca aaggcaatct gccac 25
<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 330
 ggagtcttgc agttcccctg gcagtcctgg tgctgttgct ttggg 45
<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien
<400> 331
 gcgagtgtcc agctgcggag acccgtgata attcgttaac taattcaaca 50
 aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
 ggacaggcgg attggaagag cgggaaggtc ctggcccaga gcagtgtgac 150
 acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
 ggtttggtgt cctgagctgt gtgcaggccg aattcttcac ctctattggg 250
 cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
 agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
 ccaacaaaat ggaagccttg actagcaagt cagctgctga tgctgagggc 400
 tacctggctc accctgtgaa tgcctacaaa ctggtgaagc ggctaaacac 450
 agactggcct gcgctggagg accttgtcct gcaggactca gctgcaggtt 500
 ttatcgccaa cctctctgtg cagcggcagt tcttccccac tgatgaggac 550
 gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
 ggacccaggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
 caatgctgag tgtggatgac tgctttggga tgggccgctc ggcctacaat 700
 gaaggggact attatcatac ggtgttgtgg atggagcagg tgctaaagca 750
 gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
 acctcagcta tgctgtcttc cagttgggtg atctgcaccg tgccctggag 850
```

ctcacccgcc gcctgctctc ccttgaccca agccacgaac gagctggagg 900 gaatctgcgg tactttgagc agttattgga ggaagagaga gaaaaaacgt 950 taacaaatca gacagaagct gagctagcaa ccccagaagg catctatgag 1000 aggeetgtgg actacetgee tgagagggat gtttaegaga geetetgteg 1050 tggggagggt gtcaaactga caccccgtag acagaagagg cttttctgta 1100 ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150 gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200 gtctgatgag gaaatcgaga ggatcaagga gatcgcaaaa cctaaacttg 1250 cacgagecae egttegtgat eccaagacag gagteeteae tgtegecage 1300 taccgggttt ccaaaagctc ctggctagag gaagatgatg accctgttgt 1350 ggcccgagta aatcgtcgga tgcagcatat cacagggtta acagtaaaga 1400 ctgcagaatt gttacaggtt gcaaattatg gagtgggagg acagtatgaa 1450 ccgcacttcg acttctctag gcgacctttt gacagcggcc tcaaaacaga 1500 ggggaatagg ttagcgacgt ttcttaacta catgagtgat gtagaagctg 1550 gtggtgccac cgtcttccct gatctggggg ctgcaatttg gcctaagaag 1600 ggtacagetg tgttetggta caacetettg eggagegggg aaggtgaeta 1650 ccgaacaaga catgctgcct gcctgtgct tgtgggctgc aagtgggtct 1700 ccaataagtg gttccatgaa cgaggacagg agttcttgag accttgtgga 1750 tcaacagaag ttgactgaca tccttttctg tccttcccct tcctggtcct 1800 tcagcccatg tcaacgtgac agacaccttt gtatgttcct ttgtatgttc 1850 ctatcaggct gatttttgga gaaatgaatg tttgtctgga gcagagggag 1900 accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950 gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000 gttagctgtc tagcgcctag caaggtgcct ttgtacctca ggtgttttag 2050 gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100 gtttttatgg catttctatc tattgtggct ttaccaaaaa ataaaatgtc 2150 cctaccagaa aaaaaaaa 2168

<210> 332

<211> 533

<212> PRT

<400> 332 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met 20 25 Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys 40 Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile 140 Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser 155 160 Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly 170 175 Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln 185 190 195 Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg 215 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu 260 270

Ala	Thr	Pro	Glu	Gly 275	Ile	Tyr	Glu	Arg	Pro 280	Val	Asp	Tyr	Leu	Pro 285
Glu	Arg	Asp	Val	Туг 290	Glu	Ser	Leu	Cys	Arg 295	Gly	Glu	Gly	Val	Lys 300
Leu	Thr	Pro	Arg	Arg 305	Gln	Lys	Arg	Leu	Phe 310	Cys	Arg	Tyr	His	His 315
Gly	Asn	Arg	Ala	Pro 320	Gln	Leu	Leu	Ile	Ala 325	Pro	Phe	Lys	Glu	Glu 330
Asp	Glu	Trp	Asp	Ser 335	Pro	His	Ile	Val	Arg 340	Tyr	Tyr	Asp	Val	Met 345
Ser	Asp	Glu	Glu	Ile 350	Glu	Arg	Ile	Lys	Glu 355	Ile	Ala	Lys	Pro	Lys 360
Leu	Ala	Arg	Ala	Thr 365	Val	Arg	Asp	Pro	Lys 370	Thr	Gly	Val	Leu	Thr 375
Val	Ala	Ser	Tyr	Arg 380	Val	Ser	Lys	Ser	Ser 385	Trp	Leu	Glu	Glu	Asp 390
Asp	Asp	Pro	Val	Val 395	Ala	Arg	Val	Asn	Arg 400	Arg	Met	Gln	His	Ile 405
Thr	Gly	Leu	Thr	Val 410	Lys	Thr	Ala	Glu	Leu 415	Leu	Gln	Val	Ala	Asn 420
Tyr	Gly	Val	Gly	Gly 425	Gln	Tyr	Glu	Pro	His 430	Phe	Asp	Phe	Ser	Arg 435
Arg	Pro	Phe	Asp	Ser 440	Gly	Leu	Lys	Thr	Glu 445	Gly	Asn	Arg	Leu	Ala 450
Thr	Phe	Leu	Asn	Tyr 455	Met	Ser	Asp	Val	Glu 460	Ala	Gly	Gly	Ala	Thr 465
Val	Phe	Pro	Asp	Leu 470	Gly	Ala	Ala	Ile	Trp 475	Pro	Lys	Lys	Gly	Thr 480
Ala	Val	Phe	Trp	Tyr 485	Asn	Leu	Leu	Arg	Ser 490	Gly	Glu	Gly	Asp	Tyr 495
Arg	Thr	Arg	His	Ala 500	Ala	Cys	Pro	Val	Leu 505	Val	Gly	Cys	Lys	Trp 510
Val	Ser	Asn	Lys	Trp 515	Phe	His	Glu	Arg	Gly 520	Gln	Glu	Phe	Leu	Arg 525
Pro	Cys	Gly	Ser	Thr 530	Glu	Val	Asp							

<210> 333

<211> 18

<212> DNA

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 333
 ccaggcacaa tttccaga 18
<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 334
 ggacccttct gtgtgccag 19
<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 335
 ggtctcaaga actcctgtc 19
<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 336
 acactcagca ttgcctggta cttg 24
<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
 gggcacatga ctgacctgat ttatgcagag aaagagctgg tgcag 45
<210> 338
<211> 2789
<212> DNA
<213> Homo Sapien
```

<400> 338 gcagtattga gttttacttc ctcctctttt tagtggaaga cagaccataa 50 teccagtgtg agtgaaattg attgttteat ttattacegt tttggetggg 100 ggttagttcc gacaccttca cagttgaaga gcaggcagaa ggagttgtga 150 agacaggaca atettettgg ggatgetggt cetggaagee agegggeett 200 gctctgtctt tggcctcatt gaccccaggt tctctggtta aaactgaaag 250 cctactactg gcctggtgcc catcaatcca ttgatccttg aggctgtgcc 300 cctggggcac ccacctggca gggcctacca ccatgcgact gagctccctg 350 ttggctctgc tgcggccagc gcttcccctc atcttagggc tgtctctggg 400 gtgcagcctg agcctcctgc gggtttcctg gatccagggg gagggagaag 450 atccctgtgt cgaggctgta ggggagcgag gagggccaca gaatccagat 500 tcgagagctc ggctagacca aagtgatgaa gacttcaaac cccggattgt 550 cccctactac agggacccca acaagcccta caagaaggtg ctcaggactc 600 ggtacatcca gacagagctg ggctcccgtg agcggttgct ggtggctgtc 650 ctgacctccc gagctacact gtccactttg gccgtggctg tgaaccgtac 700 ggtggcccat cacttccctc ggttactcta cttcactggg cagcgggggg 750 cccgggctcc agcagggatg caggtggtgt ctcatgggga tgagcggccc 800 gcctggctca tgtcagagac cctgcgccac cttcacacac actttggggc 850 cgactacgac tggttcttca tcatgcagga tgacacatat gtgcaggccc 900 eccgcctggc agcccttgct ggccacctca gcatcaacca agacctgtac 950 ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccggtactg 1000 tcatgggggc tttggctacc tgttgtcacg gagtctcctg cttcgtctgc 1050 ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100 gagtggcttg gacgctgcct cattgactct ctgggcgtcg gctgtgtctc 1150 acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200 accetgagaa ggaagggage teggetttee tgagtgeett egeegtgeae 1250 cctgtctccg aaggtaccct catgtaccgg ctccacaaac gcttcagcgc 1300 tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350 tccggaacct gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400 cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450 gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500 ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550 ttggagactg ccctggagca gctcaatcgg cgctatcagc cccgcctgcg 1600 cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650 ggggcatgga gtacaccctg gacctgctgt tggaatgtgt gacacagcgt 1700 gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750 ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccgagtgc 1800 agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggctttc 1850 ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900 caccetgttg etggtetacg ggeeacgaga aggtggeegt ggageteeag 1950 acccatttct tggggtgaag gctgcagcag cggagttaga gcgacggtac 2000 cctgggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050 ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100 tetteettae caeegtgtgg acaaggeetg ggeeegaagt ceteaacege 2150 tgtcgcatga atgccatctc tggctggcag gccttctttc cagtccattt 2200 ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250 egggggetgg ceetgaceee ceeteceete etggtgetga eeeeteeegg 2300 ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350 cttctacaac gctgactacc tggcggcccg agcccggctg gcaggtgaac 2400 tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450 gttttcctcc ggttctcagg gctccacctc tttcgggccg tagagccagg 2500 gctggtgcag aagttctccc tgcgagactg cagcccacgg ctcagtgaag 2550 aactctacca ccgctgccgc ctcagcaacc tggaggggct agggggccgt 2600 gcccagctgg ctatggctct ctttgagcag gagcaggcca atagcactta 2650 gcccgcctgg gggccctaac ctcattacct ttcctttgtc tgcctcagcc 2700 ccaggaaggg caaggcaaga tggtggacag atagagaatt gttgctgtat 2750 tttttaaata tgaaaatgtt attaaacatg tcttctgcc 2789

```
<210> 339
<211> 772
<212> PRT
<213> Homo Sapien
<400> 339
Met Arg Leu Ser Ser Leu Leu Ala Leu Leu Arg Pro Ala Leu Pro
                   5
                                      10
Leu Ile Leu Gly Leu Ser Leu Gly Cys Ser Leu Ser Leu Leu Arg
Val Ser Trp Ile Gln Gly Glu Gly Glu Asp Pro Cys Val Glu Ala
Val Gly Glu Arg Gly Gly Pro Gln Asn Pro Asp Ser Arg Ala Arg
Leu Asp Gln Ser Asp Glu Asp Phe Lys Pro Arg Ile Val Pro Tyr
Tyr Arg Asp Pro Asn Lys Pro Tyr Lys Lys Val Leu Arg Thr Arg
                  80
                                      85
Tyr Ile Gln Thr Glu Leu Gly Ser Arg Glu Arg Leu Leu Val Ala
                                     100
Val Leu Thr Ser Arg Ala Thr Leu Ser Thr Leu Ala Val Ala Val
                 110
                                     115
Asn Arg Thr Val Ala His His Phe Pro Arg Leu Leu Tyr Phe Thr
                                                          135
                 125
                                     130
Gly Gln Arg Gly Ala Arg Ala Pro Ala Gly Met Gln Val Val Ser
                 140
His Gly Asp Glu Arg Pro Ala Trp Leu Met Ser Glu Thr Leu Arg
                 155
His Leu His Thr His Phe Gly Ala Asp Tyr Asp Trp Phe Phe Ile
                 170
                                     175
Met Gln Asp Asp Thr Tyr Val Gln Ala Pro Arg Leu Ala Ala Leu
                 185
Ala Gly His Leu Ser Ile Asn Gln Asp Leu Tyr Leu Gly Arg Ala
                 200
                                                         210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala Arg Tyr Cys His Gly
                                     220
Gly Phe Gly Tyr Leu Leu Ser Arg Ser Leu Leu Arg Leu Arg
```

Pro His Leu Asp Gly Cys Arg Gly Asp Ile Leu Ser Ala Arg Pro

250

255

245

Asp	Glu	Trp	Leu	Gly 260	Arg	Суѕ	Leu	Ile	Asp 265	Ser	Leu	Gly	Val	Gly 270
Cys	Val	Ser	Gln	His 275	Gln	Gly	Gln	Gln	Туг 280	Arg	Ser	Phe	Glu	Leu 285
Ala	Lys	Asn	Arg	Asp 290	Pro	Glu	Lys	Glu	Gly 295	Ser	Ser	Ala	Phe	Leu 300
Ser	Ala	Phe	Ala	Val 305	His	Pro	Val	Ser	Glu 310	Gly	Thr	Leu	Met	Tyr 315
Arg	Leu	His	Lys	Arg 320	Phe	Ser	Ala	Leu	Glu 325	Leu	Glu	Arg	Ala	Tyr 330
Ser	Glu	Ile	Glu	Gln 335	Leu	Gln	Ala	Gln	Ile 340	Arg	Asn	Leu	Thr	Val 345
Leu	Thr	Pro	Glu	Gly 350	Ġlu	Ala	Gly	Leu	Ser 355	Trp	Pro	Val	Gly	Leu 360
Pro	Ala	Pro	Phe	Thr 365	Pro	His	Ser	Arg	Phe 370	Glu	Val	Leu	Gly	Trp 375
Asp	Tyr	Phe	Thr	Glu 380	Gln	His	Thr	Phe	Ser 385	Cys	Ala	Asp	Gly	Ala 390
Pro	Lys	Cys	Pro	Leu 395	Gln	Gly	Ala	Ser	Arg 400	Ala	Asp	Val	Gly	Asp 405
Ala	Leu	Glu	Thr	Ala 410	Leu	Glu	Gln	Leu	Asn 415	Arg	Arg	Tyr _.	Gln	Pro 420
Arg	Leu	Arg	Phe	Gln 425	Lys	Gln	Arg	Leu	Leu 430	Asn	Gly	Tyr	Arg	Arg 435
Phe	Asp	Pro	Ala	Arg 440	Gly	Met	Glu	Tyr	Thr 445	Leu	Asp	Leu	Leu	Leu 450
Glu	Суѕ	Val	Thr	Gln 455	Arg	Gly	His	Arg	Arg 460	Ala	Leu	Ala	Arg	Arg 465
Val	Ser	Leu	Leu	Arg 470	Pro	Leu	Ser	Arg	Val 475	Glu	Ile	Leu	Pro	Met 480
Pro	Tyr	Val	Thr	Glu 485	Ala	Thr	Arg	Val	Gln 490	Leu	Val	Leu	Pro	Leu 495
Leu	Val	Ala	Glu	Ala 500	Ala	Ala	Ala	Pro	Ala 505	Phe	Leu	Glu	Ala	Phe 510
Ala	Ala	Asn	Val	Leu 515	Glu	Pro	Arg	Glu	His 520	Ala	Leu	Leu	Thr	Leu 525
Leu	Leu	Val	Tyr	Gly 530	Pro	Arg	Glu	Gly	Gly 535	Arg	Gly	Ala	Pro	Asp 540

Pro	Phe	Leu	Gly	Val 545	Lys	Ala	Ala	Ala	Ala 550	Glu	Leu	Glu	Arg	Arg 555
Tyr	Pro	Gly	Thr	Arg 560	Leu	Ala	Trp	Leu	Ala 565	Val	Arg	Ala	Glu	Ala 570
Pro	Ser	Gln	Val	Arg 575	Leu	Met	Asp	Val	Val 580	Ser	Lys	Lys	His	Pro 585
Val	Asp	Thr	Leu	Phe 590	Phe	Leu	Thr	Thr	Val 595	Trp	Thr	Arg	Pro	Gly 600
Pro	Glu	Val	Leu	Asn 605	Arg	Cys	Arg	Met	Asn 610	Ala	Ile	Ser	Gly	Trp 615
Gln	Ala	Phe	Phe	Pro 620	Val	His	Phe	Gln	Glu 625	Phe	Asn	Pro	Ala	Leu 630
Ser	Pro	Gln	Arg	Ser 635	Pro	Pro	Gly	Pro	Pro 640	Gly	Ala	Gly	Pro	Asp 645
Pro	Pro	Ser	Pro	Pro 650	Gly	Ala	Asp	Pro	Ser 655	Arg	Gly	Ala	Pro	Ile 660
Gly	Gly	Arg	Phe	Asp 665	Arg	Gln	Ala	Ser	Ala 670	Glu	Gly	Cys	Phe	Туr 675
Asn	Ala	Asp	Tyr	Leu 680	Ala	Ala	Arg	Ala	Arg 685	Leu	Ala	Gly	Glu	Leu 690
Ala	Gly	Gln	Glu	Glu 695	Glu	Glu	Ala	Leu	Glu 700	Gly	Leu	Glu	Val	Met 705
Asp	Val	Phe	Leu	Arg 710	Phe	Ser	Gly	Leu	His 715	Leu	Phe	Arg	Ala	Val 720
Glu	Pro	Gly	Leu	Val 725	Gln	Lys	Phe	Ser	Leu 730	Arg	Asp	Cys	Ser	Pro 735
Arg	Leu	Ser	Glu	Glu 740	Leu	Tyr	His	Arg	Cys 745	Arg	Leu	Ser	Asn	Leu 750
Glu	Gly	Leu	Gly	Gly 755	Arg	Ala	Gl'n	Leu	Ala 760	Met	Ala	Leu	Phe	Glu 765
Gln	Glu	Gln	Ala	Asn 770	Ser	Thr								

<210> 340

<211> 1572

<212> DNA

<213> Homo Sapien

<400> 340

cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgctttcc 50 tgtccccaag ccgttctaga cgcgggaaaa atgctttctg aaagcagctc 100

ctttttgaag ggtgtgatgc ttggaagcat tttctgtgct ttgatcacta 150 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250 ggatgagcgc atggagctca gtaagagctt tcgagtatac tgtattatcc 300 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350 accaaacact gtgacaaagc agagttette agttetgaaa atgttaaagt 400 gtttgagtca attaatatgg acacaaatga catgtggtta atgatgagaa 450 aagettacaa atacgeettt gataagtata gagaccaata caactggtte 500 tteettgeae geeceactae gtttgetate attgaaaaee taaagtattt 550 tttgttaaaa aaggatccat cacagccttt ctatctaggc cacactataa 600 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750 cagtttgcct gaaatatgct ggagtatttg cagaaaatgc agaagatgct 800 gatggaaaag atgtatttaa taccaaatct gttgggcttt ctattaaaga 850 ggcaatgact tatcacccca accaggtagt agaaggctgt tgttcagata 900 tggctgttac ttttaatgga ctgactccaa atcagatgca tgtgatgatg 950 tatggggtat accgccttag ggcatttggg catattttca atgatgcatt 1000 ggttttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050 agcgtgaata tgatctttgt ataggacgtg tgttgtcatt atttgtagta 1100 gtaactacat atccaataca gctgtatgtt tctttttctt ttctaatttg 1150 gtggcactgg tataaccaca cattaaagtc agtagtacat ttttaaatga 1200 gggtggtttt tttctttaaa acacatgaac attgtaaatg tgttggaaag 1250 aagtgtttta agaataataa ttttgcaaat aaactattaa taaatattat 1300 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350 tttgctgatt ggttaaaaaa ttttaacagg tctttagcgt tctaagatat 1400 gcaaatgata tctctagttg tgaatttgtg attaaagtaa aacttttagc 1450 tgtgtgttcc ctttacttct aatactgatt tatgttctaa gcctccccaa 1500

gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550 attaaagtga aagttgaaaa at 1572

<2102 <2112 <2122 <2132	> 318 > PRT	3 r	apier	ı										
<400 Met 1			Glu	Ser 5	Ser	Ser	Phe	Leu	Lys 10	Gly	Val	Met	Leu	Gly 15
Ser	Ile	Phe	Cys	Ala 20	Leu	Ile	Thr	Met	Leu 25	Gly	His	Ile	Arg	Ile 30
Gly	His	Gly	Asn	Arg 35	Met	His	His	His	Glu 40	His	His	His	Leu	Gln 45
Ala	Pro	Asn	Lys	Glu 50	Asp	Ile	Leu	Lys	Ile 55	Ser	Glu	Asp	Glu	Arg 60
Met	Glu	Leu	Ser	Lys 65	Ser	Phe	Arg	Val	Tyr 70	Cys	Ile	Ile	Leu	Val 75
Lys	Pro	Lys	Asp	Val 80	Ser	Leu	Trp	Ala	Ala 85	Val	Lys	Glu	Thr	Trp 90
Thr	Lys	His	Cys	Asp 95	Lys	Ala	Glu	Phe	Phe 100	Ser	Ser	Glu	Asn	Val 105
Lys	Val	Phe	Glu	Ser 110	Ile	Asn	Met	Asp	Thr 115	Asn	Asp	Met	Trp	Leu 120
Met	Met	Arg	Lys	Ala 125	Tyr	Lys	Tyr	Ala	Phe 130	Asp	Lys	Tyr	Arg	Asp 135
Gln	Tyr	Asn	Trp	Phe 140	Phe	Leu	Ala	Arg	Pro 145	Thr	Thr	Phe	Ala	Ile 150
Ile	Glu	Asn	Leu	Lys 155	Tyr	Phe	Leu	Leu	Lys 160	Lys	Asp	Pro	Ser	Gln 165
Pro	Phe	Tyr	Leu	Gly 170	His	Thr	Ile	Lys	Ser 175	Gly	Asp	Leu	Glu	Туг 180
Val	Gly	Met	Glu	Gly 185	Gly	Ile	Val	Leu	Ser 190	Val	Glu	Ser	Met	Lys 195
Arg	Leu	Asn	Ser	Leu 200	Leu	Asn	Ile	Pro	Glu 205	Lys	Cys	Pro	Glu	Gln 210
Gly	Gly	Met	Ile	Trp 215	Lys	Ile	Ser	Glu	Asp 220	Lys	Gln	Leu	Ala	Val 225
Суѕ	Leu	Lys	Tyr	Ala 230	Gly	Val	Phe	Ala	Glu 235	Asn	Ala	Glu	Asp	Ala 240

```
Asp Gly Lys Asp Val Phe Asn Thr Lys Ser Val Gly Leu Ser Ile
                 245
 Lys Glu Ala Met Thr Tyr His Pro Asn Gln Val Val Glu Gly Cys
                                      265
                 260
 Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
                 275
                                      280
 Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
                 290
                                      295
 His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
                 305
                                      310
 Asp Asn Asp
<210> 342
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 342
tccccaagcc gttctagacg cgg 23
<210> 343
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 343
ctggttcttc cttgcacg 18
<210> 344
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 344
gcccaaatgc cctaaggcgg tatacccc 28
<210> 345
<211> 50
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Synthetic Oligonucleotide Probe
 <400> 345
  gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50
 <210> 346
 <211> 25
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 346
  gggatgcagg tggtgtctca tgggg 25
 <210> 347
 <211> 18
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 347
  ccctcatgta ccggctcc 18
 <210> 348
 <211> 48
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 348
  ggattctaat acgactcact atagggctca gaaaagcgca acagagaa 48
 <210> 349
 <211> 47
<212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 349
  ctatgaaatt aaccctcact aaagggatgt cttccatgcc aaccttc 47
 <210> 350
 <211> 48
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
```

```
<400> 350
 ggattctaat acgactcact atagggegge gatgtccact ggggctac 48
<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 351
ctatgaaatt aaccctcact aaagggacga ggaagatggg cggatggt 48
<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 352
ggattctaat acgactcact atagggcacc cacgcgtccg gctgctt 47
<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 353
ctatgaaatt aaccctcact aaagggacgg gggacaccac ggaccaga 48
<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 354
ggattctaat acgactcact atagggcttg ctgcggtttt tgttcctg 48
<210> 355
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 355
```

```
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggtatt 48
<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide .Probe
<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46
<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcatggt ctcagtta 48
<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 358
ggattctaat acgactcact atagggcggg aagatggcga ggaggag 47
<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cggaaatc 48
<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 360
 ggattctaat acgactcact atagggctgt gctttcattc tgccagta 48
```

```
<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 361
 ctatgaaatt aaccctcact aaagggaggg tacaattaag gggtggat 48
<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 362
 ggattctaat acgactcact atagggcccg cctcgctcct gctcctg 47
<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 363
 ctatgaaatt aaccctcact aaagggagga ttgccgcgac cctcacag 48
<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 364
ggattctaat acgactcact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 365
 ctatgaaatt aaccctcact aaagggagtg gtggccgcga ttatctgc 48
<210> 366
<211> 48
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 366
 ggattctaat acgactcact atagggcgca gcgatggcag cgatgagg 48
<210> 367
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 367
ctatgaaatt aaccctcact aaagggacag acggggcaga gggagtg 47
<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 368
ggattctaat acgactcact atagggccag gaggcgtgag gagaaac 47
<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 369
ctatgaaatt aaccctcact aaagggaaag acatgtcatc gggagtgg 48
<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ggattctaat acgactcact atagggccgg gtggaggtgg aacagaaa 48
<210> 371
<211> 48
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 371
ctatgaaatt aaccctcact aaagggacac agacagagcc ccatacgc 48
<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 372
ggattctaat acgactcact atagggccag ggaaatccgg atgtctc 47
<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 373
ctatgaaatt aaccctcact aaagggagta aggggatgcc accgagta 48
<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 374
ggattctaat acgactcact atagggccag ctacccgcag gaggagg 47
<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
ctatgaaatt aaccctcact aaagggatcc caggtgatga ggtccaga 48
<210> 376
<211> 997
<212> DNA
<213> Homo Sapien
```

```
<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaagag 50
aaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctctt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tgttgtgaca tttcgcatct 250
ttcaaacctg tgatgagaaa aagtttcagc tacctgagaa tttcacagag 300
ctctcctgct acaattatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactgggaa tattttcaat ccagctgcta cttcttttct actgacacca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
taaaatgaga gagtttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acacctttga caaagtctct gagcttctgg 600
gatgtagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaattattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750
ggaaaatctc tttaagaaca gaaggcacaa ctcaaatgtg taaagaagga 800
agagcaagaa catggccaca cccaccgccc cacacgagaa atttgtgcgc 850
tgaacttcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
```

<400> 377

Met Asn Ser Ser Lys Ser Ser Glu Thr Gln Cys Thr Glu Arg Gly
1 5 10 15

Cys Phe Ser Ser Gln Met Phe Leu Trp Thr Val Ala Gly Ile Pro 20 25 30

Ile Leu Phe Leu Ser Ala Cys Phe Ile Thr Arg Cys Val Val Thr 35 40 45

Phe Arg Ile Phe Gln Thr Cys Asp Glu Lys Lys Phe Gln Leu Pro

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

50 55 60

Glu Asn Phe Thr Glu Leu Ser Cys Tyr Asn Tyr Gly Ser Gly Ser Val Lys Asn Cys Cys Pro Leu Asn Trp Glu Tyr Phe Gln Ser Ser Cys Tyr Phe Phe Ser Thr Asp Thr Ile Ser Trp Ala Leu Ser Leu 95 Lys Asn Cys Ser Ala Met Gly Ala His Leu Val Val Ile Asn Ser 110 Gln Glu Glu Gln Glu Phe Leu Ser Tyr Lys Lys Pro Lys Met Arg Glu Phe Phe Ile Gly Leu Ser Asp Gln Val Val Glu Gly Gln Trp 140 Gln Trp Val Asp Gly Thr Pro Leu Thr Lys Ser Leu Ser Phe Trp 160 155 Asp Val Gly Glu Pro Asn Asn Ile Ala Thr Leu Glu Asp Cys Ala 170 175 Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val 185 190 Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile 200 Asn Pro Leu Asn Lys Gly Lys Ser Leu 215 <210> 378 <211> 21 <212> DNA <213> Artificial Sequence <223> Synthetic Oligonucleotide Probe <400> 378 ttcagcttct gggatgtagg g 21

<210> 379

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 379

tattcctacc atttcacaaa tccg 24

```
<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49
<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 381
gcagattttg aggacagcca cctcca 26
<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 382
ggccttgcag acaaccgt 18
<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 383
cagactgagg gagatccgag a 21
<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 384
cagctgccct tccccaacca 20
<210> 385
<211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 385
catcaagcgc ctctacca 18
<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 386
cacaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 387
gggccatcac agctccct 18
<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 388
gggatgtggt gaacacagaa ca 22
<210> 389
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 389
 tgccagctgc atgctgccag tt 22
<210> 390
<211> 20
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 390
cagaaggatg tcccgtggaa 20
<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 391
gccgctgtcc actgcag 17
<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 392
gacggcatcc tcagggccac a 21
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 393
atgtcctcca tgcccacgcg 20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 394
gagtgcgaca tcgagagctt 20
<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Synthetic oligonucleotide probe
<400> 395
 ccgcagcctc agtgatga 18
<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 396
 gaagagcaca gctgcagatc c 21
<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 397
 gaggtgtcct ggctttggta gt 22
<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 398
cctctggcgc ccccactcaa 20
<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 399
ccaggagagc tggcgatg 18
<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
```

```
<400> 400
 gcaaattcag ggctcactag aga 23
<210> 401
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 401
 cacagagcat ttgtccatca gcagttcag 29
<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 402
 ggcagagact tccagtcact ga 22
<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 403
 gccaagggtg gtgttagata gg 22
<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 404
 caggcccct tgatctgtac ccca 24
<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 405
```

```
gggacgtgct tctacaagaa cag 23
<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 406
 caggettaca atgttatgat cagaca 26
<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 407
 tattcagagt tttccattgg cagtgccagt t 31
<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 408
 tctacatcag cctctctgcg c 21
<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 409
 cgatcttctc cacccaggag cgg 23
<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 410
 gccaggcctc acattcgt 18
```

```
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 411
ctccctgaat ggcagcctga gca 23
<210> 412
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 412
aggtgtttat taagggccta cgct 24
<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 413
cagagcagag ggtgccttg 19
<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 414
tggcggagtc ccctcttggc t 21
<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 415
ccctgtttcc ctatgcatca ct 22
<210> 416
```

```
<211> 21
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 416
tcaaccctg accctttcct a 21
<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 417
ggcaggggac aagccatctc tcct 24
<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 418
gggactgaac tgccagcttc 20
<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 419
gggccctaac ctcattacct tt 22
<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 420
tgtctgcctc agccccagga agg 23
<210> 421
<211> 21
<212> DNA
```

<213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 421 tctgtccacc atcttgcctt g 21 <210> 422 <211> 3554 <212> DNA <213> Homo Sapien <400> 422 gggactacaa gccgcgccgc gctgccgctg gcccctcagc aaccctcgac 50 atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100 cttcttcctq ctqctqcttt tcaggggctg cctgataggg gctgtaaatc 150 tcaaatccag caatcgaacc ccagtggtac aggaatttga aagtgtggaa 200 ctgtcttgca tcattacgga ttcgcagaca agtgacccca ggatcgagtg 250 gaagaaaatt caagatgaac aaaccacata tgtgtttttt gacaacaaaa 300 ttcagggaga cttggcgggt cgtgcagaaa tactggggaa gacatccctg 350 aagatetgga atgtgacacg gagagaetea gecetttate getgtgaggt 400 cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450 ctgtgcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500 ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550 ccggcctcac tacagctggt atcgcaatga tgtaccactg cccacggatt 600 ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650 acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700 ctactgcatt gcttccaatg acgcaggctc agccaggtgt gaggagcagg 750 agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800 gttgtccttg ctgtactggc cctgatcacg ttgggcatct gctgtgcata 850 cagacgtggc tacttcatca acaataaaca ggatggagaa agttacaaga 900 acccagggaa accagatgga gttaactaca tccgcactga cgaggagggc 950 gacttcagac acaagtcatc gtttgtgatc tgagacccgc ggtgtggctg 1000 agagegeaca gagegeacgt geacatacet etgetagaaa eteetgteaa 1050 ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100

ttttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150 catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200 ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250 gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300 aaacgcccgt gctgggccct gtgaagccag catgttcacc actggtcgtt 1350 cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400 agcagcgcat cccggcggga acccagaaaa ggcttcttac acagcagcct 1450 tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500 tgatcggtgt tgcagtgtcc attgtggaga agctttttgg atcagcattt 1550 tgtaaaaaca accaaaatca ggaaggtaaa ttggttgctg gaagagggat 1600 cttgcctgag gaaccctgct tgtccaacag ggtgtcagga tttaaggaaa 1650 accttcgtct taggctaagt ctgaaatggt actgaaatat gcttttctat 1700 gggtcttgtt tattttataa aattttacat ctaaattttt gctaaggatg 1750 tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800 catacaatgt taaataacct atttttttaa aaaagttcaa cttaaggtag 1850 aagttccaag ctactagtgt taaattggaa aatatcaata attaagagta 1900 ttttacccaa ggaatcctct catggaagtt tactgtgatg ttccttttct 1950 cacacaagtt ttagcctttt tcacaaggga actcatactg tctacacatc 2000 agaccatagt tgcttaggaa acctttaaaa attccagtta agcaatgttg 2050 aaatcagttt gcatctcttc aaaagaaacc tctcaggtta gctttgaact 2100 gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150 gccctcagat gtacatacac agatgccagt cagctcctgg ggttgcgcca 2200 ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250 gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactcacg 2300 tggcccttgc ttcatccagc acagctctca ggtgggcact gcagggacac 2350 tggtgtcttc catgtagcgt cccagctttg ggctcctgta acagacctct 2400 ttttggttat ggatggctca caaaataggg cccccaatgc tattttttt 2450 ttttaagttt gtttaattat ttgttaagat tgtctaaggc caaaggcaat 2500

```
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctctttgcca cagagaaagc acccagacgc cacaggctct 2600
gtcgcatttc aaaacaaacc atgatggagt ggcggccagt ccagcctttt 2650
aaagaacgtc aggtggagca gccaggtgaa aggcctggcg gggaggaaag 2700
tgaaacgcct gaatcaaaag cagttttcta attttgactt taaatttttc 2750
atccgccgga gacactgctc ccatttgtgg ggggacatta gcaacatcac 2800
tcagaagcct gtgttcttca agagcaggtg ttctcagcct cacatgccct 2850
gccgtgctgg actcaggact gaagtgctgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctcacta ctcaccttgt 2950
ctttcagctt ccagtgtctt gggtttttta tactttgaca gctttttttt 3000
aattgcatac atgagactgt gttgactttt tttagttatg tgaaacactt 3050
tgccgcaggc cgcctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctggt gtctgctgca tggcatcctg gatgcttagc atgcaagttc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctccttcttg gttgtcatag tgatagggta 3250
gccttattgc cccctcttct tataccctaa aaccttctac actagtgcca 3300
tqqqaaccaq qtctqaaaaa qtaqaqaqaa qtgaaagtag agtctgggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtatttt 3400
aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
caccgtaatt tggcatttgt ttaacctcat ttataaaagc ttcaaaaaaa 3550
ccca 3554
```

<210> 423

<210> 423 <211> 310

<212> PRT

<213> Homo Sapien

<400> 423

Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
1 10 15

Pro Asp Phe Phe Leu Leu Leu Phe Arg Gly Cys Leu Ile Gly 20 25 30

Ala Val Asn Leu Lys Ser Ser Asn Arg Thr Pro Val Val Gln Glu

Phe	Glu	Ser	Val	Glu 50	Leu	Ser	Cys	Ile	Ile 55	Thr	Asp	Ser	Gln	Thr 60
Ser	Asp	Pro	Arg	Ile 65	Glu	Trp	Lys	Lys	Ile 70	Gln	Asp	Glu	Gln	Thr 75
Thr	Tyr	Val	Phe	Phe 80	Asp	Asn	Lys	Ile	Gln 85	Gly	Asp	Leu	Ala	Gly 90
Arg	Ala	Glu	Ile	Leu 95	Gly	Lys	Thr	Ser	Leu 100	Lys	Ile	Trp	Asn	Val 105
Thr	Arg	Arg	Asp	Ser 110	Ala	Leu	Tyr	Arg	Cys 115	Glu	Val	Val	Ala	Arg 120
Asn	Asp	Arg	Lys	Glu 125	Ile	Asp	Glu	Ile	Val 130	Ile	Glu	Leu	Thr	Val 135
Gln	Val	Lys	Pro	Val 140	Thr	Pro	Val	Cys	Arg 145	Val	Pro	Lys	Ala	Val 150
Pro	Val	Gly	Lys	Met 155	Ala	Thr	Leu	His	Cys 160	Gln	Glu	Ser	Glu	Gly 165
His	Pro	Arg	Pro	His 170	Tyr	Ser	Trp	Tyr	Arg 175	Asn	Asp	Val	Pro	Leu 180
Pro	Thr	Asp	Ser	Arg 185	Ala	Asn	Pro	Arg	Phe 190	Arg	Asn	Ser	Ser	Ph∈ 195
His	Leu	Asn	Ser	Glu 200	Thr	Gly	Thr	Leu	Val 205	Phe	Thr	Ala	Val	His 210
Lys	Asp	Asp	Ser	Gly 215	Gln	Tyr	Tyr	Cys	Ile 220	Ala	Ser	Asn	Asp	Ala 225
Gly	Ser	Ala	Arg	Cys 230	Glu	Glu	Gln	Glu	Met 235	Glu	Val	Tyr	Asp	Leu 240
Asn	Ile	Gly	Gly	Ile 245	Ile	Gly	Gly	Val	Leu 250	Val	Val	Leu	Ala	Val 255
Leu	Ala	Leu	Ile	Thr 260	Leu	Gly	Ile	Cys	Cys 265	Ala	Tyr	Arg	Arg	Gly 270
Tyr	Phe	Ile	Asn		Lys	Gln	Asp	Gly		Ser	Tyr	Lys	Asn	
				275					280					285
Gly	Lys	Pro	Asp	Gly 290	Val	Asn	Tyr	Ile	Arg 295	Thr	Asp	Glu	Glu	Gly 300
Asp	Phe	Arg	His	Lys 305	Ser	Ser	Phe	Val	Ile 310					