▶ UEF käyttää kursseillaan oletusarvoisesti arvostelunaan funktiota

$$\mathsf{UEFsuora}(x) = r \cdot x + s$$

jossa $0 \le x \le 1$ on keräämäsi osuus kurssin kokonaispisteistä, ja

$$r \cdot \frac{1}{2} + s = 1$$
$$r \cdot \frac{9}{10} + s = 5.$$

Ne voidaan ratkaista

$$r = 10$$
 $s = -4$

▶ Näin saatu luku y leikataan vielä

$$\mathsf{kokonaiseksi}(y) = \mathsf{max}(0, \mathsf{min}(5, \lfloor y \rfloor))$$

jotta saadaan

$$\begin{aligned} \mathsf{UEFarvosana}(x) &= \mathsf{kokonaiseksi}(\mathsf{UEFsuora}(x)) \\ &= \mathsf{max}\left(0, \mathsf{min}\left(5, \lfloor 10 \cdot x - 4 \rfloor\right)\right). \end{aligned}$$

(a) LAP-kurssilla käytetään samaa UEF-periaatetta, mutta muodossa

$$\begin{aligned} \mathsf{LAPsuora}(h,k) &= \mathsf{UEFsuora}\left(\frac{3}{10} \cdot h + \frac{8}{10} \cdot k\right) \\ &= 3 \cdot h + 8 \cdot k - 4 \\ \mathsf{LAParvosana}(h,k) &= \mathsf{kokonaiseksi}(\mathsf{LAPsuora}(h,k)) \\ &= \mathsf{max}\left(0, \mathsf{min}\left(5, \left|3 \cdot h + 8 \cdot k\right| - 4\right)\right). \end{aligned}$$

(b) Ratkaisemalla yhtälö

$$\mathsf{LAPsuora}(h,k) = a$$

saadaan

$$k = \frac{1}{8} \cdot a - \frac{3}{8} \cdot h + \frac{1}{2}.$$

Syötesignaalit jotka järjestelmä saa ja joihin sen pitää reagoida:

Kaukosäädin ilmoittaa kun käyttäjä

- painaa sen jonkin näppäimen pohjaan
- vapauttaa painamansa näppäimen.

Yksinkertaistava oletus: Kaukosäätimestä

- voi painaa vain yhtä nappia kerrallaan
- tulee aina vapautusilmoitus kahden painalluksen välissä.

Tyynypäädyn vaakatason anturi ilmoittaa kun pääty osuu siihen. Tyynypäädyn pystytason anturi vastaavasti.

Jalkopäädyn anturit vastaavasti.

Sängyn tila koostuu sen

tyynypäädyn tilasta ja jalkopäädyn tilasta.

Päädyn tila koostuu sen

moottorin tilasta: pois päältä / nostaa / laskee sijainnista nyt: vaakatasossa / pystytasossa / niiden välissä.

Koko sängyn tilassa on siis nämä kentät:

$$tyyny.moottori \in \{ \text{NOSTAA}, \text{LASKEE}, \text{SEISOO} \} \quad tyyny.sijainti \in \{ \text{VAAKA}, \text{PYSTY}, \text{MUU} \} \\ jalko.moottori \in \{ \text{NOSTAA}, \text{LASKEE}, \text{SEISOO} \} \quad jalko.sijainti \in \{ \text{VAAKA}, \text{PYSTY}, \text{MUU} \} \\$$

Jokainen tällainen nelikko

$$\langle \textit{tyyny}.\, \textit{moottori}, \textit{tyyny}.\, \textit{sijainti}, \textit{jalko}.\, \textit{moottori}, \textit{jalko}.\, \textit{sijainti} \rangle$$

voidaan lukea tekeillä olevan tilakoneen yhden tilan nimeksi.

► Tilasiirtymät saavat muodon

$$\langle x, y, z, u \rangle \xrightarrow{\text{syötesignaali}} \langle x', y', z', u' \rangle$$

jossa

$$x, x', z, z' \in \{\text{nostaa}, \text{laskee}, \text{seisoo}\}$$

 $y, y'u, u' \in \{\text{vaaka}, \text{pysty}, \text{muu}\}$.

- ► Tämän jälkeen kannattaa edetä syötesignaali kerrallaan.
- ▶ Päädyn anturi pysäyttää vain sen moottorin, toinen pääty jatkaa.
- ▶ Nämä säännöt voi esittää tiiviimmin aputaulukon kautta:

suunta	liike
VAAKA	LASKEE
PYSTY	NOUSEE

$$\langle \textit{liike}, \text{MUU}, x, y \rangle \xrightarrow{\text{tyynypäädyn suunta-anturi}} \langle \text{SEISOO}, \textit{suunta}, x, y \rangle$$

$$\langle x, y, \textit{liike}, \text{MUU} \rangle \xrightarrow{\text{jalkopäädyn suunta-anturi}} \langle x, y, \text{SEISOO}, \textit{suunta} \rangle$$

► Kaukosäätimen näppäimille käytetään suurempaa aputaulukkoa:

sinne	alas	ylös
liike	LASKEE	NOUSEE
este	VAAKA	PYSTY
lupa	PYSTY tai MUU	VAAKA tai MUU

▶ Näin näppäimet:

$$\langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{u} \rangle \xrightarrow{\text{tyynypääty sinnepäin}} \langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{u} \rangle$$

$$\langle \text{SEISOO}, \textit{lupa}, \text{SEISOO}, \textit{u} \rangle \xrightarrow{\text{tyynypääty sinnepäin}} \langle \textit{liike}, \text{MUU}, \text{SEISOO}, \textit{u} \rangle$$

$$\langle \text{SEISOO}, \textit{y}, \text{SEISOO}, \textit{este} \rangle \xrightarrow{\text{jalkopääty sinnepäin}} \langle \text{SEISOO}, \textit{y}, \text{SEISOO}, \textit{este} \rangle$$

$$\langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{lupa} \rangle \xrightarrow{\text{jalkopääty sinnepäin}} \langle \text{SEISOO}, \textit{este}, \textit{liike}, \text{MUU} \rangle$$

$$\langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{este} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{este} \rangle$$

$$\langle \text{SEISOO}, \textit{lupa}, \text{SEISOO}, \textit{este} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \textit{liike}, \text{MUU}, \text{SEISOO}, \textit{este} \rangle$$

$$\langle \text{SEISOO}, \textit{este}, \text{SEISOO}, \textit{lupa} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \text{SEISOO}, \textit{este}, \textit{liike}, \text{MUU} \rangle$$

$$\langle \text{SEISOO}, \textit{lupa}, \text{SEISOO}, \textit{lupa} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \textit{liike}, \text{MUU}, \textit{liike}, \text{MUU} \rangle$$

$$\langle \text{SEISOO}, \textit{lupa}, \text{SEISOO}, \textit{lupa} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \textit{liike}, \text{MUU}, \textit{liike}, \text{MUU} \rangle$$

$$\langle \text{SEISOO}, \textit{lupa}, \text{SEISOO}, \textit{lupa} \rangle \xrightarrow{\text{molemmat sinnepäin}} \langle \text{SEISOO}, \textit{y}, \text{SEISOO}, \textit{u} \rangle.$$

Tehtävä 1.3 I

(a) Matkustamon tila on viisikko

```
\langle istuin_{kuski}, istuin_{etumatkustaja}, istuin_{takavasen}, istuin_{takakeski}, istuin_{takaoikea} \rangle
```

tunnistimia

```
 istuin_{paikalla}. painoa \in \{\text{ON}, \text{EI}\}  (Istuuko tällä paikalla joku?)  istuin_{paikalla}. lukossa \in \{\text{ON}, \text{EI}\}.  (Onhan istujalla turvavyö?)
```

Jokaisella paikalla on myös toiminnot

Näiden istuinten lisäksi on myös tunnistimet ja toiminto

```
\it aikuinen \in \{ {
m ON, EI} \} (Etumatkustajan turvatyyny käytössä?) \it isku \in \{ {
m ON, EI} \} (Heittelehditäänkö kuin kolarissa?) \it merkkivalo \in \{ {
m ON, EI} \} (Kojelaudassa.)
```

Tehtävä 1.3 II

Eräs (ei ainoa!) tilakonemalli saadaan valitsemalla

aakkosto suureksi:

Jokainen aakkonen koostuu kaikkien tunnistinten ON/EI -asennoista.

tilajoukko pieneksi:

Jokainen tila koostuu kaikkien toimintojen kytkemisestä ON/EI.

Tämä valinta on hyödyllinen, koska turvajärjestelmän eri osat voi jakaa vielä pienemmiksi siten, että

aakkosto on kaikille niille yhteinen

- koska jokainen osa saisi kuunnella mitä tahansa tunnistinta
- joten osat voi yhdistää tulokonstuktiolla.

tilajoukko koostuukin vain tämän osan oman toiminnon kytkemisestä ON/EI.

- Jokaisessa osassa on siis vain nämä 2 tilaa.
- Ainoaksi kysymykseksi jää muodostaa sellainen sääntö, jolla voi laskea niiden väliset siirtymät eri aakkosilla.

Nämä osat ovat

- kaikkien turvavöiden yhteinen merkkivalo
- jokaisen turvavyön oma tiukennus
- jokaisen turvatyynyn oma laukaisu.

Tehtävä 1.3 III

(b) Osien automaatit ovat:

Merkkivalon tilakone on muotoa

jossa sammutusehto ϕ on

$$\bigwedge$$
 istuin_{paikka}. painoa \rightarrow istuin_{paikka}. lukossa jokainen paikka

eli "jos jollakin paikalla istutaan, niin sen vyö on kiinni".

Tehtävä 1.3 IV

Turvavyön tilakone tällä paikalla on

jossa tiukennusehto ϕ on

isku \land istuin_{paikalla}. painoa.

(Tämä tilakone siis vapauttaa lukitsemansa turvavyön *isku*n jälkeen myös siinä tapauksessa että sillä *paikalla* ei enää olekaan *painoa*.)

Tehtävä 1.3 V

Turvatyynyn tilakone on etumatkustajalla

jossa laukaisuehto ϕ on

 $isku \wedge istuin_{\sf etumatkustaja}. painoa \wedge aikuinen.$

Jokaisella muulla paikalla jolla on turvatyyny laukaisuehto ϕ saakin muodon

 $isku \wedge istuin_{paikalla}$. painoa.

(Lauennut turvatyyny on kertakäyttöinen.)

Edetään vaiheittain:

- Rakennetaan automaatti, joka on hyväksyvässä tilassaan 4 täsmälleen silloin kun 4 viimeisintä merkkiä olivat abba.
 - Sen voi rakentaa luentomuistiinpanoissa olevalla Knuth-Morris-Pratt-algoritmilla.
- II. Rakennetaan sen perusteella automaatti, joka muistaa onko tilassa 4 vierailtu parittoman vaiko parillisen monta kertaa.
 - Sen voi rakentaa soveltamalla tulokonstruktion ideaa.

Vaihe I.

Algoritmin idea:

ightharpoonup Jokaisen sinisen tilan m > 0 invariantti on

syötteen m viimeisintä merkkiä = hakuavaimen abba m ensimmäistä merkkiä.

Siten se etenee hakuavaimessa.

- Punainen tila on se
 - ▶ jossa on unohdettu sinisen ensimmäinen merkki
 - ▶ joka kertoo mitä pitää tehdä silloin kun sininen ei pääsekään etenemään.

Vaihe II.

Yläpuoli muistaa missä abba-automaatin tilassa ollaan nyt Alapuoli muistaa onko sen tilassa 4 vierailtu tähän mennessä parittoman / parillisen monta kertaa.

- Tilassa U on luettu sellainen syöte, joka
 - päättyy tähän vokaalimerkkiin u
 - sisältää vokaalimerkeistä vain tätä u sekä mahdollisesti myös vokaalimerkkiä i
 - alkaa korkeintaan yhdellä konsonanttimerkillä k ennen ensimmäistä vokaalimerkkiään
 - ei sisällä kolmea peräkkäistä konsonanttimerkkiä kkk.
- Samoin tilat Y ja I.
- Siirtymät ja muut tilat laaditaan niin, että nämä keskeiset ominaisuudet ovat voimassa silloin kun niihin saavutaan

```
ensimmäisen kerran alkutilasta uudelleen myöhemmin.
```

Nämä ominaisuudet ovat *silmukkainvariantteja:* väitteitä, jotka pysyvät totena aina kun uusi silmukkakierros alkaa.

▶ Nämä silmukkainvariantit valittiin automaatin hahmotteluvaiheessa niin, että niistä lähtien voi perustella sen tekevän minkä lupaa.

Figure: Vokaaliautomaatti.