Corrigé exercice 83:

- 1. On a, par exemple, $\overrightarrow{n_1} \begin{pmatrix} 4 \\ 1 \\ -3 \end{pmatrix}$ et $\overrightarrow{n_2} \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}$.
- 2. On constate que les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires. Les plans \mathcal{P}_1 et \mathcal{P}_2 sont donc sécants.
- 3. En posant x = t et en utilisant les équations des deux plans on obtient le système :

$$\begin{cases} x = t \\ y - 3z = -4t - 1 \\ -3y + 2z = -2t - 4 \end{cases}$$
, d'où
$$\begin{cases} x = t \\ y - 3z = -4t - 1 \\ -7z = -14t - 7 \end{cases}$$
 et donc
$$\begin{cases} x = t \\ y = 2t + 2 \\ z = 2t + 1 \end{cases}$$
.

4. D'après la question précédente, pour tout $t \in \mathbb{R}$, le point M(t; 2t+2; 2t+1) appartient aux deux plans. Une représentation paramétrique de la droite d'intersection est donc $\begin{cases} x=t \\ y=2t+2 \\ z=2t+1 \end{cases}$

Corrigé exercice 106:

Partie A

1. Soit \overrightarrow{n} et $\overrightarrow{n'}$ deux vecteurs respectivement normaux aux plans \mathcal{P} et $\mathcal{P'}$.

On a \overrightarrow{n} $\begin{pmatrix} 2 \\ -3 \\ -2 \end{pmatrix}$ et $\overrightarrow{n'}$ $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$. Les coordonnées de ces vecteurs ne sont pas proportionnelles. Les

vecteurs normaux au plan \mathcal{P} ne sont pas colinéaires à ceux du plan \mathcal{P}' et donc les plans sont sécants.

2. (a) Les coordonnées d'un point situé à l'intersection des deux plans doivent vérifier les deux équations à la fois.

On obtient donc le système $\begin{cases} 2x - 3y - 2z + 1 = 0 \\ x - 2y + z - 6 = 0 \end{cases}.$

(b) On a:

$$\begin{cases} 2x - 3y - 2z + 1 = 0 \\ x - 2y + z - 6 = 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 2z = 3t - 1 \\ x + z = 2t + 6 \end{cases} \Leftrightarrow \begin{cases} x + z = 2t + 6 \\ 2x - 2z = 3t - 1 \end{cases}. \text{ En soustrayant } y = t$$

deux fois la ligne 1 à la ligne 2, on obtient bien :

$$\begin{cases} x+z=2t+6\\ -4z=-t-13 \end{cases} \Leftrightarrow \begin{cases} x+z=2t+6\\ z=\frac{t}{4}+\frac{13}{4}\\ y=t \end{cases}.$$

(c) En remplaçant z dans la ligne 1 par la valeur de la ligne 2, on obtient :

En remplaçant
$$z$$
 dans la lighe 1 par la valeur de la lighe z , on obtient .
$$\begin{cases} x+\frac{t}{4}+\frac{13}{4}=2t+6\\ z=\frac{t}{4}+\frac{13}{4}\\ y=t \end{cases} \Leftrightarrow \begin{cases} x=\frac{7}{4}t+\frac{11}{4}\\ z=\frac{t}{4}+\frac{13}{4}\\ y=t \end{cases} \quad \text{donc une représentation paramétrique de la la light } z=\frac{t}{4}+\frac{11}{4}$$
 donc une $z=\frac{t}{4}+\frac{11}{4}$ donc une $z=\frac{t}{4}+\frac{11}{4}$ donc une $z=\frac{t}{4}+\frac{11}{4}$ donc une $z=\frac{t}{4}+\frac{13}{4}$ donc une $z=\frac{t}{4}+\frac{13}{4}$ donc une $z=\frac{t}{4}+\frac{13}{4}$ donc une $z=\frac{t}{4}+\frac{13}{4}$

Partie B

En utilisant la même méthode que dans la partie A on obtient les équations paramétriques suivantes.

1

1.
$$\begin{cases} x = t \\ y = 2t - 3 \\ z = t \end{cases}, t \in \mathbb{R}.$$
2.
$$\begin{cases} x = t - 1 \\ y = t - 3 \\ z = 1 \end{cases}, t \in \mathbb{R}.$$

2.
$$\begin{cases} x = t - 1 \\ y = t - 3 \\ z = 1 \end{cases}, t \in \mathbb{R}.$$

3.
$$\begin{cases} x = 129t \\ y = 86t - \frac{5}{3} \\ z = 172t - \frac{1}{3} \end{cases} , t \in \mathbb{R}.$$

Partie C

1. Si \overrightarrow{n} est orthogonal à \overrightarrow{u} et à \overrightarrow{v} , cela signifie que $\begin{cases} \overrightarrow{n} \cdot \overrightarrow{u} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{v} = 0 \end{cases}$

$$\begin{cases} ax + by + cz = 0 \\ a'x + b'y + c'z = 0 \end{cases}$$

- 2. (a) Si \overrightarrow{u} et \overrightarrow{v} étaient colinéaires, il existerait un réel λ tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$. Les coordonnées des deux vecteurs ne sont pas proportionnelles, donc les vecteurs \overrightarrow{u} et \overrightarrow{v} ne sont pas colinéaires.
 - (b) On a le système $\begin{cases} 3x y + 2z = 0 \\ 4y + z = 0 \end{cases}$.
 - (c) En choisissant y=t, on obtient $\begin{cases} y=t\\ 3x+2z=t\\ z=-4t \end{cases} \Leftrightarrow \begin{cases} y=t\\ x=3t\\ z=-4t \end{cases}.$
 - (d) Les vecteurs normaux à \overrightarrow{u} et \overrightarrow{v} sont de la forme $\overrightarrow{n} \begin{pmatrix} t \\ 3t \\ -4t \end{pmatrix}$ avec $t \in \mathbb{R}$.