Exercises

2.1 We consider $(\mathbb{R}\setminus\{-1\},\star)$, where

$$a \star b := ab + a + b, \qquad a, b \in \mathbb{R} \setminus \{-1\} \tag{2.134}$$

- a. Show that $(\mathbb{R}\setminus\{-1\},\star)$ is an Abelian group.
- b. Solve

$$3 \star x \star x = 15$$

in the Abelian group $(\mathbb{R}\setminus\{-1\},\star)$, where \star is defined in (2.134).

2.2 Let n be in $\mathbb{N}\setminus\{0\}$. Let k, x be in \mathbb{Z} . We define the congruence class \bar{k} of the integer k as the set

$$\overline{k} = \{ x \in \mathbb{Z} \mid x - k = 0 \pmod{n} \}$$
$$= \{ x \in \mathbb{Z} \mid \exists a \in \mathbb{Z} \colon (x - k = n \cdot a) \}.$$

We now define $\mathbb{Z}/n\mathbb{Z}$ (sometimes written \mathbb{Z}_n) as the set of all congruence classes modulo n. Euclidean division implies that this set is a finite set containing n elements:

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$$

For all $\overline{a}, \overline{b} \in \mathbb{Z}_n$, we define

$$\overline{a} \oplus \overline{b} := \overline{a+b}$$

- a. Show that (\mathbb{Z}_n, \oplus) is a group. Is it Abelian?
- b. We now define another operation \otimes for all \bar{a} and \bar{b} in \mathbb{Z}_n as

$$\overline{a} \otimes \overline{b} = \overline{a \times b}, \qquad (2.135)$$

where $a \times b$ represents the usual multiplication in \mathbb{Z} .

Let n=5. Draw the times table of the elements of $\mathbb{Z}_5\setminus\{\overline{0}\}$ under \otimes , i.e., calculate the products $\overline{a}\otimes\overline{b}$ for all \overline{a} and \overline{b} in $\mathbb{Z}_5\setminus\{\overline{0}\}$.

Hence, show that $\mathbb{Z}_5\setminus\{\overline{0}\}$ is closed under \otimes and possesses a neutral element for \otimes . Display the inverse of all elements in $\mathbb{Z}_5\setminus\{\overline{0}\}$ under \otimes . Conclude that $(\mathbb{Z}_5\setminus\{\overline{0}\},\otimes)$ is an Abelian group.

- c. Show that $(\mathbb{Z}_8 \setminus \{\overline{0}\}, \otimes)$ is not a group.
- d. We recall that the Bézout theorem states that two integers a and b are relatively prime (i.e., gcd(a,b)=1) if and only if there exist two integers u and v such that au+bv=1. Show that $(\mathbb{Z}_n\setminus\{\overline{0}\},\otimes)$ is a group if and only if $n\in\mathbb{N}\setminus\{0\}$ is prime.
- 2.3 Consider the set \mathcal{G} of 3×3 matrices defined as follows:

$$\mathcal{G} = \left\{ \begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3} \middle| x, y, z \in \mathbb{R} \right\}$$

We define \cdot as the standard matrix multiplication.

Is (\mathcal{G}, \cdot) a group? If yes, is it Abelian? Justify your answer.

2.4 Compute the following matrix products, if possible:

a.

$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

b.

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

c.

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

d.

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 4 & 1 & -1 & -4 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 1 & -1 \\ 2 & 1 \\ 5 & 2 \end{bmatrix}$$

e.

$$\begin{bmatrix} 0 & 3 \\ 1 & -1 \\ 2 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 4 & 1 & -1 & -4 \end{bmatrix}$$

2.5 Find the set S of all solutions in x of the following inhomogeneous linear systems Ax = b, where A and b are defined as follows:

a.

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & -1 & -1 \\ 2 & 5 & -7 & -5 \\ 2 & -1 & 1 & 3 \\ 5 & 2 & -4 & 2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ -2 \\ 4 \\ 6 \end{bmatrix}$$

Ъ.

$$\boldsymbol{A} = \begin{bmatrix} 1 & -1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -3 & 0 \\ 2 & -1 & 0 & 1 & -1 \\ -1 & 2 & 0 & -2 & -1 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 3 \\ 6 \\ 5 \\ -1 \end{bmatrix}$$

2.6 Using Gaussian elimination, find all solutions of the inhomogeneous equation system Ax = b with

$$m{A} = egin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad m{b} = egin{bmatrix} 2 \ -1 \ 1 \end{bmatrix}.$$

Find all solutions in $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$ of the equation system Ax = 12x,

where

$$\mathbf{A} = \begin{bmatrix} 6 & 4 & 3 \\ 6 & 0 & 9 \\ 0 & 8 & 0 \end{bmatrix}$$

and $\sum_{i=1}^{3} x_i = 1$.

Determine the inverses of the following matrices if possible: 2.8

$$\mathbf{A} = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$$

Ъ.

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Which of the following sets are subspaces of \mathbb{R}^3 ?

$$\begin{aligned} &\text{a. } A = \{(\lambda, \lambda + \mu^3, \lambda - \mu^3) \mid \lambda, \mu \in \mathbb{R}\} \\ &\text{b. } B = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\} \end{aligned}$$

b.
$$B = \{(\lambda^2, -\lambda^2, 0) \mid \lambda \in \mathbb{R}\}\$$

c. Let γ be in \mathbb{R} .

$$C = \{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_1 - 2\xi_2 + 3\xi_3 = \gamma \}$$
 d.
$$D = \{ (\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_2 \in \mathbb{Z} \}$$

d.
$$D = \{(\xi_1, \xi_2, \xi_3) \in \mathbb{R}^3 \mid \xi_2 \in \mathbb{Z}\}$$

2.10 Are the following sets of vectors linearly independent?

a.

$$m{x}_1 = egin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}, \quad m{x}_2 = egin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}, \quad m{x}_3 = egin{bmatrix} 3 \\ -3 \\ 8 \end{bmatrix}$$

Ъ.

$$oldsymbol{x}_1 = egin{bmatrix} 1 \ 2 \ 1 \ 0 \ 0 \end{bmatrix}, \quad oldsymbol{x}_2 = egin{bmatrix} 1 \ 1 \ 0 \ 1 \ 1 \end{bmatrix}, \quad oldsymbol{x}_3 = egin{bmatrix} 1 \ 0 \ 0 \ 1 \ 1 \end{bmatrix}$$

2.11 Write

$$\boldsymbol{y} = \begin{bmatrix} 1 \\ -2 \\ 5 \end{bmatrix}$$

as linear combination of

$$m{x}_1 = egin{bmatrix} 1 \ 1 \ 1 \end{bmatrix}, \quad m{x}_2 = egin{bmatrix} 1 \ 2 \ 3 \end{bmatrix}, \quad m{x}_3 = egin{bmatrix} 2 \ -1 \ 1 \end{bmatrix}$$

2.12 Consider two subspaces of \mathbb{R}^4 :

$$U_1 = \mathrm{span} \begin{bmatrix} 1 \\ 1 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -1 \\ 1 \end{bmatrix}, \quad U_2 = \mathrm{span} \begin{bmatrix} -1 \\ -2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \\ -2 \\ -1 \end{bmatrix}].$$

Determine a basis of $U_1 \cap U_2$.

2.13 Consider two subspaces U_1 and U_2 , where U_1 is the solution space of the homogeneous equation system $A_1x = 0$ and U_2 is the solution space of the homogeneous equation system $A_2x = 0$ with

$$m{A}_1 = egin{bmatrix} 1 & 0 & 1 \ 1 & -2 & -1 \ 2 & 1 & 3 \ 1 & 0 & 1 \end{bmatrix}, \quad m{A}_2 = egin{bmatrix} 3 & -3 & 0 \ 1 & 2 & 3 \ 7 & -5 & 2 \ 3 & -1 & 2 \end{bmatrix}.$$

- a. Determine the dimension of U_1, U_2 .
- b. Determine bases of U_1 and U_2 .
- c. Determine a basis of $U_1 \cap U_2$.

2.14 Consider two subspaces U_1 and U_2 , where U_1 is spanned by the columns of A_1 and U_2 is spanned by the columns of A_2 with

$$\boldsymbol{A}_1 = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & -1 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \end{bmatrix}, \quad \boldsymbol{A}_2 = \begin{bmatrix} 3 & -3 & 0 \\ 1 & 2 & 3 \\ 7 & -5 & 2 \\ 3 & -1 & 2 \end{bmatrix}.$$

- a. Determine the dimension of U_1, U_2
- b. Determine bases of U_1 and U_2
- c. Determine a basis of $U_1 \cap U_2$

2.15 Let $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ and $G = \{(a - b, a + b, a - 3b) \mid a, b \in \mathbb{R}\}.$

- a. Show that F and G are subspaces of \mathbb{R}^3 .
- b. Calculate $F \cap G$ without resorting to any basis vector.
- c. Find one basis for F and one for G, calculate $F \cap G$ using the basis vectors previously found and check your result with the previous question.
- 2.16 Are the following mappings linear?
 - a. Let $a, b \in \mathbb{R}$.

$$\Phi:L^1([a,b])\to\mathbb{R}$$

$$f\mapsto\Phi(f)=\int_a^bf(x)dx\,,$$

where $L^1([a,b])$ denotes the set of integrable functions on [a,b].

Ъ.

$$\Phi: C^1 \to C^0$$
$$f \mapsto \Phi(f) = f',$$

where for $k\geqslant 1$, C^k denotes the set of k times continuously differentiable functions, and C^0 denotes the set of continuous functions.

c.

$$\Phi: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \Phi(x) = \cos(x)$$

d.

$$\Phi: \mathbb{R}^3 \to \mathbb{R}^2$$

$$\boldsymbol{x} \mapsto \begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 3 \end{bmatrix} \boldsymbol{x}$$

e. Let θ be in $[0, 2\pi]$ and

$$\begin{split} \Phi: \mathbb{R}^2 &\to \mathbb{R}^2 \\ \boldsymbol{x} &\mapsto \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \boldsymbol{x} \end{split}$$

2.17 Consider the linear mapping

$$\Phi: \mathbb{R}^3 \to \mathbb{R}^4$$

$$\Phi\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 3x_1 + 2x_2 + x_3 \\ x_1 + x_2 + x_3 \\ x_1 - 3x_2 \\ 2x_1 + 3x_2 + x_3 \end{bmatrix}$$

- Find the transformation matrix A_{Φ} .
- Determine $rk(A_{\Phi})$.
- Compute the kernel and image of Φ . What are $\dim(\ker(\Phi))$ and $\dim(\operatorname{Im}(\Phi))$?
- 2.18 Let E be a vector space. Let f and g be two automorphisms on E such that $f \circ g = \mathrm{id}_E$ (i.e., $f \circ g$ is the identity mapping id_E). Show that $\ker(f) = \ker(g \circ f)$, $\operatorname{Im}(g) = \operatorname{Im}(g \circ f)$ and that $\ker(f) \cap \operatorname{Im}(g) = \{\mathbf{0}_E\}$.
- 2.19 Consider an endomorphism $\Phi:\mathbb{R}^3\to\mathbb{R}^3$ whose transformation matrix (with respect to the standard basis in \mathbb{R}^3) is

$$m{A}_{\Phi} = egin{bmatrix} 1 & 1 & 0 \ 1 & -1 & 0 \ 1 & 1 & 1 \end{bmatrix} \,.$$

- a. Determine $\ker(\Phi)$ and $\operatorname{Im}(\Phi)$.
- b. Determine the transformation matrix $ilde{{m A}}_\Phi$ with respect to the basis

$$B = (\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}),$$

i.e., perform a basis change toward the new basis B.

2.20 Let us consider $b_1, b_2, b'_1, b'_2, 4$ vectors of \mathbb{R}^2 expressed in the standard basis of \mathbb{R}^2 as

$$m{b}_1 = egin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad m{b}_2 = egin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad m{b}_1' = egin{bmatrix} 2 \\ -2 \end{bmatrix}, \quad m{b}_2' = egin{bmatrix} 1 \\ 1 \end{bmatrix}$$

and let us define two ordered bases $B = (b_1, b_2)$ and $B' = (b'_1, b'_2)$ of \mathbb{R}^2 .

- a. Show that B and B' are two bases of \mathbb{R}^2 and draw those basis vectors.
- b. Compute the matrix P_1 that performs a basis change from B' to B.
- c. We consider c_1, c_2, c_3 , three vectors of \mathbb{R}^3 defined in the standard basis of \mathbb{R}^3 as

$$oldsymbol{c}_1 = egin{bmatrix} 1 \ 2 \ -1 \end{bmatrix}, \quad oldsymbol{c}_2 = egin{bmatrix} 0 \ -1 \ 2 \end{bmatrix}, \quad oldsymbol{c}_3 = egin{bmatrix} 1 \ 0 \ -1 \end{bmatrix}$$

and we define $C = (c_1, c_2, c_3)$.

- (i) Show that C is a basis of \mathbb{R}^3 , e.g., by using determinants (see Section 4.1).
- (ii) Let us call $C' = (c'_1, c'_2, c'_3)$ the standard basis of \mathbb{R}^3 . Determine the matrix P_2 that performs the basis change from C to C'.
- d. We consider a homomorphism $\Phi:\mathbb{R}^2\longrightarrow\mathbb{R}^3$, such that

$$\Phi(\mathbf{b}_1 + \mathbf{b}_2) = \mathbf{c}_2 + \mathbf{c}_3
\Phi(\mathbf{b}_1 - \mathbf{b}_2) = 2\mathbf{c}_1 - \mathbf{c}_2 + 3\mathbf{c}_3$$

where $B=(\boldsymbol{b}_1,\boldsymbol{b}_2)$ and $C=(\boldsymbol{c}_1,\boldsymbol{c}_2,\boldsymbol{c}_3)$ are ordered bases of \mathbb{R}^2 and \mathbb{R}^3 , respectively.

Determine the transformation matrix ${\bf A}_\Phi$ of Φ with respect to the ordered bases ${\cal B}$ and ${\cal C}.$

- e. Determine A', the transformation matrix of Φ with respect to the bases B' and C'.
- f. Let us consider the vector $x \in \mathbb{R}^2$ whose coordinates in B' are $[2,3]^{\top}$. In other words, $x = 2b'_1 + 3b'_2$.
 - (i) Calculate the coordinates of x in B.
 - (ii) Based on that, compute the coordinates of $\Phi(x)$ expressed in C.
 - (iii) Then, write $\Phi(x)$ in terms of c'_1, c'_2, c'_3 .
 - (iv) Use the representation of x in B' and the matrix A' to find this result directly.

Exercises

3.1 Show that $\langle \cdot, \cdot \rangle$ defined for all $\boldsymbol{x} = [x_1, x_2]^{\top} \in \mathbb{R}^2$ and $\boldsymbol{y} = [y_1, y_2]^{\top} \in \mathbb{R}^2$ by $\langle \boldsymbol{x}, \boldsymbol{y} \rangle := x_1 y_1 - (x_1 y_2 + x_2 y_1) + 2(x_2 y_2)$

is an inner product.

3.2 Consider \mathbb{R}^2 with $\langle \cdot, \cdot \rangle$ defined for all x and y in \mathbb{R}^2 as

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} \boldsymbol{y}.$$

Is $\langle \cdot, \cdot \rangle$ an inner product?

3.3 Compute the distance between

$$m{x} = egin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \quad m{y} = egin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$

using

a.
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \boldsymbol{y}$$

b.
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{y}, \quad \boldsymbol{A} := \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

3.4 Compute the angle between

$$m{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad m{y} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

using

a.
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \boldsymbol{y}$$

b.
$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} \boldsymbol{B} \boldsymbol{y}$$
, $\boldsymbol{B} := \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$

3.5 Consider the Euclidean vector space \mathbb{R}^5 with the dot product. A subspace $U \subseteq \mathbb{R}^5$ and $\mathbf{x} \in \mathbb{R}^5$ are given by

$$U = \operatorname{span}\begin{bmatrix} 0 \\ -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ -3 \\ 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 5 \\ 0 \\ 7 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} -1 \\ -9 \\ -1 \\ 4 \\ 1 \end{bmatrix}.$$

- a. Determine the orthogonal projection $\pi_U(x)$ of x onto U
- b. Determine the distance d(x, U)
- 3.6 Consider \mathbb{R}^3 with the inner product

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle := \boldsymbol{x}^{\top} egin{bmatrix} 2 & 1 & 0 \ 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix} \boldsymbol{y} \,.$$

Furthermore, we define e_1, e_2, e_3 as the standard/canonical basis in \mathbb{R}^3 .

Draft (2022-01-11) of "Mathematics for Machine Learning". Feedback: https://mml-book.com.