Analysis - PMA 5 -

KYB

Thrn, it's a Fact mathrnfact@gmail.com

January 14, 2021

Overview

Basic Topology Exercises

Exercises

Definition

A metric space is called separable if it contains a countable dense subset.

Ex 2.22

Show that \mathbb{R}^k is separable.

Exercises

Definition

A collection $\{V_{\alpha}\}$ of open subsets of X is said to be a base for X if the following is true:

▶ For every $x \in X$ and every open set G in X such that $x \in G$, there is V_{α} such that

$$x \in V_{\alpha} \subset G$$
.

In other words, every nonempty open subset G is of the form $G = \bigcup_{\alpha} V_{\alpha}$ for some V_{α} 's.

Ex 2.23

Prove that every separable metric space has a countable base.

Exercises

Definition

Let X be a topological space.

- (1) X is compact if every open cover has a finite subcover.
- (2) X is limit point compact if every infinite subset of X has a limit point.
- (3) X is sequentially compact if every sequence in X has a convergent subsequence.

If X is a metric space, the the above statements are all equivalent.

Exercises

Ex 2.24

Let X be a metric space in which every infinite subset has a limit point. Prove that X is separable.

Exercises

Ex 2.25

Prove that every compact metric space K has a countable base, and that K is therefore separable.

Exercises

Ex 2.26

Let X be a metric space in which every infinite subset has a limit point. Prove that X is compact.

Exercises

Definition

Let p be a point of a metric space X and let E be a subset of X. p is called a condensation point of E if every neighborhood of p contains uncountably many points of E.

Ex 2.27

Suppose $E \subset \mathbb{R}^k$, E is uncountable, and let P be the set of all condensation points of E. Prove that P is perfect and that at most countably many points of E are not in P. In other words, show that $P^c \cap E$ is at most countable.

Exercises

Ex 2.28

Prove that every closed set in a separable metric space is the union of a perfect set and a set which is at most countable. As Corollary, every countable closed set in \mathbb{R}^k has isolated points.

Exercises

Ex 2.29

Prove that every open set in \mathbb{R}^1 is the union of an at most countable collection of disjoint segments.

Exercises

Ex 2.30

- ▶ If $\mathbb{R}^k = \bigcup_{1}^{\infty} F_n$, where each F_n is a closed subset of \mathbb{R}^k , then at least one F_n has a nonempty interior.
- ightharpoonup Equivalently, if G_n is a dense open subset of \mathbb{R}^k , then $\bigcap_{1}^{\infty} G_n$ is not empty, in fact, it is dense in \mathbb{R}^k .

The End

Exercises