הסקה אוטומטית ושימושיה -- תרגיל בית 3

נתונים טכניים

- 1. תאריך הגשת התרגיל: 25 בפברואר 2024.
- 2. מותר להגיש בזוגות, אך אין חובה לעשות זאת.
- באים: בסאבמיט קובץ zip שיכלול את הדברים הבאים: .3
 - (א) כל הקוד שכתבתם בפייתון
 - עבור שאלה 2 סעיף ג2c.smt2 עבור (ב)
- (ג) את שיכלול את שמות המגישים, תעודות הזהות שלהם, והתשובות לשאלות.
- 4. הרגישו חופשי לשאול שאלות בפורום הקורס במודל (וגם לענות, אך מבלי לגלות את התשובות לשאלות שבתרגיל).
 - 5. ניתן להשתמש בפורום גם למציאת בן/בת זוג להגשה.

הכנה לתרגיל

1 נמשיך לעבוד עם pysmt, ודאו שהוא עובד כמו בתרגיל ו

תרגיל

1. ממשו בפייתון פותרן לקוביות על בסיס אלגוריתם Congruence-Closure שנלמד בכיתה. מותר להניח שהקלט smt2 שמייצג קוביה.

חובה לממש ולבחון את המימושים על פי ההנחיות המפורטות כאן:

.https://github.com/yoni206/ar-class-2024-hw3

2. הביטו בקוד הפייתון הבא:

```
def g(ig):
    og = ig
    for i in range(0,2):
        og = f(og)
    return og

def h(ih):
    oh = f(f(ih))
    return oh
```

i=1 ופעם עבור i=0 ופעם פעמיים, פעמיים עבור q תרוץ פעמיים עבור

- (א) כתבו נוסחה φ כך שמתקיים ש- φ תקפה אם ורק אם הפונקציות g ו-h שקולות. (רמז: עשינו זאת עבור קוד פייתון דומה בשיעור).
- אינה $\varphi \wedge \neg \psi$ אם ורק אם ורק אם $\varphi \to \psi$ מתקיים ש $\psi \to \psi$ מתקיים לכל נוסחאות (ב) אינה הכללית הבאה: לכל נוסחאות סוף של החומים אינה ספיקה.
- (ג) השתמשו בסעיף ב כדי להפוך את הנוסחה שהתקבלה בסעיף א לכזו שתוכלו להזין לסולבר מהשאלה הראשונה על הקובץ. הראשונה על הקובץ את הנוסחה שקיבלתם בקובץ smt2 והריצו את הסולבר מהשאלה הראשונה על הקובץ. מה התוצאה שהתקבלה: ומה היא אומרת לגבי הפונקציות p ו-hי

3. הוכיתו:

- . ספיקה $x=y \wedge f\left(x\right) \neq z$ ספיקה (א)
- . אינה ספיקה אינה $x=y \wedge f\left(x\right) \neq z \wedge z = f\left(y\right)$ אינה ספיקה
- (ג) תהי $\varphi \wedge s=t$ אם $\varphi \wedge s=t$ אם מופיע ב- φ,s,t . אם משתנה אז גם ו-x שמות עצם ו-x שמות עצם פיקה, אז גם $\varphi \wedge s=t$ ספיקה.
- 4. הוכיחו כי אלגוריתם CC נאות. כלומר: אם Fail גזירה ב-CC מהקונפיגורציה ההתחלתית של T אינה CC טפיקה. מומלץ לעשות זאת על ידי שימוש בלמת העזר הבאה (אם כי יש להוכיח גם אותה, באינדוקציה על $t_1,t_2\in X$ ו- $X\in M_i$ אז לכל $1\leq i\leq n$ אז לכל $1\leq i\leq n$ היא גזירה ב- $1\leq i\leq n$ אז לכל $1\leq i\leq n$ הנוסחה $1\leq i\leq n$ תקפה.