姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 座位号 9

1.实验名称

直流电桥测电阻

2.实验目的

- (1) 了解单电桥测量电阻的原理,掌握直流电桥的基本使用方法。
- (2) 利用单电桥测量铜丝的电阻温度系数,学习用直线拟合法及作图法处理数据。
- (3) 利用非平衡互易桥构建数字温度计,学习桥路的应用分析设计。

3.实验原理(简明扼要)

一、惠斯通电桥测电阻

惠斯通电桥电路原理如图 1 所示, R_1 、 R_2 和 R 阻值已知。A、C 间接电源 E; B、D 间接检流计 G。调节电阻 R,当 B、D 两点电位相等,检流计 G 中无电流通过,电桥达到平衡。此时有 $\frac{R_x}{R_2} = \frac{R}{R_1}$,即 $R_x = \frac{R_2}{R_1}$ R。

单电桥的线路如图 2 所示,将 R_2 和 R_1 做成比值为 C 的比率臂,则 $R_x = CR$, $C = \frac{R_2}{R_1}$ 。

二、铜丝的电阻温度特性

金属电阻随温度升高而增大, $R_t=R_0(1+\alpha_R t)$,其中 R_t 、 R_0 分别为 t \mathbb{C} 、0 \mathbb{C} 时金属的电阻值, α_R 为金属的电阻温度系数。在-50~100 \mathbb{C} 间,铜的 α_R 变化很小,可视为常量, R_t 与 t 呈线性关系, $\alpha_R=\frac{R_t-R_0}{R_0 t}$ 。

三、数字温度计设计

将图 1 的检流计 G 去掉,通过毫伏表测量其两端的电压 Ut 来确定电阻,构成非平衡电桥,如图 3 所示。此时 $I_{R2Rt}>>I_{R1R}$, ΔU_t 较大,非线性,且 I_{R2Rt} 过大易烧坏电路。因此将电源 E 与毫伏表互易位置,如图 4 所示,由于电桥的对称性,互易后电路与原先等效,此时 I_{R1R2} $\approx I_{RRt}$, ΔU_t 较小,接近线性。输出电压 $U_t = E\left(\frac{R_1}{R_1 + R_2} - \frac{R}{R + R_t}\right)$ 。取 C=0.01, $R=R_0/C$,则上式可近

似为 $U_t = \frac{EC\alpha_R}{(1+C)^2}t + \Delta U$, ΔU 为非线性误差项,为使显示值与温度满足 $U_t = \frac{1}{10}t$ (mV),取 $E = \frac{(1+C)^2}{10C\alpha_R}$ 。

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>单三晚</u> 座位号 9

4.实验仪器(名称、规格型号)

实验台号:9

仪器名称及型号: QJ23 型直流单电桥(编号: 93061315)、控制仪、加热器、烧杯、直流稳压电源、数字调压器、万用表、温度表/毫伏表、Pt100 温度计

5.实验任务或步骤(列出关键事项,简单明了)

- 一、惠斯通电桥测电阻
 - (1) 单电桥检流计外接端短接, B+和 B 接直流稳压电源 DC5V, 检流计调零。
 - (2) 待测电阻接入 X_1X_2 间,根据被测电阻的标称值,选定比率 C,预置测量盘 R (尽量用到最高位盘)。
 - (3) 点按电源开关 B、检流计开关 G(先按 B 后 G,先断 G 后 B),调节测量盘 R,使检流计指针为 0,读取 C 和 R 的值。
 - (4) 桥路平衡后,将测量盘电阻 R 改变 Δ R,使检流计偏转 d 格(d 不超过 2 分格),计算电桥灵敏阈。

二、单电桥测铜丝的电阻温度系数

- (1) 将铜丝线圈接入单电桥 X₁X₂间,测量加热前的水温及铜丝的电阻值。
- (2)起始温度到 70℃间,每隔 5℃~6℃左右测一次温度t及相应的阻值 R_t ,测量时应大致热平衡。
- (3) 将测得数据用计算机进行线性拟合, 计算出 R_0 和 α_R 。

三、铜电阻数字温度计的设计组装

- (1) 单电桥检流计内接短路,外接端接数字调压计,B+和 B 接毫伏表。
- (2) 根据二中所得 R_0 和 α_R 设置桥路 C、R、E,锁住开关 B、G。
- (3) 从室温到 70℃间, 每隔 4~5℃测一次 U,和 t,测 6~8 组。
- (4) 上机拟合, 检验 U_t和 t 线性关系。

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>单三晚</u> 座位号<u>9</u>

6.数据处理(数据整理、计算、作图、不确定度分析、实验结果等)

- 一、惠斯通电桥测电阻
- (1) 数据整理

仪器组号<u>9</u> 电桥型号<u>QJ-23</u> 编号<u>93061315</u>

	· · · · · · · · · · · · · · · · · · ·			
电阻标称值/Ω	1k	11k	120	360k
比率臂读数C	0.1	10	0.1	100
准确度等级指数α	0.2	0.5	0.2	0.5
平衡时测量盘读数R/Ω	9942	1096	1191	3606
平衡后将检流计 调偏Δd/格	1.0	1.2	0.8	1.0
与 Δd 对应的测量盘的示值 变化 $\Delta R/\Omega$	40	6	1	400
测量值CR/Ω	994.2	10.96k 119.1		360.6k
电桥的基本误差极限 $[E_{lim} = (\alpha\%)(CR + 500C)]/\Omega$	2.1	79.8	0.34	2053
灵敏阈 $(\Delta_s = 0.2C \cdot \Delta R/\Delta d)/\Omega$	0.8	10	0.025	8000
不确定度 $\left(\Delta_{R_x} = \sqrt{E_{\lim}^2 + \Delta_s^2}\right) / \Omega$	2.2	80.4	0.34	8259
$(R_x = CR \pm \Delta_{R_x})/\Omega$	994.2±2.2	10.96k ± 0.08k	119.1 ±0.3	360.6k ± 8.3k

(2) 数据处理过程

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>单三晚</u> 座位号<u>9</u>

1/e T :	120 JL :
Elim = 0.2% (0.1×9942+500×0.1)	Elim = 0.2% (0.1× 1191 + 500×0.1)
= 2-1 JZ	= 0.34 sc
$DS = 0.1 \times 0.1 \times \frac{40}{1.0} = 0.8 \text{ JL}$	65 = 0.2 × 0.1 × 1 = 0.025 JU
SRx = [2.140.82 = 2.252	ORx = Jo. 47+0.0252 = 0.34 sc
Rx = 0.1x9942 + 2.2	Rx = 0.1 × 1191 ± 0.34
= 994.2 ± 2.2 52	= 119.1 ± 0.3 52
IIKSL:	36 k.z.:
Eim = 0.5% (10×109/ + 500×10)	Elim = 0.5% (100x 3606 + 500x 100)
= 79.852	= 1053 TV
Ds = 0.2 × 10 × 6 = 10 52	BS = 0.7 × 100 × 400 = 8000 N
ORx = 179.82+102 = 80.42	ORx = 12053 + 8000 = 8259 JZ
Rx = 10× 1096 ± 80.4	Rx= 100 × 3606 ± 8259
= 10.96k + 0.08k s	

(3) 实验结果

- a) 单电桥操作规律:检流计向左偏时,R 偏大,应调小,检流计向右偏时,R 偏小,应调大。
- b)误差分析: 待测电阻增大时,电桥的灵敏阈增大,不确定度增大, R_x 相对误差增大。见下表:

电阻标称值 /Ω	1k	11k	120	360k
测量值 CR /Ω	994.2	10.96k	119.1	360.6k
不确定度 Δ _{R_x} /Ω	2.2	80.4	0.3	8259
R_x 相对误差 $\frac{\Delta_{R_x}}{CR}$	0.22%	0.73%	0.25%	2.29%

单电桥法虽然理论上来说,只要检流计足够灵敏就能得到足够精确的结果,但由于测量盘阻值不是连续可调的,待测电阻较大时,比率 C 较大,调节测量盘改变的最小电阻较大。因此测量

姓名<u>刘若涵</u> 学号<u>2020011126</u> 班级<u>自 05</u> 组号<u>单三晚</u> 座位号<u>9</u>

时可能经常找不到"真正的"电桥平衡点,如有时检流计指针在 0 的左边几格,而改变最小的电阻值后发现指针在 0 的右方几格。

c) 电阻测量结果

电阻标称值/Ω	1k	11k	120	360k
$(R_x = CR \pm \Delta_{R_x})/\Omega$	994.2±2.2	10.96k ± 0.08k	119.1 ±0.3	360.6k ± 8.3k

二、单电桥测铜丝的电阻温度系数

(1) 数据整理

起始温度 $t = _24.32$ °C 比率臂 $C = _0.01$ 测量盘读数 $R = _1686$ Ω 起始电阻为 16.86 Ω。

	温度t/℃	比率臂 <i>C</i>	测量盘读数 R/Ω	$R_t = CR/\Omega$
1	30.22	0.01	1724	17.24
2	35.09	0.01	1756	17.56
3	41.40	0.01	1797	17.97
4	46.66	0.01	1834	18.34
5	52.17	0.01	1870	18.70
6	58.75	0.01	1913	19.13
7	64.15	0.01	1948	19.48
8	69.25	0.01	1982	19.82

(2) 数据处理过程

a) 计算机线性拟合如下:

单位

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 座位号 9

$$\alpha_R = \frac{b}{a} = 0.066 \div 15.248 = 4.328 \times 10^{-3} \text{ °C}^{-1}$$

b) 作图法拟合如下:

由图可知
$$R_0$$
 = 15.25 Ω , $\alpha_R = \frac{R_{t1} - R_{t2}}{R_0(t_1 - t_2)} = \frac{19.55 - 17.00}{15.25 \times (65.00 - 26.50)} = 4.343 \times 10^{-3} \, \, ^{\circ}\mathrm{C}^{-1}$

(3) 实验结果

通过计算机线性拟合得结果: $R_0=15.248\,\Omega$, $\alpha_{R1}=4.328\times 10^3\,^{\circ}\text{C}^{-1}$ 。 通过作图法得结果: $R_0=15.25\,\Omega$, $\alpha_{R2}=4.343\times 10^3\,^{\circ}\text{C}^{-1}$ 。

 $\frac{|\Delta\alpha_R|}{\alpha_{R1}} = 0.35\%$,在误差允许的范围内,通过两种方法测出的 α_R 相等。

三、铜电阻数字温度计的设计组装

(1) 数据整理

$$ΨC = 0.01, R = \frac{R_0}{C} = 1525Ω, E = \frac{(1+C)^2}{10Cα} = 2357mV$$

温度t/℃	28.73	34.16	39.02	46.88	51.84	57.82
毫伏表示数U/mV	2.84	3.42	3.91	4.70	5.22	5.78

(2) 数据处理过程

计算机拟合如下:

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 座位号 9

(3) 实验结果

图要占满

 $U_t = 0.1012t - 0.0478 \text{ (mV)}, \quad a = -0.0478, \quad b = 0.1012, \quad r = 0.998$

相较于室温到 70°C间的 U_t , a很小可以忽略,因此在误差允许的范围内, U_t 与 t 近似线性相关, $\frac{|\Delta b|}{0.1}=1.2\%$,b 与设计的系数近似相等。

7.实验小结(据实分析,不写虚)

(一) 小结

通过本次实验,我学会了用单电桥测量电阻,了解了数字温度计的原理,掌握了QJ23型直流单电桥、控制仪、数字调压器等仪器的使用,锻炼了作图法及计算机拟合等数据处理的能力。明白了为使得实验更有效率更精确地开展,提前应进行精密的计算,充分了解所能接触到的原理,对实验有预期,规避一些操作上的失误。体会了理论与实际存在差距,理论上精确的东西,付诸实际时总会由于种种因素产生误差。铭记了实验中应按规定使用仪器,实验后应整理好设备,避免危险的发生。

(二)思考题:

(1) 为什么用单电桥测电阻一般比伏安法测量的准确度高? 单电桥中检流计的准确度对实验中所用的平衡电桥法测量有无影响?

答:单电桥测电阻电源及检流计的电阻对测量没有影响,但伏安法中,电压表内阻分流或电流表内阻分压都会对测量值造成影响,因此单电桥测电阻一般比伏安法测量的准确度高。单电桥中检流计的准确度对实验中所用的平衡电桥法测量有影响,若检流计不准,指针指向 0 时,电桥未必平衡,桥两端电位不一定相等, $\frac{R_x}{R_2} = \frac{R}{R_1}$ 不成立,不可用 $R_x = \frac{R_2}{R_1}$ R计算被测电阻。

- (2) 如果用实验中所用到的单电桥测一微安表的内阻,应怎样才能保证被测微安表不超量程? 答: 微安表串联限流电阻,其阻值大小满足当其他外阻为零时,电路中的电流小于电流表的满偏电流,且使电路中的电流变化范围不致太小最好能使电流大于满偏的 1/2。
- (3) 用电桥测量电感线圈的直流电阻时,为防止通断瞬间产生大电流损伤检流计或干扰测量,接通时应先按合 B、后按合 G,断开时应先断 G 后断 B,为什么?

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 座位号 9

答:接通时,先按合 B 使得电感线圈过渡过程结束达到平衡,则接入 G 时不至于有电流突变,且减小电感线圈交流电抗干扰测量。断开时,先断 G,以防断开 B 后, G 与电感间仍形成回路,突然有大电流流过检流计。

(4) 直流双电桥和单电桥在结构上有什么不同? 为什么前者适合于低值电阻的测量?

答: 如图所示,直流双电桥被测电阻和测量盘电阻均采用四端接法,单电桥为二端,且双电桥电路中增设了两个臂 R_1 和 R_2 ,其阻值较高。这样,电阻 R 和 Rx 的电压端附加电阻(即两端的引线电阻和接触电阻)由于和高阻值臂串联,其影响减小了;两个外侧电流端的附加电阻串联在电源回路中,其影响可忽略;两个内侧电流端的附加电阻和小电阻 r 相串联,相当于增大了 r ,其影响通常也可忽略。

(5) 用惠斯通电桥测量电阻时,如果发现检流计的指针总是向一边偏转,请分析可能的原因。 答:可能是没有选择合适的比率,被测电阻不在电桥的测量范围内。

附原始数据记录 (有教师签字) 图表等

姓名 刘若涵 学号 2020011126 班级 自 05 组号 单三晚 座位号 9

1. 惠斯通电桥 侧电阻

仅黑姐号 ___ 9 __ 电桥型号 __QJ23 ___ 偏号 __93061315

电阻抗积值(几)	lk	IIk	120	360k
t/字臂读数 C	0.1	10	0.1	100
准确度等级指数2	0,2	0.5	0.2	0.5
平衡时则量盘读数尺(D)	9942	1096	1191	3606
平街后将枪流计调编od(格)	1.0	1.2	0.8	1.0
与 od 对应的测量急的示值变化。R(II)	40	6		400
_测量值 cR (st)	994.2	10.964	119.1	360.6K
F1m = (2%)(CR+500C)(IZ)	2.1	79.8	0.34	2053
05 = 0.2 C 8R/Od (52)	0.8	10	0.025	2000
ORX = I Frim + OS' (IL)	2.2	80.4	0.34	8259
R= CKtoR(sc)	994.2±2.2	10.96k±80.4	119.1 ± 0.34	

2.

加越南水温 24.32°C 加越前铜丝电值 16.86冗

温度 t (°C)	30.32	35.09	41.40	46.66	52.17	58.75	64.15	69.25
四位尺(2)	17.24	17.56	17.97	18.34	18.70	19.13	19.48	19.82

Rt = 0.066 t + 15.248

3. C=0.01 R=1525T E= 2357 mV

Ut (INV)	2.84	3.42	3.41	4.70	5.22	5.78
温度 t (℃)	28.73	34.16	39.02	46.88	51.84	57.82

额森