Architecture

Face image BMI prediction

Date Issued	Version	Description	Author
23-03-2024	1	Architecture-V1.0	Ranjith V

Contents

Serial Number	Subject	Page Number
1	Document version control	1
2	Contents	2
3	Architecture	3
4	Architecture Description	4

3. Architecture

4. Architecture Description

1. Client-Side (Frontend)

- Technologies: HTML, CSS, JavaScript, Bootstrap
- Components:
 - HTML Form: Allows users to upload a face image for BMI prediction.
 - Bootstrap: Provides responsive and styled UI components for a better user experience.
 - JavaScript: Handles form submission, makes an HTTP POST request to the Flask API, and displays the prediction result.

2. Server-Side (Backend)

- **Technologies**: Flask, Python
- Components:
 - o Flask API:
 - Endpoint: /predict
 - **Function**: Receives image files from the client, processes them, and returns the BMI prediction.
 - Processing:
 - Image Handling: Decodes and preprocesses the uploaded image.
 - **Model Inference**: Uses a pre-trained Convolutional Neural Network (CNN) model to predict BMI from the processed image.
 - **Response**: Sends the BMI prediction or an error message back to the client.

3. Model

- Technologies: Keras/TensorFlow
- Components:
 - Convolutional Neural Network (CNN):
 - **Architecture**: Consists of convolutional layers, pooling layers, and fully connected layers to extract features and predict BMI.
 - **Training**: Trained on a dataset of face images with corresponding BMI values.
 - **Deployment**: Saved as a .h5 file and loaded by the Flask API for inference.

4. Data Flow

1. **User Interaction**: A user uploads a face image via the HTML form.

- 2. **Form Submission**: JavaScript captures the image file and sends it to the Flask API using an HTTP POST request.
- 3. **Image Processing**: Flask API receives the image, preprocesses it, and feeds it into the CNN model.
- 4. **Model Inference**: The CNN model processes the image and generates a BMI prediction.
- 5. **Response Handling**: Flask API sends the BMI prediction or an error message back to the client.
- 6. **Display Result**: JavaScript updates the HTML page with the prediction result or an error message.

5. Deployment

- **Technologies**: AWS/Azure/GCP (for cloud deployment), Docker (optional)
- Components:
 - Hosting: Deploy the Flask API on a cloud platform for accessibility.
 - Scalability: Ensure the solution can handle multiple requests and scale as needed.

6. Security and Error Handling

- Security: Ensure secure handling of image uploads and predictions.
- Error Handling: Provide meaningful error messages for issues during image processing or model inference.

This architecture ensures a modular and scalable approach for predicting BMI from face images, leveraging modern web technologies and cloud-based deployment.