```
# import libraries
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
import warnings
warnings.filterwarnings("ignore")
dataset = pd.read_csv("CarPrice Assignment.csv")
dataset.head()
   car ID symboling
                                        CarName fueltype aspiration
doornumber \
                             alfa-romero giulia
        1
                                                                 std
                                                      gas
two
1
        2
                            alfa-romero stelvio
                                                                 std
                                                      qas
two
2
        3
                      alfa-romero Quadrifoglio
                                                                 std
                                                      gas
two
                   2
3
        4
                                    audi 100 ls
                                                                 std
                                                      gas
four
4
        5
                                     audi 100ls
                                                      gas
                                                                 std
four
       carbody drivewheel enginelocation wheelbase
enginesize \
0 convertible
                                                                   130
                                    front
                                                 88.6
                       rwd
1 convertible
                       rwd
                                    front
                                                 88.6
                                                                   130
     hatchback
                                                                   152
2
                                    front
                                                 94.5
                       rwd
3
         sedan
                       fwd
                                    front
                                                99.8
                                                                   109
         sedan
                      4wd
                                    front
                                                99.4
                                                                   136
   fuelsystem
               boreratio stroke compressionratio horsepower
                                                                peakrpm
citympg
0
         mpfi
                    3.47
                             2.68
                                               9.0
                                                           111
                                                                   5000
21
1
         mpfi
                    3.47
                             2.68
                                               9.0
                                                           111
                                                                   5000
21
2
         mpfi
                    2.68
                             3.47
                                               9.0
                                                           154
                                                                   5000
19
3
         mpfi
                    3.19
                             3.40
                                               10.0
                                                           102
                                                                   5500
```

```
24
                                                                    5500
4
         mpfi
                     3.19
                             3.40
                                                8.0
                                                            115
18
   highwaympg
                  price
0
           27
               13495.0
1
           27
               16500.0
2
           26
               16500.0
3
           30
               13950.0
4
           22
               17450.0
[5 rows x 26 columns]
dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 205 entries, 0 to 204
Data columns (total 26 columns):
#
     Column
                        Non-Null Count
                                         Dtype
 0
     car ID
                        205 non-null
                                         int64
 1
     symboling
                        205 non-null
                                         int64
 2
     CarName
                        205 non-null
                                         object
 3
     fueltype
                        205 non-null
                                         object
 4
     aspiration
                        205 non-null
                                         object
 5
     doornumber
                        205 non-null
                                         object
 6
     carbody
                        205 non-null
                                         object
 7
     drivewheel
                        205 non-null
                                         object
 8
     enginelocation
                        205 non-null
                                         object
 9
     wheelbase
                        205 non-null
                                         float64
 10
                        205 non-null
    carlength
                                         float64
 11
    carwidth
                        205 non-null
                                         float64
 12
     carheight
                        205 non-null
                                         float64
 13
     curbweight
                        205 non-null
                                         int64
 14
     enginetype
                        205 non-null
                                         object
 15
     cylindernumber
                        205 non-null
                                         object
 16
     enginesize
                        205 non-null
                                         int64
 17
     fuelsystem
                        205 non-null
                                         object
 18
     boreratio
                        205 non-null
                                         float64
 19
                        205 non-null
                                         float64
     stroke
 20
    compressionratio
                        205 non-null
                                         float64
 21
     horsepower
                        205 non-null
                                         int64
 22
                        205 non-null
     peakrpm
                                         int64
 23
     citympg
                        205 non-null
                                         int64
                        205 non-null
 24
                                         int64
     highwaympg
                        205 non-null
                                         float64
 25
     price
dtypes: float64(8), int64(8), object(10)
memory usage: 41.8+ KB
dataset.duplicated().sum()
```

```
0
dataset = dataset.drop(['CarName'], axis=1)
dataset.describe()
                                  wheelbase
           car ID
                     symboling
                                              carlength
                                                            carwidth
carheight
       205.000000
                    205.000000
                                 205,000000
                                             205,000000
                                                          205.000000
count
205.000000
                      0.834146
                                  98.756585
                                             174.049268
                                                           65.907805
mean
       103.000000
53.724878
std
        59.322565
                      1.245307
                                  6.021776
                                              12.337289
                                                            2.145204
2.443522
min
         1.000000
                     -2.000000
                                  86.600000
                                             141.100000
                                                           60.300000
47.800000
25%
                      0.000000
                                  94.500000
        52.000000
                                             166.300000
                                                           64.100000
52.000000
50%
       103.000000
                      1.000000
                                  97.000000
                                             173.200000
                                                           65.500000
54.100000
75%
       154.000000
                      2.000000
                                 102.400000
                                             183.100000
                                                           66.900000
55.500000
       205.000000
                      3.000000
                                 120.900000
                                             208.100000
                                                           72.300000
max
59.800000
                     enginesize
                                   boreratio
        curbweight
                                                   stroke
compressionratio \
count
        205.000000
                     205.000000
                                  205.000000
                                              205.000000
205.000000
       2555.565854
                     126.907317
                                                3.255415
mean
                                    3.329756
10.142537
std
        520.680204
                      41.642693
                                    0.270844
                                                0.313597
3.972040
min
       1488.000000
                      61.000000
                                    2.540000
                                                2.070000
7.000000
25%
                      97.000000
       2145.000000
                                    3.150000
                                                 3.110000
8.600000
50%
       2414.000000
                     120.000000
                                    3.310000
                                                3.290000
9.000000
75%
       2935.000000
                     141.000000
                                    3.580000
                                                 3.410000
9.400000
       4066.000000
                     326.000000
                                    3.940000
                                                 4.170000
max
23.000000
       horsepower
                        peakrpm
                                     citympg
                                              highwaympg
                                                                   price
       205.000000
                     205.000000
                                  205.000000
                                              205.000000
                                                             205.000000
count
```

25.219512

13.000000

19.000000

6.542142

30.751220

6.886443

16.000000

25.000000

13276.710571

7988.852332

5118.000000

7788.000000

104.117073

39.544167

48.000000

70.000000

mean std

min

25%

5125.121951

4150.000000

4800.000000

476.985643

```
50%
        95.000000
                   5200.000000
                                  24.000000
                                              30.000000
                                                          10295.000000
75%
       116.000000
                   5500.000000
                                  30.000000
                                              34.000000
                                                          16503.000000
max
       288,000000
                   6600.000000
                                  49.000000
                                              54.000000
                                                          45400.000000
# Checking missing values
dataset.isnull().sum()
                    0
car ID
symboling
                    0
fueltype
                    0
aspiration
                    0
doornumber
                    0
                    0
carbody
                    0
drivewheel
enginelocation
                    0
wheelbase
                    0
                    0
carlength
carwidth
                    0
carheight
                    0
                    0
curbweight
enginetype
                    0
cylindernumber
                    0
enginesize
                    0
                    0
fuelsystem
                    0
boreratio
stroke
                    0
compressionratio
                    0
horsepower
                    0
                    0
peakrpm
                    0
citympg
                    0
highwaympg
price
dtype: int64
# we have to handle outlier for the listed variables
# wheelbase, carlength, carwidth, enginesize, stroke,
compressionratio, horsepower, peakrpm, citympg, highwaympg
columns_to_check = ['wheelbase', 'carlength', 'carwidth',
'enginesize', 'stroke',
                     'compressionratio', 'horsepower', 'peakrpm',
'citympg', 'highwaympg']
# Function to detect and treat outliers
def treat outliers(dataset, columns):
    for col in columns:
        # Calculate Q1, Q3, and IQR
        Q1 = dataset[col].quantile(0.25)
        Q3 = dataset[col].quantile(0.75)
```

```
IQR = Q3 - Q1

# Define lower and upper bounds
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

# Cap the outliers
dataset[col] = dataset[col].apply(lambda x: upper_bound if x > upper_bound else (lower_bound if x < lower_bound else x))

return dataset

# Apply the function
dataset = treat_outliers(dataset, columns_to_check)

def boxplots(col):
    sns.boxplot(dataset[col])
    plt.show()

for i in list(dataset.select_dtypes(exclude=['object']).columns)[0:]:
    boxplots(i)</pre>
```



















```
#Convert categorical features (fueltype, aspiration, doornumber,
carbody, drivewheel, enginelocation,
#enginetype, cylindernumber, fuelsystem)
#into numerical using Label Encoding.
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
dataset['fueltype'] = le.fit transform(dataset['fueltype'])
dataset['aspiration'] = le.fit transform(dataset['aspiration'])
dataset['doornumber'] = le.fit transform(dataset['doornumber'])
dataset['carbody']= le.fit_transform(dataset['carbody'])
dataset['drivewheel'] = le.fit transform(dataset['drivewheel'])
dataset['enginelocation'] = le.fit transform(dataset['enginelocation'])
dataset['enginetype'] = le.fit transform(dataset['enginetype'])
dataset['cylindernumber'] = le.fit transform(dataset['cylindernumber'])
dataset['fuelsystem'] = le.fit transform(dataset['fuelsystem'])
dataset.head()
   car ID
           symboling fueltype aspiration doornumber
drivewheel
0
        1
                   3
                              1
                                          0
                                                      1
                                                               0
2
1
        2
                                          0
                                                      1
                                                               0
2
2
                                                               2
        3
                                          0
                   1
                                                      1
2
```

| 3                        | 4                                            | 2                                                 |                          | 1                        | 0                     | 0           | 3    |
|--------------------------|----------------------------------------------|---------------------------------------------------|--------------------------|--------------------------|-----------------------|-------------|------|
| 1<br>4                   | 5                                            | 2                                                 |                          | 1                        | 0                     | 0           | 3    |
| 0                        |                                              |                                                   |                          |                          |                       |             |      |
| engi<br>fuelsys          | Inelocat<br>Stem \                           | ion whe                                           | eelbase                  | carlength                | en                    | ginesize    |      |
| 0                        | ceiii (                                      | 0                                                 | 88.6                     | 168.8                    |                       | 130.0       | 5    |
| 1                        |                                              | 0                                                 | 88.6                     | 168.8                    |                       | 130.0       | 5    |
| 2                        |                                              | 0                                                 | 94.5                     | 171.2                    |                       | 152.0       | 5    |
| 3                        |                                              | 0                                                 | 99.8                     | 176.6                    |                       | 109.0       | 5    |
| 4                        |                                              | 0                                                 | 99.4                     | 176.6                    |                       | 136.0       | 5    |
|                          |                                              | stroke                                            | compres                  | sionratio                | horsepow              | ver peakrpm |      |
| citympo<br>0             | 3.47                                         | 2.68                                              |                          | 9.0                      | 111                   | .0 5000.0   | 21.0 |
| 1                        | 3.47                                         | 2.68                                              |                          | 9.0                      | 111                   | .0 5000.0   | 21.0 |
| 2                        | 2.68                                         | 3.47                                              |                          | 9.0                      | 154                   | .0 5000.0   | 19.0 |
| 3                        | 3.19                                         | 3.40                                              |                          | 10.0                     | 102                   | .0 5500.0   | 24.0 |
| 4                        | 3.19                                         | 3.40                                              |                          | 8.0                      | 115                   | .0 5500.0   | 18.0 |
| high<br>0<br>1<br>2<br>3 | 27.0<br>27.0<br>27.0<br>26.0<br>30.0<br>22.0 | price<br>13495.0<br>16500.0<br>16500.0<br>13950.0 | )<br>)<br>)              |                          |                       |             |      |
| [5 rows                  | x 25 c                                       | olumns]                                           |                          |                          |                       |             |      |
| x = dat<br>y = dat       | aset.il                                      | oc[:, <mark>0</mark> :<br>oc[:,- <u>1</u>         | - <mark>1</mark> ] # Ind | dependent<br>ndent varia | variable<br>able (Pri | ce)         |      |
| x.head                   | ()                                           |                                                   |                          |                          |                       |             |      |
|                          |                                              | boling                                            | fueltyp                  | e aspirat:               | ion door              | number carb | oody |
| drivewh                  | 1                                            | 3                                                 | ;                        | 1                        | 0                     | 1           | 0    |
| 2<br>1<br>2              | 2                                            | 3                                                 |                          | 1                        | 0                     | 1           | 0    |

| 2                            | 3                                         | 1                   |         | 1    |        | Θ       |        | 1      |       | 2  |
|------------------------------|-------------------------------------------|---------------------|---------|------|--------|---------|--------|--------|-------|----|
| 3                            | 4                                         | 2                   |         | 1    |        | 0       |        | 0      |       | 3  |
| 1<br>4                       | 5                                         | 2                   |         | 1    |        | 0       |        | 0      |       | 3  |
| 0                            |                                           |                     |         |      |        |         |        |        |       |    |
| engi<br>engines              |                                           | ion who             | eelbase | car  | length |         | cylino | dernum | ber   |    |
| 0                            | 120 (                                     | 0                   | 88.6    |      | 168.8  |         |        |        | 2     |    |
| 130.0<br>1                   |                                           | 0                   | 88.6    |      | 168.8  |         |        |        | 2     |    |
| 130.0<br>2                   |                                           | 0                   | 94.5    |      | 171.2  |         |        |        | 3     |    |
| 152.0<br>3                   |                                           | 0                   | 99.8    |      | 176.6  |         |        |        | 2     |    |
| 109.0                        |                                           |                     |         |      |        | •••     |        |        |       |    |
| 4<br>136.0                   |                                           | 0                   | 99.4    |      | 176.6  |         |        |        | 1     |    |
|                              | system                                    | borera <sup>-</sup> | tio st  | roke | compre | ssionra | atio   | horse  | powe  | r  |
| peakrpm<br>0                 | 5                                         | 3                   | . 47    | 2.68 |        |         | 9.0    |        | 111.0 | 9  |
| 5000.0<br>1                  | 5                                         | 3                   | . 47    | 2.68 |        |         | 9.0    |        | 111.0 | )  |
| 5000.0                       | 5                                         |                     |         | 3.47 |        |         |        |        |       |    |
| 5000.0                       |                                           |                     |         |      |        |         | 9.0    |        | 154.0 |    |
| 3<br>5500.0                  | 5                                         | 3                   | . 19    | 3.40 |        | į.      | 10.0   |        | 102.0 | •) |
| 4<br>5500.0                  | 5                                         | 3                   | . 19    | 3.40 |        |         | 8.0    |        | 115.0 | Ð  |
| city                         | mna hi                                    | ghwaymp             | ר       |      |        |         |        |        |       |    |
| 0 2                          | 1.0                                       | 27.(<br>27.(        | 9       |      |        |         |        |        |       |    |
| 2 1                          | 1.0<br>9.0                                | 26.0                | 9       |      |        |         |        |        |       |    |
|                              | 4.0<br>8.0                                | 30.0<br>22.0        |         |      |        |         |        |        |       |    |
| [5 rows                      | x 24 c                                    | olumns]             |         |      |        |         |        |        |       |    |
| y.head(                      | )                                         |                     |         |      |        |         |        |        |       |    |
| 1 16<br>2 16<br>3 13<br>4 17 | 495.0<br>500.0<br>500.0<br>950.0<br>450.0 |                     |         |      |        |         |        |        |       |    |
| wame: p                      | rice, d                                   | type: f             | Loat64  |      |        |         |        |        |       |    |

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
sc x = scaler.fit transform(x)
pd.DataFrame(sc x)
              1
                           2
                                     3
                                              4
6
   -1.723622 1.743470 0.328798 -0.469295 1.130388 -3.050975
0
1.213330
   -1.706724 1.743470 0.328798 -0.469295 1.130388 -3.050975
1.213330
   -1.689826 0.133509 0.328798 -0.469295 1.130388 -0.717207
1.213330
   -1.672928 0.938490 0.328798 -0.469295 -0.884652 0.449677 -
0.589081
4 -1.656029 0.938490 0.328798 -0.469295 -0.884652 0.449677 -
2.391492
200 1.656029 -1.476452 0.328798 -0.469295 -0.884652 0.449677
1.213330
201 1.672928 -1.476452 0.328798 2.130854 -0.884652 0.449677
1.213330
202 1.689826 -1.476452 0.328798 -0.469295 -0.884652 0.449677
1.213330
203 1.706724 -1.476452 -3.041381 2.130854 -0.884652 0.449677
1.213330
204 1.723622 -1.476452 0.328798 2.130854 -0.884652 0.449677
1.213330
          7
                  8
                            9 ...
                                         14 15
16
0 -0.121867 -1.723005 -0.426521 ... -0.147475 0.160196 0.869568
1 - 0.121867 - 1.723005 - 0.426521 \dots - 0.147475 0.160196 0.869568
2 -0.121867 -0.717590 -0.231513 ... 1.112210 0.809329 0.869568
3 -0.121867 0.185580 0.207256 ... -0.147475 -0.459430 0.869568
4 -0.121867 0.117416 0.207256 ... -1.407161 0.337232 0.869568
                           200 -0.121867 1.770387 1.198549 ... -0.147475 0.484762 0.869568
201 -0.121867 1.770387 1.198549 ... -0.147475 0.484762 0.869568
202 -0.121867 1.770387 1.198549 ... 1.112210 1.428955 0.869568
```

```
203 -0.121867 1.770387 1.198549 ... 1.112210 0.602787 -0.126306
204 -0.121867 1.770387 1.198549 ... -0.147475 0.484762 0.869568
          17 18 19
                                    20 21 22
23
    0.519071 - 2.106623 - 0.049433 \quad 0.229801 - 0.262757 - 0.649321 -
0
0.552143
    0.519071 - 2.106623 - 0.049433 \quad 0.229801 - 0.262757 - 0.649321 -
0.552143
2 -2.404880 0.753841 -0.049433 1.441341 -0.262757 -0.958163 -
0.702161
   -0.517266  0.500383  1.214121  -0.023777  0.791357  -0.186058  -
0.102086
4 -0.517266 0.500383 -1.312986 0.342502 0.791357 -1.112584 -
1.302237
200 1.666445 -0.404828 0.582344 0.314327 0.580534 -0.340479 -
0.402124
201 1.666445 -0.404828 -0.428499 1.610393 0.369711 -0.958163 -
0.852180
202 0.926204 -1.418663 -0.302143 0.877834 0.791357 -1.112584 -
1.152218
0.552143
204 1.666445 -0.404828 0.582344 0.314327 0.580534 -0.958163 -
0.852180
[205 rows x 24 columns]
pd.DataFrame(sc x).describe()
               0 1 2
count 2.050000e+02 2.050000e+02 2.050000e+02 2.050000e+02
2.050000e+02
mean -6.932124e-17 4.332578e-17 -7.798640e-17 6.282238e-17
1.039819e-16
      1.002448e+00 1.002448e+00 1.002448e+00 1.002448e+00
std
1.002448e+00
min -1.723622e+00 -2.281433e+00 -3.041381e+00 -4.692953e-01 -
8.846517e-01
     -8.618111e-01 -6.714717e-01 3.287980e-01 -4.692953e-01 -
8.846517e-01
      0.000000e+00 1.335090e-01 3.287980e-01 -4.692953e-01 -
50%
8.846517e-01
      8.618111e-01 9.384897e-01 3.287980e-01 -4.692953e-01
75%
```

```
1.130388e+00
      1.723622e+00 1.743470e+00 3.287980e-01 2.130854e+00
1.130388e+00
                5
                                            7
                                                          8
                              6
count 2.050000e+02 2.050000e+02 2.050000e+02 2.050000e+02
2.050000e+02
mean -1.646380e-16 -1.126470e-16 -8.665155e-18 -1.065814e-15
3.691356e-15
      1.002448e+00 1.002448e+00 1.002448e+00 1.002448e+00
std
1.002448e+00
min
      -3.050975e+00 -2.391492e+00 -1.218667e-01 -2.063824e+00 -1.218667e-01
2.677244e+00
      -7.172069e-01 -5.890807e-01 -1.218667e-01 -7.175899e-01 -
6.296552e-01
      4.496773e-01 -5.890807e-01 -1.218667e-01 -2.915663e-01 -
6.900603e-02
      4.496773e-01 1.213330e+00 -1.218667e-01 6.286445e-01
7.354037e-01
      1.616562e+00 1.213330e+00 8.205689e+00 2.647996e+00
max
2.766741e+00
                                                               17 \
                     14
                                   15
                                                 16
       ... 2.050000e+02 2.050000e+02 2.050000e+02 2.050000e+02
count
       ... -1.386425e-16 -1.992986e-16 1.039819e-16 2.252940e-15
mean
       ... 1.002448e+00 1.002448e+00 1.002448e+00 1.002448e+00
std
min
       ... -2.666846e+00 -1.875720e+00 -1.620116e+00 -2.923049e+00
       ... -1.474754e-01 -8.135028e-01 -1.122179e+00 -6.653141e-01
25%
50%
       ... -1.474754e-01 -1.348641e-01 8.695675e-01 -7.312136e-02
       ... -1.474754e-01 4.847625e-01 8.695675e-01 9.262039e-01
75%
       ... 4.891266e+00 2.432160e+00 1.865441e+00 2.258638e+00
max
                18
                              19
                                            20
                                                          21
22 \
count 2.050000e+02 2.050000e+02 2.050000e+02 2.050000e+02
2.050000e+02
      2.980813e-15 6.845473e-16 -2.057974e-17 -6.932124e-16
mean
2.469569e-16
      1.002448e+00 1.002448e+00 1.002448e+00 1.002448e+00
std
1.002448e+00
      -2.179040e+00 -2.071118e+00 -1.545246e+00 -2.054752e+00 -
min
1.884688e+00
      -5.496614e-01 -5.548541e-01 -9.253886e-01 -6.844030e-01 -
9.581629e-01
50%
      1.020901e-01 -4.943268e-02 -2.210047e-01 1.588884e-01 -
1.860584e-01
      5.365910e-01 4.559888e-01 3.706777e-01 7.913570e-01
75%
7.404671e-01
max 2.165970e+00 1.972253e+00 2.314777e+00 3.004997e+00
```

```
3.288412e+00
                 23
       2.050000e+02
count
       9.856614e-17
mean
       1.002448e+00
std
      -2.202350e+00
min
25%
      -8.521802e-01
50%
      -1.020860e-01
75%
      4.979894e-01
      2.523244e+00
max
[8 rows x 24 columns]
# It's multiple linear regression, hence we have to check
"Multicollinearity"
variable = sc x
variable.shape
(205, 24)
```

#### To check Multicollinearity - VIF (Variance Inflation Factor)

```
# VIF value is more than 5 means there is a multicollinearity there in
the features
from statsmodels.stats.outliers influence import
variance inflation factor
variable = sc x
vif = pd.DataFrame()
vif['variance inflation factor'] =
[variance inflation factor(variable, i) for i in
range(variable.shape[1])]
vif['Features'] = x.columns
vif
    variance inflation factor
                                         Features
0
                      1.479131
                                           car ID
1
                                        symboling
                      2.828315
2
                      5.584468
                                         fueltype
3
                      3.122923
                                      aspiration
4
                      2.780304
                                      doornumber
5
                      2.813480
                                          carbody
                                      drivewheel
6
                      2.626872
7
                                  enginelocation
                      1.805014
8
                     10.551627
                                       wheelbase
9
                     11.537443
                                        carlength
10
                     8.040508
                                         carwidth
11
                      2.929516
                                        carheight
```

| 12 | 18.449284 | curbweight       |
|----|-----------|------------------|
| 13 | 1.442345  | enginetype       |
|    |           | J , .            |
| 14 | 2.204296  | cylindernumber   |
| 15 | 16.377475 | enginesize       |
| 16 | 2.757890  | fuelsystem       |
| 17 | 2.491841  | boreratio        |
| 18 | 1.697226  | stroke           |
| 19 | 4.315996  | compressionratio |
| 20 | 17.445684 | horsepower       |
| 21 | 2.970193  | peakrpm          |
| 22 | 23.176338 | citympg          |
| 23 | 22.110875 | highwaympg       |
|    |           |                  |

## Finding correlation

```
plt.figure(figsize=(20,15))
#corr = Housing.corr()
sns.heatmap(dataset.corr(), annot=True, cmap='coolwarm')
plt.show()
```



# We have multicorrelated variables hence we need to apply PCA for dimensionality reduction

```
# Split the Data into Train and Test Sets
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2, random_state=42)
```

#### Linear Regression

```
# Apply Linear Regression
from sklearn.linear model import LinearRegression
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
# Initialize the Linear Regression model
lr model = LinearRegression()
# Train the model
lr model.fit(X train, y train)
# Make predictions
y pred lr = lr model.predict(X test)
y pred lr
array([24495.64959172, 21391.61915098,
                                        9280.41659459, 14280.61097737,
       26711.1821066 , 6593.44981859, 7609.43157162, 6705.47725175,
       10787.37603735, 6103.55009794, 15386.77862939, 7481.39209327,
       15623.12078086, 11115.45256861, 33341.20982346, 4873.97687978,
       -4220.80495503, 14118.81572874,
                                        9798.09584758, 11299.01521206,
       11299.17916788, 21308.15377546, 6883.26415079, 1776.51983521,
       6805.8324699 , 25958.839732 , 13889.49843904, 15831.3596836 ,
       4929.01094257, 17103.50952177, 27360.17456389, 6120.31202415,
        4707.26111497, 22375.70714452, 7819.91713441, 28456.93563104,
       10164.205043 , 10447.43562098, 5516.22217562, 14293.09217264,
        9136.07052383])
# Evaluate the Linear Regression model
mae_lr = mean_absolute_error(y_test, y_pred_lr)
mse lr = mean squared error(y test, y pred lr)
r2 lr = r2 score(y test, y pred lr)
print("Linear Regression Evaluation:")
print(f"MAE: {mae lr}")
print(f"MSE: {mse lr}")
print(f"R-squared: {r2_lr}")
Linear Regression Evaluation:
MAE: 2664.127335130712
MSE: 15831151.943431232
R-squared: 0.7994635721992898
```

#### Random Forest Regression

```
# Apply Random Forest Regression
from sklearn.ensemble import RandomForestRegressor
# Initialize the Random Forest model
rf model = RandomForestRegressor(n estimators=100, random state=42)
# Train the model
rf model.fit(X train, y train)
# Make predictions
y pred rf = rf model.predict(X test)
y pred rf
array([21234.63 , 18537.87 , 8714.31 , 13026.23 , 25965.325,
6058.375,
        7265. , 7981.51 , 11639.49 , 7341.47 , 16354.65 , 7795.71
       20358.115, 11458.66 , 29814.24 , 6725.2 , 6060.105, 14912.97
        8046.03 , 11253.13 , 10940.97 , 14698.61 , 5919.275 , 6733.36
        7302.65 , 26782.405 , 9648.25 , 16688.52 , 7312.43 , 16223.62
       30686.165, 7150.98, 7857.12, 19450.63, 8308.2,
27680.455,
       11402.46 , 11931.18 , 6975.285 , 15020.66 , 8733.14 ])
# Evaluate the Random Forest model
mae rf = mean absolute error(y test, y pred rf)
mse_rf = mean_squared_error(y_test, y_pred_rf)
r2 rf = r2 score(y test, y pred rf)
print("\nRandom Forest Regression Evaluation:")
print(f"MAE: {mae rf}")
print(f"MSE: {mse rf}")
print(f"R-squared: {r2 rf}")
Random Forest Regression Evaluation:
MAE: 2090.739463414634
MSE: 13142203.156256925
R-squared: 0.8335250344507925
# Prediction vs True Values Plot (for Random Forest)
plt.figure(figsize=(10, 6))
plt.scatter(y_test, y_pred_rf, color='blue', alpha=0.5)
plt.plot([min(y test), max(y test)], [min(y test), max(y test)],
color='red', linestyle='--')
plt.title('Random Forest: Prediction vs True Values')
```

```
plt.xlabel('True Values')
plt.ylabel('Predicted Values')
plt.show()
```



```
# Residuals Plot (Random Forest)
residuals_rf = y_test - y_pred_rf
plt.figure(figsize=(10, 6))
sns.residplot(x=y_pred_rf, y=residuals_rf, lowess=True, color='blue',
line_kws={'color': 'red', 'lw': 1})
plt.title('Random Forest: Residuals Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.show()
```



```
# Feature Importance (Random Forest)
importances = rf_model.feature_importances_
features = x.columns

# Sort feature importances in descending order
indices = importances.argsort()

plt.figure(figsize=(10, 6))
plt.barh(range(len(indices)), importances[indices], align='center')
plt.yticks(range(len(indices)), [features[i] for i in indices])
plt.title('Random Forest: Feature Importances')
plt.xlabel('Importance')
plt.ylabel('Features')
plt.show()
```





#### Ridge Regression

```
from sklearn.linear_model import Ridge, Lasso

# Ridge Regression
ridge_model = Ridge(alpha=1.0)
ridge_model.fit(X_train, y_train)

# Make predictions and evaluate Ridge
y_pred_ridge = ridge_model.predict(X_test)
print("Ridge Regression Performance:")
print(f"MAE: {mean_absolute_error(y_test, y_pred_ridge)}")
print(f"MSE: {mean_squared_error(y_test, y_pred_ridge)}")
print(f"R-squared: {r2_score(y_test, y_pred_ridge)}")

Ridge Regression Performance:
MAE: 2660.1791265483457
MSE: 15824634.958824884
R-squared: 0.7995461241713546
```

#### Lasso Regression

```
# Lasso Regression
lasso_model = Lasso(alpha=0.1)
lasso_model.fit(X_train, y_train)

# Make predictions and evaluate Lasso
y_pred_lasso = lasso_model.predict(X_test)
```

```
print("\nLasso Regression Performance:")
print(f"MAE: {mean_absolute_error(y_test, y_pred_lasso)}")
print(f"MSE: {mean_squared_error(y_test, y_pred_lasso)}")
print(f"R-squared: {r2_score(y_test, y_pred_lasso)}")

Lasso Regression Performance:
MAE: 2664.0331372881587
MSE: 15830174.791726185
R-squared: 0.7994759499790653
```

#### **Gradient Boosting Regressor**

```
from sklearn.ensemble import GradientBoostingRegressor

# Apply Gradient Boosting Regressor
gb_model = GradientBoostingRegressor(n_estimators=100,
learning_rate=0.1, max_depth=3, random_state=42)
gb_model.fit(X_train, y_train)

# Make predictions and evaluate GB
y_pred_gb = gb_model.predict(X_test)
print("\nGradient Boosting Regression Performance:")
print(f"MAE: {mean_absolute_error(y_test, y_pred_gb)}")
print(f"MSE: {mean_squared_error(y_test, y_pred_gb)}")
print(f"R-squared: {r2_score(y_test, y_pred_gb)}")

Gradient Boosting Regression Performance:
MAE: 2151.261016339273
MSE: 13214894.044313649
R-squared: 0.8326042441585482
```

### XGBoost Regressor

```
import xgboost as xgb

# Apply XGBoost Regressor
xgb_model = xgb.XGBRegressor(n_estimators=100, learning_rate=0.1,
max_depth=3, random_state=42)
xgb_model.fit(X_train, y_train)

# Make predictions and evaluate XGBoost
y_pred_xgb = xgb_model.predict(X_test)
print("\nXGBoost Regression Performance:")
print(f"MAE: {mean_absolute_error(y_test, y_pred_xgb)}")
print(f"MSE: {mean_squared_error(y_test, y_pred_xgb)}")
print(f"R-squared: {r2_score(y_test, y_pred_xgb)}")
XGBoost Regression Performance:
```

MAE: 1991.606135480183 MSE: 11071641.628366638

R-squared: 0.8597532592716014