EEA

2 - Rappels

Systemes Numeriques & Processeurs Embarques

Julien DENOULET

julien.denoulet@sorbonne-universite.fr L3 EEA - LU3EE100

SU – LIP6 L3 EEA – LU3EE100

Plan

Généralités

Systèmes Combinatoires

- Multiplexeurs, Codeurs, Décodeurs
- Incrémenteurs
- Comparateurs
- Nombres Signés Complément à 2
- Addition

Systèmes Séquentiels

- Bascules
- Registres
- Compteurs

C2

Rememberance of things past...

Électronique Combinatoire

 Un circuit est dit combinatoire si la valeur de ses sorties ne dépend que de la valeur actuelle des entrées

 Une même combinaison en entrée DONNERA TOUJOURS la même valeur en sortie (après un temps de latence)

C2

Électronique Séquentielle

 Un circuit est dit séquentiel si la valeur de ses sorties dépend de la combinaison de ses entrées ET de l'état du système

> Une même combinaison en entrée NE DONNERA PAS TOUJOURS la même valeur en sortie

C2

Rememberance of things past...

Rappels de Combinatoire

Multiplexeurs

- Dispositif d'aiguillage
 - Une des entrées passe en sortie

$$S = \overline{Com}.A + Com.B$$

C2

$$S = \overline{Com(1)}.\overline{Com(0)}.A + \\ \overline{Com(1)}.Com(0).B + \\ Com(1).\overline{Com(0)}.C + \\ Com(1).Com(0).D + \\$$

Démultiplexeurs

- Dispositif d'aiguillage
 - L'entrée passe sur une des sorties

 $S1 = \overline{Com}.A$ S2 = Com.A

$$S1 = \overline{Com(1)}.\overline{Com(0)}.A$$

$$S2 = \overline{Com(1)}.Com(0).A$$

$$S3 = Com(1).Com(0).A$$

$$S4 = Com(1).Com(0).A$$

Codeurs

■ 2^N entrées → N sorties

E3	E2	E1	E0	S1	S0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

C2

$$S1 = \overline{E3}.E2.\overline{E1}.\overline{E0} + E3.\overline{E2}.\overline{E1}.\overline{E0} = \overline{E1}.\overline{E0}.(E3 \oplus E2)$$

 $SO = \overline{E3}.\overline{E2}.\overline{E1}.EO + \overline{E3}.\overline{E2}.E1.\overline{E0} = \overline{E2}.\overline{E0}.(E3 \oplus E1)$

Décodeurs

■ N entrées → 2^N sorties

ı	E1	E0	S3	S2	S1	S0
ı	0	0	0	0	0	1
	0	1	0	0	1	0
	1	0	0	1	0	0
	1	1	1	0	0	0

C2

$$S3 = E1.E0$$

$$S2 = E1.\overline{E0}$$

$$S1 = \overline{E1}.E0$$
 $SO = \overline{E1}.\overline{E0}$

Détecteur d'égalité

Pour deux mots de 1 bit

E1	E0	Egal
0	0	1
0	1	0
1	0	0
1	1	1

$$Egal = \overline{E1} \oplus E0$$

NB: Détecteur d'inégalité = XOR

- Pour deux mots de n bits
 - Égalité si les bits sont égaux deux à deux

$$Egal = \overline{A_0 \oplus B_0} \cdot \overline{A_1 \oplus B_1} \dots \overline{A_{n-1} \oplus B_{n-1}}$$

C2

Détecteur de Supériorité

Détecteur de Supériorité

Détecteur d'infériorité

Raisonnement analogue à supériorité

OU

- A < B si
 - A n'est pas égal à B

A n'est pas supérieur à B

Incrémenteur

E3	E2	E1	E0	S3	S2	S1	S0
0	0	0	0	0	0	0	1
0	0/	0	1	0	0	(1)	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1/	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	I	1	1	Ö	0	0
1	0	0	0	1	0	0	1
1	0	0	1	1	0	1	0
1	0	1	0	1	0	1	1
1	0	1	1	1	/1	0	0
1	1	0	0	1	1	0	1
1	1	0	1	1	1	1	0
1	1	1	0	1	1	1	1
1	1	I	1	0	ď	0	0

$SO = \overline{EO}$
$S1 = E1 \oplus E0$
$S2 = E2 \oplus (E1.E0)$
$S3 = E3 \oplus (E2.E1.E0)$

16

Incrémenteur

C2

Nombres Signés

- Codage complément à 2
 - Introduction d'un bit de signe
 - Bit de poids fort (MSB: Most Significant Bit)
 - 0: Nombre positif
 - 1: Nombre négatif

■ Exemple

$$= -0 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

$$= -1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Complément à 2

- Passage d'un nombre à son complément à 2
 - Méthode 1:
 - Nombre à complémenter
 - Complément à 1
 - Ajouter 1
 - Complément à 2

- Méthode 2:
 - A partir du poids faible (LSB: Least Significant Bit)
 - Laisser inchangés tous les bits jusqu'au 1er '1' inclus
 - Complémenter tous les bits restants

$$0\ 1\ 0\ 1\ 0\ 0\ 0 \quad (+40)$$
 $1\ 0\ 1\ 1\ 0\ 0\ 0 \quad (-40)$

Nombres Signés

- Intérêt de la complémentation à 2
 - Le codage des nombres positifs est identique
 - Unicité du 0

- Utilisation des opérateurs non signés
 - Pour l'addition
 - Pour la soustraction

Demi-Additionneur

- Half-Adder (HA)
 - 2 entrées (A,B)
 - 1 sortie somme (S)
 - 1 sortie retenue (Cout)

		Cout
$A \longrightarrow B \longrightarrow$	HA	\longrightarrow S

$$S = A \oplus B$$

$$Cout = A.B$$

Additionneur Complet

- Full-Adder (FA)
 - 2 entrées (A,B)
 - 1 entrée retenue (Cin)
 - 1 sortie somme (S)
 - 1 sortie retenue (Cout)

Cin	Α	В	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $S = A \oplus B \oplus Cin$

 $Cout = A.B + Cin. A \oplus B$

C2

Additionneur n bits

- Mise en Cascade de Full Adders
 - Exemple Additionneur 4 bits

C2

Additionneur / Soustracteur

- Utilisation du complément à 2
 - $A B = A + (-B) = A + \overline{B} + 1$
 - Utilisation de l'additionneur n bits

Com	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

Additionneur / Soustracteur

- **■** Com=0
 - \blacksquare B xor 0 = B
 - S = A + B + 0
- > Addition

Com	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

C2

Additionneur / Soustracteur

■ B xor
$$1 = \overline{B}$$

$$S = A + \overline{B} + 1$$

To
BACK

Soustraction	

C	om	В	XOR
	0	0	0
	0	1	1
	1	0	1
	1	1	0

C2

C2

C2

C2

C2

Utilisation

 Accès à une ligne partagée bidirectionnelle (Bus d'un processeur)

31

C2

■ Communication Composant 1 → Composant 2

C2

L3EEA - LU3EE100

Rappels de Séquentiel

Bascules / Latchs

- Éléments de Mémorisation
 - Asynchrone
 - Bascule JK
 - Bascule RS
 - Synchrone sur niveau
 - Latch D
 - Synchrone sur front
 - Bascule D
 - Bascule T

Latch D

- Mémorisation sur Niveau
 - En fonction du signal d'horloge
 - H=0 → Verrouillage (Mémorisation): Q+=Q
 - $H=1 \rightarrow Acquisition: Q^+=D$

Bascule D

- Mémorisation sur Front
 - En fonction du signal d'horloge
 - $H=\int$ → Acquisition: $Q^+=D$
 - $H=0,1, \downarrow \rightarrow M\acute{e}morisation: Q^+=Q$

C2

 $\begin{array}{c|c} H & & & \\ D & & & \\ D & & & \\ \hline Q & & & \\ \end{array}$

Entrées de Forçage

- Initialisation ASYNCHRONE de la Bascule (Latch)
 - Entrée de Set -> Mise à 1
 - Entrée de Reset -> Mise à 0
- Intérêt: Permettent de démarrer un dispositif sans avoir de valeurs indéterminées dans les bascules

C2

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Chargement parallèle

39

Bloc

C2

Schéma

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Décalage à Droite (Chargement Série par le MSB)

C2

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Décalage à Gauche (Chargement Série par le LSB)

 $E \stackrel{/}{=} D \stackrel{Q}{=} Q$ $E \stackrel{Q}$

C2

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Rotation à Droite (Rebouclage sur le MSB)

 $D \quad Q \\ /^{n} \quad S \\ Raz \qquad Q \qquad Q \\ S_{n} \qquad S_{n-1} \qquad S_{n-2}$

C2

Raz.

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Rotation à Gauche (Rebouclage sur le LSB)

 $D \qquad Q \qquad /^{n} \qquad S \qquad D \qquad D \qquad D \qquad D$ $Raz \qquad Q \qquad Q$

C2

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction RAZ Synchrone

C2

- Association de Bascules
- Réalisant la même fonction au même instant
 - Fonction Mémorisation (Maintien de la valeur)

C2

Registres Multifonctions

- Ajout d'un multiplexeur devant chaque bascule pour sélectionner la fonction désirée
 - Ex: chargement parallèle
 - + mémorisation

C2

46

L3EEA - LU3EE100

Registres Multifonctions

- Ajout d'un multiplexeur devant chaque bascule pour sélectionner la fonction désirée
 - Ex: chargement parallèle
 - + mémorisation

Table des Fonctionnalités

Fonction	Com
Mémo	0
Chgt //	1

47

C2

Compteurs

- Registre + Incrémenteur
 - État du Compteur mémorisé dans les bascules

C2

Compteurs

- Compteurs Multifonctions
 - Architecture similaire à un registre multifonctions
 - Exemple
 - Chargement Valeur Initiale
 - Remise à Zéro Synchrone
 - Incrémentation / Décrémentation

Table des Fonctionnalités

Fonction	Com
Incrémentation	00
Décrémentation	01
Chgt. Valeur	10
RAZ Synchrone	11

C2

Pour conclure...

- Il est important de maîtriser ces fonctions pour aborder correctement VHDL
- A partir de maintenant, vous êtes censés maîtriser ces architectures combinatoires et séquentielles.
- Si ça n'est pas le cas, remédiez-y...
 - Livres, polys d'anciens cours, questions...

C2

