

In Air

Minimizing Loss

Minimizing Loss - LR

1 Closed form mathematical solution

2 Iterating w and b values for minimum loss

1

Closed form mathematical solution

Direct method to calculate best-fit line

Approach complexity increases in multi-variable scenarios

2

Iterating w and b values for minimum loss

Infinite combinations of w and b make exhaustive search impractical.

Example: Weight of 3.3 with bias of 10.1, or weight of 3.31 with bias of 10.11, etc

Gradient Descent

This technique is used to find the local minimum or optimize the loss function

A smarter approach to testing different w and b values

Backbone of neural networks

Predicting first year GPA of students.

$$y = w_i * x_i + b_i$$

 w_i = weight of the slope

 $x_i = input, sat_score$

b_i = bias or intercept

Find the best fit line to minimize the loss

$MSE = (1/n) \Sigma |\hat{y}-y|^2$

$$MSE = (1/n) \Sigma |\hat{y}-y|^2$$

=
$$(1/n) \Sigma |(wx+b)-y|^2$$

Objective: Find a value for weight where the loss is minimum

Note: Assume bias as constant to focus only on the impact of weight (w) on loss.

What is $\overline{W_{_{min}}}$?

Loss Function

Random weight value

Loss Function

 $W_3 > W_2 > W_1$

Loss Function

 $W_1 > W_2 > W_3$

Loss Function

Loss Function

 $W_3 > W_2 > W_1$

How would the algorithm know which side to move towards?

Loss Function

$$\frac{\mathrm{d}}{\mathrm{d}w}(MSE)$$

$$MSE = \frac{1}{N} \Sigma_{i=1}^{n} ((wx_i + b) - y_i)^2$$

Updating Weights

New weight (w_{new}) = Old Weight (w_{old}) - Slope

Challenges in Weight Update

New weight (w_{new}) = Old Weight (w_{old}) - Slope

Subtracting large slope can jump over the minimum.

Using a Learning Rate

Learning Rate: A small positive number that scales the slope to refine weight updates.

$$w_{new} = w_{old}$$
 - Learning Rate * slope

Choosing a Learning Rate

Small Learning Rate

Ideal Learning Rate

Large Learning Rate

Using a Learning Rate

 $w_{new} = w_{old}$ - Learning Rate * slope

Learning rate = 0.001 (Good starting point to train models)

This value can be increased or decreased based on observations.

When do we stop updating the weights?

When to Stop Updating?

1. Stop when $w_{new} = w_{old}$

$$w_{new} = w_{old}$$
- learning rate * slope
$$w_{new} = w_{old}$$
- learning rate * 0
$$w_{new} = w_{old}$$

When to Stop Updating?

2. Limit number of iterations

Ex: Limiting iterations to 1000

The Math Behind Gradient Descent

Find the derivative of the slope with respect to the weight w

$$L = \frac{1}{n} \Sigma_{i=1}^{n} (\hat{y}i - yi)^{2}$$

$$\hat{y} = \omega_i^* x_i + b$$

 x_i = features from dataset

$$L = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}i - yi)^2$$

$$\hat{y} - y = u$$

$$L = \frac{1}{N} \sum u^2$$

$$\frac{\mathrm{d}L}{\mathrm{d}u} = \frac{1}{N} \frac{\mathrm{d}(u^2)}{\mathrm{d}u}$$

$$\frac{dL}{du} = \frac{2u}{N}$$

$$\frac{\mathrm{d}L}{\mathrm{d}\hat{y}} = \frac{\mathrm{du}}{\mathrm{d}\hat{y}} * \frac{\mathrm{dL}}{\mathrm{du}}$$

How u impacts the loss value and then how \hat{y} impacts u.

$$\frac{du}{d\hat{y}} = \frac{d}{d\hat{y}} (\hat{y} - y) = 1$$

$$\frac{dL}{du} = \frac{2u}{N}$$

$$\frac{\mathrm{d}L}{\mathrm{d}\hat{y}} = \frac{\mathrm{d}u}{\mathrm{d}\hat{y}} * \frac{\mathrm{d}L}{\mathrm{d}u} \qquad \qquad \frac{dL}{d\hat{y}} = \frac{2u}{N} \quad \text{Combining 1 \& 2}$$

$$y_i = w.x_i + b$$

$$\frac{dL}{dw} = \frac{dL}{d\hat{v}} * \frac{d\hat{y}}{dw} \qquad \boxed{1}$$

$$\frac{dL}{db} = \frac{dL}{d\hat{y}} * \frac{d\hat{y}}{db} \qquad -----2$$

$$\frac{dL}{dw} = 2u \cdot x_i \quad or \quad 2(\hat{y} - y) \cdot x_i$$
$$2((w^*x + b) - y \cdot x_i)$$

$$w_{new} = w_{old}$$
 - learning rate * slope

$$b_{new} = b_{old}$$
 - learning rate * slope

$$\frac{\mathrm{d}L}{\mathrm{d}B} = 2u = 2 (w_{old} * x + b)$$

Find how weights in earlier layers affect the loss function in a multi neural network.