

yathartha.regmi@ttu.edu

(Sign out)

Home My Assignments
Grades Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Electric Potential (Homework)

™ INSTRUCTOR **Keith West**Texas Tech University

Due Date

THU, AUG 4, 2022

11:58 PM CDT

Request Extension

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

A uniform electric field of magnitude 295 V/m is directed in the negative y direction as shown in the figure below. The coordinates of point A are (-0.750, -0.550) m, and those of point B are (0.900, 0.650) m. Calculate the electric potential difference $V_{\text{B}} - V_{\text{A}}$ using the dashed-line path.

An electron moving parallel to the x axis has an initial speed of 4.80×10^6 m/s at the origin. Its speed is reduced to 1.94×10^5 m/s at the point x = 2.00 cm.

(a) Calculate	the electric	potential	difference	between	the	origin	and	that	point.
	Volts								

- (b) Which point is at the higher potential?
 - \bigcirc both have the same potential
 - O the origin
 - \bigcirc the point x = 2.00 cm

Need Help? Read It Master It

3. [-/2 Points]

DETAILS

SERPSE10 24.3.OP.009.

MY NOTES

ASK YOUR TEACHER

PRACTICE ANOTHER

Two charges, $q_1 = -14.5$ nC and $q_2 = 26.5$ nC, are separated by a distance d = 2.50 cm as shown in the figure.

 \bigcirc

Determine the following.

(a) the electric potential (in kV) at point A

kV

(b) the electric potential (in kV) at point B, which is halfway between the charges

kV

Need Help?

Read It

The figure below represents a graph of the electric potential in a region of space versus position x, where the electric field is parallel to the x axis. Draw a graph of the x component of the electric field versus x in this region. (Submit a file with a maximum size of 1 MB.)

Choose File No file chosen

This answer has not been graded yet.

Need Help?

Read It

5. [-/9 Points] DETAILS SERPSE10 24.4.OP.020.
MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER
The potential in a region between $x=0$ and $x=6.00$ m is $V=a+bx$, where $a=12.6$ V and $b=-3.90$ V/m.
(a) Determine the potential at $x = 0$.
Determine the potential at $x = 3.00$ m.
Determine the potential at $x = 6.00$ m.
(b) Determine the magnitude and direction of the electric field at $x=0$. magnitude $\boxed{ V/m}$ direction $\boxed{Select \checkmark }$
Determine the magnitude and direction of the electric field at $x=3.00$ m. magnitude V/m direction $Select$
Determine the magnitude and direction of the electric field at $x=6.00$ m. magnitude V/m directionSelect \checkmark

Need Help? Read It

Watch It

A charge Q is distributed uniformly around the perimeter of a ring of radius R. Determine the electric potential difference between the point at the center of the ring and a point on its axis at a distance 3R from the center. (Use any variable or symbol stated above along with the following as necessary: k_e .)

$$\Delta V = V(0) - V(3R) =$$

Need Help? Read It

A spherical conductor has a radius of 14.0 cm and a charge of $38.0~\mu$ C. Calculate the electric field and the electric potential at the following distances from the center.

	magnitude		direction	
electric field		MN/C	Select	<
electric potential		MV	Select	~

(b) r = 40.0 cm

	magnitude		direction	
electric field		MN/C	Select	<
electric potential		MV	Select	Y

(c) r = 14.0 cm

	magnitude		direction	
electric field		MN/C	Select	~
electric potential		MV	Select	~

Need Help? Read It Master It

Home My Assignments Fequest Extension

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved **TERMS OF USE PRIVACY**