

Hand-in Assignment #3: Building Acoustics

7LS8M0: Architectural Acoustics

M.E. (Michalis) Terzakis

Building Acoustic Group

Assignments Instructions

- Report
 - No-need of including theoretical background or repeating the questions writen in the guideline.
 - Include the plots in a high quality.
 - Answer the questions in a motivated way.
- Report structure (proposal)
 - Introduction (in-short): What is the purpose of the assignment.
 - Tasks: with a short description + answers.
 - Conclusion (in-short): Summary of the main reamarks with respect to the purpose of the assignment.
 - References.
 - Appendix: MATLAB codes, including comments.

Evaluation Criteria

Introduction to Tutorials

5

Assignments Evaluation Criteria

- MATLAB-based Assignments
 - Clear structure and language in the report.
 - High quality of references and correct citation.
 - Correct approach and results.
 - Clear and well illustrated figures, including all the information (i.e., title, axes labels, and legends).
 - Correct implementation in MATLAB.
 - Inclusion of explanation comments in MATLAB.
 - Correct interretation of the results supported by literature.
- Concept Presentation Assignment
 - To be announced later.

Tasks of the Assignment HA3

- Airborne Sound Insulation
 - Evaluation of the Measured Sound Reduction Index via a Single Quantity
- Impact Sound Insulation
 - Evaluation of the Measured Impact Sound Level via a Single Quantity

Expression of the Measured Quantities

- Airborne Sound Insulation [R: Sound Reduction Index (dB)]
 - Airborne energy transmitted from one room to the other room.
 - $L_{s,m}(dB)$, $L_{r,m}(dB)$, $T_{r,60,m}(m^2)$ per 1/3-octave frequency band and position m.
 - $R = L_s L_r + 10 \log_{10} \left(\frac{s}{A_r} \right).$
 - L_s , L_r , A_r : Average Values per 1/3-octave frequency band.
 - $T_{r,60} = 0.161 \frac{V_r}{A_r} \rightarrow A_r = 0.161 \frac{V_r}{T_{r,60}}$.
 - $L_{b,m} \to L_b(dB)$ per 1/3-octave frequency band and position m. [Measurements Quality]

- Structure-borne energy transmitted via uncovered and covered floor.
- $L_{r,m}(dB)$, $T_{r,60,m}(m^2)$ per 1/3-octave frequency band and position m.
- $L_n = L_r + 10 \log_{10} \left(\frac{A_r}{A_0} \right)$, $A_0 = 10m^2$.
- L_r , A_r : Average Values per 1/3-octave frequency band.
- $T_{r,60} = 0.161 \frac{V_r}{A_r} \to A_r = 0.161 \frac{V_r}{T_{r,60}}$.

Evaluation of the Measured Quantities via Reference Quantities

- Fitting of Reference Curves to Measured Curves
 - Increment of the reference curve by 1dB

$$L_{fit,ref} = L_{ref} + 1dB$$
 or $L_{fit,ref} = L_{ref} + (-1dB)$

Fitting Criterion: The sum of unfavorable deviations should be as large as 32dB.

$$L_{diff} = \log_{10} \left(10^{\sum (L_{fit,ref} - L_{meas})} \right)$$
, $\forall f_c : L_{fit,ref} > L_{meas}$

• Unfavorable Deviations:

$$L_{fit,ref} - L_{meas}, \forall f_c: L_{fit,ref} > L_{meas}$$

Associated to Annoyance

Weighted Signle-Quantity Index

$$L'_{fit,ref} = L_{fit,ref}$$
 at 500Hz

- For Airborne Sound Insulation: $L_{ref} = R_{ref}$, $L_{meas} = R$, and $L'_{fit,ref} = R'_w$.
- For Impact Sound Insulation: $L_{ref} = L_{n,ref}$, $L_{meas} = L_n$, and $L'_{fit,ref} = L'_n$

Fitting Curve: Example

Annoyance: Weighted Single-Quantity Index

Airborne-Sound Insulation (Dwellings - Parallel Rooms)

Speech: 30%
Music : 39%
→ 46dB ≤ R'_w ≤ 65dB

- Impact Sound Insulation (Dwellings Vertical Room)
 - Footfall Noise: 85% \longrightarrow 41dB $\leq L'_{n,w} \leq$ 60dB
- Case Studies:
 - How would you characterize the airborne and impact sound insulation between the measured rooms?
 - How would you characterize the influence of the carpet in the impact sound insulation?

Final Remarks

- Read (very) very carefully the *guideline*.
- For questions [e-mail and/or StudyHub Hours on Fridays].
- HA3 deadline: 13-04-2022 @ 23:59.