Fit a Weibull model using Trinity and JAGS

Table of Contents

JAGS convention (scale λ and shape k):
MATLAB convention (scale a and shape b):
Preamble
Generate data and make structure
Define some priors
Plot the priors
Make all inputs that Trinity needs
Run Trinity with the CALLBAYES() function
Inspect the results
Make some figures

It is important to note that the Weibull distribution follows a different parameter convention in MATLAB and JAGS, and we will have to transform parameters in order to compare.

JAGS convention (scale λ and shape k):

$$v\lambda x^{v-1}\exp\left(-\lambda x^{v}\right)$$

MATLAB convention (scale a and shape b):

$$\frac{b}{a} \left(\frac{x}{a}\right)^{b-1} \exp\left(-(x/a)^b\right)$$

Preamble

```
Cleanup first
clear all
p = @sprintf;
```

Generate data and make structure

Define some priors

Use JAGS parameter conventions

```
prscale = [2.0 0.5]; % gamma distribution (shape, rate)
prshape = [2.0 0.5]; % gamma distribution (shape, rate)
```

Plot the priors

Make sure to transform to MATLAB parameter conventions

Scale a

```
figure('windowstyle', 'docked')
xax = linspace( 0.0, 10.0, 200);
plot(xax, gampdf(xax, prscale(1), prscale(2)^-1), 'linewidth', 2)
xlabel alpha
```



```
Shape f
xax = linspace( 0.0, 10.0, 200);
plot(xax, gampdf(xax, prshape(1), prshape(2)^-1), 'linewidth', 2)
```

xlabel beta

Make all inputs that Trinity needs

Write the JAGS model into a variable (cell variable)

```
model = {
    'model {'
    ' # Priors on precision'
      precshape ~ dgamma(0.1, 0.1)'
       precscale ~ dgamma(0.1, 0.1)'
       for (c in 1:C) { '
        # Priors on means'
         mushape[c] ~ dgamma(%g, %g)', prshape)
 p('
         muscale[c] ~ dgamma(%g, %g)', prscale)
 p( '
         # Random effects'
         for (p in 1:P) { '
           shape[c,p] ~ dnorm(mushape[c], precshape)'
           scale[c,p] ~ dnorm(muscale[c], precscale)'
       } '
       # Likelihood'
       for (n in 1:N) {'
         y[n] ~ dweib(shape[condition[n],person[n]],'
                       scale[condition[n],person[n]])'
    1}'
    };
```

List all the parameters of interest (cell variable)

```
parameters = { ...
    'scale', 'shape', ...
```

```
'mushape', 'muscale', ...
'precshape', 'precscale'};
```

Write a function that generates a structure with one random value for each random parameter

Run Trinity with the CALLBAYES() function

```
% [stats, chains, diagnostics, info] = callbayes(engine, ...
% 'model'
            ,
                            model , ...
    'data'
                            data , ...
    'nchains'
    'verbosity'
응
                               0
    'nsamples'
                            1e3 , ...
%
용
    'nburnin'
                            5e2 , ...
   'parallel' ,
'workingdir' ,
%
                        isunix() , ...
                          'wdir' , ...
응
    'monitorparams', parameters, ...
     'init' ,
                       generator );
load /tmp/wbl
fprintf('%s took %f seconds!\n', upper(engine), toc)
       JAGS took 0.082298 seconds!
```

Inspect the results

```
First, inspect convergence
```

```
if any(codatable(chains, @gelmanrubin) > 1.1)
    grtable(chains, 1.1)
    warning('Some chains were not converged!')
else
    disp('Convergence looks good.')
end

    Convergence looks good.

Now check some basic descriptive statistics averaged over all chains
disp('Descriptive statistics for all chains:')

    Descriptive statistics for all chains:
Boundary separation Codatable(chains, '^mushape')
```

Est	imand	mean	std	plt0
mush	nape_1	0.9997	0.04408	0
mush	nape_2	1.998	0.06453	0
mush	nape_3	3.036	0.08023	0
mush	nape_4	3.824	0.1065	0
mush	nape_5	4.778	0.1186	0
mush	nape_6	5.498	0.1291	0
mush	nape_7	6.238	0.1527	0
mush	nape_8	7.376	0.1743	0
A-priori bias $oldsymbol{eta}$				
codatable(chai	ns, '^mu	scale')		
Est	imand	mean	std	plt0
musc	ale_1	0.9543	0.03819	0
musc	ale_2	1.096	0.04368	0
musc	ale_3	0.9436	0.03628	0
musc	ale_4	0.9787	0.03772	0
musc	ale_5	0.0254	0.01394	0
musc	ale_6	0.02372	0.01261	0
musc	ale_7	0.02232	0.01234	0
musc	ale_8	0.0225	0.01275	0

Make some figures

Smoothed histograms figure('windowstyle', 'docked')

Published with MATLAB® R2013a