Matematika Dasar SPMB Tahun 2007 Regional I

01. Solusi persamaan
$$\left(\frac{5}{5^{x-3}}\right)^2 = \sqrt[3]{\frac{1}{125}}$$
 adalah ...

- (A) $2\frac{1}{2}$ (B) $3\frac{1}{2}$ (C) $4\frac{1}{2}$

- (D) $5\frac{1}{2}$ (E) $6\frac{1}{2}$

02. Jika
$$x_{_1}$$
 dan $x_{_2}$ adalah akar-akar persamaan :

- $(5 2\log x)\log x = \log 1000$, maka $x_1^2 + x_2^2 = ...$ (A) 0 (D) 1000

(B) 10

- (C) 100
- 03. Parabol $y = mx^2 (m + 2)x + (m + 1)$ terletak di atas sumbu x untuk nilai m yang memenuhi....
 - (A) $m > -\frac{2}{3}\sqrt{3}$

 - (B) $m > \frac{2}{3}\sqrt{3}$ (C) $m < -2\sqrt{3}$
 - (D) $m > 2\sqrt{3}$
 - (E) $m > \frac{1}{2}\sqrt{3}$
- 04. Jika persamaan kuadrat $px^2 2px + 1 = 0$ mempunyai akar kembar x_1 , maka persamaan garis singgung pada kurva $f(x) = x^3 + \frac{2}{x^3}$ di $(x_1, f(x_1))$ adalah
 - (A) y 3x 6 = 0
 - (B) y + 3x 6 = 0
 - (C) y + 3x + 6 = 0
 - (D) y 3x = 0
 - (E) y 3x + 6 = 0
- 05. Persamaan kuadrat $x^2 + 5x + 6 = 0$ mempunyai akar x_1 dan x_2 dengan $x_1 < x_2$. Persamaan kuadrat yang akar-akarnya $(x_1 + 5)$ dan $(x_2 + 6)$ adalah
 - (A) $x^2 3x 4 = 0$
 - (B) $x^2 5x + 6 = 0$
 - (C) $x^2 6x + 8 = 0$
 - (D) $x^2 7x + 6 = 0$
 - (E) $x^2 8x 9 = 0$
- 06. Jika (a, b, c) adalah solusi sistem persamaan linear

$$\begin{cases} 2x + 2y + z = 5 \\ x + y + 2z = 4 \\ x + y + z = 3 \end{cases}$$

maka kaitan antara a dan b adalah

(A) a = b - 2

(D) a = 1 - b

(B) a = b - 1

(E) a = 2 - b

(C) a = b

Matematika Dasar SPMB Tahun 2007 Regional I

- 07. Agung mempunyai satu bundel tiket Piala Dunia untuk dijual. Pada hari pertama terjual 10 lembar tiket, hari kedua terjual setengah dari tiket yang tersisa, dan pada hari ketiga terjual 5 lembar tiket. Jika tersisa 2 lembar tiket, maka banyaknya tiket dalam satu bundel adalah
 - (A) 20
 - (B) 21
 - (C) 22
 - (D) 23
 - (E) 24
- 08. Nilai x yang memenuhi $x^2 3x 10 \le 0$ dan $x^2 x 12 < 0$ adalah
 - (A) $-3 < x \le 5$
 - (B) $-3 \le x \le 5$
 - (C) -2 < x < 4
 - (D) $-2 \le x < 4$
 - (E) $4 < x \le 5$
- 09. Solusi pertaksamaan : $\frac{(x-2)(x^2+x-6)}{x^2+x-20} > 0$ adalah
 - (A) x < -5 atau -3 < x < 2
 - (B) x < -3 atau 2 < x < 4
 - (C) -5 < x < -3 atau x > 2
 - (D) -5 < x < -3 atau x > 4
 - (E) -3 < x < 2 atau x > 4
- 10. Nilai minimum dari z = 3x + 5y yang memenuhi syarat $2x + y \ge 30$, $15 \le x$, $y \le 20$, $x \ge 0$, $y \ge 0$ adalah
 - (A) 25
 - (B) 45
 - (C) 60
 - (D) 80
 - (E) 100
- 11. Jika $f(x) = f(x-1) + \frac{1}{4} \operatorname{dan} f(1) = 4$, maka $f(201) = \dots$
 - (A) 50
 - (B) 51
 - (C) 52
 - (D) 53
- 12. Jika $\frac{1}{x+1} + \frac{1}{(x+1)^2} + \frac{1}{(x+1)^3} + \dots = \frac{1}{2}$, maka suku ke-5 deret tersebut adalah
 - (A) $\frac{1}{15}$
 - (B) $\frac{1}{32}$ (C) $\frac{1}{64}$ (D) $\frac{1}{81}$ (E) $\frac{1}{243}$

Matematika Dasar SPMB Tahun 2007 Regional I

- 13. Jika matriks $A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & 1 \\ 2 & 4 \end{pmatrix}$, dan C memenuhi AC = B, maka matriks C adalah

 (A) $\begin{pmatrix} 1 & 3 \\ 1 & -1 \end{pmatrix}$ (B) $\begin{pmatrix} 5 & 3 \\ -1 & 1 \end{pmatrix}$ (C) $\begin{pmatrix} 2 & -4 \\ 1 & -1 \end{pmatrix}$

- (C) $\begin{pmatrix} 5 & 3 \\ -1 & 2 \end{pmatrix}$
- 14. Jika matriks A memenuhi $A \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 4 & 6 \end{pmatrix}$, maka det $A = \dots$

 - (B) -2
 - (C) -1
 - (D) 1
 - (E) 2
- 15. Pada $\triangle ABC$, jika AC = p, BC = 2p, dan $\angle ACB = 120^{\circ}$, maka panjang ruas garis AB adalah
 - (A) $\frac{1}{2}\sqrt{7}p$

 - (B) $\sqrt{7}p$ (C) $\sqrt{14}p$ (D) $3\sqrt{2}p$

 - (E) $3\sqrt{3}n$
- 16. Jika x_1 dan x_2 adalah solusi persamaan : $\sqrt{2} + 2\cos x = 0,0^{\circ} \le x \le 360^{\circ}$, maka $x_1 + x_2 = ...$
 - (A) 310°
 - (B) 320°
 - (C) 340°
 - (D) 350°
 - (E) 360°
- 17. Dari angka 1, 2, 3, 4, dan 5 akan dibentuk bilangan yang terdiri dari tiga angka berbeda. Banyaknya bilangan ganjil yang terbentuk adalah
 - (A) 24
 - (B) 30
 - (C) 36
 - (D) 40
 - (E) 60
- 18. Tiga siswa dipilih untuk mewakili 6 orang siswa putri dan 10 orang siswa putra. Kemungkinan ketiga siswa yang terpilih semuanya putra adalah

(A) $\frac{12}{56}$ (B) $\frac{15}{56}$ (C) $\frac{16}{56}$

(E) $\frac{35}{56}$

Matematika Dasar SPMB Tahun 2007 Regional I

(A) 5 (B) 6 (C) 7

(A) $x \le 1$ (B) x > 1(C) $0 < x \le 1$ (D) 0 < x < 1

	(E) $x > 0$	
21.	$\lim_{x \to 5} \frac{x^2 - 25}{\sqrt{x^2 + 24} - 7} = \dots$	
	(A) 0 (B) 5 (C) 7	(D) 14 (E) 18
22.	Jika $f(x) = \frac{5x-4}{5x+4}$, maka turunan fungsi f di 0 adalah $f'(0) =$	
	(A) $-2\frac{1}{2}$ (B) -1 (C) $\frac{1}{2}$ (D) 1 (E) $2\frac{1}{2}$	
23.	Suatu proyek dapat dikerjakar juta rupiah. Jika biaya minim maka $R =$ (A) 750 (B) 940 (C) 1170 (D) 1400 (E) 1750	selama p hari, dengan biaya setiap harinya $\left(4p + \frac{1500}{p} - 40\right)$ um proyek tersebut adalah R juta rupiah,
	dan $4 x_1$ membentuk barisan g (A) -9 (I (B) -6 (I (C) 3	$18 = 0$ mempunyai dua akar, $x_1 > 0$ dan $x_2 > 0$. Jika x_1, x_2 , eometri, maka konstanta $b = \dots$ $0) 9$ $0) 12$
25.	. Pada matriks $A = \begin{pmatrix} 1 & a \\ b & c \end{pmatrix}$, jika bilangan positif 1, a, c, membentuk barisan geometri berjumlah	
	13 dan bilangan positif 1, b, c membentuk barisan aritmetika, maka $\det A = \dots$	
	(A) 17 (B) 6 (C) -1 (D) -6 (E) -22	

19. Jika rataan dari a –2, b + 3, c + 5 adalah 6, maka rataan dari a + 4, b + 6, c – 1 adalah

20. Jika $f(x) = \frac{1}{x}$ dan $g(x) = \sqrt{x-1}$, maka daerah asal fungsi komposisi $g \circ f$ adalah

(D) 8 (E) 9