

DUAL MONOSTABLE MULTIVIBRATOR

- RETRIGGERABLE/RESETTABLE CAPABILITY
- TRIGGER AND RESET PROPAGATION DELAYS INDEPENDENT OF R_X, C_X
- TRIGGERING FROM LEADING OR TRAILING EDGE
- Q AND Q BUFFERED OUTPUT AVAILABLE
- SEPARATE RESETS
- WIDE RANGE OF OUTPUT PULSE WIDTHS
- QUIESCENT CURRENT SPECIFIED UP TO 20V
- 5V, 10V AND 15V PARAMETRIC RATINGS
- INPUT LEAKAGE CURRENT I_I = 100nA (MAX) AT V_{DD} = 18V T_A = 25°C
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDEC JESD13B " STANDARD SPECIFICATIONS FOR DESCRIPTION OF B SERIES CMOS DEVICES"

The HCF4098B is a monolithic integrated circuit fabricated in Metal Oxide Semiconductor technology available in DIP and SOP packages. The HCF4098B dual precision monostable multivibrator provides stable retriggerable/resettable one-shot operation for any fixed voltage timing application. An external resistor ($R_{\rm X}$) and an external capacitor ($C_{\rm X}$) control the timing for the circuit. Adjustment of $R_{\rm X}$ and $C_{\rm X}$ provides a

ORDER CODES

PACKAGE	TUBE	T&R
DIP	HCF4098BEY	
SOP	HCF4098BM1	HCF4098M013TR

wide range of output pulse widths from the Q and \overline{Q} terminals. The time delay from trigger input to output transition (trigger propagation delay) and the time delay from reset input to output transition (reset propagation delay) and the time delay from reset input to output transition (reset propagation delay) are independent of R_X and C_X . Leading edge triggering (+TR) and trailing edge triggering (-TR) inputs are provided for triggering from either edge of an input pulse. An unused +TR input should be tied to V_{SS} . An unused -TR input should be tied to V_{DD} . A RESET (on low level) is provided for immediate termination of the output pulse or to prevent output pulses when power is turned on.

PIN CONNECTION

September 2001 1/10

An unused RESET input should be tied to V_{DD} . However, if an entire section of the HCF4098B is not used, its reset should be tied to V_{SS} (see table 1). In normal operation the circuit triggers (extends the output pulse one period) on the application of each new trigger pulse. For operation in the non-retiggerable mode, \overline{Q} is connected to -TR when leading edge triggering (+TR) is used or \overline{Q} is connected to +TR when trailing edge triggering (-TR) is used. The time period (T) for this

INPUT EQUIVALENT CIRCUIT VDD INPUT

multivibrator can be calculated by : T = 1/2 R_X C_X for $C_X \geq 0.01 \mu F.$ The min. value of external resistance, R_X , is $5 K \Omega.$ The max. values of external capacitance, C_X , is $100~\mu F.$ The output pulse width has variations of $\pm 2.5\%$ typically, over the temperature range of -55 °C to 125 °C for $C_X{=}1000 p F$ and $R_X = 100 K \Omega$. For power supply variation of $\pm 5\%$ typically , for $V_{DD} = 10 V$ and 15 V and $\pm 1\%$ typically for $V_{DD} = 5 V$ at $C_X = 1000 p F$ and $R_X = 5 K \Omega$.

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
4, 12	+TR	Leading Trigger Inputs
5, 11	-TR	Trailing Trigger Inputs
3, 13	RESET	Reset Inputs
1, 15	C _X 1, C _X 2	External Capacitors
2, 14	R _X C _X 1 R _X C _X 2	External resistors to Vdd
6, 7	Q1, Q1	Ouputs Mono 1
10, 9	Q2, Q2	Outputs Mono 2
8	V_{SS}	Negative Supply Voltage
16	V_{DD}	Positive Supply Voltage

FUNCTIONAL DIAGRAM

TABLE 1: Functional Terminal Connections

FUNCTION	V _{DD} to Term. N°		V _{SS} to Term. N°		Input P Tern	ulse to า. N°	Other Connections		
	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)	Mono (1)	Mono (2)	
Leading Edge Trigger/ Retriggerable	3, 5	11, 13			4	12			
Leading Edge Trigger/Non Retriggerable	3	13			4	12	5, 7	11, 9	
Trailing Edge Trigger/ Retriggerable	3	13	4	12	5	11			
Trailing Edge Trigger/Non Retriggerable	3	13			5	11	4, 6	12, 10	
Unused Section	5	11	3, 4	12, 13					

A Retriggerable one-shot multivibrator has an output pulse width which is extended on full time period (T) after application of the last trigger pulse.

A Non-Retriggerable one-shot multivibrator has a time period (T) referenced from the application of the firs trigger pulse.

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD}	Supply Voltage	-0.5 to +22	V
VI	DC Input Voltage	-0.5 to V _{DD} + 0.5	V
I	DC Input Current	± 10	mA
P_{D}	Power Dissipation per Package	200	mW
	Power Dissipation per Output Transistor	100	mW
T _{op}	Operating Temperature	-55 to +125	°C
T _{stg}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

All voltage values are referred to V_{SS} pin voltage.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	3 to 20	V
V _I	Input Voltage	0 to V _{DD}	V
T _{op}	Operating Temperature	-55 to 125	°C

DC SPECIFICATIONS

			Test Con	dition		Value							
Symbol	Parameter	VI	v _o	IIOI VDI	V_{DD}	T _A = 25°C		С	-40 to 85°C		-55 to 125°C		Unit
		(V)	(V)	(μΑ)	(μ A) (V)	Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
ΙL	Quiescent Current	0/5			5		0.02	1		30		30	
		0/10			10		0.02	2		60		60	^
		0/15			15		0.02	4		120		120	μΑ
		0/20			20		0.04	20		600		600	
V _{OH}	High Level Output	0/5		<1	5	4.95			4.95		4.95		
	Voltage	0/10		<1	10	9.95			9.95		9.95		V
		0/15		<1	15	14.95			14.95		14.95		
V _{OL}	Low Level Output	5/0		<1	5		0.05			0.05		0.05	
	Voltage	10/0		<1	10		0.05			0.05		0.05	V
		15/0		<1	15		0.05			0.05		0.05	
V _{IH}	V _{IH} High Level Input Voltage		0.5/4.5	<1	5	3.5			3.5		3.5		
			1/9	<1	10	7			7		7		V
			1.5/13.5	<1	15	11			11		11		
V _{IL}	Low Level Input		4.5/0.5	<1	5			1.5		1.5		1.5	
	Voltage		9/1	<1	10			3		3		3	V
			13.5/1.5	<1	15			4		4		4	
I _{OH}	Output Drive	0/5	2.5	<1	5	-1.6	-3.2		-1.3		-1.3		
	Current	0/5	4.6	<1	5	-0.51	-1		-0.42		-0.42		mA
		0/10	9.5	<1	10	-1.3	-2.6		-1.1		-1.1		mA
		0/15	13.5	<1	15	-3.4	-6.8		-2.8		-2.8		
I _{OL}	Output Sink	0/5	0.4	<1	5	-0.51	1		-0.42		-0.42		
	Current	0/10	0.5	<1	10	-1.3	2.6		-1.1		-1.1		mΑ
		0/15	1.5	<1	15	-3.4	6.8		-2.8		-2.8		
I _I	Input Leakage Current	0/18	Any In	put	18		±10 ⁻⁵	±0.1		±1		±1	μΑ
C _I	Input Capacitance		Any In	put			5	7.5					pF
	1		·				1	1	1		1		

The Noise Margin for both "1" and "0" level is: 1V min. with V_{DD} =5V, 2V min. with V_{DD} =10V, 2.5V min. with V_{DD} =15V

$\textbf{DYNAMIC ELECTRICAL CHARACTERISTICS} \; (\textbf{T}_{amb} = 25^{\circ} \textbf{C}, \;\; \textbf{C}_{L} = 50 \text{pF}, \; \textbf{R}_{L} = 200 \text{K}\Omega, \;\; \textbf{t}_{f} = \textbf{t}_{f} = 20 \; \text{ns})$

			Test Condition				Value (*)			
Symbol	Parameter	R_X (K Ω)	C _X (pF)	V _{DD} (V)	Min.	Тур.	Max.			
t _{PLH} t _{PHL}	Propagation Delay Time			5		250	500			
	+TR or -TR to Q or Q	5 to 10000	<u>≥</u> 15	10		125	250	ns		
				15		100	200			
t _{WH} t _{WL}	Trigger Pulse Width			5	140	70				
		5 to 10000	<u>≥</u> 15	10	60	30		ns		
				15	40	20				
t _{TLH}	Transition Time			5		100	200			
		5 to 10000	<u>≥</u> 15	10		50	100	ns		
				15		40	80			
t _{THL}	Transition Time			5		100	200			
		5 to 10000	15 to 10000	10		50	100	ns		
				15		40	80			
			0.01μF to 0.1μF	5		150	300			
		5 to 10000		10		75	150			
				15		65	130			
		5 to 10000	0.1μF to 1μF	5		250	500			
				10		150	300			
			ιο τμε	15		80	160	1		
t _{PLH} t _{PHL}	Propagation Delay Time			5		225	450			
	(Reset)	5 to 10000	<u>></u> 15	10		125	250	ns		
				15		75	150]		
t _{WR}	Pulse Width (reset)			5	200	100				
			15	10	80	40				
				15	60	30				
				5	1200	600		ns		
		100	1000	10	600	300				
				15	500	250				
				5	50	250				
			0.1μF	10	30	15		μs		
				15	20	10				
t _{r,} t _f (TR)	Rise or Fall Time (trigger)		5 to 15				100	μs		
	Pulse Width Match Between			5		5	10			
	Circuits in Same Package	10	10000	10		7.5	15	%		
				15		7.5	15]		

^(*) Typical temperature coefficient for all V_{DD} value is 0.3 %/°C.

TEST CIRCUIT

 C_L = 50pF or equivalent (includes jig and probe capacitance) R_L = 200K Ω R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Plastic DIP-16 (0.25) MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
a1	0.51			0.020					
В	0.77		1.65	0.030		0.065			
b		0.5			0.020				
b1		0.25			0.010				
D			20			0.787			
Е		8.5			0.335				
е		2.54			0.100				
e3		17.78			0.700				
F			7.1			0.280			
I			5.1			0.201			
L		3.3			0.130				
Z			1.27			0.050			

SO-16 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
Α			1.75			0.068			
a1	0.1		0.2	0.003		0.007			
a2			1.65			0.064			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)	•				
D	9.8		10	0.385		0.393			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		8.89			0.350				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.62			0.024			
S			8° (max.)	•	•			

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.