

I.H.S - Saida

Math - Grade 12 - GS

Ch.:15 Integral

Ch.:16 Properties of the Integral

Ch.:17 Integration Techniques

Ch:19 Applications to Integration

I.Hnaini

Math. 12 GS	Ch.:15 -16-17-19	Page:	Hnaini
		2	

a:
$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c \quad (n \neq -1)$$

b:
$$\int U' U^n dx = \frac{1}{n+1} U^{n+1} + c \quad (n \neq -1)$$

c:
$$\int \frac{1}{x} dx = \ln|x| + c$$

$$\mathbf{d:} \int \frac{U'}{U} dx = \ln|U| + c$$

e:
$$\int e^x dx = e^x + c$$

$$f: \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$$

g:
$$\int U'e^{U}dx = e^{U} + c$$

Eg1:
$$\int x^3 dx = \frac{x^4}{4} + c$$

Eg2:
$$\int x^2 dx = \frac{x^3}{3} + c$$

Eg3:
$$\int x dx = \frac{x^2}{2} + c$$

Eg4:
$$\int dx = \int x^0 dx = x + c,$$

Eg5:
$$\int 5(5x - 8)dx$$

= $\frac{(5x - 8)^2}{3} + c$

$$u = 5x - 8 \rightarrow u' = 5$$

Eg6:
$$\int (2x+1)(x^2+x+3)^5 dx$$

= $\frac{(x^2+x+3)^6}{6} + c$

$$u = x^2 + x + 3 \rightarrow u' = 2x + 1$$

Eg7:
$$\int (x-1)(x^2-2x+3)^6 dx$$
 $u = x^2-2x+3 \to u^2 = 2x-2 = 2(x-1)$
= $\frac{1}{2} \int 2(x-1)(x^2-2x+3)^6 dx$

$$= \frac{1}{3} \frac{(x^2 - 2x + 3)^7}{7} + c = \frac{(x^2 - 2x + 3)^7}{14} + c$$

Eg8:
$$\int \left[4x - \frac{1}{x}\right] dx = 4\frac{x^2}{2} - \ln|x| + c = 2x^2 - \ln|x| + c$$

Eg9:
$$\int \frac{x^2 + 3x - 2}{x} dx = \int \left[x + 3 - \frac{2}{x} \right] dx = \frac{x^2}{2} + 3x - 2\ln|x| + c$$

Eg10:
$$\int \frac{2x-1}{x^2-x+3} dx = \ln|x^2-x+3| + c$$
 Let $U = x^2 - x + 3$ then $U' = 2x - 1$

Eg11:
$$\int \frac{x-1}{x^2-2x+3} dx =$$
 Let $U = x^2 - 2x + 3$ then $U' = 2x - 2 = 2(x-1)$

Math. 12 GS	Ch.:15 -16-17-19	Page:	Hnaini
		3	

$$= \frac{1}{2} \int \frac{2(x-1)}{x^2 - 2x + 3} dx = \frac{1}{2} \ln|x^2 - 2x + 3| + c$$

Eg12:
$$\int [4x - e^x] dx = 2x^2 - e^x + c$$

Eg13:
$$\int [6x + 3 - 5e^x] dx = 3x^2 + 3x - 5e^x + c$$

Eg14:
$$\int e^{4x-1} dx = \frac{1}{4} e^{4x-1} + c$$

Eg15:
$$\int (2x + 1)e^{x^2 + x} dx = e^{x^2 + x} + c$$
 $U = x^2 + x$ $U' = 2x + 1$

Eg16:
$$\int (x+1)e^{x^2+2x+1}dx$$
 $U = x^2 + 2x + 1$ then $U' = 2(x+1)$

$$= \frac{1}{2} \int 2(x+1)e^{x^2+2x+1} dx = \frac{1}{2}e^{x^2+2x+1} + c$$

Definite integrals

1 - Definition Let f be a continuous function on an interval I.

Let F be the anti-derivative of f. a and b are two points in I.

The integral of f from a to b, denoted by $\int_a^b f(x)dx$, is

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example: Calculate the following integrals

$$A = \int_{1}^{2} (4x - 1) dx$$

$$B = \int_{1}^{3} (x + 1)(x^{2} + 2x + 3)^{4} dx$$

$$C = \int_{1}^{e} \frac{1}{x} dx$$

$$D = \int_0^1 \frac{2x+1}{x^2+x+1} dx$$

$$A = \int_{1}^{2} (4x-1) dx = \left[\frac{1}{2} + \frac{x^{2}}{2} - x \right]_{1}^{2}$$

$$= \left[2x^{2} - x \right]_{1}^{2} = \left[2(2)^{2} - (2) \right] - \left[2(1)^{2} - (1) \right]$$

$$= 6 - 1 = 5$$

$$B = \int_{1}^{3} (x+1) (x^{2} + 2x + 3)^{4} dx \qquad u = x^{2} + 2x + 3$$

$$u' = 2x + 2 = 2(x+1)$$

$$= \frac{1}{2} \int_{1}^{3} \frac{2(x+1)}{2} (x^{2} + 2x + 3)^{4} dx - \left[\frac{1}{2} \frac{(x^{2} + 2x + 3)^{5}}{5} \right]_{1}^{3}$$

$$= \frac{1}{10} \left[3^{2} + 2(3) + 3 \right]_{1}^{5} - \frac{1}{10} \left(1^{2} + 2(1) + 3 \right)_{1}^{5} = 188179.2$$

$$C = \int_{1}^{6} \frac{1}{x} dx = \left[\ln x \right]_{1}^{6}$$

$$= \ln \left[- \ln x \right]_{1}^{6}$$

$$= \ln \left[- \ln x \right]_{1}^{6}$$

$$= \ln \left[(x^{2} + x + 1) \right]_{0}^{1}$$

$$= \ln \left[(x^{2} + x + 1) \right]_{0}^{1}$$

$$= \ln \left[(x^{2} + 1 + 1) - \ln \left(x^{2} + x + 1 \right) \right]$$

2 - Properties

$$1: \int_a^b dx = b - a$$

$$2: \int_a^a f(x) dx = 0$$

$$\underline{3}: \int_a^b f(x) dx = -\int_b^a f(x) dx$$

4:
$$\int_a^b [\alpha f(x) + \beta g(x)] dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$$

 $\underline{\mathbf{5}}$: $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ where a, b and c are points in I.

6: If $f \ge 0$ on [a, b] then $\int_a^b f(x) dx \ge 0$

7: If $f(x) \le g(x)$ on [a, b] then $\int_a^b f(x) dx \le \int_a^b g(x) dx$

8: If f is even on [-a, a] then $\int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$

9: If f is odd on [-a, a] then $\int_{-a}^{a} f(x) dx = 0$

****GS-Solve** $\frac{1-3-5}{150}$ $\frac{6(1-4)}{150}$ $\frac{2}{159}$ $\frac{4(1-2-5)}{159}$

$$\frac{1-3-5}{150}$$

$$\frac{6(1-4)}{150}$$

$$\frac{4(1-2-5)}{150}$$

$$\frac{5(1-3-5)}{159} \qquad \frac{6(1-5-7)}{159} \qquad \frac{7(6)}{159}$$

3- Graphical interpretation of the integral

Case1: Let f be a positive function over [a, b]. Area A of the region bounded between (C_f),

$$x' \circ x & x = a & x = b \text{ is } \mathbf{A} = \int_{a}^{b} f(x) dx$$

Case 2: If f < 0 on [a,b]

then
$$A = -\int_a^b f(x) dx$$

Case3:

$$\overline{A = A_1} + A_2$$

$$= \int_a^c f(x) dx - \int_c^b f(x) dx$$

Case4:

Area of the region bounded between (C_f) , (C_g) , x = a, and x = b, is $A = \int_{a}^{b} [f(x) - g(x)] dx$

Case5:

$$\overline{\mathbf{A}} = \int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$$

Math.	12	GS
111661110	14	V.

Ch.:15 -16-17-19

Page:

Hnaini

6

3Eg1: Calculate the shaded area.

Solution:

$$A = \int_{1}^{2} \frac{1}{x} dx$$

$$A = [lnx] = ln2 - ln1 = ln2 unit2$$

3Eg2: Calculate the shaded area. $f(x) = 1 - x^2 ... (C)$

Solution:

$$A = -\int_{-2}^{-1} (1 - x^2) dx + \int_{-1}^{1} (1 - x^2) dx - \int_{1}^{2} (1 - x^2) dx$$

$$= -\left[x - \frac{x^3}{3}\right]_{-2}^{-1} + \left[x - \frac{x^3}{3}\right]_{-1}^{1} - \left[x - \frac{x^3}{3}\right]_{1}^{2}$$

$$=\frac{4}{3}+\frac{4}{3}+\frac{4}{3}=4$$
 unit²

3Eg3: Calculate the shaded area.

$$f(x) = -x^{2} + 8 & g(x) = x^{2}$$

$$f(x) = -x^{2} + 8$$

Solution:

Let's find the abscissas of the points of intersection of the two curves.

$$-x^2 + 8 = x^2$$
 then $2x^2 = 8$, $x^2 = 4$, $x = \pm 2$

$$A = \int_{-2}^{2} [f(x) - g(x)] dx = \int_{-2}^{2} [-x^{2} + 8 - x^{2}] dx$$

$$= \int_{-2}^{2} [-2x^{2} + 8] dx$$

$$= [-\frac{2x^{3}}{3} + 8x]_{-2}^{2} = \frac{64}{3} unit^{2}$$

7

3Eg4: Calculate the shaded area.

$$f(x) = e^{2x} - 2x \dots (C)$$

$$A = \int_0^1 (e^{2x} - 2x)$$

$$= \left[\frac{1}{2}e^{2x} - x^2\right]_0^1$$

$$= \left(\frac{1}{2}e^2 - 1\right) - \left(\frac{1}{2}e^0 - 0\right)$$

$$= \frac{1}{2}e^2 - \frac{3}{2} unit^2$$

3Eg5:
$$f(x) = 2 - \frac{1}{x} - \frac{\ln x}{x}$$
.....(C)

Calculate the area of the shaded region.

$$A = \int_{1}^{e} f(x) dx = \int_{1}^{e} \left[2 - \frac{1}{x} - \frac{\ln x}{x}\right] dx$$

$$= \left[2x - lnx - \frac{(lnx)^2}{2}\right]_1^e$$

$$= \left[2e - lne - \frac{(lne)^2}{2}\right] - \left[2 - ln1 - \frac{(ln1)^2}{2}\right]$$

$$=2e-1-\frac{1}{2}-2$$

$$=2e - 3.5 \text{ unit}^2$$

8

4-Fundamental theorem of integral calculus

Rule: f: continuous on I. a is a constant. $a \in I$.

i: If
$$F(x) = \int_a^x f(t)dt$$
. Then $F'(x) = f(x)$ and $F(a)=0$

ii: If
$$F(x) = \int_a^{u(x)} f(t) dt$$
. Then $F'(x) = u'(x)$. $f(u(x))$

Eg1: Calculate F'(x) in each of the following examples.

1:
$$F(x) = \int_{a}^{x} t^{2} dt \rightarrow F'(x) = x^{2}$$
.

2:
$$F(x) = \int_{x}^{1} \sqrt{2t + 6} dt$$

 $F(x) = -\int_{1}^{x} \sqrt{2t + 6} dt \rightarrow F'(x) = -\sqrt{2x + 6}$

3:
$$F(x) = \int_3^x \frac{e^{2t}}{1+te^t} dt \to F'(x) = \frac{e^{2x}}{1+xe^x}$$

4:
$$F(x) = \int_{1}^{x^2} \frac{t^3 + 2}{1 + t} dt \rightarrow F'(x) = \frac{(x^2)^3 + 2}{1 + x^2} (x^2)' = \frac{(x^2)^3 + 2}{1 + x^2} (2x) = 2x \frac{x^6 + 2}{1 + x^2}$$

Eg2: Given $F(x) = \int_{1}^{x} \frac{1}{1+t^2} dt$. Determine the sense of variation of F.

$$\rightarrow F'(x) = \frac{1}{1+x^2} > 0$$
. Then F is increasing.

Eg3: Determine the following limits

a:
$$\lim_{x \to 0} \frac{\int_0^x \ln(t+1)dt}{e^x - 1} = \frac{\int_0^0 \ln(t+1)dt}{e^0 - 1} = \frac{0}{0} \text{ I.F}$$

$$\lim_{x \to 0} \frac{\int_0^x \ln(t+1)dt}{e^x - 1} = \lim_{x \to 0} \frac{\left[\int_0^x \ln(t+1)dt\right]'}{(e^x - 1)'} = \lim_{x \to 0} \frac{\ln(x+1)}{e^x} = \frac{\ln 1}{1} = 0$$

b:
$$\lim_{x \to 1} \frac{\int_{1}^{x} \sqrt[3]{t^2 - 1} dt}{x - 1} = \int_{1}^{1} \sqrt[3]{t^2 - 1} dt}{1 - 1} = \frac{0}{0}$$
 I.F

$$\lim_{x \to 1} \frac{\int_{1}^{x} \sqrt[3]{t^{2} - 1} dt}{x - 1} = \lim_{x \to 1} \frac{\left[\int_{1}^{x} \sqrt[3]{t^{2} - 1} dt\right]'}{1} = \lim_{x \to 1} \sqrt[3]{x^{2} - 1} = 0$$

Eg4: Given $T(x) = \int_{1}^{2x} (\sqrt{1 + 3 \ln^2 t}) dt$ x > 0 . Calculate T'(0.5e) .

$$T'(x) = (2x)^{7} \sqrt{1 + 3 \ln^{2} 2 x} = 2 \sqrt{1 + 3 \ln^{2} 2 x}$$

$$T'(0.5e) = 2 \sqrt{1 + 3 \ln^{2} 2 (0.5e)} - 4$$

$$T'(0.5e) = 2\sqrt{1 + 3 \ln^2 2 (0.5e)} = 4$$

**GS-Solve
$$\frac{8}{150}$$
 $\frac{9}{151}$

5-Comparison of integrals

Recall:

If
$$f \ge 0$$
 on [a, b] then $\int_a^b f(x) dx \ge 0$

If
$$f(x) \le g(x)$$
 on [a, b] then $\int_a^b f(x) dx \le \int_a^b g(x) dx$

Example: Given $x \in [1,2]$

a: Show that
$$\frac{1}{17} \le \frac{1}{1+x^4} \le \frac{1}{2}$$

b: Deduce The bounding of the integral
$$\int_{1}^{2} \frac{1}{1+x^4} dx$$

a:
$$1 \le x \le 2$$
, $1 \le x^4 \le 16$, $2 \le 1 + x^4 \le 17$, $\frac{1}{17} \le \frac{1}{1+x^4} \le \frac{1}{2}$

$$2 \le 1 + x^4 \le 17 ,$$

$$\frac{1}{17} \le \frac{1}{1+x^4} \le \frac{1}{2}$$

b:
$$\int_{1}^{2} \frac{1}{17} dx \le \int_{1}^{2} \frac{1}{1+x^4} dx \le \int_{1}^{2} \frac{1}{2} dx$$

$$\frac{1}{17}[x]_1^2 \le \int_1^2 \frac{1}{1+x^4} dx \le \frac{1}{2}[x]_1^2$$

$$\frac{1}{17} \le \int_{1}^{2} \frac{1}{1 + x^4} dx \le \frac{1}{2}$$

**GS-Solve
$$\frac{9}{151}$$

6- Integral of expression of the form where a is a constant

Activity:

Calculate
$$\int_0^1 \frac{1}{3+e^x} dx$$

$$\int_{0}^{1} \frac{1}{3 + e^{x}} dx = \frac{1}{3} \int_{0}^{1} \frac{3}{3 + e^{x}} dx = \frac{1}{3} \int_{0}^{1} \frac{3 + e^{x} - e^{x}}{3 + e^{x}} dx = \frac{1}{3} \int_{0}^{1} [1 - \frac{e^{x}}{3 + e^{x}}] dx = \frac{1}{3} [x - \ln(3 + e^{x})]_{0}^{1} = \frac{1}{3} [1 - \ln(3 + e) + \ln 4]$$

Calculate
$$\int_0^5 \frac{1}{1+e^x} dx$$

$$\int_{0}^{5} \frac{1}{1+e^{x}} dx = \int_{0}^{5} \frac{1+e^{x}-e^{x}}{1+e^{x}} dx = \int_{0}^{5} [1-\frac{e^{x}}{1+e^{x}}] dx =$$

$$= [x-\ln(1+e^{x})]_{0}^{5} = [5-\ln(1+e^{5}) + \ln 2]$$

7-Integration by parts

$$\int U'Vdx = UV - \int V'Udx$$
$$\int_a^b U'Vdx = [UV]_a^b - \int_a^b V'Udx$$

Example:

$$\int x \ln x dx: \qquad \text{Let } U' = x \text{ and } V = \ln x$$

$$\text{Then } U = \frac{x^2}{2} \text{ and } V' = \frac{1}{x}$$

$$\int x \ln x dx = \frac{x^2}{2} \ln x - \int \frac{1}{x} \frac{x^2}{2} dx = \frac{x^2}{2} \ln x - \int \frac{x}{2} dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} + c$$

Example:

$$\int_{1}^{e} x^{2} \ln x dx: \qquad \text{Let } U' = x^{2} \quad \text{and } V = \ln x$$

$$\text{Then } U = \frac{x^{3}}{3} \quad \text{and } V' = \frac{1}{x}$$

$$\int_{1}^{e} x^{2} \ln x dx = \left[\frac{x^{3}}{3} \ln x \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \frac{x^{3}}{3} dx = \frac{e^{3}}{3} \ln e - \frac{1^{3}}{3} \ln 1 - \int_{1}^{e} \frac{x^{2}}{3} dx$$
$$= \frac{e^{3}}{3} - \left[\frac{x^{3}}{9} \right]_{1}^{e} = \frac{e^{3}}{3} - \left(\frac{e^{3}}{9} - \frac{1}{9} \right) = \frac{2e^{3}}{9} + \frac{1}{9}$$

Example:

$$\int lnx dx: \qquad \text{Let } U' = 1 \quad \text{and } V = lnx$$

$$\text{Then } U = x \quad \text{and } V' = \frac{1}{x}$$

$$\int \ln x dx = x \ln x - \int \frac{1}{x} x dx = x \ln x - \int dx = x \ln x - x + c$$

$$\int lnxdx = xlnx - x + c$$

Math. 12 GS	Ch.:15 -16-17-19	Page:	Hnaini
		11	

Example:

$$\int xe^{2x}dx: \quad \text{Let } U' = e^{2x} \quad V = x$$

$$U = \frac{1}{2}e^{2x} \quad V' = 1$$

$$\int xe^{2x}dx = \frac{1}{2}e^{2x}x - \int \frac{1}{2}e^{2x}dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$

Second way: Tabular integration by parts

Then
$$\int xe^{2x}dx = \frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x} + c$$

Example:

$$\int x^4 e^{-2x} dx$$

Then

$$\begin{split} \int x^4 e^{-2x} dx &= x^4 - \frac{1}{2} e^{-2x} - 4x^3 \cdot \frac{1}{4} e^{-2x} + 12x^2 - \frac{1}{8} e^{-2x} - 24x \cdot \frac{1}{16} e^{-2x} + 24 - \frac{1}{32} e^{-2x} + C \\ &= -\frac{1}{2} x^4 e^{-2x} - x^3 e^{-2x} - \frac{3}{2} x^2 e^{-2x} - \frac{3}{2} x e^{-2x} + -\frac{3}{4} e^{-2x} + C \\ &= -\frac{1}{4} e^{-2x} \left(2x^4 + 4x^3 + 6x^2 + 6x + 3 \right) + C \end{split}$$

Math. 12 GS

Ch.:15 -16-17-19

Page:

Hnaini

12

Example:

(C) Is the representative curve of the function fwhere $f(x) = x^3 e^x$

Calculate the area of the shaded region

Area=
$$-\int_{-3}^{-2} f(x) dx \, unit^2$$

x ³	+	e ^x
$3x^2$	_	e ^x
6x	+	$\rightarrow e^x$
6	-	e^x
0		e^x

$$\int x^3 e^x \, dx = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + c$$

Then Area=
$$-[e^x(x^3-3x^2+6x-6)]_{-3}^{-2}$$

$$=e^{x}(x^3-3x^2+6x-6)+c$$

$$= -[e^{-2}(-38) - e^{-3}(-78)]$$

= $38e^{-2} - 78e^{-3}unit^2$

**GS-Solve
$$\frac{11(1-2-4-6-7-8)}{160}$$
 $\frac{12(2-3)}{160}$

8- Integration of rational functions $f(x) = \frac{P(x)}{Q(x)}$

 1^{st} case: If deg P(x) < deg Q(x):

i: Of the form $\int \frac{u}{u} dx$

Eg
$$\int \frac{x+1}{x^2+2x-5} dx$$
 $u = x^2 + 2x - 5 \rightarrow u' = 2x + 2 = 2(x+1)$
= $\frac{1}{2} \int \frac{2(x+1)}{x^2+2x-5} dx = \frac{1}{2} \ln|x^2+2x-5| + c$

ii: If the denominator is quadratic with $\Delta = 0 \rightarrow \text{Eg: } \int \frac{1}{x^2 + 6x + 9} dx$

$$\int \frac{1}{x^2 + 6x + 9} dx = \int \frac{1}{(x + 3)^2} dx = \int (x + 3)^{-2} dx = \frac{(x + 3)^{-1}}{-1} + c = \frac{-1}{x + 3} + c$$

iii: If the denominator is quadratic with $\Delta > 0$

Expand f(x) into a sum of partial fractions & then integrate.

Math. 12 GS	Ch.:15 -16-17-19	Page:	Hnaini
		13	

 2^{nd} case: If deg $P(x) \ge \deg Q(x)$: Use Euclidian division & then use the method of partial fraction then integrate.

Eg:
$$\int \frac{2x^2 - 3x + 5}{x^2 - 1} dx$$
 Using long division ...
$$\frac{2x^2 - 3x + 5}{x^2 - 1} = 2 + \frac{-3x + 7}{x^2 - 1}$$

$$\frac{-3x + 7}{x^2 - 1} = \frac{-3x + 7}{(x - 1)(x + 1)} = \frac{A}{x - 1} + \frac{B}{x + 1} = \frac{A(x + 1) + B(x - 1)}{(x - 1)(x + 1)} = \frac{Ax + A + Bx - B}{(x - 1)(x + 1)} = \frac{x(A + B) + A - B}{(x - 1)(x + 1)}$$
 Then
$$A + B = -3$$

$$A - B = 7$$

$$A = 2$$

$$A - B = 7$$

$$B = -5$$

$$\int \frac{2x^2 - 3x + 5}{x^2 - 1} dx = \int (2 + \frac{2}{x - 1} + \frac{-5}{x + 1}) dx = 2x + 2 \ln|x - 1| - 5 \ln|x + 1| + c$$
**GS-Solve
$$\frac{ex10(1 - 3 - 4)}{172} = \frac{ex11(1 - 2)}{172} = \frac{ex12}{172}.$$

