Functional Analysis

Daniel Mao

Copyright \bigodot 2021 Daniel Mao All Rights Reserved.

Contents

1	Bal	anced Sets	1			
	1.1	Definitions	1			
	1.2	Properties	1			
	1.3	Stability of Balance	2			
	1.4	Absorbing Sets	2			
2	Inn	er Product Space	3			
	2.1	Inner Products	3			
	2.2	Inequalities	4			
	2.3	Orthogonality	5			
3	Nor	rmed Vector Spaces	7			
	3.1	Definitions	7			
	3.2	Properties	7			
	3.3	Equivalence of Norms	8			
	3.4	Dual Norms	9			
	3.5	<i>p</i> -norms	9			
	3.6	Banach Spaces	11			
4	Top	pological Vector Spaces	13			
	4.1	Definitions	13			
	4.2	Topological Vector Spaces	13			
	4.3	Neighborhoods	14			
5	\mathbf{Seq}	uence Spaces	15			
	5.1	ℓ_p Space	15			
	5.2	c_0 Space and c_{00} Space	16			
6	Function Spaces 21					
	6.1	The \mathcal{L}^p Norm	21			

7	Hilbert Space				
	7.1 Hilbert Spaces	23			
8	Equicontinuity in Metric Spaces	25			
	8.1 Definitions	. 25			
	8.2 Sufficient Conditions	25			
9	Operators	27			
	9.1 Bounded Operators	. 27			
	9.2 Space of Bounded Operators	. 28			
	9.3 Dual Spaces	. 28			
10	Adjoint Operator	29			
	10.1 Definitions	. 29			
	10.2 Properties of the Adjoint Operator	. 29			
	10.3 Normal Operators	. 30			
	10.4 Self-adjoint	30			
11	Convolution	31			
12	Coercive Functions	33			
	12.1 Definitions	. 33			
	12.2 Properties	. 33			
13	Unclassified Results	35			

Balanced Sets

1.1 Definitions

Definition (Balanced Sets). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We say that S is **balanced** if

$$\forall a \in \mathbb{F} : |a| \le 1, \quad aS \subseteq S.$$

Definition (Balanced Hull). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We define the **balanced hull** of S, denoted by balhull(S), to be the smallest balanced set containing S.

Definition (Balanced Core). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We define the **balanced core** of S, denoted by $\operatorname{balcore}(S)$, to be the largest balanced set contained in S.

1.2 Properties

Proposition 1.2.1. Let X be a vector space over field \mathbb{F} . Let B be a balanced subset of X. Then

$$\forall a, b \in \mathbb{F} : |a| \le |b|, \quad aB \subseteq bB.$$

Proposition 1.2.2. Balanced sets are path connected.

Proposition 1.2.3 (Act on Other Properties). • The balanced hull of a compact set is compact.

- The balanced hull of a totally bounded set is totally bounded.
- The balanced hull of a bounded set is bounded.

2 1. BALANCED SETS

Proposition 1.2.4 (Act on Other Properties). • The balanced core of a closed set is closed.

Proposition 1.2.5. Let X be a vector space over field \mathbb{F} . Let a be a scalar in field \mathbb{F} . Then

$$a \operatorname{balhull}(S) = \operatorname{balhull}(aS).$$

1.3 Stability of Balance

Proposition 1.3.1 (Set Operations). • The union of balanced sets is also balanced.

• The intersection of balanced sets is also balanced.

Proposition 1.3.2 (Linear Mappings). • The scalar multiple of a balanced set is also balanced.

- The (Minkowski) sum of two balanced sets is also balanced.
- The image of a balanced set under a linear operator is also balanced.
- The inverse image of a balanced set under a linear operator is also balanced.

Proposition 1.3.3 (Topological Operations). The closure of a balanced set is also balanced.

Proposition 1.3.4. The convex hull of a balanced set is also balanced (and also convex).

1.4 Absorbing Sets

Definition (Absorbing Sets). Let X be a vector space over field \mathbb{F} . Let S be a subset of X. We say that S is **absorbing** if

$$\forall x \in X, \quad \exists r \in \mathbb{R} : r > 0, \quad \forall c \in \mathbb{F} : |c| \ge r, \quad x \in cA.$$

Proposition 1.4.1. Every absorbing set contains the origin.

Inner Product Space

2.1 Inner Products

2.1.1 Definitions

Definition (Inner Product). Let V be a vector space over field \mathbb{F} . We define an inner **product** on V, denoted by $\langle \cdot, \cdot \rangle$, to be a scalar-valued function defined on $V \times V$ such that

(1) Positive Definiteness

$$\forall x, y \in V, \quad \langle x, x \rangle \ge 0, \text{ and}$$

$$\forall x \in V, \quad \langle x, x \rangle = 0 \iff x = O_V.$$

(2) Sesqui-Linearity

$$\forall x,y,z,w \in V, \quad \langle x+y,z+w \rangle = \langle x,z \rangle + \langle y,z \rangle + \langle x,w \rangle + \langle y,w \rangle, \ \ and$$

$$\forall a,b \in \mathbb{F}, \forall x,y \in V, \quad \langle ax,by \rangle = a\bar{b}\langle x,y \rangle.$$

(3) Conjugate Symmetry

$$\forall x, y \in V, \quad \langle x, y \rangle = \overline{\langle y, x \rangle}.$$

Definition (Norm). Let V be an inner product space over field \mathbb{F} . We define the **norm**, denoted by $\|\cdot\|$, to be a function from V to \mathbb{R}_+ given by

$$||x|| := \sqrt{\langle x, x \rangle}$$

Definition (Orthogonal Vectors). Let V be an inner product space. Let x and y be vectors in V. We say that x and y are **orthogonal** if $\langle x, y \rangle = 0$.

Definition (Orthogonal Sets). Let S be a subset of V. We say that S is **orthogonal** if

$$\forall x, y \in S, \quad \langle x, y \rangle = 0.$$

2.1.2 Examples

Definition (Standard Inner Product). For $V = \mathbb{F}^n$, we define the **standard inner product** by

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i \overline{y_i}.$$

Definition (Frobenius Inner Product). For $V = \mathbb{F}^{n \times n}$, we define the **Frobenius inner** product by

$$\langle M_1, M_2 \rangle := \operatorname{tr}(M_2^* M_1).$$

Definition. Let V be the space of continuous scalar-valued functions on $[0, 2\pi]$. We define the inner product on V by

$$\langle f, g \rangle := \frac{1}{2\pi} \int_0^{2\pi} f(x) \overline{g(x)} dx.$$

2.1.3 Properties

Proposition 2.1.1. Let V be a finite dimensional inner product space. Let \mathcal{B} be a basis for V. Let x and y be vectors in V. Then

$$x = y \iff \forall b \in \mathcal{B}, \quad \langle x, b \rangle = \langle y, b \rangle.$$

2.2 Inequalities

Theorem 1 (Minkowski).

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Proposition 2.2.1 (Cauchy-Schwarz Inequality). Let V be an inner product space. Then

$$\forall x, y \in V, \quad |\langle x, y \rangle| \le ||x|| \cdot ||y||$$

Proposition 2.2.2 (Triangle Inequality). Let V be an inner product space. Then

$$\forall x, y \in V, \quad ||x + y|| < ||x|| + ||y||$$

Proposition 2.2.3 (Parallelogram Law). Let V be an inner product space. Then

$$\forall x, y \in V, \quad \|x + y\|^2 + \|x - y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

2.3 Orthogonality

2.3.1 Orthogonal Sets

Definition (Orthogonality). Let V be an inner product space. We say that points x and y in V are **orthogonal** if $\langle x, y \rangle = 0$.

Definition (Orthogonal Sets). Let V be an inner product space and S be a subset of V. We say that S is **orthogonal** if any two vectors in S are orthogonal.

Proposition 2.3.1. Orthogonal sets are linearly independent.

2.3.2 Orthogonal Bases

Definition (Orthogonal Basis). Let V be an inner product space and S be a subset of V. We say that S is an **orthogonal basis** for V if it is an ordered basis for V and orthogonal.

Proposition 2.3.2. Let V be an inner product space. Let $S = \{v_1, ..., v_n\}$ be an orthogonal subset of V where each v_i is non-zero. Then

$$\forall y \in \text{span}(S), \quad y = \sum_{i=1}^{n} \frac{\langle y, v_i \rangle}{\|v_i\|^2} v_i.$$

Theorem 2 (Gram-Schmidt Process). Let V be an inner product space. Let $S = \{v_0, ..., v_n\}$ be a linearly independent subset of V. Then the set $S' = \{v'_0, ..., v'_n\}$ given by $v'_0 := v_0$ and

$$\forall i \in \{1, ..., n\}, \quad v_i' := v_i - \sum_{i=1}^{i-1} \frac{\langle v_i, v_j' \rangle}{\|v_j'\|} v_j'$$

is an orthogonal subset of V consisting of non-zero vectors. Furthermore, we have $\operatorname{span}(S') = \operatorname{span}(S)$.

Proposition 2.3.3. Let V be an inner product space and $S = \{v_0, v_1, \ldots, v_n\}$ be an orthogonal subset of V. Then the set S' derived from the Gram-Schmidt process is exactly S.

Theorem 3 (Parseval's Identity). Let V be a finite-dimensional inner product space. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthogonal basis for V. Then

$$\forall x, y \in V, \quad \langle x, y \rangle = \sum_{i=1}^{n} \langle x, v_i \rangle \overline{\langle y, v_i \rangle}.$$

Theorem 4 (Bessel's Inequality). Let V be a finite-dimensional inner product space. Let $\mathcal{B} = \{v_1, ..., v_n\}$ be an orthogonal subset for V. Then

$$\forall x \in V, \quad ||x||^2 \ge \sum_{i=1}^n |\langle x, v_i \rangle|^2.$$

2.3.3 Orthogonal Complements

Definition (Orthogonal Complement). Let V be an inner product space and S be a non-empty subset of V. We define the **orthogonal complement** of S, denoted by S^{\perp} , to be the set of all points in V that are orthogonal to all vectors in S.

Proposition 2.3.4. Let V be a finite-dimensional inner product space. Then

- (1) $V^{\perp} = \{O_V\}$
- (2) $\{O_V\}^{\perp} = V$

Proposition 2.3.5. Orthogonal complements are always linear subspaces.

Proposition 2.3.6. Let V be an inner product space and W be a subspace of V with basis β . Then a vector in V is also in W^{\perp} if and only if it is orthogonal to all vectors in β .

Proposition 2.3.7 (Extension). Let V be an n-dimensional inner product space and $S = \{v_1, v_2, \ldots, v_k\}$ be an orthogonal subset of V. Then S can be extended to an orthogonal basis $B = \{v_1, v_2, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ for V.

2.3.4 Properties of the Orthogonal Complement Operator

Proposition 2.3.8. Let V be an inner product space. Then

- (1) $S \subseteq T$ implies $T^{\perp} \subseteq S^{\perp}$ for any subsets S and T of V.
- (2) $S \subseteq (S^{\perp})^{\perp}$ for any subset S of V.

Proposition 2.3.9. Let V be a finite-dimensional inner product space and W be a subspace of V. Then

- (1) $W = (W^{\perp})^{\perp}$
- (2) $V = W \oplus W^{\perp}$

Proposition 2.3.10. Let V be a finite-dimensional inner product space and W_1 and W_2 be subspaces of V. Then

(1)
$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}$$

(2)
$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

2.3.5 Orthogonal Projection

Definition (Orthogonal Projection). Let V be a vector space. Let W be a finite-dimensional subspace of V. Let x be a vector in V. We define the **orthogonal projection** of x on W, denoted by (x), to be the vector u in W such that x = u + v where v is another vector in W^{\perp} .

Normed Vector Spaces

3.1 Definitions

Definition (Norm). Let X be a vector space over field \mathbb{F} . We define a **norm** on X, denoted by ν , to be a map from X to \mathbb{R} that satisfies the following conditions.

- (1) $\forall x \in X$, $\nu(x) = 0 \iff x = 0$.
- (2) $\forall x \in X, \quad \nu(x) \ge 0.$
- (3) $\forall \lambda \in \mathbb{F}, \forall x \in X, \quad \nu(\lambda x) = \lambda \nu(x).$
- (4) $\forall x, y \in X$, $\nu(x+y) \le \nu(x) + \nu(y)$.

Definition (Semi-Norm). Let X be a vector space over field \mathbb{F} . We define a **semi-norm** on X, denoted by ν , to be a map from X to \mathbb{R} that satisfies the following conditions.

- (1) $\forall x \in X, \quad \nu(x) \ge 0.$
- (2) $\forall \lambda \in \mathbb{F}, \forall x \in X, \quad \nu(\lambda x) = \lambda \nu(x).$
- (3) $\forall x, y \in X$, $\nu(x+y) \le \nu(x) + \nu(y)$.

3.2 Properties

Proposition 3.2.1. Let $(V, \|\cdot\|_V)$ be a normed vector space over field \mathbb{F} . Then $(V, \|\cdot\|)$ is complete if and only if $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

Proof.

For one direction, assume that $(V, \|\cdot\|)$ is complete.

We are to prove that $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

Since $(\overline{B(0,1)}, \|\cdot\|_V)$ is a closed subspace of $(V, \|\cdot\|)$ and $(V, \|\cdot\|)$ is complete, $(\overline{B(0,1)}, \|\cdot\|_V)$ is also complete.

For the reverse direction, assume that $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete.

We are to prove that $(V, \|\cdot\|_V)$ is complete.

Let $\{x_i\}_{i\in\mathbb{N}}$ be an arbitrary Cauchy sequence in $(V, \|\cdot\|_V)$.

Since $\{x_i\}_{i\in\mathbb{N}}$ is Cauchy in $(V, \|\cdot\|_V)$, $\{x_i\}_{i\in\mathbb{N}}$ is bounded in $(V, \|\cdot\|_V)$.

Let λ be a positive upper bound for $\{\|x_i\|_V\}_{i\in\mathbb{N}}$.

Since $\{x_i\}_{i\in\mathbb{N}}$ is Cauchy in $(V, \|\cdot\|_V)$, $\{x_i/\lambda\}_{i\in\mathbb{N}}$ is Cauchy in $(\overline{B(0,1)}, \|\cdot\|_V)$.

Since $\{x_i/\lambda\}_{i\in\mathbb{N}}$ is Cauchy in $(\overline{B(0,1)}, \|\cdot\|_V)$ and $(\overline{B(0,1)}, \|\cdot\|_V)$ is complete, $\{x_i/\lambda\}_{i\in\mathbb{N}}$ converges in $(\overline{B(0,1)}, \|\cdot\|_V)$.

Since $\{x_i/\lambda\}_{i\in\mathbb{N}}$ converges in $(\overline{B(0,1)}, \|\cdot\|_V), \{x_i\}_{i\in\mathbb{N}}$ converges in $(V, \|\cdot\|_V)$.

Since any Cauchy sequence in $(V, \|\cdot\|_V)$ converges in $(V, \|\cdot\|_V)$, $(V, \|\cdot\|_V)$ is complete.

3.3 Equivalence of Norms

Definition (Equivalence of Norms). Let V be a vector space over field \mathbb{F} . Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on V. We say that $\|\cdot\|_1$ and $\|\cdot\|_2$ are **equivalent** if there exist positive constants c_1 and c_2 such that for any vector v in V,

$$c_1 \|v\|_1 < \|v\|_2 < c_2 \|v\|_2.$$

Or equivalently,

$$c_1||v||_2 \le ||v||_1 \le c_2||v||_2.$$

Proposition 3.3.1. Equivalence of norms is an equivalence relation.

Theorem 5. Let V be a finite dimensional vector space over field $\mathbb{F} = \{\mathbb{R}, \mathbb{C}\}$. Then any two norms on V are equivalent.

Proof.

Let $\|\cdot\|_p$ be an arbitrary p-norm on V and $\|\cdot\|$ be an arbitrary norm on V.

Let \mathcal{B} be the standard basis for V. Say $\mathcal{B} = \{e_1, e_2, \dots, e_n\}$.

Let v be an arbitrary vector in V.

3.4. DUAL NORMS 9

$$||v|| = ||\sum_{i=1}^{n} v_{i}e_{i}||$$

$$\leq \sum_{i=1}^{n} |v_{i}|||e_{i}||$$

$$\leq \left(\sum_{i=1}^{n} |v_{i}|^{p}\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} ||e_{i}||^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}}$$

$$= \left(\sum_{i=1}^{n} ||e_{i}||^{\frac{p}{p-1}}\right)^{1-\frac{1}{p}} ||v||_{p}$$

$$:= c_{1}||v||_{p}.$$

Proposition 3.3.2. Let X be a vector space. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two norms on X. Then $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent if and only if they generate the same metric topology.

3.4 Dual Norms

Definition (Dual Norm). Let $(V, \|\cdot\|)$ be an normed vector space. We define the **dual** norm of $\|\cdot\|$, denoted by $\|\cdot\|_{\circ}$, to be a function given by

$$||v||_{\circ} := \max_{||w||=1} v \cdot w = \max_{||w|| \neq 0} \frac{|v \cdot w|}{||w||}.$$

Proposition 3.4.1. The dual norms of norms are indeed norms.

Proposition 3.4.2. Let $(V, \|\cdot\|)$ be a normed vector space. Let v, w be vectors in the space. Then

$$|v \cdot w| \leq ||v|| \cdot ||w||_{\circ}.$$

3.5 p-norms

Definition (p-norm). Let V be a finite-dimensional normed vector space over field \mathcal{F} . Let $\mathcal{B} = \{b_1, ..., b_n\}$ be a basis for V where $n = \dim(V)$. Let v be a vector in a normed vector space. For $p \in [1, +\infty)$, we define the p-norm of v, denoted by $||v||_p$, to be the number given by

$$||v||_p = \left(\sum_{i=1}^n |(v_{\mathcal{B}})_i|^p\right)^{\frac{1}{p}}.$$

Definition (Infinity Norm). Let v be a vector in a normed vector space. We define the infinity norm of v, denoted by $||v||_{\infty}$, to be the number given by

$$||v||_{\infty} := \max\{|v_i|\}_{i=1}^n$$
.

Proposition 3.5.1. *p-norms are indeed norms.*

Proposition 3.5.2. For any vector v in \mathbb{R}^n , we have

$$\lim_{p \to \infty} \|v\|_p = \|v\|_{\infty}.$$

i.e.,

$$\lim_{p \to \infty} \left(\sum_{i=1}^{n} |v_i|^p \right)^{\frac{1}{p}} = \max\{|v_i|\}_{i=1}^n.$$

Proof. Let p be an arbitrary number in $[1, +\infty)$. Let k be an arbitrary index in $\{1, ..., n\}$. Then

$$|v_k| \le (\sum_{i=1}^n |v_k|^p)^{1/p} = ||v||_p.$$

So

$$\max\{|v_k|\} = ||v||_{\infty} \le ||v||_{p}.$$

So

$$\lim_{p \to \infty} \|v\|_p \ge \|v\|_{\infty}. \tag{1}$$

On the other hand, note that

$$(\sum_{i=1}^{n} |v_i|^p) / \|v\|_{\infty}^p = \sum_{i=1}^{n} (\frac{|v_i|}{\|v\|_{\infty}})^p$$

decreases as p increases. So it is bounded above. Say

$$(\sum_{i=1}^{n} |v_i|^p) / \|v\|_{\infty}^p \le C$$

for some $C \in \mathbb{R}$. Then

$$\left(\sum_{i=1}^{n} |v_i|^p\right)^{1/p} = ||v||_p \le C^{1/p} ||v||_{\infty}.$$

So

$$\lim_{p \to \infty} \|v\|_p \le \lim_{p \to \infty} C^{1/p} \|v\|_{\infty} = \|v\|_{\infty}.$$
 (2)

From (1) and (2) we get

$$\lim_{p \to \infty} \|v\|_p = \|v\|_{\infty}.$$

Proposition 3.5.3. Let p be an arbitrary number in $[1, +\infty)$. Then the dual norm of the p-norm $\|\cdot\|_p$ is the q-norm $\|\cdot\|_q$ where q is such that satisfies

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Proposition 3.5.4. Let p and q be numbers in $[1, +\infty]$. Let v be a vector in \mathbb{R}^n . Then if $p \leq q$,

$$||x||_q \le ||x||_p \le n^{\frac{1}{p} - \frac{1}{q}} \cdot ||x||_q.$$

Proposition 3.5.5. Let w and z be vectors in \mathbb{E}^d . Then

$$||w + z||_2^2 + ||w - z||_2^2 = 2(||w||_2^2 + ||z||_2^2).$$

3.6 Banach Spaces

Definition (Banach Space). We define a **Banach space** to be a complete normed vector spaces.

Example 3.6.1. $(\mathcal{C}([0,1],\mathbb{F}),\|\cdot\|_{\infty})$ is a Banach space.

Example 3.6.2 (Disc Algebra). Define $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$. Define $\mathcal{A}(\mathbb{D}):=\{f\in\mathcal{C}(\overline{\mathbb{D}}):f|_{\mathbb{D}}\text{ is holomorphic }\}$. Define $\|\cdot\|_{\infty}$ by $\|f\|_{\infty}:=\sup_{z\in\overline{\mathbb{D}}}|f(z)|$. Then $(\mathcal{A}(\mathbb{D}),\|\cdot\|_{\infty})$ is a Banach space.

Proposition 3.6.1. Let $(X, \|\cdot\|)$ be a normed vector space over field \mathbb{F} . Then $(X, \|\cdot\|)$ is a Banach space if and only if every absolutely summable series in X is summable.

Topological Vector Spaces

4.1 Definitions

4.2 Topological Vector Spaces

Definition (Vector Topology). Let X be a vector space over a topological field \mathbb{K} . We define a **vector topology** on X to be a topology on X such that vector addition and scalar multiplication are continuous.

Proposition 4.2.1 (Stability under Linear Combinations). Let X be a normed vector space over \mathbb{F} . Let K be a compact set in the space. Let C be a closed set in the space. Then $\forall \alpha, \beta \in \mathbb{F}, S := \alpha K + \beta C is closed$.

Proof.

The case where $\beta = 0$ is trivial. I will assume $\beta \neq 0$.

Let $\alpha, \beta \in \mathbb{F}$ be arbitrary.

Let $\{s_i\}_{i\in\mathbb{N}}$ be an arbitrary sequence in S that converges.

Say the limit is s_{∞} .

Since $s_i \in S$ for any $i \in \mathbb{N}$ and $S = \alpha K + \beta C$, $s_i = \alpha k_i + \beta c_i$ for some $k_i \in K$ and some $c_i \in C$, for any $i \in \mathbb{N}$.

Since $\{k_i\}_{i\in\mathbb{N}}$ is a sequence in K and K is compact, there exists a convergent subsequence $\{k_i\}_{i\in\mathbb{N}}$ in K.

Say $\{k_i\}_{i\in I}$ converges to $k_\infty \in K$.

Since $\{s_i\}_{i\in\mathbb{N}}$ converges to s_{∞} , $\{s_i\}_{i\in I}$ also converges to s_{∞} .

Since $s_i = \alpha k_i + \beta c_i$, $c_i = \beta^{-1}(s_i - \alpha k_i)$.

Define $c_{\infty} := \beta^{-1}(s_{\infty} - \alpha k_{\infty})$

Since $\{s_i\}_{i\in I}$ converges to s_{∞} and $\{k_i\}_{i\in I}$ converges to k_{∞} and $c_i = \beta^{-1}(s_i - \alpha k_i)$, $\{c_i\}_{i\in I}$ converges to c_{∞} .

Since $\{c_i\}_{i\in I}$ is a sequence in C and converges to c_∞ and C is closed, $c_\infty \in C$.

Since $s_{\infty} = \alpha k_{\infty} + \beta c_{\infty}$ and $k_{\infty} \in K$ and $c_{\infty} \in C$, $s_{\infty} \in \alpha K + \beta C$.

Since for any sequence in S that converges, the limit is also in S, S is closed.

Remark. The sum of two closed sets may not be closed.

Proof.

Counter-example 1

Consider $A := \{n : n \in \mathbb{N}\}$ and $B := \{n + \frac{1}{n} : n \in \mathbb{N}\}.$

(https://math.stackexchange.com/questions/124130/sum-of-two-closed-sets-in-mathbb-r-is-closed) Their sum contains the sequence $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ but does not contain 0.

Counter-example 2

Consider $A := \mathbb{R} \times \{0\}$ and $B := \{(x, y) \in \mathbb{R}^2 : x, y > 0, xy \ge 1\}.$

Their sum is $\mathbb{R} \times \mathbb{R}_{++}$.

4.3 Neighborhoods

Sequence Spaces

5.1 ℓ_p Space

Definition ($\ell_p^{(n)}$ Space). We define the $\ell_p^{(n)}$ space to be the set of all sequences $\{x_i\}_{i=1}^{i=n}$ such that

Definition (ℓ_p Space). We define the ℓ_p space to be the set of all sequences x such that $||x||_p$ is finite, equipped with the p-norm $||\cdot||_p$.

Proposition 5.1.1. For $p \in [1, +\infty)$, $(\ell_p, ||\cdot||_p)$ is complete.

Proof.

Let $\{x_n\}_{n\in\mathbb{N}}$ be an arbitrary Cauchy sequence in ℓ_p .

Since $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy in ℓ_p , $\forall \varepsilon > 0$, $\exists N(\varepsilon) \in \mathbb{N}$ such that $\forall m, n > N$, we have $||x_m - x_n||_p < \varepsilon$.

Since $||x_m - x_n||_p < \varepsilon$ and $|x_m^{(i)} - x_n^{(i)}| \le ||x_m - x_n||_p$ for any $i \in \mathbb{N}$, $|x_m^{(i)} - x_n^{(i)}| < \varepsilon$ for any $i \in \mathbb{N}$.

Since for any $i \in \mathbb{N}$ and any positive number ε , there exists an integer $N(\varepsilon)$ such that for any indices m, n > N, we have $|x_m^{(i)} - x_n^{(i)}| < \varepsilon$, by definition, $\{x_n^{(i)}\}_{n \in \mathbb{N}}$ is Cauchy in \mathbb{F} .

Since $\{x_n^{(i)}\}_{n\in\mathbb{N}}$ is Cauchy in \mathbb{F} and \mathbb{F} is complete, $\{x_n^{(i)}\}_{n\in\mathbb{N}}$ converges.

Let $x_0^{(i)} = x_n^{(i)}$. Let $x_0 = \{x_0^{(i)}\}_{i \in \mathbb{N}}$.

$$||x_0||_p = (\sum_{i=1}^{\infty} |x_0^{(i)}|^p)^{\frac{1}{p}}$$

5.2 c_0 Space and c_{00} Space

Definition (c_0 Space). We define c_0 to be

$$c_0 := \left\{ \{x_n\}_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \lim_{n \to \infty} x_n = 0 \right\}.$$

Definition (c_{00} Space). We define c_{00} to be

$$c_{00} := \{ \{x_n\}_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} : \exists N \in \mathbb{N}, \forall n > N, x_n = 0 \}.$$

i.e. the set of all eventually zero sequences of real numbers.

Proposition 5.2.1. The closure of c_{00} in the space $(\mathbb{R}^{\omega}, d_1)$ is ℓ_1 .

Proof. For one direction, we are to prove that $cl(c_{00}) \subseteq \ell_1$. Let x be an arbitrary element in $cl(c_{00})$. Since $x \in cl(c_{00})$, there exists another element $y \in c_{00}$ such that $d_1(x,y) < 1$. Let $N \in \mathbb{N}$ be such that $\forall n > N, y_n = 0$. Then

$$\begin{aligned} &d_1(x,y) < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n - y_n| < 1\\ \iff &\sum_{n=1}^N |x_n - y_n| + \sum_{n > N} |x_n - y_n| < 1\\ \iff &\sum_{n=1}^N |x_n - y_n| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N ||x_n| - |y_n|| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N \left(|x_n| - |y_n|\right) + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n=1}^N |x_n| - \sum_{n=1}^N |y_n| + \sum_{n > N} |x_n| < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n| - \sum_{n=1}^N |y_n| < 1\\ \iff &\sum_{n \in \mathbb{N}} |x_n| < 1 + \sum_{n=1}^N |y_n|.\end{aligned}$$

Since $\sum_{n\in\mathbb{N}} |x_n|$ is bounded, $x\in\ell_1$.

For the reverse direction, we are to prove that $\ell_1 \subseteq \operatorname{cl}(c_{00})$. Let x be an arbitrary element in ℓ_1 . For $i \in \mathbb{N}$, define $x^i = \{x_j^i\}_{j \in \mathbb{N}}$ as $x_j^i = x_j$ for $j \leq i$ and $x_j^i = 0$ for j > i. Then

 $\forall i \in \mathbb{N}, x^i \in c_{00}$. Then

$$\lim_{i \in \mathbb{N}} d_1(x^i, x)$$

$$= \lim_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} |x_j^i - x_j|$$

$$= \lim_{i \in \mathbb{N}} \sum_{j > i} |x_j^i - x_j|$$

$$= \lim_{i \in \mathbb{N}} \sum_{j > i} |x_j|$$

$$= 0$$

That is, $\lim_{i\in\mathbb{N}} d_1(x^i, x) = 0$. So $\lim_{i\in\mathbb{N}} x^i = x$. So $x \in cl(c_{00})$.

Proposition 5.2.2. The closure of c_{00} in the space $(\mathbb{R}^{\omega}, d_{\infty})$ is c_0 .

Proof. For one direction, we are to prove that $\operatorname{cl}(c_{00}) \subseteq c_0$. Let x be an arbitrary element in $\operatorname{cl}(c_{00})$. Let ε be an arbitrary positive real number. Since $x \in \operatorname{cl}(c_{00})$, there exists another element y in c_{00} such that $d_{\infty}(x,y) < \varepsilon$. That is, $\forall j \in \mathbb{N}, |x_j - y_j| < \varepsilon$. Since $y \in c_{00}$, $\exists N \in \mathbb{N}$ such that $\forall j > N, y_j = 0$. So $\forall j > N, |x_j| < \varepsilon$. That is,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall j > N, \quad |x_j| < \varepsilon.$$

By definition of convergence of limits, $\lim_{j\in\mathbb{N}} x_j = 0$. So $x \in c_0$.

For the reverse direction, we are to prove that $c_0 \subseteq \operatorname{cl}(c_{00})$. Let x be an arbitrary element in c_0 . For $i \in \mathbb{N}$, define x^i as $x^i_j = x_j$ for $j \le i$ and $x^i_j = 0$ for j > i. Then $\forall i \in \mathbb{N}$, $x^i \in c_{00}$. Let ε be an arbitrary positive real number. Since $x \in c_0$,

$$\exists N \in \mathbb{N}, \quad \forall j > N, \quad |x_j| < \varepsilon/2.$$

Let i > N. Then

$$d_{\infty}(x^{i}, x)$$

$$= \sup_{j \in \mathbb{N}} |x_{j}^{i} - x_{j}|$$

$$= \sup_{j > i} |x_{j}^{i} - x_{j}|$$

$$= \sup_{j > i} |x_{j}|$$

$$\leq \varepsilon/2 < \varepsilon.$$

That is,

$$\forall \varepsilon > 0, \quad \exists N \in \mathbb{N}, \quad \forall i > N, \quad d_{\infty}(x^i, x) < \varepsilon.$$

By definition of convergence of sequences, $\lim_{i \in \mathbb{N}} x^i = x$. So $x \in \text{cl}(c_{00})$.

Proposition 5.2.3. Let $A := \{ \{x_n\}_{n \in \mathbb{N}} \in c_{00} : \sum_{n \in \mathbb{N}} x_n = 0 \}$. Then A is a subset of ℓ^1 and is closed in (ℓ^1, d_1) . i.e. cl(A) = A in (ℓ^1, d_1) .

Proof. Let $x = \{x^i\}_{i \in \mathbb{N}}$ be a sequence in ℓ^1 , where each $x^i = \{x^i_j\}_{j \in \mathbb{N}}$ is an element in A, that converges in (ℓ^1, d_1) . Say $\lim_{i \to \infty} x^i = x^{\infty}$.

First I claim that $x^{\infty} \in c_{00}$.

Now I claim that $\sum_{j\in\mathbb{N}} x_j^{\infty} = 0$. i.e. $x^{\infty} \in A$. Since $x^{\infty} \in c_{00}$,

$$\exists N \in \mathbb{N}, \quad \forall j > N, \quad x_i^{\infty} = 0.$$

Define $y_i := \sum_{j=1}^N x_j^i$. Define $y_\infty := \sum_{j=1}^N x_j^\infty$. It is easy to see that $\lim_{i \in \mathbb{N}} y_i = y_\infty$. Assume for the sake of contradiction that $y_\infty \neq 0$. i.e. $\{y_i\}_{i \in \mathbb{N}}$ does not converge to 0. Then

$$\exists \varepsilon_0 > 0, \quad \forall M \in \mathbb{N}, \quad \exists i_0 > M, \quad |y_{i_0} - 0| = |y_{i_0}| \ge \varepsilon_0.$$
 (1)

Since $\lim_{i\to\infty} x^i = x^\infty$,

$$\exists M_0 \in \mathbb{N}, \quad \forall i > M_0, \quad d_1(x^i, x^\infty) < \varepsilon_0.$$
 (2)

Consider statement (1) for a particular M, M_0 , we have

$$\exists i_0 > M_0, \quad |y_{i_0}| \ge \varepsilon_0. \tag{3}$$

That is,

$$\left|\sum_{j=1}^{N} x_j^{i_0}\right| \ge \varepsilon_0. \tag{3'}$$

Consider statement (2) for a particular i, i_0 , we have

$$d_1(x^{i_0}, x^{\infty}) < \varepsilon_0. \tag{4}$$

From statement (4) we can derive:

$$d_{1}(x^{i_{0}}, x^{\infty}) < \varepsilon_{0}$$

$$\iff \sum_{j \in \mathbb{N}} |x_{j}^{i_{0}} - x_{j}^{\infty}| < \varepsilon_{0}$$

$$\iff \sum_{j=1}^{N} |x_{j}^{i_{0}} - x_{j}^{\infty}| + \sum_{j>N} |x_{j}^{i_{0}} - x_{j}^{\infty}| < \varepsilon_{0}$$

$$\iff \sum_{j>N} |x_{j}^{i_{0}} - x_{j}^{\infty}| < \varepsilon_{0}$$

$$\iff \sum_{j>N} |x_{j}^{i_{0}} - 0| < \varepsilon_{0}$$

$$\iff \sum_{j>N} |x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |\sum_{j>N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |\sum_{j>N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |\sum_{j\in\mathbb{N}} x_{j}^{i_{0}} - \sum_{j=1}^{N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |0 - \sum_{j=1}^{N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |\sum_{i=1}^{N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

$$\iff |\sum_{i=1}^{N} x_{j}^{i_{0}}| < \varepsilon_{0}$$

This contradicts to statement (3'). So the original assumption that $y_{\infty} \neq 0$ is false. i.e. $y_{\infty} = 0$. It follows that $\sum_{j \in \mathbb{N}} x_j^{\infty} = 0$. This completes the proof.

Function Spaces

6.1 The \mathcal{L}^p Norm

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}.$$

Hilbert Space

7.1 Hilbert Spaces

Definition (Hilbert Space). We define a **Hilbert space** to be a complete inner product space.

Example 7.1.1. ℓ^2 is a Hilbert space.

24 7. HILBERT SPACE

Equicontinuity in Metric Spaces

8.1 Definitions

Definition ((Pointwise) Equicontinuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Let \mathcal{F} be a collection of functions from X to Y. Let x_0 be a point in X. We say that \mathcal{F} is (pointwise) equicontinuous at point x_0 if for any positive number ε , there exists some number $\delta(x_0, \varepsilon)$ such that for any function f in \mathcal{F} and any point x in X, we have

$$d_{Y}(f(x), f(x_{0})) < \varepsilon$$

whenever $d_X(x, x_0) < \delta(x_0, \varepsilon)$ is satisfied.

Definition (Uniform Equicontinuity). Let (X, d_X) and (Y, d_Y) be metric spaces. Let \mathcal{F} be a collection of functions from X to Y. We say that \mathcal{F} is uniformly equicontinuous if for any positive number ε , there exists some number $\delta(\varepsilon)$ such that for any function f in \mathcal{F} and any points x_1 and x_2 in X, we have

$$d_Y(f(x_1), f(x_2)) < \varepsilon$$

whenever $d_X(x_1, x_2) < \delta(\varepsilon)$ is satisfied.

8.2 Sufficient Conditions

Proposition 8.2.1. The closure of an equicontinuous family of functions is equicontinuous.

Proof.

Let (X, d_X) and (Y, d_Y) be metric spaces.

Let \mathcal{F} be an equicontinuous family of functions from X to Y.

We are to prove that $cl(\mathcal{F})$ is equicontinuous.

Let x_0 be an arbitrary point in X.

Let ε be an arbitrary positive number.

Since \mathcal{F} is equicontinuous at point x_0 , there exists some $\delta(x_0, \varepsilon)$ such that for any function f in \mathcal{F} and any point x in X such that $d_X(x, x_0) < \delta(x_0, \varepsilon)$, we have $d_Y(f(x), f(x_0)) < \varepsilon/3$. Let f be an arbitrary function in $cl(\mathcal{F})$.

Let x be an arbitrary point in X such that $d_X(x, x_0) < \delta(x_0, \varepsilon)$.

Since $f \in cl(\mathcal{F})$, there exists some function $f_0 \in \mathcal{F}$ such that $d_{\infty}(f, f_0) < \varepsilon/3$.

Since $d_{\infty}(f, f_0) < \varepsilon/3$, $d_Y(f(x), f_0(x)) < \varepsilon/3$ and $d_Y(f(x_0), f_0(x_0)) < \varepsilon/3$.

Since $f_0 \in \mathcal{F}$ and $d_X(x, x_0) < \delta(x_0, \varepsilon), d_Y(f_0(x), f_0(x_0)) < \varepsilon/3$.

Since $d_Y(f(x), f_0(x)) < \varepsilon/3$ and $d_Y(f(x_0), f_0(x_0)) < \varepsilon/3$ and $d_Y(f_0(x), f_0(x_0)) < \varepsilon/3$, $d_Y(f(x), f(x_0)) < \varepsilon$.

Since for any positive number ε , there exists some $\delta(x_0,\varepsilon)$ such that for any function f in $cl(\mathcal{F})$ and any point x in X such that $d_X(x,x_0) < \delta(x_0,\varepsilon)$, we have $d_Y(f(x),f(x_0)) < \varepsilon$, by definition of equicontinuous, $cl(\mathcal{F})$ is equicontinuous at point x_0 .

Since $cl(\mathcal{F})$ is equicontinuous at point x_0 for any point x_0 in X, $cl(\mathcal{F})$ is equicontinuous.

Operators

9.1 Bounded Operators

Definition (Bounded Operator). Let X and Y be normed linear spaces. Let T be a linear map from X to Y. We say that T is a **bounded operator** if

$$\exists k \in \mathbb{R}, \quad \forall x \in X, \quad ||Tx||_Y \le k||x||_X.$$

Definition (Operator Norm). Let X and Y be normed linear spaces. Let T be a bounded operator from X to Y. We define the **operator norm** of T, denoted by ||T||, to be the number given by

$$||T|| := \inf\{k \in \mathbb{R} : \forall x \in X, ||Tx||_Y \le k||x||_X\}.$$

Proposition 9.1.1. Let X and Y be normed linear spaces. Let T be a linear map from X to Y. Then T is bounded if and only if T is continuous.

Example 9.1.1 (Multiplication Operator). Let $X = (\mathcal{C}([0,1],\mathbb{C}), \|\cdot\|_{\infty})$. Let f be a function in X. We define the **multiplication operator** on X, w.r.t. f, denoted by M_f , as

$$M_f(g) = fg.$$

Then M_f is bounded and $||M_f|| = ||f||_{\infty}$.

Proof. Let g be an arbitrary function in X. Then

$$||M_f g||_{\infty} = ||fg||_{\infty} \le ||f||_{\infty} ||g||_{\infty}.$$

So $||f||_{\infty}$ is an element of the set $S = \{k \in \mathbb{R} : \forall x \in X, ||Tx||_Y \le k||x||_X\}$. So $||M_f|| \le ||f||_{\infty}$. Consider g_0 given by $g_0(x) = 1$. Then

$$||M_f g_0||_{\infty} = ||f g_0||_{\infty} = ||f||_{\infty} = ||f||_{\infty} ||g||_{\infty}.$$

28 9. OPERATORS

For any $k \in S$, if $k < ||f||_{\infty}$, $k \notin S$. So $\forall k \in S$, $k \ge ||f||_{\infty}$. So $||f||_{\infty}$ is a lower bound for the set S. So $||M_f|| \ge ||f||_{\infty}$. Since $||M_f|| \le ||f||_{\infty}$ and $||M_f|| \ge ||f||_{\infty}$, we get $||M_f|| = ||f||_{\infty}$.

Example 9.1.2 (Weighted Shifts).

• Let $\mathcal{H} = \ell_{\mathbb{N}}^2$. Let $(w_n)_{n \in \mathbb{N}} \in \ell_{\mathbb{N}}^{\infty}$. We define an unilateral forward weighted shift W on \mathcal{H} as

$$W(x_n) := (0, w_1x_1, w_2x_2, w_3x_3, ...).$$

Then W is bounded and $||W|| = \sup\{|w_n| : n \in \mathbb{N}\}.$

• Let $\mathcal{H} = \ell_{\mathbb{N}}^2$. Let $(v_n)_{n \in \mathbb{N}} \in \ell_{\mathbb{N}}^{\infty}$. We define an unilateral backward weighted shift V on \mathcal{H} as

$$V(x_n) := (v_1x_2, v_2x_3, v_3x_4, \dots).$$

Then V is bounded and $||V|| = \sup\{|v_n| : n \in \mathbb{N}\}.$

• Let $\mathcal{H} = \ell_{\mathbb{Z}}^2$. Let $(u_n)_{n \in \mathbb{Z}} \in \ell_{\mathbb{Z}}^{\infty}$. We define a **bilateral weighted shift** U on \mathcal{H} as

$$U(x_n) := (u_{n-1}x_{n-1})_{n \in \mathbb{Z}}.$$

Then U is bounded and $||U|| = \sup\{|u_n| : n \in \mathbb{Z}\}.$

9.2 Space of Bounded Operators

Proposition 9.2.1. Let X and Y be normed linear spaces. Let $\mathcal{B}(X,Y)$ be the space of bounded linear operators from X to Y. Then if Y is complete, $\mathcal{B}(X,Y)$ is complete.

9.3 Dual Spaces

Definition (Dual Space). Let X be a normed linear space over field \mathbb{K} . We define the **dual** of X, denoted by X^* , to be the space $\mathcal{B}(X,\mathbb{K})$.

Proposition 9.3.1. Let X be a normed linear space. Then there exists a contractive map from X to its double dual X^{**} .

Adjoint Operator

10.1 Definitions

Definition (Adjoint Matrix). Let A be an $m \times n$ matrix. We define the **adjoint** of A, denoted by A^* , to be an $n \times m$ matrix given by

$$(A^*)_{ij} := \overline{(A)_{ji}}.$$

Definition (Adjoint Operator). Let V and W be inner product spaces. Let T be a linear map from V to W. We define the **adjoint** of T, denoted by T^* , to be a map from W to V such that

$$\forall x \in V, \forall y \in W, \quad \langle T(x), y \rangle_W = \langle x, T^*(y) \rangle_V.$$

Proposition 10.1.1 (Existence). Let V be a finite-dimensional inner product space and T be a linear operator on V. Then the adjoint of T exists.

Proposition 10.1.2 (Uniqueness). Let V be an inner product space and T be a linear operator on V. Then the adjoint of T is unique, provided that it exists.

10.2 Properties of the Adjoint Operator

Proposition 10.2.1. Let V be an inner product space. Then

- (1) $(I_V)^* = I_V$ where I_V is the identity operator on V.
- (2) $T^{**} = T$ for any linear operator T on V.

Proposition 10.2.2. Let V be an inner product space and T be a linear operator on V. Then T^* is also linear.

Proposition 10.2.3. Let V be an inner product space. Then

(1) For any linear operators T and U,

$$(T+U)^* = T^* + U^*.$$

(2) For any linear operator T,

$$(cT)^* = \overline{c} \cdot T^*.$$

(3) For any linear operator T and U,

$$(TU)^* = U^*T^*.$$

Proposition 10.2.4. Let V be a finite-dimensional inner product space and T be a linear operator on V. Then if T is invertible, T^* is also invertible.

Proposition 10.2.5. Let V be an inner product space and T be an invertible linear operator on V. Then $(T^{-1})^* = (T^*)^{-1}$.

10.3 Normal Operators

Definition (Normal). Let V be an inner product space and T be a linear operator on V. We say that T is **normal** if $TT^* = T^*T$.

10.4 Self-adjoint

Convolution

Definition (Convolution). Let f and g be functions from \mathbb{R} to \mathbb{R} . We define the **convolution** of f and g, denoted by f * g, to be a function on \mathbb{R} given by

$$(f*g)(t) := \int_{-\infty}^{+\infty} f(\tau)g(t-\tau)dt.$$

32 11. CONVOLUTION

Coercive Functions

12.1 Definitions

Definition (Coercive). Let f be a function from \mathbb{R}^d to \mathbb{R}^* . We say that f is coercive if $\lim_{\|x\|\to\infty} f(x) = +\infty$.

12.2 Properties

Proposition 12.2.1. Let f be a proper lower semi-continuous function from \mathbb{R}^d to \mathbb{R}^* . Let K be a compact set in \mathbb{R}^d . Assume $K \cap \text{dom}(f) \neq \emptyset$. Then f attains its minimum over K.

Proof.

Define $m := \inf_{x \in K} f(x)$.

Since $m = \inf_{x \in K} f(x)$, there exists a sequence $\{x_i\}_{i \in \mathbb{N}}$ in K such that $\lim_{i \to \infty} f(x_i) = m$.

Since K is compact and $\{x_i\}_{i\in\mathbb{N}}\subseteq K$, there exists a convergent subsequence $\{x_i\}_{i\in I}$ in K where I is an infinite subset of \mathbb{N} .

Say the limit is x_{∞} where $x_{\infty} \in K$.

Since $\lim_{i\to\infty} f(x_i) = m$, we get $\lim_{i\in I, i\to\infty} f(x_i) = m$.

Since $\lim_{i \in I, i \to \infty} f(x_i) = m$, we get $\lim \inf_{i \in I, i \to \infty} f(x_i) = m$.

Since f is lower semi-continuous and $\lim_{i \in I, i \to \infty} x_i = x_\infty$, we get $f(x_\infty) \leq \liminf_{i \in I, i \to \infty} x_i$.

That is, $f(x_{\infty}) \leq m$.

Since $m = \inf_{x \in K} f(x)$, we have $\forall x \in K, f(x) \geq m$.

In particular, $f(x_{\infty}) \geq m$.

Since $f(x_{\infty}) \geq m$ and $f(x_{\infty}) \leq m$, $f(x_{\infty}) = m$.

Since f is proper, $f(x_{\infty}) = m \neq -\infty$.

So f attains its minimum at point x_{∞} .

Proposition 12.2.2. Let f be a proper, lower semi-continuous, and coercive function from \mathbb{R}^d to \mathbb{R}^* . Let C be a closed subset of \mathbb{R}^d . Assume $C \cap \text{dom}(f) \neq \emptyset$. Then f attains its minimum over C.

Proof.

Since $C \cap \text{dom}(f) \neq \emptyset$, take $x \in C \cap \text{dom}(f)$.

Since f is coercive, $\exists R$ such that $\forall y, ||y|| > R$, we have $f(y) \ge f(x)$.

Since $x \in C \cap \text{dom}(f)$ and $\forall y, ||y|| > R$, we have $f(y) \geq f(x)$, the set of minimizers of f over C is the same as the set of minimizers of f over $C \cap \text{ball}[0, R]$.

Since C and ball [0, R] are both closed, $C \cap \text{ball}[0, R]$ is closed.

Since ball[0, R] is bounded, $C \cap \text{ball}[0, R]$ is bounded.

Since $C \cap \text{ball}[0, R]$ is closed and bounded, by the Heine-Borel Theorem, $C \cap \text{ball}[0, R]$ is compact.

Since f is proper and lower semi-continuous and $C \cap \text{ball}[0, R]$ is compact, f attains its minimum over $C \cap \text{ball}[0, R]$.

So f attains its minimum over C.

Unclassified Results

Proposition 13.0.1. Let (X,d) be a compact metric space. Let L(X) be the set of all Lipschitz functions from X to \mathbb{R} . Let C(X) be the set of all continuous functions from X to \mathbb{R} . Then L(X) is dense in C(X).

Proposition 13.0.2. Let $(V, \|\cdot\|)$ be a normed vector space. Let S be a subset of V. Let p be a vector in V. Then we have the followings.

(1)
$$p + int(S) = int(p + S)$$
,

(2)
$$p + cl(S) = cl(p + S)$$
.

Proof.

Proof of (1).

For one direction, let x be an arbitrary point in the set (p + int(S)).

We are to prove that $x \in int(p+S)$.

Since $x \in (p + int(S)), (x - p) \in int(S)$.

Since $(x-p) \in int(S)$, by definition of interior, there exists a radius r such that

$$B(x-p,r) \subseteq S$$
.

It follows that $B(x,r) \subseteq p + S$.

Since there exists a radius r such that $B(x,r) \subseteq p+S$, by definition of interior,

$$x \in int(p+S)$$
.

For the reverse direction, let x be an arbitrary point in int(p+S).

We are to prove that $x \in p + int(S)$.

Since $x \in int(p+S)$, by definition of interior, there exists a radius r such that

$$B(x,r) \subseteq (p+S).$$

It follows that $B(x-p,r) \subseteq S$.

Since there exists a radius r such that $B(x-p,r) \subseteq S$, by definition of interior,

$$(x-p) \in int(S)$$
.

Since $(x - p) \in int(S)$, we get $x \in (p + int(S))$.

Proof of (2).

For one direction, let x be an arbitrary point in the set (p + cl(S)).

We are to prove that $x \in cl(p+S)$.

Since $x \in (p + cl(S))$, we get $(x - p) \in cl(S)$.

Since $(x-p) \in cl(S)$, by definition of closure, for any radius r, we have

$$B(x-p,r) \cap S \neq \emptyset$$
.

It follows that $B(x,r) \cap (p+S) \neq \emptyset$.

Since for any radius r, $B(x,r) \cap (p+S) \neq \emptyset$, by definition of closure, we get

$$x \in cl(p+S)$$
.

For the reverse direction, let x be an arbitrary point in cl(p+S).

We are to prove that $x \in (p + cl(S))$.

Since $x \in cl(p+S)$, by definition of closure, for any radius r, we have

$$B(x,r) \cap (p+S) \neq \emptyset$$
.

It follows that $B(x-p,r) \cap S \neq \emptyset$.

Since for any radius r, $B(x-p,r) \cap S \neq \emptyset$, by definition of closure, we get

$$(x-p) \in cl(S)$$
.

Since $(x - p) \in cl(S)$, we get $x \in (p + cl(S))$.

Proposition 13.0.3. Let $(V, \|\cdot\|)$ be a normed vector space. Let S be a subset of V. Let λ be a non-zero real number. Then

- (1) $\lambda int(S) = int(\lambda S)$.
- (2) $\lambda \operatorname{cl}(S) = \operatorname{cl}(\lambda S)$.

Proof.

Proof of (1).

For one direction, let x be an arbitrary point in $\lambda int(S)$.

We are to prove that $x \in int(\lambda S)$.

Since $x \in \lambda int(S)$, we get $x/\lambda \in int(S)$.

Since $x/\lambda \in int(S)$, by definition of interior, there exists a radius r such that

$$B(x/\lambda, r) \subseteq S$$
.

Let y be an arbitrary point in $B(x, \lambda r)$.

Since $y \in B(x, \lambda r)$, we get $||y - x|| \le \lambda r$.

Since $||y - x|| \le \lambda r$, we get $||y/\lambda - x/\lambda|| \le r$.

Since $||y/\lambda - x/\lambda|| \le r$, we get $y/\lambda \in B(x/\lambda, r)$.

Since $y/\lambda \in B(x/\lambda, r)$ and $B(x/\lambda, r) \subseteq S$, we get $y/\lambda \in S$.

Since $y/\lambda \in S$, we get $y \in \lambda S$.

Since any point in $B(x, \lambda r)$ is also in λS , we get $B(x, \lambda r) \subseteq \lambda S$.

Since there exists a radius r such that $B(x, \lambda r) \subseteq \lambda S$, by definition of interior, we get

$$x \in int(\lambda S)$$
.

For the reverse direction,