Einführung in die Algebra

BLATT 3

Jendrik Stelzner

7. November 2013

Aufgabe 3.1.

Für $n \in \{1, 2\}$ ist \mathfrak{S}_n kommutativ, also $Z(\mathfrak{S}_1) = \mathfrak{S}_1$ und $Z(\mathfrak{S}_2) = \mathfrak{S}_2$. Für $n \geq 3$ ist $Z(\mathfrak{S}_n) = \{1\}$ die triviale Gruppe:

Sei $\pi \in Z(\mathfrak{S}_n)$ und $\sigma := \begin{pmatrix} 1 & 2 & \dots & n-1 & n \end{pmatrix} \in \mathfrak{S}_n$ die Rotation mit $\sigma(1) = 2$. Es gibt dann $s \in \{0,\dots,n-1\}$ mit $\pi(1) = \sigma^s(1)$. Da π mit allen Elementen in \mathfrak{S}_n kommutiert, ist damit für alle $m \in \{1,\dots,n\}$

$$\pi(m)=\pi(\sigma^m(1))=\sigma^m(\pi(1))=\sigma^m(\sigma^s(1))\underset{(*)}{=}\sigma^s(\sigma^m(1))=\sigma^s(m),$$

also $\sigma^s=\pi$, wobei bei (*) die Kommutativität von $\langle\sigma\rangle$ genutzt wird. Da wegen der Kommutativität von $\sigma^s=\pi$

$$\tau_{12} = \sigma^s \ \tau_{12} \ (\sigma^s)^{-1} = \tau_{(1+s)(2+s)},$$

wobei τ_{kl} die Transposition von $k \mod n$ und $l \mod n$ bezeichnet, muss s=0, also $\pi=\sigma^s=\mathrm{id}$. Dass $\mathrm{id}\in Z(\mathfrak{S}_n)$ ist klar, da $Z(\mathfrak{S}_n)\subseteq \mathfrak{S}_n$ eine Untergruppe ist.

Aufgabe 3.2.

Lemma 1. Sei G eine endliche Gruppe, und seien $N_1, N_2 \subseteq G$ Normalteiler in G mit ord $G = \operatorname{ord} N_1 \cdot \operatorname{ord} N_2$ und $N_1 \cap N_2 = \{1\}$. Dann ist $G \cong N_1 \times N_2$.

Beweis des Lemmas: Für $n_1\in N_1$ und $n_2\in N_2$ ist $n_1n_2=n_2n_1$, denn N_1 und N_2 sind als Normalteiler invariant bezüglich Konjugation, weshalb

$$n_1 \cdot \underbrace{n_2 n_1^{-1} n_2^{-1}}_{\in N_1} \in N_1 \text{ und } \underbrace{n_1 n_2 n_1^{-1}}_{\in N_2} \cdot n_2^{-1} \in N_2.$$

Aus $N_1\cap N_2=\{1\}$ folgt $n_1n_2n_1^{-1}n_2^{-1}=1$, also $n_1n_2=n_2n_1$. Es sei nun

$$\varphi: N_1 \times N_2 \to G, (n_1, n_2) \mapsto n_1 n_2.$$

Aus der eben gezeigten Kommutativität folgt, dass φ ein Gruppenhomomorphismus ist, da für alle $(n_1,n_2),(n_1',n_2')\in N_1\times N_2$

$$\varphi((n_1, n_2)(n'_1, n'_2)) = \varphi((n_1 n'_1, n_2 n'_2)) = n_1 n'_1 n_2 n'_2$$

= $n_1 n_2 n'_1 n'_2 = \varphi(n_1, n_2) \varphi(n'_1, n'_2).$

 φ ist injektiv, da für $(n_1, n_2) \in \operatorname{Ker} \varphi$

$$1 = \varphi(n_1, n_2) = n_1 n_2$$
, also $N_2 \ni n_2 = n_1^{-1} \in N_1$,

und daher $n_1 = n_2 = 1$. Da

$$\operatorname{ord} N_1 \times N_2 = \operatorname{ord} N_1 \cdot \operatorname{ord} N_2 = \operatorname{ord} G < \infty$$

folgt aus der Injektivität von φ direkt die Bijektivität. Da φ ein Gruppenisomorphismus ist, ist $G\cong N_1\times N_2$.

Bemerkung 2. Sind p und q verschiedene Primzahlen und ist G ein p-Gruppe und H eine q-Gruppe, so ist $G \cap H = \{1\}$: Nach dem Satz von Lagrange ist ord $G \cap H$ ein Teiler von ord G und ord H, aus der Teilerfremdheit von p und q folgt daher, dass ord $G \cap H = 1$, also $G \cap H = \{1\}$.

Es sei G eine Gruppe der Ordnung ord $G=5929=11^2\cdot 7^2$. Es sei s die Anzahl der 11-Sylowgruppen in G. Nach den Sylowsätzen ist

$$s\mid \operatorname{ord} G=11^2\cdot 7^2, \qquad s\equiv 1 \mod 11.$$

Da $s\equiv 1 \bmod 11$ ist s kein Vielfaches von 11. Zusammen mit $s\mid 11^2\cdot 7^2$ ergibt sich daraus, dass $s\in\{1,7,49\}$. Da jedoch

$$7 \not\equiv 1 \not\equiv 49 \mod 11$$

muss s=1. Insbesondere ist die eindeutige 11-Sylowgruppe $S_{11}\subseteq G$, die nach den Sylowsätzen existiert, daher ein Normalteiler in G. Analoges ergibt sich für die Anzahl r der 7-Sylowgruppen in G: Es muss

$$r \mid \operatorname{ord} G = 11^2 \cdot 7^2, \qquad r \equiv 1 \mod 7,$$

also $r \in \{1, 11, 121\}$, und wegen

$$11 \not\equiv 1 \not\equiv 121 \mod 7$$

daher r=1. Also ist auch die eindeutige, nach den Sylowsätzen existierende 7-Sylowgruppe $S_7 \subseteq G$ ein Normalteiler in G.

Sylowgruppe $S_7\subseteq G$ ein Normalteiler in G. Da ord $S_{11}=11^2$ und ord $S_7=7^2$ ist ord $G=\operatorname{ord} S_{11}\cdot\operatorname{ord} S_7$. Nach Bemerkung 2 ist auch $S_{11}\cap S_7=\{1\}$. Nach Lemma 1 ist ist also $G\cong S_{11}\times S_7$. Da ord S_{11} und ord S_7 Quadrate von Primzahlen sind, sind S_{11} und S_7 , wie aus der Vorlesung bekannt, abelsch. Also ist G als Produkt abelscher Gruppen ebenfalls abelsch.

Aufgabe 3.3.

(i)

Durch

$$G \times G/H \to G/H, (g, aH) \mapsto gaH$$

wird eine Aktion von G auf der Menge der Linksnebenklassen G/H definiert (die Wohldefiniertheit ist klar). Diese Aktion entspricht dem Gruppenhomomorphismus

$$\varphi:G\to S(G/H), g\mapsto (aH\mapsto gaH).$$

Es ist daher

$$\operatorname{ord} G = \operatorname{ord} \operatorname{Ker} \varphi \cdot \operatorname{ord} \operatorname{Im} \varphi.$$

Da ord Im φ nach dem Satz von Lagrange ein Teiler von ord S(G/H)=(G:H)! ist, ord G jedoch kein Teiler von (G:H)!, muss ord Ker $\varphi \neq 1$, also Ker φ nichttrivial sein. Ker φ ist als Kern eines Gruppenhomomorphismus normal in G. Auch ist Ker $\varphi \subseteq H$, denn für alle $n \in \operatorname{Ker} \varphi$ ist nH = H, da $H \in G/H$, also $n \in H$. Damit ist Ker $\varphi \subseteq H$ ein nichttrivialer Normalteiler von G.

(ii)

Es gilt zu bemerken, dass die Aussage nur unter der zusätzlichen Bedingung k>0 gilt: Ansonsten ist die triviale Gruppe mit p=2, k=0 und m=1 ein Gegenbeispiel. Es wird daher die Aussage unter der zusätzlichen Annahme k>0 gezeigt: Nach den Sylowsätzen gibt es eine p-Sylowgruppe $S\subseteq G$. Da $p\nmid m$ ist ord $S=p^k$, also S=m0. Wegen den Annahmen S=m1 und S=m2 ist daher

ord
$$G = p^k m \nmid m! = (G:S)!$$
.

Nach Aufgabenteil (i) gibt es daher einen nicht trivialen Normalteiler $N\subseteq S\subseteq G$ von G in S.

Aufgabe 3.4.

(i)

Da $S\subseteq H$ ein p-Sylowgruppe in H ist, ist $S\subseteq G$ eine p-Gruppe in G. Nach den Sylowsätzen gibt es daher eine p-Sylowgruppe $T\subseteq G$ mit $S\subseteq T$. Da $S\subseteq H$ und $S\subseteq T$ ist $S\subseteq T\cap H$. Da $T\cap H\subseteq T$ eine p-Gruppe in H ist, und S als Sylowgruppe in H bereits eine in H maximale p-Gruppe ist, muss bereits $S=T\cap H$.

(ii)

Sei $S\subseteq G$ eine normale p-Sylowgruppe in G. Sei $T:=S\cap H$. Als Untergruppe $T\subseteq S$ ist T eine p-Gruppe. Wie aus der Vorlesung bekannt ist T normal in H. Nach den Sylowsätzen gibt es eine Sylowgruppe $T'\subseteq H$ mit $T\subseteq T'$. Nach Aufgabenteil (i) gibt es eine Sylowgruppe $S'\subseteq G$ mit $T'=S'\cap H$. Da S normal ist, ist S, wie aus der Vorlesung bekannt, die einzige p-Sylowgruppe in G. Also muss S=S', und damit T=T'. Also ist T eine normale p-Sylowgruppen H.

(iii)

Sei $S\subseteq H$ eine p-Sylowgruppe; eine solche existiert nach den Sylowsätzen. Nach Aufgabenteil (i) gibt es eine p-Sylowgruppe $T'\subseteq G$ mit $S=T'\cap H$. Da T und T' p-Sylowgruppen in G sind, sind sie konjugiert zueinander, d.h. es gibt ein $g\in G$ mit $T'=g\,Tg^{-1}$. Da H normal in G ist, ist $gHg^{-1}=H$, sowie

$$g^{-1}Sg \subseteq g^{-1}Hg = H.$$

Insbesondere ist $g^{-1}Sg$ wieder eine Untergruppe von H mit ord $g^{-1}Sg=$ ord S (da inn $_{g^{-1}}$ ein Automorphismus ist), also eine p-Sylowgruppe in H. Da nun

$$T \cap H = g^{-1}g(T \cap H)g^{-1}g = g^{-1}\left(g(T \cap H)g^{-1}\right)g$$
$$= g^{-1}\left(\left(gTg^{-1}\right) \cap \left(gHg^{-1}\right)\right)g = g^{-1}(T' \cap H)g = g^{-1}Sg$$

ist diese p-Sylow
gruppe gerade $T\cap H$.

Aufgabe 3.5.

Es ist ord $G=132=2^2\cdot 3\cdot 11$. Für $p\in\{2,3,11\}$ sei s_p die Anzahl der p-Sylowgruppen in G. Nach den Sylowsätzen ist für alle $p\in\{2,3,11\}$

$$s_p\mid \operatorname{ord} G=2^2\cdot 3\cdot 11, \qquad s_p\equiv 1 \mod p.$$

Aus diesen Bedingungen ergibt sich direkt, dass $s_2 \in \{1,3,11,33\}$, $s_3 \in \{1,4,22\}$ und $s_{11} \in \{1,12\}$ (vgl. Aufgabe 3.2.). Dabei besitzt G für $p \in \{2,3,11\}$ genau dann eine normale p-Sylowgruppe, wenn $s_p = 1$.

Angenommen, G besitzt keine normale p-Sylowgruppe. Dann muss $s_2 \geq 3$, $s_3 \geq 4$ und $s_{11} = 12$. Es ergeben sich dann die folgenden Beobachtungen:

- Die 2-Sylowgruppen haben Ordung $2^2=4$, die 3-Sylowgruppen Ordnung 3 und die 11-Sylowgruppen Ordnung 11.
- Sylowgruppen zu verschiedenen Primzahlen haben nach Bemerkung 2 triviale Schnitte.
- p-Sylowgruppen gleicher Primzahlen haben für p=2 oder p=3 ebenfalls nur trivale Schnitte, da für zwei solche p-Sylowgruppen S_p und S'_p für den Schnitt $S_p \cap S'_p$ die Ordnung ord $S_p \cap S'_p$ ein Teiler von ord $S_p = \operatorname{ord} S'_p = p$ ist, also im Falle ord $S_p \cap S'_p \neq 1$ bereits ord $S_p \cap S'_p = p$ und damit $S_p = S_p \cap S'_p = S'_p$.
- Der Schnitt zweier verschiedener 2-Sylowgruppen ist entweder trivial oder von Ordnung 2. Drei solche Gruppen verfügen zusammen über mindestens 5 verschiedene Elemente.

Zusammen ergibt sich damit, dass ${\cal G}$ mindestens

$$12 \cdot 11 - 12 + 4 \cdot 3 - 3 + 5 = 135$$

verschiedene Elemente hat. Da aber ord = 132 kann dies nicht sein. Also ist $s_p = 1$ für ein $p \in \{2, 3, 11\}$, weshalb G ein normale p-Sylowgruppe besitzt.