Lecture 16: Geodesics

Tianpei Xie

Nov. 4th., 2022

Contents

1	Vector and Tensor Fields Along Curves	2
	1.1Definition1.2Covariant Derivatives Along Curves	
2	Geodesics	4
3	Parallel Transport	5
4	Pullback Connections	8

Figure 1: An extendible vector field (Left) vs a non-extendible vector field [Lee, 2018]

1 Vector and Tensor Fields Along Curves

1.1 Definition

• **Definition** Let M be a smooth manifold with or without boundary. Given a smooth curve $\gamma: I \to M$, <u>a vector field along</u> γ is a continuous map $V: I \to TM$ such that $V(t) \in T_{\gamma(t)}M$ for every $t \in I$; it is **a smooth vector field along** γ if it is **smooth** as a map from I to TM.

We let $\mathfrak{X}(\gamma)$ denote the set of all smooth vector fields along γ . It is a real vector space under pointwise vector addition and multiplication by constants, and it is a module over $\mathcal{C}^{\infty}(I)$ with multiplication defined pointwise:

$$(fX)(t) = f(t)X(t).$$

• Example (The Velocity Vector Field)

The most obvious example of a vector field along a smooth curve γ is the curve's **velocity**: $\gamma'(t) \in T_{\gamma(t)}M$ for each t, and its coordinate expression

$$\gamma'(t) = \dot{\gamma}^i(t) \frac{\partial}{\partial x^i}$$

shows that it is *smooth*.

• Example (The Normal Vector Field)

If γ is a curve in \mathbb{R}^2 , let $N(t) = R\gamma'(t)$, where R is **counterclockwise rotation** by $\pi/2$, so N(t) is **normal** to $\gamma'(t)$. In standard coordinates,

$$N(t) = -\dot{\gamma}^2(t)\frac{\partial}{\partial x^1} + \dot{\gamma}^1(t)\frac{\partial}{\partial x^2},$$

so N is a smooth vector field along γ .

• Remark (Construction of A Smooth Vector Field Along the Curve) Suppose $\gamma: I \to M$ is a smooth curve and $\widetilde{V} \in \mathfrak{X}(M)$ is a smooth vector field on an open subset of M containing the image of γ . The smooth vector field along the curve $\gamma, V = \widetilde{V} \circ \gamma$:

$$V(t) = \widetilde{V}_{\gamma(t)} \in T_{\gamma(t)}M.$$

A smooth vector field along γ is said to be **extendible** if there exists a smooth vector field \widetilde{V} on a neighborhood of the image of γ that is related to V in this way.

Not every vector field along a curve need be extendible; for example, if $\gamma(t_1) = \gamma(t_2)$ but $\gamma'(t_1) \neq \gamma'(t_2)$ (Fig. 1), then γ' is not extendible.

• **Definition** More generally, <u>a tensor field along</u> γ is a continuous map σ from I to some tensor bundle $T^{(k,l)}TM$ such that $\sigma(t) \in T^{(k,l)}T_{\gamma(t)}M$ for each $t \in I$.

It is a **smooth tensor field along** γ if it is **smooth** as a map from I to $T^{(k,l)}TM$, and it is **extendible** if there is a smooth tensor field $\tilde{\sigma}$ on a neighborhood of $\gamma(I)$ such that $\tilde{\sigma} = \sigma \circ \gamma$.

1.2 Covariant Derivatives Along Curves

Theorem 1.1 (Covariant Derivative Along a Curve).
 Let M be a smooth manifold with or without boundary and let ∇ be a connection in TM. For each smooth curve γ: I → M, the connection determines a unique operator

$$D_t: \mathfrak{X}(\gamma) \to \mathfrak{X}(\gamma)$$

called the covariant derivative along γ , satisfying the following properties:

1. (Linearity over \mathbb{R}):

$$D_t(aV + bW) = aD_t(V) + bD_t(W), \quad \text{for } a, b \in \mathbb{R}.$$

2. (Product Rule):

$$D_t(f V) = f' V + f D_t(V), \quad \text{for } f \in \mathcal{C}^{\infty}(I).$$

3. If $V \in \mathfrak{X}(\gamma)$ is **extendible**, then for every extension \widetilde{V} of V,

$$D_t(V(t)) = \nabla_{\gamma'(t)} \widetilde{V}.$$

There is an analogous operator on the space of smooth tensor fields of any type along γ .

• Remark (Coordinate Representation for Covariant Derivatives Along a Curve) Choose smooth coordinates (x^i) for M in a neighborhood of $\gamma(t_0)$, and write

$$V(t) = V^{i}(t) \frac{\partial}{\partial x^{i}} \Big|_{\gamma(t)}$$

for t near t_0 , where V^1, \ldots, V^n are smooth real-valued functions defined on some neighborhood of t_0 in I. By the properties of D_t , since each $\frac{\partial}{\partial x^i}$ is extendible,

$$D_{t}(V_{t}) = \dot{V}^{i}(t) \frac{\partial}{\partial x^{i}} \Big|_{\gamma(t)} + V^{i}(t) \nabla_{\gamma'(t)} \frac{\partial}{\partial x^{i}} \Big|_{\gamma(t)}$$

$$= \left(\dot{V}^{k}(t) + \dot{\gamma}^{i}(t) V^{j}(t) \Gamma_{i,j}^{k}(\gamma(t)) \right) \frac{\partial}{\partial x^{k}} \Big|_{\gamma(t)}$$

$$(1)$$

Figure 2: The uniqueness of a geodesic [Lee, 2018]

• Proposition 1.2 Let M be a smooth manifold with or without boundary, let ∇ be a connection in TM, and let $p \in M$ and $v \in T_pM$. Suppose Y and \widetilde{Y} are two smooth vector fields that **agree** at points in the image of some smooth curve $\gamma: I \to M$ such that $\gamma(t_0) = p$ and $\gamma'(t_0) = v$. Then $\nabla_v Y = \nabla_v \widetilde{Y}$.

2 Geodesics

- **Definition** Let M be a smooth manifold with or without boundary and let ∇ be a connection in TM. For every smooth curve $\gamma: I \to M$, we define the <u>acceleration</u> of γ to be **the vector** field $D_t(\gamma')$ along γ .
- **Definition** A smooth curve γ is called a <u>geodesic</u> (with respect to ∇) if its acceleration is zero: $D_t(\gamma'(t)) = 0$.
- Remark Geodesic is the curve whose tangential acceleration is zero. From the connection ∇ point of view, it specify both the directional vector field and the target vector field equal to $\gamma'(t)$. That is, the tangential acceleration along a curve γ is

$$\nabla_{\gamma'(t)}\gamma'(t)$$
.

• Remark (The Ordinary Differential Equations for the Geodesic) In terms of smooth coordinates (x^i) , if we write the component functions of γ as $\gamma(t) = (x^1(t), \ldots, x^n(t))$. From (1) and $D_t(\gamma'(t))$, we have a set of ordinary differential equations called **the geodesic equations**:

$$\ddot{x}^{k}(t) + \dot{x}^{i}(t)\dot{x}^{j}(t)\Gamma_{i,j}^{k}(x(t)) = 0, \quad k = 1, \dots, n.$$
(2)

where $x(t) := (x^1(t), \dots, x^n(t))$. A (parameterized) curve γ is a geodesic *if and only if* its component functions satisfy the geodesic equations. Note that (2) is **a set of** <u>second-order</u> <u>nonlinear ODEs</u>.

- Theorem 2.1 (Existence and Uniqueness of Geodesics). [Lee, 2018] Let M be a smooth manifold and ∇ a connection in TM. For every $p \in M$, $w \in T_pM$, and $t_0 \in \mathbb{R}$, there exist an open interval $I \subseteq \mathbb{R}$ containing t_0 and a geodesic $\gamma : I \to M$ satisfying $\gamma(t_0) = p$ and $\gamma'(t_0) = w$. Any two such geodesics agree on their common domain.
- Remark From the geodesic equation, we see that the only parameters of the ODE that determines the geodesic is the conefficients of the connection $\{\Gamma_{i,j}^k\}$. That is, the geodesic is solely determined by the connection ∇ . Thus we also call it a ∇ -geodesic.

• **Remark** The *geodesic equation under the initial boundary condition* can be written in the following form:

$$\dot{x}^k(t) = v^k(t) \tag{3}$$

$$\dot{v}^k(t) = -v^i(t)v^j(t)\Gamma^k_{i,j}(x(t)) \tag{4}$$

Treating $(x^1, \ldots, x^n, v^1, \ldots, v^n)$ as coordinates on $U \times \mathbb{R}^n$, we can recognize (4) as the equations for the **flow** of **the vector field** $G \in \mathfrak{X}(U \times \mathbb{R}^n)$ given by

$$G_{(x,v)} = v^k \frac{\partial}{\partial x^k} \Big|_{(x,v)} - v^i v^j \Gamma_{i,j}^k(x) \frac{\partial}{\partial v^k} \Big|_{(x,v)}.$$
 (5)

The importance of G stems from the fact that it actually defines a global vector field on the total space of TM, called the geodesic vector field. It can be verified that the components of G under a change of coordinates take the same form in every coordinate chart.

Note that G acts on a function $f \in \mathcal{C}^{\infty}(U \times \mathbb{R}^n)$ as

$$Gf(p,v) = \frac{d}{dt}\Big|_{t=0} f(\gamma_v(t), \gamma_v'(t)). \tag{6}$$

• **Definition** A geodesic $\gamma: I \to M$ is said to be **maximal** if it cannot be extended to a geodesic on a larger interval, that is, if there does not exist a geodesic $\widetilde{\gamma}: \widetilde{I} \to M$ defined on an interval \widetilde{I} properly containing I and satisfying $\widetilde{\gamma}|_{I} = \gamma$.

A geodesic segment is a geodesic whose domain is a compact interval.

- Corollary 2.2 Let M be a smooth manifold and let ∇ be a connection in TM. For each $p \in M$ and $v \in T_pM$, there is a **unique maximal geodesic** $\gamma : I \to M$ with $\gamma(0) = p$ and $\gamma'(0) = v$, defined on some open interval I containing 0.
- **Definition** The <u>unique maximal geodesic</u> γ with $\gamma(0) = p$ and $\gamma'(0) = v$ is often called simply the geodesic with initial point p and initial velocity v, and is denoted by γ_v . (Note that we can always find $p = \pi(v)$ where $\pi : TM \to M$ is the natural projection.)

3 Parallel Transport

- **Definition** Let M be a smooth manifold and let ∇ be a connection in TM. A smooth vector or tensor field V along a smooth curve γ is said to be **parallel along** γ (with respect to ∇) if $D_t(V) \equiv 0$.
- Remark A geodesic can be characterized as a curve whose velocity vector field is parallel along the curve.
- Remark (Coordinate Representation of Vector Field Parallel Along a Curve) Given a smooth curve γ with a local coordinate representation $\gamma(t) = (\gamma^1(t), \dots, \gamma^n(t))$, formula (1) shows that a vector field V is parallel along γ if and only if

$$\dot{V}^{k}(t) + \dot{\gamma}^{i}(t)V^{j}(t)\Gamma^{k}_{i,j}(\gamma(t)) = 0, \quad k = 1, \dots, n$$
(7)

This is a set of *linear ordinary differential equations* with respect to $(V^1(t), \ldots, V^n(t))$.

Figure 3: The parallel transport of a vector field along a curve [Lee, 2018]

• For linear ODEs, we have stronger results:

Theorem 3.1 (Existence, Uniqueness, and Smoothness for Linear ODEs). [Lee, 2018]

Let $I \subseteq R$ be an open interval, and for $1 \le j, k \le n$, let $A_j^k : I \to \mathbb{R}$ be smooth functions. For all $t_0 \in I$ and every initial vector $(c^1, \ldots, c^n) \in \mathbb{R}^n$, the **linear initial value problem**

$$\dot{V}^{k}(t) = A_{j}^{k}(t) V^{j}(t),$$

$$V^{k}(t_{0}) = c^{k},$$
(8)

has a unique smooth solution on all of I, and the solution depends smoothly on $(t, c) \in I \times \mathbb{R}^n$.

- Theorem 3.2 (Existence and Uniqueness of Parallel Transport). Suppose M is a smooth manifold with or without boundary, and ∇ is a connection in TM. Given a smooth curve $\gamma: I \to M$, $t_0 \in I$, and a vector $v \in T_{\gamma(t_0)}M$ or tensor $v \in T^{(k,l)}T_{\gamma(t_0)}M$, there exists a unique parallel vector or tensor field V along γ such that $V(t_0) = v$.
- Remark Compare to results for geodesic, there is no need for definition similar to the maximal geodesic since the solution for parallel transport is global on all I.
- Remark The vector or tensor field whose existence and uniqueness are proved in Theorem above is called the parallel transport of v along γ .
- **Definition** For each $t_0, t_1 \in I$, we define a map

$$P_{t_0,t_1}^{\gamma}: T_{\gamma(t_0)}M \to T_{\gamma(t_1)}M,$$
 (9)

called the parallel transport map, by setting

$$P_{t_0,t_1}^{\gamma}(v) = V(t_1), \quad \forall v \in T_{\gamma(t_0)}M$$

where V is the **parallel transport** of v along γ .

This map is *linear*, because the equation of parallelism is linear. It is in fact an **isomorphism**, because P_{t_1,t_0}^{γ} is an **inverse** for it.

• **Definition** Given an *admissible curve* $\gamma:[a,b]\to M$, a map $V:[a,b]\to TM$ such that $V(t)\in T_{\gamma(t)}M$ for each t is called *a piecewise smooth vector field along* γ if V

is continuous and there is an admissible partition (a_0, \ldots, a_k) for γ such that V is smooth on each subinterval $[a_{i-1}, a_i]$. We will call any such partition **an admissible partition for** V. A piecewise smooth vector field V along γ is said to be **parallel** along γ if $D_t(V) = 0$ wherever V is smooth.

- Corollary 3.3 (Parallel Transport Along Piecewise Smooth Curves). Suppose M is a smooth manifold with or without boundary, and ∇ is a connection in TM. Given an admissible curve $\gamma : [a,b] \to M$ and a vector $v \in T_{\gamma(t_0)}M$ or tensor $v \in T^{(k,l)}T_{\gamma(t_0)}M$, there exists a unique piecewise smooth parallel vector or tensor field V along γ such that V(a) = v, and V is smooth wherever γ is.
- Remark (Parallel Frames Along a Curve) Given any basis (b_1, \ldots, b_n) for $T_{\gamma(t_0)}M$, we can parallel transport the vectors b_i along γ , thus obtaining an n-tuple of parallel vector fields (E_1, \ldots, E_n) along γ . Because each parallel transport map is an isomorphism, the vectors $(E_i(t))$ form a basis for $T_{\gamma(t)}M$ at each point $\gamma(t)$. Such an n-tuple of vector fields along γ is called a parallel frame along γ .

Every smooth (or piecewise smooth) vector field along γ can be expressed in terms of such a frame as

$$V(t) = V^i(t) E_i(t),$$

and then the properties of covariant derivatives along curves, together with the fact that the E_i 's are parallel, imply

$$D_t(V_t) = \dot{V}^i(t) E_i(t) \tag{10}$$

wherever V and γ are smooth. This means that a vector field is **parallel** along γ if and only if **its component functions with respect to the frame** (E_i) are constants.

• Theorem 3.4 (Parallel Transport Determines Covariant Differentiation). [Lee, 2018]

Let M be a smooth manifold with or without boundary, and let ∇ be a connection in TM. Suppose $\gamma: I \to M$ is a smooth curve and V is a smooth vector field along γ . For each $t_0 \in I$,

$$D_t V(t_0) = \lim_{\Delta t \to 0} \frac{P_{(t_0 + \Delta t), t_0}^{\gamma}(V(t_0 + \Delta t)) - V(t_0)}{\Delta t}$$
(11)

• Corollary 3.5 (Parallel Transport Determines the Connection). [Lee, 2018] Let M be a smooth manifold with or without boundary, and let ∇ be a connection in TM. Suppose X and Y are smooth vector fields on M. For every p ∈ M,

$$\nabla_X Y|_p = \lim_{t \to 0} \frac{P_{t,0}^{\gamma}(Y_{\gamma(t)}) - Y_p}{t},$$
 (12)

where $\gamma: I \to M$ is any smooth curve such that $\gamma(0) = p$ and $\gamma'(0) = X_p$.

• Remark See similarity between (12) and the definition of Lie derivatives:

$$(\mathscr{L}_X Y)_p = \lim_{t \to 0} \frac{d(\theta_{-t})_{\theta_t(p)} (Y_{\theta_t(p)}) - Y_p}{t},$$

where θ is the **flow of** X in the neighborhood of p such that $\theta_0(p) = p$, $(\theta^{(p)})'(0) = X_p$.

- Remark A smooth vector or tensor field on M is said to be **parallel** (with respect to ∇) if it is parallel along every smooth curve in M.
- Proposition 3.6 Suppose M is a smooth manifold with or without boundary, ∇ is a connection in TM, and A is a **smooth vector or tensor field** on M. Then A is parallel on M if and only if $\nabla A \equiv 0$.
- Remark It is always possible to extend a vector at a point to a parallel vector field along any given curve. However, it may not be possible in general to extend it to a *parallel vector field* on an open subset of the manifold. The impossibility of finding such extensions is intimately connected with the phenomenon of *curvature*.

4 Pullback Connections

- **Remark** Like vector fields, connections in the tangent bundle **cannot** be either pushed forward or pulled back by arbitrary smooth maps.
- Lemma 4.1 (Pullback Connections). [Lee, 2018] Suppose M and \widetilde{M} are smooth manifolds with or without boundary. If $\widetilde{\nabla}$ is a connection in $T\widetilde{M}$ and $\varphi: M \to \widetilde{M}$ is a <u>diffeomorphism</u>, then the map $\varphi^*\widetilde{\nabla}: \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ defined by

$$(\varphi^*\widetilde{\nabla})_X Y = (\varphi^{-1})_* \left(\widetilde{\nabla}_{\varphi_* X} (\varphi_* Y) \right)$$
(13)

is a connection in TM, called the pullback of $\widetilde{\nabla}$ by φ . Here φ_*X, φ_*Y are pushforward of X and Y by φ . $(\varphi^{-1})_*(Z)$ is the pushforward of Z by φ^{-1} .

• The next proposition shows that various important concepts defined in terms of connections – covariant derivatives along curves, parallel transport, and geodesics all behave as expected with respect to pullback connections.

Proposition 4.2 (Properties of Pullback Connections).

Suppose M and \widetilde{M} are smooth manifolds with or without boundary, and $\varphi: M \to \widetilde{M}$ is a diffeomorphism. Let $\widetilde{\nabla}$ be a connection in $T\widetilde{M}$ and let $\nabla = \varphi^*\widetilde{\nabla}$ be the **pullback connection** in TM. Suppose $\gamma: I \to M$ is a smooth curve.

1. φ takes covariant derivatives along curves to covariant derivatives along curves: if V is a smooth vector field along γ , then

$$d\varphi \circ D_t(V) = \widetilde{D}_t(d\varphi \circ V),$$

where D_t is covariant differentiation along γ with respect to ∇ , and \widetilde{D}_t is covariant differentiation along $\varphi \circ \gamma$ with respect to $\widetilde{\nabla}$.

- 2. φ takes **geodesics** to **geodesics**: if γ is a ∇ -geodesic in M, then $\varphi \circ \gamma$ is a $\widetilde{\nabla}$ -geodesic in \widetilde{M} .
- 3. φ takes parallel transport to parallel transport: for every $t_0, t_1 \in I$,

$$d\varphi_{\gamma(t_1)} \circ P_{t_0,t_1}^{\gamma} = P_{t_0,t_1}^{\varphi \circ \gamma} \circ d\varphi_{\gamma(t_0)}.$$

References

John M Lee. Introduction to Riemannian manifolds, volume 176. Springer, 2018.