

QUÍMICA NIVEL SUPERIOR PRUEBA 1

Lunes 7 de noviembre de 2005 (tarde)

1 hora

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.

8805-6125 16 páginas

	7		-	Tabla perió	periód	dica						e	4	w	9	7	0
				Número atómico	atómico												2 He 4,00
	4 Be 9,01			Masa atómica	tómica							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
1	12 Mg 24,31		•									13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
	20 Ca 40,08	21 S c 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 Os 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 Tl 204,37	82 Pb 207,19	83 Bi 208,98	84 Po (210)	85 At (210)	86 Rn (222)
	88 Ra (226)	89 ‡ Ac (227)															
		÷-	58 Ce 140,12	59 Pr 140,91	60 Nd 144,24	61 Pm 146,92	62 Sm 150,35	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	69 Tm 168,93	70 Yb 173,04	71 Lu 174,97	
		++	90 Th 232,04	91 Pa 231,04	92 U 238,03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

$$C_3H_8 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

¿Cuál es el total de los coeficientes para los **productos** cuando se ajusta la ecuación para 1 mol de propano?

- A. 6
- B. 7
- C. 12
- D. 13
- 2. La masa molecular relativa (M_r) de un compuesto es 60. ¿Cuáles son las fórmulas posibles de ese compuesto?
 - I. CH₃CH₂CH₂NH₂
 - II. CH₃CH₂CH₂OH
 - III. CH₃CH(OH)CH₃
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- 3. ¿Qué solución acuosa contiene mayor cantidad de iones hidrógeno?
 - A. 20 cm³ de solución de ácido sulfúrico de 2 mol dm⁻³
 - B. 10 cm³ de solución de ácido nítrico de 4 mol dm⁻³
 - C. 80 cm³ de solución de ácido clorhídrico de 0,5 mol dm⁻³
 - D. 40 cm³ de solución de ácido sulfúrico de 0,5 mol dm⁻³

4. La siguiente información se refiere a cuatro átomos diferentes:

átomo	neutrones	protones
W	22	18
X	18	20
Y	22	16
Z	20	18

¿Qué dos átomos son isótopos?

- A. WeY
- B. WyZ
- C. X y Z
- D. X e Y
- 5. ¿Qué ecuación representa la tercera ionización de un elemento M?
 - A. $M^+(g) \to M^{4+}(g) + 3e^{-}$
 - B. $M^{2+}(g) \rightarrow M^{3+}(g) + e^{-}$
 - C. $M(g) \to M^{3+}(g) + 3e^{-}$
 - D. $M^{3+}(g) \to M^{4+}(g) + e^{-}$
- **6.** ¿Qué enunciado sobre un espectro de emisión de líneas es correcto?
 - A. Los electrones absorben energía a medida que se mueven desde niveles energéticos bajos a niveles energéticos altos.
 - B. Los electrones absorben energía a medida que se mueven desde niveles energéticos altos a niveles energéticos bajos.
 - C. Los electrones liberan energía a medida que se mueven desde niveles energéticos bajos a niveles energéticos altos.
 - D. Los electrones liberan energía a medida que se mueven desde niveles energéticos altos a niveles energéticos bajos.

7.	¿Qué	facto	res conducen a un elemento que tiene bajo valor de la energía de primera ionización?
		I.	radio atómico elevado
		II.	elevado número de niveles energéticos ocupados
		III.	carga nuclear alta
	A.	Sólo	I y II
	B.	Sólo	I y III
	C.	Sólo	II y III
	D.	I, II y	
8.	¿Qué	partíc	culas pueden actuar como ligando en la formación de iones complejos?
		I.	Cl ⁻
		II.	NH_3
		III.	$\mathrm{H_{2}O}$
	A.	Sólo	I y II
	B.	Sólo	I y III
	C.	Sólo	II y III
	D.	I, II y	/ III
9.			s siguientes tipos de enlaces se disponen de forma decreciente respecto de su fuerza (el más ero), ¿cuál es el orden correcto?
	A.	coval	lente > hidrógeno > van der Waals'
	B.	coval	lente > van der Waals' > hidrógeno
	C.	hidró	geno > covalente > van der Waals'
	D.	van d	ler Waals' > hidrógeno > covalente

10.	¿La teoría de la re	epulsión del par	r electrónico de valencia ((TRPEV) se usa	para predecir?
------------	---------------------	------------------	-----------------------------	----------------	----------------

- A. los niveles energéticos de un átomo
- B. las formas de las moléculas y los iones
- C. la electronegatividad de los elementos
- D. el tipo de enlace presente en los compuestos

11. ¿Qué enunciado sobre electronegatividad es correcto?

- A. La electronegatividad disminuye a lo largo de un período.
- B. La electronegatividad aumenta hacia abajo en un grupo.
- C. Los metales generalmente tienen menor valor de electronegatividad que los no metales.
- D. Los gases nobles tienen los mayores valores de electronegatividad.

12. ¿Qué enunciados describen correctamente el ion NO₂?

- I. Se puede representar por estructuras resonantes.
- II. Tiene dos pares electrónicos solitarios sobre el átomo de N.
- III. La hibridación del átomo de N es sp².
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

- 13. ¿Qué sustancia tiene la forma más semejante al NH₃?
 - A. GaI₃
 - B. BF_3
 - C. FeCl₃
 - D. PBr₃
- **14.** ¿Por qué la temperatura de ebullición del agua permanece constante aún cuando se le suministre calor a velocidad constante?
 - A. El calor se pierde al ambiente.
 - B. El calor se usa para romper los enlaces covalentes de las moléculas de agua.
 - C. El recipiente también absorbe calor.
 - D. El calor se usa para superar las fuerzas de atracción intermoleculares entre las moléculas de agua.
- 15. La siguiente ecuación representa la formación de óxido de magnesio a partir de magnesio metálico.

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$
 $\Delta H^{\ominus} = -1204 \text{ kJ}$

¿Qué enunciado es correcto para esta reacción?

- A. Por cada mol de magnesio que reacciona, se liberan 1204 kJ de energía.
- B. Por cada mol de óxido de magnesio que se forma, se absorben 602 kJ de energía.
- C. Por cada mol de oxígeno gaseoso que reacciona, se liberan 602 kJ de energía.
- D. Por cada dos moles de óxido de magnesio que se forman, se liberan 1204 kJ de energía.

16. Las siguientes ecuaciones muestran la oxidación del carbono y del monóxido de carbono a dióxido de carbono.

$$C(s) + O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\ominus} = -x \text{ kJ mol}^{-1}$

$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$$
 $\Delta H^{\Theta} = -y \text{ kJ mol}^{-1}$

¿Cuál es la variación de entalpía, expresada en kJ mol⁻¹, para la oxidación del carbono a monóxido de carbono?

$$C(s) + \frac{1}{2}O_2(g) \rightarrow CO(g)$$

- A. x + y
- B. -x-y
- C. y-x
- D. x-y

17. Para la reacción:

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$$

las entalpías de enlace (expresadas en kJ mol⁻¹) son

Н–Н	x
O=O	у
О–Н	Z

¿Qué cálculo dará el valor de ΔH^{\ominus} para la reacción, expresado en kJ mol⁻¹?

- A. 2x + y 2z
- B. 4z-2x-y
- $C. \qquad 2x + y 4z$
- D. 2z-2x-y

18. Para la reacción

$$2\text{CaO}(s) \rightarrow 2\text{Ca}(s) + O_2(g)$$

los valores de ΔH^{\ominus} y ΔS^{\ominus} son positivos. ¿Qué enunciado es correcto?

- A. ΔG^{\ominus} depende de la temperatura.
- B. La variación de entropía es la fuerza que conduce la reacción.
- C. A temperatura elevada, ΔG es positivo.
- D. La reacción inversa es endotérmica.
- 19. ¿Qué enunciado es correcto para la colisión entre las partículas de reactivos que conduce a una reacción?
 - A. Las partículas que chocan deben tener diferente energía.
 - B. Todas las partículas reaccionantes deben tener la misma energía.
 - C. Las partículas que chocan deben tener energía cinética mayor que la energía de activación.
 - D. Las partículas que chocan deben tener la misma velocidad.
- **20.** La expresión de velocidad para la reacción $2X(g) + Y(g) \rightarrow 3Z(g)$, es la siguiente.

velocidad =
$$k[X]^2[Y]^0$$

Se aumenta la concentración de X tres veces y la concentración de Y dos veces. ¿Por qué factor aumentará la velocidad de la reacción?

- A. 6
- B. 9
- C. 12
- D. 18

- **21.** ¿A qué se refiere el factor A en la ecuación de Arrhenius, $k = Ae^{-Ea/RT}$?
 - A. a la energía de activación
 - B. a la constante de velocidad
 - C. a la constante de los gases
 - D. a la geometría de la colisión
- 22. ¿Qué cambios desplazarán la posición de equilibrio hacia la derecha en la siguiente reacción?

$$2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$$

- I. el agregado de un catalizador
- II. la disminución de la concentración de oxígeno
- III. el aumento del volumen del recipiente
- A. Sólo I y II
- B. Sólo I y III
- C. Sólo II y III
- D. I, II y III

23. El hidrógeno reacciona con el dióxido de carbono de acuerdo con la siguiente ecuación.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$

Para esta reacción, los valores de K_c a diferentes temperaturas son

Temperatura / K	$K_{\rm c}$
500	$7,76 \times 10^{-3}$
700	$1,23\times10^{-1}$
900	$6,01\times10^{-1}$

¿Qué enunciado es correcto para la reacción?

- A. La reacción directa es endotérmica.
- B. El $H_2O(g)$ y el CO(g) son más estables que el $H_2(g)$ y el $CO_2(g)$.
- C. La reacción prosigue casi hasta su finalización a elevada temperatura.
- D. La reacción inversa se ve favorecida por temperaturas elevadas.
- 24. Cuando se disponen las siguientes soluciones de concentración 1,0 mol dm⁻³ de forma creciente respecto de su pH (el menor primero), ¿cuál es el orden correcto?
 - A. $HNO_3 < H_2CO_3 < NH_3 < Ba(OH)_2$
 - B. $NH_3 < Ba(OH)_2 < H_2CO_3 < HNO_3$
 - C. $Ba(OH)_2 < H_2CO_3 < NH_3 < HNO_3$
 - D. $HNO_3 < H_2CO_3 < Ba(OH)_2 < NH_3$
- **25.** ¿Qué compuesto se disolverá en agua para dar una solución de pH mayor que 7?
 - A. cloruro de sodio
 - B. carbonato de potasio
 - C. nitrato de amonio
 - D. sulfato de litio

26. El pH de una solución acuosa es 10. ¿Qué concentraciones son correctas para los siguientes iones?

$[H^+(aq)] \text{ mol dm}^{-3}$	$[OH^-(aq)] \text{ mol dm}^{-3}$

A.	104	10^{-10}
B.	10^{-4}	10^{-10}
C.	10^{-10}	10^{-4}
D.	10^{-10}	10^{4}

27. ¿Qué gráfico representa la variación de pH cuando se añade una base débil a un ácido fuerte?

-13-

	$K_{\rm a}$
benzoico	$6,31\times10^{-5}$
cloroetanoico	$1,38 \times 10^{-3}$
etanoico	1,74×10 ⁻⁵

- A. cloroetanoico > benzoico > etanoico
- B. benzoico > etanoico > cloroetanoico
- C. cloroetanoico > etanoico > benzoico
- D. etanoico > benzoico > cloroetanoico

29. ¿Qué ecuación representa una reacción redox?

A.
$$KOH(aq) + HC1(aq) \rightarrow KC1(aq) + H_2O(1)$$

B.
$$Mg(s) + 2HC1(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

C.
$$CuO(s) + 2HC1(aq) \rightarrow CuC1_2(aq) + H_2O(l)$$

D.
$$ZnCO_3(s) + 2HC1(aq) \rightarrow ZnC1_2(aq) + CO_2(g) + H_2O(1)$$

30. La siguiente información se relaciona con reacciones que implican los metales X, Y y Z y soluciones de sus sulfatos.

$$X(s) + YSO_4(aq) \rightarrow \text{ no hay reacción}$$

$$Z(s) + YSO_4(aq) \rightarrow Y(s) + ZSO_4(aq)$$

Cuando los metales se disponen de forma decreciente respecto de su reactividad (el más reactivo primero), ¿cuál es el orden correcto?

A.
$$Z > Y > X$$

B.
$$X > Y > Z$$

C.
$$Y > X > Z$$

$$D. \qquad Y > Z > X$$

31. ¿Cuál es el total de todos los coeficientes en la ecuación ajustada para la reducción de 1 mol de MnO₄ ?

$$\underline{\hspace{0.5cm}}$$
 MnO $_{4}^{-}$ + $\underline{\hspace{0.5cm}}$ H $^{+}$ + $\underline{\hspace{0.5cm}}$ e $^{-}$ \rightarrow $\underline{\hspace{0.5cm}}$ Mn $^{2+}$ + $\underline{\hspace{0.5cm}}$ H $_{2}$ O

- A. 5
- B. 9
- C. 17
- D. 19

32. ¿Qué enunciado es correcto teniendo en cuenta los potenciales estándar de electrodo que se dan a continuación?

$$Ca^{2+}(aq) + 2e^{-} \rightleftharpoons Ca(s)$$
 $E^{\ominus} = -2,87V$
 $Ni^{2+}(aq) + 2e^{-} \rightleftharpoons Ni(s)$ $E^{\ominus} = -0,23V$
 $Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$ $E^{\ominus} = +0,77V$

- A. El Ca²⁺(aq) puede oxidar al Ni(s)
- B. El Ni²⁺(aq) puede reducir al Ca²⁺(aq)
- C. El Fe³⁺ (aq) puede oxidar al Ni(s)
- D. El Fe³⁺ (aq) puede reducir al Ca²⁺ (aq)
- **33.** ¿Qué enunciado es correcto sobre la electrólisis de solución de sulfato de cobre(II) usando electrodos de grafito?
 - A. Se produce un gas incoloro en el electrodo negativo.
 - B. El electrolito no cambia de color.
 - C. La masa del electrodo negativo disminuye.
 - D. Se produce un gas incoloro en el electrodo positivo.

34.	¿Сиа	ántos isómeros estructurales de fórmula molecular C_6H_{14} son posibles?
	A.	4
	В.	5
	C.	6
	D.	7
35.	¿Qu	é compuesto puede existir en forma de isómeros ópticos?
	A.	CH ₃ CHBrCH ₃
	B.	CH ₂ ClCH(OH)CH ₂ Cl
	C.	CH ₃ CHBrCOOH
	D.	CH ₃ CCl ₂ CH ₂ OH
36.	¿Qu	é tipo de compuesto se puede obtener en una sola etapa a partir de un alcohol secundario?
	A.	un aldehído
	B.	un alcano
	C	un ácido carboxílico

D. una cetona

8805-6125 Véase al dorso

- 37. ¿Cuántos picos hay en el espectro de ¹H RMN del etanol?
 - 2 A.
 - B. 3
 - C. 5
 - D. 6
- 38. ¿Qué fórmula representa un alcohol terciario?

 - A. CH₃—CH—CH₂—CH₃ B. CH₃—CH—CH₂—OH
 CH₂OH
 CH₃
 - C.
- CH₃ D. CH₃ | CH₃
- **39.** ¿Qué tipo de reacción es característica de los halógenoalcanos?
 - sustitución nucleófila A.
 - B. sustitución electrófila
 - C. adición electrófila
 - D. adición nucleófila
- 40. ¿Qué sustancia no se oxida fácilmente con solución ácida de dicromato(VI) de potasio?
 - A. 1-propanol
 - B. 2-propanol
 - C. propanal
 - D. propanona