Kapitel 14 - Statische elektrische Felder

Johannes Bilk me@talachem.de

May 11, 2016

Contents

14	Statische Elektrische Felder				
	14.1	Elektr	ische Ladungen	3	
		14.1.1	Reibungselektrizizät	3	
		14.1.2	Ladung ist eine skalare Größe	4	
		14.1.3	Quarks	5	
		14.1.4	Entdeckung und Bestimmung der Elementarladung	6	
	14.2	Kräfte	zwischen Ladungen und das Coulomb-Gesetz	6	
	14.3	Potenz	ielle Energie einer Ladungsverteilung	8	
	14.4		ung el. Felder durch Ladungen	9	
		14.4.1	Feld einer Punktladung	9	
		14.4.2	Feld einer Verteilung von Punktladungen	10	
		14.4.3	Leiter im el. Feld und Influenz	12	
	14.5	Kontinuierliche Ladungsverteilung			
	14.6	Elektri	scher Fluss und Satz von Gauß	16	
			Def.: Fluss ϕ eines Vektorfeldes \vec{E} durch einen Fläche A .	16	
		14.6.2	Gauß'scher Satz	17	
		14.6.3	Beispiele	17	
	14.7	Das ele	ektrische Potenzial	24	
		14.7.1	Elektrisches Feld und Potenzial	27	
		14.7.2	Poisson- und Laplace Gleichung	28	
	14.8	14.8 Elektrisches Feld in der Umgebung von Leitern			
		14.8.1	Anwendungen:	31	
		14.8.2	Elektrisches Feld zwischen geladenen Leitern	32	
			Berechnung der Kapazität	32	
		14.8.4	Feldstärke im Inneres eines Plattenkondensator:	33	
		14.8.5	Realisierung von Kondensatoren:	34	

	14.8.6	Energie eines aufgeladenen Kondensators	34
	14.8.7	Entladen eines Kondensators	35
	14.8.8	Kraft zwischen Zwei Kondensatorplatten	36
	14.8.9	Kraft zwischen Kondensatorplatten	36
14.9	Isolator	ren (Dielektrikum) im elektrischen Feld	36
	14.9.1	Mikroskopische Deutung und elektrische Suszeptibilität	37
		Nachtrag: Schaltungen mit Kapazitäten	

14 Statische Elektrische Felder

14.1 Elektrische Ladungen

→ Ab dem 17. Jahrhundert: Ursache für "elektrische Phänomene"; "neuartiger Stoff", elektrische Ladung

14.1.1 Reibungselektrizizät

- Zwei Arten von "elektrischen Zuständen" sind erzeugbar:
 - Gleichartige Zustände ⇒ Abstoßung
 - Ungleichartige Zustände ⇒ Anziehung
- Carles Du Fay (1730): positiv/negativ elektrische Ladung
- Benjamin Franklin (1750): Über-/Unterschuss an "elektrischen Fluiden"
- Lichtenberg (1778): Zuordnung der Polariät

Hargummi stab: reiben mit Pelz, Wolle: -Glas, Plexiglas: reiben mit Seide: +

Reibezeug: entgegengesetzte Polarität \implies Ladungstrennung, nicht etwa Ladungserzeugung.

Grundsätzliches Messprinzip: Elektroskop:

- → Elektrometer → quantitative Messung
- "Löffeln"; d.h. portionsweise Übertragung von Ladungen ist mglich
- Elektropendel: \implies periodisches Umladen eines "Kugelpendel"

14.1.2 Ladung ist eine skalare Größe

Einheit 1C = 1 Coulomb, SI

- Zu jedem geladenen Elementarteilchen gibt es ein Elementarteilchen mit entgegengesetzter Ladung (→ Ladungssymmetrie)
- Die Gesamtladung eines abgeschlossenen Systems bleibt erhalten (→ Ladungserhaltung)
- Beispiel: Produktion eines e^+e^- -Paares; $E_{\gamma} \geqslant 1{,}02~{\rm MeV}$

Nachweis: Blasenkammer im Magnetfeld:

Umkehrung: "Zerstrahlung" von Positronen; $E = m \cdot c^2$

• Ladungträger haben stets eine Masse

• Ladung kann (im Gegensatz zur Masse) nicht in Energie umgewandelt werden

Sie bleibt auch bei Zerfallsprozessen erhalten.

• Quantisierung der Ladung:

Alle in der Natur vorkommenden Ladungen sind ganzzahlige Vielfache der Elementarladung: $e_0 := 1,602 \cdot 10^{-19}C$; 1C = 1AS

Beispiele von Ladungen

• Neutral: Photon: γ , Neutrino ν , Neutron n

• einfach geladen: Elektron e^- , Positron e^+ , Proton p, Antiproton \bar{p}

• zweifach geladen:: $He_2(2^+, Z:2)$

14.1.3 Quarks

Seit 60er Jahre Nukleonen bestehen aus Quarks, diese haben "drittelzahlige Ladungen"

Up-Quarks: $u : +\frac{2}{3}e_0$ Down-Quarks: $d : -\frac{1}{3}e_0$ Proton: $2u + d : 1 \cdot e_0$ Neutron: $u + 2d : 0 \cdot e_0$ Quarks treten immer in 2er- oder 3er- Kombinationen auf.

14.1.4 Entdeckung und Bestimmung der Elementarladung

Robert Andrews Millikan(1868-1953): Öltrpfchenversuch (→ Anfängerpraktikum)

Kräfte zwischen Ladungen und das Coulomb-Gesetz

Charles-Augustin de Coulomb (1736-1806)

1785: Messung der Kraft zwischen zwei Ladungen als Funktion des Abstands mit Hilfe einer Torsionswaage

$$\vec{F_{12}} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \frac{\vec{r_{12}}}{|\vec{r_{12}}|} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \hat{r}_{12}$$

F ist definiert durch die Definition der Ladungseinheit:

Internationales Messsystem (SI): $f = \frac{1}{4\pi\epsilon_0}$

$$\epsilon_0 = 8,854 \cdot 10^{-12} \frac{(As)^2}{Nm^2}$$

 $\epsilon_0=8,854\cdot 10^{-12}\frac{(As)^2}{Nm^2}$ ist Dielektrizitätskonste des Vakuums oder elektrische Feldkonstante

 $Q_1 \cdot Q_2 > 0$: Abstoßung

 $Q_1 \cdot Q_2 < 0$: Anziehung

Coulomb-Kraft

$$\vec{F}_{12} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \hat{r}_{12}$$

1 Coulomb ist diejenige elektrische Ladung, die eine gleich große Ladung im Abstand von 1m mit der Kraft von $8,9874 \cdot 10^9 N$ abstößt

Analogie Gravitation: $\vec{F} = -\gamma \frac{m_1 \cdot m_2}{r^2} \cdot \hat{r}$

Vergleiche Gravitation und Coulombkraft zwischen Elektron und Proton:

$$|\vec{F}_C| = \frac{1}{4\pi\epsilon_0} \cdot \frac{|q_p| \cdot |q_e|}{r^2} = 2, 3 \cdot 10^{-28} \frac{N}{r[m]^2}$$
$$|\vec{F}_G| = \gamma \cdot m_e \cdot m_p = 9, 71 \cdot 10^{-68} \frac{N}{r[m]^2}$$

$$\implies \frac{|F_G|}{|F_C|} = 4, 2 \cdot 10^{-40}$$

Wechselwirkung zwischen mehreren Ladungen

Die einzelnen Kräfte überlagern sich ungestört, (ungestörte Superposition)!

Kraft auf

$$Q_3: \vec{F}_3 = \left[\frac{Q_1 \cdot Q_3}{r_{13}^2} \cdot \hat{r}_{13} + \frac{Q_2 \cdot Q_3}{r_{23}^2} \cdot \hat{r}_{23} \right]$$

14.3 Potenzielle Energie einer Ladungsverteilung

$$\begin{split} W_{12} &= -\frac{1}{4\pi\epsilon_0} \cdot \int_{\infty}^{r_{12}} \frac{Q_1 \cdot Q_2}{\rho^2} d\rho \\ &= \frac{1}{4\pi\epsilon_0} \left[\frac{Q_1 \cdot Q_2}{\rho} \right]_{\infty}^{r_{12}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r_{12}} \\ W_{1,2,3} &= \frac{1}{4\pi\epsilon_0} \left(\frac{Q_1 \cdot Q_3}{r_{13}} + \frac{Q_1 \cdot Q_2}{r_{12}} + \frac{Q_2 \cdot Q_3}{r_{23}} \right) \end{split}$$

Anzahl an Summanden = Anzahl an Paaren. Da aber jedes Paar doppelt gezählt wird, muss noch mit $\frac{1}{2}$ multiplitziert werden

$$W = \left[\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{Q_i \cdot Q_j}{r_{ij}}\right] \cdot \frac{1}{4\pi\epsilon_0}$$

Aufsummieren auch unendlicher Ensembles möglich, wenn die Reihe konvergiert.

Betrachte Kraft auf Probeladung in homogen geladener Kugel

Für beliebe Räumlichelemente (und damit auch Flächenelemente) gilt:

$$q_1 \propto dA_1 \propto r_1^2$$

$$q_1 \propto dA_1 \propto r_1^2$$

Geometrie
$$\implies \frac{q_1}{q_2} = \frac{r_1^2}{r_2^2}$$

Annahme: Kraft $\propto \frac{1}{r^n}$

$$|\vec{F}_1| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot q_1}{r_1^n}$$
$$|\vec{F}_2| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot q_2}{r_2^n}$$

$$\frac{|\vec{F}_1|}{|\vec{F}_2|} = \frac{q_1}{r_1^n} \cdot \frac{r_2^n}{q_2} \stackrel{!}{=} 1 \implies \frac{q_1}{q_2} = \frac{r_1^n}{r_2^n}$$

Nun kann das mit dem Geometrieausdruck gleichgesetzt werden:

$$\frac{r_1^n}{r_2^n} = \frac{q_1}{q_2} = \frac{r_1^2}{r_2^2} \Rightarrow n = 2$$

Gesamtkraft verschwindet nur wenn $|\vec{F}| \propto \frac{1}{r^2}$

14.4 Erzeugung el. Felder durch Ladungen

14.4.1 Feld einer Punktladung

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}$$

$$= q_1 \cdot \underbrace{\frac{1}{4\pi\epsilon_0} \cdot \frac{q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}}_{\text{Feld von } q_2}$$

$$= q_1 \vec{E}(\vec{r})$$

- Felder einer Punktladung sind Zentralfelder mit Kugelsymmetrie
- Konvention: Feldlinien führen von positiver zu negativer Ladung

⇒ Punktladungsfelder sind inhomogen!

14.4.2 Feld einer Verteilung von Punktladungen

N Ladungen bei $\vec{r_i}$

$$\vec{E_i}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_i}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{\vec{r} - \vec{r_i}}{|\vec{r} - \vec{r_i}|}$$

Ungestörte Superposition:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_{i=1}^{N} \frac{q_i}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{\vec{r} - \vec{r_i}}{|\vec{r} - \vec{r_i}|}$$

2 Ladungen, q; -q: Feld eines Dipols

2 Ladungen: q; q

Beispiele für "natürliche Dipole":

1. Neutrales Atom im homogenen \vec{E} -Feld

2. Polare Molekühle mit permanentem Dipolmoment

14.4.3 Leiter im el. Feld und Influenz

Leiter: Ladungen sind <u>frei</u> beweglich Isolator: Ladungen sind ortsfest

1. $\vec{E} = 0$ im Inneren des Leiters

Denn falls $\vec{E} \neq 0$: $\vec{F} = q\vec{E}$ verschiebt Ladung bis $\vec{E} = 0$!

- 2. Es folgt, sich bei einem Leiter die (Netto-)Ladungen immer an der Oberfläche befinden \Rightarrow Flächenladungsdichte $\sigma = \frac{dQ}{dA}$
- 3. \vec{E} immer \perp auf Leiteroberfläche

(Denn falls $\vec{E}_{\shortparallel} \neq 0$: Verschiebung der Ladung bis $\vec{E}_{\shortparallel} = 0$!)

Influenz: Räumliche Ladungstrennung in el. Leitern durch äußeres \vec{E} -Feld (Kontaktlos!), so dass das Innere des Leiters Feldfrei ist!

Kontinuierliche Ladungsverteilung 14.5

Betrachte Ladungsverteilung über endliches Volumen $V = \int_{V} dV$

Ladungsdichte: $\rho(\vec{r}) = \frac{dq(\vec{r})}{dV}$ Gesamtladung: $Q = \int_V dq = \int_V \rho(\vec{r}) dV$

Flächenladungsdichte: $\sigma = \frac{dq}{dA}$

Integral über geschlossene Oberfläche: $A = \oint dA$

1-dim Ladungsdichte: $\lambda = \frac{dq}{dl}$

Länge
$$l = \int_{l} dl'$$
 für (*):

$$\begin{split} d\vec{E}(\vec{r}) &= \frac{dq}{|\vec{r} - \vec{r}'|^3} \cdot (\vec{r} - \vec{r}') \cdot \frac{1}{4\pi\epsilon_0} \\ \vec{E}(\vec{r}) &= \frac{1}{4\pi\epsilon_0} \int_V dV \left\{ \frac{dq}{dV} \cdot \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \right\} \\ &= \frac{1}{4\pi\epsilon_0} \int_V dV \left\{ \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|^3} \cdot (\vec{r} - \vec{r}') \right\} \end{split}$$

Beispiel: unendlich langer geladener Draht

Ziel: Berechnung des \vec{E} -Feldes im Punkt P.

Betrachte einen kleinen Abschnitt des Drahtes der Länge dx. Dieser hat dann die Ladung dq mit:

$$da = \lambda dx$$

wobei $\lambda=\frac{dq}{dx}$ die lineare Ladungsdichte ist. Die Symmetrie des Problems implitziert außerdem: $E_x=E_z=0$.

Für die y-Komponente beachte, dass:

$$\frac{dE_y}{|d\vec{E}|} = \frac{a}{r} = \cos\theta \implies dE_y = |d\vec{E}|\cos\theta$$

Nun kann aber das Drahtstück mit der infinitesimalen Länge dx als Punktladung angesehen werden. Das heißt:

$$|d\vec{E}| = \frac{1}{4\pi\epsilon_0} \frac{dq}{r^2(\theta)} = \frac{1}{4\pi\epsilon_0} \frac{\lambda dx}{r^2(\theta)}$$

Nun muss $r(\theta)$ ermittelt werden. Dafür benutzen wir nochmal:

$$\cos \theta = \frac{a}{r} = \frac{a}{r(\theta)} \Rightarrow r(\theta) = \frac{a}{\cos \theta}$$

Damit wird dE_y dann:

$$dE_{y} = |d\vec{E}|\cos\theta = \frac{1}{4\pi\epsilon_{0}} \frac{\lambda dx}{r^{2}(\theta)} \frac{a}{r(\theta)} = \frac{1}{4\pi\epsilon_{0}} \frac{a\lambda dx}{r^{3}(\theta)} = \frac{1}{4\pi\epsilon_{0}} \frac{a\lambda dx}{a^{3}} \cos^{3}\theta$$

Um jetzt aufzuintegrieren muss zuletzt noch die Abhängigkeit von x und θ berücksichtigt werden:

$$\tan \theta = \frac{x}{a} \Rightarrow \frac{d\theta}{\cos^2 \theta} = \frac{dx}{a} \Rightarrow dx = \frac{ad\theta}{\cos^2 \theta}$$

Das in den Ausdruck für dE_v liefert dann:

$$dE_{y} = \frac{1}{4\pi\epsilon_{0}} \frac{a\lambda dx}{a^{3}} \cos^{3}\theta = \frac{1}{4\pi\epsilon_{0}} \frac{a^{2}\lambda d\theta}{a^{3}\cos^{2}} \cos^{3}\theta = \frac{1}{4\pi\epsilon_{0}} \frac{\lambda d\theta}{a} \cos\theta = \frac{\lambda}{4a\pi\epsilon_{0}} \cos\theta d\theta$$

Nun muss über den ganzen Stab integriert werden, sprich von $x = -\infty$ bis $x = \infty$. Nun ist ja $\theta = \arctan\left(\frac{x}{a}\right)$ und a > 0. Also:

$$x = \pm \infty \implies \theta = \arctan(\pm \infty) = \pm \frac{\pi}{2}$$

Damit gilt nun:

$$E_{y} = \int_{\text{Draht}} dE_{y} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\lambda}{4a\pi\epsilon_{0}} \cos\theta d\theta = \frac{2\lambda}{4a\pi\epsilon_{0}} \int_{0}^{\frac{\pi}{2}} \cos\theta d\theta = \frac{\lambda}{2a\pi\epsilon_{0}} \sin\theta \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2\pi\epsilon_{0}} \frac{\lambda}{a}$$

14.6 Elektrischer Fluss und Satz von Gauß

Zusammenhang zwischen "Elektrischem Fluss" (Feldliniendurchsatz) durch eine Oberfläche und der eingeschlossenen Ladung.

⇒ Allgemeinere Formulierung des Coulomb-Gesetzes

14.6.1 Definition: Fluss ϕ eines Vektorfeldes \vec{E} durch einen Fläche A:

 $d\vec{A}$: Richtung \perp Fläche (nach Außen) Richtung der Flächennormale

Betrag dA: Größe der Fläche

Spezialfälle $\vec{E} - homogen \vec{E} \cdot d\vec{A} = E \cdot dA \cdot \cos \alpha$

- $\alpha = 0 : \vec{E} \parallel d\vec{A} : \vec{E} \cdot d\vec{A} = E \cdot dA$
- $\alpha = 90 : \vec{E} \perp d\vec{A} : \vec{E} \cdot d\vec{A} = 0$

14.6.2 Gauß'scher Satz

$$\phi = \oint\limits_{\substack{A \ geschlossen}} ec{E} \cdot dec{A} = rac{Qeingeschlossen}{\epsilon_0}$$

Der elektrische Fluss durch einer belieben geschlossenen Oberfläche hängt weder von der Form der Oberfläche, noch von der Ladungsverteilung $\varrho(\vec{r})$ ab, sondern nur von der eingeschlossenen Gesamtladung Q.

Mathematisch gilt:

$$\oint_{A} \vec{E} \cdot d\vec{A} = \int_{V} div \cdot \vec{E} \cdot dV = \int_{V} \vec{\nabla} \cdot \vec{E} \cdot dV$$

Nach Gauß aber auch:

$$\oint_{A} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0} = \frac{1}{\epsilon_0} \int_{V} dQ = \int_{V} \varrho(\vec{r}) dV$$

Zusammen also:

$$\int_{V} \vec{\nabla} \vec{E} dV = \oint_{A} \vec{E} \cdot d\vec{A} = \int_{V} \frac{\varrho(\vec{r})}{\epsilon_{0}} dV \Rightarrow \boxed{\vec{\nabla} \vec{E} = \frac{\varrho(\vec{r})}{\epsilon_{0}}}$$

Die Ladungsverteilung im Raum ist die lokale Quelle ($\varrho(\vec{r}) > 0$) bzw. Senke ($\varrho(\vec{r}) < 0$) des elektrischen Feldes.

14.6.3 Beispiele

(i) Feld einer Punktladung

- Geeignete Wahl von A: Kugeloberfläche
- Symmetrie: $\vec{E}(\vec{r}) = E(r) \cdot \hat{e}_r$
- $\bullet \implies \vec{E} \parallel d\vec{A}$

Der elektrische Fluss ist:

$$\phi = \oint_A \vec{E}(\vec{r}) \cdot d\vec{A} = \oint_A E(r)\hat{e}_r \cdot d\vec{A} = \oint_A E(r)dA$$

Nun ist aber E nur von r abhängig und im Integral sit r = const. Damit also:

$$\phi = E(r) \oint_A dA = 4\pi r^2 E(r)$$

Der Satz von GauSS liefert nun:

$$E(r) \cdot 4\pi r^2 = \phi \stackrel{!}{=} \frac{Q}{\epsilon_0} \Rightarrow \boxed{E(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2}}$$

(ii) Ladung auf beliebig geformten Leitern

$$\phi = \oint_A \vec{E} d\vec{A} = \frac{Q}{\epsilon_0} = 0$$

(iii) Feld einer leitenden Kugel mit Ladung Q: (Ladung auf der Oberfläche)

Aus der Symmetrie des Problems ist ersichtlich: $\vec{E}(\vec{r}) = E(\vec{r}) \cdot \hat{e}_r$

Im Inneren, also für r < R, gilt nach der vorherigen Überlegung: E = 0 Außerhalb, also r > R, wird als Gaußfläche wieder eine Kugel mit Radius r gewählt. Dan gilt nach Gauß:

$$\frac{Q}{\epsilon_0} = \phi = \oint_A E(r)dA = E(r)4\pi r^2 \implies E(r) = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

Zusammen kann E(r) also abschnittsweise angegeben werden:

$$E(r) = \left\{ egin{array}{ll} 0 & , r < R \ rac{1}{4\pi\epsilon_0}rac{Q}{r^2} & , r > R \end{array}
ight.$$

(iv) Feld einer homogen geladenen Kugel

Für die Ladungsdichte ϱ als Funktion vom Abstand r vom Kugelmittelpunkt heiSSt das:

$$\varrho = \left\{ \begin{array}{ll} 0 & , r > R \\ \frac{Q}{\frac{4}{3}\pi R^3} & , r < R \end{array} \right.$$

Als GauSSoberfläche wird wieder eine Kugel genommen. Auch wird wieder eine Fallunterscheidung gemacht:

Innerhlab der Kugel und auSSerhalb der Kugel

Zunächst wird analog zu vorher der Elektrische Fluss ausgrechnet und der Satz von GauSS benutzt:

$$\phi = \oint_{A} \vec{E} \cdot d\vec{A} = E(r) \cdot 4\pi r^{2} = \frac{Q_{in}}{\epsilon_{0}} \implies E(r) = \frac{1}{4\pi\epsilon_{0}} \frac{Q_{in}}{r^{2}}$$

Um auf Q_{in} zu schlieSSen müssen wir nur die Ladungsdichte über das Volumen des GauSSvolumens integrieren:

1. r > R.

$$Q_{in} = \int_{V_{Gau}} \varrho(\tilde{r}) dV = \int_{0 \leqslant \tilde{r} \leqslant R} \varrho(\tilde{r}) dV + \int_{R \leqslant \tilde{r} \leqslant r} \varrho(\tilde{r}) dV$$

Aber im zweiten Integral ist $\varrho = 0$ und somit fällt dieses Integral raus.

$$\Rightarrow Q_{in} = \int_{0 \leqslant \tilde{r} \leqslant R} \varrho(\tilde{r}) dV = \int_{0 \leqslant \tilde{r} \leqslant R} \frac{Q}{\frac{4}{3}\pi R^3} dV = \frac{Q}{\frac{4}{3}\pi R^3} \int_{0 \leqslant r \leqslant R} dV = \frac{Q}{\frac{4}{3}\pi R^3} \frac{4}{3}\pi R^3 = Q$$

Das ist auch vollkommen klar, denn die gesamte Ladung ist ja in der Kugel verteilt und die GauSSkugel enthält diese.

2. Falls r < R:

Da hier nur innerhalb der Kugel integriert wird, ist ρ konstant und es reicht ein Integral:

$$Q_{in} = \int_{V_{Gau}} \varrho(\tilde{r}) dV = \int_{V_{Gau}} \frac{Q}{\frac{4}{3}\pi R^3} dV = \frac{Q}{\frac{4}{3}\pi R^3} \int_{V_{Gau}} dV = \frac{Q}{\frac{4}{3}\pi R^3} \frac{4}{3}\pi r^3 = Q \frac{r^3}{R^3}$$

Nun kann dies in den Satz von GauSS eingesetzt werden:

$$E(r) = \begin{cases} \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} & , r > R \\ \frac{1}{4\pi\epsilon_0} \frac{1}{r^2} Q \frac{r^3}{R^3} & , r < R \end{cases}$$

Oder zusammengefasst:

$$E(r) = \frac{1}{4\pi\epsilon_0} \left\{ \begin{array}{l} \frac{Q}{r_0^2} & , r > R \\ \frac{Q}{R^3}r & , r < R \end{array} \right.$$

Es gilt also, dass man Von Außen nicht feststellen kann, ob die geladene Kugel massiv oder hohl ist (Leiter oder homogen geladener Isolator)!

(v) Unendlich lnager homogen geladener Draht

Zylinderkoordinaten:

$$\begin{split} \lambda &= \frac{dq}{dL} = (\frac{Q}{R}) \leftarrow \text{als endliche lange l} \\ \vec{E}(\vec{r}) &= \vec{E}(r) = E(r) \cdot \hat{e}_r \\ \phi &= \oint_A \vec{E} \cdot d\vec{A} = \oint_A E(r) dA = E(r) \oint_A da = E(r) \cdot 2\pi r l \\ \phi &= \frac{Q_{ges}}{\epsilon_0} \implies E(r) = \frac{Q_{ges}}{2\pi \epsilon_0 \cdot r l} \\ E(r) &= \frac{\lambda}{2\pi \epsilon_0} \cdot \frac{1}{r} \end{split}$$

(vi) Unendlich langer, homogen geladener leitender Zylinder

(vii) Feld einer homogen geladener unendliche leitenden Ebene

$$\sigma = \frac{Q}{A}$$

$$\phi = \oint_{A} \vec{E} \cdot d\vec{A} = \int_{A,stirn} \vec{E} \cdot d\vec{A} + \int_{A,mantel} \vec{E} \cdot d\vec{A}$$

 \vec{E} -Ebene

 \implies Beitrag Über Mantelfläche verschwindet $(d\vec{A} \perp \vec{E})$

$$\phi = \oint_{A} \vec{E} d\vec{A} = 2 \cdot E \cdot A_{stirn} \stackrel{G.S.}{=} \frac{Q}{\epsilon_{0}}$$

$$\implies E = \frac{\sigma}{2\epsilon_{0}}$$

14.7 Das elektrische Potenzial

Coulombkraft: Zentralkraft, konservativ $\implies \exists$ potentielle Energie (siehe 14.3) für Ladungen q_0 im \vec{E} -Feld gilt:

$$\boxed{E_{pot}(\vec{r}) = \int_{\infty}^{\vec{r}} \vec{F}(\vec{r}) \cdot d\vec{r}} = -q_0 \cdot \int_{\infty}^{\vec{r}} \vec{E}(\vec{r}) \cdot d\vec{r}$$

Das elektrische Potenzial $\varphi(\vec{r})$ ist definiert als potentielle Energie pro Ladung:

$$ec{arphi} = -\int_{\infty}^{ec{r}} ec{E}(ec{r}) \cdot dec{r} = rac{1}{q_0} E_{pot} \cdot (ec{r})$$

 \rightarrow Beachte: Arbeit ist unabhängig vom Weg! Verschiebe q_0 von \vec{r}_1 nach \vec{r}_2 ; die benötigte Arbeit ist:

$$\begin{split} W_{12} &= \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}(\vec{r}) \cdot d\vec{r} = q_0 \int_{\vec{r}_1}^{\vec{r}_2} \vec{E}(\vec{r}) \cdot d\vec{r} \\ &= q_0 \cdot (\varphi(\vec{r}_1) - \varphi(\vec{r}_2)) \end{split}$$

 $\varrho(\vec{r})$ nur bis auf Integrationskonste bestimmt! Die Potentialdifferenz zwischen zwei Punkten:

$$U=arphi(ec{r}_1)-arphi(ec{r}_2)=rac{W_{12}}{q_0}$$
 heißt elektrische Spannung!

 $q_0 \cdot U$ ist die Arbeit, die man braucht um q_0 von \vec{r}_1 nach \vec{r}_2 zu bringen!

$$[U] = 1Volt = 1V = 1\frac{N}{C}$$

Beachte:
$$\varphi(\vec{r}_1) - \varphi(\vec{r}_2) = -\oint \vec{E}(\vec{r}) \cdot d\vec{r} = 0!!$$

Typische Spannungen:

Batterie: 1,5V

Stadtnetz: 220V

berlandleitung: 250kV

Blitz: 10 - 15MV

Beispiele: (i) Punktladung:

$$\varphi(\vec{r}) = -\int \vec{E}(\vec{r'}) \cdot d\vec{r'}; \vec{E} = E \cdot \hat{e}_r$$
$$= -\frac{q_1}{4\pi\epsilon_0} \cdot \int_{-\infty}^r \frac{d\vec{r}}{r^2}$$

$$\varphi(\vec{r}) = \varphi(r) = \frac{q_1}{4\pi\epsilon_0 \cdot r}$$

Äquipotenzialflächen: r=const.

(in 3D: Kugelflächen

in 2D: Kreise)

(ii) Mehrere Punktladungen

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_i \frac{q_i}{|\vec{r} - \tilde{\vec{r}}_i|}$$

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \left(\frac{q}{r_1} - \frac{q}{r_2}\right) = \frac{q}{4\pi\epsilon_0} - \frac{r_2 - r_1}{r_1 \cdot r_2}$$

$$\text{für } \underbrace{d \ll r}_{\text{Fernfeld}} : r_1 \cdot r_2 = r^2$$

$$r_2 - r_1 = d \cdot \cos \theta$$

$$\varphi(\vec{r}) = \varphi(r) = \frac{q \cdot d \cdot \cos \theta}{4\pi\epsilon_0 \cdot r^2} = \frac{\varphi \cdot \cos \theta}{4\pi\epsilon_0} \cdot \frac{1}{r^2}$$

Potenzialverteilung:

(iii) Kontinuierliche Ladungsverteilung:

$$\varphi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \int_{\tilde{V}} \frac{dQ}{|\vec{r} - \tilde{\vec{r}}|} = \frac{1}{4\pi\epsilon_0} \cdot \int_{\tilde{V}} d\tilde{V} \left\{ \frac{\varphi(\vec{r})}{|\vec{r} - \tilde{\vec{r}}|} \right\}$$

14.7.1 Elektrisches Feld und Potenzial

 $arphi(ec{r})$: Skalare Größe, manchmal einfache zu berechen als $ec{E}(ec{r})$

 $\implies \vec{E}(\vec{r})$ aus $\varphi(\vec{r})$ bestimmen?

$$\varphi = \varphi(\vec{r}) = \varphi(x, y, z); \vec{E} = \vec{E}(\vec{r}) = \begin{pmatrix} E_x \\ E_y \\ E_z \end{pmatrix}$$

$$d\vec{r} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

$$= -\vec{E}d\vec{r} = -(E_x dx + E_y dy + E_z dz) \ (*)$$
vollständiges Differential
$$d\varphi = \frac{\partial \varphi}{\partial x} \cdot dx + \frac{\partial \varphi}{\partial y} \cdot dy + \frac{\partial \varphi}{\partial z} \cdot dz \ (**)$$

$$(*),(**): \left\{ E_x = -\frac{\partial \varphi}{\partial x} E_x = -\frac{\partial \varphi}{\partial x} E_x = -\frac{\partial \varphi}{\partial x} \right\} \implies \vec{E} = -grad\varphi$$

 \vec{E} zeigt in Richtung des betragsmäßig größten Anstiegs von φ , allerdiings in abnehmende Richtung.

Äquipontenziallinie: $d\varphi = -\vec{E}\cdot d\vec{r}$ längst einer solchen Linie ist: $d\varphi = 0 \implies -\vec{E}\cdot d\vec{r} = 0$ $\implies \vec{E}\perp d\vec{r}$

Beispiel: Punktladung

$$\varphi(\vec{r}) = \frac{q}{4\pi\epsilon_0} \cdot \frac{1}{r}$$

Kugelkoordinaten, Kugelsymmetrie: $\vec{E} = -\nabla \cdot \varphi = -\frac{\partial \varphi}{\partial r} \cdot \hat{e}_r$

$$\frac{\partial \varphi}{\partial r} = -\frac{q}{4\pi\epsilon_0} \cdot \frac{1}{r^2} \implies \vec{E} = \frac{q}{4\pi\epsilon_0} \cdot \frac{1}{r^2} \cdot \hat{e}_r$$

14.7.2 Poisson- und Laplace Gleichung

Gauß'scher Satz: $\overrightarrow{div}\vec{E} = \vec{\nabla} = \frac{\varrho}{\epsilon_0}$

Potenzial: $\vec{E} = -\vec{\nabla}\varphi$

Einsetzen:
$$\overrightarrow{divgrad\varphi} = \underbrace{\overrightarrow{\nabla} \cdot \overrightarrow{\nabla}}_{\Delta} \cdot \varphi = -\frac{\varrho}{\epsilon_0}$$

$$\Delta arphi = \left(rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2} + rac{\partial^2}{\partial z^2}
ight) \cdot arphi$$

Spezialfall: $\varphi = 0 \implies \text{Laplace-Gleich} = \underline{\Delta \varphi = 0}$

14.8 Elektrisches Feld in der Umgebung von Leitern

Gauß'scher Satz: $\oint_A \vec{E} \cdot d\vec{A} = 0 \implies \varrho = 0$ (Leiter im Inneren Feldfrei!)

Potenzial: $\varphi(r) = -\int \vec{E} d\vec{r} = \text{const.}$

⇒ Leiteroberfläche ist Äquipotenzialfläche

Beispiel: Elektrisches Feld an Kugeloberfläche:

 E_{\perp}

für jede Leiteroberfläche berechenbar:

$$\oint\limits_{A} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$$

Beispiel:

Fläche:
1,2:
$$\vec{E} \perp d\vec{A} \implies$$
 "0"
3: $\vec{E} = 0 \implies 0$
4: $E \cdot A = \frac{Q}{\epsilon_0}$

$$3: \vec{E} = 0 \implies 0$$

4:
$$E \cdot A = \frac{Q}{\epsilon_0}$$

$$\implies |\vec{E}| = \frac{1}{\epsilon_0} \cdot \frac{Q}{A} = \frac{1}{\epsilon_0} \cdot \sigma$$

 $\implies |\vec{E}| = \frac{1}{\epsilon_0} \cdot \frac{Q}{A} = \frac{1}{\epsilon_0} \cdot \sigma$ $\implies \text{Die Größe von } E_{\perp} \text{ an der Oberfläche ist } \frac{\sigma}{\epsilon_0}!$

Weiter mit der Kugel: $E_a = \frac{\sigma}{\epsilon_0} = \frac{1}{\epsilon_0} \cdot \frac{Q}{4\pi \cdot R^2}$

$$\varphi = \frac{Q}{4\pi\epsilon_0 \cdot R} \implies E_a = \frac{\varphi}{R}$$

Bei gegebenen Potenzial ist Feldstärke an der Oberfläche umgekehrt proportional zum Kreisradius!

Lokal: $|\vec{E}| = \frac{\sigma}{\epsilon_0} = \frac{\varphi}{R}$

R Klein $\implies \varphi$ groß, σ groß

14.8.1 Anwendungen:

Feldemmissions-Elektronenmikroskop:

 $|\vec{E}|=rac{arphi}{R}=rac{10kV}{10^{-7}m}=10^11rac{V}{m}$ an der Wolfram-Spitze Bewegung der Elektronen Entlang der Feldlinien

- vergrößertes Bild der Wolfram-Spitze
- Vergrößerung: $\frac{R_{S\,chirm}}{R_{S\,pitze}} \approx \underline{10^6}$
- so erstmals Atome sichtbar gemacht
- Objekte $< 10^{-9} m \implies < 1mm!$

14.8.2 Elektrisches Feld zwischen geladenen Leitern

Anwendung: 2 isolierte, entgegengesetzt geladene Leiter, (⇒ Kondensator)

Coulomb: $|\vec{E}| \propto |Q|$

Spannung: $U_{21} = \varphi_2 - \varphi_1 = -\int_1^2 \vec{E} \cdot d\vec{r} \propto Q$ ist unabhängig vom Weg!

$$\implies Q \propto U$$

Proportionalitätskonstante?

$$Q = C \cdot U$$

C:Kapazität Einheit $[C] = \frac{1C}{1V} = 1F$ (Farad)

$$typisch: 10^{-6}F = 1\mu F$$
$$10^{-9}F = 1nF$$

$$10^{-12}F = 1pF$$

14.8.3 Berechnung der Kapazität

Erinnerung: homogen geladene Platte: $E = \frac{\sigma}{2\epsilon_0}$

Im Außenraum: Kompensation Im Innenraum: Addition

Im Innenraum: $|\vec{E}| = \frac{\sigma}{\epsilon_0}$

14.8.4 Feldstärke im Inneres eines Plattenkondensator:

Seicherung von Ladungen auf voneinander isolierten leitenden Platten, Aufladung über Spannungsquelle oder Batterie.

Spannungspotenzialdifferenz:
$$U_{21} = p_2 - p_1 = \int \vec{F} d\vec{r} = E \cdot d$$

$$U = Ed = \frac{\sigma}{\epsilon_0} \cdot d = \frac{Q}{\epsilon_0 \cdot A} \cdot d$$
mit $Q = C \cdot U$ folgt $C = \frac{\epsilon_0 A}{d}$

$$|ec{E}| = rac{Q}{\epsilon_0 \cdot A}$$
 ist unabhängig von d

$$|ec{E}|=rac{Q}{\epsilon_0\cdot A}$$
 ist unabhängig von d
$$C=\epsilon_0\cdotrac{A}{d}$$
 ist eine rein geometrische Größe

$$d \uparrow \Longrightarrow C \downarrow \Longrightarrow U \uparrow$$

$$d \downarrow \Longrightarrow C \uparrow \Longrightarrow U \downarrow$$

14.8.5 Realisierung von Kondensatoren:

Großes C: A groß, d klein

Beidseitiges Bedampfte dünne Kunststofffläche, dann aufrollen, \implies Kunststofffolienkondensator.

Größenordnung:

=
$$8, 8 \cdot 10^{-12} \frac{C^2}{Nm^2} \frac{10^{-4}m^2}{10^{-3}m}$$

= $0, 9 \cdot 10^{-12} F$
 $\approx \underline{1pF} \times \text{Anzahl der Lagen}$

Energie eines aufgeladenen Kondensators

Kondensator C sie mit Ladung q aufgeladen: $U = \frac{q}{c}$

Die Arbeit, die zum Aufbringen einer weiteren Ladung benötigt wird, hängt vom

aktuellen Ladungszustand ab:

$$dW = dq \cdot U(q)$$
$$= dq \cdot \frac{q \cdot d}{A \cdot \epsilon_0}$$

$$W = \int_0^Q dW = \frac{d}{A\epsilon_0} \int_0^Q q/cdotd \cdot q = \frac{1}{2} \frac{1}{C} Q^2 = \frac{1}{2} \cdot C \cdot U^2$$

Energiedichte:
$$\underbrace{\frac{W}{V}}_{A \cdot d} = \frac{1}{2} \frac{\epsilon_0 A}{d} \frac{1}{A d} E^2 d^2 = \frac{1}{2} \epsilon_0 E^2$$

(Dieses Ergebnis gilt auch für andere Feldverteilungen, nicht nur im Plattenkondensator)

 \rightarrow Feldenergie $\propto E^2$ (später wichtig!)

⇒ wichtige Anwendung: Schnelle Entladung eines langsam aufgeladenen Kondensators ⇒ Kurzzeitig hohe Leistung!

Beispiele : Defibrilator, Blitzlicht

14.8.7 Entladen eines Kondensators

$$C = 8 \cdot 20\mu F; U = 500V$$

 $W = \frac{1}{2} \cdot CU^2 = \frac{1}{2} \cdot 16 \cdot 10^{-5} F \cdot 25 \cdot 10^4 V^2$
 $= 20J$

Entladung in $1ms \rightarrow 20kW$

Defibrilator: 100 - 800kW

Fusionsanlage: Kondensatorbatteri ermöglichen W 10⁶J

Entladung in 3ns $\implies P = 3 \cdot 10^{14} W$

14.8.8 Kraft zwischen Zwei Kondensatorplatten

Anziehungskraft zwischen entgegengesetzt geladenen Kondensatorplatten \implies Arbeit gegen Kraft F, um Abstand um Δd zu erhöhen.

Volumenänderung:

$$\Delta V = A \cdot \Delta d$$

$$\Delta W = \frac{1}{2} \cdot \epsilon_0 |\vec{E}|^2 \cdot A \cdot \Delta d$$

$$\Delta W = F \cdot \Delta d \implies \underline{F} = \frac{\epsilon_0}{2} \cdot |\vec{E}|^2 \cdot A = \frac{\epsilon_0}{2} \left(\frac{V}{d}\right)^2 \cdot A \propto V^2$$

14.8.9 Kraft zwischen Kondensatorplatten

$$U = 2000V; d = 10mm; = 30cm \implies A = 0,071m^2$$

$$F = \frac{\epsilon_0}{2} \left(\frac{V}{d} \right)^2 \cdot A = 0.0197N$$

Die äquivalente Masse wird von der Waage angezeigt:

$$M = \frac{F}{g} = 1m29g$$
 (gemessen: $m = 1,33g$)

Verdopplung von U auf $4000V \implies 4$ -Fache Masse.

(gemessen: $m \approx 5,22g$)

14.9 Isolatoren (Dielektrikum) im elektrischen Feld

- Isolator $\hat{=}$ Nichtleiter
- Ladungen nicht frei beweglich, sondern nur lokal gegeneinander verschiebar (polarisierbar)

Experiment: Dielektrikum im Kondensator

$$Q = C_0 \cdot U_0,$$
 $U_0 = 250V$
 $Q' = Q = C_{diel} \cdot U_{diel},$ $U_{diel} = 65V$

$$\implies \frac{U_0}{U_{diel}} = \frac{C_{diel}}{C_0} := \epsilon = \frac{|\vec{E_0}|}{|\vec{E}_{diel}|}$$

Definition: Relative Dielektrizitätskontante $\epsilon := \frac{C_{diel}}{C_0} > 1$

[Im Skript steht "Tabelle"]

14.9.1 Mikroskopische Deutung und elektrische Suszeptibilität

Reduzierung des elektrischen Feldes bei Einführung eins Dielektrikums. Grund: Dielektrium wird polarisiert!

Gesamtfeld zwischen den Platten:

$$\vec{E} = \vec{E}_0 + \vec{E}_{pol} \leftarrow$$
 entgegengesetzte Orientierung

Verschiebungspolarisation:

$$Q_p$$
: Polarisations ladung $F = K \cdot x \implies E = \frac{F}{q} = \frac{K}{q} \cdot x \implies x = \frac{q}{K} \cdot E$

Dipolmoment: $\vec{p} = q \cdot \vec{x} = \frac{q^2}{K} \cdot \vec{E} = \alpha \cdot \vec{E}$ (Polarisierbarkeit)

Markroskopisch: Polarisation: $\vec{P} = \underbrace{\frac{N}{V}}_{\vec{V}} \quad \vec{p} = n \cdot \alpha \cdot \vec{E} \text{(mikroskopisch)}$

$$\vec{p} = (\epsilon - 1) \cdot \epsilon_0 \cdot \vec{E}(makrsokopisch)$$

= $\chi_e \cdot \epsilon_0 \cdot \vec{E}$

 χ_e : elektrische Suszeptibilität: $\underline{\chi_e} = \epsilon - 1$

Orientierungspolarisation

• triff auf, wenn Dielektrikum schon aus Dipolen bestehen (permaente Dipole)

• Orientierungspolarisation ist temperaturabhängig (Ausrichtung nimmt bei hohentemperaturen ab)

Dielektrische Verschiebungsdichte

$$ec{D} := \epsilon_0 \cdot ec{E} + ec{P} = \epsilon_0 \cdot ec{E} + \underbrace{(\epsilon - 1)}_{\chi} \cdot \epsilon_0 \cdot ec{E}$$

$$= \epsilon \cdot \epsilon_0 \cdot ec{E}$$

$$[D] = 1 \frac{C}{m^2}$$

$$\oint \vec{E} d\vec{A} = \frac{Q_{frei} + Q_p}{\epsilon_0} = \frac{Q_{frei}}{\epsilon \epsilon_0}$$

$$\implies \oint \epsilon \epsilon_0 \vec{E} d\vec{A} = Q_{frei}$$

$$= \int_V div \underbrace{(\epsilon \epsilon_0 \vec{E})}_{\vec{D}} dV = \int Q_{frei} dV$$

$$\implies div \vec{D} = Q_{frei}$$

vergleiche: $div\vec{E} = \frac{\varrho_{ges}}{\epsilon_0}$

14.9.2 Nachtrag: Schaltungen mit Kapazitäten

Verschaltung mehrer Kapazitäten C_i . Wie groSS ist dann die Gesamtkapazität?

Beispiele:

a) Parallelschaltung: Gleiche Spannung an beiden Kapazitäten.

$$Q_{ges} = Q_1 + Q_2 = C_1 U + C_2 U$$
$$= (C_1 + C_2) U$$
$$= C_{ges} U$$

$$C = \sum_{i=1}^{n} C_i$$

b) Reihenschaltung

Anschauung: Nur die äuSSeren Platten werden durch Verbindung unt Spannungsquelle aufgeladen, die anderen Platten erhalten ihre Ladung durch Influenz ⇒ alle Ladungen sind gleich groSS.

$$\implies Q_1 = Q_2 = Q$$

Spannungen verteilen sich auf die Kapazitäten gemäSS: $U=\frac{Q}{C_i}, U_1+U_2=U$

$$U_{=}\frac{Q}{C_i}, U_1 + U_2 = U$$

$$U = \frac{Q}{C_{ges}} = \frac{Q}{C_1} + \frac{Q}{C_2} = Q \cdot \left(\frac{1}{C_1} + \frac{1}{C_2}\right)$$

$$\Longrightarrow \boxed{\frac{1}{C_{ges}} = \frac{1}{C_1} + \frac{1}{C_2}}, \qquad \boxed{C_{ges} = \frac{C_1 \cdot C_2}{C_1 + C_2}}$$

$$C_{ges} = \frac{C_1 \cdot C_2}{C_1 + C_2}$$