Aerody definitions and theory

- 1 A stagnation point on a body in a moving airstream is a point where:
 - a) the pressure on the surface is equal to the ambient atmospheric pressure.
 - b) the velocity of the relative airflow is zero and the surface pressure is higher than the ambient atmospheric pressure.
 - c) the velocity of the relative airflow is zero and the surface pressure is lower than the ambient atmospheric pressure.
 - d) the velocity of the relative airflow reaches its maximum and the surface pressure is higher than the ambient atmospheric pressure.
- 2 The centre of pressure is the point:
 - a) on the chord line through which the total reaction acts
 - b) through which weight acts
 - c) on the mean camber line through which lift acts
 - d) through which thrust acts
- 3 The Centre of Pressure of an aerofoil is at its most forward position:
 - a) at zero degrees angle of attack
 - b) at the angle of attack for the best lift/drag ratio
 - c) at the stall
 - d) at approximately 12° angle of attack
- 4 The mean camber line is:
 - a) the straight line between the leading and trailing edges.
 - b) the distance between the chord line and mean chamber line.
 - the line between leading and trailing edge half way between the upper and lower surface.
 - d) the line which follows the top surface of the wing.
- 5 The centre of pressure of an aerofoil is the point:
 - a) through which thrust acts
 - b) through which weight acts
 - c) on the mean camber line through which lift acts
 - d) on the chord line through which total reaction acts
- For a given speed and angle of attack, if the camber of an aerofoil is increased
 - a) the lift will decrease
 - b) lift will increase
 - c) lift and drag will increase
 - d) lift will increase and drag will decrease

- For a given angle of attack and speed, if the thickness/chord ratio of an aerofoil is increased
 - a) lift and drag will decrease
 - b) lift and drag will increase
 - c) the stalling angle will decrease
 - d) the stalling angle will not change
- 8 The chord of an aerofoil is
 - a) the thickness at the point of maximum camber
 - b) the straight line joining leading edge to trailing edge
 - c) the distance between the leading edge and trailing edge measured along the bottom of the wing
 - d) the distance from leading edge to trailing edge measured in a straight line
- 9 The expression "Span squared over area" refers to
 - a) wing loading
 - b) aspect ratio
 - c) power loading
 - d) thickness
- 10 Camber associates the following wing dimensions
 - a) span and chord
 - b) span and thickness
 - c) chord and thickness
 - d) chord and area
- 11 The chord of a wing is measured
 - a) parallel to the longitudinal axis of the aircraft
 - b) at right angles to the leading edge
 - c) at right angles to the spar
 - d) perpendicular to the trailing edge
- 12 Wing loading when increased by increasing the aircrafts AUW will
 - a) increase stalling speed
 - b) decrease stalling speed
 - c) have no effect on stalling speed
 - d) decrease the stall speed by the square root of the weight.

- In relation to the free stream airflow, the airflow over the upper surface of the wing:
 - a) decreases in velocity and increases in pressure
 - b) decreases in velocity and decreases in pressure
 - c) increases in velocity and decreases in pressure
 - d) increases in velocity and pressure
- 14 The mean camber line is:
 - a) the straight line between the leading and trailing edges.
 - b) the distance between the chord line and mean chamber line.
 - c) the line between leading and trailing edge half way between the upper and lower surface.
 - d) the line which follows the top surface of the wing.
- 15 The laminar boundary layer:
 - a) is the boundary layer in front of the transition point.
 - b) is the boundary layer between the transition and separation point.
 - c) separates from the aerofoil at the separation point.
 - d) occurs on the underside of the wing.
- 16 The transition point on a wing is the point where:
 - a) the flow separates from the wing surface
 - b) the boundary layer flow changes from laminar to turbulent
 - c) the boundary layer is stationary
 - d) the boundary layer is at free stream velocity
- 17 Lift is the component of the total reaction that is:
 - a) always opposite to weight.
 - b) perpendicular to the chord line.
 - c) at right angles to the relative airflow.
 - d) perpendicular to the longitudinal axis.
- 18 The angle of attack is the angle between:
 - a) the chord line and the longitudinal axis.
 - b) the mean chamber line and the chord line.
 - c) the longitudinal axis and the chord line.
 - d) the relative airflow and the chord line.

- 19 The angle of incidence is the angle between:
 - a) the relative airflow and chord line.
 - b) the longitudinal axis and the chord line.
 - c) the mean chamber line and the longitudinal axis.
 - d) the longitudinal axis and the relative airflow.
- 20 Drag is the component of the total reaction that is:
 - a) parallel to the longitudinal axis.
 - b) perpendicular to the longitudinal axis.
 - c) parallel to the relative airflow.
 - d) parallel to the chord line.
- 21 A high Aspect ratio wing:
 - a) Reduces aircraft drag
 - b) Reduces parasite drag
 - c) Reduces induced drag
 - d) Reduces interference drag
- 22 Laminar airflow is that airflow which exists:
 - a) between the aileron and the wing;
 - b) ahead of the transition point;
 - c) either side of the rudder;
 - d) ahead of the separation point.
- 23 The angle of attack is the angle between the aeroplane's
 - a) longitudinal axis and the relative airflow
 - b) longitudinal axis and the horizontal
 - c) wing chord and relative airflow
 - d) wing chord and longitudinal axis
- 24 The separation point is:
 - a) in front of the transition point.
 - b) the point where the laminar boundary layer becomes turbulent.
 - c) the point at which the boundary layer detaches from the aerofoil.
 - d) where the flow divides to pass above and below the wing.
- 25 The transition point on an aerofoil surface is the point at which:
 - a) the turbulent boundary layer becomes laminar;
 - b) the laminar boundary layer becomes turbulent;
 - c) the airflow separates to flow over and under the wing;
 - d) positive lift changes to negative lift.

Answers

1.b 2.a 3.c 4.c 5.d 6.c 7.a 8.d 9.b 10.c 11.a 12.a 13.c 14.c 15.a 16.b 17.c 18.d 19.b 20.c 21.c 22.b 23.c 24.c 25.b