МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса

Вариант №3

> Санкт-Петербург 2022

Цель работы.

Изучить режимы адресации и формирование исполнительного адреса.

Задание.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя.

На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Выполнение работы.

- 1. Были изменены значения vec1, vec2, matr согласно варианту.
- 2. Была проведена попытка трансляции файла с получением ошибок, которые показаны на рисунке 1.

```
O Warning Errors
O Severe Errors

D:\masm lr2_comp.asm
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

Object filename [lr2_comp.OBJ]:
Source listing [NUL.LST]: lr2_comp
Cross-reference [NUL.CRF]:
lr2_comp.asm(42): error A2052: Improper operand type
lr2_comp.asm(50): warning A4031: Operand types must match
lr2_comp.asm(55): error A2055: Illegal register value
lr2_comp.asm(74): error A2046: Multiple base registers
lr2_comp.asm(74): error A2046: Multiple index registers
lr2_comp.asm(82): error A2006: Phase error between passes

47800 + 459460 Bytes symbol space free

2 Warning Errors
5 Severe Errors
```

Рисунок 1 — Ошибки при первой трансляции файла

- 3. Были закомментированы строки:
 - a) mov mem3, [bx] обращение к области памяти возможно только через регистр.
 - b) mov cx, vec2[di] различие в величине операндов. Регистр cx имеет размер 26, a vec2[di] 16.
 - c) mov cx, matr[bx][di] разная длина операндов. cx 26, matr[bx][di] –
 16.
 - d) mov ax, matr[bx*4][di] в базово-индексной адресации не предусмотрено масштабирование. Оно уместно в тех случаях, когда массив состоит не из байт, а из слов. В таком случае применяется базово-индексная адресация с масштабированием.
 - e) mov ax, matr[bp+bx] базовый регистр должен быть один.
 - f) mov ax, matr[bp+di+si] индексный регистр должен быть один.
 - g) для очищения стека и корректного завершения программы были добавлены pop ax, pop bx
- 4. Выполнена трансляция файла.
- 5. Начальное состояние режимов:

$$CS = 1A0A$$
, $DS = 19F5$, $ES = 19F5$, $SS = 1A05$

Таблица 1. Протокол lr2.exe

Адрес	Символический код	16-ричный код	Содрежимое регистров и ячеек памяти				
команды	команды	команды	До выполнения	После выполнения			
0000	push dx	1E	IP = 0000	IP = 0001			
			SP = 0018	SP = 0013			
			+0 0000	+0 19F5			
0001	sub ax, ax	2B C0	IP = 0001	IP = 0003			
			SP = 0013	SP = 0016			
0003	push ax	50	IP = 0003	IP = 0004			
			SP = 0016	SP = 0014			
			+0 19F5	+0 0000			
			+2 0000	+2 19F5			
0004	mov ax, 1A07	B8 07 1A	IP = 0004	IP = 0007			
			AX = 0000	AX = 1A07			
0007	mov ds, ax	8E D8	IP = 0007	IP = 0009			
			DS = 19F5	DS = 1A07			
0009	mov ax, 01F4	B8 F4 01	AX = 1A07	AX = 01F4			
			IP = 0009	IP = 000C			
000C	mov cx, ax	8B C8	CX = 0000	CX = 01F4			
			IP = 000C	IP = 000E			
000E	mov bl, 24	B3 24	BX = 0000	BX = 0024			
			IP = 000E	IP = 0010			
0010	mov bh, ce	B7 CE	BX = 0024	BX = CE24			
			IP = 0010	IP = 0012			
0012	mov [0002], FFCE	C7 06 02 00 CE FF	IP = 0012	IP = 0018			
0018	mov bx, 0006	BB 06 00	BX = CE24	BX = 0006			
			IP = 0018	IP = 001B			
001B	mov [0000], ax	A3 00 00	IP = 001B	IP = 001E			

001E	mov al, bx	8A 07	AX = 01F4 $IP = 001E$	AX = 0108 IP = 0020		
0020	mov al, [bx + 3]	8A 47 03	IP = 0020 $AX = 0108$	IP = 0023 $AX = 0105$		
0023	mov cx, [bx + 3]	8B 4F 03	IP = 0023 CX = 01F4	IP = 0026 CX = 0105		
0026	mov di, 0002	BF 02 00	DI = 0000 IP = 0026	DI = 0002 IP = 0029		
0029	mov al, [000E + di]	8A 85 0E 00	AX = 0105 IP = 0029	AX = 011E $IP = 002D$		
002D	mov bx, 0003	BB 00 03	BX = 0006 $IP = 002D$	BX = 0003 IP = 0030		
0030	mov al, [0016 + bx + di]	8A 81 16 00	AX = 011E $IP = 0030$	AX = 0107 IP = 0034		
0034	mov ax, 1A07	B8 07 1A	AX = 0107 IP = 0034	AX = 1A07 $IP = 0037$		
0037	mov es, ax	8EC0	ES = 19F5 IP = 0037	ES = 1A07 IP = 0039		
0039	mov ax, es:[bx]	26 8B 07	AX = 1A07 $IP = 0039$	AX = 00FF $IP = 003C$		
003C	mov ax, 0000	B8 00 00	AX = 00FF $IP = 003C$	AX = 0000 $IP = 003F$		
003F	mov es, ax	8E C0	ES = 1A07 $IP = 003F$	ES = 0000 $IP = 0041$		
0041	push ds	1E	IP = 0041 +0 0000	IP = 0042 +0 1A07		
			+2 19F5 +4 0000	+2 0000 +4 19F5		
0042	pop es	07	ES = 0000 IP = 0042 +0 1A07	ES = 1A07 IP = 0043 +0 0000		

			+2 0000	+2 19F5
			+4 19F5	+4 0000
0043	mov cx, es:[bx-01]	26 8B 4F FF	CX = 0105	CX = FFCE
	, ,		IP = 0043	IP = 0047
0047	xchg ax,cx	91	AX = 0000	AX = FFCE
			CX = FFCE	CX = 0000
			IP = 0047	IP = 0048
0048	mov di, 0002	BF 02 00	DI = 0002	DI = 0002
			IP = 0048	IP = 004B
004B	mov es:[bx + di], ax	26 89 01	IP = 004B	IP = 004E
004E	mov bp, sp	8B EC	BP = 0000	BP = 0014
			IP = 004E	IP = 0050
0050	push [0000]	FF 36 00 00	SP = 0014	SP = 0012
			IP = 0050	IP = 0054
			+0 0000	+0 01F4
			+2 19F5	+2 0000
			+4 0000	+4 19F5
0054	push [0002]	FF 36 02 00	SP = 0012	SP = 0010
			IP = 0054	IP = 0058
			+0 01F4	+0 FFCE
			+2 0000	+2 01F4
			+4 19F5	+4 0000
			+6 0000	+6 19F5
0058	mov bp, sp	8B EC	BP = 0014	BP = 0010
			IP = 0058	IP = 005A
005A	mov dx, [bp + 02]	8B 56 02	DX = 0000	DX = 01F4
			IP = 005D	IP = 005A
005D	pop ax	58	AX = FFCE	AX = FFCE
			IP = 005D	IP = 005E
			+0 FFCE	+0 01F4
			+2 01F4	+2 0000
			+4 0000	+4 19F5

			+6 19F5	+6 0000
005E	pop bx	5B	BX = 0000	BX = 01F4
			IP = 005E	IP = 005F
005F	ret far	СВ	IP = 005F	IP = 0000
			CS = 1A0A	CS = 19F5
			SP = 0014	SP = 0018
			+0 01F4	+0 0000
			+2 0000	+2 0000
			+4 19F5	+4 000
			+6 0000	+6 0000
0000	int 20	cd 20		

Выводы.

Были изучены режимы адресации и формирование исполнительного адреса на языке Ассемблер.

ПРИЛОЖЕНИЕ А

КОД ПРОГРАММЫ

lr2.asm:

sub AX, AX

```
; Программа изучения режимов адресации процессора
IntelX86
    EOL EQU '$'
    ind EQU 2
    n1 EOU 500
    n2 EQU -50
    ; Стек программы
    AStack SEGMENT STACK
     DW 12 DUP(?)
    AStack ENDS
    ; Данные программы
    DATA SEGMENT
    ; Директивы описания данных
    mem1 DW 0
    mem2 DW 0
    mem3 DW 0
    vec1 DB 8,7,6,5,1,2,3,4
    vec2 DB -30,-40,30,40,-10,-20,10,20
    matr DB -1, -2, -3, -4, 8, 7, 6, 5, -5, -6, -7, -8, 4, 3, 2, 1
    DATA ENDS
    ; Код программы
    CODE SEGMENT
    ASSUME CS:CODE, DS:DATA, SS:AStack
    ; Головная процедура
    Main PROC FAR
     push DS
```

```
push AX
mov AX, DATA
mov DS, AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax, n1
mov cx, ax
mov bl, EOL
mov bh, n2
; Прямая адресация
mov mem2, n2
mov bx, OFFSET vec1
mov mem1, ax
; Косвенная адресация
mov al, [bx]
;mov mem3, [bx] -----
; Базированная адресация
mov al, [bx]+3
mov cx, 3[bx]
; Индексная адресация
mov di, ind
mov al, vec2[di]
;mov cx, vec2[di]-----
; Адресация с базированием и индексированием
mov bx, 3
mov al, matr[bx][di]
; mov cx, matr[bx] [di] -----
;mov ax, matr[bx*4][di]------
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
```

```
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es: [bx-1]
xchg cx, ax
; ----- вариант 3
mov di, ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp, sp
;mov ax, matr[bp+bx]-----
;mov ax, matr[bp+di+si]------
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx, [bp]+2
pop ax
pop bx
ret 2
Main ENDP
CODE ENDS
END Main
```

ПРИЛОЖЕНИЕ В ЛИСТИНГ ПРОГРАММЫ

lr2_comp	o.lst:										
□Micro	soft	(R)	Ma	acro	Assembler	Version	5.10				
10/30/22 14	1:13:0										
Page 1-	-1										
= 002	4			EOL E	QU '\$'						
= 0000	2			ind E	QU 2						
= 01F	4		n1 EQU 500								
=-003		n2 EQU -50									
			; C	т е к	програ	ммы					
0000				AStac	k SEGMENT S	TACK					
0000	0000[DW 1	2 DUP(?)						
	3333										
]									
0018				AStac	k ENDS						
			; Д	анні	ые прог	раммы					
0000			, ,		SEGMENT	-					
0000			. п		ктивы о	писэти	с п				
•			; Д	ире	итиры О	писаниз	1 да				
н н 😵											
			♦ X								
0000	0000			mem1	DW 0						

0002 0000 mem2 DW 0

```
0004 0000
                     mem3 DW 0
    0006 08 07 06 05 01 02 vec1 DB 8,7,6,5,1,2,3,4
         03 04
    000E
        E2 D8 1E 28 F6 EC vec2 DB -30,-40,30,40,-10,-
20,10,20
         0A 14
    0016 FF FE FD FC 08 07 matr DB -1,-2,-3,-
4,8,7,6,5,-5,-6,-7,-8,4,3,2,1
         06 05 FB FA F9 F8
         04 03 02 01
    0026
                      DATA ENDS
                  ; Код программы
    0000
                      CODE SEGMENT
                   ASSUME CS:CODE, DS:DATA, SS:AStack
                  ; Головная процедура
    0000
                     Main PROC FAR
    0000
         1E
                      push DS
    0001
        2B C0
                      sub AX, AX
    0003
        50
                      push AX
        B8 ---- R
    0004
                  mov AX, DATA
    0007 8E D8
                      mov DS, AX
                  ; ПРОВЕРКА РЕЖИМОВ АДРЕ
C A
                  ♠ИИ НА УРОВНЕ СМЕЩЕНИЙ
                  ; Регистровая адресаци
R
    0009 B8 01F4
                          mov ax, n1
    000C
        8B C8
                     mov cx,ax
```

mov bl,EOL

000E B3 24

```
0010 B7 CE mov bh, n2
               ; Прямая адресация
    0012 C7 06 0002 R FFCE mov mem2, n2
    0018 BB 0006 R mov bx, OFFSET vec1
    001B A3 0000 R mov mem1,ax
               ; Косвенная адресация
   001E 8A 07
                mov al,[bx]
               ;mov mem3,[bx] -----
                ; Базированная адресац
и я
   0020 8A 47 03 mov al, [bx]+3
  □Microsoft (R) Macro Assembler Version 5.10
10/30/22 14:13:0
Page 1-2
    0023 8B 4F 03 mov cx,3[bx]
              ; Индексная адресация
    0026 BF 0002
                      mov di, ind
   0029 8A 85 000E R mov al, vec2[di]
                ; mov cx, vec2[di]-----
                ; Адресация с базирован
```

и е 🏚

```
🛊 и индексированием
   002D BB 0003
                       mov bx,3
   0030 8A 81 0016 R mov al, matr[bx][di]
                 ; mov cx, matr[bx][di]-----
                 ;mov ax, matr[bx*4][di]-----
                ; ПРОВЕРКА РЕЖИМОВ АДРЕ
C A
                ♦ИИ С УЧЕТОМ СЕГМЕНТОВ
                ; Переопределение сегм
ент
                ; ---- вариант 1
   0034 B8 ---- R mov ax, SEG vec2
       8E C0
    0037
             mov es, ax
    0039
       26: 8B 07 mov ax, es:[bx]
    003C
       B8 0000 mov ax, 0
                ; ----- Вариант 2
    003F
        8E C0
                    mov es, ax
    0041
        1E
                    push ds
    0042
        07
                  pop es
        26: 8B 4F FF mov cx, es:[bx-1]
    0043
                   xchg cx,ax
    0047
        91
                ; ---- Вариант 3
   0048 BF 0002
                    mov di, ind
```

004B 26: 89 01 mov es:[bx+di],ax

```
; ---- вариант 4
    004E 8B EC
                  mov bp,sp
                  ; mov ax, matr[bp+bx]-----
                 ; mov ax, matr[bp+di+si]-----
                 -----
                 ; Использование сегмен
та 🏚
                 тека
    0050 FF 36 0000 R push mem1
    0054 FF 36 0002 R push mem2
    0058 8B EC mov bp, sp
    005A 8B 56 02
                    mov dx, [bp] + 2
    005D 58
                    pop ax
    005E 5B
                    pop bx
    005F CA 0002
                        ret 2
    0062
                    Main ENDP
    0062
                    CODE ENDS
                 END Main
   □Microsoft (R) Macro Assembler Version 5.10
10/30/22 14:13:0
Symbols-1
```

Segments and Groups:

15

N a m e	Length Align									
Combine Class										
ASTACK	. 0018 PARA STACK									
CODE	. 0062 PARA NONE 0026 PARA NONE									
Symbols:										
N a m e	Type Value Attr									
EOL	. NUMBER 0024									
IND	. NUMBER 0002									
MAIN	. F PROC 0000									
CODE Length = 0062										
MATR	. L BYTE 0016									
DATA MEM1	. L WORD 0000									
MEM2	. L WORD 0002									
DATA										
MEM3	. L WORD 0004									
N1	. NUMBER 01F4									

NUMBER -0032

VEC1	•	•	•	•	•	•	•	•	•	•	•	L BYT	E	0006
DATA														
VEC2		•	•	•	•	•	•	•	•	•	•	L BYT	E	000E
DATA														
@CPU	•	•	•	•	•	•	•			•	•	TEXT	01	01h
@FILENAME	•	•	•	•	•	•	•	•	•	•	•	TEXT	lr	2
@VERSION .												TEXT	51	0

- 85 Source Lines
- 85 Total Lines
- 19 Symbols

47842 + 459418 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors