# **Adversarial Al**

Gyu-Young Lee Lee-Ahn Professional Engineer Office

## Motivation – Deep Learning

Deep Learning will change everything.









### Motivation – Adversarial Attack

- Deep learning is vulnerable to adversarial samples.
- Autonomous vehicles can be crashed :
  - ① Slightly altering "STOP" signs
  - 2 DNNs misclassify them
  - 3 The car would not stop
  - 4 Devastating consequences

STOP sign

Driverless Al Car

Original Image



STOP sign



STOP sign

YIELD sign

Crafted Image



### **Project Summary**

- TITLE: Adversarial AI
- SCOPE
  - 1) Training DNN with MNIST dataset
  - Making adversarial samples
  - 3) To improve making adversarial samples
  - 4) To analyze defensive mechanism

### Training DNN (approach)

- Constructing DNN environment
  - Machine Learning Library: Tensor Flow
  - Language : Python
  - Tool : Docker Toolbox, Jupyter open source
- Training DNN with MNIST database
  - MNIST dataset consists of 28×28 pixel images of handwritten digits having 50000 training images and 10000 test images



### Training DNN (result)

#### [Accuracy performance of the DNN]

```
Step: 100, Loss: 3136.286377, Accuracy: 0.906700
Step: 200, Loss: 2440.697021, Accuracy: 0.928000
Step: 300, Loss: 1919.005249, Accuracy: 0.941900
Step: 400, Loss: 1982.860718, Accuracy: 0.939400
Step: 500, Loss: 1734.469971, Accuracy: 0.945500
Step: 600, Loss: 1377.535767, Accuracy: 0.956100
Step: 700, Loss: 1332.846313, Accuracy: 0.960600
Step: 800, Loss: 1184.055786, Accuracy: 0.963600
Step: 900, Loss: 1134.486084, Accuracy: 0.964700
Step: 1000, Loss: 1236.647095, Accuracy: 0.961900
Step: 1100, Loss: 1116.422852, Accuracy: 0.965500
Step: 1200, Loss: 1125.365234, Accuracy: 0.964700
Step: 1300, Loss: 1193.366577, Accuracy: 0.961900
Step: 1400, Loss: 1101.243652, Accuracy: 0.966800
Step: 1500, Loss: 1062.339966, Accuracy: 0.969400
Step: 1600, Loss: 1112.656494, Accuracy: 0.966600
Step: 1700, Loss: 953.149780, Accuracy: 0.972200
Step: 1800, Loss: 960.959900, Accuracy: 0.970900
Step: 1900, Loss: 1035.524414, Accuracy: 0.967900
Step: 2000, Loss: 990.451965, Accuracy: 0.970600
```

#### [Result of prediction test on the DNN]



[Left 3 columns] Correct : Over 97%

[Right 3 columns] Incorrect : Below 3%

[Notation] prediction/actual

Accuracy rate can be nearly over 99% If applying convolution filters.

### Making adversarial samples (Approach)

Adversarial crafting framework



Fast Gradient Sign Method



### Making adversarial samples (Analysis)

- Non-Targeted Attack
  - Cost Function  $C = \frac{1}{2} \|y_{goal} \hat{y}(\vec{x})\|_2^2$
  - Choosing an  $\vec{x}$  input that minimizes the cost instead of weights and biases that minimize the cost.



Human Perfect Noise

Deep Learning Number "2"

- 1) Finding the derivatives of the cost function with respect to the input,  $\nabla_x C$  using backpropagation.
- 2) Using the gradient descent update to find the best  $\vec{x}$  that minimizes the cost.

### Making adversarial samples (Result)

• Experiment - Non-Targeted Attack (Step=500)



### Making adversarial samples (Analysis)

### Targeted Attack

- Cost Function  $C = \frac{1}{2} \|y_{goal} \hat{y}(\vec{x})\|_{2}^{2} + \lambda \|\vec{x} x_{target}\|_{2}^{2}$
- Picture.(b): Human rumber "2"
- Picture.(b): Deep Learning rumber "8" with 99.99%



Minimizing the left term

 $\|y_{goal} - \hat{y}(\vec{x})\|_2^2$  will make the DNN output  $y_{goal}$  when given  $\vec{x}$ .

Minimizing the second term

 $\lambda \|\vec{x} - x_{target}\|_2^2$  will try to force our adversarial image x to be as close as possible to  $x_{target}$ .

### Making adversarial samples (Result)

• Experiment - Targeted Attack (Step=500,  $\lambda$ =0.5)

