การคัดเลือกตัวแปรโดยการหาค่าเอยูซีเหมาะสมที่สุด

วรัญญู วงษ์เสรี, ปวริศ ธารีชาญ

สาขาวิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ

บทคัดย่อ

เอยูซีเป็นเกณฑ์ที่ใช้ในการเปรียบเทียบประสิทธิภาพของตัวจำแนก การ วิเคราะห์ทางสถิติหาความสัมพันธ์ระหว่างเอยูซีและอัตราผิดพลาด (Error rate) พบว่ากรณีที่คลาสไม่สมดุลที่มีอัตราผิดพลาดสูง ตัวจำแนกที่มีความ ถูกต้อง (Accuracy) สูงอาจจะไม่ได้มีค่าเอยูซีสูง เนื่องจากความถูกต้อง จะแปรผันตามจำนวนตัวอย่างที่จำแนกผิดพลาด ในขณะที่เอยูซีนอกจากจะแปรผันตามจำนวนตัวอย่างที่จำแนกผิดพลาด แล้วยังแปรผันตามลำดับ (Rank) ของตัวอย่างที่จำแนกผิดพลาดด้วย งานวิจัยนี้นำเสนอการทดลอง เปรียบเทียบความสอดคล้องและความสามารในการจำแนกระหว่างดัชนีค่า ความถูกต้องและค่า AUC พบว่า AUC มีความสอดคล้องและความสามารถ ในการจำแนก สูงกว่าความถูกต้องทั้งในกรณีที่คลาสสมดุล และไม่สมดุล นอกจากนี้ตัวจำแนกที่มีค่าเอยูซีสูงมีแนวโน้มที่จะมีค่าความถูกต้องสูงด้วย การออกแบบตัวจำแนกที่มีค่าเอยูซีสูงจึงมีความเหมาะสมมากกว่าตัวจำแนกที่มีค่ารอยูซีสูงจึงมีความเหมาะสมมากกว่าตัวจำแนกที่มีความถูกต้องสูง ดังนั้นจึงมีความจำเป็นในการหาฟังก์ชันความสูญเสีย (Loss function) ที่เหมาะสมสำหรับการหาค่าเอยูซีที่เหมาะสมที่สุด

1 บทน้ำ

เป้าหมายของขั้นตอนวิธีการเรียนรู้สำหรับปัญหาการจำแนกคือการสร้าง ตัวจำแนกจากชุดข้อมูลที่มีป่ายกำกับเพื่อให้แบบจำลองสามารถใช้ ในการ พยากรณ์ชุดข้อมูลทดสอบ โดยทั่วไปความสามารถในการทำนายของขั้นตอน วิธีการเรียนรู้สำหรับปัญหาการจำแนกสามารถวัดได้ จากค่าความ แม่นยำ (หรือ อัตราผิดพลาด ซึ่งเท่ากับ 1 ลบด้วยค่าความ แม่นยำ) ของชุดข้อมูล ทดสอบ และโดยส่วนใหญ่ของแบบจำลองการจำแนกนั้นสามารถประมาณค่าความน่าจะเป็นของการเกิดคลาส ได้แต่มักไม่ค่อยนำมาประเมินประสิทธิภาพ ของแบบจำลองกำให้ความ แม่นยำ ถูก พิจารณา เพียงถูกต้อง หรือผิด พลาด เพียงเท่านั้น ค่าความแม่นยำนั้นอาจไม่เพียงพอในการประเมินประสิทธิภาพ ของแบบจำลองการจำแนก เช่น ในทางการตลาด ที่ต้องการกระตุ้นยอดขาย สูงสุดให้เพิ่มขึ้นจากลูกค้า จึงทำให้ต้องการดำเนินกลยุทธ์ทางการค้าต่อลูกค้า ที่ส่งผลมากที่สุดต่อการขายในแต่ละบุคคล ไม่ใช่พิจารณาเฉพาะการดำเนิน กลยุทธ์เพื่อให้ลูกค้า ซื้อ หรือไม่เท่านั้น ต้องการที่ จะเพิ่มโอกาสการซื้อของลูกค้านั้น ไม่เพียงพอ แต่ต้องเป็นวิธีที่เพิ่มโอกาสการซื้อของลูกค้าได้มากที่สุดด้วย

ดัง นั้นการจัด อันดับ จึง เป็น ที่ ต้องการมากกว่า แค่ การ จัด ประเภท และ สามารถคำนวณได้ง่ายเนื่องจากแบบจำลองการจำแนกส่วนใหญ่จะสร้างการ ประมาณความน่าจะเป็นที่สามารถใช้ในการจัดอันดับได้

เส้นโค้ง ROC (Receiver Operating Characteristics) นำมาประยุกต์ใช้ ในการประเมินประสิทธิภาพการจัดอันดับของขั้นตอนวิธีการเรียนรู้สำหรับ ปัญหาการจำแนก [2, 3] โดยพบว่า AUC มีคุณสมบัติที่พึงประสงค์หลาย ประการเมื่อเทียบกับความแม่นยำ ใน บทความ นี้ จะทดลองเปรียบเทียบเพื่อ พิสูจน์ว่า AUC เป็นการประเมินประสิทธิภาพแบบจำลองที่ดีกว่าความแม่นยำ

2 เกณฑ์ สำหรับ การ เปรียบ เทียบ มาตรการ การ ประเมิน

เริ่มต้นด้วยการเปรียบเทียบ AUC และความแม่นยำจากนั้นอธิบายคำ จำกัดความที่เป็นทางการในการเปรียบเทียบตัวประเมินประสิทธิภาพแบบ จำลองการจำแนกทั้งสองประเภท

2.1 ค่า AUC เทียบกับ ค่าความแม่นยำ

การคำนวณ AUC สามารถคำนวณได้จาก[1]

$$AUC = \frac{\sum r_i - n_p \frac{n_p + 1}{2}}{n_p n_n} \tag{1}$$

ตารางที่ 1 ตัวอย่างข้อมูลการคำนวณ AUC

	-	-	-	-	+	-	+	+	+	+
i					1		2	3	4	5
r_i					5		7	8	9	10

ตารางที่ 2 ตัวอย่างแบบจำลองการจำแนกทั้งสองที่มีค่าความแม่นยำเท่ากัน แต่มี AUC ต่างกัน

ตัวจำแนกที่ 1	-	-	-	-	+	-	+	+	+	+
ตัวจำแนกที่ 2	+	-	-	-	-	+	+	+	+	-

เมื่อ n_p และ n_n คือจำนวนตัวอย่างทั้งหมดของคลาสบวก และคลาส ลบตามลำดับ และ r_i คือหมายเลขอันดับของคลาสบวกที่ i จากตัวอย่าง ในตารางที่ 1 พบว่ามีคลาสบวกและ คลาสลบอยู่อย่างละ 5 ตัว และเมื่อ คำนวณหาค่า AUC จะได้ดังนี้ $\frac{(5+7+8+9+10)-5 imes \frac{6}{2}}{5 imes 5}$ ซึ่งเท่ากับ $\frac{24}{25}$ โดย ค่าสูงสุดของ AUC จะมีค่าเท่ากับ 1 ในตัวอย่างถัดไปจะเห็นว่าเหตุใด AUC จึงเป็นหน่วยวัดที่ดีกว่าความแม่นยำ

พิจารณาแบบจำลองการจำแนก 2 แบบจำลองที่มีการประมาณความน่า จะเป็นสำหรับชุดตัวอย่างการทดสอบ 10 ชุด โดยเป็นคลาสบวกและ คลาสลบ อย่างละ 5 ตัว พบว่าตัวจำแนกทั้งสอง มีค่าความแม่นยำเท่ากับ 80% (จำแนก คลาสบวกถูกต้อง(จริงบวก) 4 ตัว จำแนกคลาสลบถูกต้อง(จริงลบ) 4 ตัว จำแนกคลาสลบถูกต้อง(จริงลบ) 4 ตัว เละ จำแนกคลาสลบผิด(เท็จบวก) 1 ตัว รวม ถูกต้องทั้งหมด 8 ตัวจาก 10 ตัว) แต่ค่า AUC ของตัวจำแนกที่ 1 และ 2 นั้น เท่ากับ $\frac{24}{25}$ และ $\frac{16}{25}$ ตามลำดับ พบว่าความแม่นยำไม่สามารถแยกความแตก ต่างของทั้งสองแบบจำลองได้ ในขณะที่ค่า AUC สามารถแยกความแตกต่าง ของทั้งสองแบบจำลองได้

2.2 ความสอดคล้อง (Consistency) และความสามารถใน การจำแนก (Discriminancy)

เมื่อต้องเปรียบเทียบประสิทธิภาพของแบบจำลองที่แตกต่างกันดัชนีหนึ่ง ที่ควรคำนึงถึงคือความสอดคล้อง เพื่อระบบุว่าแบบจำลองที่เปรียบเทียบกัน นั้นจะมีการทำงานหรือ เปลี่ยนแปลงไปในทิศทางเดียวกัน หรือกลับกัน หรือ ไง่

อีกดัชนีหนึ่งความสามารถในการจำแนก (Discriminancy) ความสามารถ ในการ แยก รูป แบบ ที่ แตก ต่าง กัน ดัชนีใน การ ประเมิน ประสิทธิภาพ แบบ ใด สามารถ จำแนก สูง กว่า อีก แบบ นั้น จะ ต้อง มี เหตุการณ์ ที่ การ ประเมิน ประสิทธิภาพ หนึ่งไม่ สามารถ แยก รูป แบบ สอง ชุด ข้อมูล ที่ มี ความ ต่าง กันได้ แต่อีกการประเมินประสิทธิภาพสามารถทำได้

3 ทดลองเปรียบเทียบ

การทดลองเพื่อเปรียบเทียบประสิทธิภาพของดัชนีความถูกต้องและ AUC จะทดลองด้วยข้อมูลที่สามารถเกิดขึ้นในทุกกรณีโดยวิธีการเรียงสับเปลี่ยน ทางคณิตศาสตร์ โดยข้อมูลจะมีทั้งหมดสองคลาสกำหนดให้เป็นคลาสบวก และ คลาสลบการทดลองจะแบ่งเป็นสองกรณีคือ ข้อมูลที่สมดุลกันและ ไม่ สมดุลกัน

3.1 ข้อมูลสองคลาสที่สมดุล

ดัง นั้น ชุด ข้อมูล ใน การ ทดลอง นี้ จะ ประกอบ ด้วย ตัวอย่าง บวก และ ลบ จำนวนเท่ากัน (binary class) โดย จะทดลองข้อมูล ที่มีขนาด 4, 6, 8, 10, 12, 14, 16, 18 และ 20 ตัวอย่างเมื่อข้อมูลมีขนาด 2n จะมีรูปแบบที่เป็นไป ได้ทั้งหมด $\binom{2n}{n}$

ความหมายของความสอดคล้องและ ความสามารถในการจำแนกเป็นไป ตามคำจำกัดความดังนี้

นิยามที่ 1 (ความสอดคล้อง). สำหรับสองการประเมินประสิทธิภาพ $f,\ g$ ในโดเมน Ψ จะสอดคล้องกัน ถ้าไม่มี $a,\ b\in\Psi$ ใดๆ ที่ทำให้ f(a)< f(b) และ g(a)>g(b)

จากนิยามที่ 1 หมายถึงถ้ากำหนดให้ $a,\ b$ เป็นรูปแบบชุดข้อมูลที่แตก ต่างกัน แล้ว ถ้า AUC(a)>AUC(b) และ acc(a)>acc(b) ด้วย จะนับว่าค่า AUC มีความสอดคล้องกับค่าความแม่นยำ แต่ถ้า AUC(a)>AUC(b) และ acc(a)< acc(b) จะถูกนับว่า ค่า AUC ไม่มีความสอดคล้องกับค่าความแม่นยำ นำไปการคำนวณค่าระดับ ของความสอดคล้อง

นิยามที่ 2 (ระดับของความสอดคล้อง). สำหรับสองการประเมินประสิทธิภาพ f,g ในโดเมน Ψ ให้ $R=\{(a,b)|a,b\in\Psi,f(a)>f(b),g(a)>g(b)\},S=\{(a,b)|a,b\in\Psi,f(a)>f(b),g(a)<g(b)\}$ ระดับของความสอดคล้อง C ของ f และ g โดยที่ $C(0\leq C\leq 1)$ เมื่อ $C=\frac{|R|}{|R|+|S|}$

จากนิยามที่ 2 หมายถึงระดับของความสอดคล้อง C คิดได้จากเหตุการณ์ ที่ค่า AUC และค่าความแม่นยำ เป็นไปในทิศทางเดียวกัน หารด้วย ผลรวมของ ทั้งสองเหตุการณ์ ผลลัพธ์จากการทดลองแสดงดังตารางที่ 3

นิยามที่ 3 (ความสามารถในการจำแนก). สำหรับ สอง การ ประเมิน ประสิทธิภาพ $f,\ g$ ในโดเมน Ψ แล้ว f มีความสามารถในการจำแนก

มากกว่า g ก็ต่อเมื่อถ้ากำหนดให้ $a,b\in\Psi$ แล้ว f(a)>f(b) และ g(a)=g(b) และต้องไม่มี $a,b\in\Psi$ ใด ๆ ที่ทำให้ f(a)=f(b) และ g(a)>g(b)

จากนิยามที่ 3 หมายถึงถ้ากำหนดให้ a,b เป็นรูปแบบชุดข้อมูลที่แตก ต่างกันแล้วถ้า acc(a)=acc(b) แต่ AUC(a)>AUC(b) ด้วย จะนับว่าค่า AUC นั้นมีความสามารถในการจำแนกสูงกว่าค่าความ แม่นยำ แต่เมื่อ AUC(a)=AUC(b) และ acc(a)>acc(b) จะถูกนับว่าค่าความแม่นยำ นั้นมีความสามารถในการจำแนกสูง กว่าค่า AUC

นิยามที่ 4 (ระดับของความสามารถในการจำแนก).

ความสามารถในการจำแนก D คิดได้จากเหตุการณ์ที่ AUC มีความสามารถในการจำแนกสูงกว่าค่าความแม่นยำ หารด้วย เหตุการณ์ที่ค่าความแม่นยำ มีความสามารถในการจำแนกสูงกว่า AUC ผลลัพธ์จากการทดลอง แสดงดังตารางที่ 4

ตารางที่ 3 ความสอดคล้องกันของ AUC และ ความแม่นยำ

2n	ค่า AUC และ ค่าความแม่นยำ สอดคล้องกัน	ค่า AUC และ ค่าความแม่นยำ ไม่สอดคล้องกัน	C
4	9	0	1
6	113	1	0.991
8	1,459	34	0.977
10	19,742	766	0.963
12	273,600	13,997	0.951
14	3,864,673	237,303	0.942
16	55,370,122	3,868,959	0.935
18	802,343,521	61,797,523	0.928
20	11,733,729,456	975,464,160	0.923

ตารางที่ 4 ความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ

2n	ค่า AUC จำแนกได้ดีกว่า	ค่าความแม่นยำ จำแนกได้ดีกว่า	D
	ค่าความแม่นยำ	ค่า AUC	
4	5	0	∞
6	62	4	15.5
8	762	52	14.4
10	9,416	618	15.2
12	120,374	7,369	16.3
14	1,578,566	89,828	17.6
16	21,161,143	1,121,120	18.9
18	288,745,778	14,290,466	20.2
20	3,998,425,154	185,536,518	21.5

รูปที่ 1 ค่าความสอดคล้องและค่าความสามารถในการจำแนก เทียบจำนวน ตัวอย่าง

ในการทดลองที่ข้อมูลเป็นมีจำนวนคลาสสองคลาสและเป็นข้อมูลที่สมดุล พบว่า AUC นั้นมีความสอดคล้องกับ ค่าความแม่นยำและ AUC นั้นสามารถ จำแนกเหตุการณ์ที่แตกต่างกันที่ค่าความแม่นยำไม่สามารถจำแนกได้มากกว่า และเมื่อพิจารณาความสามารถในการจำแนกนั้นพบว่ายิ่งจำนวนข้อมูลเยอะ มากขึ้นนั้น ความสามารถในการจำแนกของ AUC จะสูงขึ้นด้วย แสดงดังรูปที่ 1

3.2 ข้อมูลสองคลาสที่สมดุล

ข้อมูลไบนารีคลาสที่ไม่สมดุลโดยจะกำหนดให้มีตัวอย่างคลาสบวก 25% และตัวอย่างคลาสลบ 75% โดยข้อมูลที่ใช้จะมีจำนวน 4, 8, 12 และ 16 ตัวอย่าง และยังคงใช้สูตรการคำนวณหาค่า AUC เหมือนเดิมและเนื่องจาก จำนวนตัวอย่างนั้นไม่สมดุลทำให้การคำนวณค่าความแม่นยำจะเปลี่ยนจาก เดิมที่ให้ 5 ตัวอย่างแรกเป็นคลาสลบและ 5 ตัวอย่างถัดไปเป็นคลาสบวกหรือ อีกนัยหนึ่งคือแบ่งตรงกลางอย่างละครึ่ง แต่เมื่อข้อมูลนั้นมีขนาดไม่เท่ากัน ทำให้การแยกคลาสบวกและคลาสลบเป็น 75% แรกเป็นคลาสลบ และ 25% เป็นต่อมาเป็นคลาสบวกตามอัตราส่วนของข้อมูลเข้าที่เปลี่ยนไป

ตารางที่ 5 ความสอดคล้องกันของ AUC และ ความแม่นยำ(ไม่สมดุล)

	ค่า AUC และ	ค่า AUC และ	
2n	ค่าความแม่นยำ	ค่าความแม่นยำ	C
	สอดคล้องกัน	ไม่สอดคล้องกัน	
4	3	0	1
6	187	10	0.949
12	12,716	1,225	0.912
16	926,884	114,074	0.890

ตารางที่ 6 ความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ(ไม่ สมดุล)

	ค่า AUC	ค่าความแม่นยำ	
2n	จำแนกได้ดีกว่า	จำแนกได้ดีกว่า	D
	ค่าความแม่นยำ	ค่า AUC	
4	3	0	∞
8	159	10	15.9
12	8,986	489	18.4
16	559,751	25,969	21.6

รูปที่ 2 ค่าความสอดคล้องและ ค่าความสามารถในการจำแนก เทียบจำนวน ตัวอย่าง กรณีข้อมูลไม่สมดุล

ตารางที่ 7 ความสอดคล้องและความสามารถในการจำแนกของค่า AUC และ ความแม่นยำ(ไม่สมดุล ขนาดข้อมูล 10 ตัวอย่าง)

		~	
คลาสบวก	คลาสลบ	C	_ <i>D</i> _
1	9	1.0	∞
2	8	0.926	22.3
3	7	0.939	15.5
4	6	0.956	14.9
5	5	0.963	15.2

และสุดท้ายเป็นการทดลองในหลายๆ อัตราส่วนของคลาสบวกและคลาส ลบ โดยกำหนดให้มีข้อมูลทั้งหมด 10 ตัวอย่าง โดยเริ่มจากสมคุลคือมีทั้งหมด อย่างละ 5 ตัวอย่างจากนั้นเพิ่มและ ลดคลาสใดคลาสหนึ่งไปเรื่อยๆ จนไม่ สามารถลดได้ ในกรณีนี้คือเหลือตัวเดียว

จากการทดลองทั้งสองไม่ว่าเป็นข้อมูลทั้งแบบที่สมดุลและ ไม่สมดุลก็ตาม ผลการทดลองยังคงเป็นไปในทิศทางเดียวกัน ทั้งในมุมความสอดคล้องที่ยัง คงสอดคล้องกันสูง และในมุมความสามารถในการจำแนกที่ AUC มีความ สามารถในการจำแนก สูงขึ้น เรื่อยๆ ตาม ขนาด ของข้อมูล และ ยิ่งมีความ สามารถในการจำแนกสูงมากขึ้นเมื่อข้อมูลเกิดความไม่สมดุลของทั้งสองคลาส

4 การประยุกต์ใช้

จากการทดลองที่ผ่านมาได้เปรียบเทียบตัวประเมินประสิทธิภาพทั้งสอง คือค่า AUC และ ค่าความแม่นยำ โดยค่า AUC มีประสิทธิภาพดีกว่าค่าความ แม่นยำ แต่อย่างไรก็ตามในการใช้งานจริงทั้ง AUC และความแม่นยำไม่ใช่เป้า หมายสุดท้าย เช่น ธนาคาร หรือ บริษัทประกันภัย อาจจะมีข้อมูลของลูกค้าอยู่ มหาศาลโดยสิ่งที่ต้องการสุดท้ายคือการคาดการณ์การทำกำไรให้กับ บริษัท

สมมติว่าข้อมูลของลูกค้ามีการเก็บด้วยแอตทริบิวต์จำนวนหนึ่งและลูกค้า แต่ละรายอาจเป็นผู้ซื้อหรือไม่ใช่ผู้ซื้อผลิตภัณฑ์บางอย่างเนื่องจากปัญหานี้ เป็นปัญหาการจำแนกแบบไบนารี่ ลูกค้าจะได้รับการติดต่อจากแคมเปญการ ส่งเสริมการขายสำหรับลูกค้าแต่ละรายโดย บริษัทต้องคาดการณ์ว่าในสินค้า ชนิดๆ หนึ่งนั้นลูกค้าแต่ละรายมีความต้องการสินค้านั้นมากเพียงใด และ ต้อง เพิ่มโอกาสการชื้อมากน้อยเพียงใด

อย่างไรก็ตามการประยุกต์ใช้ บริษัท อาจต้องการโปรโมตเพียงเล็กน้อย ให้กับลูกค้าที่มีแนวโน้มจะซื้อสินค้าสูงที่สุดที่คาดการณ์ไว้ และต้องโปรโมต มากขึ้นสำหรับลูกค้าที่มีแนวโน้มจะซื้อสินค้าลดลง ซึ่งทำให้กำไรที่ได้ต่อลูกค้า แต่ละคนนั้นต่างกันไปด้วยซึ่งในความเป็นจริง ก่อให้เกิดผลดีต่อรายได้ของ บริษัทเพราะสามารถลดการโปรโมตเกินจำเป็นสำหรับลูกค้าที่มีแนวโน้มจะ ซื้อสินค้าสูงๆ อยู่แล้ว เช่น ลูกค้าที่มีแนวโน้มจะซื้อสินค้าสูงสุด 10% แรกนั้น อาจจะเป็นลูกค้าที่มีการซื้อสินค้าเป็นประจำในการโปรโมตสินค้าที่ลูกค้ากลุ่ม นี้ชื้อเป็นประจำอยู่แล้วอาจไม่จำเป็น และเพิ่มโอกาสให้ลูกค้าที่มีแนวโน้มจะ ซื้อสินค้าลดลงมามีโอกาสซื้อสินค้ามากขึ้นด้วย

5 สรุป

ใน บทความ นี้ ได้ ให้ คำ จำกัด ความ อย่าง เป็น ทางการ เกี่ยว กับ ความ สอดคล้องและ ความสามารถในการจำแนก เพื่อใช้ประเมินผลสำหรับขั้นตอน วิธีการเรียนรู้ในปัญหาการจำแนก กำหนดรูปแบบและเกณฑ์ที่ใช้สำหรับการ เปรียบเทียบตัวประเมินประสิทธิภาพทั้งสอง และ แสดงให้ เห็นอย่างชัดเจน ว่า AUC นั้นเป็นตัวประเมินประสิทธิภาพที่ดีกว่าค่าความแม่นยำ และได้นำ ไปเปรียบเทียบกับเหตุการณ์จริงในธุรกิจเพื่อแสดงผลลัพธ์ที่น่าสนใจว่า AUC เกี่ยวข้องโดยตรงกับกำไรสุทธิมากกว่าค่าความแม่นยำในการตลาดทางตรง

การสร้างแบบจำลองที่มีค่า AUC สูงจึงเป็นที่ต้องการมากกว่าการสร้าง แบบจำลองที่มีความแม่นยำสูง

ข้อมูลอ้างอิง

- [1] D.J. Hand and R.J. Till. A simple generalisation of the area under the ROC curve for multipleclass classification problems. *Machine Learning*, 45:171–186, 2001.
- [2] F. Provost and T. Fawcett. Analysis and visualization of classifier performance: comparison under imprecise class and cost distribution. In Proceedings of the Third International Conference on Knowledge Discovery and Data Mining, pages 43–48.AAAI Press, 1997.
- [3] Jin Huang and Ling, C.X. *Using AUC and accuracy in evaluating learning algorithms*. London, Ontario, Canada
- [4] A. P. Bradley. The use of the area under the ROC curve in the evaluation of machine learning algorithms. *Pattern Recognition*, 30:1145–1159, 1997.
- [5] J. A. Hanley and B. J. McNeil. The meaning and use of the area under a receiver operating characteristic (ROC) curve. *Radiology*, 1982.