

A Linux Introduction

Week(21) L2 Ibrahim Aref 2024/2025

Based on Debian Reference by Osamu Aoki

https://www.debian.org/doc/manuals/debian-reference/index.en.html

Quick Revision – Last Lecture(I)

- In operating systems (OS), process scheduling is the process of deciding which process to run on the CPU and for how long, ensuring efficient and fair resource allocation among multiple processes.
- Process States: new, ready, running, waiting, Terminated, Swapped out and waiting: (suspended & waiting), Swapped out and blocked(suspended & blocked).
- Scheduling Algorithms:
 - First-Come, First-Served (FCFS) Non-preemptive (Cooperative), runs in order of arrival.
 - Round Robin (RR) Each process gets a fixed time slice (time quantum).

Example – RR (I)

We are working with a Round Robin (RR) scheduling algorithm with a **time quantum** of 4 ms, (all numbers above in ms). Determine the execution order, completion time, turnaround time, and waiting time for each process.

Process	Arrival Time	Burst Time
P1	0	5
P2	1	3
Р3	2	8
P4	3	6

Example – RR (II)

- Execution Order:
 - P1 starts at 0 ms and runs for 4 ms (remaining: 1 ms).
 - P2 starts at 4 ms and runs for 3 ms (finishes).
 - P3 starts at 7 ms and runs for 4 ms (remaining: 4 ms).
 - P4 starts at 11 ms and runs for 4 ms (remaining: 2 ms).
 - P1 resumes at 15 ms and runs for 1 ms (finishes).
 - P3 resumes at 16 ms and runs for 4 ms (finishes).
 - P4 resumes at 20 ms and runs for 2 ms (finishes).

Example – RR (III)

Completion, Turnaround, and Waiting Times:

Process	Arrival Time	Burst Time	Completion Time	Turnaround Time (CT - AT)	Waiting Time (TAT - BT)
P1	0 ms	5 ms	15 ms	15 - 0 = 15 ms	15 - 5 = 10 ms
P2	1 ms	3 ms	7 ms	7 - 1 = 6 ms	6 - 3 = 3 ms
Р3	2 ms	8 ms	20 ms	20 - 2 = 18 ms	18 - 8 = 10 ms
P4	3 ms	6 ms	22 ms	22 - 3 = 19 ms	19 - 6 = 13 ms

- Average Turnaround Time = (15+6+18+19)/4 = 14.5 ms
- Average Waiting Time = (10+3+10+13)/4 = 9 ms

The Plan

Weeks	Lecture	Topic	
19	L1	Signal digitisation - Sound	Done
	L2	Introduction to OS (1)	Done
20	L1	Introduction to OS (2)	Done
	L2	Memory management and virtualization	Done
		Summer Term	
<mark>21</mark>	L1	Process scheduling	Done
	L2	Linux Introduction	This Lecture
22	L1	Introduction to cloud virtualization	
	L2	Introduction to graphics	
23	L1	GPU -shaders	
	L2	Web Assembly	
24	L1	Introduction to Networking (1)	
	12	Introduction to Networking (2)	6

In this lecture

- Linux.
- Explore how an operating system works (Debian):
 - Boot Process
 - Initialization
 - Filesystem
 - Shell
 - Running processes

Linux

- A UNIX operating system clone for a number of platforms
- A free UNIX version developed primarily by Linus Torvalds
- Developed on MINIX using the GNU C compiler
- An OS is more than just the kernel —> Linux Distribution
 - Linux kernel
 - GNU tools (e.g. gcc, gdb) and libraries
 - Additional software, documentation,
 - Window system, desktop environment
 - Package management system
- Example distribution: Debian

Boot Process

- Sequence of events that occurs when a computer starts or restarts, loading the OS from storage into memory and preparing it for user interaction.
 - 1. Power-On Self-Test (POST)
 - Boot Device Selection
 - 3. Bootloader
 - 4. Kernel Loading
 - 5. System Initialization
 - 6. User Authentication

Boot Process in Debian (I)

1- BIOS/UEFI Initialization

- When the system is powered on, the BIOS or UEFI (modern systems) initializes hardware components (CPU, RAM, disk controllers, etc.).
- The firmware looks for a bootable disk and hands over control to the bootloader.

2- Bootloader (GRUB)

- Debian typically uses GRUB (GRand Unified Bootloader).
- There are many boot loaders (e.g. GRUB2, lilio, syslinux, ...)
- Configured via /boot/grub/grub.cfg (simplified)
- GRUB loads the kernel and an initial RAM disk (initrd/initramfs).
- If multiple OSes are installed, GRUB presents a boot menu.

Boot Process in Debian (II)

3- Linux Kernel Initialization

- The kernel is loaded into memory and starts executing.
- It initializes CPU scheduling, memory management, and device drivers.
- The **initramfs** (temporary root filesystem) is used to mount essential system components before the main filesystem is available.

4- Systemd Initialization (or SysV init)

- Once the kernel is running, it starts Systemd (or SysV init in older Debian versions).
- Systemd manages system services using unit files (located in /etc/systemd/system/).
- It determines the default target (runlevel) (e.g., graphical mode or multi-user mode).

Boot Process in Debian (III)

Boot Process in Debian (IV)

5- Mounting Filesystems

- The root filesystem (/) is mounted.
- Additional filesystems (e.g., /home, /var, /boot, etc.) are mounted as per /etc/fstab.

6- Starting System Services

- Systemd (or SysV init) starts services like:
 - Networking (NetworkManager, systemd-networkd)
 - Login Services (getty, SSH daemon)
 - Display Manager (if GUI is enabled, e.g., GDM, LightDM)

Boot Process in Debian (V)

- 7- User Login and Shell/GUI
 - The system reaches the target run level:
 - CLI mode: Shows a login prompt (for non-GUI setups).
 - GUI mode: Loads a Display Manager (e.g., GDM, LightDM).
 - The user logs in and starts using the system.

Filesystem

- filesystem is a method used by OS to organize, store, and manage files on a storage device.
- In UNIX operating systems, files are organised into directories.
- All files and directories are arranged in one big tree rooted at /
- Files and directories can be spread out over several devices
 - mount attaches the filesystem found on a device to the big file tree
 - umount detaches filesystems again
- Key directories
 - / the root directory
 - /etc/ system wide configuration files
 - /var/log/ system log files
 - /home/ all the home directories for all non-privileged users
 - /dev device abstractions (every device is represented as file in unix!)

Linux Filesystem Structure (Hierarchy)

 Linux follows a hierarchical directory structure, starting from the root (/) directory.
 Some important directories include:

Directory	Description	
1	Root directory (top-level)	
/home	User home directories (e.g., /home/user)	
/bin	Essential binaries (e.g., ls, cp, rm)	
/etc	System configuration files	
/var	Logs, databases, and variable data	
/tmp	Temporary files (cleared on reboot)	
/boot	Bootloader files (GRUB, kernel)	
/dev	Device files (e.g., /dev/sda1 for a hard disk)	
/proc	Virtual filesystem for system processes	
/sys	Virtual filesystem for kernel-related information	
/mnt	Temporary mount point for external devices	
/media	Auto-mount point for USB, CDs, etc.	

Filesystem Operations

- Mounting and Unmounting Filesystems
- Mount a filesystem:
 - sudo mount /dev/sdb1 /mnt
- Unmount a filesystem
 - sudo umount /mnt

Checking and Formatting Filesystems

- Check disk space usage:
 - df -h
- Check inode usage
 - df -iList
- mounted filesystems:
 - Mount
- Format a disk as ext4:
 - sudo mkfs.ext4 /dev/sdb1
- Check and repair a filesystem:
 - sudo fsck /dev/sda1

Filesystem – Linux structure

Filesystem Permissions

- Linux filesystem permissions control how users and groups can access and modify files and directories. These permissions ensure security and proper access control.
- Every file and directory in Linux has three permission sets:

Permission Type	Symbol	Numeric Value	Description
Read	r	4	Allows viewing or reading the file
Write	W	2	Allows modifying or deleting the file
Execute	X	1	Allows running a file (script/program) or accessing a directory

Permissions are assigned to three categories:

- Owner (User u): The user who owns the file.
- Group (g): Users in the same group as the file owner.
- Others (o): All other users.

Viewing File Permissions

To check file permissions, use the ls -l command:

ls -1

Example

```
-rwxr-xr-- 1 user group 1234 Mar 26 12:00 example.sh
```

Breakdown:

```
-rwxr-xr--- \rightarrow Regular file (d for directory, I for symbolic link).
```

 $rwx \rightarrow Owner has read (r), write (w), execute (x) permissions.$

 \mathbf{r} - \mathbf{x} \rightarrow Group has read (r) and execute (x) permissions.

 $r-- \rightarrow$ Others have read (r) permission only.

user \rightarrow Owner of the file.

group \rightarrow Group of the file.

1234 \rightarrow File size in bytes.

Mar 26 12:00 \rightarrow Last modified date.

example.sh \rightarrow File name.

Shell

- A shell is any program that users employ to type commands
- There are many different shells available: bash, tcsh, dash, csh, ...
- The shell is ...
 - an interactive command language
 - a scripting programming language,
 - is used by the operating system to control (shell script) the system

The shell is used to start/stop programs:

Repetitive tasks can be implemented as script:

```
$ echo "hello" &
[1] 18908
$ hello
[1]+ Done echo "hello"
$
#!/bin/bash
PROGDIR=/opt/myprog
BACKUPDIR=/opt/backup
mkdir -p $BACKUPDIR
cp $PROGDIR/*.c $BACKUPDIR/
```

Processes in Debian

- In Debian (or any Linux-based operating system), processes refer to Instances of executing programs.
- Each process has a unique Process ID (PID) and can have different states such as **running**, **sleeping**, **stopped**, **or zombie**.
- Processes can be managed and monitored using commands like ps,
 top, htop, and kill.
- Example:
 - Opening a text editor like gedit creates a process, and running a command like is also creates a process.

Types of Processes in Debian

- 1. Foreground Processes: Started by users in the terminal and interact directly.
 - E.g: Running nano file.txt keeps the process in the foreground.
- 2. Background Processes: Run in the background without user interaction.
 - E.g. Running ./script.sh runs the script in the background.
- 3. **Daemon Processes:** System processes that run in the background, usually started at boot.
 - E.g: cron, sshd, apache2.
- 4. **Zombie Processes:** Completed but still occupying process table entries.
 - These should be automatically removed by the system.
- 5. **Orphan Processes:** Parent processes that have terminated, but their child processes continue running under init (PID 1).

Processes – tree view

Lancaster University

- In Debian, the running processes can be viewed in a tree structure using pstree command
- It displays processes in a hierarchical tree format.

```
$ pstree
systemd——acpid
        —agetty
        —collectd——11*[{collectd}]
        -helpermonkeys---20*[{helpermonkeys}]
        -mdadm
        -monit----{monit}
        —netatalk—,—afpd
                   ├cnid_metad
                   └─{netatalk}
        ⊢rpc.idmapd
        -rpc.statd
        -rpcbind
        -rrdcached---6*[{rrdcached}]
        -sshd---sshd---bash---pstree
        ⊢systemd-journal
        ├─systemd-logind
        L_systemd-udevd
```

Processes - details


```
$ps -u --ppid 2 -p 2 --deselect
          PID %CPU %MEM
USER
                           VSZ
                                RSS TTY
                                             STAT START
                                                          TIME COMMAND
            1 0.0 0.2 28804
                                                          0:04 /sbin/init
                                5212 ?
                                                  14:27
root
                                             Ss
          198 0.0 0.1 29924
                               4052 ?
                                                  14:27
                                                          0:01 /lib/systemd/systemd-journald
root
                                             Ss
          209 0.0 0.1 40956
                                                  14:27
                                                          0:00 /lib/systemd/systemd-udevd
                               3248 ?
                                             Ss
root
          411 0.0 0.1 13432 2216 ?
                                             Ss
                                                  14:27
                                                          0:00 /sbin/mdadm --monitor --scan
root
          507 0.0
                    0.1 102104
                               2344 ?
                                             Ssl 14:27
                                                          0:00 /lib/systemd/systemd-
systemd+
timesyncd
          667 0.0
                    0.1 37080
                               2696 ?
                                                  14:27
                                                          0:00 /sbin/rpcbind -w
                                             Ss
root
          680 0.0 0.1 37280
                               2732 ?
                                             Ss
                                                  14:27
                                                          0:00 /sbin/rpc.statd
statd
          694 0.0
                    0.0 23356
                                             Ss
                                                  14:27
                                208 ?
                                                          0:00 /usr/sbin/rpc.idmapd
root
```

Process ID - Used to identify a process in the system. User - Identifies the owner of a process.

Summary (I)

Debian Boot Process

- 1. BIOS/UEFI \rightarrow Initializes hardware.
- 2. Bootloader (GRUB) \rightarrow Loads kernel and initramfs.
- 3. Kernel Initialization \rightarrow Starts system core components.
- 4. Init System (Systemd) → Manages services and targets.
- 5. Mount Filesystems \rightarrow Loads root and other partitions.
- 6. Start Services → Networking, logins, and system daemons.
- 7. User Login \rightarrow CLI or GUI session starts.

Summary (II)

- Linux uses a hierarchical filesystem structure starting from /.
- ext4 is the most common filesystem, but others like XFS, Btrfs, and ZFS exist.
- Filesystems can be mounted, unmounted, checked, and formatted using CLI commands.
- Processes is an instances of executing programs. It has a unique Process ID (PID) and can have different states such as running, sleeping, stopped, or zombie.