Radiative Forcing and Ozone Depletion of a Decade of Satellite Megaconstellation Missions

Environmental impacts of the space industry

Hydrogen Kerosene Methane Hypergolic Solid

Bio-propellants?

 H_2O CO_2 BC $N0_x$ Chlorine Al_2O_3

Stratospheric O₃ depletion Driven by NO_x , BC, Cl_y , and Al_2O_3

Reentries (60-80 km)

Payloads Components Capsules **Rocket Bodies** Debris

 NO_x Al_2O_3 BC Cl_y

Instantaneous Climate Forcing Strat. Aerosol Al_2O_3

BC

The space industry (and our understanding of it) is rapidly changing

of coated

Onset of the satellite megaconstellation (SMC) era

Context

Propellant consumption and re-entry mass from the space industry

Understanding of emission chemistry has developed

Complex reentry ablation processes in the upper atmosphere

Lensing effect stratospheric black carbon

H₂SO₄

Ablation products

- · AlO, AlOH, Al*
- Chlorine (resins)
- Cu, Li, Nb...
- Carbon

10% of the aerosol particles in the spacecraft re-entry

stratosphere contain metals from

(Black Carbon)

(HCI+CI+CI₂)

(NO)

Implementing space activity emissions into a global model of atmospheric chemistry

Updating GEOS-Chem to represent stratospheric aerosol injection

Atmospheric Composition Radiative Forcing

Global stratospheric ozone depletion by the space industry is low (0.03%) at the end of the decade compared to surface sources (~2% in 2022). Depletion by megaconstellations is negligible.

BC seasonality is governed by northern hemisphere launches, with 44% from SMCs. Al_2O_3 has peaks in each hemisphere winter, with almost none (3%) from SMCs.

Impact of space industry emissions on radiative forcing

Annual Mean Radiative Forcing in 2029

Radiative forcing is mainly in the northern hemisphere where nearly all launches occur, driven by absorption of SW radiation by sulfate-coated BC above the tropopause. SMCs inject 44% of BC, so result in 42-56% of BC forcing from SMCs.

Overall effect is like geoengineering strategies to cool the troposphere, but uncontrolled and untested.

Annual Mean Speciated Radiative Forcing in 2029

BC absorption is enhanced through the lensing effect

0

Normalized BC IRF is ~540 times greater than all Earth-bound sources (Dong et al., 2019)

Normalized BC IRF acts like a geoengineering experiment with small particles (r=0.08µm)

Paths forward for atmospheric modelling and inventory development

- Implemented an emission inventory for all rocket launches and re-entry mass into a chemistry transport model.
- Global ozone depletion is 0.03% from all mission types, and 0.003% from SMCs, compared to 2% from surface sources.
- SMC launches mostly (98%) use kerosene fuel, emitting large amounts of black carbon but no ozone-depleting Al₂O₃ and chlorine, limiting SMC ozone depletion to 10% of the total.
- Sulfate-coated black carbon absorbs shortwave radiation above the tropopause, leading to positive instantaneous forcing and negative stratospherically adjusted forcing. SMCs contribute approximately half of the radiative forcing.
- The space industry is like a geoengineering experiment, but untested and uncontrolled.

Contact: Connor Barker (connor.barker@ucl.ac.uk)