Лабораторная работа 4:

Моделирование систем массового обслуживания.

Моделировать СМО с N каналами. Время моделирования, интенсивность входного потока задётся. Дисциплина обслуживания — FIFO. Предусмотреть отображение статуса системы при смене её состояний.

Построить временную диаграмму.

Например:

Вдоль оси абсцисс обозначается время. «1 место» и «2 место» - места в очереди.

Вместо временной диаграммы допускается построение таблицы отображающей последовательность обработки событий. Например:

Время появления следующей заявки	Время завершения обслуживания текущей заявки	Обслуживаемая заявка	Очередь	Следующее действие СМО
5.80*	7.93	'2.93'		в очередь
16.95	7.93*	'2.93'	5.80	след. на обслуживание (+ 5.00)
16.95	12.93*	'5.80'		ожидание 4.02
16.95*	inf			след. на обслуживание (+ 5.00)
18.86*	21.95	'16.95'		в очередь

Время поступления заявок: 2.93 5.80 16.95 18.86. Время обслуживания каждой заявки — 5.0. Первая завяка сразу же попадает на обработку. Звёздочкой отмечено следующее обрабатываемое событие. Обслуживаемая завяка представлене не её порядковым номером, а временем поступления в СМО.

Определить характеристики СМО:

- среднее время прохождения заявки через систему и пропускную способность системы.
- Среднее время ожидания обслуживания (от поступления завяки в СМО до начала её обслуживания)
- Максимальную длинну очереди

Исследовать зависимость характеристик СМО от ...

Варианты

- числа каналов обслуживания
- дисциплины обслуживания. Рассмотреть FIFO и Shortest First.
- производительности каналов?
- Интенсивности входного потока
- Визуально представить работу СМО, анимировать продвижение клиентов?

Рекомендации

Рекомендуется выделить события (внутренние и внешние) и соответствующие им действия, а потом приступать к разработке алгоритма.

Jupyter подойдёт для работы с конечным вариантом программы, однако разработку лучше вести в IDE с отладчиком.

Вывод информации о состоянии СМО (следующая заявка на входе СМО, время окончания обслуживания текущей заявки, номер(время) заявки в канале обслуживания, состояние очерди и др.) на кадой итерации цикла обрабатывающего события может упростить отладку и тестирование программы.

Для оценки резльтатов функционирования СМО (пропускная способность СМО, среднее время прохождения заявки, максимальная длинна

очереди и т.д) стоит вычислить средние значения этих величин. Для хранения значений и построяния графиков завивимостей хорошо подойдёт DataFrame.

Вопросы

- Какие случайные величины присутствуют в задаче?
- Что такое поток?
- Как моделировать время между случайными событиями?
- Как моделировалось время?
- Какие события рассматривались?
- Какие действия соответствуют этим событиям?
- Расскажите о алгоритме моделирования СМО
- Как завят результаты моделирования СМО от времени моделирования?