හියලු ම හිමිකම් ඇව්රිණි / மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

NEW

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

2019.0819 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි ගෙහනිස வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

ව්භාග අංකය :

අමතර කියච්මි කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිව්මේ දී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- * ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- * ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වනු වායූ නියනය, $R = 8.314 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- st ඇවගාඩ්රෝ නියනය, $N_A=6.022 imes 10^{23}~\mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරූපණය කළ හැකි ය.

- $oxed{\square}$ A කොටස වනුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රවනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට තියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටකට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	උශ්න අංකග	ලැබූ ලකුණු
	1	
	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
	එකතුව	

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුග්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය **100** කි.)

මෙව් ති්රයේ කිපිවක් නො ලියන්න

- 1. (a) පහත සඳහන් පුශ්න ආවර්තිතා වගුවේ දෙවන ආවර්තයේ මූලදුවා හා සම්බන්ධ වේ. කොටස් (i) සිට (vi) දක්වා පිළිතුරු දීමේ දී ලබා දී ඇති අවකාශයේ මූලදුවායේ **සංකේතය** ලියන්න.
 - (i) වැඩිම විදාපුත් සෘණතාව ඇති මූලදුවාසය හඳුනාගන්න. (උච්ච වායුව නොසලකා හරින්න.)
 - (ii) විදයුතය සන්නයනය කරන බහුරූපී ආකාරයක් ඇති මූලදුවාය හඳුනාගන්න.
 - (iii) පුමාණයෙන් විශාල ම ඒකපරමාණුක අයනය සාදන මූලදුවාය හඳුනාගන්න (මෙම අයනය ස්ථායි විය යුතු ය).
 - (iv) p ඉලෙක්ටුෝන **නොමැති** නමුත් ස්ථායි s විනාාංසයක් ඇති මූලදුවාය හඳුනාගන්න.
 - (v) වැඩිම පළමු අයනීකරණ ශක්තිය ඇති මූලදුවාස හඳුනාගන්න.
 - (vi) බොහෝවිට ඉලෙක්ටුෝන ඌන තලීය තිුකෝණාකාර සහසංයුජ සංයෝග සාදන මූලදුවාය හඳුනාගන්න. (ලකුණු 24 යි)
 - (b) (i) SO_3F_2 අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් තිත්-ඉරි ව<u>පු</u>හය අදින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) H_3N_3O අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් තිත්-ඉරි වනුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් තිත්-ඉරි වනුහ (සම්පුයුක්ත වනුහ) **දෙකක්** අඳින්න. ඔබ විසින් අඳින ලද වඩා අස්ථායි වනුහය යටින් 'අස්ථායි' ලෙස ලියන්න.

- (iii) පහත සඳහන් ලුවිස් තින්-ඉරි වාුුහය පදනම් කරගෙන වගුවේ දක්වා ඇති C,N හා O පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාසාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

හත	දැක්වෙන	පරද	සරු මාණ	අංකනය	කර	ඇත
	•-	•	٣	O_2		,

$$F-O^1-N^2-C^3-N^4-Cl$$

		O_I	N ²	C^3	N ⁴
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාමිතිය				
III.	හැඩය				
IV.	මුහුම්කරණය				

			***************************************		***************************************		
	(iv)					සඳහන් σ බන්ධන සෑදීමට සහභාගි ව (iii) කොටසෙහි ආකාරයටම වේ.)	මේම තීරයේ සිරිවක් නො ලි
		I. F—O ¹		CJ			
		II. O ¹ —N ²	O¹				West of the second
		III. N ² —C ³	$N^2 \dots$	*********	C ³ .	***************************************	
		IV. C ³ —N ⁴	C ³	*********	N ⁴ .		
		V. N ⁴ —O ⁵	N ⁴	*****************	O ⁵ .		
		VI. N ⁴ —Cl	N ⁴	******************	Cl .		
	(v)				_	ාත සඳහන් π බන්ධන සැදීමට සහභ (iii) කොටසෙහි ආකාරයටම වේ.)	ාගි
		I. N ² —C ³	N ²	***************	C ³ .		
		II. C ³ —N ⁴	C ³		N ⁴ .		
	(vi)	I. ඉහත (iii) ඇත්තේ සෙ		දෙන ලද ලුවිස් නි	ාත්-ඉරි ව <u>ා</u> පුහල	යහි ද්විත්ව බත්ධන දෙක දිශානති	වී
		***********	• • • • • • • • • • • • • • • • • • • •			•••••••	•
		II. මේ හා සමා දෙන්න.	ාන දිශානති	යක් ඇති ද්විත්ව බ	න්ධන සහිත අ	අණුවක්/අයනයක් සඳහා උදාහරණය	ක්
		•					
		සැ.ගූ .: ඔබේ උ	දාහරණයෙ	හි පරමාණු 3කට ව	ඩා අඩංගු නො	ාවිය යුතු ය.	
			න උදාහරණ 3 යුතු ය.	ලෙ ඇත මූලදිවාය	අාවටතතා වශ	ඉවේ පළමුවන හා දෙවන ආවර්තවල (ලකුණු 52	
							"/
(c)	(1)				•	ටම් අංක තුන මගිනි. දැක්වෙන කොටුවල ලියන්න.	
		dere macrone	<i>п</i>	 		දැක්පෙත් කොපුපල ලයන්න. පරමාණුක කාක්ෂිකය	
		I			<i>m₁</i> +1	3p	
		II.	3	2	-2		
		ш.	y y y			2 <i>s</i>	
	(ii)	වරහන් තුළ දක්ව	ා ඇති ගුණ	ය වැඩිවන පිළිවෙළරි) පහත සඳහන	් දෑ සකසන්න. (හේතු අවශා නොරේ).)
		I. LiF, LiI, K	F (දුවාංකය))			
		<		<			***************************************
		_	_, NF ₅ (ಜೆ	'ථායිතාව)			
		II. NO ₂ , NO ₄	_, NF ₅ (ਲੀ	'ථායිතාව))		
		II. NO ₂ , NO ₄	_, NF ₅ (ಟೆ 	්ථායිතාව) < (N–O බන්ධන දිග)	(ලකුණු 24	3) 100

				යම්ම තීරයේ
)	(a)	පිළි සාං පුති	යනු ආවර්තිතා වගුවේ s -ගොනුවේ මූලදුවායෙකි. ${f X}$ හි පළමු, දෙවැනි හා තුන්වැනි අයතීකරණ ශක්තීන් දිවෙළින්, kJ mol^{-1} වලින්, 738 , 1451 හා 7733 වේ. $H_2(g)$ මුදා හැරෙමින් හා එහි හයිඩොක්සයිඩය දමින් ${f X}$ උණු ජලය සමග සෙමින් පුතිකියා කරයි. හයිඩොක්සයිඩය භාස්මික වේ. ${f X}$ නනුක අම්ල සමග හිකියාවේදී ද $H_2(g)$ මුදා හැරේ. දීප්තිමත් සුදු ආලෝකයක් සමග ${f X}$ වාතයෙහි දහනය වේ. ජලයෙහි හීනත්වයට ${f X}$ හි කැටායනය දායක වේ.	කිසිවක් නො ලියන්න
		(i)	X හඳුනාගන්න. X:	
		(ii)	${f X}$ හි භුමි අවස්ථාවේ ඉලෙක්ටුෝනික විනාහසය ලියන්න	
		(iii)	old X වාතයෙහි දහනය වූ විට සෑදෙන සංයෝග දෙකෙහි රසායනික සූතු ලියන්න.	
			800	
		(iv)	ආවර්තිතා වගුවෙහි X අයත්වන කාණ්ඩයෙහි මූලදුවෳයන්හි දී ඇති සංයෝග සලකන්න. කාණ්ඩය පහළට යෑමේදී දක්වා ඇති ගුණය වැඩිවේ ද අඩුවේ ද යන්න දී ඇති කොටු තුළ සඳහන් කරන්න.	
			I. සල්ෆේටවල ජලයෙහි දුාවාතාවය	
			II. හයිඩුොක්සයිඩවල ජලයෙහි දුාවාාතාවය	
			III. ලෝහ කාබනේටවල තාප ස්ථායිතාවය	
			III හි ඔබගේ පිළිතුරට හේතු දක්වන්න.	
		(v)	$H_2(g), O_2(g)$ හා $N_2(g)$ සමග X ට බොහෝ දුරට සමාන ලෙස පුතිකිුයා කරන, නමුත් X අඩංගු කාණ්ඩයට අයත් නොවන ආවර්තිතා වගුවේ s -ගොනුවේ මූලදවාස හඳුනාගන්න.	
			<u>ചാങ്ങയാ പ്രസായ പ്രസാത്രം പ്രസ്താന് പ്രസ്ത്രം പ്രസ്താന് പ്രസ്ത്രം പ്രസ്താന് പ്രസ്താന് പ്രസ്താന് പ്രസ്ത്രം പ്രസ്ത്രം</u>	
		(vi)	ජලයේ කඨිනත්වයට දායක වන වෙනත් ලෝහ අයනයක් හඳුනාගන්න.	
		(**)		
		(vii)	ජලයේ කඨිනත්වය ඉවත් කිරීම සඳහා බහුල වශයෙන් භාවිත වන සංයෝගය හඳුනාගන්න.	
		(****)		
	(viii)	කාබනික රසායන විදාහවේ හොඳින් දන්නා පුතිකාරකයක $old X$ සංඝටකයක් වේ. මෙම පුතිකාරකයේ නම දෙන්න.	
			(ලකුණු 50 යි) ්	

වායුව

අවර්ණ හා ගඳක් නොමැත

පරීක්ෂා නළය

(b) \mathbf{A} සිට \mathbf{E} දක්වා ලේබල් කර ඇති පරීක්ෂා නළවල $\mathrm{Na_2S_2O_3}$, $\mathrm{Na_2CO_3}$, $\mathrm{KNO_2}$, KBr , හා $\mathrm{Na_2S}$ හි (පිළිවෙළින් සිට්ටස් නොවේ) ජලීය දාවණ අඩංගු වේ. \mathbf{A} සිට \mathbf{E} දක්වා ඇති එක් එක් පරීක්ෂා නළයට තනුක HCl එක් කළ විට නොවේ නො දියන්න නොවේ) ජලීය දුාවණ අඩංගු වේ. \mathbf{A} සිට \mathbf{E} දක්වා ඇති එක් එක් පරීක්ෂා නළයට තනුක \mathbf{HC} l එක් කළ විට (අවශා නම් රත් කිරීමෙන්) ලැබෙන දුාවණවල හා මුක්ත වන වායුවල ගති ලක්ෂණ පහත වගුවේ දී ඇත.

දුාවණයේ පෙනුම

අවර්ණයි

ි අවර්ණයි අවර්ණ හා කුණු සිත්තර ගදක් ඇත අවරණයි මුක්ත නොවේ. (i) A සිර E දක්වා පරික්ෂා නළවල පුවණ ගඳුනාගන්න. A: C: E: B: D: (ii) A, B, C හා D පරික්ෂා නළ කුළ සිදුවන පුතිශියා සඳහා කුලින රසායනික සම්කරණ ලියන්න. A සි: B \$ C \$ B \$ (iii) A, B, C හා D පරික්ෂා නළ කුළ සිදුවන පුතිශියා සඳහා කුලින රසායනික සම්කරණ ලියන්න. A සි C \$ D \$ (iii) A, C හා D \$ මුක්ත වන එක් එක් වායුවක් හදුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. অැයූ නිරීක්ෂණ ද අවශා වේ. A \$ C \$ D \$ (iii) A, C හා D \$ මුක්ත වන එක් එක් වායුවක් හදුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. অැයූ නිරීක්ෂණ ද අවශා වේ. C \$ D \$ (ලකුණු 50 &) (ලකුණු 50		В	අවර්ණයි	රතු-දුඹුරු වර්ණයක් හා කටුක ගඳක් ඇත				
(i) A සිට E දක්වා පරීක්ෂා නළවල පුවණ හඳුනාගන්න. A: C: E: B: D: (ii) A, B, C හා D පරීක්ෂා නළ කුළ සිදුවන පුතිකියා සඳහා තුලින රසායනික සම්කරණ ලියන්න. A ති: B ති: C ති: B ති: C ති: D ති: (iii) A, C හා D හි මූක්ක වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂවෙක් බැගින් ලියන්න. වැ. යු. නිරීක්ෂණ ද අවශා වේ. A ති: C ති: D ති: (cකුණු 50 යි.)		C	අවර්ණයි	අවර්ණ හා කුණු බිත්තර ගඳක් ඇත				
(i) A සිට E දක්වා පරීක්ෂා නළවල දුවමක් හඳුනාගන්න. A: C: E: B:		D	අාවිලතාවයක්	අවර්ණ හා කටුක ගඳක් ඇත				
A:		E	අවර්ණයි	මුක්ත නොවේ				
B: D: (ii) A, B, C හා D පරීක්ෂා නළ කුළ සිදුවන පුතිකියා සඳහා තුලින රසායනික සම්කරණ ලියන්න. A නි : B නි : C නි : D නි : (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න ද අවශා වේ. C නි : D නි : (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා ලියන්න පැත. (cකුණු 50 යි.) (caුණු 50 යි.) (caුණු 50 යි.) (ca্ ණු 50 යි.) (ca্ ණ් 50 යි.) (ca ණ් 50 යි.)		(i) A සිට E දක්	්වා පරීක්ෂා නළවල දාවණ හඳුනාග	ාන්න.				
(ii) A, B, C හා D පරික්ෂා නළ කුළ සිදුවන පුතිකියා සඳහා කුලික රසායනික සම්කරණ ලියන්න. A නි :		A :	C:	E:				
A නි : B නි : C නි : D නි : (iii) A, C හා D නි මුක්ත වන එක් එක් වායුවක් හදුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. යැලු නිරීක්ෂණ ද අවශා වේ. A නි : (ලකුණු 50 යි.) C නි : (ලකුණු 50 යි.)		B:	D :					
A නි : B නි : C නි : D නි : (iii) A, C හා D නි මුක්ත වන එක් එක් වායුවක් හදුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. යැලු නිරීක්ෂණ ද අවශා වේ. A නි : (ලකුණු 50 යි.) C නි : (ලකුණු 50 යි.)		(ii) A, B, C නා]	D පරීක්ෂා නළ තුළ සිදුවන පුතිකිුය	ා සඳහා තුලිත රසායනික සමීකරණ ලියන්න.				
B හි : C හි : D හි : (iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. ගැයු නිරීක්ෂණ ද අවශා වේ. A හි : C හි : D හි : (ලකුණු 50 යි.)								
© හි :					İ			
(iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. ### ### ### ### ### ### ### ### ### #								
(iii) A, C හා D හි මුක්ත වන එක් එක් වායුවක් හඳුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බැගින් ලියන්න. ගැලු නිරීක්ෂණ ද අවශා වේ. A හි : C හි : D හි : (ලකුණු 50 යි.)					*****			
ලියන්න. IX.								
මාවිත් සම ද අවශා වේ. A හි : C හි : D හි : (ලකුණු 50 යි.) (ලකුණු 50 යි.) (ලකුණු 50 යි.) MX(s) හි ජලයේ දුවණය හා ආශික තාප විපර්යාසය ගණනය කිරීම සඳහා රූපසටහනෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. ආසුැත ජලය 100.00 cm³ කේප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0°C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලනන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය තුමයෙන් අඩුවන බව නිරීක්ෂණය MX(s) මුඑමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm³ සහ 4.20 J g⁻¹ °C⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දාවණය) නැවත 25.0 °C ව ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.			හි මුක්ත වන එක් එක් වායුවක් හඳු	ුනාගැනීම සඳහා එක් රසායනික පරීක්ෂාවක් බ)ැගින්			
		~	යුණු උ අවලාපු ඉව්					
© හි :		A & :						
D හි : (ලකුණු 50 යි.) MX(s) හි ජලයේ දුවණය හා ආශිත තාප විපර්යාසය ගණනය කිරීම සඳහා රූපසටහනෙහි දක්වා ඇති ඇටවූම භාවිත කරන ලදී. ආසුැත ජලය 100.00 cm³ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකකුකර දිගටම කලනන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුඑමනින්ම දුවණය කිරීමට පුමාණවේ විය. ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය පවතස් කෝප්පය විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm⁻³ සහ 4.20 J g⁻¹ °C⁻¹ වේ.								
D හි :								
D හි :		C & :	***************************************					
3. MX(s) හි ජලයේ දුවණය හා ආශිත තාප විපර්යාසය ගණනය කිරීම සඳහා රූපසටහනෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. ආසුැත ජලය 100.00 cm³ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය තුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුළුමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm³ සහ 4.20 J g⁻¹ °C⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		••						
(ලකුණු 50 යි.) MX(s) හි ජලයේ දුවණය හා ආශිත තාප විපර්යාසය ගණනය කිරීම සඳහා රූපසටහනෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. ආසුැත ජලය 100.00 cm³ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුළුමනින්ම දවණය කිරීමට පුමාණඩත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් කෝප්පය මිශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		D 8 :						
3. MX(s) හි ජලයේ දවණය හා ආශිත තාප විපර්යාසය ගණනය කිරීම සඳහා රූපසටහනෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. ආසුැත ජලය 100.00 cm³ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. ඉන්නෙ සිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm⁻³ සහ 4.20 J g⁻¹ °C⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		•						
රූපසටහනෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. ආසුැත ජලය $100.00\mathrm{cm}^3$ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය $25.0^\circ\mathrm{C}$ ලෙස මැනගන්නා ලදී. ඉන්පසු $\mathrm{MX}(s)$ හි $0.10\mathrm{mol}$ ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය $17.0^\circ\mathrm{C}$ විය. භාවිත කළ ජල පුමාණය $\mathrm{MX}(s)$ මුඑමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් $1.00\mathrm{g}\mathrm{cm}^{-3}$ සහ $4.20\mathrm{J}\mathrm{g}^{-1}^\circ\mathrm{C}^{-1}$ වේ. $\mathrm{MX}(s)$ දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න.				(ලකුණු 5	0 8.)			
100.00 cm³ කෝප්පයට එක් කරන ලදී. ආසුැත ජලයේ ආරම්භක උෂ්ණත්වය 25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුළුමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm³ සහ 4.20 J g¹ °C¹ වේ. MX(s) දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.	3.				ානය 📗			
25.0 °C ලෙස මැනගන්නා ලදී. ඉන්පසු MX(s) හි 0.10 mol ජලයට එකතුකර දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය කුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. ඉනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුඑමනින්ම දවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට කාපධාරිතාවය පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20 J g ⁻¹ °C ⁻¹ වේ. MX(s) දවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		රූපසටහනෙහි දක්ව:	ා ඇති ඇටවුම භාවිත කරන ලදී. වන්න රට ක්රී සහ කරන ලදී.	ආසුැත ජලය				
දිගටම කලතන ලදී. දාවණයෙහි උෂ්ණත්වය තුමයෙන් අඩුවන බව නිරීක්ෂණය කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුඑමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20 J g ⁻¹ °C ⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි සනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		100.00 cm° @කාපපයය 25.0°C @ලසු ඹැනගත	ට එක් කරන ලද, ආසුැත් පලයේ ආරම ද්නා ලදී, ඉන්සුසු MX(s) හි 0 10 mol i	Keras America I				
කරන ලදී. මනින ලද අඩුම උෂ්ණත්වය 17.0 °C විය. භාවිත කළ ජල පුමාණය MX(s) මුළුමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20 J g ⁻¹ °C ⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		දිගටම කලතන ලදී. දාව)ණයෙහි උෂ්ණත්වය කමයෙන් අඩවන	බව නිරීක්ෂණය 📗 🕶 විදුරු කූර				
MX(s) මුළුමනින්ම දුවණය කිරීමට පුමාණවත් විය. ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20 J g ⁻¹ °C ⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		කරන ලදී. මනින ලද අ	ඩුම උෂ්ණත්වය 17.0°C විය. භාවිත ස	nළ ජල පුමාණය 🚶 📗 🚣 ප්ලාස්ටික්				
විශිෂ්ට තාපධාරිතාවය පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20 J g ⁻¹ °C ⁻¹ වේ. MX(s) දුවණය නිසා ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.								
MX(s) දුවණය නිසා ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධාරිතාවය වෙනස් නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		විශිෂ්ට තාපධාරිතාවය	පිළිවෙළින් 1.00 g cm ⁻³ සහ 4.20	10-10C-1 @5 \ \				
නොවන බව උපකල්පනය කරන්න. (i) පද්ධතිය (දුාවණය) නැවත 25.0 °C ට ගෙන ඒම සඳහා සැපයිය යුතු තාපය ගණනය කරන්න.		MX(s) දුවණය නිසා අ	ජලයෙහි ඝනත්වය හා විශිෂ්ට තාපධා	රිතාවය වෙනස් 📗				
		නොවන බව උපකල්ප	නය කරන්න.		-			
		(i) පද්ධතිය (දුාවණය	ය) නැවත $25.0~^\circ\mathrm{C}$ ට ගෙන ඒම සඳ ϵ	හා සැපයිය යුතු තාපය ගණනය කරන්න.				

, ,	MX(s) හි ජලයේ දුවණය තාප අවශෝෂක හෝ තාපදායක කිුයාවලියක් වේ ද? ඔබගේ පිළිතුර පැහැදිලි කරන්න.	මෙම තීරයේ කිසිවක් නො ලියන්න
(iii)	$\mathrm{MX}(\mathrm{s}) + \mathrm{H_2O}(\mathit{l}) \longrightarrow \mathrm{M}^+(\mathrm{aq}) + \mathrm{X}^-(\mathrm{aq})$ පුතිකියාව ආශිත එන්තැල්පි වෙනස ($\mathrm{kJ} \ \mathrm{mol}^{-1}$ වලින්) ගණනය කරන්න.	A CONTRACTOR OF THE CONTRACTOR
(iv)	මෙම පරීක්ෂණය ජලය $200.00~{ m cm}^3$ භාවිතයෙන් සිදු කළේ නම් උෂ්ණත්ව වෙනස ඉහත අගයට වඩා වැඩි වේ යයි ඔබ බලාපොරොත්තු වන්නේ ද? ඔබගේ පිළිතුර පහදන්න.	
(v)	පද්ධතියේ (දුාවණයෙහි) උෂ්ණත්වය වෙනස්වන අයුරු උෂ්ණත්ව-කාල වකුය ඇඳීමෙන් පෙන්වන්න. සැ.යූ. : අවසානයේ දී පද්ධතිය කාමර උෂ්ණත්වය (25.0 °C) කරා පැමිණේ.	
	උෂ්ණත්වය ^	
. 15	කාලය	
(vi)	කාලය මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න.	
(vi)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි	
(vi)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි	
(vi)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න.	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. 25.0°C උෂ්ණක්වයේ දී හා 1.0atm පීඩනයේ දී $MX(s)$ හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta G), -26.0\text{kJ}$ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන්	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. 25.0°C උෂ්ණක්වයේ දී හා 1.0atm පීඩනයේ දී $MX(s)$ හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta G), -26.0\text{kJ}$ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන්	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. 25.0°C උෂ්ණක්වයේ දී හා 1.0atm පීඩනයේ දී $MX(s)$ හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta G), -26.0\text{kJ}$ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන්	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. 25.0°C උෂ්ණක්වයේ දී හා 1.0atm පීඩනයේ දී $MX(s)$ හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta G), -26.0\text{kJ}$ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන්	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. 25.0°C උෂ්ණක්වයේ දී හා 1.0atm පීඩනයේ දී $MX(s)$ හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta G), -26.0\text{kJ}$ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන්	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. $ 25.0~^{\circ}\text{C} උෂ්ණත්වයේ දී හා 1.0 atm පීඩනයේ දී MX(s) හි ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස (\Delta G), -26.0 kJ mol^{-1} බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන් 25.0~^{\circ}\text{C} හි දී MX(s) හි ජලයේ දුවණය සඳහා එන්ටොපි වෙනස (\Delta S) ගණනය කරන්න.$	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. $ 25.0^{\circ}\mathrm{C} \text{උෂ්ණත්වයේ දී හා } 1.0\mathrm{atm}\mathrm{Bh}$ සිහනයේ දී $\mathrm{MX}(\mathrm{s})\mathrm{S}$ ජලයේ දුවණය වීම සඳහා ගිබ්ස් ශක්ති වෙනස $(\Delta \mathrm{G})$, $-26.0\mathrm{kJ}\mathrm{mol}^{-1}$ බව ගණනය කරන ලදී. ඉහත ගණනය කරන ලද එන්තැල්පි වෙනස භාවිතයෙන් $25.0^{\circ}\mathrm{C}\mathrm{S}$ දී $\mathrm{MX}(\mathrm{s})\mathrm{S}$ ජලයේ දුවණය සඳහා එන්ටොපි වෙනස $(\Delta \mathrm{S})$ ගණනය කරන්න. $ \frac{1}{\mathrm{C}}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}\mathrm{S}$	
(vii)	මෙම පරීක්ෂණයේදී ලෝහ කෝප්පයක් වෙනුවට ප්ලාස්ටික් කෝප්පයක් භාවිත කරන්නේ ඇයි දැයි පැහැදිලි කරන්න. $25.0 ^{\circ}\text{C} \ \text{උෂ්ණත්වයේ } \xi \text{ හා } 1.0 \text{ atm Bed pased } \xi \text{ MX(s) Be deced } \xi \text{ Bessel Described } \xi \text{ and Bed pase} $ $(ΔG), -26.0 \text{kJ mol}^{-1} \text{ ab } \omega \text{ sub pase} \text{ and pose} \text{ bessel Bessel Described} \text{ and pose} bessel Besse Bessel Besse Bessel Bessel Besse Bessel Bessel Bessel Bessel Besse Bessel Besse B$	

_	e 08	١
,	තීරයේ කිසිවක් තො ලියන්න	
١		
,		
,		
-		

	G සහ H හි ව <u>ා</u> ුහ අඳින්න.			
	G	Н		
(ii) A	.,C,E සහ F හි වනුහ අඳින්ව	ກ.		
<u> </u>	A	C	J 	
L	E	F		
ඵලය	ා ₃ සමග D රත් කළ විට I (0 ජල විච්ඡේදනය කළ විට G B, D සහ I හි වෘහු අඳින්න.		, H ₂ SO ₄ සමග I පුතිකියා ස	ාර, ලැබෙ

(b) (i) පහත සඳහන් පුතිකිුයා අනුකුමයන්හි ${f J},\,{f K},\,{f L}$ සහ ${f M}$ හි වනුහ දක්වන්න.

(ii) පුතිකිුයා I, II හා III හි සිදුවන පුතිකිුයා වර්ගය පහත දැක්වෙන ලැයිස්තුවෙන් තෝරාගෙන ලියන්න.

නියුක්ලියොෆිලික (නාෂ්ටිකාමි) ආකලනය, නියුක්ලියොෆිලික (නාෂ්ටිකාමි) ආදේශය, ඉලෙක්ටුෝෆිලික (ඉලෙක්ටුෝනකාමී) ආකලනය, ඉලෙක්ටුෝෆිලික (ඉලෙක්ටුෝනකාමී) ආදේශය, ඉවත්වීම

පුතිකිුයාව **II** පුතිකිුයාව **III**

(iii) ඇල්කීන හා HBr අතර පුතිකිුයාවේ යන්නුණය පිළිබඳ ඔබේ දැනුම උපයෝගී කර ගනිමින් පුතිකිුයාව III හි යන්තුණය දක්වන්න.

(ලකුණු 50 යි)

කිපිවත්

ដែលទូ 0 សិទីនាថិ ចុះខិបីលី / ហ្វណ្ណប់ បង្គាប់ឬព្រះសហសក្សម / All Rights Reserved)

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

රසායන විදහාව II இரசாயனவியல் **II** Chemistry **II**

* සාර්වනු වායු නියතය $R=8.314~{
m J~K}^{-1}~{
m mol}^{-1}$ * ඇවගාඩ්රෝ නියතය $N_A=6.022~{
m x}~10^2~{
m mol}^{-1}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

- 5. (a) ඒක ආම්ලික දුබල භස්මය ${\bf B}$ (0.15 mol dm $^{-3}$) හා HCl (0.10 mol dm $^{-3}$) අතර අනුමාපනයක් පහත විස්තර කර ඇති පරිදි සුදුසු දර්ශකයක් භාවිතයෙන් සිදු කරන ලදී. HCl දුාවණය (25.00 cm 3) අනුමාපන ප්ලාස්කුවෙහි තබා දුබල භස්මය ${\bf B}$, බියුරෙට්ටුවක් භාවිතයෙන් එකතු කරන ලදී. 25 °C හි දී දුබල භස්මයෙහි විසටන නියතය $K_{\rm b}$, 1.00×10^{-5} mol dm $^{-3}$ වේ. සියලුම පරීක්ෂණ 25 °C හි දී සිදු කරන ලදී.
 - (i) හස්මය ${f B}$ එකතු කිරීමට පෙර අනුමාපන ප්ලාස්කුවෙහි ඇති අම්ල දුාවණයෙහි ${f pH}$ අගය ගණනය කරන්න.
 - (ii) ${f B}$ හි දුාවණයෙන් $10.00~{
 m cm}^3$ එකතු කළ පසු අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයෙහි ${
 m pH}$ අගය ගණනය කරන්න. අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයට ස්වාරක්ෂක දුාවණයක් ලෙස කි්යා කළ හැකි ද? ඔබගේ පිළිතුර පහදන්න.
 - (iii) සමකතා ලක්ෂායට ළඟා වීම සඳහා අවශා දුබල හස්ම දාවණයෙහි පරිමාව ගණනය කරන්න.
 - (iv) සමකතා ලක්ෂායට ළඟා වූ පසු දුබල භස්මයෙහි තවත් $10.00~{
 m cm}^3$ පරිමාවක් අනුමාපන ප්ලාස්කුවට එකතු කරන ලදී. අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයෙහි ${
 m pH}$ අගය ගණනය කරන්න.
 - (v) ඉහත (iv) දී ලැබෙන දුාවණයට ස්වාරක්ෂක දුාවණයක් ලෙස කිුියා කළ හැකි ද? ඔබගේ පිළිතුර පහදන්න.
 - (vi) එකතු කරනු ලබන දුබල භස්ම දුාවණ පරිමාව සමග අනුමාපන ප්ලාස්කුවෙහි ඇති මිශුණයෙහි pH අගය වෙනස්වන අයුරු (අනුමාපන වකුය) කටු සටහනකින් දක්වන්න. අක්ෂ නම් කරන්න, y-අක්ෂය මත pH හා x-අක්ෂය මත එකතු කරනු ලබන දුබල භස්ම දුාවණ පරිමාව දක්වන්න. සමකතා ලක්ෂාය අාසන්න වශයෙන් ලකුණු කරන්න. [සමකතා ලක්ෂයෙහි pH අගය ගණනය කිරීම බලාපොරොත්තු නොවේ.]
 - (b) පරිපූර්ණ දුාවණයක් සාදන ${f C}$ හා ${f D}$ වාෂ්පශීලී දුව භාවිතයෙන් පහත පරීක්ෂණ දෙක නියත උෂ්ණත්වයක දී සිදු කරන ලදී.
 - පරීක්ෂණය I : C හා D දුව රේචනය කරන ලද දෘඪ බඳුනක් තුළට ඇතුල් කර සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. පද්ධතිය සමතුලිතතාවයේ ඇතිවිට දුව කලාපයෙහි $(L_{\rm I})$ C හා D හි මවුල භාග පිළිවෙළින් 0.3 හා 0.7 බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි මූළු පීඩනය 2.70×10^4 Pa විය.
 - **පරීක්ෂණය II** : මෙම පරීක්ෂණය ${f C}$ හා ${f D}$ වෙනස් පුමාණ භාවිතයෙන් සිදු කරන ලදී. සමතුලිතතාව ඇති වූ පසු දුව කලාපයෙහි ($L_{\rm II}$) ${f C}$ හා ${f D}$ හි මවුල භාග පිළිවෙළින් 0.6 හා 0.4 බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි මුළු පීඩනය 2.40×10^4 ${f Pa}$ විය.
 - (i) වාෂ්ප කලාපයෙහි ${f C}$ හි අාංශික පීඩනය $(P_{f C})$, එහි සංකෘප්ත වාෂ්ප පීඩනය $\left(P_{f C}^{\circ}\right)$, හා එහි දුව කලාපයෙහි මවුල භාගය $(X_{f C})$ අතර සම්බන්ධය සමීකරණයක ආකාරයෙන් දෙන්න. මෙම සමීකරණය භෞතික රසායන විදාහවේ බහුලව භාවිත වන නියමයක් පුකාශ කරයි. මෙම නියමයෙහි නම ලියන්න.
 - (ii) C හා D හි සංකෘප්ත වාෂ්ප පීඩන ගණනය කරන්න.
 - (iii) පරීක්ෂණය I හි වෘෂ්ප කලාපයෙහි $(V_{\scriptscriptstyle I}),\; C$ හා D හි මවුල භාග ගණනය කරන්න.
 - (iv) පරීක්ෂණය II හි වාෂ්ප කලාපයෙහි $(\overline{V}_{II}),~C$ හා D හි මවුල භාග ගණනය කරන්න.
 - (v) නියත උෂ්ණත්වයෙහි අඳින ලද පීඩන-සංයුති කලාප සටහනක ඉහත පරීක්ෂණ දෙකෙහි දුව හා වාෂ්ප කලාපවල $(L_{\rm I}\ ,\ L_{\rm II}\ ,\ V_{\rm I}\$ සහ $V_{\rm II}\)$ සංයුති හා අදාළ පීඩන දක්වන්න. (ලකුණු $75\$ යි)

6. (a) කාබතික දුාවකයක් (org-1) හා ජලය (aq) එකිනෙක මිශු නොවන අතර ඒවා ද්විකලාප පද්ධතියක් සාදයි. T උෂ්ණත්වයේදී org-1 හා ජලය අතර \mathbf{X} හි වාහප්තිය සඳහා විභාග සංගුණකය, $K_{\mathrm{D}} = \frac{\left[\mathbf{X}\right]_{\mathrm{org-1}}}{\left[\mathbf{X}\right]_{\mathrm{ag}}} = 4.0$ වේ.

org-1 හි $100.00~{
m cm}^3$ හා ජලය $100.00~{
m cm}^3$ අඩංගු පද්ධතියකට ${
m X}$ හි $0.50~{
m mol}$ පුමාණයක් එකතු කරන ලදී. පද්ධතිය ${
m T}$ උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී.

- (i) org-1 හි X හි සාන්දුණය ගණනය කරන්න.
- (ii) ජලයෙහි X හි සාන්දුණය ගණනය කරන්න.

(ලකුණු 20 යි)

(b) Y සංයෝගය ජලීය කලාපයෙහි පමණක් දුාවා වේ. ජලීය කලාපයේ දී X හා Y පුතිකිුයා කර Z සාදයි. Y හා Z තිබීම org-l හා ජලය අතර X හි වාාප්තියට බලපාන්නේ නැත. org-l හා ජලය අඩංගු ද්විකලාප පද්ධති ශේණියක් සාදන ලදී. ඉන්පසු X හි විවිධ පුමාණ මෙම ද්විකලාප පද්ධති තුළ වාාප්ත කර, පද්ධති සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. මෙම ද්විකලාප පද්ධතිවල ජලීය කලාපයට Y එකතු කිරීමෙන් පසු, X හා Y අතර ජලීය කලාපයෙහි සිදුවන පුතිකිුයාවේ ආරම්භක ශීසුතාවය මනින ලදී. T උෂ්ණත්වයේ දී සිදු කරන ලද මෙම පරීක්ෂණවල පුතිඵල වගුවෙහි දැක්වේ.

පරීක්ෂණ අංකය	ජලය පරිමාව (cm ³)	org-1 පරිමාව (cm ³)	එකතු කරන ලද සම්පූරණ X පුමාණය (mol)	එකතු කරන ලද සම්පූරණ Y පුමාණය (mol)	පුතිකියාවෙහි ආරම්භක ශීසුතාවය (mol dm ⁻³ s ⁻¹)
1	100.00	100.00	0.05	0.02	2.00×10^{-6}
2	100.00	100.00	0.10	0.04	1.60×10^{-5}
3	50.00	50.00	0.25	0.02	4.00×10^{-4}

පුතිකිුයාවෙහි ${f X}$ හා ${f Y}$ අනුබද්ධයෙන් පෙළ පිළිවෙළින් m හා n වේ. ${f T}$ උෂ්ණත්වයේ දී පුතිකිුයාවෙහි ශීඝුතා නියතය k වේ.

- (i) ජලීය කලාපයෙහි \mathbf{X} හා \mathbf{Y} හි සාන්දුණ පිළිවෙළින් $\left[\mathbf{X}\right]_{\mathrm{aq}}$ හා $\left[\mathbf{Y}\right]_{\mathrm{aq}}$ ලෙස දී ඇත්නම්, පුතිකියාව සඳහා ශීඝුතා පුකාශනය $\left[\mathbf{X}\right]_{\mathrm{aq}}$, $\left[\mathbf{Y}\right]_{\mathrm{aq}}$ m,n හා k ඇසුරින් ලියන්න.
- (ii) එක් එක් පරීක්ෂණයේ ජලීය කලාපයෙහි ${f X}$ හි ආරම්භක සාන්දුණය ගණනය කරන්න.
- (iii) එක් එක් පරීක්ෂණයේ ජලීය කලාපයෙහි ${f Y}$ හි ආරම්භක සාන්දුණය ගණනය කරන්න.
- (iv) ${f X}$ හා ${f Y}$ අනුබද්ධයෙන් පුතිකිුයාවෙහි පෙළ පිළිවෙළින් m හා n ගණනය කරන්න.
- (v) පුතිකිුියාවෙහි ශීඝුතා නියතය ගණනය කරන්න.
- (vi) ඉහත දී ඇති විභාග සංගුණකය භාවිත කර පුතිකිුියාවෙහි ශීඝුතාවය මත උෂ්ණත්වයෙහි බලපෑම අධායනය කිරීම සඳහා පරීක්ෂණයක් සැලසුම් කර ඇත.

පුතිකිුයාවෙහි ශීසුතාවය මත උෂ්ණත්වයෙහි බලපෑම අධාායනය කිරීම සඳහා මෙම පරීක්ෂණය සුදුසු ද? ඔබගේ පිළිතුර පහදන්න. (ලකුණු 105 යි)

(c) org-2 කාබනික දාවකය හා ජලය ද එකිනෙක මිශු නොවන අතර ද්විකලාප පද්ධතියක් සාදයි. org-2 හි $100.00~{
m cm}^3$ හා ජලය $100.00~{
m cm}^3$ අඩංගු පද්ධතියකට ${
m X}$ $(0.20~{
m mol})$ එකතු කර ${
m T}$ උෂ්ණත්වයේ දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. ඉන්පසු ${
m Y}$ $(0.01~{
m mol})$ ජලීය කලාපයට එකතුකර පුතිකියාවෙහි අාරම්භක ශීසුතාවය මනින ලදී. org-2 හි ${
m Y}$ දාවා නොවේ. ${
m X}$ හා ${
m Y}$ අතර ජලීය කලාපයෙහි සිදුවන පුතිකියාවෙහි ආරම්භක ශීසුතාවය $6.40\times 10^{-7}~{
m mol}~{
m dm}^{-3}~{
m s}^{-1}$ බව සොයාගන්නා ලදී.

org-2 හා ජලය අතර $\mathbf X$ හි වහාප්තිය සඳහා විභාග සංගුණකය $\dfrac{\left[\mathbf X\right]_{\mathrm{org-2}}}{\left[\mathbf X\right]_{\mathrm{aq}}}$ ගණනය කරන්න.

 $\left[\mathbf{X}
ight]_{\mathrm{org-2}}$ යනු org-2 කලාපයෙහි \mathbf{X} හි සාන්දුණය වේ.

(ලකුණු 25 යි)

7. (a) M ලෝහයේ සාපේක්ෂ පරමාණුක ස්කන්ධය සෙවීම සඳහා රූපයෙහි දක්වා ඇති ඇටවුම භාවිත කරන ලදී. නියත ධාරාවක් භාවිතයෙන් මිනිත්තු 10ක කාලයක් තුළ විදුහුත්වීච්ඡේදනය සිදු කරන ලදී. මෙම කාල පරාසය තුළදී A කෝෂයේ කැතෝඩයෙහි 31.75 mg ස්කන්ධය වැඩිවීමක් සිදු වූ අතර, B කෝෂයේ කැතෝඩයෙහි 147.60 mg ස්කන්ධය වැඩිවීමක් සිදු වීය. (කෝෂ A සහ B වල ජලය විදුහුත්වීච්ඡේදනය වීමක් සිදු නොවන බව උපකල්පනය කරන්න.)

- (i) ${f A}$ සහ ${f B}$ එක් එක් කෝෂයේ ඇනෝඩය සහ කැතෝඩය (${f 0}$, ${f 0}$, ${f 3}$, ${f 4}$ අංක අනුසාරයෙන්) හඳුනාගන්න.
- (ii) එක් එක් කෝෂයේ එක් එක් ඉලෙක්ටෝඩයෙහි සිදුවන අර්ධ පුතිකිුයාව ලියා දක්වන්න.

- 11 -

- (iii) විදුයුත්වීච්ඡේදනය සඳහා භාවිත කරන ලද තියත ධාරාව ගණනය කරන්න.
- (iv) M ලෝහයෙහි සාපේක්ෂ පරමාණුක ස්කන්ධය ගණනය කරන්න.

(ලකුණු 75 යි)

(b) (i) ${\bf A}, {\bf B}$ හා ${\bf C}$ සංගත සංයෝග වේ. ඒවාට අෂ්ටතලීය ජනාමිතියක් ඇත. එක් එක් සංයෝගයෙහි ලිගන **වර්ග** ${\bf e}$ දකක් ලෝහ අයනයට සංගත වී ඇත. සංයෝගවල අණුක සූතු වනුයේ (පිළිවෙළින් **නොවේ**): ${
m NiCl_2H_{12}N_4}, {
m NiI_2H_{16}N_4O_2}$ හා ${
m NiCl_2H_{15}N_3O_3}.$

සංයෝගවල ජලීය දුාවණ $Pb(CH_3COO)_2(aq)$ සමග පිරියම් කළ විට ලැබුණු නිරීක්ෂණ පහත දී ඇත.

සංයෝගය	Pb(CH ₃ COO) ₂ (aq)
A	උණු ජලයෙහි දුවණය වන සුදු පැහැති අවක්ෂේපයක්
В	අවක්ෂේපයක් තොමැත
С	උණු ජලයෙහි දුවණය වන කහ පැහැති අවක්ෂේපයක්

- I. A, B සහ C හි වනුන දෙන්න.
- II. $Pb(CH_3COO)_2(aq)$ සමග සංයෝග පිරියම් කළ විට ලැබෙන අවක්ෂේපවල රසායනික සූතු ලියන්න. (සැ.යූ. සංයෝගය හා පුතිකාරකය සඳහන් කරන්න)
- III. ඉහත දී ඇති සංයෝගවල ලෝහ අයනය හා සංගත වී නොමැති ඇනායනයක්/ඇනායන තිබේ නම්, එම එක් එක් ඇනායනය හඳුනාගැනීම සඳහා රසායනික පරීක්ෂාවක් බැගින් නිරීක්ෂණය ද සමග සඳහන් කරන්න.

(සැ.යු. ඔබ විසින් දෙනු ලබන පරීක්ෂා මෙහි සඳහන් පරීක්ෂාවක් නොවිය යුතු ය.)

(ii) ${\bf M}$ ආන්තරික ලෝහය ජලීය මාධාායේ දී වර්ණවත් ${\bf P}$ සංකීර්ණ අයනය සාදයි. එයට ${[{\bf M}({\bf H_2O})}_n]^{m+}$ සාමානාන රසායනික සූතුය ඇත. එය පහත දී ඇති පුතිකියාවලට භාජනය වේ.

- I. M ලෝහය හඳුනාගන්න. P සංකීර්ණ අයනයේ M හි ඔක්සිකරණ අවස්ථාව දෙන්න.
- II. P සංකීර්ණ අයනයෙහි M හි ඉලෙක්ටුෝනික විනාහසය දෙන්න.
- III. n හා m හි අගයයන් දෙන්න.
- IV. P හි ජාාමිතිය දෙන්න.
- $V.~~\mathbf{Q},\mathbf{R}$ සහ \mathbf{S} හි වාපුහ දෙන්න.
- VI. \mathbf{P},\mathbf{R} සහ \mathbf{S} සංකීර්ණ අයනයන්හි \mathbf{IUPAC} නම් දෙන්න.

(ලකුණු 75 යි)

C කොටස — රවනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

8. (a) $C_6H_5CO_2CH_3$ එකම කාබනික ආරම්භක දුවාය වශයෙන් සහ පුතිකාරක වශයෙන් ලැයිස්තුවේ දී ඇති ඒවා පමණක් යොදා ගනිමින්, **හහකට** (7) **නොවැඩි** පියවර සංඛ්‍යාවක් භාවිත කර පහත සඳහන් සංයෝගය සංශ්ලේෂණය කරන්නේ කෙසේදැයි පෙන්වන්න.

රසාගන දුවන ලැයිස්තුව

 PCl_3 , $\mathrm{Mg/}$ වියළි ඊතර්, $\mathrm{H}^{^+}/\mathrm{H_2O}$, $\mathrm{LiAlH_4}$, සාන්දු $\mathrm{H_2SO_4}$

(ලකුණු 60 යි)

(b) පහත සඳහන් එක් එක් පරිවර්තනය **තුනකට** (3) **නොවැඩි** පියවර සංඛාාවක් භාවිත කර, සිදු කරන්නේ කෙසේදැයි පෙන්වන්න.

(ලකුණු 60 යි)

(c) පහත සඳහන් පුතිකිුයාව එල දෙකක් ලබා දේ.

$$CH_3CH_2CH_2Br \xrightarrow{C_2H_5O^-}$$

- (i) ඵල දෙකෙහි වාූහ ලියන්න.
- (ii) මෙම ඵල දෙක සෑදීම සඳහා යන්තුණ ලියන්න.

(ලකුණු 30 යි)

9. (a) X දාවණයෙහි ලෝහ කැටායන **හතරක්** අඩංගු වේ. මෙම කැටායන හඳුනාගැනීම සඳහා පහත පරීක්ෂා සිදු කරන ලදී.

	පරීක්ෂාව	නිරික්ෂණය						
0	X හි කුඩා කොටසකට තනුක HCl එක් කරන ලදී.	අවක්ෂේපයක් නොමැත.						
2	ඉහත $oldsymbol{0}$ හි ලැබෙන දුාවණය තුළින් $ m H_2S$ බුබුලනය කරන ලදී.	කළු පැහැති අවක්ෂේපයක්	(P ₁)					
3	${f P}_1$ පෙරා වෙන් කරන ලදී. ${f H}_2{f S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, ${f NH}_4{f Cl}$ / ${f NH}_4{f OH}$ එක් කරන ලදී.	කොළ පැහැති අවක්ෂේපයක්	(P ₂)					
4	\mathbf{P}_2 පෙරා චෙන් කර පෙරනය තුළින් $\mathbf{H}_2\mathbf{S}$ බුබුලනය කරන ලදී.	සුදු පැහැති අවක්ෂේපයක්	(P ₃)					
⑤	${f P}_3$ පෙරා වෙන් කරන ලදී. ${f H}_2{f S}$ ඉවත් කිරීම සඳහා පෙරනය නටවා, සිසිල් කර, ${f (NH}_4)_2{f CO}_3$ එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක්	(P ₄)					

 \mathbf{P}_1 , \mathbf{P}_2 , \mathbf{P}_3 හා \mathbf{P}_4 අවක්ෂේප සඳහා පහත සඳහන් පරීක්ෂා සිදු කරන ලදී.

අවක්ෂේපය	පරීක්ෂාව	නිරීක්ෂණය
\mathbf{P}_1	උණුසුම් තනුක HNO_3 හි \mathbf{P}_1 දුවණය කර වැඩිපුර සාන්දු $\mathrm{NH}_4\mathrm{OH}$ එක් කරන ලදී.	තද නිල් පැහැති දුාවණයක් (1 දුාවණය)
P ₂	* ${f P}_2$ ට වැඩිපුර තනුක NaOH එක් කර, පසුව ${f H}_2{f O}_2$ එක් කරන ලදී. * ${f 2}$ දාවණයට තනුක ${f H}_2{f SO}_4$ එක් කරන ලදී.	කහ පැහැති දාවණයක් (2 දුාවණය) තැඹිලි පැහැති දාවණයක් (3 දුාවණය)
P ₃	* තනුක HCl හි P ₃ දුවණය කර තනුක NaOH කුමකුමයෙන් එක් කරන ලදී. * තනුක NaOH එක් කිරීම තවදුරටත් සිදු කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් (\mathbf{P}_5) අවර්ණ දාවණයක් දෙමින් \mathbf{P}_5 දවණය විය. (4 දාවණය)
P ₄	සාත්දු HCl හි \mathbf{P}_4 දුවණය කර, පහත් සිළු පරීක්ෂාවට භාජනය කරන ලදී.	ගඩොල්-රතු දැල්ලක්

- (i) X දාවණයෙහි ලෝහ කැටායන **හතර** හඳුනාගන්න. (**හේතු අවශස නැත**.)
- (ii) P_1, P_2, P_3, P_4 සහ P_5 අවක්ෂේප සහ 1, 2, 3 සහ 4 **උාචණවල** වර්ණයන්ට හේතුවන රසායනික විශේෂ හඳුනාගන්න.

(සැ.යූ. රසායනික සූතු පමණක් ලියන්න.)

(ලකුණු 75 යි)

(b) Y ජල සාම්පලයෙහි SO_3^{2-} , SO_4^{2-} සහ NO_3^- ඇතායන අඩංගු වේ. ජල සාම්පලයේ අඩංගු ඇතායන පුමාණාත්මකව විශ්ලේෂණය කිරීම සඳහා පහත කිුිියාපිළිවෙළ සිදු කරන ලදී.

තියාපිළිවෙළ 1

Y සාම්පලයෙහි $25.00~{
m cm}^3$ ට, වැඩිපුර, තනුක ${
m BaCl}_2$ දාවණයක් කලතමින් එක් කරන ලදී. ඉන්පසු, සෑදුණ අවක්ෂේපයට, කටුක ගඳක් සහිත වායුවක් තවදුරටත් මුක්ත වීම නවතින තෙක්, කලතමින්, වැඩිපුර, තනුක ${
m HCl}$ එක් කරන ලදී. දාවණය මිනිත්තු 10ක් තබා හැර පෙරන ලදී. අවක්ෂේපය ආසුැත ජලයෙන් සෝදා නියත ස්කන්ධයක් ලැබෙන තුරු $105~{
m ^{\circ}C}$ දී උදුනක වියළන ලදී. අවක්ෂේපයේ ස්කන්ධය $0.174~{
m g}$ විය. ලැබුණු පෙරනය වැඩිදුර විශ්ලේෂණය සඳහා තබා ගන්නා ලදී. (කියාපිළිවෙළ 3 බලන්න.)

තියාපිළිවෙළ 2

Y සාම්පලයෙහි $25.00~{
m cm}^3$ ට, වැඩිපුර, තනුක $H_2{
m SO}_4$ හා ආම්ලිකෘත $5\%~{
m KIO}_3$ දාවණ එක් කරන ලදී. පිෂ්ටය දර්ශකය ලෙස භාවිත කරමින් $0.020~{
m mol}~{
m dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$ දාවණයක් සමග, මුක්ත වූ I_2 ඉක්මනින් අනුමාපනය කරන ලදී. භාවිත වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $20.00~{
m cm}^3$ විය. (මෙම කිුයාපිළිවෙළෙහි දී ${
m SO}_3^{2-}$ අයන වායුගෝලයට පිට නොවී, සල්ෆේට් අයන $\left({
m SO}_4^{2-}\right)$ බවට ඔක්සිකරණය වේ යැයි උපකල්පනය කරන්න.)

කියාපිළිවෙළ 3

කුියාපිළිවෙළ 1 හි ලැබුණු පෙරනය, තනුක NaOH සමග උදාසීන කර, එයට වැඩිපුර Al කුඩු හා තනුක NaOH එක් කරන ලදී. දාවණය රත් කර, මුක්ත වූ වායුව, 0.11 mol dm^{-3} HCl දාවණයක 20.00 cm^{3} පරිමාවකට පුමාණාත්මකව යවා පුතිකුියා කරවන ලදී. පුතිකුියාව සම්පූර්ණ වීම ලිට්මස් සමග පරීක්ෂා කරන ලදී. මුක්ත වූ වායුව සමග පුතිකුියා කිරීමෙන් පසු ඉතිරිව ඇති HCl, 0.10 mol dm^{-3} NaOH දාවණයක් සමග මෙනිල් ඔරේන්ජ් දර්ශකය ලෙස භාවිත කරමින් අනුමාපනය කරන ලදී. අවශා වූ NaOH පරිමාව 10.00 cm^{3} විය.

- (i) **කුයාපිළිවෙළ 1,2** හා 3 හි සිදුවන පුතිකිුයා සඳහා තුලිත අයනික/අයනික නොවන සමීකරණ ලියන්න.
- (ii) \mathbb{Y} ජල සාම්පලයේ SO_3^{2-} , SO_4^{2-} සහ NO_3^- සාන්දුණ (mol dm $^{-3}$) නිර්ණය කරන්න. (Ba = 137; S = 32; O = 16)
- (iii) **කුයාපිළිවෙළ 2** තා 3 හි අනුමාපනවල දී නිරීක්ෂණය කළ හැකි වර්ණ විපර්යාස දෙන්න. (සැ.යු. විශ්ලේෂණයට බාධා විය හැකි වෙනත් අයන Y සාම්පලයේ නැති බව උපකල්පනය කරන්න.) (ලකුණු 75 යි)

10. (a)

ඩව් කිුයාවලිය (Dow Process) යොදා ගනිමින් මැග්නීසියම් ලෝහය (Mg) නිෂ්පාදනය කිරීම ඉහත දක්වා ඇති ගැලීම් සටහනින් පෙන්නුම් කරයි.

ගැලීම් සටහන මත පදනම් වූ පහත දැක්වෙන පුශ්නවලට පිළිකුරු සපයන්න.

- (i) ආරම්භක දුවාසය A හඳුනාගන්න.
- (ii) B, C, D, E, F සහ G හි උපයෝගී කරගන්නා කියාවලි පහත දැක්වෙන ලැයිස්තුවෙන් හඳුනාගන්න. වාෂ්පීකරණය, දුවණය කිරීම, තාප වියෝජනය, විද්යුත්විච්ඡේදනය, පුතිකාරකයක් පුතිවකිිකරණය, අවක්ෂේපණය
- (iii) B හි භාවිත කරන රසායනික සංයෝගය හඳුනාගන්න.
- (iv) $\mathbf{P},\mathbf{Q},\mathbf{R}$ සහ \mathbf{T} රසායනික විශේෂ හඳුනාගන්න.
- (v) B, C, D හා F වල සිදුවන කියාවලි සඳහා තුලිත රසායනික සමීකරණ/අර්ධ පුතිකියා දෙන්න. (සැ.යු. අර්ධ පුතිකියා ලිවීමේ දී අදාළ අවස්ථාවන්හි ඇනෝඩය හා කැතෝඩය හඳුනාගන්න.)
- (vi) G හි සිදුවන ප්‍රතිකියාවේ වැදගත්කම සඳහන් කරන්න.

(ලකුණු 50 යි)

(b) (i) පහත දක්වා ඇති කර්මාන්ත සලකන්න.

ගල් අඟුරු බලාගාර ශීතකරණ සහ වායුසමීකරණ පුවාහනය කෘෂිකර්මාන්තය සත්ත්ව පාලනය

- ඉහත දක්වා ඇති කර්මාන්ත පහම ගෝලීය උණුසුම්වීමට දායක වේ. එක් එක් කර්මාන්තය ආශිුත ගෝලීය උණුසුම්වීමට දායක වන වායුමය රසායනික විශේෂ හඳුනාගන්න.
- II. ගෝලීය උණුසුම්වීම නිසා ඇතිවිය හැකි හාතිකර දේශගුණ විපර්යාස **තුනක්** සඳහන් කරන්න.
- (ii) ඉහත (i) හි දී ඇති කර්මාන්ත අතුරෙන්
 - I. පුකාශ රසායනික ධූමිකාවට
 - II. අම්ල වැසිවලට
 - III. සුපෝෂණයට දායක වන ප්‍රධාන කර්මාන්තය/කර්මාන්ත හඳුනාගන්න.

(iii) ශුී ලංකාවේ වර්ෂාපතනය අඩුවීම හේතුවෙන් ජල විදුලිය ජනනය කිරීමට භාවිත වන ජලාශවල පෝෂක පුදේශ ආසන්නයේ කෘතීම වැසි ඇති කිරීම අත්හදා බලන ලදී. මෙම කිුියාවලියේ දී ජලවාෂ්ප සනීභවනය වී වලාකුළු ඇතිවීම උත්තේජනය කිරීමට ජලාකර්ෂක ලවණවල (NaCl, CaCl₂, NaBr) සියුම් අංශු විසුරුවනු ලැබේ.

මෙම ලවණ පෝෂක පුදේශ අවට ජලයට ඇතුල්වීම හේතුවෙන් සෘජුවම

- I. බලපෑමට ලක්වන
- II. බලපෑමට ලක් නොවන

ජල තත්ත්ව පරාමිති පහත දැක්වෙන ලැයිස්තුවෙන් තෝරා ගන්න. ඔබේ තෝරා ගැනීමට හේතු කෙටියෙන් දෙන්න.

ජල තත්ත්ව පරාමිති ලැයිස්තුව:

pH, සන්නායකතාව, ආවිලතාව, දුාවිත ඔක්සිජන්

(ලකුණු 50 යි)

- (c) පහත සඳහන් පුශ්න ජෛව ඩීසල් නිෂ්පාදනය මත පදනම් වේ.
 - (i) ලෛව ඩීසල් නිෂ්පාදනයේ දී භාවිත වන අමුදුවා සඳහන් කරන්න.
 - (ii) එම එක් එක් අමුදුවායේ ඇති පුධාන රසායනික සංයෝගය අදාළ අවස්ථාවන්හි නම් කරන්න.
 - (iii) පාසල් රසායනාගාරයේ දී ජෛව ඩීසල් නිෂ්පාදනයට උත්ජුේරකය වශයෙන් යොදා ගනු ලබන රසායනික සංයෝගයේ නම සඳහන් කරන්න.
 - (iv) ඉහත (ii) කොටසේ සඳහන් කළ රසායනික සංයෝග භාවිත කර ජෛව ඩිසල් සංශ්ලේෂණය පෙන්වීමට තුලිත රසායනික සමීකරණයක් දෙන්න.
 - (v) උත්පේුරකය වැඩිපුර යොදා ගතහොත් සිදුවිය හැකි අතුරු පුතිකිුයාවක් එහි ඵල සමග හඳුනාගන්න. (ලකුණු 50 යි)

ආවර්තිතා වගුව

		1																J
	1																	2
1	H		7															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	o	$ \mathbf{F} $	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	CI	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr