TD 1 : changement de référentiels

Exercice 1 : chute d'un corps dans un référentiel non galiléen

On laisse tomber d'un immeuble de hauteur h une bille sans vitesse initiale. La chute de celleci s'effectue à la verticale selon un mouvement uniformément accéléré d'accélération \vec{g} supposé uniforme.

1. Quelle est la trajectoire de la bille dans un référentiel lié z à une voiture se déplaçant suivant un mouvement rectiligne et uniforme de vitesse u et passant à la verticale de chute au moment du lâcher $\vec{a} = \vec{g}$

- 2. Quelle est la trajectoire de la bille dans le même référentiel si on admet que la voiture entanne au moment du lâcher et à partir de la verticale de chute un mouvement rectiligne uniformément accéléré d'accélération $\overrightarrow{a_e}$?
 - 3. Représenter dans chaque cas la trajectoire demandée.

Exercice 2 : bateau traversant une rivière

Les berges d'un fleuve sont parallèles. Leur distance est ℓ . La vitesse de l'eau est constante et égale à \vec{u} . Un bateau part d'un point A d'une berge et veut atteindre le point B situé sur l'autre berge exactement en face de A. Pour cela, il part de A avec une vitesse relative constante $\vec{V_r}$ faisant un angle φ avec la berge. Il atteint B au bout d'une durée t.

1. Déterminer la vitesse relative V_r et l'angle φ .

Application numérique : u = 2 m/s; $\ell = 400 \text{ m}$; t = 25 min.

Le bateau part maintenant d'un point A d'une berge avec une vitesse relative constante $\overline{V_r}$ constante pour atteindre un point C quelconque de l'autre berge.

- 2. Déterminer l'orientation de $\overrightarrow{V_r}$ pour que la durée de la traversée soit minimale.
- 3. Quelle est cette durée minimale, quel est le chemin alors parcouru ?

Exercice 3

En roulant sous la pluie à $v_I = 110 \text{ km.h}^{-1}$ sur une autoroute plane, un conducteur remarque que les gouttes de pluie ont, vues à travers les vitres latérales de sa voiture, des trajectoires qui font un angle de $\alpha = 80^{\circ}$ avec la verticale. Ayant arrêté sa voiture, il remarque que la pluie tombe, en fait, verticalement. Calculer la vitesse v et respectivement v' de la pluie par rapport à la voiture immobile et par rapport à la voiture se déplaçant à $v_I = 110 \text{ km.h}^{-1}$.

Exercice 4

On associe à une horloge un repère fixe OXY qui sera considéré comme référentiel absolu. On associe à l'aiguille des secondes un repère Oxy qui sera considéré comme relatif. La longueur de l'aiguille des secondes est L=30 cm. Un insecte parcourt d'un mouvement uniforme l'aiguille des secondes, qui a elle-même un mouvement uniforme non saccadé. Au départ, l'insecte est au centre O de l'horloge qui marque 0 seconde. Au bout d'une minute (T=1mn), l'insecte arrive à l'extrémité de l'aiguille.

- 1. Déterminer en fonction de L, T et du temps t la vitesse et l'accélération relative de M ainsi que sa position sur l'aiguille.
- 2. Déterminer de même la vitesse et l'accélération d'entraînement.
- 3. Déterminer l'accélération de Coriolis.
- **4.** Calculer le module de toutes ces grandeurs aux dates t = 0 s, t = 15 s, t = 30 s, t = 45 s et t = 1mn.
- 5. Représenter sur un schéma la trajectoire de M et le vecteur vitesse absolue pour ces 5 dates.
- 6. Même question pour le vecteur accélération absolue.

Exercice 5 : point matériel mobile sur un cerceau tournant

On considère un cercle de centre O placé dans un plan vertical. Ce cercle est animé d'un mouvement de rotation uniforme autour d'un axe verticale Oz à la vitesse angulaire ω . Un point M du cercle est animé d'un mouvement circulaire uniforme de vitesse angulaire ω' .

Déterminer en fonction de R (rayon du cercle), ω , ω' et de $\beta = \left(\overrightarrow{OM}, \overrightarrow{OM'}\right)$ (M', projeté de M sur le plan horizontal), les modules :

- 1. de la vitesse absolue,
- 2. de l'accélération absolue de M par rapport à un repère fixe.

Exercice 6

On étudie le mécanisme de lancement des pigeons d'argile dans un ball-trap. Le pigeons d'argile assimilé à un point matériel M de masse m peut se déplacer sans frottement le long d'un bras horizontal (de longueur $OA = \ell$) qui lui tourne à la vitesse ω (supposée constante) autour de l'axe $(O; \vec{e}_z)$ supposé vertical ascendant.

Au départ du mouvement, le pigeon d'argile est posé sans vitesse initiale par rapport au bras en $OA(t=0)=\frac{\ell}{4}$.

On suppose que le référentiel $\mathcal{R}_g(0; \vec{e}_x, \vec{e}_y, \vec{e}_z)$ est galiléen.

On repère la position de M par : $\overrightarrow{OM} = r\vec{e}_r$.

- **1.** Déterminer la variation de r en fonction du temps : r(t).
- 2. Indiquer au bout de combien de temps, le pigeon d'argile quitte le bras.
- **3.** Déterminer l'allure de la trajectoire de M dans \mathcal{R}_g .

Données numériques : $\omega = 6 \text{ rad.s}^{-1}$; $\ell = 1 \text{ m.}$