Egyptian E-Learning University (EELU) Faculty of Computers and Information Technology

The Web Engineering 3

Introduction to Semantic Web

Lecture 6
Structured web documents in XML

Presented by **Prof. Khaled Wassif**

Course Topics

- > Introduction to the semantic web.
- > Semantic web technologies and layered approach.
- > Structured web documents in XML.
- Describing web resources in basic elements of Resource Description Framework (RDF).
- Web Ontology Language: OWL.
- Ontologies Applications.

Course References

- 1. Grigoris Antoniou, Paul Groth, Frank van Harmelen, Rinke Hoekstra, "A Semantic Web Primer", 2012.
- 2. John Domingue, Dieter Fensel, James A. Hendler, "Introduction to the Semantic Web Technologies", 2011.

Lecture Outline

- > Introduction
- Detailed Description of XML
- Structuring
 - a) DTDs
 - b) XML Schema
- Namespaces
- > Accessing, querying XML documents: Xpath
- > Transformations: XSLT

The Semantic Web Structure

- > The development of the Semantic Web proceeds in steps.
- > Each step building a layer on top of another.

An HTML Example

Ex: for a book with title "Real-time Reasoning: Context - Dependent Reasoning". The authors of this book are V. Marek and M. Truszczynski. This book is published in 1993 through springer under ISBN 0387976892.

_The HTML Code _____

<h2>Real-time Reasoning: Context - Dependent Reasoning</h2>

<i>by V. Marek and M. Truszczynski</i>

1993

1994

1994

1995

1995<br/

<h> header </h>

<i> This is a bold and italicized text </i>

An HTML tag: is a piece of HTML language used to indicate the beginning and end of an HTML element in an HTML document and only used to maintain interface displaying.

An HTML Example

<h2>Real-time Reasoning: Context - Dependent Reasoning</h2>
<i>by V. Marek and M. Truszczynski </i>

1993

19

The Same Example in XML

```
<book>
  <title>Real-time Reasoning: Context - Dependent Reasoning</title>
  <author>V. Marek</author>
  <author>M. Truszczynski</author>
  <publisher>Springer</publisher>
  <year>1993
  <ISBN>0387976892</ISBN>
</book>
```

The Same Example in XML

```
<br/>
<book>
<title>Real-time Reasoning: Context - Dependent Reasoning</title>
<author>V. Marek</author>
<author>M. Truszczynski</author>
<publisher>Springer</publisher>
<year>1993</year>
<ISBN>0387976892</ISBN>
```

</book>

HTML and XML: Similarities

- > Both use tags (e.g. <h2> and </year>)
- > Tags may be nested (tags within tags)
- Human users can read and interpret both
 HTML and XML representations quite easily
- > ... But how about machines?

Problems with Automated Interpretation of HTML Documents

An intelligent agent (in search engines) trying to retrieve the names of the authors of the book:

```
<h2>Real-time Reasoning: Context - Dependent Reasoning</h2>
<i>by <b>V. Marek</b> and <b>M. Truszczynski</b></i>
ISBN 0387976892
```

- > Authors' names could appear immediately after the title
- > or immediately after the word "by"
- > Are there two authors?
- > Or just one, called "V. Marek and M. Truszczynski"?

1) HTML vs XML: Structural Information

- HTML documents do not contain structural information: just pieces of the document and their displaying relationships.
- XML more easily accessible to machines because:
 - Every piece of information is described.
 - Relations are also defined due to the nesting structure.
 - E.g., the <author> tags appear within the <book> tags, so
 they describe one property called author of a particular book.

1) HTML vs XML: Structural Information

- ➤ A machine processing the XML document would be able to conclude that:
 - the author element refers to the attached book element instead of using proximity considerations as in HTML.

- > XML allows the definition of constraints on values:
 - E.g. a year must be a number of four digits

3) HTML vs XML: Formatting (font, design, and

- XML formatting is based on HTML formatting
- > The HTML representation provides more details than the XML representation (displaying process):
 - The formatting of the document is also described (such as fonts text coloring – text restrictions)
- > The main use of an HTML document is to display information:
 - It must define formatting.
- > XML: separation of content from display:
 - Same information can be displayed in different ways.

HTML vs XML: Another Example

In HTML
 <h2>Relationship force-mass</h2>
 <i>F = M × a </i>

> In XML

```
<equation>
     <meaning>Relationship force-mass</meaning>
     <leftside> F </leftside>
          <rightside> M × a </rightside>
</equation>
```

4) HTML vs XML: Different Use of Tags

➤ In both HTML and XML using same tags.

But

In XML completely different.

• HTML tags define display: color, lists, font, ...

But

• XML tags not fixed: user (developer) definable tags.

XML meta markup language: language for defining other markup languages such as HTML

XML Vocabularies

- > Web applications must agree on common vocabularies to communicate and collaborate.
- Communities and business sectors are defining their specialized vocabularies for example:
 - Mathematics (MathML): MathML is a low-level format for describing mathematics as a basis for machine-to-machine communication. MathML is intended to facilitate the use and re-use of mathematical and scientific content on the Web. MathML developed by W3C.
 - Bioinformatics (BSML)
 - Human resources (HRML)

- ...

Lecture Outline

- > Introduction
- Detailed Description of XML
- Structuring
 - a) DTDs
 - b) XML Schema
- Namespaces
- > Accessing, querying XML documents: Xpath
- > Transformations: XSLT

The XML Language

An XML document consists of:

- > a prolog
- > a number of elements
- > an optional epilog (not discussed)

Prolog of an XML Document

The prolog consists of:

- > an XML declaration.
- > an optional reference to external structuring documents

Example:

```
<?xml version="1.0" encoding="UTF-16"?>
```

<!DOCTYPE book SYSTEM "book.dtd">

XML Elements

- > any "things" the XML document talks about
 - E.g. books, authors, publishers
- > An element consists of:
 - an opening tag
 - the content
 - a closing tag

Example:

<lecturer>Yasser Ibrahim/lecturer>

XML Elements Writing Constraints

- > Tag names can be chosen almost freely.
- > The first character must be a letter, an underscore, or a colon
- > No name may begin with the string "xml" in any combination of cases (capital or small letters)
 - E.g. "Xml", "xML"

Content of XML Elements

> Content may be text, or other elements, or nothing

```
<lecturer>
     <name>Yasser Ibrahim</name>
     <phone> +2-010-3875 507 </phone>
</lecturer>
```

➤ If there is no content, then the element is called empty; it is declared as follows:

<lecturer/> for <lecturer></lecturer>

XML Attributes

- Attributes are part of XML elements.
- An element can have multiple unique attributes.
- Attribute gives more information about XML elements. To be more accurate, attributes define the properties of elements.
- > An XML attribute is always a name-value pair.
- An attribute is a name-value pair inside the opening tag of an element:

XML Attributes: An Example

The Same Example without Attributes

```
<order>
  <orderNo>23456</orderNo>
  <customer>John Smith</customer>
  <date>October 15, 2002</date>
  <item>
        <itemNo>a528</itemNo>
        <quantity>1</quantity>
  </item>
  <item>
        <itemNo>c817</itemNo>
        <quantity>3</quantity>
        </item>
</order>
```

XML Elements vs Attributes

- > Attributes can be replaced by elements.
- > Use of elements are the same as use of attributes.
- > But note that attributes **cannot** be nested.

Another Components of XML Docs

Comments:

- A piece of text that is to be ignored by parser
- <!-- This is a comment -->
- Processing Instructions (PIs):
 - Define procedural attachments

<?stylesheet type="text/css" href="mystyle.css"?>

CSS is the language we use to style an HTML document. **CSS** describes how HTML elements should be displayed.

Well-Formed XML Documents

- > Focuses on a correct syntax:
 - Some syntactic rules:
 - Only one outermost element (called root element)
 - Each element contains an opening and a corresponding closing tag
 - Tags must not overlap
 - <author><name>Lee Hong</author></name><author>

<name>Lee Hong</name>

</author<

- Attributes within an element have unique names
- Element and tag names must be allowed

The Tree Model of XML Docs

The Tree Model of XML Docs

An example:

```
<email>
  <head>
        <from name="Michael Maher"</pre>
                address="michaelmaher@cs.gu.edu.au"/>
        <to name="Grigoris Antoniou"
                address="grigoris@cs.unibremen.de"/>
        <subject>Where is your draft?</subject>
   </head>
   <body>
        Grigoris, where is the draft of the paper you promised me
        last week?
   </body>
</email>
```

The Tree Model of XML Docs

- The tree representation of an XML document is an ordered labeled tree: (developed for facilitate the organizing of XML Docs)
 - There is exactly one root
 - Each non-root node has exactly one parent
 - Each node has a label.
 - There are no cycles or overlapping
 - The order of elements is important
 - ... but the order of attributes is not important

Thank you

Prof. Khaled Wassif