

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Point Cloud Occupancy Grid Mapping Introduction

Bastian Lampe

Institute for Automotive Engineering

RWTHAACHEN UNIVERSITY

Computer Vision Approaches

Single Object

Multi Objects

RWTHAACHEN UNIVERSITY

Overview

Overview

- Goal: Distinguish drivable from occupied space
- Why?

Overview

- Goal: Distinguish drivable from occupied space
- Why?
 - HD map may be outdated or insufficient
 - Obstacles may not be recognized correctly
 - Obscure objects can slip through detection algorithms
 - False positive object detections
 - Redundant perception methodologies

Image: welt

Image: imerit

RWTH AACHEN UNIVERSITY

Overview

- World surface is discretized into cells
- Cells contain occupancy information

Challenges?

Challenges

- Identify obstacles and non-obstacles
- Unobservable areas

Simplified occupancy grid map

Challenges

Challenges?

- Identify obstacles and non-obstacles
- Unobservable areas
- Conflicting measurements
- Measurement uncertainty
- Dynamic environments

Simplified occupancy grid map

RWTHAACHEN UNIVERSITY

Challenges

Challenges?

- Identify obstacles and non-obstacles
- Unobservable areas
- Conflicting measurements
- Measurement uncertainty
- Dynamic environments
- Real-time capability

Simplified occupancy grid map

RWTHAACHEN UNIVERSITY

Grid Map Representation

Data Size (e.g. with float64 values):

$$S = \frac{W(L)}{C^{2}} D \cdot sizeof \text{ (float64)}$$

$$= \frac{150 m \cdot 60 m}{(0.3 m)^{2}} \cdot 1 \cdot 8 \text{ Bytes}$$

$$\approx 781 \text{ kB}$$

→ efficient processing algorithms required

Dimensions D

RWTHAACHEN UNIVERSITY

Grid Map Representation

- Probablistic Occupancy Grid Maps
 - Probability of a cell being occupied (50 % = unknown)
 - Cannot distinguish between uncertain and unknown areas

- Evidential Occupancy Grid Maps
 - Each cell contains two belief masses:

 b_O belief mass for the cell being occupied

 b_F belief mass for the cell being free

Allows expressing conflicting evidence

$$0 \le b_o \le 1$$

$$0 \le b_F \le 1$$

• Uncertainty mass $0 \le u \le 1$ addresses uncertainty

$$b_O + b_F + u = 1$$

Images: ika

Sources: Thrun et al. 2000, Reineking et al. 2014, Nuss et al. 2016

RWTH AACHEN UNIVERSITY

Grid Map Representation

- Probablistic Occupancy Grid Maps
 - Probability of a cell being occupied (50 % = unknown)
 - Cannot distinguish between uncertain and unknown areas
 - Measurements can be combined using a binary Bayes filter

- Evidential Occupancy Grid Maps
 - Each cell contains two belief masses:

 b_0 belief mass for the cell being occupied

 b_F belief mass for the cell being free

Allows expressing conflicting evidence

$$0 \le b_o \le 1$$

$$0 \le b_F \le 1$$

• Uncertainty mass $0 \le u \le 1$ addresses **uncertainty**

$$b_O + b_F + u = 1$$

- Measurements can be combined using subjective logic
- Belief masses can be computed from evidence, e.g. computed by a deep neural network

Images: ika

Sources: Thrun et al. 2000, Reineking et al. 2014, Nuss et al. 2016

RWTHAACHEN UNIVERSITY

Inverse Sensor Models

- A sensor model approximates sensor data given a world model.
- What is the probability of a measurement in cell z if an obstacle is in cell o?

- An inverse sensor model approximates a world model given sensor data.
- What is the probability of cell x being occupied given a reflection point in cell z?

RWTHAACHEN UNIVERSITY

Summary

- Free vs. occupied areas in the vehicle's environment
- Probablistic vs. evidential occupancy grid maps

Input Output

Lidar point cloud

Evidential Occupancy Grid Map

Images: van Kempen et al. 2021, ika