HOJA DE EJERCICIOS 9

Análisis Matemático. CURSO 2020-2021.

Problema 1. Calcula el "pull-back" $f^*\omega$ para cada una de las siguientes formas ω y funciones f:

- a) $f: \mathbb{R}^2_{\mathbf{u}} \to \mathbb{R}^3_{\mathbf{x}}$, $f(u_1, u_2) = (u_1^2, u_2^2, e^{u_1 u_2})$, $\omega = x_2 dx_1 + (x_1 x_2 x_3) dx_2 dx_3$.
- b) $f: \mathbb{R}^2_{uv} \to \mathbb{R}^3_{xuz}, \ f(u,v) = (u\cos v, u\sin v, e^u), \ \omega = (x^2 y^2) dx \wedge dy 3(x^2 + y^2) dy \wedge dz.$
- c) $f: \mathbb{R}_t \to \mathbb{R}^3_{xyz}$, $f(t) = (\cos t, \sin t, t)$, $\omega = (x^2 + y^2 + z^2) dx + (x \cos z) dy + (x^2 + y^2 1) dz$.
- d) $f: \mathbb{R}^2_{xy} \to \mathbb{R}^2_{xy}$, f(x,y) = (ax by, bx + ay), a,b constantes, $\omega = xdy ydx$.
- e) $f: \mathbb{R}^2_{r\theta} \to \mathbb{R}^2_{xy}$, $f(r,\theta) = (r\cos\theta, r\sin\theta)$, $\omega = dx \wedge dy$.

Problema 2. Comprueba directamente que $\phi^*d\omega = d(\phi^*\omega)$:

$$\phi(u,v) \equiv (e^u, u^3v, u \operatorname{sen} v) \quad , \quad \omega = z \, dx \wedge dy + xy \, dz \wedge dx + (y-z) \, dy \wedge dz .$$

<u>Problema</u> 3. Sean abiertos $U \subseteq \mathbb{R}^n$ y $U' \subseteq \mathbb{R}^s$. Sean $f: U \to U'$ al menos de clase C^2 y ω una forma diferencial en U'.

- a) Demuestra que si ω es cerrada entonces $f^*\omega$ es también cerrada.
- b) Demuestra que si ω es exacta entonces $f^*\omega$ también es exacta.

<u>Problema</u> 4. Para cada una de las siguientes formas de Pfaff decide si es exacta y, en caso afirmativo, encuentra un **potencial**, es decir una función escalar h tal que $\omega \equiv dh$.

- a) $\omega = (x+y) dx + (y-x) dy$ en \mathbb{R}^2 .
- b) $\omega = y \cos(yz) dx + (x \cos(yz) xyz \sin(yz) + 2yz) dy + (y^2 xy^2 \sin(yz)) dz$ en \mathbb{R}^3 .

Problema 5. Halla una función $f: \mathbb{R} \to \mathbb{R}$ de tal manera que la forma $\omega = x^2 y \, dx + f(x) \, dy$ sea exacta en \mathbb{R}^2 .

Problema 6. Determina la constante a para que la siguiente 2-forma en \mathbb{R}^3 sea cerrada:

$$\omega = (1 + az e^{yz}) dx \wedge dy + (1 - y e^{yz}) dx \wedge dz + (2y + z + \operatorname{sen} z) dy \wedge dz$$

Para ese valor de a, halla una 1-forma η tal que $\omega = d\eta$ ¿Existe η para otros valores de a?

Problema 7. (a) Sea $U \subseteq \mathbb{R}^n$ un abierto, en el que tenemos una función $f: U \to \mathbb{R}$ al menos de clase C^1 . Si $\phi(t): [a,b] \to U$ es un camino al menos C^1 , demuestra la igualdad:

$$\int_\phi df \ = \ f \Big(\phi(b) \Big) - f \Big(\phi(a) \Big) \ .$$

(b) Utiliza el resultado para demostrar que la siguiente forma de Pfaff NO es exacta:

$$\omega = \frac{xdy - ydx}{x^2 + y^2}$$
, en $U = \mathbb{R}^2 \setminus \{(0,0)\}$.

Sugerencia: considera el camino $\phi(t) = (\cos t, \sin t)$, en un intervalo [a, b] adecuado.

- (c) Comprueba que, sin embargo, la forma ω es cerrada en todo $\mathbb{R}^2 \setminus \{(0,0)\}$.
- (d) Dibuja el abierto $U = \mathbb{R}^2 \setminus ([0, +\infty) \times \{0\})$ y demuestra que ω es exacta en él.

Problema 8. En cada caso, dibuja la imagen $\phi(R)$, de la región R que se indica, y calcula $\int_{\phi(R)} \omega$:

- a) $\phi(u,v) \equiv (\cos u, \, \sin u, \, v), \, R = (0,2\pi) \times (-1,1), \, \omega = x^3 \, dz \wedge dx.$
- $\mathrm{b)} \ \phi(u,v) \equiv \big(\cos u \cos v \,,\, \cos u \sin v \,,\, \sin u \,\big), \ R = \left(\,0\,,\, \frac{\pi}{2}\,\right) \times (0,2\pi), \ \omega = z\,dx \wedge dy.$

<u>Problema</u> 9. Sea $U \subseteq \mathbb{R}^3$ un abierto. Para cada campo de vectores $\mathbf{F} \equiv (F_1, F_2, F_3)$ definido en U, consideramos las construcciones \mathbf{F}^{\flat} y \mathbf{F}^{\natural} del problema 12 de la hoja 8. Consideramos también los operadores:

 $d_{1\rightarrow 2}: \left\{ \text{ 1-formas en } \ U \right\} \longrightarrow \left\{ \text{ 2-formas en } \ U \right\} \quad , \quad d_{2\rightarrow 3}: \left\{ \text{ 2-formas en } \ U \right\} \longrightarrow \left\{ \text{ 3-formas en } \ U \right\},$

dados por las respectivas derivadas exteriores. Demuestra las siguientes identidades:

$$(\nabla f)^{\flat} = df,$$
 $d_{2\rightarrow 2}(\mathbf{F}^{\natural}) = (\operatorname{div}\mathbf{F}^{\natural})$

$$d_{2\to 3}\left(\mathbf{F}^{\natural}\right) = \left(\operatorname{div}\mathbf{F}\right) dx_1 \wedge dx_2 \wedge dx_3;$$

$$d_{1\rightarrow 2}\left(\mathbf{F}^{\flat}\right) = \left(\operatorname{\mathbf{rot}}\mathbf{F}\right)^{\natural}.$$