Examenul național de bacalaureat 2023 Simulare la nivel județean Proba E. d) - Fizică

Varianta 2

BAREM DE EVALUARE ȘI DE NOTARE

- Se punctează orice modalitate de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la zece.

A. MECANICA (45 de puncte)

A. Subiectul I

Nr. item	Soluție, rezolvare	Punctaj
I.1.	a	3p
2.	a	3p
3.	b	3p
4.	c	3p
5.	b	3p
TOTAL	pentru Subiectul I	15p

A. Subiectul II

71. Dui	neettii II		
II.a.	Pentru:		3p
	reprezentare corectă a tuturor forțelor	3p	
b.	Pentru:		4p
	Identificarea celor două situații posibile: m2 urcă sau coboară	1p	
	$m_1 g sin \propto -\mu m_1 g cos \alpha = m_2 g$	2p	
	$m_1 g sin \propto + \mu m_1 g cos \alpha = m_2 g$	1p	
	rezultat final: $m_2 = 0.5 \ kg \ respectiv \ m_2 = 1.5 \ kg$	19	
c.	Pentru:		4p
	$T - m_1 g sin \propto -\mu m_1 g cos \alpha = m_1 a$	1p	
	$m_2'g - T = m_2'a$	1p	
	$m_2' = \frac{g(\sin \alpha + \mu \cos \alpha) + a}{g - a} m_1$	1p	
	$m_2 = \frac{m_2}{g-a}$	15	
	rezultat final: $m'_2 = 2,375 kg$	1p	
d.	Pentru:		4p
	$T = m_2'(g - a)$	1p	
	$R = \sqrt{2T^2(1 + \cos\beta)}$	2p	
	rezultat final: R=32,87 N	1p	
TOTA	AL pentru Subiectul II		15p

A. Subiectul III

7. Subjectul III			
III.a	Pentru:	,	4p
	$E_A = E_D \qquad E_D = E_{c_D} + E_{p_D}$	lp	
	$E_A = mgh = mgl(1 - \cos \alpha)$	1p 1p	
	$E_{pD} = mgh_1 = mgl(1 - \cos\beta)$	19	
	$E_{c_D} = mgl(\cos\beta - \cos\alpha)$		
	rezultat final: $E_{C_D} = 2,19J$	1p	
b.	Pentru:		3p
		1p	

Probă scrisă la Fizică

Simulare la nivel județean

Barem de evaluare și de notare

INSPECTORATUL ȘCOLAR JUDEȚEAN GALAȚI

	$E_A = E_B$		
	$mgl(1 - \cos \alpha) = \frac{mv_1^2}{2}$ $v_1 = \sqrt{2gl(1 - \cos \alpha)}$ rezultat final: $v_1 = 3.87m / s$	1p 1p	
c.	Pentru:		4p
	$\frac{mv^2}{2} = \frac{(m+M)v'^2}{2} + Q$	1p 1p	•
	mv = (m+M)v'	1p	
	$Q = \frac{mv^2}{2} - \frac{(m+M)v'^2}{2}$ rezultat final: $Q = 1.81J$	1p	
d.	Pentru:		4p
	$\Delta E_c = L_{total}$	1p	
	$L_{F_f} = -\mu(m+M)gd$	1p	
	$d = \frac{E_c}{\mu(m+M)g}$	1p	
	rezultat final: $d = 0.59m$	1p	
TOTA	AL pentru Subiectul III		15p

B. ELEMENTE DE TERMODINAMICA

(45 de puncte)

B. Subiectul I

B. Sublectul I		
Nr.	Soluție, rezolvare	Punctaj
item		
I.1.	a	3p
2.	b	3p
3.	c	3p
4.	c	3p
5.	b	3p
TOTA	L pentru Subiectul I	15p

B. Subiectul II

II.a.	Pentru:	3p
11.α.		ЭР
	$N_1 = v_1 N_A $ 1p	
	$v_1 = \frac{p_1 V_1}{RT_1}$	
	rezultat final: $N_1 \cong 14 \cdot 10^{21} atomi$ lp	
b.	Pentru:	4p
	$m_1 + m_2$ 1p	
	$\mu_{amestec} = \frac{m_1 + m_2}{\nu_1 + \nu_2}$ $\frac{1p}{1p}$	
	$m_1 = \nu_1 \mu_1 m_2 = \nu_2 \mu_2$	
	$\mu_a = \frac{\nu_1 \mu_1 + \nu_2 \mu_2}{\nu_1 + \nu_2}$	
	rezultat final: $\mu_{amestec} = 27.3g / mol$ 1p	
c.	Pentru:	4p
	$U_{initial} = U_{final} $ 1p	
	$v_1 C_{V_1} T_1 + v_2 C_{V_2} T_2 = (v_1 C_{V_1} + v_2 C_{V_2}) T_f $ 2p	
	rezultat final: $T_f = 410.7K$	
d.	Pentru:	4p

Probă scrisă la Fizică

Simulare la nivel județean

Barem de evaluare și de notare

INSPECTORATUL ȘCOLAR JUDEȚEAN GALAȚI

rezultat final: $p_3 = 2 \cdot 10^5 Pa$ TOTAL pentru Subiectul II	1p	15p
$V_1 + V_2$	1	
$p_3 = \frac{\frac{p_1 v_1}{T_1} + \frac{r_2 v_2}{T_2}}{\frac{r_2}{T_1} + \frac{r_3}{T_2}} \cdot T_3$	2p	
$p_3(V_1 + V_2) = (\nu_1 + \nu_2)RT_3$ $p_1V_1 + P_2V_2$	1p	

B. Subiectul III

III.a	Pentru:	3p
	$p_B V_B = p_C V_C $ 1p	•
	$V_C = 6V_A$	
	rezultat final: $V_c = 6 \cdot 10^{-3} m^3$	
b.	Pentru:	4p
	$\Delta U_{AB} = \nu C_V (T_B - T_A) $ 1p	
	$\Delta U_{CA} = \nu C_V (T_A - T_C) $ 1p	
	$T_B = T_C$	
	rezultat final: $\frac{\Delta U_{AB}}{\Delta U_{CA}} = -1$	
c.	Pentru:	4p
	$L_{total} = L_{AB} + L_{BC} + L_{CA}$	
	$\int_{I} -\frac{(p_B + p_A)(V_B - V_A)}{(p_B - p_A)(V_B - V_A)}$	
	$L_{AB} = \frac{2}{1}$	
	$L_{AB} = \frac{(p_B + p_A)(V_B - V_A)}{2}$ $L_{BC} = \nu R T_B ln \frac{V_C}{V_B}$ $L_{CA} = \frac{(p_C + p_A)(V_A - V_C)}{2}$ $1p$ $1p$ $1p$ $1p$	
	$(p_C + p_A)(V_A - V_C)$	
	$L_{CA} = {2}$	
	rezultat final: $L_{total} = 590J$	
d.	Pentru:	4p
	$T_B = T_C$ p	
	$\eta_C = 1 - \frac{T_{min}}{T_{max}} = 1 - \frac{T_A}{T_B}$	
	$p_A V_A = \nu R T_A$	
	$p_B V_B = \nu R T_B $ 1p	
	rezultat final: $\eta = 91.7\%$	
TOT	AL pentru Subiectul III	15p

C. PRODUCEREA SI UTILIZAREA CURENTULUI CONTINUU

(45 de puncte)

C. Subiectul I

Nr.	Soluţie, rezolvare	Punctaj
item		
I.1.	d	3p
2.	d	3p
3.	b	3p
4.	c	3p
5.	c	3p
TOTA	L pentru Subiectul I	15p

C. Subiectul II

e. Buolectui II			
II.a.	Pentru:		3p
	Reprezentarea corectă a schemei circuitului	3p	
b.	Pentru:		4p
		1p	

Probă scrisă la Fizică

Simulare la nivel județean

INSPECTORATUL ȘCOLAR JUDEȚEAN GALAȚI

$E_{echivalent} = E_{serie} = 3E$	1p	
$r_{serie} = 3r$		
$r_{echivalent} = \frac{r_{serie}}{4} = \frac{3r}{4}$	1p	
	1p	
rezultat final: $E_{echivalent} = 4.5 V$ $r_{echivalent} = 0.15 \Omega$		
c. Pentru:		4p
$3E = I' \cdot 3r + I(R_1 + R_2)$	1p	
I=4I'	1p	
$I = \frac{E_{echivalent}}{E_{echivalent}} = \frac{4E}{E_{echivalent}}$	1p	
$I_{sc} = \frac{convarion}{r_{echivalent}} = \frac{1}{r}$	_	
rezultat final: $I = 1,42 A$ $I' = 0,35A$ $I_{sc} = 30A$	1p	
d. Pentru:		4p
$l = \frac{R_2 \cdot S}{I}$	3p	_
$l = \frac{1}{\rho}$	1	
rezultat final: $l = 20m$	1p	
TOTAL pentru Subiectul II		15p

C. Subiectul III

C. 540	ricetti III		
III.a.	Pentru: 2 ₁	9	3p
	$P_r = U \cdot I = I^2 R$		
	rezultat final: $R = 4\Omega$	p	
b.	Pentru:	Ö	4p
	$I_{bec} = I - I_V $	9	
	$U_V = I_V R_V$		
	$P_{bec} = U_V I_{bec} $ 1	p	
	rezultat final: $P_{bec} = 30W$	þ	
c.	Pentru: 31	9	4p
	$E = IR + Ir + U_V$		
	rezultat final: $E = 36V$	9	
d.	Pentru:		4p
	$W_{R_1} = U_1 I_{bec} \Delta t = R_1 I_{bec}^2 \Delta t $ 2	9	
	$U_1 = E - I_{bec}r - U_{bec}$		
	rezultat final: $W_{R_1} = 0.02kWh$	þ	
TOTAL pentru Subiectul III			15p

D. OPTICA (45 de puncte)

D. Subiectul I

Nr.	Soluție, rezolvare	Punctaj
item		
I.1.	a	3p
2.	c	3p
3.	b	3p
4.	c	3p
5.	b	3p
TOTA	AL pentru Subiectul I	15p

D. Subiectul II

D. Bacilettai II			
Ī	II.a.	Pentru:	4p
		c - 1	
		$c_1 - \overline{f_1}$	
		c = 1	
		$c_2 - \overline{f_2}$	

Probă scrisă la Fizică

Simulare la nivel județean

Barem de evaluare și de notare

INSPECTORATUL ŞCOLAR JUDEȚEAN GALAȚI

			1
	$C = C_1 + C_2$	1p	
	rezultat final: $C = 5\delta$	1p	
b.	Pentru:		4p
	$\frac{1}{f} = \frac{1}{x_2} - \frac{1}{x_1}$	1p	
	$\frac{1}{f} = \frac{1}{\gamma_c} - \frac{1}{\gamma_c}$	•	
	$\begin{cases} y & x_2 & x_1 \\ x_4 & f \end{cases}$		
	$x_2 = \frac{x_1 f}{x_1 + f}$	2p	
	$\begin{bmatrix} -x_1+f \\ -x_2+f \end{bmatrix}$	1p	
	rezultat final: $x_2 = -0.2m$	тр	
c.	Pentru:		4p
	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$		
	$\left \frac{f}{f} - \frac{x'_2}{x'_2} - \frac{x'_1}{x'_1} \right $	1p	
	$\frac{1}{f} = \frac{1}{x'_{2}} - \frac{1}{x'_{1}}$ $\beta = \frac{x'_{2}}{x'_{1}}$ $x'_{1} = f \frac{1 - \beta}{\beta}$	1p	
	$\beta = \frac{1}{\gamma'}$		
	1 - R	1p	
	$ x'_1 = f^{\frac{1-p}{2}}$	_	
	β		
	$\Delta x = x'_1 - x_1$		
	rezultat final: $x'_1 = -60cm$	1p	
	$\Delta x = 50 \ cm - objectul \ se \ depărtează \ de \ sistem$	r	
d.	Pentru:		3p
	1_1 1	1p	
	$\left \frac{f}{f}\right = \frac{x''_2}{x''_2} - \frac{x''_1}{x''_1}$		
	x''_2	1p	
	$\frac{1}{f} = \frac{1}{x''_{2}} - \frac{1}{x''_{1}}$ $\beta = \frac{x''_{2}}{x''_{1}}$	•	
		1p	
mor:	rezultat final: $\beta'' = -2$	1	
TOTAL pentru Subiectul II			15p

D. Subjectul III

D. Subjectul III				
III.a.	Pentru:		4p	
	$k\lambda D$	3p		
	$x_k = \frac{k\lambda D}{2l}$	1		
	rezultat final: $x_k = 10mm$	1p		
b.	Pentru:	2p	3p	
	λD			
	$i = \frac{\lambda D}{2l}$	1p		
	rezultat final: $i = 2mm$	•		
c.	Pentru:		4p	
	$r'_1 = r_1 + e(n-1)$	1p		
	$\delta' = r_2 - r'_1 = r_2 - r_1 - e(n-1) = k\lambda$	1p		
	$x_k = eD \frac{n-1}{2l}$			
	$ x_k - eD - \frac{1}{2l} $	1p		
	rezultat final: $x_k = 0.4mm$	1p		
	sistemul de franje se deplasează spre fanta acoperită de lamă			
d.	Pentru:	1p	4p	
	$x_{k_1} = x_{k_2}$	1p		
	$k_1\lambda_1D k_2\lambda_2D$			
	$\frac{k_1\lambda_1D}{2l} = \frac{k_2\lambda_2D}{2l}$	1p		
	$k_1 = 13 k_2 = 10$	1p		
	rezultat final: $x_m = 26 mm$			
TOTA	AL pentru Subiectul III		15p	