Homework 2 Logic Synthesis with Design Compiler

Teacher: Yu-Cheng Fan

ISLAB

What is Logic Synthesis? We Say a Lego Story.

We Use Lego to Build a Dream in Our Childhood

How to Build a Dream? Based on Cells......

Step 1: Function Description

Step 2 : Blocks Analysis (Design Compiler and Cell Library Design)

Step 3: Logic Synthesis and Optimization

Step 3: Logic Synthesis and Optimization

How to Build a Circuit Dream? We Adopt the Cell-Based Design Flow......

Logic Synthesis

Cell Library (Logic Gate v.s. Lego)

Synthesis is Constraint Driven

 Logic Synthesizer first translates RTL design to an intermediate gate-level design, then optimize according to the area and timing constraint. --Interface ENTITY adder IS PORT (a, b: IN unsigned(0 to 31); **Translation** s: OUT unsigned (0 to 32)); RTL→ Gate-level END adder; Large -- Behavioral representation BEGIN $s \le a + b;$ END behavioral: Area Small Slow Fast Speed

Environment Setup (1/3)

- Set the environmental files
 - Open Terminal
 - □ Key in " cd ~"
 - □ Key in "cp /home/standard/Environment_Setup_File/cshrc .cshrc"
 - □ Key in " ls –a .cs* "

```
[t00418099@is1abx2~]$ 1s -a .cs* .cshrc
```

□ Key in " source .cshrc"

Environment Setup (2/3)

Create a New Folder for Synthesis

Ex:

mkdir Synthesis 建立欲用來合成的資料夾 cd Synthesis 進入欲用來合成的資料夾

Copy File for Environment Setting

△處記得要按一次空白鍵

Environment Setup (3/3)

.synopsys_dc.setup set company "CIC" set designer "Student" ". \$Your_path/CBDK_TSMC018_Arm/CIC/SynopsysDC \$search_path " set#search path " #slow.db fast.db tpz973gvwc.db#tpz973gvbc.db" set#arget_library " *#\$target_library dw_foundation.sldb " set#ink library "#smc18.sdb generic.sdb" set#symbol library set#synthetic_library "#dw_foundation.sldb" set#verilogout no tri true set#hdlin enable presto for vhdl "TRUE" set#sh_enable_line_editing true history keep 100 alias h history

- ·link_library : The library used for interpreting input description.
- ·target_library : The ASIC technology that the design is mapped to.
- ·symbol_library: Used during schematic generation.
- ·search_path : The path to search for unsolved reference library or design.
- ·synthetic_library : Designware to be used.

Synthesizable Code

Copy File for Synthesis

cp /home/standard/summer2013/dv/* . 千萬別忘了這個點

處記得要按一次空白鍵

Open Design Vision

Environment Setup Check

Method 1: Read File

- Read netlist or other design descriptions into Design Compiler
- 2. File/Read
- 3. Support many different formats
- Verilog: .v
- VHDL: .vhd
- System Verilog: .sv
- EDIF
- PLA(Berkeley Espresso): .pla
- Synopsys formats:
- DB(binary): .db
- Enhance db file: .ddc
- Equation: .eqn
- State table: .st

Method 2: Analysis The Design(1/2)

- 1. Check VHDL & Verilog for syntax and synthesizability
- 2. Creat intermediate .mr and .pvl and .syn files and places them in library
- 3. Specified design library

Method 2: Elaborate The Design(2/2)

- 1.Elaborate after analyze to bring design into Design Compiler
- 2.Look in the design library for intermediate file for design specified

Symbol View

Schematic View

Define Clock Specification

■ Setting Design Constraints

- 1. set period
- 2. set waveform
- 3. set clock skew clock訊號至F.F.最大的路徑時間,約0.1~0.3ns
- 4. set source latency 原始clock至自己定義clock的傳輸時間,有除頻電路或倍頻電路才需要設定
- 5. set latency 因為clock後面負載很大,所以加Buffer後產生latency,值大約1~3ns
- 6. set input transition 輸入訊號的轉態時間, CIC測試機台環境為0.5ns
- 7. set clock transition
 F.F.內部clk到Q之轉態時間,值越小、F.F.速度越快,但Power消耗越多,一般設0.1ns

Setup Time & Hold Time

Specify Clock (Period & Waveform)

```
Command: create_clock -name CLK -period 10 -waveform {0 5} [get_ports clock] set_dont_touch_network [get_clocks CLK] set_fix_hold [get_clocks CLK]
```


Setting Clock Command

Command:

- set_clock_uncertainty 0.1 [get_clocks CLK]
- set_clock_latency -source 0 [get_clocks CLK]
- >> set_clock_latency 1 [get_clocks CLK]
- set_input_transition 0.5 [all_inputs]
- set_clock_transition 0.5 [all_clocks]

Design Constraints Setting

Setting Design Environment

- 1. set_operating_conditions
- set_input_delay
- 3. set_driving_cell
- 4. set_wire_load_model
- 5. set_load
- 6. set_output_delay

Setting Operating Condition

Command:

set_operating_conditions -min_library fast -min fast -max_library slow -max slow

Input Delay and Output Delay (1/3)

- ·Clock cycle > = DFFclk-Qdelay + X + DFFsetup
- ·Input Delay = DFFclk-Qdelay + M
- •Output delay = T + DFFsetup

Input Delay and Output Delay (2/3)

Command:

set_input_delay -clock CLK -max 1 [remove_from_collection [all_inputs] [get_clocks CLK]] set_input_delay -clock CLK -min 0.2 [remove_from_collection [all_inputs] [get_clocks CLK]]

Input Delay and Output Delay (3/3)

Command:

set_output_delay -clock CLK -max 1 [all_outputs]
set_output_delay -clock CLK -min 0.1 [all_outputs]

Input Drive Strength for Pads

設定Driving Strength時可以直接輸入值,或是指定不同的Cell,一般來說我們會假設驅動input腳位的Cell為D型正反器,而DFF的值為6.60925, Driving Strength的值越小,推動力愈大,如設0則推動力為無限大

Setting input driving strength for clk port

Command:

set_driving_cell -library slow -lib_cell BUFX4 -pin {Y} [get_ports clock]

Setting input driving strength for all input port except clk

Command:

set_driving_cell -library slow -lib_cell DFFX1 -pin {Q} [remove_from_collection
[all_inputs] [get_ports clock]]

Setting Wire Load Model for Net Delay

Command: set_wire_load_model -name tsmc18_wl10 -library slow

Output Load for Pad

Setting Area And Design Rule Constraints

In general, design rule constraints reflect technology-specific constraints that must be met for a design to function correctly.

Setting area constraint

```
Command: set max area 0
```

- →To create a design that has been optimized for the smallest possible size.
- →If used **-ignore_tns** option, then the compiler prioritizes **area** above **TNS**.

Setting design rule constraints

Command: set_max_fanout 6 [all_inputs]

→Ensure that the sum of the fanout_load attributes for input pins in the specified design is less than the given value.

Command: set_max_transition 0.3 [all_inputs]

- → Attempts to ensure that the transition time for a net is less than the specified value.
- \rightarrow By default, no restriction is placed on the transition time.

Check & uniquify Design

在設定完後要做check design

Check design

Command:

check_design -multiple_designs

Uniquify the design

Command:

uniquify

Reports Before Compiler

Save Design as .DDC File

Compile Design

Compile Design

Explore The Schematic View

Select alu and save again

Report Area & Timing

Reports Area (µm²) : Total Area

Gate Count : Total Area / 10

Report Area & Timing (Homework)

- Use "Design/Report Area & Timing/Report Timing"
- Area (total cell area)=____ μm²
- Timing (data arrival time)=_____ ns
- Slack = ____ ns

Reports After Compiler (Homework)

Reports After Compiler (Homework)

Report Design

Report Design Hierarchy

Report Constraints

Report Reference

Report Ports

Report Cells

Report Nets

Report Clocks

Report Compile Options

Report Power

Compare the Difference between alu.v and alu_compile.v (Homework)

- Using vi editor to compare the difference between alu.v and alu_compile.v
- What is the function of logic synthesis?
- Please use Cell-based Design Flow to describe the difference between before and after logic synthesis

Save Design as .DDC File (Design Compiler Database)

Save Design as .V File: Netlist

Write SDF File for Pre-Sim

The file includes information of delay of Gate-Level circuit.

Command in design_vision:

write_sdf -version 1.0 -context verilog alu_syn.sdf

write_sdc -version 1.7 CHIP.sdc

Pre-Layout Simulation

以剛剛產生出的Netlist檔進行Gate-Level Simulation也常稱作Pre-Sim用以驗證確認我們 合成出來的邏輯電路是否符合System Spec.所 要求的功能

於終端機(Terminal)輸入:

ncverilog test.v alu_compile.v tsmc18.v +access+r

Thanks for your attention!