of H, and the $n \times n$ upper Hessenberg matrix H_n obtained by deleting the last row of \widetilde{H}_n ,

$$H_n = \begin{pmatrix} h_{11} & h_{12} & h_{13} & \cdots & h_{1n} \\ h_{21} & h_{22} & h_{23} & \cdots & h_{2n} \\ 0 & h_{32} & h_{33} & \cdots & h_{3n} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{nn-1} & h_{nn} \end{pmatrix}.$$

If we denote by U_n the $m \times n$ matrix consisting of the first n columns of U, denoted u_1, \ldots, u_n , then the matrix consisting of the first n columns of the matrix UH = AU can be expressed as

$$AU_n = U_{n+1}\widetilde{H}_n. \tag{*_1}$$

It follows that the nth column of this matrix can be expressed as

$$Au_n = h_{1n}u_1 + \dots + h_{nn}u_n + h_{n+1n}u_{n+1}. \tag{*}_2$$

Since (u_1, \ldots, u_n) form an orthonormal basis, we deduce from $(*_2)$ that

$$\langle u_j, Au_n \rangle = u_j^* A u_n = h_{jn}, \quad j = 1, \dots, n.$$
 (*3)

Equations $(*_2)$ and $(*_3)$ show that U_{n+1} and \widetilde{H}_n can be computed iteratively using the following algorithm due to Arnoldi, known as *Arnoldi iteration*:

Given an arbitrary nonzero vector $b \in \mathbb{C}^m$, let $u_1 = b/\|b\|$;

for
$$n = 1, 2, 3, ...$$
 do
 $z := Au_n;$
for $j = 1$ to n do
 $h_{jn} := u_j^* z;$
 $z := z - h_{jn} u_j$
endfor
 $h_{n+1n} := ||z||;$
if $h_{n+1n} = 0$ quit
 $u_{n+1} = z/h_{n+1n}$

When $h_{n+1n} = 0$, we say that we have a breakdown of the Arnoldi iteration.

Arnoldi iteration is an algorithm for producing the $n \times n$ Hessenberg submatrix H_n of the full Hessenberg matrix H consisting of its first n rows and n columns (the first n columns of U are also produced), not using Householder matrices.

As long as $h_{j+1j} \neq 0$ for j = 1, ..., n, Equation $(*_2)$ shows by an easy induction that u_{n+1} belong to the span of $(b, Ab, ..., A^nb)$, and obviously Au_n belongs to the span of $(u_1, ..., u_{n+1})$, and thus the following spaces are identical:

$$\mathrm{Span}(b, Ab, \dots, A^n b) = \mathrm{Span}(u_1, \dots, u_{n+1}).$$