```
In [67]: print('Name : ')
          print('Plot a line graph to find the average cholestrol found in various age gr
          print('Plot a line graph to find the correlation between systolic and diastolic
          Name :
          Plot a line graph to find the average cholestrol found in various age groups
          Plot a line graph to find the correlation between systolic and diastolic bloo
          d pressure found in various age groups
 In [1]: #Task 1
          #Import all the libraries and read cardiovascular.csv
          import pandas as pd
          import matplotlib.pyplot as plt
          df = pd.read csv('cardiovascular.csv')
          df
 Out[1]:
                 Unnamed:
                                     gender height weight systolic_blood_pressure diastolic_blood_r
              0
                        0
                               0 50.0
                                           2
                                                168
                                                       62.0
                                                                             110
               1
                               1 55.0
                                                156
                                                       85.0
                                                                             140
               2
                        2
                               2 51.0
                                           1
                                                165
                                                       64.0
                                                                             130
               3
                         3
                               3 48.0
                                           2
                                                169
                                                       82.0
                                                                             150
               4
                                 47.0
                                                156
                                                       56.0
                                                                             100
                                                       ...
                                                                              ...
           69995
                     69995 99993
                                 52.0
                                           2
                                                168
                                                       76.0
                                                                             120
           69996
                     69996 99995 61.0
                                                158
                                                      126.0
                                                                             140
           69997
                     69997 99996 52.0
                                                183
                                                      105.0
                                                                             180
```

70000 rows × 14 columns

69998

69998

69999

99998 61.0

69999 99999 56.0

Average cholestrol found in various age groups

163

170

72.0

72.0

135

120

In [2]: #Task 2
#Group by age and find the average cholesterol and make a dataframe out of it
group_by_age = df.groupby('age')['cholesterol'].mean().reset_index(name='cholesterol')
group_by_age

Out[2]:

	age	cholesterol
0	29.0	1.000000
1	30.0	1.000000
2	39.0	1.185955
3	40.0	1.173243
4	41.0	1.209669
5	42.0	1.167137
6	43.0	1.264894
7	44.0	1.204756
8	45.0	1.261620
9	46.0	1.220308
10	47.0	1.308147
11	48.0	1.246273
12	49.0	1.316945
13	50.0	1.280473
14	51.0	1.346496
15	52.0	1.315645
16	53.0	1.380041
17	54.0	1.331761
18	55.0	1.420932
19	56.0	1.396729
20	57.0	1.469072
21	58.0	1.415078
22	59.0	1.511465
23	60.0	1.443125
24	61.0	1.559384
25	62.0	1.450205
26	63.0	1.621345
27	64.0	1.463649

Conclusion -

Correlation between systolic and diastolic blood pressure

In [84]: # Diastolic blood pressure - is the pressure in the arteries when the heart res # Systolic blood pressure - the pressure in your arteries when your heart beats

> #predefine code for image from IPython.display import Image Image(filename='blood pressure readings chart.jpg') #predefine code end

Out[84]:

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	120 – 129	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 – 139	or	80 - 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120

In [5]: #Task 4
#Group by age and find maximum systolic blood pressure and create a dataframe p
group_by_age_systolic = df.groupby('age')['systolic_blood_pressure'].mean().res
group_by_age_systolic

Out[5]:

	age	systolic_blood_pressure
0	29.0	113.333333
1	30.0	110.000000
2	39.0	119.697753
3	40.0	119.794081
4	41.0	120.589595
5	42.0	120.172779
6	43.0	129.536189
7	44.0	122.717966
8	45.0	123.913752
9	46.0	132.766154
10	47.0	132.380974
11	48.0	124.852015
12	49.0	125.683055
13	50.0	128.453358
14	51.0	130.669240
15	52.0	125.513876
16	53.0	128.348501
17	54.0	130.555062
18	55.0	128.801884
19	56.0	128.095925
20	57.0	133.284590
21	58.0	131.998240
22	59.0	131.109899
23	60.0	128.782187
24	61.0	132.385997
25	62.0	131.623010
26	63.0	137.857456
27	64.0	132.677183

```
In [7]: #Task 5
    #Group by age and find maximum diastolic blood pressure and create a dataframe
    label = group_by_age_systolic['age']
    value = group_by_age_systolic['systolic_blood_pressure']
    fig = plt.subplots(figsize=(19,8))
    plt.plot(label, value, label = "Average systolic_blood_pressure as per age" , ]
    plt.xlabel('age')
    plt.xticks(rotation='vertical')
    plt.ylabel('systolic_blood_pressure')
    plt.title('Average systolic_blood_pressure as per age', fontsize=20)
    plt.legend()
    plt.show()diastolic_blood_pressure
```



```
In [9]:
        #Task 6
        #Plot a line graph to show a Correlation between systolic and diastolic blood p
        import pandas as pd
        import matplotlib.pyplot as plt
        df = pd.read csv('cardiovascular.csv')
        df
        group_by_date_systolic = df.groupby('age')['systolic_blood_pressure'].max().res
        group by date systolic
        group_by_date_diastolic = df.groupby('age')['diastolic_blood_pressure'].max().
        group by date diastolic
        systolic blood pressure label = group by date systolic['age']
        systolic_blood_pressure_value = group_by_date_systolic['systolic_blood_pressure
        plt.plot(systolic blood pressure label,systolic blood pressure value,label = "s
        diastolic_blood_pressure_label = group_by_date_diastolic['age']
        diastolic blood pressure value = group by date diastolic['diastolic blood press
        plt.plot(diastolic_blood_pressure_label, diastolic_blood_pressure_value, label
        plt.xlabel('age')
        plt.xticks(rotation='vertical')
        plt.title('Correlation between the systolic blood pressure of age and diastolic
        plt.legend()
        plt.show()
```

Correlation between the systolic blood pressure of age and diastolic blood pressure of age using line graph

Conclusion -

```
In [ ]:
```