Programmierung 1

Vorlesung 16

Livestream beginnt um 10:20 Uhr

Induktive Korrektheitsbeweise, Teil 2

Programmierung 1

Wohlfundierte Induktion (Noethersche Induktion)

- ▶ Sei $\forall x \in X : A(x)$ eine **allquantifizierte Aussage** über eine Menge X.
- ▶ Eine Induktionsrelation > ist eine terminierende Relation auf X. Um die allquantifizierte Aussage zu beweisen, zeigen wir den Induktionsschritt: für jedes Argument x folgt aus der Tatsache, dass für jedes kleinere Argument y A(y) gilt, dass A(x) gilt.

▶ Wohlfundierte Induktion:

$$(\forall x \in X \ (\forall y \in X: x > y \Rightarrow A(y)) \Rightarrow A(x)) \Rightarrow \forall x \in X: A(x)$$

Induktionsschritt

Natürliche vs. strukturelle Induktion

Wenn es sich bei der Induktionsrelation um *Ter* handelt, sprechen wir von natürlicher Induktion.

Ter :=
$$\{(x, y) \in \mathbb{N}^2 \mid x > y\}$$

Wenn es sich bei der Induktionsrelation um eine strukturelle Relation handelt, sprechen wir von struktureller Induktion. Dazu später mehr.

Bestimmte Iteration

```
iter: (\mathbb{N} \times X \times (X \to X)) \to X

iter (0,x,f) = x

iter (n,x,f) = iter(n-1, fx, f) für n>0
```

Behauptung: (Vertauschungseigenschaft von iter)

$$\forall n \in \mathbb{N} \ \forall x \in X \ \forall f \in X \rightarrow X : \ iter(n+1, x, f) = f(iter(n, x, f)).$$

Beweis durch Induktion über $n \in \mathbb{N}$. Wir unterscheiden zwei Fälle.

Sei n=0. Sei x∈X beliebig, sei f ∈ X →X beliebig.

$$iter(n + 1, x, f) = iter(1, x, f) = iter(0, fx, f) = fx$$

= $f(iter(0, x, f)) = f(iter(n, x, f))$

Sei n>0. Sei x∈X beliebig, sei f∈X→X beliebig.

$$iter(n + 1, x, f) = iter(n, fx, f)$$
 Definition $iter$

$$= f(iter(n - 1, fx, f))$$
 Induktion für $n - 1$

$$= f(iter(n, x, f))$$
 Definition $iter$ Vorlesung 15

Iterative Berechnungen

iter:
$$(\mathbb{N} \times X \times (X \to X)) \to X$$

iter $(0,x,f) = x$
iter $(n,x,f) = iter(n-1, fx, f)$ für $n>0$

▶ Iterative Bestimmung von Potenzen

$$1 \to x^1 \to x^2 \to x^3 \to \dots \to x^n$$
$$f = \lambda a. a. x$$

▶ Iterative Bestimmung der Fakultäten

$$(1, fac \, 0) \rightarrow (2, fac \, 1) \rightarrow (3, fac \, 2) \rightarrow \dots \rightarrow (n+1, fac \, n)$$

 $f = \lambda(k, x) \cdot (k+1, k \cdot x)$ $fac \, n = \#2(iter(n, (1, 1), f))$

▶ Iterative Bestimmung der Fibonacci-Zahlen

$$(fib\ 0,\ fib\ 1) \to (fib\ 1,\ fib\ 2) \to (fib\ 2,\ fib\ 3) \to \dots \to (fib\ n,\ fib(n+1))$$

$$f = \lambda(x,y).(y,\ x+y) \qquad fib\ n = \#2(iter(n-1,(0,1),f))$$

Iterative Bestimmung von Potenzen

iter:
$$(\mathbb{N} \times X \times (X \to X)) \to X$$

iter $(0,x,f) = x$
iter $(n,x,f) = iter(n-1,fx,f)$ für $n>0$

Bitte immer angeben:

- durch Induktion über ...
- Induktion für ...
- Begründungen für Umformungen

Behauptung: $\forall x \in \mathbb{Z} \ \forall n \in \mathbb{N}$: $x^n = iter(n, 1, \lambda a. a. x)$.

Beweis: Sei $x \in \mathbb{Z}$ und $f = \lambda a. a. x.$

Wir zeigen $\forall n \in \mathbb{N}$: $x^n = iter(n, 1, \lambda a. a. x)$ durch Induktion über $n \in \mathbb{N}$.

Sei n=0. $iter(n,1,f) = iter(0,1,f) = 1 = x^0 = x^n$.

Sei
$$n>0$$
. $iter(n,1,f) = f(iter(n-1,1,f))$
= $f(x^{n-1})$
= $x^{n-1} \cdot x$
= x^n

Vertauschungseigenschaft Induktion für *n*-1 Definition *f*

Unbestimmte Iteration

first(p, f, x) = if p x then x else first(p, f, f x)

Terminiert die mathematische Prozedur first?

first: $(X \to \mathbb{B}) \times (X \to X) \times X \to X$

first(p, f, x) = if p x then x else first(p, f, f x)

A: Ja, für alle Argumente

B: Ja, für manche (aber nicht alle) Argumente

Unbestimmte Iteration

first:
$$(X \to \mathbb{B}) \times (X \to X) \times X \to X$$
Startwert
Schrittfunktion
Zielbedingung

first(p, f, x) = if p x then x else first(p, f, f x)

- Im Gegensatz zu iter terminiert first nicht unbedingt!
- first kann die Ergebnisfunktion jeder endrekursiven Prozedur berechnen.

Beispiel:

$$iter(n,x,f) = \#2 (first (\lambda(k,a).k=0, \lambda(k,a).(k-1,fa),(n,x)))$$

Berechnung von iter mit first

```
first: (X \to \mathbb{B}) \times (X \to X) \times X \to X

first(p, f, x) = \text{if } p x \text{ then } x \text{ else } first(p, f, f x)

iter: (\mathbb{N} \times X \times (X \to X)) \to X

iter (0,x,f) = x

iter (n,x,f) = \text{iter } (n-1, f x, f) für n>0
```

```
Behauptung: \forall n \in \mathbb{N}, x \in X, f: X \to X: iter(n, x, f) = \#2(first(p, g, (n, x))) mit p = \lambda(k, a) \cdot k = 0, g = \lambda(k, a) \cdot (k-1, fa)
```

Beweis: Durch Induktion über $n \in \mathbb{N}$. Wir unterscheiden zwei Fälle.

Sei n=0.
$$\#2(first(p,g,(n,x))) = \#2(first(p,g,(0,x))) = \#2(0,x) = x$$

= $iter(0,x,f) = iter(n,x,f)$.

Sei
$$n>0$$
. $\#2(first(p,g,(n,x))) = \#2(first(p,g,(n-1,fx)))$ Definition first, p und g = $iter(n-1, fx, f)$ Induktion für $n-1$ = $iter(n, x, f)$ Definition $iter$

Mathematische Prozeduren auf Listen

Listen über X $\mathscr{L}(X) := \{\langle \rangle \} \cup (X \times \mathscr{L}(X))$ $|_|: \mathcal{L}(X) \to \mathbb{N}$ Länge |nil| = 0|x::xr| = 1 + |xr| $\mathscr{Q}: \mathscr{L}(X) \times \mathscr{L}(X) \to \mathscr{L}(X)$ Konkatenation nil@ys = ys(x::xr) @ ys = x::(xr@ ys) $rev: \mathcal{L}(X) \to \mathcal{L}(X)$ Reversion revnil = nilrev(x::xr) = (revxr)@[x] $foldl: (X \times Y \to Y) \times Y \times \mathcal{L}(X) \to Y$ Faltung von links foldl(f, y, nil) = yfoldl(f, y, x::xr) = foldl(f, f(x, y), xr)

Strukturelle Relationen

- ▶ Die Konstituenten einer Menge X sind rekursiv definiert:
 - **1.** Jedes **Element** von *X* ist eine Konstituente von *X*.
 - **2.** Jede **Konstituente eines Elements** von *X* ist eine Konstituente von *X*.
- ▶ **Beispiel:** {{ $\{\{\emptyset\}\}\}\}$ } hat die Konstituenten {{ $\{\emptyset\}\}$ }, { $\{\emptyset\}$ } und \emptyset .
- Eine Menge ist genau dann **finitär** wenn sie nur **endlich viele** Konstituenten hat.
- Eine Relation heißt strukturell, wenn für jede Kante (x,y) ∈ R gilt, dass y eine Konstituente von x ist.
- ▶ Proposition: Jede strukturelle Relation ist terminierend.
- ▶ **Beispiel:** *Ter* ist eine strukturelle Relation.

Strukturelle Terminierungsfunktionen

- ▶ Eine Funktion f heißt **strukturelle Terminierungsfunktion** für R, wenn Dom f = Ver R und **für jede Kante** $(x,y) \in R$ gilt dass fy eine **Konstituente** von fx ist.
- Proposition: Jede Relation, für die es eine strukturelle Terminierungsfunktion gibt, ist terminierend.

Beweis durch Widerspruch:

- Sei R eine nicht terminierende Relation und f eine strukturelle Terminierungsfunktion für R.
- ▶ Also ist $\{(fx, fy) \mid (x,y) \in R\}$ eine strukturelle Relation die fortschreitend ist.
- ▶ Strukturelle Relationen sind aber terminierend.
- Widerspruch.

Strukturelle Terminierungsfunktionen für Prozeduren

▶ Sei $p: X \rightarrow Y$ eine Prozedur. Dann heißt eine Funktion f mit Dom f = X strukturelle Terminierungsfunktion für p, wenn für jeden Rekursionsschritt (x,x') von p gilt, dass fx' eine **Konstituente** von x ist.

Proposition: Jede Prozedur, für die es eine strukturelle
 Terminierungsfunktion gibt, terminiert für alle Argumente.

Strukturelle Terminierungsfunktionen

$$|\underline{\ }|: \mathcal{L}(X) \to \mathbb{N}$$

$$|nil| = 0$$

$$|x::xr| = 1 + |xr|$$

$$rov \cdot \mathcal{L}(X) \to \mathcal{L}(X)$$

$$\lambda xs \in \mathcal{L}(X)$$
. xs

$$rev: \mathcal{L}(X) \to \mathcal{L}(X)$$

 $revnil = nil$
 $rev(x::xr) = (revxr)@[x]$

$$\lambda xs \in \mathcal{L}(X)$$
. xs

$$foldl: (X \times Y \to Y) \times Y \times \mathcal{L}(X) \to Y$$

 $foldl(f, y, nil) = y$
 $foldl(f, y, x::xr) = foldl(f, f(x, y), xr)$

$$\lambda (f, y, xs) \in (X \times Y \to Y)$$

 $\times Y \times \mathcal{L}(X). xs$

Welche der folgenden Funktionen sind strukturelle Terminierungs-funktionen für @?

$$@: \mathcal{L}(X) \times \mathcal{L}(X) \to \mathcal{L}(X)$$

$$nil@ys = ys$$

$$(x::xr) @ ys = x::(xr@ ys)$$

A: λ (xs, ys) $\in \mathcal{L}(X)^2$. xs

 λ (xs, ys) $\in \mathcal{L}(X)^2$. ys

 $\lambda (xs, ys) \in \mathcal{L}(X)^2. (xs, ys)$

Beispiel für strukturelle Induktion

$\mathscr{Q}: \mathscr{L}(X) \times \mathscr{L}(X) \to \mathscr{L}(X)$

$$nil@ys = ys$$

$$(x::xr)@ys = x::(xr@ys)$$

▶ Behauptung: Assoziativität der Konkatenation

Sei X eine Menge und seien $xs, ys, zs \in \mathcal{L}(X)$. Dann gilt: (xs@ys)@zs = xs@(ys@zs).

▶ **Beweis:** Seien $ys, zs \in \mathcal{L}(X)$. Wir beweisen

$$\forall xs \in \mathcal{L}(X): (xs@ys)@zs = xs@(ys@zs)$$

durch strukturelle Induktion über $xs \in \mathcal{L}(X)$. Wir unterscheiden zwei Fälle.

$$Sei xs = nil$$
. Dann

$$(xs@ys)@zs = ys@zs$$
$$= xs@(ys@zs)$$

Definition @

Definition @

Beispiel für strukturelle Induktion

$\mathscr{Q}: \mathscr{L}(X) \times \mathscr{L}(X) \to \mathscr{L}(X)$

$$nil@ys = ys$$
$$(x::xr)@ys = x::(xr@ys)$$

▶ Behauptung: Assoziativität der Konkatenation

Sei X eine Menge und seien $xs, ys, zs \in \mathcal{L}(X)$. Dann gilt: (xs@ys)@zs = xs@(ys@zs).

▶ **Beweis:** Seien $ys, zs \in \mathcal{L}(X)$. Wir beweisen

$$\forall xs \in \mathcal{L}(X): (xs@ys)@zs = xs@(ys@zs)$$

durch strukturelle Induktion über $xs \in \mathcal{L}(X)$. Wir unterscheiden zwei Fälle.

Sei xs = x::xr. Dann

$$(xs@ys)@zs = (x::(xr@ys))@zs$$
 Definition @
 $= x::((xr@ys)@zs)$ Definition @
 $= x::(xr@(ys@zs))$ Induktion für xr
 $= xs@(ys@zs)$ Definition @

Länge von Listen mit fold! berechnen

$$foldl: (X \times Y \to Y) \times Y \times \mathcal{L}(X) \to Y$$

$$foldl(f, y, nil) = y$$

$$foldl(f, y, x::xr) = foldl(f, f(x, y), xr)$$

$$|x::xr| = 1 + |xr|$$

▶ Behauptung: $\forall xs \in \mathcal{L}(X)$: |xs| = foldl(f, 0, xs)

$$f\ddot{\mathsf{u}}\mathsf{r}\,f = \lambda\,(x,a) \in X \times \mathbb{N}.\,a + 1.$$

▶ Beweis(versuch): Durch strukturelle Induktion über $xs \in \mathcal{L}(X)$.

Sei
$$xs = nil$$
. Dann $|xs| = 0 = \text{foldl}(f,0,nil) = \text{foldl}(f,0,xs)$. Definition $|_|$ und $foldl$

Sei xs = x::xr. Dann foldl(f,0,xs) = foldl(f,0,x::xr) = foldl(f,1,xr) = ???

Induktion scheitert!

Verstärkung der Korrektheitsaussage

▶ Statt: $\forall xs \in \mathcal{L}(X)$: |xs| = foldl(f, 0, xs)beweisen wir die Verstärkung: $\forall xs \in \mathcal{L}(X) \ \forall n \in \mathbb{N}$: |xs| + n = foldl(f, n, xs).

▶ Beweis: Durch strukturelle Induktion über $xs \in \mathcal{L}(X)$.

Sei
$$xs = nil$$
. Sei $n \in \mathbb{N}$. Dann $|xs| + n = n = \text{foldl}(f,n,nil) = foldl(f,n,xs)$. Definition $|_|$ und $foldl$ Sei $xs = x::xr$. Sei $n \in \mathbb{N}$. Dann $foldl(f,n,xs) = foldl(f,n,x::xr) = foldl(f,n+1,xr)$ Definition $foldl$ und f $= |xr| + n + 1$ Induktion für xr $= |xs| + n$ Definition $|_|$

Reine Bäume

$$\mathcal{T} := \mathcal{L}(\mathcal{T})$$

Bäume

$$s: \mathscr{T} \to \mathbb{N}_+$$

Größe

$$s[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s t_1 + \cdots + s t_n$$

$$b: \mathcal{T} \to \mathbb{N}_+$$

Breite

$$b[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } b t_1 + \cdots + b t_n$$

$$d: \mathcal{T} \to \mathbb{N}$$

Tiefe

$$d[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 0 \text{ else } 1 + \max\{d \ t_1, ..., d \ t_n\}$$

Sekundäre Listenrekursion

$$s: \mathcal{T} \to \mathbb{N}_+$$

$$s[t_1, \dots, t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s t_1 + \dots + s t_n$$

- ▶ Neben der **primären Baumrekursion** verwenden die Prozeduren eine **sekundäre Listenrekursion** die durch "… " formuliert ist.
- In den **Anwendungsgleichungen** ist die sekundäre Listenrekursion nicht mehr sichtbar:

$$s[t_1, t_2] = 1 + s t_1 + s t_2$$

$$b[t_1, t_2, t_3] = b t_1 + b t_2 + b t_3$$

$$d[t_1, t_2] = 1 + \max\{d t_1, d t_2\}$$

- ▶ Rekursionsfunktion: $\lambda[t_1,...,t_n] \in \mathcal{T}.\langle t_1,...,t_n\rangle$
- ▶ Terminierungsfunktion: $\lambda t \in \mathcal{T}.t$.

Balancierte Binärbäume

- ▶ Ein Baum ist balanciert, wenn die Adressen seiner Blätter alle die gleiche Länge haben.
- Dies ist genau dann der Fall, wenn alle Unterbäume balanciert sind, und alle die gleiche Tiefe haben (Vorlesung 12).
- ▶ Die Menge $\mathscr{B} \subseteq \mathscr{T}$ der balancierten Binärbäume definieren wir durch Rekursion:
 - 1. $[] \in \mathscr{B}$.
 - 2. Wenn $t_1 \in \mathcal{B}$, $t_2 \in \mathcal{B}$ und $dt_1 = dt_2$, dann $[t_1, t_2] \in \mathcal{B}$.

Wie breit ist ein balancierter Binärbaum der Tiefe 3?

$$b: \mathscr{T} \to \mathbb{N}_+$$

Breite vs. Tiefe
$$b[t_1,...,t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } b t_1 + \cdots + b t_n$$

$$d: \mathcal{T} \to \mathbb{N}$$

$$d[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 0 \text{ else } 1 + \max\{d \ t_1, ..., d \ t_n\}$$

Proposition 10.7 (Breite versus Tiefe) $\forall t \in \mathcal{B}$: $bt = 2^{dt}$.

Beweis Durch strukturelle Induktion über $t \in \mathcal{B}$. Wir unterscheiden zwei Fälle.

Sei t = []. Dann $bt = 1 = 2^{dt}$ gemäß der Definition von b und d.

Sei $t = [t_1, t_2]$. Dann gilt:

$$bt = bt_1 + bt_2$$

$$= 2^{dt_1} + 2^{dt_2}$$

$$= 2 \cdot 2^{dt_1}$$

$$= 2^{1+dt_1}$$

$$= 2^{1+\max\{dt_1, dt_2\}}$$

$$= 2^{dt}$$

Definition *b*

Induktion für t_1 und t_2

t balanciert, also $dt_1 = dt_2$

t balanciert, also $dt_1 = dt_2$

Definition *d*

Hat ein balancierter Binärbaum mehr Blätter oder mehr innere Knoten?

Größe vs. Tiefe

$$s: \mathcal{T} \to \mathbb{N}_+$$

 $s[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 1 \text{ else } 1 + s t_1 + \cdots + s t_n$
 $d: \mathcal{T} \to \mathbb{N}$
 $d[t_1, ..., t_n] = \text{if } n = 0 \text{ then } 0 \text{ else } 1 + \max\{d \ t_1, ..., d \ t_n\}$

Proposition 10.8 (Größe versus Tiefe) $\forall t \in \mathcal{B}$: $st = 2^{dt+1} - 1$.

Beweis Durch strukturelle Induktion über $t \in \mathcal{B}$. Wir unterscheiden zwei Fälle.

Sei t = []. Dann $st = 1 = 2^{dt+1} - 1$ gemäß der Definition von b und d.

Sei $t = [t_1, t_2]$. Dann gilt:

$$st=1+st_1+st_2$$
 Definition s

$$=1+2^{dt_1+1}-1+2^{dt_2+1}-1$$
 Induktion für t_1 und t_2

$$=2\cdot 2^{dt_1+1}-1$$
 t balanciert, also $dt_1=dt_2$

$$=2^{1+dt_1+1}-1$$
 t balanciert, also $dt_1=dt_2$

$$=2^{1+\max\{dt_1,\ dt_2\}+1}-1$$
 t balanciert, also $dt_1=dt_2$

$$=2^{dt+1}-1$$
 Definition d

www.prog1.saarland