Rédaction d'un rapport

Fabien Haury 2022-09-07

- 1 Librairies
- 2 Spécification police et thème
- 3 Spécification code couleur
- 4 Création fonction
- 5 Import et préparations des Donnes
 - 。5.1 2018
 - · 5.2 2019
 - · 5.3 2020
 - · 5.4 2021
- 6 Fusion des jeux de Donnes
 - 6.1 Création des variables temporaires des continents
 - 6.2 Transformations des Donnes
 - 6.3 Suppression des dataframes/variables intermédiaires
 - 6.4 Detection outliers
 - 6.5 Suppression outliers
 - 6.6 Vérification de la normalité de la variable dépendante
 - 6.7 Summary du dataframe ks_fusion
- 7 EDA
 - 7.1 Graphiques
 - 7.2 Sankey
 - 7.3 Graphique alluvial
 - 7.4 Suppression des variables temporaires
- 8 Test statistiques
 - 8.1 Langage/Age
 - 8.2 Langage/Genre
 - 8.3 Langage/Education
 - 8.4 Langage/Secteur
 - 8.5 Langage/Continent
 - 8.6 Langage/Salaire
 - 8.7 Suppression dataframe temporaire
- 9 Modèle linéaire généralisé
- 10 Export Donnes
 - 10.1 Export copyboard
 - 10.2 Export csv

1 Librairies

```
library(plyr)
library(tidyverse)
library(scales)
library(ggthemes)
library(finalfit)
library(summarytools)
library(crosstable)
library(flextable)
library(vcd)
library(ggsankey)
library(ggalluvial)
library(ggpubr)
library(nortest)
library(xtable)
library(clipr)
library(extrafont)
loadfonts(device = "win")
```

2 Spécification police et thème

```
theme_set(theme_minimal(base_family = "serif")) # Police Serif
theme_update(axis.line = element_line(color='black')
,
    plot.background = element_blank(),
    panel.grid.major = element_blank(),# Suppression des lignes de grilles principales
    panel.grid.minor = element_blank(),# Suppression des lignes de grilles mineures
    panel.border = element_blank(),# Suppression des lignes de grilles mineures
    panel.border = element_blank(),
    axis.title = element_text(size = 15), # Changement de la taille de police des titres des axes de graphique
    axis.text.x = element_text(size = 12), # Changement de la taille de police des labels de l'axe x
    axis.text.y = element_text(size = 12)) # Changement de la taille de police des labels de l'axe y
```

3 Spécification code couleur

```
# Code couleur pour chaque année et ainsi que pour le jeu de Donnes fusionné si besoin

my_color <- c("#5f4b8b", "#ff6f61", "#0f4c81", "#f5df4d", "#992900")

show_col(my_color, ncol = 1, labels = F)
```


4 Création fonction

```
# Pour transformer les langages en 0 ou 1
transformation_langage <- function(dset, colonne, observation) {
    if_else(dset[, colonne] == observation, 1, 0)
}

# Exploration complexe (fill et facet_wrap) des Donnes
eda_complexe <- function(dataframe, xcol, fill, target_facet) {
    ggplot(data = dataframe, aes({{ xcol }}, fill = {{ fill }})) +
        geom_bar(color = "black", position = "dodge") +
        facet_wrap(vars({{ target_facet }}), scales = "free_y")
}
```

5 Import et préparations des Donnes 5.1 2018

5.1.1 Import année 2018

5.1.2 Préparation année 2018

```
# Selection des variables d'interets
ks_2018 <- ks_2018 %>% select(Q1, Q2, Q3, Q4, Q5, Q9, Q16_Part_1:Q16_Part_16, Annee)
# Transformation des variables
ks 2018 <- ks 2018 %>% mutate(Q1 = case when(Q1 == "Female" ~ "Femme",
              Q1 == "Male" ~ "Homme",
              TRUE ~ Q1).
     Q4 = str\_replace\_all(Q4, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Autre")),
     Q2 = case\_when(Q2 \%in\% c("18-21", "22-24", "25-29") \sim "18-29",
              Q2 %in% c("30-34", "35-39") ~ "30-39",
              Q2 %in% c("40-44", "45-49") ~ "40-49",
              Q2 %in% c("50-54", "55-59") ~ "50-59",
              Q2 %in% c("60-69") ~ "60-69",
              TRUE ~ "70+"),
     Q3 = case_when(Q3 == "United States of America" ~ "U.S.A",
              Q3 == "Iran, Islamic Republic of..." ~ "Iran",
              Q3 == "Hong Kong (S.A.R.)" ~ "Honk Kong",
              Q3 == "United Kingdom of Great Britain and Northern Ireland" ~ "UK",
              Q3 == "United Arab Emirates" ~ "U.A.E",
              Q3 == "Republic of Korea" ~ "South Korea"
              Q3 == "I do not wish to disclose my location" |
               Q3 == "Other" ~ "Inconnu",
              TRUE ~ Q3).
     Q9 = str_replace_all(Q9, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Inconnu")),
     Q9 = case_when(Q9 == "I do not wish to disclose my approximate yearly compensation" ~ "Inconnu",
              Q9 == "$0 ($USD)" |
               Q9 == "$0-999" | Q9 == "0-10,000" |
               Q9 == "5,000-7,499" | Q9 == "4,000-4,999"
               Q9 == "2,000-2,999" | Q9 == "7,500-9,999" |
               Q9 == "3,000-3,999" \mid Q9 == "1,000-1,999" \sim "0-10K",
              Q9 == "10-20,000" | Q9 == "10,000-14,999" |
               Q9 == "15,000-19,999" ~ "10K-20K",
              Q9 == "20-30,000" | Q9 == "20,000-24,999" |
               Q9 == "25,000-29,999" ~ "20K-30K",
              Q9 == "30-40,000" | Q9 == "30,000-39,999" \sim "30K-40K",
              Q9 = "40-50,000" | Q9 = "40,000-49,999" \sim "40K-50K",
              Q9 == "50-60,000" | Q9 == "50,000-59,999" \sim "50K-60K",
              Q9 = "70-80,000" | Q9 = "70,000-79,999" \sim "70K-80K",
              Q9 == "80-90,000" \mid Q9 == "80,000-89,999" \sim "80K-90K",
              Q9 == "90-100,000" \mid Q9 == "90,000-99,999" \sim "90K-100K",
              Q9 == "125-150,000" | Q9 == "100-125,000" |
               Q9 == "150-200,000" | Q9 == "125,000-149,999" |
               Q9 == "100,000-124,999" | Q9 == "150,000-199,999" |
               Q9 == "200-250,000" | Q9 == "200,000-249,999" ~ "100K-250K",
              Q9 == "300,000-500,000" | Q9 == "300,000-499,999" |
               Q9 == "250-300,000" | Q9 == "300-400,000" |
               Q9 = "400-500,000" | Q9 = "250,000-299,999" \sim "250K-500K",
              Q9 == "500,000+" | Q9 == "> $500,000" |
               Q9 = "\$500,000-999,999" \sim "500K +",
              TRUE ~ Q9)) %>% rename(Q2 = Q1, Q1 = Q2, Q6 = Q9)
```

5.1.3 Transformation langage

```
# Tranformation des langages de programmation en 0 ou 1
ks_2018$Q16_Part_1 <- transformation_langage(ks_2018, "Q16_Part_1", "Python")
ks_2018$Q16_Part_2 <- transformation_langage(ks_2018, "Q16_Part_2", "R")
ks_2018$Q16_Part_3 <- transformation_langage(ks_2018, "Q16_Part_3", "SQL")
ks_2018$Q16_Part_4 <- transformation_langage(ks_2018, "Q16_Part_4", "Bash")
ks_2018$Q16_Part_5 <- transformation_langage(ks_2018, "Q16_Part_5", "Java")
ks 2018$Q16 Part 6 <- transformation langage(ks 2018, "Q16 Part 6", "Javascript/Typescript")
ks 2018$Q16 Part 7 <- transformation langage(ks 2018, "Q16 Part 7", "Visual Basic/VBA")
ks_2018$Q16_Part_8 <- transformation_langage(ks_2018, "Q16_Part_8", "C/C++")
ks_2018$Q16_Part_9 <- transformation_langage(ks_2018, "Q16_Part_9", "MATLAB")
ks 2018$Q16 Part 10 <- transformation langage(ks 2018, "Q16 Part 10", "Scala")
ks_2018$Q16_Part_11 <- transformation_langage(ks_2018, "Q16_Part_11", "Julia")
ks_2018$Q16_Part_12 <- transformation_langage(ks_2018, "Q16_Part_12", "Go")
ks_2018$Q16_Part_13 <- transformation_langage(ks_2018, "Q16_Part_13", "C#/.NET")
ks_2018$Q16_Part_14 <- transformation_langage(ks_2018, "Q16_Part_14", "PHP")
ks_2018$Q16_Part_15 <- transformation_langage(ks_2018, "Q16_Part_15", "Ruby")
ks_2018$Q16_Part_16 <- transformation_langage(ks_2018, "Q16_Part_16", "SAS/STATA")
langage <- c("Q16 Part 1", "Q16 Part 2", "Q16 Part 3", "Q16 Part 4", "Q16 Part 5", "Q16 Part 6",
   "Q16_Part_7", "Q16_Part_8", "Q16_Part_9", "Q16_Part_10", "Q16_Part_11", "Q16_Part_12",
   "Q16_Part_13", "Q16_Part_14", "Q16_Part_15", "Q16_Part_16")
ks 2018$Langage <- rowSums(ks 2018[, langage]
ks_2018 <- ks_2018[,!(names(ks_2018) %in% langage)]
rm(langage)
```

5.2 2019

5.2.1 Import année 2019

5.2.2 Préparation année 2019

```
# Selection des variables d'interets
ks_2019 <- ks_2019 %>% select(Q1, Q2, Q3, Q4, Q5, Q10, Q18_Part_1:Q18_Part_10, Annee)
# Transformation des variables
ks 2019 <- ks 2019 %>%
 mutate(Q2 = case_when(Q2 == "Female" ~ "Femme",
              Q2 == "Male" ~ "Homme",
              TRUE ~ Q2).
     Q4 = str\_replace\_all(Q4, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Autre")),
     Q1 = case\_when(Q1 \%in\% c("18-21", "22-24", "25-29") \sim "18-29",
              Q1 %in% c("30-34", "35-39") ~ "30-39",
              Q1 %in% c("40-44", "45-49") ~ "40-49",
              Q1 %in% c("50-54", "55-59") ~ "50-59",
              Q1 %in% c("60-69") ~ "60-69",
              TRUE ~ "70+"),
     Q3 = case_when(Q3 == "United States of America" ~ "U.S.A",
              Q3 == "Iran, Islamic Republic of..." ~ "Iran",
              Q3 == "Hong Kong (S.A.R.)" ~ "Honk Kong",
              Q3 == "United Kingdom of Great Britain and Northern Ireland" ~ "UK",
              Q3 == "United Arab Emirates" ~ "U.A.E",
              Q3 == "Republic of Korea" ~ "South Korea",
              Q3 == "I do not wish to disclose my location" |
              TRUE ~ Q3),
     Q10 = str_replace_all(Q10, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Inconnu")),
     Q10 = case_when(Q10 == "I do not wish to disclose my approximate yearly compensation" ~ "Inconnu",
               Q10 == "$0 ($USD)" |
                Q10 == "$0-999" | Q10 == "0-10,000" |
                Q10 == "5,000-7,499" | Q10 == "4,000-4,999" |
                Q10 == "3,000-3,999" \mid Q10 == "1,000-1,999" \sim "0-10K",
               Q10 == "10-20,000" | Q10 == "10,000-14,999" |
                Q10 == "15,000-19,999" ~ "10K-20K",
               Q10 == "20-30,000" | Q10 == "20,000-24,999" |
               Q10 == "30-40,000" \mid Q10 == "30,000-39,999" \sim "30K-40K",
               Q10 == "40-50,000" | Q10 == "40,000-49,999" \sim "40K-50K",
               Q10 == "50-60,000" | Q10 == "50,000-59,999" ~ "50K-60K",
               Q10 = "60-70,000" \mid Q10 = "60,000-69,999" \sim "60K-70K",
               Q10 = "70-80,000" \mid Q10 = "70,000-79,999" \sim "70K-80K",
               Q10 == "80-90,000" \mid Q10 == "80,000-89,999" \sim "80K-90K",
               Q10 == "90-100,000" \mid Q10 == "90,000-99,999" \sim "90K-100K",
               Q10 == "125-150,000" | Q10 == "100-125,000" |
               Q10 == "150-200,000" | Q10 == "125,000-149,999" |
               Q10 == "100,000-124,999" | Q10 == "150,000-199,999" |
               Q10 == "200-250,000" | Q10 == "200,000-249,999" ~ "100K-250K",
               Q10 == "300,000-500,000" | Q10 == "300,000-499,999" |
               Q10 == "250-300,000" | Q10 == "300-400,000" |
               Q10 == "400-500,000" | Q10 == "250,000-299,999" ~ "250K-500K",
               Q10 == "500,000+" | Q10 == "> $500,000" |
               Q10 == "\$500,000-999,999" \sim "500K +",
               TRUE ~ Q10)) %>% rename(Q6 = Q10)
```

5.2.3 Transformation langage

```
# Tranformation des langages de programmation en 0 ou 1
ks_2019$Q18_Part_1 <- transformation_langage(ks_2019, "Q18_Part_1", "Python")
ks_2019$Q18_Part_2 <- transformation_langage(ks_2019, "Q18_Part_2", "R")
ks_2019$Q18_Part_3 <- transformation_langage(ks_2019, "Q18_Part_3", "SQL")
ks_2019$Q18_Part_4 <- transformation_langage(ks_2019, "Q18_Part_4", "C")
ks_2019$Q18_Part_5 <- transformation_langage(ks_2019, "Q18_Part_5", "C++")
ks 2019$Q18 Part 6 <- transformation langage(ks 2019, "Q18 Part 6", "Java")
ks_2019$Q18_Part_7 <- transformation_langage(ks_2019, "Q18_Part_7", "Javascript")
ks_2019$Q18_Part_8 <- transformation_langage(ks_2019, "Q18_Part_8", "TypeScript")
ks_2019$Q18_Part_9 <- transformation_langage(ks_2019, "Q18_Part_9", "Bash")
ks_2019$Q18_Part_10 <- transformation_langage(ks_2019, "Q18_Part_10", "Matlab")
langage <- c("Q18_Part_1", "Q18_Part_2", "Q18_Part_3", "Q18_Part_4", "Q18_Part_5", "Q18_Part_6",
       "Q18_Part_7", "Q18_Part_8", "Q18_Part_9", "Q18_Part_10")
ks_2019$Langage <- rowSums(ks_2019[, langage]
ks_2019 <- ks_2019[,!(names(ks_2019) %in% langage)]
rm(langage)
```

5.3 2020

5.3.1 Import année 2020

5.3.2 Préparation année 2020

```
# Selection des variables d'interets
ks_2020 <- ks_2020 %>% select(Q1, Q2, Q3, Q4, Q5, Q24, Q7_Part_1:Q7_Part_11, Annee)
# Transformation des variables
ks 2020 <- ks 2020 %>%
 mutate(Q2 = case_when(Q2 == "Woman" ~ "Femme",
              Q2 == "Man" ~ "Homme",
              TRUE ~ Q2).
     Q4 = str\_replace\_all(Q4, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Autre")),
     Q1 = case\_when(Q1 \%in\% c("18-21", "22-24", "25-29") \sim "18-29",
              Q1 %in% c("30-34", "35-39") ~ "30-39",
              Q1 %in% c("40-44", "45-49") ~ "40-49",
              Q1 %in% c("50-54", "55-59") ~ "50-59",
              Q1 %in% c("60-69") ~ "60-69",
              TRUE ~ "70+"),
     Q3 = case_when(Q3 == "United States of America" ~ "U.S.A",
              Q3 == "Iran, Islamic Republic of..." ~ "Iran",
              Q3 == "Hong Kong (S.A.R.)" ~ "Honk Kong",
              Q3 == "United Kingdom of Great Britain and Northern Ireland" ~ "UK",
              Q3 == "United Arab Emirates" ~ "U.A.E",
              Q3 == "Republic of Korea" ~ "South Korea"
              Q3 == "I do not wish to disclose my location" |
              TRUE ~ Q3),
     Q24 = str_replace_all(Q24, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Inconnu")),
     Q24 = case_when(Q24 == "I do not wish to disclose my approximate yearly compensation" ~ "Inconnu",
               Q24 == "$0 ($USD)" |
                Q24 == "$0-999" | Q24 == "0-10,000" |
                Q24 == "5,000-7,499" | Q24 == "4,000-4,999" |
                Q24 == "2,000-2,999" | Q24 == "7,500-9,999" |
                Q24 == "3,000-3,999" | Q24 == "1,000-1,999" ~ "0-10K",
               Q24 == "10-20,000" | Q24 == "10,000-14,999" |
                Q24 == "15,000-19,999" ~ "10K-20K",
               Q24 == "20-30,000" | Q24 == "20,000-24,999" |
                Q24 == "25,000-29,999" ~ "20K-30K",
               Q24 == "30-40,000" | Q24 == "30,000-39,999" ~ "30K-40K",
               Q24 == "40-50,000" | Q24 == "40,000-49,999" \sim "40K-50K",
               Q24 == "50-60,000" | Q24 == "50,000-59,999" ~ "50K-60K",
               Q24 == "60-70,000" \mid Q24 == "60,000-69,999" \sim "60K-70K",
               Q24 == "70-80,000" | Q24 == "70,000-79,999" ~ "70K-80K",
               Q24 == "80-90,000" | Q24 == "80,000-89,999" ~ "80K-90K",
               Q24 == "90-100,000" \mid Q24 == "90,000-99,999" \sim "90K-100K",
               Q24 == "125-150,000" | Q24 == "100-125,000"
               Q24 == "150-200,000" | Q24 == "125,000-149,999" |
               Q24 == "100,000-124,999" | Q24 == "150,000-199,999" |
               Q24 == "200-250,000" | Q24 == "200,000-249,999" ~ "100K-250K",
              Q24 == "300,000-500,000" | Q24 == "300,000-499,999" |
               Q24 == "250-300,000" | Q24 == "300-400,000" |
               Q24 == "400-500,000" | Q24 == "250,000-299,999" \sim "250K-500K",
              Q24 == "500,000+" | Q24 == "> $500,000" |
               Q24 == "\$500,000-999,999" \mid Q24 == ">\$1,000,000" \sim "500K +",
               TRUE ~ Q24))%>% rename(Q6 = Q24)
```

5.3.3 Transformation langage

```
# Tranformation des langages de programmation en 0 ou 1
ks_2020$Q7_Part_1 <- transformation_langage(ks_2020, "Q7_Part_1", "Python")
ks_2020$Q7_Part_2 <- transformation_langage(ks_2020, "Q7_Part_2", "R")
ks_2020$Q7_Part_3 <- transformation_langage(ks_2020, "Q7_Part_3", "SQL")
ks_2020$Q7_Part_4 <- transformation_langage(ks_2020, "Q7_Part_4", "C")
ks_2020$Q7_Part_5 <- transformation_langage(ks_2020, "Q7_Part_5", "C++")
ks 2020$Q7 Part 6 <- transformation langage(ks 2020, "Q7 Part 6", "Java")
ks_2020$Q7_Part_7 <- transformation_langage(ks_2020, "Q7_Part_7", "Javascript")
ks_2020$Q7_Part_8 <- transformation_langage(ks_2020, "Q7_Part_8", "Julia")
ks_2020$Q7_Part_9 <- transformation_langage(ks_2020, "Q7_Part_9", "Swift")
ks 2020$Q7 Part 10 <- transformation langage(ks 2020, "Q7 Part 10", "Bash")
ks_2020$Q7_Part_11 <- transformation_langage(ks_2020, "Q7_Part_11", "Matlab")
langage <- c("Q7_Part_1", "Q7_Part_2", "Q7_Part_3", "Q7_Part_4", "Q7_Part_5", "Q7_Part_6",
        "Q7_Part_7", "Q7_Part_8", "Q7_Part_9", "Q7_Part_10", "Q7_Part_11")
ks_2020$Langage <- rowSums(ks_2020[, langage]
ks_2020 <- ks_2020[,!(names(ks_2020) %in% langage)]
rm(langage)
```

5.4 2021

5.4.1 Import année 2021

5.4.2 Préparation année 2021

```
# Selection des variables d'interets
ks_2021 <- ks_2021 %>% select(Q1, Q2, Q3, Q4, Q5, Q25, Q7_Part_1:Q7_Part_11, Annee)
# Transformation des variables
ks_2021 <- ks_2021 %>%
 mutate(Q2 = case_when(Q2 == "Woman" ~ "Femme",
              Q2 == "Man" ~ "Homme",
              TRUE ~ Q2).
     Q4 = str\_replace\_all(Q4, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Autre")),
     Q1 = case\_when(Q1 \%in\% c("18-21", "22-24", "25-29") \sim "18-29",
              Q1 %in% c("30-34", "35-39") ~ "30-39",
              Q1 %in% c("40-44", "45-49") ~ "40-49",
              Q1 %in% c("50-54", "55-59") ~ "50-59",
              Q1 %in% c("60-69") ~ "60-69",
              TRUE ~ "70+"),
     Q3 = case_when(Q3 == "United States of America" ~ "U.S.A",
              Q3 == "Iran, Islamic Republic of..." ~ "Iran",
              Q3 == "Hong Kong (S.A.R.)" ~ "Honk Kong",
              Q3 == "United Kingdom of Great Britain and Northern Ireland" ~ "UK",
              Q3 == "United Arab Emirates" ~ "U.A.E",
              Q3 == "Republic of Korea" ~ "South Korea"
              Q3 == "I do not wish to disclose my location" |
              TRUE ~ Q3),
     Q25 = str_replace_all(Q25, c("(^Some.^*)|(^No.^*)|(^I.^*)" = "Inconnu")),
     Q25 = case_when(Q25 == "I do not wish to disclose my approximate yearly compensation" ~ "Inconnu",
               Q25 == "$0 ($USD)" |
                Q25 == "$0-999" | Q25 == "0-10,000" |
                Q25 == "5,000-7,499" | Q25 == "4,000-4,999" |
               Q25 == "10-20,000" | Q25 == "10,000-14,999" |
                Q25 == "15,000-19,999" ~ "10K-20K",
               Q25 == "20-30,000" | Q25 == "20,000-24,999" |
                Q25 == "25,000-29,999" ~ "20K-30K",
               Q25 == "30-40,000" | Q25 == "30,000-39,999" ~ "30K-40K",
               Q25 == "40-50,000" \mid Q25 == "40,000-49,999" \sim "40K-50K",
               Q25 == "50-60,000" | Q25 == "50,000-59,999" ~ "50K-60K",
               Q25 == "60-70,000" \mid Q25 == "60,000-69,999" \sim "60K-70K",
               Q25 == "70-80,000" | Q25 == "70,000-79,999" ~ "70K-80K",
               Q25 == "80-90,000" | Q25 == "80,000-89,999" ~ "80K-90K",
               Q25 == "90-100,000" | Q25 == "90,000-99,999" ~ "90K-100K",
               Q25 == "125-150,000" | Q25 == "100-125,000" | Q25 == "100,000-124,999" |
                Q25 == "150-200,000" | Q25 == "125,000-149,999" | Q25 == "200,000-249,999" |
                Q25 == "100,000-125,999" | Q25 == "150,000-199,999" |
                Q25 == "200-250,000" | Q25 == "200,000-259,999" ~ "100K-250K",
               Q25 == "300,000-500,000" | Q25 == "300,000-499,999" |
                Q25 == "250-300,000" | Q25 == "300-400,000" |
                Q25 == "400-500,000" | Q25 == "250,000-299,999" ~ "250K-500K",
               Q25 == "500,000+" | Q25 == "> $500,000" |
                Q25 == "\$500,000-999,999" \mid Q25 == ">\$1,000,000" \sim "500K +",
               TRUE ~ Q25)) %>% rename(Q6 = Q25)
```

5.4.3 Transformation langage

```
# Tranformation des langages de programmation en 0 ou 1
ks_2021$Q7_Part_1 <- transformation_langage(ks_2021, "Q7_Part_1", "Python")
ks_2021$Q7_Part_2 <- transformation_langage(ks_2021, "Q7_Part_2", "R")
ks_2021$Q7_Part_3 <- transformation_langage(ks_2021, "Q7_Part_3", "SQL")
ks_2021$Q7_Part_4 <- transformation_langage(ks_2021, "Q7_Part_4", "C")
ks_2021$Q7_Part_5 <- transformation_langage(ks_2021, "Q7_Part_5", "C++")
ks 2021$Q7 Part 6 <- transformation langage(ks 2021, "Q7 Part 6", "Java")
ks 2021$Q7 Part 7 <- transformation langage(ks 2021, "Q7 Part 7", "Javascript")
ks_2021$Q7_Part_8 <- transformation_langage(ks_2021, "Q7_Part_8", "Julia")
ks 2021$Q7 Part 9 <- transformation langage(ks 2021, "Q7 Part 9", "Swift")
ks 2021$Q7 Part 10 <- transformation langage(ks 2021, "Q7 Part 10", "Bash")
ks_2021$Q7_Part_11 <- transformation_langage(ks_2021, "Q7_Part_11", "Matlab")
langage <- c("Q7_Part_1", "Q7_Part_2", "Q7_Part_3", "Q7_Part_4", "Q7_Part_5", "Q7_Part_6",
       "Q7_Part_7", "Q7_Part_8", "Q7_Part_9", "Q7_Part_10", "Q7_Part_11")
ks 2021$Langage <- rowSums(ks 2021[, langage]
ks_2021 <- ks_2021[,!(names(ks_2021) %in% langage)]
rm(langage)
```

6 Fusion des jeux de Donnes

```
# Fusion des data frames et renommage des questions/varibales cible
ks_fusion <- rbind.fill(ks_2018, ks_2019, ks_2020, ks_2021) %>%
select("Annee", everything()) %>% filter(Q1 != "" & Q2 != "" & Q3 != "" &
Q4 != "" & Q5 != "" & Q6 != "") %>%
rename(Age = Q1, Genre = Q2, Pays = Q3, Education = Q4, Secteur = Q5, Salaire = Q6)
```

6.1 Création des variables temporaires des continents

6.2 Transformations des Donnes

```
# Transformation des variables
ks_fusion <- ks_fusion %>% mutate(Education = case_when(Education == "Bachelor's degree" ~ "Licence",
                                  Education == "Master's degree" ~ "Master",
                                  Education == "Doctoral degree" ~ "Doctorat",
                                  Education == "Professional degree" ~ "Doctorat pro",
                                  Education == "Professional doctorate" ~ "Diplome pro",
                                  TRUE ~ "Autre").
                    Secteur = case_when(Secteur == "Software Engineer" |
                                     Secteur == "Engineering (non-computer focused)" |
                                     Secteur == "Computer science (software engineering, etc.)" ~ "Ingenierie",
                                     Secteur == "Mathematics or statistics" | Secteur == "Statistician" ~ "Maths/Stats",
                                     Secteur == "Physics or astronomy" ~ "Phys. Astro.",
                                     Secteur == "Information technology, networking, or system administration" ~ "Informatique",
                                     Secteur == "A business discipline (accounting, economics, finance, etc.)" ~ "Business",
                                     Secteur == "Environmental science or geology" ~ "Sc. de la Terre",
                                     Secteur == "Medical or life sciences (biology, chemistry, medicine, etc.)" ~ "Sc. Vie/Médicale",
                                     Secteur == "Social sciences (anthropology, psychology, sociology, etc.)" ~ "Sc. Sociales",
                                     Secteur == "Humanities (history, literature, philosophy, etc.)" ~ "Sc. Humaines",
                                     Secteur == "Data Scientist" | Secteur == "Data Analyst" |
                                     Secteur == "Business Analyst" | Secteur == "Data Engineer" |
                                     Secteur == "DBA/Database Engineer" |
                                     Secteur == "Machine Learning Engineer" ~ "Sc. des Donnes",
                                    Secteur == "Product/Project Manager" |
                                    Secteur == "Program/Project Manager" |
                                     Secteur == "Product Manager" ~ "Manageur",
                                    TRUE ~ "Autre"),
                   Continent = case_when(Pays %in% europe ~ "Europe",
                                 Pays %in% asia ~ "Asie",
                                 Pays %in% northamericas ~ "Amerique du Nord",
                                 Pays %in% southamericas ~ "Amerique du Sud",
                                 Pays %in% africa ~ "Afrique",
                                 Pays %in% oceania ~ "Oceanie",
                                 Pays %in% middleeast ~ "Moyen Orient",
                                 TRUE ~ "Inconnu"),
                    Genre = case_when(Genre == "Prefer not to say" | Genre == "Nonbinary" |
                                 Genre == "Prefer to self-describe" ~ "Autres",
                               TRUE ~ Genre))
ks fusion$Genre <- as factor(ks fusion$Genre)
```

6.3 Suppression des dataframes/variables intermédiaires

```
rm(europe, asia, middleeast, northamericas, southamericas, oceania, africa, ks_2018,
ks_2018_question, ks_2019, ks_2019_question, ks_2020, ks_2020_question, ks_2021,
ks_2021_question)
```

6.4 Detection outliers

```
ks_fusion %>%
ggplot(aes(Langage)) +
geom_boxplot() +
scale_x_continuous(breaks = seq(0,20,1)) +
labs(x = "\nNombre de langage",
    y = "",
    subtitle = "Année 2018-2021") +
theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10),
    legend.position = c(.85, .86),
    legend.background = element_rect(fill = "transparent"))
```


6.5 Suppression outliers

ks_fusion <- ks_fusion %>% filter(Langage < 7)

6.6 Vérification de la normalité de la variable dépendante

ad.test(ks_fusion\$Langage)

```
##
## Anderson-Darling normality test
##
## data: ks_fusion$Langage
## A = 1283.5, p-value < 2.2e-16
```

ggqqplot(ks_fusion\$Langage)

6.7 Summary du dataframe ks_fusion

```
print(dfSummary(ks_fusion,
    varnumbers = FALSE,
    valid.col = FALSE,
    graph.magnif = 0.76),
    method = 'render')
```

Data Frame Summary

ks_fusion

Dimensions: 57605 x 9 **Duplicates**: 18344

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
Annee [numeric]	Mean (sd): 2019.4 (1.2) $min \le med \le max$: $2018 \le 2019 \le 2021$ IQR (CV): 3 (0)	2018: 19434 (33.7%) 2019: 12361 (21.5%) 2020: 10615 (18.4%) 2021: 15195 (26.4%)		0 (0.0%)
Genre [factor]	 Homme Femme Autres 	47571 (82.6%) 9117 (15.8%) 917 (1.6%)		0 (0.0%)

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
Age [character]	1. 18-29 2. 30-39 3. 40-49 4. 50-59 5. 60-69 6. 70+	26922 (46.7%) 17249 (29.9%) 8200 (14.2%) 3739 (6.5%) 1221 (2.1%) 274 (0.5%)		0 (0.0%)
Pays [character]	 India U.S.A Inconnu Brazil China Russia Japan UK Germany Spain 58 others 	11457 (19.9%) 9460 (16.4%) 3425 (5.9%) 2132 (3.7%) 2080 (3.6%) 1986 (3.4%) 1975 (3.4%) 1632 (2.8%) 1546 (2.7%) 1283 (2.2%) 20629 (35.8%)		0 (0.0%)
Education [character]	 Autre Diplome pro Doctorat Doctorat pro Licence Master 	3657 (6.3%) 283 (0.5%) 8915 (15.5%) 1408 (2.4%) 16791 (29.1%) 26551 (46.1%)		0 (0.0%)
Secteur [character]	 Sc. des Donnes Ingenierie Autre Maths/Stats Manageur Business Phys. Astro. Informatique Sc. Vie/Médicale Sc. Sociales others 	20223 (35.1%) 16996 (29.5%) 9681 (16.8%) 3338 (5.8%) 2293 (4.0%) 1551 (2.7%) 967 (1.7%) 859 (1.5%) 763 (1.3%) 476 (0.8%) 458 (0.8%)		0 (0.0%)

Variable	Stats / Values	Freqs (% of Valid)	Graph	Missing
Salaire [character]	1. 0-10K 2. 100K-250K 3. 10K-20K 4. Inconnu 5. 20K-30K 6. 30K-40K 7. 40K-50K 8. 50K-60K 9. 60K-70K 10. 70K-80K [4 others]	19521 (33.9%) 6728 (11.7%) 5831 (10.1%) 4555 (7.9%) 4119 (7.2%) 3066 (5.3%) 2858 (5.0%) 2783 (4.8%) 2235 (3.9%) 2025 (3.5%) 3884 (6.7%)		0 (0.0%)
Langage [numeric]	Mean (sd): 2.2 (1.5) min \leq med \leq max: $0 \leq 2 \leq 6$ IQR (CV): 2 (0.7)	0: 7265 (12.6%) 1: 11966 (20.8%) 2: 15425 (26.8%) 3: 12421 (21.6%) 4: 6160 (10.7%) 5: 3021 (5.2%) 6: 1347 (2.3%)		0 (0.0%)
Continent [character]	 Afrique Amerique du Nord Amerique du Sud Asie Europe Inconnu Moyen Orient Oceanie 	2884 (5.0%) 11319 (19.6%) 3641 (6.3%) 21430 (37.2%) 11309 (19.6%) 4252 (7.4%) 1843 (3.2%) 927 (1.6%)		0 (0.0%)

Generated by summarytools 1.0.1 (R version 4.0.1) 2022-09-07

7 EDA

7.1 Graphiques

7.1.1 EDA simple

7.1.2 Distribution Langage avec écart type

```
# Distribution de la variable cible (Langage) avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_langage_annee <- ks_fusion %>% count(Annee, Langage) %>% rename(total_langage_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_langage_annee, by = "Annee") %>%
 mutate(freq = total_langage_annee / total_annee,
     mean = mean(freq, na.rm = TRUE),
     sd = sd(freq, na.rm = TRUE))
temp_count_full_test <- ks_fusion %>% count(Langage) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Langage")
temp_count %>%
 ddply(~Langage, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Langage, mean)) +
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2.5) +
 scale_x_continuous(breaks = seq(0, 20, 1)) +
 scale_y_continuous(labels = percent_format()) +
 labs(x = "Nombre du total de langages utilisés",
    y = "Pourcentage des répondants") +
 theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


7.1.3 Distribution Genre avec écart type

```
# Distribution de la variable Genre avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Genre_annee <- ks_fusion %>% count(Annee, Genre) %>% rename(total_Genre_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Genre_annee, by = "Annee") %>%
 mutate(freq = total_Genre_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Genre) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Genre")
temp_count %>%
 ddply(~Genre, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Genre, mean))
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom\_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2.5) +
 scale_y_continuous(labels = percent_format()) +
 labs(x = "Genre des répondants",
    y = "Pourcentage des répondants") +
 theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


7.1.4 Distribution Age avec écart type

```
# Distribution de la variable Age avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Age_annee <- ks_fusion %>% count(Annee, Age) %>% rename(total_Age_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Age_annee, by = "Annee") %>%
 mutate(freq = total_Age_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Age) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Age")
temp_count %>%
 ddply(~Age, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Age, mean))
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2.5) +
 scale_y_continuous(labels = percent_format()) +
 labs(x = "Tranches d'âge des répondants",
    y = "Pourcentage des répondants") +
 theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


7.1.5 Distribution Continent avec écart type

```
# Distribution de la variable Continent avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Continent_annee <- ks_fusion %>% count(Annee, Continent) %>% rename(total_Continent_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Continent_annee, by = "Annee") %>%
 mutate(freq = total_Continent_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Continent) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Continent")
temp_count %>%
 ddply(~Continent, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Continent, mean))
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom\_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.55) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2.5) +
 scale_y_continuous(labels = percent_format()) +
 labs(x = "Continent de résidence des répondants",
    y = "Pourcentage des répondants") +
 theme(axis.text.x = element_text(angle = 45, vjust = 0.55),
    axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


Continent de résidence des répondants

7.1.6 Distribution Education avec écart type

```
# Distribution de la variable Education avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Education_annee <- ks_fusion %>% count(Annee, Education) %>% rename(total_Education_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Education_annee, by = "Annee") %>%
 mutate(freq = total_Education_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Education) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Education")
temp_count %>%
 ddply(~Education, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Education, mean)) +
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2.5) +
 scale_y_continuous(labels = percent_format()) +
 labs(x = "Niveau de scolarité des répondants",
    y = "PourcentEducation des répondants") +
 theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


7.1.7 Distribution Secteur avec écart type

```
# Distribution de la variable Secteur avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Secteur_annee <- ks_fusion %>% count(Annee, Secteur) %>% rename(total_Secteur_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Secteur_annee, by = "Annee") %>%
 mutate(freq = total_Secteur_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Secteur) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Secteur")
temp_count %>%
 ddply(~Secteur, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Secteur, mean)) +
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2,
       label.padding = unit(0.15, "lines")) +
 scale y continuous(labels = percent format()) +
 labs(x = "Secteur d'activité des répondants",
    y = "Pourcentage des répondants") +
 theme(axis.text.x = element_text(angle = 45, vjust = 0.6),
    axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


Secteur d'activité des répondants

7.1.8 Distribution Salaire avec écart type

```
# Distribution de la variable Salaire avec écart-type
temp_count_annee <- ks_fusion %>% count(Annee) %>% rename(total_annee = n)
temp_count_Salaire_annee <- ks_fusion %>% count(Annee, Salaire) %>% rename(total_Salaire_annee = n)
temp_count_full <- full_join(temp_count_annee, temp_count_Salaire_annee, by = "Annee") %>%
 mutate(freq = total_Salaire_annee / total_annee)
temp_count_full_test <- ks_fusion %>% count(Salaire) %>% rename(Count = n)
temp_count <- full_join(temp_count_full, temp_count_full_test, by = "Salaire")
temp_count %>%
 ddply(~Salaire, summarise, mean = mean(freq, na.rm = TRUE), sd = sd(freq, na.rm = TRUE)) %>%
 ggplot(aes(Salaire, mean)) +
 geom_col(fill = my_color[5], color = "black", width = 0.8) +
 geom_errorbar(aes(ymin = mean, ymax = mean + sd), width = 0.6) +
 geom_label(aes(label = label_percent(accuracy = 0.1)(mean)), size = 2,
       label.padding = unit(0.15, "lines")) +
 scale y continuous(labels = percent format()) +
 labs(x = "Franges des salaires des répondants",
    y = "Pourcentage des répondants") +
 theme(axis.text.x = element_text(angle = 45, vjust = 0.6),
    axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10))
```


Franges des salaires des répondants

7.1.9 EDA complexe

```
# Permet de visualiser des combinaisons de variables
eda_complexe(ks_fusion, Langage, Salaire, Continent) +
scale_x_continuous(breaks = seq(0, 20, 1)) +
labs(x = "\nTotal\n",
    y = "Total\n",
    subtitle = "Année 2018-2021") +
theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10),
    legend.background = element_rect(fill = "transparent"),
    legend.title = element_text(size = 8),
    legend.text = element_text(size = 8),
    legend.position = "right")
```


Total langage utilisé

```
eda_complexe(ks_fusion, Langage, Education, Continent) +
scale_x_continuous(breaks = seq(0, 20, 1)) +
labs(x = "Total langage utilisé",
    y = "Total",
    subtitle = "Année 2018-2021") +
theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10),
    legend.background = element_rect(fill = "transparent"),
    legend.title = element_text(size = 8),
    legend.text = element_text(size = 8),
    legend.position = "right")
```



```
eda_complexe(ks_fusion, Langage, Secteur, Continent) +
scale_x_continuous(breaks = seq(0, 20, 1)) +
labs(x = "Total langage utilisé",
    y = "Total",
    subtitle = "Année 2018-2021") +
theme(axis.text.y = element_text(angle = 0),
    plot.caption = element_text(size = 10),
    legend.background = element_rect(fill = "transparent"),
    legend.title = element_text(size = 8),
    legend.text = element_text(size = 8),
    legend.key.size = unit(0.6, "cm"))
```


7.2 Sankey

Langage Genre Age Continent Education Secteur Salaire

7.3 Graphique alluvial

```
# Permet de voir le cheminement de la variable cible (Langage) A TRAVERS l'ensemble des autres variables
ks_fusion_copy <- ks_fusion
ks_fusion_copy$Langage <- as_factor(ks_fusion_copy$Langage)
sankey <- ks_fusion_copy %>%
 select(Langage, Genre, Age, Continent, Education, Secteur, Salaire) %>%
 drop_na() %>%
 group_by(Langage, Genre, Age, Continent, Education, Secteur, Salaire) %>%
 summarize(Count = n()) %>%
 ungroup()
ggplot(sankey, aes(y = Count, axis1 = Langage, axis2 = Genre, axis3 = Age, axis4 = Continent,
           axis5 = Education, axis6 = Secteur, axis7 = Salaire)) +
 geom\_alluvium(aes(fill = Langage), curve\_type = "sigmoid", width = 1/12) +
 geom_stratum(width = 1/12, fill = "black", color = "grey") +
 geom_label(stat = "stratum", size = 2, aes(label = after_stat(stratum))) +
 scale_x_discrete(limits = c("Langage", "Genre", "Age", "Continent", "Education", "Secteur", "Salaire"),
           expand = c(.11, .01)) +
 scale_fill_brewer(palette = "Set1") +
 theme(legend.position = "none") +
 labs(x = "",
   y = "",
fill = "")
```


rm(ks_fusion_copy)

7.4 Suppression des variables temporaires

rm(temp_count, temp_count_Age_annee, temp_count_annee, temp_count_Continent_annee, temp_count_Education_annee, temp_count_full, temp_count_states.

8 Test statistiques

8.1 Langage/Age

8.1.1 Data frame temporaire

temp_la <- ks_fusion %>% select(Age, Langage)

8.1.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_la, c(Age, Langage),

by = Age, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

Δ				Langage)			T . 1 . 1
Age	0	1	2	3	4	5	6	Total
	3727	5486	7247	5674	2796	1372	620	26922
18-29	13.8 %	20.4 %	26.9 %	21.1 %	10.4 %	5.1 %	2.3 %	100 %
	51.3 %	45.8 %	47 %	45.7 %	45.4 %	45.4 %	46 %	46.7 %
	1912	3650	4848	3901	1845	762	331	17249
30-39	11.1 %	21.2 %	28.1 %	22.6 %	10.7 %	4.4 %	1.9 %	100 %
	26.3 %	30.5 %	31.4 %	31.4 %	30 %	25.2 %	24.6 %	29.9 %
	932	1692	2105	1781	935	526	229	8200
40-49	11.4 %	20.6 %	25.7 %	21.7 %	11.4 %	6.4 %	2.8 %	100 %
	12.8 %	14.1 %	13.6 %	14.3 %	15.2 %	17.4 %	17 %	14.2 %
	474	779	899	765	418	278	126	3739
50-59	12.7 %	20.8 %	24 %	20.5 %	11.2 %	7.4 %	3.4 %	100 %
	6.5 %	6.5 %	5.8 %	6.2 %	6.8 %	9.2 %	9.4 %	6.5 %
	161	285	271	262	137	71	34	1221
60-69	13.2 %	23.3 %	22.2 %	21.5 %	11.2 %	5.8 %	2.8 %	100 %
	2.2 %	2.4 %	1.8 %	2.1 %	2.2 %	2.4 %	2.5 %	2.1 %
	59	74	55	38	29	12	7	274
70+	21.5 %	27 %	20.1 %	13.9 %	10.6 %	4.4 %	2.6 %	100 %
	0.8 %	0.6 %	0.4 %	0.3 %	0.5 %	0.4 %	0.5 %	0.5 %
	7265	11966	15425	12421	6160	3021	1347	57605
Total	12.6 %	20.8 %	26.8 %	21.6 %	10.7 %	5.2 %	2.3 %	100 %
	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

 χ^2 =292.104 · df=30 · Cramer's V=0.032 · p=0.000

observed values

% within Age

% within Langage

GLM mod_la <- glm(Langage ~ Age, temp_la, family = "poisson") anova(mod_la)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Age	5	83.13416	57599	66401.22

summary(mod_la)

```
##
## Call:
## glm(formula = Langage ~ Age, family = "poisson", data = temp_la)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1560 -0.8969 -0.1255 0.5231 2.3815
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.780620 0.004125 189.235 < 2e-16 ***
## Age50-59 0.062735 0.011493 5.458 4.80e-08 ***
## Age60-69 0.020342 0.019613 1.037 0.29965
## Age70+ -0.147641 0.044215 -3.339 0.00084 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
   Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 66401 on 57599 degrees of freedom
## AIC: 203382
##
## Number of Fisher Scoring iterations: 5
```

8.2 Langage/Genre

8.2.1 Data frame temporaire

temp_lg <- ks_fusion %>% select(Genre, Langage)

8.2.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_lg, c(Genre, Langage),

by = Genre, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

```
# Table de contingence
temp_lg %>%
sjPlot::sjtab(fun = "xtab", var.labels = c("Genre", "Langage"), show.row.prc = TRUE,
show.col.prc = TRUE, show.summary = TRUE, show.legend = TRUE)
```

	Langage							
Genre	0	1	2	3	4	5	6	Total
	5565	9924	12802	10329	5255	2556	1140	47571
Homme	11.7 %	20.9 %	26.9 %	21.7 %	11 %	5.4 %	2.4 %	100 %
	76.6 %	82.9 %	83 %	83.2 %	85.3 %	84.6 %	84.6 %	82.6 %
	1555	1880	2418	1904	785	400	175	9117
Femme	17.1 %	20.6 %	26.5 %	20.9 %	8.6 %	4.4 %	1.9 %	100 %
	21.4 %	15.7 %	15.7 %	15.3 %	12.7 %	13.2 %	13 %	15.8 %

```
120
                                                     32
         145
                162
                       205
                              188
                                             65
                                                           917
        15.8 % 17.7 % 22.4 % 20.5 % 13.1 %
                                           7.1 %
                                                   3.5 %
Autres
                                                          100 %
               1.4 %
                      1.3 %
                             1.5 %
                                     1.9 %
                                            2.2 %
                                                   2.4 %
         2 %
                                                          1.6 %
        7265
               11966
                     15425
                             12421
                                     6160
                                            3021
                                                   1347
                                                          57605
Total
        12.6 % 20.8 % 26.8 % 21.6 % 10.7 % 5.2 %
                                                   2.3 %
                                                          100 %
                                           100 %
        100 %
              100 % 100 % 100 %
                                    100 %
                                                  100 %
                                                          100 %
```

 χ^2 =276.803 · df=12 · Cramer's V=0.049 · p=0.000

observed values

% within Genre

% within Langage

```
# Test chi2 et V de Cramer chisq.test(table(temp_lg$Genre, temp_lg$Langage))
```

```
## Pearson's Chi-squared test
##
## data: table(temp_lg$Genre, temp_lg$Langage)
## X-squared = 276.8, df = 12, p-value < 2.2e-16
```

$questionr::cramer.v(table(temp_lg\$Genre, temp_lg\$Langage))$

[1] 0.04901628

```
# Mosaic plot mosaic(^{\sim} Genre + Langage, data = temp_lg, shade = TRUE, legend = TRUE, spacing = spacing_equal(c(0.5, 0.5)), labeling = labeling_border(rot_labels=c(0,0,0,0), just_labels=c("left","right"), offset_varnames = c(0, 0, 0, 3)), margins = c(0, 0, 0, 3))
```


GLM mod_lg <- glm(Langage ~ Genre, temp_lg, family = "poisson") anova(mod_lg)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Genre	2	160.694	57602	66323.66

summary(mod_lg)

```
##
## Call:
## glm(formula = Langage ~ Genre, family = "poisson", data = temp_lg)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1569 -0.9386 -0.1716 0.4737 2.2400
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.812053 0.003055 265.822 <2e-16 ***
## GenreFemme -0.098065 0.007940 -12.351 <2e-16 ***
## GenreAutres 0.032124 0.021867 1.469 0.142
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
    Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 66324 on 57602 degrees of freedom
## AIC: 203298
##
## Number of Fisher Scoring iterations: 5
```

8.3 Langage/Education

8.3.1 Data frame temporaire

temp_le <- ks_fusion %>% select(Education, Langage)

8.3.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_le, c(Education, Langage),

by = Education, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

	Langage							
Education	0	1	2	3	4	5	6	Total
	703	800	852	715	321	178	88	3657
Autre	19.2 %	21.9 %	23.3 %	19.6 %	8.8 %	4.9 %	2.4 %	100 %
	9.7 %	6.7 %	5.5 %	5.8 %	5.2 %	5.9 %	6.5 %	6.3 %
	18	89	58	55	40	12	11	283
Diplome pro	6.4 %	31.4 %	20.5 %	19.4 %	14.1 %	4.2 %	3.9 %	100 %
	0.2 %	0.7 %	0.4 %	0.4 %	0.6 %	0.4 %	0.8 %	0.5 %

	822	2032	2399	1939	1012	485	226	8915
Doctorat	9.2 %	22.8 %	26.9 %	21.7 %	11.4 %	5.4 %	2.5 %	100 %
	11.3 %	17 %	15.6 %	15.6 %	16.4 %	16.1 %	16.8 %	15.5 %
	217	282	323	292	160	98	36	1408
Doctorat pro	15.4 %	20 %	22.9 %	20.7 %	11.4 %	7 %	2.6 %	100 %
	3 %	2.4 %	2.1 %	2.4 %	2.6 %	3.2 %	2.7 %	2.4 %
	2385	3453	4521	3453	1733	870	376	16791
Licence	14.2 %	20.6 %	26.9 %	20.6 %	10.3 %	5.2 %	2.2 %	100 %
	32.8 %	28.9 %	29.3 %	27.8 %	28.1 %	28.8 %	27.9 %	29.1 %
	3120	5310	7272	5967	2894	1378	610	26551
Master	11.8 %	20 %	27.4 %	22.5 %	10.9 %	5.2 %	2.3 %	100 %
	42.9 %	44.4 %	47.1 %	48 %	47 %	45.6 %	45.3 %	46.1 %
	7265	11966	15425	12421	6160	3021	1347	57605
Total	12.6 %	20.8 %	26.8 %	21.6 %	10.7 %	5.2 %	2.3 %	100 %
	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

 χ^2 =415.988 · df=30 · Cramer's V=0.038 · p=0.000

observed values

% within Education

% within Langage

```
# Test chi2 et V de Cramer chisq.test(table(temp_le$Education, temp_le$Langage))
```

```
## Pearson's Chi-squared test
##
## data: table(temp_le$Education, temp_le$Langage)
## X-squared = 415.99, df = 30, p-value < 2.2e-16
```

questionr::cramer.v(table(temp_le\$Education, temp_le\$Langage))

[1] 0.03800364

```
# Mosaic plot mosaic(\sim Education + Langage, data = temp_le, shade = TRUE, spacing = spacing_equal(c(0.5, 0.5)), labeling = labeling_border(rot_labels=c(0,0,0,0), just_labels=c("left", "right"), offset_varnames = c(0, 0, 0, 3)), margins = c(0, 0, 0, 3))
```


GLM mod_le <- glm(Langage ~ Education, temp_le, family = "poisson") anova(mod_le)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Education	5	135.75	57599	66348.60

summary(mod_le)

```
##
## Call:
## glm(formula = Langage ~ Education, family = "poisson", data = temp_le)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.1532 -0.9402 -0.1734 0.5342 2.2678
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.69819 0.01166 59.862 < 2e-16 ***
## EducationDiplome pro 0.14252 0.04075 3.498 0.000469 ***
## EducationDoctorat 0.13332 0.01360 9.806 < 2e-16 ***
## EducationLicence 0.07531 0.01279 5.890 3.87e-09 ***
## EducationMaster 0.11510 0.01236 9.313 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
    Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 66349 on 57599 degrees of freedom
## AIC: 203329
##
## Number of Fisher Scoring iterations: 5
```

8.4 Langage/Secteur

8.4.1 Data frame temporaire

temp_lr <- ks_fusion %>% select(Secteur, Langage)

8.4.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_lr, c(Secteur, Langage),

by = Secteur, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

```
# Table de contingence
temp_lr %>%
sjPlot::sjtab(fun = "xtab", var.labels = c("Secteur", "Langage"), show.row.prc = TRUE,
show.col.prc = TRUE, show.summary = TRUE, show.legend = TRUE)
```

0	Langage							Total
Secteur	0	1	2	3	4	5	6	Total
	1573	2770	2444	1616	746	362	170	9681
Autre	16.2 %	28.6 %	25.2 %	16.7 %	7.7 %	3.7 %	1.8 %	100 %
	21.7 %	23.1 %	15.8 %	13 %	12.1 %	12 %	12.6 %	16.8 %
	257	272	406	367	147	75	27	1551
Business	16.6 %	17.5 %	26.2 %	23.7 %	9.5 %	4.8 %	1.7 %	100 %
	3.5 %	2.3 %	2.6 %	3 %	2.4 %	2.5 %	2 %	2.7 %

	148	131	190	184	110	54	42	859
Informatique	17.2 %	15.3 %	22.1 %	21.4 %	12.8 %	6.3 %	4.9 %	100 %
	2 %	1.1 %	1.2 %	1.5 %	1.8 %	1.8 %	3.1 %	1.5 %
	2466	2484	3905	3744	2411	1359	627	16996
Ingenierie	14.5 %	14.6 %	23 %	22 %	14.2 %	8 %	3.7 %	100 %
	33.9 %	20.8 %	25.3 %	30.1 %	39.1 %	45 %	46.5 %	29.5 %
	365	580	557	443	196	116	36	2293
Manageur	15.9 %	25.3 %	24.3 %	19.3 %	8.5 %	5.1 %	1.6 %	100 %
	5 %	4.8 %	3.6 %	3.6 %	3.2 %	3.8 %	2.7 %	4 %
	478	555	866	781	420	167	71	3338
Maths/Stats	14.3 %	16.6 %	25.9 %	23.4 %	12.6 %	5 %	2.1 %	100 %
	6.6 %	4.6 %	5.6 %	6.3 %	6.8 %	5.5 %	5.3 %	5.8 %
	100	168	258	237	123	48	33	967
Phys. Astro.	10.3 %	17.4 %	26.7 %	24.5 %	12.7 %	5 %	3.4 %	100 %
	1.4 %	1.4 %	1.7 %	1.9 %	2 %	1.6 %	2.4 %	1.7 %
	28	43	62	43	28	12	4	220
Sc. de la Terre	12.7 %	19.5 %	28.2 %	19.5 %	12.7 %	5.5 %	1.8 %	100 %
	0.4 %	0.4 %	0.4 %	0.3 %	0.5 %	0.4 %	0.3 %	0.4 %
	1647	4664	6377	4663	1814	754	304	20223
Sc. des Donnes	8.1 %	23.1 %	31.5 %	23.1 %	9 %	3.7 %	1.5 %	100 %
	22.7 %	39 %	41.3 %	37.5 %	29.4 %	25 %	22.6 %	35.1 %
	38	44	60	53	32	9	2	238
Sc. Humaines	16 %	18.5 %	25.2 %	22.3 %	13.4 %	3.8 %	0.8 %	100 %
	0.5 %	0.4 %	0.4 %	0.4 %	0.5 %	0.3 %	0.1 %	0.4 %
	61	96	116	117	55	21	10	476
Sc. Sociales	12.8 %	20.2 %	24.4 %	24.6 %	11.6 %	4.4 %	2.1 %	100 %
	0.8 %	0.8 %	0.8 %	0.9 %	0.9 %	0.7 %	0.7 %	0.8 %
	104	159	184	173	78	44	21	763
Sc. Vie/Médicale	13.6 %	20.8 %	24.1 %	22.7 %	10.2 %	5.8 %	2.8 %	100 %
	1.4 %	1.3 %	1.2 %	1.4 %	1.3 %	1.5 %	1.6 %	1.3 %
	7265	11966	15425	12421	6160	3021	1347	57605
Total	12.6 %	20.8 %	26.8 %	21.6 %	10.7 %	5.2 %	2.3 %	100 %
	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

 $\chi^2 = 2693.015 \cdot df = 66 \cdot Cramer's V = 0.088 \cdot p = 0.000$

observed values % within Secteur % within Langage

```
##
## Pearson's Chi-squared test
##
## data: table(temp_lr$Secteur, temp_lr$Langage)
## X-squared = 2693, df = 66, p-value < 2.2e-16</pre>
```

questionr::cramer.v(table(temp_lr\$Secteur, temp_lr\$Langage))

```
## [1] 0.08827011
```

```
# Mosaic plot mosaic(\sim Secteur + Langage, data = temp_Ir, spacing = spacing_equal(c(0.5, 0.5)), shade = TRUE, legend = TRUE, labeling = labeling_border(rot_labels=c(0,0,0,0), just_labels=c("left","right"), offset_varnames = c(0, 0, 0, 0, 5)), margins = c(0, 0, 0, 4))
```


GLM mod_lr <- glm(Langage ~ Secteur, temp_lr, family = "poisson") anova(mod_lr)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Secteur	11	990.5155	57593	65493.84

```
##
## Call:
## glm(formula = Langage ~ Secteur, family = "poisson", data = temp lr)
## Deviance Residuals:
         1Q Median
                         3Q
## -2.2159 -0.9003 -0.1293 0.5191 2.3732
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.637828 0.007388 86.331 < 2e-16 ***
## SecteurBusiness 0.120220 0.018887 6.365 1.95e-10 ***
## SecteurIngenierie 0.260342 0.008863 29.374 < 2e-16 ***
## SecteurManageur 0.059019 0.016487 3.580 0.000344 ***
## SecteurMaths/Stats 0.181125 0.013663 13.257 < 2e-16 ***
## SecteurPhys. Astro. 0.239449 0.022016 10.876 < 2e-16 ***
## SecteurSc. de la Terre 0.167023 0.045685 3.656 0.000256 ***
## SecteurSc. des Donnes 0.145365 0.008785 16.546 < 2e-16 ***
## SecteurSc. Humaines 0.120383 0.044979 2.676 0.007441 **
## SecteurSc. Sociales 0.166545 0.031535 5.281 1.28e-07 ***
## SecteurSc. Vie/Médicale 0.165648 0.025327 6.540 6.13e-11 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
    Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 65494 on 57593 degrees of freedom
## AIC: 202486
##
## Number of Fisher Scoring iterations: 5
```

8.5 Langage/Continent

8.5.1 Data frame temporaire

temp_lc <- ks_fusion %>% select(Continent, Langage)

temp lc %>%

8.5.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_lc, c(Continent, Langage),

by = Continent, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

Langage

0 1 2 3 4 5 6 Continent Total

sjPlot::sjtab(fun = "xtab", var.labels = c("Continent", "Langage"), show.row.prc = TRUE, show.col.prc = TRUE, show.summary = TRUE, show.legend = TRUE)

-	432	768	728	499	246	126	85	2884
Afrique	15 %	26.6 %	25.2 %	17.3 %	8.5 %	4.4 %	2.9 %	100 %
	5.9 %	6.4 %	4.7 %	4 %	4 %	4.2 %	6.3 %	5 %
	1380	1852	2991	2771	1408	662	255	11319
Amerique du Nord	12.2 %	16.4 %	26.4 %	24.5 %	12.4 %	5.8 %	2.3 %	100 %
	19 %	15.5 %	19.4 %	22.3 %	22.9 %	21.9 %	18.9 %	19.6 %
	379	631	991	845	450	244	101	3641
Amerique du Sud	10.4 %	17.3 %	27.2 %	23.2 %	12.4 %	6.7 %	2.8 %	100 %
	5.2 %	5.3 %	6.4 %	6.8 %	7.3 %	8.1 %	7.5 %	6.3 %
	2903	4874	5751	4381	2043	1005	473	21430
Asie	13.5 %	22.7 %	26.8 %	20.4 %	9.5 %	4.7 %	2.2 %	100 %
	40 %	40.7 %	37.3 %	35.3 %	33.2 %	33.3 %	35.1 %	37.2 %
	1173	2250	3206	2564	1277	595	244	11309
Europe	10.4 %	19.9 %	28.3 %	22.7 %	11.3 %	5.3 %	2.2 %	100 %
	16.1 %	18.8 %	20.8 %	20.6 %	20.7 %	19.7 %	18.1 %	19.6 %
	635	998	1005	801	430	255	128	4252
Inconnu	14.9 %	23.5 %	23.6 %	18.8 %	10.1 %	6 %	3 %	100 %
	8.7 %	8.3 %	6.5 %	6.4 %	7 %	8.4 %	9.5 %	7.4 %
	245	425	511	349	178	93	42	1843
Moyen Orient	13.3 %	23.1 %	27.7 %	18.9 %	9.7 %	5 %	2.3 %	100 %
	3.4 %	3.6 %	3.3 %	2.8 %	2.9 %	3.1 %	3.1 %	3.2 %
	118	168	242	211	128	41	19	927
Oceanie	12.7 %	18.1 %	26.1 %	22.8 %	13.8 %	4.4 %	2 %	100 %
	1.6 %	1.4 %	1.6 %	1.7 %	2.1 %	1.4 %	1.4 %	1.6 %
	7265	11966	15425	12421	6160	3021	1347	57605
Total	12.6 %	20.8 %	26.8 %	21.6 %	10.7 %	5.2 %	2.3 %	100 %
	100 %	100 %	100 %	100 %	100 %	100 %	100 %	100 %

 χ^2 =653.941 · df=42 · Cramer's V=0.043 · p=0.000

observed values

% within Continent

% within Langage

Test chi2 et V de Cramer chisq.test(table(temp_lc\$Continent, temp_lc\$Langage))

```
##
## Pearson's Chi-squared test
##
## data: table(temp_lc$Continent, temp_lc$Langage)
## X-squared = 653.94, df = 42, p-value < 2.2e-16
```

```
# Mosaic plot mosaic(\sim Continent + Langage, data = temp_lc, shade = TRUE, spacing = spacing_equal(c(0.5, 0.5)), labeling = labeling_border(rot_labels=c(0,0,0,0), just_labels=c("left","right"), offset_varnames = c(0, 0, 0, 5)), margins = c(0, 0, 0, 5))
```


GLM mod_lc <- glm(Langage ~ Continent, temp_lc, family = "poisson") anova(mod_lc)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Continent	7	322.38	57597	66161.97

summary(mod_lc)

```
## glm(formula = Langage ~ Continent, family = "poisson", data = temp_lc)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.19535 -0.86210 -0.08709 0.56432 2.25336
## Coefficients:
##
    Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.70641 0.01308 54.007 < 2e-16 ***
## ContinentAmerique du Nord 0.14873 0.01444 10.297 < 2e-16 ***
## ContinentAmerique du Sud 0.17313 0.01688 10.254 < 2e-16 ***
## ContinentAsie 0.04770 0.01389 3.433 0.000597 ***
## ContinentEurope 0.12227 0.01448 8.444 < 2e-16 ***  
## ContinentInconnu 0.06258 0.01674 3.739 0.000185 ***
## ContinentOceanie 0.11892 0.02537 4.687 2.77e-06 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
    Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 66162 on 57597 degrees of freedom
## AIC: 203147
##
## Number of Fisher Scoring iterations: 5
```

8.6 Langage/Salaire

8.6.1 Data frame temporaire

temp_ls <- ks_fusion %>% select(Salaire, Langage)

8.6.2 Test statistiques

```
# Table résumant des Donnes statistiques (moyenne, deviation standard, etc.)

crosstable(temp_ls, c(Salaire, Langage),

by = Salaire, total = "both",

percent_pattern = "{n} ({p_col})",

showNA = "ifany") %>%

as_flextable()
```

```
# Table de contingence
temp_ls %>%
sjPlot::sjtab(fun = "xtab", var.labels = c("Salaire", "Langage"), show.row.prc = TRUE,
show.col.prc = TRUE, show.summary = TRUE, show.legend = TRUE)
```

0.1.1.			ı	Langage)			T
Salaire	0	1	2	3	4	5	6	Total
	2912	4659	5023	3729	1815	938	445	19521
0-10K	14.9 %	23.9 %	25.7 %	19.1 %	9.3 %	4.8 %	2.3 %	100 %
	40.1 %	38.9 %	32.6 %	30 %	29.5 %	31 %	33 %	33.9 %

	546	1144	1827	1722	884	422	183	6728
100K-250K	8.1 %	17 %	27.2 %	25.6 %	13.1 %	6.3 %	2.7 %	100 %
	7.5 %	9.6 %	11.8 %	13.9 %	14.4 %	14 %	13.6 %	11.7 %
	672	1307	1639	1261	569	269	114	5831
10K-20K	11.5 %	22.4 %	28.1 %	21.6 %	9.8 %	4.6 %	2 %	100 %
	9.2 %	10.9 %	10.6 %	10.2 %	9.2 %	8.9 %	8.5 %	10.1 %
	446	806	1200	943	434	205	85	4119
20K-30K	10.8 %	19.6 %	29.1 %	22.9 %	10.5 %	5 %	2.1 %	100 %
	6.1 %	6.7 %	7.8 %	7.6 %	7 %	6.8 %	6.3 %	7.2 %
	60	86	131	124	73	47	18	539
250K-500K	11.1 %	16 %	24.3 %	23 %	13.5 %	8.7 %	3.3 %	100 %
	0.8 %	0.7 %	0.8 %	1 %	1.2 %	1.6 %	1.3 %	0.9 %
	301	649	912	667	325	140	72	3066
30K-40K	9.8 %	21.2 %	29.7 %	21.8 %	10.6 %	4.6 %	2.3 %	100 %
	4.1 %	5.4 %	5.9 %	5.4 %	5.3 %	4.6 %	5.3 %	5.3 %
	242	649	823	623	295	157	69	2858
40K-50K	8.5 %	22.7 %	28.8 %	21.8 %	10.3 %	5.5 %	2.4 %	100 %
	3.3 %	5.4 %	5.3 %	5 %	4.8 %	5.2 %	5.1 %	5 %
	60	55	38	57	29	12	10	261
500K +	23 %	21.1 %	14.6 %	21.8 %	11.1 %	4.6 %	3.8 %	100 %
	0.8 %	0.5 %	0.2 %	0.5 %	0.5 %	0.4 %	0.7 %	0.5 %
	258	569	788	667	328	121	52	2783
50K-60K	9.3 %	20.4 %	28.3 %	24 %	11.8 %	4.3 %	1.9 %	100 %
	3.6 %	4.8 %	5.1 %	5.4 %	5.3 %	4 %	3.9 %	4.8 %
	212	462	629	491	279	118	44	2235
60K-70K	9.5 %	20.7 %	28.1 %	22 %	12.5 %	5.3 %	2 %	100 %
	2.9 %	3.9 %	4.1 %	4 %	4.5 %	3.9 %	3.3 %	3.9 %
	173	422	585	463	231	115	36	2025
70K-80K	8.5 %	20.8 %	28.9 %	22.9 %	11.4 %	5.7 %	1.8 %	100 %
	2.4 %	3.5 %	3.8 %	3.7 %	3.8 %	3.8 %	2.7 %	3.5 %
	137	278	438	394	179	86	33	1545
80K-90K	8.9 %	18 %	28.3 %	25.5 %	11.6 %	5.6 %	2.1 %	100 %
	1.9 %	2.3 %	2.8 %	3.2 %	2.9 %	2.8 %	2.4 %	2.7 %
	131	255	430	387	211	91	34	1539
90K-100K	8.5 %	16.6 %	27.9 %	25.1 %	13.7 %	5.9 %	2.2 %	100 %
	1.8 %	2.1 %	2.8 %	3.1 %	3.4 %	3 %	2.5 %	2.7 %
	1115	625	962	893	508	300	152	4555
Inconnu	24.5 %	13.7 %	21.1 %	19.6 %	11.2 %	6.6 %	3.3 %	100 %
	15.3 %	5.2 %	6.2 %	7.2 %	8.2 %	9.9 %	11.3 %	7.9 %

7265 11966 15425 12421 6160 3021 1347 57605 **Total** 12.6 % 20.8 % 26.8 % 21.6 % 10.7 % 5.2 % 2.3 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 % 100 %

 $\chi^2 = 1662.905 \cdot df = 78 \cdot Cramer's V = 0.069 \cdot p = 0.000$

observed values

% within Salaire

% within Langage

```
# Test chi2 et V de Cramer chisq.test(table(temp_ls$Salaire, temp_ls$Langage))
```

```
##
## Pearson's Chi-squared test
##
## data: table(temp_ls$Salaire, temp_ls$Langage)
## X-squared = 1662.9, df = 78, p-value < 2.2e-16
```

questionr::cramer.v(table(temp_ls\$Salaire, temp_ls\$Langage))

[1] 0.06936302

GLM mod_ls <- glm(Langage ~ Salaire, temp_ls, family = "poisson") anova(mod_ls)

	Df	Deviance	Resid. Df	Resid. Dev
NULL	NA	NA	57604	66484.35
Salaire	13	527.3562	57591	65956.99

summary(mod_ls)

```
## glm(formula = Langage ~ Salaire, family = "poisson", data = temp_ls)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.24228 -0.86066 -0.08551 0.56602 2.22343
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.730107 0.004968 146.953 < 2e-16 ***
## Salaire100K-250K 0.179502 0.009194 19.523 < 2e-16 ***
## Salaire250K-500K 0.191734 0.027617 6.943 3.85e-12 ***
## Salaire30K-40K 0.081909 0.013019 6.292 3.14e-10 ***
## Salaire500K + -0.006769 0.043398 -0.156 0.876
## Salaire80K-90K 0.137781 0.017217 8.003 1.22e-15 ***
## SalaireInconnu 0.022902 0.011317 2.024 0.043 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
  Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 65957 on 57591 degrees of freedom
## AIC: 202954
## Number of Fisher Scoring iterations: 5
```

8.7 Suppression dataframe temporaire

rm(temp_la, temp_lg, temp_le, temp_lr, temp_lc, temp_ls)

9 Modèle linéaire généralisé

```
# GLM sur l'ensemble des variables en fonction de la variable cible
mod <- glm(Langage ~ Age + Genre + Education + Continent + Secteur + Salaire,
ks_fusion, family = "poisson")
summary(mod)
```

```
##
## Call:
## glm(formula = Langage ~ Age + Genre + Education + Continent +
   Secteur + Salaire, family = "poisson", data = ks_fusion)
##
## Deviance Residuals:
##
   Min
         1Q Median
                      3Q
                            Max
## -2.56083 -0.82987 -0.08161 0.57300 2.86796
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
               ## Age30-39
## Age40-49
                 0.032129  0.009134  3.518  0.000435 ***
## Age50-59
                0.028610 0.012296 2.327 0.019976 *
                -0.012973 0.020179 -0.643 0.520313
## Age60-69
                -0.160100 0.044557 -3.593 0.000327 ***
## Age70+
## GenreFemme
                  -0.081191  0.008062 -10.071 < 2e-16 ***
                0.055176 0.021959 2.513 0.011980 *
## GenreAutres
## EducationDiplome pro 0.222960 0.040895 5.452 4.98e-08 ***
## EducationDoctorat 0.137187 0.013909 9.863 < 2e-16 ***
## EducationDoctorat pro 0.100597 0.021379 4.705 2.53e-06 ***
## EducationLicence
                   ## EducationMaster
                   ## ContinentAmerique du Nord 0.043425 0.015616 2.781 0.005421 **
## ContinentAmerique du Sud 0.133265 0.017070 7.807 5.87e-15 ***
## ContinentAsie
                0.006923 0.014026 0.494 0.621580
                  0.039295 0.015148 2.594 0.009485 **
## ContinentEurope
## ContinentInconnu
                  0.021747 0.016869 1.289 0.197323
## ContinentMoven Orient 0.008969 0.020769 0.432 0.665869
## ContinentOceanie 0.019297 0.025983 0.743 0.457667
## SecteurBusiness 0.130325 0.019208 6.785 1.16e-11 ***
## SecteurInformatique 0.278071 0.023707 11.730 < 2e-16 ***
## SecteurIngenierie 0.298112 0.009302 32.048 < 2e-16 ***
## SecteurManageur
                 0.041942 0.016688 2.513 0.011961 *
                 ## SecteurMaths/Stats
## SecteurPhys. Astro. 0.217767 0.022229 9.797 < 2e-16 ***
## SecteurSc. de la Terre 0.184353 0.045803 4.025 5.70e-05 ***
## SecteurSc. des Donnes 0.159034 0.009003 17.665 < 2e-16 ***
## SecteurSc. Humaines 0.106653 0.045116 2.364 0.018079 *
## SecteurSc. Sociales 0.165241 0.031743 5.206 1.93e-07 ***
## SecteurSc. Vie/Médicale 0.174525 0.025533 6.835 8.19e-12 ***
## Salaire10K-20K
                  0.020656 0.010294 2.007 0.044801 *
                 ## Salaire20K-30K
## Salaire250K-500K
                  ## Salaire30K-40K 0.052288 0.013393 3.904 9.46e-05 ***
                 ## Salaire40K-50K
                -0.018095 0.043639 -0.415 0.678400
## Salaire500K +
## Salaire60K-70K
                 ## Salaire70K-80K
                  ## Salaire80K-90K
## Salaire90K-100K
                  ## SalaireInconnu
                 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 66484 on 57604 degrees of freedom
## Residual deviance: 64375 on 57561 degrees of freedom
## AIC: 201432
##
## Number of Fisher Scoring iterations: 5
```


Predicted values
glm(Langage ~ Age + Genre + Education + Continent + Secteur + Salaire)

Theoretical Quantiles
glm(Langage ~ Age + Genre + Education + Continent + Secteur + Salaire)

10 Export Donnes

10.1 Export copyboard

clipboard_rapport <- addmargins(table(ks_fusion\$Genre, ks_fusion\$Langage)) write_clip(clipboard_rapport)

10.2 Export csv

table_export <- ks_fusion %>% select(Annee, Genre, Age)
table_export <- table_export[1:50,]
write_csv(table_export ,"~/R things/DU_TPE/UE_4/table_exportcsv.csv")