and we have

$$\begin{pmatrix} y_1 \\ y_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a & b & \mu_1 \\ c & d & \mu_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}.$$

In \widehat{E} , we have

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} a & b & \mu_1 \\ c & d & \mu_2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix},$$

which means that the homogeneous map \widehat{f} is is obtained from f by "adding the variable of homogeneity x_3 :"

$$y_1 = ax_1 + bx_2 + \mu_1 x_3,$$

 $y_2 = cx_1 + dx_2 + \mu_2 x_3,$
 $y_3 = x_3.$