

Aula 00

Pós-Graduação em Gestão de Sistemas de Informação

Análise e Projeto Arquitetural de Software

Apresentação da Disciplina

Agenda

Apresentação do professor

Objetivos

Conceitos básicos

Critério de avaliação e bibliografia

Professor

Thiago Schumacher Barcelos

- Estágio de Pós-Doutoramento em Engenharia Elétrica e Computação – Universidade Presbiteriana Mackenzie (2017-2019)
- Doutor em Ensino de Ciências e Matemática Universidade Cruzeiro do Sul (2014)
- Mestre e Bacharel em Ciência da Computação IME/USP (2005)

Qual o seu perfil?

Objetivos

 Capacitar o aluno a utilizar técnicas de análise e projeto orientadas a objeto através de UML (Unified Modeling Language);

■ Identificar, classificar e utilizar padrões de projeto;

 Compreender soluções de projeto baseadas em arquitetura de software, como a arquitetura em camadas e a arquitetura de sistemas distribuídos

Algumas diretrizes de trabalho

O conhecimento de conceitos básicos de UML e de orientação a objeto são pré-requisitos

> No entanto, iniciamos com uma revisão e nivelamento

Discussão de estudos de caso ao longo da disciplina

Muitas (muitas!) diretrizes e técnicas; é fundamental contextualizar com a tecnologia

A disciplina aborda técnicas e atividades do processo de software relacionadas à modelagem

http://en.wikipedia.org/wiki/File:UML Diagrams.jpg

ANÁLISE

- Identificação dos conceitos fundamentais do domínio da aplicação e suas relações
- Não deve considerar a tecnologia

PROJETO

Adaptação e extensão do modelo de análise considerando restrições trazidas pela tecnologia e pelos demais requisitos não-funcionais

A atividade de projeto pode ser orientada por

Padrões

Descrição de um problema que ocorre muitas vezes, e de uma solução genérica que pode ser aplicada toda vez que o problema ocorre

Um dos principais produtos da etapa de projeto é a

Arquitetura

Conjunto de decisões sobre a organização de um sistema de software, incluindo a seleção dos elementos estruturais, suas interfaces e esquemas de comunicação

Definição alternativa

Arquitetura é a visão da modelagem na qual você não pode eliminar mais nada sem deixar de entender o propósito do software

Adaptado de Phillipe Krutchen – The Rational Unified Process: An Introduction

Analogia com a arquitetura "tradicional"

Esboços de Oscar Niemeyer para o Memorial da América Latina – São Paulo – SP

E uma série de conceitos de qualidade...

Planejamento previsto

Data	Semana	Conteúdo
22/ago	1	Introdução à disciplina: motivação, critérios de avaliação, bibliografia
29/ago	2	Contextualização das atividades de análise e projeto no processo de software. Perspectiva histórica da atividade de análise e projeto. Análise Orientada a Objeto.
5/set	3	Notação do Diagrama de Casos de Uso e representação textual de casos de uso (modelo UP)
12/set	4	Atividade: identificação de casos de uso. Definição de equipes e estudos de caso.
19/set	5	Conceitos básicos de OO: classe, objeto, métodos e atributos. Encapsulamento. Notação básica do Diagrama de Classes: representação de classes, associações (com cardinalidade) e dependências. Conceito de Modelo de domínio
26/set	6	Atividade: identificação de classes e responabilidades
3/out	7	Modelo dinâmico: Notação de Diagramas de Sequência. Realização de casos de uso. Identificação de responsabilidades para classes
10/out	8	Atividade: realização de casos de uso. Refinamento do modelo de classes.
17/out	9	Diagrama de Classes: representação de herança, agregação e composição. Navegabilidade de associações. Diagrama de Atividades.

Data	Semana	Conteúdo
24/out	10	Atividade: refinamento dos modelos.
31/out	11	Definição de arquitetura e padrões de qualidade para arquitetura.
7/nov	12	Técnicas de Design Arquitetural: abstração e separação de preocupações.Técnicas para atendimento de requisitos não-funcionais
14/nov	13	Estilos arquiteturais: Camadas, Orientada a Eventos, Microkernel
21/nov	14	Estilos arquiteturais: Arquitetura Orientada a Serviços (SOA) e Microsserviços Atividade: produção do modelo arquitetural do projeto
28/nov	15	Polimorfismo e o uso de interfaces. Padrões de Projeto: conceito e motivação.
5/dez	16	Padrões GoF
12/dez	17	Padrões GoF (cont)
19/dez	18	Revisão dos modelos e finalização do projeto

Critério de avaliação

Desenvolvimento de estudo de caso de modelagem

- Desenvolvimento de artefatos de modelagem
- 70% da média final

Seminário

- Apresentação (uma equipe por semana) sobre tópicos selecionados da disciplina
- > 30% da média final

Bibliografia

BOOCH, G.; RUMBAUGH, J.;
 JACOBSON, I. UML: Guia do Usuário.
 2ª Ed. Rio de Janeiro: Elsevier, 2005

■ LARMAN, C. **Utilizando UML e padrões.** Porto Alegre: Bookman, 2007.

Bibliografia

- GORTON, I. Essential Software Architecture. Heidelberg: Springer, 2011 [Disponível online]
- SILVEIRA, P.; SILVEIRA, G.; LOPES, S.; MOREIRA, G.; STEPPAT, N.; KUNG, F. Introdução à Arquitetura e Design de Software: uma visão sobre a plataforma Java. 1ª ed. São Paulo: Elsevier, 2011.

Bibliografia

- BARBOSA, G. M. G. Um livro-texto para o ensino de projeto de arquitetura de software. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Campina Grande, 2009. [Disponível online]
- BASS, L.; CLEMENTS, P.; KAZMAN, K. Software Architecture in Practice. 3a ed. New Jersey: Addison Wesley Longman, 2012.
- FAIRBANKS, G.; Just Enough Software Architecture: A Risk-Driven Approach. 1a ed. Boulder: Marshall and Brainerd, 2010.
- KANAT-ALEXANDER, M. As Leis Fundamentais do Projeto de Software. São Paulo: Novatec, 2012.

Obrigado!

tsbarcelos@ifsp.edu.br