1. Risolvere (se possibile) i seguenti sistemi di congruenze:

(a)
$$\begin{cases} 8x \equiv 2 \pmod{18} \\ 9x \equiv 12 \pmod{21} \\ 14x \equiv 10 \pmod{22} \end{cases}$$
(b)
$$\begin{cases} x \equiv 5 \pmod{18} \\ x \equiv 3 \pmod{20} \\ x \equiv 11 \pmod{24} \end{cases}$$
(c)
$$\begin{cases} x \equiv 7 \pmod{18} \\ x \equiv 13 \pmod{20} \\ x \equiv 19 \pmod{24} \end{cases}$$

2. Discutere il comportamento del sistema (ovvero, se è determinato, indeterminato o incompatibile)

$$\begin{cases} x - 2y + 3z = 4\\ 2x - 3y + az = 5\\ 3x - 4y + 5z = b \end{cases}$$

al variare dei parametri $a, b \in \mathbb{R}$.

3. Date le seguenti permutazioni nel gruppo simmetrico S_9 :

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 9 & 7 & 8 & 3 & 2 & 1 & 4 & 6 \end{pmatrix}
\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 6 & 9 & 5 & 1 & 4 & 7 & 2 \end{pmatrix}
\sigma_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 6 & 5 & 9 & 3 & 7 & 1 & 4 & 8 \end{pmatrix}$$

- (a) Calcolare il prodotto $\sigma_1^{-1}\sigma_2^{-1}\sigma_3^{-1}$ nel gruppo S_9 .
- (b) Calcolare il segno e l'ordine di σ_1, σ_2 e σ_3 .
- (c) Per ogni $1 \le i < j \le 3$, stabilire se σ_i e σ_j sono coniugate tra loro, e in caso affermativo esibire $\alpha \in S_9$ tale che $\sigma_j = \alpha \sigma_i \alpha^{-1}$.
- 4. Stabilire se la matrice

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

è diagonalizzabile (sul campo $\mathbb R$ dei numeri reali). In caso affermativo, determinare una matrice invertibile $B \in GL(3,\mathbb R)$ e una matrice diagonale $D \in Mat_{3\times 3}(\mathbb R)$ tali che

$$D = B^{-1}AB$$
.

5. Si consideri la matrice $A \in Mat_{n \times n}(\mathbb{R})$ con tutte le entrate uguali a 1,

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}.$$

- (a) Calcolare gli autovalori di A.
- (b) Stabilire se A è diagonalizzabile, e in caso affermativo, determinare una matrice invertibile $B \in GL(n,\mathbb{R})$ e una matrice diagonale $D \in Mat_{n \times n}(\mathbb{R})$ tali che

$$D = B^{-1}AB.$$

Esame trascritto in $\mathbf{L\!\!^{\!4}T_{\!E}\!X}$ da Lucian D. Crainic.