Série 3 : groupes, anneaux et corps

Exercice 1 Dans l'ensemble \mathbb{N} , on considère la loi de composition interne \star définie par

$$a \star b = a^2 + b^2$$

Cette loi est-elle commutative? Associative? Admet-elle un élément neutre?

Exercice 2 Les ensembles suivants, pour les lois considérées, sont-ils des groupes?

- 1.] 1,1[muni de la loi définie par $x \star y = \frac{x+y}{1+xy}$;
- 2. $\{z \in \mathbb{C} : |z| = 2\}$ pour la multiplication usuelle;
- 3. \mathbb{R}_+ pour la multiplication usuelle;
- 4. $\{x \in \mathbb{R} \mapsto ax + b : a \in \mathbb{R} \setminus \{0\}, b \in \mathbb{R}\}$ pour la loi de composition des applications.

Exercice 3 On munit \mathbb{R}^2 de la loi de composition \oplus définie par

$$\forall (x,y) \in \mathbb{R}^2, \forall (x',y') \in \mathbb{R}^2, (x,y) \oplus (x',y') = (x+x',y+y'+2xx')$$

- 1. Montrer que (\mathbb{R}^2, \oplus) est un groupe abélien.
- 2. Montrer que $H = \{(x, x^2), x \in \mathbb{R}\}$ est un sous-groupe de (\mathbb{R}^2, \oplus) .
- 3. Montrer que l'application $\phi:(\mathbb{R},+)\to (H,\oplus)$, définie par $\phi(x)=(x,x^2)$, est un isomorphisme de groupes.

Exercice 4 (Synthèse 2008-2009) On définit dans G =]-2, 2[la loi \star par :

$$\forall a, b \in G, a \star b = \frac{4a + 4b}{4 + ab}$$

On admettra que \star est une loi de composition interne dans G.

- 1. Montrer que (G, \star) est un groupe abélien.
- 2. Montrer que l'application $f: G \longrightarrow \mathbb{R}^{+*}$ définie par :

$$\forall x \in G, \ f(x) = \frac{2+x}{2-x}$$

est un homomorphisme du groupe (G, \star) dans le groupe (\mathbb{R}^{+*}, \cdot) . (où \mathbb{R}^{+*} désigne l'ensemble $]0, +\infty[$ des nombres réels positifs et " \cdot " désigne le produit usuel des nombres réels.)

- 3. Donner Kerf puis dire si f est injective.
- 4. f est-il un isomorphisme de groupes?
- 5. Soit $H = \left\{ \frac{2^{n+1}-2}{2^n+1} / n \in \mathbb{Z} \right\}$. Montrer que H est un sous-groupe du groupe (G, \star) .

Exercice 5 (Epreuve 1998-1999) On note $A = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} / a, b \in \mathbb{Z}\}$. Pour tout $z = a + b\sqrt{2} \in A$, on pose :

$$\bar{z} = a - b\sqrt{2} \text{ et } N(z) = z\bar{z} = a^2 - 2b^2$$

- 1. Montrer que A est un sous-anneau de $(\mathbb{R}, +, \cdot)$. A est-il un sous-corps de \mathbb{R} ?
- 2. Montrer en admettant que $\sqrt{2} \notin \mathbb{Q}$, que :

$$a + b\sqrt{2} = 0 \Leftrightarrow a = b = 0$$

- 3. Montrer que:
 - a) $N(z) = 0 \Leftrightarrow z = 0$
 - **b)** N(zz') = N(z)N(z'), $\forall (z, z') \in A^2$.
- 4. Soit $z \in A$. Montrer que z est inversible dans A si et seulement si |N(z)| = 1.

Exercice 6 (Rattrapage 2007) On définit l'ensemble D des décimaux par :

$$D = \left\{ \frac{a}{10^n}, a \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

- 1. Montrer (D, +) est un sous-groupe de $(\mathbb{Q}, +)$.
- 2. $(D \{0\}, \cdot)$ est-il un sous-groupe de $(\mathbb{Q} \{0\}), \cdot)$?
- 3. $(D, +, \cdot)$ est-il un sous-anneau de $(\mathbb{Q}, +, \cdot)$?
- 4. $(D, +, \cdot)$ est-il un sous-corps de $(\mathbb{Q}, +, \cdot)$?

Exercice 7 Trouver tous les morphismes d'anneaux de $(\mathbb{Z}, +, \cdot) \to (\mathbb{Z}, +, \cdot)$.

EXERCICES SUPPLEMENTAIRES

Exercice 8 Si G est un groupe, on appelle centre de G et on note Z(G) l'ensemble

$$\{x \in G/\forall y \in G, xy = yx\}$$
.

- 1. Montrer que Z(G) est un sous-groupe de G.
- 2. Montrer que G est commutatif ssi Z(G) = G.

Exercice 9 (Entiers modulo n) Étant donné un entier naturel n, on appelle classe d'un entier relatif p modulo n l'ensemble $\overline{p} = \{p + kn \mid k \in \mathbb{Z}\}$. L'ensemble des classes modulo n est noté \mathbb{Z}_n .

- 1. Écrire la liste des éléments distincts de \mathbb{Z}_2 , \mathbb{Z}_3 , \mathbb{Z}_4 et \mathbb{Z}_5 .
- 2. Montrer que si $x \in \overline{p}$ et $y \in \overline{q}$, alors $x + y \in \overline{p+q}$ et $xy \in \overline{pq}$.
- 3. En posant $\overline{p} + \overline{q} = \overline{p+q}$ et $\overline{p} \cdot \overline{q} = \overline{pq}$, on définit deux lois de composition, addition et multiplication sur \mathbb{Z}_n .

Écrire la table d'addition et de multiplication de \mathbb{Z}_4 .

Même question pour \mathbb{Z}_2 , \mathbb{Z}_3 , et \mathbb{Z}_5 .

Exercice 10 Soient les quatre fonctions de \mathbb{R}^* dans \mathbb{R}^*

$$f_1(x) = x$$
 $f_2(x) = \frac{1}{x}$ $f_3(x) = -x$ $f_4(x) = -\frac{1}{x}$

Montre que $G = \{f_1, f_2, f_3, f_4\}$ est un groupe pour la loi \circ .

Exercice 11 Soit (G,.) un groupe. Montrer l'équivalence de :

- 1. G est abélien.
- 2. Pour tout $a, b \in G$, on $a : (ab)^2 = a^2b^2$.
- 3. Pour tout $a, b \in G$, on a : $(ab)^{-1} = a^{-1}b^{-1}$.
- 4. L'application f de G dans G définie par $f(x) = x^{-1}$ est un automorphisme.

En déduire que si pour tout $x \in G$, $x^2 = e$, alors G est abélien.

Exercice 12 Soient (G, .) un groupe et $a, b \in G$. On suppose que

(1):
$$ab^2 = b^3a$$
 et (2): $ba^2 = a^3b$.

- 1. Montrer, en utilisant seulement (1), que $a^2b^8a^{-2}=b^{18}$ puis que $a^3b^8a^{-3}=b^{27}$.
- 2. En déduire, en utilisant (2), que $a^3b^8a^{-3}=b^{18}$ et enfin que a=b=1.

Exercice 13 1. L'ensemble $\mathbb{R} \setminus \{-1\}$ muni de la loi \star définie par $\forall a, b \in \mathbb{R}, a \star b = a + b + ab$ est-il un groupe ?

- 2. L'ensemble $E = \{-1, 1, i, -i\} \subseteq \mathbb{C}$ muni de la loi usuelle de multiplication dans \mathbb{C} est-il un groupe?
- 3. L'ensemble $E = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} : a \in \mathbb{R} \setminus \{0\} \}$ muni de la loi de multiplication usuelle des matrices de $\mathcal{M}_2(\mathbb{R})$ est-il un groupe?
- 4. L'ensemble $S_2(\mathbb{R})$ des matrices symétriques réelles d'ordre 2 muni de la loi de multiplication usuelle des matrices de $\mathcal{M}_2(\mathbb{R})$ est-il un groupe?

Exercice 14 Soient (G, \star) et (H, \triangle) deux groupes. On définit sur $G \times H$ la loi \heartsuit par $(x, y) \heartsuit (x', y') = (x \star x', y \triangle y')$.

- 1. Montrer que $(G \times H, \heartsuit)$ est un groupe.
- 2. Si G est de cardinal 2, dresser la table de $G \times G$ et la reconnaître parmi les exemples des exercices précédents.

Exercice 15 Soit G un groupe, H et K deux sous-groupes de G. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 16 Soit E un ensemble muni d'une loi interne \star . On appelle translation à droite (resp. à gauche) par $a \in E$, l'application d_a (resp. g_a) de E dans E définie par $d_a(x) = a \star x$ (resp. $g_a(x) = x \star a$).

- 1. Montrer que dans un groupe les translations à droite et à gauche sont des bijections.
- 2. Réciproquement, si la loi \star de E est associative, et que les translations à droite et à gauche sont des bijections, on va montrer que (E, \star) est un groupe.
 - (a) Montrer que pour tout $x \in E$, il existe un unique élément $e_x \in E$ (resp. $f_x \in E$) tel que $e_x \star x = x$ (resp. $x \star f_x = x$).
 - (b) Si $x, y \in E$, montrer que $e_x = e_y$ (noté e dorénavant) et $f_x = f_y$ (noté f dorénavant).
 - (c) Montrer que e = f (noté e dorénavant).
 - (d) Montrer que pour tout $x \in E$, il existe un unique élément $\bar{x} \in E$ (resp. $\bar{x} \in E$) tel que $\bar{x} \star x = e$ (resp. $x \star \bar{x} = e$).
 - (e) Montrer que $\bar{x} = \bar{\bar{x}}$.
 - (f) Conclure.

Exercice 17 Si K est un sous-groupe de H et H un sous-groupe de G, montrer que K est un sous-groupe de G.