目 录

声明		1
附录 3-A	原理框图(参考资讯)	
附录 3-B	数据表(标准化)	8
附录 3-C	编码过程(参考资讯)	53
3-C.1	编码器	53
3-	·C.1.1 概述	53
3-	·C.1.2 输入高通滤波器	54
3-	·C.1.3 分解子带滤波器	54
3-	·C.1.4 心理声学模型	57
3-	·C.1.5 编码	57
附录 3-D	心理声学模型(参考资讯)	95
3-D.1	心理声学模型 I	95
3-D.2	心理声学模型 II	
附录 3-E	比特灵敏度和误差(参考资讯)	140
3-E.1	概述	140
	Layer I 和 II	
3-E.3	Layer III	140
附录 3-F	误差隐藏(参考资讯)	142
附录 3-G	联合立体声编码(参考资讯)	143
3-G.1	Layer I,II 强度立体声编码	143
3-G.2	Layer III 中的 MS 立体声和强度立体声编码	143

声明

由于译者水平有限,加上时间匆忙,本文档中难免有错误和不足之处,欢迎感兴趣的朋友们批评和指正。请把您的意见和建议发送到<u>kongsuozt@126.com</u>,我也会及时更新大家的意见和建议,争取把这篇文档做得更好。

本文档仅供从事相关行业的人员作学习和交流之用,不得用于出版、发行或者其他商业目的。

附录3-A 原理框图 (参考资讯)

图 3-A.1 Layer I、II 解码器流程图

图 3-A.2 综合子带滤波器流程图

图 3-A.3 Layer III 解码器流程图

模块"转换综合":

图 3-A.4 Layer III 解码器框图

图 3-A.5 Layer III 抗混叠编码器/解码器框图

图 3-A.6 Layer III 混叠蝶形运算解码器框图

图 3-A.7 Layer III 比特流组织

图 3-A.7.1 Layer III 比特流组织(常规情况)

图 3-A.7.2 在最高负荷(main info3)和最低负荷(main info2)情况下 Layer III 比特流组织注: info 表示 information。

图 3-A.8 帧中第一个颗粒没有块分割而第二个颗粒有块分割的 Layer III 图示

数据比特

图 3-A.9 CRC 校验框图

附录3-B 数据表(标准化)

表 3-B.1 Layer I、II 比例因子

		-t1	
索引	比例因子	索引	比例因子
0	2.00000000000000	32	0.00123039165029
1	1.58740105196820	33	0.00097656250000
2	1.25992104989487	34	0.00077509816991
3	1.00000000000000	35	0.00061519582514
4	0.79370052598410	36	0.00048828125000
5	0.62996052494744	37	0.00038754908495
6	0.50000000000000	38	0.00030759791257
7	0.39685026299205	39	0.00024414062500
8	0.31498026247372	40	0.00019377454248
9	0.25000000000000	41	0.00015379895629
10	0.19842513149602	42	0.00012207031250
11	0.15749013123686	43	0.00009688727124
12	0.12500000000000	44	0.00007689947814
13	0.09921256574801	45	0.00006103515625
14	0.07874506561843	46	0.00004844363562
15	0.06250000000000	47	0.00003844973907
16	0.04960628287401	48	0.00003051757813
17	0.03937253280921	49	0.00002422181781
18	0.03125000000000	50	0.00001922486954
19	0.02480314143700	51	0.00001525878906
20	0.01968626640461	52	0.00001211090890
21	0.01562500000000	53	0.00000961243477
22	0.01240157071850	54	0.00000762939453
23	0.00984313320230	55	0.00000605545445
24	0.00781250000000	56	0.00000480621738
25	0.00620078535925	57	0.00000381469727
26	0.00492156660115	58	0.00000302772723
27	0.00390625000000	59	0.00000240310869
28	0.00310039267963	60	0.00000190734863
29	0.00246078330058	61	0.00000151386361
30	0.00195312500000	62	0.00000131363361
31	0.00155019633981	02	3.00000120133133
31	0.00133013033301		

表 3-B.2 Layer II 比特分配表

表 3-B.2.a 每个子带可能的量化情况

Fs = 48	8 kHz	每声	道比	特率	= 56	5, 64	ł, 80), 96	5, 11	.2, 1	128, 160), 192 kl	oits/s 🎚	以及 free t	各式		
Fs = 44	1.1 kHz	每声	道比	特率	= 56	6, 64	4, 80) kbi	.ts/s	\$							
Fs = 32	kHz	每声	道比	特率	= 56	6, 64	1, 80) kbi	.ts/s	;							
										索引							
sb	nbal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SB0	4	-	3	7	15	31	63	127	255	511	1023	2047	4095	8191	16383	32767	65535
SB1	4	-	3	7	15	31	63	127	255	511	1023	2047	4095	8191	16383	32767	65535
SB2	4	-	3	7	15	31	63	127	255	511	1023	2047	4095	8191	16383	32767	65535
SB3	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB4	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB5	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB6	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB7	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB8	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB9	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB10	4	-	3	5	7	9	15	31	63	127	255	511	1023	2047	4095	8191	65535
SB11	3	-	3	5	7	9	15	31	6553	35							
SB12	3	-	3	5	7	9	15	31	655	35							
SB13	3	-	3	5	7	9	15	31	6553	35							
SB14	3	-	3	5	7	9	15	31	6553	35							
SB15	3	-	3	5	7	9	15	31	655	35							
SB16	3	-	3	5	7	9	15	31	655	35							
SB17	3	-	3	5	7	9	15	31	6553	35							

```
SB18
                           5
                              7
                                  9
                                      15 31 65535
   SB19
                                   9
                                       15
                                          31
                                              65535
   SB20
                                      15
                                          31
                                              65535
                               7
   SB21
           3
                       3
                           5
                                  9
                                      15
                                          31
                                              65535
                           5
                               7
   SB22
           3
                                  9
                                       15
                                          31
                                              65535
                           5
   SB23
                               65535
           2
   SB24
                           5
                               65535
   SB25
                               65535
   SB26
           2
                       3
                           5
                               65535
   SB27
           0
           0
   SB28
   SB29
           0
   SB30
   SB31
           0
sblimit = 27
nbal 总和 = 88
```

表 3-B.2.b 每个子带可能的量化情况

```
----- 没有相关的 ------
   Fs = 48 \text{ kHz}
   Fs = 44.1 kHz 每声道比特率 = 96, 112, 128, 160, 192 kbits/s 及 free 格式
                  每声道比特率 = 96, 112, 128, 160, 192 kbits/s 及 free 格式
   Fs = 32 \text{ kHz}
                                                索引
   sb
           nbal
                  0 1 2 3 4
                                        6 7 8 9
                                                           10
                                                                  11
                                                                         12
                                                                                 13
                                                                                        14
                                                                                                15
                             15 31 63 127 255 511 1023
                                                                                 16383
   SB0
           4
                         7
                                                           2047
                                                                  4095
                                                                          8191
                                                                                        32767
                                                                                                65535
                             15 31 63 127 255 511 1023
   SB1
                                                           2047
                                                                  4095
                                                                          8191
                                                                                 16383
                                                                                        32767
                                                                                                65535
                             15 31 63 127 255 511 1023
                                                           2047
                         7
                                                                  4095
                                                                          8191
                                                                                 16383
                                                                                                65535
   SB2
                                                                                        32767
                                           63 127 255
   SB3
                                 9
                                    15
                                        31
                                                           511
                                                                  1023
                                                                          2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
                                            63 127 255
   SB4
                             7
                                    15
                                        31
                                                           511
                                                                  1023
                                                                          2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
                             7
                                 9
   SB5
           4
                         5
                                    15
                                       31
                                            63 127 255
                                                           511
                                                                  1023
                                                                          2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
   SB6
                             7
                                 9
                                    15
                                        31
                                            63 127 255
                                                           511
                                                                  1023
                                                                         2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
                             7
                                 9
                                    15
                                       31 63 127 255
                                                           511
                                                                  1023
                                                                         2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
   SB7
   SB8
                             7
                                 9
                                    15
                                        31
                                            63 127 255
                                                           511
                                                                  1023
                                                                          2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
   SB9
                             7
                                    15
                                        31
                                            63 127 255
                                                           511
                                                                  1023
                                                                          2047
                                                                                 4095
                                                                                        8191
                                                                                                65535
                                                                  1023
                                                                         2047
   SB10
                             7
                                 9
                                    15
                                       31
                                            63 127 255
                                                           511
                                                                                 4095
                                                                                        8191
                                                                                                65535
          4
                         5
                             7
                                 9
                                    15
                                            65535
   SB11
           3
                                        31
                         5
                             7
   SB12
          3
                                 9
                                    15
                                       31
                                           65535
   SB13
                                 9
                                    15
                                        31
                                            65535
   SB14
                             7
                                    15
                                        31
                                            65535
                             7
                                 9
   SB15
          3
                         5
                                    15
                                       31
                                            65535
                      3
                         5
                             7
                                 9
                                    15
   SB16
          3
                                        31
                                            65535
   SB17
                         5
                             7
                                 9
                                    15
                                       31
                                           65535
          3
   SB18
                         5
                             7
                                 9
                                    15
                                        31
                                            65535
   SB19
                             7
                                    15
                                        31
                                            65535
   SB20
                         5
                             7
                                9
                                    15
                                       31
                                            65535
          3
                      3
                         5
                             7
   SB21
          3
                                9
                                    15
                                       31
                                            65535
                         5
                             7
          3
                                9
                                    15 31 65535
   SB22
                      3
   SB23
                      3
                         5
                             65535
   SB24
                         5
                             65535
   SB25
                - 3 5 65535
   SB26
                 - 3 5 65535
   SB27
                 - 3 5 65535
                 - 3 5 65535
   SB28
   SB29
                 - 3 5 65535
   SB30
         0
   SB31 0
sblimit = 30
nbal 总和 = 94
```

表 3-B.2.c 每个子带可能的量化情况

Fs = 48					= 32												
Fs = 44	.1 kHz				= 32												
Fs = 32	kHz			没	有相	关的											
										索引							
sb	nbal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SB0	4	_	2	5	9	15	21	63	127	255	511	1023	2047	4095	8191	16383	32767
SB1	4	_		5	9							1023	2047	4095	8191	16383	32767
SB2	3		3	5	9				127	200		1020	2017	1020	0131	10000	32.3.
SB3	3	_		5	9				127								
SB4	3		3	5	9				127								
SB5	3	-	3	5	9	15	31	63	127								
SB6	3	-	3	5	9	15	31	63	127								
SB7	3	-	3	5	9	15	31	63	127								
SB8	0	-															
SB9	0	-															
SB10	0	-															
SB11	0	-															
SB12	0	-															
SB13	0	-															
SB14	0	-															
SB15	0	-															
SB16	0	-															
SB17 SB18	0	-															
SB19	0	-															
SB20	0	_															
SB21	0	_															
SB22	0	-															
SB23	0	-															
SB24	0	-															
SB25	0	-															
SB26	0	-															
SB27	0	-															
SB28	0	-															
SB29	0	-															
SB30	0	-															
SB31	0	-															
imit =	Q																
1 总和 =																	
∓ ਮਨਾਪੁਸ =	20																

表 3-B.2.d 每个子带可能的量化情况

Fs = 4	8 kHz																
	4.1kHz					的											
Fs = 3	2 kHz	每声	声道比	特率	= 32	2, 48	kb:	its/s	S								
										索引							
sb	nbal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
SB0	4	-	3	5	9	15	31	63	127	255	511	1023	2047	4095	8191	16383	32767
SB1	4	-	3	5	9	15	31	63	127	255	511	1023	2047	4095	8191	16383	32767
SB2	3	-	3	5	9	15	31	63	127								
SB3	3	-	3	5	9	15	31	63	127								
SB4	3	-	3	5	9	15	31	63	127								
SB5	3	-	3	5	9	15	31	63	127								
SB6	3	-	3	5	9	15	31	63	127								
SB7	3	-	3	5	9	15	31	63	127								
SB8	3	-	3	5	9	15	31	63	127								
SB9	3	-	3	5	9	15	31	63	127								
SB10	3	-	3	5	9	15	31	63	127								
SB11	3	_	3	5	9	15	31	63	127								
SB12	0	_															

```
SB13
            0
    SB14
            0
    SB15
    SB16
            0
    SB17
            0
    SB18
            0
    SB19
    SB20
    SB21
            0
    SB22
            0
    SB23
            0
    SB24
    SB25
    SB26
            0
    SB27
            0
    SB28
    SB29
    SB30
    SB31
            0
有效子带的最大序号 = 12
Nbal 总和 = 38
```

表 3-B.3 综合加窗的系数 Di

```
D[0] = 0.000000000
                        D[1] = -0.000015259
                                                 D[2] = -0.000015259
                                                                          D[3] = -0.000015259
D[4] = -0.000015259
                        D[ 5]=-0.000015259
                                                 D[6] = -0.000015259
                                                                          D[7] = -0.000030518
D[8] = -0.000030518
                        D[9] = -0.000030518
                                                 D[10] = -0.000030518
                                                                          D[11] = -0.000045776
                                                                          D[ 15] = -0.000076294
D[12] = -0.000045776
                        D[13] = -0.000061035
                                                 D[14] = -0.000061035
                                                                          D[ 19]=-0.000106812
D[16] = -0.000076294
                        D[17] = -0.000091553
                                                 D[ 18]=-0.000106812
                        D[ 21]=-0.000137329
D[20] = -0.000122070
                                                 D[22] = -0.000152588
                                                                          D[23] = -0.000167847
D[24] = -0.000198364
                        D[25] = -0.000213623
                                                 D[26] = -0.000244141
                                                                          D[27] = -0.000259399
                                                 D[30] = -0.000366211
D[28] = -0.000289917
                        D[29] = -0.000320435
                                                                          D[31] = -0.000396729
                        D[33] = -0.000473022
D[32] = -0.000442505
                                                 D[34] = -0.000534058
                                                                          D[35] = -0.000579834
D[ 36]=-0.000625610
                        D[37] = -0.000686646
                                                 D[38] = -0.000747681
                                                                          D[39] = -0.000808716
D[40] = -0.000885010
                        D[ 41]=-0.000961304
                                                 D[42] = -0.001037598
                                                                          D[43] = -0.001113892
D[44] = -0.001205444
                        D[45] = -0.001296997
                                                 D[46] = -0.001388550
                                                                          D[47] = -0.001480103
D[48] = -0.001586914
                        D[49] = -0.001693726
                                                 D[50] = -0.001785278
                                                                          D[51] = -0.001907349
D[52] = -0.002014160
                        D[53] = -0.002120972
                                                                          D[55] = -0.002349854
                                                 D[54] = -0.002243042
D[ 56]=-0.002456665
                        D[57] = -0.002578735
                                                 D[ 58]=-0.002685547
                                                                          D[59] = -0.002792358
D[60] = -0.002899170
                        D[61] = -0.002990723
                                                 D[62] = -0.003082275
                                                                          D[63] = -0.003173828
D[64] = 0.003250122
                        D[65] = 0.003326416
                                                 D[66] = 0.003387451
                                                                          D[67] = 0.003433228
D[68] = 0.003463745
                        D[69] = 0.003479004
                                                 D[70] = 0.003479004
                                                                          D[71] = 0.003463745
D[72] = 0.003417969
                        D[73] = 0.003372192
                                                 D[74] = 0.003280640
                                                                          D[75] = 0.003173828
D[76] = 0.003051758
                        D[77] = 0.002883911
                                                 D[78] = 0.002700806
                                                                          D[79] = 0.002487183
                        D[ 81] = 0.001937866
D[80] = 0.002227783
                                                 D[82] = 0.001617432
                                                                          D[83] = 0.001266479
                        D[85] = 0.000442505
                                                 D[ 86] = -0.000030518
                                                                          D[ 87]=-0.000549316
D[84] = 0.000869751
D[ 88]=-0.001098633
                                                                          D[ 91]=-0.003005981
                        D[89] = -0.001693726
                                                 D[90] = -0.002334595
                        D[93] = -0.004486084
D[92] = -0.003723145
                                                 D[94] = -0.005294800
                                                                          D[95] = -0.006118774
D[96] = -0.007003784
                        D[97] = -0.007919312
                                                 D[ 98]=-0.008865356
                                                                          D[ 99]=-0.009841919
                                                 D[102] = -0.012939453
D[100] = -0.010848999
                        D[101] = -0.011886597
                                                                          D[103] = -0.014022827
D[104] = -0.015121460
                        D[105] = -0.016235352
                                                 D[106] = -0.017349243
                                                                          D[107] = -0.018463135
                        D[109] = -0.020690918
                                                 D[110]=-0.021789551
D[108] = -0.019577026
                                                                          D[111]=-0.022857666
D[112] = -0.023910522
                        D[113] = -0.024932861
                                                 D[114] = -0.025909424
                                                                          D[115] = -0.026840210
D[116] = -0.027725220
                                                                          D[119] = -0.029937744
                        D[117] = -0.028533936
                                                 D[118] = -0.029281616
D[120] = -0.030532837
                        D[121] = -0.031005859
                                                 D[122] = -0.031387329
                                                                          D[123] = -0.031661987
                                                                          D[127] = -0.031478882
D[124] = -0.031814575
                        D[125] = -0.031845093
                                                 D[126] = -0.031738281
D[128] = 0.031082153
                        D[129] = 0.030517578
                                                 D[130] = 0.029785156
                                                                          D[131] = 0.028884888
                                                                          D[135] = 0.023422241
D[132] = 0.027801514
                        D[133] = 0.026535034
                                                 D[134] = 0.025085449
                        D[137] = 0.019531250
D[136] = 0.021575928
                                                 D[138] = 0.017257690
                                                                          D[139] = 0.014801025
D[140] = 0.012115479
                        D[141] = 0.009231567
                                                 D[142] = 0.006134033
                                                                          D[143] = 0.002822876
D[144] = -0.000686646
                        D[145] = -0.004394531
                                                 D[146]=-0.008316040
                                                                          D[147] = -0.012420654
                                                                          D[151]=-0.030609131
D[148] = -0.016708374
                        D[149] = -0.021179199
                                                 D[150] = -0.025817871
D[152] = -0.035552979
                        D[153] = -0.040634155
                                                 D[154] = -0.045837402
                                                                          D[155] = -0.051132202
                        D[157]=-0.061996460
                                                 D[158]=-0.067520142
D[156]=-0.056533813
                                                                          D[159] = -0.073059082
                                                                          D[163]=-0.095169067
D[160]=-0.078628540
                        D[161] = -0.084182739
                                                 D[162] = -0.089706421
                                                 D[166]=-0.110946655
                                                                          D[167]=-0.115921021
D[164] = -0.100540161
                        D[165] = -0.105819702
D[168] = -0.120697021
                        D[169] = -0.125259399
                                                 D[170] = -0.129562378
                                                                          D[171]=-0.133590698
```

D[172]=-0.137298584	D[173]=-0.140670776	D[174]=-0.143676758	D[175]=-0.146255493	
D[176]=-0.148422241	D[177]=-0.150115967	D[178]=-0.151306152	D[179]=-0.151962280	
D[180]=-0.152069092	D[181]=-0.151596069	D[182]=-0.150497437	D[183]=-0.148773193	
D[184]=-0.146362305	D[185]=-0.143264771	D[186]=-0.139450073	D[187]=-0.134887695	
D[188]=-0.129577637	D[189]=-0.123474121	D[190]=-0.116577148	D[191]=-0.108856201	
D[192] = 0.100311279	D[193] = 0.090927124	D[194] = 0.080688477	D[195] = 0.069595337	
D[196] = 0.057617187	D[197] = 0.044784546	D[198] = 0.031082153	D[199] = 0.016510010	
D[200] = 0.001068115	D[201]=-0.015228271	D[202]=-0.032379150	D[203]=-0.050354004	
D[204]=-0.069168091	D[205]=-0.088775635	D[206]=-0.109161377	D[207]=-0.130310059	
D[208]=-0.152206421	D[209]=-0.174789429	D[210]=-0.198059082	D[211]=-0.221984863	
D[212]=-0.246505737	D[213]=-0.271591187	D[214] = -0.297210693	D[215]=-0.323318481	
D[216]=-0.349868774	D[217]=-0.376800537	D[218]=-0.404083252	D[219]=-0.431655884	
D[220]=-0.459472656	D[221]=-0.487472534	D[222]=-0.515609741	D[223]=-0.543823242	
D[224]=-0.572036743	D[225]=-0.600219727	D[226]=-0.628295898	D[227]=-0.656219482	
D[228]=-0.683914185	D[229]=-0.711318970	D[230]=-0.738372803	D[231]=-0.765029907	
D[232]=-0.791213989	D[233]=-0.816864014	D[234]=-0.841949463	D[235]=-0.866363525	
D[236]=-0.890090942	D[237]=-0.913055420	D[238]=-0.935195923	D[239]=-0.956481934	
D[240]=-0.976852417	D[241]=-0.996246338	D[242]=-1.014617920	D[243]=-1.031936646	
D[244]=-1.048156738	D[245]=-1.063217163	D[246]=-1.077117920	D[247]=-1.089782715	
D[248]=-1.101211548	D[249]=-1.111373901	D[250]=-1.120223999	D[251]=-1.127746582	
D[252]=-1.133926392	D[253]=-1.138763428	D[254]=-1.142211914	D[255]=-1.144287109	
D[256] = 1.144989014	D[257] = 1.144287109	D[258] = 1.142211914	D[259]= 1.138763428	
D[260] = 1.133926392	D[261] = 1.127746582	D[262] = 1.120223999	D[263]= 1.111373901	
D[264] = 1.101211548	D[265] = 1.089782715	D[266] = 1.077117920	D[267] = 1.063217163	
D[268] = 1.048156738	D[269] = 1.031936646	D[270] = 1.014617920	D[271] = 0.996246338	
D[272]= 0.976852417	D[273] = 0.956481934	D[274] = 0.935195923	D[275] = 0.913055420	
D[276] = 0.890090942	D[277] = 0.866363525	D[278] = 0.841949463	D[279] = 0.816864014	
D[280] = 0.791213989	D[281] = 0.765029907	D[282] = 0.738372803	D[283] = 0.711318970	
D[284] = 0.683914185	D[285] = 0.656219482	D[286] = 0.628295898	D[287] = 0.600219727	
D[288]= 0.572036743	D[289] = 0.543823242	D[290] = 0.515609741	D[291]= 0.487472534	
D[292]= 0.459472656	D[293] = 0.431655884	D[294] = 0.404083252	D[295]= 0.376800537	
D[296] = 0.349868774	D[297] = 0.323318481	D[298] = 0.297210693	D[299]= 0.271591187	
	D[301] = 0.221984863			
D[300] = 0.246505737		D[302] = 0.198059082	D[303] = 0.174789429	
D[304] = 0.152206421	D[305] = 0.130310059	D[306] = 0.109161377	D[307] = 0.088775635	
D[308] = 0.069168091	D[309] = 0.050354004	D[310] = 0.032379150	D[311]= 0.015228271	
D[312]=-0.001068115	D[313]=-0.016510010	D[314]=-0.031082153	D[315]=-0.044784546	
D[316]=-0.057617187	D[317]=-0.069595337	D[318]=-0.080688477	D[319]=-0.090927124	
D[320] = 0.100311279	D[321] = 0.108856201	D[322] = 0.116577148	D[323] = 0.123474121	
D[324] = 0.129577637	D[325] = 0.134887695	D[326] = 0.139450073	D[327] = 0.143264771	
D[328] = 0.146362305	D[329]= 0.148773193	D[330] = 0.150497437	D[331]= 0.151596069	
D[332]= 0.152069092	D[333]= 0.151962280	D[334] = 0.151306152	D[335]= 0.150115967	
D[336]= 0.148422241	D[337] = 0.146255493	D[338] = 0.143676758	D[339]= 0.140670776	
D[340] = 0.137298584	D[341] = 0.133590698	D[342] = 0.129562378	D[343]= 0.125259399	
D[344] = 0.120697021	D[345] = 0.115921021	D[346] = 0.110946655	D[347] = 0.105819702	
D[348] = 0.100540161	D[349] = 0.095169067	D[350] = 0.089706421	D[351]= 0.084182739	
D[352] = 0.078628540	D[353] = 0.073059082	D[354] = 0.067520142	D[355]= 0.061996460	
D[356] = 0.056533813	D[357] = 0.051132202	D[358] = 0.045837402	D[359] = 0.040634155	
D[360] = 0.035552979	D[361] = 0.030609131	D[362] = 0.025817871	D[363]= 0.021179199	
D[364]= 0.016708374	D[365] = 0.012420654	D[366] = 0.008316040	D[367]= 0.004394531	
D[368] = 0.000686646	D[369]=-0.002822876	D[370]=-0.006134033	D[371]=-0.009231567	
D[372]=-0.012115479	D[373]=-0.014801025	D[374]=-0.017257690	D[375]=-0.019531250	
D[376]=-0.021575928	D[377]=-0.023422241	D[378]=-0.025085449	D[379]=-0.026535034	
D[380]=-0.027801514	D[381]=-0.028884888	D[382]=-0.029785156	D[383]=-0.030517578	
D[384] = 0.031082153	D[385] = 0.031478882	D[386] = 0.031738281	D[387]= 0.031845093	
D[388] = 0.031814575	D[389] = 0.031661987	D[390] = 0.031730201 D[390] = 0.031387329	D[391]= 0.031005859	
D[390] = 0.031614373 D[392] = 0.030532837	D[393] = 0.029937744	D[394] = 0.029281616	D[395]= 0.028533936	
D[396] = 0.027725220	D[397] = 0.026840210	D[398] = 0.025909424	D[399] = 0.024932861	
D[400] = 0.023910522	D[401] = 0.022857666	D[402] = 0.021789551	D[403] = 0.020690918	
D[404] = 0.019577026	D[405] = 0.018463135	D[406] = 0.017349243	D[407] = 0.016235352	
D[408] = 0.015121460	D[409] = 0.014022827	D[410] = 0.012939453	D[411]= 0.011886597	
D[412] = 0.010848999	D[413] = 0.009841919	D[414] = 0.008865356	D[415] = 0.007919312	
D[416] = 0.007003784	D[417] = 0.006118774	D[418] = 0.005294800	D[419]= 0.004486084	
D[420] = 0.003723145	D[421] = 0.003005981	D[422] = 0.002334595	D[423] = 0.001693726	
D[424] = 0.001098633	D[425] = 0.000549316	D[426] = 0.000030518	D[427]=-0.000442505	
D[428]=-0.000869751	D[429]=-0.001266479	D[430]=-0.001617432	D[431]=-0.001937866	
D[432]=-0.002227783	D[433]=-0.002487183	D[434]=-0.002700806	D[435]=-0.002883911	
D[436]=-0.003051758	D[437]=-0.003173828	D[438]=-0.003280640	D[439]=-0.003372192	
		12		

D[440]=-0.003417969	D[441]=-0.003463745	D[442]=-0.003479004	D[443] = -0.003479004
D[444]=-0.003463745	D[445]=-0.003433228	D[446]=-0.003387451	D[447]=-0.003326416
D[448] = 0.003250122	D[449] = 0.003173828	D[450] = 0.003082275	D[451] = 0.002990723
D[452] = 0.002899170	D[453] = 0.002792358	D[454] = 0.002685547	D[455] = 0.002578735
D[456] = 0.002456665	D[457] = 0.002349854	D[458] = 0.002243042	D[459] = 0.002120972
D[460] = 0.002014160	D[461] = 0.001907349	D[462] = 0.001785278	D[463] = 0.001693726
D[464] = 0.001586914	D[465] = 0.001480103	D[466] = 0.001388550	D[467] = 0.001296997
D[468] = 0.001205444	D[469] = 0.001113892	D[470] = 0.001037598	D[471] = 0.000961304
D[472] = 0.000885010	D[473] = 0.000808716	D[474] = 0.000747681	D[475] = 0.000686646
D[476] = 0.000625610	D[477] = 0.000579834	D[478] = 0.000534058	D[479] = 0.000473022
D[480] = 0.000442505	D[481] = 0.000396729	D[482] = 0.000366211	D[483] = 0.000320435
D[484] = 0.000289917	D[485] = 0.000259399	D[486] = 0.000244141	D[487] = 0.000213623
D[488] = 0.000198364	D[489] = 0.000167847	D[490] = 0.000152588	D[491] = 0.000137329
D[492] = 0.000122070	D[493] = 0.000106812	D[494] = 0.000106812	D[495] = 0.000091553
D[496] = 0.000076294	D[497] = 0.000076294	D[498] = 0.000061035	D[499] = 0.000061035
D[500] = 0.000045776	D[501] = 0.000045776	D[502] = 0.000030518	D[503] = 0.000030518
D[504] = 0.000030518	D[505] = 0.000030518	D[506] = 0.000015259	D[507] = 0.000015259
D[508] = 0.000015259	D[509] = 0.000015259	D[510] = 0.000015259	D[511] = 0.000015259

表 3-B.4 Layer II 量化种类

阶数	С	D	分组	每个编码字 采样数	每个编码子 比特数
3	1.3333333333	0.50000000000	yes	3	5
5	1.6000000000	0.50000000000	yes	3	7
7	1.14285714286	0.25000000000	no	1	3
9	1.7777777777	0.50000000000	yes	3	10
15	1.0666666666	0.12500000000	no	1	4
31	1.03225806452	0.06250000000	no	1	5
63	1.01587301587	0.03125000000	no	1	6
127	1.00787401575	0.01562500000	no	1	7
255	1.00392156863	0.00781250000	no	1	8
511	1.00195694716	0.00390625000	no	1	9
1023	1.00097751711	0.00195312500	no	1	10
2047	1.00048851979	0.00097656250	no	1	11
4095	1.00024420024	0.00048828125	no	1	12
8191	1.00012208522	0.00024414063	no	1	13
16383	1.00006103888	0.00012207031	no	1	14
32767	1.00003051851	0.00006103516	no	1	15
65535	1.00001525902	0.00003051758	no	1	16

表 3-B.5 受保护的 audio_data 比特数量

Layer	比特分配 表序号	单声道模式下 比特数	其他模式下 比特数
I	-	128	256
II	3-B.2a	142	284
II	3-B.2b	154	308
II	3-B.2c	42	84
II	3-B.2d	62	124
III	-	136	256

表 3-B.6 Layer III 预加重

0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 3 3 3 2

表 3-B.7 Layer III 的哈夫曼编码

四个一组	的哈夫曼约	偏码表 (A)
值	hlen	hcod
0000	1	1
0001	4	0101
0010	4	0100
0011	5	00101
0100	4	0110
0101	6	000101
0110	5	00100

0111 6 000100 1000 4 0111 1001 5 00011 1010 5 00110	
1001 5 00011	
1010 5 00110	
1011 6 000000	
1100 5 00111	
1101 6 000010	
1110 6 000011	
1111 6 000001	

四个一组的哈夫曼编码表 (B)

值	hlen	hcod
0000	4	1111
0001	4	1110
0010	4	1101
0011	4	1100
0100	4	1011
0101	4	1010
0110	4	1001
0111	4	1000
1000	4	0111
1001	4	0110
1010	4	0101
1011	4	0100
1100	4	0011
1101	4	0010
1110	4	0001
1111	4	0000

哈夫曼编码表 0

X y hlen
0 0 0

哈夫曼编码表 1

X	У	hlen	hcod
0	0	1	1
0	1	3	001
1	0	2	01
1	1	3	000

哈夫曼编码表 2

Х	У	hlen	hcod
0	0	1	1
0	1	3	010

0	2	6	000001
1	0	3	011
1	1	3	001
1	2	5	00001
2	0	5	00011
2	1	5	00010
2	2	6	000000

哈夫曼编码表 3

Х	У	hlen	hcod
0	0	2	11
0	1	2	10
0	2	6	000001
1	0	3	001
1	1	2	01
1	2	5	00001
2	0	5	00011
2	1	5	00010
2	2	6	000000

哈夫曼编码表 4

未使用

哈夫曼编码表 5

х	У	hlen	hcod
0	0	1	1
0	1	3	010
0	2	6	000110
0	3	7	0000101
1	0	3	011
1	1	3	001
1	2	6	000100
1	3	7	0000100
2	0	6	000111
2	1	6	000101
2	2	7	0000111
2	3	8	0000001
3	0	7	0000110
3	1	6	000001
3	2	7	0000001
3	3	8	00000000

哈夫曼编码表 6

x y hlen hcod

0	0	3	111			
0	1	3	011			
0	2	5	00101			
0	3	7	0000001			
1	0	3	110			
1	1	2	10			
1	2	4	0011			
1	3	5	00010			
2	0	4	0101			
2	1	4	0100			
2	2	5	00100			
2	3	6	000001			
3	0	6	000011			
3	1	5	00011			
3	2	6	000010			
3	3	7	000000			
哈夫	哈夫曼编码表 7					

х	У	hlen	hcod
0	0	1	1
0	1	3	010
0	2	6	001010
0	3	8	00010011
0	4	8	00010000
0	5	9	000001010
1	0	3	011
1	1	4	0011
1	2	6	000111
1	3	7	0001010
1	4	7	0000101
1	5	8	00000011
2	0	6	001011
2	1	5	00100
2	2	7	0001101
2	3	8	00010001
2	4	8	00001000
2	5	9	00000100
3	0	7	0001100
3	1	7	0001011
3	2	8	00010010
3	3	9	000001111
3	4	9	000001011
3	5	9	00000010
4	0	7	0000111

4	1	7	0000110
4	2	8	00001001
4	3	9	000001110
4	4	9	00000011
4	5	10	000000001
5	0	8	00000110
5	1	8	00000100
5	2	9	000000101
5	3	10	000000011
5	4	10	000000010
5	5	10	000000000
哈夫	·曼编码表	8	
х	У	hlen	hcod
0	0	2	11
0	1	3	100
0	2	6	000110
0	3	8	00010010
0	4	8	00001100
0	5	9	00000101
1	0	3	101
1	1	2	01
1	2	4	0010
1	3	8	00010000
1	4	8	00001001
1	5	8	00000011
2	0	6	000111
2	1	4	0011
2	2	6	000101
2	3	8	00001110
2	4	8	00000111
2	5	9	00000011
3	0	8	00010011
3	1	8	00010001
3	2	8	00001111
3	3	9	000001101
3	4	9	000001010
3	5	10	000000100
4	0	8	00001101
4	1	7	0000101
4	2	8	00001000
4	3	9	000001011
4	4	10	000000101
4	5	10	000000001

Е	0	0	000001100
5	0	9	000001100
5	1	8	00000100
5	2	9	000000100 00000001
5	3	9	
5	4	11	0000000001
5	5	11	000000000
n∧ →	·且始如志		
	曼编码表		, ,
x	У	hlen	hcod
0	0	3	111
0	1	3	101
0	2	5	01001
0	3	6	001110
0	4	8	00001111
0	5	9	000000111
1	0	3	110
1	1	3	100
1	2	4	0101
1	3	5	00101
1	4	6	000110
1	5	8	00000111
2	0	4	0111
2	1	4	0110
2	2	5	01000
2	3	6	001000
2	4	7	0001000
2	5	8	00000101
3	0	6	001111
3	1	5	00110
3	2	6	001001
3	3	7	0001010
3	4	7	0000101
3	5	8	0000001
4	0	7	0001011
4	1	6	000111
4	2	7	0001001
4	3	7	0000110
4	4	8	00000100
4	5	9	00000001
5	0	8	00001110
5	1	7	0000100
5	2	8	00000110
5	3	8	00000010
5	4	9	000000110

5	5	9	00000000			
哈夫	哈夫曼编码表 10					
x	У	hlen	hcod			
0	0	1	1			
0	1	3	010			
0	2	6	001010			
0	3	8	00010111			
0	4	9	000100011			
0	5	9	000011110			
0	6	9	000001100			
0	7	10	0000010001			
1	0	3	011			
1	1	4	0011			
1	2	6	001000			
1	3	7	0001100			
1	4	8	00010010			
1	5	9	000010101			
1	6	8	00001100			
1	7	8	00000111			
2	0	6	001011			
2	1	6	001001			
2	2	7	0001111			
2	3	8	00010101			
2	4	9	000100000			
2	5	10	0000101000			
2	6	9	000010011			
2	7	9	000000110			
3	0	7	0001110			
3	1	7	0001101			
3	2	8	00010110			
3	3	9	000100010			
3	4	10	0000101110			
3	5	10	0000010111			
3	6	9	000010010			
3	7	10	000000111			
4	0	8	00010100			
4	1	8	00010011			
4	2	9	000100001			
4	3	10	0000101111			
4	4	10	0000011011			
4	5	10	0000010110			
4	6	10	0000001001			
4	7	10	000000011			

5	0	9	000011111
5			000011111
	1	9	000010110
5	2	10	
5	3	10	0000011010
5	4	11	0000010101
5	5	11	0000010100
5	6	10	000000101
5	7	11	0000000011
6	0	8	00001110
6	1	8	00001101
6	2	9	000001010
6	3	10	000001011
6	4	10	0000010000
6	5	10	000000110
6	6	11	0000000101
6	7	11	0000000001
7	0	9	000001001
7	1	8	00001000
7	2	9	000000111
7	3	10	000001000
7	4	10	000000100
7	5	11	0000000100
7	6	11	0000000010
7	7	11	000000000
哈夫	:曼编码表	11	
x	У	hlen	hcod
0	0	2	11
0	1	3	100
0	2	5	01010
0	3	7	0011000
0	4	8	00100010
0	5	9	000100001
0	6	8	00010101
0	7	9	000001111
1	0	3	101
1	1	3	011
1	2	4	0100
1	3	6	001010
1	4	8	00100000
1	5	8	00010001
1	6	7	0001011
1	7	8	00001010
2	0	5	01011
_			

2	1	5	00111
2	2	6	001101
2	3	7	0010010
2	4	8	00011110
2	5	9	000011111
2	6	8	00010100
2	7	8	00000101
3	0	7	0011001
3	1	6	001011
3	2	7	0010011
3	3	9	000111011
3	4	8	00011011
3	5	10	0000010010
3	6	8	00001100
3	7	9	00000101
4	0	8	00100011
4	1	8	00100001
4	2	8	00011111
4	3	9	000111010
4	4	9	000011110
4	5	10	0000010000
4	6	9	000000111
4	7	10	000000101
5	0	8	00011100
5	1	8	00011010
5	2	9	000100000
5	3	10	0000010011
5	4	10	0000010001
5	5	11	0000001111
5	6	10	000001000
5	7	11	0000001110
6	0	8	00001110
6	1	7	0001100
6	2	7	0001001
6	3	8	00001101
6	4	9	000001110
6	5	10	000001001
6	6	10	000000100
6	7	10	000000001
7	0	8	00001011
7	1	7	0000100
7	2	8	00000110
7	3	9	00000110
7	4	10	000000110

7	5	10	000000011
7	6	10	000000010
7	7	10	000000000
哈夫	:曼编码表	12	
x	У	hlen	hcod
0	0	4	1001
0	1	3	110
0	2	5	10000
0	3	7	0100001
0	4	8	00101001
0	5	9	000100111
0	6	9	000100110
0	7	9	000011010
1	0	3	111
1	1	3	101
1	2	4	0110
1	3	5	01001
1	4	7	0010111
1	5	7	0010000
1	6	8	00011010
1	7	8	00001011
2	0	5	10001
2	1	4	0111
2	2	5	01011
2	3	6	001110
2	4	7	0010101
2	5	8	00011110
	6	7	0001010
2	7	8	00000111
3	0	6	010001
3	1	5	01010
3	2	6	001111
3	3	6	001100
3	4	7	0010010
3	5	8	00011100
3	6	8	00001110
3	7	8	00000101
4	0	7	0100000
4	1	6	001101
4	2	7 7	0010110 0010011
4	4	8	00010011
4	5	8	00010000

4	6	8	00001001
4	7	9	000000101
5	0	8	00101000
5	1	7	0010001
5	2	8	00011111
5	3	8	00011101
5	4	8	00010001
5	5	9	000001101
5	6	8	00000100
5	7	9	00000010
6	0	8	00011011
6	1	7	0001100
6	2	7	0001011
6	3	8	00001111
6	4	8	00001010
6	5	9	00000111
6	6	9	00000100
6	7	10	000000001
7	0	9	000011011
7	1	8	00001100
7	2	8	00001000
7	3	9	000001100
7	4	9	00000110
7	5	9	00000011
7	6	9	00000001
7	7	10	000000000
哈夫	是编码表		
х	У	hlen	hcod
0	0	1	1
0	1	4	0101
0	2	6	001110
0	3	7	0010101
0	4	8	00100010
0	5	9	000110011
0	6	9	000101110
0	7	10	0001000111
0	8	9	000101010
0	9	10	0000110100
0	10	11	00001000100
0	11	11	00000110100
0	12	12	000001000011
0	13	12	00000101100
0	14	13	000000101011

0	15	13	000000010011
1	0	3	011
1	1	4	0100
1	2	6	001100
1	3	7	0010011
1	4	8	00011111
1	5	8	00011010
1	6	9	000101100
1	7	9	000100001
1	8	9	000011111
1	9	9	000011000
1	10	10	0000100000
1	11	10	0000011000
1	12	11	0000011111
1	13	12	00000100011
1	14	12	00000010110
1	15	12	00000001110
2	0	6	001111
2	1	6	001101
2	2	7	0010111
2	3	8	00100100
2	4	9	000111011
2	5	9	000110001
2	6	10	0001001101
2	7	10	0001000001
2	8	9	000011101
2	9	10	0000101000
2	10	10	0000011110
2	11	11	00000101000
2	12	11	00000011011
2	13	12	00000100001
2	14	13	000000101010
2	15	13	000000010000
3	0	7	0010110
3	1	7	0010100
3	2	8	00100101
3	3	9	000111101
3	4	9	000111000
3	5	10	0001001111
3	6	10	0001001001
3	7	10	0001000000
3	8	10	0000101011
3	9	11	00001001100
3	10	11	00000111000

3	11	11	00000100101
3	12	11	0000011010
3	13	12	00000011111
3	14	13	000000011001
3	15	13	00000001110
4	0	8	00100011
4	1	7	0010000
4	2	9	000111100
4	3	9	000111001
4	4	10	0001100001
4	5	10	0001001011
4	6	11	00001110010
4	7	11	00001011011
4	8	10	0000110110
4	9	11	00001001001
4	10	11	00000110111
4	11	12	000000101001
4	12	12	000000110000
4	13	13	000000110101
4	14	13	000000010111
4	15	14	000000011000
5	0	9	000111010
5	1	8	00011011
5	2	9	000110010
5	3	10	0001100000
5	4	10	0001001100
5	5	10	0001000110
5	6	11	00001011101
5	7	11	00001010100
5	8	11	00001001101
5	9	11	00000111010
5	10	12	000001001111
5	11	11	00000011101
5	12	13	000001001010
5	13	13	000000110001
5	14	14	0000000101001
5	15	14	000000010001
6	0	9	000101111
6	1	9	000101101
6	2	10	0001001110
6	3	10	0001001010
6	4	11	00001110011
6	5	11	00001011110
6	6	11	00001011010

6	7	11	00001001111
6	8	11	00001000101
6	9	12	000001010011
6	10	12	000001000111
6	11	12	00000110010
6	12	13	000000111011
6	13	13	000000100110
6	14	14	0000000100100
6	15	14	000000001111
7	0	10	0001001000
7	1	9	000100010
7	2	10	0000111000
7	3	11	00001011111
7	4	11	00001011100
7	5	11	00001010101
7	6	12	000001011011
7	7	12	000001011010
7	8	12	000001010110
7	9	12	000001001001
7	10	13	000001001101
7	11	13	000001000001
7	12	13	000000110011
7	13	14	0000000101100
7	14	16	00000000101011
7	15	16	00000000101010
8	0	9	000101011
8	1	8	00010100
8	2	9	000011110
8	3	10	0000101100
8	4	10	0000110111
8	5	11	00001001110
8	6	11	00001001000
8	7	12	000001010111
8	8	12	000001001110
8	9	12	00000111101
8	10	12	00000101110
8	11	13	000000110110
8	12	13	000000100101
8	13	14	000000011110
8	14	15	0000000010100
8	15	15	0000000010000
9	0	10	0000110101
9	1	9	000011001
9	2	10	0000101001

9	3	10	0000100101
9	4	11	0000101100
9	5	11	00000111011
9	6	11	00000110110
9	7	13	000001010001
9	8	12	000001000010
9	9	13	000001001100
9	10	13	000000111001
9	11	14	0000000110110
9	12	14	0000000100101
9	13	14	0000000010010
9	15	15	0000000001011
10	0	10	0000100011
10	1	10	0000100001
10	2	10	0000011111
10	3	11	00000111001
10	4	11	00000101010
10	5	12	000001010010
10	6	12	000001001000
10	7	13	0000001010000
10	8	12	000000101111
10	9	13	000000111010
10	10	14	0000000110111
10	11	13	000000010101
10	12	14	0000000010110
10	13	15	0000000011010
10	14	16	00000000100110
10	15	17	000000000010110
11	0	11	00000110101
11	1	10	0000011001
11	2	10	0000010111
11	3	11	00000100110
11	4	12	000001000110
11	5	12	00000111100
11	6	12	00000110011
11	7	12	00000100100
11	8	13	000000110111
11	9	13	000000011010
11		13	000000100010
11		14	0000000010111
11		15	0000000011011
11		15	0000000001110
11		15	0000000001001
11	15	16	0000000000111

10	0	11	00000100010
12	0	11	00000100010
12	1	11	00000100000
12	2	11	0000011100
12	3	12	00000100111
12	4	12	00000110001
12	5	13	0000001001011
12	6	12	00000011110
12	7	13	000000110100
12	8	14	0000000110000
12	9	14	0000000101000
12	10	15	0000000110100
12	11	15	0000000011100
12	12	15	0000000010010
12	13	16	00000000010001
12	14	16	00000000001001
12	15	16	00000000000101
13	0	12	00000101101
13	1	11	0000010101
13	2	12	00000100010
13	3	13	000001000000
13	4	13	000000111000
13	5	13	000000110010
13	6	14	0000000110001
13	7	14	0000000101101
13	8	14	000000011111
13	9	14	0000000010011
13	10	14	000000001100
13	11	15	0000000001111
13	12	16	00000000001010
13	13	15	0000000000111
13	14	16	00000000000110
13	15	16	00000000000011
14	0	13	000000110000
14	1	12	00000010111
14	2	12	00000010100
14	3	13	000000100111
14	4	13	000000100100
14	5	13	000000100011
14	6	15	00000000110101
14	7	14	0000000010101
14	8	14	000000010000
14	9	17	0000000000010111
14	10	15	0000000001101
14	11	15	0000000001010

14	12	15	0000000000110
14	13	17	00000000000000001
14	14	16	000000000000000000000000000000000000000
14	15	16	000000000000000000000000000000000000000
15	0	12	00000010000
15	1	12	00000001111
15	2	13	000000010001
15	3	14	0000000011011
15	4	14	0000000011001
15	5	14	0000000010100
15	6	15	0000000011101
15	7	14	000000001011
15	8	15	0000000010001
15	9	15	0000000001100
15	10	16	00000000010000
15	11	16	00000000001000
15	12	19	000000000000000000000000000000000000000
15	13	18	00000000000000001
15	14	19	00000000000000000
15	15	16	000000000000001

哈夫曼编码表 14

未使用

哈夫曼编码表 15

х	У	hlen	hcod
0	0	3	111
0	1	4	1100
0	2	5	10010
0	3	7	0110101
0	4	7	0101111
0	5	8	01001100
0	6	9	001111100
0	7	9	001101100
0	8	9	001011001
0	9	10	0001111011
0	10	10	0001101100
0	11	11	00001110111
0	12	11	00001101011
0	13	11	00001010001
0	14	12	000001111010
0	15	13	000000111111
1	0	4	1101
1	1	3	101

1	2	5	10000
1	3	6	011011
1	4	7	0101110
1	5	7	0100100
1	6	8	00111101
1	7	8	00110011
1	8	8	00101010
1	9	9	001000110
1	10	9	000110100
1	11	10	0001010011
1	12	10	0001000001
1	13	10	0000101001
1	14	11	00000111011
1	15	11	00000100100
2	0	5	10011
2	1	5	10001
2	2	5	01111
2	3	6	011000
2	4	7	0101001
2	5	7	0100010
2	6	8	00111011
2	7	8	00110000
2	8	8	00101000
2	9	9	001000000
2	10	9	000110010
2	11	10	0001001110
2	12	10	0000111110
2	13	11	00001010000
2	14	11	00000111000
2	15	11	00000100001
3	0	6	011101
3	1	6	011100
3	2	6	011001
3	3	7	0101011
3	4	7	0100111
3	5	8	00111111
3	6	8	00110111
3	7	9	001011101
3	8	9	001001100
3	9	9	000111011
3	10	10	0001011101
3	11	10	0001001000
3	12	10	0000110110
3	13	11	00001001011

3	14	11	00000110010
3	15	11	0000011101
4	0	7	0110100
4	1	6	010110
4	2	7	0101010
4	3	7	0101000
4	4	8	01000011
4	5	8	00111001
4	6	9	001011111
4	7	9	001001111
4	8	9	001001000
4	9	9	000111001
4	10	10	0001011001
4	11	10	0001000101
4	12	10	0000110001
4	13	11	00001000010
4	14	11	00000101110
4	15	11	00000011011
5	0	8	01001101
5	1	7	0100101
5	2	7	0100011
5	3	8	01000010
5	4	8	00111010
5	5	8	00110100
5	6	9	001011011
5	7	9	001001010
5	8	9	000111110
5	9	9	000110000
5	10	10	0001001111
5	11	10	0000111111
5	12	11	00001011010
5	13	11	00000111110
5	14	11	00000101000
5	15	12	00000100110
6	0	9	001111101
6	1	7	0100000
6	2	8	00111100
6	3	8	00111000
6	4	8	00110010
6	5	9	001011100
6	6	9	001001110
6	7	9	001000001
6	8	9	000110111
6	9	10	0001010111

6	10	10	0001000111
6	11	10	0000110011
6	12	11	00001001001
6	13	11	00000110011
6	14	12	000001000110
6	15	12	00000011110
7	0	9	001101101
7	1	8	00110101
7	2	8	00110001
7	3	9	001011110
7	4	9	001011000
7	5	9	001001011
7	6	9	001000010
7	7	10	0001111010
7	8	10	0001011011
7	9	10	0001001001
7	10	10	0000111000
7	11	10	0000101010
7	12	11	00001000000
7	13	11	00000101100
7	14	11	0000010101
7	15	12	00000011001
8	0	9	001011010
8	1	8	00101011
8	2	8	00101001
8	3	9	001001101
8	4	9	001001001
8	5	9	000111111
8	6	9	000111000
8	7	10	0001011100
8	8	10	0001001101
8	9	10	0001000010
8	10	10	0000101111
8	11	11	00001000011
8	12	11	00000110000
8	13	12	00000110101
8	14	12	00000100100
8	15	12	00000010100
9	0	9	001000111
9	1	8	00100010
9	2	9	001000011
9	3	9	000111100
9	4	9	000111010
9	5	9	000110001

9	6	10	0001011000
9	7	10	0001001100
9	8	10	0001000011
9	9	11	00001101010
9	10	11	00001000111
9	11	11	00000110110
9	12	11	00000100110
9	13	12	00000100111
9	14	12	00000010111
9	15	12	00000001111
10	0	10	0001101101
10	1	9	000110101
10	2	9	000110011
10	3	9	000101111
10	4	10	0001011010
10	5	10	0001010010
10	6	10	0000111010
10	7	10	0000111001
10	8	10	0000110000
10	9	11	00001001000
10	10	11	00000111001
10	11	11	00000101001
10	12	11	0000010111
10	13	12	00000011011
10	14	13	000000111110
10	15	12	00000001001
11	0	10	0001010110
11	1	9	000101010
11	2	9	000101000
11	3	9	000100101
11	4	10	0001000110
11	5	10	0001000000
11	6	10	0000110100
11	7	10	0000101011
11	8	11	00001000110
11	9	11	00000110111
11	10	11	00000101010
11	11	11	0000011001
11	12	12	00000011101
11	13	12	00000010010
11	14	12	00000001011
11	15	13	00000001011
12	0	11	00001110110
12	1	10	0001000100

12	2	9	000011110
12	3	10	0000110111
12	4	10	0000110010
12	5	10	0000101110
12	6	11	00001001010
12	7	11	00001000001
12	8	11	00000110001
12	9	11	00000100111
12	10	11	0000011000
12	11	11	0000010000
12	12	12	00000010110
12	13	12	00000001101
12	14	13	000000001110
12	15	13	00000000111
13	0	11	00001011011
13	1	10	0000101100
13	2	10	0000100111
13	3	10	0000100110
13	4	10	0000100010
13	5	11	00000111111
13	6	11	00000110100
13	7	11	00000101101
13	8	11	0000011111
13	9	12	000000110100
13	10	12	00000011100
13	11	12	00000010011
13	12	12	00000001110
13	13	12	00000001000
13	14	13	000000001001
13	15	13	00000000011
14	0	12	000001111011
14	1	11	00000111100
14	2	11	00000111010
14	3	11	00000110101
14	4	11	00000101111
14	5	11	00000101011
14	6	11	00000100000
14	7	11	0000010110
14	8	12	00000100101
14	9	12	00000011000
14	10	12	00000010001
14	11	12	00000001100
14	12	13	000000001111
14	13	13	00000001010

14	14	12	00000000010
14	15	13	00000000001
15	0	12	000001000111
15	1	11	00000100101
15	2	11	00000100010
15	3	11	00000011110
15	4	11	0000011100
15	5	11	0000010100
15	6	11	0000010001
15	7	12	00000011010
15	8	12	00000010101
15	9	12	00000010000
15	10	12	00000001010
15	11	12	00000000110
15	12	13	00000001000
15	13	13	000000000110
15	14	13	000000000010
15	15	13	00000000000
哈夫	曼编码表:	L6	
ESC	表, link	oits=1	
x	У	hlen	hcod
0	0	1	1
0	1	4	0101
0	2	6	001110
0	3	8	00101100
0	4	9	001001010
0	5	9	000111111
0	6	10	0001101110
0	7	10	0001011101
0	8	11	00010101100
0	9	11	00010010101
0	10	11	00010001010
0	11	12	000011110010
0	12	12	000011100001
0	13	12	000011000011
0	14	13	0000101111000
0	15	9	000010001
1	0	3	011
	O	_	
1	1	4	0100
			0100 001100

1 3

1 4

1 5

1	6	9	000110101
1	7	9	000101111
1	8	10	0001010011
1	9	10	0001001011
1	10	10	0001000100
1	11	11	00001110111
1	12	12	000011001001
1	13	11	00001101011
1	14	12	000011001111
1	15	8	00001001
2	0	6	001111
2	1	6	001101
2	2	7	0010111
2	3	8	00100110
2	4	9	001000011
2	5	9	000111010
2	6	10	0001100111
2	7	10	0001011010
2	8	11	00010100001
2	9	10	0001001000
2	10	11	00001111111
2	11	11	00001110101
2	12	11	00001101110
2	13	12	000011010001
2	14	12	000011001110
2	15	9	000010000
3	0	8	00101101
3	1	7	0010101
3	2	8	00100111
3	3	9	001000101
3	4	9	001000000
3	5	10	0001110010
3	6	10	0001100011
3	7	10	0001010111
3	8	11	00010011110
3	9	11	00010001100
3	10	12	000011111100
3	11	12	000011010100
3	12	12	000011000111
3	13	13	0000110000011
3	14	13	0000101101101
3	15	10	0000011010
4	0	9	001001011
4	1	8	00100100

4	2	9	001000100
4	3	9	001000001
4	4	10	0001110011
4	5	10	0001100101
4	6	11	00010110011
4	7	11	00010100100
4	8	11	00010011011
4	9	12	000100001000
4	10	12	000011110110
4	11	12	000011100010
4	12	13	0000110001011
4	13	13	0000101111110
4	14	13	0000101101010
4	15	9	000001001
5	0	9	001000010
5	1	8	00011110
5	2	9	000111011
5	3	9	000111000
5	4	10	0001100110
5	5	11	00010111001
5	6	11	00010101101
5	7	12	000100001001
5	8	11	00010001110
5	9	12	000011111101
5	10	12	000011101000
5	11	13	0000110010000
5	12	13	0000110000100
5	13	13	0000101111010
5	14	14	00000110111101
5	15	10	0000010000
6	0	10	0001101111
6	1	9	000110110
6	2	9	000110100
6	3	10	0001100100
6	4	11	00010111000
6	5	11	00010110010
6	6	11	00010100000
6	7	11	00010000101
6	8	12	00010000001
6	9	12	000011110100
6	10	12	000011100100
6	11	12	000011011001
6	12	13	0000110000001
6	13	13	0000101101110

6	14	14	00001011001011
6	15	10	000001010
7	0	10	0001100010
7	1	9	000110000
7	2	10	0001011011
7	3	10	0001011000
7	4	11	00010100101
7	5	11	00010011101
7	6	11	00010010100
7	7	12	000100000101
7	8	12	000011111000
7	9	13	0000110010111
7	10	13	0000110001101
7	11	13	0000101110100
7	12	13	0000101111100
7	13	15	000001101111001
7	14	15	000001101110100
7	15	10	000001000
8	0	10	0001010101
8	1	10	0001010100
8	2	10	0001010001
8	3	11	00010011111
8	4	11	00010011100
8	5	11	00010001111
8	6	12	000100000100
8	7	12	000011111001
8	8	13	0000110101011
8	9	13	0000110010001
8	10	13	0000110001000
8	11	13	0000101111111
8	12	14	00001011010111
8	13	14	00001011001001
8	14	14	00001011000100
8	15	10	000000111
9	0	11	00010011010
9	1	10	0001001100
9	2	10	0001001001
9	3	11	00010001101
9	4	11	00010000011
9	5	12	00010000000
9	6	12	000011110101
9	7	13	0000110101010
9	8	13	0000110010110
9	9	13	0000110001010

9	10	13	0000110000000
9	11	14	00001011011111
9	12	13	0000101100111
9	13	14	00001011000110
9	14	13	0000101100000
9	15	11	0000001011
10	0	11	00010001011
10	1	11	00010000001
10	2	10	0001000011
10	3	11	00001111101
10	4	12	000011110111
10	5	12	000011101001
10	6	12	000011100101
10	7	12	000011011011
10	8	13	0000110001001
10	9	14	00001011100111
10	10	14	00001011100001
10	11	14	00001011010000
10	12	15	000001101110101
10	13	15	000001101110010
10	14	14	00000110110111
10	15	10	000000100
11	0	12	000011110011
11	1	11	00001111000
11	2	11	00001110110
11	3	11	00001110011
11	4	12	000011100011
11	5	12	000011011111
11	6	13	0000110001100
11	7	14	00001011101010
11	8	14	00001011100110
11	9	14	00001011100000
11	10	14	00001011010001
11	11	14	00001011001000
11	12	14	00001011000010
11	13	13	0000011011111
11	14	14	00000110110100
11	15	11	0000000110
12	0	12	000011001010
12	1	12	000011100000
12	2	12	000011011110
12	3	12	000011011010
12	4	12	000011011000
12	5	13	0000110000101

12	6	13	0000110000010
12	7	13	000010111101
12	8	13	0000101111101
12	9	15	000001101111000
12	10		000001101111000
12	11	14	00001011000011
12	12	14	00000110111000
12	13	14	00000110110101
12	14	16	0000011011000000
12	15	11	0000000100
13	0		00001011101011
13	1	12	000011010011
13	2	12	000011010010
13	3	12	000011010000
13	4	13	0000101110010
13	5	13	0000101111011
13	6	14	00001011011110
13	7	14	00001011010011
13	8	14	00001011001010
13	9	16	0000011011000111
13	10	15	000001101110011
13	11	15	000001101101101
13	12	15	000001101101100
13	13	17	00000110110000011
13	14	15	000001101100001
13	15	11	0000000010
14	0	13	0000101111001
14	1	13	0000101110001
14	2	11	00001100110
14	3	12	000010111011
14	4	14	00001011010110
14	5	14	00001011010010
14	6	13	0000101100110
14	7	14	00001011000111
14	8	14	00001011000101
14	9	15	000001101100010
14	10	16	0000011011000110
14	11	15	000001101100111
14	12	17	00000110110000010
14	13	15	000001101100110
14	14	14	00000110110010
14	15	11	000000000
15	0	9	000001100
15	1	8	00001010

15	2	8	00000111
15	3	9	000001011
15	4	9	000001010
15	5	10	0000010001
15	6	10	0000001011
15	7	10	000001001
15	8	11	0000001101
15	9	11	0000001100
15	10	11	0000001010
15	11	11	0000000111
15	12	11	0000000101
15	13	11	0000000011
15	14	11	0000000001
15	15	8	00000011

哈夫曼编码表 17

和表 16 一样, 但是 linbits = 2

哈夫曼编码表 18

和表 16 一样, 但是 linbits = 3

哈夫曼编码表 19

和表 16 一样, 但是 linbits = 4

哈夫曼编码表 20

和表 16 一样, 但是 linbits = 6

哈夫曼编码表 21

和表 16 一样, 但是 linbits = 8

哈夫曼编码表 22

和表 16 一样, 但是 linbits = 10

哈夫曼编码表 23

和表 16 一样, 但是 linbits = 13

哈夫曼编码表 24

ESC 表, linbits = 4

x	У	hlen	hcod
0	0	4	1111
0	1	4	1101
0	2	6	101110
0	3	7	1010000
0	4	8	10010010

0	5	9	100000110
0	6	9	011111000
0	7	10	0110110010
0	8	10	0110101010
0	9	11	01010011101
0	10	11	01010001101
0	11	11	01010001001
0	12	11	01001101101
0	13	11	0100000101
0	14	12	01000001000
0	15	9	001011000
1	0	4	1110
1	1	4	1100
1	2	5	10101
1	3	6	100110
1	4	7	1000111
1	5	8	10000010
1	6	8	01111010
1	7	9	011011000
1	8	9	011010001
1	9	9	011000110
1	10	10	0101000111
1	11	10	0101011001
1	12	10	0100111111
1	13	10	0100101001
1	14	10	0100010111
1	15	8	00101010
2	0	6	101111
2	1	5	10110
2	2	6	101001
2	3	7	1001010
2	4	7	1000100
2	5	8	1000000
2	6	8	01111000
2	7	9	011011101
2	8	9	011001111
2	9	9	011000010
2	10	9	010110110
2	11	10	0101010100
2	12	10	0100111011
2	13	10	0100100111
2	14	11	01000011101
2	15	7	0010010
3	0	7	1010001

3	1	6	100111
3	2	7	1001011
3	3	7	1000110
3	4	8	10000110
3	5	8	01111101
3	6	8	01110100
3	7	9	011011100
3	8	9	011001100
3	9	9	010111110
3	10	9	010110010
3	11	10	0101000101
3	12	10	0100110111
3	13	10	0100100101
3	14	10	0100001111
3	15	7	0010000
4	0	8	10010011
4	1	7	1001000
4	2	7	1000101
4	3	8	10000111
4	4	8	01111111
4	5	8	01110110
4	6	8	01110000
4	7	9	011010010
4	8	9	011001000
4	9	9	010111100
4	10	10	0101100000
4	11	10	0101000011
4	12	10	0100110010
4	13	10	0100011101
4	14	11	01000011100
4	15	7	0001110
5	0	9	100000111
5	1	7	1000010
5	2	8	1000001
5	3	8	01111110
5	4	8	01110111
5	5	8	01110010
5	6	9	011010110
5	7	9	011001010
5	8	9	011000000
5	9	9	010110100
5	10	10	0101010101
5	11	10	0100111101
5	12	10	0100101101

5	13	10	0100011001
5	14	10	0100000110
5	15	7	0001100
6	0	9	011111001
6	1	8	01111011
6	2	8	01111001
6	3	8	01110101
6	4	8	01110001
6	5	9	011010111
6	6	9	011001110
6	7	9	011000011
6	8	9	010111001
6	9	10	0101011011
6	10	10	0101001010
6	11	10	0100110100
6	12	10	0100100011
6	13	10	0100010000
6	14	11	0100001000
6	15	7	0001010
7	0	10	0110110011
7	1	8	01110011
7	2	8	01101111
7	3	8	01101101
7	4	9	011010011
7	5	9	011001011
7	6	9	011000100
7	7	9	010111011
7	8	10	0101100001
7	9	10	0101001100
7	10	10	0100111001
7	11	10	0100101010
7	12	10	0100011011
7	13	11	01000010011
7	14	11	00101111101
7	15	8	00010001
8	0	10	0110101011
8	1	9	011010100
8	2	9	011010000
8	3	9	011001101
8	4	9	011001001
8	5	9	011000001
8	6	9	010111010
8	7	9	010110001
8	8	9	010101001

8	9	10	0101000000	
8	10	10	0100100000	
8	11	10	01000101111	
			0100011110	
8	12	10		
8	13	11	01000000010	
8	14	11	00101111001	
8	15	8	00010000	
9	0	10	0101001111	
9	1	9	011000111	
9	2	9	011000101	
9	3	9	010111111	
9	4	9	010111101	
9	5	9	010110101	
9	6	9	010101110	
9	7	10	0101001101	
9	8	10	0101000001	
9	9	10	0100110001	
9	10	10	0100100001	
9	11	10	0100010011	
9	12	11	01000001001	
9	13	11	00101111011	
9	14	11	00101110011	
9	15	8	00001011	
10	0	11	01010011100	
10	1	9	010111000	
10	2	9	010110111	
10	3	9	010110011	
10	4	9	010101111	
10	5	10	0101011000	
10	6	10	0101001011	
10	7	10	0100111010	
10	8	10	0100110000	
10	9	10	0100100010	
10	10	10	0100010101	
10	11	11	01000010010	
10	12	11	00101111111	
10	13	11	00101110101	
10	14	11	00101101110	
10	15	8	00001010	
11	0	11	01010001100	
11	1	10	0101011010	
11	2	9	010101011	
11	3	9	010101000	
11	4	9	010100100	

11	5	10	0100111110
11	5	10	0100111110
11	7	10	010010101
11	8	10	0100011111
11	9	10	0100010100
11	10	10	0100000111
11	11	11	0100000001
11	12	11	00101110111
11	13	11	00101110000
11	14	11	00101101010
11	15	8	00000110
12	0	11	01010001000
12	1	10	0101000010
12	2	10	0100111100
12	3	10	0100111000
12	4	10	0100110011
12	5	10	0100101110
12	6	10	0100100100
12	7	10	0100011100
12	8	10	0100001101
12	9	10	0100000101
12	10	11	0100000000
12	11	11	00101111000
12	12	11	00101110010
12	13	11	00101101100
12	14	11	00101100111
12	15	8	00000100
13	0	11	01001101100
13	1	10	0100101100
13	2	10	0100101000
13	3	10	0100100110
13	4	10	0100100000
13	5	10	0100011010
13	6	10	0100010001
13	7	10	0100001010
13	8	11	0100000011
13	9	11	001011111100
13	10	11	00101111100
13	11	11	00101110001
13	12	11	00101101101
13	13	11	00101101001
13	14	11	00101100101
13	15	8	0000010
14	0	12	01000001001

14	1	10	0100011000
14	2	10	0100010110
14	3	10	0100010010
14	4	10	0100001011
14	5	10	0100001000
14	6	10	0100000011
14	7	11	00101111110
14	8	11	00101111010
14	9	11	00101110100
14	10	11	00101101111
14	11	11	00101101011
14	12	11	00101101000
14	13	11	00101100110
14	14	11	00101100100
14	15	8	0000000
15	0	8	00101011
15	1	7	0010100
15	2	7	0010011
15	3	7	0010001
15	4	7	0001111
15	5	7	0001101
15	6	7	0001011
15	7	7	0001001
15	8	7	0000111
15	9	7	0000110
15	10	7	0000100
15	11	8	00000111
15	12	8	00000101
15	13	8	00000011
15	14	8	0000001
15	15	4	0011

哈夫曼编码表 25

和表 24 一样, 但是 linbits = 5

哈夫曼编码表 26

和表 24 一样, 但是 linbits = 6

哈夫曼编码表 27

和表 24 一样,但是 linbits = 7

哈夫曼编码表 28

和表 24 一样, 但是 linbits = 8

哈夫曼编码表 29

和表 24 一样, 但是 linbits = 9

哈夫曼编码表 30

和表 24 一样, 但是 linbits = 11

哈夫曼编码表 31

和表 24 一样, 但是 linbits = 13

表 3-B.8 Layer III 比例因子带

这些表列出了每个比例因子带的宽度。在每个采样频率下对于长窗(type 0、1 或 3)有 21 个子带而对于短窗有 12 个子带。

表 3-B.8.a 32KHz 采样频率

长块	长块:			
	比例因子带	子带宽度	起始处索引	结束处索引
	0	4	0	3
	1	4	4	7
	2	4	8	11
	3	4	12	15
	4	4	16	19
	5	4	20	23
	6	6	24	29
	7	6	30	35
	8	8	36	43
	9	10	44	53
	10	12	54	65
	11	16	66	81
	12	20	82	101
	13	24	102	125
	14	30	126	155
	15	38	156	193
	16	46	194	239
	17	56	240	295
	18	68	296	363
	19	84	364	447
	20	102	448	549
短块	<u> </u>			
	比例因子带	子带宽度	起始处索引	结束处索引
	0	4	0	3

1	4	4	7	
2	4	8	11	
3	4	12	15	
4	6	16	21	
5	8	22	29	
6	12	30	41	
7	16	42	57	
8	20	58	77	
9	26	78	103	
10	34	104	137	
11	42	138	179	

表 3-B.8.b 44.1KHz 采样频率

长块	长块:					
	比例因子带	子带宽度	起始处索引	结束处索引		
	0	4	0	3		
	1	4	4	7		
	2	4	8	11		
	3	4	12	15		
	4	4	16	19		
	5	4	20	23		
	6	6	24	29		
	7	6	30	35		
	8	8	36	43		
	9	8	44	51		
	10	10	52	61		
	11	12	62	73		
	12	16	74	89		
	13	20	90	109		
	14	24	110	133		
	15	28	134	161		
	16	34	162	195		
	17	42	196	237		
	18	50	238	287		
	19	54	288	341		
	20	76	342	417		
短块:						
	比例因子带	子带宽度	起始处索引	结束处索引		
	0	4	0	3		
	1	4	4	7		

2	4	8	11	
3	4	12	15	
4	6	16	21	
5	8	22	29	
6	10	30	39	
7	12	40	51	
8	14	52	65	
9	18	66	83	
10	22	84	105	
11	30	106	135	

表 3-B.8.c 48KHz 采样频率

长块:			
比例因子带	子带宽度	起始处索引	结束处索引
0	4	0	3
1	4	4	7
2	4	8	11
3	4	12	15
4	4	16	19
5	4	20	23
6	6	24	29
7	6	30	35
8	6	36	41
9	8	42	49
10	10	50	59
11	12	60	71
12	16	72	87
13	18	88	105
14	22	106	127
15	28	128	155
16	34	156	189
17	40	190	229
18	46	230	275
19	54	276	329
20	54	330	383
比例因子带	子带宽度	起始处索引	结束处索引
0	4	0	3
1	4	4	7
2	4	8	11
3	4	12	15

4	6	16	21	
5	6	22	27	
6	10	28	37	
7	12	38	49	
8	14	50	63	
9	16	64	79	
10	20	80	99	
11	26	100	125	

表 3-B.9 Layer III 抗混叠的系数

(i)	ci
0	-0.6
1	-0.535
2	-0.33
3	-0.185
4	-0.095
5	-0.041
6	-0.0142
7	-0.0037

蝶形运算的系数 csi 和 cai 由下面的公式计算:

$$cs_i = \frac{1}{\sqrt{1 + c_i^2}}$$
 $ca_i = \frac{c_i}{\sqrt{1 + c_i^2}}$

附录3-C 编码过程(参考资讯)

3-C.1 编码器

3-C.1.1 概述

对每个层来说,本附录中给出带有相应流程图的一个合适的编码器的例子。在后继章节中描述了分解子带滤波器和特定层相关的编码技术。在附录 D 中描述了适用于所有层的两个心理声学模型的例子。下面是一个简短的介绍,描述了整体的基本原理。

导言

MPEG 音频算法是一个心理声学算法。下图表示了一个心理声学算法的基本部分。

心理声学编码器的四个基础部分是:

1、滤波器组

滤波器组实现时域到频域的映射。在 MPEG-Audio 算法中使用了两种滤波器组,每一个都提供一个从时域到频域特定的映射。这些滤波器组是临界采样的(例如,在解析域和时域中的采样个数相同的)。这些滤波器组给编码器提供基本的频率分离,而重建滤波器则是针对解码器的。滤波器组的输出采样是经过量化的。

2、 心理声学模型

心理声学模型为每个滤波器组内的频带计算一个刚好可感知的噪声级别。这个噪声级别在比特或噪声分配中被用来确定实际的量化器和量化级别。附录 3-D中描述了两个心理声学模型。而它们都可以被应用到MPEG音频算法的任何层中,实践中模型 1 通常被用在Layer I和II,而模型 2 则被用在Layer III。在两个心理声学模型中,模型的最终输出是每个频带(Layer I、II)或频带群(Layer III)的信号遮蔽比(signal-to-mask ratio,SMR)。

3、 比特或噪声分配

分配器参考滤波器组的输出采样和心理声学的 SMR,从而调整比特分配(Layer I、II)或噪声分配(Layer IIII),以同时满足比特率的要求和遮蔽的要求。在低比特率情况下,当这些算法不能在要求的比特率满足心理声学的需要时,那么这些算法会在不损害心理声学(效果)的情况下消耗比特。

4、 比特流格式器

比特流格式器获取量化的滤波器组输出,比特分配(Layer I、II)或噪声分配(Layer III)和其他需要的附属信息,编码并以有效率的方式组织这些信息的格式。在 Layer III 的情况下,哈夫曼编码也被加入到编码信息中。

滤波器组

在 Layer I 和 II 中,使用了一个带 32 个子带的滤波器组。在每个子带内,12 或 36 个采样被分组处理。在 Layer III 中,滤波器组具有独立于信号的精度,这其中有 6×32 或 18×32 个频率带。在 6×32 个频率采样的情况下,每个频率的 3 个类别分别量化。

比特或噪声分配方法

本附录阐述了两种不同的比特控制方法。在 Layer I 和 II 这种方法是一个比特分配处理过程,例如,在每个子带内一串比特被分配到每个采样(或采样组)。Layer III 的方法是一个噪声分配循环,其中量化器以一个有组织的方式变化,而需要控制的变量是实际引入噪声。无论哪种情况,结果都是一组送入比特流格式器的量化参数和已量化的输出采样。

比特流格式化

比特流格式器根据层数而变化。在 Layer I 和 II,每个子带采样使用一个固定的 PCM 编码,而在 Layer II 中例外的是量化过的采样可以被分组。在 Layer III 中,哈夫曼编码被用来表示量化的频率采样。这些哈夫曼编码是变长的码元,以允许已量化的采样在复杂度增加的代价下有更有效的比特流表现形式。

3-C.1.2 输入高通滤波器

编码算法提供一个低至直流的频率响应。然而,在实际应用中这并不是必须的,建议在编码器的输入包含一个高通滤波器。(滤波器的)截止频率应该在2到10Hz的范围。

这样的高通滤波器的使用避免了最低子带的不必要的高比特率需求,并增加了总体音质。

3-C.1.3 分解子带滤波器

使用一个分解子带滤波器来将采样频率fs内的宽带信号分割为 32 个采样频率为fs/32 的 等宽子带。图 3-C.1 "分解子带滤波器流程图"给出了这个处理的流程图和相应的公式。分解子带滤波器包含下面的步骤:

- 输入32个音频采样;
- 构建一个输入采样矢量 X,包含 512 个元素。32 个音频采样被移动到位置 0 到 31, (时间上)最新的采样在位置 0,而 32 个最老的元素被移出;
- 用矢量C对矢量X加窗。系数可以在表 3-C.1 "分解加窗的系数Ci"中找到;
- 根据流程图中给出的公式计算 64 个 Yi:
- 通过矩阵计算 32 个子带采样 Si。矩阵需要的系数可以用下面的公式计算:

 $M_{ik} = \cos[(2i+1)(k-16)\pi/64]$, for i = 0 to 31, k = 0 to 63.

表 3-C.1 分解加窗的系数 Ci

C[0]= 0.00000000	C[1]=-0.000000477	C[2]=-0.000000477	C[3]=-0.00000477	
C[4]=-0.000000477	C[5]=-0.000000477	C[6]=-0.000000477	C[7]=-0.000000954	
C[8]=-0.000000954	C[9] = 0.000000477	C[10] = -0.000000954	C[11]=-0.000001431	
C[12]=-0.000001431	C[13]=-0.000001907	C[14] = -0.000001907	C[15] = -0.000002384	
C[16]=-0.000002384	C[17]=-0.000002861	C[18]=-0.000003338	C[19]=-0.000003338	
C[20]=-0.000003815	C[21]=-0.000004292	C[22]=-0.000004768	C[23]=-0.000005245	
C[24]=-0.000006199	C[25]=-0.000006676	C[26]=-0.000007629	C[27]=-0.00008106	
C[28]=-0.000009060	C[29]=-0.000010014	C[30] = -0.000011444	C[31]=-0.000012398	
C[32]=-0.000013828	C[33] = -0.000014782	C[34] = -0.000016689	C[35]=-0.000018120	
C[36]=-0.000019550	C[37]=-0.000021458	C[38]=-0.000023365	C[39]=-0.000025272	
C[40]=-0.000027657	C[41] = -0.000030041	C[42] = -0.000032425	C[43]=-0.000034809	
C[44] = -0.000037670	C[45]=-0.000040531	C[46]=-0.000043392	C[47]=-0.000046253	
C[48]=-0.000049591	C[49]=-0.000052929	C[50]=-0.000055790	C[51]=-0.000059605	
C[52]=-0.000062943	C[53]=-0.000066280	C[54]=-0.000070095	C[55]=-0.000073433	
C[56]=-0.000076771	C[57]=-0.000080585	C[58]=-0.000083923	C[59]=-0.000087261	
C[60]=-0.000090599	C[61]=-0.000093460	C[62]=-0.000096321	C[63]=-0.000099182	
C[64]= 0.000101566	C[65]= 0.000103951	C[66]= 0.000105858	C[67]= 0.000107288	
C[68] = 0.000108242	C[69] = 0.000108719	C[70] = 0.000108719	C[71] = 0.000108242	
C[72] = 0.000106812	C[73] = 0.000105713	C[74] = 0.000102520	C[75]= 0.000099182	
C[76] = 0.000100012	C[77] = 0.000103301 C[77] = 0.000090122	C[74] = 0.000102320 C[78] = 0.000084400	C[79]= 0.000077724	
C[80] = 0.000069618	C[81] = 0.000060558	C[82] = 0.000050545	C[83] = 0.000039577	
C[84] = 0.000027180	C[85] = 0.000013828	C[86]=-0.000000954	C[87]=-0.000017166	
C[88]=-0.000034332	C[89]=-0.000052929	C[90]=-0.000072956	C[91]=-0.000093937	
C[92]=-0.000116348	C[93]=-0.000140190	C[94]=-0.000165462	C[95]=-0.000191212	
C[96]=-0.000218868	C[97]=-0.000247478	C[98] = -0.000277042	C[99]=-0.000307560	
C[100]=-0.000339031	C[101]=-0.000371456	C[102]=-0.000404358	C[103] =-0.000438213	
C[104] = -0.000472546	C[105]=-0.000507355	C[106]=-0.000542164	C[107]=-0.000576973	
C[108]=-0.000611782	C[109]=-0.000646591	C[110]=-0.000680923	C[111]=-0.000714302	
C[112]=-0.000747204	C[113]=-0.000779152	C[114]=-0.000809669	C[115]=-0.000838757	
C[116]=-0.000866413	C[117]=-0.000891685	C[118]=-0.000915051	C[119]=-0.000935555	
C[120]=-0.000954151	C[121]=-0.000968933	C[122]=-0.000980854	C[123]=-0.000989437	
C[124]=-0.000994205	C[125]=-0.000995159	C[126]=-0.000991821	C[127]=-0.000983715	
C[128] = 0.000971317	C[129] = 0.000953674	C[130] = 0.000930786	C[131] = 0.000902653	
C[132] = 0.000868797	C[133] = 0.000829220	C[134] = 0.000783920	C[135]= 0.000731945	
C[136] = 0.000674248	C[137] = 0.000610352	C[138] = 0.000539303	C[139] = 0.000462532	
C[140] = 0.000378609	C[141] = 0.000288486	C[142] = 0.000191689	C[143] = 0.000088215	
C[144] = -0.000021458	C[145] = -0.000137329	C[146] =-0.000259876	C[147] = -0.000388145	
C[148] = -0.000522137	C[149] = -0.000661850	C[150] = -0.000806808	C[151] =-0.000956535	
C[152] = -0.001111031	C[153]=-0.001269817	C[154] = -0.001432419	C[155] = -0.001597881	
C[156]=-0.001766682	C[157]=-0.001937389	C[158]=-0.002110004	C[159]=-0.002283096	
C[160]=-0.002457142	C[161]=-0.002630711	C[162]=-0.002803326	C[163]=-0.002974033	
C[164]=-0.003141880	C[165]=-0.003306866	C[166]=-0.003467083	C[167]=-0.003622532	
C[168]=-0.003771782	C[169]=-0.003914356	C[170]=-0.004048824	C[171]=-0.004174709	
C[172]=-0.004290581	C[173]=-0.004395962	C[174] = -0.004489899	C[175]=-0.004570484	
C[176]=-0.004638195	C[177]=-0.004691124	C[178] =-0.004728317	C[179]=-0.004748821	
C[180]=-0.004752159	C[181]=-0.004737377	C[182]=-0.004703045	C[183]=-0.004649162	
C[184]=-0.004573822	C[185]=-0.004477024	C[186]=-0.004357815	C[187]=-0.004215240	
C[188]=-0.004049301	C[189]=-0.003858566	C[190]=-0.003643036	C[191]=-0.003401756	
C[192] = 0.003134727	C[193] = 0.002841473	C[194] = 0.002521515	C[195] = 0.002174854	
C[196] = 0.001800537	C[197] = 0.001399517	C[198] = 0.000971317	C[199] = 0.000515938	
C[200] = 0.000033379	C[201]=-0.000475883	C[202]=-0.001011848	C[203]=-0.001573563	
C[204]=-0.002161503	C[205]=-0.002774239	C[206]=-0.003411293	C[207]=-0.004072189	
C[208]=-0.004756451	C[209]=-0.005462170	C[210]=-0.006189346	C[211]=-0.006937027	
C[212]=-0.007703304	C[213]=-0.008487225	C[214]=-0.009287834	C[215]=-0.010103703	
C[216]=-0.010933399	C[217]=-0.011775017	C[218]=-0.012627602	C[219]=-0.013489246	
C[220]=-0.014358521	C[221]=-0.015233517	C[222]=-0.016112804	C[223]=-0.016994476	
C[224]=-0.017876148	C[225]=-0.018756866	C[226]=-0.019634247	C[227]=-0.020506859	
C[228]=-0.021372318	C[229]=-0.022228718	C[230] = -0.023074150	C[231]=-0.023907185	
C[232]=-0.024725437	C[233]=-0.025527000	C[234]=-0.026310921	C[235]=-0.027073860	
C[236]=-0.027815342	C[237]=-0.028532982	C[238]=-0.029224873	C[239]=-0.029890060	
C[240] = -0.030526638	C[241]=-0.031132698	C[238] = -0.029224873 $C[242] = -0.031706810$	C[243]=-0.032248020	
	C[241] = -0.031132698 C[245] = -0.033225536			
C[244] = -0.032754898		C[246] = -0.033659935	C[247] = -0.034055710	
C[248] = -0.034412861	C[249] = -0.034730434	C[250] = -0.035007000	C[251] =-0.035242081	
C[252] = -0.035435200	C[253] = -0.035586357	C[254] =-0.035694122	C[255] =-0.035758972	
C[256] = 0.035780907	C[257] = 0.035758972	C[258] = 0.035694122	C[259]= 0.035586357	

C C C C C C C C				
C12971	C[260]= 0.035435200	C[261] = 0.035242081	C[262] = 0.035007000	C[263]= 0.034730434
CONTROL C.C. C.C. C.C. C.C. C.C. C.C. C.C. C	C[264] = 0.034412861	C[265] = 0.034055710	C[266] = 0.033659935	C[267] = 0.033225536
C 224 - 0.027835122 C 227 - 0.0277860 C 224 - 0.02877861 C 224 - 0.02877862	C[268] = 0.032754898	C[269] = 0.032248020	C[270] = 0.031706810	C[271] = 0.031132698
C 224 - 0.027835122 C 227 - 0.0277860 C 224 - 0.02877861 C 224 - 0.02877862	C[272] - 0 030526638	C[273] - 0 029890060	C[274] - 0 029224873	C[275] = 0 028532982
C1241-0.00373231 C1251-0.02507320 C1251-0.02507320 C1251-0.0257321 C1251-0				
Classin				
C[281] - 0.11978283	C[280] = 0.024725437	C[281] = 0.023907185	C[282] = 0.023074150	C[283] = 0.022228718
C 250 - C.002702333 C 250 - C.002870227 C 250 - C.00287023 C 250 - C.0028702	C[284] = 0.021372318	C[285] = 0.020506859	C[286] = 0.019634247	C[287] = 0.018756866
C(200) = 0.00796203 C(201) = 0.00187823 C(201) = 0.00187834 C(201) = 0.00287230	C[288] = 0.017876148	C[289]= 0.016994476	C[290] = 0.016112804	C[291] = 0.015233517
C(200) = 0.00796203 C(201) = 0.00187823 C(201) = 0.00187834 C(201) = 0.00287230	C[292] = 0.014358521	C[293] = 0.013489246	C[294] = 0.012627602	C[295] = 0.011775017
C SSI - 0.00724033				
C				
C(1911 - 0.0012/1015) C(1911 - 0.0017956) C(1911 - 0.0017956				
C	C[304] = 0.004756451	C[305] = 0.004072189	C[306] = 0.003411293	C[307] = 0.002774239
C134 - 0.00106377 C137 - 0.00217654 C139 - 0.002521515 C139 - 0.00201477 C137 - 0.00147787 C138 - 0.0014778 C138 - 0	C[308] = 0.002161503	C[309] = 0.001573563	C[310] = 0.001011848	C[311] = 0.000475883
C(SAU)	C[312]=-0.000033379	C[313]=-0.000515938	C[314]=-0.000971317	C[315]=-0.001399517
C(SAU)	C[316]=-0.001800537	C[317]=-0.002174854	C[318]=-0.002521515	C[319]=-0.002841473
C 324 = 0.000473021 C 325 = 0.00483122 C 335 = 0.00473024 C 336 = 0.00473025 C 336 = 0.00320325 C 336 = 0.00473025 C 336 = 0.00320325				
C[328] = 0.00573822 C[329] = 0.00469122 C[330] = 0.00470345 C[331] = 0.05479377 C[331] = 0.05479377 C[331] = 0.05489377 C[331] = 0.0548937 C[341] = 0.05487438 C[341] = 0.05487438 C[341] = 0.05487438 C[341] = 0.05287438				
C(332) = 0.004792153 C(331) = 0.004740821 C(334) = 0.004720217 C(335) = 0.00482124 C(346) = 0.004208218 C(347) = 0.004208213 C(348) = 0.004208213	C[324]= 0.004049301	C[325]= 0.004215240	C[326]= 0.004357815	C[327]= 0.004477024
C 336 = 0.004595195 C 337 = 0.004570484 C 338 = 0.004865899 C 330 = 0.00459502 C 340 = 0.00471950 C 341 = 0.00471950 C 341 = 0.00471950 C 341 = 0.00471950 C 341 = 0.00371950 C 347 = 0.003719	C[328] = 0.004573822	C[329] = 0.004649162	C[330] = 0.004703045	C[331] = 0.004737377
C[340] = 0.001295581 C[341] = 0.001170738 C[342] = 0.00108324 C[341] = 0.00312456 C[351] = 0.00031245 C[351] = 0.00312456 C[351] = 0.0031245	C[332] = 0.004752159	C[333] = 0.004748821	C[334] = 0.004728317	C[335]= 0.004691124
C(144] = 0.00371782	C[336] = 0.004638195	C[337] = 0.004570484	C[338] = 0.004489899	C[339] = 0.004395962
C(144] = 0.00371782	C[340] = 0.004290581	C[341] = 0.004174709	C[342] = 0.004048824	C[343] = 0.003914356
C 348 - 0.003141880 C 349 - 0.002974033 C 360 - 0.002803326 C 361 - 0.00230001 C 352 - 0.001745927 C 352 - 0.001745927 C 357 - 0.001745981 C 358 - 0.001324149 C 359 - 0.001745917 C 360 - 0.00111031 C 361 - 0.00052117 C 361 - 0.00068808 C 361 - 0.00058808 C 361 - 0.00058809 C 373 - 0.00088253 C 373 - 0.00058909 C 373 - 0.00088253 C 373 - 0.00058909 C 373 - 0.00088253 C 373 - 0.00089309 C 373 - 0.000880417 C 381 - 0.000880417 C 381 - 0.000893076 C 383 - 0.000893076 C 383 - 0.00089308 C 383 -				
C(352] = 0.002457142 C(353] = 0.002283036 C(354] = 0.00211004 C(355] = 0.00137339 C(366] = 0.00176682 C(357] = 0.00169881 C(366] = 0.00143214 C(359] = 0.00168815 C(366] = 0.000522137 C(356] = 0.000088136 C(366] = 0.00058896 C(357] = 0.00068896 C(368] = 0.000522137 C(366] = 0.000888135 C(366] = 0.00051889 C(367] = 0.000288486 C(372] = 0.00052438 C(373] = 0.00088232 C(374] = 0.000512889 C(373] = 0.00088393 C(376] = 0.000578609 C(373] = 0.00088232 C(374] = 0.000578300 C(379] = 0.000883930 C(376] = 0.000578748 C(379] = 0.000783946 C(379] = 0.000889393 C(379] = 0.000889300 C(386] = 0.000988797 C(386] = 0.000989376 C(387) = 0.000989376 C(387) = 0.000989376 C(386] = 0.000984137 C(386] = 0.000989375 C(386] = 0.000991821 C(387) = 0.00098939 C(386] = 0.000984130 C(389] = 0.000889355 C(389] = 0.00088939 C(399] = 0.00088939 C(399] = 0.000886413 C(399] = 0.00088955 C(399] = 0.00088939 C(399] = 0.00088939 C(390] = 0.000611782 C(399] = 0.00088955 C(399] = 0.00088939 C(399] = 0.00088939 C(390] = 0.00061782 C(309) = 0.00088955 C(399] = 0.00088939 C(399] = 0.00088939 C(390] = 0.00061783 C(390] = 0.00088939 C(390] = 0.00088939 C(390] = 0.00088939 C(390] = 0.00047946 C(390] = 0.00088939 C(390] = 0.00089393 C(390] = 0				
C 366 - 0.001766682	C[348]= 0.003141880	C[349]= 0.002974033	C[350]= 0.002803326	C[351]= 0.002630711
C(366) = 0.00111031 C(361) = 0.000956335 C(362) = 0.00005608 C(363) = 0.00061850 C(364) = 0.0002312737 C(366) = 0.000231286 C(377) = 0.000127329 C(377) = 0.0006127329 C(377) = 0.000612732 C(377) = 0.000627240 C(377) = 0.00064651 C(377) = 0.000678737 C(379) = 0.00064652 C(379) = 0.00064653 C(379) = 0.000678737 C(379) = 0.00064653 C(379) = 0.00064653 C(379) = 0.000678737 C(379) = 0.000664653 C(379) = 0.000678737 C(379) = 0.000664653 C(379) = 0.000678737 C(379) = 0.00067873 C(379) = 0.0006	C[352] = 0.002457142	C[353] = 0.002283096	C[354] = 0.002110004	C[355] = 0.001937389
C 364 - 0.000522137 C 365 - 0.00038145 C 366 - 0.000259878 C 367 - 0.000137329 C 368 - 0.000024488 C 369 - 0.000038145 C 370 - 0.00013689 C 371 - 0.000288486 C 373 - 0.000038215 C 373 - 0.00038315 C 383 - 0.00	C[356] = 0.001766682	C[357] = 0.001597881	C[358] = 0.001432419	C[359] = 0.001269817
C(368) = 0.000021458	C[360] = 0.001111031	C[361]= 0.000956535	C[362]= 0.000806808	C[363]= 0.000661850
C(368) = 0.000021458	C[364] = 0 000522137	C[365] = 0 000388145		C[367] = 0 000137329
C(372) = -0.000378609 C(373) = -0.000462532 C(374) = -0.000539303 C(375) = -0.000610352 C(376) = -0.000674248 C(377) = -0.000731945 C(376) = -0.0006783920 C(378) = -0.000839220 C(378) = -0.000839220 C(378) = -0.000839220 C(381) = 0.00084171 C(381) = 0.000894171 C(381) = 0.000894171 C(381) = 0.000894205 C(383) = 0.000894273 C(389) = 0.000980844 C(381) = 0.00088643 C(387) = 0.00088643 C(387) = 0.000884216 C(389) = 0.00088643 C(387) = 0.00088643 C(387) = 0.00088643 C(387) = 0.00088875 C(396) = 0.000889658 C(389) = 0.000779152 C(401) = 0.000747204 C(401) = 0.00074707 C(401) = 0.000747204 C(401) = 0.000747204 C(401) = 0.000747204 C(401) = 0.000889659 C(401) = 0.00089865 C(401) = 0.000889659 C(401) = 0.0008896				
C 376 -0.000674248		C[369]=-0.000088215	C[3/0]=-0.000191689	C[3/1]=-0.000288486
C(380) = -0.000868797 C(381) = -0.000902653 C(382) = -0.000930786 C(383) = -0.00095574 C(384) = 0.000971317 C(385) = 0.000988715 C(386) = 0.000980854 C(391) = 0.000995159 C(388) = 0.000980854 C(391) = 0.000986933 C(391) = 0.000981695 C(391) = 0.000981695 C(391) = 0.000891695 C(391) = 0.000891695 C(391) = 0.00081695 C(401) = 0.000717204 C(401) = 0.000714302 C(402) = 0.000680923 C(403) = 0.000680923 C(403) = 0.000680923 C(407) = 0.00057855 C(408) = 0.000472546 C(409) = 0.00057855 C(408) = 0.00057856 C(413) = 0.00057856 C(422) = 0.00057856 C(422) = 0.00057856 C(422) = 0.00057856 C(422) = 0.00007856 C(423) = 0.00007856 C(423) = 0.00005958 C(424) = 0.00005958 C(433) = -0.00005958 C(433) = -0.00005958 C(433) = -0.00005958 C(433) = -0.00005958 C(434) = -0.00005958 C(434) = -0.00005958 C(434) = -0.00005958 C(445) = 0.00005958 C(445) = 0.0	C[372]=-0.000378609	C[373]=-0.000462532	C[374]=-0.000539303	C[375]=-0.000610352
C(384] = 0.000971317 C(385] = 0.000983715 C(386] = 0.000991821 C(387] = 0.000995189 C(388] = 0.000994205 C(389] = 0.00098437 C(390] = 0.00098054 C(391] = 0.00096893 C(392] = 0.00086413 C(387] = 0.00083555 C(394] = 0.00081655 C(396] = 0.00086413 C(387] = 0.00083757 C(388] = 0.000808666 C(399] = 0.000779152 C(400] = 0.000747204 C(401] = 0.000714302 C(402] = 0.000680923 C(402] = 0.000646591 C(404] = 0.000611782 C(405] = 0.000578973 C(406] = 0.000542164 C(407] = 0.000577355 C(408] = 0.000339031 C(413] = 0.00033756 C(414] = 0.000277042 C(415] = 0.000377478 C(412] = 0.000339031 C(413] = 0.00037856 C(414] = 0.000277042 C(415] = 0.000277478 C(416] = 0.0001339031 C(421] = 0.000037956 C(422] = 0.000077042 C(415] = 0.000077478 C(420] = 0.000116348 C(421] = 0.000037357 C(422] = 0.000073556 C(423] = 0.000053929 C(420] = 0.000136382 C(422] = 0.000077764 C(426] = 0.00005545 C(427] = 0.000053929 C(428] = -0.000059688 C(433] = -0.0000777724 C(434] = -0.00005545 C(423] = -0.00006558 C(426] = -0.00016862 C(437] = -0.00017766 C(426] = -0.000168719 C(436] = -0.00016581 C(440] = -0.0016842 C(447] = -0.00018719 C(436] = -0.00016581 C(447] = -0.000168719 C(440] = -0.00016842 C(445] = 0.00018728 C(445] = -0.000168719 C(445] = -0.000168719 C(446] = 0.000036943 C(453] = 0.00007348 C(456] = 0.00005579 C(457] = 0.00005585 C(466] = 0.000062943 C(465] = 0.000073425 C(467] = 0.000052929 C(466] = 0.00007677 C(457) = 0.000073425 C(477) = 0.000052929 C(466] = 0.000076767 C(477) = 0.000052872 C(477) = 0.000052825 C(477) = 0.00006585 C(466] = 0.000076767 C(477) = 0.000052872 C(477) = 0.00006586 C(477) = 0.00006576 C(468] = 0.00003619 C(468) = 0.00003338 C(496) = 0.00007468 C(497) = 0.000003468 C(496] = 0.00003284 C(497) = 0.00003338 C(496) = 0.00000747 C(500] = 0.00001328 C(493) = 0.000003384 C(494) = 0.00000747 C(507) = 0.00000747	C[376]=-0.000674248	C[377]=-0.000731945	C[378]=-0.000783920	C[379]=-0.000829220
C(388) = 0.000394205 C(389) = 0.000989437 C(390) = 0.000980854 C(391) = 0.000968933 C(392) = 0.000968181 C(393) = 0.000985555 C(394) = 0.000810551 C(395) = 0.00081685 C(396) = 0.00081685 C(396) = 0.00081687 C(400) = 0.000747204 C(401) = 0.000747302 C(402) = 0.000680923 C(403) = 0.000846591 C(404) = 0.000611782 C(405) = 0.000576973 C(406) = 0.000542164 C(407) = 0.000507355 C(408) = 0.000472546 C(409) = 0.000482813 C(410) = 0.00044358 C(411) = 0.000274748 C(412) = 0.000288668 C(417) = 0.00038866 C(417) = 0.0003886 C(417) = 0.0003888 C(417) = 0.00003888 C(417) = 0.0003888 C(417) = 0.00003888 C(417) = 0.00003888 C(417) = 0.00003888 C(417) = 0.00003881 C(417) = 0.00003881 C(417) = 0.00003881 C(417) = 0.00003881 C(417)	C[380]=-0.000868797	C[381]=-0.000902653	C[382]=-0.000930786	C[383]=-0.000953674
C(388) = 0.000394205 C(389) = 0.000989437 C(390) = 0.000980854 C(391) = 0.000968933 C(392) = 0.000968181 C(393) = 0.000985555 C(394) = 0.000810551 C(395) = 0.00081685 C(396) = 0.00081685 C(396) = 0.00081687 C(400) = 0.000747204 C(401) = 0.000747302 C(402) = 0.000680923 C(403) = 0.000846591 C(404) = 0.000611782 C(405) = 0.000576973 C(406) = 0.000542164 C(407) = 0.000507355 C(408) = 0.000472546 C(409) = 0.000482813 C(410) = 0.00044358 C(411) = 0.000274748 C(412) = 0.000288668 C(417) = 0.00038866 C(417) = 0.0003886 C(417) = 0.0003888 C(417) = 0.00003888 C(417) = 0.0003888 C(417) = 0.00003888 C(417) = 0.00003888 C(417) = 0.00003888 C(417) = 0.00003881 C(417) = 0.00003881 C(417) = 0.00003881 C(417) = 0.00003881 C(417)	C[384] = 0.000971317	C[385]= 0.000983715	C[386] = 0.000991821	C[387]= 0.000995159
C(392]= 0.000954151 C(393]= 0.000935555 C(394]= 0.000915051 C(395]= 0.000891685 C(396]= 0.00086413 C(397]= 0.000838757 C(398]= 0.000809669 C(399]= 0.000779152 C(400]= 0.000747204 C(401]= 0.000714302 C(402]= 0.000680923 C(403]= 0.00057355 C(408]= 0.000472546 C(409]= 0.00057355 C(408]= 0.000472546 C(409]= 0.000472546 C(409]= 0.000472546 C(410]= 0.000472546 C(410]= 0.000472546 C(410]= 0.000472546 C(410]= 0.000472546 C(410]= 0.000472740 C(410]= 0.000277478 C(416]= 0.000339031 C(413]= 0.0000307560 C(414]= 0.000277042 C(415]= 0.000247478 C(416]= 0.0001640190 C(420]= 0.00016488 C(421]= 0.00003937 C(422]= 0.000072956 C(423]= 0.000052929 C(424)= 0.000027704 C(420]= 0.0000140190 C(420)= 0.00016488 C(421)= 0.000017166 C(426]= 0.00000954 C(427]=-0.000052929 C(424)= 0.000027709 C(429)=-0.00003957 C(430)=-0.000050545 C(431)=-0.000052929 C(423)=-0.000027709 C(423)=-0.00005957 C(430)=-0.000050545 C(431)=-0.000060558 C(432)=-0.00006558 C(433)=-0.000077724 C(434)=-0.000044100 C(434)=-0.00016812 C(441)=-0.000108242 C(442)=-0.000108719 C(443)=-0.000108719 C(443)=-0.000108719 C(444)=-0.000108242 C(445)=-0.00010586 C(447)=-0.000108719 C(443)=-0.000108719 C(445)=-0.000108719 C(456)= 0.00006289 C(453)= 0.000087281 C(456)= 0.00006289 C(453)= 0.000080855 C(456)= 0.00006289 C(456)= 0.00006289 C(456)= 0.00006289 C(456)= 0.00006280 C(456)= 0.00006280 C(456)= 0.00006280 C(456)= 0.00006280 C(456)= 0.00006280 C(456)= 0.00006280 C(456)= 0.00004551 C(466)= 0.00003456 C(477)= 0.000005579 C(463)= 0.00004531 C(466)= 0.00004581 C(466)= 0.00003480 C(477)= 0.000003480 C(477)= 0.000003480 C(497)= 0.000003480 C(497)= 0.000003480 C(497)= 0.000003480 C(497)= 0.000003480 C(497)= 0.0				
C(396]= 0.000866413				
C(400] = 0.000747204				
C(404] = 0.000611782	C[396] = 0.000866413	C[397] = 0.000838757	C[398] = 0.000809669	C[399] = 0.000779152
C[408] = 0.000472546	C[400] = 0.000747204	C[401] = 0.000714302	C[402] = 0.000680923	C[403]= 0.000646591
C[412] = 0.000339031	C[404] = 0.000611782	C[405] = 0.000576973	C[406] = 0.000542164	C[407]= 0.000507355
C[412] = 0.000339031	C[408] = 0.000472546	C[409] = 0.000438213	C[410] = 0.000404358	C[411]= 0.000371456
C[416] = 0.000218868				
C[420] = 0.000116348				
C[424] = 0.000034332	C[416]= 0.000218868	C[417] = 0.000191212	C[418]= 0.000165462	C[419] = 0.000140190
C(428] = -0.000027180	C[420] = 0.000116348	C[421] = 0.000093937	C[422] = 0.000072956	C[423]= 0.000052929
C[432]=-0.000069618	C[424] = 0.000034332	C[425] = 0.000017166	C[426] = 0.000000954	C[427]=-0.000013828
C[436]=-0.000095367	C[428]=-0.000027180	C[429]=-0.000039577	C[430]=-0.000050545	C[431]=-0.000060558
C[436]=-0.000095367	C[432]=-0.000069618	C[433] = -0.000077724	C[434] = -0.000084400	C[435]=-0.000090122
$\begin{array}{c} C[440] = -0.000106812 & C[441] = -0.000108242 & C[442] = -0.000108719 & C[443] = -0.000108719 \\ C[444] = -0.000108242 & C[445] = -0.000107288 & C[446] = -0.000105858 & C[447] = -0.000103951 \\ C[448] = 0.000101566 & C[449] = 0.000099182 & C[450] = 0.000096321 & C[451] = 0.000093460 \\ C[452] = 0.000090599 & C[453] = 0.000087261 & C[454] = 0.000083923 & C[455] = 0.000080585 \\ C[456] = 0.000076771 & C[457] = 0.000073433 & C[458] = 0.000070095 & C[459] = 0.000066280 \\ C[460] = 0.000062943 & C[461] = 0.000059605 & C[462] = 0.00005790 & C[463] = 0.000052929 \\ C[464] = 0.000049591 & C[465] = 0.000046253 & C[466] = 0.000043392 & C[467] = 0.000040531 \\ C[468] = 0.000037670 & C[469] = 0.000034809 & C[470] = 0.000032425 & C[471] = 0.000030041 \\ C[472] = 0.000027657 & C[473] = 0.000025272 & C[474] = 0.000023365 & C[475] = 0.000021458 \\ C[476] = 0.000019550 & C[477] = 0.000018120 & C[478] = 0.000016689 & C[479] = 0.000014782 \\ C[480] = 0.000013828 & C[481] = 0.000012398 & C[482] = 0.00001444 & C[483] = 0.000010014 \\ C[484] = 0.000009060 & C[485] = 0.000005245 & C[490] = 0.000004768 & C[491] = 0.000004292 \\ C[492] = 0.000003815 & C[493] = 0.000003338 & C[494] = 0.000003338 & C[495] = 0.000002861 \\ C[496] = 0.000002384 & C[497] = 0.000002384 & C[498] = 0.000000954 & C[500] = 0.000000954 \\ C[500] = 0.000000954 & C[505] = 0.000000954 & C[506] = 0.000000477 & C[507] = 0.000000477 \\ \end{array}$				
C[444] = -0.000108242				
C[448] = 0.000101566				
C[452] = 0.000090599	C[444]=-0.000108242	C[445]=-0.000107288	C[446]=-0.000105858	C[447]=-0.000103951
C[456] = 0.000076771	C[448] = 0.000101566	C[449] = 0.000099182	C[450] = 0.000096321	C[451] = 0.000093460
C[460] = 0.000062943	C[452] = 0.000090599	C[453] = 0.000087261	C[454] = 0.000083923	C[455]= 0.000080585
C[460] = 0.000062943	C[456] = 0.000076771	C[457] = 0.000073433	C[458] = 0.000070095	C[459]= 0.000066280
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C[468] = 0.000037670	C[469] = 0.000034809	C[470] = 0.000032425	C[471] = 0.000030041
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	C[472] = 0.000027657	C[473] = 0.000025272	C[474] = 0.000023365	C[475] = 0.000021458
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C[476] = 0.000019550	C[477] = 0.000018120	C[478] = 0.000016689	C[479]= 0.000014782
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C[480] = 0.000013828	C[481] = 0.000012398	C[482] = 0.000011444	C[483] = 0.000010014
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
C[492] = 0.000003815 $C[493] = 0.000003338$ $C[494] = 0.000003338$ $C[495] = 0.000002861$ $C[496] = 0.000002384$ $C[497] = 0.000002384$ $C[498] = 0.000001907$ $C[499] = 0.000001907$ $C[500] = 0.000001431$ $C[501] = 0.000001431$ $C[502] = 0.000000954$ $C[503] = 0.000000954$ $C[504] = 0.000000954$ $C[505] = 0.000000954$ $C[506] = 0.000000477$				
C[496] = 0.000002384 $C[497] = 0.000002384$ $C[498] = 0.000001907$ $C[499] = 0.000001907$ $C[500] = 0.000001431$ $C[501] = 0.000001431$ $C[502] = 0.000000954$ $C[503] = 0.000000954$ $C[504] = 0.000000954$ $C[505] = 0.000000954$ $C[506] = 0.0000000477$				
C[500] = 0.000001431 $C[501] = 0.000001431$ $C[502] = 0.000000954$ $C[503] = 0.000000954$ $C[504] = 0.000000954$ $C[505] = 0.000000954$ $C[506] = 0.0000000477$	C[492]= 0.000003815	C[493] = 0.000003338	C[494] = 0.000003338	C[495] = 0.000002861
C[504] = 0.000000954 C[505] = 0.000000954 C[506] = 0.000000477 C[507] = 0.000000477	C[496] = 0.000002384	C[497] = 0.000002384	C[498] = 0.000001907	C[499] = 0.000001907
	C[500] = 0.000001431	C[501] = 0.000001431	C[502] = 0.000000954	C[503] = 0.000000954
	C[504] = 0.000000954	C[505] = 0.000000954	C[506] = 0.000000477	C[507]= 0.000000477
	C[508] = 0.000000477			

3-C.1.4 心理声学模型

附录 3-D, "心理声学模型"给出了两个心理声学模型的例子。

3-C.1.5 编码

3-C.1.5.1 Layer I编码

1、简介

这一章描述了一个Layer I可能的编码方法。编码方法的描述是根据图 3-C.2,"Layer I、II编码流程图"得出的。

2、 心理声学模型

心理声学参数的计算可以通过附录D,第3-D.1节中描述的心理声学模型I或者附录D中第3-D.2节中描述的心理声学模型II来完成。FFT的移位长度等于384个采样。两个模型都为每个子带提供了信号遮蔽比。

3、 分解子带滤波器

子带分解在3-C.1.3, "分解子带滤波器"中描述。

4、 比例因子计算

每个子带的比例因子的计算是在每 12 个子带采样之后执行。需要确定这 12 个采样的绝对值的最大值。表 3-B.1, "Layer I、II比例因子"中最接近这个最大值的值被用作比例因子。

5、 比例因子的编码

表 3-B.1, "Layer I、II比例因子"的索引用 6 个比特表示,第一位为MSB。比例因子仅在该子带分配了非零数目的比特之后才被传输。

6、 比特分配

在调整到一个固定比特率之前,必须确定编码采样和比例因子可用的比特数量。这个数值可以通过从总共可用比特 "cb"中,减去比特分配需要的比特数 "bbal"和填充数据需要的比特 "banc"得到。即:

$$adb = cb - (bbal + banc)$$

(计算的)比特数的结果可以用来编码子带采样和比例因子。分配过程中使用的原则是在使用的比特数不超过该帧可用比特数的限制下,使整帧噪声遮蔽比的总和最小。分配给一个采样的比特数的可能性可以在本音频标准的主要部分的 2.4.2.5 节中(Layer I,音频数据)找到,范围是 0...15 比特,除了 1 个比特的分配情况。

分配过程是一个迭代过程,在每次迭代中步子带采样的最优分配级别的数目是在增加的。

首先每个子带的遮蔽噪声比(mask-to-noise ratio, MNR)通过从信噪比(signal-to-nosie-ratio, SNR)中减去信号遮蔽比(signal-to-mask-ratio, SMR)得到:

$$MNR = SNR - SMR$$

信噪比可以在附录 3-C,表 3-C.2, "Layer I信噪比"中找到。信号遮蔽比是心理声学模型的输出。

之后,比特 0 被分配到采样和比例因子。采样的比特数"bspl"和比例因子的比特数"bscf"被设置为 0。接下来开始一个迭代过程。每个迭代循环包含下面的步骤:

- 确定所有子带的最小 MNR;
- 通过使用接近的高一级比特数使得子带的量化精度随着 MNR 的降低而增加:
- 计算该子带新的 MNR;
- 根据要求的附加比特数更新 bspl。如果第一次将一个不为 0 的比特数被分配到一个子带,bscf 必须增加 6 个比特。那么 adb 可以通过使用公式: adb = cb (bbal + bscf + bspl + banc)计算得出。

在一个循环内,只要 adb 不小于 bspl 和 bscf 的可能增加,迭代就必须重复。

7、 子带采样的量化和编码

使用一个原点对称的线性量化器来量化子带采样。这种表象阻止了较小的值在零点附近量化到不同级别的变化。每个子带采样的归一化是通过将其值除以比例因子以获得 X, 以及使用下面的公式来量化而完成的:

- 计算 AX + B;
- 截取 N 个最高位(most significant bis);
- 取反最高位 MSB。

A和B可以在附录 3-C,表 3-C.3, "Layer I量化系数"中找到。N表示编码阶数需要的比特数。最高位(MSB)的取反是为了避免编码表象中出现所有的"1",因为全部的"1"是用在同步字中的。

8、 编码比特分配

比特分配的 4 比特码元在本音频标准中的主要部分的 2.4.2.5 节, "Layer I 音频数据" 给出。

9、 格式化

编码的子带信息被转移到帧中(见本音频标准的主要部分中的 2.4.1.2、2.4.1.3、2.4.1.5 节和 2.4.1 节中的 2.4.1.8,"音频比特流的编码语法规范")。一帧中插入域的数目根据采样频率(Fs)和比特率而变化。每帧包含 384 个原始输入信号采样的信息,因此帧速率是Fs/384。

Fs (KHz)	帧大小(ms)
48	8
44.1	8.7074
32	12

一个帧可以包含来自一个或两个声道的音频信息。

Layer I 中一个插入域的长度是 32 比特。一帧中插入域的数目可以通过下面的公式计算: 插入域数目/帧(N) = ×12

如果该式没有给出整数结果,那么结果下取整并且需要添加填充位。这意味着插入域的数目可以在 N 和 N+1 之间变动。

下图给出 Layer I 格式的简图:

表 3-C.2 layer I 信噪比

阶数	SNR (dB)	
0	0.00	
3	7.00	
7	16.00	
15	25.28	
31	31.59	
63	37.75	
127	43.84	
255	49.89	
511	55.93	
1023	61.96	
2047	67.98	
4095	74.01	
8191	80.03	
16383	86.05	
32767	92.01	

表 3-C.3 Layer I 量化系数

阶数	A	В
3	0.75000000	-0.250000000
7	0.875000000	-0.125000000
15	0.937500000	-0.062500000
31	0.968750000	-0.031250000
63	0.984375000	-0.015625000
127	0.992187500	-0.007812500
255	0.996093750	-0.003906250
511	0.998046875	-0.001953125
1023	0.999023438	-0.000976563
2047	0.999511719	-0.000488281
4095	0.999755859	-0.000244141
8191	0.999877930	-0.000122070
16383	0.999938965	-0.000061035
32767	0.999969482	-0.000030518

3-C.1.5.2 Layer II编码

1、 简介

这一节描述了Layer II可能的编码方法。编码方法的描述是根据图 3-C.2, "Layer I、II 编码流程图"得出的。

2、 心理声学模型

心理声学参数的计算可以通过附录D,第3-D.1节中描述的心理声学模型I或者附录D中第3-D.2节中描述的心理声学模型II来完成。如果心理声学模型I被用来计算心理声学参数,那么FFT的移位长度等于1152个采样。如果使用的是心理声学模型II,则执行两次移位长度为576个采样的计算并且使用了每对信号遮蔽比中的最大者。两个模型都为每个子带提供了信号遮蔽比。

3、 分解子带滤波器

子带分解在3-C.1.3, "分解子带滤波器"中描述。

4、 比例因子计算

每个子带的比例因子的计算是在每 12 个子带采样之后执行。需要确定这 12 个采样的绝对值的最大值。表 3-B.1, "Layer I、II比例因子"中最接近这个最大值的值被用作比例因子。

5、 比例因子的编码

一个帧对应 36 个子带采样,因此每个子带包含 3 个比例因子。在附录 3-B, 表 3-B.1,"Layer I、II比例因子"定义为"scf"。首先,计算连续的比例因子索引scf1、scf2 和scf3 的差值dscf1 和dscf2:

$$dscf1 = scf1 - scf2$$

$$dscf 2 = scf 2 - scf 3$$

每个差值的类别定义如下:

类别	dscf
1	dscf <= -3
2	-3 < dscf < 0
3	dscf = 0
4	0 < dscf < 3
5	dscf >=3

一对差值的类别是表 3-C.4,"Layer II 比例因子传输样式"的入口索引。"调整的比例因子样式"给出了三个比例因子中实际使用的那一个。"1"、"2"和"3"分别表示一帧中的第一个、第二个和第三个比例因子,"4"表示者三个比例因子中的最大者。如果在比例因子的调整之后还有两三个(比例因子)是一样的,则一帧中不是每个特定子带里所有比例因子都必须传输。仅在"传输样式"中指示的比例因子才被传输。描述每个子带中比例因子数目和位置的信息被称为"比例因子选择信息"。

6、 比例因子选择信息的编码

"比例因子选择信息"(scalefactor select information, scfsi)用一个两比特的字来编码,可以在附录 3-C,表 3-C.4,"Layer II比例因子传输样式"中找到。只有获得了非零比特分配的子带的scfsi才被转换。

7、 比特分配

在调整到一个固定比特率之前,必须确定编码采样和比例因子可用的比特数量,"adb"。这个数值可以通过从总共可用比特 "cb"中,减去比特分配需要的比特数 "bbal"和填充数据需要的比特 "banc"得到。即:

$$adb = cb - (bbal + banc)$$

(计算的)比特数的结果可以用来编码子带采样和比例因子。分配过程中使用的原则是在使用的比特数不超过该帧可用比特数的限制下,使整帧噪声遮蔽比的总和最小。可以利用附录 3-B,表 3-B.2.,"Layer II每个子带可能的量化情况",表示每个子带可能被用来量化采样的阶数。表示这些量化采样需要的比特数可以从附录 3-B,表 3-B.4,"Layer II量化种类"中得到。

分配过程是一个迭代过程,在每次迭代步中子带采样的最优分配级别的数目是在增加的。

首先每个子带的遮蔽噪声比(mask-to-noise ratio, MNR)通过从信噪比(signal-to-nosie-ratio, SNR)中减去信号遮蔽比(signal-to-mask-ratio, SMR)得到:

$$MNR = SNR - SMR$$

信噪比可以在附录 3-C,表 3-C.5, "Layer II信噪比"中找到。信号遮蔽比是心理声学模型的输出。

之后,比特 0 被分配到采样和比例因子。采样的比特数"bspl"和比例因子的比特"bscf"数被设置为 0。接下来开始迭代过程。每个迭代循环包含下面的步骤:

- 确定所有子带的最小 MNR;
- 通过使用附录B,表 3-B.2,"Layer II每个子带可能的量化情况"中接近的高一级入口使得子带的量化精度随着MNR的降低而增加;
- 计算该子带新的 MNR;
- 根据要求的附加比特数更新 bspl。如果第一次将一个不为 0 的比特数被分配到一个子带,bsel 必须更新,并且 bscf 必须根据该子带内比例因子需要的数目而更新。那么 adb 可以通过使用公式下面的计算得出:

$$adb = cb - (bbal + bsel + bsef + bspl + banc)$$

在一个循环内,只要 adb 不小于 bspl、bsel 和 bscf 的可能增加,迭代就必须重复。

8、 子带采样的量化和编码

每个子带采样的归一化是通过将其值除以比例因子以获得 X, 以及使用下面的公式来量 化而完成的:

- 计算 AX + B;
- 截取 N 个最高位 (most significant bis);
- 取反最高位 MSB。

A和B可以在附录 3-C,表 3-C.6, "Layer II量化系数"中找到。N表示编码阶数需要的比特数。最高位(MSB)的取反是为了避免编码表象中出现所有的"1",因为全部的"1"是用在同步字中的。

附录 3-B,表 3-B.4, "Layer II量化种类"给出了采样将要被量化到的阶数,也显示了是否使用分组。如果不要求分组,则三个采样用独立的编码字编码。

如果要求分组,则三个连续采样被编码为一个编码字。只有一个值 vm (MSB 优先)被传输给这三个一组的采样。编码值 vm (m=3、5、9)和这三个连续子带采样 x、y、z 的关系是:

```
v3 = 9z + 3y + x (v3 in 0... 26)

v5 = 25z + 5y + x (v5 in 0...124)

v9 = 81z + 9y + x (v9 in 0...728)
```

9、 编码比特分配

为了更有效编码的目的,只允许有限数目的可能量化不同于每个子带。只有在附录 3-B,表 3-B.2,"Layer II每个子带可能的量化情况"中字长"nbal"(不为零)的索引被传输,MSB优先。

10、 格式化

下图给出了 Layer II 格式的简图:

←			<u>顺</u> ————————————————————————————————————		>
帧头	比特分配	SCFSI	比例因子	采样	填充

相比 Layer I 的格式不同之处如下:

- 插入域的长度等于8比特;
- 引入一个新的块 scfsi,包含比例因子选择信息;
- 比特分配信息,比例因子和采样受限于更深入的编码(参考相关章节)。

可以在本音频标准的主要部分的 2.4.1 节, "音频比特流编码的语法规范"中找到细节。

种类1	种类 2	传输	村式	4	选择信息
1	1	1	2	3	0
1	2	1	2	2	3
1	3	1	2	2	3
1	4	1	3	3	3
1	5	1	2	3	0
2	1	1	1	3	1
2	2	1	1	1	2
2	3	1	1	1	2
2	4	4	4	4	2
2	5	1	1	3	1
3	1	1	1	1	2
3	2	1	1	1	2
3	3	1	1	1	2
3	4	3	3	3	2
3	5	1	1	3	1
4	1	2	2	2	2
4	2	2	2	2	າ

表 3-C.4 Layer II 比例因子传输样式

4	3	2	2	2	2
4	4	3	3	3	2
4	5	1	2	3	0
5	1	1	2	3	0
5	2	1	2	2	3
5	3	1	2	2	3
5	4	1	3	3	3
5	5	1	2	3	0

表 3-C.5 Layer II 信噪比

阶数	SNR (dB)
0	0.00
3	7.00
5	11.00
7	16.00
9	20.84
15	25.28
31	31.59
63	37.75
127	43.84
255	49.89
511	55.93
1023	61.96
2047	67.98
4095	74.01
8191	80.03
16383	86.05
32767	92.01
65535	98.01

表 3-C.6 Layer II 量化系数

阶数	A	В
3	0.750000000	-0.250000000
5	0.625000000	-0.375000000
7	0.875000000	-0.125000000
9	0.562500000	-0.437500000
15	0.937500000	-0.062500000
31	0.968750000	-0.031250000
63	0.984375000	-0.015625000
127	0.992187500	-0.007812500
255	0.996093750	-0.003906250
511	0.998046875	-0.001953125
1023	0.999023438	-0.000976563
2047	0.999511719	-0.000488281

4095	0.999755859	-0.000244141
8191	0.999877930	-0.000122070
16383	0.999938965	-0.000061035
32767	0.999969482	-0.000030518
65535	0.999984741	-0.000015259

图 3-C.1 分解子带滤波器流程图

图 3-C.2 Layer I、II 编码流程图

3-C.1.5.3 Layer III编码

1、 简介

这一节描述了 Layer III 可能的编码方法。用常规心理声学的编码器模块图来描述基本的数据流。下文详细描述了各个基本模块。

2、 心理声学模型

心理声学参数的计算可以通过附录D,第3-D.1节中描述的心理声学模型I或者附录D中第3-D.2节中描述的心理声学模型II来完成。从下文可以找到对Layer III使用的心理声学模型II 所做修正的描述。每个块该模型运行两次,使用576个采样的移位长度。模型都为每个子带提供了信号遮蔽比。

2.1 Layer III 的自适应心理声学模型 II

对于Layer III编码使用的心理声学模型 2 (附录D, 3-D.2) 做了下述的修改。

总体考虑:

模型并行计算 2 次。其中一个计算的移位长度 **iblen** 为 192 个采样(在短块中使用),另一个计算的移位长度为 576 个采样。对于移位长度为 192 个采样(的计算),FFT 的块长度改为 256,并且参数也相应更改。

转变为非预测的计算:

修改心理声学模型 II 中非预测度量的计算。

● 计算非预测值:

对于前 206 条频率先,需要计算非预测值 cw。对于其他频率先,非预测值被设置为 0.4。

前 6 条频率线的非预测值由长 FFT(加窗长度 = 1024,移位长度 = 576)计算得出。对于编号从 6 到 205 的非预测值则由段 FFT(加窗长度 = 256,移位长度 = 192)计算得出。

$$cw(w) = \begin{cases} cw_{l}(w) & \text{for } 0 = w < 6 \\ cw_{s}(w/4) & \text{for } 6 = w < 206, w = 6,10,14... \\ 0.4 & \text{for } w = 206 \end{cases}$$

cw_l 是通过长 FFT 计算得到的非预测值, cw_s 是通过一个颗粒里三个短块中的第二个短块计算得来。

● 替代扩展函数:

if
$$j = I$$
 tmpy = 3.0(j-i)
else tmpy = 1.5(j - i) is used

扩展函数的值只使用大于10.6的,其余的值被设为0。

● 对于非预测值,使用参数:

```
conv1 = -0.299
conv2 = -0.43
```

● 所有阈值计算分区,参数 NMT(noise masking tone)被设置为 6.0dB。参数 TMN(tone masking noise)在所有分区被设置为 29.0dB。

关于 minval 请参看表"阈值计算分区"。

● 心理声学熵通过比值 thr / eb 估算,其中 thr 是阈值而 eb 是熵:

$$pe = -? (cbwidthk ? log(thrk/(ebk+1.))^{[2]}$$

其中 k 是阈值计算分区的索引而 cbwidth 是阈值计算分区的宽度(见表)。

● 前回音控制

下面的常数被用来控制前回音(见模块图):

● 阈值并没有遍布在整个FFT线。阈值计算分区直接转换为比例因子带。(阈值的) 第一区以权重w1 被添加到比例因子带,最后一个区域的权重为w2(见表 3-C.8,"阈值计算分区转换到比例因子带")。该表也包含了转换到比例因子带(除了第一个和最后一个)的分区数目(cbw)。

表 3-C.8中的参数bo和bu在阈值计算分区转换到比例因子带中使用。

● 对短块使用一个简化的阈值计算版本(信噪比为常数)。该常数可以在下文的表

3-C.7中 "SNR (dB)" 列中找到。

注: 由于原文档中存在部分缺陷,因此当前以及下文部分公式中的某些字符显示不正确。 用到的表:

表 3-C.7 带有参数 width、minval、threshold in quiet、norm 和 bval 的阈值计算分区

表 3-C.7.a 采样频率 = 48 KHz

长块					
索引	fft 线	minval	qthr	norm	bval
0	1	24.5	4.532	0.970	0.000
1	1	24.5	4.532	0.755	0.469
2	1	24.5	4.532	0.738	0.937
3	1	24.5	0.904	0.730	1.406
4	1	24.5	0.904	0.724	1.875
5	1	20	0.090	0.723	2.344
6	1	20	0.090	0.723	2.812
7	1	20	0.029	0.723	3.281
8	1	20	0.029	0.718	3.750
9	1	20	0.009	0.690	4.199
10	1	20	0.009	0.660	4.625
11	1	18	0.009	0.641	5.047
12	1	18	0.009	0.600	5.437
13	1	18	0.009	0.584	5.828
14	1	12	0.009	0.531	6.187
15	1	12	0.009	0.537	6.522
16	2	6	0.018	0.857	7.174
17	2	6	0.018	0.858	7.800
18	2	3	0.018	0.853	8.402
19	2	3	0.018	0.824	8.966
20	2	3	0.018	0.778	9.483
21	2	3	0.018	0.740	9.966
22	2	0	0.018	0.709	10.426
23	2	0	0.018	0.676	10.866
24	2	0	0.018	0.632	11.279
25	2	0	0.018	0.592	11.669
26	2	0	0.018	0.553	12.042
27	2	0	0.018	0.510	12.386
28	2	0	0.018	0.513	12.721
29	3	0	0.027	0.608	13.115
30	3	0	0.027	0.673	13.561
31	3	0	0.027	0.636	13.983
32	3	0	0.027	0.586	14.371
33	3	0	0.027	0.571	14.741
34	4	0	0.036	0.616	15.140

35	4	0	0.036	0.640	15.562
36	4	0	0.036	0.597	15.962
37	4	0	0.036	0.538	16.324
38	4	0	0.036	0.512	16.665
39	5	0	0.045	0.528	17.020
40	5	0	0.045	0.516	17.373
41	5	0	0.045	0.493	17.708
42	6	0	0.054	0.499	18.045
43	7	0	0.063	0.525	18.398
44	7	0	0.063	0.541	18.762
45	8	0	0.072	0.528	19.120
46	8	0	0.072	0.510	19.466
47	8	0	0.072	0.506	19.807
48	10	0	0.180	0.525	20.159
49	10	0	0.180	0.536	20.522
50	10	0	0.180	0.518	20.873
51	13	0	0.372	0.501	21.214
52	13	0	0.372	0.496	21.553
53	14	0	0.400	0.497	21.892
54	18	0	1.628	0.495	22.231
55	18	0	1.628	0.494	22.569
56	20	0	1.808	0.497	22.909
57	25	0	22.607	0.494	23.248
58	25	0	22.607	0.487	23.583
59	35	0	31.650	0.483	23.915
60	67	0	605.867	0.482	24.246
61	67	0	605.867	0.524	24.576

表 3-C.7.b 采样频率 = 44.1 KHz

长块					
索引	FFT 线	minval	qthr	norm	bval
0	1	24.5	4.532	0.951	0.000
1	1	24.5	4.532	0.700	0.431
2	1	24.5	4.532	0.681	0.861
3	1	24.5	0.904	0.675	1.292
4	1	24.5	0.904	0.667	1.723
5	1	20	0.090	0.665	2.153
6	1	20	0.090	0.664	2.584
7	1	20	0.029	0.664	3.015
8	1	20	0.029	0.664	3.445
9	1	20	0.029	0.655	3.876
10	1	20	0.009	0.616	4.279

11	1	20	0.009	0.597	4.670
12	1	18	0.009	0.578	5.057
13	1	18	0.009	0.541	5.415
14	1	18	0.009	0.575	5.774
15	2	12	0.018	0.856	6.422
16	2	6	0.018	0.846	7.026
17	2	6	0.018	0.840	7.609
18	2	3	0.018	0.822	8.168
19	2	3	0.018	0.800	8.710
20	2	3	0.018	0.753	9.207
21	2	3	0.018	0.704	9.662
22	2	0	0.018	0.674	10.099
23	2	0	0.018	0.640	10.515
24	2	0	0.018	0.609	10.917
25	2	0	0.018	0.566	11.293
26	2	0	0.018	0.535	11.652
27	2	0	0.018	0.531	11.997
28	3	0	0.027	0.615	12.394
29	3	0	0.027	0.686	12.850
30	3	0	0.027	0.650	13.277
31	3	0	0.027	0.611	13.681
32	3	0	0.027	0.567	14.062
33	3	0	0.027	0.520	14.411
34	3	0	0.027	0.513	14.751
35	4	0	0.036	0.557	15.119
36	4	0	0.036	0.584	15.508
37	4	0	0.036	0.570	15.883
38	5	0	0.045	0.579	16.263
39	5	0	0.045	0.585	16.654
40	5	0	0.045	0.548	17.020
41	6	0	0.054	0.536	17.374
42	6	0	0.054	0.550	17.744
43	7	0	0.063	0.532	18.104
44	7	0	0.063	0.504	18.447
45	7	0	0.063	0.496	18.781
46	9	0	0.081	0.516	19.130
47	9	0	0.081	0.527	19.487
48	9	0	0.081	0.516	19.838
49	10	0	0.180	0.497	20.179
50	10	0	0.180	0.489	20.510
51	11	0	0.198	0.502	20.852
52	14	0	0.400	0.502	21.196
53	14	0	0.400	0.491	21.531
54	15	0	0.429	0.497	21.870

55	20	0	1.808	0.504	22.214
56	20	0	1.808	0.504	22.558
57	21	0	1.899	0.495	22.898
58	27	0	24.415	0.486	23.232
59	27	0	24.415	0.484	23.564
60	36	0	32.554	0.483	23.897
61	73	0	660.124	0.475	24.229
62	18	0	162.770	0.515	24.542

表 3-C.7.c 采样频率 = 32 KHz

长块					
索引	FFT 线	minval	qthr	norm	bval
0	2	24.5	9.064	0.997	0.312
1	2	24.5	9.064	0.893	0.937
2	2	24.5	1.808	0.881	1.562
3	2	20	0.181	0.873	2.187
4	2	20	0.181	0.872	2.812
5	2	20	0.057	0.871	3.437
6	2	20	0.018	0.860	4.045
7	2	20	0.018	0.839	4.625
8	2	18	0.018	0.812	5.173
9	2	18	0.018	0.784	5.698
10	2	12	0.018	0.741	6.184
11	2	12	0.018	0.697	6.634
12	2	6	0.018	0.674	7.070
13	2	6	0.018	0.651	7.492
14	2	6	0.018	0.633	7.905
15	2	3	0.018	0.611	8.305
16	2	3	0.018	0.589	8.695
17	2	3	0.018	0.575	9.064
18	3	3	0.027	0.654	9.483
19	3	3	0.027	0.724	9.966
20	3	0	0.027	0.701	10.425
21	3	0	0.027	0.673	10.866
22	3	0	0.027	0.631	11.279
23	3	0	0.027	0.592	11.669
24	3	0	0.027	0.553	12.042
25	3	0	0.027	0.510	12.386
26	3	0	0.027	0.505	12.721
27	4	0	0.036	0.562	13.091
28	4	0	0.036	0.598	13.488
29	4	0	0.036	0.589	13.873

30	5	0	0.045	0.607	14.268
31	5	0	0.045	0.620	14.679
32	5	0	0.045	0.580	15.067
33	5	0	0.045	0.532	15.424
34	5	0	0.045	0.517	15.771
35	6	0	0.054	0.517	16.120
36	6	0	0.054	0.509	16.466
37	6	0	0.054	0.506	16.807
38	8	0	0.072	0.522	17.158
39	8	0	0.072	0.531	17.518
40	8	0	0.072	0.519	17.869
41	10	0	0.090	0.512	18.215
42	10	0	0.090	0.509	18.562
43	10	0	0.090	0.497	18.902
44	12	0	0.108	0.494	19.239
45	12	0	0.108	0.501	19.579
46	13	0	0.117	0.507	19.925
47	14	0	0.252	0.502	20.269
48	14	0	0.252	0.493	20.606
49	16	0	0.289	0.497	20.944
50	20	0	0.572	0.506	21.288
51	20	0	0.572	0.510	21.635
52	23	0	0.658	0.504	21.979
53	27	0	2.441	0.496	22.319
54	27	0	2.441	0.493	22.656
55	32	0	2.894	0.490	22.993
56	37	0	33.458	0.483	23.326
57	37	0	33.458	0.458	23.656
58	12	0	10.851	0.500	23.937

表 3-C.7.d 采样频率 = 48 KHz

短块					
索引	FFT 线	qthr	norm	SNR (db)	bval
0	1	4.532	0.970	-8.240	0.000
1	1	0.904	0.755	-8.240	1.875
2	1	0.029	0.738	-8.240	3.750
3	1	0.009	0.730	-8.240	5.437
4	1	0.009	0.724	-8.240	6.857
5	1	0.009	0.723	-8.240	8.109
6	1	0.009	0.723	-8.240	9.237
7	1	0.009	0.723	-8.240	10.202
8	1	0.009	0.718	-8.240	11.083

9	1	0.009	0.690	-8.240	11.864
10	1	0.009	0.660	-7.447	12.553
11	1	0.009	0.641	-7.447	13.195
12	1	0.009	0.600	-7.447	13.781
13	1	0.009	0.584	-7.447	14.309
14	1	0.009	0.532	-7.447	14.803
15	1	0.009	0.537	-7.447	15.250
16	1	0.009	0.857	-7.447	15.667
17	1	0.009	0.858	-7.447	16.068
18	1	0.009	0.853	-7.447	16.409
19	2	0.018	0.824	-7.447	17.044
20	2	0.018	0.778	-6.990	17.607
21	2	0.018	0.740	-6.990	18.097
22	2	0.018	0.709	-6.990	18.528
23	2	0.018	0.676	-6.990	18.930
24	2	0.018	0.632	-6.990	19.295
25	2	0.018	0.592	-6.990	19.636
26	3	0.054	0.553	-6.990	20.038
27	3	0.054	0.510	-6.990	20.486
28	3	0.054	0.513	-6.990	20.900
29	4	0.114	0.608	-6.990	21.305
30	4	0.114	0.673	-6.020	21.722
31	5	0.452	0.637	-6.020	22.128
32	5	0.452	0.586	-6.020	22.512
33	5	0.452	0.571	-6.020	22.877
34	7	6.330	0.616	-5.229	23.241
35	7	6.330	0.640	-5.229	23.616
36	11	9.947	0.597	-5.229	23.974
37	17	153.727	0.538	-5.229	24.312

表 3-C.7.e 采样频率 = 44.1 KHz

短块					
索引	FFT 线	qthr	norm	SNR (db)	bval
0	1	4.532	0.952	-8.240	0.000
1	1	0.904	0.700	-8.240	1.723
2	1	0.029	0.681	-8.240	3.445
3	1	0.009	0.675	-8.240	5.057
4	1	0.009	0.667	-8.240	6.422
5	1	0.009	0.665	-8.240	7.609
6	1	0.009	0.664	-8.240	8.710
7	1	0.009	0.664	-8.240	9.662
8	1	0.009	0.664	-8.240	10.515

9	1	0.009	0.655	-8.240	11.293
10	1	0.009	0.616	-7.447	12.009
11	1	0.009	0.597	-7.447	12.625
12	1	0.009	0.578	-7.447	13.210
13	1	0.009	0.541	-7.447	13.748
14	1	0.009	0.575	-7.447	14.241
15	1	0.009	0.856	-7.447	14.695
16	1	0.009	0.846	-7.447	15.125
17	1	0.009	0.840	-7.447	15.508
18	1	0.009	0.822	-7.447	15.891
19	2	0.018	0.800	-7.447	16.537
20	2	0.018	0.753	-6.990	17.112
21	2	0.018	0.704	-6.990	17.620
22	2	0.018	0.674	-6.990	18.073
23	2	0.018	0.640	-6.990	18.470
24	2	0.018	0.609	-6.990	18.849
25	3	0.027	0.566	-6.990	19.271
26	3	0.027	0.535	-6.990	19.741
27	3	0.054	0.531	-6.990	20.177
28	3	0.054	0.615	-6.990	20.576
29	3	0.054	0.686	-6.990	20.950
30	4	0.114	0.650	-6.020	21.316
31	4	0.114	0.612	-6.020	21.699
32	5	0.452	0.567	-6.020	22.078
33	5	0.452	0.520	-6.020	22.438
34	5	0.452	0.513	-5.229	22.782
35	7	6.330	0.557	-5.229	23.133
36	7	6.330	0.584	-5.229	23.484
37	7	6.330	0.570	-5.229	23.828
38	19	171.813	0.578	-4.559	24.173

表 3-C.7.f 采样频率 = 32 KHz

短块					
索引	FFT 线	qthr	norm	SNR (db)	bval
0	1	4.532	0.997	-8.240	0.000
1	1	0.904	0.893	-8.240	1.250
2	1	0.090	0.881	-8.240	2.500
3	1	0.029	0.873	-8.240	3.750
4	1	0.009	0.872	-8.240	4.909
5	1	0.009	0.871	-8.240	5.958
6	1	0.009	0.860	-8.240	6.857
7	1	0.009	0.839	-8.240	7.700

8	1	0.009	0.812	-8.240	8.500
9	1	0.009	0.784	-8.240	9.237
10	1	0.009	0.741	-7.447	9.895
11	1	0.009	0.697	-7.447	10.500
12	1	0.009	0.674	-7.447	11.083
13	1	0.009	0.651	-7.447	11.604
14	1	0.009	0.633	-7.447	12.107
15	1	0.009	0.611	-7.447	12.554
16	1	0.009	0.589	-7.447	13.000
17	1	0.009	0.575	-7.447	13.391
18	1	0.009	0.654	-7.447	13.781
19	2	0.018	0.724	-7.447	14.474
20	2	0.018	0.701	-6.990	15.096
21	2	0.018	0.673	-6.990	15.667
22	2	0.018	0.631	-6.990	16.177
23	2	0.018	0.592	-6.990	16.636
24	2	0.018	0.553	-6.990	17.057
25	2	0.018	0.510	-6.990	17.429
26	2	0.018	0.506	-6.990	17.786
27	3	0.027	0.562	-6.990	18.177
28	3	0.027	0.598	-6.990	18.597
29	3	0.027	0.589	-6.990	18.994
30	3	0.027	0.607	-6.020	19.352
31	3	0.027	0.620	-6.020	19.693
32	4	0.072	0.580	-6.020	20.066
33	4	0.072	0.532	-6.020	20.461
34	4	0.072	0.517	-5.229	20.841
35	5	0.143	0.517	-5.229	21.201
36	5	0.143	0.509	-5.229	21.549
37	6	0.172	0.506	-5.229	21.911
38	7	0.633	0.522	-4.559	22.275
39	7	0.633	0.531	-4.559	22.625
40	8	0.723	0.519	-3.980	22.971
41	10	9.043	0.512	-3.980	23.321

表 3-C.8 阈值计算分区转换到比例因子带

表 3-C.8.a 采样频率 = 48 KHz

长块					
sb 序号	cbw	bu	bo	w1	w2
0	3	0	4	1.000	0.056
1	3	4	7	0.944	0.611
2	4	7	11	0.389	0.167

3	3	11	14	0.833	0.722
4	3	14	17	0.278	0.639
5	2	17	19	0.361	0.417
6	3	19	22	0.583	0.083
7	2	22	24	0.917	0.750
8	3	24	27	0.250	0.417
9	3	27	30	0.583	0.648
10	3	30	33	0.352	0.611
11	3	33	36	0.389	0.625
12	4	36	40	0.375	0.144
13	3	40	43	0.856	0.389
14	3	43	46	0.611	0.160
15	3	46	49	0.840	0.217
16	3	49	52	0.783	0.184
17	2	52	54	0.816	0.886
18	3	54	57	0.114	0.313
19	2	57	59	0.687	0.452
20	1	59	60	0.548	0.908

表 3-C.8.b 采样频率 = 44.1 KHz

长块					
sb 序号	1	1	b -	1	
		bu	bo	w1	w2
0	3	0	4	1.000	0.056
1	3	4	7	0.944	0.611
2	4	7	11	0.389	0.167
3	3	11	14	0.833	0.722
4	3	14	17	0.278	0.139
5	1	17	18	0.861	0.917
6	3	18	21	0.083	0.583
7	3	21	24	0.417	0.250
8	3	24	27	0.750	0.805
9	3	27	30	0.194	0.574
10	3	30	33	0.426	0.537
11	3	33	36	0.463	0.819
12	4	36	40	0.180	0.100
13	3	40	43	0.900	0.468
14	3	43	46	0.532	0.623
15	3	46	49	0.376	0.450
16	3	49	52	0.550	0.552
17	3	52	55	0.448	0.403
18	2	55	57	0.597	0.643
19	2	57	59	0.357	0.722

61 0.278 0.	2	20
-------------	---	----

表 3-C.8.c 采样频率 = 32 KHz

长块						
sb 序号	cbw	bu	bo	w1	w2	
0	1	0	2	1.000	0.528	
1	2	2	4	0.472	0.305	
2	2	4	6	0.694	0.083	
3	1	6	7	0.917	0.861	
4	2	7	9	0.139	0.639	
5	2	9	11	0.361	0.417	
6	3	11	14	0.583	0.083	
7	2	14	16	0.917	0.750	
8	3	16	19	0.250	0.870	
9	3	19	22	0.130	0.833	
10	4	22	26	0.167	0.389	
11	4	26	30	0.611	0.478	
12	4	30	34	0.522	0.033	
13	3	34	37	0.967	0.917	
14	4	37	41	0.083	0.617	
15	3	41	44	0.383	0.995	
16	4	44	48	0.005	0.274	
17	3	48	51	0.726	0.480	
18	3	51	54	0.519	0.261	
19	2	54	56	0.739	0.884	
20	2	56	58	0.116	1.000	

表 3-C.8.d 采样频率 = 48 KHz

短块					
. 🖨 🗆	_		_	_	
sb 序号	cbw	bu	bo	w1	w2
0	2	0	3	1.000	0.167
1	2	3	5	0.833	0.833
2	3	5	8	0.167	0.500
3	3	8	11	0.500	0.167
4	4	11	15	0.833	0.167
5	4	15	19	0.833	0.583
6	3	19	22	0.417	0.917
7	4	22	26	0.083	0.944
8	4	26	30	0.055	0.042
9	2	30	32	0.958	0.567
10	3	32	35	0.433	0.167

11	2	35	37	0.833	0.618

表 3-C.8.e 采样频率 = 44.1 KHz

短块					
,房口	•		•		•
sb 序号	cbw	bu	bo	w1	w2
0	2	0	3	1.000	0.167
1	2	3	5	0.833	0.833
2	3	5	8	0.167	0.500
3	3	8	11	0.500	0.167
4	4	11	15	0.833	0.167
5	5	15	20	0.833	0.250
6	3	20	23	0.750	0.583
7	4	23	27	0.417	0.055
8	3	27	30	0.944	0.375
9	3	30	33	0.625	0.300
10	3	33	36	0.700	0.167
11	2	36	38	0.833	1.000

表 3-C.8. f 采样频率 = 32 KHz

短块					
sb 序号	cbw	bu	bo	w1	w2
0	2	0	3	1.000	0.167
1	2	3	5	0.833	0.833
2	3	5	8	0.167	0.500
3	3	8	11	0.500	0.167
4	4	11	15	0.833	0.167
5	5	15	20	0.833	0.250
6	4	20	24	0.750	0.250
7	5	24	29	0.750	0.055
8	4	29	33	0.944	0.375
9	4	33	37	0.625	0.472
10	3	37	40	0.528	0.937
11	1	40	41	0.062	1.000

图 3-C.3 Layer III 的心理声学模型 II 模块简图: 计算阈值(第一部分)

图 3-C.4 Layer III 的心理声学模型 II 模块简图: 计算阈值(第二部分)

图 3-C.5 Layer III 的心理声学模型 II 模块简图: 短块阈值计算

确定窗选择:

确定滤波器组是否被选择到短窗是通过遮蔽阈值计算的得来的, 遮蔽阈值是通过计算心理声学熵(psychoacoustic entropy, PE)以及当 PE 的值超过了 1800 做的切换得来。如果这个条件满足,则启动序列 start(block_type = 1)、short(block_type = 2)、short、stop(block_type = 3)。下图表示了窗选择逻辑可能的状态变化。

图 3-C.6 窗选择状态机

3、 混合滤波器组中的分解部分

多项滤波器组的子带分解在3-C.1.3节,"子带分解滤波器"中描述。多项滤波器组的输出是用MDCT的子区的输入。根据心理声学模型(变化的blocksplit_flag和block_type)的输出选择使用加窗和normal、start、short或stop四种转换类型。

一个颗粒的 18 个连续输出值和前一颗粒的 18 个输出值被用来组成一个 36 个采样的块。 块类型为 "normal":

$$z_i = x_i' \sin\left(\frac{\dot{s}}{36}\left(i + \frac{1}{2}\right)\right)$$
 for i=0 to 35

块类型为"start":

$$z_{i} = \begin{cases} x'_{i} \sin\left(\frac{\check{s}}{36}\left((i+\frac{1}{2})\right) & \text{for } i=0 \text{ to } 17 \\ x'_{i} & \text{for } i=18 \text{ to } 23 \\ x'_{i} \sin\left(\frac{\check{s}}{12}\left((i-18+\frac{1}{2})\right)\right) & \text{for } i=24 \text{ to } 29 \\ 0 & \text{for } i=30 \text{ to } 35 \end{cases}$$

块类型为 "stop":

$$z_{i} = \begin{cases} 0 & \text{for i=0 to 5} \\ x'_{i} \sin\left(\frac{\breve{s}}{12}\left((i-6+\frac{1}{2})\right) & \text{for i=6 to 11} \\ x'_{i} & \text{for i=12 to 17} \end{cases}$$
$$x'_{i} \sin\left(\frac{\breve{s}}{36}\left((i+\frac{1}{2})\right) & \text{for i=18 to 35} \end{cases}$$

块类型为"short":

36个采样的块被分为3个交迭块:

$$y_i^{(0)} = x'_{i+6}$$
 for i=0 to 11
 $y_i^{(1)} = x'_{i+12}$ for i=0 to 11
 $y_i^{(2)} = x'_{i+18}$ for i=0 to 11

这三个小块都独自加窗:

$$z_i^{(k)} = y_i^{(k)} \sin\left(\frac{\check{s}}{12}\left((i + \frac{1}{2})\right)\right)$$
 for i=0 to 11, for k=0 to 2

MDCT:

下式中的 n 是加窗的采样个数。对于短块 n 为 12,对于长块 n 为 36。MDCT 的解析表达式如下:

$$x_i = \bigcap_{k=0}^{n-1} z_k \cos\left(\frac{\check{s}}{2n} \left(2k+1+\frac{n}{2}\right)(2i+1)\right)$$
 for i=0 to $\frac{n}{2}$ - 1

抗混迭蝶形运算,编码器:

编码器中的抗混迭计算实现方式和解码器中一样。基本的处理在图 3-A.5中表示。编码器中使用的蝶形运算定义如下,系数cai和csi可以在表 3-B.9中找到。

4、 计算平均可用比特

每颗粒的平均比特数可以通过帧大小来计算。以 64kb/s 的比特率为例。在 48KHz 采样 频率下比特率为 64kb/s 时:

(64000×0.24 比特每帧) / (2 颗粒每帧) =768 比特每颗粒

由于单声道模式下帧头占用了 32 个比特并且附属信息占据了 17 字节 (136 比特),一个颗粒中 main data 部分的平均可用比特的数量由下式给出:

平均比特=768 比特每颗粒-(32+136 比特每帧)/(2 颗粒每帧)=684 比特每颗粒比特池:

比特池可以提供当前颗粒可能使用的额外的比特。提供的比特数目可以由迭代循环确定。

5、 量化和编码频率域采样

频率域数据用两个迭代循环来量化和编码。3-C.1.5.4节包含了这两个迭代循环的详细描述。

6、 格式化

关于 Layer III 比特流格式化的细节可以在本音频标准主要部分的 2.4.4 节, "音频比特流的编码语法规范"找到。哈夫曼编码字的格式化描述如下:

哈夫曼编码字是从低到高的频率序列。在迭代循环中下面的变量需要计算并用来编码哈夫曼编码字:

```
is(i), i=0...575 量化的频率域值
table_select[region] 各区域使用的哈夫曼编码表(region = 0, 1, 2)
region_adress1 定义了 region 0和1的边界
region_adress2 定义了 region 1和2的边界
max_value[region] 各区域中量化数据的最大绝对值(region = 0, 1, 2)
```

(编码的)数据根据 2.4.2.7 节中描述的哈夫曼编码语法写入到比特流中。

实际的 big values 部分的哈夫曼代码的汇编用高级语言的伪代码描述如下:

```
for region number from 0 to 2
 if table_select for this region is 0
   nothing to do, all values in region are zero
 else
   if table select for this region is > 15
    an ESC-table is used: look up limbits value connected to the table used
    for i = begin of region to end of region, count in pairs
      x = is(i), y = is(i+1)
      if x > 14
        linbitsx = x - 15, x = 15
      end if
      signx = sign(x), x = abs(x)
      if y > 14
       linbitsy = y - 15, y = 15
      end if
      signy = sign(y), y = abs(y)
      look for codeword = hcod([x][y]]) in table table seletct
      write hcod([x][y]), beginning with the leftmost bit, number of bits is
      hlen([x][y])
      if x > 14
        write linbitsx to the bitstream, number of bits is linbits
      end if
      if x != 0
```

```
write signx to bitstream
      end if
      if y > 14
        write linbitsy to the bitstream, number of bits is linbits
      end if
      if y != 0
        write signy to bitstream
      end if
    end do
   else
    no ESC-words are used in this region:
    for i = beginning of region to end of region, count in pairs
      x = is(i), y = is(i+1)
      signx = sign(x), x = abs(x)
      signy = sign(y), y = abs(y)
      look for codeword = hcod([x][y]) in table table seletct
      write hcod([x][y]), beginning with the leftmost bit, number of bits is
      hlen([x][y])
      if x != 0
        write signx to bitstream
      end if
      if y != 0
       write signy to bitstream
      end if
    end do
   end if
 end if
end for
```

private bits 的一个可能的应用是将它们用作帧计数器。

3-C.1.5.4 Layer III迭代循环

1、 简介

Layer III 循环模型的描述被划分为 3 级。最高级被称为"循环帧程序"。循环帧程序调用一个名叫"外层迭代循环"的子程序,而外层迭代循环又调用一个"内层迭代循环"的子程序。每一层都有相应的流程图来表示。

循环模型根据一些需要在一个迭代过程中量化输入的频谱数据矢量。内层循环量化输入 矢量并递增量化器步长,直到输出矢量可以用可用的比特数目编码为止。在内层循环完成之后,外层循环检查每个比例因子带的失真,并且如果超过了允许的失真,则放大比例因子带并再次调用内层循环。

Layer III 的循环模型输入:

- 1. 频谱值 xr(0...575)的数量级的矢量;
- 2. xmin(cb),比例因子带允许的失真;
- 3. blocksplit_flag 和 switch_point 一起确定比例因子带的数目;

- 4. mean_bits (哈夫曼编码和编码比例因子带可用的比特);
- 5. more bits,除平均比特数之外的比特数,作为当前颗粒心理声学熵的需求:

Layer III 循环模型的输出:

- 1. 量化值 ix(0...575)的矢量;
- 2. ifq(cb), 比例因子;
- 3. gquant (量化器步长信息);
- 4. 未用的比特数,可供将来使用;
- 5. preflag (循环预加重开/关);
- 6. 哈夫曼编码相关的附属信息:

big_values (哈夫曼编编码值对的数目,除了"count1"之外);
count1table_select (绝对值<=1 的哈夫曼编码表, 在频谱较高部分, 接近结束处);
table_select[0..2] (各区的哈夫曼编码表);
region_address1,2 (用来计算各区的边界);
part2_3_length

2、 预备步骤

2.1 复位所有迭代变量

编码分区 scalefac[cb]的比例因子被设为 0。

量化器步长的计数器 qquant 被设为 0。

preflag 被复位为 0。

scalefac scale 被复位为 0。

quantanf 的初始值设置如下:

 $quantanf = system_const \times log_e(sfm),$

其中 sfm 是频谱平坦测度并且 quantanf 取决于编码器的计算结果。

频谱平坦测度 sfm 由下式给出:

$$sfm = \frac{e^{\frac{1}{n}\left(\prod_{i=0}^{n-1}\log xr(i)^{2}\right)}}{\frac{1}{n}\prod_{i=0}^{n-1}xr(i)^{2}}$$

选择 system_const 的值以便对所有信号而言,内层循环中所有信号的第一次迭代能够得到一个比预期的比特和高的比特和。通过这样方式确保第一次调用内层循环,导致解决方案中使用了尽可能多的可用比特。为了节约计算时间,需要使 quantanf 的值适合比特率和信号统计特性,以降低迭代次数。

2.2 比特池控制

当编码一个颗粒时使用的比特小于平均比特,(多余的)比特被保存到存储器中。如果一帧中有节约的比特,main data end的值相应增加。参见图 3-A.7.1。

产生的可供 main_data 使用的比特数(称为"max_bits")来自于实际估测阈值(由心理声学模型计算得出的 PE)、平均比特数(mean_bits)和比特池的实际容量。比特池中字节的数目由 main_data_end 给出。

控制比特池的实际规则给出如下:

- 如果内层迭代循环中的一些可用字节并不用在哈夫曼编码或者其他 main_data, 这 些字节将被添加到比特池:
- 如果比特池包含了大于最大允许比特池容量的 0.8 倍(的比特), 所有超过这个数目(0.8 倍)的字节都被用作 main data 的可用字节(除了 mean bits 之外);
- 如果 more_bits 大于 100,那么从比特池中减少(more_bits/8,0.6×main_data_end) 这两者之间较大的字节数,并用给 main_data(除了 mean_bits 之外);
- 在实际的循环计算结束之后, main data 中未用的字节数被添加到比特池;
- 如果在上述步骤之后比特池中的字节数超出了最大允许的容量,填充比特被写入到 比特流中并且比特出的容量相应调整。

2.3 计算比例因子选择信息(scfsi)

scfsi 包含了第一个颗粒中的比例因子(在 scfsi_bands 中分组)是否也能在第二个颗粒中应用的信息。因此这些比例因子没有传输,增益比特可以被用在哈夫曼编码中。

为了确定 scfsi 的使用,必须存储每个颗粒的下列信息:

- 1. 块类型:
- 2. 颗粒的总能量:

en_tot = int
$$\left\{ log2 \left(\prod_{i=1}^{n} |xr(i)|^2 \right) \right\}$$

其中n是频谱值的总数。

3. 每个比例因子带的能量:

$$en(cb) = int \begin{cases} log2 \left\{ \frac{lbl(cb) + bw(cb) - 1}{\Box} |xr(i)|^2 \right\} \end{cases}$$

其中 lbl(cb)是属于比例因子带 cb 的第一个系数而 bw(cb)是在比例因子带 cb 内的系数个数。

4. 每个比例因子带允许的失真:

$$xm(cr.bd) = int\{log2(xmin(i))\}$$

xmin(cb)通过心理声学模型计算得出。

始终传输第一个颗粒的比例因子。当编码第二个颗粒时,将会比较这两个颗粒的信息。有四个标准来确定 scfsi 是否能被用在颗粒中。如果四个(标准)中的一个没有完全满足,scfsi 将被禁能(这表示它将在所有 scfsi_bands 中被设为 0)。标准如下(索引 0 表示第一个颗粒,而索引 1 表示第二个):

- 1. 频谱值不全为 0;
- 2. 没有一个颗粒中包含短块:
- 3. (满足下式)

$$\left| \text{en_tot}_0 - \text{en_tot}_1 \right| \le \text{en_tot}_{krit}$$

4. (满足下式)

$$\Box$$
 $| en(cb)_0 - en(cb)_1 | \le en_dif_{krit}$

如果 scfsi 在上述测试之后还未失效,对每个 sdfsi_band 有两个标准,要使能 scfsi(这表示它将在所有 scfsi bands 中被设为 1)这两个标准都必须完全满足:

1. (满足下式)

$$\left. \bigsqcup_{\text{all cr. bds in scfsi_band}} \right| en(cr.bd)_0 - en(cr.bd)_1 \right| \leq en(scfsi_band)_{krit}$$

2. (满足下式)

$$\left| \sum_{\text{all } cr. bds \text{ in } sefsi_band} \left| xm(cr. bd)_0 - xm(cr. bd)_1 \right| \le xm(sefsi_band)_{krit}$$

必须选择常量(以 krit 为索引),使得 scfsi 只在相似的能量/失真情况下使能。 建议的值如下:

```
en_tot = 10
en_dif = 100
en(scfsi_band) = 10    for each scfsi_band
xm(scfsi_band) = 10    for each scfsi_band
```

3、 外层迭代循环 (失真控制)

外层迭代循环控制着内层迭代循环中由量化频率线产生的量化噪声。噪声的显现是通过 比例因子带内的频率线和实际比例因子在量化之前的乘积运算完成的。下面的伪代码表示了 乘积过程:

```
do for each scalefactor band:
   do from lower index to upper index of scale factor band
      xr(i) = xr(i) * sqrt(2) ^ ((1 + scalefac_scale) * ifq(scalefactor band))
   end do
end do
```

在实际系统中乘积运算伴随着应用到每个失真控制循环的比例因子增加的过程中逐步 完成。这在下面的 3.5 节中描述。

失真循环总是以 $scalefac_scale = 0$ 开始。如果在一些迭代之后比例因子的最大长度越界(见 2.4.2.7 节和下面的 3.5 节中的 $scalefac_compress$ 表),那么 $scalefac_scale$ 将增加到 1,因此增加了比例因子的可能动态范围。这种情况下实际比例因子和频率线也必须相应修正。

3.1 比例因子的保存

所有比例因子带 ifq(cb)的比例因子和量化步长大小 qquant 都被保存。如果外层循环的计算在没有达到合适的结果之前被取消,这些值和量化频谱一起给出(结果的)近似值,并且可以被传输。

3.2 调用内层循环

每个外层迭代循环(失真控制循环)调用内层迭代循环(速率控制循环)。参数是频率域的值(混合滤波器组的输出)和应用到比例因子带内的值的比例因子以及速率控制循环可用的比特数目。结果是实际使用的比特数和量化的频率线 ix(i)。

3.3 计算比例因子带的失真

对每个比例因子带实际的失真根据下式计算:

$$xfsf(cr.bd.) = \frac{i=IbI(cr.bd.)+bw(cr.bd.)-1}{|xr(i)|-ix(i)|^{\frac{4}{3}}*\sqrt[4]{2}^{qquant+quantanf}|^{2}}$$

$$xfsf(cr.bd.) = \frac{|xr(i)|-ix(i)|^{\frac{4}{3}}*\sqrt[4]{2}^{qquant+quantanf}|^{2}}{bandwidth(cr.bd.)}$$

其中 lbl(cb)是在一个比例因子带中表示最低频率的系数的数值,而 bw(cb)是该子带内系数的个数。

3.4 预加重

预加重选项(通过设置preflag的值为 1 来选中)提供了根据预加重表格(表 3-B.6)放大频谱中上边(高频)部分。

```
if preflag==1
{
    xmin(j) = xmin(j) * ifqstep2 * prefact(j)
    for (i = lower limit of scalefactor band j;
        i <= upper limit of scalefactor band j;
        i++) {
        xr(i) = xr(i) * ifqstepprefact(j)
    }
}</pre>
```

选中预加重的条件取决于具体实现。例如,如果(频谱中)所有上边的4个比例因子带在第一次调用内层循环后的实际失真超过了阈值,可以选择预加重。

如果第二个颗粒正被编码并且 scfsi 在最近的一个 scfsi_band 中有效,则第二个颗粒中的预加重和第一个颗粒一样设置。

3.5 放大不符合遮蔽阈值的比例因子带

比例因子带的所有失真超过了允许失真的频谱值需要以因子 ifqstep 放大。ifqstep 的值通过 scalefac_scale 传输。

```
if (xmin - xfsf) of scalefactor band j < 0
{
    xmin(j) = xmin(j) * ifqstep2
    ifq(j) = ifq(j) + 1
    for (i = lower limit of scalefactor band;
        i <= upper limit of scalefactor band;
        i++) {
        xr(i) = xr(i) * ifqstep
    }
}</pre>
```

如果第二个颗粒正被编码并且 scfsi 在最近的一个 scfsi_band 中有效,则下列步骤必须完成:

- 1. ifqstep 必须设置为和第一个颗粒一样的值;
- 2. 如果是第一次迭代,在 scfsi 使能了的比例因子带中的比例因子必须从第一个颗粒中接收。相应的频谱值必须被放大:

```
if ( scfsi according to scalefactor band j = 1)
{
    ifq(j) = ifq(j)first granule
    for (i = lower limit of scalefactor band;
        i <= upper limit of scalefactor band;
        i++) {
        xr(i) = xr(i) * ifqstepifq(j)
    }
}</pre>
```

3. 如果不是第一次迭代,则禁止放大 scfsi 使能了的比例因子带。

3.5 循环处理的终止条件

通常循环处理将在没有比例因子带超过允许的失真时终止。然而这并不总是能够实现的。下列情况下为其他终止外层循环的条件,如果:

- 1. 所有的比例因子带都被放大过;
- 2. 至少一个子带的放大超出了由比例因子传输格式确定的上限。上限是比例因子在比例因子带 0~10 的时候值为 15, 而在比例因子带为 11~20 的时候值为 7。

循环处理终止并且通过修复保存的 ifq(cb.)可以获得一个有用的输出。在实时处理中可能有第三个终止循环的条件,那就是在缺少计算时间的情况下。

4、 内层迭代循环 (速率控制循环)

内层迭代循环执行实际的频率域数据的量化并为格式化做准备。(哈夫曼编码)表选择、划分 big values 的范围到各分区以及量化步长大小的选择在这里实现。

4.1 量化

完整的频谱值矢量的量化根据下式完成:

$$ix(i) = nint \left(\left(\frac{|xr(i)|}{\sqrt[4]{2}} \right)^{0.75} - 0.0946 \right)$$

4.2 测试量化值的最大值

最大允许的量化值是有限的。如果用一个查询表来重量化已量化的频率线,设置该限制是为了约束表的大小。上限通过以一个 ESC 代码标志的长度标识符 (linbits)的可能值表示。因此在任何比特计数完成之前,量化器步进步长以下式增加:

$$qquant = qquant+1$$

直到量化的最大值在最大的哈夫曼编码表范围之内。

4.3 计算 0 的行程

在频谱上边结束部分被量化为 0 的频谱系数对的行程 rzero 被计数并被称为 "rzero"。

4.4 计算小于等于1的值的行程

被量化为 0 或 1 的四个一组的频谱系数的行程(紧随在 rzero 那么多对的 0 之后)被计算并且称为"count1"。

4.5 计算编码小于等于1的值需要的比特

用一个哈夫曼编码字来编码一个"count1"的四个值。有两个不同的编码工作表以及相应的编码长度表(表 3-B.7)。编码所有count1 的四个一组值需要的比特用下式给出:

bitsum_count1 = min(bitsum_table0, bitsum_table1)

其中, countItable 0被用来指向表 A:

k=firstcount1+count1-1

bitsum_table0 =
$$count1table_0(ix(4k)+2*ix(4k+1)+4*ix(4k+2)+8*ix(4k+3))$$

k=firstcount1

并且 count1table_1 被用来指向表 B:

k=firstcount1+count1-1

k=firstcount1

bitsum_table1 =
$$\frac{1(ix(4k)+2*ix(4k+1)+4*ix(4k+2)+8*ix(4k+3))}{2}$$

哪个表被使用的信息通过 count1table_select 传输,分别为 "0" 表示表 A, "1" 表示表 B。

4.6 调用子程序 SUBDIVIDE

没有在"count1"或者"rzero"计数的量化值对的数目被称为 bigvalues。SUBDIVIDE 将对应这些值的比例因子带分割为三组。最后一个(组),通常是不完整的,也作为一个完整的计数。region_address 1/2 分别包含第一个和最后一个区域的比例因子带的数目。在第二个区域中的比例因子带的数目可以通过使用 bigvalues 来计算得出。如果 bigvalues 仅包含两个比例因子带则 region_address2 被设为 0。如果不足两个(比例因子带)则 region_address1也为 0。(组)分割的策略取决于具体实现。一个非常简单的实例就是将比例因子带的 1/3分到第一个区域,1/4 到最后一个区域。

万一子划分以类似的方式完成,但只有两个子区域。在这种情况下 region_address 1 被 设为默认值。在 $split_point = 0$ 时,默认值是 8,而 $split_point = 1$ 时默认值是 9。这两个值都指向相同的绝对频率。

4.7 计算每个子区域的编码工作表

有 32 个哈夫曼编码表来编码可用的量化值对。它们在最大值上各不相同,最大值可以用来编码并且在信号统计特征上被优化。表中只能编码 < 16 的值。对于 >= 16 的值提供两个表(来编码),其中最大值 15 作为一个转义字符。在这种情况下值 15 以一个附加的字编码,使用的是字长度被称为 linbits 的线性 PCM 码元。linbits 可以通过以 2 为底数对 PCM 码元取对数计算得到,PCM 码元便是 x – max_table_entry (见 2.4.2.7节)。

选择一个表的简单方式是使用子区域内量化值的最大值。大小相同的表是对不同的信号统计特性优化过的。因此额外的编码增益可以(例如)通过尝试所有的这些表格的方式得到。

4.8 计算编码子区域的值需要的比特

编码一个子区域内的量化值需要的比特数目由下式给出:

bitsum(j) =
$$\bigcup_{k=0}^{k=np(j)-1}$$
 bitz(tableselect(j), min(15, ix(2k+fe(j))), min(15, ix(2k+fe(j)+1)))
+ $\bigcup_{k=0}^{k=np(j)-1}$ (s(ix(2k+fe(j)) - 15) + s(ix(2k+fe(j)+1) - 15)) * linbits(j)

np(j): 在一个子区域中的(量化值)对的个数;

fe(j): 在一个子区域中第一次量化的值的个数;

bitz: 带哈夫曼编码长度的表;

s(...): 步长函数:

if x >= 0 s(x) = 1if x < 0 s(x) = 0

图 3- C.7 Layer III 迭代循环

图 3-C.8 Layer III 外层迭代循环

图 3-C.9 Layer III 内层迭代循环

附录3-D 心理声学模型(参考资讯)

3-D.1 心理声学模型I

心理声学模型的计算必须适应相应的层。当前讨论的样例对 Layer I 和 II 是有效地。该模型也可适用于 Layer III。

心理声学模型 I 在 Layer I 和 II 上的应用没有本质的差别。

Layer I: 使用新的比特分配来计算每个块的 12 个子带或者 384 个 PCM 采样;

Layer II: 使用新的比特分配来计算三个块总计 36 个子带采样对应的 3×384 (1152) 个输入 PCM 采样。

32 个子带的比特分配是在所有子带的信号遮蔽比的基础上计算的。因此需要为每个子带确定最大的信号电平以及最小的遮蔽阈值。最小遮蔽阈值由输入 PCM 信号的 FFT 再经过一个心理声学模型计算得来。

FFT 与子带滤波器并联以补偿子带滤波器组在低频段带来的频谱选择性上的匮乏。该技术既为音频信号(为降低前回音而优化了窗的多项滤波器)的编码提供了足够的时间精度,又为遮蔽阈值的计算提供了足够的频率精度。

能够计算频率和混迭失真。这在解码器中为需要一些比特来消除混迭成份的那些子带计算最小比特率时显得非常必要。只在编码器中需要额外的复杂度来计算更加的频率精度,但没有增加额外的延时或者解码器的复杂度。

信号遮蔽比的计算基于下列步骤:

- 1. 计算从时域到频域变换的 FFT:
- 2. 确定每个子带的声压水平;
- 3. 确定静音阈值(绝对阈值);
- 4. 查找音频信号中的音调(接近正弦曲线)和非音调(类似噪声)成份;
- 5. 抽取遮蔽器,以获得唯一的相关遮蔽器;
- 6. 分别计算遮蔽阈值;
- 7. 计算全局遮蔽阈值;
- 8. 确定每个子带的最低遮蔽阈值;
- 9. 计算每个子带的信号遮蔽比。

这些步骤将会更深一步的讨论。假定采样频率为 48KHz,对于其他两个采样频率,所有体积的频率应该对应缩放。

1、FFT 分析

遮蔽阈值来源于能量密度谱的估算。能量密度谱由一个 512 定点 FFT (Layer I) 或 1024 定点 FFT (Layer II 和 III) 计算得出。FFT 直接由输入 PCM 信号计算得来,加了一个汉宁 窗。

为了在时域上使比特分配与对应的子带采样一致,进入 FFT 的 PCM 采样必须被延时:

- 1. 分解子带滤波器的延时是 256 个采样,在 48KHz 采样频率下为 5.3ms。这对应了 256 个采样的窗移位;
- 2. 汉宁窗必须和帧的子带采样一致。对于 Layer I 这等于一个额外的 64 个采样的窗移

位,对 Layer II 为一个额外的负的 64 个采样的窗移位。

FFT 的技术数据:

```
Layer I
                                                     Layer II
 transform length
                                     512 samples
                                                    1024 samples
 Window size if fs = 48 \text{ kHz}
                                     10.67 ms
                                                     21.3 ms
 Window size if fs = 44.1 kHz
                                     11.6 ms
                                                     23.2 ms
 Window size if fs = 32 kHz
                                     16 ms
                                                     32 ms
 Frequency resolution
                                     fs/512
                                                    fs/1024
 Hann window, h(i):
 h(i) = *0.5*{1-cos[2*p*(i)/(N-1)]} 0<=i<=N-1
power density spectrum X(k):
 X(k) = 10*log|1/Nh(1)*s(1)*e(-j*k*l*2*p/N)|2 dB  k = 0...N/2
```

必须以最大值为 96dB 的方式进行归一化,参考电平为 96dB SPL(Sound Pressure Level, 声压水平)。

2、 确定声压水平:

每个子带的声压水平 Lsb 由下式计算:

```
Lsb(n) = MAX[X(k),20*log(scfmax(n)*32768)-10] dB

X(k) in subband n
```

其中 X(k)是对应子带 n 中在频率范围内最大幅值的 FFT 索引为 k 的频率线的声压水平。表达式 scfmax(n)在 Layer I 中为比例因子,在 Layer II 中为在一个帧里面子带 n 内三个比例因子中的最大值。 "-10dB" 项校正了峰值和 RMS(均根植)之间的差异。每个子带都要计算声压水平 Lsb(n)。

3、 确定静音阈值

静音阈值LTq(k),也被称为绝对阈值,可在表"频率、临界带率和绝对阈值"(表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用))中找到。这些表取决于PCM信号的采样频率。当计算遮蔽阈值时在频率域中的每个采样的值也可从表中得到。

(阈值的)偏移量取决于绝对阈值适用的总比特率。对于比特率≥96kbit/s 偏移量为 -12dB 每声道,而比特率<96kbit/s 时偏移量为 0dB 每声道。

4、 查找音调和非音调成份

一个遮蔽成份的音调能够影响遮蔽阈值。针对这个问题,区分出音调和非音调成份是很有价值的。对于全局遮蔽阈值的计算则需要从 FFT 频谱中得出音调和非音调成份。

这些步骤从确定局部最大值开始,然后提取出音调成份(正弦曲线)并在一个临界带的带宽黑计算非音调成份的强度。临界带的边界在表"临界带边界"(表 3-D.2a,表 3-D.2b,表 3-D.2c, Layer I适用;表 3-D.2d,表 3-D.2e,表 3-D.2f, Layer II适用)。

临界带的带宽随着中心频率而变化,在低频时(临界带的)带宽仅为 0.1KHz,而在高频时(临界带的)带宽达到 4KHz。从心理声学实验可知人耳在低频是的频率精度优于高频区域。为确定一个局部最大值是否为音调成份,需要检验局部最大值附近 df 的频率范围。频率范围 df 给定如下:

采样频率: 32 kHz

```
df = 125 Hz
                           0 \text{ kHz} < f <= 4.0 kHz
Layer I:
          df = 187.5 Hz
                           4.0 kHz
                                        < f <= 8.0 \text{ kHz}
          df = 375 \text{ Hz} 8.0 kHz < f <= 15.0 kHz
Layer II: df = 62.5 Hz
                           0 kHz
                                      < f <= 3.0 \text{ kHz}
          df = 93.75 Hz
                            3.0 kHz
                                       < f <= 6.0 \text{ kHz}
          df = 187.5 Hz
                                      < f <= 12.0 kHz
                           6.0 kHz
          df = 375 \text{ Hz} 12.0 kHz < f <= 24.0 kHz
采样频率: 44.1kHz
Layer I: df = 172.266 \text{ Hz} 0 kHz < f <= 5.512 kHz
          df = 281.25 Hz 5.512 kHz < f <= 11.024 kHz
          df = 562.50 \ Hz
                            11.024 kHz < f <= 19.982 kHz
Layer II: df = 86.133 \text{ Hz} 0 kHz < f <= 2.756 kHz
          df = 129.199 \text{ Hz} 2.756 kHz < f <= 5.512 kHz
          df = 258.398 Hz 5.512 kHz < f <= 11.024 kHz
          df = 516.797 Hz 11.024 kHz < f <= 19.982 kHz
采样频率: 48 kHz
Layer I: df = 187.5 Hz
                                       < f <= 6.0 kHz
                           0 kHz
          df = 281.25 Hz
                           6.0 kHz
                                       < f <= 12.0 kHz
          df = 562.50 \text{ Hz}
                           12.0 kHz
                                       < f <= 24.0 \text{ kHz}
Layer II: df = 93.750 Hz 0 kHz
                                       < f <= 3.0 \text{ kHz}
          df = 140.63 Hz
                           3.0 kHz
                                       < f <= 6.0 kHz
          df = 281.25 Hz
                           6.0 kHz
                                       < f <= 12.0 kHz
          df = 562.50 \text{ Hz} 12.0 kHz < f <= 24.0 kHz
```

为建立频率线 X(k)为音调或非音调成份的列表,需完成下列三个操作:

1. 标出局部最大值

频率线 X(k)满足下面的条件时被标记为局部最大值:

$$X(k) > X(k-1) \perp X(k) >= X(k+1)$$

2. 列出音调成份并计算声压水平

如果局部最大值满足下式,则将其添加到音调成份:

$$X(k) - X(k+j) >= 7 dB$$

其中j的选择依据如下:

```
Layer I:

j = -2, +2 for 2 < k < 63

j = -3, -2, +2, +3 for 63 <= k < 127

j = -6,..., -2, +2,..., +6 for 127 <= k <= 250

Layer II:

j = -2, +2 for 2 < k < 63

j = -3, -2, +2, +3 for 63 <= k < 127
```

j = -6, ..., -2, +2, ..., +6 for 127 <= k < 255j = -12, ..., -2, +2, ..., +12 for 255 <= k <= 500

如果 X(k)被确认为一个音调成份,那么列出下面的参数:

- -- 频率线的索引 k:
- -- 声压水平 Xtm(k) = X(k-1) + X(k) + X(k+1), 单位为 dB:
- -- 音调标志。

接下来,将检查的频率范围内所有频率线都设为-8dB。

1. 列出非音调成份并计算它们的能量

非音调(噪声)成份从剩余的频率线中计算得出。为了从这些频率线X(k)中计算非音调成份,临界带z(k)用表"临界带边界"来确定表 3-D.2a,表 3-D.2b,表 3-D.2c,Layer I 适用;表 3-D.2d,表 3-D.2e,表 3-D.2f,Layer II适用)。在Layer I中,采样频率为 32KHz时使用了 23 个临界带,为 44.1KHz时使用了 24 个临界带,为 48KHz时则使用了 25 个临界带。在Layer II中,采样频率为 32KHz时使用了 24 个临界带,为 44.1KHz和 48KHz时都使用了 26 个临界带。在每个临界带内,频率线的能量被累加到来自相应临界带的新的非音调成份的声压水平中。

(非音调成份)的下列参数被列出:

- -- 最靠近该临界带的几何平均数的频率线索引 k;
- -- 声压水平 Xnm(k), 以 dB 为单位;
- -- 非音调标志。
- 5、 确定音调和非音调的遮蔽阈值

考虑到全局遮蔽阈值的计算,抽取(音调和非音调成份)是一个被用来降低遮蔽器数量的手段。

2. 音调成份 Xtm(k)或非音调成份 Xnm(k)仅在满足下式时被考虑用来计算遮蔽阈值:

$$Xtm(k) >= LTq(k)$$
 或 $Xnm(k) >= LTq(k)$

在这个表达式中,LTq(k)是在频率索引k的绝对阈值(或静音阈值)。这些值在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用)中给出。

3. 在距离小于 0.5 个 Bark 内抽取两个或更多的音调成份: 以最高的能量保留这些(音调)成份,并且移除音调成份列表中较小的成份。对于这个操作,在临界带域内使用了宽度为 0.5Bark 的的滑动窗。

接下来,索引i被用来指示来自合成的抽取列表中的相关音调或非音调遮蔽成份。

6、 分别计算遮蔽阈值

相对于最初的N/2 的频域采样(以k为索引),只有该采样的一个子集(以i为索引)被用来计算全局遮蔽阈值。使用的样本在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用)。

Layer I:

对于被前六个子带覆盖的频率区域内相应的频率线而言,不使用二次采样。对于接下来六个子带对应的频率区域,考虑每两个频率线(作二次采样)。最后,在44.1和48KHz采样频率情况下,在剩余子带对应的频域中,考虑每四根频率线(作二次采样)直到20KHz的上限。在32KHz采样频率下,在剩余子带对应的频域中,考虑每四根频率线(作二次采

样)直到 15KHz的上线。(对Layer I,参考表 3-D.1a,表 3-D.1b,表 3-D.1c"频率、临界 带率和绝对阈值")。

Layer II:

对于被前三个子带覆盖的频率区域内相应的频率线而言,不使用二次采样。对于接下来三个子带覆盖的频率区域,考虑每两个频率线(作二次采样)。对于接下来六个子带对应的频率区域,考虑每四个频率线(作二次采样)。最后,在44.1KHz和48KHz采样频率下,在剩余的子带中,考虑每8个频率线(作二次采样),直到20KHz的上限。在32KHz采样频率情况下,在剩下的子带对应的频域中,考虑每8个频率线(作二次采样),直到15KHz的上限(对Layer II,参考表3-D.1d,表3-D.1e,表3-D.1f"频率、临界带率和绝对阈值")。

采样的数目 i, 在子采样频域中根据采样速率和层数而不同:

```
32kHz 采样频率:i = 108 for Layer I而 i = 132 for Layer II44.1kHz 采样频率:i = 106 for Layer I而 i = 130 for Layer II48kHz 采样频率:i = 102 for Layer I而 i = 126 for Layer II
```

对每个音调和非音调成份,在子采样频域内的索引i被赋值,该值是最接近频域内原始频率线X(k)。索引i在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用) "频率、临界带率和绝对阈值"中给出。

音调和非音调成份的各自的遮蔽阈值由下式给出:

在该式中 LTtm 和 LTnm 是各自(音调和非音调)的,在临界带率 zm(以 Bark 的形式)的遮蔽成份在临界带率的遮蔽阈值(以 Bark 的形式)。它们的 dB 值可以使正数也可以是负数。Xtm[z(j)]项是在相应的临界带率 z(j)中索引为 j 的遮蔽成份的声压水平。av 项背称为遮蔽索引而 vf 项则是遮蔽成份 Xtm[z(j)]的遮蔽函数。音调和非音调遮蔽器(avtm 和 avnm)的遮蔽索引 av 是不同的。

对于音调遮蔽器,它由下式给出:

```
avtm = -1.525 - 0.275 * z(j) - 4.5 dB,
```

而对非音调遮蔽器:

```
avnm = -1.525 - 0.175 * z(j) - 0.5 dB.
```

遮蔽器的遮蔽函数vf的特征在于不同的高区和低区的斜率,这取决于在Bark dz = z(i) - z(j)到遮蔽器的距离。在这个表达式中i是计算遮蔽函数的频率线的索引而j则是遮蔽器的索引。临界带率z(j)和z(i)都可以在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用)"频率、临界带率和绝对阈值"中找到。遮蔽函数对于音调和非音调遮蔽器都一样,给出如下:

在这些表达式中 X[z(j)]是第 j 个遮蔽成分的声压水平的 dB 值。如果 dz < -3Bark,或 $dz \ge 8Bark$,那么不再考虑遮蔽(LTtm 和 LTnm 都被设置为-8dB 而不再这个范围之内)。

7、 计算全局遮蔽阈值 LTg

全局遮蔽阈值LTg(i)在第i个频率的采样来自于第j个音调和非音调遮蔽器各自遮蔽阈值的高区和低区的斜率,除去静音阈值LTq(i)之外。这也在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer II适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用)"频率、临界带率和绝对阈值"中给出。全局遮蔽阈值是由单独的遮蔽阈值和静音阈值对应的能量累加组成的。

$$LTg(i) = 10log(10LTq(i)/10 + +)$$

音调遮蔽器的总数由 m 给出,而非音调遮蔽器的总数由 n 给出。对于一个给定的 i,j 的范围可以被降低到仅仅包含那些来自 i 的在-8 到+3Bark 的遮蔽成分。在该范围之外 LTtm 和 LTnm 均为-8dB。

8、 确定最低遮蔽阈值

子带 n 的最低遮蔽水平 LTmin(n)由下面的表达式决定:

```
LTmin(n) = MIN[LTg(i)] dB
    f(i) in subband n
```

其中f(i)是第i个频率采样的频率。f(i)在表 3-D.1a,表 3-D.1b,表 3-D.1c(Layer I适用)、表 3-D.1d,表 3-D.1e,表 3-D.1f(Layer II适用)"频率、临界带率和绝对阈值"中列出。每个子带都要计算最低遮蔽水平LTmin(n)。

9、 计算信号遮蔽比

每个子带 n 都要计算信号遮蔽比,表达式如下:

SMRsb(n) = Lsb(n) - LTmin(n) dB

表 3-D.1a 频率, 临界带率和绝对阈值

该表只	在 Layer I,采	区样频率为 32KH	z时有效
序号	频率	临界带率	绝对阈值
i	[Hz]	[z]	[dB]
1	62.50	.617	33.44
2	125.00	1.232	19.20
3	187.50	1.842	13.87
4	250.00	2.445	11.01
5	312.50	3.037	9.20
6	375.00	3.618	7.94
7	437.50	4.185	7.00
8	500.00	4.736	6.28
9	562.50	5.272	5.70
10	625.00	5.789	5.21
11	687.50	6.289	4.80
12	750.00	6.770	4.45
13	812.50	7.233	4.14
14	875.00	7.677	3.86
15	937.50	8.103	3.61
16	1000.00	8.511	3.37
17	1062.50	8.901	3.15

18	1125.00	9.275	2.93	
19	1187.50	9.632	2.73	
20	1250.00	9.974	2.53	
21	1312.50	10.301	2.32	
22	1375.00	10.614	2.12	
23	1437.50	10.913	1.92	
24	1500.00	11.199	1.71	
25	1562.50	11.474	1.49	
26	1625.00	11.736	1.27	
27	1687.50	11.988	1.04	
28	1750.00	12.230	.80	
29	1812.50	12.461	.55	
30	1875.00	12.684	.29	
31	1937.50	12.898	.02	
32	2000.00	13.104	25	
33	2062.50	13.302	54	
34	2125.00	13.493	83	
35	2187.50	13.678	-1.12	
36	2250.00	13.855	-1.43	
37	2312.50	14.027	-1.73	
38	2375.00	14.193	-2.04	
39	2437.50	14.354	-2.34	
40	2500.00	14.509	-2.64	
41	2562.50	14.660	-2.93	
42	2625.00	14.807	-3.22	
43	2687.50	14.949	-3.49	
44	2750.00	15.087	-3.74	
45	2812.50	15.221	-3.98	
46	2875.00	15.351	-4.20	
47	2937.50	15.478	-4.40	
48	3000.00	15.602	-4.57	
49	3125.00	15.841	-4.82	
50	3250.00	16.069	-4.96	
51	3375.00	16.287	-4.97	
52			-4.86	
	3500.00 3625.00	16.496		
53		16.697	-4.63	
54	3750.00	16.891	-4.29	
55	3875.00	17.078	-3.87	
56	4000.00	17.259	-3.39	
57	4125.00	17.434	-2.86	
58	4250.00	17.605	-2.31	
59	4375.00	17.770	-1.77	
60	4500.00	17.932	-1.24	
61	4625.00	18.089	74	

CD	4750 00	10.045	2.2
62	4750.00	18.242	29
63	4875.00	18.392	.12
64	5000.00	18.539	.48
65	5125.00	18.682	.79
66	5250.00	18.823	1.06
67	5375.00	18.960	1.29
68	5500.00	19.095	1.49
69	5625.00	19.226	1.66
70	5750.00	19.356	1.81
71	5875.00	19.482	1.95
72	6000.00	19.606	2.08
73	6250.00	19.847	2.33
74	6500.00	20.079	2.59
75	6750.00	20.300	2.86
76	7000.00	20.513	3.17
77	7250.00	20.717	3.51
78	7500.00	20.912	3.89
79	7750.00	21.098	4.31
80	8000.00	21.275	4.79
81	8250.00	21.445	5.31
82	8500.00	21.443	5.88
83	8750.00	21.760	6.50
84	9000.00	21.906	7.19
85	9250.00	22.046	7.93
86	9500.00	22.178	8.75
87	9750.00	22.304	9.63
88	10000.00	22.424	10.58
89	10250.00	22.538	11.60
90	10500.00	22.646	12.71
91	10750.00	22.749	13.90
92	11000.00	22.847	15.18
93	11250.00	22.941	16.54
94	11500.00	23.030	18.01
95	11750.00	23.114	19.57
96	12000.00	23.195	21.23
97	12250.00	23.272	23.01
98	12500.00	23.345	24.90
99	12750.00	23.415	26.90
100	13000.00	23.413	29.03
101	13250.00	23.546	31.28
102	13500.00	23.607	33.67
103	13750.00	23.666	36.19
104	14000.00	23.722	38.86
105	14250.00	23.775	41.67

106	14500.00	23.827	44.63
107	14750.00	23.876	47.76
108	15000.00	23.923	51.04

表 3-D.1b 频率,临界带率和绝对阈值

该表只在	Layer I,采样	≟频率为 44.1KH	z 时有效	
序号		临界带率		
i			[dB]	
1	86.13	.850	25.87	
2	172.27	1.694	14.85	
3	258.40	2.525	10.72	
4	344.53	3.337	8.50	
5	430.66	4.124	7.10	
6	516.80	4.882	6.11	
7	602.93	5.608	5.37	
8	689.06	6.301	4.79	
9	775.20	6.959	4.32	
10	861.33	7.581	3.92	
11	947.46	8.169	3.57	
12	1033.59	8.723	3.25	
13	1119.73	9.244	2.95	
14	1205.86	9.734	2.67	
15	1291.99	10.195	2.39	
16	1378.13	10.629	2.11	
17	1464.26	11.037	1.83	
18	1550.39	11.421	1.53	
19	1636.52	11.783	1.23	
20	1722.66	12.125	.90	
21	1808.79	12.448	.56	
22	1894.92	12.753	.21	
23	1981.05	13.042	17	
24	2067.19	13.317	56	
25	2153.32	13.578	96	
26	2239.45	13.826	-1.38	
27	2325.59	14.062	-1.79	
28	2411.72	14.288	-2.21	
29	2497.85	14.504	-2.63	
30	2583.98	14.711	-3.03	
31	2670.12	14.909	-3.41	
32	2756.25	15.100	-3.77	
33	2842.38	15.284	-4.09	
34	2928.52	15.460	-4.37	
35	3014.65	15.631	-4.60	

36	3100.78	15.796	-4.78
37	3186.91	15.955	-4.91
38	3273.05	16.110	-4.97
39	3359.18	16.260	-4.98
40	3445.31	16.406	-4.92
41	3531.45	16.547	-4.81
42	3617.58	16.685	-4.65
43	3703.71	16.820	-4.43
44	3789.84	16.951	-4.17
45	3875.98	17.079	-3.87
46	3962.11	17.205	-3.54
47	4048.24	17.327	-3.19
48	4134.38	17.447	-2.82
49	4306.64	17.680	-2.06
50	4478.91	17.905	-1.32
51	4651.17	18.121	64
52	4823.44	18.331	04
53	4995.70	18.534	.47
54		18.731	.89
55	5340.23	18.922	1.23
	5512.50		
56		19.108	1.51
57		19.289	1.74
58	5857.03	19.464	1.93
59	6029.30	19.635	2.11
60		19.801	2.28
61	6373.83	19.963	2.46
62	6546.09	20.120	2.63
63	6718.36	20.273	2.82
64	6890.63	20.421	3.03
65	7062.89	20.565	3.25
66	7235.16	20.705	3.49
67	7407.42	20.840	3.74
68	7579.69	20.972	4.02
69	7751.95	21.099	4.32
70	7924.22	21.222	4.64
71	8096.48	21.342	4.98
72	8268.75	21.457	5.35
73	8613.28	21.677	6.15
74	8957.81	21.882	7.07
75	9302.34	22.074	8.10
76	9646.88	22.253	9.25
77	9991.41	22.233	10.54
78	10335.94	22.576	11.97
79	10680.47	22.721	13.56

80	11025.00	22.857	15.31	
81	11369.53	22.984	17.23	
82	11714.06	23.102	19.34	
83	12058.59	23.213	21.64	
84	12403.13	23.317	24.15	
85	12747.66	23.415	26.88	
86	13092.19	23.506	29.84	
87	13436.72	23.592	33.05	
88	13781.25	23.673	36.52	
89	14125.78	23.749	40.25	
90	14470.31	23.821	44.27	
91	14814.84	23.888	48.59	
92	15159.38	23.952	53.22	
93	15503.91	24.013	58.18	
94	15848.44	24.070	63.49	
95	16192.97	24.125	68.00	
96	16537.50	24.176	68.00	
97	16882.03	24.225	68.00	
98	17226.56	24.271	68.00	
99	17571.09	24.316	68.00	
100	17915.63	24.358	68.00	
101	18260.16	24.398	68.00	
102	18604.69	24.436	68.00	
103	18949.22	24.473	68.00	
104	19293.75	24.508	68.00	
105	19638.28	24.542	68.00	
106	19982.81	24.574	68.00	

表 3-D.1c 频率, 临界带率和绝对阈值

该表只在	Layer I,采样	频率为 48KHz	时有效
序号	频率	临界带率	绝对阈值
i	[Hz]	[z]	[dB]
1	93.75	.925	24.17
2	187.50	1.842	13.87
3	281.25	2.742	10.01
4	375.00	3.618	7.94
5	468.75	4.463	6.62
6	562.50	5.272	5.70
7	656.25	6.041	5.00
8	750.00	6.770	4.45
9	843.75	7.457	4.00
10	937.50	8.103	3.61
11	1031.25	8.708	3.26

10	1105 00	0.075	2 02
12	1125.00	9.275	2.93
13		9.805	2.63
14	1312.50	10.301	2.32
15	1406.25	10.765	2.02
16	1500.00	11.199	1.71
17	1593.75	11.606	1.38
18	1687.50	11.988	1.04
19	1781.25	12.347	.67
20	1875.00	12.684	.29
21	1968.75	13.002	11
22	2062.50	13.302	54
23	2156.25	13.586	97
24	2250.00	13.855	-1.43
25	2343.75	14.111	-1.88
26	2437.50	14.354	-2.34
27	2531.25	14.585	-2.79
28	2625.00	14.807	-3.22
29	2718.75	15.018	-3.62
30	2812.50	15.221	-3.98
31	2906.25	15.415	-4.30
32	3000.00		-4.57
		15.602	
33	3093.75	15.783	-4.77
34	3187.50	15.956	-4.91
35	3281.25	16.124	-4.98
36	3375.00	16.287	-4.97
37	3468.75	16.445	-4.90
38	3562.50	16.598	-4.76
39	3656.25	16.746	-4.55
40	3750.00	16.891	-4.29
41	3843.75	17.032	-3.99
42	3937.50	17.169	-3.64
43	4031.25	17.303	-3.26
44	4125.00	17.434	-2.86
45	4218.75	17.563	-2.45
46	4312.50	17.688	-2.04
47	4406.25	17.811	-1.63
48	4500.00	17.932	-1.24
49	4687.50	18.166	51
50	4875.00	18.392	.12
51	5062.50	18.611	.64
52	5250.00	18.823	1.06
53			1.39
	5437.50	19.028	
54	5625.00	19.226	1.66
55	5812.50	19.419	1.88

56	6000.00	19.606	2.08	
57	6187.50	19.788	2.27	
58	6375.00	19.964	2.46	
59	6562.50	20.135	2.65	
60	6750.00	20.300	2.86	
61	6937.50	20.461	3.09	
62	7125.00	20.616	3.33	
63	7312.50	20.766	3.60	
64	7500.00	20.912	3.89	
65	7687.50	21.052	4.20	
66	7875.00	21.188	4.54	
67	8062.50	21.318	4.91	
68	8250.00	21.445	5.31	
69	8437.50	21.567	5.73	
70	8625.00	21.684	6.18	
71	8812.50	21.797	6.67	
72	9000.00	21.906	7.19	
73	9375.00	22.113	8.33	
74	9750.00	22.304	9.63	
75	10125.00	22.482	11.08	
76	10500.00	22.646	12.71	
77	10875.00	22.799	14.53	
78	11250.00	22.941	16.54	
79	11625.00	23.072	18.77	
80	12000.00	23.195	21.23	
81	12375.00	23.309	23.94	
82	12750.00	23.415	26.90	
83	13125.00	23.515	30.14	
84	13500.00	23.607	33.67	
85	13875.00	23.694	37.51	
86	14250.00	23.775	41.67	
87	14625.00	23.852	46.17	
88	15000.00	23.923	51.04	
89	15375.00	23.991	56.29	
90	15750.00	24.054	61.94	
91	16125.00	24.114	68.00	
92	16500.00	24.171	68.00	
93	16875.00	24.224	68.00	
94	17250.00	24.275	68.00	
95	17625.00	24.273	68.00	
96	18000.00	24.322	68.00	
97	18375.00	24.411	68.00	
98	18750.00	24.452	68.00	
99	19125.00	24.491	68.00	

100	19500.00	24.528	68.00
101	19875.00	24.564	68.00
102	20250.00	24.597	68.00

表 3-D.1d 频率, 临界带率和绝对阈值

该表日在	Layer II,采	⊭掘家 为 3 2 KHz	財右効
序号	频率	临界带率	绝对阈值
i	[Hz]	[z]	[dB]
1	31.25	.309	58.23
2		.617	33.44
3		.925	24.17
4	125.00	1.232	19.20
5		1.538	16.05
6	187.50	1.842	13.87
7		2.145	12.26
8	250.00	2.445	11.01
9	281.25	2.742	10.01
10		3.037	9.20
11		3.329	8.52
12		3.618	7.94
13		3.903	7.44
14	437.50	4.185	7.00
15	468.75	4.463	6.62
16	500.00	4.736	6.28
17	531.25	5.006	5.97
18	562.50	5.272	5.70
19	593.75	5.533	5.44
20	625.00	5.789	5.21
21	656.25	6.041	5.00
22	687.50	6.289	4.80
23	718.75	6.532	4.62
24	750.00	6.770	4.45
25	781.25	7.004	4.29
26	812.50	7.233	4.14
27	843.75	7.457	4.00
28	875.00	7.677	3.86
29	906.25	7.892	3.73
30	937.50	8.103	3.61
31	968.75	8.309	3.49
32	1000.00	8.511	3.37
33	1031.25	8.708	3.26
34	1062.50	8.901	3.15
35	1093.75	9.090	3.04
36	1125.00	9.275	2.93

27	1156 05	0.456	0.03
37		9.456	
38		9.632	
39		9.805	
40		9.974	
41		10.139	
42		10.301	
43	1343.75	10.459	2.22
44	1375.00	10.614	2.12
45	1406.25	10.765	2.02
46	1437.50	10.913	1.92
47	1468.75	11.058	1.81
48	1500.00	11.199	1.71
49	1562.50	11.474	1.49
50	1625.00	11.736	1.27
51	1687.50	11.988	1.04
52	1750.00	12.230	.80
53		12.461	
54		12.684	
55		12.898	
56		13.104	
57		13.302	
58		13.493	
59		13.678	
60		13.855	
61		14.027	
62		14.193	
63		14.354	
64	2500.00		
65	2562.50	14.660	-2.93
66	2625.00	14.807	-3.22
67	2687.50	14.949	-3.49
68	2750.00	15.087	-3.74
69	2812.50	15.221	-3.98
70	2875.00	15.351	-4.20
71	2937.50	15.478	-4.40
72	3000.00	15.602	-4.57
73	3125.00	15.841	-4.82
74	3250.00	16.069	-4.96
75	3375.00	16.287	-4.97
76	3500.00	16.496	-4.86
77	3625.00	16.697	-4.63
78	3750.00	16.891	-4.29
79	3875.00	17.078	-3.87
80	4000.00	17.259	-3.39
00	4000.00	17.239	-3.33

0.1	4105 00	10 40 4	0.00
81	4125.00	17.434	-2.86
82	4250.00	17.605	-2.31
83	4375.00	17.770	-1.77
84	4500.00	17.932	-1.24
85	4625.00	18.089	74
86	4750.00	18.242	29
87	4875.00	18.392	.12
88	5000.00	18.539	.48
89	5125.00	18.682	.79
90	5250.00	18.823	1.06
91	5375.00	18.960	1.29
92	5500.00	19.095	1.49
93	5625.00	19.226	1.66
94	5750.00	19.356	1.81
95	5875.00	19.482	1.95
96	6000.00	19.606	2.08
97	6250.00	19.847	2.33
98	6500.00	20.079	2.59
99	6750.00	20.300	2.86
100	7000.00	20.513	3.17
101	7250.00	20.313	3.51
102			3.89
	7500.00	20.912	
103	7750.00	21.098	4.31
104	8000.00	21.275	4.79
105	8250.00	21.445	5.31
106	8500.00	21.606	5.88
107	8750.00	21.760	6.50
108	9000.00	21.906	7.19
109	9250.00	22.046	7.93
110	9500.00	22.178	8.75
111	9750.00	22.304	9.63
112	10000.00	22.424	10.58
113	10250.00	22.538	11.60
114	10500.00	22.646	12.71
115	10750.00	22.749	13.90
116	11000.00	22.847	15.18
117	11250.00	22.941	16.54
118	11500.00	23.030	18.01
119	11750.00	23.114	19.57
120	12000.00	23.114	21.23
121	12250.00	23.272	23.01
122	12500.00	23.345	24.90
123	12750.00	23.415	26.90
124	13000.00	23.482	29.03

125	13250.00	23.546	31.28
126	13500.00	23.607	33.67
127	13750.00	23.666	36.19
128	14000.00	23.722	38.86
100	14050 00	00 775	41 67
129	14250.00	23.775	41.67
130	14500.00	23.827	44.63
130	14300.00	23.027	44.03
131	14750.00	23.876	47.76
131	14/30.00	23.070	17.70
132	15000.00	23.923	51.04
132	13000.00	23.723	31.04

表 3-D.1e 频率,临界带率和绝对阈值

该表只在	Layer II, 采	样频率为 44.1K	Hz 时有效	
序号	频率	临界带率	绝对阈值	
i	[Hz]	[z]	[dB]	
1	43.07	.425	45.05	
2	86.13	.850	25.87	
3	129.20	1.273	18.70	
4	172.27	1.694	14.85	
5	215.33	2.112	12.41	
6	258.40	2.525	10.72	
7	301.46	2.934	9.47	
8	344.53	3.337	8.50	
9	387.60	3.733	7.73	
10	430.66	4.124	7.10	
11	473.73	4.507	6.56	
12	516.80	4.882	6.11	
13	559.86	5.249	5.72	
14	602.93	5.608	5.37	
15	646.00	5.959	5.07	
16	689.06	6.301	4.79	
17	732.13	6.634	4.55	
18	775.20	6.959	4.32	
19	818.26	7.274	4.11	
20	861.33	7.581	3.92	
21	904.39	7.879	3.74	
22	947.46	8.169	3.57	
23	990.53	8.450	3.40	
24	1033.59	8.723	3.25	
25	1076.66	8.987	3.10	
26	1119.73	9.244	2.95	
27	1162.79	9.493	2.81	
28	1205.86	9.734	2.67	
29	1248.93	9.968	2.53	
30	1291.99	10.195	2.39	

2.7	1225 25	10 11 5	0.05
31	1335.06	10.416	2.25
32	1378.13		
33	1421.19	10.836	1.97
34	1464.26	11.037	1.83
35	1507.32	11.232	1.68
36	1550.39	11.421	1.53
37	1593.46	11.605	1.38
38	1636.52	11.783	1.23
39	1679.59	11.957	1.07
40	1722.66	12.125	.90
41	1765.72	12.289	.74
42	1808.79	12.448	.56
43	1851.86	12.603	.39
44	1894.92	12.753	.21
45	1937.99	12.900	.02
46	1981.05	13.042	17
47	2024.12	13.181	36
48	2067.19	13.317	56
49	2153.32	13.578	
50	2239.45	13.826	-1.38
51	2325.59	14.062	-1.79
52	2411.72		
53	2497.85	14.504	-2.63
54	2583.98	14.711	-3.03
55	2670.12	14.909	-3.41
56	2756.25	15.100	-3.41
57			
58	2928.52		-4.37
59	3014.65	15.631	-4.60
60	3100.78	15.796	-4.78
61	3186.91	15.955	-4.91
62	3273.05	16.110	-4.97
63	3359.18	16.260	-4.98
64	3445.31	16.406	-4.92
65	3531.45	16.547	-4.81
66	3617.58	16.685	-4.65
67	3703.71	16.820	-4.43
68	3789.84	16.951	-4.17
69	3875.98	17.079	-3.87
70	3962.11	17.205	-3.54
71	4048.24	17.327	-3.19
72	4134.38	17.447	-2.82
73	4306.64	17.680	-2.06
74	4478.91	17.905	-1.32

	1654 5	10 10	
75	4651.17	18.121	64
76		18.331	
	4995.70	18.534	.47
78	5167.97	18.731	.89
79		18.922	1.23
80	5512.50	19.108	1.51
81	5684.77	19.289	1.74
82	5857.03	19.464	1.93
83	6029.30	19.635	2.11
84	6201.56	19.801	2.28
85	6373.83	19.963	2.46
86	6546.09	20.120	2.63
87	6718.36	20.273	2.82
88		20.421	
89		20.565	
90	7235.16	20.705	3.49
91		20.840	
92	7579.69		4.02
93		21.099	
94	7924.22	21.222	
95	8096.48	21.342	
96	8268.75	21.457	5.35
97	8613.28	21.677	6.15
98	8957.81	21.882	7.07
99	9302.34	22.074	8.10
100	9646.88	22.253	9.25
101	9991.41	22.420	10.54
102	10335.94	22.576	11.97
103	10680.47	22.721	13.56
104	11025.00	22.857	15.31
105	11369.53	22.984	17.23
106	11714.06	23.102	19.34
107	12058.59	23.213	21.64
107	12403.13	23.213	24.15
109	12747.66	23.415	26.88
110	13092.19	23.506	29.84
111	13436.72	23.592	33.05
112	13781.25	23.673	36.52
113	14125.78	23.749	40.25
114	14470.31	23.821	44.27
115	14814.84	23.888	48.59
116	15159.38	23.952	53.22
117	15503.91	24.013	58.18
118	15848.44	24.070	63.49

119	16192.97	24.125	68.00
120	16537.50	24.176	68.00
121	16882.03	24.225	68.00
122	17226.56	24.271	68.00
123	17571.09	24.316	68.00
124	17915.63	24.358	68.00
125	18260.16	24.398	68.00
126	18604.69	24.436	68.00
127	18949.22	24.473	68.00
128	19293.75	24.508	68.00
129	19638.28	24.542	68.00
130	19982.81	24.574	68.00

表 3-D.1f 频率, 临界带率和绝对阈值

该表只在	Layer II,采	样频率为 48KHz	时有效	
序号	频率	临界带率	绝对阈值	
i	[Hz]	[z]	[dB]	
1	46.88	.463	42.10	
2	93.75	.925	24.17	
3	140.63	1.385	17.47	
4	187.50	1.842	13.87	
5	234.38	2.295	11.60	
6	281.25	2.742	10.01	
7	328.13	3.184	8.84	
8	375.00	3.618	7.94	
9	421.88	4.045	7.22	
10	468.75	4.463	6.62	
11	515.63	4.872	6.12	
12	562.50	5.272	5.70	
13	609.38	5.661	5.33	
14	656.25	6.041	5.00	
15	703.13	6.411	4.71	
16	750.00	6.770	4.45	
17	796.88	7.119	4.21	
18	843.75	7.457	4.00	
19	890.63	7.785	3.79	
20	937.50	8.103	3.61	
21	984.38	8.410	3.43	
22	1031.25	8.708	3.26	
23	1078.13	8.996	3.09	
24	1125.00	9.275	2.93	
25	1171.88	9.544	2.78	
26	1218.75	9.805	2.63	
27	1265.63	10.057	2.47	

28	1312.50	10.301	2.32
29	1359.38		2.17
30	1406.25	10.765	2.02
31	1453.13	10.986	1.86
32	1500.00	11.199	1.71
33	1546.88	11.406	1.55
34	1593.75	11.606	1.38
35	1640.63	11.800	1.21
36	1687.50	11.988	1.04
37	1734.38	12.170	.86
38	1781.25	12.347	.67
39	1828.13	12.518	.49
40	1875.00	12.684	.29
41	1921.88	12.845	.09
42	1968.75	13.002	11
43	2015.63	13.154	32
44	2062.50	13.302	54
45	2109.38	13.446	75
46	2156.25	13.586	97
47	2203.13	13.723	-1.20
48	2250.00	13.855	-1.43
49	2343.75	14.111	-1.88
50	2437.50	14.354	-2.34
51	2531.25	14.585	-2.79
52	2625.00	14.807	-3.22
53	2718.75	15.018	-3.62
54	2812.50		
55	2906.25		
56	3000.00	15.602	-4.57
57	3093.75	15.783	-4.77
58	3187.50	15.956	-4.91
59	3281.25	16.124	-4.98
60	3375.00	16.287	-4.97
61	3468.75	16.445	-4.90
62	3562.50	16.598	-4.76
63	3656.25	16.746	-4.76
64	3750.00	16.891	-4.29
65	3843.75	17.032	-3.99
66	3937.50	17.169	-3.64
67	4031.25	17.303	-3.26
68	4125.00	17.434	-2.86
69	4218.75	17.563	-2.45
70	4312.50	17.688	-2.04
71	4406.25	17.811	-1.63

	4500 63	4.00.00	
72	4500.00	17.932	-1.24
73	4687.50		
74	4875.00	18.392	.12
75	5062.50	18.611	.64
76	5250.00	18.823	1.06
77	5437.50	19.028	1.39
78	5625.00	19.226	1.66
79	5812.50	19.419	1.88
80	6000.00	19.606	2.08
81	6187.50	19.788	2.27
82	6375.00	19.964	2.46
83	6562.50	20.135	2.65
84	6750.00	20.300	2.86
85	6937.50	20.461	3.09
86	7125.00	20.616	3.33
87	7312.50	20.766	3.60
88	7500.00	20.912	3.89
89	7687.50	21.052	4.20
90	7875.00	21.188	4.54
91	8062.50	21.318	4.91
92	8250.00	21.445	5.31
93	8437.50		
94	8625.00	21.684	6.18
95	8812.50	21.797	6.67
96	9000.00	21.906	7.19
97	9375.00	22.113	8.33
98	9750.00		9.63
99		22.482	11.08
100	10500.00	22.646	12.71
101	10875.00	22.799	14.53
102	11250.00	22.941	16.54
103	11625.00	23.072	18.77
104	12000.00	23.195	21.23
105	12375.00	23.309	23.94
106	12750.00	23.415	26.90
107	13125.00	23.515	30.14
108	13500.00	23.607	33.67
109	13875.00	23.694	37.51
110	14250.00	23.775	41.67
111	14625.00	23.773	46.17
112	15000.00	23.923	51.04
113	15375.00	23.923	56.29
114	15750.00	24.054	61.94
			68.00
115	16125.00	24.114	00.00

116	16500.00	24.171	68.00
117	16875.00	24.224	68.00
118	17250.00	24.275	68.00
119	17625.00	24.322	68.00
120	18000.00	24.368	68.00
121	18375.00	24.411	68.00
122	18750.00	24.452	68.00
123	19125.00	24.491	68.00
124	19500.00	24.528	68.00
125	19875.00	24.564	68.00
126	20250.00	24.597	68.00

表 3-D.2a 临界带边界

该表仅在	Layer I,采样	频率为 32KHz 时有效	7、频率代表每个临界带的上界。
序号	表 F&CB	频率 [Hz]	Bark[z]
	的索引		
0	1	62.500	.617
1	3	187.500	1.842
2	5	312.500	3.037
3	7	437.500	4.185
4	9	562.500	5.272
5	11	687.500	6.289
6	13	812.500	7.233
7	15	937.500	8.103
8	18	1125.000	9.275
9	21	1312.500	10.301
10	24	1500.000	11.199
11	27	1687.500	11.988
12	32	2000.000	13.104
13	37	2312.500	14.027
14	44	2750.000	15.087
15	50	3250.000	16.069
16	55	3875.000	17.078
17	61	4625.000	18.089
18	68	5500.000	19.095
19	74	6500.000	20.079
20	79	7750.000	21.098
21	85	9250.000	22.046
22	94	11500.000	23.030
23	108	15000.000	23.923

表 3-D.2b 临界带边界

该表仅在	Laver I. 采牟	⊭	有效,频率代表每个临界带的上界。
序号	表 F&CB	频率 [Hz]	Bark[z]
	的索引		
0	1	86.133	.850
1	2	172.266	1.694
2	3	258.398	2.525
3	5	430.664	4.124
4	6	516.797	4.882
5	8	689.063	6.301
6	9	775.195	6.959
7	11	947.461	8.169
8	13	1119.727	9.244
9	15	1291.992	10.195
10	17	1464.258	11.037
11	20	1722.656	12.125
12	23	1981.055	13.042
13	27	2325.586	14.062
14	32	2756.250	15.100
15	37	3186.914	15.955
16	45	3875.977	17.079
17	50	4478.906	17.904
18	55	5340.234	18.922
19	61	6373.828	19.963
20	68	7579.688	20.971
21	75	9302.344	22.074
22	81	11369.531	22.984
23	93	15503.906	24.013
24	106	19982.813	24.573

表 3-D.2c 临界带边界

该表仅在	Layer I,采样	频率为 48KHz 时有效	女,频率代表每个临界带的上界。
序号	表 F&CB	频率 [Hz]	Bark[z]
	的索引		
0	1	93.750	.925
1	2	187.500	1.842
2	3	281.250	2.742
3	4	375.000	3.618
4	5	468.750	4.463
5	6	562.500	5.272
6	7	656.250	6.041
7	9	843.750	7.457
8	10	937.500	8.103

9	12	1125.000	9.275
10	14	1312.500	10.301
11	16	1500.000	11.199
12	19	1781.250	12.347
13	21	1968.750	13.002
14	25	2343.750	14.111
15	29	2718.750	15.018
16	35	3281.250	16.124
17	41	3843.750	17.032
18	49	4687.500	18.166
19	53	5437.500	19.028
20	58	6375.000	19.964
21	65	7687.500	21.052
22	73	9375.000	22.113
23	79	11625.000	23.072
24	89	15375.000	23.991
25	102	20250.000	24.597

表 3-D.2d 临界带边界

该表仅在	Layer II,采	样频率为 32KHz 时有	效,频率代表每个临界带的上界。
序号	表 F&CB 的索引	频率 [Hz]	Bark[z]
0	1	31.250	.309
1	3	93.750	.925
2	6	187.500	1.842
3	10	312.500	3.037
4	13	406.250	3.903
5	17	531.250	5.006
6	21	656.250	6.041
7	25	781.250	7.004
8	30	937.500	8.103
9	35	1093.750	9.090
10	41	1281.250	10.139
11	47	1468.750	11.058
12	51	1687.500	11.988
13	56	2000.000	13.104
14	61	2312.500	14.027
15	68	2750.000	15.087
16	74	3250.000	16.069
17	79	3875.000	17.078
18	85	4625.000	18.089
19	92	5500.000	19.095
20	98	6500.000	20.079

21	103	7750.000	21.098	
22	109	9250.000	22.046	
23	118	11500.000	23.030	
24	132	15000.000	23.923	

表 3-D.2e 临界带边界

该表仅在	Layer II,采	样频率为 44.1KHz 时	有效,频率代表每个临界带的上界。
序号	表 F&CB	频率 [Hz]	Bark[z]
	的索引		
0	1	43.066	.425
1	2	86.133	.850
2	3	129.199	1.273
3	5	215.332	2.112
4	7	301.465	2.934
5	10	430.664	4.124
6	13	559.863	5.249
7	16	689.063	6.301
8	19	818.262	7.274
9	22	947.461	8.169
10	26	1119.727	9.244
11	30	1291.992	10.195
12	35	1507.324	11.232
13	40	1722.656	12.125
14	46	1981.055	13.042
15	51	2325.586	14.062
16	56	2756.250	15.100
17	62	3273.047	16.11
18	69	3875.977	17.079
19	74	4478.906	17.904
20	79	5340.234	18.922
21	85	6373.828	19.963
22	92	7579.688	20.971
23	99	9302.344	22.074
24	105	11369.531	22.984
25	117	15503.906	24.013
26	130	19982.813	24.573

表 3-D.2f 临界带边界

该表仅在	Layer II,采	样频率为 48KHz 时有	效,频率代表每个临界带的上界。
序号	表 F&CB	频率[Hz]	Bark[z]
	的索引		
0	1	46.875	.463

1 2 93.750 .925 2 3 140.625 1.385 3 5 234.375 2.295 4 7 328.125 3.184 5 9 421.875 4.045 6 12 562.500 5.272 7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 19.028 21 82 6375.000 21.052 23 97				
3 5 234.375 2.295 4 7 328.125 3.184 5 9 421.875 4.045 6 12 562.500 5.272 7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 10	1	2	93.750	.925
4 7 328.125 3.184 5 9 421.875 4.045 6 12 562.500 5.272 7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25	2	3	140.625	1.385
5 9 421.875 4.045 6 12 562.500 5.272 7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 23.072 25 113 15375.000 23.072	3	5	234.375	2.295
6 12 562.500 5.272 7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	4	7	328.125	3.184
7 14 656.250 6.041 8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	5	9	421.875	4.045
8 17 796.875 7.119 9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	6	12	562.500	5.272
9 20 937.500 8.103 10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	7	14	656.250	6.041
10 24 1125.000 9.275 11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	8	17	796.875	7.119
11 27 1265.625 10.057 12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	9	20	937.500	8.103
12 32 1500.000 11.199 13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	10	24	1125.000	9.275
13 37 1734.375 12.170 14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	11	27	1265.625	10.057
14 42 1968.750 13.002 15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	12	32	1500.000	11.199
15 49 2343.750 14.111 16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	13	37	1734.375	12.170
16 53 2718.750 15.018 17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	14	42	1968.750	13.002
17 59 3281.250 16.124 18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	15	49	2343.750	14.111
18 65 3843.750 17.032 19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	16	53	2718.750	15.018
19 73 4687.500 18.166 20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	17	59	3281.250	16.124
20 77 5437.500 19.028 21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	18	65	3843.750	17.032
21 82 6375.000 19.964 22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	19	73	4687.500	18.166
22 89 7687.500 21.052 23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	20	77	5437.500	19.028
23 97 9375.000 22.113 24 103 11625.000 23.072 25 113 15375.000 23.991	21	82	6375.000	19.964
24 103 11625.000 23.072 25 113 15375.000 23.991	22	89	7687.500	21.052
25 113 15375.000 23.991	23	97	9375.000	22.113
	24	103	11625.000	23.072
26 126 20250.000 24.597	25	113	15375.000	23.991
	26	126	20250.000	24.597

3-D.2 心理声学模型Ⅱ

心理声学模型 II 是一个独立的心理声学模型,可以被调整和适应任何 ISO-MPEGAudio 层。本附录基本阐述了心理声学模型 II,并为在 Layer I 和 II 上实现心理声学模型 II 提供充足的信息。Layer III 的心理声学模型正是基于该应用,并做了一些调整,在 Layer III 编码器的章节中有描述。

阈值产生处理有三个输入。他们是:

- 1. 阈值计算处理的移位长度, iblen, 其中 384 < iblen < 640。在任何特定的阈值计算处理的应用中, iblen 必须保持为常数。如果(比如在 Layer III)阈值计算需要两个不同的移位长度,则需要建立两个处理,每个均以一个固定的移位长度运行。在iblen 位于 384 到 640 范围之外的情况下,需要和移位长度一样用一个不同的窗长度来计算心理声学阈值。有两种方式来完成这个操作:
 - -- 使用一个不同长度的转换,并计算模型的启动系数,或者
 - -- 使用相同长度的转换,但汉宁窗充分短,适合处理当前的数据和问题。 这两种方式的选择由具体应用来负责。

2. 信号最新的 iblen 采样,以及采样延时(不是在滤波器组中就是心理声学计算),这样心理声学计算的窗是居于应用的时间窗的中心的;

3. 采样频率。有一组表格提供标准的采样频率。采样频率和 iblen 一样,必须在阈值 计算处理的应用中保持为常数。

心理声学模型 II 有一个输出,为一组信号遮蔽比,SMRn,这在下面的描述中是适应到不同层的。

在模型初始化运行之前,用来保存预处理的 FFT 源数据窗的数组和用来保存 r 和 f 的数组应该被清零并提供一个已知的起始点。

在 Layer II, 心理声学遮蔽比必须在编码每个帧时被计算两次。每对比值更加严格的用于比特分配中,如以心理声学模型 II 来对 Layer I 和 II 进行软件仿真的模型中所示的那样。

符号注释

贯穿整个阈值计算处理中使用了三个数据值的索引,它们是:

- w--表示计算被索引到在 FFT 频域内的频谱线的频率。索引为 1 对应直流分量而索引为 513 则对应在奈奎斯特频率的频谱线;
- b-- 表示计算被索引在阈值计算分区域内。在这种情况下计算包括一个在阈值计算分区域内的卷积或累加,bb将被用作累加变量。分区序号从1开始;
- n -- 表示计算被索引到编码位(或编码表)分配域内。索引为1表示在子带滤波器组内的最低频带

"扩展函数"

下面的描述中多次提到了"扩展函数"。它由下面的方式计算:

```
tmpx = 1.05 (j-i)
```

其中 i 是需要扩展的信号的 bark 值,j 是将被扩展到的频带的 bark 值,而 tmpx 是一个临时变量。

```
x=8 minimum ((tmpx-0.5)2-2(tmpx-0.5),0)
```

其中 x 是一个;临时变量,而 minimum(a,b)是一个返回 a 或 b 中较小者的函数。

```
tmpy=15.811389+7.5(tmpx+0.474)-17.5(1.0+(tmpx+0.474)2)0.5
```

其中 tmpy 是另外一个临时变量。

```
if (tmpy<-100)
    then {sprdngf (i,j)=0}
else {sprdngf (i,j)=10 }</pre>
```

阈值计算的步骤

下面是编码器中用来计算 SMRn 的必需步骤。

1. 重建输入信号的 1024 个采样。

iblen 个新采样在每次调用阈值发生器之后可用。阈值发生器必需存储 1024-iblen 个采样,并连接这些采样以精确地重建 1024 个连续的输入信号采样, si。其中 i 表示索引,在当前输入流中,1<i<1024。

2. 计算输入信号的综合频谱。

首先,si 被 1024 定点汉宁窗加窗,例如, $swi = si \times (0.5 - 0.5 cos())$ 。注意在 Layer III 中,当窗选择被激活时可能使用一个较短的窗,每个描述的 Layer III 编码器都合适

的置于窗的中心。

其次, 计算 swi 的标准正向 FFT。

第三, 计算转换的极坐标表示, rw 和 fw 分别表示转换 swi 的幅度和相位分量。

3. 计算预测值 r 和 f。

一个预测的幅度 w 和相位, w 由预先的两个阈值计算模块 r 和 f 计算得出:

w = 2.0rw(t-1) - rw(t-2)

w = 2.0 fw(t-1) - fw(t-2)

其中 t 表示当前块序号, t-1 为前一个块数据的索引, 而 t-2 为前一个块前面的阈值 计算块(位于当前块前面的第二个块)的数据索引。

4. 计算非预测度量 cw

非预测度量 cw, 计算如下:

CW=

如果牺牲性能的话,该度量可以仅计算频率线中的低区部分。至少必须从直流计算到 3KHz,计算到 7KHz 更佳。低于 5.5KHz 的高区限制可能会相当的降低由音频算法的主观测试获得的性能。高于这个限制的 cw 值应该被设为 0.3。一直计算 cw 到 20KHz 可以获得最好的结果。

- 注: 由于原参考文档的缺漏,这里部分公式并不完整。
- 5. 在阈值计算分区中计算能量和非预测性。

每个分区的能量 eb, 计算如下:

eb=

而加权的非预测性 cb, 计算如下:

cb=

阈值计算分区提供了一个FFT频率线或临界带的合适精度,任何一个都将更宽。在低频时,单根FFT线将组成一个计算分区。在高频区,许多线将组成一个计算分区。表 3-D.3a"计算分区表"为三个采样频率都提供了一组分区值。这些表的元素将被用在阈值计算处理中。在每个表入口有多个元素:

- 1. 计算分区索引, b;
- 2. 分区的最低频率线, wlowb;
- 3. 分区的最高频率线, whighb;
- 4. 分区的中线 bark 值, bvalb;
- 5. 分区中控制着立体声去遮蔽效果的 SNR 较小限制, minvalb;
- 6. 分区的音调遮蔽噪声值(dB值),TMNb。

每个采样频率都有一个最大的 b 值,即 bmax,等于最大的索引。

6. 用扩展函数卷积分区能量和非预测性。

ecbb=

ctb=

因为 ctb.被信号能量加权,它必须被重新归一化到 cbb。

cbb=

同时,由于扩展函数的未归一化的特征, ecbb 应该被重新归一化。而归一化的能

量 enb 计算如下:

enb=ecbb * rnormb

归一化系数, rnormb 为:

rnormb=

7. 将 cbb 转换为 tbb。

tbb = -0.299 - 0.43 loge (cbb)

每个tbb被限制在范围0<tbb<1内。

8. 计算每个分区内需要的 SNR

对所有的 b,NMTb = 5.5dB。NMTb 是分区内噪音遮蔽音调的值(dB 值)。要求的 信噪比 SNRb 如下:

SNRb =maximum(minvalb, tbb TMNb +(1-tbb) NMTb)

其中 maximum(a,b)是一个返回 a 或 b 中较大者的函数。

9. 计算能量比。

能量比 bcb 计算如下:

bcb =10

10. 计算实际的能量阈值, nbb。

nbb=enb bcb

11. 在 FFT 线上扩展阈值能量,得出 nbw。

nbw =

12. 包含绝对阈值,得出可听度的最终能量阈值,thrw。

thrw = max(nbw, absthrw)

表 3-D.4a "绝对阈值表"给出的absthr的dB值和阈值计算中使用的FFT内±lsb的正弦曲线幅值有关。dB值必须在实际使用FFT归一化之后转换为能量域的值。

13. 前回音控制

对 Layer III,前回音控制在这时产生。实际的控制是作为 Layer III 编码器规范的一部而(在前文中)描述。对于 Layer I 和 II 这一步忽略。

14. 计算信号遮蔽比, SMRn。

表 3-D.4d "Layer I和II编码分区表"表示了:

- 1. 编码分区的索引 n;
- 2. 编码分区的低区索引, wlown;
- 3. 编码分区的高区索引, whighn;
- 4. 宽度索引,widthn,其中widthn=1为一个心理声学窄比例因子带,而widthn=0为一个心理声学宽比例因子带。一个心理声学窄比例因子带是其带宽小于临界带近似值的带。

比例因子带内的能量 epartn 为:

epartn=

之后,如果 widthn = 1,该比例因子带内的噪声电平,npartn 计算如下:

npartn=

否则:

npartn = minimum(thrwlown , . . . , thrwhighn) * (whighn - wlown + 1) 其中,在这种情况下,minimum(a,...,z)是一个返回参数 a...z 中最小值的函数。被送到编码器中的比值 SMRn 计算如下:

SMRn = 10 log 10 ()

表 3-D.3a 计算分区表

该表仅在	该表仅在采样频率为 32KHz 时有效							
Index	wlow	whigh	bval	minval	TMN			
1	1	1	0.00	0.0	24.5			
2	2	4	0.63	0.0	24.5			
3	5	7	1.56	20.0	24.5			
4	8	10	2.50	20.0	24.5			
5	11	13	3.44	20.0	24.5			
6	14	16	4.34	20.0	24.5			
7	17	19	5.17	20.0	24.5			
8	20	22	5.94	20.0	24.5			
9	23	25	6.63	17.0	24.5			
10	26	28	7.28	15.0	24.5			
11	29	31	7.90	15.0	24.5			
12	32	34	8.50	10.0	24.5			
13	35	37	9.06	7.0	24.5			
14	38	41	9.65	7.0	24.5			
15	42	45	10.28	4.4	24.8			
16	46	49	10.87	4.4	25.4			
17	50	53	11.41	4.5	25.9			
18	54	57	11.92	4.5	26.4			
19	58	61	12.39	4.5	26.9			
20	62	65	12.83	4.5	27.3			
21	66	70	13.29	4.5	27.8			
22	71	75	13.78	4.5	28.3			
23	76	81	14.27	4.5	28.8			
24	82	87	14.76	4.5	29.3			
25	88	93	15.22	4.5	29.7			
26	94	99	15.63	4.5	30.1			
27	100	106	16.06	4.5	30.6			
28	107	113	16.47	4.5	31.0			
29	114	120	16.86	4.5	31.4			
30	121	129	17.25	4.5	31.8			
31	130	138	17.65	4.5	32.2			
32	139	148	18.05	4.5	32.5			
33	149	159	18.42	4.5	32.9			

34	160	170	18.81	4.5	33.3
35	171	183	19.18	4.5	33.7
36	184	196	19.55	4.5	34.1
37	197	210	19.93	4.5	34.4
38	211	225	20.29	4.5	34.8
39	226	240	20.65	4.5	35.2
40	241	258	21.02	4.5	35.5
41	259	279	21.38	4.5	35.9
42	280	300	21.74	4.5	36.2
43	301	326	22.10	4.5	36.6
44	327	354	22.44	4.5	36.9
45	355	382	22.79	4.5	37.3
46	383	420	23.14	4.5	37.6
47	421	458	23.49	4.5	38.0
48	459	496	23.83	4.5	38.3
49	497	513	24.07	4.5	38.6

表 3-D.3b 计算分区表

该表仅在	采样频率为	44.1KHz	时有效		
Index	wlow	whigh	bval	minval	TMN
1	1	1	0.00	0.0	24.5
2	2	2	0.43	0.0	24.5
3	3	3	0.86	0.0	24.5
4	4	4	1.29	20.0	24.5
5	5	5	1.72	20.0	24.5
6	6	6	2.15	20.0	24.5
7	7	7	2.58	20.0	24.5
8	8	8	3.01	20.0	24.5
9	9	9	3.45	20.0	24.5
10	10	10	3.88	20.0	24.5
11	11	11	4.28	20.0	24.5
12	12	12	4.67	20.0	24.5
13	13	13	5.06	20.0	24.5
14	14	14	5.42	20.0	24.5
15	15	15	5.77	20.0	24.5
16	16	16	6.11	17.0	24.5
17	17	19	6.73	17.0	24.5
18	20	22	7.61	15.0	24.5
19	23	25	8.44	10.0	24.5
20	26	28	9.21	7.0	24.5
21	29	31	9.88	7.0	24.5

22	32	34	10.51	4.4	25.0
23	35	37	11.11	4.5	25.6
24	38	40	11.65	4.5	26.2
25	41	44	12.24	4.5	26.7
26	45	48	12.85	4.5	27.4
27	49	52	13.41	4.5	27.9
28	53	56	13.94	4.5	28.4
29	57	60	14.42	4.5	28.9
30	61	64	14.86	4.5	29.4
31	65	69	15.32	4.5	29.8
32	70	74	15.79	4.5	30.3
33	75	80	16.26	4.5	30.8
34	81	86	16.73	4.5	31.2
35	87	93	17.19	4.5	31.7
36	94	100	17.62	4.5	32.1
37	101	108	18.05	4.5	32.5
38	109	116	18.45	4.5	32.9
39	117	124	18.83	4.5	33.3
40	125	134	19.21	4.5	33.7
41	135	144	19.60	4.5	34.1
42	145	155	20.00	4.5	34.5
43	156	166	20.38	4.5	34.9
44	167	177	20.74	4.5	35.2
45	178	192	21.12	4.5	35.6
46	193	207	21.48	4.5	36.0
47	208	222	21.84	4.5	36.3
48	223	243	22.20	4.5	36.7
49	244	264	22.56	4.5	37.1
50	265	286	22.91	4.5	37.4
51	287	314	23.26	4.5	37.8
52	315	342	23.60	4.5	38.1
53	343	371	23.95	4.5	38.4
54	372	401	24.30	4.5	38.8
55	402	431	24.65	4.5	39.1
56	432	469	25.00	4.5	39.5
57	470	513	25.33	3.5	39.8

表 3-D.3c 计算分区表

该表仅在	采样频率为	48KHz 时	有效		
Index	wlow	whigh	bval	minval	TMN
1	1	1	0.00	0.0	24.5
2	2	2	0.47	0.0	24.5

2	3	3	0.04	0 0	24 5
3			0.94	0.0	24.5
4	4	4	1.41	20.0	24.5
5	5	5	1.88	20.0	24.5
6	6	6	2.34	20.0	24.5
7	7	7	2.81	20.0	24.5
8	8	8	3.28	20.0	24.5
9	9	9	3.75	20.0	24.5
10	10	10	4.20	20.0	24.5
11	11	11	4.63	20.0	24.5
12	12	12	5.05	20.0	24.5
13	13	13	5.44	20.0	24.5
14	14	14	5.83	20.0	24.5
15	15	15	6.19	20.0	24.5
16	16	16	6.52	17.0	24.5
17	17	17	6.86	17.0	24.5
18	18	20	7.49	15.0	24.5
19	21	23	8.40	10.0	24.5
20	24	26	9.24	7.0	24.5
21	27	29	9.97	7.0	24.5
22	30	32	10.65	4.4	25.1
23	33	35	11.28	4.5	25.8
24	36	38	11.86	4.5	26.4
25	39	41	12.39	4.5	26.9
26	42	45	12.96	4.5	27.5
27	46	49	13.56	4.5	28.1
28	50	53	14.12	4.5	28.6
29	54	57	14.62	4.5	29.1
30	58	62	15.14	4.5	29.6
31	63	67	15.67	4.5	30.2
32	68	72	16.15	4.5	30.7
33	73	77	16.58	4.5	31.1
34	78	83	17.02	4.5	31.5
35	84	89	17.44	4.5	31.9
36	90	95	17.84	4.5	32.3
37	96	103	18.24	4.5	32.7
38	104	111	18.66	4.5	33.2
39	112	120	19.07	4.5	33.6
40	121	129	19.47	4.5	34.0
41	130	138	19.85	4.5	34.3
42	139	149	20.23	4.5	34.7
43	150	160	20.63	4.5	35.1
44	161	173	21.02	4.5	35.5
45	174	187	21.40	4.5	35.9
46	188	201	21.76	4.5	36.3
10	100	201	21.70	1.5	50.5

47	202	219	22.12	4.5	36.6
48	220	238	22.47	4.5	37.0
49	239	257	22.83	4.5	37.3
50	258	283	23.18	4.5	37.7
51	284	309	23.53	4.5	38.0
52	310	335	23.88	4.5	38.4
53	336	363	24.23	4.5	38.7
54	364	391	24.58	4.5	39.1
55	392	423	24.93	4.5	39.4
56	424	465	25.27	4.5	39.8
57	466	507	25.61	3.5	40.1
58	508	513	25.81	3.5	40.3

表 3-D.4a 绝对阈值表

该表仅在采样频率为 32KHz 时有效

0dB 表示在绝对阈值计算中低于幅度为±32760 的正弦波的能量 96dB 的水平。

索引(1i:		absthr
lower	higher	(dB)
1	1	58.23
2	2	
3	3	24.17
4	4	19.20
5	5	16.05
6	6	13.87
7	7	12.26
8	8	11.01
9	9	10.01
10	10	9.20
11	11	8.52
12	12	7.94
13	13	7.44
14	14	7.00
15	15	6.62
16	16	6.28
17	17	5.97
18	18	5.70
19	19	5.44
20	20	5.21
21	21	5.00
22	22	4.80
23	23	4.62

0.4	· ·	
24	24	4.45
25	25	4.29
26	26	4.14
27	27	4.00
28	28	3.86
29	29	3.73
30	30	3.61
31	31	3.49
32	32	3.37
33	33	3.26
34	34	3.15
35	35	3.04
36	36	2.93
37	37	2.83
38	38	2.73
39	39	2.63
40	40	2.53
41	41	2.42
42	42	2.32
43	43	2.22
44	44	2.12
45	45	2.02
46	46	1.92
47	47	1.81
48	48	1.71
49	50	1.49
51	52	1.27
53	54	1.04
55	56	.80
57	57	.55
59	60	.29
61	62	.02
63	64	25
65	66	54
67	68	83
69	70	-1.12
71	72	-1.43
73	74	-1.73
75	76	-2.04
77	78	-2.34
79	80	-2.64
81	82	-2.93
83	84	-3.22
85	86	-3.49
0.5	00	-3.49

0.5	0.0	2 = :
87	88	-3.74
89	90	-3.98
91	92	-4.20
93	94	-4.40
95	96	-4.57
97	100	-4.82
101	104	-4.96
105	108	-4.97
109	112	-4.86
113	116	-4.63
117	120	-4.29
121	124	-3.87
125	128	-3.39
129	132	-2.86
133	136	-2.31
137	140	-1.77
141	144	-1.24
145	148	74
149	152	29
	156	.12
153		
157	160	.48
161	164	.79
165	168	1.06
169	172	1.29
173	176	1.49
177	180	1.66
181	184	1.81
185	188	1.95
189	192	2.08
193	200	2.33
201	208	2.59
209	216	2.86
217	224	3.17
225	232	3.51
233	240	3.89
241	248	4.31
249	256	4.79
257	264	5.31
265	272	5.88
273	280	6.50
281	288	7.19
289	296	7.93
297	304	8.75
305	312	9.63

313	320	10.58
321	328	11.60
329	336	12.71
337	344	13.90
345	352	15.18
353	360	16.54
361	368	18.01
369	376	19.57
377	384	21.23
385	392	23.01
393	400	24.90
401	408	26.90
409	416	29.03
417	424	31.28
425	432	33.67
433	440	36.19
441	448	38.86
449	456	41.67
457	464	44.63
465	472	47.76
473	480	51.03

表 3-D.4b 绝对阈值表

该表仅在采样频率为 44.1KHz 时有效

0dB 表示在绝对阈值计算中低于幅度为±32760 的正弦波的能量 96dB 的水平。

		absthr
lower	higher	(dB)
1	1	45.05
2	2	25.87
3	3	18.70
4	4	14.85
5	5	12.41
6	6	10.72
7	7	9.47
8	8	8.50
9	9	7.73
10	10	7.10
11	11	6.56
12	12	6.11
13	13	5.72
14	14	5.37
15	15	5.07

16	16	4.79
17	17	4.55
18	18	4.32
19	19	4.11
20	20	3.92
21	21	3.74
22	22	3.57
23	23	3.40
24	24	3.25
25	25	3.10
26	26	2.95
27	27	2.81
28	28	2.67
29	29	2.53
30	30	2.39
31	31	2.25
32		2.25
	32	
33	33	1.97
34	34	1.83
35	35	1.68
36	36	1.53
37	37	1.38
38	38	1.23
39	39	1.07
40	40	.90
41	41	.74
42	42	.56
43	43	.39
44	44	.21
45	45	.02
46	46	17
47	47	17
48	48	56
49	50	96
51	52	1.37
53	54	1.79
55	56	2.21
57	58	2.63
59	60	3.03
61	62	-3.41
63	64	3.77
65	66	-4.09
67	68	-4.37
69	70	-4.60
		1.50

71	70	4 70
71	72	-4.78
73	74	-4.91
75	76	-4.97
77	78	-4.98
79	80	-4.92
81	82	-4.81
83	84	-4.65
85	86	-4.43
87	88	-4.17
89	90	-3.87
91	92	-3.54
93	94	-3.19
95	96	-2.82
97	100	-2.06
101	104	-1.33
105	108	64
109	112	04
113	116	.47
117	120	.89
121	124	1.23
125	128	1.51
129	132	1.74
133	136	1.93
137	140	2.11
141	144	2.28
145 149	148	2.45
	152	2.63
153	156	2.82
157	160	3.03
161	164	3.25
165	168	3.49
169	172	3.74
173	176	4.02
177	180	4.32
181	184	4.64
185	188	4.98
189	192	5.35
193	200	6.15
201	208	7.07
209	216	8.10
217	224	9.25
225	232	10.54
233	240	11.97
241	248	13.56

249	256	15.30
257	264	17.23
265	272	19.33
273	280	21.64
281	288	24.15
289	296	26.88
297	304	29.84
305	312	33.04
313	320	36.51
321	328	40.24
329	336	44.26
337	344	48.58
345	352	53.21
353	360	58.17
361	368	63.48
369	376	69.13
377	384	69.13
385	392	69.13
393	400	69.13
401	408	69.13
409	416	69.13
417	424	69.13
425	432	69.13
433	440	69.13
441	448	69.13
449	456	69.13
457	464	69.13

表 3-D.4c 绝对阈值表

该表仅在采样频率为 48KHz 时有效 0dB 表示在绝对阈值计算中低于幅度为±32760 的正弦波的能量 96dB 的水平。

索引(line)		absthr
lower	higher	(dB)
1	1	42.10
2	2	24.17
3	3	17.47
4	4	13.87
5	5	11.60
6	6	10.01
7	7	8.84
8	8	7.94

9	9	7.22
10	10	6.62
11	11	6.12
12	12	5.70
13	13	5.33
14	14	5.00
15	15	4.71
16	16	4.45
17	17	4.21
18	18	4.00
19	19	3.79
20	20	3.61
21	21	3.43
22	22	3.26
23	23	3.09
24	24	2.93
25	25	2.78
26	26	2.63
27	27	2.47
28	28	2.47
29	29	2.17
30	30	2.02
31	31	1.86
32	32	1.71
33	33	1.55
34	34	1.38
35	35	1.21
36	36	1.04
37	37	.86
38	38	.67
39	39	.49
40	40	.29
41	41	.09
42	42	11
43	43	32
44	44	54
45	45	75
46	46	97
47	47	-1.20
48	48	-1.43
49	50	-1.43
51	52	
		-2.34
53	54	-2.79
55	56	-3.22

F.7	Ε0	2 62
57	58	-3.62
59	60	-3.98
61	62	-4.30
63	64	-4.57
65	66	-4.77
67	68	-4.91
69	70	-4.98
71	72	-4.97
73	74	-4.90
75	76	-4.76
77	78	-4.55
79	80	-4.29
81	82	-3.99
83	84	-3.64
85	86	-3.26
87	88	-2.86
89	90	-2.45
91	92	-2.04
93	94	-1.63
95	96	-1.24
97	100	51
101	104	.12
105	101	.64
109	112	1.06
113	116	1.39
117	120	1.39
121	124	1.88
125	128	2.08
129	132	2.27
133	136	2.46
137	140	2.65
141	144	2.86
145	148	3.09
149	152	3.33
153	156	3.60
157	160	3.89
161	164	4.20
165	168	4.54
169	172	4.91
173	176	5.31
177	180	5.73
181	184	6.18
185	188	6.67
189	192	7.19

193	200	8.33
201	208	9.63
209	216	11.08
217	224	12.71
225	232	14.53
233	240	16.54
241	248	18.77
249	256	21.23
257	264	23.94
265	272	26.90
273	280	30.14
281	288	33.67
289	296	37.51
297	304	41.67
305	312	46.17
313	320	51.04
321	328	56.29
329	332	61.94
333	340	68.00
341	348	68.00
349	356	68.00
357	364	68.00
365	372	68.00
373	380	68.00
381	388	68.00
389	396	68.00
397	404	68.00
405	412	68.00
413	420	68.00
421	428	68.00

表 3-D.4d Layer I 和 Layer II 编码分区表

索引	ωlown+1	widthn
	ω highn	
0	1	0
1	17	0
2	33	0
3	49	0
4	65	0
5	81	0
6	97	0
7	113	0
8	129	0
9	145	0

10	161	0
11	177	0
12	193	0
13	209	1
14	225	1
15	241	1
16	257	1
17	273	1
18	289	1
19	305	1
20	321	1
21	337	1
22	353	1
23	369	1
24	385	1
25	401	1
26	417	1
27	433	1
28	449	1
29	465	1
30	481	1
31	497	1
32	513	1

附录3-E 比特灵敏度和误差 (参考资讯)

3-E.1 概述

这篇文章表示了如果需要应用指定的差错保护时单个比特相对于随机误差的灵敏度。每个比特的灵敏度以 0-5 的值给出,表示一个单独误差导致的下降等级:

- 5 灾难性;
- 4 非常讨厌;
- 3 恼人的;
- 2 轻微讨厌;
- 1 听得见的;
- 0 没感觉。

这些值并不是精确测量的结果,尽管它们依赖于编码器的本质。编码器假定不使用误差检测方案。

比特流中某些域并没有固定的长度。这些域中所有比特都可以评估误差灵敏度,即使并不使用。

(对所有层, 帧头信息呗认为有最高的灵敏度)。

3-E.2 Layer I和II

参数	#比特	灵敏度
Bit allocation	所有比特	5
比例因子选择信息	所有比特	5
比例因子	5(MSB)	4
	4	4
	3	4
	2	3
	1	2
	0(LSB)	1
子带采样(*)	8-16(MSB)	3
	5-7	2
	3,4	1
	0-2(LSB)	0
(*)根据比特分配而定		

3-E.3 Layer III

参数	#比特	灵敏度
Scf_si	所有比特	5

Part2/3_length	所有比特	4
Big_values	所有比特	3
Global_gain	所有比特	5
Scalefactor_select	所有比特	5
Blocksplit_flag	所有比特	5
Block_type	所有比特	4
Switch_frequency	所有比特	4
Table_select	所有比特	5
Region_adress1	所有比特	3
Region_adress2	所有比特	3
extension_bits (如果有)	所有比特	0
Preflag	0	2
Scalefac_scale	0	2
Count1table_select	0	3
Subblock_gain	2(MSB)	4
	1	3
	0(LSB)	2
Scalefac (**)	3(MSB)	3(2)
	2	3(2)
	1	2(1)
	0(LSB)	2(1)
Huffman codes (***)	0n-1	3 - 0

(**) scalefac 的长度取决于 scalefac select。

比特灵敏度值为 scalefac scale 为 1 时得出(如果 scalefac scale 为 0 则值在括号中)。

(***) 如果 n 是一个块里的哈夫曼编码比特数,则比特灵敏度在比特数从 0 增到 n 时(从低频到高频) 线性地从 3 降到 0。

注:

重新安排哈夫曼编码值:

为获取频谱中低频部分更佳的固有误差鲁棒性,哈夫曼编码值可以以交错的格式进行转换,而不是它们的逻辑顺序。

如果 max_hlen 是整个表中用来编码特定块的哈夫曼编码字的最大长度,而 n 是哈夫曼编码该块数据 (不是帧)使用的比特数,那么 int(n/max_hlen)个插入域以第一个编码字填充,从低频开始。剩余的编码字被填充到剩余的地方,同样也从低频到高频排列。

在比特交错之后, $k+i \times int(n/max_hlen)$ 个比特的比特灵敏度随着 k 从 0 增加到 $int(n/max_hlen)-1$ 线性的从 3 降到 0,而 n 是一个块中哈夫曼编码的比特数。

在差错鲁棒性非常重要时对于 Layer III 所有声道的数据这是建议的实现方法。

附录3-F 误差隐藏(参考资讯)

编码比特流的一个可选特征就是 CRC 字段,它为解码器提供了一些差错检测机能。该差错检测代码的加权平均距离是 d = 4,这允许可以达到 3 个单个比特差错的检测和高达 16 个比特长度的突发差错检测。在一个编码的音频帧中保护比特的数量和位置基本取决于层数、模式、数据速率和采样频率。

这可以用来控制误差隐藏策略以避免由于大部分敏感信息的误差导致重建信号的严重损害。

一些基本的技术可以用于(误差)隐藏,例如信息替换,或者弱音。一个简单的替代技术在于,当一个错误的帧产生时,用之前的帧(如果没有错误)替代它。

附录3-G 联合立体声编码(参考资讯)

3-G.1 Layer I,II强度立体声编码

在 Layer I 和 II 中一个可选的立体声编码方法是强度立体声编码。强度立体声编码可以用来增加音质并/或降低立体声信号的比特率。比特率上的增益典型的是 10 到 30kbit/s。而它只增加了可以忽略的解码器复杂度。编码器复杂度的增加也很小。编码器和解码器延时不受影响。

心理声学结果表明在高频(大于 2KHz)时临界带内的立体声影像的定位由时间包络而不是音频信号的良好时间结构决定。

强度立体声编码的基本观念是对某些子带,仅传输叠加的信号而不是传输分离的左右子带采样,但是左右两个声道的比例因子都传输,这样保留了立体声影像。

图 3-G.1 "立体声编码基本流程图"和图 3-G.2 "立体声解码基本流程图"表示了立体声编码器和解码器,包括强度立体声模式的流程图。首先,对要求的比特率估测左右两个声道(的比特率)。如果要求的比特率超出了可用比特率,则要求的比特率可以通过设置一些子带为强度立体声模式来降低(得到)。取决于需要的比特率,子带:

16到31,

12到31,

8到31或

4到31

可以被设为强度立体声模式。对于这些组合子带的量化,左右声道使用较高的比特分配。

联合立体声模式中增加了子带的左右子带信号。这些新的子带信号以常规方式缩放,但 最初确定的左右子带信号的比例因子却根据比特流语法进行传输。正常子带的量化、常规采 样的编码和普通比特分配的编码都和独立编码时一样执行。

3-G.2 Layer III中的MS立体声和强度立体声编码

在 Layer III 中可以使用 MS 立体声模式(累加/差分)和强度立体声模式的组合。

1. MS 立体声选择

如果在联合立体声模式下条件满足下式,则选择 MS 立体声:

< 0.8 *

注:由于原参考文档的缺漏,这里部分公式并不完整。

值rli和rri对应以心理声学模型计算的左右声道FFT线谱的能量。

- 2. MS 立体声处理
- -- MS 矩阵

在 MS 立体声模式中传输归一化的中间/侧边声道 Mi/Si 的值,而不是左右声道的值 Li/Ri:

Mi = and Si =

-- Si 声道带宽限制

所有的高于最高比例因子带的 Si 值都被设为 0。

-- Si 声道的稀疏性

在每个比例因子带 sb, 所有小值对(Si, Si+1)被设为 0:

```
if (Si2 + Si+12) < ssb * (Li2 + Li+12 + Ri2 + Ri+12) {
   Si = 0; Si+1 = 0;
}</pre>
```

对于 block type!=2(长 MDCT 转换),将下面的差分声道阈值系数应用于比例因子带:

sb	0	1	2	3	4	5	6	7	8
ssb	0.0	0.0	0.0	0.0	0.0	0.10	0.10	0.10	0.10
sb	9	10	11	12	13	14	15	16	17
ssb	0.10	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80
sb	18	19	20						
ssb	0.90	1.00	1.50						

- 3. 强度立体声处理
- -- 计算强度立体声分区

对于每个以强度立体声编码的比例因子带 sb, 执行下面的步骤:

```
    is_possb = NINT( * arctan())
    Li = Li + Ri 对所有在当前比例因子带 sb 内索引 i
    Ri = 0 对所有在当前比例因子带 sb 内索引 i
    对右声道传输强度立体声位置 is_possb(总是 3 比特,立体声位置 0...6,7=非法立体声位置)而不
```

其中 L_Energysb/R_Energysb 指示在当前比例因子带内左右声道的信号能量,而 Li/Ri 是转换后的值。

在编码不属于强度立体声编码部分后,右/差动声道的比例因子带仅包含 0,这应该以比例因子 '7'来传输以阻止强度立体声解码。

图 3-G.1 立体声编码基本流程图

图 3-G.2 立体声解码基本流程图