3.3: The Isomorphism Theorems

Alex L.

October 12, 2024

Theorem: The First Isomorphism Theorem: If $\varphi: G \to H$ is a homomrophism of groups, then $\ker \varphi \subseteq G$ and $G/\ker \varphi \simeq \varphi G$

Corrolary 17: Let $\varphi: G \to H$ be a homomorphism of groups.

- 1. φ is injective iff $\ker \varphi = 1$
- 2. $|G : \ker \varphi| = |\varphi(G)|$

Theorem: The Second Isomorphism Theorem Let G be a group, let A and B be subgroups of G and assume $A \leq N_G(B)$. Then, AB is a subgroup of G, $B \subseteq AB$, $A \cap B \subseteq A$, and $AB/B \simeq A/(A \cap B)$. (Remember that $N_G(A)$ is the set of elements in G that commute with all elements in A)

Proof: Note: all elements of A do normalize B. Then, by definition, aba^{-1} is in B. Therefore, $a(aba^{-1})$ is in AB.