13 Galois 理論の基本定理の別の定式化

K:体、 $K^{\text{sep}}:K$ の分離閉包、 A:etale K-alg に対して $\mathscr{S}(A):=\operatorname{Hom}_{K-alg}(A,K^{\text{sep}})$ とおく。このとき K の絶対 Galois 群 $G_K:=\operatorname{Gal}(K^{\text{sep}}/K)$ は $\mathscr{S}(A)$ に以下のように作用する。

$$G_K \times \mathscr{S}(A) \longrightarrow \mathscr{S}(A)$$

 $(\sigma, f) \longmapsto \sigma f$

ただし σf は

$$\sigma f: A \longrightarrow K^{\text{sep}}$$

 $x \longmapsto (\sigma f)(x) := \sigma(f(x))$

である。 G_K は定義 $(\ref{eq:condition})$ から位相群であり、この位相についてこの作用は連続になり、これは各 $f\in \mathscr{S}(A)$ の固定化群が開であることと同値になっている。

A=K[X]/(f) のとき f のある根 α_i に対して $\alpha_i=X+(f)$ とすることで $\mathscr{S}(A)$ の写像が一つ定まるので $\mathscr{S}(A)\cong\{f$ の根 $\}$ が成り立ち、 $\mathscr{S}(A)$ を多項式の根のように見ることができる。

逆に S を G_K が連続に作用する有限集合 $(G_K - 集合)$ とすると $\mathscr{A}(S) := \operatorname{Map}_G(S, K^{\operatorname{sep}}) := \{f : S \longrightarrow K^{\operatorname{sep}} | f(\sigma(x)) = \sigma(f(x)), \forall \sigma \in G_K \}$ とおいたとき $\mathscr{A}(S)$ は K - alg でさらに有限次 etale でもある。 以上のことから以下の定理が成り立つ。

定理 13.1. 次の反圏同値がある。