Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Objectives

Your Objectives:

- Describe and implement a Fenwick Tree
- Compare a Fenwick Tree to a Segment Tree

Motivating Example

Exam scores = $\{2, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9\}$

Exam scores = $\{2,4,5,5,6,6,6,7,7,8,9\}$

index	1	2	3	4	5	6	7	8	9	10
value	0	1	0	1	2	3	2	1	1	0

000

Exam scores = $\{2, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9\}$

index	1	2	3	4	5	6	7	8	9	10
value	0	1	0	1	2	3	2	1	1	0
cumulative	0	1	1	2	4	7	9	10	11	11

Exam scores = $\{2, \mathbf{3}, 4, 5, 5, 6, 6, 6, 7, 7, 8, 9\}$

index	1	2	3	4	5	6	7	8	9	10
value	0	1	1	1	2	3	2	1	1	0
cumulative	0	1	2	3	5	8	10	11	12	12

value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10

value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

Navigation

ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

	1		1							
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ightharpoonup To Query sum for position n, first read n.
- ightharpoonup Then, subtract the lowest order bit, and repeat until n = 0.

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.
- ► E.g.: $5 = 101 \rightarrow 4 = 100 \rightarrow 0$
 - ightharpoonup ft(5) + ft(4) = 2 + 2 = 4

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.
- ► E.g.: $5 = 101 \rightarrow 4 = 100 \rightarrow 0$
 - ightharpoonup ft(5) + ft(4) = 2 + 2 = 4

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.
- ► E.g.: $5 = 101 \rightarrow 4 = 100 \rightarrow 0$
 - ightharpoonup ft(5) + ft(4) = 2 + 2 = 4
- ► E.g.: $10 = 1010 \rightarrow 8 = 1000 \rightarrow 0$
 - ightharpoonup ft(10) + ft(8) = 1 + 10 = 11

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.
- ► E.g.: $5 = 101 \rightarrow 4 = 100 \rightarrow 0$
 - ightharpoonup ft(5) + ft(4) = 2 + 2 = 4
- ► E.g.: $10 = 1010 \rightarrow 8 = 1000 \rightarrow 0$
 - ightharpoonup ft(10) + ft(8) = 1 + 10 = 11

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.
- ► E.g.: $5 = 101 \rightarrow 4 = 100 \rightarrow 0$
 - ightharpoonup ft(5) + ft(4) = 2 + 2 = 4

- ▶ Update 5: Visit $5=101 \rightarrow 6=110 \rightarrow 8=1000$
- ► E.g.: $10 = 1010 \rightarrow 8 = 1000 \rightarrow 0$
 - ightharpoonup ft(10) + ft(8) = 1 + 10 = 11

ft 4								10		
ft 3				2						
ft 2		1				5				1
ft 1	0		0		2		2		1	
value	0	1	0	1	2	3	2	1	1	0
index	1	2	3	4	5	6	7	8	9	10
index	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010

- ▶ To Query sum for position n, first read n.
- ▶ Then, subtract the lowest order bit, and repeat until n = 0.

► E.g.:
$$5 = 101 \rightarrow 4 = 100 \rightarrow 0$$

$$ightharpoonup ft(5) + ft(4) = 2 + 2 = 4$$

▶ Update 5: Visit
$$5=101 \rightarrow 6=110 \rightarrow 8=1000$$

► E.g.:
$$10 = 1010 \rightarrow 8 = 1000 \rightarrow 0$$

$$ightharpoonup$$
 LSOne(n) = n & -n

$$ft(10) + ft(8) = 1 + 10 = 11$$

