المجال : التطورات الوحدة 01 : المتابعة الزمنية الرمنية الرتسيبة لتحول كيميائي في وسط مائي

المستوى: 3 لج بد + ر+ بد ر الملخص رقه: 01

1 ـ مكتــسيات قبـــلية:

1 ـ 1 ـ تركيز محلول مائي و كمية المادة:

1 ـ 1 ـ 1 ـ علاقة كمية المادة بالكتلة :

* حالة صلب أو سائل أو غاز :

ا كمية المادة (m , (m , (mol) كتلة المادة (M , (g) الكتلة المولية الجزيئية: m , m

1 ـ 1 ـ 2 ـ علاقة كمية المادة بحجم غاز :

* حالة غاز:

 $n=rac{V_g}{V_M}$. (L / mol) الحجم المولي: V_M . (L) عجم الغاز: n

1 ـ 1 ـ 3 ـ التركيز المولي والتركيز الكتلي لمحلول :

 $C = \frac{n}{V}$ (L) التركيز المولي (V , (Mol) كمية المادة: N , (Mol , Mol) التركيز المولي (C

 $C_m = \frac{m}{V}$ (L) حجم المحلول (V , (g) کتلة المادة m , (g , L^{-1}) الترکیز الکتلي : C_m

 $C_m = C.M$: العلاقة بين التركيز المولي والتركيز الكتلي :

. ($g.mol^{-1}$) الكتلة المولية الجزيئية : M , (g . L^{-1}) التركيز المولية C_m , (mol . L^{-1}) التركيز المولية الجزيئية : C

 $C = \frac{10.P.d}{M}$: علاقة التركيز المولي بدرجة النقاوة والكثافة : 5 ـ 1 ـ 1

التركيز المولي (M) . P ، (M) . P ، (M) . P . (M) . P . (M) . M : الكتلة المولية الجزيئية (M) . (M) . (M) . (M) .

 $V_{eau} = V_2 - V_1$ ، $C_1 V_1 = C_2 V_2$: قا نون التمديد

(L) حجم المحلول قبل التمديد : V_1 . (mol . L^{-1}) التركيز المولي للمحلول بعد التمديد : C_1 . (L) التركيز المولي للمحلول بعد التمديد : C_2 . (mol . L^{-1})

 $F = \frac{C_1}{C_2} = \frac{V_2}{V_1}$: F عامل التمديد : F and it is a second in the second

، (mol) معط الغاز (n ، (m^3) حجم الغاز (V ، (Pa) نابت الغاز المثالي : R : درجة الحرارة المطلقة (كلفن) (K^o) (كافن) : T

 $T(^{0}K) = t(^{0}C) + 273$ $R = 8.31 \frac{Pa \cdot m^{3}}{mole \cdot K^{0}} = 0.082 \frac{L \cdot atm}{mole \cdot K^{0}}$

. درجة الحرارة المئوية t $^{\circ}C$ سلسيس : t

1 ـ 2 ـ تقدم التفاعل وجدول التقدم :

1 ـ 2 ـ 1 ـ تقدم التفاعل : التقدم X لتفاعل كيميائي هوعدد مرات تكرار التفاعل الكيميائي و يعبرعنه بالمول . ويسمح بمتابعة تطور التحول الكيميائي.

1 ـ 2 ـ 2 ـ جدول التقدم :

. الأنواع الكيميائية . D . C . B . A

. المعاملات الستوكيو مترية δ , γ , β , α

حالة الجملة	يم التفاعل(mole)	تقد α A	+	βB =	γ	C +	δD
الحالة الابتدائية	x=0		(A)	n:	(B)	0	0
الحالة الانتقالية	x(t)			n _i (B		VX	δx
الحالة النهائية		u na na nikyana na na ina ina na na na in		n _i (B)		YX _f	δνε

*المتفاعل المحد: هو المتفاعل الذي تستهلك كمية مادته قبل كل المتفاعلات الأخرى .

. التقدم النهائي (X_f) : هو قيمة التقدم لما تتوقف الجملة الكيميائية عن التطور *

*التقدم ألأعظمي (Xmax) : هو قيمة التقدم الموافق لاستهلاك المتفاعل المحد .

 $X_f < X_{max}$ ملاحظة : حالة التفاعل التام $X_f = X_{max}$ حالة التفاعل غير التام

1 ـ 3 ـ الناقلية الكهربائية:

تعطى ($m{L}$) عطى : $\ddot{m{G}}$: ناقلية جزء من محلول محصور بين ليوسين ناقلين مساحة كل منهما ($m{S}$) والبعد بينهما ($m{S}$) تعطى

. (m) ثابت الخلية : K

بالعلاقة الآتية : حيث $G = \sigma \frac{S}{I}$ حيث

. ($m{m}^2$) مساحة اللبوس ($m{S}$. ($m{S}$) الناقلية وحدتها السيمنس : $m{G}$. . ($\hat{S.m}^{-1}$) ُ البعد بين اللبوسين ($\hat{\sigma}_{-}$. (\hat{m}) الناقلية النوعية للمحلول L .

 $G = \frac{1}{R} = \frac{I_{eff}}{U_{off}}$

*علاقة أخرى للناقلية G :

. ($m{V}$) التوتر المنتج I_{eff} : الشدة المنتجة للتيار الكهربائي: $m{U}_{eff}$: التوتر المنتج I_{eff} ، ($m{\Omega}$) .

ي النوعية σ للمحلول : C علاقة التركيز المولي σ بالناقلية النوعية σ للمحلول :

 $\sigma = \lambda \cdot C$: في محلول شاردي مخفف تركيزه $oldsymbol{C}$ الناقلية النوعية $oldsymbol{\sigma}$ تتناسب طردا مع التركيز

. (mole . m^{-3}) التركيز المولي : C . (Sm^{-1}) التركيز المولي : σ . (Sm^{-1}) . λ : الناقلية النوعية المولية ($S.m^2.mole^{-1}$) .

الناقلية النوعية المولية λ لمحلول شاردي بدلالة λ_{x_+} للشاردة الموجبة و λ_{x_-} للشاردة السالبة:

* في محلول شاردي مخفف يحتوي على الشوارد X' و الشوارد السالبة X' تركيزهما X'' و X'' على الترتيب فتكون:

أ ـ الناقلية النوعية المولية λ للمحلول :

$$\lambda = \alpha \lambda_{X^+} + \beta \lambda_{X^-}$$

 $oldsymbol{X}^{+}$ و $oldsymbol{A}^{+}$ معاملات الشوارد $oldsymbol{lpha}$

 $\sigma = \lambda_{x+}[X^+] + \lambda_{x-}[X^-]$

ب ـ الناقلية النوعية σ للمحلول:

تراكيز الشوارد المتبقية (المتواجدة في المحلول) : تراكيز الشوارد المتبقية $[X^{+}]$

في الحالة العامة عندما يكون المحلول الشاردي يحتوي على عدة شوارد موجبة و سالبة فتكون :

 $\lambda = \sum (\alpha \lambda_{x^+} + \beta \lambda_{x^-})$

أ ـ الناقلية النوعية المولية λ للمحلول :

 $\sigma = \sum \lambda_{x+} [X^{+}] + \lambda_{x-} [X^{-}]$

 σ ب ـ الناقلية النوعية σ للمحلول

1 ـ 4 ـ الأكسدة الارجاعية :

1 ـ 4 ـ 1 ـ الأكسدة : هي عبارة عن تغير كيميائئ يصاحبه فقدان الالكترونات من ذرة أو مجموعة من الذرات .

1 ـ 4 ـ 2 ـ الارجاع: هي عبارة عن تغير كيميائئ يصاحبه اكتساب الالكترونات من ذرة أو مجموعة من الذرات.

1 ـ 4 ـ 3 ـ المؤكسدات : هي أفراد كيميائية (ذرة , شاردة , جزئ) يمكن أن تكتسب الكترون أو أكثر .

1 - 4 - 4 - المرجعات : هي أفراد كيميائية (ذرة , شاردة , جزئ) يمكن أن تفقد الكترون أو أكثر .

من خلال التعاريف السابقة نكتب المعادلة النصفية الاكترونية:

1 ـ 4 ـ 5 ـ تعريف تفاعل الأكسدة الارجاعية :

هو تفاعل يحدث فيه تبادل للالكترونات بين ثنائيتين (مؤ $_1$ / مر $_1$) و (مؤ $_2$ / مر $_2$) .

1 ـ 4 ـ 6 ـ طريقة موازنة معادلات اللأكسدة الارجاعية :

أ ـ في وسط حمضي : أ

1 ـ نوازن جميع الذرات عدا ذرات الأكسيجين و ذرات الهيدروجين .

 (H_2O) ـ نوازن ذرات الأكسيجين بإضافة الماء ـ 2

. (H_3O^+ أو $\overset{\cdot}{H}^+$) . نوازن ذرات الهيدروجين بإضافة الشوارد

. ($oldsymbol{e}^{\scriptscriptstyle{\mathsf{T}}}$) . نوازن الشحنات بإضافة الالكترونات 4

ب ـ في وسط أساسي :

1 ـ نوازن جميع الذرات عدا ذرات الأكسيجين و ذرات الهيدروجين .

2 ـ نوازن ذرات الأكسيجين بإضافة الشوارد (*OH*) .

3 ـ نوازن ذرات الهيدروجين بإضافة الماء (H_2O).

. ($oldsymbol{e}^{ au}$) نوازن الشحنات بإضافة الالكترونات 4

1 ـ 5 ـ المعايرة :

1 ـ <mark>5 ـ 1 ـ الهدفَ من المعايرة :</mark> معايرة نوع كيميائي هو تعيين تركيزه المولي في هذا المحلول ، وتوجد عدة أنواع منها : أ ـ المعايرة عن طريق قياس الناقلية ب ـ المعايرة اللونية .

2 ـ 5 ـ 1 ـ نقطة التكافؤ:

عند نقطة التكافؤ كمية تكون كمية مادة المتفاعلين متناسبة مع الأعداد الستوكيومترية لمعادلة التفاعل.

 $n(B) = C_B V_B$ ، $n(A) = C_A V_A$: حيث $\frac{n(A)}{\alpha} = \frac{n(B)}{\beta}$: عند التكافؤ تكون

2 ـ المدة الزمنية لتحول كيميائي:

2 ـ 1 ـ التحولات السريعة: يكون التحول الكيميائي سريعا عندما يتم في مدة زمنية قصيرة جدا حيث لا يمكن متابعته زمنيا . أمثلة : *تفاعلات الانفجار * بعض تفاعلات الترسيب * تفاعلات الأ حماض و الأسس *محلول نترات الفضة + محلول كلور الصوديوم تعطي راسب كلور الفضة التحولات البطيئة: يكون التحول الكيميائي بطيئا عندما يمكننا تتبعه بالعين المجردة أو باستعمال أدوات القياس مثل المجردة أو باستعمال أدوات القياس مثل المجردة أو باستعمال أدوات القياس مثل (*جهاز الناقلية * الضغط * الـ pH متر) .

<mark>مثالُ : *</mark>تَفاًعل المَّاء الأوكسيجيني + مُحلولً يود البوْتاسيو_م يظهر اللون الأسمر تدريجيا (لون محلول ثنائي اليود) .

2 ـ 3 ـ التحولات البطيئة جدا: يكون التحول الكيميائي بطيئا جدا ا ذا كانت نو اتج تُطور الجَملة لا تلاحظُ الا بعد أيام أو أشهر أوسنوات .

أ<mark>مَثلة :ً</mark> تفاعلات التخمر ، تفاعل الأسترة ـ اماهة ، تأكل صخور الجبال .

محلول برمنغنات البوتاسيوم (بنفسجي) بعد عدة أشهر يصبح َ لونه أشقر (لون أكسيد المنغنيز MnO₂) .

3 ـ المتابعة الزمنية لتحول كيميائي :

لمتابعة تطور تحول كيميائي زمنياً يجب تحديد التركيز (أوكمية المادة) لمتفاعل أو ناتج خلال أزمنة متعاقبة ومن أجل هذا يمكن استعمال عدة طرق منها :

أ ـ الطريقة الكيمياًئية : المعايرة اللونية .

ب ـ الطّريقة الفيزيائية : قياسُ الناقلية ، الضغط ، الحجم ، الـ pH

1.3 ـ سرعات التفاعل:

 $\alpha A + \beta B = \gamma C + \delta D$: نعتبر التحول الكيميائيي المنمذج بالمعادلة الكيميائية الاتية

3 ـ 1 ـ 1 ـ سرعة التفاعل:

$$V_m = rac{\Delta X}{\Delta t}$$
 ($mol \ / \ S$) : السرعة اللحظية : $V = rac{dX}{dt}$ ($mol \ / \ S$) : أ ـ السرعة اللحظية

3 ـ 1 ـ 2 ـ السرعة الحجمية :

$$V = \frac{1}{V} \frac{dX}{dt} = \frac{d [X]}{dt} \quad (mol / L.S)$$

$$V_m = \frac{1}{V} \frac{\Delta X}{\Delta t} = \frac{\Delta [X]}{\Delta t} \quad (mol/L.S)$$

$$V_D = \frac{dn_D}{dt} \quad (mol / S)$$

$$V_A = -\frac{dn_A}{dt}$$
 (mol/S)

ب ـ السرعة الحجمية الوسطية :

3 ـ 1 ـ 3 ـ العلاقة بين سرعة التفاعل و سرعة التشكل و سرعة الاختفاء :

$$V = \frac{1}{\alpha} V_A = \frac{1}{\beta} V_B = \frac{1}{\gamma} V_C = \frac{1}{\delta} V_D$$

ملاحظات: * السرعات اللحظية تمثل ميل المماس عند اللحظة (t).

* السرعات المتوسطة تمثل ميل القاطع بين اللحظتين (t1 . t2) . * السرعات دوما مقادير موجبة .

2 ـ 3 ـ زمن نصف التفاعل £ ـ 3

- $X = rac{X_f}{2}$ هو المدة الضرورية لبلوغ التفاعل نصف تقدمه النهائي أي $X = rac{X_f}{2}$
- * هو المدة الضرورية لاستهلاك نصف كمية مادة المتفاعل المحد اذا كان التفاعل تام .

4 ـ العوامل الحركية:

- 4 ـ 1 ـ درجة الحرارة : يكون تطور جملة كيميائية أسرع كلما أرتفعت درجة الحرارة .
 - مثال : طهي الأطعمة بسرعة ، المحافظة على الاطعمة الغذائية بالتبريد .
- 4 ـ 2 ـ <mark>التركيز الابتدائي للمتفاعل :</mark> يكون تطور جملة كيميائية أسرع كلما كانت التراكيز المولية الابتدائية للمتفاعلات أكبر مثال : ماء جافيل ، النظاف.
 - 4 ـ 3 الوساطة:
 - 4 ـ 3 ـ 1 ـ الوسيط: هو نوع كيميائي يسرع التفاعل الكيميائي دون أن يظهر في معادلة التفاعل.
 - 4 ـ 3 ـ 2 ـ الوساطة: هي عملية تأثير الوسيط على التفاعل الكيميائي.
 - 4 ـ 3 ـ 3 ـ أنواع الوساطة :
 - أ ـ الوساطة المتجانسة: الوسيط يشبه حالة احد المتفاعلات مثال تفاعل الاسترة.
 - ب ـ الوّساطة غير المتجانسة : الوسيط و المتفاعلات ليست لها نفس الحالة مثال تجربة المصباح دون لهب (الأغلبية صلبة).
 - <mark>جُــ الوّساطة الإنْزَيمية:</mark> إذا كان الوّسيط إُنزيم نقول أن اَلوساطْة الإنْزيمية (كائن حي ُ).
 - 4 ـ 4 ـ التفسير المجهري:
 - 4 ـ 4 ـ 1 ـ التصادم الفعال : هو التصادم الذي ينتج عنه تفاعل كيميائي .
 - 4 ـ 4 ـ 2 ـ شروط التصادم الفعال (المثمر):
 - * أِن تتحذ الجزيئاتُ المتصادمة الوضّعُ المناسّبْ من حيث المسافة و الاتجاه .
 - * أن لا تقل طاقة الجزيئات المتصادمة عن الطاقة المنشطة .
 - 4 ـ 4 ـ 3 ـ تأثير العوامل الحركية على التصادم:
- إن زيادة تركيز المتفاعلات أو ارتفاع درجة الحرارة يسمح بارتفاع عدد التصادمات الفعالة مما يؤدي الى ارتفاع سرعة التفاعل .