3.000	
L24	OR factorization (cont.), OR algorithm
n -	CONSTRUCTING GIVENS POTATIONS
	The general scheme for constructing the Givens votation that zens dement
	(i) in an nxn matrix is:
	G(ij) = [i] Con-8 (i>j) (i>j)
	$\begin{array}{cccc} c & -s & (i & -s) \\ c & & -s & (i & -s) \end{array}$
	ilossic
	The reason is that:
- be =	[G(ij) A] = (0.060000) a,
<u> </u>	laji j
	lanj
	= Sajj + caij

 $j = i = (0.-c.-s.-o) [a_{ij}]$ en use the boxed formulae

Now we turn to the second factor, Q, in the factorization, A = QR. QR = 6, 6, 6, A that a Given matrix 19 orthogonal . In particular that OR = G G G G G A GTG,A = We have factorited A as where Ris upper triangular, and Q

	-4-
	$Q^{T}Q = (G_{1}^{T}G_{2}^{T})^{T}(G_{1}^{T}G_{2}^{T})$
	= 626,6,62
	= I
000	implying that a is orthogonal.
	The factorization A = aR is known
	as ar factorization
,	

QR ALGORITHM The OR Algorithm is a procedure to compute the eigenvalues of a matrix, A the bosic idea is to perform a OR multiply the factors in the reverse and iterate ie Az=RQ What does this have to do with the engenvalues of A? Well, at the kth step we have

AKHI = RKOK

= (Q = Ox) RxQx = Qx (QR) Dx = QEAKQK So all the Ax are Siniar and hence they have the same eigenvalues. Why is this uscful? Because, under certain conditions, the Ax converge to a simple form from which one can early pick off the evalues. In particular, for A symmetric & tridiagonal, Matrix of course, the evalues of a diagonal matrix are the diagonal elements. Also, rute that! April = (Q = Ax Ox)T by (*) = (QKAKOK)

1	
	Thus if A is symmetric, then so are all the A'S As K+ a the off-diagonal approach tero in a symmetric fashion.
ol on anto	all the Ax AS RAD The off-diagonal
AGMANT 2	approach core in a symmetric farmon.
EXAMPLE	Real our example from L23:
	$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 3 \end{bmatrix} = A_0$
	6 3 1
	Me found:
	N C C
"	$A_0 = Q_0 R_0$
	- 94 - 29 12 PVTO 6XTO VTO
	31 .88 - 34 0 2.720 1.985
	[0,36,92] [0 0 2.44],J
	Turns out that:
	$A_1 = R_0 Q_0$
	= [36.860]
	-86 3.12 -89
	0.89 2.30
	Companing A, with An me See that
	Companing A, with Ao we see that one iteration of the OR algorithm

has reduced considerably the off-diagranal elements Also the new matrix A, & symmetric and tridiagonal, just like the old one A. If we repeat the process 13 times we find: 4.41 .01 0 .01 3.00 1.000951 0 1.000951 1.58 1.01 3.00 0 for which one of the evalues, 158 can be easily "proked off". We may then apply the QR algorithm [4,41 .01]

*	-9-
	to find the remaining evalues!