Chapter 6 Bipolar Logic Circuits

Other TTL Gates Emitter-Coupled Logic (ECL) and Resistor Transistor Logic (RTL)

TTL NOR GATE

- The **NOR** circuit does *not* use a multiple-emitter transistor.
- Each input is applied to the emitter of a separate transistor.
- The NOR circuit uses the same totem-pole arrangement as the NAND circuit on the output side

3

Other TTL Gates

TTL AND-OR-Invert

Low-power TTL NAND gate

Open-collector TTL Gate

5

Wired-AND of Two Open-Collector

(a) Physical connection

(b) Wired-logic graphic symbol

Fig. 10-12 Wired-AND of two Open-Collector (oc) Gates, Y = (AB + CD)'

Emitter-Coupled Logic (ECL)

- Nonsaturated digital logic family
- Propagation rate as low as 1-2ns
- Used mostly in high speed circuits
- Noise immunity and power dissipation is the worst of all logic families.
- High level -0.8V, Low level -1.8V
- Including
 - Differential input amplifier
 - Internal temperature and voltage compensated bias network
 - Emitter-follower outputs

7

The Current Switch (Emitter-Coupled Pair)

 The building block of emitter-coupled logic (ECL) is the current switch circuit which consists of matched components

The Current Switch

• Depending on how much higher or lower the input voltage v_I is compared to V_{REF} , the reference current will switch to one of the legs creating a voltage v_{CI} or v_{C2} .

9

Mathematical Model for Static Behavior of the Current Switch

- The previous figure showed the ideal case for switching the currents between the two legs, but in real BJTs current will be present in both legs depending upon v_{BF} of each BJT in the pair
- The collector current difference is given by:

$$i_{C1} - i_{C2} = \alpha_F I_{EE} \tanh\left(\frac{v_{BE1} - v_{BE2}}{2V_T}\right)$$

Typical npn Transistor Parameters

Region	V _{BE} (V)	V _{CE} (V)	Current Relation
Cutoff	< 0.6	Open circuit	$I_B=I_C=0$
Active	0.6-0.7	> 0.8	$I_C = h_{FE}I_B$
Saturation	0.7-0.8	0.2	$I_B \ge I_C/h_{FE}$

11

Current Switch Analysis for V_I > V_{REF}

• Given the circuit shown under the given bias conditions (v_I is 300mV larger than V_{REF}), the majority of current will flow in the left leg.

Current Switch Analysis for v_I < V_{REF}

 Given the circuit shown under the given bias conditions (v_I is 300mV less than V_{REF}), the majority of current will flow in the right leg

13

The Emitter-Coupled Logic (ECL) Gate

- The outputs of the previous current switch have the value of either 0V or -0.6V
- The difference of the input and output of the current switch is exactly one base-emitter voltage drop
- For a complete ECL gate, the voltages are shifted by a base-emitter drop as shown in the figure.

ECL Gate Summary

$\mathbf{v_{I}}$	v _{O1}	v _{O2}	I_{IN}
$V_{REF} + 0.3V = -0.7V$	-1.3V	-0.7V	+14.3μΑ
V_{REF} - 0.3V = -1.3V	-0.7V	-1.3V	0

$$i_{IN} = i_{B1} = \frac{i_{EE}}{\beta_F + 1}$$
 For $v_I = -0.7V$
 $i_{IN} = 0$ For $v_I = -1.3V$
 $V_{REF} = \frac{V_H + V_L}{2}$

15

ECL Gate Benefits

- ECL gates produce both true and complemented outputs
- ECL gates are fast since the BJTs are always in forward active mode, and it only takes a few tenths of a volt to get the output to change states, hence reducing the dynamic power
- ECL gates provide near constant power supply current for all states thereby generating less noise from the other circuits connected to the supply

Current Source Implementation

 Instead of using actual current sources for the current biasing in an ECL gate, resistors can be used as shown below

Note that the currents in the emitter-follower legs will not be equal since the output voltages will be different. This will instead be looked at as an average value between the two legs.

The Emitter Follower

- The main purpose of the emitter follower in ECL gates is to create a level shift in the output
- The figure shows both the circuit and its transport model for the forward- active region

1

"Emitter Dotting" or "Wired-OR" Logic

- The circuit shown in the figure exhibits two emitter followers in parallel with a common output
- The result for the shown bias condition implies that Q_2 is cutoff and Q_1 has to handle $2I_{EE}$

ECL characteristics

- Very fast switching with typical propagation delay of 360ps faster than TTL or CMOS.
- The standard ECL logic levels are nominally -0.8 V and -1.7 V for logical 1 and 0 respectively.
- Worst-case noise margins approximately 150 mV.
- ECL logic gates usually produce an output and its complement, eliminating the need for inverters.
- Current flow remains constant, eliminating noise spikes.

23

RESISTOR-TRANSISTOR LOGIC (RTL)

An RTL NOR Gate with 3 inputs.

RTL NOR

- The 3-input positive NOR gate operates as follows:
- If any input is HIGH, the corresponding transistor is driven into saturation and the output is LOW, $v_o = V_{CE,sat} \approx \text{o.2V}$. If all inputs are LOW, then all input transistors are cut off by $V_{\gamma} V(0) = \text{o.5} \text{o.2} = \text{o.3V}$ and the output v_o is HIGH.
- The value of v_o depends upon the fan-out. For example, if N = 5, then the output of the NOR gate is loaded by five 450- Ω resistors in parallel (or 90Ω), which is tied to $V_{BE,sat} \approx 0.8$ V. Under these circumstances (using superposition),
- $v_0 = \frac{3.6 \times 90}{90 + 640} = 1.14V$
- This voltage must be large enough so that the base current can drive each of the five transistors into saturation. Since
- $I_B = \frac{1.14 0.8 \, V}{0.45 k \Omega} = 0.755 \, mA$ $I_C = \frac{3.6 0.2 \, V}{0.64 k \Omega} = 5.31 \, mA$

25

- then the circuit will operate properly if $h_{FE} > h_{FEmin} = 5.31/0.76 = 7$.
- Resistor-transistor logic uses the minimum space (for a standard digital function) on a silicon wafer, and hence is very economical.
- The disadvantages are, low noise immunity, low switching speed and sensitivity to temperature variations.

Simplified TTL vs. RTL

- Logic levels and noise margins
 - Noise Margin for Low State
 - $NM_L = V_{IL} V_O = 0.6 \text{ V} 0.1 \text{ V} = 0.5 \text{V}$
 - Noise Margin for High State
 - $NM_H = V_{OH} V_{IH} = 5 \text{ V} 0.7 \text{ V} = 4.3 \text{ V}$
 - Unequal noise margins for high and low states.
- Propagation delays
 - $t_{PHL} = 0.55 \ n \sec$ Output going low
 - $t_{PLH} = 16 \ n \sec$ • Output going high
 - Propagation delay $t_P = 8.3 \ n \sec$

- Logic levels and noise margins
 - → Noise Margin for Low State
 - \star NM_L = V_{IL} V_O = 0.7 V 0.2 V = 0.5 V
 - Noise Margin for High State
 - ★ NM_H = V_{OH} V_{IH} = 5 V 0.8 V = 4.2 V → Unequal noise margins for high and low states.
- Propagation delays
 - → Output going low $t_{PHL} = 12 \ n \sec$
 - $t_{PLH} = 100 \ n \sec$ → Output going high
 - → Propagation delay $t_P = 56 \ n \sec$