

Exploratory Data Analysis

<G2M insight for Cab Investment firm>

<14/12/2022>

Agenda

Executive Summary

Problem Statement

Approach

EDA

EDA Summary

Recommendations

Executive Summary

This project aims to help XYZ's
 Executive team analyse and
 inspect how is the market is
 going before taking the final
 decision on identifying the right
 company to invest in the
 foreseeable future.

Problem Statement

• XYZ is a private firm in US. Due to remarkable growth in the Cab Industry in last few years and multiple key players in the market, it is planning for an investment in Cab industry and as per their Go-to-Market(G2M) strategy they want to understand the market before taking final decision.

Approach

- I used some Explanatory Data Analysis(EDA) and statistical techniques to analyse and forecast profit for each Pink and Yellow cab companies in the US industry using the 4 provided csv files
- The 4 csv files are combined into one dataframe that contains all relations of all files together. Transaction_ID and Customer_ID csv files are merged using the surrogate key Customer_ID. Cab_Data csv file is merged with merged table above using the Customer_ID. Then, it is merged with the city attribute in the City_csv file.
- I created 3 csv files: ProfitAnalysis, YearlyProfitAnalysis, CityWiseProfitAnalysis to inspect data extracted from original datasets clearly.
- There are total of: 15 columns/features(including 8 derived features), 359,392 total data points, Timeframe of the data: 2016-01-31 to 2018-12-31

Assumptions

- Outliers are present in the Profit feature but due to unavailability of trip duration details, we can neglect this as an outlier.
- Outliers are calculated using the Interquartile range formula. Anything below or below upper and lower bounds is considered as an outlier.
- Profit is calculated using Cost of Trip and Price Charged features keeping all other factors constant.
- We assumed that the users feature includes total number of users from all cab companies(including yellow and pink cab) per city.

EDA: 1.Yearly Profit Analysis of Yellow and Pink Cab Company

 Both companies reached their peak profit at the year of 2017, however Yellow Cab company has a higher peak and overall profit than Pink Cab in all years.

EDA: 2.Monthly No. of Rides Analysis

 As we can see both companies have roughly the same pattern. There is an exponential rise in number of rides conducted by both companies between the months 2-3 and 9-10 in all years between the time data frame. This concludes that there is a high customer demand during these months. It could be due to start of new academic semester and people need more transportation during these specific times. Pink Cab has retained roughly same no. of rides for 4 consecutive months.

EDA: 3.Average Profit per KM Analysis

 The average Profit per km of Yellow cab is higher than Pink Cab(roughly 2-3 times). Both companies experience a decline in the avg profit per km as years pass by. This could be due to the riding distance increases much faster than the profit attained by each company.

Average Profit Per KM

EDA:

4. Profit Percentage Year-wise Analysis

Both companies experience roughly the same decline rate in profit percentage yearly. The Yellow Cab company again is obviouly higher!

Profit % Yearwise

EDA:5. City-Wise ProfitableRides Percentage Analysis

Pink Cab outperforms Yellow Cab company in only 1 city out of 19 served cities. Pink Cab has roughly same profitable rides as that of its competent in 7 cities(difference is <=5%). This indicates that Pink Cab company is trying to increase its profit in some cities. Yellow Cab has astonishgly exceeded profit % by more than 6 times that of Pink Cab.

EDA: 6. Gender-wise Contribution in Profit

 The Male users has slightly higher contribution in profit in both companies. Overall, there is no significant difference in profit contribution between both genders.

EDA:

7. Gender-wise Customer base Analysis

 This shows the percentage of male and female customers served by both companies. Also, we can see that percentage of male customers are slightly higher than the other gender. Overall, there is no significant differences. This could be reason why male customers contribute to greater portion of profit in both companies.

EDA:

8. Users Covered by both company per city

- This shows ratio of users served by both companies in all cities against all other users present in the city.
- We can see that there is a huge difference in customer reach from both companies. Yellow Cab has approximately the same low customer reach as Pink Cab in only 6 cities.

- 9. Payment mode percentage **Analysis**
- There are greater number of users paying by card in both companies as compared to other payment methods. There is no significant difference between card and cash users in both companies this indicates that payment mode has no effect on company's profit.

EDA: 10. Profit Forecasting

Yellow Cab

Pink Cab

Heat Map Correlation between users and Population

• Pink Cab Yellow Cab

Outliers Box plot

Created CSV Files

	Company	Profit	Total Sales	Total Rides	Profit per Ride	Average Selling Price
0	Pink Cab	5.307328e+06	2.632825e+07	84711	62.652174	310.800856
1	Yellow Cab	4.402037e+07	1.258539e+08	274681	160.259986	458.181990

21.666760
2110001.00
21.231168
17.646613
36.191750
36.177155
32.529842

	City	Pink Cab_Profitable Rides in %	Yellow Cab_Profitable Rides in %	
	atlanta ga	18.042459	30.490915	
	AUSTIN TX	24.632812	29.662498	
	BOSTON MA	16.809419	17.119660	
	CHICAGO IL	12.090288	17.835323	
4	DALLAS TX	6.891770	39.661062	
	DENVER CO	10.540825	33.132094	
	LOS ANGELES CA	18.542089	28.026824	
	MIAMI FL	24.867472	30.921357	
	NASHVILLE TN	12.379622	19.381915	
	NEW YORK NY	30.306744	50.899954	
10	ORANGE COUNTY	21.604862	32.786639	
11	PHOENIX AZ	14.697244	30.582917	
12	PITTSBURGH PA	9.159018	26.610925	
13	SACRAMENTO CA	14.295321	16.551387	
14	san diego ca	19.410479	24.656049	
15	SEATTLE WA	14.175211	23.893976	
16	SILICON VALLEY	26.326795	40.826967	
17	TUCSON AZ	22.958420	19.542540	
18	Washington DC	17.495737	21.620428	

Hypothesis Tests

• **Test1**, Is there difference between Avg.

Selling Price of both cabs?

```
#I used the Kruskal-Wallis test since the data is neither normally distributed nor have equal variance
   check_normality(pink_cab_df['Price Charged'])
    check normality(yellow cab df['Price Charged'])
   check variance homogeneity(pink cab df['Price Charged'], yellow cab df['Price Charged'])
   ttest,pvalue = stats.ttest_ind(pink_cab_df['Price Charged'],yellow_cab_df['Price Charged'])
   statResultfunction(pvalue)
   #Therefore, avg selling price of both companies are not be equal
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The variances of the samples are different.
The alpha/significance level = 0.050
The p-value is = 0.00
Reject the Null Hynothesis (Reject HO
```

Test2, Is there difference between Avg. user income of both cabs?

```
ttest, pvalue = stats.ttest ind(a=yellow cab df['Income (USD/Month)'], b=pink cab df['Income (USD/Month)'])
   print(stats.ttest_ind(a=yellow_cab_df['Income (USD/Month)'], b=pink_cab_df['Income (USD/Month)']))
   check normality(yellow cab df['Income (USD/Month)'])
   check normality(pink cab df['Income (USD/Month)'])
   check variance homogeneity(yellow cab df['Income (USD/Month)'], pink cab df['Income (USD/Month)'])
   statResultfunction(pvalue)
Ttest indResult(statistic=-0.42711269788899975, pvalue=0.6692975005750657)
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0788
Fail to reject null hypothesis >> The variances of the samples are same.
The alpha/significance level = 0.050
The p-value is = 0.67
Accept the Null Hypothesis (Do not reject H0)
```

Test3, Is there any relation between users and population per city?

```
#Hypothesis 3

pearsonr(City_df['Users'],City_df['Population'])

#Strong correlation between users and population regardless of company segregation since pvalue<0.005 and correlation coefficient is close to 1

✓ 0.3s

PearsonRResult(statistic=0.7033818983284993, pvalue=0.000540265155473829)
```

Test4, Is there difference between Avg. user age of both cabs?

```
#Null hypothesis: Average Age of yellow Cab Users <= Pink Cab Users
   ttest, pvalue = stats.ttest ind(a=yellow cab df['Age'], b=pink cab df['Age'])
   print(stats.ttest ind(a=yellow cab df['Age'], b=pink cab df['Age']))
   check normality(yellow cab df['Age'])
   check normality(pink cab df['Age'])
   check variance homogeneity(yellow cab df['Age'], pink cab df['Age'])
   statResultfunction(pvalue)
 ✓ 0.8s
Ttest indResult(statistic=0.3777700356771092, pvalue=0.7056016582376317)
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.1013
Fail to reject null hypothesis >> The variances of the samples are same.
The alpha/significance level = 0.050
The p-value is = 0.71
Accept the Null Hypothesis (Do not reject H0)
```

Test5, Is there difference between the Mean Profit of both cabs?

```
ttest, pvalue = stats.ttest ind(a=yellow cab df['Profit'], b=pink cab df['Profit'])
   print(stats.ttest ind(a=yellow cab df['Profit'], b=pink cab df['Profit']))
   check normality(yellow cab df['Profit'])
   check normality(pink cab df['Profit'])
   check variance homogeneity(yellow cab df['Profit'], pink cab df['Profit'])
   statResultfunction(pvalue)
 ✓ 0.1s
Ttest indResult(statistic=160.3715175947807, pvalue=0.0)
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The data is not normally distributed
p value:0.0000
Reject null hypothesis >> The variances of the samples are different.
The alpha/significance level = 0.050
The p-value is = 0.00
Reject the Null Hypothesis (Reject H0)
```

Yes, the answer is visualised in slide no.8

Is there any seasonality in number of customers using the cab service?

- Customer Reach: Yellow Cab company has a high customer reach in 13 cities as compared to Pink Cab
- Average Profit per KM: It can be concluded that Yellow Cab has outperformed Pink Cab by approx. 3 times average Profit per km after the time range.
- Ride count and Profit Forecasting: Both companies are facing loss in profit; however, after the year 2019 yellow cab experiences profit rise unlike the other cab. Pink Cab experienced a constant un-change per year in ride count for a long period of time as compared to other cab.
- City-wise profit analysis: Yellow Cab has higher profit percentage that is covered from larger portion of cities in the US as compared to other cab.
- Average Selling Price: Yellow Cab has higher average selling price as compared to Pink Cab due to its widely availability.

Therefore, based on the above points we can conclude that Yellow Cab company is the best recommended option to invest in for the foreseeable future.

Thank You

