

8 de abril de 2025

Universidad Nacional de Colombia

Oscar Guillermo Riaño Castañeda

Andrés David Cadena Simons acadenas@unal.edu.co

Problema 1:

Sea $(E, \|\cdot\|)$ un espacio vectorial normado. Defina

$$\mathcal{K} = \{ x \in E : ||x|| = 1 \}.$$

Demuestre que E es de Banach si y solamente si K es completo.

Solución:

Supongamos que E es de Banach y veamos que K es completo.

Razonemos por contradicción.

Suponga $\{x_n\} \subset \mathcal{K}$ sucesión de Cauchy que converge a $x \notin \mathcal{K}$ cuando $n \to \infty$, es decir, $||x|| \neq 1$.

Primero, note que como $\{x_n\}$ es una sucesión de Cauchy, dado $\epsilon > 0$ existe N > 0 tal que si n > N, entonces

$$||x - x_n|| < \epsilon.$$

Suponga $\epsilon < |||x|| - 1|$, luego sabemos que existe N > 0 tal que si n > N se satisface que

$$|||x|| - 1| \le |||x|| - ||x_n|||,$$

 $\le ||x - x_n||,$
 $< \epsilon,$
 $< |||x|| - 1|.$

Lo cual es una contradicción, luego $x \in \mathcal{K}$ y por ende \mathcal{K} es completo.

Por otro lado, supongamos que \mathcal{K} es completo y veamos que esto implica que E es de Banach. Primero, recuerde que $0 \in E$, por lo que si tomamos $\{x_k\} \subset E$ sucesión de Cauchy obviaremos el caso en el que esta converge a 0.

De nuevo, razonemos por contradicción.

Suponga que E no es de Banach, entonces existe $\{x_n\} \subset E$ sucesión de Cauchy tal que $x_n \to x$ con $x \notin E$ cuando $n \to \infty$.

Ahora, como $\{x_n\}$ es de Cauchy, entonces se tiene que dado $\epsilon>0$ existe N>0 tal que si n,m>N entonces

$$||x_n - x_m|| < \epsilon.$$

Siendo así, suponga ϵ_0 tal que se obtiene un $N_0>0$ adecuado que le satisface que existe $m>N_0$ que cumpla que $x_m=0$, luego

$$||x_n - x_m|| = ||x_n|| < \epsilon_0.$$

Tome $\{x_k\}$ como esa subsucesión que le satisface que $||x_k|| < \epsilon_0$.

Note que $\{\|x_k\|\}\subset\mathbb{R}$ es una sucesión acotada y por ende convergente a algún $l\in\mathbb{R}$. Ahora

suponga $\{y_k\} = \left\{\frac{x_k}{\|x_k\|}\right\} \subset \mathcal{K}$ y note que como \mathcal{K} es completo, entonces existe $y \in \mathcal{K}$ tal que $y_k \to y \in \mathcal{K}$ cuando $k \to \infty$, luego

$$y = \lim_{k \to \infty} \frac{x_k}{\|x_k\|},$$
$$= \frac{x}{l}.$$

l De lo que se puede concluir que ly=x, luego como $(E,\|\cdot\|)$ es un espacio vectorial, entonces $ly\in E,$ luego $x\in E.$

Problema 2:

Sea $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normados. Considere $T: E \to F$ una transformación lineal. Muestre que las siguientes afirmaciones son equivalentes:

- (I) T es continua.
- (II) T es continua en cero.
- (III) T es acotada. Es decir, existe M > 0 tal que para todo $x \in E$,

$$||Tx||_F \le M||x||_E.$$

(IV) Si $\overline{B(0,1)} = \{x \in E : ||x|| \le 1\}$, entonces la imagen directa $T\left(\overline{B(0,1)}\right)$ es un conjunto acotado de F.

Solución:

Problema 3:

Demuestre que si $T \in L(E, F)^1$, entonces

(I) $||Tx||_F \le ||T|| ||x||_E$, para todo $x \in E$.

(II)
$$||T|| = \sup_{\substack{x \in E \\ x \neq 0}} \frac{||Tx||_f}{||x||_E}.$$

(III)
$$||T|| = \sup_{\substack{x \in E \\ ||x||_E = 1}} ||Tx||_F.$$

(IV) $||T|| = \inf\{M > 0 : ||Tx||_F \le M ||x||_E$, para todo $x \in E\}$.

Solución:

(I) Note que como T es un operador lineal, podemos obviar el caso en el que x = 0, pues $||Tx||_F = 0 \le 0 = ||T|| ||x||_E$.

Ahora, con el fin de simplificar la idea, si tomamos $x \neq 0$, entonces podemos reescribir $y = \frac{x}{\|x\|_E}$.

Siendo así, note que dado y por propiedades del supremo se satisface que

$$||Ty||_F \le \sup_{\substack{y \in E \\ ||y||_E \le 1}} ||Ty||_F$$
 Reescribiendo la norma y multiplicando a la derecha por $||y||_E = 1$,

$$||Ty||_F \le ||T|| ||y||_E$$
 Reescribiendo $y = \frac{x}{||x||_E}$ y usando la linealidad de la norma y el operador,

$$\frac{1}{\|x\|_E}\|Tx\|_E \leq \frac{1}{\|x\|_E}\|T\|\|x\|_E,$$

Lo que implica que $||Tx||_F \le ||T|| ||x||_E$, luego como se toma y arbitrario se extiende el resultado a todo $x \in E$ y por ende se concluye el resultado.

(II) Note que por la linealidad de la norma y el operador podemos asegurar que

$$\sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E} = \sup_{\substack{x \in E \\ x \neq 0}} \left\| T \frac{x}{\|x\|_E} \right\|_F,$$

$$= \sup_{\substack{x \in E \\ x \neq 0}} \|Ty\|_F \qquad \text{como } y \text{ es unitario y distinto de } 0,$$

$$\leq \sup_{\substack{x \in E \\ \|x\| \leq 1}} \|Tx\|_F,$$

$$\leq \|T\|.$$

 $^{^1}$ Recuerde que L(E,F) de
nota el conjunto de operadores lineales de E en
 F. Dado $T\in L(E,F)$ definimos la norma de
 Tcomo $\|T\|=\sup_{\substack{x\in E\\ \|x\|_E\leq 1}}\|Tx\|_F.$

Por otro lado veamos que si asumimos que $||x|| \le 1$, entonces

$$\begin{split} \|T\| &= \sup_{\substack{x \in E \\ \|x\|_E \le 1}} \|Tx\|_F, \\ &\leq \sup_{\substack{x \in E \\ \|x\|_E \le 1}} \frac{\|Tx\|_F}{\|x\|_E}, \\ &\leq \sup_{\substack{x \in E \\ x \ne 0}} \frac{\|Tx\|_F}{\|x\|_E}. \end{split}$$

Ya que $\{x \in E : ||x||_E \le 1\} \subset E$ y omitimos el caso en el que x = 0 ya que Tx = 0 y por ende no es el supremo del conjunto a menos de que T sea el operador nulo.

(III) Note que si usamos la linealidad del operador y de la norma podemos ver que

$$\sup_{\substack{x \in E \\ x \neq 0}} \frac{\|Tx\|_F}{\|x\|_E} = \sup_{\substack{x \in E \\ \|x\| = 1}} \|Tx\|_F$$

luego usando (II) podemos afirmar que

$$||T|| = \sup_{\substack{x \in E \\ ||x|| = 1}} ||Tx||_F.$$

(IV) Note que el conjunto de los M que satisfacen la condición del conjunto no son afectados cuando se divide por la norma de x en ambos lados de la desigualdad, es decir, podemos suponer que los x dados en la condición del conjunto son unitarios. Luego la condición se transforma en ver el menor de los M>0 que satisface $\|Tx\|_F\leq M$ para todo $x\in E$ que satisface $\|x\|_E=1$, luego por (III) podemos afirmar que este M es precisamente $\|T\|$.

Problema 4:

Sean $(E, \|\cdot\|_E)$, $(F, \|\cdot\|_F)$ espacios vectoriales normales. Suponga que F es un espacio de Banach. Muestre que L(E, F) es un espacio de Banach con la norma usual de L(E, F). En particular, $E^* = L(E, \mathbb{R}), E^{**} = L(E^*, \mathbb{R})$ son espacios de Banach.

Solución:

Sean E y F espacios vectoriales normados. Suponga que E es de dimensión finita (F no necesariamente de dimensión finita).

- (I) Muestre que todas las normas asignadas a E son equivalentes².
- (II) Muestre que toda transformación lineal $T:E\to F$ es continua.
- (III) De un ejemplo donde se verifique que (II) puede ser falsa si E es de dimensión infinita.

Solución:

²Sean $\|\cdot\|_1$ y $\|\cdot\|_2$ dos normas sobre E. Recordemos que dos normas son equivalentes si existen constantes positivas c_1 y c_2 , tales que $c_1\|x\|_1 \le \|x\|_2 \le c_2\|x\|_1$, para todo $x \in E$.

Problema 6:

Considere $E = c_0$ donde

$$c_0 = \{u = \{u_n\}_{n \ge 1} : \text{ tales que } u_n \in \mathbb{R}, n \ge 1, \lim_{n \to \infty} u_n = 0\}.$$

Es decir, c_0 es el conjunto de las secuencias reales que tienden a 0. Dotamos a este espacio con la norma $\|u\|_{l^{\infty}} = \sup_{n \in \mathbb{Z}^+} |u_n|$. Considere el funcional $f : E \to \mathbb{R}$ dado por

$$f(u) = \sum_{n=1}^{\infty} \frac{1}{2^n} u_n.$$

- (I) Muestre que $f \in E^*$ y calcule $||f||_{E^*}$.
- (II) ¿Es posible encontrar $u \in E$ tal que ||u|| = 1 y $f(u) = ||f||_{E^*}$?

Solución: