

Atividade: Bolinha na roda da bibicleta

(Adaptado de Costa (2017))

Mateus gosta muito de andar de bicicleta e para enfeitar suas rodas, costuma prender bolinhas de tênis nelas (vide figura). Suponha que ele virou a bicicleta de cabeça para baixo, prendeu a bolinha e começou a girar a roda. Na figura a seguir, a imagem à direita ilustra uma representação da roda destacando eixos coordenados e ângulos em graus.

A roda da direita tem um transferidor de volta inteira sobreposto a sua imagem, de forma que é possível verificar a medida do ângulo entre o eixo horizontal e o raio da roda que passa pela bolinha.

Considere que r é o raio da roda, c é o comprimento do segmento horizontal azul (distância da bolinha amarela ao eixo y) e s é o comprimento do segmento vertical vermelho (distância da bolinha amarela ao eixo x). A razão $\frac{c}{r}$ indica a distância horizontal relativa entre a bolinha amarela e o eixo y, assim como a razão $\frac{s}{r}$ indica a distância vertical relativa entre a bolinha amarela e o eixo x. Por exemplo, se a roda tem raio de 30 cm e a bolinha estiver localizada a 27 cm do eixo vertical, então $\frac{c}{r}$ é $\frac{27}{30}$, ou seja, $\frac{9}{10}$. Dessa forma, para quaisquer outras rodas de bicicleta com outros raios, quando o ângulo entre o eixo horizontal e o raio que passa pela bolinha amarela for o mesmo em que é nessa situação, estamos aptos a determinar essa distância, fundamentados na semelhança de triângulos: em uma roda com 20 cm de raio, essa distância seria $\frac{9}{10}$ de 20, ou seja, 18 cm. Da mesma forma se dá para a distância relativa vertical. Observe ainda que essa "distância relativa" pode ser ainda negativa ou positiva, de acordo com a orientação dos eixos coordenados.

Por exemplo, na figura ao lado, tanto c quanto s valem 5, mas estão no sentido negativo de seus respectivos eixos, portanto, ao calcularmos as distâncias relativas teremos $\frac{c}{r}=\frac{s}{r}=\frac{-5}{10}=\frac{-1}{2}$.

Nas tabelas a seguir, temos algumas possíveis posições para a bolinha e os ângulos associados a elas, medidos em graus. Para completar essa tabela, você precisará informar, a cada ângulo dado:

- A medida do arco, em radianos, associado ao ângulo dado;
- A razão $\frac{c}{r}$ e o seu sinal, de acordo com a orientação no eixo x;
- A razão $\frac{s}{r}$ e o seu sinal, de acordo com a orientação no eixo y.

Vamos lá?

Patrocínio:

a)	Ângulo (grau)	15°	30 °	45°	60°	75°	90°
	Arco (radiano)	$\frac{\pi}{12}$					
	$rac{c}{r}$	0,96					
	$rac{s}{r}$	0,26					
b)	Ângulo (grau)	105°	120°	135°	150°	165°	180°
	Arco (radiano)						
	$rac{c}{r}$						
	$rac{s}{r}$						
c)	Ângulo (grau)	195°	210°	225°	240°	255°	270°
,		190	210	220	240	200	210
	Arco (radiano)						
	$rac{c}{r}$						
	$rac{s}{r}$						
d)	Ângulo (gray)	2050	2000	2150	2200	2450	2000
u)	Ângulo (grau)	285°	300°	315°	330°	345°	360°
	Arco (radiano)						2π
	<u>c</u>						

