Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Ciencias y Sistemas Inteligencia Artificial 1 Ing. Luis Espino Aux. Erick Sandoval

Manual de Usuario

Nombre: Sergio Rivelino Pérez Rivera

Carnet: 201603156

Interfaz Principal

Proyecto 2 - Machine Learning

-					
Seleccionar archivo Sin archiv	os seleccionados	i			
Seleccionar Método					
Regresión Lineal Seleccionar columna X: Se	eleccionar colun	nna Y: 💌			
Valores a predecir (separados p	por coma)				
	Ejecutar/Ten	Entrenar	Predecir	Patrones	Limpiar
Se debe escoger el método de M	Machine Learnin Seleccionar M	_	ct>:		
	Regresión Line	eal 🗸	n - • •		
La página maneja 4 métodos:					
Regresión Lineal					

Regresión Lineal Regresión Polinomial Árbol de Decisión Kmeans

Puede cargar el archivo .csv a procesar:

Seleccionar archivo Sin archivos seleccionados

Dependiendo del modelo que elija, entonces la página le mostrará cajas de texto para que pueda ingresar los parámetros que necesita el modelo para funcionar.

Regresión Lineal:

Para la regresión lineal solo necesitamos escoger la variable X (independiente) y la variable Y (dependiente). Estas variables las podrá elegir de los <select> que se observan en la siguiente imagen.

Con el archivo .csv cargado, y las variables elegidas, ejecutamos el modelo con el botón "Ejecutar/Ten", que mostrará la gráfica de tendencia:

Proyecto 2 - Machine Learning

Regresión Polinomial

Se hace el mismo proceso que la regresión lineal, el único cambio, es el input que muestra la página para ingresar el grado.

La página nos da la opción de obtener predicciones para los modelos de Regresión lineal y polinomial

Para limpiar el modelo actual y probar otro, tenemos un botón para limpiar:

Árbol de Decisión

Este modelo se debe de entrenar antes de poder realizar una predicción.

Proyecto 2 - Machine Learning

Visualización de Árbol de Decisión

La predicción es: null

Para realizar una predicción, tenemos un input para ingresar los valores:

Valores a predecir (separados por coma)

Resultados de la predicción:.

Visualización de Árbol de Decisión

La predicción es: Yes

Kmeans

El método K-means pide un valor **k** para definir la cantidad de grupos (clusters) que se quieren formar y el número de **iteraciones** para mejorar la precisión, ajustando los grupos hasta que los centroides se estabilicen o se alcance el límite indicado.

Proyecto 2 - Machine Learning

Resultados de la predicción:.

Visualización de Clustering KMeans

Visualización de Clustering KMeans

