

Winning Space Race with Data Science

Valerius Travasso 2/21/2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection
 - Data Wrangling
 - Exploratory Data Analysis using SQL and data visualization
 - Generating Interactive map on folium
 - Generating dashboard on ploty
 - Generating machine learning models
- Summary of all results
 - The built machine learning models had predicted results with an accuracy of 83.33%.

Introduction

- Project background and context
 - Many company are presently providing commercial space transport.
 - SpaceX provides the best price currently
 - SpaceX charges 100million dollars less.
 - Lower price is sue to recovery of stage 1 rockets.
- Problems you want to find answers
 - SpaceY wants to compete with SpaceX for commercial space transport.
 - We want to build a machine learning model which can predict the recovery of stage 1 rockets.

Methodology

Executive Summary

- Data collection methodology:
 - The required data for this project was collected from 2 sources.
 - Using API calls from SpaceX public API
 - Using web scrapping on wikipedia page.
- · Perform data wrangling
 - Cleaning the data for
 - · Processing missing data
 - · One hot encoding for better processing of the data
- · Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- · Perform predictive analysis using classification models
 - Using GridSearchCV to find the best parameters to fit/train the model.

Data Collection

Data for SpaceX flights collected from 2 sources

1) Using API calls and retrieving the data from SpaceX public API.

2) Using webscraping to retrieve data from wikipedia page.

Data Collection – SpaceX API

 Add the GitHub URL of the completed SpaceX API calls notebook (must include completed code cell and outcome cell), as an external reference and peer-review purpose

Data Collection - Scraping

 Add the GitHub URL of the completed web scraping notebook, as an external reference and peer-review purpose

Data Wrangling

- Replace successful launch=1 and failure =0
- One hot encoding

• Add the GitHub URL of your completed data wrangling related notebooks, as an external reference and peer-review purpose

EDA with Data Visualization

• EDA was performed on below variables

Flight number, Payload mass, Launch site, Orbit, Class and year.

Plots plotted

Flight Numbers vs payload mass, Flight number vs launch site, payload mass vs launch site, Orbit Vs success rate, Flight number vs orbit, success yearly trend.

Scatter, line and bar chart/plot were used to compare relationship between variable to be used to train the machine learning lodels.

 Add the GitHub URL of your completed EDA with data visualization notebook, as an external reference and peer-review purpose

EDA with SQL

Load dataset in IBM DB2

Query using SQL

Quired info regarding launch site, mission outcome, payload sizes, booster version and landing outcome.

 Add the GitHub URL of your completed EDA with SQL notebook, as an external reference and peer-review purpose

Build an Interactive Map with Folium

• Folium maps mark launch sites successful and unsuccessful landings and proximity to key locations (railway, highway, coast city.)

This helps to visualize successful landing relative to location.

 Add the GitHub URL of your completed interactive map with Folium map, as an external reference and peer-review purpose

Build a Dashboard with Plotly Dash

- Built dashboards that include pie chart and scatter plot
- Pie charts show distribution of successful launch sites and can show individual site success rate.
- Scatter plot show how success varies across launch sites, payload mass and booster version category.

 Add the GitHub URL of your completed Plotly Dash lab, as an external reference and peer-review purpose

Predictive Analysis (Classification)

 Add the GitHub URL of your completed predictive analysis lab, as an external reference and peer-review purpose

Results

Preview of ploty dashboard

Flight Number vs. Launch Site

• in the above plot green indicates successful and purple indicates unsuccessful launch

Payload vs. Launch Site

• in the above plot green indicates successful and purple indicates unsuccessful launch

Success Rate vs. Orbit Type

Success Rate Scale with

0 as 0%

0.6 as 60%

1 as 100%

Flight Number vs. Orbit Type

• Green indicates successful launch; Purple indicates unsuccessful launch.

Payload vs. Orbit Type

• Green indicates successful launch; Purple indicates unsuccessful launch.

Launch Success Yearly Trend

All Launch Site Names

```
In [4]: %%sql
        SELECT UNIQUE LAUNCH SITE
        FROM SPACEXDATASET;
         * ibm db sa://ftb12020:***@0c77d6f;
        Done.
Out[4]:
         launch_site
         CCAFS LC-40
         CCAFS SLC-40
         CCAFSSLC-40
         KSC LC-39A
         VAFB SLC-4E
```

- Query unique launch site names from database.
- CCAFS SLC-40 and CCAFSSLC-40 likely all represent the same
- launch site with data entry errors.
- CCAFS LC-40 was the previous name. Likely only 3 unique launch_site values: CCAFS SLC-40, KSC LC-39A, VAFB SLC-4E

Launch Site Names Begin with 'CCA'

```
In [5]: %%sql
SELECT *
FROM SPACEXDATASET
WHERE LAUNCH_SITE LIKE 'CCA%'
LIMIT 5;

* ibm db sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86b520b87518 bs2io90]@8kgb1od8lcg databases appdomain cloud:31198/bludb
```

Out[5]:

DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

 First five entries in database with Launch Site name beginning with CCA.

Total Payload Mass

```
%%sql
SELECT SUM(PAYLOAD_MASS__KG_) AS SUM_PAYLOAD_MASS_KG
FROM SPACEXDATASET
WHERE CUSTOMER = 'NASA (CRS)';

* ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86
Done.
```

sum_payload_mass_kg 45596

- This query sums the total payload mass in kg where NASA was the customer.
- CRS stands for Commercial Resupply Services which indicates that these payloads were sent to the International Space Station (ISS).

Average Payload Mass by F9 v1.1

```
%%sql
SELECT AVG(PAYLOAD_MASS__KG_) AS AVG_PAYLOAD_MASS_KG
FROM SPACEXDATASET
WHERE booster version = 'F9 v1.1'
 * ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86
Done.
avg_payload_mass_kg
2928
```

- This query calculates the average payload mass or launches which used booster version F9 v1.1
- Average payload mass of F9 1.1 is on the low end of our payload mass range

First Successful Ground Landing Date

```
%%sql
SELECT MIN(DATE) AS FIRST SUCCESS
FROM SPACEXDATASET
WHERE landing outcome = 'Success (ground pad)';
 * ibm db sa://ftb12020:***@0c77d6f2-5da9-48a9-81
Done.
first success
2015-12-22
```

- This query returns the first successful ground pad landing date.
- First ground pad landing wasn't until the end of 2015.
- Successful landings in general appear starting 2014.

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
SELECT booster_version
FROM SPACEXDATASET
WHERE landing_outcome = 'Success (drone ship)' AND payload_mass_kg_ BETWEEN 4001 AND 5999;
```

* ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90l08kqb1od8lcg.databaseDone.

booster_version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

This query returns
 the four booster
 versions that
 had successful drone
 ship landings and a
 payload mass
 between 4000 and
 6000 noninclusively.

Total Number of Successful and Failure Mission Outcomes

```
%%sql
SELECT mission_outcome, COUNT(*) AS no_outcome
FROM SPACEXDATASET
GROUP BY mission_outcome;
```

* ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-;
Done.

mission_outcome	no_outcome
Failure (in flight)	1
Success	99
Success (payload status unclear)	1

- This query returns a count of each mission outcome.
- SpaceX appears to achieve its mission outcome nearly 99% of the time.
- This means that most of the landing failures are intended.
- Interestingly, one launch has an unclear payload status and unfortunately one failed in flight.

Boosters Carried Maximum Payload

```
%%sql
SELECT booster_version, PAYLOAD_MASS__KG_
FROM SPACEXDATASET
WHERE PAYLOAD_MASS__KG_ = (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXDATASET);
```

* ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90l08kqb1 Done.

booster_version	payload_masskg_
F9 B5 B1048.4	15600
F9 B5 B1049.4	15600
F9 B5 B1051.3	15600
F9 B5 B1056.4	15600
F9 B5 B1048.5	15600
F9 B5 B1051.4	15600
F9 B5 B1049.5	15600
F9 B5 B1060.2	15600
F9 B5 B1058.3	15600
F9 B5 B1051.6	15600
F9 B5 B1060.3	15600
F9 B5 B1049.7	15600

- This query returns the booster versions that carried the highest payload mass of 15600 kg.
- These booster versions are very similar and all are of the F9 B5 B10xx.x variety.
- This likely indicates payload mass correlates with the booster version that is used.

2015 Launch Records

```
%%sql
SELECT MONTHNAME(DATE) AS MONTH, landing_outcome, booster_version, PAYLOAD_MASS__KG_, launch_site
FROM SPACEXDATASET
WHERE landing_outcome = 'Failure (drone ship)' AND YEAR(DATE) = 2015;
```

^{*} ibm_db_sa://ftb12020:***@0c77d6f2-5da9-48a9-81f8-86b520b87518.bs2io90l08kqb1od8lcg.databases.app
Done.

MONTH	landing_outcome	booster_version	payload_mass_kg_	launch_site
January	Failure (drone ship)	F9 v1.1 B1012	2395	CCAFS LC-40
April	Failure (drone ship)	F9 v1.1 B1015	1898	CCAFS LC-40

- This query returns the Month, Landing Outcome, Booster Version, Payload Mass (kg), and Launch site of 2015 launches where stage 1 failed to land on a drone ship.
- There were two such occurrences.

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- This query returns a list of successful landings and between 2010-06-04 and 2017-03-20 inclusively.
- There are two types of successful landing outcomes: drone ship and ground pad landings.
- There were 8 successful landings in total during this time period

Launch Site Locations

• The left map shows all launch sites relative US map. The right map shows the two Florida launch sites since they are very close to each other. All launch sites are near the ocean.

Color-Coded Launch Markers

- Clusters on Folium map can be clicked on to display each successful landing (green icon) and failed
- landing (red icon). In this example VAFB SLC-4E shows 4 successful landings and 6 failed landings.

Key Location Proximities

 Using KSC LC-39A as an example, launch sites are very close to railways for large part and supply transportation. Launch sites are close to highways for human and supply transport. Launch sites are also close to coasts and relatively far from cities so that launch failures can land in the sea to avoid rockets falling on densely populated areas.

Successful Launches Across Launch Sites

 This is the distribution of successful landings across all launch sites. CCAFS LC-40 is the old name of CCAFS SLC-40 so CCAFS and KSC have the same amount of successful landings, but a majority of the successful landings where performed before the name change. VAFB has the smallest share of successful landings. This may be due to smaller sample and increase in difficulty of launching in the west coast.

Highest Success Rate Launch Site

• KSC LC-39A has the highest success rate with 10 successful landings and 3 failed landings.

Payload Mass vs. Success vs. Booster Version Category

• Plotly dashboard has a Payload range selector. However, this is set from 0-10000 instead of the max Payload of 15600. Class indicates 1 for successful landing and 0 for failure. Scatter plot also accounts for booster version category in color and number of launches in point size. In this particular range of 0-6000, interestingly there are two failed landings with payloads of zero kg.

Classification Accuracy

- All models had virtually the same accuracy on the test set at 83.33% accuracy. It should be noted that test size is small at only sample size of 18.
- This can cause large variance in accuracy results, such as those in Decision Tree Classifier model in repeated runs.
- We likely need more data to determine the best model.

Confusion Matrix

Correct predictions are on a diagonal from top left to bottom right.

- Since all models performed the same for the test set, the confusion matrix is the same across all models. The models predicted 12 successful landings when the true label was successful landing.
- The models predicted 3
 unsuccessful landings when the
 true label was unsuccessful landing.
- The models predicted 3 successful landings when the true label was unsuccessful landings (false positives). Our models over predict successful landings.

Conclusions

- Our task: to develop a machine learning model for Space Y who wants to bid against SpaceX
- • The goal of model is to predict when Stage 1 will successfully land to save ~\$100 million USD
- Used data from a public SpaceX API and web scraping SpaceX Wikipedia page
- Created data labels and stored data into a DB2 SQL database
- Created a dashboard for visualization
- •We created a machine learning model with an accuracy of 83%
- •Allon Mask of SpaceY can use this model to predict with relatively high accuracy whether a launch will have a successful Stage 1 landing before launch to determine whether the launch should be made or not
- olf possible more data should be collected to better determine the best machine learning model and improve accuracy

Appendix

• Include any relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that you may have created during this project

