Perceived Income Risks and Subjective Attribution

Tao Wang Johns Hopkins University

April 28, 2020

Outline

- Motivation
- 2 Model
 - Learning and attribution
 - Simulation
- 3 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Motivation

- Risks matter for individual decisions
 - precautionary saving
 - portfolio choice and stock market participation
- Risks matter for macroeconomic outcomes
 - Since idiosyncratic risks are not perfectly insured
 - Different wealth \rightarrow different MPCs \rightarrow distributional channel of macroeconomic policies
- Risks estimated from the inequality \approx "the truth" \approx perceptions?

This paper's agenda

- **1** Theory: a subjective heterogeneous-agent model
 - imperfect understanding of income risks
 - the size: experienced volatility \rightarrow perceived risks, different across age and generation groups
 - the nature: subjective attribution, i.e. aggregate v.s. idiosyncratic \rightarrow different perceptions
 - life-cycle agent with uninsured idioyncratic (and aggregate) risks)
- **Empirics:** subjective risk profiles from density surveys
 - Cross-sectional profile, different across age, generation and income
 - Correlation structure with current labor market outcomes: countercylical perceived risks
 - Decision implications, i.e. higher perceived risk \rightarrow higher precautionary saving

Literature

- experience-based learning, Malmendier and Nagel (2015)
- subjective survey, especially on probabilistic surveys. Manski (2004), Delavande et al. (2011), Manski (2018), Bertrand and Mullainathan (2001), Armantier et al. (2017)
- "insurance or information": Kaufmann and Pistaferri (2009), Meghir and Pistaferri (2011), Pistaferri (2001), New York Fed Blog (2019), Flavin (1988)
- consumption/saving and portfolio choice under imperfect perception/understanding. Rozsypal and Schlafmann (2017), Carroll et al. (2018), Lian (2019)
- macroeconomic expectation formation, Coibion and Gorodnichenko (2012), Fuhrer (2018), etc
- counter-cyclical labor income risks: Storesletten et al. (2004), Guvenen et al. (2014), Catherine (2019)

Preview of the theory

- Learning: learns about the parameters of income process from a small sample
- Experience: past experience of volatility \rightarrow future risk perceptions
- Attribution: subjectively determine whether shocks are aggregate or idiosyncratic → different parameter uncertainty
- Attribution errors: positive (negative) shocks → internal (external) attribution → zero (positive) subjective correlation → low (high) perceived risks
- Countercylical perceived risks: positive (negative) news \rightarrow low (high) aggregate uncertainty

Outline

- Model
 - Learning and attribution
 - Simulation
- - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Income process

$$y_{i,c,t} = \rho y_{i,c,t-1} + \epsilon_{i,c,t}$$

$$\epsilon_{i,c,t} \sim N(0, \sigma^2)$$
(1)

- individual i at time t
- cohort c, year of entering the job market
- ρ : persistence parameter
- $\epsilon_{i,c,t}$, income shock
 - Identical: constant income risks across people and time
 - Independence: purely idiosyncratic risk
 - Both can be relaxed, i.e. cross-sectional correlation for aggregate shocks

Perceived risk

• Perfect understanding

$$Var_{i,t}^*(\Delta y_{i,t+1}) = Var_{i,t}^*(\epsilon_{i,t+1})$$

$$= \sigma^2$$
(2)

• Imperfect understanding

$$\widehat{V}ar_{i,t}(\Delta y_{i,t+1}) = y_{i,t-1}^2 \underbrace{\widehat{Var}_{i,t}^{\rho}}_{\text{Persistence uncertainty}} + \underbrace{\widehat{\sigma}_{i,t}^2}_{\text{Shock uncertainty}}$$
(3)

< □ > < 圖 > < 差 > < 差 > 差 夕 Q @

Learning

$$\underbrace{\hat{\rho}_{i,t}}_{\text{estimated parameter}} = \left(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2\right)^{-1} \left(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1} y_{j,t-k}\right) \tag{4}$$

- sample: past experience of both i's own and others' income
- size: $N_{i,t} = n(t-c)$
 - n, an arbitrarily small n is sufficient
 - t-c, the duration of career (approximate for age)
- least-square learning rule (see, for instance, Evans and Honkapohja (2012))

10/34

Shock uncertainty

$$\underbrace{\widehat{\sigma}_{i,t}^{2}}_{\text{estimated shock uncertainty}} = \underbrace{\frac{1}{N_{i,t}-1} \sum_{j=1}^{N_{i,t}} \sum_{k=0}^{t-c} \widehat{e}_{j,t-k}^{2}}_{\text{experienced volatility}} \tag{5}$$

- $N_{i,t} = n(t-c)$, sample size
- $\hat{e}_{i,t}$: unexpected income shocks (learning residuals)

◆□▶ ◆御▶ ◆差▶ ◆差▶ 差 釣Q@

Persistence uncertainty

$$\tilde{Var}_{i,t}^{\rho} = (\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2)^{-1} (\sum_{k=0}^{t-c} \tilde{\Omega}_{t-k}) (\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2)^{-1}$$
 (6)

$$\tilde{\Omega}_{t} = \tilde{E}_{i,t}(Y'_{t-1}\epsilon'_{t}\epsilon_{t}Y_{t-1})
Y'_{t-1} = [y_{1,t-1}, y_{2,t-1}...y_{n,t-1}]'$$
(7)

- Attribution: how *i* thinks about the correlation between her own income and others
- $\tilde{\Omega}_t$, perceived variance-covariance at time t

4014414111 1 000

Internal attribution

• "my income has nothing to do with others"

$$\widetilde{\Omega}_t = \widehat{\Omega}_t = (\sum_{k=0}^{t-c} \sum_{j=1}^n y_{j,t-k-1}^2) \widehat{\sigma}_{i,t}^2$$
(8)

• $\widehat{\Omega}_t$ assumes cross-sectional independence

13 / 34

External attribution

- "something common affects me as well as others"
- A special case

$$\tilde{\Omega}_{t} \approx \tilde{\sigma}_{t}^{2} \left(1 + \underbrace{\tilde{\delta}_{y,i,t} \tilde{\delta}_{\epsilon,i,t}}_{\equiv \tilde{\delta}_{i,t}} (n-1)\right) \sum_{j=1}^{n} y_{j,t}^{2}$$
(9)

- fixed sample size n and time-invariant risk σ^2
- $\tilde{\delta}_{\epsilon,i,t}$: subjective correlation in income shocks
- $\delta_{y,i,t}$: subjective correlation in income
- $\tilde{\delta}_{i,t} \in [0,1]$: attribution parameter, the subjective correlation of individual outcome with others.
 - internal: $\tilde{\delta}_{i,t} = 0$
 - external: $\tilde{\delta}_{i,t} > 0$

Perceived risk under internal v.s. external attribution

• Incorrect: $\tilde{\delta}_{i,t} > 0$

$$\tilde{Var}_{i,t}(\Delta y_{i,t+1}) = y_{i,t-1}^2 \tilde{Var}_{i,t}^{\rho} + \tilde{\sigma}_{i,t}^2$$

$$= [(\sum_{k=0}^{t-c} \sum_{j=1}^{n} y_{j,t-k-1}^2)^{-1} (1 + \tilde{\delta}_{i,t}(n-1)) y_{i,t}^2 + 1] \tilde{\sigma}_{i,t}^2$$
(10)

• Correct: $\tilde{\delta}_{i,t} = 0$

$$\widehat{Var}_{i,t}(\Delta y_{i,t+1}) = [(\sum_{k=0}^{t-c} \sum_{i=1}^{n} y_{j,t-k-1}^2)^{-1} y_{i,t}^2 + 1] \hat{\sigma}_{i,t}^2 \quad \forall \tilde{\delta}_{i,t} > 0$$
(11)

Comparison

$$\widetilde{Var}_{i,t}(\Delta y_{i,t+1}) \ge \widehat{Var}_{i,t}(\Delta y_{i,t+1})$$
 (12)

April 28, 2020

15/34

Tao Wang Johns Hopkins University Perceived Income Risks and Subjective

Prediction 1. experienced volatility extrapolated into perceived risks

Attribution errors

- positive (negative) shock induces internal (external) attribution
- reminicent of the self-serving bias in the social psycology literature

Prediction 2. skewned U-shaped income profile

Prediction 3. perceived risks declines over age

Outline

- Model
 - Learning and attribution
 - Simulation
- - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Data

Table: Survey of Consumer Expectations

Time period	2013M6-2019M6
Frequency	monthly
Sample size	1,300
Density variable	1-yr-ahead earning growth (same position/hours)
Pannel structure	12 months
Demographics	educ, income, age, gender, state

- density estimation following Engelberg et al. (2009)
- exclude top and bottom 1% values of each moment

Definition

- $\Delta Y_{i,t+12}$: the next-year income growth of the same job/position/hours, separate from unemployement risk
- Moments of interest
 - expected growth, $\exp_{i,t} = E_{i,t}(\Delta Y_{i,t+12})$
 - variance: $\overline{var}_{i,t}(\Delta Y_{i,t+12})$
 - iqr: $\overline{iqr}_{i,t}(\Delta Y_{i,t+12})$
 - skewness: $\overline{skew}_{i,t}(\Delta Y_{i,t+12})$
- Nominal and real income growth
 - $\operatorname{rexp}_{i,t} = E_{i,t}(\Delta Y_{i,t+12}^r) = E_i(\Delta Y_{i,t+12}^n) E_{i,t+12}(\pi_{t+12})$
 - $\overline{rvar}_{i,t} = \overline{var}_{i,t}(\Delta Y_{i,t+12}^n) + \overline{var}_{i,t}(\pi_{t+12})$

Outline

- - Learning and attribution
 - Simulation
- Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Cross-section of income risks

 \bullet average: 2.5% standard deviation for nominal and 3.5% standard deviation for real income

Perceived risks by household income

• Similar to the pattern of earning growth dispersion conditional on income in Bloom et al. (2018).

Perceived risks by age

• in line with existing findings, for instance Bloom et al. (2018).

Perceived risks by generation

27 / 34

Covariants of perceived risks

Table: Perceived income risks and individual characteristics

	incvar I	incvar II	incvar III	incvar IIII	rincvar I	rincvar II	rincvar III	rincvar IIII
HHinc_gr=low inc			1.56***				7.01***	_
			(0.10)				(0.19)	
educ_gr=low educ				0.40***				3.82***
				(0.11)				(0.21)
gender=male				-0.80***				2.76***
				(0.10)				(0.19)
parttime=yes	0.05	0.24*	-0.12		1.41***	1.81***	0.19	
	(0.12)	(0.13)	(0.13)		(0.23)	(0.26)	(0.26)	
selfemp=yes	7.21***	-0.00***	-0.00***		6.27***	-0.00***	0.00***	
	(0.15)	(0.00)	(0.00)		(0.27)	(0.00)	(0.00)	
UEprobAgg	, ,	0.01**	0.00*		, ,	0.05***	0.04***	
		(0.00)	(0.00)			(0.00)	(0.00)	
UEprobInd		0.03***	0.02***			0.05***	0.04***	
•		(0.00)	(0.00)			(0.00)	(0.00)	
Intercept	4.64***	3.75***	3.28***	5.72***	12.42***	12.21***	10.16***	11.16***
_	(0.05)	(0.12)	(0.12)	(0.07)	(0.10)	(0.24)	(0.25)	(0.14)
N	54029	47331	47331	47457	50730	44382	44382	44517
R2	0.05	0.00	0.01	0.00	0.01	0.01	0.04	0.01

Outline

- Motivation
- 2 Model
 - Learning and attribution
 - Simulation
- 3 Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Perveived risks and household spending

$$E_{i,t}(\Delta C_{i,t+12}) = u_0 + u_1 \overline{\text{risks}}_{i,t}(\Delta Y_{i,t+12}) + \xi_{i,t}$$

	spending I	spending II	spending III	spending IIII	spending IIIII	spending IIIIII	spending IIIIIII
incexp	0.39***						
	(0.08)						
rincexp		-0.04*					
		(0.02)					
incvar			0.07***				
			(0.02)				
rincvar				0.07***			
				(0.01)			
UEprobAgg						0.04***	
						(0.01)	
UEprobInd					-0.01		
					(0.01)		
incskew							0.21
							(0.43)
N	55673	50997	55465	52099	54315	85468	55029
R2	0.00	0.00	0.00	0.00	0.00	0.00	0.00

• Higher perceived risks \rightarrow higher expected spending growth.

Outline

- - Learning and attribution
 - Simulation
- Empirical facts
 - Cross-sectional patterns
 - Perceived risks and decisions
 - Coutercylical perceived risks

Perceived real risks and past wage growth

- \bullet $\overline{\mathrm{var}_t}$
- $log(wage_t) log(wage_{t-3})$

Perceived real income risks and past wage growth

- \bullet $\overline{\text{rvar}_t}$
- $log(wage_t) log(wage_{t-3})$

33 / 34

Perceived risks and labor market conditions

$$\underbrace{\overline{\mathrm{risk}_t}}_{\text{average perceived risk}} = \alpha + \beta \underbrace{\left(log(\mathrm{wage}_{t-k}) - log(\mathrm{wage}_{t-k-3}) \right)}_{\text{wage growth}} + \epsilon_{i,t}$$

$$\forall k = 1...6$$

k	varMean	iqrMean	rvarMean	varMed	iqrMed	rvarMed
1	-2.046**	-0.801***	-10.437***	-0.269	-0.191	-5.121***
2	-3.823***	-1.193***	-12.287***	-0.021	0.009	-5.292***
3	-2.942***	-0.938***	-9.642***	-0.147	-0.077	-4.445***
4	-3.261***	-0.994***	-9.021***	-0.142	-0.094	-4.467***
5	-2.312**	-0.892***	-6.792**	-0.441**	-0.252*	-4.718***
6	-3.419***	-1.207***	-10.791***	-0.412**	-0.274**	-5.466***

- Armantier, O., Topa, G., Van der Klaauw, W., and Zafar, B. (2017). An overview of the Survey of Consumer Expectations. Economic Policy Review, (23-2):51-72.
- Bertrand, M. and Mullainathan, S. (2001). Do people mean what they say? Implications for subjective survey data. American Economic Review, 91(2):67-72.
- Bloom, N., Guvenen, Fatih, P. L., Sabelhaus, J., Salgado, S., and Song, J. (2018). The great micro moderation. Working paper.
- Carroll, C. D., Crawley, E., Slacalek, J., Tokuoka, K., and White, M. N. (2018). Sticky expectations and consumption dynamics. Technical report, National Bureau of Economic Research.
- Catherine, S. (2019). Countercyclical Labor Income Risk and Portfolio Choices over the Life-Cycle. SSRN Scholarly Paper ID 2778892, Social Science Research Network, Rochester, NY.
- Coibion, O. and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities? Journal of Political Economy, 120(1):116–159.

- Delavande, A., Giné, X., and McKenzie, D. (2011). Measuring subjective expectations in developing countries: A critical review and new evidence. *Journal of development economics*, 94(2):151–163.
- Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. *Journal of Business & Economic Statistics*, 27(1):30–41.
- Evans, G. W. and Honkapohja, S. (2012). Learning and expectations in macroeconomics. Princeton University Press.
- Flavin, M. A. (1988). The Excess Smoothness of Consumption: Identification and Interpretation. Working Paper 2807, National Bureau of Economic Research.
- Fuhrer, J. C. (2018). Intrinsic expectations persistence: evidence from professional and household survey expectations.
- Guvenen, F., Ozkan, S., and Song, J. (2014). The nature of countercyclical income risk. *Journal of Political Economy*, 122(3):621–660.

- Kaufmann, K. and Pistaferri, L. (2009). Disentangling insurance and information in intertemporal consumption choices. American Economic Review, 99(2):387-92.
- Lian, C. (2019). Consumption with imperfect perception of wealth. Working paper.
- Malmendier, U. and Nagel, S. (2015). Learning from inflation experiences. The Quarterly Journal of Economics, 131(1):53–87.
- Manski, C. F. (2004). Measuring expectations. *Econometrica*, 72(5):1329-1376.
- Manski, C. F. (2018). Survey measurement of probabilistic macroeconomic expectations: progress and promise. NBER Macroeconomics Annual, 32(1):411-471.
- Meghir, C. and Pistaferri, L. (2011). Earnings, consumption and life cycle choices. In Handbook of labor economics, volume 4, pages 773–854. Elsevier.
- Pistaferri, L. (2001). Superior information, income shocks, and the permanent income hypothesis. Review of Economics and Statistics, 83(3):465-476.

- Rozsypal, F. and Schlafmann, K. (2017). Overpersistence bias in individual income expectations and its aggregate implications.
- Storesletten, K., Telmer, C. I., and Yaron, A. (2004). Cyclical dynamics in idiosyncratic labor market risk. *Journal of political Economy*, 112(3):695–717.