ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE		KATEDRA FYZIKY				
LABORATORNÍ CVIČENÍ Z FYZIKY						
^{Jméno} Mirosla	v Tržil			Datum měření	31.10.2017	
Stud. rok 201	7-2018	Ročník	Druhý	Datum odevzdání	14.10.2017	
Stud. skupina 1-1	02-1021	Lab. skupina	9	Klasifikace		
				ı		
Číslo úlohy 8	Název úlohy	Studium	fotoefektu a s	tanovení Planckov	y konstanty	

1. Úkol měření

- Na základě měření vnějšího fotoelektrického jevu stanovte velikost Planckovy konstanty h.
- Určete mezní kmitočet a výstupní práci materiálu fotokatody použité fotonky.
 Porovnejte tuto hodnotu s výstupními pracemi jiných materiálů a odhadněte, z jakého materiálu je tato fotokatoda vyrobena.
- Určete nejistotu měření pro všechny veličiny určené v bodech 1 a 2
- Vypracujte graf závislosti maximální kinetické energie elektronů na frekvenci záření W_k
 = f(ϑ).
- Změřte závislost fotoelektrického proudu na velikosti brzdného potenciálu pro dvě vlnové délky.
- Do jednoho grafu vyneste pro obě vlnové délky změřené závislosti fotoelektrického proudu na velikosti brzdného potenciálu.
- Porovnejte hodnotu změřené Planckovy konstanty s tabulkovou hodnotou a rozdíl zhodnoťte.
- Měření a zpracování dat v bodech 1-7 proveďte zvlášť pro obě instalované měřící aparatury, závislosti $W_k = f(\vartheta)$ vyneste do jednoho (společného) grafu. Body 5-6 provádějte pouze pro soupravu se spektrálním fotometrem Spekol.

2. Použité pomůcky

- Soustava se spektrálním fotometrem Spekol
 - o Fotonka je plněná plynem může ovlivnit výsledek
 - O Nejmenší dílek stupnice pro měření proudu: 1 μΑ
 - o Nejmenší dílek stupnice pro nastavení vlnové délky světla: 1nm
- Digitální multimetr MY 64
 - o Měřeno napětí v rozsahu do 2V, nejistota: ±5% z údaje ±1 digit
- Souprava s výbojkou a monochromatickými filtry
- Multimetr Hang chang HC-5050DB
 - o Měřeno napětí v rozsahu do 2V, nejistota: 15% z údaje ±5 digit

3. Postup měření

- K měření jsme měli k dispozici 2 různé aparatury: spektrální fotometr Spekol a soupravu s výbojkou a monochromatickými filtry. Na první soupravě jsme měřili závislost fotoelektrického proudu na brzdném napětí a maximální kinetickou energii elektronu na vlnové délce světla. Na druhé soupravě jsme měřili pouze maximální kinetickou energii elektronu na vlnové délce světla.
- Detailní postup je k nalezení v zadání úlohy¹. Uvedu zde pouze poznámku k měření na ručičkovém měřáku se zrcátkem, je důležité naštelovat hlavu tak, aby obraz ručičky byl v zákrytu s ručičkou samotnou (je vidět pouze jedenkrát). Díky tomu víme, že se na měřák nekoukáme z boku a odečítáme hodnotu, kterou nám měřák ukazuje.

4. Použité veličiny a konstanty

λ vlnová délka [mm] nastavováno na fotometru ı fotoelektrický proud [A] měřeno na fotometru U kompenzační napětí [V] měřeno multimetrem MY-64 a HC-5050DB h Planckova konstanta [eV] Α Výstupní práce [eV] W_k kinetická energie emitovaného elektronu [eV] θ kmitočet dopadajícího světla [PHz] $c = 2,998 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$ rychlost světla ve vaku

¹ http://herodes.feld.cvut.cz/mereni/downloads/navody/planck.pdf 13.11.17

5. Stanovení Planckovy konstanty h a výstupní práce

Tabulky naměřených hodnot

Spektární fotometr Spekol					
λ[nm]	U[V]	ϑ[PHz]			
375	1,2206	0,7995			
400	1,0084	0,7495			
425	0,8521	0,7054			
450	0,7330	0,6662			
475	0,6382	0,6312			

Souprava s monochromatickými filtry					
λ[nm]	U[V]	ϑ[PHz]			
408	1,058	0,7348			
436	0,869	0,6876			
546	0,423	0,5491			
578	0,314	0,5187			

Kde pro kmitočet dopadajícího světla platí:

$$\vartheta = \frac{c}{\lambda}$$

• Pro Plancovu konstantu platí:

$$W_k = h\vartheta - A = e \cdot U$$

• W_k a ϑ jsme vynesli do grafu a pomocí metody nejmenších čtverců proložili přímkou. (za pomoci: http://herodes.feld.cvut.cz/mereni/grafy-new/grafy.php)

$$W_k = a_0 \vartheta - a_1$$

Zavislost maximalní kinetické energie na kmitoctu dopadajciho svetla

- Pro parametry proložené přímky platí
 - o Pro spektární fotometr Spekol

$$\circ$$
 a₀ = -1,561

$$\circ$$
 a₁ = 3,452

Pro soupravu s monochromatickými filtry

$$\circ$$
 a₀ = -1,439

$$\circ$$
 a₁ = 3,403

 \circ Lineární člen (a_1) je přímo úměrný Plánkově konstantě a konstantní člen (a_0) je přímo úměrný práci, protože jsem kinetickou energii (W_k) dosazovali v eV a kmitočty v pentahertzích dostáváme:

$$A = -a_0 \ eV$$

$$h = 1,602 \cdot 10^{-34} \cdot a_1 \ J \cdot s$$

• Pro spektární fotometr Spekol dostáváme výsledky

$$h_1 = 1,602 \cdot 10^{-34} \cdot 3,452 = 5,530 \cdot 10^{-34} J \cdot s$$

 $A_1 = 1,561 \ eV$

• Pro soupravu s monochromatickými filtry dostáváme výsledky

$$h_2 = 1,602 \cdot 10^{-34} \cdot 3,452 = 5,452 \cdot 10^{-34} J \cdot s$$

 $A_2 = 1,439eV$

6. Výpočet nejistot

- Pro spektární fotometr Spekol
 - Určení nejistoty vlnové délky (λ) z rozlišení přístroje

$$u_{B(\lambda)} = \pm \frac{1}{\sqrt{12}} = \pm 3,46nm$$

o Určení nejistoty napětí (U) z rozlišení přístroje

$$u_{B(U)} = \pm (1.19 \cdot 10^{-3} + 3 \cdot 10^{-3}) = \pm 4.19 mV$$

- Pro soupravu s monochromatickými filtry
 - o Určení nejistoty napětí (U) z rozlišení přístroje

$$u_{B(U)} = \pm (0.015 + 5 \cdot 10^{-3}) = \pm 20 mV$$

7. Závislost fotoelektrického proudu na brzdném napětí

Tabulka naměřených hodnot

	λ = 400	λ = 420
	nm	nm
I[μA]	U [V]	U [V]
100	0,0004	0,0024
90	0,0435	0,0362
80	0,1030	0,0828
70	0,1584	0,1325
60	0,2200	0,1837
50	0,2828	0,2407
40	0,3560	0,3038
30	0,4427	0,3750
20	0,5520	0,4702
10	0,7000	0,5950

Graf

Zavislost fotoelektrickeho proudu na brzdnem potencialu

8. Výsledek

0.1

0

Pro spektární fotometr Spekol dostáváme výsledky

20

$$h_1 = 5,530 \cdot 10^{-34} J \cdot s$$

 $A_1 = 1,561 \, eV$

60

fotoelektricky proud I [uA]

80

100

Pro soupravu s monochromatickými filtry dostáváme výsledky

40

$$h_2 = 5,452 \cdot 10^{-34} J \cdot s$$

 $A_2 = 1,439 \, eV$

9. Závěr

- Tabulková hodnota Planckovy konstanty je h = 6,63·10² J·s². Námi vypočtená hodnota pro spektrální fotometr Spekol je h₁= 5,530·10⁻³⁴ J·s což je 16,5% rozdíl oproti tabulové hodnotě. Tento rozdíl lze vysvětlit tím, že fotonka je plněna plynem, nikoli vakuem. Pro soustavu s monochromatickými flitry nám vyšel výsledek h₂ = 5,452·10⁻³⁴ J·s představující odchýlení od tabulkové hodnoty 17,7%. Překvapuje mne takto velký rozdíl, neboť v tomto případě byla fotonka "plněna" vakuem. Tento rozdíl podle mne vznikl na multimetru.
- Výstupní práce elektronů vyšla pro spektrální fotometr Spekol A_1 =1,561 eV a pro sadu s monochromatickými filtry A_2 =1,439 eV. V tabulkách³ se je k této hodnotě nejblíže cesium A = 1,93 což dělá rozdíl 19,1% rozdíl pro Spekol a 25,4% pro sadu s monochromatickými filtry.

² http://herodes.feld.cvut.cz/mereni/downloads/navody/planck.pdf 13.11.2017

³ http://herodes.feld.cvut.cz/mereni/downloads/navody/planck.pdf 13.11.2017

10. Literatura

- http://herodes.feld.cvut.cz/mereni/downloads/navody/tuht.pdf
- http://herodes.feld.cvut.cz/mereni/downloads/manualy/my65.pdf
- http://herodes.feld.cvut.cz/mereni/grafy-new/ukaz.php