Novel metrics and nearest-neighbor distance distributions in high dimensional bioinformatics data

Bryan A. Dawkins<sup>1</sup>, Trang T. Le<sup>2</sup> and Brett A. McKinney<sup>1,3,\*</sup>

### Abstract

Nearest-neighbor projected distance regression (NPDR) is a feature selection algorithm that is able to detect interactions in high dimensional data. The performance of NPDR and other nearest neighbor methods depends on the metric for computing neighborhoods and the expected moments of the distribution of pairwise distances for the given data type. We derive general analytical expressions for distributional properties of pairwise distances for  $L_q$  metrics for Gaussian and uniform data with p attributes and m instances. These expressions are applicable to the analysis of gene expression data. We derive similar analytical expressions for a new metric for genome-wide association study data (categorical predictors) and a new metric for resting-state fMRI data (correlation-based predictors). In addition, we consider the effect of correlation in the data.

## Author summary

Introduction

Feature selection that relies on nearest neighbor algorithms in order to determine relative feature importance requires an understanding of distributional properties for a variety of different metrics. This is, in large part, due to how various statistical effects change distance distributions. For continuous data,  $L_q$  metrics with q=1 or q=2 are those most commonly used in this context. For data from standard normal  $(\mathcal{N}(0,1))$  or standard uniform  $(\mathcal{U}(0,1))$  distributions, the asymptotic behavior of the  $L_q$  metrics is known. However, detailed derivations of these distance distribution asymptotics are not commonly found or mentioned in the literature on nearest-neighbor distance based feature selection [1–3]. Furthermore, there is much work to be done to better understand new metrics in discrete data, such as, genome-wide association studies (GWAS) data or correlation data like resting-state fMRI (rs-fMRI).

10

12

16

17

18

22

23

Much work has been done in feature selection for rs-fMRI data [4–7]. Typical feature selection methods include, but are not limited to, best subset feature selection, k-fold cross-validation, and nested cross-validation. In each method, a modeling procedure is chosen along with selected features to optimize some objective, such as, classification accuracy or mean squared error. The features to be selected are usually Regions of Interest (ROIs), which are formed by averaging the time series from highly correlated voxels. By combining voxels into a single ROI, the feature space is greatly reduced. Typically, correlations are then computed between all pairs of ROIs. A matrix of pairwise ROI-ROI correlations is created for each instance (or subject) in a data set. To the best of our knowledge, nearest-neighbor distance based feature selection has not been applied in the context of rs-fMRI. Since these nearest-neighbor distance-based methods have

September 12, 2019 1/44

<sup>&</sup>lt;sup>1</sup>Department of Mathematics, University of Tulsa, Tulsa, OK 74104, USA

<sup>&</sup>lt;sup>2</sup>Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104

<sup>&</sup>lt;sup>3</sup>Tandy School of Computer Science, University of Tulsa, Tulsa, OK 74104, USA.

been shown to be able to detect interactions in high-dimensional data [1,2,8], rs-fMRI data is potentially one area in which these methods have not sufficiently exploited. Therefore, we introduce a new metric to be used in combination with NPDR in order to explore potential insights these methods may provide in time series-correlation (ts-corr) based data like rs-fMRI. In this manuscript, we derive asymptotic estimates for the mean and variance of distance distributions induced by our new ts-corr based metric.

Newly introduced to feature selection in GWAS data is a metric that accounts for genotype mismatch (GM), allele mismatch (AM), transitions (Ti), and transversions (Tv) [9]. This TiTv metric provides one additional dimension of information for which GM and AM metrics do not account. Another positive aspect of this metric is its comparable simplicity to the GM and AM metrics. That is, it takes on a finite number of discrete values. We will derive asymptotic formulas for the mean and variance for all three of these GWAS metrics. Since the TiTv metric has been introduced only recently, all of our associated derivations will be new contributions.

Optimal choices of neighborhood selection parameters, such as, fixed-radius or fixed-k depend on distance distributional properties with respect to the instance dimension. As neighborhood order increases, nearest neighbor distance based algorithms get better at detecting main effects [8]. On the other hand, their ability to detect interaction effects decreases as neighborhood order increases [8]. These different statistical effects impact distance distributions by introducing positive skewness and increased variance, which can lead to changes in neighborhood inclusion. In order to understand how statistical effects impact distance distributions in continuous and discrete data types, we first derive distance asymptotics for null data where instances are independently and identically distributed and there is no correlation between features. Using these derivations, we can then determine how statistical effects and correlation change distance distributional properties from the null case.

We begin with derivations applicable to continuously distributed data sets with m instances and p features. From these more general derivations, we focus on the cases of standard normal and standard uniform data distributions. We then make a transition to discrete data in which each value in the  $m \times p$  data matrix is from a binomial distribution parameterized by n=2 trials and some success probability. The final set of asymptotic results will be for our ts-corr metric, with a particular emphasis on rs-fMRI data. Lastly, we show how correlation in the attribute space changes distance distributional properties.

## 1 Derivations of distance asymptotics for common metrics used in continuous data

The distance between instances i and j in the data set  $X^{m \times p}$  of m instances and p attributes is calculated in the space of all attributes ( $a \in \mathcal{A}$ ,  $|\mathcal{A}| = p$ ) using a metric such as

$$D_{ij}^{(q)} = \left(\sum_{a \in A} |d_{ij}(a)|^q\right)^{1/q},\tag{1}$$

which is typically Manhattan (q = 1) but may also be Euclidean (q = 2). The quantity  $d_{ij}(a)$ , known as a "diff" in Relief literature, is the projection of the distance between instances i and j onto the attribute a dimension. The function  $d_{ij}(a)$  supports any type of attributes (e.g., numeric and categorical). For example, the projected difference between two instances i and j for a continuous numeric  $(d^{num})$  attribute a may be

$$d_{ij}^{\text{num}}(a) = \text{diff}(a, (i, j))$$

$$= |\hat{X}_{ia} - \hat{X}_{ja}|, \qquad (2)$$

September 12, 2019 2/44

where  $\hat{X}$  represents the standardized data matrix X. We use a simplified  $d_{ij}(a)$  notation in place of the  $\mathrm{diff}(a,(i,j))$  notation that is customary in Relief-based methods. We omit the division by  $\max(a) - \min(a)$  used by Relief to constrain scores to the interval from -1 to 1. As we show in subsequent sections, NPDR scores are standardized regression coefficients with corresponding P values, so any scaling operation at this stage is unnecessary for comparing attribute scores. The numeric  $d_{ij}^{\mathrm{num}}(a)$  projection is simply the absolute difference between row elements i and j of the data matrix  $X^{m \times p}$  for the attribute column a.

We define the NPDR neighborhood set  $\mathcal{N}$  of ordered pair indices as follows. Instance i is a point in p dimensions, and we designate the topological neighborhood of i as  $N_i$ . This neighborhood is a set of other instances trained on the data  $X^{m \times p}$  and depends on the type of Relief neighborhood method (e.g., fixed-k or adaptive radius) and the type of metric (e.g., Manhattan or Euclidean). If instance j is in the neighborhood of i  $(j \in N_i)$ , then the ordered pair  $(i,j) \in \mathcal{N}$  for the projected-distance regression analysis. The ordered pairs constituting the neighborhood can then be represented as nested sets:

$$\mathcal{N} = \{ \{ (i,j) \}_{i=1}^m \}_{\{ j \neq i: j \in N_i \}}. \tag{3}$$

The cardinality of the set  $\{j \neq i : j \in N_i\}$  is  $k_i$ , the number of nearest neighbors for subject i.

### 1.1 Distribution of pairwise distances

Suppose that  $X_{ia}, X_{ja} \stackrel{iid}{\sim} \mathcal{F}_X(\mu_X, \sigma_X^2)$  for two fixed and distinct instances  $(i, j) \in \mathcal{N}$  and a fixed attribute  $a \in \mathcal{A}$ .  $\mathcal{F}_X$  represents any data distribution with mean  $\mu_X$  and variance  $\sigma_X^2$ .

It is clear that  $|X_{ia} - X_{ja}|^q = |d_{ij}(a)|^q$  is another random variable. Let  $Z_a^q \sim \mathcal{F}_{Z^q}(\mu_{z^q}, \sigma_{z^q}^2)$  be the random variable such that

$$Z_a^q = |d_{ij}(a)|^q = |X_{ia} - X_{ja}|^q, \quad a \in \mathcal{A}.$$
 (4)

Furthermore, the collection  $\{Z_a^q | a \in \mathcal{A}\}$  is a random sample of size p of mutually independent random variables. Hence, the sum of  $Z_a^q$  over all  $a \in \mathcal{A}$  is asymptotically normal by the Classical Central Limit Theorem (CCLT). More explicitly, this implies that

$$\left(D_{ij}^{(q)}\right)^q = \sum_{a \in \mathcal{A}} |d_{ij}(a)|^q = \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q = \sum_{a \in \mathcal{A}} Z_a^q \sim \mathcal{N}\left(\mu_{z^q} p, \sigma_{z^q}^2 p\right). \tag{5}$$

Consider the smooth function  $g(z) = z^{1/q}$  that is continuously differentiable for z > 0. Assuming that  $\mu_{z^q} > 0$ , the Delta Method [10] can be applied to show that

$$g\left(\left(D_{ij}^{(q)}\right)^{q}\right) = g\left(\sum_{a \in \mathcal{A}}^{p} Z_{a}^{q}\right)$$

$$= \left(\sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^{q}\right)^{1/q}$$

$$= D_{ij}^{(q)} \stackrel{\cdot}{\sim} \mathcal{N}\left(g\left(\mu_{z^{q}}p\right), \left[g'\left(\mu_{z^{q}}p\right)\right]^{2} \sigma_{z^{q}}^{2}p\right)$$

$$\Rightarrow D_{ij}^{(q)} \stackrel{\cdot}{\sim} \mathcal{N}\left(\left(\mu_{z^{q}}p\right)^{1/q}, \frac{\sigma_{z^{q}}^{2}p}{q^{2}\left(\mu_{z^{q}}p\right)^{2\left(1-\frac{1}{q}\right)}}\right).$$
(6)

69

71

73

75

77

82

Therefore, the distance between two fixed, distinct instances i and j given by Eq. 1 is asymptotically normal. Specifically, when q=2, the distribution of  $D_{ij}^{(2)}$  asymptotically approaches  $\mathcal{N}\left(\sqrt{\mu_{z^2}p},\frac{\sigma_{z^2}^2}{4\mu_{z^2}}\right)$ . When p is small, however, we observe empirically that a closer estimate of the sample mean is

$$E\left(D_{ij}^{(2)}\right) = \sqrt{E\left[\left(D_{ij}^{(2)}\right)^{2}\right] - \operatorname{Var}\left(D_{ij}^{(2)}\right)}$$
$$= \sqrt{\mu_{z^{2}}p - \frac{\sigma_{z^{2}}^{2}}{4\mu_{z^{2}}}}.$$
(7)

101

103

104

105

106

107

108

109

110

112

113

114

115

116

118

119

120

121

122

123

124

125

126

127

129

130

131

132

One can readily verify the normality of distances between independent instances through sampling from any data distribution and plotting the histogram of pairwise distances. Histograms of distance distributions for standard uniform data for Euclidean (q=2) and Manhattan (q=1) metrics are shown in Fig. 1. For these simulated distances, we fixed m=100 and let p=10,100,10000 to see the convergence for different combinations of m and p. Normality was assessed using the Shapiro-Wilk test. The null hypothesis of this test is that the distribution is normally distributed. In each case, the W-statistics is approximately equal to 1. In the case of the Manhattan metric, convergence does not occur as rapidly as Euclidean. The W-statistic is significant at the 0.05 level for both p=10 and p=100 attributes, which would seem to indicate that there is sufficient evidence to conclude that the distribution is not normal. However, it is still safe to assume normality for most purposes despite the significant p-values. In certain circumstances it may be better to use the Euclidean metric due to the apparently increased rate of convergence.

For distance based learning methods, all pairwise distances are used to determine relative importances for attributes. The collection of all distances above the diagonal in an  $m \times m$  distance matrix does not satisfy the independence assumption used in the previous derivations. This is because of the redundancy that is inherent to the distance matrix calculation. However, this collection is still asymptotically normal with mean and variance approximately equal to those given in Eq. 6. Hence, all fixed-radius methods will use a fixed radius that is some fraction of the expected pairwise distance for a given metric and data type. This implies that the probability of a fixed instance j being within a fixed radius of a given instance i can be parameterized by the expected pairwise distance and the variance of the pairwise distance. This probability is obtained by evaluating the normal cumulative distribution function (CDF), with corresponding mean and variance, at the quantile given by some function of the fixed radius. Therefore, we can derive the expected number of neighbors in the neighborhood of a fixed instance i. In other words, for sufficiently large data sets, the sample mean of the number of neighbors in a given neighborhood is well approximated by the product between the total number of possible neighbors and the expected probability of an instance being in a given neighborhood. The total number of possible neighbors for a fixed instance i is always m-1, but this becomes approximately  $\lfloor \frac{m-1}{2} \rfloor$  when delineating between possible hits and misses for balanced data.

September 12, 2019 4/44



Fig 1. Convergence to normality of Manhattan and Euclidean distances. For each simulated distance distribution, we fixed m = 100 instances and let p = 10, 100, 10000. It is clear that convergence is rapid, and approximate normality can be safely assumed for even p = 10.

## 2 Derivation of means and standard deviations for metrics and data distributions

# **2.1** Distribution of $|d_{ij}(a)|^q = |X_{ia} - X_{ja}|^q$

Suppose that  $X_{ia}, X_{ja} \stackrel{iid}{\sim} \mathcal{F}_X(\mu_x, \sigma_x^2)$  and define  $Z_a^q = |d_{ij}(a)|^q = |X_{ia} - X_{ja}|^q$ , where  $a \in \mathcal{A}$  and  $|\mathcal{A}| = p$ . In order to find the distribution of  $Z_a^q$ , we will use the following theorem given in [11].

**Theorem 2.1** Let f(x) be the value of the probability density of the continuous random variable X at x. If the function given by y = u(x) is differentiable and either increasing or decreasing for all values within the range of X for which  $f(x) \neq 0$ , then, for these values of x, the equation y = u(x) can be uniquely solved for x to give x = w(y), and for the corresponding values of y the probability density of Y = u(X) is given by

$$g(y) = f[w(y)] \cdot |w'(y)|$$
 provided  $u'(x) \neq 0$ 

Elsewhere, g(y) = 0.

September 12, 2019

134

135

136 137

138

139

140

141

142

We have the following cases that result from solving for  $X_{ja}$  in the equation given by  $Z_a^q = |X_{ia} - X_{ja}|^q$ :

(i) Suppose that  $X_{ja} = X_{ia} - (Z_a^q)^{1/q}$ . Based on the iid assumption for  $X_{ia}$  and  $X_{ja}$ , it follows from Thm. 2.1 that the joint density function  $g^{(1)}$  of  $X_{ia}$  and  $Z_a^q$  is given by

$$g^{(1)}(x_{ia}, z_{a}) = f_{X}(x_{ia}, x_{ja}) \left| \frac{\partial x_{ja}}{\partial z_{a}} \right|$$

$$= f_{X}(x_{ia}) f_{X}(x_{ja}) \left| \frac{-1}{q} (z_{a}^{q})^{\frac{1}{q} - 1} \right|$$

$$= \frac{1}{q (z_{a}^{q})^{1 - \frac{1}{q}}} f_{X}(x_{ia}) f_{X} \left( x_{ia} - (z_{a}^{q})^{1/q} \right), \quad z_{a} > 0$$
(8)

The density function  $f_{Z^q}^{(1)}$  of  $Z_a^q$  is then defined as

$$f_{Z^q}^{(1)}(z_a^q) = \int_{-\infty}^{\infty} g^{(1)}(x_{ia}, z_a^q) dx_{ia}$$

$$= \frac{1}{q(z_a^q)^{1-\frac{1}{q}}} \int_{-\infty}^{\infty} f_X(x_{ia}) f_X\left(x_{ia} - (z_a^q)^{1/q}\right) dx_{ia}, \quad z_a > 0.$$
(9)

(ii) Suppose that  $X_{ja} = X_{ia} + (Z_a^q)^{1/q}$ . Based on the iid assumption for  $X_{ia}$  and  $X_{ja}$ , it follows from Thm. 2.1 that the joint density function  $g^{(2)}$  of  $X_{ia}$  and  $Z_a$  is given by

$$g^{(2)}(x_{ia}, z_a) = f_X(x_{ia}, x_{ja}) \left| \frac{\partial x_{ja}}{\partial z_a} \right|$$

$$= f_X(x_{ia}) f_X(x_{ja}) \left| \frac{1}{q} (z_a^q)^{\frac{1}{q} - 1} \right|$$

$$= \frac{1}{q (z_a^q)^{1 - \frac{1}{q}}} f_X(x_{ia}) f_X \left( x_{ia} - (z_a^q)^{1/q} \right), \quad z_a > 0.$$
(10)

The density function  $f_{Z^q}^{(2)}$  of  $Z_a^q$  is then defined as

$$f_{Z^q}^{(2)}(z_a^q) = \int_{-\infty}^{\infty} g^{(2)}(x_{ia}, z_a^q) dx_{ia}$$

$$= \frac{1}{q (z_a^q)^{1-\frac{1}{q}}} \int_{-\infty}^{\infty} f_X(x_{ia}) f_X\left(x_{ia} + (z_a^q)^{1/q}\right) dx_{ia}, \quad z_a > 0.$$
(11)

Let  $F_{Z^q}$  denote the distribution function of the random variable  $Z^q_a$ . Furthermore, we define the events  $E^{(1)}$  and  $E^{(2)}$  as

$$E^{(1)} = \left\{ |X_{ia} - X_{ja}|^q \le z_a^q |X_{ja} = X_{ia} - (Z_a^q)^{1/q} \right\}$$
 (12)

and

$$E^{(2)} = \{ |X_{ia} - X_{ja}|^q \le z_a^q | X_{ja} = X_{ia} + (Z_a^q)^{1/q} \}.$$
 (13)

150

154

Then it follows from fundamental rules of probability that

$$F_{Z^{q}}(z_{a}^{q}) = P\left[Z_{a}^{q} \leq z_{a}^{q}\right]$$

$$= P\left[|X_{ia} - X_{ja}|^{q} \leq z_{a}^{q}\right]$$

$$= P\left[E^{(1)} \cup E^{(2)}\right]$$

$$= P\left[E^{(1)}\right] + P\left[E^{(2)}\right] - P\left[E^{(1)} \cap E^{(2)}\right]$$

$$= P\left[E^{(1)}\right] + P\left[E^{(2)}\right]$$

$$= \int_{-\infty}^{z_{a}^{q}} f_{Z^{q}}^{(1)}(t)dt + \int_{-\infty}^{z_{a}^{q}} f_{Z^{q}}^{(2)}(t)dt$$

$$= \int_{-\infty}^{z_{a}^{q}} \left(f_{Z^{q}}^{(1)}(t) + f_{Z^{q}}^{(2)}(t)\right)dt$$

$$= \frac{1}{q\left(z_{a}^{q}\right)^{1-\frac{1}{q}}} \int_{-\infty}^{z_{a}^{q}} \left(\int_{-\infty}^{\infty} f_{X}(x_{ia}) \left[f_{X}(x_{ia} - t) + f_{X}(x_{ia} + t)\right]dx_{ia}\right)dt, \quad z_{a} > 0.$$
(14)

It follows directly from the result in Eq. 14 that the density function of the random variable  $Z_a^q$  is given by

$$f_{Z^{q}}(z_{a}^{q}) = \frac{\partial}{\partial z_{a}^{q}} F_{Z^{q}}(z_{a}^{q})$$

$$= \frac{1}{q (z_{a}^{q})^{1-\frac{1}{q}}} \int_{-\infty}^{\infty} f_{X}(x_{ia}) \left[ f_{X} \left( x_{ia} - (z_{a}^{q})^{1/q} \right) + f_{X} \left( x_{ia} + (z_{a}^{q})^{1/q} \right) \right] dx_{ia},$$
(15)

where  $z_a > 0$ .

Using Eq. 15, we can compute the mean and variance of the random variable  $Z_a^q$  as

$$\mu_{z^q} = \int_{-\infty}^{\infty} z_a^q f_{Z^q}(z_a^q) \mathrm{d}z_a^q \tag{16}$$

158

163

166

167

and

$$\sigma_{z^q}^2 = \int_{-\infty}^{\infty} (z_a^q)^2 f_{Z^q}(z_a^q) dz_a^q - \mu_{z^q}^2.$$
 (17)

It follows immediately from Eqs. 16 and 17 and the Classical Central Limit Theorem  $\,$   $_{164}$  (CCLT) that  $\,$ 

$$\left(D_{ij}^{(q)}\right)^q = \sum_{a \in \mathcal{A}} Z_a^q = \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q \sim \mathcal{N}\left(\mu_{z^q} p, \sigma_{z^q}^2 p\right). \tag{18}$$

Applying the result given in Eq. 6, the distribution of  $D_{ij}^{(q)}$  is given by

$$D_{ij}^{(q)} \sim \mathcal{N}\left(\left(\mu_{z^q} p\right)^{1/q}, \frac{\sigma_{z^q}^2 p}{q^2 \left(\mu_{z^q} p\right)^{2\left(1-\frac{1}{q}\right)}}\right), \quad \mu_{z^q} > 0$$
(19)

with improved estimate of the mean for q=2 given by Eq. 7.

### 2.1.1 Standard normal data

If  $X_{ia}, X_{ja} \stackrel{iid}{\sim} \mathcal{N}(0,1)$ , then the marginal density functions with respect to X for  $X_{ia}$ ,  $X_{ia} - (Z_a^q)^{1/q}$ , and  $X_{ia} + (Z_a^q)^{1/q}$  are defined as

$$f_X(x_{ia}) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x_{ia}^2},\tag{20}$$

September 12, 2019 7/44

$$f_X\left(x_{ia} - (z_a^q)^{1/q}\right) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(x_{ia} - (z_a^q)^{1/q}\right)^2}, \quad z_a > 0, \text{ and}$$
 (21)

$$f_X\left(x_{ia} + (z_a^q)^{1/q}\right) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}\left(x_{ia} + (z_a^q)^{1/q}\right)^2}, \quad z_a > 0.$$
 (22)

Substituting the results given by Eqs. 20-22 into Eq. 15 and completing the square on  $x_{ia}$  in the exponents, we have

$$f_{Z^{q}}(z_{a}^{q}) = \frac{1}{2q\pi (z_{a}^{q})^{1-\frac{1}{q}}} e^{-\frac{1}{4}(z_{a}^{q})^{2/q}} \int_{-\infty}^{\infty} \left( e^{-\frac{1}{2} \left[ \sqrt{2}x_{ia} - \frac{\sqrt{2}}{2} (z_{a}^{q})^{1/q} \right]^{2}} + e^{-\frac{1}{2} \left[ \sqrt{2}x_{ia} + \frac{\sqrt{2}}{2} (z_{a}^{q})^{1/q} \right]^{2}} \right) dx_{ia}$$

$$(23)$$

$$= \frac{1}{2q\sqrt{\pi} (z_a^q)^{1-\frac{1}{q}}} e^{-\frac{1}{4}(z_a^q)^{2/q}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \left( e^{-\frac{1}{2}u^2} + e^{-\frac{1}{2}u^2} \right) du$$
 (24)

$$= \frac{1}{2q\sqrt{\pi} (z_a^q)^{1-\frac{1}{q}}} e^{-\frac{1}{4}(z_a^q)^{2/q}} (1+1)$$
 (25)

$$= \frac{1}{q\sqrt{\pi}} \left(z_a^q\right)^{\frac{1}{q}-1} e^{-\frac{1}{4}(z_a^q)^{2/q}} \tag{26}$$

$$= \frac{\frac{2}{q}}{(2^q)^{1/q} \Gamma\left(\frac{1}{\frac{q}{2}}\right)} \left(z_a^q\right)^{\frac{1}{q}-1} e^{-\left(\frac{z_a^q}{2^q}\right)^{2/q}}.$$
 (27)

The density function given by Eq. 23 is a Generalized Gamma density with parameters  $b=\frac{2}{q},\ c=2^q,$  and  $d=\frac{1}{q}$ . This distribution has mean and variance given by

$$\mu_{z^q} = \frac{c\Gamma\left(\frac{d+1}{b}\right)}{\Gamma\left(\frac{d}{b}\right)}$$

$$= \frac{2^q\Gamma\left(\frac{q+1}{2}\right)}{\sqrt{\pi}}$$
(28)

and

$$\sigma_{z^{q}}^{2} = c^{2} \left[ \frac{\Gamma\left(\frac{d+2}{b}\right)}{\Gamma\left(\frac{d}{b}\right)} - \left(\frac{\Gamma\left(\frac{d+1}{b}\right)}{\Gamma\left(\frac{d}{b}\right)}\right)^{2} \right]$$

$$= 4^{q} \left[ \frac{\Gamma\left(q + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{1}{2}q + \frac{1}{2}\right)}{\pi} \right]. \tag{29}$$

By linearity of the expected value and variance operators under the iid assumption, 1 Eqs. 28 and 29 allow the p-dimensional mean and variance of the  $D_{ij}^{(q)}$  distribution to 1 be computed directly as

$$\mu_{\left(D_{ij}^{(q)}\right)^q} = \operatorname{E}\left[\left(D_{ij}^{(q)}\right)^q\right] = \operatorname{E}\left(\sum_{a \in \mathcal{A}} Z_a^q\right) = \sum_{a \in \mathcal{A}} \operatorname{E}\left(Z_a^q\right) = \sum_{a \in \mathcal{A}} \frac{2^q \Gamma\left(\frac{q+1}{2}\right)}{\sqrt{\pi}} = \frac{2^q \Gamma\left(\frac{q+1}{2}\right)}{\sqrt{\pi}} p$$
(30)

171

and 179

$$\sigma_{\left(D_{ij}^{(q)}\right)^{q}}^{2} = \operatorname{Var}\left[\left(D_{ij}^{(q)}\right)^{q}\right] = \operatorname{Var}\left(\sum_{a \in \mathcal{A}} Z_{a}^{q}\right)$$

$$= \sum_{a \in \mathcal{A}} \operatorname{Var}\left(Z_{a}^{q}\right)$$

$$= \sum_{a \in \mathcal{A}} 4^{q} \left[\frac{\Gamma\left(q + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{1}{2}q + \frac{1}{2}\right)}{\pi}\right]$$

$$= 4^{q} \left[\frac{\Gamma\left(q + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{1}{2}q + \frac{1}{2}\right)}{\pi}\right] p.$$
(31)

Therefore, the asymptotic distribution of  $D_{ij}^{(q)}$  for standard normal data is

$$\mathcal{N}\left(\left(2^{q}\frac{\Gamma\left(\frac{q+1}{2}\right)}{\sqrt{\pi}}p\right)^{1/q},\frac{4^{q}p}{q^{2}\left(\frac{2^{q}\Gamma\left(\frac{1}{2}q+\frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1-\frac{1}{q}\right)}}\left[\frac{\Gamma\left(q+\frac{1}{2}\right)}{\sqrt{\pi}}-\frac{\Gamma^{2}\left(\frac{1}{2}q+\frac{1}{2}\right)}{\pi}\right]\right). (32)$$

### 2.1.2 Standard uniform data

If  $X_{ia}, X_{ja} \stackrel{iid}{\sim} \mathcal{U}(0,1)$ , then the marginal density functions with respect to X for  $X_{ia}$ ,  $X_{ia} - (Z_a^q)^{1/q}$ , and  $X_{ia} + (Z_a^q)^{1/q}$  are defined as

$$f_X(x_{ia}) = 1, \quad 0 \le x_{ia} \le 1$$
 (33)

$$f_X\left(x_{ia} - (z_a^q)^{1/q}\right) = 1, \quad 0 \le x_{ia} - (z_a^q)^{1/q} \le 1, \text{ and}$$
 (34)

$$f_X\left(x_{ia} + (z_a^q)^{1/q}\right) = 1, \quad 0 \le x_{ia} + (z_a^q)^{1/q} \le 1.$$
 (35)

Substituting the results given by Eqs. 33-35 into Eq. 15, we have

$$f_{Z^q}(z_a^q) = \frac{1}{q \left(z_a^q\right)^{1-\frac{1}{q}}} \int_{-\infty}^{\infty} f_X(x_{ia}) \left[ f_X \left( x_{ia} - (z_a^q)^{1/q} \right) + f_X \left( x_{ia} + (z_a^q)^{1/q} \right) \right] dx_{ia},$$

$$0 < z_a \le 1$$

$$= \frac{1}{q \left( z_a^q\right)^{1-\frac{1}{q}}} \int_0^1 \left[ f_X(x_{ia} - (z_a^q) + f_X \left( x_{ia} + (z_a^q)^{1/q} \right) \right] dx_{ia}, \quad 0 < z_a \le 1$$

$$= \frac{1}{q \left( z_a^q\right)^{1-\frac{1}{q}}} \int_{(z_a^q)}^1 1 dx_{ia} + \int_0^{1-(z_a^q)} 1 dx_{ia}, \quad 0 < z_a \le 1$$

$$= \frac{1}{q \left( z_a^q\right)^{1-\frac{1}{q}}} \left[ (1 - (z_a^q)) + (1 - (z_a^q)) \right], \quad 0 < z_a \le 1$$

$$= \frac{1}{q} \cdot 2 \left( z_a^q \right)^{\frac{1}{q}-1} \left[ 1 - (z_a^q)^{1/q} \right]^{2-1}, \quad 0 < z_a \le 1.$$

The density given by Eq. 36 is a Kumaraswamy density with parameters  $b=\frac{1}{q}$  and c=2 with moment generating function (MGF) given by

$$M_n = \frac{c\Gamma\left(1 + \frac{n}{b}\right)\Gamma(c)}{\Gamma\left(1 + c + \frac{n}{b}\right)}$$

$$= \frac{2}{(nq+2)(nq+1)}.$$
(37)

Using the MGF given by Eq. 37, the mean and variance of  $\mathbb{Z}_a^q$  are computed as

$$\mu_{z^q} = \frac{2}{(q+2)(q+1)} \tag{38}$$

189

190

193

195

196

197

200

201

and

$$\sigma_{z^q}^2 = \frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^2. \tag{39}$$

By linearity of the expected value and variance operators under the iid assumption, Eqs. 40 and 41 allow the *p*-dimensional mean and variance of the  $\left(D_{ij}^{(q)}\right)^q$  distribution to be computed directly as

$$\mu_{\left(D_{ij}^{(q)}\right)^{q}} = \operatorname{E}\left[\left(D_{ij}^{(q)}\right)^{q}\right] = \operatorname{E}\left(\sum_{a \in \mathcal{A}} Z_{a}^{q}\right)$$

$$= \sum_{a \in \mathcal{A}} \operatorname{E}(Z_{a}^{q})$$

$$= \sum_{a \in \mathcal{A}} \frac{2}{(q+2)(q+1)}$$

$$= \frac{2p}{(q+2)(q+1)}$$
(40)

and 194

$$\sigma_{\left(D_{ij}^{(q)}\right)^{q}}^{2} = \operatorname{Var}\left[\left(D_{ij}^{(q)}\right)^{q}\right] = \operatorname{Var}\left(\sum_{a \in \mathcal{A}} Z_{a}^{q}\right)$$

$$= \sum_{a \in \mathcal{A}} \operatorname{Var}\left(Z_{a}^{q}\right)$$

$$= \sum_{a \in \mathcal{A}}\left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^{2}\right]$$

$$= \left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^{2}\right] p.$$
(41)

Therefore, the asymptotic distribution of  ${\cal D}^{(q)}_{ij}$  for standard uniform data is

$$\mathcal{N}\left(\left(\frac{2p}{(q+2)(q+1)}\right)^{1/q}, \frac{p}{q^2\left(\frac{2p}{(q+2)(q+1)}\right)^{2(1-\frac{1}{q})}} \left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^2\right]\right).$$
(42)

### 2.2 Manhattan (q=1)

With our general formulas for the asymptotic mean and variance given by Eqs. 32 and 42 for any value of  $q \in \mathbb{Z}^+$ , we can simply substitute a particular value of q in order to determine the asymptotic distribution of the corresponding distance metric  $D_{ij}^{(q)}$ . We demonstrate this with the example of the Manhattan (q=1) metric for standard normal and standard uniform data.

#### 2.2.1 Standard normal data

Using the mean given by Eq. 32 and substituting q=1, we have the following for standard normal data

$$E\left(D_{ij}^{(1)}\right) = \left(2\frac{\Gamma\left(\frac{1+1}{2}\right)}{\sqrt{\pi}}p\right)^{1/1}$$

$$= \frac{2p}{\sqrt{\pi}}\Gamma(1)$$

$$= \frac{2p}{\sqrt{\pi}}.$$
(43)

202

205

206

209

210

Similarly, the variance of  $D_{ij}^{(1)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1)}\right) = \frac{4^{1}p}{1^{2}\left(\frac{2^{1}\Gamma\left(\frac{1}{2}(1) + \frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1 - \frac{1}{1}\right)}} \left[\frac{\Gamma\left(1 + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{1}{2}(1) + \frac{1}{2}\right)}{\pi}\right]$$

$$= \frac{4p}{1}\left[\frac{\frac{1}{2}\Gamma\left(\frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}(1)}{\pi}\right]$$

$$= 4p\left[\frac{1}{2} - \frac{1}{\pi}\right]$$

$$= \frac{2(\pi - 2)p}{\pi}.$$
(44)

### 2.2.2 Standard uniform data

Using the mean given by Eq. 42 and substituting q=1, we have the following for standard uniform data

$$E\left(D_{ij}^{(1)}\right) = \left(\frac{2p}{(1+2)(1+1)}\right)^{1/1}$$

$$= \frac{2p}{6}$$

$$= \frac{p}{3}.$$
(45)

Similarly, the variance of  $D_{ij}^{(1)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1)}\right) = \frac{p}{1^2 \left(\frac{2p}{(1+2)(1+1)}\right)^{2(1-\frac{1}{1})}} \left[ \frac{1}{(1+1)(2(1)+1)} - \left(\frac{2}{(1+2)(1+1)}\right)^2 \right]$$

$$= p \left[ \frac{1}{6} - \frac{1}{9} \right]$$

$$= \frac{p}{18}.$$
(46)

### 2.3 Euclidean (q=2)

Analogous to the previous section, we demonstrate the usage of Eqs. 32 and 42 for the Euclidean (q = 2) metric for standard normal and standard uniform data.

### 2.3.1 Standard normal data

Using the mean given by Eq. 32 and substituting q=2, we have the following for standard normal data  $^{214}$ 

$$E\left(D_{ij}^{(2)}\right) = \left(2\frac{\Gamma\left(\frac{2+1}{2}\right)}{\sqrt{\pi}}p\right)^{1/2}$$

$$= \left(\frac{2p}{\sqrt{\pi}}\Gamma\left(\frac{3}{2}\right)\right)^{1/2}$$

$$= \sqrt{2p}.$$
(47)

213

216

221

222

Similarly, the variance of  $D_{ij}^{(2)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1)}\right) = \frac{4^{2}p}{2^{2}\left(\frac{2^{2}\Gamma\left(\frac{1}{2}(2) + \frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1 - \frac{1}{2}\right)}} \left[\frac{\Gamma\left(2 + \frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{1}{2}(2) + \frac{1}{2}\right)}{\pi}\right]$$

$$= \frac{16p}{4\left(\frac{4\Gamma\left(\frac{3}{2}\right)}{\sqrt{\pi}}p\right)} \left[\frac{\Gamma\left(\frac{5}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^{2}\left(\frac{3}{2}\right)}{\pi}\right]$$

$$= 2\left[\frac{3}{4} - \frac{1}{4}\right]$$

$$= 1$$
(48)

For the case in which the number of attributes p is small, an improved estimate of the mean is given by Eq. 7. The lower dimensional estimate of the mean is as follows 21

$$E\left(D_{ij}^{(2)}\right) = \left(2\frac{\Gamma\left(\frac{2+1}{2}\right)}{\sqrt{\pi}}p - 1\right)^{1/2}$$

$$= \left(\frac{2p}{\sqrt{\pi}}\Gamma\left(\frac{3}{2}\right) - 1\right)^{1/2}$$

$$= \sqrt{2p - 1}.$$
(49)

For high dimensional data sets, such as gene expression, rs-fMRI, or GWAS, it is clear that the magnitude of p will be sufficient to use Eq. 47 since  $\sqrt{2p} \approx \sqrt{2p-1}$  in that case.

#### 2.3.2 Standard uniform data

Using the mean given by Eq. 42 and substituting q=2, we have the following for standard uniform data

$$E\left(D_{ij}^{(2)}\right) = \left(\frac{2p}{(2+2)(2+1)}\right)^{1/2}$$

$$= \left(\frac{2p}{12}\right)^{1/2}$$

$$= \sqrt{\frac{p}{6}}.$$
(50)

Similarly, the variance of  $D_{ij}^{(2)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(2)}\right) = \frac{p}{2^2 \left(\frac{2p}{(2+2)(2+1)}\right)^{2\left(1-\frac{1}{2}\right)}} \left[\frac{1}{(2+1)(2(2)+1)} - \left(\frac{2}{(2+2)(2+1)}\right)^2\right]$$

$$= \frac{3}{2} \left[\frac{1}{15} - \frac{1}{36}\right]$$

$$= \frac{7}{120}.$$
(51)

For the case in which the number of attributes p is small, an improved estimate of the mean is given by Eq. 7. The lower dimensional estimate of the mean is as follows

$$E\left(D_{ij}^{(2)}\right) = \left(\frac{2p}{(2+2)(2+1)} - \frac{7}{120}\right)^{1/2}$$

$$= \left(\frac{2p}{12} - \frac{7}{120}\right)^{1/2}$$

$$= \sqrt{\frac{p}{6} - \frac{7}{120}}.$$
(52)

For high dimensional data sets, such as gene expression, rs-fMRI, or GWAS, it is clear that the magnitude of p will be sufficient to use Eq. 47 since  $\sqrt{\frac{p}{6}} \approx \sqrt{\frac{p}{6} - \frac{7}{120}}$  in that case.

### 2.4 Distribution of attribute extremes

For Relief-based methods [3, 12], the standard numeric diff metric is given by

$$d_{ij}^{\text{num}}(a) = \text{diff}(a, (i, j)) = \frac{|X_{ia} - X_{ja}|}{\max(a) - \min(a)},$$
(53)

where  $\max(a) = \max_{k \in \mathcal{I}} \{X_{ka}\}, \min(a) = \min_{k \in \mathcal{I}} \{X_{ka}\}, \text{ and } \mathcal{I} = \{1, 2, \dots, m\}.$ 

In order to determine moments of asymptotic distance distributions induced by Eq. 53, we must first derive the asymptotic extreme value distributions of the attribute maximum and minimum. Although the exact distribution of the maximum or minimum requires an assumption about the data distribution, the Fisher-Tippett-Gnedenko Theorem allows us to categorize the extreme value distribution for a collection of independent and identically distributed random variables into one of three distributional families. Before stating the theorem, we first need the following definition.

**Definition 2.1** A distribution  $\mathcal{F}_X$  is said to be **degenerate** if its density function  $f_X$  is the Dirac delta  $\delta(x-c_0)$  centered at a constant  $c_0 \in \mathbb{R}$ , with corresponding distribution function  $F_X$  defined as

$$F_X(x) = \begin{cases} 1, & x \ge c_0, \\ 0, & x < c_0. \end{cases}$$

Theorem 2.2 (Fisher-Tippett-Gnedenko) Let  $X_{1a}, X_{2a}, \dots, X_{ma} \stackrel{iid}{\sim} \mathcal{F}_X\left(\mu_x, \sigma_x^2\right)$  244 and let  $X_a^{max} = \max_{k \in \mathcal{I}} \{X_{ka}\}$ . If there exists two non-random sequences  $b_m > 0$  and  $c_m$  245 such that

September 12, 2019

225

231

232

233

236

238

239

240

241

242

$$\lim_{m \to \infty} P\left(\frac{X_a^{max} - c_m}{b_m} \le x\right) = G_X(x),$$

where  $G_X$  is a non-degenerate distribution function, then the limiting distribution  $\mathcal{G}_X$  is in the Gumbel, Fréchet, or Wiebull family.

The three distribution families given in Thm. 2.2 are actually special cases of the Generalized Extreme Value Distribution. In the context of extreme values, Thm. 2.2 is analogous to the Central Limit Theorem for the distribution of sample mean. We will take advantage of this theorem for the distribution of the maximum for standard normal data to show that the limiting distribution is in the Gumbel family. However, we will derive the distribution of the maximum and minimum for standard uniform data directly. Regardless of data type, the distribution of the sample maximum is derived as follows

$$P[X_a^{\max} \le x] = P\left[\max_{k \in \mathcal{I}} \{X_{ka}\} \le x\right]$$

$$= P[X_{1a} \le x, X_{2a} \le x, \dots, X_{ma} \le x]$$

$$= \prod_{k=1}^{m} P[X_{ka} \le x]$$

$$= \prod_{k=1}^{m} F_X(x)$$

$$= [F_X(x)]^m.$$
(54)

Therefore, we have the following expression for the distribution function of the maximum

$$F_{\text{max}}(x) = [F_X(x)]^m. \tag{55}$$

Differentiating the distribution function given by Eq. 55 gives us the following density
function for the distribution of the maximum

258

$$f_{\max}(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_{\max}(x)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} [F_X(x)]^m$$

$$= m[F_X(x)]^{m-1} f_X(x).$$
(56)

The distribution of the sample minimum,  $X_a^{\min}$ , is derived as follows

$$P[X_{a}^{\min} \leq x] = 1 - P[X_{a}^{\min} \geq x]$$

$$= 1 - P\left[\min_{k \in \mathcal{I}} \{X_{ka}\} \geq x\right]$$

$$= 1 - P[X_{1a} \geq x, X_{2a} \geq x, \dots, X_{ma} \geq x]$$

$$= 1 - \prod_{k=1}^{m} P[X_{ka} \geq x]$$

$$= 1 - [P[X_{1a} \geq x]]^{m}$$

$$= 1 - [1 - P[X_{1a} \leq x]]^{m}$$

$$= 1 - [1 - F_{X}(x)]^{m}.$$
(57)

Therefore, we have the following expression for the distribution function of the minimum 261

$$F_{\min}(x) = 1 - [1 - F_X(x)]^m. \tag{58}$$

248

249

250

251

252

253

254

257

Differentiating the distribution function given by Eq. 58 gives us the following density function for the distribution of the minimum

$$f_{\min}(x) = \frac{\mathrm{d}}{\mathrm{d}x} F_{\min}(x)$$

$$= \frac{\mathrm{d}}{\mathrm{d}x} (1 - [1 - F_X(x)]^m)$$

$$= m [1 - F_X(x)]^{m-1} f_X(x).$$
(59)

Given the densities of the distribution of sample maximum and minimum, we can easily compute moments and the variance. The first and second moment about the origin and the variance of the distribution of the maximum are given by the following

$$\mu_{\max}^{(1)}(m) = \mathcal{E}(X_a^{\max}) = \int_{-\infty}^{\infty} x f_{\max}(x) dx$$

$$= \int_{-\infty}^{\infty} x \left( m [F_X(x)]^{m-1} f_X(x) \right) dx$$

$$= m \int_{-\infty}^{\infty} x f_X(x) [F_X(x)]^{m-1} dx.$$
(60)

$$\mu_{\max}^{(2)}(m) = \mathbf{E}[(X_a^{\max})^2] = \int_{-\infty}^{\infty} x^2 f_{\max}(x) dx$$

$$= \int_{-\infty}^{\infty} x^2 \left( m[F_X(x)]^{m-1} f_X(x) \right) dx$$

$$= m \int_{-\infty}^{\infty} x^2 f_X(x) [F_X(x)]^{m-1} dx$$
(61)

$$\sigma_{\text{max}}^{2}(m) = \mu_{\text{max}}^{(2)}(m) - \left[\mu_{\text{max}}^{(1)}(m)\right]^{2}$$
(62)

Similarly, we have the first and second moment about the origin and variance of the distribution of sample minimum given by the following

$$\mu_{\min}^{(1)}(m) = \mathcal{E}(X_a^{\min}) = \int_{-\infty}^{\infty} x f_{\min}(x) dx$$

$$= \int_{-\infty}^{\infty} x \left( m [F_X(x)]^{m-1} f_X(x) \right) dx$$

$$= m \int_{-\infty}^{\infty} x f_X(x) [F_X(x)]^{m-1} dx,$$
(63)

$$\mu_{\min}^{(2)}(m) = \mathrm{E}[(X_a^{\min})^2] = \int_{-\infty}^{\infty} x^2 f_{\min}(x) \mathrm{d}x$$

$$= \int_{-\infty}^{\infty} x^2 \left( m [F_X(x)]^{m-1} f_X(x) \right) \mathrm{d}x$$

$$= m \int_{-\infty}^{\infty} x^2 f_X(x) [F_X(x)]^{m-1} \mathrm{d}x,$$
(64)

and

$$\sigma_{\min}^{2}(m) = \mu_{\min}^{(2)}(m) - \left[\mu_{\min}^{(1)}(m)\right]^{2}.$$
 (65)

With the densities of attribute maximum and minimum for sample size m, the expected range is given by the following  $^{274}$ 

$$E(X_a^{\text{max}} - X_a^{\text{min}}) = E(X_a^{\text{max}}) - E(X_a^{\text{min}})$$

$$= \mu_{\text{max}}^{(1)}(m) - \mu_{\text{min}}^{(1)}(m).$$
(66)

269

272

For a data distribution that has zero skewness and has support that is symmetric about 0, the result given by Eq. 66 can be simplified to the following expression

$$E(X_a^{\text{max}} - X_a^{\text{min}}) = 2\mu_{\text{max}}^{(1)}(m). \tag{67}$$

277

280

For large samples (m >> 1), the covariance between the sample maximum and minimum is approximately zero [13]. Therefore, the variance of the attribute range of a sample of size m is given by the following

$$\operatorname{Var}(X_a^{\max} - X_a^{\min}) \approx \operatorname{Var}(X_a^{\max}) + \operatorname{Var}(X_a^{\min})$$

$$= \sigma_{\max}^2(m) + \sigma_{\min}^2(m).$$
(68)

Under the assumption of zero skewness and support that is symmetric about 0, the result given by Eq. 68 becomes the following

$$\operatorname{Var}(X_a^{\max} - X_a^{\min}) = 2\operatorname{Var}(X_a^{\max})$$

$$= 2\sigma_{\max}^2.$$
(69)

Let  $\mu_{D_{ij}^{(q)}}$  and  $\sigma_{D_{ij}^{(q)}}^2$  denote the mean and variance given by Eq. 19. Furthermore, let  $D_{ij}^{(q*)}$  denote the max-min normalized distance between instances i and j that is induced by the metric given by Eq. 53. Then the mean of the max-min normalized distance distribution is given by the following

$$\mu_{D_{ij}^{(q*)}} = E\left[\left(\sum_{a \in \mathcal{A}} \left(\frac{|X_{ia} - X_{ja}|}{X_a^{\max} - X_a^{\min}}\right)^q\right)^{1/q}\right]$$

$$\approx \frac{1}{E(X_a^{\max} - X_a^{\min})} E\left[\left(\sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q\right)^{1/q}\right]$$

$$= \frac{\mu_{D_{ij}^{(q)}}}{E(X_a^{\max}) - E(X_a^{\min})}$$

$$= \frac{\mu_{D_{ij}^{(q)}}}{\mu_{\max}^{(1)} - \mu_{\min}^{(1)}}.$$
(70)

The variance of the max-min normalized distance distribution is given by the following

$$= \operatorname{Var} \left[ \left( \sum_{a \in \mathcal{A}} \left( \frac{|X_{ia} - X_{ja}|}{X_a^{\max} - X_a^{\min}} \right)^q \right)^{1/q} \right]$$

$$= \operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} \left( \frac{|X_{ia} - X_{ja}|}{X_a^{\max} - X_a^{\min}} \right)^q \right)^{2/q} \right] - \left( \operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} \left( \frac{|X_{ia} - X_{ja}|}{X_a^{\max} - X_a^{\min}} \right)^q \right)^{1/q} \right] \right)^2$$

$$\approx \frac{\operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q \right)^{2/q} \right]}{\operatorname{E} \left[ (X_a^{\max} - X_a^{\min})^2 \right]} - \frac{\left( \operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q \right)^{1/q} \right] \right)^2}{\operatorname{E} \left[ (X_a^{\max} - X_a^{\min})^2 \right]}$$

$$= \operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q \right)^{1/q} \right] \right]$$

$$= \operatorname{E} \left[ \left( \sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^q \right)^{1/q} \right] \right]$$

(71)

292

$$\approx \frac{\mathbb{E}\left[\left(\sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^{q}\right)^{2/q}\right]}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]} - \frac{\mathbb{E}\left[\left(\sum_{a \in \mathcal{A}} |X_{ia} - X_{ja}|^{q}\right)^{1/q}\right]\right)}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]}$$

$$= \frac{\sigma_{D_{ij}}^{2} + \mu_{D_{ij}}^{2}}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]} - \frac{\mu_{D_{ij}}^{2}}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]}$$

$$= \frac{\sigma_{D_{ij}}^{2}}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]}$$

$$= \frac{\sigma_{D_{ij}}^{2}}{\mathbb{E}[(X_{a}^{\max} - X_{a}^{\min})^{2}]}$$

$$= \frac{\sigma_{D_{ij}}^{2}}{\mathbb{E}[(X_{a}^{\max})^{2}] - 2\mathbb{E}(X_{a}^{\max})\mathbb{E}(X_{a}^{\min}) + \mathbb{E}(X_{a}^{\min})}$$

$$= \frac{\sigma_{D_{ij}}^{2}}{\mu_{\max}^{(2)}(m) - 2\mu_{\max}^{(1)}(m)\mu_{\min}^{(1)}(m) + \mu_{\min}^{(2)}(m)}.$$

 $\sigma_{D_{ij}^{(q*)}}^2 = \operatorname{Var} \left[ \left( \sum_{a} \left( \frac{|X_{ia} - X_{ja}|}{X_a^{\max} - X_a^{\min}} \right)^q \right)^{1/q} \right]$ 

With the results given by Eqs. 70 and 71, we have the following generalized estimate for the asymptotic distribution of the max-min normalized distance distribution

$$D_{ij}^{(q*)} \sim \mathcal{N}\left(\frac{\mu_{D_{ij}^{(q)}}}{\mu_{\max}^{(1)}(m) - \mu_{\min}^{(1)}(m)}, \frac{\sigma_{D_{ij}^{(q)}}^2}{\mu_{\max}^{(2)}(m) - 2\mu_{\max}^{(1)}(m)\mu_{\min}^{(1)}(m) + \mu_{\min}^{(2)}(m)}\right). \quad (72)$$

For data with zero skewness and support that is symmetric about 0, the expected sample maximum is the additive inverse of the expected sample minimum. This allows us to express the formula given by Eq. 70 exclusively in terms of the expected maximum. This result is given by the following

$$\mu_{D_{ij}^{(q^*)}} \approx \frac{\mu_{D_{ij}^{(q)}}}{2\mu_{\max}^{(1)}(m)}.$$
 (73)

A similar substitution gives us the following expression for the variance of the max-min normalized distance distribution

$$\sigma_{D_{ij}^{(q*)}}^{2} \approx \frac{\sigma_{D_{ij}^{(q)}}^{2}}{2\mu_{\max}^{(2)}(m) + 2\left[\mu_{\max}^{(1)}(m)\right]^{2}}$$

$$= \frac{\sigma_{D_{ij}^{(q)}}^{2}}{2\left(\sigma_{\max}^{2}(m) + \left[\mu_{\max}^{(1)}(m)\right]^{2}\right)}.$$
(74)

Therefore, the asymptotic distribution of the max-min normalized distance distribu-

17/44

tion is given by the following

$$D_{ij}^{(q*)} \sim \mathcal{N}\left(\frac{\mu_{D_{ij}^{(q)}}}{2\mu_{\max}^{(1)}(m)}, \frac{\sigma_{D_{ij}^{(q)}}^2}{2\left(\sigma_{\max}^2(m) + \left[\mu_{\max}^{(1)}(m)\right]^2\right)}\right). \tag{75}$$

#### 2.4.1 Standard Normal Data

Standard normal data has zero skewness and has support that is symmetric about 0. This implies that the mean and variance of the distribution of sample range can be expressed exclusively in terms of the sample maximum. Given the nature of the density function of the sample maximum for sample size m, the integration required to determine the moments given by Eqs. 60 and 61 is not possible. These moments can either be approximated numerically or we can use extreme value theory to determine the form of the asymptotic distribution of the sample maximum. Using the latter method, we will show that the asymptotic distribution of the sample maximum for standard normal data is in the Gumbel family. Let  $c_m = -\Phi^{-1}\left(\frac{1}{m}\right)$  and  $b_m = \frac{1}{c_m}$ . Using Taylor's Theorem, we have the following expansion

$$\log \Phi(-c_m - b_m x) = \log \Phi(-c_m) - b_m x \frac{\phi(-c_m)}{\Phi(-c_m)} + \mathcal{O}(b_m^2 x^2)$$

$$= \log \left(\frac{1}{m}\right) - x \frac{\phi(-c_m)}{c_m \Phi(-c_m)} + \mathcal{O}(b_m^2 x^2).$$
(76)

In order to simplify the right-hand side of Eq. 76, we will use the well known Mills Ratio Bounds [14] given by the following

$$1 \le \frac{\phi(x)}{x\Phi(-x)} \le 1 + \frac{1}{x^2} \quad , x > 0.$$
 (77)

The inequalities given by Eq. 77 show that  $\frac{\phi(x)}{x\Phi(-x)} \to 1$  as  $x \to \infty$ . This implies that  $\frac{\phi(c_m)}{c_m\Phi(-c_m)} \to 1$  as  $m \to \infty$  since  $c_m = -\Phi^{-1}\left(\frac{1}{m}\right) \to \infty$  as  $m \to \infty$ . This gives us the following approximation of the right-hand side of Eq. 76

$$\log \Phi(-c_m - b_m x) \approx \log \left(\frac{1}{m}\right) - x + \mathcal{O}(b_m^2 x^2)$$

$$\Rightarrow \Phi(-c_m - b_m x) \approx \frac{1}{m} e^{-x + \mathcal{O}(b_m^2 x^2)}$$

$$\Rightarrow \Phi(c_m + b_m x) \approx 1 - \frac{1}{m} e^{-x + \mathcal{O}(b_m^2 x^2)}.$$
(78)

297

298

300

301

302

303

304

305

307

Using the result given by Eq. 78, we have the following

$$P\left(\frac{X_a^{\max} - c_m}{b_m} \le x\right) = P(X_a^{\max} \le c_m + b_m x)$$

$$= \Phi^m(c_m + b_m x)$$

$$\approx \left(1 - \frac{1}{m}e^{-x + \mathcal{O}(b_m^2 x^2)}\right)^m$$

$$= \left(1 - \frac{1}{m}e^{-x + \mathcal{O}\left(\frac{1}{c_m^2} x^2\right)}\right)^m$$

$$\approx \left(1 - \frac{1}{m}e^{-x}\right)^m$$

$$\approx \left(1 - \frac{1}{m}e^{-x}\right)^m$$

$$\Rightarrow \lim_{m \to \infty} P\left(\frac{X_a^{\max} - c_m}{b_m} \le x\right) = \lim_{m \to \infty} \left(1 - \frac{1}{m}e^{-x}\right)^m$$

$$= e^{-e^{-x}}.$$
(79)

The right-hand side of Eq. 79 is the cumulative distribution function of the standard Gumbel distribution. The mean of the asymptotic distribution is given by the following

$$E(X_a^{\max}) = \mu_{\max}^{(1)} = -\Phi^{-1}\left(\frac{1}{m}\right) - \frac{\gamma}{\Phi^{-1}\left(\frac{1}{m}\right)}.$$
 (80)

where  $\gamma$  is the Euler-Mascheroni constant. The median of this distribution is given by the following

$$\widetilde{\mu}_{\max} = \frac{\log(\log(2))}{\Phi^{-1}\left(\frac{1}{m}\right)} - \Phi^{-1}\left(\frac{1}{m}\right). \tag{81}$$

Finally, the variance of the asymptotic distribution of the sample maximum is given by the following 320

$$\operatorname{Var}(X_a^{\max}) = \frac{\pi^2}{6} \left( \frac{1}{-\Phi^{-1}(\frac{1}{m})} \right)^2.$$
 (82)

For typical sample sizes m in high-dimensional spaces, the variance estimate given by Eq. 82 exceeds the variance of the sample maximum significantly. Using the fact that  $-\Phi^{-1}\left(\frac{1}{m}\right) \stackrel{.}{\sim} \sqrt{2\log(m)}$  [15] and  $\frac{1}{2\log(m)} \le \left(\frac{1}{-\Phi^{-1}\left(\frac{1}{m}\right)}\right)^2$  for  $m \ge 2$ , we can get a more accurate approximation of the variance with the following

$$\sigma_{\text{max}}^{2}(m) = \text{Var}(X_{a}^{\text{max}}) \approx \frac{\pi^{2}}{6} \left(\frac{1}{\sqrt{2\log(m)}}\right)^{2}$$

$$= \frac{\pi^{2}}{12\log(m)}.$$
(83)

Then the mean of the range of m iid standard normal random variables are given by the following  $^{325}$ 

$$E(X_a^{\text{max}} - X_a^{\text{min}}) = 2\mu_{\text{max}}^{(1)}(m) = 2\left[-\Phi^{-1}\left(\frac{1}{m}\right) - \frac{\gamma}{\Phi^{-1}\left(\frac{1}{m}\right)}\right]. \tag{84}$$

It is well known that the sample extremes from the standard normal distribution are approximately uncorrelated for large sample size m [13]. This implies that we can

September 12, 2019

approximate the variance of the range of m iid standard normal random variables with the following result

$$\operatorname{Var}(X_a^{\max} - X_a^{\min}) \approx \operatorname{Var}(X_a^{\max}) + \operatorname{Var}(X_a^{\min})$$

$$= \sigma_{\max}^2(m) + \sigma_{\min}^2(m)$$

$$= 2\sigma_{\max}^2(m)$$

$$\approx 2\left(\frac{\pi^2}{2\log(m)}\right)$$

$$= \frac{\pi^2}{6\log(m)}.$$
(85)

For the purpose of approximating the mean and variance of the max-min normalized distance distribution, the formula for the median of the distribution of the attribute maximum yields more accurate results. That is, the approximation of the expected maximum given by Eq. 80 overestimates the sample maximum. The formula for the median of the sample maximum, given by Eq. 81, provides a more accurate estimate of this sample extreme. Therefore, the following estimate for the mean of the attribute range will be used instead

$$E(X_a^{\max} - X_a^{\min}) = 2\mu_{\max}^{(1)}(m) \approx 2\left[\frac{\log(\log(2))}{\Phi^{-1}(\frac{1}{m})} - \Phi^{-1}\left(\frac{1}{m}\right)\right].$$
 (86)

We have already determined that  $\mu_{D_{ij}^{(q)}}$  and  $\sigma_{D_{ij}^{(q)}}^2$  are given by Eq. 32. Using the results given by Eqs. 86 and 85 and the general formulas for the mean and variance of the max-min normalized distance distribution given in Eq. 75, this leads us to the following asymptotic estimate for the distribution of the max-min normalized distances for standard normal data

$$D_{ij}^{(q*)} \sim \mathcal{N}\left(\frac{\mu_{D_{ij}^{(q)}}}{2\mu_{\max}^{(1)}(m)}, \frac{6\log(m)\sigma_{D_{ij}^{(q)}}^2}{\pi^2 + 24\left[\mu_{\max}^{(1)}(m)\right]^2\log(m)}\right). \tag{87}$$

### 2.4.2 Standard Uniform Data

Standard uniform data does not have support that is symmetric about 0. Due to the simplicity of the density function, however, we can derive the distribution of the maximum and minimum of a sample of size m explicitly. Using the general forms of the distribution functions of the maximum and minimum given by Eqs. 55 and 58, we have the following distribution functions for standard uniform data

$$F_{\max}(x) = x^m \tag{88}$$

and

$$F_{\min}(x) = 1 - (1 - x)^m. \tag{89}$$

Using the general forms of the density functions of the maximum and minimum given by Eqs. 56 and 59, we have the following density functions for standard uniform data 351

$$f_{\max}(x) = mx^{m-1} \tag{90}$$

and

$$f_{\min}(x) = m(1-x)^{m-1} \tag{91}$$

333

334

336

342

343

345

346

348

Then the expected maximum and minimum are computed through straightforward integration as follows

$$E(X_a^{\text{max}}) = \mu_{\text{max}}^{(1)}(m) = \int_0^1 x f_{\text{max}}(x) dx$$

$$= \int_0^1 x [mx^{m-1}] dx$$

$$= \frac{m}{m+1}$$
(92)

and

$$E(X_a^{\min}) = \mu_{\min}^{(1)}(m) = \int_0^1 x f_{\min}(x) dx$$

$$= \int_0^1 x [m(1-x)^{m-1}] dx$$

$$= \frac{1}{m+1}.$$
(93)

We can compute the second moment about the origin of the sample range as follows

$$E[(X_a^{\max} - X_a^{\min})^2] = E[(X_a^{\max})^2 - 2X_a^{\max} X_a^{\min} + (X_a^{\min})^2]$$

$$= E[(X_a^{\max})^2] - 2E(X_a^{\max}) E(X_a^{\min}) + E[(X_a^{\min})^2]$$

$$= \mu_{\max}^{(2)}(m) - 2\mu_{\max}^{(1)}(m)\mu_{\min}^{(1)}(m) + \mu_{\min}^{(2)}(m)$$

$$= \int_0^1 x^2 [mx^{m-1}] dx - 2\left(\frac{m}{m+1}\right) \left(\frac{1}{m+1}\right)$$

$$+ \int_0^1 x^2 [m(1-x)^{m-1}] dx$$

$$= \frac{m}{m+2} - \frac{2m}{(m+1)^2} + \frac{2}{(m+1)(m+2)}$$

$$= \frac{m^3 - m + 2}{(m+2)(m+1)^2}.$$
(94)

Using the general formulas given in Eq. 72 and the mean  $(\mu_{D_{ij}^{(q)}})$  and variance  $(\sigma_{D_{ij}^{(q)}}^2)$  given by Eq. 42, we have the following asymptotic estimate for the max-min normalized distance distribution for standard uniform data

$$D_{ij}^{(q*)} \sim \mathcal{N}\left(\frac{(m+1)\mu_{D_{ij}^{(q)}}}{m-1}, \frac{(m+2)(m+1)^2 \sigma_{D_{ij}^{(q)}}^2}{m^3 - m + 2}\right). \tag{95}$$

### 2.5 Normalized Manhattan (q = 1)

Using the general asymptotic results for mean and variance given by Eqs. 87 and 95 for any value of  $q \in \mathbb{N}$ , we can substitute a particular value of q in order to determine a more specified asymptotic distance distribution for  $D_{ij}^{(q*)}$ . The following results are for the max-min normalized Manhattan (q=1) metric for both standard normal and standard uniform data.

360

364

#### 2.5.1 Standard normal data

Substituting q = 1 into Eq. 87, we have the following for standard normal data

$$E\left(D_{ij}^{(1*)}\right) = \frac{\mu_{D_{ij}^{(1)}}}{2\mu_{\max}^{(1)}(m)} = \frac{p}{\sqrt{\pi}\mu_{\max}^{(1)}(m)},$$
(96)

366

367

370

371

372

373

374

376

377

378

379

where  $\mu_{\max}^{(1)}(m)$  is given by Eq. 81. Similarly, the variance of  $D_{ij}^{(1*)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1*)}\right) = \frac{6\log(m)\sigma_{D_{ij}}^{2}}{\pi^{2} + 24\left[\mu_{\max}^{(1)}\right]^{2}\log(m)} = \frac{12p(\pi - 2)\log(m)}{\pi\left(\pi^{2} + 24\left[\mu_{\max}^{(1)}\right]^{2}\log(m)\right)},\tag{97}$$

where  $\mu_{\text{max}}^{(1)}(m)$  is given by Eq. 81.

### 2.5.2 Standard uniform data

Substituting q = 1 into Eq. 95, we have the following for standard uniform data

$$E\left(D_{ij}^{(1*)}\right) = \frac{(m+1)\mu_{D_{ij}^{(1)}}}{m-1}$$

$$= \frac{(m+1)p}{3(m-1)}.$$
(98)

Similarly, the variance of  $D_{ij}^{(1*)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1*)}\right) = \frac{(m+2)(m+1)^2 \sigma_{D_{ij}^{(1)}}^2}{m^3 - m + 2}$$

$$= \frac{(m+2)(m+1)^2 p}{18(m^3 - m + 2)}.$$
(99)

### 2.6 Normalized Euclidean (q=2)

Analogous to the previous section, we demonstrate the usage of Eqs. 87 and 95 for the max-min normalized Euclidean (q=2) metric for both standard normal and standard uniform dtaa.

#### 2.6.1 Standard normal data

Substituting q=2 into Eq. 87, we have the following for standard normal data

$$E\left(D_{ij}^{(2*)}\right) = \frac{\mu^{D_{ij}^{(2)}}}{2\mu_{\max}^{(1)}(m)}$$

$$= \frac{\sqrt{2p-1}}{2\mu_{\max}^{(1)}(m)},$$
(100)

where  $\mu_{\max}^{(1)}(m)$  is given by Eq. 81. Similarly, the variance of  $D_{ij}^{(2*)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(2*)}\right) = \frac{6\log(m)\sigma_{D_{ij}^{(2)}}^{2}}{\pi^{2} + 24\left[\mu_{\max}^{(1)}(m)\right]^{2}\log(m)}$$

$$= \frac{6\log(m)}{\pi^{2} + 24\left[\mu_{\max}^{(1)}(m)\right]^{2}\log(m)},$$
(101)

where  $\mu_{\text{max}}^{(1)}(m)$  is given by Eq. 81.

#### 2.6.2 Standard uniform data

Substituting q=2 into Eq. 95, we have the following for standard uniform data

$$E\left(D_{ij}^{(2*)}\right) = \frac{(m+1)\mu_{D_{ij}^{(2)}}}{m-1}$$

$$= \sqrt{\frac{p}{6} - \frac{7}{120}} \left(\frac{m+1}{m-1}\right). \tag{102}$$

Similarly, the variance of  $D_{ij}^{(2*)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(2*)}\right) = \frac{(m+2)(m+1)^2 \sigma_{D_{ij}^{(2)}}^2}{m^3 - m + 2}$$
$$= \frac{7(m+2)(m+1)^2}{120(m^3 - m + 2)}.$$
 (103)

### 2.7 GWAS Distance Distributions

Consider a GWAS data set, which has the following encoding based on minor allele frequency

$$X_{ia} = \begin{cases} 0 & \text{if there are no minor alleles at locus } a, \\ 1 & \text{if there is 1 minor allele at locus } a, \\ 2 & \text{if there are 2 minor alleles at locus } a. \end{cases}$$
(104)

A minor allele at a particular locus a is the least frequent of the two alleles at that particular locus a. For random GWAS data sets, we can think  $X_{ia}$  as the number of successes in two Bernoulli trials. That is,  $X_{ia} \sim \mathcal{B}(2, f_a)$  where  $f_a$  is the probability of success. The success probability  $f_a$  is the probability of a minor allele occurring at a. Furthermore, the minor allele probabilities are assumed to be independent and identically distributed according to  $\mathcal{U}(l,u)$ , where l and u are the lower and upper bounds, respectively, of the sampling distribution's support. Two commonly known types of metrics for GWAS data are the Genotype Mismatch (GM) and Allele Mismatch (AM) metrics. The GM and AM metrics are defined by

$$d_{ij}^{GM}(a) = \begin{cases} 0 & \text{if } X_{ia} \neq X_{ja}, \\ 1 & \text{otherwise} \end{cases}$$
 (105)

and .

$$d_{ij}^{\text{AM}}(a) = \frac{1}{2} |X_{ia} - X_{ja}|. \tag{106}$$

380

381

382

383

384

385

386

387

388

391

392

393

394

395

396

A more informative metric must take into account whether differences in allele frequency at a particular locus a result in transitions or transversions. A metric that accounts for transitions (Ti) and transversions (Tv) was introduced in [9]. This metric is given by the following

$$d_{ij}^{\text{TiTv}}(a) = \begin{cases} 0 & \text{if } X_{ia} = X_{ja} \text{ and Ti/Tv,} \\ 1/4 & \text{if } |X_{ia} - X_{ja}| = 1 \text{ and Ti,} \\ 1/2 & \text{if } |X_{ia} - X_{ja}| = 1 \text{ and Tv,} \\ 3/4 & \text{if } |X_{ia} - X_{ja}| = 2 \text{ and Ti,} \\ 1 & \text{if } |X_{ia} - X_{ja}| = 2 \text{ and Tv.} \end{cases}$$
(107)

With any of the three metrics given by Eqs. 105 - 107, we compute the pairwise distance between two instances i and j using Eq. 1 with q=1. Assuming that all data entries  $X_{ia}$  are independent and identically distributed, we have already shown that the distribution of pairwise distances is asymptotically normal regardless of data distribution and value of q. Therefore, the distance distributions induced by each of the GWAS metrics given by Eqs. 105 - 107 are asymptotically normal. Thus, we will proceed by deriving the mean and variance for each distance distribution induced by these three GWAS metrics.

#### 2.7.1 GM Distance Distribution

The expected value of the GM metric is given by the following

$$E\left[d_{ij}^{GM}(a)\right] = \sum_{k=0}^{1} k \cdot P\left[d_{ij}^{GM}(a) = k\right]$$

$$= 0 \cdot P\left[d_{ij}^{GM}(a) = 0\right] + 1 \cdot P\left[d_{ij}^{GM}(a) = 1\right]$$

$$= P\left[d_{ij}^{GM}(a) = 1\right]$$

$$= 2P[X_{ia} = 0, X_{ja} = 1] + 2P[X_{ia} = 1, X_{ja} = 2] + 2P[X_{ia} = 0, X_{ja} = 2]$$

$$= 4(1 - f_a)^3 f_a + 4(1 - f_a) f_a^3 + 2(1 - f_a)^2 f_a^2$$

$$= 2\left[2(1 - f_a)^3 f_a + 2(1 - f_a) f_a^3 + (1 - f_a)^2 f_a^2\right]$$

$$= 2F(a).$$

where  $F(a) = 2(1 - f_a)^3 f_a + 2(1 - f_a) f_a^3 + (1 - f_a)^2 f_a^2$ .

Then the expected pairwise GM distance between instances i and j is computed as follows

$$E\left(\sum_{a\in\mathcal{A}}d_{ij}^{GM}(a)\right) = \sum_{a\in\mathcal{A}}E\left[d_{ij}^{GM}(a)\right]$$
$$= 2\sum_{a\in\mathcal{A}}F(a).$$
 (109)

(108)

The second moment about the origin for the GM distance is computed as follows

419

$$E\left[\left(D_{ij}\right)^{2}\right] = E\left[\left(\sum_{a \in \mathcal{A}} d_{ij}^{GM}(a)\right)^{2}\right]$$

$$= E\left[\sum_{a \in \mathcal{A}} \left(d_{ij}^{GM}(a)\right)^{2}\right] + 2E\left[\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} d_{ij}^{GM}(r) \cdot d_{ij}^{GM}(s)\right]$$

$$= \sum_{a \in \mathcal{A}} \left(\sum_{k=0}^{1} k^{2} \cdot P\left[d_{ij}^{GM}(a) = k\right]\right)$$

$$+ 2\sum_{a \in \mathcal{A}} \sum_{s \leq r-1} \left(\sum_{k=0}^{1} k \cdot P\left[d_{ij}^{GM}(r) = k\right]\right) \cdot \left(\sum_{k=0}^{1} k \cdot P\left[d_{ij}^{GM}(s) = k\right]\right)$$

$$= 2\sum_{a \in \mathcal{A}} F(a) + 8\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} \prod_{\lambda \in \{r,s\}} F(\lambda),$$

$$(110)$$

where  $F(a) = 2(1 - f_a)^3 f_a + 2(1 - f_a) f_a^3 + (1 - f_a)^2 f_a^2$ . Using the moments given by Eqs. 109 and 110, the variance is computed as follows

$$Var(D_{ij}) = E [(D_{ij})^{2}] - [E(D_{ij})]^{2}$$

$$= 2 \sum_{a \in \mathcal{A}} F(a) + 8 \sum_{r \in \mathcal{A}} \sum_{s \le r-1} \prod_{\lambda \in \{r,s\}} F(\lambda) - 4 \left(\sum_{a \in \mathcal{A}} F(a)\right)^{2}$$

$$= 2 \sum_{a \in \mathcal{A}} F(a) - 4 \sum_{a \in \mathcal{A}} F^{2}(a)$$

$$= 2 \sum_{a \in \mathcal{A}} F(a)[1 - 2F(a)],$$
(111)

where  $F(a) = 2(1 - f_a)^3 f_a + 2(1 - f_a)f_a^3 + (1 - f_a)^2 f_a^2$ .

With the mean and variance estimates given by Eqs. 109 and 111, the asymptotic GM distance distribution is given by the following

$$D_{ij} \sim \mathcal{N}\left(2\sum_{a \in \mathcal{A}} F(a), 2\sum_{a \in \mathcal{A}} F(a)[1 - 2F(a)]\right),\tag{112}$$

where 
$$F(a) = 2(1 - f_a)^3 f_a + 2(1 - f_a)f_a^3 + (1 - f_a)^2 f_a^2$$
.

#### 2.7.2AM Distance Distribution

The expected value of the AM metric is given by the following

$$E\left[d_{ij}^{\text{AM}}(a)\right] = \sum_{k \in \mathcal{D}} k \cdot P\left[d_{ij}^{\text{AM}}(a) = k\right]$$

$$= 0 \cdot P\left[d_{ij}^{\text{AM}}(a) = 0\right] + \frac{1}{2} \cdot P\left[d_{ij}^{\text{AM}}(a) = \frac{1}{2}\right] + 1 \cdot P\left[d_{ij}^{\text{AM}}(a) = 1\right]$$

$$= \frac{1}{2} \left(2P\left[X_{ia} = 0, X_{ja} = 1\right] + 2P\left[X_{ia} = 1, X_{ja} = 2\right]\right)$$

$$+ 2P\left[X_{ia} = 0, X_{ja} = 2\right]$$

$$= P\left[X_{ia} = 0, X_{ja} = 1\right] + P\left[X_{ia} = 1, X_{ja} = 2\right] + 2P\left[X_{ia} = 0, X_{ja} = 2\right]$$

$$= 2(1 - f_a)^3 f_a + 2(1 - f_a) f_a^3 + 2(1 - f_a)^2 f_a^2$$

$$= 2\left[(1 - f_a)^3 f_a + (1 - f_a) f_a^3 + (1 - f_a)^2 f_a^2\right]$$

$$= 2F(a),$$
(113)

where  $F(a) = (1 - f_a)^3 f_a + (1 - f_a) f_a^3 + (1 - f_a)^2 f_a^2$  and  $\mathcal{D} = \{0, \frac{1}{2}, 1\}$ . Then the expected pairwise AM distance between instances i and j is computed as follows

$$E\left(\sum_{a\in\mathcal{A}}d_{ij}^{AM}(a)\right) = \sum_{a\in\mathcal{A}}E\left[d_{ij}^{AM}(a)\right]$$
$$= 2\sum_{a\in\mathcal{A}}F(a).$$
 (114)

The second moment about the origin for the AM distance is computed as follows

$$E\left[\left(D_{ij}\right)^{2}\right] = E\left[\left(\sum_{a \in \mathcal{A}} d_{ij}^{AM}(a)\right)^{2}\right]$$

$$= E\left[\sum_{a \in \mathcal{A}} \left(d_{ij}^{AM}(a)\right)^{2}\right] + 2E\left[\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} d_{ij}^{AM}(r) \cdot d_{ij}^{AM}(s)\right]$$

$$= \sum_{a \in \mathcal{A}} \left(\sum_{k \in \mathcal{D}} k^{2} \cdot P\left[d_{ij}^{AM}(a) = k\right]\right)$$

$$+ 2\sum_{a \in \mathcal{A}} \sum_{s \leq r-1} \left(\sum_{k \in \mathcal{D}} k \cdot P\left[d_{ij}^{AM}(r) = k\right]\right) \cdot \left(\sum_{k \in \mathcal{D}} k \cdot P\left[d_{ij}^{AM}(s) = k\right]\right)$$

$$= \sum_{a \in \mathcal{A}} G(a) + 8\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} \prod_{\lambda \in \{r,s\}} F(\lambda),$$

$$(115)$$

where 
$$G(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a) + 2(1 - f_a)^2 f_a^2$$
 and  $F(\lambda) = (1 - f_{\lambda})^3 f_{\lambda} + f_{\lambda}^3 (1 - f_{\lambda})^2 f_{\lambda}^2$ .

September 12, 2019

423

Using the moments given by Eqs. 114 and 115, the variance is computed as follows

$$\operatorname{Var}(D_{ij}) = \operatorname{E}\left[(D_{ij})^{2}\right] - \left[\operatorname{E}(D_{ij})\right]^{2}$$

$$= \sum_{a \in \mathcal{A}} G(a) + 8 \sum_{r \in \mathcal{A}} \sum_{s \leq r-1} \prod_{\lambda \in \{r,s\}} F(\lambda) - 4 \left(\sum_{a \in \mathcal{A}} F(a)\right)^{2}$$

$$= \sum_{a \in \mathcal{A}} G(a) - 4 \sum_{a \in \mathcal{A}} F^{2}(a)$$

$$= \sum_{a \in \mathcal{A}} \left[G(a) - 4F^{2}(a)\right],$$
(116)

where  $G(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a) + 2(1 - f_a)^2 f_a^2$  and  $F(\lambda) = (1 - f_{\lambda})^3 f_{\lambda} + f_{\lambda}^3 (1 - f_{\lambda}) + (1 - f_{\lambda})^2 f_{\lambda}^2$ .

With the mean and variance estimates given by Eqs. 114 and 116, the asymptotic AM distance distribution is given by the following

$$D_{ij} \sim \mathcal{N}\left(2\sum_{a \in \mathcal{A}} F(a), \sum_{a \in \mathcal{A}} \left[G(a) - 4F^2(a)\right]\right),\tag{117}$$

where 
$$G(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a) + 2(1 - f_a)^2 f_a^2$$
 and  $F(\lambda) = (1 - f_{\lambda})^3 f_{\lambda} + f_{\lambda}^3 (1 - f_{\lambda}) + (1 - f_{\lambda})^2 f_{\lambda}^2$ .

#### 2.7.3 TiTy Distance Distribution

The TiTv metric allows for one to account for both genotype mismatch, allele mismatch, transition, and transversion. However, this added dimension of information requires knowledge of the nucleotide makeup at a particular locus. A sufficient condition to compute the TiTv metric between instances i an j is that we know whether the nucleotides associated with a particular locus a are both purines (PuPu), purine and pyrimidine (PuPy), or both pyrimidines (PyPy). A diagram showing possible transitions and transversions that may occur is given by Fig. 2. Purines (A and G) and pyrimidines (C and T) are shown at the top and bottom, respectively. Transitions occur in the cases of PuPu and PyPy, while transversion occur only with PuPy encoding.



Fig 2. Purines (A and G) and pyrimidines (C and T) are shown. Transitions occur when a mutation involves purine-to-purine or pyrimidine-to-pyrimidine insertion. Transversions occur when a purine-to-pyrimidine or pyrimidine-to-purine insertion happens, which is a more extreme case. There are visibly more possibilities for transversions to occur than there are transitions, but there are about twice as many transitions in real data.

435

438

439

440

441

443

445

447

This information is always given in a particular data set. Let  $\gamma_0$ ,  $\gamma_1$ , and  $\gamma_2$  denote the probabilities of PuPu, PuPy, and PyPy, respectively, for the p loci of data matrix X.

September 12, 2019 27/44

In real data, there are approximately twice as many transitions as there are transversions. That is, the probability of a transition P(Ti) is approximately twice the probability of transversion P(Tv). It is likely that any particular data set will not satisfy this criterion exactly. In this general case, we have P(Ti) being equal to some multiple  $\eta$  times P(Tv). In order to enforce this general constraint in simulated data, we define the following set of equalities

$$\gamma_0 + \gamma_1 + \gamma_2 = 1, (118)$$

$$P(Ti) - \eta P(Tv) = 0. \tag{119}$$

Using this PuPu, PuPy, and PyPy encoding, the probability of a transversion occurring at any fixed locus a is given by the following

$$P(Tv) = \gamma_1. (120)$$

Using the constraints given by Eqs. 118 and 119, the probability of a transition occurring at locus a is computed as follows

$$P(Ti) = \gamma_0 + \gamma_2. \tag{121}$$

Also based on the constraints given by Eqs. 118 and 119, it is clear that we have  $P(Tv) = \frac{1}{n+1}$  and  $P(Ti) = \frac{\eta}{n+1}$ . Without loss of generality, we then sample

$$\gamma_0 \sim \mathcal{U}\left(\varepsilon, \frac{\eta}{\eta + 1} - \varepsilon\right),$$
 (122)

where  $\varepsilon$  is some small positive real number.

Then it immediately follows that we have

$$\gamma_2 = \frac{\eta}{\eta + 1} - \gamma_0. \tag{123}$$

However, we can derive the mean and variance of the distance distribution induced by the TiTv metric without specifying any relationship between  $\gamma_0$ ,  $\gamma_1$ , and  $\gamma_2$ . We proceed by computing P  $\left[d_{ij}^{\text{TiTv}}(a) = k\right]$  for each  $k \in \mathcal{D} = \left\{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\right\}$ . Let y represent a random sample of size p from  $\{0, 1, 2\}$ , where

$$y_a = \begin{cases} 0 & \text{if locus } a \text{ is PuPu,} \\ 1 & \text{if locus } a \text{ is PuPy,} \\ 2 & \text{if locus } a \text{ is PyPy.} \end{cases}$$

$$(124)$$

We derive P  $\left[d_{ij}^{\mathrm{TiTv}}(a) = 0\right]$  as follows

$$P\left[d_{ij}^{\text{TiTv}}(a) = 0\right] = P\left[y_{a} = 0, X_{ia} = X_{ja}\right]$$

$$+ P\left[y_{a} = 1, X_{ia} = X_{ja}\right]$$

$$+ P\left[y_{a} = 2, X_{ia} = X_{ja}\right]$$

$$= \gamma_{0} \left[(1 - f_{a})^{2} + 4f_{a}(1 - f_{a}) + f_{a}^{2}\right]$$

$$+ \gamma_{1} \left[(1 - f_{a})^{2} + 4f_{a}(1 - f_{a}) + f_{a}^{2}\right]$$

$$+ \gamma_{2} \left[(1 - f_{a})^{2} + 4f_{a}(1 - f_{a}) + f_{a}^{2}\right]$$

$$= (\gamma_{0} + \gamma_{1} + \gamma_{2}) \left[(1 - f_{a})^{2} + 4f_{a}(1 - f_{a}) + f_{a}^{2}\right]$$

$$= (1 - f_{a})^{2} + 4f_{a}(1 - f_{a}) + f_{a}^{2}.$$

$$(125)$$

452

455

456

459

We derive  $P\left[d_{ij}^{TiTv}(a) = \frac{1}{4}\right]$  as follows

$$P\left[d_{ij}^{\text{TiTv}}(a) = \frac{1}{4}\right] = 2P\left[y_a = 0, X_{ia} = 0, X_{ja} = 1\right]$$

$$+ 2P\left[y_a = 0, X_{ia} = 1, X_{ja} = 2\right]$$

$$+ 2P\left[y_a = 2, X_{ia} = 0, X_{ja} = 1\right]$$

$$+ 2P\left[y_a = 2, X_{ia} = 1, X_{ja} = 2\right]$$

$$= 4\gamma_0 (1 - f_a)^3 f_a + 4\gamma_0 f_a^3 (1 - f_a) + 4\gamma_2 (1 - f_a)^3 f_a$$

$$+ 4\gamma_2 f_a^3 (1 - f_a)$$

$$= 4\gamma_0 \left[ (1 - f_a)^3 f_a + f_a^3 (1 - f_a) \right]$$

$$+ 4\gamma_2 \left[ (1 - f_a)^3 f_a + f_a^3 (1 - f_a) \right]$$

$$= 4(\gamma_0 + \gamma_2) \left[ (1 - f_a)^3 f_a + f_a^3 (1 - f_a) \right] .$$

$$(126)$$

We derive P  $\left[d_{ij}^{\rm TiTv}(a)=\frac{1}{2}\right]$  as follows

$$P\left[d_{ij}^{\text{TiTv}}(a) = \frac{1}{2}\right] = 2P\left[y_a = 1, X_{ia} = 0, X_{ja} = 1\right]$$

$$+ 2P\left[y_a = 1, X_{ia} = 1, X_{ja} = 2\right]$$

$$= 4\gamma_1 (1 - f_a)^3 f_a + 4\gamma_1 f_a^3 (1 - f_a)$$

$$= 4\gamma_1 \left[(1 - f_a)^3 f_a + f_a^3 (1 - f_a)\right].$$
(127)

We derive P  $\left[d_{ij}^{\mathrm{TiTv}}(a) = \frac{3}{4}\right]$  as follows

$$P\left[d_{ij}^{\text{TiTv}}(a) = \frac{3}{4}\right] = 2P\left[y_a = 0, X_{ia} = 0, X_{ja} = 2\right]$$

$$+ 2P\left[y_a = 2, X_{ia} = 0, X_{ja} = 2\right]$$

$$= 2\gamma_0(1 - f_a)^2 f_a^2 + 2\gamma_2(1 - f_a)^2 f_a^2$$

$$= 2(\gamma_0 + \gamma_2)(1 - f_a)^2 f_a^2.$$
(128)

We derive P  $\left[d_{ij}^{\rm TiTv}(a)=1\right]$  as follows

$$P\left[d_{ij}^{\text{TiTv}}(a) = 1\right] = 2P\left[y_a = 1, X_{ia} = 0, X_{ja} = 2\right]$$
$$= 2\gamma_1 (1 - f_a)^2 f_a^2. \tag{129}$$

Using Eqs. 125 - 129, we compute the expected TiTv distance between instances i and j as follows

$$E(D_{ij}) = \sum_{a \in \mathcal{A}} \left( \sum_{k \in \mathcal{D}} k \cdot P \left[ d_{ij}^{TiTv}(a) = k \right] \right)$$

$$= (\gamma_0 + \gamma_2 + 2\gamma_1) \sum_{a \in \mathcal{A}} \left[ (1 - f_a)^3 f_a + f_a^3 (1 - f_a) \right]$$

$$+ \left[ \frac{3}{2} (\gamma_0 + \gamma_2) + 2\gamma_1 \right] \sum_{a \in \mathcal{A}} (1 - f_a)^2 f_a^2$$

$$= (\gamma_0 + \gamma_2 + 2\gamma_1) \sum_{a \in \mathcal{A}} F(a) + \left[ \frac{3}{2} (\gamma_0 + \gamma_2) + 2\gamma_1 \right] \sum_{a \in \mathcal{A}} G(a),$$
(130)

where  $F(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a)$  and  $G(a) = (1 - f_a)^2 f_a^2$ .

468

462

The second moment about the origin for the TiTv distance is computed as follows

$$\mathbf{E}\left[\left(D_{ij}\right)^{2}\right] = \mathbf{E}\left[\left(\sum_{a \in \mathcal{A}} d_{ij}^{\mathrm{TiTv}}(a)\right)^{2}\right] \\
= \mathbf{E}\left[\sum_{a \in \mathcal{A}} \left(d_{ij}^{\mathrm{TiTv}}(a)\right)^{2}\right] + 2\mathbf{E}\left[\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} d_{ij}^{\mathrm{TiTv}}(r) \cdot d_{ij}^{\mathrm{TiTv}}(s)\right] \\
= \sum_{a \in \mathcal{A}} \left(\sum_{k \in \mathcal{D}} k^{2} \cdot \mathbf{P}\left[d_{ij}^{\mathrm{TiTv}}(a) = k\right]\right) \\
+ 2\sum_{a \in \mathcal{A}} \sum_{s \leq r-1} \left(\sum_{k \in \mathcal{D}} k \cdot \mathbf{P}\left[d_{ij}^{\mathrm{TiTv}}(r) = k\right]\right) \cdot \left(\sum_{k \in \mathcal{D}} k \cdot \mathbf{P}\left[d_{ij}^{\mathrm{TiTv}}(s) = k\right]\right) \\
= \left[\frac{1}{4}(\gamma_{0} + \gamma_{2}) + \gamma_{1}\right] \sum_{a \in \mathcal{A}} F(a) + \left[\frac{9}{8}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] \sum_{a \in \mathcal{A}} G(a) \\
+ 2\sum_{r \in \mathcal{A}} \sum_{s \leq r-1} \prod_{\lambda \in \{r,s\}} \left(\left[\gamma_{0} + \gamma_{2} + 2\gamma_{1}\right]F(\lambda) + \left[\frac{3}{2}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right]G(\lambda)\right), \tag{131}$$

where  $F(\lambda) = (1 - f_{\lambda})^3 f_{\lambda} + f_{\lambda}^3 (1 - f_{\lambda})$  and  $G(\lambda) = (1 - f_{\lambda})^2 f_{\lambda}^2$ .

Using the moments given by Eqs. 130 and 131, the variance is computed as follows

$$\operatorname{Var}(D_{ij}) = \operatorname{E}\left[(D_{ij})^{2}\right] - \left[\operatorname{E}(D_{ij})\right]^{2}$$

$$= \left[\frac{1}{4}(\gamma_{0} + \gamma_{2}) + \gamma_{1}\right] \sum_{a \in \mathcal{A}} F(a) + \left[\frac{9}{8}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] \sum_{a \in \mathcal{A}} G(a)$$

$$+ 2 \sum_{r \in \mathcal{A}} \sum_{s \leq r-1} \prod_{\lambda \in \{r,s\}} \left( \left[\gamma_{0} + \gamma_{2} + 2\gamma_{1}\right] F(\lambda) + \left[\frac{3}{2}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] G(\lambda) \right)$$

$$- \left( \left[\gamma_{0} + \gamma_{2} + 2\gamma_{1}\right] \sum_{a \in \mathcal{A}} F(a) + \left[\frac{3}{2}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] \sum_{a \in \mathcal{A}} G(a) \right)^{2}$$

$$= \left[\frac{1}{4}(\gamma_{0} + \gamma_{2}) + \gamma_{1}\right] \sum_{a \in \mathcal{A}} F(a) + \left[\frac{9}{8}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] \sum_{a \in \mathcal{A}} G(a)$$

$$- \sum_{a \in \mathcal{A}} \left( \left[\gamma_{0} + \gamma_{2} + 2\gamma_{1}\right] F(a) + \left[\frac{3}{2}(\gamma_{0} + \gamma_{2}) + 2\gamma_{1}\right] G(a) \right)^{2},$$
(132)

where  $F(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a)$  and  $G(a) = (1 - f_a)^2 f_a^2$ .

With the mean and variance estimates given by Eqs. 130 and 132, the asymptotic TiTv distance distribution is given by the following

$$D_{ij} \sim \mathcal{N} \left( (\gamma_0 + \gamma_2 + 2\gamma_1) \sum_{a \in \mathcal{A}} F(a) + \left[ \frac{3}{2} (\gamma_0 + \gamma_2) + 2\gamma_1 \right] \sum_{a \in \mathcal{A}} G(a), \\ \left[ \frac{1}{4} (\gamma_0 + \gamma_2) + \gamma_1 \right] \sum_{a \in \mathcal{A}} F(a) + \left[ \frac{9}{8} (\gamma_0 + \gamma_2) + 2\gamma_1 \right] \sum_{a \in \mathcal{A}} G(a) \\ - \sum_{a \in \mathcal{A}} \left( [\gamma_0 + \gamma_2 + 2\gamma_1] F(a) + \left[ \frac{3}{2} (\gamma_0 + \gamma_2) + 2\gamma_1 \right] G(a) \right)^2 \right),$$
 (133)

where  $F(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a)$  and  $G(a) = (1 - f_a)^2 f_a^2$ .

September 12, 2019

472

473

The relationship between the average success probability  $\bar{f}_a$  and the predicted TiTv pairwise distance given by Eq. 130 is shown in Fig. 3. Given upper and lower bounds l and u, respectively, of the success probability sampling interval, the average success probability (or average MAF) is computed as follows

$$\bar{f}_a = \frac{1}{2}(l+u).$$
 (134)

The maximum distance occurs at  $\bar{f}_a = 0.5$ , which is the inflection point about which the minor allele changes at locus a. If few minor alleles are present  $(\bar{f}_a \to 0)$ , the predicted TiTv distance approaches 0. The same is true after the minor allele switches  $(\bar{f}_a \to 1)$ .



Fig 3. Predicted average TiTv distance as a function of average minor allele frequency  $\bar{f}_a$  (see Eq. 134). Success probabilities  $f_a$  were drawn from a sliding window interval from 0.01 to 0.9 in increments of about 0.009. With  $\eta = 0.1$ , where  $\eta$  is the Ti/Tv ratio given by Eq. 118, Tv is ten times more likely than Ti so the distance is large. Increasing to  $\eta = 1$ , Tv and Ti are equally likely so the distance is moderate. In line with real data for  $\eta = 2$ , Tv is half as likely as Ti so the distance is relatively small.

477

478

479

481

483

484

486

487

488

489

491

493

### 2.8 Resting-State fMRI Distance Distribution

For resting-state fMRI (rs-fMRI), the data consists of correlation matrices for each instance. These correlations are between different ROIs for a particular brain atlas. We would like the attributes to be the ROIs themselves, which leads us to the following metric

$$d_{ij}^{\text{ROI}}(a) = \sum_{k \neq a} |A_{ka}^{(i)} - A_{ka}^{(j)}|. \tag{135}$$

where  $A_{ka}^{(i)}$  and  $A_{ka}^{(j)}$  are the correlations between ROI a and ROI k for instances i and j, respectively. In order for comparisons between different correlations to be possible, we first perform a Fisher r-to-z transform on the correlations. We then load all of the transformed correlations into a  $p(p-1) \times m$  matrix X (see Fig. 4).

Fig 4. Resting-state fMRI transformed subject correlation matrices. Each column corresponds to an instance (or subject)  $I_j$  and each column corresponds to an ROI (or feature). The notation  $\hat{A}_{ka}^{(j)}$  represents the r-to-z transformed correlation between ROIs a and  $k \neq a$  for instance j.

496

500

We further transform the data matrix X by standardizing so that each of the m columns has zero mean and unit variance. Therefore, the data in matrix X are standard normal. Recall from Eqs. 43 and 44, that the mean and variance of the Manhattan (q=1) distance distribution for standard normal data are  $\frac{2p}{\sqrt{\pi}}$  and  $\frac{2(\pi-2)p}{\pi}$ , respectively. This allows us to easily derive the expected pairwise distance between instances i and j in rs-fMRI data as follows

$$E(D_{ij}) = E\left(\sum_{a \in \mathcal{A}} \sum_{k \neq a} |\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|\right)$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \neq a} E\left(|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|\right)$$

$$= \sum_{a \in \mathcal{A}} \sum_{k \neq a} \frac{2}{\sqrt{\pi}}$$

$$= \frac{2p(p-1)}{\sqrt{\pi}}.$$
(136)

Due to the dependencies that exist between terms in the double sum when computing the rs-fMRI distance, linearity no longer applies to the variance operator. We proceed

by writing the form of the variance as follows

$$Var(D_{ij}) = Var\left(\sum_{a \in \mathcal{A}} \sum_{k \neq a} |\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|\right)$$

$$= \sum_{a=1}^{p-1} Var\left(\sum_{k=a+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|\right)$$

$$+ 2\sum_{a=1}^{p-1} \sum_{r=a+1}^{p-1} Cov\left(\sum_{k=a+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|, \sum_{s=r+1}^{p} 2|\hat{A}_{rs}^{(i)} - \hat{A}_{rs}^{(j)}|\right)$$

$$= \sum_{a=1}^{p-1} \sum_{k=a+1}^{p} Var\left(2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|\right)$$

$$+ 2\sum_{a=1}^{p-1} \sum_{r=a+1}^{p-1} Cov\left(\sum_{k=a+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|, \sum_{s=r+1}^{p} 2|\hat{A}_{rs}^{(i)} - \hat{A}_{rs}^{(j)}|\right)$$

$$= \sum_{a=1}^{p-1} \sum_{k=a+1}^{p-1} Cov\left(\sum_{k=a+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|, \sum_{s=r+1}^{p} 2|\hat{A}_{rs}^{(i)} - \hat{A}_{rs}^{(j)}|\right)$$

$$= \frac{2p(\pi - 2)(p - 1)}{\pi}$$

$$+ 2\sum_{n=1}^{p-1} \sum_{k=n+1}^{p-1} Cov\left(\sum_{k=n+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|, \sum_{k=r+1}^{p} 2|\hat{A}_{rs}^{(i)} - \hat{A}_{rs}^{(j)}|\right)$$

$$= \frac{2p(\pi - 2)(p - 1)}{\pi}$$

$$+ 2\sum_{n=1}^{p-1} \sum_{k=n+1}^{p-1} Cov\left(\sum_{k=n+1}^{p} 2|\hat{A}_{ak}^{(i)} - \hat{A}_{ak}^{(j)}|, \sum_{k=r+1}^{p} 2|\hat{A}_{rs}^{(i)} - \hat{A}_{rs}^{(j)}|\right).$$

In order to have a formula in terms of the number of ROIs p only, we must estimate the double sum on the right-hand side of Eq. 137. Through simulation, it can be seen that the difference between the sample variance  $S_{D_{ij}}^2$  and  $\frac{2p(\pi-2)(p-1)}{\pi}$  has a quadratic relationship with p. More explicitly, we have the following relationship

$$S_{D_{ij}}^2 - \frac{2p(\pi - 2)(p - 1)}{\pi} = \beta_1 p^2 + \beta_0 p.$$
 (138)

The coefficient estimates found through least squares fitting are  $\beta_0 = -\beta_1 \approx 0.08$ . These estimates allow one to infer a functional form for the double sum in the right-hand side of Eq. 137 that is actually proportional to  $\frac{2p(\pi-2)(p-1)}{\pi}$ . That is, we have the following formula for approximating the double sum

$$2\sum_{a=1}^{p-1}\sum_{r=a+1}^{p-1}\operatorname{Cov}\left(\sum_{k=a+1}^{p}2\left|\hat{A}_{ak}^{(i)}-\hat{A}_{ak}^{(j)}\right|,\sum_{s=r+1}^{p}2\left|\hat{A}_{rs}^{(i)}-\hat{A}_{rs}^{(j)}\right|\right)=\frac{p(\pi-2)(p-1)}{4\pi}.$$
 (139)

Therefore, the variance of the rs-fMRI distances is approximated well by the following

$$Var(D_{ij}) = \frac{9p(\pi - 2)(p - 1)}{4\pi}.$$
 (140)

With the mean and variance estimates given by Eqs. 136 and 140, we have the following asymptotic distribution for rs-fMRI distances

$$D_{ij}^{(1)} \sim \mathcal{N}\left(\frac{2p(p-1)}{\sqrt{\pi}}, \frac{9p(\pi-2)(p-1)}{4\pi}\right).$$
 (141)

September 12, 2019

503

506

Consider the max-min normalized rs-fMRI distance given by the following equation

$$D_{ij}^{1*} = \sum_{a \in \mathcal{A}} \sum_{k \neq a} \frac{\left| A_{ak}^{(i)} - A_{ak}^{(j)} \right|}{\max(a) - \min(a)}.$$
 (142)

Assuming that the data X has been r-to-z transformed and standardized, we can easily compute the expected attribute range and variance of the attribute range. The expected maximum of a given attribute in data matrix X is estimated by the following

$$E\left(X_a^{\max} - X_a^{\min}\right) = 2\mu_{\max}^{(1)}(m, p) = 2\left[\frac{\log(\log(2))}{\Phi^{-1}\left(\frac{1}{m(p-1)}\right)} - \Phi^{-1}\left(\frac{1}{m(p-1)}\right)\right]. \quad (143)$$

The variance can be esimated with the following

$$\operatorname{Var}\left(X_a^{\max} - X_a^{\min}\right) = \frac{\pi^2}{6\log[m(p-1)]}.$$
 (144)

Let  $\mu_{D_{ij}}$  and  $\sigma_{D_{ij}}^2$  denote the mean and variance of the rs-fMRI distance distribution given by Eqs. 136 and 140. Using the formulas for the mean and variance of the max-min normalized distance distribution given in Eq. 87, we have the following asymptotic distribution for the max-min normalized rs-fMRI distances

$$D_{ij}^{1*} \sim \mathcal{N}\left(\frac{\mu_{D_{ij}^{(1)}}}{2\mu_{\max}^{(1)}(m,p)}, \frac{6\sigma_{D_{ij}^{(1)}}^2 \log[m(p-1)]}{\pi^2 + 24\left[\mu_{\max}^{(1)}(m,p)\right]^2 \log[m(p-1)]}\right). \tag{145}$$

### 2.9 Normalized Manhattan (q = 1) for rs-fMRI

Substituting the non-normalized mean given by Eq. 136 into Eq. 145 for the mean of the max-min normalized rs-fMRI metric, we have the following

$$E\left(D_{ij}^{(1*)}\right) = \frac{\mu_{D_{ij}^{(1)}}}{2\mu_{\max}^{(1)}(m,p)}$$
$$= \frac{p(p-1)}{\sqrt{\pi}\mu_{\max}^{(1)}(m,p)},$$
(146)

where  $\mu_{\max}^{(1)}(m,p)$  is given in Eq. 143. Similarly, the variance of  $D_{ij}^{(1*)}$  is given by

$$\operatorname{Var}\left(D_{ij}^{(1*)}\right) = \frac{6\sigma_{D_{ij}^{(1)}}^{2} \log[m(p-1)]}{\pi^{2} + 24\left[\mu_{\max}^{(1)}(m,p)\right]^{2} \log[m(p-1)]}$$

$$= \frac{27(\pi - 2)\log[m(p-1)](p-1)p}{2\pi\left(\pi^{2} + 24\left[\mu_{\max}^{(1)}(m,p)\right]^{2}\log[m(p-1)]\right)},$$
(147)

where  $mu_{\max}^{(1)}(m,p)$  is given in Eq. 143.

519

528

### 3 Effects of correlation on distances

All of the derivations presented in previous sections are for the cases where there is no correlation between instances or features. We assumed that any pair  $(X_{ia}, X_{ja})$  of data points for instances i and j and fixed feature a were independent and identically distributed. This was done in order to determine asymptotic estimates in null data. That is, data with no main effects, interaction effects, or pairwise correlations between features. Within this highly simplified context, our asymptotic formulas for distributional moments are reliable. However, correlations do exist between features and instances in real data. There are a multitude of different statistical effects that impact distance distributional properties. Ultimately, divergence from normality is caused primarily by large magnitude pairwise correlation between features. Pairwise feature correlation can be the result of main effects, where features have different within-group means. On the other hand, there could be an underlying interaction network in which there are strong associations between features. If features are differentially correlated between phenotype groups, then interactions exist that change affect the distance distribution. In the following few sections, we consider particular cases of the  $L_q$  metric for continuous and discrete data under the effects of pairwise feature correlation.

### 3.1 Continuous data

Consider  $X^{(m \times p)}$  where  $X_{ia} \sim \mathcal{N}(0,1)$  for all  $i=1,2,\ldots,m$  and  $a=1,2,\ldots,p$ . Without loss of generality, we let m=p=100 and consider only the  $L_2$  (Euclidean) metric. An illustration of the effects of correlation on distances with the given assumptions is shown in Fig. 5. Each density curve shown in (blue) is for a simulated distance matrix from data with some degree of pairwise correlation between features. Divergence from normality in distances is directly related to the average absolute pairwise correlation that exists in the simulated data. This measure is given by

$$\bar{r}_{abs} = \frac{2}{p(p-1)} \sum_{i=1}^{p-1} \sum_{j>i} r_{ij}$$
 (148)

530

533

537

538

539

540

542

544

545

546

547

551

553

554

561

562

563

where  $r_{ij}$  is the correlation between features i and j across all instances m. The null distance density curve (orange) is representative of distances generated from random standard normal data with no effects added. The mean and variance of this distribution are given by Eqs. 49 and 48, respectively, by substituting p = 100 for the mean. From left-to-right and from top-to-bottom, there is an increase in  $\bar{r}_{abs}$ . This very quickly introduces positive skewness and increased variability. The predicted and sample means, however, are approximately the same in each case. This is simply due to linearity of the expectation operator. Because of the dependencies between features, the predicted variance of 1 obviously no longer holds.

September 12, 2019 35/44



Fig 5. Density curves of distance distributions generated from correlated and null data from standard normal distribution. Each plot has the theoretical density curve for the null Euclidean distance distribution (orange) and a density curve for Euclidean distances from correlated data (blue) with some average magnitude pairwise correlation ( $\bar{r}_{abs}$ ) between features. (Upper left) With little correlation, distances begin to diverge from the predicted normal distribution. (Upper Right) Low to moderate correlation causes a large positive skew and increased variability in distances. (Lower Left) Moderate to high correlation increases skewness and variability in distances. (Lower Right) Extreme correlation produces maximal skewness and variability in distances. In each case, the null and correlated distance means are approximately the same.

### 3.3 Correlation-based data



Fig 6. Histograms of simulated TiTv distance distributions for different average MAFs. The Ti/Tv ratio was fixed to be 2 in all simulations. Average MAF is computed as the expected value of the uniform distribution from which minor allele success probabilities  $(f_a)$  are drawn. The upper bounds for each success probability uniform distribution are  $\{0.1, 0.2, 0.3, 0.4\}$ , which are the maximum possible MAF for a given locus a. The corresponding lower bounds were  $\{0.01, 0.1, 0.2, 0.3\}$ . Sample and predicted means, as well as standard deviations, are overlaid on each histogram. Each distance distribution comes from a simulated data set with m=100 instances and p=100 features.

September 12, 2019 37/44



Fig 7. Histograms of simulated TiTv distance distributions for different Ti/Tv ratios. Average MAF was fixed to be 0.055. The Ti/Tv ratio was taken to be 2, 1.5, 1, and 0.5. The average distance increases as the Ti/Tv ratio decreases, which is intuitive because the TiTv distance is greater for transversions than transitions. Sample and predicted means, as well as standard deviations, are overlaid on each histogram. Each distance distribution comes from a simulated data set with m=100 instances and p=100 features.

September 12, 2019 38/44

**Table 1.** Summary of distance distribution derivations for standard normal and standard uniform data. Asymptotic estimates are given for both standard and max-min normalized q-metrics. These estimates are relevant for all  $q \in \mathbb{N}$  and  $p \geq 100$ .

| q-Metric                                   | Data               | Stat     | Formula (Eq. $\#$ )                                                                                                                                                                                                                                                    |
|--------------------------------------------|--------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| standard (Eq. 2)                           | $\mathcal{N}(0,1)$ | mean     | $\left(\frac{2^q \Gamma\left(\frac{q+1}{2}\right) p}{\sqrt{\pi}}\right)^{1/q} \tag{38}$                                                                                                                                                                                |
|                                            | $\mathcal{N}(0,1)$ | variance | $\frac{4^{q}p}{q^{2}\left(\frac{2^{q}\Gamma\left(\frac{1}{2}q+\frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1-\frac{1}{q}\right)}}\left[\frac{\Gamma\left(q+\frac{1}{2}\right)}{\sqrt{\pi}}-\frac{\Gamma^{2}\left(\frac{1}{2}q+\frac{1}{2}\right)}{\pi}\right]$ (38) |
|                                            | $\mathcal{U}(0,1)$ | mean     | $\left(\frac{2p}{(q+2)(q+1)}\right)^{1/q} \tag{48}$                                                                                                                                                                                                                    |
|                                            | $\mathcal{U}(0,1)$ | variance | $\frac{p}{q^2 \left(\frac{2p}{(q+2)(q+1)}\right)^2 \left(1-\frac{1}{q}\right)} \left[\frac{1}{(q+1)(2q+1)} - \left(\frac{2}{(q+2)(q+1)}\right)^2\right] (48)$                                                                                                          |
| max-min<br>normalized<br>( <b>Eq. 59</b> ) | $\mathcal{N}(0,1)$ | mean     | $\boxed{\frac{\mu_{D^{(q)}_{ij}}}{2\mu_{\max}^{(1)}(m)}}  (\textbf{93})$ where $\mu_{D^{(q)}_{ij}}$ and $\mu_{\max}^{(1)}(m)$ are given by Eqs. 38 and 87, respectively.                                                                                               |
|                                            | $\mathcal{N}(0,1)$ | variance | $\frac{6\mathrm{log}(m)\sigma_{D_{ij}^{(q)}}^2}{\pi^2+24\big[\mu_{\mathrm{max}}^{(1)}(m)\big]^2\mathrm{log}(m)} \tag{93}$ where $\sigma_{D_{ij}^{(q)}}^2$ and $\mu_{\mathrm{max}}^{(1)}(m)$ are given by Eqs. 38 and 87, respectively.                                 |
|                                            | $\mathcal{U}(0,1)$ | mean     | $\frac{(m+1)\mu_{D^{(q)}_{ij}}}{m-1} \qquad \textbf{(101)}$ where $\mu_{D^{(q)}_{ij}}$ is given by Eq. 48                                                                                                                                                              |
|                                            | $\mathcal{U}(0,1)$ | variance | $\frac{\left[\frac{(m+2)(m+1)^2\sigma_{D_{ij}^{(q)}}^2}{D_{ij}^{(q)}}\right]}{m^3-m+2}  \text{(101)}$ where $\sigma_{D_{ij}^{(q)}}^2$ is given by Eq. 48                                                                                                               |

**Table 2.** Asymptotic estimates for means and variances for the standard  $L_1$  and  $L_2$  distance distributions. Estimates for both standard normal and standard uniform data are given.

| $q	ext{-Metric}$                                                | Data               | Stat     | Formula (Eq. $\#$ )                       |
|-----------------------------------------------------------------|--------------------|----------|-------------------------------------------|
| $egin{aligned} 	ext{standard} \ (oldsymbol{L_1}) \end{aligned}$ | $\mathcal{N}(0,1)$ | mean     | $\frac{2p}{\sqrt{\pi}}$ (38)              |
|                                                                 |                    | variance | $\frac{2(\pi-2)p}{\pi}  (38)$             |
|                                                                 | $\mathcal{U}(0,1)$ | mean     | $\frac{p}{3}$ (48)                        |
|                                                                 |                    | variance | $\frac{p}{18}$ (48)                       |
| standard                                                        | $\mathcal{N}(0,1)$ | mean     | $\sqrt{2p-1}  (38)$                       |
|                                                                 |                    | variance | 1 (38)                                    |
| $(L_2)$                                                         | $\mathcal{U}(0,1)$ | mean     | $\sqrt{\frac{p}{6} - \frac{7}{120}}$ (48) |
|                                                                 |                    | variance | $\frac{7}{120}$ (48)                      |

**Table 3.** Asymptotic estimates for means and variances for the max-min normalized  $L_1$  and  $L_2$  distance distributions. Estimates for both standard normal and standard uniform data are given.

| $q	ext{-Metric}$                                                                 | Data               | Stat     | Formula (Eq. #)                                                                                                                                                                |
|----------------------------------------------------------------------------------|--------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $egin{array}{c} 	ext{max-min} \ 	ext{normalized} \ (oldsymbol{L_1}) \end{array}$ | $\mathcal{N}(0,1)$ | mean     | $\frac{p}{\sqrt{\pi}\mu_{\max}^{(1)}(m)}  (93)$ where $\mu_{\max}^{(1)}(m) = \frac{\log(\log(2))}{\Phi^{-1}\left(\frac{1}{m}\right)} - \Phi^{-1}\left(\frac{1}{m}\right)$      |
|                                                                                  |                    | variance | $ \frac{12p(\pi-2)\log(m)}{\pi(\pi^2+24[\mu_{\max}^{(1)}(m)]^2\log(m))}  $ where $\mu_{\max}^{(1)}(m) = \frac{\log(\log(2))}{\Phi^{-1}(\frac{1}{m})} - \Phi^{-1}(\frac{1}{m})$ |
|                                                                                  | $\mathcal{U}(0,1)$ | mean     | $\frac{(m+1)p}{3(m-1)}$ (101)                                                                                                                                                  |
|                                                                                  |                    | variance | $\frac{(m+2)(m+1)^2p}{18(m^3-m+2)} $ (48)                                                                                                                                      |
| $egin{array}{c} 	ext{max-min} \ 	ext{normalized} \ (oldsymbol{L_2}) \end{array}$ | $\mathcal{N}(0,1)$ | mean     | $\boxed{\frac{\sqrt{2p-1}}{2\mu_{\max}^{(1)}(m)}} \tag{93}$                                                                                                                    |
|                                                                                  |                    |          | where $\mu_{\max}^{(1)}(m) = \frac{\log(\log(2))}{\Phi^{-1}(\frac{1}{m})} - \Phi^{-1}(\frac{1}{m})$                                                                            |
|                                                                                  |                    | variance | $\boxed{\frac{6\log(m)}{\pi^2 + 24\left[\mu_{\max}^{(1)}(m)\right]^2\log(m)}} \tag{93}$                                                                                        |
|                                                                                  |                    |          | where $\mu_{\text{max}}^{(1)}(m) = \frac{\log(\log(2))}{\Phi^{-1}\left(\frac{1}{m}\right)} - \Phi^{-1}\left(\frac{1}{m}\right)$                                                |
|                                                                                  | $\mathcal{U}(0,1)$ | mean     | $\sqrt{\frac{p}{6} - \frac{7}{120}} \left(\frac{m+1}{m-1}\right)$ (101)                                                                                                        |
|                                                                                  |                    | variance | $\frac{7(m+2)(m+1)^2}{120(m^3-m+2)}  \textbf{(101)}$                                                                                                                           |

Table 4. Summary of distance distribution derivations for GWAS data.

| GWAS-Metric                | Stat     | Formula (Eq. $\#$ )                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GM<br>( <b>Eq. 103</b> )   | mean     | $2\sum_{a\in\mathcal{A}} F(a) $ (110) where $F(a) = 2(1-f_a)^3 f_a + 2f_a^3 (1-f_a) + (1-f_a)^2 f_a^2$                                                                                                                                                                                                                                                                                                                                                         |
|                            | variance | $2\sum_{a\in\mathcal{A}} F(a)[1-2F(a)] \qquad (110)$ where $F(a) = 2(1-f_a)^3 f_a + 2f_a^3 (1-f_a) + (1-f_a)^2 f_a^2$                                                                                                                                                                                                                                                                                                                                          |
| AM<br>( <b>Eq. 104</b> )   | mean     | $2\sum_{a\in\mathcal{A}} F(a) $ (115) where $F(a) = (1-f_a)^3 f_a + f_a^3 (1-f_a) + (1-f_a)^2 f_a^2$                                                                                                                                                                                                                                                                                                                                                           |
|                            | variance | $\sum_{a \in \mathcal{A}} [G(a) - 4F^2(a)] \qquad (115)$ where $F(a) = 2(1 - f_a)^3 f_a + 2f_a^3 (1 - f_a) + (1 - f_a)^2 f_a^2$ and $G(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a) + 2(1 - f_a)^2 f_a^2$                                                                                                                                                                                                                                                            |
| TiTv<br>( <b>Eq. 105</b> ) | mean     | $[(\gamma_0 + \gamma_2 + 2\gamma_1) \sum_{a \in \mathcal{A}} F(a) + [\frac{3}{2}(\gamma_0 + \gamma_2) + 2\gamma_1] \sum_{a \in \mathcal{A}} G(a)] $ (131)<br>where $F(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a)$ and $G(a) = (1 - f_a)^2 f_a^2$                                                                                                                                                                                                                   |
|                            | mean     | $\begin{bmatrix} \frac{1}{4}(\gamma_0 + \gamma_2) + \gamma_1 \end{bmatrix} \sum_{a \in \mathcal{A}} F(a) + \begin{bmatrix} \frac{9}{8}(\gamma_0 + \gamma_2) + 2\gamma_1 \end{bmatrix} \sum_{a \in \mathcal{A}} G(a) \\ + \sum_{a \in \mathcal{A}} \left( [\gamma_0 + \gamma_2 + 2\gamma_1] F(a) + \left[ \frac{3}{2}(\gamma_0 + \gamma_2) + 2\gamma_1 \right] G(a) \right)^2 $ where $F(a) = (1 - f_a)^3 f_a + f_a^3 (1 - f_a)$ and $G(a) = (1 - f_a)^2 f_a^2$ |

**Table 5.** Summary of distance distribution derivations for rs-fMRI data.

| rs-fMRI - Metric              | Stat     | Formula (Eq. $\#$ )                                                                                                                                                                                |
|-------------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| standard                      | mean     | $\frac{2p(p-1)}{\sqrt{\pi}}  (139)$                                                                                                                                                                |
| (Eq. 132)                     | variance | $\frac{9p(\pi-2)(p-1)}{4\pi} $ (139)                                                                                                                                                               |
| max-min                       | mean     | $\boxed{\frac{\mu_{D_{ij}}}{2\mu_{\max}^{(1)}(m,p)}}  \text{(143)}$ where $\mu_{D_{ij}}$ and $\mu_{\max}^{(1)}(m,p)$ are given by Eqs. 140 and 142                                                 |
| normalized ( <b>Eq. 140</b> ) | variance | $ \frac{6\sigma_{D_{ij}}^2 \log[m(p-1)]}{\pi^2 + 24 \left[\mu_{\max}^{(1)}(m,p)\right]^2 \log[m(p-1)]} $ (143) where $\sigma_{D_{ij}}^2$ and $\mu_{\max}^{(1)}(m,p)$ are given by Eqs. 140 and 142 |

References

1. Ryan J. Urbanowicz, Randal S. Olson, Peter Schmitt, Melissa Meeker, and Jason H. Moore. Benchmarking relief-based feature selection methods for bioinformatics data mining. *Journal of Biomedical Informatics*, 85:168–188, 2018.

568

570

571

572

573

574

576

578

579

580

582

583

587

589

- 2. Ryan J. Urbanowicz, Melissa Meeker, William La Cava, Randal S. Olson, and Jason H. Moore. Relief-based feature selection: Introduction and review. *Journal of Biomedical Informatics*, 2018.
- 3. Marko Robnik Šikonja and Igor Kononenko. Theoretical and Empirical Analysis of ReliefF and RReliefF. *Machine Learning*, 53:23 69, February 2003.
- 4. Archana Venkataraman, Marek Kubicki, Carl-Fredrik Westin, and Polina Golland. Robust Feature Selection in Resting-State fMRI Connectivity Based on Population Studies. Conf Comput Vis Pattern Recognit Workshops, pages 63–70, 2010.
- 5. Etay Hay, Petra Ritter, Nancy J. Lobaugh, and Anthony R. McIntosh. Multiregional integration in the brain during resting-state fMRI activity. *PLOS Computational Biology*, March 2017.
- 6. Benedikt Sundermann, Mona Olde lütke Beverborg, and Bettina Pfleiderer. Toward literature-based feature selection for diagnostic classification: a meta-analysis of resting-state fMRI in depression. *Frontiers in Human Neuroscience*, September 2014.
- 7. Svyatoslav Vergun, Alok S. Deshpande, Timothy B. Meier, Jie Song, Dana L. Tudorascu, Veena A. Nair, Vikas Singh, Bharat B. Biswal, M. Elizabeth Meverand, Rasmus M. Birn, and Vivek Prabhakaran. Characterizing functional connectivity differences in aging adults using machine learning on resting state fMRI data. Frontiers in Computational Neuroscience, April 2013.

September 12, 2019 43/44

| 8.  | Trang T Le, Ryan J Urbanowicz, Jason H Moore, and Brett A McKinney. Statistical inference relief (stir) feature selection. <i>Bioinformatics</i> , page bty788, 2018.                                                                                              | 59i               |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 9.  | M. Arabnejad, B. A. Dawkins, W. S. Bush, B. C. White, A. R. Harkness, and B. A. McKinney. Transition-transversion encoding and genetic relationship metfic in ReliefF feature selection improves pathway enrichment in GWAS. <i>BioData Mining</i> , 11(23), 2018. | 59:<br>59:<br>59: |
| 10. | Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, New York, NY, 2004.                                                                                                                                                       | 59 <sup>1</sup>   |
| 11. | $\label{lem:model} \begin{tabular}{ll} Irwin Miller and Marylees Miller. \begin{tabular}{ll} John E. Freund's Mathematical Statistics with Applications. Pearson Prentice Hall, 7 edition, 2004. \end{tabular}$                                                    | 59i               |
| 12. | Ryan J. Urbanowicz, Melissa Meeker, William LaCava, Randal S. Olson, and Jason H. Moore. Relief-Based Feature Selection: Introduction and Review. arXiv:1711.08421 [cs.DS], 2018.                                                                                  | 60:               |
| 13. | E. J. Gumbel. The Distribution of the Range. <i>The Annals of Mathematical Statistics</i> , 18(3):384–412, September 1947.                                                                                                                                         | 604               |
| 14. | Sourav Chatterjee. Superconcentration and Related Topics. 1439-7382. Springer International Publishing, 1 edition, 2014.                                                                                                                                           | 60                |
| 15. | ${\it Harald Cram\'er.}\ {\it Mathematical Methods of Statistics}, {\it volume 1. Princeton University}$                                                                                                                                                           | 60                |

Press, reprint, revised edition, 1999.

September 12, 2019 44/44