Description of the Example Dataset

- High School and Beyond Survey (hsb),
- Consists of 7185 students from 160 schools (sch.id),
- Sample sizes average about 45 students per school,
- Math achievement as DV: math (Level 1),
- IV (Level 1):
 - minority (1 = minority, 0 = others)
 - **female** (1 = female, 0 = male)
 - ses (numeric)
- IV (Level 2):
 - **size** (school size)
 - meanses (school ses)
 - **sector** (1 = Catholic, 0 = Public)

•	sch.id [‡]	math [‡]	size [‡]	sector [‡]	meanses [‡]	minority [‡]	female [‡]	ses [‡]
1	1224	5.876	842	0	-0.428	0	1	-1.528
2	1224	19.708	842	0	-0.428	0	1	-0.588
3	1224	20.349	842	0	-0.428	0	0	-0.528
4	1224	8.781	842	0	-0.428	0	0	-0.668
5	1224	17.898	842	0	-0.428	0	0	-0.158
6	1224	4.583	842	0	-0.428	0	0	0.022

Comparing HLM M-o-M model with non-HLMs

- Let's look at a binary (categorical), school-level predictor, sector:
- hsb <- read csv('https://raw.githubusercontent.com/rnorouzian/e/master/hsb.csv')
- hsb <- mutate(hsb, sector = factor(ifelse(sector==0, "pub", "cath")))
- g <- hsb %>% dplyr::select(math, sector) %>% group_by(sector) %>% summarise(across(.fns = list(mean=mean, sd=sd)), n = n())

sector [‡]	math_mean	math_sd [‡]	n [‡]
cath	14.17030	6.359018	3543
pub	11.36407	7.079920	3642

• t.testb(m1=g\$math_mean[1], m2=g\$math_mean[2], s1=g\$math_sd[1], s2=g\$math_sd[2], n1= g\$n[1], n2=g\$n[2], var.equal = TRUE)

mean.dif [‡]	std.error	\$ t.value [‡]	p.value [‡]
-2.806225	0.158905	-17.6598	0

• You will get exactly the same SE if you do: summ (lm (math~ sector, data = hsb)) # WHY so?

Unbiased SE (Estimated by HLM)

- Level 1: MathAch_{ij} = β_{0j} + e_{ij}
- Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} Sector_j + U_{0j}$

Combined:

• MathAch_{ij} = $\gamma_{00} + \gamma_{01} Sector_j + U_{0j} + e_{ij}$

- hsb <- mutate(hsb, sector= relevel(sector, ref= "pub"))
 - summ(lmer(math~ sector+ (1|sch.id), data= hsb), re.variance= "var")

Coefficient's (γ_{00}) interpretation: The mean of the "public" high schools.

Coefficient's (γ_{01}) interpretation: Mean_cath – Mean_pub (mean diff.).

So, the mean of Cath_HS: 11.39304 + 2.80489 = 14.19793.

Sampling variance and SE of coef.s in HLM

RANDOM EFFECTS:

Group	Parameter	Var.
sch.id Residual	(Intercept)	6.67696 39.15140

$$VAR(\hat{\gamma}_{01}) = \frac{\tau_{00} + \frac{\sigma_e^2}{n}}{J\sigma_{sector}^2}$$

$$VAR(U_{0j}) = \tau_{00} = 6.68$$

$$VAR(e_{ij}) = \sigma_e^2 = 39.15$$

 $VAR(sector) = \sigma_{sector}^2 \approx .25 \rightarrow var(as.numeric(hsb$sector))$

n = Number of students in each school (average per school) ≈ 45

hsb %>% dplyr::select(sch.id) %>% group_by(sch.id) %>% summarise(n=n())
%>% summarise(n=mean(n))

J = Total number of schools = 160

$$SE_{\hat{\gamma}_{01}} = \sqrt{\frac{\tau_{00} + \frac{\sigma_e^2}{n}}{J\sigma_{sector}^2}} = \sqrt{\frac{6.68 + \frac{39.15}{45}}{160(.25)}} = .439$$
(Correct)

Sampling variance and SE in non-HLM

- Without considering the multilevel/grouping structure (Exception Fallacy):
- Earlier, we noted if τ_{00} is ignored, where does it end up going?
- * σ_e^2 (residual variance): sigma (lm (math~sector, data = hsb)) ^2 #= 45.35
- $*\sigma^2_e$ is approximated by the sum of the following:
- $VAR(U_{0j}) = \tau_{00} = 6.68$
- $VAR(e_{ij}) = \sigma_e^2 = 39.15$

$$SE_{\hat{\gamma}_{01}} = \sqrt{\frac{\frac{*\sigma_e^2}{n}}{J\sigma_{sector}^2}} \approx \sqrt{\frac{\frac{(\tau_{00} + \sigma_e^2)}{n}}{J\sigma_{sector}^2}} = \sqrt{\frac{\frac{45.35}{45}}{160(.25)}} = .1587$$
(Incorrect)

HLM and its benefits

- MLM can take the non-independency (between lower level observations) into account:
- Estimate the cluster effect,
- Obtain the correct standard errors for the parameter estimates,
- Have correct statistical tests for the parameter estimates.
- The main purpose of using MLM is NOT that MLM has more statistical power! On the other hand, you can increase the statistical power in MLM by...
- Increasing the # of schools (*J*) better reduces SE of a coef. than the # of students (*n*). Why?

$$VAR(\hat{\gamma}_{01}) = \frac{\tau_{00} + \frac{\sigma_e^2}{n}}{J\sigma_{sector}^2} = (\frac{\tau_{00}}{J} + \frac{\sigma_e^2}{nJ}) \frac{1}{\sigma_{sector}^2}$$
• Because of their positions in the formula, J reduces the entire formula but n reduces sigma

- squared.
- Reducing the size of VAR(γ_{01}) results in the INCREASE in POWER of detecting significant γ_{01} .

Side by Side Output Comparisons

```
• m1 <- lmer(math~ sector + (1|sch.id), data= hsb)
• ols1 <- lm(math~ sector, data = hsb)
• stargazer(ols1, m1, type = 'text', star.cutoffs = c(.05,.01,.001))
                                            Dependent variable:
                                                   math
                                                              linear
                                             OLS
                                                            mixed-effects
                                             (1)
                                                                 (2)
                                          2.806***
                                                             2.805***
               sector
                                                            (0.439)
                                           (0.159)
                                          11.364***
                                                             11.393***
               Constant
                                           (0.112)
                                                              (0.293)
               Observations
                                                              7,185
                                           7,185
                                            0.042
               R2
               Adjusted R2
                                            0.041
               Log Likelihood
                                                             -23,540.070
               Akaike Inf. Crit.
                                                            47,088.130
               Bayesian Inf. Crit.
                                                            47,115.650
               Residual Std. Error
                                      6.734 \text{ (df} = 7183)
                                   311.869*** (df = 1; 7183)
               F Statistic
```

Note:

*p<0.05; **p<0.01; ***p<0.001

Means-as-outcomes model (categorical predictor)

- Level 1: MathAch_{ij} = β_{0j} + e_{ij}
- Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01} Sector_j + U_{0j}$

Combined:

• MathAch_{ij} = $\gamma_{00} + \gamma_{01}$ Sector_j + U_{0j} + e_{ij}

- hsb <- mutate(hsb, sector= relevel(sector, ref= "pub"))
 summ(lmer(math~ sector+ (1|sch.id), data= hsb),re.variance= "var")</pre>
- Est. S.E. t val. d.f. p

 (Intercept) 11.39304 0.29283 38.90657 158.53713 0.00000
 sector cath 2.80489 0.43906 6.38845 153.50058 0.00000

RANDOM EFFECTS:

Group	Parameter	Var.	
sch.id	(Intercept)	6.68	
Residual		39.15	

* τ_{00} = 8.61 \rightarrow random-intercept model's bet. School variance * σ^2 = 39.14 \rightarrow random-intercept model's within variance

 $(*\tau_{00} - \tau_{00})$ / $*\tau_{00} = (8.61 - 6.68)$ / 8.61 = .225 (or 22.5%) decrease in between-school variance compared to Model 1 as a result of adding sector as a predictor of bet. school means' variation!

Visualizing Means-as-outcomes model (categorical predictor)

Random-Coefficients Regression Model

- RQ3: On average, does student SES relate to math achievement? Is this relation similar across schools?
- Pretend that we regress math on ses for each school; in other words, we would run 160 regressions, each for a school.
- What would be the average of the 160 regression equations (both intercepts and slopes)?
- How much do the regression equations vary from school to school?
- What is the correlation between the intercepts and slopes across the schools?

Does student SES relate to math achievement? Is this relation similar across schools?

- some <- subset(hsb, sch.id %in% unique(sch.id)[1:25])
- ggplot(some) + aes(ses, math)+
 geom_point() + facet_wrap(~sch.id)
 geom_smooth(method="lm",se=F)

Random-Coefficients Regression Model

$$sub_0 = intercept; sub_1 = slope$$

Level 1: MathAch_{ij} = $\beta_{0j}^{\dagger} + \beta_{1j}^{\dagger} SES_{ij} + e_{ij}$

Combined:

 $MathAch_{ij} = \gamma_{00} + \gamma_{10} SES_{ij} + U_{0j} + U_{1j} SES_{ij} + e_{ij}$

$$G = Cov (U_{0j}, U_{1j}) = \underbrace{\begin{matrix} U_{0j} \\ \tau_{00} \end{matrix}}_{U_{1j}} \underbrace{\begin{matrix} U_{1j} \\ \tau_{01} \end{matrix}}_{\tau_{11}} \underbrace{\begin{matrix} U_{1j} \\ \tau_{01} \end{matrix}}_{\text{Diagonal = variances}}_{\text{Off-diag. = covariance}}$$

 $Cov(e_{ij}, U_j) = 0$

• Bet. variation(s) and within variation are separate and additive.

• $U_i \sim mvNorm(\mathbf{0}, G) \rightarrow$

Correlation bet. $U_j s = Correlation bet. \beta_j s$

- *G* matrix represents the correlation bet. β_j s (slopes & intercepts) and not just that bet. U_j s (their deviations from the β_i s), WHY so?
- Additive constants $(\gamma_{00} \& \gamma_{10})$ don't change the correlations.

```
# Additive constants
gamma 00 = 10
gamma_10 = 2
G = matrix(c(4,.2,.2,5),2) #e.g., \rightarrow G = \begin{bmatrix} 4 & .2 \\ 2 & 5 \end{bmatrix}
set.seed(1)
Uj = mvrnorm(9, mu = c(0,0), Sigma = G)
cor(Uj) # .205
B0j = gamma 00 + Uj[,1]
B1j = gamma 10 + Uj[,2]
cor(B0j,B1j) # .205
```

Meaning of τ_{00} , τ_{11} , and τ_{01} (= τ_{10})

- Variation in slopes ($^{\tau}$ 11) across schools but not intercepts (i.e., a constant). Thus, **Cov(slopes, constant) = 0.**
- hsb <- read csv('https://raw.githubusercontent.com/rnorouzian/e/master/hsb.csv')

sch.id:1288

sch.id:1317

ses

sch.id:1296

sch.id:1358

- nine <- subset(hsb, sch.id %in% unique(sch.id)[1:9]) # get 9 schools for display
- ggplot(nine) + aes(ses, math) + geom point() + xlim(0,NA) +
- geom abline(intercept=10, slope = c(0,3,-1,7,2,-6,1,9,4), color="blue")

Meaning of τ_{00} , τ_{11} , and τ_{01} (= τ_{10})

$$G = \begin{bmatrix} \mathbf{U}_{0\mathbf{j}} & \mathbf{U}_{1\mathbf{j}} & \mathbf{U}_{1\mathbf{j}} \\ \mathbf{U}_{0\mathbf{0}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

- Variation in intercepts ($^{\tau}00$) across schools but not slopes (i.e., a constant). Thus, **Cov(intercepts, constant) = 0.**
- ggplot(nine) + aes(ses, math) + geom_point() + xlim(0,NA) + geom abline(intercept=seq(5,20,length= 9),slope= 3, color="blue")

Meaning of τ_{00} , τ_{11} , and τ_{01} (= τ_{10})

• In schools with higher mean mathach (intercept), ses has a higher effect (slope) on math achievement.

- Variation both in intercepts and slopes. AND,
 Cov(intercepts, slopes) = some number.
- nine\$sch.id <- factor(nine\$sch.id)
- ggplot(nine) + aes(ses, math) + geom_point() + geom smooth(method="lm", se=F, aes(color=sch.id))

A Question for You?

$$G = egin{bmatrix} \mathbf{U_{0j}} & \mathbf{\mathcal{T}_{00}} & \mathbf{\mathcal{T}_{01}} \ \mathbf{\mathcal{T}_{10}} & \mathbf{\mathcal{T}_{11}} \end{bmatrix}$$

• In schools with higher mean mathach (intercept), ses has a lower effect (slope) on math achievement.

 What do the following visuals tell us about the type of relationship between the intercepts & slopes of schools?

