Санкт - Петербургский государственный университет Математико - механический факультет

Отчёт по практике №8

Сеточные методы для задачи теплопроводности

Выполнил: Розыков Б.

451 группа

1 Предисловие

Для решения задач теплопроводности существуют аналитические методы, однако решение некоторых неоднородных и нелинейных задач теплопроводности получить аналитическими методами не представляется возможным. Решение такого рода задач проводится с использованием численных методов. Это позволяет решать многие практические задачи. Появление высокопроизводительной вычислительной техники поспособствовало решению нестационарные пространственные задач.

2 Постановка задачи

Рассмотрим простейший случай уравнения теплопроводности

$$u_t(x,t) = ku_{xx}(x,t) + f(x,t),$$
 (1)

где k — положительная константа, а $x \in (0, a), t \in (0, T)$.

В качестве дополнительных условий зададим одно начальное и два граничных

$$u(x,0) = \mu(x), \ x \in [0,a];$$

$$u(0,t) = \mu_1(t) \\ u(a,t) = \mu_2(t) \quad t \in [0,T].$$

Решать эту задачу будем двумя сеточными методами явным и неявным.

2.1 Преобразование для применения двухслойных схем

Преобразуем исследуемое уравнение теплопроводности в $\frac{du}{dt} = \Lambda u + f$, где Λ — трёхдиагональная матрица с элементами: $a_{ii} = -\frac{2k}{h^2}, a_{i,i\pm 1} = \frac{k}{h^2}, \ i = 1, ..n-1, \ n$ — количество узлов координатной сетки.

Решение \hat{u} на следующем узле временной сетки можно найти через известное решение на текущем узле u с помощью одностадийной схемы Розенброка.

$$(E - \sigma \tau \Lambda)w = \Lambda u + f \tag{2}$$

Решая относительно w, получаем $\hat{u} = u + \tau Re(w)$.

2.2 Явная схема

Один из примеров явной схемы — это схема Розенброка с $\sigma=0$. Традиционная формула записи имеет следующий вид

$$\frac{\hat{u_n} - u_n}{\tau} = \frac{k}{h^2} (u_{n-1} - 2u_n + u_{n+1}) + f(x_n, \hat{t}); \tag{3}$$

Данная схема является лишь условно устойчивой, для устойчивости должно выполняться условие $2k\tau \leq h^2$. Явная схема непригодна для вычислений на больших временных интервалах.

2.3 Неявная схема

Для получения неявной схемы нужно положить $\sigma = \frac{1+i}{2}$. Такая схема называется комплексной схемой Розенброка. Мы уже с ней сталкивались, разбирали принцип её работы, поэтому остановимся на её свойствах. Эта схема

- Безусловно устойчива по начальным данным
- Устойчива равномерно
- Устойчива по правой части
- ullet Имеет полную погрешность аппроксимации $O(au^2+h^2)$
- Асимптотически безусловно устойчива

3 Описание численного эксперимента

Будем брать решение u(x,t) подставлять его в исходное уравнение, а так же в начальное и краевые условия, чтобы получить функции f, μ, μ_1, μ_2 . Будем засекать время работы программ. Дополнительно посмотрим, что будет выдавать явный метод при не соблюдении условия устойчивости (для этого возьмем $\tau = 0.001$).

Во всех тестах берем a = номеру теста + 1, T = 0.5, h = 0.01.

Введем обозначения для времени работы явного и неявного (t_r, t_c) , измеряемые в секундах) методов, и максимальное отклонение для этих методов (d_r, d_c) .

4 Тесты

4.1 Tect 1

В этом тесте возьмём решение u(x,t) = sin(x) + cos(t). Тогда

$$f(x,t) = -\sin(t) + 3\sin(x); \ \mu(x) = \sin(x) + 1; \ \mu_1(t) = \cos(t); \ \mu_2(t) = \sin(1) + \cos(t);$$

При
$$\tau=\frac{h^2}{2k}$$
: $t_r=0.48,\ t_c=6.6,\ d_r=2.03e-07,\ d_c=2.1e-05$ При $\tau>\frac{h^2}{2k}$: $t_r=0.01,\ t_c=0.13,\ d_r=\infty,\ d_c=0.0019$

4.2 Tect 2

В этом тесте возьмём решение $u(x,t) = cos(x)e^{-t}$. Тогда

$$f(x,t) = 3\cos(x)e^{-t}; \ \mu(x) = \cos(x); \ \mu_1(t) = e^{-t}; \ \mu_2(t) = \cos(1)e^{-t};$$

При
$$\tau = \frac{h^2}{2k}$$
: $t_r = 0.47$, $t_c = 8.1$, $d_r = 2.5e - 07$, $d_c = 1.4e - 05$
При $\tau > \frac{h^2}{2k}$: $t_r = 0.012$, $t_c = 0.14$, $d_r = \infty$, $d_c = 1.4$

4.3 Tect 3

В этом тесте возьмём решение $u(x,t)=(\sin(t)-x)e^x$. Тогда

$$f(x,t) = (\cos(t) + 5x - 5\sin(t) + 10)e^x; \ \mu(x) = -xe^x; \ \mu_1(t) = \sin(t); \ \mu_2(t) = e\sin(t) - e;$$

При
$$\tau=\frac{h^2}{2k}$$
: $t_r=0.53,\,t_c=10.19,\,\,d_r=9.9e-06,\,\,d_c=3.1e-05$ При $\tau>\frac{h^2}{2k}$: $t_r=0.014,\,t_c=0.12,\,\,d_r=\infty,\,\,d_c=4.5$

4.4 Tect 4

В этом тесте возьмём решение $u(x,t) = e^{x+t}$. Тогда

$$f(x,t) = -e^{x+t}$$
; $\mu(x) = e^x$; $\mu_1(t) = e^t$; $\mu_2(t) = e^{t+1}$;

При
$$\tau=\frac{h^2}{2k}$$
: $t_r=0.28,\ t_c=3.96,\ d_r=3.4e-06,\ d_c=6.9e-07$ При $\tau>\frac{h^2}{2k}$: $t_r=0.013,\ t_c=0.15,\ d_r=\infty,\ d_c=2.7$

4.5 Tect 5

В этом тесте возьмём решение $u(x,t) = \frac{t+1}{x+1}$. Тогда

$$f(x,t) = \frac{1}{x+1} - 12\frac{t+1}{(x+1)^3}; \ \mu(x) = \frac{1}{x+1}; \ \mu_1(t) = t+1; \ \mu_2(t) = \frac{t+1}{2};$$

При
$$\tau=\frac{h^2}{2k}$$
: $t_r=1.43,\,t_c=13.14,\,\,d_r=6.4e-06,\,\,d_c=8.4e-06$ При $\tau>\frac{h^2}{2k}$: $t_r=0.023,\,t_c=0.16,\,\,d_r=\infty,\,\,d_c=1.3$

5 Вывод

По полученным результатам можно сделать заключение о том, что в случае выполнения условия устойчивости явный метод срабатывает быстрее, однако с меньшей точностью. К тому же, если это условие не выполняется, то явный метод расходится, а неявный все еще выдает близкие к точному результаты решения.