

4.APPLICATIONS OF THE LAPLACE TRANSFORM

Applications of the Laplace Transform

Contents

	Overview, 132
4-1	s-Domain Circuit Element Models, 132
4-2	s-Domain Circuit Analysis, 134
4-3	Electromechanical Analogues, 140
4-4	Biomechanical Model of a Person
	Sitting in a Moving Chair, 146
4-5	Op-Amp Circuits, 149
4-6	Configurations of Multiple Systems, 154
4-7	System Synthesis, 157
4-8	Basic Control Theory, 160
4-9	Temperature Control System, 167
4-10	Amplifier Gain-Bandwidth Product, 171
4-11	Step Response of a Motor System, 174
4-12	Control of a Simple Inverted
	Pendulum on a Cart, 178
	Summary, 183
	Problems, 183

Objectives

Learn to:

- Use s-domain circuit element models to analyze electric circuits.
- Use electromechanical analogues to simulate and analyze mechanical systems.
- Use op-amp circuits to implement systems.
- Develop system realizations that conform to specified transfer functions.
- Employ feedback control techniques to improve system performance and stability

The Laplace-transform tools learned in the previous chapter are now applied to model and solve a wide variety of *mechanical* and thermal systems, including how to compute the movement of a passenger's head as the car moves over curbs and other types of pavements, and how to design feedback loops to control motors and heating systems.

s-Domain Circuit Element Models

The s-domain transformation of circuit elements incorporates initial conditions associated with any energy storage that may have existed in capacitors and inductors at $t = 0^-$.

$$v = Ri \iff V = RI.$$

$$v = L \frac{di}{dt} \iff V = sLI - L i(0^-).$$

$$i = C \frac{dv}{dt} \iff \mathbf{I} = \mathbf{s}C\mathbf{V} - C \ v(0^-),$$

Table 4-1: Circuit models for R, L, and C in the s-domain.

Time-Domain		s-Dom	ain
Resistor $ \begin{array}{c} i \downarrow \uparrow \\ R \geqslant v \\ v = Ri \end{array} $	$ \begin{array}{c} \mathbf{I} \downarrow \uparrow \\ R \gtrless \mathbf{V} \\ V = R\mathbf{I} \end{array} $		
Inductor $i_{L} \downarrow \qquad \qquad \downarrow$	I_{L} sL V_{L} $L i_{L}(0^{-})$ V_{L}	OR	$sL = \frac{\mathbf{V_L}}{\mathbf{v_L}} + \frac{i_{\mathbf{L}}(0^-)}{\mathbf{s}}$ $\mathbf{I_L} = \frac{\mathbf{V_L}}{\mathbf{s}I} + \frac{i_{\mathbf{L}}(0^-)}{\mathbf{s}}$
$i_{L} = \frac{1}{L} \int_{0^{-}}^{t} v_{L} dt' + i_{L}(0^{-})$ Capacitor $i_{C} \downarrow \uparrow \qquad \downarrow \qquad \downarrow$	$\mathbf{V}_{L} = \mathbf{s}L\mathbf{I}_{L} - L i_{L}(0^{-})$ $\mathbf{I}_{C} \downarrow \bullet \bullet$ $\frac{1}{\mathbf{s}C} \qquad \bullet$ \mathbf{V}_{C} $\frac{v_{C}(0^{-})}{\mathbf{s}} \stackrel{+}{\bullet} \bullet$	OR	I _C
$i_{\rm C} = C \frac{dv_{\rm C}}{dt}$ $v_{\rm C} = \frac{1}{C} \int_0^t i_{\rm C} dt' + v_{\rm C}(0^-)$	$V_{\rm C} = \frac{I_{\rm C}}{{\rm s}C} + \frac{\upsilon_{\rm C}(0^-)}{{\rm s}}$		$\mathbf{I}_{\mathrm{C}} = \mathbf{s}C\mathbf{V}_{\mathrm{C}} - C\ \upsilon_{\mathrm{C}}(0^{-})$

Initial Conditions:

$$v_{\rm C}(0^-) = 9 \, {\rm V}, \ i_{\rm L}(0^-) = 3 \, {\rm A}, \ {\rm and} \ v_{\rm out}(0^-) = 9 \, {\rm V}$$

(d) At $t = 0^-$

$$\mathbf{V}_{\rm in}(\mathbf{s}) = \frac{15}{\mathbf{s}} - \frac{15}{\mathbf{s} + 2}$$

Time Domain

s-Domain

and

$$i_{\text{C}} \stackrel{C}{\longrightarrow} I_{\text{C}} \stackrel{1/\mathbf{s}C}{\longrightarrow} v_{\text{C}}(0^-)/\mathbf{s} \qquad 10/\mathbf{s} \qquad 9/\mathbf{s}$$

(e) s-domain

$$\mathbf{V}_{\mathrm{in}}(\mathbf{s}) = \frac{15}{\mathbf{s}} - \frac{15}{\mathbf{s} + 2}$$

By inspection, the mesh-current equations for loops 1 and 2 are

$$\left(2+5+\frac{10}{s}\right)\mathbf{I}_{1}-\left(5+\frac{10}{s}\right)\mathbf{I}_{2}=\mathbf{V}_{in}-\frac{9}{s}$$
 (4.13)

$$-\left(5 + \frac{10}{s}\right)\mathbf{I}_1 + \left(3 + 5 + 2s + \frac{10}{s}\right)\mathbf{I}_2 = \frac{9}{s} + 6. \quad (4.14)$$

Simultaneous solution leads to:

$$\begin{split} \mathbf{I}_2 &= \frac{42\mathbf{s}^3 + 162\mathbf{s}^2 + 306\mathbf{s} + 300}{\mathbf{s}(\mathbf{s} + 2)(14\mathbf{s}^2 + 51\mathbf{s} + 50)} \\ &= \frac{42\mathbf{s}^3 + 162\mathbf{s}^2 + 306\mathbf{s} + 300}{14\mathbf{s}(\mathbf{s} + 2)(\mathbf{s}^2 + 51\mathbf{s}/14 + 50/14)} \;. \end{split}$$

(e) s-domain

$$I_2 = \frac{42s^3 + 162s^2 + 306s + 300}{s(s+2)(14s^2 + 51s + 50)}$$

$$= \frac{42s^3 + 162s^2 + 306s + 300}{14s(s+2)(s^2 + 51s/14 + 50/14)}.$$

$$= \frac{42s^3 + 162s^2 + 306s + 300}{14s(s+2)(s+1.82 + j0.5)(s+1.82 - j0.5)}$$

Partial fraction expansion:

$$\mathbf{I}_{2} = \frac{3}{\mathbf{s}} + \frac{5.32e^{-j90^{\circ}}}{\mathbf{s} + 1.82 + j0.5} + \frac{5.32e^{j90^{\circ}}}{\mathbf{s} + 1.82 - j0.5}$$

Laplace Transform pairs:

$$\frac{3}{8} \iff 3 u(t)$$

and from property #3 of Table 3-3, we have

$$\frac{Ae^{j\theta}}{\mathbf{s}+a+jb} + \frac{Ae^{-j\theta}}{\mathbf{s}+a-jb} \iff 2Ae^{-at}\cos(bt-\theta)\ u(t).$$

Time-domain current:

$$i_2(t) = [3 + 10.64e^{-1.82t} \cos(0.5t + 90^\circ)] u(t)$$
$$= [3 - 10.64e^{-1.82t} \sin 0.5t] u(t) A,$$

$$\upsilon_{\text{out}}(t) = 3i_2(t)$$

= $[9 - 31.92e^{-1.82t} \sin 0.5t] u(t) \text{ V}.$

(c) Waveform of $v_{out}(t)$

Example 4-4: Lowpass Filter Response to a Rectangular Pulse

Solution:

With $R=0.5~\mathrm{M}\Omega$ and $C=1~\mu\mathrm{F}$, the product is $RC=0.5~\mathrm{s}$. Voltage division in the s-domain (Fig. 4-4(b)) leads to

$$\mathbf{H}(\mathbf{s}) = \frac{\mathbf{V}_{\text{out}}(\mathbf{s})}{\mathbf{V}_{\text{in}}(\mathbf{s})} = \frac{1/\mathbf{s}C}{R + 1/\mathbf{s}C} = \frac{1/RC}{\mathbf{s} + 1/RC} = \frac{2}{\mathbf{s} + 2}.$$
(4.43)

(a) RC lowpass filter

The rectangular pulse is given by

$$v_{\text{in}}(t) = [u(t) - u(t-1)] V,$$

and with the help of Table 3-2, its s-domain counterpart

$$\mathbf{V}_{\text{in}}(\mathbf{s}) = \left[\frac{1}{\mathbf{s}} - \frac{1}{\mathbf{s}} e^{-\mathbf{s}}\right] \mathbf{V}.$$

Hence,

$$\mathbf{V}_{\text{out}}(\mathbf{s}) = \mathbf{H}(\mathbf{s}) \ \mathbf{V}_{\text{in}}(\mathbf{s})$$
$$= 2(1 - e^{-\mathbf{s}}) \left[\frac{1}{\mathbf{s}(\mathbf{s} + 2)} \right].$$

$$V_{\text{out}}(s) = \frac{1}{s} - \frac{1}{s+2} - \frac{1}{s} e^{-s} + \frac{1}{s+2} e^{-s}.$$

$$v_{\text{out}}(t) = \left[[1 - e^{-2t}] u(t) - [1 - e^{-2(t-1)}] u(t-1) \right] V.$$

Electromechanical Analogs

(a) Damping system y(t)CAR Mass 4m Coil with Shock absorber spring with damping coefficient b constant k x(t)**TIRES** Pavement (b) Model Figure 2-26: Car suspension system model.

Table 4-2: Mechanical-electrical analogue.

Mechanical

Electrical

Force F
 F is positive when pointing upwards

Current *i i* is positive when entering positive voltage terminal of device

Vertical velocity v
v is positive when car or tire
is moving upwards

Voltage v v's positive terminal is where i enters device

• Mass m (1/4 of car's mass) $F_{\rm c} = m \frac{dv_{\rm y}}{dt}$

Capacitance C $i_{\rm C} = C \frac{dv_{\rm y}}{dt}$

• Spring constant k $F_{s} = k \int_{0}^{t} (v_{x} - v_{y}) d\tau$

1/L: Inverse of inductance $i_{L} = \frac{1}{L} \int_{0}^{t} (v_{x} - v_{y}) d\tau$

• Damping coefficient b $F_d = b(v_x - v_y)$ 1/R: Inverse of resistance (conductance) $i_{R} = \frac{1}{R} (v_{x} - v_{y})$

• $F_{\rm c} = F_{\rm s} + F_{\rm d}$

 $i_{\rm C} = i_{\rm L} + i_{\rm R}$

SMD-RLC Analysis Procedure

Step 1: Replace each mass with a capacitor with one terminal connected to a node and the other to ground.

the corresponding terminal of its equivalent inductor should be connected to a voltage source.

Step 2: Replace each spring with an inductor with L = 1/k, where k is the spring's stiffness coefficient.

Step 3: Replace each damper with a resistor with R = 1/b. Connection rules are the same as for springs.

 If the spring connects two masses, its equivalent inductor connects to their equivalent capacitors at their non-ground terminals.

Step 4: Analyze the RLC circuit using the s-domain technique described in Section 4-2.

• If the spring connects a mass to a stationary surface, its equivalent inductor should be connected between the capacitor's non-ground terminal and ground.

The solution of the RLC circuit provides expressions for the voltages across capacitors, corresponding to the velocities of their counterpart masses in the mechanical system. Displacement of a mass or its acceleration can be obtained by integrating or differentiating its velocity v(t), respectively.

• If one end of the spring connects to a moving surface,

Hydraulic Lift Example

The lift was used to raise the platform by 4 m at a constant speed of 0.5 m/s. Determine the corresponding vertical speed and displacement of the mass m, given that m = 150 kg, k = 1200 N/m, and b = 200 N·s/m.

0.5 m/s over a distance of 4 m, which corresponds to a travel time of 4/0.5 = 8 s, $v_x(t)$ is a rectangle waveform given by

$$v_x(t) = 0.5[u(t) - u(t - 8)] \text{ m/s.}$$
 (4.60)

Using entries #2 and #2a in Table 3-2, the Laplace transform of $v_x(t)$ is

$$\mathbf{V}_x = \frac{0.5}{\mathbf{s}} - \frac{0.5}{\mathbf{s}} e^{-8\mathbf{s}}.$$
 (4.61)

(b) Equivalent circuit

$$\mathbf{V}_{y} = \frac{\mathbf{V}_{x} \mathbf{Z}_{C}}{\mathbf{Z}_{R} + \mathbf{Z}_{L} + \mathbf{Z}} = \frac{1/\mathbf{s}m}{\frac{1}{b} + \frac{\mathbf{s}}{k} + \frac{1}{\mathbf{s}m}} \mathbf{V}_{x}$$
$$= \frac{k/m}{\mathbf{s}^{2} + \frac{k}{b} \mathbf{s} + \frac{k}{m}} \mathbf{V}_{x}$$
$$= \frac{8}{\mathbf{s}^{2} + 6\mathbf{s} + 8} \mathbf{V}_{x}.$$

Hydraulic Lift Example

The lift was used to raise the platform by 4 m at a constant speed of 0.5 m/s. Determine the corresponding vertical speed and displacement of the mass m, given that m = 150 kg, k = 1200 N/m, and b = 200 N·s/m.

$$\mathbf{V}_{y} = \frac{4}{\mathbf{s}(\mathbf{s}^{2} + 6\mathbf{s} + 8)} - \frac{4e^{-8\mathbf{s}}}{\mathbf{s}(\mathbf{s}^{2} + 6\mathbf{s} + 8)}$$
$$= \frac{4}{\mathbf{s}(\mathbf{s} + 2)(\mathbf{s} + 4)} - \frac{4e^{-8\mathbf{s}}}{\mathbf{s}(\mathbf{s} + 2)(\mathbf{s} + 4)}$$

$$v_{y_1}(t) = [0.5 - e^{-2t} + 0.5e^{-4t}] u(t)$$

$$v_{y_2}(t) = -[0.5 - e^{-2(t-8)} + 0.5e^{-4(t-8)}] u(t-8),$$

$$v_y(t) = v_{y_1}(t) + v_{y_2}(t).$$

$$y(t) = \int_{0}^{t} v_{y}(t) d\tau.$$

System Configurations

 $H_2(s)$

X(s)

 $\mathbf{H}_1(\mathbf{s}) + \mathbf{H}_2(\mathbf{s})$

(b) Two parallel systems

(c) Negative feedback system

System Synthesis— Direct Forms I & II Topologies

Given:

$$\mathbf{H}(\mathbf{s}) = \frac{b_0 \mathbf{s}^3 + b_1 \mathbf{s}^2 + b_2 \mathbf{s}}{\mathbf{s}^3 + a_1 \mathbf{s}^2 + a_2 \mathbf{s} + a_3}$$

procedure entails rewriting the expression in terms of inverse powers of s:

$$\mathbf{H}(\mathbf{s}) = \frac{b_0 \mathbf{s}^3 + b_1 \mathbf{s}^2 + b_2 \mathbf{s}}{\mathbf{s}^3 + a_1 \mathbf{s}^2 + a_2 \mathbf{s} + a_3} \cdot \frac{1/\mathbf{s}^3}{1/\mathbf{s}^3}$$

$$= \left(b_0 + \frac{b_1}{\mathbf{s}} + \frac{b_2}{\mathbf{s}^2}\right) \left(\frac{1}{1 + \frac{a_1}{\mathbf{s}} + \frac{a_2}{\mathbf{s}^2} + \frac{a_3}{\mathbf{s}^3}}\right)$$

$$= \mathbf{H}_1(\mathbf{s}) \ \mathbf{H}_2(\mathbf{s}), \tag{4.89}$$

with

and

$$\mathbf{H}_{1}(\mathbf{s}) = b_{0} + \frac{b_{1}}{\mathbf{s}} + \frac{b_{2}}{\mathbf{s}^{2}}$$
 (4.90a)

 $\mathbf{H}_2(\mathbf{s}) = \left(1 + \frac{a_1}{s} + \frac{a_2}{s^2} + \frac{a_3}{s^3}\right)^{-1}.$ (4.90b)

X(s) $H_1(s)$ $H_2(s)$ Y(s)

(a) **DFI** realization topology

$$X(s)$$
 $H_2(s)$ $H_1(s)$ $Y(s)$ $Y(s)$

Figure 4-19: In the DFI process, $\mathbf{H}_1(\mathbf{s})$ is realized ahead of $\mathbf{H}_2(\mathbf{s})$, whereas the reverse is the case for the DFII process.

Direct Form I Topology

$$\mathbf{H}_2(\mathbf{s}) = \left(1 + \frac{a_1}{\mathbf{s}} + \frac{a_2}{\mathbf{s}^2} + \frac{a_3}{\mathbf{s}^3}\right)^{-1}$$

$$\mathbf{H}_1(\mathbf{s}) = b_0 + \frac{b_1}{\mathbf{s}} + \frac{b_2}{\mathbf{s}^2}$$

Direct Form II Topology

DFII topology requires fewer operations to implement than DFI

$$\mathbf{H}_2(\mathbf{s}) = \left(1 + \frac{a_1}{\mathbf{s}} + \frac{a_2}{\mathbf{s}^2} + \frac{a_3}{\mathbf{s}^3}\right)^{-1}$$

Control Theory

Temperature Control Example

$$\begin{split} Y(s) &= H(s) \; E(s) \\ &= H(s)[X(s) - G(s) \; Y(s)], \end{split}$$

which leads to

$$Y(s) = {H(s) X(s) \over 1 + G(s) H(s)}$$
 (4.100)

The output-to-input ratio of the closed-loop system is called the *closed-loop transfer function* $\mathbf{Q}(\mathbf{s})$. From Eq. (4.100), we obtain

$$\mathbf{Q}(\mathbf{s}) = \frac{\mathbf{Y}(\mathbf{s})}{\mathbf{X}(\mathbf{s})} = \frac{\mathbf{H}(\mathbf{s})}{1 + \mathbf{G}(\mathbf{s}) \mathbf{H}(\mathbf{s})}.$$
 (4.101)

(b) Closed-loop system:

System Stabilization

(b) Closed-loop system:

Consider the first-order system:

$$\mathbf{H}(\mathbf{s}) = \frac{A}{\mathbf{s} - p_1} \quad \text{with } p_1 > 0.$$

Let's introduce Proportional Feedback with:

$$G(s) = K$$

Hence:

$$\mathbf{Q}(\mathbf{s}) = \frac{\mathbf{H}(\mathbf{s})}{1 + \mathbf{G}(\mathbf{s}) \mathbf{H}(\mathbf{s})}$$
$$= \frac{A/(\mathbf{s} - p_1)}{1 + \frac{KA}{\mathbf{s} - p_1}} = \frac{A}{\mathbf{s} - p_1 + KA}$$

The pole of Q(s) is at $p_1 - KA$. By choosing $KA > p_1$, the pole location moves to the OLHP, thereby converting the unstable open-loop system into a stable closed-loop system.

(4.106)

The open-loop transfer function $\mathbf{H}(\mathbf{s})$ has a single pole at $\mathbf{s} = p_1$, and since $p_1 > 0$, the pole resides in the RHP

Hence, the system is unstable.