Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Soluções de Problemas por Sistemas de Equações Lineares

Introdução

 Podemos resolver problemas de Programação Linear por meio de métodos de solução de sistemas de equações lineares

 Esse processo de resolução é base para o método Simplex

Variáveis de Folga

- Transformando inequações em equações
 UTILIZAÇÃO <= DISPONIBILIDADE
- Introduzindo a FOLGA DE RECURSOS, teremos
 UTILIZAÇÃO + FOLGA = DISPONIBILIDADE
- Isso significa:
- UTILIZAÇÃO < DISPONIBILIDADE, implicar FOLGA > 0
- UTILIZAÇÃO = DISPONIBILIDADE, implicar FOLGA = 0

Exemplo

Maximizar Lucro = $4X_1 + 1X_2$ Sujeito a:

$$2X_1 + 3X_2 \le 12$$

$$2X_1 + 1X_2 \le 8$$

$$X_1, X_2 \ge 0$$

Definindo Sistema de Equações Lineares

Maximizar Lucro =
$$4X_1 + 1X_2$$

Sujeito a:

$$2X_1 + 3X_2 \le 12$$
 $2X_1 + 1X_2 \le 8$
 $X_1, X_2 \ge 0$

$$2X_1 + 3X_2 \le 12$$
 $2X_1 + 3X_2 + 1X_3 = 12$
 $2X_1 + 1X_2 \le 8$ $2X_1 + 1X_2 + 1X_4 = 8$
 $2X_1 \times X_2 \ge 0$

$$2X_1 + 3X_2 + 1X_3 = 12$$
 | n = n° Incógnitas = 4
 $2X_1 + 1X_2 + 1X_4 = 8$ | m = n° de equações = 2

 Problema: o número de incógnitas é superior ao número de equações (n > m).

SISTEMAS DE EQUAÇÕES INDETERMINADO.

$$2X_1 + 3X_2 + 1X_3 = 12$$
 | n = n° Incógnitas = 4
 $2X_1 + 1X_2 + 1X_4 = 8$ | m = n° de equações = 2

- Solução: como as variáveis, incluindo as de folga, devem ser positivas ou nulas, então podemos anular (n-m) variáveis e calcular as demais pelo sistema.
- Neste caso: (4-2) = 2 variáveis podem ser tornar zero.

- Um método de solução consiste em zerar sistematicamente (n-m) variáveis e calculando os valores das outras.
- A solução será aquela cujas variáveis levam ao maior valor da função objetivo

$$2X_1 + 3X_2 + 1X_3 = 12$$
 | n = n° Incógnitas = 4
 $2X_1 + 1X_2 + 1X_4 = 8$ | m = n° de equações = 2

Combinações | Maximizar Lucro = $4X_1 + X_2 + 0X_3 + 0X_4$

	Sistema 1	Sistema 2	Sistema 3	Sistema 4	Sistema 5	Sistema 6
Variáveis Não-Básicas	$X_1 = 0$	$X_1 = 0$	$X_1 = 0$	$X_2 = 0$	$X_2 = 0$	$X_3 = 0$
	$X_2 = 0$	$X_3 = 0$	$X_4 = 0$	$X_3 = 0$	$X_4 = 0$	$X_4 = 0$
Variáveis Básicas	$X_3 = $	$X_2 = $	$X_2 = $	$X_1 = \underline{\hspace{1cm}}$	$X_1 = \underline{}$	X ₁ = _
	X ₄ = _	X ₄ = _	$X_3 = $	X ₄ = _	$X_3 = $	$X_2 = \underline{}$
Lucro						

$$2X_1 + 3X_2 + 1X_3 = 12$$
 | n = n° Incógnitas = 4
 $2X_1 + 1X_2 + 1X_4 = 8$ | m = n° de equações = 2

Combinações | Maximizar Lucro = $4X_1 + X_2 + 0X_3 + 0X_4$

	Sistema 1	Sistema 2	Sistema 3	Sistema 4	Sistema 5	Sistema 6
Variáveis Não-Básicas	$X_1 = 0$	$X_1 = 0$	$X_1 = 0$	$X_2 = 0$	$X_2 = 0$	$X_3 = 0$
	$X_2 = 0$	$X_3 = 0$	$X_4 = 0$	$X_3 = 0$	$X_4 = 0$	$X_4 = 0$
Variáveis Básicas	$X_3 = 12$	$X_2 = 4$	$X_2 = 8$	X ₁ = 6	X ₁ = 4	X ₁ = 3
	$X_4 = 8$	$X_4 = 4$	$X_3 = -12$	$X_4 = -4$	X ₃ = 4	X ₂ = 2
Lucro	0	4	INVIÁVEL	INVIÁVEL	16	14

SOLUÇÃO ÓTIMA

Sujeito a:

$$2X_1 + 3X_2 \le 12$$

 $2X_1 + 1X_2 \le 8$
 $X_1, X_2 \ge 0$

• Qual seria a complexidade computacional de um algoritmo baseado no método de sistemas de equações lineares?

- Complexidade proporcional ao número de combinações
- Relembrando: $C_p^k = \frac{p!}{k!(p-k)!}$
- Fazendo substituições

 $k = (n-m) = n^{\circ}de$ variáveis a serem anuladas

 $p = n = n^{\circ}$ de variáveis | m = n° de equações

$$C_n^{n-m} = \frac{n!}{(n-m)! \times n - (n-m)!}$$

$$2X_1 + 3X_2 + 1X_3 = 12$$
 | n = n° Incógnitas = 4
 $2X_1 + 1X_2 + 1X_4 = 8$ | m = n° de equações = 2

- Conferindo o número de S.E.L.
 - n°de variáveis anuláveis = n-m = (4-2) = 2
 - n°de variáveis (n) = 4

$$C_n^{n-m} = \frac{n!}{(n-m)! \times n - (n-m)!} = \frac{4!}{2! \times 2!} = 6 \text{ sistemas}$$

Maximizar
$$Z = 3X_1 + 5X_2$$

Sujeito a:

Exercício

$$1X_1 \le 4$$

$$1X_2 \le 6$$

$$3X_1 + 2X_2 \le 18$$

$$X_1, X_2 \ge 0$$

$$C_n^{n-m} = \frac{n!}{(n-m)! \times n - (n-m)!} = \underline{\hspace{1cm}}$$

Determine a solução ótima do problema!

Exercício

Maximizar $Z = 3X_1 + 5X_2 + 0X_3 + 0X_4$

Sujeito a:

#Sistema	X1	X2	Х3	X4	X5	Z
1	0	0	4	6	18	0
2	0		0			
3	0			0		
4	0				0	
5		0	0			
6		0		0		
7		0			0	
8			0	0		
9			0		0	
10				0	0	

$$1X_1 + X_3 = 4$$

$$1X_2 + X_4 = 6$$

$$3X_1 + 2X_2 + X_5 = 18$$

$$X_{1}, X_{2}, X_{3}, X_{4} \ge 0$$

