Supporting Information

Purves et al. 10.1073/pnas.0807754105

Fig. S1. Comparison of PPA model predictions with observations on four soil types in the US Lake states (Michigan, Minnesota, and Wisconsin). Model predictions are shown in gray, and observations are shown in black. (*Top*) Dynamics of stand basal area. (*Middle*) Dynamics of the basal area of early- and late-successional species [successional status was defined from observed correlations between species' basal area and stand age (*SI Appendix , Appendix 1*)]. (*Bottom*) Diameter distribution of 100-year-old stands (the insets show the same values on log scale). The PPA was parameterized from short-term (10- to 15-year) inventory data, initialized with data from young plots (average stand age, ≈15 years) then simulated for a subsequent 85-year period. To propagate parameter uncertainty, the model was simulated 50 times with parameter sets drawn randomly from their joint posterior distribution; the model predictions show the mean and the upper and lower 68% bounds from these 50 simulations. Note that the predicted and observed dynamics are averages over many stands from the region and, thus, may not apply to any single location.

Fig. 52. Analytical decomposition of ecological succession on the four soil types. For the special case of the PPA used here, the late-successional dominant is predicted to be the species with the greatest value of \hat{Z}^* , the height of canopy closure in an equilibrium monoculture. \hat{Z}^* (Eq. 1) was calculated from PPA parameters estimated from short-term data on the growth, mortality, and allometry of individual trees. H_{20} (height of a 20-year-old open-grown tree) is a metric for early-successional performance. Calculations of \hat{Z}^* and H_{20} include a propagation of parameter uncertainty (mean and 68% interval, shown). (*Top*) \hat{Z}^* and observed successional status (defined from observed correlations between species' basal area and stand age; see *SI Appendix*, *Appendix* 1) for each species. Negative values of \hat{Z}^* (which are plotted as zero) imply that a species cannot persist on a given soil. (*Middle*) H_{20} vs. \hat{Z}^* for the eight species. (*Bottom*) Decomposition of \hat{Z}^*_1 into components measuring performance in the understory $[(G_{D_i} / \mu_{D_i})^{\beta i}]$ and canopy $[\ln(2\pi \phi_i^2 F G_{L,i}^2 / \mu_{L,i}^{-3})]$, with mean and 68% interval from error propagation. As with \hat{Z}^* , negative values of the canopy metric are plotted as zero. The \hat{Z}^* metric also depends on the height allometry parameter α (not shown), which is lower for *Thuja* occidentalis on hydromesic and hydric soils compared with other species; thus, the \hat{Z}^* of *Thuja* does not exceed that of *Acer rubrum*, even though *Thuja* has superior performance in both the understory and canopy. Species abbreviations refer to *Pinus banksiana*, *Acer rubrum*, *Betula papyrifera*, *Populus tremuloides*, *Prunus serotina*, *Quercus ellipsoidalis*, *Quercus rubra*, *Quercus velutina*, *Abies balsamea*, *Acer saccharum*, *Populus grandidentata*, *Tilia americana*, *Larix laricina*, *Picea mariana*, *Thuja occidentalis*, and *Fraxinus nigra*.

Fig. S3. Comparison of predicted and observed species-composition dynamics. (Top) Observed basal area of four selected species vs. stand age. (Middle) Basal area of each species in young stands (observed: average stand age \approx 15 years) and old stands (observed and predicted: stand age = 100 years). (Bottom) Observed and predicted change in basal area between young and old stands. The mean and 68% interval from a propagation of parameter uncertainty are shown.

Table S1. Data sources and sample sizes for the estimation of PPA model parameters on four different soil types in the US Lake states (Michigan, Minnesota, and Wisconsin)

Model component	Data source	Sample size (no. of trees)
Xeromesic soil		
Growth	FIA pre-1999	2,645
Mortality	FIA pre-1999	3,559
Height allometry	FIA post-1999	8,203
Crown allometry	FHM	4,028
Mesic soil		
Growth	FIA pre-1999	41,133
Mortality	FIA pre-1999	54,557
Height allometry	FIA post-1999	103,044
Crown allometry	FHM	4,913
Hydromesic soil		
Growth	FIA pre-1999	17,143
Mortality	FIA pre-1999	22,586
Height allometry	FIA post-1999	36,657
Crown allometry	FHM	3,780
Hydric soil		
Growth	FIA pre-1999	11,801
Mortality	FIA pre-1999	14,482
Height allometry	FIA post-1999	36,657
Crown allometry	FHM	3,780

Because of the change in soil-classification system between the pre- and post-1999 Forest Inventory and Analysis (FIA) data (see *Data Sources* in SI Appendix), we could not separate hydromesic and hydric height data; therefore, the same data were used for height allometry on both hydromesic and hydric soils. The US Department of Agriculture Forest Health Monitoring (FHM) data, used to parameterize crown allometry, is a much smaller data set than the FIA, so the same FHM data were used for all four soils. The sample sizes shown are those used in the actual parameter estimation and, therefore, refer only to the most common eight species on each soil type.

Table S2. The number of inventory plots available in the FIA data for each soil type s and age class a, N(s, a).

						Age class					
Soil	0	1	2	3	4	5	6	7	8	9	10
Xeromesic	29	128	189	191	279	171	234	131	156	72	78
Mesic	915	2,101	2,796	2,802	3,859	2,893	3,241	1,447	1,523	569	536
Hydromesic	73	195	406	303	390	244	176	168	78	81	32
Hydric	85	212	330	486	624	522	456	317	246	145	96

Table S3. Parameter notation, definition, units, and details of MCMC proposal distributions

Model	Parameter	Meaning	Unit	Allowed range	Proposal distribution
Growth	$G_{L,j}$	Trunk diameter growth rate, canopy tree	cm•yr ^{−1}	0.0010-2.0	$In\{G_{L,j}^{'}\}\sim N(In\{G_{L,j}\},\sigma$
	$G_{D,j}$	Trunk diameter growth rate, understory tree	cm•yr ^{−1}		
	$\Omega_{G,j}$	$G_{D,j}$ as fraction of $G_{L,j}$	NA	0–1	$\Omega_{G,j}^{'}\sim N(\Omega_{G,j'} \sigma)$
	$\sigma_{GL,j}$, $\sigma_{GD,j}$	SD for unexplained variation in diameter growth rate	cm	0.01-2.0	$\sigma_{GL/GD,j} \sim N(ln\{\sigma_{GL/GD,j}\}, \sigma)$
Mortality	$\mu_{L_{ij}}$	Annual probability of mortality, canopy tree	yr ⁻¹		•
	$\mu_{D,i}$	Annual probability of mortality, understory tree	yr ⁻¹		
	ρ _{L,i}	Expected lifespan, canopy tree (=1/ $\mu_{L,i}$)	years	5-500	$In\{ ho_{L,j}^{'}\}\sim \mathit{N}(\mathit{In}\{ ho_{L,j}\},\ \sigma_{})$
	$\rho_{D_{ij}}$	Expected lifespan, understory tree (=1/ $\rho_{D,j}$)	years		•
	$\Omega_{\rho_{ij}}$	$\rho_{D,i}$ as a fraction of $\rho_{L,i}$	NA	0–1	$\Omega_{ ho,j}^{'}\sim N(\Omega_{ ho,j},\;\sigma)$
Height allometry	α_j	Allometry: height of a tree with dbh 1 cm	m		
	α_j^{20}	Allometry: height of a tree with dbh 20 cm	m	5.0-40.0	$\ln\{lpha_j^{\ 20'}\}\sim N(\ln\{lpha_j^{\ 20}\},\ \sigma$)
	β_j	Allometry: exponent for height vs. dbh	NA	0.10-2.0	$\beta_{j}^{\prime} \sim N(\beta_{j}, \sigma)$
	σ height, $_{j}$	Coefficient for SD for unexplained variation in height	NA	0.020-0.50	$\ln\{\sigma^{'}_{height,j}\}\sim N(\ln\{\sigma^{'}_{height,j}\},\sigma^{'})$
Crown allometry	ϕ_i	Allometry: crown radius vs. dbh	m•cm ^{−1}	0.0020-0.40	$\ln \{\phi_j'\} \sim N(\ln \{\phi_j\}, \sigma)$
	σ _{crown,j}	SD for unexplained variation in crown radius	m	0.10–5.0	$\ln\{\sigma_{crown,j}\} \sim N(\ln\{\sigma_{crown,j}\}, \sigma)$
Reproduction	F	Fecundity: new recruits per unit crown area per year (shared across species)	m ^{−2} ·yr ^{−1}		,

The subscript j refers to species. The fecundity parameter F is shared by all species and was estimated separately from all other parameters. The parameters shown fall into three categories: those used in the implementation of the PPA; those needed for the reparameterizations; and those required to represent unexplained variation. The 10 parameters estimated for each species by the Markov chain Monte Carlo (MCMC) scheme are indicated by the fact that their allowable ranges and proposal distributions are given. The notation $N(x, \sigma)$ for the proposal distributions (far-right column) indicates a normal distribution with mean x and variance σ . Values of σ were tuned for each parameter during the MCMC burn-in period to achieve a Metropolis–Hastings acceptance rate of \approx 0.25. NA, not applicable.

Table S4. PPA model parameters for the U.S. Lake States

Parameter

		dtworp.	d+v		I TOW	Mortality		Height		awor)	Q.W.	Fecundity
		<u> </u>	NA CI I			railty		าเคเลเ		<u>-</u>		recuildity
Species j	$G_{L,j}$	$\sigma_{GL,j}$	$G_{D,j}$	$\sigma_{GD,j}$	$\mu_{L,j}$	μοj	α_j^{20}	β_j	$\sigma_{height,j}$	ϕ_j	$\sigma_{crown,j}$	F
Xeromesic soil Pinus banksiana	0.274 (0.266,0.287)	0.180	0.166	0.087	0.0255	0.166 0.087 0.0255 0.0548 13.84 0.641 0.223 0.095 (0.153,0.219) (0.076,0.119) (0.0218,0.0277) (0.0359,0.0679) (13.79,13.99) (0.626,0.673) (0.220,0.233) (0.0022,0.100)	13.84	0.641	0.223	0.095	0.410 (0.387,0.514)	
Acer rubrum	0.309		0.097 0.059 (0.087,0.127) (0.050,0.082)	0.059 (0.050,0.082)	0.0088 (0.0038,0.0110)	0.0088 0.0138, 0.0266) (16.89 0.541 0.181 (0.0038, 0.0110) (0.0138, 0.0266) (16.80,17.02) (0.522,0.572) (0.178,0.189)	16.89 (16.80,17.02)	0.541	0.181		_	
Betula papyrifera	0.166		0.089 0.064 (0.081,0.114) (0.056,0.077)		0.0154 (0.0096,0.0190)	(0.0096.0.0190) (0.0459.0.0727) (16.06.16.72) (0.329.0.420) (0.175.0.198)	16.20 (16.06.16.72)	0.362	0.185		0.638	
Populus tremuloides	0.345.0.379)	0.179	0.168 0.082 (0.148.0.264) (0.071.0.159)	0.082	0.0369 (0.0393)	(0.0369, 0.0393) (0.0505, 0.0831) (16.82,17.06) (0.455,0.517) (0.169,0.183) (0.0098,0.099)	16.88	0.467	0.173	(0.0.0860.000)	0.497	0.0102*
Prunus serotina		0.254 (0.233,0.299)	0.254 0.146 0.073 (0.233,0.299) (0.120,0.210) (0.061,0.114)		0.0043	0.0043 0.0962 13.84 0.569 0.234 (0.0021,0.0085) (0.0243,0.1062) (13.65,14.10) (0.549,0.662) (0.221,0.260)	13.84 (13.65,14.10)	0.569	0.234 (0.221,0.260)	0.105	0.872 (0.845,0.976)	
Quercus ellipsoidalis	0.329 (0.312,0.357)	0.183	0.329 0.183 0.182 0.060 (0.312,0.357) (0.170,0.210) (0.146,0.269) (0.043,0.471)	0.060 (0.043,0.471)	0.0205 (0.0145,0.0236)	0.0205 0.0409 (0.0145,0.0236) (0.0233,0.0696)	13.41 (13.30,13.63)	0.574 (0.555,0.614)	0.183	13.41 0.574 0.183 0.124 (13.30,13.63) (0.555,0.614) (0.178,0.197) (0.0.119,0.129)	0.696 (0.647,0.923)	
Quercus rubra	0.316 (0.310,0.351)	0.174 (0.167,0.199)	0.316 0.174 0.183 0.077 (0.310,0.351) (0.167,0.199) (0.165,0.224) (0.071,0.105)		0.0070 (0.0034,0.0092)	0.0070 0.0235 15.66 0.507 0.198 (0.0034,0.0092) (0.0107,0.0354) (15.55,15.90) (0.484,0.543) (0.195,0.211)	15.66 (15.55,15.90)	0.507 (0.484,0.543)	0.198 (0.195,0.211)	0.106 (0.105,0.108)	0.898 (0.887,0.985)	
Quercus velutina	0.309 (0.300,326)	0.131 (0.124,0.149)	0.131 0.279 0.440 (0.124,0.149) (0.247,0.316) (0.379,0.545)	0.440 (0.379,0.545)	0.0135 (0.0046,0.0180)	0.0135 0.0573 13.94 0.505 0.192 (0.0046,0.0180) (0.0241,0.1958) (13.83,14.15) (0.486,0.543) (0.190,0.203)	13.94 (13.83,14.15)	0.505 (0.486,0.543)	0.192 (0.190,0.203)	0.113 (0.111,0.115)	0.871 (0.834,0.938)	
Mesic soil												
Abies balsamea	0.369 (0.366,386)	0.184 (0.181,0.192)	0.160 (0.156,0.166)	0.092 (0.090,0.096)	0.0368 (0.0355,0.0379)	0.184 0.160 0.092 0.0368 0.0375 14.70 0.707 0.170 (0.181,0.192) (0.156,0.166) (0.090,0.096) (0.0355,0.0379) (0.0359,0.0213) (14.67,14.80) (0.703,0.719) (0.169,0.172)	14.70 (14.67,14.80)	0.707 (0.703,0.719)	0.170 (0.169,0.172)	0.104 (0.102,0.108)	0.486 (0.474,0.527)	
Acer rubrum	0.340 (0.337,0.347)	0.214 (0.212,0.223)	0.150 (0.147,0.157)	0.087	0.0038 (0.0030,0.0044)	0.340 0.214 0.150 0.087 0.0038 0.0206 (0.337,0.347) (0.212,0.223) (0.147,0.157) (0.085,0.091) (0.0030,0.0044) (0.0186,0.0213)		17.54 0.455 0.166 (17.53,17.59) (0.451,0.461) (0.165,0.169)	0.166 (0.165,0.169)	0.121 (0.120,0.124)	0.979 (0.966,1.021)	
Acer saccharum	0.307 (0.304,0.312)	0.172 (0.169,0.176)	0.086 (0.084,0.091)	0.067	0.0034 (0.0028,0.0036)		18.40 (18.38,18.51)	0.424 (0.422,0.429)	0.159 (0.159,0.160)	0.125 (0.124,0.127)	1.011 (0.994,1.053)	
Betula papyrifera	0.205 (0.203,0.209)	0.125 (0.123,0.127)	0.205 0.125 0.073 0.046 (0.203,0.209) (0.123,0.127) (0.071,0.078) (0.044,0.050)		0.0190 (0.0174,0.0197)	0.0431 17.05 (0.0361,0.0476) (17.02,17.13)	17.05 (17.02,17.13)	0.443 (0.436,452)	0.175 (0.174,0.178)	0.120 (0.117,0.122)	0.652 (0.614,0.697)	0.0071*
Populus grandidentata		0.195	0.195 (0.184,0.210)	0.081	0.0179	0.380 0.195 0.195 0.081 0.0179 0.0500 18.92 0.443 0.153 (0.377, 0.393) (0.184, 0.210) (0.075, 0.91) (0.0165, 0.0189) (0.0560, 0.0760) (18.89, 18.99) (0.437, 0.455) (0.152, 0.155)	18.92 (18.89,18.99)	0.443 (0.437,0.455)	0.153	0.094 (0.090,0.098)	0.719 (0.687,0.839)	
Populus tremuloides	0.399 (0.397,0.403)	0.197 (0.195,0.202)	0.399 0.197 0.207 0.100 (0.397,0.403) (0.195,0.202) (0.204,0.215) (0.098,0.106)	0.100 (0.098,0.106)	0.0274 (0.0266,0.0277)	0.0274 0.0660 17.68 0.442 0.157 (0.0266,0.0277) (0.0624,0.0688) (17.65,17.71) (0.439,0.446) (0.156,0.158)	17.68 (17.65,17.71)	0.442 (0.439,0.446)	0.157 (0.156,0.158)	0.098 (0.099)	0.494 (0.487,0.525)	
Quercus rubra	0.391 (0.388,0.401)	0.391 0.209 (0.388,0.401) (0.207,0.215)	0.179 (0.173,193)	0.073 (0.068,0.080)	0.0123 (0.0108,0.0130)	0.073 0.0123 0.0303 17.20 0.447 0.185 (0.068,0.080) (0.0108,0.0130) (0.0223,0.0335) (17.15,17.29) (0.442,0.460) (0.183,0.187)	17.20 (17.15,17.29)	0.447 (0.442,0.460)	0.185 (0.183,0.187)	0.106 (0.109,0.105)	0.912 (0.884,0.973)	
Tilia americana	0.288 (0.285,0.299)	0.182 (0.179,0.189)	0.288 0.182 0.133 0.088 (0.285,0.299) (0.179,0.189) (0.126,0.146) (0.083,0.097)	0.088 (0.083,0.097)	0.0078 (0.0057,0.0084)	0.0078 0.0159 16.83 0.543 0.187 (0.0057,0.0084) (0.0119,0.0177) (16.79,16.91) (0.536,0.556) (0.185,0.189)	16.83 (16.79,16.91)	0.543 (0.536,0.556)	0.187 (0.185,0.189)	0.103 (0.100,0.107)	0.830 (0.804,0.955)	
Hydromesic soil	800 0	0 169	0.126	0.075	0000	0000	17 79	202 0	0 173	0 103	0 492	
	(0.295,0.318)	(0.165,0.176)	(0.295,0.318) (0.165,0.176) (0.124,0.134) (0.074,0.078)	(0.074,0.078)	(0.0410,0.0455)	(0.0410,0.0455) (0.0425,0.0461) (14.71,14.95) (0.694,0.740) (0.170,0.178)	(14.71,14.95)	(0.694,0.740)	(0.170,0.178)	(0.102,0.106)	(0.474,0.538)	
Larix laricina	0.228 (0.223,0.228)	0.158 (0.155,0.165)	0.075 (0.068,0.089)	0.049 (0.045,0.061)	0.0094 (0.0069,0.0107)	0.228 0.158 0.075 0.049 0.0094 0.0415 15.36 0.493 0.182 (0.223,0.228) (0.155,0.165) (0.068,0.089) (0.045,0.061) (0.0069,0.0107) (0.0268,0.0461) (15.31,15.58) (0.487,0.523) (0.180,0.187)	15.36 (15.31,15.58)	0.493 (0.487,0.523)	0.182 (0.180,0.187)	0.107 (0.105,0.111)	0.362 (0.338,0.446)	
Picea mariana	0.174	0.113	0.059	0.042	0.0157	0.0219	15.25	0.603	0.158		0.407	
Thuja occidentalis	(0.171,0.180) 0.217	0.1110	0.079	(0.041,0.046) 0.051	(0.0133,0.0164) 0.0044	(0.111,0.180) (0.111,0.119) (0.056,0.066) (0.041,0.046) (0.0135,0.0164) (0.0186,0.025/) (15.21,15.34) (0.595,0.612) (0.157,0.161) (0.0044 0.0111) (11.19 0.025) (0.0079 0.079 0.0079 0.0044 0.0111) (11.19 0.0048 0.0179 0.0079 0.	(15.21,15.34) 11.19 (11.17.11.20)	(0.595,0.612) 0.489	(0.157,0.161) 0.178		(0.382,0.604) 0.504	0.0071*
	(0.214,0.222)	(0.18,0.126)	(0.077,0.082)	(0.050,0.054)	(0.0032,0.0050)	(U.2.14,U.222) (U.18,U.126) (U.077,U.082) (U.05U,U.054) (U.0032,U.0050) (U.0089,U.0120) (11.17,11.30)	(11.17,11.30)	(0.483,500)	(0.177,0.182)	(0.084,0.089)	(0.485,0.565)	

Parameter

SAZG SAZG

		Growth	wth		Mortality	ality		Height		Crown	wn	Fecundity
Species <i>j</i>	$G_{L,j}$	$\sigma_{GL,j}$	$G_{D,j}$	$\sigma_{GD,j}$	μL,j	μ _{D,j}	α_j^{20}	β_j	$\sigma_{height,j}$	ϕ_j	$\sigma_{crown,j}$	F
Acer rubrum	0.327	0.258	0.152 (0.145,0.167)	0.087	0.327 0.258 0.152 0.087 0.0060 0.0245 16.36 0.459 0.185 (0.321,0.344) (0.250,0.271) (0.145,0.167) (0.082,0.095) (0.0030,0.0073) (0.0155,0.0280) (16.31,16.71) (0.451,0.484) (0.182,0.189)	0.0245 (0.0155,0.0280)	16.36 (16.31,16.71)	0.459	0.185	0.121 (0.120,0.123)	0.987	
Betula papyrifera	0.160	0.097	0.153	0.204	0.160 0.097 0.153 0.204 0.0305 0.0370 15.41 0.475 0.173 0.119 (0.156.0.169) (0.032.0.101) (0.150.0.163) (0.191.0.231) (0.0224.0.0326) (0.0326.0.044) (15.34.15.61) (0.464.0.504) (0.171.0.181) (0.117.0.122)	0.0370	15.41 (15.34.15.61)	0.475	0.173	0.119	0.636	
Fraxinus nigra	0.227	0.132,0.142)	0.100	0.052,0.057)	(0.223 0.235) (0.136 0.100 0.053 0.0071 0.0149 15.47 0.509 0.178 0.118 (0.1523.0.235) (0.132.0.142) (0.038.0.105) (0.052.0.057) (0.0528.0.059) (0.0126.0.0160) (15.43.15.61) (0.502.0.527) (0.177.0.183) (0.115.0.122)	0.0126,0.0160)	(15.43,15.61)	0.502,0.527)	0.177,0.183)	0.118	0.538,0.628)	
Populus tremuloides	0.406	0.205 (0.202,0.215)	0.207	0.089 (0.084,0.106)	0.406 0.205 0.207 0.089 0.0439 0.0567 16.49 0.465 0.172 0.099 (0.400.0.418) (0.202,0.215) (0.192,0.226) (0.084,0.106) (0.0410,0.0456) (0.0453,0.0606) (16.42,16.72) (0.452,0.479) (0.170,0.181) (0.098,0.100)	0.0567	16.49 (16.42,16.72)	0.465	0.172 (0.170,0.181)	0.098,0.100)	0.498	
Hydric soil												
Abies balsamea	0.246 (0.235,0.263)	0.153 (0.147,0.161)	0.110 (0.108,0.123)	0.068 (0.064,0.072)	0.246 0.153 0.110 0.068 0.0453 0.0465 14.76 0.705 0.172 0.103 (0.235,0.263) (0.147,0.161) (0.108,0.123) (0.064,0.072) (0.0411,0.0471) (0.0416,0.0482) (14.71,14.89) (0.692,0.724) (0.170,0.178) (0.102,0.106)	0.0465 (0.0416,0.0482)	14.76 (14.71,14.89)	0.705 (0.692,0.724)	0.172 (0.170,0.178)	0.103 (0.102,0.106)	0.492 (0.471,0.553)	
Larix laricina	0.135 (0.133,0.139)	0.102 (0.100,0.106)	0.133 (0.129,0.137)	0.274 (0.270,0.299)	0.135 0.102 0.133 0.274 0.0085 0.0142 15.36 0.500 0.181 0.107 (0.133,0.139) (0.100,0.106) (0.129,0.137) (0.270,0.299) (0.0070,0.0091) (0.0102,0.0167) (15.32,15,45) (0.491,0.527) (0.180,0.186) (0.106,0.111)	0.0142 (0.0102,0.0167)	15.36 (15.32,15.45)	0.500 (0.491,0.527)	0.181 (0.180,0.186)	0.107 (0.106,0.111)	0.360 (0.337,0.444)	
Picea mariana	0.142 (0.140,0.147)	0.104 (0.103,0.108)	0.052 (0.051,0.056)	0.033 (0.032,0.035)	0.142 0.104 0.052 0.033 0.0154 0.0170 15.25 0.602 0.158 0.108 (0.140,0.147) (0.103,0.108) (0.051,0.056) (0.032,0.035) (0.0148,0.0160) (0.0155,0.0183) (15.21,15.32) (0.594,0.617) (0.157,0.160) (0.101,0.118)	0.0170 (0.0155,0.0183)	15.25 (15.21,15.32)	0.602 (0.594,0.617)	0.158 (0.157,0.160)	0.108 (0.101,0.118)	0.458 (0.382,0.621)	
Thuja occidentalis	0.181	0.105	0.065 (0.063,0.070)	0.047	0.181 0.105 0.065 0.047 0.0052 0.0104 11.18 0.488 0.179 0.086 (0.178,0.187) (0.103,0.108) (0.063,0.070) (0.045,0.049) (0.0032,0.0057) (0.0072,0.0117) (11.18,11.23) (0.484,0.500) (0.178,0.181) (0.084,0.089)	0.0104 (0.0072,0.0117)	11.18	0.488 (0.484,0.500)	0.179	0.086	0.519 (0.487,0.570)	0.0051*
Acer rubrum	0.381	0.283	0.164 (0.151,0.215)	0.086 (0.080,0.114)	0.381 0.283 0.164 0.086 0.0128 0.0604 16.33 0.461 0.186 0.121 (0.349,0.415) (0.264,0.317) (0.151,0.215) (0.080,0.114) (0.0086,0.0172) (0.0345,0.0750) (16.30,16.48) (0.451,0.481) (0.182,0.191) (0.120,0.124)	0.0604 (0.0345,0.0750)	16.33 (16.30,16.48)	0.461	0.186 (0.182,0.191)	0.121 (0.120,0.124)	0.976 (0.966,1.022)	
Betula papyrifera	0.164 (0.158,0.178)	0.111 (0.105,0.122)	0.059 (0.054,0.085)	0.036 (0.032,0.053)	0.164 0.111 0.059 0.036 0.0324 0.0333 15.41 0.472 0.174 (0.158,0.178) (0.054,0.085) (0.032,0.053) (0.0322,0.0343) (0.0333,0.0443) (15.33,16.17) (0.461,0.518) (0.171,0.180)	0.0393 (0.0333,0.0443)	15.41 (15.33,16.17)	0.472 (0.461,0.518)	0.174 (0.171,0.180)	0.119 (0.117,0.122)	0.647 (0.617,0.699)	
Fraxinus nigra	0.189	0.124	0.106	0.050	0.189 0.124 0.106 0.050 0.0109 0.0204 15.47 0.509 0.179 0.118 (0.184.0.213) (0.120.0.135) (0.101.0.114) (0.047.0.060) (0.0063.0.0125) (0.0137.0.0233) (15.43.15.57) (0.501.0.532) (0.178.0.184) (0.116.0.129)	0.0204	15.47	0.509	0.179	0.118	0.567	
Populus tremuloides	0.395	0.212	0.147 (0.136,0.165)	0.049	0.395 0.212 0.147 0.046 0.0609 16.49 0.465 0.174 0.099 (0.381,0.17) (0.196,0.237) (0.136,0.165) (0.038,0.068) (0.0391,0.0478) (0.0449,0.0796) (16.41,16.64) (0.453,0.484) (0.170,0.185) (0.098,0.100)	0.0609 (0.0449,0.0796)	16.49 (16.41, 16.64)	0.465 (0.453,0.484)	0.174	0.098,0.100)	0.492 (0.485,0.516)	

on each of four soil types in the U.S. Lake States (Michigan, Minnesota, and Wisconsin). Parameters are not provided for Pinus resinosa, which is common on xeromesic soil, both because in preliminary analyses we obtained unrealistic estimates for the average canopy lifespan of this species (>260 years), and because our field observations revealed that foresters actively favor this species by clearing space around individuals. For each parameter, the posterior mean is shown along with the 68% interval (in paren theses below the posterior mean). Species-specific parameters have a subscript j. Symbols and units are as follows: power law: height = α_j idbh eta , where α_j = $lpha_j^{20}$ 20 eta , dbh units are cm, height units are m; $\sigma_{
m height}$, proportionality constant for standard deviation of unexplained variation in height (see Appendix 2); ϕ_j , ratio of crown radius to dbh (m·cm⁻¹); $\sigma_{crown,j}$, magnitude of unexplained variation in crown radius (standard deviation of normal distribution, m); F, fecundity (number of size-0 recruits produced per m² of sun-exposed crown area per year). (* A single value of F is assigned to all species on a given soil type. Note that, unlike all other parameters, F was chosen to reproduce a particular observation in 100-year old stands (see Appendix The table provides estimates for each parameter needed to implement the simple special case of the PPA model employed in the article. Parameter estimates are provided for the eight most common species, $G_{L,\rho}$ diameter at breast height (dbh) growth rate of a tree in the canopy (cm·yr⁻¹); $G_{D,\rho}$ dbh growth rate of a tree in the understory (cm·yr⁻¹); $\sigma_{GL,\rho}$ and $\sigma_{GD,\rho}$ magnitude of unexplained variation in $G_{L,\rho}$ and $G_{D,\rho}$ annual mortality rates of trees in the canopy and understory, respectively; $\sigma_{L,\rho}^{2}$, height (m) of a tree with a dbhof20 cm; $\beta_{L,\rho}$ annual mortality rates of trees in the canopy and understory, respectively; $\sigma_{L,\rho}^{2}$, height (m) of a tree with a dbhof20 cm; $\beta_{L,\rho}$ and $G_{L,\rho}$ are specified to $G_{L,\rho}$ and $G_{L,\rho}$ are specified to $G_{L,\rho}$ and $G_{L,\rho}$ are specified and $G_{L,\rho}$ are specified and $G_{L,\rho}$ are specified and $G_{L,\rho}$ and $G_{L,\rho}$ are

Other Supporting Information Files

SI Appendix