Chapter 5	
Markov's Inequality	
Chebyshev's Inequality	
Weak Low of Large Numbers	
Continuous Magning Theorem : 어떤 회통변수들이 확률수정하면 화물선수들의 선형경감도 확률수정한다.	
Della Method	
Chapter 6	
Functional Invariance Property of MLE : 임리의 확률변수의 별포와 MLE을 향면, 하늘 병포와 관련된 취임되는 반드시 MLE의 함수이다.	
Jensen's Inequality : $ ot\!$	
Rao-Cramer Lower Bound	
Efficiency: (n.7'(0))' (wr(6))	
Asymptotical Normality of MLE : $\sqrt{r}(\hat{\delta}-\theta) \stackrel{D}{\longrightarrow} N(0,T(\theta))$	
Asymptotic Efficiency	
Chapter 7	
Sufficient Statistic (i) Y is a statistic (ii) $f_0[(X_1,,X_n) \in A \mid T(X) = \emptyset]$ does not depend on \emptyset for each y and all A .	
Factorization Theorem : exponential family가 하일경우 Sufficient Staffistic을 알려주고, exponential family 인경우 Complete Sufficient Staffistic	
Rao - Blackwell Theorem : Rao - Blackwell 에 의하게, 좋은 합수는 CSS의 함수이어야 하는데, CSS는 유일하다.	
Complete Sufficient Statistic	
Minimam Variance Unbiased Estimator	
Lehmann - Scheffe Theorem : $E(\mathscr{O}(T)) = \theta \Rightarrow \mathscr{O}(T)$ is the MUUE	
Chapler 8	
Most Pomerful Test	
Uniformly Most Powerful Test	
Neyman - Pearson Theorem : Δ가 (보다 작용수록 기작하고, 1에 가까울수록 기작하지 알겠다는 의미	
Monotone Likelihood Radio : MLR Property를 가지면 UMP7+ 電対計2, MP2+ 동영하다.	
(ikelihood Ratio Test: -d.(1(6)-1(0)) > k	
Wald Test: (MIII) (8-A) ² > k	
Score Test: $\left(\frac{\int_{0}^{r} I(a_{r})}{ RI(a_{r}) ^{2}}\right)^{2} > k$	
Asymptotic Likelihood Ratio Test : $-2 \log \Lambda = -2 (186) - 18 = -2 (180) \xrightarrow{D} 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $	