

Diogo Merguizo Sanchez

diogo.sanchez@inpe.br

Sumário

- 1. Astrodinâmica definição e contexto histórico
- 2. Movimento orbital fundamentos
- 3. Transferências orbitais: Hohmann
- 4. Transferências orbitais: missões interplanetárias
- 5. Exemplos de algumas missões
- 6. O trabalho do Grupo de Astrodinâmica e Mecânica Celeste

Astrodinâmica - def. e contexto histórico

Astrodinâmica ou dinâmica orbital

Astrodinâmica - def. e contexto histórico

- Astrodinâmica ou dinâmica orbital
 - Tycho Brahe (1546 1601)
 - Johannes Kepler (1571 1630)
 - Newton (1642 1727)

- Astrodinâmica ou dinâmica orbital
 - Johannes Kepler (1571 1630)
 - 1. A órbita de cada planeta é uma elipse, com o Sol em um dos focos

- Astrodinâmica ou dinâmica orbital
 - Johannes Kepler (1571 1630)
 - 2. O planeta varre áreas iguais em períodos iguais

- Astrodinâmica ou dinâmica orbital
 - Johannes Kepler (1571 1630)
 - 2. O planeta varre áreas iguais em períodos iguais

Leis de Kepler.

Satélite Molniya (молния)

rp = 450 - 600 km

ra = 40000 km

T = 12 h

Inclin. $= 63.4^{\circ}$

- Astrodinâmica ou dinâmica orbital
 - Johannes Kepler (1571 1630)
 - 3. O cubo do semi-eixo maior da órbita é proporcional a T2

- Astrodinâmica ou dinâmica orbital
 - Johannes Kepler (1571 1630)
 - 3. O cubo do semi-eixo maior da órbita é proporcional a T2

$$a^3 = \frac{\mu}{4\pi^2} T^2$$

$$\frac{T}{2\pi} = \sqrt{\frac{a^3}{\mu}}$$

$$n = \sqrt{\frac{\mu}{a^3}}$$

Leis de Kepler.

- · Astrodinâmica ou dinâmica orbital
 - Tipos de órbitas

- · Astrodinâmica ou dinâmica orbital
 - Newton (1642 1727)

$$F = \frac{GMm}{r^2}$$

Órbitas Keplerianas

$$\ddot{\vec{r}} = -\frac{\mu}{r^3}\vec{r}$$

- Astrodinâmica ou dinâmica orbital
 - Newton (1642 1727)

$$F = \frac{GMm}{r^2}$$

$$\ddot{\vec{r}} = -\frac{GM_E}{r^3}\vec{r}$$

- Astrodinâmica ou dinâmica orbital
 - Newton (1642 1727)

$$F = \frac{GMm}{r^2}$$

$$\ddot{\vec{r}} = -\frac{GM_E}{r^3}\vec{r} + GM_L\left(\frac{\vec{r}_L - \vec{r}}{\left|\vec{r}_L - \vec{r}\right|^3} - \frac{\vec{r}_L}{r_L^3}\right)$$

- Astrodinâmica ou dinâmica orbital
 - Newton (1642 1727)

$$F = \frac{GMm}{r^2}$$

$$\ddot{\vec{r}} = -\frac{GM_E}{r^3}\vec{r} + GM_L\left(\frac{\vec{r}_L - \vec{r}}{|\vec{r}_L - \vec{r}|^3} - \frac{\vec{r}_L}{r_L^3}\right) + GM_\odot\left(\frac{\vec{r}_\odot - \vec{r}}{|\vec{r}_\odot - \vec{r}|^3} - \frac{\vec{r}_\odot}{r_\odot^3}\right)$$

- Astrodinâmica ou dinâmica orbital
 - Newton (1642 1727)

$$F = \frac{GMm}{r^2}$$

$$\ddot{\vec{r}} = -\frac{GM_E}{r^3}\vec{r} + GM_L\left(\frac{\vec{r}_L - \vec{r}}{|\vec{r}_L - \vec{r}|^3} - \frac{\vec{r}_L}{r_L^3}\right) + GM_\odot\left(\frac{\vec{r}_\odot - \vec{r}}{|\vec{r}_\odot - \vec{r}|^3} - \frac{\vec{r}_\odot}{r_\odot^3}\right) + \vec{P}_G + \vec{P}_R$$

Astrodinâmica ou dinâmica orbital

Elementos orbitais

Transferências orbitais - Hohmann

• Walter Hohmann (1880 - 1945)

Transferências orbitais - Hohmann

• Transferências tipo Hohmann: Bi-elíptica

Transferências orbitais - Hohmann

Transferências tipo Hohmann: transferência entre planos

Bi-Impulsive Transfer, can be extended to 3-D.

Transferências orbitais

• Transferências tipo "Patched conics"

Transferências orbitais: missões interplanetárias

- "Swing-by" TWO BODY MODEL
 - ⇒ We assume planar motion
 - ⇒ Three parameters describe the Swing-by:

 R_p = Periapse distance V_{∞} = Hyperbolic Excess Velocity or J (Jacobian constant) or V_p (Periapsis velocity) ψ = Angle of approach (ψ is also the angle between \vec{V}_p and \vec{V}_p)

Transferências orbitais: missões interplanetárias

- "Swing-by"
 - ⇒ Patched Conics for first approximation

Transferências orbitais: missões interplanetárias

"Swing-by"

 \vec{V}_2 = Inertial velocity of Jupiter

 \dot{V}_{∞} = Velocity with respect to Jupiter before Swing-by

 \dot{V}_{∞} = Velocity with respect to Jupiter after Swing-by

 δ = half of the deflexion angle

THE SWING-BY MANEUVER AND SOME VARIABLES

Transferências orbitais: missões interplanetárias

• "Swing-by"

 V_i = Inertial velocity before Swing-By

 V_0 = Inertial velocity after Swing-By

 V_2 = Inertial velocity of Jupiter

 V_{∞} = Velocity with respect to Jupiter before Swing-By

 V_{∞} + Velocity with respect to Jupiter after Swing-By

$$ec{V}_{\mathrm{i}} = ec{V}_{\infty-} + ec{V}_{2}$$
 $ec{V}_{0} = ec{V}_{\infty+} + ec{V}_{2}$

$$\Delta \vec{V} = \vec{V}_0 - \vec{V}_i$$
 So, $\left| \Delta \vec{V} \right| = 2 \left| \vec{V}_{\infty} \right| \text{Sin } (\delta)$, where

$$Sin(\delta) = \frac{1}{\left(1 + \frac{r_{p}V_{\infty}^{2}}{GM_{2}}\right)}$$

Exemplos de algumas missões

Exemplos de algumas missões

- Missões espaciais a corpos distantes do Sistema Solar: Haumea
 - Desafios: ΔV lançamento: 8,24 km/s; ΔV total: 8,24 km/s

Vel. de chegada: 4,22 km/s; Tempo de voo: 42,26 anos

- Missões espaciais a corpos distantes do Sistema Solar: Haumea
 - Desafios: ΔV lançamento: 9,79 km/s; ΔV total: 9,98 km/s

Vel. de chegada: 25,75 km/s; Tempo de voo: 10 anos

- Missões espaciais a corpos distantes do Sistema Solar: Haumea
 - Desafios: ΔV lançamento: 3,62 km/s; ΔV total: 5,86 km/s

Vel. de chegada: 13,10 km/s; Tempo de voo: 20 anos

- Missões espaciais a corpos distantes do Sistema Solar: Quaoar
 - Desafios: ΔV lançamento: 9,73 km/s; ΔV total: 9,73 km/s

Vel. de chegada: 26,64 km/s; Tempo de voo: 8 anos

- Missões espaciais a corpos distantes do Sistema Solar: Quaoar
 - Desafios: ΔV lançamento: 4,14 km/s; ΔV total: 6,39 km/s

Vel. de chegada: 10,54 km/s; Tempo de voo: 20 anos

O trabalho do grupo de Astrodinâmica e Mecânica Celeste

- Missão ASTER
- Modelos com base nos Problema Restrito de Três corpos
- Estudo da dinâmica em torno de pequenos corpos
- De-orbiting
- Transferências orbitais
- Exploração do Sistema Haumea e outros planetas anões
- Tethers
- Deflexão de trajetórias de asteroides em rota de colisão com a Terra

Obrigado!

diogo.sanchez@inpe.br