CLUSTERING

Prof. Nielsen Rechia nielsen.machado@uniritter.edu.br

Paradigmas Supervisionado Não-supervisionado Classificação Análise associativa Agrupamento Regressão (clustering) Tarefas Redução de dimensionalidade Outros Outros

7 tarefas comuns de aprendizado de máquina:

http://vitalflux.co m/7-common-m achine-learningtasks-related-m ethods/

No aprendizado não supervisionado normalmente não temos a informação da classe das instâncias de treinamento.

Agrupamento é uma tarefa que visa agrupar um conjunto de objetos (instâncias) em diferentes classes (grupos) de objetos de acordo com sua similaridade.

Problemas:

- Os consumidores possuem perfis similares?
- É possível agrupar tipos de câncer pelo comportamento que apresentam?
- Quais as regiões onde determinado tipo de crime acontece mais frequentemente?

Existem tipos de algoritmos de agrupamento

Algoritmos particionais:

K-Means

Mais popular, rápido e com bom desempenho

Algoritmos de densidade:

DBSCAN

Algoritmos hierárquicos:

Complete Linkage, Single Linkage, WARD, Average (UPGMA), PAM e ROCK

Dado parte do conjunto de dados iris, como agrupar as instâncias similares?

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
9	4.9	3.1	1.5	0.1	0.0
125	7.2	3.2	6.0	1.8	2.0
15	5.7	4.4	1.5	0.4	0.0
64	5.6	2.9	3.6	1.3	1.0
113	5.7	2.5	5.0	2.0	2.0
123	6.3	2.7	4.9	1.8	2.0
113	5.7	2.5	5.0	2.0	2.0
8	4.4	2.9	1.4	0.2	0.0
73	6.1	2.8	4.7	1.2	1.0
0	5.1	3.5	1.4	0.2	0.0

Dados originais no plano.

Escolhemos aleatoriamente K centróides para os clusters

(grupos).

Intervalos de valores:

	petal length (cm)	petal width (cm)
min	1.4	0.1
max	6.0	2.0

centróides:

	petal length (cm)	petal width (cm)
0	4.448337	1.039741
1	4.474348	1.358150
2	3.209553	0.410570

Atribuímos cada uma das instâncias ao centróide mais próximo.

Movemos cada centróides para a média dos objetos do cluster

correspondente

novos centróides:

	petal length (cm)	petal width (cm)
0	NaN	NaN
1	4.866667	1.683333
2	1.450000	0.225000

Iteramos entre os passos anteriores até que algum critério de convergência seja satisfeito

Número máximo de iterações seja atingido

Limiar mínimo de mudanças no centróides

Minimizar a seguinte função de custo:

j-ésima instância do césimo grupo $J = \sum_{i=1}^{n} \sum_{j=1}^{n} \left\| \mathbf{x}_{j} - \overline{\mathbf{x}}_{c} \right\|^{2}$ Distância euclidiana ao quadrado $c=1 \mathbf{x}_{i} \in \mathbf{C}_{c}$ Para cada Para cada instância no Posição do centróide grupo C do c-ésimo grupo grupo C

K-Means pode sofre problemas ao lidar com grupos de diferentes

Tamanhos

Densidades

Formas (principalmente não-esféricas)

É sensível a outliers

Existem variações como **K-medianas**

Hierarchical Clustering

Algoritmos hierárquicos

Ex: single linkage, ward, complete linkage

Permitem verificar a relação que os dados possuem

Relação é visual em uma estrutura chamada dendrograma

Existem duas formas de agrupamento hierárquico:

Aglomerativo: Começa com N grupos de uma instância, e combina tais grupos até chegar a um único grupo

Divisivo: Começa com apenas um grupo, e separa sucessivamente até terminar em grupos de uma instância

Na prática, algoritmos aglomerativos são mais populares

Dendrograma

É uma ferramenta útil para sumarizar medidas de (dis)similaridade e mostrar as hierarquias de partições resultantes de algoritmos hierárquicos aglomerativos

Pode-se examinar o dendrograma inclusive para estimar o número correto de grupos.

Partições são obtidas vias cortes no dendrograma

Cortes horizontais

No de grupos da partição = Número de intersecções

Algoritmos hierárquicos

Ex: single linkage

j-ésima instância do cluster v

$$d(u, v) = \min(dist(u[i], v[j]))$$

Distância entre os clusters u, v

i-ésima instância do cluster u

Single Linkage

Encontrar a menor distância entre os objetos do conjunto de dados

Dendrograma

Conecte os dois grupos (instâncias) da distância encontrada

Dendrograma

Dendrograma

Dendrograma

Dendrograma

Dendrograma

Dendrograma

Dendrograma

Dendrograma

Para dividir os dados em grupos:

Realize um corte no dendrograma onde a distância entre os dois grupos for a maior

Uma boa regra para realizar agrupamentos é que os dados devem possuir bastante similaridade intra-grupos e pouca similaridade inter-grupos

Caso este critério não seja atingido, é possível continuar realizando cortes

Geralmente utilizam-se medidas de avaliação para verificar este critério

Avalia quantitativamente uma partição/ hierarquia de dados a partir de alguma medida. São divididos em 3 tipos:

Externos: avaliam o grau de correspondência entre a estrutura encontrada e uma solução esperada ou conhecida (golden truth). Ex: Rand Index, Jaccard, Fowlkes-Mallows

Internos: avaliam o grau de compatibilidade entre a estrutura encontrada e os dados (e apenas os dados). Ex: SSE

Relativos: avaliam dentre duas ou mais estruturas, qual a melhor (segundo algum aspecto). Tipicamente são índices internos capazes de quantificar a qualidade dos agrupamentos. Ex: Davis-Bouldin, Silhueta, Dunn, Gap Statistics, Calinski-Harabasz

Clustering - Avaliação

Medidas de avaliação de clustering

Silhueta (Silhouette Width Criterion):

Para cada instância, calcula o índice s(i)

$$SWC = \frac{1}{N} \sum_{i=1}^{N} s(i)$$

Dissimilaridade média da i-ésima instância ao segundo cluster mais próximo

Dissimilaridade média da i-ésima instância ao cluster mais próximo

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

A swc mede quão compactos e bem-separados os dados estão

Clustering - Avaliação

A silhueta varia de -1 até 1:

- -1: grupos esparsos e misturados
- 1: grupos bem separados e compactos

Entre 0 e 0.5 indica que os dados não são bem separados

Clustering - Avaliação

Mais métricas para avaliar agrupamentos:

http://scikit-learn.org/stable/modules/classes.html#clustering-metrics

```
K-Means - sklearn:
```

```
from sklearn.cluster import KMeans
cl = KMeans(n_clusters=3, init='k-means++', n_init=10, max_iter=300)
cl = cl.fit(df)
labels = cl.labels_
centroids = cl.cluster_centers_
```

Hierarquicos - scipy:

```
from scipy.cluster.hierarchy import dendrogram, linkage
from scipy.cluster.hierarchy import fcluster
Z = linkage(dataset, 'single')
```

Exercício prático

Implemente o algoritmo k-means e single linkage para o dataset iris.

```
Remova a classe do conjunto de dados
```

Execute com diversos números de grupo (ex, de 2 a 10)

Execute apenas uma vez para cada k

Verifique os agrupamentos utilizando a silhueta

Qual é o melhor número de grupos?

Qual é o melhor algoritmo? PQ?

```
In [77]: from sklearn.datasets import load_iris
import numpy as np
import pandas as pd

data = load_iris()
df = pd.DataFrame(
    data['data'],
    columns=data['feature_names']
```

Exercício para entregar

Agrupe os dados do censo americano de 2005 com o K-means e algum algoritmo hierarquico

Não considerar a classe do conjunto de dados

Somente um conjunto de dados

Dados devem ser pré-processados

Usar vários números de grupos (ex: 2 a 20)

Medir a qualidade dos grupos com a silhueta (podem usar outros também)

Qual é o melhor número de grupos? Qual é o melhor algoritmo? Motivos?

Entregar via BB o código python ou jupyter e o passo a passo realizado (ex, motivos do pre-processamento etc.) em um zip.

Conlusão

Leitura recomendada:

Capítulo 8 e 9 de Introduction to Data Mining

