(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-36880

(43)公開日 平成11年(1999)2月9日

				* 1 mile 50 %					- ~/	
			審查請求	未請求	化餅	現の数5	\mathbf{OL}	(全	8 国()	最終頁に続く
F02B	67/00			F 0 2	В	67/00			Q	
								5	1 1 E	
F 0 1 P	5/06	5 1 1		F 0 1	P	5/06		5	1 1 N	
									Z	
F 0 2 B	63/04			F 0 2	В	63/04			D	
(51) Int.Cl. ⁶		識別記号		F I						

(21)出願番号

特顯平9-198668

(22)出願日

平成9年(1997)7月24日

(71)出廣人 000005326

本田技研工業株式会社

東京都港区南青山二丁目1番1号

(72)発明者 広瀬 忠文

埼玉県和光市中央1丁目4番1号 株式会

社本田技術研究所内

(74)代理人 弁理士 江原 望 (外3名)

(54) 【発明の名称】 エンジン発電機

(57) 【要約】

【課題】 高い遮音効果が得られ、かつエンジン、マフ ラーとともに発電機を効率良く冷却することができるコ ンパクトなエンジン発電機を供する。

【解決手段】 エンジン30および同エンジン30により駆 動される発電機35を回転軸方向に並べて配置して遮音ケ ース2内に収容したエンジン発電機において、発電機3 5, エンジン30, マフラー32をこの順に並べてダクト 7, 8, 16で覆うことにより遮音ケース2内の他の機器 と隔離し、ダクト7、8、16の発電機側端部は遮音ケー ス2の内部で開口し、ダクト7、8,16のマフラー側端 部は遮音ケース2の外部に開口するとともに、エンジン 30で駆動される冷却ファン40により遮音ケース2内の空 気がダクト7. 8. 16の発電機側開口16aから前記ダク ト内に吸入され、発電機35, エンジン30, マフラー32を 順に冷却した後に、ダクト7、8、16のマフラー側開口 8 a から外部へ排出される構成であるエンジン発電機。

【特許請求の範囲】

【請求項1】 エンジンおよび同エンジンにより駆動さ れる発電機を回転軸方向に並べて配置して遮音ケース内 に収容したエンジン発電機において、

発電機、エンジン、マフラーをこの順に並べてダクトで 覆うことにより前記遮音ケース内の他の機器と隔離し、 前記ダクトの発電機側端部は前記遮音ケースの内部で開 口し、前記ダクトのマフラー側端部は前記遮音ケースの 外部に開口するとともに、

前記エンジンで駆動される冷却ファンにより前記遮音ケ 10 ース内の空気が前記ダクトの発電機側開口から前記ダク ト内に吸入され、前記発電機、エンジン、マフラーを順 に冷却した後に、前記ダクトのマフラー側開口から外部 へ排出される構成であることを特徴とするエンジン発電 機。

【請求項2】 前記発電機は前記エンジンのフライホイ ールを兼用するアウターロータを備えるアウターロータ 型発電機で構成し、

前記冷却ファンは前記ダクトの発電機側開口内で前記発 電機のアウターロータに一体的に設けられたことを特徴 20 とする請求項1記載のエンジン発電機。

前記エンジンはシリンダを斜め側方に傾 【請求項3】 斜させて配設され、

前記シリンダの上方空間に前記マフラーが配置されたこ とを特徴とする請求項1または請求項2記載のエンジン 発電機。

【請求項4】 前記マフラーは、前記エンジンの回転軸 と直角方向に長尺に配置されたことを特徴とする請求項 3記載のエンジン発電機。

【請求項5】 前記発電機は磁石回転子を有するアウタ 30 ーロータ型の多極発電機で構成し、

前記発電機の出力を所定周波数の交流に変換する制御回 路を設けたことを特徴とする請求項2,3および請求項 5のいずれかの項記載のエンジン発電機。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、装置全体を遮音ケ ースで覆ったエンジン発電機に関する。

[0002]

【従来の技術】エンジンにより駆動される発電機をエン 40 ジンと一体化したエンジン発電機は、一般に建設工事現 場等で使用されるが、作業環境もしくは市街地で特に夜 間運転する場合の現場周辺への配慮から、運転音をなる べく低く抑えるために装置全体を遮音ケースで覆ったも のが広く使用されている。

【0003】この種のエンジン発電機は、上述のように 静粛性を追求すべく吸気口や排気口等の開口をできるだ け少なく、かつ小さくしてあるが、一方においては開口 面積が小さいことから遮音ケース内部の冷却について十 分な考慮が必要になる。

【0004】そこで本出願人は、先の出願に係る実公昭 64-3777号公報等に記載した例を提案しており、 同例においてはエンジンとマフラーとをダクトで覆って

2

他の機器とは隔離し、このダクト内に冷却風を強制的に 通風してマフラー側から遮音ケースの外へ排風すること により、遮音ケース内に温度の高い冷却排風が再循環す るのを防止している。

[0005]

【発明が解決しようとする課題】しかし遮音ケース内に あってダクトの外にある発電機については、前記ダクト とは別の冷却風路を構成するか発電機専用の冷却ファン を用意する等の措置を講じなければならず、装置の大型 化の要因の一つとなっていた。

【0006】前記実公昭64-3777号公報記載の例 では、エンジンとマフラーを覆うダクトに強制的に通風 する冷却ファンとは別個に発電機を冷却するファンを備 え、同ファンによる排風を前記ダクトに合流させるよう になっており、この排風圧力がある程度高くないと合流 させることができない等の問題とともにあまり効率の良 い冷却システムとはいえない。

【0007】本発明は、かかる点に鑑みなされたもの で、その目的とする処は、高い遮音効果が得られ、かつ エンジン,マフラーとともに発電機を効率良く冷却する ことができるコンパクトなエンジン発電機を供する点に ある。

[0008]

【課題を解決するための手段および作用効果】上記目的 を達成するために、本発明は、エンジンおよび同エンジ ンにより駆動される発電機を回転軸方向に並べて配置し て遮音ケース内に収容したエンジン発電機において、発 電機、エンジン、マフラーをこの順に並べてダクトで覆 うことにより前記遮音ケース内の他の機器と隔離し、前 記ダクトの発電機側端部は前記遮音ケースの内部で開口 し、前記ダクトのマフラー側端部は前記遮音ケースの外 部に開口するとともに、前記エンジンで駆動される冷却 ファンにより前記遮音ケース内の空気が前記ダクトの発 電機側開口から前記ダクト内に吸入され、前記発電機, エンジン、マフラーを順に冷却した後に、前記ダクトの マフラー側開口から外部へ排出される構成であるエンジ ン発電機とした。

【0009】発電機、エンジン、マフラーをこの順に並 べてダクトで覆い他の機器から隔離し、ダクトの発電機 側開口から遮音ケース内の空気がダクト内に吸入され、 比較的に温度の低い発電機を先に冷却した後に温度の高 いエンジン、マフラーを順に冷却してマフラー側開口か ら外部へ排出されるので、発電機とともにエンジン、マ フラーが効率良く冷却される。

【0010】エンジンはダクトと遮音ケースにより2重 に覆われて高い遮音効果が得られる。ダクトは内部に発 50 電機, エンジン, マフラーを順に配設していればよく、

L字状に屈曲させたりして遮音ケース内にスペースを効率良く利用して配置することが可能でコンパクト化が図れる。

【0011】 請求項2記載の発明は、前記請求項1記載のエンジン発電機において、前記発電機が前記エンジンのフライホイールを兼用するアウターロータを備えるアウターロータ型発電機で構成され、前記冷却ファンが前記ダクトの発電機側開口内で前記発電機のアウターロータに一体的に設けられたことを特徴とする。

【0012】発電機のアウターロータでエンジンのフラ 10 イホイールを兼用することにより回転軸方向の寸法を小さくすることができるとともに、冷却ファンをアウターロータに一体的に取り付けたので、容易に大風量の冷却ファンを取り付けることができ、かつ大きなファン支持強度を得ることができる。

【0013】請求項3記載の発明は、請求項1または請求項2記載のエンジン発電機において、前記エンジンがシリンダを斜め側方に傾斜させて配設され、前記シリンダの上方空間に前記マフラーが配置されたことを特徴とする。

【0014】シリンダを傾斜させてできたエンジンの上方の空間に大きなマフラーを配置できるため、回転軸方向の寸法を小さくするとともに上下方向の寸法もできるだけ小さく抑えることができ装置の小型化を図ることができるとともに、高熱部分ほど上方に位置するので、合理的な冷却空気流を形成して効率良く冷却できる。

【0015】請求項4記載の発明は、請求項3記載のエンジン発電機において、前記マフラーが、前記エンジンの回転軸と直角方向に長尺に配置されたことを特徴とする。傾斜したシリンダの上方の空間に装置の上下方向の 30 寸法を小さく抑えながら大きな容量のマフラーを配設することができる。

【0016】請求項5記載の発明は、請求項2,3および請求項5のいずれかの項記載のエンジン発電機において、前記発電機が磁石回転子を有するアウターロータ型の多極発電機で構成され、前記発電機の出力を所定周波数の交流に変換する制御回路を設けたことを特徴とする

【0017】発電機を磁石回転子を有するアウターロータ型の多極発電機とし、この出力をインバータ等の制御 40 回路によって所定周波数の交流に変換するので、発電機の回転軸方向の寸法をより小さく抑えるとともに、大負荷時以外は回転数を低下させておくことが可能で、運転音を大きく低減することができる。

[0018]

【発明の実施の形態】以下本発明に係る一実施の形態について図1ないし図7に図示し説明する。本実施の形態のエンジン発電機1は、図1に外観図を示すように装置全体を遮音ケース2で覆った立方体状をなしている。

【0019】 遮音ケース 2 その他内部フレーム等の分解 50

斜視図を図2に示す。偏平な受け皿状をなすアンダーフレーム3は、前側壁3aと右側壁3bに外部と連通する吸気口4a、4bが形成され、後側壁3cは着脱可能とし、内部には左右方向に長尺の前後一対の支持メンバー3p、3gが互いに平行に敷設されている。

【0020】このアンダーフレーム3に概ね矩形板状のフロントフレーム5とリアフレーム6とが互いに所定間隔を存して対向するように立設される。フロントフレーム5は、上側周縁が後方に屈曲してフランジ5aが形成され、矩形板の上部に左右方向に長尺の長方形状の開孔5b、下部に円形の一部が膨出したような連通開孔5cが形成されている。

【0021】一方リアフレーム6は、上下分割型で合体すると、中央に大きく矩形状をなす貫通孔7aが形成され、この貫通孔7aに前方へ膨出したダクト7が一体に形成され、リアフレーム6の上側周縁は前方に屈曲してフランジ6aが形成されている。前記ダクト7の前部は矩形筒状をなして開口している。

【0022】そしてリアフレーム6の後方には貫通孔7 aに設けられダクト7に連接して後方に膨出したように 構成されるグラスウール製のダクト8が配設される。ダ クト8は前方と下方を開口した概ね矩形の箱状をなし、 上側壁に排風口8aが設けられる。

【0023】アンダーフレーム3の上に立設された前後のフロントフレーム5とリアフレーム6との間に前後方向に指向した左右に一対の補強レール9,9が上側角部を貫通して架設される。こうして補強された前後のフロントフレーム5とリアフレーム6の対向する空間を外部から仕切るように外周縁に沿って半角筒状のセンターカバー11が覆う。

【0024】センターカバー11は、プレートを屈曲して 左側壁11aと上壁11bと右上側壁11cの半角筒状をな し、右下側壁は別部材である開閉可能な蓋部材12が覆う ようになっており、内部にセンター室22が区画形成され る。センターカバー11の上壁には燃料タンク55の給油口 55bが突出する円孔11dが形成されている。

【0025】そしてフロントフレーム5の前方に概ね矩形箱状をしたフロントカバー13が被せられフロント室21が区画形成され、リアフレーム6の後方には概ね矩形箱状をしたリアカバー14が被せられリア室23が区画形成されるが、このリアカバー14の内面に沿って前記グラスウール製のダクト8が内張りされたような構造となり、ダクト8内がリア室23となる。

【0026】フロントカバー13の前壁中央は矩形に凹出して開口したコントロールパネル62用の矩形口13aが形成され、リアカバー14の上壁には前記ダクト8に設けられる排風口8aに対応して矩形口14aが形成されている。

【0027】以上のようにエンジン発電機1の外壁をなす遮音ケース2は、アンダーフレーム3、センターカバ

ー11,蓋部材12,フロントカバー13,リアカバー14によって6面を形成してケースを構成している。そして遮音ケース2の内部空間は、フロントフレーム5とリアフレーム6によってフロント室21,センター室22,リア室23の3つの室に区画されている。

【0028】なおリアフレーム6よりセンター室22に膨出したダクト7の矩形筒状部に、連続してさらにセンター室22内にダクトでもあるファンカバー16が設置される。ファンカバー16は発電機35と遠心ファン40を覆うべく概ね円筒状をなし、前端の円開口が吸風口16aをなし、吸風口16aの環状の開口端面に突出長を一定にした突起16bが複数設けられている。

【0029】ファンカバー16の後端開口面は外周方向に延出したフランジ16cが形成され、同フランジ16cに後方から矩形枠部材17が取り付けられる。矩形枠部材17の矩形外周縁にはシールラバー18が周設されており、前記ダクト7の矩形筒状部内にシールラバー18で周囲をシールして矩形枠部材17が嵌合される。

【0030】すなわちファンカバー16は、矩形枠部材17を介してリアフレーム6のダクト7に連接し、ダクト7はリアフレーム6より後方に膨出してリア室23を形成するダクト8に連接している。

【0031】したがって遮音ケース2内には、ファンカバー16、ダクト7、ダクト8からなるダクト内空間が、センタ室22の一部とリア室23を占有して形成されており、ダクト内空間の上流側吸風口16aはセンター室22内に開口しており、下流側排風口8aはダクト8の上側壁に設けられ、同排風口8aはリアカバー14の矩形口14aに臨んで遮音ケース2の外部に開口している。

【0032】以上のような遮音ケース2内のフレーム構 30 造およびダクト構造に各種機器が配設される。エンジン30は、図4に示すように遮音ケース2の後部のダクト7,8内に収容され、アンダーフレーム3に敷設された支持メンバー3qに固着された左右一対の防振マウント部材31により支持される(図4、図6参照)。

【0033】図6に示すようにエンジン30は、クランクケース30aを左側に偏って位置させ、シリンダ30bを右方向で若干上向きに傾斜させて突設しており、前後水平方向に指向したクランク軸30cは前方へ突出している。

【0034】このようにエンジン30はシリンダ30bを傾 40 斜させているので、ダクト7、8の上部空間を大きく確保でき、同空間に大型筒状のマフラー32を左右方向に指向させて配設している。マフラー32はエンジン30にブラケット33を介して支持され、シリンダ30b部より上方へ延出した排気管34が連結され、マフラー32の右側壁から延びたテールパイプ32aがマフラー32の後面に回り込んで排気口を排風口8aに沿わせている。

【0035】クランクケース30aより前方へ突出したクランク軸30cに発電機35が設けられている。発電機35は、アウターロータ型の多極発電機であり、図7に示す 50

ようにクランク軸30 c に一体に固着されたアウターロータ36は有底円筒状をなし、周壁の内周面に磁石36 a が複数周方向に亘って貼着されてクランク軸30 c と一体に回転し、エンジンにおけるフライホイールの作用も果している。

6

【0036】アウターロータ36は、底壁を前側にして後方を開口し、内部のインナーステータ37は放射状に突出した複数のヨークに発電コイルが巻回されたステータコアがクランクケース30aに固定されている。なおアウターロータ36の底壁には通気口36bが複数形成されている。このアウターロータ36の底壁に遠心ファン40が前方から固着されている。

【0037】遠心ファン40は、円板状基盤40aの前後両面にファン41,42がそれぞれ形成された両面ファンである。前記ファンカバー16は、上記発電機35と遠心ファン40を覆っており、前端の吸風口16aが遠心ファン40に対向して開口し、後端は矩形枠部材17とともにエンジン30のクランクケース30aに固着されて支持される。

【0038】このファンカバー16の前端吸風口16aに対向してリコイルスタータ45が設けられている。リコイルスタータ45はファンカバー16の吸風口16aの開口端面に突出した突起16bによってファンカバー16の端面から所定間隔を存して配置され、スタータケース46のボス部46bをファンカバー16に固着して一体に支持される。

【0039】リコイルスタータ45は、図3を参照してクランク軸30cと同軸の回転軸にラチェットホイール47が後方への飛び出しが可能に設けられており、同ラチェットホイール47に対向して遠心ファン40の中心部分にラチェット48が取り付けられている。

【0040】ラチェットホイール47は、ギア列47aを介してスタータレバーで駆動されるとともに、スタータケース46の左端に設けられたスタータモータ49によっても駆動される。

【0041】通常ラチェット48と離れているラチェットホイール47がスタータモータ49等により駆動されるときは、後方へ飛びだしてラチェット48に係合しラチェット48とアウターロータ36を介して一体のクランク軸30cを強制的に回転してエンジン30の始動を行うことができる。

[0042] リコイルスタータ45の概ね円錐形状をしたスタータケース46は、母線に沿った長孔46aが周方向に亘って複数本形成されており、ファンカバー16の端面との間隙とともに、スタータケース46の外部とファンカバー16の吸風口16aとを連通している。

【0043】リコイルスタータ45はセンター室22内にあってアンダーフレーム3に敷設された支持メンバー3pに固着された左右一対の防振マウント部材50により支持される(図4、図5参照)。

【0 0.4 4】エンジン30とリコイルスタータ45は、ファンカバー16を介して一体に連結されており、後部のエン

20

ジン30を防振マウント部材31が支持し、前部のリコイルスタータ45を防振マウント部材50が支持するので、振動体の前後の両端部分に近い位置を効果的に支持することができる。

7

【0045】リア室23からセンター室22にかけて左寄りに位置したクランクケース30aの前方に発電機35およびリコイルスタータ45が配設されるので、センター室22内においてファンカバー16とリコイルスタータ45の右方に空間が開き、同空間に気化器52とエアクリーナ53がエアクリーナ53を前側にして前後に配設される。

【0046】エンジン30の上方にはマフラー32が配設されたが、センター室22内のファンカバー16, リコイルスタータ45, 気化器52, エアクリーナ53の上方空間に燃料タンク55が配設される。

【0047】前記フロントフレーム5とリアフレーム6との間に架設された左右一対の補強レール9に燃料タンク55のフランジ55aを防振ラバー56を介してポルト57で固定し燃料タンク55を懸架する。

【0048】なお燃料タンク55はフロントフレーム5の 上部開孔5bから一部フロント室21内にはみ出してお り、燃料タンク55の上方へ突出した給油口55bはセンタ ーカバー11の円孔11dを貫通して上端に燃料キャップ58 が螺合される。

【0049】したがってセンター室22内であってファンカバー16およびダクト7の外部空間に、燃料タンク55が気化器52やエアクリーナ53の吸気系機器とともに一緒に配設され、エンジン30の燃料系部品を一括集中させてスペースを効率良く利用しており、装置のコンパクト化が図られている。

【0050】フロントフレーム5の前方のフロントカバ 30 ー13に覆われたフロント室21の偏平矩形空間には右側にインバータ装置60、左側にバッテリ61がアンダーフレーム3上に配設され、その上方にコントロールパネル62がフロントカバー13の前面矩形口13aに臨んで設けられている。すなわちフロント室21には電装機器が集中的に配設されている。

【0051】インバータ装置60は、多極発電機35の発電出力を所定周波数の交流に変換するものであり、同インバータ装置60はフロント室21のフロントカバー13の吸気口4a,4bに近い右側に配置されて吸入外気により最40初に冷却されるようになっている。

【0052】遮音ケース2を備えた本エンジン発電機1は、以上のようにダクト7、8およびファンカバー16内に発電機35、エンジン30、マフラー32が、この順序に収容された構造をしている。

【0053】ファンカバー16の吸風口16aはセンター室22内に開口し、吸風口16aの内側に設けられた遠心ファン40の回転により遮音ケース2外部からフロント室21を介してセンター室22へ導入した空気をリコイルスタータ45のスタータケース46の複数の長孔46bおよびファンカ

パー16とスタータケース46との間の間隙を通じて吸風口 16aからファンカバー16内に吸入することができる(図 4および図7において空気の流れを破線矢印で示す)。

【0054】図7に示すように遠心ファン40の前面に設けられたファン41によって空気が吸風口16 aからファンカバー16内に吸入され、吸入された空気はファンカバー16の内周面に沿って発電機35のアウターロータ36の外側をエンジン30側に流れてエンジン30を冷却するが、遠心ファン40の後面のファン42の作用によりエンジン側へ流れる空気流の一部が発電機35とエンジン30との間の空隙を通ってアウターロータ36の内側に回り込んで発電コイルを冷却してアウターロータ36の底壁に設けられた通気口36bより還流するようになっている。

【0055】こうして一部発電機35を冷却した空気を含んでエンジン30に流れた空気は、エンジン30を冷却してダクト7、8に案内されて上方に向かいマフラー32を冷却する(図4参照)。マフラー32を冷却した空気は、その上方にあって遮音ケース2の外部に臨んで設けられた排風口8aから外部に排出される。

【0056】なおセンター室22にはフロントフレーム5の連通開孔5cにより連通状態にあるフロント室21を介してフロントカバー13の吸気口4a,4bから外気が吸入されるようになっているので、フロント室21が外気吸入用の迷路状の導入ダクトとして作用し、センター室22で発生する吸気音の漏出を抑えることができるとともに、吸気口4a,4bからの吸入空気流の経路にあるインバータ装置60を冷却することができる。

【0057】そしてファンカバー16、ダクト7、8が、 熱源となる発電機35、エンジン30、マフラー32を覆って 他の機器と隔離し、前記したように遠心ファン40の駆動 によりセンター室22内に開口した吸風口16 a からファン カバー16内に吸入された空気が、比較的温度の低い発電 機35から温度の高いエンジン30、マフラー32の順に冷却 して排風口8 a から外部に排出されるので、効率の良い 冷却を行うことができる。

【0058】なお遠心ファン40は、発電機30のアウターロータ36に取り付けられるので、大風量の遠心ファン40を容易に装着でき、かつ大きなファン支持強度を得ることができる。

【0059】またエンジン30の上方にマフラー32が配置され高熱機器ほど上方に位置し、さらに上方に排風口8aを備える構成なので、合理的な冷却空気流を形成して冷却を効率良く行うことができる。

【0060】発電機35、エンジン30、マフラー32をこの順にファンカバー16、ダクト7、8が覆う簡単な通風構造であり、発電機35の後方にエンジン30、エンジン30の上にマフラー32を配置しダクト7、8の通風路をL字状に屈曲させているので、遮音ケース2の前後方向の寸法を小さくし、遮音ケース2内のスペースを効率良く利用して他の機器を配置することができ、エンジン発電機1

全体のコンパクト化が図れる。

【0061】さらに発電機35がアウターロータ型発電機 であり、アウターロータ36がエンジン30のフライホイー ルを兼用するので、別途フライホイールを設ける必要が なく回転軸方向(前後方向)の寸法を小さくしている。 また多極発電機35の出力をインバータ装置60が所定周波 数の交流に変換する構成なので、発電機自体の回転軸方 向の寸法を小さくすることができる。

【0062】加えてエンジン30のシリンダ30bを側方に 傾斜させ、その上方にマフラー32を配置しているので、 大きな容量のマフラー32を配設しながら上下方向の寸法 を小さく抑えることができる。

【0063】騒音源であるエンジン30は、ダクト7およ びグラスウール製のダクト8からなるダクトで覆われる とともに、さらにその外側を遮音ケース2が覆う2重遮 蔽構造であり、高い遮音効果が得られる。

【0064】またインバータ装置60が多極発電機35の出 力を所定周波数の交流に変換するので、従来のこの種の エンジン発電機に用いられる同期発電機のように出力周 転数を一定に保持する必要はなく、大負荷時以外は回転 数を低下させておくことが可能であり、運転音を大幅に 低減することができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態に係るエンジン発電機の 外観図である。

*【図2】遮音ケースその他内部フレーム等の分解斜視図 である。

【図3】センターカバーを外し燃料タンクを省略した状 態のエンジン発電機の平面図である。

【図4】一部省略したエンジン発電機の側面図である。

【図5】同前面図である。

【図6】同後面図である。

【図7】発電機およびその近傍の一部断面とした側面図 である。

【符号の説明】 10

1…エンジン発電機、2…遮音ケース、3…アンダーフ レーム、4a,4b…吸気口、5…フロントフレーム、 6…リアフレーム、7,8…ダクト、9…補強レール、 11…センターカバー、12…蓋部材、13…フロントカバ 一、14…リアカバー、16…ファンカバー、17…矩形枠部 材、18…シールラバー、21…フロント室、22…センター 室、23…リア室、30…エンジン、31…防振マウント部 材、32…マフラー、33…プラケット、34…排気管、35… 発電機、36…アウターロータ、37…インナーステータ、 波数を一定に保持するために負荷の大小にかかわらず回 20 40…遠心ファン、41,42…ファン、45…リコイルスター タ、46…スタータケース、47…ラチェットホイール、48 …ラチェット、49…スタータモータ、50…防振マウント 部材、52…気化器、53…エアクリーナ、55…燃料タン ク、56…防振ラバー、57…ボルト、58…燃料キャップ、 60…インバータ装置、61…バッテリ、62…コントロール パネル。

【図1】

【図4】

[図2]

[図3]

フロントページの続き

(51) Int. Cl. ⁶
F 0 2 B 77/13

識別記号

F I F O 2 B 77/13