Homework 3

Robert Ackerman University of North Carolina

January 21, 2014

1 Construct the Wald, LM, and LR test for this purpose

First, here are two important results that we will need:

$$(\widehat{\mathbf{A}}) \sqrt{n} (\widehat{\beta} - \beta^0) \xrightarrow{d} N(0, \Sigma^{-1}), \text{ where } \Sigma^{-1} \equiv (G'S^{-1}G)^{-1}$$

Proof:

Population Objective Function:
$$Q(\beta) = \bar{g}(\beta)'S^{-1}\bar{g}(\beta)$$
 s.t. $\bar{g}(\beta) = \mathbb{E}[g(Z,\beta)]$, and $S^{-1} = \mathbb{E}[g(Z,\beta)g(Z,\beta)']$ and $G \equiv \frac{\partial}{\partial \beta}\bar{g}_n(\beta)$

Sample Objective Function: $Q_n(\beta) = \bar{g}_n(\beta)' S_n^{-1} \bar{g}_n(\beta)$ s.t. $\bar{g}_n(\beta) = \frac{1}{n} \sum_{i=1}^n g(Z_i, \beta)$ (and in the same way S_n^{-1} is the sample counterpart to S^{-1})

 $\hat{\beta}$ minimizes Q_n , taking the F.O.C. w.r.t. β :

$$\frac{\partial}{\partial \beta}Q_n(\beta) = \bar{G}_n'(\hat{\beta}_n)S_n^{-1}\bar{g}_n(\hat{\beta}_n) = 0, \text{ where } \bar{G}_n \equiv \frac{\partial}{\partial \beta}\bar{g}_n(\hat{\beta}_n)$$

Taking a mean value expansion of $\bar{g}_n(\hat{\beta}_n)$ yields:

$$\bar{g}_n(\hat{\beta}_n) = \bar{g}_n(\beta^0) + \bar{G}_n(\bar{\beta})(\hat{\beta}_n - \beta^0) + o_p(1)$$

Plugging this result into the preceding equation:

$$\bar{G}'_n(\hat{\beta}_n)S_n^{-1}\bar{g}_n(\hat{\beta}_n) = \bar{G}'_n(\hat{\beta}_n)S_n^{-1}\bar{g}_n(\beta^0) + \bar{G}'_n(\hat{\beta}_n)S_n^{-1}\bar{G}_n(\bar{\beta})(\hat{\beta}_n - \beta^0) + \bar{G}'_n(o_p(1))$$

Note:
$$\bar{G}_n(\hat{\beta}_n) \xrightarrow{p} G$$
, $\bar{G}_n(\bar{\beta}) \xrightarrow{p} G$, $S_n^{-1} \xrightarrow{p} S^{-1}$, and $\bar{G}'_n(o_p(1)) \xrightarrow{p} 0$ So,

$$G'S^{-1}\bar{g}_n(\beta^0) + G'S^{-1}G(\hat{\beta}_n - \beta^0) = 0$$
 Rearranging gives:

$$(\hat{\beta}_n - \beta^0) = -(G'S^{-1}G)^{-1}G'S^{-1}\bar{g}_n(\beta^0)$$
, multiplying by \sqrt{n} :

$$\sqrt{n}(\hat{\beta}_n - \beta^0) = -(G'S^{-1}G)^{-1}G'S^{-1}\sqrt{n}\bar{g}_n(\beta^0), \text{ and }$$

$$\sqrt{n}\bar{g}_n(\beta^0) \stackrel{d}{\to} N(0,S) \text{ (CLT) } :.$$

$$\sqrt{n}(\hat{\beta}_n - \beta^0) \stackrel{d}{\to} N(0, (G'S^{-1}G)^{-1}) \text{ (Slutsky's)} :$$

$$(G'S^{-1}G)^{-1}G'S^{-1}SS^{-1}G(G'S^{-1}G)^{-1} =$$

$$(G'S^{-1}G)^{-1}G'S^{-1}G(G'S^{-1}G)^{-1} =$$

$$(G'S^{-1}G)^{-1} \equiv \Sigma^{-1}$$
 (as defined above) So,

$$\sqrt{n}(\hat{\beta}_n - \beta^0) \xrightarrow{d} N(0, (G'S^{-1}G)^{-1}) = N(0, \Sigma^{-1}) \quad \Box$$

$$(B) \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\to} N(0, \Sigma)$$

Proof:

Plug
$$\beta^0$$
 into $\frac{\partial}{\partial \beta}Q_n(\beta)$:

$$\frac{\partial}{\partial \beta}Q_n(\beta^0) = \bar{G}_n'(\beta^0)S_n^{-1}\bar{g}_n(\beta^0)$$
 multiply by \sqrt{n} :

$$\sqrt{n}\frac{\partial}{\partial \beta}Q_n(\beta^0) = \bar{G}'_n(\beta^0)S_n^{-1}\sqrt{n}\bar{g}_n(\beta^0)$$

Again,
$$\bar{G}_n(\hat{\beta}_n) \xrightarrow{p} G$$
, $S_n^{-1} \xrightarrow{p} S^{-1}$

Note:
$$\sqrt{n}\bar{g}_n(\beta^0) \stackrel{d}{\to} N(0,S)$$
 (CLT) ::

$$\bar{G}'_n(\beta^0) S^{-1} \sqrt{n} \bar{g}_n(\beta^0) \xrightarrow{d} N(0, G' S^{-1} S S^{-1} G) = N(0, G' S^{-1} G) = N(0, \Sigma) \quad \Box$$

1.1 Wald

(a) under $H_0 : a(\beta^0) = 0$, Compare $a(\hat{\beta}) \& a(\beta^0)$

$$\sqrt{n}a(\hat{\beta}) = \sqrt{n}[a(\beta^0) + A(\bar{\beta})(\hat{\beta} - \beta^0)], \text{ where : } A(\beta) = \frac{\partial a}{\partial \beta'}(\beta)$$

$$= A(\bar{\beta})\sqrt{n}(\hat{\beta} - \beta^0), \text{ since under } H_0: a(\beta^0) = 0$$
Define $A_0 = A(\beta^0)$

$$= A_0\sqrt{n}(\hat{\beta} - \beta^0) + op(1), \text{ by } (A) A_0\sqrt{n}(\hat{\beta} - \beta^0) \xrightarrow{d} N(0, A_0\Sigma^{-1}A'_0)$$
Define $\Omega = A_0\Sigma^{-1}A'_0$ and let $LL' = \Omega$ be a Cholesky decompositon
$$\implies L^{-1}\sqrt{n}a(\hat{\beta}) \xrightarrow{d} N(0, I)$$

This gives our Wald under the null:

$$W \equiv \left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right)'\left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right)$$
$$= na(\hat{\beta})'(\hat{L}^{-1})'\hat{L}^{-1}a(\hat{\beta})$$
$$= na(\hat{\beta})'\hat{\Omega}^{-1}a(\hat{\beta}) \to \chi_r^2$$

(b) under H_l : $a(\beta^0) = \frac{\delta}{\sqrt{n}}$

$$\sqrt{n}a(\hat{\beta}) = \sqrt{n} \left[a(\beta^0) + A(\bar{\beta})(\hat{\beta} - \beta^0) \right]$$

$$= \sqrt{n} \left[\frac{\delta}{\sqrt{n}} + A(\bar{\beta})(\hat{\beta} - \beta^0) \right]$$

$$= \delta + A(\bar{\beta})\sqrt{n}(\hat{\beta} - \beta^0)$$

$$\stackrel{\triangle}{\triangle} \implies \sqrt{n}a(\hat{\beta}) \stackrel{d}{\rightarrow} N(\delta, \Omega)$$

$$\& L^{-1}\sqrt{n}a(\hat{\beta}) \stackrel{d}{\rightarrow} N(L^{-1}\delta, I)$$

This gives our Wald under the local alternative:

$$\begin{split} W &\equiv \left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right)'\left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right) \\ &= na(\hat{\beta})'(\hat{L}^{-1})'\hat{L}^{-1}a(\hat{\beta}) \\ &= na(\hat{\beta})'\hat{\Omega}^{-1}a(\hat{\beta}) \to \chi_r^2(\kappa) \end{split}$$

Where κ is a non-centrality parameter s.t.:

$$\kappa = \left(L^{-1}\delta\right)'\left(L^{-1}\delta\right) = \delta'\left(L^{-1}\right)'L^{-1}\delta = \delta'\left(L'\right)^{-1}L^{-1}\delta = \delta'\left(LL'\right)^{-1}\delta = \delta'\Omega^{-1}\delta$$

(c) under $H_f: a(\beta^0) \neq 0$ Let's call our choice of a fixed alternative δ s.t. $a(\beta^0) = \delta$

$$\sqrt{n}a(\hat{\beta}) = \sqrt{n} \left[a(\beta^0) + A(\bar{\beta})(\hat{\beta} - \beta^0) \right]$$

$$= \sqrt{n} \left[\delta + A(\bar{\beta})(\hat{\beta} - \beta^0) \right]$$

$$= \sqrt{n}\delta + \sqrt{n}A(\bar{\beta})(\hat{\beta} - \beta^0)$$

$$\stackrel{\triangle}{(A)} \implies \sqrt{n}a(\hat{\beta}) \stackrel{d}{\to} N(\sqrt{n}\delta, \Omega)$$

$$\& L^{-1}\sqrt{n}a(\hat{\beta}) \stackrel{d}{\to} N(L^{-1}\sqrt{n}\delta, I)$$

This gives our Wald under the fixed alternative:

$$W \equiv \left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right)'\left(\hat{L}^{-1}\sqrt{n}a(\hat{\beta})\right)$$
$$= na(\hat{\beta})'(\hat{L}^{-1})'\hat{L}^{-1}a(\hat{\beta})$$
$$= na(\hat{\beta})'\hat{\Omega}^{-1}a(\hat{\beta}) \to \chi_r^2(\kappa)$$

Where κ is a non-centrality parameter s.t.:

$$\kappa = (L^{-1}\sqrt{n}\delta)' (L^{-1}\sqrt{n}\delta) = \delta' (L^{-1})' \sqrt{n}\sqrt{n}L^{-1}\delta = n\delta' (L^{-1})' L^{-1}\delta = n\delta' (L')^{-1}L^{-1}\delta$$
$$= n\delta' (LL')^{-1}\delta = n\delta'\Omega^{-1}\delta$$

1.2 LM

(a) under $H_0 : a(\beta^0) = 0$

$$\tilde{\beta} = argmin \ Q_n(\beta) \ s.t. \ a(\tilde{\beta}) = 0$$

$$\implies \tilde{\beta} = argmin[Q_n(\beta) + a(\beta)'\gamma_n], \text{ where } \gamma_n \text{ is a L.M. \& } \mathcal{L} = Q_n(\beta) + a(\beta)'\gamma_n$$

F.O.C:

$$\frac{\partial \mathcal{L}}{\partial \beta} = \frac{\partial}{\partial \beta} Q_n(\tilde{\beta}) + A'(\tilde{\beta}) \gamma_n = 0$$

and

$$\frac{\partial \mathcal{L}}{\partial \gamma} = a'(\tilde{\beta}) = 0 \implies \sqrt{n}a'(\tilde{\beta}) = 0$$

Now, applying a mean value expansion to the second F.O.C. yields:

$$\sqrt{n}a(\tilde{\beta}) = \sqrt{n}a(\beta^0) + A(\bar{\beta})\sqrt{n}(\tilde{\beta} - \beta^0) + o_p(1) \text{ and under the null } H_0 \ : \ a(\beta^0) = 0, \ \text{So:}$$

$$\sqrt{n}a(\tilde{\beta}) = A(\bar{\beta})\sqrt{n}(\tilde{\beta} - \beta^0) + o_p(1) \text{ call this } (1)$$

Now, applying a mean value expansion to the first term in the first F.O.C. yields:

$$\frac{\partial}{\partial \beta} Q_n(\tilde{\beta}) = \frac{\partial}{\partial \beta} Q_n(\beta^0) + \frac{\partial^2}{\partial \beta \partial \beta'} Q(\bar{\beta}) (\tilde{\beta} - \beta^0) + o_p(1)$$

$$\implies \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\tilde{\beta}) = \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) + \frac{\partial^2}{\partial \beta \partial \beta'} Q(\bar{\beta}) \sqrt{n} (\tilde{\beta} - \beta^0) + o_p(1)$$

$$= \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) - \sum \sqrt{n} (\tilde{\beta} - \beta^0) + o_p(1) \text{ call this } (2)$$

Note: $-\Sigma = \frac{\partial^2}{\partial \beta \partial \beta'} Q(\bar{\beta})$ under the assumption that the model is correctly specified

Now, $A(\tilde{\beta}) \stackrel{p}{\to} A_0$:

$$A(\tilde{\beta})'\gamma_n = A_0'\sqrt{n}\gamma_n + \left(A'(\tilde{\beta}) - A_0\right)'\sqrt{n}\gamma_n = A_0'\sqrt{n}\gamma_n + o_p(1) \text{ call this } 3$$

Plugging (1), (2) & (3) into the F.O.C.s gives:

$$\Sigma \sqrt{n}(\tilde{\beta} - \beta^0) + A_0' \sqrt{n} \gamma_n = \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0)$$

and

$$A_0\sqrt{n}(\tilde{\beta}-\beta^0)=0$$

$$\implies \sqrt{n}\gamma_n = (A_0\Sigma^{-1}A_0')^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - (A_0\Sigma^{-1}A_0')^{-1}\sqrt{n}a(\beta^0) + o_p(1)$$

and

$$\implies \sqrt{n}(\tilde{\beta} - \beta^0) = \left[\Sigma^{-1}\Sigma^{-1}A_0^{-1}(A_0\Sigma^{-1})^{-1}A_0\Sigma^{-1}\right]\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) + o_p(1)$$

$$\sqrt{n}\gamma_n = \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\sqrt{n}a(\beta^0) + o_p(1)$$

=
$$\Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) + o_p(1)$$
 (Since under the null $a(\beta^0) = 0$)

and
$$\widehat{\mathbf{B}}: \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\to} N(0, \Sigma)$$

$$\implies \sqrt{n}\gamma_n \stackrel{d}{\rightarrow} N(0, \Omega^{-1}A_0\Sigma^{-1}\Sigma\Sigma^{-1}A_0'\Omega^{-1})$$

$$\begin{array}{c} \stackrel{d}{\to} N(0,\Omega^{-1}A_0\Sigma^{-1}A_0'\Omega^{-1}) \\ \\ \stackrel{d}{\to} N(0,\Omega^{-1}\Omega\Omega^{-1}) \\ \\ \stackrel{d}{\to} N(0,\Omega^{-1}) \\ \\ \Longrightarrow L'\sqrt{n}\gamma_n \stackrel{d}{\to} N(0,I) \end{array}$$

Finally yielding our LM statistic under the null:

$$LM \equiv \left(\gamma'_n \sqrt{n} \tilde{L}'\right) \left(\gamma'_n \sqrt{n} \tilde{L}'\right)'$$

$$= n\gamma'_n \tilde{L} \tilde{L}' \gamma_n$$

$$= n\gamma'_n \tilde{\Omega} \gamma_n$$

$$= n\gamma'_n A(\tilde{\beta}) \tilde{\Sigma}^{-1} A'(\tilde{\beta}) \gamma_n$$

$$= n \left[A'(\tilde{\beta}) \gamma_n \right]' \tilde{\Sigma}^{-1} \left[A'(\tilde{\beta}) \gamma_n \right]$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_n(\tilde{\beta}) \right]' \tilde{\Sigma}^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_n(\tilde{\beta}) \right] \to \chi_r^2$$

(b)
$$H_l: a(\beta^0) = \frac{\delta}{\sqrt{n}}$$

from (a) we had:

$$\sqrt{n}\gamma_n = \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\sqrt{n}a(\beta^0) + o_p(1)$$

and plugging in $a(\beta^0) = \frac{\delta}{\sqrt{n}}$ from H_l gives:

$$\sqrt{n}\gamma_n = \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\sqrt{n}\frac{\delta}{\sqrt{n}} + o_p(1)$$
$$= \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\delta + o_p(1)$$

and
$$\stackrel{\textstyle \frown}{(B)}$$
 : $\sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\to} N(0, \Sigma)$

$$\implies \Omega^{-1} A \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\to} N\left(0, \Omega^{-1} A_0 \Sigma^{-1} \Sigma \Sigma^{-1} A_0' \Omega^{-1}\right)$$

$$\stackrel{d}{\to} N\left(0, \Omega^{-1} A_0 \Sigma^{-1} A_0' \Omega^{-1}\right)$$

$$\stackrel{d}{\to} N\left(0, \Omega^{-1}\Omega\Omega^{-1}\right)$$

$$\stackrel{d}{\to} N\left(0, \Omega^{-1}\right)$$

$$\implies \sqrt{n}\gamma_n \stackrel{d}{\to} N\left(-\Omega^{-1}\delta,\Omega^{-1}\right)$$

$$\implies L'\sqrt{n}\gamma_n \stackrel{d}{\to} N\left(-L'\Omega^{-1}\delta,I\right)$$

Which gives us our LM under H_l :

$$LM = \left(\gamma'_n \sqrt{n} \tilde{L}'\right) \left(\tilde{L}' \sqrt{n} \gamma_n\right)' \to \chi_r^2(\kappa)$$

Where κ is a non-centrality parameter s.t.:

$$\kappa = \left(L'\Omega^{-1}\delta\right)'\left(L'\Omega^{-1}\delta\right) = \delta'\Omega^{-1}LL'\Omega^{-1}\delta = \delta'\Omega^{-1}\Omega\Omega^{-1}\delta = \delta'\Omega^{-1}\delta$$

(c) under $H_f: a(\beta^0) \neq 0$

again from (a) we had:

$$\sqrt{n}\gamma_n = \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\sqrt{n}a(\beta^0) + o_p(1)$$

Let's call our choice of a fixed alternative δ s.t. $a(\beta^0) = \delta$

$$\implies \sqrt{n}\gamma_n = \Omega^{-1}A\Sigma^{-1}\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) - \Omega^{-1}\sqrt{n}\delta + o_p(1)$$

Again (B) : $\sqrt{n}\frac{\partial}{\partial\beta}Q_n(\beta^0) \stackrel{d}{\rightarrow} N(0,\Sigma)$

$$\implies \Omega^{-1} A \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\rightarrow} N(0, \Omega^{-1})$$

$$\implies \sqrt{n}\gamma_n \stackrel{d}{\to} N\left(-\Omega^{-1}\sqrt{n}\delta,\Omega^{-1}\right)$$

$$\implies L'\sqrt{n}\gamma_n \stackrel{d}{\to} N\left(-L'\Omega^{-1}\sqrt{n}\delta, I\right)$$

Which gives us our LM under H_f :

$$LM = \left(\gamma'_n \sqrt{n} \tilde{L}'\right) \left(\tilde{L}' \sqrt{n} \gamma_n\right)' \to \chi_r^2(\kappa)$$

Where κ is a non-centrality parameter s.t.:

$$\kappa = \left(L'\Omega^{-1}\delta\sqrt{n}\right)'\left(L'\Omega^{-1}\delta\sqrt{n}\right) = \delta'\Omega^{-1}L\sqrt{n}\sqrt{n}L'\Omega^{-1}\delta = n\delta'\Omega^{-1}\Omega\Omega^{-1}\delta = n\delta'\Omega^{-1}\delta$$

1.3 LR

(a) under $H_0 : a(\beta^0) = 0$

$$Q_n(\beta^0) = Q_n(\hat{\beta}) + \frac{\partial}{\partial \beta} Q_n(\hat{\beta})(\beta^0 - \hat{\beta}) + \frac{1}{2}(\beta^0 - \hat{\beta})' \frac{\partial^2}{\partial \beta \partial \beta'} Q_n(\bar{\beta})(\beta^0 - \hat{\beta})$$

$$Q_n(\beta^0) = Q_n(\hat{\beta}) + \frac{1}{2}(\beta^0 - \hat{\beta})' \frac{\partial^2}{\partial \beta \partial \beta'} Q_n(\bar{\beta})(\beta^0 - \hat{\beta}) \text{ Since F.O.C.} \implies \frac{\partial}{\partial \beta} Q_n(\hat{\beta})(\beta^0 - \hat{\beta}) = 0$$

When correctly specified $\frac{\partial^2}{\partial \bar{\beta} \partial \bar{\beta}'} Q_n(\bar{\beta}) = -\Sigma$ So,

$$Q_n(\beta^0) = Q_n(\hat{\beta}) + \frac{1}{2}(\beta^0 - \hat{\beta})' \frac{\partial^2}{\partial \beta \partial \beta'} Q_n(\bar{\beta})(\beta^0 - \hat{\beta})$$

$$0 = Q_n(\hat{\beta}) - Q_n(\beta^0) + \frac{1}{2}(\beta^0 - \hat{\beta})' \frac{\partial^2}{\partial \beta \partial \beta'} Q_n(\bar{\beta})(\beta^0 - \hat{\beta})$$

$$Q_n(\hat{\beta}) - Q_n(\beta^0) = -\frac{1}{2}(\beta^0 - \hat{\beta})' \frac{\partial^2}{\partial \beta \partial \beta'} Q_n(\bar{\beta})(\beta^0 - \hat{\beta})$$

$$2\left[Q_n(\hat{\beta})-Q_n(\beta^0)\right]=-(\beta^0-\hat{\beta})'\tfrac{\partial^2}{\partial\beta\partial\beta'}Q_n(\bar{\beta})(\beta^0-\hat{\beta})$$

$$2\left[Q_n(\hat{\beta}) - Q_n(\beta^0)\right] = (\beta^0 - \hat{\beta})'\Sigma(\beta^0 - \hat{\beta})$$
 multiply by n

$$2n\left[Q_n(\hat{\beta}) - Q_n(\beta^0)\right] = \sqrt{n}(\hat{\beta} - \beta^0)' \sum \sqrt{n}(\hat{\beta} - \beta^0)$$

We need to find asymptotic distribution of $\sqrt{n}(\hat{\beta} - \beta^0)$

$$\sqrt{n}(\hat{\beta} - \beta^0) = \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) + \Sigma^{-1} A_0' \Omega^{-1} \sqrt{n} a(\beta^0) + o_p(1)$$

$$H_0: a(\beta^0) = 0 \Longrightarrow \Sigma^{-1} A_0' \Omega^{-1} \sqrt{n} a(\beta^0) = 0 \text{ so,}$$

$$\sqrt{n}(\hat{\beta} - \beta^0) = \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) + o_p(1)$$

$$(B): \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) \stackrel{d}{\to} N(0, \Sigma)$$

$$\implies \sqrt{n}(\hat{\beta}-\beta^0) \overset{d}{\to} N\left(0, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} \Sigma \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1}\right)$$

$$\stackrel{d}{\rightarrow} N\left(0, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1}\right)$$

$$\stackrel{d}{\to} N\left(0, \Sigma^{-1} A_0' \Omega^{-1} \Omega \Omega^{-1} A_0 \Sigma^{-1}\right)$$

$$\stackrel{d}{\to} N\left(0, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1}\right)$$

$$\Longrightarrow L^{-1} A_0 \sqrt{n} (\hat{\beta} - \beta^0) \stackrel{d}{\to} N(0, I)$$

So,

$$LR(\beta^{0}) = 2n \left[Q_{n}(\hat{\beta}) - Q_{n}(\beta^{0}) \right]$$

$$= \sqrt{n}(\hat{\beta} - \beta^{0})' \Sigma \sqrt{n}(\hat{\beta} - \beta^{0})$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]' \Sigma^{-1} A'_{0} \Omega^{-1} A_{0} \Sigma^{-1} \Sigma \Sigma^{-1} A'_{0} \Omega^{-1} A_{0} \Sigma^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]' \Sigma^{-1} A'_{0} \Omega^{-1} A_{0} \Sigma^{-1} A'_{0} \Omega^{-1} A_{0} \Sigma^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]' \Sigma^{-1} A'_{0} \Omega^{-1} \Omega \Omega^{-1} A_{0} \Sigma^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]' \Sigma^{-1} A'_{0} \Omega^{-1} A_{0} \Sigma^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]$$

$$= \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]' \Sigma^{-1} A'_{0} L^{-1} (L-1)' A_{0} \Sigma^{-1} \left[\sqrt{n} \frac{\partial}{\partial \beta} Q_{n}(\beta^{0}) \right]$$

$$\stackrel{d}{=} N(0, (L^{-1})' A'_{0} \Sigma^{-1} \Sigma \Sigma^{-1} A_{0} L^{-1})$$

$$\stackrel{d}{\to} N(0, (L^{-1})' \Omega L^{-1})$$

$$\stackrel{d}{\to} N(0, (L^{-1})' \Omega L^{-1})$$

$$\stackrel{d}{\to} N(0, I)$$

(b) under H_l : $a(\beta^0) = \frac{\delta}{\sqrt{n}}$ From (a): $\sqrt{n}(\hat{\beta} - \beta^0) = \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) + \Sigma^{-1} A_0' \Omega^{-1} \sqrt{n} a(\beta^0) + o_n(1)$

 $\sqrt{n(\beta + \beta)} = 11000 + 11020 + \sqrt{n} \frac{\partial \beta}{\partial \beta} \frac{\partial n}{\partial \beta} \frac{\partial \beta}{\partial \beta} \frac{\partial \beta$

 $\sqrt{n}(\hat{\beta} - \beta^0) \stackrel{d}{\to} N(\Sigma^{-1} A_0' \Omega^{-1} \delta, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1})$ Since plugging in,

We showed the first term $\stackrel{d}{\to} N(0, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1})$ So,

$$a(\beta^{0}) = \frac{\delta}{\sqrt{n}}, \text{ gives } \Sigma^{-1} A'_{0} \Omega^{-1} \sqrt{n} a(\beta^{0}) \delta = \Sigma^{-1} A o' \Omega^{-1} \delta$$
So,
$$L^{-1} A_{0} \sqrt{n} (\hat{\beta} - \beta^{0}) \stackrel{d}{\to} N(L^{-1} A_{0} \Sigma^{-1} A'_{0} \Omega^{-1} \delta, I)$$

$$\stackrel{d}{\to} N(L^{-1} \Omega' \Omega^{-1} \delta, I)$$

$$\stackrel{d}{\to} N(L^{-1} \delta, I)$$

 $\implies LR \to \chi^2_r(\kappa)$

Where κ is a non-centrality parameter s.t.:

$$\kappa = (L^{-1}\delta)'(L^{-1}\delta) = \delta'\Omega^{-1}\delta$$

(c) under
$$H_f: a(\beta^0) \neq 0$$

$$\sqrt{n}(\hat{\beta} - \beta^0) = \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1} \sqrt{n} \frac{\partial}{\partial \beta} Q_n(\beta^0) + \Sigma^{-1} A_0' \Omega^{-1} \sqrt{n} a(\beta^0) + o_p(1)$$

Again, we showed the first term $\stackrel{d}{\to} N(0, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1})$ So,

$$\sqrt{n}(\hat{\beta} - \beta^0) \stackrel{d}{\to} N(\Sigma^{-1} A_0' \Omega^{-1} \sqrt{n} \delta, \Sigma^{-1} A_0' \Omega^{-1} A_0 \Sigma^{-1})$$
 Since plugging in,

$$a(\beta^0)=\delta, \text{ gives } \Sigma^{-1}A_0'\Omega^{-1}\sqrt{n}a(\beta^0)\delta=\Sigma^{-1}Ao'\Omega^{-1}\sqrt{n}\delta$$

So,
$$L^{-1}A_0\sqrt{n}(\hat{\beta}-\beta^0) \stackrel{d}{\to} N(L^{-1}A_0\Sigma^{-1}A_0'\Omega^{-1}\sqrt{n}\delta, I)$$

$$\stackrel{d}{\to} N(L^{-1}\Omega'\Omega^{-1}\sqrt{n}\delta,I)$$

$$\stackrel{d}{\to} N(L^{-1}\sqrt{n}\delta, I)$$

$$\implies LR \to \chi_r^2(\kappa)$$

Where κ is a non-centrality parameter s.t.:

$$\kappa = \left(L^{-1}\delta\sqrt{n}\right)'\left(L^{-1}\delta\sqrt{n}\right) = n\delta'\Omega^{-1}\delta$$

2 Show that the three tests are asymptotically equivalent under H_0 and H_l under standard GMM assumptions

- (a) under H_0 $W, LM, LR \xrightarrow{d} \chi_r^2$ as shown in Part 1, so they are asymptotically equivalent under the H_0
- (a) under H_l $W, LM, LR \xrightarrow{d} \chi_r^2(\kappa)$, where $\kappa = \delta' \Omega^{-1} \delta$ as shown in Part 1, so they are asymptotically equivalent under H_l

3 Show that the three tests are consistent under H_f

 $W, LM, LR \xrightarrow{d} \chi_r^2(\kappa)$, where $\kappa = n\delta'\Omega^{-1}\delta$ As shown in Part 1, and:

$$\lim_{n\to\infty}P\left(W>\chi_{r}^{2}\right)=\lim_{n\to\infty}P\left(LM>\chi_{r}^{2}\right)=\lim_{n\to\infty}P\left(LR>\chi_{r}^{2}\right)=1$$

So the three tests are consistent under H_f .

Suppose that we are interested in two null hypotheses: H_0^{β} : $\beta = 1$ and H_o^{γ} : $\gamma = 0$ in the context of Problem-1(c) of HW-2. Test these two null hypotheses separately using Wald, LM, and LR tests. Perform the tests for both sample periods.

W, LM, LR Results		
W β Pre-Volcker	LM β Pre-Volcker	LR β Pre-Volcker
1.54e + 03	5.34e-04	466.10
(0)	(.98)	(0)
W γ Pre-Volcker	LM γ Pre-Volcker	LR γ Pre-Volcker
9.34e + 04	1.80	1.85e+03
(0)	(.18)	(0)
W β Volcker-Greenspan	LM β Volcker-Greenspan	LR β Volcker-greenspan
370.10	1.37e-05	583.44
(0)	(1.00)	(0)
W γ Volcker-Greenspan	LM γ Volcker-Greenspan	LR γ Volcker-Greenspan
9.73e + 04	.19	3.20e+03
(0)	(.66)	(0)

Note: numbers in parenthesis are p-values for each statistic.

5 Ghysels, Hill, and Motegi(2013) Question

5.1 Preliminary

(a)
$$\mathbb{E}[x_t] = 0$$

Proof:

$$\mathbb{E}[x_t] = \mathbb{E}\left[\phi x_{t-1} + \eta_t\right] = \phi \mathbb{E}[x_{t-1}] = \phi \mathbb{E}[x_t]$$
 by the stationarity of ϕ

$$\mathbb{E}[x_t] = \phi \mathbb{E}[x_t]$$

$$\mathbb{E}[x_t] - \phi \mathbb{E}[x_t] = 0$$

$$(1 - \phi)\mathbb{E}[x_t] = 0 \implies \mathbb{E}[x_t] = 0$$

(b)
$$\mathbb{E}[x_t^2] = \frac{1}{1-\phi^2} \equiv \gamma_0$$

Proof:

$$\mathbb{E}[x_t^2] = \mathbb{E}\left[(\phi x_{t-1} + \eta_t)(\phi x_{t-1} + \eta_t) \right] = \phi^2 \mathbb{E}\left[x_{t-1} x_{t-1} \right] + 0 + \mathbb{E}[\eta_t \eta_t]$$

$$\mathbb{E}[x_t^2] = \phi^2 \mathbb{E}\left[x_t x_t\right] + 1$$
 again by stationarity of ϕ and since $\eta t \overset{i.i.d.}{\sim} (0, 1)$

$$\mathbb{E}[x_t^2] - \phi^2 \mathbb{E}[x_t x_t] = 1$$

$$(1 - \phi^2)\mathbb{E}[x_t^2] = 1$$

$$\mathbb{E}[x_t^2] = \frac{1}{(1-\phi^2)} \equiv \gamma_0$$

(c)
$$\mathbb{E}[x_t x_{t-1}] = \frac{\phi}{1-\phi^2} \equiv \gamma_1$$

Proof:

$$\mathbb{E}[x_t x_{t-1}] = \mathbb{E}[(\phi x_{t-1} + \eta_t)(\phi x_{t-2} + \eta_{t-1})]$$

$$\mathbb{E}[x_t x_{t-1}] = \phi^2 \mathbb{E}\left[(x_{t-1} x_{t-2}] + 0 + \mathbb{E}\left[\eta_t \eta_{t-1} \right) \right]$$

$$\mathbb{E}[x_t x_{t-1}] = \phi^2 \mathbb{E}\left[(x_t x_{t-1}] + \phi \right]$$

$$\mathbb{E}[x_t x_{t-1}] - \phi^2 \mathbb{E}\left[(x_t x_{t-1}] = \phi \right]$$

$$(1 - \phi^2)\mathbb{E}[x_t x_{t-1}] = \phi$$

$$(1 - \phi^2)\mathbb{E}[x_t x_{t-1}] = \frac{\phi}{(1 - \phi^2)} \equiv \gamma_1$$

5.2 Question (a)

What is the probability limit of $\hat{\beta}$?

$$\begin{split} \hat{\beta} &= \frac{1}{T} \sum_{t=1}^{T} (x_{t-1}^2)^{-1} (\frac{1}{T} \sum_{t=1}^{T} x_{t-1} y_t) \\ &= \gamma_0^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} x_{t-1} y_t \right) + o_p(1) \text{ Because } \frac{1}{T} \sum_{t=1}^{T} x_{t-1}^2 \xrightarrow{p} \mathbb{E}(x_{t-1}^2) (byLLN) \\ \& & \mathbb{E}(x_{t-1}^2) = \mathbb{E}(x_t^2) = \gamma_0 \text{ by stationarity of } \phi \\ &= \gamma_0^{-1} \left[\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \left(c_1 x_{t-1} + c_2 x_{t-2} + \epsilon_t \right) \right] + o_p(1) \\ &= \gamma_0^{-1} \left[c_1 \frac{1}{T} \sum_{t=1}^{T} x_{t-1}^2 + c_2 \frac{1}{T} \sum_{t=1}^{T} x_{t-1} x_{t-2} + \frac{1}{T} \sum_{t=1}^{T} x_{t-1} \epsilon_t \right] + o_p(1) \\ &= \gamma_0^{-1} \left(c_1 \gamma_0 + c_2 \gamma_1 \right) + o_p(1) \xrightarrow{p} c_1 + \frac{\gamma_1}{\gamma_0} c_2 \text{ where,} \\ &\frac{1}{T} \sum_{t=1}^{T} x_{t-1}^2 \xrightarrow{p} \gamma_0 , \frac{1}{T} \sum_{t=1}^{T} x_{t-1} x_{t-2} \xrightarrow{p} \gamma_1 , \text{ and } \frac{1}{T} \sum_{t=1}^{T} x_{t-1} \epsilon_t \xrightarrow{p} 0 \\ \text{because } \frac{1}{T} \sum_{t=1}^{T} x_{t-1} \epsilon_t \xrightarrow{p} \mathbb{E}(x_{t-1} \epsilon_t) \text{ (by LLN)} = \mathbb{E}(x_{t-1} \mathbb{E}(\epsilon_t)) = 0 , \text{ since } \mathbb{E}(\epsilon_t) = 0 \end{split}$$

Under what conditions is $\hat{\beta}$ consistent for c_1 ?

 $\hat{\beta} \stackrel{p}{\to} c_1$ when:

- (1) $\phi = 0$ ($x_{t-1} \& x_{t-2}$ are uncorrelated)
- (2) $c_2 = 0$ (x_{t-2} is irrelevant i.e. our model correctly specified)

5.3 Question (b)

Formulate the Wald statistic with respect to H_0 : $\beta = 0$ and call it W. Under non-causality what is the asymptotic distribution of W?

From above we have:

$$\hat{\beta} = \gamma_0^{-1} \left[c_1 \frac{1}{T} \sum_{t=1}^T x_{t-1}^2 + c_2 \frac{1}{T} \sum_{t=1}^T x_{t-1} x_{t-2} + \frac{1}{T} \sum_{t=1}^T x_{t-1} \epsilon_t \right] + o_p(1), \text{ multiply by} \sqrt{T}$$

$$\sqrt{T} \hat{\beta} = \sqrt{T} \gamma_0^{-1} \left[c_1 \frac{1}{T} \sum_{t=1}^T x_{t-1}^2 + c_2 \frac{1}{T} \sum_{t=1}^T x_{t-1} x_{t-2} + \frac{1}{T} \sum_{t=1}^T x_{t-1} \epsilon_t \right] + o_p(1)$$

$$\sqrt{T} \hat{\beta} = \sqrt{T} \gamma_0^{-1} \left[c_1 \frac{1}{T} \sum_{t=1}^T x_{t-1}^2 + c_2 \frac{1}{T} \sum_{t=1}^T x_{t-1} x_{t-2} \right] + \sqrt{T} \gamma_0^{-1} \left[\frac{1}{T} \sum_{t=1}^T x_{t-1} \epsilon_t \right] + o_p(1)$$

$$\text{again: } \frac{1}{T} \sum_{t=1}^T x_{t-1}^2 \xrightarrow{\mathcal{P}} \gamma_0 \text{ , and } \frac{1}{T} \sum_{t=1}^T x_{t-1} x_{t-2} \xrightarrow{\mathcal{P}} \gamma_1 \text{ , so}$$

$$\sqrt{T} \hat{\beta} = \sqrt{T} \gamma_0^{-1} \left(c_1 \gamma_0 + c_2 \gamma_1 + \frac{1}{T} \sum_{t=1}^T x_{t-1} \epsilon_t \right) + o_p(1)$$

$$\sqrt{T} \hat{\beta} = \sqrt{T} \beta^0 + \gamma_0^{-1} \frac{1}{\sqrt{T}} \sum_{t=1}^T x_{t-1} \epsilon_t + o_p(1) \text{ , where } \beta^0 \equiv c_1 + \frac{\gamma_1}{\gamma_0} c_2$$

$$\text{note: } \frac{1}{\sqrt{T}} \sum_{t=1}^T x_{t-1} \epsilon_t \xrightarrow{\mathcal{P}} N(0, \gamma_0) \text{ , since: }$$

$$Var = \mathbb{E} \left[(x_{t-1} \epsilon_t)^2 \right] = \mathbb{E} \left[x_{t-1}^2 \epsilon_t^2 \right] = \mathbb{E} \left[x_{t-1}^2 \mathbb{E} \left(\epsilon_t^2 | \mathbf{I}_{t-1} \right) \right] = \mathbb{E} \left[x_{t-1}^2 \times 1 \right] = \mathbb{E} \left[x_{t-1}^2 \right] = \gamma_0$$

$$\Rightarrow \sqrt{T} \hat{\beta} \xrightarrow{\mathcal{P}} N(\lim \sqrt{T} \beta^0, \gamma_0^{-1})$$

$$\text{Now we need to standardize the variance so we pre-multiply} \sqrt{T} \hat{\beta} \text{ by } \sqrt{\gamma_0} :$$

$$\sqrt{T} \sqrt{\gamma_0} \hat{\beta} \xrightarrow{\mathcal{P}} N(\sqrt{\gamma_0} \lim \sqrt{T} \beta^0, 1), \text{ yielding our Wald statistic: }$$

$$W = \left(\sqrt{T}\sqrt{\gamma_0}\hat{\beta}\right)^2 = T\gamma_0\hat{\beta}^2 \xrightarrow{d} \chi_1^2(\kappa)$$
, where κ is our noncentrality parameter s.t.

$$\kappa = (\sqrt{\gamma_0} \ lim \ \sqrt{T} \beta^0)^2$$
, Note: $\kappa = 0 \iff \beta^0 = 0$ (because γ_0 can't be zero by definition)

Under non-causality: $c_1 = c_2 = 0 \implies \beta^0 \implies \kappa = 0$

5.4 Question (c)

Suppose $c_1 = 0$ and $c_2 \neq 0$, a seemingly hard type of Granger causality to detect since our model only has one lag. Can we get power approaching one? (Put differently, does W diverge to infinity asymptotically?)

From above we note:

$$\kappa = 0 \iff \beta^0 = 0$$

$$\beta^0 = 0 \iff \phi = 0$$

$$\vdots$$

$$\kappa \neq 0 \iff \phi \neq 0$$

So we will still get power approaching one as long as $\phi \neq 0$

5.5 Question (d)

In general, under what conditions do you lose power? Are those conditions likely to hold in usual economic applications?

When $c_1, c_2 \neq 0$ we will lose power if $\beta^0 = 0$, which will be the case if $c_2 = -\frac{1}{\phi}c_1$, however in typical economic applications it is the case that : $\phi \in (0,1)$ & $|c_1| > |c_2|$. When these two things hold, we will never get $c_2 = -\frac{1}{\phi}c_1$ and therefore never have $\beta^0 = 0$. So for common economic applications this is not an issue.

5.6 Question (e)

Show that W converges to a non central chi-squared distribution. Characterize the non centrality parameter κ and show that $\kappa = 0$ under non-causality.

$$\begin{split} \hat{\beta} &= \frac{1}{T} \sum_{t=1}^{T} (x_{t-1}^2)^{-1} (\frac{1}{T} \sum_{t=1}^{T} x_{t-1} y_t) \text{ as before} \\ \text{and } \frac{1}{T} \sum_{t=1}^{T} (x_{t-1}^2)^{-1} \overset{p}{\to} \mathbb{E} \left[x_t^2 \right]^{-1} &= \gamma_0^{-1} \\ & \Longrightarrow \hat{\beta} = \gamma_0^{-1} \left[\frac{1}{T} \sum_{t=1}^{T} x_{t-1} \left(\frac{c_1}{\sqrt{T}} x_{t-1} + \frac{c_2}{\sqrt{T}} x_{t-2} + \epsilon_t \right) \right] + o_p(1) \\ & \Longrightarrow \sqrt{T} \hat{\beta} = \gamma_0^{-1} \left[c_1 \frac{1}{T} \sum_{t=1}^{T} x_{t-1}^2 + c_2 \frac{1}{T} \sum_{t=1}^{T} x_{t-1} x_{t-2} + \frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_{t-1} \epsilon_t \right] + o_p(1) \\ \text{Note: } \frac{1}{T} \sum_{t=1}^{T} x_{t-1}^2 \overset{p}{\to} \gamma_0 \ , \ \frac{1}{T} \sum_{t=1}^{T} x_{t-1} x_{t-2} \overset{p}{\to} \gamma_1 \ , \text{ and } \frac{1}{\sqrt{T}} \sum_{t=1}^{T} x_{t-1} \epsilon_t \overset{d}{\to} N(0, \gamma_0) \\ & \Longrightarrow \sqrt{T} \hat{\beta} \overset{d}{\to} N \left(\gamma_0 c_1 + \frac{\gamma_1}{\gamma_0} c_2, \gamma_0^{-1} \gamma_0 \gamma_0^{-1} \right) \\ W &= \left(\sqrt{T} \sqrt{\gamma_0} \hat{\beta} \right)^2 \to \chi_r^2(\kappa) \\ \text{Where } \kappa \text{ is a non-centrality parameter s.t.:} \\ \kappa &= \left[\sqrt{\gamma_0} c_1 + \frac{\gamma_1}{\sqrt{\gamma_0}} c_2 \right]^2 = \gamma_0 c_1^2 + \frac{\gamma_1^2}{\gamma_0} c_2^2 + 2c_1 c_2 \gamma_1 \end{split}$$

$$\kappa = \left[\sqrt{\gamma_0} c_1 + \frac{\gamma_1}{\sqrt{\gamma_0}} c_2 \right]^2 = \gamma_0 c_1^2 + \frac{\gamma_1^2}{\gamma_0} c_2^2 + 2c_1 c_2 \gamma_1$$

$$= \frac{c_1^2}{1 - \phi^2} + \left(\frac{\phi}{1 - \phi^2} \right)^2 (1 - \phi^2) c_2^2 + \frac{2c_1 c_2 \phi}{1 - \phi^2}$$

$$= \frac{1}{1 - \phi^2} \left[c_1^2 + \phi^2 c_2^2 + 2c_1 c_2 \phi \right] = \frac{(c_1 + \phi c_2)^2}{1 - \phi^2}$$

5.7 Question (f)

$$\begin{cases} F_0 = \chi_1^2, \text{ since } c_1 = c_2 = 0 \\ F_1 = \chi_1^2(\kappa), \text{ where } \kappa = \frac{(c_1 + \phi c_2)^2}{1 - \phi^2} \text{ from Question (e)} \end{cases}$$

$$P(\alpha) = 1 - F_1 \left(F_0^{-1} (1 - \alpha) \right)$$

5.8 Question (g)

5.9 Question (h)

As we decreased the correlation between x_t and x_{t-1} from $\phi = 0.8$ to $\phi = 0.2$ the region of no local power is larger, but we still have local power going to one very quickly.

