

SEQUENCE LISTING

<110> Hilton, Douglas J.
Alexander, Warren S.
Viney, Elizabeth M.
Wilson, Tracy A.
Richardson, Rachel
Starr, Robyn
Nicholson, Sandra E.
Metcalf, Donald
Nicola, Nicos A.

<120> THERAPEUTIC AND DIAGNOSTIC AGENTS

<130> Davies Collison Cave

<140> 08/962,560

<141> 1997-10-31

<160> 68

<170> PatentIn Ver. 2.1

<210> 1

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 1

cacgcccggcc acgtgaaggc

20

<210> 2

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Primer

<400> 2

ttcgc caatg acaagacgct

20

<210> 3

<211> 1235

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (161)..(799)

SEP 3 8 2000

<400> 3
cgaggctcaa gctccggggcg gattctgcgt gcccgtctcg ctcccttgggg tctgtttggc 60
ggcctgtgcc acccggacgc ccggctcaact gcctctgtct cccccatcag cgccagccccg 120
gacgctatgg cccacccttc cagctggccc ctcgagtagg 160
atg gta gca cgc aac cag gtg gca gcc gac aat gcg atc tcc ccg gca 208
Met Val Ala Arg Asn Gln Val Ala Ala Asp Asn Ala Ile Ser Pro Ala
1 5 10 15
gca gag ccc cga cgg cgg tca gag ccc tcc tcg tcc tcg tct tcg tcc 256
Ala Glu Pro Arg Arg Ser Glu Pro Ser Ser Ser Ser Ser Ser Ser
20 25 30
tcg cca gcg gcc ccc gtg cgt ccc cgg ccc tgc ccg gcg gtc cca gcc 304
Ser Pro Ala Ala Pro Val Arg Pro Arg Pro Cys Pro Ala Val Pro Ala
35 40 45
cca gcc cct ggc gac act cac ttc cgc acc ttc cgc tcc cac tcc gat 352
Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ser Asp
50 55 60
tac cgg cgc atc acg cgg acc agc gcg ctc ctg gac gcc tgc ggc ttc 400
Tyr Arg Arg Ile Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys Gly Phe
65 70 75 80
tat tgg gga ccc ctg agc gtg cac ggg gcg cac gag cgg ctg cgt gcc 448
Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ala
85 90 95
gag ccc gtg ggc acc ttc ttg gtg cgc gac agt cgt caa cgg aac tgc 496
Glu Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys
100 105 110
ttc ttc gcg ctc agc gtg aag atg gct tcg ggc ccc acg agc atc cgc 544
Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser Ile Arg
115 120 125
gtg cac ttc cag gcc ggc cgc ttc cac ttg gac ggc agc cgc gag acc 592
Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Glu Thr
130 135 140
ttc gac tgc ctt ttc gag ctg ctg gag cac tac gtg ggc cgc ccg cgc 640
Phe Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pro Arg
145 150 155 160
cgc atg ttg ggg gcc ccg ctg cgc cag cgc cgc gtg cgg ccg ctg cag 688
Arg Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu Gln
165 170 175
gag ctg tgt cgc cag cgc atc gtg gcc gcc gtg ggt cgc gag aac ctg 736
Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu Asn Leu
180 185 190
gcg cgc atc cct ctt aac ccg gta ctc cgt gac tac ctg agt tcc ttc 784

Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe		
195	200	205
ccc ttc cag atc tga ccggctg ccgctgtgcc gcagcattaa gtgggggcgc		836
Pro Phe Gln Ile		
210		
cttattattt cttattatta attattatta ttttctgga accacgtggg agccctcccc	896	
gcctgggtcg gagggagtgg ttgtggaggg tgagatgcct cccacttctg gctggagacc	956	
tcatcccacc tctcaggggt gggggtgctc ccctcctggc gctccctccg ggtccccct	1016	
ggttgttagca gcttgtgtct ggggcccagga cctgaattcc actcctaccc ctccatgttt	1076	
acatattccc agtatcttg cacaaccag gggtcgggaa gggctctgg cttcattttt	1136	
ctgctgtgca gaatatccta ttttatattt ttacagccag ttttaggtaat aaactttatt	1196	
atgaaaagttt tttttaaaaa gaaaaaaaaaaaaaaa	1235	

<210> 4
<211> 212
<212> PRT
<213> Mus musculus

Met Val Ala Arg Asn Gln Val Ala Ala Asp Asn Ala Ile Ser Pro Ala			
1	5	10	15
Ala Glu Pro Arg Arg Arg Ser Glu Pro Ser Ser Ser Ser Ser Ser			
20	25	30	
Ser Pro Ala Ala Pro Val Arg Pro Arg Pro Cys Pro Ala Val Pro Ala			
35	40	45	
Pro Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ser Asp			
50	55	60	
Tyr Arg Arg Ile Thr Arg Thr Ser Ala Leu Leu Asp Ala Cys Gly Phe			
65	70	75	80
Tyr Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ala			
85	90	95	
Glu Pro Va Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys			
100	105	110	
Phe Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser Ile Arg			
115	120	125	
Val His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Glu Thr			
130	135	140	

Phe Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pro Arg
145 150 155 160

Arg Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu Gln
165 170 175

Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val Gly Arg Glu Asn Leu
180 185 190

Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe
195 200 205

Pro Phe Gln Ile
210

<210> 5

<211> 1121

<212> DNA

<213> Mus musculus

<220>

<221> CDS

<222> (223)..(819)

<400> 5

gcgatctgtg ggtgacagtg tctgcgagag actttgccac accattctgc cggaatttgg 60
agaaaaagaa ccagccgctt ccagtcctt cccccctccgc caccatttcg gacaccctgc 120
acactctcgt ttggggta cctgtgactt ccaggcagca cgcgaggctcc actggcccca 180
gctcggcgca ccagctgtct gggacgtgtt gactcatctc cc atg acc ctg cgg 234
Met Thr Leu Arg
1

tgc ctg gag ccc tcc ggg aat gga gcg gac agg acg cgg agc cag tgg 282
Cys Leu Glu Pro Ser Gly Asn Gly Ala Asp Arg Thr Arg Ser Gln Trp
5 10 15 20

ggg acc gcg ggg ttg ccg gag gaa cag tcc ccc gag gcg gcg cgt ctg 330
Gly Thr Ala Gly Leu Pro Glu Glu Gln Ser Pro Glu Ala Ala Arg Leu
25 30 35

gcg aaa gcc ctg cgc gag ctc agt caa aca gga tgg tac tgg gga agt 378
Ala Lys Ala Leu Arg Glu Leu Ser Gln Thr Gly Trp Tyr Trp Gly Ser
40 45 50

atg act gtt aat gaa gcc aaa gag aaa tta aaa gag gct cca gaa gga 426
Met Thr Val Asn Glu Ala Lys Glu Lys Leu Lys Glu Ala Pro Glu Gly
55 60 65

act ttc ttg att aga gat agt tcg cat tca gac tac cta cta act ata 474
Thr Phe Leu Ile Arg Asp Ser Ser His Ser Asp Tyr Leu Leu Thr Ile
70 75 80

tcc gtt aag acg tca gct gga ccg act aac ctg cggtt att gag tac caa	522
Ser Val Lys Thr Ser Ala Gly Pro Thr Asn Leu Arg Ile Glu Tyr Gln	
85 90 95 100	
 gat ggg aaa ttc aga ttg gat tct atc ata tgt gtc aag tcc aag ctt	570
Asp Gly Lys Phe Arg Leu Asp Ser Ile Ile Cys Val Lys Ser Lys Leu	
105 110 115	
 aaa cag ttt gac agt gtg gtt cat ctg att gac tac tat gtc cag atg	618
Lys Gln Phe Asp Ser Val Val His Leu Ile Asp Tyr Tyr Val Gln Met	
120 125 130	
 tgc aag gat aaa cgg aca ggc cca gaa gcc cca cgg aat ggg act gtt	666
Cys Lys Asp Lys Arg Thr Gly Pro Glu Ala Pro Arg Asn Gly Thr Val	
135 140 145	
 cac ctg tac ctg acc aaa cct ctg tat aca tca gca ccc act ctg cag	714
His Leu Tyr Leu Thr Lys Pro Leu Tyr Thr Ser Ala Pro Thr Leu Gln	
150 155 160	
 cat ttc tgt cga ctc gcc att aac aaa tgt acc ggt acg atc tgg gga	762
His Phe Cys Arg Leu Ala Ile Asn Lys Cys Thr Gly Thr Ile Trp Gly	
165 170 175 180	
 ctg cct tta cca aca aga cta aaa gat tac ttg gaa gaa tat aaa ttc	810
Leu Pro Leu Pro Thr Arg Leu Lys Asp Tyr Leu Glu Glu Tyr Lys Phe	
185 190 195	
 cag gta taagtatttc tctctcttt tcgtttttt taaaaaaaaaaaaacacat	866
Gln Val	
 gcctcatata gactatctcc gaatgcagct atgtgaaaga gaacccagag gccctcctct	926
ggataactgc gcagaattct ctcttaagga cagttgggct cagtctaact taaaggtgtg	986
aagatgtgc taggtatTTT aaagttcccc tttaggtagtt ttagctgaat gatgctttct	1046
ttccttatggc tgctcaagat caaatggccc tttaaatga aacaaaacaa aacaaaacaa	1106
aaaaaaaaaaaa aaaaa	1121

<210> 6
<211> 198
<212> PRT
<213> *Mus musculus*

<400> 6

Met	Thr	Leu	Arg	Cys	Leu	Glu	Pro	Ser	Gly	Asn	Gly	Ala	Asp	Arg	Thr
1				5					10					15	

Arg Ser Gln Trp Gly Thr Ala Gly Leu Pro Glu Glu Gln Ser Pro Glu
20 25 30

C5
cont.

Ala Ala Arg Leu Ala Lys Ala Leu Arg Glu Leu Ser Gln Thr Gly Trp
35 40 45

Tyr Trp Gly Ser Met Thr Val Asn Glu Ala Lys Glu Lys Leu Lys Glu
50 55 60

Ala Pro Glu Gly Thr Phe Leu Ile Arg Asp Ser Ser His Ser Asp Tyr
65 70 75 80

Leu Leu Thr Ile Ser Val Lys Thr Ser Ala Gly Pro Thr Asn Leu Arg
85 90 95

Ile Glu Tyr Gln Asp Gly Lys Phe Arg Leu Asp Ser Ile Ile Cys Val
100 105 110

Lys Ser Lys Leu Lys Gln Phe Asp Ser Val Val His Leu Ile Asp Tyr
115 120 125

Tyr Val Gln Met Cys Lys Asp Lys Arg Thr Gly Pro Glu Ala Pro Arg
130 135 140

Asn Gly Thr Val His Leu Tyr Leu Thr Lys Pro Leu Tyr Thr Ser Ala
145 150 155 160

Pro Thr Leu Gln His Phe Cys Arg Leu Ala Ile Asn Lys Cys Thr Gly
165 170 175

Thr Ile Trp Gly Leu Pro Leu Pro Thr Arg Leu Lys Asp Tyr Leu Glu
180 185 190

Glu Tyr Lys Phe Gln Val
195

<210> 7
<211> 2187
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (18)..(695)

<400> 7
cgctggctcc gtgcgcc atg gtc acc cac agc aag ttt ccc gcc gcc ggg 50
Met Val Thr His Ser Lys Phe Pro Ala Ala Gly
1 5 10

atg agc cgc ccc ctg gac acc agc ctg cgc ctc aag acc ttc agc tcc 98
Met Ser Arg Pro Leu Asp Thr Ser Leu Arg Leu Lys Thr Phe Ser Ser
15 20 25

aaa agc gag tac cag ctg gtg aac gcc gtg cgc aag ctg cag gag 146
Lys Ser Glu Tyr Gln Leu Val Val Asn Ala Val Arg Lys Leu Gln Glu
30 35 40

agc gga ttc tac tgg agc gcc gtg acc ggc ggc gag gcg aac ctg ctg Ser Gly Phe Tyr Trp Ser Ala Val Thr Gly Gly Glu Ala Asn Leu Leu	194
45 50 55 ..	
ctc agc gcc gag ccc gcg ggc acc ttt ctt atc cgc gac agc tcg gac Leu Ser Ala Glu Pro Ala Gly Thr Phe Leu Ile Arg Asp Ser Ser Asp	242
60 65 70 75	
cag cgc cac ttc ttc acg ttg agc gtc aag acc cag tcg ggg acc aag Gln Arg His Phe Phe Thr Leu Ser Val Lys Thr Gln Ser Gly Thr Lys	290
80 85 90	
aac cta cgc atc cag tgt gag ggg ggc agc ttt tcg ctg cag agt gac Asn Leu Arg Ile Gln Cys Glu Gly Ser Phe Ser Leu Gln Ser Asp	338
95 100 105	
ccc cga agc acg cag cca gtt ccc cgc ttc gac tgt gta ctc aag ctg Pro Arg Ser Thr Gln Pro Val Pro Arg Phe Asp Cys Val Leu Lys Leu	386
110 115 120	
gtg cac cac tac atg ccg cct cca ggg acc ccc tcc ttt tct ttg cca Val His His Tyr Met Pro Pro Pro Gly Thr Pro Ser Phe Ser Leu Pro	434
125 130 135	
ccc acg gaa ccc tcg tcc gaa gtt ccg gag cag cca cct gcc cag gca Pro Thr Glu Pro Ser Ser Glu Val Pro Glu Gln Pro Pro Ala Gln Ala	482
140 145 150 155	
ctc ccc ggg agt acc ccc aag aga gct tac tac atc tat tct ggg ggc Leu Pro Gly Ser Thr Pro Lys Arg Ala Tyr Tyr Ile Tyr Ser Gly Gly	530
160 165 170	
gag aag att ccg ctg gta ctg agc cga cct ctc tcc tcc aac gtg gcc Glu Lys Ile Pro Leu Val Leu Ser Arg Pro Leu Ser Ser Asn Val Ala	578
175 180 185	
acc ctc cag cat ctt tgt cgg aag act gtc aac ggc cac ctg gac tcc Thr Leu Gln His Leu Cys Arg Lys Thr Val Asn Gly His Leu Asp Ser	626
190 195 200	
tat gag aaa gtg acc cag ctg cct gga ccc att cgg gag ttc ctg gat Tyr Glu Lys Val Thr Gln Leu Pro Gly Pro Ile Arg Glu Phe Leu Asp	674
205 210 215	
cag tat gat gct cca ctt taaggagcaa aagggtcaga ggggggcctg Gln Tyr Asp Ala Pro Leu	722
220 225	
ggtcggtcgg tcgcctctcc tccgaggcac atggcacaag cacaaaaatc cagccccaac 782	
ggtcggtagc tcccagttag ccagggcag attggcttct tcctcaggcc ctccactccc 842	
gcagagtaga gctggcagga cctgaaattc gtctgagggg agggggagct gccacctgct 902	
ttccccccctc cccagctcc agtttttc aagtggagcc agccggcctg gcctggggg 962	

RECEIVED

1970 8 27 1970

acaatacctt tgacaagcg^g actctccctt ccccttc^c cacacccctt ctgc^tccca 1022
10
agggaggtgg ggacacactcc aagtgtt^gaa cttagaactg caagggaaat cttcaaactt 1082
tcccgc^tgga acttgc^tgc gcttgattt gg^ttgatca agagcaggca cctggggaa 1142
ggatggaaga gaaaagggtg tgtgaagggt tt^tatgctg gccaaag^aaa taaccactcc 1202
cactgccc^a cctagg^tgag gagtggtggc tcctggctct gggagagtg gcaagggg^tg 1262
acctgaagag agctataactg gtgccaggct cctctccatg gggcagctaa tgaaacctcg 1322
cagatccctt gcaccc^caga accctcccc^g ttgtgaagag gcagtagcat ttagaaggga 1382
gacagatgag gctgg^tgagc tggccgc^ttt tccaacacc gaagggag^gc agatcaacag 1442
atgagccatc ttggagccca gg^tttccctt ggagcagatg gaggg^ttctg ctttgtctct 1502
cctatgtggg gctaggagac tcgc^cttaaa tgccctctgt cccaggatg gggattggca 1562
cacaaggagc caaacacagc caataggcag agat^tgagg gattcaccc^a ggtggctaca 1622
ggccagggga agtggctgca gggagagac ccagtcactc caggagactc ctgagtaac 1682
actgggaaga cattggccag tcctagtc^tat ctctcg^tca gt^taggtccga gagcttccag 1742
gccctgcaca gccctcc^ttt ctcac^tg^ggg gggaggcagg aggtgatgga gaagc^ttcc 1802
catggc^ctc acaggggc^cct cacgg^aatg cagcagccat gcaattac^t ggaactggc 1862
ctgtgtggg gagaaacaag tt^ttc^tgaag t^taggtatgg ggctgggtgg ggcagctgtg 1922
tg^ttg^tgg^tg gctttttct ctctgttt^t aataatgtt acaatttgcc tcaatcactt 1982
ttataaaaaat ccacctccag cccgc^cc^ctc tccccactca ggc^ttc^tgag gctgtctgaa 2042
gatgctgaa aaactcaacc aaatccc^tagt tcaactcaga ct^ttcacat atatttat 2102
ttataactcag aaaagaaaca tt^tcagtaat ttataataaa agagcactat tt^ttaatga 2162
aaaaaaaaaa aaaaaaaaaa aaaaaa 2187

<210> 8
<211> 225
<212> PRT
<213> Mus musculus

<400> 8
Met Val Thr His Ser Lys Phe Pro Ala Ala Gly Met Ser Arg Pro Leu
1 5 10 15
Asp Thr Ser Leu Arg Leu Lys Thr Phe Ser Ser Lys Ser Glu Tyr Gln
20 25 30

Leu Val Val Asn Ala Val Arg Lys Leu Gln Glu Ser Gly Phe Tyr Trp
35 40 45

Ser Ala Val Thr Gly Gly Glu Ala Asn Leu Leu Ser Ala Glu Pro
50 55 60

Ala Gly Thr Phe Leu Ile Arg Asp Ser Ser Asp Gln Arg His Phe Phe
65 70 75 80

Thr Leu Ser Val Lys Thr Gln Ser Gly Thr Lys Asn Leu Arg Ile Gln
85 90 95

Cys Glu Gly Gly Ser Phe Ser Leu Gln Ser Asp Pro Arg Ser Thr Gln
100 105 110

Pro Val Pro Arg Phe Asp Cys Val Leu Lys Leu Val His His Tyr Met
115 120 125

Pro Pro Pro Gly Thr Pro Ser Phe Ser Leu Pro Pro Thr Glu Pro Ser
130 135 140

Ser Glu Val Pro Glu Gln Pro Pro Ala Gln Ala Leu Pro Gly Ser Thr
145 150 155 160

Pro Lys Arg Ala Tyr Tyr Ile Tyr Ser Gly Gly Glu Lys Ile Pro Leu
165 170 175

Val Leu Ser Arg Pro Leu Ser Ser Asn Val Ala Thr Leu Gln His Leu
180 185 190

Cys Arg Lys Thr Val Asn Gly His Leu Asp Ser Tyr Glu Lys Val Thr
195 200 205

Gln Leu Pro Gly Pro Ile Arg Glu Phe Leu Asp Gln Tyr Asp Ala Pro
210 215 220

Leu
225

<210> 9

<211> 1094

<212> DNA

<213> Homo sapiens

<400> 9

ctccggctgg ccccttctgt aggatggtag cacacaacca ggtggcagcc gacaatgcag 60

tctccacagc agcagagccc cgacggcggc cagaaccttc ctcctttcc tcctcctcg 120

ccgcggcccc cgcgcgcccc cggccgtgcc ccgcggtccc ggccccggcc cccggcgaca 180

cgcacttccg cacattccgt tcgcacgccc attaccggcg catcacgcgc gccagcg 240

tcctggacgc ctgcggattc tactgggggc ccctgagcgt gcacggggcg cacgagcg 300

tgcgcgccga gcccgtggc accttcctgg tgcgacag ccgccagcgg aactgcttt 360
tcgccttag cgtaaatgt gcctcgac ccacgagcat ccgcgtgcac tttcaggccg 420
gccgcattca cctggatggc agccgcgaga gttcgactg ccttcgag ctgctggagc 480
actacgtggc ggcgcgcgc cgcatgctgg gggccccgt gcccgcgc cgcgtgcggc 540
cgctgcagga gctgtgccgc cagcgcatcg tggccaccgt gggccgcgag aacctggctc 600
gcattccccctt caaccccgtc ctccgcact acctgagctc cttcccttc cagatttgac 660
cggcagcgcc cggcgacgc acggattaa ctggatgcc gtgttatttt gttattactt 720
gcctggaaacc atgtgggtac cttcccgcc ctgggttggg gggagcggat ggggttaggg 780
gcgaggcgcc tccgccttc ggctggagac gaggccgcag accccttctc acctcttgag 840
ggggcctcc ccctcctggt gtcctcttg gttccccctg gtttgttag cagcttaact 900
gtatctggag ccaggacctg aactcgacc tcctacctct tcattttac atataccag 960
tatcttgca caaaccaggg gttggggag ggtctctggc tttattttc tgctgtgcag 1020
aatcctattt tatattttt aaagtcaagg taggtaataa actttattat gaaagttttt 1080
ttttttaaaa aaaa 1094

<210> 10
<211> 211
<212> PRT
<213> Homo sapiens

<400> 10
Met Val Ala His Asn Gln Val Ala Ala Asp Asn Ala Val Ser Thr Ala
1 5 10 15
Ala Glu Pro Arg Arg Pro Glu Pro Ser Ser Ser Ser Ser Ser
20 25 30
Pro Ala Ala Pro Ala Arg Pro Arg Pro Cys Pro Ala Val Pro Ala Pro
35 40 45
Ala Pro Gly Asp Thr His Phe Arg Thr Phe Arg Ser His Ala Asp Tyr
50 55 60
Arg Arg Ile Thr Arg Ala Ser Ala Leu Leu Asp Ala Cys Gly Phe Tyr
65 70 75 80
Trp Gly Pro Leu Ser Val His Gly Ala His Glu Arg Leu Arg Ala Glu
85 90 95
Pro Val Gly Thr Phe Leu Val Arg Asp Ser Arg Gln Arg Asn Cys Phe
100 105 110

OS
Conf

Phe Ala Leu Ser Val Lys Met Ala Ser Gly Pro Thr Ser Ile Arg Val
115 120 125

His Phe Gln Ala Gly Arg Phe His Leu Asp Gly Ser Arg Glu Ser Phe
130 135 140

Asp Cys Leu Phe Glu Leu Leu Glu His Tyr Val Ala Ala Pro Arg Arg
145 150 155 160

Met Leu Gly Ala Pro Leu Arg Gln Arg Arg Val Arg Pro Leu Gln Glu
165 170 175

Leu Cys Arg Gln Arg Ile Val Ala Thr Val Gly Arg Glu Asn Leu Ala
180 185 190

Arg Ile Pro Leu Asn Pro Val Leu Arg Asp Tyr Leu Ser Ser Phe Pro
195 200 205

Phe Gln Ile
210

<210> 11

<211> 2807

<212> DNA

<213> Rattus norvegicus

<400> 11

ggaaaaccgag gcggggagac caggaggcct tggcctcaga gcttcagagt cgcggtggcag 60
caaacagaga aacctgtaga gggcagtgtg cgtcacttag ctcagggaaag ctgcacgcga 120
aactcacccg ccttcattca taaacatcgt cagctaggca cctactcctg ggctttcagg 180
acaaaactgaa tcacgaaacc acagtgtcct taaaataggt ctgaccgcct gaatccctgg 240
ccaaggtgtg tacggggcat gggagccctt gtgcagagat gcttgcagga gccttgaggg 300
gctctgttaag acagaggcta ggaagacaaa gttgggggct acagcttctt gtcctgcccc 360
gggcctcagt ttcttcgggtt gcccacgtag gagtgcagag agtccagccc ctggggaccc 420
aacccaaccc cgcccaagttt ccgaggaact cgtccggag cggggggcgcc cctccgcac 480
cgcccttaggc ttcccttggaa gcctctgcgg tcaggccacc gcttcctggg aagcccaagc 540
caaggccagg ccgagtgcc aacgggaggg gcccgcgcgc gattctggag gagggcggcg 600
gccccacagg tctccagggc tggctagccg ggctcctaga gcggagactg ccaaggccctt 660
cggttcctgg gcaggaagga tcctggcagg gaggagttgc ttggggggtg ggggggaaag 720
gctccaggcg cggtggagct ctgaccagga gaatgcacac actcggaggg gagggaggcgt 780
gtcagccccca agctagcattc ccaccgggg agcagcgtatg tggggcgaag gtagccagag 840

caaaagagca ggcaccagg t gacacgaaac agaagattcc gggtagagcc agaaccagg 900
aagtcccatt cagggaaagg t gcgaggcgag aacgagttag gtggaccctc tccaggggca 960
gccaaagaaa tctaaagaga acccgaaagg cttgccggaa agagaaaccg aaagcggcgg 1020
tgggcgggat cggtggcgg ggcctccctg gtttaagagc ttgatgcagg ggcccggcagc 1080
agcagagaga actgcggccg tggcagcggc acggctccc gccccggagc atgcgcgaca 1140
gcagccccgg aacccccagg cgccggcgcc cgccgtcccg ccgcaggta gccgaggcag 1200
ctgcgaagga gcaggcgggaa gggatgggaa ggaaggggag cagagcctgg caggactatc 1260
ctcgagact gcatggcggg gtcgtggatg ctatgcctct ggccggccgc ccaccggctg 1320
gcccaggcgg cccctcgccg ggcggggcg ccgtcagccc ctccctccg gcccgtggcc 1380
cgatcgatcc gcccgggttc cagttcccg cgtggccagt aggccgcaac cgccaggcgg 1440
caagccaccc agcggggacg gcctggagtc gggccctct ccacgcccc ttctccacgc 1500
gcgcggggag gcagggtcc accgcccagtc tgaaagggtt ccacatacag gaacggccta 1560
cttcgcagat gagcccaccc aggcctcaggc tccgggggaa ttctgcgtgt caccctcgct 1620
ccttgggtc cgctggcgg cctgtgccac ccggacgccc gggtcaactgc ctctgtctcc 1680
cccatcagcg cagccccggc cgctatggcc caccctcca gctggccct cgagttaggat 1740
ggtagcacgt aaccaggtgg aagccgacaa tgcgatctcc ccggcatcag agccccgacg 1800
gcggccagag ccatcctcggt cctcgatcc tcgcgtccg ggcggcccg cgccgtcccg 1860
gcccgtggccg gtggtcccg ccccggtcc gggcgacact cacttccgca cttccgctc 1920
ccactctgat taccggcgca tcacgcccac cagcgctctc ctggacgcct gcggcttcta 1980
ctggggaccc ctgagcgtgc atggggcgca cgaacggctg cggtccgaaac ccgtgggcac 2040
cttcttggtg cgccgacagtc gccagccggaa ctgcttcttc gcgtcagcg tgaagatggc 2100
ttcggggcccc acgagcattc gtgtgcactt ccaggccggc cgcttccacc tggacggcaa 2160
ccgcgagacc ttcgactgcc tcttcgagct gctggagcac tacgtggcgg cgccgcggccg 2220
catgttgggg gccccactgc gccagccggc cgtgcggccg ctgcaggagc tgtgtcgcca 2280
gcgcacgtg gcccgtgg gtgcgagaa cctggcacgc atccctcta acccggtact 2340
ccgtgactac ctgagttcct tcccttcca gatctgaccg gctggccgg tgcccgaga 2400
attaagtggg agcgccttat tatttcttat tattaattat tattatttt ctgaaaccac 2460
gtgggagccc tccccccta ggtcggaggg agtgggtgtg gaggggtgaga tccctccac 2520

ttctggctgg agaccttatac ccgcctctcg gggggcctcc cctcctggtg ctcccctccg 2580
gtccccctgg ttgttagcagc ttgtgtctgg ggccaggacc tgaactccac gcctacctct 2640
ccatgtttac atgttcccag tatcttgca caaacccaggg gtgggggagg gtctctggct 2700
tcattttct gctgtgcaga atattctatt ttatatttt acatccagtt tagataataa 2760
actttattat gaaagttttt tttttaaag aaacaaagat ttctaga 2807

<210> 12
<211> 212
<212> PRT
<213> Rattus norvegicus

<400> 12

Met	Val	Ala	Arg	Asn	Gln	Val	Glu	Ala	Asp	Asn	Ala	Ile	Ser	Pro	Ala
1						5				10					15
Ser	Glu	Pro	Arg	Arg	Arg	Pro	Glu	Pro	Ser						
			20					25							30
Ser	Pro	Ala	Ala	Pro	Ala	Arg	Pro	Arg	Pro	Cys	Pro	Val	Val	Pro	Ala
		35					40								45
Pro	Ala	Pro	Gly	Asp	Thr	His	Phe	Arg	Thr	Phe	Arg	Ser	His	Ser	Asp
		50				55					60				
Tyr	Arg	Arg	Ile	Thr	Arg	Thr	Ser	Ala	Leu	Leu	Asp	Ala	Cys	Gly	Phe
		65			70				75						80
Tyr	Trp	Gly	Pro	Leu	Ser	Val	His	Gly	Ala	His	Glu	Arg	Leu	Arg	Ser
			85				90								95
Glu	Pro	Val	Gly	Thr	Phe	Leu	Val	Arg	Asp	Ser	Arg	Gln	Arg	Asn	Cys
		100				105						110			
Phe	Phe	Ala	Leu	Ser	Val	Lys	Met	Ala	Ser	Gly	Pro	Thr	Ser	Ile	Arg
		115				120						125			
Val	His	Phe	Gln	Ala	Gly	Arg	Phe	His	Leu	Asp	Gly	Asn	Arg	Glu	Thr
		130				135					140				
Phe	Asp	Cys	Leu	Phe	Glu	Leu	Leu	Glu	Tyr	Val	Ala	Ala	Pro	Arg	
		145			150				155					160	
Arg	Met	Leu	Gly	Ala	Pro	Leu	Arg	Gln	Arg	Arg	Val	Arg	Pro	Leu	Gln
			165				170								175
Glu	Leu	Cys	Arg	Gln	Arg	Ile	Val	Ala	Ala	Val	Gly	Arg	Glu	Asn	Leu
			180				185						190		
Ala	Arg	Ile	Pro	Leu	Asn	Pro	Val	Leu	Arg	Asp	Tyr	Leu	Ser	Ser	Phe
			195				200					205			

Pro Phe Gln Ile
210

<210> 13
<211> 1611
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (263)..(1525)

<400> 13
cgaattccgg gcgggctgtg tgagtctgtg agtggaaaggc ggcggcgtc tttgtctga 60
gtgtgacccg gtggcttgc tccaggcatt ccggtgattt ctcggggca gtccgcagaa 120
gccgcagcgg ccgccccgcgc tctctctgca gtctccacac ccgggagagc ctgagccgc 180
gtcacgc(ccc tcagcccccg ctgagtcct tctctgtgt cgctccgaa tcgagttccc 240
ggaatcagac ggtccccat ag atg gcc agc ttt ccc ccg agg gtt aac gag 292
Met Ala Ser Phe Pro Pro Arg Val Asn Glu
1 5 10
aaa gag atc gtg aga tca cgt act ata ggg gaa ctc ttg gct cca gca 340
Lys Glu Ile Val Arg Ser Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala
15 20 25
gct cct ttt gac aag aaa tgt ggt gag aac tgg acg gtt gct ttt 388
Ala Pro Phe Asp Lys Lys Cys Gly Gly Glu Asn Trp Thr Val Ala Phe
30 35 40
gct cct gat ggt tcc tac ttt gcg tgg tca caa gga tat cgc ata gtg 436
Ala Pro Asp Gly Ser Tyr Phe Ala Trp Ser Gln Gly Tyr Arg Ile Val
45 50 55
aag ctt gtc ccg tgg tcc cag tgc cgt aag aac ttt ctt ttg cat ggt 484
Lys Leu Val Pro Trp Ser Gln Cys Arg Lys Asn Phe Leu Leu His Gly
60 65 70
tcc aaa aat gtt acc aat tca agc tgt cta aaa ttg gca aga caa aac 532
Ser Lys Asn Val Thr Asn Ser Ser Cys Leu Lys Leu Ala Arg Gln Asn
75 80 85 90
agt aat ggt ggt cag aaa aac aag cct cct gag cac gtt ata gac tgt 580
Ser Asn Gly Gly Gln Lys Asn Lys Pro Pro Glu His Val Ile Asp Cys
95 100 105
gga gac ata gtc tgg agt ctt gct ttt ggg tct tca gtt cca gaa aaa 628
Gly Asp Ile Val Trp Ser Leu Ala Phe Gly Ser Ser Val Pro Glu Lys
110 115 120
cag agt cgt tgc gtt aat ata gaa tgg cat cgg ttc cga ttt gga cag 676

Gln	Ser	Arg	Cys	Val	Asn	Ile	Glu	Trp	His	Arg	Phe	Arg	Phe	Gly	Gln	
125							130							135		
gat cag cta ctc ctt gcc aca gga tta aac aat ggt cgc atc aaa atc															724	
Asp	Gln	Leu	Leu	Leu	Ala	Thr	Gly	Leu	Asn	Asn	Gly	Arg	Ile	Lys	Ile	
140						145					150					
tgg gat gta tat aca gga aaa ctc ctc ctt aat ttg gta gac cac att															772	
Trp	Asp	Val	Tyr	Thr	Gly	Lys	Leu	Leu	Leu	Asn	Leu	Val	Asp	His	Ile	
155						160				165			170			
gaa atg gtt aga gat tta act ttt gct cca gat ggg agc tta ctc ctt															820	
Glu	Met	Val	Arg	Asp	Leu	Thr	Phe	Ala	Pro	Asp	Gly	Ser	Leu	Leu	Leu	
175						180				185						
gta tca gct tca aga gac aaa act cta aga gtg tgg gac ctg aaa gat															868	
Val	Ser	Ala	Ser	Arg	Asp	Lys	Thr	Leu	Arg	Val	Trp	Asp	Leu	Lys	Asp	
190						195				200						
gat gga aac atg gtg aaa gta ttg cgg gca cat cag aat tgg gtg tac															916	
Asp	Gly	Asn	Met	Val	Lys	Val	Leu	Arg	Ala	His	Gln	Asn	Trp	Val	Tyr	
205						210				215						
agt tgt gca ttc tct ccc gac tgt tct atg ctg tgt tca gtg ggc gcc															964	
Ser	Cys	Ala	Phe	Ser	Pro	Asp	Cys	Ser	Met	Leu	Cys	Ser	Val	Gly	Ala	
220						225				230						
agt aaa gca gtt ttc ctt tgg aat atg gat aaa tac acc atg att agg															1012	
Ser	Lys	Ala	Val	Phe	Leu	Trp	Asn	Met	Asp	Lys	Tyr	Thr	Met	Ile	Arg	
235						240				245			250			
aag ctg gaa ggt cat cac cat gat gtt gta gct tgt gac ttt tct cct															1060	
Lys	Leu	Glu	Gly	His	His	Asp	Val	Val	Ala	Cys	Asp	Phe	Ser	Pro		
255						260				265						
gat gga gca ttg cta gct act gca tcc tat gac act cgt gtg tat gtc															1108	
Asp	Gly	Ala	Leu	Leu	Ala	Thr	Ala	Ser	Tyr	Asp	Thr	Arg	Val	Tyr	Val	
270						275				280						
tgg gat cca cac aat gga gac ctt ctg atg gag ttt ggg cac ctg ttt															1156	
Trp	Asp	Pro	His	Asn	Gly	Asp	Leu	Leu	Met	Glu	Phe	Gly	His	Leu	Phe	
285						290				295						
ccc tcg ccc act cca ata ttt gct gga gga gca aat gac cga tgg gtg															1204	
Pro	Ser	Pro	Thr	Pro	Ile	Phe	Ala	Gly	Gly	Ala	Asn	Asp	Arg	Trp	Val	
300						305				310						
aga gct gtg tct ttc agt cat gat gga ctg cat gtt gcc agc ctt gct															1252	
Arg	Ala	Val	Ser	Phe	Ser	His	Asp	Gly	Leu	His	Val	Ala	Ser	Leu	Ala	
315						320				325			330			
gat gat aaa atg gtg agg ttc tgg aga atc gat gag gat tgt ccg gta															1300	
Asp	Asp	Lys	Met	Val	Arg	Phe	Trp	Arg	Ile	Asp	Glu	Asp	Cys	Pro	Val	
335						340				345						
caa gtt gca cct ttg agc aat ggt ctt tgc tgt gcc ttt tct act gat															1348	

CS
cont.

Gln Val Ala Pro Leu Ser Asn Gly Leu Cys Cys Ala Phe Ser Thr Asp
350 355 360

ggc agt gtt tta gct gct ggg aca cat gat gga agt gtg tat ttt tgg 1396
Gly Ser Val Leu Ala Ala Gly Thr His Asp Gly Ser Val Tyr Phe Trp
365 370 375

gcc act cca agg caa gtc cct agc ctt caa cat ata tgt cgc atg tca 1444
Ala Thr Pro Arg Gln Val Pro Ser Leu Gln His Ile Cys Arg Met Ser
380 385 390

atc cga aga gtg atg tcc acc caa gaa gtc caa aaa ctg cct gtt cct 1492
Ile Arg Arg Val Met Ser Thr Gln Glu Val Gln Lys Leu Pro Val Pro
395 400 405 410

tcc aaa ata ttg gcg ttt ctc tcc tac cgc ggt tag a ctgaagactg 1539
Ser Lys Ile Leu Ala Phe Leu Ser Tyr Arg Gly
415 420

ccttcctgg taggcctgcc agacagagcg cccttacaa gacacacctc aagcttacc 1599
tcgtgccgaa tt 1611

<210> 14
<211> 421
<212> PRT
<213> Mus musculus

<400> 14
Met Ala Ser Phe Pro Pro Arg Val Asn Glu Lys Glu Ile Val Arg Ser
1 5 10 15

Arg Thr Ile Gly Glu Leu Leu Ala Pro Ala Ala Pro Phe Asp Lys Lys
20 25 30

Cys Gly Gly Glu Asn Trp Thr Val Ala Phe Ala Pro Asp Gly Ser Tyr
35 40 45

Phe Ala Trp Ser Gln Gly Tyr Arg Ile Val Lys Leu Val Pro Trp Ser
50 55 60

Gln Cys Arg Lys Asn Phe Leu Leu His Gly Ser Lys Asn Val Thr Asn
65 70 75 80

Ser Ser Cys Leu Lys Leu Ala Arg Gln Asn Ser Asn Gly Gly Gln Lys
85 90 95

Asn Lys Pro Pro Glu His Val Ile Asp Cys Gly Asp Ile Val Trp Ser
100 105 110

Leu Ala Phe Gly Ser Ser Val Pro Glu Lys Gln Ser Arg Cys Val Asn
115 120 125

Ile Glu Trp His Arg Phe Arg Phe Gly Gln Asp Gln Leu Leu Leu Ala
130 135 140

Thr Gly Leu Asn Asn Gly Arg Ile Lys Ile Trp Asp Val Tyr Thr Gly
145 150 155 160

Lys Leu Leu Leu Asn Leu Val Asp His Ile Glu Met Val Arg Asp Leu
165 170 175

Thr Phe Ala Pro Asp Gly Ser Leu Leu Leu Val Ser Ala Ser Arg Asp
180 185 190

Lys Thr Leu Arg Val Trp Asp Leu Lys Asp Asp Gly Asn Met Val Lys
195 200 205

Val Leu Arg Ala His Gln Asn Trp Val Tyr Ser Cys Ala Phe Ser Pro
210 215 220

Asp Cys Ser Met Leu Cys Ser Val Gly Ala Ser Lys Ala Val Phe Leu
225 230 235 240

Trp Asn Met Asp Lys Tyr Thr Met Ile Arg Lys Leu Glu Gly His His
245 250 255

His Asp Val Val Ala Cys Asp Phe Ser Pro Asp Gly Ala Leu Leu Ala
260 265 270

Thr Ala Ser Tyr Asp Thr Arg Val Tyr Val Trp Asp Pro His Asn Gly
275 280 285

Asp Leu Leu Met Glu Phe Gly His Leu Phe Pro Ser Pro Thr Pro Ile
290 295 300

Phe Ala Gly Gly Ala Asn Asp Arg Trp Val Arg Ala Val Ser Phe Ser
305 310 315 320

His Asp Gly Leu His Val Ala Ser Leu Ala Asp Asp Lys Met Val Arg
325 330 335

Phe Trp Arg Ile Asp Glu Asp Cys Pro Val Gln Val Ala Pro Leu Ser
340 345 350

Asn Gly Leu Cys Cys Ala Phe Ser Thr Asp Gly Ser Val Leu Ala Ala
355 360 365

Gly Thr His Asp Gly Ser Val Tyr Phe Trp Ala Thr Pro Arg Gln Val
370 375 380

Pro Ser Leu Gln His Ile Cys Arg Met Ser Ile Arg Arg Val Met Ser
385 390 395 400

Thr Gln Glu Val Gln Lys Leu Pro Val Pro Ser Lys Ile Leu Ala Phe
405 410 415

Leu Ser Tyr Arg Gly
420

<211> 783
<212> DNA
<213> Homo sapiens

<400> 15
ctgtttcct ccgcagcgcg aggctggta cagggtctat tgtctgtggt tgactccgta 60
cttggtctg aggccttcgg gagcttccc gaggcagtt gcagaagccg cagcgaccgc 120
ccccgcccgt ctccctgtc cctggcccg ggagacaaac ttggcgtcac gccctcagcg 180
gtcgccactc tcttctctgt ttttgggtcc gcatcgatt cccggaatca gacggtgccc 240
catagatggc cagcttccc ccgagggtca acgagaaaaga gatcggtgaga tcacgtacta 300
taggtgaact tttagctcct gcagctcctt ttgacaagaa atgtggtcgt gaaaatttgg 360
ctgttgctt tgctccagat gttcataact ttgcttggtc acaaggacat cgcacagtaa 420
agcttggtcc gtggtcccag tgccttcaga actttctctt gcatggcacc aagaatgtta 480
ccaattcaag cagtttaaga ttgccaagac aaaatagtga tgggggtcag aaaaataagc 540
ctcggtgacat attatagact gtggagat agtctggagt ctgttttg ggtcatcagt 600
tccagaaaaa cagagtcgct gtgtaaatat agaatggcat cgcttcagat ttggacaaga 660
tcagctactt ctgttacag ggttgaacaa tgggggtatc aaaatatggg atgtatatca 720
ggaaaactcct ccttaacttg gtagatcata ctgaagtggc cagagattt aactttgctc 780
cag 783

<210> 16
<211> 1122
<212> DNA
<213> Homo sapiens

<400> 16
ctctgtatgt ctgaatgaag ctataacatt tgcctttta ttgcagggtt tccttggaa 60
tatggataaa tacaccatga tacggaaact agaaggacat caccatgtt ggttagctt 120
tgactttct cctgatggag cattactggc tactgcattt tatgatactc gagtatata 180
ctgggatcca cataatggag acattctgtt ggaatttggg cacctgttc ccccacctac 240
tccaatattt gctggaggag caaatgaccg gtgggtacga tctgtatctt ttagccatga 300
tggactgcattt gttgcaagcc ttgctgtatga taaaatggc aggttctggaa gaattgtatga 360
ggattatcca gtgcaagttt caccttgag caatggtctt tgctgtgcct tctctactga 420
tggcagtgtt ttagctgctg ggacacatga cggaaatgtt tattttggg ccactccacg 480

gcaggtccct agcctgcaac atttatgtcg catgtcaatc cgaagagtga tgcccaccca 540
agaagttcag gagctgccga ttccttccaa gctttggag tttctctcgatcgtattta 600
gaagattctg cctccctag tagtagggac tgacagaata cacttaaacac aaacctcaag 660
ctttactgac ttcaattatc tgttttaaa gacgtagaag atttatttaa tttgatatgt 720
tcttgactg cattttgatc agttgagctt taaaatattt atttataagac aatagaagta 780
tttctgaaca tatcaaatat aaattttttt aaagatctaa ctgtgaaaac atacataacct 840
gtacatattt agatataagc tgctatatgt tgaatggacc ctttgcttt tctgattttt 900
agttctgaca tgtatataatt gcttcagtag agccacaata tgtatcttg ctgtaaagtg 960
caaggaaatt ttaaattctg ggacactgag ttagatggta aatactgact tacgaaagtt 1020
gaattgggtg aggcgggcaa atcacctgag gtcagcagtt tgagactagc ctggcaaaca 1080
tgatgaaacc ctgtctctac taaaataaca aaaaaaaaaaa aa 1122

<210> 17
<211> 2544
<212> DNA
<213> Mus musculus

<220>
<221> UNSURE
<222> (320)
<223> Xaa is unsure

<220>
<221> UNSURE
<222> (451)
<223> Xaa is unsure

<220>
<221> CDS
<222> (423)..(2030)

<400> 17
cggcacgagc cgggctccgt ccggaggaag cgaggctgcg ccggccggccc ggcaggagcg 60
gaggacggga mgcgcgggcg gtcgcgctcg ccctgtcgct gactgcgctg ccccgcccc 120
tccttgccctg gccgcagggtg ccctggatga ggccgcgcg cgtgtcccgg ccgctgagtg 180
tcccccgccg tcgccccggcg cctgcctca agcggccgc tctccttgcc cgggtccccg 240
ttttcccccg ggcgcgtcct cctccgggtgg ggcgcgcgc acctcggcgc aggccggcactg 300
gccctcgggc cgggatggat ccgcgggaa gaggaagaca agccggggcg ttgagcccc 360
gcgcacgggtg ccgcgcgcgc tagtgggagc ttactcgac taggctctcg ctcttcta 420

ca atg gat aaa gtg ggg aaa atg tgg aac aac tta aaa tac aga tgc	467
Met Asp Lys Val Gly Lys Met Trp Asn Asn Leu Lys Tyr Arg Cys	
1 5 10 15	
cag aat ctc ttc agc cac gag gga gga agc cgt aat gag aac gtg gag	515
Gln Asn Leu Phe Ser His Glu Gly Gly Ser Arg Asn Glu Asn Val Glu	
20 25 30	
atg aac ccc aac aga tgt ccg tct gtc aaa gag aaa agc atc agt ctg	563
Met Asn Pro Asn Arg Cys Pro Ser Val Lys Glu Lys Ser Ile Ser Leu	
35 40 45	
gga gag gca gct ccc cag caa gag agc agt ccc tta aga gaa aat gtt	611
Gly Glu Ala Ala Pro Gln Gln Glu Ser Ser Pro Leu Arg Glu Asn Val	
50 55 60	
gcc tta cag ctg gga ctg agc cct tcc aag acc ttt tcc agg cgg aac	659
Ala Leu Gln Leu Gly Leu Ser Pro Ser Lys Thr Phe Ser Arg Arg Asn	
65 70 75	
caa aac tgt gcc gca gag atc cct caa gtg gtt gaa atc agc atc gag	707
Gln Asn Cys Ala Ala Glu Ile Pro Gln Val Val Glu Ile Ser Ile Glu	
80 85 90 95	
aaa gac agt gac tcg ggt gcc acc cca gga acg agg ctt gca cgg aga	755
Lys Asp Ser Asp Ser Gly Ala Thr Pro Gly Thr Arg Leu Ala Arg Arg	
100 105 110	
gac tcc tac tcg cg ^g cac gcc ccg tgg gga gga aag aag aaa cat tcc	803
Asp Ser Tyr Ser Arg His Ala Pro Trp Gly Gly Lys Lys His Ser	
115 120 125	
tgt tcc aca aag acc cag agt tca ttg gat acc gag aaa aag ttt ggt	851
Cys Ser Thr Lys Thr Gln Ser Ser Leu Asp Thr Glu Lys Lys Phe Gly	
130 135 140	
aga act cga agc ggc ctt cag agg cga gag cg ^g cgc tat gga gtc agc	899
Arg Thr Arg Ser Gly Leu Gln Arg Arg Glu Arg Arg Tyr Gly Val Ser	
145 150 155	
tcc atg cag gac atg gac agc gtt tct agc cgc gcg gtc ggg agc cgc	947
Ser Met Gln Asp Met Asp Ser Val Ser Arg Ala Val Gly Ser Arg	
160 165 170 175	
tcc ctg agg cag agg ctc cag gac acg gtg ggt ttg tgt ttt ccc atg	995
Ser Leu Arg Gln Arg Leu Gln Asp Thr Val Gly Leu Cys Phe Pro Met	
180 185 190	
aga act tac agc aag cag tca aag cca ctc ttt tcc aat aaa aga aaa	1043
Arg Thr Tyr Ser Lys Gln Ser Lys Pro Leu Phe Ser Asn Lys Arg Lys	
195 200 205	
ata cat ctt tct gaa tta atg ctg gag aaa tgc cct ttt cct gct ggc	1091
Ile His Leu Ser Glu Leu Met Leu Glu Lys Cys Pro Phe Pro Ala Gly	
210 215 220	

tcg gat tta gca caa aag tgg cat ttg att aaa cag cat acc gcc cct		1139	
Ser Asp Leu Ala Gln Lys Trp His Leu Ile Lys Gln His Thr Ala Pro			
225	230	235	
gtg agc cca cac tca aca ttt ttt gat aca ttt gat cca tca ctg gtg		1187	
Val Ser Pro His Ser Thr Phe Phe Asp Thr Phe Asp Pro Ser Leu Val			
240	245	250	255
tct aca gaa gat gaa gaa gat agg ctt cgc gag aga aga cgg ctt agt		1235	
Ser Thr Glu Asp Glu Asp Arg Leu Arg Glu Arg Arg Arg Leu Ser			
260	265	270	
atc gaa gaa ggg gtg gat ccc cct ccc aac gca caa ata cac acc ttt		1283	
Ile Glu Glu Gly Val Asp Pro Pro Asn Ala Gln Ile His Thr Phe			
275	280	285	
gaa gct act gca cag gtc aac cca ttg tat aag ctg gga cca aag tta		1331	
Glu Ala Thr Ala Gln Val Asn Pro Leu Tyr Lys Leu Gly Pro Lys Leu			
290	295	300	..
gct cct ggg atg aca gag ata agt gga gat ggt tct gca att cca caa		1379	
Ala Pro Gly Met Thr Glu Ile Ser Gly Asp Gly Ser Ala Ile Pro Gln			
305	310	315	
gcs aat tgt gac tca gaa gag gat tca acc acc cta tgt ctg cag tca		1427	
Xaa Asn Cys Asp Ser Glu Glu Asp Ser Thr Thr Leu Cys Leu Gln Ser			
320	325	330	335
cgg agg cag aag cag cgc cag gtg tcc ggg gac agc cac gcg cac gtt		1475	
Arg Arg Gln Lys Gln Arg Gln Val Ser Gly Asp Ser His Ala His Val			
340	345	350	
agc aga cag gga gct tgg aaa gtt cat acg cag atc gat tac ata cac		1523	
Ser Arg Gln Gly Ala Trp Lys Val His Thr Gln Ile Asp Tyr Ile His			
355	360	365	
tgc ctc gtg cca gat ttg ctt cag atc aca ggg aat ccc tgt tac tgg		1571	
Cys Leu Val Pro Asp Leu Leu Gln Ile Thr Gly Asn Pro Cys Tyr Trp			
370	375	380	
ggc gtg atg gac cga tac gag gcc gaa gcc ctt cta gaa ggg aaa ccg		1619	
Gly Val Met Asp Arg Tyr Glu Ala Glu Ala Leu Leu Glu Gly Lys Pro			
385	390	395	
gaa ggc acg ttc ttg ctc agg gac tct gca cag gag gac tac ctc ttc		1667	
Glu Gly Thr Phe Leu Leu Arg Asp Ser Ala Gln Glu Asp Tyr Leu Phe			
400	405	410	415
tct gtg agc ttc cgc cgc tac aac agg tct ctg cac gcc cgg atc gag		1715	
Ser Val Ser Phe Arg Arg Tyr Asn Arg Ser Leu His Ala Arg Ile Glu			
420	425	430	
cag tgg aac cac aac ttc agc ttc gat gcc cat gac ccc tgc gtg ttt		1763	
Gln Trp Asn His Asn Phe Ser Phe Asp Ala His Asp Pro Cys Val Phe			
435	440	445	

cac tcc tcc acw gtc acg ggg ctt ctc gaa cac tat aaa gac ccc agc		1811	
His Ser Ser Xaa Val Thr Gly Leu Leu Glu His Tyr Lys Asp Pro Ser			
450	455	460	
tct tgc atg ttt ttt gaa ccg ttg cta acg ata tca ctg aat aga act		1859	
Ser Cys Met Phe Phe Glu Pro Leu Leu Thr Ile Ser Leu Asn Arg Thr			
465	470	475	
ttc cct ttc agc ctg cag tat atc tgc cgc gca gtg atc tgc aga tgc		1907	
Phe Pro Phe Ser Leu Gln Tyr Ile Cys Arg Ala Val Ile Cys Arg Cys			
480	485	490	495
act acg tat gat ggg att gac ggg ctc ccg cta ccg tcg atg tta cag		1955	
Thr Thr Tyr Asp Gly Ile Asp Gly Leu Pro Leu Pro Ser Met Leu Gln			
500	505	510	
gat ttt tta aaa gag tat cat tat aaa caa aaa gtt agg gtt cgc tgg		2003	
Asp Phe Leu Lys Glu Tyr His Tyr Lys Gln Lys Val Arg Val Arg Trp			
515	520	525	
tta gaa cga gar cca gtc aaa gca aag taactcctgt ccccaaaggg		2050	
Leu Glu Arg Xaa Pro Val Lys Ala Lys			
530	535		
cactaactaa gtctgctcct cccgtgcac maaactgcac ccatacrag gcagtcagct		2110	
gctaggattt cccacccaga atgggagctt agtcattagc ctctgcccta tggggtccgc		2170	
tgttcctcag acaaagggtgc ctagggacag caagatggct tgcaggtgtt cgggtggctg		2230	
tgacaactga gggaggcaac tctggggcat ttgctatgaa gaattctatt tcttaccgaa		2290	
gaacaaaatta ttaatattgg atgggtattt caatagtgt actaatgtt gaaattattt		2350	
tttctaagaa ttttctata accttcagaa aaagttagtga tgttttagt tactataaat		2410	
caagcttga aagttcaaaa caaacaagtt aaataaaaga ctacccctt ttttagagaaa		2470	
acaaatgcaa gtttcccag ccacaggcat tgtgcactgt taatgttagc ttgttatcag		2530	
ctcctttctc ctcc		2544	

<210> 18
<211> 536
<212> PRT
<213> Mus musculus

<220>
<221> UNSURE
<222> (320)
<223> Xaa is unsure

<220>
<221> UNSURE
<222> (451)

<223> Xaa is unsure

<220>

<221> UNSURE

<222> (531)

<223> Xaa is unsure

<400> 18

Met Asp Lys Val Gly Lys Met Trp Asn Asn Leu Lys Tyr Arg Cys Gln
1 5 10 15

Asn Leu Phe Ser His Glu Gly Gly Ser Arg Asn Glu Asn Val Glu Met
20 25 30

Asn Pro Asn Arg Cys Pro Ser Val Lys Glu Lys Ser Ile Ser Leu Gly
35 40 45

Glu Ala Ala Pro Gln Gln Glu Ser Ser Pro Leu Arg Glu Asn Val Ala
50 55 60

Leu Gln Leu Gly Leu Ser Pro Ser Lys Thr Phe Ser Arg Arg Asn Gln
65 70 75 80

Asn Cys Ala Ala Glu Ile Pro Gln Val Val Glu Ile Ser Ile Glu Lys
85 90 95

Asp Ser Asp Ser Gly Ala Thr Pro Gly Thr Arg Leu Ala Arg Arg Asp
100 105 110

Ser Tyr Ser Arg His Ala Pro Trp Gly Gly Lys Lys Lys His Ser Cys
115 120 125

Ser Thr Lys Thr Gln Ser Ser Leu Asp Thr Glu Lys Lys Phe Gly Arg
130 135 140

Thr Arg Ser Gly Leu Gln Arg Arg Glu Arg Arg Tyr Gly Val Ser Ser
145 150 155 160

Met Gln Asp Met Asp Ser Val Ser Ser Arg Ala Val Gly Ser Arg Ser
165 170 175

Leu Arg Gln Arg Leu Gln Asp Thr Val Gly Leu Cys Phe Pro Met Arg
180 185 190

Thr Tyr Ser Lys Gln Ser Lys Pro Leu Phe Ser Asn Lys Arg Lys Ile
195 200 205

His Leu Ser Glu Leu Met Leu Glu Lys Cys Pro Phe Pro Ala Gly Ser
210 215 220 240

Asp Leu Ala Gln Lys Trp His Leu Ile Lys Gln His Thr Ala Pro Val
225 230 235 240

Ser Pro His Ser Thr Phe Phe Asp Thr Phe Asp Pro Ser Leu Val Ser
245 250 255

Thr Glu Asp Glu Glu Asp Arg Leu Arg Glu Arg Arg Arg Leu Ser Ile
260 265 270

Glu Glu Gly Val Asp Pro Pro Asn Ala Gln Ile His Thr Phe Glu
275 280 285

Ala Thr Ala Gln Val Asn Pro Leu Tyr Lys Leu Gly Pro Lys Leu Ala
290 295 300

Pro Gly Met Thr Glu Ile Ser Gly Asp Gly Ser Ala Ile Pro Gln Xaa
305 310 315 320

Asn Cys Asp Ser Glu Glu Asp Ser Thr Thr Leu Cys Leu Gln Ser Arg
325 330 335

Arg Gln Lys Gln Arg Gln Val Ser Gly Asp Ser His Ala His Val Ser
340 345 350

Arg Gln Gly Ala Trp Lys Val His Thr Gln Ile Asp Tyr Ile His Cys
355 360 365

Leu Val Pro Asp Leu Leu Gln Ile Thr Gly Asn Pro Cys Tyr Trp Gly
370 375 380

Val Met Asp Arg Tyr Glu Ala Glu Ala Leu Leu Glu Gly Lys Pro Glu
385 390 395 400

Gly Thr Phe Leu Leu Arg Asp Ser Ala Gln Glu Asp Tyr Leu Phe Ser
405 410 415

Val Ser Phe Arg Arg Tyr Asn Arg Ser Leu His Ala Arg Ile Glu Gln
420 425 430

Trp Asn His Asn Phe Ser Phe Asp Ala His Asp Pro Cys Val Phe His
435 440 445

Ser Ser Xaa Val Thr Gly Leu Leu Glu His Tyr Lys Asp Pro Ser Ser
450 455 460

Cys Met Phe Phe Glu Pro Leu Leu Thr Ile Ser Leu Asn Arg Thr Phe
465 470 475 480

Pro Phe Ser Leu Gln Tyr Ile Cys Arg Ala Val Ile Cys Arg Cys Thr
485 490 495

Thr Tyr Asp Gly Ile Asp Gly Leu Pro Leu Pro Ser Met Leu Gln Asp
500 505 510

Phe Leu Lys Glu Tyr His Tyr Lys Gln Lys Val Arg Val Arg Trp Leu
515 520 525

Glu Arg Xaa Pro Val Lys Ala Lys
530 535

<211> 1221
<212> DNA
<213> Homo sapiens

<400> 19
gattaaacag catacagctc ctgtgagccc acattcaaca tttttgata ctttgatcca 60
tctttggttt ctacagaaga tgaagaagat aggcttagag agagaaggcg gcttagtatt 120
gaagaagggg ttgatcccc tcccaatgca caaatacata catttgaagc tactgcacag 180
gttaatccat tattaaactg ggacaaaaat tagctcctgg aatgactgaa ataagtgggg 240
acagttctgc aattccacaa gctaattgtg actcggaaaga ggatacaacc accctgtgtt 300
gcagtcacgg aggcagaagc agcgtcagat atctggagac agccataaccc atgttagcag 360
acagggagct tgaaaagtcc acacacagat tgattacata cactgcttcg tgcctgattt 420
gcttcaaatt acagggaaatc cctgttactg gggagtgtatg gaccgttatg aagcagaagc 480
ccttctcgaa gggaaacctg aaggcacgtt tttgctcagg gactctgcgc aagaggacta 540
cttcttcct gtgagcttcc gccgatacaa cagatccctg catgccccaa ttgagcagtg 600
gaatcacaac tttagttcg acgccccatga cccgtgtgta tttcactctt ccactgtaac 660
gggactttta gaacattata aagatcccag ttcgtgcatg tttttgaac cattgcttac 720
tatatcacta aataggactt tcccttttag cctgcagttt atctgtcgcg cggtaatctg 780
caggtgcact acgtatgtatg gaattgtatgg gctccctcta ccctcaatgt tacaggattt 840
tttaaaagag tatcattata aacaaaaagt tagagttcg tgggtggAAC gagaaccagt 900
caaggcaaag taaactctcc ggtcccaaa ggggtttaac taggtccgct ttcatgtgca 960
tcagacagta cacatatagc aagcacacgt agcagtgtta ggcttttca tacagtatgt 1020
aagcttagtg ttagtatctg tcagatgcta cctgctgtta cttattcaga taaacatgg 1080
gcctatttggaa acaatagcgg atagagctac aggtgttcag taagactaca aaaacatttt 1140
gcctatttgc ctaacagttt ggtttttaat ggctgtggta tttgagtgag gcaactctgg 1200
ggcattttgtt atgaagaaat g

1221

<210> 20
<211> 2369
<212> DNA
<213> Mus musculus

<220>
<221> CDS
<222> (116)..(1327)

<400> 20

ggcacgaggc ggtgggtggcg gcggccggcg cggccgcggc gggccggcg cgaaatgaag 60

gcccacggcc ctgggggctg aggccccgc cgcctgggc gggccgcgc tcctc atg 118
Met
1

gag gcc gga gag gag ccg ctg ctg gct gaa ctc aag cct ggg cgc 166
Glu Ala Gly Glu Glu Pro Leu Leu Leu Ala Glu Leu Lys Pro Gly Arg
5 10 15

ccc cac cag ttc gac tgg aag tca agc tgc gag acc tgg agc gtg gcc 214
Pro His Gln Phe Asp Trp Lys Ser Ser Cys Glu Thr Trp Ser Val Ala
20 25 30

tcc tcg cca gac ggt tcc tgg ttc gcc tgg tct caa gga cac tgc gtg 262
Phe Ser Pro Asp Gly Ser Trp Phe Ala Trp Ser Gln Gly His Cys Val
35 40 45

gtc aag ctg gtc ccc tgg ccc tta gag gaa cag ttc atc cct aaa gga 310
Val Lys Leu Val Pro Trp Pro Leu Glu Glu Gln Phe Ile Pro Lys Gly
50 55 60 65

tcc gaa gcc aag agc cga agc agc aag aat gac cca aaa gga cgg ggc 358
Phe Glu Ala Lys Ser Arg Ser Ser Lys Asn Asp Pro Lys Gly Arg Gly
70 75 80

agt ctg aag gag aag acg ctg gac tgt ggc cag att gtg tgg ggg ctg 406
Ser Leu Lys Glu Lys Thr Leu Asp Cys Gly Gln Ile Val Trp Gly Leu
85 90 95

gcc ttc agc ccg tgg ccc tct cca ccc agc agg aaa ctc tgg gca cgt 454
Ala Phe Ser Pro Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala Arg
100 105 110

cac cat ccc cag gcg cct gat gtt tct tgc ctg atc ctg gcc aca ggt 502
His His Pro Gln Ala Pro Asp Val Ser Cys Leu Ile Leu Ala Thr Gly
115 120 125

ctc aac gat ggg cag atc aag att tgg gag gta cag aca ggc ctc ctg 550
Leu Asn Asp Gly Gln Ile Lys Ile Trp Glu Val Gln Thr Gly Leu Leu
130 135 140 145

ctt ctg aat ctt tct ggc cac caa gac gtc gtg aga gat ctg agc ttc 598
Leu Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser Phe
150 155 160

acg ccc agc ggc agt ttg att ttg gtc tct gca tcc cgg gat aag aca 646
Thr Pro Ser Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys Thr
165 170 175

ctt cga att tgg gac ctg aat aaa cac ggt aag cag atc cag gtg tta 694
Leu Arg Ile Trp Asp Leu Asn Lys His Gly Lys Gln Ile Gln Val Leu
180 185 190

tcc ggc cat ctg cag tgg gtt tac tgc tgc tcc atc tcc cct gac tgt 742

Ser	Gly	His	Leu	Gln	Trp	Val	Tyr	Cys	Cys	Ser	Ile	Ser	Pro	Asp	Cys	
195					200					205						
agc	atg	ctg	tgc	tct	gca	gct	ggg	gag	aag	tcg	gtc	ttt	ctg	tgg	agc	790
Ser	Met	Leu	Cys	Ser	Ala	Ala	Gly	Glu	Lys	Ser	Val	Phe	Leu	Trp	Ser	
210					215					220					225	
atg	cgg	tcc	tac	aca	cta	atc	cg	aaa	cta	gaa	ggc	cac	caa	agc	agt	838
Met	Arg	Ser	Tyr	Thr	Leu	Ile	Arg	Lys	Leu	Glu	Gly	His	Gln	Ser	Ser	
					230				235				240			
gtt	gtc	tcc	tgt	gat	ttc	tct	gat	tca	gcc	ttg	ctt	gtc	aca	gct		886
Val	Val	Ser	Cys	Asp	Phe	Ser	Pro	Asp	Ser	Ala	Leu	Leu	Val	Thr	Ala	
					245				250				255			
tcg	tat	gac	acc	agt	gtg	att	atg	tgg	gac	ccc	tac	acc	ggc	gcg	agg	934
Ser	Tyr	Asp	Thr	Ser	Val	Ile	Met	Trp	Asp	Pro	Tyr	Thr	Gly	Ala	Arg	
					260				265			270				
ctg	agg	tca	ctt	cat	cac	aca	caa	ctt	gaa	ccc	acc	atg	gat	gac	agt	982
Leu	Arg	Ser	Leu	His	His	Thr	Gln	Leu	Glu	Pro	Thr	Met	Asp	Asp	Ser	
					275				280			285				
gac	gtc	cac	atg	agc	tcc	ctg	agg	tcc	gtg	tgc	ttc	tca	cct	gaa	ggc	1030
Asp	Val	His	Met	Ser	Ser	Leu	Arg	Ser	Val	Cys	Phe	Ser	Pro	Glu	Gly	
					290				295			300			305	
ttg	tat	ctc	gct	acg	gtg	gca	gat	gac	agg	ctg	ctc	agg	atc	tgg	gct	1078
Leu	Tyr	Leu	Ala	Thr	Val	Ala	Asp	Asp	Arg	Leu	Leu	Arg	Ile	Trp	Ala	
					310				315			320				
ctg	gaa	ctg	aag	gct	ccg	gtt	gcc	ttt	gct	ccg	atg	acc	aat	ggt	ctt	1126
Leu	Glu	Leu	Lys	Ala	Pro	Val	Ala	Phe	Ala	Pro	Met	Thr	Asn	Gly	Leu	
					325				330			335				
tgc	tgc	acg	ttc	ttc	cca	cac	gg	gga	att	att	gcc	aca	ggg	acg	aga	1174
Cys	Cys	Thr	Phe	Phe	Pro	His	Gly	Gly	Ile	Ile	Ala	Thr	Gly	Thr	Arg	
					340				345			350				
gat	ggc	cat	gtc	cag	ttc	tgg	aca	gct	ccc	cg	gtc	ctg	tcc	tca	ctg	1222
Asp	Gly	His	Val	Gln	Phe	Trp	Thr	Ala	Pro	Arg	Val	Leu	Ser	Ser	Leu	
					355				360			365				
aag	cac	tta	tgc	agg	aaa	gcc	ctc	cga	agt	ttc	ctg	aca	acg	tat	caa	1270
Lys	His	Leu	Cys	Arg	Lys	Ala	Leu	Arg	Ser	Phe	Leu	Thr	Thr	Tyr	Gln	
					370				375			380			385	
gtc	cta	gca	ctg	cca	atc	ccc	aag	aag	atg	aaa	gag	ttc	ctc	aca	tac	1318
Val	Leu	Ala	Leu	Pro	Ile	Pro	Lys	Lys	Met	Lys	Glu	Phe	Leu	Thr	Tyr	
					390				395			400				
agg	act	ttc	tagcagtgcc	ggctccccca	cctcctgcag	cagcagcagt										1367
Arg	Thr	Phe														
acaagggact	ggcttaggatg	gagtcaaggca	gctcacactg	gaccagtgtg	gacccccc	ttccctt	1427									

cctcccatgg catgtgcaag taggtctgcg tgaccccact tctgtggtgc cggccttacc 1487
tcgtcttcat ccgtggtgag cagccttcgt cagtctagtt gtgttgaagc caagtgcagt 1547
tgtggatgtt gctggggtaa taaaggcaag cgggctccag agcctctctg gtggcggcca 1607
agccacactc ccttaactgg gaagtacctg ccacgttaggg catttctgct gcctattcc 1667
agccagcggc tgcattgttt gaagttcctc cggtgtggc agaagaactc tgggtttgg 1727
ttccctgctc agctgcgcgt ggactggct gagctcctca ccatacacta gtgccggctt 1787
ttgtttctg taaacagtgg ttgcattgtt agagaagtaa caagcgagta ttcagatcat 1847
acgaggaggc gttcctcggt gcatgacggt cagatggcca tttatcagca tatttatttg 1907
tatttctca gcacatagta aggtacaact gtgtttctc aattgtctcg aaaaaacaga 1967
gttcttaagt ggcccagttg tggagccaag tctaagtcgt gtggagtcag tgctgacatc 2027
actggcttgt gctgtctgtc acatgtgtt gtctctgctg ctgacactca tggatgtac 2087
cctccagttc aactgccccaa aacagacagc cccttccaag caccgttctt tgacagcgg 2147
agcagctacc tattcaagac gcctcacaca aaatctgcct tagaaagtta atatattta 2207
aattattta aaagaaaactc aacatcttat tctttggcct ttcttaatttgc atgctttatg 2267
gaggcagtgt taacattgtc cagtgtatgc atagaggagt ctctctatt tgaagaacaa 2327
tgcaaaatga ggcttcattt gaaggaaaaa aaaaaaaaaaa aa 2369

<210> 21
<211> 404
<212> PRT
<213> Mus musculus

<400> 21
Met Glu Ala Gly Glu Glu Pro Leu Leu Leu Ala Glu Leu Lys Pro Gly
1 5 10 15
Arg Pro His Gln Phe Asp Trp Lys Ser Ser Cys Glu Thr Trp Ser Val
20 25 30
Ala Phe Ser Pro Asp Gly Ser Trp Phe Ala Trp Ser Gln Gly His Cys
35 40 45
Val Val Lys Leu Val Pro Trp Pro Leu Glu Glu Gln Phe Ile Pro Lys
50 55 60
Gly Phe Glu Ala Lys Ser Arg Ser Ser Lys Asn Asp Pro Lys Gly Arg
65 70 75 80
Gly Ser Leu Lys Glu Lys Thr Leu Asp Cys Gly Gln Ile Val Trp Gly
85 90 95

Leu Ala Phe Ser Pro Trp Pro Ser Pro Pro Ser Arg Lys Leu Trp Ala
100 105 110

Arg His His Pro Gln Ala Pro Asp Val Ser Cys Leu Ile Leu Ala Thr
115 120 125

Gly Leu Asn Asp Gly Gln Ile Lys Ile Trp Glu Val Gln Thr Gly Leu
130 135 140

Leu Leu Leu Asn Leu Ser Gly His Gln Asp Val Val Arg Asp Leu Ser
145 150 155 160

Phe Thr Pro Ser Gly Ser Leu Ile Leu Val Ser Ala Ser Arg Asp Lys
165 170 175

Thr Leu Arg Ile Trp Asp Leu Asn Lys His Gly Lys Gln Ile Gln Val
180 185 190

Leu Ser Gly His Leu Gln Trp Val Tyr Cys Cys Ser Ile Ser Pro Asp
195 200 205

Cys Ser Met Leu Cys Ser Ala Ala Gly Glu Lys Ser Val Phe Leu Trp
210 215 220

Ser Met Arg Ser Tyr Thr Leu Ile Arg Lys Leu Glu Gly His Gln Ser
225 230 235 240

Ser Val Val Ser Cys Asp Phe Ser Pro Asp Ser Ala Leu Leu Val Thr
245 250 255

Ala Ser Tyr Asp Thr Ser Val Ile Met Trp Asp Pro Tyr Thr Gly Ala
260 265 270

Arg Leu Arg Ser Leu His His Thr Gln Leu Glu Pro Thr Met Asp Asp
275 280 285

Ser Asp Val His Met Ser Ser Leu Arg Ser Val Cys Phe Ser Pro Glu
290 295 300

Gly Leu Tyr Leu Ala Thr Val Ala Asp Asp Arg Leu Leu Arg Ile Trp
305 310 315 320

Ala Leu Glu Leu Lys Ala Pro Val Ala Phe Ala Pro Met Thr Asn Gly
325 330 335

Leu Cys Cys Thr Phe Phe Pro His Gly Gly Ile Ile Ala Thr Gly Thr
340 345 350

Arg Asp Gly His Val Gln Phe Trp Thr Ala Pro Arg Val Leu Ser Ser
355 360 365

Leu Lys His Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu Thr Thr Tyr
370 375 380

Gln Val Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu Phe Leu Thr

385

390

395

400

Tyr Arg Thr Phe

<210> 22

<211> 1246

<212> DNA

<213> Homo sapiens

<400> 22

gacactgcat cgtcaaactg atcccctggc cggtggagga gcagttcatc cctaaagggt 60
ttgaagccaa aagccgaagt agcaaaaatg agacgaaagg gcggggcagc caaaaagaga 120
agacgctgga ctgtggtag attgtctggg ggctggcctt cagcctgtgc tttccccacc 180
cagcaggaag ctctggcac gccaccaccc ccaagtgccc gatgtctttt gcctggttct 240
tgctacggga ctcaacgatg ggcagatcaa gatctggag gtgcagacag ggctcctgct 300
tttgaatctt tccggccacc aagatgtcgt gagagatctg agttcacac ccagtggcag 360
tttgattttg gtctccgcgt cacggataa gactcttcgc atctggacc tgaataaaca 420
cggtaaacag attcaagtgt tatcggcca cctgcagtgg gtttactgct gttccatctc 480
cccagactgc agcatgctgt gctctgcagc tggagagaag tcggctttc tatggagcat 540
gaggtcctac acgttaattc ggaagctaga gggccatcaa agcagtgttgc tctttgtga 600
cttctcccc gactctgccc tgcttgcac ggcttcttac gataccaatg tgattatgtg 660
ggacccctac accggcgaaa ggctgaggc actccaccac acccaggttgc accccgccc 720
ggatgacagt gacgtccaca ttagctcaact gagatctgtg tgcttctctc cagaaggctt 780
gtaccttgcc acgggtggcag atgacagact cctcaggatc tggccctgg aactgaaaac 840
tcccattgca tttgctccta tgaccaatgg gctttgctgg cacatttttt ccacatggtg 900
gagtcattgc cacagggaca agagatggcc acgtccagtt ctggacagct cctagggtcc 960
tgtcctcaact gaagcactta tgccggaaag cccttcgaag tttcctaaca acttaccaag 1020
tccttagcaact gccaatcccc aagaaaatga aagagttcct cacatacagg acttttaag 1080
caacaccaca tcttgcgtt ctttgcgtca gggtaaatcg tcctgtcaaa gggagttgct 1140
ggaataatgg gccaaacatc tggtcttgca ttgaaatagc atttcttgg gattgtgaat 1200
agaatgttagc aaaaccagat tccagtgatc tagtcatgga tttttc 1246

<210> 23

<211> 422

<212> DNA
<213> Homo sapiens

<400> 23
accatggttc caagtccctc cccctgtggt caagttgccccc gaatgttggg cccaaatgtgcc 60
tttcctcct tgggcctccc cttctgaccc gcaggacagt tttccggagc ccatttggtta 120
tgaggttata attagcctta actaaattac agggggactca gaggccgtgc tcctgaccga 180
tccagacact atttttttt tttttttta acaatggtgt gcatgtgcag gaaatgacaa 240
atttgtatgt cagattatac aaggatgtat tcttaaaccg catgactatt cagatggcta 300
ctgagttatc agtggccatt tattagcatc atatttattt gtatttctc aacagatgtt 360
aaggtacaac tgtgttttc tcgattatct aaaaaccata gtacttaaat tgaaaaaaaaa 420
aa 422

<210> 24
<211> 2019
<212> DNA
<213> Mus musculus

<220>
<221> UNSURE
<222> (1981)
<223> N is unsure

<220>
<221> UNSURE
<222> (1992)
<223> N is unsure

<220>
<221> UNSURE
<222> (2010)
<223> N is unsure

<400> 24
ggcacgaggc ggggtcaggg cgaggactga ggaccaagta ggcattggcg aggccgggac 60
cgcccccgat ggacgggccc gcccgggacc cgcaggctt aatctgaagg agtggctgag 120
ggagcagttc tgtgaccatc cactggagca ctgtgacgat acaagactcc atgatgcagc 180
ctatgttaggg gacctccaga ccctcaggaa cctactgcaa gaggagagct accggagccg 240
catcaatgag aagtctgtct ggtgctgcgg ctggcttccc tgcacaccac tgaggatcgc 300
agccactgca ggccatggga actgtgtgga cttcctcata cgcaaagggg ccgaggtgga 360
cctgggtggat gtcaaggggc agactgccct gtatgtggct gtatgtgacg ggcacttgga 420

gagcactgag atcctttgg aagctggtgc tgatccaaac ggcagccggc accaccgcag 480
caactcctgtg taccatgcct ytcgtgtggg tagggacgac atcctgaagg ctcttatcag 540
gtatggggca gatgttgatg tcaaccatca tctgaattct gacacccggc ccccttttc 600
acggcggcta acctccttgg tggtctgtcc tctatacatc agtgctgcct accataacct 660
tcagtgcctc aggctgctct tgcaggctgg ggcaaattct gacttcaatt gcaatggccc 720
tgtcaacacc caggagttct acaggggatc ccctgggtgt gtcatggatg ctgtcctgcg 780
ccatggctgt gaagcagcct tcgtgagtct gttggtagag tttggagcca acctgaacct 840
ggtaagtgg gaatccctgg gcccagaggc aagaggcaga agaaagatgg atcctgagggc 900
cttgcaggtc tttaaagagg ccagaagttat tcccaggacc ttgctgagtt tgtgccgggt 960
ggctgtgaga agagctcttgc gcaaataccg actgcattctg gttccctcg tgcgcgtgcc 1020
agacccata aagaagttt tgcttatga gtagcattca catgcagtgc tgactgcaat 1080
gtggaagccg atcacctgca gtgaaaactg acacagactc tggcatcctg ggaaccatgg 1140
cctgtgtgc cagcttgatc cttggctgtc agtgaagaaa aaacggctgt gttctttgg 1200
actgtgattc tatctcaggt gcttggcca tcgaacgctc cttgagtcatttgtcaactga 1260
gagggcacata caaacttaat tttgttcctc ttcagtcctc ctgtttggat ttcttcctgg 1320
caatgtgtgc agcatggct gagcctggtg attgccttag tggggaaaggc tttttctcc 1380
aggctatgca tctatttatg ttcctacttt gcaatttatt gttctttaa ggcttgatatt 1440
caaaaacagaa agaggtttgt taagaaaaga tatagggaga aaggaattcc gttccgtgc 1550
acttgctagc ctgctttcct tgcctgggtt tgtctgtcta tgctgcctgg tgcacatccc 1560
ttctcttgc tgccactgtt ctatttggg agttgtctc cgtctaagat ggcttctggg 1620
gttctatctt attgcacaga ggtcccaagaa cagtgttcat agggcaccat ctgctctgcc 1680
aagggttttc tgatgtctta ccctggggat cttagacacag tggttacatt taggagaccc 1740
acctggaact aaccattaag tgactgccc cattcagatc agggaccatc ttaatagtagac 1800
tcactgccag tcctcacaag agaagatgac acgggtgctc tcttcagaca ctccccataca 1860
ggaagttgga aaatgtcttgc gtcacccctgg ttgttcccag gctacaactt cttgggttgc 1920
cactaaracc agratatcct agtttttgg gttgactgtt ccctccccac ttcccttgaa 1980
ncccaatgcc cnnttgktn ggttgcttcc ctAAAaktt

2019

<210> 25

<211> 350
<212> PRT
<213> Mus musculus

<220>
<221> UNSURE
<222> (167)
<223> Xaa is unsure

<400> 25

Ala Arg Gly Gly Val Arg Ala Glu Ala Glu Asp Gln Val Gly Met Ala
1 5 10 15

Glu Gly Gly Thr Gly Pro Asp Gly Arg Ala Gly Pro Gly Pro Ala Gly
20 25 30

Pro Asn Leu Lys Glu Trp Leu Arg Glu Gln Phe Cys Asp His Pro Leu
35 40 45

Glu His Cys Asp Asp Thr Arg Leu His Asp Ala Ala Tyr Val Gly Asp
50 55 60

Leu Gln Thr Leu Arg Asn Leu Leu Gln Glu Ser Tyr Arg Ser Arg
65 70 75 80

Ile Asn Glu Lys Ser Val Trp Cys Cys Gly Trp Leu Pro Cys Thr Pro
85 90 95

Leu Arg Ile Ala Ala Thr Ala Gly His Gly Asn Cys Val Asp Phe Leu
100 105 110

Ile Arg Lys Gly Ala Glu Val Asp Leu Val Asp Val Lys Gly Gln Thr
115 120 125

Ala Leu Tyr Val Ala Val Val Asn Gly His Leu Glu Ser Thr Glu Ile
130 135 140

Leu Leu Glu Ala Gly Ala Asp Pro Asn Gly Ser Arg His His Arg Ser
145 150 155 160

Thr Pro Val Tyr His Ala Xaa Arg Val Gly Arg Asp Asp Ile Leu Lys
165 170 175

Ala Leu Ile Arg Tyr Gly Ala Asp Val Asp Val Asn His His Leu Asn
180 185 190

Ser Asp Thr Arg Pro Pro Phe Ser Arg Arg Leu Thr Ser Leu Val Val
195 200 205

Cys Pro Leu Tyr Ile Ser Ala Ala Tyr His Asn Leu Gln Cys Phe Arg
210 215 220

Leu Leu Leu Gln Ala Gly Ala Asn Pro Asp Phe Asn Cys Asn Gly Pro
225 230 235 240

Val Asn Thr Gln Glu Phe Tyr Arg Gly Ser Pro Gly Cys Val Met Asp

245

250

255

Ala Val Leu Arg His Gly Cys Glu Ala Ala Phe Val Ser Leu Leu Val
260 265 270

Glu Phe Gly Ala Asn Leu Asn Leu Val Lys Trp Glu Ser Leu Gly Pro
275 280 285

Glu Ala Arg Gly Arg Arg Lys Met Asp Pro Glu Ala Leu Gln Val Phe
290 295 300

Lys Glu Ala Arg Ser Ile Pro Arg Thr Leu Leu Ser Leu Cys Arg Val
305 310 315 320

Ala Val Arg Arg Ala Leu Gly Lys Tyr Arg Leu His Leu Val Pro Ser
325 330 335

Leu Pro Leu Pro Asp Pro Ile Lys Lys Phe Leu Leu Tyr Glu
340 345 350

<210> 26

<211> 419

<212> DNA

<213> Homo sapiens

<400> 26

gcatccatgg cggagggcgg cagcacgacg ggccggcagg gcccggctcc gcaggcgta 60
atctgaagga gtggctgagg gagcaatttt gtgatcatcc gctggagcac tgtgaggaca 120
cgaggctcca ttagtcgggg acctccagac cctcaggagc ctattgcaag 180
aggagagcta ccggagccgc atcaacgaga agtctgtctg gtgctgtggc tggctccct 240
gcacaccgtt gcaaatcgcg gccactgcag gccatggag ctgtgtggac ttccatcc 300
ggaagggggc cgaggtggat ctgggtggacg taaaaggaca gacggccctg tatgtggctg 360
tggtaacgg gcacccatag agtacccaga tccttctcga agctggcgcg gaccccaac 419

<210> 27

<211> 595

<212> DNA

<213> Homo sapiens

<400> 27

gaggaagaag aaaagtggac cctgaggcct tgcaggtctt taaagaggcc agaagtgttc 60
ccagaacctt gctgtgtctg tgccgtgtgg ctgtgagaag agctcttggc aaaaccggct 120
tcatctgatt cttcgctgc ctctgccaga ccccataaaag aagtttctac tccatgagta 180
gactccaaat gctgcgggtt attccagtga gggagaaatgatctgcagg gaggtggaca 240
ccgagccctg agtgctgtgc tgctgcttgtt ctcctgatgg ctgttgctgc agaagatgtc 300

ctcgtagact gtcattgctc ctcaggtgcc tggcccgctg aacagtcctt gggcattgt 360
 cagctgagag gcttatacta aagttattat tggtttccc aagttctctg ttctggattt 420
 tcagttgcat attaatgtaa cggccatgg ggtatgtaca tgttagggct gaggttggag 480
 gcctactaat ttccgttagg gaagactccc agcacttctg gaactgtgct tctcttatt 540
 tttctacttc tcaatttgat ggtcgatta aagccttcta gtatctcaat gaaaa 595

<210> 28
 <211> 896
 <212> DNA
 <213> Mus musculus

<220>
 <221> CDS
 <222> (4) .. (396)

<220>
 <221> UNSURE
 <222> (551)
 <223> n is unsure

<220>
 <221> UNSURE
 <222> (651)
 <223> n is unsure

<400> 28
 ctg atg tcc gca att ctg aag gtt gga cac cac tgc tgg ctg cct gtg 48
 Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro Val
 1 5 10 15

aca tcc gct gtc aat ccc caa agg atg ctg agg cca cca cca acc gct 96
 Thr Ser Ala Val Asn Pro Gln Arg Met Leu Arg Pro Pro Pro Thr Ala
 20 25 30

gtt ttc aac tgt gcc gct tgc tgc tgt ctg tgg ggg cag atg ctg atg 144
 Val Phe Asn Cys Ala Ala Cys Cys Leu Trp Gly Gln Met Leu Met
 35 40 45

aat aca tac cgt gta gtt cag ctt cct gag gag gcc aag ggc ttg gtg 192
 Asn Thr Tyr Arg Val Val Gln Leu Pro Glu Ala Lys Gly Leu Val
 50 55 60 ..

cca cca gag att cta cag aag tac cat gga ttc tac tct tcc ctc ttt 240
 Pro Pro Glu Ile Leu Gln Lys Tyr His Gly Phe Tyr Ser Ser Leu Phe
 65 70 75

gcc ttg gtg agg cag ccc agg tcg ctg cag cat ctc tgc cgt tgt gcg 288
 Ala Leu Val Arg Gln Pro Arg Ser Leu Gln His Leu Cys Arg Cys Ala
 80 85 90 95

ctc cgc agt cac ctg gag ggc tgt ctg ccc cat gca cta ccg cgc ctt 336

Leu Arg Ser His Leu Glu Gly Cys Leu Pro His Ala Leu Pro Arg Leu		
100	105	110
ccc ctg cca ccg cgc atg ctc cgc ttt ctg cag ctg gac ttt gag gat		384
Pro Leu Pro Pro Arg Met Leu Arg Phe Leu Gln Leu Asp Phe Glu Asp		
115	120	125
ctg ctc tac taggcttgct gccctgtgaa caaaggcagac cccaccccca		433
Leu Leu Tyr		
130		
ccccaaaggc atctctcagc aatgaatgat gcaaggcggt ctgtcttcaa gtcaggagtg	493	
gacgccttga tccacacttg agagaagagg ccagatcagc accyggctgg tagtgatngc	553	
agagggcacc tgtgcagatc tgtgtgcgca ctggaaatct ctaggctgaa ggcyyagagca	613	
aatggtgcar gtgttagtcc ttgggangag agacagangg tgagaaagca agacagaggt	673	
gagagtgcac atgtcaagtg gtagattgcc ttaaaagaaa gctaaaaaaaaaaaaaagatt	733	
cgggcgaact tcttagggg taatgctgca gcgtgttaaa ctgactgacc agcgtccata	793	
tcttgacc cttccgggt gaaaaagccc cttcatcctc cagcgctccc caagggtgct	853	
tagcaataacc gggtgctttt ctgcccggaaa gtgagttacc aaa		896

<210> 29
<211> 130
<212> PRT
<213> Mus musculus

<400> 29			
Met Ser Ala Ile Leu Lys Val Gly His His Cys Trp Leu Pro Val Thr			
1	5	10	15
Ser Ala Val Asn Pro Gln Arg Met Leu Arg Pro Pro Pro Thr Ala Val			
20	25	30	
Phe Asn Cys Ala Ala Cys Cys Cys Leu Trp Gly Gln Met Leu Met Asn			
35	40	45	
Thr Tyr Arg Val Val Gln Leu Pro Glu Glu Ala Lys Gly Leu Val Pro			
50	55	60	
Pro Glu Ile Leu Gln Lys Tyr His Gly Phe Tyr Ser Ser Leu Phe Ala			
65	70	75	80
Leu Val Arg Gln Pro Arg Ser Leu Gln His Leu Cys Arg Cys Ala Leu			
85	90	95	
Arg Ser His Leu Glu Gly Cys Leu Pro His Ala Leu Pro Arg Leu Pro			
100	105	110	
Leu Pro Pro Arg Met Leu Arg Phe Leu Gln Leu Asp Phe Glu Asp Leu			

115

120

125

Leu Tyr
130

<210> 30
<211> 436
<212> DNA
<213> Mus musculus

<400> 30
gtggggcgcatcatgacc tcctctaggg ctctgcaaca tgactcctgt ggtgcaaatc 60
aacaaattgt tcactgatga atccacaagg atctctgggc ctacaaccag gtcctggtcc 120
acatgactgt cgcttcgga gaaggcacca ctcgccccg gcaggtacgg ctgacacacctc 180
catggagaa gacgtatcca ggcagcagct gcgcggccct tcaagagggc acatccgtc 240
atctaaaggc acggtgtact gaaggttagtc ctgagacatg agtccgatta ctacaggcac 300
gtgttcctcc aggtggaggc tcaggtcccc gggtgagctg gggctgcagc gggactcagg 360
gcgcggctct ggctgcaggt ctcgcagctc cctggctgt agctccgca gatccttgcg 420
cacaccgttg actggt 436

<210> 31
<211> 2180
<212> DNA
<213> Homo sapiens

<400> 31
ttaatagtac ctacatagta gaaaattata actccacttt aaaacaatgt tttctttcta 60
ttcaaataa tttaaaactt ttataaaaca ttaatgttgc aagagaatcc agtccattta 120
tgaaaattag ttgacaatca agttcaccca agaaaatgtt gactaagcta aagaaatcac 180
agataaaaaca ttttaccaaa aggataggta acacacaaaa aaatgctatc acaggaagct 240
atgatcatct aatatttctt taataataat tctagttcca taggtttca tgttatgcc 300
atttgtaccc gagtttaatt acagaaaagg caacaatttc taaattggtg gtatacattt 360
ctttacaatt tttaatgta aggccattta ttaaaataga caaactagaa gatgaaaacg 420
aaggcaacag aaaaattcaa ctttcacaa ccaaaagaat tagcacaacc ttagaaataa 480
tttagaaaaa agtgttgttta aaagatatgt tgcagatctc cggtccatta cccaaagatta 540
tgtcaattca cgattctaaa taaatcttt taaagtaaga gattaaaaac tcattttcag 600
tgtatatgta aattccgtgg ttatcaca caggtatgtt tattcaacac tgcttgaa 660

atggaccatt taaaaggaca tggcaattc cattctgtta agtttcattc aaccttact 720
taggggttga ttaccacatg aaatgtgctt ttaatgcata aaaatcacag tggattagcc 780
agcaaaaggg actggcgccc gggggcattg aggagaattt gataattcac atttgatta 840
ttctgcacat tcatgaaaca taattcacac ctctaaaacc tcaagacttc cctttttaa 900
agaaccaaaa taaacccaag acacccgt gacacttccc caccctaaa caaactgatg 960
actctttac acataaaaact gaaatagtta tggcagcaaa agatttgat ggcaatgaaa 1020
gtttgtaaac tgtatttcaa tctctgttc ttattccaa agtcaagat gcagggttct 1080
caatcttca gtagtgcttc tcctgtaaat aatccttcat tttgttggc aaaggcagtt 1140
tctgaattaa gtctattctg gtatactgac gtataacaaa acgacacagg tactgcaacg 1200
agcgcaccta tgaaccccg aacactgggtt ggcaagttct gacggaagtg cagattccag 1260
gcagcgagac ctgtgataaac aaaaagctcc catttcaga gtccctgatt gaatgctcca 1320
attagatcaa ctatggacgt atgtccttcc acatcggtcg ttcataaaag ctaaacctac 1380
catttgagtg ctcaattcta gtgtgaagtg ttttaccatg ggagcgaaag tcacagctta 1440
aaaggtaacg gtcgtcagaa ctgtccgaa caagaaaaga accatctggc acgtttgcta 1500
gttcccttc tgccctccaa cgtgtgattt gtcggcgtt ccattttgc tttgcaagtt 1560
tttcagctc ctctgttaagg ctgtcacaa ccatgggacc actactttgc actgagtc 1620
aaactcttgc aaccccgaa gcagagttcg gatcaaattt caaatgacag cgcataactt 1680
tcagccacgt gggctttct gtccagttag tccactgaaa gttccctttt gggatttgaa 1740
ttattcctgc attggagtaa ccaatggta agattggagg gacatccatc gtgaacccgc 1800
tctccggggt tctgcaacat gactccgtg gtgccaatca acaagccatt caccggactg 1860
atccacgaag atctctgggg cgacaactag gtcctggctt acctgactct catcctcggt 1920
gaaagcgcgc cctcccaactt gaggaggaac cgccagagact tccatgggag aagagctgtc 1980
cagacaatag ctccgtatc cttccaaagg atacatcccc tcatctaaag gcacagtata 2040
ctgaatgttag tcctgaggca taagtccat aacgacaggg acatgttcat ccaggtgaag 2100
atgcagggtct ccattatgag aagccgagct cttcagtgaa ttggcttgct cctggcacgt 2160
ggtctcagac tggaggtcg 2180

<210> 32
<211> 2649
<212> DNA

<213> Mus musculus

<400> 32

ggcacgaggc tgtgtccagc acacagagag ggcccggcca tctgcttg gg 60
tgtgtctgtc tgtaacttag actcttcctc ccggctcgca gctcaccctc catcctcctt 120
actggctcca gcatgactcg cttctttat gcagagtact ttgctctgtt tcactctggc 180
tctgcacctt ccaggtcccc ttcgtctccc gagaaccac cgcccgccgc acccctgggt 240
ctgttccaag gggcatgca gaagtatagc agcaacctgt tcaagacctc ccagatggcg 300
gctatggacc ccgtgctgaa ggccatcaag gaagggatg aagaggcctt gaagatcatg 360
atccaggatg ggaagaatct tgcagagccc aacaaggagg gctggctgcc gctccacgag 420
gctgcctact atggccagct gggctgcctg aaagtcctgc agcaagccta cccagggacc 480
attgaccaac gcacactgca ggaagagaca gcattatacc tggccacatg cagagaacac 540
ctggattgcc tcctgtcgct gctccaggcg gggcagagc ctgacatctc taacaatcc 600
agggagactc cacttacaa agcctgtgag cgcaagaacg cggaggcggt gaggatattg 660
gtgcgataca acgcagacgc caaccaccgc tgtaacaggg gctggaccgc actgcacgag 720
tctgtctccc gcaatgacct ggaggtcatg gagatcctag tgagtggcgg ggccaaggtg 780
gaggccaaga atgtctacag catcaccctt ttgtttgtgg ctgcccagag tggcagctg 840
gaggccctga gttcctggc caagcatggt gcagacatca acacgcaggc cagtacagt 900
gcatcagccc tctacgaggc cagcaagaat gagcatgaag acgtggtaga gtttcttc 960
tctcagggcg ccgatgctaa caaagccaac aaggacgccc tgctccccct gcatgttgcc 1020
tccaagaagg gcaactatacg aatagtgcag atgctgctgc ctgtgaccag ccgcacgcgc 1080
gtgcgcccgt a cggcatcag cccgctgcac ctgcggccg agcgcaacca cgacgcggtg 1140
ctggaggcgc tgctggccgc ggcgttcgac gtgaacgcac ctctggctcc cgagcgcgcc 1200
cgccctctacg aggaccgcgc cagttctgcg ctctacttcg ctgtggtaa caacaatgtg 1260
tacgccaccc agctgttgct gctggccgc gcgacccca acccgatgt catcagccct 1320
ctgctcggtt ccattccgc cggctgcctg cgcaccatgc agctgctgtt ggaccatggc 1380
gccaacatcg acgcctacat cgccactcac cccaccgcct ttccagccac catcatgttt 1440
gcatgaagt gcctgtcggtt actcaagtcc ttatggacc tcggctgcga tggcagccc 1500
tgcttctcct gcctgtacgg caacggccgc caccacccgc cccgcgaccc ggccgcttcc 1560
acgacgcacc cgtggacgac aaggcaccta gcgtggtgca gttctgtgag ttctgtcggtt 1620

ccccggaagt gagccgctgg gcgggaccca tcatcgatgt ctcctggac tatgtggca 1680
acgtgcagct gtgctccgg ctgaaggagc acatcgacag ctttggggac tgggtgtca 1740
tcaaggagaa ggcagaacct ccgagacctc tggctcacct ctgccggctg cgggttcgga 1800
aggccatagg aaaataccgg ataaaactcc tggacacact gccgcttccc ggcaggctaa 1860
tcagatactt gaaatatgag aatacacagt aaccagcctg gagaggagat gtggcattca 1920
gactgttcc gggacgcccc aggtggcctg catccaggac cccctgggtt cagaacaggt 1980
gtgaccttgc tgggttcttg ctggagcttc acccaaagtg agaacctgat gtggggagt 2040
gacgtggaac ctctgcttcc acactgtcag cgatcgac acccgctctg cttctggcca 2100
tagccagaga cctcaacact gggccaggg gagagctggt ctggcaagg tggcccaggc 2160
aggaatcctg gcctaagct ggagaacttg taggaatccc tcactggacc ctcagcttcc 2220
aggctgcgag ggagacgccc agccaaagta ttttatttcc gtgacacataat aacgttgtat 2280
cagaaaaaaa aaaaaacatg ggcgcagctt attccttagt agggtattta ctgcattgcg 2340
cgcttaaagc tactggaaac atgcgttcca ctatgcttga gaatcccctt gcactggtaa 2400
acgagagccg acgtgcttca aggttggatt tttgggtgcc cctttggcgt tccgcgggtt 2460
tgtccgacgt aattgacccc gtgtttgtc actttcgagt gttccgacta ttggggggct 2520
tttgggttgc cccaaaattt tgggtgggtgt gcggacgcca cgagaagtgg ttcattggcg 2580
ataatcatta ctggagaatg tagagcggcg gtttacgaa taaatattt ttaagccgcc 2640
ttcccaaaaa 2649

<210> 33
<211> 495
<212> DNA
<213> Homo sapiens

<400> 33
cctcctgaga gttcgccggc cggggccaa tgggttgttc caaggggtca tgcagaaata 60
cagcagcagc ttgttcaaga cctccagct ggccctgtcg gacccttga taaaggccat 120
caaggatgcg atgaagagggc cttgaagacc atgatcaagg aagggaaagaa tctcgagag 180
cccaacaagg agggctggct gccgctgcac gaggccgcat actatggcca ggtggctgc 240
ctgaaagtcc tgcagcgagc gtaccagg accatcgacc agcgcacccct gcaggaggaa 300
acagccgtt acttggcaac gtgcaggggc cacctggact gtctcctgtc actgctccaa 360
gcagggggcag agcgggacat ctccaacaaa tcccgagaga accgctctac aaaggctgtg 420

agcgcaagaa cgccgaagcc gtgaagattc ttgggcagc acaacgcaga caccaacaac 480
gctgcaaccg ggctg 495

<210> 34
<211> 709
<212> DNA
<213> Homo sapiens

<400> 34
gtgcagctct gctcgccgct gaaggaacac atcgacagct ttgaggactg ggccgtcatc 60
aaggagaagg cagaacctcc aagacctctg gtcacccctt gccgactgcg gttcgaaag 120
gccattggga aataccgtat aaaactccta gacacccctgc cgctcccagg caggctgatt 180
agatacctga aatacgagaa cacccagtaa ctggggccac ggggagagag gagtagcccc 240
tcagactctt cttaactaagt ctcaggacgt cggtgttccc aactccaagg ggacctggtg 300
acagacgagg ctgcaggctg cctccctctc agcctggaca gctaccagga tctcactggg 360
tctcagggcc cagagcttg gccagagcag agaacagaat gtgtcaagga gaagaatcat 420
ttgtttacaa actgatgagc agatcccaga cttctctac cttaggaat ggcagaaacc 480
tctattcctg gggccaggc agagcttgag gtgttctgg gaaggtggtg ctcagagcct 540
tccctgtgcc cctccacttg ttctggaaaa ctcaccactt gacttcagag cttctctcc 600
aaagactaag atgaagacgt ggcccaaggt agggggtagg gggagcctgg gtcttggagg 660
gcttgttaa gtattaatat aataaatgtt acacatgtga aaaaaaaaaa 709

<210> 35
<211> 848
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (1)..(624)

<400> 35
ttg gag aag tgt ggt tat tgg ggg cca atg aat tgg gaa gat gca 48
Leu Glu Lys Cys Gly Trp Tyr Trp Gly Pro Met Asn Trp Glu Asp Ala
1 5 10 15

gag atg aag ctg aaa ggg aaa cca gat ggt tct ttc ctg gta cga gac 96
Glu Met Lys Leu Lys Gly Lys Pro Asp Gly Ser Phe Leu Val Arg Asp
20 25 30

agt tct gat cct cgt tac atc ctg agc ctc agt ttc cga tca cag ggt 144
Ser Ser Asp Pro Arg Tyr Ile Leu Ser Leu Phe Arg Ser Gln Gly

35	40	45	
atc acc cac cac act aga atg gag cac tac aga gga acc ttc agc ctg Ile Thr His His Thr Arg Met Glu His Tyr Arg Gly Thr Phe Ser Leu	50	55	192
tgg tgt cat ccc aag ttt gag gac cgc tgt caa tct gtt gta gag ttt Trp Cys His Pro Lys Phe Glu Asp Arg Cys Gln Ser Val Val Glu Phe	65	70	240
att aag aga gcc att atg cac tcc aag aat gga aag ttt ctc tat ttc Ile Lys Arg Ala Ile Met His Ser Lys Asn Gly Lys Phe Leu Tyr Phe	85	90	288
tta aga tcc agg gtt cca gga ctg cca cca act cct gtc cag ctg ctc Leu Arg Ser Arg Val Pro Gly Leu Pro Pro Thr Pro Val Gln Leu Leu	100	105	336
tat cca gtg tcc cga ttc agc aat gtc aaa tcc ctc cag cac ctt tgc Tyr Pro Val Ser Arg Phe Ser Asn Val Lys Ser Leu Gln His Leu Cys	115	120	384
aga ttc cgg ata cga cag ctc gtc agg ata gat cac atc cca gat ctc Arg Phe Arg Ile Arg Gln Leu Val Arg Ile Asp His Ile Pro Asp Leu	130	135	432
cca ctg cct aaa cct ctg atc tct tat atc cga aag ttc tac tac tat Pro Leu Pro Lys Pro Leu Ile Ser Tyr Ile Arg Lys Phe Tyr Tyr Tyr	145	150	480
gat cct cag gaa gag gta tac ctg tct cta aag gaa gcg cag cgt cag Asp Pro Gln Glu Glu Val Tyr Leu Ser Leu Lys Glu Ala Gln Arg Gln	165	170	528
ttt cca aac aga agc aag agg tgg aac cct cca cgt agc gag ggg ctc Phe Pro Asn Arg Ser Lys Arg Trp Asn Pro Pro Arg Ser Glu Gly Leu	180	185	576
cct gct ggt cac cac caa ggg cat ttg gtt gcc aag ctc cag ctt tga Pro Ala Gly His His Gln Gly His Leu Val Ala Lys Leu Gln Leu	195	200	624
195 200 205			
agaaccaaat taagctacca tgaaaagaag aggaaaagtg aggaaacagg aaggttggga ttctctgtgc agagactttg gttccccacg caagccctgg ggcttggaaag aagcacatga ccgtactctg cgtggggctc cacctcacac ccaccctgg gcatcttagg actggagggg ctccttgaa aactggaaaga agtctaaca ctgtttcttt ttca			684 744 804 848

<210> 36
<211> 207
<212> PRT
<213> Homo sapiens

<400> 36

Leu Glu Lys Cys Gly Trp Tyr Trp Gly Pro Met Asn Trp Glu Asp Ala
1 5 10 15

Glu Met Lys Leu Lys Gly Lys Pro Asp Gly Ser Phe Leu Val Arg Asp
20 25 30

Ser Ser Asp Pro Arg Tyr Ile Leu Ser Leu Ser Phe Arg Ser Gln Gly
35 40 45

Ile Thr His His Thr Arg Met Glu His Tyr Arg Gly Thr Phe Ser Leu
50 55 60

Trp Cys His Pro Lys Phe Glu Asp Arg Cys Gln Ser Val Val Glu Phe
65 70 75 80

Ile Lys Arg Ala Ile Met His Ser Lys Asn Gly Lys Phe Leu Tyr Phe
85 90 95

Leu Arg Ser Arg Val Pro Gly Leu Pro Pro Thr Pro Val Gln Leu Leu
100 105 110

Tyr Pro Val Ser Arg Phe Ser Asn Val Lys Ser Leu Gln His Leu Cys
115 120 125

Arg Phe Arg Ile Arg Gln Leu Val Arg Ile Asp His Ile Pro Asp Leu
130 135 140

Pro Leu Pro Lys Pro Leu Ile Ser Tyr Ile Arg Lys Phe Tyr Tyr Tyr
145 150 155 160

Asp Pro Gln Glu Glu Val Tyr Leu Ser Leu Lys Glu Ala Gln Arg Gln
165 170 175

Phe Pro Asn Arg Ser Lys Arg Trp Asn Pro Pro Arg Ser Glu Gly Leu
180 185 190

Pro Ala Gly His His Gln Gly His Leu Val Ala Lys Leu Gln Leu
195 200 205

<210> 37

<211> 464

<212> DNA

<213> Mus musculus

<400> 37

gttccaagcc taaccatct ttgtcgttg gaaattcggg ccagtctaaa agcagagcac 60

cttcactctg acatttcat ccatcagttg ccacttcca gaagtctgca gaactatttg 120

ctctatgaag aggtttaag aatgaatgag attctagaac cagcagctaa tcaggatgga 180

gaaaccagca aggccacctg acacaggtcc tttaattctg ttttagtcaca aaagacggct 240

tgtgtgactg tttggatttg gtgatcaa at gtccatgtt acagttgctt ttcccagtt 300

gtgtcttcc caatattgtg aaccttatcc atcttcgcctt actcagttt atttcttagtg 360
cactttgtg tgtattattt gtttacctga ccattttcta ctttattctg ctaataaaact 420
gtaattctga aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 464

<210> 38
<211> 747
<212> DNA
<213> Homo sapiens

<400> 38
ggggatcgaa agcggggct tctggacgc agctctggag acgcggcctc ggaccagcca 60
ttcgggtgtga gaagtggcag cacggcagac tggtcaaaca aatggatttt acagaggctt 120
acgcggacac gtgctctaca gttggacttg ctgccaggaa aggcaatgtt aaagtcttaa 180
ggaaactgct caaaaaggc cgaagtgtcg atgttgctga taacagggaa tggatgccaa 240
ttcatgaagc agcttatcac aactctgttag aatgttgca aatgttaatt aatgcagatt 300
catctgaaaa ctacattaag atgaagacct ttgaagggtt ctgtgctttg catctcgctg 360
caagtcaagg acattggaaa atcgtacaga ttcttttaga agctggggca gatcctaatt 420
caactacttt agaagaaacg acaccattgt ttttagctgt tgaaaatgga cagatagatg 480
tgttaaggct gttgcttcaa cacggagcaa atgttaatgg atcccattct atgtgtggat 540
ggaactcctt gcaccaggct tctttcagg aaaatgctga gatcataaaaa ttgcttctta 600
gaaaaggagc aaacaaggaa tgccaggatg actttggaat cacaccttta tttgtggctg 660
ctcagtatgg ccaagctaga aagcttgaa gcatacttat ttcatccggg tgcaaatgtc 720
aattgtcaag ccttggacaa agctacc 747

<210> 39
<211> 1018
<212> DNA
<213> Homo sapiens

<400> 39
cacaaatgg accatacaaa aatcttgac ttgttaataa ccacttacta accgggacct 60
gtgacactgg gctaaacaaa gtaagtccct gtttactcag cagtgtttgg gggacatgaa 120
ggattgccta gaaatattac tccggaatgg tctacagccc agacgcccag gcgtgccttg 180
ttttggatt cagttctcct gtgtgcattgg cttccaaaa ggaggtggag ctgtagttct 240
ttggaattgt gaacattctt ttgaaatatg gagcccagat aaatgaactt catttggcat 300

actgcctgaa gtacgagaag tttcgatata tcgctactt tttgaggaaa gggtgctcat 360
tgggaccatg gaaccatata tatgaatttg taaatcatgc aattaaagca caagcaaaat 420
ataaggagtg gttgccacat cttctggttg ctggatttga cccactgatt ctactgtgca 480
attcttggat tgactcagtc agcattgaca cccttatctt cactttggag tttactaatt 540
ggaagacact tgccaccagct gttgaaagga tgctctctgc tcgtgcctca aacgcttgg 600
ttctacagca acatattgcc cactgttcca tccctgaccc atcttgcgt tttggaaatt 660
cggtccagtc taaaatcaga acgtctacgg tctgacagtt atattagtca gctgccactt 720
cccagaagcc tacataatta tttgctctat gaagacgttc tgaggatgta tgaagttcca 780
gaactggcag ctattcaaga tggataaattc agtggaaacta cttAACACAG ctaatTTTT 840
tctctgaaaa atcatcgaga caaaagagcc acagagtaca agttttatg attttatagt 900
caaaagatga ttattgattt tcagataggt tagttttgg gggccagta gttcagttag 960
aatgtttatg ttacaacta gccttcccag taaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1018

<210> 40
<211> 1897
<212> DNA
<213> Mus musculus

<400> 40
cgggggggctg ggacctgggg cgtaaccgtc tctaccacga cggcaagaac cagccaaat 60
aaacataccc agcctttctg gagccggacg agacattcat tgtccctgac tccttttcg 120
tggccctgga catgratgtat gggaccttaa gtttcatcgt ggatggacag tacatggag 180
tggctttccg gggactcaag ggtaaaaagc tgtatcctgt agtggatgcc gtctggggcc 240
actgtgagat ccgcattgcgc tacttgaacg gacttgatcc tgagccccctg ccactcatgg 300
acctgtgcgg cggttcggtg cgccatgcgc tggaaaaaga ggcctgggt gccatcccc 360
ctctgccgtt acctgcctcc ctcaaaggctt acctcctcta ccagtgtatcc acatcccagg 420
accggccatac gacagccatc tggtgccaaar tcactgagcc cgttgggtc cgccgacccc 480
tgcgcctggg atggaagccc acctcagcca tggcagacg tgcccccctca tcctaccggc 540
tgcctctgct gggggAACCT atgccaacgg acttctccct tcccaacact ggctgaagca 600
gcagcaccca ggcccttccc tgaaccagat gcagagaata aactatgaaa acctctctca 660
ggcgccttct gctctcaggt ggagtggct gccccccact ctctgcagag agaggctaca 720
cccacctggg gggcctggg aggttaagact agtaggaggt gccagggtc artccaaaag 780

RECEIVED

SEP 08 2000

caggaatggc caggamcagg ccatacagat gaagctcagg atgtcacata c~~TCAGGACAM~~ 840
tgagacagaa ccccaggttg gamttccctt gggccaacga gtgccagctt taatgtcagc 900
tgc~~MGGT~~gct ctgtggcctg tatttattct taaaacagta gcaaaggcca tttatttatt 960
ccacttagaa aggaaacctt ggtgggtgy ttccctcgat gtgcttccc ccacccct 1020
ggaatgtgtg tgccacacct gtccttgtcc caggccagga ctgtggcaca tgagctggtg 1080
tgcacagata cacgtatgtc gtcgtgc~~at~~g acccctgact agttcctaag tagccctgca 1140
ccaaggacca gagcagaccc caagagaggc ccgtgcaagt cccatgtcc ccaggccct 1200
gcttctgttgc ccttggact catacaccgg cacacgttgc tcagcctctt gacttccatg 1260
agcttcgaat tttcccccg attcttctga tatttccat tggcatcctc caaagctctg 1320
ggcctggagg gcattaggac acatggaatg agtggggct ccagccctg ggaaagccac 1380
tggcaaggca ggatttagaaa gaccaagagc agggtggggc gccatgaagc ctgtatgcct 1440
ctcaggctca agaccccgcc acacacccac tcaagcctca gaagtgggtgt gtagggcagc 1500
cccaggagag gaatgcctgt cctagcagca cgtacatgga gcacccaca tgtgctccag 1560
ccctctggct gtttctcttgc ctctagaatc aactccctac attgggaatg tagccatttgc 1620
gtagaggact tgccctagcct gcaggaagct cacgttccat cccctgcacc aaggagaatc 1680
aaagctcagg aggctgaggc aggaggattg ctgtcagtggtg tgtacagagg tcatggccat 1740
cctggctat attaacacctt gtccttaag aaaaagaaaa gaaatcaact tccattgaat 1800
ctgagttctg ctcatttctg cacaggtaca atagatgact tkatttggttg aaaaatgktt 1860
aatatattta cmtatatata tatttgtaag aagcatt 1897

<210> 41
<211> 134
<212> PRT
<213> Mus musculus

<220>
<221> UNSURE
<222> (45)
<223> Xaa is unsure

<400> 41
Gly Gly Trp Asp Leu Gly Arg Asn Arg Leu Tyr His Asp Gly Lys Asn
1 5 10 15
Gln Pro Ser Lys Thr Tyr Pro Ala Phe Leu Glu Pro Asp Glu Thr Phe
20 25 30

Ile Val Pro Asp Ser Phe Phe Val Ala Leu Asp Met Xaa Asp Gly Thr
35 40 45

Leu Ser Phe Ile Val Asp Gly Gln Tyr Met Gly Val Ala Phe Arg Gly
50 55 60

Leu Lys Gly Lys Lys Leu Tyr Pro Val Val Ser Ala Val Trp Gly His
65 70 75 80

Cys Glu Ile Arg Met Arg Tyr Leu Asn Gly Leu Asp Pro Glu Pro Leu
85 90 95

Pro Leu Met Asp Leu Cys Arg Arg Ser Val Arg Leu Ala Leu Gly Lys
100 105 110

Glu Arg Leu Gly Ala Ile Pro Ala Leu Pro Leu Pro Ala Ser Leu Lys
115 120 125

Ala Tyr Leu Leu Tyr Gln
130

<210> 42
<211> 265
<212> DNA
<213> Homo sapiens

<400> 42
aagggtaaaa aactgtatcc tgttagtgagt gccgtctggg gccactgttag atccgaatgc 60
gctacttgaa cggactcgat cccgagactg ccgctcatgg atttgtgccg tcgctcggtg 120
cgcctggccc tggggaggga ggcgcctgggg gagaaccaca cctgcccgtg ccggcttccc 180
tcaaggccta ctcctctac cagtgacgtt cgccatcata ccggcagcgc gacagccacc 240
tggtgccaaac tcactgagcc gcctg 265

<210> 43
<211> 2438
<212> DNA
<213> Mus musculus

<400> 43
aagtggccgc ggtccctgga gagcaggcgg aggcagcggc aagtctgact ctgggctgac 60
cgtggagccg gggcgggggc tgacagccag gcctccgcct ggccggagcc gcacgaggag 120
cgggagtgccg cgggcctctc ttccgcgtt gagcgagcgc cgggtgatgg cggtggtgat 180
ggcggcaggc gctcggacag ctccgcttga gctgagctcg gagagatccg tccagaaaagt 240
gcccagaaga aacttcctct tagaaaagct gaaaaacaca rtatttataa cactggaaat 300

gttacctatt ctctttcat cttgaagatt ttcagtaaag agtgttgtaa tcaatccatt 2040
ataatgtaat tgactttgt aatttgccaa taggagtgtt aaacaacaaa atgattaaa 2100
atgaaaccta atgtatccc attttaaata ttaactaac caagttgtt tgtagttat 2160
tctagccaat aagaaaagag aatgttagcat cctagagggtg tatttgttct gcagttggc 2220
aggaccgtca gttagtccaa ataaacatcc cctcagcgtg gaggcgaatg gaacctgtgc 2280
tccttccta cgccaagctt tgcaaagcaa aatagcaggg ttacaagctt ggagttgtta 2340
aggcaactag agtttctct attaatttat agactgttgt tgcacctact tagcttttt 2400
ttgggaactc tagtcccag gggaaaatac ctcgtgcc 2438

<210> 44
<211> 542
<212> PRT
<213> Mus musculus

<220>
<221> UNSURE
<222> (94)
<223> Xaa is unsure

<400> 44
Ser Gly Gly Gly Pro Trp Arg Ala Gly Gly Ser Gly Lys Ser Asp
1 5 10 15
Ser Gly Leu Thr Val Glu Pro Gly Arg Gly Leu Thr Ala Arg Pro Pro
20 25 30
Pro Gly Gly Ser Arg Thr Arg Ser Gly Ser Gly Arg Ala Ser Leu Pro
35 40 45
Arg Leu Ser Glu Arg Arg Val Met Ala Val Val Met Ala Ala Gly Ala
50 55 60
Arg Thr Ala Pro Leu Glu Leu Ser Ser Glu Arg Ser Val Gln Lys Val
65 70 75 80
Pro Arg Arg Asn Phe Leu Leu Glu Lys Leu Lys Asn Thr Xaa Phe Ile
85 90 95
Thr Leu Glu Ile Val Lys Asn Leu Phe Lys Met Ala Glu Asn Asn Ser
100 105 110
Lys Asn Val Asp Val Arg Pro Lys Thr Ser Arg Ser Arg Ser Ala Asp
115 120 125
Arg Lys Asp Gly Tyr Val Trp Ser Gly Lys Lys Leu Ser Trp Ser Lys
130 135 140

Lys Ser Glu Ser Cys Ser Glu Ser Glu Ala Ile Gly Thr Val Glu Asn
145 150 155 160

Val Glu Ile Pro Leu Arg Ser Gln Glu Arg Gln Leu Ser Cys Ser Ser
165 170 175

Ile Glu Leu Asp Leu Asp His Ser Cys Gly His Arg Phe Leu Gly Arg
180 185 190

Ser Leu Lys Gln Lys Leu Gln Asp Ala Val Gly Gln Cys Phe Pro Ile
195 200 205

Lys Asn Cys Ser Gly Arg His Ser Pro Gly Leu Pro Ser Lys Arg Lys
210 215 220

Ile His Ile Ser Glu Leu Met Leu Asp Lys Cys Pro Phe Pro Pro Arg
225 230 235 240

Ser Asp Leu Ala Phe Arg Trp His Phe Ile Lys Arg His Thr Val Pro
245 250 255

Met Ser Pro Asn Ser Asp Glu Trp Val Ser Ala Asp Leu Ser Glu Arg
260 265 270

Lys Leu Arg Asp Ala Gln Leu Lys Arg Arg Asn Thr Glu Asp Asp Ile
275 280 285

Pro Cys Phe Ser His Thr Asn Gly Gln Pro Cys Val Ile Thr Ala Asn
290 295 300

Ser Ala Ser Cys Thr Gly Gly His Ile Thr Gly Ser Met Met Asn Leu
305 310 315 320

Val Thr Asn Asn Ser Ile Glu Asp Ser Asp Met Asp Ser Glu Asp Glu
325 330 335

Ile Ile Thr Leu Cys Thr Ser Ser Arg Lys Arg Asn Lys Pro Arg Trp
340 345 350

Glu Met Glu Glu Glu Ile Leu Gln Leu Glu Ala Pro Pro Lys Phe His
355 360 365

Thr Gln Ile Asp Tyr Val His Cys Leu Val Pro Asp Leu Leu Gln Ile
370 375 380

Ser Asn Asn Pro Cys Tyr Trp Gly Val Met Asp Lys Tyr Ala Ala Glu
385 390 395 400

Ala Leu Leu Glu Gly Lys Pro Glu Gly Thr Phe Leu Leu Arg Asp Ser
405 410 415

Ala Gln Glu Asp Tyr Leu Phe Ser Val Ser Phe Arg Arg Tyr Ser Arg
420 425 430

Ser Leu His Ala Arg Ile Glu Gln Trp Asn His Asn Phe Ser Phe Asp
435 440 445

Ala His Asp Pro Cys Val Phe His Ser Pro Asp Ile Thr Gly Leu Leu
450 455 460

Glu His Tyr Lys Asp Pro Ser Ala Cys Met Phe Phe Glu Pro Leu Leu
465 470 475 480

Ser Thr Pro Leu Ile Arg Thr Phe Pro Phe Ser Leu Gln His Ile Cys
485 490 495

Arg Thr Val Ile Cys Asn Cys Thr Thr Tyr Asp Gly Ile Asp Ala Leu
500 505 510

Pro Ile Pro Ser Pro Met Lys Leu Tyr Leu Lys Glu Tyr His Tyr Lys
515 520 525

Ser Lys Val Arg Leu Leu Arg Ile Asp Val Pro Glu Gln Gln
530 535 540

<210> 45

<211> 5000

<212> DNA

<213> Mus musculus

<400> 45

ccctctggc aagccgcccc ccccccaccc atctaccaca cacacacaca cacacacaca 60
cacacattca gaccttgggg caaaaacaaa gcaaaataac aacaacaaaa acactgcctg 120
tggaaagtcc ttacttcagg aaggttggca gatgaggagc aagggAACat tttatcagga 180
ctgccacaaa ggagtctttt ttttaatgg ttttcaaga cagggTTCT ctgtatagcc 240
ctggctgtcc tggagctcac tttgttagacc aggctggcct cgaactcaga aattcgccctg 300
cctctgcctc ctgagtgctg ggattaaagg cgtgcagcac catgtccaaac tggcatttc 360
tcaattaagg ttcgttcctt tcagataact cttagttctg ggtcaagctg acacaaggct 420
acacagcaca gtttgtatgc cacattcagt tcagaagaca cccaacctcc ctggaactgg 480
aacttatgca catttgcag cttccacttg ggagtggaa cctgaactgg gtcctctgca 540
agagcagccg tgctcttaac tgctgagcca tttcagcagc ctcacatcag aattaagtta 600
gaaattatgcc gggatgaat cataccctta gaatcctagc atctgaaAGC agagctaaga 660
gaaacaggga ttcaagacca gctctggct acagagcccg tcctgtccta ggatggccta 720
caagagacta tttcaaagcc atccaaacaa caataactac aacaacaaca aggttaaat 780
taggctggc acagggtaca caccttaat gccaacactc aggaggcaga ggcaggctga 840
tcagtgtgag tttgagttca acgtggtcta catagggagt tctaggccag cagaggttac 900

agtctcttc tctctcttc tctctctc tcttcacac acacacacac acacacacac 960
acacacacac acacacacgg tggcattatg ggatttttt gggataaggt ttctctgtct 1020
agccctggca tagattcaact ctgttagacta ggctagcctt gaactcagag atccgcctgc 1080
ctctgcctcc caagtgctgg gattataggt gttgcaccac cactgcccag ccactttggg 1140
attttgaac tgttatcaag aggcttcga ggaggtcaaa cttaaacagc aacctctcca 1200
tgataatgta gctaattgatc aaacgacact caaaacttaa cccttaaagc acacatccac 1260
cagacagcgt gcccactcgt agttccatta ctcaggaggc tgaagcagga ggatgaagga 1320
ctaaggcttc agcaacctag ggagccgcag gggacagtag tctcaatccc tacattctcc 1380
tgaacacagg agcaggagtt caggaagggt gtcaaggccg cttaactgatc ttagggcctc 1440
aggaatgact agctcaggca gagagagcaa aggtctccag tggagaagtc tacacacaca 1500
cacacacaca cacacacaca cacacacaca cagaatccaa ggcgatgacg tcatacaaagg 1560
gttaattcta gtctggatg ggggggaggg tggggcacgc agctgtcagg tggctttgga 1620
aaaataaaact gctgaagagt ctgacgccag ggagtccctgg gagggacaag agttaccca 1680
ctcaaagagt gtgctccaca aagcatgcgc gcttgtccac gtctggagtc gtcacttatt 1740
tttgcctgg atttttgcgtt gcccgggtt tctcaaggcg gtaagtgggt tggccgcccgt 1800
ggctctggag gtgacgatag ggttaatcgt ccacagagcc caggggcgga ggcggggcgg 1860
gcgtccgcag ccccgctggaa gcccggaaagca gtggctggc aggggcgtt ctagccttcc 1920
ctatctgtac ttccacagag gtctctgcga gctaggggga cagtgaggtg cggggtaggg 1980
gcccggcggtt agagccagca aggggacggt tcacggtaag gtctgagggaa gagagagctc 2040
ctgagaaact tggggggcgc gacacagata gggtaaaagc agagtgatag acctggatg 2100
gttagggac caagggaaaga ccaggctggt tggcatacac cggtaacgg atgggagtcc 2160
tagggaaaga tgatgcgcct aacagtcctt tctgtctcca caccactcca ggggacgatc 2220
cgagactcaa cttcaaaaag cgagacgccc cagcaaggct gtttgagaa gttcttcagc 2280
ggctctcctc atggggcaga cggccctggc aaggggcagc agcagcaccc ctacctcgca 2340
ggctctgtac tcggacttct ctcctccccga gggcttgag gagctcctgt ctgctcccc 2400
tcctgacctg gttgcccac ggcaccacgg ctggaaacccc aaggattgct ccgagaacat 2460
cgatgtcaag gaagggggtc tgtgctttga gcggcgccct gtggcccaga gcaactgatgg 2520
agtccgggggaaacggggctt attcgagagg tctgcacgcc tggagatca gctggccct 2580

ggagcaaagg ggcacacacg ccgtgggtgg cgtggccacc gcctcgccc cgctgcaggc 2640
tgaccactat gcggcgcttt tgggcagcaa cagcgagtcc tggggctggg atattggcg 2700
gggaaaattt tatcatcaga gtaagggcct cgaggcccc cagtatccag ctggacctca 2760
gggtgagcag ctatggtgc cagagagact gctggtggtt ctggacatgg aggaggggac 2820
tcttggctac tctattgggg gcacgtaccc gggaccagcc ttccgtggac tgaaggggag 2880
gaccctctat ccctctgtaa gtgctgttg gggccagtgc caggtccgca tccgctacat 2940
gggcgaaaga agaggtgaga tacggactag gtgtggggag atcactactc ttggcaatgg 3000
tttgggctgg aaactcatgg ttggagcaca ggaagtaggc ttcttgcac tttggcctgt 3060
cacttagatg gccttggatc tagcttcact cccaatccct attggatgtg atgcacaaat 3120
tcagagcctt tgggtctccc tcagctgagg tggcggtgga aatggaggaa gaaggaaggg 3180
tgccctgagca gnatctcaag ttcaaggatg cctggagttt ctacttacc ttgtcttcct 3240
tctctctccg cagtggagga accacaatcc cttctgcacc tgagccgcct gtgtgtgcgc 3300
catgctctgg gggacacccg gctgggtcaa atatccactc tgcccttgcc ccctgcacatg 3360
aagcgctatc tgctctacaa atgacccagt agtacagggt gtgctggcac cctaccgtgg 3420
ggacaggtgg agaggcaccc gctggcctag acaactttaa aaagctggtg aagctgggg 3480
gggggggctg gacccttca cctcccttc tcacaggagc aagacatata gaaatgatat 3540
taaacaccat ggcagcctgg gacaaagagg ttttgaagt aaaaaatgag atgtattgtc 3600
acaacctgtt tcattattgt tttttgtttt gtttacact cccccacccc aggctagagc 3660
cccatcaactg tcttaaggaa ttatgacaac ccacaaagct cagggccagg tgtttatttc 3720
ccttacatgt aggtggttc acaaacacaa tacagggct ttggcaccgt gggggagggg 3780
actatccag gcctcttagg gtctcatgta taccgaattc agacccgaaa gctctgaatt 3840
tctgcacatc acatccagta gaacttggga gtgaagctag agccaaggcc atctaagtga 3900
caggccaaag tgacacgaag cccacttcct gtgctccaac catgagtttc cagcccaaac 3960
caatggaagg tgatttact tgtcagggcc caaaggacac gtcagttcta ctccctcccc 4020
tcactaggag ccaccttggt gacagttgat tctacccact gtaagtggta aaggattgg 4080
cctggtccca accataatag ggcggtgaa acggctcagg aggtacagc gtggatttagg 4140
ccacaagatg gggcagatga tgtcatcaga agcatgtgac cggtgggagc agttactaaa 4200
cttctggca accttagtcca tgctatgcag gcaggttagag ggatggcag tgctcattgt 4260

ttggcattga tcatgtccac aaattcaggg ttgagagatg cgccacccac aaggaagccg 4320
tccacgtcag gctggcttgc cagcttttgc caggttgctc cagtcacaga acctgtacca 4380
ggaacaagaa gacagttgg tcaggtctat gatcagaaca cttaagcccc acctctctgt 4440
gcaaggcagc ctcagtctgt ctttagccat ttccgtctta gctagagcca aagccactca 4500
cctccataaaa tgatccgggt gctctgagcc accccatcat tgacattgga tttcagccat 4560
ccccggagct tctcggtac ttccctgtgcc tagaaggagg aggcagagct actaagtaag 4620
ctccttccta tctatcatc aaggagtaaa aaccacttgt tctcacatag agttgagttt 4680
ccagaaaaagc cccgggacca gagagtggca aggctccaat cccaccaggc ttggaatgaa 4740
cattttggc aaagtcaactc tccttggtga gtttggggc cctctgtctc taaaggggct 4800
tggatgggct ccatacgctgt gtgagtcgt taaagccgga caggctgagg agctctgggt 4860
agttacctgc tgaggggttg ccgtcttgcc agtcccaatg gcccacacag gttcataggc 4920
caggaccacc ttgctccagt ct当地catt atctgtgggg cagagaggag agtgagtagg 4980
aaggagctga cccgccaagc 5000

<210> 46
<211> 264
<212> PRT
<213> Mus musculus

<400> 46

Met Gly Gln Thr Ala Leu Ala Arg Gly Ser Ser Ser Thr Pro Thr Ser
1 5 10 15

Gln Ala Leu Tyr Ser Asp Phe Ser Pro Pro Glu Gly Leu Glu Glu Leu
20 25 30

Leu Ser Ala Pro Pro Pro Asp Leu Val Ala Gln Arg His His Gly Trp
35 40 45

Asn Pro Lys Asp Cys Ser Glu Asn Ile Asp Val Lys Glu Gly Leu
50 55 60

Cys Phe Glu Arg Arg Pro Val Ala Gln Ser Thr Asp Gly Val Arg Gly
65 70 75 80

Lys Arg Gly Tyr Ser Arg Gly Leu His Ala Trp Glu Ile Ser Trp Pro
85 90 95

Leu Glu Gln Arg Gly Thr His Ala Val Val Gly Val Ala Thr Ala Leu
100 105 110

Ala Pro Leu Gln Ala Asp His Tyr Ala Ala Leu Leu Gly Ser Asn Ser
115 120 125

Glu Ser Trp Gly Trp Asp Ile Gly Arg Gly Lys Leu Tyr His Gln Ser
130 135 140

Lys Gly Leu Glu Ala Pro Gln Tyr Pro Ala Gly Pro Gln Gly Glu Gln
145 150 155 160

Leu Val Val Pro Glu Arg Leu Leu Val Val Leu Asp Met Glu Glu Gly
165 170 175

Thr Leu Gly Tyr Ser Ile Gly Gly Thr Tyr Leu Gly Pro Ala Phe Arg
180 185 190

Gly Leu Lys Gly Arg Thr Leu Tyr Pro Ser Val Ser Ala Val Trp Gly
195 200 205

Gln Cys Gln Val Arg Ile Arg Tyr Met Gly Glu Arg Arg Val Glu Glu
210 215 220

Pro Gln Ser Leu Leu His Leu Ser Arg Leu Cys Val Arg His Ala Leu
225 230 235 240

Gly Asp Thr Arg Leu Gly Gln Ile Ser Thr Leu Pro Leu Pro Pro Ala
245 250 255

Met Lys Arg Tyr Leu Leu Tyr Lys
260

<210> 47

<211> 5615

<212> DNA

<213> Homo sapiens

<400> 47

gtactttctt tataatctcca taattttatt tactattact acatgataca ttatTTATA 60

aaagtctttg taacctcctt aaggattcac tgcttaatct ccagtgccta gcacaaatca 120

ttaaatgcga accagaaaact cttccaaatg tgttacatct ataacctcat tggattctca 180

ctaccaaccc catgcaatag atactaatgt gatctctgac ttacagagga agaaacagggc 240

acagggaggt tcagtaattt gcccaaggac atacacacac tggccttcag gtattcatgc 300

ccggggagtc tggcccaca gctggcatgt ttgccattat attatattgc ctcccttatag 360

tgtcggcact cattaaggcac attgacagct atgcttggtg agtgactact atgtacccag 420

ctctgtgcta catgctttac ctggattatt tcaactgcac aacaaccctg tgaggttaact 480

accatcattt ctccttattt acataacaga aaactacaga aatctggggc tggcgtagt 540

ggctcatgcc taaaatcccc gcactttggg agaccctgac tctaaaaaaaaa atttttttt 600

ggccggacgt ggtggctcac acctgtaatc tcagcactt gggaggctaa ggcaggcaga 660

tcacaaggc tcaggatctt gaccaggctg gccaacatgg caaaaccctg tgtctactaa 720

aaatacaaaa aatagctagg cgtggtggca ggtgcctgta atcccagcta ctcaggagggc 780
tgaggcagga gaatccctg aacctggag atggaggtta cagagagccg agatcgtgcc 840
gctgcactcc agcctggca acaagagcaa gactctgtct cgaaaaaaaaat aaaaataaaa 900
ataaaaaat tttttaaaaa attagctggg tgtggtagca catgcctgta gtcccagcta 960
cttgggagggc tgaggttagga ggatcaactt gacccaggag gtcaaggctg cagtggctg 1020
tcatggcgcc actgcactct agccttggtg acagcaagac cctgtctcaa aaaaaaaaaa 1080
aagagaaatc gggcaacttc cccaagatcg cgcatgttaac tagtggcata gcttcactca 1140
aactcgaagt cttaatcagg acactctacc aaatgagatc aacggctcag taatggattt 1200
gcatccagta tgaagactgg accagcaggg agaactatga tgcgtacagc ctagagcctg 1260
aagcagattt cacagcctca gaggtggcac aggctgactc acaacccggg gcagaaaggg 1320
accagccccag aaacagtgac ccagaatcac agggaaatgg aaatgggatt cggcacaatg 1380
aagccctcc ttgaccccat gtccttacc ctcagggcg caggagttt tcgctcaggc 1440
ggctcaaagg tcttgcggc ggagaacacc atccccaggg attcccgacg cggtgatgcc 1500
atcaaagcgt taattctgag atggcctgc ccgggtgcgg actctgcccgc agcaagagaa 1560
gggttaactg ccccgccct tcgcgtggg ggccggccct cggggagggt cacagcccg 1620
gactgagacc cgaggttaac cgcgggggtt gggctccacg gggcgccggc atgctctccg 1680
cggtctgcgc cggtatagag cggtaactgc ccaggagggg gcggggccccc acagggcgt 1740
ggcctcggag ctgcacggcc gtggcggcg atgagaggtt taagccccag agggccctgg 1800
agggcgccgg cgcgggacg ggctcggccc aaggaggag ctggggcgg aagcggccgg 1860
cggtctgcgc cctgcgcgc tcggcttctt tccgcggc tccttcagag gcccggcgcac 1920
ctccagggtt gggaaatcaa ccgaggttcg gggcagcgg cgagggctcc gggcgagtaa 1980
gggggatgtt ccatgctgag gccaaatgg ggcgaactcg cgagagtctc tggcgacctg 2040
gateagatgg ggcgaggggca gatgaagggc ccaggagctt tggggcagcg aggagggagg 2100
agcggggcccg ttggcaaact tgggtgaaag gatggggtac ctgggtgacg agccccggcc 2160
aggattctgc tcttcacgc cctttctcc cagctccctt ccaggtcaat ccaaactgga 2220
gctcaacttt cagaagagaa agacgccccca gcaagcctct ttcggggagt cctctagctc 2280
ctcacctcca tggccagac agctctggca gggggcagca gcagcaccccc cacgcccacag 2340
gccctgtacc ctgacaccttc ctgtccccag ggcttggaaag agctgctgac tgcacccct 2400

cctgacctgg gggcccagcg gcgccacggt tggAACCCCA aagactgttc agagaacatc 2460
gaggtcaagg aaggagggtt gtacttttag cggcggcccg tggcccagag cactgatggg 2520
gccccgggta agaggggcta ttcaaggggc ctgcacgcct gggagatcag ctggccctta 2580
gagcagaggg gcacgcattgc cgtggtggc gtggccacgg ccctcgcccc gctgcagact 2640
gaccactacg cggcgctgtc gggcagcaac agcgagtctgt gggctggga catcggcgg 2700
ggaaagctgt accatcagag caaggggccc ggagcccccc agtatccagc gggaaactcag 2760
ggtgagcagc tggaggtgcc agagagactg ctgggtttc tggacatggc ggagggaaact 2820
ctgggctacg ctattgggg cacctacctg gggccagcat tccgcggact gaagggcagg 2880
accctctatc cggcagtaag cgctgtctgg ggccagtgcc aggtccgcattc cgcgtacctg 2940
ggcgaaagga gaggtgaggg ctggggcaga cgtggggaga actttctgtc cctggggca 3000
gtggtttggg atggaaactc ttctgacaag agcagagggg atggaccttc atccagcctg 3060
cctcaacctc tggtcagtgc tggaaaggc taggggtctt cacagctgtt attaattta 3120
acccaacagc aatagaggtg aaacaggctt gagaaagcaa ctttctcaag ttctcttggc 3180
cagtaaatgg tgaaccttca gaatggaggg aggaactgca gggatgagag aattcaggag 3240
atatcaaccc ctgagcaaga ggtgcaaagc gttaggtact gggtttgc tacaggtcca 3300
aaagaaggat gggcagagcc aggtacccag gctgtataacc ggattccctg ggctctaacc 3360
tgtctctgtc ccacatacct acttccttcc tcagccacac ctctggatgg agacactggg 3420
gccctggca ccagggagga gagcagtggc ggaggcaggg ccttagggtg gggcagcagg 3480
ggaggagcct ccccaggaac tgactgggtc cagggcttgg agctgctctc tgcagttgt 3540
tgggctgttag agtggagggc catccctcct cacctcagcc ccagctccca agcctctgg 3600
gtcaaaggct gggccagctc caccactgtc agagccaccc tggctgttg ttttaggggc 3660
cttagccagc tcttcacccc cagctctgac tagggatgtc tgaaatctt tctggggagc 3720
agaacttccg ggtatctaa attcccttt cagccaggtg ggcacactcg aagcaggaaa 3780
gcagaaaggc atctgagtag gacccctgt tttgaggaca tctggctggg ggctgcaccc 3840
atacttacat tcccctcctt ctctctccca gcggagccac actcccttct gcacctgagc 3900
cgccctgtgtc tgcgccacaa cctggggat acccggtcg gccaggtgtc tgccctgccc 3960
ttgccccctg ccatgaagcg ctacctgctc taccagttag ccctgtgata ccacagactg 4020
tgctgaggtc ttgccaccac ccctccccctt ggggaggtgg ggaggcactg ctggcctaga 4080

ccagctgctg aaagctggtg aggctgagcc cctaccccaa cccaagctct gcggaaatca 4140
acagccccag agccacttgg agggaggaag aaaggagcc ggcgttcaag gctatgacag 4200
tctgctacgc aaaacatttt ttcaagtaaa aatagtaaga gatgttgtt tagaaacctg 4260
ttcttgtttt ttttttttc ttgcacaat gatcatttat atagctgcct caaaaaggaa 4320
gattatctgg gcaagtccag tgaaggcaga caaaccacaa gacctagtgc caggttatt 4380
ccctcacatg ggtggttcac atacacagca cagaggcacg ggcaccatgg gagagggcag 4440
caactcctgcc ttctgagggg atcttggcct cacggtgtaa gaaggagag gatggttct 4500
cttctgcctt cactagggcc taggaaaccc aggagcaaat cccaccacgc cttccatctc 4560
tcagccaagg agaagccacc ttggtgacgt tttagttccaa ccattatagt aagtggagaa 4620
gggattggcc tggtcccaac cattacaggg tgaagatata aacagtaaag gaagatacag 4680
tttggatgag gccacaggaa ggagcagatg acaccatcg aagcatatgc agggaaaggg 4740
cagttactgg gcttctggc tgcttagtcc ctggcttgc aggaaggta gggaaagatgg 4800
atggggctca ttgtttggca ttgatgatgt ccacgaattc gggcttgagg gaagcaccac 4860
ccacaaggaa gccatccaca tcaggctggc tggccagctc cttgcagggtt gccccagtca 4920
cagagcctgg gaaggagca gaacaaggc ttggtaaga atggatgag tctgccccat 4980
ccccacctcc atgtccgagg gctcagtcta gtcctcagcc cactccacct cagccggaa 5040
ccaaagccac tcacccat aaatgatacg ggtgctctga gccaccgc cagagacgtt 5100
ggacttcagc catcctcggc gcttctcgtg tacttcctgg gcctagaaca agaagctggc 5160
ctaagtaaga cctttctgc ctctctaaga gaaaaatca ctggcaccag tggacactta 5220
gtgtggtttc tgactgagtc agagtaccag ggctctgatc caagccaggc cttggactgg 5280
atgcccttgg acaagtcact gtctctgggt tcaaggcttc tgtgtctttg aaataagggg 5340
ttgccccatg tggctgtgt ctgtccaaac ctattgagggc aggctggat gagggcagg 5400
ctcctggcc cggttacctg ttgggggtt gcagtctgc cagtagccat ggcccacaca 5460
ggctcatagg ccaggacgac cttgctccag tccttcacgt tatctgcagg gcagagatac 5520
agatggaggg aagggtgaac aagaaagagc tctccagcca ggttctccgg agtacgaaga 5580
acggtggcct actgccccct agtggacatt ggggg 5615

<210> 48
<211> 263
<212> PRT

<213> Homo sapiens

<400> 48

Met	Gly	Gln	Thr	Ala	Leu	Ala	Gly	Gly	Ser	Ser	Ser	Thr	Pro	Thr	Pro
1				5					10						15
Gln Ala Leu Tyr Pro Asp Leu Ser Cys Pro Glu Gly Leu Glu Glu Leu															
				20				25							30
Leu	Ser	Ala	Pro	Pro	Pro	Asp	Leu	Gly	Ala	Gln	Arg	Arg	His	Gly	Trp
				35			40								45
Asn	Pro	Lys	Asp	Cys	Ser	Glu	Asn	Ile	Glu	Val	Lys	Glu	Gly	Gly	Leu
		50			55						60				
Tyr	Phe	Glu	Arg	Arg	Pro	Val	Ala	Gln	Ser	Thr	Asp	Gly	Ala	Arg	Gly
		65			70					75					80
Lys	Arg	Gly	Tyr	Ser	Arg	Gly	Leu	His	Ala	Trp	Glu	Ile	Ser	Trp	Pro
				85			90								95
Leu	Glu	Gln	Arg	Gly	Thr	His	Ala	Val	Val	Gly	Val	Ala	Thr	Ala	Leu
		100				105							110		
Ala	Pro	Leu	Gln	Thr	Asp	His	Tyr	Ala	Ala	Leu	Leu	Gly	Ser	Asn	Ser
		115				120							125		
Glu	Ser	Trp	Gly	Trp	Asp	Ile	Gly	Arg	Gly	Lys	Leu	Tyr	His	Gln	Ser
		130			135					140					
Lys	Gly	Pro	Gly	Ala	Pro	Gln	Tyr	Pro	Ala	Gly	Thr	Gln	Gly	Glu	Gln
		145			150					155					160
Leu	Glu	Val	Pro	Glu	Arg	Leu	Leu	Val	Val	Leu	Asp	Met	Glu	Glu	Gly
			165				170						175		
Thr	Leu	Gly	Tyr	Ala	Ile	Gly	Gly	Thr	Tyr	Leu	Gly	Pro	Ala	Phe	Arg
			180			185							190		
Gly	Leu	Lys	Gly	Arg	Thr	Leu	Tyr	Pro	Ala	Val	Ser	Ala	Val	Trp	Gly
		195				200							205		
Gln	Cys	Gln	Val	Arg	Ile	Arg	Tyr	Leu	Gly	Glu	Arg	Arg	Ala	Glu	Pro
		210			215					220					
His	Ser	Leu	Leu	His	Leu	Ser	Arg	Leu	Cys	Val	Arg	His	Asn	Leu	Gly
		225			230				235						240
Asp	Thr	Arg	Leu	Gly	Gln	Val	Ser	Ala	Leu	Pro	Leu	Pro	Pro	Ala	Met
			245			250									255
Lys	Arg	Tyr	Leu	Leu	Tyr	Gln									
			260												

<210> 49

<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 49
agcttagatct ggaccctaca atggcagc 28

<210> 50
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Primer

<400> 50
agcttagatct gccatcctac tcgaggggcc agctgg 36

<210> 51
<211> 128
<212> PRT
<213> Mus musculus

<220>
<221> UNSURE
<222> (1)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (2)
<223> Xaa is any amino acid residue

<220>
<221> UNSURE
<222> (3)
<223> Xaa is Pro, Thr or Ser

<220>
<221> UNSURE
<222> (4)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (5)
<223> Xaa is any amino acid

<220>
<221> UNSURE

<222> (6)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (7)
<223> Xaa is Leu, Ile, Val, Met, Ala, Phe, Tyr or Trp

<220>
<221> UNSURE
<222> (8)
<223> Xaa is Cys, Thr or Ser

<220>
<221> UNSURE
<222> (9)
<223> Xaa is Arg, Lys or His

<220>
<221> UNSURE
<222> (10)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (11)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (12)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (13)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (14)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (15)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (16)
<223> Xaa is Leu, Ile, Val, Met, Ala, Pro, Gly, Cys, Thr
or Ser

<220>
<221> UNSURE

<222> (17) .. (66)
<223> Xaa can be any amino acid or no amino acid. Position 17-66
can be 1-50 amino acids.

<220>
<221> UNSURE
<222> (67)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (68)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (69)
<223> Xaa is any amino acid

<220>
<221> UNSURE
<222> (70)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (72)
<223> Xaa is Leu, Ile, Val, Met, Ala, Pro or Gly

<220>
<221> UNSURE
<222> (73)
<223> Xaa is Pro or Asn

<220>
<221> UNSURE
<222> (74) .. (123)
<223> Xaa can be any amino acid or no amino acid. Position 74-123
can be 0-50 amino acids.

<220>
<221> UNSURE
<222> (124)
<223> Xaa is Leu, Ile, Val, Met, Ala or Pro

<220>
<221> UNSURE
<222> (125) .. (128)
<223> Xaa is any amino acid

<400> 51
Xaa
1 5 10 15

Xaa
20 25 30

Xaa
35 40 45

Xaa
50 55 60

Xaa Xaa Xaa Xaa Xaa Xaa Pro Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa
65 70 75 80

Xaa
85 90 95

Xaa
100 105 110

Xaa
115 120 125

<210> 52

<211> 34

<212> PRT

<213> Mus musculus or Rattus norvegicus

<400> 52

Val Arg Pro Leu Gln Glu Leu Cys Arg Gln Arg Ile Val Ala Ala Val
1 5 10 15

Gly Arg Glu Asn Leu Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp
20 25 30

Tyr Leu

<210> 53

<211> 32

<212> PRT

<213> Mus musculus

<400> 53

Ala Pro Thr Leu Gln His Phe Cys Arg Leu Ala Ile Asn Lys Cys Thr
1 5 10 15

Gly Thr Ile Trp Gly Leu Pro Leu Pro Thr Arg Leu Lys Asp Tyr Leu
20 25 30

<210> 54

<211> 33

<212> PRT

<213> Mus musculus

<400> 54

Val Ala Thr Leu Gln His Leu Cys Arg Lys Thr Val Asn Gly His Leu
1 5 10 15

Asp Ser Tyr Glu Lys Val Thr Gln Leu Pro Gly Pro Ile Arg Glu Phe
20 25 30

Leu

<210> 55
<211> 34
<212> PRT
<213> Homo sapiens

<400> 55
Val Arg Pro Leu Gln Glu Leu Cys Arg Gln Arg Ile Val Ala Thr Val
1 5 10 15

Gly Arg Glu Asn Leu Ala Arg Ile Pro Leu Asn Pro Val Leu Arg Asp
20 25 30

Tyr Leu

<210> 56
<211> 34
<212> PRT
<213> Mus musculus

<400> 56
Val Pro Ser Leu Gln His Ile Cys Arg Met Ser Ile Arg Arg Val Met
1 5 10 15

Ser Thr Gln Glu Val Gln Lys Leu Pro Val Pro Ser Lys Ile Leu Ala
20 25 30

Phe Leu

<210> 57
<211> 34
<212> PRT
<213> Mus musculus

<400> 57
Pro Phe Ser Leu Gln Tyr Ile Cys Arg Ala Val Ile Cys Arg Cys Thr
1 5 10 15

Thr Tyr Asp Gly Ile Asp Gly Leu Pro Leu Pro Ser Met Leu Gln Asp
20 25 30

Phe Leu

<210> 58
<211> 37
<212> PRT
<213> Mus musculus

<400> 58
Pro Arg Thr Leu Leu Ser Leu Cys Arg Val Ala Val Arg Arg Ala Leu
1 5 10 15
Gly Lys Tyr Arg Leu His Leu Val Pro Ser Leu Pro Leu Pro Asp Pro
20 25 30
Ile Lys Lys Phe Leu
35

<210> 59
<211> 37
<212> PRT
<213> Mus musculus

<400> 59
Pro Arg Ser Leu Gln His Leu Cys Arg Cys Ala Leu Arg Ser His Leu
1 5 10 15
Glu Gly Cys Leu Pro His Ala Leu Pro Arg Leu Pro Leu Pro Pro Arg
20 25 30
Met Leu Arg Phe Leu
35

<210> 60
<211> 34
<212> PRT
<213> Homo sapiens

<400> 60
Val Arg Ser Leu Gln Tyr Leu Cys Arg Phe Val Ile Cys Gln Tyr Thr
1 5 10 15
Arg Ile Asp Leu Ile Gln Lys Leu Pro Leu Pro Asn Lys Met Lys Asp
20 25 30
Tyr Leu

<210> 61
<211> 37
<212> PRT
<213> Mus musculus

<400> 61
Pro Arg Pro Leu Ala His Leu Cys Arg Leu Arg Val Arg Lys Ala Ile
1 5 10 15

Gly Lys Tyr Arg Ile Lys Leu Leu Asp Thr Leu Pro Leu Pro Gly Arg
20 25 30

Leu Ile Arg Tyr Leu
35

<210> 62
<211> 34
<212> PRT
<213> Homo sapiens

<400> 62
Val Lys Ser Leu Gln His Leu Cys Arg Phe Arg Ile Arg Gln Tyr Thr
1 5 10 15

Arg Ile Asp His Ile Pro Asp Leu Pro Leu Pro Lys Pro Leu Ile Ser
20 25 30

Tyr Ile

<210> 63
<211> 40
<212> PRT
<213> Mus musculus

<400> 63
Val Pro Ser Leu Thr His Leu Cys Arg Leu Glu Ile Arg Ala Ser Leu
1 5 10 15

Lys Ala Glu His Leu His Ser Asp Ile Phe Ile His Gln Leu Pro Leu
20 25 30

Pro Arg Ser Leu Gln Asn Tyr Leu
35 40

<210> 64
<211> 37
<212> PRT
<213> Mus musculus

<400> 64
Pro Leu Pro Leu Met Asp Leu Cys Arg Arg Ser Val Arg Leu Ala Leu
1 5 10 15

Gly Lys Glu Arg Leu Gly Ala Ile Pro Ala Leu Pro Leu Pro Ala Ser
20 25 30

Leu Lys Ala Tyr Leu
35

<210> 65
<211> 34
<212> PRT
<213> Mus musculus

<400> 65
Pro Phe Ser Leu Gln His Ile Cys Arg Thr Val Ile Cys Asn Cys Thr
1 5 10 15

Thr Tyr Asp Gly Ile Asp Ala Leu Pro Ile Pro Ser Pro Met Lys Leu
20 25 30

Tyr Leu

<210> 66
<211> 37
<212> PRT
<213> Mus musculus

<400> 66
Pro Gln Ser Leu Leu His Leu Ser Arg Leu Cys Val Arg His Ala Leu
1 5 10 15

Gly Asp Thr Arg Leu Gly Gln Ile Ser Thr Leu Pro Leu Pro Pro Ala
20 25 30

Met Lys Arg Tyr Leu
35

<210> 67
<211> 37
<212> PRT
<213> Homo sapiens

<400> 67
Pro His Ser Leu Leu His Leu Ser Arg Leu Cys Val Arg His Asn Leu
1 5 10 15

Gly Asp Thr Arg Leu Gly Gln Val Ser Ala Leu Pro Leu Pro Pro Ala
20 25 30

Met Lys Arg Tyr Leu
35

<210> 68
<211> 34
<212> PRT
<213> Mus musculus

<400> 68
Leu Ser Ser Leu Lys His Leu Cys Arg Lys Ala Leu Arg Ser Phe Leu
1 5 10 15

Thr Thr Tyr Gln Val Leu Ala Leu Pro Ile Pro Lys Lys Met Lys Glu
20 25 30

Phe Leu

C5

conclude