ENGG 201 – Chapter 6 Example – PVT Calculations for a Real Gas Mixture

Problem:

Consider the transportation of a natural gas, at an annual rate of 1 trillion standard cubic feet (measured at 0°C and 1 atm), through 4 parallel pipelines, each 1 meter in diameter.

The composition of the gas (mole basis) is: 85% CH_4 , 10% C_2H_6 and 5% CO_2 . The actual pressure and temperature are 100 atm and 10°C, respectively. The molar masses of the components are: CH_4 =16 kg/kmol, C_2H_6 =30 kg/kmol and 5% CO_2 =44 kg/kmol.

Calculate the actual yearly volumetric rate and average velocity by

- a) the ideal gas law
- b) Kay's pseudocritical method
- c) The van der Waals EOS (and mixing rules)
- d) The Pitzer-Curl tables

Notes:

- 1) 1 $ft^3 = 0.02832 \text{ m}^3$
- 2) 1 std. cu. ft. = volume of an ideal gas that is 1 ft³ when measured at 0°C, 1 atm

Answers

- a) $2.940 \times 10^8 \text{ m}^3/\text{yr}$, 2.96 m/s
- b) $2.205 \times 10^8 \text{ m}^3/\text{yr}$, 2.22 m/s
- c) $2.040 \times 10^8 \text{ m}^3/\text{yr}$, 2.06 m/s
- d) $2.16 \times 10^8 \text{ m}^3/\text{yr}$, 2.18 m/s

CHAPTER 6 - REAL GAS MIXTURE EXAMPLE

SOLUTION

Rate = 1×10¹² ft³ (standard)/yr fewn In the

team In in dinuter Po = 1 atm P = 100 atm

1 year = 365 x 24 x 3600 = 3.15 36 x 107 s

1 x 1012 ft3 WAR 0.028 32 m3 = Z.832 x 10 10 m3/yr = vo

n = Povo = (101.325 kPa) (2.832×10°n3) = 1.264×109 land RTo (8.314 kPa m3) (273115 K)

10EAL GAS

PV = NRT $= V = NRT = (1.264 \times 10^9 \text{ kmd})(8.314)(283.15)$ $= V = 100 \times 101.325$ $V = 2.94 \times 10^8 \text{ m3/yr}$

 $\frac{2.94 \times 10^8 \text{ m}^3}{97} \times \frac{197}{3.1530 \times 10^{7}} = \frac{9.309 \text{ m}^3/5}{5}$

Pipe Area = 4x Tr2 = 4T (0.5m)2 = 3.14m2

$$\overline{U} = \frac{Q}{A} = \frac{9.309 \, \text{m}^3 \text{ls}}{3.14 \, \text{m/s}} = \frac{2.963 \, \text{m/s}}{2.963 \, \text{m/s}}$$

(b) KAY'S Pseudocritical Method

GAS	y:	Tci (K)	Pci (atm)	yiTci	y; Pc:
CH4	0.85	190.6	45.4	162.01	38.59
CzHo	0.10	305.4	48.2	30,54	4.82
Wz	0.05	304.2	72.8	15.21	3.64
				Tpc = 207.76	PR = 47.05
				K	eitn

Mixtue pseudo-reduced propenties

$$Z = 0.75$$
 (chait)
 $PPC = n Z_m RT$

$$\overline{U} = \frac{6.98 \, \text{m}^3 \text{K}}{3.14 \, \text{m}^2} = \left[2.22 \, \text{m/s} \right]$$

$$V_{m3} - \left[0.04525 + 0.08205 \times 283.15\right] V_{m2} + \frac{2.595}{100} V_{m} - \frac{2.595 \times 0.04525}{100} = 0$$

First gress = ideal gas Vm

Vm = 2.94 × 108 m3/1, 264 × 109 knd = 0, 232 m3/kmd = Vm)

 $V_{m_1} = 0.232$ $f(V_{m_1}) = 0.27745 - 0.02595$ $\frac{0.00117}{0.232} = 0.1873$

Vmz = 0.1873 f (Vmz) = 0.1722

Vm3 = 0.1722 f(Vm3) = 0.1662

Vm = 0.1617 m3/kmal

V = 0.1617 m3/kmd x1.264 x109 kmal = 2.04 x108 m3/yr

2.04 x 108 = 6.48 m3/s

U = 6.48/3.14 = 2.06 M/s

Pitzer- (w)

Tpr = 1.36 Ppr = 2.13 (from b)

 $CH_{4} \omega = 0.008$ $C_{2}H_{6} \omega = 0.098$ $CO_{2} \omega = 0.225$ $\overline{\omega} = \Sigma y_{7} \omega_{7} = 0.02785$

之(0)			Pr		
		12.0	2.13	2.20	
Tr	1.30	0.691		0.671	
	1.36	0.7426	0.73025	0.7236	
	1.40	רגרוס		0.759	

7(1)

	12.0	1 2.13	1 2.20 1
Tr 1.30	0.20		0.20
1.36	0,194	0.1979	0.20
1.40	0.19		0.20