Prénom: Date:

Contrôle : Les limites de fonctions

/4 Exercice 1 : Conjecturer une limite

Graphiquement, on trouve:

$$\lim_{x \to -\infty} f(x) = 0 \text{ et } \lim_{x \to +\infty} f(x) = 0$$

La courbe admet une asymptote horizontale d'équation y = 0 en $+\infty$ et en $-\infty$.

$$\lim_{\substack{x \to -1 \\ x < -1}} f(x) = +\infty \text{ et } \lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty$$

La courbe admet une asymptote verticale d'équation x = -1.

$$\lim_{\substack{x \to 1 \\ x < 1}} f(x) = -\infty \text{ et } \lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$$

La courbe admet une asymptote verticale d'équation x = 1.

Exercice 2 : Calculs de limites

(a)
$$\lim_{x \to +\infty} (x - 10 + e^x)$$

On a:
$$\lim_{x \to +\infty} x - 10 = +\infty$$
 et $\lim_{x \to +\infty} e^x = +\infty$

Par somme,
$$\lim_{x\to+\infty} (x-10+e^x) = +\infty$$

(b)
$$\lim_{x \to -\infty} (x - 10 + e^x)$$

On a :
$$\lim_{x \to -\infty} x - 10 = -\infty$$
 et $\lim_{x \to -\infty} e^x = 0$

Par somme,
$$\lim_{x \to -\infty} (x - 10 + e^x) = -\infty$$

(c)
$$\lim_{\substack{x \to 3 \\ x > 3}} \left(\frac{2x - 1}{3 - x} \right)$$

Etude du signe de
$$3-x$$
: $3-x>0 \Leftrightarrow -x>-3 \Leftrightarrow x<3$

On a:
$$\lim_{\substack{x \to 3 \\ x > 3}} 2x - 1 = 5$$
 et $\lim_{\substack{x \to 3 \\ x > 3}} 3 - x = 0^{-1}$

On a :
$$\lim_{\substack{x \to 3 \\ x > 3}} 2x - 1 = 5$$
 et $\lim_{\substack{x \to 3 \\ x > 3}} 3 - x = 0^-$
Par quotient, $\lim_{\substack{x \to 3 \\ x > 3}} \left(\frac{2x - 1}{3 - x}\right) = -\infty$

(d)
$$\lim_{\substack{x\to 0\\x>0}} \left(\frac{3x^3 - 7}{1 - e^x} \right)$$

Etude du signe de
$$1 - e^x$$
: $1 - e^x > 0 \Leftrightarrow -e^x > -1 \Leftrightarrow e^x < 1 \Leftrightarrow e^x < e^0 \Leftrightarrow x < 0$

On a :
$$\lim_{\substack{x\to 0\\x>0}} 3x^3 - 7 = -7$$
 et $\lim_{\substack{x\to 0\\x>0}} 1 - e^x = 0^-$

Par quotient,
$$\lim_{\substack{x\to 0\\x>0}} \left(\frac{3x^3-7}{1-e^x}\right) = +\infty$$

(e)
$$\lim_{x \to +\infty} \left(\frac{1}{2x\sqrt{x}} - 5 \right)$$

On a:
$$\lim_{x \to +\infty} 2x = +\infty$$
 et $\lim_{x \to +\infty} \sqrt{x} = +\infty$

Par produit,
$$\lim_{x\to +\infty} 2x\sqrt{x} = +\infty$$

Par quotient,
$$\lim_{x\to +\infty} \frac{1}{2x\sqrt{x}} = 0$$

Par somme,
$$\lim_{x\to +\infty} \left(\frac{1}{2x\sqrt{x}} - 5\right) = -5$$

/3.5 **Exercice 3**: Soit f la fonction définie sur $\mathbb{R}\setminus\{-2\}$ dont le tableau de variation est le suivant :

(a) Donner toutes les limites de f qui sont renseignées dans ce tableau.

D'après le tableau de variation, on a :
$$\lim_{x\to -\infty} f(x) = 3 \, ; \qquad \lim_{x\to -2^-} f(x) = +\infty \, ; \qquad \lim_{x\to -2^+} f(x) = -\infty \, ; \qquad \lim_{x\to +\infty} f(x) = 0$$

(b) Dans un repère, C_f est la courbe représentative de f. Déterminer les asymptotes de C_f .

La courbe C_f admet une asymptote verticale d'équation x = -2, une asymptote horizontale d'équation y = 3 et une asymptote horizontale d'équation y = 0.

- (c) Montrer que l'équation f(x) = 0 admet une unique solution sur \mathbb{R} .
- Dans l'intervalle $]-\infty;-2[:$

On a f(x) > 3.

Donc l'équation f(x) = 0 ne possède pas de solution sur $]-\infty;-2[$.

Dans l'intervalle]-2;2[:

D'après le tableau de variations, la fonction f est continue et strictement croissante sur] - 2; 2[.

On a
$$\lim_{x \to -2^+} f(x) = -\infty$$
 et f(2)=1.

Or, $0 \in]-\infty;1[$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans]-2;2[.

Dans l'intervalle $[2; +\infty[$:

On a f(2)=1 et
$$\lim_{x \to +\infty} f(x) = 0$$
.

Or, $0 \in]1;0[$

Donc l'équation f(x) = 0 ne possède pas de solution sur $[2; +\infty[$.

On déduit de cette étude que l'équation f(x) = 0 possède une unique solution sur \mathbb{R} .

/5.5 Exercice 4:

1) Justifier la continuité de la fonction f.

D'après la lecture du tableau de variations, la fonction f est continue sur $]-\infty;-2[$ puis sur]-2;1[puis sur $]1;+\infty[$.

2) Déterminer le nombre de solutions de f(x) = 0 sur \mathbb{R} .

— Dans l'intervalle $]-\infty;-2[$:

On a f(x) > 2.

Donc l'équation f(x) = 0 ne possède pas de solution sur $]-\infty; -2[$.

— Dans l'intervalle]-2;1[:

D'après le tableau de variations, la fonction f est continue et strictement croissante sur]-2;1[.

On a
$$\lim_{x \to -2^+} f(x) = -\infty$$
 et $\lim_{x \to 1^-} f(x) = +\infty$.

Or,
$$0 \in]-\infty;+\infty[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans]-2;1[.

— Dans l'intervalle $]1;+\infty[$:

D'après le tableau de variations, la fonction f est continue et strictement croissante sur $]1;+\infty[$.

On a
$$\lim_{x \to 1^+} f(x) = -\infty$$
 et $\lim_{x \to 1^+} f(x) = 1$.

Or,
$$0 \in]-\infty;1[$$

Donc d'après le cas particulier du théorème des valeurs intermédiaires, l'équation f(x) = 0 admet une unique solution dans $]1; +\infty[$.

— On déduit de cette étude que l'équation f(x) = 0 possède deux solutions sur \mathbb{R} .

3) BONUS : Déterminer la valeur des solutions α_1 et α_2 . En déduire le signe de f(x) en fonction des valeurs de x.

Tableau de signe: