מבנה המחשב + מבוא למחשבים ספרתיים

#1 תרגול

Boolean Algebra

Reference:

Introduction to Digital Systems

Miloš Ercegovac, Tomás Lang, Jaime H. Moreno

Pages: 480-487

A **Boolean Algebra** is a 3-tuple $\{B, +, \cdot\}$, where

- B is a set of at least 2 elements
- (+) and (·) are binary operations (i.e. functions $B \times B \to B$) satisfying the following axioms:

A1. Commutative laws: For every $a, b \in B$

I.
$$a + b = b + a$$

II.
$$a \cdot b = b \cdot a$$

A2. Distributive laws: For every $a, b, c \in B$

I.
$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

II.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

- A3. Existence of identity elements: The set B has two distinct identity elements, denoted as 0 and 1, such that for every element $a \in B$ additive identity element
 - I. a + 0 = 0 + a = a multiplicative identity element
 - II. $a \cdot 1 = 1 \cdot a = a$
- <u>A4</u>. Existence of a complement: For every element $a \in B$ there exists an element a' such that
 - I. a + a' = 1
 - II. $a \cdot a' = 0$

the complement of a

<u>Precedence ordering:</u> • before +

For example:

$$a + (b \cdot c) = a + bc$$

Switching Algebra

$$B = \{ 0, 1 \}$$

AND	0	1
0	0	0
1	0	1

Theorem 1: The switching algebra is a Boolean algebra.

Proof:

By satisfying the axioms of Boolean algebra:

• *B* is a set of at least two elements

$$B = \{0, 1\}, 0 \neq 1 \text{ and } |B| \geq 2.$$

• Closure of (+) and (·) over B (functions $B \times B \rightarrow B$).

AND	0	1	OR	0	1
0	0	0	0	0	1
1	0	1 /	1		1 /
	1884	2000		100	

closure

A1. Cummutativity of (+) and (\cdot).

AND	0	1	OR	0	1
0	0	0	0	0	1
1	0	1	1	1	1-1-1

Symmetric about the main diagonal

A2. Distributivity of (+) and (\cdot) .

abc	a + bc	(a+b)(a+c)	abc	a(b+c)	ab + ac
000	0	0	000	0	0
001	0	0	001	0	0
010	0	0	010	0	0
011	1	1	011	0	0
100	1	1	100	0	0
101	1	1	101	1	1
110	1	1	110	1	1
111	1	1	111	1	1

* Alternative proof of the distributive laws:

<u>Claim:</u> (follow directly from operators table)

• AND(
$$0$$
 , x) = 0

$$AND(1, x) = x$$

•
$$OR(1, x) = 1$$

$$OR(0, x) = x$$

Consider the distributive law of (\cdot) :

$$AND(a, OR(b, c)) = OR(AND(a, b), AND(a, c))$$

$$\underline{\mathbf{a} = \mathbf{0}} : \text{AND}(0, \text{OR}(b, c)) = \text{OR}(\text{AND}(0, b), \text{AND}(0, c))$$

$$\underline{\mathbf{a} = 1} : \text{AND}(1, \text{OR}(b, c)) = \text{OR}(\text{AND}(1, b), \text{AND}(1, c))$$

$$\underline{\mathbf{OR}(b, c)}$$

$$\underline{\mathbf{OR}(b, c)}$$

$$\underline{\mathbf{OR}(b, c)}$$

Consider the distributive law of (+):

$$OR(a, AND(b, c)) = AND(OR(a, b), OR(a, c))$$

$$\underline{\mathbf{a} = \mathbf{0}} : \mathbf{OR}(0, \mathbf{AND}(b, c)) = \mathbf{AND}(\mathbf{OR}(0, b), \mathbf{OR}(0, c))$$

$$\mathbf{AND}(b, c)$$

$$\mathbf{AND}(b, c)$$

$$\mathbf{AND}(b, c)$$

Why have we done that?!

For complex expressions truth tables are not an option.

A3. Existence of additive and multiplicative identity element.

$$0+1=1+0=1$$
 $0-$ additive identity

A4. Existence of the complement.

а	a'	a + a	$a \cdot a$
1	0	1	0
0	1	1	0

All axioms are satisfied

Switching algebra is Boolean algebra.

Theorems in Boolean Algebra

Theorem 2:

Every element in B has a **unique** complement.

Proof:

Let $a \in B$. Assume that a_1 ' and a_2 ' are both complements of a, (i.e. $a_i' + a = 1$ & $a_i' \cdot a = 0$), we show that $a_1' = a_2'$.

Identity
$$a'_1 = a'_1 \cdot 1$$

$$a_2' \text{ is the complement of } a$$

$$= a'_1 \cdot (a + a'_2)$$

$$= a'_1 \cdot a + a'_1 \cdot a'_2$$

$$= a \cdot a'_1 + a'_1 \cdot a'_2$$

$$= 0 + a'_1 \cdot a'_2$$

$$= a'_1 \cdot a'_2$$
Identity
$$= a'_1 \cdot a'_2$$

We swap a_1 ' and a_2 ' to obtain,

$$a_2' = a_2' \cdot a_1'$$
$$= a_1' \cdot a_2'$$

$$a_1' = a_2'$$

Complement uniqueness

' can be considered as a unary operation

 $B \rightarrow B$ called **complementation**

Boolean expression - Recursive definition:

<u>base</u>: 0, 1, $a \in B$ – expressions.

<u>recursion step:</u> Let E₁ and E₂ be Boolean expressions.

Then,

$$\left(\begin{array}{c} E_1' \\ (E_1 + E_2) \\ (E_1 \cdot E_2) \end{array}\right) \quad \text{expressions}$$

Dual transformation - Recursive definition:

Dual: expressions \rightarrow expressions

base:
$$0 \to 1$$

 $1 \to 0$
 $a \to a$, $a \in B$
recursion step: Let E₁ and E₂ be Boolean expressions.
Then,
 $E_1' \to [\text{dual}(E_1)]'$

$$E_1' \rightarrow [\operatorname{dual}(E_1)]'$$

$$(E_1 + E_2) \rightarrow [\operatorname{dual}(E_1) \cdot \operatorname{dual}(E_2)]$$

$$(E_1 \cdot E_2) \rightarrow [\operatorname{dual}(E_1) + \operatorname{dual}(E_2)]$$

Example:

$$((a+b)+(a'\cdot b'))\cdot 1$$

$$((a\cdot b)\cdot (a'+b'))+0$$

The axioms of Boolean algebra are in dual pairs.

<u>A1</u>. Commutative laws: For every $a, b \in B$

I.
$$a + b = b + a$$

II.
$$a \cdot b = b \cdot a$$

A2. Distributive laws: For every $a, b, c \in B$

I.
$$a + (b \cdot c) = (a+b) \cdot (a+c)$$

II.
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)$$

A3. Existence of identity elements: The set B has two distinct identity elements, denoted as 0 and 1, such that for every element $a \in B$

I.
$$a + 0 = 0 + a = a$$

II.
$$a \cdot 1 = 1 \cdot a = a$$

<u>A4</u>. Existence of a complement: For every element $a \in B$ there exists an element a' such that

I.
$$a + a' = 1$$

II.
$$a \cdot a' = 0$$

Theorem 3:

For every $a \in B$:

- 1. a + 1 = 1
- 2. $a \cdot 0 = 0$

a' is the complement of a

Proof:

(1)

Identity
$$a+1=1\cdot(a+1)$$
 a' is the complement of a'
 $=(a+a')\cdot(a+1)$
 $=a+(a'\cdot 1)$
 $=a+a'$

Identity $=1$

(2) we can do the same way:

Identity
$$a \cdot 0 = 0 + (a \cdot 0)$$

$$a' \text{ is the complement of } a$$

$$= (a \cdot a') + (a \cdot 0)$$

$$= a \cdot (a' + 0)$$

$$= a \cdot a'$$
Identity
$$= 0$$

$$a' \text{ is the complement of } a$$

Note that:

- $a \cdot 0$, 0 are the dual of a + 1, 1 respectively.
- The proof of (2) follows the same steps exactly as the proof of (1) with the same arguments, but applying the dual axiom in each step.

Theorem 4: Principle of Duality

Every algebraic identity deducible from the axioms of a Boolean algebra attains:

$$E_1 = E_2 \Rightarrow dual(E_1) = dual(E_2)$$

Correctness by the fact that each axiom has a dual axiom as shown

For example:

$$(a+b) + a' \cdot b' = 1$$

$$(a \cdot b) \cdot (a' + b') = 0$$

Every theorem has its dual for "free"

Theorem 5:

The complement of the element 1 is 0, and vice versa:

1.
$$0' = 1$$

2.
$$1' = 0$$

Proof:

By Theorem 3,

$$0 + 1 = 1$$
 and

$$0 \cdot 1 = 0$$

By the uniqueness of the complement, the Theorem follows.

<u>Theorem 6:</u> Idempotent Law

For every $a \in B$

1.
$$a + a = a$$

$$2. \quad a \cdot a = a$$

Proof:

(1)

Identity
$$a + a = (a + a) \cdot 1$$

$$a' \text{ is the complement of } a$$

$$= (a + a) \cdot (a + a')$$

$$= (a + (a \cdot a'))$$

$$= (a + (a \cdot a'))$$

$$= a + 0$$

$$= a$$
Identity
$$= a$$

(2) duality.

Theorem 7: Involution Law

For every $a \in B$

$$(a')' = a$$

Proof:

(a')' and a are both complements of a'.

Uniqueness of the complement \rightarrow (a')' = a.

Theorem 8: Absorption Law

For every pair of elements a, $b \in B$,

1.
$$a + a \cdot b = a$$

2.
$$a \cdot (a + b) = a$$

Proof: home assignment.

Theorem 9:

For every pair of elements a, $b \in B$,

1.
$$a + a' \cdot b = a + b$$

2.
$$a \cdot (a' + b) = a \cdot b$$

Proof:

distributivity a + a'b = (a + a')(a + b) a' is the complement of a = 1(a + b) = a + bIdentity

(2) duality.

Theorem 10:

In a Boolean algebra, each of the binary operations (+) and (\cdot) is associative. That is, for every a, b, $c \in B$,

1.
$$a + (b + c) = (a + b) + c$$

2.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

<u>Proof:</u> home assignment (hint: prove that both sides in (1) equal

$$[(a+b)+c]\cdot [a+(b+c)].$$

Theorem 11: DeMorgan's Law

For every pair of elements a, $b \in B$,

1.
$$(a+b)' = a' \cdot b'$$

2.
$$(a \cdot b)' = a' + b'$$

Proof: home assignment.

Theorem 12: Generalized DeMorgan's Law

Let {a, b, ..., c, d} be a set of elements in a Boolean algebra. Then, the following identities hold:

1.
$$(a+b+...+c+d)' = a'b'...c'd'$$

2.
$$(a \cdot b \cdot \ldots \cdot c \cdot d)' = a' + b' + \ldots + c' + d'$$

Proof: By **induction**.

Induction basis: follows from DeMorgan's Law

$$(a+b)' = a' \cdot b'.$$

Induction hypothesis: DeMorgan's law is true for n elements.

Induction step: show that it is true for n+1 elements.

Let a, b, ..., c be the n elements, and d be the $(n+1)^{st}$ element.

$$(a+b+...+c+d)' = [(a+b+...+c)+d]'$$

Associativity

$$=(a+b+\ldots+c)'d'$$

DeMorgan's Law

$$=a'b'...c'd'$$

Induction assumption (a+b+...+c)' = a'b'...c'

The symbols a, b, c, \ldots appearing in theorems and axioms are **generic variables**

Can be substituted by complemented variables or expressions (formulas)

For example:

$$a \leftarrow a'$$

$$b \leftarrow b'$$

$$(a'+b')' = ab$$

$$(a+b)' = a'b'$$

$$a \leftarrow (a+b)$$

$$(a+b)+c']' = (a+b)'c$$

 $b \leftarrow c'$

Other Examples of Boolean Algebras

Algebra of Sets

Consider a set S.

B = all the subsets of S (denoted by P(S)).

"plus" → set-union U

"times" \rightarrow set-intersection \cap

$$M = (P(S), \cup, \cap)$$

Additive identity element – empty set \emptyset

Multiplicative identity element – the set *S*.

P(S) has $2^{|S|}$ elements, where |S| is the number of elements of S

Algebra of Logic (Propositional Calculus)

Elements of *B* are *T* and *F* (true and false).

"times" → Logical AND

$$M = (\{T, F\}, \lor, \land)$$

Additive identity element -F

Multiplicative identity element -T