# **Pawpularity Contest**

Austin Jin, Chandni Shah, Matt Lyons W207 Final Project, Fall 2021







# Agenda

- 1. Project Description
- 2. Data Description
- 3. Exploratory Data Analysis
- 4. Tabular Data Models
- 5. Pixel Data Models
- 6. Combined Data Model
- 7. Overall Summary (Challenges, Surprises, etc)
- 8. Missing Data / Noise
- 9. Q&A



## **Project Description**



#### PetFinder.my

- Malaysia's leading animal welfare platform
- Uses basic Cuteness meter to rank pet photos
- Analyzes picture composition and other factors compared to performance of thousands of pet profiles

### **Competition**

- Analyze raw images and metadata to predict the "Pawpularity" of pet photos
- Train and test model on PetFinder.my's thousands of pet profiles
- Winning versions will offer accurate recommendations that will improve animal welfare



### Data Description

#### Pawpularity Score

- Derived from each pet profile's page view statistics at the listing pages that uses an algorithm to normalize traffic data
- Duplicate clicks, crawler bot accesses, and sponsored profiles are excluded from the analysis

#### **Photo Metadata**

- Manually labeled each photo for key visual quality and composition parameters
- Not used for deriving Pawpularity score but beneficial for better understand the content

#### **Training Data**

- train/ folder contains training set photos of the form {id}.jpg, where {id} is a unique Pet Profile ID
- train.csv contains metadata for each photo in the training set and target, the photo's Pawpularity score.



### Tabular Metadata

"Tabular Metadata: Each pet photo is labeled with the value of 1 (Yes) or 0 (No) for each of the following features. These labels are not used for deriving the Pawpularity score.

- Focus Pet stands out against uncluttered background, not too close / far.
- Eyes Both eyes are facing front or near-front, with at least 1 eye / pupil decently clear.
- Face Decently clear face, facing front or near-front.
- Near Single pet taking up significant portion of photo (roughly over 50% of photo width or height).
- Action Pet in the middle of an action (e.g., jumping).
- Accessory Accompanying physical or digital accessory / prop (i.e. toy, digital sticker), excluding collar and leash.
- Group More than 1 pet in the photo.
- Collage Digitally-retouched photo (i.e. with digital photo frame, combination of multiple photos).
- Human Human in the photo.
- Occlusion Specific undesirable objects blocking part of the pet (i.e. human, cage or fence). Note that not all blocking objects are considered occlusion.
- Info Custom-added text or labels (i.e. pet name, description).
- Blur Noticeably out of focus or noisy, especially for the pet's eyes and face. For Blur entries, "Eyes" column is always set to 0."



### Tabular EDA

train\_df = pd.read\_csv('./petfinder-pawpularity-score/train.csv')
train\_df.head()

|   | ld                               | Subject Focus | Eyes | Face | Near | Action | Accessory | Group | Collage | Human | Occlusion | Info | Blur | Pawpularity |
|---|----------------------------------|---------------|------|------|------|--------|-----------|-------|---------|-------|-----------|------|------|-------------|
| 0 | 0007de18844b0dbbb5e1f607da0606e0 | 0             | 1    | 1    | 1    | 0      | 0         | 1     | 0       | 0     | 0         | 0    | 0    | 63          |
| 1 | 0009c66b9439883ba2750fb825e1d7db | 0             | 1    | 1    | 0    | 0      | 0         | 0     | 0       | 0     | 0         | 0    | 0    | 42          |
| 2 | 0013fd999caf9a3efe1352ca1b0d937e | 0             | 1    | 1    | 1    | 0      | 0         | 0     | 0       | 1     | 1         | 0    | 0    | 28          |
| 3 | 0018df346ac9c1d8413cfcc888ca8246 | 0             | 1    | 1    | 1    | 0      | 0         | 0     | 0       | 0     | 0         | 0    | 0    | 15          |
| 4 | 001dc955e10590d3ca4673f034feeef2 | 0             | 0    | 0    | 1    | 0      | 0         | 1     | 0       | 0     | 0         | 0    | 0    | 72          |

print(test\_df.shape)
print(train\_df.shape)

(8, 13) (9912, 14)

Berkeley

|       | Pawpularity |  |  |  |
|-------|-------------|--|--|--|
| count | 9912.000000 |  |  |  |
| mean  | 38.039044   |  |  |  |
| std   | 20.591990   |  |  |  |
| min   | 1.000000    |  |  |  |
| 25%   | 25.000000   |  |  |  |
| 50%   | 33.000000   |  |  |  |
| 75%   | 46.000000   |  |  |  |
| max   | 100.000000  |  |  |  |



### **EDA Results**

- Distribution of Pawpularity scores are skewed with a small curve close to zero Pawpularity as well along with 300 Pawpularity scores at 100
- Distribution of Pawpularity scores is very similar for each variable and class
  - Features doesn't seem to influence the Pawpularity scores as much
- Found out that a winning solution requires the use of images and not the .csv metadata
- Found out that reshaping the images will be needed when building the models
  - o In order to do so, we needed to retrieve the image filenames without the directory and .jpg at the end so that we can search the ID column in the train\_df dataframe for Pawpularity scores

Score: 100 Score: 25th Percentile







## Tabular Data Models: Summary

We used three models with tabular data to predict scores. We quickly learned models performed better omitting outlier scores == 100, as suspected from EDA. Below are the results omitting 100 values from training:

#### Linear Regression

- Started simple with LR
- RMSE = 18.4451
- 46.83% of the predicted labels were within 10 points of the correct label

#### **KNN** Regression

- Used GridSearchCV to search best parameters
- k=175 was optimal and computationally reasonable
- RMSE = 18.4635
- 45.79% of the predicted labels were within 10 points of the correct label

### Decision Tree & Random Forest

#### **Decision Tree**

- RMSE = 18.5166
- 46.21% of the predicted labels were within 10 points of the correct label

#### Random Forest

- Ensemble of 100 trees
- RMSE = 18.4401
- 46.63% of the predicted labels were within 10 points of the correct label



### Tabular Data Models: Decision Tree

Below is our decision tree visualized with max\_depth = 3, min\_samples\_split = 10:





### Tabular Data Models: Random Forest

While the Random Forest Ensemble was our best scoring model for tabular data, we noticed a reliance on the mean to generate predictions:







# Pixel Data Preparation/Baseline Models



Resized to 300x300 grayscale,

Added padding to retain proportions

Baseline KNN: RMSE = 20.81 KNN w/ outliers excluded: RMSE = 18.46

Baseline Linear regression: RMSE = 27.06 Linear regression no outliers: RMSE = 18.45

### Pixel Data CNNs

| Layer (type)                 | Output Shape          | Param # |
|------------------------------|-----------------------|---------|
| input_1 (InputLayer)         | [(None, 128, 128, 3)] | 0       |
| conv2d (Conv2D)              | (None, 61, 61, 16)    | 2368    |
| conv2d_1 (Conv2D)            | (None, 61, 61, 32)    | 4640    |
| batch_normalization (BatchNo | (None, 61, 61, 32)    | 128     |
| conv2d_2 (Conv2D)            | (None, 31, 31, 32)    | 9248    |
| batch_normalization_1 (Batch | (None, 31, 31, 32)    | 128     |
| dropout (Dropout)            | (None, 31, 31, 32)    | 0       |
| conv2d_3 (Conv2D)            | (None, 31, 31, 64)    | 18496   |
| batch_normalization_2 (Batch | (None, 31, 31, 64)    | 256     |
| conv2d_4 (Conv2D)            | (None, 16, 16, 64)    | 36928   |
| batch_normalization_3 (Batch | (None, 16, 16, 64)    | 256     |
| dropout_1 (Dropout)          | (None, 16, 16, 64)    | 0       |
| conv2d_5 (Conv2D)            | (None, 16, 16, 128)   | 73856   |
| batch_normalization_4 (Batch | (None, 16, 16, 128)   | 512     |
| max_pooling2d (MaxPooling2D) | (None, 8, 8, 128)     | 0       |
| conv2d_6 (Conv2D)            | (None, 8, 8, 128)     | 147584  |
| batch_normalization_5 (Batch | (None, 8, 8, 128)     | 512     |
| dropout_2 (Dropout)          | (None, 8, 8, 128)     | 0       |
| flatten (Flatten)            | (None, 8192)          | 0       |
| dense (Dense)                | (None, 512)           | 4194816 |
| dropout_3 (Dropout)          | (None, 512)           | 0       |
| dense_1 (Dense)              | (None, 1)             | 513     |

Total params: 4,490,241 Trainable params: 4,489,345 Non-trainable params: 896 → RMSE ~18.5 (not great, not terrible) --padding outperformed resizing



EfficientNet 200+ Layers, Many Hours of Training:

EfficientNet b3 Model RMSE + LightGBM = 16.5786



### Grad-CAM (Gradient-weighted Class Activation Mapping

Good Region Bad Score



Bad Region Bad Score







Good Regions
Good Scores



### Pixel Data -> PCA

- Noisy images--many pixels might not be useful in discriminating
- Performed PCA and fed back through (differently structured) CNN
  - 90000 -> 324 (18 x 18) (300 PCs explained ~91% of variance)
  - MUCH faster training and tuning
  - Similar performance (RMSE = ~18.47)
- Images became very abstract

Training on PCA was more like "hitting a wall" compared to pixel CNN









### Combined Data Model: Tabular and Pixel

Given our separate tabular and pixel data results, we combined the two data sources

- Features: 12 tabular features + 324 PCA components from pixels
- Models:
  - Random Forest Ensemble because it was the best performing tabular model
  - Histogram-based GBM because LightGBM worked well with the EfficientNet CNN
- Results:
  - Improved scores compared to tabular data models
  - Random Forest outperformed Histogram-based GBM
    - RMSE = 17.8775
    - 47.48% of predicted labels are within 10 points of the correct label



# **Overall Summary**

| Challenges                                               | Surprises                                                          | Methods                                                        |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| Understanding Image Scores                               | Unexpected Data Skews                                              | Digit Classification                                           |  |  |  |
| Transforming Images                                      | Lowest RMSE - Random Forest                                        | PCA, Flattening/Padding Images                                 |  |  |  |
| Creating High-Performing Models                          | No Insights On People Scoring                                      | KNN and Linear Regression                                      |  |  |  |
| Defining CNN Model Architecture                          | Lack Of Results From CNN Model                                     | CNN, Random Forest/Decision Tree                               |  |  |  |
| Accurately Predicting Pawpularity Scores Based on Images | Similar Distribution Of Pawpularity Scores For Each Variable/Class | Packages such as tensorflow, scikit, sklearn, matplotlib, etc. |  |  |  |



# Missing Data / Noise

| Missing Data                                            | Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Insights On How People Scored                           | Distribution Skew Of Pawpularity Scores - e.g. 300 Pawpularity Scores at 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Website Mechanics                                       | Unnecessary background items and colors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| External Influential Factors (e.g. # of clicks per pet) | So that is the state of the sta |  |  |  |  |





# Thank you!

