ĐẠI HỌC QUỐC GIA TP.HCM TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN KHOA CÔNG NGHỆ THÔNG TIN

Bài tập môn:

Nhập môn mã hóa & mật mã Bài tập Elgammal và Primitive Test

Sinh viên thực hiện: Tôn Thất Tâm Định – 1512112

- 2.8. Ta có: p = 1373, g = 2 là các public key
- a) Khi Alice chọn private key a = 947, thi public mà Alice gửi là $A \equiv g^a \equiv 177 \pmod{p}$.
- b) Khi Bob chọn private key b = 716 và public key $B = g^b = 469 \pmod{p}$. Alice muốn gửi thông điệp m thì phải gửi cặp số $(c_1, c_2) = (g^k, mB^k) = (g^k, mg^{bk}) = (719, 623)$
- c) Cặp giá trị (c_1, c_2) mà Bob gửi là $(g^k \mod p, mg^{ak} \mod p)$ do đó để tìm lại m ta chỉ cần tính: $x \equiv (c_1^a)^{-1} \equiv (g^{ak})^{-1} \pmod{p}$ và tính $xc_2 \equiv mg^{ak} (g^{ak})^{-1} \equiv m \pmod{p}$.

Tính toán ta có
$$x = 645^{-1} = -579 = 794 \pmod{1373}$$
 và $m = xc_2 = 794 \times 1325 = 1332 \pmod{1373}$.

d) Cặp giá trị (c_1, c_2) mà Alice gửi cho Bob là $(g^k \mod p, mg^{bk} \mod p)$ nên nếu Eve biết b thì sẽ phá được mật thư này. Với b thỏa $2^b \equiv 893 \pmod{1373}$. Dùng máy tính ta tìm được giá trị b = 219

Từ đớ
$$x = (c_1^b)^{-1} = (g^{bk})^{-1} = 431^{-1} = 532 \pmod{p}$$
 và $m = xc_2 = 532 \times 793 = 365 \pmod{1373}$.

Nếu ta giải được bài toán DF tức là tính được g^{ab} mod p từ g^a mod p và g^b mod p thì khi đó với public key $A = g^a$ mod p và $c_1 = g^k$ mod p ta sẽ tính được $x^{-1} = g^{ak}$ mod p và từ đó tính ra $x = (g^{ak})^{-1}$ mod p. Kết hợp giá trị x này với $c_2 = mg^{ak}$ ta sẽ tính lại được m. Vậy hệ mã El-Gammal bị phá.

2.10.

Theo định lý Fermat ta có: $a^{p-1} \equiv 1 \pmod{p}$ với (a, p) = 1. Do đó với mọi x ta có: $a^x \equiv a^{k(p-1)+y} \equiv a^y \pmod{p}$ nên suy ra $a^x \equiv a^{x \pmod{p-1}} \pmod{p}$. Giá trị 15619 mà Alice chọn thật ra là $x = a^{-1} \pmod{p-1}$ và giá trị b = 31883 mà Bob chọn là $y = b^{-1} \pmod{p-1}$. Để sau đó ta có $m^{ab.xy} \equiv m^{abxy\%(p-1)} \equiv m^1 \pmod{p}$.

b) Từ đó ta có bảng mô tả cách hoạt động của thuật toán như sau.

Public key: p	
Alice	Bob

Private key: a	
Message: m	
Compute: $u = m^a \pmod{p}$ and send to	
Bob	
	Chose random b.
	Compute $v = u^b = m^{ab} \pmod{p}$ and send
	to Alice
Compute $x = a^{-1} \pmod{p-1}$	
Compute $w = v^x = m^{ab.x \pmod{p-1}} \pmod{p}$	
p)	
	Compute $y = b^{-1} \pmod{p-1}$
	Compute $w^y = m^{ab.xy \mod (p-1)} = m \pmod{p}$
	p).

- c) Điểm hạn chế của thuật toán là Alice và Bob phải giao tiếp 2 lần mới có thể truyền được dữ liệu mong muốn. Điều này làm tăng khả năng gói tin bị bắt trên đường truyền dẫn đến sự truyền dễ bị phá.
- d) Nếu ta giải được bài toán DLP thì thuật toán sẽ bị phá vì khi đó ta bắt được v thì ta sẽ có được ab từ đó dễ dàng có được $(ab)^{-1} (mod \, p-1)$ và tính lại được m dễ dàng. Nhưng nếu giải được bài DH thì ta chưa thể phá được hệ thống mã này vì bài toán DH chỉ là tính g^{ab} mod p dựa trên g^a , g^b . Do đó đây chính là điểm mạnh của thuật toán này so với ElGammal.
- 3.13. Carmichael number là số n thỏa $a^n \equiv a \pmod{n}$ với mọi a nhưng n không là số nguyên tố.
- a) Theo định lý Fermat ta có: $a^{p-1} \equiv 1 \pmod{p}$ với (a, p) = 1. Do đó với mọi x ta có: $a^x \equiv a^{k(p-1)+y} \equiv a^y \pmod{p}$ nên suy ra $a^x \equiv a^{x \pmod{(p-1)}} \pmod{p}$.

Do đó
$$a^{560} \equiv a^{560 \mod 2} \equiv a^0 \equiv 1 \pmod{3}$$
 hay $a^{561} \equiv a \pmod{3}$.

Turong tự ta cũng chứng minh được $a^{560} \equiv a^{560 \mod 10} \equiv a^0 \equiv 1 \pmod{11}$ và $a^{560} \equiv a^{560 \mod 16} \equiv a^0 \equiv 1 \pmod{17}$.

Theo định lý thặng dư trung hoa thì pt: $\begin{cases} a^{560} \equiv 1 \pmod{3} \\ a^{560} \equiv 1 \pmod{11} \text{ có nghiệm duy nhất trên} \\ a^{560} \equiv 1 \pmod{17} \end{cases}$

modulo 3x11x17.

Xét
$$x = (11 \times 17)^2 + (3 \times 17)^{10} + (3 \times 11)^{16} = 1 \pmod{561}$$
. Do đó $a^{560} = 1 \pmod{561}$ hay $a^{561} = a \pmod{561}$.

b)

(i) Khi n = 1729, ta có:
$$a^{n-1} \equiv a^{(n-1)\%6} \equiv 1 \pmod{7}$$
, $a^{n-1} \equiv a^{(n-1)\%12} \equiv 1 \pmod{13}$ và $a^{n-1} \equiv a^{(n-1)\%18} \equiv 1 \pmod{19}$.

Theo định lý thặng dư trung hoa thì pt: $\begin{cases} a^{n-1} \equiv 1 \pmod{7} \\ a^{n-1} \equiv 1 \pmod{13} \text{ có nghiệm duy nhất trên} \\ a^{n-1} \equiv 1 \pmod{19} \end{cases}$

modulo 7.13.19.

Xét $x = (13 \times 19)^6 + (7 \times 19)^{12} + (7 \times 13)^{18} = 1 \pmod{1729}$ là nghiệm của hệ đồng dư trên. Do đó $a^{n-1} = 1 \pmod{hay}$ $a^n = a \pmod{n}$.

(ii) Tương tự câu (i) khi n = 10585, ta có: , ta có: $a^{n-1} \equiv a^{(n-1)\%4} \equiv 1 \pmod{5}$, $a^{n-1} \equiv a^{(n-1)\%28} \equiv 1 \pmod{29}$ và $a^{n-1} \equiv a^{(n-1)\%72} \equiv 1 \pmod{73}$.

Theo định lý thặng dư trung hoa thì pt: $\begin{cases} a^{n-1} \equiv 1 \pmod{5} \\ a^{n-1} \equiv 1 \pmod{29} \text{ có nghiệm duy nhất trên} \\ a^{n-1} \equiv 1 \pmod{73} \end{cases}$

modulo 5.29.73.

Xét $x = (29 \times 73)^4 + (5 \times 73)^{28} + (5 \times 29)^{72} = 1 \pmod{10585}$ là nghiệm của hệ đồng dư trên. Do đó $a^{n-1} = 1 \pmod{h}$ hay $a^n = a \pmod{n}$.

(iii) khi n = 75361, ta có:
$$a^{n-1} \equiv a^{(n-1)\%10} \equiv 1 \pmod{11}$$
, $a^{n-1} \equiv a^{(n-1)\%12} \equiv 1 \pmod{13}$, $a^{n-1} \equiv a^{(n-1)\%16} \equiv 1 \pmod{17}$ và $a^{n-1} \equiv a^{(n-1)\%30} \equiv 1 \pmod{31}$

Theo định lý thặng dư trung hoa thì pt: $\begin{cases} a^{n-1} \equiv 1 \pmod{11} \\ a^{n-1} \equiv 1 \pmod{13} \\ a^{n-1} \equiv 1 \pmod{17} \end{cases}$ có nghiệm duy nhất trên $a^{n-1} \equiv 1 \pmod{31}$

modulo 11.13.17.31.

Xét $x = (13 \times 17 \times 31)^{10} + (11 \times 17 \times 31)^{12} + (11 \times 13 \times 31)^{16} + (11 \times 13 \times 17)^{30} = 1 \pmod{75361}$ là nghiệm của hệ đồng dư trên. Do đó $a^{n-1} = 1 \pmod{h}$ hay $a^n = a \pmod{h}$.

(iv) khi n = 1024651, ta có:
$$a^{n-1} \equiv a^{(n-1)\%18} \equiv 1 \pmod{19}$$
, $a^{n-1} \equiv a^{(n-1)\%198} \equiv 1 \pmod{199}$, $a^{n-1} \equiv a^{(n-1)\%270} \equiv 1 \pmod{271}$ và

Theo định lý thặng dư trung hoa thì pt: $\begin{cases} a^{n-1} \equiv 1 \pmod{19} \\ a^{n-1} \equiv 1 \pmod{199} \end{cases}$ có nghiệm duy nhất trên $a^{n-1} \equiv 1 \pmod{271}$

modulo 19.199.271 = 1024651.

Xét $x = (199 \times 271)^{18} + (19 \times 271)^{198} + (19 \times 199)^{270} = 1 \pmod{1024651}$ là nghiệm của hệ đồng dư trên. Do đó $a^{n-1} = 1 \pmod{h}$ hay $a^n = a \pmod{h}$.

c) Nếu n là một số Carmichael thì $a^{n-1} \equiv 1 \pmod{n}$ nên nếu số Carmichael là 1 số chẵn thì ta xét a = n - 1 ta có:

$$(n-1)^{n-1} \equiv (-1)^{n-1} \equiv (-1) \pmod{n}$$
 mâu thuẫn.

d) Gọi n là một số Carmichael. Chúng ta sẽ chứng minh số mũ của các thừa số trong p < 2. Vì n là một số Carmichael nên n lẻ và n phải lớn hơn 2.

Giả sử tồn tại một số nguyên v sao cho $n:v^2$, và do n là một số Carmichael nên ta có $v^n - v:n$ và $v^n:v^2$. Từ đó ta suy ra $v:v^2$ (Vô lý). Từ đây ta suy ra $\operatorname{ord}_p(n) < 2$ với mọi p. Do đó n là tích của các số nguyên tố khác nhau.

3.14.

c)

294409 là hợp số theo Miller-Rabin test với Miller-rabin witness là 22983.

d)

n = 118901509 là số nguyên tố theo Miller-Rabin test với 10 giá trị không là Miller-Rabin witnesses là

test num =24916

test num =11574

test num =3321

test num = 10598

test num =20270

test num =8730

test num =31802

test num =22049

test num =11466

test num =25633

- e) 118901521 là hợp số với Miller-Rabin witness là test num =25165
- f) 118901527 là số nguyên tố với 10 giá trị không là Miller-Rabin là

test num =25272

test num =3503

test num =17204

test num =12059

test num =30447

test num =10760

test num =10611

test num = 30656

test num =8989

test num = 10854

g) 118915387 là hợp số với giá trị Miller-Rabin witness là: test num =25459.