$\begin{array}{c} {\tt Math~4301~Mathematical~Analysis~I}\\ {\tt Lecture~9} \end{array}$

Topic: Connected sets and limits

• Connected subsets of $\mathbb R$

Definition $A \subseteq \mathbb{R}$ is disconnected if there is a pair U and V of subsets of \mathbb{R} such that

- i) U and V are both open and nonempty;
- ii) U and V are disjoint, i.e. $U \cap V = \emptyset$;
- iii) $A = (A \cap U) \cup (A \cap V)$, where $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$.

A pair of subsets of \mathbb{R} that satisfies \mathbf{i}) – \mathbf{iii}) as the above is called a *separation* of A.

We say that A set is *connected* if it not disconnected (or equivalently there is no separation of A).

Example: Let $A = \emptyset \subset \mathbb{R}$,

then A is connected since A has no separation.

• Otherwise, there will be open and disjoint subsets U, V of \mathbb{R} , such that

 $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$, but $A = \emptyset$, so

$$A \cap U = \emptyset \cap U = \emptyset$$
 and

$$A \cap V = \emptyset \cap V = \emptyset.$$

So there is no separation.

Example: Let $A = \{a\}, a \in \mathbb{R}$,

then A has no separation, hence it is connected.

• Indeed, if U, V is a separation of A, then

$$A = (A \cap U) \cup (A \cap V).$$

Since $a \in A$,

then $a \in (A \cap U) \cup (A \cap V)$, so $a \in (A \cap U)$ or $a \in (A \cap V)$.

• If $a \in (A \cap U)$,

then $a \in U$, so $a \notin V$.

- Since $U \cap V = \emptyset$, $a \notin A \cap V$.
- Notice that $A = \{a\}$, so
- since $a \notin A \cap V$,

it follows that $A \cap V = \emptyset$.

Example: Let $A = \{1, 2\} \subset \mathbb{R}$ is disconnected.

 \bullet We show that A has a separation.

• Indeed, subsets

$$U = \left(0, \frac{3}{2}\right)$$

and

$$V = \left(\frac{3}{2}, 3\right)$$

are both open and nonempty, disjoint and

$$\begin{array}{rcl} A & = & (A \cap U) \cup (A \cap V) \\ & = & \{1, 2\} \,, \end{array}$$

where

$$A \cap U = \{1\} \neq \emptyset$$

and

$$A \cap V = \{2\} \neq \emptyset.$$

Therefore, the pair of subsets U and V of \mathbb{R} is a separation of A, so A is disconnected.

Example: Let $x \in \mathbb{R}$ and $A = \mathbb{R} \setminus \{x\}$.

• Then $U = (-\infty, x)$ and $V = (x, \infty)$ is a separation of A since both U and V are open, nonempty, disjoint and

$$A = (A \cap U) \cup (A \cap V),$$

where $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$.

- Therefore, $A = \mathbb{R} \setminus \{x\}$ is disconnected. **Example:** Let $A = \mathbb{Q} \subset \mathbb{R}$ and $x \in \mathbb{R} \setminus \mathbb{Q}$.
- Define $U = (-\infty, x)$ and $V = (x, \infty)$ is a separation of A since both U and V are open, nonempty, disjoint and

$$A = (A \cap U) \cup (A \cap V)$$
,

where $A \cap U \neq \emptyset$ and $A \cap V \neq \emptyset$.

- Therefore, \mathbb{Q} is disconnected.
- For a < b, let

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

is called an open interval.

• In general, we define an interval as follows **Definition** Let $I \subseteq \mathbb{R}$. We say that I is an *interval* if

$$\forall x, y \in I, \ \forall z \in \mathbb{R}, \ (x < z < y) \Rightarrow z \in I.$$

• It follows from the definition of the interval that if I is an interval in \mathbb{R} then

$$I = \begin{cases} \emptyset \\ \{a\} \\ [a,b] \\ (a,b] \end{cases}, \text{ where } a,b \in \mathbb{R} \text{ and } a < b \\ [a,b) \\ (a,b) \\ (a,b) \end{cases}$$
or
$$I = \begin{cases} (-\infty,a] \\ [a,\infty) \\ (-\infty,a) \\ (a,\infty) \\ (-\infty,\infty) \end{cases}$$

• Theorem Let I be interval in \mathbb{R} . Then I is connected.

Proof. We show that I has no separation.

- If $I = \emptyset$ or $I = \{a\}$, for some $a \in \mathbb{R}$, then I is connected since there is no separation of A.
- Assume that $I \neq \emptyset$ and $I \neq \{a\}$.
- Suppose by contradiction that I is disconnected and let U and V be a separation of I.
- Since $I \cap U$ and $I \cap V$ are nonempty then there is $a \in I \cap U$ and $b \in I \cap V$.
- We may assume without lose of generality that a < b.
- Since [a, b] is nonempty and bounded, the set $[a, b] \cap U \subseteq [a, b]$ is nonempty and bounded.
- By completeness of \mathbb{R} , there is $\alpha \in \mathbb{R}$, such that

$$\alpha = \sup ([a, b] \cap U).$$

• Since, for all $x \in [a, b] \cap U$,

$$a \le x \le b$$
,

it follows that $\alpha \leq b$.

- Moreover, since $a \in [a, b] \cap U$, $a \le \alpha$.
- Therefore,

$$a \le \alpha \le b$$
.

• If $x \in [a, b) \cap U$, then since U is open and $x \in U$, there is $0 < \epsilon < (b - x)$, such that

$$[x, x + \epsilon) \subset U$$
.

• Therefore, $x \neq \alpha$ so, in particular,

$$a < \alpha$$

and

if $\alpha < b$,

then $\alpha \notin U$ (otherwise $\alpha \in [a, b) \cap U$, a contradiction)

• If $y \in (a, b] \cap V$,

since V is open and $y \in V$,

there is $0 < \epsilon < (y - a)$, such that

$$(y - \epsilon, y] \subset V$$
.

• Since

$$U \cap V = \emptyset$$
,

therefore

$$(y - \epsilon, y] \cap U = \emptyset$$

and $y \neq \alpha$.

• Hence, in particular, $\alpha < b$ and if $a < \alpha$,

then $\alpha \notin V$ (otherwise $\alpha \in (a, b] \cap V$, a contradiction).

- Since, as we showed, $a < \alpha < b$.
- Furthermore, because $a, b \in I$ and $a < \alpha < b$, therefore

$$\alpha \in I = (I \cap U) \cup (I \cap V)$$
.

• Hence $\alpha \in I \cap U$ or $\alpha \in I \cap V$ which is impossible since as we showed, if

$$a < \alpha < b$$

then $\alpha \notin U$ and $\alpha \notin V$.

This completes our proof. ■

• **Proposition** If $A \subseteq \mathbb{R}$ is connected then A is an interval.

Proof. We show that if A is not an interval then A has a separation.

- Suppose that $A \subseteq \mathbb{R}$ is connected and A is not an interval.
- Then there are $a, b \in A$ and $c \in \mathbb{R}$, such that a < c < b and $c \notin A$.
- Let $U = (-\infty, c)$ and $V = (c, \infty)$.
- ullet As we see U and V are open, nonempty and disjoint.
- Moreover, $a \in A \cap U$ and $b \in A \cap V$, so both $A \cap U$ and $A \cap V$ are nonempty.

• Since

$$A = (A \cap U) \cup (A \cap V),$$

it follows that U and V is a separation of A.

• This contradicts to our assumption that A is connected.

This completes our proof. ■

• Corollary $A \subseteq \mathbb{R}$ is connected iff A is an interval.

Limits of functions

Definition Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$, and suppose that $c \in \mathbb{R}$ is an accumulation point of A ($c \in A'$). Then

$$\lim_{x \to c} f\left(x\right) = L$$

if for every $\epsilon > 0$ there is $\delta > 0$ such that, for all $x \in A$, if

$$0 < |x - c| < \delta,$$

then

$$|f(x) - L| < \epsilon.$$

We write $f(x) \to L$ as $x \to c$.

Remark: It is important to note that $c \in A'$ rather than $c \in A$.

- In particular, if c is an isolated point of A, then $\lim_{x\to c} f(x)$ is **not defined**.
- Also, notice that we may also write $|f(x) L| \to 0$ as $x \to c$.
- For instance $f(x) = \frac{1}{x}$ is defined for $x \in \mathbb{R} \setminus \{0\}$.
- Notice that $0 \notin \mathbb{R} \setminus \{0\}$, but we can still be asked to compute

$$\lim_{x\to 0} f(x).$$

- This is because $0 \in (\mathbb{R} \setminus \{0\})'$ (Note: $\mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, \infty)$) **Example**: Let $A = (0, 1) \cup \{2\}$ and define $f : A \to \mathbb{R}$, f(x) = 2, $x \in A$.
- Can we define $\lim_{x\to 2} f(x)$?
- Notice that x = 2 is not in A', so $\lim_{x\to 2} f(x)$ is not defined for x = 2.

• This is because, if $\delta < \frac{1}{2}$, then no point $x \in A$ satisfies

$$0 < |x - 2| < \delta$$

therefore, for any $L \in \mathbb{R}$, implication

$$0 < |x - 2| < \delta \Rightarrow |f(x) - L| < \epsilon$$

is true.

- There will be no uniquness for the number L, so the notion of the limit will not be well defined.
- To avoid this, we define the limit operation for accumulation points of the domain only. **Example**: Let

$$f: \mathbb{R} \setminus \{2\} \to \mathbb{R}, \ f(x) = \frac{x^2 - 4}{x - 2}.$$

We show that

$$\lim_{x \to 2} f(x) = 4.$$

• We observe that

$$c=2\in A'$$

where $A = \mathbb{R} \setminus \{2\}$, so we may ask if $\lim_{x\to 2} f(x)$ exists for c=2.

- Let $\epsilon > 0$ be given.
- If we assume that $x \in \mathbb{R} \setminus \{2\}$ and $0 < |x-2| < \delta$, then

$$|f(x) - 4| = \left| \frac{x^2 - 4}{x - 2} - 4 \right| = \left| \frac{(x - 2)(x + 2)}{x - 2} - 4 \right|$$

• Now, since 0 < |x - 2|, we see that $x \neq 2$, so

$$\frac{x^2 - 4}{x - 2} = x + 2.$$

• Therefore,

$$\left| \frac{(x-2)(x+2)}{x-2} - 4 \right| = |(x+2) - 4| = |x-2| < \delta.$$

- Consequently, if $\epsilon > 0$ is given, we take for $\delta = \frac{\epsilon}{2}$ (or δ and positive number such that $\delta < \epsilon$).
- Then, for all $x \in \mathbb{R} \setminus \{2\}$ if $0 < |x 2| < \delta$,

$$|f(x) - 4| = |x - 2| < \delta = \frac{\epsilon}{2} < \epsilon.$$

It follows that $\lim_{x\to 2} f(x) = 4$.

Proposition Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $c \in A'$.

If

$$\lim_{x \to c} f\left(x\right) = L_1$$

and

$$\lim_{x \to c} f(x) = L_2,$$

then

$$L_1 = L_2$$
.

Therefore, if $\lim_{x\to c} f(x)$ exists then it is unique.

Proof. Suppose that $L_1 \neq L_2$, then $\epsilon = \frac{1}{3} |L_1 - L_2| > 0$.

• Since

$$\lim_{x \to c} f(x) = L_1 \text{ and } \lim_{x \to c} f(x) = L_2,$$

there are $\delta_1 > 0$ and $\delta_2 > 0$, such that,

for all $x \in A$, if

$$0 < |x - c| < \delta_1 \text{ then } |f(x) - L_1| < \epsilon$$

and

$$0 < |x - c| < \delta_2 \text{ then } |f(x) - L_2| < \epsilon$$

• Now, if $\delta = \min \{\delta_1, \delta_2\} > 0$, then for every $x \in A$, if $0 < |x - c| < \delta$, we

$$|f(x) - L_1| < \epsilon \text{ and } |f(x) - L_2| < \epsilon.$$

• Therefore, for every $x \in A$, if $0 < |x - c| < \delta$, then

$$3\epsilon = |L_1 - L_2| = |L_1 - f(x) + f(x) - L_2|$$

$$\leq |f(x) - L_1| + |f(x) - L_2| < 2\epsilon, \text{ so}$$

$$3\epsilon < 2\epsilon, \text{ thus since } \epsilon > 0, \text{ we have } 3 < 2, \text{ a contradiction.}$$

This finishes our proof. ■

• **Proposition** Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $c \in A'$.

Then $\lim_{x\to c} f(x) = L$

if and only if

for every sequence $\{x_n\} \subseteq A \setminus \{c\}$

if $\lim_{n\to\infty} x_n = c$ then

$$\lim_{n \to \infty} f\left(x_n\right) = L.$$

Proof. We show that conditions $\lim_{x\to c} f(x) = L$ and

• for every sequence $\{x_n\} \subseteq A \setminus \{c\}$ if $\lim_{n \to \infty} x_n = c$ then $\lim_{n \to \infty} f(x_n) = L$ are equivalent. • Assume that $\lim_{x\to x} f(x) = L$ and let $\{x_n\} \subseteq A \setminus \{c\}$ and

$$\lim_{n \to \infty} x_n = c.$$

- Let $\epsilon > 0$ be given.
- Since $\lim_{x\to c} f(x) = L$, there is $\delta > 0$, such that, for every $x \in A \setminus \{c\}$, if $0 < |x-c| < \delta$, then

$$|f(x) - L| < \epsilon$$
.

• Since $\lim_{n\to\infty} x_n = c$, there is $N \in \mathbb{N}$, such that for all n > N,

$$|x_n - c| < \delta.$$

• Since $\{x_n\} \subseteq A \setminus \{c\}$, for all n > N,

$$0 < |x_n - c| < \delta.$$

• Therefore, for n > N,

$$|f\left(x_{n}\right) - L| < \epsilon.$$

• It follows that

$$\lim_{n \to \infty} f(x_n) = L.$$

• Conversely, assume by contradiction that

$$\lim_{x \to c} f(x) \neq L$$

and for every sequence $\{x_n\} \subseteq A \setminus \{c\}$ if $\lim_{n\to\infty} x_n = c$ then

$$\lim_{n \to \infty} f(x_n) = L.$$

• Since $\lim_{x\to c} f(x) \neq L$, there is $\epsilon > 0$, such that, for every $\delta > 0$, there is $x \in A$, such that

$$0 < |x - c| < \delta$$

and

$$|f(x) - L| \ge \epsilon$$
.

- We take $\delta = \frac{1}{n} > 0, n = 1, 2, ...$
- Since $c \in A'$,

$$D\left(c,\frac{1}{n}\right)\cap A\backslash\left\{c\right\}\neq\emptyset,$$

so let

$$x_n \in D\left(c, \frac{1}{n}\right) \cap A \setminus \{c\}$$
.

• We notice that the sequence

$$\{x_n\} \subseteq A \setminus \{c\}$$

and, for all $n \in \mathbb{N}$,

$$|x_n - c| < \frac{1}{n}.$$

• Moreover, for all $n \in \mathbb{N}$,

$$|f\left(x_{n}\right) - L| \ge \epsilon$$

• Clearly, $x_n \to c$. Indeed, for $\delta > 0$, there is $N \in \mathbb{N}$, such that,

$$\frac{1}{N} < \delta$$
.

• Since

$$D\left(c,\frac{1}{N}\right)\cap A\backslash\left\{c\right\}\supseteq D\left(c,\frac{1}{n}\right)\cap A\backslash\left\{c\right\},$$

for n > N,

then $|x_n - c| < \frac{1}{N}$, for n > N.

• It follows that, for $\delta > 0$, there is $N \in \mathbb{N}$, such that, for n > N,

$$|x_n - c| < \frac{1}{N} < \delta.$$

• Since

$$\{x_n\} \subseteq A \setminus \{c\}$$

and $x_n \to c$ as $n \to \infty$, then by our assumption

$$\lim_{n \to \infty} f\left(x_n\right) = L.$$

• Hence, there is $N_1 \in \mathbb{N}$, such that, for $n > N_1$,

$$|f(x_n) - L| < \epsilon.$$

• Let $n > N_1$, then by construction of $\{x_n\}$,

$$|x_n - c| < \frac{1}{n} \text{ and } |f(x_n) - L| \ge \epsilon.$$

• Therefore, for $n > N_1$,

$$\epsilon \le |f(x_n) - L| < \epsilon.$$

Contradiction.

This finishes our proof. ■

- Remark Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $c \in A'$.
- We observe that $\lim_{x\to c} f(x)$ does not exist if
- there are sequences $\{x_n\}$,

$$\{y_n\}\subseteq A\backslash\{c\}\,$$

such that

$$\lim_{n \to \infty} x_n = c = \lim_{n \to \infty} y_n$$

and

$$\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$$

• There is a sequence

$$\{x_n\} \subseteq A \setminus \{c\} \text{ and } \lim_{n \to \infty} x_n = c$$

such that

- $\lim_{n\to\infty} f(x_n)$ does not exist or
- $\{f(x_n)\}\$ is divergent to $\pm \infty$.

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & if \quad x \neq 0\\ 0 & if \quad x = 0 \end{cases}$$

• We see that if $x_n = \frac{1}{n\pi}$ and $y_n = \frac{1}{\frac{\pi}{2} + 2n\pi}$, then

$$x_n, y_n \in \mathbb{R} \setminus \{0\}$$

and

$$\lim_{n \to \infty} x_n = 0 = \lim_{n \to \infty} y_n.$$

• However,

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin\left(\frac{1}{x_n}\right) = \lim_{n \to \infty} \sin\left(n\pi\right) = 0 \text{ and}$$

$$\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} \sin\left(\frac{1}{y_n}\right) = \lim_{n \to \infty} \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1,$$

 \mathbf{SO}

$$\lim_{n\to\infty} f\left(x_n\right) \neq \lim_{n\to\infty} f\left(y_n\right).$$

Therefore, f has no limit at c = 0.

Example: Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} \frac{1}{x} & if \quad x \neq 0\\ 0 & if \quad x = 0 \end{cases}$$

We show that f has no limit at x = 0.

- Let $x_n = \frac{1}{n}, n = 1, 2,$
- Then $x_n \in \mathbb{R} \setminus \{0\}$, for all $n \in \mathbb{N}$, so $\{x_n\} \subseteq \mathbb{R} \setminus \{0\}$ and $x_n \to 0$ as $n \to \infty$.
- However, we see that

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_n} = \lim_{n \to \infty} n = \infty$$

diverges, so f has no limit at c = 0.

Theorem Let $f, g : A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A'$, $\alpha, \beta \in \mathbb{R}$.

If
$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} g(x) = K$, then

- 1. $\lim_{x\to c} (\alpha f(x) + \beta g(x)) = \alpha L + \beta K$
- 2. $\lim_{x\to c} f(x) g(x) = LK$
- 3. If $K \neq 0$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}.$$

Proof. Exercise. ■\

• **Definition** Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and define

$$\inf_{A} (f) = \inf \{ f(x) : x \in A \} \text{ and}$$

$$\sup_{A} (f) = \sup \{ f(x) : x \in A \}.$$

We say that f is bounded if both $\inf_{A}(f)$ and $\sup_{A}(f)$ are finite.

Example: Let $f:[0,1] \to \mathbb{R}$ be defined by

$$f\left(x\right) = \left\{ \begin{array}{ll} \frac{1}{x} & if \quad x \neq 0 \\ 0 & if \quad x = 0 \end{array} \right. .$$

- We show that $\inf_{[0,1]}(f) = 0$. Indeed, for all $x \in [0,1]$,
- if $x \neq 0$, then

$$f\left(x\right) = \frac{1}{x} > 0$$

• if
$$x = 0$$
, then

$$f(0) = 0.$$

• Therefore, for every $x \in [0, 1]$,

$$f\left(x\right) \geq 0.$$

• It follows that 0 is a lower bound for

$$\{f(x): x \in [0,1]\}.$$

• Hence,

$$\inf_{[0,1]} (f) \ge 0.$$

• Now, let $\epsilon > 0$ be given.

• Since

$$0\in\left\{ f\left(x\right) :x\in\left[0,1\right] \right\} ,$$

then there is

$$y \in \{f(x) : x \in [0,1]\},\$$

such that

$$y < 0 + \epsilon$$
.

• It follows that,

$$\inf_{[0,1]} \left(f \right) = 0.$$

• Now, we show that

$$\sup_{A} (f) = \infty.$$

• It is sufficient to show that

$$\{f(x): x \in [0,1]\}$$

is not bounded above.

- Let M > 0 be given.
- There is $n \in \mathbb{N}$, such that n > M.
- Since $n \ge 1$, $\frac{1}{n} \in [0, 1]$ and

$$f\left(\frac{1}{n}\right) = \frac{1}{\frac{1}{n}} = n > M.$$

• Therefore, for every M > 0, there is

$$y \in \{f(x) : x \in [0,1]\},\$$

such that y > M.

 $\bullet\,$ It follows that

$$\sup_{A} (f) = \infty.$$

Remark: We notice that a function $f: A \to \mathbb{R}$,

where $A \subseteq \mathbb{R}$, is bounded

if and only if

there is $M \geq 0$, such that,

for all $x \in A$,

$$|f(x)| \leq M$$
.

Definition Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $c \in A'$.

We say that f is locally bounded at c

if there is $U \subseteq \mathbb{R}, U$ - open, $c \in U$ and $M \geq 0$, such that,

for all $x \in U \cap A$,

$$|f(x)| \leq M$$
.

Proposition Let $f: A \to \mathbb{R}$, where $A \subseteq \mathbb{R}$ and $c \in A'$ and $\lim_{x \to c} f(x) = L$.

Then there is $U \subseteq \mathbb{R}, U$ - open, $c \in U$, and $M \ge 0$, such that,

for all $x \in U \cap A$,

$$|f(x)| \leq M$$
.

That is, if f has limit at c then f is locally bounded at c.

Proof. Exercise.

• **Example**: Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ be defined by

$$f\left(x\right) =\frac{1}{x}.$$

• We show that for every $U \subseteq \mathbb{R}, U$ - open, $0 \in U$, and for every $M \geq 0$,

there is $x \in U \cap \mathbb{R} \setminus \{0\}$, such that

$$f(x) > M$$
.

- Indeed, let $U \subseteq \mathbb{R}, U$ open and $0 \in U$.
- Since U is open, there is $\delta > 0$, such that,

$$0 \in (-\delta, \delta) \subseteq U$$
.

- Since $\delta > 0$, there is $n_1 > \frac{1}{\delta}$.
- Furthermore, if $M \ge 0$ then there is $n_2 \in \mathbb{N}$, such that,

$$M < n_2$$
.

• Let $n = \max\{n_1, n_2\}.$

• Since $n \ge n_1$, it follows that

$$\frac{1}{n} < \delta$$

and since $n \ge n_2$, n > M.

• Therefore,

$$\frac{1}{n} \in (-\delta, \delta) \cap \mathbb{R} \setminus \{0\} \subseteq U \cap \mathbb{R} \setminus \{0\},\,$$

SO

$$\frac{1}{n} \in U \cap \mathbb{R} \setminus \{0\}$$

and

$$f\left(\frac{1}{n}\right) = n > M.$$

As we showed, f is not locally bounded at c = 0.

Example: Let $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$,

$$f(x) = \sin\left(\frac{1}{x}\right)$$
.

We show that f has no limit at c = 0 but f is locally bounded at c = 0.

• Since, for every $x \in \mathbb{R} \setminus \{0\}$,

$$\left| \sin \left(\frac{1}{x} \right) \right| \le 1,$$

then clearly, f is locally bounded at c = 0.

• However, as we showed it before,

f has no limit at c = 0.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A'_{c^+}$, where

$$A_{c^+} = \{x \in A : c < x\}.$$

We say that

$$\lim_{x \to c^{+}} f\left(x\right) = L,$$

if for every $\epsilon > 0$,

there is $\delta > 0$, such that,

for all $x \in A$, if

$$0 < x - c < \delta$$
,

then

$$|f(x) - L| < \epsilon.$$

The limit $\lim_{x\to c^+} f(x)$ is called the right limit of f at c.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A'_{c^-}$, where

$$A_{c^{-}} = \{x \in A : x < c\}.$$

We say that

$$\lim_{x \to c^{-}} f(x) = L,$$

if for every $\epsilon > 0$,

there is $\delta > 0$, such that,

for all $x \in A$, if

$$0 < c - x < \delta$$
,

then

$$|f(x) - L| < \epsilon$$
.

The limit $\lim_{x\to c^{-}} f(x)$ is called the right limit of f at c.

Theorem Let $f:A\to\mathbb{R},$ where $A\subseteq\mathbb{R}$ and $c\in A'_{c^+}\cap A'_{c^-}.$

Then

$$\lim_{x \to c} f(x) = L$$

if and only if

$$\lim_{x \to c^{+}} f\left(x\right) = L = \lim_{x \to c^{-}} f\left(x\right).$$

Proof. We show that conditions

$$\lim_{x \to c} f\left(x\right) = L$$

and

$$\lim_{x \to c^{+}} f(x) = L = \lim_{x \to c^{-}} f(x)$$

are equivalent.

- Assume that, $c \in A'_{c^+} \cap A'_{c^-}$ and $\lim_{x \to c} f(x) = L$.
- We show that

$$\lim_{x \to c^{+}} f(x) = L = \lim_{x \to c^{-}} f(x).$$

- Let $\epsilon > 0$ be given.
- Since $\lim_{x\to c} f(x) = L$, there is $\delta > 0$, such that, for all $x \in A$, if

$$0 < |x - c| < \delta,$$

then

$$|f(x) - L| < \epsilon$$
.

• Observe that, if $x \in A$ and

$$0 < x - c < \delta$$
,

then

$$0 < |x - c| = x - c < \delta,$$

hence

$$|f(x) - L| < \epsilon$$
.

- Therefore, $\lim_{x\to c^+} f(x) = L$.
- Analogously, if $x \in A$ and

$$0 < c - x < \delta$$
,

then

$$0 < |x - c| = c - x < \delta,$$

hence

$$|f(x) - L| < \epsilon.$$

• Therefore,

$$\lim_{x \to c^{-}} f(x) = L.$$

ullet It follows that

$$\lim_{x \to c^{+}} f(x) = L = \lim_{x \to c^{-}} f(x)$$

• Conversely, assume that

$$\lim_{x\to c^{+}}f\left(x\right)=L=\lim_{x\to c^{-}}f\left(x\right).$$

We show that

$$\lim_{x \to c} f(x) = L.$$

• Since

$$\lim_{x \to c^{+}} f\left(x\right) = L,$$

then

for $\epsilon > 0$, there is $\delta_1 > 0$, such that,

for all $x \in A$, if

$$0 < x - c < \delta_1,$$

then

$$|f(x) - L| < \epsilon.$$

• Since

$$\lim_{x \to c^{-}} f(x) = L,$$

then for $\epsilon > 0$,

there is $\delta_2 > 0$, such that,

for all $x \in A$, if

$$0 < c - x < \delta_2,$$

then

$$|f(x) - L| < \epsilon.$$

 \bullet Let

$$\delta = \min \left\{ \delta_1, \delta_2 \right\}$$

and let $x \in A$ and assume that

$$0 < |x - c| < \delta.$$

• If x > c, then x - c > 0 and

$$x - c = |x - c| < \delta \le \delta_1.$$

• Therefore,

$$0 < x - c < \delta_1,$$

 \mathbf{so}

$$|f(x) - L| < \epsilon.$$

• If x < c, then c - x > 0 and therefore,

$$c - x = |x - c| < \delta \le \delta_2.$$

• Hence,

$$0 < c - x < \delta_2,$$

so

$$|f(x) - L| < \epsilon$$
.

• We showed, that,

for every $x \in A$,

if

$$0 < |x - c| < \delta,$$

then

$$|f(x) - L| < \epsilon$$
.

• Consequently,

$$\lim_{x \to c} f(x) = L.$$

This finishes our proof.

• Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded above**.

We say that

$$\lim_{x \to \infty} f(x) = L,$$

if for every $\epsilon > 0$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$, if x > M then

$$|f(x) - L| < \epsilon$$
.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded below**.

We say that

$$\lim_{x \to -\infty} f(x) = L,$$

if for every $\epsilon > 0$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$, if x < M then

$$|f(x) - L| < \epsilon$$
.

Example: Let

$$\begin{array}{rcl} f & : & \mathbb{R} \backslash \left\{-1\right\} \to \mathbb{R}, \\ f\left(x\right) & = & \frac{x}{x+1}. \end{array}$$

We show that

$$\lim_{x \to \infty} f(x) = 1.$$

• Indeed, let $\epsilon > 0$ be given and assume that

$$x > M \ge 0$$
.

• Then

$$|f(x) - 1| = \left| \frac{x}{x+1} - 1 \right| = \left| \frac{x-x-1}{x+1} \right| = \frac{1}{|x+1|}$$

 \bullet Since

$$x > M \ge 0, x + 1 > 1 > 0,$$

SO

$$|x+1| = x+1.$$

• Therefore,

$$\frac{1}{|x+1|}=\frac{1}{x+1}\leq \frac{1}{x}.$$

• Since x > M,

$$\frac{1}{x} < \frac{1}{M}.$$

• Now, if $M > \frac{1}{\epsilon}$, then $M \ge 0$ and for x > M:

$$|f(x) - 1| = \frac{1}{x+1} \le \frac{1}{x} < \frac{1}{M} < \epsilon.$$

• Therefore,

$$\lim_{x \to \infty} f(x) = 1.$$

• Analogously, one shows that

$$\lim_{x \to -\infty} f\left(x\right) = 1.$$

Exercise: Show that $\lim_{x\to-\infty} f(x) = 1$.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded above**.

We say that

$$\lim_{x \to \infty} f(x) = \infty,$$

if for every $K \in \mathbb{R}$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$,

if x > M then

$$f(x) > K$$
.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded above**.

We say that

$$\lim_{x \to \infty} f(x) = -\infty,$$

if for every $K \in \mathbb{R}$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$,

if x > M then

$$f(x) < K$$
.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded below**.

We say that

$$\lim_{x \to -\infty} f(x) = \infty,$$

if for every $K \in \mathbb{R}$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$,

if x < M then

$$f(x) > K$$
.

Definition Let $f: A \subseteq \mathbb{R} \to \mathbb{R}$ and assume that A is **not bounded below**.

We say that

$$\lim_{x \to -\infty} f(x) = -\infty,$$

if for every $K \in \mathbb{R}$,

there is $M \in \mathbb{R}$, such that,

for all $x \in A$,

if x < M then

$$f(x) < K$$
.

Proposition Let $f, g : A \subseteq \mathbb{R} \to \mathbb{R}, c \in A'$ and

$$\lim_{x \to c} f(x) = L \text{ and } \lim_{x \to c} g(x) = K.$$

If, for all $x \in A$,

$$f\left(x\right) \leq g\left(x\right) ,$$

then $L \leq K$.

Proof. We show that if or all $x \in A$,

$$f(x) \leq g(x)$$
,

then $L \leq K$.

• Suppose that L > K and define

$$\epsilon = \frac{1}{2} \left(L - K \right) > 0.$$

• Since $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = K$, there are δ_1 , $\delta_2 > 0$, such that, for all $x \in A$, if

$$0 < |x - c| < \delta_1,$$

then

$$|f(x) - L| < \epsilon$$

and

for all $x \in A$, if

$$0 < |x - c| < \delta_2,$$

then

$$|g(x) - K| < \epsilon$$
.

- Let $\delta = \min \{\delta_1, \delta_2\} > 0$.
- Since $c \in A'$ there is $x \in A$, such that

$$0 < |x - c| < \delta.$$

• Therefore,

$$\begin{split} f\left(x\right)-g\left(x\right) &= \left(f\left(x\right)-L\right)+L-K+\left(K-g\left(x\right)\right)\\ &> -\epsilon+L-K-\epsilon\\ &= L-K-2\epsilon\\ &= L-K-2\cdot\frac{1}{2}\left(L-K\right)=0. \end{split}$$

• Consequently, there is $x \in A$, such that,

$$f\left(x\right) - g\left(x\right) > 0,$$

i.e. f(x) > g(x). Contradiction.

This finishes our proof. ■

• Proposition Let $f, g, h : A \subseteq \mathbb{R} \to \mathbb{R}$ and $c \in A'$ and $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} h(x) = L$. If for all $x \in A$,

$$f\left(x\right) \le g\left(x\right) \le h\left(x\right),$$

then

$$\lim_{x \to c} g\left(x\right) = L.$$

Proof. Proof follows from the previous result.