IT496: Introduction to Data Mining

Lecture 24

Introduction to Neural Networks

(Slides are created from the lecture notes of Dr. Derek Bridge, UCC, Ireland)

Arpit Rana 10th October 2023

Introduction

Neural Networks are loosely inspired by what we know about our brains:

- Networks of neurons.
- However, they are not models of our brains.
 - E.g. there is no evidence that the brain uses the learning algorithm that is used by neural networks.

Biological Neurons

- Our brain is a network of about 10¹¹ neurons, each connected to about 10⁴ others
- Sufficient electrical activity on a neuron's dendrites causes an electrical pulse to be sent down the axon, where it may activate other neurons.

- A simple artificial neuron has n real-valued inputs, x_1, \ldots, x_n .
- The connections have real-valued weights, w_1, \ldots, w_n ...
- The neuron also has a number *b* called the bias.

• The neuron computes the weighted sum of its inputs and adds *b*:

$$z = b + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

or if x is a row vector of the inputs and w is a (column) vector of the weights

$$z = b + xw$$

Many activation functions have been proposed, including:

- *linear* activation function: g(z) = z
- **step** activation function: $g(z) = \begin{cases} 0 & z < 0, \\ 1 & z \geq 0 \end{cases}$
- **sigmoid** activation function: $g(z) = \frac{1}{1 + e^{-z}}$
- tanh activation function (tanh is the hyperbolic tangent): $g(z) = \tanh z$
- ReLU activation function (ReLU stands for Rectified Linear Unit): $g(z) = \max(0, z)$

Apart from the *linear* activation function, these activation functions are *non-linear*, which is important to the power of neural networks.

Activation functions and their derivatives

Relationship with Linear Models

- A single artificial neuron that uses the <u>linear activation function</u> gives us the same linear models that we had in *Linear Regression*.
 - If we find the values of the weights and bias using MSE as our loss function, then we will be doing OLS regression.
- A single artificial neuron that uses the <u>sigmoid activation function</u> gives us the same models that we had when using Logistic Regression for binary classification.
 - We can set the weights using the binary cross-entropy function as our loss function.

Layers of Neurons

We don't usually have just one neuron. We have a layer, containing several neurons.

• For now let's consider what is called a <u>dense layer</u> (also a <u>fully-connected layer</u>): every input is connected to every neuron in the layer.

• So now we have more than one output, one per neuron, each calculated as before.

Matrix Multiplication

Suppose there are m inputs and p neurons in a layer. We can put all the weights into a $m \times p$ matrix:

$$m = 2, p = 3$$

Multi-layer Neural Network

Let's assume we have multiple layers and they are also *dense* layers. These neural networks contain:

- an input layer (although this is not a layer of neurons);
- one or more hidden layers;
- an output layer.

Every neuron has a bias.

- The network shown in the diagram is a *layered*, *dense*, *feedforward* network.
- The depth of a MLNN is simply the number of layers of neurons.

Matrix Multiplication Again

Similarly, we can obtain output for the second layer, and so on.

Matrix Multiplication Again

- When we make predictions for unseen examples, we often want predictions, not for a single object x, but for a set of objects X.
 - This is also true during training, in the case of Batch Gradient Descent and Mini-Batch Gradient Descent.

$$\boldsymbol{Z}^{(0)} = \boldsymbol{b}^{(0)} + \boldsymbol{X} \boldsymbol{W}^{(0)}$$
 and $\boldsymbol{A}^{(0)} = g(\boldsymbol{Z}^{(0)})$

$$\mathbf{Z}^{(1)} = \mathbf{b}^{(1)} + \mathbf{Z}^{(0)} \mathbf{W}^{(1)} \text{ and } \mathbf{A}^{(1)} = g(\mathbf{Z}^{(1)})$$

Matrix Multiplication Again

- This is all that a neural network consists of! They are just collections of:
 - o matrix multiplications; and
 - element-wise activation functions.
- In general, they are collections of:
 - o <u>affine transformations</u> (matrix multiplication being one example of an affine transformation, which are linear operations); and
 - element-wise functions (activation functions being one example).
- Looking at neural networks in this way also helps us realise that a neural network simply defines a function as a composite of other functions.
- In the example above, the whole network computes the following:

$$g^{(1)}(g^{(0)}(\boldsymbol{X}\boldsymbol{W}^{(0)} + \boldsymbol{b}^{(0)})\boldsymbol{W}^{(1)} + \boldsymbol{b}^{(1)})$$

Why Do We Need More Layers?

- A single neuron (or layer of neurons) gives us linear models.
- With linear models, there are problems we cannot solve, e.g., we cannot build a classifier that correctly classifies <u>exclusive-or</u>:

x_1	x_2	$x_1 \oplus x_2$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Note: A recent paper in Science Magazine claims that a single layer of biological neurons can compute exclusive-or. If true, this confirms what we said earlier: artificial neural networks are inspired by the human brain, but they are not a model of the human brain.

Why Do We Need More Layers?

But, a two-layer network that can correctly classify <u>exclusive-or</u>.

x_1	x_2	$x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

So, with multiple layers of neurons and the non-linearities of their activation functions, we can eliminate these limitations.

Why Do We Need More Layers?

In general, MLNN has the following advantages:

- Other things being equal, each extra hidden layer enlarges the set of hypotheses that the network can represent: increasing complexity.
- In fact, the <u>universal approximation theorem</u> states that a feed-forward network with a finite (but arbitrarily large) single hidden layer can approximate any continuous function (to any desired precision), under mild assumptions on the activation function.

Training a Neural Network

Neural networks learn by modifying the values of the weights and biases.

- It is our job to decide on the neural network <u>architecture</u> (structure).
- It is our job to choose the values of numerous <u>hyperparameters</u> that we will encounter.
 - The hyperparameters of a neural network are the number of layers, number of neurons in each layer, activation function, loss function, optimizer, learning rate, batch size, etc.
- But, we use a dataset and a learning algorithm to find the values of the network's <u>parameters</u>.
 - The parameters of a neural network are its weights and biases.

Training a Neural Network

- A lot of this is done using *supervised learning*:
 - So we need a labeled dataset;
 - o a loss function; and
 - o a learning algorithm known as backpropagation (or backprop) that uses some variant of Gradient Descent.

Neural Network Examples 17th October 2023

Next lecture