Sistemi lineari omogenei.

- 1) Sia $S : A\mathbf{x} = \mathbf{b}$ un sistema lineare in n incognite. S si dice *omogeneo* se i termini noti sono nulli, cioe' se $\mathbf{b} = \mathbf{0}$.
- 2) L'insieme delle soluzioni di $S: A\mathbf{x} = \mathbf{b}$ e' un sottospazio di \mathbf{R}^n se e solo se S e' omogeneo. In tal caso, posto U := Sol(S), allora si dice che $S: A\mathbf{x} = \mathbf{0}$ e' una rappresentazione cartesiana di U. Inoltre dim(U) = n p, dove p e' il rango di A, e una base di U si ottiene in corrispondenza della base canonica di \mathbf{R}^{n-p} in una rappresentazione parametrica per Sol(S). Per cui data una rappresentazione cartesiana di un sottospazio U sappiamo come calcolare una base di U.
- 3) **Esempio 1**. Sia U il sottospazio di \mathbb{R}^4 che ammette come rappresentazione cartesiana il seguente sistema:

$$S: \begin{cases} x+y+z+t = 0\\ x-y+z+t = 0\\ 5x-y+5z+5t = 0\\ x+z+t = 0. \end{cases}$$

Trovare la dimensione ed una base per U. Procediamo cosi'. Andiamo a risolvere il sistema assegnato. Troveremo la seguente rappresentazione parametrica per U = Sol(S):

$$(z,t)^T \in \mathbf{R}^2 \leftrightarrow (-z-t,0,z,t)^T \in U.$$

In tale corrispondenza il vettore $(1,0)^T$ corrisponde a $(-1,0,1,0)^T$, mentre $(0,1)^T$ corrisponde a $(-1,0,0,1)^T$. Allora la dimensione di U e' 2 ed una sua base e' formata dai vettori $(-1,0,1,0)^T$, $(-1,0,0,1)^T$.

4) Viceversa, dato un sottospazio U di \mathbf{R}^n con base $\{\mathbf{u}_1, \dots, \mathbf{u}_h\}$, per trovare una rappresentazione cartesiana di U si puo' procedere nel seguente modo: detto \mathbf{x} il generico vettore di \mathbf{R}^n , allora $\mathbf{x} \in U$ se e solo se il rango della matrice M che ha per colonne i vettori $\mathbf{u}_1, \dots, \mathbf{u}_h, \mathbf{x}$ e' h. Dopodiche' si riduce a scala la matrice M e si impone che la sua riduzione a scala abbia esattamente h righe non nulle. Questa imposizione comporta l'annullamento di certe componenti, e tale annullamento fornisce le equazioni della rappresentazione cartesiana di U.

Piu' precisamente, detta S la matrice a scala per righe che si ottiene a partire da M, allora tale matrice ha n righe e h+1 colonne, e le prime h righe sono necessariamente non nulle perche' le prime h colonne di M formano una base di U. Cio' implica che le prime h colonne di S passano per gli h pivots delle prime h righe. Nell'ultima colonna, al di sotto della riga di posto h, appariranno n-h componenti in funzione delle componenti del generico vettore \mathbf{x} . Indichiamo con $l_{h+1}(\mathbf{x}), \ldots, l_n(\mathbf{x})$ tali ultime n-h componenti dell'ultima colonna di S. Le funzioni $l_j(\mathbf{x})$ sono funzioni omogenee di primo grado nelle

componenti di \mathbf{x} , ed il rango di S sara' h se e solo se tali funzioni si annullano. Per cui la rappresentazione cartesiana cercata di U sara' data dal sistema lineare:

$$\begin{cases} l_{h+1}(\mathbf{x}) = 0 \\ l_{h+2}(\mathbf{x}) = 0 \\ \dots \\ l_n(\mathbf{x}) = 0. \end{cases}$$

Nel caso in cui U e' un sottospazio di \mathbf{R}^n di dimensione n-1, cioe' nel caso in cui h=n-1, allora M e' una matrice quadrata $n\times n$, e la rappresentazione cartesiana di U sara' semplicemente data dall'imporre che il determinante di M sia nullo, cioe' $\det(M)=0$.

5) **Esempio 2**. Trovare una rappresentazione cartesiana del sottospazio U di \mathbf{R}^4 generato dai vettori (-1,0,1,0), (-1,0,0,1). Si procede cosi'. Detto $\mathbf{x} := (x,y,z,t)$ il generico vettore di \mathbf{R}^4 , allora $\mathbf{x} \in U$ se e solo se la matrice

$$M := egin{bmatrix} -1 & -1 & x \ 0 & 0 & y \ 1 & 0 & z \ 0 & 1 & t \end{bmatrix}$$

ha rango $2 = \dim(U)$. Riducendo a scala M si perviene alla matrice

$$S := \begin{bmatrix} -1 & -1 & x \\ 0 & 1 & t \\ 0 & 0 & x+z+t \\ 0 & 0 & y \end{bmatrix}.$$

Allora S ha rango 2 se e solo se

$$\begin{cases} x + z + t = 0 \\ y = 0. \end{cases}$$

Questa e' la rappresentazione cartesiana cercata di U.

- 6) Conoscere la rappresentazione cartesiana riesce utile nello studio dell'intersezione di due sottospazi. Infatti una rappresentazione cartesiana per l'intersezione di due sottospazi U e V si ottiene considerando il sistema omogeneo che si forma unendo le equazioni che formano una rappresentazione cartesiana di U con quelle che formano una rappresentazione cartesiana di V.
 - 7) Esempio 3. Nello spazio \mathbb{R}^3 si considerino i sottospazi

$$U:=Span((1,-1,3),(2,1,1)), \quad V=Span((0,1,2),(2,0,1)).$$

Calcolare la dimensione e una base di $U \cap V$. Possiamo procedere cosi'. Con il metodo imparato in precedenza ci calcoliamo una rappresentazione cartesiana di U, che e' 4x - 5y - 3z = 0, ed una rappresentazione cartesiana di V, che e' x + 4y - 2z = 0. Allora una rappresentazione cartesiana di $U \cap V$ e'

$$\begin{cases} 4x - 5y - 3z = 0 \\ x + 4y - 2z = 0. \end{cases}$$

Per risovere tale sistema consideriamo la matrice dei coefficienti

$$\begin{bmatrix} 4 & -5 & -3 \\ 1 & 4 & -2 \end{bmatrix}.$$

Dopo le operazioni p_{12} ed $e_{21}(-4)$ otteniamo la matrice

$$\begin{bmatrix} 1 & 4 & -2 \\ 0 & -21 & 5 \end{bmatrix}.$$

Quindi la variabile libera e'ze la generica soluzione del sistema, cioe' il generico vettore di di $U\cap V$ e':

$$(\frac{22}{21}z, \frac{5}{21}z, z).$$

In conclusione la dimensione di $U\cap V$ e' 1, ed una base di $U\cap V$ e' formata dal vettore (22,5,21).