HIGHER RANK K-THEORETIC DONALDSON-THOMAS THEORY OF POINTS

with Nadir Fasola & Sergej Monavari (Trieste) (Utrecht)

UCSD, 21 April 2020

WHAT WE KNOW ABOUT SOME MODULI SPACES

DT theory is one of the realms of Enumerative Geometry where objects we totally don't understand geometrically reveal amazing properties.

BEYOND NUMBERS

$$H_{\epsilon}^{i}(M, \mathbb{Q})$$
 (Hodge structure)
$$\begin{cases} dim \end{cases}$$

$$M \sim b^{i}(M) \in \mathbb{Z}_{\geq 0}$$

DT theory has several natural refinements: we will see the K-theoretic refinement.

DT theory: classical context

 \rightarrow $M_X(\gamma)$ moduli space of sheaves with Chern character γ .

→
$$DT(X, Y) \in \mathbb{Z}$$
"DT invariant"

deformation invariant analogue of Euler characteristic $\ell(M_X(\gamma))$

KEY FACT on $M = M_x(\gamma)$

$$M \stackrel{\text{locally}}{\cong} \{ df = o \} \subset U, \text{ for } U \text{ a}$$

smooth scheme, $U \stackrel{\text{f}}{\longrightarrow} \mathbb{C}$ a function.

{df = 0 } is virtually 0-dimensional

There is hope to count!

WHAT IS SPECIAL ABOUT $Z = \{Jf = 0\}$?

(1)
$$H_{e}^{i}(Z, \Phi_{f})$$
 perverse sheaf of vanishing cycles

 $e_{vir}(Z) \in \mathbb{Z}$
 $||$
 $\sum_{i \gg o} (-1)^{i} \dim_{\mathbb{Q}} H_{e}^{i}(Z, \Phi_{f})$

computes DT invariant when $Z = M_{x}(\gamma)$

(2) $Z = \{df = 0\}$ has a canonical

SYMMETRIC OBSTRUCTION THEORY :

$$E_{crit} = \begin{bmatrix} T_{u}|_{z} & Hess(f) \\ \downarrow Q & \downarrow \\ \downarrow Q & \downarrow \\ \downarrow Z & = \begin{bmatrix} \frac{1}{2}/\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} &$$

$$\begin{pmatrix}
\mathrm{d}f: \mathcal{O}_{u} \to \Omega_{u} \\
(\mathrm{d}f)^{v}: T_{u} \to \mathcal{I} \subset \mathcal{O}_{u}
\end{pmatrix}$$

φ induces:

- (i) a virtual class $[Z]^{vir} \in A_o Z$
- (ü) a VIRTUAL STRUCTURE SHEAF

$$\mathcal{O}_{z}^{vir} \in K_{o}(Z)$$

Remark:

$$K_{\text{vir}} := \det \mathbb{E}_{\text{crit}} = K_{\text{u}}|_{\text{z}}^{\otimes 2}$$
 has a canonical square root.

ACTION STARTS NOW

The main player in HIGHER RANK DT THEORY OF POINTS is the Quot scheme

Its points are short exact sequences $0 \to S \to 0^{\oplus r} \to T \to 0$ where dim T = 0, $\chi(T) = n$.

FACTS

local model for $0-\dim DT$ theory.

(1) $r=1 \rightarrow get Hilb^n(A^3)$.

(2) Quot_A³ (O[⊕], n)
$$\stackrel{\text{globally}}{=} \{df = o\}$$
.

[Beentjes-R 2018]
[Szendrői, r = 1]

(3) Have [.] vir, Ovir, K = .

(4) There is a T-action on the Quot scheme

Torus
$$T = (C^{\times})^3 \times (C^{\times})^r$$

moves the support of $T \leftarrow C^{\oplus r}$ via $(t_1, t_2, t_3) \cdot (x_1, x_2, x_3) = (t_1x_1, t_2x_2, t_3x_3)$

T-action on
$$Q_{r,n} = Q_{vot}(0^{\oplus r}, n)$$

$$Q_{r,n}^{T} = \coprod_{\substack{n_1 + \dots + n_r = n \ i = 1}}^{r} Hilb^{n_i} (A^3)^{T_1}$$

 $T_1 = (C^*)^3$ - fixed locus of $Hilb^k(A^3)$ is reduced, finite, isolated, indexed by

MONOMIAL IDEALS OF COLENGTH
$$k$$
 OF SIZE k

$$I_{\pi} \subset \mathbb{C}[x_{1},x_{2},x_{3}] \longleftrightarrow \pi$$

A plane partition π of size $|\pi| = 16$.

$$S \hookrightarrow 0^{\oplus r} \rightarrow T$$

$$\mathbb{Q}_{\varsigma,n}^{\mathsf{T}} \ni [\varsigma] \leftrightarrow \varsigma = \bigoplus_{i=1}^{\varsigma} \mathbb{I}_{\pi_i}$$

$$Q_{r,n} \cong \left\{ \text{r-colored plane partitions} \right.$$

$$\overline{\pi} = \left(\pi_{1}, ..., \pi_{r} \right) \text{ of size } \left| \overline{\pi} \right| = \sum_{i=1}^{r} \left| \pi_{i} \right| = n \right\}$$

K-THEORETIC INVARIANTS

$$\mathbb{E} \xrightarrow{\varphi} \mathbb{L}_{Y}$$
 p.o.t. on a scheme $Y \rightsquigarrow \mathcal{O}_{Y}^{\text{vir}} \in K_{o}^{T}(Y)$

$$Y \xrightarrow{P} P^{t} P^{t} P^{t} P^{t} \longrightarrow \chi(Y, -) = P_{*}: K_{o}^{T}(Y) \longrightarrow K_{o}^{T}(P^{t})$$

$$\chi^{\text{vir}}(Y, V) = \chi(Y, V \otimes \mathcal{O}_{Y}^{\text{vir}}).$$

Important characters:

Ty =
$$E' = E_0 - E_1$$
 virtual tangent space

Virtual localisation

Y has a
$$T$$
-action \Rightarrow Y^T has its own Q^{vir}

$$\chi^{\text{vir}}(Y,V) = \chi^{\text{vir}}(Y^{T}, \frac{V|_{Y^{T}}}{\Lambda^{\text{o}} N^{\text{vir},v}})$$

$$K^{T}_{\text{o}}(P^{\text{b}}) \left[(1-t^{\mu})^{-1} \mid \mu \in \widehat{T} \right]$$

If Y is not proper, <u>DEFINE</u>

X^{vir} (Y, V) to be the RHS,

provided that Y^T is proper.

DEFINITION of HIGHER RANK DT INVARIANTS of A3

•
$$\widehat{\mathcal{O}}^{\text{vir}} = \mathcal{O}^{\text{vir}} \otimes K_{\text{vir}}^{\frac{1}{2}}$$
 on each $Q_{r,n}$
• $\text{tr}: K_o^T(\text{pt}) \xrightarrow{\sim} \mathbb{Z}[t^{\mu} | \mu \in \widehat{T}]$

$$DT_{r,n}^{K} = \chi(Q_{r,n}, \mathcal{O}^{vir})$$

$$= \sum_{[S] \in Q_{r,n}^{T}} t_r \left(\frac{K_{vir}^{1/2}}{\Lambda^{\bullet}(T_S^{vir})^{v}} \right)$$

Form the generating function
$$DT_{r}^{K}(A^{3},t,w,q) = \sum_{n \geq 0} DT_{r,n}^{K} \cdot q^{n}.$$

Okounkov proved Nekrasov's conjecture:

$$DT_{1}^{K}(A^{3}, t_{1}, t_{2}, t_{3}, w_{1}, -q)$$

$$E \times P\left(\frac{1}{[\underline{t}''^{2},][\underline{t}''^{2}, -1]} \frac{[t_{1}t_{2}][t_{2}t_{3}]}{[t_{1}][t_{2}][t_{3}]}\right)$$

- · Exp = plethystic exponential
- $[x] = x^{1/2} x^{-1/2}$. $\underline{t} = t_1 t_2 t_3$
- · Note the independence on W1

MAIN THEOREM

$$DT_{r}^{K}(A^{3},t,w,(-i)^{r}q) = E_{xp}F_{r}(q,t_{1},t_{2},t_{3})$$

• Fr :=
$$\frac{[t']}{[t''^2q][t''^2q^{-1}]} \frac{[t_1t_2][t_1t_3][t_2t_3]}{[t_1][t_2][t_3]}$$
where $\underline{t} = t_1t_2t_3$

- This was conjectured by Awata-Kanno (2009)
 in string theory.
- · Note the independence on W = (W1, _, Wr)

BEFORE WE GO ON

- (•) A proof of the Awata-Kanno conjecture was also announced by Noah Arbesfeld and Yasha Kononov.
- (.) A "10 years later" review on this conjecture was arxived by Kanno last week.

(•) One more remark on the Physics literature....

.... The plethystic formula for DT K(A3, t, w, (-1) q) is equivalent to

$$DT_{r}^{K}(A^{3},t,(-i)^{6}q)$$

$$\parallel$$

$$T DT_{1}^{K}(A^{3},-qt^{\frac{-r-1}{2}+i},t)$$

$$i=i$$

i.e. the rank 1 theory determines the rank r theory.

This formula appeared in the work of Nekrasov-Piazzalunga as a limit of (conjectural) 4-fold identities.

NGREDIENTS IN THE PROOF

(1) explicit formula for
$$T_s^{vir}$$
, $[S] \in Q_{r,n}$.

$$||||_{E_{crit}^{v}|_{[S]}} \in K_o^{T(pt)}$$

- (3) Evaluate $DT_r^K(A^3, t, w, q) = \sum_{\bar{\pi}} q^{|\bar{\pi}|} \prod_{i,j=1}^r [-V_{ij}]$ by setting $w_i = L^i$ and computing the limit for $L \to \infty$.
 - ~> This yields the product formula.

 Conclude by properties of Exp.

these are "vertex terms" arising from localisation.

$$T_{s}^{\text{vir}} = \chi(\mathcal{O}^{\oplus r}, \mathcal{O}^{\oplus r}) - \chi(s, s) = \sum_{1 \leq i, j \leq r} \bigvee_{i \neq j} V_{ij}$$

determines the HIGHER RANK VERTEX, where

$$V_{ij} = w_{i}^{-1} w_{j} \left(Q_{j} - \frac{\overline{Q}_{i}}{t_{i}t_{2}t_{3}} + \frac{(1 - t_{1})(1 - t_{2})(1 - t_{3})}{t_{i}t_{2}t_{3}} Q_{j} \overline{Q}_{i} \right)$$

$$Q_{i} = tr_{O/I_{\pi_{i}}} = \sum_{i=1}^{m} t^{O}$$

rank r version of MNOP, including the triviality of the T-fixed p.o.t. on $Quot_{A^3}(O^{\oplus r}, n)^T$.

COHOMOLOGICAL (rank r) DT INVARIANTS

$$DT_{r,n}^{coh} = \int 1$$

$$V_{j} = c_{1}^{T}(t_{i})$$

$$V_{j} = c_{1}^{T}(W_{j})$$

$$DT_{r}^{coh}(q) := \sum_{n \geq 0} DT_{r,n}^{coh} \cdot q^{n}$$

True if
$$r=1$$
 [MNOP]

$$\int \frac{S_1 + S_2}{s_1} \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_2 + S_3}{s_1} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_2 + S_3}{s_1} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_1 + S_2}{s_2} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_1 + S_2}{s_1} \right) \left(\frac{S_1 + S_2}{s_2} \right) \left(\frac{S_1$$

(1)
$$DT_r^{coh}(q) = \lim_{b\to 0} DT_r^k(A^3, e^b, e^b, q)$$
.

(2)
$$DT_r^{coh}(9)$$
 does not depend on $e^{T}(W)$.

FUTURE of DT THEORY OF POINTS

We propose a definition of virtual chiral elliptic genus.

There is currently no guessed formula for the partition function (not even in Physics!)

one formula that still awaits proof is:

$$r \cdot \int_{C_3 - C_1 C_2} r \cdot \int_{X} c_3 - c_1 c_2 \int_{X} r \cdot \int_{X} r \cdot \int_{X} c_3 - c_1 c_2 \int_{X} r \cdot \int_{X} r$$

Thank you !!