

BACHELOR THESIS

ME

Life-like simple particle motion

Department of Applied Mathematics

Supervisor of the bachelor thesis: SUPER

Study programme: Computer Science

Study branch: General Computer Science

I declare that I carried out this bachelor thesis independently, and only with the cited sources, literature and other professional sources. It has not been used to obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.
In

Title: Life-like simple particle motion

Author: ME

Katedra: Department of Applied Mathematics

Supervisor: SUPER, Department of Applied Mathematics

Abstract: ABSTRACT

Keywords: keywords more such

Contents

1	Inti	roduction	2
	1.1	The primordial particle system	2
	1.2	Original research	2
2	Ove	erview of a new implementation	3
	2.1	Overview of "Emergence"	3
	2.2	Comparison to original research	3
3	Imp	plementation of "Emergence"	4
	3.1	Main algorithm	4
	3.2	Data	4
	3.3	Design	4
	3.4	Frameworks used	4
4	Assessment of "Emergence"		
	4.1	Fidelity to original research	5
	4.2	Performance	5
	4.3	User experience	5
5	Dis	cussion	6
	5.1	Future work	6
	5.2	Related ideas	6
Bi	ibliog	graphy	7
List of Figures			
Li	\mathbf{st} of	Tables	9
Li	st of	Abbreviations	10

1. Introduction

- 1.1 The primordial particle system
- 1.2 Original research

Schmickl et al. [2016]

2. Overview of a new implementation

- 2.1 Overview of "Emergence"
- 2.2 Comparison to original research

3. Implementation of "Emergence"

- 3.1 Main algorithm
- 3.2 Data
- 3.3 Design
- 3.4 Frameworks used

4. Assessment of "Emergence"

- 4.1 Fidelity to original research
- 4.2 Performance
- 4.3 User experience

5. Discussion

- 5.1 Future work
- 5.2 Related ideas

Bibliography

Thomas Schmickl, Martin Stefanec, and Karl Crailsheim. How a life-like system emerges from a simplistic particle motion law. Scientific Reports, 6(37969): 1-15, 2016.

List of Figures

List of Tables

List of Abbreviations

PPS primordial particle system