```
Collecting psycopg2-binary
      Downloading https://files.pythonhosted.org/packages/6d/45/c519a5cfac05e14b1ccb
                                           3.0MB 13.9MB/s
    Installing collected packages: psycopg2-binary
    Successfully installed psycopg2-binary-2.8.6
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler,OneHotEncoder
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model selection import KFold
from sklearn.pipeline import Pipeline
from sklearn.model selection import GridSearchCV
import tensorflow as tf
import sqlalchemy as db
from sqlalchemy.ext.automap import automap base
from sklearn.metrics import mean_squared_error
from keras.metrics import RootMeanSquaredError
from datetime import date
engine = db.create_engine('postgresql://postgres:finalproject@finalproject.cfnecwioim
with engine.connect() as conn, conn.begin():
    df = pd.read sql("""select * from all cleaned redfin data;""", conn)
ml df = df
ml_df = ml_df.drop([
    'address',
    'state or province',
    #'city',
    'url',
    'mls number',
    'latitude',
    'longitude',
    'neighborhood',
    'price per square feet'
    ], axis =1)
ml df
```

pip install psycopg2-binary

	index	property_type	city	zip_code	price	beds	baths	5
0	0	Single Family Residential	Nashville	37215	1425000	4.0	5.0	
1	1	Single Family Residential	Nashville	37220	1975000	5.0	4.5	
2	2	Single Family Residential	Nashville	37215	1100000	4.0	5.0	
3	3	Single Family Residential	Nashville	37215	1600000	4.0	4.0	
4	4	Single Family Residential	Nashville	37215	1775000	4.0	5.0	
5918	340	Single Family Residential	Madison	37115	235950	1.0	1.0	
5919	341	Single Family Residential	Madison	37115	230950	1.0	1.0	
5920	342	Single Family Residential	Madison	37115	200950	1.0	1.0	
5921	343	Single Family	Madison	37115	225950	1.0	1.0	

age = today - year built zip code price per square feet try scaling everything loss function or roc curve

Commented out year_built as string calculated age and droped year built

encode_df.columns = enc.get_feature_names(object1)
encode_df

ml_encode_df = ml_df.merge(encode_df,left_index=True, right_index=True)
ml_encode_df = ml_encode_df.drop(object1,1)
ml_encode_df

from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()

Scaling the Price column of the created dataFrame and storing
the result in ScaledPrice Column
ml_encode_df[["scaledSF", "scaledLS", "scaledAge"]] = scaler.fit_transform(ml_encode_
ml_encode_df = ml_encode_df.drop(["square_feet","lot_size", "age_in_years"], axis= 1)
ml_encode_df

	index	price	beds	baths	status	<pre>property_type_Condo/Co-</pre>	р
0	0	1425000	4	5.0	Sold	0.0	
1	1	1975000	5	4.5	Sold	0.0	
2	2	1100000	4	5.0	Sold	0.0	
3	3	1600000	4	4.0	Sold	0.0	
4	4	1775000	4	5.0	Sold	0.0	
5918	340	235950	1	1.0	Active	0.0	
5919	341	230950	1	1.0	Active	0.0	
5920	342	200950	1	1.0	Active	0.0	
5921	343	225950	1	1.0	Active	0.0	
5922	344	195950	1	1.0	Active	0.0	

```
active_df = ml_encode_df.loc[ml_encode_df['status'] == 'Active'].drop(['status'], axi
sold_df = ml_encode_df.loc[ml_encode_df['status'] != 'Active'].drop(['status'], axis=
y_sold, y_active = sold_df["price"].values, active_df["price"].values
X_sold, X_active = sold_df.drop(["price"],1).values, active_df.drop(["price"],1).valu
```

```
X_train, X_test, y_train, y_test = train_test_split(X_sold, y_sold, random_state=78)
```

```
#Define the model - deep neural net
number input features = len(X train[0])
```

```
nn = tf.keras.models.Sequential()
# First hidden layer
nn.add(
    tf.keras.layers.Dense(units=50, input_dim=number_input_features, activation="relu
nn.add(
    tf.keras.layers.Dense(units=40, activation="relu")
nn.add(
    tf.keras.layers.Dense(units=30, activation="relu")
)
nn.add(
    tf.keras.layers.Dense(units=20, activation="relu")
)
nn.add(
    tf.keras.layers.Dense(units=10, activation="relu")
# Second hidden layer
nn.add(tf.keras.layers.Dense(units=8, kernel_initializer='normal'))
# Output layer
nn.add(tf.keras.layers.Dense(units=1))
# Check the structure of the model
nn.summary()
```

Model: "sequential_2"

Layer (ty	rpe)	Output	Shape	Param #		
dense_14	(Dense)	(None,	50)	3200		
dense_15	(Dense)	(None,	40)	2040		
dense_16	(Dense)	(None,	30)	1230		
dense_17	(Dense)	(None,	20)	620		
dense_18	(Dense)	(None,	10)	210		
dense_19	(Dense)	(None,	8)	88		
dense_20	(Dense)	(None,	1)	9		

Total params: 7,397
Trainable params: 7,397

```
Non-trainable params: 0
```

```
# def baseline_model():
   # create model
   model = Sequential()
#
   model.add(Dense(13, input_dim= len(X_train[0]), kernel_initializer='he normal', a
   model.add(Dense(1, kernel_initializer='normal'))
   # Compile model
#
  model.compile(loss='mean squared error', optimizer='Adam')
   return model
# #evaluate the model
# param grid = {
        'optimizer': ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nad
# #
       'batch size': [10, 20, 40, 60, 80, 100],
#
       'epochs': [100, 200, 300],
#
# #
        'learn rate': [0.001, 0.01, 0.1, 0.2, 0.3],
        'momentum': [0.0, 0.2, 0.4, 0.6, 0.8, 0.9],
# #
        'init_mode': ['uniform', 'lecun_uniform', 'normal', 'zero', 'glorot_normal',
# #
        'activation': ['softmax', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid',
# #
        'weight_constraint': [1, 2, 3, 4, 5],
# #
# #
        'dropout rate': [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9],
        'neurons': [1, 5, 10, 15, 20, 25, 30]
# #
# }
# model = KerasRegressor(build fn=baseline model, epochs=100, batch size=5, verbose=0
# grid search = GridSearchCV(estimator = model, param grid = param grid,
                        cv = 3, n jobs = -1, verbose = 2, return train score=True)
# grid result = grid search.fit(X train, y train)
# print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
# means = grid result.cv results ['mean test score']
# stds = grid result.cv results ['std test score']
# params = grid result.cv results ['params']
# for mean, stdev, param in zip(means, stds, params):
      print("%f (%f) with: %r" % (mean, stdev, param))
# Compile the model
nn.compile(loss='mse', optimizer="adam", metrics=[tf.keras.metrics.RootMeanSquaredErr
# Train the model
fit model = nn.fit(X train, y train, epochs=200)
prediction = nn.predict(X test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error abs'] = abs(pred['error'])
print(pred.error abs.mean())
nrint/mean contared error/v test nrediction))
```

```
brinc/meau_sdagrea_error(la_cesc' breatecroul)
print(mean_squared_error(y_test, prediction, squared=False))
    93391.0855540985
    32997114415.376217
    181651.07876193913
# Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
print(mean_squared_error(y_test, prediction, squared=False))
    87604.24701057965
    30339684543.100517
    174182.90542731373
# Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
print(mean_squared_error(y_test, prediction, squared=False))
    92964.18187122155
    31790344500.400116
    178298.47026937758
# Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
```

```
print(mean_squared_error(y_test, prediction, squared=False))
    90667.0099128734
    35046097701.83956
    187206.03008941663
# Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
print(mean_squared_error(y_test, prediction, squared=False))
    118584.6579669719
    56754310369.16693
    238231.6317560851
 #Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
print(mean_squared_error(y_test, prediction, squared=False))
    93744.06381690079
    44074800473.11699
    209939.9925529126
 #Train the model
fit_model = nn.fit(X_train,y_train,epochs=100)
prediction = nn.predict(X_test)
pred = pd.DataFrame({ 'actual': y_test})
pred['prediction'] = prediction
pred['error'] =pred.prediction - pred.actual
pred['error_abs'] = abs(pred['error'])
print(pred.error_abs.mean())
print(mean_squared_error(y_test, prediction))
print(mean squared error(y test, prediction, squared=False))
```

```
48460593813.927055
    220137.67013831835
from google.colab import drive
drive.mount('/content/drive')
    KeyboardInterrupt
                                               Traceback (most recent call last)
    /usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py in
    _input_request(self, prompt, ident, parent, password)
        728
                        try:
    --> 729
                             ident, reply = self.session.recv(self.stdin socket, 0)
        730
                         except Exception:
                                  - 🗘 6 frames 🗕
    zmq/backend/cython/socket.pyx in zmq.backend.cython.socket.Socket.recv()
    zmq/backend/cython/socket.pyx in zmq.backend.cython.socket.Socket.recv()
    zmq/backend/cython/socket.pyx in zmq.backend.cython.socket. recv copy()
    KeyboardInterrupt:
    During handling of the above exception, another exception occurred:
    KeyboardInterrupt
                                               Traceback (most recent call last)
    /usr/local/lib/python3.7/dist-packages/ipykernel/kernelbase.py in
    input request(self, prompt, ident, parent, password)
        732
                        except KeyboardInterrupt:
                             # re-raise KeyboardInterrupt, to truncate traceback
        733
    --> 734
                             raise KeyboardInterrupt
        735
                         else:
        736
                             break
    KeyboardInterrupt:
     SEARCH STACK OVERFLOW
import numpy as np
active df = df.loc[df['status'] == 'Active'].drop(['status'], axis=1)
active_df['predicted_price'] = nn.predict(X_active)
active df['house value'] = np.where(active df['price'] > active df['predicted price']
active df.groupby(['house value']).count()['mls number']
active df.to json('house value.json')
!cp house value.json "drive/My Drive/"
```

103831.73846461593

active df

	property_type	address	city	state_or_province	zip_code	price	beds
0	Single Family Residential	413 Brook View Estates Dr	Antioch	TN	37013	244900	3.0
1	Single Family Residential	135 Spring Valley Rd	Nashville	TN	37214	340000	2.0
2	Single Family Residential	2509 Slaydon Dr	Nashville	TN	37207	325000	3.0
5	Condo/Co-op	121 Beech Forge Dr	Antioch	TN	37013	200000	2.0
7	Single Family Residential	1632 Aaronwood Dr	Old Hickory	TN	37138	255900	3.0
340	Single Family Residential	624 W Due West Ave #401	Madison	TN	37115	235950	1.0
341	Single Family Residential	624 W Due West Ave #301	Madison	TN	37115	230950	1.0
342	Single Family Residential	624 W Due West Ave #205	Madison	TN	37115	200950	1.0
343	Single Family Residential	624 W Due West Ave #201	Madison	TN	37115	225950	1.0
344	Single Family Residential	624 W Due West Ave #105	Madison	TN	37115	195950	1.0

• ×