```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt

%matplotlib inline
   plt.style.use('bmh')
```

In [3]: df=pd.read_csv("train.csv")
 df

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500
889	890	1	1	Behr, Mr. Karl Howell	ma l e	26.0	0	0	111369	30.0000
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500
891 rows × 12 columns										
4									_	

file:///C:/Users/OSAS.H/Downloads/Train (1).html

DATA DESCRIPTION

1. Survival: Survival (0 = No; 1 = Yes)

2. pclass: Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

name: Name
 sex: Sex
 age: Age

6. sibsp: Number of Siblings/Spouses Aboard7. parch: Number of Parents/Children Aboard

8. ticket: Ticket Number9. fare: Passenger Fare

10. cabin: Cabin

11. embarked: Port of Embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)

VARIABLE NOTES

- 1. pclass: A proxy for socio-economic status (SES) 1st = Upper 2nd = Middle 3rd = Lower
- 2. age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5
- 3. sibsp: The dataset defines family relations in this way... Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored)
- 4. parch: The dataset defines family relations in this way... Parent = mother, father Child = daughter, son, stepdaughter, stepson Some children travelled only with a nanny, therefore parch=0 for them.
- 5. Now let's see some statistical summary of the imported dataset using pandas.describe() method.

In [4]: df.describe()
Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [5]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							

memory usage: 83.7+ KB

In [11]: train = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1) train.head()

Out[11]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

In [13]: train.describe()

Out[13]:

	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
In [15]: | train.isnull().sum()
Out[15]: Survived
          Pclass
                         0
          Sex
                         0
                      177
          Age
          SibSp
                         0
          Parch
                         0
          Fare
                         0
          Embarked
                         2
          dtype: int64
```

Data exploration:

I will be exploring the following questions on the dataframe

- 1. How Survival is correlated to other attributes of the dataset? Findout Pearson's r.
- 2. Did Sex play a role in Survival?
- 3. Did class played role in survival?
- 4. How fare is related to Age, Class and Port of Embarkation?
- 5. How Embarkation varied across different ports?

Q1; How Survival is correlated to other attributes of the dataset? Findout Pearson's r.

```
In [17]:
         #How Survival is correlated to other attributes of the dataset ? Findout Pears
         on's r
         train.corr(method='pearson')
```

Out[17]:

	Survived	Pclass	Age	SibSp	Parch	Fare
Survived	1.000000	-0.338481	-0.077221	-0.035322	0.081629	0.257307
Pclass	-0.338481	1.000000	-0.369226	0.083081	0.018443	-0.549500
Age	-0.077221	-0.369226	1.000000	-0.308247	-0.189119	0.096067
SibSp	-0.035322	0.083081	-0.308247	1.000000	0.414838	0.159651
Parch	0.081629	0.018443	-0.189119	0.414838	1.000000	0.216225
Fare	0.257307	-0.549500	0.096067	0.159651	0.216225	1.000000

From above correlation table we can see that Survival is inversly correlated to Pclass value. In our case since Class 1 has lower numerical value, it had better survival rate compared to other classes. We also see that Age and Survival are slighltly correlated.

Did Sex play a role in Survival?

```
In [63]: #train.groupby(['Survived']).hist()
sns.factorplot('Survived', data=df, kind='count')
```

Out[63]: <seaborn.axisgrid.FacetGrid at 0x1f86cb9e248>


```
In [57]: #agewise distribution of the passenger
    #Histogram of Age of the given data set(sample)
    #plt.hist(train['Age'].dropna())
    sns.distplot(train['Age'].dropna(), bins=15, kde=False)
    plt.ylabel('Count')
    plt.title('Agewise distribution of the passenger')
```

Out[57]: Text(0.5, 1.0, 'Agewise distribution of the passenger aboard')


```
In [31]: #Age wise Distribution of Male and Female passengers
    plt.hist(train['Age'][(train['Sex'] == 'female')].dropna(), bins=7, label='Fem ale', histtype='stepfilled')
    plt.hist(train['Age'][(train['Sex'] == 'male')].dropna(), bins=7, label='Male'
    , alpha=.7, histtype='stepfilled')
    plt.xlabel('Age')
    plt.ylabel('Count')
    plt.title('Age wise Distribution of Male and Female passengers')
    plt.legend()
```

Out[31]: <matplotlib.legend.Legend at 0x1f86c63cd88>

Out[34]: <matplotlib.legend.Legend at 0x1f86c6101c8>


```
In [40]: #From above visualization, it is evident that Women had better survival chanc
    e. One can do an Hypothesis test to verify this.
    #Lets take a Look for youngest and oldest passenger to survive.
    yougest_survive = train['Age'][(train['Survived'] == 1)].min()
    youngest_die = train['Age'][(train['Survived'] == 0)].min()
    oldest_survive = train['Age'][(train['Survived'] == 1)].max()
    oldest_die = train['Age'][(train['Survived'] == 0)].max()

    print ("Yougest to survive: {} \nYoungest to die: {} \nOldest to survive: {}
    \nOldest to die: {}".format(yougest_survive, youngest_die, oldest_survive, old est_die))
```

Youngest to survive: 0.42 Youngest to die: 1.0 Oldest to survive: 80.0 Oldest to die: 74.0

Q3; Did class played role in survival?

```
#sns.plt.hist(train.groupby(['Pclass', 'Survived', 'Sex']).size())
In [42]:
           grouped_by_pclass = train.groupby(['Pclass', 'Survived', 'Sex'])
           grouped_by_pclass.size()
Out[42]: Pclass Survived
                               Sex
                   0
                               female
                                            3
                               male
                                           77
                   1
                               female
                                           91
                               male
                                           45
          2
                   0
                               female
                                            6
                               male
                                           91
                   1
                               female
                                           70
                               male
                                           17
          3
                   0
                               female
                                           72
                               male
                                          300
                   1
                               female
                                           72
                               male
                                           47
          dtype: int64
          train.groupby(['Pclass', 'Sex']).describe()
In [43]:
Out[43]:
                          Survived
                                                                               Age
                                                                                                   Ρ
                          count mean
                                          std
                                                    min 25% 50% 75% max count mean
                                                                                                  7
           Pclass
                     Sex
                1 female
                            94.0
                                 0.968085 0.176716
                                                    0.0
                                                          1.0
                                                               1.0
                                                                     1.0
                                                                          1.0
                                                                                85.0
                                                                                     34.611765
                           122.0
                                 0.368852
                                                                               101.0
                                                                                     41.281386
                     male
                                          0.484484
                                                    0.0
                                                          0.0
                                                               0.0
                                                                     1.0
                                                                          1.0
                2 female
                            76.0 0.921053 0.271448
                                                    0.0
                                                          1.0
                                                               1.0
                                                                     1.0
                                                                          1.0
                                                                                74.0 28.722973
                           108.0
                                                          0.0
                                                                                99.0 30.740707
                     male
                                0.157407
                                          0.365882
                                                    0.0
                                                               0.0
                                                                     0.0
                                                                          1.0
                3 female
                           144.0
                                 0.500000
                                          0.501745
                                                    0.0
                                                          0.0
                                                               0.5
                                                                     1.0
                                                                          1.0
                                                                               102.0
                                                                                     21.750000
                     male
                           347.0 0.135447 0.342694
                                                          0.0
                                                               0.0
                                                                     0.0
                                                                          1.0
                                                                               253.0 26.507589
                                                    0.0
          6 rows × 40 columns
```

```
In [49]: sns.catplot('Survived', col='Pclass', data=train, kind='count', height=7, aspe
    ct=.8)
    plt.subplots_adjust(top=0.9)
    plt.suptitle('Class wise segregation of passengers', fontsize=16)
```

Out[49]: Text(0.5, 0.98, 'Class wise segregation of passengers')

Q4; How fare is related to Age, Class and Port of Embarkation?

Q5; How Embarkation varied across different ports?

Out[53]: Text(0.5, 1, 'Scatterplot of passengers w.r.t Fare and Age')

In [56]: sns.lmplot('Age', 'Fare', data=train, fit_reg=False, hue="Pclass", col="Embark
ed", scatter_kws={"marker": ".", "s": 20})
plt.subplots_adjust(top=0.9)
plt.suptitle('Scatterplot of passengers w.r.t Fare and Age for diff. ports', f
ontsize=16)

Out[56]: Text(0.5, 0.98, 'Scatterplot of passengers w.r.t Fare and Age for diff. port s')

IN CONCLUSION

From my exploratory analysis of the train dataset, we can conclude that Females younger than 40 had a high chance of survival and females older than 40 have a minimal chance of survival. I also see that Class(Socio-Economic status) of the passengers had played a role in their survival. There were some limitation for this dataset such as missing values for some attributes of passesngers.