ST502: Final Project

Lamia Benyamine

2024-12-09

Introduction to McNemar's test

McNemar's test is a statistical test for dependent (paired) categorical data. McNemar's is best used for data with matched pairs, for example, comparing pre-treatment with post-treatment.

Analyzing the Dataset

To test a restricted multinomial vs a free multinomial, we have:

• H_0 : No relationship between drug and relief, or, $\pi_{1\bullet} = \pi_{\bullet 1}$ and $\pi_{2\bullet} = \pi_{\bullet 2}$ equivalent to $\pi_{12} = \pi_{21}$ H_A : cell probabilities are 'free' (other than the sum to 1 constraint)

$$\sum_{i=1}^{I} \sum_{j=1}^{J} \pi_{ij} = 1$$

• Our test statistic is given as Pearson's Chi-Square test statistic

$$\chi^2 = \frac{(n_{12} - n_{21})^2}{n_{12} + n_{21}}$$

and a reference distribution of χ^2 .

• For the Rejection region and p-value, we use R and assume $\alpha=0.05.$

```
cuttoff <- qchisq(0.95, df = 1)
LRT <- 2*sum(15*log(15/40))</pre>
```

• So the RR = { xobs > 3.84145882069412} and p-value = P(χ^2 RV \geq -29.4248775903518)

Create the data matrix and run McNemar's test to determine if we have evidence that the reflux drugs have different probabilities of relief.

```
## B-Success B-Failure
## A-Success 85 15
## A-Failure 40 110
```

```
#run the test for the given data
robs <-mcnemar.test(reflux_data, correct = FALSE)
robs</pre>
```

```
##
## McNemar's Chi-squared test
##
## data: reflux_data
## McNemar's chi-squared = 11.364, df = 1, p-value = 0.000749
```

Derive Parts of the Test

1. Show this is true $\pi_{1\bullet} = \pi_{\bullet 1}$ and $\pi_{2\bullet} = \pi_{\bullet 2}$ equivalent to $\pi_{12} = \pi_{21}$

 $\pi_{1\bullet}$ is the sum of all the probabilities in row 1. So $\pi_{1\bullet} = \pi_{11} + \pi_{12}$ and similarly $\pi_{2\bullet} = \pi_{21} + \pi_{22}$ $\pi_{\bullet 1}$ is the sum of all the probabilities in column 1. So $\pi_{\bullet 1} = \pi_{11} + \pi_{21}$ and similarly $\pi_{\bullet 2} = \pi_{12} + \pi_{22}$

Given, $\pi_{1\bullet} = \pi_{\bullet 1}$ and $\pi_{2\bullet} = \pi_{\bullet 2}$, we substitute and get:

$$\pi_{11} + \pi_{12} = \pi_{11} + \pi_{21}(1)$$

$$\pi_{21} + \pi_{22} = \pi_{12} + \pi_{22}(2)$$

To simplify we subtract π_{11} from both sides in (1), and subtract π_{22} from both sides in (2).

$$\pi_{12} = \pi_{21}(1)$$

$$\pi_{21} = \pi_{12}(2)$$

Therefore the statement in the null hypothesis is proven true.

2. Second, under this null restriction on our multinomial, derive the maximum's for π_{11} , π_{12} , π_{21} , and π_{22} . This can be done using Lagrange multipliers or by substituting in carefully to include the restriction. Starting with our general likelihood

$$L(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) \propto c \prod_{i=1}^{I} \prod_{j=1}^{J} \pi_{ij}^{n_{ij}}$$

The log-likelihood is then

$$l(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) = c + n_{11}ln(\pi_{11}) + n_{12}ln(\pi_{12}) + n_{21}ln(\pi_{21}) + n_{22}ln(\pi_{22})$$

Using Lagrange Multipliers, derive the maximums subject to the sum to 1 constraints. Since the constraints can be rewritten as $\sum_{i=1}^2 \pi_{i\bullet} - 1 = 0$ and $\sum_{j=1}^2 \pi_{\bullet j} - 1 = 0$, we add these constraints into our log-likelihood with Lagrange multipliers.

$$l(\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) = c + n_{11}ln(\pi_{11}) + (n_{12})ln(\pi_{12}) + n_{21}ln(\pi_{21}) + n_{22}ln(\pi_{22}) + \lambda(\sum_{i=1}^{2} \sum_{j=1}^{2} \pi_{ij} - 1)$$

We get the partial derivatives for all variables, set to 0, and solve.

$$\frac{\partial l}{\partial \pi_{11}} = \frac{n_{11}}{\pi_{11}} + \lambda \equiv 0 \Leftrightarrow \pi_{11} = -\frac{n_{11}}{\lambda} \tag{1}$$

$$\frac{\partial l}{\partial \pi_{12}} = \frac{n_{12}}{\pi_{12}} + \lambda \equiv 0 \Leftrightarrow \pi_{12} = -\frac{n_{12}}{\lambda} \tag{2}$$

$$\frac{\partial l}{\partial \pi_{21}} = \frac{n_{21}}{\pi_{21}} + \lambda \equiv 0 \Leftrightarrow \pi_{21} = -\frac{n_{21}}{\lambda} \tag{3}$$

$$\frac{\partial l}{\partial \pi_{22}} = \frac{n_{22}}{\pi_{22}} + \lambda \equiv 0 \Leftrightarrow \pi_{22} = -\frac{n_{22}}{\lambda} \tag{4}$$

Use the sum to 1 constraint to solve for λ .

$$\pi_{11} + \pi_{12} + \pi_{21} + \pi_{22} = 1 \Leftrightarrow -\frac{n_{11}}{\lambda} - \frac{n_{12}}{\lambda} - \frac{n_{21}}{\lambda} - \frac{n_{22}}{\lambda} = 1$$
$$\Rightarrow \lambda = -(n_{11} + n_{12} + n_{21} + n_{22}) = -n$$

Substituting λ in equations 1-4 above, we get the below critical values.

$$\pi_{11} = \frac{n_{11}}{n} (1)
\pi_{12} = \frac{n_{12}}{n} (2)
\pi_{21} = \frac{n_{21}}{n} (3)
\pi_{22} = \frac{n_{22}}{n} (4)$$

3. Derive the form of the LRT for a restricted vs free multinomial for this specific problem. Show that

$$-2ln\left(\frac{L(\pi_{11}^{\sim},\pi_{12}^{\sim},\pi_{21}^{\sim},\pi_{22}^{\sim})}{L(\pi_{11}^{\wedge},\pi_{12}^{\wedge},\pi_{21}^{\wedge},\pi_{22}^{\wedge})}\right) = 2\sum_{i=1}^{2}\sum_{j=1}^{2}Obs_{ij}ln\left(\frac{Obs_{ij}}{Exp_{ij}}\right)$$

and then argue that the appropriate reference distribution has 1 degree of freedom.

We know our likelihood is a multinomial

Max over ω_0 : we know $\pi_{ij}^{\wedge} = \frac{n_{ij}}{n}$ from above.

Max over
$$\Omega$$
: $(\pi_{ij}^{\wedge})_{\sim} = \frac{n_{i\bullet} * n_{\bullet j}}{n}$

Observed LRT Statistic:

$$\Lambda = \left(\frac{L(\pi_{11}^{\sim}, \pi_{12}^{\sim}, \pi_{21}^{\sim}, \pi_{22}^{\sim})}{L(\pi_{11}^{\wedge}, \pi_{12}^{\wedge}, \pi_{21}^{\wedge}, \pi_{22}^{\wedge})}\right) = \frac{\prod_{i=1}^{I} \prod_{j=1}^{J} (\pi_{i\bullet}^{\sim} \pi_{\bullet j}^{\sim})^{n_{ij}}}{\prod_{i=1}^{I} \prod_{j=1}^{J} (\pi_{ij}^{\wedge})^{n_{ij}}}$$

$$\Rightarrow \prod_{i=1}^{I} \prod_{j=1}^{J} \left(\frac{(\pi_{i\bullet}^{\sim} \pi_{\bullet j}^{\sim})}{\pi_{ij}^{\wedge}}\right)^{n_{ij}}$$

By our large-sample theory

$$-2ln(\Lambda) \sim^{H_0} \chi 2_{m-k-1}$$

Rewriting our test statistic and substituting in known values, we get

$$\begin{split} -2ln(\Lambda) &= -2\sum_{i=1}^{I}\sum_{j=1}^{J}n_{i,j}ln\left(\frac{(\pi_{i\bullet}^{\sim}\pi_{\bullet j}^{\sim})}{\pi_{ij}^{\wedge}}\right) \Rightarrow 2\sum_{i=1}^{I}\sum_{j=1}^{J}n_{i,j}ln\left(\frac{(\pi_{i\bullet}^{\sim}\pi_{\bullet j}^{\sim})}{\pi_{ij}^{\wedge}}\right) \\ &\Rightarrow 2\sum_{i=1}^{I}\sum_{j=1}^{J}n_{i,j}ln\left(\frac{\frac{n_{ij}}{n}}{\frac{n_{i\bullet}*n_{\bullet j}}{n}}\right) \Rightarrow 2\sum_{i=1}^{I}\sum_{j=1}^{J}n_{i,j}ln\left(\frac{n_{ij}}{\frac{n_{ij}}{n}}\right) \end{split}$$

We know $n_{i,j}$ is the observed counts and from the derivation above $\frac{n_{ij}}{n}$ is the expected counts under H_0 . So $n_{i,j} = Obs_{ij}$ and $\frac{n_{ij}}{n} = Exp_{ij}$. Now substituting these into our test statistic we get:

$$-2ln(\Lambda) = 2\sum_{i=1}^{2} \sum_{j=1}^{2} Obs_{ij} ln\left(\frac{Obs_{ij}}{Exp_{ij}}\right)$$

To determine degrees of freedom (m-k-1), we need to determine the dimensions of ω_0 and Ω .

For
$$H_0$$
: dim $\omega_0 = \{ (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) : \pi_{12} = \pi_{21}) \} = 2 = k$
For H_A : dim $\Omega = \{ (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22}) :$ free other than the sum to 1 constraint $\} = 4 = m$
 $df = 4 - 2 - 1 = 1$

So the reference distribution has 1 degree of freedom.

4. Lastly, we know we can use Pearson's chi-square test statistic instead of this LRT and they are asymptotically equivalent. In our above data example, we used

$$\chi 2 = 2\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(Obs_{ij} - Exp_{ij})^{2}}{Exp_{ij}} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}}$$

Show that Pearson's chi-square test statistic can be simplified into the form on the right.

From above we know, $n_{i,j} = Obs_{ij}$ and $\frac{n_{ij}}{n} = Exp_{ij}$. Under H_0 , with the assumption that $\pi_{12} = \pi_{21}$, we can combine the terms and have $\pi_{12} = \pi_{21} = \frac{n_{12} + n_{21}}{2n}$. Since we are dealing with discordant pairs, we know $n_{11} = n_{22} = 0$.

So substituting these values into Pearson's chi-square test statistic we get:

$$2\sum_{i=1}^{2} \sum_{j=1}^{2} \frac{(Obs_{ij} - Exp_{ij})^{2}}{Exp_{ij}} = 2\left[\frac{(n_{12} - (n_{12} + n_{21})/2)^{2}}{(n_{12} + n_{21})/4} + \frac{(n_{21} - (n_{12} + n_{21})/2)^{2}}{(n_{12} + n_{21})/4}\right]$$

$$= \left[\frac{((n_{12} - (n_{12} + n_{21})/2))^{2}}{(n_{12} + n_{21})/2} + \frac{((n_{21} - (n_{12} + n_{21})/2))^{2}}{(n_{12} + n_{21})/2}\right] = \frac{(\frac{n_{12} - n_{21}}{2})^{2} + (\frac{n_{21} - n_{21}}{2})^{2}}{(n_{12} + n_{21})/2}$$

$$= \frac{(\frac{n_{12}^{2}}{4} - \frac{n_{12}n_{21}}{2} + \frac{n_{21}^{2}}{4}) + (\frac{n_{12}^{2}}{4} - \frac{n_{12}n_{21}}{2} + \frac{n_{21}^{2}}{4})}{(n_{12} + n_{21})/2} = \frac{(\frac{n_{12}^{2}}{2} - n_{12}n_{21} + \frac{n_{21}^{2}}{2})}{(n_{12} + n_{21})/2}$$

$$= \frac{(n_{12}^{2} - 2n_{12}n_{21} + n_{21}^{2})}{n_{12} + n_{21}} = \frac{(n_{12} - n_{21})^{2}}{n_{12} + n_{21}}$$

Thus we have shown we can simplify the test statistic to the requested form.

Simulation Study

Using simulation based methods is an easier way to find approximate results for the power of a test. We'll investigate the α of the Pearson chi-square test and its power.

McNemar's Function

Create a function to conduct McNemar's test and return True if there is enough evidence to reject H_0 and False otherwise.

Kept getting this error 'Correlations are beyond their upper limits imposed by expectations', so I added a condition to check the correlation and adjust it if it is higher than the maximum allowed correlation.

```
library(MultiRNG)
mcnemar_func <- function(n, p, pi1, pi2){</pre>
  #check if correlation is within range, if not, sub in max correlation value
  \max_{p} \leftarrow \text{sqrt}(\text{pi1} * (1 - \text{pi1}) * \text{pi2} * (1 - \text{pi2}))
  if (abs(p) > max_p) {
    p \leftarrow max_p
  #store parameter values in a vector/matrix
  propvec <- c(pi1, pi2)</pre>
  cmat <- matrix(c(1, p, p, 1), nrow=2, ncol=2)</pre>
  #generate correlated binary data
  bin_data <- draw.correlated.binary(no.row = n, d = 2, prop.vec = propvec, corr.mat = cmat)
  #use a contingency table to find observed counts
  obs_count <- table(bin_data[,1], bin_data[,2])</pre>
  #check if there is a row for each scenario, if not create one with value 0
  row <-rownames(obs count)</pre>
  col <- colnames(obs_count)</pre>
  n_12 <- ifelse("0" %in% row && "1" %in% col, obs_count["0", "1"], 0)
  n_21 <- ifelse("1" %in% row && "0" %in% col, obs_count["1", "0"], 0)
  #return FALSE if there are no discordant pairs (to avoid NAs)
  if (n_12 == 0 & n_21 == 0) {
   return(FALSE)}
  #use Pearson's Chi-square test stat
  xobs \leftarrow ((n_12 - n_21)^2)/(n_12 + n_21)
  #determine the cut off value of failing to reject null hypothesis
  cutoff \leftarrow qchisq(0.95, df = 1)
  #return True for Reject HO and False for Failing to Reject HO
  return(xobs > cutoff)
```

Generate combinations of data

• We'll generate data under all combinations of the following:

```
#sample size
n_val <- c(25, 40, 80, 200)
#'drug A' variable's success probability
pi1_val <- c(0.1, 0.4, 0.8)
#'drug B' variable's success probability
pi2_val <- c(pi1_val, pi1_val + 0.02, pi1_val + 0.05, pi1_val + 0.1)
#this is the correlation with which we generate our data
p_val <- c(0, 0.2, 0.5)</pre>
```

• Create a function to generate the data for all combinations of the parameters

```
get_data <- function(n_val, p_val, pi1_val, pi2_val, N = 100) {</pre>
  #set the seed for the random num generation with replicate
  set.seed(25)
  #initialize a list to store data
  gen data <- list()</pre>
  #generate data by looping through all combinations
  for (n in n_val) {
    for (p in p_val) {
      for (pi1 in pi1_val) {
        for (pi2 in pi2_val) {
          #create column names for each combination
          col_name <- paste0("n", n, "_corr", p, "_pi1", pi1, "_pi2", pi2)</pre>
          #replicate the test and store data in the list
          gen_data[[col_name]] <- replicate(N,</pre>
                                              \{mcnemar\_func(n = n, p = p, pi1 = pi1, pi2 = pi2)\})
      }
    }
  }
 return(gen_data)
```

Replicate the data

We'll generate N=1000 datasets under each of these settings. We'll be able to determine α control by looking at the case when $\pi_1=\pi_2$. All of the other cases will allow us to investigate power under the alternative created by the difference in π 's and correlation.

Find Power

Find the probability of rejecting H_0 for each simulated combination.

```
#apply the mean to each list to get the power
power <- lapply(X = samples, FUN = mean)
#create a data frame to better visualize the data</pre>
```

```
power_df <- data.frame(</pre>
    Combination = names(samples),
    Power = unlist(power) #simplify values to a vector
  )
#split the combination column into a vector with 4 values for each parameter
split_combos <- strsplit(x = as.character(power_df$Combination), split = "_")</pre>
#extract each parameter value and assign it to a new column
#& remove characters from the values
power_df$n <- sapply(split_combos, function(x) x[1])</pre>
power_df$n <- sub("n", "", power_df$n)</pre>
power_df$Correlation <- sapply(split_combos, function(x) x[2])</pre>
power_df$Correlation <- sub("corr", "", power_df$Correlation)</pre>
power_df$pi1 <- sapply(split_combos, function(x) x[3])</pre>
power_df$pi1 <- sub("pi1", "", power_df$pi1)</pre>
power_df$pi2 <- sapply(split_combos, function(x) x[4])</pre>
power_df$pi2 <- sub("pi2", "", power_df$pi2)</pre>
#remove row names for a cleaner table since values are
#already available in Combination column
row.names(power df) <- NULL</pre>
#set data structure of columns
power_df$pi1 <- as.numeric(power_df$pi1)</pre>
power_df$pi2 <- as.numeric(power_df$pi2)</pre>
power_df$Correlation <- as.factor(power_df$Correlation)</pre>
power_df$n <- as.numeric(power_df$n)</pre>
#create a new column pi2-pi1 to use when creating plots
power_df$pi2_pi1 <- (power_df$pi2 - power_df$pi1)</pre>
```

Plots

Read in packages to create better visualizations than with base R.

```
library(ggplot2)
library(tidyr)
library(dplyr)
```

Create Power Plots for each instance of π_1 to determine how well the asymptotic rejection region performs at controlling α and the power of the asymptotic test when comparing certain alternatives.

```
power_df <- as_tibble(power_df)

#pi=0.1
power_df|>
filter(power_df$pi1 == 0.1) |>
ggplot(aes(x = pi2_pi1, y = Power, group = Correlation, color = Correlation)) +
```

```
geom_line() +
labs(title = "Power plot for different sample sizes with pi1 = 0.1",
    x = "pi2-pi1", y = "Proportion Rejected") +
facet_grid(cols = vars(n)) +
theme(axis.text.x = element_text(angle = 30, vjust = 0.5, hjust=0.5))
```

Power plot for different sample sizes with pi1 = 0.1

Power plot for different sample sizes with pi1 = 0.4

Results

In all values of π_1 where $\pi_1 = \pi_2$, the proportion of tests rejecting H_0 was the closest to 0. As the $|\pi_2 - \pi_1|$ increases, the proportion of tests rejected also increases. The various correlation values acted very similarly, and as the sample sizes increases, the proportion of tests rejected reached high values sooner.