Database Ch. 6 notes

* Transforming Data Models into Db Designs

I. Purpose of a Db Design

Dodesign: set of all specs that can actually be implemented as a db (DBMS-specific)

II. Create a Table for Each Entity

-attrice 60

- entity attr = table column

- identifier = table PK

Selecting a PK
-facilitates searching and sorting of table rows
A Figure 6-1 x - Transforming Db Model into Db Design
- pg 250

- ideal Ph is short, fixed, and numeric (id)

- use surrogate keys if no candidate keys

- disadu of surrogate keys:

a) Value has no meaning to the user
b) when sharing data, if there's 2 db's that
have 2 tables w/ same name, they'll have the
same 1D rows (not likely) (unless merging db's)
- surrogate keys can have a defined
range of values

Specifying Alternate Keys

condidate key: identifier of unique rows w/in a table ; we choose I in a table to be the PK.
. The ones not chosen are alternate keys

- representing AV's! (Fecust NO) AK1.1 52st column of the 1st alternate key Specifying Column Properties Si types: null, not null status, data type, default value, data constraints null status - column can either be rull or not rull data type - BDBMS - specific - some are standard across the board · Char for fixed-length string - Varchar(x) for variable-length string - companies usually have their own generic data standards Apg 254-258 = Common Data Types in MySQL & Detault Value - a value supplied by the DBMS when a new row is made · could be string, date/time, timestamp, int, etc. - could be the result of a function (ex. calculating price) Example: table: TTEM golumn: HemPrefix Default Value: if Category = 'Perishable' then 'P'
otherwise 'N'

Data Constraints
-limits on data values lonex. only 4 values allowed in this cold
-lange constraints limit values to a particular interval of values
- Ex. dates 6/6/11/1900 6 present

Figure 6-8 pg 259

- Intrarelation constraint limits column values in comparison w/ other columns in same table

- Ex. Review Date must be at least 3 months after Hire Date

- Interrelation constraint limits a column's values in comparison

w/ other columns in other tables

- Ex. DEAD. Name column value cannot equal

ALIVE. Name column value

- Referential Integrity is one type of interrelation

constraint

Verify Normalization

- structures of forms / reports usually reflect how users think about their data will usually end up normalized if modeling from forms / reports - should verify though

III. Create Relationships

*Prerequisite: design a complete, but independent, set of tables

Relationships blw Strong Entities

generally, relationships are created by placing foreign leys into tabler
- I:I, I:N, N:M.

7:1 Relationships

- each value in FPK column of TI can only appear once in To

-To enforce required uniqueness of the FK value, we can define the FK column as 'unique', either directly or as an alternate key.

this is also how we enforce maximum cardinality

I.N Relationship

- place PN of TI on the I side (I:N) into the Fable on the many side (1:N) as a Fh

- I: N parent, child

- Don't make the FK unique

-"Place the Pk of the parent as the Fk of the child"
A Figure 6-10 pg 261

N.M Relationships

- problem! no place in either table to place the FK

- a 2-way 1: N rel work (no duplicates!)

- solution: create an intersection table, holding the Pk's of each

- *Figure 6-11 pg 262

- as FK's

the 2 Ph's in the intersection table serve as the composite PK
ints. table bolds key data only

Relationships using 10-Dependent Entities

4 purposes!

1) Repping N: M relationships (intersection table = 10-Dep)

2) Repping association relationships

3) Storing multivalued attributes

4) Repping archetype / instance relationships

CN / AN / PN / HAW * ask Figure 6-14

Association Relationships

Start?

- intersection table that's 1D-Dep on both it its parents
- convert to association table by adding
non-identifier attributes

- can connect > 2 tables in intersection table

Multivalued Attributes

See Figure 15-a and 15-b (pg 267)

Archetype / Instance Pattern

-if the pattern is given identifiers of their own, it becomes weak but no longer 1D-Dependent relationship must then be transformed using rules of a 1:N rel. b/w a strong to weak/non 1D-Dep entity.

Theans the PK of parent table should be placed in the child table as a FK

Relationships Wa Weak, Non-10 Dependent Entity
- relationship b/w 2 strong entities behaves
the same

- nonidentifying rel 6 is characterized by max card.

- use surrogate key to replace long identifier situations (paren

- then replace identifier of ID-Dep entity w/ it's own surrogate key

Relationships in Mixed Entity Designs

Mixed-1D: strong entity & 1D-Dependent entity *Figure 18 & Figure 19 (pg 269) show great examples of how these relationships work

Relationships blu Supertype & Subtype Entities

- 15-A' Relationships be the supertype to subtype represent the same underlying entity

"Es a MANAGER is an EMPLOYEE

"keys of all subtype tables are same as keys of the supertype

- discrimator attr cannot be rapped in relational durigns & Figure 6-20 (pg 270)

Recursive Relationships

1:1

- Box car data model = Figure 6-21 (pg 271)
- create a FK in child table that contains an identifier of its recursive child

- FK must be unique

- both sides of the relationship are optional (no required children) be of the first & last boxcar

1:N

- All cases: Place the PK of parent table in child table
as a FK
-if the a data model requires children (i.e. circular),
then each parent table has a child to vise versa

N:M

- trick: decompose N:M into 2 I:N relationships

(i.e. create intersection table)

Representing Ternary & Higher-Order Relationships

- esternaries could be repped by multiple binary rels (2 tables)

issue if a business rule is added that affects the relationship (i.e. particulars)

· the ability to only allow certain combos in a table

can only be enforced by program code - MUST constraint: requires one entity to be combined w/ another entity

- MUST NOT constraint: combos that aren't allowed in a ternary ret - MUST COVER constraint: all combos that must appear in a ternary rel

-none of these 3 types of binary constraints can be represented in the relational design

Relational Representation of Highline Univ. Data Model

- Final data model: Figure 6-27 (pg 275)
- Final db design: *Figure 6-28 (pg 276)
- look at the design & visualize the tables - it makes Sense (

« note: cannot have 2 columns (Ph's & Fh's) W/ same name from 2 different tables

TV. Design for Minimum Cardinality -complicated be certain things can't be enforced in db structures - Rels can have 4 min. cardinalities: parent /child optional (0-0)

parent mandatory & child optional (M-O); O-M; M-M

- (0-0) rels dont require enforcement of Min. card.

*Figure 6-29: actions readed to enforce minimum cardinality

(a): When parent is Mandatory

(b): When child is mandatory

"minimum cardinality enforcement action"

"actions are for Insert, Update, & Delete functions

Actions when Parent is Required

- ensure every row has a non-null value for FK column restrict action to update or delete parents PK and restrict creating or modifying child FK

Actions on Parent row when Parent is required

- if any value of parent PM changes, then the child

FK becomes an orphan (prohibit modification)

be consistent in your changes

acading Updates; policy of my line of my line.

to child FK

- if delete:

- delete Pk row = children Fk are orphans either delete children too or prohibit deletion

Cascading Deletions: deleting the children along w/ the

-child must have valid FK value

-could have a default value for the FK

- no restrictions of deleting a child

Actions When Child is Required

- ensure there's at least I child row at all times a last child cannot leave parent

-enforcing required children is harden than enforcing required parents

- we must count # children a parent has

Actions on Parent Row When Child is required

- if child is required, then can't create a new parent w/o creating a relationship to a child either create new child row each time parent is created or change an existing child row's FR else = prohibited

· modification of parent's Ph has no restriction if parents use surrogate key · if child is required to parent is deleted, no

· if child is required to parent is deleted, no action reed be taken be child is required,

Action on Child row when Child is required

-no action w/ insertion

-if child is the last of its parent; then update cannot occur; if so, parent would be childless

-must know # of children at all times

- if last child, cannot delete child row

Implementing Actions for M-O Relationships

- never create orphans.

a)-enforce referential integrity so every FK value has a match in a PK table

b)-make FK column NOT NULL

- if a bb, then all of *Figure 6-29 will be enforced

* Figure 6-31 (pg280) - Actions to Apply to enforce Minimum Cardinality

Implementing Actions for O-M Relationships

triggers: modules of code that're envoked by the DBMS When specific events occur

· used for insert, update, delete actions

posents - create the required parent or child - steal existing children from parents dillow - on updating / deleting parents, if FK is mill, proceed. If FK har a value, and the row is the last child, the trigger

must either!

- Delete the parent - Find a substitute child

- Disallow (reject) an update (delete

- triggers require code logic

Implementing Actions for M-H Relationships -hard to enforce

- Ex: 2 tables; each has an insert trigger; it calls insert on TI, but fails be trigger requires a row in T2 before an entry in T2 can be made, and vise versa.

- Similar issue in duleting

Designing Special-Case M-M Relationships

-(M-M's) are easier blu strong & weak entities

'no one will ever try to insert, update, or delete
a new child except in the context a the parent

- all actions apply for Action on Parent from Figure 6-29 (a + b)

"Insert = a lways create child

" update /delete = cascade remaining actions

Documenting Minimum Cardinality Dosign

Doc. Required Parents

- 3 design decisions to be made:

1) determining if an update to parent's Pk should cascade or be prohibited

2) same as 1, but w/ deletion

3.) identifying how a parent row is to be selected on insertion of a child

Doc Required Children

-use Figure 6-29 (b) as a boilerplate document (i.e. copy the figure for each rel. w/a required child to fill in specific actions for CKUD.

An Additional Complication

- need to specify a design for the Minimum card. of every relationship (it'll vary blu O-M, M-O, 6 M-M)
- triggers; some fables will have > 1 for each CXUD function
*Figure 6-34 (pg284) - Summary of design desisions for Min. cardinality

I. View Ridge Gallery Db

- Example design (starts pg. 284

- the gallery sells a ton of stuff

* Figure 6-36 (pg 286) has the requirements list

- Figure 6-37 (p287) shows the data model

· Figure 6-38 (pg 287) shows the db design to Figure 6-39

Figure 6-40 (pg 288) shows all relationships:

Artist Work regidentifying 1: N Min Work Trans Custoner Cust Art identifying 0-0 M-0 M-0 Artist Cust Art

- Figure 6-41 (pg 289) shows Actions to enforce Minimum Cardinality
for required papents

- Figure 6-42 (pg 296) shows " " for Work-To-Trans relationship

* - Figure 6-43 (pg 291) shows all column properties

Database Ch. 8 notes: Database Redesign