CSC236 Winter 2017

Assignment #1: Induction - Sample Solutions Due February 1st, by 9:00 pm

The aim of this assignment is to give you some practice with various forms of induction. For each question below you will present a proof by induction, using the type of induction specified. For full marks on your proofs, you will need to make it clear to the reader that the base case(s) is/are verified, that the inductive step follows for each element of the domain (typically the natural numbers), where the inductive hypothesis is used and that it is used in a valid case.

Your assignment must be typed to produce a PDF document al.pdf (hand-written submissions are not acceptable). You may work on the assignment in groups of 1, 2, or 3, and submit a single assignment for the entire group on MarkUs.

1. Consider the Fibonacci function f:

$$f(n) = \begin{cases} 1, & \text{if } n = 0 \text{ or } n = 1 \\ f(n-2) + f(n-1) & \text{if } n > 1 \end{cases}$$

Use simple induction to prove that if n is a natural number, then $f(0) + f(2) + \cdots + f(2n) = f(2n+1)$. You may not derive or use a closed-form for f(n) in your proof.

Sample solution: Proof, using simple induction.

Inductive step: Let $n \in \mathbb{N}$. Assume $H(n): f(0) + f(2) + \ldots + f(2n) = f(2n+1)$.

Show that
$$H(n) \implies C(n)$$
: $f(0) + f(2) + \ldots + f(2(n+1)) = f(2(n+1)+1)$.
 $f(0) + f(2) + \ldots + f(2(n+1))$
 $= f(0) + f(2) + \ldots + f(2n) + f(2(n+1))$
 $= f(2n+1) + f(2(n+1))$ (by $H(n)$)
 $= f(2n+1) + f(2n+2) = f(2n+3)$ (by definition)
 $= f(2(n+1)+1)$
 $= f(2(n+1)+1)$
 $= f(2(n+1)+1)$

Base cases: $n \in \{0, 1\}$

Let n = 0. f(0) = f(2 * 0 + 1). So the claim holds for n = 0.

Conclude: $f(0) + f(2) + ... + f(2n) = f(2n+1), \forall n \in \mathbb{N}$.

2. Use simple induction to show that $x^2 - 1$ is divisible by 8 for any odd natural number x.

Sample solution: Proof, using simple induction.

Inductive step: Let $n \in \mathbb{N}$ (2n + 1 is the n^{th} odd number).

Assume $H(n): ((2n+1)^2-1)$ is a multiple of 8.

Show that $H(n) \to C(n) : ((2(n+1)+1)^2 - 1)$ is a multiple of 8.

$$((2(n+1)+1)^2-1=(2n+3)^2-1=4n^2+12n+8=4n^2+4n+8n+8$$

$$(2n+1)^2-1=4n^2+4$$
, and $(2n+1)^2-1=8*k$, for some $k\in\mathbb{N}$, by $H(n)$

So,
$$4n^2 + 4n + 8n + 8 = 8k + 8n + 8 = 8(k + n + 1)$$

Since $1, k, n \in \mathbb{N}$, then $((2(n+1)+1)^2 - 1)$ is a multiple of 8.

C(n) follows from our assumptions in this case.

Base case: Let n = 0. $(2 * 0 + 1)^2 - 1 = 0$, a multiple of 8. So the claim holds for n = 0.

Conclude: $x^2 - 1$ is a multiple of 8, for all odd $x \in \mathbb{N}$.

3. Use the Well-Ordering Principle to show that given any natural number $n \ge 1$, there exists an odd integer m and a natural number k such that $n = 2^k * m$.

Sample solution: Proof, using well-ordering.

Let
$$S = \{r \in \mathbb{Z} : \exists i \in \mathbb{N} \text{ s.t. } n = 2^i * r\}$$

S is non-empty, because when i = 0, $2^0 * n = n$, and so $n \in S$.

$$n > 1$$
 and $2^i > 1$, so $r > 1$.

Thus, S is a non-empty subset of \mathbb{N} .

By Well Ordering, S has a smallest element m', and we know $n=2^k*m'$ for some $k\in\mathbb{N}$.

Claim: m' is odd

Proof, by contradiction: Assume m' is even. i.e., m' = 2p, $p \in \mathbb{N}$.

Then,
$$2^k * m' = 2^k * 2p = 2^{k+1} * p$$
.

This means $p \in S$ and p < m', and contradicts the choice of m' as smallest.

Conclude: For $n \in \mathbb{N}$, $n \ge 1$, there exists an odd integer m and a natural number k s.t. $n = 2^k * m$.

- 4. Define a set $M \subseteq \mathbb{Z}^2$ as follows:
 - (a) $(3,2) \in M$,
 - (b) for all $(x, y) \in M$, $(3x 2y, x) \in M$,
 - (c) nothing else belongs to M.

Use structural induction to prove that $\forall (x,y) \in M, \exists k \in \mathbb{N}, (x,y) = (2^{k+1} + 1, 2^k + 1).$

Sample solution: Proof, by structural induction on M.

$$P(x,y)$$
: $\exists k \in \mathbb{N}, (x,y) = (2^{k+1} + 1, 2^k + 1).$

Inductive step: Let $(x,y) \in M$. Assume H((x,y)) : P((x,y))

Show
$$H((x,y)) \to C((x,y))$$
: $P((3x - 2y,x))$

Let
$$k' \in \mathbb{N}$$
 be such that $(x, y) = (2^{k'+1} + 1, 2^{k'} + 1)$, by $H((x, y))$

Then
$$(3x - 2y, x) = (3(2^{k'+1} + 1) - 2(2^{k'} + 1), 2^{k'+1} + 1)$$

= $(6 \cdot 2^{k'} + 3 - 2 \cdot 2^{k'} - 2, 2^{k'+1} + 1)$
= $(4 \cdot 2^{k'} + 1, 2^{k'+1} + 1)$

$$=(2^{k'+2}+1,2^{k'+1}+1)$$

So
$$P(3x - 2y, x)$$
, with $k = k' + 1$.

Base Case:
$$(3,2) = (2^1 + 1, 2^0 + 1)$$
 so $P(3,2)$, with $k = 0$.

Conclusion:
$$\forall (x, y) \in M, \exists k \in \mathbb{N}, (x, y) = (2^{k+1} + 1, 2^k + 1).$$

- 5. Suppose n people are positioned such that each person has a unique nearest neighbour. Each person has a single water balloon that they throw at their nearest neighbour. (We'll assume every throw hits its target.) A dry person is one who is not hit by a water balloon.
 - (a) Describe an example that demonstrates than if n is even, there may be no dry person.
 - (b) Use simple induction to show that if n is odd, then there is always at least one dry person.

Sample solution:

- (a): Consider any example with n=2. Then each person is the other's unique nearest neighbour, and neither is dry.
- (b): Proof by simple induction.
- P(n): There is one dry person when 2n+1 people are positioned such that they each have a unique nearest neighbour, and they each throw a water balloon at their nearest neighbour.

We want to show that $\forall n \in \mathbb{N}, n \geq 1$, P(n), since there is no game if there is only 1 person (i.e., when n = 0).

Inductive step: Let $n \in \mathbb{N}$, $n \ge 1$.

Assume H(n): P(n)

Show that $H(n) \to C(n) : P(n+1)$.

Assume that there are 2(n+1)+1=2n+3 people, positioned so they each have a unique nearest neighbour. Let A and B be the closest pair among the 2k+3 people. So, A and B will throw balloons at each other.

Case 1: Someone other than A or B throws a balloon at either A or B.

Then, at least 3 balloons are thrown at A and B, which leaves 2n balloons to be thrown at the remaining 2n + 1 people. Thus, at least one person is dry.

Case 2: No one else throws a balloon at A or B.

Then, the remaining 2n+1 people are positioned so that they each have a unique nearest neighbour. By H(n), there is at least one dry person among those 2n+1 people.

C(n) follows from our assumptions.

Base case: Let n = 1. There are 2 * 1 + 1 = 3 people in the game, A, B, and C. Assume A and B are the closest pair. (Note that there cannot be a tie, because each person has a unique nearest neighbour.) The distances between A and B and C are greater than the distance between A and B. So, A and B throw balloons at each other, and C throws a balloon at either A or B. Thus, C is dry, and P(1) holds.

Conclude: $\forall n \in \mathbb{N}, n \geq 1, P(n)$.

6. Let P be a convex polygon with consecutive vertices $v_1, v_2, ..., v_n$. Use complete induction to show that when P is triangulated into n-2 triangles, the n-2 triangles can be numbered 1, 2, ..., n-2 so that v_i is a vertex of triangle i for i=1,2,...,n-2.

Sample solution: Proof, using complete induction.

Define P(n): A triangulation into n-2 triangles of a convex polygon with consecutive vertices $v_1, ..., v_n$ can have its triangles labelled 1, ..., n-2 such that v_i is a vertex of triangle i.

Inductive step: Let $n \in \mathbb{N}$, $n \geq 3$.

Assume $H(n) : \forall j \in \mathbb{N}, 3 \leq j < n, P(j)$.

Show that $H(n) \to C(n) : P(n)$

Let T be a triangulation of a polygon with consecutive vertices $v_1, ..., v_n$.

Every T contains a diagonal from v_{n-1} or from v_n . (Otherwise, it is not a triangulation.)

Case: There is a diagonal from v_n in T.

Choose k s.t. there is a diagonal from v_k to v_n in T.

This diagonal divides the polygon into two sub-polygons, P_1 and P_2 . P_1 has the vertices $v_1, ..., v_k, v_n$, and P_2 has the vertices $v_k v_{k+1}, ..., v_n$.

Rename the vertex v_n of P_1 as v_{k+1} . Rename each of the vertices of P_2 , $v_i' = v_i - k + 1$. By H(n), P_1 triangulates with triangles numbered as claimed, because $k \leq n - 2 < n$. P_2 has n - k + 1 vertices, so by H(n), P_2 also triangulates as claimed.

Add k-1 to each triangle number in P_2 . The original vertices v_i are now part of the triangle numbered $i, i \in k+1,...,n-2$.

Case: There is a diagonal from v_{n-1} in T.

Choose k s.t. there is a diagonal from v_k to v_{n-1} in T.

This diagonal divides the polygon into two sub-polygons, P_1 and P_2 . P_1 has the vertices $v_1, ..., v_k, v_{n-1}, v_n$, and P_2 has the vertices $v_k v_{k+1}, ..., v_{n-1}$.

Rename the vertices v_{n-1} , v_n of P_1 as v_{k+1} , v_{k+2} . Rename each of the vertices of P_2 , $v'_i = v_i - k + 1$.

By H(n), P_1 triangulates with triangles numbered as claimed, because $k \le n-3 < n$. P_2 has n-k vertices, so by H(n), P_2 also triangulates as claimed.

Add k-1 to each triangle number in P_2 . The original vertices v_i are now part of the triangle numbered $i, i \in k+1, ..., n-2$.

C(n) follows from our assumptions in this case.

Base case: Let n = 3. The vertices are numbered, 1, 2, 3, and the one triangle can be numbered 1.

Conclude: P(n) holds $\forall n \in \mathbb{N}, n \geq 3$