Manual for Package: physics Revision 1:5M

Karl Kästner

November 1, 2019

Contents

1	@Cons	stant	1
	1.1	Constant	1
	1.2	celsius_to_kelvin	1
	1.3	depth_to_pressure	2
	1.4	kelvin_to_celsius	2
	1.5	optical_attenuation	2
	1.6	pressure_to_depth	2
	1.7	saturation_vapor_pressure	2
	1.8	sound_absorption_air	2
	1.9	sound_absorption_water	3
	1.10	sound_velocity_water	3
2	physics 3		
	2.1	beam_bending_deflection	3
	2.2	beam_bending_moment	3
	2.3	beam_bending_strain	3
	2.4	beam_bending_stress	3
	2.5	bolt_stress	4
	2.6	drag_force	4
	2.7	moment_of_inertia_rectangle	4
	2.8		4
	2.9	test_sound_absorption_air	4

1 @Constant

1.1 Constant

Constant and physical standard quantities

1.2 celsius_to_kelvin

convert temperature from degree Celsius to Kelvin function $t_K = celsius_to_kelvin(t_C)$

1.3 depth_to_pressure

convert depth to pressure in fresh water at standard temperature

$$z = (p - p0)/(rho g)$$

=> $p = rho g z + p0$

input :

 ${\tt p0}$: nx1 or scalar, pressure at water surface in BAR

d : depth in metre

output :

p : nx1, pressure at measurement depth in BAR

1.4 kelvin_to_celsius

convert temperature degree Kelvin to Celsius

1.5 optical_attenuation

1.6 pressure_to_depth

convert pressure to depth in fresh water at standard temperature $% \left(1\right) =\left(1\right) \left(1\right) \left($

$$z = (p - p0)/(rho*g)$$

input:

 $\ensuremath{\text{p}}$: nx1, pressure at measurement depth in BAR

 ${\tt p0}$: nx1 or scalar, pressure at water surface in BAR

output:

d : depth in metre

1.7 saturation_vapor_pressure

1.8 sound_absorption_air

1.9 sound_absorption_water

```
sound absrobption in water
following Francois and Garrison, 1982

function alpha = sound_absorption(f,S,D,T)

input:
f : frequency (Hz)
S : salinity
D : depth (m)
T : temperature (degree C)

output:
alpha = sound attenuation in dB/m (not dB/km)

function alpha = sound_absorption(f,S,D,T,model)
```

1.10 sound_velocity_water

```
sound velocity in water
following Lubbers and Graaff (1998)
this formula does not include depth and salinity effects
```

2 physics

${\bf 2.1} \quad beam_bending_deflection$

2.2 beam_bending_moment

2.3 beam_bending_strain
2.4 beam_bending_stress
2.5 bolt_stress
2.6 drag_force
2.7 moment_of_inertia_rectangle
2.8 moment_of_inertia_ring

 ${\bf 2.9 \quad test_sound_absorption_air}$