Aide à la décision/ Decision aid

Souhila KACI

Partie 4/Part 4
Décision collective : Théorie du choix social/
Collective decision: Social choice theory

Social choice theory

What is it?

It is the study of decision problems in which a group of agents has to choose among different alternatives.

Domains of interest

Economy, Political science, Applied mathematics, Operational research

Deep results

Two Nobel distinctions: Kenneth J. Arrow (1963), Amartya Sen (1976)

Application domains

Political elections, Other elections, Multiple criteria decision, Artificial intelligence (Multiagent systems)

Notations

- Let $X = \{a, b, c, \ldots\}$ be a set of alternatives.
- A subset of X is called an agenda.
- Every individual i has a preference relation

 i over the set of alternatives.

 i is a total order (This is a simplifying hypothesis).
- A set of individuals $N = \{1, ..., n\}$ is called a profile. The preference relation over X associated to N is denoted by \succeq .

Two problems

- Determine the chosen alternative for a given profile.
- Determine the preference relation \succeq for a given profile.

Our Focus: Political elections

- ◆ Alternatives ⇒ Candidates
- Individuals ⇒ Voters
- ullet Profile \Longrightarrow Society

The problem

Study election situations in which a society has to take a decision regarding several candidates.

Election of a candidate

Intuition

 $\mathsf{Democracy} \Longrightarrow \mathsf{Elections} \Longrightarrow \mathsf{Majority}$

<u>Majority</u> with two candidates: We choose the candidate who got the majority of voters' preferences

 $X = \{a, b\}$. The candidate a is elected iff $|\{i, a \succ_i b\}| > |\{i, b \succ_i a\}|$.

Majority with more than two candidates

- There are different ways to extend the majority principle.
- These extensions are not equivalent.
- Sometimes they lead to undesirable results.

Elections typology

Two criteria

- Ballots
 - single chosen candidate in the ballots
 - rank-ordering of all candidates
 - others (determine acceptable candidates)
- Organizing election methods and counting votes

Consequences

- Many kinds of possible elections methods
- Many of these election methods are used in practice

Plurality voting: UK (1)

Rule

- A single round
- A single chosen candidate in the ballots
- The candidate who gets the majority of votes is elected

Ex-aequo winners

- The queen decides the winner
- Older candidate
- Random choice

Plurality voting: UK (2)

Example

- 3 candidates
- 21 voters

```
10 voters : a \succ b \succ c
6 voters : b \succ c \succ a
5 voters : c \succ b \succ a
```

Results

- a is elected
- however a majority of voters (11/21) prefers all other candidates to the elected one

Plurality voting

- Problems arise when we have more than two candidates.
- A system based on the idea of majority may violate the desire of the majority of voters.

Vote with two rounds (1)

Rules

- A single chosen candidate in the ballots
- First round
 - the candidate who gets the majority of votes is elected if she gets more than 50% of votes
 - else organize a second round
- Second round
 - consider the two candidates who got the more of votes in the first round
 - apply plurality voting

Vote with two rounds (2)

Example continued

• 3 candidates, 21 voters

10 voters : $a \succ b \succ c$ 6 voters : $b \succ c \succ a$ 5 voters : $c \succ b \succ a$

Results

- Absolute majority: $\lceil 21/2 \rceil = 11$ votes
- a and b are considered for a second round

- b is elected
- no candidate is preferred to b by a majority of voters

Vote with two rounds (3)

Example with 4 candidates

• 4 candidates $\{a, b, c, d\}$, 21 voters

10 voters : $b \succ a \succ c \succ d$ 6 voters : $c \succ a \succ d \succ b$ 5 voters : $a \succ d \succ b \succ c$

Results 1st round

- Absolute majority:
 [21/2] = 11 votes
- b and c are considered for a second round

Results 2nd round

- *b* is elected 15/21
- ullet A majority 11/21 prefers a to b

Vote with two rounds: Observations

Vote with one vs two rounds

- The French system just does little better than the British system.
- What about truthfulness of votes?

Vote with two rounds: Manipulability

Example with 4 candidates

• 4 candidates $\{a, b, c, d\}$, 21 voters

10 voters : $b \succ a \succ c \succ d$ 6 voters : $c \succ a \succ d \succ b$ 5 voters : $a \succ d \succ b \succ c$

Non truthful votes

• The 6 candidates for which $c \succ a \succ d \succ b$ vote as if their preferences were $a \succ c \succ d \succ b$.

Results

- a is elected in the first round 11/21.
- This is profitable for the six manipulator voters for whom a > b.

Manipulable voting rules

Definition

A voting rule is manipulable if it is possible for certain voters to better give non truthful votes.

Problems

- Elections are no longer a means to reveal preferences
 - Manipulation and counter-manipulation
 - Equilibrium
- Bonus to "astute" voters

Vote with two rounds: Monotonicity (1)

Example: before the election compaign

• 3 candidates $\{a, b, c\}$, 17 voters

```
6 voters : a \succ b \succ c

5 voters : c \succ a \succ b

4 voters : b \succ c \succ a

2 voters : b \succ a \succ c
```

Problems

• Absolute majority: $\lceil 17/2 \rceil = 9$ voters

```
a:6 b:6 c:5
a:11 b:6
```

• a is elected

Vote with two rounds: Monotonicity (2)

- a gets more money to compaign against b
- Two voters $b \succ a \succ c$ change their vote in favor of a
- Their new preference is a > b > c

```
6 voters : a > b > c
                                              8 voters : a \succ b \succ c
5 voters : c \succ a \succ b
                                              5 voters : c \succ a \succ b
4 voters : b \succ c \succ a
                                              4 voters : b \succ c \succ a
2 voters : b \succ a \succ c
```

```
a:8 b:4 c:5
a:8 c:9
```

- c is elected. The nice compaign of a has been fatal for her.
- The two rounds majority voting is non-monotonic: increasing the position of a candidate in individual preferences may lead to a decreasing of his position at the end of the vote.

Vote with two rounds: Participation (1)

Example

• 3 candidates $\{a, b, c\}$, 11 voters

```
4 voters : a \succ b \succ c

4 voters : c \succ b \succ a

3 voters : b \succ c \succ a
```

Problems

 \bullet Absolute majority $= \lceil 11/2 \rceil = 6$ voters

- c is elected.
- The result is not satisfactory for the first 4 voters.
- Two voters among them will go fishing and abstain (for the two rounds).

Vote with two rounds: Participation (2)

Before

4 voters : $a \succ b \succ c$

4 voters : $c \succ b \succ a$

3 voters : $b \succ c \succ a$

After

2 voters : $a \succ b \succ c$

4 voters : $c \succ b \succ a$

3 voters : $b \succ c \succ a$

Results

• Absolute majority = $\lceil 11/2 \rceil = 6$ voters.

a:2 b:3 c:4

b:5 c:4

- b is elected.
- Abstention of 2 voters for whom $b \succ c$ has been rational.

Vote with two rounds: Separability (1)

Results

- 3 candidates $\{a, b, c\}$
- 26 voters in two districts

District 1

- 4 voters : $a \succ b \succ c$ 3 voters : $b \succ a \succ c$
- 3 voters : $c \succ a \succ b$ 3 voters : $c \succ b \succ a$
 - a:4 b:3 c:6
 - a:7 c:6
 - a.1 C.0
- *a* is elected (7/13)

District 2

- 4 voters : $a \succ b \succ c$
- 3 voters : $c \succ a \succ b$
- 3 voters : $b \succ c \succ a$
- 3 voters : $b \succ a \succ c$ a:4 b:6 c:3
 - a:7 b:6
- *a* is elected (7/13)

Vote with two rounds: Separability (2)

National level

```
4 voters: a \succ b \succ c4 voters: a \succ b \succ c3 voters: b \succ a \succ c3 voters: c \succ a \succ b3 voters: c \succ a \succ b3 voters: b \succ c \succ a3 voters: c \succ b \succ a3 voters: b \succ a \succ c
```

- a:8 b:9 c:9
- a is eliminated in the 1st round.
- The voting method is not separable.

Summary: French voting system vs British voting system

- Voting with two rounds does just a little better than voting with one round from democracy point of view.
- However it has several problems:
 - Manipulable
 - Non-monotonic
 - No incentive for participation
 - Non separable
- Do better systems exist?
- Conventional wisdom "choose in the first round and eliminate in the second round"?

Condorcet

Principles

- Compare all pairwise candidates.
- a is "socially preferred" to b if there are strictly more voters who prefer a to b (indifference in case of equality).
- Condorcet principle: if a candidate is preferred to all other candidates then she must be elected.
- The Condorcet winner (CW) must be unique.

Remar<u>ks</u>

- Voting systems with one or two rounds violate the Condorcet principle.
- Voting system with one round may elect a Condorcet looser.
- Condorcet principle does not resolve the problem of "majority dictature".
- The CW is not necessarily "well rank-ordered" by voters.

Condorcet & One round voting system

Example

- 3 candidates $\{a, b, c\}$
- 21 voters

```
10 voters : a \succ b \succ c
6 voters : b \succ c \succ a
5 voters : c \succ b \succ a
```

- a is winner of one round voting.
- a is Condorcet looser.
- b is Condorcet winner
 - b beats a (11/21)
 - b beats c (16/21)

Condorcet & Two rounds voting system

Example

- 4 candidates $\{a, b, c, d\}$
- 21 voters

```
10 voters : b \succ a \succ c \succ d
6 voters : c \succ a \succ d \succ b
5 voters : a \succ d \succ b \succ c
```

- b is winner of two rounds voting (against c in the second round).
- a is Condorcet winner
 - a beats b (11/21)
 - a beats c (15/21)
 - a beats d (21/21)

Condorcet & Rankings (1)

Example

- 5 candidates $\{a, b, c, d, e\}$
- 50 voters

```
10 voters : a \succ b \succ c \succ d \succ e

10 voters : b \succ c \succ e \succ d \succ a

10 voters : e \succ a \succ b \succ c \succ d

10 voters : a \succ b \succ d \succ e \succ c

10 voters : b \succ d \succ c \succ a \succ e
```

• a is Condorcet winner; it beats all other candidates (30/20)

Condorcet & Rankings (2)

Example

- 26 candidates $\{a, b, c, \dots, z\}$
- 100 voters

```
51 voters : a \succ b \succ c \succ ... \succ y \succ z
49 voters : z \succ b \succ c \succ ... \succ y \succ a
```

- a is Condorcet winner
- b could be a "reasonable" choice

Consistent Condorcet rules

Definition

They are systems that elect Condorcet winner when it exists.

Generalization of Condorcet rule

Copeland rule

Associate to each candidate a the following score: for each candidate $b \neq a$, +1 if a majority prefers a to b, -1 if a majority prefers b to a, 0 otherwise. The candidate who gets the higher Copeland score is elected.

Kramer-Simpson rule

Associate to each candidate a the following score: for each candidate $b \neq a$, compute N(a, b) the number of voters who prefer a to b. The Simpson score is the lowest N(a, b). The candidate with higher N(a, b) is elected.

Example: Copeland & Kramer-Simpson rules

4 candidates $\{a, b, c, d\}$, 12 voters, 5 voters : $a \succ b \succ c \succ d$, 4 voters : $b \succ c \succ d \succ a$, 3 voters : $d \succ c \succ a \succ b$.

Copeland

Candidates b and c are elected.

Kramer-Simpson

Sim(a)	=		8	5	5	=	5
Sim(b)	=	4		9	9	=	4
Sim(c)	=	7	3		9	=	3
Sim(d)	=	7	3	3		=	3

Consistent Condorcet rules

- Copeland & Kramer-Simpson rules are monotonic.
- No consistent Condorcet rule satisfies separability.
- No consistent Condorcet rule satisfies participation.

Scoring voting rules

Definition

- Consider *m* candidates.
- Let $s_0 \leq \ldots \leq s_{m-1}$, with $s_0 < s_{m-1}$, be a non-decreasing sequence of integer numbers.
- Each voter provides a total order over candidates.
- For each voter, s_0 is associated to the worst rank-ordered candidate, ..., s_{m-1} is associated to the best rank-ordered candidate.
- The score of a candidate is the <u>sum of all scores</u> given by voters.
- The candidate who gets the higher score is elected.

Particular cases

- $s_0 = s_1 = \dots s_{m-2} < s_{m-1}$ is the majority voting rule.
- $s_0 = 0$, $s_1 = 1$, ..., $s_{m-1} = m 1$ is Borda rule.

Borda rule (1)

Example

4 candidates $\{a, b, c, d\}$, 3 voters

1 voter : $a \succ c \succ d \succ b$ 2 voters : $b \succ a \succ c \succ d$

Borda scores

Results

- a is elected following Borda rule.
- *b* is the Condorcet winner.

Borda rule (2)

Properties

- No scoring voting rule is Condorcet consistent.
- Separable, monotonic, participation.