MA3203 - Problem sheet 1

Problem 1.

- (a) Given a quiver $\Gamma: 1 \longrightarrow 2 \longrightarrow 3$ and a field k, let $\Lambda = k\Gamma$. Let S be the k-algebra $\begin{pmatrix} k & 0 & 0 \\ k & k & 0 \\ k & k & k \end{pmatrix}$. Show that Λ and S are isomorphic as k-algebras.
- (b) Given the representation (V, f): $k^2 \xrightarrow{(1\ 1)} k \xrightarrow{(1\ 1)} k^2$ and the representation (V', f'): $k \xrightarrow{(1\ 0)} k^2 \xrightarrow{(1\ 0\ 0)} k^2$ of Γ over k, describe homomorphisms from (V, f) to (V', f').
- (c) Describe homomorphisms from (V', f') to (V, f) where (V, f) and (V', f') are as in (b).
- (d) We say that a representation (V,f) of some quiver Γ over some field k is a subrepresentation of a representation (V',f') of Γ over k if for each vertex i the vectorspace V(i) is a subspace of V'(i) and for each arrow $\alpha \colon i \to j$ in Γ we have that $f_{\alpha} = f'_{\alpha}|_{V(i)} \colon V(i) \to V(j)$.

Let (V', f') be the representation $k \xrightarrow{1} k \xrightarrow{1} k$ of the quiver Γ from (a) over the field k. Find all subrepresentations of (V', f').

(e) Challenge: For a subrepresentation (V, f) of a representation (V', f') define the factor representation (V', f')/(V, f). Let (V', f') be as in (d). Find all factor-representations of (V', f').

Problem 2. Let $R = \begin{pmatrix} k & 0 \\ k[x]/(x^2) & k \end{pmatrix} \subset \begin{pmatrix} k[x]/(x^2) & 0 \\ k[x]/(x^2) & k[x]/(x^2) \end{pmatrix}$, where k is a field and addition and multiplication are the usual addition and multiplication of matrices.

- (a) Show that R is a ring, and that it is an algebra over k when $\alpha \cdot r = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} r$ for $\alpha \in k$ and $r \in R$. Is R a left artinian ring?
- (b) Let $I = \begin{pmatrix} 0 & 0 \\ k[x]/(x^2) & 0 \end{pmatrix}$. Show that I is an ideal in R. Is R a semisimple ring? Show that $R/I \cong k \bigoplus k$ as rings.
- (c) Show that R is isomorphic to the path algebra of the quiver $\Gamma\colon \stackrel{\alpha}{\underset{\beta}{\Longrightarrow}} 2$.
- (d) Let M_{λ} be the representation of the quiver Γ over k given by $V(1) = k, V(2) = k, f_{\alpha} = 1$ and $f_{\beta} = \lambda$ (i.e. $f_{\alpha}(a) = a, f_{\beta}(a) = \lambda a, \forall a \in k$) where $\lambda \in k$.

Show that $M_{\lambda} \not\cong M_{\lambda'}$ if $\lambda \neq \lambda'$.

(e) Show that M_{λ} is indecomposable for each λ in k.

Problem 3

- (a) Given the quiver Γ : 1 α with a relation $\sigma = \alpha^2$ and a field k, let $\Lambda = k\Gamma/\langle \alpha^2 \rangle$. Show that Λ and $k[x]/(x^2)$ are isomorphic as k-algebras.
- (b) Find all homomorphisms from the representation (V, f): $k^3 \supset \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ to itself.
- (c) Challenge: Find all indecomposable representations of (Γ, σ) over k. Hint: Only two!