COISAS QUE EU DEVERIA SABER, MAS TALVEZ EU NÃO SAIBA!

1. Calcule:

a)
$$\frac{1}{2} + \frac{7}{5} \cdot \frac{25}{3} - 1 =$$

c)
$$\frac{\frac{7}{3} + \frac{1}{2}}{\frac{4}{5}} + \frac{27}{5} \cdot \frac{8}{9} =$$

b)
$$\left(\frac{1}{2} + \frac{7}{5}\right) \cdot \frac{25}{3} - 1 =$$

d)
$$\frac{8}{3} \left(3 + \frac{1}{8} \right) \div \frac{5}{7} =$$

2. Calcule:

Dica: Comece simplificando as expressões.

a)
$$\frac{\left(\frac{1}{2} + \frac{4}{3}\right)^2}{\frac{16}{9} - \frac{1}{4}} =$$

c)
$$\frac{\left(\frac{9}{4} + \frac{7}{5}\right)^{-2} \cdot \left(\frac{81}{16} - \frac{49}{25}\right)}{2 \cdot \left(\frac{9}{4} - \frac{7}{5}\right)^{2}} =$$

b)
$$\left(1 - \frac{4}{5}\right)^2 \div \left(1 - \frac{8}{5} + \frac{16}{25}\right) + 1 =$$

d)
$$\frac{\left(\frac{1}{2} + \frac{5}{4}\right)}{\frac{1}{2}} \cdot \frac{\left(2 + \frac{1}{2}\right)^2}{\left(1 + \frac{5}{2}\right)} \div \left(\frac{7}{15} + \frac{3}{2}\right) =$$

3. Simplifique as expressões:

a)
$$\frac{a}{4} \left(7 + \frac{3}{a} \right) - \frac{1}{a^2} =$$

c)
$$\frac{\frac{4}{a}}{5} - \left(\frac{\frac{a}{3}}{\frac{7}{4}} + \frac{2^3}{3^2}\right) =$$

b)
$$a - \left[\left(1 - \frac{5}{3} \right)^2 + \frac{7}{b} \right] =$$

d)
$$\frac{5}{a} - \left(\frac{b}{3} + \frac{5}{4}\right)^{-1} =$$

4. Simplifique as expressões e a seguir calcule:

a)
$$\frac{3+a}{b} - \left(\frac{a^2 + 2ab + b^2}{a+b}\right)$$
, para $a = \frac{1}{3}e \ b = \frac{5}{4}$.

b)
$$a - \left(\frac{a \cdot b - b^2}{a + b}\right)$$
, para $a = \frac{3}{5}e \ b = \frac{4}{5}$.

c)
$$\frac{2}{3+a} - \left[\frac{b}{a} - \left(\frac{a}{b} + \frac{3}{a+2} \right) \right]$$
, para $a = 2 e b = \frac{1}{4}$.

d)
$$\left(\frac{a^{-1}-b^{-1}}{\frac{a}{a+b}}\right)^{-1}$$
, para $a = \frac{1}{3} e b = 9$.

5. Nos casos abaixo, determine o conjunto solução das equações de segundo grau (utilize o método de "Soma e Produto").

a)
$$x^2 - 2x + 1 = 0$$

c)
$$\frac{2}{3}x^2 + \frac{10}{3}x - 10 = 4$$

b)
$$x^2 - 5x = 14$$

6. Com base nos vetores da malha a seguir, classifique as afirmações em verdadeira (V) ou falsa (F).

- () Os vetores \vec{a} e \vec{g} são paralelos.
- () Os vetores \vec{h} e \vec{b} são ortogonais.
- () Os vetores \vec{b} e \vec{d} são iguais.
- () Os vetores \vec{h} e \vec{d} são ortogonais.
- () Os vetores \vec{a} e \vec{e} são iguais.
- () Os vetores \vec{i} e \vec{f} são iguais.
- () Os vetores \vec{f} e \vec{c} possuem mesma direção.
- () Os vetores \vec{b} e \vec{f} possuem mesma norma.
- () Os vetores \vec{i} e \vec{c} possuem mesmo sentido.
- () Os vetores \vec{g} e \vec{c} possuem mesma norma.

Desafio: () A soma dos vetores \vec{b} , \vec{e} e \vec{f} é igual a do vetor \vec{g} .

7. Considerando os vetores de mesma norma, represente as operações:

8. Utilize a malha quadriculada para obter a representação e em seguida calcule a norma de cada vetor $\vec{s_i}$ pedido. Considere que o lado de cada quadrado representa 1 u (unidade arbitrária).

- a) $\vec{s}_1 = \vec{a} + \vec{b}$ b) $\vec{s}_2 = \vec{a} + \vec{c} + \vec{e}$ c) $\vec{s}_3 = \vec{a} + 2\vec{e}$ d) $\vec{s}_4 = \vec{c} + \vec{d}$ e) $\vec{s}_5 = \vec{b} \vec{d}$ f) $\vec{s}_6 = \vec{d} + \vec{e}$ g) $\vec{s}_7 = \vec{a} + \vec{b} \vec{d}$ h) $\vec{s}_8 = \vec{a} + \vec{b} + \vec{c} + \vec{e}$

GABARITO:

1. a)
$$\frac{67}{6}$$
 b) $\frac{89}{6}$ c) $\frac{1001}{120}$ d) $\frac{35}{3}$

2. a)
$$\frac{11}{5}$$
 b) 2 c) $\frac{200}{1241}$ d) $\frac{375}{118}$

3. a)
$$\frac{7a^3 + 3a^2 - 4}{4a^2}$$
 b) $\frac{9ab - 4b - 63}{9b}$ c) $\frac{-60a^2 - 280a + 252}{315a}$ d) $\frac{20b - 12a + 75}{4ab + 15a}$

4. a)
$$\frac{13}{12}$$
 b) $\frac{5}{7}$ c) $\frac{361}{40}$ d) $\frac{9}{728}$

5. a)
$$S = \{1\}$$
 b) $S = \{-2, 7\}$ c) $S = \{-9, 4\}$

6. a)
$$V$$
 b) F c) F d) V e) F f) V g) F h) V i) F j) V Desafio: V

7. a) b)
$$\vec{0}$$
 c) d) $\vec{0}$

8. a)
$$\| \vec{s}_1 \| = 5u$$
 b) $\| \vec{s}_2 \| = 1u$ c) $\| \vec{s}_3 \| = \sqrt{40}$ d) $\| \vec{s}_3 \| = 1u$

e)
$$\parallel \vec{s}_5 \parallel = 3u$$
 f) $\parallel \vec{s}_6 \parallel = \sqrt{40}u$ g) $\parallel \vec{s}_7 \parallel = 1u$ h) $\parallel \vec{s}_8 \parallel = 2u$

