1.

Let $\ ^{\sim}$ be a categorical equvalent relation. Define $N_{\sim} = \{g \mid g \sim e\}$ where e an identity arrow. Then it forms a subgroup of G: e is the identity in N_{\sim} , $gh \in N_{\sim}$ for $g, h \in N_{\sim}$, and $e \sim gg^{-1} \sim eg^{-1} \sim g^{-1} \rightarrow g^{-1} \in N_{\sim}$. Also, we can see that $xN_{\sim} = \{xg \mid g \sim e\} = \{x(x^{-1}h) \mid x^{-1}h = g \sim e\} = \{h \mid h \sim x\}$ and $N_{\sim}x = \{gx \mid g \sim e\} = \{(hx^{-1})x \mid hx^{-1} = g \sim e\} = \{h \mid h \sim x\}$, concluding that N_{\sim} forms a normal subgroup in G, i.e., a equivalence relation can be expressed as a normal subgroup. Conversely, suppose N is a normal subgroup of G. Define \sim_N by $f \sim g$ iff and $fg^{-1} \in N$. Then since N is a subgroup, \sim_N is an equivalence relation. In addition to that, since N is a normal subgroup, $hfg^{-1}h^{-1} = hgkk^{-1}g^{-1}h^{-1} \in N$ and hence $hfk \sim_N hgk$ for all $h, k \in G$. Therefore, \sim_N is a congruence in the category.

If $g, h \in G$ are in the same coset of N then $fg^{-1} \in G$, concluding that $f \sim_N g$. Therefore, the quotient G/\sim coincide when N corresponds to \sim .

2.

Recall slice category: **Sets**/I consists of objects and arrows where objects are functions $f: X \to I$ for some $X \in$ **Sets** and arrows are functions of the form $a: X \to Y$ satisfying $g = a \circ f$ where $f: X \to I$ and $g: Y \to I$. Let $f: G \to I$ be a group in this category. Then it has a binary operation $m: f \times f \to f$, identity arrow $i: 1 \to f$, and inverse $i: f \to f$. The identity arrow u is indeed a map $u: 1 \to X$ such that $fu = e_i: 1 \to I$ where $e_i(*) = i$. We can regard $f \times f: X \times X \to I$ as a pullback of f, f and $m: X \times X \to X$ a map from the pullback. Inverse is a map $i: X \to X$ defined by fi = f. As a result, we can make the following commutative diagrams:

Fix $i \in I$ and set f_i, X such that $f_i(X) = i$. When replacing f by f_i , the function becomes trivial, and hence the form of X must by the ordinary group in **Sets**. Therefore, we can conclude that the group f consists of ordinary groups $f^{-1}(i)$ where $i \in I$.

3

Let G be an abelian group. We will show that it is the object of groups of category of groups. It is enough to show to determine the group homomorphism $m: G \times G \to G$ satisfying the definition of groups in a category. Define $m(a,b) = a+b, u: 1 \to G$ where $u(*) = 0_G$, and $i: G \to G$ by i(a) = -a. Then all arrows are homomorphism in **Groups** and hence G is a group in a category of groups.

4.

Don't understand the meaning!!!!!!!

5.

- (a) Since cokernel is the coequalizer of f and $u:A\to B$ where u(a)=0 for all $a\in A$, the property $c\circ f=0$ is obvious. For the other property, define $u:C\to G$ by $u(\bar b)=g(b)$. Then it is well-defined: if $\bar a=\bar b$, then $a-b\in {\rm Im} f$. Therefore, $g(a-b)=g(a)-g(b)=0\Rightarrow g(a)=g(b)$ and hence $u(\bar a)=u(\bar b)$. Therefore, $g=u\circ c$. If $v:C\to G$ do the same role as u, they coincide for all $\bar x\in C$ since they are determined completely by g. Hence u=v.
- (b) skip
- (c) Let $c: B \to C$ be the cokernel of f and $i: K \to B$ the kernel of c. By the definition of coequalizer, $c \circ f = 0$ and by the definition of kernel, $c \circ i = 0$. Then by the definition of equalizer, there is a unique $v: A \to K$ such that $f = i \circ v$. Therefore, f factors through K. Furthermore, also by the definition of coequalizer and quotient, $\operatorname{Im} f \to B \to C$ is zero map and hence again there is a unique map $u: \operatorname{Im} f \to K$ such that $f: \operatorname{Im} f \to K = i \circ u$. Note that $f: \operatorname{Im} f \to K = i \circ u$. Note that $f: \operatorname{Im} f \to K = i \circ u$. On the other hand, we can see that $f: \operatorname{Im} f \to K = i \circ u$.

6.

skip

7.

By definition, $f \sim f', g \sim g'$ implies that $gf \sim gf', gf' \sim g'f'$. By transitivity, $gf \sim g'f'$.

8.

- **1.** If $f \sim g$, then $HF = HG \rightarrow H(f) = H(g)$. Also, if $f \sim g$, then $HF = HG \rightarrow H(hfk) = H(h)H(f)H(k) = H(h)H(g)H(k) \rightarrow hfk \sim hgk$.
- **2.** Obviously \sim is an equivalence relation.

Therefore, \sim is a congruence. By definition, a category \mathbf{D}/\sim consists of objects: objects in \mathbf{D} , arrows: [f]. We can assign a functor $\mathbf{D} \to \mathbf{D}/\sim$ as a quotient functor. Suppose $H: \mathbf{D} \to \mathbf{E}$ coequalizes F, G. Then by definition, we can define a functor $K: \mathbf{D}/\sim \to \mathbf{E}$ by K([f]) = H(f). It is well-defined and such functor is unique. Therefore this category is a coequalizer.

9.

Obvious.