Computer Organization 0616018林哲宇, 0616032 張哲銓

Architecture diagram:

3. Architecture Diagram

Top module: Simple_Single_CPU

Detailed description of the implementation:

主幹是 Simple_Single_CPU,裡面寫著每一個模組要做的事情。

最一開始是 Instruction memory 的部分,它會看目前的 PC 來決定現在要給哪一個 instruction

接著是 decoder,在這裡,會把輸入的 32 位元的 instruction 做分析的動作,根據最高的六位 opcode 決定 RegDst, RegWrite, Branch, ALUSrc,剩餘的 26 位要看是哪個 operation 才知道代表什麼。

再來是有關 PC 的部分,首先每執行一個 instruction 後都要 PC+4,接著要看 Branch 和 alu 輸出的 zero 是否都為 1,如果是的話還要把 PC+4 再加上 instruction 的最低十六位的 sign extended 後的 shift left 的值;如果是 0就 PC+4 就對了。

然後關於 register 的部分,首先是要知道它是 R-type 還是 Itype 來判斷

RegDst 是 rd 還是 rt,接著就把 rs, rt 分別取出來準備給 ALU 使用,在ALU 運算完之後,如果 RegWrite 是 1,就要寫進去。

最後是 ALU,藉由 ALUCtrl 來判斷要執行的是哪種運算,在這裡實作運算的結果以及判斷 zero。下圖是 ALU_Ctrl 對應的 ALU_Op

	ALU_Op	ALU_Ctr1
ADDU	010	0010
ADDI	000	0010
SUBU	010	0110
AND	010	0000
OR	010	0001
SLT	010	1000
SLTIU	111	0111
BEQ	001	0110
SRA	010	1001
SRAV	010	1010
LUI	101	1011
ORI	110	0001
BNE	011	0101

Problems encountered and solutions:

- 要知道每個 opcode 分別要讓 RegDst, RegWrite, Branch, ALUSrc 等於 0
 還是 1
- 1-sol. RegDst 就看是不是 R-type,是的話 RegDst 就是 1,否則為 0 只有 bne, be 的 RegWrite 是 0,其餘都是 1 只有 bne, be 的 Branch 為 1,其餘為 0 只有 sltiu, addi, lui, ori 的 ALUSrc 是 1,其餘為 0
- 2. sign extended 要補 0 還是 1
- 2-sol. 基本上 unsigned 的都是補 0, 比較特別的是 ori 也是補 0
- 3. SRA 比較特別,因為它的 src1 不是 rs,而是後面的 shamt
- 3-sol. 特例化,判斷如果是 SRA 的話,就讓 src1 等於 instruction [10:6]

Lesson learnt (if any):

詳細的了解 CPU 內部實作原理,從讀取指令、分析指令到運算出結果並且回傳 至暫存器,期望之後能實作 memory 的部分。