Adic Rings

0.1 Formal Schemes

Definition 0.1. An **adic ring** is a topological ring *A* carrying the a-adic topology, called an **ideal of definition**.

Remark 1. Note that the topology of *A* is part of the data, but the ideal of definition is not (there may be many ideals of definition).

For an adic ring *A*, we set Spf *A* to be the set of open prime ideals of *A*. If a is an ideal of definition, then

$$\operatorname{Spf} A = \operatorname{V}(I) = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{p} \supseteq \mathfrak{a} \}.$$

We give Spf A the structure of a topological ringed space as follow: for each $s \in A$ we define

$$D(s) = \{ \mathfrak{p} \in \operatorname{Spf} A \mid s \notin \mathfrak{p} \},\,$$

and declare that the D(s) generate the topology of Spf A. Note that if $s \in \mathfrak{a}$, then clearly $D(s) = \emptyset$. The structure sheaf $\mathcal{O} = \mathcal{O}_{\operatorname{Spf} A}$ is defined by setting $\mathcal{O}(D(s))$ to be the \mathfrak{a} -adic completion of A_s .

Definition 0.2. A **formal scheme** is a topologically ringed space which is locally for the form Spf A for an adic ring A.

Remark 2. Let A be a ring, let M be an A-module, and let a be a finitely generated ideal of A. Then one has

$$\widehat{M}/\mathfrak{a}\widehat{M}=M/\mathfrak{a}M$$

where \widehat{M} denotes the \mathfrak{a} -adic completion of M. This implies in particular that \widehat{M} is \mathfrak{a} -adically complete:

$$\lim_{\longleftarrow} \widehat{M}/\mathfrak{a}^n \widehat{M} = \lim_{\longleftarrow} M/\mathfrak{a}^n M = \widehat{M}.$$

For this reason we usually only concern ourselves with finitely generated ideals a.

The category of formal schemes contains the category of schemes as a full subcategory, via the functor which carries Spec A to Spf A where A is considered with the discrete topology. A typical example of a formal scheme is $X = \operatorname{Spf} \mathbb{Z}_p$, the formal unit disc over $\mathbb{Z}_p[\![x]\!]$. In this case, if R is any adic \mathbb{Z}_p -algebra, one has $X(R) = R^{\circ\circ}$, the ideal of topologically nilpotent elements in R (i.e the set of all r such that $r^n \to 0$ as $n \to \infty$). In particular if K/\mathbb{Q}_p is an extension of nonarchimedean fields, and $K^{\circ} \subset K$ is its ring of integers, then $X(K^{\circ}) = K^{\circ\circ}$ is the open unit disc in K.

0.2 Rigid-analytic Spaces

Let K be a nonarchimedian field (a field complete with respect to a nontrivial absolute value $|\cdot|$). For each $n \ge 0$, we have the **Take** K-**algebra** $K\langle x\rangle = K\langle x_1, \ldots, x_n\rangle$ which is the completion of K[x] under the Gauss norm. Equivalently, $K\langle x\rangle$ is the ring of formal power series in x with coefficients in K tending to 0. A K-**affinoid algebra** is a topological K-algebra K which is isomorphic to a quotient of some $K\langle t\rangle$.

Suppose *A* is a *K*-affinoid algebra. For a point