

10 $^{208}_{82}Pb$ is an isotope of Lead; how many neutrons, protons and electrons does it have?

13 Calculate the mass defect and the binding energy of ${}_{2}^{4}He$ (mass = 4.002602 u).

14 Calculate the mass defect and the binding energy of ${}_{3}^{7}Li$ (mass = 7.016003 u).

15 Calculate the mass defect and the binding energy of $_{26}^{56}Fe$ (mass = 55.934940 u).

16 Calculate the mass defect and the binding energy of ${}_{1}^{2}H$ (mass = 2.014102 u).

Neutron mass =
$$1.008665 \text{ u}$$

 ${}^{1}_{1}H \text{ mass} = 1.007825 \text{ u}$

17 Calculate the mass defect and the binding energy of ${}^{16}_{8}O$ (mass = 15.994915 u).

18 Calculate the mass defect and the binding energy of $^{93}_{41}Nb$ (mass = 92.906377 u).

19 $_{20}^{45}Ca$ undergoes β^{-} decay. Using a periodic table, find the resulting atom.

20 Fill in the missing component: $^{208}_{83}Bi \rightarrow ^{4}_{2}He + ?$

22 $^{22}_{11}Na$ undergoes β^+ decay. Using a periodic table, find the resulting atom.

23 Fill in the missing component: ${}_{16}^{35}S \rightarrow {}_{-1}^{0}e + ?$

24 Fill in the missing component: $^{212}_{84}Po \rightarrow ^{208}_{82}Pb + ?$

26 Nitrogen-13 has a half life of 10 minutes. How long will it take for a sample of 500 g to be reduced to 62.5 g?

27 Carbon-11 has a half life of 20 minutes. How much of this isotope will be left after 60 minutes from a starting sample of 40 g?

28 Fermium-257 has a half life of 3 days. How long will it take for a sample of 200 g to be reduced to 25 g?

29 Lead-210 has a half life of 22 years. How much of this isotope will be left after 110 years from a starting sample of 8.0 kg?

30 Radon-222 has a half life of 3.8 days. How much of this isotope will be left after 19 days from a starting sample of 160 g?

$$_{13}^{27}Al + _{0}^{1}n \rightarrow _{2}^{4}He + ?$$

$${}_{6}^{12}C + {}_{1}^{1}H \rightarrow {}_{6}^{13}C + ?$$

$$?+{}_{1}^{1}H \rightarrow {}_{11}^{22}Na + {}_{2}^{4}He$$

$$_{25}^{55}Mn + ? \rightarrow _{26}^{55}Fe + _{0}^{1}n$$

35 Calculate the mass defect (in amu) and reaction energy (in MeV) of the following reaction.

$$_{13}^{27}Al + _{0}^{1}n \rightarrow _{2}^{4}He + _{11}^{24}Na$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
	(Neutron)	n	1	1.008665
2	Helium	He	4	4.002602
11	Sodium	Na	24	23.99096
13	Aluminum	Al	27	26.98153

36 Calculate the mass defect (in amu) and reaction energy (in MeV) of the following reaction.

$${}_{6}^{12}C + {}_{1}^{1}H \rightarrow {}_{6}^{13}C + {}_{-1}^{0}e$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
1	Hydrogen	Н	1	1.007825
5	Carbon	С	12	12.00000
			13	13.003355

$$^{25}_{12}Mg + {}^{1}_{1}H \rightarrow {}^{22}_{11}Na + {}^{4}_{2}He$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
1	Hydrogen	Н	1	1.007825
12	Magnesiun	n Mg	25	24.98583
11	Sodium	Na	22	21.99443
2	Helium	He	4	4.002602

$$_{25}^{55}Mn + _{1}^{1}H \rightarrow _{26}^{55}Fe + _{0}^{1}n$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
1	Hydrogen	Н	1	1.007825
	(Neutron)	n	1	1.008665
25	Manganes	e Mn	55	54.93804
26	Iron	Fe	55	54.938293

39 Fill in the missing component of the following reaction (this requires at periodic table) ere

$$^{16}_{8}O + ^{4}_{2}He \rightarrow \gamma + ?$$

40 Fill in the missing component of the following reaction (this requires a periodic table) ere

$$_{1}^{2}H + _{1}^{3}H \rightarrow _{2}^{4}He + ?$$

41 Fill in the missing component of the following reaction (this requires at periodic table) ere

$$_{3}^{7}Li + _{1}^{2}H \rightarrow ?+ _{0}^{1}n$$

42 Fill in the missing component of the following reaction (this requires a periodic table) ere

$$^{13}_{6}C + ^{208}_{82}Pb \rightarrow ?+3^{1}_{0}n$$

$$^{16}_{8}O + {}^{4}_{2}He \rightarrow \gamma + {}^{20}_{10}Ne$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
2	Helium	He	4	4.002602
8	Oxygen	0	16	15.994915
10	Neon	Ne	20	19.992435

$${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass(u)
1	Deuterium	H or D	2	2.014102
1	Tritium	H or T	3	3.016049
	(Neutron)	n	1	1.008665
2	Helium	He	4	4.002602

$${}_{3}^{7}Li + {}_{1}^{2}H \rightarrow {}_{4}^{8}Be + {}_{0}^{1}n$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass (u)
1	Deuterium	H or D	2	2.014102
	(Neutron)	n	1	1.008665
3	Lithium	Li	7	7.016003
4	Beryllium	Be	8	8.005305

$$^{13}_{6}C + ^{208}_{82}Pb \rightarrow ^{218}_{88}Ra + 3^{1}_{0}n$$

Atomic number	Element	Symbol	Mass Number	Atomic Mass (u)
	(Neutron)	n	1	1.008665
6	Carbon	С	13	13.003355
82	Lead	Pb	208	207.97665
88	Radium	Ra	218	218.00714

Students type their answers here

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{145}_{57}La + ? + 3^{1}_{0}n$$

Students type their answers here ${}^{13}C + {}^{4}He \rightarrow {}^{16}O + ?$

Students type their answers here $\begin{array}{c} ^{239}Pu + {}^{1}_{0}n \rightarrow {}^{146}Ba + ? + 3{}^{1}_{0}n \end{array}$

Students type their answers here

$$^{239}_{94}Pu + ^{1}_{0}n \rightarrow ^{148}_{58}Ce + ?+ 3^{1}_{0}n$$

Students type their answers here ${}^{14}_{7}N + {}^{4}_{2}He \rightarrow ?+ {}^{1}_{0}n$

Students type their answers here

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{131}_{50}Sn + ? + 2^{1}_{0}n$$