Practical and Secure Policy-based Chameleon Hash for Redactable Blockchains

1 Security Analysis of the Composite Assumption

Theorem 1. Let $(\epsilon_1, \epsilon_2, \epsilon_T)$: $\mathbb{Z}_q \to \{0, 1\}^*$ be three random encodings (injective functions) where \mathbb{Z}_q is a prime field, and the encoding of group elements are $\mathbb{G} = \{\epsilon_1(a) | a \in \mathbb{Z}_q\}, \mathbb{H} = \{\epsilon_2(b) | b \in \mathbb{Z}_q\}, \mathbb{G}_T = \{\epsilon_T(c) | c \in \mathbb{Z}_q\}.$ If $(a, b, c) \xleftarrow{R} \mathbb{Z}_q$ and encodings $\epsilon_1, \epsilon_2, \epsilon_T$ are randomly chosen, we define the advantage of the adversary in solving the composite assumption with at most \mathbb{Q} queries to the group operation oracles $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_T$ and the bilinear pairing $\hat{\mathbf{e}}$ as

$$\begin{split} |\mathsf{Adv}_{\mathcal{A}}^{Com}(\lambda) &= \Pr[\mathcal{A}(q,\epsilon_{1}(1),\epsilon_{1}(a_{1}),\epsilon_{1}(a_{2}),\epsilon_{1}(a_{1}\cdot\alpha_{1}^{\ell+1}),\epsilon_{1}(a_{2}\cdot\alpha_{2}^{\ell+1}),\\ & \{\epsilon_{1}(\alpha_{1}),\cdots,\epsilon_{1}(\alpha_{1}^{\ell})\},\{\epsilon_{1}(\alpha_{2}),\cdots,\epsilon_{1}(\alpha_{2}^{\ell})\},\epsilon_{1}(s),\epsilon_{1}(t_{0}),\epsilon_{1}(t_{1}),\epsilon_{2}(1),\epsilon_{T}(1)) \\ &= w:(a_{1},a_{2},\alpha_{1},\alpha_{2},s\xleftarrow{R}\mathbb{Z}_{q},w\in(0,1),t_{w}=(\alpha_{1}^{\ell}+\alpha_{2}^{\ell}),t_{1-w}=s)]-1/2|\\ &\leq \frac{2(\ell+2)(2\ell+9)^{2}}{a} \end{split}$$

Proof. Let S play the following game for A. S maintains three polynomial-sized dynamic lists: $L_1 = \{(p_i, \epsilon_{1,i})\}, L_2 = \{(q_i, \epsilon_{2,i})\}, L_T = \{(t_i, \epsilon_{T,i})\}$. The $p_i \in \mathbb{Z}_q[A_1, A_2, AL_1, AL_2, S, T_0, T_1]$ are 7-variate polynomials over \mathbb{Z}_q , such that $p_0 = 1, p_1 = A_1, p_2 = A_2, p_3 = A_1 \cdot AL_1^{\ell+1}, p_4 = A_2 \cdot AL_2^{\ell+1}, \{p_u = AL_1^u\}_{u=1}^{\ell}, \{p_v = AL_2^v\}_{v=1}^{\ell}, p_{2\ell+5} = T_0, p_{2\ell+6} = T_1$. S also generates $q_0 = 1, t_0 = 1$. Then, S sets three lists as $L_1 = \{(p_i, \epsilon_{1,i})\}_{i=0}^{2\ell+6}, L_2 = (q_0, \epsilon_{2,0}), L_T = (t_0, \epsilon_{T,0}),$ where $\{\epsilon_{1,i}\}_{i=0}^{2\ell+6} \in \{0,1\}^*, \{\epsilon_{2,0}\} \in \{0,1\}^*, \{\epsilon_{T,0}\} \in \{0,1\}^*)$ are arbitrary distinct strings.

At the beginning of the game, S sends the encoding strings ($\{\epsilon_{1,i}\}_{i=0,\cdots,2\ell+6}, \epsilon_{2,0}, \epsilon_{T,0}$) to A. Next, S simulates the group operation oracles $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_T$ and the bilinear pairing $\hat{\mathbf{e}}$ as follows. We assume that all requested operands are obtained from S.

- $-\mathcal{O}_1$: The group operation involves two operands $\epsilon_{1,i}, \epsilon_{1,j}$. Based on these operands, \mathcal{S} searches the list L_1 for the corresponding polynomials p_i and p_j . Then, \mathcal{S} perform the polynomial addition or subtraction $p_l = p_i \pm p_j$ depending on whether multiplication or division is requested. If p_l is in the list L_1 , then \mathcal{S} returns the corresponding ϵ_l to \mathcal{A} . Otherwise, \mathcal{S} uniformly chooses $\epsilon_{1,l} \in \{0,1\}^*$, where $\epsilon_{1,l}$ is unique in the encoding string L_1 , and appends the pair $(p_l, \epsilon_{1,l})$ into the list L_1 . Finally, \mathcal{S} returns $\epsilon_{1,l}$ to \mathcal{A} as the answer. Group operation queries in \mathbb{H} , \mathbb{G}_T (i.e., \mathcal{O}_2 , \mathcal{O}_T) are treated similarly.
- $\hat{\mathbf{e}}$: The group operation involves two operands $\epsilon_{T,i}$, $\epsilon_{T,j}$. Based on these operands, \mathcal{S} searches the list L_T for the corresponding polynomials t_i and t_j . Then, \mathcal{S}

perform the polynomial multiplication $t_l = t_i \cdot t_j$. If t_l is in the list L_T , then S returns the corresponding $\epsilon_{T,l}$ to A. Otherwise, S uniformly chooses $\epsilon_{T,l} \in \{0,1\}^*$, where $\epsilon_{T,l}$ is unique in the encoding string L_T , and appends the pair $(t_l, \epsilon_{T,l})$ into the list L_T . Finally, S returns $\epsilon_{T,l}$ to A as the answer.

After querying at most \mathcal{Q} times of corresponding oracles, \mathcal{A} terminates and outputs a guess $b' = \{0,1\}$. At this point, \mathcal{S} chooses random $a_1, a_2, \alpha_1, \alpha_2, s \in \mathbb{Z}_q$, generates $t_b = (\alpha_1^{\ell+1} + \alpha_2^{\ell+1})$ and $t_{1-b} = s$. \mathcal{S} sets $A_1 = a_1, A_2 = a_2, AL_1 = \alpha_1, AL_2 = \alpha_2, S = s, T_0 = t_b, T_1 = t_{1-b}$. The simulation is perfect unless the abort event happens. Thus, we bound the probability of event abort by analyzing the following cases:

- 1. $p_i(a_1, a_2, \alpha_1, \alpha_2, s, t_0, t_1) = p_j(a_1, a_2, \alpha_1, \alpha_2, s, t_0, t_1)$: The polynomial $p_i \neq p_j$ due to the construction method of L_1 , and $(p_i p_j)(a_1, \cdots)$ is a non-zero polynomial of degree $[0, 1, \cdots, \ell + 2]$ ($\ell + 2$ is produced by $A_1 \cdot AL_1^{\ell+1}$). The maximum degree of $A_1 \cdot AL_1^{\ell+1}(p_i p_j)(a_1, \cdots)$ is $\ell + 2$. By using Lemma 1 in [7], we have $\Pr[(p_i p_j)(a_1, \cdots) = 0] \leq \frac{\ell+2}{q}$ and thus $\Pr[p_i(a_1, \cdots) = p_j(a_1, \cdots)] \leq \frac{\ell+2}{q}$. Therefore, we have the abort probability is $\Pr[\mathsf{abort}_1] \leq \frac{\ell+2}{q}$.
- 2. $q_i(a_1, \dots) = q_j(a_1, \dots)$: The polynomial $q_i \neq q_j$ due to the construction method of L_2 , and $(q_i q_j)(a_1, \dots)$ is a non-zero polynomial of degree 0. The maximum degree is "0" since the list L_2 contains a single string $\epsilon_{(2,0)}$ only (note that we do not include group elements in \mathbb{H}). Therefore, the **abort** probability is "0".
- 3. $t_i(a_1, \cdots) = t_j(a_1, \cdots)$: The polynomial $t_i \neq t_j$ due to the construction method of L_3 , and $(t_i t_j)(a_1, \cdots)$ is a non-zero polynomial of degree $[0, 1, \cdots, \ell + 2]$. The maximum degree of $(A_1 \cdot AL_1^{\ell+1}(t_i t_j)(a_1, \cdots))$ is also $\ell+2$. Therefore, we have $\Pr[(t_i t_j)(a_1, \cdots) = 0] \leq \frac{\ell+2}{q}$ and thus $\Pr[t_i(a_1, \cdots) = t_j(a_1, \cdots)] \leq \frac{\ell+2}{q}$.

By summing over all valid pairs (i, j) in each case (i.e., at most $2\binom{2\ell+9}{2}$ pairs), we have the abort probability is

$$\begin{split} \Pr[\mathsf{abort}] &= \Pr[\mathsf{abort}_1] + \Pr[\mathsf{abort}_2] + \Pr[\mathsf{abort}_3] \leq 2 \binom{2\ell+9}{2} \cdot (\frac{\ell+2}{q} + \frac{\ell+2}{q}) \\ &\leq \frac{2(\ell+2)(2\ell+9)^2}{q}. \end{split}$$

2 Chameleon Hash Function

A chameleon hash function consists of the following algorithms [6].

- KeyGen: It takes a security parameter λ as input, outputs a chameleon key pair (sk, pk).

- Hash: It takes the chameleon public key pk, and a message $m \in \mathcal{M}$ as input, outputs a chameleon hash h, randomness r. Note that $\mathcal{M} = \{0,1\}^*$ denotes a general message space.
- Verify: It takes the chameleon public key pk, a message m, a chameleon hash h and randomness r as input, outputs a bit $b \in \{0, 1\}$.
- Adapt: It takes the chameleon secret key sk, messages m, m', chameleon hash h and randomness r as input, outputs a new randomness r'.

Chameleon hash function should ensure indistinguishability and collision-resistance. Indistinguishability means that the randomness associated with a chameleon hash does not reveal whether it was obtained from directly hashing or computed using the chameleon secret key. The collision-resistance means that adversaries cannot find two pairs (m,r) and (m',r') that map to the same chameleon hash h. Since the definition of indistinguishability and collision-resistance are various in the literature [3–6], we focus on a standard one [4] to prove the security of the proposed FB-PCH.

We use a modified version of discrete logarithm (DL)-based CH to construct our FB-PCH. The intention is to prevent key exposure attacks [2]: anyone can extract the trapdoor given two pairs (m,r) and (m',r') that map to the same chameleon hash h. Specifically, CH is associated with a public key $pk = g^{sk}$. Hashing a message m outputs $h = pk^mg^r$ and $\xi = (R = g^r, \Pi)$, where Π is a non-interactive zero-knowledge (NIZK) for the value $\log(R)$. In Verify, the hash value h can be verified by checking if $h = pk^mR$ and if Π is valid. In Adapt, $r' = (m - m') \cdot sk + r$ and $\xi' = (R' = g^{r'}, \Pi')$ are computed, where Π' is a NIZK for $\log(R')$. The modified CH scheme achieves indistinguishability and collision-resistance. The construction is a combination of a classic DL-based CH scheme and a NIZK proof. The NIZK proof is used to prove the knowledge of randomness, and we rely on its simulation-sound extractability property to prove collision-resistance.

Theorem 2. The modified DL-based CH scheme is collision-resistant if the classic DL-based CH scheme is collision-resistant, and the NIZK proof is simulation extractable.

Proof. Let \mathcal{S} denote an attacker against the classic DL-based CH scheme, who is given a chameleon public key pk^* , a hash oracle and an adapt oracle, aims to find a collision which was not simulated by the adapt oracle. \mathcal{S} simulates the game for \mathcal{A} as follows.

- $-\mathcal{S}$ sets the chameleon public key as pk^* .
- For a hash query on a message m, S forwards m to his hash oracle and receives a hash value h and a randomness r, where $h = (pk^*)^m \cdot g^r$. Then, S returns (h, ξ) to A, where a NIZK proof $\xi = (R = g^r, \Pi)$. For an adapt query, S obtains a new randomness r' from his adapt oracle and returns (m', h, ξ') to A, where $\xi' = (R' = g^{r'}, \Pi')$.
- If \mathcal{A} outputs a collision $(m^*, \xi^*, m'^*, \xi'^*, h^*)$, such that the chameleon hash is valid $h^* = (\mathtt{pk}^*)^{m^*} \cdot R^* = (\mathtt{pk}^*)^{m'^*} \cdot R'^*$, and the NIZK proofs (ξ^*, ξ'^*)

are valid, S extracts (r^*, r'^*) from (ξ^*, ξ'^*) due to NIZK's simulation-sound extractability. We require that either (h^*, m^*, ξ^*) or (h^*, m'^*, ξ'^*) must be a fresh collision, i.e., one that was never queried adapt oracle. Then, S outputs $(m^*, r^*, m'^*, r'^*, h^*)$ as a collision to the CH scheme; otherwise, S aborts the game.

Theorem 3. The modified DL-based CH scheme is indistinguishable if the classic DL-based CH is indistinguishable.

Proof. Let S denote an attacker against the DL-based CH, who is given a chameleon public key pk^* and a HashOrAdapt oracle, aims to break the classic CH's indistinguishability. S sets the chameleon public key as pk^* .

If \mathcal{A} submits two messages (m_0, m_1) to \mathcal{S} , \mathcal{S} obtains a chameleon hash (h_w, r_w) from his HashOrAdapt oracle on messages (m_0, m_1) , where $w \in [0, 1]$. Then, \mathcal{S} generates a NIZK proof $\xi_w = (R_w = g^{r_w}, \Pi_w)$, and returns (m_w, h_w, ξ_w) to \mathcal{A} . \mathcal{S} outputs whatever \mathcal{A} outputs. If \mathcal{A} guesses the random bit correctly, then \mathcal{S} can break the classic CH's indistinguishability.

3 Correctness of the Decryption.

We provide the correctness of the decryption process. Suppose that the user holds a decryption key in the form of $\mathtt{sk}_{(\delta,t)} = (\mathtt{sk}_0, \{\mathtt{sk}_y\}_{y \in \delta}, \mathtt{sk}')$, where $\mathtt{sk}_0 = (h^{b_1 \cdot r_1}, h^{b_2 \cdot r_2}, h^r, h^{r+r'})$, and $\mathtt{sk}_3' = g^{d_3} \cdot g^{-\sigma'} \cdot F(t)^{r+r_x+r'}$ (i.e., the user is not revoked at time t).

- The ciphertext associated with $y_1 \in \delta$ and $y_2 = \{1, 2, 3\}$ is calculated as

$$\begin{split} A &= \left\| (\mathrm{H}(y_1 11)^{s_1 \cdot \gamma_i} \cdot \mathrm{H}(y_1 12)^{s_2 \cdot \gamma_i}, h^{b_1 \cdot r_1}) \cdot \left\| (\mathrm{H}(y_1 21)^{s_1 \cdot \gamma_i} \cdot \mathrm{H}(y_1 22)^{s_2 \cdot \gamma_i}, h^{b_2 \cdot r_2}) \right. \\ &\left. \cdot \left\| (\mathrm{H}(y_1 31)^{s_1 \cdot \gamma_i} \cdot \mathrm{H}(y_1 32)^{s_2 \cdot \gamma_i}, h^r) \cdot \left\| (F(t)^s, h^{r+r'}) \cdot \left\| (F(t), h^{r_x \cdot s}) \right\| \right. \\ &= \left\| (\mathrm{H}(y_1 11)^{s_1 \cdot b_1 \cdot r_1 \cdot \gamma_i}, h) \cdot \left\| (\mathrm{H}(y_1 12)^{s_2 \cdot b_1 \cdot r_1 \cdot \gamma_i}, h) \cdot \left\| (\mathrm{H}(y_1 21)^{s_1 \cdot b_1 \cdot r_2 \cdot \gamma_i}, h) \right. \\ &\left. \cdot \left\| (\mathrm{H}(y_1 22)^{s_2 \cdot b_2 \cdot r_2 \cdot \gamma_i}, h) \cdot \left\| (\mathrm{H}(y_1 31)^{s_1 \cdot r \cdot \gamma_i}, h) \cdot \left\| (\mathrm{H}(y_1 32)^{s_2 \cdot r \cdot \gamma_i}, h) \cdot \left\| (F(t)^s, h^{r_x + r + r'}) \right. \right. \end{split}$$

- The first pairing in B is calculated as

$$\begin{split} & \hat{\mathbf{e}} (\mathbf{H}(\pi(i)11)^{b_1 \cdot r_1 \cdot \gamma_i / a_1} \cdot \mathbf{H}(\pi(i)21)^{b_2 \cdot r_2 \cdot \gamma_i / a_1} \cdot \mathbf{H}(\pi(i)31)^{r \gamma_i / a_1} \cdot g^{\sigma_i \cdot \gamma_i / a_1} \cdot (g^{d_1})^{\mathbf{M}_{(i,1)} \cdot \gamma_i} \\ & \cdot \prod_{j=2}^{n_2} [\mathbf{H}(0j11)^{b_1 \cdot r_1 / a_1} \cdot \mathbf{H}(0j21)^{b_2 \cdot r_2 / a_1} \cdot \mathbf{H}(0j31)^{r / a_1} \cdot g^{\sigma'_j / a_1}]^{\mathbf{M}_{(i,j)} \cdot \gamma_i}, h^{a_1 \cdot s_1}) \end{split}$$

- The second pairing in B is calculated as

$$\begin{split} &\hat{\mathbf{e}}(\mathbf{H}(\pi(i)12)^{b_{1}\cdot r_{1}\cdot\gamma_{i}/a_{2}}\cdot\mathbf{H}(\pi(i)22)^{b_{2}\cdot r_{2}\cdot\gamma_{i}/a_{2}}\cdot\mathbf{H}(\pi(i)32)^{r\cdot\gamma_{i}/a_{2}}\cdot g^{\sigma_{i}\cdot\gamma_{i}/a_{2}}\cdot (g^{d_{2}})^{\mathbf{M}_{(i,1)}\cdot\gamma_{i}}\\ &\cdot\prod_{j=2}^{n_{2}}[\mathbf{H}(0j12)^{b_{1}\cdot r_{1}/a_{2}}\cdot\mathbf{H}(0j22)^{b_{2}\cdot r_{2}/a_{2}}\cdot\mathbf{H}(0j32)^{r/a_{2}}\cdot g^{\sigma'_{j}/a_{2}}]^{\mathbf{M}_{(i,j)}\cdot\gamma_{i}},h^{a_{2}\cdot s_{2}}) \end{split}$$

- The third pairing in B is calculated as

$$\hat{\mathbf{e}}(\underline{g^{d_3} \cdot g^{-\sigma'} \cdot F(t)^{r+r_x+r'}} \cdot \prod_{j=2}^{n_2} (g^{-\sigma'_j})^{\mathbf{M}_{(i,j)} \cdot \gamma_i}, h^s)$$

- By multiplying above three parings in B, we have

$$\begin{split} B &= \hat{\mathbf{e}}(\mathbf{H}(\pi(i)11)^{b_1 \cdot r_1 \cdot s_1 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)21)^{b_2 \cdot r_2 \cdot s_1 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)31)^{r \cdot s_1 \cdot \gamma_i}, h) \\ &\cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)12)^{b_1 \cdot r_1 \cdot s_2 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)22)^{b_2 \cdot r_2 \cdot s_2 \cdot \gamma_i}, h) \cdot \hat{\mathbf{e}}(\mathbf{H}(\pi(i)32)^{r \cdot s_2 \cdot \gamma_i}, h) \\ &\cdot \hat{\mathbf{e}}(g^{d_1 \cdot a_1 \cdot s_1}, h) \cdot \hat{\mathbf{e}}(g^{d_2 \cdot a_2 \cdot s_2}, h) \cdot \hat{\mathbf{e}}(g^{d_3 \cdot s}, h) \cdot \hat{\mathbf{e}}(F(t)^{r + r_x + r'}, h^s) \end{split}$$

where σ_i and σ'_i in B were cancelled out when multiplying, and recall that $\sum_{i \in I} \gamma_i \cdot \mathbf{M}_i = (1, 0, \dots, 0).$ - Eventually, B/A is calculated as below

$$\begin{split} B/A &= \hat{\mathsf{e}}(g^{d_1 \cdot a_1 \cdot s_1}, h) \cdot \hat{\mathsf{e}}(g^{d_2 \cdot a_2 \cdot s_2}, h) \cdot \hat{\mathsf{e}}(g^{d_3 \cdot (s_1 + s_2)}, h) \\ &= \hat{\mathsf{e}}(g, h)^{s_1 \cdot (d_1 \cdot a_1 + d_3)} \cdot \hat{\mathsf{e}}(g, h)^{s_2 \cdot (d_2 \cdot a_2 + d_3)} \\ &= T_1^{s_1} \cdot T_2^{s_2}. \end{split}$$

Security Analysis of FB-ABE

Theorem 4. The proposed FB-ABE scheme is semantically secure if the proposed composite assumption is held in the asymmetric pairing groups.

Proof. We assume a simulator S whose goal is to the break the security of the composite assumption. S chooses a challenge time $t^* = t_1^* ||t_2^*|| \cdots ||t_\ell^*||$ and a challenge identity id^* .

- S simulates the public parameters as $g_c = \bar{g}^{\gamma} \cdot g^{\alpha_1^{\ell}}, \bar{g} = g^{z_c}, T_{1/2} = \hat{\mathbf{e}}(g, h)^{d_{1/2} \cdot a_{1/2}}$. $\hat{\mathbf{e}}(g_c,h^{\alpha_1}),g_0=\bar{g}^{\delta}\cdot g^{\alpha_1^{\ell}\cdot t_1^*}\cdot \cdots g^{\alpha_1\cdot t_{\ell}^*}\cdot g^{\alpha_1\cdot \mathbf{H}_q(id^*)},g_1=\bar{g}^{\gamma_1}/g^{\alpha_1^{\ell}},\cdots,g_{\ell}=\bar{g}^{\gamma_{\ell}}/g^{\alpha_1},$ where $d_{1/2}, \gamma, \gamma_1, \dots, \gamma_\ell, \delta, z_c \in \mathbb{Z}_q$ are chosen by \mathcal{S} . Since \mathcal{S} can easily break the composite problem if $q^{\alpha_1^{\ell+1}}$ is unknown, we use it to simulate the updated decryption keys.
 - \mathcal{S} also generates other parameters honestly according to the scheme's description. By setting up the parameters as such, S implicitly sets $d_3 = \alpha_1$, and $g_c^{d_3} = \bar{g}^{\alpha_1 \cdot \gamma} g^{\alpha_1^{\ell+1}}$. Below, we mainly focus on the $g_c^{d_3}$ -related simulations.
- $-\mathcal{S}$ simulates the key update, break in, and decryption queries as follows.
 - 1. KeyUp. S just keep track of the present time t.
 - 2. We consider two cases in simulating users' decryption keys for decryption queries. The first case is $t \neq t^*$. We show S can simulate a decryption key at time $t = t_1 || \cdots || t_{\bar{k}} || \cdots || t_{\ell}$, where $k \in [1, \ell]$. Note that $t_{\bar{k}} \neq t_{\bar{k}}^*$, which implies that \bar{k} is not prefix of t^* , and \bar{k} is the smallest index at time t.

In this case, S first chooses $z \in \mathbb{Z}_q$, and sets $r = \frac{\alpha_1^{\bar{k}}}{t_{\bar{k}} - t_{\bar{k}}^*} + z$. Then, S computes key components $(\mathbf{sk}_{(0,3)}, \mathbf{sk}_3')$ as

$$(h^r, \frac{g_c^{d_3}}{g_x} \cdot g^{-\sigma'} \cdot \underline{(g_0 \cdot g_1^{t_1} \cdots g_{\bar{k}}^{t_{\bar{k}}} \cdot g_{\ell}^{\mathtt{H}_q(id)})^r}, g_{\bar{k}+1}^r, \cdots, g_{\ell}^r)$$
(1)

This is a well-formed key at time $t = t_1 || \cdots || t_{\bar{k}}$, where g_x, σ' are chosen by S. We show how to calculate the underlined (U) term in (1).

$$\begin{split} U &= [\bar{g}^{\delta} \cdot g^{\alpha_{1}^{\ell} \cdot t_{1}^{*}} \cdots g^{\alpha_{1} \cdot t_{\ell}^{*}} \cdot g^{\alpha_{1} \cdot \mathbf{H}_{q}(id^{*})} (\bar{g}^{\gamma_{1}}/g^{\alpha_{1}^{\ell}})^{t_{1}} \cdots (\bar{g}^{\gamma_{\bar{k}}}/g^{\alpha_{\ell-\bar{k}+1}})^{t_{\bar{k}}} \cdot (\bar{g}^{\gamma_{\ell}}/g^{\alpha_{1}})^{\mathbf{H}_{q}(id)}]^{r} \\ &= [\bar{g}^{\delta + \sum_{i=1}^{\bar{k}} t_{i} \cdot \gamma_{i} + \gamma_{\ell} \cdot \mathbf{H}_{q}(id)} \cdot \prod_{i=1}^{\bar{k}-1} g^{t_{i}^{*} - t_{i}}_{\ell-i+1} \cdot g^{t_{\bar{k}}^{*} - t_{\bar{k}}}_{\ell-\bar{k}+1} \cdot \prod_{i=\bar{k}+1}^{\ell} g^{t_{i}^{*}}_{\ell-i+1} \cdot g^{\alpha_{1} \cdot [\mathbf{H}_{q}(id^{*}) - \mathbf{H}_{q}(id)]}]^{r} \\ &= Z \cdot g^{r(t_{\bar{k}}^{*} - t_{\bar{k}})}_{\ell-\bar{k}+1} \end{split}$$

where Z is shown as follows

$$Z = [\bar{g}^{\delta + \sum_{i=1}^{\bar{k}} t_i \cdot \gamma_i + \gamma_\ell \cdot \mathbf{H}_q(id)} \cdot \prod_{\underline{i=1}}^{\bar{k}-1} g_{\ell-i+1}^{t_i^* - t_i} \cdot \prod_{i=\bar{k}+1}^{\ell} g_{\ell-i+1}^{t_i^*} \cdot g^{\alpha_1 \cdot (\mathbf{H}_q(id^*) - \mathbf{H}_q(id))}]^r$$

 $\mathcal S$ can compute all the terms in Z, and the underlined term in Z is equal to 1 because $t_i=t_i^*$ for all $i<\bar k$. The remaining term in $(g_0\cdot g_1^{t_1}\cdots g_{\bar k}^{t_{\bar k}})^r$ is $g_{\ell-\bar k+1}^{r(t_{\bar k}^*-t_{\bar k})}$. Since $r=\frac{\alpha_1^{\bar k}}{t_{\bar k}^*-t_{\bar k}^*}+z$, we can rewrite it as follows

$$g_{\ell-\bar{k}+1}^{r\cdot(t_{\bar{k}}^*-t_{\bar{k}})} = g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^*-t_{\bar{k}})} \cdot g_{\ell-\bar{k}+1}^{(t_{\bar{k}}^*-t_{\bar{k}})\frac{\alpha_1^{\bar{k}}}{t_{\bar{k}}-t_{\bar{k}}^*}} = \frac{g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^*-t_{\bar{k}})}}{q^{\alpha_1^{\ell+1}}}$$

Hence, the second component in (1) is equal to

$$\frac{g_c^{d_3}}{g_x} \cdot g^{-\sigma'} \cdot \underbrace{(g_0 \cdot g_1^{t_1} \cdots g_{\bar{k}}^{t_{\bar{k}}})^r}_{1} = g^{\alpha_1^{\ell+1}} \cdot \frac{\bar{g}^{\alpha_1 \cdot \gamma}}{g_x} \cdot Z \cdot \frac{g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^* - t_{\bar{k}})}}{g^{\alpha_1^{\ell+1}}} = \frac{\bar{g}^{\alpha_1 \cdot \gamma}}{g_x} \cdot Z \cdot g_{\ell-\bar{k}+1}^{z(t_{\bar{k}}^* - t_{\bar{k}})}$$

To this end, \mathcal{S} can simulate the second component in (1) because the unknown value $g^{\alpha_1^{\ell+1}}$ is cancelled out. The first component h^r in (1), and other components $(g^r_{\bar{k}+1},\cdots,g^r_\ell)$ can be easily computed by \mathcal{S} since they do not involve $g^{\alpha_1^{\ell+1}}$. This completes the simulation of $g^{d_3}_c$ -related key components at time $t\neq t^*$. \mathcal{S} simulates other key components using the same approach described in FAME [1]. Specifically, \mathcal{S} first obtains the composite assumption challenge $(h^{a_1\cdot\alpha_1^{\ell+1}},h^{a_2\cdot\alpha_2^{\ell+1}},h^{\alpha_1^{\ell+1}+\alpha_2^{\ell+1}})$. Then, \mathcal{S} derives $(h^{a_1\cdot\alpha_1^{\ell+1}\cdot\bar{r}},h^{a_2\cdot\alpha_2^{\ell+1}\cdot\bar{r}},h^{(\alpha_1^{\ell+1}+\alpha_2^{\ell+1})\cdot\bar{r}})$ to simulate other key components, where \bar{r} is a randomly chosen value from \mathbb{Z}_q .

The second case is $t = t^*$, but $id \neq id^*$. If \mathcal{A} issues a decryption key query on an attribute set δ (i.e., $1 \neq \Lambda^*(\delta)$, \mathcal{S} simulates a decryption

key using the similar approach as above, but using the fact that $id \neq id^*$ instead of $t_{\bar{k}} \neq t_{\bar{k}}^*$. Recall that user's decryption key \mathfrak{sk}_3' involves $F(t,id) = g_0 \cdot \prod g_i^{t_i} \cdot g_\ell^{\mathbb{H}_q(id)} \in \mathbb{G}$. \mathcal{S} sets $r = \frac{\alpha_1^\ell}{\mathbb{H}_q(id) - \mathbb{H}_q(id^*)} + z$ in equation (1) for $z \in \mathbb{Z}_q$, and the simulation follows the similar approach as above.

3. Break in. S simulates a decryption key at break in time \bar{t} using the same method described above (i.e., the first case in simulating users' decryption keys). S can simulate it since \bar{t} is not prefix of t^* .

Last, S can easily answer decryption queries and revoke queries.

- In the challenge phase, S returns a challenge ciphertext $C^* \leftarrow \mathsf{Enc}(\mathsf{mpk}, m_b, \Lambda^*, t^*)$ to A, where ct_0 can be

$$\begin{split} b &= 0: (h^{a_1 \cdot \alpha_1^{\ell+1} \cdot \vec{r'}}, h^{a_2 \cdot \alpha_2^{\ell+1} \cdot \vec{r'}}, h^{(\alpha_1^{\ell+1} + \alpha_2^{\ell+1}) \cdot \vec{r'}}, g^{z_c \cdot (\delta + \sum_{i=1}^{\ell} \gamma_i \cdot t_i^*) \cdot (\alpha_1^{\ell+1} + \alpha_2^{\ell+1})}) \\ b &= 1: (h^{a_1 \cdot \alpha_1^{\ell+1} \cdot \vec{r'}}, h^{a_2 \cdot \alpha_2^{\ell+1} \cdot \vec{r'}}, h^{s \cdot \vec{r'}}, g^{z_c \cdot (\delta + \sum_{i=1}^{\ell} \gamma_i \cdot t_i^*) \cdot s}) \end{split}$$

Note that $\bar{r'}$ is a randomly chosen value from \mathbb{Z}_q .

Since there are at most k system users and \mathcal{T} times, we have

$$\mathrm{Adv}^{\mathrm{FB-ABE}}_{\mathcal{A}}(\lambda) \leq k \cdot \mathcal{T} \cdot \mathrm{Adv}^{Com}_{\mathcal{S}}(\lambda)$$

5 Security Analysis of FB-PCH

Theorem 5. The FB-PCH scheme is forward/backward-secure collision resistant if the modified DL-based CH scheme is collision resistant, and the FB-ABE scheme is semantically secure.

Proof. We define a sequence of games \mathbb{G}_i , $i=0,\cdots,3$ and let $Adv_i^{\mathrm{FB-PCH}}$ be the advantage of the adversary in game \mathbb{G}_i . We assume that \mathcal{A} issues at most q queries to the Hash oracle.

- $-\mathbb{G}_0$: This is original game for forward/backward-secure collision-resistance.
- \mathbb{G}_1 : This game is identical to game \mathbb{G}_0 except the following difference: \mathcal{S} randomly chooses $g \in [1,q]$ as a guess for the index of the query to the Hash oracle at time t^* which returns the chameleon hash (m^*,h^*,ξ^*,C^*,t^*) . \mathcal{S} will output a random bit if \mathcal{A} 's attacking query does not occur in the g-th query. Because we assume the upper-bound of time is \mathcal{T} , we have

$$\mathrm{Adv}_0^{\mathrm{FB-PCH}} = q \cdot \mathcal{T} \cdot \mathrm{Adv}_1^{\mathrm{FB-PCH}} \tag{2}$$

– \mathbb{G}_2 : This game is identical to game \mathbb{G}_1 except that in the g-th query, \mathcal{S} replaces the encrypted trapdoor tr^* in C^* by \bot (i.e., empty value). Below we show that the difference between \mathbb{G}_1 and \mathbb{G}_2 is negligible if the FB-ABE is semantically secure.

Let \mathcal{S} be an attacker against the FB-ABE scheme with semantic security, who is given a public key pk^* and a set of oracles, aims to distinguish between encryption of M_0 and M_1 under an access structure Λ at time t^* . \mathcal{S} simulates the game for \mathcal{A} as follows.

- S sets up $mpk = pk^*$ and completes the remainder of Setup honestly.
- S can honestly answer all queries made by A using the given set of oracles. In the g-th query, S submits an identity id, two messages (tr, 0), an access structure A^* and a time t^* to his challenger and obtains a challenge ciphertext C^* . Eventually, S returns (m^*, h^*, ξ^*, C^*) to A, where $h^* = (g^{tr})^{m^*} \cdot R^*, \xi^* = (R^* = g^{r^*}, \Pi^*)$ and Π^* is a NIZK for $\log(R^*)$. Since the trapdoor tr and the randomness r^* are randomly chosen by S, S can simulate the adapt queries successfully.

If the encrypted message in C^* is tr, then the simulation is consistent with \mathbb{G}_1 ; Otherwise, the simulation is consistent with \mathbb{G}_2 . Therefore, if the advantage of \mathcal{A} is significantly different in \mathbb{G}_1 and \mathbb{G}_2 , \mathcal{S} can break the semantic security of the FB-ABE scheme. Hence, we have

$$\left| \mathtt{Adv}_1^{\mathrm{FB-PCH}} - \mathtt{Adv}_2^{\mathrm{FB-PCH}} \right| \leq \mathtt{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda). \tag{3}$$

– \mathbb{G}_3 : This game is identical to game \mathbb{G}_2 except that in the g-th query, \mathcal{S} outputs a random bit if \mathcal{A} outputs a valid collision $(id^*, h^*, m^*, \xi^*, m'^*, \xi'^*, C^*, C'^*, t^*)$. Below we show that the difference between \mathbb{G}_2 and \mathbb{G}_3 is negligible if the modified DL-based CH scheme is collision resistant.

Let \mathcal{S} denote an attacker against the modified DL-based CH, who is given a chameleon public key pk^* , a hash oracle, and an adapt oracle, aims to find a collision which was not simulated by the adapt oracle. \mathcal{S} simulates the game for \mathcal{A} as follows.

- S sets the chameleon public key of the g-th query as pk^* , and completes the remainder of Setup honestly.
- \mathcal{S} can answer all adapt queries at different time made by \mathcal{A} by choosing different trapdoors. For the g-th hash query, \mathcal{S} returns (h, ξ, C) to \mathcal{A} as the response to the hash oracle on the hashed message m, where a chameleon hash value $h = (\mathtt{pk}^*)^m \cdot R$, a NIZK proof $\xi = (R = g^r, \Pi)$, and a ciphertext C encrypting "0". For the g-th adapt query, \mathcal{S} returns (m', h, ξ', C') to \mathcal{A} , where $\xi' = (R' = g^{r'}, \Pi')$.
- When \mathcal{A} outputs a collision $(id^*, m^*, \xi^*, m'^*, \xi'^*, h^*, C^*, C'^*, t^*)$, such that the chameleon hash is valid $h^* = (\mathtt{pk}^*)^{m^*} \cdot R^* = (\mathtt{pk}^*)^{m'^*} \cdot R'^*$, and the NIZK proofs (ξ^*, ξ'^*) are valid. We require that either (h^*, m^*, ξ^*, C^*) or $(h^*, m'^*, \xi'^*, C'^*)$ must be a fresh collision, i.e., one that was never queried adapt oracle. Then, \mathcal{S} outputs $(m^*, \xi^*, m'^*, \xi'^*, h^*)$ as a collision to the modified DL-based CH scheme; otherwise, \mathcal{S} aborts the game. Therefore, we have

$$\left|\mathtt{Adv}^{\mathrm{FB\text{-}PCH}} - \mathtt{Adv}^{\mathrm{FB\text{-}PCH}}\right| \leq \mathtt{Adv}^{\mathrm{CH}}_{\mathcal{S}}(\lambda). \tag{4}$$

Combining the above results together, we have

$$\mathtt{Adv}^{\mathrm{FB-PCH}}_{\mathcal{A}}(\lambda) \leq q \cdot \mathcal{T} \cdot (\mathtt{Adv}^{\mathrm{FB-ABE}}_{\mathcal{S}}(\lambda) + \mathtt{Adv}^{\mathrm{CH}}_{\mathcal{S}}(\lambda)).$$

Theorem 6. The FB-PCH is indistinguishable if the modified DL-based CH scheme is indistinguishable, and the FB-ABE scheme is semantically secure.

Proof. We define a sequence of games \mathbb{G}_i , $i = 0, \dots, 3$ and let $Adv_i^{\text{FB-PCH}}$ be the advantage of the adversary in game \mathbb{G}_i . We assume that \mathcal{A} issues at most q hash queries at each game.

- $-\mathbb{G}_0$: This is original game for indistinguishability.
- \mathbb{G}_1 : This game is identical to game \mathbb{G}_0 except the following difference: \mathcal{S} randomly chooses $g \in [1, q]$ as a guess for the challenge query at time t^* in the challenge phase. \mathcal{S} will output a random bit if \mathcal{A} 's attacking query does not occur in the g-th query. Since the upper-bound of time is \mathcal{T} , we have

$$Adv_0^{\text{FB-PCH}} = q \cdot \mathcal{T} \cdot Adv_1^{\text{FB-PCH}}$$
 (5)

- \mathbb{G}_2 : This game is identical to game \mathbb{G}_1 except that in the g-th query, \mathcal{S} replaces the encrypted trapdoor tr^* in C^* by \bot (i.e., empty value). By using the same security analysis as described in the above game \mathbb{G}_2 , we have

$$\left| \mathtt{Adv}_1^{\mathrm{FB-PCH}} - \mathtt{Adv}_2^{\mathrm{FB-PCH}} \right| \leq \mathtt{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda). \tag{6}$$

 $-\mathbb{G}_3$: This game is identical to game \mathbb{G}_2 except that in the g-th query, \mathcal{S} directly hashes a message m, instead of calculating the chameleon hash and randomness (h,r) using the trapdoor tr. Below we show the difference between \mathbb{G}_2 and \mathbb{G}_3 is negligible if the CH scheme is indistinguishable.

Let S denote an attacker against the modified DL-based CH, who is given a chameleon public key pk^* and a HashOrAdapt oracle, aims to break the CH's indistinguishability. S generates a master key pair, and simulates all users' (attribute-based) keys honestly. S sets the chameleon public key of the g-th query as pk^* .

In the g-th query, if \mathcal{A} submits $(id, m_0, m_1, \Lambda, \delta, t)$ to \mathcal{S} , \mathcal{S} obtains a chameleon hash (h_w, r_w) from his HashOrAdapt oracle on messages (m_0, m_1) , where $w \in [0, 1]$. Then, \mathcal{S} honestly generates a NIZK proof $\xi_w = (R_w = g^{\mathsf{r}_w}, \Pi_w)$ and a ciphertext C according the protocol's description (note that \mathcal{S} sets the encrypted trapdoor as \bot). Eventually, \mathcal{S} returns (m_w, h_w, ξ_w, C) to \mathcal{A} . \mathcal{S} outputs whatever \mathcal{A} outputs. If \mathcal{A} guesses the random bit correctly, then \mathcal{S} can break CH's indistinguishability. Hence, we have

$$\mathtt{Adv}^{\operatorname{FB-PCH}}_{\mathcal{A}}(\lambda) \leq \mathtt{Adv}^{\operatorname{CH}}_{\mathcal{S}}(\lambda)).$$

Combining the above results together, we have

$$\mathrm{Adv}_{\mathcal{A}}^{\mathrm{FB-PCH}}(\lambda) \leq q \cdot \mathcal{T} \cdot (\mathrm{Adv}_{\mathcal{S}}^{\mathrm{FB-ABE}}(\lambda) + \mathrm{Adv}_{\mathcal{S}}^{\mathrm{CH}}(\lambda)).$$

Bibliography

- [1] S. Agrawal and M. Chase. Fame: fast attribute-based message encryption. In *CCS*, pages 665–682, 2017.
- [2] G. Ateniese and B. de Medeiros. On the key exposure problem in chameleon hashes. In *SCN*, pages 165–179, 2004.
- [3] G. Ateniese, B. Magri, D. Venturi, and E. Andrade. Redactable blockchain–or–rewriting history in bitcoin and friends. In *EuroS&P*, pages 111–126, 2017.
- [4] J. Camenisch, D. Derler, S. Krenn, H. C. Pöhls, K. Samelin, and D. Slamanig. Chameleon-hashes with ephemeral trapdoors. In *PKC*, pages 152–182, 2017.
- [5] D. Derler, K. Samelin, and D. Slamanig. Bringing order to chaos: The case of collision-resistant chameleon-hashes. In *PKC*, pages 462–492, 2020.
- [6] H. Krawczyk and T. Rabin. Chameleon signatures. In NDSS, 2000.
- [7] V. Shoup. Lower bounds for discrete logarithms and related problems. In *EUROCRYPT*, pages 256–266, 1997.