1.1

(a)
$$W \rightarrow Y$$
, $X \rightarrow Z \vdash W X \rightarrow Y$

Verdadero, usando Aumento (Para cualquier W, si $X \to Y$ entonces $XW \to WY$) si tenemos $W \to Y$, por aumento también $WX \to XY$, por descomposición $WX \to Y$

(b)
$$X \rightarrow Y y Z \subseteq Y \vdash X \rightarrow Z$$

Verdadero, usando reflexividad (Si Y \subseteq X entonces X \rightarrow Y) y transitividad (Si X \rightarrow Y e Y \rightarrow Z entonces X \rightarrow Z)

Como Z \subseteq Y entonces Y \rightarrow Z, y como también tenemos que X \rightarrow Y, por transitividad X \rightarrow Y

(c)
$$X \rightarrow Y$$
, $X \rightarrow W$, $WY \rightarrow Z \vdash X \rightarrow Z$

Verdadero

Usando (unión: Si $X \to Y$ y $X \to Z$ entonces $X \to YZ$)

Como $X \to Y$ y $X \to W$, tenemos que $X \to WY$.

Como WY \rightarrow Z y X \rightarrow WY, por transitividad, X \rightarrow Z

(d)
$$XY \rightarrow Z$$
, $Y \rightarrow W \vdash XW \rightarrow Z$