Week 5. Python 데이터 분석의 기초 라이브러리 - NumPy

데이터는 수많은 숫자들로 이루어져 있다. 하나의 변수에 여러 개의 데이터를 넣는 방법으로 리스트를 사용할 수도 있지만 리스트는 속도가 느리고 메모리를 많이 차지하는 단점 이 있다.

더 적은 메모리를 사용해서 빠르게 데이터를 처리하려면 배열(array)을 사용해야 한다.

배열은 같은 자료형의 데이터를 정해진 갯수만큼 모아놓은 것이다. 배열은 다음과 같은 점에서 리스트와 다르다.

- 모든 원소가 같은 자료형이어야 한다.
- 원소의 갯수를 바꿀 수 없다.

파이썬은 자체적으로 배열 자료형을 제공하지 않는다. 따라서 배열을 구현한 다른 패키지를 임포트해야 한다. 파이썬에서 배열을 사용하기 위한 표준 패키지는 NumPy 이다.

NumPy 기초

NumPy 는 np 라는 이름으로 임포트하는 것이 관례이다. - 네임스페이스라고 함

배열 객체 객체는 C언어의 배열처럼 연속적인 메모리 배치를 가지기 때문에 모든 원소가 같은 자료형이어야 한다.

- Numpy(Numerical Python의 줄임말)
- 빠르고 효율적인 다차원 배열 객체 ndarray
- 배열 원소를 다루거나 배열 간의 수학 계산을 수행하는 함수
 - 데이터 개조, 정제, 부분 집합, 필터링, 변형
 - 정렬, 유일 원소 찾기, 집합연산 같은 일반적인 배열 처리 알고리즘
- 통계의 효과적인 표현과 데이터의 수집/요약
- 데이터분석에서는 알고리즘에 사용할 데이터 컨테이너의 역할
- NumPy 배열은 파이썬 기본 자료 구조보다 훨씬 효율적인 방법으로 데이터를 저장하고 다룬다.

In [2]: import numpy as np

2차원 배열 - 행렬(matrix)

차원: 2 구조: (2, 3)

ndarray 는 N-dimensional Array의 약자이다. 이름 그대로 배열 객체는 단순 리스트와 유사한 1차원 배열 이외에도 2차원 배열, 3차원 배열 등의 다차원 배열 자료 구조를 지원

안쪽 리스트의 길이는 행렬의 열의 수 즉, 가로 크기가 되고 바깥쪽 리스트의 길이는 행렬의 행의 수, 즉 세로 크기가 된다. 예를 들어 2×3 배열은 다음과 같이 만든다.

기본 인덱싱

배열 객체로 구현한 다차원 배열의 원소 하나 하나는 다음과 같이 $\boxed{\text{Particomma}}$ 를 사용하여 접근할 수 있다. 콤마로 구분된 차원을 $\boxed{\text{축(axis)}}$ 이라고도 한다.

슬라이싱

배열 객체로 구현한 다차원 배열의 원소 중 복수 개를 접근하려면 일반적인 파이썬 슬라이싱(slicing)과 comma(,) 를 함께 사용하면 된다.

배열 슬라이스는 값을 복사하는게 아니다. 그러므로 배열 슬라이스의 값을 바꿔도 원본에 반영된다.

뷰 대신에 슬라이스의 복사본을 얻고 싶다면 copy 메서드를 이용

```
In [32]: a = np.array([[6, 1, 2],
                      [3, 4, 5]])
         print(a, a.shape)
         print('----')
         print(a[0,:]) # 첫번째 행 전체
print(a[:,1]) # 두번째 열 전체
         print(a[1, 1:]) # 두번째 행의 두번째 열부터 끝열까지
         [[6 1 2]
         [3 4 5]] (2, 3)
         [6 1 2]
         [1 4]
         [4 5]
In [33]: b = a[:,1] # 복사를 원할 때에는 .copy()
         print(b)
         b[:] = 0
         print(b)
         print(a)
         [1 4]
         [0 0]
         [[6 0 2]
         [3 0 5]]
In [34]: arr_slice_copy = a[1:3].copy() # 무조건 copy() 함수를 써야 복사가 됨
         print(arr_slice_copy)
         [[3 0 5]]
```

벡터 연산

ndarray 배열 객체는 배열의 각 원소에 대한 연산을 한 번에 처리하는 벡터화 연산(vectorized operation)을 지원

```
In [11]: # 리스트를 사용하는 경우
        a = [0, 1, 2, 3, 4, 5]
        print('리스트에 2를 곱하면?', a * 2)
        b = []
        for ai in a:
           b.append(ai * 2)
        print('실제 리스트를 이용한 a * 2:',b)
        리스트에 2를 곱하면? [0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5]
        실제 리스트를 이용한 a * 2: [0, 2, 4, 6, 8, 10]
In [12]: # numpy array 를 사용하는 경우
        x = np.array(a)
        b = x * 2
        print(b)
        [0246810]
In [13]: # 곱하기는 ? 기본 곱하기는 component-wise 연산
        print(x*x)
        [ 0 1 4 9 16 25]
In [14]: a = np.array([1, 2, 3])
        b = np.array([10, 20, 30])
        print(2 * a + b)
        #exponential
        print('----')
        print(np.exp(a))
        #Log
        print('----')
        print(np.log(a))
        #sin, cos
        print('----')
        print(np.sin(a))
        [12 24 36]
        [ 2.71828183 7.3890561 20.08553692]
        [ 0.
                    0.69314718 1.09861229]
        [ 0.84147098  0.90929743  0.14112001]
```

팬시 인덱싱(fancy indexing)이라고도 부르는 배열 인덱싱(array indexing)

사실은 데이터베이스의 질의(Query) 기능을 수행한다.

불리언(Boolean) 방식 배열 인덱싱

- True 인 원소만 선택
- 인덱스의 크기가 배열의 크기와 같아야 한다.

위치 지정 방식 배열 인덱싱

- 지정된 위치의 원소만 선택
- 인덱스의 크기가 배열의 크기와 달라도 된다.

```
In [143]: a = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
idx = np.array([True, False, True, False, True, False, True, False, True, False])
print('짝수를 가져와!:',a[idx])

bool_idx = (a % 2 == 0)
print('짝수를 가져와!:',a[bool_idx], bool_idx)

print('짝수 - 더 간단하게:',a[a % 2 == 0])

idx = np.array([0, 2, 4, 6, 8])
print('홀수번째 component!:',a[idx])
```

```
짝수를 가져와!: [0 2 4 6 8]
짝수를 가져와!: [0 2 4 6 8] [ True False True False True False True False True False]
짝수 - 더 간단하게: [0 2 4 6 8]
홀수번째 component!: [0 2 4 6 8]
```

배열연산 표현하기 (+조건절)

```
[[0 1 2]

[3 4 5]

[6 7 8]]

------

[[ 1 -1 1]

[-1 1 -1]

[ 1 -1 1]]
```

```
In [19]: # Cumulative sum
         print(arr.cumsum())
         # column cumulative
         print(arr.cumsum(0))
         # row cumulative
         print(arr.cumsum(1))
         [ 0 1 3 6 10 15 21 28 36]
         [[0 1 2]
          [ 3 5 7]
          [ 9 12 15]]
         [[ 0 1 3]
          [ 3 7 12]
          [ 6 13 21]]
In [20]: # Cumulative product
         print(arr.cumprod(1))
                0
                    01
         [[ 0
             3 12 60]
             6 42 336]]
```

NumPy 배열 초기화

배열 생성

앞에서 파이썬 리스트를 NumPy의 ndarray 객체로 변환하여 생성하려면 array 명령을 사용하였다. 그러나 보통은 이러한 기본 객체없이 다음과 같은 명령을 사용하여 바로 ndarray 객체를 생성한다.

- **zeros, ones** : 크기가 정해져 있고 모든 값이 0 (ones 인 경우 1) 인 배열
- **zeros_like**, **ones_like**: 특정한 배열 혹은 리스트와 같은 크기의 배열을 생성
- empty: 생성만 하고 초기화를 하지 않는 empty 명령
- arange: NumPy 버전의 range 명령. 특정한 규칙에 따라 증가하는 수열
- linspace, logspace : 선형 구간 혹은 로그 구간을 지정한 구간의 수만큼 분할
- rand(uniform dist.), randn(gaussian dist.) : 임의의 난수를 생성.시드(seed)값을 지정하려면 seed

```
In [39]: # zeros, ones
        print(np.zeros([3,3]))
        print('----')
        print(np.ones([3,3]))
        print('----')
        print(np.zeros((3, 2), dtype="float32"))
        [[ 0. 0. 0.]
         [ 0. 0. 0.]
         [ 0. 0. 0.]]
        [[ 1. 1. 1.]
         [ 1. 1. 1.]
         [ 1. 1. 1.]]
        [[ 0. 0.]
         [ 0. 0.]
         [ 0. 0.]]
In [23]: | # zeros_like, ones_like
        e = range(10)
        print(list(e))
        print('----')
        print(np.ones_like(e, dtype="int"))
        [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
        [1 1 1 1 1 1 1 1 1 1]
In [24]: # empty
        print(np.empty((4,3)))
        [[ 0. 0. 0.]
         [ 0. 0. 0.]
         [ 0. 0. 0.]
         [ 0. 0. 0.]]
In [40]:
        # arange
        print(np.array(range(10)))
        print(np.arange(10)) # 0 .. n-1
        print(np.arange(3, 12, 2)) # 시작, 끝(포함하지 않음), 단계
        [0 1 2 3 4 5 6 7 8 9]
        [0 1 2 3 4 5 6 7 8 9]
        [ 3 5 7 9 11]
In [26]: # linspace
        print(np.linspace(0, 100, 5)) # 시작, 끝(포함), 갯수
        print(np.linspace(0, 100, 11)) # 시작, 끝(포함), 갯수
            0.
                25.
                      50.
                           75.
                                100.]
```

70.

80.

90. 100.]

60.

50.

10.

0.

20.

30.

40.

```
In [73]: | # rand, randn
         np.random.seed(0)
         print(np.random.rand(4))
         print(np.random.uniform(0,5,5))
         print(np.random.random(4))
         print(np.random.randn(4))
         print(np.random.randint(5,10))
         [ 0.5488135
                       0.71518937 0.60276338
                                                0.54488318]
         [ 2.118274
                       3.22947057
                                   2.18793606 4.458865
                                                            4.8183138 ]
         [ 0.38344152  0.79172504  0.52889492
                                               0.56804456]
         [ 0.48431215  0.57914048 -0.18158257  1.41020463]
```

선형대수 연산

dot product

```
In [83]: a = np.array([1,2,3])
b = np.array([4,5,6])
print(a*b)
print(np.dot(a,b.T))

[ 4 10 18]
32

In [29]: print(np.cross(a,b.T))
[-3 6 -3]
```

대각합 (trace)

• tr(AB) = tr(BA)

```
    tr(kA) = k * tr(A)
    tr(A + B) = tr(A) + tr(B)
    tr(A') = tr(A)
```

행렬식 (deteminant)

- |A'| = |A|
- |AB| = |A||B|
- 대각행렬 A 이면, |A| = a11a22 ... amm 이다. (대각의 곱)
- 한 행이라도 모두 0 이면 |A| = 0
- 두 행 또는 두 열이 동등하면 |A| = 0

```
In [90]: print(round(np.linalg.det(A),3))
0.0
```

선형종속 (linear dependence)

- n 개의 벡터{x1, x2, .. xn} 과 n 개의 스칼라 {k1, k2, .. kn}에서 k1x1 + k2x2 + ... + knxn = 0 을 충족하는 0이 아닌 스칼라 집합이 있다면 선형종속이다.
- 쉽게 말해, 어떤 벡터 xi 는 다른 벡터의 조합으로 나타낼 수 있을 경우. 그렇지 않은 경우를 선형독립 (linear independence) 라고 한다.

```
In [91]: # determinant로 검증
# 선형종속 => det(X) = 0 => 특이행렬 singular matrix
S = np.array([[1,2],[2,4]])
print(np.linalg.det(S))
```

0.0

계수 (rank) 와 비특이행렬 (nonsingular matrix)

- 만약 |S| = 0 이면,
- S는 특이행렬(singular matrix) 이고,
- |S|!= 0 이면 비특이행렬 (nonsingular matrix) 이라고 한다.

```
In [38]: S = np.array([[1,2],[2,4]])

print (np.linalg.matrix_rank(S)) # rank 계수가 1 != 2
print(np.linalg.det(S)) # 행렬식 = 0 => 특이행렬이다.
```

1 0.0

```
In [93]: #### 역행렬 (inverse matrix)
        A = np.array([[1,2],[3,4]])
        print(A)
        inv_A = np.linalg.inv(A)
        print (inv_A)
        print('----')
        ##선형등식체계 해
        A = np.array([[3,5],
                     [4,2]])
        h = np.array([[13],[8]])
                                            # 역행렬 존재여부 확인
        print(np.linalg.det(A))
        inv_A = np.linalg.inv(A)
        print(inv_A)# 역행렬
        print(np.dot(inv_A, h))
                                     \# x = inv(A) * h
        [[1 2]
         [3 4]]
        [[-2. 1.]
         [ 1.5 -0.5]]
        -14.0
```

고유값과 고유행렬

[[1.] [2.]]

A 라는 행렬을 일종의 변환행렬이라고 생각할때, 그 변환에 대해서 (크기만 변화) 방향이 변하지 않는 벡터이기 때문에 고유벡터라고 한다.

Ax = Lx

Ax - Lx = 0

(A - LI)x = 0 # 스칼라값 L 에 항등행렬 I 를 곱해 행렬뺄셈을 한다.

[0.56576746 -0.90937671]]

[[-0.14285714 0.35714286] [0.28571429 -0.21428571]]

여기서 (A - LI) 행렬이 비특이행렬(역행렬 존재)하면, x = 0 이라는 자명해(trivial solution) 만 존재하고, 고유벡터는 없다.

(A - LI) 가 특이행렬(역행렬X) 이면, x = 0 이외의 비자명해(nontrivial solution) 을 가지게 된다.

(A - LI) 의 행렬식 deteminant 값이 0 이 되도록 하는 L 값을 계산해서 나오는 값이 고유값이다.

벡터 및 행렬 norm

```
In [142]: x = np.array([0, 1, 2, 3])
    print(x)
    print(np.linalg.norm(x))

[0 1 2 3]
    3.74165738677
```

통계연산

통계 - 최대최소평균

2.5 2.5

1.25 1.11803398875

```
• 최대/최소: min , max , argmin , argmax
• 통계: sum , mean , median , std , var
• 불리언: all , any
In [141]: x = np.array([1, 2, 4, 3])
         y = np.array([[1, 5],
                     [2, 2]])
         # sum
         print(np.sum(x), x.sum())
         print('y 열합계:', y.sum(axis=0)) # 열 합계
         print('y 행합계:', y.sum(axis=1)) # 행 합계
         print('----')
         #min, max
         print(x.min(), x.max())
         print('----')
         # argmin
         print(x.argmin(), x.argmax())
         print('----')
         # mean, median
         print(x.mean(), np.median(x))
         print('----')
         # variance, std
         print(x.var(), x.std())
         10 10
         y 열합계: [3 7]
         y 행합계: [6 4]
         -----
```

확률변수(random variables) 집합의 공분산행렬 (covariance matrix)

```
In [43]: import numpy as np
# 두 개의 변수, x_0 과 x_1이 완전히 상관관계가 있고, 방향은 반대라고 하자(부적상관)
x_0 = np.array([0, 1, 2])
x_1 = np.array([2, 1, 0])
X = np.vstack((x_0, x_1))

print(X)
print(np.cov(X))
print(np.cov(x_0, x_1))

[[0 1 2]
[2 1 0]]
[[1. -1.]
[-1. 1.]]
[[1. -1.]
[-1. 1.]]
```

집합

```
In [44]: # 중복 제거
names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
print(np.unique(names))

['Bob' 'Joe' 'Will' 'Bob' 'Will' 'Joe' 'Joe']
['Bob' 'Joe' 'Will']

In [45]: # 2개의 배열을 인자로 받아 첫 번째 배열의 각 원소가 두 번째 배열의
# 원소를 포함하는지를 나타내는 불리언 배열을 반환
values = np.array([6, 0, 0, 3, 2, 5, 6])
print(values)
print(np.in1d(values, [2, 3, 6]))

[6 0 0 3 2 5 6]
[True False False True True False True]
```

배열 수정

배열 변형

• reshape : 형태만 바꾸기

● | transpose |: 전치

flatten : 무조건 1차원 배열로 펼침
 newaxis : 차원 늘리기(1차원 증가)

```
In [96]: # reshape
          a = np.arange(12)
          print('a:',a)
          print('----')
          b = a.reshape(3, 4)
          print(b)
          print('----')
          # transpose
          print(b.transpose())
          # print(b.T)
          a: [ 0 1 2 3 4 5 6 7 8 9 10 11]
          [[0 1 2 3]
          [4567]
          [8 9 10 11]]
          [[ 0 4 8]
          [159]
          [ 2 6 10]
          [ 3 7 11]]
사용하는 원소의 갯수가 정해저 있기 때문에 reshape 명령의 형태 튜플의 원소 중 하나는 -1이라는 숫자로 대체할 수 있다. -1을 넣으
면 해당 숫자는 자동으로 계산되어 사용된다.
  In [97]: | print(a.reshape(2,-1)) # 2 * -1(6) 행렬
          print('-----') # -1(6) * 2 행렬
          print(a.reshape(-1,2))
          [[0 1 2 3 4 5]
          [67891011]]
          [[0 1]
          [23]
          [45]
           [67]
           [8 9]
           [10 11]]
 In [119]: # flatten
          c = b.flatten()
          print(c)
          print('----')
          # newaxis
          x = np.arange(5)
          print(x, x.shape)
          x = x[:, np.newaxis]
          print(x, x.shape)
          [0 1 2 3 4 5 6 7 8 9 10 11]
```

 $[0\ 1\ 2\ 3\ 4]\ (5,)$

[4]] (5, 1)

[[0] [1] [2] [3]

배열 연결/분리

행의 수나 열의 수가 같은 두 개 이상의 배열을 연결(concatenate)하여 더 큰 배열을 만들 때는 다음과 같은 명령을 사용한다.

- hstack: 행의 수가 같은 두 개 이상의 배열을 옆으로 연결하여 열의 수가 더 많은 배열합친다.
- vstack: 열의 수가 같은 두 개 이상의 배열을 위아래로 연결하여 행의 수가 더 많은 배열을 만든다.
- dstack: 제3의 축 즉, 행이나 열이 아닌 깊이(depth) 방향으로 배열을 합친다.
- **stack**: 새로운 차원(축으로) 배열을 연결. axis 인수(디폴트 0)를 사용하여 연결후의 회전 방향을 정한다. 연결하고자 하는 배열들의 크기가 모두 같아야 한다.
- r_
- c__
 tile : 동일한 배열을 반복하여 연결
- split : 배열을 분리

```
In [120]: a1 = np.ones([2, 3])
    print(a1)
    a2 = np.zeros([2, 3])
    print(a2)

# hstack
    print(np.hstack([a1, a2]))
    print('-----')

# vstack
    print(np.vstack([a1, a2]))
    print('-----')
```

```
[[ 1. 1. 1.]

[ 1. 1. 1.]]

[[ 0. 0. 0.]

[ 0. 0. 0.]]

[[ 1. 1. 1. 0. 0. 0.]

[ 1. 1. 1. 0. 0. 0.]]

------

[[ 1. 1. 1.]

[ 1. 1. 1.]

[ 0. 0. 0.]]
```

```
In [131]: # dstack
         d_stacked = np.dstack([a1, a2])
         print(d_stacked, d_stacked.shape)
         print('----')
         print(d_stacked[:,:,0])
         print('----')
         # stack
         print(np.stack([a1, a2], axis=1))
         print('----')
         print(np.stack([a1, a2], axis=2))
         [[[ 1. 0.]
          [ 1. 0.]
          [ 1. 0.]]
          [[ 1. 0.]
          [ 1. 0.]
          [ 1. 0.]]] (2, 3, 2)
         [[ 1. 1. 1.]
         [ 1. 1. 1.]]
```

[[[1. 1. 1.] [0. 0. 0.]]

[[1. 1. 1.] [0. 0. 0.]]]

[[[1. 0.] [1. 0.] [1. 0.]]

[[1. 0.] [1. 0.] [1. 0.]]]

```
In [30]: # tile
         b1 = np.array([1,2,3])
         print(np.tile(b1, 3))
         print(np.tile(b1, [2,3]))
         print('----')
         #split
         arr = np.random.randn(5, 5)
         first, second, third = np.split(arr, [1, 3], axis=1)
         np.split?
         print(first)
         print('----')
         print(second)
         print('----')
         print(third)
         [1 2 3 1 2 3 1 2 3]
         [[1 2 3 1 2 3 1 2 3]
         [1 2 3 1 2 3 1 2 3]]
         [[-0.10918332]
         [-0.50905825]
         [ 1.00784626]
         [-0.80136354]
         [ 0.4635968 ]]
         [[-0.22175308 -0.89428507]
         [-0.23438419 -0.94504494]
         [ 0.18738276 -2.419676 ]
         [ 0.32257712  0.96920888]
         [ 1.08673396 -1.25202401]]
         _____
         [[ 0.54786699 -0.63807219]
         [ 1.11802295 -1.75098872]
         [ 0.54806347 -0.99270735]
         [ 0.90770393 -1.36270556]
         [-0.64605922 1.19860042]]
```

정렬

sort 명령이나 메서드를 사용하여 배열 안의 원소를 크기에 따라 정렬하여 새로운 배열을 만들 수도 있다.

2차원 이상인 경우에는 마찬가지로 axis 인수를 사용하여 방향을 결정한다.

```
In [136]: a = np.array([[6, 2, 5],
                         [1, 3, 4],
                         [1, 5, 6]]
          print(a)
          b = np.sort(a, axis=0)
          print(b)
          b = np.sort(a, axis=1)
          np.sort?
          print(b)
          [[6 2 5]
           [1 3 4]
           [1 5 6]]
          [[1 2 4]
           [1 3 5]
           [6 5 6]]
          [[2 5 6]
           [1 3 4]
           [1 5 6]]
```

그리드 생성

함수의 그래프를 그리거나 표를 작성하려면 많은 좌표를 한꺼번에 생성하여 각 좌표에 대한 함수 값을 계산

x, y 라는 두 변수를 가진 함수에서 x가 0부터 2까지, y가 0부터 4까지의 사각형 영역에서 변화하는 과정을 보고 싶다면 이 사각형 영역 안의 다음과 같은 (x,y) 쌍 값들에 대해 함수를 계산해야 한다.

```
(x,y)=(0,0),(0,1),(0,2),(0,3),(0,4),(1,0),\cdots,(2,4)
```

이러한 과정을 자동으로 해주는 것이 NumPy의 **meshgrid** 명령이다. **meshgrid** 명령은 사각형 영역을 구성하는 가로축의 점들과 세로축의 점을 나타내는 두 벡터를 인수로 받아서 이 사각형 영역을 이루는 조합을 출력한다. 단 조합이 된 (x,y)쌍을 x값만을 표시하는 행렬과 y값만을 표시하는 행렬 두 개로 분리하여 출력한다.

```
In [52]: x = np.arange(3)
y = np.arange(5)

X, Y = np.meshgrid(x, y)
[zip(x, y) for x, y in zip(X, Y)]

import matplotlib.pylab as plt
plt.scatter(X,Y, linewidth= 10);
plt.show()
```


계산!

NumPy는 코드를 간단하게 만들고 계산 속도를 빠르게 하기 위한 벡터화 연산(vectorized operation)을 지원한다. 벡터화 연산이란 반복문(loop)을 사용하지 않고 선형 대수의 벡터 혹은 행렬 연산과 유사한 코드를 사용하는 것을 말한다.

In [139]: %%timeit a = x + y

The slowest run took 19.19 times longer than the fastest. This could mean that an in termediate result is being cached.

10000 loops, best of 3: $60.5 \mu s$ per loop

브로드캐스팅


```
In [62]: a = np.tile(np.arange(0, 40, 10), (3, 1)).transpose()
       print(a)
        print('----')
        b = np.array([0, 1, 2])
        print(b)
        print('----')
        # 방법 1
        print('a+b:', a + b)
        print('----')
        # 방법 2
        a = np.arange(0, 40, 10)[:, np.newaxis]
        print('a+b:', a + b)
        [[ 0 0 0]
        [10 10 10]
        [20 20 20]
        [30 30 30]]
        -----
        [0 1 2]
       a+b: [[ 0 1 2]
        [10 11 12]
        [20 21 22]
        [30 31 32]]
        -----
       a+b: [[ 0 1 2]
        [10 11 12]
        [20 21 22]
        [30 31 32]]
```

nparray 읽기/쓰기