Chap. 6 Filtre RIF (réponse impulsionnelle finie)

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

- Définition
- Caractéristiques
- Critères de stabilité et de causalité
- Structures de réalisation
- Filtres à phase linéaire
- Méthode de synthèse : fenêtre
- Choix de l'ordre du filtre
- Exercices d'application

Filtre numérique

Définition: Système LIT utilisé pour modifier la distribution fréquentielle des composantes d'un signal selon des spécifications données

Il peut être représenté par :

- Son équation aux différences finies
- Sa réponse impulsionnelle, h(n)
- Sa fonction de Transfert en Z, H(z)
- Son gain en Fréquence, H(e^{jω})

On classe les filtres suivant leur caractère récursif :

- Non récursif ⇒ Filtre à Réponse Impulsionnelle Finie, RIF
- Récursif ⇒ Filtre à Réponse Impulsionnelle Infinie, RII

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Chap. 6

Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Caractéristiques des filtres RIF

Equation aux différences (EDF)

y(n) représentant un échantillon du signal filtré obtenu par une sommation pondérée d'un ensemble fini de valeurs d'entrée

$$y(n) = \sum_{k=0}^{N-1} b_k \cdot x(n-k)$$

Réponse impulsionnelle

$$h(n) = \sum_{k=0}^{N-1} b_k \cdot \delta(n-k)$$
 ou h(n) =

 $\begin{cases}
b_n & 0 \le n \le N-1 \\
0 & ailleurs
\end{cases}$

Ex:

N: longueur de la reponse impulsionnelle

Filtre RIF: système LIT à réponse impulsionnelle de durée finie

Caractéristiques des filtres RIF

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Fonction de Transfert en z

$$H(z) = Tz\{h(n)\} = \sum_{n=0}^{N-1} h(n) \cdot z^{-n} = \sum_{n=0}^{N-1} b(n) \cdot z^{-n}$$

Réponse en fréquence

$$H(f) = H(z)\Big|_{z=e^{j2\pi f}} = \sum_{n=0}^{N-1} h(n) \cdot e^{-j2\pi f n} = \sum_{n=0}^{N-1} b(n) \cdot e^{-j2\pi f n}$$

|H(f)|: réponse en amplitude, spectre d'amplitude

 $arg(H(f)) = \varphi(f)$: réponse en phase, spectre de phase

Critère de stabilité et de causalité

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Stabilité inconditionnelle

$$H(z) = M \prod_{k=0}^{K-1} (z - zk),$$
 avec $k : nombre de zéros$

Les filtres RIF sont toujours stables car ils n'admettent pas de pôles.

Causalité

Système causal si toutes les valeurs de h(n) nulles pour n < 0; sinon une simple translation peut le rendre causal

Structures des filtres RIF

Structures de réalisation

 $y(n) = \sum_{k=0}^{N-1} b_k \cdot x(n-k) = x(n) \cdot b_0 + b_1 \cdot x(n-1) + \dots + b_{N-1} \cdot x(n-N+1)$

Eléments de base : additionneur, multiplieur et élément retard

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

6

Filtres à phase linéaire

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

r iiase iiii.

fenêtre

Ordre filtre

Exercices

Pour ne pas avoir de distorsion en sortie de filtre, une propriété importante est d'avoir une phase linéaire.

Filtre
$$y(t) = X_1 \cdot sin(\omega_1 t)$$

$$y(t) = k_1 \cdot X_1 \cdot sin(\omega_1 t + \varphi_1)$$

$$y(t) = k_1 \cdot X_1 \cdot sin\left(\omega_1 \cdot \left(t + \frac{\varphi_1}{\omega_1}\right)\right)$$

$$y(t) = Y_1 \cdot sin(\omega_1 \cdot (t + \tau_1))$$

$$au_1 = rac{arphi_1}{\omega_1}$$
: temps de propagation à travers le filtre

7

Filtres à phase linéaire

Cas du filtrage d'un signal composite à deux fréquences :

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

$$x(t) = X_1 \cdot \sin(\omega_1 \cdot t) + X_2 \cdot \sin(\omega_2 \cdot t)$$

$$y(t) = k_1 \cdot X_1 \cdot \sin(\omega_1 \cdot t + \varphi_1) + k_2 \cdot X_2 \cdot \sin(\omega_2 \cdot t + \varphi_2)$$

$$= Y_1 \cdot \sin(\omega_1 \cdot (t + \tau_1)) + Y_2 \cdot \sin(\omega_2 \cdot (t + \tau_2))$$

Si $\tau_1=\tau_2$ alors les deux signaux « traversent » le filtre à la même vitesse. Dans ce cas, la phase du filtre est une fonction linéaire de la fréquence :

$$\frac{\varphi_1}{\omega_1} = \frac{\varphi_2}{\omega_2} = cte$$

Filtres à phase linéaire

Propriété très importante pour la transmission des données

Un filtre à phase linéaire ne déforme pas les signaux qui le traversent dans la mesure où le spectre est contenu dans la bande passante du filtre.

$$\frac{\varphi_1}{\omega_1} = \frac{\varphi_2}{\omega_2} = \tau$$

Constante τ (secondes) : temps de retard introduit par le filtre ou temps de propagation à travers le filtre.

Retard de groupe τ ($\tau = d\phi/d\omega$ avec $\omega = 2\pi f$) parfaitement constant (retard pur) => pas de distorsion des signaux.

Filtre irréalisable de façon analogique car la réponse n'est pas causale!

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Conditions pour une phase linéaire

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

$$H(f) = \sum_{n=n_0}^{n_0 + N - 1} h(n) \cdot e^{-2\pi j n f T e}$$

$$H(f) = \sum_{n=n_0}^{n_0+N-1} h(n) \cdot \cos(2\pi n f T e) - j \sum_{n=n_0}^{n_0+N-1} h(n) \cdot \sin(2\pi n f T e)$$

Cas idéal : conditions pour obtenir une caractéristique de phase nulle, **Terme imaginaire de H(f) nul.** Il faut donc que :

• La réponse impulsionnelle du filtre soit paire (sinus étant impaire) h(n) = h(-n)

et

• L'intervalle soit symétrique par rapport à l'origine du filtre :

c'est-à-dire,
$$n_0 = -\frac{N-1}{2} \left[-\frac{N-1}{2}; \frac{N-1}{2} \right] \rightarrow Filtre \ non \ causal !$$

Conditions pour une phase linéaire

Cas causal : décalage de $\frac{N-1}{2}$

Conséquences

Dans le domaine des fréquences cela revient à multiplier par le terme $e^{-2\pi jf\frac{N-1}{2}}$

$$\rightarrow H(f) = H(f) \cdot e^{-\pi j(N-1)f}$$

Comme H(f) est une fonction réelle, après décalage, la phase est une fonction linéaire de la fréquence :

$$\rightarrow \varphi(f) = -\pi \cdot (N-1) \cdot f$$

Conclusion

Si h(n) possède une **symétrie médiane**, alors la phase du filtre est une fonction linéaire de la fréquence.

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

11

Remarque sur le placement des zéros d'un filtre RIF à phase linéaire

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Soit la fonction de transfert d'un filtre RIF à phase linéaire :

$$H(z) = \sum_{n=0}^{N-1} h(n) \cdot z^{-n} \text{ avec } h(n) = h(N-1-n)$$

On peut écrire :

$$H(z) = z^{-\left(\frac{N-1}{2}\right)} \left[h(0) \cdot \left(z^{\left(\frac{N-1}{2}\right)} + z^{-\left(\frac{N-1}{2}\right)} \right) + h(1) \cdot \left(z^{\left(\frac{N-3}{2}\right)} + z^{-\left(\frac{N-3}{2}\right)} \right) + \dots \right]$$

Et donc:

$$H(z^{-1}) = z^{\left(\frac{N-1}{2}\right)} \left[h(0) \cdot \left(z^{\left(\frac{N-1}{2}\right)} + z^{-\left(\frac{N-1}{2}\right)} \right) + h(1) \cdot \left(z^{\left(\frac{N-3}{2}\right)} + z^{-\left(\frac{N-3}{2}\right)} \right) + \cdots \right]$$

Nous avons donc la relation : $H(z^{-1}) = z^{N-1}H(z)$

Ainsi si $z_i = ri \cdot e^{j\theta_i}$ est un zéro de H(z) alors $\frac{1}{r_i} \cdot e^{-j\theta_i}$ est aussi zéro.

$$Car z_i^{N-1} H(z_i) = 0 \rightarrow H(z_i^{-1}) = H\left(\frac{1}{r_i} \cdot e^{-j\theta_i}\right) = z_i^{N-1} H(z_i) = 0$$

Remarque sur le placement des zéros d'un filtre RIF à phase linéaire

Si les coeff. de h(n) sont réels alors H(z) a des zéros complexes conjugués :

$$z_i = ri \cdot e^{j\theta_i} \operatorname{et} r_i \cdot e^{-j\theta_i}$$

Un filtre RIF à phase linéaire a donc les 4 zéros suivant dès que $r_i \cdot e^{j \theta_i}$ est zéro :

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

13

Remarque sur le placement des zéros d'un filtre RIF à phase linéaire

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Exemple d'implantation des zéro d'un filtre RIF à phase linéaire :

Ce filtre laisse passer la fréquence F_e/2 puisqu'il n'y pas de zéro sur le cercle unité.

Ce filtre est un passe-bas puisque ses zéros situés sur le cercle unité ont des arguments compris entre $\pi/2$ et π .

Exemple de filtre à phase linéaire

Soit le filtre avec la relation E/S :

$$y(n) = \frac{1}{4}(x(n) + 2 \cdot x(n-1) + x(n-2))$$

Réponse impulsionnelle

$$h(n) = \frac{1}{4}(\delta(n) + 2.\delta(n-1) + \delta(n-2))$$

Réponse fréquentielle

$$H(f) = \cos^2(\pi f)e^{-2\pi jf}$$

Structure

Stabilité

Chap. 6
Filtres RIF

Caract.

Phase lin.

fenêtre

Ordre filtre

Exercices

15

Méthode de conception des filtres RIF

Il existe de nombreuses méthodes de synthèses des filtres RIF:

- 1. Méthode des fenêtres
- 2. Méthode de l'échantillonnage de fréquence
- 3. Méthodes d'optimisations
 - méthode de moindres carrés
 - méthode de Remez

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Problématique de la synthèse

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Comment déterminer la fonction de transfert présentant la réponse en fréquence désirée et se prêtant à une réalisation efficace ?

Définition du gabarit d'un filtre

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Gabarit d'un filtre numérique

Un filtre est caractérisé par :

- la bande passante *BP*
- la bande atténuée (ou coupée)
- la largeur ΔF de la zone de transition
- l'amplitude des oscillations en bande passante δ_n
- $\begin{tabular}{ll} \blacksquare I'amplitude des ondulations en bande atténuée δ_a \\ \end{tabular}$

Définition du gabarit d'un filtre

Chap. 6
Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Gabarit d'un filtre numérique

Un filtre est caractérisé par :

- la bande passante *BP*
- la bande atténuée (ou coupée)
- la largeur ΔF de la zone de transition
- $\begin{tabular}{ll} \hline & l'amplitude des oscillations en bande \\ passante & δ_p \\ \end{tabular}$
- $\begin{tabular}{ll} & & & \\$

Définition du gabarit d'un filtre

Gabarit d'un filtre numérique : fréquences négatives

Caract.

Chap. 6 **Filtres RIF**

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Soit h(t) quelconque:

ri +

RP

TF

$$H(f) =$$

IJ +

Alors |H(f)| est paire Arg(H(f)) est impair

Le gabarit des fréquences positives suffit!

20

Définition du gabarit d'un filtre

La réponse fréquentielle d'un système discret est périodique de période \boldsymbol{F}_e

$$H(f) = Fe \cdot \sum_{n \in \mathbb{Z}} X(f - nFe) \rightarrow H(\omega) = 2\pi Fe \cdot \sum_{n \in \mathbb{Z}} X(\omega - n2\pi Fe)$$

Le gabarit entre 0 et π suffit ! (0 et 0.5 si l'on travaille en fréquence

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

21

Méthode de la fenêtre

Chap. 6 **Filtres RIF**

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

TFd inverse Réponse impulsionnelle du filtre

$$h(n)$$
 définie $\forall n \in]-\infty; +\infty[$

$$h_n = \frac{1}{F_e} \int_{-Fe/2}^{Fe/2} H(f) e^{j2\pi f n T e} df$$

Troncature de la réponse impulsionnelle

$$h_T(n) = h(n) \cdot w_N(n)$$

 $W_N(n)$: fenêtre de pondération

$$h_{TC}(n) = h_T(n - (N - 1)/2), \forall n \in [0, N - 1]$$

0, ailleurs

Troncature par une fenêtre de pondération

Méthode de la fenêtre : effet de la troncature sur la réponse du filtre

Chap. 6 **Filtres RIF**

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

réponse impulsionnelle tronquée $h_T(n) = h(n) \cdot w_N(n)$

réponse fréquentielle tronquée

$$H_T(f) = H(f) * w_N(f)$$

La réponse en fréquence souhaitée se trouve convoluée avec le spectre de la fenêtre

La troncature introduit :

- des ondulations dans la bande passante et dans la bande atténuée
- et un élargissement des zones de transition qui limite la raideur de coupure du filtre.

23

Choix de la fenêtre de pondération

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

L: largeur du lobe principal

A: amplitude des lobes secondaires

Fenêtre idéale : L et A faible (Dirac)

Dans ce cas:

$$H_T(f) = H(f) * W_N(f) = H(f)$$

	$A_{\sf dB}$	L	ΔF	δ_2 (dB)
Rectangulaire	-13	4/N	0.9/N	-21
Hanning	-31	8/N	3.1/N	-44
Hamming	-41	8/N	3.3/N	-53
Blackman	-57	12/N	5.5/N	-74

- Si N croit $\rightarrow L$ décroît \rightarrow bande de transition ΔF faible
- A est indépendant de la longueur de la fenêtre
- On ne peut pas réduire simultanément *A* et *L*

Compromis entre la bande de transition et l'amplitude des ondulations

Choix de la fenêtre de pondération

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Conclusion sur la méthode de la fenêtre

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Méthode pouvant s'appliquer à n'importe quelle réponse fréquentielle initiale. Deux difficultés en pratique :

- Fonction pas toujours facilement intégrable : procédure numérique pour obtenir h(n)
- L'ordre du filtre et le type de fenêtre n'est pas toujours facile à choisir.

Technique très répandue car facile à mettre en œuvre et peu gourmande en calcul.

Choix de l'ordre du filtre

Il n'existe pas de formule analytique permettant de relier l'ordre du filtre à son gabarit. Par contre, une relation obtenue de manière empirique existe et reste suffisante dans la majorité des cas.

Relation empirique entre la longueur N de la fenêtre et la bande de transition ΔF du filtre obtenu :

$$N = \frac{2}{3} \log \left[\frac{1}{10 \cdot \delta_a \cdot \delta_p} \right] \frac{F_e}{\Delta f}$$

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Chap. 6 Filtres RIF

Caract.

Stabilité

Structure

Phase lin.

fenêtre

Ordre filtre

Exercices

Exercice d'application

On veut réaliser un filtre passe-bas numérique de type RIF à 17 coefficients. La fréquence de coupure est : $f_c = f_e/4$ avec f_e la fréquence d'échantillonnage.

- 1. Donner l'allure de la réponse en fréquence $H(f/f_e)$ du filtre idéal non causal à déphasage nul.
- 2. Déterminer h(n) la réponse impulsionnelle de ce filtre idéal.
- Effectuer la troncature avec une fenêtre rectangle et rendre causal cette réponse et donner les coefficients du filtre.
- 4. Quelle conséquence sur la valeur de certains échantillons a le choix de f_c .
- 5. Donner l'expression de l'amplitude de la réponse fréquentielle du filtre obtenu en fonction des coefficients. Vérifier la nature passe-bas du filtre en esquissant l'allure de la réponse fréquentielle (calculer quelques valeurs remarquables)
- 6. Quels sont les effets de la troncature de h(n) sur la réponse en fréquence du filtre synthétisé? Comment pourrait-on améliorer les résultats?