CLAIMS

1.	An apparatus, comprising:
an expan	dable member being sized to be positionable in a sphincter; and
an energ	y delivery device coupled to the expandable member, the energy
delivery device ha	aving a configuration that controllably produces lesions of a
sufficient size, nu	imber and configuration in an interior of the sphincter so as to create
a selectable tighte	ening of the sphincter.
2.	The apparatus of claim 1, wherein the configuration of the energy
delivery device in	ncludes a plurality of energy delivery members distributed on a
surface of the exp	pandable member.
3.	The apparatus of claim 2, wherein the plurality of energy delivery
members are radi	ially distributed along a surface of the energy delivery device
expandable men	nber.
	The apparatus of claim 2, wherein the plurality of energy delivery
members are long	gitudinally distributed along a surface of the expandable member.
	The apparatus of claim 1, wherein the energy delivery device covers
a portion of the s	surface of the expandable member.
	The survey of claim 2 releases the energy delivery device covers
	The apparatus of claim 2, wherein the energy delivery device covers
substantially all	of an exterior surface of the expandable member
7	The apparatus of claim 1, wherein the expandable member is sized
_	le in a sphincter and to allow the energy delivery device to contact a
portion of the im	ner surface of a sphincter.

1	8. The apparatus of claim 1, wherein the expandable member is sized
2	to be positionable in a sphincter and to allow the energy delivery device to contact al
3	of an inner surface of the sphincter.
1	9. The apparatus of claim 1, where the energy delivery device is sized
2	be positionable in the sphincter and non-permanently dilate the sphincter from a
3	contracted state; and
4	wherein the sphincter returns to a pretreatment contracted state upon a
5	removal of the expandable member from the sphincter.
1	10. The apparatus of claim 1, wherein the lesions are formed in a muscl
2	tissue underlying a sphincter mucosal layer.
1	11. The apparatus of claim 1, wherein the sphincter is a lower
2	esophageal sphincter.
1	12. The apparatus of claim 1, wherein the configuration of the energy
2	delivery device creates the lesions at a fixed depth from a mucosal surface layer of the
3	sphincter of no more than 4 mms.
1	13. The apparatus of claim 1, wherein the configuration of the energy
2	delivery device creates the lesions and minimizes injury to a mucosal and a
3	submucosal layer of the sphincter.
1	14. The apparatus of claim 1, wherein the configuration of the energy
2	delivery device creates the lesions and reduces a frequency of sphincter relaxation.

1	15.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates the lesions and reduces a duration of sphincter relaxation.
1	16.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates the lesions and reduces a frequency of reflux of stomach
3	contents into an	esophagus.
1	17.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates the lesions and reduces a frequency of a symptom of reflux of
3	stomach conten	ts into an esophagus.
1	18.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates the lesions and reduces an incidence of a sequela of reflux of
3	stomach conten	ts into an esophagus.
1	19.	The apparatus of claim 1, wherein the energy delivery device is
2 .	positioned on a	n exterior surface of the expandable member.
1	20.	The apparatus of claim 1, wherein the energy delivery device is
2	positioned on a	n interior surface of the expandable member.
1	21.	The apparatus of claim 1, further comprising:
2	a lumer	n positioned in an interior of the expandable member.
1	22.	The apparatus of claim 1, wherein the expandable member is
2	expandable.	
1	23.	The apparatus of claim 1, wherein the expandable member is a
2	balloon.	

1	24.	The apparatus of claim 1, wherein the expandable member is made
2	of an expandable material.	
1	25.	The apparatus of claim 1, wherein the expandable member is made
2	of a porous mat	erial.
1	26.	The apparatus of claim 1, further comprising:
2	an elect	rolytic solution housed in an expanded expandable member.
		·
1	27.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	delivers energy to promote a fibroblast cell infiltration at a site of the
3	lesions.	
1	28.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	delivers energy to promote a fibroblast growth at a site of the lesions.
_		
1	29.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device delivers energy that promotes a mylofibroblast cell infiltration at a site	
3	of the lesions.	
1	20	
1	30.	The apparatus of claim 1, wherein the configuration of the energy
2		creates a tightening of a lower esophageal sphincter without
3	permanently dar	naging anatomical structures near the lower esophageal sphincter.
1	31.	The apparatus of claim 1, wherein the configuration of the energy
2		creates a tightening of the lower esophageal sphincter without
3	•	
	permanently dat	naging an aorta positioned near the lower esophageal sphincter.

l	32.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates a tightening of the lower esophageal sphincter without
3	permanently dar	maging a vagus nerve positioned near the lower esophageal sphincter.
1	33.	The apparatus of claim 1, wherein the configuration of the energy
2	delivery device	creates a tightening of the lower esophageal sphincter without
3	permanently dan	maging an esophageal plexus of nerves and veins positioned near the
4	lower esophage	al sphincter.
1	24	The apparatus of claim 1 wherein the configuration of the apparatus
	34.	The apparatus of claim 1, wherein the configuration of the energy
2	•	creates a tightening of the lower esophageal sphincter while preserving
3	a blood supply t	to the lower esophageal sphincter.
1	35.	The apparatus of claim 1, wherein the energy delivery device is an
2	RF electrode.	The apparatus of classic i, whereas are charge actively device is the
	Ta Oloubad.	
1	36.	The apparatus of claim 35, further comprising:
2	an RF e	energy source coupled to the RF electrode.
•	~=	
1	37.	The apparatus of claim 1, wherein the energy delivery device is a
2	microwave ante	nna.
1	38.	The apparatus of claim 37, further comprising:
2		wave energy source coupled to the microwave antenna.
-	# 1111VI	
1	39.	The apparatus of claim 1, wherein the energy delivery device is a
2	waveguide.	

1	40. The apparatus of claim 39, further comprising:	
2	a light source coupled to the waveguide.	
1	41. The apparatus of claim 40, wherein the light source is a laser.	
1	42. The apparatus of claim 1, wherein the energy delivery device is an	
2	acoustical transducer.	
1	43. The apparatus of claim 1, wherein the energy delivery device is a	
2	resistive heating device.	
1	44. The apparatus of claim 1, further comprising:	
2	a visualization device coupled to the expandable member.	
1	45. The apparatus of claim 1, further comprising:	
2.	an extension member coupled to the expandable member.	
1	46. The apparatus of claim 45, wherein a proximal portion of the	
2	extension member is maneuverable by a medical practioner.	
1	47. The apparatus of claim 1, wherein the energy delivery device is a	
2	plurality of RF electrodes.	
1	48. The apparatus of claim 47, wherein the plurality of electrodes is a	
2	flexible circuit.	
1	49. The apparatus of claim 1, further comprising:	
2	a mechanical expansion device coupled to the expandable member.	

1

2

4

1

2

1

2

1

2

1	50. An apparatus, comprising:
2	an expandable member means sized to be positionable in a lower esophageal
3	sphincter and non-permanently dilate the lower esophageal sphincter from a
4	contracted state;
5	an energy delivery device means coupled to the expandable member means,
6	the energy delivery device means having a configuration that controllably produces
7	lesions of a sufficient size, number and configuration in an interior of the lower
8	esophageal sphincter to create a tightening of the lower esophageal sphincter; and,
9	wherein the lower esophageal sphincter returns to a contracted state upon a
10	removal of the expandable member means from the sphincter.

- 51. The apparatus of claim 50, wherein the energy delivery device means has a configuration that controllably produces lesions an interior of the lower esophageal sphincter without creating a permanent impairment of the lower esophageal sphincter's ability to achieve a physiologically normal state of closure.
- 52. The apparatus of claim 50, wherein the energy delivery device is positioned on an exterior surface of the expandable member means.
- 53. The apparatus of claim 50, wherein the energy delivery device is positioned on an interior surface of the expandable member means.
- 54. The apparatus of claim 50, further comprising:a lumen means positioned in an interior of the expandable member means.
 - 55. The apparatus of claim 50, wherein the expandable member means is expandable.

1	56. The apparatus of claim 50, wherein the expandable member means is
2	a balloon.
1	57. The apparatus of claim 50, wherein the expandable member means is
2	made of an expandable material.
1	58. The apparatus of claim 50, wherein the expandable member means is
2	made of a porous material.
1	59. The apparatus of claim 57, further comprising:
2	an electrolytic solution means housed in an expanded expandable member
3	means.
1	60. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means delivers energy to the interior of the lower esophageal sphincter
3	and creates a fibroblast proliferation in the interior of the lower esophageal sphincter.
1	61. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means delivers energy to the interior of the lower esophageal
3	sphincter and creates a myofibroblast proliferation in the lower esophageal sphincter.
1	62. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means creates a tightening of the lower esophageal sphincter without
3	permanently disrupting an aorta positioned near the lower esophageal sphincter.
1	63. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means creates a tightening of the lower esophageal sphincter without
3	permanently damaging a vagus nerve positioned near the lower esophageal sphincter.

1	64. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means creates a tightening of the lower esophageal sphincter without
3	permanently damaging an esophageal plexus of nerves and veins positioned near the
4	lower esophageal sphincter.
1	65. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means creates a tightening of the lower esophageal sphincter while
3	preserving a blood supply to the lower esophageal sphincter.
_	
1	66. The apparatus of claim 50, wherein the configuration of the energy
2	delivery device means creates a tightening of the lower esophageal sphincter while
3	creating submucosal lesions in the lower esophageal sphincter.
_	
1	67. The apparatus of claim 50, wherein the energy delivery device means
2	is an RF electrode means.
1	68. The apparatus of claim 47, further comprising:
2	an RF energy source means coupled to the RF electrode means.
_	an it chargy source means coupled to the it clockode means.
1	69. The apparatus of claim 50, wherein the energy delivery device means
2	is a microwave antenna means.
1	70. The apparatus of claim 69, further comprising:
2	a microwave energy source means coupled to the microwave antenna means.
1	71. The apparatus of claim 50, wherein the energy delivery device means
2	is a waveguide means.

Atty Docket No.: 14800-747 H:\PRIVATE\WPDOCS\PD\VCAR\747.APP

1	72. The apparatus of claim 71, further comprising:
2	a light source means coupled to the waveguide means.
1 2	73. The apparatus of claim 72, wherein the light source means is a laser means.
1 2	74. The apparatus of claim 50, wherein the energy delivery device means is an acoustical transducer means.
1 2 3	75. The apparatus of claim 74, further comprising: an acoustical energy source means coupled to the acoustical transducer means.
1 2	76. The apparatus of claim 50, wherein the energy delivery device means is a resistive heating device means.
1 2	77. The apparatus of claim 50, further comprising: a visualization device means coupled to the expandable member means.
1 2	78. The apparatus of claim 50, further comprising: a extension member means coupled to the expandable member means.
1 2	79. The apparatus of claim 78, wherein a proximal portion of the extension member means is maneuverable by a medical practioner.
1 2	80. The apparatus of claim 50, wherein the energy delivery device means is a plurality of RF electrode means.

1	81. The apparatus of claim 80, wherein the plurality of electrode means
2	is a flexible circuit means.
1 .	82. The apparatus of claim 50, further comprising:
2	a mechanical expansion device means coupled to the expandable member
3	means.
1	83. A method of treating a sphincter, comprising:
2	providing an expandable member sized to be positionable in the sphincter and
3	configured to non-permanently open the sphincter from a contracted configuration,
4	and an energy delivery device coupled to the expandable member;
5	introducing the expandable member in the sphincter;
6	dilating the sphincter from the contracted state;
7	delivering sufficient energy from the energy source to the sphincter to tighten
0	the sphincter; and
8 9	removing the expandable member from the sphincter.
1	84. The method of claim 83, wherein the energy delivery device has a
2	configuration that controllably produces lesions an interior of the sphincter without
3	creating a permanent impairment of the sphincter's ability to achieve a physiologically
4	normal state of closure.
1	85. The method of claim 83, wherein energy delivery device delivers
2	sufficient energy to cause a proliferation of fibroblast cells in the sphincter.
1	86. The method of claim 85, wherein the energy delivery device delivers
2	sufficient energy to cause a proliferation of myofibroblast cells in the sphincter.

1	87 .	The method of claim 83, wherein the energy delivery device delivers
2	sufficient energ	by to create a tightening of the sphincter without permanently damaging
3	anatomical stru	ctures near the sphincter.
		•
1	88.	The method of claim 87, wherein the energy delivery device delivers
2	sufficient energ	sy to create a tightening of the sphincter without permanently
3	disrupting an a	orta positioned near the sphincter.
1	89.	The method of claim 87, wherein the energy delivery device delivers
2	a sufficient ame	ount of energy to create a tightening of the lower esophageal sphincter
3	without permanently damaging a vagus nerve positioned near the sphincter.	
1	90.	The method of claim 87, wherein the energy delivery device delivers
2	a sufficient ame	ount of energy to create a tightening of the lower esophageal sphincter
3	without perman	nently damaging an esophageal plexus of nerves and veins positioned
4	near the sphinc	ter.
1	91.	The method of claim 87, wherein the energy delivery device delivers
2	a sufficient am	ount of energy to create a tightening of the lower esophageal sphincter
3	while preserving	ng a blood supply to the sphincter.
1	92.	The method of claim 83, wherein the energy delivery device creates
2	a tightening of	the lower esophageal sphincter while creating submucosal lesions in
3	the sphincter.	
1	93.	The method of claim 83, wherein the expandable member is
2	expandable.	

I	94. The method of claim 73, wherein the expandable member is		
2	introduced in the lower esophageal sphincter in an unexpanded state.		
1	95. The method of claim 94, wherein the expandable member is		
2	xpanded to an expanded state when positioned in the sphincter.		
1	96. The method of claim 93, wherein the expandable member is a		
2	balloon.		
1	97. The method of claim 93, further comprising:		
2	an electrolytic solution housed in an expanded expandable member.		
1	98. The method of claim 83, wherein the energy delivery device is an R		
2	electrode.		
1	99. The method of claim 98, further comprising:		
2	an RF energy source coupled to the RF electrode.		
1	100. The method of claim 83, wherein the energy delivery device is a		
2	microwave antenna.		
1	101. The method of claim 100, further comprising:		
2	a microwave energy source coupled to the microwave antenna.		
1	102. The method of claim 83, wherein the energy delivery device is a		
2	waveguide.		
1	103. The method of claim 102, further comprising:		

2	a light source co	a light source coupled to the waveguide.		
1	. 104. The met	hod of claim 83, wherein the light source is a laser.		
1	105. The met	hod of claim 83, wherein the energy delivery device is an		
2	acoustical transducer.			
1	106. The met	hod of claim 105, further comprising:		
2	an acoustical energy source coupled to the acoustical transducer.			
1	107. The met	hod of claim 83, wherein the energy delivery device is a		
2	resistive heating device.			
1	108. The met	hod of claim 83, wherein the energy delivery device is		
2	delivered to the sphincter transorally without an endoscope.			
•	100 """	h - 1 - C -1 - :		
1 2	delivered to the sphincter	hod of claim 83, wherein the energy delivery device is		
-	don't or our to and opinion	The me diagonal of		
1	110. The met	hod of claim 83, wherein the sphincter is the lower		
2	esophageal sphincter.			