ECE 598NSG/498NSU Deep Learning in Hardware Fall 2020

DNN Accelerators – Overview Roofline, Floorline plots, Reuse

Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

http://shanbhag.ece.uiuc.edu

Architectures for Inference

DNN Accelerators

TPU V1

inference only 8b fixed-point

TPU V2

inference & training fixed-point & floating-point

TPU V3

inference & training fixed-point & floating-point

- going beyond GPUs
- accelerating inference & training in the cloud
- intersection of workload, architecture, circuits, software

Challenge: Memory Access Energy in DNNs

- memory access-to-compute energy consumption ratio
- SRAM accesses: $E_R = 100 \times$; DRAM accesses: $E_R = 1000 \times$

[Wong, Salahuddin, Nature Nanotechnology, 2015]

- deep memory hierarchy
- high density → more latency, energy
- data movement → dominant cause of energy dissipation in machine learning applications

Power Breakdown

[Eyeriss, Y.-H. Chen, JSSC 2017]

CONV1 layer of AlexNet

- Data movement costs 45% of total power
- Computation costs about 10%
- Clock network = 33% (hidden cost of digital realizations)

System Metrics for Inference

system-level energy vs. latency vs. accuracy trade-off

- $lue{p}_{dec}$: decision accuracy
- $\Box EDP_{dec} = E_{dec} \times T_{dec} :$ decision EDP
- \Box f_{dec} : decision throughput

- □ $E_{dec} \propto 1/T_{dec} \propto \text{data \& }$ network size
- \square $p_{dec} \propto EDP_{dec}$

Outline

- DNN architecture abstraction
- visualization via the roofline & floorline plots
- data reuse

DNN Architectures – An Abstract View

DNN Architecture - Abstract View

- Workload DNNs, CNNs, LSTMs,....
- Processor P GPU, accelerators, many-core architectures,....
- Memory M register, SRAM, DRAM, flash,.....

Workload Parameters

- operational intensity (OI): # of operations/byte (high is better) reuse factor
- computational intensity (CI): # of operations per decision (small is better)

Processor Parameters

- peak performance (PP): # of operations/s (e.g., TOPS = 10^{12} OPS/s)
- arithmetic efficiency (E_P) : energy per operation (e.g. $E_P = 0.2 pJ/\text{op}$)

Memory Parameters

- read bandwidth (BW): # of bytes read/s (higher the better)
- energy/read (E_M): energy per byte (lower the better)
- $E_R = \frac{E_M}{E_P} = 100$ (SRAM); = 500 (DRAM); = 1000 (flash)

System Level Metrics

- useful for system-level benchmarking
- energy/decision (E_{dec})
- decision throughput $(f_{dec} = \frac{1}{T_{dec}})$

Component Level Metrics

- used for hardware benchmarking
- energy/OP (E_P) ; peak OP/s (PP); bytes read/s (BW); energy/byte (E_M)

System vs. Component Level Metrics

- system-level metrics are a function of component-level metrics, workload requirements, and workload mapping onto hardware
- system-level metrics are the true metrics hard to measure and report
- alternative measure @ the component-level and estimate @ the system-level

Roofline & Floorline Plots – Visual Performance & Efficiency Models

Architectural-level Performance - Roofline Plot

$$AP = \min(PP, OI \times BW)$$

- AP: attainable performance of the architecture for the workload(s)
- Note: $AP \le PP$ (Williams, Waterman, Patterson, Comm. of ACM '09)

System-level Performance - Bytes/Decision - M_{dec}

- Memory bandwidth (BW) \neq bytes/decision (M_{dec})
- Given a workload OI and CI, bytes/decision :

Roofline plot

$$M_{dec} = \frac{\text{bytes}}{\text{decision}} = \frac{\text{number of OPs/dec}}{\text{number of OPs/byte}} = \frac{CI}{OI}$$

System-level Performance - Decision Throughput (DT)

- Attainable Performance (AP) ≠ Decision throughput (DT)
- Given a workload OI and CI, decision throughput (dec/s):

$$DT = \frac{\text{decisions}}{s} = \frac{\text{achievable OPs/s}}{\text{# of OPs/dec}} = \frac{AP}{CI} = \min\left[\frac{PP}{CI}, OI \times \left(\frac{BW}{CI}\right)\right] = \min\left[\frac{PP}{CI}, \frac{BW}{M_{dec}}\right]$$

System Energy Efficiency – Floorline Plot

(Shanbhag, Dbouk, Sakr, ECE 498NSU/ECE 598NSG 2019)

Decision energy (pJ/dec):

$$E_{dec} = CI \times E_P + M_{dec} \times E_M = CI \times E_P + \frac{CI}{OI} \times E_M = CI \left(E_P + \frac{E_M}{OI} \right) = CI \times E_P \left(1 + \frac{E_R}{OI} \right)$$

Floorline plot

Maximizing Inference Throughput

OI (OPS/byte)
CI (OPS/inference)

$$DT = \frac{AP}{CI} = \frac{\min(PP, OI \times BW)}{CI}$$

- Increase OI: data reuse & HW mapping → helps reduce decision energy
- Decrease CI: low-complexity DNNs, fast algorithms (FFT) \rightarrow helps reduce decision energy
- Increase PP: systolic architectures & algorithm transforms
- Increase BW: new memory technologies + in-memory computing

Maximizing Energy Efficiency

OI (OPS/byte)
CI (OPS/inference)

$$E_{dec} = CI \left(E_P + \frac{E_M}{OI} \right)$$

- Increase OI: data reuse & HW mapping → helps increase decision throughput
- Decrease CI: low-complexity DNNs → helps increase decision throughput
- Decrease E_P : energy-efficient computing (e.g. near- V_t computing), reduce precision
- Decrease E_M : new memory technologies + in-memory computing

Example

Given:

- an inference workload:
 - -CI = 1000 OPs/dec
 - -OI = 10 OPs/byte
- hardware platform with:

$$-PP = 256 \text{ OPs/s}$$

$$-BW = 16$$
 bytes/s

$$-E_P = 0.23 \text{ pJ/OP}$$

$$- E_M = 2.5 \text{ pJ/byte}$$

determine decision energy and latency

Throughput - Roofline plot

Attainable performance:

$$AP = \min(PP, OI \times BW) = 160 \text{ OPs/s}$$

• Decision throughput:

$$DT = \frac{AP}{CI} = \frac{160}{1000} = 0.16 \text{ dec/s}$$

Energy Efficiency - Floorline plot

Decision energy:

$$CI\left(E_P + \frac{E_M}{OI}\right) = 1000\left(0.23 + \frac{2.5}{10}\right)$$

= 0.48 nJ/dec

Floorline plot:

(lower bound) $CI \times E_P = 0.23 \text{ nJ}$

 $E_R = \frac{E_M}{E_P} = 10.87$ $E_{dec}(nJ) = 0.23(1 + \frac{10.87}{0I})$

Component-level Energy-Delay Trade-offs

- Energy/OP (E_P) & Peak OP/s (PP) low-power and high-throughput digital architectures and circuits (high-ceiling home)
- Bytes read/s (BW) & Energy/byte (E_M) energy-efficient memory and interface design
- some of these are mature topics but keep evolving to meet the needs of machine learning applications
- energy consumption vs. delay (vs. robustness) trade-off
- energy vs. delay trade-off captured via energy-delay product EDP
- energy/delay vs. robustness trade-off is more subtle (future lecture)

Roofline Plot – A Visual Performance Model

Example – Memory Bound Scenario

[adapted from Hwu – IBM AI Compute Symposium, 2019]

Volta
PP=14.03 SP TFLOPS

BW=900 GB/s

225 Giga SP operands/cycle

HBM2 DRAM 16 GB

SP: single-precision (32-bit)

Each operand must be used **62.3 times** (reuse factor) once fetched to achieve peak FLOPS rate (ridge point)

or

Sustain < 1.6% of peak without data reuse

Achievable Performance $(AP) = \min(PP, OI \times BW)$

Roofline: An Insightful Visual Performance Model for Floating-Point Programs and Multicore Architectures*

Samuel Williams, Andrew Waterman, and David Patterson

Parallel Computing Laboratory, 565 Soda Hall, U.C. Berkeley, Berkeley, CA 94720-1776, 510-642-6587 samw, waterman, pattrsn@eecs.berkeley.edu

"A model need not be perfect, just insightful."

- Motivation: off-chip memory bandwidth will limit the performance
- Need a simple model relates processor performance to off-chip memory traffic similar to Amdhal's Law
- Amdhal's Law: performance gain of a parallel computer is limited by the serial portion of the workload

Roofline for AMD Opteron X2

[Williams, ACM Communications, 2019]

- 2 core processor
- BW = 15 GB/s; PP = 17.6 GFlops/s

Opteron X2 vs. X4

- X2 = 2 core (2.2 GHz) X4 = 4 core (2.3 GHz)
- workloads with > 1 Flop/Byte OI needed for X4

Roofline Plots – The Reality

- Roofline plot provides a ceiling on the achievable performance
- They ignore intricate data movement required by applications
- Different layer shapes might cause idle PEs => unutilized resources

Operational Intensity: Ops/weight byte (log scale)

[TPU – ISCA'17]

Dot Product Example

- Processor P with a peak performance (PP) of 256 operations/sec
- Memory M with a bandwidth (BW) of 16 bytes/sec
- Workload: perform a 1D "convolution" (correlator):

$$y_i = \sum_{j=1}^M w_j x_{i+j-1}$$

where $x \in \mathbb{R}^N$, $w \in \mathbb{R}^M \Rightarrow y \in \mathbb{R}^{N-M+1}$ (with zero-padding), and $M \in [N]$ assume 32b floating point operations; N = 128;

Maximum AP

- Assume we only have to fetch w from M.
- OI for 1D convolution (DP):

number of dot products

$$OI = \frac{\text{number of MACs}}{\text{number of bytes read}} = \frac{(N - M + 1) \times M}{4 \times M}$$
 #MACs/DP

$$OI = \frac{(N-M+1)}{4}$$

- OI reduces with kernel size M
- OI increases with input data size N

each weight value (32b) needs 4 memory reads

Varying Kernel Length (M)

Doubling Memory BW

- M = 32: AP is compute bound \rightarrow no benefit from doubling BW
- M = 96; AP is memory bound \rightarrow benefits from doubling BW

Doubling Peak Performance (PP)

- M = 32: AP increases and it becomes memory bound
- M = 96: AP is already memory bound, so no change

Methods to Improve AP

- A → B: same architecture enhance reuse
- A → C: same reuse & processor enhance BW
- B → D: same interface enhance reuse and PP
- A → E: tunable **enhance reuse**, BW and PP

Data Reuse

OI (OPS/byte)
CI (OPS/inference)

$$DT = \frac{AP}{CI} = \min\left[\frac{PP}{CI}, OI \times \left(\frac{BW}{CI}\right)\right]$$

$$E_{dec} = CI \left(E_P + \frac{E_M}{OI} \right)$$

- Increase OI: data reuse & HW mapping
- Decrease CI: low-complexity DNNs
- Increase PP: systolic architectures & algorithm transforms
- Increase BW: new memory technologies + in-memory computing

Terminology

- Data reuse: # of MACs per data value read (i.e., MACs/data).
- For every MAC operation involved in a convolution operation, there are 3 data types:

- Hence, three types of data reuse: input, weight, and partial sum
- Partial sum reuse = DP length = # of partial sums needed to compute one DP

2D Convolution

*

Input Reuse

- Each input pixel is reused $\sim K \times K$ times across the same weight filter
- Each input pixel is reused M times due to M filters processing the same input feature
- Total input reuse: K²M
- e.g., Layer 1 of VGG-16 on ImageNet $-3 \times 3 \times 64 = 576$ MACs/byte = OI

Weight Reuse

- Each weight pixel is reused $E \times F$ times across the same input feature map
- Each weight pixel is being used N times when multiple (N>1) input batches are processed
- Total weight reuse: $E \times F \times N$
- e.g., Layer 1 of VGG-16 on ImageNet $-224\times224\times1=50176$ MACs/byte = OI

Course Web Page

https://courses.grainger.illinois.edu/ece598nsg/fa2020/https://courses.grainger.illinois.edu/ece498nsu/fa2020/

http://shanbhag.ece.uiuc.edu