

3F — Framework for FEMM

Contents

1		ometry	2
	1.1	Slots	2
	1.2	Stators	3
	1.3	SPM Magnets	6
	1.4	SPM Rotors	7
2	Wii	nding	9
	2.1	Space vector	10
	2.2	Slot matrix	11
	2.3	Sinusoidal dq control	11
	2.4	Trapezoidal control	12

Chapter 1

Geometry

1.2 Stators

 $2 \; \mathtt{poles}$

 $p \; \mathtt{poles}$

1.3 SPM Magnets

SPM Rotors 1.4

8

2p poles

Chapter 2

Winding

We will characterise a winding through

Name	Math symbol	Code symbol
N. of phases N. of coils	$m \ N_{ m coils}$	m coils
N. of turns per coil	$N_{ m turns}$	turns
N. of layers N. of parallel paths	$N_{ m layers} \ n_{ m pp}$	layers ppath
N. of conductors in slot	$n_{ m c}$	nc

Typically, given a lamination stack with Q slots

$$N_{\text{coils}} = \frac{Q}{2} \, N_{\text{layers}}$$

so if the number of layers is one, the number of coils is half the number of slots, given the fact that a coil side occupies a full slot.

$$n_{\rm c} = N_{\rm layers} N_{\rm turns}$$

This equation means that in each slot there are $n_{\rm c}$ conductors of any phase due to the turns in each coil side in each layer. We bring this number to the equivalent series-connected machine, through the number of parallel paths:

$$n_{\rm cs} = \frac{n_{\rm c}}{n_{\rm pp}}$$

This number, n_{cs} , is related to the complete set of slots, while the previous n_c was related only to a part of them, due to the parallel connection of the winding. Thanks to this fact, we can compute the whole number of conductors for each phase, through

$$N_{\rm c} = \frac{Q \, n_{\rm cs}}{m}$$

Therefore the full number of turns for each phase, which will appear in the flux linkage, is $N_c/2$. This number is valid for both the real machine and the equivalent series-connected one.

Another equivalence that we will use is the wye-equivalence. For both the wye and the delta connection of the windings, we will refer to the wye equivalent winding. Each winding sustains either the line(-to-line) voltage in the wye (delta) connection. Therefore

$$U_{\rm w} = \frac{U_{\rm N}}{\sqrt{3}}$$
 [V] delta connection

$$U_{\rm w} = U_{\rm N}$$
 [V] wye connection

In this way we can obtain the winding current directly from the power

$$I_{\rm w} = \frac{P}{3U_{\rm w}\cos\varphi} \quad [A]$$

and use it as the design current for the winding itself. In fact, if each turn is made by some wires with a full section S_c , we will refer to the equivalent turn section

$$S_{\rm c,eq} = n_{\rm pp} S_{\rm c} \quad [\rm mm^2]$$

which sees the complete winding current, giving the current density

$$J = \frac{I_{\rm w}}{S_{\rm c.e.g}} \quad [A/{\rm mm}^2]$$

It is important to highlight that this current density is the conductor's one, while the slot current density is given by

$$J_{\rm slot} = k_{\rm fill} J \quad [A/{\rm mm}^2]$$

where the fill factor, k_{fill} , represents the ratio between the actual conductor area in the slot and the slot section. Depending on the starting point, one can find the rms current in the slot through

$$I_{\text{slot}} = J_{\text{slot}} S_{\text{slot}} = n_{\text{cs}} I_{\text{w}}$$
 [A]

2.1 Space vector

Given an m-phase winding symmetrically distributed, we can associate its currents to a single complex-valued variable, the *space vector*, which represents the equivalent primitive two-phase winding, with axes α and β . Thus

$$i_{\alpha\beta} = \frac{2}{m} \left[i_a + i_b e^{j\frac{2\pi}{m}} + i_c e^{j\frac{4\pi}{m}} + \dots + i_m e^{j\frac{(m-1)2\pi}{m}} \right] = i^s$$

If we want to get the space vector in the synchronous reference frame, it is simply

$$\boldsymbol{i}^r = \boldsymbol{i}^s \, \mathrm{e}^{-\mathrm{j}\vartheta_{\mathrm{m}}^{\mathrm{e}}}$$

Therefore we can directly relate the dq-current to the m phase currents:¹

$$\bar{i}_{\mathrm{S}} \xrightarrow{T_{ab\cdots m}^{dq}} i^r$$

2.2 Slot matrix

The slot matrix is a useful tool for the correct and rapid assignment of currents in the slots. In fact it directly relates phase and slot currents, through

$$\bar{i}_{\rm s} \xrightarrow{K} \bar{i}_{\rm slot}$$

This relationships is missing just the number of series conductor per slot. So

$$\bar{i}_{\rm slot} = n_{\rm cs} K \, \bar{i}_s$$

2.3 Sinusoidal dq control

For synchronous machines, this is the typical control implemented. A reference current, which comes from the speed loop, is imposed. Usually the control is executed in the dq-reference frame, therefore we start from

$$\boldsymbol{i}^r = i_d + \mathrm{j}i_q = |\boldsymbol{i}| \,\mathrm{e}^{\mathrm{j}\alpha_\mathrm{i}^\mathrm{e}}$$

Then we transform it in the $\alpha\beta$ -reference frame and finally we get the phase currents:²

$$\bar{i}_{\mathrm{s}} = U_{s}^{ab\cdots m} \boldsymbol{i}^{s} = U_{s}^{ab\cdots m} U_{r}^{s} \, \boldsymbol{i}^{r} = U_{r}^{ab\cdots m} \, \boldsymbol{i}^{r}$$

From here, the slot currents are simply

$$\bar{i}_{\mathrm{slot}} = n_{\mathrm{cs}} K \, \bar{i}_{\mathrm{s}} = n_{\mathrm{cs}} K \, U_r^{ab\cdots m} \, \boldsymbol{i}^r$$

Transformation $_{\text{from}}^{\text{to}}$ Uantitransformation $_{\text{from}}^{\text{to}}$

¹The adopted convention is the following

²In the code the transformations made available are dq2ab and U, which is the one from $\alpha\beta$ to $abc\cdots m$.

2.4 Trapezoidal control

This control is typical of BLDC drives. In the trapezoidal control the currents would ideally assume just three values:

$$\{+I_{DC}, 0, -I_{DC}\}$$

while the current absorbed from the DC-bus is constant. Only two phases are active simultaneously, while the third one is kept off. Taking half the DC-bus voltage as the reference, the voltages assume just three values too:

$$\{+V_{\rm DC}/2, 0, -V_{\rm DC}/2\}$$

The complete number of possible states is the double (+/-) of all the grouping of the phases (m) by two:

of states =
$$2 \binom{m}{2} = m (m-1)$$

Consider a three-phase machine for instance. The supply states can be

