1 Ćwiczenia 7.10.2022

Aksjomat Archimedesa. Dla każdej liczby rzeczywistej a istnieje liczba naturalna n taka, że n > a.

$$\forall_{a \in \mathbb{R}} \exists_{n \in \mathbb{N}} \ n > a$$

Lemat 1. Niech $A \subseteq \mathbb{R}$ będzie zbiorem ograniczonym z góry, a M pewnym ograniczeniem górnym zbioru A. Wówczas równoważne są zdania:

- (i) $M = \sup A$;
- (ii) $\forall_{\varepsilon>0} \exists_{a \in A} \ a > M \varepsilon$.

Lemat 2. Niech $A \subseteq \mathbb{R}$ będzie zbiorem ograniczonym z dolu, a m pewnym ograniczeniem dolnym zbioru A. Wówczas równoważne są zdania:

- (i) $m = \inf A$;
- (ii) $\forall_{\varepsilon > 0} \exists_{a \in A} \ a < m + \varepsilon$.

Wnioski.

- (I) Jeśli 0 < a < b. to istnieje $n \in \mathbb{N}$ takie, że $n \cdot a > b$.
- (II) Jeśli $x_1 < x_2$, to istnieją $\varepsilon_1, \varepsilon_2 > 0$ takie, że $(x_1 \varepsilon_1, x_1 + \varepsilon_1) \cap (x_2 \varepsilon_2, x_2 + \varepsilon_2) = \emptyset$
- (III) $\forall_{h>0,a\in\mathbb{R}} \exists_{k\in\mathbb{N}} (k-1)h \leqslant a < kh$
- (IV) $\forall_{a < b} \forall_{a,b \in \mathbb{R}} \exists_{c \in \mathbb{R}} \exists_{c' \in \mathbb{R} \setminus \mathbb{Q}} \ c, c' \in (a, b)$

Lemat 3. Dla dowolnych podzbiorów $A, B \subseteq \mathbb{R}$ mamy

- (a) $\sup (A + B) = \sup A + \sup B$,
- (b) $\sup (A B) = \sup A \inf B$.

Lemat 4. Dla niepustego podzbioru $A \subseteq mamy \sup (-A) = -\inf A$

Definicja. O ciągu zbiorów A_1, A_2, \ldots mówimy, że jest zstępujący, jeśli $A_1 \supseteq a_2 \supseteq \ldots$

Twierdzenie 1. Jeśli I_1, I_2, \ldots jest ciągiem zstępujących przedziałów domnkniętych prostej rzeczywistej to $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$.

2 Ćwiczenia 11.10.2022

Twierdzenie 2. Załóżmy, że a jest ograniczeniem górnym zbioru A. Jeśli istnieje ciąg $a_n \in A$ taki, że $a_n \to a$, wówczas $a = \sup A$.

Lemat 5. Niech $A = \bigcup_{k=1}^{\infty} A_k$, $\alpha_k = \sup A_k$, $\beta_k = \inf A_k$ i załóżmy, że $\alpha_k, \beta_k \in \mathbb{R}$, wówczas

$$\sup A = \sup \{\alpha_1, \alpha_2, \ldots\}, \quad \inf A = \inf \{\beta_1, \beta_2, \ldots\}.$$

3 Ćwiczenia 14.10.2022

Lemat 6. Niech dane będą zbiory $A, B \subseteq \mathbb{R}$, $A \cdot B = \{a \cdot b : a \in A, b \in B\}$, wtedy $\sup (A \cdot B) = \max \{\sup A \sup B, \sup A \inf B, \inf A \sup B, \inf A \inf B\}$.

Lemat 7. Jeśli x_1, x_2, \ldots, x_n są liczbami dodatnimi oraz $x_1 x_2 \cdots x_n = 1$, to

$$x_1 + x_2 + \dots + x_n \geqslant n.$$

Nierówności między średnimi.

$$H(x_1, \dots, x_n) = \frac{n}{\frac{1}{x_1} + \dots + \frac{1}{x_n}} - \text{średnia harmoniczna}$$

$$G(x_1, \dots, x_n) = \sqrt[n]{x_1 \dots x_n} - \text{średnia geometryczna}$$

$$A(x_1, \dots, x_n) = \frac{x_1 + \dots + x_n}{n} - \text{średnia arytmetyczna}$$

$$K(x_1, \dots, x_n) = \sqrt{\frac{x_1^2 + \dots + x_n^2}{n}} - \text{średnia kwadratowa}$$

Jeśli x_1, \ldots, x_n są liczbami nieujemnymi, to

$$\min\{x_1,\ldots,x_n\} \leqslant H(x_1,\ldots,x_n) \leqslant G(x_1,\ldots,x_n) \leqslant A(x_1,\ldots,x_n) \leqslant K(x_1,\ldots,x_n) \leqslant \max\{x_1,\ldots,x_n\}.$$

4 Ćwiczenia 18.10.2022

Twierdzenie 3. Niech (a_n) będzie ciągiem liczb rzeczywistych.

- (a) Jeśli ciąg (a_n) jest rosnący, wówczas $\lim_{n\to\infty} a_n = \sup\{a_1, a_2, \ldots\}$.
- (b) Jeśli ciąg (a_n) jest malejący, wówczas $\lim_{n\to\infty} a_n = \inf\{a_1, a_2, \ldots\}$.

Lemat 8. Dla dowolnej liczby naturalnej $n \in \mathbb{N}$ mamy

$$\sqrt{n} < 1 + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}.$$

Lemat 9. Dla dowolnej liczby naturalnej $n \in \mathbb{N}$, $n \ge 7$ mamy

$$(n!)^2 \geqslant n^{n+1}.$$

5 Ćwiczenia 21.10.2022

Lemat 10. Dane są dwa ciągi (x_n) , (y_n) . Jeśli (y_n) jest ograniczony oraz $x_n \to 0$, wówczas $x_n y_n \to 0$.

Twierdzenie 4. Jeśli $a_n \to g$, to $A(a_1, a_2, \dots, a_n) = \frac{a_1 + a_2 + \dots + a_n}{n} \to g$.

Lemat 11. Niech a będzie dowolną liczbą rzeczywistą i $n \in \mathbb{N}$, wówczas

$$\lim_{n \to \infty} \frac{[na]}{n} = a.$$

Lemat 12. Dla $a \ge 1$ i $n \in \mathbb{N}$ mamy $\frac{n^a}{a^n} \to 0$.

6 Ćwiczenia 25.10.2022

Twierdzenie o przenikających się ciągach. Niech dane będą trzy ciągi liczb rzeczywistych $(x_n), (y_n)$ oraz (c_n) . Jeśli $x_n \to x$ i $y_n \to y$ oraz $c_n = \frac{x_1 y_n + \ldots + x_n y_1}{n}$, wówczas $c_n \to xy$.

Lemat 13. Niech (a_n) będzie ograniczonym ciągiem o wyrazach dodatnich, wówczas

$$\lim_{n \to \infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_n^n} = \sup_n \{a_1, a_2, \dots, a_n\}.$$

7 Ćwiczenia 28.10.2022

Lemat 14. Niech $S = \{\lim_{n\to\infty} x_n : (x_{n_k}) - podciąg zbieżny, ciągu <math>(x_n)$, do granicy skończonej lub nie $\}$. Jeśli $+\infty, -\infty \notin S$, to zbiór S jest ograniczony, więc zawiera podciąg zbieżny, zatem $S \neq \emptyset$.

Lemat 15. Przyjmując oznaczenia jak powyżej:

- (a) $Je\acute{s}li \infty \notin S$, to inf $S \in \mathbb{R}$ lub inf $S = +\infty$,
- (b) $Je\acute{s}li + \infty \notin S$, to $\sup S \in \mathbb{R}$ $lub \sup S = -\infty$.

Lemat 16. Jeśli (a_n) jest ograniczony z góry/dolu, to sup $S/\inf S \in S$.

Definicja.

Granicą górną ciągu (x_n) nazywamy $\limsup_{n\to\infty} x_n \stackrel{def}{=} \sup S$.

Granica dolna ciągu (x_n) nazywamy $\liminf_{n\to\infty} x_n \stackrel{def}{=} \inf S$.

Lemat subaddytywny Fekete. Jeśli ciąg (x_n) spełnia warunek: $x_{n+m} \leqslant x_n + x_m$, to istnieje granica $\lim_{n\to\infty} \frac{x_n}{n}$ i co więcej

$$\lim_{n \to \infty} \frac{x_n}{n} = \inf\{\frac{x_n}{n}, n \in \mathbb{N}\}.$$

Lemat 17. Niech (x_n) będzie takim ciągiem, że $x_n \stackrel{n\to\infty}{\longrightarrow} 1$ oraz dany jest ciąg (b_n) taki, że $b_1 + b_2 + \cdots + b_n \stackrel{n\to\infty}{\longrightarrow} \infty$, wówczas

$$\frac{b_1x_1+\cdots+b_nx_n}{b_1+\cdots+b_n} \stackrel{n\to\infty}{\longrightarrow} 1.$$