Proving Properties of Parallel Lines Cut by a Transversal

Jonathan R. Bacolod

Sauyo High School

What are Parallel Lines?

Parallel lines are two lines that lie in the same plane and do not intersect.

What is a Transversal?

A transversal is a line that passes through two lines in the same plane at two distinct points.

Corresponding Angles

Alternate Interior Angles

Alternate Exterior Angles

Same-Side or Consecutive Interior Angles

Same-Side or Consecutive Exterior Angles

$$\angle 1 \cong \angle 5$$

 $\angle 2 \cong \angle 6$

Corresponding Angles Postulate: If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

 $/1 \cong /5$

 $/2 \cong /6$

Alternate Interior Angles theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Alternate Interior Angles theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Alternate Interior Angles theorem: If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

$$\angle 3 \cong \angle 5$$

Alternate Exterior Angles theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

Alternate Exterior Angles theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

Alternate Exterior Angles theorem: If two parallel lines are cut by a transversal, then the alternate exterior angles are congruent.

∠1 ≅ ∠8

 $\angle 2\cong \angle 7$

Consecutive Interior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side interior angles are supplementary.

Consecutive Interior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side interior angles are supplementary.

 $m \angle 3 + m \angle 6 = 180^{\circ}$

Consecutive Interior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side interior angles are supplementary.

$$m \angle 3 + m \angle 6 = 180^{\circ}$$

$$m\angle 4 + m\angle 5 = 180^{\circ}$$

Consecutive Exterior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side exterior angles are supplementary.

Consecutive Exterior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side exterior angles are supplementary.

$$m \angle 1 + m \angle 7 = 180^{\circ}$$

Consecutive Exterior Angles theorem: If two parallel lines are cut by a transversal, then the consecutive or same-side exterior angles are supplementary.

$$m \angle 1 + m \angle 7 = 180^{\circ}$$

$$m\angle 2 + m\angle 8 = 180^{\circ}$$

Corresponding Angles Postulate

If two parallel lines are cut by a transversal, then the corresponding angles are congruent.

Vertical Angles theorem

If $\angle 1$ and $\angle 3$ are vertical angles, then $\angle 1 \cong \angle 3$.

Definition of Linear Pair

If two angles are adjacent such that two of the rays are opposite, then they form a linear pair.

Linear Pair Postulate

If two angles form a linear pair, then they are supplementary.

Linear Pair Postulate

If two angles form a linear pair, then they are supplementary. $m\angle 1 + m\angle 2 = 180^{\circ}$

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

Proof:

Statements Reasons

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

Proof:

_	1/2	ℓ
	3/4	
	5/6	m
	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

Proof:

5/6	m
7/8	
Reasons	
 1 Civon	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles theorem

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

	1/2	ℓ
	3/4	
4	5/6	m
~	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles theorem
3. ∠7 ≅ ∠6	3. Vertical Angles theorem

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 3 \cong \angle 6$

	1/2	ℓ
	3/4	
4	5/6	m
	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles
$2. \ \angle 3 = \angle 7$	theorem
3. ∠7 ≅ ∠6	3. Vertical Angles theorem
4. ∠3 ≅ ∠6	4. Transitive Property

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

|--|

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

_	1/2	ℓ
•	3/4	
4	5/6	m
	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

_	1/2	ℓ
	3/4	
4	5/6	т
~	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠1 ≅ ∠5	2. Corresponding Angles theorem

Given: t is a transversal $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

	1/2	ℓ
	3/4	
_	5/6	т
	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠1 ≅ ∠5	2. Corresponding Angles theorem
3. ∠5 ≅ ∠8	3. Vertical Angles theorem

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 1 \cong \angle 8$

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠1 ≅ ∠5	2. Corresponding Angles theorem
3. ∠5 ≅ ∠8	3. Vertical Angles theorem
4. ∠1 ≅ ∠8	4. Transitive Property

Given: t is a transversal

 $\ell \parallel m$

Prove: ∠3 and ∠5 are supplementary

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 3$ and $\angle 5$ are

supplementary

_	1/2	ℓ
	3/4	
•	5/6 7/8	<i>m</i>

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles theorem

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 3$ and $\angle 5$ are

supplementary

	5/6 m		
	7/8		
	Reasons		
n	1. Given		
	2. Corresponding Angles		
	theorem		

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	Corresponding Angles theorem
3. ∠7 and ∠5 form a linear pair	3. Definition of Linear Pair

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 3$ and $\angle 5$ are

supplementary

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles
2. 20 = 27	theorem
3. ∠7 and ∠5 form a	3. Definition of Linear Pair
linear pair	
4. ∠7 and ∠5 are	4. Linear Pair Postulate
supplementary	4. Lineai Faii Fosidiale

Given: t is a transversal

Prove: $\sqrt{3}$ and $\sqrt{5}$ are supplementary

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠3 ≅ ∠7	2. Corresponding Angles theorem
3. ∠7 and ∠5 form a linear pair	3. Definition of Linear Pair
4. ∠7 and ∠5 are supplementary	4. Linear Pair Postulate
5. ∠3 and ∠5 are supplementary	5. Substitution Property

Given: t is a transversal

Prove: ∠2 and ∠8 are supplementary

	•
Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 2$ and $\angle 8$ are

supplementary

	1/2	ℓ
	3/4	m
←	7/8	-

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠2 ≅ ∠6	2. Corresponding Angles theorem

Given: t is a transversal

 $\ell \parallel m$

Prove: $\angle 2$ and $\angle 8$ are

supplementary

4	1/2	ℓ
	3/4 5/6	m
•	7/8	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠2 ≅ ∠6	2. Corresponding Angles theorem
3. ∠6 and ∠8 form a linear pair	3. Definition of Linear Pair

Given: t is a transversal $\ell \parallel m$

- . . .

Prove: ∠2 and ∠8 are supplementary

Statements	Reasons	
1. t is a transversal, $\ell \parallel m$	1. Given	
2. ∠2 ≅ ∠6	2. Corresponding Angles	
	theorem	
3. ∠6 and ∠8 form a	3. Definition of Linear Pair	
linear pair		
4. ∠6 and ∠8 are	4. Linear Pair Postulate	
supplementary	4. Linear all Fositiale	

Prove: ∠2 and ∠8 are supplementary

_	1/2	ℓ
•	3/4	
	5/6	m
•	7/8	
	Pageone	

Statements	Reasons
1. t is a transversal, $\ell \parallel m$	1. Given
2. ∠2 ≅ ∠6	2. Corresponding Angles theorem
3. ∠6 and ∠8 form a linear pair	3. Definition of Linear Pair
4. ∠6 and ∠8 are supplementary	4. Linear Pair Postulate
5. ∠2 and ∠8 are supplementary	5. Substitution Property

Thank you for attending the virtual class.