

CONTROLLED-PUNCTURE FILMS

5

Field of the Invention

The present invention relates to polymeric films that can be made to be puncturable or puncture resistant, depending on the desired application. Also, certain of the polymeric films optionally can be made sealable and resealable, to varying degrees.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405
9410
9415
9420
9425
9430
9435
9440
9445
9450
9455
9460
9465
9470
9475
9480
9485
9490
9495
9500
9505
9510
9515
9520
9525
9530
9535
9540
9545
9550
9555
9560
9565
9570
9575
9580
9585
9590
9595
9600
9605
9610
9615
9620
9625
9630
9635
9640
9645
9650
9655
9660
9665
9670
9675
9680
9685
9690
9695
9700
9705
9710
9715
9720
9725
9730
9735
9740
9745
9750
9755
9760
9765
9770
9775
9780
9785
9790
9795
9800
9805
9810
9815
9820
9825
9830
9835
9840
9845
9850
9855
9860
9865
9870
9875
9880
9885
9890
9895
9900
9905
9910
9915
9920
9925
9930
9935
9940
9945
9950
9955
9960
9965
9970
9975
9980
9985
9990
9995
10000
10005
10010
10015
10020
10025
10030
10035
10040
10045
10050
10055
10060
10065
10070
10075
10080
10085
10090
10095
10100
10105
10110
10115
10120
10125
10130
10135
10140
10145
10150
10155
10160
10165
10170
10175
10180
10185
10190
10195
10200
10205
10210
10215
10220
10225
10230

polymeric film; and modifying the film to provide a desired level of at least one of the flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and the friction between the film and a puncturing object. Modifying the film can be accomplished by a number of methods. For example, it can include altering the 5 modulus of the film by, e.g., changing the temperature of the film prior to, and during, penetration by a puncturing object; stretching and optionally releasing the film prior to penetration by a puncturing object; incorporating a modifying material into the bulk of the film that will migrate to the surface of the film; or applying a modifying material to the surface of the film as another layer. If the polymeric film is composed of at least 10 two layers, modifying can also include changing one or both of the type of polymeric material or thickness of a surface layer that first contacts a puncturing object.

When modifying a film involves applying a modifying material to a surface of the film, the modifying material can be a variety of materials that have different coefficients of friction in relation to a puncturing object, such as a lubricant or an 15 adhesive. Examples range from lubricants such as silicone oil that generally decrease the surface coefficient of friction to elastomeric materials, such as adhesives, that generally increase the surface coefficient of friction.

In another embodiment of the present invention, the polymeric film is a multilayer film of at least two layers. Modifying such a multilayer film can involve 20 modifying at least one of the layers of the film to provide a targeted level of at least one of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and the friction between the film and a puncturing object.

In another embodiment of the present invention, there is provided a method of preparing a multilayer polymeric film having a targeted level of puncturability and 25 optionally sealability and resealability of a puncture site. The method includes: (1) selecting a plastic material to form a first layer, (2) selecting an elastomeric material to form a second layer, and (3) joining the plastic material and the elastomeric material to form a multilayer polymeric film. The type and amount of materials forming the first layer and second layer can be selected to provide a targeted level of at least one of 30 flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and the friction between the film and a puncturing object.

The method can further include selecting a plastic material to form a third layer such that the first and third layers form outer layers, and the second layer forms a core layer of a three layer construction. Preferably, selecting a material for the core layer involves selecting an elastomeric material to provide a targeted level of the elongation 5 at break of the film. The method can further include adding additional layers to a three layer construction.

The present invention also provides a multilayer polymeric film prepared by this method. In one embodiment, the film can be punctured when stretched to a given displacement by a puncturing object applied to a first major surface, but the film cannot 10 be punctured when stretched to the same displacement by the same puncturing object applied to a second (opposing) major surface.

The present invention further provides another method of preparing a polymeric film having a targeted level of puncturability and optionally a targeted level of 15 sealability and resealability of a puncture site. This method involves: selecting a polymeric material and a modifying material; combining the polymeric material and the modifying material to form a molten mixture; and forming the molten mixture into a film; wherein the types and amounts of polymeric and modifying materials are selected to provide a targeted level of at least one of flexural rigidity of the film, the elongation 20 at break of the film, the recovering stress of the film, and the friction between the film and a puncturing object. The molten mixture may be either a miscible or immiscible blend of the two materials.

The present invention further provides a system for controlling the puncturability of a film by choosing a film with specific characteristics and properties and a puncturing object with specific characteristics and properties to obtain a desired 25 level of puncturability.

As used herein, “elongation at break of the film” refers to the tensile strain at break as determined by ASTM standard D822.

As used herein, “film” refers to a flexible article having any shape that has two major surfaces, e.g., sheet or tube. Optionally the film has more than one layer. The 30 film typically has a total thickness of no more than about 400 microns (0.016 inches),

more typically no more than about 250 microns (0.010inches) depending on the materials and construction used.

As used herein, “flexural rigidity of the film” refers to the product of the modulus of elasticity and moment of inertia of a film.

5 As used herein, “load” refers to the mechanical force that is applied to a body.

As used herein, “modulus of elasticity of the film” refers to the amount of force necessary to deform the film one strain unit.

As used herein, “moment of inertia of the film” refers to the geometric stiffness of the film (i.e., the cube of the thickness divided by 12).

10 As used herein “puncturability” refers to the displacement to break when the load of a probe is applied to a film.

As used herein, “resealability” refers to the ability of a film to reduce the size of a hole in the film at a puncture site up to the point of completely closing the puncture site. In embodiments where resealability is desired, preferably, a hole that is created in the film by a puncturing object reseals such that the circumference of the hole is less than 50% of the circumference of the puncturing object. More preferably, the hole will decrease to less than 20% of the circumference of the puncturing object.

As used herein, “sealability” refers to the ability of a film to form a seal around a puncturing object while it is puncturing the film.

20 As used herein, “recovering stress of the film” refers to the difference between the film’s tensile stress at 300% elongation as determined by ASTM standard D822 and the stress when the film is returned to its original length after stretching to 300% elongation.

As used herein, “surface friction between the film and a puncturing object” refers to the linear coefficient expressing the tangential force to pull a sled covered with that film over a track consisting of the material of the puncturing object compared to the normal force (weight) of the sled. This is further discussed in the Examples Section.

Brief Description of the Figures

30 Figure 1 is an illustration of an apparatus used to drive a puncturing object into a film and measure the film’s flexure at rupture or break.

Detailed Description of Preferred Embodiments

The present invention relates to polymeric films that can be controllably punctured and optionally sealed and/or resealed. Specifically, the present invention provides methods of controlling (i.e., adjusting) the puncturability (i.e., the ability of a film to be punctured or to resist being punctured), optionally the resealability (i.e., the ability of a film to reseal or to resist being resealed) of a puncture site, and optionally the sealability (i.e., the ability of the film to form a seal around a puncturing object) of a puncture site. Typically, these properties are determined by at least one of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and friction between the film and a puncturing object.

The methods of the present invention are advantageous because they allow for applications where it is desirable to reduce the puncturability of a film (i.e., increase the resistance to puncture) and for other applications where it is desirable to increase the puncturability of a film. The methods are advantageous because they allow for applications where it may also be desirable to increase the resealability of a puncture site of the film. In many applications, it is particularly advantageous to produce films that can be punctured and the puncture site resealed. Sealability of films around a puncturing object is also advantageous for applications where it is desirable to prevent materials from passing through the puncture site. For example, it may be desirable to prevent atmospheric contaminants from contacting a material kept under seal, or it may be desirable to prevent the sealed material from escaping into the atmosphere. This may be desirable where film puncturability is undesirable or in cases where film puncturability is desirable, but it is desirable to keep a material contained on one side of a polymeric film. For example, it may be desirable to keep a material under seal, but accessible via a syringe that can puncture the sealing film.

In one embodiment, control of puncturability can be accomplished by modifying a surface of the film to provide desired levels of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and surface friction between the film and the puncturing object. Modifying the surface can be accomplished by a number of methods. For example, it can include changing the modulus of the film

by altering the temperature of the film prior to, and during, the penetration by a puncturing object; stretching and optionally releasing the film prior to penetration by a puncturing object; applying a modifying material to the surface of the film; or adding a modifying material to the bulk material comprising a film. For multi-layer films,

5 modifying can also include changing the thickness of one or more layers or changing the properties of the surface layer that first contacts a puncturing object.

Another option is to modify the coefficient of friction between the puncturing object and the film (hereafter COF) to control the puncture resistance of the films. A puncturing object and flexible film generally interact as follows: as the puncturing

10 object makes contact with the film, the film deforms in the direction of the puncturing object's motion. This is accompanied by local stretching of the film in the vicinity of the puncturing object's tip. As the film stretches, the elasticity of the film's materials requires the film construction to exert a hoop (compressive radially inward) stress on the puncturing object. This force is exerted nearly normal to the lateral surface of the 15 puncturing object. Simultaneously, there is a tangential, or surface, force associated with driving the puncturing object downward and perpendicular to the force exerted by the hoop stress of the film.

If the COF is high (i.e., the puncturing object adheres to the film surface) the tangential stress associated with driving the puncturing object down into the film will 20 not be great enough to overcome the normal force from the film hoop stress holding the film against the puncturing object (i.e., the product of the COF and the normal force is greater than the tangential force). Thus the puncturing object will pull the surrounding film downward with it such that the force exerted by the object will be distributed over the entire film surface in contact with the object. Because the film in contact with the 25 puncturing object does not experience a stress large enough to cause mechanical failure, the portion of the film not in contact with the puncturing object will also be strained as the film in contact with the object is pulled with the movement of the puncturing object. This deformation of the non-contacting film will effectively distribute the load of the puncturing object so that mechanical failure will only be caused at much large 30 displacements, i.e., large film deformations.

Conversely, if the COF is low, the tangential force from the puncturing object will overcome the normal force and the object will slip against the film surface. This will allow the load of the puncturing object to be concentrated entirely at its tip thus causing greater distortion of the film material underneath the object's tip until the 5 object punctures (i.e., mechanically ruptures) the film. Thus, one may control the ease of puncture in flexible films by controlling the COF.

Additionally, changing the moment of inertia of a film can control puncture in films. A stiff film is more easily punctured than a flexible film. As has been explained, as a puncturing object makes contact with a film, the area immediately underneath the 10 object undergoes distortion and stretching. This causes the film to exert a hoop stress inward to make contact (or conform around) the object. However this ability to make contact around the puncturing object depends on the ability of the film itself to conform to the object. For example, with a three-layered film of an elastomeric core layer and relatively rigid outer layers, as the film is stretched under the tip of the puncturing 15 object, the elastomeric core layer exerts a force generated by the tendency of the film to recover from the hoop stress to drive the film toward contact with the object. If the outer layer is not rigid (due to small moment of inertia, or low modulus of elasticity of the film) in comparison to the core layer then the core layer material can drive the entire film to contact the puncturing object. However, if the outer layer is thick or stiff, then 20 the core layer will be less able to force the entire film to conform to the puncturing object. The extent of the ability of the film to conform to the puncturing object also controls puncture resistance. If the film cannot conform to the puncturing object surface then the object will be able to concentrate its entire load immediately below its tip regardless of the COF. Conversely, if the film can conform to the puncturing object 25 surface then puncture may be impeded, if the COF is sufficiently high.

When films having at least two layers are used, changing the recovering stress of the layer that is not first contacted by a puncturing object influences puncturability because it is this force that drives the contact of the surface of the film with the puncturing object. The surface of a material with a lower recovery stress will be less 30 driven to contact the puncturing object, thereby allowing puncture to occur more easily. As illustrated by Example 11, the puncture resistance of some film constructions can be

affected by the recovery stress of the film even when the elongation at break of each of the layers of the film is substantially unchanged.

Use of elastomeric layers can make controlled-puncture films of the invention resealable. Again, as was discussed in regard to puncture resistance, elastomeric films 5 exert high hoop stresses, i.e., recovering forces from cylindrical deformation, (because they try to return to their original, unstressed state). It is this inward (toward the puncturing object) force that facilitates resealing. The tendency of less elastic films to generate the restoring force to reseal or recover strain in response to deformation is greatly reduced in comparison to elastomeric films.

10 It has been found (as is shown in Example (10)) that there is a correlation between ease of puncture and the ability of the film to reseal. If the film punctures easily, then only the perimeter of a relatively small area of the film (the area in contact with the tip of the puncturing object) is stretched to break. Depending on the size of the puncturing object, this can be a relatively small area and the resulting hole will be 15 small. However, if the film is puncture-resistant, the ability of the film to conform to the puncturing object will be increased such that the area of the film in contact with the puncturing object will cover not only the object's tip but also at least some of the lateral surfaces of the object. Accordingly, the perimeter of the area that is stressed to break will include at least the portion of film in contact with the lateral surface of the object. 20 Thus, for films with high COFs, the hole (the area within the broken perimeter) is relatively large and the film is less able to reseal the hole depending on the size and shape of the puncturing object. Thus, the resealability of holes in the films may be controlled in tandem with (though not independent of) the puncture resistance of the films.

25 Elastomeric layers also contribute to the ability of a film to seal around a puncturing object. The elastic recovery of a film also allows the film to conform to the shape of the puncturing object. This sealability property is advantageous when it is desirable to keep elements on two different sides of a film from interacting while a film is being punctured. For example, sealability allows a film to be punctured without 30 allowing contaminants or other materials to pass through the puncture site.

In one embodiment, the polymeric film is a multilayer film of two outer layers and at least one inner layer. Modifying such a multilayer film can involve modifying at least one of the outer layers of the film to provide a targeted level of at least one of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and the friction between the film and a puncturing object. For example, the thickness and/or stiffness of an outer layer can be changed to make an overall change in the thickness or stiffness of a film. Alternatively, modifying such a multilayer film can involve modifying an inner layer of the film to provide a targeted level of flexural rigidity of the film and elongation at break of the film.

In general, films having an $(AB)_nA$ (where n is greater than 1) construction can be more flexible than films of equal thickness having an ABA construction. This occurs, for example, when the A layer is a hard stiff material and the B material is a soft, pliable material. When a film is flexed the material at one surface is compressed and the material at the opposing surface is stretched. The material in the middle of the film is not significantly compressed or stretched. If the stiff material is at or near the film's surface and the soft material is near the film's center, stretching the film requires more force than if the stiff material were near the film's center and the soft material were at the surfaces.

However, in a film having, e.g., an ABABABA structure with the same relative amounts of A and B as an ABA film of equal thickness, some of the soft material has been moved out toward the surfaces where the stretching and compression occur during flexing, and some of the stiff material has been moved toward the center of the film where there is minimal stretching and compression. This structure makes it easier to bend the film because less of the stiff material needs to be stretched or compressed. Nevertheless, if you pull the film in tension (parallel to the layers) the stiffness of the film should be the same as for the ABA film because the same amount of A and B material is in cross section.

In one embodiment of the present invention, controlling the puncturability, and optionally sealability and resealability of a puncture site, of a polymeric film can be accomplished by producing a polymeric film having at least two layers wherein a first layer includes a plastic material and a second layer includes an elastomeric material. In

this embodiment, the type and amount of materials of the first layer and second layer are selected to impart specified levels of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and friction between the film and a puncturing object.

5 In another embodiment, controlling the puncturability, and optionally the sealability and resealability of a puncture site, of a polymeric film can be accomplished by: selecting a polymeric material and a modifying material; combining the polymeric material and the modifying material to form a molten mixture; and forming the molten mixture into a film; wherein the type, and amount of polymeric and modifying materials
10 are selected to provide a targeted level of at least one of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and the friction
between the film and a puncturing object.

Whether it is applied to a surface of a polymeric film or mixed into the polymeric film, the modifying material can be a variety of materials able to change at least one of flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, or the friction between the film and puncturing object, such as a lubricant, an adhesive, or other monomers, oligomers, or polymers. Examples of modifying materials that can enhance puncturability include silicone oil and a wide variety of thermoplastic materials having a low COF relative to the puncturing object.

20 For example, a high density polyethylene film would be an appropriate puncturable film if the puncturing object were a polypropylene needle. Examples of modifying materials that enhance puncture resistance are elastomers resulting in relatively high COFs such as, for example, tackified elastomers or self-tacky elastomers. The modifying material may be selected for its ability to slide against a specific puncturing object, thereby
25 contributing to the resealability of the puncture site by causing a small diameter hole to be formed. The more puncturable a film is, the better it is able to reseal because the force and effect of the puncturing object is concentrated in a small area.

As mentioned above, the polymeric film can include one or more layers. For example, the polymeric film can include three layers – two outer layers and a core layer.
30 In such a three-layer construction, the desired degree of puncture resistance and ability

to seal and rescal can be affected by adjusting the properties of the film's core layers or at least one of the film's outer layers rigidity.

Plastic materials suitable for use in the present invention include those that are capable of being formed into a film layer, have a modulus of elasticity over 10⁸ Pa, and 5 cannot sustain more than 20% strain without incurring permanent set (i.e., permanent deformation) at ambient temperature. Examples of suitable plastic materials include thermoplastics such as polyethylenes (high density, low density, and very low density), polypropylene, polymethylmethacrylate, polyethylene terephthalate, polyamides, and polystyrene; thermosets such as dyglycidyl esters of bisphenol A epoxy resins, 10 bisphenol A dicyanate esters, orthophthalic unsaturated polyesters, bisphenol A vinyl esters.

Elastomeric materials suitable for use in the present invention can comprise any material that is capable of being formed into a thin film layer and exhibits elastomeric properties at ambient conditions. Elastomeric means that the material will substantially 15 resume its original shape after being stretched. Further, preferably, the elastomer will sustain only small permanent set following deformation and relaxation which set is preferably less than 20% and preferably less than 10% at moderate elongation, e.g., about 400-500%. Generally any elastomer is acceptable which is capable of being stretched to a degree that causes relatively consistent permanent deformation in a plastic 20 outer layer. This can be as low as 50% elongation. Preferably, however the elastomer is capable of undergoing up to 300 to 1200% elongation at room temperature, and most preferably 600 to 800% elongation at room temperature. The elastomer can be pure elastomer or blends with an elastomeric phase or content that will exhibit substantial elastomeric properties at room temperature.

25 Examples of suitable elastomeric materials include natural or synthetic rubbers block copolymers that are elastomeric, such as those known to those skilled in the art as A-B or A-B-A block copolymers. Such copolymers are described for example on U.S. Pat. Nos. 3,265,765; 3,562,356; 3,700,633; 4,116,917, and 4,156,673, the substance of 30 which is incorporated herein by reference. Useful elastomeric compositions include, for example, styrene/isoprene/styrene (SIS) block copolymers, elastomeric polyurethanes, ethylene copolymers such as ethylene vinyl acetates, ethylene/propylene

monomer copolymer elastomers or ethylene/propylene/diene terpolymer elastomers. Blends of these elastomers with each other or with modifying non-elastomers are also contemplated. For example, up to 50 weight %, but preferably less than 30 weight %, of polymers can be added as stiffening aids such as polyvinylstyrenes such as

5 polyalphamethyl styrene, polyesters, epoxies, polyolefins, e.g., polyethylene or certain ethylene/vinyl acetates, preferably those of higher molecular weight, or coumarone-indene resin.

In a multi-layer film, the plastic layer can be an outer or inner layer (e.g., sandwiched between two elastomeric layers). In either case, it will modify the elastic 10 properties of the multilayer film.

Recovery of a multilayer film after puncture will depend on a number of factors such as the nature of the elastomeric layer, the nature of the plastic layer, the manner in which the film is stretched, and the relative thickness of the elastomeric and plastic layers. Percent recovery (with no load is on the film) refers to stretched length minus 15 the recovered length, the sum of which is divided by the original length.

Generally, the plastic layer will hinder the elastic force with a counteracting resisting force. A plastic outer layer will not stretch with an inner elastomeric layer after the film has been stretched (provided that the second stretching is less than the first); the plastic outer layer will just unfold into a rigid sheet. This reinforces the core 20 layer, resisting or hindering the contraction of the elastomeric core layer.

For obtaining a more puncturable film, the friction between a puncturing object and the surface of the film should be reduced. A wide variety of mechanisms can be used to reduce this friction as long as there is a concentration of stress at the point of load applied by the object. This can include applying a modifying material to the film 25 surface or selecting a different material for the outer surface of the film such that the coefficient of friction between the puncturing object and film surface is reduced. For example, a polypropylene/styrene-isoprene synthetic rubber/polypropylene multilayer film can be made more puncturable by a polypropylene tip if the film surface is sprayed with silicone oil.

Puncturability may be increased by stretching a film. Holding a film in a stretched position can make it more punctureable because it is less able to conform to the puncturing object.

In contrast, stretching and releasing a multilayer film comprising both

5 elastomeric and plastic layers can decrease puncturability by decreasing the film's flexural rigidity. This can be done by stretching the multilayer film past the elastic limit of the plastic layer(s). Stretching and releasing can also lower a multilayer film's coefficient of friction and modulus of elasticity. In some embodiments, the plastic layer can function to permit controlled release or recovery of the stretched elastomeric layer,

10 modify the modulus of elasticity of the multilayer film and/or stabilize the shape of the multilayer film.

The present invention provides polymeric films, including single films with a modified surface, having varying degrees of puncturability, and optionally varying degrees of sealability and resealability with regard to a specific type of puncturing object. In one embodiment, the film can be punctured when the film is stretched to a given displacement by a puncturing object applied to a first major surface, but the film cannot be punctured when the film is stretched to the same displacement by the same puncturing object applied to a second opposing major surface. For example a two-layer film having a low COF on the first major surface and a high COF on the second would be more easily punctured by a puncturing object through the first surface than through the second surface. Of course, the shape of the tip of a puncturing object can also affect the puncturability of the film.

The single layer films of the present invention may be made by extrusion methods or any other suitable methods known in the art.

25 The multilayer films of the present invention may be formed by any convenient layer forming process such as coating, lamination, coextruding layers or stepwise extrusion of layers, but coextrusion is preferred. Coextrusion per se is known and is described, for example, in U.S. Pat. Nos. 3,557,265 and 3,479,425. The layers are typically coextruded through a specialized feedblock or a specialized die that will bring

30 the diverse materials into contact while forming the film.

Coextrusion may be carried out with multilayer feedblocks or dies, for example, a three-layer feedblock (fed to a die) or a three-layer die such as those made by Cloeren Co., Orange, TX. A suitable feedblock is described in U.S. Pat. No. 4,152,387.

Typically streams of materials flowing out of extruders at different viscosities are

5 separately introduced into the feedblock and converge to form a film. A suitable die is described in U.S. Pat. No. 6,203,742.

The feedblock and die used are typically heated to facilitate polymer flow and layer adhesion. The temperature of the die depends on the polymers used. Whether the film is prepared by coating, lamination, sequential extrusion, coextrusion, or a
10 combination thereof, the film formed and its layers will preferably have substantially uniform thicknesses across the film.

The present invention also provides systems of puncturable films and puncturing objects that can be tailored to each other to obtain a desired level of puncturability. For example, if a specific puncturing object is to be used, the properties and characteristics of a film can be made to complement the puncturing object to provide the desired level of ease of puncturability. The puncturing object may be made of a particular material, may have a particular shape (including the shape of its tip), etc. Knowing this information, the composition and structure of a film can be made to provide the appropriate flexural rigidity of the film, the elongation at break of the film, the recovering stress of the film, and friction between the film and puncturing object to provide the desired level of ease of puncturability of the film. Optionally, sealability and resealability of the film can be tailored in the same manner.

Conversely, if a given film is to be punctured, based on its composition, structure, flexural rigidity, elongation at break, and recovering stress, a puncturing
25 object can be chosen based on its composition (which will affect the friction between the film and puncturing object), and its shape (including the shape of its tip), to provide the desired level of ease of puncturability of the film, and optionally sealability and resealability.

Specific examples of the methods of this invention as well as objects and
30 advantages of this invention are further illustrated by the following examples, but the

particular materials and amounts thereof recited in these examples, as well as other conditions and details, should not be construed to unduly limit this invention.

Test Methods

5

Puncture Resistance Test

Film samples were tested for puncture resistance using two variations of ASTMD3763-97a in which apparatus **10** illustrated in Figure 1 was used to drive a puncturing object into a film and measure the flexure at rupture or break. In Variation 10 A, hole **12** in the center of clamp assembly **14** of the test apparatus had a diameter of 25 mm and the penetrating means **16** was a metal plunger with a fixture holding a 10 microliter (μ L) polypropylene plastic pipette (available from Eppendorf, Germany).

The pipette has a tip with an outside diameter of 0.84 mm and a shaft that tapered over a length of 5 mm to a substantially constant diameter of about 2 mm. In Variation B, hole **12** in the center of clamp assembly **14** of the test apparatus had a diameter of 76 mm. The penetrating means **16** was a smooth cylindrical metal probe having a hemispherical tip with a diameter of about 12 mm. The speed of the probe was 508 mm/min. The amount of deflection, i.e., displacement at peak load prior to rupture was measured in inches and converted into millimeters. Each reported value is an average of 5 test measurements.

Dynamic Coefficient of Friction Test

The dynamic coefficient of friction of the surface of the film sample that would first contact a penetrating object was determined by using ASTM D1894-95 with the 25 apparatus described in drawing c, Figure 1 of the ASTM and the sled as described in Section 5.1 of the ASTM. The sliding surface was a sheet of cast polypropylene film (available as 7C12N from Shell Chemical Co., Beaupre, Ohio). A metal filament wire was used to pull the sled and various weights were placed on the sled to achieve different forces normal to the plane of the sample being tested. The normal force was 30 calculated as the mass of the weight on the sled multiplied by the gravitational acceleration. The steady-state pulling force was determined, after initial transient

T020505 2/25/2018 6:00

values, for each normal force and was plotted against the normal force. The dynamic coefficient was the slope of the curve of the plotted data.

Hole Dimension Measurement

5 To determine this measurement, a punctured hole was viewed with a Boeckeler VIA-170 microscope (Tucson, Arizona) using 50x and 200x objective lenses. The dimensions were measured with a Moritex Scopeman (Model MS803, San Diego, California) and the data was converted to an area measurement. Each reported value represents the average of three measurements.

10

Examples

Example 1

15 Example 1 illustrates the effect of the dynamic coefficient of friction of a film on the puncture resistance and resealability of a multilayer film.

Sample A was a three layer film with a thermoplastic elastomer core layer and high density polyethylene (HDPE) outer layers. The outer layers were made of thermoplastic HDPE A (available as PETROTHENE LS3150-00, elongation percent at break of 300, Equistar Chemicals, Houston, Texas). The outer layer material was conveyed through an extruder having multiple zones with a single screw extruder (diameter of 19 mm, L/D of 32/1, available from Killion, Inc., Cedar Grove, New Jersey). The outer layer material extruder operated with zone temperatures increasing from 163°C to 216°C. The outer layer material was conveyed through a gear pump to the "A" and "C" channels of the three-layer Cloeren feedblock (available from Cloeren Co., Orange, Texas) that was set at 216°C. The core layer was made from a thermoplastic elastomer (available as KRATON D1107 styrene-isoprene block copolymer, recovering stress (at 300% elongation) of 2.07 MPa (300 psi), from Shell Chemical Co., Beaupre, Ohio) and conveyed through an extruder having multiple zones with a single screw extruder (diameter of 32 mm, L/D of 24/1, available from Killion, Inc.). The core layer material extruder operated with zone temperatures increasing from 188°C to 216°C. The core layer material was passed to the "B" channel of the Cloeren

feedblock. The resulting multilayered flow stream was passed through a single orifice film die (having a width of 254 mm (10 inch) and available from EDI, Chippewa Falls, Wisconsin) that was set at a temperature of 216°C. The resulting molten film was drop cast onto a chill roll, which was set at a temperature of 11°C, and collected. The line speed was 12.2 m/min., the individual flow rates of the outer layer and core layer were such that each outer layer had a thickness of about 3.1 micrometer (μm) and the overall film thickness was measured at about 72 μm .

5 Sample B was made as Sample A except a layer of Silicone Oil A (available as DC-200 PDMS oil from Dow Corning, Midland Michigan) was applied on one side of the three layer film.

10 Sample C was made as Sample A except a layer of Silicone Oil B (available as Part No. 700-01015 PDMS oil from Rheometrics Scientific, Piscataway, New Jersey) was applied on one side of the three layer film.

15 Sample D was made as Sample A except a layer of pressure-sensitive adhesive (an acrylate-based pressure-sensitive adhesive (98/2 isoctyl acrylate / acrylic acid) made according to U.S. Pat. No. 5,804,610, Example 11 (except the ratio of IOA to AA was 98:2 instead of 97:3) having a thickness of approximately 125 μm was applied on one side of the three layer film by lamination.

20 Each sample was measured for puncture resistance with Variation A, dynamic coefficient of friction on the surface that first contacted the puncturing means, and resulting hole area. Results are reported in Table 1 or in the discussion following the table.

Table 1

Sample	Surface modifier	Dynamic friction coeff.	Displacement to break mm (in)
A	None	0.183	106 (4.167)
B	Silicone Oil A	0.028	18 (0.712)
C	Silicone Oil B	0.051	29 (1.153)
D	Adhesive	(a)	304 (11.958)

25 a: The coefficient of friction could not be measured because the sled did not move before the film broke.

The data in Table 1 indicate that puncture resistance as measured by displacement at break decreased when the frictional properties of the film surface first contacting the puncturing means decreased. Likewise, the puncture resistance increased when the surface friction increased.

For samples A and B, the effective diameters of the hole and the shaft of the puncturing means were also measured and a ratio of areas was calculated. The effective area of the puncturing means, calculated based on the largest diameter of the plastic pipette that entered the hole, was 2.00 mm. The effective diameter of the hole for Sample A and B, converting the area of the often jagged tear in the film into a circle having an equivalent area, was approximately 1.80 mm and 0.25 mm, respectively. The ratio of the effective area of the puncturing means to the effective area of the resulting hole for Samples A and B were calculated to be 0.81 and 0.016, respectively.

Example 2

Example 2 illustrates the effect of the dynamic coefficient of friction of a film on the puncture resistance of a single layer film.

Sample A was made by extruding very low density polyethylene (available as ENGAGE 8200 from Dow Chemical Company, Midland, Michigan) into a film having a thickness of about 75 μm . The polymer was conveyed with a single screw extruder through the core layer slot of the feedblock and single orifice film die used for Example 1.

Sample B was made as sample A except a layer of Silicone Oil A was applied one side of the single layer film.

Each sample was measured for puncture resistance with Variation A and dynamic coefficient of friction on the surface that first contacted the puncturing means. Results are reported in Table 2.

Table 2

Sample	Surface modifier	Dynamic friction coeff.	Displacement to break mm (in)
A	None	3.38	142 (5.594)
B	Silicone Oil A	0.019	10 (0.402)

The data in Table 2 indicate that puncture resistance decreased when the

5 frictional properties of the film surface first contacting the puncturing means decreased.

Example 3

Example 3 illustrates the effect of stretching and relaxing a film on the puncture resistance of the film.

10 Sample A was made in a manner similar to Sample A of Example 1 except the three layer film was further consecutively stretched in one direction to 500% of its original length in both the machine and transverse directions. Then the film was allowed to recover until it reached a steady state in approximately 10 minutes.

Sample A and Sample A of Example 1 were measured for puncture resistance

15 with Variation B. Results are reported in Table 3.

Table 3

Sample	Modification	Displacement to break mm (in)
A	Stretched to 500% & relaxed	202 (7.943)
1-A	none	139 (5.453)

The data in Table 3 indicate that puncture resistance increased when the film

20 was stretched and relaxed before being punctured.

Example 4

Example 4 illustrates the effect of stretching a film on the puncture resistance of the film.

Sample A was made by further stretching Sample A of Example 1 in one direction to 300% of its original length while held in the testing sample holder (and was punctured while it was stretched).

The sample was measured for puncture resistance with Variation A. Results are

5 reported in Table 4 together with that of Sample A of Example 1.

Table 4

Sample	State	Displacement to break mm (in)
A	Stretched to 300%	66 (2.579)
1-A	original	106 (4.167)

The data in Table 4 indicate that puncture resistance decreased when the film

10 was punctured while it was stretched.

Example 5

Example 5 illustrates how a film can be made less or more puncture resistance depending on which side of a film consisting of two layers of different materials first contacts the puncturing means.

Sample A was made by further applying different materials to each side of Sample A of Example 1. Silicone Oil A was applied to side one of the film in a manner similar to Sample B of Example 1 and adhesive was applied to side two in a manner similar to Sample D of Example 1.

20 The sample was measured for puncture resistance with Variation A. Results are reported in Table 5 together with that of Sample A of Example 1.

Table 5

Sample	Surface	Displacement to break mm (in)
A - side 1	Silicone Oil A	29 (1.136)
1-A	original	106 (4.167)
A - side 2	Adhesive	284 (11.182)

The data in Table 5 indicate that the film was significantly less puncture resistant when the penetrating means first contacted the side with the silicone oil rather than the side with the adhesive.

5 **Example 6**

Example 6 illustrates another way a film can be made less or more puncture resistant depending on which side of a film consisting of two layers of different materials first contacts the puncturing means.

Sample A was made in a manner similar to that of Sample A of Example 1 except the side-2 outer layer material was a metallocene catalyzed very low density polyethylene (VLDPE) available as ENGAGE 8200 from Dow Chemical). The VLDPE was conveyed with a single screw extruder having multiple zones (Killion Model KLB075) that was operating with zone temperatures increasing from 160°C to 216°C. The material was passed to the C channel of the three-layer feedblock. The line speed was 7.77 m/min. and the overall thickness was measured at 91 µm.

Each side of the sample was measured for puncture resistance with Variation B. Results are reported in Table 6.

Table 6

Sample	Surface	Displacement to break mm (in)
A - side 1	HDPE	203 (7.984)
A - side 2	VLDPE	327 (12.871)

The data in Table 6 indicate that this film also had different puncture resistance depending on which outer layer material was first contacted with the penetrating means.

20 **Example 7**

Example 7 illustrates the effect of outer layer thickness on puncture resistance. Sample A-D were made as Sample A of Example 1 except gear pump settings on the outer layer extruder were adjusted to obtain a different outer layer thickness for

each sample, as reported in Table 7, while the core layer extruder settings and line speed were unchanged.

The samples as well as Sample A of Example 1 were measured for puncture resistance with Variation B. Results are reported in Table 7.

5

Table 7

Sample	Gear pump setting rpm	Outer layer thickness μm	Displacement to break mm (in)
1-A	7	3.1	139 (5.453)
A	10	3.5	122 (4.785)
B	13	4.6	90 (3.552)
C	18	6	76 (3.008)
D	23	6.4	64 (2.510)

The data in the above table indicate that puncture resistance decreases as outer layer thickness increases for the construction tested.

10

Example 8

Example 8 illustrates the effect of total film thickness on puncture resistance.

Sample A-C were made as Sample C of Example 7 except line speed settings were adjusted to obtain a different total film thickness for each sample, as reported in Table 8 (both extruder settings were unchanged).

15

The samples were measured for puncture resistance with Variation B. Results are reported in Table 8 together with that of Sample C of Example 7.

Table 8

Sample	Line speed meters/minute	Total thickness μm	Displacement to break mm (in)
A	7.6	122	55 (2.184)
B	9.14	94	69 (2.730)
7-C	12.2	76	76 (3.008)
C	15.2	60	82 (3.242)

20

The data in the above table indicate that puncture resistance decreases as total film thickness increases for the construction tested.

Example 9

5 Example 9 illustrates the effect of different outer layer materials, each having a different elongation at break, on puncture resistance of a three layer construction.

10 Sample A was made as Sample A of Example 1 except the outer layer material was HDPE B (available as DOWLEX IP60 HDPE, elongation percent at break of 225, from Dow Chemical); the extruders reached upper temperatures of 232 °C, and the die was set at a temperature of 232 °C. Also, the line speed and extruder flow rates were 15 changed to result in a total film thickness of 140 µm with outer layer thicknesses of about 10 µm each.

15 Sample B and Sample C were made as Sample A except the outer layer material was HDPE A (described in Example 1) and HDPE C (ALATHON M5865 HDPE from Equistar, elongation percent at break of 800), respectively.

The samples were measured for puncture resistance with Variation B. Results are reported in Table 9.

Table 9

Sample	Outer layer Material	Elongation percent	Displacement to break mm (in)
A	HDPE B	225	62 (2.422)
B	HDPE A	300	72 (2.828)
C	HDPE C	800	136 (5.374)

20

The data in the above table indicate that as the elongation at break of the outer layer increased, the puncture resistance of the outer layer increased.

Example 10

25 Example 10 illustrates the effect of outer layer thickness on the puncture resistance and resealability of a multilayer film.

Sample A, B and C were the same as Sample A, B and C of Example 7 except the films were punctured with a plastic pipette having a shaft diameter of 2.0 mm instead of a metal rod having a shaft diameter of 13.7 mm.

5 The samples were measured for puncture resistance with Variation A and the resulting area of the hole. Results are reported in Table 10.

Table 10

Sample	Outer layer thickness μm	Displacement to break mm (in)	Ratio of hole area to pipette area
A	3.5	44 (1.719)	0.0070
B	4.6	38 (1.482)	0.0041
C	6	22 (0.852)	0.0009

As seen in Table 10, the ratio of the hole area to puncturing means area 10 decreased as the film was less puncture resistant.

Example 11

Example 11 illustrates the effect of a different core material with different recovering stress on puncture resistance of an outer layer/core layer/outer layer 15 construction.

Sample A was made as Sample B of Example 9 except the core material was KRATON D1112P, having a recovering stress of 1.45 MPa (210 psi), available from Shell Chemical Company.

The sample was measured for puncture resistance. Results are reported in Table 20 11 with those of Sample B of Example 9.

Table 11

Sample	Core Material	Recovering stress MPa	Displacement to break mm (in)
9-B	KRATON D1107	2.07	72 (2.828)
A	KRATON D1112P	1.45	51 (1.999)

The data in the above table indicate that as the recovering stress of the core material decreases, the puncture resistance of the film decreases. The elongations at break of the core layer materials of Examples 9-B and 11A were substantially the same at 1300% and 1400%, respectively.

5

The complete disclosures of the patents and publications cited herein are incorporated by reference in their entirety as if each were individually incorporated. Various modifications and alterations to this invention will become apparent to those skilled in the art without departing from the scope and spirit of this invention. It should 10 be understood that this invention is not intended to be unduly limited by the illustrative embodiments and examples set forth herein and that such examples and embodiments are presented by way of example only with the scope of the invention intended to be limited only by the claims set forth herein as follows.

202050745744960