		Name:
		Roll No:
		Indian Institute of Science Education and Research Mohali
		CHM 201: Spectroscopy and other physical methods
		END-SEM Examination, 7th DEC, 2021
		Total market 50 Til
	-	Total marks: 50; Time: 9.00 AM – 11.00 AM
	1	(Important note: Please write your Name and Roll No. on the Q-paper; please return the Q-Paper along with the answer sheet.)
1		PART A- Objective type (10 x 1 = 10 Marks): The unit of molar extinction coefficient:
		a. cmM-1 b. cm ⁻¹ M-1
		c. cm ² M ² d. cm ¹ M
2		
_	-6	The major difference of Echelle grating over Echellette grating:
		a. Reflection from the short axis of the grating normal.
		b. Transmission from the short axis of the grating normal.
		c. Reflection from the long axis of the grating normal.
	2	d. Transmission from the long axis of the grating normal.
	3.	The frequency range of a modulating signal from a Michelson interferometer with $V_m = 0.2 \text{ cm/s}$ and $\lambda = 16 \mu m$.
		0. 250 TE
		c. 500 Hz d. 5000 Hz
	4.	CH ₄ (methane) is a:
		a. Prolate symmetric top b. Asymmetric top
		c. Spherical top d. Oblate symmetric top
	5.	Which of the following statement is correct?
		a. H ₂ molecule can show microwave rotational spectrum.
		b. H ₂ molecule can show infrared vibrational spectrum.
		c. H ₂ molecule can show vibrational-Raman spectrum.
		d. H ₂ molecule can show rotational-Raman spectrum.
	6.	For anharmonic oscillator model, the overtone energy is expressed in cm ⁻¹ as:
		a. $\overline{\omega}_e(1-2x_e)$ b. $2\overline{\omega}_e(1-2x_e)$
		c. $2\overline{\omega}_e(1-3x_e)$ d. $\overline{\omega}_e(1-3x_e)$
	7.	The total No. of fundamental vibrational bending modes available for a non-linear molecule:
		a. 3N-5 b. 3N-6
		c. 2N-5 d. 2N-6
	8.	The line separation in a rotational-Raman fine structure for a linear molecule will be:
		a. B (5J+4) b. B (4J+6)
		c. B $(4J+5)$ d. B $(6J+4)$
	9.	In a polarization experiment, N2O molecule shows a very strong/polarized Raman band at 1285 cm ⁻¹ . The band will
		be a:
		a. Symmetric stretching mode. b. Asymmetric stretching mode.
		c. In-plane bending mode. d. Out of-plane bending mode.
	10	For a several electron molecular system, the orbital angular momentum $(A)=I$; the spin angular momentum $(\Sigma)=I$.

The corresponding term symbol will be:

a. ${}^{1}\Sigma_{0}$ b. ${}^{1}\Pi_{0}$

c. ${}^{3}\Pi_{2}$ d. ${}^{3}\Delta_{0}$

	Hairie,	
	Roll No:	
	PART B- Match the following (5 x $1 = 5$ Marks):	
	11. (a) Photon (b) H ₂ O (c) Overtone (d) ΔJ = +1	(i) Simple harmonic (ii) Anharmonic (iii) R-branch (iv) Rotational-Raman
	(c) $\Delta J = +2$	(v) Transverse wave (vi) Longitudinal wave (vii) P-branch (viii) Symmetric top (ix) Vibrational-Raman (x) Asymmetric top
Q.\ Q.> Q.3	 (a) What is the absorbance? (b) Calculate the molar extinction coefficient. (c) Rotational-vibrational spectrum of CO (calculate the approximate rotational constant B. 14. For linear polyatomic molecules, ΔJ = 0 is principal axis. Why? 15) How many fundamental vibrational modes Raman active? 16. At higher vibrational quantum number 'ν', Justify this statement and show it pictorially. 	$0\% (0.1)$ for a 10^{-t} molar solution in a l cm quartz cuvette. The rbon monoxide shows a separation ($\Delta \bar{v}$) of 55 cm ⁻¹ at 300 l is allowed in the case of vibrational modes perpendicular to the sare available to CHCl ₃ (chloroform)? How many of them at the quantum and classical picture merge for a molecular system.
Q.	PART D- Descriptive type (2 x 5 = 10 Marks): 17. (a) What are Stokes and Anti-Stokes lines in Ram (b) Show that: $v_{spec} = v_{ex} \pm v_{vib}$ (if $E = E_0 sin$ (c) What are the fundamental Raman and infrared	$2\pi v_{ex}t$) and define the Stokes and Anti-Stokes.

(b) What are the FOUR possible situations to get a vibrational progression due to Franck-Condon principle?

(d) What are the TWO major factors controlling the intensity of an electron transition other than Franck-Condon

(c) Is (0,0) transition is possible in a molecular electronic excitation? Why?

18. (a) What is Franck-Condon principle?

Represent it pictorially.

[PTO]

Name:

PART E- Numerical problems (3 x 5 = 15 Marks):

The vibrational wavenumbers of the following molecules in their v = 0 states are: HCl: 2885 cm⁻¹; DCl: 1990 cm⁻¹; D₂: 2990 cm⁻¹ and HD: 3627 cm⁻¹. Calculate the energy change in *kJ/mol.*, of the reaction,

and determine whether energy is liberated or absorbed in this isotope exchange reaction.

(20) Vibrational-Raman bands of CCI4 (carbon tetrachloride) is given below. Stokes and anti-Stokes lines are represented - δ and + δ , respectively.

(a) How many fundamental vibrational modes are available for CCl₄. Represent them in the form of a table given below:

ACCUPATION OF THE PARTY OF THE				And the second s	
Mode	Frequency (cm ⁻¹)	Degeneracy	Description	IR active	Raman active

- (b) For temperature 20°C and 40°C, calculate the ratio of intensity of Stokes and anti-Stokes lines for CCl₄ at (i)
- 218 cm⁻¹ and (ii) 459 cm⁻¹. (Hint: use Maxwell-Boltzmann distribution law)
- (c) Raman band at 790 cm⁻¹ is not a fundamental mode. Guess what it would be?
- 21. The value of $\overline{\omega_e}$ and x_e in the ground state (${}^3\Pi_u$) and a particular excited state (${}^3\Pi_g$) of C_2 are:

	ū,	X,
Ground state	1641-4 cm -1	7-11 × 10-
Excited state	1788-2 cm -1	9-19 × 10-

Use the equation; $v_{max} = \frac{1}{2x_e} - 1$, to find the number of vibrational energy levels below the dissociation limit and hence the ground state dissociation energy (D_0'') of C_2 extracted from both ground state and exited state.

Name:

Important Formulae and universal constants:

1.
$$\varepsilon_I = BJ(J+1)$$
; $B = \frac{h}{8\pi^2 Ic}$

2. SHO,
$$\overline{\omega_{obs}} = \frac{1}{2\pi\epsilon} \sqrt{\frac{k}{\mu}}$$

3. Anharmonic;
$$\varepsilon_{\nu} = \left(\nu + \frac{1}{2}\right)\omega_{e} - x_{e}\left(\nu + \frac{1}{2}\right)^{2}\omega_{e}$$

4. Maxwell-Boltzmann distribution;

Rotational:
$$J_{max} = \sqrt{\frac{\kappa_B T}{2 h e B}} - \frac{1}{2}$$

Rotational-vibrational: $v_{max} = \omega_0 \pm 2B \sqrt{\frac{k_B T}{2hcB}} + \frac{1}{2}$

$$5. h = 6.626 * 10^{-34} Js$$

$$6. k_B = 1.38 * 10^{-23} J/K$$

7.
$$c = 2.998 * 10^8 m/s$$