

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 1 по курсу «Моделирование»

на тему: «Функции распределения и плотности вероятности некоторых случайных величин» Вариант \mathbb{N} 11

Студент	ИУ7-73Б (Группа)	 (Подпись, дата)	Марченко В. (И. О. Фамилия)
Преподав	атель	(Подпись, дата)	— Рудаков И. В. (И. О. Фамилия)

СОДЕРЖАНИЕ

1	Задачи на лабораторную работу					
2	Теоретическая часть					
	2.1	Равномерное распределение	4			
	2.2	Распределение Эрланга	4			
3	Прі	имеры работы программы	6			

1 Задачи на лабораторную работу

Изучить два закона распределения случайной величины: равномерный и Эрланга. Разработать программу для построения графиков функции распределения и плотности вероятности равномерной случайной величины и случайной величины, распределенной по закону Эрланга.

2 Теоретическая часть

2.1 Равномерное распределение

Говорят, что случайная величина имеет равномерное распределение на отрезке $[a,\ b]$, где $a,\ b\in\mathbb{R}$, если ее плотность вероятности $f_X(x)$ имеет вид:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & x \in [a, b], \\ 0, & x \notin [a, b]. \end{cases}$$
 (2.1)

Функция распределения имеет вид:

$$F_X(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x < b, \\ 1, & x \ge b. \end{cases}$$
 (2.2)

Обозначение равномерно распределенной случайной величины: $X \sim U[a,\ b].$

2.2 Распределение Эрланга

Распределение Эрланга представляет собой двухпараметрическое непрерывное распределение вероятностей при $x \in [0, \infty)$. Два параметра: положительное целое число k (т. н. «форма») и положительное действительное число λ (т. н. «интенсивность»). Иногда вместо параметра λ используют т. н. «масштаб» $\beta = \frac{1}{\lambda}$.

Плотность вероятности распределения Эрланга:

$$f_X(x; k, \lambda) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{(k-1)!}, x, \lambda \ge 0.$$
 (2.3)

Если вместо λ использовать β , то плотность вероятности будет иметь вид:

$$f_X(x; k, \beta) = \frac{x^{k-1}e^{-\frac{x}{\beta}}}{\beta^k(k-1)!}, x, \beta \ge 0.$$
 (2.4)

Функция распределения случайной величины:

$$F_X(x; k, \lambda) = \frac{\gamma(k, \lambda x)}{\Gamma(k)} = \frac{\gamma(k, \lambda x)}{(k-1)!},$$
 (2.5)

где Γ — гамма-функция, а γ — нижняя неполная гамма-функция.

Обозначение случайной величины, распределенной по закону Эрланга: $X \sim \operatorname{Erlang}(k,\ \lambda).$

Распределение Эрланга было разработано А. К. Эрлангом для определения количества телефонных звонков, которые могут быть совершены одновременно операторам коммутационных станций. Эта работа по организации телефонного трафика была расширена и теперь используется в системах массового обслуживания в целом. Распределение также используется в области случайных процессов.

3 Примеры работы программы

На рисунках 3.1–3.3 показаны графики функции распределения и плотности вероятноси равномерно распределенной случайной величины при различных параметрах a и b.

Рисунок 3.1 – Функция распределения и плотность вероятности равномерно распределенной случайной величины при a=-1 и b=1

Рисунок 3.2 — Функция распределения и плотность вероятности равномерно распределенной случайной величины при a=5 и b=7

Рисунок 3.3 – Функция распределения и плотность вероятности равномерно распределенной случайной величины при a=4.5 и b=5.7

На рисунках 3.4–3.7 показаны графики функции распределения и плотности вероятноси случайной величины, распределенной по закону Эрланга при различных параметрах k и λ .

Рисунок 3.4 — Функция распределения и плотность вероятности случайной величины, распределенной по закону Эрланга при k=1 и $\lambda=0.5$

Рисунок 3.5 – Функция распределения и плотность вероятности случайной величины, распределенной по закону Эрланга при k=3 и $\lambda=0.5$

Рисунок 3.6 – Функция распределения и плотность вероятности случайной величины, распределенной по закону Эрланга при k=7 и $\lambda=2$

Рисунок 3.7 — Функция распределения и плотность вероятности случайной величины, распределенной по закону Эрланга при k=9 и $\lambda=1$