Big Data Processing and Analytics:

Course Introduction

Instructor: Dr. Mehmet S. Aktaş

About the Course

2018 – Spring Semester – BLM-4821

- Instructor: Dr. Mehmet S. Aktaş
- Thursday 14:00-17:00, D011

Course Logistics

Textbooks:

- 1) Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012 (2nd Edition)
- 2) Tom White, "Hadoop: The Definitive Guide", O'Reilly Media,
 2015 (3rd Edition)
- 3) Donald Miner, Adam Shook, "MapReduce Design Patterns", 2012

Course materials

You should check the website regularly

Logistics: Communication

- For e-mailing us, always use:
 - ytu.ce.blm4821@gmail.com

Purpose of the Course

- Big Data Processing Knowledge:
 - To introduce you basic big data processing concepts
- Computer Science Skills:
 - To do literature survey, read research papers, present a paper in the class

Course Plan

- I will give the basics on big data processing
 - Overview big data processing concepts
 - Discuss research related issues

- You are expected to
 - Attend the class (70% attendance required)
 - Understand the basic big data mining concepts
 - Read research papers, present a paper in the class
 - Read the studied chapters and do the homework(s)/project(s)

What will we learn?

Course introduction, Big Data Example, Revisit useful technologies

Part 0

Introduction to Big Data

Part 1

 Massive Data Analysis with MapReduce

Part 2

Data
 Retrieval and
 Exchange

Simple examples, How MapReduce works, Advanced case studies, and features

Data flow management, NoSQL data storage, Data exchange, semi-structured data model

This Class: BLM-4821

- This class overlaps with machine learning, statistics, artificial intelligence, databases but more stress on
 - Scalability (big data)
 - Algorithms
 - Computing architectures
 - Automation for handling large data

Course Outline (tentative)

- Introduction to Big Data
- Map Reduce
- Big Data Topics
 - Finding Similar Items
 - Link Analysis
 - Frequent Itemsets
 - Recommendation Systems

Grading Policy (tentative)

Attendance : 5%

Midterm : 30%

Term Project: 25%

Final: 40%

Course Schedule (tentative)

- February, March
 - Overview of big data processing concepts
 - Midterm exam
- April
 - Big data processing concepts
 - Class term project presentations
 - Last day for classes
- May
 - Class term project presentations
 - Final exam