CS 360 Lab 1

Name:

Lab 1 tasks (all in Scheme) Part 1 (3 points) Access Lab 1 code you tested in the preparation for Lab 1. Review specification examples provided inside files concat.scm, length.scm, numints.scm, order.scm.
(i) Load the file <i>member-insert.scm</i> Run tests of the <i>member, insert</i> functions. Provide specifications for the <i>member</i> and <i>insert</i> functions.
(ii) Load the file <i>maxmin.scm</i> Run tests of the <i>maxmin</i> function. Provide specifications for the <i>maxmin</i> function.
(iii) Load the file <i>msort.scm</i> Run tests of the <i>msort</i> function. Provide specifications for the <i>msort</i> function.
Show the results to the TA: (initials) You may open another session (keeping your current session active and available for reviewing) and proceed with the further work on Lab 1 if the TA is currently not available.
Part 2 (3 points) Implement in Scheme the following functions. Run several tests on each of them.
(i) Non-tail and tail recursive implementation of <i>n</i> !
(ii) Non-tail and tail recursive implementation of 2 ⁿ

(iii) Apply composition formula (define (compose gf) (lambda (x) ($g(fx)$))) (from section 6 of Intro to Scheme) in order to construct $2^{n!}$ (for both, non-tail and tail recursive implementations of functions of (i), (ii)).
Show the results to the TA: (initials) You may open another session (keeping your current session active and available for reviewing) and proceed with the further work on Lab 1 if the TA is currently not available.
Part 3 (4 points) Implement in Scheme the following functions. Run several tests on each of them.
(i) The Matlab language supports a convenient notation for specifying ranges of numbers. The notation start:step:end denotes the range of integers start, start+step, start+2*step,,start+n*step, where n is the largest integer such that start+n*step ≤ end and start+(n+1)*step > end. Note that the range may be empty if start > end. Write a scheme function (range (start step end)), which returns the list of integers equal to start:step:end . Example: (range '(0 2 7)) => (0 2 4 6), (range '(2 2 0)) => () (ii) The Maple computer algeba system has a command seq(f, i = mn, step) , which returns the sequence fm,fn, where fi is the expression f with all occurrences of the symbol i replaced by the numeric value of i in the sequence of integers from m to n. Implement a scheme function (seq f (start step end)), and produces a list of values (f(start),f(start+step),,f(start+n*step)), where n is the largest integer such that start+n*step ≤ end and start+(n+1)*step > end. Example: (seq (lambda (x) (* x x)) '(0 2 7)) => (0 4 16 36)
Show the results to the TA: (initials) You may open another session (keeping your current session active and available for reviewing) and proceed with the further work on Lab 1 if the TA is currently not available.
Part 4 (extra credit, 3 points) Implement in Scheme a recursive function computing binomial coefficients (slide 13 of Week 1 Part 2 displays the C code).
Show the results to the TA: (initials)