① Given
$$|\Psi\rangle = a|0\rangle + B|1\rangle k$$

 $|\Psi^*\rangle = B^*|0\rangle - a^*|1\rangle$.

Frove that they are arthrigoral & find a unitary matrix B such that it transform 14> to 10> & 14+> to 11>.

$$\frac{\Delta m}{\langle +^* | + \rangle} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \times \begin{bmatrix} +^* \rangle = \begin{bmatrix} \beta^* \\ -\alpha^* \end{bmatrix}.$$

$$= \begin{bmatrix} \beta \\ -\alpha \end{bmatrix} = \begin{bmatrix} \beta^* \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

$$= \alpha \beta - \alpha \beta \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}.$$

$$= 0.$$

So, 14> & 14*> are orthogonal.

Now,
$$|Y\rangle = |X|0\rangle + |B|1\rangle$$

 $|Y^*\rangle = |B^*|0\rangle - |A^*|1\rangle$
Now, $|A\rangle = |A\rangle$
 $|A\rangle = |A\rangle$

Now, as we have $|a|^{\gamma}+|\beta|^{\gamma}=1$, then each coloumn of A are orthonormal, then A is unitary. Let inverse of $A = A^* = B$ (say). Then B will be also unitary.

$$\begin{array}{lll}
\mathsf{B} &=& \mathsf{A}^* &=& \mathsf{A}^* & \mathsf{B}^* \\
\mathsf{B} &=& \mathsf{A}^* &=& \mathsf{A}^* &=& \mathsf{A}^* \\
\mathsf{A} &=& \mathsf{A}^* &=& \mathsf{A}^* &=& \mathsf{A}^* \\
\mathsf{A} &=& \mathsf{A}^* &=& \mathsf{A}^* &=& \mathsf{A}^$$

2) Prove that the quantum bits cannot be closed.

Am:

Suppose there is an unitary matrix U which does the copying procedure. In mathematical sense it can be expressed as U(14>1e>) = 14>14>, 1e> is a normalise

state.

As U is unitary then we know $UU^* = I = U^*U$. Where U^* is the complex conjugate from pose of U. Suppose 14> & 14> are two pure states & the copying procedure is happening for this two things.

Then we have
$$U(14>1e) = 14>14> -0$$

 $U(14>1e) = 14>14> -2$

NOW, We will take inner product between 0 & 0.

$$\langle e|\langle \phi|U^*U|\psi\rangle|e\rangle = \langle \phi|\langle \phi||\psi\rangle|\psi\rangle.$$

$$\Rightarrow$$
 $\langle \phi | \psi \rangle \langle e | e \rangle = [\langle \phi | \psi \rangle]^{\nu}$

=>
$$\langle \phi | \Psi \rangle = [\langle \phi | \Psi \rangle]^{2}$$
 [: $\langle e | e \rangle = 1$ an $| e \rangle = 1$ $| e \rangle = 1$ in mormalised].

Then 3 becomen
$$g = n^{\gamma} \Rightarrow n(n-1) = 0$$
.
 $\Rightarrow n = 0 \text{ as } n = 1$.

So, we have $\langle \phi | \Psi \rangle = 0$ or $\langle \phi | \Psi \rangle = 1$. This weams that only if the pure states form an arthonormal basis then, only the cloning is possible atherwise mot.

Hence in general cloning is not possible for qubits.

3 Make a presentation on dense voding.

<u>Aw</u> :

- · Superdence coding, also referred to as dense coding is a quantum communication protocol to communicate a number of classical bits of information by only transmitting a smaller number of qubits, under the assumption of sender & received pre-sharing an entangled resource.
- In this protocol it involves two parties, Alice & Bob, which share a pair of maximally entangled qubits & allows Alice to transmit two bits (i.e. one of 00, 01, 10 or 11) to Bob by sending only one qubit.

Overview:

- · Suppose Alice wants to send two clamical bit of information (00,01,10 or 11) to Bob using quaits (instead of classical bits).
- To do this, an Bell State is prepared using Bell circuit & then sends one of this qubit to Alice & other to Bob.
- Once Alice obtains her quoit state she applies a certain quantum gate to her quoit depending on which two-bit message (00,01,10 or 11) she wants to send to Bob.
- · Her entangled qubit is then sent to Bub who, after applying the appropriate quantum gate & making a measurement, can retrieve the classical two-bit message.

Protocol:

Preparation: The protocol starts with the preparation of an entangled state, which is bater shared between Alice & Bob.

$$\begin{array}{c|c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} \frac{1}{J_2} \left(10_A O_B \right) + 11_A 1_B \right). \end{array}$$

By the Bell current the Bell state $|+\rangle = \frac{1}{12} \left(|0_A 0_B\rangle + |1_A 1_B\rangle \right)$ is prepared Shaving: After the preparation of $|+\rangle$, the qubit denoted by subscript A is sent to Alive & the qubit denoted by subscript B is sent to Bob.

Encoding: By applying a quntum gare Alice can transform the entangled state (+> into any of the four Bell states (including 1+>).

- 1. If Alice wants to send two clarical bit 00 to Rob, then she applier $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ gate to her qubit & she have $|B_{00}\rangle = \frac{1}{\sqrt{2}} \left(|O_A O_B\rangle + |1_A 1_B\rangle \right)$
- 2. To send clarrical two bit 01 she applier $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{ gate to her qubit & she have } |B_{01}\rangle = \frac{1}{\sqrt{2}} \left(|1_{A} \circ B\rangle + |0_{A} \circ 1_{B}\rangle \right).$
- 3. To send the clamical bit 10 she applies $Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ quantum gate to her qubit & she have

4. If Alice wants to send clamical bit 11, the applies,
$$Z*X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

quantum gate to her qubit & she have $|B_{II}\rangle = \frac{1}{\sqrt{2}} \left(|O_A 1_B\rangle - |1_A O_B\rangle \right).$

Sending: After having performed one of the operation in the Encuding stage, Alice now send her entangled qubit to Bob. i.e. Alice will send one of {Boo, Bo1, B10, B11} as she wants to send oo, 01, 10 or 11 respectively.

Decoding: After receiving the quantum entangled state Boo, Boi, Bio ar Bii, Bob will first apply CNOT gate with A as control qubit & B as target qubit & then $H \otimes I$ unitary operation on the entangled qubit A.

I f Boo is received after applying above unitary oper ation Bob will get $|00\rangle$. $|B_{00}\rangle = \frac{1}{\sqrt{2}} \left(|0_A 0_B\rangle + |1_A 1_B\rangle \right)$.

After CNOT: $\frac{1}{\sqrt{2}} \left(\left| O_A O_B \right\rangle + \left| 1_A O_B \right\rangle \right).$

After HØI:

$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{10}{A} + \frac{11}{A} \right) \frac{10}{B} + \frac{1}{\sqrt{2}} \left(\frac{10}{A} - \frac{11}{A} \right) \frac{10}{B} \right).$$

$$= \frac{1}{2} \left[|O_A O_B\rangle + |1_A O_B\rangle + |0_A O_B\rangle - |1_A O_B\rangle \right].$$

= (OAOB).

Then Bob knows Alice wants to send 00 clamical bit

2. If Bo, is received after applying above unitary operation Bob will get $|01\rangle$. $|B_{01}\rangle = \frac{1}{\sqrt{2}} \left(|O_A 1_B\rangle + |1_A O_B\rangle \right)$.

After CNOT: $\frac{1}{\sqrt{2}} \left(|0_A 1_B\rangle + |1_A 1_B\rangle \right)$.

After HØI:

$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{10}{4} + \frac{11}{4} \right) \frac{11}{8} + \frac{1}{\sqrt{2}} \left(\frac{10}{4} - \frac{11}{4} \right) \frac{11}{8} \right)$$

$$= \frac{1}{2} \left[|O_A 1_B\rangle + |1_A 1_B\rangle + |0_A 1_B\rangle - |1_A 1_B\rangle \right].$$

= (OA 1B>.

Then Bob knows Alice wants to send 01 clamical bit

3. If B10 is received after applying above unitary operation Bob will get 110>.

After CNOT:
$$\frac{1}{\sqrt{2}} \left(\left| O_A O_B \right\rangle - \left| 1_A O_B \right\rangle \right)$$
.

After H&I:

$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{10}{A} + \frac{11}{A} \right) \frac{10}{B} - \frac{1}{\sqrt{2}} \left(\frac{10}{A} - \frac{11}{A} \right) \frac{10}{B} \right)$$

$$= \frac{1}{2} \left[|O_A O_B\rangle + |1_A O_B\rangle - |O_A O_B\rangle + |1_A O_B\rangle \right].$$

Then Bob knows Alice wants to send 10 clamical bit

4. If B_{11} is received after applying above unitary open ation Bob will get $|11\rangle$.

After CNOT:
$$\frac{1}{\sqrt{2}} \left(10_A 1_B \right) + \left(1_A 1_B \right)$$

After HØI:

$$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{10}{A} + \frac{11}{A} \right) \frac{11}{B} + \frac{1}{\sqrt{2}} \left(\frac{10}{A} - \frac{11}{A} \right) \frac{11}{B} \right)$$

$$= \frac{1}{2} \left[|O_A I_B\rangle + |I_A I_B\rangle + |O_A I_B\rangle - |I_A I_B\rangle \right].$$

Then Bob knows Alice wants to send of clamical bit