Amendments to the Claims

The following listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (Currently Amended) A method for determining a response to administration of a cancer chemotherapeutic or chemopreventive agent to an individual, comprising:
- (a) collecting a first tissue or cell sample from the individual before exposing the individual to the <u>cancer</u> chemotherapeutic or chemopreventive agent;
- (b) collecting a second tissue or cell sample from the individual after exposing the individual to the <u>cancer</u> chemotherapeutic or chemopreventive agent;
- (c) immunohistochemically staining the first and second tissue or cell samples using with one or a multiplicity of stains that are either X-Gal, a detectably-labeled antibody directed against a biological marker associated with senescence, apoptosis or terminal differentiation, or both X-Gal and a detectably-labeled antibody directed against a biological marker, wherein said biological marker is p21, p27, p16, TGF-β, or SA-β-Gal;
- (d) measuring the optical density of the stained cells as in step (c), wherein the stained cells are illuminated with light having a wavelength absorbed by the stain;
- (e) determining whether expression of the biological marker associated with senescence, apoptosis or terminal differentiation was increased following exposure to the <u>cancer</u> chemotherapeutic or chemopreventive agent.
- 2. (Original) The method of claim 1, wherein the detectable label is a chromagen or a fluoraphore.

3. (Canceled)

4. (Original) The method of claim 1, wherein the amount of biological marker protein is determined by ELISA assay.

5. (Original) The method of claim 1, wherein optical density of the stained cells is

performed by image analysis.

6. (Previously Presented) The method of claim 5, wherein image analysis is

performed by splitting a signal comprising the optical density of the stained cells into a

multiplicity of signals that are processed using optical filters having different absorption and

transmittance properties, so that each signal is specific for one of a multiplicity of stains used to

stain the cells.

3