

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2018-2019

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas y responder razonadamente a las cuestiones de la opción elegida.

Para la realización de esta prueba se puede utilizar calculadora, siempre que no tenga NINGUNA de las características siguientes: posibilidad de transmitir datos, ser programable, pantalla gráfica, almacenamiento de datos alfanuméricos, operaciones con matrices, cálculo de determinantes, cálculo de derivadas, cálculo de integrales o resolución de ecuaciones. Cualquiera que tenga alguna de estas características será retirada.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Se consideran las siguientes matrices

$$A = \begin{pmatrix} k & 1 & 2 \\ 1 & 4 & 3 \\ 0 & 0 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 3 \end{pmatrix} \quad \text{y} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- a) Obténgase el valor de la constante k para que el determinante de la matriz A-2B sea nulo.
- b) Determínese si las matrices C y ($C^t \cdot C$), donde C^t denota la matriz traspuesta de C, son invertibles. En caso afirmativo, calcúlense las inversas.

Ejercicio 2. (Calificación máxima: 2 puntos)

Una voluntaria quiere preparar helado artesano y horchata de auténtica chufa para un rastrillo solidario. La elaboración de cada litro de helado lleva 1 hora de trabajo y la elaboración de un litro de horchata 2 horas. Como la horchata no necesita leche, sabe que puede preparar hasta 15 litros de helado con la leche que tiene. Para que haya suficiente para todos los asistentes, tiene que preparar al menos 10 litros entre helado y horchata, en un máximo de 20 horas.

- a) Represéntese la región del plano determinada por las restricciones anteriores.
- b) Si el beneficio por litro es de 25 euros para el helado y 12 euros para la horchata, obténgase la cantidad de cada producto que se deberá preparar para maximizar el beneficio y calcúlese el beneficio máximo que podría obtenerse.

Ejercicio 3. (Calificación máxima: 2 puntos)

La derivada de una función real de variable real, f(x), viene dada por la expresión:

$$f'(x) = 2x^2 - 4x - 6$$

- a) Obténgase la expresión de la función f(x) sabiendo que pasa por el punto (0,3).
- b) Determínense los extremos relativos de la función f(x) indicando si corresponden a máximos o mínimos relativos y estúdiese la concavidad (\bigcup) y convexidad (\bigcap) de esta función.

Ejercicio 4. (Calificación máxima: 2 puntos)

Sean A y B dos sucesos de un experimento aleatorio tales que P(A) = 0'6, P(B) = 0'8 y $P(A \cap \overline{B}) = 0'1$.

- a) Calcúlese la probabilidad de que ocurra el suceso A si no ha ocurrido el suceso B y determínese si los sucesos A y \overline{B} son independientes. \overline{B} denota el complementario del suceso B.
- b) Obténgase la probabilidad de que ocurra alguno de los dos sucesos, A o B.

Ejercicio 5. (Calificación máxima: 2 puntos)

El precio mensual de las clases de Pilates en una región se puede aproximar mediante una variable aleatoria con distribución normal de media μ euros y varianza 49 euros².

- a) Seleccionada una muestra aleatoria simple de 64 centros en los que se imparte este tipo de clases, el precio medio mensual observado fue de 34 euros. Obténgase un intervalo de confianza al 99'2 % para estimar el precio medio mensual, μ , de las clases de Pilates.
- b) Determínese el tamaño muestral mínimo que debería tener una muestra aleatoria simple para que el error máximo cometido en la estimación de la media sea como mucho de 3 euros, con una confianza del 95 %.

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el siguiente sistema de ecuaciones lineales dependiente de un parámetro real *m*:

$$\left. \begin{array}{rcl}
 -x + y + z & = & 0 \\
 x + my - z & = & 0 \\
 x - y - mz & = & 0
 \end{array} \right\}$$

- a) Determínense los valores del parámetro real m para que el sistema tenga soluciones diferentes a la solución trivial x = y = z = 0.
- b) Resuélvase el sistema para m = 1.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real:

$$f(x) = \frac{8}{x^2 + 4}$$

- a) Determínense los intervalos de crecimiento y decrecimiento de f(x) y obténganse sus asíntotas verticales y horizontales, si las tuviese.
- b) Obténgase la ecuación de la recta tangente a la gráfica en el punto de abscisa x = 2.

Ejercicio 3. (Calificación máxima: 2 puntos)

La función real de variable real, f(x), se define según la siguiente expresión:

$$f(x) = \begin{cases} e^{x} + k & \text{si } x \leq 0, \\ 1 - x^{2} & \text{si } 0 < x \leq 3, \\ \frac{1}{x - 3} & \text{si } x > 3. \end{cases}$$

- a) Analícese la continuidad de la función en todo su dominio según los valores de k.
- b) Considerando k = 0, obténgase el área del recinto acotado delimitado por la función f(x), el eje de abscisas y las rectas x = -1 y x = 1.

Ejercicio 4. (Calificación máxima: 2 puntos)

De un estudio realizado en una región, se deduce que la probabilidad de que un niño de primaria juegue con consolas de videojuegos más tiempo del recomendado por los especialistas es 0'60. Entre estos niños, la probabilidad de fracaso escolar se eleva a 0'30 mientras que, si no juegan más tiempo del recomendado, la probabilidad de fracaso escolar es 0'15. Seleccionado un niño al azar de esta región,

- a) Obténgase la probabilidad de que tenga fracaso escolar.
- b) Si tiene fracaso escolar, determínese cuál es la probabilidad de que no juegue con estas consolas más tiempo del recomendado.

Ejercicio 5. (Calificación máxima: 2 puntos)

El peso de las mochilas escolares de los niños de 5° y 6° de primaria, medido en kilogramos, puede aproximarse por una variable aleatoria con distribución normal de media μ kilogramos y desviación típica $\sigma = 1'5$ kilogramos. a) En un estudio se tomó una muestra aleatoria simple de dichas mochilas escolares y se estimó el peso medio utilizando un intervalo de confianza del 95 %. La amplitud de este intervalo resultó ser 0'49 kilogramos.

Obténgase el número de mochilas seleccionadas en la muestra.

b) Supóngase que μ = 6 kilogramos. Seleccionada una muestra aleatoria simple de 225 mochilas escolares, calcúlese la probabilidad de que el peso medio muestral supere los 5'75 kilogramos, que es la cantidad máxima recomendada para los escolares de estos cursos.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

OI CION A
Ejercicio 1. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de la matriz A-2B
Cálculo correcto del determinante
Cálculo correcto de la constante
Apartado (b): 1 punto.
Justificación de que C no es invertible
Justificación de que C ^T C sí es invertible
Obtención correcta de la inversa
Ejercicio 2. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Representación correcta de la región factible
Obtención correcta de los vértices
Apartado (b): 1 punto.
Encontrar el punto de valor máximo (abscisa y ordenada)0,75 puntos
Determinar el máximo de la función
Ejercicio 3. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto
Cálculo correcto de la primitiva
Determinación correcta de la constante
Apartado (b): 1 punto
Obtención de los extremos
Determinación correcta de los máximos y mínimos relativos 0,25 puntos.
Obtención correcta de la segunda derivada
Obtención de los intervalos de concavidad y convexidad 0,25 puntos
Ejercicio 4. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Estudio de la dependencia o independencia
Apartado (b): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Ejercicio 5. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de $z_{\alpha/2}$
Expresión correcta de la fórmula del intervalo de confianza0,25 puntos.
Determinación correcta del intervalo
Apartado (b): 1 punto.
Cálculo correcto de $z_{\alpha/2}$
Expresión correcta de la fórmula del error
Determinación correcta del tamaño mínimo de la muestra
Determination correcta del tamano minimo de la muestra

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto del determinante de la matriz de coeficientes
y de los valores críticos
Discusión correcta
Apartado (b): 1 punto.
Solución correcta del sistema
Ejercicio 2. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Expresión correcta de la derivada
Obtención de los intervalos de crecimiento y decrecimiento
Justificación de ausencia de asíntota vertical
Obtención de la asíntota horizontal
Apartado (b): 1 punto
Expresión correcta de la ecuación de la recta tangente
Obtención correcta de la pendiente de la recta tangente
Ecuación correcta de la recta tangente
Ejercicio 3. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto de la condición de continuidad
Cálculo correcto de los límites laterales
Discusión correcta en función del parámetro
Apartado (b): 1 punto.
Planteamiento correcto de la integral y los límites de integración 0,25 puntos.
Cálculo correcto de la integral indefinida
Cálculo correcto de la integral definida
Ejercicio 4. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Apartado (b): 1 punto.
Planteamiento correcto de la probabilidad
Cálculo correcto de la probabilidad
Ejercicio 5. (Puntuación máxima: 2 puntos)
Apartado (a): 1 punto.
Cálculo correcto de $z_{\alpha/2}$
Expresión correcta de la fórmula del error
Determinación correcta del tamaño de la muestra
Apartado (b): 1 punto.
Expresión de la distribución de la media muestral
Tipificación correcta de la variable
Obtención correcta de la probabilidad
F