

Spectral Clustering for Community Detection

- [1] A tutorial on spectral clustering, Ulrike von Luxburg, Stat Comput (2007)
- [2] Covariate-assisted spectral clustering, Binkiewicz, Norbert, Joshua T. Vogelstein, and Karl Rohe, *Biometrika* (2017)
- [3] Spectral clustering-based community detection using graph distance and node attributes, Tang, F., Wang, C., Su, J., & Wang, Y. Computational Statistics (2020)

Presenter: Guihong Wan, Nov/2020

Outline

- Introduction
 - Problem setup and notations
 - Graph Laplacians and basic properties
- Spectral clustering
 - Algorithms
 - Evaluation
- Spectral clustering-based community detection
 - CASC
 - DCFI

Introduction

Problem setup

Given an undirected, weighted graph G(V,E)

Goal: find a partition of nodes such that

1. edges between different groups have low weights;

2. edges within a group have high weights.

 It has been used to cluster graph nodes using functions of the adjacency matrix.

Notations

An undirected, weighted graph G(V,E)

- Nodes: $V = \{v_1, ..., v_n\}$.
- Weighted adjacency matrix : W, edge between v_i and v_j carries $w_{ij} \ge 0$.
- Degree matrix: D with degrees d_i on the diagonal.
- The subset of nodes: $A \subset V$
- Consider two ways of measuring the size of a subset $A \subset V$:

|A| := the number of vertices in A $vol(A) := \sum_{i \in A} d_i$

$$6 + 5 + 6 + 1 = 18$$

Notations (cont.)

- A subset A_i is a connected component if
 - 1. it is connected
 - 2. if there are no connections between nodes in A_i and A_i .
- The sets A_1, \dots, A_k form a partition of the graph if
 - 1. $A_i \cap A_j = \emptyset$;
 - $2. A_1 \cup \cdots \cup A_k = V.$

Graph Laplacians

The main tools for spectral clustering are graph Laplacian matrices.

- Unnormalized graph Laplacian: L = D W
 - the smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1.
 - L has n non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \lambda_n$.
 - Number of connected components: the number of 0 eigenvalues.

Graph Laplacians (cont.)

Number of connected components: the number of 0 eigenvalues.

(0, 1, 2, 3, 4)

(0, 0, 1.5, 2.7, 3.9)

Graph Laplacians (cont.)

Consider the case of k connected components

Assume that the nodes are ordered according to the connected components they belong to, then

- L has a block diagonal form;
- Each L_i is a graph Laplacian of the connected component.

$$L = egin{pmatrix} L_1 & & & & & \\ & L_2 & & & & \\ & & \ddots & & & \\ & & & L_k \end{pmatrix}$$

L has as many eigenvalues 0 as there are connected components, and the corresponding eigenvectors are the indicator of the connected components.

Graph Laplacians (cont.)

Normalized graph Laplacians:

$$L_{\text{sym}} := D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$$

$$L_{rw} := D^{-1} L$$

- λ is an eigenvalue of L_{rw} with eigenvector v iff v solve the generalized eigenproblem $Lv = \lambda Dv$;
- Number of connected components: number of 0 eigenvalues.

Spectral Clustering

Spectral Clustering Algorithms

Algorithm 1: using unnormalized Laplacian

- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of L.
- ullet Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \dots, v_k as columns.
- ullet For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of V .
- ullet Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1,\ldots,A_k with $A_i=\{j|\ y_j\in C_i\}$.

Three main steps:

- 1. Compute Laplacian
- 2. Compute V
- 3. Run kmeans on V

Algorithm 2: using normalized Laplacian L_{rw}

- ullet Compute the unnormalized Laplacian L.
- Compute the first k eigenvectors v_1, \ldots, v_k of the generalized eigenproblem $Lv = \lambda Dv$.
- ullet Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \dots, v_k as columns.
- ullet For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of V .
- ullet Cluster the points $(y_i)_{i=1,\ldots,n}$ in \mathbb{R}^k with the k-means algorithm into clusters C_1,\ldots,C_k .

Output: Clusters A_1,\ldots,A_k with $A_i=\{j|\ y_j\in C_i\}$.

Algorithm 3: using normalized Laplacian L_{sym}

- ullet Compute the normalized Laplacian $L_{ exttt{sym}}.$
- Compute the first k eigenvectors v_1, \ldots, v_k of $L_{ ext{sym}}$.
- ullet Let $V \in \mathbb{R}^{n imes k}$ be the matrix containing the vectors v_1, \dots, v_k as columns.
- ullet Form the matrix $U\in\mathbb{R}^{n imes k}$ from V by normalizing the row sums to have norm 1, that is $u_{ij}=v_{ij}/(\sum_k v_{ik}^2)^{1/2}$.
- ullet For $i=1,\ldots,n$, let $y_i\in\mathbb{R}^k$ be the vector corresponding to the i-th row of U .
- ullet Cluster the points $(y_i)_{i=1,\dots,n}$ with the k-means algorithm into clusters C_1,\dots,C_k .

Output: Clusters A_1,\ldots,A_k with $A_i=\{j|\ y_j\in C_i\}$.

- All three algorithms look rather similar, apart from the fact that they use different graph Laplacian L, L_{rw}, L_{sym}
- The main trick is to use y_i to represent each node.

Three main steps:

- 1. Compute Laplacian;
- 2. Compute V ← first k eigenvectors;
- 3. Run k-means on rows of V.

$$V_{n imes k} = \begin{bmatrix} u_{11} & \cdots & u_{k1} \\ \vdots & \ddots & \vdots \\ u_{1n} & \cdots & u_{kn} \end{bmatrix}$$
 ors;

First k eigenvectors

With $w_{ij} = 1$ for all drawn edges we have:

$$W = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$W = \begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

$$u_0 = (0.37796, 0.46291, 0.37796, 0.46291, 0.37796, 0.37796)$$

$$u_1 = (-0.44514, -0.32202, -0.44514, 0.32202, 0.44514, 0.44514)$$

$$y_1 \quad y_2 \quad y_3 \quad y_4 \quad y_5 \quad y_6$$

Normalized cuts

Consider a partition of the graph nodes into two disjoint subsets: S^+ and S^- .

The weight of the cut that separates S^+ and S^- is given by:

$$C(S^+, S^-) = \sum_{i \in S^+, j \in S^-} w_{ij}$$

A minimal cut will typically cut out a node in the outliers, Intuitively we would like to compute a partition into two "large" subsets.

Normalized cuts (cont.)

A minimal cut will typically cut out a node in the outliers, Intuitively we would like to compute a partition into two "large" subsets.

Normalized cuts (cont.)

Recall: $vol(A) := \sum_{i \in A} d_i$ Intuitively, we would like to partition the graph into subsets of large volume.

Here are two possible functions that measure that:

$$N_h(S^+, S^-) = \min\{vol(S^+), vol(S^-)\},\$$
 $N_b(S^+, S^-) = \frac{1}{\frac{1}{vol(S^+)} + \frac{1}{vol(S^-)}}.$

Normalized cuts (cont.)

$$N_h(S^+, S^-) = \min\{vol(S^+), vol(S^-)\},\$$
 $N_b(S^+, S^-) = \frac{1}{\frac{1}{vol(S^+)} + \frac{1}{vol(S^-)}}.$

Using
$$N_h: h(S^+, S^-) = \frac{C(S^+, S^-)}{N_h(S^+, S^-)}$$

Using
$$N_b$$
: $b(S^+, S^-) = \frac{C(S^+, S^-)}{N_b(S^+, S^-)}$

We would like to compute partition which minimizes h or b. Both cases are known to be NP-hard.

Spectral clustering for community detection

Spectral clustering for community detection

If data matrix $X = (x_1, ..., x_n)$ is given (not graph), we can construct graph using pairwise similarities, e.g.,

the Gaussian similarity function $s(x_i, x_j) = \exp(-\frac{||x_i - x_j||^2}{2\sigma^2})$.

If graph G(E, V) is given and is attributed (X), like social networks, then X is not used in previous algorithms.

Several algorithms are proposed to utilize both the graph structure W and the feature matrix X.

Covariate-assisted spectral clustering (CASC)

The key idea in CASC is to use the augmented Laplacian defined as: $\hat{L} = LL + \alpha XX^T$

The influence of the attributes on the communities is adjusted by the tuning parameter α .

Spectral clustering-based community detection using graph distance and node attributes (DCFI)

The key idea in DCFI is to detect communities by fusing the two sources of information.

Define distance matrix on X as:

 $W_X = \{w_X(i,j), 0 \le i, j \le n\}$, where $w_X(i,j) = w_X(j,i)$ is the distance between x_i and x_j .

Rewrite adjacency matrix as: W_G .

DCFI (cont.)

Using W_G and W_X ,

define graph distance as:

$$S_G = \exp\{-\frac{W_G \odot W_G}{\sigma_1^2}\}$$

define similarity matrix as:

$$S_X = \exp\{-\frac{W_X \odot W_X}{\sigma_2^2}\}$$

where \odot is element-wise product operator, σ_1 controls the rate of decay, σ_2 is a parameter in the Gaussian similarity function determining the width of the neighborhoods.

DCFI (cont.)

Group nodes into K clusters with objective function: normalized cut,

• on graph structure:
$$Ncut(G) = \sum_{k=1}^{K} \frac{\sum_{i \in C_k} \sum_{j \notin C_k} s_G(i, j)}{\sum_{i \in C_k} \sum_{j=1}^{n} s_G(i, j)}$$

• on attributes:
$$Ncut(X) = \sum_{k=1}^{K} \frac{\sum_{i \in \mathcal{C}_k} \sum_{j \notin \mathcal{C}_k} s_X(i,j)}{\sum_{i \in \mathcal{C}_k} \sum_{j=1}^{n} s_X(i,j)}$$

DCFI algorithm

- 1: Compute S_G by Eq. (2) and compute its Laplacian matrix L_G ;
- 2: Select orthonormal eigenvectors corresponding to the K largest eigenvalues of L_G in absolute value and write $U_G = [U_G(1), \ldots, U_G(K)];$
- 3: Normalize each row of $U_G = \{u_G(i,j); 1 \le i \le n, 1 \le j \le K\}$ to have unit norm and write $U_G^* = \{u_G^*(i,j)\}$ with $u_G^*(i,j) = u_G(i,j) / \sum_{j=1}^K u_G(i,j)$;

initialize $\overrightarrow{\alpha}^{(0)}$;

for t = 1, 2...;

- 4: Compute the similarity matrix $S_X^{(t)}$ by Eqs. (3), (4), and compute $L_X^{(t)}$;
- 5: Select orthonormal eigenvectors $U_X^{(t)}(1), \ldots, U_X^{(t)}(K)$ corresponding to the K largest eigenvalues of $L_X^{(t)}$ and write $U_X^{(t)} = [U_X^{(t)}(1), \ldots, U_X^{(t)}(K)];$
- 6: Normalize each row of $U_X^{(t)} = \{u_X^{(t)}(i,j); 1 \le i \le n, 1 \le j \le K\}$ to have unit norm and write $U_X^{(t)*} = \{u_X^{(t)*}(i,j)\}$ with $u_X^{(t)*}(i,j) = u_X^{(t)}(i,j) / \sum_{j=1}^K u_X^{(t)}(i,j);$

Concatenate U_G^* and U_X^*

- 7: Perform K-means on $[U_G^*, U_X^{(t)*}] \in \mathbb{R}^{n \times 2K}$ to obtain $Z^{(t)}$;
- 8: Optimize $\overrightarrow{\alpha}^{(t)}$ by Eq. (7), given $Z^{(t)}$ in step 7;
- 9: Repeat steps 4–8 until the objective functions equations (5) and (6) converge.

DCFI (cont.)

Feature selection: integrate a general attribute weighting mechanism by rewriting the similarity measure between x_i and x_j :

$$s_X(i, j) = \exp \left\{ -\frac{\sum_{l=1}^m \alpha_l(w_X^{(l)}(i, j))^2}{\sigma_2^2} \right\}$$

 α_l : represents the weight of the l^{th} feature, $w_X^{(l)}(i,j)$: denotes the distance between x_i and x_j along the l^{th} feature.

DCFI Experimental results

Fig. 9 a The world trade network with nodes colored by continent; red is N. America, green is Asia, blue is Europe, purple is Africa and yellow is S. America. **b**–**f** Estimated results by different methods; colors are mated to **a** in the best way possible (colour figure online)

Thank you!