

JEA Analysis on Grid and Energy Systems Integration

Simon Müller
Analyst, Renewable Energy Division

Renewables and Energy Systems Integration, 8 September, Golden, CO

The Grid Integration of Variable Renewables Project - GIVAR

- Third project phase
 - 7 case studies covering 15 countries, >50 in-depth interviews
 - Technical flexibility assessment with revised IEA FAST tool 2.0
 - **Detailed economic modelling** at hourly resolution

Interaction is key

Properties of variable renewable energy (VRE)

Flexibility of other power system components

Variable

1 km

Uncertain

sec Non-synchronous

Location constrained

Modularity

Low short-run cost

Grids

Generation

Storage

Demand Side

© OECD/IEA 2014

Main persistent challenge: Balancing

Higher uncertainty

Larger and more pronounced changes

Main persistent challenge: Utilisation

Netload implies different utilisation for non-VRE system

Note: Load data and wind data from Germany 10 to 16 November 2010, wind generation scaled, actual share 7.3%. Scaling may overestimate the impact of variability; © OECD/IEA 2014 5 combined effect of wind and solar may be lower, illustration only.

Three pillars of system transformation

Technology spread

> Geographic spread

> > Design of power plants

System friendly VRE

Operations

ETP Systems Integration Analysis

Changing energy system paradigms

Today's energy system paradigm is based on a unidirectional energy delivery philosophy

ETP 2014

ETP Systems Integration Analysis

Changing energy system paradigms

A sustainable energy system is a smarter, multidirectional and integrated system that requires long-term planning for services delivery

ETP 2014

Electricity and thermal systems

Opportunities for deep integration

Source: Linking heat and electricity systems: Co-generation and DHC solutions for a clean energy future. IEA, 2014.

Future heat/electricity analytical work

- Holistic assessment of flexibility options with detailed timeresolved system models
 - E.g. demand response from heat pumps with heat storage/flexible district heating)

- Heat mapping to evaluate global economic potential for DH
 - Spatial distribution of heat demand based on bottom-up projections
 - Part of energy system scenarios looking at all technology options for heating buildings

ETP 2016:

A Tale of Sustainable Cities

Source: UN DESA, 2012

Global urban populations are growing rapidly, and with them demand for energy in cities

- simon.mueller@IEA.org
- iea.org/topics/renewables

© OECD/IEA 2014 1