Length Contraction

Derivation of the length contraction formula from the time dilation formula, using the light path reflected of f mirror \mathbf{M}_{\parallel} which is offset from the light source parallel to the direction of motion (example has v = c/2)

event 0: send light pulse

light source at t_0

event 1: bounce at mirror M_{\parallel} (moving along x axis)

event 2: receive light pulse (also send next light pulse)

light source at t_2

mirror \mathbf{M}_{\parallel} is ahead of event 0 in the direction of motion S' moves at speed v in the +x direction relative to S let $\Delta t'$ be S' time from event 0 to event 2 = one S' clock tick let $\Delta x'_{\parallel}$ be S' (proper) distance from event 0 to $\mathbf{M}_{\parallel} = c \, \Delta t'/2$ let Δx_{\parallel} be instantaneous S distance from event 0 to \mathbf{M}_{\parallel} let Δt be S time from event 0 to event 2 = one S clock tick let Δt_{01} be S time from event 0 to event 1 let Δt_{12} be S time from event 1 to event 2

S distance from event 0 to event
$$1 = c\Delta t_{01} = \Delta x + v\Delta t_{01}$$

 $\Delta x_{\parallel} = \Delta t_{01}(c-v)$ $\Delta t_{01} = \Delta x_{\parallel}/(c-v)$ $\Delta t_{12} = \Delta t - \Delta t_{01}$

S distance from event 0 to event $2 = v\Delta t = c\Delta t_{01} - c\Delta t_{12}$ $v\Delta t = c\Delta t_{01} - c(\Delta t - \Delta t_{01}) = 2c\Delta t_{01} - c\Delta t$ $\Delta t(c+v) = 2c\Delta t_{01} = 2c\Delta x_{\parallel}/(c-v)$ $\Delta x_{\parallel} = \Delta t(c+v)(c-v)/(2c) = \Delta t(c^2-v^2)c/(2c^2)$

use time dilation formula:
$$\Delta t = \gamma \Delta t'$$

 $\Delta x_{\parallel} = \gamma \Delta t'(c^2 - v^2) c/(2c^2) = \gamma (c \Delta t'/2)(1 - v^2/c^2) = \gamma \Delta x_{\parallel}' \gamma^{-2} = \Delta x_{\parallel}' / \gamma$

Generalize to any $\Delta x'$ length moving relative to S

$$\Delta x = \Delta x'/\gamma$$

 $\gamma \geq 1 \Rightarrow$ length contraction as seen by S frame: S length Δx is less than S' length $\Delta x'$ (by a factor of γ in the direction of motion) S sees S' rulers to be shorter than S rulers (by a factor of γ in the direction of motion)