A PAIR OF INEQUALITIES FOR THE SUMS OF THE MEDIANS AND SYMMEDIANS OF A TRIANGLE

by MIRCEA LASCU, Zalău, România

In this note A, B, C denote the vertices of a triangle, a, b, c the sides and (m_a, m_b, m_c) , (w_a, w_b, w_c) and (s_a, s_b, s_c) the medians, angle-bisectors, and symmetrians, respectively. It is well-known (see [1].8.20) that

$$w_a + w_b + w_c \le m_a + m_b + m_c \tag{1}$$

Our aim is to establish an inverse inequality to (1). We define

$$\Omega = \frac{1}{2}(|a-b| + |b-c| + |c-a|) = \max(a,b,c) - \min(a,b,c).$$

Theorem. In every triangle

$$s_a + s_b + s_c \le m_a + m_b + m_c \le s_a + s_b + s_c + 2\Omega.$$
 (2)

$$m_a + m_b + m_c \le w_a + w_b + w_c + \Omega. \tag{3}$$

Equalities holds if and only if the triangle is equilateral.

Proof. Taking into account that $\frac{m_a}{s_a} = \frac{b^2 + c^2}{2bc}$ one finds that $m_a \ge s_a$, with equality if and only if b = c. Therefore

$$s_a + s_b + s_c \le m_a + m_b + m_c \tag{4}$$

with equality for a = b = c.

Let $m_a = AA_1$, $w_a = AA_2$, $s_a = AA_3$. According to the theorem of Steiner

$$\frac{BA_3}{A_3C} = \frac{c^2}{b^2}$$
; hence, $BA_3 = \frac{ac^2}{b^2 + c^2}$.

In the same manner

$$A_3C = \frac{ab^2}{b^2 + c^2}.$$

Therefore, in the triangle AA_1A_3 we find that

$$0 \le m_a - s_a \le |A_1 A_3| = \frac{a|b^2 - c^2|}{2(b^2 + c^2)}.$$

Since $a(b+c) < (b+c)^2 \le 2(b^2+c^2)$, we obtain

$$\frac{a|b^2 - c^2|}{2(b^2 + c^2)} \le |b - c|,$$

with equality if and only if b = c. This implies

$$m_a - s_a \le |b - c|$$

hence

$$m_a + m_b + m_c - (s_a + s_b + s_c) \le |a - b| + |b - c| + |c - a|.$$
 (5)

From (4) and (5), we conclude (2). Observe that the equality occurs if and only if the triangle is equilateral.

In order to prove (3), let us consider the triangle AA_1A_2 . We have

$$A_1 A_2 = \frac{a|b-c|}{2(b+c)}$$

which together with a < b + c implies

$$m_a - w_a \le |A_1 A_2| \le \frac{|b - c|}{2}$$

with equality only when b = c. In conclusion,

$$m_a + m_b + m_c - (w_a + w_b + w_c) \le \frac{1}{2}(|a - b| + |b - c| + |c - a|)$$

and the theorem is proved.

Using same technique one can prove that the following inequality:

$$g_a + g_b + g_c + \Omega \ge n_a + n_b + n_b$$

where g_a , g_b , g_c and n_a , n_b , n_c denote the Gergonne cevians and the Nagel cevians respectively.

References

[1] BOTTEMA O., DJORDJEVIC R. Z., JANICR R., MITRINOVIC D. S., VASIC P. M.: Geometric Inequalities, Wolters - Noordhoff Publishing House, Groningen, 1969