Chapter One

General Solution Method of Higher Order Linear Differential Equation with Constant Coefficient

The general form of higher order linear differential equation with constant coefficient is,

Here, a_0 , a_1 , a_2 , ..., a_n are constants.

Note That: If Q(x) = 0 in equation (1), then the differential is called higher order homogeneous linear differential equation with constant coefficient.

Solution Method:

To solve higher order differential equations we divide the equations into two parts and then find solutions from that parts. Then finally we obtain the general solutions.

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n = 0$$
 Part one $Q(x)$ Part two

Finding solution from part one:

$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} \frac{dy}{dx} + a_n = 0$$
 -----(2)

Let $y = e^{mx}$ is the trial solution of equation(2), then auxiliary equation will be

$$a_0m^n + a_1m^{n-1} + a_2m^{n-2} + \dots + a_{n-1}m + a_n = 0$$
 -----(3)

If we solve equation (3), depending on the values of m the following three cases arises,

Case 1: (Roots of eqn (3) are real and unequal):

If $m = \alpha_1, \alpha_2, \dots, \alpha_n$ are real and unequal, then the particular solution of eqn (2) is

$$y_p = C_1 e^{\alpha_1 x} + C_2 e^{\alpha_2 x} + \dots + C_n e^{\alpha_n x}$$

Case 2: (Roots of eqn (3) are real and equal):

If $m = \alpha_1, \alpha_2, \dots, \alpha_n$ are real and equal, then the particular solution of eqn (2) is

$$y_p = (C_1 + C_2 x + C_3 x^2 + \dots + C_n x^n) e^{\alpha x}$$

Case 3: (Roots of eqn (3) are imaginary):

If $m = \alpha_1 + i\beta_1, \alpha_2 + i\beta_2, \dots, \alpha_n + i\beta_n$ are imaginary, then the particular solution of eqn (2) is

$$y_p = (C_1 \cos \beta_1 x + C_2 \sin \beta_1 x) e^{\alpha_1 x} + (C_3 \cos \beta_2 x + C_4 \sin \beta_2 x) e^{\alpha_2 x} + \dots$$
$$\dots + (C_{n-1} \cos \beta_n x + C_n \sin \beta_n x) e^{\alpha_n x}$$

Note That: The solution we get from part one is known as particular solution.

Examples:

$$1)2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$$

$$2 \frac{d^3 y}{dx^3} + 3 \frac{d^2 y}{dx^2} + 3 \frac{dy}{dx} + y = 0$$

$$3)\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 25y = 0$$

4)
$$\frac{d^3y}{dx^3} - 4 \frac{d^2y}{dx^2} - 3 \frac{dy}{dx} + 18y = 0$$

Excercise:

Solve the following higher order differential equations:

1.
$$2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$$

2.
$$\frac{d^3y}{dx^3} + 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + y = 0$$

3.
$$\frac{d^2y}{dx^2} + 8\frac{dy}{dx} + 25y = 0$$

$$4. \quad \frac{d^4y}{dx^4} + 4y = 0$$

$$5. \quad \frac{d^3y}{dx^3} + 8y = 0$$

6.
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$$

7.
$$\frac{d^3y}{dx^3} - 3\frac{dy}{dx} + 2y = 0$$

8.
$$\frac{d^2s}{dt^2} + 8\frac{ds}{dt} + 25s = 0$$
, $t = 0$, $s = -4$, $\frac{ds}{dt} = 4$

9.
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$$
, $x = 0$, $y = 1$, $\frac{dy}{dx} = 0$

10.
$$\frac{d^2x}{dt^2} - 3\frac{dx}{dt} + 2x = 0$$
, $t = 0$, $x = 2$, $\frac{dx}{dt} = 0$