Design Step

1. Choose a parameter to test

• μ: The population mean of CVs from functioning sensors

2. Determine alternative hypothesis

• H_a :The population mean of CVs from functioning sensors is less than μ_0 ($\mu < \mu_0$)

3. Determine null hypothesis

•
$$H_0$$
: $\mu = \mu_0$

4. Normality check

- · Check frequency histogram
- Shapiro–Wilk test

5. Determine test statistic

•
$$t = \frac{\bar{X} - \mu}{s / \sqrt{n}} \sim t_{(n-1)}$$

6. Determine a rejection area

- Significance level: α
- $t \leq -t_{(n-1,\alpha)}$

If cannot reject H_0 , update μ_0 to a different value

Experiment Step

8. Determining rejecting H_0

- If $t \le -t_{(n-1,\alpha)}$, then reject H_0 in favor of H_a .
- Otherwise, cannot reject H₀

7. Collect sample data and calculate the statistic

•
$$\bar{y} = \frac{\sum_{m} \sum_{n} y_{q} (m,n;M,N)}{m \times n}$$
 or $\frac{\sum_{m} \sum_{n} y_{k} (m,n;M,N)}{m \times n}$

•
$$t = \frac{\bar{y} - \mu_0}{s/\sqrt{n}}$$