GPU Gems 2

Programming Techniques for High-Performance Graphics and General-Purpose Computation

Edited by Matt Pharr

Randima Fernando, Series Editor

Contents

Forewordxxix Prefacexxxi Contributorsxxxv		
PART I GEOMETRIC COMPLEXITY	1	
Chapter 1 Toward Photorealism in Virtual Botany	7	
1.1 Scene Management 7 1.1.1 The Planting Grid 8 1.1.2 Planting Strategy 9 1.1.3 Real-Time Optimization 10 1.2 The Grass Layer 11 1.2.1 Simulating Alpha Transparency via Dissolve 13 1.2.2 Variation 15 1.2.3 Lighting 15		
1.2.4 Wind 17 1.3 The Ground Clutter Layer 17 1.4 The Tree and Shrub Layers 18 1.5 Shadowing 20 1.6 Post-Processing 22 1.6.1 Sky Dome Blooming 23 1.6.2 Full-Scene Glow 24		
1.7 Conclusion		

Contents

Chapter 2
Terrain Rendering Using GPU-Based Geometry Clipmaps27
Arul Asirvatham, Microsoft Research
Hugues Hoppe, Microsoft Research
2.1 Review of Geometry Clipmaps
2.2 Overview of GPU Implementation
2.2.1 Data Structures
2.2.2 Clipmap Size
2.3 Rendering
2.3.1 Active Levels
2.3.2 Vertex and Index Buffers
2.3.3 View Frustum Culling
2.3.4 DrawPrimitive Calls
2.3.5 The Vertex Shader
2.3.6 The Pixel Shader
2.4 Update
2.4.1 Upsampling
2.4.2 Residuals
2.4.3 Normal Map
2.5 Results and Discussion
2.6 Summary and Improvements
2.6.1 Vertex Textures
2.6.2 Eliminating Normal Maps
2.7 References
2./ References44
Chapter 3
Inside Geometry Instancing
Francesco Carucci, Lionhead Studios
3.1 Why Geometry Instancing?
3.2 Definitions
3.2.1 Geometry Packet
3.2.3 Geometry Instance
3.2.4 Render and Texture Context50
3.2.5 Geometry Batch50
Sconictly Datch

3.3	Implementation
	3.3.1 Static Batching54
	3.3.2 Dynamic Batching56
	3.3.3 Vertex Constants Instancing57
	3.3.4 Batching with the Geometry Instancing API 61
3.4	Conclusion
3.5	References
Chapte	r 4
Segme	nt Buffering
Jon Olick	
4.1	The Problem Space
	The Solution70
•	The Method
	4.3.1 Segment Buffering, Step 171
	4.3.2 Segment Buffering, Step 2
	4.3.3 Segment Buffering, Step 3
4.4	Improving the Technique72
4.5	Conclusion
4.6	References
Chapte	re
•	zing Resource Management with Multistreaming75
•	peller, Piranha Bytes
	•
Kurt Peiz	er, Piranha Bytes
5.1	Overview
5.2	Implementation77
	5.2.1 Multistreaming with DirectX 9.078
	5.2.2 Resource Management81
	5.2.3 Processing Vertices83
5.3	Conclusion
5.4	References90
Chapte	r 6
•	are Occlusion Queries Made Useful91
	Wimmer, Vienna University of Technology
	er, Vienna University of Technology
-	
	Introduction

6.3 W	What Is Occlusion Culling?93
_	lierarchical Stop-and-Wait Method94
	6.4.1 The Naive Algorithm, or Why Use Hierarchies at All?94
	6.4.2 Hierarchies to the Rescue!
	6.4.3 Hierarchical Algorithm95
	6.4.4 Problem 1: Stalls
	6.4.5 Problem 2: Query Overhead
6.5 C	Coherent Hierarchical Culling
	6.5.1 Idea 1: Being Smart and Guessing
	6.5.2 Idea 2: Pull Up, Pull Up
	6.5.3 Algorithm
	6.5.4 Implementation Details100
	6.5.5 Why Are There Fewer Stalls?
	6.5.6 Why Are There Fewer Queries?
	6.5.7 How to Traverse the Hierarchy104
6.6	Optimizations
	6.6.1 Querying with Actual Geometry
	6.6.2 Z-Only Rendering Pass105
	6.6.3 Approximate Visibility
	6.6.4 Conservative Visibility Testing106
6.7	Conclusion
6.8 R	References
Chapter 7	7
	Tessellation of Subdivision Surfaces with
-	
	ment Mapping109 unnell, NVIDIA Corporation
7.1 S	Subdivision Surfaces
	7.1.1 Some Definitions
	7.1.2 Catmull-Clark Subdivision110
	7.1.3 Using Subdivision for Tessellation111
	7.1.4 Patching the Surface112
	7.1.5 The GPU Tessellation Algorithm
	7.1.6 Watertight Tessellation
7.2 I	Displacement Mapping
	7.2.1 Changing the Flatness Test120
	7.2.2 Shading Using Normal Mapping120
7.3	Conclusion
	References

Chapter 8	
Per-Pixel Displacement Mapping with Distance Functions William Donnelly, University of Waterloo	123
8.1 Introduction	123
8.2 Previous Work	_
8.3 The Distance-Mapping Algorithm	
8.3.1 Arbitrary Meshes	
8.4 Computing the Distance Map	
8.5 The Shaders	130
8.5.1 The Vertex Shader	130
8.5.2 The Fragment Shader	130
8.5.3 A Note on Filtering	132
8.6 Results	132
8.7 Conclusion	134
8.8 References	135
PART II SHADING, LIGHTING, AND SHADOWS	137
Chapter 9	
Deferred Shading in <i>S.T.A.L.K.E.R</i>	1/12
Oles Shishkovtsov, GSC Game World	45
9.1 Introduction	
9.2 The Myths	
9.3 Optimizations	
9.3.1 What to Optimize	
9.3.2 Lighting Optimizations	
9.3.3 G-Buffer-Creation Optimizations	
9.3.4 Shadowing Optimizations	
9.4 Improving Quality	
9.4.1 The Power of "Virtual Position"	
9.4.2 Ambient Occlusion	_
9.4.3 Materials and Surface-Light Interaction	- 1
9.5 Antialiasing	
9.5.1 Efficient Tone Mapping	
9.5.2 Dealing with Transparency.	
9.6 Things We Tried but Did Not Include in the Final Code	
o 6 d Eleverion Mana	
9.6.1 Elevation Maps	163
9.6.1 Elevation Maps	163 163

Chapter 10
Real-Time Computation of Dynamic Irradiance
Environment Maps167
Gary King, NVIDIA Corporation
10.1 Irradiance Environment Maps167
10.2 Spherical Harmonic Convolution
10.3 Mapping to the GPU172
10.3.1 Spatial to Frequency Domain
10.3.2 Convolution and Back Again
10.4 Further Work
10.5 Conclusion
10.6 References
Chapter 11
Approximate Bidirectional Texture Functions
Jan Kautz, Massachusetts Institute of Technology
11.1 Introduction
11.2 Acquisition
11.2.1 Setup and Acquisition
11.2.2 Assembling the Shading Map179
11.3 Rendering
11.3.1 Detailed Algorithm
11.3.2 Real-Time Rendering
11.4 Results
11.4.1 Discussion
11.5 Conclusion
11.6 References
Chapter 12
Tile-Based Texture Mapping189
Li-Yi Wei, NVIDIA Corporation
12.1 Our Approach
12.2 Texture Tile Construction
12.3 Texture Tile Packing
12.4 Texture Tile Mapping195
12.5 Mipmap Issues
12.6 Conclusion
12.7 References

Chapter 13
mplementing the mental images Phenomena Renderer
on the GPU
Martin-Karl Lefrançois, mental images
13.1 Introduction
13.2 Shaders and Phenomena202
13.3 Implementing Phenomena Using Cg
13.3.1 The Cg Vertex Program and the Varying Parameters 205
13.3.2 The main () Entry Point for Fragment Shaders 207
13.3.3 The General Shader Interfaces
13.3.4 Example of a Simple Shader
13.3.5 Global State Variables211
13.3.6 Light Shaders
13.3.7 Texture Shaders
13.3.8 Bump Mapping
13.3.9 Environment and Volume Shaders
13.3.10 Shaders Returning Structures218
13.3.11 Rendering Hair
13.3.12 Putting It All Together220
13.4 Conclusion
13.5 References
Chapter 14
Dynamic Ambient Occlusion and Indirect Lighting223
Michael Bunnell, NVIDIA Corporation
14.1 Surface Elements
14.2 Ambient Occlusion
14.2.1 The Multipass Shadowing Algorithm
14.2.2 Improving Performance
14.3 Indirect Lighting and Area Lights
14.4 Conclusion
14.5 References

Chapter 15
Blueprint Rendering and "Sketchy Drawings"
Marc Nienhaus, University of Potsdam, Hasso-Plattner-Institute
Jürgen Döllner, University of Potsdam, Hasso-Plattner-Institute
15.1 Basic Principles
15.1.1 Intermediate Rendering Results236
15.1.2 Edge Enhancement
15.1.3 Depth Sprite Rendering237
15.2 Blueprint Rendering
15.2.1 Depth Peeling
15.2.2 Extracting Visible and Nonvisible Edges 241
15.2.3 Composing Blueprints241
15.2.4 Depth Masking242
15.2.5 Visualizing Architecture Using Blueprint Rendering 244
15.3 Sketchy Rendering
15.3.1 Edges and Color Patches
15.3.2 Applying Uncertainty
15.3.3 Adjusting Depth
15.3.4 Variations of Sketchy Drawing247
15.3.5 Controlling Uncertainty
15.3.6 Reducing the Shower-Door Effect
15.4 Conclusion
25.5 Actionecs
Chapter 16
Accurate Atmospheric Scattering253
Sean O'Neil
16.1 Introduction
16.2 Solving the Scattering Equations254
16.2.1 Rayleigh Scattering vs. Mie Scattering
16.2.2 The Phase Function256
16.2.3 The Out-Scattering Equation
16.2.4 The In-Scattering Equation
16.2.5 The Surface-Scattering Equation
16.3 Making It Real-Time
16.4 Squeezing It into a Shader260
16.4.1 Eliminating One Dimension
16.4.2 Eliminating the Other Dimension

THE REPORT OF THE PROPERTY OF

•.

16.5 Implementing the Scattering Shaders 262 16.5.1 The Vertex Shader 262 16.5.2 The Fragment Shader 264 16.6 Adding High-Dynamic-Range Rendering 265 16.7 Conclusion 266 16.8 References 267	
Chapter 17 Efficient Soft-Edged Shadows Using Pixel Shader Branching 2 Yury Uralsky, NVIDIA Corporation	:69
17.1 Current Shadowing Techniques 270 17.2 Soft Shadows with a Single Shadow Map. 271 17.2.1 Blurring Hard-Edged Shadows 271 17.2.2 Improving Efficiency 274 17.2.3 Implementation Details 277 17.3 Conclusion 281 17.4 References 282	
Chapter 18 Using Vertex Texture Displacement for Realistic Water Rendering	:83
18.1 Water Models 283 18.2 Implementation 284 18.2.1 Water Surface Model 284 18.2.2 Implementation Details 285 18.2.3 Sampling Height Maps 286 18.2.4 Quality Improvements and Optimizations 288 18.2.5 Rendering Local Perturbations 292 18.3 Conclusion 294 18.4 References 294	
Chapter 19 Generic Refraction Simulation2 Tiago Sousa, Crytek	:95
19.1 Basic Technique 296 19.2 Refraction Mask 297	

19.3 Examples 300 19.3.1 Water Simulation 300 19.3.2 Glass Simulation 303 19.4 Conclusion 305 19.5 References 305	
PART III HIGH-QUALITY RENDERING	307
Chapter 20	
Fast Third-Order Texture Filtering	. 313
Christian Sigg, ETH Zurich	
Markus Hadwiger, VRVis Research Center	
20.1 Higher-Order Filtering	
20.2 Fast Recursive Cubic Convolution315	
20.3 Mipmapping320	
20.4 Derivative Reconstruction	
20.5 Conclusion	
20.6 References	
Chapter 21	
High-Quality Antialiased Rasterization	. 331
Dan Wexler, NVIDIA Corporation	-
Eric Enderton, NVIDIA Corporation	
21.1 Overview331	
21.2 Downsampling	
21.2.1 Comparison to Existing Hardware and Software 334	
21.2.2 Downsampling on the GPU336	
21.3 Padding336	
21.4 Filter Details	,
21.5 Two-Pass Separable Filtering	
21.6 Tiling and Accumulation	ı
21.7 The Code	I
21.7.1 The Rendering Loop	'
21.7.2 The Downsample Class	
21.7.3 Implementation Details	
21.9 References	
344	•

Chapter 22	
Fast Prefiltered Lines	45
Eric Chan, Massachusetts Institute of Technology	
Frédo Durand, Massachusetts Institute of Technology	
22.1 Why Sharp Lines Look Bad345	
22.2 Bandlimiting the Signal347	
22.2.1 Prefiltering	
22.3 The Preprocess	
22.4 Runtime	
22.4.1 Line Setup (CPU)	
22.4.2 Table Lookups (GPU)	
22.5 Implementation Issues	
22.5.1 Drawing Fat Lines	
22.5.2 Compositing Multiple Lines	
22.6 Examples356	
22.7 Conclusion	
22.8 References	
Chapter 23	
Hair Animation and Rendering in the Nalu Demo	61
Hubert Nguyen, NVIDIA Corporation	61
_	61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry	61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362	61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry	61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364	; 61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367 23.2.3 Fins 368	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367 23.2.3 Fins 368 23.3 Hair Shading 369	;61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367 23.2.3 Fins 368 23.3 Hair Shading 369 23.3.1 A Real-Time Reflectance Model for Hair 369	;61
Hubert Nguyen, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367 23.2.3 Fins 368 23.3 Hair Shading 369 23.3.1 A Real-Time Reflectance Model for Hair 369 23.3.2 Real-Time Volumetric Shadows in Hair 375	; 61
Hubert Nguyen, NVIDIA Corporation William Donnelly, NVIDIA Corporation 23.1 Hair Geometry 362 23.1.1 Layout and Growth 362 23.1.2 Controlling the Hair 362 23.1.3 Data Flow 364 23.1.4 Tessellation 364 23.1.5 Interpolation 364 23.2 Dynamics and Collisions 366 23.2.1 Constraints 366 23.2.2 Collisions 367 23.2.3 Fins 368 23.3 Hair Shading 369 23.3.1 A Real-Time Reflectance Model for Hair 369	; 61

Chapter 24
Using Lookup Tables to Accelerate Color Transformations 383
Jeremy Selan, Sony Pictures Imageworks
24.1 Lookup Table Basics
24.1.1 One-Dimensional LUTs
24.1.2 Three-Dimensional LUTs
24.1.3 Interpolation
24.2 Implementation
24.2.1 Strategy for Mapping LUTs to the GPU 386
24.2.2 Cg Shader
24.2.3 System Integration
24.2.4 Extending 3D LUTs for Use with High-Dynamic-Range
Imagery390
24.3 Conclusion
24.4 References392
Chapter 25
GPU Image Processing in Apple's Motion393
Pete Warden, Apple Computer
25.1 Design393
25.1.1 Loves and Loathings
25.1.2 Pick a Language
25.1.3 CPU Fallback
25.2 Implementation
25.2.1 GPU Resource Limits
25.2.2 Division by Zero
25.2.3 Loss of Vertex Components400
25.2.4 Bilinear Filtering
25.2.5 High-Precision Storage
25.3 Debugging
25.4 Conclusion
25.5 References
Chapter 26
Implementing Improved Perlin Noise40
Simon Green, NVIDIA Corporation
26.1 Random but Smooth
26.2 Storage vs. Computation

(i) — () remove polición (d) principal contrato entratable de fila despresa contrato de destruito de principal que destruito de contrato de la contrato del contrato de la contrato del contrato de la contrato del la contrato de la contrato del la contrato de la contrato del la contrato

26.3	Implementation Details
26 /	Conclusion
	•
20.5	References
Chapte	·
Advand	ed High-Quality Filtering
	vosad, discreet
27.1	Implementing Filters on GPUs417
	27.1.1 Accessing Image Samples
	27.1.2 Convolution Filters
27.2	The Problem of Digital Image Resampling
•	27.2.1 Background423
	27.2.2 Antialiasing
	27.2.3 Image Reconstruction
27.3	Shock Filtering: A Method for Deblurring Images
	Filter Implementation Tips
	Advanced Applications
, ,	27.5.1 Time Warping
	27.5.2 Motion Blur Removal
	27.5.3 Adaptive Texture Filtering
27.6	Conclusion
-	References
Chapte	r 28
Mipma	p-Level Measurement
lain Can	tlay, Climax Entertainment
28.1	Which Mipmap Level Is Visible?438
	P. GPU to the Rescue
	28.2.1 Counting Pixels
	28.2.2 Practical Considerations in an Engine
	28.2.3 Extensions
28.3	Sample Results
-	4 Conclusion
	References 449

PART IV GENERAL-PURPOSE COMPUTATION ON GPUS: A PRIMER 451
Chapter 29 Streaming Architectures and Technology Trends 457 John Owens, University of California, Davis
29.1 Technology Trends 457 29.1.1 Core Technology Trends 458 29.1.2 Consequences 458
29.2 Keys to High-Performance Computing461
29.2.1 Methods for Efficient Computation461
29.2.2 Methods for Efficient Communication
29.2.3 Contrast to CPUs
29.3 Stream Computation464
29.3.1 The Stream Programming Model
29.3.2 Building a Stream Processor
29.4 The Future and Challenges468
29.4.1 Challenge: Technology Trends
29.4.2 Challenge: Power Management
29.4.3 Challenge: Supporting More Programmability and
Functionality469
29.4.4 Challenge: GPU Functionality Subsumed by CPU
(or Vice Versa)?
29.5 References
Chapter 30 The GeForce 6 Series GPU Architecture
Randima Fernando, NVIDIA Corporation
30.1 How the GPU Fits into the Overall Computer System
30.2 Overall System Architecture
30.2.1 Functional Block Diagram for Graphics Operations 473
30.2.2 Functional Block Diagram for Non-Graphics Operations 478
30.3 GPU Features
30.3.1 Fixed-Function Features481
30.3.2 Shader Model 3.0 Programming Model483
30.3.3 Supported Data Storage Formats
30.4 Performance

exceptions, and a lattice required the programme fraction in the state that the first interesting the state of the state o

30.5 Achieving Optimal Performance490
30.5.1 Use Z-Culling Aggressively
30.5.2 Exploit Texture Math When Loading Data
30.5.3 Use Branching in Fragment Programs Judiciously 490
30.5.4 Use fp16 Intermediate Values Wherever Possible
30.6 Conclusion
Chapter 31
Mapping Computational Concepts to GPUs49:
Mark Harris, NVIDIA Corporation
31.1 The Importance of Data Parallelism
31.1.1 What Kinds of Computation Map Well to GPUs? 494
31.1.2 Example: Simulation on a Grid
31.1.3 Stream Communication: Gather vs. Scatter
31.2 An Inventory of GPU Computational Resources497
31.2.1 Programmable Parallel Processors
31.3 CPU-GPU Analogies500
31.3.1 Streams: GPU Textures = CPU Arrays500
31.3.2 Kernels: GPU Fragment Programs = CPU "Inner Loops" 500
31.3.3 Render-to-Texture = Feedback501
31.3.4 Geometry Rasterization = Computation Invocation 501
31.3.5 Texture Coordinates = Computational Domain501
31.3.6 Vertex Coordinates = Computational Range502
31.3.7 Reductions
31.4 From Analogies to Implementation503
31.4.1 Putting It All Together: A Basic GPGPU Framework 503
31.5 A Simple Example 505
31.6 Conclusion
31.7 References508
Chapter 32
Taking the Plunge into GPU Computing509
an Buck, Stanford University
32.1 Choosing a Fast Algorithm
32.1.1 Locality, Locality, Locality
32.1.2 Letting Computation Rule
32.1.3 Considering Download and Readback512
32.2 Understanding Floating Point513
32.2.1 Address Calculation

32.3 Implementing Scatter. 515 32.3.1 Converting to Gather 515 32.3.2 Address Sorting 516 32.3.3 Rendering Points 518 32.4 Conclusion 518 32.5 References 519
Chapter 33 Implementing Efficient Parallel Data Structures on GPUs 521 Aaron Lefohn, University of California, Davis Joe Kniss, University of Utah John Owens, University of California, Davis
33.1 Programming with Streams 521 33.2 The GPU Memory Model 524 33.2.1 Memory Hierarchy 524 33.2.2 GPU Stream Types. 525 33.2.3 GPU-Based Data Structures 528 33.3.1 Multidimensional Arrays 528 33.3.2 Structures 534 33.3.3 Sparse Data Structures 535 33.4 Performance Considerations 540 33.4.1 Dependent Texture Reads 540 33.4.2 Computational Frequency 541 33.5 Conclusion 543 33.6 References 544
Chapter 34 GPU Flow-Control Idioms
34.2 Basic Flow-Control Strategies 549 34.2.1 Predication 549 34.2.2 Moving Branching up the Pipeline 549 34.2.3 Z-Cull 550 34.2.4 Branching Instructions 553 34.2.5 Choosing a Branching Mechanism 553 34.3 Data-Dependent Looping with Occlusion Queries 554 34.4 Conclusion 555

RELICIONAL PROPERTIES AND ADMINISTRATION AND ADMINI

Cont nt

An international designation of the contract o

Chapter 35	
GPU Program Optimization	557
Cliff Woolley, University of Virginia	,
35.1 Data-Parallel Computing557	
35.1.1 Instruction-Level Parallelism	
35.1.2 Data-Level Parallelism	
35.2 Computational Frequency	
35.2.1 Precomputation of Loop Invariants	
35.2.2 Precomputation Using Lookup Tables	
35.2.3 Avoid Inner-Loop Branching566	
35.2.4 The Swizzle Operator	
35.3 Profiling and Load Balancing568	
35.4 Conclusion	
35.5 References	
Chapter 36 Stream Reduction Operations for GPGPU Applications	573
36.1 Filtering Through Compaction	
36.1.1 Running Sum Scan	
36.1.2 Scatter Through Search/Gather 575	
36.1.3 Filtering Performance579	
36.2 Motivation: Collision Detection	
36.3 Filtering for Subdivision Surfaces	
36.3.1 Subdivision on Streaming Architectures	
36.4 Conclusion	
36.5 References	
PART V IMAGE-ORIENTED COMPUTING	591
Chapter 37	
Octree Textures on the GPU	ror
Sylvain Lefebvre, GRAVIR/IMAG – INRIA	フソフ
Samuel Hornus, GRAVIR/IMAG – INRIA	
Fabrice Neyret, GRAVIR/IMAG – INRIA	
37.1 A GPU-Accelerated Hierarchical Structure: The N³-Tree	
37.1.1 Definition	
37.1.2 Implementation598	

37.2	Application 1: Painting on Meshes
	37.2.1 Creating the Octree
	37.2.2 Painting604
	37.2.3 Rendering
	37.2.4 Converting the Octree Texture to a Standard 2D Texture 607
37.3	Application 2: Surface Simulation 611
	Conclusion
37.5	References
Chapte	2c x
•	uality Global Illumination Rendering Using
-	
	zation
Toshiya F	łachisuka, The University of Tokyo
38.1	Global Illumination via Rasterization
38.2	Overview of Final Gathering
	38.2.1 Two-Pass Methods
	38.2.2 Final Gathering
	38.2.3 Problems with Two-Pass Methods
38.3	Final Gathering via Rasterization621
	38.3.1 Clustering of Final Gathering Rays 621
	38.3.2 Ray Casting as Multiple Parallel Projection 623
38.4	Implementation Details625
	38.4.1 Initialization
	38.4.2 Depth Peeling
	38.4.3 Sampling627
	38.4.4 Performance
38.5	A Global Illumination Renderer on the GPU
	38.5.1 The First Pass628
	38.5.2 Generating Visible Points Data
	38.5.3 The Second Pass
	38.5.4 Additional Solutions
_	6 Conclusion
38.7	7 References
Chapte	or an
	Illumination Using Progressive Refinement Radiosity635
•	ombe, University of North Carolina at Chapel Hill
Mark Ha	rris, NVIDIA Corporation
39.	1 Radiosity Foundations636
-	39.1.1 Progressive Refinement

39.2 GPU Implementation	
39.2.1 Visibility Using Hemispherical Projection	
39.2.2 Form Factor Computation	
39.2.3 Choosing the Next Shooter	
39.3 Adaptive Subdivision	
39.3.1 Texture Quadtree	
39.3.2 Quadtree Subdivision	
39.4 Performance	
39.5 Conclusion	
39.6 References	
Chapter 40	
Computer Vision on the GPU)
ames Fung, University of Toronto	
40.1 Introduction	
40.2 Implementation Framework	
40.3 Application Examples	
40.3.1 Using Sequences of Fragment Programs for	
Computer Vision	
40.3.2 Summation Operations	
40.3.3 Systems of Equations for Creating Image Panoramas 658	
40.3.4 Feature Vector Computations	
40.4 Parallel Computer Vision Processing	
40.5 Conclusion	
40.6 References	
•	
Chapter 41	
Deferred Filtering: Rendering from Difficult Data Formats 667	,
oe Kniss, University of Utah	
Aaron Lefohn, University of California, Davis	
Nathaniel Fout, University of California, Davis	
41.1 Introduction	
41.2 Why Defer?	
41.3 Deferred Filtering Algorithm	
41.4 Why It Works	
41.5 Conclusions: When to Defer	
41.6 References	

Chapter 42 Conservative Rasterization	677
Lennart Ohlsson, Lund University	
42.1 Problem Definition 678 42.2 Two Conservative Algorithms 679 42.2.1 Clip Space 681 42.2.2 The First Algorithm 681 42.2.3 The Second Algorithm 683 42.3 Robustness Issues 686 42.4 Conservative Depth 687 42.5 Results and Conclusions 689 42.6 References 690	
PART VI SIMULATION AND NUMERICAL ALGORITHMS	691
Chapter 43 GPU Computing for Protein Structure Prediction Paulius Micikevicius, Armstrong Atlantic State University 43.1 Introduction 695 43.2 The Floyd-Warshall Algorithm and Distance-Bound Smoothing 697 43.3 GPU Implementation 698 43.3.1 Dynamic Updates 698 43.3.2 Indexing Data Textures 698 43.3.3 The Triangle Approach 699 43.4 Experimental Results 701 43.5 Conclusions and Further Work 701 43.6 References 702	
Chapter 44 A GPU Framework for Solving Systems of Linear Equations Jens Krüger, Technische Universität München Rüdiger Westermann, Technische Universität München 44.1 Overview	

Consideration of the control of the

44.3 Operations
44.3.1 Vector Arithmetic
44.3.2 Vector Reduce
44.3.3 Matrix-Vector Product710
44.3.4 Putting It All Together
44.3.5 Conjugate Gradient Solver
44.4 A Sample Partial Differential Equation
44.4.1 The Crank-Nicholson Scheme
44.5 Conclusion
44.6 References718
Chapter 45 Options Pricing on the GPU
45.1 What Are Options?
45.2 The Black-Scholes Model
45.3 Lattice Models
45.3.1 The Binomial Model
45.3.2 Pricing European Options
45.4 Conclusion
45.5 References
Chapter 46
Improved GPU Sorting733
Peter Kipfer, Technische Universität München
Rüdiger Westermann, Technische Universität München
46.1 Sorting Algorithms
46.2 A Simple First Approach
46.3 Fast Sorting
46.3.1 Implementing Odd-Even Merge Sort
46.4 Using All GPU Resources
46.4.1 Implementing Bitonic Merge Sort
46.5 Conclusion
46.6 References

Chapter 47 Flow Simulation with Complex Boundaries747
Wei Li, Siemens Corporate Research
Zhe Fan, Stony Brook University
Xiaoming Wei, Stony Brook University
Arie Kaufman, Stony Brook University
47.1 Introduction
47.2 The Lattice Boltzmann Method
47.3 GPU-Based LBM749
47.3.1 Algorithm Overview
47.3.2 Packing751
47.3.3 Streaming
47.4 GPU-Based Boundary Handling753
47.4.1 GPU-Based Voxelization
47.4.2 Periodic Boundaries
47.4.3 Outflow Boundaries756
47.4.4 Obstacle Boundaries
47.5 Visualization
47.6 Experimental Results760
47.7 Conclusion
47.8 References
Chapter 48
Medical Image Reconstruction with the FFT
Thilaka Sumanaweera, Siemens Medical Solutions USA
Donald Liu, Siemens Medical Solutions USA
48.1 Background
48.2 The Fourier Transform
48.3 The FFT Algorithm
48.4 Implementation on the GPU
48.4.1 Approach 1: Mostly Loading the Fragment Processor770
48.4.2 Approach 2: Loading the Vertex Processor, the Rasterizer,
and the Fragment Processor
48.4.3 Load Balancing
48.4.4 Benchmarking Results
48.5 The FFT in Medical Imaging
48.5.1 Magnetic Resonance Imaging
48.5.2 Results in MRI
48.5.3 Ultrasonic Imaging
48.6 Conclusion
48.7 References
Index

Cant nts