Image Analysis
Project 8QA01

Part 3 – Training classifiers

Dr. Veronika Cheplygina

Goal: Transform features to a score

- Binary label (yes/no)
- Continuous score (probability of cancer)

Q1: Age	 Q7: Color	New feature	,	P(canc
20	1	1.7		0
25	1	2.5		1
40	2	1.3		0
70	3	0.1		1

Use the features of existing data to train a classifier

Example classifier – Nearest mean classifier

- Represent each class by its average point
- Measure distances to "average red" and "average blue"

Example with 5 training points using 3 features

Class 1:

[3 4 4]

[5 5 2]

[1 6 3]

Test point:

[5 3 /4

Pause video to practice example!

Class 2:

[2 2 4]

[2 4 6]

Nearest mean classifier - Steps

- Model each class by its mean
 - [3 5 3] for class 1, [2 3 5] for class 2
- For the test point, calculate its distances to the class means
 - $-\sqrt{9}$ to class 1, $\sqrt{10}$ to class 2
- Find class with the smallest distance
 - Answer is class 1

Other classifiers:

- Nearest neighbor
- Decision tree
- Logistic regression
- ...

Neural networks are often used in practice, but for this project we will only look at using a few features, with a classifier that is easy to interpret

Normalize features before training your classifier

- Different features might have different scales, for example
 - Color between 1 and 5
 - Area between 1000 and 5000
- Features with larger scales will have more influence on the classifier
- Normalize features (for example to [0,1] interval]) to ensure each feature is equally important

What is a good classifier?

- We want to have good separation of the categories (low class overlap)
- It is always possible to design a (complex) classifier that perfectly separates your training data
- But, that classifier might overfit = not generalize to future data

What is a good classifier?

- Use different subsets of data for
 - Training
 - Validation (practice test set)
- Goal: similar performances training & validation sets
 - Bad: 100% training, 50% validation
 - Better: 75% training, 75% validation

What is a good classifier?

- When training & validation performances are similar, we expect similar performances on "true" test data
- Use a third subset, a.k.a. test set
 - External / future data
 - Only for reporting, do not change your classifier after