TRCCLAIMSET, Claim Tag Set Register

The TRCCLAIMSET characteristics are:

Purpose

In conjunction with <u>TRCCLAIMCLR</u>, provides Claim Tag bits that can be separately set and cleared to indicate whether functionality is in use by a debug agent.

For additional information, see the CoreSight Architecture Specification.

Configuration

AArch64 System register TRCCLAIMSET bits [31:0] are architecturally mapped to External register TRCCLAIMSET[31:0].

This register is present only when FEAT_ETE is implemented and FEAT_TRC_SR is implemented. Otherwise, direct accesses to TRCCLAIMSET are undefined.

The number of claim tag bits implemented is implementation defined. Arm recommends that implementations support a minimum of four claim tag bits, that is, SET[3:0] reads as <code>0b1111</code>.

Attributes

TRCCLAIMSET is a 64-bit register.

Field descriptions

63	62	61	60	59	58	57	56	55	54	53	52	5
SET[31]SET[30]	SET[29]	SET[28]	SET[27]	SET[26]	SET[25]	SET[24]	SET[23]	SET[22]	SET[21]	SET[20]	SET
31	30	29	28	27	26	25	24	23	22	21	20	1

Bits [63:32]

Reserved, res0.

SET[< m>], bit [m], for m = 31 to 0

Claim Tag Set. Indicates whether Claim Tag bit < m > is implemented, and is used to set Claim Tag bit < m > to 1.

|--|

0d0	On a read: Claim Tag bit <m> is not implemented.</m>
	On a write: Ignored.
0b1	On a read: Claim Tag bit
	<m> is implemented.</m>
	On a write: Set Claim Tag
	bit $<$ m $>$ to 1.

This bit reads-as-zero and ignores writes if m > the number of Claim Tag bits.

Access to this field is RAO/W1S.

Accessing TRCCLAIMSET

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TRCCLAIMSET

op0	op1	CRn	CRm	op2	
0b10	0b001	0b0111	0b1000	0b110	

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.TRCCLAIM == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = TRCCLAIMSET;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
```

MSR TRCCLAIMSET, <Xt>

op0	op1	CRn	CRm	op2	
0b10	0b001	0b0111	0b1000	0b110	

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPACR_EL1.TTA == '1' then
        AArch64.SystemAccessTrap(EL1, 0x18);
    elsif EL2Enabled() && CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.TRCCLAIM == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        TRCCLAIMSET = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && CPTR_EL3.TTA == '1' then
        UNDEFINED;
    elsif CPTR_EL2.TTA == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && CPTR_EL3.TTA == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions

Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.