Задача 0.1. Нека $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ е контекстносвободна граматика, в която всяко правило $A \to \alpha$ има свойството $|\alpha| \le 2$. Ако $G' = \langle \Sigma, \mathcal{N}, P', S \rangle$ е граматиката с правила:

$$P' = \{A \to \alpha \mid A \to \alpha \in P \ u \ \alpha \neq \varepsilon\}$$

$$\cup \{A \to B \mid \exists C(C \Rightarrow_G^* \varepsilon \& A \to BC)\}$$

$$\cup \{A \to B \mid \exists C(C \Rightarrow_G^* \varepsilon \& A \to CB)\}$$

 $mo \ \mathcal{L}(G') = \mathcal{L}(G) \setminus \{\varepsilon\} \ u \ |P'| \le 3|P|.$

Задача 0.2. Да се опише конструкция, която по дадена контекстносвободна граматика $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ построява контекстносвободна граматика $G' = \langle \Sigma, \mathcal{N}, P, S \rangle$, за която всяко правило $A \to \alpha$ от P има свойството $1 \le |\alpha| \le 2$.

Задача 0.3. Нека $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ е граматика, в която всяко правило $A \to \alpha$ има свойството $1 \le |\alpha| \le 2$. Нека $E = \{(A, B) \in \mathcal{N} \times \mathcal{N} \mid A \to B\}$.

- 1. Да се докаже, че в графа (\mathcal{N}, E) има път от A до B тогава и само тогава, когато $A \Rightarrow_C^* B$.
- 2. Да се докаже, че релацията $\equiv \subseteq \mathcal{N} \times \mathcal{N}$, за която за всеки два нетерминала A,B:

$$A \equiv B \iff^{def} A \Rightarrow_G^* B \ u \ B \Rightarrow_G^* A$$

е релация на еквивалентност.

- 3. Да се докаже, че ако $A \equiv B$, то за всяко $\alpha \in (\Sigma \cup \mathcal{N})^*$, $A \Rightarrow^* \alpha$ точно тогава, когато $B \Rightarrow^* \alpha$.
- 4. Нека $k=ind(\equiv)$ е индексът на релацията на еквивалентност на релацията $\equiv u$ $A_1=S,\ldots,A_k$ са представители на различните класове на еквивалентност на \equiv . $A\kappa o$:

$$\mathcal{N}' = \{A_i \mid i \le k\}$$

 $P'=\{A_i o lpha' \mid u$ ма $B o lpha \in P$, за което $B \equiv A_i \ u \ lpha'$ се получава от lpha като се замени всеки нетерминал с еквивалентния му от $\mathcal{N}'\} \setminus \{A_i o A_i \mid i \leq k\}$.

Да се докаже, че $G' = \langle \Sigma, \mathcal{N}', P', S \rangle$ е еквивалентна на G.

- 5. Ако $G' = \langle \Sigma, \mathcal{N}', P', S \rangle$ е от предишната подточка и $E' = \{(A_i, A_j) | A_i \to A_j \in P'\}$, да се докаже, че (\mathcal{N}', E') е ацикличен ориентиран граф.
- **Задача 0.4.** Нека $G = \langle \Sigma, \mathcal{N}, P, S \rangle$ е контекстносвободна граматика, в която всички правила имат дясна страна α с дължина 1 или 2. Да допуснем, че (\mathcal{N}, E) е ацикличен, където $E = \{(A, B) | A \to B \in P\}$.
 - 1. Да се докаже, че има нетерминал $A \in \mathcal{N}$, за който няма правило от вида $A \to B$ с $B \in \mathcal{N}$.
 - 2. Нека $A \in \mathcal{N}$ е нетерминал със свойството от точка 1. Да се докаже, че ако:

$$P' = P \setminus \{B \to A \in P \mid B \in \mathcal{N}\} \cup \{B \to \beta \mid A \to \beta \in P, B \to A \in P\},\$$

то $G' = \langle \Sigma, \mathcal{N}, P', S \rangle$ е еквивалентна на G.

3. Да се докаже, че има контекстносвободна граматика $G' = \langle \Sigma, \mathcal{N}, P', S \rangle$ с език $\mathcal{L}(G') = \mathcal{L}(G)$, за която всяко правило $A \to \alpha$ има вида $|\alpha| = 2$ или $\alpha \in \Sigma$.

Задача 0.5. Нека $G=\langle \Sigma, \mathcal{N}, P, S \rangle$, за която всяко правило $A \to \alpha$:

$$\alpha \in \mathcal{N} \circ \mathcal{N} \cup \Sigma$$
.

тоест дясната страна е или терминал, или два нетерминала.

Нека $w = a_1 \dots a_n$ е дума като $a_i \in \Sigma$ за всяко i. Ако за $i \leq j$ с $N_{i,j}$ означим множеството от нетерминали в \mathcal{N} , които извеждат w[i..j], да се докаже, че:

- 1. $N_{i,i} = \{ A \in \mathcal{N} \mid A \to a_i \in P \}.$
- 2. за $i < j, N_{i,j} = \{A \mid \exists k \exists B, C (i \le k < j \& A \to BC \in P \& B \in N_{i,k} \& C \in N_{k+1,j})\}.$
- 3. $S \in N_{1,n}$ тогава и само тогава, когато $w \in \mathcal{L}(G)$.

Забележка: Граматика, която удовлетворява предпоставките на горната задача, се казва, че е в нормална форма на Chomsky. Обрънете внимание, че задачи 1, 2, 3 и 4 показват, че за всяка контекстносвободна граматика G има¹ контекстносвободна граматика в нормална форма на Chomsky G' с език $\mathcal{L}(G') = \mathcal{L}(G) \setminus \{\varepsilon\}$.

Забележка: Задачата показва, че когато са изпълнени предпоставките за граматиката G принадлежността на w към $\mathcal{L}(G)$ може да бъде определена така:

- 1. Инициализираме $N_{i,i} = \{A \in \mathcal{N} \, | \, A \to a_i \in P\}.$
- 2. За всяко $\ell = 1$ до n 1, за всяко i = 1 до $n \ell$:

$$N_{i,i+\ell} = \bigcup_{k=0}^{\ell-1} \{A \mid \text{ има правило } A \to BC, \text{ за което } B \in N_{i,i+k} \& C_{i+k+1,j} \}.$$

3. Върни дали $S \in N_{1,n}$.

Този метод е известен като метод/алгоритъм на Cocke-Younger-Kasami.

 $^{^1}$ Ако има правила $A \to \sigma B$ или $A \to B \sigma$, или $A \to \sigma' \sigma''$, може да се добавят нови нетерминали A_σ за всяко $\sigma \in \Sigma$ с правила $A_\sigma \to \sigma$, а всяко правило, да кажем от вида $A \to \sigma B$ да се замени с $A \to A_\sigma B$.

Упътване 0.1. Първо, установете, че ако в извод $A \Rightarrow_{C'}^* \alpha$ е използвано едно правило от $P' \setminus P$, то този извод може да бъде модифициран до извод в G.

Като използвате горното, с индукция по n докажете, че за всеки нетерминал $A \in \mathcal{N}$ и

 $\alpha\in\Sigma^*,\ A\Rightarrow_{G'}^{(n)}\alpha$ влече, че $A\Rightarrow_G^*\alpha$. След това, с индукция по n покажете, че за всеки нетерминал $A\in\mathcal{N}$ и дума $\alpha\in\Sigma^+,$ ако $A\Rightarrow_G^{(n)}\alpha,$ то $A\Rightarrow_{G'}^*\alpha.$

Упътване 0.2. Последователно приложете:

- 1. конструкцията за премахване на дълги правила, Задача 1, задачи върху Лема за разрастване.
- 2. конструкцията за намиране на $\mathcal{N}_{\varepsilon}=\{A\in\mathcal{N}\,|\,A\Rightarrow_{G}^{*}\varepsilon\},$ Задача 1, задачи върху Контекстносвободни граматики (1).
- 3. предишната задача.

1. Съобразете, че няма ε -правила, поради което ако $\alpha \Rightarrow^* \beta$, то $|\alpha| \leq |\beta|$. Упътване 0.3. Довършете.

- 2. Достижимостта е транзитивна релация.
- 3. Използвайте, че ако $A \Rightarrow^* B$ и $B \Rightarrow \alpha$, то $A \Rightarrow^* B \Rightarrow^* \alpha$.
- 4. Разсъждавайте с индукция по n, за да покажете, че ако $A_i \Rightarrow_{G'}^{(n)} w$, то $A_i \Rightarrow_G^* w$. Разсъждавайте с индукция по n, за да покажете, че ако $B \Rightarrow_G^{(n)} w$ и $A_i \equiv B$, то $A_i \Rightarrow_{G'}^* w$.
- 5. Използвайте, че в G' няма ε -правила, следователно ако $A_i \Rightarrow_{G'}^* A_j$ то това е възможно само ако всички правила по този извод са от вида $C \to D$ за някои $C, D \in \{A_1, \dots, A_k\}$. Покажете, че $C \to D \in P'$ влече, че $C \Rightarrow_G^* D$ и съответно в графа (\mathcal{N}, E) от подточка 1 има път от C до D. Заключете, че $A_i \Rightarrow_{G'}^* A_j$ влече, че в (\mathcal{N}, E) има път от A_i до A_i . Довършете.

Упътване 0.4. 1. Допуснете противното и докажете, че тогава в (\mathcal{N}, E) има цикъл.

- 2. Съобразете, че ако в G' е приложено някое ново правило $B \Rightarrow_{G'} \beta$, то това правило може да бъде симулирано в G като $B\Rightarrow_G A\Rightarrow_G \beta$. Също ако в G е приложено правило $B \Rightarrow_G A \Rightarrow_G \beta$, то това може да бъде преведено в G' като $B \Rightarrow_{G'} \beta$. Довършете с индукция.
- 3. Аргументирайте, че ако $E = \emptyset$, твърдението е вярно. В случая, когато $E \neq \emptyset$ използвайте точка 1 и изберете такъв нетерминал $A \in \mathcal{N}$ в който влиза поне едно ребро $(B,A) \in E$ (защо има?). Използвайте точка 2, за да получите еквивалентна граматика, на която и съответства граф с по-малко ребра. Довършете индуктивно.
- 1. Използвайте, че ако $A\Rightarrow^{(n)}\alpha$ и $n\geq 2$, то $|\alpha|\geq 2$. Заключете, че еднобуквени думи може да се извеждат от нетереминали единствено с изводи с дължина 1.
 - 2. Обосновете, че никой нетерминал не извежда ε и използвайте, че за $n \geq 2$, $A \Rightarrow^{(n)} w'$ тогава и само тогава когато има правило $A\Rightarrow \alpha\Rightarrow^{(n-1)}w'.$ Обосновете, че $\alpha=BC$ за някои $B,C\in\mathcal{N}$ и съответно $B\Rightarrow^*w_1'$ и $C'\Rightarrow^*w_2'$ за някои непразни думи $w_1',w_2',$ за които $w'_1 \circ w'_2 = w'$.