Homework 4: STA 721 Fall24

Your Name

September 17, 2024; Due in one week (see Gradescope)

You are encouraged to write up solutions in LaTeX. Please solve/attempt Problem 1 before class on Tuesday.

- 1. For the following assume that $\mathbf{Y} \mid \mathbf{X} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$.
 - (a) Consider estimation of $\boldsymbol{\beta}$ using quadratic loss $(\boldsymbol{\beta} \mathbf{a})^T (\boldsymbol{\beta} \mathbf{a})$ for some estimator \mathbf{a} . Find the expected quadratic loss if we use the MLE $\hat{\boldsymbol{\beta}}$ for \mathbf{a} conditional on \mathbf{X} . Simplify the expression as a function of the eigenvalues of $\mathbf{X}^T \mathbf{X}$. What happens to the expected loss as the smallest eigenvalue of $\mathbf{X}^T \mathbf{X}$ goes to 0?
 - (b) Consider estimation of $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ at the observed data points \mathbf{X} . Find the expected quadratic loss $E[(\boldsymbol{\mu} \mathbf{X}\hat{\boldsymbol{\beta}})^T(\boldsymbol{\mu} \mathbf{X}\hat{\boldsymbol{\beta}})]$ conditional on \mathbf{X} . What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0?
 - (c) Consider predicting a new \mathbf{Y}_* at the observed data points \mathbf{X} where \mathbf{Y}_* is independent of \mathbf{Y} . Find the expected quadratic loss for $E[(\mathbf{Y}_* - \mathbf{X}\hat{\boldsymbol{\beta}})^T(\mathbf{Y}_* - \mathbf{X}\hat{\boldsymbol{\beta}})]$. What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0?
 - (d) Consider predicting \mathbf{Y}_* 's at new points \mathbf{X}_* with $E[\mathbf{X}_*^T\mathbf{X}_*] = \mathbf{I}_p$. Find the expected quadratic loss $E[(\mathbf{Y}_* \mathbf{X}_*\hat{\boldsymbol{\beta}})^T(\mathbf{Y}_* \mathbf{X}_*\hat{\boldsymbol{\beta}})]$ conditional on \mathbf{X} and \mathbf{X}_* and then unconditional on \mathbf{X}_* (but still conditional on \mathbf{X} . What happens as the smallest eigenvalue of $\mathbf{X}^T\mathbf{X}$ goes to 0? (If $E[\mathbf{X}_*^T\mathbf{X}_*] = \Sigma_{\mathbf{X}} > 0$ does that change the result)
 - (e) Briefly comment on the difference in estimation and prediction at observed data versus new data as X becomes non-full rank. Which is the most stable? Which is the least?
- 2. Let $\mathbf{Y} \sim \mathsf{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{V})$ where \mathbf{X} and \mathbf{V} are known but $\boldsymbol{\beta}$ and σ^2 are unknown. Let $\hat{\boldsymbol{\beta}}$ denote the OLS estimator and $\hat{\boldsymbol{\beta}}_{\mathbf{V}}$ denote the GLS estimator.
 - (a) Let $\hat{\boldsymbol{\epsilon}} = \mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}$. Find an unbiased estimator of σ^2 that is a scalar multiple of $\hat{\boldsymbol{\epsilon}}^T\hat{\boldsymbol{\epsilon}}$.
 - (b) Let $\hat{\boldsymbol{\epsilon}}_{\mathbf{V}} = \mathbf{Y} \mathbf{X}\hat{\boldsymbol{\beta}}_{\mathbf{V}}$. Find an unbiased estimator of σ^2 that is a scalar multiple of $\hat{\boldsymbol{\epsilon}}_{\mathbf{V}}^T \mathbf{V}^{-1} \hat{\boldsymbol{\epsilon}}_{\mathbf{V}}$.
 - (c) Do you think one of these estimators is generally better than the other?
- 3. Let $\mathbf{Y} \sim \mathsf{N}_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{V})$ where $\mathbf{V} > 0$ is known. Find the MLE of $(\boldsymbol{\beta}, \sigma^2)$, and its distribution. Is the MLE of σ^2 unbiased?
- 4. Let $\mathbf{U} \in \mathbb{R}^{n \times n}$ be an orthogonal matrix so $\mathbf{U}\mathbf{U}^T = \mathbf{U}^T\mathbf{U} = \mathbf{I}_n$. Separate the columns of \mathbf{U} into the three matrices $\mathbf{U}_1 \in \mathbb{R}^{n \times p_1}$, $\mathbf{U}_2 \in \mathbb{R}^{n \times p_2}$, $\mathbf{U}_3 \in \mathbb{R}^{n \times p_3}$ where $p_1 + p_2 + p_3 = n$ and \mathbf{U} is equal to \mathbf{U}_1 , \mathbf{U}_2 and \mathbf{U}_3 column-binded together.
 - (a) Show that $\mathbf{U}_1\mathbf{U}_1^T + \mathbf{U}_2\mathbf{U}_2^T + \mathbf{U}_3\mathbf{U}_3^T = \mathbf{I}_n$.
 - (b) Let $\mathbf{Z} \sim \mathsf{N}_n(\mathbf{0}, \mathbf{I}_n)$. Find the distributions of $x_k = \mathbf{Z}^T \mathbf{U}_k \mathbf{U}_k^T \mathbf{Z}$ for $k \in \{1, 2, 3\}$, and show that x_1, x_2 and x_3 are independent. Find the distribution of $x_1 + x_2 + x_3$ and compare it to the distribution of $x = \mathbf{Z}^T \mathbf{Z}$.

- 5. Projecting out nuisance factors: Suppose we have the ordinary linear model $\mathbf{Y} = \mathbf{W}\boldsymbol{\alpha} + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\mathsf{E}[\boldsymbol{\epsilon}] = 0$, $\mathsf{Cov}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{I}_n$, and $\mathbf{W} \in \mathbb{R}^{n \times q}$ and $\mathbf{X} \in \mathbb{R}^{n \times p}$ are observed model matrices, such that the columns of \mathbf{W} and \mathbf{X} taken together are linearly independent. Suppose we are only interested in estimating $\boldsymbol{\beta}$.
 - (a) Let \mathcal{N} be an orthonormal basis for the null space of $C(\mathbf{W})$. Using this matrix, find a transformation $\tilde{\mathbf{Y}}$ of \mathbf{Y} so that the expectation of $\tilde{\mathbf{Y}}$ depends on \mathbf{X} but not \mathbf{W} . Write out the linear model for $\tilde{\mathbf{Y}}$, and find the OLS estimator of $\hat{\boldsymbol{\beta}}_{\mathcal{N}}$ of $\boldsymbol{\beta}$ under this model in terms of \mathbf{Y} , \mathbf{X} and $\boldsymbol{\mathcal{N}}$ (or $\mathbf{I} \mathbf{P}$).
 - (b) Let $(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}})$ be the OLS estimator of $(\boldsymbol{\alpha}, \boldsymbol{\beta})$ for the full linear model $E[\mathbf{Y}] = \mathbf{W}\boldsymbol{\alpha} + \mathbf{X}\boldsymbol{\beta}$. Using results on partitioned matrices, show that $\hat{\boldsymbol{\beta}}_{\mathcal{N}} = \hat{\boldsymbol{\beta}}$.
 - (c) Obtain a form for the usual unbiased estimator of σ^2 using the model in part (a), and also for the model in (b), and show they are the same.