Directional Derivatives

Directional Derivatives

Recall that if z = f(x, y), then the partial derivatives f_x and f_y are defined as

1

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}$$

$$f_y(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}$$

and represent the rates of change of *z* in the *x*- and *y*-directions, that is, in the directions of the unit vectors **i** and **j**.

5

Directional Derivatives

Suppose that we now wish to find the rate of change of z at (x_0, y_0) in the direction of an arbitrary unit vector $\mathbf{u} = \langle a, b \rangle$. (See Figure 2.)

To do this we consider the surface S with the equation z = f(x, y) (the graph of f) and we let $z_0 = f(x_0, y_0)$. Then the point $P(x_0, y_0, z_0)$ lies on S.

6

8

Directional Derivatives

The vertical plane that passes through P in the direction of \mathbf{u} intersects S in a curve C. (See Figure 3.)

Figure 3

7

Directional Derivatives

The slope of the tangent line T to C at the point P is the rate of change of z in the direction of \mathbf{u} . If Q(x, y, z) is another point on C and P', Q' are the projections of P, Q onto the xy-plane, then the vector $\overrightarrow{P'Q'}$ is parallel to \mathbf{u} and so

$$\overrightarrow{P'O'}$$
 = $h\mathbf{u}$ = $\langle ha, hb \rangle$

for some scalar h. Therefore $x - x_0 = ha$, $y - y_0 = hb$, so $x = x_0 + ha$, $y = y_0 + hb$, and

$$\frac{\Delta z}{h} = \frac{z - z_0}{h} = \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

Directional Derivatives

If we take the limit as $h \to 0$, we obtain the rate of change of z (with respect to distance) in the direction of u, which is called the directional derivative of f in the direction of u.

2 Definition The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

Directional Derivatives

By comparing Definition 2 with Equations $\boxed{1}$, we see that if $\mathbf{u} = \mathbf{i} = \langle 1, 0 \rangle$, then $D_{\mathbf{i}} f = f_{x}$ and if $\mathbf{u} = \mathbf{j} = \langle 0, 1 \rangle$, then $D_{\mathbf{i}} f = f_{y}$.

In other words, the partial derivatives of f with respect to x and y are just special cases of the directional derivative.

Directional Derivatives

When we compute the directional derivative of a function defined by a formula, we generally use the following theorem.

3 Theorem If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\mathbf{u} = \langle a, b \rangle$ and

$$D_{\mathbf{u}}f(x, y) = f_x(x, y) a + f_y(x, y) b$$

10

Directional Derivatives

If the unit vector \mathbf{u} makes an angle θ with the positive x-axis (as in Figure 2), then we can write $\mathbf{u} = \langle \cos \theta, \sin \theta \rangle$ and the formula in Theorem 3 becomes

$$D_{\mathbf{u}}f(x, y) = f_{x}(x, y) \cos \theta + f_{y}(x, y) \sin \theta$$

A unit vector $\mathbf{u} = \langle a, b \rangle = \langle \cos \theta, \sin \theta \rangle$

The Gradient Vectors

16

The Gradient Vectors

Notice from Theorem 3 that the directional derivative of a differentiable function can be written as the dot product of two vectors:

$$D_{\mathbf{u}}f(x, y) = f_{x}(x, y)a + f_{y}(x, y)b$$
$$= \langle f_{x}(x, y), f_{y}(x, y) \rangle \cdot \langle a, b \rangle$$
$$= \langle f_{y}(x, y), f_{y}(x, y) \rangle \cdot \mathbf{u}$$

The first vector in this dot product occurs not only in computing directional derivatives but in many other contexts as well.

So we give it a special name (the *gradient* of f) and a special notation (**grad** f or ∇f , which is read "del f").

The Gradient Vectors

8 Definition If f is a function of two variables x and y, then the **gradient** of f is the vector function ∇f defined by

$$\nabla f(x, y) = \langle f_x(x, y), f_y(x, y) \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

17

15

Example 3

If $f(x, y) = \sin x + e^{xy}$, then

$$\nabla f(x, y) = \langle f_x, f_y \rangle$$

=
$$\langle \cos x + y e^{xy}, x e^{xy} \rangle$$

and $\nabla f(0, 1) = \langle 2, 0 \rangle$

The Gradient Vectors

With this notation for the gradient vector, we can rewrite the expression (7) for the directional derivative of a differentiable function as

9

$$D_{\mathbf{u}} f(x, y) = \nabla f(x, y) \cdot \mathbf{u}$$

This expresses the directional derivative in the direction of \mathbf{u} as the scalar projection of the gradient vector onto \mathbf{u} .

20

Functions of Three Variables

21

19

Functions of Three Variables

For functions of three variables we can define directional derivatives in a similar manner.

Again $D_{\mathbf{u}}f(x, y, z)$ can be interpreted as the rate of change of the function in the direction of a unit vector \mathbf{u} .

10 Definition The **directional derivative** of f at (x_0, y_0, z_0) in the direction of a unit vector $\mathbf{u} = (a, b, c)$ is

$$D_{\mathbf{u}}f(x_0, y_0, z_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb, z_0 + hc) - f(x_0, y_0, z_0)}{h}$$

if this limit exists.

22

Functions of Three Variables

If we use vector notation, then we can write both definitions (2 and 10) of the directional derivative in the compact form

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h}$$

where $\mathbf{x}_0 = \langle x_0, y_0 \rangle$ if n = 2 and $\mathbf{x}_0 = \langle x_0, y_0, z_0 \rangle$ if n = 3.

This is reasonable because the vector equation of the line through \mathbf{x}_0 in the direction of the vector \mathbf{u} is given by $\mathbf{x} = \mathbf{x}_0 + t\mathbf{u}$ and so $f(\mathbf{x}_0 + h\mathbf{u})$ represents the value of f at a point on this line.

Functions of Three Variables

If f(x, y, z) is differentiable and $\mathbf{u} = \langle a, b, c \rangle$, then

12
$$D_{u}f(x, y, z) = f_{x}(x, y, z)a + f_{y}(x, y, z)b + f_{z}(x, y, z)c$$

For a function f of three variables, the **gradient vector**, denoted by ∇f or **grad** f, is

$$\nabla f(x, y, z) = \langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z) \rangle$$

or, for short,

23

$$\nabla f = \langle f_x, f_y, f_z \rangle = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

Functions of Three Variables

Then, just as with functions of two variables, Formula 12 for the directional derivative can be rewritten as

14

$$D_{\mathbf{u}}f(x, y, z) = \nabla f(x, y, z) \cdot \mathbf{u}$$

Example 5

If $f(x, y, z) = x \sin yz$, (a) find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$.

Solution:

(a) The gradient of f is

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$
$$= \langle \sin yz, xz \cos yz, xy \cos yz \rangle$$

25

Example 5 - Solution

cont'o

(b) At (1, 3, 0) we have $\nabla f(1, 3, 0) = \langle 0, 0, 3 \rangle$.

The unit vector in the direction of $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is

$$\mathbf{u} = \frac{1}{\sqrt{6}}\,\mathbf{i} + \frac{2}{\sqrt{6}}\,\mathbf{j} - \frac{1}{\sqrt{6}}\,\mathbf{k}$$

Therefore Equation 14 gives

$$D_{\mathbf{u}}f(1, 3, 0) = \nabla f(1, 3, 0) \cdot \mathbf{u}$$

$$= 3\mathbf{k} \cdot \left(\frac{1}{\sqrt{6}}\mathbf{i} + \frac{2}{\sqrt{6}}\mathbf{j} - \frac{1}{\sqrt{6}}\mathbf{k}\right)$$

$$= 3\left(-\frac{1}{\sqrt{6}}\right) = -\sqrt{\frac{3}{2}}$$

27

29

Maximizing the Directional Derivatives

28

26

Maximizing the Directional Derivatives

Suppose we have a function f of two or three variables and we consider all possible directional derivatives of f at a given point.

These give the rates of change of f in all possible directions.

We can then ask the questions: In which of these directions does *f* change fastest and what is the maximum rate of change? The answers are provided by the following theorem.

15 Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}}f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

Example 6

- (a) If $f(x, y) = xe^y$, find the rate of change of f at the point P(2, 0) in the direction from P to $Q(\frac{1}{2}, 2)$
- **(b)** In what direction does *f* have the maximum rate of change? What is this maximum rate of change?

Solution:

(a) We first compute the gradient vector:

$$\nabla f(x, y) = \langle f_x, f_y \rangle = \langle e^y, xe^y \rangle$$

$$\nabla f(2, 0) = \langle 1, 2 \rangle$$

Example 6 - Solution

cont'd

The unit vector in the direction of $\overrightarrow{PQ} = \langle -1.5, 2 \rangle$ is $\mathbf{u} = \left\langle -\frac{3}{5}, \frac{4}{5} \right\rangle$, so the rate of change of f in the direction from P to Q is

$$D_{\mathbf{u}}f(2,0) = \nabla f(2,0) \cdot \mathbf{u}$$
$$= \langle 1, 2 \rangle \cdot \langle -\frac{3}{5}, \frac{4}{5} \rangle$$
$$= 1(-\frac{3}{5}) + 2(\frac{4}{5}) = 1$$

(b) According to Theorem 15, f increases fastest in the direction of the gradient vector $\nabla f(2, 0) = \langle 1, 2 \rangle$. The maximum rate of change is

$$|\nabla f(2,0)| = |\langle 1,2 \rangle| = \sqrt{5}$$

Tangent Planes to Level Surfaces

Tangent Planes to Level Surfaces

Suppose S is a surface with equation F(x, y, z) = k, that is, it is a level surface of a function F of three variables, and let $P(x_0, y_0, z_0)$ be a point on S.

Let C be any curve that lies on the surface S and passes through the point P. Recall that the curve C is described by a continuous vector function $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$.

Let t_0 be the parameter value corresponding to P; that is, $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$. Since C lies on S, any point (x(t), y(t),z(t)) must satisfy the equation of S, that is,

$$F(x(t), y(t), z(t)) = k$$

33

Tangent Planes to Level Surfaces

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the Chain Rule to differentiate both sides of Equation 16 as follows:

$$\frac{\partial F}{\partial x}\frac{dx}{dt} + \frac{\partial F}{\partial y}\frac{dy}{dt} + \frac{\partial F}{\partial z}\frac{dz}{dt} = 0$$

But, since $\nabla F = \langle F_x, F_y, F_z \rangle$ and $\mathbf{r}'(t) = \langle x'(t), y'(t), z'(t) \rangle$, Equation 17 can be written in terms of a dot product as

$$\nabla F \cdot \mathbf{r}'(t) = 0$$

34

Tangent Planes to Level Surfaces

In particular, when $t = t_0$ we have $\mathbf{r}(t_0) = \langle x_0, y_0, z_0 \rangle$, so

$$\nabla F(x_0, y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$$

 z_0), is perpendicular to the tangent vector $\mathbf{r}'(t_0)$ to any curve C on S that passes through P. (See Figure 9.)

Figure 9

35

Tangent Planes to Level Surfaces

If $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$, it is therefore natural to define the tangent plane to the level surface F(x, y, z) = k at $P(x_0, y_0, z_0)$ as the plane that passes through P and has normal vector $\nabla F(x_0, y_0, z_0)$.

Using the standard equation of a plane, we can write the equation of this tangent plane as

 $F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0$

Tangent Planes to Level Surfaces

The **normal line** to *S* at *P* is the line passing through *P* and perpendicular to the tangent plane.

The direction of the normal line is therefore given by the gradient vector $\nabla F(x_0, y_0, z_0)$ and so, its symmetric equations are

20

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}$$

37

Tangent Planes to Level Surfaces

In the special case in which the equation of a surface S is of the form z = f(x, y) (that is, S is the graph of a function f of two variables), we can rewrite the equation as

$$F(x, y, z) = f(x, y) - z = 0$$

and regard S as a level surface (with k = 0) of F. Then

$$F_x(x_0, y_0, z_0) = f_x(x_0, y_0)$$

 $F_y(x_0, y_0, z_0) = f_y(x_0, y_0)$
 $F_z(x_0, y_0, z_0) = -1$

so Equation 19 becomes

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0$$

38

Example 8

Find the equations of the tangent plane and normal line at the point (-2, 1, -3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$

Solution:

The ellipsoid is the level surface (with k = 3) of the function

Significance of the Gradient

Vectors

$$F(x, y, z) = \frac{x^2}{4} + y^2 + \frac{z^2}{9}$$

39

Example 8 - Solution

oont'

Therefore we have

$$F_x(x, y, z) = \frac{x}{2}$$
 $F_y(x, y, z) = 2y$ $F_z(x, y, z) = \frac{2z}{9}$ $F_x(-2, 1, -3) = -1$ $F_y(-2, 1, -3) = 2$ $F_z(-2, 1, -3) = -\frac{2}{3}$

Then Equation 19 gives the equation of the tangent plane at (-2, 1, -3) as

$$-1(x+2) + 2(y-1) - \frac{2}{3}(z+3) = 0$$

which simplifies to 3x - 6y + 2z + 18 = 0.

By Equation 20, symmetric equations of the normal line are

$$\frac{x+2}{-1} = \frac{y-1}{2} = \frac{z+3}{-\frac{2}{3}}$$

41

Significance of the Gradient Vectors

We now summarize the ways in which the gradient vector is significant.

We first consider a function f of three variables and a point $P(x_0, y_0, z_0)$ in its domain.

On the one hand, we know from Theorem 15 that the gradient vector $\nabla f(x_0, y_0, z_0)$ gives the direction of fastest increase of f.

On the other hand, we know that $\nabla f(x_0, y_0, z_0)$ is orthogonal to the level surface S of f through P. (Refer to Figure 9.)

tangent plane P $\mathbf{r}'(t_0)$

Figure 9

42

Significance of the Gradient Vectors

These two properties are quite compatible intuitively because as we move away from *P* on the level surface *S*, the value of *f* does not change at all.

So it seems reasonable that if we move in the perpendicular direction, we get the maximum increase.

In like manner we consider a function f of two variables and a point $P(x_0, y_0)$ in its domain.

Again the gradient vector $\nabla f(x_0, y_0)$ gives the direction of fastest increase of f. Also, by considerations similar to our discussion of tangent planes, it can be shown that $\nabla f(x_0, y_0)$ is perpendicular to the level curve f(x, y) = k that passes through P.

Significance of the Gradient Vectors

Again this is intuitively plausible because the values of *f* remain constant as we move along the curve. (See Figure 11.)

.

Significance of the Gradient Vectors

If we consider a topographical map of a hill and let f(x, y) represent the height above sea level at a point with coordinates (x, y), then a curve of steepest ascent can be drawn as in Figure 12 by making it perpendicular to all of the contour lines.

Figure 12

Significance of the Gradient Vectors

Computer algebra systems have commands that plot sample gradient vectors.

Each gradient vector $\nabla f(a, b)$ is plotted starting at the point (a, b). Figure 13 shows such a plot (called a *gradient vector field*) for the function $f(x, y) = x^2 - y^2$ superimposed on a contour map of f.

As expected, the gradient vectors point "uphill" and are perpendicular to the level curves.

45

Figure 13

ure 13