INTEGRATED LOCAL ENERGY DECAY (MORAWETZ) ESTIMATES

OVIDIU-NECULAI AVADANEI

We consider the Cauchy problem for the wave equation

(1)
$$\begin{cases} (-\partial_t^2 + \Delta)u = f \\ u(0) = u_0, \\ \partial_t u(0) = u_1 \end{cases}$$

As we have already seen, its solution satisfies the energy estimate

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2} \lesssim \|(u_0,u_1)\|_{\dot{H}_x^1 \times L_x^2} + \|f\|_{L_t^1 L_x^2}$$

In Section 1, we shall prove another energy estimate that quantifies the dispersive decay of u in terms of L^2 -based norms, which is known as the *Morawetz* or the *integrated local energy decay* bound.

One of the reasons why this estimate is useful is that it can be employed as an *intermediary* decay bound, which can enable one to obtain stronger decay bounds under an appropriate asymptotic flatness condition. We shall illustrate this in Section 2 by presenting a result of Rodnianski-Schlag that establishes non-endpoint Strichartz estimates for sub-principal asymptotically flat perturbations of \Box (which involve only first and zeroth order perturbations), assuming the integrated local energy decay condition. We note that this is only the simplest example of a plethora of such results (see [Tataru], [Dafermos-Rodnianski], [Moschidis], [Oliver-Sterbenz], etc).

In section 3 we give a spectral characterization of the integrated local energy decay. This shows that tools from spectral theory (such as Fredholm theory, resonances, semi-classical analysis, etc.) can be used to obtain the integrated local energy decay estimate, whose usefulness is illustrated in Section 2.

1. An integrated local energy decay estimate

We define

$$A_j = \begin{cases} \{x \in \mathbb{R}^d | 2^j \le |x| < 2^{j+1} \}, j \ge 1 \\ \{x \in \mathbb{R}^d | |x| < 2 \}, j = 0 \end{cases}$$

We also define

$$||u||_{LE} = \sup_{j \ge 0} ||\langle r \rangle^{-\frac{1}{2}} u||_{L^2 L^2(\mathbb{R}_t \times A_j)}$$
$$||f||_{LE^*} = \sum_{j \ge 0} ||\langle r \rangle^{\frac{1}{2}} f||_{L^2 L^2(\mathbb{R}_t \times A_j)}$$

We consider the equation (1)

Theorem 1.1. Every solution of (1) satisfies

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|(u_0,u_1)\|_{\dot{H}^1\times L^2} + \|f\|_{LE^*}.$$

Date: 10/20/2021.

Proof. Let $X = \varphi(r)x^j\partial_j$, where φ is going to be chosen later. We have

$$\langle Xu, \Delta u \rangle = \int_{\mathbb{R}^d} \varphi(r) x^j \partial_j u \cdot \Delta u \, dx = \int_{\mathbb{R}^d} \partial_j u \cdot \varphi(r) x^j \Delta u \, dx = -\int_{\mathbb{R}^d} u \cdot \partial_j (\varphi(r) x^j \Delta u) \, dx$$

$$= -\int_{\mathbb{R}^d} u \cdot \varphi'(r) \frac{x^j x_j}{r} \Delta u \, dx - \int_{\mathbb{R}^d} u \cdot \varphi(r) \delta_j^j \Delta u \, dx - \int_{\mathbb{R}^d} u \cdot \varphi(r) x^j \partial_j \Delta u \, dx$$

$$= -\int_{\mathbb{R}^d} u \cdot r \varphi'(r) \Delta u \, dx - d \int_{\mathbb{R}^d} u \cdot \varphi(r) \Delta u \, dx - \int_{\mathbb{R}^d} u \cdot X \Delta u \, dx$$

$$= -\langle (r \varphi'(r) + d \varphi(r)) u, \Delta u \rangle - \langle X(\Delta u), u \rangle$$

$$= -\langle (r \varphi'(r) + d \varphi(r)) u, \Delta u \rangle - \langle \Delta(Xu), u \rangle - \langle [X, \Delta] u, u \rangle$$

$$= -\langle (r \varphi'(r) + d \varphi(r)) u, \Delta u \rangle - \langle Xu, \Delta u \rangle + \langle [\Delta, X] u, u \rangle$$

Thus,

$$\langle Xu, \Delta u \rangle = \frac{1}{2} \langle [\Delta, X]u, u \rangle - \frac{1}{2} \langle (r\varphi'(r) + d\varphi(r))u, \Delta u \rangle$$

For every index $k \in \{1, 2, \dots, d\}$, we have

$$\partial_k(Xu) = \partial_k(\varphi(r)x^j\partial_j u) = \varphi'(r)\frac{x_k}{r}x^j\partial_j u + \varphi(r)\partial_k u + \varphi(r)x^j\partial_j\partial_k u$$

$$\partial_k^2(Xu) = \varphi''(r)\frac{x_k^2}{r^2}x^j\partial_j u + \varphi'(r)\frac{r - x_k \cdot \frac{x_k}{r}}{r^2}x^j\partial_j u + \varphi'(r)\frac{x_k}{r}\partial_k u + \varphi'(r)\frac{x_k}{r}x^j\partial_j\partial_k u$$

$$+ \varphi'(r)\frac{x_k}{r}\partial_k u + \varphi(r)\partial_k^2 u$$

$$+ \varphi'(r)\frac{x_k}{r}x^j\partial_j\partial_k u + \varphi(r)\partial_k^2 u + \varphi(r)x^j\partial_j\partial_k^2 u$$

Thus,

$$\Delta(Xu) = \varphi''(r)x^{j}\partial_{j}u + \varphi'(r)\frac{d-1}{r}x^{j}\partial_{j}u + \varphi'(r)\frac{2}{r}x^{j}\partial_{j}u + 2\frac{\varphi'(r)}{r}x^{k}x^{j}\partial_{j}\partial_{k}u + 2\varphi(r)\Delta u + X(\Delta u)$$

$$= \left(\varphi''(r) + \frac{\varphi'(r)}{r}(d+1)\right)x^{j}\partial_{j}u + 2\frac{\varphi'(r)}{r}x^{k}x^{j}\partial_{j}\partial_{k}u + 2\varphi(r)\Delta u + X(\Delta u)$$

$$[\Delta, X]u = \left(\varphi''(r) + \frac{\varphi'(r)}{r}(d+1)\right)x^{j}\partial_{j}u + 2\frac{\varphi'(r)}{r}x^{k}x^{j}\partial_{j}\partial_{k}u + 2\varphi(r)\Delta u$$

In this case,

$$\langle [\Delta, X] u, u \rangle = \left\langle \left(\varphi''(r) + \frac{\varphi'(r)}{r} (d+1) \right) x^j \partial_j u, u \right\rangle + 2 \left\langle \frac{\varphi'(r)}{r} x^k x^j \partial_j \partial_k u, u \right\rangle + 2 \left\langle \varphi(r) \Delta u, u \right\rangle$$

We also have

$$\left\langle \frac{\varphi'(r)}{r} x_k x_j \partial_j \partial_k u, u \right\rangle = \int_{\mathbb{R}^d} \partial_j \partial_k u \cdot \frac{\varphi'(r)}{r} x_k x_j u \, dx = -\int_{\mathbb{R}^d} \partial_k u \cdot \partial_j \left(\frac{\varphi'(r)}{r} x_k x_j u \right) \, dx$$

$$= -\int_{\mathbb{R}^d} \partial_k u \cdot \frac{\varphi''(r) \frac{x_j}{r} \cdot r - \varphi'(r) \frac{x_j}{r}}{r^2} x_k x_j u \, dx - \int_{\mathbb{R}^d} \partial_k u \cdot \frac{\varphi'(r)}{r} \delta_k^j x_j u \, dx$$

$$-\int_{\mathbb{R}^d} \partial_k u \cdot \frac{\varphi'(r)}{r} x_k u \, dx - \int_{\mathbb{R}^d} \partial_k u \cdot \frac{\varphi'(r)}{r} x_k x_j \partial_j u \, dx$$

Thus.

$$\left\langle \frac{\varphi'(r)}{r} x^k x^j \partial_j \partial_k u, u \right\rangle = -\int_{\mathbb{R}^d} \frac{\varphi''(r)r - \varphi'(r)}{r} x^j \partial_j u \cdot u \, dx - \int_{\mathbb{R}^d} 2 \frac{\varphi'(r)}{r} x^j \partial_j u \cdot u \, dx$$
$$- \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 \, dx$$
$$= -\int_{\mathbb{R}^d} \left(\varphi''(r) + \frac{\varphi'(r)}{r} \right) x^j \partial_j u \cdot u \, dx - \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 \, dx$$

Besides this,

$$\langle \varphi(r)\partial_j^2 u, u \rangle = \int_{\mathbb{R}^d} \partial_j^2 u \cdot \varphi(r) u \, dx = -\int_{\mathbb{R}^d} \partial_j u \cdot \partial_j (\varphi(r) u) \, dx$$
$$= -\int_{\mathbb{R}^d} \partial_j u \cdot \frac{\varphi'(r)}{r} x_j u \, dx - \int_{\mathbb{R}^d} \partial_j u \cdot \varphi(r) \partial_j u \, dx$$

This means that

$$\langle \varphi(r)\Delta u, u \rangle = -\int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} x^j \partial_j u \cdot u \, dx - \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 \, dx$$

We have

$$\langle [\Delta, X]u, u \rangle = \left\langle \left(\varphi''(r) + \frac{\varphi'(r)}{r} (d+1) \right) x^j \partial_j u, u \right\rangle + 2 \left\langle \frac{\varphi'(r)}{r} x^k x^j \partial_j \partial_k u, u \right\rangle + 2 \left\langle \varphi(r) \Delta u, u \right\rangle$$

$$= \left\langle \left(\varphi''(r) + \frac{\varphi'(r)}{r} (d+1) \right) x^j \partial_j u, u \right\rangle - 2 \int_{\mathbb{R}^d} \left(\varphi''(r) + \frac{\varphi'(r)}{r} \right) x^j \partial_j u \cdot u \, dx$$

$$- 2 \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 \, dx - 2 \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} x^j \partial_j u \cdot u \, dx - 2 \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 \, dx$$

$$= \left\langle \left(-\varphi''(r) + \frac{\varphi'(r)}{r} (d-3) \right) x^j \partial_j u, u \right\rangle - 2 \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 \, dx - 2 \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 \, dx$$

We also note that

$$\left\langle \left(-\varphi''(r) + \frac{\varphi'(r)}{r} (d-3) \right) x_j \partial_j u, u \right\rangle = \int_{\mathbb{R}^d} \partial_j u \cdot x_j \psi(r) u \, dx = -\int_{\mathbb{R}^d} u \cdot \partial_j (x_j \psi(r) u) \, dx$$

$$= -\int_{\mathbb{R}^d} u \cdot \psi(r) u \, dx - \int_{\mathbb{R}^d} u \cdot x_j \psi'(r) \frac{x_j}{r} u \, dx$$

$$-\int_{\mathbb{R}^d} u \cdot x_j \psi(r) \partial_j u \, dx$$

Thus,

$$\int_{\mathbb{R}^d} \psi(r) x^j \partial_j u \cdot u \, dx = -\int_{\mathbb{R}^d} d\psi(r) u^2 \, dx - \int_{\mathbb{R}^d} r \psi'(r) u^2 \, dx - \int_{\mathbb{R}^d} \psi(r) x^j \partial_j u \cdot u \, dx,$$

which shows that

$$\int_{\mathbb{R}^d} \psi(r) x^j \partial_j u \cdot u \, dx = -\frac{1}{2} \int_{\mathbb{R}^d} (d\psi(r) + r\psi'(r)) u^2 \, dx$$

As
$$\psi(r) = -\varphi''(r) + \frac{\varphi'(r)}{r}(d-3)$$
, we get that
$$\psi'(r) = -\varphi'''(r) + (d-3)\frac{\varphi''(r)r - \varphi'(r)}{r^2}$$

$$d\psi(r) + r\psi'(r) = -d\varphi''(r) + d(d-3)\frac{\varphi'(r)}{r} - r\varphi'''(r) + (d-3)\frac{\varphi''(r)r - \varphi'(r)}{r}$$

$$= -r\varphi'''(r) - 3\varphi''(r) + (d-1)(d-3)\frac{\varphi'(r)}{r}$$

Therefore,

$$\left\langle \left(-\varphi''(r) + \frac{\varphi'(r)}{r} (d-3) \right) x_j \partial_j u, u \right\rangle = -\frac{1}{2} \int_{\mathbb{R}^d} \left(-r\varphi'''(r) - 3\varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^2 dx$$
In this case,

$$\langle [\Delta, X] u, u \rangle = -2 \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 dx - 2 \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 dx$$
$$- \frac{1}{2} \int_{\mathbb{R}^d} \left(-r \varphi'''(r) - 3\varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^2 dx$$

Therefore,

$$\left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, \Delta u \right\rangle = \frac{1}{2} \left\langle [\Delta, X]u, u \right\rangle$$

$$= -\int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 dx - \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 dx$$

$$- \frac{1}{4} \int_{\mathbb{R}^d} \left(-r\varphi'''(r) - 3\varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^2 dx$$

We note that, in general,

$$\int_{\mathbb{R}^d} \partial_j h \cdot \varphi(r) x_j h \, dx = -\int_{\mathbb{R}^d} h \cdot \partial_j (\varphi(r) x_j h) \, dx = -\int_{\mathbb{R}^d} h \cdot \varphi'(r) \frac{x_j}{r} x_j h \, dx - \int_{\mathbb{R}^d} h \cdot \varphi(r) h \, dx
- \int_{\mathbb{R}^d} h \cdot \varphi(r) x_j \partial_j h \, dx \Rightarrow
\int_{\mathbb{R}^d} \partial_j h \cdot \varphi(r) x_j h \, d = -\frac{1}{2} \int_{\mathbb{R}^d} h \cdot \varphi'(r) \frac{x_j^2}{r} h \, dx - \frac{1}{2} \int_{\mathbb{R}^d} h \cdot \varphi(r) h \, dx
\langle Xh, h \rangle = -\frac{1}{2} \int_{\mathbb{R}^d} r \varphi'(r) h^2 \, dx - \frac{1}{2} \int_{\mathbb{R}^d} d\varphi(r) h^2 \, dx$$

We also have

$$\int_{0}^{T} \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, -\partial_{t}^{2}u \right\rangle dt = \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, -\partial_{t}u \right\rangle_{|_{0}^{T}}$$

$$+ \int_{0}^{T} \left\langle X\partial_{t}u + \frac{r\varphi'(r) + d\varphi(r)}{2}\partial_{t}u, \partial_{t}u \right\rangle dt$$

$$= \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, -\partial_{t}u \right\rangle_{|_{0}^{T}}$$

$$\left\langle X\partial_{t}u, \partial_{t}u \right\rangle = -\int_{\mathbb{R}^{d}} \frac{r\varphi'(r) + d\varphi(r)}{2}(\partial_{t}u)^{2}$$

We can now write

$$\begin{split} \int_0^T \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, f \right\rangle \, dt &= \int_0^T \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, -\partial_t^2 u \right\rangle \, dt \\ &+ \int_0^T \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, \Delta u \right\rangle \, dt \\ &= \left\langle Xu + \frac{r\varphi'(r) + d\varphi(r)}{2}u, -\partial_t u \right\rangle_{|_0^T} \\ &- \int_0^T \int_{\mathbb{R}^d} \frac{\varphi'(r)}{r} (x^j \partial_j u)^2 \, dx \, dt - \int_0^T \int_{\mathbb{R}^d} \varphi(r) |\nabla u|^2 \, dx \, dt \\ &- \frac{1}{4} \int_0^T \int_{\mathbb{R}^d} \left(-r\varphi'''(r) - 3\varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^2 \, dx \, dt \end{split}$$

Therefore,

$$-\int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{\varphi'(r)}{r} (x^{j} \partial_{j} u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} \varphi(r) |\nabla u|^{2} dx dt$$

$$-\frac{1}{4} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(-r \varphi'''(r) - 3 \varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^{2} dx dt$$

$$= \int_{0}^{T} \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r)}{2} u, f \right\rangle dt + \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r)}{2} u, \partial_{t} u \right\rangle_{|_{0}^{T}}$$

On the other hand, if w is a smooth function (to be chosen later as well),

$$\int_{0}^{T} \langle wu, f \rangle dt = \int_{0}^{T} \langle wu, -\partial_{t}^{2}u \rangle dt + \int_{0}^{T} \langle wu, \Delta u \rangle dt$$

$$= \langle wu, -\partial_{t}u \rangle_{|_{0}^{T}} + \int_{0}^{T} \langle w\partial_{t}u, \partial_{t}u \rangle dt - \int_{0}^{T} \langle \nabla(wu), \nabla u \rangle dt$$

$$= \langle wu, -\partial_{t}u \rangle_{|_{0}^{T}} + \int_{0}^{T} \int_{\mathbb{R}^{d}} w(r)(\partial_{t}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} w(r)|\nabla u|^{2} dx dt$$

$$- \int_{0}^{T} \int_{\mathbb{R}^{d}} u \frac{w'(r)}{r} x^{j} \partial_{j}u dx dt$$

$$= \langle wu, -\partial_{t}u \rangle_{|_{0}^{T}} + \int_{0}^{T} \int_{\mathbb{R}^{d}} w(r)(\partial_{t}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} w(r)|\nabla u|^{2} dx dt$$

$$+ \frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(w''(r) + \frac{d-1}{r} w'(r) \right) u^{2} dx dt$$

Thus,

$$\int_0^T \langle wu, f \rangle \ dt + \langle wu, \partial_t u \rangle_{|_0^T} + \int_0^T \int_{\mathbb{R}^d} w(r) |\nabla u|^2 \ dx \ dt - \frac{1}{2} \int_0^T \int_{\mathbb{R}^d} \left(w''(r) + \frac{d-1}{r} w'(r) \right) u^2 \ dx \ dt$$

$$= \int_0^T \int_{\mathbb{R}^d} w(r) (\partial_t u)^2 \ dx \ dt$$

In this case,

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} w(r)(\partial_{t}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{\varphi'(r)}{r} (x^{j} \partial_{j}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} \varphi(r) |\nabla u|^{2} dx dt
- \frac{1}{4} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(-r \varphi'''(r) - 3 \varphi''(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^{2} dx dt
= \int_{0}^{T} \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r) + 2 w(r)}{2} u, f \right\rangle dt + \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r)}{2} u, \partial_{t} u \right\rangle_{|_{0}^{T}}
+ \left\langle wu, \partial_{t} u \right\rangle_{|_{0}^{T}} + \int_{0}^{T} \int_{\mathbb{R}^{d}} w(r) |\nabla u|^{2} dx dt - \frac{1}{2} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(w''(r) + \frac{d-1}{r} w'(r) \right) u^{2} dx dt,$$

which means that

$$\int_{0}^{T} \int_{\mathbb{R}^{d}} w(r) (\partial_{t}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{\varphi'(r)}{r} (x^{j} \partial_{j}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} (\varphi(r) - w(r)) |\nabla u|^{2} dx dt
- \frac{1}{4} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(-r \varphi'''(r) - 3 \varphi''(r) - 2 w''(r) - 2 \frac{d-1}{r} w'(r) + (d-1)(d-3) \frac{\varphi'(r)}{r} \right) \cdot u^{2} dx dt
= \int_{0}^{T} \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r) + 2 w(r)}{2} u, f \right\rangle dt + \left\langle \varphi(r) x^{j} \partial_{j} u + \frac{r \varphi'(r) + d \varphi(r)}{2} u, \partial_{t} u \right\rangle_{|_{0}^{T}}
+ \left\langle wu, \partial_{t} u \right\rangle_{|_{T}^{T}}$$

We choose $\varphi \in \mathcal{S}(\mathbb{R}), \ \varphi \leq -1$ on $[-2,2], \ |\varphi'(r)| << r|\varphi(r)|, \ \text{and} \ .r|\varphi'(r)| << |\varphi(r)|.$ Let $w = -\frac{r\varphi'(r) + d\varphi(r)}{2}$. In this case, $-r\varphi'''(r) - 3\varphi''(r) - 2w''(r) - 2\frac{d-1}{r}w'(r) + (d-1)(d-3)\frac{\varphi'(r)}{r} = (2d-2)\left(\varphi''(r) + (d-1)\frac{\varphi'(r)}{r}\right)$, and we impose $\varphi''(r) + (d-1)\frac{\varphi'(r)}{r} \leq 0$ on $[0,\infty)$ and $\varphi''(r) + (d-1)\frac{\varphi'(r)}{r} \leq -\lambda$ on [0,2], where $\lambda > 0$ is a fixed small parameter. We thus have

$$-\int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{r\varphi'(r) + d\varphi(r)}{2} (\partial_{t}u)^{2} dx dt - \int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{\varphi'(r)}{r} (x^{j}\partial_{j}u)^{2} dx dt$$

$$-\int_{0}^{T} \int_{\mathbb{R}^{d}} \frac{r\varphi'(r) + (d+2)\varphi(r)}{2} |\nabla u|^{2} dx dt$$

$$-\frac{d-1}{2} \int_{0}^{T} \int_{\mathbb{R}^{d}} \left(\varphi''(r) + (d-1)\frac{\varphi'(r)}{r}\right) \cdot u^{2} dx dt$$

$$= \int_{0}^{T} \left\langle \varphi(r)x^{j}\partial_{j}u, f \right\rangle dt + \left\langle \varphi(r)x^{j}\partial_{j}u, \partial_{t}u \right\rangle_{|_{0}^{T}}$$

Therefore,

$$\begin{split} &\|\nabla u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} + \|\partial_{t}u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} + \|u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} \\ &\lesssim \left|\int_{0}^{T} \left\langle \varphi(r)x^{j}\partial_{j}u, f\right\rangle dt \right| + \|\nabla u(T)\|_{L_{x}^{2}}^{2} + \|\nabla u(0)\|_{L_{x}^{2}}^{2} \\ &+ \|\partial_{t}u(T)\|_{L^{2}}^{2} + \|\partial_{t}u(0)\|_{L_{x}^{2}}^{2} \end{split}$$

Hardy's inequality implies that

$$\|\nabla_{t,x}u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} + \|r^{-1}u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} \lesssim \left|\int_{0}^{T} \left\langle \varphi(r)x^{j}\partial_{j}u,f\right\rangle dt\right| + \|\nabla_{t,x}u(T)\|_{L^{2}_{x}}^{2} + \|\nabla_{t,x}u(0)\|_{L^{2}_{x}}^{2}$$

By taking $\beta(r) = r\varphi(r)$, we can rewrite the previous inequality in the form

$$\|\nabla_{t,x}u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} + \|r^{-1}u\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} \lesssim \left|\int_{0}^{T} \langle \beta(r)\partial_{r}u, f \rangle dt\right| + \|\nabla_{t,x}u(T)\|_{L^{2}_{x}}^{2} + \|\nabla_{t,x}u(0)\|_{L^{2}_{x}}^{2},$$

with β bounded. We note that for every $k \geq 1$, the function $u^k(t,x) = u(2^kt,2^kx)$ solves $(-\partial_t^2 + \Delta)u = 2^{2k}f^k$, where $f^k(t,x) = f(2^kt,2^kx)$. We have

$$\|\nabla_{t,x}u^{k}\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} + \|r^{-1}u^{k}\|_{L^{2}L^{2}([0,T]\times B_{1})}^{2} \lesssim \left|\int_{0}^{T} \left\langle \beta(r)\partial_{r}u^{k}, 2^{2k}f^{k} \right\rangle dt \right| + \|\nabla_{t,x}u^{k}(T)\|_{L_{x}^{2}}^{2} + \|\nabla_{t,x}u^{k}(0)\|_{L_{x}^{2}}^{2},$$

As $2^{-k}A_k \subset B_1$, we also get that

$$\|\nabla_{t,x}u^{k}\|_{L^{2}L^{2}([0,T]\times 2^{-k}A_{k})}^{2} + \|r^{-1}u^{k}\|_{L^{2}L^{2}([0,T]\times 2^{-k}A_{k})}^{2} \lesssim \left|\int_{0}^{T} \left\langle \beta(r)\partial_{r}u^{k}, 2^{2k}f^{k} \right\rangle dt \right| + \|\nabla_{t,x}u^{k}(T)\|_{L_{x}^{2}}^{2} + \|\nabla_{t,x}u^{k}(0)\|_{L_{x}^{2}}^{2},$$

We can also see that

$$\begin{split} \|\nabla_{t,x}u^k\|_{L^2L^2([0,T]\times 2^{-k}A_k)}^2 &= 2^{-k(d-1)}\|\nabla_{t,x}u\|_{L^2L^2([0,2^kT]\times A_k)}^2 \\ \|r^{-1}u^k\|_{L^2L^2([0,T]\times 2^{-k}A_k)}^2 &= 2^{-k(d-1)}\|r^{-1}u\|_{L^2L^2([0,2^kT]\times A_k)}^2 \\ \|\nabla_{t,x}u^k(0)\|_{L_x^2}^2 &= 2^{-k(d-2)}\|\nabla_{t,x}u(0)\|_{L_x^2}^2 \\ \|\nabla_{t,x}u^k(T)\|_{L_x^2}^2 &= 2^{-k(d-2)}\|\nabla_{t,x}u(2^kT)\|_{L_x^2}^2 \\ \int_0^T \left\langle \beta(r)\partial_r u^k, 2^{2k}f^k \right\rangle dt &= 2^{-k(d-2)}\int_0^{2^kT} \left\langle \beta\left(\frac{r}{2^k}\right)\partial_r u, f \right\rangle dt \end{split}$$

Therefore,

$$2^{-k} \|\nabla_{t,x} u\|_{L^{2}L^{2}([0,2^{k}T]\times A_{k})}^{2} + 2^{-k} \|r^{-1}u\|_{L^{2}L^{2}([0,2^{k}T]\times A_{k})}^{2} \lesssim \left| \int_{0}^{2^{k}T} \left\langle \beta\left(\frac{r}{2^{k}}\right) \partial_{r} u, f \right\rangle dt \right| + \|\nabla_{t,x} u(2^{k}T)\|_{L^{2}_{x}}^{2} + \|\nabla_{t,x} u(0)\|_{L^{2}_{x}}^{2}$$

From the energy identity

$$\|\nabla_{t,x}u^k(2^kT)\|_{L_x^2}^2 = \|\nabla_{t,x}u^k(0)\|_{L_x^2}^2 + 2\int_0^{2^kT} \langle \partial_t u, f \rangle dt$$

we get that

$$2^{-k} \|\nabla_{t,x}u\|_{L^{2}L^{2}([0,2^{k}T]\times A_{k})}^{2} + 2^{-k} \|r^{-1}u\|_{L^{2}L^{2}([0,2^{k}T]\times A_{k})}^{2} \lesssim \left| \int_{0}^{2^{k}T} \left\langle \beta\left(\frac{r}{2^{k}}\right) \partial_{r}u, f \right\rangle dt \right| \\ + \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2} + 2 \int_{0}^{2^{k}T} |\langle \partial_{t}u, f \rangle| dt \\ \lesssim \int_{\mathbb{R}} \int_{\mathbb{R}^{d}} (|\nabla_{t,x}u|) |f| dx dt \\ + \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2}$$

It is also clear that we have the same inequality for k = 0. By taking the supremum with respect to $k \ge 0$, we deduce that for every $\delta > 0$,

$$\|\nabla_{t,x}u\|_{LE}^{2} + \|r^{-1}u\|_{LE}^{2} \lesssim \int_{\mathbb{R}} \int_{\mathbb{R}^{d}} |\nabla_{t,x}u||f| \, dx \, dt + \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2}$$
$$\lesssim \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2} + \delta \|\nabla_{t,x}u\|_{LE}^{2} + \frac{1}{\delta} \|f\|_{LE^{*}}^{2}$$

By choosing $\delta > 0$ sufficiently small, we deduce that

$$\|\nabla_{t,x}u\|_{LE}^2 + \|r^{-1}u\|_{LE}^2 \lesssim \|(u_0, u_1)\|_{\dot{H}^1 \times L^2}^2 + \|f\|_{LE^*}^2$$

We can now immediately see that

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|(u_0,u_1)\|_{\dot{H}^1\times L^2} + \|f\|_{LE^*}.$$

Corollary 1.2. Every solution of (1) satisfies

$$\|\nabla_{t,x}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} + \|\langle r\rangle^{-1}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} \lesssim \|\nabla_{t,x}u(0)\|_{L^{2}_{x}} + \|f\|_{L^{1}_{t}L^{2}_{x}+LE^{*}}.$$

Proof. As we have already seen,

$$\|\nabla_{t,x}u\|_{LE}^{2} + \|\langle r\rangle^{-1}u\|_{LE}^{2} \lesssim \int_{\mathbb{R}} \int_{\mathbb{R}^{d}} |\nabla_{t,x}u||f| \, dx \, dt + \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2}$$

From the energy identity

$$\|\nabla_{t,x}u(T)\|_{L_x^2}^2 = \|\nabla_{t,x}u(0)\|_{L_x^2}^2 + 2\int_0^T \langle \partial_t u, f \rangle dt$$

we immediately get that

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2}^2 \lesssim \|\nabla_{t,x}u(0)\|_{L_x^2}^2 + \int_{\mathbb{D}} |\partial_t u||f| \, dt$$

Thus,

$$\|\nabla_{t,x}u\|_{L_t^\infty L_x^2 \cap LE}^2 + \|\langle r \rangle^{-1}u\|_{LE}^2 \lesssim \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\nabla_{t,x}u||f| \, dx \, dt + \|\nabla_{t,x}u(0)\|_{L_x^2}^2$$

From Hardy's inequality $(d \geq 3)$, we get that

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2 \cap LE}^2 + \|\langle r \rangle^{-1}u\|_{L_t^{\infty}L_x^2 \cap LE}^2 \lesssim \int_{\mathbb{R}} \int_{\mathbb{R}^d} |\nabla_{t,x}u||f| \, dx \, dt + \|\nabla_{t,x}u(0)\|_{L_x^2}^2$$

Thus, for every $\delta > 0$

$$\|\nabla_{t,x}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE}^{2} + \|\langle r\rangle^{-1}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE}^{2} \lesssim \delta\|\nabla_{t,x}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE}^{2} + \frac{1}{\delta}\|f\|_{L_{t}^{1}L_{x}^{2} + LE^{*}}^{2} + \|\nabla_{t,x}u(0)\|_{L_{x}^{2}}^{2}$$

By choosing $\delta > 0$ small enough, we get that

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2\cap LE}^2 + \|\langle r\rangle^{-1}u\|_{L_t^{\infty}L_x^2\cap LE}^2 \lesssim \|\nabla_{t,x}u(0)\|_{L_x^2}^2 + \|f\|_{L_t^1L_x^2 + LE^*}^2$$

Therefore,

$$\|\nabla_{t,x}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} + \|\langle r\rangle^{-1}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} \lesssim \|\nabla_{t,x}u(0)\|_{L^{2}_{x}} + \|f\|_{L^{1}_{t}L^{2}_{x}+LE^{*}}.$$

We now consider the perturbed equation

(2)
$$\begin{cases} (-\partial_t^2 + L)u = 0\\ u(0) = u_0, \partial_t u(0) = u_1 \end{cases}$$

where $L = -\Delta + b^k \partial_k + c$ satisfies the decay condition

(3)
$$\sum_{j=0}^{\infty} \sup_{\mathbb{R}_t \times A_j} \langle x \rangle |b| + \langle x \rangle^2 |\partial_t b^l| + \langle x \rangle^2 |c| < K,$$

where K > 0 is a positive constant.

Corollary 1.3. Let u be a solution of (2). If K is small enough, then u satisfies

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2\cap LE} + \|\langle r\rangle^{-1}u\|_{L_t^{\infty}L_x^2\cap LE} \lesssim \|\nabla_{t,x}u(0)\|_{L_x^2} + \|f\|_{L_t^1L_x^2 + LE^*}.$$

Proof. We write $Bu = b^l \partial_l u + cu$. We rewrite the equation as $(-\partial_t^2 + \Delta)u = f - Bu$. Thus,

$$\|\nabla_{t,x}u\|_{L_t^{\infty}L_x^2\cap LE} + \|\langle r\rangle^{-1}u\|_{L_t^{\infty}L_x^2\cap LE} \lesssim \|(u_0,u_1)\|_{\dot{H}^1\times L^2} + \|f - Bu\|_{LE^*}$$
$$\lesssim \|(u_0,u_1)\|_{\dot{H}^1\times L^2} + \|f\|_{LE^*} + \|Bu\|_{LE^*}$$

For every $k \geq 0$, we have

$$||Bu||_{LE^*} = \sum_{k=0}^{\infty} 2^{\frac{k}{2}} ||Bu||_{L^2L^2(\mathbb{R}_t \times A_k)} = \sum_{k=0}^{\infty} 2^{\frac{k}{2}} ||b^l \partial_l u||_{L^2L^2(\mathbb{R}_t \times A_k)} + 2^{\frac{k}{2}} ||cu||_{L^2L^2(\mathbb{R}_t \times A_k)}$$
$$\lesssim K(||\nabla_{t,x} u||_{LE} + ||\langle r \rangle^{-1} u||_{LE})$$

Thus,

$$\|\nabla_{t,x}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE} + \|\langle r\rangle^{-1}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE} \lesssim \|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}} + \|f - Bu\|_{LE^{*}}$$

$$\lesssim \|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}} + \|f\|_{LE^{*}} + \|Bu\|_{LE^{*}}$$

$$\lesssim \|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}} + \|f\|_{LE^{*}}$$

$$+ K(\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE})$$

If K > 0 is sufficiently small, we deduce that

$$\|\nabla_{t,x}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} + \|\langle r\rangle^{-1}u\|_{L^{\infty}_{t}L^{2}_{x}\cap LE} \lesssim \|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}} + \|f\|_{LE^{*}},$$

Remark 1.4. We note that the integrated local energy decay estimated also takes place under perturbations of the metric (see [Metcalfe-Tataru]).

2. Strichartz estimates

Definition 2.1. A pair (p,q) is said to be wave-admissible in dimension d+1 if

$$p \in [2, \infty], \frac{1}{p} + \frac{d-1}{2q} \le \frac{d-1}{4}, (p, q, d) \ne (2, \infty, 3)$$

We recall the following result:

Theorem 2.2. Let $u_0, u_1 \in \mathcal{S}(\mathbb{R}^d)$, and let u be the solution to (1) with this initial data. Let (p, q) and (\tilde{p}, \tilde{q}) be pairs of wave-admissible exponents, which also obey the scaling conditions

$$\frac{1}{p} + \frac{d}{q} = -2 + \frac{1}{\tilde{p}'} + \frac{d}{\tilde{q}'} = -1 + \frac{d}{2},$$

where \tilde{p}' and \tilde{q}' are the Lebesgue duals to \tilde{p} and \tilde{q} , i.e $\frac{1}{\tilde{p}'} + \frac{1}{\tilde{p}} = \frac{1}{\tilde{q}'} + \frac{1}{\tilde{q}} = 1$, and (\hat{p}, \hat{q}) another pair of wave-admissible exponents satisfying

$$\frac{1}{\hat{p}} + \frac{d}{\hat{q}} = \frac{d}{2}.$$

In addition, we assume that they also satisfy the **non-endpoint** condition $p, \tilde{p}, \hat{p} > 2$. Then,

$$\|\nabla_{t,x}u\|_{L^{\infty}L^{2}}+\|u\|_{L^{p}L^{q}}+\|\nabla_{t,x}u\|_{L^{\hat{p}}L^{\hat{q}}}\lesssim_{p,q,\tilde{p},\tilde{q},\hat{p},\hat{q}}\|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}}+\|f\|_{L^{\tilde{p}'}L^{\tilde{q}'}}$$

We are also going to need the following theorem

Theorem 2.3. Let X and Y be Banach spaces, and let $T: L^p(\mathbb{R}; X) \to L^q(\mathbb{R}; Y)$ $(1 \le p, q \le \infty)$ be of the form

$$Tf(t) = \int_{-\infty}^{\infty} K(t, s) f(s) \, ds$$

for some kernel $K : \mathbb{R} \times \mathbb{R} \to \mathcal{B}(X \to Y)$. Provided that p < q, the truncated operator

$$\tilde{T}f(t) = \int_{-\infty}^{t} K(t,s)f(s) ds$$

defines a bounded operator from $L^p(\mathbb{R};X)$ to $L^q(\mathbb{R};Y)$.

We are now going to prove the following result:

Theorem 2.4. (Rodnianski-Schlag) We assume that the coefficients of (2) satisfy (3) for some K > 0 (in particular, K can be large). We also assume that (ILED) holds for (2).

Let $u_0, u_1 \in \mathcal{S}(\mathbb{R}^d)$, and let u be the solution to (2) with this initial data. Let (p, q) and (\hat{p}, \hat{q}) , be pairs of wave-admissible exponents, which also obey the scaling conditions

$$\frac{1}{p} + \frac{d}{q} = \frac{1}{\hat{p}} + \frac{d}{\hat{q}} - 1 = -1 + \frac{d}{2}.$$

In addition, we assume that they also satisfy the **non-endpoint** condition $p, \hat{p} > 2$. Then,

$$\|\nabla_{t,x}u\|_{L^{\infty}L^{2}} + \|u\|_{L^{p}L^{q}} + \|\nabla_{t,x}u\|_{L^{\hat{p}}L^{\hat{q}}} \lesssim_{p,q,\hat{p},\hat{q}} \|(u_{0},u_{1})\|_{\dot{H}^{1}\times L^{2}} + \|f\|_{L-t^{1}L^{2}_{x}+LE^{*}}$$

Proof. We recall some results concerning the linear wave equation. The first one says that the solution of the homogeneous problem

$$(-\partial_t^2 + \Delta)u = 0$$

$$u(0) = u_0,$$

$$\partial_t u(0) = u_1$$

is given by the formula

$$u(t) = \cos(t\sqrt{-\Delta})u_0 + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}u_1$$

Besides this, the purely inhomogeneous problem

$$(-\partial_t^2 + \Delta)u = F$$

$$u(0) = 0,$$

$$\partial_t u(0) = 0$$

has a solution given by the formula

$$u(t) = -\int_{-\infty}^{t} \frac{\sin(t-s)\sqrt{-\Delta}}{\sqrt{-\Delta}} F(s) ds$$

We also note that when u is a solution of the homogeneous problem,

$$\|\nabla_{t,x}u\|_{L_{t}^{\infty}L_{x}^{2}\cap LE}\lesssim \|(u_{0},u_{1})\|_{\dot{H}_{x}^{1}\times L_{x}^{2}}$$

By duality, we get that

$$\begin{split} & \left\| \int_{-\infty}^{\infty} \cos(t\sqrt{-\Delta}) F(t) \, dt \right\|_{L_x^2} \lesssim \|F\|_{L_t^1 L_x^2 + L E^*} \\ & \left\| \int_{-\infty}^{\infty} \sin(t\sqrt{-\Delta}) F(t) \, dt \right\|_{L_x^2} \lesssim \|F\|_{L_t^1 L_x^2 + L E^*} \end{split}$$

By applying the homogeneous Strichartz estimate, we deduce that

$$\left\| \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}} \int_{-\infty}^{\infty} \cos(s\sqrt{-\Delta}) F(s) \, ds \right\|_{L_{t}^{p} L_{x}^{q}} + \left\| \nabla_{t,x} \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}} \int_{-\infty}^{\infty} \cos(s\sqrt{-\Delta}) F(s) \, ds \right\|_{L_{t}^{\hat{p}} L_{x}^{\hat{q}}}$$

$$\lesssim \left\| \int_{-\infty}^{\infty} \cos(s\sqrt{-\Delta}) F(s) \, ds \right\|_{L_{x}^{2}}$$

$$\left\| \cos(t\sqrt{-\Delta}) \int_{-\infty}^{\infty} \frac{\sin(s\sqrt{-\Delta})}{\sqrt{-\Delta}} F(s) \, dt \right\|_{L_{t}^{\hat{p}} L_{x}^{\hat{q}}} + \left\| \nabla_{t,x} \cos(t\sqrt{-\Delta}) \int_{-\infty}^{\infty} \frac{\sin(s\sqrt{-\Delta})}{\sqrt{-\Delta}} F(s) \, dt \right\|_{L_{t}^{\hat{p}} L_{x}^{\hat{q}}}$$

$$\lesssim \left\| \int_{-\infty}^{\infty} \sin(s\sqrt{-\Delta}) F(s) \, ds \right\|_{L_{x}^{2}}$$

Thus,

$$\left\| \int_{-\infty}^{\infty} \frac{\sin(t-s)\sqrt{-\Delta}}{\sqrt{-\Delta}} F(s) \, ds \right\|_{L_{t}^{p} L_{x}^{q}} + \left\| \nabla_{t,x} \int_{-\infty}^{\infty} \frac{\sin(t-s)\sqrt{-\Delta}}{\sqrt{-\Delta}} F(s) \, ds \right\|_{L_{t}^{\hat{p}} L_{x}^{\hat{q}}} \lesssim \|F\|_{L_{t}^{1} L_{x}^{2} + L E^{*}}$$

As p > 2, the Christ-Kiselev lemma enables us to deduce that

$$\left\| \int_{-\infty}^{t} \frac{\sin(t-s)\sqrt{-\Delta}}{\sqrt{-\Delta}} F(s) \, ds \right\|_{L^{p}_{t}L^{q}_{x}} + \left\| \nabla_{t,x} \int_{-\infty}^{t} \frac{\sin(t-s)\sqrt{-\Delta}}{\sqrt{-\Delta}} F(s) \, ds \right\|_{L^{\hat{p}}_{t}L^{\hat{q}}_{x}} \lesssim \|F\|_{L^{1}_{t}L^{2}_{x} + LE^{*}}$$

Along with the homogeneous Strichartz estimate, this immediately implies that

$$||u||_{L_t^p L_x^q} + ||\nabla_{t,x} u||_{L_t^{\hat{p}} L_x^{\hat{q}}} \lesssim ||(u_0, u_1)||_{\dot{H}_x^1 \times L_x^2} + ||F||_{L_t^1 L_x^2 + LE^*}$$

We now return to the problem

$$(-\partial_t^2 - L)u = f$$

$$u(0) = u_0,$$

$$\partial_t u(0) = u_1$$

This can be rewritten as

$$(-\partial_t^2 + \Delta)u = f + Bu$$

$$u(0) = u_0,$$

$$\partial_t u(0) = u_1$$

As in the proof of Corollary 1.3, we have

$$||Bu||_{LE^*} \lesssim K(||\nabla_{t,x}u||_{LE} + ||\langle r \rangle^{-1}u||_{LE}) \lesssim ||(u_0, u_1)||_{\dot{H}^1_x \times L^2_x} + ||f||_{L^1_t L^2_x + LE^*}$$

We deduce that

$$||u||_{L^{p}L^{q}} + ||\nabla_{t,x}u||_{L^{\hat{p}}_{t}L^{\hat{q}}_{x}} \lesssim ||(u_{0}, u_{1})||_{\dot{H}^{1}_{x} \times L^{2}_{x}} + ||f + Bu||_{L^{1}_{t}L^{2}_{x} + LE^{*}}$$

$$\lesssim ||(u_{0}, u_{1})||_{\dot{H}^{1}_{x} \times L^{2}_{x}} + ||f||_{L^{1}_{t}L^{2}_{x} + LE^{*}} + ||Bu||_{L^{1}_{t}L^{2}_{x} + LE^{*}}$$

$$\lesssim ||(u_{0}, u_{1})||_{\dot{H}^{1}_{x} \times L^{2}_{x}} + ||f||_{L^{1}_{t}L^{2}_{x} + LE^{*}}$$

This finishes the proof.

Remark 2.5. We note that we can further generalize the previous Strichartz estimates to general non-endpoint wave-admissible pairs (\tilde{p}, \tilde{q}) satisfying the scaling condition $\frac{1}{\tilde{p}} + \frac{d}{\tilde{q}} = \frac{d}{2}$ if we replace the integrated local energy decay estimate by the condition

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|(u_0,u_1)\|_{\dot{H}^1_x \times L^2_x} + \|f\|_{L^{\tilde{p}'}_t L^{\tilde{q}'}_x + LE^*}.$$

Remark 2.6. For the endpoint case see the argument of [Keel-Tao] or [Ionescu-Kenig].

Remark 2.7. If (b,c) don't satisfy (3), then the previous result can fail in some instances. For example, if $c = \alpha r^{-2}$, then the wave admissible pairs (p,q), (\hat{p},\hat{q}) , and (\tilde{p},\tilde{q}) for which Strichartz estimates hold depend sensitively on α (see [Burq Planchon Stalker Tahvildar-Zadeh]).

3. A SPECTRAL CHARACTERIZATION

We assume that $L = -\Delta + b^k \partial_k + c$, where b is purely imaginary and c is real, and both of them are time-independent and satisfy the decay condition (3) for some(possibly large) $K \in (0, \infty)$. These conditions imply that L is self-adjoint. It is clear that $\langle Lu, u \rangle$ is bounded on \dot{H}^1 . We also assume that L is coercive, in the sense that $\langle Lu, u \rangle \gtrsim ||u||_{\dot{H}^1}^2$. We define the wave resolvents of L as

$$\mathbf{R}_z = (z^2 - L)^{-1}.$$

which are well-defined as bounded operators from \dot{H}^1 to D(L) as long as $z^2 \notin \sigma(L)$. The spectral theorem implies the following bound for \mathbf{R}_z :

Lemma 3.1. For any $\tau \in \mathbb{R}$ and $\varepsilon > 0$, we have

$$|\tau| \|\mathbf{R}_{\tau \pm i\varepsilon} g\|_{L^2} \lesssim \varepsilon^{-1} \|g\|_{L^2}$$

Proof. From the spectral theorem, we have (we keep in mind that $\sigma(L) \subset \mathbb{R}$) (for every $\tau \neq 0$)

$$\|\mathbf{R}_{\tau \pm i\varepsilon} g\|_{L^{2}} \lesssim d((\tau \pm i\varepsilon)^{2}, \sigma(L))^{-1} \|g\|_{L^{2}} = d(\tau^{2} - \varepsilon^{2} \pm 2\tau i\varepsilon, \sigma(L))^{-1} \|g\|_{L^{2}}$$
$$\lesssim |\tau|^{-1} \varepsilon^{-1} \|g\|_{L^{2}}$$

Thus,

$$|\tau| \|\mathbf{R}_{\tau \pm i\varepsilon} g\|_{L^2} \lesssim \varepsilon^{-1} \|g\|_{L^2}$$

Here we have used the bound

$$d((\tau \pm i\varepsilon)^2, \sigma(L)) \ge d((\tau \pm i\varepsilon)^2, \mathbb{R}) = d(\tau^2 - \varepsilon^2 \pm 2\tau i\varepsilon, \mathbb{R}) = 2|\tau|\varepsilon,$$

which follows from the fact that $\sigma(L) \subset \mathbb{R}$.

The same conclusion is clearly true for $\tau = 0$.

Lemma 3.2. For any $\tau \in \mathbb{R}$ and $\varepsilon > 0$, we have

$$\|\nabla_x \mathbf{R}_{\tau \pm i\varepsilon} g\|_{L^2} + \varepsilon \|\mathbf{R}_{\tau \pm i\varepsilon} g\|_{L^2} \lesssim \varepsilon^{-1} \|g\|_{L^2}$$

Proof. Let $u = \mathbf{R}_{\tau \pm i\varepsilon} g$ By definition, $((\tau \pm i\varepsilon)^2 - L)u = g$. We have

$$\Re\langle u, g \rangle = \Re\langle u, (\tau^2 - \varepsilon^2)u \pm 2i\tau\varepsilon u - Lu \rangle = \langle u, (\tau^2 - \varepsilon^2)u - Lu \rangle$$

Thus, for every $\delta > 0$,

$$\begin{split} \langle Lu,u\rangle + \varepsilon^2 \|u\|_{L^2}^2 &= \tau^2 \|u\|_{L^2}^2 - \Re \langle u,g\rangle \lesssim \tau^2 \|u\|_{L^2}^2 + |\langle u,g\rangle| \\ &\lesssim \tau^2 \|u\|_{L^2}^2 + \|u\|_{L^2} \|g\|_{L^2} \lesssim \varepsilon^{-2} \|g\|_{L^2}^2 + \delta^{-2} \varepsilon^{-2} \|g\|_{L^2}^2 + \delta^2 \varepsilon^2 \|u\|_{L^2}^2 \end{split}$$

By choosing $\delta > 0$ sufficiently small, we deduce that

$$\langle Lu, u \rangle + \varepsilon^2 ||u||_{L^2}^2 \lesssim \varepsilon^{-2} ||g||_{L^2}^2$$

As $\langle Lu, u \rangle \gtrsim ||u||_{\dot{H}^1}^2$, we get that

$$||u||_{\dot{H}^1}^2 + \varepsilon^2 ||u||_{L^2}^2 \lesssim \varepsilon^{-2} ||g||_{L^2}^2,$$

hence

$$||u||_{\dot{H}^1} + \varepsilon ||u||_{L^2}^2 \lesssim \varepsilon^{-1} ||g||_{L^2}^2,$$

The conclusion immediately follows.

We are also going to define the spatial counterparts of LE and LE^* :

$$||u||_{\mathcal{L}\mathcal{E}} = \sup_{j \ge 0} ||\langle r \rangle^{-\frac{1}{2}} u||_{L^2(A_j)}$$
$$||f||_{\mathcal{L}\mathcal{E}^*} = \sum_{j \ge 0} ||\langle r \rangle^{\frac{1}{2}} f||_{L^2(A_j)}$$

We shall prove the following result (for further reference, see [Metcalfe-Sterbenz-Tataru]):

Theorem 3.3. The following are equivalent:

- (1) Every solution u to (2) satisfies ILED
- (2) For every $\tau \in \mathbb{R}$ and $\varepsilon > 0$, we have

$$|\tau \pm i\varepsilon| \|\mathbf{R}_{\tau \pm i\varepsilon} g\|_{\mathcal{L}\mathcal{E}} + \|\nabla_x \mathbf{R}_{\tau \pm i\varepsilon} g\|_{\mathcal{L}\mathcal{E}} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau \pm i\varepsilon} g\|_{\mathcal{L}\mathcal{E}} \le C \|g\|_{\mathcal{L}\mathcal{E}^*},$$

where C > 0 is an universal constant.

Proof. Step 1: Reduction to forward solutions. We first prove that every solution of $(-\partial_t^2 - L)u = f$ with $u(0) = u_0$ and $u_t(0) = u_1$ satisfies

$$\|\nabla u\|_{LE} + \|\langle r \rangle^{-1} u\|_{LE} \lesssim \|(u_0, u_1)\|_{\dot{H}^1 \times L^2} + \|f\|_{LE^*}$$

if and only if every solution of the forward problem $(-\partial_t^2 - L)u = f$, with f supported away from $\{t = -\infty\}$ satisfies

$$\|\nabla u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|f\|_{LE^*}$$

When f is supported away from $\{t = -\infty\}$, and u(t) = 0 for t sufficiently negative, we deduce that there exists t_0 such that u(t) = 0, $\forall t \leq t_0$. Thus, $\partial_t u(t_0) = 0$. By applying ILED to $\tilde{u}(t) = u(t + t_0)$ (which satisfies $\tilde{u}(0) = 0$, $\partial_t \tilde{u}(0) = 0$), and by using the time-invariance of the LE and LE^* norms, we deduce that

$$\|\nabla u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|f\|_{LE^*}$$

For the converse, we use a method that is similar to the one employed by Rodnianski and Schlag. We consider v to be the solution of the problem

$$(-\partial_t^2 + \Delta)v = f$$
$$v(0) = u_0$$
$$\partial_t v(0) = u_1$$

By 1.2, we have

$$\|\nabla_{t,x}v\|_{LE} + \|\langle r\rangle^{-1}v\|_{LE} \lesssim \|(u_0, u_1)\|_{\dot{H}^1_x \times L^2_x} + \|f\|_{LE^*}$$

We can now immediately see that u-v satisfies

$$(-\partial_t^2 + L)(u - v) = -Bv$$
$$(u - v)(0) = 0$$
$$\partial_t (u - v)(0) = 0$$

Let v_+ be the forward solution of

$$(-\partial_t^2 + L)(v_+) = \mathbf{1}_{[0,\infty)}(-Bv)$$
$$(v_+)(0) = 0$$
$$\partial_t(v_+)(0) = 0$$

and v_{-} be the backward solution of

$$(-\partial_t^2 + L)(v_-) = \mathbf{1}_{(-\infty,0)}(-Bv)$$
$$(v_-)(0) = 0$$
$$\partial_t(v_-)(0) = 0$$

Thus,

$$\|\nabla_{t,x}v_+\|_{LE} + \|\langle r\rangle^{-1}v_+\|_{LE} \lesssim \|\mathbf{1}_{[0,\infty)}(-Bv)\|_{LE^*} \lesssim \|Bv\|_{LE^*},$$

and by using the time symmetry of the LE and LE^* norms,

$$\|\nabla_{t,x}v_-\|_{LE} + \|\langle r \rangle^{-1}v_-\|_{LE} \lesssim \|\mathbf{1}_{(-\infty,0)}(-Bv)\|_{LE^*} \lesssim \|Bv\|_{LE^*},$$

As in the proof of Corollary 1.3, we get that

$$||Bv||_{LE^*} \lesssim K(||\nabla_{t,x}v||_{LE} + ||\langle r \rangle^{-1}v||_{LE}) \lesssim ||(u_0, u_1)||_{\dot{H}^1_x \times L^2_x} + ||f||_{LE^*}$$

We note that $u - v - v_{+} - v_{-}$ is a finite energy solution of

$$(-\partial_t^2 + L)(u - v - v_+ - v_-) = 0$$
$$(u - v - v_+ - v_-)(0) = 0$$
$$\partial_t (u - v - v_+ - v_-)(0) = 0$$

Thus, $u = v + v_{+} + v_{-}$. This means that

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|\nabla_{t,x}v\|_{LE} + \|\langle r\rangle^{-1}v\|_{LE} + \|\nabla_{t,x}v_{+}\|_{LE} + \|\langle r\rangle^{-1}v_{+}\|_{LE} + \|\nabla_{t,x}v_{-}\|_{LE} + \|\langle r\rangle^{-1}v_{-}\|_{LE}$$

$$\lesssim \|(u_{0}, u_{1})\|_{\dot{H}_{x}^{1} \times L_{x}^{2}} + \|f\|_{LE^{*}} + \|Bv\|_{LE^{*}}$$

$$\lesssim \|(u_{0}, u_{1})\|_{\dot{H}_{x}^{1} \times L_{x}^{2}} + \|f\|_{LE^{*}},$$

as desired.

Step 2: Reduction to damped forward solutions. Now we prove that the condition

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r \rangle^{-1}u\|_{LE} \lesssim \|f\|_{LE^*}$$

for forward solutions is equivalent to the condition

$$||e^{-\varepsilon t}\nabla_{t,x}u||_{LE} + ||\langle r\rangle^{-1}e^{-\varepsilon t}u||_{LE} \lesssim ||e^{-\varepsilon t}f||_{LE^*}, \forall \varepsilon > 0$$

We first show that the latter implies the former.

Let u_k be the forward solution corresponding to $\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)f$. As the operator L is elliptic, we have

$$u_k(t) = -\int_{-\infty}^{t} \frac{\sin(t-s)L}{L} (\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)} f)(s) \, ds,$$

which shows that u_k is supported in $\{t \in [k, \infty)\}$. We also have $u = \sum_{k \in \mathbb{Z}} u_k$.

We note that

$$\begin{split} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{LE} &\simeq \sup_{j \geq 0} 2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \\ &\simeq \sup_{j \geq 0} \left(\sum_{k \in \mathbb{Z}} 2^{-j} \|e^{-\varepsilon t} \mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})}^{2} \right)^{\frac{1}{2}} \\ &\simeq \sup_{j \geq 0} \left(\sum_{k \in \mathbb{Z}} 2^{-j} e^{-2k} \|\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})}^{2} \right)^{\frac{1}{2}} \\ &\simeq \|2^{-\frac{j}{2}} e^{-k} \|\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \|_{l_{j}^{\infty} l_{k}^{2}} \\ &\lesssim \|2^{-\frac{j}{2}} e^{-k} \|\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \|_{l_{k}^{2} l_{k}^{\infty}} \end{split}$$

Similarly,

$$\begin{aligned} \|\langle r \rangle^{-1} e^{-\varepsilon t} u \|_{LE} &\simeq \sup_{j \ge 0} 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \\ &\simeq \| 2^{-\frac{3j}{2}} e^{-k} \| \mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) u \|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \|_{l_{j}^{\infty} l_{k}^{2}} \\ &\lesssim \| 2^{-\frac{3j}{2}} e^{-k} \| \mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t) u \|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \|_{l_{k}^{2} l_{j}^{\infty}} \end{aligned}$$

We also note that

$$||f||_{LE^*} \simeq \sum_{l\geq 0} 2^{\frac{l}{2}} ||f||_{L^2L^2(\mathbb{R}\times A_l)} \simeq \sum_{l\geq 0} 2^{\frac{l}{2}} \left(||\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t)f||_{L^2L^2(\mathbb{R}\times A_l)}^2 \right)^{\frac{1}{2}}$$

$$\simeq ||2^{\frac{l}{2}} ||\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t)f||_{L^2L^2(\mathbb{R}\times A_l)} ||_{l_l^1 l_k^2} \gtrsim ||2^{\frac{l}{2}} ||\mathbf{1}_{\left[\frac{k}{\varepsilon}, \frac{k+1}{\varepsilon}\right)}(t)f||_{L^2L^2(\mathbb{R}\times A_l)} ||_{l_k^2 l_l^1}$$

This means that it suffices to prove the inequality

$$\|2^{-\frac{j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}} + \|2^{-\frac{3j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}}$$

$$\lesssim \|2^{\frac{l}{2}}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\|_{l_{k}^{2}l_{l}^{1}}$$

As u_k is supported in $[k, \infty)$, for every $j \ge 0$ we have

$$\begin{split} \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} &= \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\sum_{k'\in\mathbb{Z}}\nabla_{t,x}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \\ &= \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\sum_{k'\leq k}\nabla_{t,x}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \\ \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} &= \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\sum_{k'\in\mathbb{Z}}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \\ &= \|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\sum_{k'< k}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \end{split}$$

We now note that

$$\begin{split} &\|2^{-\frac{j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}} = \left(\sum_{k\in\mathbb{Z}}e^{-2k}\sup_{j\geq0}2^{-j}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}^{2}\right)^{\frac{1}{2}} \\ &= \left(\sum_{k\in\mathbb{Z}}e^{-2k}\sup_{j\geq0}2^{-j}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\sum_{k'\leq k}\nabla_{t,x}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}^{2}\right)^{\frac{1}{2}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}e^{-2k}\left(\sum_{k'\leq k}\sup_{j\geq0}2^{-\frac{j}{2}}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\right)^{2}\right)^{\frac{1}{2}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}e^{-2k}\left(\sum_{k'\leq k}\sup_{j\geq0}2^{-\frac{j}{2}}\|\nabla_{t,x}u_{k'}\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\right)^{2}\right)^{\frac{1}{2}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}e^{-2k}\left(\sum_{k'\leq k}\sum_{l\geq0}2^{\frac{j}{2}}\|\mathbf{1}_{\left[\frac{k'}{\varepsilon},\frac{k'+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}\left(\sum_{k'\leq k}e^{-(k-k')}\sum_{l\geq0}2^{\frac{j}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k'}{\varepsilon},\frac{k'+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}} \end{split}$$

Similarly,

$$\|2^{-\frac{3j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}}$$

$$\lesssim \left(\sum_{k\in\mathbb{Z}}\left(\sum_{k'\leq k}e^{-(k-k')}\sum_{l\geq 0}2^{\frac{l}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k'}{\varepsilon},\frac{k'+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}}$$

Thus,

$$\|2^{-\frac{j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}} + \|2^{-\frac{3j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}}$$

$$\lesssim \left(\sum_{k\in\mathbb{Z}}\left(\sum_{k'\leq k}e^{-(k-k')}\sum_{l\geq 0}2^{\frac{l}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k'}{\varepsilon},\frac{k'+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}}$$

However, the sequence $(c_k)_{k\geq 0}$ given by $c_k=e^{-k}$ is l_k^1 , and $||c_k||_{l_k^1}=(1-e^{-1})^{-1}$. By Young's inequality, we get

$$\begin{split} \|2^{-\frac{j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}} + \|2^{-\frac{3j}{2}}e^{-k}\|\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})}\|_{l_{k}^{2}l_{j}^{\infty}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}\left(\sum_{k'\leq k}e^{-(k-k')}\sum_{l\geq 0}2^{\frac{l}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k'}{\varepsilon},\frac{k'+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}} \\ &\lesssim \|c_{k}\|_{l_{k}^{1}}\left(\sum_{k\in\mathbb{Z}}\left(\sum_{l\geq 0}2^{\frac{l}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}} \\ &\lesssim \left(\sum_{k\in\mathbb{Z}}\left(\sum_{l\geq 0}2^{\frac{l}{2}}\|e^{-\varepsilon t}\mathbf{1}_{\left[\frac{k}{\varepsilon},\frac{k+1}{\varepsilon}\right)}(t)f\|_{L^{2}L^{2}(\mathbb{R}\times A_{l})}\right)^{2}\right)^{\frac{1}{2}} \end{split}$$

Along with the previous discussion, this implies that

$$||e^{-\varepsilon t}\nabla_{t,x}u||_{LE} + ||\langle r\rangle^{-1}e^{-\varepsilon t}u||_{LE} \lesssim ||e^{-\varepsilon t}f||_{LE^*}, \forall \varepsilon > 0$$

We now prove the converse. As f is supported away from $\{t = -\infty\}$, there exists $m \in \mathbb{Z}$ such that supp $f \subseteq \{t \in [m,\infty)\}$. For every $\varepsilon > 0$, and $j \ge 0$, we have

$$2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} + 2^{-\frac{j}{2}} \|\langle r \rangle^{-1} e^{-\varepsilon t} u\|_{L^{2}L^{2}(\mathbb{R} \times A_{j})} \lesssim \|e^{-\varepsilon t} f\|_{LE^{*}} \lesssim e^{-\varepsilon m} \|f\|_{LE^{*}}$$

For every $n \in \mathbb{Z}$, we get that

$$\begin{split} 2^{-\frac{j}{2}}e^{-\varepsilon n}\|\nabla_{t,x}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})} + 2^{-\frac{j}{2}}e^{-\varepsilon n}\|\langle r\rangle^{-1}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})} \\ &\lesssim 2^{-\frac{j}{2}}\|e^{-\varepsilon t}\nabla_{t,x}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})} + 2^{-\frac{j}{2}}\|\langle r\rangle^{-1}e^{-\varepsilon t}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})} \\ &\lesssim 2^{-\frac{j}{2}}\|e^{-\varepsilon t}\nabla_{t,x}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} + 2^{-\frac{j}{2}}\|\langle r\rangle^{-1}e^{-\varepsilon t}u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \\ &\lesssim e^{-\varepsilon m}\|f\|_{LE^{*}} \end{split}$$

Thus,

$$2^{-\frac{j}{2}}e^{-\varepsilon n}\|\nabla_{t,x}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})} + 2^{-\frac{j}{2}}e^{-\varepsilon n}\|\langle r\rangle^{-1}u\|_{L^{2}L^{2}((-\infty,n]\times A_{j})}$$

$$\lesssim e^{-\varepsilon m}\|f\|_{LE^{*}}$$

We now take the limit at 0 with respect to ε , and we get that

$$2^{-\frac{j}{2}} \|\nabla_{t,x} u\|_{L^{2}L^{2}((-\infty,n]\times A_{i})} + 2^{-\frac{j}{2}} \|\langle r\rangle^{-1} u\|_{L^{2}L^{2}((-\infty,n]\times A_{i})} \lesssim \|f\|_{LE^{*}}$$

By taking the limit at ∞ with respect to n, we deduce that

$$2^{-\frac{j}{2}} \|\nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} + 2^{-\frac{j}{2}} \|\langle r\rangle^{-1} u\|_{L^{2}L^{2}(\mathbb{R}\times A_{j})} \lesssim \|f\|_{LE^{*}}$$

We now immediately get that

$$\|\nabla_{t,x}u\|_{LE} + \|\langle r\rangle^{-1}u\|_{LE} \lesssim \|f\|_{LE^*},$$

as claimed.

Step 3: Reduction to a form for which Plancherel's Theorem can be applied. We define $A'_0 = A_0$, and $A'_j = \{x \in \mathbb{R}^d | 2^{j-1} < |x| < 2^{j+1} \}$. We note that $A'_k \subset A_{k-1} \cup A_k$ for every $k \geq 1$. We also consider a smooth partition of unity $(\chi_k)_{k\geq 0}$, with $0 \leq \chi_k \leq 1$, $\sum_{k=0}^{\infty} \chi_k = 1$, and supp $\chi_k \subseteq A'_k$ for every $k \geq 0$.

We claim that the condition

$$||e^{-\varepsilon t}\nabla_{t,x}u||_{LE} + ||\langle r\rangle^{-1}e^{-\varepsilon t}u||_{LE} \lesssim ||e^{-\varepsilon t}f||_{LE^*}$$

is equivalent to

$$2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} + 2^{-\frac{3j}{2}} \|e^{-\varepsilon t} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} \lesssim 2^{\frac{k}{2}} \|e^{-\varepsilon t} f\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{k})}$$

For one implication, we note that if we fix $j, k \geq 0$, and if f is supported on A'_k , we have (when $j \geq 1$)

$$2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})}$$

$$\lesssim 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j-1})} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j-1})}$$

$$+ 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})}$$

$$\lesssim 2^{\frac{k}{2}} \| e^{-\varepsilon t} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k})} \lesssim 2^{\frac{k}{2}} \| e^{-\varepsilon t} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{k})}$$

and

$$||e^{-\varepsilon t}\nabla_{t,x}u||_{L^{2}L^{2}(\mathbb{R}_{t}\times A'_{0})} + 2^{-\frac{3j}{2}}||e^{-\varepsilon t}u||_{L^{2}L^{2}(\mathbb{R}_{t}\times A'_{0})}$$

$$\lesssim 2^{\frac{k}{2}}||e^{-\varepsilon t}f||_{L^{2}L^{2}(\mathbb{R}_{t}\times A_{k})} \lesssim 2^{\frac{k}{2}}||e^{-\varepsilon t}f||_{L^{2}L^{2}(\mathbb{R}_{t}\times A'_{k})}$$

when j = 0.

For the converse, we denote by u^k be the forward solution corresponding to $\chi_k f$. Thus, $u = \sum_k u^k$. For every $j \geq 0$ we have

$$\begin{split} 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})} \\ &\lesssim 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j})} \\ &\lesssim 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j}')} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j}')} \\ &\lesssim \sum_{k \geq 0} 2^{-\frac{j}{2}} \| e^{-\varepsilon t} \nabla_{t,x} u^{k} \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j}')} + 2^{-\frac{3j}{2}} \| e^{-\varepsilon t} u^{k} \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{j}')} \\ &\lesssim \sum_{k \geq 0} 2^{\frac{k}{2}} \| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k}')} \\ &\lesssim \| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{0}')} + \sum_{k \geq 1} 2^{\frac{k}{2}} \| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k}')} \\ &\lesssim \| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{0})} + \sum_{k \geq 1} 2^{\frac{k}{2}} (\| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k})} + \| e^{-\varepsilon t} \chi_{k} f \|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k-1})}) \\ &\lesssim \| e^{-\varepsilon t} f \|_{LE^{*}} \end{split}$$

By taking the supremum in $j \geq 0$, we immediately deduce that

$$||e^{-\varepsilon t}\nabla_{t,x}u||_{LE} + ||\langle r\rangle^{-1}e^{-\varepsilon t}u||_{LE} \lesssim ||e^{-\varepsilon t}f||_{LE^*},$$

as claimed.

Step 4: Concluding the proof. We now prove that the condition

$$2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} + 2^{-\frac{3j}{2}} \|e^{-\varepsilon t} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} \lesssim 2^{\frac{k}{2}} \|e^{-\varepsilon t} f\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})}, \forall j, k \geq 0$$

is equivalent to the spectral characterization.

Let now f be a function supported in A'_k , and u the associated forward solution. For every $j \ge 0$, we have

$$2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})} + 2^{-\frac{j}{2}} \|e^{-\varepsilon t} \langle r \rangle^{-1} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})}$$

$$\lesssim 2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla_{t,x} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})} + 2^{-\frac{3j}{2}} \|e^{-\varepsilon t} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{j})}$$

$$\lesssim 2^{\frac{k}{2}} \|e^{-\varepsilon t} f\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{k})}$$

We take the Fourier transform in time and obtain (via Plancherel's Theorem) that

$$2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \widehat{u}(\tau - i\varepsilon) \|_{L^2 L^2(\mathbb{R}_\tau \times A_j')} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \widehat{u}(\tau - i\varepsilon) \|_{L^2 L^2(\mathbb{R}_t \times A_j')}$$

$$\lesssim 2^{\frac{k}{2}} \| \widehat{f}(\tau - i\varepsilon) \|_{L^2 L^2(\mathbb{R}_\tau \times A_k')}$$

In particular, this holds for every function f of the form $f(t,x) = \phi(t)g(x)$, with ϕ supported away from $\{t = -\infty\}$, and g supported in A'_k . In this case, $\widehat{u}(\tau - i\varepsilon) = \mathbf{R}_{\tau - i\varepsilon}(\widehat{\phi}(\tau - i\varepsilon)g(x)) = \widehat{\phi}(\tau - i\varepsilon)\mathbf{R}_{\tau - i\varepsilon}(g(x))$. Thus, for every $j, k \geq 0$,

$$2^{-\frac{j}{2}} \|\widehat{\phi}(\tau - i\varepsilon)\| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} g(x) \|_{L^2(A'_j)} \|_{L^2(\mathbb{R}_\tau)}$$

$$+ 2^{-\frac{j}{2}} \|\widehat{\phi}(\tau - i\varepsilon)\| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} g(x) \|_{L^2(A'_j)} \|_{L^2(\mathbb{R}_\tau)}$$

$$\lesssim 2^{\frac{k}{2}} \|\widehat{\phi}(\tau - i\varepsilon)\| g(x) \|_{L^2(A'_k)} \|_{L^2(\mathbb{R}_\tau)}$$

This shows that

$$2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} g(x) \|_{L^2(A_j')} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} g(x) \|_{L^2(A_j')} \lesssim 2^{\frac{k}{2}} \| g(x) \|_{L^2(A_k')}$$

For arbitrary g, we take a partition of unity $(\chi_k)_{k\geq 0}$, with $0\leq \chi_k\leq 1$, $\sum_{k=0}^{\infty}\chi_k=1$, and supp $\chi_k\subseteq A_k$ for every $k\geq 0$. The previous discussion implies that for every $k\geq 0$,

$$\|(|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon}(\chi_k g)\|_{\mathcal{L}\mathcal{E}} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon}(\chi_k g)\|_{\mathcal{L}\mathcal{E}} \lesssim 2^{\frac{k}{2}} \|\chi_k g\|_{L^2 L^2(\mathbb{R}_t \times A_t')}.$$

Therefore,

$$\begin{aligned} \|(|\tau - i\varepsilon|, \nabla_{x}) \mathbf{R}_{\tau - i\varepsilon} g\|_{\mathcal{L}\mathcal{E}} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} g\|_{\mathcal{L}\mathcal{E}} &\leq \sum_{k=0}^{\infty} \|(|\tau - i\varepsilon|, \nabla_{x}) \mathbf{R}_{\tau - i\varepsilon} (\chi_{k} g)\|_{\mathcal{L}\mathcal{E}} \\ + \sum_{k=0}^{\infty} \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} (\chi_{k} g)\|_{\mathcal{L}\mathcal{E}} &\lesssim \sum_{k=0}^{\infty} 2^{\frac{k}{2}} \|\chi_{k} g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{k})} \\ &\lesssim \|\chi_{0} g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{0})} + \sum_{k=1}^{\infty} 2^{\frac{k}{2}} (\|\chi_{k} g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k-1})} + \|\chi_{k} g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k})}) \\ &\lesssim \|g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{0})} + \sum_{k=1}^{\infty} 2^{\frac{k}{2}} (\|g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k-1})} + \|g\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A_{k})}) \\ &\lesssim \|g\|_{\mathcal{L}\mathcal{E}^{*}} \end{aligned}$$

Conversely, when f is a function that is supported away from $\{t = -\infty\}$ and in A'_k , then $\widehat{f}(\tau - i\varepsilon)$ is supported in A'_k as well, so the previous inequality implies that

$$\begin{aligned} \|(|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{\mathcal{L}\mathcal{E}} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{\mathcal{L}\mathcal{E}} \lesssim \|\widehat{f}(\tau - i\varepsilon) \|_{\mathcal{L}\mathcal{E}^*} \\ &= 2^{\frac{k}{2}} \|\widehat{f}(\tau - i\varepsilon) \|_{\mathcal{L}^2(A', 1)} \end{aligned}$$

Thus, for every $j \geq 1$,

$$\begin{split} 2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_j)} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_j)} \\ &\lesssim 2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A_j)} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A_j)} \\ &+ 2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A_{j-1})} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A_{j-1})} \\ &\lesssim 2^{\frac{k}{2}} \| \widehat{f}(\tau - i\varepsilon) \|_{L^2(A_k)} \lesssim 2^{\frac{k}{2}} \| \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_t)}, \end{split}$$

while for j = 0,

$$\begin{aligned} &\|(|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon)\|_{L^2(A_0')} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon)\|_{L^2(A_0')} \\ &\lesssim \|(|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon)\|_{L^2(A_0)} + \|\langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon)\|_{L^2(A_0)} \\ &\lesssim 2^{\frac{k}{2}} \|\widehat{f}(\tau - i\varepsilon)\|_{L^2(A_k)} \lesssim 2^{\frac{k}{2}} \|\widehat{f}(\tau - i\varepsilon)\|_{L^2(A_0')}, \end{aligned}$$

Thus, for every $j, k \geq 0$

$$2^{-\frac{j}{2}} \| (|\tau - i\varepsilon|, \nabla_x) \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_j)} + 2^{-\frac{j}{2}} \| \langle r \rangle^{-1} \mathbf{R}_{\tau - i\varepsilon} \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_j)}$$

$$\lesssim 2^{\frac{k}{2}} \| \widehat{f}(\tau - i\varepsilon) \|_{L^2(A'_k)}$$

By taking the L^2 -norm in τ and using Plancherel's identity, we deduce that

$$2^{-\frac{j}{2}} \|e^{-\varepsilon t} \nabla u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} + 2^{-\frac{j}{2}} \|e^{-\varepsilon t} \langle r \rangle^{-1} u\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{i})} \lesssim 2^{\frac{k}{2}} \|e^{-\varepsilon t} f\|_{L^{2}L^{2}(\mathbb{R}_{t} \times A'_{k})}$$

This finishes the proof.

References

[Metcalfe-Tataru] Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353, 1183–1237 (2012)

[Keel-Tao] Keel, Markus, and Terence Tao. "Endpoint Strichartz Estimates." American Journal of Mathematics 120, no. 5 (1998): 955–80

[Ionescu-Kenig] A.D. Ionescu, C. Kenig, Well-posedness and local smoothing of solutions of Schrödinger equations, Math. Res. Lett. 12 (2005) 193–205

[Burq Planchon Stalker Tahvildar-Zadeh] Burq, Nicolas, Fabrice Planchon, John G. Stalker, and A. Shadi Tahvildar-Zadeh. "Strichartz Estimates for the Wave and Schrödinger Equations with Potentials of Critical Decay." Indiana University Mathematics Journal 53, no. 6 (2004): 1665–80

[Metcalfe-Sterbenz-Tataru] Metcalfe, Jason, Jacob Sterbenz, and Daniel Tataru. "Local energy decay for scalar fields on time dependent non-trapping backgrounds." American Journal of Mathematics 142, no. 3 (2020): 821-883

[Tataru] Tataru, Daniel. "LOCAL DECAY OF WAVES ON ASYMPTOTICALLY FLAT STATIONARY SPACE-TIMES." American Journal of Mathematics 135, no. 2 (2013): 361–401

[Dafermos-Rodnianski] Dafermos, Mihalis; Rodnianski, Igor. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. XVIth International Congress on Mathematical Physics. World Scientific Publishing Co., 2010. p. 421-432

[Moschidis] Moschidis, G. The r^p -Weighted Energy Method of Dafermos and Rodnianski in General Asymptotically Flat Spacetimes and Applications. Ann. PDE 2, 6 (2016)

[Oliver-Sterbenz] Jesús Oliver. Jacob Sterbenz. "A vector field method for radiating black hole spacetimes." Anal. PDE 13 (1) 29 - 92, 2020