Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

	•	. T	\sim
$H\mathbf{v}_1$	perimer	nt Na	4
$L\Lambda$		11 110.	J

To realize half adder and full adder.

Name: Patil Pranjal Keshav

Roll Number: 45

Date of Performance:

Date of Submission:

NAVAROTHIAN IN THE PROPERTY OF THE PROPERTY OF

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Aim - To realize half adder and full adder.

Objective -

- 1) The objective of this experiment is to understand the function of Half-adder, Full-adder, Half-subtractor and Full-subtractor.
- 2) Understand how to implement Adder and Subtractor using logic gates.

Components required -

- 1. IC's 7486(X-OR), 7432(OR), 7408(AND), 7404 (NOT)
- 2. Bread Board 3. Connecting wires.

Theory -

Half adder is a combinational logic circuit with two inputs and two outputs. The half adder circuit is designed to add two single bit binary numbers A and B. It is the basic building block for addition of two single bit numbers. This circuit has two outputs CARRY and SUM.

$$Sum = A \bigoplus B$$

$$Carry = A B$$

Full adder is a combinational logic circuit with three inputs and two outputs. Full adder is developed to overcome the drawback of HALF ADDER circuit. It can add two one bit umbers A and B. The full adder has three inputs A, B, and CARRY in,the circuit has two outputs CARRY out and SUM.

$$Sum = (A \oplus B) \oplus Cin$$

$$Carry = AB + Cin \quad (A \oplus B)$$

Subtracting a single-bit binary value B from another A (i.e. A -B) produces a difference bit D and a borrow out bit B-out. This operation is called half subtraction and the circuit to realize it is called a half subtractor. The Boolean functions describing the half- Subtractor are

$$Sum = A \bigoplus B$$

$$Carry = A' B$$

Subtracting two single-bit binary values, B, Cin from a single-bit value A produces a difference bit D and a borrow out Br bit. This is called full subtraction. The Boolean functions describing the full-subtractor are

Difference =
$$(A \oplus B) \oplus Cin$$

Borrow = $A'B + A'(Cin) + B(Cin)$

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Circuit Diagram and Truth Table - Half-adder

A	В	SUM	CARRY	
0	0	0	0	
0	1	1 1 0		
1	0	1	0	
1	1	0	1	

Full-adder

A	В	C	SUM	CARRY
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Procedure -

- 1. Verify the gates.
- 2. Make the connections as per the circuit diagram.
- 3. Switch on VCC and apply various combinations of input according to truth table.
- 4. Note down the output readings for half/full adder and half/full subtractor, Sum/difference and the carry/borrow bit for different combinations of inputs verify their truth tables.

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Output –

HALF ADDER

Full Adder

Vidyavardhini's College of Engineering and Technology Department of Artificial Intelligence & Data Science

Conclusion -

Half adders and full adders are essential components in digital electronics for performing binary addition. The half adder efficiently handles two input bits, while the full adder extends this capability by including a carry bit, making them fundamental in arithmetic circuits like adders and arithmetic logic units (ALUs). Understanding these concepts is crucial for designing more complex digital systems.