

INTRODUCTION TO NEURAL NETWORKS

Giles Strong

6^as Jornadas de Engenharia Física, IST - 04/03/20

giles.strong@outlook.com
twitter.com/Giles_C_Strong
Amva4newphysics.wordpress.com
github.com/GilesStrong

OVERVIEW

- Seminar (25 mins)
 - Motivation and technicalities of neural networks
 - Components of neural networks
- Practical Tutorial (1 hour)
- Further resources (5 mins)

MOTIVATION FOR NEURAL NETWORKS

FUNCTIONAL APPROXIMATION

- Have data ${\it x}$ in some observation space and want to map data to some target space ${\it y}$: y=f(x), e.g.
 - pixel values → cat or dog (image classification)
 - particle momenta → signal or background (particle collision classification)
 - environment space → reward (reinforcement learning)
 - text → sentiment (sentiment classification)

FUNCTIONAL APPROXIMATION

 If domain theory doesn't offer a (computationally cheap) analytical map, can instead approximate it with a sufficiently flexible parameterisation:

•
$$y \approx \hat{y} = f_{\theta}(x)$$

LOSS FUNCTIONS

• Aim is to adjust parameters θ in order to make approximated y match true y as closely as possible:

$$\theta = \arg\min_{\theta} \mathcal{L}(y, \hat{y}_{\theta})$$

- Where L is a function which quantifies the error (difference between prediction and target): the *loss function*
- Exact form of loss function varies from problem to problem
- However, making f_{θ} sufficiently flexible requires many continuously valued parameters: finding the optimal parameters by brute force is intractable

PARAMETER OPTIMISATION

- A neural network is special form of f_{θ} in which the prediction is continuously differentiable with respect to the parameters
 - Interactive demo

PARAMETER OPTIMISATION

 By also using a continuously differentiable loss function, the exact effect of each parameter on the performance of the network can be analytically computed:

$$ullet$$
 $abla_{ heta_k} \mathcal{L}$

- This is done via backpropagation
- See e.g. <u>Stanford CS231n</u> for an in-depth explanation

PARAMETER OPTIMISATION

 The optimal parameters can now be converged to via iterative updates in the direction of steepest slope of the loss function:

$$\theta_{k+1} = \theta_k - \gamma \nabla_{\theta_k} \mathcal{L}$$

PARAMETRIC FORM

- Parameters (mostly) take the form of multiplicative matrices (weights) and additive offsets (biases) and are said to be arranged in *layers*, each of which apply a linear transformation to the previous layer:
 - $w \cdot x + b$
- By interspacing these linear transformations with non-linear activation functions more complex transformations can be achieved:
 - $\mathcal{A}(w \cdot x + b)$
- Stacking linear layers and activation functions produces e.g. a 2-layer network:
 - $\mathcal{A}(w_1 \cdot \mathcal{A}(w_0 \cdot x + b_0) + b_1)$

PARAMETRIC FORM

Explicitly, the linear transformation is:

$$\begin{pmatrix} w_{0,0} & w_{0,1} & \dots & w_{0,N} \\ w_{1,0} & & & \\ & & \\ w_{M,0} & & & \\ \end{pmatrix} \times \begin{bmatrix} x_0 \\ x_1 \\ & \\ & \\ & \\ x_N \end{bmatrix} + \begin{bmatrix} b_0 \\ b_1 \\ & \\ & \\ & \\ b_M \end{bmatrix} = \begin{bmatrix} h_0 \\ h_1 \\ & \\ & \\ h \end{bmatrix}$$

- And the activation is then applied to each element of the resulting vector via broadcasting:
 - A (h̄)

COMPONENTS OF NEURAL NETWORKS

ACTIVATION FUNCTIONS

- Activation functions allow the network to perform non-linear transformations
 - Can learn to model complex functions more easily
- Any function can be used, provided it is continuously differentiable
 - Need to propagate gradients
- Modern standard is ReLU
 - But new ones are being developed
 - E.g. <u>SELU</u> and <u>Swish</u>

ACTIVATION FUNCTIONS

- The final activation function is the *output* activation function
 - It determines the range of outputs of the network
- The form used is therefore determined by the problem being solved, e.g.:
 - Binary Classification: Sigmoid
 - Range [0,1]
 - Multi-class classification: Softmax
 - Range [0,1] and output sum = 1
 - Multi-label classification: Sigmoid
 - Regression: linear
 - Range [-∞,∞]

PARAMETER INITIALISATION

- The parameters must begin from some random starting values
- If these starting values are of the wrong scale, the network can be difficult to train
 - Interactive demo: <u>https://www.deeplearning.ai/ai-notes/initial</u>

 ization/
- Several initialisation schemes exist,
 depending on the activation function used:
 - Sigmoid, linear: Glorot/Xavier
 - ReLU: <u>Kaiming/He</u>
 - <u>LSUV</u> initialisation runs a test loop using training data to rescale starting weights appropriately

Activations for Glorot init

Activations for Uniform init

15

PREPROCESSING

- These initialisation schemes generally aim to output a unit-Gaussian distribution when the input in unit-Gaussian
- This means that for optimal training, the input data should have a mean of zero and a standard deviation of one
- Transforming the input data is called preprocessing
- In this case we should subtract the mean of each feature for the training data and divide by their standard deviations

Preprocessed feature

16

LOSS FUNCTIONS

- The loss function defines the problem to be solved by quantifying what is a 'good' and 'bad' prediction
- Several standard ones exist, e.g.:
 - Binary Classification: binary cross-entropy
 - Multi-class classification: categorical cross-entropy
 - Multi-label classification: binary cross-entropy
 - Regression: Mean squared-error or mean absolute-error
- Loss functions can also be weighted to account for data-points differently
 - E.g. to encourage unbiased responses

OPTIMISERS

- The default optimiser updates in the direction of steepest descent of the loss function by a fixed amount
- But potentially O(100,000) parameters = O(100,000) dimensional space
- Very likely to end up in "narrow valleys", where steepest descent results in oscillation between valley walls

How GD moves Ideal moves

18

OPTIMISERS

- Various improvements to vanilla gradient descent:
 - Accumulate momentum
 - Cancels out in wall-to-wall direction
 - Accumulates in valley floor direction
 - Scale learning rate (step-size) per parameter based on past gradients
 - Smaller steps on steeper slopes
 - Larger steps on shallower slopes
 - Interactive demo
 - Overview
- Adam is generally a good starting point

TUTORIAL

PYTORCH TUTORIAL

Overview

- https://github.com/GilesStrong/PyTorch_T utorial
- Jupyter notebooks runnable on Google Colab

Click the badges to load in Colab

This tutorial is designed to present neural networks from a prepyTorch. Several notebooks are found in the notebooks fold

- 1. Open in Colab SGD_from_scratch uses a single neuro implementing backpropagation and weight updates mar
- 2. Open in Colab Basic_Classification introduces PyTorcl
- Basic_Regression again uses PyTorch t
- 1. Open in Colab 3_Classification_Application is an exam
- Open in Colab 4_Regression_Application_Exercise is ε regressor.
- 6. Open in Colab 5_Regression_Application_Completed i attempted, including a few tricks for training a regressor.

GOOGLE COLAB RUNTIME

WORKING IN COLAB

- Colab is similar to Jupyter notebooks
- Run cells by clicking in them and pressing:
 - Control + Enter to run the cell and keep it selected
 - Shift + Enter to run the cell and select the next.
- "Runtime" → "Restart Runtime" used to restart and clear memory
- "Runtime" → "Manage Sessions" used to shut down old sessions

FURTHER LEARNING RESOURCES

LIBRARIES

- Most ML development done in Python 3
- Two main libraries: <u>PyTorch</u> & <u>TensorFlow</u>
- Both relatively low-level = need good understanding of NNs to use directly; but wrapper libraries exist to provide high-level APIs, e.g.
 - Keras no longer developed standalone, but now included in TensorFlow 2.x
 - Fast.Al PyTorch wrapper with best practices for image, text, & tabular data but doesn't support weighted data
 - <u>LUMIN</u> My own library (in beta) PyTorch wrapper with best practices for weighted tabular data, plus utilities for HEP, statistics, and interpretation

THEORY & PRACTICE: COURSES

- Fast.Al free, practical courses; videos + library; top-down experiment first, theory later teaching style:
 - <u>Machine learning</u> Fundamentals for data science + Python programming
 - Deep learning I Best practices for image, text, & tabular data
 - Deep learning II Building DNNs from scratch
- <u>Stanford course</u> YouTube lecture series on theory of NNs
- Yandex MLHEP course annual week-long intensive introduction to ML for HEP

THEORY & PRACTICE: EXPERIENCE

- <u>Kaggle</u> data science challenge platform; wide range of challenges, get to see how others approach problems
- Paper reimplementation helps get more familiar with library, and comfortable changing parts of it, e.g. <u>SELU activation</u>, <u>categorical</u> <u>embedding</u>, <u>learning-rate annealing</u>, and <u>weight averaging</u>

INTERESTING & USEFUL PAPERS

- A disciplined approach to neural network hyper-parameters: Part I -learning rate, batch size, momentum, and weight decay - <u>Smith 2018</u>
- SGDR: Stochastic Gradient Descent with Warm Restarts <u>Loshchilov & Hutter</u>, 2016
- Entity Embeddings of Categorical Variables Guo & Berkhahn, 2016
- Regularization for Deep Learning: A Taxonomy <u>Kukačka, Golkov, & Cremers, 2017</u>