h-P. m m

电电影 计石砂纹

数论教程

上胸科學技术出版技

数 论 教 程

J.--P. 塞尔 著 冯克勤 译

丁石孙 校

上海科学技术出版社

A Course in Arithmetic

J.- P. Serre

Springer-Verlag New York Inc. 1973.

数论教程

J.- P. 塞尔 著

冯克勒 译

丁石孙 校

'上海科学技术出版社出版 (上海瑞金二路 450 号)

6.4 4 6 上海发行所发行。上海市印刷四厂印刷

书号: 13119·873 定价: (科四) 0.50 元

Marco de la compansión de

前 富

本书分两部分,

第一部分是纯代数的。它的目标是有理数域上二次型的分类(Hasse-Minkowski 定理),这工作在第四章完成。 前三章叙述某些预备知识。二次互反律, p-adio 域, Hilbert 符号。第五章是将上述结果用于判别式为 ±1 的整二次型。这种二次型出现在模函数、微分拓扑和有限群等各种问题中。

第二部分(第六章和第七章)采用"解析"方法(全纯函数). 第六章给出 Dirichlet "算术级数中的素数定理"的证明; 在前一部分(第三章 § 2.2)的一个关键地方曾经用过这一定理, 第七章处理模形式, 特别是 Theta 函数. 这里再次出现第五章中的某些二次型.

这两部分的材料来源于 1962 年和 1964 年国立高等学校 (Ecole Normale Supérieure) 大学二年级讲义, J.-J. Sansuo (第一到四章) 和 J.-P. Ramis 与 G. Ruget(第六、七章) 将这些讲义作了修订,写成了笔记, 这些笔记对我是很有益处的,在这里我谨向这些笔记的作者表示谢意.

5.-P. 塞尔

目 录

前言

第一部分 代 数 方 法

第一章 有限域	2
§ 1. 一般结果 ····································	2
§ 2. 有限域上的方程 ······	4
§ 3. 二次互反律 ·······	6
附录 二次互反律的另一证明	10
第二章 p-adic 域	13
§ 1. 环 Z, 和域 Q, ···································	13
§ 2. p-adic 方程······	16
§ 3、Q, 的乘法群	19
第三章 Hilbert 符号	25
§ 1. 局部性质····································	25
§ 2. 整体性质····································	31
第四章 Q, 和 Q 上的二次型······	37
§ 1. 二次型····································	37
§ 2. Q, 上的二次型 ····································	49
§ 3. Q 上的二次型 ·······	57
附录 三个平方数的和	63
第五章 判别式为 ±1 的整二次型······	66
§ 1 . 预备知识····································	
§ 2. 结果陈述····································	
§ 3. 证明······	

第二部分 解析方法

第六章	算术级数中的素数定理 ······8
§ 1.	有限 Abel 群的特征8
§ 2.	Dirichlet 级数8
§ 3.	Zeta 函数和 L 函数 ······9
§ 4.	密度和 Dirichlet 定理10
第七章	模形式10
§ 1.	模群10:
§ 2.	模函数109
§ 3.	模形式空间110
§ 4.	在∞处的展开123
§ 5.	Hecke 算子 ······133
§ 6.	Theta 函数
… 계文	152
符号索号	155
定义索马	156

第一部分

代数方法

第一章 有 限 域

下面所考虑的域全是可交换的.

§ 1. 一般结果

1.1. 有限域

设 K 是一个域,Z 在 K 中的象是一个整环,从面同构于 Z 或者 Z/pZ,其中 p 为素数;它的商域同构于 Z 或者 $Z/pZ = F_0$

在第一种情形下,称 K 为特征零域; 在第二种情形下,称 K 为特征 p 域。

K 的特征记成 char(K)。如果 char(K) = $p \neq 0$,那末 p 也是满足 $n \cdot 1 = 0$ 的最小正整数 n.

引理 如果 $\operatorname{char}(K) = p$, 则映射 $\sigma: x \mapsto x^p$ 是 K 到其子 域 K^p 上的同构。

证 我们有 $\sigma(xy) = \sigma(x)\sigma(y)$. 进而, 如果 0 < k < p, 则 二项式系数 $\binom{p}{k} \equiv 0 \pmod{p}$. 由此得到

$$\sigma(x+y) = \sigma(x) + \sigma(y);$$

从而 σ 是一个同态。此外, σ 显然是单射。

定理 1 i) 有限域 K 的特征是素数 $p\neq 0$. 如果 $f=[K:\mathbf{F}_0]$.

则 K 的元素个数为 q=p'.

ii) 设p 为素数,且q=p'(f≥1)为p 的方幂. 令 Ω 为特

征p 的代数封闭域。则 Ω 存在唯一的q 元子域 \mathbf{F}_q , 它就是多项式 $X^q - X$ 的根所构成的集合。

iii) 每个q = p' 元有限域均同构于 \mathbf{F}_q .

证 如果 K 是有限的,它不能包含域 \mathbf{Q} ,从而它的特征是素数 p. 如果 f 为扩张 K/\mathbf{F}_p 的次数,显然 $\operatorname{Card}(K) = p'$,这就得到 i).

另一方而,如果 Ω 是特征 p 的代数封闭域,上而的引理 表明映射 $x\mapsto x^q$ $(q=p',f\geqslant 1)$ 是 Ω 的自同构,这是因为此映射 $z\mapsto x^p$ 重复 f 次(注意由于 Ω 代数封闭,从而 σ 是映上)。 因此对于 $x\mapsto x^p$ 不变的元素 $x\in\Omega$ 形成 Ω 的一个子域 \mathbf{F}_q 。 多项式 X^q-X 的微离是

$$qX^{q-1}-1=p\cdot p^{r-1}X^{q-1}-1=-1$$
,

即不为零。由于 Ω 代数封闭,这导致 $K^q - K$ 有 q 个不同的根,于是 $Card(\mathbf{F}_q) = q$ 。反之,如果 K 是 Ω 的 q 元子域,则 K 内非零元素组成的乘法 群 K^* 有 q-1 个元素。于是若 $x \in K^*$,则 $x^{q-1} = 1$; 若 $x \in K$,则 $x^q = x$ 。 这表明 K 包含在 \mathbf{F}_q 之中。由于 $Card(K) = Card(\mathbf{F}_q)$,我们有 $K = \mathbf{F}_q$,这就完成了 \mathbf{ii} 的证明。

由ii) 及每个p^r 元域均可嵌到Ω中(因为Ω代数封闭) 这一事实即可得到iii)

1.2. 有限域的乘法群

设 p 为素数, f 为 ≥1 的整数, q=p'.

定理2 有限域 \mathbf{F}_q 的乘法群 \mathbf{F}_q^* 是 q-1 阶循环群.

证 如果 $d \ge 1$ 为整数,以 $\phi(d)$ 表示 Enler ϕ -函数,即满足 $1 \le x \le d$ 并且与 d 互素的整数 x 的个数 (换句话说,即在 $\mathbf{Z}/d\mathbf{Z}$ 中的象为该群生成元的 x 的个数, $1 \le x \le d$). 显然 d 阶

循环群的生成元个数为 $\phi(d)$.

引理 1 若 $n \ge 1$ 为整数,则 $n = \sum_{d \mid n} \phi(d)$ (注意符号 $d \mid n$ 表示 d 整除 n).

证 如果 $d[n, \diamond C_a$ 表示 $\mathbf{Z}/n\mathbf{Z}$ 中唯一的 d 阶子群,而以 Φ_a 表示 O_a 的生成元集合。 由于 $\mathbf{Z}/n\mathbf{Z}$ 中每个元素均生成 某个 C_a ,从而群 $\mathbf{Z}/n\mathbf{Z}$ 是所有 Φ_a 的非交并集, 子是我们有 $n = \operatorname{Card}(\mathbf{Z}/n\mathbf{Z}) = \sum_{l} \operatorname{Card}(\Phi_a) = \sum_{l} \phi(d)$.

引理2 令 H 为 n 阶有限群。 假设对 n 的每个因子 d, 集合 $\{x \in H \mid x^d = 1\}$ 至多有 d 个元素。则 H 必为循环群。

证 设 d 为 n 的因子. 如果存在 d 阶元素 $x \in H$,则由 x 生成的子群 $(x) = \{1, x, \dots, x^{d-1}\}$ 是 d 阶循环群. 按照假设,使 y''=1 的每个元素 $y \in H$ 均属于 (x) (特别地,H 中所有 d 阶元素都是 (x) 的生成元),而它们共有 $\phi(d)$ 个. 从而 H 中 d 阶元素的个数或者为零或者为 $\phi(d)$. 如果对某个 d 的值该数是零,则公式 $n = \sum_{d \mid n} \phi(d)$ 表明 H 中元素的个数 < n,这与假设相矛盾. 特别地,H 中存在者 n 阶元素 x,因而 H 即为循环群 (x) .

将引理 2 用于 $H = \mathbf{F}_q^*$ 和 n = q - 1 即得定理 2, 因为次数为 d 的方程 $x^q = 1$ 在 \mathbf{F}_q 中至多有 d 个解

注 由上述证明可知更一般地,一个域的乘法群的每个有限子群都是循环群。

§ 2. 有限域上的方程

 \dot{U} Q 为素数 D 的方幂, 而 K 为 Q 元域.

2.1. 方幂和

引理 设u>0为整数,则和式

(当 u=0 时,即使 x=0,也都规定 $x^u=1$.)

证 如果 u=0,和式中每项均为 1,由于 K 的特征为 p,从而 $S(X^u)=q\cdot 1=0$.

如果 $u \ge 1$, 并且 (q-1)|u, 则 $o^u = 0$, 而当 $x \ne 0$ 时 $x^u = 1$, 从而 $S(X^u) = (q-1) \cdot 1 = -1$.

最后,如果 $u \ge 1$,且(q-1) $\nmid u$,根据定理 2, K^* 是 q-1 阶循环群,从而存在 $y \in K^*$,使 $y^* \ne 1$,于是有

$$S(X^u) = \sum_{x \in K^*} x^u = \sum_{x \in K^*} y^u x^u = y^u S(X^u),$$

即 $(1-y^*)S(X^*)=0$, 从而推得 $S(X^*)=0$.

(另证 利用如下事实:如果 $d \ge 2$, $d \ne p$ 互素,则 d 次单位根之和为零。)

2.2. Chevalley 定理

定理 **8**(Chevalley-Warning) 设 $f_a \in K$ [X_1 , …, X_n] 是 n 元多项式, $\sum_a \deg f_a < n$, 而 V 是它们在 K^n 中的公共零点集合, 我们有

$$Card(V) \equiv 0 \pmod{p}$$
.

证 令 $P=\prod_{\alpha}(1-f_{\alpha}^{q-1})$, $x\in K^n$. 如果 $x\in V$, 则所有 $f_{\alpha}(x)$ 均为零,从而 P(x)=1; 如果 $x\notin V$,则必有某个 $f_{\alpha}(x)$ 不为零,从而 $f_{\alpha}(x)^{q-1}=1$,于是 P(x)=0. 因而 P 是集合 V 的特征函数。如果对每个多项式f,记 $S(f)=\sum_{x\in K^n}f(x)$,我们有

$$\operatorname{Card}(V) \equiv S(P) \pmod{p}$$
,

于是将问题归结为证明 S(P) = 0.

现在由假设 $\sum_{a} \deg f_a < n$ 可知: $\deg P < n(q-1)$. 从而 P 是单项式 $X^u = X_1^u \cdots X_n^u$ 的线性组合,其中 $\sum u_i < n(q-1)$. 只需证明对于每个这样的单项式 X^u ,有 $S(X^u) = 0$,而这一点由引理即可推出,因为至少有一个 $u_i < q-1$.

系 1 如果 $\sum_{a} \deg f_{a} < n$, 并且每个 f_{a} 都没有常数项,则 f_{a} 有非平凡的公共零点.

证 这是因为若 V 只是 {0}, 则 p \text{Card(V).

系1可以用于当 fa 都是齐次多项式的时候、特别有

系2 每个至少有3个变数的二次型在 K 上都有非平凡零点。

(用几何的话说,就是有限域上的每个二次超曲面都有有理点.)

§3. 二次互反律

8.1. **F**。中平方元素

设 q 为素数 p 的方幂.

定理 4 (a) 如果 p=2, 则 \mathbf{F}_q 中每个元素都是平方元素.

(b) 如果 $p\neq 2$,则 \mathbf{F}_{q}^{*} 的平方元素形成 \mathbf{F}_{q}^{*} 的指数为 2 的子群,这个子群是同态

$$x \mapsto x^{(q-1)/2}, \quad \mathbf{F}_p^* \longrightarrow \{\pm 1\}$$

的核、(换句话说,我们有正合列

$$1 \rightarrow \mathbf{F}_{q}^{*2} \rightarrow \mathbf{F}_{q}^{*} \rightarrow \{\pm 1\} \rightarrow 1.$$

对于情形(b), 令 Ω 为 \mathbf{F}_a 的代数闭包. 如果 $x \in \mathbf{F}_a^*$, 令 $y \in \Omega$, 使 $y^2 = a$. 我们有

. 8 .

$$y^{q-1} = x^{\frac{q-1}{2}} = \pm 1$$
 (因为 $x^{q-1} = 1$).

为了x是 \mathbf{F}_q 中的平方元素,其充要条件是 $y \in \mathbf{F}_q^*$,即 y^{q-1} =1. 于是 \mathbf{F}_q^{*2} 为 $x \mapsto x^{\frac{q-1}{2}}$ 的核. 进而,由于 \mathbf{F}_q^* 是 q-1 阶循环群,从而 \mathbf{F}_q^{*2} 的指数是 2.

3.2. Legendre 符号(基本情形)

定义 设 $p \neq 2$ 为素数, $x \in \mathbf{F}_p^*$ x 的 Legendre 符号 $\left(\frac{x}{p}\right)$ 是整数 $x^{\frac{p-1}{2}} = \pm 1$.

为方便起见,令 $\left(\frac{0}{p}\right)=0$,从而将 $\left(\frac{x}{p}\right)$ 扩充到 \mathbf{F}_p 的全部元素上、并且对于 $x\in\mathbf{Z}$,若x有象元素 $x'\in\mathbf{F}_p$,则记作

$$\left(\frac{x}{p}\right) = \left(\frac{x'}{p}\right).$$

我们有 $\left(\frac{x}{p}\right)\left(\frac{y}{p}\right) = \left(\frac{xy}{p}\right)$; Legendre 符号是"特征"(见第六章§1). 正如定理 4 中所表明的, $\left(\frac{x}{p}\right) = 1$ 等价 于 $x \in \mathbf{F}_{q}^{*2}$. 如果 $x \in \mathbf{F}_{p}^{*}$, $x \in \mathbf{F}_{p}$, 的代数闭包中有平方根 y, 则

$$\left(\frac{x}{x}\right) = y^{y-1}$$
.

对于 x=1, -1, 2, 计算 $\left(\frac{x}{p}\right)$.

若 n 为奇整数, 令 e(n), $\omega(n)$ 为 $\mathbb{Z}/2\mathbb{Z}$ 中的元素, 定义为

$$\varepsilon(n) = \frac{n-1}{2} \pmod{2} = \begin{cases} 0, & \text{如果 } n \equiv 1 \pmod{4}, \\ 1, & \text{如果 } n \equiv -1 \pmod{4}, \end{cases}$$

$$\omega(n) \equiv \frac{n^2 - 1}{8} \pmod{2} = \begin{cases} 0, & \text{min} \ n \equiv \pm 1 \pmod{8}, \\ 1, & \text{min} \ n \equiv \pm 5 \pmod{8}. \end{cases}$$

[函数 8 是乘法群 ($\mathbf{Z}/4\mathbf{Z}$)* 到 $\mathbf{Z}/2\mathbf{Z}$ 上的同态; 类似地 ω 是

(Z/8Z)* 到 Z/2Z 上的同态.]

定理 5 i) $\left(\frac{1}{p}\right) = 1$; ii) $\left(\frac{-1}{p}\right) = (-1)^{\epsilon(p)}$; iii) $\left(\frac{2}{p}\right) = (-1)^{\omega(p)}$.

证 只有最后一个公式值得证明. 令 α 为 \mathbf{F} , 之代数闭包 Ω 中的一个 8 次本原单位根. 元素 $y=\alpha+\alpha^{-1}$, 满足 $y^2=2$ (因为由 $\alpha^4=-1$ 可知 $\alpha^2+\alpha^{-2}=0$). 我们有

$$y^p = \alpha^p + \alpha^{-p}$$
.

若 $p = \pm 1 \pmod{8}$, 这导致 $y^p = y$, 因此 $\left(\frac{2}{p}\right) = y^{p-1} = 1$. 如果 $p = \pm 5 \pmod{8}$, 我们发现

$$y^{9} = \alpha^{5} + \alpha^{-5} = -(\alpha + \alpha^{-1}) = -y$$
.

(这又是从 $\alpha^t = -1$ 推出来的.) 由此得到 $y^{p-1} = -1$, 从而证明了 iii).

注 定理 5 可以表达成下面的方式:

-1 是 $\operatorname{mod} p$ 平方数 $\Leftrightarrow p=1 \pmod{4}$.

2 是 mod p 平方数 ⇔ p≡ ±1 (mod 8).

8.8. 二次互反律

设1和p是两个不同的奇素数。

定理 6 (Gauss)
$$\left(\frac{l}{p}\right) = \left(\frac{p}{l}\right)(-1)^{s(l)z(p)}$$
.

证 设 Ω 为 \mathbf{F}_n 的代数闭包, $w \in \Omega$ 是 l 次本原单位根、如果 $a \in \mathbf{F}_l$,因为 $w^l = 1$,从而元素 w^* 是可以定义的。 于是我们可以作成 Gauss 和:

$$y = \sum_{x \in F_l} \left(\frac{x}{l}\right) w^x.$$

引理**1** $y^2 = (-1)^{s(l)}l$

证 我们有

$$y^{2} = \sum_{x,z} \left(\frac{xz}{l} \right) w^{x+z} = \sum_{u \in \mathcal{V}_{l}} w^{u} \left(\sum_{t \in \mathcal{V}_{l}} \left(\frac{t \left(u - t \right)}{l} \right) \right).$$

现在若 $t \neq 0$:

$$\left(\frac{t(u-t)}{l}\right) = \left(\frac{-t^2}{l}\right) \left(\frac{1-ut^{-1}}{l}\right) = (-1)^{s(l)} \left(\frac{1-ut^{-1}}{l}\right),$$

$$(-1)^{s(l)} y^2 = \sum_{u \in \mathbf{F}_l} C_u w^u,$$

其中

而

$$C_{\mathbf{u}} = \sum_{t \in F_{\mathbf{l}}} \left(\frac{1 - ut^{-1}}{\mathbf{l}} \right).$$

如果 u=0, $C_0=\sum_{t\in \mathbf{F}_l}\left(\frac{1}{l}\right)=l-1$; 否则, $s=1-ut^{-1}$ 过 $\mathbf{F}_l-\{1\}$, 从而有

$$C_u = \sum_{s \in \mathcal{S}_t} \left(\frac{s}{l}\right) - \left(\frac{1}{l}\right) = -\left(\frac{1}{l}\right) = -1,$$

这是因为在 🏋 中平方元素和非平方元素有同样多个。 于是

$$\sum_{u \in \mathbf{F}_l} C_u w^u = l - 1 - \sum_{u \in \mathbf{F}_l} w^u = l,$$

此即证明了引理.

引理 2
$$y^{p-1} = \left(\frac{p}{l}\right)$$
.

证 由于 Ω 的特征是p,我们有

$$y^p = \sum_{x \in \mathbb{F}_l} \left(\frac{x}{p}\right) w^{xp} = \sum_{z \in \mathbb{F}_l} \left(\frac{zp^{-1}}{l}\right) w^z = \left(\frac{p^{-1}}{l}\right) y = \left(\frac{p}{l}\right) y,$$
从而

现在可以证明定理 6. 由引理 1 和引理 2. 有

$$\left(\frac{(-1)^{\epsilon(l)}l}{p}\right) = y^{p-1} = \left(\frac{p}{l}\right),$$

而定理5的第二部分表明

$$\left(\frac{(-1)^{s(l)}}{n}\right) = (-1)^{s(l)s(p)}.$$

如果把 $l \to mod p$ 平方数(即 $l \to mod p$ "二次剩余")表示成 lRp, 否则表示成 lNp. 则定理 $l \to mod p$

 $lRp \Leftrightarrow pRl$, 当 p 或 $l \equiv 1 \pmod{4}$ 时;

 $lRp \leftrightarrow pNl$, 当p和 $l \equiv -1 \pmod{4}$ 时.

注 定理 6 可使我们采用逐次化简的方法计算Legendre 符号、例如

$$\left(\frac{29}{43}\right) = \left(\frac{43}{29}\right) = \left(\frac{14}{29}\right) = \left(\frac{2}{29}\right)\left(\frac{7}{29}\right)$$

$$= -\left(\frac{7}{29}\right) = -\left(\frac{29}{7}\right) = -\left(\frac{1}{7}\right) = -1.$$

附录 二次互反律的另一证明

(G. Eisenstein, J. Crelle, 29, 1845, pp. 177~184.)

i) Gauss 引理

设p为奇**素**数,S为**罪**,的子集,使**罪**,为S和 -S的非交并集。以下我们取 $S = \left\{1, ..., \frac{p-1}{2}\right\}$ 。

如果 $s \in S$, $a \in \mathbb{F}_n$, 我们记成形式

$$as = e_s(a)s_a$$
, $e_s(a) = \pm 1$, $s_a \in S$.

引理(Gauss)
$$\left(\frac{a}{p}\right) = \prod_{s \in S} e_s(a)$$
.

证 首先注意,如果 s 和 s' 是 s' 中两个不同的元素,则 $s_a + s'_a$ (因为否则 $s=\pm s'$,与 s' 之选取相矛盾). 这说明 $s\mapsto s_a$ 是 s' 到它本身之上的一一对应. 将诸等式 $as=e_a(a)s_a$ 相乘,得到

$$a^{\frac{(p-1)}{2}} \prod_{\bullet \in S} s = (\prod_{\bullet \in S} e_{\bullet}(a)) \prod_{\bullet \in S} s_{\bullet} = (\prod_{\bullet \in S} e_{\bullet}(a)) \prod_{\bullet \in S} s,$$

$$a^{\frac{(p-1)}{2}} = \prod_{\bullet \in S} e_{\bullet}(a),$$

因为在 \mathbf{F}_{o} 中 $\left(\frac{\sigma}{\mathbf{r}_{o}}\right)=a^{-\frac{p-1}{2}}$,这就证明了引理、

于是

【例】 取
$$a=2$$
, $S=\left\{1,\,\cdots,\,\frac{p-1}{2}\right\}$. 有
$$e_s(2)=\left\{\begin{array}{ccc} 1, & \text{如果 } 2s \leqslant \frac{p-1}{2}, \\ -1, & \text{否则}. \end{array}\right.$$

由此得到 $\left(\frac{2}{p}\right) = (-1)^{n(p)}$, 这里 n(p) 是满足 $\frac{p-1}{4} < s \le \frac{p-1}{2}$ 的整数 s 的个数. 如果 p 有形式 1+4k(或 3+4k), 则 n(p)=k(或 n(p)=k+1). 因此我们发现,当 $p=\pm 1 \pmod 8$) 时, $\left(\frac{2}{p}\right)=1$;而当 $p=\pm 5 \pmod 8$) 时, $\left(\frac{2}{p}\right)=-1$,参见定理 5.

ii)一个关于三角函数的引理

引理 设加为奇自然数,则有

$$\frac{\sin mx}{\sin x} = (-4)^{\frac{m-1}{2}} \prod_{1 \le j \le \frac{m-1}{2}} \left(\sin^2 x - \sin^2 \frac{2\pi j}{m} \right).$$

证明是初等的. (例如,可先证 $\frac{\sin mx}{\sin x}$ 是对于变量 \sin^2x 的 $\frac{m-1}{2}$ 次多项式,然后注意这个多项式有根 $\sin^2\frac{2\pi j}{m}\Big(1\leqslant j\leqslant \frac{m-1}{2}\Big)$,比较 $e^{i(m-1)x}$ 两边的系数,即得到因于 $(-4)^{\frac{m-1}{2}}$. $\Big)$

iii) 二次互反律的证明

设1和p是两个不同的奇素数。如上一样,令

$$S = \left\{1, \dots, \frac{p-1}{2}\right\}.$$

从 Gauss 引理得到

$$\left(\frac{l}{p}\right) = \prod_{\bullet \in S} e_{\bullet}(l) .$$

现在等式 $ls=e_s(l)s_i$ 表明

$$\sin \frac{2\pi}{p} \ln e_s(l) \sin \frac{2\pi}{p} s_l.$$

将这些等式相乘,并考虑到 s → s₁ 是 S 上的——对应, 便得到

$$\left(\frac{l}{p}\right) = \prod_{i \in S} e_i(l) = \prod_{i \in S} \sin \frac{2\pi ls}{p} / \sin \frac{2\pi s}{p}.$$

对于 m=1, 利用上面三角函数的引理, 可以将它重写为

$$\begin{split} \left(\frac{l}{p}\right) &= \prod_{s \in S} (-4)^{\frac{l-1}{2}} \prod_{t \in T} \left(\sin^2 \frac{2\pi s}{p} - \sin^2 \frac{2\pi t}{l} \right) \\ &= (-4)^{\frac{(l-1)(p-1)}{4}} \prod_{\substack{t \in T \\ s \in S}} \left(\sin^2 \frac{2\pi s}{p} - \sin^2 \frac{2\pi t}{l} \right), \end{split}$$

其中 T 表示从 1 到 $\frac{l-1}{2}$ 的整数集合。 交换 l 和 p 的地位,可以类似地得到。

$$\left(\frac{p}{l} \right) = (-4)^{\frac{(l-1)(p-1)}{4}} \prod_{\substack{l \in S \\ l \in T}} \left(\sin^2 \frac{2\pi t}{l} - \sin^2 \frac{2\pi s}{p} \right).$$

$$p \in \mathbb{N}$$

 $\left(\frac{l}{p}\right)$ 和 $\left(\frac{p}{l}\right)$ 的上述二分解式基本上相同,只相差 $\frac{(p-1)(l-1)}{4}$ 个符号,于是可得到

$$\left(\frac{l}{p}\right) = \left(\frac{p}{l}\right)(-1)^{\frac{(p-1)(l-1)}{4}}$$

这就是二次互反律,见定理6.

第二章 p-adic 域

在本章中 p 表示素数.

§ 1. 环 Zp 和域 Qp

1.1. 定义

对于每个 $n \ge 1$,令 $A_n = \mathbb{Z}/p^n\mathbb{Z}$,这是 $\operatorname{mod} p^n$ 同余类环。 A_n 中的一个元素以明显的方式决定出 A_{n-1} 中的一个元素,由此得到同态

$$\phi_n: A_n \rightarrow A_{n-1},$$

它是映上的,并且核是 p*-1A,..

序列
$$\cdots \rightarrow A_n \rightarrow A_{n-1} \rightarrow \cdots \rightarrow A_2 \rightarrow A_1$$

形成以自然数为指标的"投射系".

定义 1 p—adic 整数环 \mathbf{Z}_p 是上面定义的系 $(\mathbf{A}_n, \boldsymbol{\phi}_n)$ 的投射极限.

按照定义, $\mathbf{Z}_p = \lim_{\leftarrow} (A_n, \phi_n)$ 中的元素是序列 $x = (\dots, x_n, \dots, x_1)$,其中 $x_n \in A_n$,而当 $x \ge 2$ 时, $\phi_n(x_n) = x_{n-1}$. \mathbf{Z}_p 中的加法和乘法定义成"按坐标"运算。 换句话说, \mathbf{Z}_p 是积 $\prod_{n \ge 1} A_n$ 的子环。如果 A_n 赋以离散拓扑,而 $\prod_{\leftarrow} A_n$ 赋以积拓扑,则环 \mathbf{Z}_p 得到一个拓扑, \mathbf{Z}_p 对此拓扑是紧拓扑空间(因为它在紧拓扑空间的积空间中是闭的)。

1.2. Z。的性质

设 $e_n: \mathbb{Z}_p \to A_n$ 为一函数, 它将 p-adic 整数 a 映成其第 n

个分量 🖏

命题 1 序列 $0 \to \mathbb{Z}_p \xrightarrow{g^p} \mathbb{Z}_p \xrightarrow{s_n} A_n \to 0$ 是 Abel 群的正合列.

(因此可以将 $\mathbf{Z}_p/p^n\mathbf{Z}_p$ 和 $\mathbf{A}_n=\mathbf{Z}/p^n\mathbf{Z}$ 等同.)

证 乘以 p 是 \mathbf{Z}_p 中的单射,因为若 $\mathbf{x} = (\mathbf{x}_n)$ 是 p-adio 整数,使得 $p\mathbf{x} = 0$,则对每个 n,有 $p\mathbf{x}_{n+1} = 0$. 于是 \mathbf{x}_{n+1} 有形式 $p^n\mathbf{y}_{n+1}$, $\mathbf{y}_{n+2} \in A_{n+1}$, 因为 $\mathbf{x}_n = \phi_{n+1}(\mathbf{x}_{n+1})$,从而 $p^n|\mathbf{x}_n$,于是 $\mathbf{x}_n = 0$. 既然乘以 p 是 \mathbf{Z}_p 中的单射,那末乘以 p^n 也是 \mathbf{Z}_p 中的单射.

 ε_n 的核显然包含 $p^n\mathbf{Z}_p$. 反之,若 $x=(x_m) \in \ker(\varepsilon_n)$,则 对所有的 $m \ge n$,均有 $x_m \equiv 0 \pmod{p^n}$,这意味着存在 A_{m-n} 中一个可定义的元素 y_{m-n} ,使它在同构

$$A_{m+n} \to p^* \mathbf{Z}/p^m \mathbf{Z} \subset A_m$$

之下的象满足 $x_m = p^n y_{m-n}$. 这些 y_i 定义了 $\mathbf{Z}_p = \varprojlim A_i$ 中一元素 y_i 易知有 $p^n y = x_i$ 这就证明了命题.

命题 2 (a) $\mathbf{Z}_p($ 或 $\mathbf{A}_n)$ 中一元素可逆的充要条件是它不能被 p 除尽.

(b) 如果以 \mathbf{U} 表示 \mathbf{Z}_n 中的可逆元素群,则 \mathbf{Z}_n 中每个非零元素均可唯一地写成形式 $p^n u$,其中 $u \in \mathbf{U}$,而 $n \ge 0$. (\mathbf{U} 中元素称为 p-adio 单位.)

证 只需对 A_n 证明 (a),然后立即可得到对于 Z_p 的情形. 现在,如果 $x \in A_n$, x 不属于 pA_n ,则它在 $A_1 = \mathbf{F}_p$ 中的象不为零,从而是可逆的,于是存在 y, $z \in A_n$,使 xy = 1 - pz,从而

$$xy(1+pz+\cdots+p^{n-1}z^{n-1})=1$$

这就证明了 & 是可逆的、

另一方面,如果 $\sigma \in \mathbf{Z}_{\sigma}$ 不为零,则有一个最大的整数 σ_{σ}

使 $x_n = \varepsilon_n(x)$ 为零、于是 $x = y^n u$, $p \nmid u$, 由 (a) 即知 $u \in \mathbf{U}$. 分解的唯一性是显然的.

记法 设 ω 为 \mathbf{Z}_p 中非零元素, 把 ω 写成形式 $x=p^nu$, $u \in \mathbf{U}$. 整数 n 称为 ω 的 p-adio 赋值, 记成 $v_p(x)$. 规定 $v_p(0)$ = $+\infty$, 于是有

$$egin{aligned} v_p(xy) &= v_p(x) + v_p(y)\,, \ v_p(x+y) &\geq \inf\left(v_p(x)\,,\;v_p(y)
ight). \end{aligned}$$

从这些公式不难推出 2, 是整环、

命题 3 乙。上的拓扑可以由距离

$$d(x, y) = e^{-v_p(x-y)}$$

定义,这时环 Z,为完备度量空间,而 Z 在 Z,中是稠密的.

证 理想 $p'\mathbf{Z}_p$ 形成 0 的邻域基. 由于 $a \in p''\mathbf{Z}_p$ 等价于 $v_p(x) \ge n$, 从而 \mathbf{Z}_p 的拓扑可由距离 $d(x, y) = e^{-v_p(x-y)}$ 定义. 因为 \mathbf{Z}_p 是紧致的,从而是完备的. 最后,如果 $a = (x_n)$ 是 \mathbf{Z}_p 的元素,并且有 $y_n \in \mathbf{Z}_p$ 使 $y_n = x_n \pmod{p'}$,则 $\lim y_n = x_p$ 这就证明了 \mathbf{Z} 在 \mathbf{Z}_p 中是稠密的.

1.3. 域 Q,

定义2 环 Z_p 的商域称为 p-adio 数域, 用 Q_p 表示.

由此立即得到 $\mathbf{Q}_p = \mathbf{Z}_p[p^{-1}]$. 每个元素 $x \in \mathbf{Q}_p^*$ 可以唯一地表示成形式 $p^n u$, 其中 $n \in \mathbf{Z}$, $u \in \mathbf{U}$. n 仍称作 x 的 p-adio 赋值,记为 $v_p(x)$. 于是有 $v_p(x) \ge 0 \Leftrightarrow x \in \mathbf{Z}_p$.

命题 4 域 Q, 对于由 $d(x, y) = e^{-v_p(x-y)}$ 定义的 拓扑 是局部紧拓扑空间, Z, 为 Q, 的开子环, 而域 Q 在 Q, 中是稠密的.

证明是显然的.

注 1) 可以定义 Q_p(或 Z_p) 为 Q (或 Z) 对于 p-adio 距

离 d 的完备化。

2) 距离 d 满足"超距"不等式

$$d(x, z) \leq \sup (d(x, y), d(y, z))$$
.

由此可知,序列 u_n 有极限 $\leftrightarrow \lim(u_{n+1}-u_n)-0$. 类似地,一个级数收敛 \leftrightarrow 其通项趋于零。

§ 2. p-adic 方程

2.1. 解

引理 设
$$\cdots \rightarrow D_n \rightarrow D_{n-1} \rightarrow \cdots \rightarrow D_1$$
 是投射系,而 $D = \lim_{\leftarrow} D_n$

是它们的投射极限,如果每个 D_n 都是有限的且为非空的,则 D 也是非空的。

证 如果 $D_{n\to 1}$ 均是映上的,则显然 $D\neq\emptyset$. 现在把引理归结到这种特殊情形. 为此,以 $D_{n,p}$ 表示 D_{n+p} 在 D_n 中的象. 对于固定的 n, $D_{n,p}$ 形成一个有限非空子集的下降族,从而这个集族是稳定的,即当 p 充分大时, $D_{n,p}$ 与 p 无关. 以 E_n 表示 $D_{n,p}$ 的极限值. 不难看出 $D_n\to D_{n-1}$ 将 E_n 映到 E_{n-1} 上. 因为 E_n 是非空的,由本证明一开始所述可知:

$$\lim_{n \to \infty} E_n \neq \emptyset$$
. 于是 $\lim_{n \to \infty} D_n \neq \emptyset$.

记法 设 $f \in \mathbf{Z}_n[X_1, ..., X_m]$ 为系数属子 \mathbf{Z}_n 的多项式, n 是自然数,我们把 f 经 $(\text{mod } p^n)$ 简化而得到的系数属子 A_n 的多项式记为 f_n .

命题 5 设 $f''' \in \mathbb{Z}_p[X_1, \dots, X_m]$ 是 p-adio 整系数多项式,则下列两条是等价的:

- 1) f⁽ⁱ⁾在(**Z**_i)**中有公共零点.
- 2) 对于每个 n≥1, 多项式 f;ⁿ 在(A_n)ⁿ 中有公共零点。 ; 16 ;

证 以 D(或 $D_n)$ 表示 $f^{(0)}($ 或 $f_n^{(0)})$ 的公共零点集合。 D_n 是有限集合,并且 $D=\lim_{\longleftarrow} D_n$ 根据上述引理, D 非空 $\leftrightarrow D_n$ 均非空、从而证明了命题、

点 $x=(x_1, \dots, x_m) \in (\mathbf{Z}_p)^m$ 称为本原的,是指某个 x_i 可逆,即 x_i 不全被 p 所除尽,类似地定义 $(A_n)^m$ 中的本原元素.

命题 6 设 $f^{(i)} \in \mathbb{Z}_p[X_1, \dots, X_m]$ 是具有 p-adio 整系数的齐次多项式,则下列三条彼此等价:

- a) $f^{(i)}$ 在(\mathbf{Q}_{\bullet})"中有非平凡公共零点。
- b) f(1) 在(Z_p) " 中有公共本原零点.
- e) 对每个 $n \ge 1$, $f_n^{(i)}$ 在 $(A_n)^m$ 中有公共本原零点.

证 b) \Rightarrow a)是显然的. 反之,如果 $x=(x_1,...,x_m)$ 是 $f^{(i)}$ 的非平凡公共零点.令

$$h = \inf(v_p(x_1), \dots, v_p(x_m)), \quad y = p^{-h}x.$$

显然 y 是 (\mathbf{Z}_p) "中的本原元素,并且它是 $f^{(0)}$ 的公共零点.于是 $\mathbf{a}) \leftrightarrow \mathbf{b}$).

b)和 o)的等价性可以从上述引理推出。

2.2. 近似解的改进

现在讨论如何从一个 $mod p^n$ 解得到一个真正的解 (即系数在 \mathbb{Z}_p 中的解). 这要用下面的引理 ("Newton 法"的 p—adia 模拟).

引理 设 $f \in \mathbf{Z}_p[X]$, f' 为它的微商。令 $x \in \mathbf{Z}_p$, n, $k \in \mathbf{Z}$, 使 $0 \le 2k < n$, $f(x) \equiv 0 \pmod{p^n}$, $v_p(f'(x)) = k$. 则存在 $y \in \mathbf{Z}_p$, 使

$$f(y) \equiv 0 \pmod{p^{n+1}}, \quad v_p(f'(y)) = k,$$
$$y \equiv x \pmod{p^{n-k}}.$$

证 取形如 $x+p^{n-k}z$ 的y, 其中 $z\in \mathbb{Z}_p$. 由 Taylor 公式可得

$$f(y) = f(x) + p^{n-k}zf'(x) + p^{2n-2k}a,$$

 $a \in \mathbf{Z}_{0}.$

根据假设, $f(x) = p^n b$, $f'(x) = p^k c$, $b \in \mathbf{Z}_p$, $c \in \mathbf{U}$. 这就可以选取 2 使

 $b+zc\equiv 0 \pmod{p}$.

由此可得到

其中

$$f(y) = p^{n}(b+zc) + p^{2n-2k}a \equiv 0 \pmod{p^{n+1}},$$

这是因为 2n-2k>n. 最后,对于 f' 利用 Taylor 公式可以证得 $f'(y) \equiv p^k c \pmod{p^{n-k}}$. 因为 n-k>k,于是可以看到 $v_{\mathfrak{p}}(f'(y)) = k$.

定理 1 设 $f \in \mathbb{Z}_p[X_1, \dots, X_m], x = (x_i) \in (\mathbb{Z}_p)^m, n,$ $k \in \mathbb{Z}, j$ 为整数,满足 $1 \leq j \leq m$. 又设 $0 \leq 2k \leq n$, 并且

$$f(x) \equiv 0 \pmod{p^n}, \ v_p\left(\frac{\partial f}{\partial X_j}(x)\right) = k.$$

则 $f \in (\mathbf{Z}_p)^m$ 中有一个零点 y, 使 $y \equiv x \pmod{p^{n-k}}$.

证 先设 m=1. 将上述引理用于 $x^{(0)}=x$, 则得到 $x^{(1)}\in \mathbb{Z}_p$, $x^{(1)}\equiv x^{(0)} \pmod{p^{2-k}}$, 并且

$$f(x^{(1)}) \equiv 0 \pmod{p^{n+1}}, v_p(f'(x^{(1)})) = k$$

用 n+1 代替 n, 再对 $x^{(1)}$ 应用上述引理。归纳地进行下去,这样就构造一个序列 $x^{(0)}$, …, $x^{(q)}$, …, 使

$$x^{(q+1)} \equiv x^{(q)} \pmod{p^{n+q-k}}, \quad f(x^{(q)}) \equiv 0 \pmod{p^{2+q}}.$$

这是一个 Cauchy 序列。如果 y 是它的极限,则有 f(y) = 0,并且 $y = x \pmod{p^{n-k}}$,从而对于 m = 1,定理得到了证明。

对于 m>1 的情况,如果只考虑 x_j ,则归结为 m=1 的情况。更确切地说,设 $f\in \mathbf{Z}_p[X_j]$ 是一个单变量多项式,它由对所有的 $i\neq j$,将 f 中的 X_i 代之以 x_i 而得到。 将上述所证

的事实用于f和 x_i ,则可知存在 $y_i = x_i$ (mod p^{n-k}),使 $f(y_i) = 0$. 如果令 $y_i = x_i$ (对于 $i \neq j$),则元素 $y = (y_i)$ 满足所需要的条件。

系 \mathbf{Z}_p 上多项式 f 的 $\operatorname{mod} p$ 简化的每个单零点均可提升成 f 在 \mathbf{Z}_p 中的一个零点

(如果 g 是域 K 上多项式,g 的零点 α 叫作单零点,是指至少有一个偏微商 $\frac{\partial g}{\partial X_i}$ 在 α 处不是零.)

这是 n=1, k=0 的特殊情形.

系 2 设 $p \neq 2$, $f(X) = \sum a_{ij} X_i X_j$ 为系数属于 \mathbf{Z}_p 的二 次型, $a_{ij} = a_{ji}$, 并且判别式 $\det(a_{ij})$ 可逆。 令 $a \in \mathbf{Z}_p$. 则方程 $f(x) \equiv a \pmod{p}$ 的每个本原解均可提升成一个真正解。

证 按照系 1,我们只需证明 α 不是 f 的所有偏微商的 $\operatorname{mod} p$ 零点.现在 $\frac{\partial f}{\partial X_i} = 2\sum_j a_{ij} X_j$.由于 $\det(a_{ij}) \not\equiv 0 \pmod p$, 而 α 为本原元素,从而必有一个偏微商 $\not\equiv 0 \pmod p$.

系 8 设 p=2, 令 $f=\sum \alpha_{ij}X_iX_j$, 是系数属于 Z_i 的二次型, $\alpha_{ij}=\alpha_{fi}$, 设 $\alpha\in Z_2$. 令 x 是 $f(x)\cong\alpha(\text{mod }8)$ 的本原解。如果 x 不是所有 $\frac{\partial f}{\partial X_j}$ 的 mod 4 零点,则我们可以把 x 提升成一个真正解。如果 $\text{det}(\alpha_{ij})$ 可逆,则后一条件是满足的。

证 将定理用于情形 n=3, k=1, 即可证得第一论 断. 第二论断可以象 $p\neq 2$ 情形一样证得 (但要取出一个因子 2)。

§ 3. Q_p 的 乘 法 群

8.1. 单位群的渗透(filtration)

设 $\mathbf{U} = \mathbf{Z}_p^*$ 为 p-adio 单位群。对于每个 $n \ge 1$,令 $\mathbf{U}_n = 1 + p^n \mathbf{Z}_p$

这是同态 $s_n: \mathbf{U} \to (\mathbf{Z}/p^*\mathbf{Z})^*$ 的核。 特别地,商 \mathbf{U}/\mathbf{U}_1 可以等同于 \mathbf{F}_p^* ,从而是 p-1 阶循环群(见第一章定理 2)。 \mathbf{U}_n 形成 \mathbf{U} 之开子群下降列,并且 $\mathbf{U} = \lim \mathbf{U}/\mathbf{U}_n$ 。 如果 $n \ge 1$,映射

$$(1+p^nx)\mapsto x\pmod{p}$$

定义一个同构 $U_n/U_{n+1} \rightarrow Z/pZ_n$ 这由公式

 $(1+p^*x)(1+p^*y) \equiv 1+p^*(x+y) \pmod{p^{n+1}}$

便可推出、由此对 n 归纳, 即知 $\mathbf{U}_1/\mathbf{U}_n$ 的阶是 p^{n-1} .

引理 设 $0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0$ 是交换群正合列 (群 运 算 表 示成加法), A 和 B 为有限群, 其阶数 a 和 b 互素。令

$$B' = \{x \in E \mid bx = 0\}$$
.

则群 B 是 A 和 B' 的直和,并且 B' 是 B 中同构于 B 的唯一子群。

证 因为 a 与 b 互素,从而存在 r, s ∈ \mathbf{Z} ,使 ar + bs = 1. 如果 $x \in A \cap B'$,则 ax - bx = 0,于是 x = (ar + bs)x = 0,即 $A \cap B' = 0$ 。进而,每个 $x \in E$ 均可写成 x = arx + bsx。由于 bB = 0,于是 $bE \subset A$,从而 $bsx \in A$ 。另一方而,由 abE = 0 可知 $arx \in B'$.于是有 $E = A \oplus B'$,并且射影 $E \to B$ 定义了 B' 到 B 上的一个同构。反之,如果 B'' 是 E 的子群并且同构于 B,我们有 bB' = 0,于是 $B'' \subset B'$,但是此两群的阶数相同,从而 B'' = B'.

命题7 我们有 $\mathbf{U}=\mathbf{V}\times\mathbf{U}_1$, 其中 $\mathbf{V}=\{x\in\mathbf{U}\,|\,x^{p-1}=1\}$ 是 \mathbf{U} 的同构于 \mathbf{F}_n^* 的唯一子群

证 将引理用于正合列

$$1 \rightarrow \mathbf{U}_1/\mathbf{U}_n \rightarrow \mathbf{U}/\mathbf{U}_n \rightarrow \mathbf{F}_n^* \rightarrow 1$$
,

其合理性是因为 $\mathbf{U}_1/\mathbf{U}_n$ 的阶数为 p^{n-1} 而 \mathbf{F}_p^n 的阶数为 p-1. 由此可知 \mathbf{U}/\mathbf{U}_n 包含唯一的一个子群 \mathbf{V}_n 同构于 \mathbf{F}_q^n , 并且射影

$U/U_n \rightarrow U/U_{n-1}$

将 ∇_n 同构地映到 ∇_{n-1} 上. 因为 $\nabla = \lim_{\leftarrow} \nabla/\nabla_n$,由此取极限,得到 ∇ 的一个子群 ∇ 同构于 \mathbf{F}_p ,并且 $\nabla = \nabla \times \nabla_1$. ∇ 的唯一性从 ∇_n 的唯一性推得.

系 域 \mathbf{Q}_p 包含(p-1) 次单位根、

注 1) 群 ♥ 叫作 F; 中元素的乘法表示群.

2) 还可以将定理 1 的系 1 用于方程 x^{p-1}--1=0 来证明 **V** 的存在性。

3.2. 群 U₁ 的结构

引理 设 $x \in \mathbf{U}_n - \mathbf{U}_{n+1}$, 其中当 $p \neq 2$ 时令 $n \geqslant 1$, 而 p = 2 时令 $n \geqslant 2$ 。则 $x^p \in \mathbf{U}_{n+1} - \mathbf{U}_{n+2}$.

证 由假设我们有 $x=1+kp^p$, $k\neq 0 \pmod p$. 二项式定理给出

$$x^{p} = 1 + kp^{n+1} + \dots + k^{p}p^{np}.$$

而没有写出来的各项的指数均≥2n+1≥n+2, 而且

$$np \geqslant n+2$$
 (因为当 $p=2$ 时 $n \geqslant 2$).

这就证明了

$$x^{p} \equiv 1 + kp^{n+1} \pmod{p^{n+2}}.$$
$$x^{p} \in \mathbf{U}_{n+1} - \mathbf{U}_{n+2}.$$

于是

命题8 若 $p\neq 2$,则 \mathbf{U}_1 同构于 \mathbf{Z}_n

如果 p=2, 则 $\mathbf{U}_1=\{\pm 1\}\times \mathbf{U}_2$, 而 \mathbf{U}_2 同构于 \mathbf{Z}_2

证 先考虑 $p \neq 2$ 的情形. 取一元素 $\alpha \in \mathbb{U}_1 - \mathbb{U}_2$,例如令 $\alpha = 1 + p$. 按照上面引理我们有 $\alpha^{p'} \in \mathbb{U}_{i+1} - \mathbb{U}_{i+2}$. 令 α_n 为 α 在 $\mathbb{U}_1/\mathbb{U}_n$ 中的象. 我们有 $(\alpha_n)^{p^{n-1}} \neq 1$,而 $(\alpha_n)^{p^{n-1}} = 1$. 但是 $\mathbb{U}_1/\mathbb{U}_n$ 的阶数为 p^{n-1} ,从而它是由 α_n 生成的循环群. 现在用 $\theta_{n,\alpha}$ 表示 $\mathbb{Z}/p^{n-1}\mathbb{Z}$ 到 $\mathbb{U}_1/\mathbb{U}_n$ 上的同构 $z \mapsto \alpha_n^x$,便有交换图

$$\begin{array}{c} \mathbf{Z}/p^{\mathbf{n}}\mathbf{Z} \xrightarrow{\theta_{\mathbf{n}+1,\alpha}} > \mathbf{U}_{\mathbf{1}}/\mathbf{U}_{\mathbf{n}+1} \\ \downarrow & \downarrow \\ \mathbf{Z}/p^{\mathbf{n}-1}\mathbf{Z} \xrightarrow{\theta_{\mathbf{n},\alpha}} > \mathbf{U}_{\mathbf{1}}/\mathbf{U}_{\mathbf{n}} \end{array}$$

由此可知 $\theta_{n,\alpha}$ 决定出 $\mathbf{Z}_{p} = \lim_{\longleftarrow} \mathbf{Z}/p^{n-1}\mathbf{Z}$ 到 $\mathbf{U}_{1} = \lim_{\longleftarrow} \mathbf{U}_{1}/\mathbf{U}_{n}$ 上的一个同构 θ ,从而对于 $p \neq 2$ 证明了命题.

现在设p=2。取 $\alpha \in \mathbf{U}_2 - \mathbf{U}_3$,即 $\alpha = 5 \pmod 8$)。类似于上面那样定义同构

$$\theta_{n,\alpha}: \mathbf{Z}/2^{n-2}\mathbf{Z} \rightarrow \mathbf{U}_2/\mathbf{U}_n,$$

于是有同构 θ_a : $\mathbf{Z}_{2} \rightarrow \mathbf{U}_{2}$. 另一方面, 同态

$$\mathbf{U}_1 \rightarrow \mathbf{U}_1/\mathbf{U}_2 \simeq \mathbf{Z}/2\mathbf{Z}$$

诱导出 {±1} 到 2/22 上的一个同构。由此得到

$$\overline{\mathbf{U}}_1 = \{\pm 1\} \times \overline{\mathbf{U}}_2$$

定理 2 如果 $p \neq 2$,则群 \mathbf{Q}_p^* 同构于 $\mathbf{Z} \times \mathbf{Z}_p \times \mathbf{Z}/(p-1)\mathbf{Z}_p$ 如果 p=2,则 \mathbf{Q}_p^* 同构于 $\mathbf{Z} \times \mathbf{Z}_p \times \mathbf{Z}/2\mathbf{Z}_p$

证 每个元素 $x \in \mathbf{Q}_p^*$ 可以唯一地写成形式 $x = p^n u$, 其中 $n \in \mathbf{Z}$, $u \in \mathbf{U}$. 于是 $\mathbf{Q}_p^* \simeq \mathbf{Z} \times \mathbf{U}$. 进而由命题 7 证明了

$$\overline{\mathbf{U}} = \mathbf{V} \times \overline{\mathbf{U}}_1$$

其中V为p-1阶循环群,而 U_1 的结构由命题8给出。

3.3. Q* 中平方元繁

定理 3 设 $p \neq 2$, 而 $x = p^n u \in \mathbf{Q}_p^*$, 其中 $n \in \mathbf{Z}$, $u \in \mathbf{U}_1$ 则 x 为平方元素的充要条件是 n 为偶数并且 u 在 $\mathbf{F}_p^* = \mathbf{U}/\mathbf{U}_1$ 中的象 u 是平方元素.

 $\left(f -$ 条件意味着 \bar{u} 的 Legendre 符号 $\left(\frac{\bar{u}}{p} \right) = 1$,以下我们用 $\left(\frac{u}{p} \right)$ 代替 $\left(\frac{\bar{u}}{p} \right)$.

证 将 u 分解成形式 u=v·u₁, 其中 v∈V, u₁∈ U₁. 定 · 22 ·

理 2 中的分解式 $\mathbf{Q}_{n}^{*} \sim \mathbf{Z} \times \mathbf{V} \times \mathbf{U}_{1}$ 表明 x 是平方元素 $\leftrightarrow n$ 为 偶数并且 v 和 v_{1} 是平方元素. 但是 \mathbf{U}_{1} 同构于 \mathbf{Z}_{n} 而 2 为 \mathbf{Z}_{n} 中可逆元素,故 \mathbf{U}_{1} 中每个元素均是平方元素. 因为 \mathbf{V} 同构于 \mathbf{F}_{n}^{*} ,于是便得到定理.

系 如果 $p\neq 2$, 则群 $\mathbf{Q}_{p}^{*}/\mathbf{Q}_{p}^{*2}$ 是型为(2, 2)的群。它有代表元集 $\{1, p, u, up\}$, 其中 $u\in \mathbf{U}$ 满足

$$\left(\frac{u}{p}\right) = -1.$$

证 这是显然的.

定理 4 \mathbf{Q}_2^* 中元素 $x = p^n u$ 是平方元素的充要 条 件 是 n 为偶数并且 $u = 1 \pmod{8}$.

证 分解式 $\mathbf{U} = \{\pm 1\} \times \mathbf{U}_2$ 表明 u 为平方元素 $\leftrightarrow u \in \mathbf{U}_2$ 并且是 \mathbf{U}_2 中平方元素. 现在,命题 8 的证明过程中所构作的同构 $\theta: \mathbf{Z}_2 \to \mathbf{U}_2$ 将 $2^n\mathbf{Z}_2$ 映到 \mathbf{U}_{n+2} 之上. 取 n=1,我们看到 \mathbf{U}_2 中的平方元素集合是 \mathbf{U}_3 . 于是元素 $u \in \mathbf{U}$ 为平方元素的充要条件是 $u = 1 \pmod{8}$,于是证明了定理.

注 将定理 1 的系 3 用于二次型 X^2 , 也可以证明 \mathbf{U}_2 中 每个元素都是平方元素。

系 群 $\mathbf{Q}_2^*/\mathbf{Q}_2^{*2}$ 的型为(2, 2, 2)。它有代表元集 $\{\pm 1, \pm 5, \pm 2, \pm 10\}$ 。

证 这是因为 {±1, ±5} 是 U/U3的代表元集、

注 1) 对于 p=2, 用第一章 § 3.2 中的公式定义 同态 e, ω , $\mathbf{U}/\mathbf{U}_3 \rightarrow \mathbf{Z}/2\mathbf{Z}$, 即

$$s(z) \equiv \frac{z-1}{2} \pmod{2} = \begin{cases} 0, & \text{如果 } z \equiv 1 \pmod{4}, \\ 1, & \text{如果 } z \equiv -1 \pmod{4}. \end{cases}$$

$$\omega(z) \equiv \frac{z^2-1}{8} \pmod{2} = \begin{cases} 0, & \text{如果 } z \equiv \pm 1 \pmod{8}, \\ 1, & \text{如果 } z \equiv \pm 5 \pmod{8}. \end{cases}$$

映射 s 定义了 U/U_3 到 Z/2Z 之上的同构,而映射 ω 定义了 U_2/U_3 到 Z/2Z 之上的同构。 因此 (s, ω) 定义了 U/U_3 到 $Z/2Z \times Z/2Z$ 之上的同构。 特别地,一个 2-adio 单位 z 是平 方元素的充要条件是 $s(z) = \omega(z) = 0$.

2) 定理3和定理4表明Q*** 是Q**的开子群。

第三章 Hilbert 符号

§1. 局部性质

在本节中, k 表示实数域 \mathbf{R} 或者 p-adio 数域 \mathbf{Q}_{p} (其中 p 是素数).

L.L. 定义和简单性质

设 a, b ∈ k*. 令

$$(a, b) = \begin{cases} 1, & \text{如果 } z^2 - ax^2 - by^2 = 0 \text{ 在 } k^5 \text{ 中有解} \\ & (z, x, y) \neq (0, 0, 0), \\ -1, & \text{否则}, \end{cases}$$

數 $(a, b) = \pm 1$ 叫作 a 和 b 对于 k 的 Hilbert 符号. 显然, 当 a 和 b 乘以平方元素时, (a, b)不变. 因此 Hilbert 符号是从 $k^*/k^{*2} \times k^*/k^{*2}$ 到 $\{\pm 1\}$ 的映射.

命题 1 设 $a, b \in k^*$ 而令 $k_b = k(\sqrt{b})$. 则 (a, b) = 1 的 充要条件是 a 属于 k^* 的元素的范群 Nk^* .

证 如果 b 是元素 $c \in k$ 的平方,则方程 $z^2 - ax^2 - by^2 = 0$ 有解 (c, 0, 1), 于是 (a, b) = 1. 对于这种情形,命题显然成立,因为 $k_0 = k$ 而 $Nk_0^* = k^*$. 否则的话, k_0 是 k 的二次扩域。以 β 表示 b 的一个平方根,每个元素 $\xi \in k_0$ 均可写成 $z + \beta y$,其中 $y, z \in k$,而 ξ 的范 $N(\xi) = z^2 - by^2$ 。如果 $a \in Nk_0^*$,则存在 $y, z \in k$,使 $a = z^2 - by^2$,从而二次型 $z^2 - ax^2 - by^2$ 有零点 (z, y),于是我们有 (a, b) = 1.

反之,如果(a, b)=1,上面的二次型有零点

$$(x, x, y) \neq (0, 0, 0)$$
.

我们有 $x \neq 0$,因为否则 b 将为平方元素。由此看到 a 是元素 $\frac{z}{a} + \beta \frac{y}{a}$ 的范。

命题2 Hilbert 符号满足下列公式:

i)
$$(a, b) = (b, a), (a, c^2) = 1,$$

ii)
$$(a, -a) = 1, (a, 1-a) = 1,$$

iii)
$$(a, b) = 1 \Rightarrow (aa', b) - (a', b),$$

iv)
$$(a, b) = (a, -ab) = (a, (1-a)b)$$
.

(在这些公式中, a, a', b, c 表示 k^* 中元素. 如果公式中包含 1-a 这一项时, 我们假定 $a
ilde{=} 1$.)

证 i) 是显然的. 如果 b=-a (或者如果 b=1-a),则二次型 $z^2-ax^2-by^2$ 有零点 (0,1,1) (或者 (1,1,1)). 因此 (a,b)=1, 这就证明了 ii). 如果 (a,b)=1,由命题 1 可知 a 在子群 Nk_b^* 之中. 于是 $a' \in Nk_b^* \leftrightarrow aa' \in Nk_b^*$,这就证明了 iii). 公式 iv)由 i), ii)和 iii)推出.

注 公式 证)是公式

v)
$$(aa', b) = (a, b)(a', b)$$

的特殊情形. 后者表达出 Hilbert 符号是双线性的,这个公式将在下一节中证明。

1.2. (a, b) 的计算

定理 1 假若 k=R, 我们有

$$(a, b) =$$
 $\begin{cases} 1, & \text{如果 } a \text{ 或者 } b > 0, \\ -1, & \text{如果 } a \text{ 和 } b \text{ 均 } < 0. \end{cases}$

假若 $k=\mathbf{Q}_p$, 令 $a=p^au$, $b=p^bv$, 其中 u 和 v 属于 p adio 单位群 \mathbf{U} , 我们有

$$(a, b) = \begin{cases} (-1)^{\alpha\beta^{p}(p)} \left(\frac{u}{p}\right)^{\beta} \left(\frac{v}{p}\right)^{\alpha}, & \text{in } \mathbb{R} \ p \neq 2, \\ (-1)^{\varepsilon(u)\varepsilon(v) + \alpha\omega(v) + \beta\omega(u)}, & \text{in } \mathbb{R} \ p = 2. \end{cases}$$

[注意 $\left(\frac{u}{p}\right)$ 表示 Legendre 符号 $\left(\frac{\overline{u}}{p}\right)$, 其中 \overline{u} 为u在 mod p 约化同态: $\mathbf{U} \to \mathbf{F}_p^*$ 下之象. 而s(u) 和 $\omega(u)$ 分别代表 $\frac{u-1}{2}$ 和 $\frac{u^2-1}{8}$ 的 mod 2 同余类, 见第二章 § $\mathbf{3.3.}$]

定理 2 Hilbert 符号是 \mathbf{F}_{2} -向量空间 k^*/k^{*2} 上的非退化 双线性型

[(a, b)的双线性恰好是§1.1 末尾所提到的公式 v).而"(a, b)是非退化的"意味着.如果 $b \in k^*$,使得对于每个 $a \in k^*$ 均有(a, b) = 1,则 $b \in k^{*2}$.]

系 如果b不为平方元素,则命题1中的群 Nk_0^* 是 k^* 的指数为2的子群。

证 根据命题 1, 由 $\phi_b(a) = (a, b)$ 定义的同态 $\phi_b: k^* \rightarrow \{\pm 1\}$ 的核为 Nk_b^* . 由子(a, b)是非退化的,从而 ϕ_b 是映上的. 于是 ϕ_b 定义了 k^*/Nk_b^* 到 $\{\pm 1\}$ 之上的同构,由此即得到本系。

注 更一般地,设 L 是 k 的有限 Galois 扩张,其 Galois 群是交换群。可以证明 k^*/NL^* 同构于 G,并且群 NL^* 的知识可以决定 L。这是"局部类域论"的两个主要结果。

定理1和定理2的证明。

情形 $k=\mathbf{R}$ 是显然的, 然后注意 k^*/k^{*2} 是域 \mathbf{F}_2 上一维向量空间, 而 $\{1,-1\}$ 是代表元集.

现在设 $k=Q_{o}$

引理 设v∈U是p-adic单位、如果方程

$$z^2 - px^2 - vy^2 = 0$$

在 \mathbf{Q}_p 中有非平凡解,则它有一解 (z, x, y) ,使 $z, y \in \mathbf{U}$ 而 $x \in \mathbf{Z}_p$.

证 按照第二章 § 2.1 的命题 6. 所给方程有本原解(z, x, y). 让我们证明这个解即有所需性质. 如果不然,则或者 $y \equiv 0 \pmod{p}$, 或者 $z \equiv 0 \pmod{p}$. 因为 $z^2 - vy^2 \equiv 0 \pmod{p}$ 而 $v \neq 0 \pmod{p}$,我们便同时有 $y \equiv 0 \pmod{p}$,和 $z \equiv 0 \pmod{p}$,于是 $px^2 \equiv 0 \pmod{p^2}$,即 $x \equiv 0 \pmod{p}$,这与(z, x, y)的本原性相矛盾.

现在回到定理1的证明上来,先设 p ⇒ 2.

显然可以只考虑指数 α 和 β 的 mod 2 剩余。又由于 Hilbert 符号的对称性,从而只需考虑以下三种情形。

1)
$$\alpha = 0$$
, $\beta = 0$. 我们要证明 $(u, v) = 1$. 现在方程 $z^2 - ux^2 - vy^2 = 0$

有非平凡的 mod p 解 (第一章 § 2 定理 3 系 2). 由于这个二次型的判别式是 p-adic 单位,上述解可以提升成 p-adic 解 (第二章 § 2.2 定理 1 系 2),从而 (u, v) = 1.

2) $\alpha=1$, $\beta=0$. 我们要证明 $(pu, v)=\left(\frac{v}{p}\right)$. 因为 (u, v)=1, 由命题 2 的公式 ii) 我们有 (pu, v)=(p, v). 从而只需证明 $(p, v)=\left(\frac{v}{p}\right)$. 如果 v 为平方元素, 这是显然的, 因为上式两边均为 1. 否则便有 $\left(\frac{v}{p}\right)=-1$. (见第二章§3.3定理 3.) 这时上面引理表明 $z^2-px^2-vy^2$ 没有非平凡零点, 于是 (p, v)=-1.

$$(pu, pv) = (-1)^{\frac{p-1}{2}} \left(\frac{u}{p}\right) \left(\frac{v}{p}\right).$$

命题2的公式 iv) 表明

$$(pu, pv) - (pu, -p^2uv) = (pu, -uv).$$

根据上面所述,我们有 $(pu, pv) - \left(\frac{-uv}{p}\right)$,由此再注意

$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}},$$

即得所需结果.

这样我们就证明了定理 1 (对于 $p \neq 2$),而定理 2 可以由它立刻推出来,因为公式表明 (a, b) 是双线性的,为了证明其非退化性,只需证明对每个非平方元素 $a \in b^*$,均存在元素 b,使 (a, b) = -1. 按照第二章 § 3.3 定理 3 的 \mathbb{R} ,我们可取 a-p, u 或者 up, 其中 $u \in \mathbf{U}$, $\left(\frac{u}{p}\right) = -1$. 这时我们取 b 分别为 u, p 或者 u 即可.

情形 p=2. 这时仍然只需考虑 α 和 β 的 $\bmod 2$ 剩余,从而只需考虑三种情形:

1)
$$\alpha=0$$
, $\beta=0$. 我们必需证明

$$(u, v) = \begin{cases} 1, & \text{如果 } u \text{ 或者 } v \equiv 1 \pmod{4}, \\ -1, & \text{否则}. \end{cases}$$

先设 $u=1 \pmod{4}$,则 $u=1 \pmod{8}$ 或者 $u=5 \pmod{8}$. 在第一种情形下 u 是平方元素(第二章§3.3 定理 4),于是我们有 (u, v)=1.. 在第二种情形下我们有 $u+4v=1 \pmod{8}$,从而 存在 $w\in U$ 使 $w^2=u+4v$. 于是二次型 $z^2-ux^2-vy^2$ 有零点 (w,1,2),即有(u, v)=1. 现在让我们假定

$$u \equiv v \equiv -1 \pmod{4}$$

如果(z, x, y)是 $z^2 - ux^2 - vy^2 - 0$ 的本原解,则

$$z^2+x^2+y^2\equiv 0\,(\mathrm{mod}\,4).$$

但是 $\mathbf{Z}/4\mathbf{Z}$ 的平方元素是0和1,因此上面同余式导出x,y,

2均同余于 $0 \pmod{2}$,这与本原性假设相矛盾。 因此对于这种情形我们有(u, v) = -1

2)
$$\alpha = 1$$
, $\beta = 0$. 我们必需证明
$$(2u, v) = (-1)^{\epsilon(u)\epsilon(v) + \omega(v)}.$$

首先让我们证明(2, v) = $(-1)^{\omega(v)}$, 即证明(2, v) = 1 等价于 $v = \pm 1 \pmod{8}$. 根据上述引理, 如果(2, v) = 1, 则存在x, y, $z \in \mathbf{Z}_2$, 使 $z^2 - 2x^2 - vy^2 = 0$ 并且 y, $z \neq 0 \pmod{2}$. 于是我们有 $y^2 \equiv z^2 \equiv 1 \pmod{8}$,从而 $1 - 2x^2 - v \equiv 0 \pmod{8}$. 但是 mod 8 平方元素只有 0, 1 和 4, 由此推出 $v \equiv \pm 1 \pmod{8}$. 反之, 如果 $v \equiv 1 \pmod{8}$, v 是平方元素,从而(2, v) = 1. 如果 $v \equiv -1 \pmod{8}$,则方程 $z^2 - 2x^2 - vy^2 = 0$ 有 mod 8 解 (1, 1, 1) . 这个近似解可以提升成真正解(第二章 § 2.2,定理 1 的系 3),于是 (2, v) = 1.

其次我们证明 (2u, v) = (2, v)(u, v). 根据命题 2, 如果 (2, v) = 1 或者 (u, v) = 1 时,这公式是成立的。 剩下的情形 为 (2, v) = (u, v) = -1,即 $v = 3 \pmod{8}$,而 u = 3 或者 $-1 \pmod{8}$ 。 将 u 和 v 乘以平方元素之后,我们可以设 u = -1, v = 3 或者 u = 3, v = -5。 现在,方程

$$z^2 + 2x^2 - 3y^2 = 0$$
 At $z^2 - 6x^2 + 5y^2 = 0$

均有解(1,1,1),于是我们有(2u, v) = 1.

8)
$$\alpha = 1$$
, $\beta = 1$. 我们必需证明
$$(2u, 2v) = (-1)^{s(u)s(v) + \omega(u) + \omega(v)}.$$

命题 2 的公式 iv) 表明

$$(2u, 2v) = (2u, -4uv) = (2u, -uv).$$

由上所述, 我们有

$$(2u, 2v) = (-1)^{s(u)s(-uv) + \omega(-uv)}$$

因为 $\varepsilon(-1) = 1$, $\omega(-1) = 0$, $\varepsilon(u)(1 + \varepsilon(u)) = 0$, 从而上式

. ...

右边的指数是 $s(u)s(v)+\omega(u)+\omega(v)$, 这就证明了定理 1. 由此公式以及 s 和 ω 均是同态, 即知 (a,b) 是双线性的, 对于非退化性, 只需检查代表元集 $\{u,2u|u=1,5,-1,-5\}$ 即可. 事实上, 我们有

$$(5, 2u) = -1, \quad \text{fin} \quad (-1, -1) = (-1, -5) = -1.$$

注 将(a, b) 写成形式 $(-1)^{[a,b]}$, 其中 $[a, b] \in \mathbb{Z}/2\mathbb{Z}$. 则 [a, b] 是 k^*/k^{*2} 上取值于 $\mathbb{Z}/2\mathbb{Z}$ 的对称双线性型,并且定理 1 给出它对于 k^*/k^{*2} 的某一组基的矩阵,

对于 $k = \mathbf{R}$, 该矩阵为(1)。

对于 $k = \mathbf{Q}_p, p \neq 2$, 取基 $\{p, u\}$, 其中 $\left(\frac{u}{p}\right) = -1$, 则当 $p \equiv 1 \pmod{4}$ 时该矩阵为 $\binom{0}{1}$,当 $p \equiv 3 \pmod{4}$ 时该矩阵为 $\binom{1}{1}$ 的 $\binom{1}{1}$

§2. 整体性质

有理数域 Q 作为子域可以嵌到每个域 Q,和 R 中.如果 $a,b \in Q^*$,我们以 (a,b),和 (a,b)。分别表示它在 Q,和 R 中 象元素的 Hilbert 符号。我们定义 V 为全体素数加上符号 ∞ 所构成的集合,并约定命 $Q_\infty = R$,于是对于每个 $v \in V$,Q 在 Q。中是稠密的.

2.1. 乘积公式

定理 $\mathbf{3}$ (Hilbert) 如果 $a, b \in \mathbf{Q}^*$, 则对几乎所有 $v \in V$

均有(a, b)_e=1, 并且

$$\prod_{v\in V} (a, b)_v = 1.$$

("几乎所有 $v \in V$ "的意思是: "V 中除了有限多个之外的 所有元素"。)

证 由于 Hilbert 符号是双线性的,从而只需对a和b等于-1或素数时证明该定理即可。在每种情形下,定理1均给出(a,b)。的值。我们发现

- 1) a=-1, b=-1, 则 $(-1,-1)_{\infty}=(-1,-1)_{2}=-1$, 而当 $p\neq\infty$, 2 时, $(-1,-1)_{5}=1$, 从而乘积为 1.
- 2) a = -1, b = l, l 为素数. 如果 l = 2, 则对于每个 $v \in V$ 均有 $(-1, 2)_v = 1$. 如果 $l \neq 2$, 则当 $v \neq 2$ 和 l 时有 $(-1, l)_v = 1$, 而 $(-1, l)_a = (-1, l)_l = (-1)^{e(l)}$, 于是乘积等于 1.
- 3) a=l, b=l', 其中 l 和 l' 均是素数. 如果 l=l', 命题 2 的公式 iv) 表明对于每个 $v \in l'$ 均有 $(l, l)_{v} = (-1, l)_{v}$, 从而归结为上面所考虑过的情形. 如果 l 与 l' 不同而且均不为 2, 则当 $v \neq 2$, l, l' 时, 我们有 $(l, l')_{v} = 1$. 而

$$(l, l')_2 = (-1)^{s(l)s(l')}$$

$$(l, l')_l = \left(\frac{l'}{l}\right), \quad (l, l')_l = \left(\frac{l}{l'}\right),$$

但是由二次互反律(第一章 § 3.3 定理 6) 我们有

$$\left(\frac{l'}{l}\right)\left(\frac{l}{l'}\right) = (-1)^{e(l)s(l')},$$

从而乘积等于 1. 如果 $l \neq l'$ 并且 l' = 2, 则当 $v \neq 2$, l 时我们有 $(l,2)_{v}=1$, 而

$$(l,2)_2 = (-1)^{\omega(l)}, \quad (l,2)_l = \left(\frac{2}{l}\right) = (-1)^{\omega(l)}.$$

见第一章§3.2定理5,从而乘积为1,这就完成了证明、

注 乘积公式本质上等价于二次互反律。它的益处主要 是基于如下的事实,即它可以推广到一切代数数域中(集合 V 改成域的全部"位"所组成的集合)。

2.2. 具有给定 Hilbert 符号的有理数之存在性

定理4 设 $(a_i)_{i\in I}$ 是 **Q*** 中元素的有限集,而 $(\epsilon_{i,v})_{i\in I,v\in V}$ 是一个数集合,每个 $\epsilon_{i,v}$ 均是 +1 或 -1. 为了存在元素 $x\in \mathbf{Q}^*$,使 $(a_i,x)_v=\epsilon_{i,v}$ (对一切 $i\in I$, $v\in V$),其充要条件是下述诸条件满足:

- (1) 几乎所有的 s_{1.0} 均等于 1
- (2) 对每个 $i \in I$ 均有 $\prod_{v \in V} \varepsilon_{i,v} = 1$.
- (3) 对每个 $v \in V$, 均存在 $x_v \in \mathbf{Q}_v^*$ 使 $(a_i, x_v)_v = s_{i,v}$ (对一切 $i \in I$).

证 (1)和(2)的必要性从定理 3 推出; 而(3)的必要性是显然的(取 $x_e = x$).

为证这些条件的充分性,我们需要如下三条引理,

引理 1(中国剩余定理) 设 a_1 , …, a_n , m_1 , …, m_n 是整数, 并且 m_i 两两互素. 则存在整数 a, 使对每个 i 均有 $a \equiv a_i$ (mod m_i).

证 设加是诸 m. 之积. Bezout 定理表明正则同态

$$\mathbf{Z}/m\mathbf{Z} \rightarrow \prod_{i=1}^{n} \mathbf{Z}/m_{i}\mathbf{Z}$$

是同构. 由此即得引理.

引理 2("逼近定理") 设 $S \neq V$ 的有限 子 集 合,则 Q 在 $\prod_{v \in S} Q_v$ 中的象在这一积集 $\prod_{v \in S} Q_v$ 中稠密 (对于 Q_v 中拓扑之 积拓扑).

证 因为可以任意扩大 8, 我们可以设

$$S = \{\infty, p_1, \cdots, p_n\},\$$

其中 p_i 是不同的素数,我们必需证明 \mathbf{Q} 在 $\mathbf{R} \times \mathbf{Q}_{p_i} \times \cdots \times \mathbf{Q}_{p_i}$ 中稠密. 设 $(x_{i,0}, x_1, \cdots, x_n)$ 是该积集中一点,我们来证明这个点是 \mathbf{Q} 的附着点. 乘以某个整数之后,我们可设 $x_i \in \mathbf{Z}_{p_i}$ $(1 \le i \le n)$. 现在必需证明对每个 s > 0 和每个整数 N > 0,均存在 $s \in \mathbf{Q}$,使

$$|x-x_{\infty}| \leq \varepsilon$$
 并且 $v_{p_i}(x-x_i) \geqslant N$ $(1 \leq i \leq n)$.

将引理 1 用于 $m_i = p_i^N$, 可知存在 $x_0 \in \mathbf{Z}$, 使 $v_{p_i}(x_0 - x_i)$ $\geqslant N$ (对一切 i). 现在取一整数 $q \geqslant 2$, 使 q 与所有 p_i 均互素 (例如取一个充分大的素数). 形如 a/q^m ($a \in \mathbf{Z}$, $m \geqslant 0$) 的有理数在 \mathbf{R} 中稠密 (这是因为当 $m \rightarrow \infty$ 时 $q^m \rightarrow \infty$). 取一数 $u = a/q^m$ 使

$$|x_0-x_m+up_1^N\cdots p_n^N|\leqslant \varepsilon,$$

则有理数 $x=x_0+up_1^N\cdots p_n^N$ 即有所需性质.

引理 8(Dirichlet 定理) 如果 a 和 m 是彼此互素并均 \geqslant 1 的整数,则存在无穷多个素数 p 使 $p \equiv a \pmod{m}$.

证明将在第六章中给出. 读者可以看出它并没有用到第三、四和五章的结果.

现在回到定理 4, 令($\epsilon_{i,v}$)是等于 ±1 的数的集合并且满足条件(1), (2)和(3). 将 α_i 乘以某个整数的平方之后, 我们可以假定所有的 α_i 均是整数. 令 δ 为 V 的子集, 由 ∞ , 2 和 α_i 的素因子所构成. 令 $T = \{v \in V \mid \text{存在 } i \in I \text{ 使 } \epsilon_{i,v} = -1\}$. 这两个集合均是有限的. 我们分两种情形考虑:

1)
$$S \cap T = \emptyset$$
.

$$a = \prod_{\substack{l \in T \\ l \neq \infty}} l, \quad m = 8 \prod_{\substack{l \in H \\ l \neq 2, \infty}} l.$$

因为 $S \cap T = \emptyset$,整数 a 和加互素,并且由引理 3 可知存在素数 $p \equiv a \pmod{m}$,其中 $p \notin S \cup T$. 现在证明 x = ap 有所需性质,即 $(a_i, x)_v = \varepsilon_i, v$ 对一切 $i \in I$ 和 $v \in V$.

如果 $v \in S$, 由于 $S \cap T = \emptyset$, 我们有 $\varepsilon_{i,v} = 1$, 从而必需证明 $(a_i, x)_v = 1$. 如果 $v = \infty$, 由 x > 0 即得结论. 如果 $v \to \infty$ 数 l, 我们有 $x \equiv a^2 \pmod{m}$, 从而对于 l = 2 有 $x \equiv a^2 \pmod{8}$, 而对于 $l \neq 2$ 有 $x \equiv a^2 \pmod{l}$. 因为 x 和 a 均是 l—adio 单位, 这表明 x 是 \mathbf{Q}^* 中的平方元素(见第二章§3.3),于是有

$$(\alpha_i, x)_v = 1$$

如果 $v=l \notin S$, α_i 是 l-adic 单位。由于 $l \neq 2$, 我们有

$$(a_i, b)_i = \left(\frac{a_i}{l}\right)^{v_i(b)} \quad (xj - yj b \in \mathbf{Q}_i^*),$$

见定理 1. 如果 $l \notin T \cup \{p\}$, $x \notin l$ —adio 单位, 于是 $v_l(x) = 0$, 而上面公式表明 $(a_i, x)_i = 1$. 另一方面我们有 $e_{i,l} = 1$, 这是因为 $l \notin T$. 如果 $l \in T$, 我们有 $v_l(x) = 1$, 并且条件(3)表明存在 $x_l \in \mathbf{Q}_l^*$ 使 $(a_i, x_l)_l = e_{i,l}$ (对于一切 $i \in I$). 由于有某个 $e_{i,l} = -1$ (因为 $l \in T$),我们有 $v_l(x_l) \equiv 1 \pmod{2}$,从而

$$(a_i, x)_i = \left(\frac{a_i}{l}\right) = (a_i, x_i)_i = e_{i,l} \quad (\forall i - \forall i \in I).$$

只剩下情形 l=p,这可由其余等式利用如下乘积公式推出。

$$(a_i, x)_p = \prod_{v \neq p} (a_i, x)_v = \prod_{v \neq p} e_{i,v} = e_{i,p}$$

这就对于 $S \cap T = \emptyset$ 的情形完成了定理 4 的证明、

2) 一般情形,

我们知道, \mathbf{Q}_v^* 的平方元素形成 \mathbf{Q}_v^* 的开子群,见第二章 § 3.3. 由引理 2, 存在 $x' \in \mathbf{Q}^*$ 使对于每个 $v \in S$, x'/x_v , 是 \mathbf{Q}_v^* 中平方元素、特别地, 对于每个 $v \in S$ 均有

$(a_i, x')_v = (a_i, x_v)_v = \varepsilon_{i,v}$

如果令 $\eta_{i,v} = \varepsilon_{i,v}(a_i, x')_v$,那末集合 $(\eta_{i,v})$ 也满足条件 (1)、(2) 和 (3),并且若 $v \in S$,则 $\eta_{i,v} = 1$. 由上面的 1) 可知存在 $y \in \mathbf{Q}^*$ 使得对每个 $i \in I$ 和 $v \in V$ 均有 $(a_i, y)_v = \eta_{i,v}$,如果令 x = yx',显然 x 即有所需要的性质.

第四章 Q。和 Q 上的二次型

§ 1. 二 次 型

1.1. 定义

首先提一下二次型的一般概念(见 Bourbaki, 代数,第九章, 3, n°4)。

定义 1 设 V 是交换环 A 上的模、函数 $Q: V \rightarrow A$ 叫作 V 上的二次型, 如果

- 1) $Q(ax) = a^2Q(x), a \in A, x \in V$.
- 2) 函数 $(x, y) \mapsto Q(x+y) Q(x) Q(y)$ 是双线性型。

这样的(V,Q)称作一个二次模。在本章中,我们限定在环 A 为特征 $\neq 2$ 的域 k 这一情形。这时,A-模 V 是 k-向量空间。我们假设它的维数是有限的。

我们令:

$$x \cdot y = \frac{1}{2} \{ Q(x+y) - Q(x) - Q(y) \}.$$

由于 k 的特征 $\neq 2$, 从而这是有意义的。映射 $(x, y) \mapsto x \cdot y$ 是 V 上的对称双线性型,叫作与 Q 相结合的内积。这就构造出在二次型和对称双线性型之间的一个一一对应 (在特征 2 的时候情况并不如此).

如果(V,Q)和(V',Q')是两个二次模,线性映射 $f:V\rightarrow V'$ 称作是从(V,Q)到(V',Q')中的同态(或保距同态),是指 $Q'\circ f=Q$. 这时有 $f(x)\cdot f(y)=x\cdot y($ 对所有的 $x,y\in V)$.

二次型的矩阵,设 $(c_i)_{1 < i < n}$ 是V的一组基,Q对于这组

基的矩阵是 $A=(a_{ij})$, 其中 $a_{ij}=e_i\cdot e_j$. 它是对称矩阵. 如果 $x=\sum x_ie_i$ 是 V 中元素, 则

$$Q(x) = \sum_{i,j} a_{ij} x_i x_j,$$

这表明 Q(x) 是通常意义下关于 x_2, \dots, x_n 的二次型.

如果用一个可逆矩阵 X 改变基(α), 那末 Q 对于新的一组基的矩阵是 $A' = XA^tX$, 这里 tX 表示 X 的转置. 特别地, $\det(A') = \det(A)\det(X)^s$,

这表明 $\det(A)$ 除了一个因子(它是 k^{*2} 中元素)外是完全确定的、称它为 Q 的判别式,记成 $\operatorname{disc}(Q)$.

1.2. 正交性

设(V, Q)是 k 上的一个二次模。V 的两个元素 x, y 称作是正交的,如果 $x \cdot y = 0$.以 H^0 表示正交于 V 的子集 H 的全部元素所构成的集合,它是 V 的向量子空间。 假设 V_1 和 V_2 是 V 的向量于空间,称它们为正交的,如果 $V_1 \subset V_2$,即如果 $x \in V_1$, $y \in V_2$,便导致 $x \cdot y = 0$.

V 自身的正交补 V^0 叫作 V 的根子空间(或核子空间),记为 rad (V). 它的补维数(codimension)称作是 Q 的秩、如果 $V^0=0$,我们称 Q 是非退化的,这等价于说 Q 的判别式 $\neq 0$ (在这种情形下,我们将判别式看成是群 k^*/k^{*2} 中的元素)。

设 $U \neq V$ 的向量子空间,令 U^* 为U 的对偶。又令 q_v : $V \rightarrow U^*$ 是如下的函数:它将每个 $x \in V$ 结合一个线性型 ($y \in U \mapsto x \cdot y$)。 q_v 的核是 U^o 。特别地可以看出,Q是非退化的 $\Leftrightarrow q_v$: $V \rightarrow V^*$ 是同构。

定义 2 设 U_1 , …, U_m 是 V 的向量子空间。称 V 是 U_n 的正交直和, 如果它们两两正交并且 V 是它们的直和。这时可以写成

$$V = U_1 \widehat{\oplus} \cdots \widehat{\oplus} U_m$$

注 如果 $x \in V$ 在 U_i 中分量为 x_i , 则

$$Q(x) = Q_1(x_1) + \cdots + Q_m(x_m),$$

其中 $Q_1 = Q \mid U_1$ 表示 Q 在 U_1 上的限制。反之, 如果 (U_1, Q_1) 是一个二次模集合, 上面的公式可使 $V = \bigoplus U_1$ 具有二次型 Q, 称 Q 为 Q_1 的直和, 并且有 $V = U_1$ $\bigoplus U_m$.

命题 1 如果 U 是 rad(V) 在 V 中的补子空间,则 $V=U ext{ } ext{ }$

这是显然的.

命题 2 假设(V, Q)是非退化的, 则

- i) V 到一个二次模(V',Q')中的每个保距同态均是单射.
- ii) 对于V 的每个子空间U,都有

$$U^{00} = U$$
, $\dim U + \dim U^0 = \dim V$,
 $\operatorname{rad}(U) = \operatorname{rad}(U^0) = U \cap U^0$.

- 二次模 U 是非退化的 \Leftrightarrow U° 非退化,并且这时 $V=U \oplus U^{\circ}$.
- iii) 如果 V 是两个子空间的正交和,则这两个子空间均非退化,并且彼此正交。

证 如果 $f: V \rightarrow V'$ 是保距同态并且f(x) = 0,我们有 $x \cdot y = f(x) \cdot f(y) = 0$ (对一切 $y \in V$).

这导致 x=0, 因为(V, Q)是非退化的.

如果 U 是 V 的向量子空间,上面定义的同态 $q_v: V \rightarrow U^*$ 是映上的. 事实上,它是 $q_v: V \rightarrow V^*$ 与正则映上 $V^* \rightarrow U^*$ 的合成,而我们已经假定 q_v 是一一映射. 因此有正合列:

$$0 \rightarrow U^0 \rightarrow V \rightarrow U^* \rightarrow 0$$
,

于是 $\dim V = \dim U^* + \dim U^0 = \dim U + \dim U^0$.

这就证明了U和 U^{00} 有同样的维数。因为 $U \subseteq U^{00}$,我们有 $U = U^{00}$. 公式 $\mathrm{rad}(U) = U \cap U^{0}$ 是显然的。将此式用于 U^{0}

并考虑到 $U^{00} = U$, 我们得到 $rad(U^0) = rad(U)$, 并且同时给出 ii) 的最后论断。最后, iii) 是显然的。

1.8. 迷向向餐

定义 8 二次模 (V, Q) 的元素 α 叫作是迷向的,如果 $Q(\alpha) = 0$, V 的子空间 U 叫作是迷向的,如果它的每个元素 都是迷向的。

显然有

$$U$$
 迷向 \Leftrightarrow $U \subset U^0 \Leftrightarrow Q|U = 0$.

定义 4 一个二次模如果有由两个迷向元素 x 和 y 形成的一组基, 并且 $x \cdot y \neq 0$, 便称此二次模为双曲平面.

将 y 乘以 $1/x \cdot y$ 之后,我们可设 $x \cdot y = 1$. 这时该二次型对于 x, y 的矩阵为 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 这样简单的形式,它的判别式是 -1 (特别地,它非退化).

命题 8 设 α 是非退化二次模 (V, Q) 中的非零 迷 向 元 素,则 V 存在子空间 U,使 $\alpha \in U$ 并且 U 是双曲平面.

证 由于V 非退化,从而存在 $z \in V$ 使得 $x \cdot z = 1$. 元素 $y = 2z - (z \cdot z)x$ 为迷向的,并且 $x \cdot y = 2$. 空间 U = kx + ky 即有所需性质.

系 如果(V, Q)非退化并且包含非零迷向元素,则 Q(V) = k.

(换句话说,对每个 $a \in k$, 均存在 $v \in V$ 使得Q(v) = a.) 证 根据命题 3, 可设V 为双曲平面. 设V 有基a, y. 其中 $a \cdot y = 1$ 并且a 和y 均迷问. 如果 $a \in k$, 那末

$$a = Q\left(x - \frac{a}{2}y\right),$$

由此可知 Q(V) = k.

1.4. 正交基

定义 5 二次模 (V, Q) 的基 (e_1, \dots, e_n) 称作是正交的, 如果元素 e_i 两两正交, 即如果 $V = ke_1 \oplus \dots \oplus ke_n$.

这可以说成, Q 对于这组基的矩阵是对角阵

$$\begin{pmatrix} a_1 & 0 & \cdots & 0 \\ 0 & a_2 & \cdots & 0 \\ 0 & 0 & \cdots & a_n \end{pmatrix}.$$

如果 $x = \sum x_i e_i$, 我们有 $Q(x) = a_1 x_1^2 + \dots + a_n x_n^2$.

定理 1 每个二次模(V,Q)均有正交基。

证 我们对 $n=\dim V$ 归纳, n=0 的情形是显然的. 如果 V 迷向, V 的每组基均正交. 否则,取一元素 $e_1 \in V$,使 $e_1 \cdot e_1 \neq 0$. e_1 的正交补 H 是超平面. 由于 $e_2 \notin H$, 我们有

$$V = ke_1 \oplus H$$
.

按照归纳假设, H 有正交基(e_2 , …, e_n), 于是(e_1 , e_2 , …, e_n) 即有所需性质

定义6 1/的两组正交基

$$e = (e_1, \dots, e_n), e' = (e'_1, \dots, e'_n)$$

叫作是毗连的,如果它们有公共元素(即如果存在i和j,使得 $e_i=e_j'$)。

定理2 设(V,Q)是维数≥3的二次模,令

$$e = (e_1, \dots, e_n), \quad e' = (e'_1, \dots, e'_n)$$

是 V 的两组正交基,则 V 存在正交基的有限序列 $e^{(i)}$, $e^{(i)}$, \cdots , $e^{(m)}$, 使 $e^{(0)} = e$, $e^{(m)} = e'$, 并且对于 $0 \le i < m$, $e^{(i)}$ 与 $e^{(i+1)}$ 相毗连.

(我们称 e⁽ⁿ⁾, ···, e^(m) 为从 e 到 e' 的正交基毗连链.)证^(*) 我们分三种情形考虑:

i) $(e_1 \cdot e_1) (e'_1 \cdot e'_1) - (e_1 \cdot e'_1)^2 \neq 0$.

这就是说, e_1 和 e_1 不成比例并且平面 $P = ke_1 + ke_1$ 是非退化的,于是存在 e_2 和 e_2 使得

$$P = ke_1 \oplus ke_2$$
 并且 $P = ke_1 \oplus ke_2$.

设 H 是 P 的正交补。由于 P 非退化,我们有 $V = H \oplus P$ (见命题 2)。 令 (e_n^0, \dots, e_n^0) 是 H 的正交基,我们便有从 e 到 e^0 的正交基毗连链:

$$e \rightarrow (e_1, e_2, e_3'', \dots, e_n'') \rightarrow (e_1', e_2', e_3'', \dots, e_n'') \rightarrow e'$$

从而对于这种情形证明了定理.

ii) $(e_1 \cdot e_1) (e'_2 \cdot e'_2) - (e_1 \cdot e'_2)^2 \neq 0$,

将 el 改成 el 然后类似地证明。

iii)
$$(e_1 \cdot e_1) (e'_i \cdot e'_i) - (e_1 \cdot e'_i)^2 = 0$$
 $(i = 1, 2)$. 我们首先证明:

引理 存在 $x \in k$, 使 $e_x = e_1 + xe_2$ 非迷向, 并且与 e_1 生成 非退化平面.

证 我们有 $e_x \cdot e_x = e_1' \cdot e_1' + x^2 (e_2 \cdot e_2)$. 因此我们必需取 $x^2 \neq -(e_1' \cdot e_1')/(e_2' \cdot e_2')$.

此外, 为了 e, 与 e, 生成非退化平面, 其充要条件是

$$(e_1 \cdot e_1) (e_x \cdot e_x) - (e_1 \cdot e_x)^2 \neq 0$$

如果我们把上试左边算出来,考虑到假设条件 iii), 便会

^(*) 证明中用到了条件; $e_1 \cdot e_1 \neq 0$, $e_1 \cdot e_1 \neq 0$, $e_2 \cdot e_2 \neq 0$. 当 V 的秩 ≥ 2 时, 改变一下标号, 总可以选取 e_1 , e_1 , e_2 满足比条件。当 V 的秩 ≤ 1 时, 易知定理 2 成立。——译者注

发现它是 $-2x(e_1 \cdot e_1)(e_1 \cdot e_2)$. 现在假设条件 iii) 导致

$$e_1 \cdot e_i \neq 0$$
 $(i=1, 2)$.

因此我们看出 e₂满足引理条件 ⇔ x ≠ 0 并且

$$x^2 \neq -(e_1 \cdot e_1)/(e_2 \cdot e_2)$$
.

这至多排除掉x的三个值.如果 k 至少有 4 个元素,我们可以找到这样的x. 于是只剩下 $k=\mathbb{F}_3$ 的情形(由于 char $(k)\neq 2$,从而 $k=\mathbb{F}_2$ 的情形被排除掉). 但是这时,每个非零元素的平方均为 1,从而假设条件 iii)可以写成

$$(e_1 \cdot e_1) (e'_i \cdot e'_i) = 1 \quad (i = 1, 2).$$

因此

$$(e'_1 \cdot e'_1) / (e'_2 \cdot e'_2) = 1,$$

为了满足条件 $x^2 \neq 0$, -1, 只需取 x=1 即可

这表明取 $e_x = e_1 + xe_2$, 则引理条件成立. 由于 e_x 非迷向, 从而存在 e_2' , 使 (e_x, e_2') 为 $ke_1' \oplus ke_2$ 的正交基. 令

$$e'' = (e_{\bullet}, e''_{2}, e'_{3}, \cdots, e'_{n})$$

这是V的一组正交基。由于 ke_1+ke_2 是非退化平而,本证明的 i) 部分表明可以得到从 e 到 e" 的正交基毗连链。 又由于 e' 和 e" 是毗连的,从而即得定理。

1.5. Witt 定理

令(V,Q)和(V',Q')是两个非退化的二次模。令U为V的子空间,而

$$s: U \rightarrow V'$$

是从U到V'中的单射保距同态。 我们希望把s扩充到比U大的子空间上,如果可能,希望扩充到整个V上。 我们从U退化这一情形开始。

引理 如果U退化,我们可以将s扩充成单射保距同态 s_1 ; $U_1 \rightarrow V'$,其中U为 U_1 的超平面.

证(*) 设 x 为 rad(U) 中的非零元素。由于 x 迷向,根据命题 3,存在 V 的双曲平面包含 x。于是 可找到 $y \in V$,使 $x \cdot y = 1$, $y \cdot y = 0$ 。由于 y 不与 x 正交,我们有 $y \notin U$,而 U 是 子空间 $U_1 = U \oplus ky$ 的超平面。类似地,我们构造元素 $y' \in V'$,使 $s(x) \cdot y' = 1$, $y' \cdot y' = 0$ 。令 $s_1, U_1 \rightarrow V'$ 是线性映射,它在 U 上与 s 一致,而将 y 映成 y'。显然 s_1 即为所求。

定理 $\mathbf{3}(Witt)$ 如果 (V,Q) 和 (V',Q') 是同构的非退化 二次模,则 V 之子空间 U 的每个单射保距同态

$$s_{:} U \rightarrow V'$$

都可以扩充成 V 到 V' 上的一个保距同构。

证 因为V和V'同构,我们可设V=V'.此外,利用上述引理,我们又归结到U非退化的情形.现在我们对 $\dim U$ 利用数学归纳法、

如果 $\dim U = 1$, U 是由非迷向元素 x 生成的。如果 y = s(x),

我们有 $y \cdot y = x \cdot x$ 。可以取 $s = \pm 1$,使 x + sy 非迷向。因否则 我们将有

$$2x \cdot x + 2x \cdot y = 2x \cdot x - 2x \cdot y = 0,$$

这将导致 $x \cdot x = 0$. 取定这样的 ε 之后, 令 H 为 $z = x + \varepsilon y$ 的

取 $x \in \operatorname{rad}(U)$, $x \neq 0$. 令 $U = kx \oplus W$, 则 $s(U) = ks(x) \oplus s(W)$, 再取 $y \in W^0 \setminus U^0$, $y \neq 0$ (这由命题 2 保证),使 $x \cdot y = 1$. 类似地取 $y' \in s(W)^0 \setminus s(U)^0$, $y' \neq 0$.

使 $y' \cdot s(x) = 1$ 。 令 $U_1 \neq U$ 和 y 张成的向量空间,定义线性 映 射 $s_i \cdot U_1$ $\rightarrow V'$,使 $s_1 \mid_{U} = s$,而 $s_1(y) = y'$ 。则 s_1 即为所求。——译者注

^(**) 原证明中对于 y 和 y' 的选取还不能保证扩充 s_1 的可定义性。 建议将证明修改如下:

正交补。我们有 $V=kz\oplus H$ 。令 σ 为"关于 H 的反射",即它是 V 的自同构,在 H 上为恒等映射,而将 z 映成 -z。由于 $z-\epsilon y\in H$,我们有

$$\sigma(x-\varepsilon y) = x - \varepsilon y, \quad \sigma(x+\varepsilon y) = -x - \varepsilon y,$$

于是 $\sigma(x) = -\epsilon y$, 从而自同构 $-\epsilon \sigma$ 便是 ϵ 的扩充。

如果 $\dim U > 1$,我们将 U 分解成形式 $U_1 \hat{\oplus} U_2$,其中 U_1 , $U_2 \neq 0$. 根据归纳假设,s 在 U_1 上的限制可以扩充成 V 的自同构 σ_1 . 将 s 改成 σ_1^{-1} os 之后,我们可以假定 s 在 U_1 上为恒等映射. 这时间态 s 将 U_2 映到 U_1 的正交补 V_1 之中. 根据归纳假设,s 在 U_2 上的限制可以扩充成 V_1 的自同构 σ_2 . 设 σ 为 V 之如下的自同构。它在 U_1 上为恒等映射,而在 V_1 上为 σ_2 ,则 σ 即有所需性质.

系 非退化二次模的两个同构的子空间 有 同 构 的 正 交 补.

证 两个子空间之间的同构可以扩充成该模的 自同 构, 然后将它限制在它们的正交补上即可.

1.6. 转述

设 $f(x) = \sum_{i=1}^{n} a_{ii} X_i^2 + 2 \sum_{i \neq j} a_{ij} X_i X_j$ 是 $k \perp n$ 个变量的二次型、当 i > j 时,我们令 $a_{ij} = a_{ji}$,于是 $A = (a_{ij})$ 是对称矩阵。 (k^n , f) 叫作与 f (或者与矩阵 A) 相结合的二次模。

定义 7 两个二次型 f 和 f' 称作是等价的,如果它们所对应的二次模同构。

这时我们记为 $f \sim f'$. 如果 A 和 A' 是 f 和 f' 的矩阵, 那 么这也相当于说存在一个可逆矩阵 X, 使得 A' = XA'X'(见 § 1.1).

令 $f(X_1, \dots, X_n)$ 和 $g(X_1, \dots, X_m)$ 是两个二次型。我 们以 f+g (或者在不混淆时写成 f+g)表示 (n+m) 个变量 的二次型

 $f(X_1, \dots, X_m) + g(X_{n+1}, \dots, X_{n+m})$

这个运算对应于直和运算(见§1.2 定义2). 类似地,我们把 f + (-g)写成 f - g(或简写成 f - g),这里有一些转述的例子,

定义 4' 两变量二次型 $f(X_1, X_2)$ 称作是双曲的二次 型,如果我们有

$$f \sim X_1 X_2 \sim X_1^2 - X_2^2$$

(这定味着对应的二次模 (k^2, f) 是双曲平面,见定义4.) 我们称二次型 $f(X_1, \dots, X_n)$ 表示元素 $\alpha \in k$, 如果存在 $x \in k^n$, $x \neq 0$, 使 f(x) = a. 特别地, f 表示 $0 \Leftrightarrow$ 对应的二次 模包有非零迷向元素.

命题 8′ 如果 f 非退化并且表示 0,则 $f \sim f_2 + g$,其中 f2是双曲的。而且 f 表示 k 中所有元素。

这是命题 8 及其系的转述、

系 1 设 $q=q(X_1, \dots, X_{n-1})$ 是非退化二次型而 $a \in k^n$. 则下列诸性质彼此等价:

- (i) q表示 a.
- (ii) $g \sim h + aZ^2$, 其中 $h \neq n-2$ 个变量的二次型.
- (iii) 二次型 $f = q aZ^2$ 表示 0.

证 显然(ii) \Rightarrow (i). 反之,如果 g 表示 α ,则对应于 g 的 二次模V包含元素x, 使 $x \cdot x = a$. 如果以H表示x的正交 补,我们有 $V = H \hat{\oplus} kx$, 于是 $g \sim h + aZ^2$, 其中 h 表示对于 H的一组基的二次型.

(ii)⇒(iii)也可立即得到、最后,如果型 $f=g-aZ^2$ 有非 平凡零点 (x_1, \dots, x_{n-1}, z) , 则或者 z=0, 这时 g 表示 0, 因此

也表示 a_i 或者 $z \neq 0$, 这时 $g(x_1/z, \dots, x_{n-1}/z) = a$. 于是(iii) \Rightarrow (i).

系2 设 g 和 h 是秩≥1 的两个非退化型,令 f = g + h.则下列诸性质彼此等价:

- (a) f 表示 0.
- (b) 存在 $a \in k^*$, 使 g 和 h 均表示 a.
- (e) 存在 a ∈ k*, 使 g → aZ² 和 h → aZ² 均表示 0.

证 由系 1 即得到等价关系(b) \leftrightarrow (c). 推理(b) \Rightarrow (a) 是显然的. 现在让我们证明(a) \Rightarrow (b): f 的非平凡零点可以写成形式(x, y), 使 g(x) = h(y). 如果元素 a = g(x) = h(y)不为 0, 显然(b) 成立. 如果 a = 0, 则型 h 和 g 必有一个表示 0. 例如设 g 表示 0, 则 g 可表示 h 中每个元素. 特别地, g 可以表示 h 所取的每个非零值.

定理1转述成二次型分解成平方和的经典定理:

定理 1' 设 f 为 n 变量二次型,则存在 a_1 , …, $a_n \in k$,使 $f \sim a_1 X_1^2 + \dots + a_n X_n^2$.

f 的秩是 $a_i \neq 0$ 的下标 i 的个数、f 的秩等于 $n \leftrightarrow f$ 的判别式 $a_1 a_2 \cdots a_n \neq 0$ (即 f 非退化)。

最后,Witt定理的系可转述成下面的"消去定理":

定理 4 设 f=g+h, f'=g'+h' 是两个非退化二次型。如果 $f\sim f'$ 并且 $g\sim g'$, 则 $h\sim h'$.

 \mathbf{x} 如果f非退化,则

$$f \sim g_1 \dotplus \cdots \dotplus g_m \dotplus h$$
,

其中 g_1 , …, g_m 是双曲的,而 h 不表示 0. 这个分解不计等价是唯一的。

证 存在性由命题 3′ 推出, 而唯一性由定理 4 推出.

[双曲因子的个数加可以刻划成由 f 定义的二次模的 极

1.7. F。上二次型

设 $p \neq 2$ 为素数, q = p' 为 p 之方幂, \mathbf{F}_q 为 q 元域(见第一章 § 1).

命题 4 秩 \geqslant 2 (\geqslant 3)的 \mathbf{F}_q 上二次型表示 $\mathbf{F}_q^*(\mathbf{F}_q)$ 中所有元素.

证 根据命题 3 的系 1,只需证明 3 变量的二次型表示 0,而这作为 Chevalley 定理的推论在第一章 § 2 中已经证明 过了

[让我们指明不用 Chevalley 定理怎样证明这个定理. 我们必需证明,如果 a, b, $c \in \mathbf{F}_q$,则方程

$$ax^2 + by^2 = c$$

有解. 设 $A = \{ax^2 | x \in \mathbf{F}_a\}$, $B = \{c - by^2 | y \in \mathbf{F}_a\}$. 易知 A 和 B 均有 (q+1)/2 个元素。 于是 $A \cap B \neq \emptyset$,从而给出(*)的一组解.

理在让我们注意 $\mathbf{F}_q^*/\mathbf{F}_q^{*2}$ 只有两个元素(第一章§3.1)、命 $a \in \mathbf{F}_q^*$ 是一个非平方元素、

命题 5 Fa上秩 n 的每个非退化二次型等价于:

 $X_1^2 + \cdots + X_{n-1}^2 + X_n^2$ 或者 $X_1^2 + \cdots + X_{n-1}^2 + aX_n^2$, 按照其判别式是否为平方元素而定.

证 n=1 时这是显然的. 如果 $n \ge 2$,由命题 4 知型 f 表示 1,因此它等价于 $X_1^2 + g$,其中 g 是 n-1 个变量的型,然后对 g 利用归纳假设即可、

系 \mathbf{F}_{0} 上两个非退化二次型等价的充要条件 是它们有同样的秩和同样的判别式。

(当然判别式看成是商群 F*/F*2 中元素、)

§ 2. Q_p 上的二次型

在本节中(§ 2.4 除外)p 是素数而 b 为 p-adio 域 Qp.

所有的二次模均是 k 上的非退化的, 对于二次型我们也作同样的规定。

2.1. 两个不变量

设 (V, Q) 是秩 n 的二次模,d(Q) 是它的判别式 (它 是 k^*/k^{*2} 中元素, 见 § 1.1). 如果 $e=(e_1, \dots, e_n)$ 是 V 的正交基并且令 $a_i=e_i\cdot e_i$, 便有

$$d(Q) = a_1 \cdots a_n \quad (\in k^*/k^{*2}).$$

(下面我们常常将 k* 中一元素和它 med k** 之同余类用同一字母表示。)

现在让我们回忆一下,如果 $a, b \in k^*$,我们在第三章 § 1.1 中定义了 Hilbert 符号 $(a, b) = \pm 1$. 令

$$\varepsilon(e) = \prod_{i < i} (a_i, a_i).$$

于是有 $s(e) = \pm 1$. 而且 s(e) 是 (V, Q) 的不变量:

定理5 数 s(e) 与正交基 e 的选取无关。

证 如果 n=1, 则 $\varepsilon(e)=1$. 如果 n=2, 则 $\varepsilon(e)=1$ \leftrightarrow 型 $Z^2-a_1X^2-a_2Y^2$ 表示 0, 这也相当于说 \leftrightarrow $a_1X^2+a_2Y^2$ 表示 1 (见命题 3' 的系 1). 但是后一条件意味着存在 $v\in V$ 使 Q(v)=1, 而这一点不依赖于 e 的选取. 当 n>3 时,我们对 n 用数学归纳法. 根据定理 2, 我们只需证明当 e 和 e' 毗连 时有 $\varepsilon(e)=\varepsilon(e')$. 由于 Hilbert 符号的对称性,如果置换 e_i 则不改变 $\varepsilon(e)$ 的值. 因此可以假设 $e'=(e_1, \dots, e_n)$ 使 e_1 如果令 $a'_i=e'_i\cdot e'_i$,则 $a'_1=a_1$. 于是可以将 $\varepsilon(e)$ 写成形式

$$\varepsilon(e) = (a_1, a_2 \cdots a_n) \prod_{2 < i < j} (a_i, a_j)$$

$$= (a_1, d(Q) a_1) \prod_{2 < i < j} (a_i, a_j),$$

这是因为

$$d(Q) = a_1 \cdots a_n$$

类似地,

$$s(e') = (a_i, d(Q) a_i) \prod_{2 \le i \le j} (a'_i, a'_j).$$

但是将归纳假设用于 ez 的正交补, 则有

$$\prod_{2 \le i \le j} (a_i, a_j) = \prod_{2 \le i \le j} (a'_i, a'_j),$$

由此即得所需结果.

从现在起我们把 s(e) 记成 s(Q).

转述 如果 f 是 n 变量二次型而

$$f \sim a_1 X_1^2 + \cdots + a_n X_n^2$$

则两个元素

$$d(f) = a_1 \cdots a_n (\in k^*/k^{*2}),$$

$$\varepsilon(f) = \prod_{i \in I} (a_i, a_i) (\in \{\pm 1\})$$

是 f 之等价类的不变量、

2.2. 用二次型表示 & 中元素

引理 a) \mathbf{F}_2 -向量空间 k^*/k^{*2} 中的元素个数为 2', 其中

$$r = \begin{cases} 2, & \text{如果 } p \neq 2, \\ 3, & \text{如果 } p = 2. \end{cases}$$

b) 如果 $a \in k^*/k^{*2}$ 而 $\varepsilon = \pm 1$, 令

$$H_a^e = \{x \in k^*/k^{*2} \mid (x, a) = e\}.$$

当 a=1 时, H_a^1 有 2^a 个元素而 $H_a^{-1}=\emptyset$. 当 $a\neq 1$ 时, H_a^a 有 2^{a-1} 个元素 $(s=\pm 1)$.

e) 设 a, $a' \in k^*/k^{*2}$ 而 ε , $\varepsilon' = \pm 1$. 假设 H_a^{ε} 和 $H_a^{\varepsilon'}$ 均非空、则 $H_a^{\varepsilon} \cap H_a^{\varepsilon'} = \emptyset \Leftrightarrow a = a'$ 并且 $\varepsilon = -s'$.

证 a) 在第二章 § 3.3 中业已证明. b) 情形 $a \approx 1$ 是显然的. 如果 $a \neq 1$, 同态 $b \mapsto (a, b)$ 将 k^*/k^{*2} 映到 {±1}之上(第三章 § 1.2, 定理 2). 因此其核 H; 是 k/k^{*2} 的超平面,从而有 2^{r-1} 个元素. 它的补 H_a^{-1} 也有 2^{r-1} 个元素 (这是平行于 H_a^r 的"仿射"超平面). 最后,如果 H_a^r 和 H_a^r 均非空且不交,则每个集合都必需有 2^{r-1} 个元素并且彼此互为 补集。 这就导致 $H_a^r = H_{a'}^r$,于是

$$(x, a) = (x, a')$$
 (对每个 $x \in k^*/k^{*2}$).

由于 Hilbert 符号是非退化的,于是 a=a' 并且 s=-s'. 反过来是显然的.

现在设f 为秩n的二次型、d=d(f)和 s=s(f) 为它的两个不变量、

- i) n=2 in $d=-1(\in k^*/k^{*2})$.
- ii) n=3 $\overline{m}(-1, -d)=\varepsilon$.
- iii) n=4; $d\neq 1$ 或者 d=1 而 $\varepsilon=(-1, -1)$.
- iv) $n \ge 5$.

(特别地,变量数≥5的二次型均表示0.)

在证明此定理之前,我们先指出它的一个推论:设

$$a \in k^*/k^{*2}$$
, $f_o = f - \alpha Z^2$.

我们知道(见§1.6), f_a 表示 $0 \Leftrightarrow f$ 表示 a. 另一方面, 容易验证

$$d(f_a) = -ad$$
, $\varepsilon(f_a) = (-a, d)s$

将定理 6 用于 f。并且考虑到上述二公式就得到:

系 令 $a \in k^*/k^{*2}$. 则 f 表示 a 的充要条件是

- i) n=1 \overline{m} a=d.
- ii) n-2 iii $(a, -d) = \varepsilon$.

iii)
$$n=3$$
; $a \neq -d$ 或者 $a=-d$ 并且 $(-1, -d)=8$.
iv) $n \geq 4$.

(注意在此及定理 6 的陈述中, a 和 d 看成是 k^*/k^{*2} 中元素, 从而 $a \neq -d$ 是指 a 不等于 -d 与某平方元素之积.)

定理 6 的证明、我们记 f 为 $f \sim a_1 X_1^2 + \cdots + a_n X_n^2$ 并且 分别考虑 n=2, 3, 4 和 $\geqslant 5$ 诸情形.

i) n=2 情形。

型 f 表示 $0 \Leftrightarrow -a_1/a_2$ 是平方元素,但是在 k^*/k^{*2} 中 $-a_1/a_2 = -a_1a_2 = -d$.

于是这意味着 d=-1.

ii) n=3情形.

型 f 表示 $0 \Leftrightarrow \mathbb{Z} - a_3 f \sim -a_3 a_1 X_1^2 - a_3 a_2 X_2^2 - X_3^2$ 表示 0. 由 Hilbert 符号的定义本身可知,后一个二次型表示

$$0 \Leftrightarrow (-a_3a_1, -a_5a_2) = 1.$$

将其展开, 我们发现

$$(-1, -1) (-1, a_1) (-1, a_2) (a_3, a_3) (a_4, a_2) (a_4, a_3) (a_2, a_3)$$

$$= 1.$$

但是 $(a_8, a_8) = (-1, a_8)$ (见第三章§ 1.1, 命题 2, 公式 iv)。 因此上述条件就可重新写成如下形式。

$$(-1, -1)(-1, a_1a_2a_3)(a_1, a_2)(a_1, a_3)(a_2, a_3)=1$$
。
这就是 $(-1, -d)s=1$,也就是 $(-1, -d)=s$ 。

iii) n=4情形。

根据命题 3' 的系 2, f 表示 $0 \leftrightarrow$ 存在元素 $x \in k''/k''^2$, 使它可由型 $a_1X_1^2 + a_2X_2^2$ 及 $-a_3X_3^2 - a_4X_4^2$ 表示。 根据上面 系的 ii). 这样的 x 可以刻划为

$$(x_1, -a_1a_2) = (a_1, a_2),$$

 $(x_1, -a_3a_4) = (-a_3, -a_4).$

设 A 为第一条件定义的 k^*/k^{*2} 之子集,B 是由第二条件定义的 k^*/k^{*2} 之子集,于是 f 不表示 $0 \Leftrightarrow A \cap B = \emptyset$. 现在 A 和 B 显然非空 (例如 $a_1 \in A$, $-a_3 \in B$) . 如本小节一开始所述引理的 $a_1 \in A$ 的 $a_2 \in A$ 的 $a_3 \in B$ 。

$$a_1a_2 = a_3a_4$$
 π_1 $(a_1, a_2) = -(-a_3, -a_4)$.

第一个条件意味着 d=1, 如果它成立,则

$$s = (a_1, a_2)(a_3, a_4)(a_3a_4, a_3a_4).$$

使用关系(x,x) = (-1,x)(第三章 § 1.1, 命题 2 的公式 iv)), 由此便给出

$$\varepsilon = (a_1, a_2) (a_3, a_4) (-1, a_3 a_4)$$

$$= (a_1, a_2) (-a_3, -a_4) (-1, -1).$$

于是第二条件可以写成 s=-(-1, -1). 由此即得结果.

只需讨论 n=5 情形. 利用上述引理和上述系的 ii) 部分我们看出, 秩 2 的型至少表示 k^*/k^{*2} 中 2^{n-1} 个元素, 由此得出这对于秩 ≥ 2 的型也同样正确. 因为 $2^{n-1} \geq 2$, 从而 f 至少还表示 k^*/k^{*2} 中与 d 不同的一个元素 a. 我们有

$$f \sim \alpha X^2 + g$$

这里g为秩4的型。g的判别式等于d/a,从而不是1。而由 iii)可知g表示0,从而这对于f同样正确,于是完成了定理6的证明。

- 注 1)设 f 是不表示 0 的二次型. 上而的结果表明,可以被 f 所表示的 h^*/h^{*2} 中之数当 n=1, 2, 3, 4 时分别为 1, 2^{**-1}, 2^{**}-1, 2^{*}.
- 2) 我们已经看到,任一 \mathbf{Q}_n 上 5 变量二次型均可表示 0. 与此相联系,让我们提一下 \mathbf{E} . Artin 的一个猜想: \mathbf{Q}_n 上的 $\geq d^2+1$ 个变量的 d 次齐次多项式必有非平凡零点. 当 d=3

时已经被肯定地加以解决(例如见 T. Springer, Koninkl. Nederl. Akad. van Wetenss., 1955, pp. 512~516). 在大约三十年里,未能解决一般情形. 一直到 1966 年, G. Terjanian证明了 Artin 猜想是不对的: **Q**₂ 上存在着 18 个变量的 4 次 齐次多项式,它没有非平凡零点。Terjanian 从多项式

$$n(X, Y, Z) = X^2YZ + Y^2ZX + Z^2XY$$

$$+X^{2}Y^{2}+Y^{2}Z^{2}+Z^{2}X^{2}-X^{4}-Y^{4}-Z^{4}$$

出发,该多项式有性质: 如果(x, y, z)是 $(\mathbf{Z}_2)^3$ 中本原向量,则 $n(x, y, z) = -1 \pmod{4}$. 令

$$f(X_1, \dots, X_2) = n(X_1, X_2, X_3)$$

$$-n(X_4, X_5, X_6) + n(X_7, X_8, X_9)$$
.

我们有: 如果 (x_1, \dots, x_9) 本原,则 $f(x_1, \dots, x_9) \neq 0 \pmod{4}$, 由此容易推出多项式

$$F(X_1, \dots, X_{18})$$

= $f(X_1, \dots, X_9) + 4f(X_{10}, \dots, X_{18})$

没有非平凡零点. (对于所有的 Q_0 均存在类似的例子, 但是 次数更高.)

尽管如此,我们知道 Artin 猜想"几乎"是对的:对每个固定的次数 d, Artin 猜想对于除了有限个之外的全部素数 p都是对的(Ax-Kochen, Amer. J. of Math., 1965). 但是甚至对于 d-4, 我们也还都不知道如何决定例外素数集合.

2.8. 分类

定理 7 k 上的两个二次型等价 ⇔ 它们有同样的 秩, 同样的判别式和不变量 s.

证 由定义即知两个等价的二次型有同样的不变量,反过来,我们对所考虑的两个型f和g的次数n进行归纳(n=0

的情形是显然的). 根据定理 6 的系, f 和 g 表示 k^*/k^{*2} 中同样元素. 因此可以求得 $a \in k^*$, 使它同时被 f 和 g 表示. 这使我们可以写成:

$$f \sim aZ^2 + f'$$
, $g \sim aZ^2 + g'$,

其中f'和g'是秩n-1的二次型。于是有

$$d(f') = ad(f) = ad(g) = d(g'),$$

$$\varepsilon(f') = \varepsilon(f)(a, d(f')) = \varepsilon(g)(a, d(g')) = \varepsilon(g'),$$

从而 f' 和 g' 有同样的不变量。 根据归纳假设我们有 $f' \sim g'$, 于是 $f \sim g$.

系 不计等价,只存在唯一的一个秩 4 的二次型不表示 0. 如果(a, b) = -1, 则这个型是 $z^2 - ax^2 - by^2 + abt^2$.

证 事实上,根据定理6,这样的二次型可以用

$$d(f) = 1$$
, $\varepsilon(f) = -(-1, -1)$

来刻划. 经简单计算可知 $z^2-ax^2-by^2+abt^2$ 有这些性质.

注 这个型是 Q_p 上唯一的 4 次体的标准范。这个体可以定义成以 $\{1, i, j, k\}$ 为基的"四元数"体, 其中

$$i^2 = a$$
, $j^2 = b$, $ij = k = -ji$,
 $(a, b) = -1$.

孤

命题 6 设 $n \ge 1$, $d \in k^*/k^{*2}$ 而 $\varepsilon = \pm 1$, 则存在秩 n 二次型 f 使 d(f) = d, $\varepsilon(f) = \varepsilon$ 的充要条件是 n = 1, $\varepsilon = 1$; 或者 n = 2, $d \ne -1$; 或者 $n \ge 3$.

证 n=1情形是显然的.如果n=2,则有 $f\sim aX^2+bY^2$,而且若 d(f)=-1,则 $\varepsilon(f)=(a,b)=(a,-ab)=1$. 因此我们不能同时有 d(f)=-1 和 $\varepsilon(f)=-1$. 反过来,如果 d=-1, $\varepsilon=1$,我们取 $f=X^2+Y^2$,如果 $d\neq -1$,则存在 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,如果 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,如果 $\varepsilon=1$,则存在 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,如果 $\varepsilon=1$,则存在 $\varepsilon=1$,我们取 $\varepsilon=1$,我们取 $\varepsilon=1$,如果 $\varepsilon=1$,则存在 $\varepsilon=1$,我们取

如果 n=3, 我们取 $a \in h^*/h^{*2}$, $a \neq -d$. 根据上面所看到

的,存在一个秩 2 的型 g, 使得 d(g) = ad, s(g) = s(a, -d). 于是型 $aZ^2 + g$ 即为所求。对于 $n \ge 4$ 的情形,取

$$f = g(X_1, X_2, X_3) + X_4^2 + \dots + X_n^2$$

便可化成 n=3 的情形, 其中 g 有所需要的不变量.

系 以 N 表示 \mathbf{Q}_n 上秩 n 二次型的类数, 则

$$N = \begin{cases} 4, & \text{如果 } n=1, \ p \neq 2; \\ 8, & \text{如果 } n=1, \ p=2; \\ 7, & \text{如果 } n=2, \ p \neq 2; \\ 15, & \text{如果 } n=2, \ p=2; \\ 8, & \text{如果 } n \geqslant 3, \ p \neq 2; \\ 16, & \text{如果 } n \geqslant 3, \ p=2. \end{cases}$$

证 事实上当 $p\neq 2$ 时 d(f) 可以取 4 个值, 当 p=2 时, d(f) 可以取 8 个值, 而 s(f) 可以取 2 个值.

2.4. 实数域情形

设f为实数域 R 上秩n二次型、我们知道 $f \sim X_1^2 + \cdots + X_r^2 - Y_1^2 - \cdots - Y_r^2$.

其中r和 s 是非负整数并且r+s=n. (r, s) 只依赖于f,叫作f的符号量. 如果r或 s=0,即如果f 不变符号我们称f为定二次型; 否则便称f 为不定二次型(这即是f 表示 0 的情形).

象情形 **Q**, 那样定义不变量 s(f). 由于 (-1, -1) = -1.

我们有

$$\varepsilon(f) = (-1)^{\frac{-(s-1)}{2}} = \begin{cases} 1, & \text{mult} \ s \equiv 0, \ 1 \pmod{4}, \\ -1, & \text{mult} \ s \equiv 2, \ 3 \pmod{4}. \end{cases}$$

而且

$$d(f) = (-1)^{\bullet} =$$

$$\begin{cases}
1, & \text{如果 s} \equiv 0 \pmod{2}, \\
-1, & \text{如果 s} \equiv 1 \pmod{2}.
\end{cases}$$

我们看到, d(f)和 $\varepsilon(f)$ 的知识由 s 的 $\operatorname{mod} 4$ 同余类所决定. 特别地, 如果 $n \leq 3$, 则 d(f)和 $\varepsilon(f)$ 决定了 f 的等价类.

还可以检查定理 6 的前三部分及其系对于 **R** 是 正 确 的 (事实上,它们的证明只使用了 Hilbert 符号的非退化性,而 这一点也可以用于 **R**). 显然第 iv)部分是不能推广的.

§3. Q上的二次型

下面所考虑的二次型的系数均属于 Q 并且是非退化的.

8.1. 型的不变量

象第三章 § 2 那样,我们以 V 表示所有素数与符号 ∞ 组成的集合、令 $\mathbf{Q}_{\infty} = \mathbf{B}_{\infty}$

设 $f \sim a_1 X_1^2 + \cdots + a_n X_n^2$ 是秩 n 二次型。 我们把它与如下一些不变量相联系:

- a) 判別式 $d(f) = a_1 \cdots a_n \in \mathbf{Q}^*/\mathbf{Q}^{*2}$.
- b) 设 $v \in V$, 单射 $\mathbf{Q} \to \mathbf{Q}_v$ 可使我们将 f 看成是 \mathbf{Q}_v 上的二次型(我们将把它记成 f_v). f_v 的 不变量 记成 $d_v(f)$ 和 $\varepsilon_v(f)$. 显然 $d_v(f)$ 是 d(f) 在自然映射 $\mathbf{Q}^*/\mathbf{Q}^{*2} \to \mathbf{Q}^*_v/\mathbf{Q}^{*2}$ 之下的象、我们有

$$\varepsilon_{\mathbf{v}}(f) = \prod_{i < j} (a_i, a_j)_{\mathbf{v}_i}$$

乘积公式(第三章 § 2.1. 定理 3) 给出关系

$$\prod_{v\in V} \varepsilon_v(f) = 1.$$

o) 实二次型f的符号量(r, s)是f的又一个不变量.

有时把不变量 $d_v(f)$, $\varepsilon_v(f)$ 和 (r,s) 叫作 f 的局部不变量组。

\$.2. 用型表示数

定理 8(Hasse-Minkowski) f 表示 0 的充要条件是对于每个 $v \in V$, 型 f_v 均表示 0.

(换句话说, f 有"整体"零点的充要条件是f处处有"局部"零点。)

证 必要性是显然的, 为了证明充分性,我们把 写成如下的形式。

$$f = a_1 X_1^2 + \cdots + a_n X_n^2, \quad a_i \in \mathbf{Q}^*$$

把f 改成 a_1f , 还可以假设 $a_1=1$. 我们分别考虑情形 n=2, 3, 4 和 $\geqslant 5$.

i) 情形 n=2.

我们有 $f=X_1^2-aX_2^2$. 由于 f_∞ 表示 0, 从而a>0. 如果将a写成

$$a = \prod_{\bullet} p^{v_{\sigma}(a)},$$

则 f_0 表示 0 这一事实说明 a 为 \mathbf{Q}_0 中平方元素, 于是 $v_0(a)$ 为 偶数. 由此推出 a 是 \mathbf{Q} 中平方元素, 从而 f 表示 0.

ii) 情形 n=3(Legendre)

我们有 $f = X_1^2 - aX_2^2 - bX_3^2$, 由于 a 和 b 均允许乘一个平方因子,我们可设 a, b 均是无平方因子的整数(即对每个素数 p, $v_p(a)$ 和 $v_p(b)$ 均是 0 或 1). 还可以假设 $|a| \le |b|$. 现在对整数 m = |a| + |b| 用数学归纳法. 如果 m = 2, 我们有 $f = X_1^2 \pm X_3^2 \pm X_3^2$.

因为 f_{∞} 必须表示 0, 情形 $X_1^2 + X_2^2 + X_3^2$ 被排除掉。而在其余情形下, f 均表示 0.

现在设 m>2, 即|b|≥2, 将 b 写成

$$b=\pm p_1\cdots p_k$$

其中 % 为两两不同的素数、设 % 为 % 中的某一个, 我们将证

明 a 是 mod p 平方元素,如果 $a = 0 \pmod{p}$, 这是显然的。否则 a 是 p-adio 单位。根据假设, 存在 $(x, y, z) \in (\mathbf{Q}_p)^s$, 使

$$z^2 - ax^2 - by^2 = 0$$
.

可以假设(x, y, z)本原(见第二章§2.1, 命题 6)。我们有 $z^2 - ax^2 \equiv 0 \pmod{p}$.

由此可见,如果 $x \equiv 0 \pmod p$,则 $z \equiv 0 \pmod p$,于是 $p^2 \mid by^2$ 。由于 $v_p(b) = 1$,从而 $y \equiv 0 \pmod p$,这就与(x, y, z)本原这一事实相矛盾。于是我们有 $x \not\equiv 0 \pmod p$,这表明 $a \not\equiv 2 \pmod p$ 平方元素。现在因为 $\mathbf{Z}/b\mathbf{Z} = \prod \mathbf{Z}/p_a\mathbf{Z}$,我们看到 $a \not\equiv 2 \pmod p$ 平方元素。因此存在整数 i 和 b',使

$$t^2 = a + bb'$$

我们还可以取 t 使 $|t| \le |b|/2$. 公式 $bb' = t^2 - a$ 表明 bb' 是 扩张 $k(\sqrt{a})/k$ 的范,其中 $k = \mathbf{Q}$ 或 \mathbf{Q}_n 由此我们推出(论据同第三章命题 1), f 在 k 中表示 0 的充要条件为

$$f' = X_1^2 - aX_2^2 - b'X_3^2$$

表示0. 特别地, 在每个 Q_0 中f'表示0. 但是我们有

$$|b'| = \left| \frac{t^2 - a}{b} \right| \le \frac{|b|}{4} + 1 < |b| \quad (B > 1).$$

记 $b'-b''u^2$, 其中 b'', u 为整数而 b'' 无平方因子。 从而 有 |b''| < |b|. 将归纳假设用于型 $f'' - X_1^2 - aX_2^2 - b''X_3^2$, 由于它等价于 f', 从而它在 \mathbf{Q} 中表示 0, 因此 f 在 \mathbf{Q} 中也表示 0.

iii) 情形 n=4.

记 $f = aX_1^2 + bX_2^2 - (oX_3^2 + dX_4^2)$. 令 $v \in V$. 由于 f_v 表示 0, 根据 § 1.6, 命题 3' 的系 2 可知存在 $x_v \in \mathbf{Q}_v^*$, 使 x_v 同时被 $aX_1^2 + bX_2^2$ 和 $cX_3^2 + dX_4^2$ 所表示. 由定理 6 系的 ii) 部分(它同样可以用于 $\mathbf{Q}_w = \mathbf{R}$), 这等价于说

$$(x_v, -ab)_v = (a, b)_v, (x_v, -cd)_v = (c, d)_v$$

(对于每个 $v \in V$)。

由于 $\prod_{v \in V} (a, b)_v = \prod_{v \in V} (c, d)_v = 1,$

我们可以应用第三章 § 2.2 的定理 4,由此可知存在 $x \in \mathbf{Q}^*$,使

 $(x, -ab)_v = (a, b)_v, \quad (x, -cd)_v = (c, d)_v$ (对每个 $v \in V$).

在每个 Q_0 中型 $aX_1^2+bX_2^2-xZ^2$ 表示 0,从而由上可知它在 Q 中也表示 0. 于是 x 在 Q 中可以被 $aX_1^2+bX_2^2$ 所表示,同样的推理可用于 $cX_3^2+dX_4^2$,由此即知 f 表示 0.

iv) 情形 n≥5.

对如归纳,将 f 记为

$$f = h - g$$
,

其中 $h = a_1 X_1^2 + a_2 X_2^2$, $g = -(a_3 X_3^2 + \dots + a_n X_n^2)$.

令 S 为 V 的子集, 由 ∞ , 2 以及

 $\{p \in V \mid$ 存在某个 $i \ge 3$, 使 $v_o(a_i) \ne 0\}$

所组成、这是有限集、令 $v \in S$ 、由于 f_v 表示 0,从而存在 $a_v \in \mathbf{Q}_v^*$,它在 \mathbf{Q}_v 中同时被h和g所表示、于是存在

$$x_i^v \in \mathbf{Q}_v \quad (1 \leq i \leq n),$$

使得 $h(x_1^v, x_2^v) = a_v = g(x_3^v, \dots, x_n^v)$.

但是 \mathbf{Q}_{i}^{*} 的平方元素形成开集(见第二章§3.3),应用逼近定理(第三章§2.2引理2),可知存在 \mathbf{z}_{i} , \mathbf{z}_{i} \in \mathbf{Q} , 使得令

$$a = h(x_1, x_2)$$
.

便有 $a/a_v \in \mathbf{Q}_v^{*2}$ (对于每个 $v \in S$). 现在考虑型 $f_1 = aZ^2 - g$. 如果 $v \in S$, g 在 \mathbf{Q}_v 中表示 a_v , 由于 $a/a_v \in \mathbf{Q}_v^{*2}$, 从而它也表示 a_v , 于是 f_1 在 \mathbf{Q}_v 中表示 0. 如果 $v \notin S$, g 之系数 $-a_3$, …, $-a_v$ 均是 v-adic 单位,因此 $d_v(g)$ 也是 v-adic 单位。而由于

 $v \neq 2$, 我们有 $\varepsilon_v(g) = 1$ (这也可以由第二章 § 2.2 的定理 1 系 2 以及 Chevalley 定理而推出)。在所有情形下, f_1 在 Q_v 中 均表示 0。由于 f_2 的秩为 n-1,利用归纳假设可知 f_1 在 Q_v 中表示 0,即 g 在 Q_v 中表示 g 由于 g 表示 g 。由于 g 表示 g 。由于 g 表示 g 。自于 g 。自计 g 。自计

系 1 设 $a \in \mathbf{Q}^*$,则 f 在 \mathbf{Q} 中表示 a 的充要条件是它在每个 \mathbf{Q}_a 中均表示 a.

证 将定理用于型 aZ*--f 即可.

系 2 (Meyer) 秩≥5 的二次型表示 0 的充 要 条 件 是 它 为不定二次型 (即它在 **R** 中表示 0).

证 因为由定理 6,这样的二次型在每个 \mathbf{Q}_{0} 中均表示 0.

系 8 令 n 为 f 的秩. 假设 n-3 (或者 n-4 而 d(f)-1), 如果除了至多一个之外 f 在所有 \mathbf{Q}_n 中均表示 0, 则 f 表示 0.

证 假设 n=3、按照定理 6, f 在 \mathbf{Q}_n 中表示 0 的充要条件是

$$(\bullet)_{\mathbf{v}} \qquad (-1, -d(f))_{\mathbf{v}} = s_{\mathbf{v}}(f).$$

但是两组 $\varepsilon_v(f)$ 和 $(-1, -d(f))_v$ 均满足第三章 § 2.1 的乘积公式。由此可知,如果(*)。对于除了至多一个之外的全部 v 均成立,那末(*)。对于全部 v 均成立。由定理 8 即知 f 表示 0.

当 n=4 并且 d(f)=1 时可以同样推理,只不过是将等式(*)。改成 $(-1, -1)_v=\varepsilon_v(f)$ 罢了。

注 1) 假设 n=2, 而 f 在除了有限个之外的全部 Q_n 中均表示 0. 利用算术级数中的素数定理(第四章 § 4.3) 可以证明 f 表示 0.

2) 定理 8 不能推广到次数≥3 的齐次多 项 式 去。 例如 Selmer 证明了, 方程

$3X^3+4Y^3+5Z^8=0$

在每个 Q_0 中均有非平凡解,但是在Q中则不然.

8.8. 分类

定理 9 设 f 和 f' 是 Q 上的两个二次 型。则 f 和 f' 在 Q 上等价的充要条件是它们在每个 Q_0 上等价。

证 必要性显然,为证充分性,我们对 f 和 f 的秩 n 归纳,如果 n=0,则没有什么可证的。否则的话,存在 $a \in \mathbf{Q}^*$ 可被 f 所表示,从而也可被 f' 所表示(定理 8 的系 1)。因此我们有 $f \sim aZ^2 + g$, $f' \sim aZ^2 + g'$ 。根据 § 1.6 的定理 4,我们对所有的 $v \in V$,在 \mathbf{Q}_v 上均有 $g \sim g'$ 。由归纳 假设 可知在 \mathbf{Q}_v 上均有 $f \sim g'$,从而 $f \sim f'$ 。

系 设(r, s)和(r', s')是f和f'的符号量.则f和f'等价的充要条件是:

$$d(f) = d(f'), (r, s) = (r', s')$$

并且对每个 $v \in V$ 均有 $\varepsilon_v(f) = \varepsilon_v(f')$

证 事实上,这些条件意味着f和f'在每个 Q_o 上均等价。

注 不变量组 d=d(f), $s_v=s_v(f)$ 和(r,s)不是随意的, 它们要满足如下一些关系:

- (1) 对几乎所有的 $v \in V$, $s_v = 1$, 并且 $\prod_{v \in V} s_v = 1$.
- (2) 当 n=1 或者 n=2 而 d 在 $\mathbf{Q}_v^*/\mathbf{Q}_v^{*2}$ 中之象 $d_v=-1$ 时, 有 $\varepsilon_v=1$.
 - (3) $r, s \ge 0$ 而且 $r+s=n_*$
 - (4) $d_{\infty} = (-1)^{s}$
 - (5) $\varepsilon_{\infty} = (-1)^{\frac{8(8-1)}{2}}$

反之:

命题7 设 d, $(s_v)_{v \in V}$ 和 (r, s)满足上述关系 $(1) \sim (5)$, 则存在 Q 上秩 n 二次型具有不变量组 d, $(s_v)_{v \in V}$ 和 (r, s).

证 n=1时显然。

假设 n=2. 令 $v \in V$. 由 Hilbert 符号的非退化性以及条件(2),可证存在 $x_v \in \mathbf{Q}_v^*$ 使(x_v , -d) $_v=s_v$. 由此及条件(1)即知存在 $x \in \mathbf{Q}^*$, 使对每个 $v \in V$ 均有(x, -d) $_v=s_v$ (第三章§ 2.2 定理 4). 型 xX^2+xdY^2 即为所求.

假设 n=3. 令

$$S = \{v \in V \mid (-d, -1)_v = -\varepsilon_v\}.$$

这是有限集。如果 $v \in S$, 在 $\mathbf{Q}_{v}^{*}/\mathbf{Q}_{v}^{*2}$ 中取一个元素 c_{v} 不等于一d 在此群中之象一 d_{v} . 利用退近定理(第三章§2.2引理2), 我们看到存在 $c \in \mathbf{Q}_{v}^{*}$, 使对于每个 $v \in S$, c 在 $\mathbf{Q}_{v}^{*}/\mathbf{Q}_{v}^{*2}$ 中之象是 c_{v} . 由上面所证即知存在秩 2 的型 g 使

$$d(g) = cd$$
, $\varepsilon_v(g) = (c, -1)_v \varepsilon_v$ (对每个 $v \in V$).

型 $f=cZ^2+g$ 即为所求. [注意若 $n\leq 3$, 我们不需要考虑型的符号量, 因为条件(3), (4), (5)可推得它是 d_n 和 e_n 的函数.]

当 $n \ge 4$ 时我们对 n 归纳. 先设 $r \ge 1$,利用归纳假设我们得到秩 n-1 的二次型 g,它有不变量组 d, $(s_v)_{v \in V}$ 和 (r-1,s),型 $X^2 + g$ 即为所求. 当 r=0 时,我们使用不变量组为 -d, $s_v(-1, -d)_v$ 和 (0, n-1) 的一个秩 n-1 二次型 h,型 $-X^2 + h$ 即为所求.

附录 三个平方数的和

设n和p为正整数、我们称n是p个平方数的和,如果n在环**Z**上可用二次型 $X_1^2+\cdots+X_n^2$ 表示,即如果存在整数m, \cdots , n, 使

$$n = n_1^2 + \cdots + n_n^2$$

定理(Gauss) 一个正整数是三个平方数的和的充要条件是它不能表示成 $4^{o}(8b-1)$,其中 $a,b\in \mathbf{Z}$.

(例如若 4n,则 n 是三个平方数的和 $\leftrightarrow n = 1$, 2, 3, 5, 6(mod 8).) 证 可设 $n \neq 0$. 条件 "n 有形式 $4^{\circ}(8b-1)$ "等价于说一n 是 \mathbf{Q}_{2}° 中 平方元素(第二章 § 3.3 定理 4). 但是我们有

引理 A 设 $a \in \mathbf{Q}^*$,则 a 在 \mathbf{Q} 中可以表示成 $f = X_1^2 + X_2^2 + X_3^2$ 的充要条件为 a > 0, 并且 -a 不是 \mathbf{Q}_2 中平方元素.

证 根据定理 8 的系 1,我们必须表达出在 $\mathbf R$ 和所有 $\mathbf Q$,中 f 都可以表示 a 这一事实. $\mathbf R$ 的情形给出条件 a>0. 另一方面,局部不变量 $d_o(f)$ 和 $s_o(f)$ 等于 1. 如果 $p\neq 2$,我们有

$$(-1, -d_p(f))_p = (-1, -1)_p = 1 = s_p(f)_e$$

因此由定理 6 的系可知在 \mathbf{Q}_p 中 f 可表示 a 如果 p=2 ,我们有

$$(-1, -d_2(f))_2 = -1 \neq \varepsilon_2(f)$$

由上述同一个系可知f在 \mathbf{Q}_2 中表示 $a \leftrightarrow$ 在 $\mathbf{Q}_2^*/\mathbf{Q}_2^{*2}$ 中 $a \neq -1 \leftrightarrow -a$ 不 是 \mathbf{Q}_2 中平方元素.

现在我们必须从 Q 中表示过渡到 Z 中表示。这使用下述引理:

引理 (Davenport-Cassels) 设 $f(X) = \sum_{i,j=1}^{p} a_{ij} X_i X_j$ 是正定二次型, (a_{ij}) 为整系数对称矩阵. 我们还假设:

(H) 对于每个
$$x=(x_1, \dots, x_p) \in \mathbf{Q}^p$$
,均有 $y \in \mathbf{Z}^p$,使
$$f(x-y) < 1,$$

如果f在Q中可以表示 $n \in \mathbb{Z}$,那末f在 \mathbb{Z} 中也可以表示n

证 如果 $x=(x_1, \dots, x_p)$ 和 $y=(y_1, \dots, y_p)$ 为 \mathbf{Q}^p 中两个元素,以 $x\cdot y$ 表示内积 $\sum a_{ij}x_iy_j$,于是 $x\cdot x=f(x)$.

设f在**Q**中可表示整数n. 则存在整数t>0, 使 $t^2n=x\cdot x$, 其中 $x\in \mathbf{Z}^p$. 取这种t和x, 使 t 达到极小值. 我们必需证明t=1.

由假设条件(H),可知存在 $y \in \mathbf{Z}^{p}$,使

$$\frac{x}{t} = y + z, \qquad z \cdot z < 1.$$

如果 $z \cdot z = 0$,则 z = 0,而 $\frac{x}{t}$ 有整系数。由于 t 的极小性,可知 t = 1。

现在假设 8.8 产0, 我们令

$$a = y \cdot y - n$$
, $b = 2(nt - x \cdot y)$, $t' = at + b$, $x' = ax + by$.

则 $a, b, t' \in \mathbb{Z}$, 并且

$$x' \cdot x' = a^2 x \cdot x + 2abx \cdot y + b^2 y \cdot y = a^2 t^2 n + ab(2nt - b) + b^2 (n + a)$$
$$= n(a^2 t^2 + 2abt + b^2) = t'^2 n.$$

租所

$$\begin{aligned} tt' &= at^2 + bt = t^2y \cdot y - nt^2 + 2nt^2 - 2tx \cdot y \\ &= t^2y \cdot y - 2tx \cdot y + x \cdot x = (ty - x) \cdot (ty - x) = t^2z \cdot z, \end{aligned}$$

于是 $t'=tz\cdot s$ 。由于 $0<z\cdot z<1$,我们有0<t'<t。这就与t 的极小性相矛盾,从而证明了引理。

为了证明定理,现在只需检查型 $f=X_1^2+X_2^2+X_3^2$ 满足引理条件 (H). 但这是显然的: 如果 $(x_1, x_2, x_3) \in \mathbf{Q}^3$,我们取 $(y_1, y_2, y_3) \in \mathbf{Z}^3$,使 $|x_i-y_i| \le 1/2(1 \le i \le 3)$,于是有 $\sum (x_i-y_i)^2 \le 3/4 < 1$.

系 1(Lagrange) 每个正整数都是四个平方的和.

证 设n>0为整数,记 $n=4^n$,其中4m,如果m=1,2,3,5, $6 \pmod 8$,则m是三个平方的和,而n 亦然.否则便有 $m=-1 \pmod 8$,于是m-1 便是三个平方的和,这时m便是四个平方的和,而n 亦然.

系 2(Gauss) 每个正整数都是三个三角形数之和。

 $\left($ 所谓"三角形数"即是指形为 $\frac{m(m+1)}{2}$ 的数,其中 $m \in \mathbb{Z}$. $\right)$

证 设n为正整数.将定理用于8n+3,可知存在整数 x_1, x_2, x_3 ,使

$$x_1^2 + x_2^2 + x_3^2 = 8n + 3$$
.

于是有

$$x_1^2 + x_2^2 + x_3^2 \equiv 3 \pmod{8}$$

但是 $\mathbf{Z}/8\mathbf{Z}$ 中的平方元素只有 $\mathbf{0}$, $\mathbf{1}$ 和 $\mathbf{4}$, 从而如果 $\mathbf{Z}/8\mathbf{Z}$ 中三个平 方元素之和等于 $\mathbf{3}$, 则每项必然都等于 $\mathbf{1}$. 这就表明 \mathbf{a} , 均是奇数, 从而可写成 $\mathbf{2m}_1+\mathbf{1}$, 其中 \mathbf{m} , 为整数. 我们有

$$\sum_{i=1}^{3} \frac{m_i(m_i+1)}{2} = \frac{1}{8} \left(\sum_{i=1}^{3} (2m_i+1)^2 - 3 \right) = \frac{1}{8} (8n+3-3) = n_i$$

第五章 判别式为 ±1 的整二次型

§1. 预备知识

1.1. 定义

设 $n \ge 0$ 为整数, 我们对下面的范畴 S_n 感兴趣:

 S_n 的对象 E 是秩 n 的自由交换群 (即同构于 \mathbb{Z}^n), 其上有双线性型 $E \times E \rightarrow \mathbb{Z}$, 表示成 $(x, y) \mapsto x \cdot y$, 使得

(i) 由型 x·y 定义的 E 到 Hom (E, Z) 中的同态是同构.

易知这条件等价于下面的条件(见 Bourbaki, 代数, 第九章, § 2, 命题 3):

(ii) 如果 (e_i) 是 E的一组基而 $a_{ij} = e_i \cdot e_j$, 则矩阵 $A = (a_{ij})$ 的行列式等于 ± 1 .

两个对象 $E, E' \in S$ 。的同构用显然的方式加以定义,这时记成 $E \simeq E'$. 为方便起见还引入 $S = \bigcup_{n=1}^{\infty} S_n$.

如果 $E \in S_n$, 函数 $x \mapsto x \cdot x$ 使 E 成为 Z 上的二次模(见 第四章定义 1, § 1.1). 如果 (e_i) 是 E 的一组基而 $x = \sum x_i e_i$, 则二次型 $f(x) = x \cdot x$ 由公式

$$f(x) = \sum_{i,j} a_{ij} x_i x_j = \sum_{i} a_{ii} x_i^2 + 2 \sum_{i < j} a_{ij} x_i x_j, \quad a_{ij} = e_i \cdot e_j$$

给出. 因此该式中非对角项的系数是偶数. f 的判别式(即 $\det(a_{ij})$)等于 ± 1 . 改变基 (e_i) 意味着矩阵 $A = (a_{ij})$ 代之以 $^{\dagger}BAB$, 其中 $B \in GL(n, \mathbf{Z})$. 从型f 的观点,这意味着将变量 (a_i) 作矩阵 B 的线性代换. 如此得到的型称为与型f 等价.

(注意这是在整数环 Z 上的等价,它比前章中所研究的在 Q 上的等价要精细.)

1.2. S上的运算

设 $E, E' \in S$. 以 $E \oplus E'$ 表示 $E \ni E'$ 的直和, 其双线性型是 $E \ni E'$ 上双线性型的直和. 由定义可知(见 Bourbaki, 代数, 第九章 § 1, n° 3),

 $(x+x')\cdot(y+y')=x\cdot y+x'\cdot y'$ $(x,y\in E,x',y'\in E')$. 从"二次型"的观点,这个运算对应于第四章中记成 的正交 直和.

我们还可以定义张量积 $E\otimes E'$ 与外积 \wedge "E(见 Bourbaki,代数,第九章§1,n°9). 但是我们不需要这些概念.

1.8. 不变量

- 1.3.1. 如果 $E \in S_n$, 整数 n 叫作 E 的秩, 记成 r(E).
- 1.3.2. 设 $E \in S$, 而令 $V = E \otimes \mathbf{R}$ 是系數从 \mathbf{Z} 扩充为 \mathbf{R} 而得到的 \mathbf{R} —向量空间.则 V 的二次型可以定义符号量 (r, s) (第四章 § 2.4). 整数

$$\tau(E) = r - s$$

叫作 E 的符号差。我们有

 $-r(E) \leq \tau(E) \leq r(E)$, $r(E) \equiv \tau(E) \pmod{2}$. 注意如果 $\tau(E) = \pm r(E)$, 即如果 $x \cdot x$ 不变符号,则 E 叫作是定的, 否则 E 叫作是不定的.

1.3.8. E 对于一组基 (ϵ_i) 的判别式不依赖于基的选择。事实上,基(ϵ_i)的改变是将判别式乘以 $\det({}^t XX) = \det(X)^2$,其中 X 是 Z 上可逆矩阵。而 X 的行列式等于 ± 1 ,从而其平方等于 1.

E 的判别式记成 d(E), 我们有 $d(E) = \pm 1$. 如果 $V = E \otimes \mathbf{R}$

的符号量为(r,s),则d(E)的符号是(-1)*.由于 $d(E)=\pm 1$,从而得到公式:

$$d(E) = (-1)^{\frac{r(B)-\tau(E)}{2}}.$$

1.3.4. 设 $E \in S$. 我们称 E 是偶类的(或叫作是第 II 类的),是指与 E 所结合的二次型只取偶数值. 如果以 A 表示由 E 的一组基所定义的矩阵,这也可以说成. A 的对角元素均是偶数.

如果 E 不是偶类的, 便称 E 是奇类的(或第 I 类的).

1.3.5. 设 $E \in S$ 而令 $\overline{E} = E/2E$ 为 E 的 mod 2 简化. 这 是域 $\mathbf{F}_2 = \mathbf{Z}/2\mathbf{Z}$ 上的 r(E) 维向量空间、转到商之后,型 $x \cdot y$ 在 \overline{E} 上定义了型 $\overline{x} \cdot \overline{y}$,它是对称型并且判别式为 $\pm 1 = 1$ 。它 所结合的二次型 $\overline{x} \cdot \overline{x}$ 是加性的.

$$(\bar{x} + \bar{y}) \cdot (\bar{x} + \bar{y}) = \bar{x} \cdot \bar{x} + \bar{y} \cdot \bar{y} + 2\bar{x} \cdot \bar{y} = \bar{x} \cdot \bar{x} + \bar{y} \cdot \bar{y}.$$

因此是 \overline{z} 的对偶中的元素。但是双线性型 $\overline{z} \cdot \overline{y}$ 非退化,它定义了 \overline{E} 到其对偶之上的同构。由此我们看出,存在一个正则元素 $\overline{u} \in \overline{E}$,使得

$$\bar{u} \cdot \bar{x} = \bar{x} \cdot \bar{x}$$
 (对一切 $\bar{x} \in \bar{E}$).

将 \bar{u} 提升到E之后,得到 $\operatorname{mod} 2E$ 唯一的元素 $u \in E$,使得 $u \cdot x \equiv x \cdot x \pmod{2}$ (对一切 $x \in E$)。

考虑整数 u·u. 如果 u 改成 u+2x, 则 u·u 改成

$$(u+2x)\cdot(u+2x)=u\cdot u+4(u\cdot x+x\cdot x)\equiv u\cdot u\pmod{8}.$$

于是 $u \cdot u$ 在 $\mathbb{Z}/8\mathbb{Z}$ 中的象是 E 的 不 变量。 我 们 将 它 记 成 $\sigma(E)$. 如果 E 为第 Π 类的,则型 $\overline{x} \cdot \overline{x}$ 为零 (换句话说, $w \cdot y$ 是交错型), 我们可以取 u=0,从而 $\sigma(E)=0$.

1.3.6. 设 p 为素数,令 $V_p = E \otimes \mathbf{Q}_p$ 是从 E 经过系数由 \mathbf{Z} 扩充到 \mathbf{Q}_p 之后而得到的 \mathbf{Q}_p 一向量 空间。 那 末 在 第 四 章 $\{2.1$ 中定义的 V_p 的不变量 $\varepsilon(V_p) = \pm 1$ 也是 E 的 不 变量。 我们将它记为 $\varepsilon_p(E)$ 。 可以证明:

$$\varepsilon_p(E) = 1 \quad (p \neq 2),$$

$$\varepsilon_2(E) = (-1)^j,$$

其中

$$j = \frac{1}{4}(d(E) + r(E) - \sigma(E) - 1)$$
.

把 $N \otimes \mathbf{Z}_p$ 分解成一些秩 $1 (p \neq 2 \text{ 时})$ 或秩为 1 和 $2 (\cong p = 2 \text{ 时})$ 的 \mathbf{Z}_p 一模的正交直和,就可以证出上而两个公式。因为我们不使用这两个公式,把其证明细节留 给 读者(还 可见 \mathbf{J} . Cassels, Comm. Math. Helv., $\mathbf{37}$, $\mathbf{1962}$, pp. $\mathbf{61} \sim \mathbf{64}$).

1.3.7. 令 E_1 , $E_2 \in S$ 前 $E = E_1 \oplus E_2$. 则 E 是第 II 类的 的 $\Leftrightarrow E_1$ 和 E_2 都是第 II 类的。而且有

$$r(E) = r(E_1) + r(E_2), \quad r(E) = r(E_1) + r(E_2),$$

 $\sigma(E) = \sigma(E_1) + \sigma(E_2), \quad d(E) = d(E_1) \cdot d(E_2),$

1.4. 一些例子

1.4.1. 我们以 I_+ 和 I_- 分别表示 Z_- 模 Z 连 同 双 线 性 型 xy 和 -xy. 其对应的二次型分别为 $+x^2$ 和 $-x^3$.

如果 8 和 t 是两个正整数,我们以 $sI_+ \oplus tI_-$ 表示 8 个 I_+ 与 t 个 I_- 的直和,对应的二次型为 $\sum_{i=1}^t x_i^2 - \sum_{j=1}^t y_j^2$,这个模的不变量为

r=s+t, $\tau=s-t$, $d=(-1)^t$, $\sigma=s-t \pmod 8$. 除了平凡情形(s,t)=(0,0)之外,模 $sI_+\oplus tI_-$ 是第 I 类的.

1.4.2. 我们以U 表示由矩阵 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 定义的 S_2 中元素,

其结合的二次型为 $2x_1x_2$, U 是第 II 类的,并且有

$$r(U) = 2$$
, $\tau(U) = 0$, $d(U) = -1$, $\sigma(U) = 0$.

1.4.3. 设 b 为正整数,令 n=4k,令 V 为具有标准双线性型 Σxy ,的向量空间 \mathbf{Q}^* ,该双线性型对应于 单位 阵. 令 $E_0=\mathbf{Z}^*$ 是整坐标点所形成的 V 之子群,赋以由 V 所诱导的双线性型,则 E_0 是 S_n 中元素,它同构于 nI_+ . 设 E_1 为 E_0 之子模,由满足 $x \cdot x \equiv 0 \pmod{2}$ (即 $\sum x_i \equiv 0 \pmod{2}$)的全部元素 x 所构成,我们有 $(E_0:E_1)=2$. 令 x 是由 x 和

$$e = \left(\frac{1}{2}, \dots, \frac{1}{2}\right)$$

所生成的 V 之子模。则 $2e \in E_1$ (由子 n=0 (mod 4)),而 $e \notin E_1$,于是 $(E:E_1)=2$ 。对于元素 $x=(x_i) \in V$,使 $x \in E$ 的 充要条件为

$$2x_i \in \mathbf{Z}, \quad x_i - x_j \in \mathbf{Z}, \quad \sum_{i=1}^n x_i \in 2\mathbf{Z},$$

$$x \cdot e = \frac{1}{2} \sum x_i \in \mathbf{Z}.$$

于是有

由于 $e \cdot e = k$, 这表明型 $x \cdot y$ 在 E 上取整值。此外,由于 $(E_0 : E_1) = (E : E_1)$,

从而 E 的判别式等于 E_0 的判别式,即为 +1. 因此二次模 E 是 $S_n = S_4$,中元素,我们将它记为 Γ_n . 如果 k 为偶数(即 $n \equiv 0 \pmod 8$),则 $e \cdot e = k$ 为偶数,这导致对于每个 $x \in E$, $x \cdot x$ 均为偶数。因此当 $n \equiv 0 \pmod 8$)时, Γ_n 是第 \coprod 类的。我们有

$$r(\Gamma_{8m}) = 8m$$
, $\tau(\Gamma_{8m}) = 8m$, $\sigma(\Gamma_{8m}) = 0$, $d(\Gamma_{8m}) = 1$.

 Γ_8 的情形特别有趣。 共有 240 个元 素⁽⁴⁾ $x \in \Gamma_8$ 使 $x \cdot x = 2$. 如果(α) 表示 \mathbf{Q}^8 的标准基,则这 240 个向量为

[[]注] 更一般地,我们在第七章 \$6.5 中将要证明,如果 $N \ge 1$ 为整数,则 $\{\alpha \in \Gamma_8 | \alpha \cdot \alpha = 2N \}$ 中元数等于 N 之因子的立方和的 240 倍。

$$\pm e_i \pm e_k \quad (i \neq k)$$

$$\frac{1}{2} \sum_{i=1}^{8} s_i e_i \quad \left(s_i = \pm 1, \prod_{i=1}^{8} s_i = 1 \right).$$

和

[这些向量之间的内积均是整数. 在李群理论中它们形成所谓"E₈型的根系",见 Bourbaki,李群与李代数,第六章 § 4, n°10.]

可以把 Γ_8 的基取成

$$\frac{1}{2}(e_1+e_8)-\frac{1}{2}(e_2+\cdots+e_7), \quad e_1+e_2$$

和

$$e_i - e_{i-1} \quad (2 \leqslant i \leqslant 7),$$

对应的矩阵为

$$\begin{bmatrix} 2 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 2 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 2 \end{bmatrix}$$

对于 $m \ge 2$, $\{x \in \Gamma_{8m} | x \cdot x = 2\} = \{\pm e_i \pm e_k | i \ne k\}$. 注意它们不生成 Γ_{8m} , 这与 m = 1 的情形不同。 特别地, $\Gamma_8 \oplus \Gamma_8$ 不同构于 Γ_{18} .

1.5. 群 K(S)

设 $E, E' \in S$. 我们称 E 和 E' 是稳(stably) 同构的,是指存在 $F \in S$,使 $E \oplus F \simeq E' \oplus F$,这是等价关系。 我们以 $K_+(S)$ 表示 S 对这一关系之商。 如果 $E \in S$,我们以 (E) 表

示 E 在 $K_+(S)$ 中的类。运算 ① 诱导出 $K_+(S)$ 上的运算 +,这个运算满足交换律和结合律,并且零元素是 模 $0 \in S$ 的 类 0. 于是有

$$(E \oplus E') = (E) + (E').$$

此外,如果 x, y, $z \in K_+(S)$, 使 x+z=y+z, 很容易证明 x=y. 这一点可使我们从半群 $K_+(S)$ 定义出群 K(S) (恰好象从正整数集合 \mathbf{Z}_+ 定义出 \mathbf{Z} 那样)。根据定义,K(S)中元素是元素对 (x,y),其中 x, $y \in K_+(S)$,两个元素对 (x,y)和 (x',y')等同 $\Leftrightarrow x+y'=y+x'$. K(S)中的运算定义为

$$(x, y) + (x', y') = (x+x', y+y')$$

这就把 K(S) 作成交换群,其零元素是 (0,0)。 利用映射 $x\mapsto(x,0)$,我们把 $K_+(S)$ 等同于 K(S)的子集。 K(S)中每 个元素是 $K_+(S)$ 中两个元素之差,从而可以写成形式 (E) — (F),其中 E, $F\in S$ 。 于是,在 K(S)中

$$(E) - (F) = (E') - (F')$$

的充要条件是存在 $G \in S$, 使得 $E \oplus F' \oplus G \sim E' \oplus F \oplus G$, 即相当于 $E \oplus F'$ 和 $E' \oplus F$ 是稳同构。

K(S)的万有性质。设 A 是交换群而令 $f: S \rightarrow A$ 为 函数,使得 $E \simeq E_1 \oplus E_2$ 时便有 $f(E) = f(E_1) + f(E_2)$ 。这时我们称 f 是加性的。如果 $X = (E) - (F) \in K(S)$,我们令

$$f(X) = f(E) - f(F)$$
.

这不依赖于所选取的 X 的分解式。显然如此定义的函数 f: $K(S) \rightarrow A$ 是一个同态。反过来,给了每个同态 f: $K(S) \rightarrow A$,可以与 $S \rightarrow K(S)$ 合成为 S 上一个加性函数。 我们称 K(S) 是 S 对于运算 ① 的 Grothendieck 群,以表达 K(S) 的上述 万有性质。

特别地,§ 1.3 中的不变量 r, τ , d 和 σ 定义出同态:

$$\tau: K(S) \rightarrow \mathbb{Z}, \quad \tau: K(S) \rightarrow \mathbb{Z},$$

 $d: K(S) \rightarrow \{\pm 1\}, \quad \sigma: K(S) \rightarrow \mathbb{Z}/8\mathbb{Z}.$

我们仍有 $\tau \equiv r \pmod{2}$ 和 $d = (-1)^{\frac{\tau - \tau}{2}}$.

§ 2. 结果陈述

2.1. 群 K(S) 的确定

定理 1 群 K(S) 是以 (I_+) 和 (I_-) 为基的自由 Abel 群。 (证明将在§ 3.4 中给出。)

换句话说,每个 $f \in K(S)$ 均可唯一地写成

$$f = s \cdot (I_+) + t \cdot (I_-),$$

其中 s, $t \in \mathbb{Z}$. 于是有 r(f) = s + t, $\tau(f) = s - t$, 这表明 s 和 t 完全由 r 和 τ 确定、由此即得

系 1 (r, τ) 定义了从 K(S)到 $\mathbf{Z} \times \mathbf{Z}$ 的子群 $\{(a, b) \in \mathbf{Z} \times \mathbf{Z} | a \equiv b \pmod{2}\}$

之上的同构.

系 2 S 中两个元素 E 和 E' 稳同构的充要条件 是 它 们有同样的秩和同样的符号差

[注意由此不能推出 $E \simeq E'$,例如

$$U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

在 K(S) 中与

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = I_{+} \oplus I_{-}$$

定义出同样的元素,但是U和 $I_+\oplus I_-$ 有不同的奇偶类型.] 定理2 对于每个 $E \in S$ 我们有 $\sigma(E) = \tau(E) \pmod{8}$.

证 事实上, τ 的 mod 8 简化以及 σ 均是从 K(S) 到 Z/8Z 中的同态,它们在 K(S)的生成元 I_+ 和 I_- 上相等,从

而它们一致.

系 1 如果 E 是第 Π 类的,则 $\tau(E) \equiv 0 \pmod{8}$.

这是因为 $\sigma(E)=0$. (注意这导致 $r(E)\equiv 0 \pmod 2$) 和 $d(E)=(-1)^{r(E)/2}$.)

系2 如果 *E* 是定的而且是第 **I** 类的,则

$$r(E) \equiv 0 \pmod{8}$$
.

证 事实上,如果 E 是定的,我们有 $\tau(E) = \pm r(E)$.

注 1) 反过来,我们在§1.4中已看到,对于每个

$$n \equiv 0 \pmod{8}$$
,

存在着 $E \in S_n$, 使 E 是正定的并且是第 II 类的.

2) 由乘积公式 $\prod s_v(E) = 1$ (见第四章§3.1)和§1.3.6 中所给的 $s_o(E)$ 值(没有证明), 也可以推出同余式

$$\sigma(E) \equiv \tau(E) \pmod{8}$$
.

2.2. 结构定理(不定情形)

设 $E \in S$. 我们称 E 表示零,如果存在 $x \in E$, $x \neq 0$, 使 $x \cdot x = 0$. 这等价于说,在第四章 § 1.6 的意义下,其对应的二次型 $\mathbf{Q}(x)$ 在 \mathbf{Q} 上表示 $\mathbf{0}$. 基于齐次性质,可以从一有理零点得到一个整零点.

定理 8 如果 $E \in S$ 是不定的,则 E 表示 \mathbb{S}

(证明将在§3.1中给出.)

定理 4 如果 $E \in S$ 是不定的并且是第 I 类的,则 E 同构于 $sI_+ \oplus tI_-$,其中 s, t 为 $\gg 1$ 的整数.

 $\left[$ 于是对应的二次型在 \mathbf{Z} 上等价于型 $\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} y_i^2 . \right]$

(证明将在§3.3 中给出。)

系 设E和E'为S中两个元素,有同样的秩和符号量。

则或者 $E \oplus I_+ \simeq E' \oplus I_+$, 或者 $E \oplus I_- \simeq E' \oplus I_-$.

证 如果 E=0,这是显然的。否则两个模 $E\oplus I_+$ 和 $E\oplus I_-$ 之中必有一个是不定的。假设前一个是不定的。由于 E 和 E' 有同样的符号量,从而 $E'\oplus I_+$ 也是不定的。 利用定理 4 我们看出, $E\oplus I_+$ 和 $E'\oplus I_+$ 分别同构于 $sI_+\oplus tI_-$ 和 $s'I_+\oplus t'I_-$. 因为 E 和 E' 有同样的符号量,我们有 s=s' 和 t=t',从而即得结果。

定理 5 如果 $E \in S$ 是第 II 类的不定型, 并且 $\tau(E) \ge 0$, 则 E 同构于 $pU \oplus q\Gamma_8$, 其中 p 和 q 均为正整数.

[如果 $\tau(E) \leq 0$, 将此定理用于模 -E 可得到一相应的结果,这里 -E 是从 E 将其二次型变号而得到的模。]

(证明将在§3.5 中给出。)

注意 $q = \frac{1}{8} \tau(E)$, $p = \frac{1}{2} (r(E) - \tau(E))$. 这表明不计同构 E 可由它的秩和符号差完全确定. 因为这对第 1 类是同样正确的(见定理 4),我们得到

定理6 如果 $E, E' \in S$ 是不定的,并且有同样的秩、符号差和奇偶类,则它们同构。

2.8. 定的情形

这时没有结构定理,而只有"有限性"定理:对于每个整数n, S, 只包含有限多个正定等价类。这可从二次型的"化简理论"得到. 只是对小n值明显确定出了这些等价类(对于n≤16,见 M. Kneser, Archiv der Math., 8, 1957, pp. 241~250). 我们可以从 Minkowski-Siegel 公式得出这些结果(Kneser 使用了一个不同的方法). 现在叙述这个公式(为简单起见,我只限于讨论第Ⅱ类,对于第Ⅰ类有类似结果):

令 n=8k. 以 O_n 表示第 Π 类正定型 $E \in S_n$ 之同构类集合、如果 $E \in O_n$,以 G_B 表示 E 的自同构群。 因为它是正交群的离散子群,而正交群本身是紧致群,从而 G_B 为有限群。以 g_B 表示群 G_B 的阶数。令

$$M_n = \sum_{E \in \mathcal{C}_n} \frac{1}{g_E}.$$

这是 C_n 在 Eisenstein 意义下的"质量",即 C_n 中元素E 的个数,但是每个元素 E 赋以权 $1/g_E$. Minkowski-Siegel 公式⁽⁴⁾给出 M_n 的值:

(*)
$$M_n = \frac{B_{2k}}{8k} \sum_{j=1}^{4k-1} \frac{B_j}{4j},$$

其中n=8k, 而 B_1 是 Bernoulli 数 $\left(B_2=\frac{1}{6},\ B_2=\frac{1}{30},\ \cdots,$ 见第七章 § 4.1).

(下面是 M_n 的一些近似值:

$$M_8 = 10^{-9} \times 1.4352 \cdots$$
; $M_{16} = 10^{-18} \times 2.4885 \cdots$; $M_{24} = 10^{-16} \times 7.9369 \cdots$; $M_{32} = 10^{7} \times 4.0309 \cdots$; $M_{40} = 10^{51} \times 4.3930 \cdots$.)

这个公式给出一个方法来证明何时 O_n 的一个子集 O' 等于 O_n ,这只需对于 $E \in O'$ 检查 $1/g_B$ 之和是否等于 M_n (因为如果 $O' \neq O_n$,则该和式 $< M_n$)。

【例】

i) n=8, 即 k=1. 可以证明(例如见 Bourbaki, 李群与李代数, 第六章 § 4, $n^{\circ}10$), Γ_{8} 的自同构群的阶数是 $2^{14}3^{5}5^{2}7$. 而公式 (*) 给出 $M_{8}=2^{-14}3^{-5}5^{-2}7^{-1}$. 比较一下即知 C_{8} 只有一个元素 Γ_{8} , 这是 Mordell 的结果.

[[]注] 这个公式的证明可见 C. L. Siegel, Gesamm. Abh., f, n*20 和 HI, n* 79.

ii) n=16. 我们已知 C_{16} 中的两个元素: Γ_{16} 和 $\Gamma_{8}\oplus\Gamma_{8}$. 可以证明其阶数 g_{8} 分别为 $2^{15}(16!)$ 和 $2^{29}3^{10}5^{4}7^{2}$. 而 $M_{16}=691\cdot 2^{-30}3^{-10}5^{-4}7^{-2}11^{-1}13^{-1}$.

容易检查

 $691/2^{30}3^{10}5^{4}7^{2}11 \cdot 13 = 1/2^{15}(16!) + 1/2^{29}3^{10}5^{4}7^{2}$. 因此我们有 $C_{16} = \{\Gamma_{16}, \Gamma_{8} \oplus \Gamma_{8}\}$, 这是 Witt 的结果.

iii) n=24. 1957 年 H. Niemeier 确定出 C_{24} . 该集合共有 24 个元素. 其中有一个元素特别值得注意(由 Leech 研究 \mathbf{R}^{24} 之球覆盖问题时所发现),它也是 C_{24} 中唯一的元素不包括满足 $x \cdot x = 2$ 的向量 x. 它的自同构群 G 的阶数为

 $2^{22}3^{9}5^{4}7^{2}11 \cdot 13 \cdot 23 = 8,315,553,613,086,720,000.$ 商群 $G/\{\pm 1\}$ 是由 Conway^[4] 发现的新的单群.

iv) n=32. 由于 $M_{32}>4\cdot 10^7$, 并且对于每个 E 均有 g_B $\geqslant 2$, 因此 C_{32} 有多于 8 千万个元素. 目前还不能把它们分类.

§ 3. 证 明

3.1. 定理3的证明

令 $E \in S_n$,而 $V = E \otimes \mathbf{Q}$ 是对应的 \mathbf{Q} -向量空间. 假设 E 是不定的. 我们必需证明 E(或者 V) 表示零. 这要改虑一系列情形.

- i) n=2. 这时 V 的符号量是(1,1), 从而 d(E)=-1. 由于-d(E) 为 \mathbb{Q} 中平方元素, 显然 V 表示 0.
- ii) n=3. 设 $f(X_1, X_2, X_3) = \sum a_0 X_1 X_2$, 是关于 $E \ge 1$ 一组基所对应的二次型、我们有 $a_0 \in \mathbf{Z}$ 而 $\det(a_0) = \pm 1$. 如

[[]注] 见 J. H. Conway, Proc. Nat. Acad. Sci. USA, 61, 1968, pp. 398~400, 和 Invent. Math., 7, 1969, pp. 137~142.

果 $p \neq 2$ 是素数,由 f 之 mod 2 简化所得到的型有非平凡零点 (第一章 § 2.2),这个零点可以提升成 p-adio 零点 (第二章 § 2.2,定理 1 的系 2)。于是对于每个 $Q_p(p \neq 2)$ 和 B, f 均表示 0. 由第四章 § 3.2,定理 8 的系 3,可知 f 在 Q 中表示 0.

iii) n=4. 同上可证对于每个 $\mathbf{Q}_p(p\neq 2)$ 和 \mathbf{R} , 二次型 f 均表示 0. 如果 f 的判别式 d(E)=1, 这就可以推出 f 在 \mathbf{Q} 中表示 0 (第四章 § 3.2 定理 8 的系 3). 否则 我们 有 d(E) = -1, 而 d(E) 不是 \mathbf{Q}_2 中平方元素. 由第四章 § 2.2 定理 6, 这导致 f 在 \mathbf{Q}_p 中表示 0. 于是由 Hasse-Minkowski 定理(第四章 § 3.2 定理 8) 可知 f 在 \mathbf{Q} 中表示 0.

iv) n≥5. 用 Meyer 定理(第四章§3.2 定理8的系2).

8.2. 一些引建

设 $E \in S$, 令 F 为 E 的子模。F' 是 E 中与整个 F 正交的元素所构成的于集。

引**理 1** F 赋以 E 所诱导的型 $x \cdot y$ 之后属于 S 的 充要条件是 E 为 F 与 F' 的直和.

证 如果 $E=F\oplus F'$,则 $d(E)=d(F)\cdot d(F')$,由此即知 $d(F')=\pm 1$.反之,如果 $d(F)=\pm 1$,显然 $F\cap F'=0$.此外,如果 $x\in E$,则线性变换 $y\mapsto x\cdot y(y\in F)$ 可以由一个元素 $v_0\in F$ 所决定。于是我们有 $x=x_0+x_2$,其中 $x_0\in F$, $x_1\in F'$,从而 $B=F\oplus F'$.

引理2 设 $x \in E$ 满足 $x \cdot x = \pm 1$,而 X是 $x \in E$ 中的正交补。如果 $D = \mathbf{Z}x$,则 $E = D \oplus X$

证 将引理 1 用于 F=D 即可,(比如若 $x \cdot x = 1$,则有 $D \simeq I_+$,于是 $E \simeq I_+ \oplus X_-$)

 $x \in X$ 称为不可除元素,如果它不在每个子群 nE(n ≥ 2)• 78 •

中,即如果它不能被某个 \geq 2 的整数所除尽. E 中每个非零元素均可唯一地写成形式 mx, 其中 $m\geq$ 1,而 x 为不可除元素.

引理 g 如果 g 为 g 中不可除元素,则存在 $g \in \mathcal{B}$, 使 $g \cdot g = 1$

证 令 f_* 是由 x 所决定的线性映射 $y \mapsto x \cdot y$. 这是 $E \rightarrow$ **Z** 的同态. 由于 x 的不可除性和 $x \cdot y$ 定义了 E 到其对偶 $Hom(E, \mathbf{Z})$ 之上的同构,可知 f_* 也是不可除的. 由此即知 f_* 是映上(不然,它可以由一个 ≥ 2 的整数所除尽),因此存在 $y \in E$,使 $x \cdot y = 1$.

3.8. 结构定理(奇不定情形(曲)

引理 4 设 $E \in S_n$. 而 E 是第 I 类的和不定的,则存在 $F \in S_{n-2}$,使 $E \sim I_+ \oplus I_- \oplus F_1$.

证 根据定理 3, 存在 $x \in E$, $x \neq 0$, 使得 $x \cdot x = 0$. 必要时将 x 除以一个整数,我们可以假定 x 是不可除的。 根据上面的引理 3, 可知这时存在 $y \in E$, 使 $x \cdot y = 1$. 我们可以选取 y 使 $y \cdot y$ 为奇数。 事实上,假如 $y \cdot y$ 是偶数,因为 E 是第 I 类的,从而存在 $t \in E$, 使 $t \cdot t$ 为奇数。 令 y' = t + ky,并且取 k 使 $x \cdot y' = 1$,即取 $k = 1 - x \cdot t$ 。 我们有 $y' \cdot y' \equiv t \cdot t \pmod{2}$,而 $y' \cdot y'$ 为奇数。 于是我们可以假定 $y \cdot y = 2m + 1$ 。 这时令

$$e_1 = y - mx$$
, $e_2 = y - (m+1)x$.

立刻得到 $e_1 \cdot e_1 = 1$, $e_1 \cdot e_2 = 0$, $e_2 \cdot e_2 = -1$. 由 (e_1, e_2) 生成的 E的子模 G 同构于 $I_+ \oplus I_-$; 按照引理 1, 便有 $E \simeq I_* \oplus I_- \oplus F$, 其中 $F \in S_{n-2}$.

定理 4 的证明, 我们对于 n 用数学归纳 法。 今 $E \in S_n$

[[]注] 本节中所述方法以及引进群 K(S)的思想,都是 Milnor 告诉我的。

并且设 E 是不定的第 1 类的。根据引理 4,

$$E \simeq I_+ \oplus I_- \oplus F_-$$

如果 n=2,则 F=0,从而定理证毕。如果 n>2,则 $F\neq0$,并且模 I_+ ① F 和 I_- ① F 必有一个是不定的,例如设第一个是不定的。因为 I_+ 是第 I 类的, I_+ ① F 亦如此。 利用归纳 假设可证得 I_+ ① F 有形式 aI_+ ② bI_- ,这就证明了

$$E \simeq aI_+ \oplus (b+1)I_{-}$$

3.4. 群 K(S)的确定

设 $E \in S$, $E \neq 0$. 则 $E \oplus I_+$ 或 $E \oplus I_-$ 中有一个是不定的第 I 类的. 利用定理 4 我们看到 E 在 K(S) 中的象是 (I_+) 与 (I_-) 的线性组合、这就表明 (I_+) 和 (I_-) 生成 K(S). 由于它们在同态

$$(r, \tau): K(S) \rightarrow Z \times Z$$

之下的象是线性无关的,从而 (I_+) 和 (I_-) 形成 K(S)的一组基。

3.5. 结构定理(偶不定情形)

引理 δ 设 $E \in S$, E 是不定的和第 Π 类的,则存在 $F \in S$, 使 $E \simeq U \oplus F$.

证 与引理4的证明过程相仿. 先取 $0\neq x\in E$, x不可除,使 $x\cdot x=0$. 再取 $y\in E$,使 $x\cdot y=1$. 如果 $y\cdot y=2m$,我们用y-mx代替y,对于这个新的y有 $y\cdot y=0$. 于是由(x,y)生成的E之子模G同构于U. 由引理1即知 $E\simeq U\oplus F$,其中 $F\in S$.

引理 6 设 F_1 , $F_2 \in S$. F_1 和 F_2 均是第 II 类的,并且 $I_+ \oplus I_- \oplus F_1 \simeq I_+ \oplus I_- \oplus F_2$,则 $U \oplus F_1 \simeq U \oplus F_2$.

证 为简化符号我们令

 $W = I_+ \oplus I_-, \quad E_i = W \oplus F_i, \quad V_i = E_i \otimes \mathbf{Q}_i$

在 E_i 中,令 E_i^0 表示 E_i 中满足 $x \cdot x = 0 \pmod{2}$ 的元素 x 所构成的子群。则 $(E_i : E_i^0) = 2$,不难看出 $E_i^0 = W^0 \oplus F_i$,其中

 $W^0 = \{x = (x_1, x_2) \in W \mid x_1 \equiv x_2 \pmod{2}\}.$

令 E' 为 E' 在 V_1 中的"对偶", 即

 $E_i^+ = \{ y \in V_i | x \cdot y \in \mathbf{Z}, \quad \forall y \in \mathbf{Z} \in E_i^0 \}$

显然 $E_t^* = W^+ \oplus F_t$, 其中

٠.

 $W^+ = \{ (x_1, x_2) \mid 2x_1, 2x_2, x - x_2 \in \mathbf{Z} \}.$

我们有 $E^0_i \subset E_i \subset E^+_i$,并且商 E^+_i / E^0_i 同构于 W^+_i / W_0 。这是 (2,2)型群,因此在 E^0_i 和 E^+_i 之间严格地有三个子群,它们对应于(2,2)型群中的 3 个 2 阶子群。 E_i 本身是其中的一个。我们把另外两个记成 E_i 和 E^0_i ,于是又有

 $E'_{i} = W' \oplus F_{i}, \quad E''_{i} = W'' \oplus F_{i}$

其中 W' 和 W'' 以明显的方式定义。可以验证 W' 和 W'' 均同构于 U(例如取 W' 的一组基为向量 $a=\left(\frac{1}{2},\frac{1}{2}\right)$ 和 b=(1,-1)。 我们有 $a \cdot a = b \cdot b = 0$, $a \cdot b = 1$ 。 对于 W''' 则取 $\left(\frac{1}{2},-\frac{1}{2}\right)$ 和 (1,1)。 然后令 $f:W \oplus F_1 \to W \oplus F_2$ 为同构,它可扩充成 V_1 到 V_2 上的同构,并且将 E_1 映到 E_2 之上,从而也把 E_1' 和 E_1' 分别映到 E_2'' 和 E_2' 之上,于是它也把 (E_1,E_1'') 映到 (E_2',E_2'') 或者 (E_2'',E_2'') 之上。由于 E_1' 和 E_1'' 均同构于 $U \oplus F_4$,从而 $U \oplus F_4 \simeq U \oplus F_4$ 。

定理 5 的证明。我们先证,如果 E_1 , $E_2 \in S$ 是第 II 类的不定的,并且有同样的秩和符号差,则它们同构。

由引理 5 我们有 $E_1 = U \oplus F_1$, $E_2 = U \oplus F_2$. 显然 F_1 和

 F_2 是第 IJ 类的,而且有同样的秩和符号差. 模 $I_+ \oplus I_- \oplus F_1$ 和 $I_+ \oplus I_- \oplus F_2$

是第 I 类的, 不定的, 而且有相同的秩和符号差。根据定理 4 它们同构。利用引理 6 我们看出 E₁ 和 E₂ 同构, 这就证明了我们的论断。

现在定理 5 就显然了: 如果 E 是不定的和第 II 类的,并且 $\tau(E) > 0$,我们可以由公式

$$q = \frac{1}{8} \tau(E), \quad p = \frac{1}{2} (r(E) - \tau(E))$$

确定出整数 p 和 q。 将上述结果用于 E 和 $pU \oplus q\Gamma_B$,即知这两个模是同构的。

第六章 算术级数中的素数定理

本章的目的是要证明如下的定理,这个定理是由 Legendre 猜想(和使用)而由 Dirichlet 证明的.

定理 设 a 和 m 是 互素的两个自然数,则存在无限多个素数 $p \equiv a \pmod{m}$,

我们采取的方法是利用 L 函数的一些性质(这正是 Dirichlet 本人的方法).

§ 1. 有限 Abel 群的特征

1.1. 对偶性

设 G 为有限 Abel 群,其运算写成乘法.

定义1 G的特征是G到复数乘法群C*中的同态。

G的全部特征形成群 $Hom(G, \mathbb{C}^*)$, 我们写成 G, 叫作 G 的对偶。

【例】 设 G 是生成元为 g 的 n 阶循环群. 如果 $\chi:G \to G^*$ 是 G 的特征,则元素 $w = \chi(g)$ 满足关系 $w^* = 1$,即 w 是 n 次单位根. 反之,每个 n 次单位根 w 利用 $g^0 \mapsto w^*$ 均可定义 G 的一个特征. 于是我们看到,映射 $\chi \mapsto \chi(g)$ 是 G 到 n 次单位根群 μ_n 之上的同构. 特别地, G 是 n 阶循环群.

命题1 设 日 为 G 的于群,则 日 的每个特征均可扩充成 G 的特征。

证 我们对于(G:H)归纳。如果(G:H)=1,则 G=H,从而没有什么可证的。 否则我们令 $x\in G$, $x\notin H$, 命 n 为使

第六章 算术级数中的素数定理

本章的目的是要证明如下的定理,这个定理是由 Legendre 猜想(和使用)而由 Dirichlet 证明的.

定理 设 a 和 m 是 互素的两个自然数,则存在无限多个素数 $p \equiv a \pmod{m}$,

我们采取的方法是利用 L 函数的一些性质(这正是 Dirichlet 本人的方法).

§ 1. 有限 Abel 群的特征

1.1. 对偶性

设 G 为有限 Abel 群,其运算写成乘法.

定义1 G的特征是G到复数乘法群C*中的同态。

G的全部特征形成群 $Hom(G, \mathbb{C}^*)$, 我们写成 G, 叫作 G 的对偶。

【例】 设 G 是生成元为 g 的 n 阶循环群. 如果 $\chi:G \to G^*$ 是 G 的特征,则元素 $w = \chi(g)$ 满足关系 $w^* = 1$,即 w 是 n 次单位根. 反之,每个 n 次单位根 w 利用 $g^0 \mapsto w^*$ 均可定义 G 的一个特征. 于是我们看到,映射 $\chi \mapsto \chi(g)$ 是 G 到 n 次单位根群 μ_n 之上的同构. 特别地, G 是 n 阶循环群.

命题1 设 日 为 G 的于群,则 日 的每个特征均可扩充成 G 的特征。

证 我们对于(G:H)归纳。如果(G:H)=1,则 G=H,从而没有什么可证的。 否则我们令 $x\in G$, $x\notin H$, 命 n 为使

 $x^n \in H$ 成立的>1的最小整数. 设 χ 是 H 的特征, 令 $i = \chi(x^n)$.

由于 C^* 是可除群,我们可以取一元素 $w \in C^*$,使 $w^* = t$. 令 H' 是由 H 和 x 生成的 G 之子群。 H' 中每个元素 h' 均可以 写成 $h' = hx^a$,其中 $h \in H$ 而 $a \in \mathbf{Z}$. 令

$$\chi'(h') = \chi(h) w^a,$$

易知这个数与 h' 的分解 hx^0 无关,而且 $\chi': H' \to \mathbb{C}^*$ 是 H' 的特征,并且为 χ 的扩充。由于 (G: H') < (G: H),利用归纳假设便知 χ' 可扩充为整个 G 的特征。

注 限制运算定义出一个同态

$$\rho: \hat{G} \rightarrow \hat{H},$$

而命题 1 表明 ρ 是映上,此外, ρ 的核是在 H 上平凡的 G 的那些特征所组成的集合,从而它同构于 G/H 之对偶群 (G/H),于是有正合列

$$\{1\} \rightarrow (\widehat{G/H}) \rightarrow \widehat{G} \rightarrow \widehat{H} \rightarrow \{1\}.$$

命题2 群 Ĝ 是有限 Abel 群, 其阶数与 G 相同。

证 对于G的阶数n进行归纳。n=1的情形是显然的、如果 $n \ge 2$,取G的一个非平凡循环子群 H. 根据上面的注记,G的阶数为 G的阶数与G/H的阶数之乘积。但是由于 H 是循环群,而 G/H 的阶数严格小于 n,从而它们的阶数均与其对偶的阶数相同。 因此 G的阶数等于 H的阶数与 G/H的阶数之乘积,即等于 G的阶数。

注 利用 G 分解成循环群的乘积,可以证明更精密的结果: \hat{G} (一般非自然地) 同构于 G.

如果 $\alpha \in G$,则函数 $\chi \mapsto \chi(\alpha)$ 是 G 的特征。我们便得到一个同态 $\alpha \colon G \to G$ 。

命题 8 同态 s 是 G 到 Ĝ 上的同构.

证 由于 G 和 G 的阶数相同,只需证明 s 是 单 射,即如果 $1\neq x\in G$,存在 G 的一个特征 χ 使得 $\chi(x)\neq 1$ 现在令 H 是 G 的由 x 生成的循环子群。显然 (见上面例子) 存在 H 的一个特征 χ 使得 $\chi(x)\neq 1$ 而命题 1 表明 χ 可以扩充成 G 的特征,由此即得所需结果。

1.2. 正交关系

命题 4 设 $n = \text{Card}(G), \chi \in \hat{G}$, 则

$$\sum_{x \in G} \chi(x) = \begin{cases} n, & \text{min } \chi = 1, \\ 0, & \text{min } \chi \neq 1. \end{cases}$$

证 第一个公式显然. 为证第二个公式, $y \in G$, 使 $z(y) \neq 1$.

则有

$$\chi(y) \sum_{x \in G} \chi(x) = \sum_{x \in G} \chi(xy) = \sum_{x \in G} \chi(x).$$
$$(\chi(y) - 1) \sum_{x \in G} \chi(x) = 0.$$

于是

因为 $\chi(y) \neq 1$, 由此导致 $\sum_{x \in \Omega} \chi(x) = 0$.

系 设 $x \in G$,则

$$\sum_{x \in \hat{\sigma}} \chi(x) = \begin{cases} n, & \text{in } \mathbb{R} x = 1, \\ 0, & \text{on } \mathbb{R} x \neq 1. \end{cases}$$

证 将命题 4 用于对偶群 貸 即可。

注 上面结果是(不必 Abel 的)有限群特征理论中的"正交关系"之特殊情形。

1.8. 模特征

设 $m \ge 1$ 为整数. 以 G(m) 表示环 $\mathbf{Z}/m\mathbf{Z}$ 的可逆元所构成的乘法群 $(\mathbf{Z}/m\mathbf{Z})^*$. 这是 $\phi(m)$ 阶 Abel 群, 其中 $\phi(m)$ 是

加的 Euler φ 函数, 见第一章 § 1.2. G(m)之对偶中的元素 χ 叫作是 mod m 特征。可以把它看成定义在与 m 互素的 整数集合上而取值于 C^* 的函数, 并且 χ(ab) = χ(a)χ(b). 为方便起见,可将它扩充成整个 Z 上的函数,即当 a 不与m 互素时,我们令 χ(a) = 0.

一些例子

- 1) m = 4、群 G(4) 有两个元素,从而只有唯一的一个非平凡特征,即 $x \mapsto (-1)^{s(x)}$,见第一章 § 3.2.
- 2) m=8. 群 G(8) 有 4 个元素。 它有三个非平凡特征,即

$$x\mapsto (-1)^{s(x)},\; (-1)^{\omega(x)},\; (-1)^{s(x)+\omega(x)}.$$
见第一章§ 3.2.

- 3) m=p, $p\neq 2$ 为素数. 群 G(p) 是 p-1 阶循环群, 从而有唯一的一个 2 阶特征, 即 Legendre 特征 $x\mapsto \left(\frac{x}{p}\right)$.
- 4) m=7. 群 G(7) 为 6 阶循环群,因此有两个彼此共轭的 3 阶特征、其中一个为

$$\chi(x) = \begin{cases} 1, & \text{multiple multiple mul$$

2 阶特征与 Legendre 特征有紧密的联系. 更确切地说:

命题 5 设 a 是 无 平 方 因 于 的 非 零 整 数 (见 第 四 章 § 3.2), m=4|a|. 则 存在唯一的一个 mod m 特证 χ_a , 使 对 每个除不尽 m 的 素 数 p 均 有 $\chi_a(p) = \left(\frac{a}{p}\right)$. 此外还有 $\chi_a^2 = 1$, 并且 $a \ne 1$ 时 $\chi_a \ne 1$.

证 26的唯一性显然, 因为每个与加互素的整数均是除

不尽m的一些素数之积、同理可证 $\chi_{n}^{2}=1$.

为证 z_a 的存在性,先设 $a=l_1\cdots l_n$,其中 l_1 为彼此不同的 奇素数,然后我们取特征

$$\chi_a(x) = (-1)^{s(x)s(a)} \left(\frac{x}{l_1}\right) \cdots \left(\frac{x}{l_k}\right).$$

如果 p 为奇素数且不等于任何一个 l, 由二次互反律有

$$\chi_{\mathfrak{g}}(p) = \left(\frac{l_1}{p}\right) \cdots \left(\frac{l_k}{p}\right) = \left(\frac{a}{p}\right),$$

从而这个 26 即有所需性质.

如果 a 有形式 -b, 2b 或者 -2b, 其中 b=b…b, 如前所示。我们分别取 x_a 为 x_b 和

$$(-1)^{s(s)}$$
, $(-1)^{\omega(s)}$ 或者 $(-1)^{s(s)+\omega(s)}$

之积、 z_a 的这个明显结构也同时表明当 $a \ne 1$ 时, $z_a \ne 1$

注 可以证明,如果 x>0 为与m 互素的整数,则

$$\chi_{\mathbf{s}}(\mathbf{x}) = \prod_{l \mid m} (a, \mid x)_{l} = \prod_{(l, \mid m) = 1} (a, \mid x)_{l},$$

其中(a, x), 是 a 和 x 在域 a, 中的 Hilbert 符号。这个公式可以用来作为 a 的定义。

§ 2. Dirichlet 级数

2.1. 一些引理

引理 1 设 U 为 C 的开子集, f_n 是 U 上全纯函数序列,它们在每个紧集上均一致收敛于函数 f_n 则 f 在 U 中全纯且 f_n 的导函数 f_n 在每个紧子集上也一致收敛于 f 的导函数 f_n

我们回忆一下它的证明概要.

设 $D \neq U$ 中的闭圆盘,令O是它按通常方式取向的有向边界。由 Cauchy 公式,对D的每个内点 z_0 我们有

$$f_n(z_0) = \frac{1}{2\pi i} \int_C \frac{f_n(z)}{z - z_0} dz.$$

通过极限过程便得到

$$f(z_0) = \frac{1}{2\pi i} \int_{\sigma} \frac{f(z)}{z - z_0} dz.$$

这证明f在D的内部全纯,从而证明了引理的第一部分。利用公式

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)^2} dz$$

我们同法可证第二部分.

引理 2(Abel 引理) 设 (a_n) 和 (b_n) 是两个数列。令

$$A_{m, p} = \sum_{n=m}^{p} a_{n}, \quad S_{m, m'} = \sum_{n=m}^{m'} a_{n} b_{n},$$

则

$$S_{m, m'} = \sum_{n=m}^{m'-1} A_{m, n} (b_n - b_{n+1}) + A_{m, m'} b_{m'}.$$

证 易 a_n 为 $A_{m,n}-A_{m,n-1}$ 然后重新组织各项即可.

引理3 设 α , β 是两个实数, $0 < \alpha < \beta$, 令z = x + iy, 其中x, $y \in \mathbb{R}$, x > 0. 则

$$|e^{-ax}-e^{-\beta x}| \leq \left|\frac{z}{x}\right| \left(e^{-ax}-e^{-\beta x}\right).$$

证记

$$e^{-\alpha s} - e^{-\beta s} = -z \int_a^b e^{-ts} dt,$$

然后取绝对值即有

$$|e^{-\alpha x} - e^{-\beta x}| \le |z| \int_a^B e^{-tx} dt = \frac{|z|}{x} (e^{-\alpha x} - e^{-\beta x}).$$

2.2. Dirichlet 级数

设 (λ_n) 是趋于 $+\infty$ 的递增实数列。为简单起见,我们假定 λ_n 均>0(这不是本质的限制,因为我们在后面讨论中,总

可以去掉数列的有限多项而化成上述情形)。

指数为(λ_n)的 Dirichlet 级数是指具有下面形式的级数:

$$\sum a_n e^{-\lambda_n z}$$
 $(a_n \in \mathbf{C}, z \in \mathbf{C})$.

【例】 (a) $\lambda_n = \log n$ (通常的 Dirichlet 级数)。 这样一个级数可写成 $\sum \frac{a_n}{n!}$,见§ 2.4.

(b) $\lambda_n = n$. 取 $t = e^{-s}$, 则级数变成对于 t 的幂级数。

注 Dirichlet 级数是测度μ的 Laplace 变换

$$\int_0^{\infty} e^{-st} \, \mu(t)$$

的特殊情形, 在我们这里 μ 为离散测度 (详见 D. Widder, The Laplace Transform, 1946).

命题 6 如果级数 $f(z) = \sum a_n e^{-\lambda_n z}$ 对于 $z = z_0$ 收敛, 则它在形如 Re $(z-z_0) \ge 0$, $|Arg(z-z_0)| \le a(a < \pi/2)$ 的每个区域中均一致收敛.

(此处及以后我们用 Re(z) 表示复数 z 的实数部分.)

证 对 z 作一变量代换,可设 $z_0=0$. 于是假设条件变成级数 $\sum a_n$ 收敛. 我们必须证明级数在形如

$$\operatorname{Re}(z) \geqslant 0$$
, $|z|/\operatorname{Re}(z) \leqslant k$

的区域中一致收敛。令 s>0。因为级数 $\sum a_n$ 收敛, 从而存在 N,使当 m, m' > N 时,我们有 $|A_{m,m'}| \leq s$ (记号见引理 2)。对于 $b_n = e^{-\lambda_{m^2}}$ 利用引理 2. 我们得到

$$S_{m, m'} = \sum_{n=m}^{m'-1} A_{m, n} \left(e^{-\lambda_{m}z} - e^{-\lambda_{m+1}z} \right) + A_{m, m'} e^{-\lambda_{m'}z}.$$

令 z=x+iy 并利用引理 3, 我们发现

$$|S_{m, m'}| \leq \varepsilon \Big(1 + \frac{|z|}{x} \sum_{n=m}^{m'-1} (e^{-\lambda_n x} - e^{-\lambda_{n-1} x})\Big),$$

即

$$|S_{m,m'}| \leq \varepsilon (1+\hbar (e^{-\lambda_{m'''}}-e^{-\lambda_{m''''}})),$$

于是 $|S_{m,m}| \leq \epsilon(1+k)$. 而一致收敛性是显然的.

系 1 如果f对于 $z=z_0$ 收敛,则它对于 $Re(z)>Re(z_0)$ 收敛,而这样定义的函数是全纯的.

证 这可由命题6和引理1推出。

系 2 级数 f 的收敛区域包含一个最大的开半平面(称为该级数的收敛半平面).

(为了语言上的方便,我们把 φ 和 C 也看 作 是 开 半 平 面、)

如果收敛半平面由 $Re(z) > \rho$ 给出, 我们称 ρ 为该级数的收敛横坐标。

(情形 ϕ 和 C 分別対应于 $\rho=+\infty$ 和 $\rho=-\infty$.)

级数 $\Sigma |a_n|e^{-\lambda n^2}$ 的收敛半平面 (由于明显的理由) 称作 f 的绝对收敛半平面。它的收敛横坐标记成 ρ^+ 、当 $\lambda_n=n$ 时 (幂级数),熟知 $\rho=\rho^+$ 。面对于一般情形这是不对的。例如 我们以后将知道,最简单的 L-级数

$$L(z) = 1 - \frac{1}{3^{s}} + \frac{1}{5^{s}} - \frac{1}{7^{s}} + \cdots$$

其 $\rho=0$, 而 $\rho^+=1$.

系3 在区域

Re $(z-z_0) \geqslant 0$, $|\operatorname{Arg}(z-z_0)| \leqslant \alpha \ (\alpha < \pi/2)$ 中 $z \rightarrow z_0$ 时, $f(z) \rightarrow f(z_0)$.

证 这由一致收敛性和 $e^{-\lambda_n z} \rightarrow e^{-\lambda_n z}$ 这一事实推出。

系4 $f(z) = 0 \Leftrightarrow a_n$ 均为 0

证 先证 $a_0=0$. 将 f 乘以 $e^{\lambda n}$ 然后令 $z\to +\infty$ (例如取 z 为实数). 由一致收敛性可知 $e^{\lambda n}f\to a_0$, 从而 $a_0=0$. 对 a_1 等等可以类似地去作.

2.3. 正系数的 Dirichlet 级数

命题7 设 $f = \sum a_n e^{-\lambda_{n^2}}$ 是 Dirichlet 级数, 其系数 a_n 为非负实数。假定 f 对于 $Re(z) > \rho(\rho \in \mathbf{R})$ 收敛, 并且函数 f 可解析开拓成一个在点 $z = \rho$ 某邻 域 中全 纯 的 函 数,则 存在 $\varepsilon > 0$,使 f 在 $Re(z) > \rho - \varepsilon$ 中收敛。

(换句话说, f 之收敛区域由 f 在实轴上的奇异点所界.) 证 将 z 代之以 z— ρ , 我们可设 ρ =0. 因为 f 在 Re(z) >0 和在 0 的某邻域中全纯, 从而它在圆盘

$$|z-1| \leq 1+s \quad (\varepsilon > 0)$$

中全纯. 特别地,它的 Taylor 级数在这个圆盘中收敛。由引 \mathbb{P}_{1} ,f 的 p 阶导函数为

$$f^{(p)}(z) = \sum_{n} a_{n}(-\lambda_{n})^{p}e^{-\lambda_{n}z}$$
 (对于 Re(z) > 0),
 $f^{(p)}(1) = (-1)^{p} \sum_{n} \lambda_{n}^{p} a_{n} e^{-\lambda_{n}}$.

于是

在问题中的 Taylor 级数可以写成

$$f(z) = \sum_{p=0}^{\infty} \frac{1}{p!} (z-1)^p f^{(p)}(1), |z-1| \leq 1 + \varepsilon.$$

特别对于 z= ~ε, 我们有

$$f(-s) = \sum_{p=0}^{\infty} \frac{1}{p!} (1+s)^p (-1)^p f^{(p)}(1),$$

此级数收敛,

但是 $(-1)^p f^{(p)}(1) = \sum_n \lambda_n^p a_n e^{-\lambda_n}$ 是正项收敛级数,从而正项双重级数

$$f(-\varepsilon) = \sum_{p,n} a_n \frac{1}{p!} (1+\varepsilon)^p \lambda_n^p e^{-\lambda_n}$$

收敛、重新排列各项给出

$$f(-\varepsilon) = \sum_{n} a_{n} e^{-\lambda_{n}} \sum_{p=0}^{\infty} \frac{1}{p!} (1 + \varepsilon)^{p} \lambda_{n}^{p}$$
$$= \sum_{n} a_{n} e^{-\lambda_{n}} e^{\lambda_{n}(1+\varepsilon)} = \sum_{n} a_{n} e^{\varepsilon \lambda_{n}},$$

这表明所给的 Dirichlet 级数对于 $z=-\varepsilon$ 收敛,从而对于 $\text{Re}(z)>-\varepsilon$ 收敛。

2.4. 普通 Dirichlet 级数

这是情形 $\lambda_n = \log n$. 对应级数写成

$$f(s) = \sum_{n=1}^{\infty} a_n/n^s.$$

字母 8 已经成为该函数之自变量的传统符号,

命题 8 如果 a_n 有界, 则 f(s) 对于 Re(s) > 1 绝对收敛。

证 这由熟知的 $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} (\alpha > 1)$ 收敛性质推出.

命题 9 如果部分和 $A_{m,p} = \sum_{n=m}^{p} a_n$ 有界,则 f(s) 对于 $\operatorname{Re}(s) > 0$ 收敛(不一定绝对收敛).

证 假设 $|A_{m,p}| \leq K$. 利用 A bel 引理 (引理 2), 我们发现

$$|S_{m,m'}| \le K \left(\sum_{n=m}^{m'-1} \left| \frac{1}{n^s} - \frac{1}{(n+1)^s} \right| + \left| \frac{1}{m'^s} \right| \right).$$

根据命题 6 可设 8 为实数,这使我们可以把上面不等式写成简单形式:

$$|S_{m,m'}| \leq K/m^s$$
,

于是收敛性便成为显然的了,

§ 3. Zeta 函数和 L 函数

3.1. Euler 乘积

定义 2 函数 $f: \mathbb{N} \rightarrow \mathbb{C}$ 叫作积性函数, 如果当(m, n) = 1

时,有f(mn) = f(m)f(n).

【例】 Euler 函数 (第一章 § 1.2) 和 Ramanujan 函数 (第七章 § 4.5)都是积性函数。

设 f 是有界积性函数、

引理 4 Dirichlet 级数 $\sum_{n=1}^{\infty} f(n)/n^n$ 对于 Re(8) > 1 绝对收敛,并且它在这个区域中的和等于收敛的无穷乘积

$$\prod_{p \in P} (1 + f(p)p^{-1} + \dots + f(p^m)p^{-mn} + \dots).$$

(此处及以后我们以P表示全体素数所成的集合.)

证 级数的绝对收敛性是由于f的有界性(命题 8). 命S为素数的有限集合,而命

 $\mathbf{N}(S) = \{n \ge 1 \mid n \text{ 为整数}, n \text{ 的素因子均属于 } S\}.$

易知有下面的等式:

$$\sum_{n\in\mathbb{N}(S)}f(n)/n^s=\prod_{p\in S}\Big(\sum_{m=0}^\infty f(p^m)/p^{ms}\Big).$$

当 S 增大时,等式左边趋于 $\sum_{n=1}^{\infty} f(n)/n^n$, 由此即知无穷乘积 是收敛的,并且其值等于 $\sum_{n=1}^{\infty} f(n)/n^n$.

引理 5 如果 f 是完全积性的 (即对任何 $n, n' \in \mathbb{N}$ 均 有 f(nn') = f(n)f(n')), 我们有

$$\sum_{n=1}^{\infty} f(n) / n^{s} = \prod_{p \in P} \frac{1}{1 - f(p) p^{-s}}.$$

证 由上引理及等式 $f(p^m) = f(p)^m$ 推出。

3.2. Zeta 函数

将前节结果用于 f=1, 我们得到函数

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p=p} \frac{1}{1 - \frac{1}{p^s}}$$

这些公式对于 Re(s) >1 有意义, 叫作 zeta 函数.

命题 10 (a) zeta 函数在半平面 Re(s)>1 中是全纯的, 并且 $\neq 0$.

(b) $\zeta(s) = \frac{1}{s-1} + \phi(s)$, 其中 $\phi(s)$ 为 Re(s) > 0 中全纯函数.

证 (a)是显然的, 对于(b), 我们注意

$$\frac{1}{s-1} - \int_{1}^{\infty} t^{-s} dt = \sum_{n=1}^{\infty} \int_{n}^{n+1} t^{-s} dt,$$

从而

$$\zeta(s) = \frac{1}{s-1} + \sum_{n=1}^{\infty} \left(\frac{1}{n^s} - \int_n^{n+1} t^{-s} dt \right)$$
$$= \frac{1}{s-1} + \sum_{n=1}^{\infty} \int_n^{n+1} (n^{-s} - t^{-s}) dt.$$

现在令

$$\phi_n(s) = \int_n^{n+1} (n^{-s} - t^{-s}) dt, \quad \phi(s) = \sum_{n=1}^n \phi_n(s).$$

我们必需证明 $\phi(s)$ 在 Re(s) > 0 中是可定义的并且是全纯的. 但是显然每个 $\phi_n(s)$ 有这些性质,因此只需再证明级数 $\sum \phi_n$ 在 Re(s) > 0 的每个紧集上均正则 $^{(*)}$ 收敛. 我们有

$$|\phi_n(s)| \le \sup_{n \le t \le n+1} |n^{-s} - t^{-s}|.$$

但是函数 n-*-t-*的微商等于 s/t*+1. 由此我们得到

$$|\phi_n(s)| \leq \frac{|s|}{n^{n+1}}, \quad \sharp \oplus \quad x = \operatorname{Re}(s).$$

从而对于每个 $\epsilon > 0$, 级数 $\sum \phi_n$ 在 $\text{Re}(s) \ge \epsilon$ 中都正则收敛.

系 1 zeta 函数在 s=1 有单极点.

---译者注

^(*) 对于函数级数 $\sum_{i=1}^{n} u_i(x)$,如果存在正数 a_i ,使得 $|u_i(x)| \leq a_i(i-1, 2, ...)$ 并且 $\sum_{i=1}^{n} u_i$ 收敛,就称 $\sum_{i=1}^{n} u_i(x)$ 为正则收敛(normally covergent).

这是显然的事实.

系2 当5→1时,

$$\sum_{\mathbf{s}} p^{-\mathbf{s}} \sim \log \frac{1}{|\mathbf{s}-1|}, \quad \overline{\mathbf{m}} \quad \sum_{\mathbf{p},k>2} \frac{1}{p^{ks}}$$

仍旧是有界的.

证 我们有

$$\log \zeta(s) = \sum_{p \in P, k > 1} \frac{1}{kp^{ks}} = \sum_{p \in P} \frac{1}{p^s} + \psi(s),$$

其中 $\psi(s) = \sum_{p \in P} \sum_{k \geq 2} \frac{1}{k p^{ks}}$. 级数 ψ 由

$$\sum_{p \in P, k > 2} \frac{1}{p^{ks}} = \sum_{p} \frac{1}{p^{s}(p^{s}-1)} \leq \sum_{p} \frac{1}{p(p-1)} \leq \sum_{p} \frac{1}{p(p-1)} \leq \sum_{n=2}^{\infty} \frac{1}{n(n-1)} = 1$$

所控制。由此推得业是有界的,又由系1证得

$$\log \zeta(s) \sim \log \frac{1}{s-1}$$
,

从而得到系 2.

注 我们要提一下, ζ(s) 可以扩充成整个 C 上的亚纯函数, 并且在 s-1 处有单极点, 虽然我们以后并不需要这一事实, 函数

$$\boldsymbol{\xi}(\boldsymbol{s}) = \frac{1}{2} \, \boldsymbol{s}(\boldsymbol{s} - 1) \, \boldsymbol{\pi}^{-\boldsymbol{s}/2} \boldsymbol{\Gamma}\left(\frac{\boldsymbol{s}}{2}\right) \boldsymbol{\zeta}(\boldsymbol{s})$$

是全纯函数,并且满足函数方程 $\xi(s) = \xi(1-s)$.

此外, zeta 函数在负整数处取有理值.

$$\zeta(-2n) = 0$$
, $\zeta(1-2n) = (-1)^n B_n/2n \ (n > 0)$,

其中 B_n 为第 n 个 Bernoulli 数 (见第七章 § 4.1).

猜想 ζ 的其他 φ 点均在直线 $\mathrm{Re}(s) = \frac{1}{2}$ 上 (Riemann 猜

想), 已经对许多零点(多于三百万个)在数值上验证了这个 猜想是对的。

3.8. L 函数

设 $m \ge 1$ 为整数, χ 为 $\operatorname{mod} m$ 特征 (见§1.3). 对应的 L 函数定义成 Diriohlet 级数

$$L(s, \chi) = \sum_{n=1}^{n} \chi(n) n^{-s}.$$

注意在这个和式中, 只有与 m 互素的 n 才给出非零的贡献。

对于单位特征的情形,本质上没有给出新的东西:

$$L(s, 1) = F(s)\zeta(s), \quad \text{i.e.} \quad F(s) = \prod_{n \mid n} (1-p^{-s}).$$

特別地, L(s, 1) 可解析开拓到 Re(s) > 0, 并且在 s=1 有单极点.

证 这是显然的。

命题 12 对于 $\chi \neq 1$, 级数 $L(s, \chi)$ 在半平面 Re(s) > 0 中收敛, 并且在 Re(s) > 1 中绝对收敛. 对于 Re(s) > 1 我们有

$$L(s, \chi) = \prod_{p \in P} \frac{1}{1 - \frac{\chi(p)}{p^s}}.$$

证 关于 Re(s) > 1 的论断由 § 3.1 所述即可推得. 剩下要证对于 Re(s) > 0 级数是收敛的. 由于命题 9, 只需证和式

$$A_{u,\,v} = \sum_{n=u}^{v} \chi(n) \quad (u \leqslant v)$$

是有界的. 现在根据命题 4 我们有

$$\sum_{n=u}^{u+m-1}\chi(n)=0.$$

从而只需对v-u < m 估计和式 $A_{u,v}$ 但显然有

$$|A_{u,v}| \leq \phi(m)$$
.

从而命题得证,

注 特别当 $\chi \neq 1$ 时, $L(1, \chi)$ 是有限的。 Dirichlet 证明的本质部分是要证明 $L(1, \chi) \neq 0$, 这是下一节的内容。

8.4. 对于同一整数 m 的所有 L 函数之乘积

在本节中 $m \ge 1$ 是固定的整数、如果 $p \nmid m$,我们以 \bar{p} 表示它在 $G(m) = (\mathbf{Z}/m\mathbf{Z})^*$ 中的象,而 \bar{p} 在群 G(m) 中的阶数用 f(p) 表示。根据定义,f(p) 是满足 $p' \equiv 1 \pmod{m}$ 的最小整数 f > 1. 令

$$g(p) = \phi(m)/f(p)$$
.

这是 G(m) 对于由 \bar{p} 生成的子群 (\bar{p}) 之商群的阶数。

引理6 如果 p∤m, 则有恒等式

$$\prod (1 - \chi(p)T) = (1 - T^{f(p)})^{g(p)},$$

其中乘积遍取G(m)的全部特征 χ

证 设W为f(p)次单位根集合,我们有恒等式

$$\prod_{w \in W} (1 - wT) = 1 - T^{f(\mathfrak{p})}.$$

由此以及对于每个 $w \in W$,均有G(m)的g(p)个特征 χ 使 $\chi(\bar{p})=w$,就可推出引理 6.

现在我们定义新的函数 $\zeta_m(s)$:

$$\zeta_{\mathbf{m}}(s) = \prod_{\mathbf{x}} L(s, \mathbf{x}),$$

其中乘积遍取过G(m)的所有特征 χ .

命题 13
$$\zeta_m(s) = \prod_{p+m} \frac{1}{\left(1 - \frac{1}{p^{f(p)s}}\right)^{g(p)}}$$
.

这是具有正整系数的 Diriohlet 级数, 并且在半平面 Re(s) > 1 中收敛.

证 将每个 L 函数代之以它的乘积展开式,然后利用引理 $6(取 T - p^{-s})$,我们得到 $\zeta_m(s)$ 的上述乘积展开式。由这个展开式明显看出它的级数具有 正整 系数。它在 Re(s) > 1 中收敛则是显然的。

定理1 (a) $\zeta_m(s)$ 在 s=1 有单极点.

(b) 对于每个 $\chi \neq 1$, $L(1, \chi) \neq 0$,

证 如果 $\chi \neq 1$ 时 $L(1,\chi) \neq 0$, 那末 L(s,1) 在 s=1 有单极点这一事实表明 ζ_m 在 s=1 也有一单极点, 因此 $(b) \Rightarrow (a)$. 现在设对某个 $\chi \neq 1$ 有 $L(1,\chi) = 0$, 则函数 ζ_m 在 s=1 处全纯, 因此在 Re(s) > 0 的每个 s 处都全纯(见命题 11 和命题 12). 由于它是具有正系数的 Dirichlet 级数, 它在此区域的每点均收敛(命题 7). 但这是荒唐的, 因为 ζ_m 的 p— 因于等于

$$\frac{1}{(1-p^{-f(p)s})^{g(p)}} = (1+p^{-f(p)s}+p^{-2/(p)s}+\cdots)^{g(p)},$$

它控制级数

$$1+p^{-\phi(m)s}+p^{-2\phi(m)s}+\cdots,$$

从而 5m 的每个系数均大于级数

$$\sum_{(n,m)=1} n^{-\phi(m)s}$$

的相应的系数,而后一级数在 $s = \frac{1}{\phi(m)}$ 处发散. 这就完成了证明.

注 不计有限多个因子,函数 ζ_m 等于与m次单位根域相结合的 zeta 函数. ζ_m 在 s=1 有单极点这一事实也可以从代数数域 zeta 函数的一般结果推出。

§4. 密度和 Dirichlet 定理

41. 密度

设P为素数集合,我们已经看到(命题 10 的 5 2),当5→1 时有

$$\sum_{p \in P} \frac{1}{p^s} \sim \log \frac{1}{s-1}.$$

设A为P的子集、我们说A以实数h为密度,是指当 $s\rightarrow 1$ 时,比值

$$\left(\sum_{p \in A} \frac{1}{p^s}\right) / \left(\log \frac{1}{s-1}\right)$$

趋于 k (当然这时有 $0 \le k \le 1$)。 关于算术级数的素数定理可以精密化成如下的形式。

定理2 设 $m \ge 1$, 并设 a 适合(a, m) = 1,

$$P_{\mathfrak{s}} = \{ p \in P | p \equiv a \pmod{m} \},$$

则集合 P_a 有密度 $1/\phi(m)$.

(换句话说,素数在 mod m 不同的缩同余类中是"均匀分 a"的。)

系 P。是无限集合.

这是因为有限集合的密度为零。

4.2. 一些引理

设 χ 是G(m)的特征,令

$$f_{x}(s) = \sum_{n \neq x} \chi(p)/p^{s}$$

该级数当 s>1 时收敛、

引理7 如果 $\chi=1$, 则当 $s\rightarrow1$ 时

$$f_{\mathbf{x}} \sim \log \frac{1}{\mathbf{s} - \mathbf{1}}$$
.

这是因为 f_1 与级数 $\Sigma \frac{1}{v^*}$ 只相差有限多项.

引理8 如果 $\chi \neq 1$, 则当 $s \rightarrow 1$ 时 f_{χ} 保持为有界.

证 我们使用函数 L(s, z)的对数,但是它的意义必需说得更确切些(因为将 \log 说成一个函数并不合适)。

 $L(s, \chi)$ 由乘积 $\prod \frac{1}{1-\chi(p)p^{-s}}$ 所定义. 对于 $\operatorname{Re}(s) > 1$, 每个因子均有形式 $\frac{1}{1-\alpha}$, 其中 $|\alpha| < 1$. 我们定义 $\log \frac{1}{1-\alpha}$ 为 $\sum \frac{\alpha^s}{n}$, 然后定义 $\log L(s, \chi)$ 为级数:

$$\begin{split} \log L(s, \ \chi) &= \sum \log \frac{1}{1 - \chi(p) p^{-s}} \\ &= \sum_{n,p} \frac{\chi(p)^n}{n p^{ns}} \quad (\text{Re}(s) > 1), \end{split}$$

这级数显然是收敛的、(一个等价的定义是: 在 Re(s) > 1 中取 log L(s, z) 的一个"分支",使在实轴上当 $s \to +\infty$ 时,它变成零.)

现在将 $\log L(s, \chi)$ 拆成两部分:

$$\log L(s, \chi) = f_{\chi}(s) + F_{\chi}(s),$$

其中

$$F_{\chi}(s) = \sum_{p,n>2} \frac{\chi(p)^n}{np^{ns}}.$$

定理 1 和命题 10 的系 2 表明 $\log L(s, \chi)$ 和 $F_{\chi}(s)$ 在 $s \rightarrow 1$ 时保持为有界。从而 $f_{\chi}(s)$ 亦是如此,这就证明了引理。

4.3. 定理2的证明

我们必需研究函数

$$g_a(s) = \sum_{p \in P_a} \frac{1}{p^t}$$

在 8→1 时的性状。

引理 9
$$g_a(s) = \frac{1}{\phi(m)} \sum_{\mathbf{x}} \chi(a)^{-1} f_{\tau}(s),$$

求和遍取 G(m)的所有特征 χ

证 将 f_x 用它的定义公式代入,函数 $\sum \chi(a)^{-1}f_\chi(s)$ 可以写成

$$\sum_{p+m} \left(\sum_{\chi} \chi(a^{-1}) \chi(p) \right) / p^{s}.$$

但是 $\chi(a^{-1})\chi(p) = \chi(a^{-1}p)$, 由命题 4 的系我们有

$$\sum_{x} \chi(a^{-1}p) = \begin{cases} \phi(m), & \text{if } m \neq a^{-1}p = 1 \pmod{m}; \\ 0, & \text{if } m = 1 \end{cases}$$

于是便得到函数 $\phi(m)g_a(s)$.

定理2现在显然、事实上,引理7表明对于 χ=1有

$$f_x(s) \sim \log \frac{1}{s-1}$$
.

而引理8表明其余的 fx 均有界、利用引理9我们看到

$$g_{\bullet}(s) \sim \frac{1}{\phi(m)} \log \frac{1}{s-1},$$

这就意味着 P_a 的密度是 $\frac{1}{\phi(m)}$, 证毕.

4.4. 一个应用

命题 14 设 a 为整数,并且不是平方数。则满足

$$\left(\frac{a}{p}\right) = 1$$

的素数 p 所成的集合有密度 1/2

证 我们可设 a 是无平方因子的。令 m=4|a|, χ_a 为 § 1.3 命 题 5 中所 定 义的 mod m 特 征, $H \subset G(m)$ 是 χ_a 在 G(m) 中的核。如果素数 p 与 m 互 案,以 \overline{p} 表示它在 G(m) 中的象。我们有 $\left(\frac{a}{p}\right) = 1 \Leftrightarrow \overline{p} \in H$ 。根据定理 2,满足这个条件

的素数集合有密度 1/(G:H) = 1/2.

系 设 a 为整数,如果方程 $X^2-a=0$ 对 几乎 所 有 的 $p \in P$ 均有 mod p 解,则它在 Z 中也有解。

注 对于其他类型的一些方程也有类似结果,例如:

i) 设 $f(x) = a_0 X^n + \dots + a_n$ 是整系数 n 次多项式,并且在 Q 上不可约. 令 K 为由 f 的全体根生成的域(在 Q 之某个代数闭包中)、又令 $N = [K: \mathbf{Q}]$,我们有 $N \ge n$ 。令

 $P_f = \{p \in P | f \pmod{p}$ 完全分解,即 $f \pmod{p}$ 的根均 $\in \mathbb{F}_p\}$ 。可以证明 P_f 有密度 $\frac{1}{N}$. (其证明方法与 Dirichlet 定理类似,使用域 K 的 zeta 函数在 s=1 有单极点这一事实。)还可以给出集合

 $P_f = \{ p \in P | f \pmod{p}$ 的简化在 \mathbb{F}_p 中至少有一根}的密度,其值为形如 q/N 的数,其中 $1 \leq q \leq N$ (除了平凡情形 n=1 之外)。

ii) 更一般地,令 {f_a(x₁, ···, x_n)}为一族整系数多项式,
 令

 $Q = \{p \in P | f_a \pmod{p}\}$ 的简化在(**F**_p)"中有公共零点}。可以证明(见 J. Ax, Ann. of Maths., 85, 1967, pp. 161~183), Q 具有密度, 其密度为有理数, 并且只有当 Q 是有限集合时其密度才为零。

4.5. 自然密度

本节中所使用的密度叫作"解析密度"(或"Diriohlet密度")。虽然它看起来复杂,但用起来却很方便。

还有另一个密度叫作"自然密度": P 的子集合 A 叫作有自然密度 k, 如果当 $n\to\infty$ 时比值

A 中 $\leq n$ 的元素个数 P 中 $\leq n$ 的元素个数

趋于 4.

可以证明,如果 A 有自然密度 k,则 A 的解析密度也存在并且等于 k. 另一方面,却存在着这样的集合,它有解析密度但是却没有自然密度。例如集合

 $P^{1}=\{p\in P|p(在+进制中)$ 的个位是 1} 就是如此, 利用素数定理不难看出它没有自然密度,另一方面,Bombieri 给我看了一个 P^{1} 的解析密度是存在的证明(它等于 $\log_{10}2=0.3010300\cdots$)

但是,对于上面所考虑的素数集合是不会发生这种现象的:集合 $\{p \in P \mid p \equiv a \pmod{m}\}$ 有自然密度 $\Big(\preceq (a, m) = 1$ 时它等于 $\frac{1}{\phi(m)}\Big)$. 对于上一小节的集合 P_{t} , P_{t} , 和 Q 也是同样的. 证明(以及"误差项"的估计)见 K. Prachar: Primzahlverteilung,第五章§7.

第七章 模 形 式

§1. 模 群

1.1. 定义

令 H 表示 \mathbf{C} 的上半平面, 即集合 $\{z \in \mathbf{C} | \text{Im}(z) > 0\}$ 。 令 $\text{SL}_2(\mathbf{R})$ 为群

$$\left\{ \left(\begin{array}{cc} a & b \\ c \cdot d \end{array} \right) \middle| a, b, c, d \in \mathbb{R}, ad - bc = 1 \right\}$$

我们用下述方式将 $SL_2(\mathbf{R})$ 作用在 $\tilde{\mathbf{C}} = \mathbf{C} \cup \{\infty\}$ 之上:

如果
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbf{R}), z \in \widetilde{\mathbb{C}},$$
 我们令
$$gz = \frac{az + b}{cz + d}.$$

容易验证有公式

(1)
$$\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}$$
.

这表明 H 在 $SL_2(\mathbf{R})$ 的作用下仍旧是 H. 注意 $SL_2(\mathbf{R})$ 中元 $\mathbf{z} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ 在 H 上作用平凡, 因此我们可以考虑 作用群是 $PSL_2(\mathbf{R}) = SL_2(\mathbf{R})/\{\pm 1\}$ (这个群的作用 是 忠 实 的,甚至可以证明这是 H 的解析自同构群).

设 $SL_2(\mathbf{Z})$ 为整系数矩阵所组成的 $SL_2(\mathbf{R})$ 的子群,它是 $SL_2(\mathbf{R})$ 的离散子群.

定义 1 群 $G=\mathrm{SL}_2(\mathbf{Z})/\{\pm 1\}$ 叫作模群。它是 $\mathrm{SL}_2(\mathbf{Z})$ 在 $\mathrm{PSL}_2(\mathbf{R})$ 中的象。

如果 $g \in \begin{pmatrix} a & b \\ o & d \end{pmatrix}$ 为 $\operatorname{SL}_2(\mathbf{Z})$ 中元素,我们常常用同一符号表示它在模群 G 中的象。

1.2. 模群的基本区域

设 $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, 它们均是 G 中元素. 我

们有

$$Sz = -\frac{1}{z}$$
, $Tz = z + 1$, $S^2 = 1$, $(ST)^3 = 1$.

另一方面,令

$$D = \{z \in H \mid |z| \geqslant 1, | \operatorname{Re}(z) | \leqslant 1/2 \}.$$

下图画出了 D 被群 G 中元素

{1, T, TS, ST-1S, ST-1, S, ST, STS, T-1S, T-1} 所变成的各区域。

我们要证明 D 是 G 在半平面 H 上作用的基本区域。 更确切地说。

定理 1 (1) 对于每个 $z \in H$, 存在 $g \in G$, 使 $gz \in D$.

- (2) 设 D 中两个不同的点 z 和 z' 是 mod G 共 轭 (congruent)的,则或者 $\text{Re}(z) = \pm \frac{1}{2}$ 并且 $z = z' \pm 1$,或者 |z| = 1 并且 $z' = -\frac{1}{z}$.
- (3) 令 $z \in D$, $I(z) = \{g \in G | gz = z\}$ 是 z 在 G 中的 固定 子群, 则除了下述三种情形之外我们有 $I(z) = \{1\}$,

z=i, 此时 I(z) 是由 S 生成的二阶群.

 $z = \rho = e^{2\pi i/3}$, 此时 I(z) 是由 ST 生成的三阶群。

 $z=-\stackrel{\sim}{\rho}=e^{\pi i}$ 3, 此时 I(z) 是由 TS 生成的三阶群. 由 (1) 和 (2) 推出.

系 正则映射 $D \rightarrow H/G$ 是映上,并且它在 D 的内部的限制是单射。

定理2 群G由S和T生成.

定理1和定理2的证明 令 G' 是由 S 和 T' 生成的 G 之子群, $z \in H$,我们要证明存在 $g' \in G'$ 使 $g'z \in D$,这就证明了定理1的论断(1),如果

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G'$$

劂

(1)
$$\operatorname{Im}(gz) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$$

因为 o 和 d 是整数,从而使|cz+d| 小于一给定数的数对(c,d) 只有有限多个。这表明存在 $g \in G'$,使 Im(gz) 最大。现在取整数 n,使 T^ngz 的实部在 -1/2 和 1/2 之间。 元素 $z'=T^ngz$ 便属子 D。事实上,这只需证明 $|z'| \ge 1$ 。 如果|z'| < 1,则元素 -1/z' 的虚部严格地大子 Im(z'),而这是不可能的。 子是元素 $g'=T^ng$ 即有所需性质。

 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, 使 $gz \in D$. 必要时以 (gz, g^{-1}) 代替 (z, g), 我们可没 $\operatorname{Im}(gz) \geqslant \operatorname{Im}(z)$, 即 $[oz+d] \leqslant 1$. 如果 $|e| \geqslant 2$. 这 显然是不可能的。于是只剩下 c=0, ±1 三种情形。如果 c=0, 我们有 $d=\pm 1$, 而 g 是平移 $\pm b$. 因为 $\mathrm{Re}(z)$ 和 $\mathrm{Re}(gz)$ 均在 -1/2 和 1/2 之间,从而 或者 b=0 并且 g=1; 或者 $b=\pm 1$. 对于后一种情形, Re(z)和 Re(gz)必然一为-1/2, 一 为 1/2, 如果 c=1, 则 $[z+d] \le 1 \Rightarrow d=0$, 除非 $z=\rho$ 或 $-\rho$. 对 于 $z=\rho$, 我们可以有d=0,1; 对于 $z=-\bar{\rho}$ 我们有d=0,-1. 情形 d=0 给出 $|z| \leq 1$,于是 |z|=1,另一方面,ad-be=1导致 b=-1, 从而 gz=a-1/z. 而在证明(1)的过程中推出 a=0, 除非 $\operatorname{Re}(z)=\pm\frac{1}{2}$,即除非 $z=\rho$ 或 $-\frac{1}{\rho}$. 当 $z=\rho$ 时我 们有a=0, -1: 当 $z=-\frac{1}{\rho}$ 时则有a=0, +1. 情形 $z=\rho$, d=1 给出 a-b=1 和 $g\rho=a-\frac{1}{1+a}=a+\rho$, 从而 a=0, 1. 情 形 $z=-\overline{\rho},\ d=-1$ 给出类似论断。 最后, 情形 c=-1 在 a, b, c, d 均改变符号时(此时 g 不变)可以化为情形 c=1. 这就 证明了论断(2)和(3)的正确性。

剩下要证 G'=G. 令 $g \in G$, 取 z_0 为 D 之内 点 (例 如 取 $z_0=2i$),令 $z=gz_0$. 我们从上面已经知道,存在 $g' \in G'$ 使 $g'z \in D$. D 中两点 z_0 和 $g'z=g'gz_0$ 是 $\operatorname{mod} G$ 共轭的,并且它们 当中有一个是 D 之内点、根据 (2) 和 (3),即知这二点是同一点,于是 g'g=1,即 $g \in G'$. 这就完成了证明

注 可以证明 $\langle S, T | S^2 = (ST)^3 = 1 \rangle$ 是群 G 的表现 (presentation),或者等价地说成 G 是由 S 生成的二阶 循环群和 ST 生成的 3 阶循环群的自由积.

§ 2. 模函数

2.1. 定义

定义 2 设 k 是整数. 我们称函数 f 是权为 $2k^{(4)}$ 的弱模函数, 如果 f 在半平面 H 上亚纯并且有如下的关系式:

(2)
$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right),$$

$$\Re - i \Im \left(\frac{a-b}{c-d}\right) \in \operatorname{SL}_2(\mathbf{Z}),$$

设 g 是 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ 在 G 中的象,我们有

$$\frac{d(gz)}{dz}=(cz+d)^{-2},$$

于是关系(2)可以写成

$$\frac{f(gz)}{f(z)} = \left(\frac{d(gz)}{dz}\right)^{-k},$$

或者

(3)
$$f(gz)d(gz)^{k} = f(z)dz^{k}.$$

这意味着"权 k 的微分型" $f(z)dz^k$ 在 G 下不变。因为 G 是由元素 S 和 T 生成的 (见定理 2),这只需对 S 和 T 检查不变性即可。于是给出。

命题 1 设函数 f 在 H 上亚纯、则函数 f 是权 2k 的弱模函数的充要条件是它满足下面两个条件。

$$(4) f(z+1) = f(z),$$

(5)
$$f\left(-\frac{1}{z}\right) = z^{2k} f(z).$$

假若关系式(4)成立,我们可以将 f 表示成 $q = e^{2\pi t_0}$ 的函

[【]注】 有些作者称了是"权为 -26的"或"权为 k 的"。

数,这个函数记成f,它是圆盘|q|<1(去掉原点)中的亚纯函数.如果f可扩充成在原点的亚纯函数(或全纯函数),我们便称f在 ∞ 处亚纯(或全纯).这意味着f在原点某邻域中有 Laurent 展开

$$\widetilde{f}(q) = \sum_{n=-\infty}^{+\infty} a_n q^n,$$

其中对于充分小的 n (或对于 n < 0), $a_n > 0$.

定义8 一个弱模函数如果在 ∞ 处亚纯, 就称作是模函数.

如果f在 ∞ 处全纯, 我们令 $f(\infty) = \tilde{f}(0)$, 这便是f在 ∞ 处的值.

定义 4 处处(包括 ∞)全纯的模函数称为模形式。如果这样一个函数在 ∞ 处是 0, 便称为 cusp 型。(cusp form, 德文 Spitzenform, 法文 forme parabolique.)

于是,权 2k 的模形式由级数

(6)
$$f(z) = \sum_{n=0}^{\infty} a_n q^n = \sum_{n=0}^{\infty} a_n e^{2\pi i n x}$$

给出,它对于|q| < 1(即Im(z) > 0)收敛,且有恒等式

(5)
$$f\left(-\frac{1}{z}\right) = z^{2k} f(z).$$

如果 $a_0 = 0$,它便是 ousp 型.

【例】 1) 如果f和f'是权2k和2k'的模形式,则乘积ff'是权2k+2k'的模形式.

2) 我们以后将看到,函数

$$q \prod_{n=1}^{\infty} (1-q^n)^{24} = q - 24q^2 + 252q^3 - 1472q^4 + \cdots$$

是权 12 的 ousp 型。

2.2. 格函數和模函數

我们先回忆一下什么是有限维实向县空间V中的格。这是V的一个子群 Γ , Γ 满足下面几个彼此等价的条件之一。

- i) Γ 离散并且 V/Γ 紧;
- ii) Γ 离散并且生成 \mathbf{R} -向量空间 Γ ;
- iii) 存在 V 的 \mathbf{R} —基 (e_1, \dots, e_n) ,它是 Γ 的 \mathbf{Z} —基(即 Γ = $\mathbf{Z}e_1 \oplus \dots \oplus \mathbf{Z}e_n$).

设 \mathscr{Q} 是 \mathbf{C} (看作 \mathbf{R} -向量空间)的全部格所构成之集合。

$$M = \{(\omega_1, \omega_2) \in (\mathbb{C}^*)^2 | \operatorname{Im}(\omega_1/\omega_2) > 0 \}.$$

对于每个 $(\omega_1, \omega_2) \in M$,我们结合一个以 $\{\omega_1, \omega_2\}$ 为基的格 $\Gamma(\omega_1, \omega_2) = \mathbf{Z}\omega_1 \oplus \mathbf{Z}\omega_2$

于是我们得到一个映射 $M \rightarrow \mathcal{R}$, 它显然是映上。

我们令

$$\omega_1' = a\omega_1 + b\omega_2, \quad \omega_2' = c\omega_1 + d\omega_2,$$

显然 $\{\omega_1, \omega_2\}$ 也是 $I'(\omega_1, \omega_2)$ 的基。而且若令

$$z=\omega_1/\omega_2, \quad z'=\omega_1'/\omega_2',$$

我们有

$$z' = \frac{az + b}{cz + d} = gz.$$

这证明 Im(z') > 0,从而 $(\omega_1, \omega_2) \in M$.

命题 2 M 中两个元素定义同一个格的充要条件是它们 $\operatorname{mod}\operatorname{SL}_2(\mathbf{Z})$ 共轭.

证 我们刚才看到条件是充分的. 反之,如果 (ω_1, ω_2) 和 $(\omega_1, \omega_2) \in M$,它们定义同一个格,则存在行列式为 ± 1 的整系数矩阵 $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,它将第一组基变成第二组基、如果 $\det(g) < 0$,直接计算可知 $\operatorname{Im}(\omega_1/\omega_2)$ 的符号与 $\operatorname{Im}(\omega_1/\omega_2)$ 的

符号相反。 因此若它们的符号相同,必然 det(g) = 1,这就证明了命题。

于是我们可以把 C 的格集 合 \mathcal{R} 等 同 于 M 被 $\mathrm{SL}_2(\mathbf{Z})$ 作用的商集。

现在由

 $\Gamma \mapsto \lambda \Gamma$ 和 $(\omega_1, \omega_2) \mapsto (\lambda \omega_1, \lambda \omega_2)$, $\lambda \in \mathbb{C}^*$ 将 \mathbb{C}^* 作用于 \mathcal{R} 和 M 上. $\operatorname{H}(\omega_1, \omega_2) \mapsto z = \omega_1/\omega_2$ 将商 M/\mathbb{C}^* 等同于 H, 这个等同将 $\operatorname{SL}_2(\mathbf{Z})$ 在 M 上的作用 转 变 成 $G = \operatorname{SL}_2(\mathbf{Z})/\{\pm 1\}$ 在 H 上的作用 (见 § 1.1). 从而

命题 8 映射 $(\omega_1, \omega_2) \mapsto \omega_1/\omega_2$ 转到商集合之后,给出 \mathcal{G}/\mathbb{C}^* 到 H/G 上的一一映射. (因此, H/G 中元素不计相似 (homothety) 等同于 \mathbb{C} 的一个格.)

注 让我们将C的格 Γ 结合一个椭圆曲线 $E_r = C/\Gamma$. 易知两个格 Γ 和 Γ' 定义出同构的椭圆曲线,其充要条件是它们为相似的格. 这就给出 $H/G = \mathcal{R}/C$ *的第三个刻划方式:它是椭圆曲线同构类集合.

现在让我们转到模函数上来. 设 F 是 \mathcal{R} 上函数, 取值于 C. 令 $k \in \mathbb{Z}$. 我们称 F 是权为 2k 的是指对于每个格 I 和 $\lambda \in C^*$ 均有

(7)
$$F(\lambda \Gamma) = \lambda^{-2k} F(\Gamma).$$

设F是这样一个函数。如果 $(\omega_1, \omega_2) \in M$,我们以F (ω_1, ω_2) 表示F在格 $\Gamma(\omega_1, \omega_2)$ 上的值。公式(7)就变成

(8)
$$F(\lambda \omega_1, \lambda \omega_2) = \lambda^{-2k} F(\omega_1, \omega_2).$$

而且 $F(\omega_1, \omega_2)$ 在 $SL_2(\mathbf{Z})$ 对 M 的作用下是不变的.

公式(8)表示乘积 $\omega_2^{2k}F(\omega_2, \omega_2)$ 只依赖于 $z=\omega_1/\omega_2$ 。于是存在 H 上函数 f、使得

(9)
$$F(\omega_2, \omega_2) = \omega_2^{-2k} f(\omega_1/\omega_2).$$

写下F在 $SL_2(\mathbf{Z})$ 下不变,我们看到f满足恒等式:

(2)
$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right),$$

$$\nabla f - U\left(\frac{a-b}{c-d}\right) \in SL_2(\mathbf{Z}).$$

反之,如果f满足(2)式,则由公式(9)给出与f相结合的 \mathcal{R} 上函数F,F是权2k的函数。因此,我们可以把权2k的模函数等同于权2k的某个格函数。

2.3. 模函数的例子; Eisenstein 级数

引理 1 设 Γ 为 C 中格. 则级数 $\sum_{\gamma \in \Gamma} \frac{1}{|\gamma|^{\sigma}}$ 当 $\sigma > 2$ 时收敛.

(符号 Σ' 表示求和遍取 Γ 的非零元素.)

证 我们可以象处理级数 $\sum 1/n^{\alpha}$ 那样去做,即通过考虑二重积分 $\int \frac{dxdy}{(x^2+y^2)^{\sigma/2}}$ (积分区域是中心在 0 的平面 圆盘)来控制引理中的级数,利用极坐标很容易计算这个二重积分。另一个本质上等价的方法是,注意到 I' 中使 $|\gamma|$ 在两个相邻整数 n 和 n+1 之间的元素个数是 O(n),因此引理中级数的收敛性归结为级数 $\sum 1/n^{\sigma-1}$ 的收敛性.

现在令 k>1 为整数. 如果 Γ 是 C 的格, 令

(10)
$$G_h(\Gamma) = \sum_{\gamma \in \Gamma} 1/\gamma^{2k}.$$

根据引理 1,这个级数是绝对收敛的。显然 G_k 是权 2k 的函数,称作是指标为 k (有些作者称作是指标为 2k)的 Eisenstein 级数、象前一节那样,我们可以把 G_k 看作是 M 上的函数:

(11)
$$G_{\mathbf{k}}(\omega_1, \ \omega_2) = \sum_{m,n} \frac{1}{(m\omega_1 + n\omega_2)^{2k}}.$$

这里符号 Σ' 表示 求和 遍取全部不等于 (0,0) 的整数对 (m,n). Π 上对应于 G_k 的函数 $(由前一节所给出的) 仍旧记为 <math>G_k$. 根据公式 (9) 和 (11) 我们有

(12)
$$G_{\mathbf{k}}(z) = \sum_{m,n} \frac{1}{(mz+n)^{2k}}.$$

命题 4 设 k>1 为整数、则 Eisenstein 级数 $G_k(z)$ 是权 2k 的模形式、 我们有 $G_k(\infty)=2\zeta(2k)$,其中 ζ 是 Riemann zeta 函数。

证 上面的推理已经表明 $G_k(z)$ 是权 2k 的弱模形式. 我们还必需证明 G_k 处处(包括 ∞) 全纯. 设 $z \in D(\mathbb{Q} \S 1.2)$,则

$$|mz+n|^2 = m^2z\bar{z} + 2mn\operatorname{Re}(z) + n^2 \ge m^2 - mn + n^2$$

= $|m\rho - n|^2$.

根据引理 1,级数 $\Sigma' \frac{1}{|m\rho-n|^{2k}}$ 收敛. 这表明级数 $G_k(z)$ 在 D 中正则收敛,将此结果用于 $G_k(g^{-1}z)$, $g \in G$, 即知在每个 gD 中, $G_k(z)$ 也正则收敛. 因为它们覆盖 H (定理 1),因此 G_k 在 H 中全纯. 剩下要证 G_k 在 ∞ 处也全纯 (并且求出它 在 ∞ 的值). 这只要证明 G_k 在 $\operatorname{Im}(z) \to \infty$ 时有极限即可,然而我们仍可设 z 在基本区域 D 中。由于在 D 中的一致收敛性,我们可以逐项取极限。 $1/(mz+n)^{2k}$ 这一项当 $m \neq 0$ 时给出 0, m=0 时给出 $1/n^{2k}$. 因此

$$\lim G_k(z) = \sum_{k=1}^{\infty} \frac{1}{n^{2k}} = 2 \sum_{k=1}^{\infty} \frac{1}{n^{2k}} = 2\zeta(2k).$$

证毕.

注 在下面 \S 4.2 中我们将给出 G_k 展成 $g = e^{2\pi i \theta}$ 的幂级数展开式.

【例】 权数最小的 Eisenstein 级数是 G₂和 G₈, 它们的

权分别为 4 和 6. 通常(由于椭圆曲线 理论)它们代之以:

(13)
$$g_2 = 60G_2, \quad g_3 = 140G_3.$$

我们有 $g_2(\infty) = 120\zeta(4)$, $g_3(\infty) = 280\zeta(6)$. 利用已知的值 $\zeta(4)$ 和 $\zeta(6)$ (例如见下面 § 4.1), 我们发现

(14)
$$g_2(\infty) = \frac{4}{3} \pi^4, \quad g_3(\infty) = \frac{8}{27} \pi^6.$$

如果我们令

(15)
$$\Delta = g_2^3 - 27g_3^2,$$

便有 $\Delta(\infty)=0$. 这就是说, Δ 是权 12 的 ousp 型。

与椭圆曲线的关系

设 Γ 是C的格,并令

(16)
$$\mathscr{C}_{r}(u) = \frac{1}{u^{2}} + \sum_{\gamma \in r} \left(\frac{1}{(u - \gamma)^{2}} - \frac{1}{\gamma^{2}} \right)$$

是对应的 Weierstrass 函数 $G_k(\Gamma)$ 出现在 G_r 的 Laurent 展开式中:

(17)
$$\mathfrak{C}_{\Gamma}(u) = \frac{1}{u^2} + \sum_{k=2}^{\infty} (2k-1) G_k(\Gamma) u^{2k-2}.$$

如果令 $x=\mathfrak{C}_{\Gamma}(u)$, $y=\mathfrak{C}'_{\Gamma}(u)$, 我们有

(18)
$$y^2 = 4x^3 - g_2x - g_3,$$

其中 $g_2 = 30G_2(\Gamma)$, $g_3 = 140G_3(\Gamma)$ 如上所示. $\Delta = g_2^2 - 27g_3^2$ 与 多项式 $4x^3 - g_2x - g_3$ 的判别式只相差一个常数因子.

可以证明,在射影平面中由方程(18)所定义的三次曲线 同构于椭圆曲线 \mathbf{C}/Γ . 特别地,它是非奇 异 曲 线,这 就 表明 $\Delta \neq 0$.

[[]注] 例如见 H. Cartan,单复变量或多复变量解析函数的初等理论,第 V 章 § 2, n°5。(英译本; Addison-Wesley 公司。)

§ 3. 模形式空间

3.1. 模函数的零点和极点

设 f 是 H 上不恒等于零的亚纯函数, 而 p 是 H 中一点. 使 f/(z-p)* 在 p 处全纯且不为零的整数 n 称作是 f 在 点 p 的阶, 记为 $v_p(f)$.

如果 f 是权为 2k 的模函数, 恒等式

$$f(z) = (cz+d)^{-2k} f\left(\frac{az+b}{cz+d}\right)$$

最后,我们以 ϵ_0 表示点 p 的固定子群的阶数。如果 $p \mod G$ 共轭于 i 或 p, 则 ϵ_0 分别等于 2 或 3, 否则有 $\epsilon_0 = 1$, 见定理 1.

定理3 设 f 是权 2k 的不恒为零的模函数,则

(19)
$$v_{\infty}(f) + \sum_{p \in H/G} \frac{1}{e_p} v_p(f) = \frac{k}{6}.$$

[我们还可以把这个公式写成

. 116 .

(20)
$$v_{r}(f) + \frac{1}{2}v_{i}(f) + \frac{1}{3}v_{\rho}(f) + \sum_{p \in H, G} v_{p}(f) = \frac{k}{6}$$
.

其中符号 Σ^* 表示求和遍取 H/G 中不属于 i 和 ρ 之 共 轭 类 的那些点.]

证 首先注意定理 3 中所写的和式是有意义的,即 f mod G 只有有限个零点与极点。事实上,因为 f 亚纯,从而存在 r>0,使 f 在 0<|q|< r 时既没有零点又没有极点。这表示 f 在 $Im(z)>e^{2\pi r}$ 中既没有零点又没有极点。现在,基本区域 D 中由不等式 $Im(z) \leq e^{2\pi r}$ 所定义的部分 D_r 是紧集。因

为f在H中亚纯,它在 D_r 中只有有限多个零点和极点,这就是我们的论断。

为了证明定理 3,我们要在 D 的边界上对 $\frac{1}{2\pi i}$ $\frac{df}{f}$ 积分. 更确切地说:

1)设 f 在 D 的边界上可能除了 i, ρ 和 $-\bar{\rho}$ 之外没有零点与极点,则存在着如图 2 所示的围道 8, 其内部包含 f 之每个不共轭于 i 或 ρ 的零点和极点的一个代表点。由残数定理我们有

$$\frac{1}{2\pi i} \int_{\sigma} \frac{df}{f} = \sum_{p \in H/G} v_p(f).$$

另一方面:

a) 变量代换 $g=e^{2\pi iz}$ 把孤 EA 变成中心在 g=0 的圆周 ω (具有负方向),并且可能除了 0 之外不包含 f 的任何零点 与极点、于是

$$\frac{1}{2\pi i} \int_{E}^{A} \frac{df}{f} = \frac{1}{2\pi i} \int_{\omega} \frac{df}{f} = -v_{\infty}(f).$$

b) 在包含弧 BB' 的圆周上(沿负方向)对 $\frac{1}{2\pi i}\frac{df}{f}$ 积分, 其值为 $-v_o(f)$. 如果此圆 $4-\frac{\pi}{2\pi i}$

周半径趋于 0,则角 \widehat{BB} 趋于 $\frac{2\pi}{6}$. 于是

$$\frac{1}{2\pi i} \int_{B}^{B'} \frac{df}{f} \rightarrow -\frac{1}{6} v_{\rho}(f).$$

类似地当弧 CC' 和 DD' 的半 径趋于 0 时。

$$\frac{1}{2\pi i} \int_{0}^{r} \frac{df}{f} \rightarrow -\frac{1}{2} v_{i}(f),$$

$$\frac{1}{2\pi i} \int_{D}^{D'} \frac{df}{f} \rightarrow -\frac{1}{6} v_{e}(f)$$
.

e) T 将弧 AB 变成弧 ED'。由于 f(Tz) = f(z),我们得到

$$\frac{1}{2\pi i} \int_{A}^{B} \frac{df}{f} + \frac{1}{2\pi i} \int_{D'}^{B} \frac{df}{f} = 0.$$

d) S 将弧 B'C 变成弧 DC'. 由于 $f(Sz) = z^{2k}f(z)$,我们得到

$$\frac{df(Sz)}{f(Sz)} = 2k \frac{dz}{z} + \frac{df(z)}{f(z)}.$$

于是当弧 BB', CC' 和 DD' 的半径均趋于 0 时,

$$\frac{1}{2\pi i} \int_{B'}^{c} \frac{df}{f} + \frac{1}{2\pi i} \int_{C'}^{D} \frac{df}{f} = \frac{1}{2\pi i} \int_{B'}^{c} \left(\frac{df(z)}{f(z)} - \frac{df(Sz)}{f(Sz)} \right)$$

$$= \frac{1}{2\pi i} \int_{B'}^{c} \left(-2k \frac{dz}{z} \right) \rightarrow -2k \left(-\frac{1}{12} \right) = \frac{k}{6}.$$

现在写下我们给出的 $\frac{1}{2\pi i}\int_{a}\frac{df}{f}$ 的两个表达式,并令其相等, 取极限之后便得到公式(20).

2) 假如f在半直 线

$$\left\{z \mid \operatorname{Re}(z) = -1/2, \\ \operatorname{Im}(z) > \frac{\sqrt{3}}{2}\right\}$$

上有零点或极点 λ ,可以将围道在 λ 和 $T\lambda$ 之邻域内稍加变化(如图3所示,绕 $T\lambda$ 之圆弧是绕 λ 之圆弧经T变换

而得到的),然后重复上面的证明即可.

如果f在D的边界上有几个零点或极点,也可以用类似的方法去作。

注 如果在 H/G 的紧致化上定义一个复解析结构,可以避免这个比较复杂的证明 (例如见复乘法讨论班,Lecture Notes on Math., $n^{\circ}21$, H).

3.2. 模形式代数

如果 k 是整数,我们以 M_k 和 M_k^2 分别表示权 2k 模形式的 C-向量空间和权 2k cusp 型的 C-向量空间,见§ 2.1 定义 4. 根据定义, M_k^2 是 M_k 上线性型 $f \mapsto f(\infty)$ 的核,因此 dim $M_k/M_k^2 \le 1$,此外若 $k \ge 2$,Eisenstein 级数 G_k 是 M_k 中元素,使得 $G_k(\infty) \ne 0$ (见§ 2.3 命题 4),从而

$$M_k = M_k^0 \oplus \mathbf{C} \cdot G_k \quad (k \ge 2 \text{ lpf}).$$

最后我们记得曾经以△表示 M2 中元素 g2-27g2, 其中

$$g_2 = 60G_2$$
, $g_3 = 140G_3$

定理4 (i) 当 k < 0 和 k = 1 时, $M_k = 0$.

- (ii) 当 k=0, 2, 3, 4, 5 时, M_k^0 是一维向量空间, 其基分别为 1, G_2 , G_3 , G_4 , G_5 , 而 $M_k^0=0$.
 - (iii) 乘以 Δ 的映射是 M_{k-6} 到 M_k^0 上的同构。

证 设f 是 M_k 中非零元素、公式

(20)
$$v_{\infty}(f) + \frac{1}{2} v_{i}(f) + \frac{1}{3} v_{p}(f) + \sum_{p \in H/G} v_{p}(f) = \frac{k}{6}$$

的左边诸项均>0,因此 h>0,而且由于 1/6 不能写成 n+n'/2+n''/3. n, n', n''>0.

从而 $k \neq 1$. 这就证明了(i).

现在于公式 (20) 中取 $f = G_k$, k = 2. 我们将 2/6 写成

n+n'/2+n''/3 的形式, $n, n', n'' \ge 0$,这只能是n=n'=0,n''=1. 这就表明 $v_p(G_2)=1$ 而当 $p\ne \rho (\operatorname{mod} G)$ 时 $v_p(G_2)=0$. 同样用于 G_3 即可证明 $v_i(G_3)=1$ 而在其余点 $v_p(G_3)=0$. 这就已经证明了 Δ 在 i 不为 0,从而 Δ 不恒为零。 由子 Δ 的权为 12 而 $v_\infty(\Delta) \ge 1$,由公式 (20) 给出 $v_\infty(\Delta)=1$,并且当 $p\ne \infty$ 时 $v_p(\Delta)=0$. 换句话说, Δ 在 B 上没有零点,而在 ∞ 有一个单零点。如果 $f\in M_k^0$ 并且令 $g=f/\Delta$,显然 g 的权是 2k-12。而且公式

$$v_p(g) = v_p(f) - v_p(\Delta) =$$

$$\begin{cases} v_p(f), & \text{如果 } p \neq \infty, \\ v_p(f) - 1, & \text{如果 } p = \infty \end{cases}$$

表明对所有 p 均有 $v_p(g) \ge 0$, 因此 $g \in M_{k-6}$, 这就证明了(iii).

最后,如果 $k \le 5$,则 k-6 < 0,由(i)和(iii)可知 $M_k^0 = 0$ 。这就表明 dim $M_k \le 1$ 。由于 1, G_2 , G_3 , G_4 , G_5 分别是 M_0 , M_2 , M_3 , M_4 , M_5 中非零元素,我们有 dim $M_k = 1$ (对于 k = 0, 2, 3, 4, 5),这就证明了(ii)。

系1 我们有

$$(21) \quad \dim M_k = \begin{cases} \left[\frac{k}{6}\right], & \text{如果 } k \equiv 1 \pmod{6}, \ k \geqslant 0, \\ \left[\frac{k}{6}\right] + 1, & \text{如果 } k \not\equiv 1 \pmod{6}, \ k \geqslant 0. \end{cases}$$

(这里[x]表示 x 的整数部分,即满足 n≤x 的最大整数 n.)

证 公式(21)对于 $0 \le k < 6$ 是正确的。此外,当将 k 改成 k+6 时,表达式增加 1 (见(iii)),因此这公式对于每个 $k \ge 0$ 均正确。

系 2 单项式集合 $\{G_s^{\alpha}G_s^{\alpha}|2\alpha+3\beta=k, \alpha, \beta\geq 0$ 整} 构成空间 M_k 的一组基.

证 我们首先证明这些单项式生成 M_{\star} . 当 $h \leq 3$ 时,这 \cdot 120 \cdot

由(i)和(ii)是显然的。当 k>4 时,我们对 k 归纳。 取非负整数对 (γ, δ) 使 $2\gamma+8\delta=k$ (对每个 k>2 这都是可能的)。模形式 $g=G_{\delta}^{2}G_{\delta}^{2}$ 在 ∞ 处不为零。如果 $f\in M_{k}$,则存在 $\lambda\in \mathbb{C}$,使 $f-\lambda g$ 为 cusp 型,于是它等于 Δh , $h\in M_{k-6}$,见(iii)。然后对 h 利用归纳假设即可。

剩下要证明这些单项式是线性无关的. 若不然,函数 G_2^2/G_3^2 将满足一个非平凡的复系数代数方程,从而它必然是常数. 但这是不可能的,因为 G_2 在 ρ 为零,而 G_3 在 ρ 不为零.

注 设 $M = \sum_{k=0}^{\infty} M_k$ 是分次(graded)代数,即是诸 M_k 的直和. 令 $s: \mathbb{C}[X,Y] \to M$ 是同态,它将 X 和 Y 分别映成 G_2 和 G_8 . 则系 2 可以等价地说成, s 是同构. 于是可以将 M 等同于多项式代数 $\mathbb{C}[G_2,G_3]$.

3.3. 模不变量

我们令

(22)

 $j = 1728g_2^3/\Delta$

命题5 (a) 函数 j 是权 0 模函数.

- (b) j在 H 中全纯并且在 ∞ 有单极点。
- (o) 转到商中则 j 定义了 H/G 到 C 上的一个同构.

证 由 g_2^2 和 Δ 的权均为 12 即可证得(a). 由于 Δ 在 H 上不等于 0 而在 ∞ 有单零点, 但是 g_2 在 ∞ 不为 0 即可得到 (b). 为了证明(c), 我们必须证明如果 $\lambda \in \mathbf{C}$, 则模形式

$$f_{\lambda} = 1728g_2^3 - \lambda \Delta$$

有唯一的零点 (mod G). 将公式 (20) 用于 f = f, 和 k = 6 即可证明这一点. 因为 k/6 = 1 若有形式 n + n'/2 + n''/3, n, n', $n'' \ge 0$, 必然

(n, n', n'') = (1, 0, 0), (0, 2, 0) 或者(0, 0, 3). 这就证明了f在H/G上只有唯一的零点、

命题 6 设 f 是 H 上亚纯函数,则下列 诸 性 质 彼 此 等 价:

- (i) f 是权 9 的模函数:
- (ii) f 是权相同的两个模形式之商;
- (iii) f 是 f 的有理函数.

证 显然有(iii)⇒(ii)⇒(i). 现在我们证明(i)⇒(iii). 设f 是模函数, 必要时对f适当地乘以f的一个多项式, 我们 可设 f 在 II 上全纯. 因为 I 在 ∞ 有零点, 从而有整数 n > 0. 使 $g=\Delta^n f$ 在 ∞ 也全纯。函数 g 是权 12m 的模形式。根据定 理 4 的系 2, 我们可以将它写成一些 $G_2^{\alpha}G_3^{\beta}(2\alpha+3\beta=6n)$ 的线 性组合、由于线性, 我们可以设 $g=G_2^2G_3^2$ 、即 $f=G_2^2G_3^2/\Delta^n$ 。但 是 $2\alpha+3\beta-6n$ 表明 $p=\alpha/3$ 和 $q=\beta/2$ 均是整数。于是 $f = G_2^{0p} G_3^{2q} / A^{p+q}$

为证明
$$G_2^2/\Delta$$
 和 G_3^2/Δ 是 \boldsymbol{j} 的有理函数,

从而又将问题归结为证明 G_2^2/Δ 和 G_3^2/Δ 是 f 的有理函数,而 这是显然的。

- 注 1) 如上所述、在H/G 的紧致化H/G 上可以用自 然方式定义一个复解析流形结构, 于是命题 5 即是说 j 定义 出H/G 到 Riemann 球面 $S_2=C\cup\{\infty\}$ 之上的同构、而命题 6是一个熟知的事实,即S。上的亚纯函数均为有理函数。
- 2) 系数 1728=2⁶·3⁸ 的引进是为了使 j 在 ∞ 处的残数 等于1. 更确切地说, § 4 中的级数展开表明:

(23)
$$j(z) = \frac{1}{q} + 744 + \sum_{n=1}^{\infty} c(n) q^n \quad (z \in H, \ q = e^{2\pi i z}),$$
 我们有
$$c(1) = 2^2 \cdot 3^3 \cdot 1823 - 196, 884;$$

$$c(2) = 2^{11} \cdot 5 \cdot 2099 = 21, 493, 760.$$

c(n)均是整数,并且它们有许多有趣的同众性质 $^{\text{left}}$

$$n \equiv 0 \pmod{2^a} \Rightarrow c(n) \equiv 0 \pmod{2^{3a+8}},$$
 $n \equiv 0 \pmod{3^a} \Rightarrow c(n) \equiv 0 \pmod{3^{2a+3}},$
 $n \equiv 0 \pmod{5^a} \Rightarrow c(n) \equiv 0 \pmod{5^{a+1}},$
 $n \equiv 0 \pmod{7^a} \Rightarrow c(n) \equiv 0 \pmod{7^a},$
 $n \equiv 0 \pmod{11^a} \Rightarrow c(n) \equiv 0 \pmod{11^a}.$

§4. 在∞处的展开

4.1. Bernoulli 数 B_k

Bk 由下面的幂级数展开式定义[#2]:

(24)
$$\frac{x}{e^x - 1} = 1 - \frac{x}{2} + \sum_{k=1}^{\infty} (-1)^{k+1} B_k \frac{x^{2k}}{(2k)!}.$$

数值表:

n,	ι	2	3	4	5	6	7	8	9	10
\mathcal{F}_n	<u>1</u> ប	$\frac{1}{30}$	$\frac{1}{42}$	$\frac{1}{30}$	5 66	691 2730	7 6	$\frac{3617}{510}$	43867	$\frac{283 \times 617}{330}$
ri	11				12			13	14	
\mathcal{B}_n	11×131×593 138			10	103×2294797 2730			657931 6	7×9349×362903 870	

- [注1] 关于这方面可见 A. O. L. Atkin 和 J. N. L'Brion, Trans. Amer. Math. Soc., 126, 1967, 以及 Atkin 在 "Computers in mathematical research" (North Holland, 1968)中的文章.
- [注 2] 在一些文献上还可以发现将 Bernoulli 数 b* 用下式定义:

$$\frac{x}{e^x-1} = \sum_{k=0}^{\infty} b_k x^k / k!$$

于是 $b_0=1$, $b_1=-1/2$, $b_{2k+1}=0$ (k>1 时),而 $b_{2k}=(-1)^{k-1}B_k$. 在研究同余性质的时候和 Leopoldt 将 Bernoulli 数作推广的时候,用符号 b 更合适性。

 B_k 给出 Riemann zeta 函数在正偶整数处的值(和 在 负奇整数处的值):

命题7 如果k ≥ 1 是整数,则

(25)
$$\zeta(2k) = \frac{2^{2k-1}}{(2k)!} B_k \pi^{2k}.$$

证 在 B_k 的定义公式中取 x=2iz 即得到恒等式

(26)
$$z \operatorname{etg} z = 1 - \sum_{k=1}^{\infty} B_k \frac{2^{2k} z^{2k}}{(2k)!}.$$

另一方面,将

(27)
$$\sin z = z \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2 \pi^2} \right)$$

取对数微商,得到

(28)
$$z \operatorname{ctg} z = 1 + 2 \sum_{n=1}^{\infty} \frac{z^2}{z^2 - n^2 \pi^2} = 1 - 2 \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{z^{2k}}{n^{2k} \pi^{2k}}$$

比较公式(26)和(28),即得(25)式。

【例】

$$\zeta(2) = \frac{\pi^2}{2 \times 3}, \quad \zeta(4) = \frac{\pi^4}{2 \times 3^2 \times 6}, \quad \zeta(6) = \frac{\pi^8}{3^3 \times 6 \times 7},$$

$$\zeta(8) = \frac{\pi^8}{2 \times 3^3 \times 5^2 \times 7}, \quad \zeta(10) = \frac{\pi^{10}}{3^5 \times 6 \times 7 \times 11},$$

$$\zeta(12) = \frac{691 \cdot \pi^{12}}{3^6 \times 6^3 \times 7^2 \times 11 \times 13},$$

$$\zeta(14) = \frac{2\pi^{14}}{3^6 \times 5^2 \times 7 \times 11 \times 13}.$$

4.2. 函数 $G_{\mathbf{z}}$ 的级数展开

现在给出 Eisenstein 级数 $G_k(z)$ 关于 $q=e^{2\pi iz}$ 的 Taylor 展开式,我们先从熟知的公式开始。

(29)
$$\pi \operatorname{etg} \pi z = \frac{1}{z} + \sum_{m=1}^{\infty} \left(\frac{1}{z + m} + \frac{1}{z - m} \right).$$

另一方面我们有

(30)
$$\pi \operatorname{etg} \pi z = \pi \frac{\cos \pi z}{\sin \pi z} - i\pi \frac{q+1}{q-1}$$
$$= i\pi - \frac{2\pi i}{1-q} = \pi i - 2\pi i \sum_{n=0}^{\infty} q^{n}.$$

比较一下即得

(31)
$$\frac{1}{z} + \sum_{m=1}^{\infty} \left(\frac{1}{z+m} + \frac{1}{z-m} \right) = \pi i - 2\pi i \sum_{n=0}^{\infty} q^{n}.$$

将(31)式逐次微商, 就得到以下的公式(它在 k≥2时是对的),

(32)
$$\sum_{m \in \mathbb{Z}} \frac{1}{(m+z)^k} = \frac{1}{(k-1)!} (-2\pi i)^k \sum_{n=1}^{\infty} n^{k-1} q^n.$$

现在以 $\sigma_k(n)$ 表示 n 的全部正因子的 k 次幂之和 $\sum_{i=1}^{n} d^k$.

命题 8 对子每个整数 $k \ge 2$, 我们有

(33)
$$G_k(z) = 2\zeta(2k) + 2\frac{(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n$$

证 展开:

$$\begin{split} G_k(z) &= \sum_{(m,n) \neq (0,0)} \frac{1}{(nz+m)^{2k}} \\ &= 2\zeta(2k) + 2\sum_{n=1}^{\infty} \sum_{m \in \mathbb{Z}} \frac{1}{(nz+m)^{2k}}. \end{split}$$

应用以 nz 代替 z 的(32)式, 得到

$$\begin{split} G_k(z) = & 2\zeta(2k) + \frac{2(-2\pi i)^{2k}}{(2k-1)!} \sum_{d=1}^{\infty} \sum_{n=1}^{\infty} d^{2k-1}q^{nq} \\ = & 2\zeta(2k) + \frac{2(2\pi i)^{2k}}{(2k-1)!} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n. \end{split}$$

系
$$G_k(z) = 2\zeta(2k)E_k(z)$$
, 其中

(34)
$$E_{k}(z) = 1 + \gamma_{k} \sum_{n=1}^{n} \sigma_{2k-1}(n) q^{n}.$$

丽

$$\gamma_k = (-1)^k \frac{4k}{B_k}.$$

证 由于 $E_k(z) = G_k(z)/2\zeta(2k)$, 显然有(34)式, 其中系数 γ_k 用命题 7 计算:

$$\begin{split} \gamma_{k} &= \frac{(2\pi i)^{2k}}{(2k-1)!} \frac{1}{\zeta(2k)} = \frac{(2\pi)^{2k}(-1)^{k}}{(2k-1)!} \cdot \frac{(2k)!}{2^{2k-1}B_{k}\pi^{2k}} \\ &= (-1)^{k} \frac{4k}{B_{k}}. \end{split}$$

【例】

注 我们在§ 3.2 中已经知道, 权 8 和权 10 的模形式空间的维数都是 1, 于是

$$(36) E_2^2 = E_4, E_2 E_8 = E_5.$$

这等价于恒等式

· 128 ·

$$\sigma_7(n) = \sigma_8(n) + 120 \sum_{m=1}^{n-1} \sigma_8(m) \sigma_3(n-m).$$
 $11\sigma_9(n) = 21\sigma_5(n) - 10\sigma_3(n) + 5040 \sum_{m=1}^{n-1} \sigma_3(m) \sigma_5(n-m).$ 更一般地, 每个 E_k 可以表示成 E_2 和 E_3 的多项式.

4.3. 模形式系数的估计

仒

(37)
$$f(z) = \sum_{n=0}^{\infty} a_n q^n \quad (q = e^{2\pi i \pi})$$

是权 2h(h≥2)的模形式。我们对于数 an 的增长情况感兴趣。

命题 9 如果 $f = G_k$,则 a_n 的阶为 n^{2k-1} 。 更确切地说,存在两个常数 A, B > 0,使得

(38)
$$An^{2k-1} \leqslant |a_n| \leqslant Bn^{2k-1}.$$

证 命题 8 证明了存在正常数 A, 使得

$$a_n = (-1)^k A \sigma_{2k-1}(n)$$
,

于是 $|a_n| = A\sigma_{2k-1}(n) > An^{2k-1}$ 另一方面,

$$\frac{|a_n|}{n^{2k-1}} = A \sum_{d|n} \frac{1}{d^{2k-1}} \leq A \sum_{d=1}^{\infty} \frac{1}{d^{2k-1}} = A\zeta(2k-1) < +\infty.$$

定理 5(Hecke) 如果 f 是权 2k 的 cusp 型,则

$$a_n = O(n^k).$$

(换句话说, 当 $n \to \infty$ 时商 $\frac{|a_n|}{n^k}$ 保持为有界.)

证 因为f是 cusp 型, 我们有 $a_0=0$, 从f 的展开式(37)中可以析出一个因子 q. 于是, 当 $q\rightarrow 0$ 时,

(40)
$$|f(z)| = O(q) = O(e^{-2\pi y}),$$

其中 $y = \operatorname{Im}(z)$.

 $\diamondsuit \phi(z) = |f(z)|y^k$. 公式(1)和(2)表明 ϕ 在模群 G 之下

不变。此外, ϕ 在基本区域 D 上连续,而公式(40) 表明 当 $y\rightarrow\infty$ 时 ϕ 趋于 0。这就推得 ϕ 是有界的,即存在常数 M 使得

$$(41) |f(z)| \leq My^{-k} (z \in H).$$

固定y 而让 α 在0到1之间变化,点 $q = -e^{2\pi i(x+iy)}$ 跑过中心在0的圆周 C_y ,由残数公式,

$$a_n = \frac{1}{2\pi i} \int_{C_n} f(z) q^{-n-1} dq = \int_0^1 f(x + iy) q^{-n} dx.$$

(还可以从周期函数的 Fourier 系数推出这个公式。)

利用公式(41),可以由此得到

$$|a_n| \leq M y^{-k} e^{2\pi n y}.$$

这个不等式对于所有的 $y \ge 0$ 都是对的, 取 $y = \frac{1}{n}$, 就给出

$$|a_n| \leqslant e^{2\pi} M n^k,$$

由此证明了定理.

系 如果f 不是 cusp 型,则 a_n 的阶是 n^{2k-1}

证 我们将 f 写成形式 $\lambda G_k + h$, $\lambda \neq 0$, h 为 ousp 型. 然后利用命题 9 和定理 5 即可,因为 n^k 与 n^{2k-1} 相比前者是 可以"忽略"掉的.

注 定理5的指数 k 可以改进, 我们有

$$a_n = O(n^{k-\frac{1}{4}+s})$$
 (对任意 $s > 0$).

(见 A. Selberg, Proc. Symp. Pure Maths. VIII, Amer. Math.

Soc., 1965.) 甚至猜想 k 可代之以 $k-\frac{1}{2}+\epsilon$ (对任意 $\epsilon>0$), 或者等价地:

$$\alpha_n = O(n^{k-1/2}\sigma_0(n)),$$

其中 $\sigma_0(n)$ 是 n 的因子个数。 我们在 § 5.6 中还要回到这个问题上来。

4.4. 4的展开式

注意到

定理 6(Jacobi)

$$\Delta = (2\pi)^{12}q \prod_{n=1}^{\infty} (1-q^n)^{24}$$
.

[这个公式用椭圆函数的方法证明最为自然,由于这个方法要使我们走太远的路,所以在下面简述另外一个证明,这个证明是初等的,但却是有些"人为"的。详见 A. Hurwliz, Math. Werke, Bd. 1, pp. 578~595.]

证令

(43)
$$F(z) = q \prod_{n=1}^{\infty} (1-q^n)^{24}.$$

为了证明 F 和 4 是成比例的, 只需证明 F 是权 12 的模形式. 事实上, F 的展开式的常数项为 0, 从而 F 是 cusp 型. 此外 我们知道(定理 4), 权 12的 cusp 型空间 M 的维数是 1, 由 § 2.1 的命题 1, 我们只需证明

(44)
$$F\left(-\frac{1}{z}\right) = z^{12}F(z).$$

为此,我们使用双重级数

$$G_{1}(z) = \sum_{n} \sum_{m} \frac{1}{(m+nz)^{2}}, \qquad G(z) = \sum_{m} \sum_{n} \frac{1}{(m+nz)^{2}},$$

$$H_{1}(z) = \sum_{n} \sum_{m} \frac{1}{(m-1+nz)(m+nz)},$$

$$H(z) = \sum_{n} \sum_{m} \frac{1}{(m-1+nz)(m+nz)},$$

其中对于G和 G_1 ,符号 Σ' 表示(m, n)过一切

$$(m, n) \neq (0, 0), m, n \in \mathbf{Z};$$

而对于 H_1 和 H, Σ' 表示 (m, n) 过一切 $(m, n) \neq (0, 0)$ 和 (1, 0). (注意求和次序!)

级数 H_1 和 H 容易明显计算, 因为有公式

$$\frac{1}{(m-1+nz)(m+nz)} = \frac{1}{m-1+nz} - \frac{1}{m+nz}.$$

我们发现它们均收敛,而且

$$H_1 = 2$$
, $H = 2 - 2\pi i/z$

进而, 通项为

$$\frac{1}{(m-1+nz)(m+nz)} - \frac{1}{(m+nz)^2}$$

$$= \frac{1}{(m+nz)^2(m-1+nz)}$$

的双重级数是可以绝对求和的。这表明 $G_1 - H_1 = G - H_1$ 从而级数 G 和 G_1 收敛(对于所示的求和次序), 并且

$$G_1(z) - G(z) = H_1(z) - H(z) = \frac{2\pi i}{z}$$
.

显然 $G_1(-1/z) = z^2G(z)$, 于是

(45)
$$G_1(-1/z) = z^2 G_1(z) - 2\pi i z.$$

另一方面,类似于命题8的一个计算给出

(46)
$$G_{1}(z) = \frac{\pi^{2}}{3} - 8\pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}.$$

现在回到由(43)定义的函数 F. 它的对数微商是

(47)
$$\frac{dF}{F} = \frac{dq}{q} \left(1 - 24 \sum_{n,m=1}^{\infty} nq^{nm} \right)$$
$$= \frac{dq}{q} \left(1 - 24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n} \right).$$

与(46)比较,我们得到

(48)
$$\frac{dF}{F} = \frac{6i}{\pi} G_1(z) dz.$$

比较(45)和(48)两式,我们有

(49)
$$\frac{dF(-1/z)}{F(-1/z)} = \frac{6i}{\pi} G_1(-1/z) \frac{dz}{z^2}$$

$$= \frac{6i}{\pi} \frac{dz}{z^2} (z^2 G_1(z) - 2\pi i z)$$

$$= \frac{dF(z)}{dz} + 12 \frac{dz}{z}.$$

于是两个函数 F(-1/z)和 $z^{13}F(z)$ 有同样的对数微商。 从而存在一个常数 k, 使得

$$F(-1/z) = kz^{12}F(z)$$
 (对于每个 $z \in H$).

对于z=i, 我们有 $z^{12}=1$, -1/z=z, 而 $F(z) \neq 0$. 这证明 k=1, 从而证明了(44)式, 证毕.

注 在 C. L. Siegel, Gesamm. Abh., III, n°62 中 可 以 找到恒等式(44)的另一个"初等"证明, 还见《复乘法讨论班》, III, § 6.

4.5. Ramanujan 函数

以 $\tau(n)$ 表示 ousp 型 $F(z) = (2\pi)^{-12}\Delta(z)$ 的第 n 个系数。 于是有

(50)
$$\sum_{n=1}^{\infty} \tau(n) q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

函数 $n \mapsto \tau(n)$ 叫作 Ramanujan 函数.

数值表键

[[]注] 此表取自 D. H. Lehmer, Ramanujan's function τ(n), Duke Math. J., 10, 1943, 该文给出 n≤300 的全部 τ(n)值.

71		2	3	4	5	 6 	7
1 (P)	;	54	352	- [472	4830	6048	16744
n	 8		9	10	11		12
τ (M)	84480	-13	13643	- 1 !5920	584612		- 370944

τ(n)的性质:

$$\tau(n) = O(n^6).$$

这是因为 4 的权为 12, 见 § 4.3 定理 5

(52)
$$\tau(nm) = \tau(n)\tau(m) \quad (\text{mu}, m) = 1).$$

(53)
$$\tau(p^{n+1}) = \tau(p)\tau(p^n) + p^{11}\tau(p^{n-1}),$$
$$p \text{ 为素数}, n > 1 \quad (见下面§5.5).$$

恒等式(52)和(53)是由 Ramanujan 猜想而首先由 Mordell 证明的, 我们可以将它重述成, Dirichlet 级数

$$L_{ au}(s) = \sum_{n=1}^{\infty} au(n)/n^s$$

有下面的 Euler 展开式:

(54)
$$L_{\tau}(s) = \prod_{\sigma \in P} \frac{1}{1 - \tau(p)p^{-s} + p^{11-2s}}$$
 (E. § 5.4).

根据 Hecke 定理(见 \S 5.4), 函数 L_* 可以延拓成复平面上的整函数, 并且函数

$$(2\pi)^{-s} \varGamma(s) L_{ au}(s)$$

在 s) > 12-s 之下是不变的.

τ(n)对于 mod 2¹², 3⁶, 5³, 7, 23, 691 有各种有趣的同余 关系、我们摘录一些特殊情形(不加证明):

(55)
$$\tau(n) = n^2 \sigma_i(n) \pmod{3^3},$$

(56)
$$\tau(n) \equiv n\sigma_3(n) \pmod{7},$$

(57)
$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}.$$

关于另一些例子和它用"I-adio 表示"的解释,可见 Delange-Pisot-Poitou 讨论班 1967/1968,第 14 讲, Bourbaki 讨论班 1968/1969 第 355 讲和 1971/1972 第 416 讲。

最后我们谈两个未解决的问题:

- a) (Ramanujan 猜想见 § 5.6) 是否对于每个素数 p 均 有 τ(p) | <2p^{11/2}γ^(*)
 - b) (Lehmer) 是否对每个 n 均有 $\tau(n) \neq 0$?

§ 5. Hecke 算子

5.1、T(n)的定义

对应 设 E 是一个集合,令 X_B 是由 E 生成的自由 Abel 群。 E 上的一个(具有整系数的)对应(correspondence) 是 X_B 到自身之中的同态 T. 为了给出 T, 我们只需给出它在 E 之全部元素 E 的取值:

(58)
$$T(x) = \sum_{v \in \mathbb{R}} n_v(x) y, \quad n_v(x) \in \mathbb{Z},$$

其中对几乎所有的y, $n_y(x) = 0$.

设F是E上的数值函数,它可以Z-线性地扩充成 X_B 上的函数,仍记为F. F经过T的变换是函数F0T在E上的限制,这个函数记成TF. 采用(58)的记号我们有

(59)
$$TF(x) = F(T(x)) = \sum_{y \in B} n_y(x) F(y).$$

算子 T (n) 设 28 是 C 上的全部格所构 成 的 集 合 (见

^(*) 这一猜想已为 P. Deligne 所证明, 见: P. Deligne, La conjecture de Weil, I, Publ. I. H. E. S. 43 (1974), 273~307. ——译者注

§ 2.2). 令 $n \ge 1$ 为整数. 我们以 T(n) 表示 \mathcal{R} 上的一个对应, 它把一个格变换成它的所有指数为 n 的子格之和(这是 X_n 中元素).于是我们有

(60)
$$T(n)\Gamma = \sum_{(I:I')=n} \Gamma' \quad (\text{\mathfrak{M}} + \Gamma \in \mathscr{R}),$$

右边的和式是有限和. 事实上,所有的格 Γ' 均包含 $n\Gamma$,而其个数也等于 $\Gamma/n\Gamma = (\mathbf{Z}/n\mathbf{Z})^2$ 的 n 阶子群的个数. 如果 n 为素数, 易知这个数等于 n+1 (即 n 元域上射影直线中的点数).

我们还使用一个相似算子 $R_{\lambda}(\lambda \in \mathbb{C}^*)$, 它定义为

(61)
$$R_{\lambda}\Gamma = \lambda\Gamma \quad (\Gamma \in \mathcal{R}).$$

一些公式 对应 T(n)和 R_{λ} 都是 Abel 群 X_{α} 的 自同态, 因此它们的合成是有意义的.

命题 10 对应 T(n) 和 R_n 有如下的恒等式:

(62)
$$R_{\lambda}R_{\mu} = R_{\lambda\mu} \quad (\lambda, \ \mu \in \mathbf{C}^{\bullet}),$$

(63)
$$R_{\lambda}T(n) = T(n)R_{\lambda} \quad (n \geqslant 1, \ \lambda \in \mathbb{C}^{\bullet}),$$

(64)
$$T(m)T(n) = T(mn) \quad (\text{in } \mathbb{R}(m, n) = 1),$$

(65)
$$T(p^{n})T(p) = T(p^{n+1}) + pT(p^{n-1})R_{p}$$
$$(p 为素数, n \ge 1).$$

证 公式(62)和(63)是显然的.

公式(64)等价于下面的论断:设 $(m, n)=1, m, n \ge 1$,令 Γ'' 是格 Γ 的指数为 mn 的子格,则存在 Γ 的唯一的一个子格 Γ' ,使得 $\Gamma' \supset \Gamma''$,并且 $(\Gamma : \Gamma') = n$, $(\Gamma' : \Gamma'') = m$.这个论断是由于群 Γ/Γ'' 的阶为 mn,它可唯一地分解成一个 m 阶群和一个 n 阶群的直和 (Bezout 定理).

为了证明 (65),令 Γ 是一个格,则 $T(p^n)T(p)\Gamma$, $T(p^{n+1})\Gamma$ 和 $T(p^{n-1})R_p\Gamma$ 均是 Γ 中指数为 p^{n+1} 的一些格的 • 134 •

线性组合(注意($\Gamma: R_p\Gamma$)= p^2). 以 Γ'' 表示这样的一个格,并设它在上面的三个线性组合公式中的系数分别为 a, b 和 c. 我们要证明 a=b+pc, 即要证明 a=1+pc, 因为 b 显然等于 1.

我们有两种情形:

- i) Γ'' 不包含在 $p\Gamma$ 中、则 c=0,而 a 为满足条件 $\Gamma''\subset\Gamma'\subset\Gamma$, $(\Gamma:\Gamma')=p$ 的格 Γ' 的个数。这样一个格包含 $p\Gamma$. 在 $\Gamma/p\Gamma$ 中, Γ' 的象的指数为 p,它包含有 Γ'' 的象,而后者的阶数为 p (从而指数也是 p,因为 $\Gamma/p\Gamma$ 的阶数为 p^2). 于是只有一个 Γ' 。这给出 a=1,即公式 a=1+pc 是正确的.
- ii) $L'' \subset pI'$. 我们有 c=1. 每个在 I' 中指数为 p 的格 I' 均包含 pI',从而也包含 L''. 这给出 a=p+1,即公式 a=1+pc 也正确.

系 $T(p^n)$ (n>1) 是 T(p) 和 R_n 的多项式。

证 对 n 归纳,由公式(65)即可推出。

系 2 由 R_n 和 $\{T(p)|p$ 为素数} 生成的代数 是 交 换 代数. 它包含全部 T(n)

证 由命题 10 和系 1 即可推出。

T(n) 在权 2k 的函数上的作用

设F是权2k的 \mathcal{R} 上函数(见§2.2)、由定义

(66)
$$R_{\lambda}F = \lambda^{-2k}F \quad (对 - 切 \lambda \in \mathbb{C}^*).$$

设 n 为自然数, 公式(63) 表明

$$R_{\lambda}(T(n)F) = T(n)(R_{\lambda}F) = \lambda^{-2k}T(n)F$$

换句话说, T(n)F 的权也是 2k. 公式(64)和(65)给出。

(67)
$$T(m)T(n)F = T(mn)F$$
 ($\text{un} \notin (m, n) = 1$)

(68)
$$T(p)T(p^n)F = T(p^{n+1})F + p^{1-2k}T(p^{n-1})F$$

 $(p \not \ge 0, n \ge 1).$

5.2. 一个关于矩阵的引理

设 Γ 是基为 $\{\omega_1, \omega_2\}$ 的格,n 为自然数。下面的引理给出 Γ 的全部指数为 n 的于格。

引理2 设

$$S_n = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \middle| a, b, d 为整数, ad = n, a \ge 1, 0 \le b < d \right\}.$$

如果 $\sigma = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \in S_n$,以 Γ_σ 表示基为

$$\omega_1' = a\omega_1 + b\omega_2, \qquad \omega_1' = d\omega_2$$

的 Γ 之子格. 则映射 $\sigma \mapsto \Gamma_o$ 是从 S_n 到 $\Gamma(n)$ 之上的一一映射 其中 $\Gamma(n)$ 是 Γ 中指数为 n 的子格全体所构成的集合.

证 因为 $\det(\sigma) = n$,从而 $\Gamma_{\sigma} \in \Gamma(n)$, 反之, 令 $\Gamma' \in \Gamma(n)$,我们取

$$Y_1 = \Gamma/(\Gamma' + \mathbf{Z}\omega_2), \qquad Y_2 = \mathbf{Z}\omega_2/(\Gamma' \cap \mathbf{Z}\omega_2).$$

它们分别是由 ω₂ 和 ω₂ 的象所生成的循环群. 设它们的阶数分别为 a 和 d. 由子有正合列

$$0 \rightarrow Y_2 \rightarrow \Gamma/\Gamma' \rightarrow Y_1 \rightarrow 0$$
,

从而 ad=n. 如果 $\omega_1=d\omega_2$,则 $\omega_2\in I''$. 另一方面,存在 $\omega_1\in I''$,使得

$$\omega_1' \equiv a\omega_1 \pmod{\mathbf{Z}\omega_2}$$
.

显然 ω_1 和 ω_2 形成 Γ' 的一组基。此外,我们可以将 ω_1 写成形式

$$\boldsymbol{\omega}_1' = a\omega_1 + b\omega_2 \quad (b \in \mathbf{Z}),$$

其中 b 是 mod d 唯一决定的。 如果对 b 加上 条 件 0≤b<d,
・136・

这就唯一决定了 b,从而唯一决定了 ω , 于是我们对于每个 $\Gamma' \in \Gamma(n)$ 结合一个矩阵 $\sigma(\Gamma') \in S_n$, 容易检验映射 $\sigma \mapsto \Gamma_\sigma$ 和 $\Gamma' \mapsto \sigma(\Gamma')$ 彼此互逆, 这就证明了引理。

【例】 如果 p 是素数, S_p 中的元素是矩阵 $\begin{pmatrix} p & 0 \\ \mathbf{0} & 1 \end{pmatrix}$ 和 p 个矩阵 $\begin{pmatrix} 1 & b \\ 0 & p \end{pmatrix}$ $(0 \le b < p)$.

5.3. T(n) 在模函数上的作用

设 k 为整数,f 是权 2k 的弱模函数,见§ 2.1. 我们在§ 2.2 中已经看到,f 对应于 \mathcal{L} 上一个权 2k 的函数 F,使得(69) $F(\Gamma(\omega_1, \omega_2)) = \omega_2^{-2k} f(\omega_1/\omega_2).$

我们定义 T(n) f 为与 \mathcal{U} 上函数 $n^{2k-1}T(n)$ F 相结合的 H 上函数(注意数值系数 n^{2k-1} , 它使下面的公式中"没有分母"). 因此由定义,

(70)
$$T(n)f(z) = n^{2n-1}T(n)F(I(z, 1))$$
. 或者的引揮 2,

(71)
$$T(n)f(z) = n^{2k-1} \sum_{\substack{a>1, ad=n\\0 \le b \le d}} d^{-2k} f\left(\frac{az+b}{d}\right).$$

命题 11 函数 T(n)f 是权 2k 的弱模函数. 如果f 在 B 上全纯,则 T(n)f 也在 B 上全纯. 并且有

(72)
$$T(m)T(n)f = T(mn)f$$
 ($m \notin (m, n) = 1$).

(73)
$$T(p)T(p^n)f = T(p^{n+1})f + p^{2k-1}T(p^{n-1})f$$

 $(p \not x \not w, n \ge 1)$

证 公式(71)表明T(n) f 在 H 上是亚纯的,从而为弱模函数。此外,如果 f 是全纯的,则 T(n) f 也是全纯的。考虑到 T(n) f 的定义中有数值系数 n^{2k-1} ,便知公式(72)和(73)可以从公式(67)和(68)推出。

在 ∞ 处的性状,设 f 是模函数, 即 它在 ∞ 处亚纯。 \diamondsuit

(74)
$$f(z) = \sum_{m \in \mathbb{Z}} c(m) q^m$$

是它关于 $q=e^{2\pi iz}$ 的 Laurent 展开式.

命题 12 函数 T(n)f 是模函数。我们有

(75)
$$T(n)f(z) = \sum_{m \in \mathbb{Z}} \gamma(m) q^m,$$

其中

(76)
$$\gamma(m) = \sum_{\substack{a \mid (n,m) \\ a \ge 1}} a^{2k-1} c\left(\frac{mn}{a^2}\right).$$

证 按照定义我们有

$$T(n)f(z) = n^{2k-1} \sum_{\substack{ad=n,\,a>1\\0 < b < d}} d^{-2k} \sum_{m \in \mathbb{Z}} c(m) e^{2\pi i m(az+b)/d}.$$

现在

$$\sum_{0 \le b \le d} e^{2\pi i b m/d} = \begin{cases} d, & \text{in } \mathbb{R}[d] m, \\ 0, & \text{in } \mathbb{R}[d] \end{cases}$$

因此令 m/d=m', 便有

$$T(n)f(z) = \mathbf{n}^{2k-1} \sum_{\substack{ad = n \\ \mathbf{n} > 1, m' \in \mathbf{Z}}} d^{-2k+1} c\left(m'd\right) q^{am'}.$$

将 q 的同幂次项收集在一起, 便给出

$$T(n)f(z) = \sum_{\mu \in \mathbb{Z}} q^{\mu} \sum_{\substack{a : (n,\mu) \\ a > 1, ad = n}} \left(\frac{n}{d}\right)^{2k-1} c\left(\frac{\mu d}{a}\right).$$

因为f在 ∞ 处亚纯,从而存在整数 $N \ge 0$,使得当 $m \le -N$ 时 c(m) = 0. 因此对于 $\mu \le -nN$,则 $c\left(\frac{\mu d}{a}\right) = 0$,这证明 T(n)f 在 ∞ 处也亚纯、因为它是弱模函数,从而它是模函数、从上面的计算即可给出公式(76).

系 1
$$\gamma(0) = \sigma_{2k-1}(n)c(0), \gamma(1) = c(n)$$

 \mathbf{x} 如果n=p是素数,则

系 3 如果 f 为模形式或者 cusp 型,则 T(n)f 亦然。 这些系显然成立。

于是,T(n)作用在§ 3.2 的空间 M_n 和 M_n^2 上。 正如我们在上面所看到的,这些算子彼此可交换,并且满足以下的恒等式:

(72)
$$T(m)T(n) = T(mn)$$
 (如果 $(m, n) = 1$).

(73)
$$T(p)T(p^n) = T(p^{n+1}) + p^{2k-1}T(p^{n-1})$$
$$(p \circledast \mathbf{w}, n \ge 1).$$

5.4. T(n)的本征函数

设 $f(z) = \sum_{n=0}^{\infty} c(n) q^n$ 是权 2k(k>0) 的不恒等于零的模形式. 我们假定 f 是所有 T(n) 的本征函数, 即存在复数 $\lambda(n)$, 使得

(77)
$$T(n)f = \lambda(n)f \quad (对于每个 n \ge 1).$$

定理7 a) f = 0 的系数 $c(1) \neq 0$

b) 如果f 由条件o(1)=1 标准化,则

$$c(n) = \lambda(n) \quad (对每个 n \ge 1).$$

证 命题 12 的系 1 表明 T(n)f 中 q 的系数是 c(n). 另一方面由 (77) 它也是 $\lambda(n)c(1)$. 于是 $c(n) = \lambda(n)c(1)$. 如果 c(1) = 0,则所有 c(n)(n>0) 均为零,从而 f 为常数,这是不可能的. 于是证明了 a)和 b).

系 1 两个权 2h(h>0) 的模形式如果均是所有 T(n) 的本征函数,并且有同样的一些 $\lambda(n)$,而且均是标准化了的,那么它们必然相等。

证 将 a)用于这两个函数之差即可,

系2 在定理7, b)的假设下,

(79)
$$c(m)c(n) = c(mn)$$
 (如果(m, n) = 1).

(80)
$$c(p)c(p^n) = c(p^{n+1}) + p^{2k-1}c(p^{n-1}).$$

证 事实上,本征值 $\lambda(n) = c(n)$ 满足与 T(n) 的 (72) 和 (73) 相同的恒等式.

公式(79)和(80)可以如下方式解析地加以改变:令

(81)
$$\Phi_f(s) = \sum_{n=1}^{\infty} c(n) / n^s$$

是由 c(n) 定义的 Dirichlet 级数、根据定理 5 的系,这个级数对于 Re(s) > 2k 绝对收敛。

系3 我们有

(82)
$$\Phi_{f}(s) = \prod_{p \in P} \frac{1}{1 - c(p)p^{-s} + p^{2k-1-2s}}.$$

证 由(79)式可知函数 $n\mapsto c(n)$ 是积性的。因此由第七章§3.1 引理 4 可知 $\Phi_f(s)$ 是级数 $\sum_{n=0}^{\infty}c(p^n)p^{-ns}$ 之积。令 p^{-ns} 二个,我们归结为要证明恒等式

(83)
$$\sum_{n=0}^{\infty} c(p^n) T^n = \frac{1}{\Phi_{t, \mathbf{p}}(T)},$$

其中 $\Phi_{t,p}(T) = 1 - c(p) T + p^{2k-1}T^2$. 作级数

$$\psi(T) = \left(\sum_{n=0}^{\infty} c(p^n)T^n\right) (1 - c(p)T + p^{2k-1}T^2).$$

 ψ 中T的系数是c(p)-c(p)=0。 而当 $n\geqslant 1$ 时, T^{n+1} 的系数根据(80)是

$$c(p^{n+1}) - c(p)c(p^n) + p^{2k-1}c(p^{n-2}) = 0.$$

因此级数 ψ 只有常数项c(1)=1,这就证明了(83)式。

注 1) 反过来,公式(81)和(82)推出公式(79)和(80)。

· 140 ·

2) Hecke 证明了 Φ ,可以解析延拓成整个复平面上的亚纯函数(如果f是 ousp 型,它甚至可以解析延拓成复平面上的全纯函数),并且函数

(84)
$$X_f(s) = (2\pi)^{-s} \Gamma(s) \Phi_f(s)$$

满足函数方程

(85)
$$X_f(s) = (-1)^k X_f(2k-s).$$

证明是使用 Mellin 变换公式

$$X_f(s) = \int_0^{\infty} (f(iy) - f(\infty)) y^s \frac{dy}{y},$$

以及恒等式 $f(-1/z) = z^{2k}f(z)$. Hecke 还证明了其逆: 一个 Dirichlet 级数 Φ 如果满足这种类型的函数方程并且加上.某些正规性和增长速度的一些假设,则 Φ 必然是从一个权 2k 的模形式 f 所得到的。 而且 f 是 T(n) 的标准化本征函数的充要条件是 Φ 为(82)形式的 Euler 乘积。 详见 E. Hecke 的数学著作集 n° 33 和 A. Weil, Math. Annalen, 168(1967).

5.5. 一些例子

a) Eisenstein 级数. 设 k≥2 为整数.

命题 18 Eisenstein 级数 G_n 是所有 T(n) 的本征函数。 对应的本征值是 $\sigma_{2n-1}(n)$,而标准化本征函数是

(86)
$$(-1)^k \frac{B_k}{4k} E_k = (-1)^k \frac{B_k}{4k} + \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n.$$

对应的 Dirichlet 级数是 $\zeta(s)\zeta(s-2k+1)$.

证 我们首先证明 G_k 是 T(n) 的本征函数,这只要对 T(p)(p 素数)证明即可,考虑 G_k 是 C 之格集合 \mathcal{X} 上的函数,我们有

$$G_k(I') = \sum_{\gamma \in I'} 1/\gamma^{2k} \quad (\text{I. § 2.3)},$$

以及
$$T(p)G_k(\Gamma) = \sum_{(\Gamma:T')=p} \sum_{\gamma\in T'} 1/\gamma^{2k}$$
.

令 $\gamma \in \Gamma$. 如果 $\gamma \in p\Gamma$, 则 γ 属于在 Γ 中指标为p的(p+1)个子格中的每一个.它在 $T(p)G_{k}(\Gamma)$ 中的贡献是(p+1)/ γ^{2k} , 如果 $\gamma \in \Gamma - p\Gamma$,则 γ 只属于指标p的一个子格,它的贡献是 $1/\gamma^{2k}$. 因此

$$egin{align} T(p)G_k(arGamma) = &G_k(arGamma) + p\sum_{\gamma\in parGamma} 1/\gamma^{2k} \ = &G_k(arGamma) + pG_k(parGamma) = (1+p^{1-2k})\dot{G}_k(arGamma) \,. \end{split}$$

这就证明了 G_k (看作是 \mathcal{R} 上的函数)为 T(p)的本征函数,而且本征值是 $1+p^{1-2k}$ 。 于是作为模形式, G_k 是 T(p) 的本征函数,而且本征值是 $p^{2k-1}(1+p^{1-2k})=\sigma_{2k-1}(p)$. § 4.2 中的公式(34)和(36)表明,与 G_k 相结合的标准化本征函数是

$$(-1)^k \frac{B_k}{4k} + \sum_{n=1}^{\infty} \sigma_{2k-1}(n) q^n$$
.

这也表明 T(n) 的本征值是 $\sigma_{2k-1}(n)$. 最后

$$\begin{split} \sum_{n=1}^{\infty} \sigma_{2k-1}(n) / n^{s} &= \sum_{a,d \ge 1} a^{2k-1} / a^{s} d^{s} \\ &= \left(\sum_{d \ge 1} 1 / d^{s} \right) \left(\sum_{a \ge 1} 1 / a^{s+1-2k} \right) \\ &= \zeta(s) \zeta(s-2k+1). \end{split}$$

b) ⊿函数.

命题 14 Δ 函数是 T(n) 的本征函数, 对应的本征值是 $\tau(n)$,而标准化本征函数是

$$(2\pi)^{-13}\Delta = q \prod_{n=1} (1-q^n)^{24} = \sum_{n=1}^{\infty} \tau(n) q^n.$$

证 这是显然的,因为权 12 的 ousp 型空间的维数是 1,并且它在 T(n) 作用下不变。

系 我们有

(52)
$$\tau(nm) = \tau(n)\tau(m)$$
 (如果 $(m, n) = 1$).

(53)
$$\tau(p)\tau(p^n) = \tau(p^{n+1}) + p^{11}\tau(p^{n-1})$$
$$(p \not \ge \not w, n \ge 1).$$

证 这从定理7的系2推出.

注 如果权 2k 的 eusp 型空间 M_k^0 的维数是 1,则有类似结果、这样的 k 为

$$k=6, 8, 9, 10, 11, 13$$

基分别为 Δ , ΔG_2 , ΔG_3 , ΔG_4 , ΔG_5 和 ΔG_{7} .

5.6. 补充

5.6.1. Petersson 内积

设 f, g 是权 2k(k>0)的两个 cusp 型。容易证明测度 $\mu(f,g)=f(z)\overline{g(z)}y^{2k}dxdy/y^2$ (x-Re(z),y-Im(z)) 是 G-不变的,并且在商空间 H/G 上这是有界测度。令

(87)
$$\langle f, g \rangle = \int_{H/g} \mu(f, g) = \int_{B} f(z) \overline{g(z)} y^{2k-2} dx dy,$$

我们得到 M_k^2 上一个 Hermite 内积,它是正定非退化的,可以验证

(88)
$$\langle T(n)f, g \rangle = \langle f, T(n)g \rangle$$

这表明 T(n) 是关于 $\langle f, g \rangle$ 的 Hermite 算子。由于 T(n)之间是彼此可交换的,一个熟知的命题可推出。存在 M_k^0 的一组正交基,使它们均是 T(n) 的本征向量,并且 T(n) 的本征值都是实数。

5.6.2. 整性

设

 $M_k(\mathbf{Z}) = \Big\{$ 权 2k 模形式 $f = \sum_{n=0}^{\infty} c(n) q^n \Big| c(n)$ 是整数 $\Big\}$. 可以证明存在 $M_k(\mathbf{Z})$ 的 \mathbf{Z} -基, 使它也是 M_k 的 \mathbf{C} -基, $\Big[$ 更确切

地说,可以验证 $M_k(\mathbf{Z})$ 有如下的基(注意 $F = q \prod (1-q^n)^{24}$): k 为偶数时. $\{E_{\alpha}^{\alpha}F^{\beta} | \alpha+3\beta=k/2, \alpha, \beta \in \mathbb{N}\}$,

$$k$$
 为奇数时, $\left\{E_3E_2^aF^{eta}\mid a+3eta=rac{k-3}{2},\;a,\;eta\in\mathbf{N}
ight\}$. $brace$

命题 12 表明 $M_{\kappa}(\mathbf{Z})$ 是 T(n) $(n \ge 1)$ 作用下不变的。由此即得到结论: T(n) 在 M_{κ} 上作用的本征多项式是整系数的^[4]。特别地, T(n)的本征值是代数整数(由 5.6.1 可知它们是"全实的")。

5.6.3. Ramanujan-Petersson 猜想

设 $f = \sum_{n \ge 1} c(n) q^n$, c(1) = 1 是 权 2k 的 cusp 型, 并且是 T(n) 的标准本征函数。 令 $\Phi_{t,p}(T) = 1 - c(p) T + p^{2k-1} T^2$ (p 索数) 是 § 5.4 公式 (83) 中定义的多项式。我们可以写

(89)
$$\Phi_{f,p}(T) = (1 - \alpha_p T) (1 - \alpha_p T),$$

其中

(90)
$$\alpha_p + \alpha'_p = c(p), \qquad \alpha_p \alpha'_p = p^{2k-1}.$$

Petersson 猜想是: α_p 和 α_p' 是复共轭的、这也可以表示成

$$egin{align} |oldsymbol{lpha_p}| &= |oldsymbol{lpha_p}| = p^{k-1,\,2}, \ |oldsymbol{c}(p)| &\leqslant 2p^{k-1,\,2}, \end{gathered}$$

或者

$$|o(p)| \leq 2p^{k-1/2}$$

或者 $|c(n)| \le n^{k-1/2} \sigma_0(n)$ (对一切 $n \ge 1$).

对于k=6, 这给出 Ramanujan 猜想: $|\tau(p)| \leq 2p^{11/2}$.

(这个猜想可以从有限域上代数流形的广义 Weil 猜想推出来, 见 P. Deligne, Bourbaki 讨论班 1968/69, n°355.(*))

[[]注] 我们指出,存在关于 T(n)的迹的显公式,见 M. Eichler 和 A. Selberg, Jour. Indian Math. Soc., 20, 1956.

^(*) 关于有限域上代数流形的广义 Wed 猜想已被 P. Deligne 所证明, 则的 注明引文献。——译者注

§6. Theta 函数

6.1. Poisson 公式

设V是n维实向量空间,具有不变测度 μ . 设V'是V的对偶空间、令f为V上快 降 光滑 函 数 (见 L. Schwartz, Théorie des Distributions, 第七章 § 3)。f 的 Fourier 变换 f' 定义为

(91)
$$f'(y) = \int_{V} e^{-2\pi i \langle x, y \rangle} f(x) \mu(x).$$

这是P'上的快降光滑函数.

现在设 Γ 是V的格(见§2.2)。以 Γ' 表示V'中与 Γ 对偶的格,即

$$\Gamma' = \{ y \in V' | \langle x, y \rangle \in \mathbf{Z}, \ \text{对每个} x \in \Gamma \}.$$

不难验证 I'' 可以等同于 I' 之 Z—对偶 (因此叫这样的术语). 命题 **15** 设 $v = \mu(V/I')$,则有

(92)
$$\sum_{x \in \Gamma} f(x) = \frac{1}{v} \sum_{y \in \Gamma'} f'(y).$$

用 $v^{-1}\mu$ 代替 μ 之后,我们可设 $\mu(V/\Gamma)=1$. 取 Γ 的一组基 e_1 , …, e_n , 我们可以把 V 等同于 \mathbf{R}^n , 而 Γ 等同于 \mathbf{Z}^n , μ 为积测度 $dx_1 \cdots dx_n$. 这时我们有 $V'=\mathbf{R}^n$, $\Gamma'=\mathbf{Z}^n$, 从而我们归结为古典的 Poisson 公式 (Schwartz, 同上,第七章 公式 (7:5)).

6.2. 到二次型的应用

以下设V具有正定非退化双线性型 $x \cdot y$ (即 $x \neq 0$ 时 $x \cdot x$ >0). 利用这个双线性型我们把V' 等同于V, 于是格I'' 变成V 中的格. 我们有

 $y \in \Gamma' \Leftrightarrow x \cdot y \in \mathbf{Z}$ (对一切 $x \in \Gamma$).

对于格 Γ ,我们结合一个定义在 \mathbf{R}_{+}^{*} 上的函数:

(93)
$$\Theta_{\Gamma}(t) = \sum_{x \in \Gamma} e^{-xtx \cdot x}.$$

我们在V上选取不变测度 μ , 使得若 ϵ_1 , …, ϵ_n 是 V 的正交基,则由 ϵ_i 定义的单位立方体的体积是 1、于是格 Γ 的体积可以定义成 $v=\mu(V/\Gamma)$,见 § 6.1.

命题 16 我们有恒等式

(94)
$$\Theta_{\Gamma}(t) = t^{-n/2} v^{-1} \Theta_{\Gamma'}(t^{-1}).$$

证 令 $f=e^{-\pi x \cdot x}$, 这是 V 上快降光滑函数.f 的 Fourier 变换 f' 等于 f. 事实上,取 V 之一组正交基,并且用这组基将 V 等同于 \mathbb{R}^n . 则测度 μ 变成测度 $dx=dx_1\cdots dx_n$,而函数 f 是

$$f = e^{-\pi(x_1^2 + \dots + x_n^2)}.$$

于是我们归结为证明 $e^{-\pi x^0}$ 的 Fourier 变换是 $e^{-\pi x^0}$, 而这一点是熟知的.

现在将命题 15 用于函数 f 和格 $t^{1/2}\Gamma$. 这个格的体积是 $t^{n/2}v$, 而它的对偶是 $t^{-1/2}\Gamma'$, 就给出我们要证的公式.

6.3. 矩阵解释

设 e_1 , …, e_n 是 Γ 的一组基。令 $a_{ij}=e_i\cdot e_j$ 。则矩阵 $A=(a_{ij})$ 是非退化正定对称的。如果 $x=\sum x_ie_i\in V$,则

$$\boldsymbol{x} \cdot \boldsymbol{x} = \sum a_{ij} \boldsymbol{x}_i \cdot \boldsymbol{x}_{j,i}$$

函数 🚱 可以写成

(95)
$$\Theta_{\Gamma}(t) = \sum_{x_i \in \mathbb{Z}} e^{-\pi t \sum a_{ij} x_i x_j}.$$

『的体积为

(96)
$$v = \det(A)^{1/2}$$
.

- 148 -

这可以如下看出: 设 ε_1 , …, ε_n 是 V 的一组正交基, 而令 $\varepsilon = \varepsilon_1 / \dots \wedge \varepsilon_n$, $\varepsilon = \varepsilon_1 \wedge \dots \wedge \varepsilon_n$,

我们有 $e=\lambda s$, 其中 $|\lambda|=v$. 另一方面, $e \cdot e=\det(A) s \cdot s$. 比较之即得到 $v^s=\det(A)$.

令 $B=(b_{ij})=A^{-1}$,不难验证 (e_i) 之对偶基由下式给出: $e'_i=\sum b_{ij}e_{j}$.

 (e_i) 形成 Γ' 的一组基, $B=(e_i\cdot e_j)$. 特别地,这证明了,如果 $v'=\mu(V/L'')$,则 vv'=1.

6.4. 特殊情形

我们对于具有下述两个性质的(V, I')感兴趣。

(i) $\Gamma' = \Gamma$.

这意味着 $x, y \in \Gamma$ 时 $x \cdot y \in \mathbb{Z}$, 并且型 $x \cdot y$ 定义了 Γ 到自身之上的同构。 用矩阵语言,这意味着矩阵 $A = (e_t \cdot e_t)$ 有整系数并且它的行列式等于 1. 根据(96)式,后一条件等价于v=1.

如果 $n=\dim V$, 这个条件推出二次模 Γ 属于第五章 § 1.1 定义的范畴 S_n . 反之,如果 $\Gamma \in S_n$ 是正定的并且令 $V = \Gamma \otimes \mathbf{R}$, 则 (V, Γ) 满足 (i).

(ii) 对于每个 $x \in \Gamma$ 均有 $x \cdot x = 0 \pmod{2}$.

这意味着 Γ 是第 Π 类的(在第五章 § 1.3.5 的意义下), 或者说矩阵 A 的对角元素 $e_i \cdot e_i$ 均是偶数

我们在第五章已经给出过这种格 厂 的一些例子。

6.5. Theta 函数

在本小节和下一小节中,我们假定(V, I')满足上一小节中的条件(i)和(ii)。

设 $m \ge 0$ 为整数, 以 $r_T(m)$ 表示集合

$$\{x \in T^+_{\beta}x \cdot x + 2m\}$$

的元素个数. 容易看出 $r_r(m)$ 为 m 的一个多项式所界(例如,一个粗糙的体积推导可以给出 $r_r(m) = O(m^{n/2})$). 这表明整系数级数

$$\sum_{m=0}^{\infty} \boldsymbol{r}_{\Gamma}(m) q^{m} = 1 + \boldsymbol{r}_{\Gamma}(1) q + \cdots$$

在|q|<1中收敛。于是可以在半平面 H 上定义函数 θ_r :

(97)
$$\theta_{F}(z) = \sum_{m=0}^{\infty} r_{F}(m) q^{m} \quad (q = e^{2\pi i z}).$$

我们有

(98)
$$\theta_{T}(z) = \sum_{x \in T} q^{(x \cdot x)/2} = \sum_{x \in T} e^{\pi i z(x \cdot x)},$$

函数 $\theta_{\Gamma}(z)$ 叫作二次模 Γ 的 theta 函数, 它在 H 上全纯.

定理8 (a) P的维数 n是 8的倍数。

(b) 函数 θ_r 是权 n/2 的模形式.

证 (a) 已经证过(第五章 § 2.1 定理 2 的系 2).

我们证明恒等式

(99)
$$\theta_{\Gamma}(-1/z) = (iz)^{n/2}\theta_{\Gamma}(z).$$

因为两边对于 z 都是解析的, 只需对 z=it(t>0) 证明此公式。 我们有

$$heta_{\Gamma}(it) = \sum_{x \in \Gamma} e^{-\pi i(x \cdot x)} = \Theta_{\Gamma}(t)$$

类似地, $\theta_{\Gamma}(-1/it) = \Theta_{\Gamma}(t^{-1})$, 于是在公式 (94) 中考 虑到 v=1 和 $\Gamma = \Gamma'$ 即给出公式 (99)

因为8/n,我们可以把(99)式重写为

(100)
$$\theta_{\Gamma}(-1/z) = z^{\pi/2}\theta_{\Gamma}(z)$$

这就表明 θ_r 是权 n/2 的模型.

[我们简要地给出(a)的另一个证明。 假设 8 ∤n, 必要时 • 148 •

用 $I \oplus \Gamma$ 或者 $I \oplus I \oplus I \oplus \Gamma \oplus \Gamma$ 代替 I, 可设 $n = 4 \pmod{8}$. 这时公式(99)可以写成

$$\theta_{T}(-1/z) = (-1)^{n/4}z^{n/2}\theta_{T}(z) = -z^{n/2}\theta_{T}(z)$$
.

如果令 $\omega(z) = \theta_T(z) dz^{n/4}$,我们看到微分型 ω 在 $B: z \mapsto -1/z$ 之下变成 $-\omega$ 。由于 ω 在 $T: z \mapsto z + 1$ 之下不变,因此 ST 将 ω 变为 $-\omega$,而这是不可能的,因为 $(ST)^3 = 1$.]

系 1 存在着权 n/2 的 cusp 型 f_r , 使得

(101)
$$\theta_I = E_k + f_P, \quad \text{if } k = n/4.$$

证 由于 $\theta_{\Gamma}(\infty) = 1$, 从而 $\theta_{\Gamma} - E_{*}$ 是 cusp 型, 由此即得结论.

系2 我们有
$$r_{\Gamma}(m) = \frac{4k}{B_k} \sigma_{2k-1}(m) + O(m^k), k = n/4.$$

证 这从系 1, 公式(34) 和定理 5 推出。

注 "误差项" f_r 一般不为零。但是 Siegel 证明于 f_r 的加权平均是零。更确切地说,以 C_n 表示满足条件(i) 和(ii) 的格同构类集合,以 g_r 表示 $\Gamma \in C_n$ 的自同构群的阶级(见第五章§ 3.3),则有

(102)
$$\sum_{\Gamma \in \mathcal{C}_n} \frac{1}{g_{\Gamma}} \cdot f_{\Gamma} = 0,$$

或者等价地,

(103)
$$\sum_{\Gamma \in \mathcal{C}_n} \frac{1}{g_{\Gamma}} \theta_{\Gamma} = M_n E_k, \quad \sharp \oplus M_n = \sum_{\Gamma \in \mathcal{C}_n} \frac{1}{g_{\Gamma}}.$$

注意这也等价于说, θ_r 的加权平均是诸 T(n) 的本征函数。 公式 (102) 和 (103) 的证明见 C. L. Siegel 全集 $n^{\circ}20$ 。

6.6. 例子

i) n=8 情形.

可知 $\theta_r = E_2$, 换句话说,

(104) $r_{\Gamma}(m) = 240\sigma_{3}(m)$ (对于每个整数 $m \ge 1$).

这可用于第五章 \S 1.4.3 中构作的格 Γ_8 (注意这个格是 C_8 中唯一的元素).

ii) n=16情形,

我们有(理由同上)

(105)
$$\theta_{\Gamma} = E_4 = 1 + 480 \sum_{m=1}^{\infty} \sigma_7(m) q^m,$$

这里可取 $\Gamma = \Gamma_8 \oplus \Gamma_8$ 或者 $\Gamma = \Gamma_{16}$ (记号见第五章§1.4.8). 这两个格虽然不同构,但是有同样的 zeta 函数,即它们表示每个整数的次数是一样的.

注意附着于格 $\Gamma_8 \oplus \Gamma_8$ 的函数 θ 是 Γ_8 的函数 θ 的平方。 因此我们发现一个恒等式:

$$\left(1+240\sum_{m=1}^{\infty}\sigma_{3}(m)q^{m}\right)^{2}=1+480\sum_{m=1}^{\infty}\sigma_{7}(m)q^{m},$$

iii) n=24 情形。

权 12 的模形式空间是 2 维的。它的基可取如下的两个函数:

$$E_6 = 1 + \frac{65520}{691} \sum_{m=1}^{\infty} \sigma_{11}(m) q^m,$$

$$F = (2\pi)^{-12} \Delta = q \prod_{m=1}^{\infty} (1-q^m)^{24} = \sum_{m=1}^{\infty} \tau(m) q^m$$

于是,与格 Γ 相结合的 theta 函数可以写成

(106)
$$\theta_{\Gamma} = E_{\delta} + c_{\Gamma} F \quad (c_{\Gamma} \in \mathbf{Q})$$

我们有

(107)
$$r_{\Gamma}(m) = \frac{65520}{691} \sigma_{11}(m) + c_{\Gamma}\tau(m) \quad (m \ge 1).$$

取 m=1 即决定系数 c_r :

· 150 •

(108)
$$c_r = r_I(1) - \frac{65520}{691}.$$

由于 65520/691 不是整数, 从而 $c_r \neq 0$.

【例】 a) J. Leech 所构作的格 (Canad. J. Math., 16, 1964)是 $r_r(1) = 0$, 于是

$$c_F = -\frac{65520}{691} = -2^4 \times 3^2 \times 5 \times 7 \times 13/691$$

- b) 对于 $\Gamma = \Gamma_8 \oplus \Gamma_8 \oplus \Gamma_8$,我们有 $r_{\Gamma}(1) = 3 \times 240$,于是 $c_{\Gamma} = \frac{432000}{691} = 2^7 \times 3^8 \times \delta^8/691.$
- o) 对于 $\Gamma = \Gamma_{24}$, 我们有 $r_{\Gamma}(1) = 2 \times 24 \times 23$, 于是 $c_{\Gamma} = \frac{697344}{691} = 2^{10} \times 3 \times 227/691.$

6.7. 补充

由于我们只考虑全模群 $G=PSL_2(\mathbf{Z})$,使我们只限于研究 § 6.4 中具有很强条件的格. 特别地,我们不能处理最自然的情形,即二次型

$$x_1^2+\cdots+x_{n_*}^2$$

这个二次型满足条件(i),但是不满足条件(ii). 它所对应的 theta 函数对于 G 的由 S 和 T^2 生成的子群是"权 n/2 的模形式"(注意 n/2 不一定是整数). G 的这个子群对于 G 的指标为 S 、它的基本区域有两个"ousp",对应这两个"ousp"有两种类型的"Eisenstein 级数". 使用这些 Eisenstein 级数,我们得到把一个整数表为 n 个平方之和的表现个数公式,详见文献目录中所引的书和文章.

文 献

一些经典著作

- C. F. Gauss—Disquisitiones arithmeticae, 1801, Werke, Bd. I.(英泽大, Yale Univ. Press; 法译本。Blanchard.)
- C. Jacob: Fundamenta nova theoriae functionum ellipticarum, 1829, Gesau melte Werke, Bd. I., pp. 49~239.
- G. Lejeune Dirichlet Démonstration d'un théorème sur la progression ambimétique, 1834, Werke, Bd. I. p. 307.
- G. Eiserstein --Mathematise ie Abhandlungen, Berlin, 1847 (1967 年 程.版; Georg Olms Verlag., Hildescheim).
- B. Riemann -Gesammelte mathematische Werke, Teubner, 1892 (美译本: Dover; 部分法译本: Gauther-Villars, 1898).
- D. Hilbert—Uie Theorie der algebraischer Zahlkörper, Gesam. Abh., Ed. I. pp. 63~363(法译本: Ann. Fac. Sci. Toulouse, 1909 和 1910).
- H. Minkowski-Gesammelte Abhandlungen, Teubner, 1911.
- A. Hurwitz--Mathematische Werke, Birkhinser, Verlag, 1932.
- E. Hecke—Mathematische Werke, Göttingen, 1959.
- C. L. Siegel—Gesammelte Abhandlungen, Springer-Verlag, 1966.

数域和局部域

- N. Hecke—∆igebraische Zahlen, Leipzig, 1923.
- Z. I. Borevich **; I. R. Shafarevich—Number Theory (泽自俄文), Academic Press, 1966.(有法译本和德泽本).
- M. Eichler—Einführung in die Theorieder algebraischen Zahlen und Funktionen, Eirkhauser Verlag, 1963 (英译本: Academic Press, 1966).
- J-P. Serre—Corps Locaux, Hermann, 1962.
- P. Samuel—Théorie algébrique des nombres, Hermann, 1967.
- E. Artin 和 J. Tate—Class Field Theory, Benjamin, 1963.
- J. Castels 和 A. Fröhlich (集) —Algebraic Number Theory, Academi: Press,

· 152 · 1

1967.

- A. Weil -- Pasic Number Theory, Springer-Verlag, 1967.
- S. Lang -Algebraic Number Theory, Addison-Wesley, 1970. (后四个者作包含"类域论"内容。)

二次型

- a) 一般理论, Witt 定理
- E. Witt-Theorie der quadratischen Formen in beliebigen Körpern, J. Crelle, 176, 1937, pp. 31~44.
- N. Bourbaki—Algèbre, chap. LX, Hermann, 1959.
- E. Artin—Geometric Algebra, Interscience Publ., 1957 (法译本: Gauthier-Villars, 1962).
 - b) 算术性质
- B. Jones—The arithmetic theory of quadratic forms, Carus Mon., n°10, John Wiley and Sons, 1950.
- M. Eichler-Quadratische Formen und orthogonale Gruppen, Springer-Verlag, 1952.
- G. L. Watson-Integral quadratic forms, Cambridge Tructs, n°51,Cambridge, 1960.
- O. T. O' Meara—Introduction to quadratic forms, Springer-Verlag, 1963.

 e) 判别式为 ±1的整二次型
- E. Witt--Eine Identität zwischen Modulformen zweiten Grades, Abh. math. Sem. Univ. Hamburg, 14, 1941, pp. 323~337.
- M. Kneser--Klassenzahlen definiter quadratischer Formen, Arch. der Math. 8, 1957, pp. 241~250.
- J. Milnor—On simply connected manifolds, Symp. Mexico, 1958, pp. 122~ 128.
- J. Milnor—A procedure for killing homotopy groups of differentiable manifolds, Symp. Amer. Math. Soc., n°3, 1961, pp. 39~55.

Dirichlet 定理, zets 函数和 L-函数

- J. Hadamard ~ Sur la distribution des zéros de la function \(\zeta(s) \) et ses conséquences arithmétiques, 1896, Ocuvres, CNRS, t. 1, pp. 189~210.
- E. Lardan—Handbuch der Lehre von der Verteilung der Primzshlen, Teubner, 1909.

- A. Selberg—An elementary proof of the prime number theorem for arithmetic progressions, Canad. J. Math., 2, 1950, pp. 66~78.
- K. Prachar-Primzahlverteilung, Springer-Verlag, 1957.
- H. Davenport—Multiplicative number theory, Markham, Chicago, 1968.
- **K.** Chandrasekharam Introduction to analytic number theory, Springer-Verlag, 1968.
- A. Blanchard—Initiation à la théorie analytique des nombres premiers, Dunod, 1969.

模函数

- F. Klein-Vorlesungen über die Theorie der elliptischen Modulfunktionen, Leipzig, 1890.
- 8. Ramanujan—On certain arithmetical functions, Trans. Cambridge Phil. Soc., 22, 1916, pp. 159~184.
- G. Hardy—Ramanujan, Cambridge Univ. Press, 1940.
- R. Godement—Travaux de Hecke, Sém. Bourbaki, 1952~53, exposés 74, 80.
- R. C. Gunning—Lectures on modular forms (notes by A. Brumer), Ann. of Math. Studies, Princeton, 1962.
- A. Borel et al.—Seminar on complex multiplication, Lecture Notes in Maths., n°21, Springer-Verlag, 1966.
- A. Weil—Sur la formule de Siegel dans la théorie des groups classiques, Acta Math., 113, 1965, pp. 1~87.
- A. Ogg-Modular forms and Dirichlet series, Benjamin, 1969.
- G. Shimura—Introduction to the arithmetic theory of automorphic functions, Tokyo-Princeton, 1971.

(还参见上面所引的 Hecke 和 Siegel 著作。)

符号索引

Z. N. Q. R. C. 分别表示整数、正整数、有理数、实数和复数集合。

A*: 环 A 中可逆元集合。

F_q; q 元域, I, 1.1.

 $\left(\frac{x}{x}\right)$, Legendre 符号, L. 3.2; H. 3.3.

e(n), $\omega(n)$, I. 3.2; II. 3.3.

Z_c p adic 整数环, II.1.1.

vo: p-adic 赋值, II.1.2.

U=Z*; p-adic 单位群, II. 1.2.

Qn p-adic 数域, II. 1.3.

(a, b), (a, b)_v. Hilbert 符号, III. 1.1; III. 2.1.

 $V = P \cup \{\infty\}$; III. 2.1; IV. 3.1.

金, ⊕, 正交直和, IV. 1.2; V. 1.2.

 $f \sim g$; IV. 1.6.

 $f \dotplus g, f \dotplus g$; IV. 1.6.

d(f): 型 f 的判别式, IV. 2.1; IV. 3.1.

e(f), $e_v(f)$; 型f的局部不变量, IV. 2.1; IV, 3.1.

 $S, S_n, V.1.1.$

٠.

d(E), $\tau(E)$, $\sigma(E)$, $\tau(E)$, S中元素 的不变量, $\nabla .1.3$.

 I_+ , I_- , U_+ I_8 , I_{8m} : S 中元素, V_- 1.4,

K(S), S 的 Grothendieck 群, ∇ . 1.5.

 \hat{G}_i 有限 Δ bel 群 G 的对偶群, $\mathrm{V1.1.1.1}$. $G(m) = (\mathbf{Z}/m\mathbf{Z})^*_i$, $\mathrm{V1.1.3}$.

P. 素数集合, VI. 3. 1.

ζ(s). Riemann zeta 函数, VI. 3.2.

 $L(s, \chi)$, 相对于 χ 的 L 函数, VI.3.3.

G=SL₂(Z)/{±1};模群, VII.1.1.

H: 上半平面, VII.1.1.

D. 模群的基本区域, VII. 1.2.

 $\rho = e^{2\pi i/3}$; VII, 1.2.

 $q = e^{2\pi i z}$; VII. 2.1.

98. C中的格集合, VII. 2.2.

 $G_k(k \geqslant 2)$, g_2 , g_3 , $\Delta = g_2^3 - 27g_3^2$; VII.

 B_k : Bernoulli \mathfrak{B}_k : $\nabla II. 4.1.$

 E_k : VII. 4.2.

 $\sigma_k(n)$: n 之全部正因子的 k 次 幂 之 和, VII. 4.2.

τ. Ramanujan 函数, VII. 4.5.

T(n): Hecke 算子, VII. 5.1; VII. 5.3.

 $r_{T}(m)$; m 由 P 表示的表法数, VII. **6**.5.

 θ_{Γ} . 格子的 theta 函数, VII. 6.5.

期阳

定义索引

Abel 引理: VI. 2.1. 运元定理: U. 2.1. Bernoulli 数。VII. 4.1. Abs: 許的肯征: V1.1.1. (域的)特别。「.1.1. Chevalley 足理: 1.2.2. 毗连基: 1V.1.4. cusp /L: VII. 2.1. 退化(二次型); IV.1.2. 素数集合的密度。V1.4.1. 自然密度: VI. 4.5. Dirichlet 级数: IV, 2.2. Dirichlet 定理。 111. 2.2: VI. 4.1. 二次型的判别式。IV. 1. 1. **Abe**l 群的对偶,**V1.1.1**, Eisenstein 级数: VII.2.3. 椭圆曲线: VII.2.2. 模群的基本区域。VII. 1.2. Hasse-Minkowski 定理: IV. 3.2. Hecke 算子: VII. 5.1; VII. 5.2. Hilbert 符号。UII.1.1. 二次型的不变量: IV. 2.1; V. 1.3. 迷向向量和送向子空间。 IV. 1.3. 格: VII. 2.2. Legendre 符号: I. 3.2.

L函数: VI.3.3. Meyer 定理, IV. 3.2. Minkowski-Siegel 公式: V. 2.3. 模特征。VI.1.3. 模函数和模形式。VII.2.1. 模群: VII, 1.1, 积性函数: VI. 3.1. 正交直和。1V.1.2; V.1.2. p adie 整数: II.1.1. p adic 数: JI. 1.3. p-adic 单位: II. 1.2. Poisson 公式: VIII. 6.1. 本原向量: II.2.1. 乘积公式。[III. 2.1. 二次型和二次模: IV.1.1. 二次瓦反律: 1.3.3. Ramanujan 猜想: VII. 5.6.3. Ramanujan 函数: VII. 4.5. 二次型表示数。IV.1.6. 实工次型的符号量; IV. 2.4. 格的 thota 函数: VII.6.5. 二次型的新偶类。 V. 1.3. 模函数的权: VII.2.1. Witt 定理: IV. 1.5. Zeta 函数: VI. 3.2.