Pb)
read (
207.2
A,=

	7.	٤	0.00	a right iler	1000			4
	<u> </u>	3		בור ביו (ניי)	(1) H= H	n a	2	4 20
	00	0. 24.426	36.829	INFINITE 87.950	-6.878	00	o' c	ďc
	200	25.870	54.272	67.210	-2.587	ö	်ဝ	ö
	298.15	26.836	64.785	64.785	ó	ö	o	Ö
®	88	26.853	25.55 25.55	64.786	0.050	o' c	o'c	o c
	8	28.549	19.07	67.886	5.592	öo	်ဝ	ó
	8	29.404	84,336	70,201	8.481	ó	ö	o
	000 000 000 000 000 000 000	29.414 30.627	84.366 92.314	70.215 70.215	8.499 13.273	— CRYSTAI T	L <> LIQUID TRANSTTION	 图
	68 88	30.332	96.984	73.693	16.303	Ö	o o	_
	88	29.698	104.530	79.746	22.30	್ ೆ	ರ ರ	್ ರ
	8 9	29.397	107.643	82.383	25.261	o o	oʻ (o o
	8 8 8 8	28.786	112.949	87.050	31.079	ಶರ	ာ်ဝ	ာ် င
	<u>6</u>	28.652 28.623	115247	89.132 91.074	33.950 36.812	ರರ	ರ ರ	ರ ರ
	1500	28.673	119.344	92.893	39.677	ö	Ö	o'
	88	28.786	121.198	94.605 96.221	42.549 45.435	o' o'	ರ ರ	o c
	88	29.109	124 606	97.753	48.336	ó	Ö	ď
	200	29.497	127.693	100.595	\$4.196	ာ်ဝံ	ာ်ဝ	je
	2019.022	29.541	127.972	100.851	54.758	LIQUID	ID <> IDEAL G	.GAS_
	2100	25.499	216.916	105.308	234.378		. d	
	220	26.365	218.122	110.408	236.971	ö	Ö	ó
	15 15 15 15 15 15 15 15 15 15 15 15 15 1	28.173	220 493	119.484	242.423	j oʻ	ာ် ဝ	် ဝ
	2002	20.02	221.262	123.547	245.286	5 6	o' c	o c
	2300	30.844	223.968	130301	251.281	j d	j oʻ	ó
	882	32.444	226230	137.243	257.613	ರ ರ	ာ်ဝံ	ೆ ರ
	9000	33.160	227.342	140,377	260.894	ö	o ·	oʻ,
	3200	34.398	229.523	143.200	264.243	ರರ	೦ ೦	o o
	3300	34.913	230.589	148.432	271.120	o' c	o c	o c
	3200	35.737	232,669	153.186	278.190	ďď	jo	j
	3600	36.048	233.680	155.408	281.780	ďc	ďc	o c
	3800	36.485	235.642	159.580	289.037	i d	i d	ó
	8 4 8 00 8 00	36.618 36.700	236.592	161.542	292.693 296.359	ರ ರ	ರ ರ	o o
	925	36.737	238.427	165.248	300.031	o'c	o c	Ö
	430	36.692	240.176	168.693	307.377	öö	်ဝံ	ó
	4 5 5 6 6 7	36.619 36.518	241.019	170,327	311.042	ರ ರ	ಠಠ	00
	4600	36.395	242.642	173.436	318,345	Ö	o	Ö
	6 6 8 8 8 8 8	36.093	244.185	176.352	321.978 325.595	ರ ರ	ರೆರ	ợ ci
	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	35.923 35.743	244.927	179.095	329.196	ರರ	o o	o o
	2100	35.557	246.357	180.407	336.344	oʻ	o' e	Ö
	2300	35.175	247.717	182.922	343.417	ರ ರ	ರ ರ	ာ်ဝ
	25 005 005	34.985	248.373	184.128	346.925	ರೆಂ	o c	o'c
	2009	34.612	249.639	186 445	353.885	ic	i c	C
	2700	34.434	250.250	187.559	357,337	်ငံ	io	Ö
	280	34.703	2000	28.0.53	300.172	ď	ာ	S.
	2900	34.097	251.431	189.704	364 189	c	ó	0

REFERENCE STATE

0 to 600.6 K crystal 600.6 to 2019.022 K liquid above 2019.022 K ideal monatomic gas

Refer to the individual tables for details.

Lead (Pb)

Pb₁(cr)

Lead (Pb)

1836	3					MALCOL	M W. CHASE	
Pb ₁ (cr)	- 0.1 MPa log K,	ರಂಧ	ರ ರ ರರ್ಪರ ರ		-0.164 -0.197 -0.207 -0.213	-0.216		CURRENT: March 1962
	e Pressure = p*	ೆ ೆ ೆ	ರ ರ ರರರರರ ರ	Ų	3.138 3.856 4.526 5.143 5.701	6.198		CURRENT
	Standard State Pressure kJ·mol ⁻¹ A _t H* A _t G*	೦೦೦	ರ ರ ರದರಧರ ರ	CRYSTAL -4.833 -4.765 -4.568	-4242 -3.789 -3.208 -2.506 -1.700	-0.797		
	K H*-H*(T,)	-6.878 -5.112 -2.587	-1.282 0. 0.050 1.403 2.773 5.592 8.481	8.499 11.470 14.556 17.738	21.018 24.396 27.871 31.443 35.113	38.280		
	Enthalpy Reference Temperature = T, = 298.15 K T/K C; S* -[G*-H*T,]]T	INFINITE 87.950 67.210	65.225 64.785 65.114 65.849 67.886 70.201	70.215 72.556 74.866 77.098	79.244 81.303 83.278 85.176	88.761		
	lemperature J·K⁻¹mol⁻¹ S° −[G'	0. 36.829 \$4.272	60,0% 64,785 64,951 72,7% 76,085 79,071 84,336	84.366 88.941 93.060 96.808	100.263 103.481 106.504 109.363	14.08		
	ference 7	0 24.426 25.870	26.363 26.853 27.288 27.723 28.139 28.549	29.414 30.367 31.342 32.313	33.288 34.263 35.238 36.208 37.183	39.138		
Lead (Pb)	Enthalpy Re	0 0 0 0 0	28.15 380 380 380 480 880 880 880	000,600 000 000 000	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95		 PREVIOUS:
A _r = 207.26	$\Delta_t H^0(0 \text{ K}) = 0 \text{ kJ mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = 0 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_{\text{fin}} H^0 = 4.77 \pm 0.01 \text{ kJ} \cdot \text{mol}^{-1}$		21 K, 64–77 K), Meads, et al. ² (15–300 K), Douglas and an from Meads et al. ² and Horowitz et al., respectively, and jouned smoothly to the data of Douglas and Deverb	$26\pm0.002^{\circ}$ C. $\Delta_{lo}H^{\circ}$ was given by Douglas and Dever. ³	e ideal gas, $\Delta_f H^0$ (298.15 K) See the ideal gas table for	1952). 941).		
b) CRYSTAL	$S^{*}(298.15 \text{ K}) = 64.785 \pm 0.54 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{tos}} = 600.58 \pm 0.00 \text{ K}$	Enthalpy of Formation Zero by definition.	Heat Capacity and Entropy Heat Capacity measurements have been reported by Horowitz, et al. ¹ (1–4 K, 14–21 K, 64–77 K), Meads, et al. ² (15–300 K), Douglas and Devir ¹ (298.15 K), and many others whose work is listed by Kelley. ⁴ Heat capacities from 15 to 300 K and 1 to 4 K (in superconducting state) were taken from Meads et al. ² and Horowitz et al., ¹ respectively. The missing atta below the melting point were obtained by graphical extrapolation and joined smoothly to the data of Douglas and Dever ² on approaching the melting point.	sion Data The melting point of pure Pb(cr) was found by McLaren and Mardock ⁵ to be $327.426 \pm 0.002^{\circ}$ C. $\Delta_{tu}H^{\circ}$ was given by Douglas and Dever. ³	ublimation Data The enthalpy of sublimation, $\Delta_{uo}H^o(298.15 \text{ K})$, is the enthalpy of formation of the ideal gas, $\Delta_l H^o(298.15 \text{ K})$	References ¹ M. Horowitz, A. A. Silvidi, S. F. Malaker and J. G. Daunt, Phys. Rev. 88, 1182 (1952). ² P. V. Meads, W. R. Forsythe and W. F. Giaugue, J. Am. Chem. Soc. 63, 1902 (1941). ² F. B. Douglas and J. L. Dever, J. Am. Chem. Soc. 76, 4824 (1954). ⁴ K. K. Kelley, U. S. Bur. Mines Bull. 584, 232 pp. (1960). ⁵ E. H. McLaren and E. G. Mardock, Can. J. Phys. 38, 577 (1960).		
Lead (Pb)	S°(298.151 T _{lu} = 600.5	Enthalpy Zero by	Heat Cap Hear Cap Devir ³ (298 Heat cap The missing on approact	Fusion Data The melting	Sublimation Data The enthalpy of su details.	References 'M. Horowitz 'P. V Meads, 'T. B Dougla 'K. K. Kelley 'E. H. McLan		

Pb ₁ (I)	• = 0.1 MPa		,	1 '	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CURRENT: March 1962
	Standard State Pressure = p° = 0.1 MPa Ly-mol ⁻¹ $\Delta_t H^{\circ}$ log K,	+	 RANS	'	0.000.000.000.000.000.000.000.000.000.	CURRE
	Standard Stat	}	Š,	4.579 4.773 CRYSTAL 0.	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
	K H*-H*CL)		0 0.050 2.779 2.779	8.972 8.990 12.021	18.023 20.978 20.576 20.576 30	
	Enthalpy Reference Temperature = T_s = 298.15 K T/K C_s S^* = $1G^*$ + $1G^*$		71.710 72.774 72.774 72.774	74.884 77.330 77.345 79.811	84.504 88.701 90.619 90.619 90.619 91.33 91.33 92.748 97.7	
	emperature - J·K - mol ⁻¹	1	71 710 71.876 79.720 79.720	92.284 92.314 96.984	104.530 107.643 112.949 117.249 117.348 122.948 127.605 127.693 127.693 127.693 127.693 127.693 127.693 127.693 127.693 127.693 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859 131.859	
	eference T	;			29.68 29.091 29.091 29.091 29.245 29.276 29.2776 29.2776 29.2776 29.2776 29.2776 29.2776 29.2776 29.2776 29.2776 20.	
Ar = 207.2 Lead,(Pb)	Enthalpy R	200 0 0 200 0 200 0	298.15 300 400 400.000	500 600.600 700 700 700	200 200 200 200 200 200 200 200 200 200	PREVIOUS
	$\Delta_{\rm t} H^{o}(298.15 {\rm K}) = [4.283] {\rm kJ \cdot mol^{-1}}$ $\Delta_{\rm tus} H^{o} = 4.77 \pm 0.01 {\rm kJ \cdot mol^{-1}}$	Enthalpy of Formation The enthalpy of formation of the liquid, Δ _t H°(298.15 K), is calculated from that of the crystal by adding Δ _{tur} H° and the difference in enthalpy, H°(600.58 K)–H°(298.15 K), between the crystal and liquid.	eat Capacity and Entropy Heat capacity values from T_{los} to 1200 K were taken from Douglas and Dever. ¹ Heat capacity values below T_{los} and above 1200 K were trapolated, a glass transition being assumed at 400 K. The entropy is calculated in a manner anologous to that used for the enthalpy of formation.	Vaporization Data T_{rep} is calculated as the temperature at which $\Delta_1 G^{\circ} = 0$ for the process Pb(1) = Pb(g). $\Delta_{rep}H^{\circ}$ is calculated as the corresponding enthalpy of formation difference at T_{rep} . At temperatures below T_{rep} , the amount of Pb ₂ (g) in the vapor is negligible.		
LIQUID	$S^{*}(298.15 \text{ K}) = [71.710] \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $T_{\text{ths}} = 600.58 \pm 0.00 \text{ K}$	Enthalpy of Formation The enthalpy of formation of the liquid, Δ _t H°(298.15 K), is calculated enthalpy, H°(600.58 K)-H°(298.15 K), between the crystal and liquid.	Heat Capacity and Entropy Heat capacity values from T _{les} to 1200 K were taken from Douglas and Dever, ¹ Heat capaci extrapolated, a glass transition being assumed at 400 K. The entropy is calculated in a manner anologous to that used for the enthalpy of formation.	e temperature at which $\Delta_i G^* = 0$ for the process it T_{rap} . At temperatures below T_{rap} , the amount of	Pr. B. Douglas and J. L. Dever, J. Am. Chem. Soc. 76, 4824 (1954).	

=
$\overline{}$
ᅩ
-
Ω
Ω.

_	
O	
Ω.	
$\overline{}$	
-	

	2	Enthalpy Keference To	Temperature	- 7, - 298.15	×	Standard State Pressure		= p = 0.1 MPa
0. 0. NPRNITE -6878 0. 25.50 0	7.K	ະ	S - [G	-H'(T,)]T	$H^{\bullet}-H^{\circ}(T_{\bullet})$	• #14	A _G •	log K,
14426 36839 8799 7595 25836 60096 62223 -1237 0 0 25835 64778 67210 -2387 0 0 25835 64778 67210 -2387 0 0 25835 77723 77739 65349 2779 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 84.356 70.213 8.493 0 29.404 70.213 70.213 8.493 0 29.404 70.213 70.213 8.493 0 29.404 70.213 70.213 8.493 0 29.404 70.213 70.213 8.493 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 70.213 175.904 0 29.404 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.213 70.	0	ó	ď	INFINITE	8789-	c	•	
28.54 60.05 65.27 -1.287 0, 2.8.55 60.05 65.27 -1.287 0, 2.8.55 60.05 65.27 -1.287 0, 2.8.54 70.07 67.88 65.89 2.779 0, 2.8.54 70.071 67.88 5.52 0, 2.8.54 70.071 67.88 5.52 0, 2.8.54 70.071 67.88 5.52 0, 2.8.54 70.071 67.88 5.52 0, 2.8.54 70.071 67.88 5.52 0, 2.8.54 70.071 67.88 67.89 0, 2.8.54 70.071 67.89 67.89 0, 2.8.54 70.071 67.89 67.89 0, 2.8.54 70.071 67.89 67.89 17.20 67.20 0, 2.8.67 111.249 67.02 17.20 0, 2.8.67 111.249 67.249 0, 2.8.67 111.249 67.20 0, 2.8.67 111.249 67.2	88	24.426	36.829	87.950	-5.112	ó	ö	် ဝ
28.55 64.78 64.78 0. 0. 28.54 70.71 67.86 05.89 0. 28.54 70.71 67.86 05.89 0. 28.54 84.36 70.201 8.481 0. 29.444 84.36 70.211 8.481 0. 30.52 10.01 70.213 13.73 13.73 10.00 0. 29.69 10.01 16.43 14.89 15.23 0. 29.69 10.01 16.43 14.89 10.00 0. 29.69 10.01 16.43 14.89 10.00 0. 29.69 10.01 16.43 14.89 10.00 0. 29.70 11.159 94.60 0. 29.70 11.159 94.60 0. 29.70 11.159 94.60 0. 29.70 11.159 94.60 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.159 10.00 0. 29.70 11.150 10.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.70 10.10 0.00 0. 29.	ន្តន	26.363	960.09	65.225	-1282	ာ်ဝ	ာ် ဝ	ರ ರ
2.68.83 64.951 64.786 0.059 0. 2.8.49 79.071 67.886 5.379 0. 2.8.49 79.071 67.886 5.379 0. 2.9.404 84.336 70.213 8.481 0. 2.9.414 84.346 70.213 8.481 0. 2.9.414 84.346 70.213 8.481 0. 2.9.628 10.1031 77.48 1.6.303 0. 2.9.639 10.1031 77.48 1.6.303 0. 2.9.639 10.1031 77.48 2.2.26 0. 2.9.647 10.1041 84.803 1.9.34 2.2.26 0. 2.9.937 10.1178 84.803 1.9.34 2.2.89 0. 0. 2.9.75 11.118 84.803 1.9.34 2.2.89 0. 0. 2.8.75 11.1249 87.036 1.0.38 1.0.38 0. 0. 2.9.76 11.1240 87.132 1.0.38 1.0.38<	298.15	26.836	64.785	64.785	ó	ö	ó	ó
29.404 84.336 70.201 8.481 0. 29.404 84.336 70.201 8.481 0. 29.404 84.336 70.201 8.481 0. 29.404 84.336 70.201 8.481 0. 30.016 101.013 76.863 16.303 0. 29.031 101.0431 84.803 15.331 0. 29.031 101.0431 84.803 12.336 0. 29.037 107.643 82.383 25.266 0. 29.037 107.643 82.383 25.266 0. 28.765 112.349 87.159 0. 28.673 112.349 87.159 0. 28.673 112.349 87.159 0. 28.673 113.489 97.074 35.812 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.706 129.137 101.200 37.156 0. 29.707 137.859 100.4406 0.2100 -176.299 31.177 11.800 37.156 0.2100 -176.299 31.177 11.800 37.176 0.2100 -176.299 31.177 11.800 37.176	8	26.853	64.951	64.786	0.050	ó	o	ó
29.44 84.35 70.203 8.49	88	27.73	5.78 2.78	65.849	2779	o c	ď	o' o
29.414 84.366 70.2115 8.499 TRAPAL 70.2115 113.773 TRAPAL 70.2115 113.774 70.213 70.010 70.01	8	29.404	84,336	70.201	8.481	o c	o c	o c
30.312 \$6.594 70.215 13.773 TRAI 30.312 \$6.594 71.5693 16.303 0. 29.598 104.530 79.746 22.306 0. 29.597 107.643 84.808 22.306 0. 29.597 107.643 84.808 22.306 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.079 0. 28.768 112.549 87.050 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.708 124.649 87.051 31.059 0. 29.709 124.649 87.051 31.059	009'009	29.414	84,366	70.215	8.499	CRYST	AI. <> I.IC	
30.312 96.984 71.693 16.303 0, 29.008 101.013 76.863 19.321 0, 29.008 101.013 76.863 19.321 0, 29.009 101.013 82.383 22.323 0, 29.009 101.043 82.383 22.323 0, 29.009 111.299 87.009 28.185 0, 28.652 111.299 87.1059 31.079 0, 28.652 111.208 97.009 97.133 96.00 0, 29.298 117.208 97.133 96.00 0, 29.298 117.2948 96.221 0, 29.298 177.33 96.00 0, 29.298 177.33 96.00 0, 29.298 177.37 100.251 97.139 97.139 0, 29.298 177.37 100.251 97.139 97.139 177.211 97.2978 177.391 100.251 100.251 97.139 97.13	000.600	30.627	92.314	70,215	13.273		TRANSITION	
29.697 (19.47)	88	30.332	96.984	73.693	16.303	oʻ (o'	Ö
29.37 107.643 82.383 25.261 0. 28.081 110.431 84.808 28.185 0. 28.652 115.247 89.132 31.979 0. 28.653 119.344 92.893 31.979 0. 28.673 119.344 92.893 31.979 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 94.603 47.549 0. 28.786 121.189 100.390 57.186 -176.279 0. 30.347 131.189 100.793 57.273 -175.290 0. 30.341 137.881 100.844 77.232 -175.290 0. 31.376 138.983 110.847 81.552 -175.019 0. 31.376 138.983 110.847 81.552 -175.019 0. 31.378 138.983 110.847 81.552 -175.019 0. 31.378 138.983 110.847 81.552 -175.019 0. 31.381 140.050 111.802 84.743 -176.131	88	29.698	104530	79.746	22.306	ďc	o c	o' c
28.09) 110.431 648.08 28.185 0. 28.756 1112.49 87.050 31.079 0. 28.623 1112.49 87.050 31.079 0. 28.623 1112.49 87.130 0. 28.632 1112.49 87.289 0. 28.756 121.198 94.663 42.439 0. 28.756 121.198 94.663 42.439 0. 29.296 124.669 87.731 83.35 0. 29.297 127.693 100.595 54.196 0. 29.297 127.693 100.595 54.196 0. 29.307 127.693 100.595 54.196 0. 29.308 121.839 100.595 54.196 0. 30.347 131.845 100.577 65.146 -176.239 30.556 135.281 107.793 77.277 -175.290 30.556 137.891 107.793 77.277 -175.290 31.176 138.983 110.847 81.352 -175.290 31.276 139.983 110.847 81.352 -175.290 31.376 138.983 110.847 81.352 -175.290 31.376 138.983 110.847 81.352 -175.290 31.376 138.983 110.847 81.352 -175.290 31.376 138.983 110.847 81.352 -175.290 31.376 31.290 31.376	001	29.397	107,643	82.383	25.261	ö	ó	ó
28.623 111.249 81.130 31.079 0. 28.623 111.249 81.130 31.079 0. 28.633 111.249 81.130 31.079 0. 28.633 111.248 92.893 39.677 0. 28.786 121.188 94.665 42.39 0. 28.786 121.188 94.665 42.39 0. 28.786 121.188 94.665 42.39 0. 28.786 121.189 94.665 42.39 0. 28.787 121.298 94.203 11.289 0. 29.296 121.188 99.208 11.286 0. 29.297 121.698 100.251 11.289	88	29:091	110.431	84.808	28.185	oʻ.	o'	o.
28.623 1173.68 91.074 36.812 0. 28.753 119.344 92.893 39.677 0. 28.753 119.344 92.893 39.677 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.233 0. 28.753 12.948 94.239 0. 28.753 12.948 97.33 10.00.9 28.754 12.959 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.948 97.33 10.00.9 28.755 12.949 97.909 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 12.949 97.9 28.755 1	300	28.657	115.243	80.130	21.0/9	o' c	o c	oʻ (
28.673 119.344 92.893 39.677 0, 28.786 121.189 94.605 42.349 0, 28.938 122.948 94.605 47.333 48.335 0, 29.296 124.606 97.733 48.335 0, 29.296 124.606 97.733 48.335 0, 29.296 124.606 97.733 48.335 0, 29.296 127.7972 100.851 54.196 0, 29.341 127.972 100.851 54.196 0, 29.390 129.137 101.920 57.1156 -177.231 29.390 120.324 103.189 104.406 66.1140 -176.291 30.345 1133.146 105.777 66.1140 -176.271 30.345 110.347 66.1140 -176.271 30.345 110.347 66.1140 -176.271 30.345 110.347 66.1140 -176.271 30.345 110.347 66.1140 -176.271 30.345 110.347 66.1140 -176.271 30.345 110.347 67.175.991 31.376 110.309 111.807 84.743 -176.151 31.381 100.209 111.807 84.743 -176.151	1400	28.623	117,368	91.074	36.812	ံဝံ	öö	ော်ဝ
28.7% 121.1% 94.605 42.54 0. 28.9% 122.9% 96.21 4. 43.35 0. 29.109 122.9% 97.751 48.356 0. 29.2% 122.9% 97.751 48.356 0. 29.2% 127.693 100.592 54.1% 0. 29.47 177.693 100.592 54.1% 0. 29.47 100.851 54.1% 0. 29.47 177.693 100.592 54.1% 0. 29.20 190.51 100.992 57.1% 177.21 29.20 29.20 190.51 100.992 57.1% 177.21 29.20 29.20 190.51 100.57 66.1% 176.29 30.34 133.1% 100.57 66.1% 176.29 30.56 135.591 107.793 77.275 175.293 30.56 135.591 107.793 77.275 175.293 31.17 137.8% 100.844 77.235 175.293 31.17 137.8% 100.844 77.235 175.293 31.17 137.8% 100.847 81.5% 175.293 31.376 138.9% 111.802 84.743 176.181	1200	28.673	119,34	92.893	39.677	ď	ó	Ö
29.296 124.696 97.733 6.435 0. 29.296 124.696 97.733 6.435 0. 29.296 124.696 97.733 6.435 0. 29.296 124.697 10.920 57.136 0. 29.706 129.137 101.920 57.138 FUGACT 29.706 129.137 101.920 57.138 FUGACT 29.706 129.137 101.920 57.138 0.138 0.138 11.839 104.406 63.140 -176.291 105.757 66.164 -176.291 105.757 66.164 -176.291 105.757 66.164 -176.291 105.757 109.861 105.757 105.861 105.757 109.861 105.757 109.861 105.757 109.861 105.757 105.893 11.776 138.933 11.08.47 72.275 -175.999 11.7881 100.200 111.802 84.743 -176.131	8	28.786	121.198	\$605	42.549	o' o	oʻ (oʻ.
29286 126.185 99.208 51.256 0. 29.477 127.693 100.595 54.196 0. 29.477 127.693 100.595 54.196 0. 29.477 127.693 100.595 54.196 0. 29.500 139.137 101.920 57.156 -177.231 29.200 130.534 101.920 57.156 -176.231 29.200 130.534 101.802 60.108 -176.231 20.304 131.895 100.476 66.164 -176.231 20.305 135.591 107.795 77.275 -175.994 20.200 135.591 107.79 77.275 -175.994 20.200 135.591 107.79 77.275 -175.994 20.200 135.591 107.79 77.275 -175.994 20.200 135.591 108.49 11.802 84.743 -176.151 20.200 131.80 20.200 131.802 84.743 -176.151	88	20.720	124 606	177.6	45,435	o c	ಶ	o o
29.447 127.653 100.555 54.196 0. 29.541 127.972 100.851 54.196 0. 29.706 130.524 101.900 57.156 -177.221 101.900 57.156 -177.221 101.900 57.156 -177.221 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -176.511 101.900 57.156 -175.990 57.15	061	29.296	126.185	99.208	51.256	်ငံ	ó	ó
29.706 127.77 100.851 54.758 FUGACT 29.706 129.71 101.920 57.156 -177.221 29.706 129.71 101.920 57.156 -177.221 29.920 130.139 130.34 131.859 104.406 63.140 -176.511 201.349 105.77 66.164 -176.219 30.346 135.591 107.793 77.2775 -175.944 20.926 131.77 137.885 100.844 77.2775 -175.944 20.926 131.77 137.885 100.844 77.275 -175.940 31.77 137.885 100.844 77.275 -175.940 31.77 138.983 110.847 81.595 -176.018 31.581 140.050 111.802 84.743 -176.151	2000	29.497	127.693	100.595	54.196	o	oʻ	o
29.706 129.137 101.920 57.186 -177.221 20.529 105.234 105.189 65.139 -176.833 30.133 113.186 105.577 66.139 -176.219 30.347 133.146 105.577 66.116 -176.229 30.556 135.591 107.793 77.275 -175.590 30.505 135.58 100.844 77.235 -175.590 31.177 137.885 110.847 81.555 -175.039 31.177 138.983 110.847 81.555 -176.018 31.581 140.050 111.802 84.743 -176.151	2019.022	29.541	127.972	100.851	54.758	FUG	7	JE
29.90 19.554 103.189 60.188 -176.833 90.133 113.89 104.406 63.100 -176.511 90.347 133.146 105.705 69.210 -176.511 90.347 133.146 105.705 69.210 -176.571 90.367 135.591 107.705 77.2775 -175.904 90.905 11.70 175.883 109.861 71.362 -175.999 91.375 11.802 84.743 -176.151 91.903 13.581 140.050 111.802 84.743 -176.151	2100	29.706	129.137	101,920	57 156	77.77	Ě	
30.133 131.859 104.406 65.140 176.511 30.346 133.145 105.777 66.162 176.279 30.256 134.359 106.705 69.210 175.059 30.905 136.735 108.844 75.302 175.399 31.771 137.885 109.861 78.408 175.399 31.376 138.993 110.807 81.595 176.018 31.381 140.050 111.802 84.743 176.151	2200	29.920	130,524	103.189	60.138	-176.833	15.884	-0.377
30.547 135.140 105.705 66.105 -176.279 30.561 135.591 107.793 72.275 -175.905 30.902 136.755 108.844 72.362 -175.905 31.777 137.885 109.861 78.485 -175.905 31.376 138.983 110.847 81.595 -176.018 31.581 140.050 111.802 84.743 -176.151	2300	33.33	131.859	104.406	63.140	-176.511	24.636	-0.560
30.76 135.591 107.793 72.275 -175.502 30.952 136.755 108.844 77.352 -175.202 31.171 137.885 109.861 78.485 -175.292 31.376 138.983 110.847 81.595 -176.018 31.581 140.050 111.802 84.743 -176.151	228	30.556	134.389	105.201	88.18 25.28	-176.259	33,376	-0.726
30.952 136.756 108.844 75.252 -175.253 31.771 137.885 109.861 78.488 -175.939 31.376 138.983 10.847 84.559 -176.151 31.581 140.050 111.802 84.743 -176.151	2600	197.05	135 501	107 701	27.42	175.064	2003	2000
31,77 175,99 31,77 18,983 10.847 81,595 31,581 140,050 111,802 84,743 -176,181 11,802 84,743 -176,181	2700	30.962	136,756	108.844	75.362	-175.920	59.553	-1.152
31.38	2800	31.171	137.885	109.861	78.468	-175.939	68.275	-1274
1C10/11 CEV-56 700-11 OCCOSE 10-15	888	31,376	138.983	110.847	81.595	-176.018	76.998	-1387
	3	100	0000	700'111	64.743	10.131	83.72	-1.493
	REVIOUS:						CURREN	VI. March 194

Ar = 207.2 Lead (Pb)

Refer to the individual tables for details.

0 to 600.6 K crystal above 600.6 K liquid

CRYSTAL-LIQUID

Lead (Pb)

J. Phys. Chem. Ref. Data, Monograph 9

CURRENT March 1983 (1 bar)

$A_r = 207.2 \text{ Lead (Pb)}$

 $S^{(298.15 \text{ K})} = 175.374 \pm 0.020 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ IP(Pb, g) = $59819.4 \pm 0.3 \text{ cm}^{-1}$

Lead (Pb)

IDEAL GAS

 $\Delta_t H^0(0 \text{ K}) = 195.88 \pm 0.80 \text{ kJ·mol}^{-1}$ $H^0(298.15 \text{ K}) = 195.20 \pm 0.80 \text{ kJ·mol}^{-1}$

$\Delta_{l}f$	
	Weights 8. 1 3 3 5 5 5 5 5 1
	Electronic Levels and Quantum Weights State
	State Plectronii Planta

Enthalpy of Formation

The adopted enthalpy of formation value for Pb(g), $\lambda_f H^0$ (298.15 K) = 195.20 \pm 0.80 kJ·mol⁻¹, is that recommended by CODATA. This value was calculated, according to CODATA, from the vapor pressure measurements cited by Hultgren et al.2 and the more recent measurements by Andon et al., Chang, et al., Kim and Cosgarea, and Shiu and Miner.

Heat Capacity and Entropy

of all levels other than those listed above; the next excited state is approximately 34950 cm⁻¹ above the ground state. Although we list only a few levels above, all levels listed by Moore²⁴ are considered in the calculation. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the relative atomic mass and the fundamental constants. Extension of these calcualtions above 6000 K may require consider-The information on electronic energy levels and quantum weights, given by Moore, 12 is incomplete because many theoretically predicted levels have not been observed. Our calcualtions indicate that any reasonable method of filling in these missing levels (for n<21) and cutting off the summation in the partition function and little effect on the thermodynamic functions to 6000 K. This is a result of the high energy ation of the excited states (n>21) and use of different fill and cutoff procedures.9

The thermal functions at 298.15 K differ from the CODATA recommendations for two reasons. First, the entropy differs by 0.1094 J-K⁻¹-mol⁻¹ because this table uses a reference pressure of 1 bar, whereas CODATA recommendations are based on 1 atm. Second, small changes, 0.005 J-K⁻¹-mol⁻¹, arise due to the use of slightly different values for the fundamental constants.

References

J. D. Cox, chairman, CODATA Task Group on Key Values for Thermodynamics, J. Chem. Thermodyn. 10, 903 (1978); CODATA Bulletin No 28, (1978).

Pt. Hullgren, P. D. Desai, et al., Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals

Park, Ohio, (1973).

J. L. Andon, J. F. Martin and K. C. Mills, J. Chem. Soc. A1788 (1971).
 A. Chang, G. C. Wilhelm, M. Lathrop and I. Gyuk, Acta Met. 19, 795 (1971).

H. Kim and A. Cosgarea, Jr., J. Chem. Phys. 44, 806 (1966).

⁶D H. Shiu and Z. A. Munir, Metallurg. Trans. 2, 2953 (1973).

⁷C. E. Moore, U. S. Nat. Bur. Stnad., NSRDS-NBS-35, Volume III, 1970, [Reprint of NBS Circular 467, Volume III, 1958].
⁸C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-34, 8 pp. (1970).

نے

Downey, Jr. The Dow Chemical Company Co., Rept. AFOSR-TR-78-0960, Contract No. F44670-75-1-0048, (1978).

Standard State Pressure = p = 0.1 MPa -28.211 -23.359 -19.727 -16.907 -14.655 -11.287 -8.951 -7.209 -5.861 -3.913 -3.187 -2.576 -2.054 -1.604 -0.867 -0.867 -0.288 -0.288 -28.422 NFINITE -96.430 -45.232 -35.013 ರವವರದ ವರವವರ ಪರವವರ ಪರವವರ ಪರವ<mark>ರದ</mark> ಪ್ರವವರ CITY - 1 ba 64.113 55.063 46.064 156.520 156.520 151.064 145.651 140.278 73.221 91.642 81.393 195,200 80,002 84.532 92.993 83.693 $H^{\bullet}-H^{\bullet}(T_{\bullet})$ 16.678 18.771 20.878 23.005 23.160 27.352 29.589 31.883 34.240 36.669 33.140 39.178 44.452 47.224 50.086 53.040 56.081 59.207 62.413 69.043 72.454 75.921 79.435 82.990 86.580 90.198 93.337 97.493 101.159 110.131 115.842 115.145 115.145 115.145 113.145 113.395 133.395 133.395 Enthalpy Reference Temperature = T, = 298.15 K $-[G^{\bullet}-H^{\bullet}(T_{\bullet})]T$ 193.410 194.456 195.460 196.426 197.338 202.420 203.197 203.959 204.708 205.444 206.168 206.881 207.583 208.275 208.275 209.630 210.294 210.948 211.594 212.230 212.858 213.477 214.088 214.691 215.285 215.287 216.449 217.019 217.581 218.135 184.439 185.940 197.532 199.136 199.987 200.817 201.627 218.682 219.221 219.752 220.276 220.793 221.805 221.805 222.300 222.789 179.453 198,260 J-K-'mol-' 220.493 223.968 225.105 226.230 227.342 229.523 230.589 231.639 232.669 240.176 241.019 241.841 44.185 44.927 145.651 206.028 207.604 209.091 10.505 215.693 726.212 116.916 222.820 228.440 233.680 238.427 89.911 25.499 26.365 27.261 28.173 29.084 33.813 34.398 34.913 35.360 36.048 36.296 36.485 36.618 36.737 36.692 36.692 36.619 36.518 36.395 36.252 36.093 35.923 35.743 20.786 20.786 20.786 20.787 20.787 20.787 20.787 20.801 34.612 24.831 20.786 0.786 20.888 20.991 21.155 21.394 21.717 X

PREVIOUS: March 1962 (1 atm)

Pb;(g)

Lead, Ion (Pb*)

CURRENT: March 1983 (1 bar)

÷	
(Pb	
<u></u>	

Lead.

IP(Pb+, g) = 121243 ± 3 cm⁻¹

IDEAL GAS

M_r = 207.19945 Lead, Ion (Pb⁺)

0.5 kJ·mol ⁻¹ Enth	
$\Delta_t H^{\circ}(0 \text{ K}) = 911.480 \pm 0.5 \text{ kJ} \cdot \text{mol}^{-1}$	

$S^{\circ}(298.15 \text{ K}) = 181.137 \pm 0.02 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$			ΔĀ	$\Delta_t H^{\circ}(298.15 \text{ K}) = [916.996] \text{ kJ mol}^{-1}$	
	Electronic State	Electronic Levels and Quantum Weights State 6., cm ⁻¹ 8,	Weights 8,		
	P ₁₂ P ₂₂	0.000	2 4		
Enthalpy of Formation $\Delta_H^a(Pb, g, 0 K)^l$ using the spectroscopic value of IP(Pb) = 59819.4 \pm 0.3 cm ⁻¹ (715.599 \pm 0.004 kJ·mol ⁻¹) from Moore. ² The ionization limit is converted from cm ⁻¹ to kJ·mol ⁻¹ using the factor, 1 cm ⁻¹ = 0.01196266 kJ mol ⁻¹ , which is derived from the 1973 CODATA fundamental constants. Rosenstock et al., and Levin and Lias ⁴ have summarized additional ionization and	g, 0 K)¹ using tl niverted from cn istants.³ Rosenst	he spectroscopic value n ⁻¹ to kJ·mol ⁻¹ using ock <i>et al.</i> ⁴ and Levin ock	e of IP(Pb) = 5981 the factor, 1 cm ⁻ and Lias ⁵ have sur	19.4 ± 0.3 cm ⁻¹ (715.599 ± 0.004 1 = 0.01196266 kJ mol ⁻¹ , which is mmarized additional ionization and	

 $\Delta_H^{*}(Pb^*, g$, 298.15 K) is calculated from $\Delta_H^{*}(Pb, g$, 0 K) by using IP(Pb) with JANAF¹ entrapies, $H^{*}(0 \text{ K}) + H^{*}(229.15 \text{ K})$, for Pb(g), Pb*(g), and e (ref). $\Delta_H^{*}(Pb \to Pb^* + e^-$, 298.15 K) differs from a room temperature threshold energy due to inclusion of these entralpies and to threshold effects discussed by Rosenstock *et al.* $^{4}\Delta_H^{*}(298.15 \text{ K})$ should be changed by $-6.197 \text{ kJ} \cdot \text{mol}^{-1}$ if it is to be used in the ion appearance potential data. kJ·mol⁻¹) from Mo derived from the 19

Heat Capacity and Entropy

convention that excludes the enthalpy of the electron.

levels have not been observed. Our calculations indicate that any reasonable method of filling in these missing levels and cutting off the summation in the partition function? has no effect on the thermodynamic functions to 6000 K. This is a result of the high energy of all levels other than the ground state and the first excited state; the next excited state is 57911 cm⁻¹, above the ground state. Since inclusion of these excited states has no effect on the thermodynamic functions (to 6000 K), we list only the ground state and the first excited states. The reported uncertainty in \$°(298.15 K) is due to uncertainties in the relative ionic mass and the fundamental constants. Extension of these calculations The information on electronic energy levels and quantum weights, given by Moore, 26 is incomplete because many theoretically predicted above 6000 K may require consideration of the excited states and use of different fill and cutoff procedures.

JAMAF Thermochemical Tables: Pkg), 3-31-62; e (ref), 3-31-82.
 C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-34 (1970).
 F. R. Cohen and B. N. Taylor, J. Phys. Chem. Ref. Data 2, 663 (1973).
 H. M. Rosenstock, K. Drazl et al., J. Phys. Chem. Ref. Data 6, Supp. 1, 783 pp. (1977).
 R. D. Levin and S. G. Lias, U. S. Nat. Bur. Stand., NSRDS-NBS-71, 634 pp. (1982).
 C. E. Moore, U. S. Nat. Bur. Stand., NSRDS-NBS-33, Volume 3, (1971) [Reprint of NBS Circular 467, Volume 3, 1958].
 J. R. Downey, Jr., The Dow Chemical Company, AFOSR-TR-0960, Contract No. F44620-75-1-0048, (1978).

Enthalpy R	eference To	Enthalpy Reference Temperature = T, I.K -tmol-1	- T 298.15 K		Standard State Pressure		p = 0.1 MPa
7/K	ಚ	.s -[C	-[G*-H*(T,)]/T	H*-H*(T,)	Δ,Η*	δ,6	log K,
288°0	0. 20.786 20.786 20.786	0. 158.430 172.838 177.476	INFINITE 199.618 183.039 181.480	-6.197 -4.119 -2.040 -1.001	911.480		
298.15	20.786		181.137	0	916.996	876.051	-153,481
888	20.786 20.786	181.266	181.138 181.391	0.038	917.024	875 797 868 868	-152.490
450 50	20.786 20.786	187.246 189.694	181.953	3.156	918.452 919.134	861.837 854.719	-112.544
200	20.786	191.884	183.493	4.1%	919.795	847.526	-88.540
88	85.03 87.03 88.03	195.674	185.217 186.945	6.274 8.353	921.064 917.399	832.952 818.970	-72.515 -61.112
88	20.786 20.786	201.653	188.614	10.431 12.510	918.539	804.831	-52.550
0001	20.786	206.292	191.703	14.589	920.913	776.132	-40.541
8 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	20.786 20.786	208.273 210.081	193.121 194.460	16.667 18.746	922.146 923.409	761.594 746.943	-36.165 -32.514
865	25.02 28.788 26.02	211.745	195.726 196.926	20.825 22.903	924.696 925.991	732.185	-29.420
000	20.02	077.417	198.003	24.982	927.284	67570	-24.439
128	20.802	217.323	200.181	29.141	929.842	672.23	-20.655
200	20.813	218.512	202.109	33.22	931.100	657,037	-19.067
2000	20.854	220,707	203.013	35.388	933.563	626.453	-16.361
2200	20.886	221.122	203.880	39.566	757.547	618.183	-15.376
2300	20.979	223.629	205.516	41.661	760.616	604.766	-13.735
2500	21.15	225.383	207.036	45.762	763.347	597.960 591.096	-13.014
2700	21,202	226.213 227.015	207.757	47.985 50.110	764.588	584.181 577.220	-11.736
7800 7800 7800	21.411	227.792 228.545	209.133	\$2.246 \$4.393	766.839	570.217	-10.638
3000	21.667	229.278	210.427	56.553	768.816	\$56,103	-9.683
3200	21.964	229.990 230.685	211.046	58.727 60.915	769.719 270.576	548.997 541.863	-9.251 -8.845
3400	22.2%	232.027	212.236	65.120	77.178	534.703 527.519	-8.464 -8.104
3500	22,412	232.675	213.367	67.579	772,939	520,312	-7.765
358 378 378 378 378	22.839	233.311	213.912	72,110	773.684	513.084 505.834	-7.44S -7.141
388	222	235.146	215.476	76.716	775.888	498.566 491.277	6.580
4100	23.606	236.317	216.464	81.398	777.389	476 644	-6.073
255 200 200 200 200 200 200 200 200 200	22.23 23.38 29.38	236.888	216.944	83.769 86.158	778.164	469.300	-5.837
4400 4500	24.177	238.550	217.876 218.329	88.566 90.993	779.782	454.554	-5.396 -5.190
4500 4700	24.720	239.087	218.774 219.212	93.439	781.508	439.733	-4.993
4800	24.892	240.139	219.643	98,383	783,360	424.834	-4.623
2000	25.22	241.162	220.483	103.394	785344	409.855	-4.282
\$100 \$200	25.375	242.157	220.894	105.924	786.388	394.794	-4.121 -3.966
2300 2400 2500	25.865 25.800 25.800 25.800	242.645	222.088	111.028	788.576 789.720	387,232	-3.816 -3.672
950	36,046	244.060	777 857	118 787	707 103	364.418	-3 300
2200 2800 2800	26.164	244.531	22.22 23.23 26.23	124.020	793.340	356.770	-3.269
800	26.371	245.437 245.881	223.970 224.332	126.652 129.294	795.900 797.219	341.408 333.693	-3.023 -2.905
PPEVIOUS.					ξ	DDENT. MA	A 1000 /1 Lan

CURRENT: March 1983 (1 bar)

PREVIOUS:

M _r = 207.20055 Lead, Ion (Pb ⁻)	
IDEAL GAS	
on (Pb ⁻)	

Pb ₁ (g)	= 0.1 MPa	log K,		-21.677	-21.510 -17.700 -14.868 -12.685	-8.397 -6.665	-5.396 -4.430 -3.674	-3 <i>0</i> 70 -2.578 -2.172 -1.832	1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-0.746 -0.607	-0.661 -0.754 -0.841	-0.923	-1.076 -1.148 -1.216	-1.282 -1.345	-1.406 -1.465 -1.522	-1578	-1.684 -1.734 -1.784	-1.832 -1.879	-1.975 -1.970 -2.014 -2.057	-2.140 -2.180 -2.219	-2238	-2333 -2369 -2405	-2.439	2.559 2.553 2.665	-2.636
	Standard State Pressure = p° = 0.1 MPa kJ·mol ⁻¹	$\Delta_i G^{\bullet}$		123 728	123.541 118.600 113.853 109.281	96.449 89.322	82.635 76.324 70.343	64 657 59.236 54.055 49.095	39.775	31.12 27.12 23.23	26.593 31.753 37.032	42.431 47.946	53.578 59.326 65.187	71.162	83.445 89.751 96.165	109.308	116.033	136.802	151.121 158.416 165.798 173.266	188.449 196.160 203.949	211.812	227.757 235.836 243.982	252.194 260.471	285.677 285.677 294.199	302.778
	tandard State	$\Delta_t H^{\bullet}$	160.761	153.882	153.833 152.479 151.104 149.707	145.401	134.562 131.576 128.622	125.697 122.803 119.933 117.070	111.333	102.52 102.626 102.626 103.626	-80.496 -83.088 -85.770	-88.541 -91.404	-94.357 -97.399 -100.525	-103.731	-110.361 -113.772 -117.238	-120.752 -124.308	-127.898 -131.515 -135.155	-138.810	-146.149 -149.823 -153.494 -157.160	-164.463 -168.095 -171.713	-178.897	-182.462 -186.008 -189.535	-193.043 -196.532	-203.455 -203.455 -206.890 -210.306	-213.708
		$H^{\bullet}-H^{\circ}(T_i)$	-6.197 -4.119 -2.040 -1.001	Ö	0.038 1.078 2.117 3.156	6.274 8.353	10.431 12.510 14.589	16.667 18.746 20.824 22.903	24.982 27.060	31.217 33.296 35.375	37.453 39.532 41.610	43.689 45.768	47.846 49.925 52.004	54.082 56.161	58.239 60.318 62.397			74.868	79.025 81.104 83.183 85.261	89.418 91.497 93.576	95.654 97.733	99.811 101.890 103.969	106.047	112.283	118.519
	Enthalpy Reference Temperature = T, = 298.15 K	-H*(T,)]/T	NFINITE 205.381 188.802 187.243	186.900	186.901 187.154 187.716 188.443	190.980 192.708	194 <i>377</i> 195 <i>9</i> 65 197.466	198.884 200.223 201.490 202.689	203.828 204.912	206.930 207.872 208.77	209.642 210.475 211.276	212.049 212.794	213.514 214.210 214.884	215.537	216.785 217.383	218.529 219.079	219.616 220.139 220.649	221.147	222.109 222.574 223.629 223.474	224.337 224.755 225.165	225.567 225.962	226.349 226.730 227.103	227.470 227.831	228.533 228.876 229.213	229.545
	mperature =	S -[G-H'(T,)]/I	0. IN 164.193 178.601 183.239	186.900	187.029 190.233 193.009 195.457	201.437 204.641	207.417 209.865 212.055	214.036 215.845 217.508 219.049	220.483	225.39 225.39 26.463	223.444 229.368	230,252 231,101	232.701	234.186	235.572	237.492	238.680	240.344 240.870	241.384 241.885 242.374 242.852	243.776 244.223 244.660	245.089	245.920 246.324 246.720	247.108	248.232 248.594 248.949	249.298
(Pb-)	eference Te	ប	0. 20.786 20.786 20.786	20.786	20.786 20.786 20.786 20.786	20.786 20.786 20.786	20.786 20.786 20.786	20.786 20.786 20.786 20.786	20.786	20.786 20.786 20.786	20.786 20.786 20.786	20.786 20.786	20.786 20.786 20.786	20.786	20.786 20.786 20.786	20.786	20.786	20.786	20.786 20.786 20.786 20.786	20.786 20.786 20.786	20.786 20.786	20.786 20.786 20.786	20.786	20.786 20.786 20.786	20.786
ead, lon	Enthalpy Re	7/K	288 50 28 50	298.15	88888	388	888	1300 1300 1400 1400	8 8	8888	2222	2400 2500	2600 2700 800	300	3200	3200	360 370 0081	3900 4000 9000	244 200 245 200 200 200 200 200 200 200 200 200 20	4500 4700 4800	\$ \$	5200 5300	\$500 \$200 \$300	2800 2800 2800 2800 2800 2800	0009
M _r = 207.20055 Lead, ion (Pb ⁻]	$\Delta_t H^0(0 \text{ K}) = 160.76 \pm 3 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta H^0(.798 15 \text{ K}) = 1153 8821 \text{ kJ} \cdot \text{mol}^{-1}$				$2A(Pb) = 0.364 \pm 0.008 \text{ eV}$ (35 120 ± 0.7	Rosenstock et al. 3 and Massey. halpies, $H^0(0 \text{ K}) - H^0(298 \text{ 15 K})$, for Pb ⁻ (2)	l energy due to inclusion of these enthalpi + 6.197 kJ-mol ⁻¹ if it is to be used in the ic	:	Kosenslock <i>et al</i> . Lacking any experiment			į	s. (1976).												
IDEAL GAS			Electonic Level and Quantum Weight State 6, cm ⁻¹ 8,	⁴ S _{3/2} 0.0 4	0 K)¹ using the adopted electron affinity of I	cal discussions of Hotop and Lineberger, 2, 9, 0 K) by using EA(Pb) with JANAF' ent	differs from a room-temperature threshole al. ⁵ A ₂ H ^o (298.15 K) should be changed by	on.	(g) is given by riotop and Lineberger and re assume that no stable excited states exist	; e (ref), 3-31-82.	lef. Data, 14, 731 (1985). berger, J. Chem. Phys. 74, 1513 (1981).	cer. Data 6, Supp. 1, 783 pp. (1977).	bridge University Press, Cambridge, 741 pj												
Lead, lon (Pb ⁻)	EA(Pb, g) = 0.364 ± 0.008 eV $9'/798 + 5 \times 15 \times 15 \times 1000 + 0.007 + 0.007 + 0.007 = 0.000$				Enthalpy of Formation $\Delta_H^o(P_0, g, 0 K)^1$ using the adopted electron affinity of EA(Pb) = 0.364 ± 0.008 eV (35 120 ± 0 772 t.m.) ¹ This value accommanded by Hoton and inchesive 2 is based on a locar physhelesthmant electron continuous could. A definitional	A final state, recommended by an arrange of the critical discussions of Hotor Line-teger, 2 Kosenstock et al., and Massey. Affrob. 2, 298.15 K) is obtained from Affrob. 2, 0 K) by using EA(P) with IANAF enthalpies, H*(0 K) – H*(298.15 K), for Pb T(2).	Pb(g), and e (ref). $\Delta H^2(Pb^- \to Pb + e^-, 298.15 K)$ differs from a room-temperature threshold energy due to inclusion of these enthalpies and to threshold effects discussed by Rosenstock et al. 2 $\Delta_4 H^2(298.15 K)$ should be changed by $+ 6.197 kJ$ -mol ⁻¹ if it is to be used in the ion	convention that excludes the enthalpy of the electron. Heat Gapacity and Entropy	I'VE GYOUND STATE ELECTRONIC CONTIGURATION FOR UP IN EACH AND AND LINEOFIGET. AND KOSCHSTOCK OF ALL LACKING ANY EXPERIMENTAL EVIDENCE AS TO THE STABILITY OF ANY EXCITED STATES, WE ASSUME THAT NO STABLE EXCITED STATES EXIST.	References JANAF Themochemical Tables: Pb(g), 3–31–83:	² H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data, 14, 731 (1985). ² C. Feigerle, R. R. Cordermann and W. C. Lineberger, J. Chem. Phys. 74, 1513.	H. Hotop and W. C. Linecerger, J. Phys. Circin. Ref. Data 6, 539 (1973). ⁵ H. M. Rosenstock, K. Draxl et al., J. Phys. Circin. Ref. Data 6, Supp. 1, 783 pp. (1977).	*H. S. W. Massey, "Negative Ions", 3rd ed., Cambridge University Press, Cambridge, 741 pp. (1976).												

Heat Capacity and Entropy

'n
ĕ
2
ø
ē
ā
~

Pb,S,(cr)

<u>بر</u>
౨
υĎ
مَ
Ω,

CURRENT: June 1973

CRYSTAL

M_r = 239.26 Lead Sulfide (PbS)

PREVIOUS:

Lead Sulfide (PbS)

0	Ļ

$S^{\circ}(298.15 \text{ K}) = 91.34 \pm 1.7 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$	t ± 1.7 J·K ⁻¹ ·mol	ī			$\Delta_t H^0(0 \text{ K}) = 98.55 \pm 2.1 \text{ kJ·mol}^{-1}$ $\Delta_t H^0(298.15 \text{ K}) = -98.32 \pm 2.1 \text{ kJ·mol}^{-1}$	$\Delta_t H^0(0 \text{ K}) = 98.55 \pm 2.1 \text{ kJ·mol}^{-1}$ $28.15 \text{ K}) = -98.32 \pm 2.1 \text{ kJ·mol}^{-1}$	Enthalpy R.	eference Ter	mperature =	Enthalpy Reference Temperature = $T_r = 298.15 \text{ K}$ J·K ⁻¹ mol ⁻¹		Standard State Pressure = p = 0.1 MPa	Pressure = p	- 0.1 MPa
$T_{\rm fus} = 1386.5 \pm 1.5 {\rm K}$	~				$\Delta_{\rm fus}H^{\circ}=18$	Δ _{fus} H° = 18.83 ± 6.3 kJ·mol ⁻¹	7/K	ະ	S -[G*-H'(T,)]/T	-H^(T,))T	H*-H*(T,)	₩. 	₽ C•	log K,
Enthalpy of Formation 2nd and 3rd law analyse (via emf measurements) of The results of our analyses	ation nalyses are made o nts) of Kapustinski talyses using auxil	of the equilibrium is and Makolkin ⁴ iary data ⁷ are su	Enthalpy of Formation 2nd and 3rd law analyses are made of the equilibrium data of Jellinek et al., 'Sudo,' an 2nd and 3rd law analyses are made of the equilibrium data of Jellinek et al., 'Sudo,' an (via ernf measurements) of Kapustinskii and Makolkin' and of Kiukkola and Wagner' an The results of our analyses using auxiliary data' are summarized in the following table.	,¹Sudo,² and Stul Vagner² and the e wing table.	Enthalpy of Formation 2nd and 3rd law analyses are made of the equilibrium data of Jellinek et al., Sudo,² and Suubbles and Birchenall,³ the Gibbs free energies (via emf measurements) of Kapustinskii and Makolkin⁴ and of Kiukkola and Wagner² and the emf data reported by Thompson and Flengas. The results of our analyses using auxiliary data² are summarized in the following table.	Gibbs free energies apson and Flengas.	100 200 298.15 300	0. 39.748 47.614 49.438 49.455	0. 11.926 71.920 91.343	133.734 133.734 95.823 91.343 91.344	-11.511 -9.244 -4.781 0.091	-98.545 -98.734 -98.437 -98.324 -98.324	-98.545 -97.928 -97.239 -96.685	INFINITE 51.152 25.396 16.939 16.833
Source Reaction*	T/K	Data Points	Δ _t H°(298.15 K), kcal·mol ⁻¹ 2nd law 3rd law	cal·mol ⁻¹ 3rd law	Drift cal·K ⁻¹ ·mol ⁻¹	Δ _t H°(298.15 K) kcal·mol ⁻¹	8 88	51.463 52.384 53.346	117,375 126,839 134,988	97.013 101.217 105.473		-102.302 -103.584 -109.465	-94.688 -93.039 -90.400	9.892 8.100 6.746
- 2 °	788–1273 855–1048	7 Equation	-18.4 ± 0.8 -18.0	-18.60 -20.12	-0.16 ± 0.80 -2.2	-22.5	888	54.308 55.271 56.191	142.176 148.627 154.498	109.620 113.602 117.402	26.045 31.523 37.096	-110.310 -164.074 -163.312	-87.616 -83.658 -74.763	5.721 4.855 3.905
∀ 81	859-1193 288-308	R m	-19.3 ± 0.1 -17.7 ± 0.5	-19.76 -16.63	-0.42 ± 0.12 3.7 ± 1.6	-23.6 -21.5	288	57.153	159.900	121.023	42.764	-162.439 -161.459	-65.949 -57.220	3.132
υ <u>α</u>	523–573 600–700	04	-24.7 -24.5 ± 0.2	-23.84 -24.79	1.5 -0.45 ± 0.32	-23.5 -23.4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	59.957 60.877	174.008 178.176	127.767 130.914 133.927	54.382 60.332 66.374	-160.375 -159.206 -157.962	-48 <i>577</i> -40,020 -31,550	1.952 1.493 1.099
<u>.</u>	773-1071	12	-40.7 ± 0.5	-39.63	1.2 ± 0.6	-23.2	888	62.551	182.132	136.817	72.503	-156.653 -155.288	-23.164	0.756
*A) PA B) PK C) PK	*A) Pb(1) + H ₂ S(g) = PbS(cr) + H ₂ (g) B) Pb(cr) + H ₂ S(g) = PbS(cr) + H ₂ (g) C) Pb(cr) + S(l) = PbS(cr)	(cr) + H ₂ (g) (cr) + H ₂ (g))	D) Pb(l) + S(l) = PbS(cr) E) Pb(l) + 1/2 S ₂ (g) = PbS(cr)	bS(cr) ;) = PbS(cr)				second and a second a second and a second a second and a second and a second and a	167-761	147708	e la co	-135.869	-0.043	0.193
The experiences of Kapustinskii and studies ^{2,2,5,6} are cons We also calculat H ₂ Ol + H ₂ S(aq) → P may approach ± 1 P P M + 2 Cl) — D P M + 2 Cl) — D P M + 2 Cl) — D P M + 2 Cl)	Flellinek et al. 1 are Makolkin may b istent with the ado e $\Delta_H^0 = -23.5$ l $5S(cr) + 2 HNO_3(a kel-mol^{-1})$ due to kyol may a A^{μ} and A^{μ}	the dismissed as $ $ pred dismissed as $ $ pred $\Delta_t H^o(298.1)$ from $ $ from $ $ from $ $ $ $ from $	The experiences of Jellinek et al. 1 are unsatisfactory and are superseded by two lat Kapustinskii and Makolkin may be dismissed as biased on the basis of incontidies 1.3.5 are consistent with the adopted $\Delta_1H^a(298.15 \mathrm{K})$ of 23.5 ± 0.5 kcal·mol We also calculate $\Delta_1H^a = -23.5$ kcal·mol ⁻¹ from $\Delta_1H^a(293 \mathrm{K}) = -13.38 \pm (5.0) + H_3S(aq) \rightarrow PbS(cr) + 2 HNO_3(aq, 2000 H_2O)$ studied calorimetrically by Zeuu ay approxab ± 1 kcal·mol ⁻¹ due to the auxiliary data and approxamation $\Delta_1H^a(20.15 \mathrm{M}) = -1.3.4 +0.3 \mathrm{M}_2 +0.3 \mathrm{M}$	two later studies ² inconsistencies al·mol ⁻¹ . 38 ± 0.2 kcal r yy Zeumer and Rc nations used in	The experiences of Jellinek et al.¹ are unsatisfactory³ and are superseded by two later studies²²3 of the same equilibrium. The Gibbs energies of Kapustinskii and Makolkin⁴ may be dismissed as biased on the basis of inconsistencies in both Δ ₄ H° and entropy (drift). The other studies²²¹³²s are consistent with the adopted Δ ₄ H°(298.15 K) of 23.5 ± 0.5 kcal·mol⁻¹. We also calculate Δ ₄ H° = -23.5 kcal·mol⁻¹ from Δ ₄ H°(293 K) = -13.38 ± 0.2 kcal mol⁻¹ for the reaction Pc(NO ₂);(aq. 3000 H ₂ O) + H ₂ S(aq) → PcS(cr) + 2 HNO ₂ (aq. 2000 H ₂ O) studied calorimetrically by Zeumer and Roth.³ The uncertainty of this calorimetric Δ ₄ H° may approach ± 1 kcal·mol⁻¹ and approximations used in our calculation.	The Gibbs energies y (drift). The other Pb(NO ₃),(aq. 3000 is calorimetric Δ _s , t T DTA data! for the control of the control								

H-O) + H-S(a) — PES(cr) + 2 HNO₁(a, 2000 H₂O) studied calorimetrically by Zeumer and Rohl. The uncertainty of this calorimetric $\Delta_H^{\mu\nu}$ may approach ±1 kcal-mol⁻¹ due to the auxiliary data⁻¹⁰ and approximations used in our calculation. Recent DTA data⁻¹¹ for PbS(cr) + S(I) \rightarrow PbS(cr) gave $\Delta_H^{\mu\nu}$ (480 K) = -23.4 ± 0.3 kcal-mol⁻¹ which we reduce to $\Delta_H^{\mu\nu}$ (298.15 K) = -22.5 ± 1 kcal-mol⁻¹. The uncertainty assigned 1 to AH" appears to be too optimistic. Korshunov 12 obtained AH" = -22.38 kcal-mol-1 by combustion of S-Mg-Pb studies^{2,25,8} are consistent with the adopted $\Delta_t H^0(298.15 \, \mathrm{K})$ of 23.5 \pm 0.5 kcal·mol⁻¹. We also calculate $\Delta_t H^0 = -23.5$ kcal·mol⁻¹ from $\Delta_t H^0(293 \, \mathrm{K}) = -13.38 \pm 0.2$ kcal mol⁻¹ for the reaction Pb(NO₂) mixtures in a bomb, but the chemical reactions probably were not characterized adequately.

Heat Capacity and Entropy

graphically smoothed and extrapolated to 300 K. The data of Parkinson and Quarrington and Anderson are in good agreement; Anderson's values show more scatter. The largest deviation of the Parkinson and Quarrington values from the adopted values is +0.4% at 210 K. Cost from the work of Parkinson and Quarrington1,13 Cogiven as smoothed values, 20-260 K and of Anderson,14 (54-289 K) which were Anderson's points are mostly within less than ±1% of the selected values.

join smoothly with the low temperature data. The observed enthalpies differ from the adopted values by 44% at 400 K, above 500 K the Above 300 K, C, values are derived from the drop calorimetric enthalpies of Thompson and Flengas, 13 (353–1281 K) with the constraint

deviation is generally within ±0.4%.

Also considered were the low temperature heat capacities measured by Eastman and Rodebush, (6 (64-283 K) and Kelley's equations which are based on the work of Bornemann and Hengstenberg, (1 (273-873 K). The Eastman and Rodebush data appears to be high above 200 K. At 900 K the enthalpy calculated from Kelley's equation is 4% higher than the adopted value.

5°(20 K) of 0.83 cal·K-1.mol-1 given by Kelley and King19 is adopted here.

Fusion Data -Refer to the liquid table for details.

Sublimation Data -Refer to the ideal gas table for details.

References

Jellinek and A. Deubel, Z. Electrochem. 35, 451 (1929); K. Jellinek and J. Zakowski, Z. Anorg. Chem. 142, 26 (1925).
 Sci. Sudo, Sci. Repts. Research Insts., Tohoku Univ. A2, 325 (1950); Chem. Abstr. 45, 10011h (1951).
 R. Suubbles and C. E. Birchenall, Trans. AIME 215, 535 (1959).

⁴A. F. Kapustınskii and I. A. Makolkin, J. Phys. Chem. USSR 12, 371 (1938).

⁵K. Kıukkola and C. Wagner, J. Electrochem. Soc. 104, 379 (1957).

¹JANAF Thermochemical Tables: Pb(I), 3 31 62; H₂S(g), S(I), S₂(g), 12-31-65. T. Thompson and S. N. Flengas, J. Electrochem. Soc. 118, 419 (1971).

Continued on page 1847

J. Phys. Chem. Ref. Data, Monograph 9

Lead Sulfide (PbS)

Lead Sulfide (PbS)

PREVIOUS

CURRENT June 1973

LIQUID

Lead Sulfide (PbS)

M, = 239.26 Lead Sulfide (PbS)

Pb₁S₁(I)

Standard State Pressure = $p^* = 0.1$ MPa

log Kr

₽Q.

kJ·mol-

 $H^{\bullet}-H^{\bullet}(T_{\bullet})$ $\Delta_{\bullet}H^{\bullet}$

 $S^{\bullet} - [G^{\bullet} - H^{\bullet}(T_{\bullet})]T$

ť

¥

L'K-'mol'.

14.934 14.843 11.171 8.886 7.352 6.175 6.175 4.521

-85.242 -85.250 -85.544 -85.153 -84.449 -82.755 -80.916

-86.396 -88.042 -89.323 -95.205 -96.049

0. 0.091 5.085 10.181 15.373 20.661 26.045 31.522 31.522 31.522 31.522

10.668 14.924 19.071 23.053 23.053 126.914

50.459 51.463 52.384 53.346 54.308 55.271

136.291 144.440 151.627 158.078 158.078 158.078

00.795 00.796 02.746 06.464

3.657 2.959 2.385 1.905

-62.315 -54.788 -47.422

S <--> LIQUID TRANSITION

CLASS <-

-70.014

-147.930

--- CIUQUID --->

--- CRYSTAL -146.032 -144.118 -142.197

44.911 51.606 58.300 64.091

30.683 34.332 37.849

165.131 171.512 177.336 182.695 187.007

\$\$.271 66.944 66.944 66.944 66.944 66.944 66.944 66.944 66.944

40.782

187.656 192.275

-140.283

1.500 1.153 0.854 0.594 0.365 0.164

-40.204 -33.122 -26.165 -19.325 -12.593 -5.961 0.578

-136.513 -134.667 -132.850 -131.065 -129.312

50.608 53.495 56.275 58.953

196.595 200.654 204.480 208.099

54.994 71.689 78.383 85.078 91.772 98.466 05.161

Enthalpy Reference Temperature = T, = 298.15 K $\Delta_t H^{\circ}(298.15 \text{ K}) = [84.064] \text{ kJ·mol}^{-1}$ $\Delta_{tus} H^{\circ} = 18.83 \pm 6.3 \text{ kJ·mol}^{-1}$

Δ_tH°(PbS,I, 298.15 K) is calculated from that of the crystal by adding Δ_{tu}H° and the difference in enthalpy, H°(1386.5 K)-H°(298.15 K), S°(298.15 K) = [100.795] J·K⁻¹·mol⁻¹ **Enthalpy of Formation** Flus = 1386.5 ± 1.5 K

Heat Capacity and Entropy

between the crystal and liquid.

The heat capacity of PbS(I) is estimated to be 16.0 cal·K⁻¹·mol⁻¹. This appears reasonable as the C_s^* value for PbO(I) is 15.535 cal·K⁻¹·mol⁻¹¹⁴ A glass transition is assumed at 900 K. Below this temperature, the heat capacity values used are those of PbS(cr). S'(298.15 K) is calculated in a manner similar to that used for $\Delta_t H^*(298.15 \text{ K})$.

Fusion Data

Employing cryoscopic measurements, Pelton and Flengas and Bell and Flengas2 determined the melting point of PoS to be 1113.4°C and 1111.9°C, respectively. Pelton and Flengas' estimated an accuracy of ±1°C. Miller and Komarek,3 in studying the retrograde solubility in the Pb-S system, reported T_{ins} = 1113.3 ± 0.5°C. The latter authors have summarized many early determinations of T_{ins} which were in the range 1103-1135°C. We adopt 1386.5 ± 1.5 K for T_{his} of PbS.

Kelley* adopted Δ_{lm}H° = 4,150 kcal·mol⁻¹ based on melting point data obtained by Friedrich* for the PbS-Cu₂S system and by Truthe* for the PbS-PbCl₂ system. Maier² recalculated Δ_{lm}H° from Friedrich's data and obtained 4.155 kcal·mol⁻¹. Kelley* also calculated Δ_{lm}H° = 5.03 kcal·mol⁻¹ from data on the PbS-Ag₂S system obtained by Friedrich. Other inconclusive works are discussed by Kelley* In the preceding calculations, $\Delta_{hu}H^{\alpha}$ was derived from a graph of log × versus I/T where × is the mole fraction of PbS in the melt and T is

PbS. The resulting plot is extrapolated to $\Delta T = 0$ to obtain $\Delta_{tos}H^{\circ}$. Friedrich's data then yields $\Delta_{tos}H^{\circ} = 4.33 \pm 0.15$ kcal-mol⁻¹. Truthe's data has considerable scatter but indicates a value of 4 6 kcal-mol⁻¹ for $\Delta_{tos}H^{\circ}$. An analysis of the data reported by Kohlmeyer and Monzer[†] for We calculate a $\Delta_{los}H^o$ value for each melting point composition data pair and plot this value against ΔT , the melting point depression of the PbS-PbO system yields $\Delta_{ha}H^a = 5 \pm 1$ kcal mol⁻¹. Unfortunately, these three studies necessitate long extrapolations as the ΔT values are in the range 60 550 K. However, these three binary systems form simple, single eutectic phase diagrams and all are consistent with a $\Delta_{ha}H^{\circ}$ the liquidus temperature.

Recent work by Pelton and Flengas¹ on PbS alkali halide systems involved AT values of 2 17 K so that a much shorter extrapolation is possible. An analysis of their data is tabulated below. value of 4.5 kcal·mol-1

Data	Points $\Delta_{hw}H^{\circ}$, kcal·mol ⁻¹	3 8.5	10 4.5	2 4.3	2 4.6
	System	PbS-NaCi	PbS-KCI	PbS-RbCI	PbS-CsCl

Even in the PbS KCI system, the scatter is such that it is impossible to precisely define $\Delta_{lm}H^o$. We adopt a value of $\Delta_{lm}H^o = 4.5 \pm 1.5$

It is possible that the occurrence of any or all of these factors would cause the data to be consistent with a AnaH" which might be larger than the adopted value and even outside our uncertainty limits. For example, Pelton and Flengas' discussed their results in the PbS alkali halide systems in terms of an estimated $\Delta_{tus}H^{\circ} = 8.7 \text{ kcal·mol}^{-1}$. Their conclusions need modifications with use of our adopted $\Delta_{tus}H^{\circ} = 4.5$ keal-mol-1. This value is consistent with all systems discussed above except for PbS-NaCl.
It should be noted that our analyses treated all systems as though no association, dissociation, or compound formation occurs in the melt. kcal-mol-1. In addition Blachnik and Kluge have compared SnS and PbS; a difficulty arises in that PbS does not have the same crystal structure as GeS and SnS.9 Thus, Atas is not necessarily expected to the same for all three species.

Decomposition Data

Kohlmeyer^{10,11} reported that, although PbS(I) had an apparent boiling point of 1617 K, the vaporization did not yield solely PbS(g). Decomposition occurred to yield sulfide molecules in the melt which were rich in Pb. The temperature at which the fugacity of PbS(g) is 1 am for PbS(I) = PbS(g) is calculated to be 1593 K. A similar calculation for the reaction PbS(I) = Pb(I) + 1/2 S S₁(g) yields 1999 K.

A. D. Petton and S. N. Flengas, Can. J. Chem. 48, 2016 (1970).
 A. C. Bell and S. N. Flengas, J. Electrochem. Soc. 113, 27 (1966).
 J. Miller and K. L. Komarek, Trans. Met. Soc. AIME 236, 832 (1966).
 K. K. Kelley, U. S. Bur. Mines Bull. 393, 166 pp. (1936).
 K. Friedrich, Metallurgie 4, 671 (1907); data given in reference (7).

Continued on page 1847

J. Phys. Chem. Ref. Data, Monograph 9

Pb₁S₁(cr,l)

	1		3
(J	١	ì
	\$		
ì	٦	i	

Lead Sulfide (PbS)

Enthalpy Re	eference Te	emperature	Enthalpy Reference Temperature = T, = 298.15 K	×	Standard State Pressure		p = 0.1 MPa
7/K	ប	S - [G	-[G*-H*(T,)]/T	H*-H*(T,)	Δ'H'•	₽0.	log Kr
°88°	0. 39.748 47.614	0. 41.296 71.920	INFINITE 133.734 95.823	-11.511 -9.244 -4.781	-98.545 -98.734 -98.437	-98.545 -97.928 -97.239	INFINITE 51.152 25.395
298.15	49.438	91.343	91.343	ď	-98.324	-96.685	16.939
888	50.455 50.455	91.649	91,344 93,295 93,295	5.085	-98.324 -100.657	-96.675 -96.024	16.833
8	52.384	126.839	101.217	15.373	-103.584	-93,039	8.100
88	53,346 54,308	134.988	105.473	20.661	-109.465	-90,400	6.746
000 000	55.271 56.191	148.627	113.602	31.523	-164.074 -163.312	-83.658 -74.763	4.855 3.905
200	57.153 58.074 59.036	159.900	121.023	42.764	-162.439	-65.949	3.132
1386.500		173.428	130.497	59.523	CRYSTA	CRYSTAL <> LIQUID TRANSTHON	- 1
1400 1500	66.944 66.944	187.656	131.045	79.255 85.949	-140283	-40204	1.500
000	66.944	196.595	138.693	92.644	-136.513	-26.165	0.854
888	66.94	204.480	145.573	106.033	-132.850	-19325	0.365
2000	66.944	211.533	151.823	119.421	-131,000	0.578	0.164 -0.015
PREVIOUS						CIRRE	CURRENT June 1973

M_r = 239.26 Lead Sulfide (PbS)

CRYSTAL-LIQUID

Refer to the individual tables for details.

0 to 1386.5 K crystal above 1386.5 K liquid

Lead (PbS)

Pb₁S₁(g)

M = 239.26 Lead Sulfide (PbS)

IDEAL GAS

CURRENT June 1973 (1 bar)

PREVIOUS: June 1973 (1 atm)

Lead Sulfide (PbS)

			i	
	State	€, cm ⁻¹	Electronic 8, w	onic Stat we. cr
	,o X	0	-	479.4
	a i	14821.9	7	285.9
	-	18768.9	-	260.8
		217745	~	282.1
	o i	23150.7	- ·	303.9
		24952.3	7	283.9
	10	29587.4	7	297.8
	E O.	34000	_	[262.3
Enthali	Enthalpy of Formation	rtion		
Vago	and Barrow	erved the	convergence	e in the
81.85 ±	0.40 kcal·mol	-'. Ваттоw	al.² analyz	analyzed the Pt
excited 1	excited E state to be 0.	If the non-	crossmg rule 1:	is applical Feal-mol-
	and Drowa	and Drowart have studied the	the sublimation	ation and
spectrometer.	neter. A 2nd	nd 3rd law	12.	Jolin and
SS.7 ±	1.4 kcal·mol · functions for th	1.4 kcal-mol ' for the enthalpy of sublimation. functions for the sublimation used by Colin and	py of subliused by C.	sublimation. I by Colin and
at 1000 K.3	Ľ,		•	
Colin	Colin and Drowart printer PhS partial pressure.	Colin and Drowart presented data for 13 experiments: Phy narial pressure. The missing pressure is calcular	for 13 exp	eriments s calcula
		ļ	Data	
Source	Reaction*	ΤΆ	Points	Meth
•	4	990-1043	5	calc.
	4	979-1118	4	calc.
	<	1012-1182	4	all P
	В		13*	Knud
'n	В	1123-1268	12*	Entra
•	В	878-1069	9	Knud
,	В	776-927	*	Langa
••	8	825-1025	:	
۰	8	1048-1193	2	Knud
2	В	1113-1378	=	Entra
=	æ	877-1020	12	torsio
			17*	torsio
	B	860-975	ឧ	torsio
			7	torsio
	*	(+ (a)/40 - (a)/5	(9/3/4)	
	0 e a	One point rejected due to state	nz oxe) e to statistical test.	cal test.

 $S^{\circ}(298.15 \text{ K}) = 251.41 \pm 0.21 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$

Lead Sulfide (PbS)

** Actual data not presented, smoothed data used. B) PbS(cr) = PbS(g) 55.99 ± 0.87 57.71 ± 0.53 53.58 ± 1.94 53.69 ± 0.70 n-Langmuir

 $\Delta_1 H^0(298.15 \, \text{K})$ is somewhat of a compromise between the spectroscopic work, 'the mass spectrometric work' and the bulk of the sublimation studies. Corructivespondingly, $D_0^2(PbS, g) = 82.4 \pm 1.5 \, \text{kcal·mol}^{-1}$. $D_0^2(PbS, g) = 86.5 \, \text{kcal·mol}^{-1}$ is calculated by applying the Hildenbrand formula¹² to the linear Birge-Sponer extrapolation of the ground state vibrational levels. Using auxiliary data, $^3 \Delta_1 H^0(298.15 \, \text{K}) = 27.4 \, \text{kcal·mol}^{-1}$ is obtained. sublimation using x-ray observations on samuccirciples which had lost at least 30% of their initial weight as a result of heating. The adopte The value adopted for $\Delta_1 H^0(PbS, g, 298.15 \text{ K})$ is $31.5 \pm 1.5 \text{ kcal·mol}^{-1}$. Most of the uncertainty is attributable to the possible decomp the other investigators analyzed their data in terms of PbS(g) formation only. In addition, Hansen and Munit 11 attest to the congruency sition and/or reaction during sublimation. Colin and Drowant and Isakova et al. 10 considered the effect of decomposition whereas many

Continued on page 1847

		۷	$\Delta_i H^0(0 \text{ K}) = 133.66$	133.66 ± 6.3 kJ·mol ⁻¹	Enthalpy R	eference Te	mperature	Enthalpy Reference Temperature = T_r = 298.15 K		Standard State Pressure = p = 0.1 MPa	Pressure = p	- 0.1 MPa
		$\Delta_t H^{-}(2$	98.15 K) =	$\Delta_{\rm f}H^{*}(298.15 \text{ K}) = 131.80 \pm 6.3 \text{ kJ} \cdot \text{mol}^{-1}$	7/K	ย	., MIII. N.L. S. – [G	-[G*-H*(T.)]/T	H*-H*(T.)	No. HA	\$0.	log Kr
tate and Molecular Constants	ar Constants (σ=1)			••	25	29.787	216.077	281.169	6509	134.121	117.448	-61349
cm weter cm	n be cm			۲ ا	38	34,305	245.299	251.3%	-1.672	132.467	93.211	-19.475
	0.11633			2.287	298.15	35.085	251.412	251.412	oʻ	131.7%	85.711	-15.016
98.0		0.000374		2.562	85	35.110	251.629	251.413	0.065	131.769	85.425 25.425	-14.874
17 0.856	0.09992			2.467	38	36.073	261.87	252.803	3.629	128.008	70.292	-9.179
		_	_	[2.522]	\$ 8 8 8	36.596 36.596	266.144 269.988	255.457	7.265	126.497	56.210	-7.33
171.1			_	[2.549]	9	36.912	276.690	258.454	10.942	122.104	42.739	-3.721
				2.447	55	37.121	282.397	261.477	45.8 45.8	114.638	30.517	-2277
[1.114]	[c6060:0] [t	[0.000429	_	[c8c-7]	88	37.386	291.761	267.208 269.864	22.097 25.841	56.621 55.553	8.216 2.895	-0.477
3	2715 A TEST	acitoic.	on for Dhe	The discontinuous for DECA. is controlled as a second for DECA. is controlled to be	1100	37.554	299.280	272.378	29.592	54.509	-2.320	0.110
re E-A system a PbS absorption st	pectrum in terms of t	ype C coupl	gy for ros(ing and assig	be E-A system at 2113 A. the dissociation energy for rough is calculated to be PbS absorption spectrum in terms of type C coupling and assigned the electronically	1300	37.75	305.564	277.014 279.154	37.116 40.887	52.479 51.469	-12.477	0.50
able, then the me	ost likely dissociation	products are	Pb('P ₁) and	able, then the most likely dissociation products are Pb('P1,) and S('P1,). Using auxiliary	1500	37.785	310.964	281.189	44.663	50.447	-22.322	0.777
nd dissociation of	of PbS by means of	a Knudsen	effusion cell	II : Indicate the second of the second of a Knudsen effusion cell coupled with a mass	9 <u>2</u>	37.836 37.889	313.404	283.127 284.976	\$2.230 52.230	48.345	-27.140	0.886
nd Drowart of four sets of ex	our sets of experime	nts (865-11)	00 K) yielde	rperiments (865-1100 K) yielded an average value of	88	37.945	317.867	286.744 288.436	56.022 59.819	46.147	-36.580	1.133
. It is anticipated that this result Drowart* are approximately	that this result is roproximately 0.5 cal-	ugniy 0.5 kc K ⁻¹ mol ⁻¹ gi	armor toc eater than th	. It is anticipated that this result is roughly 0.3 kcal·mot . Too large since the Gloos d Drowart* are approximately 0.5 cal·K-1mol-1 greater than those presently adopted	2000	38.081	323,731	290.060	63.624	45.010 -133.372	-45.776	1.1%
					222	38.266	325.509	293.119	75.057	-134.166	-38.858	0.923
ts in which either lated using the fo	Pb, S ₂ or both Pb and remula [P(Pb)/P(S ₂)][d S ₂ partial p M ₄ (S ₂)/M ₄ (Pl	ressures wer	is in which either Pb, S ₂ or both Pb and S ₂ partial pressures were measured in addition lated using the formula [P(Pb)P(S ₂)][M ₁ (S ₂)M ₁ (Pb)] ¹⁷ = 2 as in Colin and Drowart.*	250 250 250 250 250	38.527	328.849	295.960 297.307	78.935 82.796	-136.013	-30.115	0.655
					2600 2700	38.887	331.946	298.610	86.675 90.574	-138.195	-21.203 -16.681	0.426
	∆,H°(298.15 K), k	5 K), kcal·mol-1	Drift	Δ _H *(298.15 K)	2800	39,368	334.845	301.096	94.498	-140.669	-12.113	0226
pod	2nd law	3rd law	cal·K-1·mol-1		3000	39.986	337.581	303.438	102.431	-143.375	-2.837	0.049
. P(S ₂)	30.20 ± 14.63	29.04	-1.1 ± 14.3		3200 3200	40.349	338.898	304.560 305.654	110.502	-144.791 -146.235	1.871	-0.032
: P(Pb)	36.48 ± 10.22	28.31	-7.9 ± 9.9	33.86	3300	41.189	341.46 83.683	306.719	114.599	-147.696	11.424	-0.181
P meas. Iden-mass spec		55.55	0.8 ± 4.3		3200	42.179	343.898	308.774	122.933	-150.628	21.155	-0.316
rainment	59.48 ±	55.00	-3.6 ± 0.5		3700 3700	43.729	345.094	309.766 310.737	127.178	-152.077 -153.502	26.083 31.052	-0.378
rdsen	55.38 ± 0.44	54.88	-0.5 ± 0.4		3800	43.932	347.436	311.688	135.842	-154.892	36.059	-0.496
gmuir	53.16 54.56	57.24	4. C	33.74	9004	45.259	349.72	313.532	144.759	-157.536	46.178	6603
ndsen	57.66 ± 1.16	56.12	-1.3 ± 1.0		4100	45.964	350.848	314.429	149.320	-158.773	51.286	-0.653
rainment	<i>S1.27</i> ± 1.35	54.34	-2.3 ± 1.1		8	47.440	353.072	316.175	158.659	-161.047	61.589	-0.748
ion-effusion	55.99 ± 0.87	54.55	-1.5 ± 0.9		450	48.206	355.264	317.863	168.301	- 162.012 - 163.017	71.990	-0.836
ion effusion	53.78 + 1.03	54.68	-3.2 ± 0.5 1 2 + 2 2	31.03	4600	49.774	356.349	318.688	173.239	-163.877	tt.T	-0.877
ion-Langmuir	53.69 ± 0.70	54.55	0.9 ± 0.7		\$ \$	50.570 51.368	358.501	320,302	183.353	-164.631	82.472	-0.917
,	i i	1			\$ 50 8 80 8 80	52.166 52.959	359.568 360.630	321.093 321.873	188.530	-165.932 -166.437	93.016 98.306	-0.992 -1.027
** ***	B) PbS(cr) = PbS(g)	S(g) moothed date	positi		2100	53.745	361.687	322,643	199.121	-166.851	103.605	-1.061
T Venna	data inde presented, si	iikoourea mar	a uscu.		2200	54.519 55.279	362.738	324.156	204.535	-167.175 -167.410	114.223	-1.094
$1.5 \pm 1.5 \text{ kcal·mol}^{-1}$. Most of	ol ⁻¹ . Most of the unc	ertainty is at	tributable to	5 ± 1.5 kcal-mol ⁻¹ . Most of the uncertainty is attributable to the possible decomponents and Inches at 10 possible decomponents and Inches at 10 possible decomponents and Inches at 10 possible decomponents.	\$400 \$500	56.022 56.744	364.824 365.858	324,900 325,635	215.590	-167.559 -167.622	119.539	-1.156
Phy(a) formation	ova er ar. comstacte n only. In addition. I	Hansen and P	or accompos	towat and teatovaleture considered the circuitor decomposition whereas many of DhS(a) formation only In addition. Hence and Minist ¹¹ affect to the congruency of	2800	57.443	366.887	326.363	226.938	-167.603	130.174	-1214
s which had lost	at least 30% of their	initial weigh	as a result c	rode, formation only. In against, marsen and mann areas to us, congruency on swhich had lost at least 30% of their initial weight as a result of heating. The adopted	2800	58.764	368.926	327.795	238.261	-167.329	140.805	-1.242
the spectroscopie	c work, the mass spe	ctrometric w	ork and the	the spectroscopic work, the mass spectrometric work and the bulk of the sublimation 1 \$ keat-mol-1	888	59.382 59.969	369.936 370.939	328.501 329.200	241.468 250.436	-167.081 -166.764	146.115 151.421	-1318
1 Dette												

Pb₂(g)

_
6
7
۵
а.

CURRENT: September 1963 (1 bar)

ٷ
A T
Eea B

PREVIOUS: September 1963 (1 atm)

-lou	Enthalpy R	leference T	emperature	Enthalpy Reference Temperature = T. = 298.15 K		Standard State Pressure	1 .	p = 0.1 MPa
1-lom			J·K-'mol-			Li-mol-1		
	7.1	ប	S• -[G	-[G*-H*(T,)]T	$H^{\bullet}-H^{\bullet}(T_t)$	$\Delta_{l}H^{\bullet}$	Φ.	log Kr
	0 2	0.		INFINITE	-10.004	336.381	336.381	INFINITE
	885	35.750	266.807	284.681	-3.575	334228	302.576	-1903/4 -79.025
	298.15	36.921		281.334	6.78	332.628	287.380	-50.348
	320	36.935	281.562	281.335	0.068	332.597	287.099	-49.988
	8 8 8 8	37.502 37.697	296.702	282.791	3.793 5.673	330.864	264911	-35.544 -30.750
	8	38.133	307 610	288.673	7957	329.005	257.735	-26.925
	56	38.362	313.506	291.810	15 187	315.209	231.532	-17277
	0001	38.761	323.196	300.504	26.786	308.893	208.194	-12.083
berg.	82	39.123	331.010	303.111	30.689	306.947	185.784	-8.822
State	300	39.470	337.574	307.921	38.549	303.277	174.852	-7.611 -6.593
	500 1200 1200	39.640 39.808	343.246 343.246	310.145	42.504 46.477	301.508 299.751	153.432 142.916	-5.725 -4.977
	1,000	39.976	345.820	314.279	50.466	297.996	132.518	-4326
	008	40.308	350.548	318.051	58.494	294.450	12.045	-3.251
	2000	40.638	354.812	321.517	66.589	290.825	91.972	-2.402
	2780 2780 2780	40.803	356.799 358.701	323.151 324.724	70.661 74.750	-65.467	96.305 104.033	-2.470
	2400 2400	41.131	360.525	326.241 327 706	78.855	-67.821	111.815	-2.539
	2500	41.459	363.968	329.123	87.114	-70.831	127.558	-2.665
	2800 2700	41.622	365.598 367.172	330.495 331.824	91.268 95.438	-72.584 -74.496	135.528	-2.773 -2.773
	2800	41.949	368.694	333 114	29.625	-76.562	151.681	-2830
	3000	47.275	371.599	335.584	108.047	-81.113	168.140	-2.928
	3200	42.438 42.601	372.988 374.338	336.768 337.921	112.283	-83.576 -86.146	176.489	-2.974 -3.018
	3300	42.764	375.652 376.931	339.045	120.803	-88.810	193.430	-3.104
	3500	43.089	378.177	341.209	129.388	-94.364	210.700	-3.145
	88.E	43.252	379,393 380,581	342.253 343.273	133.705 138.039	-97.227 -100.129	219.456 228.293	-3.184
	3800 3900 9000 9000	43.578 43.740	381.741	344.270 345.245 345.200	142.388	-103.058 -106.003	246.201	-3261
	4100	44.066	385.070	347.135	155.535	-111.900	264.411	-3.369
	430	44.391	380.134	348.051 348.949	159.949	-114.833 -117.745	282,909	-3.403
	4 & 8 &	44.553 44.716	388.199 389.202	349.829 350.693	168.828 173.291	-120.629 -123.480	292.260 301.676	-3.470 -3.502
	4600	44.878	390.187	351.541	177.771	-126.292	311.155	-3533
	4800	45.204	392.104	353.191	186.779	-131.783	330.292	-3.594
	2005	45.529	393.955	354.785	195.852	-137.078	349,655	-3.653
	200 200 200	45.691 45.854	394.859 395.747	355.562 356.326	200.413	-139.647 -142.162	359.415 369.225	-3.681
	2500 2500 2500 2500 2500 2500 2500 2500	46.016	396.622	357.078	209.584	-144 623 -147.029	379.084	-3.736
	000	46.503	200 160	350.366	216.820	-149.381	398.935	-3.789
	825	46.666	399.994	359.973	228.120	-153.926	418.956	-3.814
	2008	46.991	401.609	361.357	237.486	-158.121	429.026	-3.888
	2000	47.153	402,400	362.034	242.193	-160.359	449.276	-3.911

 $\omega_c = 256.5 \text{ cm}^{-1}$ $B_c = [0.01727] \text{ cm}^{-1}$ S°(298.15 K) = [281.334] J·K⁻¹·mol⁻¹

Electronic Levels and Quantum Weights

 $\Delta_t H^{\circ}(0 \text{ K}) = 336.4 \pm 19.2 \text{ kJ·m}$ $\Delta_t H^{\circ}(298.15 \text{ K}) = 332.6 \pm 19.2 \text{ kJ·m}$

M,=414.4 Lead (Pb2)

IDEAL GAS

Lead (Pb₂)

σ-2 r.-[3.08] Å ω_cτ_e = 2.96 cm⁻¹ α = [0.00020] cm⁻¹

 Ξ

0

[32] State

The enthalpy of formation is calculated from the dissociation energy of Pb4(g) as reported by Gaydon.1

Enthalpy of Formation

The values of a_0 , and a_0 , are obtained from Herzberg. Those for B_0 and a_0 are estimated according to the method suggested by Herzb. The bond distance (r_0) is calculated from the moment of inertia, $I = 1630 \times 10^{-40}$ g cm², estimated by Kelley and King. The ground s configuration is assumed to be $^{1/2}$ by comparison to that for Si4g) reported by Douglas. Heat Capacity and Entropy

1A. G. Gaydon, "Dissociation Energies," Chapman and Hall, Ltd., London, (1953).
2G. Herzberg, "Spectra of Diatomic Molecules", D. Van Nostrand Company, Inc., New York, (1950).
3K. K. Kelley and E. G. King, U. S. Bur. Mines Bull. 592, 149 pp. (1961).
4A. E. Douglas, Can. J. Phys. 33, 801 (1955).

Continuation of discussions of selected Pb species

Continued from Page 1842

F. D. Richardson and J. H. E. Jeffes, J. Iron Steel Inst. (London) 171, 165 (1952).
 P. Zeumer and W. A. Roth, Z. Phys. Chem. A173, 365 (1935).
 I'Ol. S. Nat. Bur. Stand. Tech. Note 270-3, 264 pp. (1968).
 I'Shamsuddin and S. Misra, Curr. Sci. 42, 119 (1973).

¹³D. H. Parkinson and J. E. Quarrington, Proc. Phys. Soc. (London) 67A, 569 (1954). ¹²I. A. Korshunov, J. Gen. Chem. (USSR) 10, 2087 (1940).

⁴C. T. Anderson, J. Amer. Chem. Soc. 54, 107 (1932).
⁵W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).
⁶E. D. Eastman and W. H. Rodebush, J. Amer. Chem. Soc. 40, 489 (1918).
⁷K. K. Kelley, U. S. Bur. Mines Bull. 584, 232 pp (1960).
⁸K. Bomemann and O. Hengstenberg, Metall u. Erz. 17, 313, 339 (1920).
⁹K. K. Kelley and E. G. King, U. S. Bur. Mines Bull. 592, 149 pp. (1961).

Continued from Page 1843

⁶W. Truthe, Z. Anorg. Chem. 76, 161 (1912).
⁷C. G. Maier, U. S. Bur. Mines RI 3263 (1934).

E. J. Kohlmeyer and W. Monzer, Z. Anorg. Chem. 252, 74 (1944).

Continued from Page 1845

The state designations are those which are consistent with type C coupling. In this case, the state designations Σ , Π , etc., no longer have meaning. The estimated values in the tabulation are derived from comparisons of known values in the PbS(g) and PbO(g) systems. The functions are calculated from the partition function $Q = Q_1\Sigma Q_1Q_2'g_1$ exp($-C_2 \epsilon J$) the values for Q_1' and Q_2' were calculated with first order anharmonic corrections. constants came from the work of Bell and Harvey, "Rochester and Howell," Vago and Barrow' and Barrow et al. 2 The tabulated electronic and molecular constants are taken from Rosen¹³ as reviewed and compiled by Barrow. The

¹JANAF Themochemical Tabies. Pb(g), 3-31-62; S(g), 6-30-71; PbS(cr), 6-30-73; S₂(g), 12-31-65; PbO(g). References

1. E. Vago and R. F. Barrow, Proc. Phys. Soc. (London) 59, 449 (1947).

2. R. F. Barrow, P. W. Fry and R. C. LeBargy, Proc. Phys. Soc. (London) 81, 697 (1963).

Colin and J. Drowart, J. Chem. Phys. 37, 1120 (1962).
 Schenck and A. Albers, Z. Anorg. Chem. 105, 145 (1919).
 K. Veselowskii, J. Appl. Chem. (USSR) 15, 398 (1942).
 C. M. Hsiao and A. W. Schlechten, J. Metals 4, 65 (1952).
 G. Miller and M. A. Abdeev, Tr. Altaisk Gomo Met. Nauch.—Issledo vatd' Inst. akad. Nauk Kazakh SSR 7, 182

(1958); Chem. Abstr. 54, 4297f (1960).

9K. Sudo, Sci. Repts. Research Insts., Tohoku Univ. A12, 54 (1960).

10R. A. Isakova, V. N. Nesterov, and A. S. Shendyapin, Russ. J. Inorg. Chem. 8, 8 (1963).

11E. E. Hansen and Z. A. Munir, High Temp. Sci. 2, 169 (1970).