Yakeen NEET 2.0 (2026)

Physics

Vectors

DPP: 5

Q1 Find the resultant of following vectors

(A) 8

(B)6

(C) 10

(D) 20

Q2 If $|\vec{P}|=20$, then \vec{P} in cartesian form is

- (A) $10\sqrt{3}\,\hat{i}\,+10\hat{j}$
- (B) $10\hat{i} + 10\sqrt{3}\hat{j}$
- (C) $-10\hat{i} + 10\sqrt{3}\hat{j}$
- (D) $-10\hat{i} 10\sqrt{3}\hat{j}$

Q3 Find x-component of vector \vec{A} .

08 (A)

(B)60

(C)40

(D) none

Q4 If A=10 units and B=6 units then find. $|\vec{R}|=|\vec{A}+\vec{B}|=$?

- (A) $\sqrt{136}$
- (B) $\sqrt{360}$
- (C) $\sqrt{105}$
- (D) None

Q5 Six vectors, \vec{a} through f have the magnitudes and directions indicated in the figure. Which of the following statements is true?

- (A) $ec{b}+ec{c}=ec{f}$
- (B) $ec{d}+ec{c}=ec{f}$
- (C) $ec{d} + ec{e} = ec{f}$
- (D) $ec{b}+ec{e}=ec{f}$

Q6 Three forces start acting simultaneously on a particle moving with velocity \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC as shown in the figure. The particle will now move with velocity

- (A) greater than \vec{v}
- (B) $|\vec{v}|$ in the direction of the largest force
- (C) \vec{v} , remaining unchanged
- (D) less than \vec{v} .
- **Q7** The magnitude of vectors \vec{A}, \vec{B} and \vec{C} are 3,4and 5 units respectively. If $\vec{A} + \vec{B} = \vec{C}$, the angle between \vec{A} and \vec{B} is:
 - (A) $\pi/2$
 - (B) $\cos^{-1}(0.6)$
 - (C) $\tan^{-1}(7/5)$
 - (D) $\pi/4$
- **Q8** If two vectors have magnitudes are in the ratio 5:8, their resultant has maximum and minimum magnitudes in the ratio of...
 - (A) 13:3
- (B) 3:1
- (C) 8:5
- (D) 6:5
- Q9 Figure shows the vectors a, b and c where R is the mid-point of P Q. Then which of the following is correct.

(A)
$$\overrightarrow{a} + \overrightarrow{b} = 2 \overrightarrow{c}$$

(B)
$$\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$$

(C)
$$\overrightarrow{a} - \overrightarrow{b} = 2\overrightarrow{c}$$

(D)
$$\overrightarrow{a} - \overrightarrow{b} = \overrightarrow{c}$$

Q10 A vector $ec{A}=4\hat{i}-3\hat{j}+5\hat{k}$. The magnitude of the vector is:

- (A) $\sqrt{50}$
- (B) $\sqrt{16+9}$
- (C) $4\hat{i}+3\hat{j}$
- (D) $\sqrt{9+25}$
- **Q11** The vector $\vec{A}=2\hat{i}+3\hat{j}+4\hat{k}$ and vector $ec{B}=4\hat{i}+6\hat{j}+8\hat{k}$ are given. What is the angle between these two vectors?
 - (A) 0°

(B) 45°

(C) 90°

- (D) 60°
- **Q12** If $\vec{A}=3\hat{i}+4\hat{j}$ and $\vec{B}=7\hat{i}+24\hat{j}$, Then the vector having the same magnitude as $ec{B}$ and parallel to \hat{A} is -
 - (A) $15\hat{i} + 20\hat{j}$
 - (B) $-15\hat{i} + 20\hat{j}$
 - (C) $15\hat{i} 20\hat{j}$
 - (D) $15\hat{i} + 30\hat{j}$
- Q13 Let $\vec{a}=\hat{\imath}+\hat{\jmath}+\hat{k}, \vec{b}=\hat{\imath}-\hat{\jmath}+\hat{k}$ and $ec{c} = \hat{\imath} - \hat{\jmath} - \hat{k}$ be three vectors, A vector $ec{v}$ in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ given by

$$\stackrel{(\mathsf{A})}{(\mathsf{A})}\hat{\imath} - 3\hat{\jmath} + 3\hat{k}$$

(B)
$$-3\hat{\imath}-3\hat{\jmath}-\hat{k}$$

(C)
$$3\hat{\imath} - \hat{\imath} + 3\hat{k}$$

(D)
$$\hat{\imath} + 3\hat{\jmath} - 3\hat{k}$$

Q14 According to Newton's second law of motion, resultant force on a particle is in the direction of acceleration of the particle.

Two forces F_1 and F_2 are acting on a particle as shown in the figure. The acceleration of the particle is along X-axis. Find the value of F_1 (in newton).

Answer Ke	y
------------------	---

Q1	(C)	Q8	(A)
Q2	(D)	Q8 Q9 Q10	(A)
Q3	(A)	Q10	(A)
Q4	(A)	Q11 Q12	(A)
Q5	(C)	Q12	(A)
Q6	(C)	Q13	(C)
Q7	(A)	Q14	4N

