Consumption-Saving

Adv. Macro: Heterogenous Agent Models

Jeppe Druedahl & Raphaël Huleux

2025

Introduction

Introduction

- Generations of models:
 - Permanent income hypothesis (PIH) (Friedman, 1957) or life-cycle model (Modigliani and Brumburg, 1954)
 - Buffer-stock consumption model
 Deaton (1991, 1992); Carroll (1992, 1997, 2019)
 - Multiple-asset buffer-stock consumption models
 e.g. Kaplan and Violante (2014); Harmenberg and Öberg (2021)
- Consumption-and-saving over the life-cycle dynamic
 e.g. Gourinchas and Parker (2002); Druedahl and Martinello (2022)
- Empirical MPCs and income risk
 e.g. Fagereng et. al. (2021); Guvenen et. al. (2021)

Book: The Economics of Consumption, Jappelli and Pistaferri (2017)

Plan

- 1. Introduction
- 2. PIH
- 3. Buffer-stock
- 4. 3-periods
- 5. EGM
- 6. Income process
- 7. Full household problem
- 8. Misc
- 9. Summary

PIH

Consumption-saving

$$v_0 = \max_{\{c_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(c_t)$$
 s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t$ $a_{T-1} \ge 0$

Variables:

Consumption: c_t

Productivity: z_t

End-of-period savings: a_t (no debt at death)

Parameters:

Discount factor: β

Wage: w

Interest rate: r (define $R \equiv 1 + r$ as interest factor)

It is a static problem

$$v_0 = \max_{\{c_t\}_{t=0}^{T-1}} \sum_{t=0}^{T-1} \beta^t u(c_t)$$
 s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t$ $a_{T-1} \ge 0$

- It is a static problem:
 - 1. **Information:** z_t is known for all t at t = 0
 - 2. **Target:** Discounted utility, $\sum_{t=0}^{T-1} \beta^t u(c_t)$
 - 3. **Behavior:** Choose $c_0, c_1, \ldots, c_{T-1}$ simultaneously
 - 4. **Solution:** Sequence of consumption *choices* $c_0^*, c_1^*, \ldots, c_{T-1}^*$

Substitution implies Intertemporal Budget Constraint (IBC)

$$a_{T-1} = Ra_{T-2} + wz_{T-1} - c_{T-1}$$

$$= R(Ra_{T-3} + wz_{T-2} - c_{T-2}) + wz_{T-1} - c_{T-1}$$

$$= R^{T}a_{-1} + \sum_{t=0}^{T-1} R^{T-1-t}(wz_{t} - c_{t})$$

• Use **terminal condition** $a_{T-1} = 0$ (equality due utility max.)

$$R^{-(T-1)}a_{T-1} = 0 \Leftrightarrow \sum_{t=0}^{T-1} R^{-t}c_t = s_0 + h_0$$

where $s_0 \equiv Ra_{-1}$ (after-interest assets) and $h_0 \equiv \sum_{t=0}^{T-1} R^{-t} w z_t$ (human capital)

FOC and **Euler-equation**

$$\mathcal{L} = \sum_{t=0}^{T-1} \beta^t u(c_t) + \lambda \left[\sum_{t=0}^{T-1} R^{-t} c_t - s_0 - h_0 \right]$$

First order conditions:

$$\forall t: 0 = \beta^t u'(c_t) - \lambda (1+r)^{-t} \Leftrightarrow u'(c_t) = -\lambda (\beta R)^{-t}$$

• **Euler-equation** for $k \in \{1, 2, \dots\}$:

$$\frac{u'(c_t)}{u'(c_{t+k})} = \frac{-\lambda (\beta R)^{-t}}{-\lambda (\beta R)^{-(t+k)}} = (\beta R)^k$$

Consumption choice

• CRRA: $u(c_t) = \frac{c_t^{1-\sigma}}{1-\sigma}$ imply Euler-equation

$$\frac{c_0^{-\sigma}}{c_t^{-\sigma}} = (\beta R)^t \Leftrightarrow c_t = (\beta R)^{\frac{t}{\sigma}} c_0$$

Constant consumption if:

- 1. $\beta R = 1$
- 2. $\frac{1}{\sigma} o 0$ (zero intertemporal elasticity of substitution)
- Insert Euler into IBC to get consumption choice

$$\sum_{t=0}^{T-1} \left((\beta R)^{1/\sigma} R^{-1} \right)^t c_0 = s_0 + h_0 \Leftrightarrow$$

$$c_0^* = \frac{1 - (\beta R)^{1/\sigma} R^{-1}}{1 - \left((\beta R)^{1/\sigma} R^{-1} \right)^T} (s_0 + h_0)$$

Infinite horizon: $T \to \infty$

• Infinite horizon for $(\beta R)^{1/\sigma}R^{-1} < 1$: Let $T \to \infty$ to get

$$c_0^* = \left(1 - \frac{(\beta R)^{1/\sigma}}{R}\right)(s_0 + h_0)$$

• Constant income, $\forall z_t = 1$:

$$c_0^* = \left(1 - \frac{(\beta R)^{1/\sigma}}{R}\right) \left(Ra_{-1} + \frac{R}{R-1}w\right)$$

• Consume annuity value if also $\beta R = 1$

$$c_0^* = ra_{-1} + w$$

Propensities to consume ($\beta R \approx 1, z_t \approx 1$)

$$c_0^* \approx \frac{r}{1+r} \left((1+r)a_{-1} + \sum_{t=0}^{\infty} \frac{wz_t}{(1+r)^t} \right) \approx ra_{-1} + w$$

Different types of shocks:

- 1. MPC of windfall income: $\frac{\partial c_0}{\partial s_0} \approx \frac{r}{1+r}$
- 2. MPC of future income change: $\frac{\partial c_0}{\partial w z_t} \approx \frac{r}{1+r} (1+r)^{-t}$
- 3. MPC of *permanent* income change: $\frac{\partial c_0}{\partial w} \approx \frac{r}{1+r} \frac{1}{1-(1+r)^{-1}} = 1$

Dynamic affects: The same when $\beta R = 1$, for all k > 0

$$\frac{\partial c_k}{\partial s_0} = \frac{\partial c_0}{\partial s_0}$$
$$\frac{\partial c_k}{\partial w z_t} = \frac{\partial c_0}{\partial w z_t}$$
$$\frac{\partial c_k}{\partial w} = \frac{\partial c_0}{\partial w}$$

Savings ($\beta R = 1$)

• Constant savings $z_t = 1$:

$$c_t = ra_{t-1} + w \Rightarrow a_t = Ra_{t-1} + w - c_t = a_{t-1}$$

- 1. Decreasing savings with $\beta R < 1 : c_t \uparrow \Rightarrow a_t < a_{t-1}$
- 2. Increasing savings with $\beta R > 1$: $c_t \downarrow \Rightarrow a_t > a_{t-1}$
- Same consumption if NPV of wz_t is unchanged
 - e.g. higher in one period, and lower in another

$$\frac{r}{1+r}\sum_{t=0}^{\infty}\frac{z_t}{(1+r)^t}=1$$

 \Rightarrow savings change with income

Empirical MPCs

Source: Fagereng et. al. (2021)

Initial liquidity/borrowing constraint

- Implied period 0 savings are: $a_0 = s_0 + wz_0 c_0$
- Hard **borrowing constraint**: $a_0 \ge -wb$
- Maximum consumption: $\overline{c}_0 = s_0 + wz_0 + wb$
- Optimal consumption: Constrained or unconstrained.

$$c_0^* = \min\left\{\overline{c}_0, \left(1 - rac{(eta R)^{1/\sigma}}{R}
ight)(s_0 + h_0)
ight\}$$

• Empirical realism. MPC of constrained is one

$$c_0^* = \overline{c}_0 \Rightarrow \frac{\partial c_0^*}{\partial s_0} = \frac{\partial \overline{c}_0}{\partial s_0} = 1$$

 Technical issue: Borrowing constraints further in the future complicates the analytical solution considerably.

Buffer-stock

Uncertainty and always borrowing constraint

$$egin{aligned} v_0(z_0,a_{-1}) &= \max_{\{c_t\}_{t=0}^\infty} \mathbb{E}_0\left[\sum_{t=0}^\infty eta^t u(c_t)
ight] \ & ext{s.t.} \ a_t &= (1+r)a_{t-1} + wz_t - c_t \ z_{t+1} &\sim \mathcal{Z}(z_t) \ a_t &\geq -wb \ \lim_{t o \infty} (1+r)^{-t} a_t &\geq 0 \quad ext{[No-Ponzi game]} \end{aligned}$$

- Stochastic income from 1st order Markov-process, $\mathcal Z$
- A true dynamic problem:
 - 1. **Information:** z_t is revealed period-by-period
 - 2. Target: Expected discounted utility, $\mathbb{E}_0\left[\sum_{t=0}^\infty \beta^t u(c_t)\right]$
 - 3. **Behavior:** Choose c_t sequentially as information is revealed
 - 4. **Solution:** Sequence of consumption functions, $c_t^*(z_t, a_{t-1})$

IBC

Substitution still implies:

$$R^{-(T-1)}a_{T-1} = 0 \Leftrightarrow \sum_{t=0}^{\infty} R^{-t}c_t = s_0 + h_0$$

- What if $T \to \infty$? We must have $\lim_{T \to \infty} R^{-(T-1)} a_{T-1} = 0$
 - 1. $\lim_{T\to\infty} R^{-(T-1)}a_{T-1} > 0$: Consumption can be increased
 - 2. $\lim_{T\to\infty} R^{-(T-1)}a_{T-1} < 0$: Violates No-Ponzi game condition
- For $T \to \infty$ we have the **IBC**:

$$\sum_{t=0}^{\infty} R^{-t} c_t = Ra_{-1} + \sum_{t=0}^{\infty} R^{-t} w z_t$$

Natural borrowing limit

- Denote minimum possible productivity by <u>z</u>
- Consumption must be non-negative ⇒ interest payments must be less than minimum income

$$c_t \geq 0 \Rightarrow r(-a_t) \leq w\underline{z} \Leftrightarrow a_t \geq -\frac{w\underline{z}}{r}$$

If debt was larger it would in the worst case $(\forall z_t = \underline{z})$ grow without bound even with zero consumption $(\forall c_t = 0)$

$$a_0 = -\frac{w\underline{z}}{r} - \Delta$$

$$a_1 = (1+r)a_0 + w\underline{z} = a_0 - (1+r)\Delta$$

$$a_2 = (1+r)a_1 + w\underline{z} = a_0 - (1+r)^2\Delta$$

$$\vdots$$

Natural borrowing constraint: $a_t \ge \underline{a} = -w \min \left\{ b, \frac{z}{r} \right\}$

Euler-equation from variation argument

- Case I: If $u'(c_t) > \beta R \mathbb{E}_t [u'(c_{t+1})]$: Increase c_t by marginal $\Delta > 0$, and lower c_{t+1} by $R\Delta$
 - 1. **Feasible:** Yes, if $a_t > \underline{a}$
 - 2. Utility change: For $\Delta \to 0$ $u'(c_t) + \beta(-R)\mathbb{E}_t[u'(c_{t+1})] > 0$
- Case II: If $u'(c_t) < \beta R \mathbb{E}_t [u'(c_{t+1})]$: Lower c_t by marginal $\Delta > 0$, and increase c_{t+1} by $R\Delta$
 - 1. Feasible: Yes (always)
 - 2. Utility change: For $\Delta \to 0$ $u'(c_t) + \beta R \mathbb{E}_t \left[u'(c_{t+1}) \right] > 0$
- Conclusion: By contradiction
 - 1. Constrained: $a_t = \underline{a}$ and $u'(c_t) \ge \beta R \mathbb{E}_t [u'(c_{t+1})]$, or
 - 2. Unconstrained: $a_t > \underline{a}$ and $u'(c_t) = \beta R \mathbb{E}_t [u'(c_{t+1})]$
- Sufficiency: Harder (~ convexity of the choice set)

Special case I: Quadratic utility

- Quadratic utility: $u(c_t) = -\frac{1}{2}(\overline{c} c)^2$ with $\beta R = 1$ and »large« \overline{c}
- **Euler-equation:** Consumption = expected future consumption

$$(\overline{c} - c_t) = \mathbb{E}_t \left[(\overline{c} - c_{t+k}) \right] \Leftrightarrow c_t = \mathbb{E}_t \left[c_{t+k} \right]$$

Use IBC in expectation to get consumption function:

$$\sum_{t=0}^{\infty} R^{-t} \mathbb{E}_0 \left[c_t \right] = R a_{-1} + \sum_{t=0}^{\infty} R^{-t} w \mathbb{E}_0 \left[z_t \right] \Rightarrow$$

$$c^*(z_t, a_{t-1}) = c_0 = ra_{-1} + \frac{r}{R} \sum_{t=0}^{T} R^{-t} w \mathbb{E}_0[z_t]$$

where we formally disregard the borrowing constraint

• **Certainty equivalence:** Only expected income matter.

Special case II: CARA utility

- CARA utility: $u(c_t) = -\frac{1}{\alpha}e^{-\alpha c}$
- Productivity is absolute random walk:

$$z_t = z_{t-1} + \psi_t$$
$$\psi_t \sim \mathcal{N}(0, \sigma_{\psi}^2)$$

Consumption function (see proof):

$$c^*(a_{t-1}, z_t) = ra_{t-1} + wz_t - \frac{\log(\beta R)^{\frac{1}{\alpha}} + \alpha \frac{\sigma_{\psi}^2}{2}}{r^2}$$

where we formally disregard the borrowing constraint

■ **Precautionary saving:** $\sigma_{\psi}^2 \uparrow$ implies $c_t^* \downarrow$ for given z_t and a_{t-1} \Rightarrow accumulation of buffer-stock

Dynamic solution: Bellman's Principle of Optimality

- Go back to a finite horizon problem with T periods
- Value function, v_t : Defined recursively from $v_T(\bullet) = 0$

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

• Policy function, c_t^* : Is the same as

$$c_t^*(z_t, a_{t-1}) = \arg\max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- Euler-equation:
 - 1. FOC: $c_t^{-\sigma} = \beta \mathbb{E}_t \left[v_{t,a}(z_{t+1}, a_t) \right]$
 - 2. Envelope: $v_{t,a}(z_t, a_{t-1}) = (1+r)c_t^{-\sigma}$ (fix a_t)

Vocabulary

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- 1. State variables: z_t and a_{t-1}
- 2. Control (choice) variable: c_t
- 3. Continuation value: $\beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$
- 4. **Parameters:** r, w, and stuff in $u(\bullet)$

Note: Straightforward to extend to more goods, more assets or other states, more complex risk, bounded rationality etc.

Infinite horizon: $T \to \infty$

$$v_t(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t[v_{t+1}(z_{t+1}, a_t)]$$

s.t. $a_t = (1+r)a_{t-1} + wz_t - c_t \ge \underline{a}$

- Contraction mapping result: If β is low enough (strong enough impatience) then the value and policy functions converge to $v(z_t, a_{t-1})$ and $c^*(z_t, a_{t-1})$ for large enough T
- In practice:
 - 1. Make arbitrary initial guess (e.g. $v_T = 0$)
 - Solve backwards until the value (and/or policy function) does not change anymore (relative to chosen tolerance)

3-periods

3-period model

- Expected discounted utility: $v(z_0, a_{-1}) = \mathbb{E}_0 \sum_{t=0}^2 \beta^t \frac{c_t^{1-\sigma}}{1-\sigma}$
- Income = wage × productivity + transfer:

$$y_t = wz_t + \chi_t$$

Cash-on-hand, savings and borrowing constraint:

$$m_t = (1+r)a_{t-1} + y_t$$

$$a_t = m_t - c_t$$

$$a_t \ge \underline{a}$$

• Stochastic transition: $\Pr[z_{t+1}|z_t] = \pi_t(z_t, z_{t+1})$ such that

$$\begin{split} \Pr[z_{t+1} = 1 \,|\, z_t = 1] = \pi \\ \Pr[z_{t+1} = 1 - \Delta \,|\, z_t = 1] = \Pr[z_{t+1} = 1 + \Delta \,|\, z_t = 1] = \frac{1 - \pi}{2} \\ \Pr[z_{t+1} = z_t \,|\, z_t \in \{1 - \Delta, 1 + \Delta\}] = 1 \end{split}$$

Bellman equation

$$egin{aligned} v_t(z_t, a_{t-1}) &= \max_{c_t} rac{c_t^{1-\sigma}}{1-\sigma} + eta \mathbb{E}_t \left[v_{t+1}(z_{t+1}, a_t)
ight] \ & ext{s.t.} \ y_t &= wz_t + \chi_t \ m_t &= (1+r)a_{t-1} + y_t \ a_t &= m_t - c_t \ & ext{Pr} \left[z_{t+1} | z_t
ight] &= \pi_t(z_t, z_{t+1}) \ a_t &\geq \underline{a} \end{aligned}$$

where

$$v_3(z_3,a_2)=0$$

Discretization

Discretization: All state variables belong to discrete sets ≡ grids,

$$z_t \in \mathcal{G}_z = \{z^0, z^1, \dots, z^{\#z-1}\}$$

 $a_t \in \mathcal{G}_a = \{a^0, a^1, \dots, a^{\#_a-1}\}$
 $a^0 = \underline{a}$

Expectation: Numerical integration by

$$\mathbb{E}_{t}\left[v_{t+1}(z_{t+1}, a_{t})\right] = \sum_{z_{t+1} \in \{1-\Delta, 1, 1+\Delta\}} \pi_{t}(z_{t}, z_{t+1}) v_{t+1}(z_{t+1}, a_{t})$$

- ConSav: grids.nonlinspace, grids.equilogspace
- ConSavNotebooks: 04. Tools/03. Grids.ipynb

Grids and transition probabilities

The size of risk is scaled by Δ

Baseline: $\Delta = 0.8$

Low risk: $\Delta = 0.4$

Linear interpolation

- Linear interpolation (function approximation):
 - 1. Assume v_{t+1} is known on $\mathcal{G}_z \times \mathcal{G}_a$ (tensor product)
 - 2. Evaluate $v_{t+1}(z^{i_z}, a)$ for arbitrary a by

$$\begin{split} \breve{\mathbf{v}}_{t+1}(\mathbf{z}^{i_{\mathbf{z}}},\mathbf{a}) &= \mathsf{baseline} + \mathsf{slope} \times \mathsf{distance} \\ &= v_{t+1}(\mathbf{z}^{i_{\mathbf{z}}},\mathbf{a}^{\iota}) + \omega(\mathbf{a} - \mathbf{a}^{\iota}) \\ &\quad \mathsf{where} \\ &\quad \omega \equiv \frac{v_{t+1}(\mathbf{z}^{i_{\mathbf{z}}},\mathbf{a}^{\iota+1}) - v_{t+1}(\mathbf{z}^{i_{\mathbf{z}}},\mathbf{a}^{\iota})}{\mathbf{a}^{\iota+1} - \mathbf{a}^{\iota}} \\ &\quad \iota \equiv \mathsf{largest} \ i_{\mathbf{a}} \in \{0,1,\ldots,\#_{\mathbf{a}} - 2\} \ \mathsf{such} \ \mathsf{that} \ \mathbf{a}^{i_{\mathbf{a}}} \leq \mathbf{a} \end{split}$$

- ConSav: linear_interp.interp1d
- ConSavNotebooks:
 - 04. Tools/01. Linear interpolation.ipynb

Linear interpolation

Value function iteration (VFI)

Maximize value-of-choice:

$$egin{aligned} v_t(z^{i_z},a^{i_{a-}}) &= \max_{c_t} v_t(z^{i_z},a^{i_{a-}}|c_t) \ & ext{with } c_t \in [0,(1+r)a^{i_{a-}}+wz^{i_z}+\chi_t+\underline{a}] \end{aligned}$$
 $v_t(z^{i_z},a^{i_{a-}}|c_t) &= u(c_t) + eta \sum_{i_{z+1}=0}^{\#_z-1} \pi\left(i_z,i_{z+1}
ight) reve{v}_{t+1}(z^{i_z},a_t) \end{aligned}$ with $a_t = (1+r)a^{i_{a-}}+wz^{i_z}+\chi_t-c_t$

- Inner loop: For each grid point in $\mathcal{G}_z \times \mathcal{G}_a$ find $c_t^*(z_t, a_{t-1})$ and therefore $v_t(z_t, a_{t-1})$ with a numerical optimizer
- Outer loop: Backwards from t = T 1 (note $\underline{v}_T = 0$, or known)
- ConSav+QuantEcon: Various optimizers in numba
- ConSavNotebooks: 04. Tools/02. Optimization.ipynb

Consumption function

Savings function

Change in savings function

MPC

Intertemporal MPC

Note: No wealth effect as r = 0

Economic insights

- Notebook: 01_ConSavModel_3periods/ConSavModel.ipynb
- Consumption lower than under PIH and concave in assets
 Intuition: Precautionary saving motive is relatively larger for asset poor households because income risk is the same for everybody
 Implications:
 - Windfall gives safety and increases average consumption
 ⇒ MPC decreasing in assets
 - 2. Attraction towards a buffer-stock target $a_t = a_{t-1}$ despite $\beta R < 1$
 - 3. Larger effective discounting of future income (extreme: no effect of future income changes if constrained before)

Numerical Monte Carlo simulation

- Initial distribution: Draw $z_{i,-1}$ and $a_{i,-1}$ for $i \in \{0,1,\ldots,N-1\}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Draw z_{it} given transition probabilities
 - 2. Use linear interpolation to evaluate

$$c_{it} = \breve{c}_{t}^{*}(z_{it}, a_{it-1})$$

 $a_{it} = (1+r)a_{it-1} + wz_{it} - c_{it}$

- Review:
 - Pro: Simple to implement
 - Con: Computationally costly and introduces randomness
- Infinite horizon:
 - 1. Assume z_{it} has an ergodic distribution
 - 2. Ergodic distribution of ait around buffer-stock target

Taking stock

Value Function Iteration (VFI)

- 1. Solve all consumption-saving models
- 2. Accurate with dense enough grids
- 3. Relatively simple code and easy to run in parallel
- 4. Finding optimal choices is the computational bottleneck (especially with multi-starts in non-convex models)

EGM

Time iteration

- Replace numerical optimization with root-finding
- **Time iteration:** For each a_{t-1} and z_t find c_t to solve the Euler-equation

$$c_t^{-\sigma} = \beta(1+r)\mathbb{E}_t[c_{t+1}^{-\sigma}]$$

Note: Necessary and sufficient (for interior choices, else $a_t = \underline{a}$)

• **EGM**: No need for any numerical optimization or root-finding

Endogenous grid-point method (EGM)

1. Calculate post-decision marginal value of cash:

$$q(z^{i_z}, a^{i_s}) = \sum_{i_{z_+}=0}^{\#_z-1} \pi_{i_z, i_{z_+}} c_+^* (z^{i_{z_+}}, a^{i_s})^{-\sigma}$$

2. Invert Euler-equation:

$$c(z^{i_z}, a^{i_a}) = (\beta(1+r)q(z^{i_z}, a^{i_a}))^{-\frac{1}{\sigma}}$$

3. Endogenous cash-on-hand:

$$m(z^{i_z}, a^{i_a}) = a^{i_a} + c(z^{i_z}, a^{i_a})$$

- 4. Consumption function: Calculate $m = (1 + r)a^{i_{a-}} + wz^{i_z}$
 - 4.1 Binding constraint: If $m \le m(z^{i_z}, a^0)$ then

$$c^*(z^{i_z},a^{i_{a-}})=m+\underline{a}$$

4.2 Interior choice: Else

$$c^*(z^{i_z}, a^{i_{a-}}) = \text{interpolate } m(z^{i_z}, m) \rightarrow c(z^{i_z}, m)$$

Income process

Permanent transitory income process

Persistent-transitory income process:

$$\begin{split} z_t &= \tilde{z}_t \xi_t, \ \log \xi_t \sim \mathcal{N}(\mu_\xi, \sigma_\xi) \\ \log \tilde{z}_{t+1} &= \rho_z \log \tilde{z}_t + \psi_{t+1}, \ \psi_{t+1} \sim \mathcal{N}(\mu_\psi, \sigma_\psi) \end{split}$$

- 1. Transitory shock: ξ_t
- 2. Persistent shock: ψ_t
- 3. Normalization using μ_{ψ} and $\mu_{\xi} \colon \mathbb{E}\left[z_{t}\right] = \mathbb{E}\left[\widetilde{z}_{t}\right] = 1$
- ConSav: qudarature.log_normal_gauss_hermite
- ConSavNotebook: 04. Tools/04. Quadrature.ipynb

Transition probabilities

• Discretization of ξ_t : Derive \mathcal{G}_{ξ} and $\pi_{i_{\xi}}$ given σ_{ξ} using Gauss-Hermite quadrature

$$x \sim \mathcal{N}(\mu, \sigma^2)$$
: $\mathbb{E}[h(x)] \approx \frac{1}{\sqrt{\pi}} \sum_{i=1}^n \omega_i h(\sqrt{2}\sigma x_i + \mu)$

where nodes, x_i , and weights, ω_i , have analytical expressions

- **Discretization of** \tilde{z}_t : Derive $\mathcal{G}_{\tilde{z}}$ and $\pi_{i_{\tilde{z}-},i_{\tilde{z}}}$ given $\rho_z < 1$ and σ_ψ (using a method such as Tauchen (1986) or Rouwenhorst (1995)) If $\rho_z = 1$: Also use quadrature here.
- Combined: Derive $\mathcal{G}_z = \mathcal{G}_{\tilde{\mathbf{z}}} \times \mathcal{G}_{\xi}$ (tensor product) and use independence of $\tilde{\mathbf{z}}_t$ and ξ_t to get transition probabilities π_{i_z,i_z} (kronecker product)
- ConSav: markov.log_rouwenhorst, markov.log_tauchen
- ConSavNotebook: 04. Tools/05. Markov.ipynb

Full household problem

Full household problem

Utility maximization for household i:

$$\begin{aligned} v_0(z_t, a_{t-1}) &= \max_{\{c_t\}_{t=0}^{\infty}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \\ &\text{s.t.} \\ a_t &= (1+r_t) a_{t-1} + w z_t - c_{it} \\ \log z_{t+1} &= \rho_z \log z_t + \psi_{t+1}, \ \ \psi_t \sim \mathcal{N}(\mu_{\psi}, \sigma_{\psi}), \ \ \mathbb{E}[z_t] = 1 \\ a_t &\geq -b w \end{aligned}$$

Recursive formulation I

Value function:

$$v(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \mathbb{E}_t \left[v(z_{t+1}, a_t) \right]$$
s.t.
$$a_t = (1+r)a_{t-1} + wz_t - c_t$$

$$\log z_{t+1} = \rho_z \log z_t + \psi_{t+1}$$

$$a_t \ge -bw$$

- Same Euler-equation
- Borrowing constrained has

$$c_{it} = m_{it} - bw$$

where
$$m_t = (1+r)a_{t-1} + wz_t$$

Recursive formulation II

Beginning-of-period value function

$$\underline{v}(z_{t-1}, a_{t-1}) = \mathbb{E}[v(z_t, a_{t-1}) | z_{t-1}]$$

Value function:

$$v(z_t, a_{t-1}) = \max_{c_t} u(c_t) + \beta \underline{v}(z_t, a_t)$$
s.t.
$$a_t = (1+r)a_{t-1} + wz_t - c_t$$

$$\log z_{t+1} = \rho_z \log z_t + \psi_{t+1}$$

$$a_t \ge -bw$$

Why do this? Only one interpolation per guess of c_t

Distribution

- Problem with Monte Carlo simulation: Stochastic fluctuations in average wealth ⇒ stochastic error in asset market clearing condition.
- Alternative Histogram: Distribution as array of probabilities
 - 1. Beginning-of-period: $\underline{\mathbf{D}}_t$ over z_{it-1} and a_{it-1}
 - 2. Productivity transition: $\mathbf{D}_t = \Pi_z' \underline{\mathbf{D}}_t$ over z_{it} and a_{it-1}
 - 3. Savings transition: $\underline{\boldsymbol{D}}_{t+1} = \Lambda' \boldsymbol{D}_t$ where Λ derives from $a^*(z_t, a_{t-1})$

■ Initial distribution: Choose $\underline{D}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$\boldsymbol{D}_{t}(\boldsymbol{z}^{i_{z}},\boldsymbol{a}^{i_{a-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-},i_{z}} \underline{\boldsymbol{D}}_{t}(\boldsymbol{z}^{i_{z-}},\boldsymbol{a}^{i_{a-}})$$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{z-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{z-}})$$

2. Initial zero mass: Set $\underline{\mathbf{D}}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv \textit{histogram}$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv$ largest $i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a^*(z^{i_z},a^{i_{a-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{a-}}) = \sum_{i_{z-}=0}^{\pi_{z-1}} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{a-}})$$

- 2. Initial zero mass: Set $\underline{\mathbf{D}}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a^*(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega=rac{a^{\iota+1}-a^*(z^{i_z},a^{i_{\partial}-})}{a^{\iota+1}-a^{\iota}}\in[0,1]$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a^*(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega=rac{a^{\iota+1}-a^*(z^{i_z},a^{i_{\partial}-})}{a^{\iota+1}-a^{\iota}}\in[0,1]$
 - 3.3 Increment $\underline{m{D}}_{t+1}(z^{i_z},a^\iota)$ with $\omega m{D}_t(z^{i_z},a^{i_{a-}})$

- Initial distribution: Choose $\underline{\mathcal{D}}_0(z_{-1}, a_{-1})$, which is defined on $\mathcal{G}_z \times \mathcal{G}_a$ and sum to $1 \equiv histogram$
- **Simulation:** Forwards in time from t = 0 and in each time period
 - 1. Distribute stochastic mass: For each i_z and i_{a-} calculate

$$D_{t}(z^{i_{z}}, a^{i_{s-}}) = \sum_{i_{z-}=0}^{\#_{z}-1} \pi_{i_{z-}, i_{z}} \underline{D}_{t}(z^{i_{z-}}, a^{i_{s-}})$$

- 2. Initial zero mass: Set $\underline{D}_{t+1}(z^{i_z}, a^{i_a}) = 0$ for all i_z and i_a
- 3. Distribute endogenous mass: For each i_z and i_{a-} do
 - 3.1 Find $\iota \equiv \text{largest } i_a \in \{0,1,\ldots,\#_a-2\}$ such that $a^{i_a} \leq a^*(z^{i_z},a^{i_{a-}})$
 - 3.2 Calculate $\omega = \frac{a^{\iota+1} a^*(z^{i_z}, a^{i_{\bar{a}-1}})}{a^{\iota+1} a^{\iota}} \in [0, 1]$
 - 3.3 Increment $\underline{\boldsymbol{D}}_{t+1}(z^{i_z}, a^{\iota})$ with $\omega \boldsymbol{D}_t(z^{i_z}, a^{i_{a-1}})$
 - 3.4 Increment $\underline{m{D}}_{t+1}(z^{i_z},a^{\iota+1})$ with $(1-\omega)m{D}_t(z^{i_z},a^{i_{a-}})$

Implementation

- Toy example: simple_histogram_simulation.xlsx
 - \bullet Grids: $\mathcal{G}_z = \{\underline{z}, \overline{z}\}$ and $\mathcal{G}_{\textit{a}} = \{0,1\}$
 - Transition matrix: $\pi_{0,0} = \pi_{1,1} = 0.5$
 - Policy function:
 - Low income: $a^*(\underline{z}, 0) = a^*(\underline{z}, 1) = 0$
 - High income: Let $a^*(\overline{z},0)=0.5$ and $a^*(\overline{z},1)=1$
 - Initial distribution: $\underline{\mathbf{\mathcal{D}}}_0(z_{it}, a_{it-1}) = \begin{cases} 1 & \text{if } z_{it} = \underline{z} \text{ and } a_{it} = 0 \\ 0 & \text{else} \end{cases}$
 - Task: Calculate by hand the transitions to

$${\textbf \textit{D}}_0,\, {\underline{\textbf \textit{D}}}_1,\, {\textbf \textit{D}}_1, \ldots$$

Implementation

- Toy example: simple_histogram_simulation.xlsx
 - \bullet Grids: $\mathcal{G}_z=\{\underline{z},\overline{z}\}$ and $\mathcal{G}_{a}=\{0,1\}$
 - Transition matrix: $\pi_{0,0} = \pi_{1,1} = 0.5$
 - Policy function:
 - Low income: $a^*(\underline{z}, 0) = a^*(\underline{z}, 1) = 0$
 - High income: Let $a^*(\overline{z},0)=0.5$ and $a^*(\overline{z},1)=1$
 - Initial distribution: $\underline{\mathbf{D}}_0(z_{it}, a_{it-1}) = \begin{cases} 1 & \text{if } z_{it} = \underline{z} \text{ and } a_{it} = 0 \\ 0 & \text{else} \end{cases}$
 - Task: Calculate by hand the transitions to

$$\boldsymbol{D}_0, \ \underline{\boldsymbol{D}}_1, \ \boldsymbol{D}_1, \dots$$

- Comparison with Monte Carlo: See
 - 02_ConSavModel_infConSavModel/
 - 1. Pro: Computationally efficient and no randomness
 - 2. Con: Introduces a non-continuous distribution

Misc

1. Life-cycle (I)

Basically:

- 1. Born, working, retied, die
- 2. Age-varying parameters (esp. income)

Add-ons:

- 1. Labor supply, human capital, occupation
- 2. Portfolio choice and entrepreneurship
- 3. Family formation
- 4. Health, mortality etc.
- Good starting example: »Life-Cycle Consumption and Children: Evidence from a Structural Estimation «, Jørgensen (2017)

1. Life-cycle (II)

Paper: Gourinchas and Parker (2021) *Life-cycle consumption-saving model with retirement*

- Young households:
 Save for precautionary reasons (buffer)
- Older households:
 Save for retirement (life-cycle)

FIGURE 7.—The role of risk in saving and wealth accumulation.

1 Life-cycle (III)

- Natural experiment: Wealth depletion after sudden inheritance
- Results:
 - Life-cycle profile of wealth fitted for many levels of risk-aversion (by varying the discount factor)
 - Fast wealth depletation requires high risk-aversion (or high perceived risk)

Source: Druedahl and Martinello (2022)

2. More realistic income risk (I)

Annual earnings-changes are far from log-normal:

Source: Guvenen et. al. (2021)

2. More realistic income risk (II)

Many with zero-growth month-month:

Source: Druedahl et. al. (2021)

3. Epstein-Zin

$$\begin{aligned} v_t\left(z_t, m_t\right) &= & \max_{c_t} \left[(1-\beta) \cdot c_t^{1-\sigma} + \beta \cdot w_{t+1}^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \\ \text{s.t.} & w_{t+1} \equiv \mathbb{E}_t \left[v_{t+1} \left(z_{t+1}, m_{t+1} \right)^{1-\rho} \right]^{\frac{1}{1-\rho}} \\ & m_{t+1} = (1+r)(m_t - c_t) + y_{t+1} \end{aligned}$$

Preferences:

- 1. Patience: β
- 2. Intertemporal substitution: σ
- 3. Risk-aversion: ρ
- Euler-equation: $c_t^{-\sigma} = \beta R \cdot \mathbb{E}_t \left[c_{t+1}^{-\sigma} \cdot \left(\frac{w_{t+1}}{v_{t+1}} \right)^{\rho \sigma} \right]$
 - 1. FOC: $0 = v_t^{\sigma} \cdot \left[(1 \beta) \cdot c_t^{-\sigma} \beta R \cdot w_{t+1}^{\rho \sigma} \cdot \mathbb{E}_t \left[v_{t+1}^{-\rho} \cdot \frac{\partial v_{t+1}}{\partial m_{t+1}} \right] \right]$
 - 2. Envelope condition: $\frac{\partial v_t(z_t,m_t)}{\partial m_t} = v_t^{\sigma} \cdot (1-\beta) \cdot c_t^{-\sigma}$

4. Deep learning

Curse of dimensionality:

- 1. Many states
- 2. Many choices
- 3. Many shocks

Deep (reinforcement) learning:

- 1. Approximate value and policy functions with neural networks
- 2. Approximate on simulation sample rather than on grid
- 3. Automatic differentiation (backpropagation) and GPUs for speed
- Examples: Maliar and Maliar (2021) and Azinovic and Scheidegger (2022)
- Working paper: Druedahl and Røpke (2025)

Python package: EconDLSolvers

Summary

Summary and what's next

This lecture:

- Consumption-saving models (precautionary-saving, buffer-stock target, intertemporal MPCs)
- 2. Basic numerical dynamic programming (discretization, numerical integration, interpolation, VFI)
- 3. EGM (time iteration, invert Euler-equation)
- 4. Simulation (monte carlo, histogram)
- Next: Stationary equilibrium
- You should:
 - 1. Study the code from this lecture
 - Glance at Aiyagari (1994), »Uninsured Idiosyncratic Risk and Aggregate Saving«