Project Report

1.INTRODUCTION

- 1.1 Project Overview
- 1.2 Purpose

2.LITERATURE SURVEY

- 2.1 Existing problem
- 2.2 References
- 2.3 Problem Statement Definition

3.IDEATION & PROPOSED SOLUTION

- 3.1 Empathy Map Canvas
- 3.2 Ideation & Brainstorming
- 3.3 Proposed Solution
- 3.4 Problem Solution fit

4.REQUIREMENT ANALYSIS

- 4.1 Functional requirement
- 4.2 Non-Functional requirements

5.PROJECT DESIGN

- 5.1 Data Flow Diagrams
- 5.2 Solution & Technical Architecture
- 5.3User Stories

6.PROJECT PLANNING & SCHEDULING

- 6.1 Sprint Planning & Estimation
- 6.2 Sprint Delivery Schedule
- 6.3 Reports from JIRA

7.CODING & SOLUTIONING (Explain the features added in the project along with code)

- 7.1 Feature 1
- 7.2 Feature 2
- 7.3 Database Schema (if Applicable)

8.TESTING

- 8.1 Test Cases
- 8.2 User Acceptance Testing

9.RESULTS

9.1 Performance Metrics

10.ADVANTAGES & DISADVANTAGES

11.CONCLUSION

12.FUTURE SCOPE

13.APPENDIX

Source Code & GitHub & Project Demo Link

1.INTRODUCTION

1.1 Project Overview

In this project, two datasets name fruit dataset and vegetable dataset are collected. The collected datasets are trained and tested with deep learning neural network named Convolutional Neural Networks (CNN). First, the fruit dataset is trained and then tested with CNN. It has 6 classes and all the classes are trained and tested. Second, the vegetable dataset is trained and tested. The software used for training and testing of datasets is Python. All the Python codes are first written in Jupyter notebook supplied along with Anaconda Python and then the codes are tested in IBM cloud. Finally a web based framework is designed with help Flask a Python library. There are 2 html files are created in templates folder along with their associated files in static folder. The Python program 'app.py' used to interface with these two webpages is written in Spy-der-Anaconda python and tested.

1.2 Purpose

This project is used to test the fruits and vegetables samples and identify the different diseases. Also, this project recommends fertilizers for predict diseases

2.LITERATURE SURVEY

2.1 Existing problem

[1] The proposed method uses SVM to classify tree leaves, identify the disease and suggest the fertilizer. The proposed method is compared with the existing CNN based leaf disease prediction. The proposed SVM technique gives a better result when compared to existing CNN. For the same set of images, F-Measure for CNN is 0.7and 0.8 for SVM, the accuracy of identification of leaf disease of CNN is 0.6 and SVM is 0.8.

Advantages: The prediction and diagnosing of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves.

Disadvantages: This further research is implementing the proposed algorithm with the existing public datasets. Also, various segmentation algorithms can be implemented to improve accuracy. The proposed algorithm can be modified further to identify the disease that affects the various plant organs such as stems and fruits.

[2] Detection of Leaf Diseases and Classification using Digital Image Processing International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), IEEE, 2017.

Advantages: The system detects the diseases on citrus leaves with 90% accuracy.

Disadvantages: System only able to detect the disease from citrus leaves. The main objective of this paper is image analysis & classification techniques for detection of leaf diseases and classification. The leaf image is firstly preprocessed and then does the further work. K-Means Clustering used for image segmentation and then system extract the GLCM features from disease detected images. The disease classification done through the SVM classifier.

2.2 References

- [1] SVM Praline B.Padol, Anjali A.Yadav, 2016 conference on advances in Signal processing(CASP).
- $\,$ [2] Semi-automatic leaf disease detection and classification system for soybean culture IET Image Processing, 2018

2.3 Problem Statement Definitions

The global agricultural powerhouse is considered as a key for human lives. In the recent years due to the presence of multiple fertilizers in the market, so the farmers get confused also there is lots of unpredicted diseases in the farming. To overcome this problem, we recommend our trained model to predict the disease exactly and to recommend the fertilizer to cure the disease.

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

3.3 Proposed Solution

Description
- In the recent years due spread of multiple diseases in the farming and the availability of multiple fertilizers in the market the farmers get confused to predict the disease and to use the fertilizers.
- When the user inputs an image of a diseased plant leaf, the application predicts the type of disease, displated the result along with the little background about the disease and suggestions to cure it. - Deep learning techniques are used to identify the diseases and suggest appropriate fertilizer that can be
crij

3.	Novelty / Uniqueness	 The classification technique is divided into the following steps: a. Image acquisition b. Pre-processing Instant solutions for farmer's queries.
4.	Social Impact / Customer satisfaction	 Fertilizers are a supplements supply to soil nutrients, build up soil fertility in order to support plant nutrients and increase plants productivity. Nowadays, artificial intelligence and sensor technology play a vital role in the agriculture field. The use of excess insecticides and fertilizers in farming poses a risk to human health.
5.	Business Model (Revenue Model)	 Helpline support for resolving app related issues. Service availability depends on the plan subscribed by the farmers.

3.4 Problem Solution Fit

4.REQUIREMENT ANALYSIS

4.1 Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	No Registration needed.
FR-2	Image	Image of the affected plant leaf is needed to predict the disease
FR-3	PC / Desktop or Mobile	Device needed to run the application

4.2 Non-Functional Requirement

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	Used to predict disease affected on plants
NFR-2	Security	No security needed while using this application
NFR-3	Reliability	Reliable on anytime anywhere with the
		environment
NFR-4	Performance	High performance to predict disease which is
		difficult to predict by the farmers
NFR-5	Availability	Available for customers on both web and mobile
NFR-6	Scalability	Scalable with predicting diseases which is known
		or defined earlier, but not for the new diseases

5.PROJECT DESIGN

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Dashboard	USN-1	As a user, I can use this user-friendly application without any registration and login	I can access this dashboard	High	Sprint-2
	Predict page	USN-2	As a user, I can upload the image of the infected plant leaf	I can access this predict page	Medium	Sprint-3
	Solution	USN-3	As a user, I can get the solution with the trained model	I can access this on predict page	Medium	Sprint-3
Customer (Web user)	Dashboard	USN-1	As a user, I can use this user-friendly web application without any registration and login	I can access this dashboard	High	Sprint-2

6.PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning

- 1. Planning is a crucial role in project management because it allows team members to schedule their time on the project.
- 2. This activity demonstrates how the team members assigned and completed various tasks!
 - 3. In Project we can Split into the Four Step of Phrases are
- > Phrase 1: Information Collection and Requirement Analysis
- > Phrase 2: Project Planning and Developing Modules
- > Phrase 3: Implementing the High Accuracy Machine Learning Algorithm to Perform
- > Phrase 4: Deploying the Model on Cloud and Testing the Model and UI Performance

6.1 Estimation

Sprint	Functional	User	User Story / Task	Story	Priority	Team Members
	Requirement (Epic)	Story		Points		
		Number				
Sprint-1	Image Processing	USN-1	As a user, I can process and	1	Low	Karthikeyan/
			retrieve the useful			Shankar
			information about the			
			images.			
Sprint-2	Model Building for	USN-2	As a user, I can be able to	1	Medium	Gokul
	Fruit Disease		predict fruit disease using			Prasath/
	Prediction		this model.			Karthikeyan
Sprint-2	Model Building for	USN-3	As a user, I can be able to	2	Medium	Karthikeyan/
	Vegetable Disease		predict vegetable disease			Karthikeyan
	Prediction		using this model.			
Sprint-3	Application Building	USN-4	As a user, I can see a web	2	High	Gokul
			page for Fertilizers			Prasath/
			Recommendation System			Karthikeyan/
			for Disease Prediction.			Shankar/
						Karthikeyan
Sprint-4	un the Model on IBM	USN-5	As a user, I can save the	2	High	Gokul Prasath/
	Cloud		information about Fertilizer			
			and crops on IBM cloud.			

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	04 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	10 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 Nov 2022

6.3 Reports From JIRA

7.CODING & SOLUTIONING

Basic information about the website that we have created and deployed.

O Predict

In the prediction page the infected plant leaf gets predicted and the precautions are measured.

Plant Disease Prediction

8. TESTING

8.1 Test Cases

Test case ID	Feature Type	Compon ent	Test Scenario	Pre-Requisite	Steps To Execute	Test Data	Expected Result	Actual Result	Stat us	Commnets	TC for Automation(Y/N)	BUG ID	Executed By
HomePage_TC_ 001	UI	Home Page	Read the informations in the project	None	No steps required	None	Should display the information about the project	Working as expected	Pass		No		Karthikeyan.S
PredictPage_TC 001	Functional	Home Page	Verify the UI elements in Login/Signup popup		1.upload the image 2.Predict the image uploaded	None		Working as	Pass	Accuracy: 98%	No		Shankar.M

8.2 User Acceptance Testing

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the Fertilizer Recommendation for Disease Prediction project at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	7	2	0	1	10
Duplicate	2	0	3	0	5
External	3	2	0	2	7
Fixed	10	3	5	15	33
Not Reproduced	0	0	0	0	0
Skipped	0	1	0	1	2
Won't Fix	0	0	0	0	0

3. Test Case Analysis

This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	6	0	0	6
Client Application	10	1	0	10
Security	0	0	0	0
Outsource Shipping	5	0	0	5
Exception Reporting	6	0	0	6
Final Report Output	5	0	0	5
Version Control	1	0	0	1

9.RESULTS

9.1Performance Metrics

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Model value - 896	Rodel: "sequential"
2.	Accuracy	Training Accuracy – 0.9686 Validation Accuracy – 0.9626	accuracy: 0.8223 - val_loss: 0.2102 - val_accuracy: 0.9247 accuracy: 0.9216 - val_loss: 0.2100 - val_accuracy: 0.9300 accuracy: 0.8439 - val_loss: 0.1022 - val_accuracy: 0.9526 accuracy: 0.8526 - val_loss: 0.1024 - val_accuracy: 0.9526 accuracy: 0.9493 - val_loss: 0.1477 - val_accuracy: 0.9466 accuracy: 0.9693 - val_loss: 0.1477 - val_accuracy: 0.9997 accuracy: 0.9603 - val_loss: 0.1374 - val_accuracy: 0.9791 accuracy: 0.9634 - val_loss: 0.0721 - val_accuracy: 0.9791 accuracy: 0.9703 - val_loss: 0.0697 - val_accuracy: 0.9763 accuracy: 0.9707 - val_loss: 0.1046 - val_accuracy: 0.9721 accuracy: 0.9606 - val_loss: 0.1316 - val_accuracy: 0.9626
3.	Confidence Score (Only Yolo Projects)	Class Detected Confidence Score - 96	<pre>x_train.class_indices {'AppleBlack_rot': 0, 'Applehealthy': 1, 'Corn_(maize)Northern_Leaf_Blight': 2, 'Corn_(maize)healthy': 3, 'PeachBacterial_spot': 4, 'Peachhealthy': 5}</pre>

10.ADVANTAGES & DISADVANTAGES

Advantages:

- ✓ The system helps to compute the disease severity.
- ✓ It allows us to predict which crops would be appropriate for a given climate. Using the weather and disease related data sets, the crop quality can also be improved.
- ✓ The prediction and diagnosing of leaf diseases are depending on the segmentation such as segmenting the healthy tissues from diseased tissues of leaves.

Disadvantages:

- $\ensuremath{\checkmark}$ Due to the changing climatic conditions, accurate results cannot be predicted by this system.
 - ✓ System only able to detect the disease from citrus leaves.

11.CONCLUSION

The model proposed here involves image classification of fruit datasets and vegetable datasets. The following points are observed during model testing and training:

- ✓ The accuracy of classification increased by increasing the number of epochs.
- ✓ For different batch sizes, different classification accuracies are obtained.
- ✓ The accuracies are increased by increasing more convolution layers.
- ✓ The accuracy of classification also increased by varying dense layers.
- ✓ Different accuracies are obtained by varying the size of kernel used in the convolution layer output.
- ✓ Accuracies are different while varying the size of the train and test datasets.

12.FUTURE SCOPE

The proposed model in this project work can be extended to image recognition. The entire model can be converted to application software using python to exe software. The real time image classification, image recognition and vide processing are possible with help OpenCV python library. This project work can be extended for security applications such as figure print recognition, inis recognition and face recognition.

13.APPENDIX

13.1 SOURCE CODE

Home.html

```
1 <!DOCTYPE html>
2 <html >
3
4 <head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-</pre>
  scale=1">
7
    <title> Plant Disease Prediction</title>
    link
  href='https://fonts.googleapis.com/css?family=Pacifico'
   rel='stylesheet' type='text/css'>
9 href='https://fonts.googleapis.com/css?family=Arimo'
   rel='stylesheet' type='text/css'>
10 link href='https://fonts.googleapis.com/css?family=Hind:300'
   rel='stylesheet' type='text/css'>
11 <link
  href='https://fonts.googleapis.com/css?family=Open+Sans+Conden
   sed:300' rel='stylesheet' type='text/css'>
12 <link rel="stylesheet" href="{{ url_for('static',</pre>
   filename='css/style.css') }}">
13 <link
  href='https://fonts.googleapis.com/css?family=Merriweather'
   rel='stylesheet'>
14 href='https://fonts.googleapis.com/css?family=Josefin
   Sans' rel='stylesheet'>
15 <link
  href='https://fonts.googleapis.com/css?family=Montserrat'
  rel='stylesheet'>
16 <style>
17 .header {
18
                     top:0;
                     margin:0px;
19
20
                     left: 0px;
                     right: 0px;
21
                     position: fixed;
22
                     background-color: #28272c;
23
24
                     color: white;
                     box-shadow: 0px 8px 4px grey;
25
```

```
overflow: hidden;
26
                      padding-left:20px;
27
                      font-family: 'Josefin Sans';
28
                      font-size: 2vw;
29
                      width: 100%;
30
                      height:8%;
31
                      text-align: center;
32
33
                .topnav {
34
     overflow: hidden;
35
     background-color: #333;
36
37 }
38
39 .topnav-right a {
40 float: left;
41 color: #f2f2f2;
42 text-align: center;
43 padding: 14px 16px;
44
    text-decoration: none;
45
     font-size: 18px;
46 }
47
48 .topnav-right a:hover {
49 background-color: #ddd;
50
    color: black;
51 }
52
53 .topnav-right a.active {
54
     background-color: #565961;
55
     color: white;
56 }
57
58 .topnav-right {
59 float: right;
60
     padding-right:100px;
61 }
62
63 body {
64
65
     background-color:#ffffff;
     background-repeat: no-repeat;
```

```
background-size:cover;
67
68
    background-position: 0px 0px;
69
    .button {
70
    background-color: #28272c;
71
    border: none;
72
73
    color: white;
    padding: 15px 32px;
74
75
    text-align: center;
76 text-decoration: none;
    display: inline-block;
77
    font-size: 16px;
78
    border-radius: 12px;
79
80 }
81 .button:hover {
82 box-shadow: 0 12px 16px 0 rgba(0,0,0,0.24), 0 17px 50px 0
  rgba(0,0,0,0.19);
83 }
84 form {border: 3px solid #f1f1f1; margin-left:400px;margin-
  right:400px;}
85
86 input[type=text], input[type=password] {
    width: 100%;
    padding: 12px 20px;
88
89 display: inline-block;
90
    margin-bottom:18px;
    border: 1px solid #ccc;
91
    box-sizing: border-box;
92
93 }
94
95 button {
    background-color: #28272c;
96
    color: white;
97
    padding: 14px 20px;
98
99
    margin-bottom:8px;
100
            border: none;
101
            cursor: pointer;
           width: 15%;
102
103
            border-radius:4px;
104
          }
105
```

```
106
          button:hover {
            opacity: 0.8;
107
108
          }
109
110
          .cancelbtn {
111
            width: auto;
112
            padding: 10px 18px;
            background-color: #f44336;
113
114
          }
115
116
          .imgcontainer {
117
            text-align: center;
            margin: 24px 0 12px 0;
118
119
          }
120
121
          img.avatar {
122
            width: 30%;
            border-radius: 50%;
123
124
          }
125
          .container {
126
127
            padding: 16px;
128
129
130
          span.psw {
131
            float: right;
132
            padding-top: 16px;
133
          }
134
135
          /* Change styles for span and cancel button on extra
  small screens */
          @media screen and (max-width: 300px) {
136
137
            span.psw {
138
               display: block;
139
               float: none;
140
            }
            .cancelbtn {
141
142
               width: 100%;
143
            }
144
          }
145
```

```
146
           .home{
              margin:80px;
147
148
149
            width: 84%;
            height: 500px;
150
             padding-top:10px;
151
152
             padding-left: 30px;
          }
153
154
          .login{
              margin:80px;
155
             box-sizing: content-box;
156
157
            width: 84%;
             height: 420px;
158
159
             padding: 30px;
160
             border: 10px solid blue;
161
          }
162
          .left,.right{
163
           box-sizing: content-box;
164
           height: 400px;
165
           margin:20px;
           border: 10px solid blue;
166
167
          }
168
169
           .mySlides {display: none;}
170
          img {vertical-align: middle;}
171
          /* Slideshow container */
172
          .slideshow-container {
173
            max-width: 1000px;
174
175
            position: relative;
            margin: auto;
176
177
          }
178
179
          /* Caption text */
180
          .text {
             color: #f2f2f2;
181
             font-size: 15px;
182
             padding: 8px 12px;
183
             position: absolute;
184
185
             bottom: 8px;
186
            width: 100%;
```

```
187
            text-align: center;
188
          /* The dots/bullets/indicators */
189
190
          .dot {
            height: 15px;
191
            width: 15px;
192
193
            margin: 0 2px;
            background-color: #bbb;
194
195
            border-radius: 50%;
            display: inline-block;
196
            transition: background-color 0.6s ease;
197
198
          }
199
200
          .active {
201
            background-color: #717171;
202
          }
203
          /* Fading animation */
204
205
          .fade {
206
            -webkit-animation-name: fade;
            -webkit-animation-duration: 1.5s;
207
            animation-name: fade;
208
            animation-duration: 1.5s;
209
210
          }
211
212
          @-webkit-keyframes fade {
            from {opacity: .4}
213
214
            to {opacity: 1}
215
          }
216
          @keyframes fade {
217
            from {opacity: .4}
218
            to {opacity: 1}
219
220
          }
221
          /* On smaller screens, decrease text size */
222
          @media only screen and (max-width: 300px) {
223
            .text {font-size: 11px}
224
225
226
          </style>
227
          </head>
```

```
228
229
          <body style="font-family:'Times New Roman', Times,</pre>
  serif;background-color:#C2C5A8;">
230
          <div class="header">
231
           <div style="width:50%;float:left;font-size:2vw;text-</pre>
232
  align:left;color:white; padding-top:1%">Plant Disease
  Prediction</div>
233
            <div class="topnav-right"style="padding-top:0.5%;">
              <a class="active" href="{{</pre>
234
  url_for('home')}}">Home</a>
              <a href="{{ url_for('prediction')}}">Predict</a>
235
236
237
          </div>
238
          <div style="background-
239
  image:url("./static/images/images.jpg");">
          <div style="width:60%;float:left;">
240
241
          <div style="font-size:50px;font-</pre>
  family:Montserrat;padding-left:20px;text-align:center;padding-
  top:10%;">
          <b>Detect if your plant<br> is infected!!</b></div><br>
242
          <div style="font-size:20px;font-</pre>
243
  family:Montserrat;padding-left:70px;padding-right:30px;text-
  align:justify;">Agriculture is one of the major sectors worls
  wide. Over the years it has developed and the use of new
  technologies and equipment replaced almost all the traditional
  methods of farming. The plant diseases effect the production.
  Identification of diseases and taking necessary precautions is
  all done through naked eye, which requires labour and
  laboratries. This application helps farmers in detecting the
  diseases by observing the spots on the leaves, which inturn
  saves effort and labor costs.</div><br><br>
          </div>
244
          </div>
245
          <div style="width:40%;float:right;"><br><br>
246
247
          <img
  src="{{url_for('static',filename='images/12456.png')}}"
  style="max-height:100%; max-width:100%;">
248
249
          </div>
```

```
250
          </div>
251
          <div class="home">
252
253
254
          <br>
255
256
          </div>
257
258
          <script>
259
          var slideIndex = 0;
260
          showSlides();
261
262
          function showSlides() {
263
            var i;
264
            var slides =
  document.getElementsByClassName("mySlides");
265
            var dots = document.getElementsByClassName("dot");
            for (i = 0; i < slides.length; i++) {</pre>
266
267
              slides[i].style.display = "none";
268
            }
            slideIndex++;
269
            if (slideIndex > slides.length) {slideIndex = 1}
270
271
            for (i = 0; i < dots.length; i++) {</pre>
              dots[i].className = dots[i].className.replace("
272
  active", "");
273
            slides[slideIndex-1].style.display = "block";
274
            dots[slideIndex-1].className += " active";
275
            setTimeout(showSlides, 2000); // Change image every 2
276
  seconds
277
278
          </script>
279
          </body>
280
          </html>
```

predict.html

```
1 <!DOCTYPE html>
2 <html >
3
4 <head>
```

```
<meta charset="UTF-8">
5
    <meta name="viewport" content="width=device-width, initial-</pre>
  scale=1">
7
    <title> Plant Disease Prediction</title>
  href='https://fonts.googleapis.com/css?family=Pacifico'
  rel='stylesheet' type='text/css'>
9 <link href='https://fonts.googleapis.com/css?family=Arimo'</pre>
  rel='stylesheet' type='text/css'>
10 link href='https://fonts.googleapis.com/css?family=Hind:300'
  rel='stylesheet' type='text/css'>
11 <link
  href="https://cdn.bootcss.com/bootstrap/4.0.0/css/bootstrap.mi
  n.css" rel="stylesheet">
       <script
  src="https://cdn.bootcss.com/popper.js/1.12.9/umd/popper.min.j
  s"></script>
13
       <script
  src="https://cdn.bootcss.com/jquery/3.3.1/jquery.min.js"></scr</pre>
14
      <script
  src="https://cdn.bootcss.com/bootstrap/4.0.0/js/bootstrap.min.
  js"></script>
15 <link
  href='https://fonts.googleapis.com/css?family=Open+Sans+Conden
  sed:300' rel='stylesheet' type='text/css'>
16 <link
  href='https://fonts.googleapis.com/css?family=Merriweather'
  rel='stylesheet'>
17 <link href='https://fonts.googleapis.com/css?family=Josefin
  Sans' rel='stylesheet'>
18 <link
  href='https://fonts.googleapis.com/css?family=Montserrat'
  rel='stylesheet'>
19 <link href="{{ url_for('static', filename='css/final.css') }}"</pre>
  rel="stylesheet">
20 <style>
21 .header {
22
               top:0;
23
               margin:0px;
24
               left: 0px;
```

```
25
                 right: 0px;
                 position: fixed;
26
27
                 background-color: #28272c;
                 color: white:
28
                 box-shadow: 0px 8px 4px grey;
29
                 overflow: hidden;
30
                 padding-left:20px;
31
                 font-family: 'Josefin Sans';
32
                 font-size: 2vw;
33
                 width: 100%;
34
                 height:8%;
35
                text-align: center;
36
          }
37
          .topnav {
38
39
     overflow: hidden;
     background-color: #333;
40
41 }
42
43 .topnav-right a {
44 float: left;
     color: #f2f2f2;
45
46 text-align: center;
     padding: 14px 16px;
47
48
     text-decoration: none;
49
     font-size: 18px;
50 }
51
52 .topnav-right a:hover {
     background-color: #ddd;
53
54
     color: black;
55 }
56
57 .topnav-right a.active {
     background-color: #565961;
58
59
     color: white;
60 }
61
62 .topnav-right {
     float: right;
63
64
     padding-right:100px;
65 }
```

```
66
67 .login{
68 margin-top:-70px;
69 }
70 body {
71
72
     background-color:#ffffff;
     background-repeat: no-repeat;
73
74
     background-size:cover;
     background-position: 0px 0px;
75
76 }
77 .login{
78 margin-top:100px;
79 }
80
81 .container {
82
     margin-top:40px;
     padding: 16px;
83
84 }
85 select {
86 width: 100%;
87 margin-bottom: 10px;
88 background: rgba(255,255,255,255);
89 border: none;
90 outline: none;
91 padding: 10px;
92 font-size: 13px;
93 color: #000000;
94 text-shadow: 1px 1px 1px rgba(0,0,0,0.3);
95 border: 1px solid rgba(0,0,0,0.3);
96 border-radius: 4px;
97 box-shadow: inset 0 -5px 45px rgba(100,100,100,0.2), 0 1px 1px
   rgba(255,255,255,0.2);
98 -webkit-transition: box-shadow .5s ease;
99 -moz-transition: box-shadow .5s ease;
         -o-transition: box-shadow .5s ease;
100
         -ms-transition: box-shadow .5s ease;
101
         transition: box-shadow .5s ease;
102
103 }
104
105 </style>
```

```
106 </head>
107
108 <body style="font-family:Montserrat;overflow:scroll;">
109
110 <div class="header">
align:left;color:white; padding-top:1%">Plant Disease
   Prediction</div>
       <div class="topnav-right" style="padding-top:0.5%;">
112
113
114 </div>
115 <div class="container">
             <div id="content" style="margin-top:2em">
116
               <div class="container">
117
118
                <div class="row">
                      <div class="col-sm-6 bd" >
119
120
121
                       <hr>
122
                            <imq
   src="{{url_for('static',filename='images/images.jpg')}}"
   style="height:450px;width:550px"class="img-rounded" alt="Gesture">
                      </div>
123
124
                      <div class="col-sm-6">
125
                            <div>
126
                                  <h4>Drop in the image to get the prediction
   </h4>
                      <form action = "" id="upload-file" method="post"</pre>
127
   enctype="multipart/form-data">
                            <select name="plant">
128
129
                                   <option value="select" selected>Select plant
130
   type</option>
                                   <option value="fruit">Fruit</option>
131
                                   <option value="vegetable">Vegetable</option>
132
133
               </select><br>
                            <label for="imageUpload" class="upload-label"</pre>
134
   style="background: #28272c;">
135
                                  Choose...
136
                            </label>
137
                            <input type="file" name="image" id="imageUpload"
   accept=".png, .jpg, .jpeg">
```

```
138
                       </form>
139
140
                       <div class="image-section" style="display:none;">
141
142
                              <div class="img-preview">
143
                                     <div id="imagePreview">
                                     </div>
144
                              </div>
145
                              <div>
146
147
                                     <button type="button" class="btn btn-info btn-lg</pre>
   "id="btn-predict" style="background: #28272c;">Predict!</button>
148
                              </div>
                       </div>
149
150
151
                       <div class="loader" style="display:none;"></div>
152
153
                       <h3>
                              <span id="result" style="font-size:17px; "> </span>
154
155
                       </h3>
156
                </div>
157
158
                       </div>
159
160
                 </div>
161
                </div>
                </div>
162
          </div>
163
164 </body>
165
166 <footer>
          <script src="{{ url_for('static', filename='js/main.js')}</pre>
   }}" type="text/javascript"></script>
168 </footer>
169 </html>
```

final.css

```
1 .img-preview {
2  width: 256px;
3  height: 256px;
4  position: relative;
5  border: 5px solid #F8F8F8;
```

```
box-shadow: 0px 2px 4px 0px rgba(0, 0, 0, 0.1);
6
7
      margin-top: 1em;
      margin-bottom: 1em;
9 }
10
11 .img-preview>div {
      width: 100%;
12
      height: 100%;
13
      background-size: 256px 256px;
14
      background-repeat: no-repeat;
15
      background-position: center;
16
17 }
18
19 input[type="file"] {
20
      display: none;
21 }
22
23 .upload-label{
24
       display: inline-block;
25
      padding: 12px 30px;
26
      background: #28272c;
27
      color: #fff;
28
      font-size: 1em;
29
      transition: all .4s;
30
      cursor: pointer;
31 }
32
33 .upload-label:hover{
       background: #C2C5A8;
34
35
       color: #39D2B4;
36 }
37
38 .loader {
       border: 8px solid #f3f3f3; /* Light grey */
39
40
       border-top: 8px solid #28272c; /* Blue */
       border-radius: 50%;
41
      width: 50px;
42
      height: 50px;
43
       animation: spin 1s linear infinite;
44
45 }
46
```

Main.js

```
$(document).ready(function () {
2
       // Init
3
       $('.image-section').hide();
       $('.loader').hide();
4
5
       $('#result').hide();
6
7
       // Upload Preview
8
       function readURL(input) {
9
           if (input.files && input.files[0]) {
               var reader = new FileReader();
10
11
               reader.onload = function (e) {
                   $('#imagePreview').css('background-image',
12
   'url(' + e.target.result + ')');
13
                   $('#imagePreview').hide();
                   $('#imagePreview').fadeIn(650);
14
15
               reader.readAsDataURL(input.files[0]);
16
17
           }
18
       $("#imageUpload").change(function () {
19
           $('.image-section').show();
20
           $('#btn-predict').show();
21
           $('#result').text('');
22
           $('#result').hide();
23
           readURL(this);
24
25
      });
26
27
       // Predict
       $('#btn-predict').click(function () {
28
           var form_data = new FormData($('#upload-file')[0]);
29
30
           // Show loading animation
31
32
           $(this).hide();
33
           $('.loader').show();
34
```

```
// Make prediction by calling api /predict
35
36
           $.ajax({
               type: 'POST',
37
               url: '/predict',
38
               data: form_data,
39
               contentType: false,
40
               cache: false,
41
               processData: false,
42
43
               async: true,
               success: function (data) {
44
                   // Get and display the result
45
                   $('.loader').hide();
46
                   $('#result').fadeIn(600);
47
48
                   $('#result').text('Prediction: '+data);
49
                   console.log('Success!');
50
               },
51
           });
       });
52
53
54 });
```

app.py

```
1 import requests
2 from tensorflow.keras.preprocessing import image
3 from tensorflow.keras.models import load_model
4 import numpy as np
5 import pandas as pd
6 import tensorflow as tf
7 from flask import Flask, request, render_template, redirect, url_for
8 import os
9 from werkzeug.utils import secure_filename
10 from tensorflow.python.keras.backend import set_session
12 app = Flask(__name__)
13 global sess
14
15 global graph
16 graph=tf.compat.v1.get_default_graph()
17
18
19
```

```
20 model = load_model("./Models/fruit.h5")
21 model1=load_model("./Models/vegetable.h5")
22
23
24 @app.route('/')
25 def home():
     return render_template('home.html')
26
27
28
29 @app.route('/prediction')
30 def prediction():
     return render_template('predict.html')
31
32
33 @app.route('/predict',methods=['POST'])
34
35 def predict():
36
     if request.method == 'POST':
37
38
       f = request.files['image']
39
40
41
       basepath = os.path.dirname(__file__)
       file_path = os.path.join(
42
43
          basepath, 'uploads', secure_filename(f.filename))
44
       f.save(file_path)
       img = image.load_img(file_path, target_size=(128, 128))
45
       x = image.img_to_array(img)
46
       x = np.expand_dims(x, axis=0)
47
48
49
       plant=request.form['plant']
       print(plant)
50
51
       if(plant=="vegetable"):
52
          preds = model.predict(x)
53
54
          preds = np.argmax(preds)
          print(preds)
55
          df=pd.read_excel('precautions - veg.xlsx')
56
          print(df.iloc[preds]['caution'])
57
58
       else:
59
          preds = model1.predict(x)
          preds = np.argmax(preds)
60
```

```
61     df=pd.read_excel('precautions - fruits.xlsx')
62     print(df.iloc[preds]['caution'])
63     return df.iloc[preds]['caution']
64
65 if __name__ == "__main__":
66     app.run(debug=False)
```

 $\textbf{Github Link:} \underline{\texttt{https://github.com/IBM-EPBL/IBM-Project-12792-1659493073}}$

Demo video link: https://drive.google.com/file/d/13b2s7LvJzIA4F36V6--OecD-1knpq9qF/view?usp=share_link