Assignment # 05 Harshit Khandelwal (16UME017)

Sol. 1.	- Clark
	J D D D D D D D D D D D D D D D D D D D
	Section modulus 72 I
	Section modulus 72 I Sman
	$Z_1 = (\pi/64) DY$ $Z_2 = (\pi/64) DY$
	D/2 D0/2
	$Z_1 = \pi_D^3$ $Z_2 = \pi \left(\mathcal{D}_{\alpha}^{M} - \mathcal{D}_{\alpha}^{M} \right)$
	$Z_1 = \pi_D^3$ $Z_2 = \pi (\mathcal{D}_0^{M} - \mathcal{D}_0^{M})$ $32 \qquad 3Z \qquad \mathcal{D}_0$
	$Z_1 = \mathcal{D}^3 \mathcal{P}_0$
	72 (D64-DH)
	length and weight are same: Malerial is sampe:
	then (Valuand) = (Valuand) II
	$\frac{\pi \mathfrak{D}^2 \times L}{Y} = \frac{\pi (\mathfrak{D}^2 - \mathfrak{D}^2) \times L}{Y}$
	3 p2 = pp 0
	(2) $(2)^2 + 2)(2)^2 + 2$
	some.
	$\frac{z_1}{z_2} = \frac{D^3 D_0}{D^2 (D^3 - 1)}$
	(36+24)
	$\frac{7}{22} = \frac{\mathcal{D}_6}{(\mathfrak{o}_6^2 + \mathfrak{o}_7^2)}$
	Teacher's Signature
1	a organitura

7. (1)

w2020m

300mm

(i)	7 = F A 5	
	F = 30kN	_

Z= 300 x150

2=100 mm

$$I = 150 \times (450)^3 = 379.68 \times 10^6 \text{ mm}^4$$

AS = (= x + 00 × 300) × 100

= 15 ×105 mm3

T= 30 × 103 × 15 × 105

(not) - 508 - 200 (x 379.68 x 108

= 1-185 MPg

7 = 300- \ x150

Z= 300-y

 $A = \frac{1}{2} \times \frac{300-9}{3} \times \frac{300-9}{5} = \frac{(300-9)^2}{5}$

5 = 25+300

(300-4)2 (257300) 30×103 T = 300-D ×312.68×106 take 21=300-y x x (300-x) 30 × 103 +3 T= T = ((constant) x x (900 2x) dr = 0 a x 1000 $\Rightarrow x(0-2) + (960-200) = 0$ 2) 900-4x 20 0) X= 225 mm Tmax = 30 x (03 x 3 x 225 x (900 - 450) (iir) 379.68 X106 X18 = 1.33 MPE I= 2640 Cmy = 2640×10-8 my 8.4. h = 20 cm = 2m symmetrical section of ymore - 1 m SXKM $M_2 = 6 \times \chi^2$ $3 \times^2$ σ = M = 120 × 103 = 3×2 × 103 ν + 26 νο × 168 os 222 42.24 = 6.49 mg

Teacher's Signature

DATE / /
PAGE NO.:

Sel. 6.(1)	here 2 = 75 cm
	$\beta = \sqrt{D^2 - \varkappa^2}$
	$\frac{7}{5} = \frac{5\times3}{12\times3}$
7.5	Z = \(\frac{1}{6} = \frac{1}{6} \)
	6 6
	For strongest section
	$\frac{dz}{dy^{2}} = 0$ $\frac{dz}{dy^{2}} = 0$
	dy 20 0 D2=3 52 2 3 52
	y = D = 14.43 cm
	V3
	2 = 20.41 cm
	ξ
(ii)	2-5 KN (m)
	2.2 KN (LW)
	Lm —
	1.221KH
	$M = \frac{7-5 \times 10^3 \times 2^2}{8} = \frac{347-51^2}{8}$
	8
	M = 312-5 L3 X12 10 X106
A	M 32-5 13 X12 10 X 106 T 9 (-1443) x (-2041)3 -102
8	3) 1 2 5.663 m
(111)	M 0 312.512 × 64 10×106 ×2
	$\frac{M}{3} = \frac{312.51^{2} \times 64}{3.24 \times (.25)^{M}} = \frac{16 \times 16.0 \times 2}{.25}$
	7) L27m