Notes - January 6th Math 32A

Today we will work in $\mathbb{R}^2 := \{(x,y) \mid x,y \in \mathbb{R}\}.$

A two-dimensional vector \mathbf{v} is determined by two points in the plane: the initial point P and the terminal point Q. We denote it as

$$\mathbf{v} = \overrightarrow{PQ}.$$

One special case is when the vector initial point is the origin O. Every vector $\mathbf{v} = \overrightarrow{PQ}$ is equivalent to a unique vector $\mathbf{v_0} = \overrightarrow{OR}$.

Definition. Let $P=(a_1,b_1)$ and $Q=(a_2,b_2)$ be two points in \mathbb{R}^2 . The components of $\mathbf{v}=\overrightarrow{PQ}$ are the quantities $a=a_2-a_1 \qquad b=b_2-b_1$.

If the components of a vector \mathbf{v} are a and b, we write $\mathbf{v} = \langle a, b \rangle$. Two vectors with the same components are called equivalent.

The *lenght* of a vector $\mathbf{v} = \langle a, b \rangle$ is $\|\mathbf{v}\| = \sqrt{a^2 + b^2}$.

The zero vector is the vector $\mathbf{0} = \langle 0, 0 \rangle$.

Vector algebra.
Given two vectors \mathbf{v} and \mathbf{w} , can we find a vector $\mathbf{v} + \mathbf{w}$?
Similarly, we can find $\mathbf{v} - \mathbf{w}$.
We can perform what is called <i>scalar multiplication</i> . Given a vector \mathbf{v} and a real number λ , we can define the vector
$\lambda \mathbf{v}$ as the vector whose length is $ \lambda v $, points in the same direction of \mathbf{v} if $\lambda > 0$, or it points in the opposite direction
if $\lambda < 0$. In this case we call λ a scalar.

It is easier to compute these using vector components. Let $\mathbf{v} = \langle a, b \rangle$ and $\mathbf{w} = \langle c, d \rangle$.

- $\mathbf{v} + \mathbf{w} = \langle a + c, b + d \rangle$
- $\mathbf{v} \mathbf{w} = \langle a c, b d \rangle$
- $\lambda \mathbf{v} = \langle \lambda a, \lambda b \rangle$

Basic properties. For all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and scalars λ ,

- $\bullet \ \mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$
- $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$

Exercise. Let $\mathbf{v} = \langle 2, 3 \rangle$ and $\mathbf{w} = \langle -1, 4 \rangle$. Calculate $2\mathbf{v} + \mathbf{w}$.

Definition. A linear combination of vectors \mathbf{v} and \mathbf{w} is a vector $r\mathbf{v} + s\mathbf{w}$, where r, s are scalars.

Exercise. Express the vector $\mathbf{u} = \langle 7, 2 \rangle$ as a linear combination of the vectors $\mathbf{v} = \langle -1, 2 \rangle$ and $\mathbf{w} = \langle 3, 2 \rangle$.

Definition. A unit vector is a vector of length 1. If a unit vector **e** is based at the origin, then we can write $\mathbf{e} = \langle \cos \theta, \sin \theta \rangle$, where θ is the angle between **e** and the x-axis.

Given a vector \mathbf{v} , we can find a unit vector $\mathbf{e}_{\mathbf{v}}$ pointing in the same direction of \mathbf{v} .

$$\mathbf{e}_{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}.$$

Any vector \mathbf{v} can be written in terms of its length and direction, as

$$\mathbf{v} = \|\mathbf{v}\|\mathbf{e}_{\mathbf{v}} = \|\mathbf{v}\|\langle\cos\theta,\sin\theta\rangle.$$

Exercise. Write the vector $\mathbf{v} = \langle -3, 3 \rangle$ as $\|\mathbf{v}\| \langle \cos \theta, \sin \theta \rangle$.

We identify two special unit vectors: $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$. Then any vector $\langle a, b \rangle$ can be written as $a\mathbf{i} + b\mathbf{j}$.

Triangle inequality. For any two vectors \mathbf{v} and \mathbf{w} we have that

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|$$