

Домашнее задание.

 $\boxed{\mathbf{1}}$ В коробке лежат 100 карточек с числами $00,01,02,\ldots,98,99$. Вася достаёт одну карточку из коробки, считает сумму S_1 и произведение S_2 цифр на ней.

Найдите вероятность $P(S_1 = i | S_2 = 0)$, где $i = 0, 1, \dots, 18$.

(Подсказка: вероятности при i = 0, i = 1, ..., 9 и i = 10, ..., 18 будут разные!)

2 Даны две урны. В первой лежат 1 белый и 9 черных шаров, а во второй — 5 белых и 1 черный. Из каждой урны достали по одному шару без возвращения. Оставшиеся в двух урнах шары ссыпали в третью урну.

Какова вероятность того, что шар, вытянутый из третьей урны, окажется черным?

 $\fbox{3}$ Три студента пишут контрольную работу из 4-х задач. Первый студент решает любую задачу с вероятностью $\frac{3}{4}$, второй — с вероятностью $\frac{1}{2}$, третий — $\frac{1}{4}$. Преподаватель получил анонимную работу с тремя решенными задачами.

Кому скорее всего принадлежит работа? Найдите вероятность, с которой работа принадлежит этому студенту.

4 Для оценки числа некоторого редкого вида рыб в озере биологи выловили 5 рыб и пометили их. На следующий день они выловили 2 рыбы. Пусть случайная величина X число помеченных рыб среди выловленных.

При каком количестве N рыб в озере вероятность P(X=1) максимальна? Найдите распределение случайной величины X при таком N.

- **5** Совместное распределение случайных величин задано таблицей.
- а) Какова вероятность того, что $X = \frac{1}{2}$, а Y = 1?
- **б)** Найдите P(X = -1).
- в) Найдите P(Y=1).
- Γ) Найдите $P(X^2 + Y = 2)$.

Y	-1	$\frac{1}{2}$	2
0	0.1	0.2	0.04
1	0.05	0.1	0.2
2	0	0.06	0.25

6 Совместное распределение двух непрерывных случайных величин X и Y задано плотностью $f_{X,Y}(x,y) = \frac{1}{4}e^{-|x|-|y|}$.

Верно ли, что случайные величины X и Y независимы?

Случайная величина X имеет плотность $f_X(x) = \frac{1}{\pi(x^2+1)},$ а Y имеет плотность $f_Y(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}.$

Какова плотность совместного распределения X и Y, если известно, что они независимы?

 $\fbox{8}$ Функция распределения случайного вектора (X,Y) имеет вид

$$F_{X,Y}(x,y) = \frac{1}{\pi^2} \arctan(x) \cdot \arctan(y) + \frac{1}{2\pi} \arctan(x) + \frac{1}{2\pi} \arctan(y) + \frac{1}{4}.$$

Чему равняется вероятность $P(1 < X \le \sqrt{3}, \ 0 < Y \le 1)$?