

Geometrické modelování

- © 1997 Josef Pelikán, MFF UK Praha
 - © 2007 Jiří Sochor, FI MU Brno
- © 2007 Petr Felkel, ČVUT FEL Praha
- © 2007 Jiří Žára, ČVUT FEL Praha

felkel@fel.cvut.cz

Geometrické modelování

- = soubor metod k popisu těles (tvaru, vlastností, postupu výroby,...)
- Vzniklo se vznikem a rozvojem počítačů (přelom 50/60 let)
- První systém 50. léta (letectvo, SAGE)
- Boom přelom 60 a 70 let (auta, letadla,...)
 Sutherland, Ross, Coons, Fergusson, de Casteljau, Bézier,
 Eshleman, Meriwether, Forrest,...
- Zpočátku podpora konstruování (vytvoření, editace, zobrazení)
- Postupně nabaluje další funkce
 - aerodynamika, simulace chování
 - modelování struktury (FEM)
 - digitální prototypy (mock-up)
 - řízení obráběcích strojů (NC), Computer Aided Manufacturing (CAM), ...

Model

Model [Angel]

- = abstrakce světa, idealizace
 - reálného (v němž žijeme), existující výrobek
 - virtuálního (vytvořeného počítačem), návrh výrobku

Svět (fyzické objekty) – složitý a proto nepostihnutelný

Matematický model – rovnice zjednodušeně popisující fyzické objekty

Reprezentace (datové modely) – reprezentace matematických modelů vhodné pro počítačové zpracování

Počítačové vědy – abstraktní datové typy

Počítačová grafika – geometrické objekty

Požadavky na reprezentaci těles [Schene]

- Široká doména
 - co nejvíce použitelných geometrických objektů
- Jednoznačnost (úplnost)
 tvar je jasný na první pohled
- Unikátnost reprezentace konkrétní těleso jen jedním způsobem, lze testovat shodu
- Přesnost
 - bez aproximace
- Nemožnost vytvořit chybnou reprezentaci nelze vytvořit objekt, který by nebyl tělesem
- Uzavřenost transformací vznikne zase platné těleso
- Kompaktnost
 - šetří místo
- Efektivní algoritmy

Těleso, plochy, hrany a vrcholy

Metody reprezentace 3D objektů a scén

Drátový model (wire-frame, GL_LINE)

- Velmi úsporný jen vrcholy a hrany těles
- Nezná plochy, proto nejde určit viditelnost
- Nejednoznačný
- Nevhodný pro modelovací operace

Metody reprezentace 3D objektů a scén

Drátové modely a "modelování"

výsledek řezu

jiný možný výsledek

Metody reprezentace 3D objektů a scén

Povrchová reprezentace (Boudary Representation, B-rep)

- Jen "slupka", popsány plochy a hrany (hranice tělesa)
- Snadno se zobrazují
- Není informace o vnitřku
 - => Obtížný test "bod × těleso" (test zda je bod uvnitř tělesa)

Objemová reprezentace

- Přímé informace o objemu tělesa
 - => Snadný test "bod × těleso"
- Obtížněji se zobrazují
- Často jako pomocné datové struktury pro rychlé vyhledávání

Povrchová reprezentace

VEF(S) reprezentace

(česky VHS(T))

- Kompletní topologická informace:
- Seznamy vrcholů (Vertex), hran (Edge), stěn (Face) a těles (Solid)

Polygonální polévka

Zjednodušená VEF na VF

"Okřídlená hrana" ("winged-edge")

- Redundantní informace pro rychlé vyhledávání sousedních objektů (hrany incidentní s vrcholem, ..)
- Omezeny přímé odkazy, posíleny zpětné odkazy

Povrchová reprezentace VEFS

Polygonální polévka

Polygonální polévka (polygon soup)

- Zjednodušená plošková reprezentace VF
- Izolované stěny trojúhelníky (polygony), neukládá topologii
- Redundantní vrcholy (opakují se)
 nebo společné vrcholy (topologie dodatečně odvoditelná)
- Zná plochy, proto lze určit viditelnost
- Nevhodný pro modelovací operace

Polygonální geometrie - běžné úlohy

kreslení

- průchod všemi trojúhelníky, pozice vrcholů

zjištění vlastností objektů

- nalezení všech hraničních hran
- nalezení sousedního trojúhelníku

změny sítě

- vložení/zrušení trojúhelníku
- přemístění vrcholu a přilehlých trojúhelníků
- kolaps hran/rozdělení vrcholů

Nalezení hraničních hran

Přemístění vrcholu

Kolaps hrany

Rozdělení vrcholu

Geometrie a topologie

Primitiva

- vrcholy
- hrany
- stěny (polygony, často jen trojúhelníky)

Topologické vztahy

- vrcholy incidující s hranou
- hrany incidující se stěnou
- vrcholy incidující se stěnou
- hrany incidující s vrcholem

Geometrie

pozice a tvar vrcholů, hran, stěn

Topologie

konektivita/sousednost mezi různými vrcholy, hranami, stěnami

Topologicky identické sítě

Topologicky odlišné sítě

- identická geometrie vrcholů
- odlišná topologie a geometrie trojúhelníků/hran

Manifold

Def: **2-manifold**: Pro každý povrchový bod existuje okolí, které je topologicky ekvivalentní s rovinou (kruhem)

Okřídlená hrana (winged-edge)

Okřídlená hrana - (F,E,V)

Okřídlená hrana

Edge:

- Vertex *start; (x)
- Vertex *end; (y)
- Face *left; (F_i)
- Face *right; (F_.)
- Edge *leftPred; (P_i)
- Edge *leftSucc; (S_I)
- Edge *rightPred; (P.)
- Edge *right Succ; (S.)

Příklad: průchod hranami levé stěny

```
leftFace( Edge *startEdge ) {
    Edge *current= startEdge;
    do {
        output( current );
        current= current->leftSucc;
    } while( current!= startEdge );
}
```

Eulerovy rovnosti

Pro **jednoduchá tělesa** bez děr:

$$F + V = E + 2$$

F – počet stěn, **V** – počet vrcholů, **E** – počet hran

$$6 + 8 = 12 + 2$$

Obecný vzorec (s dírami):

$$F + V = E + 2*(S-H) + R$$

S – počet těles

H – počet děr procházejících celým tělesem

R – počet děr ve stěnách
$$10 + 16 = 24 + 2*(1-1) + 2$$

Solid, Hole, Ring (Loop)

Euler.rovnost - jednoduchá tělesa

$$V + F = E + 2(S - H) + R$$

24 + 15 = 36 +2(1 - 1) + 3

Operace Undo

- Složitá u množ. operací nad B-rep.
- Eulerovy operátory:
 - zajišťují topologickou korektnost modelu
 - umožňují operace Undo/Redo
 - operátory zapsané do souboru mohou sloužit jako přenosový formát
- Příklady Eulerových operátorů
 - mvsf "make vertex, solid, face",
 - mev "make edge, vertex",
 - mef "make edge, face",
 - **kef** "kill edge, face", ...

Eulerovy operátory ... F+V=E+2

Další Eulerovy operátory

kfmrh – "kill face make ring hole"

Existence algoritmu pro rozklad tělesa na "nic"

Objemové reprezentace

Výčtové reprezentace

- přímé vyčíslení obsazeného prostoru (diskrétní reprezentace – omezená přesnost)
- používají se hlavně jako pomocné datové struktury pro rychlé vyhledávání
- buněčný model (rastr), oktalový strom

CSG reprezentace (konstruktivní geometrie těles)

- velice silná a přesná metoda (elementární tělesa, geometrické transformace, množinové operace)
- Obtížnější zobrazování (vrhání paprsku)

Buněčný model

jednobitová varianta: 0 - nic, 1 - těleso vícebitová varianta: 0 - nic, n > 0 - těleso číslo **n** nebo skalární hodnota (hustota, pohltivost,...)

Buněčný model - příklad

Buněčný model - příklad

Voxelová data – běžné úlohy

- nastavení přední roviny ořezání (výběr vrstvy dat)
- pohledové transformace
- množinové operace nad modelem
- osvětlení
- konstrukce izoploch
- separace oblastí (např. orgánů …)

Volume based modeling

- Aplikace: visible human project
- snímky řezů mrtvoly muže
 - každý řez je 2D pole voxelů
 - celé tělo je popsáno sadou volumetrických dat

Visible human project

Oktantový model

Oktantový strom (octree)

Oktantový strom

3D analogie kvadrantového stromu

- je-li vnitřek krychle nehomogenní, rozdělí se na osm částí (dělí se až do úrovně voxelu)
- úspora paměti proti buněčnému modelu (uloženy jen obsazené kostičky)

kreslení odzadu-dopředu

- pouze přivrácené stěny krychlí
- pouze stěny na povrchu těles (stěny mezi 0 a >0)
- několikanásobné překreslování některých pixelů

CSG (Constructive Solid Geometry)

Prvky CSG stromu

elementární geometrická tělesa

- snadno definovatelná a vyčíslitelná
- kvádr, poloprostor, hranol, koule, válec, kužel,...

množinové operace

- kompozice složitějších těles z elementárních
- sjednocení, průnik, rozdíl, ...

geometrické transformace

- modifikace elementárních i složitějších těles
- (homogenní) maticové transformace

CSG strom - modelování

CSG strom - transformace

Transformace v CSG stromu

význam (sémantika) transformace T_i

- T_i mohou být uloženy v každé hraně CSG stromu
- převod souřadnic ze soustavy podtělesa (podstromu, elementárního tělesa) do soustavy nadtělesa
- "podtěleso transformuji pomocí T_i před tím, než ho přidám do nadtělesa"

snadná transformace libovolného podstromu

změním pouze jednu matici

inverzní transformace T_i-1

pro vyčíslovací algoritmy (test bod×CSG, zobrazení)

Transformace v CSG stromu

uložení transformací jen v listech

- kumulované součiny (např. T₃ T₂ T₁ nebo inverzní T₁-1 T₂-1 T₃-1)
- urychlení vyčíslovacích algoritmů (pro editaci je výhodnější distribuované uložení transformací)

úsporné uložení elementárních těles

- tělesa jsou uložena v normovaném tvaru, všechny změny se provádí geometrickými transformacemi
- krychle (jednotková, vrchol v počátku), koule (jednotková, střed v počátku), válec (vodorovná podstava - jednotkový kruh, svislá osa, výška 1), ...

Test "bod x CSG strom"

leží daný bod A uvnitř tělesa?

- někdy chceme zjistit i podtělesa obsahující bod A
- testy"bod×elementární těleso" jsou snadné (především pro normované tvary těles)

průchod CSG stromem

- souřadnice bodu A se převádějí do souřadných soustav elementárních těles (inverzní transformace)
- místo množinových operací se provádějí jejich
 booleovské ekvivalenty (∨ místo ∪, ∧ místo ∩, ...)

Test "bod x CSG strom"

Prořezávání CSG stromů

úplný CSG strom (A+B)-C

směr pohledu

podprostory s prořezanými CSG stromy

Úprava CSG výrazů

((A+B)-C)-D=(A-C-D)+(B-C-D)=A.notC.notD+B.notC.notD

Zobrazování CSG reprezentace

- převedení do povrchové reprezentace
 - pro každý druh elementárního tělesa: rutina převádějící těleso na mnohostěn
 - množinové operace nad mnohostěny (omezená přesnost výsledek nemusí být správně ani v topologickém smyslu)
- vrhání paprsku ("Ray-casting")
 - přesné zobrazování v rastrovém prostředí (pixelová přesnost)
 - výpočetně náročnější metoda

CSG operace - záludnosti

Je nutné definovat tzv. "regularizované operace"

Porovnání modelů

Další informace o tělese

vrchol:

(normálový vektor pro spojité stínování)

hrana:

 příznak umělé hrany: pro reprezentaci děravých stěn nebo aproximaci křivých ploch sítí polygonů

stěna:

- Barva
- normálový vektor (stínování, přivrácená/odvrácená)

těleso:

barva

Reference

- [MPG] Žára, Beneš, Sochor, Felkel. Moderní počítačová grafika, 2. vydání, Computer Press, 2004, kap. 5.
- [Mortenson] M. E. Mortenson. Geometric Modeling, 2nd edition, Wiley Computer Publishing, 1997
- [Ježek] F. Ježek: Geometrické a počítačové modelování, pomocný učební text, ZČU Plzeň, 2000
 - http://www.fd.cvut.cz/personal/voracova/GM/PGR021/GM_Jezek.pdf
- [Alexandr] L. Alexandr: Výuka počítačové grafiky cestou WWW. Diplomová práce VUT Brno,1999 http://lubovo.misto.cz/ MAIL /curves/
- [Finn] D. Finn: Geometric Modelling: lecture notes http://www.rose-hulman.edu/~finn/
- [Shene] C. K. Shene: Introduction to Computing with Geometry Notes, Michigan Technological University, http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/notes.html