Xp Orbs

In Minecraft, for every task completed, the player is rewarded with a certain number of experience points in the form of some green orbs, each orb rewarding the player with different amounts of experience based on its size.

An orb of size i rewards the player with xp_i experience points. Where xp is defined as follows:

- $xp_1 = 1$;
- $xp_i = prev_prime(2 \cdot xp_{i-1})$, where $prev_prime(a)$ is the largest prime number that is smaller than or equal to a. For example, $prev_prime(16) = 13$ and $prev_prime(23) = 23$.

For instance, the first 8 sizes of orbs reward the player with: 1, 2, 3, 5, 7, 13, 23 and 43 experience points, respectively.

Notch, the creator of Minecraft, made it so that any non-negative integer number of experience points can be broken down as a sum of experience rewarded by orbs in the following way (here \oplus represents array concatenation):

- Let dec(a) be an array representing the decomposition of a experience points as a sum of experience rewarded by orbs;
- dec(0) = [] (the empty array)
- $dec(a)=[xp_{max}]\oplus dec(a-xp_{max})$, where xp_{max} is the largest element in xp such that $xp_{max}\leq a$. For example, the decomposition of 11 is dec(11)=[7,3,1] and the decomposition of 15 is dec(15)=[13,2]. He also defined cnt(a) to be the length of the array dec(a), therefore cnt(11)=3, cnt(15)=2.

Notch wants to know the answer to q queries of the following form:

$$ullet \ l,r- ext{find the sum} \ rac{l}{cnt(l)} + rac{l+1}{cnt(l+1)} + \ldots + rac{r-1}{cnt(r-1)} + rac{r}{cnt(r)}$$

Input

The first line contains a single integer representing the number of queries q. Each of the next q lines contains a pair of integers. The i^{th} of these lines describes the i^{th} query: l_i and r_i .

Output

The output contains q lines. The i^{th} of these lines contains a single integer representing the answer to the i^{th} query.

Note regarding printing the output. Let the fraction $\frac{x}{y}$ be the answer for a query. In order to output it, you should print a single integer representing the product $x \cdot mod_inv(y) \ mod \ 998 \ 244 \ 353$, where $mod_inv(y)$ is defined as $mod_inv(y) = y^{998 \ 244 \ 351} \ mod \ 998 \ 244 \ 353$.

Note regarding modular arithmetic. Aditionally, keep in mind the following:

- Given two fractions $\frac{a}{b}$ and $\frac{c}{d}$, their modular sum can be easily computed as: $(a \cdot mod_inv(b) + c \cdot mod_inv(d)) \ mod \ 998 \ 244 \ 353;$
- $(a \cdot mod_inv(b) + c \cdot mod_inv(d)) \ mod \ 998 \ 244 \ 353;$ If two fractions $\frac{a}{b}$ and $\frac{c}{d}$ are equal, then $a \cdot mod \ inv(b) \ mod \ 998 \ 244 \ 353 = c \cdot mod \ inv(d) \ mod \ 998 \ 244 \ 353.$

Constraints

- $1 \le q \le 5 \cdot 10^4$
- $1 \le l_i \le r_i \le 10^{12}$

Subtasks

#	Points	Restrictions
1	18	$0 \leq r_i - l_i < 100$
2	65	$1 \leq l_i \leq r_i \leq 10^8$
3	17	No further constraints.

Examples

Input Example #1

2

5 12

1 1000000

Output Example #1

166374097 439931963

Input Example #2

```
5
11 15
5 14
3 10
12 20
7 19
```

Output Example #2

```
166374096
166374117
499122210
499122249
665496322
```

Explanation

For the first query in the first example, the answer, starting with ans=0, can be computed as follows:

- $dec(5) = [5] \rightarrow ans + = \frac{5}{1}$ $dec(6) = [5,1] \rightarrow ans + = \frac{6}{2}$ $dec(7) = [7] \rightarrow ans + = \frac{7}{1}$ $dec(8) = [7,1] \rightarrow ans + = \frac{8}{2}$ $dec(9) = [7,2] \rightarrow ans + = \frac{9}{2}$ $dec(10) = [7,3] \rightarrow ans + = \frac{10}{2}$ $dec(11) = [7,3,1] \rightarrow ans + = \frac{11}{3}$ $dec(12) = [7,5] \rightarrow ans + = \frac{12}{3}$

- $dec(12) = [7,5] \rightarrow ans += \frac{12}{2}$

 $ans = rac{229}{6}$ The is total sum and the output is: $229 \cdot mod \ inv(6) \ mod \ 998 \ 244 \ 353 = 229 \cdot 166 \ 374 \ 059 \ mod \ 998 \ 244 \ 353 = 166 \ 374 \ 097.$