MCH RECEPTOR ANTAGONIST

Publication number: JP2004315511

Publication date: 2004-11-11

SEKIGUCHI YOSHIISA; SHIKANUMA KOSUKE; OMODERA KATSUNORI; TRAN THUY-ANH; KRAMER BRYAN AUBREY; BEELEY NIGEL ROBERT ARNOLD

Applicant: TAISHO PHARMA CO LTD

Classification: - International:

COTD23995, 481K31957, 481K31957, 481F3V94-64F2922; 481F2924, 6070404172; 607040914; 6070409172; 607040512; 607040914; 607040914; 6070409172; 607040512; 607040912; 607040914, 607023960; 48K19157; 48K191575, 481F3906, 641F2300; 6070440106; 607040906; 607040906; 607040906; 607043006; 607040906; 607040906; 607040906; 607043006; 60704706; (PCI-17) 607023996; 481K31957, 481K31957, 481F3906; 607040996; 607040978; 607040919; 607040919; 607040919;

C07D413/12; C07D413/14; C07D417/12; C07D417/14

- European:

Application number: JP20040095046 20040329

Priority number(s): JP20040095046 20040329; JP20030093418 20030331

Report a data error here

Abstract of JP2004315511

PROBLEM TO BE SOLVED. To obtain a compound acting as an MCH (medical accompound acting as an MCH (medical accompound acting as a mCH (medical accompound acting as the compound acting as the compound acting as the MCH receptor antagonist is expressed by formula 1. The compound is useful in a medicinal composition for preventing or treating fashess, licitiess-essociated compound is actived to the property of the

Data supplied from the esp@cenet database - Worldwide

(19) 日本国特許庁(JP)

(12)公開特許公報(A)

(11) 特許出願公開番号 特關2004-315511

(P2004-315511A) (43) 公開日 平成16年11月11日(2004,11,11)

(51) Int. Cl. 7	FI		テーマコード (参考)	
CO7D 239/95	CO7D 239/95		4C063	
A 6 1 K 31/517	A 6 1 K	31/517	40086	
A 6 1 K 31/5377	A61K	31/5377		
A61P 3/04	A 6 1 P	3/04		
A61P 25/22	A61P	25/22		
	審査請求 未請	請求項の	D数 20 OL (全 988 頁) 最終頁に続く	
(21) 出願番号	特願2004-95046 (P2004-95046)	(71) 出願人	000002819	
(22) 出願日	平成16年3月29日 (2004.3.29)		大正製業株式会社	
(31) 優先権主張番号	特願2003-93418 (P2003-93418)		東京都豐島区高田3丁目24番1号	
(32) 優先日	平成15年3月31日 (2003.3.31)	(74) 代理人	100066692	
(33) 優先極主張国	日本国 (JP)		弁理士 浅村 皓	
		(74) 代理人	100072040	
			弁理士 浅村 肇	
		(74) 代理人	100107504	
			弁理士 安藤 克則	
		(74) 代理人	100102897	
			弁理士 池田 幸弘	
		(72) 発明者		
			東京都豊島区高田3丁目24番1号	
		(72) 発明者	鹿沼 幸祐	
			東京都豊島区高田3丁目24番1号	
		1	最終頁に続く	

(54) 【発明の名称】 MCH受容体アンタゴニスト

(57)【要約】

本発明は、MCH受容体アンタゴニストとして作用する式:

【化1】

の新規の化合物に関する。これらの組成物は、その用途に肥満、肥満関連異常、不安また はうつ病の予防または治療が含まれる薬剤組成物中で有用である。 【特許請求の範囲】

【請求項1】

式Ⅰの化合物またはその塩。

【化1】

$$Q Y R_1$$

[式中、

Qは、

【化2】

であり.

R, は、

(i) C₁ ~C₁ 6 アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・オキソ、
- · C · ~ C 。 アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₂ アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- · · C₁ ~ C₃ アルキルで置換されたヘテロシクリル、
- · C , ~ C 。 アルキルカルボニルオキシ、
- ・カルボシクリルオキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- · · = > = ,
- ・・炭素環式アリール、
- ・・C₁ ~C₂ アルコキシで置換された炭素環式アリール、
- · · C₁ ~C₄ アルキル、
- ·・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、
- · · · モノーまたはジーC · ~C 。 アルキルアミノ、
- \cdots 炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $\mathbf{C}_1 \sim \mathbf{C}_3$ アルキルアミノ、
- ・・・炭素環式アリールカルボニルアミノ、

- ・・・ハロゲン化炭素環式アリールカルボニルアミノ。
- ヘテロシクリルオキシ、
- $\cdot C_1 \sim C_3$ アルキルで置換されたヘテロシクリルオキシ、
- 置換へテロシクリルーエチリデンアミノオキシ、
- C₁ ~C₂ アルコキシカルボニル、
- ・炭素環式アリールで置換されたC₁ ~C₃ アルコキシカルボニル、
- モノーまたはジーC₁ ~C₂ アルキルアミノカルボニル、
- モノーまたはジーC。~C。アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アル
- キルアミノ、
- ・・シアノ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリールアミノ。
- ・・ヒドロキシ、
- · · C · ~ C 。 アルキル、
- · C, ~C。アルキルカルボニルアミノ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルア
- ミノ、
 - ・・C₁ ~C₃ アルキルカルボニルアミノ、
 - ・・炭素環式アリールカルボニルアミノ、
 - ・・ヘテロシクリル、
 - C₁ ~C₄ アルコキシカルボニルアミノ、
 - ・ヘテロシクリルカルボニルアミノ、
 - ・炭素環式アリールスルホニルアミノ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
- · = No.
- ・・C₁ ~C₂ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・C₁ ~C₂ アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₃ アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル。
- ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ト記のものから※・・・ハロゲン、
- · · · C · ~C 。アルコキシ、
- ・炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン。
- · · C1 ~ C2 アルキル、
- 炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ヘテロシクリルチオ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、

```
· - = No.
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
C。~C。シクロアルキル、
C1~C3アルキルで置換されたC3~C6シクロアルキル、
C。~C。シクロアルケニル、
カルボシクリル。
下記のものから独立に選択された置換基で置換されたカルボシクリル、
・・ハロゲン、
· ・C1~C2アルキル、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
・・Cっ~Cっアルケニル、
・・炭素環式アリールで置換されたC。~C。アルケニル、
・・C,~C。アルキルスルフィニルで置換された炭素環式アリールで置換されたC。~
Caアルケニル、
・炭素環式アリール、
・下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン。
・・ヒドロキシ.
· - = 1- D.
・・C1~C2アルキル、
・・下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>4</sub>アルキル、
・・・ハロゲン。
・・・ヒドロキシ.
・・・オキソ、
・・・炭素環式アリール、
・・・ヘテロシクリル、
・・・モノーまたはジー炭素環式アリールアミノ、
・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア
リールアミノ、
・・・・ハロゲン。
· · · · 二トロ、
····C<sub>1</sub> ~C<sub>3</sub> アルキル、
・・・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
・・・ハロゲン化C1~C2アルコキシ、
・・C1~C2アルコキシ、
・・下記のものから独立に選択された置換基で置換されたC_1 \sim C_4 Pルコキシ、
・・・ハロゲン、
・・・炭素環式アリール、
・・炭素環式アリールオキシ、
· · C 1 ~ C 2 アルコキシカルボニル、
・・C<sub>1</sub> ~C<sub>2</sub> アルキルカルボニルオキシ、
・・モノーまたはジーC。~C。アルキルアミノ、
・・モノーまたはジー炭素環式アリールアミノ、
・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
ールアミノカルボニル、
・・・ハロゲン、
· · · 二トロ、
```

· · · C₁ ~ C₃ アルキル、

- · · · C · ~ C · アルコキシ、
- ···ハロゲン化C,~C。アルコキシ、
- · · メルカプト、
- · · C · ~ C 。 アルキルチオ、
- · · ハロゲン化C · ~C 。アルキルチオ、
- ・・C₁ ~C₂ アルキルスルホニル、
- $\cdot \cdot C_3 \sim C_6$ シクロアルキル、
- ・・炭素環式アリール、
- · ・ヘテロシクリル、
- ヘテロシクリル、
- 下記のものから独立に選択された置機基で置換されたペテロシクリル。
- ・・ヒドロキシ。
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・C。~C。アルコキシ、 ・・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、
- (ii) Co~Coアルケニル、

下記のものから独立に選択された置換基で置換された $C_2 \sim C_8$ アルケニル、

- ハロゲン、
- ・オキソ、
- ・C1~C3アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ。
- · · 二トロ.
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C · ~C 。アルキル、
- ・・C₁ ~C₃ アルコキシ、
- · · ハロゲン化C : ~ C : アルコキシ、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・ヒドロキシ、
- · · 二トロ、
- · · C₁ ~ C₃ アルキル、
- ・・C₁ ~C₃ アルコキシ、
- (iii) Co~Caアルキニル、
- 炭素環式アリールで置換されたC。~Caアルキニル、
- (iv)C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたCg~Cgシクロアルキル、

- C₁ ~C₂ アルキル、 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ヒドロキシ、
- ・・オキソ、
- ・・炭素環式アリール、
- モノーまたはジーC₁ ~C₂ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₂アルキルアミノ、

- 炭素環式アリールカルボニルアミノ、
- 炭素環式アリール。
- (v)Co~Coシクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・ヒドロキシ
- ・ニトロ、
- (vii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ.
- ・シアノ、
- ・ニトロ、
- · C。~C。アルキル、
- ・下記のものから独立に選択された置換基で置換されたC1~C9アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・オキソ。
- ・・C₁ ~C₂ アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジーC₁ ~C。アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・C₁ ~C₂ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・C、~C。アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ

ニル、

- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン.
- · · · C · ~ C 。 アルキル、
- ・・・ハロゲン化C, ~C。アルキル、
- ・・ヘテロシクリル、
- ・・C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- Cっ~Cョアルケニル、
- ・炭素環式アリールで置換されたC。~C。アルケニル、
- C₁ ~C₀ アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルコキシ、
- ・・ヒドロキシ.
- ・・ハロゲン。
- ・・カルボキシ、
- ・・モノーまたはジーC₁~C₂アルキルアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、

- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・・ハロゲン。
- ・・・ヘテロシクリル
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots $C_1 \sim C_3 \mathcal{P} \mathcal{N} + \mathcal{N}$
- ・・・・ハロゲン化C₁ ~C₂ アルキル、
- \cdot C_2 \sim C_3 アルケニルオキシ、
- ·C。~C。アルキルカルボニルオキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ----
- ・・C1 ~C2 アルキル、
- ・・ハロゲン化C。~C。アルキル、
- ・・C₁ ~C₃ アルコキシ、
- ・ヘテロシクリルオキシ
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- · · C 1 ~ C 2 アルキル、
- ·・ハロゲン化C₁~C₃アルキル、
- ・炭素環式アリールで置換されたS(O)。O、
- ・カルボキシ。
- · C 1 ~ C 2 アルコキシカルボニル、
- ・モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC₁ ~C₃ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- \cdot C_1 \sim C_2 アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル
- ・アミノ、
- ・モノーまたはジーC1~C2アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC₁~C₄アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- ·C, ~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC。~C。アルキニルカルボニルアミノ、
- 炭素環式アリールスルホニルアミノ、
- ・C₁ ~C₃ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH。
- ·C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_2$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・炭素環式アリールジアゾ、
- ・モノーまたはジーC₁ ~C₂ アルキルアミノで置換された炭素環式アリールジアゾ、
- C₁ ~C₃ アルキルチオ、
- ハロゲン化C₁ ~C₂ アルキルチオ、
- 炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン
- ・・シアノ、

- ・・C₁ ~C₃ アルキル、
- ヘテロシクリルチオ、
- · C。~C。アルキルスルホニル、
- モノーまたはジーC₁ ~C₃ アルキルアミノスルホニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・C₁ ~C₇ アルキル、
- · · ハロゲン化C。~C。アルキル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
 - · · C₁ ~ C₂ アルキル、
 - ・・じ₁ ~じ₃ アルキル、・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (viii) ヘテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ヒドロキシ
- CIMA
- ・シアノ、 ・ニトロ
- · C 1 ~C 2 アルキル、
- 下記のものから独立に選択された置換基で置換されたC、~C。アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ
- · · オキソ.
- · · C 。 ~ C 。 アルキルカルボニルオキシ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・C₁ ~C₃ アルコキシカルボニル、
- · · C 。 ~ C 。 アルキルチオ、
- ・・炭素環式アリールで置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置機基で置換された炭素環式アリール。
- ・・・ハロゲン。
- · · · 二トロ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- · · · C₁ ~ C₃ アルキル、
- ···ハロゲン化C1~C3アルキル、
- C₁ ~C₃ アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₃ アルコキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- · · C1 ~ C2 アルキル、
- ・モノーまたはジーC₁~C₂アルキルアミノ、
- · C。~C。アルキルカルボニルアミノ、
- ・C₁ ~C₃ アルキルチオ、
- C1 ~ C3 アルケニルチオ、

- ・炭素環式アリールチオ
- ハロゲン化炭素環式アリールチオ、
- ・C、~C。アルコキシカルボニルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- ・C。~C。アルキルで置換されたヘテロシクリルチオ、
- C₁ ~C₃ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・ハロテン化灰系現式/リールスルホール、
- \cdot C_1 \sim C_4 アルキルで置換された炭素環式アリールスルホニル、
- · C₁ ~C₂ アルコキシカルボニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · = > □.
- ・・C。~C。アルキル、
- · ・ハロゲン化C 1~C3アルキル、
- · · C1 ~ C3 アルコキシ、
- ··ハロゲン化C₁~C₃アルコキシ、
- ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・ハロゲン、
- · · C₁ ~C₃ アルキル、
- · · ハロゲン化C : ~ C : アルキル、
- ・・C₁ ~C₂ アルコキシ、
- · · C 1 ~ C 。 アルコキシカルボニルを表し、
- R_2 $d_x = NHNH_2$ $x_y = NHNHBoc$ $x_y = N$
- 4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
- ここで、Roaは、HまたはCo~Coアルキルであり、
- R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・ヒドロキシ、
- · C1 ~ C3 アルコキシ、
- ・C₁ ~C₃ /ルコキン ・アミノ、
- ·-NHBoc.
- · C。~C。シクロアルキル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・下記のものから独・・ハロゲン、
- · · C₁ ~ C₃ アルキル、
- ・・C₁ ~C₃ アルコキシ、
- · · SO2 NH2,
- ・ヘテロシクリル、
- $C_3 \sim C_6 シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、$
 - ハロゲン。
 - · C 1 ~ C 2 アルキル、
- C₁ ~C₃ アルコキシ、
- または式IVの基であり、

【化3】

$$N-R_3$$
 IV

ここで、Bocはカルバミン酸tertーブチルエステルであり、 R_3 は $C_1 \sim C_3$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルであり、

- ・炭素環式アリール、
- ハロゲン化炭素環式アリール、
- ・C₁ ~C₂ アルコキシで置換された炭素環式アリール、
- Lは、式V~XIXから選択され、

【化4】

ここで、R₄ は、HまたはC₁ ~C₂ アルキルであり、

 $\rm R_5$ は、H、C $_1$ ~C $_3$ アルキル、または置換炭素環式アリールで置換されたC $_1$ ~C $_3$ アルキルであり、

Yは、-S(O),-、-C(O)-、または-(CH,) mであり、

 $\text{Mid}_{\text{C}} = \text{S} = \text{C} = \text{C}$

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ビフェニル、また はフェナントリルであり、

カルボシクリルは、10,11-ジヒドロー5ーオキソージベンゾ [a,d]シクロヘ ブチル、1ーオキソーイングニル、7,7ージメチルー2ーオキソービシクロ [2.2.1] ヘプチル、9Hーフルオレニル、9ーオキソーフルオレニル、アセナフチル、アントラキノニル、C-フルオレン-9ー4リデン、イングニル、インデニル、1,2,3,4ーテトラヒドローナフチル、まなほどシクロ [2.2.1] ヘブデニルであり。

ヘテロシクリルは、1, 2, 3, 4ーテトラヒドローイソキノリル、1, 2, 3ーチア

ジアゾリル、1、2、3ートリアゾリル、1、2ージヒドロー3ーオキソーピラゾリル、 3,4-チアジアゾリル、1,3-ジオキソーイソインドリル、1,3-ジオキソラ ニル、1H-インドリル、1H-ピロロ [2, 3-c] ピリジル、1H-ピロリル、1-オキソー3H-イソベンゾフラニル、2、2'、5'、2"-ターチオフェニル、2、2 'ービチオフェニル、2、3ージヒドロー1ーオキソーイソインドリル、2、3ージヒド ローベンゾ [1,4] ジオキシニル、2,4-ジヒドロ-3-オキソーピラゾリル、2H -ベンゾピラニル、2ーオキソーベンゾピラニル、2ーオキソーピロリジニル、3、4ー ジヒドロ-2H-ベンゾ[1,4]オキサジニル、3,4-ジヒドロ-2H-ベンゾ[b] 1 「1,4]ジオキセピニル、4Hーベンゾ「1,3]ジオキシニル、4Hーベンゾピラ ニル、4ーオキソー1、5、6、7ーテトラヒドローインドリル、4ーオキソー3、4ー ジヒドローフタラジニル、4ーオキソーベンゾピラニル、9、10、10ートリオキソー チオキサンテニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイ ミダゾリル、ベンゾ [1,3] ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、 ベンゾ「b〕チエニル、ベンゾフリル、ベンゾチアゾリル、シンノリル、フリル、イミダ ゾ「2,1-b]チアゾリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリ ニル、オキサゾリル、オキソラニル、ビペラジル、ビペリジル、ビラゾロ[5,1-b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピロリジル、キノリル、キノキサリル 、チアゾリジル、チアゾリル、チエニル、チオラニル、2,3-ジヒドローベンゾフリル 、テトラヒドローチエニル、またはベンゾフラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。

【請求項2】

Qは、式IIであり、

R - は、

(i) C₁ ~C₁ o アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1-0}$ アルキル、

- ・ハロゲン、
- ・オキソ、
- C₁ ~C₂ アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- · C , ~ C 。 アルキルカルボニルオキシ、
- カルボシクリルオキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ。
- ・・ハロゲン。
- - = ND.
- · · C1 ~ C2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・・オキソ、
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ヘテロシクリルオキシ、
- ・C。~C。アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- · C 1 ~ C 3 アルコキシカルボニル、
- ・炭素環式アリールで置換されたC。~C。アルコキシカルボニル、
- ・モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・モノーまたはジー炭素環式アリールアミノ、
- ・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- C₁ ~C₂ アルキルカルボニルアミノ、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₃ アルキルカルボニルア

```
37.
```

- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- · · ヘテロシクリル、
- C₁ ~C₄ アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
- · · = No.
- · · C1 ~ C2 アルキル、
- ・・モノーまたはジーC₁~C₃アルキルアミノ、
- · C。~C。アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・下記のものから犯・・・ハロゲン。
- · · · C · ~C 。アルコキシ、
- 炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- · ・ C₁ ~ C₃ アルキル、
- 炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- · · ニトロ.
- · · C1 ~ C2 アルキル、
- C3~C6シクロアルキル、
- ・C1~C3アルキルで置換されたC3~C6シクロアルキル、
- · C。~C。シクロアルケニル、
- カルボシクリル。
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- · · C1 ~ C2 アルキル、
- · · C 1 ~ C 3 アルコキシ、
- · · C2~C3アルケニル、
- ・・炭素環式アリールで置換されたC。~C。アルケニル、
- ・・C₁ ~C₂ アルキルスルフィニルで置換された炭素環式アリールで置換されたC₂ ~
- C3 アルケニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- ・・ヒドロキシ。
- · = 1-17
- ・・C」~C』アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、

- ・・・炭素環式アリール。
- · · · ヘテロシクリル、
- ··C,~C,アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール。
- ・・炭素環式アリールオキシ。
- · · C : ~ C 。 アルキルカルボニルオキシ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル。
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- · · · ハロテン
- ・・・C1~C3アルキル、
- ・・・C₁ ~C₃ アルコキシ、
- \cdots ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・・メルカプト、
- ・・C₁ ~C₂ アルキルチオ、
- · · ハロゲン化C₁ ~C₃ アルキルチオ、
- ・・C₁ ~C₃ アルキルスルホニル、
- · · C3~C5シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・ヒドロキシ
- · · C · ~ C 。 アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_3$ アルキル、
- ・・C1~C2アルコキシ、
- ・・炭素環式アリールで置換されたC₁ ~C₃ アルコキシ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、
- (ii) C2~C6アルケニル、
- 下記のものから独立に選択された置換基で置換されたC2~C6アルケニル、
- ・オキソ、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- · · = トロ、
- · · C1 ~ C2 アルキル、
- · · ハロゲン化C₁ ~C₃ アルキル、
- ・・C₁ ~C₃ アルコキシ、
- ・・ハロゲン化C₁ ~C₃ アルコキシ、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ、
- · · C₁ ~ C₃ アルキル、
- ・・C₁ ~C₃ アルコキシ、

(iii) C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、

- C₁ ~C₃ アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキル、
- ・・オキソ、
- ・・炭素環式アリール。
- ・炭素環式アリールカルボニルアミノ、
- 炭素環式アリール、
- (iv)カルボシクリル、
- ニトロで置換されたカルボシクリル、
- (v) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ、
- ·C1~C0アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ、
- ・・炭素環式アリールオキシ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- \cdots C $_1$ \sim C $_2$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ
- ・・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · C · ~ C 。 アルキル、
- ・・・ハロゲン化C1~C2アルキル、
- ・・ヘテロシクリル、
- ・・C₁ ~C₂ アルキルで置換されたヘテロシクリル、
- C₁ ~C₇ アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
- ・・ハロゲン、
- ・・炭素環式アリール、
- C₁ ~C₃ アルキルカルボニルオキシ、
- 炭素環式アリールオキシ、
- ・C、~C。アルコキシで置換された炭素環式アリールオキシ、
- · C₁ ~ C₂ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_2$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC, ~C3アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル。
- ・C₁ ~C₃ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル

· アミノ、

- ・モノーまたはジーC₁ ~C₂ アルキルアミノ、
- \cdot C₁ \sim C₃ アルキニルカルボニルアミノ、

- ・炭素環式アリールで置換されたC。~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・C。~C。アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- ・C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化C₁ ~C₃ アルコキシで置換された炭素環式アリールで置換されたNHC (
- O) NH.
- ・C。~C。アルキルチオ、
- ・ハロゲン化C₁ ~C₃ アルキルチオ、
- ・炭素環式アリールチオ、
- ・シアノで置換された炭素環式アリールチオ、
- · C ~ C アルキルスルホニル、
- ・モノーまたはジーC。~C。アルキルアミノスルホニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置機基で置換された炭素環式アリール、
- ・・C₁ ~C₇ アルキル、
- ·・ハロゲン化C」~Cッアルキル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
 - · · C1 ~ C2 アルキル、
 - ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (vi) ヘテロシクリル.
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン
- ハロテン・ニトロ、
- · C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
 - ・・ハロゲン。
 - ・オキソ。
 - · · C₁ ~C₂ アルキルチオ、
 - ・・炭素環式アリールで置換されたC₁ ~C₃ アルキルチオ、
 - ・・ハロゲン化炭素環式アリールで置換されたC₁ ~C₃ アルキルチオ、
 - ・・炭素環式アリール。
 - ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- C₁ ~C₂ アルコキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ。
- ・・ハロゲン。
- ・・C₁ ~C₂ アルキル、
- ・C。~C。アルキルチオ、
- C₁ ~C₃ アルケニルチオ、
- 炭素環式アリールチオ、
- · C ~ C アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・C、~C、アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・・ハロゲン。
- · · 二トロ、
- · · C1 ~ C2 アルキル、
- ・・C₁ ~C₃ アルコキシ、
- ヘテロシクリル、
- ・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・ハロゲン化C₁ ~C₃ アルキルを表し、
- Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり。

カルボシクリルは、10, 11 – ジヒドロー 5 – オキソージベング [a, d] シクロヘ ブチル、1 – オキソーイングニル、9 H – フルオレニル、9 – オキソーフルオレニル、アセナフチル、アントラキノニル、C – フルオレン – 9 – イリデン、イングニル、4 ンデニル、1, 2, 3, 4 – テトラヒドロー + フチル、1, 2, 3, 4 – テトラヒドロー + フチルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項1に記載の化合物またはその塩。

【請求項3】

- R, は、
- (i) C₁ ~ C_{1 0} アルキル、

下記のものから独立に選択された置換基で置換されたC₁ ~C₁₀ アルキル、

- ・オキソ、
- ジープロピルアミノカルボニル、
- 炭素環式アリールで置換されたメトキシ。
- メチルカルボニルオキシ。
- ・炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ、
- ニトロで置換された炭素環式アリールオキシ、
- ・メチルで置換されたヘテロシクリルオキシ
- ・置換へテロシクリルーエチリデンアミノオキシ。
- · tertーブトキシカルボニルアミノ、
- 炭素環式アリールカルボニルアミノ、
- · C 。 ~ C 。 アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、

- ・・メトキシで置換された炭素環式アリール。
- ・炭素環式アリールチオ。
- ニトロで置換されたヘテロシクリルチオ。
- メチルで置換されたヘテロシクリルチオ、
- C₅ ~C₆ シクロアルキル、
- C₅ ~C₆ シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン。
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル。
- ・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · 二トロ. ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁ ~C₂ アルキル、
- · · · オキソ
- ・・・炭素環式アリール、
- ・・へテロシクリル、
- ・・C₁ ~C₄ アルコキシ、
- · · ハロゲン化C · ~C 』 アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C_aアルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル。
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・ハロゲン化炭素環式アリール、
- (ii) 下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- 炭素環式アリール、

・・炭素環式アリール。

- ハロゲン化炭素環式アリール。
- ニトロで置換された炭素環式アリール、
- (111)C。~C。シクロアルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、
- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- 炭素環式アリール。
- (iv)カルボシクリル、
- (v)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン
- ・ヒドロキシ、

- ・シアノ.
- · 二トロ.
- · C, ~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₉アルキル、
- ・・ハロゲン。
- ・・オキソ。
- ・・炭素環式アリール。
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- ・C。~C。アルコキシ、
- ・ハロゲン化C₁ ~C₇ アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルコキシ、
- ・メチルカルポニルオキシ、
- ・炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- メチルで置換された炭素環式アリールスルホニルアミノ、
- ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール、
- メチルで置換されたヘテロシクリル、

ジープロピルアミノスルホニル。

- ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- (vi) ヘテロシクリル。
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ハロゲン。
- · 二トロ、
- ・C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ハロゲン。
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ。
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、 ・・ヘテロシクリル、
- ・メトキシ.
- ・炭素環式アリールオキシ、
- メチルで置換された炭素環式アリールオキシ、
- C へ へ C 。 アルキルチオ、
- プロベニルチオ、
- ・炭素環式アリールチオ、
- ・C₁ ~C₂ アルキルスルホニル、
- ・C 、 ~ C 。 アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、

- ヘテロシクリルを表し、
- R2は、メチルアミノまたはジメチルアミノであり、
- Lは、式Va、VIIIa、またはIXaから選択され、
- ここで、RaおよびRaは、HまたはCaへCaアルキルから独立に選択され、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり。

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項2に記載の化合物またはその塩。

【請求項4】

- D. 14
- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、
- ・オキソ、
- ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・ 灰系現式/リールで直接さ・ メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ
- ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- グラブル く国族となると () ロンプラルタイプ
- ・置換へテロシクリルーエチリデンアミノオキシ、
- tert-ブトキシカルボニルアミノ、
- 炭素環式アリールカルボニルアミノ、
- C₁ ~C₂ アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- 炭素環式アリールチオ.
- ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、
- · C = ~ C = シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、

- ・・メチル。
- ・・メトキシ
- ・・メトキン、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ.
- · · = > 12.
- · · C1 ~ C2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル。
- · · C1 ~C2 アルコキシ、
- 1.01 -04 / 1034 2.
- $\cdot \cdot \cdot$ ハロゲン化 $C_1 \sim C_4$ アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₄アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・パロテン化セノー灰系県式ノ・・炭素環式アリール、
- ・・ヘテロシクリル
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C2アルケニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール。
- ・ニトロで置換された炭素環式アリール、
- (iii)下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキ
- オキソで置換されたメチル。
- ・炭素環式アリールで置換されたメチル、
- ・炭素環式アリール。
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ.
- ・シアノ、
- ・ニトロ、
- ・C1~C0アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ハロゲン。
- ・・オキソ
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- ・C₁ ~C₇ アルコキシ、
- ·ハロゲン化C1~C7アルコキシ、

- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ
- メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロバルギニルカルボニルアミノ。
- メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、・ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
- ・ファフ (画)異じない(原衆株式) ラール)
- ・ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール、
- メチルで置換されたヘテロシクリル、
- ・ハロゲン化炭素環式アリールで置換されたヘテロシクリル。
- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- · 二トロ.
- · C · ~ C 。 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン、
- ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- · · ヘテロシクリル、
- ・メトキシ、
- 炭素環式アリールオキシ、
- メチルで置換された炭素環式アリールオキシ。
- C₁ ~C₂ アルキルチオ、
- プロペニルチオ、
- 炭素環式アリールチオ、
- ・灰糸珠式/リールティ、
- C₁ ~C₃ アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・C、~C。アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール。
- ヘテロシクリルを表し、
- Lは、式XX~XXIIから選択され、

[4/6]

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル アントラキノニル、C-フルオレン-9-イリデン、1,2,3,4-テトラヒドロー ナフチル、またはビシクロ「2、2、1] ヘプテニルであり、

ヘテロシクリルは、1,2,3-チアジアゾリル、1,2,3-トリアゾリル、1,2 ージヒドロー3-オキソーピラゾリル、1H-インドリル、1H-ピロリル、2,4-ジ ヒドロ-3-オキソーピラゾリル、2H-ベンゾビラニル、4-オキソーベンゾビラニル 、アゼチジニル、ベンゾ「bヿチエニル、フリル、イソオキサゾリル、モルホリニル、ビ ペリジル、ピラゾリル、ピリジル、キノリル、チアゾリジル、チアゾリル、チエニル、チ オラニル、2、3-ジヒドロ-1-オキソーイソインドリル、2、3-ジヒドローベンゾ フリル、2-オキソーベンゾピラニル、2-オキソーピロリジニル、4-オキソー1,5 , 6, 7-テトラヒドローインドリル、9H-キサンテニル、シンノリル、イミダゾリル 、モルホリノ、ビリミジル、ビロリジル、テトラヒドローチエニル、ベンゾフラニル、ま かはペンゾチアゾリルであり

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項3に記載の化合 物またはその塩。

【請求項5】

R . 14.

- (i)下記のものから独立に選択された置換基で置換されたC,~C。アルキル、 オキソ、
- ジープロビルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ。
- メチルカルボニルオキシ。
- 炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ、
- ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- ・ 置換ヘテロシクリルーエチリデンアミノオキシ。
- tertープトキシカルボニルアミノ、
- 炭素環式アリールカルボニルアミノ、
- · C。~C。アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₂ アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- 炭素環式アリールチオ、
- ・ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、
- ・シクロヘキセニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル。
- ・・ハロゲン。
- ・・メチル、

- ・・メトキシ。
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · = ND.
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル。
- ・・C₁ ~C₂ アルコキシ、
- · · ハロゲン化C · ~C 。アルコキシ、
- ・・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル。
- ・・炭素環式アリール。
- ・・ヘテロシクリル、
- 下記のものから独立に選択された置機基で置機されたヘテロシクリル。
 - ・・C₁ ~C₂ アルキル、
 - ・・炭素環式アリールで置換されたC₁ ~C₂ アルキル、
 - ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ。
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- ・炭素環式アリール、
- ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール。
- (iii)下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキ N.
- オキソで置換されたメチル、
- 炭素環式アリールで置換されたメチル、
- 炭素環式アリール。
- (iv)カルボシクリル。
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ハロゲン、
- ・ヒドロキシ、
- シアノ、
- · 二トロ.
- C1~Ccアルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・オキソ。
- ・・炭素環式アリール。
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- · C1 ~ C2 アルコキシ、
- ハロゲン化C₁ ~C₂ アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルコキシ、

- メチルカルボニルオキシ。
- 炭素環式アリールオキシ。
- メトキシで置換された炭素環式アリールオキシ。
- アミノ、
- ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ。
- メチルで置換された炭素環式アリールスルホニルアミノ。
- ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ、
 - ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール。
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル。
- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ハロゲン。
- ・ニトロ、
- · C · ~ C · アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・ハロゲン
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル
- ・メトキシ、
- 炭素環式アリールオキシ、
- メチルで置換された炭素環式アリールオキシ、
- · C 。 ~ C 。 アルキルチオ、
- プロペニルチオ。
- ・炭素環式アリールチオ、
- · C。~C。アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- メチルで置換された炭素環式アリールスルホニル。
- 炭素環式アリール。
- ハロゲン化炭素環式アリール、
- メチルで置換された炭素環式アリール、
- ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、
- ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
- カルボシクリルは、1-オキソーインダニル、インデニル、9-オキソーフルオレニル 、1、2、3、4ーテトラヒドローナフチル、またはビシクロ「2、2、1] ヘプテニル であり、
- ヘテロシクリルは、1H-インドリル、2,4-ジヒドロ-3-オキソーピラゾリル、 フリル、ピラゾリル、ピリジル、チエニル、1,2,3-トリアゾリル、1H-ピロリル 、2、3ージヒドロー1ーオキソーイソインドリル、2、3ージヒドローベンゾフリル、 2H-ベンゾビラニル、2-オキソーベンゾピラニル、4-オキソ-1,5,6,7-テ トラヒドローインドリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル 、ピラゾリル、ピリミジル、キノリル、チアゾリル、テトラヒドローチエニル、ベンゾフ ラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項4に記載の化合物またはその塩。 【請求項6】 【代7】

[4k17]

【化19】

【化22】

【化28】

[4k32]

[4k36]

からなる群から選択された式 I の請求項 5 に記載の化合物、または場合によりその塩。 【請求項7】

- R₁ は、
- (i) C, ~C, o アルキル、

下記のものから独立に選択された置換基で置換されたC₁ ~C₁ o アルキル、

- ・C=~Csシクロアルキル、
- ・炭素環式アリール、
- ヘテロシクリル、
- ハハテロシテラル、
- (ii) C3~C6シクロアルキル、
- (iii)炭素環式アリール、
- (iv)またはヘテロシクリルを表し、
- Lは、式XX~XXIIから選択され、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、
- ペテロシクリルは、1,3 ージオキソーイソインドリル、1Hーインドリル、1ーオキソー3Hーイソベンゾフラニル、2,3 ージトドローベング[1,4]ジオキンニル、3,4 ージトドローとリーベング[5][1,4]ジオキとニル、3 サージ・ドローフタラジニル、9,10,10-トリオキソーチオキサンテニル、9Hーキサンテニル、ベング(2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジアリル、ベング[2,1,3]オキリジア、フリル、1まアリル、チエニル、キノリル、またはベングキアグリルである、請求項3に記載の化合物またはその塩。 【請求項8]
 - R 14.
- (i) C₁ ~C₄ アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・シクロペンチル、
- 炭素環式アリール。
- ・ヘテロシクリル、
- (ii) 炭素環式アリール、
- (i i i) またはヘテロシクリルを表し、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり
- ヘテロシクリルは、9H-キサンテニル、ベンゾ [1,3]ジオキソリル、ベンゾ [2

, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、1Hーインドリル、キノキサリル、キノリル、またはベンゾチアゾリルである、請求項7に記載の化合物またはその塩。 【請求項9】 【俗37】

【化40】

からなる群から選択された式 I の請求項8に記載の化合物、または場合によりその塩。 【請求項10】

Qは、式IIであり、

R 1 は、

(i) C₁ ~C₁ ₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1,0}$ アルキル、 ・ハロゲン

- ・ヒドロキシ
- ・オキソ、
- · C, ~C, アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル。
- ・・C₁~C₂アルキルで置換されたヘテロシクリル、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- · · エトロ、
- ・・炭素環式アリール。
- ・・C₁ ~C₃ アルコキシで置換された炭素環式アリール、
- · · C1 ~ C4 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・モノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- ・・・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルア
- ミノ、
 ・モノーまたはジーC₁~C₂アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_3$ アル
- キルアミノ、・・シアノ
- ・・ 炭素環式アリール、
- ・・ヘテロシクリル
- ・モノーまたはジー炭素環式アリールアミノ、
- ・C、~C。アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
- · C 1 ~ C 3 アルキルカルボニルアミノ、
- ·C。~C。アルコキシカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
- · · = > =.
- ・・C1~C3アルキル、
- ・・モノーまたはジーC₁~C₂アルキルアミノ、
- · C 。 ~ C 。 アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- $\cdot \cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、
- ・炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C₁ ~C₂ アルキル、
- 炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ヘテロシクリルチオ、

- C。~C。シクロアルキル、
- ・C₁ ~C₂ アルキルで置換されたC₂ ~C₆ シクロアルキル、
- ・カルボシクリル
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
 - ・・ハロゲン、
- · · C1 ~ C3 アルキル、
- 01 03776-(76
- $\cdot \cdot \cdot C_2 \sim C_3$ アルケニル、
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- ・・ $C_1\sim C_3$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2\sim$
- Caアルケニル、
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- ・・ヒドロキシ、
- · · 二トロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ
- ・・・炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア
- リールアミノ、
- ・・・・ハロゲン。
- · · · · 二トロ
- $\cdot \cdot \cdot \cdot C_1 \sim C_3 アルキル、$
- ・・・・C₁ ~C₃ アルコキシ、
- ····ハロゲン化C1~C3アルコキシ、
- ・・C₁ ~C₃ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール、
- ・・炭素環式アリールオキシ、
- · · C 1 ~ C 2 アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・C₁ ~C₂ アルキルチオ、
- · ・ハロゲン化C₁ ~C₃ アルキルチオ、
- ・・C₁ ~C₃ アルキルスルホニル、
- · · C3~C6シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- · · C₁ ~ C₃ アルキル、
- · · C1~C3アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₂アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (ii) C₂ ~C₈ アルケニル、
- 下記のものから独立に選択された置換基で置換されたC2~C8アルケニル、

- ・ハロゲン
- · C 。 ~ C 。 アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- 炭素環式アリール、
- 下記のものから独立に選択された置機基で置機された炭素環式アリール。
- ・・ハロゲン、
- ・・ヒドロキシ
- · · C₁ ~C₂ アルコキシ、
- · · ハロゲン化C · ~ C 。 アルコキシ、
- ・ヘテロシクリル、
- ニトロで置換されたヘテロシクリル、
- (i i i) C₂~C₄アルキニル、
- 炭素環式アリールで置換されたC。~C。アルキニル、
- (iv)Ca~Caシクロアルキル、
- 下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、
- ・C₁ ~C₂ アルキル、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ヒドロキシ、
- オキソ。
- ・・炭素環式アリール、
- ・モノーまたはジーC。~C。アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- 炭素環式アリール。
- (v) C3~C5シクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・ヒドロキシ.
- · 二トロ、
- (vii)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- シアノ、
- ・ンノノ、
- · C · ~ C 。 アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ.
- ・・オキソ。
- ・・C₁ ~C₂ アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・モノーまたはジーC。~C。アルキルアミノーNーオキシ、
- · · モノーまたはジーC₁ ~C₃ アルキルアミノ、
- ・・炭素環式アリールで置換されたモノーまたはジーC₁~C₂アルキルアミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- \cdots C₁ ~C₃ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、

- ・・C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- ・Cっ~Cュアルケニル、
- ・炭素環式アリールで置換されたC。~C。アルケニル、
- C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ。
- ・・ヒドロキシ。
- ・・ハロゲン。
- ・・カルボキシ、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール。
- ・・ヘテロシクリル。
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · · ヘテロシクリル、
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン。
- ・・・・C1~C3アルキル、
- \cdots ハロゲン化 $C_1 \sim C_3$ アルキル、
- · C。~C。アルケニルオキシ、
- · C ~ C 。 アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C₁ ~C₄ アルキル、
- ・・C₁ ~C₉ アルコキシ、
- ヘテロシクリルオキシ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン。
- ・・C₁ ~C₂アルキル、
- ・・ハロゲン化C。~C。アルキル、
- ・炭素環式アリールで置換されたS(O)。O、
- カルボキシ、
- ・C、~C。アルコキシカルボニル、
- モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノカルボニル
- · アミノ、
- ・モノーまたはジーC₁ ~C₂ アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC₁ ~C₂ アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- · C ~ C アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ。
- C₁ ~C₂ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- ・C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化C1~C3アルコキシで置換された炭素環式アリールで置換されたNHC(O) NH,
- C₁ ~C₃ アルキルチオ、
- ·ハロゲン化C1~C3アルキルチオ、

- 炭素環式アリールチオ。
- ハロゲン化炭素環式アリールチオ、
- ・C。~C。アルキルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- ・C。~C。アルキルスルホニル、
- モノーまたはジーC₁~C₂アルキルアミノスルホニル、
- ・炭素環式アリール。
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C 1~C7アルキル、
- ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (viii) ヘテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- ・ヒドロキシ
- ・シアノ、 · 二トロ、
- · C , ~ C , アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ。
- ・・オキソ、
- ・・C。~C。アルキルカルボニルオキシ、
- · · C₁ ~ C₂ アルコキシカルボニル、
- · · C₁ ~C₃ アルキルチオ、
- ・・炭素環式アリールで置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁ ~C₃ アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・・ハロゲン。
- · · · 二トロ.
- ・・ヘテロシクリル、
- · C · ~ C 。 アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₃ アルコキシ、
- 炭素環式アリールオキシ、
- ・C、~C。アルキルで置換された炭素環式アリールオキシ、
- ・モノーまたはジーC。~C。アルキルアミノ、
- · C · ~ C 。 アルキルカルボニルアミノ、
- C₁ ~C₂ アルキルチオ、 炭素環式アリールチオ、
- ハロゲン化炭素環式アリールチオ。
- ・C ~ C っ アルコキシカルボニルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- ・C₁ ~C₂ アルキルで置換されたヘテロシクリルチオ、
- C₁ ~C₃ アルキルスルホニル、
- 炭素環式アリールスルホニル、

- ・C 、 ~ C 。 アルキルで置換された炭素環式アリールスルホニル、
- ・C。~C。アルコキシカルボニル、
- ・炭素環式アリール
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ··= >= ,
- ・・C₁ ~C₃ アルキル、
- · · ハロゲン化C。~C。アルキル、
- ・・C₁ ~C₃ アルコキシ、
- ・・ハロゲン化C₁ ~C₂ アルコキシ、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C₁ ~C₂ アルキル、
- · · ハロゲン化C · ~C 。アルキル、
- ・・C。~C。アルコキシ、
- · · C 1 ~ C 2 アルコキシカルボニルを表し、
- Yは- (CH2) mであり、mは0または1であり、
- ここで、炭素環式アリールは、フェニル、ナフチル、ビフェニル、またはフェナントリ
- ルであり、 カルボシクリルは、9日-フルオレニル、9-オキソーフルオレニル、アセナフチル、
- ガルホンフ りかは、9 ローフルイレール、9 ー イイソーフルイレール、7 モデンテル、 アントラキノニル、インダニル、またはインデニルであり、 ヘテロシクリルは、1, 2, 3 ー チアジアゾリル、1, 2, 3 ー トリアゾリル、1, 2
- -ジヒドロ-3-オキソービラゾリル、1,3,4-チアジアゾリル、1,3-ジオキソ
- ーイソインドリル、1,3-ジオキソラニル、1H-インドリル、1H-ピロロ[2,3
- -c] ビリジル、1 H ピロリル、2 , 2 , 5 , 2 " ターチオフェニル、2 , 2 "
- ービチオフェニル、2, 3ージヒドロー1ーオキソーイソインドリル、2, 3ージヒドローベング「1, 4]ジオキシニル、2, 3ージヒドローベングフリル、2, 4ージヒドロ
- -3-オキソーピラゾリル、2H-ベンゾピラニル、2-オキソーピロリジニル、3, 4
- -ジヒドロ-2H-ベンゾ [1, 4] オキサジニル、3, 4-ジヒドロ-2H-ベンゾ [
- b] [1, 4] ジオキセビニル、4H-ベンゾ [1, 3] ジオキシニル、4H-ベンゾビ ラニル、4-オキソ-1, 5, 6, 7-テトラヒドロ-インドリル、4-オキソーベンゾ
- ピラニル、9H-カルバゾリル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ「1.3]ジオキソリル、ベンゾ「b]チェニル、ベングフリル、ベンゾチア
- ゾリル、フリル、イミダゾ [2, 1-b] チアゾリル、イミダゾリル、イソオキサゾリル
- 、モルホリノ、モルホリニル、オキソラニル、ピペラジル、ピペリジル、ピラゾロ [5,1-b] チアゾリル、ビラゾリル、ビリジル、ピリミジル、ピロリジル、キノリル、キノ
- キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項1 に記載の化合物またはその塩。

【請求項11】

- R 1 は、
- (i)下記のものから独立に選択された置換基で置換されたC,~C, aアルキル、
- メトキン
- ・炭素環式アリールで置換されたメトキシ。
- 炭素環式アリールオキシ。
- ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノーC。~C。アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₂アルキルアミノ、
- ・モノー炭素環式アリールアミノ、
- メチルで置換されたモノー炭素環式アリールアミノ、

- メチルで置換された炭素環式アリールスルホニルアミノ。
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン
- · · 二トロ.
- $\cdots C_1 \sim C_4 \ P \nu + \nu$
- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC, ~C。アルキル、
- ・・C1~Coアルコキシ、
- · · ハロゲン化C ₁ ~C ₂ アルコキシ、
- · · // 10/2/1001 002 / 10342.
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii) 下記のものから独立に選択された置換基で置換された $C_2 \sim C_8$ アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- 炭素環式アリール、
- メトキシで置換された炭素環式アリール、
- (iii)炭素環式アリールで置換されたCっ~Cュアルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi) 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- · アミノ.
- C₁ ~C₉ アルキル、
- ハロゲン化C₁ ~C₉ アルキル、
- C₁ ~C₂ アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・メチルアミノ、
- ジーC。~C。アルキルアミノ、
- ・シアノで置換されたジーC。~C。アルキルアミノ、
- ・メチルチオ
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン。
- · C · ~ C 。 アルキル、
- ・ヒドロキシで置換された $C_1 \sim C_4$ アルキル、
- ・炭素環式アリールで置換されたC。~C。アルキル、
- ・メトキシ、
- C₁ ~C₂ アルコキシカルボニル、
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ハロゲン化メチル、
- ヘテロシクリルを表し、

- R_2 は、メチルアミノまたはジメチルアミノであり、
- Lは、式Va、VIIIa、またはIXaから選択され、
- ここで、炭素環式アリールは、フェニル、ナフチル、ビフェニル、またはフェナントリルであり、
- カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであ
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項10に記載の化 合物またはその塩。

【請求項12】

- R, 11.
- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_7$ アルキル、

. モルホリニル、または2、3ージヒドローベンゾフリルであり、

- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- ・ 炭素環式アリールオキシ
- ハロゲン化炭素環式アリールオキシ、
- ・シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ。
- ・モノー炭素環式アリールアミノ。
- メチルで置換されたモノー炭素環式アリールアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン。
- · · = ND.
- · · C 1 ~ C ∠ アルキル、
- ・・炭素環式アリールで置換されたC。~C。アルキル、
- ・・ヒドロキシで置換されたC。~C。アルキル、
- ・・メトキシ、
- ・・ハロゲン化メトキシ。
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii) 下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
- 炭素環式アリールで置換されたメトキシ、
- 炭素環式アリール。
- メトキシで置換された炭素環式アリール。
- (iii)炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v) カルボシクリル、
- (vi)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

```
ハロゲン、
```

- ・ヒドロキシ、
- ・シアノ、
- · アミノ.
- ・C。~C。アルキル、
- ハロゲン化メチル。
- · C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ジーC: ~C2 アルキルアミノ、
- シアノで置換されたジーC₁ ~C₂ アルキルアミノ、
- ・メチルチオ、
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、・C。~C。アルキル、
- ・ヒドロキシで置換されたC。~C。アルキル、
- ・炭素環式アリールで置換されたC」~C。アルキル、
- ・メトキシ、
- ・エトキシカルボニル
- ・メトキシカルボニルで置換された炭素環式アリールチオ、
- ・炭素環式アリール
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ハロゲン化メチル、
- ヘテロシクリルを表し、
- Lは、式XX~XXIIから選択され、
- ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
- カルボシクリルは、アセナフチルであり、 ヘテロシクリルは、1H-インドリル、1H-ピロリル、2、3-ジヒドローベング「
- 1, 4] ジオキシニル、9H-カルバゾリル、ベンゾ [1, 3] ジオキソリル、フリル、
- ピラゾリル、チエニル、4ーオキソーベンゾピラニル、アゼチジニル、イミダゾ [2, 1
- -b] チアゾリル、ピリジル、イミダゾリル、2,3-ジヒドローベンゾフリル、またはベンゾ[b] チエニルであり、
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項11に記載の化 合物またはその塩。

【請求項13】

[4/:41]

【4249】

【化52】

[4k57]

からなる群から選択された式 I の請求項 1 2 に記載の化合物、または場合によりその塩。 【請求項14】

Qは、式IIであり、

R1 は、

(i) C₁ ~ C₁ 6 アルキル、

下記のものから独立に選択された置換基で置換されたC」~C」。アルキル、

- ・ハロゲン、
- ・カルボシクリル、
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · 二トロ、
- · · C₁ ~C₃ アルキル、

- · · ハロゲン化C₁ ~C₃ アルキル、
- ・・C₁ ~C₂ アルコキシ、
- ··ハロゲン化C。~C。アルコキシ、
- (ii) C₂~C₃アルケニル、

炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、

(iii)炭素環式アリール、 下記のためなど、独立に選択された実施其で実施された光表度ポアル。ル

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・シアノ、
- ニトロ.
- · C 。 ~ C 5 アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ、
- · C。~C。アルケニル、
- · C1 ~ C2 アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₄アルコキシ、
- ・・ハロゲン、
- ・・ヘテロシクリル、
- ・・ハロゲン化へテロシクリル、・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- · · = hp.
- ・ヘテロシクリルオキシ
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ・・C₁ ~C₂ アルキル、
- ・・ハロゲン化C。~C。アルキル、
- ・C。~C。アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_4$ アルキルアミノ、
- ·C₁ ~C₃ アルキルカルボニルアミノ、
- ・炭素環式アリールジアゾ。
- ・モノーまたはジーC。~C。アルキルアミノで置換された炭素環式アリールジアゾ、
- ・C₁ ~C₂ アルキルスルホニル、
- 炭素環式アリール、
- (iv) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- · C · ~ C 。 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキル、
- ・・ハロゲン、
- ・オキソ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・C₁ ~C₃ アルキル、
- ···ハロゲン化C1~C3アルキル、

- C1~C3アルコキシ、
- C₁ ~C₃ アルキルカルボニルアミノ、
- ・炭素環式アリールスルホニル、
- C₁ ~C₃ アルコキシカルボニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール。
- ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ハロゲン、
- · · C1 ~ C3 アルキル、
- · · ハロゲン化C 。 ~ C 。 アルキルを表し、
 - Yは、-S(O)2-であり、
 - ここで、炭素環式アリールは、フェニル、ビフェニル、またはナフチルであり、
- カルボシクリルは、7, 7 \vec{y} メチルー2 \vec{x} キソービンクロ [2. 2. 1] ヘプチルであり、
- ヘテロシクリルは、1, 2, 3, 4ーデトラヒドローイソキノリル、1, 2, 3ーチア ジアゾリル、1Hーピロリル、ベング [2, 1, 3] オキサジアゾリル、ベング [b] チェニル、フリル、イミグゾリル、イソオキサゾリル、ピラゾリル、ピリジル、キノリル、チアゾリル、またはチェエルであり、
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、請求項1 に記載の化合物またはその塩。

【請求項15】

【化58】

からなる群から選択された式 I の請求項 1 4 に記載の化合物、または場合によりその塩。 【請求項16】

Qは、式IIであり、

 \mathbf{R}_1 は、 \mathbf{H} 、 $-\mathbf{CO_2}$ t \mathbf{Bu} 、または $-\mathbf{CO_2}$ \mathbf{Bn} (\mathbf{Bn} はベンジル基である) から選択され、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、請求項1に記載の化合物またはその塩。

【請求項17】

SLC-1をMCH受容体アンタゴニストと接触させるステップを含む、Gタンパク質 受容体、SLC-1を調節する方法。

【請求項18】

SLC-1を請求項1から16までの化合物と接触させるステップを含む、Gタンパク 質受容体、SLC-1を調節する方法。

【請求項19】

哺乳動物の肥満、肥満関連疾患、不安、または抑うつを予防または治療する方法であっ て、そのような治療を必要とする哺乳動物に治療有効量の請求項1から16までのいずれ かの組成をもつ化合物を挟与することを含む方法。

【請求項20】

薬剤として許容できる担体および請求項1から16までのいずれかの組成をもつ治療有効量の化合物を含む薬剤組成物。

【発明の詳細な説明】

【技術分野】

[0001]

本発明は、MCH受容体のアンタゴニストとして作用する化合物および薬剤組成物中でのこれらの化合物の使用に関する。

【背景技術】

[0002]

環状ペンチドであるメラニン凝集ホルモン(MC II)は、オーファンG ータンパク質共 役型受容体S LC ー 1 の内在性リガンドとして同定されている。例えば、Shimonura et a 1., Biochem. Biophys. Res. Commun. 261巻、622-63頁(1999)参照。研究により、MC H は、食性などの放多くの行動反応を変化させる神経伝達物質/ニューロモジュレーターと して作用することが確認されている。例えば、ラットにMCHを注入すると、ラットによ るエウの消費が高まることが報告されている。報告では、MC H を欠く遺伝子的に改変さ れたマウスは、低体重および代謝増進を示すことが指摘されている。Saito et al.、TEM 、11巻、299頁(2000年)参照。このように、文献には、S C L ー 1 発現相限と相互作用す るMC H アンタゴニストを発見することは、配満治療の伸展に侵立つであろうということ が提案されている。Shimomura et al., Biochem. Biophys. Res. Commun. 261巻、622-26 頁 (1999年)参照。

[0003]

Gタンパク質共役型受容体(GPCR)はそれぞれ、共通の構造モディーフを共有している。これらの受容体は全て、そのそれぞれが限を貢通する7個のαペリックスを形成する22から24個の疎水性アミノ酸からなる7つの配列を有する。第4および第5の服費通のリックスは、比較的大きなループを形成する下まノ酸のストランドにより、脱の細胞外側で結合する。主に原水性アミノ酸からなる列の、より大きなループは、第5および第6の膜質通へリックスを、脱の細胞内側で重結する。受容体のカルボキシ末端は、細胞内に位度し、アミノ末端は、細胞内に位度し、アミノ末端は、細胞外空間に位置している。第5および第6のペリックスと結合しているループ、さらにカルボキシ末端が、Gタンパク質と相互作用すると考えられる。現在、この受容体と相互作用しうると同定されているGタンパク質は、Gq、Gs、GiおよびGってある。

[0004]

生理学的条件下では、GPCRは、細胞膜中で、2つの異なる状態または立体配底が平 衡した状態で存在する:「不活性」状態および「活性」状態。不活性状態の受容相よ、細 胞内情報伝達系にリンクすることができず、生体応答をもたらすことはない、受容体の立 休配座が活性状態に変わると、情報伝達系へのリンクが可能となり、生体応答が生じる。 【0005】

内在リガンドまたは分来アゴニストリガンドにより、受容体は活性状態で安定化されう る。 愛容体のアミノ酸展列を変更することを含む (ただし、これだけに限らない) 最近の 発見は、活性状態の立体配座を安定化するために、リガンドとは別のメカニズムを提供し ている。これらのアプローチは、受容体に結合するリガンドの効果を携することにより、 受容体を潜性状態に効果的に安定化する。このようなリガンド事核在性アプローチによる 安定化は、「構成性受容体活性化 (constitutive receptor activation) と称されている 対照的に、アンタゴニストは競合的に、アゴニストと同じ都位で受容体に結合しうるが 、受容体の活性型により開始される細胞内応答を活性化せず、したがって、アゴニストに よる細胞内応答を関告する。

[0006]

一定の2ーアミノキナゾリン誘導体は、NPYアンタゴニストであると報告されており、これらは、NPY受容体Y5亜型が関連する異常および疾患を治療する際に有効であると言われている。PCT特許出願97/20823号参照。キナゾリン誘導体は、抗腫瘍活性を増強することにより、使用することができることも判明している。PCT特許出願92/07844号。

[0007]

最近になって、ヒトの肥満に関する我々の現在の知識は、劇的に進歩している。以前は 、肥満は、魅力的な食品が提供された際に不適切に摂取したことに対する造反挙動(oppu gnant behavior)とみなされていた。肥満に関する動物モデル、ヒトおよび動物での生化 学的変化ならびにヒト肥満に対する實際性をもたらす心理-社会的および文化的因子の複 雑な相互作用の研究により、ヒトでのこの疾患は、多面的で、生体系に深く根付いている ことが示されている。したがって、肥満が多様な原因を有し、様々なタイプの肥満が存在 することはほぼ確実である。MCHR1アンタゴニストは、げっ歯類において強力で持続 的な抗胆満効果を有するだけでなく、意外にも、抗うつおよび抗不安特性も有する(Borow sky et al., Nature Medicine、8巻、825-830頁、2002年)。MCHR1アンタゴニストは 、げっ歯類モデルでの社会性行動試験、強制水泳試験および超音波発声などにおいて、抗 うつおよび抗不安活性を示すことが報告されている。これらの発見は、MCHR1アンタ ゴニストは、多面的な原因を伴う肥満患者を治療するために使用することができることを 示している。さらに、肥満を伴う患者だけでなく、うつ病および不安を伴う患者を治療す るために使用することができる。MCHR1アンタゴニストは、これらの利点により、N PY自体が抗不安類似の効果を有するので不安惹起様の活性が予想され得るNPY受容体 アンタゴニストとは区別される。

[0008]

肥満は、慢性疾患とみなすこともでき、長期治療の可能性は、ますます注目を集めている考えである。これに関連して、MC Hの構織は、摂食低下、さらに痩せをもならすことは、注目に値する (Shimada et al., Nature、306巻、670-674頁、1998年)。これとは逆に、NP Y (Grickson et al., Nature, 381巻、415-415頁、1996年)、さらにY 1 (Pedrazzi ni et al., Nature Medicine、4巻、722-725頁、1998年)およびY 5 受容体(Marsh et al., Nature Medicine、4巻、712-725頁、1998年)を大活させたマウム送定な体策を維持しあるいはなしる距潰となった。前記の報告を考慮すると、MC HR 1 アンタゴニストは、股溝患者の長期治療において、Y 1 またはY 5 受容体アンタゴニストよりも魅力的である

【0009】

小児および青年の多くが、体電過多である。体電過多の子供の全でが、必ずしも体重過 多の成人になるわけではないが、小児期での肥満の発生の増加は、成人での肥満の増加に 反映されているようである。我々の成人人口での肥満の高い有解散もよび、将来の阻視が さらに肥満する可能性により、この疾患での健康関連性の再検討が必要とされている。He alth Implications of Obesity、NHI Consens、Statement Online 1985年2月11-13日:5(9)参1-7頁参照。

[0010]

「臨床的配満」は、脂肪なし体重に対する過剰な体脂肪の尺度であり、理想的な体重を 20%以上上回る体重と定義されている。最近の推定では、米国の成人の2人に1人が、 臨床的に肥満であり、過去10年間で25%以上増加していることが示されている。Flest al M.D. et al., 22 Int. J. Obes, Belat, Metab, Disor, 39% (1998年)、特に、臨床 的配満は、数多くの合併症、即ち高血圧および11型糖尿病を伴い、これらは、次に、短 (91)

状動脈疾患、発作、糖尿病の末期合併症および早期死亡の原因となりうるので、体重過多 の状態も原尿的肥消も世界的に、主な健康的関心事である。(例えば、Nishina P.M. et al., 43 Metab. 554頁、(1994年))。 【0011】

肥満のベースとなっている原因学的機構には、さらなる説明が必要だが、このようなメ カニズムの最終的な効果により、エネルギー摂取と消費との不均衡がらたらされる。遺伝 的および環境的ファクターの両方が、肥満の病因に含まれると考えられる。これらには、 過剰なカロリー摂取、身体活動の低下ならびに代謝および均分を展離が含まれる。

[0012]

体重過多の状態および駆床的眼清を蓋利により治療することは、その状態自体に関して 重要なだけではなく、例えば、臨床的眼清と乗り心態を予防する可能性、さらに、体 重過多か、 臨床的に肥満していて、体布の著しい低下を経験する人に往々にして解析する 「自分」に対するボジティブな感情を強めることにおいても、重要である。前記の検討か ら、このような疾患の治療を助ける化合物は有用で、研究および駆床薬剤の連膜をもたら すことは明らかである。本発明は、これらを、さらに他の重要な目的を対象とする。 【参明の期示】

【課題を解決するための手段】

[0013]

ー態様では、本発明は、式Iの化合物またはその薬剤として許容される塩またはそのプロドラッグに関する。

【化1】

【化2】

であり.

R . 14.

[0014]

(i) C₁ ~C₁ 6 アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、・ヒドロキシ、
- ・オキソ
- ・C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、

(92)

```
・・炭素環式アリール。
・・ヘテロシクリル、
・・C。~C。アルキルで置換されたヘテロシクリル、
· C 1 ~ C 2 アルキルカルボニルオキシ、
カルボシクリルオキシ、
・炭素環式アリールオキシ。
下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
・・ハロゲン。
· · 二トロ、
・・炭素環式アリール、
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシで置換された炭素環式アリール、
・・C<sub>1</sub> ~C<sub>4</sub> アルキル、
・・下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>2</sub>アルキル、
・・・オキソ、
・・・モノーまたはジーC。~C。アルキルアミノ、
・・・炭素環式アリールで置換されたモノーまたはジーC<sub>1</sub>~C<sub>2</sub>アルキルアミノ、
・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジーC<sub>1</sub>~C<sub>3</sub>アルキルア
・・・ 炭素環式アリールカルボニルアミノ。
・・・ハロゲン化炭素環式アリールカルボニルアミノ、
ヘテロシクリルオキシ、
・C, ~C。アルキルで置換されたヘテロシクリルオキシ、
・ 置換ヘテロシクリルーエチリデンアミノオキシ。
・C。~C。アルコキシカルボニル、
・炭素環式アリールで置換されたC。~C。アルコキシカルボニル、
·モノーまたはジーC1~C3アルキルアミノカルボニル、
モノーまたはジーC。~C。アルキルアミノ、
下記のものから独立に選択された置換基で置換されたモノーまたはジーC<sub>1</sub>~C<sub>2</sub>アル
キルアミノ
・・シアノ。
・・炭素環式アリール、
· ・ヘテロシクリル、
・モノーまたはジー炭素環式アリールアミノ。
下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリー
ルアミノ
・・ヒドロキシ、
· · C · ~ C 。 アルキル、
C<sub>1</sub> ~C<sub>3</sub> アルキルカルボニルアミノ、
・下記のものから独立に選択された置換基で置換されたC。~C。アルキルカルボニルア
· · C 1 ~ C 2 アルキルカルボニルアミノ、
・・炭素環式アリールカルボニルアミノ、
・・ヘテロシクリル。
· C - ~ C a アルコキシカルボニルアミノ、
ヘテロシクリルカルボニルアミノ、
炭素環式アリールスルホニルアミノ、
下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
ノ、
· · 二トロ.
```

- · · C1 ~ C3 アルキル、
- · · モノーまたはジーC₁ ~ C₂ アルキルアミノ、
- · C。~C。アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル。
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・モノーまたはジー炭素環式アリールアミノ。
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
 - ・・・ハロゲン、
 - ・・・C: ~C: アルコキシ、

【0016】

- ・炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン。
- ・・C₁ ~C₃ アルキル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- · · 二トロ、
- ・・C₁ ~C₂ アルキル、
- · C。~C。シクロアルキル、
- ・C、~C。アルキルで置換されたC。~C、シクロアルキル、
- C₃~C₆シクロアルケニル、
- ・カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・C₁ ~C₂ アルキル、
- ・・C1~C2アルコキシ、
- · · C2~C3アルケニル、
- ・・炭素環式アリールで置換されたC。~C。アルケニル、
- $\cdot\cdot\cdot C_1 \sim C_9$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_9$ アルケニル、

[0017]

- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ。
- · = 1-12
- ・・C₁ ~C₂ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルキル、
- ・・・ハロゲン。
- ・・・ヒドロキシ。
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・・モノーまたはジー炭素環式アリールアミノ、
- · · · 下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

```
リールアミノ.
・・・・ハロゲン。
· · · · 二トロ
····C<sub>1</sub> ~C<sub>3</sub> アルキル、
・・・・C, ~C。アルコキシ、
· · · · ハロゲン化C1~C2アルコキシ、
・・C<sub>1</sub> ~C<sub>4</sub> アルコキシ、
・・下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
・・・ハロゲン、
・・・炭素環式アリール、
・・炭素環式アリールオキシ。
· · C<sub>1</sub> ~ C<sub>2</sub> アルコキシカルボニル、
· · C : ~ C : アルキルカルボニルオキシ、
・・モノーまたはジーC<sub>1</sub> ~C<sub>2</sub> アルキルアミノ、
・・モノーまたはジー炭素環式アリールアミノ、
・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
ールアミノカルボニル
・・・ハロゲン、
· · · 二トロ、
· · · C<sub>1</sub> ~ C<sub>3</sub> アルキル、
・・・C+~Caアルコキシ、
・・・ハロゲン化C_1 \sim C_3 アルコキシ、
・・メルカプト。
・・C<sub>1</sub> ~C<sub>3</sub> アルキルチオ、
・・ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキルチオ、
· · C<sub>1</sub> ~C<sub>2</sub> アルキルスルホニル、
· · C。~C。シクロアルキル、
・・炭素環式アリール、
· · ヘテロシクリル、
・ヘテロシクリル、
下記のものから独立に選択された置機基で置機されたヘテロシクリル。
・・ヒドロキシ。
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・炭素環式アリールで置換されたC_1 \sim C_3 アルキル、
・・C。~C。アルコキシ、
・・炭素環式アリールで置換されたC<sub>1</sub>~C<sub>3</sub>アルコキシ、
・・炭素環式アリール。
・・ハロゲン化炭素環式アリール、
[ 0018 ]
(ii) Co~Coアルケニル、
下記のものから独立に選択された置換基で置換されたC2~Cgアルケニル、
ハロゲン。
オキソ、
·C,~C,アルコキシ、
・炭素環式アリールで置換されたC_1 \sim C_3 アルコキシ、
炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン。
```

```
・・ヒドロキシ。
· · 二トロ、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
· · ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキル、
・・C。~C。アルコキシ、
· · ハロゲン化C : ~ C : アルコキシ、
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・ヒドロキシ、
· · 二トロ.
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
[0019]
(iii) Co~Ccアルキニル、
炭素環式アリールで置換されたC。~C。アルキニル、
[0020]
(i v) C<sub>3</sub> ~C<sub>6</sub> シクロアルキル、
下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、
· C · ~ C 。 アルキル、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub> ~C<sub>2</sub> アルキル、
・・ヒドロキシ、
・オキソ、
・・炭素環式アリール。
モノーまたはジーC。~C。アルキルアミノ、
・炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルアミノ、
・炭素環式アリールカルボニルアミノ、
炭素環式アリール。
(v) C3~C6シクロアルケニル、
C_1 \sim C_5 アルキルで置換されたC_5 \sim C_6 シクロアルケニル、
(vi)カルボシクリル、
下記のものから独立に選択された置換基で置換されたカルボシクリル、
・ヒドロキシ、
· 二トロ.
[0021]
(vii)炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
ハロゲン、
・ヒドロキシ、
シアノ、
· ニトロ.
C₁ ~C₂ アルキル、
下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
・・ハロゲン、
・・ヒドロキシ.
・・オキソ。
· · C1 ~ C3 アルコキシ、
・・炭素環式アリールオキシ、
・・モノーまたはジーC。~C。アルキルアミノーNーオキシ、
・・モノーまたはジーC<sub>1</sub> \simC<sub>3</sub> アルキルアミノ、
・・炭素環式アリールで置換されたモノーまたはジーC_1 \sim C_2 アルキルアミノ、
```

- ・・モノーまたはジー炭素環式アリールアミノ。
- ・・カルボシクリルイミノ。
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・C。~C。アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ。
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ $C_1 \sim C_2$ アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ

ニル、

- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン。
- ・・・C: ~Csアルキル、
- · · · ハロゲン化C1~C2アルキル、
- ・・ヘテロシクリル、
- ・・C、~C。アルキルで置換されたヘテロシクリル、

[0022]

- Cっ~Cュアルケニル、
- ・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- C₁ ~C₀ アルコキシ、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_9$ アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン、
- ・・カルボキシ.
- ・・モノーまたはジーC。~C。アルキルアミノ、
- ・・炭素環式アリール
- ・・ハロゲン化炭素環式アリール、
- · ・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・下記のものから・・・ハロゲン。
- ・・・ヘテロシクリル。
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- ・・・・C, ~C。アルキル、
- ····ハロゲン化C,~C。アルキル、
- ・ $C_2 \sim C_3$ アルケニルオキシ、
- · C ~ C 。 アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- · · ニトロ.
- ・・C₁ ~C₂ アルキル、
- ・・ハロゲン化C: ~Caアルキル、
- ・・C。~C。アルコキシ、

[0023]

- ・ヘテロシクリルオキシ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ・・C1~C3アルキル、
- ・・ハロゲン化C₁~C₃アルキル、
- ・炭素環式アリールで置換されたS(O)。O、

- カルボキシ。
- · C ~ C アルコキシカルボニル、
- モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC₁~C₃アルキルアミノカルボニル
- モノーまたはジー炭素環式アリールアミノカルボニル。
- \cdot C $_1$ \sim C $_2$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル

・アミノ、

- ·モノーまたはジーC1~C2アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC₁~C₄アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- · C。~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC。~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、 ・C₁ ~C₂ アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- ·C, ~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化C、~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O) NH.
- ・炭素環式アリールジアゾ、
- ・モノーまたはジーC₁~C₂アルキルアミノで置換された炭素環式アリールジアゾ、
- · C 4 ~ C 9 アルキルチオ、
- ハロゲン化C₁ ~C₂ アルキルチオ、
- ・炭素環式アリールチオ
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・シアノ、
- · · C1 ~ C2 アルキル、
- ヘテロシクリルチオ、
- · C · ~ C 。 アルキルスルホニル、
- ·モノーまたはジーC1~C3アルキルアミノスルホニル、
- ・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・C₁ ~C₇ アルキル、
- · · ハロゲン化C · ~C · アルキル、
- ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0024]

- (viii)へテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ハロゲン。 ・ヒドロキシ.
- ・シアノ、
- ・ニトロ、
- · C1 ~ C4 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、

- ・・ハロゲン、
- ・・ヒドロキシ、
- 2.3.1
- ・・オキソ
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルカルボニルオキシ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・C₁ ~C₂ アルコキシカルボニル、
- ・・C₁ ~C₂ アルキルチオ、
- ・・炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁ ~C₂ アルキルチオ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · 二トロ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- · · · C1 ~ C2 アルキル、
- · · · ハロゲン化C1~C2アルキル、
- C1~C3アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルコキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・C₁ ~C₃ アルキル、
- ·モノーまたはジーC1~C2アルキルアミノ、
- · C 。 ~ C 。 アルキルカルボニルアミノ、
- · C1 ~ C2 アルキルチオ、
- · C。~C。アルケニルチオ、
- 炭素環式アリールチオ、
- ハロゲン化炭素環式アリールチオ、
- \cdot C $_1$ \sim C $_3$ アルコキシカルボニルで置換された炭素環式アリールチオ、
- ・ヘテロシクリルチオ、
- C₁ ~C₃ アルキルで置換されたヘテロシクリルチオ、
- · C ~ C アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・ハロゲン化炭素環式アリールスルホニル、
- ・C₁ ~C₂ アルキルで置換された炭素環式アリールスルホニル、
- C₁ ~C₂ アルコキシカルボニル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · 二トロ、
- · · C₁ ~ C₃ アルキル、
- ··ハロゲン化C₁~C₂アルキル、
- · · C 1 ~ C 2 アルコキシ、
- · · ハロゲン化C : ~ C : アルコキシ、
- ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・ハロゲン、

- · · C₁ ~C₃ アルキル、
- · · ハロゲン化C : ~ C 。 アルキル、
- ・・C1~C。アルコキシ、
- · · C₁ ~ C₃ アルコキシカルボニルを表し、

【0025】

- R_2 は、 $-NHNH_2$ 、-NHNHBoc、-N($R_{2\,a}$)($R_{2\,b}$)、モルホリノ、
- 4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 - ここで、 R_2 。は、Hまたは $C_1 \sim C_3$ アルキルであり、
- R_{2-b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・ヒドロキシ、
- · C1 ~C2 アルコキシ、
- アミノ、
- ·-NHBoc.
- · C。~C。シクロアルキル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · · C · ~ C 。 アルキル、
- $\cdots C_1 \sim C_3 \gamma \nu + \nu$, $\cdots C_1 \sim C_3 \gamma \nu + \nu$,
- ··-SO2NH2
- ・ヘテロシクリル、
- $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン
- ·C1~C3アルキル、
- ·C1~C2アルコキシ、
- または式 I Vの基であり、

[4/3]

[0026]

- ここで、Bocはカルバミン酸tertーブチルエステルであり、Rgは $C_1 \sim C_2$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルであり、
- ・炭素環式アリール。
- ハロゲン化炭素環式アリール、
- ・C、~C。アルコキシで置換された炭素環式アリール、
- Lは、式V~XIXから選択され、

【化4】

[0027]

ここで、Raは、HまたはC1~C3アルキルであり、

 $\rm R_5$ は、 $\rm H$ 、 $\rm C_1 \sim C_3$ アルキル、または置換炭素環式アリールで置換された $\rm C_1 \sim C_3$ アルキルであり、

Y(t, $-S(O)_2 - , -C(O) - , ship (CH_2)_m rh),$

mは、0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ビフェニル、またはフェナントリルであり、

ヘテロシクリルは、1、2、3、4ーテトラヒドローイソキノリル、1、2、3ーチア ジアゾリル、1,2,3-トリアゾリル、1,2-ジヒドロ-3-オキソーピラゾリル、 3,4-チアジアゾリル、1,3-ジオキソーイソインドリル、1,3-ジオキソラ ニル、 $1 \, \mathrm{H} - 4 \, \mathrm{J} \, \mathrm{F} \, \mathrm{J} \, \mathrm{J} \, \mathrm{L} - \mathrm{F} \, \mathrm{D} \, \mathrm{D} \, \mathrm{I} \, \mathrm{L} = \mathrm{C} \, \mathrm{D} \, \mathrm{D} \, \mathrm{J} \, \mathrm{L} + \mathrm{C} \, \mathrm{D} \, \mathrm{D} \, \mathrm{L} + \mathrm{C} \, \mathrm{D} \, \mathrm{L} + \mathrm{C} \, \mathrm{D} \, \mathrm{D} \, \mathrm{L} + \mathrm{D} \, \mathrm{D} \, \mathrm{D} \, \mathrm{$ オキソー3H-イソベンゾフラニル、2、2'、5'、2"-ターチオフェニル、2、2 'ービチオフェニル、2、3ージヒドロー1ーオキソーイソインドリル、2、3ージヒド ローベンゾ「1.41ジオキシニル.2.3-ジヒドローベンゾフリル.2.4-ジヒド ロー3-オキソービラゾリル、2H-ベンゾビラニル、2-オキソーベンゾビラニル、2 ーオキソーピロリジニル、3、4 - ジヒドロ-2H-ベンゾ「1、4] オキサジニル、3 . 4-ジヒドロ-2H-ベンゾ「b] [1, 4] ジオキセビニル、4H-ベンゾ「1, 3 〕ジオキシニル、4Hーベンゾピラニル、4ーオキソー1、5、6、7ーテトラヒドロー インドリル、4ーオキソー3、4ージヒドローフタラジニル、4ーオキソーベンゾピラニ ル、9、10、10-トリオキソーチオキサンテニル、9H-カルパゾリル、9H-キサ ンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ [1,3]ジオキソリル、ベンゾ 「2, 1, 3] オキサジアゾリル、ベンゾ「b] チエニル、ベンゾフリル、ベンゾチアゾ リル、シンノリル、フリル、イミダゾ「2、1-b] チアゾリル、イミダゾリル、イソオ キサゾリル、モルホリノ、モルホリニル、オキサゾリル、オキソラニル、ピペラジル、ピ ペリジル、ピラゾロ[5,1-6]チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピ ロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル 、2、3-ジヒドローベンゾフリル、テトラヒドローチエニル、またはベンゾフラニルで あり. ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。

[0029]

本発明の好ましい化合物は、

本発明の好ましいに言物のは 式 I であり

R1 は、

[0030]

(i) C₁ ~C₁ 0 アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1-0}$ アルキル、・ハロゲン

-
- ・オキソ、
- · C1 ~C3 アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₃ アルコキシ、
- · C 。 ~ C 。 アルキルカルボニルオキシ、
- カルボシクリルオキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- · · = ND.
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁ ~C₂ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリールカルボニルアミノ、
- ・・・ハロゲン化炭素環式アリールカルボニルアミノ。
- ・ヘテロシクリルオキシ、
- ・C。~C。アルキルで置換されたヘテロシクリルオキシ、
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- · C 。 ~ C 。 アルコキシカルボニル、
- ・炭素環式アリールで置換されたC₁ ~C₃ アルコキシカルボニル、
- ・モノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル、

- ・モノーまたはジー炭素環式アリールアミノ、
 ・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
 ・C: へC: アルキルカルボニルアミノ、
 ・下記のよのかに強すた実体を力を増延まで置換されたC: へC: アル
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_3$ アルキルカルボニルアミノ、
- ・・C₁ ~C₃ アルキルカルボニルアミノ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- · C。~C。アルコキシカルボニルアミノ、
- ・ヘテロシクリルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・灰素填式テリールスルホニルテミノ、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ、
- · · 二トロ、
- ・・C₁ ~C₂ アルキル、
- · ・モノーまたはジーC₁ ~C₂ アルキルアミノ、
- · C · ~ C 。 アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシ、

【0031】

炭素環式アリールチオ、

- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン。
- · · C · ~ C 。 アルキル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ヘテロシクリルチオ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ。
- · · = > = .
- · · C 1 ~ C 2 アルキル、
- C3~C6シクロアルキル、
- ・C。~C。アルキルで置換されたC。~C。シクロアルキル、
- C₃ ~C₆ シクロアルケニル、
- カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、・・C₁ ~C₂ アルキル、
- · · C · ~ C 。 アルコキシ、
- ・・C2~C3アルケニル、
- ・・炭素環式アリールで置換されたCっ~Cュアルケニル、
- ・・ $C_1 \sim C_2$ アルキルスルフィニルで置換された炭素環式アリールで置換された $C_2 \sim C_2$ アルケニル、

【0032】

- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・・ハロゲン。
- ・・ヒドロキシ。
- · · 二トロ.
- ・・C1~C1アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ。
- ・・・炭素環式アリール。
- ・・・ヘテロシクリル、
- ・・C₁ ~C₂ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール。
- ・・炭素環式アリールオキシ、
- · · C : ~ C 。 アルキルカルボニルオキシ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル
- ・・・ハロゲン、
- · · · 二トロ、
- ・・・C₁ ~C₃ アルキル、
- · · · C · ~ C 。 アルコキシ、
- ···ハロゲン化C1~C2アルコキシ、
- ・・メルカプト。
- ・・C₁ ~C₃ アルキルチオ、
- · · ハロゲン化C ₁ ~ C ₃ アルキルチオ、
- · · C₁ ~C₂ アルキルスルホニル、
- ・・C₃~C₆シクロアルキル、
- ・・炭素環式アリール、
- · · ヘテロシクリル、
- ヘテロシクリル、
- 下記のものから独立に選択された置機基で置機されたヘテロシクリル。
- ・・ヒドロキシ。
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換されたC₁ ~C₃ アルキル、
- ・・C。~C。アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、
- 【0033】
- (ii) C2~C6アルケニル、
- 下記のものから独立に選択された置換基で置換された $C_2 \sim C_6$ アルケニル、 オキソ、
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- · · 二トロ、
- · · C₁ ~ C₃ アルキル、
- ・・ハロゲン化C₁ ~C₃ アルキル、

```
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
· · ハロゲン化C。~C。アルコキシ、
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
· ・ ヒドロキシ、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
(111) C。~C。シクロアルキル、
下記のものから独立に選択された置換基で置換されたCg~C6シクロアルキル、
・C<sub>1</sub> ~C<sub>2</sub> アルキル、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>2</sub>アルキル、
・・オキソ。
・・炭素環式アリール。
・炭素環式アリールカルボニルアミノ、
・炭素環式アリール、
(iv)カルボシクリル、
ニトロで置換されたカルボシクリル。
[0034]
(v) 炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
ハロゲン、
・ヒドロキシ、
シアノ、
· 二トロ.
・C1~C0アルキル、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>3</sub>アルキル、
・・ハロゲン。
・・オキソ、
・・炭素環式アリールオキシ。
・・カルボシクリルイミノ、
・・炭素環式アリールで置換されたカルボシクリルイミノ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ
ニル、
・・炭素環式アリール。
・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・・ハロゲン、
・・・C・~C。アルキル、
・・・ハロゲン化C1~C3アルキル、
・・ヘテロシクリル。
・・C<sub>1</sub> ~C<sub>2</sub> アルキルで置換されたヘテロシクリル、
[0035]
・C。~C。アルコキシ、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>7</sub>アルコキシ、
・・ハロゲン。
・・炭素環式アリール、
· C · ~ C 。 アルキルカルボニルオキシ、
炭素環式アリールオキシ、
```

C₁ ~C₃ アルコキシで置換された炭素環式アリールオキシ、

· C 1 ~ C 3 アルコキシカルボニル、

- モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC,~C。アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・C₁ ~C₂ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル

· アミノ.

- ・モノーまたはジーC₁ ~C₂ アルキルアミノ、
- · C 。 ~ C 。 アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ。
- ・C 、 ~ C 。 アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- \cdot C₁ \sim C₃ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・ハロゲン化 $C_1 \sim C_9$ アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH.
- C₁ ~C₃ アルキルチオ、
- ハロゲン化C₁ ~C₅ アルキルチオ、
- ・炭素環式アリールチオ、
- シアノで置換された炭素環式アリールチオ、
- C₁ ~C₃ アルキルスルホニル、
- ・モノーまたはジー $C_1 \sim C_S$ アルキルアミノスルホニル、

炭素環式アリール、

- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・C₁ ~C₂ アルキル、
- ・・ハロゲン化C₁ ~C₇ アルキル、

【0036】

- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- (vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン.
- · 二トロ、
- C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルキル、
- ・・ハロゲン、
- ・・オキソ。
- ・・C₁ ~C₂ アルキルチオ、
- ・・炭素環式アリールで置換されたC,~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC₁ ~C₃ アルキルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール。
- ・・ヘテロシクリル、

[0037]

- ・C。~C。アルコキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、

```
・・ハロゲン。
· · C1 ~ C2 アルキル、
・C。~C。アルキルチオ、
· C1 ~ C3 アルケニルチオ、
・炭素環式アリールチオ、
· C 1 ~ C 2 アルキルスルホニル、
炭素環式アリールスルホニル。
ハロゲン化炭素環式アリールスルホニル、
・C。~C。アルキルで置換された炭素環式アリールスルホニル。
・炭素環式アリール、
下記のものから独立に選択された置機基で置換された炭素環式アリール。
・・ハロゲン。
· · 二トロ.
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・C、~C。アルコキシ、
ヘテロシクリル、
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・ハロゲン化C、~C。アルキルを表し、
 R2は、-NHNH2、-NHNHBoc、-N(R2a)(R2b)、モルホリノ、
4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 ここで、Road、HまたはCo-Coアルキルであり、
 R2、は、C1~Caアルキル、下記のものから独立に選択された置換基で置換された
C1~Caアルキル、
・ヒドロキシ、
·C1~C2アルコキシ、
アミノ、
·-NHBoc.
C。~C。シクロアルキル、
・炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン。
· · C1 ~ C3 アルキル、
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
· · - SO2 NH2
ヘテロシクリル、
C3~C6シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基
で置換された炭素環式アリール、
ハロゲン、
· C · ~ C 。 アルキル、
・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
または式 I Vの基。
 ここで、Bocは、カルバミン酸tert-ブチルエステルであり、Raは、CaへC
ョアルキルまたは下記のものから独立に選択された置換基で置換されたC<sub>1</sub> ∼C<sub>2</sub> アルキ
炭素環式アリール、
ハロゲン化炭素環式アリール、
・C<sub>1</sub> ~C<sub>2</sub> アルコキシで置換された炭素環式アリール、
```

Lは、式V~XIXから選択され、

ここで、Raは、HまたはCi~Coアルキルであり、

 R_5 は、H、 C_4 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_4 \sim C_3 \sim Pルキルであり、

Yは、-C(O)-であり、

F00403

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、

カルボシクリルは、10, 11 – ジヒドロー 5 – オキソージベング [a, d] シクロヘ アチル、1 – オキソーイングニル、9 H – フルオレニル、9 – オキソーフルオレニル、アセナフチル、アントラキノニル、C – フルオレン – 9 – イリデン、イングニル、インデニル、1, 2, 3, 4 – 7 トラヒドロー 7 ナル、7 またはビシクロ [2, 2, 1] ヘブテニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0041】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R 1 は、

[0042]

(i) C₁ ~C₁ ₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

・オキソ、

ジープロピルアミノカルボニル、

・炭素環式アリールで置換されたメトキシ、

・メチルカルボニルオキシ、

・炭素環式アリールオキシ。

ハロゲン化炭素環式アリールオキシ、

ニトロで置換された炭素環式アリールオキシ、

メチルで置換されたヘテロシクリルオキシ、

・ 置換へテロシクリルーエチリデンアミノオキシ、

・tert-ブトキシカルボニルアミノ、

・しゃトレーノトキンカルホールノミノ、

・炭素環式アリールカルボニルアミノ、

C - ~ C っ アルキルチオ、

・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキルチオ、

・・ハロゲン化炭素環式アリール、

・・メトキシで置換された炭素環式アリール、

- 炭素環式アリールチオ。
- ニトロで置換されたヘテロシクリルチオ。
- メチルで置換されたヘテロシクリルチオ、
- Cェ~Cェシクロアルキル、
- ・Cェ~Cェシクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン。
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル。
- ・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- ・・ヒドロキシ、
- · · 二トロ、
- ・・C1~C4アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール。
- · · · ヘテロシクリル、
- ・・C₁ ~C₄ アルコキシ、
- · · ハロゲン化C 1 ~ C 2 アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₂アルコキシ、
- ・・炭素環式アリールオキシ、
- ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・炭素環式アリールで置換されたC。~C。アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ。
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール。

[0043]

- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール。
- ニトロで置換された炭素環式アリール、
- (iii) Co~Coシクロアルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、
- オキソで置換されたメチル、
- 炭素環式アリールで置換されたメチル、
- 炭素環式アリール。

[0044]

- (iv)カルボシクリル、
- (v)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ハロゲン。

- ・ヒドロキシ
- ・シアノ、
- · = 1-10
- · C1 ~ C9 アルキル、
- 下記のものから独立に選択された置機基で置機されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール。
- ・・炭素環式アリールオキシ、
- · C1 ~ C7 アルコキシ、
- ハロゲン化C₁ ~C₇ アルコキシ、
- ・炭素環式アリールで置換されたC。~Cっアルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、 ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロバルギニルカルボニルアミノ、
- ・メチルで置換された炭素環式アリールスルホニルアミノ、 ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ
- ・ジープロビルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール、
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- [0045]
- (vi) ヘテロシクリル.
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
 - ・ハロゲン、
 - · 二トロ.
 - · C, ~C。アルキル、
 - 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
 - ・・ハロゲン、
 - ハロゲン化炭素環式アリールで置換されたメチルチオ、
 - ・・炭素環式アリール、
 - ・・ハロゲン化炭素環式アリール、
 - ・・ヘテロシクリル、
 - ・メトキシ、
 - ・炭素環式アリールオキシ、
 - メチルで置換された炭素環式アリールオキシ、
 - ・C₁ ~C₃ アルキルチオ、
 - プロベニルチオ、
 - ・炭素環式アリールチオ、
 - C ~ C。アルキルスルホニル、
 - ・C。~C。アルキルで置換された炭素環式アリールスルホニル、
 - ・炭素環式アリール、
 - ハロゲン化炭素環式アリール、

- メチルで置換された炭素環式アリール。
- ニトロで置換された炭素環式アリール。
- ヘテロシクリルを表し、

[0046]

R。は、メチルアミノまたはジメチルアミノであり、

Lは、式Va、VIIIa、またはIXaから選択され、

ここで、 R_a および R_n は、Hまたは $C_1 \sim C_n$ アルキルから独立に選択され、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり.

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル 、アントラキノニル、C-フルオレン-9-イリデン、1,2,3,4-テトラヒドロー ナフチル、またはビシクロ[2.2.1] ヘプテニルであり、

ヘテロシクリルは、1、2、3ーチアジアゾリル、1、2、3ートリアゾリル、1、2 ージヒドロー3ーオキソーピラゾリル、1、3ージオキソーイソインドリル、1Hーイン ドリル、1H-ピロリル、1-オキソー3H-イソベンゾフラニル、2、3-ジヒドロー ベンゾ「1,4]ジオキシニル、2,4-ジヒドロ-3-オキソーピラゾリル、2H-ベ ンゾビラニル、2-オキソーベンゾビラニル、3,4-ジヒドロ-2H-ベンゾ[b][1, 4] ジオキセピニル、4ーオキソー3, 4ージヒドローフタラジニル、4ーオキソー ベンゾピラニル、9、10、10-トリオキソーチオキサンテニル、9H-キサンテニル 、アゼチジニル、ベンゾイミダゾリル、ベンゾ「1,3]ジオキソリル、ベンゾ「2,1 , 3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾ リル、モルホリノ、モルホリニル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、 キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、2,3-ジヒドロー1ーオキソーイソインドリル、2、3-ジヒドローベンゾフリル、2-オキソ ーピロリジニル、4ーオキソー1、5、6、7ーテトラヒドローインドリル、シンノリル ピリミジル、ピロリジル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチ アゾリルであり.

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。式 [の化合物である。 [0047]

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R . は.

[0048]

- (i)下記のものから独立に選択された置換基で置換されたC,~C,。アルキル、 オキソ、
- ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- メチルカルボニルオキシ、 ・炭素環式アリールオキシ。
- ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- tert-ブトキシカルボニルアミノ。
- ・炭素環式アリールカルボニルアミノ。
- ・C。~C。アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- 炭素環式アリールチオ。

- ニトロで置換されたヘテロシクリルチオ。
- メチルで置換されたヘテロシクリルチオ、
- · C = ~ C 6 シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル
- ・・メトキシ
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、 ・下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン、
- ・・ヒドロキシ、
- 1 12
- · · 二トロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
- ・・・オキソ、
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・C₁ ~C₄ アルコキシ、
- ・・ハロゲン化C₁ ~C₄ アルコキシ、
- ・・炭素環式アリールで置換された $C_1 \sim C_4$ アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
 - ・・炭素環式アリール、
 - ・・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- $\cdot \cdot \cdot C_1 \sim C_2$ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- · · 炭素環式アリールで置換されたメトキシ。
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、

【0049】

- (ii)下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- 炭素環式アリール。
- ハロゲン化炭素環式アリール。
- ニトロで置換された炭素環式アリール、
- (iii)下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキ

オキソで置換されたメチル、

- ・炭素環式アリールで置換されたメチル、
- 炭素環式アリール、
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン。
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ
- ・C1~C0アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ハロゲン、

- ・・オキソ。
- ・・炭素環式アリール。
- ・・メチルで置換された炭素環式アリール。
- ・・炭素環式アリールオキシ、
- ・C。~C。アルコキシ、
- ハロゲン化C1~C7アルコキシ、
- ・炭素環式アリールで置換された $C_1 \sim C_7$ アルコキシ、
- メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
 - アミノ、
 - ・ジーメチルアミノ、
 - ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
 - メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH。
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ。
- ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ハロゲン。
- · 二トロ、
- C1~C2アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
 - ・・ハロゲン。
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ。
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル。
- ・メトキシ.
- ・炭素環式アリールオキシ。
- メチルで置換された炭素環式アリールオキシ、
- · C。~C。アルキルチオ、
- ・プロペニルチオ、
- 炭素環式アリールチオ、
- · C ~ C アルキルスルホニル、
- 炭素環式アリールスルホニル、
- ・C。~C。アルキルで置換された炭素環式アリールスルホニル、 ・炭素環式アリール、
- ハロゲン化炭素環式アリール。
- メチルで置換された炭素環式アリール。
- ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

[0051]

- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、

[4/6]

Yは、-C(O)-であり、

[0052]

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル 、アントラキノニル、C-フルオレン-9-イリデン、1,2,3,4-テトラヒドロー ナフチル、またはビシクロ[2,2,1]へプテニルであり、

へテロシクリルは、1、2、3 → ナジアゾリル、1、2、3 → トリアゾリル、1、2 - ジヒドロー3 ー オキソービラゾリル、1 日 ー インドリル、1 日ービロリル、2、4 ージ ヒドロー3 ー オキソービラゾリル、2 日ーベングビラニル、4 ー オキソーベングビラニル 、アゼチジニル、ベング「16」 チェニル、フリル、4 ソオキサゲリル、モルホリニル、ビ ペリジル、ビラゾリル、ヒリジル、キノリル、チアゾリジル、チアゾリル、チェニル、デ オラニル、2、3 ー ジヒドロー 1 ー オキソーイソインドリル、2、3 ージヒドローベング フリル、2 ー オキソーベングビラニル、2 ー オキソービロリジニル、4 ー オキソー1、5 、6、7 ー テトラヒドローインドリル、9 日 ー キサンテニル、シンノリル、イミグゾリル 、モルホリノ、ビリミジル、ビロリジル、テトラヒドローチェニル、ベングフラニル、またはベングチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0053】

- 本発明のさらに他のより好ましい化合物は、
- Qは、式IIであり、
- R . 14.
- [0054]
- (i)下記のものから独立に選択された置換基で置換されたC₁~C₅アルキル、
- ・オキソ
- ・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- メチルカルボニルオキシ、
- 炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ、
- ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- ・ 置機へテロシクリルーエチリデンアミノオキシ、
- ・ 直頭・ ヘルロンテラル エナラナンテミノオ
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ·C1~C2アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール。
- 炭素環式アリールチオ、
- ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、

- ・シクロヘキセニル。
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · = > = .
- ・・C1~C4アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC,~C。アルキル、
- · · · オキソ
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- · · C1 ~ C2 アルコキシ、
- ・・ハロゲン化C。~C。アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₂アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0055]

- (ii)下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
- ・炭素環式アリール、
- ハロゲン化炭素環式アリール。
- ・ニトロで置換された炭素環式アリール、
- (iii)下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキ
- ル、
- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- 炭素環式アリール。
- (iv)カルボシクリル、
- 【0056】
- (v) 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ.
- ・シアノ.
- · = Fp.
- · C 1 ~C 2 アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ、

- ・・炭素環式アリール。
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- C₁ ~C₂ アルコキシ、
- ハロゲン化C。~C。アルコキシ、
- ・炭素環式アリールで置換されたC,~C。アルコキシ、
- メチルカルボニルオキシ。
- ・炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- ・シアノで置換された炭素環式アリールチオ、
 - ・ジープロピルアミノスルホニル、
 - ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール。
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル。

[0057]

- (vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- · 二トロ
- ·C1~C2アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ。
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ、
- ・炭素環式アリールオキシ
- メチルで置換された炭素環式アリールオキシ、
- C₁ ~C₂ アルキルチオ、
- プロペニルチオ、
- ・炭素環式アリールチオ、
- · C 1 ~ C 2 アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- メチルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール。
- ヘテロシクリルを表し、
- [0058]
- R。は、メチルアミノまたはジメチルアミノであり、
 - Lは、式XX~XXIIから選択され、
- Yは、-C (O) -であり、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、 カルボンクリルは、1 - オキソーイングニル、インデニル、9 - オキソーフルオレニル 、1、2、3、4 - テトラヒドローナフチル、またはビシクロ[2.2.1] ヘプテニル であり。

ペテロシクリルは、1H-インドリル、2,4-ジヒドロ-3-オキソービラゾリル、フリル、ヒラブリル、とリジル、チエニル、1,2,3-トリアゾリル、1H-ヒロリル、2,3-ジヒドロ-1-オキソーイソインドリル、2,3-ジヒドローペングフリル、2H-ペンゾビラニル、2-オキソー、5,6,7-デトラヒドローインドリル、イミダブリル、イソオキサブリル、モルホリノ、モルホリニル、、ピラブリル、ビリミジル、キノリル、チアブリル、デトラヒドローチエニル、ベンブフラニル、まなはベングチアゾリルであり。

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 【0059】

以下の化合物、または場合によりその塩が特に好ましい。

[4/236]

[0060]

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R₁ は、

(i) C, ~C, o アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- ・C=~C。シクロアルキル、
- ・炭素環式アリール、
- ヘテロシクリル、
- (ii) C3~C6シクロアルキル、
- (iii)炭素環式アリール、
- (iv)またはヘテロシクリルを表し、
- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、
- Yは、-C(O)-であり、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

ヘテロシクリルは、1,3-ジオキソーイソインドリル、1H-インドリル、1-オキ ソー3H-イソベンゾフラニル、2,3-ジヒドローベンゾ[1,4]ジオキシニル、3 . 4 - ジヒドロー 2 H - ベンゾ [b] [1, 4] ジオキセピニル、4 - オキソー 3, 4 -ジヒドローフタラジニル、9、10、10-トリオキソーチオキサンテニル、9H-キサ ンテニル、ベンゾイミダゾリル、ベンゾ [1,3] ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾリル、 モルホリノ、オキソラニル、ビベリジル、ビリジル、キノキサリル、チエニル、キノリル 、またはベンゾチアゾリルであり、

- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式工の化合物である。 [0061]
 - 本発明のさらに他のより好ましい化合物は、
 - Qは、式IIであり、
 - R 1 は、
- (i) C1 ~ C4 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・シクロペンチル、
- 炭素環式アリール、

- ヘテロシクリル。
- (ii)炭素環式アリール、
- (111)またはヘテロシクリルを表し、
- R_2 は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、
- Yは、一C(O)一であり、 ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはピフェニル であり、
- ヘテロシクリルは、9H-キサンテニル、ベンゾ「1,3]ジオキソリル、ベンゾ「2
- , 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、1 Hーインドリル、キノキサリル、キノリル、またはベンゾチアゾリルであり、
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 以下の化合物または場合によりその塩が特に好ましい。

【化40】

[0062]

本発明の好ましい化合物は、

Qは、式IIであり、

R₁ は、

(i) C₁ ~C₁₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1,0}$ アルキル、

・ハロゲン、

```
ヒドロキシ。
・オキソ、
・C。~C。アルコキシ、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>3</sub>アルコキシ、
・・炭素環式アリール、
・・ヘテロシクリル。
・・C<sub>1</sub> ~C<sub>2</sub> アルキルで置換されたヘテロシクリル、
・炭素環式アリールオキシ、
下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
・・ハロゲン。
· · 二トロ、
・・炭素環式アリール、
\cdot \cdot \cdot C_1 \sim C_3 アルコキシで置換された炭素環式アリール、
· · C1 ~C4 アルキル、
・・下記のものから独立に選択された置換基で置換されたC<sub>1</sub> ~ C<sub>4</sub> アルキル、
· · · モノーまたはジーC 1 ~ C 2 アルキルアミノ、
・・・炭素環式アリールで置換されたモノーまたはジーC<sub>1</sub>~C<sub>2</sub>アルキルアミノ、
・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルア
31
モノーまたはジーC。~C。アルキルアミノ、
・下記のものから独立に選択された置換基で置換されたモノーまたはジ-C_1 \sim C_2 アル
キルアミノ、
・・シアノ、
・・炭素環式アリール、
・・ヘテロシクリル
・モノーまたはジー炭素環式アリールアミノ、
・C。~C。アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
· C 1 ~ C 2 アルキルカルボニルアミノ、
· C。~C。アルコキシカルボニルアミノ、
・炭素環式アリールスルホニルアミノ、
下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
· · 二トロ、
· · C<sub>1</sub> ~ C<sub>2</sub> アルキル、
・・モノーまたはジーC<sub>1</sub> ~C<sub>2</sub> アルキルアミノ、
[0063]
· C 。 ~ C 。 アルキルチオ、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>2</sub>アルキルチオ、
・・モノーまたはジー炭素環式アリールアミノ、
・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
・・炭素環式アリール、
・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・・ハロゲン、
・・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
・炭素環式アリールチオ。
下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
・・ハロゲン、
```

・・C₁ ~ C₃ アルキル、
 ・炭素環式アリールスルホニル、
 ・ハロゲン化炭素環式アリールスルホニル、

- ヘテロシクリルチオ。
- · Ca~Caシクロアルキル、
- C₁ ~C₃ アルキルで置換されたC₃ ~C₆ シクロアルキル、
- ・カルボシクリル、
- 下記のものから独立に選択された置機基で置換されたカルボシクリル。
- ・・ハロゲン。
- ・・C₁ ~C₂ アルキル、
- · · C。~C。アルケニル、
- ・・炭素環式アリールで置換されたC。~C。アルケニル、
- ・・C₁ ~C₃ アルキルスルフィニルで置換された炭素環式アリールで置換されたC₂ ~
- Caアルケニル、

【0064】

- ・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · 二トロ.
- · · C 1 ~ C 2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ
- ・・・炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ。
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ

- ・・・・ハロゲン、
- · · · · 二トロ、
- ・・・・C₁ ~C₃ アルキル、
- · · · · · C1 ~ C2 アルコキシ、
- ・・・ハロゲン化C。~C。アルコキシ、
- ・・C₁ ~C₂ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール。
- ・・炭素環式アリールオキシ。
- ・・C1~C3アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・C₁ ~C₂ アルキルチオ、
- ・・ハロゲン化C₁ ~C₂ アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- · · C a ~ C 6 シクロアルキル、 ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・C₁ ~C₂ アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- · · ハロゲン化炭素環式アリール、

[0065] (ii) Cっ~Cョアルケニル、 下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、 ハロゲン、 ・C。~C。アルコキシ、 ・炭素環式アリールで置換されたC。~C。アルコキシ、 炭素環式アリール。 ・下記のものから独立に選択された置換基で置換された炭素環式アリール、 ・・ハロゲン ・・ヒドロキシ、 ・・C₁ ~C₃ アルコキシ、 ・・ハロゲン化 $C_1 \sim C_3$ アルコキシ、 ヘテロシクリル、 ニトロで置換されたヘテロシクリル、 (i i i) C2~C4アルキニル、 炭素環式アリールで置換されたC2~C4アルキニル、 (iv) C₃~C₆シクロアルキル、 下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、 · C · ~ C 。 アルキル、 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、 · ・ ヒドロキシ、 ・・オキソ、 ・・炭素環式アリール。 モノーまたはジーC。~C。アルキルアミノ、 ・炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルアミノ、 炭素環式アリール、 (v) C3~C6シクロアルケニル、 $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、 (vi)カルボシクリル。 下記のものから独立に選択された置換基で置換されたカルボシクリル、 ・ヒドロキシ、 · 二トロ. (vii)炭素環式アリール。 下記のものから独立に選択された置換基で置換された炭素環式アリール、 ハロゲン、 ・ヒドロキシ、 シアノ、 · 二トロ. ·C,~C,アルキル、 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、 ・・ハロゲン、 ・・ヒドロキシ、 ・・オキソ。 · · C1 ~ C3 アルコキシ、 · · 炭素環式アリールオキシ、 ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノーNーオキシ、 ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、 ・・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ、

・・モノーまたはジー炭素環式アリールアミノ、

- ・・C₁~C₂アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール
- ・・ヘテロシクリル、
- ・・C。~C。アルキルで置換されたヘテロシクリル、

[0067]

- Cっ~Cっアルケニル、
- ・炭素環式アリールで置換されたC。~C。アルケニル、
- C₁ ~C₉ アルコキシ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルコキシ、
- ・・ヒドロキシ、
- ・・ハロゲン
- ・・カルボキシ
- ・・モノーまたはジーC₁~C₃アルキルアミノ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
 - ・・ヘテロシクリル。
 - ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
 - · · · ヘテロシクリル。
- ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・・ハロゲン、
- \cdots $C_1 \sim C_3 P \nu + \nu$
- ···・ハロゲン化C1~C3アルキル、
- · C。~C。アルケニルオキシ、
- · C₁ ~C₃ アルキルカルボニルオキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・C₁ ~C₄ アルキル、
- ・・ハロゲン化C。~C。アルキル、
- ・・C₁ ~C₂ アルコキシ、
- ヘテロシクリルオキシ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ。
- ・・ハロゲン。
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C₁ ~C₃ アルキル、

[0068]

- ・炭素環式アリールで置換されたS(O)。O、
 - カルボキシ、
- · C ~ C = アルコキシカルボニル、
- モノーまたはジーC。~C。アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノカルボニル
- ・アミノ、
- ・モノーまたはジーC,~C,アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC₁~C₄アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_3 P \nu + \nu \lambda \nu \pi^2 \nu \nu > 0$
- ・炭素環式アリールスルホニルアミノ、
- C₁ ~C₂ アルキルで置換された炭素環式アリールスルホニルアミノ、

- ・炭素環式アリールで置換されたNHC(O)NH。
- ・C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化C、~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O) NH.
- C。~C。アルキルチオ、
- ハロゲン化C。~C。アルキルチオ、
- ・炭素環式アリールチオ。
- ハロゲン化炭素環式アリールチオ、
- ・C。~C。アルキルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- C₁ ~C₂ アルキルスルホニル、
- モノーまたはジーC₁~C₂アルキルアミノスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置機基で置換された炭素環式アリール、
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C₁ ~C₇ アルキル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C₁ ~C₃ アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0069]

(viii) ヘテロシクリル.

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン
- ・ヒドロキシ、
- ・シアノ、
- · 二トロ.
- · C · ~ C 。 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルキル、
- ・・ハロゲン
- ・・ヒドロキシ、
- ・・オキソ、
- · · C 1 ~ C 2 アルキルカルボニルオキシ、
- · · C 1 ~ C 2 アルコキシカルボニル、
- · · C 1 ~ C 2 アルキルチオ、
- ・・炭素環式アリールで置換されたC,~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン。
- · · · 二トロ、
- ・・ヘテロシクリル、

[0070]

- · C1 ~ C2 アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- 炭素環式アリールオキシ、
- ・C、~C。アルキルで置換された炭素環式アリールオキシ、
- ·モノーまたはジーC1~C2アルキルアミノ、
- · C 1 ~ C 4 アルキルカルボニルアミノ、

```
・C<sub>1</sub> ~C<sub>2</sub> アルキルチオ、
・炭素環式アリールチオ。
ハロゲン化炭素環式アリールチオ。
・C。~C。アルコキシカルボニルで置換された炭素環式アリールチオ、
ヘテロシクリルチオ、
・C、~C。アルキルで置換されたヘテロシクリルチオ、
・C。~C。アルキルスルホニル、
・炭素環式アリールスルホニル、
・C。~C。アルキルで置換された炭素環式アリールスルホニル。
C<sub>1</sub> ~C<sub>2</sub> アルコキシカルボニル、
・炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン。
· · 二トロ、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
· · ハロゲン化C <sub>1</sub> ~ C <sub>2</sub> アルキル、
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
・・ハロゲン化C。~C。アルコキシ、
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
· · ハロゲン化C <sub>1</sub> ~ C <sub>3</sub> アルキル、
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
・・C。~C。アルコキシカルボニルを表し、
 R2は、-NHNH2、-NHNHBoc、-N(R2a)(R2b)、モルホリノ、
4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 ここで、R_{2a}は、HまたはC_1 \sim C_3 アルキルであり、
【0071】
 Roskは、CoCaアルキル、下記のものから独立に選択された置換基で置換された
C_1 \sim C_4 P \mathcal{N} + \mathcal{N}
・ヒドロキシ、
·C1~C3アルコキシ、
アミノ、
·-NHBoc.
C。~C。シクロアルキル、
・炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン、
· · C<sub>1</sub> ~ C<sub>3</sub> アルキル、
\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、
· · - SO2 NH2,
ヘテロシクリル、
C_3 \sim C_6シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基
で置換された炭素環式アリール、
ハロゲン。
・C1~C2アルキル、
C - ~ C っ アルコキシ、
または式IVの基、
 ここで、Bocは、カルバミン酸tertーブチルエステルであり、Rgは、C1~C
```

gアルキルまたは下記のものから独立に選択された置換基で置換されたC₁~Cgアルキ

IV.

・炭素環式アリール。

ハロゲン化炭素環式アリール。

C、~C。アルコキシで置換された炭素環式アリール、

Lは、式V~XIXから選択され、

ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0072]

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

Yは- (CH。) ... であり、mは0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり。

カルボシクリルは、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、 アントラキノニル、イングニル、またはインデニルであり、

キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、 ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。

【0073】 本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁ は、

(i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、

・メトキシ、

・炭素環式アリールで置換されたメトキシ、

炭素環式アリールオキシ。

ハロゲン化炭素環式アリールオキシ。

・シアノで置換されたモノー $C_1 \sim C_2$ アルキルアミノ、

・炭素環式アリールで置換されたモノーまたはジーC、~C。アルキルアミノ、

モノー炭素環式アリールアミノ、

メチルで置換されたモノー炭素環式アリールアミノ。

メチルで置換された炭素環式アリールスルホニルアミノ。

・炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

・・ハロゲン

· · = hp

· · C₁ ~ C₄ アルキル、

- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC₁ ~C₄ アルキル、
- · · C, ~C。アルコキシ、
- · · ハロゲン化C₁ ~C₂ アルコキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、

[0074]

- (ii)下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- 炭素環式アリール、
- メトキシで置機された炭素環式アリール。
 - (iii) 炭素環式アリールで置換されたC2~C2 アルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル。
- (vi) 炭素環式アリール、

下記のものから独立に選択された置機基で置換された炭素環式アリール、

- ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・アミノ
- · C,~C。アルキル、
- ·ハロゲン化C₁~C₉アルキル、
- · C1 ~ C9 アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₉アルコキシ、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリール、
- ・プロペニルオキシ、
- ・メチルアミノ、
- · ジーC+ ~C2 アルキルアミノ、
- ・シアノで置換されたジーC。~C。アルキルアミノ、
- ・メチルチオ
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置機基で置換されたヘテロシクリル。

- ・ハロゲン、
- C₁ ~C₄ アルキル、
- ・ヒドロキシで置換されたC、~C。アルキル、
- ・炭素環式アリールで置換されたC。~C。アルキル、
- ・メトキシ、
- C。~C。アルコキシカルボニル。
- メトキシカルボニルで置換された炭素環式アリールチオ、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ハロゲン化メチル。
- ヘテロシクリルを表し、

[0075]

- Roは、メチルアミノまたはジメチルアミノであり、
- Lは、式Va、VIIIa、またはIXaから選択され、
- ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、
- Yは、- (CH2) mであり、mは、0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであり、

ペテロシクリルは、1、2、3 - チアジアゾリル、1、2、3 - トリアゾリル、1、2 - ジ上ドロー3 - オキソーピラゾリル、1、3 - ジオキソラニル、1 H - インドリル、1 H - インドリル、2、2・5・7・2・9 - チオフェニル、2、2・1・ビチオフェニル、2、3 - ジヒドローペング [1、4]ジオキシニル、3、4 - ジヒドローペング [1、4]ジオキシニル、3、4 - ジヒドロー2 H - ベング [1・4] オオサジニル、4 - オキソーペング [5]・4 コ | ジオヤジニル、4 - オキソーペング [5]・エニル、ベングフリル、ベングイミグブリル、ベング [1・3] ジオキソリル、ベング 1 ラエニル、ベングフリル、ベングチアゾリル、フリル、イミグゾリル、4 ソオキサゾリル、オキソラニル、ヒラゾロ [5]・1 - b] チアゾリル、ビラゾリル、サニル、ビラゾロ [5]・4 こり | ジル、キノオキサゾリル、オリス・メニャリル、チェアリル、チェアリル、ス・フェーペングビラニル、4 スーペングビラニル、4

H-ベング [1,3]ジオキシニル、アゼチジニル、イミダブ [2,1-b]チアゾリル、 、モルホリニル、または2,3-ジヒドローベンゾフリルであり、 ハロゲンは、フルオロ、クロロ、プロモ、またはヨードである。式「の化合物である。

【0076】 本発明の他のより好ましい化合物は、

Oは 式IIであり

R, は、

- (i) 下記のものから独立に選択された置換基で置換されたC₁ ~C₇ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ。
- ・炭素環式アリールオキシ、
- ・ハロゲン化炭素環式アリールオキシ
- ・シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ。
- ・モノー炭素環式アリールアミノ、
- メチルで置換されたモノー炭素環式アリールアミノ。
- メチルで置換された炭素環式アリールスルホニルアミノ。
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン。
- ・・ニトロ、
- · · C 1 ~ C 2 アルキル、
- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC。~C。アルキル、
- ・・メトキシ、
- ・・ハロゲン化メトキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii) 下記のものから独立に選択された置換基で置換されたCo~Coアルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- 炭素環式アリール、
- ・メトキシで置換された炭素環式アリール、

[0077]

- (i i i) 炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

```
ハロゲン。
ヒドロキシ。
シアノ
アミノ、
・C。~C。アルキル、
ハロゲン化メチル。
・C。~C。アルコキシ、
下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
・・ハロゲン、
・・ハロゲン化炭素環式アリール、
プロペニルオキシ、
・ジーC_1 \sim C_2 アルキルアミノ、
・シアノで置換されたジーC。~C。アルキルアミノ、
・メチルチオ、
ハロゲン化メチルチオ、
(vii) ヘテロシクリル、
または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・ハロゲン、
· C 。 ~ C 。 アルキル、
・ヒドロキシで置換されたC。~C。アルキル、
・炭素環式アリールで置換されたC<sub>1</sub> ~ C<sub>2</sub> アルキル、
・メトキシ、
エトキシカルボニル。
メトキシカルボニルで置換された炭素環式アリールチオ、
・炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン、
・・ハロゲン化メチル。
ヘテロシクリルを表し、
[0078]
 Roは、メチルアミノまたはジメチルアミノであり、
 Lは、式XX~XXIIから選択され、
 Ytt. - (CHo) ... であり、mtt. 0または1であり、
 ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
 カルボシクリルは、アセナフチルであり、
 ヘテロシクリルは、1H-インドリル、1H-ピロリル、2、3-ジヒドローベンゾ[

    4] ジオキシニル、9H-カルバゾリル、ベンゾ「1,3] ジオキソリル、フリル、

ピラゾリル、チエニル、4-オキソーベンゾピラニル、アゼチジニル、イミダゾ「2,1
-b] チアゾリル、ピリジル、イミダゾリル、2、3-ジヒドローベンゾフリル、または
ベンゾ [b] チエニルであり、
 ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。
 以下の化合物または場合によりその塩が特に好ましい。
```

[4/:48]

[4/:49]

【化57】

[0079]

- 本発明の好ましい化合物は、
- Qは、式IIであり、
- R1 は、
- (i) C₁ ~C₁₆ アルキル、
- 下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1-6}$ アルキル、
- ハロゲン、
- ・カルボシクリル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · 二トロ、
- ・・C₁ ~C₂ アルキル、

```
・・ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキル、
```

(ii) C2~C3アルケニル、

炭素環式アリールで置換されたC。~C。アルケニル、

[0080]

(iii)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

・ハロゲン、

- ・シアノ、
- ・ニトロ、
- · C1 ~ C5 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₅アルキル、
- ・・ハロゲン。
- ・・オキソ
- C。~C。アルケニル、
- C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルコキシ、
- ・・ハロゲン、
- ・・ヘテロシクリル、
- ・・ハロゲン化ヘテロシクリル、

炭素環式アリールオキシ、

- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- · · = ND.
- ヘテロシクリルオキシ。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ・・C, ~C。アルキル、
- · · ハロゲン化C₁ ~C₃ アルキル、
- · C。~C。アルコキシカルボニル、
- モノーまたはジーC。~C。アルキルアミノ、
- · C 。 ~ C 。 アルキルカルボニルアミノ、
- 炭素環式アリールジアゾ、
- ・モノーまたはジーC₁~C₂アルキルアミノで置換された炭素環式アリールジアゾ、
- ・C₁ ~C₃ アルキルスルホニル、
- 炭素環式アリール、

[0081]

(iv) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

・ハロゲン、

- · C · ~ C 。 アルキル、
- ・下記のものから独立に選択された置換基で置換された $C_1 \sim C_2$ アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- ・・ヘテロシクリル、
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・・ハロゲン、
- ・・・C₁ ~C₃ アルキル、
- \cdots ハロゲン化C₁ ~C₃ アルキル、

```
・C1~C2アルコキシ、
· C。~C。アルキルカルボニルアミノ、
・炭素環式アリールスルホニル
C。~C。アルコキシカルボニル、
炭素環式アリール、
ハロゲン化炭素環式アリール。
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・ハロゲン、
・・C。~C。アルキル、
・・ハロゲン化C。~C。アルキルを表し、
 Roは、-NHNHoc、-NHNHBoc、-N(Roa)(Roa)、モルホリノ、
4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 ここで、R<sub>2</sub> a は、HまたはC<sub>1</sub> ~C<sub>2</sub> アルキルであり、
 R_{2b}は、C_1 \sim C_4 アルキル、下記のものから独立に選択された置換基で置換された
C1~C4アルキル、
・ヒドロキシ、
· C, ~C, アルコキシ、
アミノ、
·-NHBoc.
C3~C6シクロアルキル、
炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン
· · C<sub>1</sub> ~C<sub>3</sub> アルキル、
・・C。~C。アルコキシ、
· · - SO2 NH2,
ヘテロシクリル。
Ca~Caシクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基
で置換された炭素環式アリール、
ハロゲン、
・C。~C。アルキル、
· C, ~C, アルコキシ、
または式 I Vの基。
 ここで、Bocは、カルバミン酸tert-ブチルエステルであり、Raは、Ci~C
。アルキルまたは下記のものから独立に選択された置換基で置換されたC。~C。アルキ
・炭素環式アリール。
ハロゲン化炭素環式アリール、
・C、~C。アルコキシで置換された炭素環式アリール、
Lは、式V~XIXから選択され、
 ここで、R4は、HまたはC1~C3アルキルであり、
[0083]
R。は、H、C。~C。アルキル、または置換炭素環式アリールで置換されたC。~C
。アルキルであり、
 Yは、-S(O)2-であり、
 ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
 カルボシクリルは、7、7-ジメチル-2-オキソービシクロ「2、2、1] ヘプチル
```

であり、

ヘテロシクリルは、1, 2, 3, 4-テトラヒドローイソキノリル、1, 2, 3-チア ジアゾリル、1H-ピロリル、ベング [2, 1, 3] オキサジアゾリル、ベング [b] チェニル、フリル、イミグゲリル、イソオキサゾリル、ピラゾリル、ピリジル、キノリル、チアゾリル、またはチェニルであり、

ハロゲンは、フルオロ、クロロ、プロモ、またはヨードである、式Iの化合物である。 以下の化合物または場合によりその塩が特に好ましい。 【458】

[0084]

本発明の好ましい化合物は、

Qは、式IIであり、

 \mathbf{R}_1 は、 \mathbf{H} 、 $-\mathbf{CO_2}^{\,\,\mathrm{t}}$ $\mathbf{B}\mathbf{u}$ 、または $-\mathbf{CO_2}$ $\mathbf{B}\mathbf{n}$ ($\mathbf{B}\mathbf{n}$ はベンジル基である)から選択され、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、式Iの化合物またはその塩である。

さらに本発明は、G-9ンパク質受容体SLC-1を調節する方法を提供しており、これは、SLC-1受容体と本発明の化合物との接触を含む。

【0085】

さらに本発明は、本発明のMCH受容体アンタゴニストを含有する薬剤組成物を提供する。

[0086]

(詳細な説明)

本発明は、MC H受容体アンタゴニスト化合物および、この受容体と 1種または複数の本発明の化合物とを接触させることにより、MC H受容体を調節する方法に関する。 100871

「アンタゴニスト」という用語は、アゴニスト(例えば、内在性リガンド)と同じ部位
で受容体に競合的に結合するが、受容体の活性形により開始される細胞内応答を含蓄化化せ
さ、したが・ファゴニストまなは部がプゴニストによる細胞内容を関することがで
きる成分のことを意味している。アンタゴニストは、アゴニストまたは部分アゴニストの
不在下に、基線相胞内容を強らすことはない。ここで使用する場合、「アゴニスト」と
いう用語は、受容体と結合すると、細胞内応答を活住化するが、際へのGT P結合を高め
る成分のことを意味している。本発明の文中では、本発明のMC H 受容体アンタゴニスト
を含有する素剤組成物は、MC H 受容体の活性を削断し、体重を減らし、かつ/または安 参名や体重が高なか、かつ/または維持するように、代緒に整理を及ぼすかたい使用する ことができる。このような素剤組成物は、体重増加が、例えば配満などの疾患および/ま たは異常の1つの構成要素である異常および/または疾患に関連して使用することができる。

[0088]

ここで使用する場合、「接触」または「接触する」という用語は、インビトロ系または インビボ系のいずれでも、表されている成分が1つになることを意味している。したがっ て、MC H受容体と本形明の化合物との「接触」には、本発明の化合物をMC H 受容体を 有する動物に投与すること、さらに例えば、本発明の化合物を、MC H 受容体を含有する 制胞またはまらに精製された製剤を含有するサンブルに導入することが含まれる。 [0089]

本発明の化合物には、以下に示す式 I を有するものが含まれる。 【化59】

$$Q_L Y_R_1$$

【 (Ł60]

[0090]

- R 12.
- (i) C1~C16アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1.6}$ アルキル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・オキソ、
- C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・・C₁ ~C₃ アルキルで置換されたヘテロシクリル、
- ・C。~C。アルキルカルボニルオキシ、
- カルボシクリルオキシ、
- 炭素環式アリールオキシ、
 - 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
 - ・・ハロゲン、
 - · · 二トロ、
 - ・・炭素環式アリール、
 - $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
 - · · C1 ~ C4 アルキル、
 - ・・下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、
 - ・・オキソ、
 - ・・・モノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
 - ・・・炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルアミノ、
 - ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
 - ・・・炭素環式アリールカルボニルアミノ。
 - ・・・ハロゲン化炭素環式アリールカルボニルアミノ、

【0091】

- ヘテロシクリルオキシ、
- ・C、~C。アルキルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- · C1 ~ C3 アルコキシカルボニル、
- ・炭素環式アリールで置換されたC。~C。アルコキシカルボニル、
- ・モノーまたはジーC₁ ~C₃ アルキルアミノカルボニル、
- モノーまたはジーC₁~C₂アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_2 P N$ キルアミノ、
 - ・・シアノ、

```
・・炭素環式アリール、
・・ヘテロシクリル。
・モノーまたはジー炭素環式アリールアミノ。
下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリー
ルアミノ、
・・ヒドロキシ.
\cdots C_1 \sim C_3 \mathcal{P} \mathcal{N} + \mathcal{N}
· C。~C。アルキルカルボニルアミノ、
下記のものから独立に選択された置換基で置換されたC。~C。アルキルカルボニルア
ミノ.
・・C<sub>1</sub> ~C<sub>2</sub> アルキルカルボニルアミノ、
・・炭素環式アリールカルボニルアミノ、
・・ヘテロシクリル、
· C - ~ C - アルコキシカルボニルアミノ、
ヘテロシクリルカルボニルアミノ、
・炭素環式アリールスルホニルアミノ、
下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
· · 二トロ、
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
・・モノーまたはジーC_1 \sim C_2 アルキルアミノ、
[0092]
· C · ~ C 。 アルキルチオ、
下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
・・モノーまたはジー炭素環式アリールアミノ、
ハロゲン化モノーまたはジー炭素環式アリールアミノ、
・・炭素環式アリール。
・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・・ハロゲン、
· · · C1 ~ C3 アルコキシ、
・炭素環式アリールチオ、
下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
・・ハロゲン。
・・C<sub>1</sub> ~C<sub>2</sub> アルキル、
炭素環式アリールスルホニル、
ハロゲン化炭素環式アリールスルホニル、
ヘテロシクリルチオ。
下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
· - = ND.
・・C1~C2アルキル、
【0093】
· C3 ~ C6 シクロアルキル、
・C、~C。アルキルで置換されたC。~C。シクロアルキル、
· C 。 ~ C 。 シクロアルケニル、
・カルボシクリル
下記のものから独立に選択された置換基で置換されたカルボシクリル。
・・ハロゲン、
· · C1 ~ C3 アルキル、
```

```
・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
· · C。~C。アルケニル、
・・炭素環式アリールで置換されたC。~C。アルケニル、
・・C_1 \sim C_2 アルキルスルフィニルで置換された炭素環式アリールで置換されたC_2 \sim
C。アルケニル、
炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン、
・・ヒドロキシ、
· · 二トロ、
· · C1 ~ C4 アルキル、
・・下記のものから独立に選択された置換基で置換されたC_1 \sim C_4 アルキル、
・・・ハロゲン、
・・・ヒドロキシ、
・・・オキソ、
・・・炭素環式アリール、
・・・ヘテロシクリル。
· · · モノーまたはジー炭素環式アリールアミノ、
・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア
リールアミノ、
・・・・ハロゲン、
· · · · 二トロ、
... C<sub>1</sub> \sim C<sub>3</sub> アルキル、
・・・・C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
····ハロゲン化C。~C。アルコキシ、
[0094]
・・C。~C。アルコキシ、
・・下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>4</sub>アルコキシ、
・・・ハロゲン。
・・・炭素環式アリール。
・・炭素環式アリールオキシ、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシカルボニル、
・・C<sub>1</sub> ~C<sub>2</sub> アルキルカルボニルオキシ、
・・モノーまたはジーC<sub>1</sub> ~C<sub>2</sub> アルキルアミノ、
・・モノーまたはジー炭素環式アリールアミノ。
・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
ールアミノカルボニル.
・・・ハロゲン。
· · · 二トロ、
· · · C, ~C。アルキル、
・・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
\cdots ハロゲン化C_1 \sim C_3 アルコキシ、
・・メルカプト。
・・C<sub>1</sub> ~C<sub>2</sub> アルキルチオ、
・・ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキルチオ、
・・C。~C。アルキルスルホニル、
```

・・C₃~C₆シクロアルキル、・・炭素環式アリール、

- ・・ヘテロシクリル。 ヘテロシクリル。 ・・ヒドロキシ、
- 下記のものから独立に選択された置換基で置換されたペテロシクリル
- ・・C, ~C。アルキル、
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・C₁ ~C₂ アルコキシ、
- ・・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0095】

(ii) C2~C8 アルケニル、

下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、

- ハロゲン、
- ・オキソ、
- · C1 ~ C3 アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
 - ・・ハロゲン、
 - ・・ヒドロキシ、
 - · · 二トロ、
 - ・・C₁ ~C₂ アルキル、
 - · · ハロゲン化C : ~ C 。 アルキル、
 - ・・C₁ ~C₂ アルコキシ、
 - · · ハロゲン化C₁ ~C₃ アルコキシ、
 - ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ。
- · · 二トロ.
- ・・C₁ ~C₂ アルキル、
- · · C1 ~ C3 アルコキシ、

[0096]

(iii) Co~Caアルキニル、

炭素環式アリールで置換された $C_2 \sim C_4$ アルキニル、

(iv) C3~C6シクロアルキル、

下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキル、

- C₁ ~C₂ アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ヒドロキシ。
- ・・オキソ、
- ・・炭素環式アリール、
- ・モノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- 炭素環式アリールカルボニルアミノ。
- 炭素環式アリール、
- (v) Ca~Caシクロアルケニル、
- $C_1 \sim C_3$ アルキルで置換された $C_3 \sim C_6$ シクロアルケニル、
- (vi)カルボシクリル、

下記のものから独立に選択された置換基で置換されたカルボシクリル、

```
ヒドロキシ。
· 二トロ.
[0097]
(vii)炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール。
ハロゲン。
・ヒドロキシ。
・シアノ、
· = ND.
・C。~C。アルキル、
下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
・・ハロゲン。
・・ヒドロキシ。
・・オキソ、
・・C。~C。アルコキシ、
・・炭素環式アリールオキシ、
・・モノーまたはジーC<sub>1</sub> ~C<sub>2</sub> アルキルアミノーN−オキシ、
· · モノーまたはジーC<sub>1</sub> ~ C<sub>2</sub> アルキルアミノ、
・・炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルアミノ、
・・モノーまたはジー炭素環式アリールアミノ、
・・カルボシクリルイミノ、
・・炭素環式アリールで置換されたカルボシクリルイミノ、
· ・モノーまたはジー炭素環式アリールアミノ、
・・C, ~C。アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、
・・モノーまたはジー炭素環式アリールアミノカルボニル、
\cdots C<sub>1</sub> \sim C<sub>3</sub> アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ
ニル、
・・炭素環式アリール。
・・下記のものから独立に選択された置換基で置換された炭素環式アリール。
・・・ハロゲン。
· · · C · ~ C 。 アルキル、
···ハロゲン化C1~C3アルキル、
・・ヘテロシクリル。
・・C<sub>1</sub> ~C<sub>2</sub> アルキルで置換されたヘテロシクリル、
[0098]
・C。~C。アルケニル、
・炭素環式アリールで置換されたC。~C。アルケニル、
C<sub>1</sub> ~C<sub>9</sub> アルコキシ、
下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
・・ヒドロキシ。
・・ハロゲン。
· · カルボキシ、
・・モノーまたはジーC_1 \sim C_3 アルキルアミノ、
・・炭素環式アリール。
・・ハロゲン化炭素環式アリール。
・・ヘテロシクリル、
・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
```

・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、

・・・ハロゲン、 ・・・ヘテロシクリル

- ・・・・ハロゲン。
- · · · · C1 ~ C2 アルキル、
- ····ハロゲン化C₁~C₂アルキル、
- C₂ ~C₃ アルケニルオキシ、
- ・C。~C。アルキルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- · · 二トロ、
- · · C。~C。アルキル、
- ・・ハロゲン化C,~Caアルキル、
- $\cdot \cdot C_1 \sim C_2 \mathcal{P} \mathcal{V} = C_2 \mathcal{P} \mathcal{V} = C_1 \mathcal{P} \mathcal{V}$
- ・ヘテロシクリルオキシ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
- ・・ハロゲン、
- ・・C₁ ~C₃ アルキル、
- · · ハロゲン化C · ~C 。 アルキル、

[0099]

- ・炭素環式アリールで置換されたS(O)。O、
- ・カルボキシ、
- \cdot C₁ \sim C₃ アルコキシカルボニル、
- ・モノーまたはジーC₁ ~ C₂ アルキルアミノカルボニル、
 ・炭素環式アリールで置換されたモノーまたはジーC₁ ~ C₂ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル、
 - ·C₁ ~C₃ アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル

・アミノ、

- ・モノーまたはジーC₁ ~C∠ アルキルアミノ、
- ・シアノで置換されたモノーまたはジーC。~C。アルキルアミノ、
- ・モノーまたはジー炭素環式アリールアミノ、
- ·C1~C3アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・C。~C。アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- ・C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH.
- ・炭素環式アリールジアゾ、
- ・モノーまたはジーC。~C。アルキルアミノで置換された炭素環式アリールジアゾ、
- C₁ ~C₃ アルキルチオ、
- ・ハロゲン化C₁ ~C₂ アルキルチオ、
- 炭素環式アリールチオ。
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・シアノ、
- · · C1 ~ C2 アルキル、
- ヘテロシクリルチオ、
- · C 1 ~ C 2 アルキルスルホニル、

- ·モノーまたはジーC1~C2アルキルアミノスルホニル、
- 炭素環式アリール。
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- · · C · ~C · アルキル、
- ・・ハロゲン化C。~C。アルキル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
 - · · C1 ~ C2 アルキル、
 - ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール。

[0100]

(viii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- ・ニトロ
- · C1 ~ C2 アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・ヒドロキシ、
- ・・オキソ、
- · · C₁ ~ C₃ アルキルカルボニルオキシ、
- ・・炭素環式アリールカルボニルアミノ、
- ・・ハロゲン化炭素環式アリールカルボニルアミノ、
- · · C₁ ~ C₃ アルコキシカルボニル、
- ・・C₁~C₃アルキルチオ、
- ・・炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · = > = .
- · · ヘテロシクリル。
- ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・・ハロゲン、
- ・・・C、~C。アルキル、
- ···ハロゲン化C₁~C₃アルキル、

[0101]

- · C。~C。アルコキシ、
- ・炭素環式アリールで置換されたC:~C。アルコキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- ・・C₁ ~C₃ アルキル、
- ・モノーまたはジーC、~C。アルキルアミノ、
- C₁ ~C₂ アルキルカルボニルアミノ、
- · C₁ ~C₂ アルキルチオ、
- ・C₁ ~C₂ アルケニルチオ、
- 炭素環式アリールチオ、

- ハロゲン化炭素環式アリールチオ。 ・C、~C。アルコキシカルボニルで置換された炭素環式アリールチオ、 ヘテロシクリルチオ、 ・C 、 ~ C 。 アルキルで置換されたヘテロシクリルチオ、 C。~C。アルキルスルホニル、 炭素環式アリールスルホニル。 ハロゲン化炭素環式アリールスルホニル。 ・C、~C。アルキルで置換された炭素環式アリールスルホニル、 · C 1 ~ C 3 アルコキシカルボニル、 炭素環式アリール、 下記のものから独立に選択された置換基で置換された炭素環式アリール。 ・・ハロゲン。 · · 二トロ. · · C1 ~C2 アルキル、 ・・ハロゲン化C₁ ~C₃ アルキル、 ・・C₁ ~C₃ アルコキシ、 ・・ハロゲン化C。~C。アルコキシ、 ・ヘテロシクリル、 下記のものから独立に選択された置換基で置換されたヘテロシクリル、 ・・ハロゲン、 ・・C₁ ~C₂ アルキル、 ・・ハロゲン化C₁ ~C₃ アルキル、 ・・C₁ ~C₂ アルコキシ、 ・・C₁ ~C₂ アルコキシカルボニルを表し、 [0102] R2は、-NHNH2、-NHNHBoc、-N(R2a)(R2b)、モルホリノ、 4-アセチルーピペラジル、または4-フェニルーピペラジルであり、 ここで、Roaは、HまたはCo~Coアルキルであり、 Rosは、CoへCaアルキル、下記のものから独立に選択された置換基で置換された C1~C4アルキル、 ・ヒドロキシ、 · C1 ~ C3 アルコキシ、 アミノ、 ·-NHBoc. C。~C。シクロアルキル、 ・炭素環式アリール、
 - ・・ハロゲン、 · · C₁ ~ C₃ アルキル、
 - · · C1 ~ C3 アルコキシ、
- · · SO2 NH2,
- ヘテロシクリル、
- C3~C6シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基 で置換された炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ハロゲン。
- · C1 ~ C2 アルキル、
- C。~C。アルコキシ、
- または式IVの基であり、

【化61】

[0103]

ここで、Bocはカルバミン酸もertーブチルエステルであり、 R_3 は $C_1\sim C_3$ アルキルまたは下記のものから独立に選択された置換基で置換された $C_1\sim C_3$ アルキルであり、

- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- \cdot $C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
- Lは、式V~XIXから選択され、

【化63】

[0104]

ここで、R4は、HまたはC1~C3アルキルであり、

 R_5 は、H、 $C_1 \sim C_3$ アルキル、または置換炭素環式アリールで置換された $C_1 \sim C_3$ アルキルであり、

Yは、 $-S(O)_2$ -、-C(O) -、または $-(CH_2)_m$ であり、

mは、0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、ビフェニル、また はフェナントリルであり、

```
リル・シンフリル・フリル・イミダゾ「2、1-6] チアゾリル・イミダゾリル・イソオ
キサゾリル、モルホリノ、モルホリニル、オキサゾリル、オキソラニル、ピペラジル、ピ
ペリジル、ピラゾロ[5,1-b] チアゾリル、ピラゾリル、ピリジル、ピリミジル、ピ
ロリジル、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル
2、3-ジヒドローベンゾフリル、テトラヒドローチエニル、またはベンゾフラニルで
あり.
 ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである。
[0105]
 本発明の好ましい化合物は、
 Qは、式IIであり、
 R . 14.
(i) C<sub>1</sub>~C<sub>10</sub>アルキル、
下記のものから独立に選択された置換基で置換されたC1~C1。アルキル、
ハロゲン、
・オキソ、
· C1 ~ C2 アルコキシ、
・炭素環式アリールで置換されたC。~C。アルコキシ、
· C 。 ~ C 。 アルキルカルボニルオキシ、
カルボシクリルオキシ。
・炭素環式アリールオキシ、
下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ。
・・ハロゲン。
· · 二トロ.
· · C1 ~ C2 アルキル、
・・下記のものから独立に選択された置換基で置換されたC。~Caアルキル、
・・・オキソ、
・・・炭素環式アリールカルボニルアミノ、
・・・ハロゲン化炭素環式アリールカルボニルアミノ、
ヘテロシクリルオキシ。
・C、~C。アルキルで置換されたヘテロシクリルオキシ、
・置換ヘテロシクリルーエチリデンアミノオキシ、
· C 。~C。アルコキシカルボニル、
・炭素環式アリールで置換されたC。~C。アルコキシカルボニル、
・モノーまたはジーC<sub>1</sub>~C<sub>2</sub>アルキルアミノカルボニル、
・モノーまたはジー炭素環式アリールアミノ。
・ヒドロキシで置換されたモノーまたはジー炭素環式アリールアミノ、
· C。~C。アルキルカルボニルアミノ、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>2</sub>アルキルカルボニルア
ミノ.
・・C<sub>1</sub> ~C<sub>2</sub> アルキルカルボニルアミノ、
・・炭素環式アリールカルボニルアミノ、
・・ヘテロシクリル、
· C<sub>1</sub> ~C<sub>4</sub> アルコキシカルボニルアミノ、
ヘテロシクリルカルボニルアミノ。
・炭素環式アリールスルホニルアミノ、
下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミ
ノ、
· · = Nn
```

· · C1 ~ C3 アルキル、

- ・・モノーまたはジーC₁ ~C₃ アルキルアミノ、
- · C 。 ~ C 。 アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- · · モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノカルボニル、
- · ・炭素環式アリール。
- ・・下記のものから独立に選択された置機基で置機された炭素環式アリール、
- ・・・ハロゲン、
- · · · C₁ ~ C₃ アルコキシ、
- 炭素環式アリールチオ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- ・・C₁ ~C₂ アルキル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・ヘテロシクリルチオ、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリルチオ、
- · · 二トロ、
- ·・C1~C3アルキル、

[0107]

- C3~C6シクロアルキル、
- ・C₁ ~C₃ アルキルで置換されたC₃ ~C₆ シクロアルキル、
- C3~C6シクロアルケニル、
- ・カルボシクリル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- · · C₁ ~C₃ アルキル、
- ・・C₁ ~C₃ アルコキシ、
- · · Cっ~C。アルケニル、
- ・・炭素環式アリールで置換された $C_2 \sim C_3$ アルケニル、
- \cdots C₁ \sim C₃ アルキルスルフィニルで置換された炭素環式アリールで置換されたC₂ \sim
- C。アルケニル、
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · 二トロ、
- · · C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ。
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- ・・C₁ ~C₄ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルコキシ、
- ・・・ハロゲン。
- ・・・炭素環式アリール、

[0108]

- ・・炭素環式アリールオキシ、
- · · C₁ ~ C₃ アルキルカルボニルオキシ、
- · · モノーまたはジー炭素環式アリールアミノ、

- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ。
- ・・モノーまたはジー炭素環式アリールアミノカルボニル、
- ・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式アリ
- ールアミノカルボニル、
- ・・・ハロゲン、
- · · · = ha,
- $\cdot \cdot \cdot \cdot C_1 \sim C_3$ アルキル、
- ・・・ $C_1 \sim C_3$ アルコキシ、
- $\cdot \cdot \cdot \cdot$ ハロゲン化 $C_1 \sim C_3$ アルコキシ、
- ・・メルカプト、
- ・・C₁ ~C₂ アルキルチオ、
- ・・ハロゲン化C₁ ~C₃ アルキルチオ、
- ・・C₁ ~C₂ アルキルスルホニル、
- · · C。~C。シクロアルキル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・ヒドロキシ
- · · C 1 ~ C 2 アルキル、
- ・・炭素環式アリールで置換されたC₁~C₃アルキル、
- ・・C1~C3アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- [0109]
- (ii) $C_2 \sim C_6$ アルケニル、 下記のものから独立に選択された置換基で置換された $C_2 \sim C_6$ アルケニル、
- · オキソ.
- ・炭素環式アリール
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
 - ・・ハロゲン、
 - · · = > = .
- · · C₁ ~C₂ アルキル、
- ・・ハロゲン化C、~C。アルキル、
- · · C₁ ~ C₃ アルコキシ、
- · · ハロゲン化C。~C。アルコキシ、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・ヒドロキシ。
- · · C₁ ~ C₃ アルキル、
- ・・C1~C。アルコキシ、
- (iii)C₃~C₆シクロアルキル、
- 下記のものから独立に選択された置換基で置換されたCg~Cgシクロアルキル、
- C₁ ~C₃ アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・オキソ
- ・・炭素環式アリール、
- ・炭素環式アリールカルボニルアミノ、
- 炭素環式アリール、

- (iv)カルボシクリル.
- ニトロで置換されたカルボシクリル。
- [0110]
- (v)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール。

- ・ヒドロキシ、
- ・シアノ、
- · = ND.
- ・C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ。
- ・・炭素環式アリールオキシ、
- ・・カルボシクリルイミノ、
- ・・炭素環式アリールで置換されたカルボシクリルイミノ、
- ・・モノーまたはジー炭素環式アリールアミノカルボニル。
- · · · C 1 ~ C 2 アルコキシで置換されたモノーまたはジー炭素環式アリールアミノカルボ
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、

ニル

- ・・・C+~Caアルキル、
- · · · ハロゲン化C1~C2アルキル、
- ・・ヘテロシクリル
- · · C₁ ~ C₃ アルキルで置換されたヘテロシクリル、
- · C。~C。アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
- ・・ハロゲン

【0111】

- ・・炭素環式アリール、
- · C。~C。アルキルカルボニルオキシ、

・C。~C。アルコキシカルボニル、

- 炭素環式アリールオキシ、
- ・C、~C。アルコキシで置換された炭素環式アリールオキシ、
- ・モノーまたはジー $C_1 \sim C_2$ アルキルアミノカルボニル、
- ・炭素環式アリールで置換されたモノーまたはジーC₁ ~C₃ アルキルアミノカルボニル
- ・モノーまたはジー炭素環式アリールアミノカルボニル。
- · C 、 ~ C 。 アルキルで置換されたモノーまたはジー炭素環式アリールアミノカルボニル

· アミノ、

- モノーまたはジーC₁ ~C₂ アルキルアミノ、
- C₁ ~C₂ アルキニルカルボニルアミノ、
- ・炭素環式アリールで置換されたC。~C。アルキニルカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- ・C、~C。アルキルで置換された炭素環式アリールスルホニルアミノ、
- ・炭素環式アリールで置換されたNHC(O)NH、
- ・C₁ ~C₂ アルコキシで置換された炭素環式アリールで置換されたNHC (O) NH、
- ・ハロゲン化 $C_1 \sim C_3$ アルコキシで置換された炭素環式アリールで置換されたNHC (

O) NH.

- · C 。 ~ C 。 アルキルチオ、
- ハロゲン化C、~C。アルキルチオ、
- 炭素環式アリールチオ、
- ・シアノで置換された炭素環式アリールチオ、
- · C ~ C アルキルスルホニル、
- モノーまたはジーC。~C。アルキルアミノスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- · · C · ~ C · アルキル、
- ・・ハロゲン化C₁ ~C₂ アルキル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C1 ~C2アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール。

[0112]

(vi) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ハロゲン、
- · 二トロ.
- · C1 ~C2 アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・オキソ
- ・・C₁ ~C₂ アルキルチオ、
- ・・炭素環式アリールで置換されたC₁~C₃アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・炭素環式アリール。
- ・・ハロゲン化炭素環式アリール。
- ・・ヘテロシクリル、
- · C1 ~ C3 アルコキシ、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン。
- · · C₁ ~C₃ アルキル、
- · C。~C。アルキルチオ、
- · C 1 ~ C 2 アルケニルチオ、
- ・炭素環式アリールチオ、
- · C1 ~ C2 アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、
- ・C、~C、アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン。
- · · 二トロ
- ・・C₁ ~C₂ アルキル、
- ・・C₁ ~C₃ アルコキシ、
- ヘテロシクリル。

- 下記のものから独立に選択された置換基で置換されたヘテロシクリル。
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C₁ ~C₃ アルキルを表し、

[0113]

 R_2 は、 $-NHNH_2$ 、-NHNHBoc、 $-N(R_{2a})(R_{2b})$ 、モルホリノ、4-アセチルーピペラジル、または4-フェニルーピペラジルであり、

ここで、R。。は、HまたはC。~C。アルキルであり、

 R_{2b} は、 $C_1 \sim C_4$ アルキル、下記のものから独立に選択された置換基で置換された $C_1 \sim C_4$ アルキル、

- ・ヒドロキシ、
- C。~C。アルコキシ、
- アミノ.
- ·-NHBoc.
- ·C。~C。シクロアルキル、
- 炭素環式アリール、
- ・下記のものから独立に選択された置換基で置換された炭素環式アリール、
 - ・・ハロゲン。
 - · · C1 ~ C2 アルキル、
 - · · C1 ~ C2 アルコキシ、
 - · · SO2 NH2.
 - ・ヘテロシクリル、

 $C_3 \sim C_6$ シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基で置換された炭素環式アリール。

- ・ハロゲン、
- · C · ~ C 。 アルキル、
- · C1 ~C3 アルコキシ、
- または式IVの基、

またはれている。

ここで、Bocは、カルバミン酸 tertーブチルエステルであり、R3は、C1~C3アルキルまたは下記のものから独立に選択された置換基で置換されたC1~C3アルキル

- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- ・C。~C。アルコキシで置換された炭素環式アリール。
- Lは、式V~XIXから選択され、
- ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0114]

 R_5 は、H、 $C_1 \sim C_3$ アルキル、または置換炭素環式アリールで置換された $C_1 \sim C_3$ アルキルであり、

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはピフェニルであり、

カルボシクリルは、10, 11 – ジヒドロー 5 – オキソージベング [a, d] シクロヘ ブチル、1 – オキソーイングニル、9 H – フルオレニル、9 – オキソーフルオレニル、アセナフチル、アントラキノニル、C – フルオレン - 9 – イリデン、イングニル、インデニル、1, 2, 3, 4 – テトラヒドロー + フチル、3 たはビシクロ [2, 2, 1] ヘブテニルであり、

ペテロシクリルは、1, 2, 3ーチアジアゾリル、1, 2, 3ートリアゾリル、1, 2 -ジヒドロー3ーオキソービラブリル、1, 3ージオキソーイソインドリル、1Hービ ボリル、1Hービロリル、1ーオキソー3Hーイソベンゾフラニル、2, 3ージヒドロー ベング $\begin{bmatrix} 1, 4 \end{bmatrix}$ ジオキシェル、2, 3ージヒドローベングフリル、2, 4ージヒドロー

3ーオキソーピラゾリル、2日ーベンゾピラニル、2ーオキソーベンゾピラニル、2ーオ キソーピロリジニル 3.4-ジヒドロー2H-ベンゾ「b][1.4]ジオキセピニル (4-7+7+7-1) 5, 6, 7-テトラヒドローインドリル、4-オキソー3, 4-ジヒ ドローフタラジニル、4ーオキソーベンゾビラニル、9、10、10ートリオキソーチオ キサンテニル、9H-キサンテニル、アゼチジニル、ベンゾイミダゾリル、ベンゾ「1、 3] ジオキソリル、ベンゾ [2, 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、シ ンノリル、フリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル、オキ サゾリル、オキソラニル、ピペリジル、ピラゾリル、ビリジル、ピリミジル、ピロリジル 、キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、テトラ ヒドローチエニル、ベンゾフラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 [0115]

本発明の他の好ましい化合物は、

Qは、式IIであり、

R 4 14.

(i) C1~C10アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- ・オキソ、
- ジープロピルアミノカルボニル。
- ・炭素環式アリールで置換されたメトキシ、
- メチルカルボニルオキシ
- ・炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ。
- ・ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ。
- ・置換ヘテロシクリルーエチリデンアミノオキシ、
- · tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・C。~C。アルキルチオ、 ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- 炭素環式アリールチオ、
- ニトロで置換されたヘテロシクリルチオ。
- メチルで置換されたヘテロシクリルチオ。
- · Cs ~Cs シクロアルキル、
- · C = ~ C = シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル。
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ。
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、

【0116】

炭素環式アリール。

- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ
- · · 二トロ、
- ・・C₁ ~C₄ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・・・オキソ。
- ・・・炭素環式アリール、
- · · · ヘテロシクリル。
- · · C1 ~ C4 アルコキシ、
- · · ハロゲン化C。~C。アルコキシ、
- ・・炭素環式アリールで置換されたC₁ ~C₄ アルコキシ、
- ・・炭素環式アリールオキシ。
- ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ・ヘテロシクリル、
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換されたC。~C。アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0117]

- (i i) 下記のものから独立に選択された置換基で置換された $C_2 \sim C_3$ アルケニル、
- 炭素環式アリール、
- ・ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii) Ca~Caシクロアルキル、

下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキル、

- ・オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- 炭素環式アリール、
- (iv)カルボシクリル、

[0118]

(v)炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- · 二トロ、
- · C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ハロゲン。
- ・・オキソ。
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- C₁ ~C₇ アルコキシ、
- ·ハロゲン化C₁~C₂アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- メチルカルボニルオキシ、
- 炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、

- ・ジーメチルアミノ.
- ・炭素環式アリールで置換されたプロバルギニルカルボニルアミノ、
- メチルで置換された炭素環式アリールスルホニルアミノ、
- ・ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH。
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ。
- ・ジープロビルアミノスルホニル。
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・炭素環式アリール、
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル、
- 【0119】
- (vi) ヘテロシクリル、
- または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・ハロゲン、
- · 二トロ、
- · C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルキル、
- ・・ハロゲン。
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル、
- ・メトキシ.
- ・ 炭素環式アリールオキシ
- メチルで置換された炭素環式アリールオキシ、
- C₁ ~C₂アルキルチオ、
- プロベニルチオ、
- ・炭素環式アリールチオ。
- · C 1 ~ C 2 アルキルスルホニル、
- ・C、~C。アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール。
- メチルで置換された炭素環式アリール、
- ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、
- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式Va、VIIIa、またはIXaから選択され、
- ここで、R4 およびR5 は、HまたはC1~C3アルキルから独立に選択され、
- Yは、-C(O)-であり、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニルであり、
- カルボシクリルは、1ーオキソーインダニル、9ーオキソーフルオレニル、インデニル
- 、アントラキノニル、 $C-フルオレン-9-イリデン、1, 2, 3, 4-テトラヒドローナフチル、またはビシクロ[2, 2, 1] <math>\wedge$ プテニルであり、
- ヘテロシクリルは、1,2,3ーチアジアゾリル、1,2,3ートリアゾリル、1,2 ージヒドロー3ーオキソービラゾリル、1,3ージオキソーイソインドリル、1H-イン
- ドリル、1Hービロリル、1ーオキソー3Hーイソベングフラニル、2, 3ージヒドローベング $\begin{bmatrix} 1 & 4 \end{bmatrix}$ ジオキシニル、2, 4ージヒドロー3ーオキソーピラグリル、2Hーベ
- ンゾビラニル、2-オキソーベンゾビラニル、3,4-ジヒドロ-2H-ベンゾ[b][

- 1,4]ジオキセビニル、4ーオキソー3,4ージヒドローフタラジニル、4ーオキソーベンゾビラニル、9,10,10ートリオキソーチオキサンテニル、9Hーキサンテニル、アゼチジニル、ベンゾイミダゾリル、ベング [1,3]ジオキソリル、ベング [2,1
- , 3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾ
- リル、モルホリノ、モルホリニル、オキソラニル、ピペリジル、ピラゾリル、ピリジル、
- キノリル、キノキサリル、チアゾリジル、チアゾリル、チエニル、チオラニル、2,3-ジヒドロ-1-オキソーイソインドリル、2,3-ジヒドロ-ベンゾフリル、2-オキソ
- 世口リジエル、4ーオキソー1、5、6、7ーテトラヒドローインドリル、シンノリル、 、ピリミジル、ピロリジル、テトラヒドローチエニル、ベンゾフラニル、またはベンゾチ アゾリルであり。
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0120】
- 本発明の他のより好ましい化合物は、
- Qは式IIであり、
- R₁ は、
- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1\ 0}$ アルキル、
- ・オキソ、・ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ。
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ、
- ・ニトロで置換された炭素環式アリールオキシ。
- メチルで置換されたヘテロシクリルオキシ、
- ・ 置換ヘテロシクリルーエチリデンアミノオキシ
- ・tert-ブトキシカルボニルアミノ、
- ・炭素環式アリールカルボニルアミノ、
- ・C₁ ~C₂ アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- 炭素環式アリールチオ、
- ニトロで置換されたヘテロシクリルチオ、
- メチルで置換されたヘテロシクリルチオ、
- · C5 ~ C6 シクロアルケニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル、
- ・・ハロゲン、
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、 【6121】
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン
- · · ヒドロキシ.
- · · 二トロ.
- · · C1 ~ C2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C_aアルキル、
- ・・・オキソ、
- ・・・炭素環式アリール。
- ・・・ヘテロシクリル、

- ・・C₁ ~C₄ アルコキシ、
- · · ハロゲン化C · ~C 。アルコキシ、
- ・・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・・炭素環式アリールオキシ、
- ・・ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール、
- ・・ヘテロシクリル
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換されたC₁~C₂アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

F0122

- (ii) 下記のものから独立に選択された置換基で置換されたC2~C3アルケニル、
- 炭素環式アリール。
- ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール。
- (iii)下記のものから独立に選択された置換基で置換された $C_3 \sim C_6$ シクロアルキ

IV.

- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル。
- 炭素環式アリール。
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- シアノ。
- · 二トロ.
- C1~Coアルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルキル、
- ・・ハロゲン、
- ・・オキソ、
- ・・炭素環式アリール。
- ・・メチルで置換された炭素環式アリール、
- ・・炭素環式アリールオキシ、
- · C。~Cっアルコキシ、
- ·ハロゲン化C1~C7アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- メチルで置換された炭素環式アリールスルホニルアミノ、
- ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ、

- ジープロピルアミノスルホニル。
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- ・ 炭素環式アリール。
- メチルで置換されたヘテロシクリル、
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル。

(vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル。

- ハロゲン。
- · 二トロ、
- ・C。~C。アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキル、
- ・・ハロゲン。
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・炭素環式アリール、 ・・ヘテロシクリル、
- ・メトキシ.
- 炭素環式アリールオキシ、
- メチルで置換された炭素環式アリールオキシ、
- · C : ~ C 。 アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- · C ~ C アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- ・C、~C。アルキルで置換された炭素環式アリールスルホニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- ・メチルで置換された炭素環式アリール、
- ・ニトロで置換された炭素環式アリール。
- ヘテロシクリルを表し、
- [0124]

R。は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

【化64】

Yは、-C(O)-であり、

ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、

カルボシクリルは、1-オキソーインダニル、9-オキソーフルオレニル、インデニル

. アントラキノニル、C-フルオレン-9-イリデン、1,2,3,4-テトラヒドロ-

ナフチル、またはビシクロ[2.2.1]ヘプテニルであり、

ヘテロシクリルは、1、2、3-4アジアゾリル、1、2、3-トリアゾリル、1、2 ージヒドロー3-オキソーピラゾリル、1H-インドリル、1H-ピロリル、2、4-ジ ヒドロー3ーオキソーピラゾリル、2H-ベンゾピラニル、4ーオキソーベンゾピラニル

- 、アゼチジニル、ベング [b] チエニル、フリル、イソオキサゾリル、モルホリニル、ビ ベリジル、ピラブリル、リンジル、キアソリル、チアゾリル、チェニル、チ オラニル、2、3 ージヒドロー・オキソーインドリル、2、3 ージヒドローペング フリル、2ーオキソーとロリジニル、4ーオキソー1、5、6、7 ーテトラヒドローインドリル、9日ーキサンデニル、シンノリル、イミグゾリル、チルオリノ、ビリミジル、ビリンジル、オ・スピーリー、モルボリノ、ビリミジル、ドロリジル、テトラヒドローチェニル、ベングフラニル、またルボリン、ビリミジル、ビリジル、テトラヒドローチェニル、ベングフラニル、ま
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。

[0125]

- 本発明のさらに好ましい他の化合物は、
- Qは、式IIであり、

たはベンゾチアゾリルであり、

- R₁ は、
- (i)下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・オキソ、
- ジープロピルアミノカルボニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・メチルカルボニルオキシ、
- ・炭素環式アリールオキシ、
- ハロゲン化炭素環式アリールオキシ、
- ニトロで置換された炭素環式アリールオキシ、
- メチルで置換されたヘテロシクリルオキシ、
- ・置換へテロシクリルーエチリデンアミノオキシ、
- · tert-ブトキシカルボニルアミノ.
- ・炭素環式アリールカルボニルアミノ、
- ・C。~C。アルキルチオ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・ハロゲン化炭素環式アリール、
- ・・メトキシで置換された炭素環式アリール、
- ・炭素環式アリールチオ
- ニトロで置換されたヘテロシクリルチオ。
- メチルで置換されたヘテロシクリルチオ、
- ・シクロヘキセニル、
- 下記のものから独立に選択された置換基で置換されたカルボシクリル。
- ・・ハロゲン。
- ・・メチル、
- ・・メトキシ、
- ・・メチルスルフィニルで置換された炭素環式アリールで置換されたエテニル、 「010c.]
- 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン。
- ・・ヒドロキシ
- · · = 1-10.
- ・・C₁ ~C₂ アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・オキソ。
- ・・・炭素環式アリール、
- ・・・ヘテロシクリル、
- $\cdots C_1 \sim C_2 P \nu a + b$
- ・・ハロゲン化 $C_1 \sim C_2$ アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₂アルコキシ、

- ・・炭素環式アリールオキシ。
- ハロゲン化モノー炭素環式アリールアミノカルボニル、
- ・・炭素環式アリール。
- ・・ヘテロシクリル、
- 下記のものから独立に選択された置機基で置機されたヘテロシクリル。
- ・・C₁ ~C₂ アルキル、
- ・・炭素環式アリールで置換された $C_1 \sim C_2$ アルキル、
- ・・メトキシ、
- ・・炭素環式アリールで置換されたメトキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

[0127]

- (ii) 下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
- 炭素環式アリール、
- ハロゲン化炭素環式アリール、
- ・ニトロで置換された炭素環式アリール、
- (iii)下記のものから独立に選択された置換基で置換されたC3~C6シクロアルキ

ルル

- オキソで置換されたメチル、
- ・炭素環式アリールで置換されたメチル、
- 炭素環式アリール、
- (iv)カルボシクリル、
- (v)下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・ハロゲン、
- ・ヒドロキシ、
- ・シアノ、
- · 二トロ.
- ·C1~C2アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン。
- ・・オキソ、
- ・・炭素環式アリール、
- ・・メチルで置換された炭素環式アリール。
- ・・炭素環式アリールオキシ、
- · C, ~C, アルコキシ、
- ·ハロゲン化C1~C2アルコキシ、
- ・炭素環式アリールで置換されたC₁ ~C₂ アルコキシ、
- メチルカルボニルオキシ、
- 炭素環式アリールオキシ、
- メトキシで置換された炭素環式アリールオキシ、
- ・アミノ、
- ・ジーメチルアミノ、
- ・炭素環式アリールで置換されたプロパルギニルカルボニルアミノ、
- メチルで置換された炭素環式アリールスルホニルアミノ。
- ハロゲン化メトキシで置換された炭素環式アリールで置換されたNHC(O)NH。
- ハロゲン化メチルチオ、
- シアノで置換された炭素環式アリールチオ、
- ジープロピルアミノスルホニル、
- ・炭素環式アリールで置換されたモノーまたはジーエチルアミノカルボニル、
- 炭素環式アリール、

- メチルで置換されたヘテロシクリル。
- ハロゲン化炭素環式アリールで置換されたヘテロシクリル、

【0128】

(vi) または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ハロゲン、
- · 二トロ、
- C₁ ~C₄ アルキル、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・ハロゲン、
- ・・ハロゲン化炭素環式アリールで置換されたメチルチオ。
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、
- ・・ヘテロシクリル
- ・メトキシ、
- ・メトイン、
- ・炭素環式アリールオキシ、
- メチルで置換された炭素環式アリールオキシ、
- C₁ ~C₃ アルキルチオ、
- ・プロペニルチオ、
- ・炭素環式アリールチオ、
- · C · ~ C 。 アルキルスルホニル、
- ・炭素環式アリールスルホニル、
- メチルで置換された炭素環式アリールスルホニル、
- ・炭素環式アリール
- ハロゲン化炭素環式アリール、
- メチルで置換された炭素環式アリール
- ニトロで置換された炭素環式アリール、
- ヘテロシクリルを表し、

[0129]

- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、
- Yは、-C(O)-であり、
- ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
- カルボシクリルは、1 オキソーインダニル、4 ンデニル、9 オキソーフルオレニル、1 、2 、3 、4 テトラヒドローナフチル、またはビシクロ [2 、2 、1] \wedge アテニル であり、
- ヘテロシクリルは、1H-インドリル、2,4-ジヒドロ-3-オキソーピラゾリル、フリル、ピラゾリル、ピリジル、チエニル、1,2,3-トリアゾリル、1H-ピロリル
- 、2, 3-ジヒドロ-1-オキソーイソインドリル、2, 3-ジヒドローベンゾフリル、 2H-ベンゾビラニル、2-オキソーベンゾビラニル、4-オキソー1, 5, 6, 7-テトラヒドロ-インドリル、イミダゾリル、イソオキサゾリル、モルホリノ、モルホリニル
- 、ビラゾリル、ビリミジル、キノリル、チアゾリル、テトラヒドローチエニル、ベンゾフ ラニル、またはベンゾチアゾリルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。 以下の化合物または場合によりその塩が特に好ましい。

[4k77]

[4/283]

[4/294]

[0130]

本発明の他のより好ましい化合物は、

Qは、式IIであり、

R₁ は、

(i) C, ~C, o アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₁₀アルキル、

- ・C=~C。シクロアルキル、
- ・炭素環式アリール、
- ヘテロシクリル、
- (ii) C3~C6シクロアルキル、
- (iii)炭素環式アリール、
- (iv)またはヘテロシクリルを表し、
- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、
- Yは、-C(O)-であり、
- ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル であり、

ヘテロシクリルは、1,3-ジオキソーイソインドリル、1H-インドリル、1-オキ ソー3H-イソベンゾフラニル、2,3-ジヒドローベンゾ[1,4]ジオキシニル、3 . 4-ジヒドロ-2H-ベンゾ「b] [1,4]ジオキセピニル、4-オキソ-3,4-ジヒドローフタラジニル、9、10、10-トリオキソーチオキサンテニル、9H-キサ ンテニル、ベンゾイミダゾリル、ベンゾ [1,3] ジオキソリル、ベンゾ [2,1,3] オキサジアゾリル、ベンゾ [b] チエニル、フリル、イミダゾリル、イソオキサゾリル、 モルホリノ、オキソラニル、ビベリジル、ビリジル、キノキサリル、チエニル、キノリル 、またはベンゾチアゾリルであり、

- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式工の化合物である。 [0131]
- 本発明のさらに好ましい他の化合物は、
- Qは、式IIであり、
- R 1 は、
- (i) C1 ~ C4 アルキル、

下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、

- ・シクロペンチル、
- 炭素環式アリール、

- ヘテロシクリル。
- (ii)炭素環式アリール、
- (iii)またはヘテロシクリルを表し、
- R_2 は、メチルアミノまたはジメチルアミノであり、
- Lは、式XX~XXIIから選択され、
- Yは、-C(O)-であり、 ここで、炭素環式アリールは、フェニル、ナフチル、アントラニル、またはビフェニル
- であり、 ヘテロシクリルは、9Hーキサンテニル、ペンゾ「1,3]ジオキソリル、ペンゾ「2
- , 1, 3] オキサジアゾリル、ベンゾ [b] チエニル、チエニル、1H-インドリル、キノキサリル、キノリル、またはベンゾチアゾリルであり。
- ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I 化合物である。 【0132】

以下の化合物または場合によりその塩が特に好ましい。

【化98】

[0133]

本発明の好ましい化合物は、

Qは、式IIであり、

R1 14.

(i) C₁ ~C₁₀ アルキル、

下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1,0}$ アルキル、

・ハロゲン、

- ・ヒドロキシ
- ・オキソ、
- · C 。 ~ C 。 アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ヘテロシクリル.
- ・・C₁ ~C₂ アルキルで置換されたヘテロシクリル、
- 炭素環式アリールオキシ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
- ・・ハロゲン、
- ・・ニトロ、
- ・・炭素環式アリール。
- $\cdot \cdot \cdot C_1 \sim C_3$ アルコキシで置換された炭素環式アリール、
- · · C1 ~ C2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₄アルキル、
- ・・・モノーまたはジー $C_1 \sim C_2$ アルキルアミノ、
- · · · · 炭素環式アリールで置換されたモノーまたはジーC₁ ~C₂ アルキルアミノ、
- ・・・ハロゲン化炭素環式アリールで置換されたモノーまたはジー $\mathbf{C}_1 \sim \mathbf{C}_3$ アルキルアミノ
- ・モノーまたはジーC。~C。アルキルアミノ、
- ・下記のものから独立に選択された置換基で置換されたモノーまたはジー $C_1 \sim C_2$ アルキルアミノ
- ・・シアノ
- ・・炭素環式アリール、
- ・・ヘテロシクリル、
- [0134]
- ・モノーまたはジー炭素環式アリールアミノ、
- $\cdot C_1 \sim C_2$ アルキルで置換されたモノーまたはジー炭素環式アリールアミノ、
- · C 。 ~ C 。 アルキルカルボニルアミノ、
- · C , ~ C 。 アルコキシカルボニルアミノ、
- ・炭素環式アリールスルホニルアミノ、
- 下記のものから独立に選択された置換基で置換された炭素環式アリールスルホニルアミノ。
- · · ニトロ.
- ・・C₁ ~C₂ アルキル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・C。~C。アルキルチオ、
- ・下記のものから独立に選択された置換基で置換されたC₁~C₂アルキルチオ、
- ・・モノーまたはジー炭素環式アリールアミノ、
- ・・ハロゲン化モノーまたはジー炭素環式アリールアミノ、
- ・・炭素環式アリール、
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン、
- · · · C₁ ~ C₃ アルコキシ、
- 炭素環式アリールチオ。
- 下記のものから独立に選択された置換基で置換された炭素環式アリールチオ、
- ・・ハロゲン、
- · · C · ~ C 。 アルキル、
- ・炭素環式アリールスルホニル、
- ハロゲン化炭素環式アリールスルホニル、

- ヘテロシクリルチオ。
- · Ca~Caシクロアルキル、
- C₁ ~C₃ アルキルで置換されたC₃ ~C₆ シクロアルキル、
- ・カルボシクリル、
- 下記のものから独立に選択された置機基で置換されたカルボシクリル。
- ・・ハロゲン。
- ・・C₁ ~C₂ アルキル、
- · · C。~C。アルケニル、
- ・・炭素環式アリールで置換されたC。~C。アルケニル、
- ・・C₁ ~C₃ アルキルスルフィニルで置換された炭素環式アリールで置換されたC₂ ~
- Caアルケニル、

[0135]

- ・炭素環式アリール。
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ヒドロキシ、
- · · 二トロ.
- · · C 1 ~ C 2 アルキル、
- ・・下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
- ・・・ハロゲン、
- ・・・ヒドロキシ
- ・・・炭素環式アリール、
- ・・・モノーまたはジー炭素環式アリールアミノ。
- ・・・下記のものから独立に選択された置換基で置換されたモノーまたはジー炭素環式ア

リールアミノ

- ・・・・ハロゲン、
- · · · · 二トロ、
- ・・・・C₁ ~C₃ アルキル、
- · · · · · C1 ~ C2 アルコキシ、
- ・・・ハロゲン化C₁ ~C₃ アルコキシ、
- ・・C₁ ~C₂ アルコキシ、
- ・・下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、
- ・・・ハロゲン、
- ・・・炭素環式アリール。
- ・・炭素環式アリールオキシ。
- ・・C1~C3アルコキシカルボニル、
- ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、
- ・・C₁ ~C₂ アルキルチオ、
- ・・ハロゲン化C₁ ~C₂ アルキルチオ、
- $\cdot \cdot \cdot C_1 \sim C_3$ アルキルスルホニル、
- · · C a ~ C 6 シクロアルキル、 ・・炭素環式アリール、
- ・・ヘテロシクリル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- ・・C₁ ~C₂ アルキル、
- ・・C₁ ~C₂ アルコキシ、
- ・・炭素環式アリールで置換されたC₁~C₃アルコキシ、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

```
[0136]
(ii) Cっ~C。アルケニル、
下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
ハロゲン、
・C。~C。アルコキシ、
・炭素環式アリールで置換されたC。~C。アルコキシ、
炭素環式アリール。
・下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン
・・ヒドロキシ、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシ、
・・ハロゲン化C_1 \sim C_3 アルコキシ、
ヘテロシクリル、
ニトロで置換されたヘテロシクリル、
(i i i) C2~C4アルキニル、
炭素環式アリールで置換されたC2~C4アルキニル、
(iv) C<sub>3</sub>~C<sub>6</sub>シクロアルキル、
下記のものから独立に選択された置換基で置換されたC。~C。シクロアルキル、
· C · ~ C · アルキル、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub> ~C<sub>3</sub> アルキル、
・・ヒドロキシ。
・・オキソ、
・・炭素環式アリール。
モノーまたはジーC。~C。アルキルアミノ、
・炭素環式アリールで置換されたモノーまたはジーC。~C。アルキルアミノ、
炭素環式アリール、
[0137]
(v) C3~C6シクロアルケニル、
C1~C3アルキルで置換されたC3~C5シクロアルケニル、
(vi)カルボシクリル、
下記のものから独立に選択された置換基で置換されたカルボシクリル、
・ヒドロキシ、
· 二トロ.
(vii)炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
ハロゲン、
・ヒドロキシ、
シアノ、
・ニトロ
· C · ~ C 。 アルキル、
下記のものから独立に選択された置換基で置換されたC。~C。アルキル、
・・ハロゲン、
・・ヒドロキシ、
・・オキソ。
· · C1 ~ C3 アルコキシ、
· · 炭素環式アリールオキシ、
・・モノーまたはジーC_1 \sim C_3 アルキルアミノーNーオキシ、
・・モノーまたはジーC_1 \sim C_3 アルキルアミノ、
・・炭素環式アリールで置換されたモノーまたはジーC_1 \sim C_2アルキルアミノ、
・・モノーまたはジー炭素環式アリールアミノ、
```

- ・・C₁~C₂アルコキシで置換されたモノーまたはジー炭素環式アリールアミノ、 ・・炭素環式アリール。 ・・ハロゲン化炭素環式アリール。 · · ヘテロシクリル、 ・・C。~C。アルキルで置換されたヘテロシクリル、 · C。~C。アルケニル、 ・炭素環式アリールで置換されたC。~C。アルケニル、 C。~C。アルコキシ、 下記のものから独立に選択された置換基で置換されたC₁~C₃アルコキシ、 ・・ヒドロキシ。 ・・ハロゲン。 ・・カルボキシ。 ・・モノーまたはジー $C_1 \sim C_3$ アルキルアミノ、 ・・炭素環式アリール、 ・・ハロゲン化炭素環式アリール、 ・・ヘテロシクリル。 ・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、 ・・・ヘテロシクリル。 ・・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、 ・・・・ハロゲン、 ・・・・C₁ ~C₃ アルキル、 ・・・ハロゲン化C₁~C₂アルキル、 C。~C。アルケニルオキシ、 · C 4 ~ C 3 アルキルカルボニルオキシ、 ・炭素環式アリールオキシ、 下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、 ・・ハロゲン。 · · C1 ~ C4 アルキル、 ・・ハロゲン化C, ~C< アルキル、 ・・C1~C2アルコキシ、 ・ヘテロシクリルオキシ、 下記のものから独立に選択された置機基で置機されたヘテロシクリルオキシ。 ・・ハロゲン。 ・・C₁ ~C₂ アルキル、 · · ハロゲン化C₁ ~C₃ アルキル、 【0139】 ・炭素環式アリールで置換されたS(O)。O、 カルボキシ、 · C - ~ C = アルコキシカルボニル、 モノーまたはジーC。~C。アルキルアミノカルボニル、 ・炭素環式アリールで置換されたモノーまたはジーC、~C。アルキルアミノカルボニル ・アミノ、 ・モノーまたはジーC₁ ~C₂ アルキルアミノ、 ・シアノで置換されたモノーまたはジーC₁~C₄アルキルアミノ、 ・モノーまたはジー炭素環式アリールアミノ、 · C₁ ~ C₃ アルキルカルボニルアミノ、
 - ・炭素環式アリールスルホニルアミノ、・C₁ ~ C₂ アルキルで置換された炭素環式アリールスルホニルアミノ、

- ・炭素環式アリールで置換されたNHC(O)NH。
- ・C。~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O)NH、
- ハロゲン化C、~C。アルコキシで置換された炭素環式アリールで置換されたNHC(O) NH.
- C。~C。アルキルチオ、
- ハロゲン化C。~C。アルキルチオ、
- ・炭素環式アリールチオ。
- ハロゲン化炭素環式アリールチオ、
- ・C。~C。アルキルで置換された炭素環式アリールチオ、
- ヘテロシクリルチオ、
- C₁ ~C₂ アルキルスルホニル、
- モノーまたはジーC₁~C₂アルキルアミノスルホニル、
- ・炭素環式アリール、
- 下記のものから独立に選択された置機基で置換された炭素環式アリール、
- ・・C₁ ~C₂ アルキル、
- · · ハロゲン化C₁ ~C₇ アルキル、
- ヘテロシクリル。
- 下記のものから独立に選択された置換基で置換されたヘテロシクリル、
- · · C₁ ~C₃ アルキル、
- ・・炭素環式アリール、
- ・・ハロゲン化炭素環式アリール、

【0140】

(viii) ヘテロシクリル.

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ・ハロゲン
- ・ヒドロキシ、
- ・シアノ、
- · 二トロ.
- · C · ~ C 。 アルキル、
- 下記のものから独立に選択された置換基で置換されたC₁ ~C₄ アルキル、
- ・・ハロゲン
- ・・ヒドロキシ、
- ・・オキソ、
- · · C 1 ~ C 2 アルキルカルボニルオキシ、
- · · C 1 ~ C 2 アルコキシカルボニル、
- · · C 1 ~ C 2 アルキルチオ、
- ・・炭素環式アリールで置換されたC,~C。アルキルチオ、
- ・・ハロゲン化炭素環式アリールで置換されたC。~C。アルキルチオ、
- ・・炭素環式アリール。
- ・・下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・・ハロゲン。
- · · · 二トロ、 【0141】
- ・・ヘテロシクリル、
- · C1 ~ C2 アルコキシ、
- ・炭素環式アリールで置換されたC。~C。アルコキシ、
- 炭素環式アリールオキシ、
- ・C、~C。アルキルで置換された炭素環式アリールオキシ、
- ·モノーまたはジーC1~C2アルキルアミノ、
- · C 1 ~ C 4 アルキルカルボニルアミノ、

```
・C<sub>1</sub> ~C<sub>2</sub> アルキルチオ、
・炭素環式アリールチオ。
ハロゲン化炭素環式アリールチオ
C<sub>1</sub> ~C<sub>3</sub> アルコキシカルボニルで置換された炭素環式アリールチオ、
ヘテロシクリルチオ、
・C、~C。アルキルで置換されたヘテロシクリルチオ、
· C。~C。アルキルスルホニル、
・炭素環式アリールスルホニル、
・C。~C。アルキルで置換された炭素環式アリールスルホニル。
· C 4 ~ C 9 アルコキシカルボニル、
・炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン。
· · 二トロ、
・・C<sub>1</sub> ~C<sub>3</sub> アルキル、
· · ハロゲン化C : ~C : アルキル、
· · C<sub>1</sub> ~ C<sub>2</sub> アルコキシ、
・・ハロゲン化C。~C。アルコキシ、
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・C<sub>1</sub> ~C<sub>3</sub> アルキル、
··ハロゲン化C<sub>1</sub>~C<sub>3</sub>アルキル、
・・C1 ~C3 アルコキシ、
・・C<sub>1</sub> ~C<sub>3</sub> アルコキシカルボニルを表し、
[0142]
 R2は、-NHNH2、-NHNHBoc、-N(R2a)(R2b)、モルホリノ、
4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 ここで、Roaは、HまたはCoへCoアルキルであり、
 R2 kは、C1 ~ C2 アルキル、下記のものから独立に選択された置換基で置換された
C1~Caアルキル、
・ヒドロキシ、
·C1~C2アルコキシ、
アミノ、
·-NHBoc.
C。~C。シクロアルキル、
・炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン、
· · C<sub>1</sub> ~ C<sub>3</sub> アルキル、
\cdot \cdot \cdot C_1 \sim C_3 アルコキシ、
· · - SO2 NH2,
ヘテロシクリル、
C_3 \sim C_6シクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基
で置換された炭素環式アリール、
ハロゲン。
・C1~C2アルキル、
C - ~ C っ アルコキシ、
または式IVの基、
```

ここで、Bocは、カルバミン酸 tertーブチルエステルであり、R $_3$ は、C $_1$ 〜C $_3$ アルキルまたは下記のものから独立に選択された置換基で置換されたC $_1$ 〜C $_3$ アルキ

```
N.
```

- ・炭素環式アリール。
- ハロゲン化炭素環式アリール。
- ・C 、 ~C 。アルコキシで置換された炭素環式アリール、
- Lは、式V~XIXから選択され、
- ここで、 R_4 は、Hまたは $C_1 \sim C_3$ アルキルであり、

[0143]

 R_5 は、H、 C_1 \sim C_3 アルキル、または置換炭素環式アリールで置換された C_1 \sim C_3 アルキルであり、

Yは- (CH2) mであり、mは0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり。

カルボシクリルは、9H-フルオレニル、9-オキソーフルオレニル、アセナフチル、 アントラキノニル、イングニル、またはインデニルであり、

ヘテロシクリルは、1、2、3ーチアジアゾリル、1、2、3ートリアゾリル、1、2 ジヒドロー3ーオキソービラゾリル、1、3、4ーチアジアブリル、1、3・ジオキソーイソインドリル、1、3・ジオキソラニル、1 Hーインドリル、1 Hーピロロ〔2、3 ー c] ピリジル、1 Hーピロリル、2、2 '、5 '、2" ーターチオフェニル、2、2 ' ビチオフェニル、2、3ージヒドロー1ーオキソーインドリル、2、3ージヒドローペング [1、4] ジオキシニル、2、3ージヒドローシングフリル、2、4ージヒドロー3ーオキソーピラゾリル、2Hーベングビラニル、2・オキソーピロリジニル、3、4ージヒドロー2Hーベング [1、4] ジオキセピニル、4Hーベング [1、3] ジオキシニル、4 Hーベング [1、4] ジオキャンー、4 Hーベング [1、4] ジオキシー、5、6、7ーデトラヒドローンドリル、4ーオキソーベング ピラニル、9 Hーカルバグリル、9 Hーキサンテニル、アゼチジニル、ベングフリル、ベング・アリル、スツグ・「2、3」ジオキツリル、ベング・「2、5 「カーオーバング・アリル、フリル、イミグケ [2、1ーち] チアブリル、スラグリル、インオキサブリル、フリル、イミグケ [2、1ーち] チアブリル、スラグリル、インオキサブリル、フリル、イミグケ [2、1ーち] チアブリル、スラグリル、インオキサブリル、

、モルホリノ、モルホリニル、オキソラニル、ビベラジル、ビベリジル、ビラゾロ[5, 1-b] チアゾリル、ビラゾリル、ビリジル、ビリミジル、ビロリジル、キノリル、キノ キサリル、チアゾリジル、チアゾリル、チエニル、またはチオラニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式 I の化合物である。 【0144】

本発明の他の好ましい化合物は、

Qは、式IIであり、

R₁ は、

- (i)下記のものから独立に選択された置換基で置換された $C_1 \sim C_{10}$ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ、
- 炭素環式アリールオキシ。
- ハロゲン化炭素環式アリールオキシ。
- ・シアノで置換されたモノーC。~C。アルキルアミノ、
- ・炭素環式アリールで置換されたモノーまたはジーC,~C。アルキルアミノ、
- モノー炭素環式アリールアミノ、
- メチルで置換されたモノー炭素環式アリールアミノ。
- メチルで置換された炭素環式アリールスルホニルアミノ。
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン
- · · 二トロ.
- · · C₁ ~ C₄ アルキル、

- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC。~C。アルキル、
- · · C · ~ C 。 アルコキシ、
- ・・ハロゲン化C。~C。アルコキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、

[0145]

- (ii)下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- ・炭素環式アリール、
- メトキシで置機された炭素環式アリール。
 - (iii) 炭素環式アリールで置換されたC2~C2 アルキニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル
- (vi) 炭素環式アリール、

下記のものから独立に選択された置換基で置換された炭素環式アリール、

- ・ハロゲン、
- ・ヒドロキシ.
- ・シアノ、
- · 731
- · C1~Coアルキル、
- ·ハロゲン化C₁~C₉アルキル、
- ·C1~C0アルコキシ、
- 下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
- ・・ハロゲン
- ・・ハロゲン化炭素環式アリール、
- プロペニルオキシ、
- ・メチルアミノ、
- · ジーC+ ~C2 アルキルアミノ、
- ・シアノで置換されたジーC。~C。アルキルアミノ、
- ・メチルチオ
- ハロゲン化メチルチオ、
- (vii) ヘテロシクリル、

または下記のものから独立に選択された置換基で置換されたヘテロシクリル、

- ハロゲン。
- C₁ ~C₄ アルキル、
- ・ヒドロキシで置換されたC、~C。アルキル、
- ・炭素環式アリールで置換されたC。~C。アルキル、
- ・メトキシ、
- C。~C。アルコキシカルボニル。
- メトキシカルボニルで置換された炭素環式アリールチオ、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- ・・ハロゲン化メチル、
- ヘテロシクリルを表し、

【0146】

- R。は、メチルアミノまたはジメチルアミノであり、
- Lは、式Va、VIIIa、またはIXaから選択され、
- ここで、 R_4 および R_5 は、Hまたは $C_1 \sim C_3$ アルキルから独立に選択され、
- Yは-(CH₂)_mであり、<math>mは0または1であり、

ここで、炭素環式アリールは、フェニル、ナフチル、フェナントリル、またはビフェニルであり、

カルボシクリルは、9H-フルオレニル、アセナフチル、またはアントラキノニルであ り。

へテロシクリルは、1、2、3 ーチアジアゾリル、1、2、3 ートリアゾリル、1、2 ージトドロー3ーオキソービデゾリル、1、3 ージオキソラニル、1 Hーインドリル、1 Hービロリル、2、2、5、5、2、9 ーチオナスェル、2、2 ービチオフェニル、2、3 ージヒドローベング [1、4]ジオキシニル、3、4 ージヒドローベング [1、4]ジオキシニル、3、4 ージヒドロー2 Hーベング [1、4]オオサジニル、4 ーオキソーベング [3] ジオキソリル、ベング [5] ーチェル、ベングフリル、ベング [5] ーチェール、ベングフリル、ベング・4 デアゾリル、フリル、イソオキサゾリル、オキソラニル、ビラゾロ [5]、1 ー b] チャブリル、ドラブリル、ビリジンル、キングル、チェアサリル、チェアリル、キュアリル、キュアリル、キュアリル、キュアリル、キュアリル、ナュニル、2 Hーベングビラニル、4

Hーベング [1,3]ジオキシニル、アゼチジニル、イミダグ [2,1-b]チアゾリル、モルホリニル、または2,3-ジヒドローベングフリルであり、ハロゲンは、フルオロ、クロロ、プロモ、またはヨードである、式Iの化合物である。[6147]

本発明の他のさらに好ましい化合物は、

Oは式IIであり

R, U.

- (i) 下記のものから独立に選択された置換基で置換された $C_1 \sim C_7$ アルキル、
- ・メトキシ、
- ・炭素環式アリールで置換されたメトキシ。
- 炭素環式アリールオキシ。
- ハロゲン化炭素環式アリールオキシ
- シアノで置換されたモノーエチルアミノ、
- ・炭素環式アリールで置換されたジーメチルアミノ、
- ・モノー炭素環式アリールアミノ、
- メチルで置換されたモノー炭素環式アリールアミノ。
- メチルで置換された炭素環式アリールスルホニルアミノ。
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール。
- ・・ハロゲン。
- · · 二トロ、
- · · C 1 ~ C 2 アルキル、
- ・・炭素環式アリールで置換されたC₁~C₄アルキル、
- ・・ヒドロキシで置換されたC。~C。アルキル、
- ・・メトキシ、
- ・・ハロゲン化メトキシ、
- ・炭素環式アリールで置換されたヘテロシクリル、
- (ii)下記のものから独立に選択された置換基で置換されたC。~C。アルケニル、
- ・炭素環式アリールで置換されたメトキシ、
- 炭素環式アリール、
- メトキシで置換された炭素環式アリール、

[0148]

- (i i i) 炭素環式アリールで置換されたブチニル、
- (iv)炭素環式アリールメチルで置換されたシクロヘキシル、
- (v)カルボシクリル、
- (vi)炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、

```
ハロゲン。
ヒドロキシ。
シアノ
アミノ、
・C。~C。アルキル、
ハロゲン化メチル。
・C。~C。アルコキシ、
下記のものから独立に選択された置換基で置換されたC。~C。アルコキシ、
・・ハロゲン、
・・ハロゲン化炭素環式アリール、
プロペニルオキシ、
・ジーC_1 \sim C_2 アルキルアミノ、
・シアノで置換されたジーC。~C。アルキルアミノ、
・メチルチオ、
ハロゲン化メチルチオ、
(vii) ヘテロシクリル、
または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・ハロゲン、
· C 。 ~ C 。 アルキル、
・ヒドロキシで置換されたC。~C。アルキル、
・炭素環式アリールで置換されたC<sub>1</sub> ~ C<sub>2</sub> アルキル、
・メトキシ、
エトキシカルボニル。
メトキシカルボニルで置換された炭素環式アリールチオ、
・炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン、
・・ハロゲン化メチル。
ヘテロシクリルを表し、
[0149]
 Roは、メチルアミノまたはジメチルアミノであり、
Lは、式XX~XXIIから選択され、
Ytt. - (CHo) ... であり、mtt. 0または1であり、
 ここで、炭素環式アリールは、フェニル、ナフチル、またはビフェニルであり、
カルボシクリルは、アセナフチルであり、
ヘテロシクリルは、1H-インドリル、1H-ピロリル、2、3-ジヒドローベンゾ[

    4] ジオキシニル、9H-カルバゾリル、ベンゾ「1,3] ジオキソリル、フリル、

ピラゾリル、チエニル、4-オキソーベンゾピラニル、アゼチジニル、イミダゾ「2,1
-b] チアゾリル、ピリジル、イミダゾリル、2、3-ジヒドローベンゾフリル、または
ベンゾ [b] チェニルであり、
ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。
【0150】
以下の化合物または場合によりその塩が特に好ましい。
```

【化100】

【4E106】

【化107】

【4E108】

【化109】

【化110】

【4k112】

【化113】

【化115】

[0151]

- 本発明の好ましい化合物は、
- Qは、式IIであり、
- R₁ は、
- (i) C1 ~C16アルキル、
- 下記のものから独立に選択された置換基で置換された $C_1 \sim C_{1-6}$ アルキル、
- ハロゲン、
- ・カルボシクリル、
- 炭素環式アリール、
- 下記のものから独立に選択された置換基で置換された炭素環式アリール、
- ・・ハロゲン、
- · 二トロ、
- ・・C₁ ~C₂ アルキル、

```
· · ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキル、
(ii)Co~Coアルケニル、
炭素環式アリールで置換されたC。~C。アルケニル、
[0152]
(iii) 炭素環式アリール、
下記のものから独立に選択された置換基で置換された炭素環式アリール、
ハロゲン。
・シアノ、
· 二トロ、
・C。~C。アルキル、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>5</sub>アルキル、
・・ハロゲン。
・・オキソ。
・C。~C。アルケニル、
C。~C。アルコキシ、
下記のものから独立に選択された置換基で置換されたC<sub>1</sub>~C<sub>2</sub>アルコキシ、
・・ハロゲン。
・・ヘテロシクリル、
・・ハロゲン化ヘテロシクリル。
炭素環式アリールオキシ、
下記のものから独立に選択された置換基で置換された炭素環式アリールオキシ、
・・ハロゲン、
· · 二トロ.
ヘテロシクリルオキシ。
下記のものから独立に選択された置換基で置換されたヘテロシクリルオキシ、
・・ハロゲン、
・・C, ~C。アルキル、
· · ハロゲン化C<sub>1</sub> ~C<sub>3</sub> アルキル、
· C。~C。アルコキシカルボニル、
モノーまたはジーC。~C。アルキルアミノ、
· C 。 ~ C 。 アルキルカルボニルアミノ、
・炭素環式アリールジアゾ、
・モノーまたはジーC。~C。アルキルアミノで置換された炭素環式アリールジアゾ、
C<sub>1</sub> ~C<sub>2</sub> アルキルスルホニル、
炭素環式アリール。
【0153】
(iv) ヘテロシクリル、
または下記のものから独立に選択された置換基で置換されたヘテロシクリル、
ハロゲン。
· C · ~ C 。 アルキル、
・下記のものから独立に選択された置換基で置換されたC_1 \sim C_2 アルキル、
・・ハロゲン、
・・オキソ、
・・炭素環式アリールカルボニルアミノ。
・・ハロゲン化炭素環式アリールカルボニルアミノ、
・・ヘテロシクリル、
・・下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・・ハロゲン、
・・・C<sub>1</sub> ~C<sub>3</sub> アルキル、
```

· · · ハロゲン化C₁ ~C₃ アルキル、

```
C<sub>1</sub> ~C<sub>2</sub> アルコキシ、
· C。~C。アルキルカルボニルアミノ、
・炭素環式アリールスルホニル
C。~C。アルコキシカルボニル、
炭素環式アリール、
ハロゲン化炭素環式アリール。
ヘテロシクリル。
下記のものから独立に選択された置換基で置換されたヘテロシクリル、
・・ハロゲン、
・・C。~C。アルキル、
・・ハロゲン化C。~C。アルキルを表し、
 R2は、-NHNH2、-NHNHBoc、-N(R2 )(R2 b)、モルホリノ、
4-アセチルーピペラジル、または4-フェニルーピペラジルであり、
 ここで、R。。は、HまたはC。~C。アルキルであり、
【0154】
 R_{2b}は、C_1 \sim C_4 アルキル、下記のものから独立に選択された置換基で置換された
C1~C4アルキル、
・ヒドロキシ、
· C, ~C, アルコキシ、
アミノ、
·-NHBoc.
C3~C6シクロアルキル、
炭素環式アリール。
下記のものから独立に選択された置換基で置換された炭素環式アリール、
・・ハロゲン
· · C1 ~ C3 アルキル、
・・C。~C。アルコキシ、
· · - SO2 NH2,
ヘテロシクリル。
Ca~Caシクロアルキル、炭素環式アリール、下記のものから独立に選択された置換基
で置換された炭素環式アリール、
ハロゲン、
・C。~C。アルキル、
· C, ~C, アルコキシ、
または式IVの基
 ここで、Bocは、カルバミン酸tert-ブチルエステルであり、Roは、Co~C
。アルキルまたは下記のものから独立に選択された置換基で置換されたC。~C。アルキ
・炭素環式アリール。
ハロゲン化炭素環式アリール、
・C、~C。アルコキシで置換された炭素環式アリール、
Lは、式V~XIXから選択され、
 ここで、R<sub>4</sub>は、HまたはC<sub>1</sub>~C<sub>3</sub>アルキルであり、
[0155]
R。は、H、C,~C。アルキル、または置換炭素環式アリールで置換されたC,~C
。アルキルであり、
 Yは、-S(O)2-であり、
 ここで、炭素環式アリールは、フェニル、ビフェニル、またはナフチルであり、
```

カルボシクリルは、7、7-ジメチル-2-オキソービシクロ「2、2、1] ヘプチル

であり、

ヘテロシクリルは、1, 2, 3, 4-テトラヒドローイソキノリル、1, 2, 3-チア ジアゾリル、1H-ピロリル、ベング [2, 1, 3] オキサジアゾリル、ベング [b] チェニル、フリル、イミグゲリル、イソオキサゾリル、ピラゾリル、ピリジル、キノリル、チアゾリル、またはチェニルであり、

ハロゲンは、フルオロ、クロロ、ブロモ、またはヨードである、式Iの化合物である。

以下の化合物または場合によりその塩が特に好ましい。

以下の化合物または場合によりでの温が特に好る 【化116】

[0157]

本発明の好ましい化合物は、

Qは、式IIであり、

 \mathbf{R}_1 は、 \mathbf{H} 、 $-\mathbf{CO_2}^{\,\,\mathrm{t}}$ $\mathbf{B}\mathbf{u}$ 、または $-\mathbf{CO_2}$ $\mathbf{B}\mathbf{n}$ ($\mathbf{B}\mathbf{n}$ はベンジル基である)から選択され、

 R_2 は、メチルアミノまたはジメチルアミノであり、

Lは、式XX~XXIIから選択され、

Yは、単結合である、式Iの化合物またはその塩である。

[0158]

本発明の一実施形態には、MCH受容体に選択的に結合する本発明の化合物が含まれ、 このような選択的結合は好ましくは、1種または複数の他のGPCR、好ましくはNPY に関するKiにより証明され、特にMCH受容体、好ましくはMCHR1に関するKiよ りも少なくとも10倍高い。

【0159】

ここで使用する場合、「アルキル」という用語は、例えば、これらに限らないが、メチル、エチル、nープロビル、イソプロビル、nーブチル、sーブチル、tーブチル、nーベンチル、イソベンチル、tーベンチル、nーベキシルなどを含む、直鎖および分投鎖を有する炭化水素化合物のことである。
[0160]

「アルコキシ」という用語は、式:一〇一アルキルの置換基を示している。

[0161]

本明組建中の様々な箇所で、本発明の化合物の電換業を、群として記載している。特に 本発明には、このような群のメンバーのそれぞれ、さらに個々の副次的組み含わせが含まれている。Gタンパク賃其役型受容体(GPCR)は、細胞表面で容体の主なクラスであり、これと、多くの神経伝達物質とが相互作用して、その効果を伸介する。GPCRは、7回腹電道ドメインを有すると予測されていて、アデニリルシクラーゼの刺激などの細胞内生化学的連鎖反応を伴うGタンパク質結合受容体の活性化を力して、そのエフックと決度する。環式ペプチドであるメラニン凝集ホルモン(MCH)は、オーファンGタンパク質共役型受容体SLC-1の内在リガンドと同定されている。例えば、Shinonura et al., Biochea、Biophys、Res、Commu、261巻、622-26頁(1999年参照、研究により、MCHは、数多くの行動が答を変化させる神経伝達物質/モジュレーター/レギュレータとして作用することが示されている。

[0162]

哺乳動物MCH(アミノ酸19個)は、ラット、マウスおよびヒトの間でかなり保存さ れ、100%のアミノ酸相同性を示しているが、その生理的役割はあまり明白ではない。 MCHは、摂食、水収支、エネルギー代謝、覚醒/注意状態、記憶および認識機能ならび に精神疾患を含む様々なプロセスに関係すると報告されている。概観に関しては、1. Bak er, Int. Rev. Cytol, 126券:1-47頁(1991):2. Baker, TEM 5券:120-126頁(1994年):3. Na hon, Critical Rev. in Neurobiol 221券:221-262頁(1994年):4, Knigge et al., Peptid es 18(7)券:1095-1097頁(1996年)参昭、摂食または体重調節でのMCHの役割は、Qu et. al., Nature、380巻:243-247頁(1996年)により支持されていて、MCHは、ob/+マウ スに比較してob/obマウスの視床下部中で過剰に発現され、絶食はさらに、絶食の間 に、肥満したマウスと正常なマウスの両方でMCHmRNAを高めることが証明されてい る。さらに、Rossi et al., Endocrinology 138巻:351-355頁(1997年)によって報告され ているように、MCHは、これを側脳室に注入すると、正常なラットの摂食を刺激する。 さらに、MCHは、α-MSHの行動に対する作用に機能的に拮抗すると報告されている :Miller et al., Peptides 14卷:1-10頁(1993年); Gonzalez et al, Peptides 17卷:171-177頁(1996年);およびSanchez et al., Peptides 18巻:3933-396頁(1997年)参照。加えて 、ストレスが、POMCmRNAレベルを高める一方で、MCH前駆体プレプロMCH(ppMCH) mRNAレベルを低下させることが判明している; Presse et al., Endocri nology 131巻: 1241-1250頁(1992年)。したがって、MCHは、ストレスに対する反応、さ らに摂食および性活動に統合的神経ペプチドとして役立ちうる; Baker, Int. Rev. Cytol . 126卷:1-47頁(1991年); Knigge et al., Peptides 17卷:1063-1073頁(1996年)。 【0163】

MCHペプチドの局在および生物活性は、MCH受容体活性の調節が、数多くの治療用

涂に役立ちうることを示している。MCHは、外側視床下部、つまり、渇きおよび等腹の 調節に関与する脳領域で発現される: Grillon et al., Neuropeptides 31巻:131-136頁(1 997年);最近になって、強力な食欲促進薬であるオレキシンAおよびBは、外側視床下部 のMCHと非常によく似た局在性を示すことが判明している; Sakurai et al., Cell 92 券:573-585頁(1998)。この脳領域でのMCHmRNAレベルは、ラットでは、エサの欠乏 の2.4 時間後に高まる: Herve and Fellmann, Neurpeptides 31巻:237-242頁(1997年):イ ンスリン注射後に、MCH免疫反応性間核体および鍵維の大量および染色強度の著しい増 加が、MCHのmRNAレベルの著しい増加と共に観察された; Bahjaoui-Bouhaddi et a 1., Neuropeptides 24巻:251-258頁(1994年)。ラットの摂食を刺激するMCHの効力(Ro ssi et al., Endocrinology 138巻:351-355頁、(1997年)) と一致したMCHmRNAレ ベルが、肥満したob/obマウスの視床下部ではアップレギュレーションされ(Quet al., Nature 380巻:243-247頁(1996年))、摂食量および体重増加の低下を示すレプチン 奶酒ラットの視床下部では低下する(Sahu, Endocrinology 139巻:795-798頁(1998年)) という観察とは矛盾しない。MCHは、摂食行動およびHPA(視床下部下垂体/副腎系) 内でのホルモン分泌に対するその効果において、メラノコルチン系の機能性アンタゴニ ストとして作用していると思われる; Ludwig et al., Am. J. Physiol, Endocrinol, Met ab. 274巻: E627-E633頁、(1998年)。同時に、これらのデータは、エネルギーバランスお よびストレスに対する応答の調節における内因性MCHの役割を示していて、肥満および ストレス関連疾患の治療で使用するために、MCH受容体として作用する特異的化合物の 開発に合理性を与えている。 [0164]

したがって、MC日受容体アンタゴニストが、肥満または肥満関連疾患の予防または治 際のために望ましい。肥満関連疾患は、II型糖尿病、X症候群、肺糖能障害、異脂肪血 底、高血圧、短動脈性心疾患および、アテローム硬化症を含む他の心臓血管疾患・肥満お よび乾寒に随件するインスリン抵抗性、糖尿病性合併症とよび多嚢胞性現れ症候群(PCOS)などの他の疾患、糖尿病性腎症、腎炎、糸球体硬化症、ネフローゼ症候群、高血圧 性腎硬化症、未期腎疾患および強小アルブミン尿症を含む特定の腎疾患、さらに、特定の 摂食異常、などの肥満に直接的、または間接的に随伴する疾患である。 【10165】

現在までに研究されている種では、MC H細胞群のニューロンの主な部分は、それらが 位置し、いわゆる「雑体外路」運動回路の一部でありうる外側限床下部および初味腹部の 網域にはほ子変の位置を占めている。これらは、視床および大脳校療、視床下部領域なら びに視床下核、黒質および中脳中央部への相互接続を含む相当な線条体一淡蓄球速心性 (striato-and pallidofugal) 経路を含む。Bittencourt et al., J. Comp. Neurol. 319 かつ信仰的運動新性と共に発現するためのブリッジまたはメカニズムを示しうる。 臨床的 には、錐体外路回路が関わっていることが知られているパーキンソン病おまびハンチント ン局路存立との運動検索でのこのMC 日系の防速を考慮することは価値がある。 [0166]

ト・選信的連鎖研究によって、確実な h M C H 座は染色体 1 2 (12 q 2 3 ~ 2 4) に かつ変限 h M C H 座は染色体 5 (5 q 1 2 ~ 1 3) に定められている。(Pedeutour et al.、1994年)。座 1 2 q 2 3 ~ 2 4 は、I I 型常染色体優性 小脳性運動失調症(S C A 2) がマッセングきれている速と一致する: Abburger et al.、(ytogenet. Cell. Genet. 61 巻。:252-255頁(1992年): Twells et al.、(ytogenet. Cell. Genet. 61 巻。:252-255頁(1992年): Twells et al.、(ytogenet. Cell. Genet. 61 巻::262-265頁(1992年): Twells et al.、(ytogenet. Cell. Genet. 61 巻::262-265頁(1992年): Twells et al.、(ytogenet. Cell. Genet. 61 巻::262-265頁(1992年): Vリエー所に関する遺伝子が、座 12 q 2 3 ~ 2 4 化マッピングきれている。C roddock et al.、Hum. Mol. Genet. 2巻 :1941-1943頁、(1993年)。グリエー帰はサラチノサイト接着異常さよびいくつかのファミリーの精神病により特徴付けられる。ラットもよびヒトの脳でのM C H 神経系の機能および神経解解学的パターンから見ると、M C H 遺伝子は、S C A 2 またはゲリエー飛に関する良い機能となりる。奥峡深冰にとに、高い社会的影 響を有する疾患が、この摩にマッピングされている。確かに、轉務委補の慢性または急性 形の原因であるこの適広下は、遺伝維節分析を使用して、染色体ち 9.1.2~13 に割当て られている。Yekli et al., Nature (London) 348を:767-768(1990年): Westbrook et al., Cytogenet. Cell. Genet. 61巻:225-231頁(1992年)。さらに、別の系の証拠により、 土を精神が製房の産の染色体ち 9.1.1.2~13.3への割当てが支持されている; Sh errington et al., Nature (London) 336巻:164-167頁(1988年): Bassett et al., Lance t 1巻:799-801頁(1988年); Gilliam et al., Genomics 5巻:940-944頁(1989年)。前記の 研究により、MC Hが、網準変性疾患および情動解室において役割を有するであろうこと が示唆されている。

[0167]

MCH類似化合物のその他の治療用途が、他の生体系で観察されたMCHの効果により 示されている。例えば、MCHは、オスおよびメスのラットの性機能を調節しうるかもし れない。成体ラットの精巣の、生殖細胞中に、MCH転写物およびMCHペプチドが発見 され、このことは、MCHが、幹細胞の再生および/または早期精母細胞の分化に関与し ているであろうことを示している:Hervieu et al., Biology of Reduction 54巻:1161-1 172頁、(1996年)。内側視索前領域(MPOA)または腹内側核(VMN)に直接注入さ れたMCHは、メスのラットの性行動を刺激した: Gonzalez et al., Peptides 17巻:171 -177頁(1996)年。エストラジオールを処置された、卵巣摘出ラットでは、MCHは、黄体 形成ホルモン (LH) 放出を刺激し、抗MCH抗血清は、LH放出を阻害した; Gonzalez et al., Neuroendocrinology 66巻: 254-262頁(1997年)。MC H細胞体の大部分を含有す る不確帯は以前から、排卵前期LH上昇に関する調節部位と同定されている:MacKenzie et al., Neuroendocrinology 39巻:289-295頁(1984年)。MCHは、ACTHおよびオキ シトシンを含む下垂体ホルモンの放出に影響を及ぼすことが報告されている。MCH類似 体を、てんかんの治療で使用することもできるかもしれない。PTZ発作モデルでは、発 作誘発の前にMCHを注入すると、ラットおよびモルモットの両方で、発作を防ぐことが でき、このことは、PTZ誘発発作に関わる神経回路にMCH含有ニューロンが関与して いるであろうことを示している; Knigge and Wagner, Peptides 18巻:1095-1097頁(1997 年)。MCHは、認識機能の行動相関に影響を及ぼすことが観察されている。ラットでは . MCH治療により、受動的回避応答の消去が促進され:McBride et al., Peptides 15 巻: 757-759頁(1994年); これにより、MCH受容体アンタゴニストは、記憶貯蔵および/ または保持に役立つ可能性が生じた。疼痛の調節または知覚でのMCHのありうる役割は MCH陽性線維による水道周囲灰白(PAG)の密な神経支配に支持される。最後に、 MCHは、水分摂取の調節に関与しているであろう。意識のあるヒツジにMCHをICV 注入すると、血災容量の増加に応答して、利尿、ナトリウム排泄およびカリウム排泄に変 化が生じる: Parkes, J. Neuroendocrinol, 8巻:57-63頁(1996年)。脳の体液調節領域に MCHが存在することを報告している解剖学的データと共に、この結果は、MCHは、哺 乳動物において、体液ホメオスターシスの中枢制御に関わる重要なペプチドであることを 示している。 [0168]

最近の別用例では、MCHR1アンタゴニストは窓外にも、抗うつ薬および/または抗 不安薬として使用できることが証明された。MCHR1アンタゴニストは、社会的相互作 肌、強制水沫試験および超音波発声などの、げっ面類モデルにおいて、抗うつおよび杭不 安活性を示すことが報告されている。したがって、MCHR1アンタゴニストは、うつ病 および/または不安を申う患者を単独で治療するために使用することができるからしれな い、さらに、MCHR1アンタゴニストは、うつ病さなび/または石安および肥満を患っ ている患者を治療するために使用することができるからしれない。

[0169]

本発明は、哺乳動物MCH1受容体の活性を低下させることにより異常が緩和される患者の異常を治療するための方法を提供しており、この方法は、哺乳動物MCH1受容体アンタゴニストである化合物を異常を治療するために有効な量で、患者に投与することを含

む、別の実施形態では、異常は、ステロイドまたは下垂体ホルモン障害、エビネフリン放 出障害、不安障害、ジェンタ(genta)間陽溶障害、免難血溶障害、電解胃平衡障害、成 血圧、糖尿病、気道障害、ぜん息、性機能障害、免疫障害、内分溶障等、筋骨格障害、神 絡内分泌障害、認知障害、記憶障害、感覚変調および伝達障害、運動協調障害、知覚結合 障害、運動結合障害、ドーパミン機能障害、知覚伝達障害、嗅覚障害、突急神甚支配障害 、情動障害、ストレス即追応害、体液平街障害、発作障害、疼痛、精神病性行動、モルヒ 本許容性、アヘン中毒または併頭筋の調節である。 [0170]

本発明の組成物は通常、単位剤形で投与することができ、例えば、Reminston's Pharma ceutical Sciences (Mack Pub. Co., Easton, PA. 1980年)に記載されているような、製 薬分野でよく知られている方法のいずれでも測製することができる。 [0171]

本発明の化合物は、製剤中の唯一の活性剤として使用することもできるが、本化合物の 治療効果を促進しうる他の活性成分と組み合わせて使用することもできる。

本発明の化合物あるいはその溶媒下映象たは土理学的に盲能性の誘導体は、特に、MC 世受容体アンタゴニストとして薬剤組成物中の活性成分として使用することができる。「 活性成分」という用語は、「薬剤組成物」との関係において定義され、薬学的利点をもた らさないと通常は認識されている「不溶性成分」とは逆に、主な薬学的利点をもたらす製 利能成物中の成分を意味している。「製剤組成物」という用語は、1種の活性成分および 活性成分ではない少なくとも1種の成分(例えば、これらに限られないが、売削剤、染料 または建版法に用メカニズム)を含有する組成物を意味し、その際、この組成物は、哺乳 動物(例えば、これに限らないが、ヒト)で、所定の有効な結果を得るための使用に適し ている。

これらに限らないが、少なくとも1種の本発明の任金物および、まなはその容容される 塩または溶媒和物(例えば、生理学的に許容される塩または溶媒和物)を活性成分として 、少なくとも1種の担似または駄彩剤(例えば、薬字的担体または繊彩剤)と共に含する る薬剤組成物を含む薬剤組成物は、MCH受容体アンタゴニストが指摘されている臨床症状の治療で使用することができる。少なくとも1種の本発明の化合物を、固体または液体 形の担化を単位利度が寿中で組み合わせることができる。薬剤は中は、組成物中で、他の 成分と相容性でなければならず、個々の受容者に容認されなければならない。他の生理学 的に活性を成分を、所望の場合には、本発明の薬剤組成物に加えることができるが、この ような成分が、組成物中の他の成分と相容性である場合に限る。適切な方法のいずれによっても、通常は、活性色合物と液体または微細に分配されて固体担体とを、またはその両 方とを、所型の割合で十分に混合し、次いで、必要な場合には、生じた混合物を望ましい 形に成形することにより、処方物を測理することができる。 【0174】

結合利、充填剤、許容される湿潤利、錠利用滑利および崩壊剤などの慣用の風形剤を、 絡口投身用の錠剤およびカプセルで使用けることができる。 総口投身用の液体製剤は、 窓、エマルション、水性または油性懸濁液およびシロップの形であってよい。 もしくは、 経口用製料は、使用前に水または他の適切な液体溶剤を用いて再構成することができる無 水粉末の形であってもよい、懸濁剤または乳化剤、非水性溶剤(食用油を含む)、防腐剤 および着香剤および着色剤などの付加的な添加剤を、液体製剤に加よることもできる 熱口剤料は、本発明の化合物を適切が液体溶解に溶液とフルター除剤し、その 後で、適切なバイアルまたはアンプルに充填し、これを封止することにより調製すること ができる。これらは、那形を割製するための技術でよく知られている多くの適切な方法の うちの数何に過ぎない。

【0175】

[0173]

MCH受容体アンタゴニストを、薬剤組成物中の活性成分として使用する場合に、これ

らを、ヒトだけではなく、他の非ヒト哺乳動物にも使用することを意図していることを特記しておく、実際に、動物の健康管理分野での最近の進度は、家畜、個人ば、ネコおよびイヌ)の肥満を治療するためにMCH受管体アンタゴエストを、さらに疾患または異常が明らかでない他の家畜(例えば、ウシ、トリ、サカナなどの食用動物)でMCH受管体アンタゴエストを使用することを考慮することを要求している。当技術分野の専門家には、このような状況でのこのような化合物の実用性は、容易に理解されるであろう。

本発明の化合物の薬学的に許容される塩は、これらの化合物の遊園の酸または塩基形と 適切な塩基または酸とを水中、有機溶剤中、またはこれよの混合物中で反応させることに より測製することができる:通常、エーテル、酢酸エチル、エタノール、イソプロパノー ル、ジオキサンまたはアセトニトリルなどの非水性破体が好ましい。例えば、化合物(I)が酸性百能基を有する場合には、アルカリ金属塩(例えば、ナトリウム塩、カリウム塩 など)、アルカリ土類産場は「例えば、カルシウム塩、マグネシウム塩、バリウム塩な どど)、アルカリ土類産場は「例えば、カルシウム塩、マグネシウム塩、バリウム塩な およびアンモニウム塩などの無機塩が生じうる。化合物(I)が塩基性官能基を育する 場合には、無機塩(例えば、塩酸塩、硫酸塩、リン酸塩、メル大素酸塩など)または有機 塩(例えば、酢酸塩、マレイン酸塩、アマル酸塩、コハク酸塩、メタンスルホン酸塩、p トルエンスルホン酸塩、クエン酸塩、酒石酸塩など)が生じうる。 [0177]

本売卵の化合物が完全の鋼性体、近く異性体、位置異性体、同環異性体を含む場合、これらの単一物質および混合物が、本売明の化合物に含まれる。例えば、式IXのように、化学式が、立体化学的混号が示されずに表されている場合には、ありうる立体異性体、光学異性体およびこれらの混合物の全てが、式の範囲内とみなされる。したがって、式XXIIは特に、シロンペシル環上のご個のアミノ基間のシス関係を示しているが、この式も、式IXに完全に包含される。

[0178]

本発明による新規の選集キナゾリンは、全て、当技術分野の専門家にはよく知られている様々な合成処置に従って、容易に測製することができる。本発明の化合物を測製するための好ましい方法は、これらに限らないが、スキーム1~31に記載されている方法を含む。 [0179]

新規の置換キナゾリンの共通の中間体(E)は、スキーム1に示されているように調製 することができる。市販の1H、3H-キナゾリン-2、4-ジオン(A)を、塩基を用 いて、または用いずに、ハロゲン化剤により、2.4-ジハローキナゾリン(B)に変え る(式中、Xは、塩素、臭素またはヨウ素などのハロゲンである)。ハロゲン化剤には、 オキシ塩化リン(POC1。)、オキシ臭化リン(POBr。) または五塩化リン(PC 1g) が含まれる。塩基には、3級アミン (好ましくは、N, N-ジイソプロピルエチル アミンなど) または芳香族アミン (好ましくは、N, N-ジメチルアニリンなど) が含ま れる。反応温度は、約100℃から200℃、好ましくは約140℃から180℃の範囲 である。2、4 - ジハローキナゾリン(B)の4 - 位のハロゲンを、不活性溶剤中で塩基 を用いて、または用いずに1級または2級アミン(HNRo。Rob、式中、Robおよ びRosk は前記と同様に定義される)で選択的に置換すると、対応する4-置換アミノ付 加生成物(C)が得られる。塩基には、アルカリ金属炭酸塩(好ましくは、炭酸ナトリウ ムまたは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは、水酸化ナトリウムな ど) または3級アミン (好ましくは、N、N-ジイソプロピルエチルアミン、トリエチル アミンまたはN-メチルモルホリンなど)が含まれる。不活性溶剤には、低級アルキルア ルコール溶剤(好ましくは、メタノール、エタノール、2-プロパノールまたはブタノー ルなど)、エーテル性溶剤(好ましくは、テトラヒドロフランまたはジオキサンなど)ま たはアミド溶剤 (好ましくは、N. N-ジメチルホルムアミドまたは1-メチルーピロリ ジンー2-オンなど)が含まれる。反応温度は、約0℃から200℃、好ましくは約10 ℃から150℃の範囲である。

[0180]

次いで、これを、不活性溶剤中、塩基を用いて、または用いずに、モノ保護されている ジアミン (Ra HN-A-NR。P、式中、Ra HN-A-NR。Pは前記と同様に定義 され、 R_4 および R_5 は前記と同様に定義され、Pは、保護基である)で置換すると、24 - ジ置換アミノキナゾリン(D)が得られる。塩基には、アルカリ金属炭酸塩(好ま しくは、炭酸ナトリウムまたは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは 水酸化ナトリウムなど)または3級アミン(好ましくは、N、Nージイソプロビルエチ ルアミン、トリエチルアミンまたはN-メチルモルホリンなど)が含まれる。不活性溶剤 には、低級アルキルアルコール溶剤(好ましくは、メタノール、エタノール、2-プロパ ノールまたはブタノールなど)またはアミド溶剤(好ましくは、N.N-ジメチルホルム アミドまたは1-メチルーピロリジン-2-オンなど)が含まれる。反応温度は、約50 ℃から200℃、好ましくは約80℃から150℃の範囲である。この反応は、マイクロ 波条件下に実施することもできる。幅広い合成変換に適した代表的な保護基は、Greene a nd Wuts, Protective Groups in Organic Synthesis, second edition, John Wiley & So ns, New York, 1991年に記載されていて、その記載は、全て参照して援用することができ る。保護基を脱保護すると、新規の置換キナゾリンの共通の中間体(E)が得られる。 [0181]

スキーム1

[4k117]

[0182]

本発明による新規の選換キナゾリン(F~H)への共通の中間休(E)の変換は、スキーム2に示されている。

[0183]

アミン(E)を、不活性溶剤中で塩化スルホニル(R₁SO₂C1)および塩基と反応させると、本売明の前風のスルホンアミド(F)が得られる。塩基には、アルカリ金属炭炭粉未塩(解金しくは、炭酸水赤トリウムまたは炭酸水赤カリウムなど)、アルカリ水酸化物(好ましくは、炭酸水赤トリウムまたは炭酸水素カリウムなど)、アルカリ水酸化物(好ましくは、炭酸水赤トリウムまたは水酸化カリウムなど)、3級アミン(好ましくは、バハージイグアロビルエチルアミン、トリエチルアミンまたはハーメチルモルリンなど)または汚香核アミン(好ましくは、ビリジンまたはイミゲールなど)が含まれる。不活性溶剤には、低級ハロゲン化炭素溶剤(好ましくは、ジクロロスタン、ジクロロスタン、シュたはクロロホルムなど)、エーテル性溶剤(好ましくは、テトラヒドロフランまたはジオキサン)、アルコール溶剤(好ましくは2ープロバノールなど)または芳香核溶剤(

好ましくは、トルエンまたはピリジンなど)が含まれる。反応温度は、約-20 $\mathbb C$ から50 $\mathbb C$ 、好ましくは約0 $\mathbb C$ から40 $\mathbb C$ の範囲である。

[0184]

アミン(E)を不活性溶剤中で、塩基を用いて、または用いずに、カルボン酸(R,C 〇。H)および脱水縮合剤と反応させると、本発明の新規のアミド(G)が得られる。脱 水縮合剤には、ジシクロヘキシルカルボジイミド(DCC)、1-エチルー3-(3-ジ メチルアミノプロビル)カルボジイミド塩酸塩(EDC・HCl). ブロモートリスーピ ロリジノーホスニウムヘキサフルオロリン酸塩(PyBroP)、O-(7-アザベンゾ トリアゾールー1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロリ ン酸塩 (HATU) または1 -シクロヘキシル-3-メチルポリスチレン-カルボジイミ ドが含まれる。塩基には、3級アミン(好ましくは、N、Nージイソプロピルエチルアミ ンまたはトリエチルアミンなど)が含まれる。不活性溶剤には、低級ハロゲン化炭素溶剤 (好ましくは、ジクロロメタン、ジクロロエタンまたはクロロホルムなど)、エーテル性 溶剤(好ましくはテトラヒドロフランまたはジオキサン)、ニトリル溶剤(好ましくは、 アセトニトリルなど)またはアミド溶剤(好ましくは、N、N-ジメチルホルムアミドな ど)が含まれる。必要な場合には、1-ヒドロキシベンゾトリアゾール(HOBT)、H OBT-6-カルボキサミドメチルポリスチレンまたは1-ヒドロキシー7-アザベンゾ トリアゾール (HOAT) を、反応剤として使用することもできる。反応温度は、約-2 0°Cから50°C、好ましくは約0°Cから40°Cの範囲である。

[0185]

もしくは、本発明の新規のアミド(G)は、酸塩化物(R1 C OC I) および塩基を不 活性溶剤中で使用するアミド化反応により得ることができる。塩基には、アルカリ金属以 類塩(新ましくは、炭酸水素トトリウムまたは炭酸カリウムなど)、アルカリ水酸化物(新ましくは、炭酸水素トトリウムまたは炭酸水素カリウムなど)、アルカリ水酸化物(新ましくは、水酸化ナトリウムまたは炭酸水素カリウムなど)、スポアミン(好ましくはか が、N ージイソプロピルエチルアミン、トリエチルアミンまたはN ーメチルモルホリンな ど)または劣香族アミン(類ましくは、ビリジン、イミダゾール、ボリー(4 ービニルビ と)または劣香族アミン(類ましくは、ビリジン、イミダゾール、ボリー(4 ービニルビ クロロメタン、ジクロロエタンまたはプロロホルムなど)、エーデル性溶剤(新ましくは、ジ クトロスタン、ジクロロエタンまたはプロロホルムなど)、エーデル性溶剤(新ましくは、デ ホルムアミドなど)または光香族溶剤(新ましくは、ドルエンまたはビリジンなど)が含 まれる。反応温度は、約 ー 20℃から50℃ 存むしくは、ドルエンまたなビリジンなど)が含 まれる。反応温度は、約 - 20℃から50℃ 存むしくはの00秒間である

[0186]

本発明の新規のアミド(G)を、不活性溶剤中で還元剤と反応させると、本発明の新規のアミン(日)が得られる。還元剤には、アルカリ金属アルミニウム+茶化物(射ましくは、水素化かウ素リサウム)、アルカリ金属よウ水素化物(射ましくは、水素化ウウ素リサウム)、アルカリ金属トリアルコキシアルミニウム水素化物(射ましくは、水素化トリーセーブトキシアルミニウムリナウム)、ジアルキルアルミニウム水素化物(射ましくは、水素化トリアシーページー・アルシニウム)、ボラン、ジアルキルボラン(射ましくは、水素化トリエチルボウラン)、アルカリ金属トリアルキルボウ素水素化物(射ましくは、水素化トリエチルホウ素リチウム)が含まれる。不活性溶剤には、エーテル性溶剤(射ましくは、トルエンなど)が含まれる。反応温度は、約-78℃から200℃、射ましくは約50℃から120℃の範囲できる。

【0187】

もしくは、本発明による新規のアミン(H)は、不活性溶剤中で、酸を用いて、または 用いずに、アルデヒド(H, CHO)および意元剤を使用して還元的アミノ化反応により 得ることができる。還元都には、トリアセトキシホウ水素化ナトリウム、シアノホウ水素 化ナトリウム、ホウ水素化ナトリウムまたはボラン・ビリジン解体、好ましくはトリアセ トキシホウ水素化ナトリウムまたはシアノホウ水素化ナトリウムが含まれる。不活性溶剤には、低級アルキルアルコール溶剤「好ましくは、メタノールまたはエタノールなど)、低級ハロゲン化炭素溶剤(好ましくは、ジクロロメタン、ジクロロエタンまたはプロロホルムをど)、エーテル性溶剤(好ましくは、デトラヒドロフランまたはジオキサン)または芳香族溶剤(好ましくは、トルエンなど)が含まれる。酸には、無機酸(好ましくは、塩酸または硫酸)または有機酸(好ましくは、酢酸)が含まれる。反応温度は、約-20でから120で、好ましくは約0でから100での範囲である。この反応を、マイクロ波条件下に実施することもできる。

[0188]

スキーム2 【化118】

[0189]

式(1)の化合物は、スキーム3に示されているように調製することができる。 市販のトランスー4ーアミノメチルーシクロヘキサンカルボン酸のアミンを、セーブチルカルバミン酸エステルとして保護する。このカルボン酸を、ホウ水素化ナトリウムにより、混合酸無水物を介して還元し、アルコールにする。塩化トシルを用いてアルコールをトシル化し、続いてアジド化することにより、アジ化物が得られ、これを、水素化アルミニウムリテリム環元により、アミンに変えた。このアミンと、スキーム1で合成されたキャゾリン骨格(C)とをカップリングさせると、2、4ージ置換アミノキナゾリンが得られる。Boc 志の配保護を酸により行うと、式(1)の化合物が得られる。[0190]

スキーム3

【化119】

[0191]

式 (K) の化合物は、スキーム4に示されているように調製することができる。その合成はWO 0 1/727 1 0 号に記載されている、知られているシスー (4- アミノメチルーシクロヘキシルメチル) - カルバミン酸 1- ブチルエステル (1) を、スキーム3の方法に従い、式 (1) の化合物にすることができる。 [0192]

スキーム4 【化120】

[0193]

式(L)の化合物は、スキーム5に示されているように調整することができる。シスー [4-(2-アミノーエチル) - シクロヘキシル] - カルバミン酸 t - ブチルエステルの アミンを、ペンジルカルバミン酸エステルとして保護する。Boc - 基の取保護を酸によ り行うと、アミンが得られる。アミンと、スキーム1のように合成されたキナツリンが得 (C)とをカップリングさせると、2、4 - ジ面換アミノキナゾリンが得られる。 Z 基の 脱保護を、水素還元により行うと、式(L)の化合物が得られる。 [0194]

スキームラ

【4k121】

[0195]

式 (N) の化合物は、スキームらに示されているように副製することができる。 市販のトランスー4 ーアミノメチルーシクロハキサンカルボン酸のアミンを、 モーブチルカルバミン酸エステル (M) に変える。 乙基の酸保護を水素還元により行うと、アミンが得られる。このアミンを、スキーム3の方法に従い、式 (N) の化合物に変える。 [0196]

スキーム6

【化122】

[0197]

式(O)の化合物は、スキーム6に記載されている式(M)の化合物から、スキーム7 に示されているように調製することができる。式(M)の化合物は、スキーム5の方法に 従い、式(O)の化合物にすることができる。 [0198]

スキーム7

[{E123]

式(Q)の化合物は、スキーム8に示されているように調要することができる。WOO 1/72710号に記載されている[4-(ベンジルオキシカルボニルアミノーメチル) -シクロペキシル] -カルバミン酸セーブチルエステル(P)を、スキーム5の方法に従い、式(Q)の化合物にすることができる。
[0200]

スキーム8

【/k124】

【0201】

もしくは、式(Q)の 船合物を、スキーム9に示されているように調製することができる。市販のシスー4ーアミノシクロへキサンカルボン酸のアミンを、トーブチルカルバミ酸エステルとして保護する。このカルボン酸(R)を、水性アンモニアにより、混合酸無水物を介して、アミド(S)に変える。Boc基の酸保護を酸により行うと、アミンが得られる。このアミンと、スキーム」と同様に合成されたキナゾリン骨格(C)とをカップリングさせると、2、4 ージ置換アミノキナゾリンが得られる。このアミドを還元して、式(Q)の 船合物にする。

[0202]

スキーム9

【化125】

[0203]

式(T)の化合物は、スキーム8に記載されている式(P)の化合物から、スキーム1

0に示されているように調製することができる。式 (P) の化合物は、スキーム6の方法に従い、式 (T) の化合物にすることができる。

[0204]

スキーム10

【化126】

[0205]

もしくは、式 (T) の化合物を、スキーム11に示されているように調製することもできる。スキーム9に記載されているアミド (S) を還元して、アミンにする。このアミンは、スキーム3の方法に従い、式 (T) の化合物にすることができる。

[0206]

スキーム11 【化127】

[0207]

式 (V) の化合物は、スキーム 1.2 に示されているように測製することができる。市販のトランスーシクロペキサンー 1、4 ージアミンのモノ保護は、Synthetic communications、20巻、259-256頃(1990年)に記載されている方法により行うことができる。式 (V) の化合物の変換は、スキーム 3 の方法に従い、行うことができる。 (0.208)

スキーム12

【化128】

[0209]

式(X)の化合物は、スキーム13に示されているように調製することができる。市販 のシスーシクロペキサンー1、4ージカルボン酸のジカルボン酸をクルチウス転位により 、ジベンジルカルバミン酸エステルに変える。Z基の脱低減乏、北赤塩元により行うと、 ジアミンが得られる。このジアミンのモノ保護を、スキーム12の方法に従い行うと、化 合物(W)が得られる。式(X)の化合物への変換は、スキーム3の方法に従い行うと、化 ができる。

[0210]

スキーム13

【化129】

[0211]

もしくは、式 (W) の化合物を、スキーム14に示されているように調製することもできる。スキーム9に記載されているカルボン酸 (R) を、クルチウス転位により、ベンジ ルカルバミン酸エステルに変える。Z基の脱保護を、水素還元により行うと、式 (W) の 化合物が得られる。

[0212]

スキーム14

【化130】

【0213】

式 (Y) の化合物は、出発原料として市販の4-アミノメチルーベンジルアミンを使用して、スキーム12に記載されている方法に従い、測製することができる(スキーム15)

【0214】

スキーム15 【化131】

[0215]

式 (A') の化合物は、スキーム16に示されているように調製することができる。市 版の4 - アミノメチルーフェニルアミンのモノ保護を、等モル量の (Boc) $_2$ Oを使用して行うと、モノー $_1$ モーブチルカルバミン酸エステル (Z) が得られる。このアミンを、スキーム3の方法に続い、式 (A') の化合物にすることができる。 [0216]

スキーム16

【化132】

[0217]

式 (B') の化合物は、スキーム16に記載されている式 (Z) の化合物から、スキーム17に示されているように測数することができる。式 (Z) の化合物は、スキーム5の方法に従い、式 (B') の化合物にすることができる。

[0218]

スキーム17

【化133】

[0219]

式(C')の化合物は、出発原料として市販の(4-アミノ-フェニル)-カルバミン酸セーブチルエステルを使用して、スキーム3に記載されている方法に従い、調製するこ

(290)

とができる(スキーム18). [0220] スキーム18 【化134】

[0221]

式(E')の化合物は、スキーム19に示されているように調製することができる。市 版の4-(アミノメチル)ビペリジンの1級アミンの存在下での2級アミンの選択的保護 を、Synthetic communications、22券、2357-2360頁(1992年)に記載されている方法によ り行うと、アミン(D')が得られる。このアミンを、スキーム3の方法に従い、式(E ') の化合物に変える。

[0222] スキーム19

【化135】

[0223]

式(F')の化合物は、スキーム19に記載されている式(D')の化合物から、スキ ーム20に示されているように調製することができる。式(D')の化合物を、スキーム 5の方法に従い、式(F')の化合物にすることができる。 [0224]

スキーム20 【化136】

式(G')の化合物は、出発原料として市販の1-ベンジルービベリジン-4-イルア ミンを使用して、スキーム5に記載されている方法に従い、調製することができる(スキ -ム21)。

[0226]

スキーム21

【化137】

[0227]

式 (H') の化合物は、スキーム22に示されているように調製することができる。市 販の1 一ペンジルーピペリジン-4ーイルアミンのアミンを、t ープチルカルバミン酸エステルとして保護する。ペンジル基の根保護を水素還元により行うと、アミンが得られる。このアミンを、スキーム3の方法に従い、式 (H') の化合物にすることができる。

スキーム22

【/k:138】

[0229]

式(I')の化合物は、出発原料として市販のビロリジン-3-4ルーカルバミン酸 セーブチルエステルを使用して、スキーム3に記載されている方法に従い、調製することができる(スキーム23)。

[0230]

スキーム23

【化139】

[0231]

もしくは、本発明による新規のスルホンアミド(F)、新規のアミド(G) および新規 のアミン(H)を、スキーム24に示されているように、スキーム1で合成されたキナゾ リン骨格(C)から直接、合成する。このカップリングを、不活任治沖中で塩基を用いて または用いずに行う。塩基には、アルカリ金属灰酸塩(好ましくは、炭酸ナリウムま たは炭酸カリウムなど)、アルカリ金属水酸化物(好ましくは、水酸化ナトリウムなど) または3級アミン (好ましくは、N、N・ジイソプロセルエチルアミン、トリエチルアミンまたはN・メチルモルホリンなど) が含まれる。不活性溶剤には、低級アルギルアルフルル溶剤 (好ましくは、メタノール、エタノール、2ープロバノールまたはブタノールなど) またはアミド溶剤 (好ましくは、N、Nージメチルポルムアミドまたは 1・メチルーピロリジン・2ーオンなど) が含まれる。反応温度は、約50℃から200℃、 好ましくは約80℃から180℃の範囲である。この反応を、マイクロ液条件下に実施することもできる。

[0232]

スキーム24 【化140】

[0233]

式 (K^-) の化合物は、スキーム25に示されているように調整することができる。市販のトランスー4ーアミノメチルーシクロヘキサンカルボン酸を、塩化スルホエル (R_1 SO_2 C1) と反応させると、スルホンアミドが得られる。このカルボン酸を、混合飲無水物を介して、アミドに変える。アミドを、ボラン還元により還元して、アミン (J^-) にする。このアミンと、スキーム1で合成されたキナゾリン骨格 (C) とをカップリングさせると、本発明による新規のスルホンアミド (K^-) が得られる。

スキーム25 【化141】

式(L')の化合物を、スキーム12に記載されている式(U)の化合物から、スキー ム26に示されているように調製することができる。このアミン(U)を、塩化スルホニ ル(R,SO。C1)と反応させると、スルホンアミドが得られる。Boc基の脱保護を 、酸により行うと、アミンが得られる。このアミンと、スキーム1で合成されたキナゾリ ン骨格(C)とをカップリングさせると、本発明による新規のスルホンアミド(L')が 得られる。

[0236] 【化142】

スキーム26

[0237]

式(M')の化合物は、スキーム26に記載されている方法に従い、出発原料としてス キーム19に記載されている式(D')の化合物を使用して、調製することができる(ス キーム27)。

[0238]

スキーム27 【化143】

[0239]

式(N')の化合物は、スキーム26に記載されている方法に従い、出発原料として市 販のピロリジン-3-イルーカルバミン酸 tーブチルエステルを使用して調製することが できる(スキーム28)。

(M)

【0240】

スキーム28

【 (E144 】

[0241]

式 (O') の化合物は、スキーム2 9 に示されているように、スキーム1 6 に記載されている式 (Z) の化合物から測製することができる。アニリン (Z) をカルボン域 $(R_1$ CO_2 H) と反応させると、アミドが得られる。 $B \circ c$ 基本の限保護を稼じより行うと、アミンが得られる。このアミンと、スキーム1 のように合成されたキナブリン 骨格 (C) と をカップリング きせると、本光明による新規のスルホンアミド (O') が得られる。 (O'42)

スキーム29

【化145】

[0243]

式 (P) の化合物は、スキーム30に示されているように調整することができる。スキーム13で合成されたアミン (W) を、アルデヒド (R1 (C1 (C1 (C1) により還元的アミノ化する。C2 のことの脱保速を脱により行うと、アミンが得られる。このアミンと、スキーム1のように合成されたキナゾリン骨格 (C1) とをカップリングさせると、本発明による新規のアミン (C1) が得られる。

[0244]

スキーム30

【化146】

[0245]

スキーム31は、式「の口が式」」「を有する本発明の化合物(口))の調製を示して いる。スキーム25で合成された化合物 (J')を、(1-t-ブトキシカルボニルアミ ノー1-トリフルオロメタンスルホニルイミノーメチル) - カルバミン酸t - ブチルエス テルと反応させる。Boc基の脱保護を酸により行うと、本発明による新規のグアニジン (Q') が得られる。

[0246]

スキーム31

【実施例】

[0247]

本発明の化合物およびその合成をさらに、次の実施例で説明する。次の実施例は、本発 明を明確にするために提供するものであって、本発明をこれらの実施例に限定するもので はない。次の実施例で言及されている「室温」とは、0℃から40℃に該当する温度を意 味している。

[0248]

本明細書中、特にスキームおよび実施例中で使用されている略語は、次の略語である:

1 H NMR: プロトン核磁気共鳴スペクトル

AcOH: 酢酸

APCI: 大気圧化学イオン化

(Boc)。O: 二炭酸ジーtーブチル

BuLi: ブチルリチウム

BuOH: ブタノール

CaClo: 塩化カルシウム

CDC1a: 重水素化クロロホルム

CF。CO。H: トリフルオロ酢酸

CHoClo: ジクロロメタン

CHCla: クロロホルム

C I: 化学的イオン化

CuC1: 塩化銅(I)

D。O: 重水

DMAP: 4-ジメチルアミノピリジン

DMF: N. N-ジメチルホルムアミド

DMSO: ジメチルスルホキシド

EDC: 1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩

ESI: エレクトロスプレーイオン化 EtoO: ジエチルエーテル

EtOAc: 酢酸エチルエステル

EtOH: エタノール

```
FAB: 高速原子衝撃
 H2SO4: 硫酸
 HATU: O-(7-アザベンゾトリアゾール-1-イル)-N, N, N', N'-
テトラメチルウロニウムーヘキサフルオロフォスフェート
 HCHO: ホルムアルデヒド
 HC1: 塩化水素
 HOAt: 1-ヒドロキシー7-アザベンゾトリアゾール
 HOBt: 1-ヒドロキシベンゾトリアゾール
 HPLC: 高速液体クロマトグラフィー
 K。CO。: 炭酸カリウム
 KHSO<sub>4</sub>: 重硫酸カリウム
 Me, NH: ジメチルアミン
 MeNHo: メチルアミン
 MeOH: メタノール
 MgSOa: 硫酸マグネシウム
 Na<sub>2</sub>CO<sub>3</sub>: 炭酸ナトリウム
 Na<sub>2</sub> SO<sub>4</sub> · 10H<sub>2</sub> O: 硫酸ナトリウム十水和物
 NaBH(OAc)a: トリアセトキシホウ水素化ナトリウム
 NaBHaCN: シアノホウ水素化ナトリウム
 NaBHa: ホウ水素化ナトリウム
 NaHCOa: 炭酸水素ナトリウム
 NaNa: アジ化ナトリウム
 NaNO<sub>2</sub>: 硝酸ナトリウム
 Pd (OH)。: 水酸化パラジウム
 Pd/C: パラジウム炭素
 POCla: 塩化ホスホリル
PVP: ポリ (4-ビニルピリジン)
 PyBroP: ブロモートリスーピロリジノホスホニウムヘキサフルオロホスフェー
 SOC1。: 塩化チオニル
 t-BuOH: t-ブタノール
 TFA: トリフルオロ酢酸
 THF: テトラヒドロフラン
 WSC: 水溶件カルボジイミド
 ZC1: ベンジルオキシカルボニルクロリド
 s: 1重項
 d: 2重項
 t: 3重項
 q: 4重項
 dd: 2重2重項
 dt: 2重3重項
 ddd: 2重2重2重項
 brs: 広幅1重項
 m: 多重項
J: 結合定数
 Hz: ヘルツ
 高速液体クロマトグラフィの分析条件は、次である:
溶剤A: 水中の0.050%TFA、
溶剤B: アセトニトリル中の0.035%TFA、
```

5分かけて、B5~100%、流速3.5m1/分。

【0249】 実施例1 【化148】

トランス-4-プロモ-N- $\{4-[(4-\Im x+n)^2]-4+y^2]$ ン-2-4ルア ミノ) - $\lambda+n$] - $\lambda+n$ 3 - $\lambda+n$ 4 - $\lambda+n$ 5 - $\lambda+n$ 7 - $\lambda+n$ 8 - $\lambda+n$ 8 - $\lambda+n$ 9 - $\lambda+$

ステップA: 2,4-ジクロローキナゾリンの合成

1 日 - キナゾリン - 2、4 - ジオン (150g、925 mmol)のPOC 1。(549 mL、5、89 mol) 懇別液に、ジメチルーフェニルーアミン (123 mL、962 mmol)を加えた、この混合物を、選添下に7時間限押し、漆縮した。溶液を水水に注ぎ、水層を、CHC 1。で抽出した(3回)。合わせた有機層を、MgSO₂上で乾燥させ、沢温し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の50% CHC 1。からCHC 1。中の10% Et OAc)により精製すると、2、4 - ジクロローキナゾリン (159g、86%)が変養色の固体として得られた。

CL MS m/e 199, M* : ¹H NNR (300 MHz, CDCl₃) δ 8.27 (dt, J = 8.3, 1.1 Hz, 1 H), 7 .95-8.04 (m, 2 H), 7.71-7.81 (m, 1 H). T0.2511

ステップB: (2-クロローキナゾリン-4-イル) -ジメチルーアミンの合成

2、4~ジクロローキナゾリン(102g、530mmol)のTHF(1、2L)海液と、4℃に冷却し、50%Me。NHx溶液(139mL、1、33mol)を加えた。この混合物を、室温で80分間幾件した。溶液を、絶和NaHCO。水溶液でアルカリ性(pH=9)にし、水厚を、CHCl。で抽出した(3回)。合わせた有機層と、Mg SO。上で乾燥させ、距過し、濃縮した。残留物を、ヘキサン中の50%Et。0(250mL)に懸濁させ、筆温で30分間機件した。浮過により固体を集め、ヘキサン中の50%Et。0で沈浄し、80℃で乾燥させると、(2~クロローキナゾリンー4イル)ージメチループミン(104g、94%)が淡黄色の固体として得られた。

ESI NS m/e 207, M ; ; H NNR (300 MHz, CDCl₂) & 8.00 (d, J = 8.4 Hz, 1 H), 7.73-7.78 (m, 2 H), 7.68 (ddd, J = 8.4, 6.9, 1.4 Hz, 1 H), 3.41 (s, 6 H), [0.252]

ステップC: トランス-4-(t-ブトキシカルボニルアミノ-メチル)-シクロへ キサンカルボン酸の合成

トランス -4 - アミノメチルーシクロへキサンカルボン酸(150g、954 mm o 1) の1. 32 M水酸化ナトリウム水溶液(750 m L) 溶液に、t - Bu O H (1680 m L) および(Bo c)。0(215 \times 、985 m m o I)を加えた。反応混合物を、窓温で15 財間膜拝した。この反応混合物に、 H_2 \odot (2.8 L)を加え、5℃に合助した。水滑を、飽和化 H SO \times 水溶液で物性(P H = 3)にし、E + CO A c で描出して(3回)。合わせて有機層を、範和N \times HC \times 0 \times 3 \times 4 \times 5 \times 6 \times 6 \times 7 \times 6 \times 7 \times 6 \times 7 \times 6 \times 7 \times 7 \times 7 \times 8 \times 7 \times 7 \times 8 \times 7 \times 7 \times 8 \times 8 \times 7 \times 8 \times 7 \times 8 \times 7 \times 8 \times 9 \times 8 \times 9 \times

ESI MS m/e 280, M + Na* ; 1 H NMR (300 MHz, CDCl $_2$) δ 4.60 (brs, 1 H), 2.98 (t, J = 6.3 Hz, 2 H), 2.19-2.33 (m, 1 H), 1.99-2.11 (m, 2 H), 1.77-1.90 (m, 2 H), 1.44

(s, 9 H), 1.34-1.52 (m, 3 H), 0.86-1.05 (m, 2 H). [0253]

ステップD: トランスー(4-ヒドロキシメチルーシクロヘキシルメチル)ーカルバ ミン酸tーブチルエステルの合成

ESI NS m/e 266, M + Na'; H NMR (300 MHz, CDCl₂) δ 4.59 (brs, 1 H), 3.46 (d, J = 6.4 Hz, 2 H), 2.98 (t, J = 6.3 Hz, 2 H), 1.75-1.94 (m, 4 H), 1.45 (s, 9 H), 1. 24-1.70 (m, 3 H), 0.81-1.12 (m, 4 H).

ステップE: トランスー(4ーアジドメチルーシクロヘキシルメチル)カルバミン酸 ナーブチルエステルの合成

トランスー(4-Eドロキシメチルーシクロへキシルメチル) 一力ルバミン酸セーブチルエステル(123g、505mmol)のビリジン(11、溶液を4でに冷却し、塩化 - トートルエンスルボニル(125g、- 65- 7 mmol)のビリジン(200ml)溶液を 10C 10 に次えた。混合物を、室温で15mm 1 がけりがしてのになった。混合物を、室温で15mm 1 がけりがした物に、表信物を、室温で15mm 1 がけれた物に、表信物と、変した。木曜を、EtOAcで抽出し(3mm 2 でた着りし、 4mm 3 にかられた物に、 2mm 2 ので洗浄し、 4mm 3 にかられた物に、 2mm 3 にかられたりに、 2mm 3 にかられたりに、 2mm 4 にかられたりに、 2mm 5 にかられたりに、 2mm 6 にかられたりに、 2mm 6 にかられたりに、 2mm 6 にかられたりに、 2mm 7 にかられたりには、 2mm

ESI NS m/e 291, $M + Na^{+}$; $H NMR (300 MHz, CDCL₂) <math>\delta$ 4.59 (brs, 1 H), 3.13 (d, J = 6.5 Hz, 2 H), 2.98 (t, J = 6.4 Hz, 2 H), 1.70-1.90 (m, 4 H), 1.44 (s, 9 H), 1. 25-1.65 (m, 2 H), 0.87-1.07 (m, 4 H).

ステップF: トランスー(4-アミノメチルーシクロヘキシルメチル)ーカルバミン 酸tーブチルエステルの合成

水素化アルミニウムリチウム(2、 76g、72、6mmol)のTHF(225mL) ・ 懸添液を0℃に冷却し、トランスー(4ーアジドメチルーシクロヘキシルメチル)ーカ ルバミン酸 ヒーブチルエステル(15、0g、55、9mmol)のTHF(75mL) 溶液を1時間がけて加えた。反応混合物を、空温で6時間段拝した。反応を、Nag SO 4、10H₂ので停止させ、セライトバッドで沪過し、濃縮した。残留物を、フラッシュ クロマトグラフィー(シリカゲル、CHC1g 中の50%MeOH)で精製すると、トラ ンスー (4-アミノメチルーシクロヘキシルメチル) - カルバミン酸 t - ブチルエステル (12.3g、91%) が淡黄色のオイルとして得られた。

ESI MS m/e 243, M + H : ; 11 NMC (300 MHz, CDCl₂) δ 4.60 (brs. 1 H), 2.97 (L, J = 6.3 Hz, 2 H), 2.53 (d, J = 6.4 Hz, 2 H), 1.70–1.92 (m, 4 H), 1.44 (s, 9 H), 1.0 8-1.54 (m, 4 H), 0.81–1.02 (m, 4 H).

[0256]

ステップG: トランスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-カルバミン酸t-ブチルエステルの合成

 $(2-\Delta \pi \Pi - + \tau V)U > -4 - 4(h) - ジメチル - アミン (15.28、73.3 mol) およびトランス - <math>(4-\Upsilon) < U > + V > D = V > D = V > U > A < U > T > D = V >$

ESI NS m/e 414, M + H°; H NNR (300 MHz, CDCl₃) $\tilde{\sigma}$ 7.81 (d, J = 8.2 Hz, 1 H), 7. 40–7.52 (m, 2 H), 6.98–7.06 (m, 1 H), 4.93 (brs, 1 H), 4.59 (brs, 1 H), 3.35 (t, J = 6.2 Hz, 2 H), 3.26 (s, 6 H), 2.97 (t, J = 6.2 Hz, 2 H), 1.72–1.95 (m, 4H), 1.44 (s, 9H), 1.30–1.62 (m, 2H), 0.84–1.12 (m, 4H).

ステップH: トランス-4-プロモ-N-{4-[(4-ジメチルアミノーキナゾリ ン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシ -ペンゼンスルホンアミド貨動類の合成

トランスー($4-[(4-i)x+hv^2]$ >ーキナゾリンー $2-4hv^2]$) $-x+hv^2$) 2クロヘキシルメナル) -hvル(3と) 截ち、9.28 mm o 1)の 10 の 10

ESI NS m/e 616, M + II' ; H NMR (300 MHz, CDCl₃) o 7.89 (d, J = 8.9 Hz, 1 H), 7.81 (d, J = 7.6 Hz, 1 H), 7.35-7.61 (m, 4 H), 7.02 (t, J = 6.8 Hz, 1 H), 4.96 (br s. 1 H), 3.35 (t, J = 6.1 Hz, 2 H), 3.26 (s, 6 H), 2.79 (d, J = 6.7 Hz, 2 H), 1.32-1.98 (m, 6 H), 0.72-1.12 (m, 4 H).

【0258】

実施例2

【4k149】

トランスー4ープロモーNー $\{4\ [\ (4-\Im x)+n r > J-r + y y y - 2-J + n r > J)$ ーメチル $\}$ ーシクロヘキシルメチル $\}$ ー 2ートリフルオロメトキシーベンゼンスルホンアミド塩酸塩

[0259]

ステップA: トランス-4 - プロモーN- {4- [(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーペンゼンスルホンアミド貨物版の分成

実施例 1のステップ II で得られたトランスー4 ー プロモーNー $\{4-[(4-\forall x \ne h) + 1 - b \ne h]$ ーシクロヘキシルメチル $\}$ ー フートリフルオロメトキシーベンセンスルホンアミド $\{3, 45 \le 5, 61 \mod 1\}$ の形 $\{0, 45 \le 5, 61 \mod 1\}$ の形 $\{0, 45 \le 5, 61 \mod 1\}$ の形 $\{0, 45 \le 6, 45 \le 61 \mod 1\}$ の形 $\{0, 45 \le 61 \mod 1\}$ の形 $\{0,$

ESI NS m/e 616, $M + H' : H NVB (300 NHz, CDCl_3) <math>\hat{\sigma}$ 13.50 (brs. 1H), 8.42 (t, J = 6.0 Hz, 1 H), 7.86-7.94 (m, 2 H), 7.51-7.68 (m, H), 7.21-7.28 (m, 1 H), 4.83 (d, J = 6.4 Hz, 1 H), 3.51 (s, 6 H), 3.35 (t, J = 6.0 Hz, 2H), 2.78 (t, J = 6.4 Hz, 2H), 1.73-1.95 (m, 4H), 1.35-1.65 (m, 2H), 0.81-1.12 (m, 4H).

[0260]

実施例3 【化150】

トランスー4ープロモーNー $\{4-[(4-i)x+nr]\}$ (4) [(4-i)x+nr] (4) [-x+n] (4) [-x+n] (5) [-x+n] (6) [-x+n] (7) [-x+n] (7) [-x+n] (8) [-x+n] (8) [-x+n] (9) [-x+n] (10) [-

[0261]

ステップA: トランスー [4-(t-ブトキシカルボニルアミノーメチル) -シクロ ヘキシル] -カルバミン酸ベンジルエステルの合成

水溶液 (pH-3)で酸性化し、CHC 1₃で抽出した(3回)。合わせた有機層を、ブラインで洗浄し、M s SO₄ 上で乾燥させ、評過し、濃縮すると、白色の固体が得られた。この固体のヘゼセン(75 mL) 整満液に、アジ化リン酸 (phosphorazida acid) ジフェニルエステル (16.2 g、58.9 mm o 1) およびトリエナルアミン (5.94 g、58.7 mm o 1) を加えた。反応温合物を、選定下に3時間限性した(注: 選しい登絵反応)。ペンジルアルコール(6.65 g、61.5 mm o 1) を加え、反応混合物を選流下に24時間廃拌し、濃縮した。Et OA c およびH₂ Oに治かした後に、有機原を分能した。水層をE t OA c で抽出し (2回)、合わせた有機層を1 MのK H S O₄ 水溶液 捻和 N a H C O₅ 水溶液 およびプラインで洗浄し、M s S O₄ 上で乾燥させ、評過、洗漉紅 、フラッシュクロマトグラフィー(シリカゲル、ペキナツ中の3 3% E t OA c) により精製すると、自他の固体が得られた。この固体のE t 2 O感滴液を、室温で3 O分間原料し、評過とた。評談をE t 5 Oで洗浄し、減圧下に乾燥させると、トランスー(4 t ーブトキシカルボニルアミノーメチル) - シクロヘキシル 1 ーカルバミン酸ベンジルエステル (17.4 g、50%) が白色の間体として得られた。

ESI NS m/e 385, N + Na' : ³H NMR (300 MHz, CDCl₂) δ 7.22-7.41 (m, 5 H), 5.09 (s, 2 H), 4.20-4.68 (n, 2 H), 3.23-3.60 (m, 1 H), 2.96 (t, 2 H, J = 6.4 Hz), 1.62-2 (l. 8 (m, 4 H), 1.44 (s, 9 H), 1.30-1.60 (m, 1 H), 0.90-1.23 (m, 4 H). flox(2)

ステップB: トランス- (4-アミノメチルーシクロヘキシル) - カルバミン酸ベン ジルエステル塩酸塩の合成

トランスー [4-(t-プトキシカルボニルアミノーメチル) ーシクロヘキシル]-カルバミン酸ペンジルエステル(4.00g,11.0mmol)のEtOAc(40mL) 地震液に、EtOAc(10mL)中の4 Mの塩化水素を加えた。この反応混合物に、CHC1g(10mL)を加え、混合物を室温で3時間撹拌した。この反応混合物に、EtOAc(20mL)中の4 Mの塩化水素を加え、この混合物を室温で1.5時間撹拌し、沢声追し、EtOAc(20mL)中の4 Mの塩化水素を加え、この混合物を室温で1.5時間撹拌し、沢声追し、EtOAc(20mL)中の1.5年で乾燥させると、トランスー(4-7 ミノメチルーシクロヘキシル)ーカルバミン酸ペンジルエステル塩酸塩<math>(2.96g,90%)が白色の間体として得られた。

ESI NS m/e 263, M (遊館型) + H:; 1H NME (300 MEz, MMSO-d₂) & 8.12 (brs, 3 H), 7 .25-7.40 (m, 5 H), 7 .21 (d, 1 H, J = 7.8 Hz), 5.00 (s, 2 H), 3.17-3.30 (m, 1 H), 2.62 (d, 2 H, J = 7.0 Hz), 1.64-1.88 (m, 4 H), 1.42-1.60 (m, 1 H), 0.90-1.21 (m, 4 H).

[0263]

ステップC: トランス-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシル}-カルバミン酸ベンジルエステルの合成

(2 -クロローキナゾリンー4 -4 Λ) -ジメチル-アミン (1.50 g、7.22 m o 1) およびトランスー (4 -アミノメチル-ンクロヘキシル) -カルバミン酸ペンジルエステル塩酸塩 (2.59 g、8.67 m o 1) からなる 2 -プロパノール (15 m L) 中の混合物を 湿液下に8 日間照料し、CHC 1g およびM e O Hに溶かした。この混合物を 趣和 N a H C O 3 水溶液に注ぎ、水層を C H C 1g で 抽出した (3 回)。合かせた 有機層を M S O 4 - 下窓健させ、 が速し、 遊輸し、 フラッシュクロマトグラフィー (N H - シリカゲル、 ヘキサン中の 3 3% E t O A c)により精製すると、トランス - (4 - ビストルアミノーキャブリン~2 - 4 - 4 - 7 - 4 + 7 + 8 + 8 + 8 + 8 + 8 + 8 + 9 + 8 + 9

ESI NS m/e 434, M + H · ; 1 H NNR (300 MHz, CDCl₃) δ 7.76–7.82 (m, 1 H), 7.40–7.50 (m, 2 H), 7.25–7.40 (m, 5 H), 6.95–7.04 (m, 1 H), 5.08 (s, 2 H), 4.82–5.05 (m, 1 H), 4.40–4.70 (m, 1 H), 3.40–3.60 (m, 1 H), 3.35 (t, 2 H, J = 6.3 Hz), 3.26 (s, 6 H), 1.96–2.18 (m, 2 H), 1.80–1.96 (m, 2 H), 1.45–1.61 (m, 1 H), 1.00–1.20 (m, 4 H).

[0264]

ステップD: トランス -4 - γ ロモ-N - $\{4$ - [(4 - \bigvee $\sqrt{3}$ $\sqrt{3}$

トランスー $\{4-[(4-i × γ+ν-i × 1-k+ν-i)ν-2-4 ν+ν-i) - ν+ν-i]$ の N_0 $N_$

$$\begin{split} & \text{ESI NS m/c } 602, \text{ N+ H'}; \text{ H-NMF } (300 \text{ MHz}, \text{ CDC}_3) \text{ 7.90 } (4, 1 \text{ H}, J = 8.9 \text{ Hz}), 7, \\ & \text{80 } (4d, 1 \text{ H}, J = 8.4, 0.9 \text{ Hz}), 7.38 - 7.58 \text{ (n, 4 H)}, 7.01 \\ & \text{(4d)}, 1 \text{ H}, J = 8.4, 6.7, \\ & \text{1.6 Hz}), 4.85 - 5.04 \\ & \text{(m, 1 H)}, 1.70 - 1.90 \\ & \text{(m, 1 H)}, 1.70 - 1.90 \\ & \text{(m, 4 H)}, 1.42 - 1.58 \\ & \text{(m, 1 H)}, 0.90 - 1.28 \\ & \text{(m, 4 H)}, 0$$

【0265】 実施例4

【化151】

ステップA: $N^2 - (1 - ベンジルービベリジン-4 - 4 - 4 \mu) - N^4$, $N^4 - ジメチ$ ルーキナゾリン-2, $4 - \Im Z = 2 \mu$

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 362, M + H + ; H NNR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1 H), 7. 20-7.52 (m, 7 H), 6.97-7.05 (m, 1 H) , 4.74-4.90 (m, 1 H) , 3.90-4.05 (m, 1 H), 3.53 (s, 2 H), 3.26 (s, 6 H), 2.78-2.90 (m, 2 H), 2.02-2.24 (m, 4 H), 1.48-1.62 (m, 2 H). 100871

 $N^2 - (1 - \langle x \rangle)$ ルーピペリジン $-4 - \langle x \rangle$ - $N^4 - \langle x \rangle$ - $\langle x \rangle$ - \langle

ESI NS m/e 596, M + Na^* ; 1 H NVR (300 MHz, 1 DC1 $_{\odot}$) δ 7.87 (d, J = 8.2 Hz, 1 H), 7 .81 (dd, J = 8.3, 1.0 Hz, 1 H), 7 .36 (dd, J = 8.3, 6.8, 1.4 Hz, 1 H), 4.77 (d, J = 7.8 Hz, 1 H), 3.97–4.14 (m, 1 H), 3.68–3.86 (m, 2 H), 3.25 (s, 6 H), 2.87–3.01 (m, 2 H), 2.10–2.23 (m, 2 H), 1.51–1.70 (m, 2 H), 2.87–3.01 (m, 2 H), 2.10–2.23 (m, 2 H), 1.51–1.70 (m, 2 H).

【0268】 実施例5 【化152】

トランス-4-プロモーN-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミ ノ) -シクロヘキシル]-2-トリフルオロメトキシーベンゼンスルホンアミド 【0591】

トランスーシクロへキサンー1、4ージアミン(15、0g、131mmol)の1、4ージオキサン(85mL)溶液に、(Boc)2 (03.61g、16.5mmol) 24時間がけて済加した。混合物を室温で19時間機材し、濃縮した。この残留物に、H2 Oを加え、不溶性物質を、が過により除去した。が落を、CHC1gで輸出した(3回)。合わせた有機層を、MgSO₄上で乾燥させ、評過し、濃縮すると、トランスー(4ーアミノーシクロへキシル)ーカルパミン酸ヒーブチルエステル(3.15g、ジアミンに対して11%、(Boc)2 Oに対して89%)が白色の間体として得られた。 ESI NS m/e 215、N + N : N H m w (300 Mg、N COO4) N 43 (brs、1 N 3.36 (brs、1

E.31 .50 MeV 2.15, 71 + 11 ; "11 NAMA (500 MIZ, CLOL3) O 4.45 (07s, 1 n), 5.50 (07s, 1 n), 1.75-2.04 (m, 4 H), 1.44 (s, 9 H), 1.05-1.38 (m, 4 H). [0.270]

ステップB: トランス- [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 408, M + Na* ; 1 H NMR (300 MHz, CDCl₃) δ 7.80 (d , J = 8.2 Hz, 1 H), 7.39-7.52 (m, 2 H), 7.02 (ddd, 1 H, J = 8.3, 6.3, 1.9 Hz, 1 H), 4.68-4.78 (m, 1 H), 4.43 (brs, 1 H), 3.89 (brs, 1 H), 3.46 (brs, 1 H), 3.25 (s, 6 H), 2.15-2.24 (m, 2 H), 1.97-2.10 (m, 2 H), 1.45 (s, 9 H), 1.21-1.35 (m, 4 H). {0.271}

ステップC: トランス-4-ブロモ-N-[4-(4-ジメチルアミノーキナゾリン

-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスルホン アミドの合成

トランスー「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキ シル] ーカルバミン酸tーブチルエステル (500mg、1.30mmo1)のEtOA c (5mL)溶液に、EtOAc (5mL)中の4Mの塩化水素を加えた。この混合物を 室温で1時間撹拌し、濃縮すると、白色の固体が得られた。この固体のCH₂C1₂(7 ml.) 懸濁液に、ジイソプロピルエチルアミン (905 al., 5,20 mm o 1) を加え た。この混合物を4°Cに冷却し、塩化4-プロモ-2-トリフルオロメトキシーベンゼン スルホニル (462mg、1.36mmo1)のCH₂C1₂(2mL)溶液を5℃以下 で加えた。この反応混合物を4℃で1.5時間機样した。この反応混合物に、塩化4-ブ ロモー2ートリフルオロメトキシーベンゼンスルホニル(88mg, 0, 26mmol) のCH₂ C1₂ (0.5 mL) 溶液を加え、混合物を4℃で1時間攪拌した。この反応混 合物に、ジイソプロピルエチルアミン (230 μ L、1.32mmo1)を加え、混合物 を4℃で1.5時間撹拌した。反応を、飽和NaHCO。水溶液で停止させた。水層をC HC1。で抽出した(3回)。合わせた有機層をMgSO。上で乾燥させ、沪過し、濃縮 し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中の50%EtOAc)により精製すると、トランス-4-ブロモ-N-「4-(4-ジメチルアミノーキナゾ リン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンゼンスル ホンアミド (339mg, 44%) が白色の固体として得られた。

ESI NS m/e 588, N + H'; H NNR (300 MHz, $CDCl_3$) $\tilde{\sigma}$ 7.92 (d , J = 8.9 Hz, 1 H), 7 .80 (dd , J = 8.3, 0.7 Hz, 1 H), 7.37–7.59 (m, 4 H), 6.99–7.06 (m, 1 H), 4.64–4. 75 (m, 1 H), 3.78–3.94 (m, 1 H), 3.17–3.30 (m, 7 H), 2.09–2.20 (m, 2 H), 1.85–1. 97 (m, 2 H), 1.12–1.47 (m, 4 H).

[0272]

実施例6 【化153】

ステップA: トランスー (4-アミノーシクロヘキシルメチル) ーカルバミン酸 t- ブチルエステルの合成

トランス $= [4-(t-プトキシカルボニルアミノーメチル) = シクロヘキシル] - カルバミン酸 <math>\sim 5\%$ $\sim 5\%$ \sim

ESI MS m/c 229, M···Bl'; 'H NMR (300 MHz, $CDCL_9$) δ 4.56–4.88 (m, 1 H), 3.00 (t, J = 6.5 Hz, 2 H), 2.54–2.65 (m, 1 H), 1.70–1.94 (m, 4 H), 1.44 (s, 9 H), 1.18–1.50 (m, 1 H), 0.92–1.15 (m, 4 H).

[0274]

ステップB: トランス- [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル] -カルバミン酸t-ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 422, M + Na'; 1 H NMR (300 MHz, CDCl₃) δ 7.81 (d, J = 7.9 Hz, 1 H), 7 .38-7.52 (m, 2 H), 6.96-7.07 (m, 1 H), 4.55-4.84 (m, 2 H), 3.75-3.97 (m, 1 H), 3.26 (s, 6 H), 3.01 (t, J = 6.4 Hz, 2 H), 2.15-2.30 (m, 2 H), 1.75-1.88 (m, 2 H), 1.45 (s, 9 H), 1.35-1.54 (m, 1 H), 1.00-1.30 (m, 4 H).

ステップC: トランス-4-プロモ-N-[4-(4-ジメチルアミノーキナゾリン-2-4ルアミノ) - シクロヘキシルメチル] - 2-トリフルオロメトキシーベンゼンス ルホンアミドの合成

トランスー「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) ーシクロヘキ シルメチル] ーカルバミン酸tーブチルエステル (500mg、1.25mmol)のE tOAc (5mL) 懸濁液に、EtOAc (5mL) 中の4Mの塩化水素を加えた。この 混合物を、室温で1時間撹拌し、濃縮すると、白色の固体が得られた。この固体のCH2 C1。(7mL) 懸濁液に、ジイソプロピルエチルアミン(905 μ L、5、20mmo 1)を加えた。この混合物を4℃に冷却し、塩化4-ブロモ-2-トリフルオロメトキシ -ベンゼンスルホニル(446mg、1.31mmo1)のCH。C1。(2mL)溶液 を5℃以下で加えた。反応混合物を4℃で1、5時間攪拌した。この反応混合物に、塩化 4-プロモ-2-トリフルオロメトキシーベンゼンスルホニル(85mg、0,25mm ○1)のCH₂C1₂(0.5mL)溶液を加え、この混合物を4℃で1時間撹拌した。 この反応混合物に、ジイソプロピルエチルアミン(220 μ L、1、26 μ mol)を加 え、混合物を4℃で1時間撹拌した。反応を、飽和NaHCO。水溶液で停止させた。水 層をCHC1。で抽出した(3回)。合わせた有機層をMgSO。上で乾燥させ、沪過し 、濃縮し、フラッシュクロマトグラフィー (NH-シリカゲル、ヘキサン中の50%E t OAc) により精製すると、トランス-4-ブロモ-N-「4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキシルメチル] -2-トリフルオロメトキシー ベンゼンスルホンアミド (624mg. 83%) が淡黄色の固体として得られた。 ESI MS m/e 602, M + H⁺; ¹H NMR (300 MHz, CDCl₃) δ 7.89 (d, J = 8.9 Hz, 1 H), 7. 80 (d, J = 8.5 Hz, 1 H), 7.39-7.60 (m, 4 H), 7.04 (ddd, J = 8.2, 6.8, 1.6 Hz, 1 H), 3.71-3.92 (m, 1 H), 3.30 (s, 6 H), 2.85 (d, J = 6.5 Hz, 2 H), 2.10-2.22 (m, 2 H), 1.70-1.86 (m, 2 H), 1.37-1.53 (m, 1 H), 0.98-1.32 (m, 4 H).

【0276】 実施例7 【化154】

 $N^2 = [1 - (4 - 7 \Box \hat{\tau} - 2 - F) J \gamma h \pi \Box \hat{x} F + Y - (Y \vec{\tau} Y \chi h \pi \Box h) - \vec{v} \vec{v}$ リジン $-4 - 4 \mu Y + \mu] - N^4 - N^4 - \vec{v} Y + \mu - F + Y J Y - 2 , 4 - \vec{v} \gamma F > Y [0.371]$

ステップA: 4-アミノメチルーピペリジン-1-カルボン酸t-ブチルエステルの 合成 C-ビベリジンー4-イルーメチルアミン(15.0s、131mmo1)のトルエン(165mL)溶液に、ベンズアルデヒド(13.9s、131mmo1)を加え、この混合物を還流下で、ディーンスタークトラップを用いて、 N_2 雰囲気下に3時間課刊し、水浴上で冷却した。この反応混合物に、(Boc)。O(31.5s、144mmo1)を15分かけて滴加した。混合物を室温で2.5日間課刊し、濃縮した。残留物に、1MのKHSO。水溶液を加え、この混合物を室温で7時間課料し、水爆化と 大保御に、1MのKHSO。水溶液を加え、この混合物を室温で7時間課料し、水爆化とトリウムでアルカリ化し、CHC1。 で抽出した(5回)。合かせた有機層をMg SO。上で乾燥させ、浐遠し、濃縮した。沈殿物をヘキサン(10mL)中に懸濁をせ、整濁液を、零温で10分間解料した。 デ遊により、間体を集め、被圧下に乾燥させ、&スタン第)が自企の固体として得られた。

ESI NS m/c 215, M + III : 1 I NNR (300 NHz, CDCl₂) δ 3.85-4.22 (m, 2 II), 2.90 (d, 1 = 6.8 Hz, 2 H), 2.50-2.80 (m, 2 II), 1.70-2.02 (m, 3 II), 1.45 (s, 9 II), 1.10-1. 28 (m, 2 II),

[0278]

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 386, M + H' ; 1 H NMR (300 MHz, CDCl₃) $\hat{\sigma}$ 7.81 (d, J = 8.4 Hz, 1 H), 7. 41–7.53 (m, 2 H), 6.99–7.06 (m, 1 H), 5.16 (brs, 1 H), 4.00–4.20 (m, 2 H), 5.41 (t, J = 6.1 Hz, 2 H), 3.26 (s, 6 H), 2.60–2.77 (m, 2 H), 1.67–1.84 (m, 3 H), 1.4 5 (s, 9 H), 1.11–1.28 (m, 2 H).

ステップC: $N^2 - [1 - (4 - プロモ-2 - トリフルオロメトキシーベンゼンスル ホニル) - ピペリジン-4 - イルメチル] - <math>N^4$, $N^4 - ジメチル-キナゾリン-2$, 4 - ジアミンの合成

ESI MS m/e 588, M + H⁺; 1 H NMr (300 MHz, CDCl₃) 2 7.85 (d, J = 8.9 Hz, 1 H), 7.81 (dd, J = 8.7, 0.9 Hz, 1 H), 7.40-7.56 (m, 4 H), 7.04 (ddd, J = 8.2, 6.7, 1.6 Hz, 1 H), 5.10-5.46 (brs. 1 H), 3.85 (d, J = 12.4 Hz, 2 H), 3.40 (t, J = 6.4 Hz, 2 H), 3.27 (s, 6 H), 2.56-2.67 (m, 2 H), 1.64-1.91 (m, 3 H), 1.23-1.43 (m, 2 H), 10.280]

実施例8

【化155】

4 - プロモ-N- [1-(4-ジメチルアミノ-キナゾリン-2-イル) - ピペリジン -4-イルメチル] -2-トリフルオロメトキシーベンゼンスルホンアミド [0281]

ステップA: 4-(ベンジルオキシカルボニルアミノ-メチル)-ピペリジン-1-カルボン酸t-ブチルエステルの合成

4-アミノメチルーピペリジン-1-カルボン酸セーブチルエステル (7.00g、32.7mmol)のCHClg (70mL)溶液に、トリエチルアミン (3.64g、36.0mmol)を加えた。生た溶液を4-ric冷却し、足て1(6.13g、35.9mmol)を8で以下で15分かけて加えた。この反応混合物を、室温で18時間排料し、絶和NaHCOgが溶液に注いだ。水性相をCHClgで抽出し (3回) Mg SO4、上で破長さと、沖過し、溶釉し、フラッシュクロマトクラコー (シリカゲル、ヘキサン中の33%から50% EtOAc)により精製すると、4- (ベンジルオキシカルボニルアミノーメチル)ービベリジン-1-カルボン酸セーブチルエステル (10.7g、94%)が無色のオルとして得られた。

ESI NS m/e 371, M + Na* ; 1 H NOR (300 MHz, $CDCl_{2}$) δ 7.26-7.37 (m, 5 H), 5.09 (s, 2 H), 4.8+5.01 (m, 1 H), 3.95-4.22 (m, 2 H), 2.98-3.16 (m, 2 H), 2.66 (t, J = 12.4 Hz, 2 H), 1.58-1.72 (m, 3 H), 1.45 (s, 9 H), 0.98-1.18 (m, 2 H). TOORAL

ステップB: ビペリジンー 4 ーイルメチルーカルバミン酸ペンジルエステル塩酸塩の合成

4 - (ベンジルオキンカルボニルアミノーメチル) - ピペリジン-1 - カルボン酸 + テナルエステル(10.2g、29.3mmol)のE tOAc(10 om L)溶液を水浴上で待卸し、E tOAc(10 om L)溶液を水浴上で待卸し、E tOAc(10 om L) 中の4 Mの塩化水素を加えた。この混合物を室温で1時間照詳し、流縮した。残留物をヘキサン(3 om L)に懸酒させ、混合物を室温で30分間照詳した。評論により固体を集め、ヘキサンで洗浄し、減圧下に乾燥させると、アッシが白のの個体として得るれた。

ESI NS m/c 271. N (強縮型) + Na* : H NMR (300 MHz, DMSO-d_e) δ 9.10 (brs, 2 H), 7.20~7.50 (m, 6 H), 5.02 (s, 2 H), 3.15–3.28 (m, 2 H), 2.68–3.02 (m, 4 H), 1.56– 1.82 (m, 3 H), 1.20~1.52 (m, 2 H).

[0283]

ステップC: [1-(4-ジメチルアミノーキナゾリン-2-イル)ービペリジン-4-イルメチル]ーカルバミン酸ペンジルエステルの合成

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 420, M + H⁺; H NNR (300 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 1 H), 7. 21-7.49 (m, 7 H), 6.95-7.04 (m, 1 H), 5.06-5.17 (m, 2 H), 4.83-4.98 (m, 3 H), 3. 24 (s, 6 H), 3.00-3.16 (m, 2 H), 2.77-2.91 (m, 2 H), 1.58-1.97 (m, 3 H), 1.12-1. 33 (m, 2 H).

[0284]

ステップD: 4-プロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ビベリジン-4-イルメチル] -2-トリフルオロメトキシ-ベンゼンスルホンアミ

ドの合成

実施例3のステップDの手順を使用して、表題の化合物を得た。

ESI NS m/e 588, M + H'; ¹H NMR (300 MHz, $CDCl_3$) ∂ 7.87 (d, J = 8.7 Hz, 1 H), 7. 78 (d, J = 8.2 Hz, 1 H), 7.44-7.59 (m, 4 H), 6.97-7.06 (m, 1 H), 4.94-5.04 (m, 1 H), 4.89 (d, J = 13.2 Hz, 2 H), 3.25 (s, 6 H), 2.75-2.88 (m, 4 H), 1.64-1.82 (m, 3 H), 1.05-1.28 (m, 2 H).

[0285]

実施例9 【化156】

シスー4ープロモーN-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル]-2-トリフルオロメトキシーベンゼンスルホンアミド [0286]

ステップA: シスー(4ーベンジルオキシカルボニルアミノーシクロヘキシル)ーカ ルバミン酸ベンジルエステルの合成

ESI NS m/e 405, M + Na*; 'H NMR (300 MHz, CDCl₃) & 7.15-7.40 (m, 10 H), 5.07 (s , 4 H), 4.70-5.00 (m, 2 H), 3.52-3.80 (m, 2 H), 1.60-1.80 (m, 4 H), 1.45-1.60 (m, 4 H).

[0287]

ステップB: シスー (4 – アミノーシクロヘキシル) – カルバミン酸 t – ブチルエス テルの合成

シスー (4 - ベンジルオキシカルボニルアミノーシクロヘキシル) - カルバミン酸ベンシルエステル (91.7g、240mmol)のMeOH (460mL)溶液に、5%Pd/C (9.17g)を加えた。反応混合物を空温で、水素穿翔気下に2.5日間開採性し、セライトバッドでが通し、濃縮すると、ジアミンが無色のオイルとして得られた。このジアミンのMeOH (550mL)溶液とは明節がて満加した。反応混合物を室温で1.5 に間損拌し、濃縮した。H2ので溶かした後に、水層を、CHC1。 対能出した。3回)。合わせた右機層をMgSO2上で乾燥させ、が通し、濃縮すると、シスー (4 - アミノーシクロヘキシル) - カルバミン酸セーブチルエステル (7.78g、15%、粗製)が無色のオイルとして得られた。水層を濾漉し、残留物をMeOHに溶かし、MgSO4上で乾燥させ、が通し、濃縮すると、32.9g)が無色のオイルとして得られた。水層を濾漉し、残留物をMeOHに溶かし、MgSO4上で乾燥させ、が通し、濃縮すると、回収されたジアミン (32.9g)が無色のオイルとして得られた。回収されたジアミン (32.9g、38) が無色のオイルとして得られた。回収されたジアミン (32.9g、288mmol)のMeOH (660

mL) 溶液に、(Boc) 20(6.29g、28.8mmol)のMeOH(80mL)溶液を5時間かけて滴加した。反応混合物を室温で10時間撹拌し、濃縮した。H。O で溶かした後に、水層をCHC1。で抽出した(3回)。合わせた有機層をMgSOa上 で乾燥させ、沪過し、濃縮すると、シスー(4-アミノーシクロヘキシル)ーカルバミン 酸t-ブチルエステル(8,16g、16%、粗製)が無色のオイルとして得られた。水 層を濃縮し、残留物をMeOHに溶かし、MgSOa上で乾燥させ、沪過し、濃縮すると 、回収されたジアミン(23.1g)が無色のオイルととして得られた。回収されたジア ミン(23.1g、202mmol)のMeOH(462mL)の溶液に、(Boc)。 O(4,42g,20,3mmol)のMeOH(56mL)溶液を4時間かけて滴加し た。反応混合物を室温で3.5日間機样し、濃縮した。H。Oに溶かした後に、水層をC HC1。で抽出した(3回)。合わせた有機層をMgSO。上で乾燥させ、沪過し、濃縮 すると、シスー(4-アミノーシクロヘキシル)ーカルバミン酸セーブチルエステル(5 . 01g、出発原料に対して10%)が無色のオイルとして得られた。水層を濃縮し、残 留物をMeOHに溶かし、MgSOa上で乾燥させ、沪過し、濃縮すると、回収されたジ アミン (16.0g) が無色のオイルとして得られた。回収されたジアミン (16.0g)、140mmol)のMeOH(320mL)溶液に、(Boc)₂O(3.06g、1 4. 0mmo1) のMeOH (40mL) 溶液を4時間かけて滴加した。 反応混合物を室 温で13時間撹拌し、濃縮した。HoOに溶かした後に、水層をCHC1。で抽出した(3回)。合わせた有機層を、MgSO∠上で乾燥させ、沪過し、濃縮すると、シスー(4 アミノーシクロヘキシル)ーカルバミン酸tーブチルエステル(3.53g、出発原料 に対して7%)が無色のオイルとして得られた。水層を濃縮し、残留物をMeOHに溶か し、 $MgSO_4$ 上で乾燥させ、沪過し、濃縮すると、回収されたジアミン(11.1g) が無色のオイルとして得られた。

ESI MS m/e 215, M + H' : 'H NMR (300 NHz, CDCl₉) & 4.30-4.82 (m, 1 H), 3.50-3.80 (m, 1 H), 2.78-2.95 (m, 1 H), 1.44 (s, 9H), 1.20-1.80 (m, 8 H). [0.288]

ステップC: シスーN2 - (4-アミノーシクロヘキシル) - N4 + N4 -ジメチル -キナゾリン-2 + 4 -ジアミンの合成

実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)-ジメチル-アミン (3.00g, 14.4mmol) およびシスー (4-アミノーシクロヘキシル)カルバミン酸tーブチルエステル(3.72g、17.4mmol)からなる2-プロ パノール(10mL)中の混合物を還流下に5.5日間標拌し、飽和NaHCO。水溶液 に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機層をMgSO。上で乾燥さ せ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカ、ヘキサン中の20 %E t OAc)により精製すると、溶剤を含むシスー[4-(4-ジメチルアミノーキナ ゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸 t -ブチルエステル (5. 44g) が無色のオイルとして得られた。前記の物質(5.44g)のEtOAc(10 mL)溶液に、EtOAc(50mL)中の4Mの塩化水素を加えた。反応混合物を室温 で2時間撹拌し、濃縮した。残留物を飽和NaHCO。水溶液でアルカリ化し、沈股物を 沪過により集めると、シス $-N^2-(4-r)$ ミノーシクロヘキシル) $-N^4$, N^4 -ジメ チルーキナゾリン-2,4-ジアミン(2.26g、55%)が白色の固体として得られ た。この水層をCHC1。で抽出した(3回)。合わせた有機層をMgSOa上で乾燥さ せ、沪過し、濃縮すると、シス-N2-(4-アミノ-シクロヘキシル)-N4, N4-ジメチルーキナゾリン-2, 4-ジアミン (687 mg、17%) が白色の固体として得Sht.

ESI NS m/e 285, M^* ; ^{1}H NMR (300 MHz, DMS0-d₀) δ 7.86 (d, J = 7.5 Hz, 1 H), 7.47 (t, J = 8.3 Hz, 1 H), 7.29 (d, J = 8.3 Hz, 1 H), 7.01 (t, J = 7.6 Hz, 1 H), 6.5 (d, J = 7.5 Hz, 1 H), 3.83-4.06 (m, 1 H), 3.38-3.52 (m, 1 H), 3.20 (s, 6 H), 1.22-1.82 (m, 8 H).

[0289]

(310)

シスート2 - (4 - アミノーシクロへキシル) - N4 - N4 - ジメチルーキナゾリン 2 . 4 - ジアミン (680 mg . 2 . 38 mm o l) のCH $_2$ Cl $_2$ (7 mL) 製造のと . ジイソフロビルエチルアミン (620 μ L 、3 . 56 mm o l) を加えた。この混合物 を水溶上で冷却し、塩化 - ブロモー 2 - トリフルガロメトキシ - ベンゼンスルホニル (849 mg . 2 . 50 mm o l) のCH $_2$ Cl $_2$ (3 mL) 溶液を液加した。反応混合物 を水溶上で6 . 5時間腕柱した。反応定、 飽和 Na - Ha 光 で 発達で作させた。木屑を 水溶上で6 . 5時間腕柱した。反応を、 飽和 Na - Ha Ha Na - N

ESI NS m/c 588, N° ; H NNR (300 MHz, CDCl₃) $\bar{\sigma}$ 7.92 (d, J = 8.9 Hz, 1 H), 7.81 (d d, J = 8.3, 1.2 Hz, 1 H), 7.41-7.58 (m, 4 H), 7.04 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 4.00-4.12 (m, 1 H), 3.36-3.45 (m, 1 H), 3.31 (s, 6 H), 1.54-1.84 (m, 8 H), 10.290 J

実施例10 【化157】

トランス $-N-\{4-[(4-i)x+i)x+i)y-2-4ix+iy-2-4ix+iy-2-2-4ix+iy-3-2-4ix+ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-4ix-3-2-2-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3-4ix-3$

ステップA: トランス $-N-\{4-[(4-i)x+i)x+i)x+i = 2-i$ アミノ) -x+iリンー2-x+iリーンクロヘキシルメチル-x+iリーメタンスルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

$$\begin{split} &\mathrm{ESI~NS~m/c~992,~N+Hr~: H~NMR~(300~MHz,~CDCl_3)^2}~7.81~(d,~J=7.8~Hz,~1~H),~7.\\ &38-7.53~(m,~2~H)~7.02~(dod,~J=8.3,~6.6,~1.6~Hz,~1~H),~5.07~(brs,~1~H),~4.61~(brs,~1~H),~3.36~(t,~J=6.2~Hz,~2~H),~3.27~(s,~6~H),~2.94~(s,~3~H),~2.91-3.01~(m,~2~H),~1.76-1.98~(m,~4~H),~1.37-1.64~(m,~2~H),~0.85-1.12~(m,~4~H). \end{split}$$

[0292]

実施例11 【化158】

ル] ーシクロヘキシルメチル} -2-トリフルオロメトキシーベンズアミド [0293]

ステップA: トランスーN-{4-[(4-ジメチルアミノ-キナゾリン-2-イル アミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンズアミ ドの合成

実施例1のステップGで得られたトランスー {4-[(4-ジメチルアミノーキナゾリンー2-イルアミノ) - メチル]シクロヘキシルメチル}ーカルバミン酸モープチルエス・ル(800mg、1・93mmol)のEtOAc(10mL) 懸弱液に、EtOAc(10mL) 野弱液に、EtOAc(10mL) 中の4 Mの場 化木素を加えた。この混合物を含電で6 の分間解料し、湿縮すると、自色の固体が得られた。この周体のCH₂ Cl₂ (10mL) 懸弱液に、ジ4ソプロビルエチルアミン (706 μL、4・05mmol)を加えた。この混合物を4でに対し、原化2ー(トリフルオロメトキシ)ベンゲイル(455mg、2・03mmol)のCH₂ Cl₂ (4mL) 溶液を5で以下で加えた。この反応混合物を4でで90分間提押した。反応を、娩和NaHCO₂ 水溶液で停止させた。水屑をCHCl₂ で抽出した(3回)。合わせた有濃厚をM g SO₄ 上で検集させ、が高し、液縮し、フラッシェクリトグラフィー(NH-シリカゲル、ヘキサン中の33%E tOAc)により指導すると、トランスーN -{4-[(4-ジメチルアミノーキナゾリンー2-イルアミノ) - メチル - フートリフルオロメトキシーベンズアミド (772 mg、8、80%) が影響をの間伝と1・7番ら力た。

ESI NS m/e 502, M + H'; 'H NNR (300 Mbz, $ODCl_3$) $\tilde{\sigma}$ 7.90 (dd, J = 7.4, 1.6, Hz, 1 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.33-7.55 (m, 4 H), 7.29 (d, J = 8.8, Hz, 1 H), 6.96-7.08 (m, 1 H), 6.55 (brs. 1 H), 4.97 (brs. 1 H), 3.28-3.43 (m, 4 H), 3.26 (s, 6 H), 1.76-2.10 (m, 4 H), 1.44-1.72 (m, 2 H), 0.90-1.21 (m, 4 H), 1.44-1.72 (m, 2 H), 0.90-1.21 (m, 4 H).

実施例12 【化159】

トランスープタンー1ースルホン酸 {4- [(4-ジメチルアミノーキナゾリン-2-イルアミノ) -メチル] -シクロヘキシルメチル} -アミド 【0995】

ステップA: トランス-ブタン-1-スルホン酸 {4-[(4-ジメチルアミノーキ ・アゾリン-2-4ルアミノ)-メチル]-シクロへキシルメチル}-アミドの合成 実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI NS m/e 434, M + H' : 'H NNR (300 MHz, $CDCl_3$) $\bar{\sigma}$ 7.81 (d, J = 8.2 Hz, 1 H), 7. 35~7.54 (m, 2 H), 6.97–7.07 (m, 1 H), 4.41 (t, J = 6.1 Hz, 1 H), 3.36 (t, J = 6.1 Hz, 2 H), 3.27 (s, 6 H), 2.89–3.05 (m, 4 H), 1.71–1.97 (m, 6 H), 1.37–1.65 (m, 4 H), 0.82–1.12 (m, 7 H).

[0296]

実施例13

【4k160】

.62 (m, 2 H).

ステッアA: 4 ープロモー2ートリフルオロメトキシーベンズアルデヒドの合成 4 ープロモー1 = 1 = 1 × 2 ートリフルオロメトキシーベンゼン (1.00g.2.7 2mmol) のTHF (15 mL) 溶液を - 78℃に冷却し、ヘキサン中の2.66 Mの BuLi(2.05 mL、5.44 mmol)を満地た。反応混合物を - 78℃で1.5時間操件し、Nーホルミルモルホリン (0.57 mL、5.63 mmol)を加えた。反応混合物を - 78℃で1.5分間、さらに室温で80分間機件と、反応を、0.25 Mの解散水溶液(10 mL)で停止させ、生じた混合物を E tOA で で抽出した(3回)。合わせた有機履を M g S O 4。上で乾燥させ、砂過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の2%から5%E tOAc)により精製すると、4 ープロモー2 ートリフルオロメトキシーベンズアルデヒド(560 mg、77%)が淡褐色の間 依として得られた。

CI MS m/e 269, M + H : ¹H NMR (300 MHz, $CDCl_0$) d 10.33 (s, 1 H), 7.85 (d, J = 8 .1 Hz, 1 H), 7.50-7.67 (m, 2 H). (5238]

ステップB: 4-プロモー2-トリフルオロメトキシー安息香酸の合成

1,4-ジオキサン (27 mL) およびH₂ O (9 mL) 中の4-ブロモ-2-トリフルオロメトキシーベンズルデヒド (550 mg、2,04 mm o I) か溶液を4でに溶しれた。この落落に、アミド硫酸 (29 6 mg、2,05 mm o I) およびリン酸 水素ナトリウム二水和物 (1,4 g、8,98 mm o I) を加えた。この混合物を4でで15分間機样した。この反応混合物に、重塩素酸ナトリウム(238 mg、2,63 mm o I) の日₂ O (1,5 mL) 溶液を加え、4でで15分間機样した。この反応混合物に、32 C O₃ (30 4 mg、2,4 1 mm o I)を加え、4でで15分間機样した。この混合物に、2 C O₃ (30 4 mg、2,4 1 mm o I)を加え、4でで15分間機样した。この混合物を満出して1(pH=I)で酸性化し、木帽を6 HC I₃で抽出した(3回)。合わせて有機厚を18 SO₄ 上で数後させ、評過し、議職し、フラッシュカロマトグラフィー(シリカゲル、CHC I₃ 中の1%MeOH)により精製すると、4 プロモー2ートリフルオロメトキシー安息流酸(47 1 mg、8 1%)が自色の間体として得られた。ESI Ms me (28,4 mg:H NM GOO Mg、700.6) そ 7.8 (4, 1 = 8.4 kg、H) 、7.53~

【029】 ステップC: トランスー4ープロモーNー {4-[(4-ジメチルアミノーキナゾリ ンー2ーイルアミノ)ーメチル]ーシクロヘキシルメチル}ー2ートリフルオロメトキシ -ベンズアミドの合成

 を加えた、この混合物を室温で40分間機料し、濃縮すると、白色の固体が得られた。この固体のCH $_2$ C $_1$ c (6m L) 懸造成に、ジイソプロピルエチルアミン(55 $_2$ $_4$ L、3、17 mm o $_1$) を加えた。この混合物を47に冷却し、厳密化物のCH $_2$ C $_1$ c (6 m L) 滞液を5 で以下で加えた。この反応混合物を47で2、5時間機样した。反応を、総和N。 $_4$ HC $_2$ 不確定で挙止させた。水槽をC HC $_1$ っで抽出した(3回)。合かせた有機層を $_3$ KG $_2$ とで乾燥させ、沪道し、濃縮し、ファッシュクロマトグラフィー(N H $_2$ H $_3$ H $_4$ C $_4$ C $_4$ H $_4$ C $_4$ C $_4$ H $_4$ C $_4$ C $_4$ E $_4$ C $_4$ E $_4$ E $_4$ C $_4$ E $_4$ E $_4$ E $_4$ E $_4$ C $_4$ E $_$

ESI NS m/e 580, M + H' ; 'H NNR (300 MHz, $CDCl_3$) δ 7.89 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.39-7.67 (m, 4 H), 7.02 (ddd, J = 8.2, 6.4, 1.9 Hz, 1 H), 6.53 (brs, 1 H), 4.99 (brs, 1 H), 3.37 (t, J = 6.5 Hz, 2 H), 3.32 (t, J = 6.3 Hz, 2 H), 3.27 (s, 6 H), 1.76-2.02 (m, 4 H), 1.48-1.67 (m, 2 H), 0.94-1.16 (m, 4 H).

【0300】 実施例14 【化161】

トランス-N- {4- [(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -メチル] -シクロヘキシルメチル) -2-トリフルオロメトキシーベンゼンスルホンアミド [0301]

ステップA: トランスーNー {4- [(4-ジメチルアミノーキナゾリン-2-イル アミノ)-メチル]-シクロヘキシルメチル}-2-トリフルオロメトキシーベンゼンス ルホンアミドの合成

ESI NS m/e 538, M + H'; 'H NNR (300 MHz, $CDCl_3$) $\bar{\sigma}$ 8.03 (dd, J = 8.0, 1.6 Hz, 1 H), 7.81 (d, J = 8.2 Hz, 1 H), 7.757-7.66 (m, 1 H), 7.36-7.52 (m, 4 H), 7.02 (ddd, J = 8.3, 6.5, 1.7 Hz, 1 H), 4.94 (brs, 1 H), 4.66 (brs, 1 H), 3.34 (t, J = 6.4 Hz, 2 H), 3.36 (s, 6 H), 2.78 (t, J = 6.2 Hz, 2 H), 1.68-2.01 (m, 4 H), 1.29-1.

60 (m, 2 H), 0.79-1.07 (m, 4 H). [0302]

実施例15

【化162】

ステップA: トランス $-N^2 - (4-r)$ ミノメチルーシクロヘキシルメチル) $-N^4$ $-N^4 - ジメチルーキナゾリン-2$ -4 - ジアミンの合成

トランスー $\{4-\left[(4-\bar{\nu}x)+h.r^2\}-h+r\bar{\nu}y)-2-4h.r^2\}$) ーメチル] ーシクロペキシルメチル] ーカルパミン酸] ーガールエステル] (2 0 0 mL)] 男] 名称] 他の] りかっ] 他の] といると、] 全の] のかり] を整定した] から] を確認] といると、] と

ESI NS m/e 566, $M+H^*$; H N0R (300 MHz, CDC_{13}) σ 7,80 (d, J=8.2 Hz, 1 H), 7. 34-7.52 (m, 5 H), 7.01 (ddd, J=8.3, 6.2, 2.0 Hz, 1 H), 5.00 (brs, 1 H), 3.77 (s, 2 H), 3.36 (t, J=6.3 Hz, 2 H), 3.26 (s, 6 H), 2.43 (d, J=6.7 Hz, 2 H), 1. 76-1.95 (m, .4 H), 1. 34-1.65 (m, 2 H), 0.83 $^{-1}$ 1.12 (m, 4 H).

【0305】

実施例16 【化163】

[0306]

ステップA: トランスー4-プロモ-N- $\{4-[(4-ジメチルアミノーキナゾリン-2-4ルアミノ)-メチル]-シクロヘキシルメチル<math>\}-N-メチル-2-トリフルオロメトキシーベンゼンスルホンアミドの合成$

実施例1のステップ日で得られたトランスー4ープロモーNー $\{4- [(4-5 \vee 5 + h \times 5 + h \times$

ESI SS m/c 630, M + H' ; 'H NNR (300 MHz, CDCl₃) 5 7.88 (d, J = 9.2 Hz, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.41-7.57 (m, 4 H), 7.03 (ddd, J = 8.4, 6.3, 1.8 Hz, 1 H), 3.37 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 2.97 (d, J = 7.5 Hz, 2H), 2.81 (s, 3H), 1.73-1.97 (m, 4H), 1.46-1.66 (m, 2H), 0.83-1.12 (m, 4H).

【0307】 実施例17

【化164】

ステップA: トランス $-N^2 - (4 - \{[(4 - 704 - 2 - 1970 + 1$

メチルーキナゾリンー2. 4-ジアミンの合成

実施例 150ステップ PC で得られたトランス $-N^2 - (4-[(4- Tロモー2- +) V)$ $-N^4$ $-N^4$

ESI NS m/e 580, N + II; I NNR (300 MHz, $CDCl_3$) $\tilde{\sigma}$ 7.81 (d, J = 7.6 Hz, 1 II), 7. 34-7.53 (m, 5 II), 7.02 (ddd, J = 8.3, 6.2, 2.0 Hz, 1 II), 3.44 (s, 2 II), 3.36 (t, J = 6.3 Hz, 2 II), 3.27 (s, 6 II), 2.14 (s, 3II), 2.11-2.18 (m, 2 II), 1.81-1.96 (m, 2 II), 0.73-1.13 (m, 4 II).

【0309】 実施例18

【化165】

トランスー3ートリフルオロメトキシービフェニルー4ースルホン酸 {4-[(4-ジ メチルアミノーキナゾリンー2ーイルアミノ)ーメチル]ーシクロヘキシルメチル}ーア ミド

[0310]

ステップA: トランス-3-トリフルオロメトキシービフェニルー4-スルホン酸 $\{$ 4-[(4- \exists \lor 3)+ \lor 4)- \lor 4)- \lor 6)- \lor 6)- \lor 6)- \lor 7)- \lor 8)- \lor 9)- \lor 9)

実施例 1のステップ IT C背られたトランスー4 ープロモーNー(4 ー [(4 ージメチルアミノーキ デリンー 2 ー イルアミノ) - メチル] ーシクロへキシルメチル } ー 2 ー トリフルオロメトキシーベンゼンスルホンアミド(12 2 mg、0・19 名 mm o l) のトルエン(2・7 m L) 流流に、M e O H (0・9 m L)、2 M o M c M e O H (0・9 m L)、2 M o M c M e O H (0・9 m L)、2 M o M c M e O H (0・9 m L)、2 M o M c M e O H (0・9 m L)、2 M o M c M e O H (0・9 m L) は M f M e M c M e

ESI MS m/e 614, M + H $^{\circ}$; $^{\circ}$ II NMR (200 MHz, CDC1 $_3$) δ 8.07 (d, J = 8.4 Hz, 1 H), 7.82 (d, J = 8.8 Hz, 1 H), 7.38-7.67 (m, 9 H), 7.03 (ddd, J = 8.4, 6.2, 2.2 Hz, 1

 $||0\rangle$, 5.11 (brs. 1 $||0\rangle$), 4.71 (brs. 1 $||0\rangle$), 3.35 (t. , $||1\rangle$ = 6.2 $||1\rangle$, 2.17, 2.19), 3.27 (s. 6 $||1\rangle$), 2.73–2.90 (m, 2 $||0\rangle$), 1.67–2.03 (m, 4 $||0\rangle$), 1.30–1.64 (m, 2 $||0\rangle$), 0.75–1.16 (m, 4 $||0\rangle$), 1.30–1.64 (m, 2 $||0\rangle$), 0.75–1.16 (m, 4 $||0\rangle$), 1.311

実施例19 【化166】

トランスーオクタン-1-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミド [0312]

ステップA: トランスーオクタン-1-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミドの合成

実施例1のステップ目の手順を使用して、表題の化合物を得た。

$$\begin{split} & ESI \; MS \; \; m/e \; 490, \; M+\; li' \; : \; H \; NMR \; (300 \; MHz, \; CDCl_2) \; \delta \; \; 7.81 \; (d, \; J=7.8 \; ltz, \; 1 \; H), \; 7. \\ & 38^{-}7.54 \; (m, \; 2 \; li) \; , \; 7.02 \; (dodd, \; J=8.3, \; 6.6, \; 1.7 \; ltz, \; 1 \; li), \; 5.01 \; (brs, \; 1 \; B), \; 4.45 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 2 \; li), \; 3.26 \; (t, \; J=6.2 \; ltz, \; 3 \; lt$$

【0313】 実施例20

【化167】

トランスープロパンー2-スルホン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-シクロヘキシルメチル}-アミド [6314]

(318)

ESI NS m/e 420, M + H⁺; † H NMR (300 MHz, CDCl₃) † 7.81 (d, J = 7.8 Hz, 1 H), 7. 39–7.52 (m, 2 H), 7.02 (ddd, J = 8.3, 6.5, 1.7 Hz, 1 H), 5.02 (brs, 1 H), 4.22 (t, J = 6.2 Hz, 1 H), 3.36 (t, J = 6.2 Hz, 2 H), 3.27 (s, 6 H), 3.09–3.21 (m, 1 H), 2.97 (t, J = 6.5 Hz, 2 H), 1.75–1.97 (m, 4 H), 1.39–1.64 (m, 2 H), 1.37 (d, J = 6.8 Hz, 6 H), 0.85–1.12 (m, 4 H).

【0315】

実施例21 【化168】

ステップA: 1-(4-ブロモ-2-トリフルオロメトキシーベンゼンスルホニル) ービロリジン-3-イルアミン塩酸塩の合成

ピロリジンー3ーイルーカルバミン酸 t- ブチルエステル(1.00g、5.37 mm o 1)の CH_2 CI_2 (10 mL) 溶液に、ジイソプロビルエチルアミン(1.96 mL 5.92 mm o 1)を加えた。この混合物とのでに冷却し、塩化 4 プロモー2ートリフルオロメトキシーベンゼンスルホニル(2.01g、5.92 mm o 1)の CH_2 CI_2 (10 mL) 溶液を 10 で以下で加えた。この反応混合物を 4 でで15 分間助拌し、 CI_3 ったが触れの 4 HC I_3 ったが触れの I_4 HC I_3 ったが触れの I_4 HC I_3 ったが触れの I_4 HC I_4 ったが触れの I_4 HC I_4 ったが機を I_4 を I_4 HC I_4 の I_4 HC I_4 HC

ESI NS m/e 388, M·(遊館型); ¹H NMR (300 MHz, DMSO-d₀) δ 8.44 (brs, 3 H), 7.82-7. 94 (m, 3 H), 3.76-3.84 (m, 1 H), 3.42-3.58 (m, 2 H), 3.23-3.40 (m, 2 H), 2.10-2.23 (m, 1 H), 1.88-2.02 (m, 1 H). [0317]

ステップB: $N^2 - [1 - (4 - プロモ-2 - トリフルオロメトキシーペンゼンスルホニル) - ピロリジン-3 - イル] - <math>N^4$, N^4 - ジメチルーキナゾリン-2, 4 - ジアの合成

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 560, M + H⁺; H NMR (300 MHz, CDCl₃) $\hat{\sigma}$ 7.82-7.89 (m, 2 H), 7.40-7.75 (m, 4 H), 7.08 (ddd, J = 8.3, 6.8, 1.5 Hz, 1 H), 4.83 (brs, 1 H), 4.53-4.64 (m, 1 H), 3.75 (dd, J = 10.3, 5.8 Hz, 1 H), 3.48-3.64 (m, 2 H), 3.44 (dd, J = 10.3, 4.4 Hz, 1 H), 3.27 (s, 6 H), 2.21-2.36 (m, 1 H), 1.86-2.00 (m, 1 H). 1.86-2.00 (m, 1 H).

実施例22

【化169】

シスー4ープロモーN-{4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル]ーシクロヘキシルメチル}ー2ートリフルオロメトキシーベンゼンスルホン アミド [0319]

ステップA: シスー [4-(t-ブトキシカルボニルアミノーメチル) -シクロヘキシルメチル] -カルバミン酸t.-ブチルエステルの合成

O℃に冷却したMeOH(220mL)に、塩化チオニル(52mL)を10℃以下で 2. 5時間かけて加え、この溶液を0℃で1時間撹拌した。この反応混合物に、シスーシ クロヘキサン-1、4-ジカルボン酸(30,0g、174mmol)を加え、この混合 物を室温で14時間撹拌し、濃縮した。残留物をCHC1gに溶かし、飽和NaHCOg 水溶液に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機層をMgSOa上で 乾燥させ、沪過し、濃縮した。水素化アルミニウムリチウム(13.2g、348mmo のTHF (400mL) 懸濁液を-20℃に冷却した。残留物のTHF (200mL))溶液を滴加し、この混合物を室温で3時間撹拌した。反応をNa。SO。・10H。O で停止させ、セライトパッドで沪過し、濃縮した。残留物のトルエン (500mL)溶液 に、トリフェニルホスフィン(37,2g,142mmol)を加えた。4℃に冷却した この混合物にフタルイミド(20.9g、142mmo1)およびトルエン中の40%ア ゾジカルボン酸ジエチル (DEAD) (61.7mL、136mmo1)を25分かけて 加えた。この反応混合物を室温で12時間撹拌し、H。Oに注いだ。水層をCHC1。で 抽出した(3回)。合わせた有機層を、MgSO。上で乾燥させ、沪過し、濃縮した。沈 殿物をEt。Oに懸濁させ、沪過し、MeOHおよびEt。Oで洗浄し、減圧下に乾燥さ せると、白色の固体(16,5g)が得られた。この固体(16,5g,41,0mmo 1) のEtOH (735mL) 懸濁液に、ヒドラジン水和物 (20.5g、410mmo 1)を加えた。混合物を還流下に2.5時間撹拌し、冷却し、濃縮した。沈殿物を10% 水酸化ナトリウム水溶液(120mL)および1、4-ジオキサン(160mL)に溶か した。氷浴上で冷却したこの混合物に、(Boc)20(30.4g、139mmol) を加え、この混合物を室温で2.5時間撹拌し、 H_2 Oに注いだ。水層をCHC1。で抽 出した(10回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮した。沈殿 物をヘキサンに懸濁させ、沪過し、ヘキサンで洗浄し、減圧下に乾燥させると、シスー[4-(t-ブトキシカルボニルアミノ-メチル)-シクロヘキシルメチル]-カルバミン 酸 t ープチルエステル (5, 10g, 9%) が白色の固体として得られた。 ESI MS m/e 365, M + Na* : 1H NMR (300 MHz, CDCl_o) & 4.49-4.59 (m, 2 H), 3.05 (t,

ESI MS m/e 365, M + Na*; -H MMR (300 MHz, CDCL₂)δ 4.49-4.59 (m, 2 H), 3.05 (t J = 6.6 Hz, 4 H), 1.29-1.69 (m, 28 H). [0-20]

ステップC: シスー(4-アミノメチルーシクロヘキシルメチル)ーカルバミン酸 t ーブチルエステルの合成

シスー [4-(t-プトキシカルボニルアミノーメチル)-シクロヘキシルメチル]-カルバミン酸 $t-プチルエステル (2.55 g、7.45 mmol)のCH<math>_2$ Cl $_2$ (4のmL)溶液に、EtOAc(4mL)中の4Mの塩化水素を加えた。この反応混合物を室温でら時間提择し、濃縮した。残留物を<math>1.4-ジオキサン(20mL)および10%水酸化ナトリウム水溶液(40mL)に溶かし、生じた溶液を水浴上で冷却した。(Bo

c) $_2$ O(829mg、3、80mmol)を満加し、混合物を室温で3時間照拝した、水煙をCHCl $_3$ で抽出した(3回)。合わせた有飯棚を Mg SO $_4$ 上で乾燥させ、評過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、CHCl $_3$ 中の9Mme OH)により精製すると、シスー(4-アミノメチルーンクロヘキシルメチル)-カルベミン酸セーブチルエステル(255mg、14%)が淡黄色のオイルとして得られた。

ESI MS m/c 243, M + H : ; H NNR (300 MHz, CDCL₃) & 4.58 (brs. 1 H), 3.06 (t, J = 6.7 Hz, 2 H), 2.60 (d, J = 5.9 Hz, 2 H), 1.28-1.70 (m, 19 H). [0321]

ステップD: シスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ) -メチル] -シクロヘキシルメチル } - カルバミン酸 t - ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 414, M + H'; 'H NNR (300 MHz, $CDCl_3$) $\tilde{\sigma}$ 7.81 (d, J=7.8 Hz, 1 H) ,7. 42–7.52 (m, 2 H), 7.02 (ddd, J=8.3, 6.3, 1.9 Hz, 1 H), 4.52 (brs. 1 H), 3.45 (t, J=6.6 Hz, 2 H), 3.27 (s, 6 H), 3.08 (t, J=6.5 Hz, 2 H), 1.34–1.86 (m, 19 H)

[0322]

ステップE: シスー4 - ブロモーN - {4 - [(4 - ジメチルアミノーキナゾリンー 2 - イルアミノ) - メチル] - シクロヘキシルメチル} - 2 - トリフルオロメトキシーベ ンゼンスルホンアミドの合成

実施例1のステップ日の手順を使用して、表題の化合物を得た。

ESI MS m/e 616, M + H' ; 'H NNR (300 MHz, CDCl₃) $\hat{\sigma}$ 7.90 (d, J = 8.9 Hz, 1 H) , 7 .81 (d, J = 7.8 Hz, 1 H) , 7.41-7.58 (m, 4 H) , 7.63 (ddd, J = 8.2, 6.6, 1.5 Hz, 1 H) , 3.41 (t, J = 6.5 Hz, 2 H) , 3.50 (s, 6 H) , 2.90 (d, J = 7.3 Hz, 2 H) , 1.32-1.86 (m, 10 H) .

[0323]

実施例23 【化170】

 $> \lambda - 4 - 7$ $= -N - \{4 - [(4 - 5 \times 5 + N) + 2 - 4 + 7 + 1) - 2 - 4 + N \} - 2 - 2 - 4 + N \} - 2 - 2 - 4 + N \} - 2 - 2 - 2 + N \} - 2 - 2 - 2 + N \} - 2 - 2 - 2 + N \} - 2 - 2 - 2 + N \} - 2 - 2 - 2 + N \} - 2 - 2$

ステップA: シスー (4ーヒドロキシメチルーシクロヘキシル) ーカルバミン酸 tー ブチルエステルの合成

シスー4ーアミノーシクロヘキサンカルボン酸(244g、1. $70\,\mathrm{mo}$ 1) のM e O H (2, $45\,\mathrm{L}$) 整張液を $-8\,\mathrm{CC}$ に冷却した。塩化オポエル (45. $0\,\mathrm{mL}$ 、 $6\,\mathrm{17}\,\mathrm{mm}$ o 1) を添加した。生した溶液を空温で $-4\,\mathrm{Sem}$ 的間機材料。 た。この固体のC H C 1 $_2$ (3. $0\,\mathrm{GL}$) 整瀬液に、トリエチルアミン($26\,\mathrm{Im}$ L $_1$. $87\,\mathrm{mo}$ 1) および ($8\,\mathrm{gc}$) $_2$ O ($40\,\mathrm{gg}$ 1. $87\,\mathrm{mo}$ 1) を連続して加えた。この反応混合物を空温で $5\,\mathrm{mill}$ 比較し、水流といざ、水層をC H C $_3\,\mathrm{Cm}$ は能した。 $-6\,\mathrm{Cm}$ 方で $-6\,\mathrm{Cm}$ 分で $-6\,\mathrm{Cm}$ 分で $-6\,\mathrm{Cm}$ 分で $-6\,\mathrm{Cm}$ 分で $-6\,\mathrm{Cm}$ $-6\,\mathrm{Cm}$

ウムリチウム (78.3g、2.06mol)のEt₂0(7.9L) 懸濁液に この オイル (530.9g)のEt₂0(5.3L) 溶液を0℃加えた。生じた懸濁液を 塩で2時間無評した。この反応混合物を水溶上で冷却し、冷水で停止させ、セライトパッ ドで評過した。評液をMsSO₄上で乾燥させ、評過し、濃縮した。沈酸物をヘキサン (300ml) に懸濁させ、評過し、ペキサンで洗浄し、減圧下に乾燥させると、シスー (4-比ロキシメチルーンクロヘキシル) - カルパミン酸t - ブチルエステル (301g 77%)が自体の間体として得らわた。

ESI NS m/e 252, M + Na*; H NMR (300 MHz, CDCl₃) δ 4.30-4.82 (m, 1 H), 3.75 (br s, 1 H), 3.51 (d, J = 6.2 Hz, 1 H), 1.52-1.77 (m, 7 H), 1.45 (s, 9 H), 1.16-1.36 (m, 2 H). (0.251)

ステップB: シスー [4-(ベンジルオキシカルボニルアミノーメチル)ーシクロへキシル]ーカルバミン酸tーブチルエステルの合成

シスー(4-ヒドロキシメチルーシクロヘキシル)ーカルバミン酸 t - ブチルエステル (17.7g、77.2mmol)のTHF(245mL)溶液に、トリフェニルホスフ ィン(20, 2g, 77, 0mmol) およびフタルイミド(11, 4g, 77, 5mm o 1) を連続して加えた。生じた懸濁液を氷浴上で冷却し、トルエン中の40%アゾジカ ルボン酸ジエチル (DEAD) を1時間かけて加えた。この反応混合物を室温で2.5日 間攪拌し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中33%Et OAc)により精製すると、白色の固体が得られる。この固体(27.5g)のEtOH (275mL) 懸濁液に、ヒドラジン水和物(5,76g、115mmol)を加えた。 この混合物を還流下に2.25時間撹拌し、冷却し、濃縮した。沈殿物を10%水酸化ナ トリウム水溶液 (350mL) に溶かした。水層をCHC1gで抽出した (3回)。合わ せた有機層をMgSOa上で乾燥させ、沪過し、濃縮した。その残留物のCHC1。(2 75mL)溶液に、トリエチルアミン(8.54g、84.4mmol)を加えた。生じ た溶液を、0℃に冷却し、ZCI(14.4g、84.4mmol)を5℃以下で加えた 。この反応混合物を室温で16時間撹拌し、飽和NaHCO。水溶液に注いだ。水層をC HC1gで抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮 フラッシュクロマトグラフィー(シリカゲル、CHC1。中の2%MeOH)により 精製すると、シスー [4-(ベンジルオキシカルボニルアミノーメチル) -シクロヘキシ ル] ーカルバミン酸 t ープチルエステル (25.3 g、91%) が無色のオイルとして得 られた。

ESI NS m/e 385, M + Na'; H NMR (300 MHz, $ODCl_2$) δ 7.27-7.38 (m, 5 H), 5.09 (s, 2 H), 4.76-4.92 (m, 1 H), 4.42-4.76 (m, 1 H), 3.72 (brs, 1 H), 3.10 (t, J = 6.4 Hz, 2 H), 1.48-1.75 (m, 7 H), 1.44 (s, 9 H), 1.13-1.31 (m, 2 H). [0326]

ステップC: シスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ) -メチル]-シクロヘキシル}-カルバミン酸t-ブチルエステルの合成

シスー [4 - (ベンジルオキシカルボニルアミノーメチル) ーシクロヘキシル] ーカル (メン酸 モーブナルエステル (4.00g、11.0mmol) および5% Pd/C(400mg) からなるMeOH(40mL) 中の混合物を水素芽朋気下に、室温で8.5時間、さらに50でで129時間接押し、セライトパッドで評過し、濃縮した。洗穀物をヘキナン中に懸弱させ、この懸弱液を室温で30分間接押した。デ過により固体を集め、カナンで洗浄し、後後させた(3.03g)、実施例1のステップPC得られた(2-クロローキナソリンー4-4ル) ージメチルーアミン(1.00g、4.82mmol) および前記の固体(1.65g、7.23mmol) からなる2一プロソール(10mL) での混合物を還流下に5日間操押し、幾和NaHCO3水溶液に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、評過し、濃縮し、フラッシュクロマトグラフィー(NHーシリカゲル、ヘキサン中の20%EtOAc) によりッシュクロマトグラフィー(NHーシリカゲル、ヘキサン中の20%EtOAc) によりますとなった。

チル] -シクロヘキシル $\}$ - カルバミン酸 t - ブチルエステル (629 m g 、43%) が 淡黄色の固体として得られた。

ESI NS m/e 400, M + H' ; H NNR (300 MHz, $CDCl_3$) $\bar{\sigma}$ 7.81 (d, J = 8.2 Hz, 1 H), 7. 42–7.56 (m, 2 H), 6.98–7.06 (m, 1 H), 4.61–4.75 (m, 1 H), 3.67–3.82 (m, 1 H), 3.29–3.44 (m, 2 H), 3.28 (s, 6 H), 1.50–1.78 (m, 7 H), 1.45 (s, 9 H), 1.21–1.42 (m, 2 H).

[0327]

ステップD: シスー4 - プロモーN - {4 - [(4 - ジメチルアミノーキナゾリン-2 - イルアミノ) - メチル] - シクロヘキシル} - 2 - トリフルオロメトキシーベンゼン スルホンアミドの合成

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI MS m/e 602, M + H⁺; 1 H NMR (300 MHz, CDCl₃) 2 7.91 (d, J = 8.9 Hz, 1 H), 7. 82 (dd, J = 8.0, 1.0 Hz, 1 H), 7. 42-7.56 (m, 4 H), 7.04 (ddd, J = 8.3, 6.6, 1.6 Hz, 1 H), 3.44-3.50 (m, 1 H), 3.40 (t, J = 6.0 Hz, 2 H), 3.28 (s, 6 H), 1.22-1.7 8 (m, 9 H).

[0328]

実施例24 【化171】

ステップA: シスー (4-アミノーシクロヘキシルメチル) - カルバミン酸ベンジル エステルの合成

実施例23のステップCで得られたシスー [4-(ベンジルオキシカルボニルアミノーメチル)-シクロヘキシル<math>] -カルパミン酸tーブチルエステル $(12.9\,\mathrm{g}_\mathrm{S},35.6\,\mathrm{mm}\,\mathrm{o}_\mathrm{I})$ のEtOAc $(129\,\mathrm{mL})$ 溶液に、EtOAc $(129\,\mathrm{mL})$ 中の4 Mの塩 化水素を加えた。反応混合物を、室温で3時間解拝し、評過し、EtOAc で洗浄し、減 圧下に乾燥させた。固体を、飽和 NaHCO_3 水溶液に溶かした。水屑をCHC I_3 で抽出し $(5\,\mathrm{m})$ 、 $\mathrm{Mg\,So}_4$ 上で乾燥させ、評過し、灌輸し、減圧下に乾燥させると、シス $-(4-\mathrm{T}^2\mathrm{S})$ -シクロヘキシルメチル)-カルパミン酸ペンジルエステル $(8.88\,\mathrm{g}_\mathrm{S})$ $(8.88\,\mathrm{g}_\mathrm{S})$ が無色のオイルとして得られた。

ESI MS m/e 263, M + H+ ; 1 H MMR (300 MHz, CDCl $_3$) \otimes 7.36 (s, 5 H), 5.12 (brs, 3 H), 2.96–3.32 (m, 3 H), 1.36–1.98 (m, 9 H).

[0330]

ステップB: シスー[4-(4-i)メチルアミノーキナゾリンー2-4ルアミノ) ーシクロヘキシルメチル[-1] ーカルバミン酸ベンジルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 434, M + H : 'H NNR (300 MHz, $CDCl_2$) ∂ 7.81 (d, J = 9.0 Hz, 1 H), 7. 26-7.52 (m, 7 H), 7.01 (ddd, J = 8.2, 6.5, 1.7 Hz, 1 H), 5.10 (s, 2 H), 4.93-5.0 (m, 1 H), 4.82-4.93 (m, 1 H), 4.18-4.28 (m, 1 H), 3.26 (s, 6 H), 3.11 (t, J = 6.3 Hz, 2 H), 1.80-1.93 (m, 2 H), 1.52-1.73 (m, 5 H), 1.23-1.40 (m, 2 H). [0331]

ステップC: シスー4 - プロモーN - [4-(4-iyx+hyr) - 2+fyy) - 2-fyy - 2-fyy

実施例3のステップDの手順を使用して、表題の化合物を得た。

$$\begin{split} & \text{ESI NS m/e 6o2}, \ N* \ \text{II'} \ \ ; \ \text{H NNR (300 MHz}, \ \ \text{CDC}_3) \ \ \text{7}, 90 \ \ \text{(d, J} = 8.9 \ \text{Hz}, \ 1 \ \text{H}), \ 7. \\ & 81 \ \ \text{(dd, J} = 8.3, \ 1.3 \ \text{Hz}, \ 1 \ \text{Hi}), \ \ 4.78 \\ & 7.59 \ \ \text{(m, 4 H)}, \ \ 7.02 \ \ \text{(dd, J} = 8.2, \ 6.8, \ 1.2 \\ & 1.18, \ \ 1 \ \ \text{Hy}, \ \ 4.75 \\ & 5.24 \ \ \text{(m, 1 H)}, \ \ 3.27 \ \ \text{(s, 6 H)}, \ 2.86 \ \ \text{(d, J} = 6. \\ & 4 \ \ \text{Hz}, \ 2.8), \ 1.78 \\ & 1.18 \\ & 1$$

【0332】 実施例25

【化172】

ステップA: [1-(4-i)x+i)アミノーキナゾリンー2ーイル)ーピロリジンー3ーイル]ーカルバミン酸tーブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

$$\begin{split} & \text{ESI NS } \text{ m/e 358, M} + \text{Hi : H NNR (300 MHz, } \text{CDCl}_3) \\ & \text{O 7.81 (d, J} = 8.2 \text{ Hz. 1 H), 7.} \\ & \text{45-7.54 (n, 2 H), } 6.98\text{-}7.05 (n, 1 H), \\ & \text{4.67-4.80 (n, 1 H), } 4.52\text{-}4.40 (n, 1 H), \\ & \text{3.87-394 (n, 1 H), } 3.68\text{-}3.79 (n, 2 H), } 3.52\text{-}3.62 (n, 1 H), \\ & \text{3.27 (s, 6 H), } 2.16\text{-}2.22 (n, 1 H), \\ & \text{3.88-2.01 (n, 1 H), } 1.86\text{-}2.01 (n, 1 H), \\ & \text{3.48 (n, 1 H), } 1.86\text{-}2.01 (n, 1 H), \\ & \text$$

[0334]

ステップB: 4-プロモ-N-[1-(4-ジメチルアミノ-キナゾリン-2-イル) -ピロリジン-3-イル] -2-トリフルオロメトキシ-ベンゼンスルホンアミドの合 \pm

実施例1のステップHの手順を使用して、表題の化合物を得た。

ESI NS m/e 560, M + H'; H NNR (300 MHz, $CDCl_3$) ∂ 7.94 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.1 Hz, 1 H), 7.44-7.58 (m, 4 H), 7.03 (ddd, J = 8.4, 5.7, 2.6 Hz, 1 H), 4.76-5.04 (m, 1 H), 3.96-4.11 (m, 1 H), 3.70-3.82 (m, 2 H), 3.58-3.68 (m, 1 H), 3.45-3.54 (m, 1 H), 3.25 (s, 6 H), 2.11-2.24 (m, 1 H), 1.86-1.99 (m, 1 H), [6335]

実施例26

【化173】

ステッツカ: (4-アミノーベンジル) ーカルパミン酸 t ープチルステルの合成 $4-\Gamma$ ミノメチルーフェニルアミン (1.00g, 8.19mnol) のCHC 1g (10mL) 溶液に、トリエチルアミン (870mg, 8.60mnol) を加えた、水溶上で冷却した後に、 $(80c)_2$ O(1.88g, 8.61mnol) を満加した。この反応混合物を端で55分間脱拝し、後知NaHCO $_3$ 水溶液に注いだ。水屑をCHC 1 で相出した(30l) 合かせた有馬順を、 $MgSO_4$ 上で後足させ、声過、2 濡漉し、フラッシュクロマトグラフィー(2) リカゲル、CHC 1 $_3$ 中の9%MeOH) により精製すると、 $(4-\Gamma 2)$ 一ベンジル)ーカルバミン酸 t ープチルエステル (1.79g, 99%) が養色の個体として得られた。

ESI NS m/e 245, M + Nat ; H NNR (200 MHz, $CDCl_9$) δ 7.07 (d, J = 8.4 Hz, 2 H), 6.63 (d, J = 8.4 Hz, 2 H), 4.76 (brs, 1 H), 4.18 (d, J = 5.3 Hz, 2 H), 3.65 (brs, 2 H), 1.45 (s, 9 H). [76371]

ステップB: 4-プロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -ベンジル]-2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

実施例1のステップBで得られた(2-クロローキナゾリン-4-イル)ージメチルー アミン(1,00g,4,82mmol)および(4-アミノーベンジル)ーカルバミン 酸t-ブチルエステル(1.28g、5.76mmol)からなる2-プロパノール(1 OmL)中の混合物を環流下に3時間機样し、冷却し、飽和NaHCO。水溶液に注ぎ、 水層をCHC1。で抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過 1. 沸縮し、フラッシュクロマトグラフィー (NH-シリカゲル へきサン中の20%E tOAc) により精製すると、淡黄色の固体(2.32g)が得られた。この固体(75 Omg. 1. 91mmol)のEtOAc(7mL)溶液に、EtOAc(7mL)中の 4 Mの塩化水素を加えた。この混合物を室温で2時間撹拌し、濃縮すると、白色の固体が 得られた、この固体のCH。C1。(5mL)懸濁液に、ジイソプロピルエチルアミン(730 µL、4.19 mm o 1) を加えた。この混合物を氷浴上で冷却し、塩化4 - ブロ モ-2-トリフルオロメトキシーベンゼンスルホニル(777mg、2.29mmo1) のCH。Cl。(2mL)溶液を滴加した。反応混合物を、氷浴上で9時間機样し、飽和 NaHCO。水溶液に注いだ。水層をCHCI。で抽出した(3回)。合わせた有機層を MgSO4上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカ ゲル、ヘキサン中の20%EtOAc)により結製すると、4-プロモ-N-[4-(4ージメチルアミノーキナゾリンー2-イルアミノ)ーベンジル]-2-トリフルオロメト キシーベンゼンスルホンアミド(519mg、56%)が淡黄色の固体として得られた。 ESI MS m/e 618, M + Na*; 1H NMR (300 MHz, CDC12) δ 7.88 (t, J = 9.0 Hz, 2 H), 7 .64 (d. J = 8.6 Hz, 2 H), 7.48-7.61 (m. 4 H), 6.98-7.20 (m. 4 H), 4.96 (brs. 1 H),4.13 (s, 2 H), 3.34 (s, 6 H).

【0338】 実施例27 【4k174】

ステップA: (4-Pミノメチルーベンジル)-カルバミン酸t-ブチルエステルの合成

4 ー アミノメチルーベンジルアミン(15.0 g、110 mm o l) のC HC l $_2$ (45 5 m L) 溶液に、(B o c) $_2$ O(3.0 g g、13.9 m m o l) のC HC l $_2$ (45 m L) 溶液を3.5 時間かけて滴加した。この反応混合物を整温で13 時間照样し、深線した。 H_2 O に溶かした候に、水槽をB t D A c で補出した(3 回)。合わせた有拠槽を H_2 O で洗浄し(3 回)、M g S O $_4$ 上 で乾燥させ、沢過し、濃縮すると、(4 ー アミノメチルーベンジル)ーカルバミン酸セーブチルエステル(3.20 g、12 %)が白色の間体として得る力か。

ESI MS m/e 237, M + H : : ¹H NMR (300 MHz, $CDCl_{\odot}$) δ 7.21–7.30 (m, 4 H), 4.86–5.02 (m, 1 H), 4.29 (d, J = 5.8 Hz, 2 H), 3.84 (s, 2 H), 1.46 (s, 9 H). (0340]

ステップB: {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル]ーベンジル}ーカルバミン酸tーブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 408, M + H ; ; H NMR (300 MHz, $CDCI_3$) ∂ 7.85 (d, J = 8.2 Hz, 1 H), 7. 47–7.55 (m, 2 H), 7.37 (d, J = 8.0 Hz, 2 H), 7.24 (d, J = 8.0 Hz, 2 H), 7.05–7.1 (m, 1 H), 5.35–5.45 (m, 1 H), 4.90–5.04 (m, 1 H), 4.72 (d, J = 5.8 Hz, 2 H), 4.31 (d, J = 5.8 Hz, 2 H), 3.27 (s, 6 H), 1.49 (s, 9 H).

[0341]

ステップC: 4-プロモ-N- $\{4-$ [(4-ジメチルアミノ-キナゾリン-2-4) ルアミノ)-メチル]-ベンジル $\}-$ 2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

実施例1のステップHの手順を使用して、表類の化合物を得た。

ESI NS m/e 610, M + H' : H NNR (300 NHz, $CDCl_2$) δ 7.83 (d, J = 8.4 Hz, 2 H), 7.44-7.54 (m, 4 H), 7.29 (d, J = 7.9 Hz, 2 H), 7.11 (d, J = 8.1 Hz, 2 H), 7.06 (odd J = 8.3, 6.3, 2.0 Hz, 1 H), 4.67 (d, J = 5.9 Hz, 2 H), 4.15 (s, 2 H), 3.26 (s, 6 H).

[0342]

実施例28 【化175】

ステップA: シスーN2 - [4-(4-プロモ-2-トリアルオロメトキシーベンジルアミノ) -シクロヘキシル] - N4 + N4 + ジメチルーキナゾリン-2 + 4 + ジアミンの合成

実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 560, M + Na'; H NMR (300 MHz, $CDCL_9$) δ 7.80 (dd, J = 7.9, 0.9 Hz, 1 H), 7.36-7.51 (m, 5 H), 7.01 (ddd, J = 8.3, 6.4, 1.9 Hz, 1 H), 4.95-5.18 (m, 1 H), 4.08-4.22 (m, 1 H), 3.81 (s, 2 H), 3.25 (s, 6 H), 2.55-2.70 (m, 1 H), 1.65-1.90 (m, 6 H), 1.29-1.65 (m, 2 H).

実施例29

天施門 Z 【化176】

 \pm シス-N- [4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキシル]-2-トリフルオロメトキシ-ベンゼンスルホンアミド

[0345]

ステップA: シスーNー [4-(4-)ジメチルアミノーキナゾリンー 2-1ルアミノ) ーシクロヘキシル]-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

実施例20のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 532, M + Na* ; 1 H NMR (300 MHz, CDCl₂) δ 8.06 (dd, J = 8.1, 1.9 Hz, 1 H), 7.81 (dd, J = 8.4, 1.4 Hz, 1 H), 7.36-7.66 (m, 5 H), 7.03 (ddd, J = 8.3, 6. 7, 1.5 Hz, 1 H), 4.72-5.07 (m, 2 H), 3.95-4.10 (m, 1 H), 3.32-3.48 (m, 1 H), 3. (3.95 (s), 6 H), 1.37-2.17 (m, 8 H).

実施例30 【化177】

$$\bigcup_{N = 1}^{N} \bigcup_{N = 1}^{N} \bigcup_{n = 1}^{F} \bigcup_{k=1}^{F} \bigcup_{n = 1}^{F} \bigcup_$$

ステップA: $N^2 - (1 - ベンジルービベリジン-4 - イル) - N^4$, $N^4 - ジメチ$ ルーキナゾリン-2, 4 - ジアミンの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 362, M + H¹; H NMR (300 MHz, CDCl₃) δ 7.80 (d, J = 7.6 Hz, 1 H), 7. 20-7.52 (m, 7 H), 6.97-7.05 (m, 1 H), 4.74-4.90 (m, 1 H), 3.90-4.05 (m, 1 H),

3.53 (s, 2 H), 3.26 (s, 6 H), 2.78-2.90 (m, 2 H), 2.02-2.24 (m, 4 H), 1.48-1.62 (m, 2 H). (5048)

ステップB: N^4 , N^4 - ジメチル- N^2 - ピペリジン- 4 - イル- キナゾリン- 2 , 4 - ジアミンの合成

ESI NS m/e 272, M + H'; 'H NNR (300 MHz, CDCl₃) $\tilde{\sigma}$ 7.86 (d, J = 8.6 Hz, 1 H), 7. 43–7.62 (m, 2 H), 7.15 (t, J = 8.2 Hz, 1 H), 4.12-4.29 (m, 1 H), 3.29-3.47 (m, 2 H), 3.37 (s, 6 H), 2.96-3.12 (m, 2 H), 2.20-2.34 (m, 2 H), 1.79-1.97 (m, 2 H), 1.79-1.97 (m, 2 H).

ステップC: N2-[1-(4-プロモ-2-トリフルオロメトキシーベンジル)ー ビベリジン-4-イル]-N4,N4-ジメチルーキナゾリン-2,4-ジアミンの合成 実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 546, M + Na* ; 1 H NMR (300 MHz, CDCl₃) δ 7.80 (dd, J = 8.7, 0.9 Hz, 1 II), 7.34-7.54 (m, 5 II), 7.01 (ddd, J = 8.3, 6.6, 1.6 IIz, 1 II), 4.76-4.95 (m, 1 II), 3.87-4.06 (m, 1 II), 3.52 (s, 2 II), 3.25 (s, 6 II), 2.71-2.86 (m, 2 II), 2.17-2.33 (m, 2 II), 1.97-2.12 (m, 2 II), 1.44-1.61 (m, 2 II).

実施例31

 N^4 , N^4 - \dot{y} λ + λ

ステップA: N^4 $- \tilde{y}^4 - \tilde{$

ESI NS m/e 518, M + Na* ; 1 H NNR (300 MHz, $CDCL_{9}$) δ 8.02 (dd, J = 7.9, 1.9 Hz, 1 H), 7.81 (dd, J = 8.4, 0.7 Hz, 1 H), 7.34-7.67 (m, 5 H), 7.04 (ddd, J = 8.3, 6. 7, 1.5 Hz, 1 H), 4.81 (brs, 1 H), 3.95-4.12 (m, 1 H), 3.78 (d, J = 12.8 Hz, 2 H), 3.25 (s, 6 H), 2.85-3.05 (m, 2 H), 2.05-2.28 (m, 2 H), 1.50-1.71 (m, 2 H). [0352]

実施例32

【4k179】

4 - プロモーN- [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) - フェニル] - 2-トリフルオロメトキシーベンゼンスルホンアミド [0353]

ステップA: [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーフェニル]ーカルバミン酸tープチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 402, M + Na* ; 'H NMR (300 MHz, $CDCl_3$) & 10.05 (brs, 1 H), 7.94 (d, J = 8.4 Hz, 1 H), 7.50-7.66 (m, 4 H), 7.23-7.38 (m, 3 H), 6.57-6.64 (m, 1 H), 3.4 8 (s, 6 H), 1.53 (s, 9 H).

[0354]

ステップB: 4-プロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -フェニル] -2-トリフルオロメトキシーベンゼンスルホンアミドの合成

ESI NS m/e 582, M + H^{*} ; H NNR (300 MHz, $CDCl_3$) $\tilde{\sigma}$ 7.88 (d, J = 8.4 Hz, 1 H), 7. 73 (d, J = 8.4 Hz, 1 H), 7. 64 (d, J = 8.9 Hz, 2 H), 7.51-7.58 (m, 3 H), 7.44 (dd, J = 8.4, 1.7 Hz, 1 H), 7.07-7.24 (m, 1 H), 7.02 (d, J = 8.9 Hz, 2 H), 3.32 (s, 6 H).

[0355]

実施例33 【化180】

チル] -フェニル} -2-トリフルオロメトキシーベンゼンスルホンアミド [0356]

ステップA: [4-(t-ブトキシカルボニルアミノーメチル)-フェニル]-カル バミン酸ベンジルエステルの合成

4 ーアミノメチルーフェニルアミン(3、00g、24、6 mmo 1)のCHC 1_9 (3 mmo 1)を加えた。 保浴上で冷却した後に、(Bo c) $_2$ O(5、63g、25、8 mmo 1)を加えた。 保浴上で冷却した後に、(Bo c) $_2$ O(5、63g、25、8 mmo 1)を加えた。 この反応混合物を掌温で55分間撹拌し、後和NaHCO $_3$ 木溶液に注いび、木煙をCHC 1。 で抽出し(3回)。合わせた有機層をNgSO $_4$ 上で焼煙させ、評価し、添縮かと、メインプロビルエチルアミン(3、33g、25、8 mmo 1)を加えた。生じた溶液を4でに冷却しルエチルアミン(3、33g、25、8 mmo 1)を加えた。生じた溶液を4でに冷却した(2 Gl (4、40g、25、8 mmo 1)を10 に以下で5分間カイケ加えた。反応混出した(3回)。合わせた有機層をMgSO $_4$ 上で焼煙させ、評価し、濃縮し、フラッシュクロフトグラフィー(シリカゲル、CHC 1_3 中の25 Me OH)により結果さると、14 (七・ブトキシカルボルアミノーメナル)フェルー)フルバミン酸ペンジルエステル(2、64g、30%)が自色の関体として得られた。

ESI NS m/e 379, M + Na'; 1H NMR (300 MHz, CDCl₃) & 7.11–7.44 (m, 9 H), 6.76 (br s, 1 H), 5.19 (s, 2 H), 4.81 (brs, 1 H), 4.25 (d, J = 5.1 Hz, 2 H), 1.45 (s, 9 H).

[0357

ステップB: (4-アミノメチルーフェニル) -カルバミン酸ベンジルエステル塩酸 塩の合成

「4 - (t - ブトキンカルボニルアミノーメチル) - フェニル] - カルバミン酸ベンジルエステル (1.25g、3.51mmol)のE tOAc (20mL)溶液を米溶上で冷却し、EtOAc (20mL)中の4Mの塩化水素を加えた。この混合物を室温で20分間照拌した。評過により洗股物を集め、EtOAで洗浄し、減圧下に乾燥させると、(4-アミノメチルーフェニル) - カルバミン酸ベンジルエステル塩酸塩(957mg、93%)が日金の固体として得られた。

ESI MS m/e 279, M + Na* ; H MMR (300 MHz, DMSO-d $_b$) δ 9.90 (s, 1 H), 8.37 (brs, 3 H), 7.29-7.55 (m, 9 H), 5.15 (s, 2 H), 3.85-4.01 (m, 2 H).

[0358]

ステップC: {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーメチル]-フェニル!-カルバミン酸ペンジルエステルの合成

実施例3のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 428, M + H · ; 'H NNR (300 MHz, $CDCl_3$) δ 7.82 (d, J = 7.5 Hz, 1 H), 7. 25–7.52 (m, 11 H), 6.98–7.07 (m, 1 H), 6.74 (brs, 1 H), 5.28 (brs, 1 H), 5.19 (s, 2 H), 4.65 (d, J = 5.9 Hz, 2 H), 3.25 (s, 6 H). [0359]

 (330)

を $M_g SO_4$ 上で乾燥させ、 $\it Fi$ 過し、濃縮し、中圧液体クロマトグラフィー($\it NH-シリ$ カゲル、ヘキサン中の33% $\it E t$ OA $\it C$)により精製すると、 $\it 4$ $\it - T$ ロモー $\it N-14-$ [$\it 4 \it i$ $\it i$

ESI NS m/c 596, M + H'; 'H NNR (300 Mbz, CDCl₃) $\bar{\sigma}$ 7.83 (d, J = 8.4 lbz, 1 H), 7.77 (d, J = 8.4 lbz, 1 H), 7.41-7.60 (m, 4 H), 7.22 (d, J = 8.6 lbz, 2 H), 7.08-7.1 8 (m, 1 H), 6.99 (d, J = 8.6 lbz, 2 H), 4.56 (d, J = 5.6 lbz, 2 H), 3.34 (s, 6 H). [0360]

実施例34 【化181】

ステップA: トランス- N 4 , N 4 - ジメチル- N 2 - {4 - [(2 - トリフルオロ メトシーベンジルアミノ) - メチル] - シクロヘキシルメチル} - キナゾリン- 2, 4 - ジアミンの合成

実施例15のステップBの手順を使用して、表題の化合物を得た。

$$\begin{split} & \text{ESI NS m/e 510, M + Nat } : \text{H NMR (300 MHz, CDCl}_3) \ 6 \ 7.80 \ (d, \ J = 8.2 \text{ Hz, } 1 \text{ H}), \ 7.99-7.57 \ (m, \ 3 \text{ H}), \ 7.15-7.35 \ (m, \ 3 \text{ H}), \ 7.02 \ (\text{abd}, \ J = 8.3, \ 6.0, \ 2.2 \text{ Hz, } 1 \text{ H}), \ 3.83 \ (s, \ 2 \text{ H}), \ 3.37 \ (s, \ 6 \text{ H}), \ 2.45 \ (d, \ J = 6.5 \text{ Hz, } 2 \text{ H}) \ , \ 1.69-2.04 \ (m, \ 4 \text{ H}), \ 1.37-1.69 \ (m, \ 2 \text{ H}), \ 0.84-1.12 \ (m, \ 4 \text{ H}). \end{split}$$

[0362]

実施例35 【化182】

N4 、N4 ージメチルーN2 ー [1-(2-トリフルオロメトキシーペンジル) ーピペリジン -4-イル] ーキナゾリン-2 、4-ジアミン[0383]

ステップA: N^4 , N^4 - \mathcal{Y} メチル - N^2 - [1-(2-1)] -

実施例15のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 468, M + kat; 1 H NNR (300 MHz, 1 DCl₂) δ 7.80 (d, J = 7.8 Hz, 1 H), 7 .37-7.63 (m, 3 H), 7.17-7.35 (m, 3 H), 7.02 (ddd, J = 8.3, 6.4, 1.9 Hz, 1 H), 5. 12 (brs. 1 H), 3.86-4.07 (m, 1 H), 3.60 (s, 2 H), 3.26 (s, 6 H), 2.74-2.94 (m, 2 H), 2.18-2.37 (m, 2 H), 1.98-2.15 (m, 2 H), 1.45-1.69 (m, 2 H).

【0364】 実施例36 【化183】

トランス $-N^4$, N^4 - \dot{y} \dot{y} + \dot{y} - N^2 - $(4-\{[(3-)$ -) -) + \dot{y} -) - \dot{y} - \dot{y}

実施例15のステップBで得られたトランス-N2-{4-[(4-ブロモ-2-トリ フルオロメトキシーベンジルアミノ) - メチル] - シクロヘキシルメチル } - N4 . N4 -ジメチルーキナゾリンー2、4ージアミン(300mg, 0.529mmol)のトルエン (6.6mL) 溶液に、MeOH (2.2mL)、2MのKoCOo水溶液 (2.2 mL)、フェニルボロン酸(77mg、0.635mmo1)およびテトラキス(トリフ ェニルホスフィン) パラジウム(61mg、0,053mmol)を加えた。この反応混 合物を130℃で12時間模拌した。この混合物を水に注ぎ、水層をCHC1。で抽出し た(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮し、フラッシュク ロマトグラフィー(NH-シリカゲル、ヘキサン中の33%CHC1。、さらにシリカゲ ル、CHC1。中の9%MEOH) により精製すると、淡黄色のオイルが得られた。この オイルのEtOAc(2mL)溶液に、EtOAc(0.1mL)中の4Mの塩化水素を 加えた。この混合物を室温で20分間提拌し、濃縮した。残留物のEt。O(2mL)溶 液を室温で30分間機能した。沪渦により沈殿物を集め、Et。Oで洗浄し、減圧下に乾 燥させると、トランス $-N^4$, N^4 -ジメチル $-N^2$ $-(4-\{[(3-トリフルオロメ$ トキシービフェニルー4ーイルメチル)ーアミノ]ーメチル}ーシクロヘキシルメチル) −キナゾリン-2,4-ジアミン二塩酸塩(70mg、21%)が白色の固体として得ら nt.

ESI NS m/e 564, M (遊離型) + H^{*}; ¹H NMt (300 Mtz, CDCl₈) ∂ 13.27 (s, 1 H), 9.96 (brs, 2 H), 8.17-8.32 (m, 2 H), 7.89 (d, J = 7.9 Hz, 1 H), 7.34-7.64 (m, 9 H), 7.20 (t, J = 7.7 Hz, 1 H), 4.29 (brs, 2 H), 3.50 (s, 6 H), 3.28 (t, J = 6.1 Hz, 2 H), 2.69 (brs, 2 H), 1.79-2.11 (m, 4 H), 1.44-1.68 (m, 2 H), 0.91-1.16 (m, 4 H)

【0366】

実施例37

【/E184】

シス $-N^2 - \{4-[2-(4-7$ ロモ-2-トリフルオロメトキシーフェニル) ーエチルアミン] ーシクロヘキシル $\}$ $-N^4$, N^4 -ジメチルーキナゾリン-2 , 4-ジアミン二塩酸塩 [0%7]

ステップA: (4ープロモー2ートリフルオロメトキシーフェニル)ーアセトアルデ ヒドの合成

ESI NS m/e 284, M + H ; ' H NMR (200 NHz, $CDCL_3$) δ 9.74 (t, J = 1.5 Hz, 1 H), 7. 41-7.51 (m, 2 H), 7.16 (d, J = 8.4 Hz, 1 H), 3.75 (d, J = 1.5 Hz, 2 H). (2068)

ステップB: シスーN2 - $\{4-[2-(4-7ロモ-2-トリフルオロメトキシ-フェニル) - エチルアミノ] <math> \lambda$ 2 - λ 2 - λ 4 - λ 7 - λ 7 - λ 7 - λ 8 - λ 9 -

ESI MS m/e 552, M (遊離型) + ; ¹H NMR (200 MHz, CDCl₃) る 12.66 (brs, 1 H), 9.91 (brs, 2 H), 8.71 (brs, 1 H), 7.93 (d, J = 6.6 Hz, 1 H), 7.19-7.77 (m, 6 H), 4.31

(brs, 1 H), 3.54 (s, 6 H), 3.09-3.78 (m, 5 H), 2.00-2.48 (m, 6 H), 1.62-1.96 (m, 2 H).

[0369]

実施例38

【化185】

2HCI

シス-N4,N4-ジメチル-N2-[4-(2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル]-キナゾリン-2,4-ジアミン二塩酸塩 {0370}

ステップA: シスーN4, N4ージメチルーN2ー [4ー(2ートリフルオロメトキシーベンジルアミノ)ーシクロヘキシル]ーキナゾリンー2, 4ージアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (遊龍型) + H^{*}; ¹H MR (300 MHz, CDCl₂) & 8.68 (d, J = 7.6 Hz, 1 H), 8.19-8.33 (m, 1 H), 7.95 (d, J = 8.2 Hz, 1 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.18-7.44 (m, 4 H), 4.35 (s, 2 H), 4.15-4.47 (m, 1 H), 3.353 (s, 6 H), 3.02-3.31 (m, 1 H), 1.95-2.37 (m, 6 H), 1.51-1.85 (m, 2 H). [10371]

実施例39

【化186】

101001

2HCI

シス $-N^2 - [4 - (4 - プロモ-2 - トリフルオロメトキシーベンジルアミノ) ーシ$ $クロヘキシル] - N<math>^4$, N 4 - ジメチルーキナゾリン-2, 4 - ジアミン二塩酸塩 [0372]

実施例2のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊龍型) + H^{*}; ¹H MMR (300 MHz, CDCl₃) δ 8.77 (d, J = 7.5 Hz, 1 H), 8.11 (d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.6 Hz, 1 H), 7.67 (t, J = 7.7 Hz, 1 H), 7.41-7.53 (m, 2 H), 7.37 (s, 1 H), 7.28 (t, J = 7.8 Hz, 1 H), 4.19-4.40 (m, 1 H), 4.26 (s, 2 H), 3.52 (s, 7 H), 3.07-3.25 (m, 1 H), 2.00-2.39 (m, 6 H), 1.61-1.88 (m, 2 H).

[0373]

実施例40

【4k187】

シス-N-[4-(4-y)x+ルアミノーキナゾリン-2-4ルアミノ) -シクロヘキシルメチル] -2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩 [0374]

ステップA: シス-N- [4 - (4 - ジメチルアミノ-キナゾリン- 2 - イルアミノ) 2 シクロヘキシルメチル] - 2 - トリフルオロメトキシ- ベンゼンスルホンアミド塩酸 烟の合成

実施例24のステップBで得られたシスー「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル] - カルバミン酸ベンジルエステル (4,57 g、10.5mmo1)のMeOH(46mL)溶液に、5%Pd/C(460mg)を 加えた。この混合物を50℃で、水素雰囲気下に3日間撹拌し、沪過し、濃縮すると、白 色の固体(3.79g)が得られた。この固体(500mg、1.67mmol)のCH 。C1。(5mL)溶液に、ジイソプロピルエチルアミン(440μL、2.53mmo 1)を加えた。この混合物を氷浴上で冷却し、塩化2-トリフルオロメトキシーベンゼン スルホニル (457mg、1.75mmol) のCH₂ Cl₂ (2mL) 溶液を滴加した 。反応混合物を氷浴上で10時間攪拌した。反応を飽和NaHCO。水溶液で停止させた 。水層をCHC1。で抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪 過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲル、ヘキサン中の33%E tOAc)により精製し、濃縮した。残留物のEtOAc(1mL)溶液に、EtOAc (5mL)中の4Mの塩化水素を加えた。この反応混合物を室温で30分間機拌し、濃縮 した。残留物のEtgO(10mL)溶液を室温で1時間撹拌し、沪過により沈殿物を集 めると、シスーN-「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)ーシク ロヘキシルメチル]-2-トリフルオロメトキシーベンゼンスルホンアミド塩酸塩(26 2mg、34%) が白色の固体として得られた。

ESI MS m/e 524, M (遊館型) + H^{*}; ¹H MMR (300 MHz, CDCl₂) ∂ 13.18 (s, 1 H), 8.75 (d, J = 7.6 ltz, 1 H), 8.03 (dd, J = 8.0, 1.7 ltz, 1 H), 7.89 (d, J = 8.2 ltz, 1 H), 7.56-7.71 (m, 2 H), 7.34-7.55 (m, 3 H), 7.24 (t, J = 7.5 ltz, 1 H), 4.99 (t, J = 6.5 ltz, 1 H), 4.20-4.33 (m, 1 H), 3.50 (s, 6 H), 2.88 (t, J = 6.3 ltz, 2 H), 1.78-1.99 (m, 2 H), 1.38-1.77 (m, 7 H).

【0375】

実施例41 【化188】

シス $-N^2-(4-[(4-7$ ロモ-2-トリフルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシル $)-N^4$, N^4 -ジメチルーキナゾリン-2, 4 -ジアミン二 塩酸塩

[0376]

ステップA: シスーN² - $\{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-シクロヘキシル<math>\}$ - N⁴ + N⁴ + ジメチルーキナゾリン-2 + 4-ジアミン二塩酸塩の合成

実施例24のステップBで得られたシスー「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル] -カルバミン酸ベンジルエステル (4,57 g、10.5mmol)のMeOH(46mL)溶液に、5%Pd/C(460mg)を 加えた。この混合物を50℃で、水素雰囲気下に3日間撹拌し、沪過し、濃縮すると、無 色の固体(3.79g)が得られた。この固体(500mg、1.67mmol)のCH 。Cl。(5mL)溶液に、実施例13のステップAで得られた4-ブロモ-2-トリフ ルオロメトキシーベンズアルデヒド (449mg、1,67mmol)、AcOH (10 0mg、1.67mmol) およびNaBH(OAc) 3 (531g、2.51mmol)を加えた。この反応混合物を室温で、CaCl。チューブと共に9時間攪拌し、飽和N aHCO。水溶液に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機層をMg SOA上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲル 、ヘキサン中の25%EtOAc)により精製し、濃縮した。残留物のEtOAc(1m L)溶液に、EtOAc(5mL)中の4Mの塩化水素を加えた。反応混合物を室温で3 0分間攪拌し、濃縮した。残留物のEt2 O(10mL)溶液を、室温で1時間攪拌し、 沪満により沈殿物を集めると、シスーN2 ー {4-「(4-ブロモー2ートリフルオロメ トキシーベンジルアミノ) -メチル] -シクロヘキシル} - N4, N4 - ジメチルーキナ ゾリン-2、4-ジアミン二塩酸塩(147mg、34%)が白色の固体として得られた

ESI MS m/e 552, M (遊離型) + H ; ¹H NMR (300 MHz, CDCl₉) & 12.62 (s, 1 H), 10.0 7 (brs, 2 H), 8.66 (d, J = 7.6 Hz, 1 H), 8.22 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.52 (dd, J = 8.3, 1.8 Hz, 1 H), 7.33-7.48 (m, 2 H), 7.26 (t, J = 7.5 Hz, 1 H), 4.11-4.36 (m, 3 H), 3.51 (s, 6 H), 2.7 6-2.97 (m, 2 H), 1.51-2.27 (m, 9 H).

[0377]

実施例42 【化189】

シス $-N^4$, N^4 = \tilde{V} = V

ステップA: シスーN⁴、N⁴ージメチルーN²ー $\{4-[(2-h)J)\lambda dJ\}$ トキップペンジルアミノ)ーメチル $]-シクロへキシル\}$ ーキナゾリンー2、4-ジアミン 二塩酸塩の合成

実施例41のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 474, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) δ 12.81 (s, 1 H), 9.97 (brs, 1 H), 8.69 (d, J = 7.5 Hz, 1 H), 8.16-8.28 (m, 1 H), 7.90 (d, J = 8.4 Hz,

1 H), 7.63 (t, J = 7.6 Hz, 1 H), 7.18–7.51 (m, 4 H), 4.31 (brs, 2 H), 4.15–4.30 (m, 1 H), 3.50 (s, 6 H), 2.70–2.94 (m, 2 H), 1.41–2.28 (m, 10 H).

[0379]

実施例43 【化190】

ステップA: シスー3ートリフルオロメトキシービフェニルー4ースルホン酸 [4 - (4 - ジメチルアミノーキナゾリンー2ーイルアミノ) - シクロヘキシル] - アミド塩酸 返の合成

実施例36のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 586, M (遊離型) + H*; H NNR (300 MHz, CDCl₉) & 13.20 (brs. 1 H), 8.8 2 (d, J = 8.1 Hz, 1 H), 8.09 (d, J = 8.6 Hz, 1 H), 7.88 (d, J = 7.8 Hz, 1 H), 7.40-7.73 (n, 8 H), 7.25 (t, J = 8.4 Hz, 1 H), 5.41 (d, J = 8.6 Hz, 1 H), 4.07-4.2 (n, 1 H), 3.49 (s, 6 H), 3.37-3.62 (n, 1 H), 1.57-2.01 (n, 8 H). [0381]

実施例44

【化191】

シスー $\mathbb{N}^2-\{4-[$ ビスー $(4-\overline{U}$ ロモー $2-\mathbb{N}$ リフルオロメトキシーベンジル $)-\mathbb{N}^2$ フラノ[ーシクロヘキシル $\}-\mathbb{N}^4$, \mathbb{N}^4 -ジメチルーキナゾリンー $[2,4-\overline{S}]$ プミンニ 塩酸塩

[0382]

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 790, M (遊館型) + H'; ¹H NMR (300 MHz, CDCl₃) & 12.50-12.82 (m, 2 H), 9.50-9.69 (m, 1 H), 8.39 (d, J = 8.1 Hz, 2 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.66 (t, J = 7.8 Hz, 1 H), 7.48 (t, J = 8.7 Hz, 2 H), 7.07-7.43 (m, 4 H), 4.06-4.67 (m, 5 H), 3.51 (s, 6 H), 2.97-3.27 (m, 1 H), 2.21-2.59 (m, 4 H), 1.89-2.17 (m, 2 H), 1.36-1.82 (m, 2 H)

【0383】 実施例45 【化192】

シス-N4 , N4 -ジメチル-N2 - {4- [(3-トリフルオロメトキシービフェニル-4-イルメチル) -アミノ] -シクロヘキシル} -キナゾリン-2, 4-ジアミン二塩酸塩

[0384]

実施例43のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 536, M (遊館型) + H'; 1H NMR (300 MHz, CDCI₈) & 12.63 (brs, 1 H), 10 .07 (brs, 2 H), 8.68 (d, J = 7.3 Hz, 1 H), 8.33 (d, J = 8.1 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.17~7.68 (m, 10 H), 4.40 (s, 2 H), 4.19~4.33 (m, 1 H), 3.50 (s, 6 H), 3.16~3.37 (m, 1 H), 2.03~2.48 (m, 6 H), 1.64~1.88 (m, 2 H). [0385]

実施例46

【化193】

トランス- N^2 -[4-(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル $]-N^4$, N^4 -ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩[0386]

ステップA: トランス- N^2 - $\begin{bmatrix} 4-(4-7$ ロモー2-トリフルオロメトキシーベンジルアミノ)-シクロヘキシル $\end{bmatrix}$ - N^4 , N^4 -ジメナル-キナゾリン-2,4-ジア <u>58%</u>2の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/c 557, N ($\frac{6m^2m^2}{2}$) : '41 NMR ($\frac{200}{2}$ MHz, $\frac{600}{2}$ 13.00 (brs. 1 H), 10.08 (brs. 2 H), 8.40 (d. , J = 7.2 Hz, 1 H), 8.05 (d. J = 8.2 Hz, 1 H), 7.91 (d. , J = 8.4 Hz, 1 H), 7.65 (t. J = 7.7 Hz. 1 H), 7.38-7.57 (m. 3 H), 7.26 (t. J = 7.6 Hz. 1 H), 4.17 (s. 2 H), 3.83-4.06 (m. 1 H), 3.53 (s. 6 H), 2.76-2.99 (m. 1 H), 2.09-2.46 (m. 4 H), 1.74-2.00 (m. 2 H), 1.28-1.58 (m. 2 H). (5087)

MARK 1991 - -

【4E194】

1 - (4-プロモー2ートリフルオロメトキシーフェニル) - 1- [4-(4-ジメチルアミノーキナゾリン-2ーイルアミノ) - ビベリジン-1ーイル] - メタノン塩酸塩 [6388]

実施例13のステップBで得られた4-ブロモ-2-トリフルオロメトキシ安息香酸(440mg、1.47mmo1)のCH₂C1₂(5mL)溶液に、DMF(1.1μL 、15µmo1)およびSOC1。(175µL、2.09mmo1)を加えた。この混 合物を還流下に30分間撹拌し、濃縮すると、酸塩化物が淡黄色のオイルとして得られた 。実施例30のステップBで得られたN4, N4-ジメチル-N2-ピペリジン-4-イ ルーキナゾリン-2, 4-ジアミン(400mg、1, 47mmo1)のCH2C12(4mL)溶液に、ジイソプロピルエチルアミン(538 μL. 3.08 mm o 1)を加え た。この混合物を4℃に冷却し、前記の酸塩化物のCH。C1。(3mL)溶液を5℃以 下で加えた。この反応混合物を4℃で3時間撹拌した。反応を飽和NaHCO。水溶液で 停止させ、水層をCHC1gで抽出した(3回)。合わせた有機層をMgSO4上で乾燥 させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、ヘキサン中 の25%EtOAc)により精製すると、淡黄色のオイルが得られた。このオイルのEt OAc (1mL) 溶液に、EtOAc (0, 26mL) 中の4Mの塩化水素を加えた。こ の混合物を室温で50分間撹拌し、濃縮した。残留物のEtoO(5mL)溶液を室温で 30分間撹拌した。沪過により沈殿物を集め、Et。Oで洗浄し、減圧下に乾燥させると (4-ブロモー2-トリフルオロメトキシーフェニル)-「4-(4-ジメチルアミノ キナゾリン-2-イルアミノ)ーピペリジン-1-イル]ーメタノン塩酸塩(126m g. 16%) が白色の間体として得られた。

ESI NS m/e 538, M (遊館型) + H'; 1H NMR (200 MHz, CDCl₂) & 13.35 (brs, 1 H), 9. 06 (d, J = 7.5 Hz, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.67 (dt, J = 7.7, 0.9 Hz, 1 H), 7.43-7.61 (m, 3 H), 7.18-7.41 (m, 2 H), 4.00-4.44 (m, 2 H), 3.54 (s, 6 H), 3.03-3.78 (m, 3 H), 1.52-2.24 (m, 4 H).

【0389】 実施例48

【化195】

シスー4ープロモーN-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル]-2-トリフルオロメトキシーベンズアミド二塩酸塩 [0390] (339)

ステップA: 4-プロモーN=[4-(4-ジメチルアミノーキナゾリン-2-4ルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーペンズアミド二塩酸塩の合成 実施例4 7のステップAの手順を使用上て。表質の化合物を得た。

ESI NS m/e 551, M (遊館型) + ; ¹H NMR (200 MHz, ODCl₃) δ 13.24 (brs, 1 H), 8.95 (d, J = 7.9 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 1 H), 7.71 (d, J = 8.4 Hz, 1 H), 7.60 -7.67 (m, 1 H), 7.44-7.58 (m, 3 H), 7.20-7.34 (m, 1 H), 6.57 (d, J = 8.4 Hz, 1 H), 4.40 (m, 2 H), 3.53 (s, 6 H), 1.66-2.04 (m, 8 H).

実施例49 【化196】

シスー4ープロモーN-[4-(4ージメチルアミノーキナゾリンー2-イルアミノ) ーシクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩 [0992]

ステップA: 4-プロモ-N-[4-(4-ジメチルアミノ-キナゾリン-2-4nアミノ)-シクロヘキシルメチル]-2-トリフルオロメトキシ-ベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 565, M (遊龍型) *; *IH NMR (200 MHz, CDCL₃) & 13.20 (brs, 1 H), 8.93 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.42 -7.70 (m, 4 H), 7.18-7.34 (m, 1 H), 6.87 (t, J = 5.5 Hz, 1 H), 4.34 (brs, 1 H), 3.51 (s, 6 H), 3.43 (t, J = 5.7 Hz, 2 H), 1.52-2.17 (m, 9 H).

実施例50

【化197】

シス $-N^2 - [4 - (4 - プロモ-2 - トリフルオロメトキシーベンジルアミノ) ーシクロヘキシル] <math>-N^4 - x + y + y + y - 2$, $4 - \mathcal{Y}$ アミン二塩酸塩 [0394]

ステップ : (2 - ρ - ρ

イル) -メチル-アミン(114g.94%)が白色の間体として得られた。

ESI NS m/e 193, M^* ; ¹⁴ NMR (300 MHz, CDCl₃) δ 7.68-7.78 (m, 3 H), 7.39-7.48 (m, 1 H), 6.34 (brs, 1 H), 3.22 (d, J = 4.8 Hz, 3 H). (0.395)

ステップB: シスー [4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シ クロヘキシル] - カルバミン酸 t - ブチルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI MS m/e 372, M + H⁺; ¹H NMR (300 MHz, CDCl₃) $\tilde{\sigma}$ 7.36–7.56 (n, 3 H), 7.06 (ddd, J = 8.2, 6.8, 1.3 Hz, 1 H), 5.71 (brs, 1 H), 5.10 (brs, 1 H), 4.45–4.72 (n, 1 H), 4.00–4.26 (n, 1 H), 3.49–3.76 (n, 1 H), 3.12 (d, J = 4.8 Hz, 3 H), 1.50–1.93 (n, 8 H), 1.46 (s, 9 H).

ステップC: シス-N² - [4-(4-プロモ-2-トリフルオロメトキシーベンジ ルアミノ) - シクロヘキシル] - N⁴ - メチルーキナブリン-2, 4-ジアミン二塩酸塩

EtOAc (5mL)およびCHC1。(10mL)中のシスー「4-(4-メチルア ミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸t -ブチルエス テル(1.75g、4.71mmol)の懸濁液に、EtOAc(15mL)中の4Mの 塩化水素を加えた。この反応混合物を室温で2時間撹拌し、濃縮した。残留物を、飽和N aHCO。水溶液でアルカリ化し、水層をCHC1。で抽出した(3回)。合わせた有機 層をMgSO。上で乾燥させ、沪過し、濃縮した(2.15g)。その残留物(300m g、1.11mmo1)のCH₂C1₂(3mL)懸濁液に、実施例13のステップAで 得られた4-ブロモ-2-トリフルオロメトキシーベンズアルデヒド(297mg. 1. 10mmol), AcOH (66mg, 1. 10mmol) およびNaBH (OAc) a (351mg、1.66mmo1)を加えた。この反応混合物を室温で、CaCl。チュ ーブと共に4時間攪拌し、飽和NaHCO。水溶液に注ぎ、水層をCHC1。で抽出した (3回)。合わせた有機層をMgSO。上で乾燥させ、沪過し、濃縮し、中圧液体クロマ トグラフィー(NH-シリカゲル、ヘキサン中の50%EtOAc)により精製し、沸縮 すると、淡黄色のオイル (91mg) が得られた。この残留物 (71mg) のEtOAc (1mL)溶液に、EtOAc(5mL)中の4Mの塩化水素を加えた。反応混合物を室 温で30分間撹拌し、濃縮した。残留物のEt。O(10mL)溶液を室温で1時間撹拌 し、沪過により沈殿物を集めると、シス-N2-「4-(4-ブロモ-2-トリフルオロ メトキシーベンジルアミノ) -シクロヘキシル] - N4 -メチル-キナゾリン-2, 4-ジアミン二塩酸塩(62mg、20%)が白色の固体として得られた。

ESI MS m/e 524, M (遊龍型) + H^{*}; ¹H MMR (300 MHz, CDCl₂) & 7.34-7.57 (m, 6 H), 7.05 (ddd, J = 8.2, 6.8, 1.4 Hz, 1 H), 5.52 (brs, 1 H), 4.09-4.27 (m, 1 H), 3.82 (s, 2 H), 3.12 (d, J = 4.8 Hz, 3 H), 2.57-2.72 (m, 1 H), 1.41-1.94 (m, 8 H). [6397]

実施例51

【化198】

(341)

チルアミノ] ーシクロヘキシル} ーN4 ーメチルーキナゾリンー 2, 4 ージアミン二塩酸塩

[0398]

ステップA: シスーN² - $\{4-[2-(4-プロモ-2-トリフルオロメトキシ-フェニル) - エチルアミノ] - シクロヘキシル<math>\}$ - N⁴ - メチルーキナゾリン- 2, 4- ジアミン^工塩酸塩の合成

実施例50のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 538, M (遊館型) + H^{*}; ¹H NMR (300 MHz, CDCI₂) ∂ 12.18 (brs, 1 H), 9. 93 (brs, 3 H), 8.74 (d, J = 6.2 Hz, I H), 7.71-7.94 (m, 1 H), 7.60 (t, 1 H, J = 7.7 Hz, 1 H), 7.21-7.45 (m, 5 H), 3.94-4.26 (m, 1 H), 3.35-3.58 (m, 2 H), 3.08-3.33 (m, 3 H), 2.94 (brs, 3 H), 1.64-2.42 (m, 8 H).

【0399】

実施例52 【化199】

ステップA: シスーN⁶ - メチル-N² - [4 - (2 - トリフルオロメトキシーベン ジルアミノ) - シクロヘキシル] - キナゾリン - 2, 4 - ジアミン二塩酸塩の合成 実施例50のステップでの手順を使用して、表題の化合物を得た。

ESI NS m/e 446, M (遊館型) + H'; 1H NMR (300 MHz, CDCl₂) & 7.36-7.56 (m, 4 H), 7.17-7.33 (m, 3 H), 7.04 (ddd, 1 H, J = 8.2, 6.8, 1.4 Hz, 1 H), 5.66 (brs, 1 H), 5.18 (brs, 1 H), 4.11-4.27 (m, 1 H), 3.87 (s, 2 H), 3.10 (d, J = 4.8 Hz, 3 H), 2.60-2.74 (m, 1 H), 1.45-1.95 (m, 8 H).

[0401]

実施例53 【化200】

シスー4ープロモ-N- [4-(4-x+ μ アミノーキナゾリン-2-4 μ アミノ) - シクロヘキシル]-2-トリフルオロメトキシーベンズアミド塩酸塩

[0402]

ステップA: シスー4ープロモーNー [4ー (4ーメチルアミノーキナゾリンー2ー イルアミノ) ーシクロヘキシル] ー 2ートリフルオロメトキシーベンズアミド塩酸塩の合 眩

EtOAc(5mL)およびCHC13(10mL)中の、実施例50のステップBで

得られたシスー [4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シクロヘキ シル] ーカルバミン酸 t ー ブチルエステル (1.75g.4.71 mm o 1) の懸濁液に 、E t O A c (15 m L)中の4 Mの塩化水素を加えた。この反応混合物を室温で2時間 搅拌し、濃縮した。残留物を飽和NaHCO。水溶液でアルカリ化し、水層をCHC1。 で抽出した(3回)。合わせた有機層をMgSO。上で乾燥させ、沪過し、濃縮した。実 施例13のステップBで得られた4-ブロモ-2-トリフルオロメトキシー安息香酸(3 31mg、1.16mmol)のCH2Cl2(5mL)溶液に、DMF(1μL、0. 01mmol)およびSOCl。(120µL、1.65mmol)を加えた。この混合 物を還流下に30分間攪拌し、濾縮すると、酸塩化物が淡黄色のオイルとして得られた。 $y = -N^2 - (4 - r + 2J - y) - r + 2J - y + 2J$ アミン (300mg, 1, 11mmol) のCH。Cl。(3mL) 懸濁液に、ジイソプ ロビルエチルアミン (410μ L、2.35 mmol) を加えた。この混合物を氷浴上で 冷却し、前記の残留物のCHoClo(3mL)溶液を滴加した。反応混合物を氷浴上で 3. 5時間撹拌した。反応を飽和NaHCO。水溶液で停止させた。水層をCHC1。で 抽出した(3回)。合わせた有機層をMgSO。上で乾燥させ、泥過し、濃縮し、フラッ シュクロマトグラフィー(NH-シリカゲル、ヘキサン中の50%EtOAc)により精 製すると、淡黄色の間体が得られた。残留物(116mg)のEtOAc(1mL)溶液 に、E t OAc (5 m L) 中の4 Mの塩化水素を加えた。この反応混合物を室温で30分 間攪拌し、濃縮した。残留物のEt。O(10mL)溶液を室温で1時間攪拌し、沪過に より沈殿物を集めると、4-ブロモ-N-「4-(4-メチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンズアミド(102m g、16%) が白色の固体として得られた。

ESI NS m/c 538, M (遊館型) + H:: : H NML G300 MLz, DDCl₂) d 12.72 (s, 1 H), 8.66 (d, J = 7.1 Hz, 1 H), 8.35 (brs, 1 H), 8.16 (d, J = 7.7 Hz, 1 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.48-7.60 (a, 2 H), 7.49-7.43 (m, 1 H), 7.30 (d, J = 8.4 Hz, 1 H), 7.19 (t, J = 7.8 Hz, 1 H), 6.57 (d, J = 8.1 Hz, 1 H), 4.34 (brs, 1 H), 4.15 (brs, 1 H), 3.22 (d, J = 3.9 Hz, 3 H), 1.90 (m, 8 H).

実施例54 【化201】

シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキ シルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩 [0404] ステップム: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ

) ーシクロペキシルメナル] ー2ートリフルオロメトキシーベンズアミド塩酸塩の合成 実施例24のステップBで得られたシスー [4 ー (4 ージメチルアミノーキナゲリン 2 ーイルアミノ) ーシクロペキシルメチル] ーカルバミン酸ペンジルエステル (4 . 5 7 g、10.5mmol)のMeOH(46mL)溶液に、5%Pd/C(460mg)を 加えた。この混合物を50℃で、水業雰囲気下に3日間撹拌し、評過し、濃縮すると、自 色の固体 (3.79g)が得られた。この固体(300mg、1.00mmol)のCH 2 Cl₂ (3mL)溶液に、トリエチルアミン(280μL、2.01mmol)を加え ESI NS w/c 510, N ($\Delta \tilde{w} = 20^{\circ}$ Na' : $11 \text{ NMr. (300 MLr. CDCl_9)} \tilde{\sigma}$ 13.29 (s, 1 10), 8.8 9 (d, J = 7.9 1L; 1 10), 7.93 (dd, J = 7.77, 1.8 1Lz, 1 10), 7.89 (d, J = 8.4 1Lz, 1 10), 7.63 (t, J = 7.3 1Lz, 1 10), 7.52 (d, J = 7.9 1Lz, 1 10), 7.47 (dd, J = 8.1, 1.9 1Lz, 1 10), 7.39 (t, J = 7.6 1Lz, 1 10), 7.29 (d, J = 9.0 1Lz, 1 10), 7.23 (d, J = 7.3 1Lz, 1 10), 6.77 (t, J = 5.6 1Lz, 1 10), 4.18-4.36 (m, 1 10), 3.51 (s, 6 10), 3.42 (t, J = 6.3 1Lz, 2 10), 1.37-20 (m, 9 10).

【0405】 実施例55

[/k202]

シス-N-[4-(4-x+n)] シス-N-[4-(4-x+n)] シクロヘキシル-2-(4-x+n) ル-2-(4-x+n) ル-2-(4-x+n) ル-2-(4-x+n) カラルオロメトキシーベンズアミド塩酸塩

[0406]

ステップA: シスーN - [4-(4-x+n)アミノーキナゾリンー2ーイルアミノ) -シクロヘキシル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

実施例54のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (遊館型) + H*; 1H MMI (300 MHz, CDCI₃) & 12.61 (s, 1 H), 8.70 (d, J = 4.4 Hz, 1 H), 8.57 (d, J = 7.6 Hz, 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 7.8 (2 (dd, J = 7.7, 1.8 Hz, 1 H), 7.08-7.57 (m, 6 H), 6.60 (d, J = 8.1 Hz, 1 H), 4.2 5-4.45 (n, 1 H), 4.01-4.25 (m, 1 H), 3.20 (d, J = 4.5 Hz, 3 H), 1.53-2.18 (m, 8 H).

【0407】 実施例56

[4/203]

[0408]

ステップA: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -2-トリフルオロメトキシーベンズアミド塩酸塩の合成

ボリマーに担持されたDMAP(2、45g、7、35mmol)のCH₂Cl₂(6 mL)懸語液に、塩化2-トリフルオロメトキシーベンブイル(472mg、2.10mmol)および実施例ののステップでで得られたシスーN² (4 ー アミノーシノリへキシル)ーN⁴ 、N⁴ ージメチルーキナソリンー2、4 ージアミン(300mg、1.05mmol)を加えた。この混合物を室温で24期間規부し、浮過し、総和N aHCO₃ 水 密液に注い式、水屑をCHC1。で 竹間はた、3個)、合かせて格陽を MS SO₃ 上で 乾燥させ、浮過し、濃縮し、中圧液体クロマトグラフィー(NHーシリカゲル、ヘキサン中の25%日とOAc(10mL)溶液と、E + OAc(10mL) 中の4 Mの場 化水素を加えた、反応混合物を温温で1時間提拝し、濃縮した。残留物の日と $_2$ 0(10mL)溶液と、皮液混合物を空温で1時間提拝し、濃縮した。残留物の日と $_2$ 0(10mL)流液を空温で1時間提拝し、濃縮した。残留物の日と $_2$ 0(10mL)流液を空温で1時間提拝し、デ酸により沈 殿物を集めると、シスーNー $_2$ 4 ー (4 ー ジメチルアミノーキナゾリンー2 ー イルアミノ))ーシクロヘキシル $_2$ 1 ー 2 ー トリフルオロメトキシーベンズアミド塩酸塩(145mg、27%)が16年の個体として得られた。

ESI NS m/e 474, M ($\frac{368}{429}$) + H° ; $^{\circ}$ H NME (300 MHz, $\frac{1}{10}$), $\frac{2}{10}$ 13, 22 (s, 1 H), 8, 88 (d, J = 7.5 Hz, 1 H), 7.79 (dd, J = 7.6, 1.9 Hz, 1 H), 7.764 (t, J = 7.5 Hz, 1 H), 7.52 (d, J = 8.7 Hz, 1 H), 7.47 (dd, J = 8.1, 1.9 Hz, 1 H), 7.37 (dt, J = 7.5, 1.2 Hz, 1 H), 7.20–7.33 (m, 2 H), 6.66 (d, J = 8.4 Hz, 1 H), 4.06–4.36 (m, 2 H), 3.52 (s, 6 H), 1.55–2.21 (m, 8 H).

実施例57 【化204】

シス $-N^2 - [4 - (4 - プロモ-2 - トリフルオロメトキシーフェニルアミノ) ーシ$ $クロヘキシル<math>] - N^4$, N^4 - ジメチルーキナゾリン-2 , 4 - ジアミン二塩酸塩 [4410]

ステップA:シス-N² - [4-(4-プロモ-2-トリフルオロメトキシーフェニル アミノ) -シクロヘキシル] -N² - $\overline{$ N² - $\overline{ }$ ジメチル-キナゾリン-2,4-ジアミン二 塩酸塩の合成

 (NHーシリカゲル、ヘキサン中の33%E t O A c) により精製すると、淡黄色のオイルが得られた。このオイルのE t $_2$ O (2 m L) 溶液に、E t O A c (0.3 m L) 中の 州の塩化水素を加えた。この最合物を営温で30分間機拌し、濾縮した。残留物のE t $_2$ O (2 m L) 溶液を、室温で15分間機拌した。が強により沈度物を集め、E t $_2$ O (2 m L) 溶液を、室温で15分間機拌した。が強により沈度物を集め、E t $_2$ O で、洗浄し、滅圧下に乾燥させると、シス $_2$ P $_2$ [4 $_1$ C 4 $_2$ ブロモー2 $_3$ トキシーフェニルアミノ) $_2$ クロヘキシル] $_2$ N 4 $_3$ V 5 $_4$ ルーキナゾリン 2 $_4$ $_4$ ジアラン、塩砂塩(189 m $_2$ 18%)が19の間長として得られた。

ESI NS m/e 524, M (遊離型) + H : ' H NMR (300 MHz, CDCL₃) ∂ 13.04 (s, 1 H), 8.85 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.1 Hz, 1 H), 7.61-7.70 (m, 1 H), 7.53 (d, J = 7.6 Hz, 1 H), 7.22-7.31 (m, 1 H), 6.49 (s, 1 H), 6.79 (s, 1 H), 6.65 (s, 1 H) , 4.28 (brs, H), 3.52 (s, 6 H), 3.30-34.45 (m, 2 H), 1.64-2.08 (m, 8 H).

【0411】

実施例58 【化205】

シス $-N-[4-(4-\chi+\mu)r$ ミノーキナゾリン $-2-4\mu$ アミノ) -シクロヘキシルメチル] -2-トリフルオロメトキシーベンズアミド塩酸塩 [0412]

ステップA: シスー [4-(4-x+n)]ラーキナゾリンー 2-4nアミノ) ーシクロヘキシルメチル[-n] ーカルバミン酸ベンジルエステルの合成

実施例1のステップGの手順を使用して、表題の化合物を得た。

ESI NS m/e 420, M + H'; 'H NNR (300 NHz, $CDCl_3$) $\tilde{\sigma}$ 7.20-7.59 (\mathbf{n} , 8 H), 7.04 (ddd , J = 8.2, 6.8, 1.3 Hz, 1 H), 5.54-5.76 (\mathbf{m} , 1 H), 5.10 (\mathbf{s} , 2 H), 4.78-5.24 (\mathbf{m} , 2 H), 4.18-4.36 (\mathbf{m} , 1 H), 3.11 (d, J = 4.8 Hz, 3 H), 2.92-3.16 (\mathbf{m} , 2 H), 1.06-1.9 4 (\mathbf{m} , 9 H).

[0413]

ステップB: シス-N-[4-(4-メチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミド塩酸塩の合成

シスー 「4 ー (4 ー メチルアミノーキナゾリンー 2 ー イルアミノ) ーシクロヘキシルメ キル] ーカルバミン酸ベンジルエステル (2. 73 g、6. 50 mm o 1) のMe O H (2. 71 m) 溶液に、10 % P d / C (2 73 m g) を加えた。この混合物を50 でで、水 業雰囲気下に 1 4 時間機样し、評過し、濃縮すると、無色の間体(1. 9 5 g)が得られた。ポリマーに担持されてD M A P (2. 4 5 g、7. 3 5 mm o 1) の C H g C 1 g(10 mL) 懸菌液に、塩化2 ートリフルオロメトキシーベンブイル (4 7 2 m g、2. 1 0 mm o 1) および前記の間体(3 0 0 m g、1. 0 5 m m o 1) を加えた。この混合物を室温で2. 5 日間無罪し、評過し、幾和N a H C O g、水溶液に注いば、水曜をC H C 1 所依 ケ フ の で 1 の で

 $4-(4-x + \mu r + y - 2 - 4 \mu r + y - 2 \mu r + y - y - y - 2 \mu r + y - y - y - y - y -$

ESI NS $m(\sim 474, M+H)$; 1 H NM; 2 000 MHz, 2 00Cl₃) 3 12.82 (s. 1 H), 8.63 (d, J=7.3 Hz, 1 H), 7.97-8.12 (m, 2 H), 7.91 (dd, J=7.6, 1.5 Hz, 1 H), 7.754 (t, J=7.6 Hz, 1 H), 7.48 (dt, J=7.9, 1.8 Hz, 1 H), 7.38 (t, J=7.0 Hz, 1 H), 7.26-7.35 (m, 2 H), 7.19 (t, J=7.6 Hz, 1 H), 6.77 (t, J=5.8 Hz, 1 H), 4.30-4.41 (m, 1 H), 3.41 (t, J=6.4 Hz, 2 H), 3.20 (dt, J=3.7 Hz, 3 H), 1.48-2.01 (m, 9 H), 1.48-2.01 (m, 9

実施例59 【化206】

シスーN 4 ーメチルーN 2 ー $\{4$ ー [(2 ートリフルオロメトキシーベンジルアミノ) ーメチル] ーシクロヘキシル $\}$ ーキナゾリンー2 , 4 ージアミン二塩酸塩 [[[[[[[]]]]

ステップA: シス $-N^4$ - メチル $-N^2$ - $\{4$ - [(2 - トリフルオロメトキシーベンジルアミノ) - メチル] - シクロヘキシル $\}$ - キナゾリン- 2 - 4 - ジアミン二塩酸塩の合成

実施例58のステップAで得られたシスー「4-(4-メチルアミノーキナゾリン-2 ーイルアミノ)ーシクロヘキシルメチル】ーカルバミン酸ベンジルエステル(2.73g 、6.50mmol)のMeOH(27mL)の溶液に、10%Pd/C(273mg) を加えた、この混合物を50℃で、水素雰囲気下に14時間攪拌し、沪渦し、濃縮すると 、無色の固体(1.95g)が得られた。前記の固体(300mg、1.05mmol) のMe OH (3 mL) の溶液に、2-トリフルオロメトキシーベンズアルデヒド (200 mg、1.05mmol)、AcOH(63mg、1.05mmol)およびNaBH3 CN (99mg, 1, 58mmol)を加えた。この反応混合物を室温で、CaCloチ ューブを取り付けて4時間撹拌し、1 Mの水酸化ナトリウム水溶液に注ぎ、水層をCHC 1 a で抽出した(3回)。合わせた有機層をMgSOa上で乾燥させ、沪過し、濃縮し、 中圧液体クロマトグラフィー (NH-シリカゲル、ヘキサン中の50%EtOAc) およ びフラッシュクロマトグラフィー (シリカゲル、CHC1。中の10%MeOH) により 精製し、濃縮した。残留物のEtOAc(1mL)溶液に、EtOAc(5mL)中の4 Mの塩化水素を加えた。反応混合物を室温で30分間攪拌し、濃縮した。残留物のEt。 ○ (10mL)溶液を室温で1時間撹拌し、沪過により沈殿物を集めると、シス-N4-メチル $-N^2 - \{4-[(2-)]$ フルオロメトキシーベンジルアミノ) - メチル] - シ クロヘキシルトーキナゾリン-2、4-ジアミン二塩酸塩 (175mg、33%) が白色 の固体として得られた。

ESI NS m/e 460, M (遊館型) + H^{*}; ¹H NMR (300 MHz, CDCl₃) & 11.49 (brs, 1 H), 9. 74 (brs, 1 H), 9.57 (d, J = 4.4 Hz, 1 H), 8.43 (d, J = 8.4 Hz, 1 H), 8.27 (d, J = 8.4 Hz, 1 H), 8.13 (dd, J = 7.5, 1.8 Hz, 1 H), 7.24-7.51 (m, 4 H), 6.95-7.16 (m, 2 H), 4.28 (s, 2 H), 4.13-4.38 (m, 1 H), 2.99 (d, J = 4.5 Hz, 3 H), 2.92 (d, J = 4.8 Hz, 2 H), 1.41-2.19 (m, 9 H).

【0416】 実施例60 【化207】

シス $-N^2 - \{4-[(4-) \pi - 2-h$ リフルオロメトキシーベンジルアミノ) - メチル] - シクロヘキシル $\} - N^4 -$ メチルーキナゾリン- 2、4- ジアミン二塩酸塩 [0417]

ステップA: シスーN2 - $\{4-[(4-プロモ-2-トリフルオロメトキシーベンジルアミノ)-メチル]-シクロヘキシル<math>\}-N4-$ メチルーキナゾリン-2, 4-ジアミン二塩酸塩の合成

実施例59のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 538, M (遊離型) + H*; +H NMt (500 Miz, DCl₂) & 11.23 (brs, 1 H), 9. 75 (brs, 2 H), 9.46 (brs, 1 H), 8.43 (d, J = 7.9 Hz, 1 H), 8.29 (d, J = 8.5 Hz, 1 H), 8.48 (d, J = 8.5 Hz, 1 H), 7. 85 (dd, J = 8.6 Hz, 1 H), 7. 447-7.52 (m, 2 H), 7.14 (t, J = 7.3 Hz, 1 H), 7.07 (d, J = 7.9 Hz, 1 H), 4.24 (s, 2 H), 4.19-4.30 (m, 1 H), 2.88-3.05 (m, 5 H), 1.38-1.84 (m, 9 H).

実施例61

【4P208】

ステップA: シスー4ープロモーNー [4ー(4ーメチルアミノーキナゾリンー2ー イルアミノ)ーシクロヘキシルメチル]ー2ートリフルオロメトキシーペンズアミド塩酸 返の合成

 Cl。(190 µ L. 2.60 mm o 1)を加えた。この混合物を環流下に30分間攪拌 1. 濃縮すると、酸塩化物が淡黄色のオイルとして得られた、ボリマーに担持されている DMAP (2.45g、7.35mmol)のCH。Cl。(6mL)懸濁液に、前記の 酸塩化物およびシスーN2 - (4-アミノメチルーシクロヘキシル)-N4-メチルーキ ナゾリン-2、4-ジアミン(300mg)を加えた。この混合物を室温で24時間撹拌 し、沪過し、飽和NaHCO。水溶液に注いだ。水層をCHC1。で抽出した(3回)。 合わせた有機層をMgSO。上で乾燥させ、沪過し、濃縮し、中圧液体クロマトグラフィ (NH-シリカゲル、ヘキサン中の50%EtOAc)により精製し、濃縮した。残留 物のEtOAc(1mL)溶液に、EtOAc(10mL)中の4Mの塩化水素を加えた 。反応混合物を室温で1時間標拌し、濃縮した。残留物のEt。O(10mL)溶液を室 温で1時間機拌し、沪過により沈殿物を集めると、シスー4-ブロモーN-「4-(4-メチルアミノーキナゾリンー 2ーイルアミノ) ーシクロヘキシルメチル] - 2ートリフル オロメトキシーベンズアミド塩酸塩(47mg、8%)が白色の固体として得られた。 ESI MS m/e 551, M (遊離型) + ; 1H NMR (500 MHz, CDCla) & 12.61 (s, 1 H), 8.56 (d . J = 7.3 Hz, 1 H), 8.40 (brs. 1 H), 8.15 (d, J = 8.5 Hz, 1 H), 7.78 (d, J = 8.5 Hz, 1 H), 7.47-7.55 (m, 2 H), 7.42 (t, J = 1.5 Hz, 1 H), 7.26 (d, J = 8.5 Hz, 1 H), 7.17 (t. J = 7.6 Hz, 1 H), 6.88 (t. J = 5.8 Hz, 1 H), 4.32-4.44 (m. 1 H), 3 .40 (t, J = 6.1 Hz, 2 H), 3.20 (d, J = 4.3 Hz, 3 H), 1.49-2. 00 (m, 8 H). [0420]

実施例62 【化209】

シス $-N^2 - \{4 - [3 - (4 - 7$ ロモ-2 -トリフルオロメトキシーフェニル) - プロビルアミン] -シクロヘキシル $\} - N^4$, $N^4 -$ ジズチル-キナグリン-2 , 4 -ジアミン二塩酸塩 [0d21]

ステップA: (E) -3 -(4 - $\cancel{7}$ - 2 - トリフルオロメトキシーフェニル) - アクリル酸エチルエステルの合成

(エトキシーメトキシメチルーホスフィノイル) - 酢酸エチルエステル (3.45g、15.4 mm o 1) のTHF (230mL) 溶液に、オイル中の60%木素化ナリウム (370mg、15.4 mm o 1) を加えた。この混合物を室温で50分間機伴し、4℃に冷却した。この反応混合物に、THF (100mL) 中の4 ープロモー2ートリフルオロメトキシーペンズアルデヒド (3g、11.2 mm o 1) を加えた。この混合物を室温で15時間機伴した。この混合物を室温で15時間機伴した。この溶液を4 g (11.2 mm o 1) を加えた。この混合物を室温で15時間機伴した。この溶液を4 g (11.2 mm o 1) を加えた。この混合物を室温で15時間機能した。この溶液を4 g (11.2 mm o 1) を加えた。この混合物を室温で15時間機能した。この溶液を4 g (11.2 mm o 1) を加えた。この混合物を室温で15時間機能した。この溶液を4 g (11.2 mm o 1) を加えた。この混合物を空温で15時間機能した。この溶液を4 g (11.2 mm o 1) を加えた。この溶液を4 g (11.2 mm o 1) では、2 mm o 1) では、2 mm o 1 mm o 1

CLMS m/e 339, M + H ; ¹H NMR (300 MHz, $CDCl_0/\delta$ 7.85 (d, J=15.8 Hz, 1 H), 7.42–7.58 (m, 3 H), 6.48 (d, J=15.8 Hz, 1 H), 4.29 (q, J=7.0 Hz, 2 H), 1.35 (t, J=7.0 Hz, 3 H),

[0422]

ステップB: 3-(4-プロモ-2-トリフルオロメトキシ-フェニル)-プロパン-1-オールの合成

水素化アルミニウムリチウム($834\,\mathrm{mg}$ 、22.0 $\,\mathrm{mmol}$)のE $\,\mathrm{t}_2$ O($20\,\mathrm{mL}$)感謝液を4でに冷却した。(E) $=3-(4-7\mathrm{DR}-2-\mathrm{h})$ フルオロストキシーフェニル)ーアクリル酸エチルエステル($2.98\,\mathrm{g}$ 、8.7 $\,\mathrm{9mmol}$)のE $\,\mathrm{t}_2$ O($9\,\mathrm{mL}$)流液を消加し、この混合物を零温で90分間限拌した。反応をE tOAc($6\,\mathrm{mL}$)で停止させ、飽和NH $_4$ C1水溶液を流加した。水層をE tOAcで抽出した($3\,\mathrm{ml}$)。合わせた有機層を $1\,\mathrm{MoHCl}$ 1水溶液で洗浄し、 MgSO_4 上で乾燥させ、評酷し、濃縮し、フラッシュクロマトグラフィー($2\,\mathrm{yl}$ 3ケル、ヘキサン中の $2\,\mathrm{5}\%\mathrm{E}$ tOAc)により精製すると、 $3-(4-7\mathrm{DR}-2-\mathrm{h})$ フルオロメトキシーフェニル)ープロパンー1ーオール($1.14\,\mathrm{g}$ 、 $4\,\mathrm{3}\%$)が無色のオイルとして得られた。

EI NS m/e 298, M' : 'H NMR (300 MHz, $CDCl_3$) ∂ 7.10-7.43 (m, 3 H), 3.68 (t, J = 6 .4 Hz, 2 H), 2.67-2.80 (m, 2 H), 1.75-1.94 (m, 2 H). [0423]

ステップC: 3-(4-ブロモー2ートリフルオロメトキシーフェニル)ープロピオンアルデヒドの合成

3-(4-7ロモ-2-トリフルオロストキシーフェニル) -7ロバン-1-オール(1.03g、3.44mmol)のCH $_2$ Cl $_2$ (47mL) 滞済を4℃に冷卸し、セライト(1.4g) およびクロロクロム酸セリジニウム(1.11g、5.16mmol)を加えた。反応混合物を電温で6時間機样し、セライトバッドで評過し、濃縮し、フラッシュクロマトグラフィー(シリカゲル、ヘキサン中の16%E tOAc)により精製する 0.320.440.420.4

CL MS m/e 297, M + H'; 1 H MMR (300 MHz, $ODCl_{3}$) δ 9.80 (t, J = 1.1 Hz, 1 H), 7.3 -27.42 (m, 2 H), 7.17 (d, J = 8.4, Hz, 1 H), 2.96 (t, J = 7.4 Hz, 2 H), 2.72-2.8 1 (m, 2 H). [0424]

ステップD: シスーN² - $\{4-[3-(4-7\pi E-2-F)]$ フルオロメトキシーフェニル) - プロビルアミン] - シクロヘキシル $\}$ - N⁴ - N⁴ - ジメチルーキナゾリン - 2、4 - ジアミン 三旗機塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 566, M (遊館型) + H'; 1H MMR (300 MHz, CDCl₃) & 8.81 (d, J = 7.2 Hz, 1 H), 7.91 (d, J = 7.9 Hz, 1 H), 7.60-7.70 (m, 1 H), 7.49 (d, J = 8.4 Hz, 1 H), 7.12-7.42 (m, 5 H), 4.31 (brs, 1 H), 3.52 (s, 6 H), 3.23 (brs, 1 H), 3.02-3.14 (m, 2 H), 2.78 (t, J = 7.8 Hz, 2 H), 1.97-2.36 (m, 8 H), 1.59-1.85 (m, 2 H). [0425]

実施例63 【化210】

シス $-N^2-\{4-[4-(4-プロモ-2-トリフルオロメトキシ-フェニル) - プ チルアミノ] ーシクロヘキシル \} <math display="inline">-N^4$, N^4 ージメチルーキナゾリン-2 , 4 ージアミン二塩酸塩

ステップA: (E) -4-(4-) ロモー2-トリフルオロメトキシーフェニル) ープテー2- 酸エチルエステルの合成

実施例62のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 352, N°; H NNR (300 MHz, ODCl₂) ∂ 7.33-7.53 (m, 3 H), 6.64 (d, J = 16.2 Hz, 1 H), 6.37 (dt, J = 16.0, 7.1 Hz, 1 H), 4.18 (q, J = 7.2 Hz, 2 H), 3.28 (dd, J = 7.1, 1.5 Hz, 2 H), 1.29 (t, J = 7.2 Hz, 3 H).

ステップB: 4-(4-ブロモ-2-トリフルオロメトキシーフェニル)-ブタン-1-オールの合成

実施例62のステップBの手順を使用して、表題の化合物を得た。

El MS m/e 312, M⁺; 'H NMR (200 MHz, ODCl₃) ∂ 7.10-7.42 (m, 3 H), 3.68 (t, J = 5.1 Hz, 2 H), 2.60-2.82 (m, 2 H), 1.50-1.79 (m, 4 H), 1.10-1.50 (brs. 1 H), 1.00-1.50 (brs. 1

ステップC: 4-(4-プロモ-2-トリフルオロメトキシーフェニル) -ブチルアルデトドの会成

実施例62のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/c 311, M + IP ; 1 II NNR (200 MIz, CDCl₃) δ 9.79 (s, 1 II), 7.02-7.22 (m, 3 II), 2.60-2.84 (m, 2 II), 2.49 (t, J = 5.9 Iz, 2 II), 1.80-2.03 (m, 2 II). folz91

ESI MS m/e 580, M (遊龍型) + H^{*}; ¹H MMR (200 MHz, CDCl₃) & 12.73 (brs, 1 H), 9. 55 (brs, 2 H), 8.66-8.88 (m, 1 H), 7.92 (d, J = 7.9 Hz, 1 H), 7.66 (t, J = 7.3 H z, 1 H), 7.48 (d, J = 7.7 Hz, 1 H), 7.12-7.40 (m, 3 H), 4.20-4.42 (m, 1 H), 3.52 (s, 6 H), 2.92-3.42 (m, 3 H), 2.60-2.78 (m, 2 H), 1.58-2.59 (m, 12 H). [10430]

実施例64

【4P211】

シス-N 2 - (4 - (1 - 2 - 4

実施例 24のステッア Bで得られたシスー [4-(4-iyx+nr)] -(4-iyx+nr)] -(4-

CI MS m/e 300, M + H $^{+}$; $^{+}$ H MMR (300 MHz, $^{-}$ CDCl $_{9}$) δ 7.81 (d, $^{-}$ J = 8.4 Hz, 1 H), 7.4 0-7.51 (m, 2 H), 6.98-7.04 (m, 1 H), 5.04 (d, $^{-}$ J = 7.3 Hz, 1 H), 4.24-4.30 (m, 1 H), 3.27 (s, 6 H), 2.60 (d, $^{-}$ J = 6.4 Hz, 2 H), 1.81-1.96 (m, 2 H), 1.57-1.76 (m, 4 H), 0.90-1.51 (m, 5 H). (5.432)

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 566, M (遊離型) + H°; 1H NNR G300 MHz, $CDCl_2\rangle$ δ 12.45 (s, 1 H), 9.74 (brs, 2 H), 8.70 (d, J = 7.6 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.66 (t, J = 7.6 Hz, 1 H), 7.17-7.52 (m, 4 H), 4.30 (brs, 1 H), 3.52 (s, 6 H), 3.32-3.50 (m, 2 H), 3.17 (brs, 2 H), 3.01 (brs, 2 H), 1.56-2.10 (m, 9 H).

【0433】 実施例65

【/k212】

シス $-N^2 - (4 - \{[2 - (4 - 7ine - 2 - F)]$ フルオロメトキシーフェニル) - エチルアミノ[-3 + 5 + 7ine - 2] アミン二塩酸塩

[0434]

ステップA: シスーN2 - (4 + [2- (4 - ブロモ-2 - トリフルオロメトキシーフェニル) - エチルアミノ] - メチル+ キングロヘキシル) - N4 - メチルーキナゾリンー2、4 - ジアミン三額斡塩の合成

実施例59のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 552 M (遊館型) + H'; 'H NNR (300 MHz, CDCIş) & 11.66 (s, 1 H), 9.62 (brs, 1 H), 9.40 (brs, 1 H), 8.05-8.50 (m, 2 H), 7.21-7.58 (m, 4 H), 6.96-7.21 (m, 2 H), 4.26 (brs, 1 H), 3.41 (brs, 2 H), 2.75-3.31 (m, 7H), 1.30-2.24 (m, 9 H), [0:435]

実施例66 【化213】

シスーN⁴、N⁴ ージメチルーN² ー $\{4-[2-(2-h)7nオロメトキシーフェニル)- エチルアミノ]-シクロヘキシル<math>\}$ ーキナゾリンー 2、4-ジアミン二塩酸塩 [0486]

ステップA: シスーN4, N4 ージメチルーN2 ー $\{4-[2-(2-h)]$ フルオロメトキシーフェニル) ーエチルアミノ] ーシクロヘキシル $\}$ ーキナゾリンー 2, 4 ージアミン二塩酸塩の合成

実施例37のステップBで得られたシスーN2 $- \{4-[2-(4-J)$ ロペキップBで得られたシスーN2 $- \{4-[2-(4-J)$ ロペキン・トート⁴、+N4 -N4 +N4 -N4 -N5 -N6 -N7 -N7 -N7 -N8 -N8 -N8 -N9 -N9

ESI VS m/e 474, M (遊龍型) + H^{*}; ¹H NMR (300 MHz, CDCL₈) d 12.62 (s. 1 H), 9.78 (brs, 2 H), 8.71 (brs, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.39-7.77 (m, 3 H), 7.1 (4.7-37 (m, 4 H), 4.33 (brs, 1 H), 3.15-3.71 (m, 11 H), 1.93-2.53 (m, 6 H), 1.62-1.89 (m, 2 H).

[0437]

実施例67

【4k214】

シスー2ー(4ープロモー2ートリフルオロメトキシーフェニル) -N-[4-(4-5)x+n) -N-[4-(4-5)x+n) -N-[4-(4-5)x+n) -N-[4-(4-5)x+n] -N-[4-(4-5)x+n] -N-[4-(4-5)x+n] -N-[4-(4-5)x+n] -N-[4-(4-5)x+n] -N-[4-(4-5)x+n]

ステップA: (4-プロモー2ートリフルオロメトキシーフェニル) - 酢酸の合成 実施例13のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 298, M $^{\circ}$; ¹H NNR (300 MHz, CDCl₂) d 7.39–7.47 (m, 2 H), 7.22 (d, J = 8.1 Hz, 1 H), 3.70 (s, 2 H). (0.439)

ステップB: シスー2 - (4 - π) - N -

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 566, M (遊館型) + H*; ¹H NMR (300 MHz, CDCl₂) d 13.15 (s, 1 H), 8.91 (d, J = 7.7 Hz, 1 H), 7.89 (d, J = 8.4 Hz, 1 H), 7.61-7.70 (m, 1 H), 7.48-7.56 (m, 1 H), 7.39-7.45 (m, 1 H), 7.21-7.33 (m, 2 H), 6.02 (d, J = 8.8 Hz, 1 H), 4.1 9-4.33 (m, 1 H), 3.82-4.03 (m, 1 H), 3.53 (s, 2 H), 3.51 (s, 6 H), 1.64-1.97 (m, 8 H).

【0440】 実施例68

【化215】

シスー2 - (4 - γ -

[0441]

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 580, M (遊館型) + H^{*}; ¹H NNR G300 MHz, CDCL₂) d 12.85 (brs, 1 H), 9. 08 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.8 Hz, 1 H), 7.59-7.72 (m, 1 H), 7.19-7.5 4 (m, 5 H), 6.81-6.98 (m, 1 H), 4.28-4.51 (m, 1 H), 3.83 (s, 2 H), 3.51 (s, 6 H), 3.29-3.34 (m, 2 H), 1.42-2.03 (m, 9 H).

(354)

【0442】 実施例69 【化216】

シスー3ー(4 ープロモー2ートリフルオロメトキシーフェニル) - N - [4 - (4 - ジメチルアミノーキナゾリンー2 - イルアミノ)シクロヘキシル] ープロピオンアミド塩 梅娘

[0443]

ステップA: 3-(4-ブロモ-2-トリフルオロメトキシーフェニル)ープロピオン酸の合成

実施例6 2のステップBで得られた3 - (4 - プロモ-2-トリフルオロメトキシ-フェニル) - プロバン-1-3-1-4-1-1(1 $_{\rm S}$, 3. 34 mmo 1) のアセトン (15 mL) 溶液に、ジョーンズ試薬(4 mL) を4でで加えた。この混合物を室温でつ時間無料した。溶液を水 (50 mL) に注ぎ、水増をE $_{\rm S}$ 2 ので抽出した(3 同)。合わせた有規制を $_{\rm S}$ 8 SO $_{\rm A}$ 上で乾燥させ、沢過し、滤縮し、フラッシュクロマトグラフィ-(シリカゲル、ヘキサン中の25%E t OA $_{\rm C}$) により結製すると、3 - (4 - プロモ-2 -トリフルオ ロメトキシ-フェニル)- プロピオン酸(930 mg、89%)が無色のオイルとして得られた。

ESI MS m/e 313, M + ; 1 H NMR (200 MHz, CDCl₂) δ 7.31-7.50 (m, 2 H), 7.10-7.29 (m, 1 H), 2.97 (t, J = 7.7 Hz, 2 H), 2.65 (t, J = 7.7 Hz, 2 H).

[0444]

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 580, M (遊館型) + H'; 1H NMR (300 MHz, CDCl₈) d 13.12 (brs, 1 H), 8. 92 (d, J = 7.9 Hz, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.47-7.73 (m, 2 H), 7.15-7.4 (m, 3 H), 5.92 (d, J = 8.4 Hz, 1 H), 4.18-4.38 (m, 1 H), 3.76-4.03 (m, 1 H), 3.51 (s, 6 H), 2.98 (t, J = 7.7 Hz, 2 H), 2.44 (t, J = 7.7 Hz, 2 H), 1.55-1.96 (m, 9 H).

[0445]

実施例70 【化217】

シル]-2-(2-トリフルオロメトキシーフェニル)-アセトアミド塩酸塩 [0446]

ステップA: シスーN - [4 - (4 - ジメチルアミノーキナゾリン- 2 - イルアミノ) - シクロヘキシル] - 2 - (2 - トリフルオロメトキシーフェニル) - アセトアミド塩 静塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/c 488, M (遊館型) + H'; IH NMI (300 MIZ, CDCI₃) d 13.20 (s, 1H), 8.84 (d, J = 7.6 Hz, 1 H), 7.89 (d, J = 8.7 Hz, 1 H), 7.60-7.70 (m, 1 H), 7.49-7.56 (m, 1 H), 7.20-7.43 (m, 5 H), 5.98 (d, J = 7.6 Hz, 1 H), 4.23 (brs, 1 H), 3.84-4. 03 (m, 1 H), 3.59 (s, 2 H), 3.50 (s, 6 H), 1.62-1.98 (m, 8 H). [0447]

実施例71

[4E218]

シス-N-[4-(4-)3+)ルプミノーキナゾリン-2-4ルアミノ)-シクロヘキシルメチル]-2-(2-)トリフルオロメトキシーフェニル)-アセトアミド塩酸塩 [0448]

ステップA: シスーN - [4-(4-iyx+nrz)/ーキナゾリン-2-4nrz/) -iy/ウクロヘキシルメナル] -2-(2-ky)/カプロスメキシーフェニル) -rセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 502, M (遊館型) + H^{*}; ¹H MMR (300 MHz, CDCl₂) d 12.99 (s, 1 H), 8.99 (d, J = 8.5 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.63 (t, J = 7.62 Hz, 1 H), 7.38-7.54 (m, 2 H), 7.16-7.34 (m, 4 H), 6.55 (brs, 1 H), 4.28-4.43 (m, 1 H), 3.81 (s, 2 H), 3.51 (s, 6 H), 3.27 (s, 2 H), 1.46-1.99 (m, 9 H).

[0449]

実施例72 【化219】

シスーN4 、N4 ージメチルーN2 ー (4 ー { [2 ー (2 ー トリフルオロメトキシーフェニル) ーエチルアミノ] ーメチル} ーシクロヘキシル) ーキナゾリンー 2 、4 ージアミン二塩酸塩

[0450]

ステップA: シスーN4、N4 - \forall メチル-N2 - $(4-\{[2-(2-$ トリフルオロメトキシ-フェニル) -エチルアミノ]-メチル $\}-$ シクロヘキシル) -キナゾリン-2、4 - \forall アミン 「超勝塩の合成

実施例71のステップAで得られたシス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル - 2-(2-トリフルオロメトキシーフ ェニル)-アセトアミド(遊離)(246mg、0.5mmol)のTHF(3.5mL)溶液に、1 Mのボラン-THF錯体(2,45mL、2,45mmo1)を加えた。こ の混合物を還流下に2.5時間機样し、濃縮した。残留物のTHF(3.5mL)溶液に 1 Mの塩酸(4,41mL,4,41mmo1)を加えた。この混合物を環流下に1時 間攪拝し、室温に冷却した。この反応混合物に、2Mの水酸化ナトリウム水溶液を加え、 水層をCHC13で抽出した(3回)。合わせた有機層をMgSO4上で乾燥させ、沪過 し、濃縮し、中圧液体クロマトグラフィー(NH-シリカゲル、ヘキサン中の50%Et OAc) により精製すると、無色のオイルが得られた。このオイルのEtOAc(4mL) 溶液に、EtOAc(0, 25mL)中の4Mの塩化水素を加えた。この混合物を室温 で1時間模拌し、滤縮した。残留物のEt。O(15mL)溶液を室温で1時間撹拌した 。沪過により沈殿物を集め、 Et_o Oで洗浄し、減圧下に乾燥させると、シス $-N^4$, N4 - ジメチル-N2 - (4- [2-(2-トリフルオロメトキシーフェニル) - エチルア ミノ] ーシクロヘキシル } ーキナゾリン - 2, 4 - ジアミン二塩酸塩 (81 mg、30%)が白色の固体として得られた。

FAB NS m/c 488, M (遊離型) + II'; III NMR (300 MHz, CDCI₈) d 12.56 (s, 1 II), 9.72 (brs, 1 II), 8.72 (d, J = 7.7 Hz, 1 II), 7.90 (d, J = 8.2 Hz, 1 II), 7.66 (t, J = 7.7 Hz, 1 II), 7.42-7.54 (m, 2 II), 7.15-7.32 (m, 4 II), 4.22-4.35 (m, 1 II), 3.51 (s, 6 II), 3.38-3.59 (m, 2 II), 3.11-3.30 (m, 2 II), 2.92-3.07 (m, 2 II), 2.21 (brs, 1 II), 1.50-2.01 (m, 8 II).

【0451】

実施例73 【化220】

[0452]

ステップA: シスーN4 - メチルーN2 - (4 - { [2 - (2 - トリフルオロメトキシーフェニル) - エチルアミノ] - メチル} - シクロヘキシル) - キナゾリンー2, 4 - ジアミン二塩酸塩の合成

実施例66のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 474, M (遊館型) + H·; ¹H MMR (200 MHz, CDCl₃) d 11.72 (s, 1 H), 9.23 -9.94 (m, 3 H), 8.00-8.66 (m, 2 H), 6.64-7.66 (m, 7 H), 4.26 (brs, 1 H), 2.73-3.65 (m, 9 H), 1.27-2.44 (m, 9 H).

[0453]

実施例74

[4k221]

シスー \mathbb{N}^4 ーメチルー \mathbb{N}^2 ー $\{4-[2-(2-\mathbb{N}^4)]$ ーステルアキシーフェニル)ーエチルアミノ $[2-\mathbb{N}^4]$ ーキナゾリンー $[2-\mathbb{N}^4]$ $[2-\mathbb{N}^4]$ $[2-\mathbb{N}^4]$

ステップA: シスーN^ - メチルーN^ - $\{4-[2-(2-h)]$ フルオロメトキシーフェニル) - エチルアミノ] - シクロヘキシル } - キナゾリン- 2, $4-\widetilde{y}$ アミン二塩 移収の合成 を敬仰の合成

実施例66のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 460, M (道能型) + H°; IH NMR (200 MHz, CDCl₂) d 12.20 (brs, 1 H), 9. 84 (brs, 3 H), 8.59-8.79 (m, 1 H), 7.79-8.02 (m, 1 H), 7.10-7.70 (m, 7 H), 3.95-4.26 (m, 1 H), 3.09-3.54 (m, 5 H), 2.82-3.03 (m, 3 H), 1.57-2.43 (m, 8 H). 1.04551

実施例75

美施例 【化222】

シスー3 - (4 - 7 - 4 - 1 -

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 594, N (遊離型) *; 1 II NMR (300 Mlz, 1 CDCl $_{2}$) d 12.72 (s, 1 H), 9.01 (d, J = 8.7 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 7.6 Hz, 1 H), 7.47 (d, J = 7.6 Hz, 1 H), 7.21-7.41 (m, 3 H), 6.96 (brs, 1 H), 4.31-4.44 (m, 1 H), 3.51 (s, 6 H), 3.23-3.35 (m, 2 H), 3.03 (t, J = 7.6 Hz, 2 H), 2.76 (t, J = 7.6 Hz, 2 H), 1.38-1.98 (m, 9 H).

[0457]

実施例76

[4k223]

シス $-N^2 - (4 - \{[3 - (4 - 7 ロモ-2 - N J フルオロメトキシーフェニル) - 7 ロビルアミノ<math>] - 3 + 5 + 1 - 2 + 1 - 1 + 1 - 2$

[0458]

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 580, M (遊館型) + H^{*}; ¹H NMR (200 MHz, CDCl₂) d 12.56 (s. 1 H), 9.40 -9.71 (m. 2 H), 8.56-8.76 (m. 1 H), 7.91 (d. J = 8.4 Hz, 1 H), 7.66 (t. J = 7.6 Hz, 1 H), 7.13-7.47 (m. 5 H), 4.17-4.39 (m. 1 H), 3.51 (s, 6 H), 2.83-3.16 (m. 4 H), 2.67-2.82 (m. 2 H), 1.38-2.53 (m. 11 H).

実施例77

【化224】

ステップA: シスーN² - [4-(4-アミノ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル]-N⁴ , N⁴ -ジメチルーキナゾリン-2, 4-ジアミン三塩酸塩の合成

 燥させると、シス $-N^2 - [4 - (4 - r z) - 2 - r y]$ フルオロメトキシーペンジルア z = (4 - r z) - 2 - r y かり -2 - 4 - 2 r z を -2 r z を -

ESI NS m/e 475, M (遊龍型) + H'; 'H NNB (300 Miz, DNS)-d₀) δ 13.08 (brs, 1 H), 9.15 (brs, 2 H), 8.32-8.48 (m, 1 H), 8.19 (d, J = 8.1 Hz, 1 H), 7.73-7.85 (m, 1 H), 7.46 (d, J = 8.4 Hz, 1 H), 7.37 (t, J = 7.4 Hz, 2 H), 6.56-6.71 (m, 2 H), 3.94-4.26 (m, 3 H), 3.49 (s, 6 H), 3.02-3.24 (m, 1 H), 1.59-2.09 (m, 8 H).

【0461】 実施例78

【化225】

シス- N² - (4- { [3- (4-プロモ-2- トリフルオロメトキシ-フェニル) - プロビルアミノ] -メチル} -シクロヘキシル) - N⁴ -メチル-キナゾリン-2, 4-ジアミン二塩酸塩

[0462]

ステップA: $N^2 - (4-r) = (3-r) + (3-r)$

実施例64のステップAの手順を使用して、表題の化合物を得た。

ステップB: シスーN2 - $(4-\{[3-(4-プロモ-2-トリフルオロメトキシ-フェニル)-プロピルアミノ]-メチル<math>\}$ -シクロヘキシル)-N4-メチルーキナブリンー2、4-ジアミン<u>増</u>報鑑の合成

実施例63のステップDの手順を使用して、表題の化合物を得た。

ESI NS m/e 566, M (遊龍型) + H^{*}; ¹H NMR (300 MHz, CDCl₂) d 11.63 (s, 1 H), 9.45 (brs, 3 H), 8.41 (d, J = 8.5 Hz, 1 H), 8.32 (d, J = 7.9 Hz, 1 H), 7.46 (t, J = 7.54 Hz, 1 H), 7.24-7.39 (m, 3 H), 6.99-7.17 (m, 2 H), 4.13-4.35 (m, 1 H), 2.85-3.12 (m, 7 H), 2.75 (t, J = 7.6 Hz, 2 H), 2.27-2.47 (m, 2 H), 1.97-2.18 (m, 1 H), 1.37-1.91 (m, 8 H).

[0464]

実施例79

【化226】

シス $-N^2 - \{4 - [3 - (4 - プロモ-2 - トリフルオロメトキシーフェニル) - プロピルアミノ] - シクロヘキシル<math>\} - N^4 - \varkappa チルーキナゾリン-2$, $4 - \mathring{y} r$ $> 2 - \mathring{y}$ $> 2 - \mathring{y}$ $> 3 - \mathring{y}$

[0465]

ステップA: シスーN2 - $\{4-[3-(4-プロモ-2-トリフルオロメトキシ-フェニル)-プロビルアミノ]-シクロヘキシル<math>\}-N^4-$ メチルーキナゾリン-2, 4-ジアミン二編版塩の合成

実施例50のステップBで得られたシスー「4-(4-メチルアミノーキナゾリン-2 - イルアミノ) - シクロヘキシル] - カルバミン酸t - ブチルエステル(8,68g、2 3.4mmol)のCHCl。(87mL)懸濁液に、EtOAc(100mL)中の4 Mの塩化水素を加えた。この反応混合物を室温で2時間撹拌し、濃縮した。残留物を飽和 NaHCO。水溶液でアルカリ化し、水層をCHC1。で抽出した(3回)。合わせた有 機層をMgSOa上で乾燥させ、沪過し、濃縮した(10.57g)。残留物(594m g)のMeOH(6mL)懸濁液に、実施例62のステップCで得られた3-(4-ブロ モー2ートリフルオロメトキシーフェニル)ープロピオンアルデヒド(650mg、2. 19mmol)、AcOH (132mg、2. 19mmol) およびNaBH3 CN (2 07mg、3.29mmo1)を加えた。この反応混合物を室温で16時間攪拌し、飽和 NaHCO。水溶液に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機層をM gSOa上で乾燥させ、沪過し、憑縮し、中圧液体クロマトグラフィー(NH-シリカゲ ル、ヘキサン中の50%EtOAc、さらにシリカゲル、CHC1。中の16%MeOH)により精製すると、黄色のオイルが得られた。残留物のEtOAc(6mL)溶液に、 EtOAc(0.14mL)中の4Mの塩化水素を加えた。反応混合物を室温で30分間 提拌し、濃縮した。残留物のEt。O(10mL)溶液を室温で1時間攪拌し、沪過によ り沈殿物を集めると、シス-N2-{4-[3-(4-プロモ-2-トリフルオロメトキ シーフェニル) ープロピルアミノ]ーシクロヘキシル !ー N4 ーメチルーキナゾリンー 2 . 4 - ジアミン二塩酸塩(59mg、7%)が白色の固体として得られた。

ESI NS m/e 552, M (遊離聖) + H⁺; ¹H NMR (300 Mtz, CDCl₃) d 12.37 (s, 1 H), 9.78 (brs, 1 H), 9.59 (brs, 2 H), 8.68 (d, J = 8.2 Hz, 1 H), 7.55-7.67 (m, 2 H), 7.2 7-7.43 (m, 5 H), 3.78-3.96 (m, 1 H), 2.94-3.24 (m, 3 H), 2.50-2.89 (m, 5 H), 2.0 9-2.50 (m, 6 H), 1.60-1.98 (m, 4 H).

[0466]

実施例80

2HCI

ステップA: シスーN² - [4-(4-2)ロロ-2-トリフルオロメトキシーベンジ ルアミノ)-シクロヘキシル]-N⁴,N⁴-ジメチル-キナゾリン-2,4-ジアミン 二塩酸塩の合成

濃日C1 (420 µL) およびNaNO₂ (44 mg, 0.64 mmo 1) の混合物を 7 ○でで10分間撹拌した。この反応混合物に、実施例7 7 のステップAで得られたシス - N² - [4 - (4 - アミノ - 2 - トリフルオロメトキシーベンジルアミノ) - シクロへ キシル」 - N4 、 N4 - N4 - オナアリン - 2、 + 4 - ジア S \cdot (基離) の Λ C O H \cdot 1 5 m L) 溶液を加え、室温で 1 0 分間機件した。この反応混合物に、C \cdot C \cdot

ESI MS m/e 494, M (遊離型) + H*; ¹H MMR G300 MHz, CDCl₉) & 12.66 (s. 1 H), 9.82 -10.28 (m, 2 H), 8.78 (d, J = 7.6 Hz, 1 H), 8.24 (d, J = 8.3 Hz, 1 H), 7.92 (d, J = 8.2 Hz, 1 H), 7.76 (t, J = 7.6 Hz, 1 H), 7.47 (d, J = 8.1 Hz, 1 H), 7.18-7.4 1 (m, 3 H), 4.20-4.44 (m, 3 H), 3.52 (s. 6 H), 3.23 (brs, 1 H), 2.02-2.65 (m, 6 H), 1.75 (t. J = 12.8 Hz, 2 H).

[0468]

実施例81

【/P:228】

トランス $-N^2-\{4-[(4-7$ ロモ-2-トリフルオロメトキシーベンジルアミノ) -メチル] -シクロヘキシル $\}-N^4$, N^4- ジメチルーキナゾリン-2 , 4-ジアミン二塩酸塩

[0469]

ステップA: $N^2 - (4 - r \le J \times f \nu - v \ge D \wedge v \le D \wedge v \ge D \wedge v \le D \wedge v \ge D \wedge v$

実施例6のステップBで得られたトランスー $[4-(4-) × f \lambda h r > 1 - k + r) U > 2 - 4 \Lambda r > 2 / 1 - k) P × 1 - 4 \Lambda r × 1$

ESI MS m/e 300, M + BT ; *H MMR (300 MHz, CDC_{13}) d 7, 80 (d, J=9.3 Hz, 1 H), 7. 38-7.53 (m, 2 H), 6.97-7.05 (m, 1 H), 4.77 (d, J=9.3 Hz, 1 H), 3.75-4.02 (m, 1 H), 3.26 (s, 6 H), 2.57 (d, J=6.2 Hz, 2 H), 2.13-2.31 (m, 2 H), 1.75-1.96 (m, 2 H), 0.92-1.45 (m, 7 H).

[0470]

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離聖) + H ; ¹H MMR (300 Mbz, CDCl₃) d 12.72 (s, 1 H), 10.1 9 (brs, 2 H), 8.18 (d, J = 8.9 lbz, 1 H), 8.06 (d, J = 7.9 lbz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.42-7.65 (m, 3 lbz, 1 H), 7.23 (t, J = 7.5 Hz, 1 H), 4.18-4.29 (m, 2 H), 3.69-3.89 (m, 1 H), 3.52 (s, 6 H), 2.64-2.81 (m, 2 H), 1.90-2.24 (m, 5 H), 1.02-1.56 (m, 4 H).

[0471]

実施例82

【/k229】

トランス $-N^2 - [4-(4-) \pi - 2-]$ トリフルオロメトキシーベンジルアミノ) ーシクロヘキシルメチル $]-N^4$, N^4 - $\overline{ }$ ジメチルーキナゾリン-2, 4- $\overline{ }$ ジアミン二塩 酸塩

[0472]

ステップA: トランス $-N^2 - (4-P) -$

実施例3のステップCで得られたトランスー $\{4-\lceil (4-\Im J + N - \mathbb{P}) - 2 - 2 + N - \mathbb{P}\}$ \mathcal{P} \mathcal

ESI NS m/e 300, M + H' : 'H NNR (300 MHz, CDCl₃) d 7.80 (d, J = 8.1 Hz, 1 H), 7. 40-7.55 (m, 2 H), 6.95-7.07 (m, 1 H), 4.86-5.02 (m, 1 H), 3.36 (t, J = 6.3 Hz, 2 H), 3.26 (s, 6 H), 2.53-2.70 (m, 1 H), 1.77-1.98 (m, 4 H), 0.93-1.64 (m, 7 H). [0473]

ステップB: トランス- N² - [4-(4-7ロモ-2-トリフルオロメトキシーベンジルアミノ) - シクロヘキシルメチル] - N³ + N³ - ジメチル- キナゲリン- 2、4 - ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) '; ¹H NMR (300 MHz, CDCl₃) d 13.21 (s, 1 H), 10.03 (brs, 2 H), 8.34-8.47 (m, 1 H), 8.07 (d, J = 8.4 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.98-7.71 (m, 4 H), 7.20-7.34 (m, 1 H), 4.03-4.20 (m, 2 H), 3.51 (s, 6 H), 3.28-3.42 (m, 2 H), 2.65-2.92 (m, 1 H), 2.16-2.35 (m, 2 H), 1.86-2.05 (m, 2 H), 1.56-1.83 (m, 3 H), 0.89-1.16 (m, 2 H).

[0474]

[4/230]

2HC

シス-N2-[4-(2, 2-ジフェニル-エチルアミノ)-シクロヘキシル]-N4,N4-ジメチル-キナゾリン-2, 4-ジアミン二塩酸塩 [0475]

ステップA: シス $-N^2-[4-(2,2-i)]$ ェニルーエチルアミノ) ーシクロへキシル] $-N^4$, N^4 ージメチルーキナゾリン-2, 4 ージアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 466, M (遊館型) + H^{*}; ¹H NMt (300 MHz, CDCl₂) d 12.60 (brs, 1 H), 8. 76-9.28 (m, 3 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.59-7.71 (m, 2 H), 7.14-7.51 (m, 1 O H), 5.00 (t, J = 7.7 Hz, 1 H), 4.30-4.40 (m, 1 H), 3.72 (d, J = 7.4 Hz, 2 H), 3.51 (s, 6 H), 3.19-3.43 (m, 1 H), 1.85-2.31 (m, 6 H), 1.52-1.76 (s, 2 H). [0476]

実施例84 【化231】

2HCI

ステップA: [2-(3-アミノービロリジン-1-イル)ーキナゾリン-4-イル]ージメチルーアミンの合成

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 258, M + H'; 'H NNR (300 Mbz, $CDCl_3$) $\tilde{\sigma}$ 7.80 (d, J = 8.2 lbz, 1 H), 7. 41-7.57 (m, 2 H), 6.93-7.06 (m, 1 H), 3.61-4.02 (m, 4 H), 3.40 (dd, J = 11.0, 4. 97 Hz, 1 H), 3.26 (s, 6 H), 2.09-2.30 (m, 1 H), 1.68-1.87 (m, 1 H), 1.22-1.63 (m, 2 H).

[0478]

ステップB: $\{2-[3-(4-プロモ-2-トリフルオロメトキシーペンジルアミ ノ) ービロリジン-1-イル] ーキナブリン-4-イル<math>\}$ ージスチルーアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 510, M (遊離型) + H'; 1H NMR (300 MHz, CDCl₃) d 8.05-8.61 (m, 2 H), 7.61-7.96 (m, 2 H), 7.33-7.57 (m, 2 H), 7.17-7.31 (m, 1 H), 4.42-4.64 (m, 2 H),

4.34 (s. 2 H), 3.58-4.24 (u. 3 H), 3.46 (s. 6 H), 2.81 (brs. 1 H), 2.31-2.60 (m.

1 H). [0479]

実施例85 【 (P.232]

(2-{3-[2-(4-プロモ-2-トリフルオロメトキシーフェニル)ーエチルア ミノ | ーピロリジン-1-イル | ーキナゾリン-4-イル) ージメチルーアミン二塩酸塩 [0480]

ステップA: (2-{3-[2-(4-プロモ-2-トリフルオロメトキシーフェニ ル) -エチルアミノ - ビロリジン-1-イル - キナゾリン-4-イル) -ジメチル-アミン一塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 524, M (遊離型) H+; 1H NMR (300 MHz, CDClo) & 8.15-8.53 (m. 1 H), 7. 70-7.93 (m, 1 H), 7.62 (t, J = 7.6 Hz, 1 H), 7.11-7.46 (m, 4 H), 3.60-4.70 (m, 5 H), 3,45 (s, 6 H), 3,04-3,59 (m, 4 H), 2,29-2,98 (m, 2 H), [0481]

実施例86

【化233】

 $N^2 - [1 - (2, 2 - i) - x - h - x + h) - x + h) - x + h - x$ ージメチルーキナゾリンー2、4 ージアミン二塩酸塩

[0482]

ステップA: N2-[1-(2, 2-ジフェニルーエチル)ーピペリジン-4-イル $]-N^4$, N^4 -ジメチルーキナゾリンー2, 4 -ジアミン二塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 452, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl_s) d 12.54 (brs, 1 H), 12 .42 (s. 1 H), 9.82 (d. J = 8.4 Hz, 1 H), 7.92 (d. J = 8.1 Hz, 1 H), 7.66-7.74 (m , 1 H), 7.40-7.54 (m, 5 H), 7.27-7.39 (m, 5 H), 7.14-7.26 (m, 2 H), 5.17 (t, J = 6.3 Hz. 1 H). 4.39-4.56 (m, 1 H), 3.70-3.87 (m, 2 H), 3.34-3.60 (m, 7 H), 3.07-3.25 (m, 2 H), 2.55-2.87 (m, 2 H), 1.61-1.94 (m, 4 H).

[0483]

[4k234]

1 - [4 - (4 - ジメチルアミノーキナゾリン - 2 - イルアミノ) - ピペリジン - 1 -イル] - 3, 3 - ジフェニループロバン - 1 - オン塩酸塩 【0484】

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 502. M (拉龍型) + Na*; 1H NMR (300 MHz, CDCl₃) δ 13.45 (brs, 1 H), 8.73 (d, J = 6.9 $E_{\rm L}$, 1 H), 7.89 (d, J = 8.2 $E_{\rm L}$, 1 H), 7.61–7.70 (m, 1 H), 7.56 (d, J = 7.6 $E_{\rm L}$, 1 H), 7.25–7.39 (m, 11 H), 4.67 (t, J = 7.5 $E_{\rm L}$, 1 H), 3.97–4.14 (m, 2 H), 3.70–3.89 (m, 1 H), 3.50 (s, 6 H), 3.13–3.30 (m, 2 H), 2.99–3.12 (m, 2 H), 1.31–1.99 (m, 4 H).

[0485]

実施例88 【化235】

シスーNー [4-(4-i3メチルアミノーキナゾリンー2-4ルアミノ) ーシクロヘキシル] ー3, 3-iフェニループロピオンアミド塩酸塩

【0486】 ステップA: シス-N- [4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) ーシクロヘキシル] - 3.3 - ジフェニループロピオンアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 494, M (遊龍型) + H^{*}; ¹H NMR (300 MHz, CDCl₂) & 13.20 (s. 1 H), 8.77 (d. J = 8.2 Hz, 1 H), 7.88 (d. J = 7.7 Hz, 1 H), 7.60-7.69 (m. 1 H), 7.53 (d. J = 17.1 Hz, 1 H), 7.12-7.33 (m. 1 H), 5.72 (d. J = 9.2 Hz, 1 H), 4.77 (t. J = 8.0 Hz, 1 H), 4.77 (t. J = 8.0 Hz, 1 H), 4.77 (t. J = 8.0 Hz, 1 H), 4.71 (t. J = 8.0 Hz, 2 Hz), 4.71 (t. J = 8.0 Hz), 2.88 (d. J = 7.9 Hz, 2 Hz), 1.47-1.85 (m. 8 H).

[4/236]

(2-{4-[(4-プロモー2-トリフルオロメトキシーベンジルアミノ)-メチル]-ピペリジン-1-イル)-キナゾリン-4-イル)-ジメチルアミン二塩酸塩

【0488】 ステップA: 「2-(4-アミノメチルーピペリジン-1-イル) -キナゾリン-4

- ステッノA: [2-(4-/ミノメテルーヒヘリシン-1-4ル) - キテリリン-- イル] - ジメチルーアミンの合成

実施例64のステップAの手順を使用し、表題の化合物を得た。

ESI NS m/e 286, M + H : ; ¹H NMR (300 MHz, CDCl₃) d 7.79 (d, J = 8.3 Hz, 1 H), 7. 42-7.52 (m, 1 H), 7.23-7.36 (m, 1 H), 6.94-7.07 (m, 1 H), 4.94 (d, J = 12.7 Hz, 2 H), 3.26 (s, 6 H), 2.74-3.01 (m, 2 H), 2.61 (d, J = 6.6 Hz, 2 H), 1.46-1.99 (m, 4 H), 1.01-1.39 (m, 3 H).

[0489]

ステップB: (2-{4-[(4-プロモ-2-トリフルオロメトキシーベンジルア ミノ)-メチル]-ピペリジン-1-イル}-キナゾリン-4-イル)-ジメチルーアミ ン「塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 538, N (位施建型) + H ; : H NMR (300 NHz. CDCLg) d 12.66 (s. 1 H), 8.50 (d. J = 8.4 Hz, 1 H), 8.50 (d. J = 8.6 Hz, 1 H), 7.88 (d. J = 8.4 Hz, 1 H), 7.50 (dd. J = 8.4 1, 9 Hz, 1 H), 7.36-7.41 (m. 1 H), 7.24 -7.34 (m. 1 H), 5.01 (brs, 2 H), 4.27 (s. 2 H), 3.49 (s. 6 H), 3.05-3.37 (m. 2 H), 2.44-2.92 (m. 3 H), 1.82-2.37 (m. 2 H), 1.14-1.62 (m. 2 H).

実施例90

【化237】

2HCI

 $[2-(4-\{[2-(4-70モ-2-トリフルオロメトキシーフェニル)-エチルアミノ]-メチル}-ビベリジン-1-イル)-キナゾリン-4-イル]-ジメチルーアミン二塩酸塩$

[0491]

ステップA: $[2-(4-\{[2-(4-70モ-2-h)])ルオロメトキシーフェニル) - エチルアミノ] - メチル} - ビベリジン-1-4ル) - キナゾリン-4-4ル] - ジメチルーアミン 二駆機場 今成$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H+: LH NMR (300 MHz, CDCI₂) d 12.63 (s. 1 H), 8.48 (d, J = 8.2 Hz, 1 H), 7.79-7.97 (d, J = 7.5 Hz, 1 H), 7.58-7.73 (m, 1 H), 7.19-7.48 (m, 4 H), 5.02 (brs, 2 H), 3.49 (s, 6 H), 2.82-3.69 (m, 6 H), 1.98-2.79 (m, 5 H), 1.52 (brs, 2 H).

【0492】 実施例91

【化238】

 $N^2 - \{1 - [2 - (4 - 7) - 2 - 1) - 1 - 2 - 1\} - [2 - (4 - 7) - 2 - 1]$ 酸塩

[0493]

ステップA: $N^2 - \{1 - [2 - (4 - プロモ - 2 - トリフルオロメトキシーフェニ$ ||u|| - x + ||u|| - ||v|| -- ジアミン 塩酸塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 538, M (遊離型) + H+; 1H NMR (300 MHz, CDCl_o) d 12.61 (brs, 1 H), 12 .43 (s. 1 H), 9.97 (d. J = 8.1 Hz, 1 H), 7.94 (d. J = 7.9 Hz, 1 H), 7.65-7.76 (m , 1 H), 7.28-7.52 (m, 5 H), 4.48-4.62 (m, 1 H), 3.12-3.73 (m, 14 H), 2.68-2.92 (m, 2 H), 1.96-2.13 (m, 2 H).

[0494] 実施例92

【化239】

4 - ジメチルーキナゾリン-2,4-ジアミン二塩酸塩

[0495]

ステップA: $N^2 - [1 - (3, 3 - i) フェニループロビル) - ビペリジン-4-イ$ ル] - N4, N4 - ジメチル - キナゾリン - 2, 4 - ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 466, M (遊離型) + H ; H NMR (300 MHz, CDCl₂) d 12.42 (s, 1 H), 12.2 6 (brs. 1 H), 9.87 (d. J = 8.2 Hz, 1 H), 7.93 (d. J = 8.2 Hz, 1 H), 7.65-7.74 (m , 1 H), 7.47 (d, J = 8.2 Hz, 1 H), 7.13-7.37 (m, 11 H), 4.44-4.60 (m, 1 H), 3.98(t, J = 7.9 Hz, 1 H), 3.28-3.65 (m, 10 H), 2.93-3.09 (m, 2 H), 2.63-2.88 (m, 4

H). 1.84-2.02 (m. 2 H).

[0496]

実施例93

【化240】

2HCI

 $y = -10^{\circ} - 10^{\circ} - 10^{\circ$ 4. N4 -ジメチルーキナゾリン-2, 4 -ジアミン二塩酸塩

[0497]

ステップA: シス $-N^2 - [4 - (3, 3 - ジフェニル - プロピルアミノ) - シクロ$ ヘキシル $]-N^4$ 、 N^4 -ジメチルーキナゾリン-2、4-ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 480, M (遊離型) + H:; 1H NMR (300 MHz, CDCla) & 12.58 (s, 1 H), 9.53 (s, 2 H), 8.58 (d, J = 7.9 Hz, 1 H), 7.91 (d, J = 8.1 Hz, 1 H), 7.64 (t, J = 7. 7 Hz, 1 H), 7.48 (d, J = 7.9 Hz, 1 H), 7.08-7.33 (m, 11 H), 4.18-4.33 (m, 1 H), 4.11 (t, J = 7.7 Hz, 1 H), 3.50 (s, 6 H), 3.16 (brs, 1 H), 2.96 (brs, 2 H), 2.64 -2.84 (m. 2 H), 1.87-2.25 (m. 6 H), 1.53-1.75 (m. 2 H), [0498]

実施例94

【化241】

シル > - N4 , N4 - ジメチルーキナゾリン- 2 , 4 - ジアミン二塩酸塩 [0499]

ステップA: シス $-N^2 - \{4-\lceil (2, 2- y) \}$ フェニルーエチルアミノ) - y チル 1-シクロヘキシル1-N 4 , N^4 -ジメチルーキナゾリン-2, 4-ジアミン二塩酸塩 の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI MS m/e 480, M (遊離型) + H⁺ ; ¹H NMR (300 MHz, CDCl₃) & 12.78 (s, 1 H), 8.94 (brs. 2 H), 8.80 (d, J = 8.4 Hz, 1 H), 7.89 (d, J = 8.1 Hz, 1 H), 7.60-7.69 (m, 1 H), 7.44-7.58 (m, 2 H), 7.18-7.42 (m, 9 H), 4.91 (t, J = 8.0 Hz, 1 H), 4.19-4 .34 (m, 1 H), 3.61-3.76 (m, 2 H), 3.50 (s, 6 H), 2.81-2.97 (m, 2 H), 2.04-2.19 (m, 1 H), 1.74-1.91 (m, 2 H), 1.45-1.69 (m, 6 H).

[0500]

【4P242】

ステップA: N^4 , N^4 ージメチルー N^2 ーピペリジンー4 ーイルメチルーキナゾリンー2, 4 ージアミンの合成

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 408, M + Na'; 'H NMR (300 MHz, CDCl₃) d 7.82 (d, J = 8.3 Hz, 1 H), 7 .39-7.59 (m, 2 H), 6.96-7.12 (m, 1 H), 4.79-5.11 (m, 1 H), 3.94-4.31 (m, 2 H), 3 .42 (t, J = 5.9 Hz, 2 H), 3.27 (s, 6 H), 2.70 (t, J = 12.1 Hz, 2 H), 1.63-1.92 (m, 3 H), 1.46 (s, 9 H), 0.99-1.37 (m, 2 H).

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 538, M (遊離型) + H^{*}; ¹H NMR (300 MHz, CDCl₃) & 13.13 (s. 1 H), 12.6 9 (brs. 1 H), 8.73 (t. J = 6.3 Hz, 1 H), 8.19 (d. J = 8.2 Hz, 1 H), 7.90 (d. J = 7.6 Hz, 1 H), 7.45-7.73 (m. 4 H), 7.22-7.33 (m. 1 H), 4.10-4.24 (m. 2 H), 3.36-3.67 (m. 10 H), 2.61-2.86 (m. 2 H), 1.80-2.33 (m. 5 H).

実施例96

【化243】

 $N^2 - \{1 - [2 - (4 - {\it J} \mbox{Tu} \mbox{Tu} \mbox{-} 2 - \mbox{h} \mbox{Ju} \mbox{Ju} \mbox{Ju} \mbox{N}^4 - {\it Ju} \mbox{Ju} \mbox{N} \mbox{N}^4 - {\it Ju} \mbox{Ju} \mbox{Ju} \mbox{N}^4 - {\it Ju} \mbox{Ju} \mbo$

ステップA: $N^2 - \{1 - [2 - (4 - \textit{T} \text{D} \mp - 2 - \textit{F} \text{H} \text{J} \text{D} \text{J} + \textit{T} \text{J} + \textit{F} \text{F} \text{J} - \textit{T} \text{x} - \textit{F} \text{J} + \text{J} + \text{F} \text{J} + \text$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI YS m/c 552, M (描經型) + H·; 'I H WH (300 MLz, DCL₂) d 13.16 (brs, 1-ID), 8. 74 (n, 1-IH), 7.92 (d, J = 8.2 Hz, 1-IH), 7.67 (t, J = 7.5 Hz, 1-IH), 7.53 (d, J = 7.6 Hz, 1-IH), 7.22-7.46 (n, 5-IH), 3.44-3.71 (n, 10-IH), 3.26-3.39 (n, 2-IH), 3.01-3.15 (n, 2-IH), 2.65-2.86 (n, 2-IH), 1.87-2.33 (n, 5-IH).

【0505】 実施例97

【 (P.244]

2HCI

 $N^2 = [1 - (4 - \mathcal{I}$ ロモー2 - トリフルオロメトキシーベンジル) - ビロリジン- 3 - イル $] - N^4$, $N^4 - \mathcal{I}$ メチルーキナゾリン- 2 , $4 - \mathcal{I}$ アミン二塩酸塩 $\{0506\}$

ステップA: $N^2 - (1 - ベンジルービロリジン-3 - イル) - N^4$, $N^4 - ジメチルーキナゾリン-2$, 4 - ジアミンの合成

ESI NS m/e 348, M + H : 1 H NNR (300 MHz, $CDCl_3$) δ 7.80 (d, J = 9.0 Hz, 1 H), 7.46 (m, 2 H), 7.18-7.38 (m, 5 H), 7.02 (ddd, J = 8.3, 6.3, 1.9 Hz, 1 H), 5.30 (br s, 1 H), 4.59-4.75 (m, 1 H), 3.63 (d, J = 2.5 Hz, 2 H), 3.25 (s, 6 H), 2.88 (dd, J = 0.6, 6.6 Hz, 1 H), 2.70-2.81 (m, 1 H), 2.28-2.60 (m, 3 H), 1.64-1.78 (m, 1 H),

【0507】

N² − (1 − ベンジルーゼロリジン − 3 − イル) − N⁴ , N⁴ − ジメチルーキャゲリン − 2 , 4 − ジアミン (3 . 3 g , 9 . 5 mm o 1) のMe O H (3 3 mL) 溶液に、P d (O H) ₂ (6 6 0 m g) を加えた。この混合物を楽温で、水来雰囲気下に 1 5時間脱拝し、さらに5 0 ℃で6 時間脱拝した。この混合物を浐過し、濃縮し、中圧液体クロマトグラフィー (N H − シリカゲル、C H C 1 ₃ 中の1 %から 3 %M e O H) により精製すると、N⁴ , N⁴ − ジメチルーN² − ピロリジン − 3 − 4 ルーキナゾリン − 2 , 4 − ジアミン (2 . 3 g , 9 3 %) が黄色のオイルとして得られた。

ESI NS m/e 258, M + H⁺; H NNR (300 MHz, $CDCl_3$) $\tilde{\sigma}$ 7.82 (d, J = 7.8 Hz, 1 H), 7. 42-7.54 (m, 2 H), 7.03 (ddd, J = 8.3, 6.4, 1.8 Hz, 1 H), 5.03 (brs, 1 H), 4.52 (brs, 1 H), 3.26 (s, 6 H), 2.83-3.24 (m, 4 H), 1.97-2.30 (m, 2 H), 1.57-1.77 (m, 1 H).

[0508]

ステップC: $N^2 - [1 - (4 - 7) + 2 - 5]$ フルオロメトキシーベンジル) -

(371)

ピロリジン-3-イル] $-N^4$, N^4 -ジメチルーキナブリン-2, 4 -ジアミン二塩酸 塩の合成

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 510, M (遊離型) + H^{*}; H NMR (300 MHz, CDCI₃) ∂ 13.22 (brs, 1 H), 12 .87 (s, 1 H), 9.68 (d, J = 7.4 Hz, 1 H), 8.11 (d, J = 8.4 Hz, 1 H), 7.95 (d, J = 8.4 Hz, 1 H), 7.71 (t, J = 8.3 Hz, 1 H), 7.43-7.63 (m, 3 H), 7.28-7.38 (m, 1 H) .4.94-5.15 (m, 1 H), 2.19, 4.00-4.17 (m, 1 H), 3.26-3.82 (m, 8 H), 3.0

【0509】

実施例98 【作245】

 $N^2=\{1-[2-(4-7$ ロモー2-トリフルオロメトキシーフェニル) ーエチル] ービロリジン-3-4ル $\}-N^4$, N^4 -ジメチルーキナゾリン-2, 4-ジアミン二塩 静塩

[0510]

ステップA: $N^2 - \{1 - [2 - (4 - 7 \Box モ - 2 - ト リ フルオロメトキシーフェニ <math>\nu$) $- x チ \nu$] $- ピロリジン - 3 - 4 \nu$ } $- N^4$, $N^4 - 5 x$ チルーキナゾリン - 2, 4 - 5 y - 5 y - 5 y - 5 y

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 524, M (遊離型) + H⁺; ¹H NMR (300 MHz, CDCl_2) $\hat{\sigma}$ 9.61–9.78 (m, 1 H), 7.96 (d, J = 8.4 Hz, 1 H), 7.71 (t, J = 7.7 Hz, 1 H), 7.55 (d, J = 8.2 Hz, 1 H), 7.29–7.47 (m, 4 H), 4.89–5.12 (m, 1 H), 4.07–4.28 (m, 1 H), 2.99–3.97 (m, 13 H), 2.55–2.79 (m, 1 H), 2.22–2.42 (m, 1 H).

[0511]

実施例99 【化246】

1-(4-プロモ-2-トリフルオロメトキシ-フェニル) $-1-\{4-[(4-$ ジメ チルアミノ-キナゾリン-2-イルアミノ)-メチル]-ビペリジン-1-イル $\}-$ メタ ノン塩酸塩

【0512】 ステップA: 1 − (4 − ブロモ−2 − トリフルオロメトキシーフェニル) − 1 − (4 − [(4 − ジメチルアミノーキナゾリン−2 − イルアミノ) − メチル] − ビベリジン−1

- イルト - メタノン塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 552, M (遊離型) + H '; H NNG (300 MHz, CDCl₂) & 13.44 (brs, 1 H), 8. 53-8.77 (m, 1 H), 7.90 (d, J = 8.5 Hz, 1 H), 7.66 (t, J = 7.7 Hz, 1 H), 7.43-7.6 1 (m, 2 H), 7.47-7.37 (m, 1 H), 4.69-4.85 (m, 1 H), 3.20-3.63 (m, 10 H), 2.61-3. 13 (m, 2 H), 1.76-2.14 (m, 3 H), 1.08-1.48 (m, 2 H).

【0513】

実施例100 【化247】

シス-3-(3,4-ジフルオローフェニル)-N-[4-(4-ジメチルアミノーキ ナプリン-2-イルアミノ)-シクロヘキシル]-プロピオンアミド塩酸塩 [0514]

ステップA: シスー3 - (3、4 - ジフルオローフェニル) - N - [4 - (4 - ジメ + ルアミノーキナゾリンー2 - イルアミノ) - シクロヘキシル] - プロピオンアミド塩酸 塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS u/c 454, H ($\frac{246}{120}$ H F; 1 H NMc (300 Mtz, $| \text{OOC}_4 \rangle \delta$ 13,05 (s, 1 H), 8.87 (d, J = 8.1 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.65 (t, J = 7.7 Hz, 1 H), 110, 7.5 1 (d, J = 7.3 Hz, 1 H), 7.20–7.27 (m, 1 H), 6.88–7.09 (m, 3 H), 5.97 (d, J = 8.5 Hz, 1 H), 4.26 (brs, 1 H), 3.91 (brs, 1 H), 3.51 (s, 6 H), 2.92 (t, J = 7.6 Hz, 2 H), 2.44 (t, J = 7.6 Hz, 2 H), 1.61–1.93 (brs, 8 H). (50515)

実施例101

[(k248]

2HCI

シス $-N^2 - (4-[3-(3,4-ジフルオローフェニル)]$ 一プロビルアミノ] ーシ クロヘキシル $] -N^4$, N^4 ージメチルーキナゾリン-2, 4 ージアミン二塩酸塩 [0516]

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H'; 1H NMR (300 MHz, CDCl₃) δ 12.62 (s, 1 H), 9.54 (s, 2 H), 8.72 (d, J = 7.6 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.62-7.70 (m, 1

10), 7.48 (d, J = 7.6 Hz, 1 H), 7.24-7.33 (m, 1 H), 6.90-7.06 (m, 3 H), 4.29 (br s, 1 H), 3.52 (s, 6 H), 3.00-3.42 (m, 3 H), 2.67-2.81 (m, 2 H), 1.93-2.43 (m, 8 H), 1.60-1.80 (m, 2 H).

【0517】

実施例102 【化249】

トランスー4ープロモーN - [4 - (4 - ジメチルアミノーキナゾリンー2 - イルアミ -) - シクロヘキシルメチル- 2 - トリフルオロメトキシーベンズアミド塩酸塩 [0518]

ステップA: $N^2 - (4 - r = 1)$ メチルーシクロヘキシル) $-N^4$, $N^4 - y$ メチルーキナゾリンー 2. 4 - yアミンの合成

実施例81のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 300, M + Hr; H MMC (300 MHz, $CDCl_3$) d 7.79 (d, J = 8.4 Hz, 1 H), 7. 45 (m, 2 H), 7.00 (ddd, J = 8.4, 6.3, 1.9 Hz, 1 H), 4.80 (d, J = 8.2 Hz, 1 H), 3.24 (s, 6 H), 2.56 (d, J = 6.2 Hz, 2 H), 2.14-2.28 (m, 2 H), 1.78-1.92 (m, 2 H), 0.95-1.42 (m, 7 H).

[0519]

ステップB: トランス-4-プロモ-N-[4-(4-ジメチルアミノーキナゾリン -2-1ルアミノ)-シクロヘキシルメチル]-2-トリフルオロメトキシーベンズアミ ド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 566, M (故能型) + H^* ; H NNR (300 MHz, $CDCl_3$) δ 13.48 (s. 1 H), 8.34 (d. J = 7.5 Hz, 1 H), 7.83-7.94 (m. 2 H), 7.43-7.69 (m. 4 H), 7.20-7.29 (m. 1 H), 6.49-6.62 (m. 1 H), 3.72-3.93 (m. 1 H), 3.50 (s. 6 H), 3.39 (t. J = 6.3 Hz, 2 H), 2.09-2.22 (m. 2 H), 1.85-1.98 (m. 2 H), 1.37-1.69 (m. 3 H), 1.08-1.28 (m. 2 H).

[0520]

実施例103 【化250】

4 - Tロモ-N - [1 - (4 - i x + i

ステップA: 4 - プロモ- N - $\begin{bmatrix} 1 - (4-i)$ メチルアミノ-キナゾリン-2-イル) - ビベリジン-4-イルメチル $\end{bmatrix}$ -2-トリフルオロメトキシ-ベンズアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 552. M (遊離型) '; 'H NMR (300 MHz, $CDCl_3$) δ 13.50 (s, 1 H), 8.73 (d, J = 8.5 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.81 (d, J = 8.4 Hz, 1 H), 7.62-7 .71 (m, 1 H), 7.53 (dd, J = 8.4, 1.87 Hz, 1 H), 7.45 (s, 1 H), 7.23-7.32 (m, 1 H), 6.77-6.87 (m, 1 H), 3.30-3.55 (m, 10 H), 2.96-3.27 (m, 2 H), 1.89-2.15 (m, 3 H), 1.28-1.57 (m, 2 H).

[0522]

実施例104

【化251】

シスー2 - (3, 4-ジフルオローフェニル) -N-[4-(4-ジメチルアミノーキ ナブリン-2-4ルアミノ) -シクロヘキシルメチル] -アセトアミド塩酸塩 [0524]

ステップA: シスー2 - (3, 4-ジフルオローフェニル) -N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチル] -アセトアミド塩 移塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 454, M (遊鮮型) + H'; 'HI NMR G300 MHz, CDCl₂) & 12.66 (s. 1 H), 9.08 (d. J = 8.9 Hz, 1 H), 7.90 (d. J = 8.1 Hz, 1 H), 7.66 (ddd, J = 8.4, 7.2, 1.2 H z, 1 H), 7.48 (dd, J = 8.4, 0.94 (m. 1 H), 7.32-7.41 (m. 1 H), 7.12-7.31 (m. 3 H), 6.97-7.08 (m. 1 H), 4.35-4.48 (m. 1 H), 3.78 (s. 2 H), 3.52 (s. 6 H), 3.28-3.3 6 (m. 2 H), 1.42-2.05 (m. 9 H).

[0524]

実施例105

【化252】

シス $-N-\left[\,4-(4-{\it i}\, 3+{\it i}\, N)^2\, 2-{\it i}\, N +{\it i}\, N^2\, 2-{\it i}\, N +{\it i}\, N +{$

[0525]

実施例47のステップAの手順を使用して、表題の化合物を得た。 ESL MS m/e 440. M (資鮮型) + H': 1H NMR (300 MHz. (DCLs) & 12.89 (s. 1 H), 9.11 (d, J = 8.2 ltz, 1 lt), 7.88 (m, 3 lt), 7.64 (ddd, J = 8.4, 7.2, 1.2 ltz, 1 lt), 7.49 (dd, J = 8.4, 0.9 ltz, 1 lt), 7.18-7.29 (m, 2 lt), 6.96-7.07 (m, 1 lt), 4.29-4.44 (m, 1 lt), 3.51 (s, 8 lt), 1.55-2.02 (m, 9 lt).

[0526]

実施例106

【化253】

シス-N² - (4- { [2- (3,4-ジフルオロ-フェニル) -エチルアミノ] -メチル} -シクロヘキシル) -N⁴ ,N⁴ -ジメチル-キナゾリン- 2,4 -ジアミン二塩酸塩

[0527]

ステップA: シスーN² - $(4 - \{ [2 - (3, 4 - i J J L A T J L A J J L A J L$

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊館型) + H'; ¹H NMR (300 MHz, ODCl₈) ∂ 12.43 (s, 1 H), 9.64 (brs, 2 H), 8.66 (d, J = 8.3 Hz, 1 H), 7.91 (d, J = 8.3 Hz, 1 H), 7.67 (t, J = 7.8 Hz, 1 H), 7.46 (d, J = 8.3 Hz, 1 H), 7.28 (t, J = 7.8 Hz, 1 H), 6.97-7.17 (m, 3 H), 4.24-4.37 (m, 1 H), 3.52 (s, 6 H), 3.30-3.44 (m, 2 H), 2.94-3.25 (m, 4 H), 1.57-2.28 (m, 9 H).

[0528]

実施例107

[4/254]

$$\text{The proof } F$$

2HCI

シス $-N^2$ - {4-[(3,4-ジフルオロ-ベンジルアミノ) -メチル] -シクロヘキシル} $-N^4$ $,N^4$ -ジメチル-キナゾリン- 2 ,4-ジアミン二塩酸塩

[0529]

ステップA: シスーN²ー $\{4-[(3,4-i)$ フルオローベンジルアミノ)ーメチル]-iンクロヘキシル]-N4、N4・N4・ジメチルーキナゾリンー 2、4ージアミン二塩酸 燃の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 426, M (遊館型) + H^{*}; ¹H NMR (300 MHz, DMSD-d_g) 8 9.39 (s, 2 H), 8.4 4 (m, 1 H), 8.17 (d, J = 8.4 Hz, 1 H), 7.72-7.88 (m, 2 H), 7.27-7.61 (m, 4 H), 4 .11-4.31 (m, 3 H), 3.48 (s, 6 H), 2.81 (d, J = 6.1 Hz, 2 H), 1.32-2.03 (m, 9 H). I (5530)

【4k255】

[0531]

ステップA: $2-(4-7\alpha E-2-トリフルオロメトキシーフェニル)-1-(4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-ピペリジン-1-(ル)-エタノン塩酸塩の合成$

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/c 566, M (遊館型) + H'; 'H NMR (300 MHz, CDCl₃) ∂ 13.48 (s, 1 H), 8.65 (t, J = 5.8 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.55-7.70 (m, 2 H), 7.37-7.44 (m, 2 H), 7.20-7.32 (m, 2 H), 4.59-4.72 (m, 1 H), 3.80-3.94 (m, 1 H), 3.68 (d, J = 6.1 Hz, 2 H), 3.25-3.58 (m, 8 H), 2.94-3.12 (m, 1 H), 2.50-2.68 (m, 1 H), 1.75-2.03 (m, 3 H), 1.06-1.32 (m, 2 H).

[0532]

実施例109 【化256】

トランス-2-(4-プロモ-2-トリフルオロメトキシ-フェニル) -N-[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキシルメチル] -アセトアミド [0533]

ステップ名: トランス -2 - (4 - プロモ-2 - トリフルオロメトキシーフェニル) $-N - [4 - (4 - ジメチルアミノーキナゾリン-2 - イルアミノ) - シクロヘキシルメチル <math>1 - \mathbb{Z}^2$ テルトーアセトアミドの合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/c 580, M (遊館型): ; ¹1 MMI (300 Mitz, DDC₁₃) d 8.28 (d, J = 6.7 Hz, 1 H), 7.87-7.90 (d., 1 = 8.5 Hz, 1 H), 7.52-7.66 (m. 2 H), 7.39-7.44 (m. 2 H), 7.20 -7.33 (m. 2 H), 5.85-5.98 (m. 1 H), 3.70-3.91 (m. 1 H), 3.58 (s. 2 H), 3.56 (s. 6 H), 3.16 (t. J = 6.5 Hz, 2 H), 2.03-2.20 (m. 2 H), 1.28-1.88 (m. 5 H), 0.96-1. 18 (m. 2 H).

【4k257】

シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-シクロヘキシル]-3,4-ジフルオロ-ベンズアミド塩酸塩 [0535]

ステップA: シス-N-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル]-3,4-ジフルオローベンズアミド塩酸塩の合成

) ーングロペキンル」 - 3, 4 ーンブルオローペンステミト温酸温の合成 実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 448, M (遊館型) + Na*; H NMR (300 MHz, CDCl₂) δ 13.01 (s, 1 H), 8.9 6 (d, J = 8.1 Hz, 1 H), 7.91 (d, J = 8.2 Hz, 1 H), 7.55-7.79 (m, 4 H), 7.49-7.54 (m, 1 H), 7.15-7.32 (m, 2 H), 6.76 (d, J = 8.4 Hz, 1 H), 4.30-4.41 (m, 1 H), 4.03-4.22 (m, 1 H), 3.52 (s, 6 H), 1.67-2.07 (m, 8 H).

実施例111

【/F258】

シスー3ー (3、4ージフルオローフェニル) -N-[4-(4-ジメチルアミノーキナブリン-2-イルアミノ) -シクロヘキシルメチル] -プロピオンアミド塩酸塩 [0637]

ステップA: シスー3 - (3、4 - ジフルオローフェニル) - N- [4 - (4 - ジメチルアミノーキップリン- 2 - イルアミノ) - シクロヘキシルメチル] - プロピオンアミ ド塩齢塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 468, M (遊經型) + H^{*}; ¹H NMR (300 MHz, CDCl₂) & 12.70 (s, 1 H), 9.00 (d, J = 8.3 Hz, 1 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.66 (ddd, J = 8.3, 7.2, 1.0 H z, 1 H), 7.48 (dd, J = 8.3, 1.0 Hz, 1 H), 7.11-7.31 (m, 2 H), 6.84-7.06 (m, 3 H), 4.32-4.44 (m, 1 H), 3.51 (s, 6 H), 3.26-3.33 (m, 2 H), 2.96 (t, J = 7.5 Hz, 2 H), 2.76 (t, J = 7.4 Hz, 2 H), 134-1.94 (m, 9 H).

【0538】 実施例112 【化259】

シス $-N^2 - [4 - (3, 4 - \Im 7) ルオローベンジルアミノ) - シクロヘキシル] - N 4 - ジメチルーキナゾリン<math>-2$, $4 - \Im 7$ ミン⁻塩酸塩

[0539]

ステップA: シス-N²- [4-(3,4-ジフルオローベンジルアミノ)-シクロ ヘキシル]-N4,N4-ジメチル-キナゾリン-2,4-ジアミン二塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 434, M (遊館型) + Na*; 1H NMR (300 MHz, DMSO-d₆) δ 13.03 (s, 1 II), 9 .50 (brs, 2 II), 8.31-8.40 (m, 1 II), 8.19 (d, J = 8.2 Hz, 1 II), 7.73-7.90 (m, 2 II), 7.29-7.60 (m, 4 II), 4.04-4.28 (m, 3 II), 3.46 (s, 6 II), 3.06-3.22 (m, 1 II), 1.61-2.10 (m, 8 II).

[0540]

実施例113

【化260】

2HCI

シス $-N^2$ - (4-{[3-(3,4-ジフルオロ-フェニル)-プロピルアミノ]- メチル+ シクロヘキシル) $-N^4$, N^4 -ジメチル-キナゾリン-2,4-ジアミン二塩酸塩 [0541]

ステップA: シスーN2 - (4 - { [3-(3,4-ジフルオローフェニル) - プロビルアミノ] - メチル] - シクロヘキシル) - N4 + ジメチルーキナゾリン- 2, - ジアミン一塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 454, M (遊離型) + H^{*}; ¹H MMR (300 MHz, CDCl₃) & 12.50 (s, 1 H), 9.43 (brs, 2 H), 8.60 (d, J = 7.93 Hz, 1 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.65 (dold, J = 8.2, 7.2, 1.1 Hz, 1 H), 7.46 (d, J = 8.6 Hz, 1 H), 7.23-7.30 (m, 1 H), 6.91-7 (s) (m, 3 H), 4.22-4.34 (m, 1 H), 3.51 (s, 6 H), 2.87-3.07 (m, 4 H), 2.68 (t, J = 7.7 Hz, 2 H), 1.53-2.43 (m, 11 H).

[0542]

【4E261】

2-(4-プロモー2-トリフルオロメトキシーフェニル) - N- [1-(4-ジメチルアミノーキナゾリンー2-イル)-ピベリジンー4-イルメチル] -アセトアミド塩酸塩

[0543]

ステップA: 2-(4-プロモ-2-トリフルオロメトキシーフェニル)-N-[1-(4-ジメチルアミノーキナゾリン-2-イル)-ビベリジン-4-イルメチル]-アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS n/e 588, M (遊館型) + Na*; 1H NMR (300 MHz, CDCl₃) d 13.32 (s, 1 H), 8.6 8 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 7.4 Hz, 1 H), 7.65 (ddd, J = 8.4, 7.1, 1.2 Hz, 1 H), 7.25–7.42 (m, 4 H), 6.59–6.69 (m, 1 H), 3.60 (s, 2 H), 3.48 (s, 7 H), 2.90–3.37 (m, 5 H), 1.78–2.08 (m, 3 H), 1.19–1.46 (m, 2 H). 【0544】

実施例115

【化262】

トランス-2-(4-プロモー2-トリフルオロメトキシーフェニル)-N- $\{4-$ [(4-)ジメチルアミノーキナゾリン-2-イルアミノ)-メチル] -シクロヘキシルメチル $\}$ -アセトアミド塩酸塩

[0545]

ステップ名: トランス $-2 - (4 - プロモ - 2 - トリフルオロメトキシーフェニル) - N - <math>\{4 - [(4 - \widetilde{y} \times f \times T) - F \times T) - 2 - 4 \times T - 2 - 4$

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 616, M (遊館型) + Na*; 1H NMR (300 MHz, CDCl₃) d 8.37-8.49 (m, 1 H), 7.89 (d, J = 8.5 Hz, 1 H), 7.53-7.68 (m, 2 H), 7.40-7.45 (m, 2 H), 7.20-7.32 (m, 2 H), 5.60-5.71 (m, 1 H), 3.55 (s, 2 H), 3.50 (s, 6 H), 3.35 (t, J = 6.1 Hz, 2 H), 3.08 (t, J = 6.4 Hz, 2 H), 0.77-2.00 (m, 10 H).

[4/263]

ステップA: シスー2 - (3、4 - ジフルオローフェニル) - N - [4 - (4 - ジメチルアミノーキナゾリン - 2 - イルアミノ) - シクロヘキシル] - アセトアミド塩酸塩の合成

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 440, M (遊離型) + H⁺; ¹H MMR (300 MHz, CDCl₃) ∂ 13.01 (s, 1 H), 8.85 (d, J = 8.2 Hz, 1 H), 7.89 (d, J = 8.2 Hz, 1 H), 7.65 (ddd, J = 8.2, 7.1, 1.2 Hz, 1 H), 7.52 (d, J = 8.2 Hz, 1 H), 6.95-7.33 (m, 4 H), 6.32 (d, J = 7.6 Hz, 1 H), 4.19-4.34 (m, 1 H), 3.82-4.01 (m, 1 H), 3.51 (s, 6 H), 3.47 (s, 2 H), 1.61-2.01 (m, 8 H).

[0548]

実施例117 【化264】

ステップA: シスーN2 ー $\{4-\lceil 2-(3,4-i)7n/4n-7z=n)$ ーエチルアミノ \rceil ーシクロヘキシル $\}$ ーN4 、N4 ージメチルーキナゾリンー 2、4 ージアミン二 塩酸塩の合成

実施例72のステップAの手順を使用して、表題の化合物を得た。

ESI MS m/e 426, M (遊離型) + H*; ¹H MMR (300 MHz, CDCI₃) & 12.51 (s. 1 H), 9.70 (brs., 2 H), 8.67 (d. J = 7.5 Hz, 1 H), 7.92 (d. J = 8.0 Hz, 1 H), 7.68 (t. J = 8.0 Hz, 1 H), 7.52 (d. J = 8.4 Hz, 1 H), 7.30 (t. J = 7.8 Hz, 1 H), 6.97-7.22 (m., 3 H), 4.34 (brs., 1 H), 3.53 (s. 6 H), 3.12-3.41 (m., 5 H), 1.62-2.40 (m., 8 H). [0.550]

[4k265]

4 - 7ロモーN - [1 - (4 - i i x f n) r s J - i r f n) - i r n) -

ステップA: [2-(4-r)]ーピペリジン-1-4ル) -キナゾリン-4-4ル] -ジメチル-アミンの合成

1-ベンジルーピペリジン-4-イルアミン(2.00g、10.5mmol)のTH F(20mL)溶液に、(Boc)。O(2.52g、11.5mmol)を加えた。こ の混合物を室温で40分間撹拌し、濃縮した。残留物のMeOH(20mL)溶液に、2 0%Pd(OH)。(400mg)を加えた。この混合物を室温で、水素雰囲気下に20 時間撹拌した。さらに、20%Pd(OH)2(400mg)を加え、この混合物を室温 で、水素雰囲気下に7時間、50℃で4.5時間、さらに室温で12時間攪拌し、セライ トバッドで沪渦し、濃縮すると、白色の固体が得られた。実施例1のステップBで得られ た(2-クロローキナゾリン-4-イル)ージメチルーアミン(1.10g、5.30m mo1) および前記の固体(1,27g、6,34mmo1) からなる2-プロパノール (11mL)中の混合物を還流下に20時間撹拌した。沪過により沈殿物を集め、2-プ ロバノールで洗浄し、CHC1。中の50%MeOH(60mL)に溶かした。この溶液 を飽和NaHCO。水溶液に注ぎ、水層をCHC1。で抽出した(3回)。合わせた有機 層をMgSO。上で乾燥させ、沪過し、濃縮し、フラッシュクロマトグラフィー(NH-シリカゲル、EtOAcからCHC1。) により精製すると、「2-(4-アミノービベ リジン-1-イル) -キナゾリン-4-イル] -ジメチル-アミン(864mg、68%)が無色のオイルとして得られた。

ESI NS m/c 272. M + H' : 'H NMR (300 MHz, CDCl₃) \(\delta\) 7.79 (d, J = 8.2 Hz, 1 H), 7. 45-7.55 (m, 2 H), 6.96-7.05 (m, 1 H), 4.83 (d, J = 13.4 Hz, 2 H), 3.26 (s, 6H), 2.84-3.03 (m, 3 H), 1.85-1.95 (m, 2 H), 1.20-1.50 (m, 4 H). [0552]

実施例20のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 574, M $+H^*$: 1 H NNR (300 MHz, $OD(1_3)$ δ 7.94 (d, J=8.7 Hz, I H), 7.8 O (d, J=8.2 Hz, I H), 7.39–7.61 (m, I H), 6.98–7.07 (m, I H), 4.60–4.81 (m, I H), 3.99–3.61 (m, I H), 3.25 (s, I H), 2.98–3.08 (m, I H), 1.73–1.92 (m, I H), 1.33–1.54 (m, I H).

[0553]

[4/266]

 $\{2-[4-(4-)7ロモ-2-トリフルオロメトキシーベンジルアミノ)-ビベリジン-1-イル]ーキナゾリンー4ーイル<math>\}$ -ジメチルーアミン二塩酸塩 $\{0554\}$

ステップA: $\{2-[4-(4- {\it T} {\it$

実施例37のステップBの手順を使用して、表題の化合物を得た。

ESI NS m/e 524, N (遊館型) + H*; 1H NNR G90 MHz, CDCl₂) d 8.43 (d, J = 8.1 Hz, 1 H), 8.20 (d, J = 8.4 Hz, 1 H), 7.90 (d, J = 8.4 Hz, 1 H), 7.67 (t, J = 7.5 Hz, 1 H), 7.267 (t, J = 7.5 Hz, 2 H), 3.08-3.60 (s, 9 H), 2.08-2.78 (m, 4 H).

[0555]

実施例120 【化267】

ステップA: 4 - プロモーN-[1-(4-ジメチルアミノーキナゾリン-2-イル) - ビベリジン-4-イル] - 2-トリフルオロメトキシーベンズアミド塩酸塩の合成 実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/c 560, M (遊館型) Na*; 1 H NNR (300 MHz, CDCl₂) d 13.68 (s, 1 H), 8.73 (d, J = 7.8 Hz, 1 H), 7.89-7.91 (m, 2 H), 7.68 (ddd, J = 8.4, 7.1, 1.3 Hz, 1 H), 7.55 (dd, J = 8.4, 7.1, 1.9 Hz, 1 H), 7.42-7.46 (m, 1 H), 7.29 (ddd, J = 8.4, 7.1, 1.3 Hz, 1 H), 5.67 (d, J = 7.3 Hz, 1 H), 5.04 (brs, 2 H), 4.23-4.42 (m, 1 H), 3.2 7-3.61 (m, 8 H), 2.19-2.36 (m, 2 H), 1.57-1.81 (m, 2 H).

【0557】 実施例121 【4P268】

2 - (4-プロモ-2 - トリフルオロメトキシーフェニル) - N - [1-(4-ジメチルアミノーキャンリン-2 - イル) - ビベリジン-4 - イル] - アセトアミド塩酸塩 [0558]

実施例47のステップAの手順を使用して、表題の化合物を得た。

ESI NS m/e 574, M (遊龍型) + Na*; 1H NMR (300 MHz, CDCL₈) d 13.08 (s, 1 H), 8.6 1 (d, J = 8.4 Hz, 1 H), 7.86 (d, J = 7.5 Hz, 1 H), 7.56-7.68 (m, 2 H), 7.21-7.39 (m, 4 H), 4.70-5.10 (m, 2 H), 4.04-4.22 (m, 1 H), 3.68 (s, 2 H), 3.34-3.61 (m. 8 H), 1.59-2.19 (m, 4 H),

[0559]

実施例122~301

[0560]

実施例302~588

実施例9のステップCまたは実施例64のステップAで得られたアミン(30 μ mol)のCH $_3$ Cl $_2$ (200 μ L)溶液に、CH $_2$ Cl $_2$ (200 μ L)溶液に、CH $_2$ Cl $_2$ 中の概塩化物(60 μ mol)を25℃で加えた。同じ温度で20時間操性とた後に、反応混合物を呼過し、乾燥N $_2$ 流で漏給した。残留物に、乾燥CH $_2$ Cl $_2$ (600 μ L)およびPSA(300 μ L)を加えた。25℃で20時間操件とた後に、反応混合物を呼過し、フラッシュクロマトグラフィー(NH $_2$ V)カゲル、CHCl $_3$ 中の33%MeOH)により精製すると、所望の生成物が得られた。

[0561]

実施例589~1136

 した後に、反応混合物を沪過し、乾燥 N_2 流で濃縮すると、所望の生成物が得られた。 【0562】

実施例1137~1745

アミド虫成物のTHF(200 μ I) 溶液に、THF中の I MのボランーTHF鍋体(300 μ m o I)、300 μ m o I)を加えた。この混合物を80℃で I 時間般押し、乾燥 N_2 流で濃縮した。残留物に、I MのHCL木溶液(300 μ L) き LがTHF(300 μ L) を加えた。この混合物を80℃で I 時間機評し、乾燥 N_2 流で濃縮した。残留物を、C HC I」。 ち よ が 2 Mの水 値化 ナトリウム 水溶液 の間 で 方配した、水煙を、C HC I」。 で 抽 出した。 合かせて 有限層をM 850 μ に で 放きせた。この混合物を 破場か、 流で 漁箱 L、フラッシュクロマトグラフィー(シリカゲル、C HC I」。 中の2%から7%の2 MのN H₃ λ Me O H)により精製すると、所望の生成物が得られた。

実施例1746~2184

実施例2185~2328

アルコール (35μ mol)のCH₂ Cl₂ (200μ L)溶液に、CH₂ Cl₂ (200μ L)溶液に、CH₂ Cl₂ (200μ L)中のDess-Martinベルヨージナン (periodinane) (63μ mol)を25で加え、反応混合物を同じ温度で20時間線性した。この反応混合物に、MeOH(200μ L)およびAcoH(90μ L)中の、実施例9のステップでまたは実施例64のステップAで得られたアミン (36μ mol)を加え、この混合物を同じ温度で1時間線性した。この混合物に、MeOH(200μ L)中のNaBH₃ CN (120μ mol)を加えた。同じ温度で20時間線性上た後に、反応混合物を燃料っ流で漁締した。残宿物を、CHCl₃ および2Mの水酸化ナトリウム水溶液の間で分配した。水煙を、CHCl₃ で抽出した。合わせた有限層を、MgSO₄上で乾燥させた。混合物を、乾燥、板、KH₂ 流で漁縮し、フラッシュクロマトグラフィー(シリカゲル、CHCl₃ 中の2%から7%の2MのNH₃ /MeOH)により精製すると、所述の生態が得られた。

実施例番号	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	APCI-MS
122		472 (M + H)
123		532 (M + H)
124		511 (M + H)
125		496 (M + H)
126		616 (M + H)
127		532 (M + H)

【表2】

128		526 (M + H)
129		510 (M + H)
130		538 (M + H)
131		631 (M + H)
132		488 (M + H)
133	of the state of th	650 (M+H)

【表3】

134	494 (M + H)
135	479 (M + H)
136	479 (M + H)
137	558 (M + H)
138	502 (M + H)
139	516 (M + H)

【表4】

140	536 (M + H)
141	646 (M + H)
142	601 (M + H)
143	522 (M + H)
144	528 (M + H)
145	514 (M + H)

146	482 (M + H)
147	527 (M + H)
148	496 (M + H)
149	484 (M + H)
150	513 (M + H)
151	529 (M + H)

【表6】

152	532 (M + H)
153	557 (M + H)
154	532 (M + H)
155	458 (M + H)
156	499 (M + H)
157	499 (M+H)

158	499 (M + H)
159	567 (M + H)
160	490 (M + H)
161	544 (M + H)
162	580 (M + H)
163	558 (M + H)

【表8】

164	505 (M + H)
165	460 (M + H)
166	556 (M + H)
167	580 (M + H)
168	522 (M + H)
169	468 (M + H)

170	480 (M + H)
171	468 (M + H)
172	595 (M ÷ H)
173	605 (M + H)
174	522 (M + H)
175	482 (M + H)

【表10】

176		622 (M + H)
177		653 (M + H)
178		544 (M + H)
179		606 (M + H)
180	of the thorne	600 (M + H)
181	of office	600 (M + H)

【表11】

182		567 (M + H)
183		572 (M + H)
184		572 (M + H)
185		506 (M + H)
186		473 (M + H)
187	at one	472 (M + H)

【表12】

188	518 (M + H)
189	627 (M + H)
190	548 (M + H)
191	608 (M + H)
192	472 (M + H)
193	514 (M + H)

【表13】

194	681 (M + H)
195	640 (M + H)
196	715 (M + H)
197	662 (M + H)
198	530 (M + H)
199	502 (M + H)

【表14】

200	516 (M + H)
201	515 (M + H)
202	486 (M + H)
203	545 (M + H)
204	512 (M + H)
205	530 (M + H)

【表15】

206	496 (M + H)
207	556 (M + H)
208	510 (M + H)
209	522 (M + H)
210	502 (M + H)
211	498 (M + H)

【表16】

212	502 (M + H)
213	506 (M + H)
214	484 (M + H)
215	568 (M + H)
216	526 (M + H)
217	524 (M + H)

【表17】

218	562 (M + H)
219	486 (M + H)
220	524 (M + H)
221	649 (M + H)
222	601 (M + H)
223	490 (M + H)

【表18】

224		610 (M + H)
225		498 (M + H)
226		522 (M + H)
227		538 (M + H)
228		479 (M + H)
229	of you	546 (M + H)

【表19】

230	556 (M + H)
231	522 (M + H)
232	506 (M + H)
233	496 (M + H)
234	580 (M + H)
235	520 (M + H)

【表20】

236	693 (M + H)
237	560 (M + H)
238	546 (M + H)
239	524 (M + H)
240	527 (M + H)
241	513 (M + H)

【表21】

	1
242	508 (M + H)
243	490 (M + H)
244	590 (M + H)
245	524 (M + H)
246	490 (M + H)
247	550 (M + H)

【表22】

(24)	
248	524 (M + H)
249	568 (M + H)
250	524 (M + H)
251	530 (M + H)
252	513 (M + H)
253	530 (M + H)

【表23】

254	513 (M + H)
255	532 (M + H)
256	480 (M + H)
257	468 (M + H)
258	536 (M + H)
259	536 (M + H)

【表24】

260		502 (M + H)
261		486 (M + H)
262	at one	482 (M + H)
263		536 (M + H)
264		604 (M + H)
265		536 (M + H)

【表25】

266	592 (M + H)
267	626 (M + H)
268	558 (M + H)
269	434 (M + H)
270	518 (M + H)
271	454 (M + H)

【表26】

272		556 (M + H)
273		528 (M + H)
274		528 (M + H)
275		406 (M + H)
276	à-0,x	602 (M + H)
277		420 (M + H)

【表27】

278	392 (M + H)
279	490 (M + H)
280	420 (M + H)
281	446 (M + H)
282	538 (M + H)
283	460 (M + H)

【表28】

284	454 (M + H)
285	532 (M + H)
286	510 (M + H)
287	532 (M + H)
288	616 (M + H)
289	488 (M + H)

【表29】

290	522 (M + H)
291	528 (M + H)
292	547 (M + H)
293	472 (M + H)
294	504 (M + H)
295	504 (M + H)

【表30】

296		468 (M + H)
297	OF O.Y.O.X	538 (M + H)
298		522 (M + H)
299		488 (M + H)
300		590 (M + H)
301		522 (M + H)

【表31】

(表のつづき)	
302	520 (M + H)
303	390 (M + H)
304	446 (M + H)
305	468 (M + H)

306	468 (M + H)
307	432 (M + H)

【表32】

308	505 (M + H)
309	536 (M + H)
310	469 (M + H)
311	504 (M + H)
312	430 (M + H)
313	433 (M + H)

【表33】

(3000000)	
314	408 (M + H)
315	451 (M + H)
316	380 (M + H)
317	476 (M + H)
318	391 (M + H)
319	437 (M + H)

【表34】

320		448 (M + H)
321		471 (M + H)
322		470 (M + H)
323		412 (M + H)
324	ottore.	557 (M + H)
325		391 (M + H)

326	435 (M + H)
327	425 (M + H)
328	569 (M + H)
329	391 (M + H)
330	524 (M + H)
331	498 (M + H)

332	442 (M + H)
333	396 (M + H)
334	516 (M + H)
335	474 (M + H)
336	474 (M + H)
337	444 (M + H)

【表37】

338	482 (M + H)
339	516 (M + H)
340	458 (M + H)
341	498 (M + H)
342	442 (M + H)
343	440 (M + H)

【表38】

344	442 (M + H)
345	442 (M + H)
346	460 (M + H)
347	476 (M + H)
348	476 (M + H)
349	462 (M + H)

【表39】

350	516 (M + H)
351	480 (M + H)
352	432 (M + H)
353	408 (M + H)
354	442 (M + H)
355	434 (M + H)

【表40】

356	442 (M + H)
357	422 (M + H)
358	406 (M + H)
359	490 (M + H)
360	440 (M + H)
361	510 (M + H)

【表41】

362	456 (M + H)
363	456 (M + H)
364	422 (M + H)
365	460 (M + H)
366	472 (M + H)
367	498 (M + H)

【表42】

368	464 (M + H)
369	418 (M + H)
370	539 (M + H)
371	465 (M + H)
372	499 (M + H)
373	497 (M + H)

【表43】

374	558 (M + H)
375	526 (M + H)
376	450 (M + H)
377	395 (M + H)
378	553 (M + H)
379	500 (M + H)

【表44】

380	469 (M + H)
381	532 (M + H)
382	450 (M + H)
383	529 (M + H)
384	515 (M + H)
385	594 (M + H)

【表45】

386	553 (M + H)
387	473 (M + H)
388	428 (M + H)
389	450 (M + H)
390	502 (M + H)
391	508 (M + H)

【表46】

392	472 (M + H)
393	476 (M + H)
394	479 (M + H)
395	446 (M + H)
396	462 (M + H)
397	510 (M + H)

【表47】

398	454 (M + H)
399	416 (M + H)
400	438 (M + H)
401	492 (M + H)
402	457 (M + H)
403	420 (M + H)

【表48】

404	404 (M + H)
405	430 (M + H)
406	448 (M + H)
407	465 (M + H)
408	434 (M + H)
409	410 (M + H)

【表49】

410	587 (M + H)
411	420 (M + H)
412	465 (M + H)
413	525 (M + H)
414	448 (M + H)
415	510 (M + H)

【表50】

416	464 (M + H)
417	432 (M + H)
418	422 (M + H)
419	434 (M + H)
420	476 (M + H)
421	418 (M + H)

422	623 (M + H)
423	618 (M + H)
424	484 (M + H)
425	461 (M + H)
426	482 (M + H)
427	450 (M + H)

【表52】

428	454 (M + H)
429	430 (M + H)
430	482 (M + H)
431	454 (M + H)
432	500 (M + H)
433	478 (M + H)

【表53】

434	543 (M + H)
435	502 (M + H)
436	473 (M + H)
437	489 (M + H)
438	328 (M + H)
439	354 (M + H)

【表54】

440	396 (M + H)
441	384 (M + H)
442	356 (M + H)
443	399 (M + H)
444	396 (M + H)
445	384 (M + H)

【表55】

446	439 (M + H)
447	534 (M + H)
448	404 (M + H)
449	460 (M + H)
450	482 (M + H)
451	482 (M + H)

【表56】

452	446 (M + H)
453	519 (M + H)
454	550 (M + H)
455	483 (M + H)
456	518 (M + H)
457	444 (M + H)

【表57】

458		447 (M + H)
459		422 (M + H)
460		465 (M + H)
461		394 (M + H)
462	a print	490 (M + H)
463		405 (M + H)

【表58】

464	451 (M + H)
465	462 (M + H)
466	485 (M + H)
467	484 (M + H)
468	426 (M + H)
469	571 (M + H)

【表59】

470		405 (M + H)
471		449 (M + H)
472		439 (M + H)
473		583 (M + H)
474		405 (M + H)
475	a pristo	538 (M + H)

【表60】

476		512 (M + H)
477		456 (M + H)
478		410 (M + H)
479	01,0°16	530 (M + H)
480		488 (M + H)
481		488 (M + H)

【表61】

482	458 (M + H)
483	496 (M + H)
484	530 (M + H)
485	472 (M + H)
486	512 (M + H)
487	456 (M + H)

【表62】

488	454 (M + H)
489	456 (M + H)
490	456 (M + H)
491	474 (M + H)
492	490 (M + H)
493	490 (M + H)

【表63】

494	476 (M + H)
495	530 (M + H)
496	494 (M + H)
497	446 (M + H)
498	422 (M + H)
499	456 (M + H)

【表64】

500	448 (M + H)
501	456 (M + H)
502	436 (M + H)
503	420 (M + H)
504	504 (M + H)
505	454 (M + H)

【表65】

506	524 (M + H)
507	470 (M + H)
508	470 (M + H)
509	436 (M + H)
510	474 (M + H)
511	486 (M + H)

【表66】

512	512 (M + H)
513	478 (M + H)
514	432 (M + H)
515	553 (M + H)
516	479 (M + H)
517	513 (M + H)

【表67】

518	511 (M + H)
519	572 (M + H)
520	540 (M + H)
521	464 (M + H)
522	409 (M + H)
523	567 (M + H)

【表68】

524	514 (M + H)
525	483 (M + H)
526	546 (M + H)
527	464 (M + H)
528	543 (M + H)
529	529 (M + H)

【表69】

530	608 (M + H)
531	567 (M + H)
532	487 (M + H)
533	442 (M + H)
534	464 (M + H)
535	516 (M + H)

【表70】

536	522 (M + H)
537	486 (M + H)
538	490 (M + H)
539	493 (M + H)
540	460 (M + H)
541	476 (M + H)

542	524 (M + H)
543	468 (M + H)
544	430 (M + H)
545	452 (M + H)
546	506 (M + H)
547	47ł (M + H)

【表72】

548	434 (M + H)
549	418 (M + H)
550	444 (M + H)
551	462 (M + H)
552	479 (M + H)
553	448 (M + H)

554	424 (M + H)
555	601 (M + H)
556	462 (M + H)
557	524 (M + H)
558	478 (M + H)
559	446 (M + H)

【表74】

560	436 (M + H)
561	448 (M + H)
562	490 (M + H)
563	432 (M + H)
564	637 (M + H)
565	632 (M + H)

【表75】

566	498 (M + H)
567	475 (M + H)
568	496 (M + H)
569	464 (M + H)
570	468 (M + H)
571	444 (M + H)

【表76】

572	496 (M + H)
573	468 (M + H)
574	514 (M + H)
575	492 (M + H)
576	557 (M + H)
577	516 (M + H)

【表77】

578	487 (M + H)
579	503 (M + H)
580	342 (M + H)
581	368 (M + H)
582	410 (M + H)
583	398 (M + H)

【表78】

584	370 (M + H)
585	413 (M + H)
586	410 (M + H)
587	398 (M + H)
588	453 (M + H)
589	432 (M + H)

【表79】

590	432 (M + H)
591	474 (M + H)
592	458 (M + H)
593	490 (M + H)
594	535 (M + H)
595	430 (M + H)

【表80】

596	The state of the s	552 (M + H)
597		433 (M + H)
598		503 (M + H)
599		536 (M + H)
600		506 (M + H)
601		429 (M + H)

【表81】

602	486 (M + H)
603	459 (M + H)
604	443 (M + H)
605	636 (M + H)
606	601 (M + H)
607	705 (M + H)

【表82】

608	623 (M + H)
609	559 (M + H)
610	583 (M + H)
611	596 (M + H)
612	512 (M + H)
613	480 (M + H)

【表83】

(24.		
614		494 (M + H)
615		494 (M + H)
616		537 (M + H)
617		492 (M + H)
618		523 (M + H)
619	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	534 (M + H)

【表84】

620	556 (M + H)
621	587 (M + H)
622	587 (M + H)
623	523 (M + H)
624	641 (M + H)
625	641 (M + H)

【表85】

626	523 (M + H)
627	544 (M + H)
628	526 (M + H)
629	548 (M + H)
630	405 (M + H)
631	564 (M + H)

632	524 (M + H)
633	630 (M + H)
634	564 (M + H)
635	518 (M + H)
636	647 (M + H)
637	545 (M + H)

【表87】

638	671 (M + H)
639	490 (M + H)
640	482 (M + H)
641	466 (M + H)
642	494 (M + H)
643	528 (M + H)

【表88】

644	482 (M + H)
645	517 (M + H)
646	537 (M + H)
647	496 (M + H)
648	508 (M + H)
649	508 (M + H)

【表89】

650	496 (M + H)
651	559 (M + H)
652	490 (M + H)
653	564 (M + H)
654	550 (M + H)
655	602 (M + H)

【表90】

656	522 (M + H)
657	533 (M + H)
658	468 (M + H)
659	502 (M + H)
660	449 (M + H)
661	493 (M + H)

【表91】

662	468 (M + H)
663	501 (M + H)
664	515 (M + H)
665	501 (M + H)
666	438 (M + H)
667	508 (M + H)

【表92】

668	582 (M + H)
669	674 (M + H)
670	474 (M + H)
671	457 (M + H)
672	441 (M + H)
673	550 (M + H)

674		438 (M + H)
675		569 (M + H)
676		424 (M + H)
677		436 (M + H)
678		415 (M + H)
679	3,-0-	441 (M + H)

【表94】

680	458 (M + H)
681	451 (M + H)
682	449 (M + H)
683	435 (M + H)
684	465 (M + H)
685	476 (M + H)

【表95】

686	526 (M + H)
687	465 (M + H)
698	476 (M + H)
689	494 (M + H)
690	453 (M + H)
691	463 (M + H)

【表96】

692	519 (M + H)
693	465 (M + H)
694	462 (M + H)
695	585 (M + H)
696	553 (M + H)
697	515 (M + H)

【表97】

698	458 (M + H)
699	500 (M + H)
700	504 (M + H)
701	579 (M + H)
702	438 (M + H)
703	506 (M + H)

【表98】

704	456 (M + H)
705	452 (M + H)
706	530 (M + H)
707	493 (M + H)
708	486 (M + H)
709	472 (M + H)

【表99】

710		563 (M + H)
711	3 + + + + + + + + + + + + + + + + + + +	480 (M + H)
712		464 (M + H)
713		494 (M + H)
714	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	532 (M + H)
715		546 (M + H)

【表100】

716	533 (M + H)
717	622 (M + H)
718	472 (M + H)
719	438 (M + H)
720	464 (M + H)
721	512 (M + H)

【表101】

722		437 (M + H)
723		577 (M + H)
724		465 (M + H)
725		488 (M + H)
726	HO COMMITTED TO THE PARTY OF TH	435 (M + H)
727		434 (M + H)

【表102】

- (45	n	0	19	×	٩

728	613 (M + H)
729	408 (M + H)
730	394 (M + H)
731	542 (M + H)
732	549 (M + H)
733	530 (M + H)

【表103】

734	668 (M + H)
735	490 (M + H)
736	486 (M + H)
737	501 (M + H)
738	488 (M + H)
739	562 (M + H)

【表104】

740		502 (M + H)
741	0===0	524 (M + H)
742		588 (M + H)
743		487 (M + H)
744		436 (M + H)
745		660 (M + H)

【表105】

746	605 (M + H)
747	662 (M + H)
748	696 (M + H)
749	603 (M + H)
750	561 (M + H)
751	639 (M + H)

【表106】

752	apj.	657 (M + H)
753		559 (M + H)
754	à circ	645 (M + H)
755		631 (M + H)
756	4	589 (M + H)
757		557 (M + H)

【表107】

758	591 (M + H)
759	565 (M + H)
760	568 (M + H)
761	601 (M + H)
762	607 (M + H)
763	477 (M + H)

【表108】

764	477 (M + H)
765	482 (M + H)
766	461 (M + H)
767	461 (M + H)
768	444 (M + H)
769	496 (M + H)

【表109】

770	496 (M + H)
771	519 (M + H)
772	530 (M + H)
773	460 (M + H)
774	602 (M + H)
775	437 (M + H)

【表110】

776		419 (M + H)
777		548 (M + H)
778		672 (M + H)
779		540 (M + H)
780		540 (M + H)
781	a, of	522 (M + H)

【表111】

782	01,010	512 (M + H)
783		632 (M + H)
784		644 (M + H)
785	à o dia.	680 (M + H)
786	à ma	646 (M + H)
787	j j	646 (M + H)

【表112】

788	582 (M + H)
789	602 (M + H)
790	630 (M + H)
791	670 (M + H)
792	710 (M + H)
793	684 (M + H)

【表113】

794		650 (M + H)
795		624 (M + H)
796	áona.	636 (M + H)
797		602 (M + H)
798	à cha	616 (M + H)
799	مر مار	612 (M + H)

【表114】

800		622 (M + H)
801		650 (M + H)
802		606 (M + H)
803		586 (M + H)
804	àonsi	624 (M + H)
805		528 (M + H)

【表115】

896	452 (M + H)
807	438 (M + H)
808	424 (M + H)
809	522 (M + H)
810	488 (M + H)
811	488 (M + H)

【表116】

(表のつづき)		
812	at ora	488 (M + H)
813	of o'rox	504 (M + H)
814		504 (M + H)
815		458 (M + H)
816		452 (M + H)
817		497 (M + H)

【表117】

(:	# or	-	93	١

818	X°C)	547 (M + H)
819		549 (M + H)
820		522 (M + H)
821	4040	629 (M + H)
822		510 (M + H)
823		538 (M + H)

824	512 (M + H)
825	583 (M + H)
826	535 (M + H)
827	556 (M + H)
828	480 (M + H)
829	494 (M + H)

(表のつづき)		
830	dions	597 (M + H)
831		570 (M + H)
832		478 (M + H)
833		448 (M + H)
834		446 (M + H)
835		450 (M + H)

【表120】

(表のつづき)		
836		432 (M + H)
837		452 (M + H)
838	4,017	460 (M + H)
839		478 (M + H)
840		444 (M + H)
841		492 (M + H)

【表121】

(表			

842		522 (M + H)
843	o o o	603 (M + H)
844		518 (M + H)
845	عياميا	490 (M + H)
846	مين	563 (M + H)
847		457 (M + H)

(主	n	へべ	36	١

848	47! (M + H)
849	418 (M + H)
850	463 (M + H)
851	460 (M + H)
852	444 (M + H)
853	576 (M + H)

【表123】

(表のつづき)		
854	dions	490 (M + H)
855	3,017	550 (M + H)
856		439 (M + H)
857		408 (M + H)
858		410 (M + H)
859		424 (M + H)

 1	n	~	23	٠.	١

860	394 (M + H)
861	424 (M + H)
862	424 (M + H)
863	411 (M + H)
864	425 (M + H)
865	384 (M + H)

(表			

866		424 (M + H)
867	of prig	446 (M + H)
868	i, riq.	446 (M + H)
869		488 (M + H)
870		549 (M + H)
871		444 (M + H)

【表126】

(表のつづき)		
872		566 (M + H)
873	وترمت	447 (M + H)
874		517 (M + H)
875		550 (M + H)
876		520 (M + H)
877		443 (M + H)

【表127】

(表のつづき)		
878		500 (M + H)
879		473 (M + H)
880		457 (M + H)
881	40440	650 (M + H)
882		615 (M + H)
883		719 (M + H)

【表128】

(表のつづき)		
884	a color	637 (M + H)
885		573 (M + H)
886	à.	597 (M + H)
887		610 (M + H)
888		526 (M + H)
889		494 (M + H)

【表129】

(表のつづき)

890	at of	508 (M + H)
891		508 (M + H)
892		551 (M + H)
893		506 (M + H)
894		537 (M + H)
895	Cirt	548 (M + H)

(表のつづき)		
896		570 (M + H)
897	il Foto	601 (M + H)
898	44	601 (M + H)
899		537 (M + H)
900	3000	655 (M + H)
901	ajorijo	655 (M + H)

【表131】

					ı,
(夫	O	~	1	3	

902		558 (M + H)
903	apria.	540 (M + H)
904		562 (M + H)
905		419 (M + H)
906	a p	578 (M + H)
907		538 (M + H)

(表のつづき)		
908		644 (M + H)
909	J. O'S	578 (M + H)
910		532 (M + H)
911		661 (M + H)
912		559 (M + H)
913		685 (M + H)

(表のつづき)	
914	506 (M + H)
915	504 (M + H)
916	496 (M + H)
917	480 (M + H)
918	508 (M + H)
919	542 (M + H)

/-1+	and the	_	-	3-	×

920	مه نمک	496 (M + H)
921		531 (M + H)
922		551 (M + H)
923		510 (M + H)
924	منام	522 (M + H)
925		522 (M + H)

【表135】

(表のつづき)		
926		510 (M + H)
927		504 (M + H)
928		504 (M + H)
929	à, ora	578 (M + H)
930		564 (M + H)
931	à crop	616 (M + H)

(表のつづき)		
932	Ci, Orlo	536 (M + H)
933		547 (M + H)
934		482 (M + H)
935		516 (M + H)
936		463 (M + H)
937		507 (M + H)

(表のつづき)		
938	divid,	482 (M + H)
939		515 (M + H)
940		529 (M + H)
941		515 (M + H)
942		452 (M + H)
943		522 (M + H)

【表138】

(表のつづき)	
944	596 (M + H)
945	688 (M + H)
946	488 (M + H)
947	471 (M+H)
948	455 (M + H)
949	564 (M + H)

【表139】

(表のつづき)		
950	j-o	452 (M + H)
951		583 (M + H)
952		438 (M + H)
953		450 (M + H)
954		429 (M + H)
955		455 (M + H)

956	472 (M + H)
957	463 (M + H)
958	449 (M + H)
959	479 (M + H)
960	490 (M + H)
961	540 (M + H)

【表141】

(表のつづき)		
962		479 (M + H)
963	at the state of th	490 (M + H)
964	at crity	508 (M + H)
965		467 (M + H)
966		477 (M + H)
967		533 (M + H)

【表142】

(表のつづき)	
968	479 (M + H)
969	476 (M + H)
970	599 (M + H)
971	567 (M + H)
972	529 (M + H)
973	472 (M + H)

(表	σ	9	~	1	٦

974	514 (M + H)
975	518 (M + H)
976	593 (M + H)
977	452 (M + H)
978	520 (M + H)
979	470 (M + H)

(表のつづき)	
980	466 (M + H)
981	544 (M + H)
982	507 (M + H)
983	604 (M + H)
984	500 (M + H)
985	486 (M + H)

【表145】

(表のつづき)	
986	577 (M + H)
987	494 (M + H)
988	478 (M + H)
989	508 (M + H)
990	546 (M + H)
991	560 (M + H)

【表146】

(表のつづき)		
992		547 (M + H)
993	don't	636 (M + H)
994		486 (M + H)
995		452 (M + H)
996		478 (M + H)
997		526 (M + H)

【表147】

(表のつづき)	
998	451 (M + H)
999	591 (M + H)
1000	479 (M + H)
1001	502 (M + H)
1002	448 (M + H)
1003	627 (M + H)

【表148】

(表のつづき)		
1004		422 (M + H)
1005		408 (M + H)
1006		556 (M + H)
1007		563 (M + H)
1008		544 (M + H)
1009	3.04.4	682 (M + H)

【表149】

(表のつづき)	
1010	504 (M + H)
1011	500 (M + H)
1012	515 (M + H)
1013	502 (M + H)
1014	576 (M + H)
1015	516 (M + H)

(表のつづき)		
1016		538 (M + H)
1017		602 (M + H)
1018		501 (M+H)
1019		450 (M + H)
1020	of or to	674 (M + H)
1021		619 (M + H)

【表151】

(老のつづき)

(表のつづき)		
1022	ajorijo	676 (M + H)
1023		710 (M + H)
1024		617 (M + H)
1025		575 (M + H)
1026	94. 94.0°	653 (M + H)
1027	404	671 (M + H)

(表のつづき)		
1028	dojo	659 (M + H)
1029		645 (M + H)
1030		603 (M + H)
1031		571 (M + H)
1032		605 (M + H)
1033		579 (M + H)

(表のつづき)		
1034	and.	582 (M + H)
1035		615 (M + H)
1036	à cho	621 (M + H)
1037		491 (M + H)
1038		491 (M + H)
1039		496 (M + H)

(表のつづき)	
1040	475 (M + H)
1041	475 (M + H)
1042	458 (M + H)
1043	510 (M + H)
1044	510 (M + H)
1045	533 (M + H)

(表のつづき)	
1046	544 (M + H)
1047	474 (M + H)
1048	616 (M + H)
1049	451 (M + H)
1050	433 (M + H)
1051	562 (M + H)

(表のつづき)		
1052	anto	686 (M + H)
1053		554 (M + H)
1054		554 (M + H)
1055		536 (M + H)
1056		526 (M + H)
1057		646 (M + H)

【表157】

(表のつづき)		
1058	منام	658 (M + H)
1059	aja ja	694 (M + H)
1060		660 (M + H)
1061		660 (M + H)
1062		596 (M + H)
1063	à pri	616 (M + H)

【表158】

(老のつづき)

(表のつづき)		
1064	4	644 (M + H)
1065	à chọ	684 (M + H)
1066	ario.	724 (M + H)
1067		698 (M + H)
1068		664 (M + H)
1069	a price	638 (M + H)

1070		650 (M + H)
1071	40%	630 (M + H)
1072	عباه	626 (M + H)
1073		664 (M + H)
1074	ماعمد	620 (M + H)
1075	a de	600 (M + H)

【表160】

(表のつづき)		
1076	of order	638 (M + H)
1077		542 (M + H)
1078		466 (M + H)
1079		452 (M + H)
1080		438 (M + H)
1081		536 (M + H)

【表161】

(表のつづき)		
1082		502 (M + H)
1083		502 (M + H)
1084	***************************************	502 (M + H)
1085		518 (M + H)
1086		518 (M + H)
1087		472 (M + H)

【表162】

(表のつづき)		
1088		466 (M + H)
1089		511 (M + H)
1090		561 (M + H)
1091	of purpo	563 (M + H)
1092		536 (M + H)
1093	ajorika,	643 (M + H)

【表163】

(表のつづき)	
1094	524 (M + H)
1095	552 (M + H)
1096	526 (M + H)
1097	597 (M + H)
1098	549 (M + H)
1099	570 (M + H)

【表164】

(表のつづき)	
1100	494 (M + H)
1101	508 (M + H)
1102	611 (M + H)
1103	584 (M + H)
1104	492 (M + H)
1105	462 (M + H)

(表のつづき)	
1106	460 (M + H)
1107	464 (M + H)
1108	446 (M + H)
1109	466 (M + H)
1110	474 (M + H)
1111	492 (M + H)

【表166】

(表のつづき)	
1112	458 (M + H)
1113	506 (M + H)
1114	536 (M + H)
1115	617 (M + H)
1116	532 (M + H)
1117	504 (M + H)

【表167】

(表のつづき)	
1118	577 (M + H)
1119	471 (M + H)
1120	485 (M + H)
1121	432 (M + H)
1122	458 (M + H)
1123	590 (M + H)

【表168】

(表のつづき)	
1124	504 (M + H)
1125	564 (M + H)
1126	453 (M + H)
1127	422 (M + H)
1128	424 (M + H)
1129	438 (M + H)

【表169】

(表のつづき)		
1130		408 (M + H)
1131	Chrit,	438 (M + H)
1132		438 (M + H)
1133	of orio	425 (M + H)
1134		439 (M + H)
1135		398 (M + H)

【表170】

(表のつづき)		
1136	of or	438 (M + H)
1137		506 (M + H)
1138		376 (M + H)
1139		432 (M + H)
1140		454 (M + H)
1141		454 (M + H)

【表171】

(表のつづき)	
1142	491 (M + H)
1143	522 (M + H)
1144	455 (M + H)
1145	416 (M + H)
1146	419 (M + H)
1147	394 (M + H)

【表172】

(表のつづき)	 ·
1148	366 (M + H)
1149	462 (M + H)
1150	377 (M + H)
1151	457 (M + H)
1152	456 (M + H)
1153	398 (M + H)

(表のつづき)	
1154	543 (M + H)
1155	421 (M + H)
1156	555 (M + H)
1157	377 (M + H)
1158	510 (M + H)
1159	484 (M + FI)

【表174】

(表のつづき)		
1160		382 (M + H)
1161	OJ, O'	460 (M + H)
1162		460 (M + H)
1163		430 (M + H)
1164		468 (M + H)
1165		502 (M + H)

(表のつづき)	
1166	444 (M + H)
1167	484 (M + H)
1168	428 (M + H)
1169	426 (M + H)
1170	428 (M + H)
1171	428 (M + H)

(表のつづき)	
1172	446 (M + H)
1173	462 (M + H)
1174	462 (M + H)
1175	448 (M + H)
1176	502 (M + H)
1177	466 (M + H)

【表177】

(表のつづき)	
1178	394 (M + H)
1179	428 (M + H)
1180	420 (M + H)
1181	428 (M + H)
1182	408 (M + H)
1183	392 (M + H)

【表178】

(丰	m.	-	ナナ	

1184	476 (M + H)
1185	426 (M + H)
1186	496 (M + H)
1187	442 (M + H)
1188	442 (M + H)
1189	408 (M + H)

1190	446 (M + H)
1191	458 (M + H)
1192	484 (M + H)
1193	450 (M + H)
1194	404 (M + H)
1195	525 (M + H)

1196	483 (M + H)
1197	544 (M + H)
1198	512 (M + H)
1199	436 (M + H)
1200	381 (M + H)
1201	539 (M + H)

【表181】

(表のつづき)	
1202	486 (M + H)
1203	518 (M + H)
1204	436 (M + H)
1205	515 (M + H)
1206	501 (M + H)
1207	580 (M + H)

【表182】

(表のつづき)		
1208		539 (M + H)
1209	Charles and the	459 (M + H)
1210		414 (M + H)
1211		436 (M + H)
1212		488 (M + H)
1213		494 (M + H)

【表183】

(表のつづき)	,
1214	458 (M + H)
1215	465 (M + H)
1216	432 (M + H)
1217	406 (M + H)
1218	496 (M + H)
1219	440 (M + H)

【表184】

(表のつづき)	
1220	424 (M + H)
1221	478 (M + H)
1222	406 (M + H)
1223	390 (M + H)
1224	416 (M + H)
1225	434 (M + H)

【表185】

(+t	n.	20	1	١

1226	451 (M + H)
1227	420 (M + H)
1228	396 (M + H)
1229	573 (M + H)
1230	434 (M + H)
1231	496 (M + H)

【表186】

(表のつづき)	
1232	450 (M + H)
1233	418 (M + H)
1234	408 (M + H)
1235	420 (M + H)
1236	462 (M + H)
1237	404 (M + H)

【表187】

74	きの	_	1	4	١

1238	609 (M + H)
1239	468 (M + H)
1240	436 (M + H)
1241	440 (M + H)
1242	418 (M + H)
1243	468 (M + H)

【表188】

(表のつつき)	
1244	440 (M + H)
1245	486 (M + H)
1246	475 (M + H)
1247	340 (M + H)
1248	382 (M + H)
1249	370 (M + H)

【表189】

(表のつづき)		
1250		342 (M + H)
1251		382 (M + H)
1252	Circut	370 (M + H)
1253		520 (M + H)
1254		390 (M + H)
1255		446 (M + H)

(表のつづき)	
1256	468 (M + H)
1257	468 (M + H)
1258	505 (M + H)
1259	536 (M + H)
1260	469 (M + H)
1261	430 (M + H)

【表191】

(表のつづき)		
1262	a company	433 (M + H)
1263		408 (M + H)
1264		380 (M + H)
1265		476 (M + H)
1266		391 (M + H)
1267		448 (M + H)

【表192】

(主のつづき)

(表のつづき)	
1268	47I (M + H)
1269	470 (M + H)
1270	412 (M + H)
1271	557 (M + H)
1272	435 (M + H)
1273	425 (M + H)

【表193】

(表のつづき)		
1274		569 (M + H)
1275		391 (M + H)
1276	05,000	524 (M + H)
1277		498 (M + H)
1278		396 (M + H)
1279		474 (M + H)

【表194】

(表のつづき)

(表のつづき)		
1280	of ord	474 (M + H)
1281	doni.	444 (M + H)
1282		482 (M + H)
1283		516 (M + H)
1284		458 (M + H)
1285		498 (M + H)

(表のつづき)		
1286	atorb.	442 (M + H)
1287	atort.	440 (M + H)
1288		442 (M + H)
1289		442 (M + H)
1290		460 (M + H)
1291		476 (M + H)

(表のつづき)		
1292		476 (M + H)
1293		462 (M + H)
1294	ď,ora	516 (M + H)
1295		480 (M + H)
1296		408 (M + H)
1297		442 (M + H)

【表197】

(表のつづき)		
1298		434 (M + H)
1299		442 (M + H)
1300	ajora	422 (M + H)
1301		490 (M + H)
1302		440 (M + H)
1303		456 (M + H)

【表198】

(表のつづき)		
1304	a, ora	422 (M + H)
1305		460 (M + H)
1306		472 (M + H)
1307		498 (M + H)
1308		464 (M + H)
1309		418 (M + H)

【表199】

(表のつづき)		
1310		539 (M + H)
1311		497 (M + H)
1312	diporto.	558 (M + H)
1313		526 (M + H)
1314		450 (M + H)
1315		395 (M + H)

【表200】

(表のつづき)	
1316	553 (M + H)
1317	500 (M + H)
1318	532 (M + H)
1319	450 (M + H)
1320	529 (M + H)
1321	515 (M + H)

【表201】

(表のつづき)	
1322	594 (M + H)
1323	473 (M + H)
1324	428 (M + H)
1325	450 (M + H)
1326	502 (M + H)
1327	508 (M + H)

【表202】

(老のつづき)

(表のつづき)	
1328	472 (M + H)
1329	476 (M + H)
1330	479 (M + H)
1331	446 (M + H)
1332	420 (M + H)
1333	510 (M + H)

(表のつづき)	
1334	454 (M + H)
1335	438 (M + H)
1336	492 (M + H)
1337	420 (M + H)
1338	404 (M + H)
1339	430 (M + H)

【表204】

(表のつづき)	
1340	448 (M + H)
1341	465 (M + H)
1342	434 (M + H)
1343	410 (M + H)
1344	587 (M + H)
1345	448 (M + H)

(表のつづき)	
1346	510 (M + H)
1347	464 (M + H)
1348	432 (M + H)
1349	422 (M + H)
1350	434 (M + H)
1351	476 (M + H)

(表のつづき)	
1352	418 (M + H)
1353	623 (M + H)
1354	618 (M + H)
1355	486 (M + H)
1356	463 (M + H)
1357	482 (M + H)

【表207】

(表の)	ハベ	*	١

1358	452 (M + H)
1359	454 (M + H)
1360	432 (M + H)
1361	482 (M + H)
1362	454 (M + H)
1363	502 (M + H)

【表208】

(表のつづき)	
1364	489 (M + H)
1365	328 (M + H)
1366	354 (M + H)
1367	396 (M + H)
1368	384 (M + H)
1369	356 (M + H)

【表209】

(表のつづき)	
1370	396 (M + H)
1371	384 (M + H)
1372	418 (M + H)
1373	420 (M + H)
1374	460 (M + H)
1375	444 (M + H)

【表210】

(表のつづき)		
1376		476 (M + H)
1377		521 (M + H)
1378		416 (M + H)
1379	Charles and the second	538 (M + H)
1380		419 (M + H)
1381	Chi par	522 (M + H)

【表211】

(表のつづき)		
1382		492 (M + H)
1383		472 (M + H)
1384		429 (M + H)
1385		622 (M + H)
1386		545 (M + H)
1387	£0.50	555 (M + H)

【表212】

(表のつづき)		
1388		466 (M + H)
1389		480 (M + H)
1390		482 (M + H)
1391		523 (M + H)
1392		480 (M + H)
1393	C Y	520 (M + H)

【表213】

(表のつづき)		
1394		573 (M + H)
1395		573 (M + H)
1396	3000	627 (M + H)
1397	ajori Lojo	613 (M + H)
1398		532 (M + H)
1399		512 (M + H)

【表214】

(表のつづき)	
1400	391 (M + H)
1401	510 (M + H)
1402	633 (M + H)
1403	531 (M + H)
1404	468 (M + H)
1405	452 (M + H)

【表215】

(表のつづき)	
1406	468 (M + H)
1407	503 (M + H)
1408	523 (M + H)
1409	482 (M + H)
1410	494 (M + H)
1411	482 (M + H)

【表216】

(表のつづき)		
1412		531 (M + H)
1413	مرمت	550 (M + H)
1414	04,000	536 (M + H)
1415		588 (M + H)
1416		508 (M + H)
1417		519 (M + H)

【表217】

(表のつづき)

1418		488 (M + H)
1419		435 (M + H)
1420		479 (M + H)
1421		487 (M + H)
1422	of order	501 (M + H)
1423		426 (M + H)

【表218】

(表のつづき)	
1424	494 (M + H)
1425	568 (M + H)
1426	660 (M + H)
1427	460 (M + H)
1428	424 (M + H)
1429	555 (M + H)

【表219】

(表のつづき)	
1430	427 (M + H)
1431	444 (M + H)
1432	435 (M + H)
1433	421 (M + H)
1434	451 (M + H)
1435	462 (M + H)

【表220】

(表のつづき)	
1436	512 (M + H)
1437	451 (M + H)
1438	462 (M + H)
1439	480 (M + H)
1440	439 (M + H)
1441	449 (M + H)

【表221】

(表のつづき)	
1442	505 (M + H)
1443	539 (M + H)
1444	487 (M + H)
1445	488 (M + H)
1446	565 (M + H)
1447	492 (M + H)

【表222】

(表のつづき)	
1448	442 (M + H)
1449	516 (M + H)
1450	465 (M + H)
1451	472 (M + H)
1452	458 (M + H)
1453	466 (M + H)

【表223】

(表のつづき)	
1454	450 (M + H)
1455	480 (M + H)
1456	518 (M + H)
1457	532 (M + H)
1458	580 (M + H)
1459	452 (M + H)

【表224】

(表のつづき)		
1460	0,0,0	498 (M + H)
1461		409 (M + H)
1462		563 (M + H)
1463		420 (M + H)
1464		535 (M + H)
1465		516 (M + H)

【表225】

(表のつづき)

(表のつづき)		
1466		476 (M + H)
1467		472 (M + H)
1468		487 (M + H)
1469	do de	548 (M + H)
1470		512 (M + H)
1471		473 (M + H)

【表226】

(表のつづき)		
1472		648 (M + H)
1473	404	591 (M + H)
1474		645 (M + H)
1475		531 (M + H)
1476		619 (M + H)
1477		529 (M + H)

【表227】

(表のつづき)		
1478		563 (M + H)
1479		537 (M + H)
1480		540 (M + H)
1481	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	579 (M + H)
1482		463 (M + H)
1483		449 (M + H)

【表228】

(事のつづき)

(表のつづき)	
1484	432 (M + H)
1485	482 (M + H)
1486	482 (M + H)
1487	505 (M + H)
1488	516 (M + H)
1489	560 (M + H)

【表229】

1490	423 (M + H)
1491	405 (M + H)
1492	534 (M + H)
1493	526 (M + H)
1494	526 (M + H)
1495	510 (M + H)

【表230】

1496		498 (M + H)
1497		632 (M + H)
1498		570 (M + H)
1499		590 (M + H)
1500		618 (M + H)
1501	منائم	658 (M + H)

【表231】

1502		672 (M + H)
1503		638 (M + H)
1504		612 (M + H)
1505	o o o o o o o o o o o o o o o o o o o	624 (M + H)
1506		590 (M + H)
1507	of order	604 (M + H)

【表232】

1508	598 (M + H)
1509	574 (M + H)
1510	424 (M + H)
1511	508 (M + H)
1512	474 (M + H)
1513	474 (M + H)

【表233】

1514		474 (M + H)
1515		490 (M + H)
1516		490 (M + H)
1517		444 (M+H)
1518		438 (M + H)
1519	of ort	483 (M+H)

【表234】

1520		535 (M + H)
1521	84	510 (M + H)
1522		601 (M + H)
1523		496 (M + H)
1524		420 (M + H)
1525		498 (M + H)

【表235】

1526	521 (M + H)
1527	542 (M + H)
1528	466 (M + H)
1529	480 (M + H)
1530	583 (M + H)
1531	556 (M + H)

【表236】

1532	464 (M + H)
1533	434 (M + H)
1534	434 (M + H)
1535	436 (M + H)
1536	418 (M + H)
1537	438 (M + H)

【表237】

1538		446 (M + H)
1539		464 (M + H)
1540		430 (M + H)
1541		478 (M + H)
1542	÷	575 (M + H)
1543		506 (M + H)

【表238】

1544	476 (M + H)
1545	564 (M + H)
1546	478 (M + H)
1547	396 (M + H)
1548	410 (M + H)
1549	410 (M + H)

【表239】

1550	410 (M + H)
1551	370 (M + H)
1562	410 (M + H)
1553	432 (M + H)
1554	474 (M + H)
1585	458 (M + H)

【表240】

1556	490 (M + H)
1557	535 (M + H)
1558	430 (M + H)
1559	552 (M + H)
1560	433 (M + H)
1561	536 (M + H)

【表241】

1562		506 (M + H)
1563		429 (M + H)
1564		486 (M + H)
1565		443 (M + H)
1566	dot to	636 (M + H)
1567	4000	705 (M + H)

【表242】

(表のつづき)	(#	ŧσ	2	づ	き)	
---------	----	----	---	---	---	---	--

1568		559 (M + H)
1569	je Sroje	569 (M + H)
1570		480 (M + H)
1571		494 (M + H)
1572		496 (M + H)
1573	,	537 (M + H)

【表243】

1574		494 (M + H)
1575		534 (M + H)
1576	94 54 6445	587 (M + H)
1577	84.50	587 (M + H)
1578		523 (M + H)
1579	a ordina	627 (M + H)

【表244】

1580		627 (M + H)
1581	0-50	526 (M + H)
1582		524 (M + H)
1583	9	564 (M + H)
1584	a a particular de la companya della companya della companya de la companya della	647 (M + H)
1585		545 (M + H)

【表245】

1586	671 (M + H)
1587	482 (M + H)
1568	466 (M + H)
1589	528 (M + H)
1590	482 (M + H)
1591	517 (M + H)

【表246】

1592	ajorp j	537 (M + H)
1593		496 (M + H)
1594		508 (M + H)
1595		496 (M + H)
1596	a a a a a a a a a a a a a a a a a a a	564 (M + H)
1597	ميممم	550 (M + H)

【表247】

1598	dos	602 (M + H)
1599	atomot	522 (M + H)
1600		533 (M + H)
1601		468 (M + H)
1602		502 (M + H)
1603		449 (M + H)

【表248】

1604		493 (M + H)
1605		515 (M + H)
1606		440 (M + H)
1607		508 (M + H)
1608	Cironific	582 (M + H)
1609		674 (M + H)

【表249】

1610	474 (M + H)
1611	548 (M - H)
1612	438 (M + H)
1613	569 (M+H)
1614	441 (M + H)
1615	458 (M + H)

【表250】

1616	Children de	449 (M + H)
1617		435 (M + H)
1618		465 (M + H)
1619		476 (M + H)
1620	diport,	526 (M + H)
1621		465 (M + H)

【表251】

1622	476 (M + H)
1623	494 (M + H)
1624	453 (M + H)
1625	463 (M + H)
1626	519 (M + H)
1627	553 (M + H)

【表252】

1628	501 (M + H)
1629	458 (M + H)
1630	502 (M + H)
1631	579 (M + H)
1632	506 (M + H)
1633	456 (M + H)

【表253】

1634		530 (M + H)
1635		479 (M + H)
1636	4,00%	590 (M + H)
1637		486 (M + H)
1638		472 (M + H)
1639		480 (M + H)

【表254】

1640		464 (M + H)
1641		494 (M + H)
1642		532 (M + H)
1643	The state of the s	546 (M + H)
1644	of orth	608 (M + H)
1645		438 (M + H)

【表255】

1646		466 (M + H)
1647		512 (M + H)
1648		423 (M + H)
1649		577 (M + H)
1650		434 (M + H)
1651	aja j	549 (M + H)

【表256】

1652		530 (M + H)
1653		490 (M + H)
1654		486 (M + H)
1655		501 (M + H)
1656	01,0°	562 (M + H)
1657		487 (M + H)

【表257】

1658	offato	660 (M + H)
1659		605 (M + H)
1660	atotio	662 (M + H)
1661	otto otto	696 (M + H)
1662	g'ar	639 (M + H)
1663		659 (M + H)

【表258】

1664	647 (M + H)
1665	633 (M + H)
1666	543 (M + H)
1667	577 (M + H)
1668	551 (M + H)
1669	554 (M + H)

【表259】

1670	477 (M + H)
1671	463 (M + H)
1672	446 (M + H)
1673	496 (M+H)
1674	496 (M + H)
1675	519 (M + H)

【表260】

1676	a and	530 (M + H)
1677		574 (M + H)
1678		437 (M + H)
1679		419 (M + H)
1680		548 (M + H)
1681	joje	672 (M + H)

【表261】

1682		540 (M + H)
1683		540 (M + H)
1684		524 (M + H)
1685	\$4 024	512 (M + H)
1686	gazó.	632 (M + H)
1687	à crà	646 (M + H)

【表262】

1688	à ang	648 (M + H)
1689		584 (M + H)
1690	drape frage	632 (M + H)
1691	8. 20.	672 (M + H)
1692	84 39	686 (M + H)
1693	وتمية	652 (M + H)

【表263】

1694	gang	626 (M + H)
1695		638 (M + H)
1696		618 (M + H)
1697	gang	612 (M + H)
1698	of ort	588 (M + H)
1699		624 (M + H)

【表264】

1700		438 (M + H)
1701		522 (M + H)
1702		488 (M + H)
1793		488 (M + H)
1704	X O X	488 (M + H)
1705		504 (M + H)

【表265】

1796		504 (M + H)
1707		458 (M + H)
1708		452 (M + H)
17 09		497 (M + H)
1710	of profits	549 (M + H)
1711		524 (M + H)

【表266】

1712	aformana.	615 (M + H)
1713		510 (M+H)
1714		434 (M + H)
1715		512 (M + H)
1716		535 (M+H)
1717		556 (M + H)

【表267】

1718	480 (M + H)
1719	494 (M + H)
1720	597 (M + H)
1721	570 (M + H)
1722	478 (M + H)
1723	448 (M + H)

【表268】

1724	448 (M + H)
1725	450 (M + H)
1726	432 (M + H)
1727	452 (M + H)
1728	460 (M + H)
1729	478 (M + H)

【表269】

1730	444 (M + H)
1731	492 (M + H)
1732	524 (M + H)
1733	589 (M + H)
1734	520 (M + H)
1735	490 (M + H)

【表270】

1736		563 (M + H)
1737		471 (M + H)
1738	94	578 (M + H)
1739		410 (M + H)
1740		424 (M + H)
1741		424 (M + H)

【表271】

1742		424 (M + H)
1743		447 (M + Na)
1744		384 (M + H)
1745	at the	424 (M + H)
1746		434 (M + H)
1747		472 (M + H)

【表272】

1748		520 (M + H)
1749		514 (M + H)
1750		470 (M + H)
1751	***************************************	500 (M + H)
1752		482 (M + H)
1753		502 (M+H)

【表273】

1754		490 (M + H)
1755		426 (M + H)
1756	a promos	683 (M + H)
1757		537 (M + H)
1758	of order	588 (M + H)
1759		460 (M + H)

【表274】

1760	477 (M + H)
1761	447 (M + H)
1762	509 (M + H)
1763	438 (M + H)
1764	464 (M + H)
1765	450 (M + H)

【表275】

1766	383 (M + H)
1767	476 (M + H)
1768	396 (M + H)
1769	434 (M + H)
1770	416 (M + H)
1771	470 (M + H)

【表276】

1772		410 (M + H)
1773		442 (M + H)
1774		394 (M + H)
1775		461 (M + H)
1776		476 (M + H)
1777	Circles Cf.	510 (M + H)

【表277】

1778		544 (M + H)
1779		380 (M + H)
1780		437 (M + H)
1781		464 (M + H)
1782		394 (M + H)
1783	oti protest	546 (M + H)

【表278】

1784	519 (M + H)
1785	542 (M + H)
1786	624 (M + H)
1787	366 (M + H)
1788	460 (M + H)
1789	469 (M + H)

【表279】

1790	450 (M + H)
1791	456 (M + H)
1792	430 (M + H)
1793	456 (M + H)
1794	456 (M + H)
1795	500 (M + H)

【表280】

1796	537 (M + Na)
1797	537 (M + Na)
1798	548 (M + H)
1799	504 (M + H)
1800	644 (M + H)
1801	436 (M + H)

【表281】

1802		410 (M + H)
1803		422 (M + H)
1904	٥	467 (M + H)
1805		406 (M + H)
1806		406 (M + H)
1907		440 (M - H)

【表282】

1808	0,40	437 (M + H)
1809		408 (M + H)
1810		404 (M + H)
1811		404 (M+H)
1812		422 (M + H)
1813		453 (M + H)

【表283】

1814	433 (M + H)
1815	429 (M + H)
1816	429 (M + H)
1817	415 (M + H)
1818	404 (M + H)
1819	471 (M + H)

【表284】

1820	433 (M + H)
1821	569 (M + H)
1822	415 (M + H)
1823	408 (M + H)
1924	510 (M + H)
1825	525 (M + H)

【表285】

1826		541 (M + H)
1827		555 (M + H)
1828	dio di	578 (M + H)
1829		548 (M + H)
1830		526 (M + H)
1831	à di	544 (M + H)

【表286】

1832	ot, out	528 (M + H)
1833		476 (M + H)
1834		456 (M + H)
1835		498 (M + H)
1836		450 (M + H)
1837		451 (M + H)

【表287】

1838	460 (M + H)
1839	464 (M + H)
1840	450 (M + H)
1841	562 (M + H)
1842	518 (M + H)
1843	512 (M + H)

【表288】

1844	442 (M + H)
1845	542 (M + H)
1846	424 (M + H)
1847	530 (M + H)
1848	581 (M + H)
1849	581 (M + H)

【表289】

1850	451 (M + H)
1851	508 (M + H)
1962	518 (M + H)
1853	512 (M + H)
1854	543 (M + H)
1855	569 (M + H)

【表290】

1856		452 (M + H)
1857		433 (M + H)
1868	84 844	601 (M + H)
1859		481 (M + H)
1860		542 (M + H)
1861		534 (M + H)

【表291】

1 8 62	434 (M + H)
1863	502 (M + H)
1864	576 (M + H)
1865	466 (M + H)
1866	436 (M + H)
1867	436 (M + H)

【表292】

1968		466 (M + H)
1869		432 (M + H)
1670		436 (M + H)
1871		429 (M + H)
1872	at our	380 (M + H)
1873		391 (M + H)

【表293】

1874	498 (M + H)
1875	446 (M + H)
1876	465 (M + H)
1877	518 (M + H)
1878	377 (M + H)
1879	377 (M + H)

【表294】

1880		476 (M + H)
1881		491 (M + H)
1882		427 (M + H)
1863		536 (M + H)
1884	dipolo.ot	524 (M + H)
1885		448 (M + H)

【表295】

1886		478 (M + H)
1887		510 (M + H)
1898	OF THE STATE OF TH	422 (M + H)
1889		464 (M + H)
1890		486 (M + H)
1891		462 (M + H)

【表296】

1892	400 (M + H)
1893	478 (M + H)
1994	418 (M + H)
1895	448 (M + H)
1896	458 (M + H)
1897	522 (M + H)

【表297】

1898	492 (M + H)
1899	600 (M + H)
1900	472 (M + H)
1901	472 (M + H)
1902	468 (M + H)
1903	460 (M + H)

【表298】

1904	472 (M + H)
1905	406 (M + H)
1906	446 (M + H)
1907	480 (M + H)
1908	404 (M + H)
1909	472 (M + H)

【表299】

1910		486 (M + H)
1911		437 (M + H)
1912		432 (M + H)
1913		460 (M + H)
1914	Ci, Cut	474 (M + H)
1915		420 (M + H)

【表300】

1916	432 (M + H)
1917	480 (M + H)
1918	444 (M + H)
1919	478 (M + H)
1920	512 (M + H)
1921	392 (M + H)

【表301】

1922	403 (M + H)
1923	476 (M + H)
1924	447 (M + H)
1925	446 (M + H)
1926	382 (M + H)
1927	342 (M + H)

【表302】

1928		380 (M + H)
1929		370 (M + H)
1930		482 (M + H)
1931		442 (M + H)
1932	4.04	519 (M + H)
1933		505 (M + H)

【表303】

1934		429 (M + H)
1935		432 (M + H)
1936		418 (M + H)
1937		588 (M + H)
1938		468 (M + H)
1939	NO.	443 (M + H)

【表304】

1940	434 (M + H)
1941	500 (M + H)
1942	530 (M + H)
1943	506 (M+H)
1944	414 (M + H)
1945	442 (M + H)

【表305】

1946	448 (M + H)
1947	474 (M + H)
1948	461 (M + H)
1949	509 (M+H)
1950	437 (M + H)
1951	427 (M + H)

【表306】

1952	444 (M + H)
1953	460 (M + H)
1954	447 (M + H)
1955	456 (M + H)
1956	479 (M + H)
1957	469 (M + H)

【表307】

1958	440 (M + H)
1959	476 (M + H)
1960	453 (M + H)
1961	552 (M + H)
1962	500 (M + H)
1963	554 (M + H)

【表308】

1964	428 (M + H)
1965	538 (M + H)
1966	448 (M + H)
1967	486 (M + H)
1968	534 (M + H)
1969	528 (M + H)

【表309】

1970	484 (M + H)
1971	514 (M + H)
1972	496 (M + H)
1973	592 (M + H)
1974	516 (M + H)
1975	504 (M + H)

【表310】

1976		440 (M + H)
1977	jaro soj	697 (M + H)
1978		551 (M + H)
1979		602 (M + H)
1980		474 (M + H)
1981	oforo	491 (M + H)

【表311】

1982	523 (M + H)
1983	452 (M + H)
1984	478 (M + H)
1985	464 (M + H)
1986	397 (M + H)
1987	454 (M - H)

【表312】

1988	490 (M + H)
1989	410 (M + H)
1990	448 (M + H)
1991	430 (M + H)
1992	484 (M + H)
1993	424 (M + H)

【表313】

1994	don?	456 (M + H)
1995		408 (M + H)
1996		475 (M + H)
1997	٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥٥	490 (M + H)
1998		524 (M + H)
1999	a company	558 (M + H)

【表314】

2000		394 (M + H)
2001		451 (M + H)
2002		478 (M + H)
2003		408 (M + H)
2004		560 (M + H)
2005	don't	533 (M + H)

【表315】

2006		556 (M + H)
2007	arope E	638 (M + H)
2008		380 (M + H)
2009		474 (M+H)
2010		483 (M + H)
2011		464 (M + H)

【表316】

2012	470 (M + H)
2013	444 (M + H)
2014	470 (M + H)
2015	487 (M + H)
2016	470 (M + H)
2017	514 (M + H)

【表317】

2018	527 (M - H)
2019	562 (M + H)
2020	518 (M + H)
2021	658 (M + H)
2022	466 (M + H)
2023	450 (M + H)

【表318】

2024	424 (M + H)
2025	436 (M + H)
2026	420 (M + H)
2027	420 (M + H)
2028	456 (M + H)
2029	451 (M + H)

【表319】

2030	aford.	422 (M + H)
2031		418 (M + H)
2032		418 (M + H)
2033		436 (M + H)
2034		467 (M + H)
2035		443 (M + H)

【表320】

2036		443 (M + H)
2037		429 (M + H)
2038		418 (M + H)
2039		485 (M + H)
2040		447 (M + H)
2041	ajondi.	583 (M + H)

【表321】

2042	536 (M + H)
2043	429 (M + H)
2044	422 (M + H)
2045	507 (M + H)
2046	524 (M + H)
2847	539 (M + H)

【表322】

2048		555 (M + H)
2049		569 (M + H)
2050	4000	592 (M + H)
2051		562 (M + H)
2052	of order	540 (M + H)
2053		558 (M + H)

【表323】

2054	542 (M + H)
2055	490 (M + H)
2056	470 (M + H)
2057	512 (M + H)
2058	464 (M + H)
2059	465 (M + H)

【表324】

2060	474 (M + H)
2061	478 (M + H)
2062	478 (M + H)
2063	464 (M + H)
2064	576 (M + H)
2065	532 (M + H)

【表325】

2066	526 (M + H)
2067	456 (M + H)
2068	556 (M + H)
2069	438 (M + H)
2070	544 (M + H)
2071	595 (M + H)

【表326】

2072	595 (M + H)
2073	465 (M + H)
2074	522 (M + H)
2075	532 (M + H)
2076	526 (M + H)
2077	557 (M + H)

【表327】

2078	j.	583 (M + H)
2079		466 (M + H)
2080		447 (M + H)
2081		615 (M + H)
2082		495 (M + H)
2083		556 (M + H)

【表328】

2084	548 (M + H)
2085	448 (M + H)
2086	516 (M + H)
2087	590 (M + H)
2088	480 (M + H)
2089	450 (M + H)

【表329】

2090	450 (M + H)
2091	480 (M + H)
2092	446 (M + H)
2093	450 (M + H)
2094	443 (M + H)
2095	394 (M + H)

【表330】

2096		405 (M + H)
. 2097		512 (M + H)
2098		460 (M + H)
2099		479 (M + H)
2100	å,070	532 (M + H)
2101		391 (M + H)

【表331】

2102		391 (M + H)
2103		490 (M + H)
2104		505 (M+H)
2105		441 (M + H)
2106	atoroox	550 (M + H)
2107	atrado	538 (M + H)

【表332】

2108	atoro,	462 (M + H)
2109		492 (M + H)
2110		524 (M + H)
2111		436 (M + H)
2112		478 (M + H)
2113	aporto	500 (M + H)

【表333】

2114	476 (M + H)
2115	414 (M + H)
2116	492 (M + H)
2117	432 (M + H)
2118	472 (M + H)
2119	536 (M + H)

【表334】

2120	506 (M + H)
2121	614 (M + H)
2122	486 (M + H)
2123	486 (M + H)
2124	482 (M + H)
2125	474 (M + H)

【表335】

2126	486 (M + H)
2127	420 (M + H)
2128	494 (M + H)
2129	418 (M + H)
2130	486 (M + H)
2131	500 (M + H)

【表336】

2132		446 (M + H)
2133		474 (M + H)
2134		488 (M + H)
2135		434 (M + H)
2136		446 (M + H)
2137	CALL COM	492 (M + H)

【表337】

2138	458 (M + H)
2139	492 (M + H)
2140	526 (M + H)
2141	406 (M + H)
2142	417 (M + H)
2143	490 (M + H)

【表338】

2144	dip or	461 (M + H)
2145		460 (M + H)
2146		396 (M + H)
2147		356 (M + H)
2148		394 (M + H)
2149		384 (M + H)

【表339】

2150		496 (M + H)
2151		456 (M + H)
2152		533 (M + H)
2153		519 (M + H)
2154	The state of the s	443 (M + H)
2155		446 (M + H)

【表340】

2156		432 (M + H)
2157		602 (M + H)
2158		457 (M + H)
2159		448 (M + H)
2160	J.	514 (M + H)
2161	at one of	544 (M + H)

【表341】

2162	520 (M + H)
2163	428 (M + H)
2164	462 (M + H)
2165	488 (M + H)
2166	475 (M + H)
2167	523 (M + H)

【表342】

2168	Of the state of th	451 (M + H)
2169	J.O.D	441 (M + H)
2170		458 (M + H)
2171		474 (M + H)
2172		461 (M + H)
2173		470 (M + H)

【表343】

2174		493 (M + H)
2175		483 (M + H)
2176		454 (M + H)
2177		490 (M + H)
2178		467 (M + H)
2179	dant.	566 (M + H)

【表344】

2180		514 (M + H)
2181		568 (M+H)
2182	don!	594 (M + H)
2183		442 (M + H)
2184		552 (M + H)
2185		435 (M + H)

【表345】

2186	450 (M + H)
2187	448 (M + H)
2188	444 (M + H)
2189	478 (M + H)
2190	434 (M + H)
2191	446 (M + H)

【表346】

2192	420 (M + H)
2193	440 (M + H)
2194	464 (M + H)
2195	448 (M + H)
2196	502 (M + H)
2197	462 (M + H)

【表347】

2198		508 (M + H)
2199		440 (M + H)
2200	C C C C C C C C C C C C C C C C C C C	488 (M + H)
2201		516 (M + H)
2202		404 (M + H)
2203		478 (M + H)

【表348】

2204	456 (M + H)
2205	464 (M + H)
2206	456 (M + H)
2207	450 (M + H)
2208	442 (M + H)
2209	408 (M + H)

【表349】

2210	424 (M + H)
2211	424 (M + H)
2212	448 (M + H)
2213	458 (M + H)
2214	458 (M + H)
2215	420 (M + H)

【表350】

2216		419 (M + H)
2217		440 (M + H)
2218		446 (M + H)
2219		434 (M + H)
2220	à	446 (M + H)
2221		404 (M + H)

【表351】

2222	408 (M + H)
2223	420 (M + H)
2224	420 (M + H)
2225	463 (M + H)
2226	460 (M + H)
2227	462 (M + H)

【表352】

2228	aj.oo	502 (M + H)
2229		434 (M + H)
2230		456 (M + H)
2231		432 (M + H)
2232		460 (M + H)
2233		488 (M + H)

【表353】

2234	474 (M + H)
2235	446 (M + H)
2236	484 (M+H)
2237	420 (M + H)
2238	568 (M + H)
2239	428 (M + H)

【表354】

2240	396 (M + H)
2241	420 (M + H)
2242	468 (M + H)
2243	432 (M + H)
2744	468 (M + H)
2245	458 (M + H)

【表355】

2246	423 (M + H)
2247	420 (M + H)
2248	404 (M + H)
2249	448 (M + H)
2250	446 (M + H)
2251	540 (M + H)

【表356】

2252	j j	470 (M + H)
2253		472 (M + H)
2254		479 (M + H)
2255		433 (M + H)
2256		458 (M + H)
2257		515 (M + H)

【表357】

2258	410 (M + H)
2259	394 (M + H)
2260	368 (M + H)
2261	372 (M + H)
2262	397 (M + H)
2263	464 (M + H)

【表358】

2264	ajort,	462 (M + H)
2265		458 (M + H)
2266		492 (M + H)
2267		448 (M + H)
2268		460 (M + H)
2269		434 (M+H)

【表359】

2270	454 (M + H)
2271	478 (M + H)
2272	462 (M + H)
2273	516 (M+H)
2274	476 (M + H)
2275	522 (M + H)

【表360】

2276	a pri	454 (M + H)
2277		502 (M + H)
2278		530 (M + H)
2279		418 (M+H)
2280		492 (M + H)
2281		470 (M + H)

【表361】

2282	gorg,	478 (M + H)
2283		470 (M + H)
2284		464 (M + H)
2285		456 (M + H)
2286		422 (M + H)
2287		438 (M + H)

【表362】

2288	462 (M + H)
2289	472 (M + H)
2290	472 (M + H)
2291	434 (M + H)
2292	433 (M + H)
2293	454 (M + H)

【表363】

2294		460 (M + H)
2295		448 (M + H)
2296		460 (M + H)
2297		422 (M + H)
2298		474 (M + H)
2299	of make	476 (M + H)

【表364】

2300		516 (M + H)
2301		448 (M + H)
2302		470 (M + H)
2303		446 (M + H)
2304	à, m	488 (M + H)
2305		460 (M + H)

【表365】

2306	dona	434 (M + H)
2307	ajar aa	582 (M + H)
2308		442 (M + H)
2309		419 (M + H)
2310		434 (M + H)
2311		482 (M + H)

【表366】

2312	418 (M + H)
2313	446 (M + H)
2314	482 (M + H)
2315	472 (M + H)
2316	437 (M + H)
2317	434 (M + H)

【表367】

2318		418 (M + H)
2319		462 (M + H)
2320	9	460 (M + H)
2321		554 (M + H)
2322		470 (M + H)
2323		537 (M + H)

【表368】

(表のつづき)

2324	j.	529 (M + H)
2325		424 (M + H)
2326		408 (M + H)
2327		382 (M + H)
2328		386 (M + H)

【0565】 実施例2329 【化269】

[0566]

ステップA: トランス-4-[(4-ブロモ-2-トリフルオロメトキシーベンゼン スルホニルアミノ)-メチル]-シクロヘキサンカルボン酸の合成

ESI NS m/c 460/462 M + H'; $^{-1}$ H NMr (500 MHz, DMSO-d₅) $\bar{\sigma}$ 12.00 (brs, 1 H), 7.99 (brs, 1 H), 7.84-7.80 (m, 3 H), 2.72 (d, J = 6.3 Hz, 2 H), 2.10 (m, 1 H), 1.86 (m, 2 H), 1.71 (m, 2 H), 1.31 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H). [0567]

ステップB: トランス-4-[(4-プロモ-2-トリフルオロメトキシーベンゼン スルホニルアミノ)-メチル]-シクロヘキサンカルボン酸アミドの合成

トランスー4ー [(4ープロモー2ートリフルオロメトキシーベンゼンスルホニルアミ) ーメチル] ーシフロヘキサンカルボン酸 (7. 14g、15.5mmol) およびトリエチルアミン (2.35mL、16.9mmol) のTHF (25mL) 溶液を、0℃に冷却した。この混合物に、THF (5mL) 中のクロロギ酸エチル (1.62mL、17mmol) を10分間が対て加えた。0℃15分間機群した線に、アンモニア本溶液(27mL)を滴加し、この混合物を室端で2時間機様した。この混合物を被圧下洗をし、濃縮物を水で処理すると、固体が得られた。この固体を評過し、水およびヘキサンで洗浄すると、トランスー4ー [(4ープロモー2ートリフルオロメトキシーベンゼンスルホニルアミ) ーメチル] ーシクロヘキサンカルボン酸アミドが白色の固体(4.2g、59%)として得られた。

ESI NS m/e 459/461 M + H⁺ ; $^{+}$ H NMR (500 MHz, DNSO-d_e) δ 7.98 (brs, 1 H), 7.84-7. 80 (m, 3 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 2.72 (d, J = 6.5 Hz, 2 H), 1.98 (m, 1 H), 1.70 (m, 4 H), 1.29 (m, 1 H), 1.23 (m, 2 H), 0.83 (m, 2 H). [0558]

ステップC: トランス-N-(4-アミノメチル-シクロヘキシルメチル)-4-ブロモ-2-トリフルオロメトキシーベンゼンスルホンアミドの合成

トランスー4ー [(4ープロモー2ートリフルオロメトキシーベンゼンスルホニルアミノ) - メチル] ーシクロへキサンカルボン酸アミド (4.2 g.9.2 mm o l) のTH F 符 (40 mL) 溶液に、1 MのB H₂ のTH F 溶液(32 mL、32 mm o l) を 40 分がけて加えた。この混合物を 2 時間返流させた。0 でに冷却した核に、この混合物を水 (7 mL) で停止させた。生じた混合物に、E t O A c (28 mL) およびM e O H (28 mL) かの4 Mの H C l を加え、この混合物を添縮した。残留物に、残留物に、Me O H (28 mL) を加え、この混合物を可じ濃縮した。生じた I 塚を E 2 のから再結晶させ、次いで、1 Mの木酸化ナトリウム 水溶液で中和した。水屋を、C H 2 C 1 2 で抽出し (2回)、有根層を合わせ、流験ナトリウム 上で乾燥させ、減圧下に濃縮すると、トランスートー (4-アミノメチルーシクロへキシルメチル) ー 4 ー プロモー 2 ー トリフルオロメトキシーベンゼンスルホンアミドが白色の風体(3.0 g、7 4 %)として得られた。

ESI NS m/e 445/447 M + H⁺ ; 1H NMR (500 MHz, DNSO-d_e) δ 7.84-7.79 (m, 3 H), 3.42 (brs, 2 H), 2.72 (d, J = 6.8 Hz, 2 H), 2.33 (d, J = 6.5 Hz, 2 H), 1.73 (m, 4 H) 1.27 (m, 1 H), 1.09 (m, 1 H), 0.80 (m, 4 H). [0559]

ステップD: トランスー4ープロモーNー {4 - [(4-メチルアミノーキナゾリン - 2-イルアミノ) -メチル] -シクロヘキシルメチル} -2-トリフルオロメトキシー ベンゼンスルホンアミド塩酸塩の合成

実施例 5 のステップかで得られた(2 - 2 - 0 - 0 - 1 + 0 +

ESI MS m/e 662/604 M (趙韓聖) + H⁺; ¹H MMR (500 MHz, DMSO-d₆) δ 12.61 (brs. 1 H), 9.70 (brs. 1 H), 8.26 (d, J = 8.1 Hz, 1 H), 8.15 (brs. 1 H), 8.02 (t, J = 5.7 Hz, 1 H), 7.84-7.74 (m, 4 H), 7.41 (m, 1 H), 3.32 (m, 2 H), 3.07 (d, J = 3.5 Hz, 3 H), 2.73 (t, J = 6.2 Hz, 2 H), 1.77 (m, 4 H), 1.53 (m, 1 H), 1.32 (m, 1 H), 0.96 (m, 2 H), 0.82 (m, 2 H).

[0570]

実施例2330 【化270】

ステップA: トランス-4-{[2,5-ビス-(2,2,2-トリフルオローエトキシ)-ベンゼンスルホニルアミノ]-メチル}-シクロヘキサンカルボン酸の合成

ESI NS m/e 494 M + H⁻; ¹H NMR (500 MHz , DMSO-d_g) ∂ 7.36 (m, 3 H), 7.23 (brs, 1 H), 4.88 (m, 4 H), 2.73 (m, 2 H), 2.10 (m, 1 H), 1.87 (m, 2 H), 1.72 (m, 2 H), 1.30 (m, 1 H), 1.23 (m, 2 H), 0.87 (m, 2 H).

[O772]

ステップB: トランスー4ー { [2,5-ビスー(2,2,2-トリフルオローエトキ) ーベンゼンスルホニルアミノ] ーメチル} ーシクロヘキサンカルボン酸アミドの合

トランス-4-{[2,5-ビス-(2,2,2-トリフルオローエトキシ)-ベンゼンスルホニルアミノ]-メチル}-シクロヘキサンカルボン酸(2,78g、5,63m

mo1 》およびトリエチルアミン(1. 9mL, 13.6 mmo1)のTHF(25mL)溶液を 0でに冷却した。この混合物に、THF(5mL)中のクロロギ酸エチル(0. 586mL、6.2 mmo1)を 10 分かけて加えた。0 でで15 分間機群した後に、2 5%アンモニア水溶液(1 0mL)を流加し。この混合物を室温で2時間操作した。生じた混合物を減圧下に濃縮し、濃縮物を水で希釈すると、固体が得られた。この固体を沪過し、水およびヘキサンで洗浄すると、トランスー4 $\{[2,5-t2-(2,2,2-t)]$ カルオローエトキシ)ーベンゼンスルホニルアミノ[-x+t] -y クロヘキサンカルボン酸アミドが白色の固体(2.7 g、9.8%)が得られた。

ESI NS m/e 493 M + H : 1 H NNR (500 MHz, DMSD-d₂) δ 7.36 (m, 3 H), 7.23 (t, J = 6.1 Hz, 1 H), 7.13 (s, 1 H), 6.62 (s, 1 H), 4.88 (m, 4 H), 2.74 (t, J = 6.4 Hz, 2 H), 1.99 (m, 1 H), 1.75 (m, 4 H), 1.28 (m, 1 H), 1.23 (m, 2 H), 0.83 (m, 2 H), [0573]

ステップC: トランス-N-(4 ー アミノメチル-シクロへキシルメチル)) 2、 ラービス-(2、 2 、 2 ー トリフルオローエトキシ) - ベンゼンスルホンアミドの合成 トランス-4 ー $\{12$ 、 5 ー ビス-(2、 2 、 2 ー トリフルオローエトキシ) - ベンゼンスルホンアミドの合成 トランス-4 ー $\{12$ 、 5 ー ビス-(2、 2 、 2 ー トリフルオローエトキシ) - ベンズ ルホニルアミノ 1 エメチル) - シクロヘキサンカルボン酸アミド(2 ・ 7 を、 5 ・ 5

ESI NS m/e 479 M + H $^{\circ}$; 1 H NMR (500 MHz, DNSO-d $_{9}$) δ 7.36-7.32 (m, 3 H), 6.62 (br s, 1 H), 4.88-4.78 (m, 4 H), 3.42 (b, 2 H), 2.73 (d, J = 6.6 Hz, 2 H), 2.34 (d, J = 6.8 Hz, 2 H), 1.73 (m, 4 H), 1.27 (m, 1 H), 1.10 (m, 1 H), 0.77 (m, 4 H). for 741

ステップD: トランスーN - $\{4-\left[\left(4-\text{ビ}メチルアミノ-キナゾリン-2-4ルアテノ\right)-メチル\right]-シクロヘキシルメチル\} - 2,5-ビス-(2,2,2-トリフルオローエトキシ)-ベンゼンスルホンアミド塩南塩の合成$

実施例1のステップBで得られた(2-クロローキナゾリン-4-イル) ージメチルア ミン (41.4 mg、0.2 mmo 1) およびトランス-Nー (4ーアミノメチルーシク ロヘキシルメチル) -2.5 ービス-(2.2.2 ートリフルオローエトキシ) ーベンゼンスルホンアミド(95.6 mg、0.2 mmo 1) からなる 2 ープロパノール中の混合物を、遺流下に2 4時間無拝した。この反応混合物を流縮し、残留物をカラムクロマトグラフィー(シリカゲル)により精製すると、生成物が白色のフォームとして得られた。この生成物を CH₂ C 1。に活かし、E t₂ O 中の 1 Mの H C 1 で処理した。この混合物を 濃縮すると、トランス-Nー(4ー [(4ージメチルアミノーキナゾリン-2ーイルアミノ) ーメチル I ーシクロヘキシルメチル I ー2.5 ービス-(2.2.2 ートリフルオローエトキシ) ーベンゼンスルホンアミド塩酸塩が白色のフォーム(101 mg、7 8%)として得られた。

ESI MS m/e 650 M (遊標型) + H·; 'H MMR (500 MHz, DMSO-d₀) δ 8.16 (d, J = 8.2 Hz, 1 H), 8.00 (brs, 1 H), 7.78 (t, J = 7.9, 1 H), 7.44 (brs, 1 H), 7.34 (m, 4 H), 7.24 (t, J = 5.9 Hz, 1 H), 4.88 (m, 4 H), 3.32 (s, 6 H), 3.29 (m, 2 H), 2.75 (t, J = 6.2 Hz, 2 H), 1.74 (m, 4 H), 1.52 (m, 1 H), 1.32 (m, 1 H), 0.94 (m, 2 H), 0.83 (m, 2 H).

【0575】

実施例2331 【化271】

トランスー4 - プロモード - (4 - グアニジノメチルーシクロヘキシルメチル) - 2 -トリフルオロメトキシーベンゼンスルホンアミド二塩酸塩 [0576]

ステップA: トランス- [(4-[(4-アロモ-2-トリフルオロメトキシーベンゼンスルホニルアミノ)-メチル]-シクロヘキシルメチル}-アミノ)-セーアトキシカルボニルアミノ-メチル!-カルボニルアミノーメチル ローカルバミン酸も-ブチルエステルの合成

ESI NS m/e 687/689 M + H⁻ ; ¹H NMR (400 MHz , DMSO- d_0) δ 11.45 (s, 1 H), 8.22 (t, J = 5.6 Hz, 1 H), 7.97 (t, J = 5.6 Hz, 1 H), 7.99-7.79 (m, 3 H), 3.13 (t, J = 6.4 Hz, 2 H), 2.72 (t, J = 6 Hz, 2 H), 1.70 (m, 4 H), 1.46 (s, 9 H), 1.38 (s, 9 H), 1.31 (m, 2 H), 0.83 (m, 4 H).

ステップB: トランス-4-プロモ-N-(4-グアニジノメチルーシクロヘキシル メチル)-2-トリフルオロメトキシーベンゼンスルホンアミド^{*}塩酵塩の合成

ESI MS m/c 487/489 M (苗麓理) + H'; 'H NMR (500 MHz, DMSO-d_c) δ 8.01 (t, J = 5.5 Hz, 1 H), 7.84 (m, 3 H), 7.68 (m, 1 H), 7.30 (m, 2 H), 6.85 (m, 2 H), 2.94 (t, J = 6.1 Hz, 2 H), 2.74 (t, J = 6.1 Hz, 2 H), 1.71 (m, 2 H), 1.31 (m, 4 H), 0.86 (m, 4 H).

【0578】

実施例2332

[4k272]

シス $-N^4$, N^4 -ジメチル $-N^2$ - $\{4-[(2-$ トリフルオロメチルーベンジルアミノ) -メチル] - シクロヘキシル} - キナブリン-2, 4-ジアミンニトリフルオロー 解除短

[0579]

ステップA: シスー4-t-ブトキシカルボニルアミノーシクロヘキサンカルボン酸の \triangle は

ESI MS m/e 244 M + H¹ ; ¹H NMR (400 MHz, DMSO-d₀) δ 12.00 (brs, 1 H), 6.74 (d, J = 4.25, 1 H), 3.30 (brs, 1 H), 2.35 (m, 1 H), 1.87 (m, 2 H), 1.55-1.37 (m, 15 H).

[0580] ステップB: シスー(4ーカルバモイルーシクロヘキシル)ーカルバミン酸セーブチ ルエステルの合成

シスー4ー ブトキシカルボニルアミノーシクロヘキサンカルボン酸(68.0g、280mmol) およびトリエチルアミン(31.1g、307mmol) のりでに冷却したTHF(300mL) 落態に、クロマ特郎エナル(29.3mL、308mmol) を滴加した。0℃で30分間競拌した後に、25%アンモニア水溶液(168mL)を滴加した。この反応混合符を楽温で2時間提拌し、濃縮した。残留物をEtOAで抽出して(3回)。6カサた有機原を飽和N a HCO、水溶液(10m) HO HCI、ブラインおよび水で洗浄し、Na₂So₄上で乾燥させ、評過し、濃縮すると、シスー(4ーカルバモイルーシクロヘキシル) カルバミン酸tーブチルエステル(62.0g、88%)が白色の固体として得られた。

ESI NS m/e 243 M + H°; ¹H NMR (400 MHz, DMSO-d₂) δ 7.10 (brs. 1 H), 6.69 (b, 2 H), 3.41 (brs, 1 H), 2.14 (m, 1 H), 1.79 (m, 2 H), 1.59 (m, 2 H), 1.45-1.37 (m, 13 H).

[0581]

ステップC: シス-4-アミノ-シクロヘキサンカルボン酸アミド塩酸塩の合成

シスー(4ーカルバモイルーシクロへキシル)一カルバミン酸 L ープチルエステル(6 L g、256 mm o 1) のC H_2 C L_2 (250 m L) 溶液に、T F A (250 m L) 溶液に、T F A (250 m L) を加え、この混合物を空温で1時間膜件した。この混合物を濃縮し、 $\mathsf{E}\,\mathsf{L}_2$ O (150 m L) 中の2MのHC 1を加えると、白色の洗験物が得られた。この混合物を濃縮すると、シスー4 ープミノーシクロヘキサンカルボン酸アミド塩酸塩 (45 g、98%) が白色の間 体として得られた。

ESI MS m/c 143 M (遊龍型) + H ; 'H NMR (400 MHz, DMSO-d₅) & 8.08 (m, 3 H), 7.28 (s, 1 H), 6.78 (s, 1 H), 3.10 (m, 1 H), 2.24 (m, 1 H), 1.90 (m, 2 H), 1.66 (m, 4 H), 1.50 (m, 2 H).

[0582]

ステップD: シス-4-(4-iyxチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキサンカルボン酸アミドの合成

実施例 1のステップ Bで得られた(2-クロローキナゾリンー4ーれ) =ジメチルー ボン酸 7: 5 に動し、 5 に

ESI VS m/e 314 M + H⁻; $^{-1}$ H MR (400 MHz, DMSD-d_e) δ 8.19 (brs, 1 H), 8.15 (d, J = 8.4 Hz, 1 H), 7.77 (t, J = 8.0 Hz, 1 H), 7.42 (d, J = 7.2 Hz, 1 H), 7.35 (t, J = 8.4 Hz, 1 H), 7.21 (s, 1 H), 6.74 (s, 1 H), 4.12 (m, 1 H), 3.46 (m, 6 H), 2.2 4 (m, 1 H), 1.79-1.61 (m, 8 H).

[0583]

ステップE: シス $-N^2 - (4-r)$ ミノメチルーシクロヘキシル) $-N^4$, $N^4 - \vec{y}$ メチルーキナゾリン-2, $4-\vec{y}$ アミンの合成

ESI NS m/c 300 M + H' : 1 H NMR (400 MHz, DMSD-d_c) δ 7.84 (d, J = 8.4 Hz, 1 H), 7.46 (t, J = 6.8 Hz, 1 H), 7.26 (d, J = 8.4 Hz, 1 H), 6.99 (t, J = 6.8 Hz, 1 H), 6.28 (brs, 1 H), 4.02 (m, 1 H), 3.19 (m, 6 H), 2.47 (d, J = 6.8 Hz, 2 H), 2.73 (m, 9 H).

[0584]

ステップF: シスーN4, N4 -ジメチル-N2 - $\{4-[(2-$ トリフルオロメチル-ベンジルアミノ) -メチル] -シクロヘキシル $\}$ + + ナゾリン- 2, 4-ジアミンニトリフルオロ酢酸塩の合成

シス - N2 - (4 - アミノメチルーシクロへキシル) - N4 - N4 - ジメチルーキナツ - ソン - 2、4 - ジアミン (3 3 mg、 0. 1 1 mm o 1) および - トリフルオロメチル ベンズアルテヒド (17、4 1 mg、 0. 1 mm o 1) のMe o H (1 mL) 溶液を空温 で 3 時間開催した。この混合物に、Na B H (O A c) - (8 5 mg、 0. 4 mm o 1) を加え、この混合物を全温で - 改照件上た。生じた混合物を、水 (2 mL) 中の5 0 % D MS O で所にきせ、 流液を分配 P L P C により精製した。純粋 - 分面を - 本記を - は - で - は - で - は - で - ステンス - N4 - ジメチル - N2 - は - 「- (2 - トリフルオロメチル - ベンジルアミン - メチル - トンテンツ - ステンフトリフル オロ - な - の

ESI MS m/e 458 M (遊館型) + H'; H MMR (400 MHz, DMSO-d₅)δ 13.12 (brs, 1 H), 8 .94 (b, 2 H), 8.65 (d, J = 6.8 Hz, 1 H), 8.16 (d, J = 8.8 Hz, 1 H), 7.77-7.66 (m , 5 H), 7.41 (d, J = 8.4 Hz, 1 H), 7.35 (t, J = 8 Hz, 1 H), 4.22 (s, 2 H), 4.17 (m. 1 H), 3,46 (b, 6 H), 2,94 (m, 2 H), 1,87-1,44 (m, 9 H),

[0585] 実施例2333

[/k273]

シス-5-(4-クロローフェニル)-2-トリフルオロメチル-フラン-3-カルボ ン酸「4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチ ルーアミドトリフルオロ酢酸塩

[0586]

ステップA: シス-5-(4-クロローフェニル)-2-トリフルオロメチル-フラ $\lambda - 3 - \lambda \mu$ が $\lambda = (4 - (4 - i \lambda + \mu r + \mu$ ロヘキシルメチル]-アミドトリフルオロ酢酸塩の合成

実施例2332のステップEで得られたシス-N2-(4-アミノメチルーシクロヘキ (3.0 mg) (3.0 mg) (3.0 mg) (3.0 mg)o1)、5-(4-クロローフェニル)-2-トリフルオロメチルーフラン-3-酸塩化 物 (37mg、0.12mmol) およびピリジン (12µL、0.15mmol) のD MF(0.5mL)溶液を室温で一夜撹拌した。生じた混合物をDMSO(0.8mL) で希釈し、混合物を分取HPLCにより精製した。純粋な分画を合わせ、凍結乾燥すると 、シスー5ー(4ークロローフェニル)-2-トリフルオロメチルーフラン-3-カルボ ン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシルメチ ル] - アミドトリフルオロ酢酸塩 (17.5mg, 26%) が白色の固体として得られた

FSI MS m/e 572 M (游離型) + H+ + 1H NMR (400 MHz, DMSO-do) & 12.30 (brs. 1 H). 8 .65 (t, J = 6.8 Hz, 1 H), 8.19 (brs, 1 H), 8.14 (d, J = 8.0 Hz, 1 H), 7.83-7.30 (m. 8 H), 4.1 (m. 1 H), 3.46 (b. 6 H), 3.09 (m. 2 H), 1.77-1.38 (m. 9 H), [0587]

実施例2334 【化274】

シス-N-「4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) -シクロヘキ シルメチル]-3,4,5-トリメトキシーベンズアミドトリフルオロ酢酸塩 [0588]

ステップA: シス-N-「4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ) ーシクロヘキシルメチル] ー3.4.5ートリメトキシーベンズアミドトリフルオロ酢 酸塩の合成

 $HOBt-6-hu\vec{x}+preserve$

g、0. 1 mm o 1)に、0. 3 Mo Py B r o PoD MF 溶液(1 mL, 0. 3 m m o 1)、3, 4, 5 - h v J × J

ESI NS m/e 494 M (遊龍型) + H·; ¹H NMR (400 MHz, DMSO-d₀) δ 12.25 (brs. 1 H), 8 .45 (t. J = 5.6 Hz, 1 H), 8.17 (brs. 1 H), 8.14 (d. J = 8.0 Hz, 1 H), 7.76 (t. J = 8.4 Hz, 1 H), 7.42 (d. J = 7.2 Hz, 1 H), 7.34 (t. J = 7.6 Hz, 1 H), 7.15 (s. 2 H), 4.13 (m. 1 H), 3.44 (s. 3 H), 3.39 (s. 3 H), 3.20 (m. 2 H), 1.77-1.37 (m. 9 H).

[0589]

実施例2335 【化275】

ビフェニルー4ーカルボン酸 $\{4-[(4-i)x+i)x+i)x+i = 2-4ix = 2-4ix$

ステップA: 4- (アミノーベンジル) ーカルバミン酸 t ーブチルエステルの合成 4 ーアミノメチルーフェニルドミン (12.2 g、100mmol) 治法び (Boc) 2 (2(21.8 g、100mmol)) の $\rm H_2$ $\rm Cl_2$ (100mL) 溶液を室温で一枚提 拝した。この混合物を濃縮し、残留物をカラムクロマトグラフィー (シリカゲル、 $\rm CH_2$ $\rm Cl_2$ から $\rm CH_2$ $\rm Cl_2$ 中の $\rm 10\% Me$ OH) により精製すると、4- (アミノーベンジル) カルバミン酸 t ーブチルエステル (11.6 g、5 2%) が淡黄色の固体として得られた。

ESI NS m/e 223 M + H⁺; 1 H NMR (400 MHz, DMSD-d₀) δ 7.27 (t, J = 6.0 Hz, 1 H), 6 .86 (d, J = 8.0 Hz, 2 H), 6.47 (d, J = 6.4 Hz, 2 H), 4.89 (s, 2 H), 3.91 (d, J = 6.0 Hz, 2 H), 1.39 (s, 9 H). [0591]

ステップB: ピフェニルー4ーカルボン酸(4ーアミノメチルーフェニル)ーアミド 塩酸塩の合成

 $4-(アミノ-ベンジル)-カルバミン酸 t-ブチルエステル(1.11g、5mmol)、ビアェニルカルボン酸(0.99g、5mmol)、EDC(1.2g、6.25 mmol)がおびHOAt(0.82g、6mmol)のCH<math>_2$ Cl $_2$ (10mL)溶液に、トリエチルアミン(pH=10)を加え、この混合物を室温で一夜攪拌した。有機層を飽和 $naHCO_3$ 水溶液、1 MのHC 1 水溶液、4 で洗浄し、 Na_2 SO $_4$ 上で乾燥さ

せ、河通し、漆縮した、発留物をCH₂ C L₂ 中の50% TFA (10 mL) に落かし、 この混合物を室温で滑拝した。30 が後、この混合物を濾縮し、E L₂ O (5 mL) 中の 1 MのHC1で希釈した。この混合物を漂縮すると、ビフェニルー4 ーカルボン酸(4 – アミノメチルーフェニル) - アミド原原原(828 mg、49%) が得られた。

ESI MS m/e 303 M (搬艇型) + H'; $^{\circ}$ H NNR (400 MHz, DMSO-dg) δ 10.40 (s, 1 H), 8.3 4 (b, 3 H), 8.07 (d, J = 8.0 Hz, 2 H), 7.83-7.73 (m, 6 H), 7.51-7.38 (m, 5 H), 4 .00 (q, J = 5.6 Hz, 2 H).

[0592]

ステップC: ビフェニルー4ーカルボン酸 {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ)-メチル]-フェニル}-アミドの合成

ESI NS m/e 474 M + H⁺ ; 1 H NMR (400 MHz, DMSD-dg) δ 10.19 (s, 1 H), 8.02 (d, J = 7.2 Hz, 2 H), 7.86 (d, J = 8.4 Hz, 1 H), 7.80 (d, J = 8.4 Hz, 2 H), 7.73 (d, J = 7.2 Hz, 2 H), 7.68 (d, J = 7.6 Hz, 2 H), 7.50-7.15 (m, 8 H), 7.01 (t, J = 8.4 Hz, 1 H), 4.51 (d, J = 6.4 Hz, 2 H), 3.30 (s, 3 H), 3.20 (s, 3 H). 10.0931

実施例2336 【化276】

シス $-N^2$ - $\{4-[2-(4-7$ ロモ-2-トリフルオロメトキシーベンジルアミノ) - エチル] - シクロヘキシル $\}$ - N^4 - N^4 - ジメチルーキナゾリン-2 - 4 - ジアミンニトリフルオロ酢報塩 [0594]

ステップA: シスー [4-(2-(x)) + (2-(x)) + (2-(x))

シスー $\begin{bmatrix} 4-(2-r) \ge J-x \ne h) - i > 2 \cap x \ge h \end{bmatrix} - nh/i \le z$ 酸 $t = 7 \ne h x$ ステル $(4.84 g. 20 mmol) の <math>CH_2 Cl_2 (50 mL)$ およびトリエチルア E = (3.06 mL, 22 mmol) 溶液 E = (4.86 g. 20 mmol) 溶液 E = (4.86 g. 20 mmol) を加え、この混合物を E = (4.86 g. 20 mmol) の E =

ESI NS m/e 377 M + H $^{\circ}$; 1 H NNR (400 MHz, DMSO-d₀) δ 7.36-7.24 (m, 5 H), 7.19 (t, J = 5.6 Hz, 1 H), 6.76 (d, J = 6.8 Hz, 1 H), 4.91 (s, 2 H), 3.40 (m, 1 H), 2.99

(m, 2 H), 1.44-1.33 (m, 20H). [0595]

ステップB: シスー [2-(4-アミノーシクロヘキシル)ーエチル]ーカルバミン 酸ベンジルエステルの合成

シスー $[4-(2-(\sqrt{5})ルオキンカルボニルアミ)-エチル)]$ シクロへキシル] ー カルバミン酸 t ー ブチルエステル (5.26g、14mmol)の、 CH_2 Cl_2 中の 5 % 下 FA(60 mL) 溶液を室温で i u 所間 授手した。この混合物を連縮し、飛躍物を 起和 NaHCOg 水溶液で溶液した。水層をCH2 Cl_2 で補出した(3回)。 有概層を Na2 SO4 上で乾燥させ、 逮縮すると、 シスー [2-(4-r)ミノーシクロへキシル)- x チル] ー カルバミン酸ペンジルエステル(3.5g、91%) が無色のオイルとして 得られた。

ESI NS m/e 277 M + III; II NNR (400 MHz, DNS0-d₂) δ 7.72 (b, 2 II), 7.34-7.27 (m, 5 H), 7.21 (t, J = 5.2 Hz, 1 II), 4.97 (s, 2 II), 3.14 (m, 1 II), 2.99 (q, J = 6.4 Hz, 2 II), 1.58-1.34 (m, 11 II).

【0596】

ステップC: シスー {2-[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -エチル} -カルバミン酸ベンジルエステルの合成

ESI MS m/e 448 M + H $^+$; $^+$ H NMR (400 MHz, DMSO-d $_{\rm e}$) δ 8.07-7.20 (m, 11 II), 4.98 (s, 2 II), 4.08 (m, 1 II), 3.39 (b, 6 II), 3.04 (m, 2 II), 1.70-1.30 (m, 11 II). 105971

ステップD: シス-N² - [4-(2-アミノ-エチル) - シクロヘキシル] - N⁴ , N⁴ - ジメチルーキナゾリン-2, 4 - ジアミンの合成

シス $\{2-[4-(4-i3)x+hvr]2/-x+iy)v-2-4hvr]2/-v-2v-1x+iv]-カル(<math>x+y+1$ -カル(x+y+1)))

ESI NS m/e 314 M + H⁺; ¹H NMR (400 MHz, DMSO-d₀) $\tilde{\sigma}$ 7.82 (d, J = 8.0 Hz, 1 H), 7. 44 (t, J = 6.8 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 1 H), 6.97 (t, J = 6.8 Hz, 1 H), 6.31 (brs, 1 H), 3.97 (m, 1 H), 3.37 (b, 2 H), 3.17 (s, 3), 3.14 (s, 3 H), 2.62 (t, J = 7.6 Hz, 2 H), 1.68-1.31 (m, 11 H). forms

ステップE: シスーN² - $\{4-[2-(4-プロモ-2-h)]$ フルオロメトキシーペンジルアミノ) - エチル] - シクロヘキシル $\}$ - N⁴ + N⁴ - ジメチルーキナゾリン-2 + 4 - ジアミンニトリフルオロ酢酸塩の合成

シス $-N^2 - [4 - (2-r) - x+\nu] - y+\nu - y+\nu$

-2-トリフルオロメトキシベンズアルデヒド ($26.9\,\mathrm{mg}$ 、 $0.1\,\mathrm{mm}$ o 1) のM e O H ($1\,\mathrm{mL}$) 溶液を電ご機群した。 3 時間後、Na B H ($0\,\mathrm{Ac}$) $_2$ ($8\,\mathrm{Fm}$ g 、 $0.4\,\mathrm{mm}$ o 1) を加え、生じた混合物を塗罐で一夜機样した。反応混合物を、水中の5 0% D MSO ($2\,\mathrm{mL}$) で停止させた。この混合物を濾縮し、分散 HPLC により精製した。純粋な分頭を合わせ、凍結乾燥すると、シス $-\mathrm{N}^2-(4-12-(4-7)$ -2-(4-7) -

ESI NS m/e 566/568 M (苗崎聖) + H: ' II NMI (400 MHz, DMSD-d_e) ∂ 12.76 (brs, 1 II) , 8.81 (b, 2 II), 8.43 (m, 1 II), 8.09 (d, J = 8.4 Hz, 1 II), 7.71-7.76 (m, 4 II), 7 .35 (d, J = 8.0 Hz, 1 II), 7.29 (t, J = 8.0 Hz, 1 II), 4.15 (m, 3 II), 3.39 (m, 6 II), 2.97 (m, 2 II), 1.67-1.30 (m, 11 II).

【0599】

実施例2337 【化277】

シスー2、6 - ジクロロードー $\{2-[4-(4-i3x+\mu)r]$ - エキナゾリンー2 - 4 ルアミノ) - シクロヘキシル $[-x+\mu]$ - ベンズアミドトリフルオロ酢酸塩 [0600]

ステップA: シスー2,6ージクロローN- $\{2-[4-(4-ジメチルアミノーキ$ ナゾリン-2-4ルアミノ)-シクロヘキシル<math>]-エチル $\}$ -ベンズアミドトリフルオロ 辞館塩の合成

シス $-N^2-[4-(2-P {\it x}-L {\it$

ESI NS m/c 486 M (諸純型) + H·; · H NMR (400 MHz, DMSO-d_e) δ 11.93 (brs., 1 ID), 8. 26 (t, J = 5.2 Hz, 1 ID), 8.14 (d, J = 8.0 Hz, 1 ID), 7.95 (brs., 1 ID), 7.76 (t, J = 8.4 Hz, 1 ID), 7.52-7.31 (m, 5 ID), 4.15 (m, 1 ID), 3.45 (b, 6 ID), 3.29 (m, 2 ID), 1.76-1.31 (m, 1 ID).

【0601】

実施例2338

[4/278]

シス $-N^2 - [4 - (2 - \pi)^2 + 2 - \pi)^2 - 2 - \pi + 2 - \pi$

ステップA: シスー(4-アミノメチルーシクロヘキシル) -カルバミン酸t-ブチ ルエステルの合成

実施例2332のステップBで得られたシスー(4 ーカルバモイルーシクロヘキシル) ーカルバミン酸セーブチルエステル (9.68g, $40\,\mathrm{mm}\,\mathrm{ol}$)のTHF ($10\,\mathrm{0m}\,\mathrm{L}$) 溶液に、THF中の1 MoBH_{g} ($80\,\mathrm{mL}$, $80\,\mathrm{mm}\,\mathrm{ol}$)を30分かけて加えた。この混合物を還流下に2時間批拌した。反応混合物を塗温に冷却した後に、1 $\mathrm{MoM}\,\mathrm{dist}$ ナトリウム水溶液を慎重に加えた。溶剤を減圧下に除去し、水層を $\mathrm{CH}_{2}\,\mathrm{Cl}_{2}\,\mathrm{cm}\,\mathrm{dist}$ た ($20\,\mathrm{lm}$)。 有機層を流散ナトリウム上で乾燥させ、減圧下に滤槽すると、シスー ($4-\mathrm{Tr}\,\mathrm{Cl}\,\mathrm{Tr}\,\mathrm{Cr}\,\mathrm$

ESI MS m/e 229 M + H'; 1 H NNR (400 MHz, DMSD-d_g) δ 6.67 (d, J = 6.8 Hz, 1 H), 3. 43 (m, 1 H), 2.41 (d, J = 6.4 Hz, 2 H) 1.49-1.22 (m, 18 H). 106031

ステップB: シスー {4-[(4-ジメチルアミノーキナゾリン-2-イルアミノ) -メチル]-シクロヘキシル}-カルバミン酸t-ブチルエステルの合成

シスー(4-アミノメチルーシクロペキシル) ー カルバミン酸 ヒープチルエステル(1 . 1 4 g . 5 m m o 1)、実施別 1 0. 2 7 2

ESI NS m/e 400 M + H'; ¹H NMR (400 MHz, DNSO-d₂) δ 8.04-7.06 (m, 4 H), 6.77 (d, J = 6.0 Hz, 1 H), 3.40-3.16 (m, 9 H), 1.70-1.37 (m, 18 H). [0604]

ステップC: シス $-N^2 - (4-r)$ ラクロへキシルメチル) $-N^4$, $N^4 - \vec{y}$ メチルーキナゾリン-2, $4-\vec{y}$ アミンの合成

ESI NS m/e 300 M + H+; 1H NMR (400 MHz, DMSO-d₆) δ 7.85 (d, J = 7.6 Hz, 1 H), 7.47 (t , J = 6.8 Hz, 1 H), 7.27 (brs, 1 H), 7.0 (t, J = 7.2 Hz, 1 H), 6.66 (brs,

1 H), 3.33-3.14 (m, 9 H), 1.69-1.48 (m, 9 H). [0605]

ステップD: シスーN² ー [4 ー (2ーエトキシーベンジルアミノ) ーシクロヘキシルメチル] ー N⁴ , N⁴ ージメチルーキナゾリンー 2 , 4 ージアミンニトリフルオロ酢酸塩の合成

ESI NS m/e 434 M (遊館型) + H°; □ I NMR (400 MHz, DMSO-d₀) δ 13.03 (brs, 1 II), 8 .79 (brs, 1 II), 8 .49 (m, 2 II), 8 .15 (d, J = 8.4 Hz, 1 II), 7.77 (t, J = 7.6 Hz, 1 II), 7.40-7.33 (m, 4 II), 7.07 (d, J = 7.6 Hz, 1 II), 6.99 (t, J = 7.2 Hz, 1 II), 4 .11-4.06 (m, 4 II), 3.47-3.41 (m, 8 II), 3.15 (m, 1 II), 1.90-1.60 (m, 9 II), 1.37 (t, J = 7.2 Hz, 3 II).

【0606】 実施例2339 【化279】

シスー3, 5-ジクロローN - $\{4-[(4-ジメチルアミノーキナゾリン-2- (1 アミノ) - メチル] - シクロヘキシル <math>\}$ - ペンズアミドトリフルオロ酢酸塩 $\{0607\}$

ステップA: シスー3, 5ージクロローNー $\{4$ ー [(4ージメチルアミノーキナゾ リンー 2ーイルアミノ) -メチル] -シクロヘキシル $\}$ -ベンズアミドトリフルオロ酢酸 塩の合成

実施例2340 【作280】

トランス- N² - $\{4-[(2,3-i)$ メトキシーベンジルアミノ) - メチル] - シク ロヘキシル $\}$ - N⁴ + N⁴ + ジメチル+ キナゾリン- 2+ 4 + ジアミンニトリフルオロ酢 酸塩

[0609]

ステップA: トランス-4-(t-ブトキシカルボニルアミノ-メチル)-シクロへ キサンカルボン酸の合成

米浴中で冷却されたジオキサン (250ml) および水 (200ml) からなる混合物 中のトランスー4 ーアミノーシクロヘキサンカルボン酸 (37.7g、0.24mmol) の落液に、1 Mの水酸化ナトリウム水溶液 (10.07g、0.25mol) および (Boc) 20(57.6g、0.26mol)を加えた。この反応混合物を空温で損拌した。3時間後、この混合物を濃縮し、残留物を水に溶かした。水屑を圧す。20で洗浄した(3回)、水屑を水浴中で浴却し、1 MのHC 1 水溶液 (pH=2)で酸性化し、生じた白色の沈脱物を焼きせると、トランスー4 ー (t ー ブトキシカルボニルアミノーメチル) ーシクロヘキサンカルボン酸 (47.4g、76.8%) が白色の間体として得られた

ESI NS m/e 258 M + H⁺ ; 1 H NMR (400 MHz, 1 CDCl₃) & 11.95 (brs, 1 H), 6.79 (t, J = 6.0 Hz, 1 H), 2.76 (t, J = 6.0 Hz, 2 H), 2.11 (m, 1 H), 1.87 (m, 2 H), 1.69 (m, 2 H), 1.36 (s, 9 H), 1.27 (m, 3 H), 0.90 (m, 2 H).

ステップB: トランスー [4-(t-ブトキシカルボニルアミノーメチル)ーシクロ ヘキシル]ーカルバミン酸ベンジルエステルの合成

トランスー4ー(tープトキシカルボニルアミノーメチル)ーシクロへキサンカルボン酸(46.9g、0.18mol)のベンゼン(300mL)溶液に、トリエナルアミン (24.2g、0.24mcl)およびアジ化ジフェニルホスホリル(55.9g、0.20mol)を加えた。反応混合物を80℃で1時間機样した。この混合物にベンジルアルコール(25.9g、0.24mol)を加え、100℃で4時間機样した。次いでこの混合物を、室温に一改冷却し、濃縮し、生じた淡橙色の固体を10人のたに溶かした。有機層を水で洗浄し(3回)、濃縮し、残ぼ物をカラムクロマトグラフィー(シリカゲル、ヘキサン中の50%に100%により精製すると、トランスー(4ー(tーブトキシカルボニルアミノーメチル)ーシクロヘキシル」ーカルバミン酸ベンジルエステル(66.7g。100%)が自砂の関体として得られた。

ESI NS m/e 363 M + H $^{\circ}$; $^{\circ}$ H NNR (400 MHz, DCl_{3}) δ 7.24–7.23 (m, 5 H), 5.06 (s, 2 H), 4.57 (m, 2 H), 3.44 (brs, 1 H), 2.97 (t, J = 6.4 Hz, 2 H), 2.04 (m, 2 H), 1.79 (m, 2 H), 1.43 (s, 9 H), 1.08–0.76 (m, 5 H).

【0611】

ステップC: トランス-(4-アミノーシクロヘキシルメチル)-カルバミン酸tー ブチルエステルの合成

トランス- [4-(t-ブトキシカルボニルアミノ-メチル) - シクロへキシル] - カルバミン酸ペンジルエステル (5.32g、0.015mol) のEもOH (200mL) 溶液に、10%のPd/C (50mg) を加えた。この混合物を掌温で、水素雰囲気下

に4時間脱柱した。生じた混合物をセライトパッドで評過し、濃縮した。残留物をカラム クロマトグラフィー(シリカゲル、 CH_2CI_2 中の3%の2MのN H_3 /MeOH)に より稍製すると、トランスー(4-アミノーシクロヘキシルメチル)ーカルバミン酸 t = プチルエステルが無色の周体(3.197x、95.4%)として得られた。

ESI NS m/e 229 M + H' : 'H NNR (400 MHz, CDCI₈) & 8.44 (brs, 1 H), 4.59 (b, 1 H), . 2.96 (m, 2 H), 2.08 (m, 2 H), 1.83 (m, 2 H), 1.43 (s, 9 H), 1.08 (m, 5 H), C06121

ステップD: トランス $-N^2 - (4-r)$ ミノメチルーシクロヘキシル) $-N^4$, N^4 ージメチルーキナゾリンー2, 4-ジアミンニトリフルオロ酢酸塩の合成

トランス - (4-アミノーシクロペキシルメチル) - カルバミン酸 t - ブチルエステル (0.24 g、1 mmo 1) および実施例1のステッアBで得られた (2-クロローキナ ブリンー4ーイル) - ジメチルーアミン (0.32 g、1.4 mmo 1) からなる 2- ロバノール (5 mL) 中の混合物を、スミス・マイクロウェーブ合成装置を使用して、170°で 30 分間加熱した。この手順を19 回繰り返した。反応混合物を合わせ、カラムクロマトグラフィー (5 リカゲル) により精製すると、黄色の関体1.13 gが得られた。この黄色の固体を、CH₂ Cl₂ 中か50%TFA (20 mL) に溶かし、この混合物を室鑑温で犠牲した。10 時間後、この混合物を連縮し、残留物を分取HPLCほより精製した。純粋公分画を合わせ、凍結乾燥させると、トランスーN2 - (4-アミノメチルーシクロヘキシル) - N4 - ジメナルーキナプリンー2.4 - ジアミンニトリフルオロ酢酸塩 (0.49 g、5%) が白色の固体として得られた。

ESI NS m/e 300 M (遊館型) + H⁺ ; ¹H N/R (400 MHz, CDCl₃) & 9.16 (d, J = 5.6 Hz, 1 H), 8.11 (m, 2 H), 7.86 (d, J = 8.0 Hz, 1 H), 7.51 (t, J = 7.6 Hz, 1 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.18 (t, J = 6.8 Hz, 1 H), 3.8 (brs, 1 H), 3.47 (s, 6 H), 2.10 (m, 2 H), 1.92 (m, 2 H), 1.42-1.12 (m, 5 H).

[0613]

ステップE: トランス- N² - $\{4-[(2,3-i3k++)-(3-ik+-)-k+-)-k+-]$ - シクロヘキシル $\}-$ N⁴ - N⁴ - ジメチル- キナゾリン- 2、4-i3k+- トリフルオロ酢酸塩の合成

ESI NS m/e 450 M ($\frac{3m^2m^2}{2m^2}$) + H: ; H MNR ($\frac{3}{2}$ 00 MHz, $\frac{1}{2}$ 07 $\frac{3}{2}$ 0.68 ($\frac{3}{4}$ 1 = 6.0 Hz. 1 $\frac{1}{2}$ 0, $\frac{3}{2}$ 1 ($\frac{1}{2}$ 05 + $\frac{3}{2}$ 1 ($\frac{1}{2}$ 07 + $\frac{3}{2}$ 1 ($\frac{1}{2}$ 1 + $\frac{3}{2}$ 1 ($\frac{3}{2}$ 1 + $\frac{3}{2}$ 1 + $\frac{3}{2}$ 1 ($\frac{3}{2}$ 1 + $\frac{3}{2}$ 2 + $\frac{3}{2}$ 1 + $\frac{3}{2}$ 2 + $\frac{3}{2}$ 3 + $\frac{3}{2}$ 3

[0614]

実施例2341

【4E281】

シス $-N^2 - [4 - (3, 5 - ジクロローベンジルアミノ) - シクロヘキシル] - N^4$ 、 $N^4 - ジメチルーキナソリンー2$ 、4 - ジアミンニトリフルオロ酢酸塩【6615】

ステップA: シスー(4-t-ブトキシカルボニルアミノーシクロヘキシル)ーカル バミン酸ベンジルエステルの合成

ESI NS m/e 349 M + H⁺; 1 H NMR (400 MHz, DNSO- d_{g}) δ 7.34-7.28 (m, 5 H), 7.12 (d, J = 5.6 Hz, 1 H), 6.62 (brs, 1 H), 4.98 (s, 2 H), 3.39-3.37 (m, 2 H), 1.60-1.45 (m, 8 H), 1.37 (s, 9 H). [0616]

ステップB: シスー (4-アミノーシクロヘキシル) - カルバミン酸 t -ブチルエス テルの合成

実施例2340のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 215 M + H : ¹H NMR (400 MHz, DMSO-d₂) δ 6.60 (d, J = 6.0 Hz, 1 H), 3 -30-3.28 (m, 1 H), 2.74 (s, 1 H), 1.59-1.51 (m, 2 H), 1.45-1.37 (m, 15 H). [0617]

ステップC: シスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] - カルバミン酸t - ブチルエステルの合成

ESI NS m/e 386 M + H^{*}: 1 H NMR (400 MHz, 1 D MSO- 1 d₂) 2 7.85 (d, 1 J = 8.0 Hz, 1 H), 7.47 (t, 1 J = 8.4 Hz, 1 H), 7.27 (d, 1 J = 8.0 Hz, 1 H), 7.00 (t, 1 J = 7.6 Hz, 1 H), 6.60 (brs, 1 H), 6.18 (brs, 1 H), 3.89–3.88 (m, 1 H), 3.39 (brs, 1 H), 3.19 (s, 6 H), 1.77-1.71 (m, 2 H), 1.68-1.52 (m, 6 H), 1.38 (s, 9 H).

[0618]

ステップD: シス $-N^2 - (4-P = J-y)$ ロヘキシル) $-N^4$, $N^4 - y$ メチル ーキナゾリン-2, 4-yアミンの合成

実施例2338のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 286 N + H $^{\circ}$; $^{\circ}$ II NNR (400 MHz, DNS0-dg-) $^{\circ}$ 7.84 (d. J = 8.4 Hz, 1 H), 7 .45 (t. J = 6.8 Hz, 1 H), 7.26 (d. J = 8.4 Hz, 1 H), 6.99 (t. J = 7.6 Hz, 1 H), 6.20 (brs, 1 H), 3.90–3.89 (m. 1 H), 3.18 (s. 6 H), 2.79 (s. 1 H), 1.74–1.71 (m. 2 H), 1.57–1.41 (m. 8 H).

【0619】

ステップE: シスーN2 - [$4-(3,5-\vec{y})$ クロローベンジルアミノ) -シクロヘキンル] - N4 - N4 - ジメチルーキナゾリン- 2 - 4 - ジアミンニトリフルオロ酢酸塩の合成

シスーN2 - (4ーアミノーシクロヘキシル) - N4 - N4 - ジメチルーキナゾリンー 2、4 - ジアミン (31.4 mg \cdot 0、11 mm \circ 1) のMe OH (0.5 mL) 溶液に 3、5 - ジクロロベンズアルデヒド (17.5 mg \cdot 0、10 mm \circ 1) を加えた。この混合物を、空温で0.5時間設拝し、トリアセトキシホウ水素化ナトリウム (85 mg \cdot 0.40 mm \circ 1) き加えた。この混合物を一夜機样し、反応を、水中の50%DMS O(1.0 mL) で停止させた。この混合物を分取日PLCにより精製した。純粋な分面を集め、漢補乾燥すると、シスーN2 - [4 - (3、5 - ジクロへベンルア - 1) アクロヘキシル] - N4 - N4 - ジメチルーキナゾリンー 2、4 - ジアミンエトリフルオロ酢酸塩(23 mg \cdot 0.041 mm - 1、37%)が白色の固体として得られた。

ESI NS m/e 444 M (強龍型) + H ; ¹H NMR (400 MHz, DMSD-d₅) δ 13.55 (s, 1 H), 8.9 0 (brs, 3 H), 8.17 (d, J = 8.0 Hz, 110), 7.79 (t, 7.6 Hz, 1 H), 7.768 (s, 1 H), 7 (61 (s, 2 H), 7.41 (d, J = 7.6 Hz, 1 H), 7.36 (t, J = 7.6 Hz, 1 H), 4.23 (s, 2 H), 4.07 (s, 1 H), 3.48 (s, 6 H), 2.00-1.92 (m, 4 H), 1.82-1.74 (m, 4 H).

【0620】 実施例2342

【4/282】

シス-N-[4-(4-ジッチルアミノーキナゾリン-2-イルアミノ)-シクロへキシル]-3,4-ジフルオローベンズアミドトリフルオロ酢酸塩

【0621】

ステップA: シスーN - [4-(4-ジメチルアミノーキナゾリンー2ーイルアミノ) -シクロヘキシル] - 3, 4-ジフルオローペンズアミドトリフルオロ酢酸塩の合成 実施例2333のステッアAの手順を使用して、表題の化合物を得た。

ESI 88 mc 4.26 M + H⁺ ; ¹H NR; (400 MHz, DNSD-d₂) δ 12.46 (brs. 1 H), 8.36 (s. 1 H), 8.15 (d. J = 8.0 Hz, 1 H), 7.97 (brs. 1 H), 7.97-94-7.89 (m. 1 H), 7.77-7.73 (m. 2 H), 7.56-7.49 (m. 1 H), 7.41 (brs. 1 H), 7.36 (t. J = 7.6 Hz, 1 H), 4.07 (m. 1 H), 3.87 (m. 1 H), 3.47 (brs. 6 H), 1.89 (m. 2 H), 1.74 (m. 6 H).

[0622]

[4/283]

シスー4ージメチルアミノーN - [4 - (4 - ジメチルアミノーキナゲリン-2 - イル アミノ) - シクロヘキシル] - ベンズアミドニトリフルオロ酢酸塩 【0623】

ステップA: シスー4ージメチルアミノーN- [4ー(4ージメチルアミノーキナゾリンー2ーイルアミノ)ーシクロへキシル]ーベンズアミドニトリフルオロ簡敬態の合成 4ージメチルアミノ発信額 (16.5 mg、0.10 mm o l) のDMF (0.5 m L) 溶液に、HATU (45.6 mg、0.12 mm o l)、ジイソプロピルエチルアミン(34.8 μ L、0.20 mm o l) および実施網234 lのステップDで得られたシスーN²ー(4ーアミノーシクロへキシル)ーN⁴、 N^4 ージメチルーキナゾリンー24ージアミン(28.5 mg、0.10 mm o l)を加え、空温で一夜提昇した。延やな分画を合わせ、減給を確すると、シスー4ージメチルアミノーN- [4ー(4ージメチルアミノートナゾリンー2ーイルアミノ)ーシクロへキシル)ーベンズアミドニトリフルオロ節数(34.1 mg、0.052 mm o l、52%)が自色の固体として得られた。

ESI MS m/e 433 M (遊標型) + H·; ¹H MR (400 MHz, DMSO-d₀) δ 12.73 (s, 1 H), 8.3 4 (s, 1 H), 8.16 (d, J = 8.0 Hz, 1 H), 7.78-7.70 (m, 4 H), 7.43 (d, J = 7.6 Hz, 1 H), 7.35 (t, J = 8.0 Hz, 1 H), 6.67 (d, J = 8.8 Hz, 2 H), 4.05 (m, 1 H), 3.86 (m, 1 H), 3.47 (s, 6 H), 2.95 (s, 3 H), 2.53 (s, 3 H), 1.91 (m, 2 H), 1.75-1.72 (m, 6 H).

[0624]

実施例2344 【作284】

トランス-4-プロモーN-[4-(4-ジメチルアミノーキナゾリン-2-イルアミ)) -シクロヘキシル]-2-トリフルオロメトキシーベンゼンスルホンアミド [0625]

ステップA: トランスー $(4-P \in J-$ シクロヘキシル)-カルバミン酸t-ブチルエステルの合成

トランスー1、4 - ジアミノーシクルへキサン (10g、0、088mol)の1、4 - ジオキサン (400mL) 溶液に、(Boc)。0(4.78g、0.022mol)の1、4 - ジオキサン (100ml)溶液を30分かけて加えた。この混合物を密慮で破燥料し、次いで、真空中でジオキサンを除去した。生じた沈暖物をH2の(500mL)に溶かし、そのまり1時間放置した。この間に、ジーBoc 保護ジアミノーシクロへサンが白色の結晶洗燥物として洗暖した。次いでこれを、木性溶剤から評過した。木屋をEtOAcで抽出した(3回)、有機関を合かせ、H2ので洗浄した。有機関をMgS

O₄上で乾燥させ、濃縮すると、トランスー (4-アミノーシクロヘキシル) ーカルバミン酸 t. ーブチルエステル (4 g. O. 0.19 mo.l. 85%) が得られた。

ESI MS m/e 215 M + H⁺ ; ¹ H NMR (400 MHz, DMSO-d_g) δ 6.63 (d, J = 8.0 Hz, 1 H), 3 .11-3.09 (m, 1 H), 2.44-2.37 (m, 1 H), 1.70-1.67 (m, 4 H), 1.41-1.31 (m, 11 H), 1.20-0.95 (m, 4 H).

[0626]

ステップB: トランスー [4-(4-ブロモ-2-トリフルオロメトキシーベンゼン スルホニルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステルの合成

ESI MS m/e 517 M + H⁺; ¹H NMR (400 MHz, DMSO-d₆) $\hat{\sigma}$ 7.99 (d, J = 7.6 Hz, 1 H), 7. 85 (d, J = 8.0 Hz, 1 H), 7.79-7.77 (m, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 3.14-2.9 (m, 2 H), 1.70-1.60 (m, 4 H), 1.34 (s, 9 H), 1.30-1.18 (m, 2 H), 1.14-1.03 (m, 2 H).

[0627]

ステップC: トランス-N-(4-アミノーシクロヘキシル)-4-ブロモ-2-ト リフルオロメトキシーペンゼンスルホンアミドの合成

実施例2338のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 417/419 M + H°; 1 H NMR (400 MHz, DNSO-d_e) δ 7.85 (d, J = 8.4 Hz, 1 H) , 7.79-7.76 (m, 3 H), 3.32 (brs, 2 H), 3.03-2.95 (m, 1 H), 2.41-2.36 (m, 1 H), 1.67-1.57 (m, 4 H), 1.28-1.18 (m, 2 H), 0.99-0.89 (m, 2 H).

ステップD: トランス-4-プロモ-N-[4-(4-ジメチルアミノーキナゾリン - - イルアミノ) - シクロヘキシル] - 2-トリフルオロメトキシーベンゼンスルホン アミドの合成

トランス-N-(4-アミノーシクロヘキシル)-4-プロモ-2-トリフルオロメトキシーペンゼンスルホンアミド(100mg、0, 24mmol)の2-プロパノール(0.5mL)高弦に、実験例1のステップBで得られた(2-クロローキナツリン-4- 4ル)-ジメチル-アミン(54.7mg、0, 26mmol) を加えた。この混合物を、スミス・マイクロウェーブ合成装置を使用して、170℃で15分間加熱した。この混合物を満備し、残留物をクロマトグラフィー(CH $_2$ Cl $_2$ 中の28から48かの2MのN H_3 /MeOH)により精製すると、トランス-4-プロモ-N [4-(4-(3)+3+4)+3+(3)+3

ESI MS m/e 588/590 M + H°; "H NMR (400 MHz, DMS0-d₀) δ 8.02 (d, J = 7.6 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.82-7.77 (m, 3 H), 7.45-7.41 (m, 1 H), 7.25-7.41 (m, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.37 (brs, 1 H), 3.68-3.67 (m, 1 H), 3.16 (s, 6 H), 3.09-3.02 (m, 1 H), 1.89-1.86 (m, 2 H), 1.69-1.67 (m, 2 H), 1.40-1.17 (m, 4 H).

【0629】

実施例2345

【4E285】

トランスー4' ーフルオロービフェニルー4ーカルボン酸 [4-(4-i)/3+i)アミノーキナブリン-2-4ルアミノ)-20630[4-i)7 [0630]

-ステップA: 4'-フルオロービフェニルー4-カルボン酸の合成

アルゴン雰囲気下に、4 ー プロモ友広香酸(5 g、0 、0 2 5 m o 1)のTHF(1 5 0 m L)溶液に、テトラキス(トリフェニルホスフィン)パラジウム(0)(8 6 2 m g 、0、7 5 m m o 1)、2 M の N a 夕 C 0 ュ 水溶液(3 0 m L)および4 ー フルオロフェニルボロン酸(3 ・4 8 g。0、0 2 5 m o 1)の最小駅最のエタノール(~1 0 m L)溶液を加えた。生じた反応混合物を混成下に、アルゴン雰囲気下に一夜撹拌した。反応混合物を混成下に、大水の子とサランで抽出した(3 回)。 有機層を合わせ、M g S O 4 上で乾燥させ、評過し、満縮した。生じた沈殿物を上り、0 3 は5 とり、4 ・ フルオロービフェニルー 4 ー カルボン酸(4、4 g、0、0 2 0 m o 1、8 2 %)が白色の間体として得られた。

(m, 2 H), 7.34-7.31 (m, 2 H).

ステップB: トランスー [4-(4-ジメチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] -カルバミン酸t-ブチルエステルの合成

実施例2344のステップDの手順を使用して、表題の化合物を得た。

ESI NS m/c 386 M + H': 1 H NMR (400 MHz, DMSO-d₄) Ø 7.83 (d, J = 8.0 Hz, 1 H), 7. 46 (t, J = 6.8 Hz, 1 H), 7. 27-7.25 (m, 1 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.71 (d, J = 8.4 Hz, 1 H), 6.38 (brs, 1 H), 3.72 (m, 1 H), 3.17 (s, 6 H), 1.92-1.90 (m, 2 H), 1.79-1.76 (m, 2 H), 1.37 (s, 9 H), 1.34-1.23 (m, 4 H).

ステップC: トランス-4'-フルオロービフェニル-4-カルボン酸[4-(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-シクロヘキシル]-アミドの合成

トランスー [4-(4-i)メチルアミノーキナヅリンー2-4ルアミノ) ーシクロへキシル] ーカルバミン酸 ヒーブチルエステル (0.768、0.20 mm o 1) かの CH_2 C 1_2 (20 m d) 溶液に、 TFA (30 4 μ d 0.39 m m o 1) 8 m k c 1.5 c 2 m m o 1 1_2 (20 m d) 溶液に、 TFA (30 4 μ d 0.39 m m o 1 1_2 k c 1.5 c 1_2 c 1_3 m m o 1 1_2 c 1_3 c 1_4 m 1_4 c 1_4

ESI MS m/e 484 M + H+; 1H NMR (400 MHz, DMSO-dg) & 8.30 (brs, 1 H), 8.12 (brs,

 $\begin{array}{l} 2~\text{H}),~7.92~\text{(d, J=8.4 Hz, 2 H)},~7.77-7.72~\text{(m, 5 H)},~7.44~\text{(brs, 1 H)},~7.34-7.28\\ \text{(m, 3 H)},~3.82~\text{(brs, 2 H)},~3.47~\text{(brs, 6 H)},~2.04~\text{(m, 2 H)},~1.94~\text{(m, 2 H)},~1.54-1.48~\text{(m, 4 H)}. \end{array}$

【0633】

実施例2346

【化286】

シスー $N^2-[4-(4-7$ ロモー2-トリフルオロメトキシーベンジルアミノ) ーシ クロヘキシル $]-N^4-$ tーブチルーキナゾリンー2, 4-ジアミンニトリフルオロ酢酸

[0634]

ステップA: tーブチルー (2ークロローキナゾリンー4ーイル) ーアミンの合成 実施例 1のステップBで得られた 2、4 ージクロローキナゾリン (4g、20 mmo 1) の THF (50 mL) 溶液に、tーブチルアミン (2.15 mL) 20.5 mmo 1) およびジイソプロビルエチルアミン (3.5 mL, 21 mmo 1) を加えた。この混合物を塗温で 2時間撹拌した。この混合物を濃縮し、残留物を E tO A c に溶かした。 有機層を水で洗浄 E L N E S E L で乾燥させ、 E が E L の混合物を濃縮する E と、 E 大ルー (E C E C

ESI NS m/e 236 M + H' ; 'H NMR (400 MHz , DNSO-d₀) δ 8.40 (d, J = 8.4 Hz, 1 H), 7.75-7.36 (m, 2 H), 7.58 (d, J = 8.4 Hz, 1 H), 7.48 (t, J = 7.2 Hz, 1 H), 1.52 (s, 9 H).

[0635]

シスー(4-アミノーシクロヘキシル)ーカルバミン酸tーブチルエステル(122m g、0.57mmo1)の2-プロパノール(2mL)懸濁液に、t-ブチルー(2-ク ロローキナゾリン-4-イル) -アミン (100mg、0.42mmol) およびジイソ プロピルエチルアミン $(180 \mu L, 1 mmo 1)$ を加え、この混合物を、スミス・マイ クロウェーブ合成装置を使用して、170℃で1時間加熱した。生じた溶液を濃縮し、カ ラムクロマトグラフィー (シリカゲル、CH2 C12中の3%MeOH) により精製する と、「4-(4-t-ブチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシル] カルバミン酸 t ーブチルエステル (112mg、65%) が黄色の固体として得られた 。シスー「4-(4-t-ブチルアミノーキナゾリン-2-イルアミノ) -シクロヘキシ ル] ーカルバミン酸tープチルエステル (95mg、0.23mmo1)のCH2 C12 (3mL) 懸濁液に、トリフルオロ酢酸 (2mL) を適加した。この反応混合物を室温で 2時間撹拌した。溶液を濃縮し、飽和NaHCO。水溶液および1Mの水酸化ナトリウム 水溶液でアルカリ化し(pH=9)、水層をCH。C1。で抽出した(3回)。合わせた 有機層をMgSOa上で乾燥させ、沪過し、濃縮した。沪過により固体を集めると、シス アミン(44.6 mg、53%)が黄色の固体として得られた。

ESI MS m/e 314 M + H + : 1 H NMR (400 MHz, CDClo) & 7.48 (t. J = 6.8 Hz, 1 H), 7.3

8 (m, 2 H), 7.04 (t, J = 8.0 Hz, 1 H), 5.42 (brs, 1 H), 4.15 (m, 1 H), 2.85 (m, 1 H), 1.20-1.90 (m, 17 H).

[0636]

ステップC: シスーN2 - [4-(4-7ロモ-2-トリフルオロメトキシーベンジルアミノ) -シクロヘキシル] - N4 - t - ブチルーキナゾリン-2、4-ジアミンニトリフルオロ配約版の合成

実施例2341のステップCの手順を使用して、表題の化合物を得た。

ESI NS m/e 566 M + H⁺ ; ¹H NMR (400 MHz, $CDCI_9$) δ 9.36 (d, J = 8.0 Hz, I H), 7.6 7-7-7.64 (m, I H), 7.53-7.48 (m, I H), 7.43 (s, I H), 7.33 (m, I H), 6.17 (s, I H), 4.28 (s, I H), 3.35 (m, I H), 2.14 -1.60 (m, I H), 4.75 (m, I

実施例2347

[4287]

4-プロモ-N- $\{4-$ [(4-ジメチルアミノ-キナゾリン-2-イルアミノ)-メチル]-ベンジル $\}-$ 2-トリフルオロメトキシーベンゼンスルホンアミド

[0638]

ステップA: $\{4-[(4-i)x+i)y=1-x+iy=1-x+$

実施例2330のステップDの手順を使用して 表題の化合物を得た。

ESI NS m/e 377 M + H' : 1H NMR (400 MHz, DMSO-d₆) δ 8.38 (brs. 1 H), 8.08 (brs. 1 H), 7.70 (brs. 1 H), 7.47 (brs. 1 H), 7.36 (t, J = 6.2 Hz, 1 H), 7.30 (d, J = 8.0 Hz, 3 H), 7.16 (d, J = 7.6 Hz, 2 H), 4.60 (d, J = 6.4 Hz, 2 H), 4.07 (d, J = 6.0 Hz, 2 H), 3.39 (s, 6 H), 1.37 (s, 9 H).

[0639]

ステップB: $N^2 - (4-\mathcal{P} \ge J \times \mathcal{F} \mathcal{N} - \mathcal{N} \times \mathcal{F} \mathcal{N} + \mathcal{N} \times \mathcal{F} \mathcal{N} + \mathcal{N} \times \mathcal{F} \mathcal{N} + \mathcal{N} \times \mathcal{F} \mathcal{$

冷却された(4- [(4-ジメチルアミノーキナゲリン-2-イルアミノ) - メチル] - ベンジル | - カルバミン酸t - ブチルエステル (3.90 g.9.57mmol) のM e ○日溶液に、Et 2 ○中の1 MのHC I (67.0ml 67.0mmol) を加え、 溶液を一茂模拌した。生じた混合物を灌輸すると、N²-(4-アミノメチルーベンジル) - N⁴-ジメナルーキナゲリン-2、4-ジアミン塩酸塩が白色の結晶固体 (3 - 48 g.95.6%) として得られた。

ESI MS m/c 508.2 M (游論理型) + H*; ¹H NMR (400 MHz, CD₀00) δ 8.16 (d, J = 7.2 Hz, 1 H), 7.75 (brs, 1 H), 7.48 (m, 5 H), 7.39 (brs, 1 H), 4.76 (s, 2 H), 4.12 (s, 2 H), 3.51 (m, 6 H).

【0640】

ステップC: 4-プロモ-N- $\{4-$ [(4-ジメチルアミノ-キナゲリン-2-4+アミノ)-メチル]-ベンジル $\}-$ 2-トリフルオロメトキシ-ベンゼンスルホンアミドの合成

 $N^2 = (4-7 \approx J/3 + \hbar u - \kappa v > \hat{\nu} h) - N^4 - \hat{\nu} x + \hbar u - \kappa + \tau v + \nu v - 2 - 4$ $-\hat{\nu} r > v = \hat{\mu} k = (50.0 mg, 0.13 mm o 1) 、塩化4 - プロモー2 - トリフ$ ルオロメトキシーベンゼンスルボニル (53.3 mg, 0.157 mm o 1) およびジイ ESI NS m/e 612 M + H: ; ¹H NMR (400 MHz, DMSD-d_g) δ 8.51 (t, J = 6.4 Hz, 1 H), 8 .06 (brs. 1 H), 7.76-7.67 (m. 4 H), 7.54-7.41 (m. 2 H), 7.24 (d, J = 7.6 Hz, 3 H), 7.14 (d, J = 8.0 Hz, 2 H), 4.56 (d, J = 6.0 Hz, 2 H), 4.08 (d, J = 6.0 Hz, 2 H), 3.36 (s. 6 H).

【0641】 実施例2348

実施例2348 【化288】

4 - 7 ロモーN - [4 - (4 - i y x f h r z / - + f y f y - 2 - 4 h r z /) - フェニル] <math>- 2 - 1 リフルオロメトキシーベンゼンスルホンアミド [0642]

ステップA: (4-アミノ-フェニル) - カルバミン酸t-ブチルエステルの合成 実施例2344のステップAの手順を使用して、表題の化合物を得た。 ESI NS m/e 209 M + H: : : IR NNR (400 MHz. DMSO-d-) 8 8.75 (s. 1 II) 7.03 (d. J =

Est no live $2\sqrt{9}$ N + H ; +H now $4\sqrt{400}$ MHz, $\sqrt{600}$ G, $\sqrt{6}$ S, $\sqrt{$

ESI NS m/e 280 M + II⁺; ¹ II NMR (400 MHz, D_c0) δ 7.84 (d, J = 8.8 Hz, 1 ID, 7.54 (dd, J = 7.8, 1.2 Hz, 1 ID, 7.46 (dt, J = 9.5, 2.7 Hz, 2 II), 7.27-7.16 (m, 4 II), 3.35 (b, 3 II), 3.12 (b, 3 II).

ステップC: 4 - プロモーN - [4 - (4 - ジメチルアミノーキナゾリン-2 - イル アミノ) - フェニル] - 2 - トリフルオロメトキシーベンゼンスルホンアミドの合成 実施例2347のステップCの手順を使用して、表題の化合物を得た。

ESI MS m/e 584 M + H'; 1 H NNR (400 MHz, DMSO-d₆) δ 10.27 (brs, 1 H), 9.14 (brs, 1 H), 7.98 (d, J = 8.4 Hz, 1 H), 7.80-7.71 (m, 5 H), 7.60-7.56 (m, 1 H), 7.44 (d

, J = 8.4 Hz, 1 H), 7.15 (t, J = 7.4 Hz, 1 H), 6.95 (d, J = 16.8 Hz, 2 H), 9.29 (s, 6 H). [0645]

実施例2349 【作289】

4' - クロロービフェニル - 4 - カルボン酸 [4 - (4 - \forall x チルアミノーキナゾリン - 2 - 4 ルアミノ) - フェニル] - アミドトリフルオロ酢酸塩 [6646]

ステップA: 4'-クロロービフェニル-4-カルボン酸[4-(4-ジメチルアミノーキナゾリン-2-イルアミノ)-フェニル]-アミドトリフルオロ酢酸塩の合成

ESI MS m/e 494 M + H : ; H NMR (400 MHz, DMSD-d_e) δ 10.33 (s, 1 H), 8.17 (d, J = 8.0 Hz, 1 H), 8.80 (d, J = 8.8 Hz, 2 H), 7.85-7.75 (m, 7 H), 7.63-7.53 (m, 6 H), 7.36 (t, J = 7.6 Hz, 1 H), 3.46 (s, 6 H). [0647]

実施例2350

【化290】

N-[1-(4-ジメチルアミノーキナゾリン-2-イル)ービベリジン-4-イルメ チルコ-2-フルオローベンゼンスルホンアミド

[0648]

ステップA: N-[1-(4-ジメチルアミノーキナゾリン-2-イル)ーピペリジ ン-4-イルメチル]-2-フルオローベンゼンスルホンアミドの合成

$$\begin{split} & \text{ESI MS n/e } \ 444 \ \text{M} + \text{H}^+; \ ^1\text{II} \ \text{NMR} \ (400 \ \text{MHz}, \ DMSO-d_0) \ \partial \ 7.98 \ (\text{n. 1 II}), \ 7.86 \ (\text{m. 1 II}), \ 7.87 \ (\text{m. 1 II}), \ 7.47-7.29 \ (\text{m. 4 II}), \ 7.02 \ (\text{m. 1 II}), \ 4.69 \ (\text{m. 2 II}), \ 3.21 \ (\text{s. } 6 \ \text{H}), \ 2.76 \ (\text{m. 4 II}), \ 1.66 \ (\text{m. 3 II}), \ 1.00 \ (\text{m. 2 II}). \end{split}$$

実施例2329の手順を使用し、分取HPLCにより精製して、実施例2351~28 19の化合物を得た。

実施例2331の手順を使用し、分取HPLCにより精製して、実施例2820~2842の化合物を得た。

実施例2332の手順を使用して、実施例2843~3003の化合物を得た。

実施例2333の手順を使用して、実施例3004~3090の化合物を得た。

実施例2334の手順を使用して、実施例3091~3161の化合物を得た。

実施例2335の手順を使用し、分取HPLCにより精製して、実施例3162~3178の化合物を得た。

実施例2336の手順を使用して、実施例3179~3208の化合物を得た。

実施例2337の手順を使用して、実施例3209の化合物を得た。 実施例2338の手順を使用して、実施例3210~3225の化合物を得た。

実施例2339の手順を使用して、実施例3226~3228の化合物を得た。

実施例2340の手順を使用して、実施例3229~3231の化合物を得た。

実施例2341の手順を使用して、実施例3232~3393の化合物を得た。

実施例2342の手順を使用して、実施例3394~3472の化合物を得た。

実施例2343の手順を使用して、実施例3473~3527の化合物を得た。

実施例2346の手順を使用して、実施例3528~3535の化合物を得た。

大地内とフサロッチ順を使用して、大地内フランスでフラフップに占物を行た。

実施例2347の手順を使用し、分取HPLCにより精製して、実施例 $3536\sim3545$ の化合物を得た。

実施例2348の手順を使用し、分取HPLCにより精製して、実施例 $3546\sim3548$ の化合物を得た。

実施例2349の手順を使用して、実施例3549~3567の化合物を得た。 実施例2350の手順を使用し、分取HPLCにより精製して、実施例3568~35 79の化合物を得た。

【表369】

実施例番号	構造	ESI-MS	保持時間(分)
2351	CF,CO,H	454.0 (M + H)	3.60
2352	OF,CO,H	530.2 (M + H)	4.02
2353	20F,00 ₁ H	545.4 (M + H)	3.05
2354	CF,CO,H	496.4 (M + H)	3.49
2355	CF,CO,H	537.4 (M + H)	3.24
2356	CF,CO,H	440.0 (M + H)	3.47

【表370】

(±	no	~	3	١.

(24			
2357	HN N H N S O 2	484.4 (M + H)	3.49
2358	OH N N N N N N N N N N N N N N N N N N N	470.2 (M + H)	3.20
2359	2CF,CO,H	539.4 (M+H)	3,12
2360	CF ₂ CO ₂ H	522.2 (M + H)	4.22
2361	10 N N N N N N N N N N N N N N N N N N N	599.0 (M+H)	3.48
2362	HN	560.2 (M + H)	3.99

【表371】

(表のつづき)

2363		548.4 (M + H)	4.06
2364	NN N S S S S S S S S S S S S S S S S S	534.0 (M + H)	3.11
2365	HN	502.4 (M+H)	3.81
2366	CF,CO;H	530.2 (M + H)	4.04
2367	CF;CO;H	532.4 (M + H)	3.85
2368	CF,CO,H	520.2 (M + H)	3.86

【表372】

(200-			
2369	CF,CO,H	474.2 (M + H)	3.72
2370	OF SCOUNT	518.2 (M + H)	3.71
2371	10 N N N N N N N N N N N N N N N N N N N	573.2 (M + H)	3.15
2372	CF;CO;H	556.2 (M+H)	4.38
2373	20F,CO,H	633.4 (M+H)	3.48
2374	OF,CO,H	594.2 (M+H)	4.23

【表373】

(表のつづき)	

2375	CF/CO/H	582.4 (M+H)	4.26
2376	CF ₂ CO ₂ H	536.2 (M+H)	4.06
2377	HH N N N N N N N N N N N N N N N N N N	564.2 (M+H)	4.32
2378	OFSCO,H	566.4 (M+H)	4.11
2379	CF,CO,H	554.2 (M + H)	4.10
2380	OF,CO,H	614.2 (M+H)	4.26

【表374】

(30.00			
2381	CF ₂ CO ₂ H	524.4 (M+H)	3.87
2382	CF;CO,H	568.2 (M + H)	3.87
2383	CFyCO,H	586.2 (M+H)	4.18
2384	CF ₂ CO ₂ H	614.2 (M+H)	4,45
2385	NH CI	620.4 (M+H)	4.32
2386	CF,CC,H	468.2 (M+H)	3.20

【表375】

(300) > > 0)			
2387	CF,CO,H	551.6 (M+H)	2.82
2388	CF,CO,H	454.0 (M+H)	3.06
2389	OF SCO, H	498.6 (M+H)	3.10
2390	HH OH N N N N N N N N N N N N N N N N N N	484.2 (M + H)	2.76
2391	1N N N N N N N N N N N N N N N N N N N	553.6 (M+H)	2.40
2392	CF,CO,H	536.4 (M+H)	3.77

【表376】

2393	IN N N N N N N N N N N N N N N N N N N	613.4 (M + H)	2.74
2394	CF ₂ CO ₂ H	623.4 (M+H)	3.06
2395	OF, CO, FI	574.4 (M+H)	3.51
2396	CF5CO ₂ H	562.2 (M+H)	3.59
2397	10 N N N N N N N N N N N N N N N N N N N	548.6 (M + H)	2.48
2398	CF ₂ CO ₂ h	516.4 (M + H)	3.39

【表377】

2399	CF,CO,H	550.4 (M+H)	3.56
2400	OF CEPCON	546.2 (M + H)	3.38
2401	CF,CO,H	534.0 (M+H)	3.43
2402	CF;CO,H	608.2 (M + H)	3.75
2403	CF,CO,H	518 (M+H)	3.22
2404	NN O O O O O O O O O O O O O O O O O O	562.2 (M + H)	3.20

【表378】

(4	きのつ	づき)

2405	CF,CO,H	626.0 (M+H)	3.76
2406	CF5CO,H	614.0 (M+H)	3.72
2407	OF,CO,H	610.0 (M + H)	3.57
2408	OFFICE H	598.2 (M+H)	3.97
2409	CF,CO,H	564.2 (M + H)	3.46
2410	CF/CO/H	508.0 (M+H)	3,44

【表379】

			1
2411	CF,CO,H	616.2 (M+H)	3.94
2412	NAME OF SCOPE	604.2 (M+H)	4.51
2413	OF,CO,H	600.2 (M+H)	4.32
2414	CF,CO,H	588.0 (M+H)	4.38
2415	OFFICIAL CHECK	650.2 (M+H)	4.20
2416	CF,CO,H	726.4 (M + FI)	4.52

【表380】

2417	20F,00,H	741.6 (M+H)	3.59
2418	(F ₁ CO ₂)	692.2 (M+H)	4.12
2419	20F,00,H	767.6 (M+H)	4.59
2420	CF,CO,H	733.4 (M + H)	3.87
2421	CF,CO,H	636.2 (M+H)	4.08
2422	11	680.2 (M + H)	4.07

【表381】

2423	", 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	666.0 (M + H)	3.86
2424	2CF,CO,H	735.4 (M+H)	3.50
2425	CF,CO,H	718.4 (M+H)	4.64
2426	20F;00;H	795.6 (M+H)	3.70
2427	CF ₂ CO ₂ H	744.2 (M+H)	4,43
2428	CF ₂ CO,H	698.0 (M+H)	4.26

【表382】

2429	CF/CO/H	732.4 (M+H)	4.37
2430	CF2CO,H	726.4 (M+H)	4.52
2431	CENCONI CENCON	728.4 (M+H)	4.36
2432	CF,CO,H	716.4 (M+H)	4,32
2433	CF;CO;H	616.0 (M+H)	4.22
2434	CF.CO.H	692.0 (M + H)	4.57

【表383】

2435	20F,00,H	707.2 (M + H)	3.64
2436	(°) (°) (°) (°) (°) (°) (°) (°) (°) (°)	658.2 (M+H)	4.15
2437	CF,CO,H	733.2 (M+H)	4.68
2438	CF,CO,H	699.2 (M+H)	3.88
2439	NA CF,CO,M	646.4 (M+H)	4.08
2440	18) OH 18) 0 P 18	632.4 (M+H)	3.86

【表384】

2441	CF ₂ CO ₂ H	701.4 (M+H)	3.51
2442	CF;CO;H	684.2 (M + H)	4.75
2443	M1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	761.2 (M+H)	3.74
2444	CF;CO;H	722.2 (M + H)	4.59
2445	CF,CO,H	710.2 (M+H)	4.60
2446	100 N N N N N N N N N N N N N N N N N N	696.2 (M+H)	3.53

【表385】

2447	CF ₂ CO ₂ H	664.2 (M+H)	4.39
2448	CF2CO,H	692.0 (M + H)	4.65
2449	CF ₂ CO ₂ H	698.0 (M+H)	4.59
2450	OFFCOM	694.2 (M + H)	4.42
2451	CF,CO,H	682.2 (M+H)	4.42
2452	CF,COM	590.2 (M + H)	4.28

【表386】

2453	CF,CO,H	666.2 (M + H)	4.61
2454	2CF/COpH	681.2 (M+H)	3.72
2455	CF,CO,H	632.4 (M+H)	4.21
2456	CONTROL OF THE STATE OF THE STA	707.2 (M + H)	4.70
2457	CF,CO,H	673.2 (M + H)	3.94
2458	CF ₂ CO ₂ H	576.2 (M + H)	4.16

【表387】

2459	CF;CO;H	620.4 (M + H)	4.19
2460	P, CH CF, CO, H	606.6 (M+H)	3.94
2461	2CF,CO,H	675.4 (M+H)	3.59
2462	CF;CO,M	658.6 (M + H)	4.82
2463	20F5COpH	735.4 (M + H)	3.82
2464	0,	696.0 (M + H)	4.56

【表388】

2465	CF;CO;H	684.4 (M+H)	4.61
2466	2CF/COpH	670.2 (M + H)	3.56
2467	CF,CO,H	638.2 (M+H)	4.43
2468	F, F	666.2 (M+H)	4.68
2469	CF,CO,H	672.2 (M+H)	4.60
2470	CF,CO,H	668.2 (M+H)	4,44

【表389】

2471	CF ₂ CO ₂ H	656.4 (M+H)	4,47
2472	20F,CO,H	595.4 (M+H)	3.32
2473	IN O	534.0 (M+H)	3.81
2474	NN OH	520.4 (M + H)	3.56
2475	2CF,CO,H	589.2 (M+H)	3.25
2476	OFSCOM	572.4 (M + H)	4.47

【表390】

(表のつづき))
[

(300) > > 0			
2477	20F,CO,H	649.4 (M + H)	3.50
2478	CF,CO,H	610.4 (M + H)	4.26
2479	CF,CO,H	598.2 (M+H)	4.30
2480	20FyCOpH	584.4 (M + H)	3.29
2481	CF;CC)H	552.6 (M+H)	4.11
2482	CF5CO,H	580.6 (M + H)	4.40

【表391】

2483	CF,CO,H	586.2 (M + H)	4,30
2484	CF,CO,H	582.4 (M + H)	4.14
2485	CF _{SCO,P} H	570.2 (M + H)	4.14
2486	CF,CO,H	504.2 (M + H)	3.94
2487	OF,CO,H	580.6 (M + H)	4.34
2488	205,CO,H	595.2 (M + H)	3.41

【表392】

2489	CF,CO,H	490.2 (M + H)	3.84
2490	OF,CO,M	534.2 (M + H)	3.84
2491	CF,CO,H	520.4 (M + H)	3.60
2492	SCENCONH	589.2 (M+H)	3.29
2493	CF,CO,H	572.4 (M + H)	4.51
2494	COF,COM	649.4 (M + H)	3.52

【表393】

2495	CF,CO,H	610.2 (M + H)	4.29
2496	CF,CO,H	598.2 (M+H)	4.34
2497	CF,CO,H	552.6 (M+H)	4.13
2498	CE ² CO ² H	580.6 (M + H)	4.37
2499	CF,CO,H	586.2 (M + H)	4.30
2500	CF,CO,H	570.2 (M + H)	4.18

【表394】

(32.12 2 2 2			
2501	2CF,CO ₂ H	547.4 (M + H)	3.69
2502	2CF,CO,H	623.4 (M + H)	4.10
2503	SCF,CO,H	638.2 (M+H)	3.20
2504	20F;CO;H	589.2 (M + H)	3.62
2505	CCITE OF THE COLUMN	664.4 (M + H)	4.25
2506	OF SCOH	630.4 (M + H)	3.35

【表395】

2507	2CF,CO,H	533.2 (M+H)	3.57
2508	20F500jH	577.6 (M+H)	3.58
2509	IN OH	563.2 (M+H)	3.28
2510	3CF,CO,H	632.6 (M+H)	3.06
2511	ZOF,CO,H	615.4 (M+H)	4.30
2512	SCF,CO,H	692.2 (M + H)	3.38

【表396】

2513	HNN H OF TO THE STATE OF THE ST	641.4 (M + H)	4.13
2514	2CF,CO,H	595.4 (M+H)	3.89
2515	ZCF,CO,H	623.4 (M + H)	4.20
2516	20F;CO;H	629.2 (M+H)	4.15
2517	2CF,CO,H	613.2 (M+H)	4.02
2518	CF,CO,H	528.2 (M+H)	4.03

【表397】

2519	CF,CO,H	570.2 (M+H)	3.96
2520	CF,CO,F	611.0 (M+H)	3,69
2521	CF,CO,H	514.2 (M+H)	3.94
2522	OCHOOM	625.4 (M+H)	3.94
2523	CF ₂ CO ₂ H	558.2 (M+H)	3.96
2524	OF CF, CO, H	544.2 (M + H)	3.67

【表398】

	つづ	

(34.1			
2525	2CF,CO,H	613.2 (M+H)	3.31
2526	IN N N N N N N N N N N N N N N N N N N	596.2 (M+H)	4.69
2527	20F,CO,H	673.4 (M+H)	3.57
2528	GF,CO,H	634.4 (M+H)	4.41
2529	CF,CO,H	622.2 (M+H)	4.45
2530	CF,CO,H	576 (M + H)	4.25

【表399】

2531	IN I	604.4 (M+H)	4.52
2532	CF/CO,H	610.2 (M+H)	4.40
2533	OF,CO,H	606.4 (M+H)	4.29
2534	CF,CO,H	594.2 (M + H)	4.27
2535	ZOF,CO,H	571.8 (M + H)	4.99
2536	CF,CO,H	609.8 (M + H)	4.43

【表400】

2537	CF ₂ CO ₂ H	536.4 (M + H)	4.86
2538	CF,CO,H	564.6 (M + H)	5.13
2539	CF ₁ CO ₂ H	530.6 (M + H)	4.65
2540	2CF,CO ₂ H	605.6 (M + H)	5.21
2541	CF,CO,H	571.6 (M + H)	4.45
2542	HH CONTRACTOR OF THE PROPERTY	568.8 (M + H)	4.09

【表401】

(30,0,0,00)			
2543	CF ₂ CO ₂ H	570.6 (M + H)	5.11
2544	20F,CO,H	629.6 (M + H)	4.37
2545	20F,00,H	655.6 (M + H)	5.35
2546	CE,CO,H	621.8 (M + H)	4.63
2547	CF,CO,H	606.8 (M + H)	5.45
2548	CFSCOAH	644.6 (M + H)	5.21

【表402】

2549	CF,CO,H	632.6 (M + H)	5.25
2550	2CF,CO _b H	618.6 (M + H)	4.29
2551	CF,CO,H	616.6 (M + H)	5.14
2552	CE,CO,H	604.6 (M + H)	5.13
2553	CE-CO-H	544.6 (M + H)	5.03
2554	SCENOH	585.6 (M + H)	5.13

【表403】

(表のつづき)	

(34.)			
2555	2CF,CO,H	623.6 (M + H)	4.25
2556	CF,CO,H	574.6 (M + H)	4.73
2557	CC, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	649.0 (M + H)	5.25
2558	CF,CCO,H	615.0 (M + H)	4.51
2559	HIN O	617.4 (M + H)	4.15
2560	OF,CO,H	600.6 (M + H)	5.37

【表404】

(表のつづき)		
2561	2CF,CO,H	677.0 (M + H)	4.45
2562	CF,CO,H	638.6 (M + H)	5.18
2563	2CF,CO,H	612.6 (M + H)	4.16
2564	CF ₂ CO ₂ H	580.0 (M + H)	5.01
2565	HAN THE STATE OF SCOTH	608.0 (M + H)	5.26
2566	20F/CO ₂ H	613.6 (M + H)	4.44

【表405】

(表のつづき)			
2567	CCL 2CF,CO,H	639.6 (M + H)	5.48
2568	CF,CO,M	552.6 (M + H)	4.92
2569	2CF,CO2H	607.8 (M + H)	4.33
2570	2CF,CO,H	667.4 (M + H)	4,67
2571	CF,CO,H	628.6 (M + H)	5.29
2572	20F,CO,H	602.6 (M + H)	4.35

【表406】

(表のつづき)			
2573	IN THE COLOR	570.6 (M + H)	5.23
2574	CT: C-ISCOM	805.4 (M + H)	4.91
2575	20F,CO,H	730.8 (M + H)	4.47
2576	CF,CO,H	771.6 (M + H)	4.93
2577	CF,CO,H	745.6 (M + H)	5.01
2578	CF,CO,H	580.8 (M + H)	5.18

【表407】

(表のつづき))		
2579	20F,CO,H	621.8 (M + H)	5.27
2580	CF,CO,H	587.6 (M + H)	4.51
2581	20F,CO,H	584.6 (M + H)	4.21
2582	CF,CO,H	582.8 (M + H)	5.03
2583	Proofe Proofe	653.8 (M + H)	4.90
2584	C	604.6 (M + H)	5.33

【表408】

(表のつづき)	l		
2585	20F,COJH	645.6 (M + H)	5.41
2586	HN N N N N N N N N N N N N N N N N N N	458.6 (M + H)	4.39
2587	CF ₂ CO ₂ H	458.6 (M + H)	4.40
2588	HN N H O CI	474.6 (M + H)	4.39
2589	EF-CO.H	474.6 (M + H)	4.58
2590	CF ₂ CO ₂ H	542.6 (M + H)	4.79

【表409】

2591	CF ₂ CO ₂ H	518.6 (M + H)	4.51
2592	CF ₁ CO ₂ H	500.8 (M + H)	4.33
2593	OF,CO,H	524.6 (M + H)	4.61
2594	CF,CO,H	508.6 (M + H)	4.57
2595	CE/CO'H	496.8 (M + H)	4.87
2596	CF,CO,H	446.8 (M + H)	4.29

【表410】

2597	CF,CO,H	472.8 (M + H)	4.47
2598	CF _E CO,H	472.8 (M + H)	4.53
2599	N N N O CI	488.6 (M + H)	4.55
2600	CF ₂ CO,H	487.6 (M + H)	4,65
2601	CF,CO,H	556.6 (M + H)	4.91
2602	CF ₂ CO ₂ H	532.4 (M + H)	4.61

【表411】

(24.1 /			
2603	CF ₂ CO ₂ H	514.8 (M + H)	4,43
2604	CF,CO,H	538.6 (M + H)	4.80
2605	CF ₁ CO ₂ H	510.6 (M + H)	5.00
2606	CF,CO,H	460.6 (M + H)	4,40
2607	CF,CO,H	486.6 (M + H)	4.60
2608	CF ₂ CO ₂ H	484.6 (M + H)	4.64

【表412】

2609	OF,CO,H	503.6 (M + H)	4.74
2610	N N N N N N N N N N N N N N N N N N N	502.6 (M + H)	4.86
2611		570.8 (M + H)	5.00
2612	CF,CO,F	546.0 (M + H)	4.80
2613	CF,CO,FI	528.8 (M + H)	4.63
2614	OF,CO,H	552.8 (M + H)	4.90

【表413】

2615	CF,CO,H	536.6 (M + H)	4.82
2616	CF ₂ CO ₂ H	524.8 (M + H)	5.07
2617	CF,CO,H	474.6 (M + H)	4.55
2618	OF,CO,M	468.4 (M + H)	4.59
2619	CF ₂ CO,H	502.6 (M + H)	4.81
2620	CF,CO,H	552.8 (M + H)	4,94

【表414】

妻のつっ	

2621	OF,CO,H	482.6 (M + H)	4.73
2622	CF ₂ CO ₂ H	546.6 (M + H)	4.85
2623	CF ₁ CO ₂ H	536.4 (M + H)	5.08
2624	OF,CO,H	630.4 (M + H)	5.11
2625	CF,CO,H	604.6 (M + H)	5.16
2626	NN H OFFICIAL CENTRAL	518.6 (M + H)	4.75

【表415】

2627	CF,CO,M	518.6 (M + H)	4.91
2628	205;00,н	561.6 (M + H)	4.61
2629	OF,CO,H	500.8 (M + H)	4.75
2630	OF,CO,H	500.2 (M + H)	4.85
2631	OF SCOUNT	516.6 (M + H)	4.81
2632	OF-SCO,H	516.6 (M + H)	4.95

【表416】

-	(表のつづき)	

2633	CF/CO ₂ H	584.6 (M + H)	5.18
2634	CF,CO,H	560.6 (M + H)	4.87
2635	CF;CO,H	542.8 (M + H)	4.80
2636	OF JOSO JA	566.6 (M + H)	5.01
2637	CF5CO.H	550.8 (M + H)	4.95
2638	CF,CO,H	538.6 (M + H)	5.20

【表417】

2639	CF,CO,H	488.6 (M + H)	4.65
2640	OF SCOPE	482.6 (M + H)	4.73
2641	CF ₂ CO ₂ H	516.8 (M + H)	4.97
2642	CF ₂ CO ₂ H	566.6 (M + H)	5.12
2643	CF,CO,H	496.8 (M + H)	4.89
2644	OF,CO,H	560.0 (M + H)	4.98

【表418】

(表のつづき)	

2645	CF ₂ CO ₂ H	550.6 (M + H)	5.21
2646	OF,CO,H	532.6 (M + H)	4.99
2647	CF;CO;H	532.6 (M + H)	5.03
2648	2CF;CO;H	575.8 (M + H)	4.80
2649	CF ₂ CO ₂ H	486.6 (M + H)	4.64
2650	CF5CO;H	486.6 (M + H)	4.66

【表419】

(表)		

(XV))) e			
2651	HII L	502.6 (M + H)	4.72
2652	HN H CF,CO,M	502.6 (M + H)	4.87
2653	CF,CO,H	570.6 (M + H)	5.03
2654	HH N N N N N N N N N N N N N N N N N N	546.6 (M + H)	4.77
2655	CF,CO,H	528.8 (M + H)	4.68
2656	HN N N O O O O O O O O O O O O O O O O O	552.8 (M + H)	4.89

【表420】

441201			
(表のつづき)			
2657	CF5CO ₂ H	536.6 (M + H)	4.85
2658	CF,CO,H	524.8 (M + H)	5.15
2659	CF;CO,H	474.8 (M + H)	4.63
2660	CF,CO,H	468.4 (M + H)	4.61
2661	CF,CO,H	502.6 (M + H)	4.86
2662	HN THE CESCO, H	546.6 (M + H)	4.64

【表421】

(表			

(200)			
2663	IN THE CENTRAL CONTRACTOR CONTRAC	536.4 (M + H)	4.81
2664	CF2COH	630.4 (M + H)	4.85
2665	CF,CO,H	604.6 (M + H)	4.87
2666	N N N N N N N N N N N N N N N N N N N	518.6 (M + H)	4.67
2667	CF,CO,H	518.6 (M + H)	4.90
2668	2CF,CO,PI	561.6 (M + H)	4.64

【表422】

(表のつづき))		
2669	05,00,H	500.8 (M + H)	4.73
2670	CF,CO,H	500.8 (M + H)	4.74
2671	HN CF,CO,H	516.6 (M + H)	4.89
2672	OF,CO,M	516.6 (M + H)	4.93
2673	HH N H O Br	560.0 (M + H)	4.89
2674	IN THE SECOND CESCON	542.8 (M + H)	4.76

【表423】

(30,0) 2 2 6)			
2675	IN N O O F F	566.6 (M + H)	5.03
2676	HH N N OFF	550.8 (M + H)	4.96
2677	OFSCOPH	538.8 (M + H)	5.25
2678	HN N N N N N N N N N N N N N N N N N N	488.6 (M + H)	4.67
2679	HN X	482.4 (M + H)	4.71
2680	HN N N N N N N N N N N N N N N N N N N	516.6 (M + H)	4.95

【表424】

(32.00			
2681	CF,CO,H	566.8 (M + H)	5.07
2682	CF,CO,H	496.8 (M + H)	4.83
2683	CF ₂ CO ₂ H	560.6 (M + H)	5.01
2684	CF,CO,H	550.6 (M + H)	5.07
2685	HN H O O F F OFFORM	644.6 (M + H)	5.29
2686	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	618.6 (M + H)	5.25

【表425】

(表のつづき	١

(変の・プラさ)			
2687	CF,CO,H	532.6 (M + H)	5.01
2688	OF,CO,H	532.6 (M + H)	5.04
2689	2CF,CO,H	575.8 (M + H)	4.75
2690	HN N N N N N N N N N N N N N N N N N N	484.6 (M + H)	4.51
2691	CF,CC,H	500.8 (M + H)	4.59
2692	OF,CO,H	500.8 (M + H)	4.71

【表426】

2693	NH N	544.6 (M + H)	4.63
2694	N N N N N N N N N N N N N N N N N N N	526.8 (M + H)	4.55
2695	OF, CO, H	550.6 (M + H)	4.79
2696	OF,CO,H	534.6 (M + H)	4.69
2697	HH. A. H. A.	522.4 (M + H)	5.03
2698	HN A H A CF3CO ₂ H	472.8 (M + H)	4.43

【表427】

2699	CF,CC,H	466.6 (M + H)	4.50
2700	IN A CFSCO,H	550.6 (M + H)	4.87
2701	CF,CO,H	480.6 (M + H)	4.65
2702	OF,CO,H	544.6 (M + H)	4.75
2703	CF-CO.H	534.6 (M + H)	4.90
2704	CF ₂ CO ₂ H	628.6 (M + H)	5.08

【表428】

2705	CF2CO ₂ H	602.6 (M + H)	5.10
2706	CF;CO;H	516.8 (M + H)	4.71
2707	CF,CO,H	516.8 (M + H)	4.81
2708	HN A H CONTROL H	559.6 (M + H)	4.50
2709	CE,CO,H	498.8 (M + H)	4.64
2710	OF,CO,H	498.8 (M ÷ H)	4.73

【表429】

(表のつづき)	•		
2711	CF,CO,H	514.8 (M + H)	4.87
2712	OF,CO,H	564.6 (M + H)	4.93
2713	OF,CO,H	548.6 (M + H)	4.87
2714	OF,CO,H	536.6 (M + H)	5.19
2715	CE-CO'H	603.8 (M + H)	4.76
2716	CF,CO,H	603.4 (M + H)	4.87

【表430】

(表のつづき)	
---------	--

(次のつつさ)			
2717	CF,CO,H	671.6 (M + H)	5.05
2718	CF,CO,H	647.6 (M + H)	4.79
2719	CF,CO,H	629.8 (M + H)	4.67
2720	CF,CO,H	653.8 (M + H)	4.91
2721	+ CF,CO,H	637.8 (M + H)	4.85
2722	CF,CO,H	625.8 (M + H)	5.14

【表431】

(24-2			
2723	CF ₂ CO ₂ H	575.6 (M + H)	4.63
2724	CE,CO,H	569.8 (M + H)	4.66
2725	CF,CO,H	603.8 (M + H)	4.88
2726	CF,CO,H	653.8 (M + H)	5.01
2727	OF,CO,H	583.8 (M + H)	4.77
2728	CF,CO,H	647 (M + H)	4.92

【表432】

2729	CF,CO,H	637.8 (M + H)	5.13
2730	CF,CO,H	731.6 (M + H)	5.19
2731	CTINO-HOY	705.8 (M + H)	5.22
2732	CF,CO,H	619.8 (M + H)	4.91
2733	CF,CO,H	619.8 (M + H)	4.93
2734	2CF,CO,H	663.0 (M + H)	4.67

【表433】

2735	CF,CO,H	631.8 (M + H)	5.01
2736	OF,CO,H	699.0 (M + H)	5.19
2737	OFICOH	675.8 (M + H)	4.95
2738	OF,CO,H	657.8 (M + H)	4.81
2739	OFFICIAL F	665.8 (M + H)	4.97
2740	CF,CO,H	653.8 (M + H)	5.27

【表434】

2741	CF ₂ CO ₂ H	603.4 (M + H)	4.77
2742	OFICOH	597.8 (M + H)	4.79
2743	CF,CO,H	631.8 (M + H)	5,02
2744	CF,CO ₂ H	681.8 (M + H)	5.14
2745	OF,CO,H	611.8 (M + H)	4.93
2746	CF ₂ CO ₂ H	675.0 (M + H)	5.05

【表435】

2747	OF SCOUN	665.8 (M + H)	5.29
2748	CF ₅ CO ₂ H	759.6 (M + H)	5.31
2749	CF,CO,H	733.8 (M + H)	5.36
2750	OFFICO,H	647.8 (M + H)	5.05
2751	CF;CO,H	647.8 (M + H)	5.08
2752	2CF ₂ CO ₂ M	691.0 (M + H)	4.89

【表436】

2753	CF;CO;H	559.6 (M + H)	4.51
2754	10 - C - C - C - C - C - C - C - C - C -	575.6 (M + H)	4.57
2755	CE,CO,H	575.6 (M + H)	4.69
2756	CENCOLA CENCOL	619.6 (M + H)	4.63
2757	F,CO	625.8 (M + H)	4.72
2758	CF,CO,H	609.8 (M + H)	4.67

【表437】

2759	CF,CO;H	541.8 (M + H)	4,45
2760	CF,CO,H	625.8 (M + H)	4.38
2761	CFSCOPI	555.8 (M + H)	4.57
2762	The state of the s	609.8 (M + H)	4,94
2763	CF5CO,H	677.8 (M + H)	5.05
2764	CF ₂ CO ₂ H	591.6 (M + H)	4.73

【表438】

2765	CF5CO,H	591.6 (M + H)	4.75
2766	20F500,H	635,0 (M + H)	4.47
2767	H ₂ N- N- N- N- N- N- N- N- N- O ₁	503.6 (M + H)	3.83
2768	H ₂ N- NH NH 2CF ₂ CO ₂ H	503.6 (M + H)	3.99
2769	H,N ,NH , CF3	571.6 (M + H)	4.16
2770	H ₁ N NH	547.6 (M + H)	3.85

【表439】

2771	H,N HH WH 20F,500,H	529.6 (M + H)	3.75
2772	14,5 N N F,5CO N N N N N N N N N N N N N N N N N N N	553.8 (M + H)	3.99
2773	H ₃ N NH F ₁ C S	537.6 (M + H)	3.93
2774	20F,CO,H	525.8 (M + H)	4.22
2775	2CF ₂ CO ₂ H	475.6 (M + H)	3.64
2776	PIN THE SECOND S	469.6 (M + H)	3.71

【表440】

(34.2 C)			
2777	NH N	503.6 (M + H)	3.97
2778	H ₃ H	553.8 (M + H)	4.17
2779	2CF,CO ₂ H	483.4 (M + H)	3.87
2780	H ₃ N NH	547.6 (M + H)	4.04
2781	2CF,CO2H	537.4 (M + H)	4.23
2782	2CF,CODH	631.6 (M + H)	4.23

【表441】

2783	15 CF, CO, H	605.8 (M+H)	4,41
2784	H,N, , , , , , , , , , , , , , , , , , ,	519.6 (M + H)	4.01
2785	H-N- H- 2CF5COpH	519.6 (M + H)	4.07
2786	MANN, NH CAN BE SEED OF SEED	562.6 (M + H)	3.77
2787	454 41 2055009H	531.6 (M + H)	3.90
2788	20F;00;H	531.6 (M + H)	4.04

【表442】

(30))))			
2789	1,N CF, CF, CF, CF, CF, CO, H	599.6 (M + H)	4.24
2790	20F;00,H	575.0 (M + H)	3.95
2791	20Fx00x1	557.6 (M + H)	3.86
2792	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	565.6 (M + H)	4.03
2793	11-14-1-15-15-15-15-15-15-15-15-15-15-15-15-1	554 (M + H)	4.29
2794	20F,00,H	503.6 (M + H)	3.78

【表443】

2795	H ₁ N H ₂ CF,CO ₂ H	497.6 (M + H)	3.83
2796	11,3M	531.6 (M + H)	4.05
2797	20F,CO,H	582.0 (M + H)	4.23
2798	2CF,CO,H	511 (M + H)	3.95
2799	20F,00,jh	575.6 (M + H)	4.10
2800	20FyCOyl	565.0 (M + H)	4.32

【表444】

(表のつつ	

(360)-2-25)			
2801	2CF,CO ₂ H	659.6 (M + H)	4.35
2802	HAN GFS	634.0 (M + H)	4.43
2803	2CF500,H	547.6 (M + H)	4.09
2804	2CFyCO ₂ H	547.6 (M + H)	4.15
2805	3CF,CO,H	590.6 (M + H)	3.93
2806	1-3-N-N-H 20F-500-H	459.6 (M + H)	4.07

【表445】

2807	1/N N/H 1/N N/H 20F,CO,H	477.6 (M + H)	4.07
2808	1,3,N,N,H 1,3,N,N,H 1,3,0,0,1 20F,00,H	475.6 (M + H)	4.07
2809	20F2CO2H	475.6 (M + H)	4.23
2810	20F5C0pH	501.8 (M + H)	4.15
2811	16.10 MH 16.10	509.4 (M + H)	4.27
2812	H ₁ N _{-γH} N N N N N N N N N N N N N	525.6 (M + H)	4.37

【表446】

2813	H-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N	519.6 (M + H)	4.25
2814	20F,CO,H	509.4 (M + H)	4.49
2815	15 Copy 1	603.0 (M + H)	4.60
2816	CF3 2CF5CQH	577.6 (M + H)	4.72
2817	2CF ₂ CO ₂ H	491 (M + H)	4.31
2818	11,N NH N N N N N N N N N N N N N N N N N N	491.6 (M + H)	4.33

【表447】

2819	Hyll WHI	534.6 (M + H)	4.01
2820	PART II SHOT III	325.4 (M + H)	3.91
2821	HAT AND	359.4 (M + H)	4.24
2822	H ₁ N H H ₂ N H P F F F	409.4 (M + H)	4.51
2823	H ₃ N H S S S S 2HGI	339.6 (M + H)	4.09
2824	H.N. H. S.	403.4 (M + H)	4.28

【表448】

(34.1			
2825	NH H,N H S C CI	393.0 (M + H)	4.57
2826	H,A, H, C, C, F,	521.6 (M + H)	4.69
2827	HAND THE STATE OF	461.6 (M + H)	4.77
2828	H ₂ N H ₃ O S O S AHGI	375.4 (M + H)	4.33
2829	H,N 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	375.4 (M + H)	4.39
2830	H,N H	418.8 (M + H)	4.33

【表449】

2831	H ₂ N H G G F G G G G G G G G G G G G G G G G	343.4 (M + H)	3.96
2832	H ₁ ,N H	343.4 (M + H)	4.03
2833	H ₂ N H G G G G G G G G G G G G G G G G G G	359.4 (M + H)	4.05
2834	H ₂ M ² H O O CI	359.4 (M + H)	4.24
2835	H ₂ N H	403.4 (M + H)	4.07
2836	H,N H SOO	385.4 (M + H)	4.00

【表450】

2837	H ₂ N N N N N N N N N N N N N N N N N N N	409.4 (M + H)	4.32
2838	NH H,3N 21 30 50 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	393.6 (M + H)	4.23
2839	H,N H O B, S O O O O O O O O O O O O O O O O O O	381.6 (M + H)	4.62
2840	H ₂ M H O S S	330.8 (M + H)	3.83
2841	H ₃ N H S S F S S F S S S F S S S S F S S S S	361.4 (M + H)	4.05
2842	H ₃ N ^N H O O 2HG	427.4 (M + H)	4.51

【表451】

(表の	つづき)	

2843	20FyCOyH	458.4 (M + H)	3.22
2844	2CF,COLH	415.4 (M + H)	3.01
2845	20F,CO,H	432.6 (M + H)	3.26
2846	2CF,CO,H	396.2 (M + H)	2.81
2847	2CF,CO,H	450.0 (M + H)	3.09
2848	205,00,04	408.4 (M + H)	2.85

【表452】

2849	2CF,CO,H	434.4 (M + H)	2.89
2850	2CF,CO ₂ H	440.0 (M + H)	3.20
2851	20F/CO,H	482.4 (M + H)	3.43
2852	ZOF,CO,H	466.4 (M + H)	2.71
2853	2CF,CO,H	380.2 (M + H)	2.72
2854	2CF ₂ CO ₂ M	426.2 (M + H)	2.91

【表453】

2855	N N N O OH	450.0 (M + H)	2.82
2856	2CF,CO,H	434.4 (M + H)	2.69
2857	CF,CO,H	440.0 (M + H)	2.85
2858	2CF,CO.H	550.6 (M + H)	3.80
2859	3CF,CO,H	441.4 (M + H)	3.03
2860	2CF,CO,H	446.6 (M + H)	3.41

【表454】

2861	20F,CO,H	448.4 (M + H)	2.91
2862	2CF ₂ CO ₂ H	424.2 (M + H)	3.05
2863	SOF,CO,H	441.4 (M + H)	2.68
2864	3CF,CO,H	463.4 (M + H)	2.76
2865	ZCF,CO,H	408.4 (M + H)	2.91
2866	2CF ₂ CO ₂ H	492.2 (M + H)	3.30

【表455】

2867	2CF,CO,H	464.2 (M + H)	2.93
2868	CCF,CO,H	474.4 (M + H)	3.27
2869	2CF,CO,H	390.6 (M + H)	2.88
2870	CALLOUP 20F/00,M	482.2 (M + H)	3.43
2871	2CF _F CO _F H	408.4 (M + H)	2.91
2872	CONTROL PO	420.4 (M + H)	2.91

【表456】

2873	N N N H Ser	468.2 (M + H)	3.09
2874	2CF,COpH	406.4 (M + H)	2.80
2875	2CF,CO,H	464.2 (M + H)	2.97
2876	3CF,CO ₂ H	524.6 (M + H)	3,12
2877	2CF,CO,H	442.4 (M + H)	3.10
2878	CALL OF THE SECTION	426.2 (M + H)	2.90

【表457】

2879	2CF,CO,H	480.2 (M + H)	2.89
2880	2CF,COpH	468.2 (M + H)	3.07
2881	2CF,CO,H	422.4 (M + H)	2.61
2882	20F,CO,H	450.0 (M + H)	2.93
2883	N N N N N N N N N N N N N N N N N N N	404.6 (M + H)	3.01
2884	2CF ₂ CO ₂ H	436.4 (M + H)	3.08

【表458】

2885	20Fy0OyH	440.0 (M + H)	3.18
2886	20F,CO,H	470.4 (M + H)	3.25
2887	2CF,CO,H	450.0 (M + H)	3.01
2888	2CF,CO,H	466.4 (M + H)	3.40
2889	ZCF,CO,H	415.4 (M + H)	2.83
2890	2CF_CO_H	458.4 (M + H)	3.25

【表459】

2891	N N N N N N N N N N N N N N N N N N N	468.2 (M + H)	3.00
2892	20FyCOpH	406.4 (M + H)	2.66
2893	CINT POPPO	420.4 (M + H)	2.92
2894	3CF,CO,H	379:4 (M + H)	2.71
2895	20F ₂ CO ₂ H	434.4 (M + H)	2.87
2896	CINT P P	480.2 (M + H)\	3.17

【表460】

(#	n.	0	イキ	. '

2897	CCF,CO.H	426.2 (M + H)	2.98
2898	2CF,COLH	480.2 (M + H)	2.99
2899	2CF,CO,M	528.4 (M + H)	3.15
2900	N N N N N N N N N N N N N N N N N N N	458.4 (M + H)	3.19
2901	ZCF,CO,H	480.2 (M + H)	2.92
2902	2CF,CO,H	470.4 (M + H)	3.27

【表461】

2903	2CF,CO,H	404.6 (M + H)	2.87
2904	2CF,CO,H	460.4 (M + H)	3.48
2905	N H S -	410.4 (M + H)	2.96
2906	20F,CO,H	450.0 (M + H)	3.03
2907	N N N N N N N N N N N N N N N N N N N	434.4 (M + H)	3.08
2908	2CF,CO,H	452.2 (M + H)	2.79

【表462】

	(表のつづき)
ĺ		
ı		
ı		

2909	ZCF,CO,H	396.2 (M + H)	2.81
2910	3CF,CO,H	459.4 (M + H)	3.21
2911	N H C C C C C C C C C C C C C C C C C C	458.2 (M + H)	3.08
2912	2CF,CO,H	410.4 (M + H)	2.88
2913	20F;CO;H	426.2 (M + H)	3.01
2914	SCF,CO,H	429.4 (M + H)	2.97

【表463】

(表のつづき)	

2915	SCF,CO,H	507.2 (M + H)	3.53
2916	2CF,CO,H	522.4 (M + H)	3.56
2917	3CF,COLPH	483.2 (M + H)	2.80
2918	3CF/COM	507.2 (M + H)	3.27
2919	20F,CO,H	474.2 (M + H)	3.10
2920	ZOF,CO,H	450.0 (M + H)	3.00

【表464】

(表のつづき	\$)		
2921	2CF,CCJH	498.4 (M + H)	3.15
2922	SCF,CO,H	459.4 (M + H)	2.99
2923	2CF,CO,H	476.0 (M + H)	3.10
2924	2CFyCO _p H	518.2 (M + H)	3.10
2925	20FrCo'H	476.2 (M + H)	3.12
2926	2CF,CO,H	490.4 (M + H)	3.35

【表465】

2927	N N N N N N N N N N N N N N N N N N N	434.4 (M + H)	3.11
2928	2CF,CO,H	478.4 (M + H)	3.29
2929	2CF,COLH	438.2 (M + H)	3.01
2930	3CF,CO,H	433.4 (M + H)	2.59
2931	N N N N N N N N N N N N N N N N N N N	438.2 (M + H)	2.90
2932	2CF,CO,H	456.2 (M + H)	3.10

【表466】

(±:	no	~~	3	١

2933	2CF,CO,H	492.2 (M + H)	3.25
2934	2CF,CO,H	476.2 (M + H)	3.11
2935	20FyCopH	490.4 (M + H)	3.20
2936	2CF,COLPI	448.4 (M + H)	3.17
2937	2CF,CO,H	489.6 (M + H)	3.31
2938	2CF,CO,M	528.2 (M + H)	3.03

【表467】

(表のつづき	*)		
2939	2CF,CO,H	476.2 (M + H)	2.99
2940	2CF,COLH	447.4 (M + H)	2.66
2941	2CF,COpH	532.4 (M + H)	3.66
2942	ZCF,CO,M	514.4 (M + H)	3.08
2943	SOF,CO,H	393.4 (M + H)	2.79
2944	20F,00,H	474.4 (M + H)	3.24

【表468】

2945	2CF,CO,H	526.6 (M + H)	3.44
2946	2CFyCO,H	526.6 (M + H)	3.42
2947	2CF,CO,M	490.4 (M + H)	3.35
2948	CLAT COLOR	462.2 (M + H)	3.43
2949	N N H H H	418.6 (M + H)	3.13
2950	2CF,CO,H	458.4 (M + H)	3.10

【表469】

2951	20F,CO,H	476.4 (M + H)	3.19
2952	20FyCO,H	438.2 (M + H)	2.95
2953	20FyCOH	422.4 (M + H)	2.61
2954	20F2CO,H	458.2 (M + H)	3.07
2955	SCE,CO,H	470.4 (M + H)	3.45
2956	2CF_SCO_H	471.6 (M + H)	2.88

【表470】

2957	ZEF,COJI	472.4 (M + H)	3.36
2958	20F,CO,H	450 (M + H)	2.75
2959	205,00,04	448.4 (M + H)	3.20
2960	2CF,CO,H	508.4 (M + H)	3.00
2961	ZCF ₂ CO ₂ H	420.4 (M + H)	2.80
2962	2CF,CO,H	474.4 (M + H)	3.20

【表471】

(表のつづき	(i)		
2963	2CF,CO,H	404.4 (M + H)	2.87
2964	2CF,CO,H	458.2 (M + H)	3.00
2965	N N N N N N N N N N N N N N N N N N N	394.4 (M + H)	2.30
2966	2CF,COLIM	505.4 (M + H)	2.60
2967	20F ₂ CO ₂ H	424.2 (M + H)	3.00
2968	2CF ₂ CO ₂ H	436.4 (M + H)	2.71

【表472】

(表のつづき	:)		
2969	2CF,CO,H	432.4 (M + H)	3.30
2970	2CF,CO,H	424.2 (M + H)	2.95
2971	2CF,CO,H	415.4 (M + H)	2.79
2972	2CF,CO ₂ H	480.2 (M + H)	3.00
2973	2CF,000,H	496.2 (M + H)	3.46
2974	2CF ₂ CO ₂ H	562.2 (M + H)	2.99

【表473】

(表のつづき	·)		
2975	2CF,CO,H	492.4 (M + H)	3.64
2976	2CFyCO ₂ H	492.2 (M + H)	3.25
2977	2CF4CO ₂ H	448.4 (M + H)	3.22
2978	2CF,CO,H	456.2 (M + H)	3.09
2979	2CF/CO _I H	434.4 (M + H)	2.89
2980	OH O	436.4 (M + H)	2.79

【表474】

2981	2CF,CO,H	438.2 (M + H)	2.91
2982	N N N N N N N N N N N N N N N N N N N	441.4 (M + H)	2.55
2983	2CF,CO,H	446.4 (M + H)	3.13
2984	30FyCopH	461,4 (M + H)	2.46
2985	20F-F00-H	422.2 (M + H)	3.01
2986	20F,COpH	510.2 (M + H)	2.85

【表475】

(表のつづき)		
2987	20F,CO,H	414.4 (M + H)	2.86
2988	2CF,CO,H	534.2 (M + H)	3.13
2989	20F ₂ CO ₂ H	424.2 (M + H)	3.08
2990	2CF,CO,H	510.4 (M + H)	3.32
2991	2CF,CO,H	510.4 (M + H)	3.17
2992	205,CO,H	476.4 (M + H)	3.17

【表476】

(表のつづき	()		
2993	2CF,CO,H	476.2 (M + H)	3.21
2994	2CF,CO.H	454.2 (M + H)	2.77
2995	2CF,CO,H	468.4 (M + H)	2.89
2996	20F ₂ CO ₂ H	418.6 (M + H)	3.12
2997	20FyCOpH	496.4 (M + H)	3.29
2998	3CF5COpH	472.6 (M + H)	2.99

【表477】

(表のつづき)		
2999	2CF,CO,PI	466.4 (M + H)	3.37
3900	CT, L, CT, LO, L,	574.2 (M + H)	3.64
3001	20F,CO,H	430.4 (M + H)	3.05
3002	2CF,COpH	532.4 (M + H)	4.05
3003	2CFsCOpH	552.0 (M + H)	3.37
3004	CF,CO,H	448.4 (M + H)	3.51

【表478】

(表のつづき	<u>*</u>)		
3005	CF,CO,H	454.2 (M + H)	3.91
3906	CF ₂ CO ₂ H	472.4 (M + H)	4.02
3007	OF,CO,H	494.4 (M + H)	4.01
3008	CF,CO,H	537.4 (M + H)	3.77
3009	CF _F CO _F H	418.6 (M + H)	3.63
3010	CF,CO,H	418.6 (M + H)	3,51

【表479】

(表	0)	2	づ	き	

3011	CF,CO,H	396.2 (M + H)	3.47
3012	CF,CO,H	434.4 (M + H)	3.52
3013	CF,CO,H	395.4 (M + H)	3.15
3014	CF,CO,H	460.2 (M + H)	4.03
3015	OF,CO,H	418.6 (M + H)	3.65
3016	CF,CO,H	462.2 (M + H)	4.09

【表480】

3017	CF,CO,H	484.2 (M + H)	3.79
3018	CF,CO,H	498.6 (M + H)	3.88
3019	OF,CO,H	483.2 (M + H)	3.80
3020	OF,CO,H	478.2 (M + H)	3.49
3021	CF,CO,H	450.0 (M + H)	3.61
3022	CF,CO,H	448.2 (M + H)	3.70

【表481】

(表のつづき	()		
3023	CF,CO,H	554.4 (M + H)	4.41
3024	OF,CO,H	598.2 (M + H)	4.03
3025	CF,CO,H	499.2 (M + H)	3.59
3026	CF,CO,H	524.6 (M + H)	3.84
3027	2CF,CO,H	497.4 (M + H)	3.80
3028	CF;CO;H	410.2 (M + H)	3.43

【表482】

3029	OF,CO,H	468.2 (M + H)	3.77
3030	CF,CO,H	463.2 (M + H)	3.73
3031	CF, CCPH	490.4 (M + H)	3.91
3032	CF,CO,H	490.4 (M + H)	3.94
3033	CF ₅ CO ₅ H	490.4 (M + H)	3.85
3034	CF ₂ CC ₂ H	490.4 (M + H)	3.87

【表483】

(表のつづき)		
3035	CF,CO,H	490.4 (M + H)	3.63
3036	CF,CO,M	490.2 (M + H)	3.54
3037	CF,CO,H	540.4 (M + H)	3.95
3038	CF,CO,H	440.4 (M + H)	3.58
3039	CF,CO,H	458.4 (M + H)	3.56
3040	CF,CO,M	476.4 (M + H)	3.83

【表484】

(老のつづき)

(表のつづき	5)		
3041	CF,CO,H	490.4 (M + H)	3.82
3042	CF ₂ CO ₂ M	508.0 (M + H)	3.85
3043	OF,CO,H	438.2 (M + H)	3.71
3044	CF ₂ CO ₂ H	464:2 (M + H)	3.65
3045	CF,CO,H	448.4 (M + H)	3.47
3046	CF,CO,H	440.4 (M + H)	3.59

【表485】

(表のつづき	÷)		
3047	CF,CO,H	464.2 (M + H)	3.36
3048	CF,CO,H	464.4 (M + H)	3.39
3049	CF,CO,H	432.4 (M + H)	3.81
3050	CF,CO,H	448.4 (M + H)	3.69
3051	CF,CCO,H	438.2 (M + H)	3.69
3052	CF,CO,H	472.4 (M + H)	4.03

【表486】

(表のつづ	*)		
3053	OF,CO,H	429.2 (M + H)	3.47
3054	CF,CO,H	488.4 (M + H)	4.60
3055	CF,CO,H	424.2 (M + H)	3.41
3056	OF,CO,H	530.2 (M + H)	3.83
3057	OF,CO,H	446.4 (M + H)	4.02
3058	OF,CO,H	438.2 (M + H)	3.70

【表487】

(表のつづき	(*)		
3059	OF ₅ CO ₅ H	472.4 (M + H)	3.55
3060	CF,CO,H	506.4 (M + H)	3.71
3061	CF,CO,H	530.2 (M + H)	3.61
3062	OFFICO, H	474.4 (M + H)	4.41
3063	CF ₂ CO ₂ H	476.4 (M + H)	4,14
3064	CF ₅ CO ₅ H	502.4 (M + H)	4.83

【表488】

(表のつづき)			
3065	CF,CO,H	480.4 (M + H)	4.09
3066	OF,OO,H	486.4 (M + H)	3.84
3067	OF,CO,H	440.4 (M + H)	3.46
3068	CF,CO,H	494.4 (M + H)	3.79
3069	OF,CO,H	472.4 (M + H)	3.55
3070	CF,CO,H	464.4 (M + H)	3.63

3.42

【表489】

(表のつづき	<u>(</u>)		
3071	CF/CO/H	458.2 (M + H)	3.69
3072	CF,CO,H	440.4 (M + H)	3.69
3073	CF,CO,H	440.4 (M + H)	3.66
3074	CF,CO,P	422.4 (M + H)	3.55
3075	OF ₂ CO ₂ H	460.4 (M + H)	4.24

【表490】

(表のつづき)		
3077	CF,CO,H	434.4 (M + H)	3.61
3078	OF,CO,H	488.4 (M + H)	3.86
3079	CF,CO,H	518.6 (M + H)	4.74
3080	CF,CO,H	458.2 (M + H)	3.68
3081	N N N N N N N N N N N N N N N N N N N	410.4 (M + H)	3.58
3082	N N N N N CF ₃	540.4 (M + Fi)	4.19

【表491】

(表のつづき	<u>*</u>)		
3083	OF ₅ CO ₅ H	422.2 (M + H)	3.50
3084	OF,CO,H	494.4 (M + H)	3.39
3085	CF,CO,H	440.0 (M + H)	3.55
3086	CF,CCO,H	438.2 (M + H)	3.48
3087	CF,CO,H	454.2 (M + H)	3.75
3088	N H CF ₅ CO ₅ H	472.4 (M + H)	3.83

【表492】

	_		- 0	Α.	,
(表	U)	1	つ	×	

3089	CF,CO,H	422.2 (M + H)	3.51
3090	CF,CO,H	472.4 (M + H)	3.87
3091	CF,CO,H	500.4 (M + H)	3.03
3092	20FrCoh	447.4 (M + H)	2.59
3093	CF,CO,H	486.4 (M + H)	3.25
3094	CF,CO,H	488.4 (M + H)	2.81

【表493】

/+	en	 A4.	

3095	CF,CO,H	452.4 (M + H)	2.98
3096	CE,CO,H	496.4 (M + H)	3.29
3097	CF,CO,H	448.4 (M + H)	2.77
3098	CF,CO,H	458.4 (M + H)	3.06
3099	CF,CO,H	484.4 (M + H)	3.40
3100	CF ₂ CO ₂ H	418.6 (M + H)	2.69

【表494】

(表のつづき	r)		
3101	20F,CO,H	496.4 (M + H)	3.01
3102	CF,CO,H	483.4 (M + H)	2.79
3103	CF,CO,H	420.4 (M + H)	2.76
3104	CF,CO,H	516.2 (M + H)	3.03
3105	OF,CO,H	480.4 (M + H)	2.41
3106	CF,CO,H	483.2 (M + H)	2.84

【表495】

(表のつづ)	£)		
3107	2CF,CO,H	455 (M + H)	2.45
3108	2CF,CO,H	455.2 (M + H)	3.19
3109	CF,CO,H	461.4 (M + H)	2.60
3110	20F,CO,H	470.4 (M + H)	2.74
3111	CE-COOH	446.6 (M + H)	2.61
3112	CF ₂ CO ₂ H	464.4 (M + H)	2.35

【表496】

3113	CF,CO,H	468.4 (M + H)	3.04
3114	20FsCOpH	456.2 (M + H)	2.44
3115	20F/00#	455.2 (M + H)	2.11
3116	CF,CO,H	454.2 (M + H)	3.21
3117	ZOF, COLH	433.6 (M + H)	2.34
3118	2CF ₂ CO ₂ H	444.6 (M+)	2.93

【表497】

3119	2CF,CO,H	421.4 (M + H)	2.23
3120	CF,CO,H	506.4 (M + H)	3.31
3121	2CF,CO,H	511.6 (M + H)	3.21
3122	CF,CO,H	479.4 (M + H)	3.60
3123	CE'CC'H	434.4 (M + H)	2.37
3124	CF ₅ CO ₂ H	516.4 (M + H)	3.02

【表498】

(表のつづき)

			1
3125	CF ₂ CO ₂ H	394.4 (M + H)	2.45
3126	CF,CO,H	450.2 (M + H)	2.41
3127	20F ₂ CO ₂ H	477.0 (M + H)	2.88
3128	20F ₂ CO ₂ H	405.6 (M + H)	2.61
3129	CF,CO,H	472.6 (M + H)	3.17
3130	CF ₅ CO ₂ H	464.4 (M + H)	2.59

【表499】

(表のつづき	:)		
3131	GF ₂ CO ₂ H	484.2 (M + H)	2.99
3132	20F500gH	453.0 (M + H)	2.45
3133	OF,CO,H	488.4 (M + H)	3.59
3134	CF,CO,H	454.2 (M + H)	2.81
3135	2CF5CO2H	421.4 (M + H)	2.89
3136	CF ₅ CC ₅ H	468.4 (M + H)	2.53

【表500】

3137	2CF ₅ CO ₅ H	483.2 (M + H)	2.83
3138	CF,CO,H	487.4 (M+2H+)	3.40
3139	CF,CO,H	445.6 (M + H)	2.36
3140	ZOF,CO,H	453.2 (M + H)	2.46
3141	CF,CO,H	478.4 (M + H)	2.77
3142	CF.CO.H	672.2 (M + H)	3.92

【表501】

(表のつづき	<u>;</u>)		
3143	CF ₂ CO ₂ H	576.2 (M + H)	3.71
3144	2CF,CO,H	421.2 (M + H)	2.01
3145	CF5CO,H	494.4 (M + H)	2.77
3146	2CF,CO,H	405.6 (M + H)	1.99
3147	CF,CO,H	488.4 (M + H)	3.13
3148	CF,CO,H	430.4 (M + H)	2.91

【表502】

3149	2CF,CO,H	459.4 (M + H)	2.47
3150	CF,CO,H	486.6 (M + H)	2.93
3151	CF, CO.H	474.4 (M + H)	3.03
3152	CF,CO,M	465.2 (M + H)	3.13
3153	SOR-YOO'H	483.4 (M + H)	2.67
3154	CF ₂ CO ₂ H	556.4 (M + H)	2.84

【表503】

(表のつづき	*)		
3155	2CF,CO,H	443.4 (M + H)	2.94
3156	CF,CO,H	508.2 (M + H)	3.20
3157	CF,CO,M	440.0 (M + H)	2.72
3158	CF,CO,H	532.4 (M + H)	3.58
3159	CF,CC),H	535.4 (M + H)	3.51
3160	CF ₅ CO ₂ H	504.4 (M + H)	3.49

(表のつづき			
3161	CF,CO,H	572.4 (M + H)	3.71
3162	CF,CO,H	460.2 (M + H)	3.80
3163	OF ₂ CO,H	589.2 (M + H)	4.00
3164	CF,CO,H	492.2 (M + H)	3.90
3165	CF,CO,H	478.2 (M + H)	3.80
3166	OF,CO,H	607.6 (M + H)	4.00

【表505】

(表のつづき	<u>(</u>)		
3167	CF,CO,H	504.2 (M + H)	3.40
3168	CF,CO,H	506.2 (M + H)	3.90
3169	CF,CO,H	480.2 (M + H)	3.80
3170	OF,CO,H	466.2 (M + H)	3.70
3171		515.2 (M + H)	3.90
3172	CF ₂ CO ₂ H	644.2 (M + H)	4.10

3173	CF ₂ CO ₂ H	488.2 (M + H)	3.90
3174	CF ₂ CO ₂ H	474.4 (M + H)	3.80
3175	CF ₂ CO ₂ H	525.4 (M + H)	3.70
3176	Tr. CF, CO, H	654.2 (M + H)	3.90
3177	CF,CO,H	428.2 (M + H)	3.10
3178	CF,CO,H	414.4 (M + H)	2.90

【表507】

3179	2CF,CO.)H	506.4 (M + H)	3.04
3180	2CF ₂ CO ₂ H	578.8 (M + H)	3.50
3181	Ст, Д _Н Ст,	520.6 (M + H)	3.19
3182	2CF ₂ CO ₂ H	448.4 (M + H)	2.80
3183	2CF,CO ₂ H	494.6 (M + H)	2.66
3184	2CF,CO,H	478.4 (M + H)	2.66

3185	2CF ₂ CO ₂ H	. 492.6 (M + H)	2.94
3186	2CF ₂ CO ₂ H	. 464.4 (M + H)	2.65
3187	2CF,CO,H	464.4 (M + H)	2.68
3188	2CF,CO,H	566.4 (M + H)	3.03
3189	2CF,CO,H	512.6 (M + H)	2.85
3190	2CF,CO,H	474.4 (M + H)	3.09

【表509】

(表のつづき	()		
3191	3CF,CO,H	477.4 (M + H)	2.51
3192	2CF,CO,H	464.4 (M + H)	2.67
3193	2CF,CO,H	494.6 (M + H)	2.78
3194	2CF,CO,H	494.6 (M + H)	2.60
3195	2CF ₂ CO ₂ H	434.6 (M + H)	2.67
3196	2CF,CO,H	546.4 (M + H)	4.30

(表のつづき	f)		
3197	2CF,CO,H	606.6 (M + H)	3.95
3198	2CF,CO,H	536.6 (M + H)	3.83
3199	2CF,CO,H	492.4 (M + H)	2.97
3200	2CF,CO,H	478.4 (M + H)	2.79
3201	2CF,CO,H	542.0 (M + H)	2.85
3202	2CF,CO,H	492.6 (M + H)	2.81

(表のつづき	(1)		
3203	2CF,CO,H	590.4 (M + H)	3.02
3204	2CFyCO ₂ H	502.2 (M + H)	2.91
3205	2CF ₂ CO ₂ H	480.4 (M + H)	2.51
3206	2CFyCO,H	536.4 (M + H)	3.21
3207	3CF ₂ CO ₂ H	443.6 (M + H)	2.66
3208	2CF ₂ CO ₂ H	536.4 (M + H)	3.08

【表512】

3209	$\bigcup_{N=1}^{N}\bigcup_{N=1}^{N}\bigcup_{i=1}^{N}\bigcup_{j=1}^{C_{i}}\bigcup_{i=1}^{C_{i}}\bigcup_{j=1}^{C_{i}}\bigcup$	520.0 (M + H)	3.51
3210	N N N H O O O O O O O O	480.4 (M + H)	2.58
3211	2CF ₂ CO ₂ H	552.0 (M + H)	3.11
3212	2CF ₂ CO ₂ H	464.4 (M + H)	3.22
3213	2CF,CO,H	450.4 (M + H)	2.70
3214	N N N N N N N N N N N N N N N N N N N	450.4 (M + H)	2.58

(表のつづき	(f)		
3215	2CF,CO,H	480.4 (M + H)	2.73
3216	3CF,CO,H	429.4 (M + H)	3.29
3217	2CFyCO,H	480.2 (M + H)	2.78
3218	2CF ₂ CO ₂ H	522.4 (M + H)	3.77
3219	2CF,CO,H	450.2 (M + H)	2.57
3220	N N N N N N N N N N N N N N N N N N N	498.0 (M + H)	2,97

【表514】

(表のつづき	<u>*</u>)		
3221	2CF,CO ₂ H	478.4 (M + H)	3.17
3222	2CF,CO,H	480.0 (M + H)	3.08
3223	2CF,CO,H	590.2 (M + H)	4.20
3224	N N N N N N N N N N N N N N N N N N N	576.4 (M + H)	3.95
3225	2CF-CO-H	512.4 (M + H)	3.86
3226	CF;CO;H	472.4 (M + H)	3.07

(表のつづ	<u>\$</u>)		
3227	F F F F F F F F F F F F F F F F F F F	540.6 (M ÷ H)	3.75
3228	CF ₂ CO ₂ H	464.4 (M + H)	3.07
3229	2CF,CO,H	478.4 (M + H)	3.40
3230	N N N O Br	552.6 (M + H)	3.50
3231	N N H O Br	590.2 (M + H)	3.60
3232	2CF,CO,H	418.6 (M + H)	3.25

【表516】

3233	2CF,CO,H	382.2 (M + H)	2.67
3234	N N N N N N N N N N N N N N N N N N N	436.4 (M + H)	3.05
3235	ZCF,CO,H	394.4 (M + H)	2.75
3236	2CF ₂ CO ₂ H	420.4 (M + H)	2.82
3237	NN	426.4 (M + H)	3.17
3238	2CF,CO,H	468.4 (M + H)	3.44

【表517】

	`
 表のつづき)

3239	2CF,CO ₂ H	452.2 (M + H)	2.69
3248	N H OH	436.4 (M + H)	2.80
3241	2CF ₂ CO ₂ H	426.2 (M + H)	2.79
3242	2CF ₂ CO ₂ H	536.4 (M + H)	3,75
3243	3CF,CO,H	427.2 (M + H)	2.95
3244	2CF,CO,H	432.4 (M + H)	3.41

【表518】

1+	an.	~ 4	w.	×

3245	N N N N N N N N N N N N N N N N N N N	434.2 (M + H)	2.84
3246	N H CCI	410.2 (M + H)	3.02
3247	3CF,CO,H	427.4 (M + H)	2.61
3248	2CF,CO,H	450.4 (M + H)	2.91
3249	2CF,CO,H	460.4 (M + H)	3.19
3250	2CF5CO,H	468.4 (M + H)	2.79

【表519】

(表のつづき	<u>\$</u>)		
3251	N N N N N S F	394.4 (M + H)	2.83
3252	2CF ₂ CO ₂ H	454.2 (M + H)	3.08
3253	N N H OH	392.4 (M + H)	2.73
3254	2CF ₂ CO ₂ H	450.4 (M + H)	2.92
3255	3CF,CO,H	510.4 (M + H)	3.17
3256	N N N N N N N N N N N N N N N N N N N	428.2 (M + H)	3.08

(表のつづき	:)		
3257	2CF,CO,Н	392.4 (M + H)	2.63
3258	N N N F F	412.2 (M + H)	2.83
3259	N N N N N N N N N N N N N N N N N N N	466.4 (M + H)	2.89
3260	N N N N N N N N N N N N N N N N N N N	454.0 (M + H)	3.05
3261	2CF ₂ CO ₂ H	408.2 (M + H)	2.53
3262	2CF,CO,H	390.4 (M + H)	2.92

【表521】

(表のつづき)

3263	2CF,CO,H	422.2 (M + H)	3.05
3264	2CF ₂ CO ₂ H	456.4 (M + H)	3.25
3265	N N N N N N N N N N N N N N N N N N N	452.2 (M + H)	3.37
3266	N N N N N N N N N N N N N N N N N N N	401.2 (M + H)	2.76
3267	2CF-00,H	444.4 (M + H)	3.17
3268	2CF ₂ CO ₂ H	392.4 (M + H)	2.61

3.17

【表522】

(表のつづき			
3269	2CF,CO,H	406.4 (M + H)	2.86
3270	N HHN SCF,CO,H	365.4 (M + H)	2.61
3271	2CF ₂ CO ₂ H	420.4 (M + H)	2.83
3272	2CF ₂ CO ₂ H	466.4 (M + H)	3.10
 3273	2CF ₂ CO ₂ H	514.4 (M + H)	3.13
	F _ F		

2CF₃CO₂H

【表523】

3275	2CF,CO,H	466.4 (M + H)	2.86
3276	2CFyCO,H	456.2 (M + H)	3.22
3277	2CF ₂ CO ₂ H	446.6 (M + H)	3.45
3278	2CF,CO,H	436.4 (M + H)	2.95
3279	2CF,CO,H	420.2 (M + H)	3.03
3280	ZT ZCF,CO;H	382.4 (M + H)	2.72

【表524】

3281	2CF,CO,H	444.4 (M + H)	3.07
3282	2CF,CO,H	396.2 (M + H)	2,79
3283	2CFyCO,H	412.4 (M + H)	2.95
3284	32CF,CO2H	493.4 (M + H)	3.57
3285	CI S N H 25 2CF,CO,H	508.2 (M + H)	3,52
3286	NN	469.6 (M + H)	2.76

【表525】

3287	3CF ₂ CO ₂ H	493.2 (M + H)	3.17
3288	N H S S S S S S S S S S S S S S S S S S	460.2 (M + H)	2.95
3289	O SCF,CO,H	484.2 (M + H)	3.14
3290	2CF,CO,H	462.2 (M + H)	3.11
3291	N H F F F 2CF ₂ CO ₂ H	462.2 (M + H)	3.11
3292	r F F F F S CF, CO, H	476.4 (M + H)	3.39

【表526】

(表のつづ	(5)		
3293	2CF,CO,H	420.4 (M + H)	3.05
3294	2CF;CO;H	464.2 (M + H)	3.21
3295	2CF,CO,H	424.2 (M + H)	2.94
3296	3CF,CO,H	419.4 (M + H)	2.51
3297	N HNN 3CF,CO,H	366.4 (M + H)	2.26
3298		424.2 (M + H)	2.93

2CF₃CO₂H

【表527】

3299	N N N N N N N N N N N N N N N N N N N	442.4 (M + H)	2.97
3300	FFF FFF 2CFyCO,H	478.2 (M + H)	3.19
3301	N N F F	462.2 (M + H)	3.05
3302	PF OH	476.4 (M + H)	3.20
3303	2CF,CO,H	366.4 (M + H)	2.64
3304	CF _N CO ₂ H	412.4 (M + H)	2.85

【表528】

(表	m	1	18	*	١

3305	2CF;CO;H	420.4 (M + H)	2.67
3306	3CF,CO,H	449.4 (M + H)	2.74
3307	ZCF,CO,H	394.4 (M + H)	2.86
3308	2CF,CO,H	478.2 (M + H)	3.38
3309	2CF,CO,H	444.4 (M + H)	3.09
3310	2CF ₁ CO ₂ H	376.4 (M + H)	2.82

【表529】

3311		406.4 (M + H)	2.87
3312	2CF ₂ CO ₂ H	436.4 (M + H)	2.91
3313	2CFyCO,H	426.2 (M + H)	3.13
3314	2CF/CO,H	436.4 (M + H)	2.99
3315	N N N N N N N N N N N N N N N N N N N	454.0 (M + H)	2.97
3316	N N H F	412.4 (M + H)	2.92

【表530】

(表のつづ	E)		
3317	2CF,CO,H	466.4 (M + H)	2.95
3318	N N N N N N N N N N N N N N N N N N N	390.4 (M + H)	2.95
3319	NN N N S S	396.2 (M + H)	2.89
3320	2CF,CO,H	438.2 (M + H)	2.76
3321	N N H N N N N N N N N N N N N N N N N N	445.4 (M + H)	3.16
3322	N N N N N N N N N N N N N N N N N N N	415.4 (M + H)	2.96

【表531】

(表のつづき)		r
3323	3CF ₂ CO ₂ H	445.4 (M + H)	2.96
3324	HO Br CI 2CF ₂ CO ₂ H	504.2 (M + H)	3.11
3325	2CF,CO,H	434.4 (M + H)	3.17
3326	2CF,CO,H	476.2 (M + H)	3.27
3327	2CF,CO,H	514.4 (M + H)	3.07
3328	2CF,CO,H	462.2 (M + H)	2.99

【表532】

(表のつづき	¢)		
3329	2CF,CO,H	433.2 (M + H)	2.63
3330	CF,CO,H	518.4 (M + H)	3.63
3331	N N N HO OF Br	500.4 (M + H)	3.09
3332	N N N N N N N N N N N N N N N N N N N	379.4 (M + H)	2.77
3333	P P P P P P P P P P P P P P P P P P P	460.2 (M + H)	3.31
3334	2CF_CO_H	512.4 (M + H)	3.51

【表533】

(表のつづき	9)		
3335	N F F F	512.6 (M + H)	3.51
3336	F,Fs	476.2 (M + H)	3.39
3337	2CF ₂ CO ₂ H	448.4 (M + H)	3.42
3338	2CF ₂ CO ₂ H	404.4 (M + H)	3.17
3339	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	444.4 (M + H)	3.13
3340	2CF ₂ CO ₂ H	462.2 (M + H)	3.21

【表534】

3341	N H P O	424.2 (M + H)	2.97
3342	2CF ₂ CO ₂ H	444.6 (M + H)	3.16
3343	N H THE	469.4 (M + H)	3.47
3344	2CFyCO,H	456.4 (M + H)	3.47
3345	2CF,CO,H	457.4 (M + H)	3.09
3346	N N N N N N N N N N N N N N N N N N N	458.2 (M + H)	3.37

【表535】

00	

3347	2CF ₂ CO ₂ H	436.4 (M + H)	2.83
3348	2CF,CO,H	434.4 (M + H)	3.30
3349	N N N N N N N N N N N N N N N N N N N	494.4 (M + H)	2.98
3350	N N N N N N N N N N N N N N N N N N N	406.4 (M + H)	2.80
3351	2CF,CO;H	460.4 (M + H)	3.20
3352	2CF,CO,H	390.4 (M + H)	2.97

【表536】

(表のつづき	<u>*</u>)		
3353	2CF,CO,H	444.2 (M + H)	3.01
3354	3CF,CO,H	380.2 (M + H)	2.27
3355	NAME OF THE PROPERTY OF THE PR	491.4 (M + H)	2.55
3356	ZZZZCP+CO;H	410.4 (M + H)	3.05
3357	N II OH	422.2 (M + H)	2.69
3358	2CF ₂ CO ₂ H	418.6 (M + H)	3.36

【表537】

(表のつづき	:)		
3359	N N N N N N N N N N N N N N N N N N N	410.4 (M + H)	2.97
3360	2CF ₂ CO ₂ H	401.2 (M + H)	2.81
3361	N N F F F	466.2 (M + H)	3.01
3362	2CF ₂ CO ₂ H	482.4 (M + H)	3.43
3363	N N N O O O O O O O O O O O O O O O O O	548.4 (M + H)	3.03
3364	3CF ₁ CO ₂ H	543,6 (M + H)	3.95

【表538】

(#	σ	-	~	×	٦

3365	2CF ₂ CO ₂ H	478.4 (M + H)	3.64
3366	CI-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F-F	478.4 (M + H)	3.29
3367	2CF,CO,H	434.4 (M + H)	3.20
3368	2CF,CO,H	442.4 (M + H)	3.09
3369	2CF,CO,H	420.4 (M + H)	2.87
3370	NN N H OH	422.2 (M + H)	2.79

【表539】

(表のつづき	(f)		
3371	2CF,CO,H	424.2 (M + H)	2.96
3372	3CF ₂ CO ₂ H	427.2 (M + H)	2.53
3373	N N N N N N N N N N N N N N N N N N N	432.4 (M + H)	3.12
3374	3CFyCO,H	447.4 (M + H)	2.45
3375	N N H H H T CF,CO,H	408.2 (M + H)	3.02
3376	2CF,CO,H	496.4 (M + H)	2.81

【表540】

(+)	m.	2	44	١

3377	2CF,CO,H	400.2 (M + H)	2.81
3378	N N N N N N N N N N N N N N N N N N N	520.2 (M + H)	3.14
3379	N N N N S S S C S C S C S C S C S C S C	410.4 (M + H)	3.12
3380	2CFyCO,H	496.4 (M + H)	3.40
3381	2CF,CO,H	496.4 (M + H)	3.17
3382	2CF ₂ CO ₂ H	462.2 (M + H)	3.19

【表541】

(表	σ	0	-3	£)

3383	2CF ₂ CO ₂ H	462.2 (M + H)	3.28
3384	OH P 2CF ₂ CO ₂ H	440.4 (M + H)	2.74
3385	2CF,CO,H	454.2 (M + H)	2.89
3386	NN N N N N N N N N N N N N N N N N N N	404.4 (M + H)	3.09
3387	2CF,CO,H	482.2 (M + H)	3.29
3388	3CF,CO,H	458.4 (M + H)	2.99

【表542】

(表のつづき	(1)		
3389	2CF,CO,H	452.2 (M + H)	3.40
3390	2CF ₂ CO ₂ H	560.2 (M + H)	3.73
3391	2CFyCO,H	416.4 (M + H)	2.99
3392	2CF,CO,H	518.6 (M + H)	4.08
3393	2CF,CO,H	436.4 (M + H)	2.95
3394	CF,CO2H	434.4 (M + H)	3.30

【表543】

3395	CF,CO,H	440.4 (M + H)	4.26
3396	CF,CO,H	458.2 (M + H)	4.39
3397	CF,CO,H	480.4 (M + H)	4.37
3398	CF,CO,H	523.6 (M + H)	4.15
3399	CF,CCO,H	404.4 (M + H)	3.46
3400	CF,CO,H	404.4 (M + H)	3.75

【表544】

(表のつづき	()		
3401	CF ₅ CO ₅ H	382.4 (M + H)	3.65
3402	CF,CO,H	420.4 (M + H)	3.81
3403	CF,CO,H	381.2 (M + H)	3.33
3404	CF,CO,H	404.4 (M + H)	3.93
3405	CF,CO,H	435.2 (M + H)	3.40
3406	CF,CO,H	484.4 (M + H)	4.15

【表545】

(表のつづき	:)		
3407	CF,CO,H	469.4 (M+ H)	4.20
3408	CE,CO,H	436.2 (M + H)	3.88
3409	CF,CO,H	434.4 (M + H)	3.91
3410	CF,CO,H	558.4 (M + H)	4.92
3411	NN H V	483.4 (M + H)	4.08
3412	CF,CO,H	396.2 (M + H)	3.68

【表546】

(表のつづき	*)		
3413	CF,CO,H	454.2 (M + H)	3.70
3414	CF,CO,H	449.4 (M + H)	4.09
3415	CF,CO,H	476.2 (M + H)	4.33
3416	N N N N N N N N N N N N N N N N N N N	476.4 (M + H)	3.60
3417	CF ₅ CO ₅ H	476.4 (M + H)	4.23
3418	CI;CO;H	476.4 (M + H)	4.38

【表547】

3419		426.2 (M + H)	3.87
	CF₃CO₂H		
3420	CF3CO3H	444.4 (M + H)	3.86
3421	CF,CO,H	462.2 (M + H)	4.15
3422	CF,CC,H	424.2 (M + H)	4.06
3423	CF ₂ CO ₂ H	450.4 (M + H)	4.03
3424	CF,CO,H	434.2 (M + H)	3.75

【表548】

(表のつづき	*)		
3425	N N H F F	426.2 (M + H)	3.88
3426	СБСОВН	450.4 (M + H)	3.64
3427	CF,CO,H	450.4 (M + H)	3.55
3428	CF,CO,H	418.6 (M + H)	4.17
3429	CF,CO,H	434.4 (M + H)	4.03
3430	CF,CO,H	458.2 (M + H)	4.45

【表549】

3431	CF,CO,H	415.4 (M + H)	3.76
3432	CF ₂ CO ₂ H	474.4 (M + H)	5.06
3433	CF,CO,H	410.2 (M + H)	3.64
3434	CF,CO,H	516.2 (M + H)	4.24
3435	CF,CO,H	424.2 (M + H)	4.09
3436	CF,CO,H	458.2 (M + H)	3.89

【表550】

1-40	and the	-	-0	Spr.	1

3437	CF,CO,H	516.2 (M + H)	3.88
3438	CF,CO,H	460.4 (M + H)	4.86
3439	CF,CO,H	488.4 (M + H)	4.70
3440	CF,CO,H	472.4 (M + H)	4.29
3441	CE,CCO,H	426.2 (M + H)	3.69
3442	CF,CO,H	480.2 (M + H)	4.16

【表551】

(表のつづき	<u>\$</u>)		
3443	CF,CO,H	458.2 (M + H)	3.91
3444	CF ₅ CO ₅ H	450.4 (M + H)	3.95
3445	CF,CO,H	444.4 (M + H)	4.01
3446	CF,CO,H	426.2 (M + H)	4.00
3447	N N N N N N N N N N N N N N N N N N N	408.4 (M + H)	3.75
3448	CF,CO,H	446.6 (M + H)	4.65

【表552】

3449	CF ₂ CO ₂ H	415.2 (M + H)	3.75
3450	NN H CF,CO,H	420.4 (M + H)	3.91
3451	CF;CO;H	490.4 (M + H)	4.99
3452	CP ₂ CO ₂ H	504.4 (M + H)	5.16
3453	CF,CO,H	444.4 (M + H)	4.00
3454	CF;CO;H	396.2 (M + H)	3.85

【表553】

3455	CF,CO,H	526.6 (M + H)	4.69
3456	CF,CO,H	408.4 (M + H)	3.30
3457	CF,CO,H	480.4 (M + H)	3.76
3458	CF,CCO,H	426.2 (M + H)	3.86
3459	CE-CCO-H	424.2 (M + H)	3.76
3460	CF,CO,H	440.4 (M + H)	4.05

【表554】

3461	CF ₂ CO ₂ H	458.4 (M + H)	4.25
3462	CF,CO,H	408.2 (M + H)	3,84
3463	CF,CO,H	458.2 (M + H)	4.25
3464	CF,CO,H	446.6 (M + H)	4.44
3465	CF;CO;H	470.2 (M + H)	4.13
3466	CF,CO ₂ H	476.2 (M + H)	4.25

【表555】

3467	CF,CO,H	476.2 (M + H)	3.92
3468	CF,CO,H	526.4 (M + H)	4.31
3469	CF ₃ CO ₃ H	476.2 (M + H)	4.15
3470	CF,CO,H	462.2 (M + H)	4.48
3471	CF,CO,H	466.4 (M + H)	4.45
3472	N N N N N N N N N N N N N N N N N N N	474.4 (M + H)	4.29

【表556】

(表のつづき	÷)		
3473	CF;CO,H	486.2 (M + H)	4.32
3474	CF,CO,H	438.4 (M + H)	4.31
3475	2CFyCO;H	441.4 (M + H)	3.75
3476	CF,CO,H	434.4 (M + H)	4.10
3477	CF,CO,H	469.4 (M + H)	4.19
3478	CF,CO,H	444.4 (M + H)	4.36

【表557】

(表のつづき)		
3479	N N N N N N N N N N N N N N N N N N N	482.4 (M + H)	4.35
3480	Cryco,H	482.4 (M + H)	4.64
3481	CF ₂ CO ₂ H	502.2 (M + H)	4.37
3482	N N N N N N N N N N N N N N N N N N N	458.2 (M + H)	4.08
3483	2CF,CO,H	465.4 (M + H)	3.66
3484	N N N N N N N N N N N N N N N N N N N	404.4 (M + H)	4.03

(表のつづき	(*)		
3485	CF,CO,H	469.4 (M + H)	4.23
3486	2CF,CO,H	447.4 (M + H)	3.94
3487	N N N N N N N N N N N N N N N N N N N	456.2 (M + H)	4.07
3488	N N N N N N N N N N N N N N N N N N N	432.4 (M + H)	3.99
3489	N N N N N N N N N N N N N N N N N N N	441.3 (M + H)	1.70
3490	N N N N N N N N N N N N N N N N N N N	440.2 (M + H)	4.57

【表559】

(表のつづき	.)		
3491	N N N N N N N N N N N N N N N N N N N	393.4 (M + H)	4.01
3492	2CF,CO,H	497.4 (M + H)	4.45
3493	CF,CO,H	470.2 (M + H)	2.40
3494	N N N N N N N N N N N N N N N N N N N	439.4 (M + H)	1.92
3495	ZCF,CO,H	407.4 (M + H)	2.30
3496	N N N N N N N N N N N N N N N N N N N	469.5 (M + H)	2.27

【表560】

(表のつづき	;)		
3497	N N N N N N N N N N N N N N N N N N N	439.4 (M + H)	1.93
3498	N N N OH	407.4 (M + H)	1.62
3499	N N N N N N N N N N N N N N N N N N N	416.3 (M + H)	2.34
3500	CE ₂ CO ₂ H	460.4 (M + H)	2.46
3501	N N NO2	465.4 (M + H)	4.13
3502	NN H H H H H H H H H H H H H H H H H H	419.4 (M + H)	3.87

【表561】

(表	m	1	ベ	Э.	١

3503	CF ₂ CO ₂ H	450.4 (M + H)	3.97
3504	N H N CF,CO,H	406.2 (M + H)	2.18
3505	CF,CO,H	470.4 (M + H)	4.74
3506	N N N N N N N N N N N N N N N N N N N	466.4 (M + H)	3.83
3507	N N N N N N N N N N N N N N N N N N N	441.2 (M + H)	4.38
3508	NN	441.2 (M + H)	3.62

【表562】

(表のつづき	()		
3509	N N N N N N N N N N N N N N N N N N N	454.5 (M + H)	2.44
3510	N N N N O O O O O O O O O O O O O O O O	. 384.4 (M + H)	3.67
3511	N H CF,CO,H	502.2 (M + H)	4.37
3512	CF ₂ CC ₂ H	480.5 (M + H)	2.18
3513	N H O O O O O O O O O O O O O O O O O O	380.2 (M + H)	3.81
3514	N N N N O O O O O O O O O O O O O O O O	463.2 (M + H)	4.23

【表563】

(表のつづき	:)		
3515	2CF,CO,H	443.4 (M + H)	2.12
3516	The state of the s	431.1 (M + H)	1.90
3517	CF,CO,H	474.4 (M + H)	5.05
3518	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	440.5 (M + H)	2.33
3519	CF,CO,H	464.5 (M + H)	2.20
3520	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	391.1 (M + H)	1.59

(表のつづき	:)		
3521	N N N N N N N N N N N N N N N N N N N	474.4 (M + H)	4.53
3522	CF ₂ CO ₂ H	542.2 (M + H)	2.26
3523	N H HN S	429.3 (M + H)	2.41
3524	CF,CO,H	494.6 (M + H)	2.59
3525	CF,CO,H	518.5 (M + H)	2.96
3526	CF,CO,H	420.4 (M + H)	2.19

【表565】

(表のつづき	:)		
3527	CF ₂ CO ₂ H	420.4 (M + H)	2.19
3528	NH N	552.0 (M + H)	2.45
3529	NH OFF	564.2 (M + H)	2.48
3530	NH CFFCO,H	606.0 (M + H)	2.86
3531	NH CFF CO.H	586.2 (M + H)	3.20
3532	OFF 2CF,CO,H	614.4 (M + H)	2.76

【表566】

(表のつづき	;)		
3533	CI. NH CIPE STATE OF F	620.0 (M + H)	2.68
3534	2CF ₂ CO ₂ H	616.0 (M + H)	2.56
3535	FFF Br	566.0 (M + H)	2.54
3536	CF,CO,H	532.2 (M + H)	3.35
3537	2CF ₂ CO ₂ H	541.4 (M + H)	3.11
3538	CF,CO,H	505.2 (M + H)	2.98

【表567】

(表のつづき)		
3539	CF ₂ CO ₂ H	556 (M + H)	3.37
3540	СР,СО,Н	516.4 (M + H)	3.39
3541	CF ₂ CO ₂ H	504.4 (M + H)	3.61
3542	CF,CO,H	574.4 (M + H)	4.27
3543	CF,CO,H	508.2 (M + H)	3.17
3544	сьсо,н	644.2 (M + H)	3.63

【表568】

(表のつづき	¢)		
3545	CF ₂ CO ₂ H	520.4 (M + H)	3.56
3546	N N N O O O O O O O O O O O O O O O O O	504.2 (M + H)	3.25
3547	2CF,CO,H	513.4 (M + H)	2.86
3548	CF,CO,H	616.2 (M + H)	3.73
3549	CF,CO,H	450.4 (M + H)	2.79
3550	CF ₂ CO ₂ H	466.2 (M + H)	3.35

【表569】

(表のつづき	£)		
3551	2CF,CO,H	465.2 (M + H)	3.34
3552	CF,CO,H	451.2 (M + H)	3.83
3553	CF,CO,H	451.2 (M + H)	4.10
3554	CF,CO,H	563.2 (M + H)	4.33
3555	2CF,CO,H	468.4 (M + H)	3.66
3556		467.4 (M + H)	2.85

2CF3CO2H

3562

(表のつづき)		
3557	CF,CO,H	515.4 (M + H)	3.52
3558	CF,CO,H	485.2 (M + H)	3.40
3559	2CF,CO,H	467.4 (M + H)	3.90
3560	CF,CO,H	473.4 (M + H)	4.17
3561	CF,CO,H	467.4 (M + H)	3.57

CF₃CO₂H

490.2 (M + H)

4.00

【表571】

(表のつづき)

(表のつつき	•)		
3563	CF ₂ CO,H	490.2 (M + H)	3.99
3564	2CF,CO,H	476.2 (M + H)	3.76
3565	CF,CO,H	467.2 (M + H)	4.07
3566	CE,CO,H	528.2 (M + H)	4.53
3567	CF,CO,H	464.2 (M + H)	4.11
3568	CF,CO,H	494.0 (M + H)	3.43

【表572】

(表のつづき			
3569	N H S S S S S S S S S S S S S S S S S S	444.0 (M + H)	3.03
3570	CF ₂ CO ₂ H	552.0 (M + H)	3.30
3571	N	510.0 (M + H)	3.37
3572	N	562.0 (M + H)	3.66
3573	N	622.0 (M + H)	3.61
3574	CF ₅ CO ₅ H	588.0 (M + H)	3.59

【表573】

(表のつづき	()		
3575	F F F O N N N N N N N N N N N N N N N N	510.0 (M + H)	3.31
3576	CE ₂ CO ₂ H	562.0 (M + H)	3.61
3577	CF,CO,H	510.0 (M + H)	3.35
3578	CF,CO,H	597.0 (M + H)	3.55

665.0 (M + H)

4.02

[0650]

アッセイ手順

3579

参考のために本明組書に組み込んである。米国特許出願番号09/826509を有する同時出願されている特計出願に記載のプロトコルに従い、本特計明組書中で同定および 開示されている化合物をアッセイした。

CF3CO2H

【0651】

実施例3580

内在性MCH受容体の調製

内在性と、MC H受容体は、テンプレートとしてのゲノムDNAおよび r T t h ポリメ ラーゼ (Perkin Eluer) を、製造者により提供された線額液、各プライマー 0.25 μ M および各4種のスクレオチド 0.2 m Mと共に使用する P C R により得た。サイクル条件 は、9 4 でで 1 分 5 6 でで 1 分および 7 2 で 1 分 2 0 かからなる 3 0 サイクルであっ た、5'PCRプライマーは、配列:

5'-GTGAAGCTTGCCTCTGGTGCCTGCAGGAGG-3' (SEQ. ID. NO.:1)

でHindIII部位を有し、さらに3'プライマーは、配列:

5'-GCAGAATTCCCGGTGGCGTGTTGTGGTGCCC-3' (SEQ. ID. NO.:2)

でEcoRI部位を含んだ。

1.3kb PCRフラグメントを、HindIIIおよびEcoRIで消化し、CM Vp発現ベクターのHindIII-EcoRI部位中でクローニングした。この後、Lakayeらによるクローニング処理により、イントロン、遺伝子のコード領域が存在することが示された。したがって、テンプレートとしてClontech's marathon-ready hypothalamus cDNAおよび製造者が推奨するサイクリング条件のプロトコルを使用する5'RACE PCRにより、cDNAの5'未増を得た。第1および第2ラウンドPCRでの5'RACE PCRは、5'-CATGAGGTGGTGG ATCATGAGGG-3'(550,10.13)

および

5'-ATGAAGGGCATGCCCAGGAGAAAG-3' (SEQ. ID.NO.:4)

であった。

核酸およびアミノ酸配列を、これにより求め、GenBankに存在する受入番号U7 1092の公表配列と照合した。

[0652]

実施例3581

非内在性の、構成的に活性なMCH受容体の調製

非内在性型のトトMC 日受容体の測製を、MC H - I C 3 - S S T 2 突然変異を作ることにより行った(核酸配列に関しては、S E Q、I D、N O、: 7、7 + S - 複販列に関しては は S E Q、I D、N O、: 8 + 数別、 7 + 3 + 3 + 3 + 3 + 3 + 3 + 4 + 4 + 5 + 4 + 5 + 5 + 6 + 6 + 7 + 6 + 7 + 7 + 7 + 8 + 7 + 8 + 7 + 8 + 7 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 9 + 8 + 9 + 8 + 9

MCH受容体のIC3を有するBamHI-BstEIIフラグメントを、SST2の IC3を含む合成オリゴヌクレオチドに代えた。使用したPCRセンス突然変異誘発プラ イマーは、次の配列:

5'-GAT CCTGCAGAAGGTGAAGTCCTCTGGAATCCGAGTGGGCTCCTCTAAGAG

GAAGAAGTCTGAGAAGAAG-3' (SEQ. ID. NO.:9)を有し、アンチセンスプライマーは、次の配列

5'-GTGACCTTCTTCTCAGACTTCTTCCTCTTAGAGGAGCCCACTCGGATTCCAG

AGGACTTCACCTTCTGCAG-3' (SEQ. ID. NO.:10)を有した。

内在性MCH受容体cDNAを、テンプレートとして使用した。

[0653]

実施例3582

GPCR融合タンパク質の調製

MCH受容体-Gi α 融合タンパク質構造は、次のように製造した: 内在性MCH受容体のためにデザインされたプライマーは、次のものであった:

5'-GTGAAGCTTGCCCGGGCAGGATGGACCTGG-3' (SEQ. ID. NO.:11: センス)、

5'-ATCTAGAGGTGCCTTTGCTTTCTG-3' (SEQ. ID. NO.:12; アンチセンス)。

センスおよびアンチセンスプライマーはそれぞれ、KB4およびXbaIに関する制限 部位を含んだ。

PCRを利用して、前記のGi α 統一ベクター内で融合させるために、それぞれの受容体配列を守ったが、その際、それぞれ次のプロトコルを使用した: MCH受容体のための cDNA100n gを、各アライマー(センスおよびアンチセンス) 2 uL、 $10\,\mathrm{mM}$ の dNTP3 uL、 $10\,\mathrm{XTa}$ qPlus(登録商標)Precision 報酬流10 uL、Ta qPlus(登録商標)Precision ポリメラーゼ(Stratagene

: #600211)1 u. Lおよび本80 u. Lを含む例べの管に加えた、MC H受容体のための反応温度およびサイクル時間は、次である: 初めの変性ステップを、9 4 ℃でう分間行い、さらに9 4 ℃でうり砂間: 5 5 ℃で3 0秒間: 7 2 ℃で2 分間のサイクルで行った。最終申時時間は、7 2 ℃で1 0 分間行った。P C R 生成物を、1 %アガローステルに流し、次いで精製した(データは示さない)。精製された生成物を、K B 4 および K D は、 (N e W E n g 1 a n d B i o 1 a b s) で清化し、所望のインサートを申載し、精製し、それぞれの制限部位で、G i 技・ベクターに連続した。正のクローンを、次の形質転換により準にし、制限酵素消化により決定した。HE K 2 9 3 個を使用する 第2 米 2 次の下す。 MC H 受容体: G i 一般合タンパク質のためのそれぞれの正のクローンを堪基配列決定し、代表的な化合物の直接的な同能で可能にした。(核酸配列に関しては、S E Q 。 I D 、NO : 1 4 参照)。

内在性型のMCH受容体を、Gタンパク質Giから上流融合させたが、これは、ヌクレオチド1から1059に(SEE.ID.NO.:13動限)およびアミノ酸基1から353(SEQ.ID.NO.:14動駅)に位置している。MCH受容体に関して、2個のアミノ酸基(6個のヌクレオチドの当量)が、内在性(または非内在性)GPCRとGタンパク質(Giαの開始コドンとの間に存在していた。したがって、Giタンパク質は、スクレオチド1066から2133(SEQ.ID.NO.:13)およびアミン酸基356から711(SEQ.ID.NO.:14)に位置している。当技術分野の専門家であれば、Gタンパク貸と該当GPCRの3、未場とが融合しているGPCR融合タンパク質を構成するための技術を選択する能力を有するであろう。【6654】

実施例3583

非内在性GPCRの構成的活性を測定するためのアッセイ

A. 細胞内 I P a 蓄積アッセイ

1日目に、受容体(内在性および/または非内在性)を含む細胞を、24ウェルプレー トに、通常は1×105 細胞/ウェルでまくことができる(ただし、その数は、最適化す ることができる)。2日目に、無血清DMEM50ul/ウェル中のDNA0,25ug および無血清DMEM50ul/ウェル中のリポフェクタミン (lipofectamine) 2 ul を初めに混合することにより、細胞をトランスフェクションすることができる。溶液を穏 やかに混合し、室温で15~30分間インキュベーションする。細胞をPBS0.5ml で洗浄し、無血清培地400µ1をトランスフェクション培地と混合し、細胞に加える。 次いで細胞を、37 \mathbb{C}/\mathbb{C} \mathbb{C} \mathbb{C}_{0} \mathbb{C}_{0} \mathbb{C} \mathbb{C}_{0} \mathbb{C}_{0} \mathbb{C}_{0} \mathbb{C}_{0} スフェクション培地を除去し、通常の増殖培地1ml/ウェルに代える。3日目に、細胞 を3 H-ミオイノシトールで標識する。簡略には、培地を除去し、細胞をPBSO.5m 1で洗浄する。次いで、無イノシトール/無血清培地O.5ml(GIBCO BRL) /ウェルを、 3 H - ミオイノシトール 0 . 25 μ C 1 / ウェルと共に加え、細胞を、 37 *C/CO。5%で16~18時間インキュベーションする。4日目に、細胞をPBSO。 5mlで洗浄し、無イノシトール/無血清培地、パーギリン10μM、塩化リチウム10 mMを含むアッセイ培地O. 45mlあるいはアッセイ培地O. 4mlおよび最終濃度1 0µMまでの10×ケタンセリン(ket)50ulを加える。次いで細胞を37℃で3 0分間インキュベーションする。次いで細胞を、PBSO.5mlで洗浄し、ウェル1個 当たり新鮮な氷冷停止液200μl (1 MのKOH ; 18 m Mのホウ酸Na ; 3.8 Mの EDTA)を加える。この溶液を氷上で5~10分間、または細胞が溶解するまで保ち、 次いで、新鮮な氷冷中和溶液(7.5%HC1)200µ1で中和した。次いで、溶解産 /管を加える。この溶液を、15秒間攪拌し、上部相を、Biorad AG1-X8(登録商標) アニオン交換樹脂 (100~200メッシュ) に添加する。最初に、この樹脂 を、水で1:1.25W/Vで洗浄し、上部相0.9mlを、カラムに添加した。カラム を、5mMのミオイノシトール10mlおよび5mMのホウ酸Na/60mMのギ酸Na 10mlで洗浄する。イソシトールトリスリン酸塩を、0.1Mの主酸/1Mの主酸アン モニウム2mlを含有するシンチレーションカクラル10mlの入ったシンチレーション バイアル中で溶出する。カラムを、0.1Mのギ酸/3Mのギ酸アンモニウム10mlで 洗浄することにより再生をせ、H。ので2回すすぎ、木中で4で電散した。

図1を参照。図1は、いくつかの構成的に活性化された非内在性型のMCH受容体からの IP_3 産生を、この内在性型の受容体と比較して説明している。内在性型のMCH受容体(「MCH-Rwt」)と比較すると、MCH-IC3-SST2は、 IP_3 蓄積において約27%の増加を示した。

【0655】

実施例3584

「35S]GTPャSアッセイを使用しての化合物の測定

初めに、[35 S] GTP r Sアッセイを使用して、候補化合物の直接的な同定をスク リーニングした (同時出願された特許出願の9/826509等の実施例6参照)。 好ま しくは、同時出願された特許出願の9/826509号の実施例6(2)に従い、MCH 受容体: G1融合タンパタ質を利用した。[35 S] GTP r Sアッセイを利用して、い くつかのリードセット (lead hit) を同定した。

【0656】

実施例3585

ハイスループット機能性スクリーニング (High Throughput Functional Screening): FLIPR (登録商標)

続いて、標能性ベースアッセイ(functional based assay)を リードヒットを確認するために使用した; FLIPR(登録商標、Fluorometric Imaging Plate Reader) およびFDSS60の(登録施標、Functional Drug Screening System)と称される。このアッセイは、非内在性型のMCH受容体を使用したが、これは、MCH受容体の第3の細胞内ループを、SST2受容体のものと交換することにより調製した(特許出期第09/826509分別実施解2日8)(2)参照)(2)参照)

FLIPRおよびFDSSアッセイにより、細胞中の細胞内Ca2+濃度を検出することができ、これを利用して、受容体活性を評価し、代表的な化合物が、例えば、Gの共使型受容体は対するアンタゴースト、達アゴーストままはアゴーストであるかどうかを決定することができる。細胞のサイトゾル中の遊離のCa2+の濃度は、非常に低い一方で、細胞外液および小腹体(ER)中のこの濃度は、非常に高い。したがって、Ca2+を形質脱さびERの両方のサイトゾルへと駆動する傾向を示す大きな知配が存在する。PLIPR(登銭前標)およびFDSS600(登録前標)系(Molecular De vices Corporation、HAMAMATSU Photonics K.K.)を、高速スルーアットスクリーニングのための細胞内カレシウムの測定などの機能(地間をベースアッセイを行うように設計する。蛍光の測定は、Gの非役型受容体の活性化の際のカルシウムが出と関連している。GiまたはGの共復型受容体は、簡単には、FLIPR(登銭前標)およびFDSS6000(登録前標)系によって監視することができない。それというのも、これらのGタンパク質は、カルシウムシクナル経路と結びつかないためである。

[9 S] GTP $_{T}$ Sアッセイを使用して同定されたリードヒットを確認するために、Fluorometric Imaging Plate Reader系を使用して、96ウェルマイクロプレート)はでは384ウェルマイクロプレート)はでの間を対象の迅速で、動的な測定を可能にした。FLIPRおよびFDSS6000系により、全てのウェル中の蛍光の同等測定を再抄、高い感度および精度で行うことができる。これらの系は、G 4 共復要変容体の活性化の後に、数秒以内に生しる細胞内カルシウムフラックスを監視するような細胞ペース機能性アッセイを測定するためには地塊的である。

簡略には、翌日のアッセイのために、細胞を、96ウェルに細胞5. 5×10^4 /ウェルで、完全特地(10%ウシ血清、2 m MのLのグルタミン、1 m Mのビルビン酸ナトリウムおよびG4180.5 m g/m l、p H 7.4 を含むグルベッコ改変イーグル培地)

FLIPR (登録商標) およびFDSS6000 (登録商標) の使用は、次の製造者指示書により行うことができる (Molecular Device Corporation, HAMAMATSU Photonics K. K.)。

結果は、下記に示した。

【表574】

化合物番号	IC ₅₀ 値(nM)
実施例 41	6
実施例 42	19

本明細書中で言及されているか、引用されている特許、特許出願、印刷刊行物および他 の出版書類は、参考のために全体を本明細書中に組み込むことを意図している。

当分野の技術者には、本発明の好ましい実施形態に対して数多くの変化および変更を行 うことができ、さらに、このような変化および変更を、本発明の意図を逸脱することなく 行うことができることは理解されるであろう。したがって、付随する請求項は、本発明の 真の意図および範囲に該当するそのような変化の全てを包含することを意図している。 【図面の簡単な説明】

[0657]

【図1】内在型のMCH受容体と比較した数種の非内在型構成的に活性化させたMCH受容体から生じるIP。産生を説明している。

【配列表】 2004315511000001.app

(51) Int. Cl. 7	FI	テーマコード(参考)
A61P 2		
C 0 7 D 40	1/12 C 0 7 D	401/12
C O 7 D 40	1/14 C 0 7 D	401/14
C O 7 D 403	3/12 C 0 7 D	403/12
C O 7 D 409	5/12 C 0 7 D	405/12
CO7D 409	9/12 C 0 7 D	409/12
CO7D 409		
C 0 7 D 41		
CO7D 413		
C 0 7 D 41		
C 0 7 D 41	7/14 C 0 7 D	417/14
(72)発明者 表	寺 克紀	

東京都豊島区高田3丁目24番1号

(72)発明者 トラン、テュイ - アン

アメリカ合衆国、カリフォルニア、サン ディエゴ、フェアポート ウェイ 4833

(72)発明者 クレイマー、ブライアン オーブリー

アメリカ合衆国、カリフォルニア、サン ディエゴ、フライアーズ ロード 5645、ナンバー 358

(72)発明者 ビーリー、ナイジェル ロバート アーノルド

アメリカ合衆国、カリフォルニア、ソラナ ビーチ、ロマ コルタ ドライブ 227

Fターム(参考) 4C063 AA01 AA03 BB07 BB09 CC31 CC34 CC42 CC51 CC58 CC62 CC75 CC76 CC81 CC92 DD04 DD06 DD12 DD14 DD22 DD25

DD31 DD62 EE01

4CO86 AAO2 AAO3 BC46 BC50 BC52 BC60 BC67 BC68 BC69 BC70

BC71 BC73 BC82 GA02 GA04 GA07 GA08 GA09 GA10 MA02 MA05 NA14 ZA01 ZA12 ZA70 ZC61