

Lecture 30

Linear Regression

Announcements

Correlation Coefficient

The Correlation Coefficient r

- Measures *linear* association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - \circ r = -1: scatter is perfect straight line sloping down
- r = 0: No linear association; *uncorrelated*

Definition of r

Correlation Coefficient (r) =

Measures how clustered the scatter is around a straight line

Care in Interpretation

Watch Out For ...

- False conclusions of causation
- Nonlinearity
- Outliers
- Ecological Correlations

(Demo)

Discussion question

True or False?

If the correlation of *x* and *y* is close to 0, then knowing one cannot help us predict the other.

Chocolate and Nobel Prizes

https://www.biostat.jhsph.edu/courses/bio621/misc/Chocolate%20consumption%20cognitive%20function%20and%20nobel%20laurates%20(NEJM).pdf

Prediction

Predicting Heights

Oval shaped

Moderate positive correlation

 How can we predict child height from the parents' average height?

Approach to Prediction

Predicted Heights

Nearest Neighbor Regression

A method for prediction:

- Group each x with similar (nearby) x values
- Average the corresponding y values for each group

For each *x* value, the prediction is the average of the *y* values in its nearby group.

The graph of these predictions is the "graph of averages".

If the association between x and y is linear, then points in the graph of averages tend to fall on a line.

Where is the prediction line?

$$r = 0.99$$

Where is the prediction line?

$$r = 0.0$$

(Demo)

Linear Regression

Linear Regression

A statement about *x* and *y* pairs

- Measured in standard units (su)
- Describing the deviation of *x* from 0 (the average of *x*'s)
- And the deviation of the corresponding y from 0 (the average of y's)

On average, v deviates from 0 less than x deviates from 0

Regression line $(estimated y)_{su} = r \times x_{su}$ correlation

Not true for all points — a statement about averages