HACKING THE BRAIN

Customize Evil Protocol to Pwn an SDN Controller

Feng Xiao, Ph.D. student at PennState, Cyber Security Lab

Jianwei Huang, Researcher at Wuhan University

Peng Liu, Professor at PennState, Cyber Security Lab

A Brief Introduction to SDN

Software-Defined Networking (SDN) is an emerging architecture that decouples the network control and forwarding functions.

What's SDN Like Today?

Who are contributing?

- More than 15 popular controllers.
- More than 1700 open source SDN projects.

Who are using?

- Data Center
- Telecom
- Enterprise

• ...

Attack Objectives in SDN

	Objective	Reference	Category		
	Congest control channel	Control plane saturation attack	Denial of Service		
	Terminate/Disrupt network services	State manipulation attack	Denial of Service		
	Steal confidential configuration	New	Data leakage		
	Probe network information	New	Data leakage		
	Install flow rules	New	Network manipulation		
	Fabricate links or hosts	Topology poisoning attack	Network manipulation		
	Distort network service results	New	Network manipulation		
	Disconnect network elements	New	Network manipulation		
	Install malicious SDN applications	New	Network manipulation		

Pwn It Like A Hacker

Software-Defined Networks

Decoupled Control Plane and Data Plane

Pwn It Like A Hacker

Our Choice: Custom Attack

Custom Attack

Custom Field (CF) in legitimate protocol interactions

- CF is controlled by data plane (hacker)
- CF will be processed by components in the controller

<eventTime>2007-07-08T00:10:00Z</eventTime> <event xmlns="http://example.com/event/1.0"> <eventClass>state</eventClass>

<card>Ethernet0</card>

<operState>enabled

<reportingEntity>

</reportingEntity>

:/notification>

```
APP
                                                      Service
                                             Controller
mlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
                                                     Infrastructure
```

Custom Attack

Custom Field (CF) in legitimate **APP** protocol interactions CF results in a semantic gap between control plane and data plane in the controller mlns="urn:ietf:params:xml:ns:netconf:notification:1.0"> <eventTime>2007-07-08T00:10:00Z</eventTime> <event xmlns="http://example.com/event/1.0"> <eventClass>state</eventClass> <reportingEntity> <card>Ethernet0</card>

</reportingEntity>

:/notification>

<operState>enabled</operState>

Infrastructure

What Can It Cause?

Execute Arbitray SDN Commands

Steal Confidential Data

Crash/Disrupt Service

Disable Network Function

. . .

Threat Model

We do NOT assume that hackers can have network access to SDN controllers or SDN applications

Control channel is well protected by SSL/TLS

Threat Model

We do NOT assume that hackers can have network access to SDN controllers or SDN applications

Control channel is well protected by SSL/TLS

A compromised host^[1] or switch^[2]

^[1] exploitable if the target network is configured with in-band control.

^[2] Switches are vulnerable to multiple remote attacks (e.g., Buffer Overflow[CVE-2016-2074]).

Challenges

Abusing Custom Field is not enough.

 Every Component runs in its separate context.

<eventClass>state

<card>Ethernet0</card>

<operState>enabled</operState>

<reportingEntity>

</reportingEntity>

:/notification>

Challenges

Abusing Custom Field is not enough.

- Every Component runs in its separate context.
- Critical components are usually specially protected.

<eventClass>state

<card>Ethernet0</card>

<operState>enabled

<reportingEntity>

</reportingEntity>

:/notification>

1: Toe-hold Stage

2: Harvest Stage

3: Chaining Stage

ONOS Remote Command Execution

```
pi@openvswitch:~$ # ONOS Controller is root@controller (192.168.1.111)
pi@openvswitch:~$
pi@openvswitch:~$ # Our compromised switch is this machine (192.168.1.108)
pi@openvswitch:~$
```

```
private static final String COMMAND = "../bin/onos-node-diagnostics";
39
        private static final String DIAGS = "/tmp/onos-node-diags.tar.gz";
40
41
        private final Logger log = LoggerFactory.getLogger(getClass());
42
         /**
43
          * Get tar.gz stream of node diagnostic information.
44
45
          * @return 200 OK with a tar.gz stream of diagnostic data
46
47
        @GET
48
        @Produces(MediaType.APPLICATION_OCTET_STREAM)
49
        public Response getDiagnostics() {
51
                 execute(COMMAND);
52
53
                 return ok(new FileInputStream(DIAGS)).build();
```


g\:guestgroup = group,viewer

```
# All users, groups, and roles entered in this file are available after Karaf startup
# and modifiable via the JAAS command group. These users reside in a JAAS domain
# with the name "karaf".
#
karaf = karaf,_g_:admingroup
onos = rocks,_g_:admingroup
onos1 = rocks,_g_:admingroup
guest = guest,_g_:guestgroup
_g_\:admingroup = group,admin,manager,viewer,webconsole
```



```
public Collection<Alarm> translateToAlarm(DeviceId deviceId, InputStream message) {
   try {
        Collection (Alarm) alarms = new Arraylist()().
        Document doc = createDocFromMessage(message);
        // parse date element value into long
       Node eventTime = doc.getElementsByTagName(EVENTTIME TAGNAME).item(0);
       String date = eventTime.getTextContent();
        long timeStamp = parseDate(date);
```

```
117
          // Extracts the ZIP stream into the specified directory.
118
          private void extractZipArchive(File dir, InputStream stream) throws IOException {
119
              ZipInputStream zis = new ZipInputStream(stream);
120
              ZipEntry entry;
121
              while ((entry = zis.getNextEntry()) != null) {
                  if (!entry.isDirectory()) {
122
123
                      byte[] data = toByteArray(zis);
                      zis.closeEntry();
124
                      File file = new File(dir, entry.getName());
125
126
                      createParentDirs(file);
                     write(data, file);
127
128
129
130
              zis.close();
```


Evaluation

5 popular SDN Controller

- Three open source projects (White-box)
- Two commercial products (Black-box)

54 apps

- Analyze 12 protocols
- Identify 476 dangerous function calls

18 zero-day vulnerabilities

Construct 24 sophisticated exploit chains

Impact Analysis

Get System Shell (1 of them)

Execute Arbitray SDN Commands (5 of them)

Steal Confidential Data (7 of them)

Crash/Disrupt Service (11 of them)

Oday Profile

Controller	Bug#	Component Name	Stage			Vulnerability Description	Compatible Attack Effects		
Controller			Т	Н	С	vulnerability Description	1#	2#	3#
	1	NETCONF	~		~	Improper Restriction of XML External Entity Reference	/		~
	2	Driver	~		~	Improper Restriction of XML External Entity Reference		~	~
	3	Device UI	~			Cross Site Script	~	~	~
ONOS	4	Karaf		~		Insufficiently Protected Credentials	~	~	~
ONOS	5	OVSDB	~		~	Improper Handling of Syntactically Invalid Structure		~	
	6	Core		~		Improper Limitation of a Pathname to a Restricted Directory	~	~	
	7	YANG		~	~	Improper Limitation of a Pathname to a Restricted Directory	V	~	
	8	Switch UI	~			Cross Site Script	V	V	~
Floodlight	9	RestServer		~	~	Improper Authorization	~	~	~
Floodlight	10	Forwarding	~		~	Improper Handling of Syntactically Invalid Structure		~	
	11	Web		~		Missing Authorization	V	'	~
	12	SDNI	~		~	SQL Injection			~
OpenDaylight	13	VPNService	~		~	Improper Handling of Syntactically Invalid Structure		~	
	14	IoTDM		~	~	Improper Limitation of a Pathname to a Restricted Directory		~	
HPE VAN	15	Monitor UI	~			Cross Site Script		V	
HPE VAIN	16	System Configuration		~	~	Improper Authorization		~	
SDNC	17	UI	~			Cross Site Script			~
SDINC	18	Rest API		~	~	Improper Authorization	~		

T: Toe-hold stage

H: Harvest stage

C: Chaining stage

1#: Command Execution 2#: Service Disruption 3#: Data Leakage

Researchers from Fraunhofer AISEC also discovered Bug#3.

Thanks!

Email: f3ixiao@gmail.com

Homepage: http://fxiao.me

Twitter: @f3ixiao