Shor's Algorithm

Boris Varbanov Santiago Sager La Ganga

Delft University of Technology, The Netherlands

February 11, 2018

Shor's Algorithm

FIG. 2. Shor's quantum circuit for period finding

Binary exponentiation

Carry and sum

<i>c</i> ₃ 0	$\overset{c_2}{a}_2$	$\overset{c_1}{a}_1$	0 <i>a</i> 0
+ 0	b_2	b_1	b_0
<i>c</i> ₃	$a_2 + b_2 + c_2$	$a_1 + b_1 + c_1$	$a_0 + b_0$

Addition

Modular addition

Modular arithmetics

- $ab \mod N = (a \mod N \quad b \mod N) \mod N$
- $a+b \mod N = (a \mod N + b \mod N) \mod N$

Controlled multiplication

$$y = zx = z2^n x_n + \dots + z2^1 x_1 + z2^0 x_0$$

Modular exponentiation

$$a^{x} = a^{2^{n}x_{n}} \cdots a^{2^{1}x_{1}} a^{2^{0}x_{0}}$$

Software

QX

- Easy and intuitive to create a simple script
- No built in recursive operations to create a longer/more complex script

Software

Python

Python wrapper implementing the classical part and the automation of the qc file generation

Python and QX

Results

What can we factorize?

- Factorizing $21 \rightarrow 37$ qubits needed Impossible even in our quantum dreams
- Factorizing 15 → 30 qubits needed Impossible on student budget
- Factorizing 15 (cheating) → 26 qubits needed Possible, 15 is indeed 3 * 5!

The end

Questions and Answers