CmpE 482 - Homework 2 (Due: Nov 16th, 2017 midnight)

Part 1: QR Factorization

Write a MATLAB function called qr-householder(), which computes QR factorization of matrix \mathbf{X} of size $m \times n$ (with $m \ge n$) using Householder Triangularization. The function takes matrix \mathbf{X} as an input. The output is a modified matrix \mathbf{X} of size $(m+1) \times n$ such that the modified matrix contains both the upper triangular \mathbf{R} and the \mathbf{v} vectors used to form the Householder reflectors. The function should not form \mathbf{Q} explicitly.

Part 2: Least Squares Fitting of AR model

Suppose that \mathbf{x} is an N-vector representing time series data. The (one step ahead) prediction problem is to predict x_{t+1} , based on $x_1, ..., x_t$. We will base our prediction \hat{x}_{t+1} of x_{t+1} on the previous M values, $x_t, x_{t-1}, x_{t-2}, ..., x_{t-M+1}$, where M is the memory length of our predictor. The prediction model will be in the following form:

$$\hat{x}_{t+1} = \beta_0 + \beta_1 x_t + \beta_2 x_{t-1} + \beta_3 x_{t-2},$$

where M=3. Given observed data $x_1, x_2, ..., x_N$, we want to minimize the error: $\sum_{t=M+1}^{N} (\hat{x}_t - x_t)^2$.

- Formulate this as a least squares problem.
- Load hw2_data.mat, which shows the annual number of worldwide earthquakes with magnitude greater than 7 on the Richter scale for N=100 years. Estimate β_0 , β_1 , β_2 , and β_3 by solving the least squares problem using the $qr_householder$ function you have implemented for Part 1 (which will not return \mathbf{Q} and do not form \mathbf{Q} explicitly).

Deliverables

Work in pairs and send the following by email to evrim.acarataman@gmail.com:

- MATLAB scripts: *qr_householder* and your script for Part 2.
- Your estimates for β_i for i = 0, 1, 2, 3.