# Multivariate statistics and geometric morphometrics

- Eigenanalysis used in several ways in geometric morphometrics:
  - Calculation of partial warps.
  - Use of partial warp scores in PCA, DFA, and CCA.
  - Direct use of landmark coordinates in PCA and DFA.

## Partial warps

- Recall: thin-plate spline decomposes shape difference into *global* and *local* components:
  - Uniform, affine component is a tilted plane viewed in perspective.
  - Non-uniform, non-affine component characterizes regional deformations (warping of the thin plate).
    - Characterized by bending-energy matrix.
  - Total deformation is sum of the two components.



- Non-uniform portion of deformation:
  - Describes changes that vary in nature and extent across the organism.
  - Can be further decomposed into set of *orthogonal* components: *partial warps*.
    - Eigenvectors of bending-energy matrix.
  - Characterize changes at progressively smaller, more localized spatial scales:
    - 1<sup>st</sup> partial warp describes change at largest scale (lowest bending energy).
    - 2<sup>nd</sup> partial warp describes change at smaller scale.
    - Etc.
  - For k landmarks, can calculate k-3 partial warps.

• Partial warps 1–3 for Fink's ontogenetic piranha

data:





Large scale

Moderate scale

Small scale

- Corresponding to each partial warp is a vector of partial warp scores.
- Calculated by projecting differences between aligned specimens and reference form onto partial warps.
  - Represent k-3 points within the tangent space spanned by the partial warps.
  - X and Y components, indicating directions of partial warp.
  - Express contribution that each partial warp makes to the total deformation.
  - Can be used as set of 2(k-3) shape variables to represent individuals in multivariate analyses.
- *Principal components* of partial warp scores are sometimes called *relative warps*.

- Example from Zelditch et al. (2004):
  - Sample of 31 lower jaws of fox squirrels:







- *Principal warp* = partial warp interpreted as a bent surface of the thin-plate spline.
- *Uniform component* of TPS is sometimes called the  $0^{th}$  *principal warp*.
  - Orthogonal to all partial warps.
- The *uniform component* of the TPS can also be decomposed into orthogonal components, characterizing:
  - (1) compression/dilatation
  - (2) shear
  - Not an eigenanalysis.

- Important ironical note:
  - Bending energy matrix is a function of *only* the reference (concensus) form of the TPS deformation.
  - Partial warps are not features of the shape change.
    - Warps do not describe variation among individual forms, or deformations between forms.
    - Cannot be interpreted as components of the deformation.
    - Provide a useful coordinate system within the space in which shape change is analyzed and visualized.
      - Tangent space.
      - Projections of forms are partial-warp scores.

- Examples from Zelditch et al. (2004):
  - PCA (relative warps) of juveniles of 9 species of piranhas.
  - Data: matrix of partial warp scores on 1st partial warp.



• Analysis of direction in which species differ from *Pygopristis denticulata* in juvenile shape:



• Discriminant analysis (DFA, =CVA) of juvenile and adult piranhas:



- Pygopristis denticulata
- Serrasalmus altuvei
- S. elongatus
- \* S. gouldingi
- S. manueli
- S. spilopleura
- Pygocentrus cariba
- 🖈 P. nattereri
- 📤 P. piraya

- Larson (2005): ontogenetic development in *Rana* tadpoles.
  - Used landmarks for PCA and CVA of partial warp scores, and distances for allometric analyses:







• Douglas et al. (2001): Differentiation of *Gila* populations in upper Colorado drainage based on partial warp scores:

#### Relative warps:







#### Discriminant analysis:



- Rohlf & Corti (2000): use of partial warp scores in canonical correlation analysis (actually, PLS) of *Plethodon* skulls:
  - Two species from single locality: 38 P. hoffmani +
    31 P. cinereus.
  - Skull landmarks characterizing trophic morphology.
  - Stomach contents: importance ranks of 16 prey items.



#### Procrustes GLS:



#### Trophic axes:

| Variable        | Dimensions |        |        |
|-----------------|------------|--------|--------|
|                 | 1          | 2      | 3      |
| Acarina         | 0.028      | 0.039  | 0.037  |
| Eggs            | -0.004     | 0.139  | -0.171 |
| Isoptera        | 0.020      | -0.190 | 0.071  |
| Collembola      | 0.015      | -0.118 | 0.141  |
| Chelonethida    | 0.026      | 0.004  | 0.042  |
| Hymenoptera     | -0.578     | 0.005  | 0.656  |
| Gastropoda      | 0.106      | 0.134  | 0.278  |
| Larvae          | -0.073     | 0.409  | 0.226  |
| Coleoptera      | 0.679      | -0.342 | 0.472  |
| Diptera         | -0.291     | -0.185 | 0.169  |
| Araneida        | 0.078      | 0.130  | 0.078  |
| Isopoda         | 0.260      | 0.754  | 0.152  |
| Orthoptera      | -0.051     | 0.061  | -0.221 |
| Diplopoda       | 0.042      | 0.009  | -0.054 |
| Oligochaeta     | 0.153      | -0.001 | 0.224  |
| Chilopoda       | -0.017     | 0.057  | 0.025  |
| Singular values | 0.0547     | 0.0096 | 0.007  |
| Correlations    | 0.725      | 0.557  | 0.442  |

#### First canonical axes:



#### Extent of variation on 1st shape axis:



- Use of *landmark coordinates* as data:
  - Avoids necessity of TPS and partial warp decompositions.
  - Sets of digitized landmarks superimposed by Procrustes GLS transformation.



- X and Y residuals for each landmark from consensus configuration used as 2k variables.
- Ex.: Baylac et al. (2003): wing venation in parasitoid wasps:



### • PCA and DFA of two species of Bassus:

