Math 255B Lecture 10 Notes

Daniel Raban

January 29, 2020

1 Symmetric and Self-Adjoint Operators

1.1 Adjoints of closable operators

If $T: D(T) \to H$ is densely defined, we defined the adjoint T^* with $G(T^*) = [\overline{V(G(T))}]^{\perp}$, where V(u,v) = (v,-u). Let's finish a proof we started last time.

Proposition 1.1. T is closable if and only if T^* is densely defined.

Proof. (\Longrightarrow): We did this last time.

 (\Leftarrow) : If $D(T^*)$ is dense, then $(T^*)^*$ is a closed operator such that

$$F(T^{**}) = [V(G(T^*))]^{\perp} = V(G(T^*)^{\perp}) = V(V(\overline{G(T)})) = \overline{G(T)},$$

where we have used $V^2 = -1$. So T is closable, and $T^{**} = \overline{T}$.

1.2 Symmetric and self-adjoint operators

Definition 1.1. Let $S: D(S) \to H$ be densely defined. We say that S is **symmetric** if $\langle Sx, y \rangle = \langle x, Sy \rangle$ for all $x, y \in D(S)$.

Example 1.1. $S = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(S) = C_0^{\infty}(\mathbb{R}^n)$ is symmetric. However, we will see that this operator is not self-adjoint.

S is symmetric if and only if $S \subseteq S^*$.

Proposition 1.2. If S is symmetric, then S is closable and \overline{S} is symmetric.

Proof. If $u_n \in D(S)$ with $u_n \to 0$ and $Su_n \to \ell$, then $\langle u_n, Sv \rangle = \langle Su_n, v \rangle \to \langle \ell, v \rangle$. On the other hand $\langle u_n, Sv \rangle \to 0$, for all $v \in D(S)$. So $\ell = 0$, and S is closable.

If $S \subseteq S^*$, where S^* is densely defined, then $\overline{S} = S^{**} \subseteq S^* = \overline{S}^*$. So \overline{S} is symmetric. \square

Given a symmetric operator S, we have two natural closed extensions: \overline{S} and S^* .

Definition 1.2. A linear, densely defined operator $T:D(T)\to H$ is called **self-adjoint** if $T=T^*$.

Note that this means that $D(T) = D(T^*)$. Any self-adjoint operator is closed, since adjoints are closed. We have

T is self-adjoint $\iff T$ is symmetric and $D(T) = D(T^*)$ $\iff \langle Tx, y \rangle = \langle x, Ty \rangle \quad \forall x, y \in D(T), \text{ and}$ if $(x, y) \in H \times H \text{ with } \langle Tz, x \rangle = \langle z, y \rangle \ \forall z \in D(T) \implies x \in D(T).$

Proposition 1.3. Let S be closed and symmetric. Then S^* is symmetric, so S is self-adjoint.

Proof. S^* is symmetric, so $S^* \subseteq S^{**} = S$, as S is closed. Also, $S \subseteq S^*$, so S is self-adjoint.

Example 1.2. Let $H = L^2(\mathbb{R}^n)$, and let $m : \mathbb{R}^n \to \mathbb{R}$ be Lebesgue measurable. Let $D(A) = \{ f \in L^2 : mf \in L^2 \}$ and Af = mf for all $f \in D(A)$. We claim that A is self-adjoint.

Check first that D(A) is dense in L^2 : For any $f \in L^2$, $\frac{f}{1+|m|} \in L^2$, as well. So if $g \in L^2$ with $g \perp D(A)$,

$$\int g \frac{f}{1+|m|} \, dx = 0,$$

which means that $\frac{g}{1+|m|} = 0$, giving g = 0.

A is symmetric, as m is real. Now let $(g,h) \in L^2 \times L^2$ be such that $\langle Af, g \rangle = \langle f, h \rangle$ for all $f \in D(H)$. Then for all $f \in L^2$,

$$\int \frac{mf}{1+|m|}\overline{g} = \int \frac{f}{1+|m|}\overline{h},$$

SO

$$\int \left(\frac{m}{1+|m|}\overline{g} - \frac{\overline{h}}{1+|m|}\right)f = 0$$

for all $f \in L^2$. So mg = h, which gives $g \in D(A)$.

Example 1.3. Let $T = -\Delta$ on $L^2(\mathbb{R}^n)$ with $D(T) = H^2(\mathbb{R}^n) = \{u \in L^2 : \Delta u \in L^2\} = \{u \in L^2 : \partial^{\alpha} u \in L^2 \, \forall |\alpha| \leq 2\}$. Then T is self-adjoint.

T is symmetric: $\langle -\Delta u, v \rangle_{L^2} = \langle u, -\Delta v \rangle_{L^2}$ for all $u, v \in H^2$. This is true for $u, v \in C_0^{\infty}(\mathbb{R}^n)$, which is dense in $H^2(\mathbb{R}^n)$. Alternatively we could prove this by taking the Fourier transform, where T acts as a multiplication operator.

Let $(g,h) \in L^2 \times L^2$ be such that $\langle -\Delta u, g \rangle_{L^2} = \langle u, h \rangle$ for all $g, h \in H^2$. In particular, if $u \in C_0^{\infty}$, we get $-\Delta g = h \in L^2$ (taken in the weak sense). Then $g \in H^2$, and $Tg = -\Delta g = h$.

1.3 von Neumann's extension theory for symmetric operators

Let $S: D(S) \to H$ be a closed, symmetric (densely defined) operator. Can S be extended to a self-adjoint operator? If $S \subseteq T = T^*$, then $T^* \subseteq S^*$, so we have an operator between S and S^* in general. If S is symmetric, these are the same.

Proposition 1.4. Let S be closed and symmetric. Then for any $z \in \mathbb{C} \setminus \mathbb{R}$, $S - z1 : D(S) \to H$ is injective, has closed range, and $||(S - z)u|| \ge |\operatorname{Im} z|||u||$ for $u \in D(S)$.

Proof. Write z = x + iy. Then

$$||(S-z)u||^2 = \langle (S-x)u + iyu, (S-x)u + iyu \rangle$$

= $||(S-x)u||^2 + y^2 ||u||^2$
\ge y^2 ||u||^2,

so S-z is injective.

Im(S-z) is closed: If $y \in \overline{\text{Im}(S-z)}$, there exist $x_n \in D(S)$ such that $(S-z)x_n \to y$. By this inequality, $x_n \to x \in H$. Since (S-z) is closed, $x \in D(S)$.

Here is the idea due to von Neumann: Study the **Cayley transform** of $S, T = (S+i)(S-i)^{-1}$.