DATABASE ESSENTIALS

Lecture 3

- Creating a database application involves the following activities:-
 - √ designing of the database schema
 - o is the logical design of the database

✓ designing of the programs that access and update the data

- ✓ designing of a security scheme to control access to data
- The needs of the users always play a central role in the design process.

Design Phases

The database design phases are as follows:-

- Initial phase
- Conceptual design phase
- Logical design phase
- Physical design phase

Design Phases

Initial phase

- This phase characterize fully the data needs of the prospective database users.
- The database designer interacts extensively with domain experts and users to carry out this task.
- The outcome of this phase is a specification of user requirements.

Design Phases

- This phase involves using a Entity-Relationship (E-R) model to translate user requirements into a conceptual schema of the database.
- This schema provides a detailed overview of the enterprise.
- This phase results in the creation of an E-R diagram that provides a graphic representation of the schema.

Design Phases

- The designer has to review the schema to confirm that all data requirements are satisfied and are not in conflict with one another.
- The designer also, has to examine the design to remove any redundant features.
- The E-R diagram focuses on describing the data and their relationships, rather than on specifying physical storage details.

Design Phases

- A fully developed conceptual schema also indicates:-
 - √ the functional requirements
 - operations (or transactions) that will be performed on the data.
 - Example
 - modifying or updating data
 - searching for and retrieving specific data
 - deleting data

Design Phases

- A fully developed conceptual schema also indicates:-
 - ✓ the attributes of the entities
 - ✓ the relationships among the entities
 - ✓constraints on the entities
 - √relationships

Design Phases

Logical design phase

 This phase involves mapping the conceptual schema onto the relational data model.

Physical design phase

- This phase involves specifying the physical features of the database.
- This include the physical storage media.

• The physical schema of a database can be changed easily after an application has been built.

 Logical schema are harder to change after an application has been built.

 Changes to the logical schema may affect a number of queries and updates scattered across application code.

When designing a database schema, always avoid the following pitfalls:

- Redundancy
 - ✓ caused by repeated information
 - ✓leads to inconsistency
 - o information is updated without taking precautions to update all copies of the information.

When designing a database schema, always avoid the following pitfalls:

- Incompleteness
 - √ this happens when some data are missing

✓ this might make certain aspects of the enterprise difficult or impossible to model

DATA MODELS

 Data model refers to a collection of conceptual tools for describing data, data relationships, data semantics, and consistency constraints.

- Data models include but not limited to:-
 - ✓ Entity-Relationship (E-R) model
 - ✓ Relational model

• E-R model is a graphical approach to database design that shows how entities are related to each other.

 It maps the meanings and interactions of real world enterprises onto a conceptual schema.

• It provides a means of identifying entities to be represented in the database and how those entities are related.

- The E-R data model employs three basic concepts:
 - ✓entity sets
 - ✓ relationship sets
 - ✓ attributes

<u>Terminologies</u>

Enterprise

- Enterprise refers to any kind of organization.
- Example: colleges, schools, banks, company

Terminologies

Entity

- Entity refers to an object or thing in real world.
- An entity may be concrete, such as a person or a book, or it may be abstract, such as a course, or a flight reservation.
- Example:
 - ✓ students of colleges and schools
 - ✓ loans in banks
 - ✓ employees in a company

Terminologies

Attributes/properties

- These are the characteristics of any entity.
- Example:
 - A student can be described by his/her student id, name, age, address, height, class
 - 2. Loans can be described by their types such as house loan, car loan
 - 3. Employees in a company can be described by their Employee ID, name, department, designation

Terminologies

Value

 Value is the information or data which is stored in attributes of any entity.

Example:

attribute	value
student_id	0001
name	Clatous
age	30
address	Mbezi

Terminologies

Entity Sets

- All the entities having same attributes make an entity set.
- An entity set is represented in an E-R diagram by a rectangle, which is divided into two parts
 - ✓ First part contains the name of the entity set, the second part contains the names of all the attributes of the entity set.

instructor

<u>ID</u>
name
salary

Terminologies

Domain

• Domain or value set is the set of all values or information about any attribute.

<u>Terminologies</u>

Entity sets are categorized as follows:

- 1. Strong entity set
 - Refers to an entity set having any key attributes.

- 2. Weak entity set
 - Refers to an entity set having no key attributes.

TYPES OF ATTRIBUTES

Attributes can be characterized by the following types:

1. Simple and Composite Attributes

- Simple attribute
 - An attribute that cannot be divided into subparts.
 - Example: age of a student
- Composite attribute
 - An attribute that can be divided into subparts.
 - Example: name of a student can be divided into first name, middle name and last name.

TYPES OF ATTRIBUTES

Attributes can be characterized by the following types:

2. Single Valued and Multi-valued Attributes

- Single valued attribute
 - An attribute having only single value for a particular entity.
 - Example: age of a student.
- Multi-valued attribute
 - An attribute having more than one possible value for a particular entity is known as multi-valued attribute.
 - Example: phone number of a student. A student may have more than one phone number.

TYPES OF ATTRIBUTES

Attributes can be characterized by the following types:

3. Derived Attributes and Stored Attributes

- Derived Attribute
 - An attribute that can be derived from other known attributes.
 - The value of a derived attribute is not stored but is computed when required.
 - Example: Age of an employee can be derived if you know date of birth and system date.
- Stored Attribute
 - An attribute which cannot be derived by other known attributes.
 - Example: Date of birth of any employee.

RELATIONSHIP

- A relationship refers to the association among several entities.
- Connects different entities through a meaningful relation.
- Example:
 - ✓ a relationship advisor that associates instructor Samwel with student Hamida.

A relationship set is a set of relationships of same type.

student

Relationship set advisor

- A relationship instance represents an association between the named entities in the real-world enterprise.
- A relationship set is represented in an E-R diagram by a **diamond**, which is linked via **lines** to a number of different entity sets (rectangles).

E-R diagram showing relationship set advisor

- Descriptive attributes refers to attributes of a relationship set.
- An attribute of a relationship set is represented in an E-R diagram by an undivided rectangle.
- This rectangle is linked to the diamond representing that relationship set with a dashed line.

Degree of relationship sets

- Refers to the total number of entity sets participating in a relationship set.
- Types of degree of relationship sets
 - 1. Unary Relationship Set
 - 2. Binary Relationship Set
 - 3. Ternary Relationship Set

Unary Relationship Set

• A relationship set where only one entity set participates in a relationship set (degree 1).

Binary Relationship Set

 A relationship set where only two entity sets participates in a relationship set (degree 2).

Ternary Relationship Set

• A relationship set in which three entity sets participates in a relationship set (degree 3).

- A role of an entity refers to a function that entity plays in a relationship.
- Example
 An employee plays the role of worker in his/her department
- A recursive relationship set refers to a situation when the same entity sets
 participate in same relationship set more than once with different roles
 each time.
- Example
 A manager (employee) supervises a subordinate (employee).

- Mapping cardinalities refers to the number of entities to which another entity can be associated via a relationship set.
- Types of cardinalities
- One to One (1:1)
- One to Many (1:N)
- Many to One (N:1)
- Many to Many (M:N)

One to One (1:1)

- An entity in table X is associated with at most one entity in table Y and an entity in table Y is associated with at most one entity in table X.
- Example

One to Many (1:N)

• An entity in table X is associated with any number of entities in table Y. An entity in table Y is associated with at most one entity in table X.

Example

Many to One (N:1)

• An entity in table X is associated with at most one entity in table Y. An entity in table Y is associated with any number of entities in table X.

Example

Many to Many (M:N)

 An entity in table X is associated with any number of entities in table Y and vice versa.

Example

Successful and unsuccessful people do not vary greatly in their abilities. They vary in their desires to reach their potential. -John Maxwell