VE320 Intro to Semiconductor Devices Summer 2022 — Problem Set 4

JOINT INSTITUTE 交大窓面根学院

June 26, 2022

Revised June 20

Deleted Ex 4.1(b)

Revised June 26

Deleted Ex 4.5(a)

Exercise 4.1

GaAs, at T = 300 K, is uniformly doped with acceptor impurity atoms to a concentration of $N_a = 2 \times 10^{16}$ cm⁻³. Assume an excess carrier lifetime of 5×10^{-7} s.

Determine the electron-hole recombination rate if the excess electron concentration is $\delta n = 5 \times 10^{14} \ \mathrm{cm^{-3}}$.

Exercise 4.2

Consider an infinitely large, homogeneous n-type semiconductor with a zero applied electric field. Assume that, for t < 0, the semiconductor is in thermal equilibrium and that, for $t \ge 0$, a uniform generation rate exists in the crystal.

- (a) Calculate the excess carrier concentration as a function of time assuming the condition of low injection.
- (b) Consider n-type silicon at T=300 K doped to $N_d=5\times 10^{16}$ cm⁻³. Assume that $g'=5\times 10^{21}$ cm⁻³ s⁻¹ and let $\tau_{p0}=10^{-7}$ s.
 - Determine $\delta p(t)$ at (i) t = 0, (ii) $t = 10^{-7}$ s, (iii) $t = 5 \times 10^{-7}$ s, and (iv) $t \to \infty$.

Exercise 4.3

Consider a silicon sample at $T=300~\rm K$ that is uniformly doped with acceptor impurity atoms at a concentration of $N_a=10^{16}~\rm cm^{-3}$. At t=0, a light source is turned on generating excess carriers uniformly throughout the sample at a rate of $g'=8\times 10^{20}~\rm cm^{-3}~\rm s^{-1}$. Assume the minority carrier lifetime is $\tau_{n0}=5\times 10^{-7}~\rm s$, and assume mobility values of $\mu_n=900~\rm cm^2/\rm V\cdot s$ and $\mu_p=380~\rm cm^2/\rm V\cdot s$.

- (a) Determine the conductivity of the silicon as a function of time for $t \geq 0$.
- (b) What is the value of conductivity at (i)t = 0 and $(ii) t = \infty$?

Exercise 4.4

A p-type gallium arsenide semiconductor at $T=300~\rm K$ is doped at $N_a=10^{16}~\rm cm^{-3}$. The excess carrier concentration varies linearly from $10^{14}~\rm cm^{-3}$ to zero over a distance of $50\mu\rm m$. Plot the position of the quasi-Fermi levels with respect to the intrinsic Fermi level versus distance.

Exercise 4.5

In a GaAs material at T=300 K, the doping concentrations are $N_d=8\times 10^{15}$ cm⁻³ and $N_a=2\times 10^{15}$ cm⁻³. The thermal equilibrium recombination rate is $R_o=4\times 10^4$ cm⁻³ s⁻¹.

- 1. A uniform generation rate for excess carriers results in an excess carrier recombination rate of $R' = 2 \times 10^{21} \text{ cm}^{-3} \text{ s}^{-1}$. What is the steady-state excess carrier concentration?
- 2. What in the excess carrier lifetime?

Exercise 4.6

Consider a bar of n-type silicon that is uniformly doped to a value of $N_{\rm d}=2\times10^{16}$ cm⁻³ at T=300 K.

The applied electric field is zero.

A light source is incident on the end of the semiconductor (x = 0).

The steady-state concentration of excess carriers generated at x=0 is $\Delta n(0)=\Delta p(0)=3\times 10^{14}~\rm cm^{-3}$.

Assume the following parameters: $\mu_{\rm n}=1100~{\rm cm^2/Vs}, \mu_{\rm p}=500~{\rm cm^2/Vs}, \tau_{\rm n0}=2\times 10^{-6}~{\rm s},$ and $\tau_{\rm p0}=8\times 10^{-7}~{\rm s}.$

Neglecting surface effects

- (a) Determine the steady-state excess electron and hole concentrations as a function of distance into the semiconductor from the surface (x = 0).
- (b) Calculate the steady-state hole diffusion current density as a function of distance into the surface from the surface (x = 0).

Reference

1. Neamen, Donald A. Semiconductor physics and devices: basic principles. McGrawhill, 2003.