Geometria Computacional

Voronoi direto e Delaunay

Diagrama de Voronoi

- → O Que é
- → Algoritmo (Fortune's Algorithm)
- → Conclusão

Diagrama de Voronoi

- → Regiões de proximidade
- Arestas representam distancias iguais entre pontos próximos

- → Steven Fortune
- → 1986
- → Diagrama de Voronoi
- Sweeping Line
- → Complexidade:
 - → Tempo O(n log n)
 - → Espaço O(n)

- → Algoritmo para N pontos
 - Ordena pontos pela coordenada X
 - Checa lista de eventos e pontos
 - Processa evento ou ponto com menor x
 - → Ponto:
 - Remove ponto da lista e inclui um evento (parábola)
 - → Parábolas:
 - → Verifica interseção com o "limiar" e cria novos eventos

Algoritmo para N pontos

茶茶

Fortune's Algorithm

Ordena pontos por x

0

1

2

Processa "evento" ou ponto com menor X

Ponto: remover e adicionar parábola

Ponto: remover e adicionar parábola

Ponto: remover e adicionar parábola

Ponto de evento do círculo detectado

3

Lista de pontos

Lista de eventos

3

Evento possui X menor que ponto, processar

3

Lista de pontos

Lista de eventos

3

Concluir arestas no encontro das parábolas

3

Lista de pontos

Lista de eventos

Fortune's Algorithm Repete o processo para o ultimo ponto Lista de pontos 16 Lista de eventos

Delaunay

Programa

Tema

Tema

Tema

Conclusão

- Algoritmo de difícil implementação
- → Pouca informação a respeito
- Implementações na internet contém erros
- → Del->Vor mais fácil
 - → Computacionalmente mais difícil (?)