Lezione 33 MSC Team Bisimulation for BPP nets

Roberto Gorrieri

How to generalize the idea of bisimulation on BPP nets?

- BPP nets: each transition has singleton preset
- Each token is behaviorally independent of any other token
- So, try to define a bisimulation-like relation relating not markings, but single places!
- Once a suitable notion of bisimulation is defined on places, "team" bisimulation is extended to markings by additive closure.

Additive closure (1)

Definition 19. (Additive closure) Given a BPP net N = (S, A, T) and a place relation $R \subseteq S \times S$, we define a marking relation $R^{\oplus} \subseteq \mathcal{M}(S) \times \mathcal{M}(S)$, called the additive closure of R, as the least relation induced by the following axiom and rule.

$$(\theta,\theta) \in R^{\oplus} \qquad (s_1,s_2) \in R \quad (m_1,m_2) \in R^{\oplus}$$

$$(s_1 \oplus m_1,s_2 \oplus m_2) \in R^{\oplus}$$

Proposition 9. For any BPP net
$$N = (S, A, T)$$
 and any place relation $R \subseteq S \times S$, if $(m_1, m_2) \in R^{\oplus}$, then $|m_1| = |m_2|$.

An alternative way to define that two markings m_1 and m_2 are related by R^{\oplus} is to state that m_1 can be represented as $s_1 \oplus s_2 \oplus \ldots \oplus s_k$, m_2 can be represented as $s'_1 \oplus s'_2 \oplus \ldots \oplus s'_k$ and $(s_i, s'_i) \in R$ for $i = 1, \ldots, k$.

Additive closure (2)

- If R is an equivalence relation, then R[⊕] is an equivalence relation.
- R[⊕] is additive and also subtractive when R is an equivalence relation

Proposition 11. Given a BPP net N = (S, A, T) and a place relation R, the following hold:

- If $(m_1, m_2) \in R^{\oplus}$ and $(m'_1, m'_2) \in R^{\oplus}$, then $(m_1 \oplus m'_1, m_2 \oplus m'_2) \in R^{\oplus}$.
- If R is an equivalence relation, $(m_1 \oplus m'_1, m_2 \oplus m'_2) \in R^{\oplus}$ and $(m_1, m_2) \in R^{\oplus}$, then $(m'_1, m'_2) \in R^{\oplus}$.

Additive closure (3)

 Properties useful for proving properties of team bisimulations

Proposition 12. For any BPP net N = (S, A, T) and any family of place relations $R_i \subseteq S \times S$, the following hold:

- 1. $\emptyset^{\oplus} = \{(\theta, \theta)\}$, i.e., the additive closure of the empty place relation is a singleton marking relation, relating the empty marking to itself.
- 2. $(\mathscr{I}_S)^{\oplus} = \mathscr{I}_M$, i.e., the additive closure of the identity relation on places $\mathscr{I}_S = \{(s,s) \mid s \in S\}$ is the identity relation on markings $\mathscr{I}_M = \{(m,m) \mid m \in \mathscr{M}(S)\}$.
- 3. $(R^{\oplus})^{-1} = (R^{-1})^{\oplus}$, i.e., the inverse of an additively closed relation R is the additive closure of its inverse R^{-1} .
- 4. $(R_1 \circ R_2)^{\oplus} = (R_1^{\oplus}) \circ (R_2^{\oplus})$, i.e., the additive closure of the composition of two place relations is the compositions of their additive closures.
- 5. $\bigcup_{i \in I} (R_i^{\oplus}) \subseteq (\bigcup_{i \in I} R_i)^{\oplus}$, i.e., the union of additively closed relations is included into the additive closure of their union.

Team Bisimulation

Definition 20. (Team bisimulation) Let N = (S, A, T) be a BPP net. A *team bisimulation* is a place relation $R \subseteq S \times S$ such that if $(s_1, s_2) \in R$ then for all $\ell \in A$

- $\forall m_1$ such that $s_1 \xrightarrow{\ell} m_1$, $\exists m_2$ such that $s_2 \xrightarrow{\ell} m_2$ and $(m_1, m_2) \in R^{\oplus}$,
- $\forall m_2$ such that $s_2 \xrightarrow{\ell} m_2$, $\exists m_1$ such that $s_1 \xrightarrow{\ell} m_1$ and $(m_1, m_2) \in R^{\oplus}$.

Two places s and s' are team bisimilar (or team bisimulation equivalent), denoted $s \sim s'$, if there exists a team bisimulation R such that $(s, s') \in R$.

- Very similar to standard bisimulation on LTSs
- The reached markings are to be related by the additive closure of R
- Defined over an unmarked BPP net

Example (1) – Semi-counters

$$R = \{(s1,s3), (s1,s4), (s2,s5), (s2,s6)\}$$

is a team bisimulation

Check this!

 $R' = \{(s1 \oplus k \cdot s2, s3 \oplus k1 \cdot s5 \oplus k2 \cdot s6) \mid k = k1 + k2 \text{ and } k, k1, k2 \ge 0\} \cup \{(s1 \oplus k \cdot s2, s4 \oplus k1 \cdot s5 \oplus k2 \cdot s6) \mid k = k1 + k2 \text{ and } k, k1, k2 \ge 0\} \text{ is an interleaving bisimulation.}$

Example (2)

• $R = \{(s1,s4), (s2,s5), (s2,s6), (s2,s7), (s3,s8), (s3,s9)\}$ is a team bisimulation.

Proposition 13. For any BPP net N = (S, A, T), the following hold:

- 1. The identity relation $\mathscr{I}_S = \{(s,s) \mid s \in S\}$ is a team bisimulation;
- 2. the inverse relation $R^{-1} = \{(s', s) \mid (s, s') \in R\}$ of a team bisimulation R is a team bisimulation;
- 3. the relational composition $R_1 \circ R_2 = \{(s, s'') \mid \exists s'.(s, s') \in R_1 \land (s', s'') \in R_2\}$ of two team bisimulations R_1 and R_2 is a team bisimulation;
- 4. the union $\bigcup_{i \in I} R_i$ of team bisimulations R_i is a team bisimulation.

Remember that $s \sim s'$ if there exists a team bisimulation containing the pair (s, s'). This means that \sim is the union of all team bisimulations, i.e.,

$$\sim = \bigcup \{R \subseteq S \times S \mid R \text{ is a team bisimulation}\}.$$

By Proposition 13(4), \sim is also a team bisimulation, hence the largest such relation.

Proposition 14. For any BPP net N = (S, A, T), relation $\sim \subseteq S \times S$ is the largest team bisimulation relation.

Proposition 15. For any BPP net N = (S, A, T), relation $\sim \subseteq S \times S$ is an equivalence relation.

Complexity

Remark 6. (Complexity 1) It is well-known that the optimal algorithm for computing bisimulation equivalence over a finite-state LTS with n states and m transitions has $O(m \cdot \log n)$ time complexity [35]; this very same partition refinement algorithm can be easily adapted also for team bisimilarity over BPP nets: it is enough to consider the empty marking θ as an additional, special place which is team bisimilar to itself only (i.e., the initial partition is composed of two blocks: S and $\{\theta\}$), and to consider the little additional cost due to the fact that the reached markings are to be related by the additive closure of the current partition over places; this extra cost is related to the size of the post-set of the net transitions; if p is the size of the largest post-set of the net transitions (i.e., p is the least number such that $|t^{\bullet}| \leq p$, for all $t \in T$), then the time complexity is $O(m \cdot p^2 \cdot \log (n+1))$, where m is the number of the net transitions and n is the number of the net places.

 The complexity of checking whether m1 and m2 are related by R[®] is O(k²) if k is the size of the two markings

Team bisimilarity on markings

Starting from team bisimulation equivalence \sim , which has been computed over the places of an *unmarked* BPP net N, we can lift it over *the markings* of N in a distributed way: m_1 is team bisimulation equivalent to m_2 if these two markings are related by the additive closure of \sim , i.e., if $(m_1, m_2) \in \sim^{\oplus}$, usually denoted by $m_1 \sim^{\oplus} m_2$.

Proposition 16. For any BPP net N = (S, A, T), if $m_1 \sim^{\oplus} m_2$, then $|m_1| = |m_2|$.

PROOF. By Proposition 9.

Proposition 17. For any BPP net N = (S, A, T), relation $\sim^{\oplus} \subseteq \mathcal{M}(S) \times \mathcal{M}(S)$ is an equivalence relation.

Example – Semi-counters

$$R = \{(s1,s3), (s1,s4), (s2,s5), (s2,s6)\}$$

is a team bisimulation

Relation with other equivalences

Theorem 2. Let N = (S, A, T) be a BPP net. Two markings m_1 and m_2 are team bisimulation equivalent, $m_1 \sim^{\oplus} m_2$, if and only if $|m_1| = |m_2|$ and

- $\forall t_1$ such that $m_1[t_1\rangle m_1'$, $\exists t_2$ such that ${}^{\bullet}t_1 \sim {}^{\bullet}t_2$, $l(t_1) = l(t_2)$, $t_1^{\bullet} \sim {}^{\oplus}t_2^{\bullet}$, $m_2[t_2\rangle m_2'$ and $m_1' \sim {}^{\oplus}m_2'$, and symmetrically,
- $\forall t_2$ such that $m_2[t_2\rangle m_2'$, $\exists t_1$ such that ${}^{\bullet}t_1 \sim {}^{\bullet}t_2$, $l(t_1) = l(t_2)$, $t_1^{\bullet} \sim {}^{\oplus}t_2^{\bullet}$, $m_1[t_1\rangle m_1'$ and $m_1' \sim {}^{\oplus}m_2'$.

Corollary 1. (Team bisimilarity is finer than interleaving bisimilarity) Let N = (S, A, T) be a BPP net. If $m_1 \sim^{\oplus} m_2$, then $m_1 \sim_{int} m_2$.

Corollary 2. (Team bisimilarity and cn-bisimilarity coincide) Let N = (S, A, T) be a BPP net. Then, $m_1 \sim_{cn} m_2$ if and only if $m_1 \sim^{\oplus} m_2$.

What is cn-bisimilarity? Intuition?

Concrete truly-concurrent equivalence observing also the distributed state

Fig. 4. Three net systems: a.b.0+b.a.0, a.0|b.0 and a.C|b.0 (with C = 0)

 s1 is not team bisimilar to s4⊕s5, and s4⊕s5 is not team bisimilar to s6⊕s7

Minimization

Minimizing a BPP net w.r.t. team bisimilarity

Definition 11. (Reduced net) Let N = (S,A,T) be a BPP net and let \sim be the team bisimulation equivalence relation over its places. The reduced net N' = (S',A,T') is defined as follows:

- $S' = \{[s] \mid s \in S\}, where [s] = \{s' \in S \mid s \sim s'\};$
- $T' = \{([s], a, [m]) \mid (s, a, m) \in T\},$

where [m] is defined as follows: $[\theta] = \theta$ and $[m_1 \oplus m_2] = [m_1] \oplus [m_2]$. If the net N has initial marking $m_0 = k_1 \cdot s_1 \oplus \ldots \oplus k_n \cdot s_n$, then N' as initial marking $[m_0] = k_1 \cdot [s_1] \oplus \ldots \oplus k_n \cdot [s_n]$.

Theorem 4. Let N = (S, A, T) be a BPP net and let N' = (S', A, T') be its reduced net w.r.t. \sim . For any $m \in \mathcal{M}(S)$, we have that $m \sim^{\oplus} [m]$.

Minimization (2) - Example

Fig. 4. A BPP net in (a) and its reduced net in (b)

• For the net in (a), the equivalence classes of ~ are {s1,s2,s3} and {s4,s5,s6,s7}. Hence, the reduced net is isomorphic to the net in (b).

lezione 33

16

Team Modal Logic: TML

$$F ::= nn \mid vv \mid tt \mid ff \mid F \land F \mid F \lor F \mid \neg F \mid \langle a \rangle F \mid [a]F \mid F \otimes F$$
$$[nn] = S \quad [vv] = \{\theta\} \quad [tt] = \mathscr{M}(S) \quad [ff] = \emptyset$$

$$\llbracket F_1 \wedge F_2 \rrbracket = \llbracket F_1 \rrbracket \cap \llbracket F_2 \rrbracket \qquad \llbracket F_1 \vee F_2 \rrbracket = \llbracket F_1 \rrbracket \cup \llbracket F_2 \rrbracket \qquad \llbracket \neg F \rrbracket = \mathscr{M}(S) \setminus \llbracket F \rrbracket$$

$$\llbracket \langle a \rangle F \rrbracket = \{ s \in S \mid \exists m.s \xrightarrow{a} m \text{ and } m \in \llbracket F \rrbracket \}$$
$$\llbracket [a]F \rrbracket = \{ s \in S \mid \forall m(s \xrightarrow{a} m \text{ implies } m \in \llbracket F \rrbracket) \}$$

$$\llbracket F_1 \otimes F_2
rbracket = \llbracket F_1
rbracket \otimes \llbracket F_2
rbracket$$
 where $M_1 \otimes M_2 = \{m_1 \oplus m_2 \mid m_1 \in M_1, m_2 \in M_2\}$

17 iezione 55

TML characterizes Team Bisimilarity on BPP nets

The semantics of a formula F is the set of markings that satisfy it; hence, the semantic function is parametrized with respect to some given BPP net N = (S, A, T). Let $[-]: \mathscr{F}_A \to \mathscr{P}(\mathscr{M}(S))$ be the denotational semantics function, defined in Table 1.

Definition 12. (TML satisfaction relation) We say that a marking m satisfies a formula F, written $m \models F$, if $m \in \llbracket F \rrbracket$.

Theorem 5. (Coherence) Let N = (S, A, T) be a BPP net. It holds that $m_1 \sim^{\oplus} m_2$ if and only if $\{F_1 \in \mathscr{F}_A \mid m_1 \models F_1\} = \{F_2 \in \mathscr{F}_A \mid m_2 \models F_2\}$.

Extension of Hennessy-Milner Theorem (HML characterizes bisimilarity on LTSs)

Algebraic Properties and Axiomatization

 Since the BPP process algebra represents all (and only) the BPP nets, we can extend the definition of team bisimilarity to BPP terms

Definition 14. Two BPP processes p and q are team bisimilar, denoted $p \sim^{\oplus} q$, if, by considering the (union of the) nets $[\![p]\!]_{\emptyset}$ and $[\![q]\!]_{\emptyset}$, we have that $dec(p) \sim^{\oplus} dec(q)$. \square

 Hence, we can now study team bisimilarity on the BPP calculus! Hence, showing its algebraic properties, checking that it is a congruence for all the operators of the calculus and, finally, axiomatizing it!

BPP: syntax

$$s ::= 0 \mid \mu.p \mid s+s$$

 $q ::= s \mid C$
 $p ::= q \mid p \mid p$

guarded processes sequential processes parallel processes

- A constant C is equipped with a defining equation C = r, with r in syntactic category s.
- Constants are guarded by construction.
- Finite calculus: finitely many constants and finitely many actions can be used.
- Asynchronous parallel composition (no communication is allowed).

Congruence

On sequential process term, team bisimilarity
 ~[⊕] is simply ~

Proposition 15. For each
$$p, q \in \mathscr{P}_{BPP}^{grd}$$
, if $p \sim q$ (or $p = q = 0$), then $p + r \sim q + r$ for all $r \in \mathscr{P}_{BPP}^{grd}$.

Proposition 16. For each $p, q \in \mathscr{P}_{BPP}$, if $p \sim^{\oplus} q$, then $\mu.p \sim \mu.q$ for all $\mu \in Act$.

Proposition 17. For every $p, q, r \in \mathscr{P}_{BPP}$, if $p \sim^{\oplus} q$, then $p \mid r \sim^{\oplus} q \mid r$.

Recursion congruence

Theorem 8. Let p and q be two open guarded BPP terms, with one variable x at mo Let $A \doteq p\{A/x\}$, $B \doteq q\{B/x\}$ and $p \sim q$. Then $A \sim B$.

Algebraic Properties

Proposition 18. (Laws of the choice operator) For each $p, q, r \in \mathscr{P}_{BPP}^{grd}$, the following hold:

$$p + (q+r) \sim (p+q) + r$$
 (associativity)
 $p + q \sim q + p$ (commutativity)
 $p + \mathbf{0} \sim p$ if $p \neq \mathbf{0}$ (identity)
 $p + p \sim p$ if $p \neq \mathbf{0}$ (idempotency)

0 is not team bisimilar to 0+0

Proposition 20. (Laws of the parallel operator) For each $p,q,r \in \mathscr{P}_{BPP}$, the following hold:

$$p \mid (q \mid r) \sim^{\oplus} (p \mid q) \mid r$$
 (associativity)
 $p \mid q \sim^{\oplus} q \mid p$ (commutativity)
 $p \mid \mathbf{0} \sim^{\oplus} p$ (identity)

0 is team bisimilar to 0 0

Algebraic Properties (2)

Proposition 19. (Laws of the constant) For each $p \in \mathscr{P}_{BPP}^{grd}$, and each $C \in \mathscr{C}$, the following hold:

```
if C \doteq \mathbf{0}, then C \sim \mathbf{0} + \mathbf{0} (stuck)
if C \doteq p and p \neq \mathbf{0}, then C \sim p (unfolding)
if C \doteq p\{C/x\} and q \sim p\{q/x\} then C \sim q (folding)
```

where, in the third law, p is actually open on x (while q is closed).

 For the folding property, if C = a.C and q ~ a.q, then we can conclude that C ~ q

Axiomatization

- Open BPP (with variables), flattened with only one syntactic category, but we require that each ground instantiation of an axiom must respect the syntactic definition of (closed) BPP
- This means that we can write the axiom x + (y + z) = (x + y) + z, but it is invalid to instantiate it to C+(a.0+b.0|0) = (C+a.0)+(b.0|0) because these are not legal BPP processes (the constant C and the parallel process $b.0 \mid 0$ cannot be used as summands).

The set of axioms are outlined in Table 4. We call E the set of axioms $\{A1, A2, A3, A4, R1, R2, R3, P1, P2, P3\}$. By the notation $E \vdash p = q$ we mean that there exists an equational deduction proof of the equality p = q, by using the axioms in E. Besides the usual equational deduction rules of reflexivity, symmetry, transitivity, substitutivity and instantiation (see, e.g., [28]), in order to deal with constants we need also the following recursion congruence rule:

$$\frac{p = q \land A \doteq p\{A/x\} \land B \doteq q\{B/x\}}{A = B}$$

Axiomatization (2)

```
A1 Associativity x + (y+z) = (x+y)+z
   A2 Commutativity
                               x+y=y+x
   A3 Identity
                               x+0=x
                                                       if x \neq 0
   A4 Idempotence
                                                       if x \neq 0
                               x+x=x
                                        if C \doteq \mathbf{0}, then C = \mathbf{0} + \mathbf{0}
R1 Stuck
                              if C \doteq p \land p \neq 0, then C = p
R2 Unfolding
R3 Folding if C \doteq p\{C/x\} \land q = p\{q/x\}, then C = q
            P1 Associativity x | (y|z) = (x|y)|z
            P2 Commutativity x | y = y | x
                                      x \mid \mathbf{0} = x
            P3 Identity
```

Table 4. Axioms for team bisimulation equivalence

Axiomatization (3)

 Axiomatization of a truly-concurrent behavioral semantics for a process algebra with recursive behavior!

Theorem 9. (Soundness) For every $p, q \in \mathscr{P}_{BPP}$, if $E \vdash p = q$, then $p \sim^{\oplus} q$.

Theorem 10. (Completeness) For every $p, q \in \mathscr{P}_{BPP}$, if $p \sim^{\oplus} q$, then $E \vdash p = q$.

Conclusion

- Team bisimulation is a natural extension of bisimulation on LTS to BPP nets
- Intuitively correct, as it corresponds to the causal semantics of Petri nets, observing also the size of the distributed state
- Very efficient verification techniques
- Modal logic characterization
- Axiomatization