日本国特許庁 JAPAN PATENT OFFICE

15.11.2004

RECTO 13 JAN 2005

WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月 5日

出 願 番 号

特願2004-029848

Application Number: [ST. 10/C]:

[JP2004-029848]

出 願 人
Applicant(s):

東洋通信機株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年12月24日

)· [1]

【書類名】 特許願 【整理番号】 TY04002 【あて先】 特許庁長官殿

【発明者】

神奈川県高座郡寒川町小谷二丁目1番1号 【住所又は居所】

東洋通信機株式会社内

【氏名】

小野澤 康秀

【特許出願人】

【識別番号】 000003104

東洋通信機株式会社 【氏名又は名称】 吉川 英一

【代表者】

【代理人】

100085660 【識別番号】 鈴木 均 【氏名又は名称】

【電話番号】

03-3380-7533

【手数料の表示】

【予納台帳番号】 060613 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

【物件名】 明細書 1 【物件名】 図面 1 要約書 1 【物件名】 【包括委任状番号】 9000067

【請求項1】

絶縁基板、該絶縁基板の底部に配置した表面実装用の外部電極、及び該絶縁基板の上部に配置され且つ前記外部電極と導通した配線パターン、を備えた実装基板と、圧電基板、該圧電基板の一面に形成したIDT電極、及び前記配線パターンと導体バンプを介して接続される接続パッド、を備えたSAWチップと、前記SAWチップを実装基板上にフリップチップ実装した状態でSAWチップ外面から実装基板上面にかけて被覆形成されることにより前記IDT電極と前記実装基板との間に気密空間を形成する封止樹脂と、を備え、前記圧電基板の結晶構造がシェーンフリース記号で C_1 、 C_2 、 C_3 、 C_3 V、 C_6 、 C_6 V の何れかの点群に属している表面実装型SAWデバイスにおいて、

前記圧電基板の導電性を高めることによって、封止樹脂の帯電を抑制したことを特徴とする表面実装型SAWデバイス。

【請求項2】

酸素と結合し易い元素を前記圧電基板に接触させながら加熱することにより、前記圧電 基板の導電性を高めたことを特徴とする請求項1に記載の表面実装型SAWデバイス。

【請求項3】

【請求項4】

前記圧電基板が、LiTaO3 であることを特徴とする請求項1乃至3の何れか一項に記載の表面実装型SAWデバイス。

【請求項5】

絶縁基板、該絶縁基板の底部に配置した表面実装用の外部電極、及び該絶縁基板の上部に配置され且つ前記外部電極と導通した配線パターン、を備えた実装基板と、圧電基板、該圧電基板の一面に形成したIDT電極、及び前記配線パターンと導体バンプを介して接続される接続パッド、を備えたSAWチップと、前記SAWチップを実装基板上にフリップチップ実装した状態でSAWチップ外面から実装基板上面にかけて被覆形成されることにより前記IDT電極と前記実装基板との間に気密空間を形成する封止樹脂と、を備え、前記圧電基板の結晶構造がシェーンフリース記号で C_1 、 C_2 、 C_3 、 C_3 V、 C_6 、 C_6 V の何れかの点群に属している表面実装型SAWデバイスにおいて、

前記封止樹脂が比誘電率 3. 2以下、且つ体積抵抗率 1×10¹⁶ Ω·cm以下であり

前記SAWチップ上面の封止樹脂の厚みHが0.02mm以上であり、

前記圧電基板の導電性を高めることによって、封止樹脂の帯電を抑制したことを特徴とする表面実装型SAWデバイス。

【書類名】明細書

【発明の名称】表面実装型SAWデバイス

【技術分野】

[0001]

本発明は、弾性表面波チップを実装基板上にバンプを用いてフェイスダウン搭載してから弾性表面波チップを樹脂封止した構造の弾性表面波デバイスにおいて、圧電基板として 焦電性を有する材料を用いた場合に発生する種々の不具合を解決することができる表面実 装型弾性表面波デバイスに関するものである。

【背景技術】

[0002]

弾性表面波デバイス(SAWデバイス)は、水晶、タンタル酸リチウム等の圧電基板上に櫛歯状の電極指(IDT電極)、反射器、接続パッド等のパターンを配置した構成を備え、例えばIDT電極に高周波電界を印加することによって弾性表面波を励起し、弾性表面波を圧電作用によって高周波電界に変換することによってフィルタ特性を得るものである。

ところで、半導体部品においてCSP(Chip Size Package)と呼ばれる小型パッケージング技術が一般化するのに伴って、SAWデバイスにおいても、デバイスの小型化の容易化と、バッチ式の製造方法による生産性の向上という観点から、CSP技術を用いた生産方法が導入されるようになっている。

SAWデバイスについてのCSP関連技術は、例えば特開2002-100945公報に開示されている。

図 2 は特開 2 0 0 2 - 1 0 0 9 4 5 公報に開示された SAWデバイスの構造を示す断面図であり、この SAWデバイスAは、絶縁基板 1 0 1 、絶縁基板 1 0 1 の底部に配置した表面実装用の外部電極 1 0 2 、及び絶縁基板 1 0 1 の上部に配置され且つ外部電極 1 0 2 と導通した配線パターン 1 0 3 、を備えた実装基板 1 0 0 と、圧電基板 1 1 1 の一面に形成した I D T 電極 1 1 2 、及び配線パターン 1 0 3 と導体バンプ 1 1 5 を介して接続される接続パッド 1 1 3 、を備えた SAW チップ 1 1 0 と、SAW チップ 1 1 0 を実装基板 1 0 0 上にフリップチップ実装した状態で SAW チップ 1 1 0 外面から実装基板 1 0 0 上面にかけて被覆形成されることにより I D T 電極 1 1 2 と実装基板 1 0 0 との間に気密空間 S を形成する封止樹脂 1 2 0 と、を備える。

ところで、結晶構造がシェーンフリース記号で、 C_1 、 C_2 、 C_5 、 C_2 v、 C_4 、 C_4 v、 C_3 、 C_3 v、 C_6 、 C_6 v の何れかの点群に属する圧電材料から成る圧電基板1 1 1 は、焦電性を有することが知られている(例えば、応用物理ハンドブック、第 2 版 4 5 8 頁 表 7.9)。具体的には、例えば点群 C_3 v に属するタンタル酸リチウム(L i T a O_3)やニオブ酸リチウム(L i N b O_3)や、点群 C_4 v に属する四ホウ酸リチウム(L i 2 B_4 O_7)は、焦電性を有するが、点群 D_3 に属する水晶は焦電性を有しない。

図2に示したSAWデバイスにおいて、焦電性を有した材料から成る圧電基板111を使用すると、SAWデバイスに温度勾配がかかった際に、焦電効果によって電荷が圧電基板表面に出現し、その電荷によって封止樹脂120の表面が帯電する。

CSP型SAWデバイスが、機器の回路基板上に搭載された状態で帯電すると、当該SAWデバイスの周辺に搭載されている他の電子部品に悪影響を及ぼす不具合が発生する。

また、SAWデバイスを出荷する際の梱包形態は、図3に示すように、連続した長尺物であるエンボスキャリアテープ本体131(ポリスチレン製)の各ポケット131a内にSAWデバイスAを収納した後で各ポケットの開口部をPETから成るカバーテープ132により封止することによりエンボスキャリアテープ130を完成し、このキャリアテープ130をリールに巻き付ける、所謂テープ&リール梱包が一般的である。しかし、焦電性を有する圧電基板を用いて製作した図2のCSP型SAWデバイスAをエンボスキャリアテープ130によって梱包した状態で温度勾配を加えると、封止樹脂120の帯電によって、カバーテープ132を剥がす際に、SAWデバイスAがカバーテープ側に貼り付き

[0003]

更に具体例を示すと次の通りである。

焦電性を有した圧電基板111としてタンタル酸リチウム($LiTaO_3$)、封止樹脂 120としてエポキシを主材とした樹脂材料を用い、 2.0×1.6 mmサイズのCSP 型SAWデバイスを製作して封止樹脂の帯電によるカバーテープ132への貼り付き発生の有無を実験的に確認した。封止樹脂としては、比誘電率3.2、体積抵抗率 1×10^1 $\Omega\cdot c$ mのものを用いた。SAWチップ上面の封止樹脂の厚みHは、0.12 mmとした。

まず、CSP型SAWデバイスを85℃で5分間加熱し、その直後に25℃の雰囲気中に2分間放置した。このSAWデバイスをカバーテープ132に接触させた所、封止樹脂の帯電によるカバーテープへの貼り付きが確認された。

また、同様に、CSP型SAWデバイスを85 C color 100 時間加熱し、その直後に25 color 20 の雰囲気中に2 時間放置した場合も、封止樹脂の帯電によるカバーテープへの貼り付きが確認された。

更に、封止樹脂の体積抵抗率と比誘電率を下げることにより、カバーテープへの貼り付きを防止できる可能性を探るために、体積抵抗率 5×10^{13} $\Omega\cdot c$ m、比誘電率 3.0 の封止樹脂を用いて同じ実験を行ったが、封止樹脂帯電によるカバーテープへの貼り付きを防止できなかった。

【特許文献1】特開2002-100945公報

【特許文献2】特開平11-92147号公報

【特許文献3】特開平6-305895号公報

【非特許文献1】応用物理ハンドブック、第2版 458頁 表7.9 (丸善株式会社)

【発明の開示】

【発明が解決しようとする課題】

$[0\ 0\ 0\ 4\]$

本発明は上記に鑑みてなされたものであり、実装基板の配線パターン上に導体バンプを介してSAWチップをフェイスダウン実装し、SAWチップ上面から絶縁基板上面にかけて樹脂を被覆すると共に、SAWチップ裾部と実装基板上面との隙間に樹脂を充填させることにより、SAWチップ下面のIDT電極と実装基板上面との間に気密空間を形成するようにした表面実装型SAWデバイスにおいて、SAWデバイスを構成する圧電基板として焦電性を有する材料を使用した場合であっても、圧電基板の上面側に被覆された封止樹脂が帯電することを防止することができる表面実装型SAWデバイスを提供することを目的としている。

【課題を解決するための手段】

[0005]

上記課題を解決するため、請求項1の発明は、絶縁基板、該絶縁基板の底部に配置した表面実装用の外部電極、及び該絶縁基板の上部に配置され且つ前記外部電極と導通した配線パターン、を備えた実装基板と、圧電基板、該圧電基板の一面に形成したI D T 電極、及び前記配線パターンと導体バンプを介して接続される接続パッド、を備えたS A W チップと、前記S A W チップを実装基板上にフリップチップ実装した状態でS A W チップ外面から実装基板上面にかけて被覆形成されることにより前記I D T 電極と前記実装基板との間に気密空間を形成する封止樹脂と、を備え、前記圧電基板の結晶構造がシェーンフリース記号で C_1 、 C_2 、 C_5 、 C_2 v、 C_4 、 C_4 v、 C_3 、 C_3 v 、 C_6 、 C_6 v の何れかの点群に属している表面実装型S A W デバイスにおいて、前記圧電基板の導電性を高めることによって、封止樹脂の帯電を抑制したことを特徴とする。

請求項2の発明は、請求項1において、酸素と結合し易い元素を前記圧電基板に接触させながら加熱することにより、前記圧電基板の導電性を高めたことを特徴とする。

請求項4の発明は、請求項1乃至3において、前記圧電基板が、LiTaO3であることを特徴とする。

請求項5の発明は、絶縁基板、該絶縁基板の底部に配置した表面実装用の外部電極、及び該絶縁基板の上部に配置され且つ前記外部電極と導通した配線パターン、を備えた実装基板と、圧電基板、該圧電基板の一面に形成したIDT電極、及び前記配線パターンと導体バンプを介して接続される接続パッド、を備えたSAWチップと、前記SAWチップを実装基板上にフリップチップ実装した状態でSAWチップ外面から実装基板上面にかけて被覆形成されることにより前記IDT電極と前記実装基板との間に気密空間を形成する封止樹脂と、を備え、前記圧電基板の結晶構造がシェーンフリース記号で C_1 、 C_2 、 C_3 、 C_4 、 C_4 V、 C_3 、 C_3 V、 C_6 、 C_6 V の何れかの点群に属している表面実装型SAWデバイスにおいて、前記封止樹脂が比誘電率3.2以下、且つ体積抵抗率1×10¹⁶ Ω ・c m以下であり、前記SAWチップ上面の封止樹脂の厚み日が0.02m m以上であり、前記圧電基板の導電性を高めることによって、封止樹脂の帯電を抑制したことを特徴とする。

【発明の効果】

[0006]

以上のように本発明によれば、実装基板上にフェイスダウンで搭載したSAWチップの外面を、加熱軟化させたシート樹脂により被覆すると共に、SAWチップ裾部と実装基板上面との隙間に樹脂を充填させることにより、SAWチップ下面のIDT電極と実装基板上面との間に気密空間を形成するようにした表面実装型SAWデバイスにおいて、焦電性を有した圧電基板に導電性を付与したり、使用する樹脂材料として帯電し難い材料を選定したり、更にはSAWチップ上面の封止樹脂の肉厚を所定以上とすることにより、温度変化による圧電基板の自発分極に起因した封止樹脂の帯電を防止できる。

更には、封止樹脂の上部の肉厚を帯電しにくい程度に厚く設定することにより、製品ロット番号をレーザにより封止樹脂面に刻印する際におけるレーザの貫通を防止できる。

【発明を実施するための最良の形態】

[0007]

以下、本発明を図面に示した実施の形態により詳細に説明する。

図1は本発明の一実施形態に係る表面実装型弾性表面波デバイス(以下、SAWデバイス、という)の縦断面図である。

このSAWデバイス1は、ガラス、樹脂、セラミック、ガラスエポキシ、アルミナ等から成る絶縁基板3、絶縁基板3の底部に設けた表面実装用の外部電極4、及び、絶縁基板3の上面に設けられ且つ内部導体6を介して外部電極4と導通した配線パターン5、から成る実装基板2と、配線パターン5と導体バンプ10を介して電気的機械的に接続される接続パッド16、及び接続パッド16と導通したIDT電極17を夫々圧電基板18の下面に備えたSAWチップ15と、SAWチップ15の下面を除いた外面(上面、及び側面)を被覆することによりIDT電極17と実装基板上面との間に気密空間Sを形成する封止樹脂21と、を備えている。圧電基板18は、例えば、タンタル酸リチウム(LiTaO3)等の焦電性を有した圧電材料から構成する。導体バンプ10は、この例ではAuを用いるが、導電性接着剤、半田等から構成してもよい。

SAWチップ15を構成するIDT電極17は、給電側のリード端子から高周波電界を印加されることによって弾性表面波を励起し、弾性表面波を圧電作用によって高周波電界に変換することによってフィルタ特性を得ることができる。

封止樹脂21は、例えば樹脂シートを一旦軟化温度まで加熱昇温させてから加圧変形させてSAWチップ15外面と実装基板上面に密着させた後で、硬化温度まで加熱昇温させて形状を固定することにより形成され、SAWチップの気密性、及び実装基板に対するSAWチップの固定力を補強する。更に、封止樹脂21は、SAW伝搬を確保するためにI

[0008]

本発明の特徴的な構成は、上記の如き構成を備えた表面実装型SAWデバイス1において、圧電基板18の導電性を高めることによって、封止樹脂21の上面の帯電を抑制したことにある。

圧電基板 1 8 としては、例えば上記各点群に属するタンタル酸リチウム(L i T a O 3) や、ニオブ酸リチウム(L i N b O 3) や、四ホウ酸リチウム(L i 2 B 4 O 7) を用いる。

圧電基板18の導電性を高める一つの手法として、酸素と結合し易い元素を圧電基板に 接触させながら加熱する方法が挙げられる。

例えば、特開平11-92147号公報には、還元処理にてタンタル酸リチウム(Li TaO_3)や、ニオブ酸リチウム(Li NbO_3)の導電性を高める技術が開示されており、ここに開示された技術を用いて導電性を高めた圧電基板を用いることにより、圧電基板の焦電性に起因した封止樹脂の帯電を防止できる。

また、圧電基板中にFe、Zr、Al、Cr、Mn、Rh、Cu、V、W、U、Sn の何れかの金属を少なくとも一種類不純物として含有させることにより、前記圧電基板の導電性を高めることができる。

例えば、特開平6-305895号公報には、タンタル酸リチウムに多くの不純物が含まれていても、SAW素子の要求特性を満足する旨の記述があり、ここで挙げられている不純物のほとんどが金属であり、具体的にはFe、Zr、Al、Cr、Mn、Rh、Cu、V、W、U、Snが金属不純物として例示されている。

同公報には、含有する金属不純物と、タンタル酸リチウムの導電性の向上との関係については一切言及されていないが、本発明者の実験によれば、これらの何れの金属不純物も 圧電基板の導電性を高めるために寄与することが確認されている。

なお、携帯電話等のモバイル端末のRF段において使用されるSAWフィルタやSAW デュプレクサに使用する圧電基板材料としては、SAWデバイスの小型化・低価格化に有利なタンタル酸リチウムが圧倒的に多く利用されているが、タンタル酸リチウムは、ニオブ酸リチウムや四ホウ酸リチウムに比して焦電性がかなり強いという欠点を有しており、これまでこの欠点を解決する手段が求められていた。

[0009]

本発明による帯電防止構造を備えたSAWデバイスによれば、焦電性の強いタンタル酸リチウムを圧電基板として用いた場合であっても、温度勾配に起因した封止樹脂の帯電を有効に防止することができる。

導電性を高めたタンタル酸リチウムの例としては、http://www.siliconlight.com/html pgs/glvtechframes/glvmainbody.htmlに開示されたSilicon Light Machines社の製品であるPyroFreeTM Lithium Tantalate を挙げることができる。

更に、本発明者は、封止樹脂の比誘電率、体積抵抗率、更には封止樹脂の厚みHとの関係においても、封止樹脂が帯電しにくくなる構成を案出した。

即ち、まず、導電性を高めるための処理を受けた圧電基板 18 の結晶構造が、シェーンフリース記号で C_1 、 C_2 、 C_8 、 C_2 v、 C_4 、 C_4 v、 C_3 、 C_3 v、 C_6 、 C_6 v の何れかの点群に属しているために焦電性を有している場合に、封止樹脂 21 が比誘電率 3.2以下、且つ体積抵抗率 1×10^{16} $\Omega\cdot c$ m以下であることにより、温度勾配の影響による封止樹脂の上面の帯電を有効に防止できることが判明した。

更に、SAWチップ上面の封止樹脂の厚みHを0.02mm以上とすることにより、封止樹脂の帯電を防止することができることが判明した。また、封止樹脂の厚みHが厚いことによって、製造ロット番号等をレーザマーカによってマーキングする場合にレーザが封止樹脂を貫通する不具合も防止することができる。

以下に、具体的実施例を示しながら、本発明を更に詳細に説明する。

【実施例1】

圧電基板 180 材料として導電性を高めたタンタル酸リチウム($LiTaO_3$)を用いると共に、体積抵抗率 5×10^{13} $\Omega\cdot cm$ 、比誘電率 3.0 の封止樹脂 21 を用いて、85 ℃で 5 分間加熱した後で 25 ℃の雰囲気中に 2 分間放置してから、エンボスキャリアテープ(図 3 を参照)を構成するカバーテープ(PET)への貼り付き状態を確認する実験、或いは 85 ℃で 100 時間加熱した後で 25 ℃の雰囲気中に 2 時間放置してから、上記カバーテープへの貼り付き状態を確認する実験を夫々行った。これらの実験の結果、カバーテープへの貼り付きは全く発生せず、封止樹脂の帯電を防止する改善効果を確認することができた。

【実施例2】

[0011]

上記の改善効果の有効性を更に確認するために、導電性を高めた圧電基板と、極力帯電し易い封止樹脂を使用したSAWデバイスのサンプルを製作して同様の実験を実施した。その結果、封止樹脂の比誘電率が高い程、また体積抵抗率が高い程、帯電が発生し易く、更にSAWチップ上面側の封止樹脂部分の厚み日が薄い程帯電し易いことが判明した。これらの判明事項を踏まえて、封止樹脂 21 として比誘電率 3.2 、体積抵抗率 1×10^{1} 6 $\Omega\cdot c$ mのものを用い、SAWチップ上面の封止樹脂厚み日を 0.02 mmとして SAW Wデバイスを製作した。

このSAWデバイスを85 C C C D 間加熱し、その直後に25 C D の雰囲気中に2 D 間放置した後で、PET 製のカバーテープにSAW デバイスの上面樹脂部分を接触させることにより静電吸着性を確認したところ、封止樹脂の帯電による貼り付きは確認されなかった

しかし、封止樹脂 2 1 として、比誘電率が 3 . 2 を越え、且つ体積抵抗率が 1×10^{1} 6 Ω · c mを越えるものを用いた場合、或いは、S AWチップ上面の封止樹脂厚み Hが 0 . 0 2 mmを下回る場合には、夫々封止樹脂の帯電による貼り付きが発生した。

このことから、封止樹脂が比誘電率 3. 2以下、且つ体積抵抗率 1×10^{16} $\Omega \cdot cm$ 以下であり、前記 SAW チップ上面の封止樹脂の厚み H が 0 . 0 2 mm 以上であることが封止樹脂の帯電を防止する上で有効であることが判明した。

【実施例3】

[0012]

次に、圧電基板として導電性を高めたタンタル酸リチウム($LiTaO_3$)を用いたSAWデバイスを85 C cold 1 0 0 時間加熱し、その直後に25 cold 2 の雰囲気中に2 時間放置した場合に、封止樹脂の帯電によるカバーテープへの貼り付きを確認することはできなかった。

更に、圧電基板として導電性を高めたタンタル酸リチウムを用いたSAWデバイスを260℃で1分間加熱し、その直後に25℃の雰囲気中に2分間放置した場合にも、封止樹脂の帯電によるカバーテープへの貼り付きを確認することはできなかった。

【実施例4】

[0013]

次に、封止樹脂の厚みHを種々調整する実験を行った。即ち、SAWデバイス1の封止樹脂21の上面にレーザマーカによって製造ロット番号をマーキングする場合、SAWチップ15上の封止樹脂の厚みHが薄すぎると、レーザが封止樹脂を貫通してSAWチップ上面を直接照射してSAWチップを破損させることがある。この不具合を解消するための実験において、体積抵抗率が 1×10^{16} Ω ・c mで、比誘電率が3. 2 である封止樹脂を用いて2. 0×1 . 6 mmサイズのSAWデバイスを製作する際に、SAWチップ上の封止樹脂の厚みHを0. 12 mmにし、圧電基板18として導電性を高めたタンタル酸リチウムを用いた。このSAWデバイスの封止樹脂上面にレーザ彫刻を施したところ、封止樹脂上面から0. 08 mmの深さでマーキングが行われ、レーザが封止樹脂を貫通することはなかった。また、SAWチップ上の封止樹脂の厚みHを0. 02 mm以上にしたため、封止樹脂の帯電も防止できた。

実際に上記各実施例と同様の帯電確認実験を行ったところ、封止樹脂の帯電によるカバーテープへの貼り付きは全く発生しなかった。

なお、SAWチップ上の封止樹脂の厚みHは、厚い程、帯電防止効果は高まるが、必要以上に厚くし過ぎると、SAWデバイスに対する小型化・軽量化のニーズに逆行することになるので、適宜選定する必要がある。

なお、焦電性を有した圧電基板の導電性を高めることにより封止樹脂の帯電を防止できるため、SAWデバイスが回路基板上に搭載された状態での帯電も防止できることが確認された。このため、従来技術における欠点であった回路基板上の周辺電子部品への悪影響を防止できる。

【図面の簡単な説明】

[0014]

- 【図1】本発明の一実施形態に係る表面実装型弾性表面波デバイスの縦断面図。
- 【図2】従来の表面実装型弾性表面波デバイスの縦断面図。
- 【図3】従来例の欠点を説明する図。

【符号の説明】

[0015]

1 SAWデバイス、2 実装基板、3 絶縁基板、4 外部電極、5 配線パターン、6 内部導体、10 導体バンプ、15 SAWチップ、16 接続パッド、17 IDT電極、18 圧電基板、21 封止樹脂。

【書類名】図面 【図1】

【図2】

【図3】

【書類名】要約書

【要約】

【課題】 SAWデバイスを構成する圧電基板として焦電性を有する材料を使用した場合であっても、圧電基板の上面側に被覆された封止樹脂が帯電することを防止することができる表面実装型SAWデバイスを提供する。

【解決手段】 実装基板 2 と、圧電基板 1 8、該圧電基板の一面に形成した I D T 電極 1 7、及び配線パターン 5 と導体バンプ 1 0 を介して接続される接続パッド 1 6 、を備えた S A W チップ 1 5 と、S A W チップを実装基板上にフリップチップ実装した状態で S A W チップ外面から実装基板上面にかけて被覆形成されることにより I D T 電極と実装基板との間に気密空間 S を形成する封止樹脂 2 1 と、を備え、圧電基板の結晶構造がシェーンフリース記号で C_1 、 C_2 、 C_5 、 C_2 V 、 C_4 、 C_4 V 、 C_3 、 C_3 V 、 C_6 、 C_6 V の何れかの点群に属している表面実装型 S A W デバイスにおいて、圧電基板の導電性を高めることによって、封止樹脂の帯電を抑制した。

【選択図】 図1

認定 · 付加情報

特許出願の番号

特願2004-029848

受付番号

5 0 4 0 0 1 9 3 1 8 7

書類名

特許願

担当官

第一担当上席 0090

作成日

平成16年 2月 6日

<認定情報・付加情報>

【提出日】

平成16年 2月 5日

特願2004-029848

出願人履歴情報

識別番号

[000003104]

1. 変更年月日

2002年 6月28日

[変更理由]

住所変更

住 所 氏 名 神奈川県川崎市幸区塚越三丁目484番地

東洋通信機株式会社