Individual Assignment -I for Section One only

1. Simplify the following Boolean function in sum-of-products and product-of sums by means of a four-variable map. Draw the logic diagram with (a) AND-OR gates; (b) NAND gates.

 $F(w, x, y, z) = \sum (2,3,4,5,6,7,11,14,15)$

Mseries	W	Х	У	Z	out	
M0	0	0	0	0	0	
M1	0	0	0	1	0	
M2	0	0	1	0	1	
M3	0	0	1	1	1	
M4	0	1	0	0	1	
M5	0	1	0	1	1	
M6	0	1	1	0	1	
M7	0	1	1	1	1	
M8	1	0	0	0	0	
M9	1	0	0	1	0	
M10	1	0	1	0	0	
M11	1	0	1	1	1	
M12	1	1	0	0	0	
M13	1	1	0	1	0	
M14	1	1	1	0	1	
M15	1	1	1	1	1	

y z				
/	00	01	11	10
00	0	0	1	1
01	1	1	1_	1
11	0	0	1	0
10	0	0	1	1
	01	00 0 0 0 1 1 1 1 0	00 01 00 0 01 1 11 0 0 0	00 01 11 00 0 0 1 01 1 1 1 11 0 0 1

SOP: $(\overline{w}x\overline{y})+(y)+(wyz)$

Figure 1. AND-OR for SOP

	yz					
		00	()1	11	10
wx	00	0		0	1	1
	01	1		1	1	1
	11	0		0	1	C
	10	0		0	1	1

POS: (y)*(\overline{w} + \overline{x} +z)

Figure 2. AND-OR for POS

2. Design a sequential circuit with two JK flip flops A and B and two inputs E and X. If E = 0, the circuit remains in the same state regardless of the value of x. When E =1 and X =1 the circuit goes through the state transitions from 00 to 01 to 10 to 11 back to 00, and repeat. When E =1 and X =0, the circuit goes through the state transitions from 00 to 11 to 10 to 01 back to 00, and repeat.

	Inputs		Present s	tate	Next stat	e	FlipFlops	(Excitation	۱)	
	Е	Х	Α	В	Α	В	JA	KA	JB	КВ
Case 1	0	х	0	0	0	0	0	Х	0	Х
	0	х	0	1	0	1	0	Х	Х	0
	0	х	1	0	1	0	Х	0	0	Х
	0	х	1	1	1	1	Х	0	Х	0
Case 2	1	1	0	0	0	1	0	Х	1	Х
	1	1	0	1	1	0	1	Х	Х	1
	1	1	1	0	1	1	Х	0	1	Х
	1	1	1	1	0	0	Х	1	Х	1
Case 3	1	0	0	0	1	1	1	Х	1	Х
	1	0	1	1	1	0	Х	0	Х	1
	1	0	1	0	0	1	Х	1	1	Х
	1	0	0	1	0	0	0	Х	Х	1

K-map

AB		JA					
	00	01	11	10	48	JB	

ΕV	00 0	0	Х	Χ		EX		00	01	11	10	
EX	01 0	0	Χ	Χ			00	0	Χ	Χ	0	
	11 0	1	Х	Χ			01	0	Χ	Χ	0	
	10 1	0	Х	Х			11	1	Χ	Χ	1	
	JA=	EXB +E	\overline{XB}				10	1	Χ	Χ	1	
									JB	=E		
	AB	KA				КВ						
EX	00	01	11	10		EX	48	00	01	11	10	
	00 X	Х	0	0			00	Χ	0	0	Χ	
	01 X	Х	0	0			01	Χ	0	0	Χ	
	11 X	Х	1	0			11	Х	1	1	Χ	
	10 X	Х	0	1			10	Χ	1	1	Χ	
	$KA=EXB+E\overline{XB}$								KE	8=E		

Figure 3. JK flip flop circuit

- **3**. A counter has a special counting sequence: 0,5,7,1,0,5,7,1, and so on. Design this counter with minimal number of states.
- a) Draw a state diagram for the counter

b) Construct a state-assigned table including the next state and output

Present	state		Next Sta	Next State(state 0)					
Q2	Q1	Q0	Q2+	Q1+	Q0+				
0	0	0	1	0	1				
0	0	1	0	0	0				
1	0	1	1	1	1				
1	1	1	0	0	1				

c) Draw the circuit diagram for the counter using D flip-flops

Present state			Next State					
Q2	Q1	Q0	Q2+	Q1+	Q0+	D2	D1	D0

0	0	0	1	0	1	1	0	1
1	0	1	1	1	1	1	1	1
1	1	1	0	0	1	0	0	1
0	0	1	0	0	0	0	0	0

	Q1Q2					Q1Q2			
	00 01 11	10	Q0		00	01	11	10	
Q0	0 1 0 0	0		0	0	0	1	0	
QU	1 0 1 0	0		1	0	0	0	0	
	$D2 = \overline{Q2Q1Q0} + Q2\overline{Q10}$	ე0			D1:	$=$ Q2 $\overline{Q1}$	Q0		
Q0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10 0 1							

d) Repeat (c) using T flip-flops

Characteristics table

Т	Q(next)
0	Q
1	Q'
Q(next) = TQ' +T'C	1

Present	Present state Next State							
Q2	Q1	Q0	Q2+	Q1+	Q0+	T2	T1	ТО

0	0	0	1	0	1	1	0	1
1	0	1	1	1	1	0	1	0
1	1	1	0	0	1	1	1	0
0	0	1	0	0	0	0	0	1

Q1Q2							Q1Q2						
		00	01	11	10		Q0		00	01	11	10	
00	0	1	0	0	0			0	0	0	1	0	
Q0	1	0	0	1	0			1	0	0	1	0	
	T2:	$=\overline{Q2Q1}$	Q0 + 0	Q2Q1C	0)				T1	=Q2Q	1		
		(Q1Q2										
Q0		00	01	11	10								
40	0	1	0	0	0								
	1	1	0	0	0								
T0= <u>Q2Q1</u>													

Present state		Next State									
Q2	Q1	Q0	Q2+	Q1+	Q0+	JQ2	KQ2	JQ1	JK1	JQ0	JKO
0	0	0	1	0	1	1	Х	0	Х	1	Х
1	0	1	1	1	1	Х	0	1	х	х	0
1	1	1	0	0	1	Х	1	Х	1	Х	0
0	0	1	0	0	0	0	х	0	х	х	1

