CIS 721 - Real-Time Systems Lecture 10: Arbitrary Deadlines

Mitch Neilsen neilsen@cis.ksu.edu

Outline

- Priority-Driven Scheduling
 - Periodic Tasks (Ch. 6)
 - Arbitrary Start Times
 - Leung's Feasibility Test
 - Audsley's Feasibility Test
 - Arbitrary Deadlines

Arbitrary Deadlines

- J.P. Lehoczky, "Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines", In Proceedings of IEEE Real-Time Systems Symposium, pp. 201-209, December, 1990.
- K. Tindell, A. Burns, and A.J. Wellings, "An extensible approach for analysing fixed priority hard real-time tasks", Real-Time Systems, 6 (2), pp. 133-151, 1994.

Rate Monotonic Assignment?

- Q: What happens if task deadlines are allowed to be greater than their periods?
- A: Rate Monotonic and Deadline Monotonic Priority Assignments may no longer be optimal.

Terms and Concepts

- A task set $\Gamma = \{\tau_1, \tau_2, ..., \tau_n\}$ is a collection of related tasks.
- Each periodic task τ_i is characterized by:
 - □ an execution time or run-time (C_i),
 - a period (T_i),
 - a (relative) deadline (D_i), and
 - \square a **phase** or **offset** (φ_i or O_i).

Release Time

- The release time (or arrival time) of a job is the time at which the job becomes available for execution (r_i).
- The release time of the jth instant (job) of task τ_i is given by $r_i = O_i + (j-1) T_i$.
- **Assumption:** $O_i = 0$ for all i; thus, a critical instant occurs at time 0.

Level-i Busy Period

A level-i busy period is a time interval [a, b] in which tasks of priority i or higher are processed, but no tasks of level-i are processed in (a - ε, a) or (b, b + ε) for some ε > 0.

Deadline Monotonic Scheduling

- If D_i ≤ T_i, then Deadline Monotonic Scheduling Algorithm is optimal.
- If D_i > T_i, this may not be true.

Example: task 1 w/ highest priority

```
/* Example */
system
  node node 1
    processor proc 1
      periodic task 1
        period 100 deadline 110 offset 0
        priority 1
         [52,52]
                                         High Priority
      endper
      periodic task 2
        period 140 deadline 154 offset O
        priority 2
         [52,52]
      endper
    endpro
  endnod
endsys
```

Example: task 1 w/ highest priority

TimesTool - www.timestool.com

TIMES 1.3
Beta now available online! Download here.

TIMES User Group

Has been created on YahooGroups!
Register now!

Tool Paper

Presented at TACAS'02, received ETAPS'02 Best Tool Demo Award. Available here.

Background Paper

Presented at TACAS'02. Available here.

TIMES - A Tool for Modeling and Implementation of Embedded Systems. It is a tool set for modelling, schedulability analysis, synthesis of (optimal) schedules and executable code. It is appropriate for systems that can be described as a set of tasks which are triggered periodically or sporadically by time or external events.

- A graphical editor for timed automata extended with tasks, which allows the user to model a system and the abstract behaviour of its environment. In addition the user may specify a set of preemptive or non-preemtive tasks with parameters such as (relative) deadline, execution time, priority, etc.
 - A simulator, in which the user can validate the dynamic behaviour of the system and see how the tasks execute according to the task parameters and a given scheduling policy. The simulator shows a graphical representation of the

Using TimesTool — java –jar timestool.jar

http://www.timestool.com and online

TimesTool Simulation Output

Example: task 2 w/ highest priority

```
√* Example */
system
  node node 1
    processor proc 1
      periodic task 1
        period 100 deadline 110 offset 0
        priority 2
        [52,52]
      endper
      periodic task 2
        period 140 deadline 154 offset 0
        priority 1
         [52,52]
      endper
                                        High Priority
    endpro
  endnod
endsys
```

Example: task 2 w/ highest priority

TimesTool Output

Response Time Analysis

For each (potentially overlapping) release, a worstcase completion time w_i(q) is defined by:

$$w_i^{n+1}(q) = q \cdot C_i + \sum_{j \in hp(i)} \left\lceil \frac{w_i^n(q)}{T_j} \right\rceil \cdot C_j$$

$$w_i^0(q) = C_i + (q-1) \cdot T_i$$

where q is the instance or job number and $w_i(q)$ is the least fixed point of $w_i^n(q)$.

The response time of the q^{th} instance, $R_i(q)$, is given by $R_i(q) = w_i(q) - (q-1) T_i$.

Response Time Analysis (cont.)

- Set $q' = min \{ q \mid R_i(q) \leq T_i \}$.
- Then, the **level-i busy period** is $[0, w_i(q^i)]$.
- The worst-case response time R_i is given by:

$$R_{i} = \max_{q=1,2,...,q'} \{R_{i}(q)\}$$

• If $R_i \le D_i$ for all i, the system is **schedulable**.

Example #9

Task	Period	Deadline	Run-Time	Phase
$ au_{ m i}$	$\mathbf{T_i}$	$\mathbf{D_i}$	$\mathbf{C_i}$	ϕ_{i}
$egin{array}{c} au_1 \ au_2 \end{array}$	100 140	110 154	52 52	0

TimesTool Output

Hack: Don't use 2 clocks scheduler...

Lehoczky's Example

Task	Period	Run-Time	Phase	Deadline
$ au_{ ext{i}}$	$\mathbf{T_i}$	$\mathbf{C_i}$	$\phi_{\mathbf{i}}$	$\mathbf{D_i}$
$ au_1$	70	26	0	68
$ au_2^-$	100	62	0	118
_				

General Time-Driven Analysis

- Check to see if the first job completes before it's deadline and before the second job in the same task is released.
- If not, check all jobs over a level-i busy period.

Example

Example (cont.)

$$V_{2,2} = \text{minimum t s.t.}$$

$$t = W_{2,2}(t + p_2) - p_2$$

$$= 2 \cdot e_2 + \sum_{k=1}^{i-1} \left[\frac{t + 100}{p_k} \right] \cdot e_k - 100$$

$$= 124 + \left[\frac{t + 100}{70} \right] \cdot 26 - 100$$

??
$$102 = 124 + \left\lceil \frac{202}{70} \right\rceil \cdot 26 - 100$$

= $124 + 3 \cdot 26 - 100$
= 102 Yes!

Example (cont.)

$$W_{2,3} = \text{minimum t s.t.}$$

$$t = W_{2,3}(t + 2 \cdot p_2) - 2 \cdot p_2$$

$$= 3 \cdot e_2 + \sum_{k=1}^{i-1} \left[\frac{t + 200}{p_k} \right] \cdot e_k - 200$$

$$= 186 + \left[\frac{t + 200}{70} \right] \cdot 26 - 200$$

??116=186+
$$\left[\frac{316}{70}\right] \cdot 26 - 200$$

=186+5\cdot 26-200
=116 Yes!

Summary

- Read Ch. 5-7, next time start on Ch. 8.
- Read Audsley's paper on scheduling with arbitrary start times.
- Read Lehoczky's paper on scheduling with arbitrary deadlines.