ACT!

CA TETHERED BALLOON SYSTEMS

Jerum J. Voreshek Jacos W. Burbick George R. Dnylet Jr.

Goodyear Assocrace Corporation Akres, Ohio 44345

Contract No. Plasks M. C. 4091

Project No. 7679

Tank No. 748904

Work Wit No. 76590601

fife al Pagert

A Jacobary 1971 Strough 31 Jacobry 1972

Contensi Mouttor: Don S. Jeckson, Cape., USAF Accompage Instrumentation Saboratory

A proved to public release; distribution unlimited

Best Available Copy

Prepared for

NATIONAL TECHNICAL INFORMATION SERVICE

Best Available Copy

Anallised requesters may obtain additional copies area the confense Decimentation Center. All others should apply to the Patienal Technical Information Sarvice.

Best Available Copy

Security Classification			
DOCUMENT CONT			
(Security classification or little, body of abstract and indexing			
1. ORIGINATING ACTIVITY (Corporate author)		Ze. REPORT SE	ECURITY CLASSIFICATION
Goodyear Aerospace Corporation	1		classified
1210 Massillon Road	1	26. GROUP	
Akron, Ohio 44315		L	
3 REPORT TITLE			
INVESTIGATION OF DYNAMIC BEHAVIOR OF	TETHERED BAT	LOON SYST	FMS
ANYMOTA DELITA DE MARGINA DE CANTON DE LA CONTRACTOR DE L	Thirman and	MOON DIEL	wio .
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific. Final. 1 January 197	** ·* · - · - !. 91		Approved
Scientific. Final. 1 January 197 5 AUTHOR(S) (First name, a iddle initial, last name)	71 through 31	. January	1972 29 Feb. 1972
Jerome J. Vorachek			
James W. Burbick			
George R. Doyle Jr.			
6 REPORT DATE	78. TOTAL NO. OF	F PAGES	76. NO. OF REFS
31 January 1972	164	,	4
SA. CONTRACT OR GRANT NO	Se. ORIGIN , TOR'S	REPORT NUME	BER(S)
F- 1926 8-71-C-0091	1	154	
a. 19628	1	•	うし
7659-06-01	AFCRL-7	2-0113	
C. DoD Element: 62101F	9b. OTHER REFOR	T NO(S) (Any of	ther numbers that may be assigned
į	line isposi,		
d. DoD Subelement: 687659			
10 DISTRIBUTION STATEMENT	-		
A - Approved for public release; distribut	cion unlimite	id.	
1			
11 SUPPLEMENTARY NOTES	12 SPONSORING MI		
TECH OTHER			eseach Laboratories(LC
f	L. G. Hansco		
	Bedford, Mas		
An analytical investigation of the			
1.11 conducted This was now to see			.t

balloons was conducted. This report covers definition of tethered balloon systems and a study of stability characteristics and dynamic response to wind gusts of tethered balloon systems. Balloon systems which are investigated use the British BJ Barrage Balloon, the Vee Balloon and a Goodyear Aerospace Model No. 1649 Single-Hull Balloon. The major tether construction is Columbian Rope Company's NOLARO utilizing prestretched polyester filaments. Three design altitudes, 5,000, 10,000 and 20,000 feet, are considered.

The model for the tethered balloon system consists of the streamlined balloon and a tether made up of three discrete links. The derivation of non-linear equations of motion for this system in three dimensions is presented. The equations are linearized for stability analysis and treated as uncoupled in the longitudinal and lateral degrees of freedom. Characteristic equations which incorporate the physical, aerodynamic, and mass characteristics of the system are developed and solved for the roots which represent the frequency and damping qualities. The nonlinear equations of motion are programmed for solution on a digital computer.

An exploratory investigation to establish the trends of dynamic characteristics for various design parameters is reported. Design parameters considered include balloon shape and altitude, trim angle of attack, vertical location of the bridle confluence point, net static lift, tail size, reduced wind profiles, varying altitude as encountered in launch and retrieval, payload location, and wind location above mean sea level.

DD FORM 1473

Unclassified

Security Classification

Unclassified

Security		

Ε	WT	ROLE	₩T	ROLE	WT
					ĺ
		}			
į	i	1			
ı					
	1				
	j				
	Î				
1		İ		1	
		ļ			
	Ì				
		İ			

OHCIGOSTITES

INVESTIGATION OF DYNAMIC BEHAVIOR OF TETHERED BALLOON SYSTEMS

Jerome J. Vorachek James W. Burbick George R. Doyle, Jr.

Goodyear Aerospace Corporation Akron, Ohio 44315

Contract No. F19628-71-C-0091

Project No. 7659

Task No. 765906

Work Unit No. 76590601

Final Report

1 January 1971 through 31 January 1972

Contract Monitor: Don E. Jackson, Capt., USAF Aerospace Instrumentation Laboratory

Approved for public release; distribution unlimited

Prepared for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

ABSTRACT

An analytical investigation of the dynamic behavior of tethered balloons was conducted. This report covers definition of tethered balloon systems and a study of stability characteristics and dynamic response to wind gusts of tethered balloon systems. Balloon systems which are investigated use the British BJ Barrage Balloon, the Vee Balloon and a Goodyear Aerospace Model No. 1649 Single-Hull Balloon. The major tether construction is Columbian Rope Company's NOLARO utilizing prestretched polyester filaments. Three design altitudes, 5,000, 10,000 and 20,000 feet, are considered.

The model for the tethered balloon system consists of the streamlined balloon and a tether made up of three discrete links. The derivation of non-linear equations of motion for this system in three dimensions is presented. The equations are linearized for stability analysis and treated as uncoupled in the longitudinal and lateral degrees of freedom. Characteristic equations which incorporate the physical, aerodynamic, and mass characteristics of the system are developed and solved for the roots which represent the frequency and damping qualities. The nonlinear equations of motion are programmed for solution on a digital computer.

An exploratory investigation to establish the trends of dynamic characteristics for various design parameters is reported. Design parameters considered include balloon shape and altitude, trim angle of attack, vertical location of the bridle confluence point, net static lift, tail size, reduced wind profiles, varying altitude as encountered in launch and retrieval, payload location, and wind location above mean sea level.

FOREWORD

This research was supported by the Air Force Systems Command, "JSAF, DOD, and was under the technical cognizance of the Air Force Cambridge Research Laboratories under Contract No. F 19628-71-C-0091.

The project is being carried out under the direction of Captain Don Jackson as Contract Monitor for the Air Force Cambridge Research Laboratories. Mr. Jerome Vorachek is the Goodyear Aerospace Corporation Project Engineer. Technical effort has been provided by Mr. George Doyle for derivation of the equations of motion and characteristic equations of the tethered balloon systems, programming of equations for solution of stability and dynamic response. Mr. James Burbick generated dynamic response data and evaluation of dynamic response results with the IBM 360 computer. Mr. William Ebert developed the aerodynamic characteristics for the balloon system, and mass characteristics were generated by Mr. Walt Stricker. Technical assistance was also provided by Mr. Philip Myers and Mr. Louis Handler.

The contractor's number for this report is GER-15497.

TABLE OF CONTENTS

Section			Page
I	INTRO	DUCTION	1
IT.	BALLO	ON DESCRIPTION	3
III		IQUES FOR STUDY OF DYNAMIC BEHAVIOR OF RED BALLOONS	7
	1.	Mathematical Models	7
	2.	General Stability Theory	9
	3.	Stability Analysis	11
	4.	Dynamic Response Analysis	12
IV	DYNAM	IC RESPONSE OF TETHERED BALLOONS	15
	1.	Design Conditions Investigated	15
	2.	General Discussion of Dynamic Response of	
		Tethered Balloon Systems	17
	3.	Effects of Design Parameters on Tethered	
		Balloon Design	29
v	CONCL	USIONS AND RECOMMENDATIONS ON TETHERED BALLOON	
	DYNAM	IC BEHAVIOR	44
	1.	Gust Effects on Nominal BJ Balloon	44
	2.	Comparison of Balloon Types	45
	3.	Influence of Trim Angle on Longitudinal and	-,,
	•	Lateral Dynamic Behavior	45
	4.	Effect of Tail Size on Longitudinal and Lateral	73
	7.	Dynamic Behavior	46
	5.	Effect of Altitudes Intermediate to the Design	.,,
	٠.	Altitude on Behavior of the BJ Tethered	
		Balloon System	46
	6.	Effects of Reduced Wind on the Behavior of the	70
	••	BJ Tethered Balloon System	47
	7.	Nolaro vs Amgai Tethers	47
	8.	Effect of Payload Location	47
	9.	Effect of Winch Altitude Location	47
	10.	BJ Tethered Balloon Systems Designed for	4,
	10.	Various Altitudes	48
REFERENC	ES		49
			•
APPENLIC	ES		
	A	Eduations of Motion for Dynamic Simulation	A-1
	В	Dynamic Response Input and Output Data	B-1

LIST OF FIGURES

F igure		Page
1	BJ Configuration	4
2	Vee-Balloom Configuration	4
3	GAC No. 1649 Balloon Configuration	6
4	Balloon Tether Model in Longitudinal Plane	7
5	Balloon Tether Model in Lateral Plane	8
6	Balloon Geometry and Applied Forces	9
7	Longitudinal Dynamics of Tethered Balloon - BJ Nominal	13
8	Longitudinal Dynamics of Tethered Balloon - BJ Nominal	13
9	Lateral Wind Gusts	17
10	Lateral Stability Characteristics of Nominal BJ Tethered Balloon at 10,000 Feet Altitude	20
11	Lateral Case 28, Coordinates Response	21
12	Lateral Case 28, Power Spectral Density	22
13	Longitudinal Stability Characteristics of Nominal BJ Tethered Balloon at 10,000 Feet Altitude	25
14	Lateral Case 4, Coordinates Response	26
15	Lateral Case 4, Power Spectral Dansity	27

LIST OF TABLES

Table		Page
I	Summary of Balloon/Cable Systems	5
II	Summary of Cable Solutions	6
III	A. Comparison of Longitudinal Dynamic Cases B. Comparison of Lateral Dynamic Cases	16 16
IV	Summary of Lateral Stability Case 1	19
v	Peak Amplitudes for Lateral Dynamics Case 28	23
VI	Summary of Longitudinal Stability Case 1 (Reference 2)	24
VII	Wind Gust Duration Effects on BJ Nominal Balloon in Longitudinal Plane	29
VIII	Wind Gust Ramp Rise Time Effects on BJ Nominal Balloon in Laterial Plane	30
IX	Effect of Increase in Gust Velocity on BJ Nominal Balloon in Lateral Plane	31
X	Effect of Trim Angle of Attack on Longitudinal Response of Three Balloon Types	32
ΧΙ	Effect of Lateral Wind Gusts on the Lateral Response of the Three Balloon Types	32
XII	Longitudinal Response of BJ Balloon with Tail Size Variation	34
XIII	Lateral Response of BJ and Vee Balloons with Tail Size Valiation	34
XIV	Effect of Intermediate Altitudes on Longitudinal Response of the BJ Balloon	35
xv	Effect of Intermediate Altitudes on Lateral Response of the BJ Balloon	35
XVI	Effect of Reducing Winds on Longitudinal and Lateral Response	37
XVII	Effect of Nolaro and Amgal Tethers on Longitudinal Response	38

Table		Page
XVIII	Effect of Nolaro and Amgal Tethers on Lateral Response	38
XIX	Elfect of Payload Location on Longitudinal Response .	39
XX	Effect of Winch Altitude Location on Longitudinal Response	39
XXI	Effect of Various Design Operational Altitudes	40
XXII	Structural Design Parameters	41
XXIII	Instrumentation Design Parameters	41
XXIV	Maximum Variations of Structural and Instrumentation Design Performance Parameters - Longitudinal Cases	42
xxv	Maximum Variations of Structural and Instrumentation Design Performance Parameters - Lateral Cases	43

SECTION I

INTRODUCTION

The objective of this program is to investigate the dynamic behavior of tethered balloons and in so doing to establish design criteria for tethered balloons, tethers and payloads. The program is organized into three steps:

- (1) Definition of balloon systems for dynamic analysis
- (2) A study of stability characteristics of tethered ballon systems
- (3) A study of dynamic response of tethered balloon systems to wind gusts

Reference 1 presents a definition of tethered balloon systems to be used for dynamic studies. These systems are summarized in this report. Reference 2 presents a development of the study of stability characteristics of the tethered balloon systems. This report presents further development of the equations of motion and solutions for the dynamic response of the tethered balloon system. Recommendations for the design of tethered balloon systems are presented in this report.

The system is defined as a balloon tethered at the end of a cable which is fixed to a stationary winch. The tether is represented by 3 straight links, each of the same length. The links are considered rigid and connected to each other by frictionless hinges. Goodyear Aerospace Corporation has employed this method of representation of the tethered system for other studies such as that described in Reference 3.

For design purposes in the subject investigation the following design parameters were specified by AFCRL.

Payload and Design Altitude

Payload (1b)	Float Altitude (ft above MSL) h
1500	5,000
1000	10,000
600	20,000

Tethers

Two specific tether constructions are to be considered, NOLARO by Columbian Rope Company, and Amgal-Monito: AA wire rope by United States Steel.

A safety factor of 2.0 will be used with NOLARO; 1.5 for Amgal-Monitor. Tether design load will be based on a survival wind of 1.3 time: the operational wind at balloon altitude.

Wind Profile

The wind profile as specified is tabulated below:

<u>Altitude</u> (ft above MSL)	Operational <u>Wind Speed</u> (knots)	Survival <u>Wind Speed</u> (knots)
Sea Level	10	13.
5,000	31	40.3
10,000	40	52.
20,000	54	70.2

SECTION II

BALLOON DESCRIPTION

The balloon systems evaluated in this stability investigation have been described in Reference 1. The three balloon types in these systems are the British BJ Balloon, the Vee-Balloon* and the GAC No. 1649 Single Hull Balloon as depicted in Figures 1, 2, and 3. The nominal tethered systems characteristics defined in Reference 1 are summarized in Tables I and II.

Static and dynamic aerodynamic characteristics for the balloons have been determined from experimental data where available and by analycical techniques otherwise. The aerodynamic characteristics are presented and discussed in Reference 2 along with additional mass and suspension system geometries which were not included in Reference 1.

Design parameters varied in the stability investigation include the trim angle of attack, vertical location of the suspension system confluence point below the balloons, the free-static lift, and the tail size.

The trim angle of attack can be controlled by locating the confluence point of the suspension system. The location of this point is established by the two coordinates as shown in Figure 1. The fuselage station from the nose and the waterline below the centerline of the balloon defines this point. The trim angle of attack change as a function of bridle apex point location has been calculated and is given in Reference 2.

The free-static lift as used in this report is the excess buoyant lift provided by the balloon after the balloon physical weight and the weight of the tether in no wind is supported.

Nominal tail sizes for each balloon are depicted in Figures 1, 2, and 3. For the British BJ Balloon, tail size is increased and decreased about the nominal by changing the linear dimensions of each of the three tails and maintaining similar proportions. The intersation of the trailing edge of the tails and the hull is maintained at the same point for all tail sizes. For the Vee-Balloon the horizontal tail geometry is maintained. The vertical tails are increased in size in two steps for tails below the hulls. Also investigated are the conditions where vertical tails are a cated symmetrically above and below the hulls. In addition to establishing aerodynamic characteristics for these tail configurations as noted in Reference 2, the increase in physical mass and additional mass was computed and used in the determination of stability characteristics.

Ascent and descent studies for a specific balloon also incorporate the change in mass characteristics due to air density changes with altitude.

^{*}Trademark, Goodyear Aerospace Corporation, Akron, Ohio 44315

Figure 1. BJ Configuration

Figure 2. Vee-Balloon Configuration

Table I. Summary of Balloon/Cable Systems

VI V61	 -				Survive	Survive	Survive	Static
(1b) (1b) O _{Tria}	T (Ib)	(1b) (1b) (1b) (1b)	D L T T (1b)	(1b) (1b) (1b) (1b)	α τ τ π D L	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1,790 1,906 7.0	1,906	1,790 1,906	906*1 1,790 1,906	906'1 06'1 959 1'60'1	8.7 1,391 656 1,790 1,906	399 8.7 1,391 656 1,790 1,906	906 1 962 1 959 1531 959 1,906	906 1 062 1 959 8.7 1,391 656 1,790 1,906
7,916 8,278 6.9	8,278	7,916 8,278	2,422 7,916 8,278	6,427 2,422 7,916 8,278	5.7 6,427 2,422 7,916 8,278	1,486 5.7 6,427 2,422 7,916 8,278	1,000 1,488 5.7 6,427 2,422 7,916 8,278	1,541 1,000 1,488 5.7 6,427 2,422 7,916 8,278
13,050 13,533 6.9	13,533	11,050 13,533	3,583 13,050 13,533	9,509 3,583 13,050 13,533	5.7 9,509 3,583 13,050 13,533	3,541 5.7 9,509 3,583 13,050 13,533	7,253 2,712 1,000 3,541 5.7 9,509 3,583 13,050 13,533	7,253 2,712 1,000 3,541 5.7 9,509 3,583 13,050 13,533
3,507 3,713 8.2	3,713	2,706 1,219 3,507 3,713	1,219 3,507 3,713	2,706 1,219 3,507 3,713	10.2 2,706 1,219 3,507 3,713	801 10.2 2,706 1,219 3,507 3,713	1,000 801 10.2 2,706 1,219 3,507 3,713	1,031 1,000 801 10.2 2,706 1,219 3,507 3,713
4,405 4,626 8.2	4,626	3,140 1,414 4,405 4,626	1,414 4,405 4,626	3,140 1,414 4,405 4,626	10.2 3,140 1,414 4,405 4,626	1,264 10.2 3,140 1,414 4,405 4,626	1,000 1,264 10.2 3,140 1,414 4,405 4,626	1,276 1,000 1,264 10.2 3,140 1,414 4,405 4,626
6,191 6,336 8.7	6,336	4,963 1,346 6,191 6,336	1,346 6,191 6,336	4,963 1,346 6,191 6,336	10.2 4,963 1,346 6,191 6,336	1,228 10.2 4,963 1,346 6,191 6,336	1,000 1,228 10.2 4,963 1,346 6,191 6,336	1,548 1,000 1,228 10.2 4,963 1,346 6,191 6,336
9,732 9,913 8.2	9,913	9,732 9,913	1,887 9,732 9,913	6,965 1,887 9,732 9,913	10.2 6,965 1,887 9,732 9,913	2,767 10.2 6,965 1,887 9,732 9,913	1,000 2,767 10.2 6,965 1,887 9,732 9,913	2,511 1,000 2,767 10.2 6,965 1,887 9,732 9,913
22,924 23,907 7.0	23,907	22,924 23,907	6,785 22,924 23,907	15,420 6,785 22,924 23,907	8.7 15,420 6,785 22,924 23,907	7,504 8.7 15,420 6,785 22,924 23,907	600 7,504 8.7 15,420 6,785 22,924 23,907	8,933 600 7,504 8.7 15,420 6,785 22,924 23,907

Total balloon and suspension weight (no gas, payload or tether) W B

 $L_{\rm S_1}$ Net static lift (Gross static lift - $M_{\rm B_1}$ - P)

* See Table II for detail cable description ** Trim angle of attack $lpha_{ extsf{TRIM}}$ is as defined by Table VI of Reference l

5

Table II. Summary of Cable Solutions

Balloor Type	Altitude	Hull Volume	Tether Type	B.S.	0.D.	Wt/Ft	x	•	τ	Length	Total Tather
	(ft)	(ft ³)		(15)	(ft)	(1b/ft)	(ft)	(deg)	(1b)	(ft)	Weight (1b)
IJ	5,000						0	161.6	1,115	٥	
h = 5,000 ft P = 1,500 1b	S.L.	46,000	NOLARO	3,813	0.02679	0.03211	2,672	144.2	956	,692	183
	10,000						o	165.7	6,115	0	
Vee-Balloon	5,000	80,000	NOLARO	16,600	0.04875	0.12400	1,775	154.7	5,552	5,314	606
h = 10,000 ft	S.L.		i	<u> </u>			4,594	146.6	4,991	11,060	1,260
P = ',000 lb	10,000						0	157.5	10,350	0	
	5,000	144,000	Argal	20,000	0.03642	0.30400	1,389	160.8	8,836	5,193	1,080
	S.L.	l		l	l		3,452	153.9	7,300	10,605	3,230
	10,000	[0	163.4	2,287	0	
	2,000	60,000	NOLARO	7,540	0.03420	0.05600	2,456	143.6	2,036	5,600	3'4
IJ	S.L.			<u> </u>			7,377	127.7	1,761	12,639	708
h = 10,060 ft	10,000						0	165.3	2,975	0	
P = 1,000 16	5,000	75,000	AMGAL	6,750	0.02083	0.09970	1,843	153.2	2,482	5,340	532
	S.L.		1	<u> </u>		<u> </u>	5,072	140.3	1,989	11,305	1,128
	10,000]			0	168.5	3,812	0	
#1649 w/Thin Fina	5,000	80,000	NOLARO	12,700	0.04330	0.0900	1,702	153.0	3,374	5,298	476
h = 10.000 ft	S.L.		1	1	Ì.	l .	4,950	141.1	2,930	11,274	1,015
h = 10,000 ft P = 1,000 lb	10,000			l			0	179.4	6,375	0	
	5,000	133,000	AMGAL	14,800	0.03125	0.22000	1,193	161.8	5,281	5,145	1,132
	S.L.	Ì			1	ì	3,2"	152.7	4,187	10,559	2,325
	20,000		1	1		T	0	166.7	15,494	0	
ស	15,000	1			Į	t	1,646	155.9	13,897	5,272	1,710
h = 20,000 ft	10,000	500,000	NOLARO	47,814	0.08281	0,32427	4,495 9,106	143.7 130.2	12,171	11,039 17,856	3,580 5,790
P = 600 1b	S.L.	1	}	1	ł		17,231	112.0	9,107	27,436	8,900

Figure 3. GAC No. 1649 Balloon Configuration

SECTION III

TECHNIQUES FOR STUDY OF DYNAMIC BEHAVIOR OF TETHERED BALLOONS

1. MATHEMATICAL MODELS

A system of differential equations was developed (Reference 2 and Appendix A of this report) that describes the motion of the tethered balloon in three dimensions. The degrees of freedom associated with the motion are yaw, pitch and roll of the balloon about its dynamic mass center, and pitch and yaw (lateral rotation) of the tether. There are a total of $3 \pm 2N$ degrees of freedom where N is the number of links used to simulate the tether.

First consider the longitudinal degrees of freedom. The dependent variables shown in Figure 4 are θ (pitch of the balloon) and ζ_r (pitch of the "r"th link), where r is a particular link. All angles are shown positive.

Figure 4. Balloon Tether Model in Longitudinal Flane

In Figure 4 VBR is the relative velocity of the balloon's center of gravity with respect to the air and is the resultant of the steady wind, the wind gust, the balloon translational motion and the velocity due to rotation of the balloon about its center of mass. The angle of attack (α) is the angle that the relative wind forms with the longitudinal axis of the balloon.

The lateral degrees of freedom are displayed in Figure 5 which gives the front and top views of the tethered balloon. The lateral degrees of freedom are: $\Psi(\text{yaw of balloon})$, \emptyset (roll of balloon), and σ_r (yaw of "r"th link). All angles are shown positive.

Figure 5. Balloon Tether Model in Lateral Plane

Pertinent geometry of the tethered balloon and applied forces are identified in Figure 6.

In order to separate the equations of motion into a longitudinal response and a lateral response, it was further assumed that the system was near equilibrium. This resulted in a set of equations describing the longitudinal motion which is coupled only in the pitching variables of the balloon and the pitching variables of the tether. However, the second set of equations for the lateral motion does not completely uncouple from the

MAR - Aerodynamic pitching moment acting on balloon

CA - Aerodynamic reference center (at center of hull volume)

CB - Center of buoyancy of total displaced volume

Cm - Apparent mass center and dynamic center in pitch (and yaw)

CG - Center of gr. vity of total weight of balloon

Figure 6. Balloon Geometry and Applied Forces

longitudinal degrees of freedom because the equilibrium angles in the longitudinal plane are not zero. Therefore, when solving the lateral degrees of freedom, it must be assumed that the longitudinal variables remain constant and equal to their equilibrium values. In both the longitudinal and lateral cases, the tether is simulated by three rigid links. The number of uncoupled dynamic equations is four for the longitudinal response and five for the lateral response.

2. GENERAL STABILITY THEORY

The equilibrium configuration of a tethered ballon can be defined as that position which demands that the summation of all applied moments equals zero. The equilibrium is said to be stable if, for any small disturbance,

the system ultimately returns to its equilibrium conditions. Two types of stability are of interest. In the first (statically stable), a small displacement of the system will create forces which tend to return the system to its equilibrium position. The second (dynamically stable) produces a motion which eventually restores equilibrium. If the motion is periodic, it is characterized by a damped frequency and a damping ratio. Similar definitions apply for statically and dynamically unstable motions. A third possibility is for the system to be neutrally stable during which the motion neither diverges nor converges.

It was necessary during this study to develop techniques to investigate and understand the stability of the system. To this end, characteristic equations are derived. The general approach is as follows:

- (1) Derive the nonlinear equations of motion in three dimensions for each degree-of-freedom
- (2) Assume the motion is near equilibrium so that the equations can be linearized and separated into a longitudinal motion and a lateral motion
- (3) Laplace transform the linear equations from the time domain to the "S" domain assuming that the initial conditions are zero. This establishes a matrix equation of the following form:

where $\{X(S)\}$ is the eigenvector and [A] is a square matrix whose elements are quadratics in S containing the physical properties of the system.

(4) Expand the determinant of [A] such that the characteristics polynominal is obtained.

Each root of the characteristic equation represents a term in the general solution of the form, A_i e S_i t, where S_i is the "i"th root and A_i is an amplitude, dependent on the initial conditions of the system. Both real and complex roots may appear where the complex roots occur in conjugate pairs. In general for "n" degrees of freedom, the characteristic equation will yield "2n" roots. Each pair of complex conjugate roots represents one oscillatory motion, while each real root represents one aperiodic motion.

First consider an oscillatory system. This motion is characterized by two roots of the form $S_i = X \pm i Y$, where X and Y are real numbers and $i = \sqrt{-1}$. Several important quantities can be found from the root. The natural frequency associated with this motion is $\omega_n = \sqrt{X^2 + Y^2}$. The damping ratio is $\zeta = \frac{-X}{\omega_n}$. The damping frequency is $\omega_d = \omega_n \sqrt{1 - \zeta^2} = Y$. It is also of interest to know the time to half amplitude for a stable root or the time to double amplitude for an unstable root. This quantity can easily be found by considering one oscillatory motion. The general solution for free vibration is

$$Z = Ce^{-\zeta \omega_n t} \sin(\omega_d t + \emptyset)$$
 (2)

where

Ø is the phase angle dependent upon initial conditions

C is a constant dependent upon initial conditions

The second possibility is an aperiodic motion given by the expression

$$Z = Ce^{Xt}$$
 (3)

where

X is the real part of one root and the imaginary part (1) is zero

If X is negative, Z approaches zero as time increases indefinitely and the motion is said to be overdamped. Like the oscillatory motion, roots which give overdamped motions will also occur in pairs. However, unlike the complex conjugate roots which result in one oscillatory motion, each real coot is a dinstinct motion. Therefore, it is possible for an "n" degree-of-freedom system to have "2n" distinct motions if the system is so heavily damped that all the roots to the characteristic equation are real.

There is a third possible motion which is a borderline case. If two roots are real and equal, the system is said to be critically damped. The motion will be aperiodic and both roots will give the same motion.

The general solution to the motion of the system is a linear combination of all the motions defined by the roots to the characteristic equation. Associated with each root is a mode shape which gives the relative amplitudes of each degree of freedom when the system is responding to one particular root. It is of interest to establish these mode shapes so that each stability curve can be associated with a definite motion of the whole system. For example, one mode shape may show that the pitching motion of the balloon is very large compared to the motion of the tether

3. STABILITY ANALYSIS

Derivations of the equations of motion of the tethered balloon system and development of the characteristic equations for a tethered balloon system approximated with a three-link tether are given in Reference 2.

The four linearized longitudinal equations are Laplace transformed, and an eighth order characteristic equation generated which specifies stability characteristics of the system. In like manner, the five linearized lateral equations can be reduced to a tenth order equation which gives stability information in the lateral degrees-of-freedom. The roots of these characteristic equations identify the natural frequencies, damped frequencies and damping ratios.

Results of characteristic equations analysis can be displayed in the form of plots in a complex plane typically as shown in Figure 10 of this report. In these plots, the abscissa is the real part of the roots to the characteristic equation, the ordinate is the imaginary part. A negative real part means that mode of oscillation is converging or stable; a positive real part is a diverging mode. Only the first and second quadrants are displayed because the roots are complex conjugates which are symmetric to the real axes, except in the case of overdamped roots which lie on the real axes. In general, the following information is easily available for each root directly from the plots. The natural frequency is measured in rad/sec as the distance from the origin to the root; the damped frequency (rad/sec) is the value of the imaginary part of the root; the damping ratio is equal to the absolute value of the real part of the root divided by the natural frequency.

4. DYNAMIC RESPONSE ANALYSIS

The Same Control of the

The calculation of the balloon system response to specific disturbances is the subject of the dynamic response analysis. The most general motion the system can have is a linear superposition of the normal modes.

Each aperiodic or nonoscillatory normal mode has one arbitrary constant (the initial value of any ne of the variables) associated with it; and each periodic or oscillatory normal mode has two arbitrary constants (the amplitude and phase angle of any one of the variables) associated with it. The total number of arbitrary constants is then equal to the number of aperiodic modes plus twice the number of periodic modes; i.e. to the degree of the characteristic equation, or the order of the system. A specific disturbance will excite the normal modes in varying degrees and establish the values of the arbitrary constants.

The dynamic response of tethered balloon systems to various wind disturbances is obtained by integrating numerically the longitudinal and lateral equations of motion to produce a time history of the dynamics. The start conditions, or equil brium conditions for the dynamic response computer programs are obtained from the linearized stability computer programs (Reference 2). This approach to analysis has the advantage that wind gusts can be produced and the actual motion of the system can be observed. The major disadvantage is that a greater amount of computer time is required when compared to evaluation of stability by investigating the roots of the characteristic equations.

The equations of motion for the longitudinal dynamics of a tethered balloon system were initially derived in two forms (see Appendix A);
1) inertia terms which contain products of angular velocities are neglected,
2) inertia terms which contain products of angular velocities are included.
The concept of neglecting products of angular velocities is associated with the assumption that angular velocities are small; and therefore, products of angular velocities are negligible.

Numerical integrations were made with the computer to determine the effect of neglecting the inertia terms containing products of angular velocities. Although the effect is obviously present (Figures 7 and 8), the overall differences between the results of the two sets of equations is small.

LONGITUDINAL DYNAMICS OF TETHERED BALLOON BJ NOMINAL

Figure 7

LONGITUDINAL DYNAMICS OF TETHERED BALLOON

BJ NOMINAL

Figure 8

Figure 7 shows the time history of the four generalized coordinates ζ_1 , ζ_2 , ζ_3 , and θ . A horizontal gust of 20 feet per second with a duration of 20 seconds was applied. The dotted lines represent the angular displacement when the products of angular velocities are included in the inertia terms. Figure 8 presents the range and altitude of the balloon as a function of time and also the variation in tether tension at the winch and at the bridle confluence point. Since this gust velocity is considered to be high, it is concluded that the difference between the solid lines and the dotted lines is maximum.

It was decided that dynamic simulation studies would be conducted with a model which neglects products of angular velocities for three reasons. First, the equations containing products of angular velocities are shown to give only slightly different results. Second, it is desirable to keep the dynamic equations compatible to the equations used in the stability study (the stability study used linearized equations). Third, it is desirable to keep the longitudinal equations compatible to the literal equations (to derive the lateral equations of motion containing products of angular velocities in the inertia terms would be a very difficult task because of the number of terms involved.)

SECTION IV

DYNAMIC RESPONSE OF TETHERED BALLGONS

1. DESIGN CONDITIONS INVESTIGATED

The parametric study conditions found in Appendix B, Tables B-I and B-II and Reference 2 are the source of information for the results and recommendations of this report. Each parametric dynamic response study condition has a computer drawn plot of various balloon parameters versus time. These plots are found in Appendix B.

The parameters chosen for investigation during this study are placed in three major categories:

- (1) "Balloon on Station" performance parameters
- (2) "Structural Design" performance parameters
- (3) "On Board Instrumentation" Design parameters

The "Balloon on Station" performance parameters are defined as balloon displacements from equilibrium and, specifically, are changes in balloon range, altitude, pitch angle, roll angle, yaw angle, and lateral displacement induced by a parameter variation, such as a change in trim angle.

The "Structural Design" performance parameters of interest are the cable tension at winch and bridle, and the balloon translational and rotational accelerations.

The "On Board Instrumentation" design parameters are defined as the balloon angular displacements and rates.

The effects of gusts, trim angle, altitude, tail size, and other parameters on balloon performance parameters are reviewed in detail later in this section of the report. Table III lists the cases compared and the reason for comparison for the longitudinal and lateral cases.

The operational winds used for the investigation, as a function of altitude, are listed in the Introduction to this report. Gusts used for dynamic response are added to the operational winds and are applied to the balloon. The gusts used in analysis are discussed next.

Consider the nominal altitude condition of 10,0?0 feet where the operational design wind was 67.5 feet per second. Longitudinal gusts were applied where the horizontal wind increased by 30 percent, for a discrete time, to a value of $1.3 \times 67.5 = 87.6$ fps. Gusts of 2, 10, and 20 seconds and infinite time durations were investigated with various rise times. A case was also investigated where the 30 percent gust increment was applied vertically upward.

Table III

A. Comparison of Longitudinal Dynamic Cases

Cases Compa		on 	Reason for Comparison
1,2,3	,4,5 BJ Non	ninal	Gusts and Wind Effects
3,21,	18 A11		Comparison of Balloon Types
3,6,7	BJ Non	ninal	Trim Angle Effects *
18,19	,20 VEE Ba	1100n	Trim Angle Effects *
21,22	,23 GAC Ba	1 ¹ Jon	Trim Angle Effects *
11,3,	12 BJ Non	ninal	Tail Size Effect
3,14,	15 BJ Non	ninal	Winching Effects
13,3	BJ Non	inal	Reduced Wind (40%) Effect
10,3	BJ Nor	ninal	Amgal vs NOLARO
16,3	BJ Nom	inal	Effect of Payload on Underside of Balloon
17,3	BJ Nom	inal	Winch at 5000 lt, and 0.0 Ft.
8,3,9	. ВЈ		Operational Altitude Effects
k Trim	angle chance	d has seemed as	

^{*} Trim angle changed by varying fore and aft location of bridle confluence point

B. Comparison of Lateral Dynamic Cases

Cases Compared	Balloon Type	Reason for Comparison				
24,25,26	BJ Nominal	Effects of Gust Ramp Time				
27,26	BJ Nominal	Effects of 50% Increase in Gust Velocity				
40,37,25	BJ, VEE, GAC	Comparison of Balloon Types				
32,25,33	ВЈ	Tail Size Effect				
37,38,39	VEE Balloon	Tail Size Effect				
35,36	BJ Nominal	Winch Effects				
34,25	BJ Nominal	Reduced Wind Effect $(100\% \rightarrow 40\%)$				
31,25	BJ Nominal	Effects of Amgal vs NOLARO				
29,25,30	ВЈ	Operational Altitude Effects				

The lateral gusts applied to the tethered balloon systems to investigate dynamic response may be generally interpreted in two ways as shown in Figure 9 which depicts the wind in a horizontal plane.

Figure 9 . Lateral Wind Gusts

In Condition A the wind gust from the side builds up with time. This is approximately equivalent to the Condition B where the wind remains constant in magnitude and changes heading direction with time.

2. GENERAL DISCUSSION OF DYNAMIC RESPONSE OF TETHERED BALLOON SYSTEMS

The non-linear differential equations defining the motion of a tethered balloon system and the linearized equations used in studying the stability characteristics of the balloon system are given in Reference 2 together with the results of the stability analysis of various balloon systems. Appendix A of this report expands the equations of motion of Reference 2 to include wind gusts. The response of the non-linear balloon system when subjected to wind gusts has been programmed for computer solution using numerical integration methods. Various balloon systems, subjected to different types of gusts, have been studied using this computer program and the results are found in Appendix B.

The response plots shown in Appendix B reveal that the balloon systems are highly damped. This agrees with the stability analyses of the balloon systems given in Reference 2. In fact, the motion is so highly damped that the lower frequency response modes are, in general, damped out within two cycles or less of motion. Thus, the high aerodynamic damping involved in the balloon systems, makes it very difficult to evaluate the response plots with regard to phase relationships between coordinates, damping characteristics, and the frequencies involved in the motion. It becomes evident after looking at the

response plots that only the amplitude and direction of the response can be obtained. A mathematical tool will be required to obtain information regarding phase relationships, natural frequencies, and damping characteristics of the modal motions involved. Such a tool would be very valuable for evaluating flight data from tethered balloons.

What then, is this mathematical tool? The response of a highly damped multidegree of freedom system to a known disturbance can be represented mathematically as the sum of the system's modal responses. Assuming the system follows the response of a viscously damped system, a modal response definition is given by the following equation.

$$z_i = \left(c_i e^{-\zeta_i \omega_{n_i} t}\right) \sin \left(\omega_{d_i} t + \emptyset_i\right)$$

The total response $\, Z_{_{\hbox{\scriptsize T}}} \,$ of a particular coordinate is then given by

$$z_{T} = \sum_{i=1}^{i=N} \left(c_{i} e^{-\zeta_{i} \omega_{n_{i}} t} \right) \sin \left(\omega_{d_{i}} t + \emptyset_{i} \right)$$
 (1)

N represents the number of frequencies involved in the response

 ζ represents the damping ratio

 ω_{n} represents the natural frequency

 $\boldsymbol{\omega}_{d}$ represents the damped frequency

 \emptyset , represents the phase angle

C represents an amplitude constant

Each modal response Z_i has 4 unknowns, since ω_d is related to ω_n by $\omega_d = \omega_n \sqrt{1 - \zeta^2}$.

Thus any response curve which is defined by a sufficient number of points can be mathematically represented by Equation (1) and solved for the unknown constants using numerical curve fitting methods. No curve fitting program is presently available to the project for use with Equation (1): however, there is a curve fitting program available which uses a Fourier Transform and performs a power spectral density (P.S.D.) analysis of the Fourier Transformation. This program is only valid for analyzing systems with no damping. The program still gives a general overall view of the frequencies involved in the motion and it is thought worthwhile to analyze the response of two dynamic cases and to compare the frequencies found with the frequencies obtained from the stability analysis of the same balloon configurations given in Reference 2. The dynamic cases chosen for frequency comparison are lateral dynamic response Case 28 and longitudinal dynamic response Case 4. The cases represent a nominal BJ balloon at 10,000 feet. Lateral response is for a 10 second duration step side gust and longitudinal response is for a 20 second duration step horizontal gust.

a. COMPARISON OF THE NON-LINEAR LATERAL DYNAMICS CASE 28, WITH THE LINEARIZED STABILITY CASE 1

The small displacement motion of a forced non-linear system, in the time era after the forcing function is removed, should result in system motions similar to the sum of the mode shape times participation factor for each mode found in the linearized stability analysis of the system. To verify this, Lateral Dynamics Case 28 and Lateral Stability Case 1 (Reference 2) were chosen for comparison. A complete description of Lateral Dynamics Case 28 is found in Appendix B, and the Lateral Stability Case 1 description is found in Reference 2. For convenience the results of Lateral Stability Case 1 are summarized in Table IV and Figure 10 of this report. In order to analyze the coordinate motions of Case 28, a power spectral density analysis with Fourier Transform was performed on each of the lateral coordinate degrees of freedom; ψ , ϕ , σ_1 , σ_2 , σ_3 . The input coordinate waveforms and PSD plots for each degree of freedom are given in Figures 11 and 12.

The PSD plots reveal that there are two predominate modes involved in the system motion. These are underdamped oscillatory modes 1 and 2 with natural frequencies and damping ratios of f_{n_1} = 0.0051 Hz and ζ_1 = 0.511 for mode 1 and f_{n_2} = 0.136 Hz and ζ_2 = 0.207 for mode 2. Mode one (0.0051 Hz) is the predominate mode with mode 2 (0.136 Hz) of smaller amplitude superimposed on mode 1. The lateral wind gust discurbance in Case 28 is removed after T = 11 seconds, therefore all comparisons should be made after the first peak is reached beyond 11 seconds. It should be noted that mode 2 is predominately a \emptyset or roll mode, and this is evident from the plots of the coordinates, since only the \emptyset coordinate plot has evidence of a 0.136 Hz mode. On the \emptyset plot mode 2 appears damped out of the \emptyset motion by the time T = 37 sec.

Table IV. Summary of Lateral Stability Case 1

Normalized Modes

Mode F Number	Frequency Hz	Damping Ratio	Ψ		φ		$\sigma^{}_{ m l}$		σ,		σ ₃	
			Amp1.	4°	Amp1.	4°	Amp1.	¥°	Amp1.	¥°	Ampl.	μ ⁰
1	0.0051	0.511	1.0	0.0	0.195	301	0.342	83.3	0.429	222	0.483	275
2	0.1363	0.237	1.0	0.0	9.12	252	0.016	17.7	0.051	215	0.102	58.9
3	0.000215	1.0	1.0	0.0	0.0082	0	8.86	180	2.51	180	0.487	180
4	0.0252	1.0	1.0	0.0	0.927	0	1.22	360	2.27	180	0.957	360
5	0.0578	1.0	1.0	0.0	1.58	0	2.02	360	3.59	180	1.54	360
D	0.1295	1.0	1.0	0.0	23.1	180	0.345	180	0.147	360	0.513	360
7	0.1608	1.0	1.0	0.0	60.7	360	7.34	180	6.09	180	12.7	360
8	0.4320	1.0	1.0	0.0	0.988	360	0,00007	180	0.0006	360	0.0051	180

Figure 10. Lateral Stability Characteristics of Nominal BJ Tethered Balloon at 10,000 Feet Altitude

Figure 11. Lateral Case 28, Coordinates Response 21

Figure 12. Lateral Case 28, Power Spectral Density

The aerodynamic damping characteristics of the system appear viscous in nature for the 0.0051 Hz mode.

Table V lists, for Case 28, the time and amplitude of the various coordinates for the first and second peaks after the gust is removed. Included in Table V is the period, amplitude ratio, and frequency as calculated from the coordinate data of Case 28.

The period and amplitude ratio for the coordinates Ψ , \emptyset , and σ_3 show very good agreement with a 0.0051 Hz viscously damped ($\zeta=0.51$) system. The period between peaks of a 0.0051 Hz viscously damped system with $\zeta=0.51$ is given by

$$T = \frac{1}{f \sqrt{1-\zeta^2}} = \frac{1}{0.0051 \sqrt{1-0.51^2}} = 228 \text{ sec.}$$

The amplitude ratio between successive peaks is given by

$$\frac{X_{n+1}}{X_{n}} = \left[\frac{-2\pi\xi}{\sqrt{1-\xi^{2}}}\right] = \left[\frac{-2\pi(0.51)}{\sqrt{1-0.51^{2}}}\right] = 0.025$$

Table V. Peak Amplitudes for Lateral Dynamics Case 28

Coordinate	First Peak After Gust		Second After	Peak Gust	Period T	Frequency	Ampl. Ratio X_{n+1}	
	Time	Ampl.	Time	Amp1.	Sec.	T	$\frac{X_n}{X_n}$	
Ψ	29	-3.905	250	-0.099	221	0.0045	0.0253	
ф	61	-0.404	289	-0.00973	228	0.0044	0.0241	
σ_{l}	26	-0.475	197	0.0943	171	0.0059	0.199	
σ_2	31	1.33	224	0.0630	193	0.0052	0.0474	
σ_3	76	-0.834	304	-0.0207	228	0.0044	0.0248	

b. COMPARISON OF NON LINEAR LONGITUDINAL DYNAMICS, CASE 4, WITH LINEARIZED LONGITUDINAL STABILITY, CASE 1

A description of Longitudinal Dynamics, Case 4, is found in Appendix B and Linearized Longitudinal Stability, Case 1, is defined in Reference 2. A summary of the Longitudinal Stability, Case 1, is given in Table VI and Figure 13 of this report.

A Fourier and PSD analysis is performed on each of the Longitudinal Dynamics, Case 4, coordinate degrees of freedom θ , ξ_1 , ξ_2 , and ξ_3 . The input coordinate waveform and PSD plot for each degree of freedom is given in Figures 14 and 15 respectively.

The need of a mathematical tool for analyzing a highly damped response is very evident in Longitudinal Dynamics, Case 4. The response of every coordinate is damped out, or nearly so, in less than one cycle. The Fourier and PSD non-damped harmonic analyis of this motion is not too meaningful. However, it does indicate that the motion is comprised of frequencies below 0.05 Hz with the most power below 0.01 Hz.

Table VI. Summary of Longitudinal Stability Case 1 (Reference 2)

Mode Frequency Damping ŧ, Number Ratio Ηz Amp1. ۷° Amp1. ۷۰ Ampl. ۷° ۷۰ Amp1. 0.00554 -0.037 1 1.0 2.14 281. 1.27 238. 1.28 194.0 2 0.0728 0.653 1.0 0.131 197. 0.080 353. 0.058 39.7 0.0986 0.51 1.0 0.0 0.0747 3 9.6 0.214 188. 0.145 7.4 0.0156 1.0 1.0 0.888 4 0.0 0.0 0.800 0.363 0.0 169. 1.0 0.1715 1.0 0.0 0.00033 0.0 0.0123 0.0066 180. 0.0

Normalized Modes

C. YAW-ROLL COUPLING IN LATERAL DYNAMIC CASES

Yaw-roll coupling for BJ and GAC single hull balloons subjected to lateral wind is evident when the ψ response plots are reviewed. The Vee balloon appears to have negligible coupling. As an example, observe the motion of coordinate ψ (Reference Appendix B) for Lateral Case 28. One would think that, when a balloon is in equilibrium with a steady head wind and then is subjected to a side gust from the left, the balloon would yaw into the resultant wind. This would be a negative yaw angle, however, Lateral Case 28 shows the balloons first yaw motion is positive or away from the resultant wind for a time of approximately 7 seconds and to ψ = +4° before the balloon starts yawing toward the resultant wind.

Figure 13. Longitudinal Stability Characteristics of Nominal BJ Tethered Balloon at 10,000 Feet Altitude

Figure 14. Lateral Case 4, Coordinates Response

Figure 15. Lateral Case 4, Power Spectral Density

To explain this motion refer to Equation 86 in Appendix A. Neglecting link acceleration terms results in the following equation.

$$F_{\Psi} = \left\{ M_{S} \left[-R_{jm} \epsilon_{33} + R_{km} \epsilon_{23} \right] \left[-R_{km} \right] - I_{YB} S\theta + I_{YZB} C\theta C\emptyset \right\} \tilde{\emptyset}$$

$$+ \left\{ M_{S} \left[-R_{jm} \epsilon_{33} + R_{km} \epsilon_{23} \right]^{2} + \left[M_{L} -R_{km} \epsilon_{13} \right]^{2} \right.$$

$$+ \left[M_{V} R_{jm} \epsilon_{13} \right]^{2} + C^{2} \theta \left[I_{XB} S^{2} \emptyset + I_{ZB} C^{2} \emptyset \right]$$

$$+ S^{2} \theta I_{YB} - S^{2} \theta C\emptyset I_{YZB} \right\} \tilde{\psi}$$

Substituting a and b for the coefficients of \emptyset and ψ results in the following equation.

$$F_{\psi} = a \emptyset + b \psi$$

The equation is solved for

$$\frac{\mathbf{F}_{\psi} - a \emptyset}{\mathbf{b}}$$

where $\mathbf{F}_{oldsymbol{\psi}}$ is the total externally applied balloon y oment.

Case 28 parameters have the following values at T = 5.5 seconds (from digital printout of Case 28).

$$F_{\psi} = -40039 \text{ ft-1b}$$
 $\ddot{\phi} = 3.060 \text{ °/sec}^2$ $\ddot{\psi} = 1.207 \text{ °/sec}^2$
 $I_{XB} = 116,000 \text{ Slug Ft}^2$ $\dot{\phi} = 2.373 \text{ °/sec}$ $\dot{\psi} = 1.989 \text{ °/sec}$
 $I_{YB} = 26,000 \text{ Slug Ft}^2$ $\phi = 0.531 \text{ °}$ $\psi = 0.426 \text{ °}$
 $I_{ZB} = 119,000 \text{ Slug Ft}^2$
 $I_{YZB} = 12,500 \text{ Slug Ft}^2$

Inspection of the $\dot{\psi}$ coefficient, b, reveals it to be positive. Since $F\psi = -40039$ ft-1b and will tend to turn the balloon into the resultant wind, the only term left to cause $\dot{\psi}$ to be positive is the roll coupling term $a\dot{\phi}$. In conclusion the initial ψ motion away from the resultant wind is caused by roll (4) inertia coupling.

3. EFFECTS OF DESIGN PARAMETERS ON TETHERED BALLOON DESIGN

a. Balloon on Station Performance Parameters

- (1) <u>General</u>. As listed in Part 1 of this section a number of tethered balloon design parameters and flight conditions were varied to establish their influence on a tethered balloon design. This subsection summarizes some of the major effects on tethered balloon dynamic behavior as established from the dynamic response calculations presented in Appendix B and an evaluation of these data.
- (2) Wind Gust Effects. "he response data in Table VII shows the effect of increasing the duration of a horizontal gust on the longitudinal motions of the nominal BJ balloon design for 10,000 foot altitude. It is apparent from an examination of these data that the longer duration of the gust the greater the angle of attack of the balloon becomes. A new equilibrium condition is reached when the gust is left on indefinitely. As a consequence of the increased angle of attack and wind velocity the aerodynamic lift increases and a somewhat more favorable aerodynamic lift to drag ratio is obtained. This serves to increase the altitude of the balloon and reduce the downwind displacement of the balloon. A substantial increase in tether tension is also evident.

A nominal BJ balloon operating at 10,000 feet is subjected to a 20.2 ft/sec, 20 second duration, horizontal gust in Longitudinal Case 4 and to a 20.2 ft/sec, 20 second duration, vertical gust in Longitudinal Case 4A. Table VII also summarizes the results of these two cases.

Table VII. Wind Gust Duration Effects on BJ Nominal Balloon in Longitudinal Plane

Altitude = 10,000 Ft. Payload Weight = 1,000 Lb. Trim Angle = 8.5°

Gust Velocity = 20.2 Ft/Sec Gust Duration = t_C

		Balloon D From Equi	isplacements librium		Cable Tens Equilib		Maximum Cable Tensions		
Case No.	E _G	∆ Range Down/Up Ft.;	A Altitude Ft.	Δ Pitch Deg.	Winch Lb.	Bridle Lb.	Winch Lb.	Bridle Lb.	
1		-65/800	690	5.7	1650	2210	3630	4200	
2	2	-12/16	15	1.9	1650	2210	2250	2830	
3	10	-52/73	82	2.9	1650	2210	2650	3210	
4	20	-68/146	121	4.7	1650	2210	3180	3740	
4A	20	0/451	345	1.25	1650	2210	3582	3947	

Specific comments for this comparison are:

- (1) The vertical gust displaced the balloon up range approximately three times the horizontal gust up range displacement.
- (2) The vertical gust caused the balloon to rise three times higher than the horizontal gust.
- (3) The pitch angle change from a vertical gust is only 1/4 the pitch angle change due to a horizontal gust of equal magnitude.
- (4) Maximum cable tension increased by 400 pounds due to the vertical gust. It is noted that equilibrium cable tension is slightly different from that listed in Table I. This is a result of different balloon trim angles and number of cable links used in the two analyses.

The effects of gust ramp rise time on the response of a nominal BJ balloon is given in Table VIII. These cases represent BJ nominal balloons at 10,000 feet that are subjected to a steady lateral gust with ramp rise times of 1, 3 and 5 seconds.

Table VIII reveals that gust linear ramp rise times of 1, 3, and 5 seconds have little effect on balloon response, except for balloon roll where the 1 second rise time is 1.8 times larger than the 5 second rise time response.

Table VIII. Wind Gust Ramp Rise Time Effects on BJ Nominal Balloon in Lateral Plane

Ramp Gust		Gust		Displacement tial Equilit		Cable T At Equil		Maximum Cable Tension	
Case No.	Rise Time	Velocity Ft/Sec	Yaw +/- Deg.	Roll +/- Deg.	Lat. Displ _e Ft.	At Winch Lb.	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
24	l sec	12	4 /-13.6	3.9/-0.4	460	1650	2210	1686	2258
25	3 -ec	12	4.3/-13.8	3.1/-0.35	460	1650	2210	1680	2250
26	5 ser	12	4 /-13.6	2.2/-0.4	460	1650	2210	1675	2244

The effects of a 50 percent increase in lateral gust velocity on the response of a nominal BJ balloon is given in Table IX. The balloon is operating at 10,000 feet in a steady head wind when subjected to steady lateral gusts of 12 ft/sec and 18 ft/sec. Each gust has a ramp rise time of five seconds. Table IX reveals that a 50 percent increase in steady lateral gust velocity results in approximately a 50 percent increase in balloon lateral displacement, roll, and yaw response.

Table IX. Effect of Increase in Gust Velocity on BJ Nominal Balloon in Lateral Plan

	•	n Displacemen tial Equilib		Cable T At Equil		Maximum Cable Tension	
Case No.	Yaw +/- Deg.	Roll +/- Deg.	Lat. Displ.	At Winch Lb.	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
26	4.0/-13.6	2.2/-0.4	₊60	1650	2210	1675	2244
27	6.0/-20.0	3.2/-0.6	710	1650	2210	1708	2285

- (3) Comparison of Balloon Types. The effects of trim angle on the longitudinal response of BJ nominal, VEE, and GAC single hull balloons is given in Table X. The balloons, in equilibrium with a steady head wind at 10,000 feet, are subjected to a horizontal longitudinal gust of 20.2 feet/second for ten seconds. Table X reveals that:
 - (1) the down range displacements from equilibrium decreases with an increase in trim angle of attack
 - (2) the GAC single hull balloon has the smallest displacement from equilibrium of the three balloons
 - (3) the BJ nomi 1 balloon has the smallest cable tension of the three balloon tyres
 - (4) cable tension increases with an increase in trim angle
 - (5) changes in trim angle have a negligible effect on pitch response to gusts.

The effects of lateral steady wind gusts on the lateral response of BJ nominal, VEE, and GAC single hull balloons are given in Table XI. The balloons are in equilibrium at 10,000 feet with a steady head wind and then subjected to a steady lateral horizontal gust of 12 ft/sec with a three second ramp rise time. Table XI reveals that:

- (1) the response of the three balloons is approximately the same in both yaw and roll response
- (2) the VEE balloon has 1/3 the lateral displacement of the other balloons
- (3) the VEE balloon has 2.5 times more tether load than the BJ balloon as a result of the larger aerodynamic lift of this balloon.

31

Table X. Effect of Trim Angle of Attack on Longitudinal Response of Three Balloon Types

			Balloon Displacements from Equilibrium			Cable Te At Equili		Meximum Cable Tensions	
Type Balloon	Case No.	Trim Angle	A Range Down/Up Ft.	Alt. Ft.	A Pitch Degree	At Winch Lb.,	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
BJ Nom.	6 3 7	6.5 8.5 10.5	-65/65 -52/73 -50/75	65 82 55	2.8 2.9 2.9	1350 1650 1950	1880 2210 2525	2070 2650 3220	2610 3210 3800
VEE	19 18 20	5.0 7.0 9.1	-35/135 -22/119 -19/105	80 60 40	4.2 3.7 3.3	3450 4620 6000	4500 5802 7200	7500 10100 12900	8600 11300 14000
GAC Single Hull	22 21 23	6.0 7.9 10.0	-60/30 -48/38 -40/42	20 20 25	0.70 0.75 0.40	2200 2696 3230	3070 3596 4150	3150 3940 4850	4000 4830 5770

			Displacemen Cuilibrium	ts	1	Censions Librium	Maximum Cable Tensions	
Type Balloon	Case No.	Yaw +/- Deg.	Roll +/- Deg.,	Lat. Displ. Ft.	At Winch Lb.	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
BJ VEE GAC	25 37 40	4.3/-13.8 0.5/-15.5 5.5/-14.5	3.1/-0.35 3.1/-0.4 2.7/-0.5	460 178 510	1650 4620 2696	2210 5802 3596	1680 4683 2734	2250 5822 3645

- (4) Effect of Tail Size. The effect of tail size on the response of nominal BJ balloons subjected to longitudinal gusts is given in Table XII. The effects of tail size on the response of BJ nominal and VEE balloons subjected to lateral gusts are given in Table XIII. The longitudinal cases of Table XII are in equilibrium with a steady headwind and then subjected to 20.2 ft/sec step gust of 10-second duration. The tail sizes investigated were 81%, 100% and 144% of nominal tail area. Table XII reveals that:
 - (1) both up and down range displacements decrease with increasing tail size
 - (2) pitch angle response decreases with increasing tail size
 - (3) the maximum tether load at bridle and winch decrease with increasing tail size.

The lateral cases of Table XIII are in equilibrium with a steady head wind and then subjected to a lateral steady gust of 12 ft/sec with a ramp rise time of three seconds. Table XIII reveals that:

- (1) the BJ balloon has larger lateral displacement response and less roll response with increasing tail size
- (2) the VEE balloon has smaller response in yaw, roll, and lateral displacement with increasing tail size
- (3) tether loads for both types of balloons increase with an increase in tail size.
- (5) Effects on Balloon Behavior of Intermediate Altitudes. The effects of intermediate altitude operation on a nominal BJ balloon designed for 10,000 feet are given in Table XIV. The altitudes investigated are 1,000, 4,000 and 10,000 feet. The balloon is in equilibrium with a steady head wind and then is subjected to longitudinal gusts of 10-second duration with varying velocities of 20.2 ft/sec, 13.6 ft/sec, and 7.1 ft/sec for longitudinal dynamics cases 3, 14, and 15, respectively. The wind gust velocities are reduced proportional to the steady wind velocity reductions with altitude. Table XIV reveals the longitudinal responses all secrease with a decrease in altitude andthe maximum tether load at bridle is proportional to the gust velocity.

The effects of intermediate altitude operation on the lateral response of a BJ balloon designed for 10,000 feet are given in Table XV. The balloon is in equilibrium with a steady head wind and then is subjected to lateral steady gusts of 12 ft/sec, 8 ft/sec, and 1 ft/sec corresponding to altitudes of 10,000, 4,000, and 1,000 feet. Table XV reveals that:

- (1) the lateral responses of the nominal BJ balloon subjected to lateral steady gusts increase with decreasing altitude
- (2) a review of the computer plots of Case 36 (1000 feet) in Appendix B indicates the response is unstable.

A detailed discussion of Lateral Case 36 follows.

Table XII. Longitudinal Response of BJ Balloon With Tail
Size Variation

			Balloon Displacements From Equilibrium			Cable To At Equi		Haximum Cable Tensions	
Trim Angle Deg.	Tail Size	Case No.	Range Down/Up Ft.	Alt. Ft.	Pitch Deg.	At Winch Lb.	At Bridle Lh.	At Winch Lb.	At Bridle Lb.
11.0	81%	11	-61/88	70	4.6	1730	1880	3000	3550
8.5	100%	3	-52/73	82	2.9	1650	2210	2650	3210
7.4	1447	12	-50/55	40	1.3	1750	2320	2600	3170

Table XIII. Lateral Response of BJ and VEE Balloons With Tail Size Variation

			7-1-	· ·				n Displacen Equilibrium		Cable Te at Equil			um Cable nsions
Type Balloon	Tail Size	Trim Angle	Case No.	Yaw +/-	Roll +/-	Lat. Displ.	At Winch	At Bridle	At Winch	At Bridle			
			ļ	Deg.	Deg.	Ft.	Lb.	Lb.	Lb.	Lb.			
	81%	10.98*	32	3.4/-13.5	11/-1	420	1700	2283	1818	2400			
BJ	100%	8.5*	25	4.3/-13.8	3.1/-0.35	460	1650	2210	1680	2250			
	144%	7.37°	33	6.1/-13.3	2.3/-0.6	480	2383	2901	2435	2972			
	100%	6.96°	37	0.5/-15	3.1/-0.4	177	4650	4805	4683	4855			
VEE	200%	7.23°	38	0 /-11	1.9/-0.2	78	4763	5904	4771	5909			
	300%	7.5°	39	0 /-11	0.7/-0.1	72	4874	6017	4883	6021			

Table XIV. Effect of Intermediate Altitudes on Longitudinal Response of the BJ Balloon

			Balloon Displacements from Equilibrium			(ensions librium	Maximum Cable Tension	
Case No.	Altitude Feet	Gust Velocity Ft/Sec	Range Down/Up Ft.	Alt. Ft.	Pitch Deg.	At Winch Lb.	At Bridle Lb.	At Winch Lb.,	At Bridle Lb.
3	10,000	20.2	-52/73	82	2.9	1650	2210	2650	3210
14	4,000	13.6	-30/0	- 10	0.6	1420	1650	2040	2260
15	1,000	7.1	-25/10	- 3	0.45	980	1020	1110	1160

Table XV. Effect of Intermediate Altitudes on Lateral Response of the BJ Balloon

			Balloon Displacements from Enuilibrium			ſ	Censions Librium	Maximum Cable Tensions	
Case No.	Gust Velocity Ft/Sec	Alt.	Yaw ≻/- Deg.,	Roll +/- Deg.	Lat. Displ. Ft.	At Winch Lb.	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
25 35 36	12.0 8.0 1.0	10,000 4,000 1,000	4.3/-13.8 13.1/-27.0 52./-63.3	3.1/-0.35 2.1/-1.26 10.2/-5.5	490	1650 1422 977	2210 1645 1031	1680 1449 1961	2250 1667 1988

Case 36 represents a nominal BJ Balloon designed for a 10,000-foot operational altitude and operating at 1,000 feet altitude. The balloon is in equilibrium with a steady headwind and then is subjected to a 1 foot/second steady lateral wind.

A lateral stability analysis of this condition is found in Reference 2 Run No. 22. Reference 2 (Figure 42) reveals an unstable mode with a frequency of 0.011 Hz. The shape of this mode is also found in Reference 2 (Figure 11) and has the following relationships between amplitudes and phase angles when the mode is normalized on the balloon yaw angle,

Coordinat	:e	Relative * Amplitude	Phase Angle [*] Degree
Balloon Yaw	ψ	1.000	0.0
Balloon Roll	Φ	0.253	101.3
Link 1 Yaw	σ_1	0.340	82.4
Link 2 Yaw	σ2	0.332	81.9
Link 3 Yaw	σ_3	0.324	80.9

^{*}Data is taken from computer digital printout of Run 22 (this data not included in Reference 2).

The stability analyses also reveals this mode has a rise time to double amplitude of $86.2\ \text{seconds}$.

Turning to the computer plots for lateral case 36 (see Appendix B), the following observations are made:

- (1) Tether links are in phase and of approximately equal amplitude.
- (2) The balloon roll angle is approximately 90° out of phase with respect to the balloon yaw angle.
- (3) The three links are approximately 83 degrees out of phase with respect to the balloon yaw angle.
- (4) The rise time to double amplitude for the balloon yaw angle is approximately 85 seconds.
- (5) The oscillation has a period of 93 seconds (0.0108 Hz).
- (6) Observations (1) through (5) indicate that lateral case 36 is predominantly the unstable 0.011 Hz mode found in the stability analysis run 22.
- (7) It should be noted also that the oscillations appear to be diverging, as would be expected, since the 0.011 Hz mode is predominate.

In conclusion lateral case 36 indicates a nominal BJ Balloon designed for a 10,000-foot operating altitude will have lateral instability problems. if it is operated at 1,000 feet. Lateral cases 35 and 37 fly the same balloon at 4,000 and 10,000 feet and reveal no diverging motion. GAC has investigated this type of instability problems in Reference 4. In this Reference the formulation of a method of analysis to predict the instability of short tethered balloons exposed to wind was derived and experimental tests were performed on towed models to verify the analysis. As a result of this work, it can be stated that lateral instability occurs when the inverted pendulum frequency of the balloon on the tether coincides with the balloon yaw frequency. Since the pendulum frequency is inversely proportional to the square root of the tether length, it is obvious that for a certain wind velocity a critical tether length exists. It should also be mentioned that Case 36 is not a winching condition, since the cable was a fixed length in the analysis. However, it does suggest that a possible stability problem will occur when the balloon is winched through the 1,000 foot altitude level.

(6) Effects of Reduced Winds (40 Percent of Nominal Winds). The effects of reducing the steady equilibrium wind and gusts to 40 percent of nominal on response in the longitudinal and lateral planes are summarized in Table XVI. In comparing the effects of a 40 percent reduction in winds, it should be noted that the equilibrium trim angle decreased from 8.5 degrees at 100 percent of nominal wind to 2.96 degrees at 40 percent of nominal wind. The yaw response reveals no change in response, while the other responses are reduced as expected.

Table XVI. Effect of Reducing Winds on Congitudinal and Lateral Response

a) Longitudinal Response

		Balloon Displacements from Eouilibrium			Cable Te at Equil		Maximum Cable Tensions		
Case No.	Wind And Gusts	Trim Angle Deg.	Range Down/Up Ft.	Alt., Ft.	Pitch Deg.	At Winch Lb.	A Bridle Lb.	At Winch Lb.	At Bridle Lb.
3 13	Nominal 40% Nom.	8.5° 2.96″	-52/73 -38/0.0	82 8	2.9	1650 315	2210 875	2650 355	3210 910

b) Lateral Response

				oon Displace Initial Equi		Cable Ten at Equili		Maximum Cable Tension	
Case No.	Wind And Gusts	Trim Angle Deg.	Yaw +/- Deg.	Roll +/- Deg.	Lat, Displ. Ft.	At Winch Lb,	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
25 34	Nominal	8.5 2.96	4.3/-13 8 4 9/-13.8	3,1/-0.35 0.91/-0.0	}	1650 316 5	2210 871.6	1680 321.2	2250 874.7

(7) Effects of Nolaro versus Amgal Tethers. The effects of Nolaro and Amgal tethers on the longitudinal response of BJ type balloons are given in Table XVII. The BJ type balloons are at 10,000 feet in equilibrium with a steady head wind and then are subjected to a 20.2 ft/sec horizontal longitudinal gust of 10 seconds duration. The balloon using the Nolaro tether has a volume of 60,000 cu. ft., while the balloon using the Amgal tether has a volume of 75,000 cu. ft. The larger balloon is required because the Amgal tether is heavier than the Nolaro tether. The trim angle for both cases is 8.5°. Table XVII reveals the Nolaro system has slightly more response and smaller tether loads than the Amgal system.

Table XVII. Effect of Nolaro and Arigal Tethers on Longitudinal Response

		Balloon D From	•		Cable To At Equil		Max Cable Tensions		
Cable Type	Case No.	Range Up/Down Ft	Alt Ft.	Pitch Deg.	Winch Lb	Bridle	Winch Lb	Bridle Lb	
Nolaro Amgal	3 10	-52/13 -60/50	82 28	2.9 2.1	1650 1880	2210 2870	2650 3190	3210 4180	

The effects of Nolaro and Amgal tethers on the lateral response of 60 K. Ft^3 and 75K. F^3 BJ type balloon systems are given in Table XVIII. The balloon systems are in equilibrium with a steady head wind and then subjected to a steady lateral horizontal gust of 12 ft/sec with a ramp rise time of three seconds. Table XVIII reveals that

- (1) Yaw and roll response of the Nolaro system are slightly larger than the response of the Amgal system
- (2) The lateral displacement of the Amgal system is 1.2 times the response of the Nolaro system
- (3) The Amgal system has larger tether loads as expected since the Amgal tether is heavier.

Table XVIII. Effect of Nolaro and Amgal Tethers on Lateral Response

			Balloon Displacements From Initial Equilibrium				Tension ilibrium	Max Cable Tension		
Case No.	Cable Type	Trim Angle Deg.	,	Roll +/- Deg.	Lat Displ. Ft.	At Winch Lb	At Bridle Lb	At Winch Lb	At Bridle Lb	
25 31	Nolaro Amgal	8. 5 8. 3	4.3/-14 4 /-13	3. 1/ 35 2. 1/ 4	460 560	1650 1880	2210 2872	1680 1905	2250 2905	

(8) Effects of Payload Location. The effects of payload location on the longitudinal response of a nominal BJ balloor at 10,000 ft are given in Table XIX. Case three has the 1,000 pound payload located on the confluence point of the bridle while case sixteen has the payload mounted on the underside of the balloon. The balloons are in equilibrium with a steady head wind and then subjected to a head gust of 20.2 ft/sec with a duration of 10 seconds. Table XIX reveals the configuration with the payload at the bridle confluence point (case 3) has approximately 40 percent more longitudinal response than the payload mounted on the balloon bottom configuration. The tether loads are approximately the same for both configurations.

Table XIX. Effect of Payload Location on Longitudinal Response

		Balloon Displacements From Equilibrium							Max Cable Tension		
Case No.	Payload Location	Range Down/Up Alt Ft. Ft.		Pitch Deg.	At Winch Lb.		At Bridle Lb.	At Wir Lb	nch	At Bridle <u>Lb.</u>	
3 16	Confl. Underside	-52 /73 -49 /56	82 48	2.9 2.1	16 16		2210 22 1 0	265 254		3210 3100	

- (9) Effect of Winch Altitude Location. The effect of winch altitude location on the longitudinal response of a nominal BJ balloon remaining at 10,000 feet MSL is given in Table XX. The winch is located at 0.0 ft and 5,000 ft for cases 3 and 17 respectively. The balloons are in equilibrium with a steady head wind and subjected to a 20.2 ft/sec gust cf 10 seconds duration. Table XX reveals that,
 - (1) the range and altitude responses are reduced when the winch is at 5,000 fect,
 - (2) the pitching response is slightly larger with the winch at 5,000 feet,
 - (3) the tether load is maximum when the winch is at 5,000 feet.

Table XX. Effect of Winch Altitude Location on Longitudinal Response

		Ballo From		-	ements .m		rension ilibrium	Max Cable Tension		
Case No.	Winch Alt. Ft.	Ran Down Ft.	/Up	Alt. Ft.	Pitch Deg.	At Winch Lb.	At Bridle L b.	At Winch Lb	At Bridle Lb.	
3 17	0.0 5000	-52 -20		82 24	2.9 3.1	1650 1940	2210 2210	2650 3670	3210 39 4 0	

- (10) Effects of Different Operational Altitudes. The effects of three different operational altitudes on the response of BJ type balloons are given in Table XXII. The design operational altitudes and corresponding balloon volumes are 5,000 ft. and 46,000 cu. ft., 10,000 ft. and 60,000 cu. ft., and 20,000 ft. and 500,000 cu. ft. The balloons are in equilibrium with steady head winds which vary according to wind velocity altitude profile. Longitudinal ten second duration gusts of 15.7 ft/sec, 20.2 ft/sec, and 27.3 ft/sec are applied respectively to the 5,000, 10,000, and 20,000 ft. operational altitude configurations in the longitudinal cases. Lateral three second ramp rise time steady gusts of 9 ft/sec, 12 ft/sec, and 16 ft/sec are applied respectively to the 5,000, 10,000, and 20,000 ft. operational altitude configurations in the lateral cases. Table XXI reveals that
 - (1) the range displacements from equilibrium increase with an increase in operational altitude
 - (2) pitch displacements from equilibrium decreases with an increase in operational altitude
 - (3) the lateral responses show little change due to operational altitude
 - (4) the tether load increases with altitude as expected.

Table XXI. Effect of Various Design Operational Altitudes

				Balloon Displacement From Equilibrium				Tensions ilibrium		
Case No.	Balloon Volume Ft ³		Gust* Vel. Ft/Sec	Down/Up	Alt. Ft.	Pitch Deg.	Winch Lb.	Bridle Lb.	Winch Lb.	Bridle Lb.
8 3 9	46000 60000 500000	5000 10000 20000	15.7 20.2 27.3	-52 /73	17 82 80	3.8 2.9 1.45	800 1650 8600	960 2210 15030	1290 2650 10820	1840 3210 17300

		Balloon Di From Initi Equilibriu	al .	i .	Tension ilibrium	Max Cable Tension		
Case No.	Trim Angle Deg.	Yaw Roll Lat +/- +/- Displ Deg. Deg. Ft.			At Winch Lb.	At Bridle Lb.	At Winch Lb.	At Bridle Lb.
29 25 30	5. 25 8. 50 8. 43	3. /-14. 5 4. 3/-13. 8 5. 7/-14		560 460 670	803 1650 9612	845 2210 15033	829 1680 9735	866 2250 15217

B. Balloon Structural Design Performance Parameters

The balloon structural design performance parameters of interest are the tensions at the winch and bridle and the translational and rotational accelerations of the balloon center of gravity. Tables XXIV and XXV list the maximum variation of these parameters from equilibrium for selected longitudinal and lateral cases. From a design limit load point of view, the values found in Table XXII represent the structural design parameters for the three balloon types subjected to longitudinal gusts of 20.2 ft/sec and 10 second duration and lateral steady gusts of 12 ft/sec.

Item Balloon Type	Accel Ft/se	lational erations c ² Vert.		Rotati Accele Deg/S Pitch	eration ec ²	s~	Cable Max. Tensions Lbs. Winch Bridle		
BJ Nom VEE GAC	3.8 3.5 3.1	2.6 2.9 3.8	8. 3 3. 0 5. 0	3. 4 5. 6 . 4	1.9 1.4	2.8 1.2 .5	3630 12900 4850	4200 14000 5770	

Table XXII. Structural Design Parameters

Balloon Instrumentation Design Performance Parameters

The balloon instrumentation design performance parameters of interest in designing an "on-board" instrumentation package are as follows:

- displacements (horizontal, vertical, and lateral)
- (2) velocities (horizontal, vertical, and lateral)
- (3) angular displacements (pitch, yaw, and roll)
- angular velocities (pitch, yaw, and roll)

Tables XXIV and XXV list the maximum variation of these parameters from equilibrium for selected longitudinal and lateral cases.

From an instrumentation design point of view, the values found in Table XXIII represent the instrumentation design parameters for the three balloon types subjected to longitudinal gusts of 20.2 ft/sec and 10 second duration and lateral steady gusts of 12 ft/sec.

Table XXIII. Instrumentation Design Parameters

Item Ballon	Displ	acemer Ft.	nts	ł	elocity Ft/Sec		Angul De	ar Dis gree	spl.		ar Vel eg/Sec	ocities :
Type	Hor	Vert	Lat	Hor	Vert	Lat	Pitch	Vaw	Roll	Pitch	Yaw	Roll

GAC

60

Ballon	Ft.			Ft/Sec		Degree			Deg/Sec			
Туре	Hor.	Vert.	Lat.	Hor.	Vert.	Lat.	Pitch	Yaw	Roll	Pitch	Yaw	Roll
BJ Nom VEE	73 135	82 80	560 177	6.2	3, 5 4, 1	16.9	2, 2	13, 8 15, 4	3. 9 3. 2	1, 14 1, 73	1, 74 2, 4	2.2

10 | 1,5

. 5

TABLE XXIV

MAXIMUM VARIATIONS OF STRUCTURAL AND INSTRUMENTATION DESIGN PETTOWANCE PARAMETERS
LONGITUDINAL CASES

LOADS BRIDLE LB.	2830 3210 3740 4200	3550 3210 3170	1840 3210 17,300	11,300 8600 14,000	4830 4000 5770	3210 2610 3800
MAX, TETHER WINCH LB.	2250 2650 3180 3630	3000 2650 2600	1290 2650 10,820	10, 100 7,500 12,900	3940 3150 4850	2650 2070 3220
VERT. ACC. FT/SEC ²	2.29 2.29 2.29 2.29	2.21 2.29 2.77	2.29 2.37	2.92 2.65 2.93	3.28 2.74 3.75	2.29 1.87 2.64
VERT. VEL. FT/SEC	3, 25 3, 47 5, 12 7, 32	4. 13 3. 47 2. 96	1, 18 3, 47 4, 88	3.56 4.11 2.98	2.00 1.81 2.10	3,47 3,40 3,42
VERT. DISP. FT.	15 82 121 690	70 82 40	17 82 80	60 80 40	20 20 25	82 65 55
HOR. ACC. FI/SEC ²	-3.09 -3.09 -3.09 -3.09	-3, 80 -3, 09 -2, 36	-2.06 -3.09 -2.53	-3,30 -3,38 -3,51	-2.04 -2.31 -1.88	-3.09 -3.02 -3.11
HOR. VEL. FT/SEC.	-4, 13 -6, 22 9, 34 9, 53	-7.09 -6.22 -5.46	3,77 -6,22 -12.1	9.32 9.10 9.24	-5, 78 -6, 58 3, 21	-6, 22 -6, 85 -5, 77
HOR. DISP. FT.	16 73 146 800	88 23 55	38 73 70	119 135 105	-48 -60 -40	73 65 75
PITCH ACC. DEG/SEC ²	3, 09 3, 09 3, 09 3, 09	5.18 3.09 1.77	3 09	5, 59 5, 50 5, 35	. 31 . 35 . 14	3, 09 2, 65 3, 44
PITCH VELOCITY DEG/SEC	1.14	2.15 1.14 .63	. 93 1,14 . 62	1.73 1.70 1.62	. 097 . 092 . 103	1.14 1.04 1.24
CHANGE IN PITCH DEG	1, 89 2, 24 4, 73 5, 67	4. 59 2. 24 1. 29	3,79 4.73 1.42	3.78 3.34	. 68 . 75 . 40	2.24 2.8 2.9
CASE	. 2 F# I	33 32 22	80 M G	18 19 20	21 22 23	3 7
TION	20.2 Ft/Sec	20.2 Ft/Sec 10 Sec	15.7 ft/Sec 20. Sec 10. Sec 10. Sec 27.3 ft/Sec 10. Sec	20.2 Ft/Sec 10 Sec.	20.2 Ft/Sec 10 Sec.	20.2 Ft/Sec 10 Sec.
DESCRIPTION TYPE SALLOON GUS	BJ Nominal	BJ Nominal	BJ Type	Vee	GAC	BJ Nommal
	2 Sec. 10 Sec. 20 Sec.	81% 100% 114%	5000 Ft 1010 Ft 20,000 Ft	Q = 7.00 Q = 5.00 Q = 9.10	$\alpha = 7.9^{\circ}$ $\alpha = 6.0^{\circ}$ $\alpha = 10.0^{\circ}$	α = 8.5 α = 6.5 α = 10.5
EFFECT	1200 איים איים	SIZE	over, adutitua	TRIM TRIM	TRIM ANGLE	тии Тим

TABLE XXV

MAXIMUM VARIATIONS OF STRUCTURAL AND INSTRUMENTATION DESIGN PERFORMANCE PARAMETERS LATERAL CASES

LOADS BREDLE LB	2258 2250 2244	2400 2250 2972	866	15,217	2256	4855 5909 6021	3645
MAX, TETHER WINCH LB	1486 1660 1675	1818 1680 2435	829	9735	1687 1708	4683 4771 4883	2735
LATERAL ACC. FT/SEC ²	8.29 4.83 3.29	4, 10 4, 83 5, 96	4.18	4.60	7.80 5.00	2.94 1.97	4.98
LATERAL VELOCITY FT/SEC	16.9 16.8 16.8	15.9 16.8 20.4	15.8	18.6	16.9 25.1	11.5 5,36 4.71	18.5
LATERAL DISPL. FT.	460 460 460	420 460 480	560	67.	161 706	177 78 72	905
ROLL AGC. DEG/SEC ²	2.83 .94 .57	3.63 .94 .57	1.68	7	3.07	. 67 . 29 . 23	. 25
ROLL VELOCITY DEG/SEC	2.63 1.33 .80	4.94 1.33	2.24	65.	-3.04	1,21	.47
CHANGE IN ROLL DEG.	3, 88 3, 13 2, 10	10.95 3.13 2.33	5.18	2.78	3.99	3.16	2.70
YAW ACC.2 DEG/SEC.2	1.86 6.62 37		99.	. 43	1.21	. 132 96 -1. 35	\$ 95
YAW VELOCITY DEG/SEC	1.74 1.19 .85	1.19	1.00	1.08	-2.27	-2.07 -2.07 -2.41	1.49
CHANGE IN YAW DEG.	-13.8 -13.8 -13.8	-13.5 -13.8 -13.4	-13.8	-10.6	4,38	-15.4 -11.1 -10.9	-14.3
CASE NUMBER	24 25 26	32 25 33	67 25	30	28 27	37 38 39	40
on GUST	12 Ft/Sec Steady	12 Ft/Sec Steady	9 Ft/Sec Steady 12 Ft/Sec	Steady 16 Ft/Sec Steady	12 Ft/Sec 18 Ft/Sec	12 Ft/Sec	12 Ft/Sec
DESCRIPTION TYPE BALLOON	BJ Nominal	BJ Nominal	BJ Type		p BJ Nominal	VEE	CAC
	1 Sec 3 Sec 5 Sec	81% 100% 14±%	5000 Ft	20,000 Ft	10 Sec. Step Steady	100% 200% 300%	Steady
EFFECT	RAMP RISE TIME	TAIL	яз suns	TO TITA	reus	TAIL	כמצג

COMPARISON OF BALLOON TYPES

The BJ balloon, with ram air filled ballonet and fins, provides the smallest size tethered balloon system to fly a 1000-pound payload at 10,000 feet. However, it has the greatest downrange displacement from the ground tether point. Equilibrium tether tensions are the lowest. Longitudinal excursions around equilibrium are moderate, but lateral displacements due to side gusts are substantial as compared to the Vee-type balloon.

Generally the Vee balloon investigated has a somewhat greater angle-of-attack excursion about static equilibrium for a given input, but with the high aerodynamic lift configuration, results in less overall downrange displacement from the tether point. Lateral excursion is a minimum for this balloon type. Overall, the Vee offers the least excursion with wind variation but at the expense of relatively high tether tension. Elastic devices can be built into the suspension system to limit angle of attack and tether tension. However, analysis of elastic suspension is beyond the scope of the reported analysis. The Vee-type balloon then offers a configuration for applications where the tethered system should be nearer vertical with respect to the tether point, and where displacement from the tether point should be minimized.

The GAC single-hull balloon provides a greater aerodynamic lift and aerodynamic lift-to-drag ratio and less downrange displacement from the tether point than the BJ balloon, and not much greater than that for the Vee for the 10,000-foot altitude system (4950 feet as compared to 7377 feet for the BJ and 4594 feet for the Vee). The equilibrium cable tension is moderate (3800 pounds). Longitudinal motions of this balloon are substantially less for given input wind disturbances than for the other types. Lateral displacements are comparable to those for the BJ balloon for an equal disturbance. The first longitudinal and lateral modes of GAC single-hull balloon type are notably more stable (see Figures 31 and 51 of Reference 2) than the other balloon types

Structural and onboard payload design parameters for particular wind gust inputs are listed in Tables XXIV and XXV.

3. INFLUENCE OF TRIM ANGLE ON LONGITUDINAL AND LATERAL DYNAMIC BEHAVIOR

Considering the BJ balloon, longitudinal dynamic response data indicates that trim angle-of-attack does not significantly change the response of the balloon in longitudinal translation and rotation.

In view of the lateral dynamic response, analysis indicates that the two lower modes of motion are excited (i.e., pendulum motion of the balloon and tether as a whole, and balloon roll). Trim angle change does not substantially influence these modes for the BJ balloon. However, the vertical location of the confluence point affects the second mode (balloon roll). The apex closer to the balloon results in greater damping of this mode while not greatly affecting the damping of the first mode (Figure 36 of Reference 2).

Longitudinal dynamic response of the Vee balloon is somewhat more sensitive to design trim angle-of-attack. A tethered balloon system, employing the Vee balloon, should be designed to fly at moderate angle-ofattack (say 7 degrees) inasmuch as longitudinal instability tendencies axist at low angle-of-attack. This tendency is indicated in the linearized stabilit, analysis by the lack of damping in the roots of the characteristic equation for the lowest frequency mode of motion. From the stability analysis, first and second longitudinal and lateral modes of motion for the GAC single hull balloon are stable and well damped (Figures 31 and 51 of Reference 2). The first two longitudinal modes are, respectively, a pitching motion of tether and balloon, and a pitching of the balloon. The first two lateral modes are a coupled balloon yaw and lateral link rotation, and a coupled balloon yaw and roll and lateral link rotation. These modes of motion are relatively insensitive to trim angle of attack and vertical location of the bridle confluence point. Dynamic response data also verify that longitudinal linear and angular displacements from equilibrium are relatively insensitive to trim angle-of-attack changes.

4. EFFECT OF TAIL SIZE ON LONGITUDINAL AND LATERAL DYNAMIC BEHAVIOR

Tail size for the BJ balloon was varied by proportionally changing all dimensions to obtain tail area of 81%, 100% and 144% of the nominal design values. Stability analysis indicates that tail size increase to 144% is required to give longitudinal stability for the first oscillatory mode, but that all tail sizes provide lateral stability in the first lateral mode. Also, the tether dynamic load factor reduces with larger tail sizes because of reduced angle-of-attack excursions. However, increased tail sizes increase the side displacements somewhat. It appears that 100% tails should be adequate since near neutral stability is present about the equilibrium point for the first longitudinal mode, and dynamic response data does not show displacement divergence for any of the tail sizes for the 180 seconds of response that were calculated.

The Vee balloon investigation was confined to determining the effect of increasing vertical tail area only. Consequently, longitudinal dynamic characteristics are not greatly affected. The vertical tails on the lower side of the two hulls are increased in area from the 100% nominal size to 300%. An examination of the roots of the characteristic equations for lateral stability (Figure 49 of Reference 2) indicates that the larger tails give somewhat greater damping and lower frequency for the first mode, and an inverse effect for the second mode. The lateral dynamic response data indicate that lateral displacements of yaw, roll, and side motion are all reduced with the larger tail sizes. Tail areas of 200% of nominal then appears to be most desirable.

5. EFFECT OF ALTITUDES INTERMEDIATE TO THE DESIGN ALTITUDE ON BEHAVIOR OF THE BJ TETHERED BALLOON SYSTEM

As the BJ tethered balloon system designed for 10,000 feet is brought to lower and lower altitudes, the wind speed it sees is reduced and the trim angle of attack changes inasmuch as the suspension bridle geometry remains unchanged. Generally, the longitudinal modes of motion become less damped at the lower altitudes. Dynamic response data indicates that longitudinal response is diminished, as might be expected, with the lower steady winds and gusts used in the analysis.

The lateral stability analysis reveals an unstable lateral first mode consisting of coupled balloon yaw and lateral displacement of the 1000-foot altitude. Generally, damping of all lateral modes is reduced substantially at the lower altitudes. A divergent lateral motion is revealed in the dynamic response analysis at 1000 feet altitude for the 10,000-foot design. Comparing dynamic response and stability data, it is concluded that the unstable first lateral mode consists of a coupled yaw lateral displacement. This mode escillates at a frequency which is approximately equal to an inverted pendulum mode where the frequency is established by the pendulum length and the restoring forces consisting of the net buoyancy and the aerodynamic forces. The divergent motion was not revealed at the 4000-foot altitude. Design features which improve the damping of this mode, such as larger tails and/or automatically actuated stabilizing aerodynamic surfaces, are required. A more detailed investigation and analysis is required to make specific recommendations to improve the dynamic characteristics exposed by this exploratory analysis.

6. EFFECTS OF REDUCED WIND ON THE BEHAVIOR OF THE BJ TETHERED BALLOON SYSTEM

The longitudinal and lateral dynamic characteristics consisting of frequencies and damping qualities change considerably as the wind is reduced. The trim angle of attack steadily decreases as wind decreases. Generally, damping of the tethered balloon system also reduces substantially as wind is reduced. As steady winds and wind gusts reduce yaw response is unchanged but other balloon motion responses reduce as might be expected.

7. NOLARO VS AMGAL TETHERS

The BJ balloon system employing a NOLARO type tether offers the advantage of a smaller balloon to meet the requirements of supporting a 1000-pound payload at 10,000 feet. Dynamic response of the balloon longitudinal and lateral degrees of freedom are not greatly influenced by the different tethers with the exception of lateral displacements. Greater lateral displacements result with the system employing AMGAL. This may be attributed to the lesser lateral damping of the smaller diameter AMGAL tether. For 20,000 foot altitude designs, a single balloon tethered system can not be achieved with a reasonable size balloon using AMGAL tether material. Considering these factors, the NOLARO type tether generally will provide a more favorable tethered balloon system.

8. EFFECT OF PAYLOAD LOCATION

The configuration with payload located at the confluence point of the bridle has somewhat greater longitudinal response than that with the payload located at the underside of the balloon. However, longitudinal response changes are relatively minor and need not influence a decision on payload location. Lateral dynamic response characteristics were not determined for this design variation.

9. EFFECT OF WINCH ALTITUDE LOCATION

In this comparison the BJ balloon is still flown at 10,000 feet altitude, M.S.L., but the winch is at 5000 feet M.S.L. Dynamic response is somewhat larger in the longitudinal plane with the winch at 5000 feet. Lateral dynamic response characteristics were not determined for this design variation. Lateral stability analysis indicates that one of the overdamped modes becomes oscillatory when the winch is located at 5000 feet.

10. BJ TETHERED BALLOON SYSTEMS DESIGNED FOR VARIOUS ALTITUDES

Tethered balloon system designs for altitudes of 5000, 10,000 and 20,000 feet have been defined. As commented elsewhere, it was not possible to obtain a reasonably sized single talloon system with AMGAL tether for the 20,000 foot condition. Dynamic response analysis indicates that longitudinal displacements are somewhat reduced for higher altitude designs and lateral displacements are somewhat increased. However, substantial changes have not been observed. Dynamic load factors for tether cable design are significantly less for the higher altitude design.

Longitudinal stability analysis indicates that the second and third oscillatory modes, which are balloon pitching modes, reduce in frequency for the higher altitude designs. The lower frequencies might be somewhat attributed to the larger pitching inertia associated with the larger balloons.

It is recommended that the mathematical techniques developed be investigated further by comparing analytical predictions of the tools with experimental data. After this correlation has been completed, more comprehensive analysis of tethered balloon systems of specific interest with wind conditions and gusts to be expected in operations can be conducted.

REFERENCES

- 1. <u>Definition of Tethered Balloon Systems</u>, Scientific Report No. 1 AFCRL-71-0213, 31 March 1971.
- 2. Investigation of Stability Characteristics of Tethered Balloon Systems, Scientific Report No. 2, AFCRL-71-0406, 30 July 1971.
- 3. Doyle, George R., Jr.: Mathematical Model for the Ascent and Descent of a High-Altitude Tethered Balloon; Journal of Aircraft, Vol. 6, No. 5, September-October 1969.
- 4. GER-13668, Prediction of Flight Stability of Tethered Balloons, Goodyear Aerospace Corporation, Akron, Ohio, February 1968

APPENDIX A

EQUATIONS OF MOTION FOR DYNAMIC SIMULATION

TABLE OF CONTENTS

Section		Page
ĭ	INTRODUCTION	A -3
п	LONGITUDINAL EQUATIONS OF MOTION FOR SMALL ANGULAR VELOCITIES	A -20
Ш	NON LINEAR LONGITUDINAL EQUATIONS OF MOTION	A -30
IV	LATERAL EQUATIONS OF MOTION FOR SMALL ANGULAR VELOCITIES	A -40

SECTION I INTRODUCTION

In Appendix A of the Second Scientific Report*, the equations of motion of a tethered balloon were derived in three dimensions. The initial derivation assumed that angular velocities were small so that products of angular velocities could be neglected. This assumption reduced the complexity of the equations (especially the lateral equations) by a considerable amount, but each equation remained nonlinear and coupled in each degree of freedom. It is assumed that the reader has read Ref. 2 Appendix A, Section II and has a clear understanding of the derivation of the equation of motion, for this discussion will begin with the results of that section.

Many of the terms used in this derivation are defined in the listing which follows.

^{*}Reference 2

FORTRAN	STANDARD	DESCRIPTION	UNITS
AA(4,4)		A four by four array of variables used to define incremental velocities in the numerical integration	rad/sec
AAG(8)		An array of eight variables signifying the angle of the gust to the horizon corresponding to TTG(8)	deg
AALP (16)		An array of sixteen variables signifying the angle-of-attack of the balloon	rad
AALPD(16)		An array of sixteen variables signifying the angle-of-attack of the balloon	deg
AALT(8)		An array of eight variables signifying altitudes of steady state wind velocities	ft
AG	αg	Gust angle off the horizon interpolated from AAG(8) and TTG(8)	deg
AGR	αg	Gust angle off the horizon	rad
ALPB	$\alpha_{\mathbf{B}}$	Angle-of-attack of balloon	rad
ALPBD	å _B	d α _B /dt	rad/sec
ALPBOD	å _B	d α _B /dt	deg/sec
ALPBDE	$\alpha_{\mathbf{B}}$	Angle-of-attack of balloon	deg
ALPSL		A ratio of two angle-of-attack differences used in interpolation of aerodynamic coefficients of the balloon at some $\boldsymbol{\alpha}$	
ALTSL		A ratio of two altitude differ- ences used in interpolation of steady state wind velocities	
AXB	$\mathcal{A}_{_{\mathrm{XB}}}$	The inertial force acting on the balloon along the lateral axis of the balloon	slug-ft/
АУВ	$\mu_{\scriptscriptstyle \mathrm{YB}}$	The inertial force acting on the balloon along the longitudinal axis of the balloon	

FORTRAN	STANDARD	DESCRIPTION	UNITS
AZB	$\mathcal{A}_{\mathtt{ZB}}$	The inertial force acting on the balloon along the vertical axis of the balloon	slug-ft/ sec ²
BBET (8)		An array of eight variables signifying the sideslip angle of the balloon	rad
BBETD(8)		An array of eight variables signifying the sideslip angle of the balloon	deg
BET3	β	Sideslip angle of balloon (positive-wind to the right of balloon's centerline)	rad
BETBD	β̈́	d β/dt	rad/sec
BETBDD	ģ	d β/dt	deg/sec
BETBDE	β	Sideslip angle of balloon (positive-wind to the right of balloon's centerline)	deg
BETSL		A ratio of two sideslip angle differences used in interpolation of aerodynamic coefficients of the balloon at some β	
C(3)	$^{\mathtt{c}}_{\mathtt{r}}$	Non-dimensional center-of- pressure of "r" th link	
CCDB(16)		An array of sixteen variables signifying drag coefficients of the balloon corresponding to AALPD(16)	
CCLB(16)		An array of sixteen variables signifying lift coefficients of the balloon in the longitudinal program corresponding to AALPD(16)	
CCLB(8)		An array of eight variables signifying roll moment coefficients of the balloon in the lateral program corresponding to RBETD(8)	
CCLLB(16)		An array of sixteen variables signifying lift coefficients of the balloon in the lateral program corresponding to AALPD	(16)

FORTRAN	STANDARD	<u>DESCRIPTION</u> <u>UNITS</u>
CCMB (16)		An array of sixteen variables signifying pitch moment coefficients of the balloon corresponding to AALPD(16)
CCNB(8)		An array of eight variables signifying yaw moment coefficients of the balloon corresponding to BBETD(8)
CDB	C_{DB}	Drag coefficients of balloon
CDC	C _{DC}	Drag coefficient of link (infinite cylinder)
CDTDB	C _D ⊕B	Balloon drag coefficient due to pitch velocity rad
CGAMB	C YB	cos YB
CLB	$^{\mathtt{C}}_{\mathtt{LB}}$	Lift coefficient of balloon in longitudinal program
CLB	C _{lB}	Balloon roll moment coefficient in lateral program
CLLB	$^{\text{C}}_{ ext{LB}}$	Lift coefficient of balloon in lateral program
CLPHDB	С _{2фВ}	Balloon roll moment coefficient due to roll velocity rad-1
CLPSDB	$\mathtt{C}_{\mathtt{l}\psi\mathtt{B}}$	Balloon roll moment coefficient due to yaw velocity rad-1
CLTDB	$c_{\mathtt{L} \dot{\vartheta} \mathtt{B}}$	Balloon lift coefficient due to pitch velocity rad-1
CMD	C_{mB}	Balloon pitch moment coefficient
CMTDB	C _{m∂B}	Balloon pitch moment coef- ficient due to pitch velocity rad-1
CNB	c _{nB}	Balloon yaw moment coefficient
CNPHDB	СпфВ	Balloon yaw moment coefficient due to roll velocity rad-1

FORTRAN	STANDARD	DESCRIPTION	UNITS
CNPSDB	C _{n.ψ́B}	Balloon yaw moment coef- ficient due to yaw velocity	rad ⁻¹
COM1		Input data defining com- puter run	
CPHI	Сф	cos ¢	
CPHI2	C ² ϕ	cos ² ¢	
CPSI	Сψ	cos ψ	
CSIG(3)	$\mathtt{C}_{\sigma_{\mathbf{i}}}$	$\cos \sigma_{i}$, (i = 1, 2, 3)	
CSIG2(3)	$c^2\sigma_{ extbf{i}}$	$\cos^2\sigma_i (i = 1, 2, 3)$	
CTHE	Сθ	cos θ	
CTHE2	$c^2\theta$	cos ² θ	
CTPX (3)	C(θ+ξ _i)	$cos(\theta + \xi_i), (i = 1, 2, 3)$	
CTPX2(3)	$C^2(\theta+\xi_i)$	$\cos^2 (\theta + \xi_i), (i = 1, 2, 3)$	
CXI(3)	$C\xi_{\mathbf{i}}$	$\cos \xi_{i}$,(i = 1, 2, 3)	
CXI2(3)	$c^2 \xi_i$	$\cos^2 \xi i$, $(i = 1,2,3)$	
CXMX(3,3)	$C(\xi_i - \xi_j)$	$cos(\xi_i - \xi_j), (i = 1, 2, 3,; j = 1,$	2,3)
CYB	$C_{\mathtt{YB}}$	Side force coefficient	
CYPHDB	$Cy_{\phi B}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}$	Side force coefficient of balloon due to roll velocity	sad ⁻¹
CYPSDB	$\mathtt{Cy}_{\psi \mathtt{B}}^{\bullet}$	Side force coefficient of balloon due to yaw velocity	rad ¹
DB	d _B	Aerodynamic reference length of balloon $(\forall^{1/3})$	ft
DC		Diameter of tether	ft
DCH (3)	D _{C.4i}	Horizontal aerodynamic force acting on the center-of-pressure of the "i"th link, (i = 1,2,3)	$^{ m lb}_{ m f}$

FORTRAN	STANDARD	DESCRIPTION	UNITS
DCS(3)	^D CSi	Lateral aerodynamic force acting on the center-of-pressure or the "i"th link, (i = 1,2,3)	lb _f
DCV (3)	^D CVi	Vertical aerodynamic force acting on the center-of-pressure of the "i"th link, (i = 1,2,3)	^{lb} f
DD(4,4)		A four by four array of variables signifying the coefficients of the second derivatives in the equations of motion	slug-ft ²
DRAGB	DRAGB	Aerodynamic drag acting on balloon	
DT		Integration time increment	sec
DTP		Number of integrations be- tween data printouts	
<i>Ω</i> ώ́ ⊅]		Number of integrations between data printouts when DT = DD1	
DTP2		Number of integrations be- tween data printouts when DT = DT2	
DT1		Integration time increment when T $<$ TDTC	sec
DT2		Integration time increment when T > TDTC	sec
DYPRB	$q_{\mathbf{B}}$	Effective dynamic pressure acting on c.g. of balloon	lb _f /ft ²
DYPRH(4)	q _{Hi}	Effective dynamic pressure acting on the "i"th link hinge, (i = 1,2,3,4). The first hinge is at the winch	lb _f /ft ²

FORTRAN	STANDARD	DESCRIPTION	UNITS
EE (4)		An array of four variables signifying the generalized forces plus terms containing products of angular velocities if this opt on is chosen. See FF	ft-lb _f
EEPS (3,3)	ε _{ij}	A three by three array representing the transformation matrix between the balloon body unit vectors and the inertia frame unit vectors	
FВНА	$^{\mathbf{F}}_{\mathbf{BHA}}$	Horizontal aerodynamic forces acting on balloon	l.b _f
FBSA	F _{BSA}	Lateral aerodynamic forces acting on balloon	lb _f
FBVA	F _{BVA}	Vertical aerodynamic forces acting on balloon	lb _f
FCH(3)	F _{CHi}	Horizontal component of tension acting on the "i"th link (i = 1,2,3)	lb _f
FCN(3)	^F CNi	Aerodynamic force acting normal to "i"th link, (i = 1,2,3)	lb _f
FCS(3)	^F CSi	Lateral component of tension acting on the "i"th link, (i = 1,2,3)	lb _f
FCV(3)	^F CVi	Vertical component of tension acting on the "i"th link, (i = 1,2,3)	^{lb} f
FF		Input variable which gives the option of including inertia terms containing products of angular velocities in the longitudinal program. If these terms are not wanted set FF = 0 If the terms are to be included, set FF to any number except "0.".	

FORTRAN	STANDARD	DESCRIPTION	UNITS
FPHI	\mathbf{F}_{ϕ}	Generalized force acting on balloon's roll degree-of-freedom	ft-lb _f
FPSI	\mathbf{F}_{ψ}	Generalized force acting on balloon's yaw degree-of-freedom	ft-lb _f
FSIG(3)	^F σi	Generalized force acting on the "i"th link's yaw degree- of-freedom; (i = 1,2,3)	ft-lb _f
FTHE	F _θ	Generalized force acting on balloon's pitch degree-of-freedom	ft-lb _f
FWH		Horizontal component of tether tension acting at winch	lb _f
FWS		Lateral component of tether tension acting at winch	^{lb} f
FWV		Vertical component of tether tension acting at winch	lb _f
FXI(3)	$^{ extsf{F}}_{ ext{\xii}}$	Generalized force acting on the "i"th link's pitch degree-of-freedom,(i = 1,2,3)	ft-lb _f
G	g	Acceleration ₂ of gravity = 32.17 ft/sec	ft/sec ²
GAMB	Υ _B , Γ _B	In the longitudinal program γ_B is the relative flight path angle of the balloon in the longitudinal plane; in the lateral program Γ_B is the relative flight path angle of the balloon in the horizontal plane	rad
GAMBD	γ _B , Γ _B	d γ _B /dt or ā Γ _B /dt	rad/sec
GAMBDE	Υ _B , Γ _B	See GAMB	deg
GA4BDD	Ϋ́B, Γ̈́B	dγ _B /dt or d Γ _{B/} dt	deg/sec
IXB	I_{XB}	Apparent pitch moment of inertia of balloon	slug-ft ²

FORTRAN	STANDARD	DESCRIPTION	UNITS
IYB	$\mathbf{I}_{\mathbf{YB}}$	Apparent roll moment of inertia of balloon	slug-ft ²
IYZB	I _{YZB}	Apparent product of inertia of balloon with respect to roll and yaw body axis	slug-ft ²
IZB	$\mathbf{I}_{\mathbf{ZB}}$	i.ertia of balloon	slug-ft ²
L	L	Length of one tether link	ft
LIFTB	LIFTB	Aerodynamic lift acting on balloon	1b _f
LS	L _S	Buoyant lift of balloon = weight of displaced air	lb _f
M	m	Mass of one tether link	slugs
MAL		Added mass of balloon along its longitudinal axis	slugs
MAS		Added mass of balloon along its lateral axis	slugs
MAV		Added mass of bal oon along its vertical axis	slugs
ML	$^{ extsf{M}}_{ extsf{L}}$	Apparent mass of balloon along its longitudinal axis. Apparent mass equals total static mass associated with the balloon plus air mass bein accelerated in a particular	ıg
		direction.	slugs
MPHIB	$^{ m M}_{ m \varphi B}$	Aerodynamic rolling moment acting on balloon	ft-lb _f
MPL	$^{ m m}_{ m PL}$	Mass of payload-located at bridle tether connection	slugs
MPSIB	$\mathtt{M}_{\psi\mathtt{B}}$	Aerodynamic yawing moment acting on balloon	ft-lb _f
MS	^N S	Apparent mass of balloon along its lateral axis	slugs
MTHEB	$^{ extsf{M}}_{ heta extbf{B}}$	Aerodynamic pitching moment acting on balloon	ft-lb _f

FORTRAN	STANDARD	DESCRIPTION	UNITS
MV	$^{\rm M}$ V	Apparent mass of balloon along its vertical axis	slugs
PHI	ф	Roll angle of balloon (positive-right wing down)	rad
PHID	ф	dφ/dt	rad/sec
PHIDD	ф	$d^2\phi/dt^2$	rad/sec ²
PHIDDD	φ	d ² ϕ /dt ²	deg/sec ²
PHIDDE	ф	d∳/dt	deg/sec
PHIDEG	ф	Roll angle of balloon (positive-right wing down)	deg
PHID2	å²	ф ²	rad ² /sec ²
PR		Atmospheric pressure (not used in program)	lb/ft ²
PSI	ψ	Yaw angle of balloon (positive-nose to right)	rad
PSID	ψ	dψ/dt	rad/sec
PSIDD	Ψ	$d^2\psi/dt^2$	rad/sec ²
PSIDDD	ψ	$d^2\psi/dt^2$	deg/sec ²
PSIDDE	ψ	dψ/dt	deg/sec
PSIDEG	Ψ	Yaw angle of balloon (positive-nose to right)	dc <u>;</u>
PSID2	ψ²	ψ ²	rad^2/sec^2
RHOB	ρ _B	Air density at $^{\mathrm{Z}}_{\mathrm{B}}$	slug/ft ³
RHOC(3)	$^{ ho}$ ci	Air density at Z _{ci} (i=1,2,3)	slug/ft ³
RHOCH(3)	$^{ m ho}_{ m Hi}$	Air density at $Z_{CHi}(i=1,2,3,4)$	slug/ft ³
RJA	^R jA	Distance along longitudinal axis of balloon from aero-dynamic reference center to bridle apex (positive toward nose)	ft

FORTRAN	STANDARD	DESCRIPTION	UNITS
RJB	^R jB	Distance along longitudinal axis of balloon from center of buoyancy to bridle apex (positive toward nose)	ft
RJG	gť	Distance along longitudinal axis of balloon from center of gravity to bridle apex (positive toward nose)	ft
RJM	R jm	Distance along longitudinal axis of balloon from dynamic mass center to bridle apex (positive toward nose)	ft
RKA	R _{kA}	Distance along vertical axis of balloon from aero-dynamic reference center to bridle apex (positive up)	ft
RKB	^R kB	Distance along vertical axis of balloon from center of buoyancy to bridle apex (positive up)	ft
RKG	^R kg	Distance along vertical axis of balloon from center of gravity to bridle apex (positive up)	ft
RKM	^R km	Distance along vertical axis of balloon from dynamic mass center to bridle apex (positive up)	ft
SB	s_{B}	Aerodynamic reference area of balloon $(\Psi^{\frac{1}{2}})$	ft ²
SC(3)	s _{cí}	Aerodynamic reference area of one tether link = (l)(dc), (i = 1,2,3)	ft ²
SGAMB	$s_{\gamma_{\mathbf{B}}}$	$\sin \gamma_{ extbf{B}}$	
SIG(3)	$\sigma_{\mathbf{i}}$	Yaw angle of "i"th link, (i = 1,2,3) (positive-counter-clockwise looking down range)	rad
SIGD(3)	°i	$d\sigma_{i}/dt$, (i = 1,2,3)	rad/sec

FORTRAN	STANDARD	DESCRIPTION	UNITS
SIGDD(3)	$\ddot{\sigma}_{f i}$	$d^2\sigma_i/dt^2$,(i = 1,2,3)	rad/sec ²
SIGDDD(3)	σ˙	$d^2\sigma_i/dt^2$,(i = 1,2,3)	deg/sec ²
SIGDDE(3)	i	$d\sigma_{i}/dt$,(i = 1,2,3)	deg/sec
SIGDEG(3)	σ _i	Yaw angle of "i"th link, (i = 1,2,3) (positive- counterclockwise looking down range)	deg
SIGD2(3)	°åi²	$\dot{\sigma}_{i}^{2}$, (i = 1,2,3)	rad ² /sec ⁻
SPHI	Sφ	sin ¢	
SPHI2	S²φ	$\sin^2 \phi$	
SPSI	Sψ	$\sin \psi$	
SSIG(3)	Soi	$\sin \sigma_i$ (i = 1,2,3)	
STHE	Sθ	sin θ	
STHE2	S²θ	sin²θ	
STPX(3) S	$(\theta + \xi_i)$	$\sin (\theta + \xi_i)$, $(i = 1, 2, 3)$	
STPX2(3) S	$^{2}(\theta+\xi_{i})$	$\sin (\theta + \xi_i)$, (i = 1,2,3)	
SXI(3)	s_{i}	$\sin \xi_{i}$, (i = 1,2,3)	
SXI2(3)	$S^2\xi_{\mathbf{i}}$	$\sin^2 \xi_i$, (i = 1,2,3)	
SXMX(3,3)	s(ξ _i -ξ _j)	$\sin(\xi_{i}-\xi_{j})$ (i=1,2,3; j=1,2,3)	
S2THE	S2 0	sin 2θ	
T	t	Flight time	sec
TDTC		Flight time at which DT is changed from DT1 to DT2 and DTP is changed from DTP1 to DTP2	sec
TENS (3)	Ti	Tension in tether at top of "i"th link, $(i = 1, 2, 3)$	lb _f
TENSW	T _w	Tension in tether at winch	lb _f

FORTRAN	STANDARD	DESCRIPTION	UNITS
ТЕТН		Total length of tether	ft
THE	θ	Pitch angle of balloon (positive-nose up)	rad
THED	θ	d0/dt	rad/sec
THEDD	θ	d²θ/dt	rad/sec ²
THEDDD	θ	d²θ/dt	deg/sec ²
THEDDE	θ	d0/dt	deg/sec
THEDEG	θ	Pitch angle of balloon (positive-nose up)	deg
THED2	θ ²	$\hat{\theta}^{2}$	rad^2/sec^2
THEODE	$^{ heta}$ o	Equilibrium pitch angle of balloon	deg
TSL		A ratio of two time differences used in interpolation of gust velocities and gust angles	
TTG(8)		An array of eight variables signifying the time history of the gust	sec
TTT		Flight time at which computer simulation ends	sec
VBR	$v_{\mathtt{BR}}$	Relative velocity of balloon's c.g. with respect to the air	ft/sec
VC (3)	V _{ci}	Relative velocity of the c.p. of the "i"th link with respect to the air,(i=1,2,3)	ft/sec
VG	Vg	Gust velocity	ft/sec
VGH	V _{gH}	Component of gust in $\mathbf{Y}_{\mathbf{B}}$ direction	ft/sec
VGS	V _{gs}	Component of gust in $\mathbf{X}_{\mathbf{B}}$ direction	ft/sec

FORTRAN	STANDARD	DESCRIPTION	UNITS
VGV	v^{a}	Component of gust in ZB direction	ft/sec
VHR(4)	V _{Hri}	Relative wind velocity of "i"th link hinge in the Y direction, (i=1,2,3,4). The first hinge is at the winch.	ft/sec
VS		Speed of sound (not used in program)	ft/sec
VVG(8)		An array of eight variables signifying gust velocity acting on balloon and corresponding to TTG(8)	ft/sec
VVW(8)		An array of eight variables signifying steady state wind profile and corresponding to AALT(8)	ft/sec
VW	V _w	Steady state wind velocity at $^{\mathrm{Z}}_{\mathrm{B}}$	ft/sec
VWC(3)	V _{wci}	Steady state wind velocity at Z _{ci} (i = 1,2,3)	ft/sec
VWH (4)	$v_{w \text{Hi}}$	Steady state wind velocity at Z _{CHi} ,(i = 1,2,3,4)	ft/sec
WB	W _B	Total weight of balloon - includes balloon and bridle material, and enclosed gases	lbs
WPL		Weight of payload located at bridle tether connection	lb
WTC		Weight of tether	lb
XB	x _B	Lateral displacement of balloon's c.g. in the inertia reference frame	ft
XBD	х _в	dx _B /dt	ft/sec
XEDD	х _в	d^2x_B/dt^2	ft/sec ²
XBDDR		Lateral acceleration of balloon's c.g. relative to air	ft/sec ²

FORTRAN	STANDARD	DESCRIPTION	UNITS
XBDR		Lateral velocity of balloon's c.g. relative to air	ft/sec
XCD(3)	X _{ci}	Lateral velocity of c.p. of "i"the link,(i = 1,2,3)	ft/sec
XCDD(3)	X ci	Lateral acceleration of c.g. of "i"th link (i = 1,2,3)	ft/sec ²
XCHD(4)	x _{cHi}	Lateral velocity of "i"th link hinge, (i = 1,2,3,4). The first hinge is at the winch	ft/sec
XI(3)	ξ _i	Pitch angle of "i"th link, (i = 1,2,3) (positive-rotated up from the horizon, clockwise)	rac
XID(3)	ξ _i	$d\xi_i/dt ,(i=1,2,3)$	rad/sec
XIDD(3)	ξ _i	$d^{2}\xi_{i}/dt^{2}$,(i = 1,2,3)	rad/sec ²
XIDDDE(3)	ξ _i	$d^2 \xi_i / dt^2$, (i = 1,2,3)	deg/sec ²
XIDDEG(3)	ξ _i	$d\xi_{i}/dt$, (i = 1,2,3)	deg/sec
XIDEG(3)	ξi	Pitch angle of "i"th link, (i = 1,2,3) (positive-rotated up from the horizon, clockwise)	deg
XID2(3)	ξ² i	$\dot{\xi}^2$ (i = 1,2,3)	rad ² /sec ²
XIODEG(3)	ξio	Equilibrium pitch angle of "i"th link, (i = 1,2,3)	deg
XPLDD	х _{рь}	Lateral acceleration of payload	ft/sec ²
ΥВ	ЧВ	Down range displacement of balloon's c.g. in the inertia reference frame	ft
YBD	Y _B	dY _B /dt	ft/sec
YBDD	УB	d ² Y _B /dt ²	ft/sec ²

FORTRAN	STANDARD	DESCRIPTION	UNITS
YBDDR		Down range acceleration of balloon's c.g. relative to air	ft/sec ²
YBDR		Down range velocity of balloon's c.g. relative to air	ft/sec
YCD(3)	Y _{ci}	Down range velocity of C.P. of "i"th link,(i = 1,2,3)	ft/sec
YCDD(3)	Ϋ́ _{ci}	Down range acceleration of c.g. of "i"th link, (i = 1,2,3)	ft/sec
YCHD(4)	Y _{CH} i	Down range velocity of "i"th link hinge,(i = 1,2,3,4) The first hinge is at the winch	ft/sec
YPLDD	Ÿ _{PL}	Down range acceleration of payload	ft/sec ²
ZB	$^{\mathrm{Z}}{}_{\mathrm{B}}$	Altitude of balloons c.g. in inertia reference frame	ft
ZBD	z B	dZ _B /dt	ft/sec
ZBDD	ž _B	d ² z _B /dt ²	ft/sec ²
ZBDDR		Vertical acceleration of balloon's c.g. relative to air	ft/sec ²
ZBDR		Vertical velocity of balloon's c.g. relative to air	ft/sec
ZC(3)	^Z ci	Altitude of C.P. of "i"th link $(i = 1,2,3)$	ft
ZCD(3)	Z _{ci}	Vertical velocity of C.P. of "i"th link, $(i = 1, 2, 3)$	ft/sec
ZCDD(3)	Žci	Vertical accleration of c.g. of "i"th link, $(i = 1, 2, 3)$	ft/sec ²
ZCH(4)	Z _{CHi}	Altitude of "i"th link hinge,(i = 1,2,3,4) The first hinge is at the winch	ft

FORTRAN	STANDARD	DESCRIPTION	UNITS
ZCHD(4)	z chi	Vertical velocity of "i"th link hinge,(i = 1,2,3,4) The first hinge is at the winch	ft/sec
ZPLDD	$\ddot{z}_{_{ t PL}}$	Vertical acceleration of payload	ft/sec ²

SECTION II

LONGITUDINAL EQUATIONS OF MOTION FOR SMALL ANGULAR VELOCITIES

First consider the longitudinal equation of motion. The dependent variables (see Figure 1) are θ (pitch of the balloon) and ξ_r (pitch of the "r" the link), where r is a particular link.

The appropriate equations of motion in the Second Scientific Report, Appendix A, Section II are (80) and (97). Since these equations were derived in three dimensions, they contain the lateral degrees-of-freedom, ψ (yaw of balloon), ϕ (roll of balloon), and σ_r (yaw of "r" th link). It will be assumed that the balloon remains in equilibrium in the lateral degrees-of-freedom. Therefore, $\psi \equiv \phi \equiv \sigma_r \equiv 0$. With this assumption Equation (80) and (97) are rewritten as follows:

$$M_{L} \langle l R_{lm} \stackrel{\sim}{\sum} \{ \vec{S}_{L} [SS_{L}CO + LS_{L}SO] \} + R_{lm} \stackrel{\sim}{G} \rangle \\
+ M_{V} \langle l R_{lm} \stackrel{\sim}{\sum} \{ -\vec{S}_{L} [-SS_{L}SO + CS_{L}CO] \} + R_{lm} \stackrel{\sim}{G} \rangle + I_{XB} \stackrel{\sim}{G} = F_{0} \qquad (1)$$

$$\stackrel{\sim}{\sum} m l^{2} \{ \stackrel{\sim}{\sum} \vec{S}_{L} (\vec{L} - \vec{S}_{L}) + \frac{1}{2} \vec{S}_{m} (\vec{L} - \vec{S}_{m}) \} + \frac{m}{2} l^{2} \stackrel{\sim}{\sum} \vec{S}_{L} (\vec{L} - \vec{S}_{L}) + \frac{m}{3} l^{2} \stackrel{\sim}{S}_{m} \\
+ m_{N} l^{2} \stackrel{\sim}{\sum} \vec{S}_{L} (\vec{L} - \vec{S}_{L}) + M_{L} \langle l^{2} \stackrel{\sim}{\sum} \vec{S}_{L} [SS_{L}CO + CS_{L}SO] [SS_{L}CO + CS_{L}SO] \\
+ R_{lm} l^{2} [SS_{L}CO + CS_{L}SO] \rangle + M_{V} \langle l^{2} \stackrel{\sim}{\sum} \vec{S}_{L} [-SS_{L}SO + CS_{L}CO] [-SS_{L}SO + CS_{L}CO] \\
- R_{lm} l^{2} [-SS_{L}SO + CS_{L}CO] \rangle = F_{0} \qquad (2)$$

where $S\theta = \sin \theta$ and $C\theta = \cos \theta$, etc.

FIGURE 1 - BALLOON TETHER MODEL IN LONGITUDINAL PLANE

In order to solve Equations (1) and (2), it will be assumed that N=3. Rewrite Equations (1) and (2) with this assumption and substitute in the trigometric identities for the sums of angles.

$$[M_{L}R_{km}^{2} + M_{V}R_{jm}^{2} + I_{XR}] \ddot{\theta} + [M_{L}R_{km}S(f_{i}+\theta) - M_{V}LR_{jm}C(f_{i}+\theta)] f_{i}$$

$$+ [M_{L}LR_{km}S(f_{2}+\theta) - M_{V}LR_{jm}C(f_{2}+\theta)] \ddot{f}_{2}$$

$$+ [M_{L}LR_{km}S(f_{3}+\theta) - M_{V}LR_{jm}C(f_{3}+\theta)] \ddot{f}_{3} = F_{\theta}$$
(3)

For r = 1,

 $[M_{L} l R_{km} S(S_{i}+\Theta)-M_{V} l R_{jm} C(S_{i}+\Theta)]O$ $+l^{2} [\frac{7m}{3}+m_{pl}+M_{L}S^{2}(S_{i}+\Theta)+M_{V}C^{2}(S_{i}+\Theta)]S_{i}^{i}$ $+l^{2} [\frac{3m}{2}+m_{pl})C(S_{i}-S_{i})+M_{L}S(S_{i}+\Theta)S(S_{i}+\Theta)+M_{V}C(S_{i}+\Theta)C(S_{i}+\Theta)]S_{i}^{i}$

 ${}_{1}\ell^{2}[(\frac{m}{2}+m_{p_{1}})c(\hat{S}_{i}-\hat{S}_{i})+M_{L}S(\hat{S}_{i}+\theta)S(\hat{F}_{3}+\theta)+M_{V}c(\hat{S}_{i}+\theta)c(\hat{S}_{3}+\theta)]\hat{F}_{3}=\hat{F}_{\hat{F}_{i}}$ (4)

For r = 2,

[Milkens (f2+0) -Mylkenc (f2+0)] 0

+ \(\int_{2}^{2} \left[\left(\frac{3}{2} + M_{PL} \right) \c(\frac{6}{5}, \frac{6}{2} \right) + M_{LS}(\frac{6}{5}, +\theta) \s(\frac{6}{5}, +\theta) \s(\frac{6}, +\theta) \s(\frac{6}{5}, +\theta) \s(\frac{6}{5}, +\thet

+ l2 40 + mp + ML 52 (\$2+6) + My c2 (\$2+6)] 52

 ${}_{1}\mathcal{L}^{2}\left(\frac{\Delta n}{2}+m_{\rho_{1}}\right)C\left(f_{2}-f_{3}\right)+M_{1}S\left(f_{2}+\Theta\right)S\left(f_{3}+\Theta\right)+M_{2}C\left(f_{2}+\Theta\right)C\left(f_{3}+\Theta\right)\right]f_{3}^{2}-F_{\rho_{2}}$ (5)

For r = 3

[ML RAM S(\$3+0)-Mr lRom C(\$3+0)]6

 $\mathcal{L}^{2}\left(\frac{m}{2}+m_{p_{L}}\right)c(S_{1}-S_{3})+M_{L}S(S_{1}+\Theta)S(S_{3}+\Theta)+M_{V}C(S_{1}+\Theta)C(S_{3}+\Theta)\left[\overset{\circ}{S},\right]S_{1},$ $\mathcal{L}^{2}\left(\frac{m}{2}+m_{p_{L}}\right)c(S_{2}-S_{3})+M_{L}S(S_{2}+\Theta)S(S_{3}+\Theta)+M_{V}C(S_{3}+\Theta)C(S_{3}+\Theta)\left[\overset{\circ}{S},\right]S_{2},$ $+\mathcal{L}^{2}\left(\frac{m}{3}+m_{p_{L}}+M_{L}S^{2}(S_{3}+\Theta)+M_{V}C^{2}(S_{3}+\Theta)\right]\overset{\circ}{S}=F_{S_{3}}$ (6)

The generalized forces (F_{σ} , $F_{f_{\sigma}}$, $F_{f_{\sigma}}$, $F_{f_{\sigma}}$) were derived in Section III, Appendix A of the Second Scientific Report*. The following necessary equations are taken from that section.

$$F_{\theta} = \left[L_{S} R_{AB} - W_{B} R_{Ag} + F_{BVA} R_{AA} - F_{BVA} R_{AA} \right] S \theta$$

$$+ \left[-L_{S} R_{BB} + W_{B} R_{Ag} - F_{BVA} R_{AA} - F_{BHA} R_{AA} \right] C \theta + M_{\theta B}$$
(7)

$$F_{g_1} = [L_S - W_B + F_{DVA} - m_{PL} g - D_{PLV} - \frac{5}{3} mg] L C_{g_1}$$

$$+ [-F_{DNA} - D_{PLN}] L S_{g_1} - L C_1 [D_{CN1} S^2 g_1 + D_{CV_1} C^2 g_1]$$

$$- L [(D_{CN2} S^2 g_2 + D_{CV_2} C^2 g_2) C (g_1 - g_2) + (D_{CN3} S^2 g_3)$$

$$+ D_{CV_1} C_{g_2}^2 g_3 C (g_1 - g_3)]$$
(8)

*Reference 2

$$\mathcal{L}\left[C_{2}\left[D_{e_{H2}}S^{2}f_{2}+D_{e_{V2}}C^{2}f_{2}\right]+\left[D_{e_{H3}}S^{2}f_{3}+D_{e_{V3}}C^{2}f_{3}\right]C\left(f_{2}-f_{3}\right)\right]$$
(9)

$$+ \left[-F_{ana} - D_{01H} \right] l S F_3 - l C_3 \left[D_{CH2} S^2 F_3 + D_{CV3} C^2 F_3 \right]$$
 (10)

$$F_{BHG} = DRAGB(CN_B) + LIFTB(SN_B)$$
 (11)

$$F_{\text{avg}} = LIFTB(C\delta_B) - DRACB(S\delta_B)$$
 (12)

$$DRA68 = g_B S_B \left[C_{LB} + C_{L\dot{\theta}B} \left(\frac{\mathcal{A}_B}{V_{BR}} \right) \dot{\theta} \right]$$
 (13)

LIFTB =
$$\int_{\mathcal{B}} S_0 \left[\mathcal{L}_{DB} + \mathcal{L}_{DB} \left(\frac{d_B}{V_{BR}} \right) \dot{\mathcal{B}} \right]$$
 (14)

$$M_{\theta B} = g_R S_B d_{\theta} \left[C_{m_{\theta}} + C_{m_{\dot{\theta} B}} \left(\frac{d_B}{V_{\theta R}} \right) \dot{\theta} \right]$$
(15)

$$D_{cvi} = \frac{1}{2} P_{cs} S_{ci} Coc V_{cs} \left(\dot{z}_{ci} \right)$$
 (17)

The drag on the payload is neglected.

$$D_{PLN} = D_{PLV} = \mathcal{O} \tag{1.8}$$

$$C_{R} = \frac{1}{3} \left(\frac{g_{HR} + 2g_{HR+1}}{g_{HR} + g_{HR+1}} \right) \tag{19}$$

$$g_B = \frac{1}{2} P_B V_{BA}^2 \tag{20}$$

$$V_{BR}^{2} = (\dot{y}_{B} + V_{W} + V_{QH})^{2} + (\dot{z}_{B} - V_{QV})^{2}$$
(21)

$$V_B = tan^{-1} [(\dot{z}_B - V_{qv})/(\dot{y}_B + V_w + V_{qH})]$$
 (22)

$$d_{B} = \theta - Y_{B} \tag{23}$$

See Figure 1

In order to show the load distribution along the tether at any time, the tension in the tether is calculated at the end of each lirk. This is done by summing forces in the vertical and horizontal directions at each hinge. Before summing forces, consider the inertia forces acting on the balloon. Figure 2 shows the balloon and with the apparent inertia forces acting along and normal to the centerline.

$$M_{\nu}(\ddot{Z}_{8}C\Theta - \ddot{Y}_{8}S\Theta)$$

$$M_{\nu}(\ddot{Y}_{8}C\Theta + \ddot{Z}_{\nu}S\Theta)$$

$$V_{8}$$

FIGURE 2 INERTIA FORCES ACTING ON BALLOON IN LONGITUDINAL PLANE

$$= \ddot{Z}_B \left[M_V C^2 \Theta + M_L S^2 \Theta \right] + \ddot{Y}_B \left[M_L - M_V \right] S \Theta L \Theta \tag{24}$$

$$= \ddot{Z}_{\bullet} [M_{\bullet} - M_{\bullet}] S \theta C \theta + \ddot{Y}_{B} [M_{\bullet} S^{2} \theta + M_{\bullet} C^{2} \theta]$$
(25)

The summation of forces acting on the balloon are:

$$\sum F_a : L_s + F_{BVA} - W_B - T_{BV} \tag{26}$$

$$\sum F_{y} = T_{BH} - F_{BHA} \tag{27}$$

where: T_{BV} and T_{BH} are the vertical and horizontal tension forces at the bridle-tether confluence point respectively.

Note that the payload forces are not included in these summations, but will be included shortly. Equating Equations (24) and (26), and Equations (25) and (27) gives the following expressions for $T_{\rm BV}$ and $T_{\rm BH}$.

$$T_{\text{ev}} = L_S + F_{\text{eva}} - W_{\theta} - \ddot{Z}_{\theta} \left[M_{\nu} C^2 \Theta + M_{\nu} S^2 \Theta \right] - \ddot{Y}_{\theta} \left[M_{\nu} - M_{\nu} \right] S \Theta C \Theta$$
 (28)

$$T_{BH} = F_{BHA} + \ddot{z}_B \left[M_{\bullet} - M_{V} \right] S \theta C \theta + \ddot{y}_0 \left[M_{V} S^2 \theta + M_{L} C^2 \theta \right]$$
 (29)

Equations (28) and (29) give the tensions on the tether at a point just above the payload. Figure 3 shows the payload with all forces acting on it.

FIGURE 3 APPLIED FORCES ACTING ON PAILOAD IN LONGITUDINAL PLANE

Summing forces in the vertical and horizontal directions gives:

$$\sum_{k=1}^{\infty} F_{k} = T_{k} - m_{pk} q - F_{cvn}$$
 (30)

$$\xi F_{V} = m_{\rho_{L}} \dot{Y}_{\rho_{L}} = F_{CHN} - T_{BN} \tag{31}$$

where $F_{\rm CV}$ and $F_{\rm CH}$ are the vertical and horizontal components of tension at the top of the tether below the payload. Substituting Equation (28) into (30) and (29) into (31) and solving for the vertical and horizontal components of tension at the top of the tether results in the following equations.

$$-\dot{Y}_{B}\left[M_{L}-M_{V}\right]SGC_{G}-m_{\rho_{L}}g-m_{\rho_{L}}\ddot{Z}_{\rho_{L}} \tag{32}$$

$$F_{CNN} = F_{RNA} + \ddot{z}_{B} \left[M_{L} \cdot M_{V} \right] SOCO + \ddot{Y}_{B} \left[M_{V} S^{2}O + M_{L} C^{2}O \right] + m_{PL} \ddot{Y}_{PL}$$
(33)

The total tension at the top of the tether is:

$$T_{N} = \sqrt{F_{CHN}^{2} + F_{CVN}^{2}} \tag{34}$$

Figure 4 shows the applied forces acting on the "N"th link

FIGURE 4 APPLIED FORCES ACTING ON "N"TH LINK IN LONGITUDINAL PLANE

The aerodynamic forces D_{CH_N} and D_{CV_N} are the horizontal and vertical components respectively of the normal aerodynamic force (F_{CN_N}) acting at the c.p. of the "N"th link due to the relative motion of the "N"th link with respect to the air. This relative motion takes into account both the steady state wind and the horizontal and vertical inertial velocities of the link. Expressions for D_{CH_N} and D_{CV_N} are given in Equations (16) and (17). The normal force acting on the link is given by:

$$F_{eN_N} = D_{eN_N} S^2 f_N + D_{eV_N} C^2 f_N \tag{35}$$

Summing vertical and horizontal forces on the "N" link:

$$\sum F_s = m \ddot{z}_{eN} = F_{eVN} - F_{eNN} C f_N - mg - F_{eVN-1}$$
 (36)

$$\sum F_{V} = m \dot{Y}_{CN} = -F_{CNN} - F_{CNN} + F_{CNN} + F_{CNN}$$
(37)

Solving for the tension forces at the bottom of the "N"th link gives the following equations.

$$F_{cvn-1} = F_{cvn} - F_{cvn} C_{sn}^{\beta} - m(q + \tilde{z}_{cn})$$

$$\tag{40}$$

$$F_{CHM-1} = F_{CHR} + F_{CHR} S_{R}^{S} + m \dot{Y}_{CR}$$
(41)

$$T_{n-1} = \sqrt{F_{cwn-1}}^2 + F_{cwn-1}^2 \tag{42}$$

The tension at the winch is found by setting y = 1.

SECTION III

NON LINEAR LONGITUDINAL EQUATIONS OF MOTION

Section II of this Appendix contains the longitudinal equations of motion of a tethered balloon if angular velocities are small and products of angular velocities are negligible. This assumption was made in the derivation in Appendix A of the Second Scientific Report*. It is now desirable to examine the equations of motion when large angular velocities are allowed. As in Section II, appropriate equations will be extracted from Appendix A of the Second Scientific Report*. These equations are (41), (79) and (96). Equation (41) is the total kinetic energy of the system: Equation (79) and (96) are terms that are needed for Lagrange's equations. However, these equations are functions of both the longitudinal and lateral degrees-of-freedom. Therefore, before rewriting Equations (41), (79) and (96) of Appendix A* set all lateral degrees-of-freedom equal to zero $(\psi \equiv \phi \equiv \sigma_r \equiv 0)$.

The total kinetic energy of the system in the longitudinal plane is:

$$\begin{array}{l}
\vec{T} = \sum_{m=1}^{N} \left[\frac{1}{2} m (\vec{V}^{R})^{2} + \frac{1}{24} m l^{2} \vec{F}_{n}^{2} \right] + \frac{1}{2} m_{\rho_{L}} (\vec{V}^{\rho_{L}})^{2} \\
+ \frac{1}{2} M_{L} (\vec{V}^{R}, \vec{J}_{\rho})^{2} + \frac{1}{2} M_{V} (\vec{V}^{Q}, \vec{J}_{\rho})^{2} + \frac{1}{2} I_{X \rho} \vec{\phi}^{2}
\end{array} \tag{43}$$

where

$$\overrightarrow{V}^{R'} = \mathcal{L}\left[\sum_{i=1}^{n} \vec{s}_{i} \ \overrightarrow{e}_{i} + \frac{1}{2} \vec{s}_{i} \ \overrightarrow{e}_{i}\right]$$
(44)

$$\overrightarrow{V}^{PL} = \mathcal{L} \sum_{i=1}^{N} \overrightarrow{F}_{i} \ \overrightarrow{E}_{i}$$
 (45)

$$\vec{V}^{a} = \ell \sum_{i} \vec{l}_{i} + \begin{bmatrix} \vec{l}_{im} & \vec{l}_{im} & \vec{l}_{im} \end{bmatrix} \vec{\theta}$$
Now write Equation (79) of Appendix A*

$$\frac{\partial \bar{T}}{\partial \dot{\theta}} = M_L \left\{ L \sum_{i=1}^{N} \dot{S}_i S(\theta + \hat{R}_L) + R_{Am} \dot{\theta} \right\} R_{Am}$$

$$+ M_V \left\{ L \sum_{i=1}^{N} \dot{S}_i C(\theta + \hat{R}_L) - R_{jm} \dot{\theta} \right\} \left\{ - R_{jm} \right\} + \bar{I}_{JB} \dot{\theta}$$

$$(47)$$

Rewriting Equation (96) of Appendix A*:

$$\frac{\partial \bar{T}}{\partial \hat{S}} = \sum_{n=n+1}^{\infty} m \ell^{2} \left\{ \sum_{i=1}^{\infty} \hat{S}_{i} \cdot c(\hat{S}_{n} - \hat{S}_{n}) + \frac{1}{2} \hat{S}_{n} \cdot c(\hat{S}_{n} - \hat{S}_{n}) \right\}
+ m \ell^{2} \left\{ \frac{1}{2} \sum_{i=1}^{\infty} \hat{S}_{i} \cdot c(\hat{S}_{n} - \hat{S}_{n}) + \frac{1}{3} \hat{S}_{n} \right\} + m_{p_{L}} \ell^{2} \left\{ \sum_{i=1}^{\infty} \hat{S}_{i} \cdot c(\hat{S}_{n} - \hat{S}_{n}) \right\}
+ M_{L} \left\{ \ell^{2} \sum_{i=1}^{\infty} \hat{S}_{i} \cdot s(\theta + \hat{S}_{n}) + \ell R_{L} m \hat{\theta} \right\} s(\theta + \hat{S}_{n})
+ M_{L} \left\{ \ell^{2} \sum_{i=1}^{\infty} \hat{S}_{n} \cdot c(\theta + \hat{S}_{n}) - \ell R_{\tilde{S}_{n}} \cdot \hat{\theta} \right\} c(\theta + \hat{S}_{n})$$
(48)

Langrange's equations for the system are:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\theta}}\right) - \frac{\partial T}{\partial \theta} = F_{\theta} \tag{49}$$

$$\frac{d}{dt}\left(\frac{\partial \bar{T}}{\partial \dot{g}}\right) - \frac{\partial \bar{T}}{\partial \dot{g}} = F_{g}. \tag{50}$$

*Reference 2

First derive the terms in Equation (49), Using Equation (47) the following term is formed.

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\theta}}\right) = M_{L}\left\{l\left[\sum_{i=1}^{N} \vec{S}_{i} \cdot s\left(\theta + \vec{S}_{i}\right) + \sum_{i=1}^{N} \vec{S}_{i} \left(\dot{\theta} + \dot{\vec{S}}_{i}\right) c\left(\theta + \vec{S}_{i}\right)\right] + R_{kim}\dot{\theta}\right\} R_{kim}$$

$$+ M_{V}\left\{l\left[\sum_{i=1}^{N} \vec{S}_{i} \cdot c\left(\theta + \vec{S}_{i}\right) - \sum_{i=1}^{N} \vec{S}_{i} \left(\dot{\theta} + \dot{\vec{S}}_{i}\right) s\left(\theta + \vec{S}_{i}\right)\right] - R_{jim}\dot{\theta}\right\} - R_{jim}\right\}$$

$$+ 1_{XB} \dot{\theta} \qquad (51)$$

From Equation (43)

$$\frac{\partial \overline{T}}{\partial \Theta} = M_{L} (\overrightarrow{V}^{G}, \overrightarrow{f}_{B}) \left[\frac{\partial \overrightarrow{V}^{G}}{\partial \Theta} \overrightarrow{f}_{B} + \overrightarrow{V}^{G}, \frac{\partial \overrightarrow{f}_{B}}{\partial \Theta} \right] + M_{V} (\overrightarrow{V}^{G}, \overrightarrow{L}_{B}) \left[\frac{\partial \overrightarrow{V}^{G}}{\partial \Theta} \overrightarrow{k}_{B} + \overrightarrow{V}^{G}, \frac{\partial \overrightarrow{k}_{B}}{\partial \Theta} \right]$$
(52)

From Equation (46)

$$\vec{\nabla}^{a} \cdot \vec{j}_{b} = \mathcal{L} \sum_{i=1}^{N} \vec{S}_{i} \cdot \vec{P}_{i} \cdot \vec{j}_{B} + \mathcal{R}_{a,m} \cdot \vec{\Phi}$$
 (53)

$$\vec{\nabla}^{4}\vec{r}_{B} = \mathcal{L} \stackrel{\text{def}}{\underset{\text{def}}{\sum}} \stackrel{\text{def}}{\underset{\text{def}}{\sum}} S(\omega + \hat{\xi}_{c}) + R_{Am} \stackrel{\text{def}}{\underset{\text{def}}{\sum}}$$
 (54)

$$\vec{\nabla}^{\alpha} \cdot \vec{k}_{\alpha} = \mathcal{L} \sum_{i}^{\beta} \dot{S}_{i} c(\theta + \hat{S}_{i}) - R_{i} m \dot{\theta}$$
 (55)

$$\frac{\partial V^{u}}{\partial \theta} = \left[R_{km} \frac{\partial J_{u}}{\partial \theta} - R_{jm} \frac{\partial J_{u}}{\partial \theta} \right] \dot{\theta} = \left[R_{km} \frac{\partial J_{u}}{\partial \theta} + R_{jm} \frac{\partial J_{u}}{\partial \theta} \right] \dot{\theta}$$
 (56)

$$\frac{\partial \vec{V}^{a}}{\partial \theta} \cdot \vec{j}_{B} = R_{0n} \dot{\theta} \tag{57}$$

$$\frac{\partial \vec{V}^{\alpha}}{\partial \theta} \cdot \vec{k}_{s} = R_{km} \dot{\theta} \tag{58}$$

$$\vec{V}^{\alpha}.\frac{\partial f_{\alpha}}{\partial \theta} = \int_{-\infty}^{\infty} \vec{S}_{i} c(\theta + \vec{S}_{i}) - \vec{R}_{jm} \dot{\theta}$$
 (59)

$$\vec{V}^{2} \cdot \frac{\partial \vec{k}_{0}}{\partial \theta} = \mathcal{L} \sum_{i=1}^{N} -\dot{\vec{y}}_{i} \, s(\theta + \vec{y}_{i}) - R_{km} \, \dot{\theta}$$
 (60)

Substitute Equations (53) to (60) into (52):

$$\frac{\partial \overline{T}}{\partial \theta} = M_{\star} \left[l \sum_{i=1}^{\infty} \overline{S}_{i} S(\theta + \overline{E}_{i}) + R_{\star} \dot{\theta} \right] \left[R_{jm} \dot{\theta} + l \sum_{i=1}^{\infty} \overline{S}_{i} c(\theta + \overline{E}_{i}) - R_{jm} \dot{\theta} \right]$$

$$+M_{\nu}\left[L\sum_{i=1}^{N}\vec{F}_{i}\cdot c(\theta+\vec{F}_{i})-R_{im}\dot{\theta}\right]\left[R_{km}\dot{\theta}-L\sum_{i=1}^{N}\vec{F}_{i}\cdot s(\epsilon+\vec{F}_{i})-R_{km}\dot{\theta}\right]$$

$$\tag{61}$$

$$\frac{\partial \bar{T}}{\partial \theta} = [M_{\bullet} - M_{\bullet}] \left[l^{2} \sum_{i=1}^{N} \dot{f}_{i} S(\theta + f_{i}) \sum_{i=1}^{N} \dot{f}_{i} L(\theta + f_{i}) \right]$$

$$+M_{\star} l R_{\star,m} \dot{\theta} \sum_{i} \dot{S}_{i} \cdot c(\theta + \hat{\Sigma}) + M_{v} l R_{j,m} \dot{\theta} \sum_{i=1}^{N} \dot{S}_{i} \cdot s(\theta + \hat{S}_{i})$$

$$(62)$$

Substituting Equations (51) and (62) into Equation (49) yields the final nonlinear balloon pitching equation. Note, F_{θ} is the same for both the nonlinear equation that follows, and Equation (1) which assumed small angular velocities. The expression for F_{θ} is given by Equation (7).

=
$$[M_{i}-M_{i}][l^{2}\sum_{i=1}^{N}\hat{S}_{i}S(\theta+\hat{S}_{i})\sum_{i=1}^{N}\hat{S}_{i}C(\theta+\hat{S}_{i})]$$

$$-M_{L} l R_{kn} \sum_{i=1}^{N} g_{i}^{2} c(\theta + g_{i}) - M_{V} l R_{kn} \sum_{i=1}^{N} g_{i}^{2} s(\theta + g_{i}) + F_{0}$$
(63)

Now consider the tether equation of motion (50). From Equation (48) it follows:

$$\frac{d}{dt} \left(\frac{2\pi}{d\hat{g}} \right) = \sum_{m=n+1}^{N} m \ell^{2} \left\{ \sum_{i=1}^{N} \hat{f}_{i} \cdot c(\hat{f}_{i} - \hat{f}_{i}) - \sum_{i=1}^{N} \hat{f}_{i} \cdot (\hat{f}_{i} - \hat{f}_{i}) \cdot s(\hat{f}_{i} - \hat{f}_$$

From Equation (43):

$$\frac{\partial \bar{T}}{\partial R} = \sum_{n=1}^{N} m(\vec{V}^{n} \cdot \frac{\partial \vec{V}^{n}}{\partial R}) + m_{p_{1}}(\vec{V}^{n} \cdot \frac{\partial \vec{V}^{p_{1}}}{\partial R}) + M_{p_{2}}(\vec{V}^{n} \cdot \frac{\partial \vec{V}^{p_{1}}}{\partial R}) + M_{p_{2}}(\vec{V}^{n} \cdot \vec{k}_{1})(\frac{\partial \vec{V}^{n}}{\partial R} \cdot \vec{k}_{1})$$

$$+ M_{p_{1}}(\vec{V}^{n} \cdot \vec{j}_{1})(\frac{\partial \vec{V}^{n}}{\partial R} \cdot \vec{j}_{2}) + M_{p_{1}}(\vec{V}^{n} \cdot \vec{k}_{1})(\frac{\partial \vec{V}^{n}}{\partial R} \cdot \vec{k}_{1})$$

$$(65)$$

From Equation (44):

$$\frac{\partial \vec{V}^{R^{*}}}{\partial \vec{S}_{n}} = \begin{cases}
-\hat{L} \cdot \hat{S}_{n} \cdot \hat{E}_{n} \\
\hat{U}
\end{cases}$$

$$m = n$$

$$0 \qquad m \leq n$$
(66)

$$\sum_{n=1}^{N} \vec{V}^{R,n} = -\hat{L}^{2} \sum_{n=1}^{N} \left[\sum_{i=1}^{N-1} \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} + \frac{1}{2} \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \right]$$

$$-\hat{L}^{2} \left[\sum_{i=1}^{N-1} \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \cdot \vec{k}_{i} \right]$$

$$(67)$$

From Equation (45);

$$\frac{\partial \vec{V}^{\rho_1}}{\partial \vec{I}_n} = -\vec{\mathcal{L}} \cdot \vec{I}_n \cdot \vec{I}_n \tag{68}$$

$$\vec{\nabla}^{n} \cdot \frac{\partial \vec{V}^{n}}{\partial \vec{L}} = -\hat{\mathcal{L}}^{2} \sum_{i=1}^{N} \hat{\vec{L}}_{i} \cdot \vec{L}_{i}^{i} \cdot \vec{L}_{i}^{i}$$
(69)

From Equation (4),

$$\frac{\partial \vec{V}^a}{\partial \vec{k}} = -\vec{k} \cdot \vec{k} \cdot \vec{k}$$
 (70)

$$\frac{\partial \vec{V}^{\alpha}}{\partial s} = -l \dot{s}_{\alpha} \left[-c \dot{s}_{\alpha} c \dot{\theta} + s \dot{s}_{\alpha} s \dot{\theta} \right]$$
 (71)

$$\frac{\partial \vec{V}^{\alpha} \cdot \vec{k}_{\theta}}{\partial f_{\alpha}} = -\mathcal{L} f_{\alpha} \left[\mathcal{L} f_{\alpha} S \theta + S f_{\alpha} C \theta \right]$$
 (72)

Substituting Equations (67), (69), (71), (72), (54), and (55) into Equation (65) yields.

$$\frac{\partial \bar{T}}{\partial g_{n}} = \mathcal{L}^{2} m \left\{ \sum_{n=n}^{N} \sum_{i=1}^{N} \dot{g}_{i} \dot{g}$$

Substitute Equations (64) and (,) into Equation (50) to give the final nonlinear tether pitching equation. F_{3a} has already been found in Equations (8), (9) and (10).

$$\sum_{n=1}^{N} m \ell^{2} \left\{ \sum_{i=1}^{N} \vec{\beta}_{i} c(\vec{\beta}_{i} - \vec{\beta}_{i}) + \frac{1}{2} \vec{\beta}_{i} c(\vec{\beta}_{i} - \vec{\beta}_{i}) \right\} + m \ell^{2} \left\{ \frac{1}{2} \sum_{i=1}^{N} \vec{\beta}_{i} c(\vec{\beta}_{i} - \vec{\beta}_{i}) + \frac{1}{3} \vec{\beta}_{i} \right\} \\
+ m_{pl} \ell^{2} \sum_{i=1}^{N} \vec{\beta}_{i} c(\vec{\beta}_{i} - \vec{\beta}_{i}) + M_{l} \left[\ell^{2} \sum_{i=1}^{N} \vec{\beta}_{i} s(\theta + \hat{\beta}_{i}) + \ell R_{km} \vec{\theta} \right] s(\theta + \hat{\beta}_{i}) \\
+ M_{v} \left[\ell^{2} \sum_{i=1}^{N} \vec{\beta}_{i} c(\theta + \hat{\beta}_{i}) - \ell R_{j,m} \vec{\theta} \right] c(\theta + \hat{\beta}_{i}) \\
= \sum_{n=1}^{N} m \ell^{2} \left\{ \sum_{i=1}^{N} \vec{\beta}_{i} s(\hat{\beta}_{i} - \hat{\beta}_{i}) + \frac{1}{2} \vec{\beta}_{i} s(\hat{\beta}_{i} - \hat{\beta}_{i}) + m \ell^{2} \sum_{i=1}^{N} \vec{\beta}_{i} s(\hat{\beta}_{i} - \hat{\beta}_{i}) + M_{l} \ell^{2} \left[\sum_{i=1}^{N} - \vec{\beta}_{i} (\hat{\theta} + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) s(\theta + \hat{\beta}_{i}) \right] \\
+ m_{pl} \ell^{2} \sum_{i=1}^{N} \vec{\beta}_{i} s(\hat{\beta}_{i} - \hat{\beta}_{i}) + M_{l} \ell^{2} \left[\sum_{i=1}^{N} - \vec{\beta}_{i} (\hat{\theta} + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) s(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right] \\
- \sum_{i=1}^{N} \vec{\beta}_{i} \cdot \vec{\theta} s(\theta + \hat{\beta}_{i}) c(\theta + \hat{\beta}_{i}) \left[-\ell R_{km} \cdot \vec{\theta}^{2} c(\theta + \hat{\beta}_{i}) \right]$$

$$+M_{\nu}\{l^{2}[\sum_{i=1}^{n}\hat{S}_{i}(\dot{\theta}+\hat{S}_{i})s(\theta+\hat{S}_{i})c(\theta+\hat{S}_{n}) + \sum_{i=1}^{n}\hat{S}_{i}\dot{\theta}c(\theta+\hat{S}_{i})s(\theta-\hat{S}_{n}) - LR_{jm}\dot{\theta}^{2}s(\theta+\hat{S}_{n})\} + F_{S_{n}}$$
(74)

Now assume the tether is composed of three links (N = 3). Rewriting the balloon pitching Equation (63) gives:

$$\begin{aligned}
&\{I_{NB} + M_{L}R_{Am}^{2} + M_{V}R_{gm}^{2}\}\dot{\theta} \\
&+ L\{M_{L}R_{Am}S(\theta + S_{L}) - M_{V}R_{gm}C(\theta + S_{L})\}\dot{S}_{L}^{2} \\
&+ L\{M_{L}R_{Am}S(\theta + S_{L}) - M_{V}R_{gm}C(\theta + S_{L})\}\dot{S}_{L}^{2} \\
&+ L\{M_{L}R_{Am}S(\theta + S_{L}) - M_{V}R_{gm}C(\theta + S_{L})\}\dot{S}_{L}^{2} \\
&= [M_{L}-M_{V}][L^{2}\sum_{k=1}^{2}\dot{S}_{L}S(\theta + S_{L})\sum_{k=1}^{2}\dot{S}_{L}C(\theta + S_{L})] \\
&- M_{L}R_{Am}\sum_{k=1}^{2}\dot{S}_{L}^{2}C(\theta + S_{L}) - M_{V}LR_{gm}\sum_{k=1}^{2}\dot{S}_{L}^{2}S(\theta + S_{L}) + F_{0}
\end{aligned} \tag{75}$$

For N = 3 and r = 1, Equation (74) becomes:

$$\{M_{i}, l, R_{Am}, S(\theta+S_{i}) - M_{i}, l, R_{jm}, C(\theta+S_{i})\} \hat{\theta}$$

+ $l^{2} \{\frac{7m}{3} + m_{el}, +M_{i}, S^{2}(\theta+S_{i}) + M_{i}, C^{2}(\theta+S_{i})\} \hat{S}_{i}$

For N = 3 and r = 2, Equation (74) becomes:

$$\left\{ M_{L} \, l \, R_{Am} \, S(\theta + \beta_{3}) - M_{V} \, l \, R_{jm} \, c(\theta + \beta_{2}) \right\} \ddot{\theta}$$

$$+ l^{2} \left\{ \left[\frac{3m}{2} + m_{\rho_{L}} \right] c(\beta_{1} - \beta_{2}) + M_{L} S(\theta + \beta_{1}) S(\theta + \beta_{2}) + M_{V} \, c(\theta + \beta_{1}) c(\theta + \beta_{2}) \right\} \ddot{\beta}_{1}^{2}$$

$$+ l^{2} \left\{ \frac{4m}{3} + m_{\rho_{L}} + M_{L} S^{2}(\theta + \beta_{2}) + M_{V} \, c^{2}(\theta + \beta_{2}) \right\} \ddot{\beta}_{2}^{2}$$

$$+ l^{2} \left\{ \left[\frac{m_{L}}{2} + m_{\rho_{L}} \right] c(\beta_{2} - \beta_{3}) + M_{L} S(\theta + \beta_{2}) S(\theta + \beta_{3}) + M_{V} \, c(\theta + \beta_{2}) c(\theta + \beta_{3}) \right\} \ddot{\beta}_{3}^{2}$$

$$= m l^{2} \left\{ \frac{1}{2} \dot{\beta}_{1}^{2} S(\beta_{1} - \beta_{2}) + \frac{1}{2} \dot{\beta}_{2}^{2} S(\beta_{3} - \beta_{2}) \right\} + m_{\rho_{L}} l^{2} \dot{\sum}_{i=1}^{2} \dot{\beta}_{i}^{2} S(\beta_{i} - \beta_{2})$$

+
$$[M_{V}-M_{L}]L^{2}\{s(\theta+\beta_{2})\sum_{i=1}^{3}\hat{s}_{i}^{2}\delta c(\theta+\beta_{2})+C(\theta+\beta_{2})\sum_{i=1}^{3}\hat{s}_{i}^{2}\delta s(\theta+\beta_{2})\}$$

+ $M_{V}L^{2}c(\theta+\beta_{2})\sum_{i=1}^{3}\hat{s}_{i}^{2}s(\theta+\beta_{2})-M_{L}L^{2}s(\theta+\beta_{2})\sum_{i=1}^{3}\hat{s}_{i}^{2}c(\theta+\beta_{2})$

For N = 3 and r = 3, Equation (74) becomes:

$$= \mathcal{L}^{2} \left[\frac{m}{2} + m_{p_{\perp}} \right] \sum_{i=1}^{2} \dot{f}_{i}^{2} S(\dot{f}_{i} - \dot{f}_{i})$$

$$-\mathcal{L}[M_{i}R_{km}c(\theta+\beta_{3})+M_{i}R_{jm}s(\theta+\beta_{3})]\dot{\theta}^{2}+F_{g_{i}}$$
(78)

SECTION IV

LATERAL EQUATIONS OF MOTION FOR SMALL ANGULAR VELOCITIES

Sections II and III considered the equations of motion of a tethered balloon in the longitudinal plane. This section will consider the equations of motion of a tethered balloon when the longitudinal degrees-of-freedom are fixed at their equilibrium value and the system is allowed to move only in the lateral degrees-of-freedom. Figure 5 displays a front and top view of the tethered balloon. All angles are shown positive. The lateral degrees-of-freedom are: ψ (yaw of balloon), ϕ (roll of balloon), and σ_r (yaw of "r"th link).

FIGURE 5 - BALLOON TETHER MODEL IN LATERAL PLANE

The appropriate equations of motion are Equations (73), (86), and (108) of Appendix A of the Second Scientific Report*. These three equations will be rewritten below remembering that θ (pitch of balloon) and ζ_r (pitch of "r"t link) are constants. The first equation is the balloon yaw equation of motion.

The second equation is the balloon roll equation.

$$M_{s}\{l\sum_{i=1}^{2}\bar{\sigma}_{i}\left[c\bar{\sigma}_{i}\left(s\phi s\theta s\psi + c\phi c\psi\right) + s\bar{\sigma}_{i}c\}\left(s\phi s\theta c\psi - c\phi s\psi\right) - s\bar{\sigma}_{i}s\}\left(-s\phi c\theta\right)\right] + \left[R_{sm}\left(-\dot{\psi}c\theta c\phi\right) - R_{sm}\left(-\dot{\psi}s\theta + \dot{\psi}\right)\right]\}\left\{-R_{sm}\right\} + \dot{\psi}\left[1_{y_{0}}\right] + \dot{\psi}\left[-I_{y_{0}}s\theta + I_{y_{2}}c\theta c\phi\right] = F_{\phi}$$

$$(80)$$

^{*}Reference 2

The equation for the tether link yaw equation of motion is given as follows:

In Equations (79), (80), and (81), there are several trig-nometric combinations of the balloon angles ψ , θ , ϕ . These terms are the elements of a matrix (Equation (51)) given in Appendix A of the Second Scientific Report*. The matrix (ϵ_{ij}) gives the relation between the balloon unit vectors and the inertia frame.

$$\begin{cases}
s\phi s\theta s\psi + c\phi c\psi & s\phi s\theta c\psi - c\phi s\psi & -s\phi c\theta \\
c\theta s\psi & c\theta c\psi & s\theta \\
-c\phi s\theta s\psi + s\phi c\psi & -c\phi s\theta c\psi - s\phi s\psi & c\phi c\theta
\end{cases}$$
(82)

The balloon yaw Equation (79) is rewritten as:

$$M_{S} \{ l \sum_{i=1}^{N} \vec{\sigma}_{i}^{T} \left[c\sigma_{i} \in_{i,i} + S\sigma_{i}^{T} c \cdot \theta_{i} \in_{i,2} - S\sigma_{i}^{T} S \cdot \theta_{i}^{T} \in_{i,3} \right] - R_{g,m} \in_{i,3} + R_{d,m} \in_{23} \right]$$

$$+M_{L} \{ l \sum_{i=1}^{N} \vec{\sigma}_{i}^{T} \left[c\sigma_{i} \in_{2,i} + S\sigma_{i}^{T} c \cdot \theta_{i}^{T} \in_{2,2} - S\sigma_{i}^{T} S \cdot \theta_{i}^{T} \in_{2,3} \right] \left[-R_{d,m} \in_{i,3} \right]$$

$$+M_{V} \{ l \sum_{i=1}^{N} \vec{\sigma}_{i}^{T} \left[c\sigma_{i}^{T} \in_{3,i} + S\sigma_{i}^{T} c \cdot \theta_{i}^{T} \in_{3,2} - S\sigma_{i}^{T} S \cdot \theta_{i}^{T} \in_{3,3} \right] \left[R_{j,m} \in_{i,3} \right]$$

$$+W_{V} \{ l - R_{j,m} \in_{3,3} + R_{d,m} \in_{2,3} \right]^{2} M_{S} + \left[-R_{d,m} \in_{i,3} \right]^{2} M_{L} + \left[R_{j,m} \in_{i,3} \right]^{2} M_{V}$$

$$+ c^{2} \theta \left[I_{XB} S^{2} \phi + I_{ZB} c^{2} \phi \right] + S^{2} \theta I_{YB} - S_{2} \theta c \phi I_{YB} \}$$

$$+ \tilde{\phi} \{ - R_{d,m} \left[-R_{j,m} \in_{3,3} + R_{d,m} \in_{2,3} \right] M_{S} - I_{YB} S \theta + I_{YB} C \theta c \phi \} - F_{V}$$

$$(83)$$

The balloon roll Equation (80) is rewritten as:

^{*}Reference 2

 $\begin{aligned}
&M_{S} \{ \sum_{i=1}^{N} \ddot{\sigma}_{i}^{*} \left[C\sigma_{i} C_{ii} + S\sigma_{i} C \xi_{i} \in \mathcal{I}_{i} - S\sigma_{i}^{*} S \xi_{i} \in \mathcal{I}_{i} \right] \left[-R_{km} \right] \} \\
&+ \ddot{\psi} \{ [-R_{jm} \in_{33} + R_{km} \in_{23}] [-R_{km}] M_{S} - I_{VB} SB + I_{VBB} CBCB \} \\
&+ \ddot{\phi} \{ M_{S} [R_{km}]^{2} + I_{VB} \} = F_{\phi}
\end{aligned} \tag{34}$

The tether yaw Equation (81) is rewritten as:

$$\sum_{n=1}^{N} m L^{2} \sum_{i=1}^{N} \ddot{\sigma}_{i} \left[c\sigma_{i} c\sigma_{i} + s\sigma_{i} s\sigma_{i} c(f_{n} f_{i}) \right] + \frac{1}{2} \ddot{\sigma}_{i} \left[c\sigma_{n} c\sigma_{n} + s\sigma_{n} s\sigma_{n} c(f_{n} f_{n}) \right] + \frac{1}{2} \ddot{\sigma}_{i} \left[c\sigma_{n} c\sigma_{n} + s\sigma_{n} s\sigma_{n} c(f_{n} f_{n}) \right] + \frac{1}{2} \ddot{\sigma}_{i} \left[c\sigma_{n} c\sigma_{n} + s\sigma_{n} s\sigma_{n} c(f_{n} f_{n}) \right] + \frac{1}{2} \ddot{\sigma}_{i} \left[c\sigma_{n} c\sigma_{n} + s\sigma_{n} c\sigma_{n} + s\sigma_{n} c\sigma_{n} c(f_{n} f_{n}) \right] + \frac{1}{2} \ddot{\sigma}_{i} \left[c\sigma_{n} c\sigma_{n} + s\sigma_{n} c\sigma_{n} + s\sigma_{n} c\sigma_{n} c\sigma_{n} + s\sigma_{n} c\sigma_{n} c\sigma_{$$

In order to solve Equations (83), (84), and (85), assume N=3. The balloon yaw equation is:

[{Ms [co, €a + 50, c\$, €12 - 50, 5\$, €13] [-Rjm €33 + Ram €23]

+ M, [co, 62, +50, Cf, 622-50, 58, 623] [- Rhom 6,3]

+M. Lco. 631 +50; cf. 632-50; Sf. 633 [Rjm En] 30;

+ [Ms [CO2 611 + SO3 c f2 612 - SO3 S F2 613] [- Rjm 632 + Rem 623]

+ M. [C V2 E2, + S V2 C & 2 E 22 - S V3 S 8, E2] [- Rum E13]

+Mu[coz 63, + Sos c 82 632 - Sos S 82 633][R; m 6,3] 63

+ L {Ms[co36++So3cf3612-So35f3613][-Rjm632+Rhm623]

+M. [co; E, +So; cf; E22- So; Sf, E2] [- Rem E1]

+Mv[co3 63, +so3 c 83 632 - so3 s 8, E17][Rim E13] } o5

+ [Ms [-Rgm E33 + R&m E23] + M. [-R&m E13] + Mv [Rgm E15]

+ c20 []xe S20 +]ze C20] + S20 [ye - S20 c4] yze } ~

+ [Ms[-Rgm E33 + Rbm E23][-Kbm]-Ivaso + Ivas coco } 4 = Fy

(86)

The balloon roll equation is

$$+ \left\{ M_{S} \left[R_{An} \right]^{2} + I_{VB} \right\} \ddot{\phi} = F_{+} \tag{87}$$

From Equation (85), three equations will be generated (one for each link) by assuming r=1, r=2, r=3 consecutively.

For r = 1,

$$+l^{2}\left[\left[c\sigma_{2}c\sigma_{1}+S\sigma_{2}S\sigma_{1}c(\xi_{1}-\xi_{2})\right]\left[\frac{3m}{2}+m_{Pl}\right]\right]$$

+Mv[coz E3, + Soz Cf. E32 - Soz Sf. E33][cor En+Sor, cf. E32 - Sor, Sf. E3] | 03

+l'{[co; co; +so; so; c(f,-f3)][=+mpl)

this cose, +503 ch3612-503543617 [cose, +50, ch, 612-50,54,613]

+M, [co; 6, +5 0, ch, 6,2-50, 5 \$, 6,2] [co; 6, +50, ch, 6,1-50, 5 \$, 62]

+My[co; 63+50; cf; 632-50; sf; 633][co; 63, +50; cf, 632-50; sf, 633] 16;

+ L{Ms[-Rjm E 33 + Rem E23][COT, E11+SOT, CB, E12-SOT, SP. E13]

+ M.[-RAME13][COTE2, +SOT (8, 622-SOTS 8, 623]

+Mv[Rjm E,3][co, E31+So, c 8, E32-So, S 8, E33] "

+L{Ms[-Ran][co, E,+so, cf, En -so, sf, En]} $\phi = F_{\sigma}$, (88)

For r = 2,

l'{[co, co, +so, soz (18,-8,)][3m + mai]

+Ms [co, E, +so, cf, E, -so, sf, E,] [co, E, +so, cf, E, -so, sf, E,]

+M. [CO, Cz, +50, C8, E22 -50, 5\$, E23] [CO, E2, +502 C\$2 E22 -503 5\$2 E23]

MIN (COT 6,1+50, Cf, 632-50, SF, 632) [CJ263,+502 cf2632-507: 8,633] } #,

+ l2 \ 4m + min + Ms [CO2 E11 + SO2 C P2 E13 - SO1 5 82 E13]2

+M. [cos 61 + 502 Cf2 622 - 502 Sf2 623] + M. [cos 63, +502 Cf2 632 - 502 Sf2 63]] 02

+l2 (LCO3 CV3 + SO3 SO2 ((\$ - \$3)][m + mp]

+Ms[co] E,+ 503 cf; E12 - 503 sf; E13][co] E1, + 502 cf2 E12 - 502 sf2 E13]

+M. [co362,+50] cf3 622-5035 f3 623][co262, +502 cf2622 · 5025 f2 623]

th, [co; E3, +50] co; E32-50] St, E32] [cozE3, +50] CozE3, +50] co;

+ L & Ms [-Rjm Ess + Rkm Ess] [CO2 En+ SO2 CP2 E12 - SO3 SP2 E13]

+M.[-RA. E13][LO2 E2, +ST. C. F. E22-ST. S. F. E23]

+M. [Rjm E13] [CO2 E31 +SO2 C \$2 E32 - SO2 S \$1 E32] 3

+ L{Ms[-R4m][CO2 En + SO2 C \$2 E12 - SO2 S\$2 E12]} \$ = F_12

(89)

For r = 3,

12 [co; co; +so; so; c(f; -f,)] [= + mpi]

+M.[Co, E, + So, cf, E12 - So, Sf, E1] [Co] En + So] cf, E12 - So] Sf, E13]

+M. [co, E2, +50, C9, E12-50, S\$, E2] [co; E2+50, C\$, E12-50; S\$, E2]

tm, [co, 63, +50, cp, 632-50, 58, 620] co; 63,+50; c8, 632-50; 583 633] 0;

+ P [[COZCO] + SOZ SOZ C(] - P.)][= + mpi]

+Ms[coz 6, +Sozc 8, 612- Soz 5 8, 613][coj 61, + 50j c 8, 612-503 5 83 613]

+M. [CO262, +SO2 CF2622- SOE SF2622] CO3 62: +SO3 C 8; 622- SO3 S 8; 623]

+M, (coz6, +5, cf, 6,2-50, 59, 6,3) (co; 6, +50, cf, 6,2-50,5 f, 6,3) 6

+l2 (= +mp1 + M5 (C T3 611 + S T3 C \$1 612 - 5 03 5 \$1 613)2

+M. LCO3 62+503 Cf, 612-503 Sf3 623] +M. [CO3 61, +SO3 Cf3 632-SO3 Sf3 632] 303

+ L {Ms [-Rjm Esz + Ram Ezz] [1.0; En + 50; CB; E12 - 50; SB, E13]

+M, [-Rem E13] [Co3 E21 + SO3 CP, E22- SO3 SP3 E23]

+
$$\mathcal{L}\left\{\dot{M}_{S}\left[-R_{Am}\right]\left[C\sigma_{S}\,\mathcal{E}_{H}+S\sigma_{S}\,C\,\mathcal{F}_{3}\,\mathcal{E}_{H}-S\sigma_{S}\,S\,\mathcal{F}_{3}\,\mathcal{E}_{I3}\right]\right\}\ddot{\phi}=F_{\sigma_{S}}$$
(90)

The generalized forces (F_{ψ} , F_{ϕ} , F_{σ_1} , F_{σ_2} , F_{σ_3}) were derived in Section V, Appendix A of the Second Scientific Report*. The following equations are taken from that section.

$$F_{\sigma} = \left[W_{\sigma} R_{L_{\sigma}} - L_{\sigma} R_{\sigma} \right] E_{13} + \left[-F_{\sigma S H} R_{L A} \right] E_{11} + M_{\sigma B}$$

$$(92)$$

$$+[D_{css}][c^2\sigma_s(c\sigma_s + s\sigma_s + s\sigma_s + s\sigma_s + c(f, -f_s)]]$$
(93)

$$+[D_{cs2}][C_2 C^2 \sigma_2] + [D_{cs3}][C^2 \sigma_3 (C \sigma_3 C \sigma_3 + s \sigma_3 s \sigma_3 C(F_s - F_s))]$$

$$(94)$$

$$F_{\sigma_{s}} = \mathcal{L}\left\{\left[L_{s} - W_{s} - \left(m_{\rho_{s}} + \frac{m}{2}\right)_{q}\right]\left[-S\sigma_{s}S_{s}\right] + \left[F_{8SA}\right]\left[C\sigma_{s}\right] + \left[D_{cs}\right]\left[C_{s}C^{2}\sigma_{s}\right]\right\}$$
(95)

The aerodynamic forces and moments are:

$$F_{BSA} = g_B S_B \left[C_{YB} + C_{Y\psi D} \left(\frac{d_B}{V_{BE}} \right) \dot{\psi} + C_{Y\psi D} \left(\frac{cl_B}{V_{BE}} \right) \dot{\phi} \right]$$
 (96)

^{*}Reference 2

$$M_{\Psi 8} = q_8 S_8 d_8 \left[C_{m8} + C_{m\Psi 8} \left(\frac{d_8}{V_{8R}} \right) \dot{\psi} + C_{m\Psi 8} \left(\frac{d_8}{V_{8R}} \right) \dot{\phi} \right]$$
 (97)

$$\mathcal{M}_{\phi\theta} = g_{\theta} S_{\theta} d_{\theta} \left[C_{L\theta} + C_{L\psi\theta} \left(\frac{d_{\theta}}{V_{\theta\theta}} \right) \dot{\psi} + C_{L\psi\theta} \left(\frac{d_{\theta}}{V_{\theta\theta}} \right) \dot{\phi} \right]$$
(98)

$$D_{CSL} = -\frac{1}{2} P_{CL} S_{CL} C_{OC} V_{CL} \dot{X}_{CL}$$
(99)

$$g_{B} = \frac{1}{2} P_{B} V_{BR}^{2} \tag{100}$$

$$V_{\partial R}^{2} = (\dot{x}_{B} - V_{qS})^{2} + (\dot{y}_{B} + V_{w})^{2} + (\dot{z}_{B} - V_{qV})^{2}$$
(101)

$$\Gamma_{B} = \int_{an}^{-1} \left(\dot{x}_{BR} / \dot{y}_{BR} \right) \tag{102}$$

$$\beta = \Gamma_{B} - \Psi \tag{103}$$

$$C_{n} = \frac{1}{3} \left(\frac{g_{Hn} + 2g_{Hn+1}}{g_{Hn} + g_{Hn+1}} \right) \tag{104}$$

As in the longitudinal dynamics, it is desirable to know the tension in the tether. This is done by summing forces at each hinge point. First consider the apparent inertia forces acting on the balloon along and normal to the centerline.

$$Q_{X6} = M_{S} \left[\ddot{X}_{0} \in_{H} + \ddot{Y}_{B} \in_{I2} + \ddot{Z}_{0} \in_{I3} \right]$$
 (105)

$$Q_{Y8} = M_{\perp} \left[\ddot{X}_{8} \dot{\xi}_{2} + \ddot{Y}_{8} \dot{\xi}_{22} + \ddot{Z}_{8} \dot{\xi}_{23} \right]$$
 (106)

$$a_{28} = M_{V} \left[\ddot{X}_{B} \, \epsilon_{31} + \ddot{Y}_{B} \, \epsilon_{32} + \ddot{Z}_{B} \, \epsilon_{33} \right] \tag{107}$$

In Equations (105), (106), and (107), X_B , Y_B and Z_B are inertia accelerations of the balloon: \mathcal{A}_{XB} , \mathcal{A}_{YB} , and \mathcal{A}_{ZB} are inertia forces in the positive direction of the balloon's lateral, longitudinal, and vertical axes. $\boldsymbol{\ell}_{ij}$ are elements of the matrix defined in Equation (82). Summing the apparent inertia forces in the lateral, longitudinal, and vertical directions gives:

$$\sum F_{x} = \mathcal{E}_{II} \mathcal{Q}_{xB} + \mathcal{E}_{2i} \mathcal{Q}_{yB} + \mathcal{E}_{3i} \mathcal{Q}_{2B} \tag{108}$$

$$\sum F_{y} = E_{12}Q_{y0} + E_{22}Q_{y0} + E_{32}Q_{20} \tag{109}$$

$$\sum F_a = \mathcal{E}_{13} \mathcal{Q}_{X0} + \mathcal{E}_{23} \mathcal{Q}_{Y0} + \mathcal{E}_{33} \mathcal{Q}_{20} \tag{110}$$

The forces acting on the balloon above the payload are:

$$\sum_{k} = F_{ssa} - T_{ss} \tag{111}$$

$$\sum F_{y} = T_{\theta H} - F_{\theta HA} \tag{13.2}$$

$$\sum F_2 = L_S - W_B + \overline{F}_{BVA} - T_{BV} \tag{113}$$

Now equate Equations (108), (109), and (110) with Equations (111), (112), and (113) respectively, and the following expressions for $T_{\rm BS}$, $T_{\rm BH}$, and $T_{\rm BV}$ are found.

$$T_{8p} = F_{8pp} + \left(E_{12} a_{x0} + E_{22} a_{y0} + E_{32} a_{20} \right) \tag{115}$$

If forces are summed at the payload location, the components of tension at the top of the tether results.

$$F_{CSN} = F_{SSA} - \left(E_{ll} Q_{SB} + E_{ul} Q_{YB} + E_{3l} Q_{ZB} \right) - m_{Pl} \dot{X}_{Pl}$$
 (117)

The vertical and horizontal forces on the "N"th link are the same as they were in the longitudinal dynamics program. The force in the lateral direction is given in Equation (99). In general for the "r"th link.

$$F_{cs,n-1} = F_{cs,n} - D_{cs,n} - m_i \chi_{cn}$$
 (120)

$$T_{r,i} = \sqrt{(F_{CS,r,i})^2 + (F_{CM,r,i})^2 + (F_{CM,r,i})^2}$$
 (123)

The tension at the winch is found by setting r = 1.

APPENDIX B

DYNAMIC RESPONSE INFUT AND OUTPUT DATA LONGITUDINAL AND LATERAL DYNAMIC SIMULATIONS CASES 1 THROUGH 40

SECTION I

INTRODUCTION

Appendix B consists of the input data used in making the computer run cases 1 through 40, and computer constructed plots of selected output variables for these cases.

Table B-1 lists input data for the longitudinal dynamic cases 1 through 23, and Table B-II lists the input data for the lateral dynamic cases 24 through 40. Tables B-III and B-IV list the balloon longitudinal and lateral static aerodynamic coefficients respectively.

Computer constructed plots (3 plots per case are included on each page) for cases 1 through 40 follow Table B-IV. The parameters plotted with respect to time are listed below.

Longitudinal Cases 1 through 23

Balloon pitch angle	
Link 3 pitch angle	Plot
Link 2 pitch angle	1
Link 1 pitch angle	
Tension at bridle	
Tension at winch	Plot
Balloon altitude	2
Balloon range	
Wind gust velocity	
Pitching velocity of balloon	Plot
Wind angle of attack	3
Relative velocity of balloon	

Lateral Cases 24 through 40

Balloon roll angle Balloon yaw angle Balloon yaw rate Balloon sideslip angle	Plot 1
Balloon lateral displacement Link 3 yaw angle Link 2 yaw angle Link 1 yaw angle	Plot 2
Wind gust velocity Relative velocity of Balloon Tension at bridle Tension at winch	Plot 3

Table B-1. Input Data for Longitudinal Cases

CLTDB Rad-1	1. 68		1.68	2.14		1.68	2.495
CMTDB Rad-1	-2.01		-2.01	·2. 61 ·2. 01		-5.01	-2.483 -2.483 -2.07 -2.07
Teth Ft	12,639	12,639 5,692 27,436		12,639	4,170	12,639	0.0488 11,060 0.0488 11,060 0.0433 11,274 0.0433 11,274
84	0.0342	0.0342	0.0208			0.0342	0.0488
ĕ	:	-:-					:
SB-W2/3 DB-W1/3 Ft ² Ft ²	39.15	39.15	42.17			39.15	1856.7 43.09
SB-w ^{2/3} Ft ²		1533	1778			1533	1856.7
£	0						
MAV	110.0	110.0 86.0	138.0	131.0	222 0	110.0	189.0 189.0 169.4 169.4
MAL Slugs	18.7	15.7	20.0	18.8	31.7 35.5	15.7	47.0 47.0 14.7 14.7
IXB Slug-Ft2	116,000	116,000	167,000	142,000	142,000	171,300	166,300 166,300 249,400 1
25 £3	80	708 183	1128	- 208	234 54 0	708	1260
MP.L Slugs	31 06	31.06	31.06	· 		<u> </u>	31.06
ងន	3942	3942	4928	4340	4720 5190	3942	4822
5 3	2157	2157	2665	2680	2877 3358	3157	2334 - 2334 2788 - 2788
Wind Profile	1001			1001	1007.		7000
Volume Ft 3	ğ	900K	75K 60K			хо	80K
Tail Config	Nominal		Nominal 81%	144Z Nominal			Nominal
Tether Type	o N	No lerd	Amgal Nolerd			T	Noiard
Altitude Feet	10.000	10,000	10,000	000 01	1,000	10.000	10,000
Belloon Type	3						ac — a
Run No	*	n 40 ~ 80 61	. 11	22 23	21 21	16 (Paylcad on Underside) 17 (Winch ac 5000 Feet)	18 19 20 23 23

Case 4A is identical to Case 4 except gust is applied vertically up in Case 4A rather than horizontally aft 40

Table B-I. (Continued)

e š	°																	
TTT	180.	e																
TOTC	·	_ 9																
DTP2	vi	»;								10.	٠ ن ه							
DTPI		-		 -				<u> </u>		۲,	-:							_
DT2 Sec	.i	- :			 .					٦.	٦,							
DT! Sec	ي	- vʻ						·		. 25	w.							
XIDDEG (I) I= 1, 2, 3 DEG	0.0												,					
THEDDE DEG	0.																<u>.</u>	
XIDEG (3) DEG	65. 4682	64. 0386	66. 5133	66.8154	710 9677	64. 5175	66.6907	81.0848	75, 5869	84. 1377	55,4645	69.4930	71, 7230	69. 3939	73,4503	72.9344	70.9483	74. 6215
XDEG (1) XDEG (2) DEG DEG	51. 5297	48. 2677	53, 9550	60.0976	62 2320	51, 1670	53 1029	71.4708	72. 2866	83, 6630	51, 5191	62.6544	64, 1700	59.9523	67, 3040	62.0587	58.4903	65.0961
1	41.6466	36.9724	45 0979	55, 3565	53 9520	41.6977	43 4984	57, 3521	69 8457	83.2441	41.6310	56 4410	58 5433	52. 7234	62 8254	53.9442	49,0389	58 0858
THE DEG DEG	8.5030	6.4289		5 2536	8.3106	10 9832	: 3693	2.9646	8. 7908	7,3067	8. 5076	8.5103	6.9577	4.9941	9. 1072	7.9176	5.9761	10.0287
RKB Ft	4.	-45.4	-45 4	4 5		-45 6	-44.9	-45.4	-45.4	-45.4	-45.4	-45.4	-38.5	-38.5	-38.5	-57.5	-57.5	2.1.5
RJB Ft	12.6	- 4.	10.9	10, 3	13.2	13.4	13.3	12.6	12.6	12.6	15.6	12.6	11.7	14.6	9.0	4.7	8.7	∞.
RKG Ft	-45.3	- 42.3	-42.3	-39.2	-45.6	-42.5	0 24-	-42.3	-41.4	-41.5	-28.9	-42,3	-34, 5	-34 5	-34.5	-54. 7	-54. 7	-54.7
P. F.	23.7	25.5	22.0	51.7	25. 1	23.8	25.4	23 7	8 87	57.2	21,3	23.7	17.0	19.9	14.3	18.4	9.27	7 4
RKA Ft	46.0	-46.0	-46.0	-42.1	-40.6	-46.0	-46.0	-46.0	.46.0	-46.0	-46.0		-38.6	-38.6	-38 6	-57.5	-57,5	-57.5
RJA Ft	6.7	8 5	5.9	4 è	8 9	6 80	4.5	6.7	3.7	6.7	7.6	6.7	9 4	12 3	6.1	5.5	3,7	-4.2
RKM Ft	4.6	-44.6	-44 6	-41.1	48.4	-44.6	4 + 4	-44.6	-44 2	-44. 1	-38.0	-41.6	-37.5	-37.5	-37.5	9 95-	- 56.6	-56.6
RJM Ft	9	- -;	17.9	16.9	2 0 2	19.5	5 7 2	19 6	21.4	6 07	20.7	9 61	23	24.2	9 81	18 3	5 22	14.6
Run No.	~ ∧ m 1	+ N -0	ts:	∞ σ	. 01	п В-	2	13	4.	15	to (Payload on Underside)	17 (Wirch at 5000 Feet)	81	5 -1	07	2.1	77	23

-

Table B-I. (Concinued)

TTG (1) TTG (2) TTG (3) T	Time (second TTG (2)	ime (second TTG (3)	- 1	ds) TTG (4)	TTG (5)	TTG (6)	Velocity (f	Velocity (feet per second) VVG (2) VVG (3) VV	et per sec VVG (3)	ond) VVG (4)	VVG (5)	VVG (6)
0.0 4,99 5,0 1000,	5,0		1000,				0.0	0.0	20.2	20.2		
7.0 7.01				7.01		1000.					0.0	0.0
15.0 15,01				15,01								
25.0 25.01				25 01								
						_ _						
15.0 15.01				15.01		1000.			20.2	20.2	0.0	0.0
								· · · · · · · · · · · · · · · · · · ·	15.7	15.7		
								 -	27.3	27.3		
									20.2	20.2		
												
									-			
							- 		8.0	8.0		
				·					13.6	13.6		
									7.1	7.1		
						·			20.2	20.2		
								-		- 		
												
							-		<u></u>		-	
						- , , .						
								-				
-		-	_				_	_	_			

Table B-II. Input Data for Lateral Cases

IXB Slugs Ft ²	116.000.	-				75, 000.	3,204,000.	167, 000.	104, 100	142,000	116,000	142, 460	159,400	166, 300	167,900	170,000	249,400
IYZB Slugs Ft ²	12, 500.	-			->-	8,200	296,000 3,	18,000	10,200	18, 600	12 503	13,400	14,500	3,900	7, 500	10, 700	10,500
IYB Slugs-Ft	26, 000.					17,000	771,000	40, 300	17,600	53, 900	25,000	35,800	39, 300	84,000	86, 200	68, 300	106, 500
IZB Slugs-Ft ²	119, 000.					75, 300.	3, 374, 000.	172,000.	106, 400.	145, 000.	119,000.	146,800.	164, 700.	173, 300,	187,000.	198, 700.	228,800.
WTC	708.		 		-	183.	8900.	1128.	708.		602.	234.	2. 0	1260,			1015,
MPL Slugs	31.06					46.58	18.63	31, 06			-	31.06	- <u>·</u>		-		•
LS Lb	3942.				-	3526,	23715.	4928	3211.	4340.	3942.	4740.	5190.	4822.	4832,	4842.	5016.
WB Lb	2157.	.			-	1627,	15624. 23715.	2665.	1970.	2680.	2157,	2877.	3358.	2334.	2408.	2476.	2788.
Wind Profile	100%						-			-	40%	100%				·	-
Volume Ft ³	90k					46K	500K	75K	60K				-	80K		v 	* -
Tail Conf	Nolard Nominal							-	81%	144%	Nominal			-	300%	300%	Nominal
Tether Type	Nolard						-	Amgal	Nolard								-
Altitude Tether FT Type	10, 000				-	2,000	20,000	10,000	+		-	4,000	1,000	16,000			-
Balloon Type	BJ		· · · · · · · · · · · · · · · · · · ·								•		-	VEE		-	GAC
Run. No.	24	25	97	27	8 7	67	30	₹ F	≈ 3-6	33	34	35	36	37	38	39	#0

Table "-II. (Continued)

RKB	-45.4		- . · · · · ·		-	-41.5	-92.0	-48.9	-45.6	-44.9	45 4	-45.4	-45.4	-38, 5	-38, 5	-38,5	-57.5
RJB	12.6		· <u></u>			10.3	31.9	13.2	13.4	13.3	12.6	12.6	12.6	11.7	11.7	11.7	4.7
RKG	-42.3				->-	-39.2	-84.7	-45.6	-42.5	-42.0	-42.3	-41.4	-41.5	-34, 5	-34,3	-33.9	-54.7
RJG	23.7	•				21.7	51.4	25. 1	23.8	25.4	23. 7	23.8	22, 5	17.0	17,5	18.1	18.4
RKA	-46.0				-	-42.1	-93.3	-49.6	-46.0	-46.0	-46.0	-46.0	-46.0	-38.6	-38.6	-38.6	-57.5
RJA	6.7				-	4.9	19.9	6.8	8.9	4.5	6.7	6.7	6,7	9.4	9.4	9.4	٠. س
RKM	-42.6					-39. 1	-85,8	-45,9	-43.2	-41.3	-42.6	-42,2	-42.2	-36.7	-36,0	-35,4	-55,0
RJM	20.5			-		17.8	47.2	21,7	18,3	24.7	20,5	22.3	21.8	13.7	13.8	14.0	16.2
XIO DEG (3) DEG	65, 4682			100 100	-	66,8153	67.6940	70,9677	64.5175	66.6907	81.0848	75, 5869	84, 1377	71, 7230	71.7906	71.8802	72.9344
XIO DEG (2) DEG	51, 5297					9260.09	48.4859	62,2320	51, 1670	53, 1029	71.4708	72.2866	83.6630	64.1700	64, 3656	64.5910	62.0587
X±0 DEG (1) XIO DEG (2) XIO DEG (3) DEG DEG	41.6466				···•	55, 3565	30.0426	53.9520	41.6977	43, 4984	57,3521	69.8457	83.2441	58, 5433	58, 8436	59, 1800	53,9442
THEODE DEG	8, 5030				-	5.2536	8.4342	8.3106	10,9832	7.3693	2,9646	8,7908	7,3067	6.9577	7 2213	7,5040	7.9:76
F.un No.	4 2	52	97	2.7	28	59	30	31	32	33	34	35	36	37	38	39	40

Table B-II. (Continued)

⊢ ¥	ö																<u>·</u>	_
TTT Sec	360.			- .		-			 ` _			-	720.	360.			-	-
TDTC	30.	9		_		-	30.	30.	60.	30,		•	.09	120.	30.			-
DTP2	٠,												-	50.	rų.			-
DTP1	1	-			•								-	.2	ť			-
DT2 Sec	1.		-			_							-	\$2.	ĭ			-
DT:	5.5							_	 -				-	\$2.0	2,			
CL.PHDB rad l	327								-	- 210	609	-, 327		-	85.00	3930	-, 4120	508
CLPSDB rad 1	-, 347									-, 280	- 484	-,347		-	-, 0212	+640	. 0810	-, 298
CNPHDB rad 1	2.122					t	_			960	e. 170	. 122		-	-, 0505	1010	-, 1615	ć. 3
CNPSDB rad 1	-2.31								-	-2.08	-2.67	-2.31		-	-, 482	784	-1,086	.2, 07
CYPHDB rad 1	. 142	_							•	104	524	. 142		-	950	801.	. 162	0.0
CY PSDB rad-1	1 79								-	1, 55	2.27	62 1	-	- ₹-,	43,	. 716	166.	1.94
MAS	115.0					•	98 0	0 069	143 0	107.0	140 0	115 0	د 1777	0 552	127 0	135 0	143.0	154.4
MAV	110 0					-	0 98	0 999	138 0	103 0	131 0	110.0	222.0	249.0	0 681		-	169 4
MAL	15 7					-	12.0	95 0	0 07	14 7	18 8	15 7	31 7	35.5	47 0		•	14. 7
ТЕТН FT	12639					-	7695	27436	11305.	12639	-	10740	4170.	970	11060		-	11274.
DC FT	. 0542					-	. 0268	9280	0.208	2450				-	.0488		+	. 0433
CDC	7.					- -			-			-						-
SB=♥ ^{2/3} DB= ♥ ^{1/3} Ff	39 15					-	35 83	76 97	42 17	39 15				-	43 09		-	-
SB= ¥ ^{2/3} Ff -	1533					-	1384	008 >	1778	1533				~	1850 7	_	-	-
R N O	47	52		,	1.7	20	7	30	3.1	32	3.3	Ž.	35	9,	٦,	ž.	39	07

Table B-II. (Continued)

TABLE B-III. LONGITUDINAL STATIC AERODYNAMIC COEFFICIENTS

Angle -Of -Attack	.ck	- 5	0	5	10	12	15	2.0	25
	S E	. 0137	. 0103	-, 0005	. 0044	0900°	0075	-, 0410	-, 0780
BJ	$G_{ m L}$	1100	. 0063	. 1368	, 2514	. 2991	. 3710	. 5100	. 6290
(Nominal)	$_{\mathrm{D}}^{\mathrm{C}}$. 1100	. 0764	. 0865	. 1133	. 1279	. 1527	. 2200	. 3000
	C	6600	. 0103	. 0231	. 0515	. 0615	. 0632	. 0532	. 0398
BJ	$_{ m C}^{ m T}$	0838	. 0063	. 1106	066i ·	. 2363	. 2925	. 4053	.4891
(81% : 1911)	$_{\mathrm{D}}^{\mathrm{C}}$. 1094	. 0764	. 0857	. 1103	, 1236	. 1460	. 2077	.2814
	S C	. 0490	. 0103	-, 0358	-, 0663	0798	-, 1135	-, 1824	2547
F 10	$^{ m C}_{ m T}$	-, 1528	. 0063	9621.	. 3369	. 4017	. 4993	.6810	. 8338
	$_{\mathrm{D}}^{\mathrm{C}}$. 1115	. 0764	. 0883	. 1198	. 1372	. 1672	. 2464	. 3402
	C	-, 010	. 030	. 103	.110	, 113	. 102	060.	. 022
VEE	CL	-, 400	0.0	.400	008.	026.	1.210	1.610	2.030
(Nomiral)	c_{D}	.150	.160	.170	. 230	, 265	.340	. 510	. 740
	Cm	070.	010	074	120	170	190	310	460
GAC	$^{ m C}_{ m I}$	240	0.0	. 210	380	, 450	. 560	. 830	1.080
(INOMINIAL)	$_{\mathrm{D}}^{\mathrm{C}}$. 195	. 085	060 .	. 100	. 110	. 140	. 230	, 390

TABLE B-IV. LATERAL STATIC AERODYNAMIC COEFFICIENTS

Sideslip Angle		-20	0	20
	Cy	. 7260	0.0	726
BJ (Nominal)	C _m	0366	0.0	. 0366
(Nominal)	C_1	1226	0.0	. 1226
	Су	. 646	0.0	-, 646
BJ (81% Tail)	C _{m:}	. 0279	0.0	0279
(61 / 1aii)	c ₁	. 0907	0.0	0907
	Cy	. 923	0.0	923
BJ (144% Tail)	$C_{\mathbf{m}}$	174	0.0	. 174
(144 /0 lall)	C ₁	193	0.0	. 193
	Cy	. 299	0.0	299
VEE (Nominal)	C _m	0014	0.0	.0014
(Nominal)	c _l	-, 002	0.0	. 002
	Cy	. 502	0.0	-, 502
VEE (200% Bottom	C _m	-, 154	0.0	, 154
Tail)	c_1	0471	0.0	. 0741
	C _y	. 706	0.0	706
VEE (300% Bottom	C _m	-, 3065	0.0	. 3065
Tail)	c	0768	0.0	, 0768
	Су	. 663	0.0	-, 663
GAC	C _m	-, 0768	0.0	, 0768
(Nominal)	c_{l}	1305	0.0	. 1305

LONGITUDINAL LYNAMILS OF TETMERED BALLOON
BLI NOMINAL . 10 SEC GUST .3>

CONGITUDINAL DYNAMICS OF TETMERED BALLOON BUILDING 10 SEC. GUST (3)

CONCITUDINAL DYNAMICS OF TETMERED BACKOON . BJ HOWINAL . 20 SEC. GUST (4)

BJ SOOK 10 SEC GUST (S)

LONG. TUD. NAL DYNAMILL OF TETHERED BILLOGY

82 SOO K & 10 SEC. GUST (8)

LONGITUDINAL DYNAMICS OF TETMENED BALLBON
WEE BOK. 10 SEC GUST. ALPT=7. (18)

CONCLUDENCE OF THE MEYOU BACKLONE.

VEE BOAT TO SEC OUS! AND T

.

LATERAL DYNAMICS OF TETHERED BALLOON BI-NOMINALS SEC RAMP TO IBFPS, CASE 27

LAMEMAL DIRAMIL OF TOTMERED BAGICUN E NOMINAL J SEL RAME 12 (845) UNDER

LATERAL DYNAMICS OF TE JUYED BALLOON BU-HOMINALIZ FPS STEP GUST FOR 10 SEC. CASE 28

MATERAL DINAMILS OF TETMERED BALLOUN BU MOMINACIE fro SteP boot run to SEE LAGE to

EN ERAC GENAMI L'OF TETMENT L'EXACISOR. EL NOMENAC 3 SEC HAMP TO L'ETROJAMONO.

LA ERAL DIANN LUJU TE MEMELU BALLUUN BU 1447 MAIL AREA JOK FT NÜLARD 3 SEE RAMM TO JOEPE LASE 43

- a Aleman - Cinhami - Side Penger - Mari - Tin - En 144 - Tali - America et Novambro - El - Magner - - Paris Cara - -

LATERAL DEPART. IN EMERGED OF LOUR . <u>D.1. WOMLAK FT. 3 SEC HAMP 11 8 FP5. CA E 45</u>

LATERAL DYNAMIUS OF TETMERED BALLOUN VEE-BOT TAUL 10K FT 300L MAIL IR SEL RANP TO 12 YPS. LASE RA

