Introducción La leptospirosis es una enfermedad infecciosa bacteriana zoonósica causada por la bacteria Leptospira Este estudio propone un modelo matemático compartimental para analizar la transmisión de la leptospirosis y evalu-El informe está organizado como sigue: se formula el modelo matemático base (SEIR), se presenta su extensión con Formulación del Modelo SEIR Básico

Supuestos y condiciones iniciales

La población humana total, denotada como $N_{0,h}$, se divide en susceptibles (S_h) , expuestos (E_h) , infectados (I_h) y recup La transmisión ocurre por contacto con roedores infectados o ambientes contaminados.

La población de roedores incluye susceptibles (\$S_v\$), infectados (\$I_v\$) y recuperados (\$R_v\$).

Existe una población ambiental de bacterias patógenas \$B_1\$.

Compartimentos y diagrama

Ecuaciones diferenciales

El sistema completo de ecuaciones diferenciales es: $dS_h \frac{d}{dt = \Lambda + \gamma R_h - \lambda_h S_h - \mu S_h \frac{dE_h}{dt}} = \lambda_h S_h - (\theta + \mu) E_h \frac{dI_h}{dt} = \theta E_h - (\alpha + \delta + \mu) I_h \frac{dR}{dt}$

$$\begin{aligned} &\mathrm{d}S_v \frac{\mathrm{d}I_v}{\mathrm{d}t = \Pi + \rho R_v - (\beta_3(t)I_h + \mu_v)S_v \frac{\mathrm{d}I_v}{\mathrm{d}t}} = \beta_3(t)I_hS_v - (\sigma + \mu_v)I_v \frac{\mathrm{d}R_v}{\mathrm{d}t} = \sigma I_v - (\rho + \mu_v)R_v} \\ &\mathrm{d}B_l \frac{\mathrm{d}I_v}{\mathrm{d}t = \tau_1I_h + \tau_2I_v - \mu_bB_l} \end{aligned}$$

 S_h, E_h, I_h, R_h : humanos susceptibles, expuestos, infectados y recuperados.

 S_v, I_v, R_v : roedores susceptibles, infectados y recuperados.

 B_l : bacterias patógenas en el ambiente.

 λ_h : fuerza de infección humana, dependiente del tiempo y del ambiente.

En el modelo, la fuerza de infección humana se define como:

donde λ_h representa la tasa instantánea a la que los susceptibles humanos se infectan, considerando tanto la transmisión Valor promedioU Parámetro Descripción

		<u> </u>		
Parámetros y criterios poblacionales [H]	Λ	Tasa de reclutamiento humana	$\mu \times N_{0,h}$	hu
	Π	Tasa de reclutamiento de roedores	2	roe
	$\beta_{1,m}$	Transmisión roedor-humano (promedio)	0.00033	1/
	$eta_{2,m}$	Transmisión ambiente-humano (promedio)	0.0815	1/
	$\beta_{3,m}$	Transmisión humano-roedor (promedio)	0.0007	1/
	γ	Pérdida de inmunidad humana	0.089	1/
	μ	Mortalidad natural humana	0.0009	1/
	μ_v	Mortalidad natural roedores	0.0029	1/
	μ_b	Mortalidad bacterias	0.05	1/
	θ	Progresión expuesto a infectado	0.092	1/
	α	Mortalidad por enfermedad	0.04	1/
	δ	Recuperación humana	0.072	1/
	ρ	Pérdida de inmunidad roedores	0.083	1/
	σ	Recuperación roedores	0.064	1/
	κ	Constante de saturación ambiental	10000	- '
	$ au_1$	Liberación de patógeno por humanos	0.06	ba
	$ au_2$	Liberación de patógeno por roedores	0.2	ba
[1] Engida H A Theuri D M Gathu	ngu D Gao	chohi J. Alemneh H. T. (2022). A Mathe	ematical Model	Anal

[1] Engida, H. A., Theuri, D. M., Gathungu, D., Gachohi, J., Alemneh, H. T. (2022). A Mathematical Model Anal [5] R. Paisanwarakiat and R. Thamchai, Optimal Control of a Lep- tospirosis Epidemic Model, Science Technology [6] A. Minter, F. Costa, H. Khalil et al., "Optimal control of rat- borne leptospirosis in an urban environment," From [29] H. T. Alemneh, "A co-infection model of dengue and leptospirosis diseases," Advances in Difference Equation [30] M. A. Khan, G. Zaman, S. Islam, and M. I. Chohan, "Optimal campaign in leptospirosis epidemic by multiple [31] M. A. Khan, S. Islam, S. A. Khan, I. Khan, S. Shafie, and T. Gul, "Prevention of leptospirosis infected vector Parámetros estacionales o dependientes del tiempo Las tasas de transmisión β_1 , β_2 y β_3 varían estacionalmente seg $\beta_i(t) = \beta_{i,m} \left[1 + A \cos \left(2\pi \frac{m(t) - t_{pico}}{12} \right) \right]$

$$\beta_i(t) = \beta_{i,m} \left[1 + A \cos \left(2\pi \frac{m(t) - t_{pico}}{12} \right) \right]$$
 donde:

 $\beta_{i,m}$: valor promedio anual de la tasa de transmisión (i = 1, 2, 3). A: amplitud estacional (0 < A < 1). Valores cercanos a 0 indican poca variación estacional en la transmisión, mientras m(t): mes correspondiente al día $t'(m(t) = \lfloor t/30 \rfloor \mod 12 + 1)$.

 t_{pico} : mes de máximo estacional. Por ejemplo, para la transmisión ambiente-humano:

Este mismo esquema se aplica a β_1 y β_3 .

Extensión del Modelo con Vacunación

Modificación del sistema y nuevas ecuaciones

Para modelar la intervención vacunal, se añade el compartimento V_h (humanos vacunados) y se modifica la dinámic Las ecuaciones modificadas y añadidas son:

$$\mathrm{d}S_h \frac{\mathrm{d}V_h}{\mathrm{d}t = \Lambda + \gamma R_h + \omega V_h - \lambda_h S_h - \mu S_h - \nu(t) S_h \frac{\mathrm{d}V_h}{\mathrm{d}t}} = \nu(t) \varepsilon S_h - (\omega + \mu) V_h$$

 $\frac{\mathrm{dS}_h}{dt = \Lambda + \gamma R_h + \omega V_h - \lambda_h S_h - \mu S_h - \nu(t) S_h \frac{dV_h}{dt} = \nu(t) \varepsilon S_h - (\omega + \mu) V_h}$ El resto de ecuaciones para roedores y ambiente permanecen igual que en el modelo base.

Donde:

 V_h : humanos vacunados.

 $\nu(t)$: tasa diaria de vacunación dinámica, definida abajo.

 ε : eficacia de la vacuna.