Сьогодні 21.11.2024

Υροκ №22

Тема 2. Хімічний зв`язок Природа хімічного зв`язку та електронегативність елементів

Повідомлення мети уроку

Ви зможете:

- зрозуміти сутність хімічного зв'язку;

- опанувати нове поняття електронегативність;
- зрозуміти, як структурні частинки речовини набувають завершеності зовнішнього енергетичного рівня;
 - самостійно обґрунтовувати природу хімічного зв'язку.

Мотивація навчальної діяльності

Хімічні елементи, які мають незавершений зовнішній енергетичний рівень хімічно активні і зустрічаючись з іншими хімічними елементами утворюють прості і складні речовини завдяки утворенню хімічних зв'язків.

Яким чином відбувається сполучення атомів різних хімічних елементів з утворенням нових речовин? Чому і як утворюються зв'язки між атомами? Ці питання були предметом роздумів багатьох поколінь учених. І тільки на основі знань про будову атома у ХХ ст. з'явилася теорія хімічного зв'язку.

Проблемне питання

Що примушує атоми сполучатися один з одним? Як пояснити, наприклад, що молекула водню H_2 і хлору Cl_2 складається із двох атомів, а не трьох, а молекула Гелію He_2 не існує? Чому одні атоми сполучаються між собою, а інші — ні? Чому деякі молекули стійкі, інші легко розпадаються, а треті взагалі ніколи не утворюються за жодних умов?

Поняття про хімічний зв'язок

Що ж це таке — хімічний зв'язок?

BCIM

Відповісти на питання вдалося тільки тоді, як було вивчено будову атома. У 1897 р. англійський фізик Дж. Дж. Томсон висловив припущення, що зв'язок має електричну природу і утворюється за рахунок зміщення чи переходу електронів від одного атома до іншого. Ця гіпотеза виявилася правильною.

Форми існування молекул

BCIM

pptx

Одноатомні молекули інертних газів

He Ar Xe Kr Ne

Молекули, утворені з кількох атомів одного елемента

Кисень Водень

Молекули, утворені з кількох атомів різних елементів. Н Сульфатна кислота

Поняття про хімічний зв'язок

Хімічний зв'язок — це взаємодія між атомами, молекулами, йонами, завдяки якій частинки утримуються разом.

В утворенні хімічного зв'язку головну роль відіграють неспарені електрони, які дістали назву валентних електронів.

Усі хімічні реакції супроводжуються руйнуванням одних хімічних зв'язків та утворенням інших.

Електронна природа хімічного зв'язку

Коли атом якого-небудь хімічного елемента утворює хімічний зв'язок з іншим атомом, його зовнішній енергетичний рівень стає завершеним. Як ви вже знаєте, завершеним зовнішнім енергетичним рівнем називається енергетичний рівень з 8 електронів (для Гідрогену та Гелію — із двох). Виходячи з цього, у теорії хімічного зв'язку є правило октету (латинською мовою окто — «вісім»):

Утворюючи хімічний зв'язок, атом досягає завершеного (8-електронного) складу зовнішнього енергетичного рівня (є окремі винятки).

Завершеність зовнішнього енергетичного рівня досягається кількома способами.

Вивчення нового матеріалу

Хімічний зв'язок утворюється за рахунок перекривання орбіталей різних атомів і за рахунок взаємодії неспарених електронів цих атомів.

Умови виникнення хімічного зв'язку

Основна причина утворення зв'язку між атомами — їх прагнення утворити стійку електронну конфігурацію зовнішнього енергетичного рівня. Таким рівнем можна вважати восьми-електронний завершений рівень ns²np⁶, наприклад у інертних елементів.

Це твердження називають правилом октету Льюїса (від латинського слова окто — вісім), оскільки атоми всіх інертних елементів (крім Гелію) містять на зовнішньому рівні по вісім електронів.

При утворенні спільної електронної пари двома атомами різних хімічних елементів один з них притягує її сильніше, ніж інший. Тому для розуміння змісту хімічного зв'язку між атомами різних хімічних елементів введено таке поняття, як електронегативність.

Сьогодні

Електронегативність

<u>Електронегативність</u> – це властивість атома елемента у молекулі чи кристалі притягувати до себе електрони.

Знаючи електронегативність атомів елементів, можна передбачити, до якого атома зміщуватимуться електрони, які утворюють спільну електронну пару.

Хімічні факти

Уперше шкалу електронегативностей елементів розробив американський хімік Лайнус Полінг (1932 р.). Він виявив загальну тенденцію зміни електронегативностей елементів у періодичній системі:

у періодах електронегативність елементів зростає зліва направо, а в групах — знизу вгору.

Типи хімічного зв`язку

Сьогодні

Вивчення нового матеріалу

При утворенні хімічного зв'язку зовнішні електронні шари атомів набувають електронної конфігурації найближчого інертного елемента із восьми електронів (з 2-х у Гелію).

З історії хімії

Умови виникнення хімічного зв'язку визначив американський хімік Гилберт Льюис, який у 1916 р. запропонував електронну теорію хімічного зв'язку.

Формулюємо висновки

Атоми можуть досягати завершеної будови зовнішніх енергетичних рівнів трьома способами:

- а) віддаючи електрони;
- б) приєднуючи електрони;
- в) утворюючи спільні електронні пари.

При утворенні хімічного зв'язку зовнішні енергетичні рівні атомів набувають електронної конфігурації атомів найближчого інертного елемента, яка є стійкою та енергетично вигідною.

Робота в зошиті

Робота в зошиті

Запишіть символи наведених хімічних елементів за зростанням їх електронегативності: Алюміній, Сульфур, Карбон, Гідроген.

Відповідь: Алюміній, Гідроген, Карбон, Сульфур.

Робота в зошиті

Поясніть, чому електронегативність атомів інертних елементів дорівнює нулю.

Тому що у інертних елементів зовнішній енергетичний рівень — завершений, «чужі» електрони їм не потрібні.

Перевір свої знання

Сформулюйте визначення:

Хімічного зв'язку.

Електронегативності.

Розкажіть, у який спосіб структурні частинки речовини можуть набувати завершеності зовнішнього енергетичного рівня. Від чого це залежить?

Зазначте, який із двох елементів більш електронегативний:

- а) Нітроген й Оксиген;
- б) Нітроген і Гідроген;

в) Нітроген і Літій.

Домашне завдання

1. Підготувати проєкт:-Хімічні речовини навколо нас.-Хімічні знання в різні епохи.