

Final de Sistemas Operativos

27/05/2014

Nota:		

Apellido y Nombre	Profesor	Tomé conocimiento de la nota: (Sólo aplazos)

Preguntas teóricas			Ejercicios				
1	2	3	4	5	1.a	1.b	2

- A) Explícitamente defina como <u>VERDADERA</u> o <u>FALSA</u> cada una de estas afirmaciones <u>JUSTIFICANDO</u> su respuesta en no más de 3 líneas. Además realice la teoría y los ejercicios en hojas diferentes para una mejor corrección.
- 1) Al matar un proceso, sus procesos hijos y los hilos de dicho proceso deben finalizar sí o sí.
- 2) En un esquema de segmentación paginada, al tener direcciones más complejas, se puede direccionar menos memoria que en un esquema de paginación simple con direcciones de tamaño similar.
- 3) La ejecución de una llamada al sistema tarda más en un sistema operativo cliente servidor (microkernel) que en uno monolítico.
- 4) La instrucción de hardware "atomic_increment()" para incrementar en uno una variable no es suficiente para garantizar la atomicidad de las funciones de semáforos wait/signal
- 5) Agregar archivos en un directorio "A" nunca incrementa el tamaño de dicho archivo "A", por más que el usuario así lo perciba.

B) Práctica

Ejercicio 1: Un sistema operativo administra para sus usuarios 500 KB de memoria física, empleando segmentos paginados bajo demanda. El bus de direcciones es de 24 bits. Los frames tienen 4 KB de capacidad. Para las direcciones los bits de mayor orden se reparten en partes iguales entre los números de segmento y los números de página.

El programa Flip55 posee en total 8 segmentos. En determinado momento de su ejecución hace referencia a las siguientes direcciones hexadecimales: 36E07C 183093 FA01FF y 188FFF.

- a) ¿Qué segmento, página y desplazamiento representa c/u de esas direcciones?
- b) Si al segmento 6 del proceso el sistema operativo le asignó los frames: 45, 4, 7, 1, 15, 6, 8, 35, 0, 33, 21, 13 y 29. ¿Cuáles serían las direcciones físicas correspondientes a c/u de sus referencias? (expresarlas en decimal)

Ejercicio 2

Existen en un sistema los procesos P1, P2, P3 y P4, que utilizan un conjunto de semáforos inicializados de la siguiente manera: S1 = S2 = 0; MUTEX = 1. El pseudo-código es el siguiente:

P2	P3	P4
WAIT (MUTEX)	WAIT (MUTEX)	WAIT (MUTEX)
READ(X)	WAIT(S2)	WRITE(X)
SIGNAL (MUTEX)	WRITE(X)	SIGNAL (MUTEX)
SIGNAL(S1)	SIGNAL (MUTEX)	SIGNAL(S2)
	WAIT (MUTEX) READ (X) SIGNAL (MUTEX)	WAIT (MUTEX) WAIT (MUTEX) READ (X) WAIT (S2) SIGNAL (MUTEX) WRITE (X)

Cada operación atómica ocupa 2 ut de CPU, y las operaciones READ y WRITE tardan cada 1 ut de CPU para preparar la E/S y 5 ut en el dispositivo. Asumiendo que los procesos ya se encuentran en la cola de READY, se pide que indique cuales procesos finalizan mediante un diagrama de Gantt para los siguientes algoritmos:

- a) SJF sin desalojo
- Round Robin con quantum = 3ut, sabiendo que las operaciones sobre semáforos son atómicas mediante la deshabilitación de las interrupciones, y sabiendo que los instantes de llegada son: P1 < P2 < P3 < P4

Nota: ante situaciones de empate, se deberá elegir al proceso cuyo número sea menor.

El tiempo de duración del examen final será de 90' a contar desde el momento de comienzo del mismo. Si el alumno por algún motivo comenzara más tarde solo podrá utilizar el tiempo remanente.