eCHT course on Stable Homotopy Theory

Naren University of Kentucky Spring 2024

	Homotpy limits and colimits		
	1.1	Motivation	1
	1.2	Preliminaries	1
	1.3	Homotopy colimts	2
2	Stab	ple phenomenon of Spaces	2

1 Homotpy limits and colimits

1.1 Motivation

Notation: \mathcal{C} homotopical category. \mathcal{M} model category.

Usual limits colimts use 1-category structure. usual notion of colimits cannot be correct for topological structure.

colim : $Top \rightarrow Top$ is not homotopical functor.

We want to give a modern correct formulation for this. A cofibrant replacement in the correct sense.

1.2 Preliminaries

Definition 1.1. A left deformation of \mathbb{C} is an endofunctor

$$Q: \mathcal{C} \to \mathcal{C}$$

together with a natural weak equivalence

$$\eta: Q \xrightarrow{\cong} \mathrm{id}_{\mathcal{C}}$$

 \mathcal{C}_Q full subcat of \mathfrak{X} that contains image of Q.

in model cat \mathcal{C}_Q is the category of cofibrant objects.

Definition 1.2. A left deformation of a functor $F: \mathcal{C} \to \mathcal{D}$. is a left derived functor

$$q: Q \rightarrow id_{\mathcal{C}}$$

of \mathcal{C} and a choice of \mathcal{C}_Q such that F is homotopical on C_Q .

Example 1.3. If M is a model cat. F is left Quillen, then the cofibrant replacement is a left def of F by Ken Brown lemma

Example 1.4. M = CGWH. Fact: CW complexes are cofibrant.

Theorem 1.5. If $q:Q \implies id$ is a left def of $F:C \rightarrow D$, tehn

$$LF = FQ$$

is a left derived functor of F.

Proof. 2.2.8 Riehl □

1.3 Homotopy colimts

Let *J* be small cat

Definition 1.6. the homotopy colimit functor, if it exists, is a left derived functor

$$hocolim := \mathbb{L} colim : \mathcal{C}^J \to \mathcal{C}$$

of colim : $\mathbb{C}^J \to \mathbb{C}$.

To producte it find a left deformation functor Q of \mathcal{C} and consider FQ.

David's recap

We can compute the left derived functor of $F: C \to D$ between homotpical categories using a left def $Q: C \to C$, $q: Q \Longrightarrow 1$ such that $F|_{imO}$ is a homotpical functor by $\mathbb{L}F = FQ$.

In Top, Q is CW approximation in CH(R) Q is projective resolution

colim : $C^I \to C$ wher C^I homotopical cat with pointwise weak equivalence . Then we copmute hocolim = \mathbb{L} colim using a bar complex.

Homotopy pushouts: hocolim $Z \leftarrow X \rightarrow Y$ replace one of the morphisms with a cofibration. so the above is $\operatorname{colim}(QZ \leftarrow QX \rightarrow QY)$

you replace one of the objects with Q(-) and then use the cofibration factorization on the other. But in top you only need one of f and g to be made into cofibration.

L5 30/1

2 Stable phenomenon of Spaces

Spaces of interest -Top,Top,* These spaces are not closed under products, even for CW complexes. CGWH is a cateogry that satisfies these properties and we take these to mean spaces.

Definition 2.1. $(X, \cdot), (Y, \cdot) \in \text{Top}_*$ Define Y^X to be maps and F(X, Y) to be pointed maps equipped with compactopen topology.

Smash Product defined.

 (Top_*, \land, S^0) make a closed symmetric monoidal category. Internal hom = F(X, Y).

$$hom_{Top}(X \wedge Y, Z) \cong hom(X, F(Y, Z)). F(X \wedge Y, Z) \cong F(X, (Y, Z)).$$

$$\pi_0(F(X,Y),\star) \cong [S^0,F(X,Y)] \cong [X,Y]$$

If we choose $Y = S^1$, then we get $F(\Sigma X, Z) \cong F(X, \Omega Z)$. If you apply yne π_0 functor we get homootpy classes of maps bijection. in general $- \wedge Z \dashv F(-, Z)$

 ΣX is the pushout of $\star \leftarrow X \rightarrow \star$.

 ΩX is the pullback of $* \rightarrow X \leftarrow *$.

 ΩX is an H group. ΣX gives a co H group structure.

If Y is a H group then [-, Y] is a group. If X is a co gropu then [X, Y] is a group. So the loopspace suspension adjunction is an isomorphism.

If [X, y] for X co H group and Y H group, then [X, Y] is an abelian group.

Freudenthal Suspension Theorem

 Σ : $\pi_n(X) \to \pi_{n+1}(\Sigma X)$ is an isomorphism for $0 \le i \le 2n$ and epimorphism for i = 2n + 1.

 $\operatorname{colim}(\pi_{i+n+1(\Sigma^n X)}) = \pi_i^s(X)$ is the i^{th} stablehomotpy group. If we take X = Sp, it is called i^{th} stable stem.

 $\pi^*(S)$ is a graded ring, with graded commutative structure...

 $X \to \Omega \Sigma X$, is (2n + 1) connected if X is n-connected.

Define
$$QX = \text{colim}(X \to \Omega \Sigma X \to (\Omega \Sigma)^2 X \to \cdots) \pi_*(QX) = \pi_*^s(X)$$
.

Excision does nothold for $X = S^2$, $A = X\mathbb{N}$, B = X§ and $A \cap B = S^1$. then $\pi_3(A, A \cap B) \cong \pi_2(S^1) = 0$ and $\pi_3(S^2, B) \cong \pi_3(S^2) \neq 0$.

Excision holds for higher homtopy groups upto connectivity.

Theorem 2.2 (Blaker's Massey Excision). If $X = A \cup B$, $A \cap B \neq \varphi$ and A, C is m connected and (B, C) is n connected

$$\pi_i(A,C) \xrightarrow{i_*} \pi_i(X,B)$$

isomorphism for i < m + n and surjective for i = m + n.

Theorem 2.3. If

here *F* is the pullback of the inner square. his gives a version of van kampen.

Corollary 2.4. $X = *. Q \xrightarrow{g} Y \xrightarrow{c} PQ$ is m connected and g, n connected. Then hof ib $= FQ \rightarrow F$ is m + n connected

If X, Y are p, q, connected then $X \vee Y \rightarrow X \times Y$ is p + q + 1 connected.

Theorem 2.5. Hurewicz Theorem fsdafasjkdfhljkh