

Fig. 1a

$$H^{+}$$

Fig. 1b

 H^{+}
 OH^{+}
 OH^{+}

Mesomeric forms of p-benzosemiquinone. (a) anionic; (b),(c) neutral; (d) cationic.

Fig. 2

Band thin layer chromatography of the methanol solution after lyophilization (step 5) — Indicates the band of the cs-oxidant.

BEST AVAILABLE COPY

Fig. 3

HPLC profile the butanol extract after TLC. The cs-oxidant (step 6) eluted as a major peak at the retention time of 8.808 min. The amount of cs-oxidant eluted was \approx 12 μ g.

Fig. 4

HPLC profile of the pure cs-oxidant, eluted at the retention time of 8.808 min.

Fig. 5

Thin layer chromatography of the pure cs-oxidant ($R_f = 0.26$)

BEST AVAILABLE COPY

Fig. 6a

Fluorescence spectroscopic profile of the cs-oxidant in methanol. The excitation was at 293 nm and the emission scanning was measured from 300 nm to 800 nm. The emission maxima were at 329.6 nm and at 651.4 nm.

VELENGTH NDPASS NDPASS	224 nm 5 nm 5 nm	SCAN SPEED: RESPONSE	240 nm/min 2 sec		
	PEAK	VALLE	VALLEY		
329.6 nm	502.2	261.2 nm	0.524		
454.6 nm	41.39	228.6 nm	3.647		
405.4 nm	<i>3.563</i>	476.4 nm	<i>2.356</i>		
652.6 nm	121.2	527.6 nm	1.114		
	NDPASS NDPASS 329.6 nm 454.6 nm 405.4 nm	NDPASS 5 nm NDPASS 5 nm PEAK 329.6 nm 502.2 454.6 nm 41.39 405.4 nm 3.563	NDPASS 5 nm SCAN SPEED: NDPASS 5 nm RESPONSE PEAK VALLE 329.6 nm 502.2 261.2 nm 454.6 nm 41.39 228.6 nm 405.4 nm 3.563 476.4 nm		

Fig. 6b

Fluorescence spectroscopic profile of the cs-oxidant in methanol. The excitation was at 224 nm and the emission scanning was measured from 225 nm to 800 nm. The emission maxima were at 329.6 nm and at 652.6 nm.

	NDPASS INDPASS	5 nm 5 nm		EM WAVELENG SCAN SPEED: RESPONSE	240 nm/min
NO.		PEAK		VALLE	ΞY
1	228.2 nm		1115	252.4 nm	77.46
2	293.8 nm		1174		

Fig. 7a

Fluorescence spectroscopic profile of the cs-oxidant in methanol. The emission was at 330 nm and the excitation scanning was measured from 220 nm to 325 nm. The excitation maxima were at 228.2 nm and at 293.8 nm.

Fig. 7b

31.90

21.70

370.2 nm

642.0 nm

0.095

0.513

325.0 nm

597.0 nm

Fluorescence spectroscopic profile of the cs-oxidant in methanol. The emission was at 651 nm and the excitation scanning was measured from 220 nm to 650 nm. The excitation maxima were at 229.2 nm and at 294.8 nm.

BEST AVAILABLE COPY

Fig. 8

Crystal structure of the pure cs-oxidant

Fig. 9

UV spectrophotometric profile of the cs-oxidant in methanol. It has two absorption maxima, one at 293.4 nm and another at 223.0 nm.

Fig. 10

Stability of the solid oxidant kept at 25°C under darkness. The stability was determined by its capacity to oxidize ascorbic acid. Ascorbic acid was mesured by HPLC analysis at 254 nm.

Fig. 11

Standard curve of ascorbic acid based on HPLC analysis at 254 nm.

Fig. 12

Stability of the cs-oxidant in 50 mM potassium phosphate buffer at 25°C measured by its potency to oxidize ascorbate as evidenced by HPLC area.

Fig. 13

Quantitative reduction of ferricytochrome c by the oxidant as measured by the formation of ferrocytochrome c with time at 550 nm. The reaction was carried out in 50 mM potassium phosphate buffer, pH 7.4, keeping the final concentration of ferricytochrome c at 100 μ M. One nmole of the oxidant reduced 0.71 nmoles of ferricytochrome c.

Fig. 14

Standard curve of the oxidant on the basis of HPLC area at 294 nm. Different amounts of the cs-oxidant were used ranging from 10 ng to 100 ng in 20 μ l of mobile solvent.

Fig. 15

Standard curve of the oxidant on the basis of reduction of cytochrome c by using different amounts of the oxidant ranging from 1 μ g to 5 μ g.

Fig. 16

Mass spectrum of the pure cs-oxidant.

SCAN SPEED: 120.0 nm/min BANDPASS: 2.00nm

RESPONSE: MEDIUM

NO. PEAK VALLEY
1 293.8 nm 0.2443 Abs 253.0 nm 0.0137 Abs
2 224.2 nm 0.4837 Abs 214.4 nm 0.3979 Abs

Fig. 17

UV spectrophotometric profile of the hydroquinone in methanol. It has two absorption maxima, one at 293.8 nm and another at 224.2 nm.

SCAN SPEED: 120.0 nm/min

RESPONSE: MEDIUM

BANDPASS: 2.00nm

NO.	PEAK		VALLEY		
1	293.6 nm	0.2772 Abs	252.8 nm	0.0269 Abs	
2	224.4 nm	0.5476 Abs	214.0 nm	0.4314 Abs	

Fig. 18

UV spectrophotometric profile of the cs-oxidant stored at room temperature in dark for 8 days. The two absorption maxima are at 293.6 nm and at 224.4 nm.

SCAN SPEED: 120.0 nm/min

225.2 nm

RESPONSE: MEDIUM

BANDPASS: 2.00nm

2

NO. PEAK 1 293.8 nm 0.5855 Abs

VALLEY

263.4 nm 0.1407 Abs 209.6 nm 0.8263 Abs

Fig. 19

1.2232 Abs

UV spectrophotometric profile of equimolar mixture of p-benzoquinone and hydroquinone in methanol. There is a shoulder near 242 nm (the λ_{max} of p-benzoquinone).

CX WAVELENGTH CM BANDPASS CM BANDPASS		294nm 5 nm 5 nm	SCAN SPEED: RESPONSE	240 nm/min 2 sec
NO.		PEAK	VALLE	ΞΥ
1	329.4 nm	1000	300.2 nm	20.76
2	593.4 nm	<i>35.50</i>	564.6 nm	0.477
3	651.6 nm	<i>243.5</i>	684.2 nm	7.546

Fig. 20

Fluorescence spectroscopic profile of the hydroquinone in methanol. The excitation was at 294 nm and the emission scanning was measured from 300 nm to 800 nm. The emission maxima were at 329.4 nm and at 651.6 nm.

FTIR spectroscopic profile of the cs-oxidant.

FTIR spectroscopic profile of hydroquinone.

Fig.~24H-NMR spectroscopic profile of hydroquinone in CD $_3$ COCD $_3$.

Fig. 25Comparative H-NMR spectroscopic profiles of (a) cs-oxidant and (b) hydroquinone.

C-NMR spectroscopic profile of the cs-oxidant in CD₃COCD₃.

C-NMR spectroscopic profile of hydroquinone in CD₃ COCD₃.

Fig. 29

Room temperature ESR spectrum of cs-oxidant, freshly prepared from 100 cigarettes. The spectrum was recorded on a JES-REIX ESR spectrometer (Tokyo, Japan). The spectral parameters were as follows: microwave frequency, 9.435 GHz; power, 2mW; field modulation width, 0.4mT; modulated frequency, 100 kHz; time constant, 0.3 sec; scan rate, 2.5 mT/sec.

Fig. 30

Room temperature ESR spectrum of aged (10 days) cs-oxidant, prepared from 400 cigarettes.

7.175	
Ì	
8.813	
6.157	
2717	
7 11 1	
92.38	
9	
	713.367 4.117 16.75 982 8
30,00	20
86.	7.11.
	23.367
	\$14.113 \$16.75 \$17.982 19.008
	1 6

CHROMA SAMPLE I REPORT	NO	C-R6A 0 48		FIL ML	LE ETHOD	0 41	
PKNO 1 2 3 4 5 6 7 8 9	TIME 5.717 6.157 6.58 7.175 8.813 9.83 10.37 11.28 13.367	,	AREA 475376 317530 209664 708579 340583 99028 103590 178509 24236	MK V V V V V V	IDNO	CONC 19.0777 12.7431 8.4142 28.4366 13.6682 * 3.9742 4.1573 7.1639 0.9727	NAME
10 11 12	14.117 16.75 17.782 TOTAL	24	15200 9187 10303 	V		0.61 0.3687 0.4135 100	

Fig. 31

HPLC profile of the whole cs solution analyzed in the silica column (LiChrospher®Si 60, Merck).

* indicates the retention time, area and the concentration (13.6682%) of the cs-oxidant.

Fig. 32

HPLC profile of the aqueous extract of cs solution analyzed in the silica column (LiChrospher[®] Si 60, Merck).

* indicates the retention time, area and the concentration (27.2269%) of the cs-oxidant.

HPLC profile of the whole cs solution analyzed in the ODS column (Shim-pack CLC -ODS, Shimadzu). The cs-oxidant eluted at 13.467 min.

Fig. 34

HPLC profile of the pure cs-oxidant, analyzed in the CLC-ODS column (Shim-pack CLC-ODS, Shimadzu) eluted at the retention time of 13.458 min.

Fig. 35a

SDS-PAGE of the guinea pig lung microsomal proteins treated with whole cs solution and the cs-oxidant. Lane 1, untreated microsomes; lane 2, microsomes treated with 50μ l cs solution; lane 3, microsomes treated with 100μ l cs solution; lane 4, microsomes treated with 10μ g cs-oxidant; lane 5, microsomes treated with 20μ g cs-oxidant.

Fig. 35b

Densitometric scanning of the protein bands of different lanes as in Fig. 35a.