Презентация к курсовой работе

Реализация библиотеки параллельной записи больших файлов с вещественными числами в текстовом представлении

Нагорных Яна

Москва - 2018

Цели работы:

- Ускорить печать больших массивов без потери точности;
- Использовать быстрые алгоритмы печати целых чисел и чисел с плавающей точкой.

Возможные варианты улучшений:

- Применение более быстрых алгоритмов преобразования чисел в строки
- Использование многопоточного программирования
- Изменение формата вывода (отбрасывание лишних нулей, сокращенная запись повторяющихся чисел)

Хранение чисел

Число v с плавающей точкой по основанию bпредставляется в памяти как

$$v = f_v \times b^{e_v},$$

где основание b в стандарте IEEE 754 равно 2. f_{v} – целое значение или *мантисса*, а e_{ν} – показатель. Любая мантисса f может быть представлена как

$$f = \sum_{i=0}^{p-1} d_i \times b^i,$$

где $0 \le d_i < b$. Числа d_i – знаки числа.

Алгоритм Grisu

• Выражаем *v*:

$$v=\frac{f_v}{2^{-e_v}}.$$

• Десятичные цифры v могут быть вычислены путем нахождения десятичного показателя t, для которого

$$1\leqslant \frac{f_{\nu}\times 10^t}{2^{-e_{\nu}}}<10$$

.

• Идея Grisu состоит в кэшировании приблизительных значений дробей $\frac{10^t}{2^{e_t}}$.

Алгоритм Grisu2

- У Grisu есть существенный недостаток. Например, при значениях по умолчанию число 1 будет напечатано в виде 100000000000000000000=19.
- В отличие от Grisu алгоритм Grisu2 не генерирует полное десятичное представление, а просто возвращает значащие цифры и соответствующий показатель. Затем процедура форматирования объединяет эти данные для получения представления в требуемом формате.

- Grisu2 использует дополнительные флаги для создания более короткой выходной строчки.
- Также Grisu2 не будет работать с точными числами, а вместо этого будет вычислять аппроксимации m^- и m^+ ближайшие числа в памяти.

Результаты работы

 Во избежание ошибочных результатов, увеличивается диапазон, в котором, согласно алгоритму, может оказаться полученное число.

```
array[0] = 1;
                               1
                               1.2
array[1] = 1.2;
array[2] = 1.23;
                               1.23
array[3] = 1.23400000;
                               1.234
array[4] = 1.23456789;
                              1.23456789
array[5] = -1;
                               -1
array[6] = -1.234;
                              -1.234
array[7] = sqrt(2);
                              1.4142135623730952
array[8] = 1234e-36;
                              1.234e-33
array[9] = 0.000000123;
                               1.23e-7
array[10] = 0.123;
                               0.123
array[11] = 12.3;
                               12.3
array[12] = 123.000;
                               123
```

массив

выходной файл

Введение

Улучшения

- \bullet Если в массиве есть n подряд идущих одинаковых чисел с заданной точностью, то есть $\forall i: 1 \leq i < n$ верно, что $||x_i - x_{i-1}|| \le \varepsilon$, то сократим запись n чисел и вернем строку вида n*x.
- Запись целых чисел, означающих количество повторяющихся элементов массива, также можно ускорить. Суть алгоритма заключается в быстром логарифмировании числа по основанию 10.

Случайные числа

Размер		Число	потоков	Стандартная	Размер	
массива	6	4	2	1	печать	файла
	0.593	0.880	1.620	3.196	4.256	
107	0.562	0.841	1.612	3.239	4.176	245 MB
	0.530	0.802	1.502	3.052	4.188	
	2.571	4.044	7.812	15.37	22.47	
$5 \cdot 10^7$	2.634	4.273	8.214	16.30	21.11	1.2 GB
	2.689	4.179	7.822	15.32	20.89	
	5.219	8.276	15.67	32.46	41.71	
108	5.077	7.970	15.30	30.57	41.78	2.4 GB
	5.189	8.078	15.37	30.75	41.96	
	41.12	49.15	75.23	148.91	200.94	
$5 \cdot 10^{8}$	40.23	50.08	75.92	149.08	200.33	12 GB
	41.23	49.16	74.92	148.52	200.69	

Среднее ускорение работы алгоритма:

Размер	Число потоков					
массива	6	4	2	1		
10 ⁷	7.49	5.00	2.67	1.33		
$5 \cdot 10^7$	8.17	5.16	2.70	1.37		
10 ⁸	8.10	5.16	2.71	1.34		
$5 \cdot 10^8$	4.91	4.06	2.66	1.35		

Ускорение на одном потоке демонстрирует ускорение работы Grisu2 по сравнению со стандартной печатью.

Наглядно зависимость времени от числа потоков для массива размером 10^8 изображена на графиках.

Введение

Целые числа

Размер	Число потоков			Станд.	Размер		
массива	6	4	2	1	печать	файла	
	0.213	0.322	0.643	1.297	5.300		
10 ⁷	0.216	0.320	0.649	1.284	5.245	56 MB / 205 MB	
	0.219	0.337	0.650	1.321	5.312		
	1.052	1.664	3.319	6.362	27.93		
$5 \cdot 10^7$	1.069	1.675	3.334	6.375	29.46	295 MB / 1 GB	
	1.071	1.662	3.340	6.490	29.43		
108	2.057	3.374	6.618	12.61	55.04	590 MB / 2 GB	
	2.018	3.309	6.712	12.63	55.70		
	2.012	3.248	6.601	13.66	56.31		
	10.82	16.68	32.14	62.94	283.61		
$5 \cdot 10^8$	10.91	16.68	32.20	64.08	290.70	2.9 GB / 10 GB	
	10.15	16.45	32.09	64.12	287.54		

Введение

Размер файла, полученного с помощью нового алгоритма гораздо меньше размера файла, полученного стандартной печатью, так как отброшены лишние нули. За счет этого ускорение возросло:

Размер	Число потоков						
массива	6	4	2	1			
10 ⁷	24.47	16.19	8.17	4.06			
$5 \cdot 10^7$	27.20	17.36	8.69	4.51			
10 ⁸	27.44	16.82	8.38	4.29			
$5 \cdot 10^{8}$	27.03	17.30	8.93	4.51			

Повторяющиеся числа

Размер	Число потоков				Станд.	Размер	
массива	6	4	2	1	печать	файла	
	0.112	0.181	0.339	0.652	3.445	24 MB / 187 MB	
10 ⁷	0.109	0.159	0.310	0.604	3.322		
	0.119	0.168	0.329	0.661	3.460		
5 · 10 ⁷	0.521	0.843	1.630	2.983	16.91	123 MB / 936 MB	
	0.549	0.841	1.643	3.067	17.30		
	0.530	0.833	1.612	2.875	16.96		
108	1.178	1.748	3.343	6.056	36.19	245 MB / 1.8 GB	
	1.152	1.678	3.209	5.959	36.38		
	1.163	1.689	3.290	6.039	36.41		
5 · 10 ⁸	5.720	8.354	15.82	31.50	182.22		
	5.714	8.346	15.71	31.29	182.00	1.2 GB / 9.4 GB	
	5.816	8.418	15.92	31.69	183.52		

Результаты работы

За счет того, что все последовательности одинаковых подряд идущих чисел будут сворачиваться в короткую строку вида n*x, уменьшился файл и увеличилось ускорение.

Размер	Число потоков						
массива	6	4	2	1			
10 ⁷	30.08	20.13	10.46	5.33			
$5 \cdot 10^7$	31.98	20.32	10.47	5.74			
10 ⁸	31.20	21.31	11.07	6.03			
$5 \cdot 10^{8}$	31.75	21.81	11.54	5.80			

Огромные массивы случайных чисел

- Сравним стандартную печать и алгоритм, запущенный на 12 (+2) потоках.
- Помимо обычного запуска, проведем и запуск с записью не на диск, а в разделяемую память shared-memory.
- На следующем графике приведена зависимость времени работы от размера массива.

1 — стандартная печать с записью на диск; 2 — стандартная печать с записью в разделяемую память; 3 — алгоритм параллельной печати с записью на диск; 4 — алгоритм параллельной печати с записью в разделяемую память.

- В ходе тестирования была проверена точность работы реализованного алгоритма, а также измерено ускорение в сравнении со стандартной функцией печати.
- Написанная на языке C++ подпрограмма была внедрена в промышленный гидродинамический симулятор tNavigator.

Список использованной литературы

FLORIAN LOITSCH. Printing Floating-Point Numbers Quickly and Accurately with Integers, 2004.

Результаты работы

- WOJCIECH MUŁA. SSE: conversion integers to decimal representation, 2011.
- Богачев К.Ю.. Основы параллельного программирования. – М.: Бином. Лаборатория знаний, 2010.
- DAVID GOLDBERG. What every computer scientist should know about floating-point arithmetic. - ACM Computing Surveys, 23(1): 5-48, 1991.