安徽大学 2018—2019 学年第二学期 《高等数学 A (二)》期末考试试卷 (A 卷)

(闭卷 时间 120 分钟)

考场登记表序号

题号		=	四四	五	总分
得分					
阅卷人					

—、	填空题	(本题共五小题,	每小题 3分,	共	15 5	分	1
----	-----	----------	---------	---	------	---	---

得 分

- 1. 点 P(1,2,3) 到平面 x+2y-2z=1 的距离为_____
- 2. 极限 $\lim_{(x,y)\to 0} (x^2 + y^2) \sin \frac{1}{x^2 + y^2} = \underline{\hspace{1cm}}$

坳

- 3. 设 z = z(x, y) 是由方程 $xyz + \sqrt{x^2 + y^2 + z^2} = \sqrt{2}$ 确定的隐函数,且 z(1, 0) = -1. 则全微分 $dz|_{(1,0)} = \underline{\hspace{1cm}}$
- 4. 交换积分次序 $\int_0^1 dx \int_0^x f(x,y) dy + \int_1^2 dx \int_0^{\sqrt{2x-x^2}} f(x,y) dy =$ _______
- 聚 5. 设向量场 $F(x,y,z) = \{y^2,z^2,x^2\}$, M = (1,2,3). 则 $\operatorname{rot} F(M) =$ _______

二、选择题 (本题共五小题,每小题 2分,共10分)

得分

- 6. 设二元函数 f(x,y) 在点 (x_0,y_0) 的某个领域内有定义. 下列命题**正确**的是 ()
 - A. 若 f(x,y) 在点 (x_0,y_0) 处任意方向导数存在,则 f(x,y) 在点 (x_0,y_0) 处可微.
 - B. 若 f(x,y) 在点 (x_0,y_0) 处可微,则点 f(x,y) 在点 (x_0,y_0) 处任意方向导数存在.
 - C. 若 f(x,y) 在点 (x_0,y_0) 处偏导数存在,则点 f(x,y) 在点 (x_0,y_0) 处任意方向导数存在.
 - D. 若 f(x,y) 在点 (x_0,y_0) 处任意方向导数存在,则 f(x,y) 在点 (x_0,y_0) 处偏导数存在.

7.	设直线L的方程为一	$\begin{cases} x+y-2z=1, \\ 2x+y-4z=2. \end{cases}$	则直线 L	(

- A. 垂直于y轴. B. 平行于y轴. C. 垂直于x轴.
- D. 平行于x轴.

8. 设曲线
$$L: y = x^2, -2 \le x \le 2$$
. 则曲线积分 $\int_L e^y \ln(x + \sqrt{1 + x^2}) ds =$ ()

- B. e^{-2} . C. 0.

9. 设
$$\sum_{n=1}^{\infty} u_n$$
是正项级数. 下列结论中**正确**的是

- A. 若 $\lim_{n\to\infty} nu_n = 0$,则级数 $\sum_{n=0}^{\infty} u_n$ 收敛.
- B. 若存在非零常数 a,使得 $\lim_{n\to\infty} nu_n = a$,则级数 $\sum_{n=1}^{\infty} u_n$ 发散.
- C. 若级数 $\sum_{n=0}^{\infty} u_n$ 收敛, 则 $\lim_{n\to\infty} nu_n = 0$.
- D. 若级数 $\sum_{n=0}^{\infty} u_n$ 发散,则存在非零常数 a,使得 $\lim_{n\to\infty} nu_n = a$.
- 10. 函数 $y = \arctan x$ $(x \in [-1,1])$ 展开成 x 的幂级数为

A.
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!}$$
 B. $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{(2n-1)!}$ C. $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{2n-1}$ D. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$

三、计算题 (本題共五小題,每小題 9 分,共 45 分)

11. 计算三重积分 $\iiint (x+y+z) dx dy dz$,其中 V 是由曲面 $z=x^2+y^2$ 与平面 z=1 所围成的 闭区域.

题勿超

12. 计算第二类曲线积分 $\oint_L \frac{-y \, dx + x \, dy}{x^2 + y^2}$,其中 L 为正方形 ABCD 的边界,方向为逆时针方向,点 A,B,C,D 的坐标依次为 (1,1), (-1,1), (-1,-1), (1,-1).

13. 计算第二类曲面积分 $\iint_{\Sigma} z^2 dz dx$,其中 Σ 为锥面 $z = \sqrt{x^2 + y^2}$ 上满足 $x \ge 0$, $y \ge 0$, $z \le 1$ 的部分的上侧.

14. 设 f(x) 是周期为 2π 的周期函数,且 f(x) = |x|, $x \in (-\pi, \pi]$. 将 f(x) 展开成 Fourier 级数,并求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.

15. 设二元函数 z = f(x, y) 在点 (1,1) 处可微,且 f(1,1) = 1 , $f_x(1,1) = 2$, $f_y(1,1) = 3$. $g(x) = f(x,x), \quad h(x) = f(f(x,x),x). \quad \bar{x} \ g'(1) = h'(1) \text{ 的值}.$

得 分

16. 求函数 f(x, y, z) = 2x + y + 3z 在柱面 $x^2 + y^2 = 2$ 和平面 x + z = 1 的交线上的最大值与最小值.

新中

题勿超栽

纵

树

17. 设三角形铁皮 Σ 的顶点坐标分别为A(1,0,0),B(0,1,0),C(0,0,1) ,且面密度 $\rho(x,y,z)=z+1$. 求铁皮 Σ 的质量.

五、证明题(本题共两小题,每小题5分,共10分)

得 分

18. 证明:级数 $\sum_{n=2}^{\infty} \frac{(-1)^n}{n - \ln n}$ 条件收敛.

19. 设函数 y = f(x) 连续. 证明: $\iint_D f(x+y) dx dy = \int_{-1}^1 f(u) du$, 其中 $D = \{(x,y) | |x| + |y| \le 1\}$.