

C. from my equation in part a, so a more compact region would result in a larger In. and in the Rayleigh-Jean limit; So, brightness temperature would _(1) increase. d. The maximum brightness occurs at the peak wavelength which we can determine with wein's law, max = 0.290 cm C part 6 Amax = 0.290 00 1 = (=) 3.95×10 => 2 max = 7.34 × 10-9 cm = 0.0735 nm You would probably need an X-Ray telescope.

300		
-		
330		
- 100		
- 6		Let's calculate the initial intensity,
- 6		
		In(0)=Bn = 2(1.3×1015)3/c2
		ENC113×10,2) VESCA×103)
•		Iv(0)=5.45×10- erg.5'.cm2. HZ'.5+F'
- 10		1,(0)= 3,45×10 etg. 5. Cm. HE
		Back to the RTE solution,
		Back to the RTE solution, IN = IN(0) e - (QN+ON) D/2 IN = (5.45 × 10-9) e - (5.51×10 + 9.51×10-19)3.086×10/2
		IN=(5.45×10-9)e
		=> IN=1.25 × 10=9 erg.5'.CM2. HZ'. Str"
	1	
-		
-		
-		
2		
5	R	
5		
-		
100		
-		