INF2220 - Algoritmer og datastrukturer

HØSTEN 2015

Institutt for informatikk, Universitetet i Oslo

Forelesning 8: Grafer III

Dagens plan:

Dybde-først søk

Strongly connected components

Gjesteforelesning: "Grafalgoritmer på verdens største graf " av Torbjørn Morland

rettet graf & DFS

En rettet graf er sterkt sammenhengende hvis og bare hvis vi fra hver eneste node \mathbf{v} klarer å besøke alle de andre nodene i grafen ved et dybde-først søk fra \mathbf{v}

Strongly connected components (SCC)

partisjonere G i såkalt strongly connected components

Definition (SCC)

Gitt en rettet graf G=(V,E). En *strongly connected component* av G er en maksimal sett av noder $U\subseteq V$ s.t.: for alle $u_1,u_2\in U$ vi har at $u_1\to^*u_2$ and $u_2\to^*u_1$.

- Ide: G og G^t har den samme SCC's \Longrightarrow bruk dfs 2 ganger, en gang på G og en gang på den reverserte grafen G^t
- kompleksitet: lineær tid $\mathcal{O}(E+V)$

Strongly connected components (SCC)

partisjonere G i såkalt strongly connected components

Definition (SCC)

Gitt en rettet graf G=(V,E). En *strongly connected component* av G er en maksimal sett av noder $U\subseteq V$ s.t.: for alle $u_1,u_2\in U$ vi har at $u_1\to^*u_2$ and $u_2\to^*u_1$.

- Ide: G og G^t har den samme SCC's \Longrightarrow bruk dfs 2 ganger, en gang på G og en gang på den reverserte grafen G^t
- kompleksitet: lineær tid $\mathcal{O}(E+V)$

Ingrid Chieh Yu (Ifi, UiO)

1. DFS på G

- gjør en DFS traversering
- husker post-order
 (finished time stamp)

1. DFS på G

- gjør en DFS traversering
- husker post-order
 (finished time stamp)

1. DFS på G

- gjør en DFS traversering
- husker post-order
 (finished time stamp)

2. Reversere

reversere kantene til G og får G^t

3. DFS på G^t iterere DFS på G^t i avtagende rekkefølger!

Andre fase (1)

strongly connected components:

 $\{\}$

Andre fase (2)

strongly connected components:

 $\{\}$

Andre fase (3)

strongly connected components:

 $\{\}$

Andre fase (4)

Andre fase (5)

Andre fase (6)

Andre fase (7)

Andre fase (8)

Andre fase (9)

Andre fase (10)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (11)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (12)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (13)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (14)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (15)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (16)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (17)

$$\{\{G\}, \{H, J, I\}\}$$

Andre fase (18)

$$\{\{G\}, \{H, J, I\}, \{B, A, C, F\}\}$$

Andre fase (19)

strongly connected components:

$$\{\{G\}, \{H, J, I\}, \{B, A, C, F\}\}$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ からぐ

Andre fase (20)

$$\{\{G\}, \{H, J, I\}, \{B, A, C, F\}, \{D\}\}$$

Andre fase (21)

$$\{\{G\}, \{H, J, I\}, \{B, A, C, F\}, \{D\}\}$$

Andre fase (22)

$$\{\{G\},\{H,J,I\},\{B,A,C,F\},\{D\},\{E\}\}$$

Argument

Trenger å vise

v og w er i den samme DFS treet av G^t . Da har vi $v \longrightarrow^* w \longrightarrow^* v$

Argument

Trenger å vise

La x være roten av en dfs tre av G^t og 2 noder v og w i det samme treet av G^t . Da har vi at

$$x \longrightarrow^* v \longrightarrow^* x$$
 and $x \longrightarrow^* w \longrightarrow^* x$

- x er en rot
 - $\Rightarrow x \longrightarrow^* v \text{ in } G^t$
 - $\Rightarrow v \longrightarrow^* x \text{ in } G$
- x har høyere post-order nummer enn v
 - $\Rightarrow x$ ble ferdig senere enn v i den første dybde-først traversering av G
 - \Rightarrow v må være en etterkommer av x ellers vil v bli ferdig etter x.
 - \Rightarrow

$$x \longrightarrow^* v \in G$$

Oppsummering

Grafer: Oppsummering

- Implementasjon av grafer
- Topologisk sortering
- Korteste vei, uvektet graf
- Dijkstras alg. (korteste vei, vektet graf)
- Prim, Kruskal (minimale spenntrær)
- Dybde-først søk
- biconnectivity, SCC

Neste forelesning: 15. oktober

Kompleksitet og Algoritmeteori