MATH 518 Notes : Algebraic Geometry

Samy Lahlou

These notes are based on lectures given by Professor Eyal Goren at McGill University in Fall 2025. The subject of these lectures is **TODO**. As a disclaimer, it is more than possible that I made some mistakes. Feel free to correct me or ask me anything about the content of this document at the following address: samy.lahloukamal@mcgill.ca

Contents

Let k be an algebraically closed field (ex: $\mathbb{C}, \overline{\mathbb{Q}}, \overline{\mathbb{Q}_p}, \ldots$)

Definition. The affine n-space \mathbb{A}^n_k (or \mathbb{A}^n) is the set of all n-tuples in k (k^n without the ector space structure).

Definition. The ring $k[X_1, X_2, ..., X_n]$ is the ring of polynomials. It has a basis of monomials $X_1^{i_1}...X_n^{i_n}$ on which define $\deg(X_1^{i_1}...X_n^{i_n})$ as $i_1 + \cdots + i_n$. More generally, we define $\deg(f)$ where $f \in k[X_1, ..., X_n]$ as the maximum degree of the monomials that compose f.

Definition. An algebraic subset of \mathbb{A}^n_k is a set of the form

$$V(S) = \{ p \in \mathbb{A}_k^n : f(p) = 0 \ \forall f \in S \}$$

where S is a possibly infinite subset of $k[X_1, ..., X_n]$.

Example:

- When $k = \mathbb{R}$, we get that $V(x^2 + y^2 1)$ is the unit circle which is an algebraic subset of $\mathbb{A}^2_{\mathbb{R}}$. Similarly, $V(x^2 + y^2 z^2)$ is the an algebraic subset of $\mathbb{A}^3_{\mathbb{R}}$ which can be visualized as a double infinite cone.
- As a subset of $\mathbb{A}^2_{\mathbb{R}}$, the set V(xy) is simply the two axis and so it can be written as $V(x) \cup V(y)$. In this case, we say that V(xy) is reducible.
- $\bullet \ \mathbb{A}^n_k = V(0).$
- The subset V(x-a,y-b) is simply the point (a,b) in \mathbb{A}^2_k .
- Elliptic curves
- cubic curve with singularity: $V(y^2 x^3 x)$.

Proposition 0.0.1. 1. When $S_1 \subset S_2$, then $V(S_1) \supset V(S_2)$.

2. Given a set S, we can consider the ideal I(S) =