The Fourier Transform DD2423 Image Analysis and Computer Vision

Mårten Björkman

Robotics, Perception and Learning Division School of Electrical Engineering and Computer Science

November 8, 2021

Relation continuous/discrete Fourier transform

Continuous

$$\hat{\mathsf{f}}(\omega) = \int_{x \in \mathbb{R}^n} \mathsf{f}(x) e^{-i\omega^T x} dx$$

Discrete

$$\hat{\mathsf{f}}(u) = \frac{1}{\sqrt{M}^n} \sum_{x \in I^n} \mathsf{f}(x) e^{-\frac{2\pi i u^T x}{M}}$$

• Frequency variables are related (in 1D) by

$$\omega = \frac{2\pi u}{M}$$

- Note: u assumes values $0...M-1 \Rightarrow \omega \in [0,2\pi)$.
- By periodic extension, we can map this integral to $[-\pi,\pi)$.

More insight (2 pixel wide stripes)

- The maximum frequency which can be represented in the spatial domain are one pixel wide stripes (period=2): $\omega_{max}=2\pi\frac{1}{2}=\pi$
- So, 2 pixel wide stripes (period=4) give $\omega = 2\pi \frac{1}{4} = \frac{1}{2}\omega_{max}$
- Plotting magnitude of the Fourier transform:
 - Two points are halfway between the center and the edge of the image, i.e. the represented frequency is half of the maximum.
 - One point in the middle shows the DC-value (image mean).

More insight

• If you take the logarithm of the Fourier transform, you see many minor frequencies. Since an image can only be represented by square pixels, discretization noise appear along diagonals.

Example images and Fourier transforms

Observations:

- Translation only affects phase (not shown), not magnitude (shown)
- A rotation in one domain becomes a rotation in the other domain
- The Fourier transform is a linear operation

Example images and Fourier transforms

Exercise

Given a simple 4-pixel "image" f(m) = [3,2,2,1], what is its Fourier Transform $\hat{f}(u)$?

Exercise

Given a simple 4-pixel "image" f(m) = [3,2,2,1], what is its Fourier Transform $\hat{f}(u)$?

$$\hat{f}(u) = \frac{1}{\sqrt{M}} \sum_{m} f(m) e^{-\frac{2\pi i u m}{M}}$$

$$\hat{f}(0) = \frac{1}{2} \sum_{m} f(m) (1)^{m} = \frac{1}{2} (3 + 2 + 2 + 1) = 4$$

$$\hat{f}(1) = \frac{1}{2} \sum_{m} f(m) (-i)^{m} = \frac{1}{2} (3 + 2(-i) - 2 + 1(i)) = \frac{1}{2} (1 - i)$$

$$\hat{f}(2) = \frac{1}{2} \sum_{m} f(m) (-1)^{m} = \frac{1}{2} (3 - 2 + 2 - 1) = 1$$

$$\hat{f}(3) = \frac{1}{2} \sum_{m} f(m) (i)^{m} = \frac{1}{2} (3 + 2(i) - 2 + 1(-i)) = \frac{1}{2} (1 + i)$$

Property I - Separability

$$\hat{f}(u,v) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n) e^{-2\pi i (\frac{mu}{M} + \frac{nv}{N})}$$
(1)

$$\hat{f}(u,v) = \frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} \left(\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(m,n) e^{-2\pi i \frac{nv}{N}} \right) e^{-2\pi i \frac{mu}{M}}$$

$$f(m,n) = \frac{1}{\sqrt{M}} \sum_{m=0}^{M-1} (\frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \hat{f}(u,v) e^{2\pi i \frac{nv}{N}}) e^{2\pi i \frac{mu}{M}}$$

2D DFT can be implemented as a series of 1D DFTs along each column, followed by 1D DFTs along each row.

Property II - Linearity

$$\mathcal{F}\left[a\,\mathsf{f}_{1}(m,n)\,+\,b\,\mathsf{f}_{2}(m,n)\right)\right] = a\,\hat{f}_{1}(u,v)\,+\,b\,\hat{f}_{2}(u,v) \\ a\,\mathsf{f}_{1}(m,n)\,+\,b\,\mathsf{f}_{2}(m,n)) = \mathcal{F}^{-1}\left[a\,\hat{f}_{1}(u,v)\,+\,b\,\hat{f}_{2}(u,v)\right]$$

You can add two functions (images) or rescale a function, either before or after computing the Fourier transform. It leads to the same result.

Property III - Modulation

• If the original function is multiplied with an exponential like the one below and transformed, it will result in a shift of the origin of the frequency plane to point (u_0, v_0) .

$$\mathcal{F}\left[f(m,n)e^{2\pi i(\frac{mu_0}{M}+\frac{nv_0}{N})}\right]=\hat{f}(u-u_0,v-v_0)$$

• For $(u_0, v_0) = (M/2, N/2)$

$$e^{2\pi i(\frac{mu_0}{M}+\frac{nv_0}{N})}=e^{\pi i(m+n)}=(-1)^{m+n}$$

and

$$f(m,n)(-1)^{m+n} \iff \hat{f}(u-M/2,v-N/2)$$

• Conclusion: the origin of the Fourier transform can be moved to the center by multiplying the original function by $(-1)^{m+n}$.

Property III - Modulation/Frequency translation

From left: Original image, magnitude of the Fourier spectrum, original multiplied by $1 + \cos \omega y$ at a relative frequency of 16, magnitude of the Fourier spectrum.

Note: $1 + \cos \omega y = 1 + \frac{1}{2}e^{i\omega y} + \frac{1}{2}e^{-i\omega y}$.

Property IV - Translation

• If the image is moved, the Fourier spectrum undergoes a phase shift, but magnitude of the spectrum remains the same.

$$\mathcal{F}[f(m-m_0, n-n_0)] = \hat{f}(u, v)e^{-2\pi i(\frac{m_0 u}{M} + \frac{n_0 v}{N})}$$
$$|\hat{f}(u, v)e^{-2\pi i(\frac{m_0 u}{M} + \frac{n_0 v}{N})}| = |\hat{f}(u, v)|$$

Property V - Rotation

Rotation of the original image rotates \hat{f} by the same angle.

Exercise: Introduce polar coordinates and perform direct substitution.

Property VI - Scaling

$$A = \begin{pmatrix} S_1 & & \\ & \ddots & \\ & & S_n \end{pmatrix} \text{ (diagonal)}$$

$$g(x) = f(S_1 x_1, \dots, S_n x_n)$$

$$\hat{g}(\omega) = \frac{1}{|S_1 \dots S_n|} \hat{f}(\frac{\omega_1}{S_1}, \dots, \frac{\omega_n}{S_n})$$

Conclusion: compression in spatial domain is same as expansion in Fourier domain (and vise versa).

Property VII - Periodicity

 The DFT and its inverse are periodic with period N, for an N x N image. This means:

$$\hat{f}(u,v) = \hat{f}(u+N,v) = \hat{f}(u,v+N) = \hat{f}(u+N,v+N)$$

- This property defines the implied symmetry in the Fourier spectrum as well as that \hat{f} repeats itself infinitely.
- However, only one period is enough to reconstruct the original function f.

Property VIII - Conjugate Symmetry

- The Fourier transform satisfies $\hat{f}(u,v) = \hat{f}^*(-u,-v)$ and $|\hat{f}(u,v)| = |\hat{f}(-u,-v)|$.
- With periodicity and above, we have that \hat{f} has period N and is (conjugate) symmetric around the origin.

• Thus we don't need $2N^2$ (N^2 real and N^2 imaginary) values to represent a $N \times N$ image in Fourier domain, but N^2 if we exploit the symmetry.

Wavelength in two dimensions

• The wavelength of the sinusoid is: $\lambda = \frac{1}{\sqrt{u^2 + v^2}}$, where (u, v) are the frequencies along (r, c) and the periods are 1/u and 1/v.

Theorem 3

Multiplication in the spatial domain is same as convolution in the Fourier domain.

$$\mathcal{F}(\mathsf{hf}) = \mathcal{F}(\mathsf{h}) * \mathcal{F}(\mathsf{f})$$

Exercise: Prove it!

Transfer functions

- A linear, shift invariant system (such as a filter) is completely specified by it's response to an impulse, which is called the impulse response.
- The transfer function *H* is the Fourier transform of the impulse response.
- Using the convolution theorem to describe the effects of the system:

$$g(x,y)=h(x,y)*f(x,y)$$

$$G(u,v) = H(u,v) \cdot F(u,v)$$

Convolution with an impulse function

$$h(x,y)*\delta(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x_0,y_0)\delta(x-x_0,y-y_0)dx_0dy_0 = h(x,y)$$

results in a "copy" of h(x, y) to the location of the impulse

Transfer function examples

Transfer function examples

Transfer function examples

Example application: Image registration

Assume you have two noisy satellite (oh...) images that are shifted with respect to each other, can you determine how large the shift is?

A shift in spatial domain is a modulation in frequency domain:

$$f_2(x,y) = f_1(x - dx, y - dy) \Rightarrow F_2(\omega_x, \omega_y) = e^{i(\omega_x dx + \omega_y dy)} F_1(\omega_x, \omega_y)$$

We can get the modulation

$$R(\omega_x, \omega_y) = \frac{F_2^*(\omega_x, \omega_y)F_1(\omega_x, \omega_y)}{|F_2^*(\omega_x, \omega_y)F_1(\omega_x, \omega_y)|} = e^{-i(\omega_x dx + \omega_x dy)}$$

In spatial domain this just becomes a Dirac-function:

$$\mathcal{F}^{-1}(R(\omega_x,\omega_y)) = \delta(dx,dy)$$

Example application: Image registration

In this case, we can detect the peak of $\mathcal{F}^{-1}(R(\omega_x, \omega_y))$ at location $(\hat{dx}, \hat{dy}) = (17,3)$ (left image). However, we want sub-pixel accuracy.

- We can take the estimate (\hat{dx}, \hat{dy}) and shift $f_2(x, y)$ towards $f_1(x, y)$, and then repeat the process.
- The phase angle of $R(\omega_x, \omega_y)$ is $\angle R(\omega_x, \omega_y) = -(\omega_x dx + \omega_x dy)$, which is just a linear function (right image, excluding the highest frequencies).
- If we use least-squares minimization we can find this function and the updated parameters $(\hat{dx}, \hat{dy}) = (17.49, 3.24)$. Ground truth: (17.50, 3.25)

Our signals (images) are not in a continuous domain, but in a discrete.

- A continuous function f(x,y) (an image) can be sampled using a discrete grid of sampling points.
- The image is sampled at points $(j\Delta x, k\Delta y)$, with j = 1, ..., M and k = 1, ..., N, where is (M, N) is the size of the image in pixels.
- Here Δx and Δy are called the sampling interval.

Dirac (continuous domain) and Kronecker (discrete) delta functions.

Ideal impulse defined using Dirac distribution

$$\int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) dx dy = 1$$
and $\delta(x, y) = 0$ for all $x, y \neq 0$

• The 'sifting property' of the dirac function provides a value of the function f(x, y) at point (a, b)

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \delta(x-a,y-b) dx dy = f(a,b)$$

• The sifting property can be used to describe the sampling process of a continuous function f(x, y).

• The ideal sampling s(x, y) in the regular grid can be represented using a collection of Dirac functions δ .

$$s(x,y) = \sum_{j=1}^{M} \sum_{k=1}^{N} \delta(x - j\Delta x, y - k\Delta y)$$

• The sampled image $f_s(x, y)$ is the product of the continuous image f(x, y) and the sampling function s(x, y).

$$f_{s}(x,y) = f(x,y)s(x,y) = f(x,y)\sum_{j=1}^{M}\sum_{k=1}^{N}\delta(x-j\Delta x,y-k\Delta y) =$$
$$= \sum_{j=1}^{M}\sum_{k=1}^{N}f(j\Delta x,k\Delta y)\delta(x-j\Delta x,y-k\Delta y)$$

• Note: Sampling is not a convolution, but a product f(x,y)s(x,y).

Aliasing and anti-aliasing

- Sources of error during sampling:
 - Intensity quantization (not enough intensity resolution).
 - Spatial aliasing (not enough spatial resolution).
 - Temporal aliasing (not enough temporal resolution).
- Artifacts produced by under-sampling or poor reconstruction.
 Fine structures disappear and distort coarser structure.
- Anti-aliasing: sample at higher rate or prefiltering.
 Tools: Fourier transform, convolution and the Sampling Theorem.

Example: Aliasing

Example: Aliasing

Low pass filtering (blurring) important!

Nine survivors, 1 body removed from Cuban plane in Gulf of Mexico

Nine survivors and one body have been pulled from the wreckage of a Cuban airplane by a merchant ship in the Gulf of Mexico, about 60 miles (96 kilometers) off the western tip of Cuba, the U.S. Coast Guard said. The rescue at 1:45 p.m. Tuesday came a few hours after officials in Havana, Cuba, reported the Jolane hijakede.

FULL STORY #4

- Play related video: The sequence of events leading to the rescue ■
- Injured Cuban flown to Florida will be allowed to seek
- asylum
 Major features of Antonov An-2 planes
- Major features of Antonov An –2 planes
- History: <u>Leaving Cuba by air</u>
- Message Board: <u>U.S./Cuba relations</u>
- Message Board: Air safety

original

looks more pleasing

Sampling Theorem

- How many samples are required to describe the given signal without loss of information?
- What signal can be reconstructed given the current sampling rate?

Sampling Theorem

- A signal is band limited if its highest frequency is bounded. This frequency is called the bandwidth.
- The sine/cosine component of the highest frequency determines the highest "frequency content" of the signal.
- If the signal is sampled at a rate equal or greater to than twice its highest frequency, the original signal can be completely recovered from it samples (Shannon).
- The minimum sampling rate for band limited function is called Nyquist rate.

Reconstruction

Reconstruction

- For reconstruction, we need to convolve with a sinc function.
 - It is the Fourier transform of the box function.
 - It has infinite support.
- May be approximated by a Gaussian, cubic or even "tent" function.

Aliasing

- If the signal is undersampled, aliasing occurs.
- Prevent aliasing by:
 increasing sampling rate, or
 decreasing highest frequency before sampling. [blurring]

Summary of good questions

- How do you interpret a point in the Fourier domain in the spatial domain?
- How do you apply a discrete Fourier transform?
- What happens to the Fourier transform, if you translate an image?
- What happens to the Fourier transform, if you rotate an image?
- In what sense is the Fourier transform symmetric?
- How can a Dirac function be used to model sampling?
- What does the Sampling Theorem mean in practice?
- What can you do to get rid of aliasing in the sampling process?

Readings

• Gonzalez and Woods: Chapter 4.6-4.7

Szeliski: Chapter 3.4