Contents

1.	The Khinchin axioms for entropy	. 2
	1.1. Entropy axioms	. 2
	1.2. Properties of entropy	. 2
2.	A special case of Sidorenko's conjecture	. 7
3.	Brigner's theorem	. 9
4.	Shearer's lemma and applications	12
5.	The union-closed conjecture	17
	Entropy in additive combinatorics	

1. The Khinchin axioms for entropy

Note all random variables we deal with will be discrete, unless otherwise stated. We use $\log = \log_2$.

1.1. Entropy axioms

Definition 1.1 The **entropy** of a discrete random variable X is a quantity H(X) that takes real values and satisfies the **Khinchin axioms**: Normalisation, Invariance, Extendability, Maximality, Continuity and Additivity.

Axiom 1.2 (Normalisation) If X is uniform on $\{0,1\}$ (i.e. $X \sim \text{Bern}(1/2)$), then H(X) = 1.

Axiom 1.3 (Invariance) If Y = f(X) for some bijection f, then H(Y) = H(X).

Axiom 1.4 (Extendability) If X takes values on a set A, B is disjoint from A, Y takes values in $A \sqcup B$, and for all $a \in A$, $\mathbb{P}(Y = a) = \mathbb{P}(X = a)$, then H(Y) = H(X).

Axiom 1.5 (Maximality) If X takes values in a finite set A and Y is uniformly distributed in A, then $H(X) \leq H(Y)$.

Definition 1.6 The total variance distance between X and Y is

$$\sup_E |\mathbb{P}(X \in E) - \mathbb{P}(Y \in E)|.$$

Axiom 1.7 (Continuity) H depends continuously on X (with respect to total variation distance).

Definition 1.8 Let X and Y be random variables. The **conditional entropy** of X given Y is

$$H(X\mid Y)\coloneqq \sum_{y}\mathbb{P}(Y=y)H(X\mid Y=y).$$

Axiom 1.9 (Additivity) H(X, Y) := H((X, Y)) = H(Y) + H(X | Y).

1.2. Properties of entropy

Lemma 1.10 If X and Y are independent, then H(X,Y) = H(X) + H(Y).

Proof (Hints). Straightforward.

Proof. $H(X \mid Y) = \sum_{y} \mathbb{P}(Y = y) H(X \mid Y = y)$ Since X and Y are independent, the distribution of X is unaffected by knowing Y, so $H(X \mid Y = y) = H(X)$ for all y, which gives the result. (Note we have implicitly used Invariance here).

 \Box

Corollary 1.11 If $X_1, ..., X_n$ are independent, then

$$H(X_1,...,X_n) = H(X_1) + \cdots + H(X_n).$$

Proof (Hints). Straightforward.

Proof. By Lemma 1.10 and induction.

Lemma 1.12 (Chain Rule) Let $X_1, ..., X_n$ be RVs. Then

$$H(X_1,...,X_n) = H(X_1) + H(X_2 \mid X_1) + H(X_3 \mid X_1,X_2) + \cdots + H(X_n \mid X_1,...,X_{n-1}).$$

Proof. The case n=2 is Additivity. In general,

$$H(X_1,...,X_n) = H(X_1,...,X_{n-1}) + H(X_n \mid X_1,...,X_{n-1}),$$

so the result follows by induction.

Lemma 1.13 Let X and Y be RVs. If Y = f(X), then H(X,Y) = H(X). Also, $H(Z \mid X,Y) = H(Z \mid X)$.

Proof (Hints). Consider an appropriate bijection.

Proof. The map $g: x \mapsto (x, f(x))$ is a bijection, and (X, Y) = g(X), so the first statement follows from Invariance. Also,

$$\begin{split} H(Z\mid X,Y) &= H(Z,X,Y) - H(X,Y) \quad \text{by additivity} \\ &= H(Z,X) - H(X) \quad \text{by first part} \\ &= H(Z\mid X) \quad \text{by additivity} \end{split}$$

Lemma 1.14 If X takes only one value, then H(X) = 0.

Proof (Hints). Use that X and X are independent.

Proof. X and X are independent (verify). So by Lemma 1.10, H(X, X) = 2H(X). But by Invariance, H(X, X) = H(X). So H(X) = 0.

Proposition 1.15 If X is uniformly distributed on a set of size 2^n , then H(X) = n.

Proof. Let $X_1, ..., X_n$ be independent RVs, uniformly distributed on $\{0, 1\}$. By Corollary 1.11 and Normalisation, $H(X_1, ..., X_n) = n$. So the result follows by Invariance.

Proposition 1.16 If X is uniformly distributed on a set A of size n, then $H(X) = \log n$.

$$Proof\ (Hints)$$
. Straightforward.

Proof. Let $r \in \mathbb{N}$ and let $X_1, ..., X_r$ be independent copies of X. Then $(X_1, ..., X_r)$ is uniform on A^r , and $H(X_1, ..., X_r) = rH(X)$. Now pick k such that $2^k \le n^r \le 2^{k+1}$. Then by Proposition 1.15, Invariance and Maximality, $k \le rH(X) \le k+1$. So $\frac{k}{r} \le \log n \le \frac{k+1}{r}$ and $\frac{k}{r} \le H(X) \le \frac{k+1}{r}$ for all $r \in \mathbb{N}$. So $H(X) = \log n$, as claimed.

Theorem 1.17 (Khinchin) If H satisfies the Khinchin axioms and X takes values in a finite set A, then

$$H(X) = \sum_{a \in A} p_a \log(1/p_a) = \mathbb{E}\bigg[\log \frac{1}{P_X(X)}\bigg],$$

where $p_a = \mathbb{P}(X = a)$.

Proof (Hints).

- Explain why it is enough to prove for when the p_a are rational.
- Pick $n \in \mathbb{N}$ such that $p_a = \frac{m_a}{n}$, $m_a \in \mathbb{N}_0$. Let Z be uniform on [n]. Let $\{E_a : a \in A\}$ be a partition of [n] into sets with $|E_a| = m_a$.

Proof. First we do the case where all $p_a \in \mathbb{Q}$. Pick $n \in \mathbb{N}$ such that $p_a = \frac{m_a}{n}$, $m_a \in \mathbb{N}_0$. Let Z be uniform on [n]. Let $\{E_a : a \in A\}$ be a partition of [n] into sets with $|E_a| = m_a$. By Invariance, we may assume that $X = a \Leftrightarrow Z \in E_a$. Then

$$\begin{split} \log n &= H(Z) = H(Z,X) = H(X) + H(Z \mid X) \\ &= H(X) + \sum_{a \in A} p_a H(Z \mid X = a) \\ &= H(X) + \sum_{a \in A} p_a \log m_a \\ &= H(X) + \sum_{a \in A} p_a (\log p_a + \log n) \\ &= H(X) + \sum_{a \in A} p_a \log p_a + \log n. \end{split}$$

Hence $H(X) = -\sum_{a \in A} p_a \log p_a$.

The general result follows by Continuity.

Corollary 1.18 Let X and Y be random variables. Then $0 \le H(X)$ and $0 \le H(X \mid Y)$.

Proof (Hints). Trivial.
$$\Box$$

Corollary 1.19 If Y = f(X), then $H(Y) \leq H(X)$.

Proof.
$$H(X) = H(X,Y) = H(Y) + H(X \mid Y)$$
. But $H(X \mid Y) \ge 0$.

Proposition 1.20 (Subadditivity) Let X and Y be RVs. Then $H(X,Y) \leq H(X) + H(Y)$.

Proof (Hints).

- Let $p_{ab} = \mathbb{P}(X = a, Y = b)$. Explain why it is enough to show for the case when the p_{ab} are rational.
- Pick n such that $p_{ab} = m_{ab}/n$ with each $m_{ab} \in \mathbb{N}_0$. Partition [n] into sets E_{ab} of size m_{ab} . Let Z be uniform on [n].
- Show that if X (or Y) is uniform, then $H(X \mid Y) \leq H(X)$ and $H(X,Y) \leq H(X) + H(Y)$.
- Let $E_b = \bigcup_a E_{ab}$ for each b. So Y = b iff $Z = E_b$. Now define an RV W as follows: if Y = b, then W is uniformly distributed in E_b . Use conditional independence to conclude the result.

Proof. Note that for any two RVs X, Y,

$$\begin{split} H(X,Y) & \leq H(X) + H(Y) \\ \Longleftrightarrow H(X \mid Y) & \leq H(X) \\ \Longleftrightarrow H(Y \mid X) & \leq H(Y) \end{split}$$

by Additivity. Next, observe that $H(X \mid Y) \leq H(X)$ if X is uniform on a finite set, since $H(X \mid Y) = \sum_y \mathbb{P}(Y = y) H(X \mid Y = y) \leq \sum_y \mathbb{P}(Y = y) H(X) = H(X)$ by Maximality. By the above equivalence, we also have $H(X \mid Y) \leq H(X)$ if Y is uniform on a finite set. Now let $p_{ab} = \mathbb{P}(X = a, Y = b)$, and assume that all p_{ab} are rational. Pick n such that $p_{ab} = m_{ab}/n$ with each $m_{ab} \in \mathbb{N}_0$. Partition [n] into sets E_{ab} of size m_{ab} . Let Z be uniform on [n]. WLOG (by Invariance), (X, Y) = (a, b) iff $Z \in E_{ab}$.

Let $E_b = \bigcup_a E_{ab}$ for each b. So Y = b iff $Z = E_b$. Now define an RV W as follows: if Y = b, then $W \in E_b$, but then W is uniformly distributed in E_b and independent of X (and Z). So W and X are conditionally independent given Y, and W is uniform on [n]. Then $H(X \mid Y) = H(X \mid Y, W) = H(X \mid W)$ by conditional independence and by Lemma [1.13] (since W determines Y). Since W is uniform, $H(X \mid W) \leq H(X)$.

The general result follows by Continuity.

Corollary 1.21 $H(X) \ge 0$ for any X.

Proof (Hints). (Without using the formula) straightforward.

Proof. (Without using the formula). By subadditivity, $H(X \mid X) \leq H(X)$. But $H(X \mid X) = 0$.

Corollary 1.22 Let $X_1, ..., X_n$ be RVs. Then

$$H(X_1, ..., X_n) \le H(X_1) + \cdots + H(X_n).$$

Proof (Hints). Trivial.

Proof. Trivial by induction.

Proposition 1.23 (Submodularity) Let X, Y, Z be RVs. Then

$$H(X \mid Y, Z) \le H(X \mid Z).$$

Proof (Hints). Use that $H(X \mid Y, Z = z) \leq H(Z \mid Z = z)$.

$$Proof. \quad H(X\mid Y,Z) = \sum_z \mathbb{P}(Z=z) H(X\mid Y,Z=z) \leq \sum_z \mathbb{P}(Z=z) H(X\mid Z=z) = H(X\mid Z).$$
 \Box

Remark 1.24 Submodularity can be expressed in several equivalent ways. Expanding using Additivity gives

$$H(X,Y,Z) - H(Y,Z) \le H(X,Z) - H(Z)$$

and

$$H(X,Y,Z) \le H(X,Z) + H(Y,Z) - H(Z)$$

and

$$H(X,Y,Z) + H(Z) \le H(X,Z) + H(Y,Z).$$

Lemma 1.25 Let X, Y, Z be RVs with Z = f(Y). Then $H(X \mid Y) \leq H(X \mid Z)$.

Proof (Hints). Straightforward.

Proof. We have

$$H(X \mid Y) = H(X,Y) - H(Y) = H(X,Y,Z) - H(Y,Z)$$

 $\leq H(X,Z) - H(Z) = H(X \mid Z)$

by Submodularity.

Lemma 1.26 Let X, Y, Z be RVs with Z = f(X) = g(Y). Then

$$H(X,Y) + H(Z) \le H(X) + H(Y).$$

Proof (Hints). Straightforward.

Proof. By Submodularity, we have $H(X,Y,Z) + H(Z) \leq H(X,Z) + H(Y,Z)$, which implies the result, since Z depends on X and Y.

Lemma 1.27 Let X be an RV taking values in a finite set A and let Y be uniform on A. If H(X) = H(Y), then X is uniform.

Proof (Hints). Use Jensen's inequality.

Proof. Let $p_a = \mathbb{P}(X = a)$. Then

$$H(X) = \sum_{a \in A} p_a \log(1/p_a) = |A| \cdot \mathbb{E}_{a \in A} p_a \log \bigg(\frac{1}{p_a}\bigg).$$

The function $x \mapsto x \log(1/x)$ is concave on [0, 1]. So by Jensen's inequality,

$$H(X) \leq |A| \cdot (\mathbb{E}_{a \in A} p_a) \cdot \log \biggl(\frac{1}{\mathbb{E}_{a \in A} p_a} \biggr) = \log |A| = H(Y),$$

with equality iff $a\mapsto p_a$ is constant, i.e. X is uniform.

Corollary 1.28 If H(X,Y) = H(X) + H(Y), then X and Y are independent.

Proof (Hints). Go through the proof of Subadditivity and check when equality holds. \Box

Proof. We go through the proof of subadditivity and check when equality holds. Suppose that X is uniform on A. Then

$$H(X\mid Y) = \sum_y \mathbb{P}(Y=y) H(X\mid Y=y) \leq H(X),$$

with equality iff $H(X \mid Y = y)$ is uniform on A for all y (by Lemma 1.27), which implies that X and Y are independent.

At the last stage of the proof, we said $H(X \mid Y) = H(X \mid Y, W) = H(X \mid W) \leq H(X)$, where W was uniform. So equality holds only if X and W are independent, which implies (since Y depends on W), that X and Y are independent.

Definition 1.29 Let X and Y be RVs. The mutual information

$$\begin{split} I(X:Y) &\coloneqq H(X) + H(Y) - H(X,Y) \\ &= H(X) - H(X \mid Y) \\ &= H(Y) - H(Y \mid X). \end{split}$$

Remark 1.30 Subadditivity is equivalent to the statement that $I(X : Y) \ge 0$, and Corollary 1.28 implies that I(X : Y) = 0 iff X and Y are independent.

Note that H(X,Y) = H(X) + H(Y) - I(X:Y) (note the similarity to the inclusion-exclusion formula for two sets).

Definition 1.31 Let X, Y, Z be RVs. The **conditional mutual information** of X and Y given Z is

$$\begin{split} I(X:Y\mid Z) \coloneqq & \sum_{z} \mathbb{P}(Z=z) I(X\mid Z=z:Y\mid Z=z) \\ & = \sum_{z} \mathbb{P}(Z=z) (H(X\mid Z=z) + H(Y\mid Z=z) - H(X,Y\mid Z=z)) \\ & = H(X\mid Z) + H(Y\mid Z) - H(X,Y\mid Z) \\ & = H(X,Z) + H(Y,Z) - H(X,Y,Z) - H(Z). \end{split}$$

Submodularity is equivalent to the statement that $I(X:Y\mid Z)\geq 0$.

2. A special case of Sidorenko's conjecture

Definition 2.1 Let G be a bipartite graph with (finite) vertex sets X and Y and density α (defined to be $\frac{|E(G)|}{|X|\cdot|Y|}$). Let H be another (think of it as small) bipartite graph with vertex sets U and V and m edges. Now let $\varphi:U\to X$ and $\psi:V\to Y$. We say that (φ,ψ) is a **homomorphism** if $\varphi(x)\varphi(y)\in E(G)$ for every edge $xy\in E(H)$.

Conjecture 2.2 (Sidorenko's Conjecture) For every G, H, for random $\varphi : U \to X, \psi : V \to Y$,

$$\mathbb{P}((\varphi, \psi) \text{ is a homomorphism}) \geq \alpha^m$$
.

Remark 2.3 Sidorenko's Conjecture is not hard to prove when H is the complete bipartite graph $K_{r,s}$ (the case $K_{2,2}$ can be proved using Cauchy-Schwarz: exercise).

Theorem 2.4 Sidorenko's Conjecture is true if H is a path of length 3. $Proof\ (Hints)$.

- Let (X_1, Y_1) be a random edge of G (with $X_1 \in X$, $Y_1 \in Y$). Now let X_2 be a random neighbour of Y_1 and Y_2 be a random neighbour of X_2 . Explain why it suffices to prove that $H(X_1, Y_1, X_2, Y_2) \ge \log(\alpha^3 m^2 n^2)$.
- Find an equivalent way of choosing a uniformly random edge (X_1, Y_1) of G (in terms of vertices). Use this to reason that X_2Y_1 and X_2Y_2 are uniformly random in E(G).

• Find the lower bound for $H(X_1, Y_1, X_2, Y_2)$ using the Chain Rule and Maximality.

Proof. We want to show that if G is a bipartite graph of density α with vertex sets X,Y of size m and n, and we choose $x_1,x_2\in X,\ y_1,y_2\in Y$ independently at random, then $\mathbb{P}(x_1y_1,y_1x_2,x_2y_2\in E(G))\geq \alpha^3$.

It would be enough to let P be a path of length 3 chosen uniformly at random and show that $H(P) \ge \log(\alpha^3 m^2 n^2)$ (by Proposition 1.16). Instead, we shall define a different RV taking values in the set of all paths of length 3 (including degenerate paths). To do this, let (X_1, Y_1) be a random edge of G (with $X_1 \in X$, $Y_1 \in Y$). Now let X_2 be a random neighbour of Y_1 and Y_2 be a random neighbour of X_2 . It will be enough to prove that

$$H(X_1,Y_1,X_2,Y_2) \geq \log \bigl(\alpha^3 m^2 n^2\bigr).$$

We can choose X_1, Y_1 in three equivalent ways:

- 1. Pick an edge uniformly from all edges
- 2. Pick a vertex x with probability proportional to its degree deg(x), and then a random neighbour Y of x.
- 3. Same as above with x and y exchanged.

By the equivalence, it follows that $Y_1 = y$ with probability $\deg(y)/|E(G)|$, so X_2Y_1 is uniform in E(G), so $X_2 = x'$ with probability d(x')/|E(G)|, so X_2Y_2 is uniform in E(G).

Let U_A be the uniform distribution on A. Therefore, by the Chain Rule,

$$\begin{split} H(X_1,Y_1,X_2,Y_2) &= H(X_1) + H(Y_1 \mid X_1) + H(X_2 \mid X_1,Y_1) + H(Y_2 \mid X_1,Y_1,X_2) \\ &= H(X_1) + H(Y_1 \mid X_1) + H(X_2 \mid Y_1) + H(Y_2 \mid X_2) \\ &= H(X_1) + H(X_1,Y_1) - H(X_1) + H(X_2,Y_1) - H(Y_1) + H(X_2,Y_2) - H(Y_2) \\ &= 3H\Big(U_{E(G)}\Big) - H(Y_1) - H(X_2) \\ &\geq 3H\Big(U_{E(G)}\Big) - H(U_Y) - H(U_X) \\ &= 3\log(\alpha m n) - \log n - \log m \\ &= \log(\alpha^3 m^2 n^2). \end{split}$$

So we are done, by Maximality. Alternative finish to the proof: let X', Y' be uniform in X, Y and independent of each other and X_1, Y_1, X_2, Y_2 . Then by the above inequality and Corollary 1.11,

$$H(X_1,Y_1,X_2,Y_2,X',Y') = H(X_1,Y_1,X_2,Y_2) + H(U_X) + H(U_Y) \\$$

$$\geq 3H \big(U_{E(G)} \big).$$

So by Maximality, the number of paths of length 3 times |X| times |Y| is $\geq |E(G)|^3$.

3. Brigner's theorem

Definition 3.1 Let A be an $n \times n$ matrix over \mathbb{R} . The **permanent** of A is

$$\operatorname{per}(A) \coloneqq \sum_{\sigma \in S_n} \prod_{i=1}^n A_{i\sigma(i)},$$

i.e. "the determinant without the signs".

Proposition 3.2 Let G be a bipartite graph with vertex sets X, Y of size n. Given $(x, y) \in X \times Y$, let

$$A_{xy} = \begin{cases} 1 & \text{if } xy \in E(G) \\ 0 & \text{if } xy \notin E(G) \end{cases},$$

i.e. A is the bipartite adjacency matrix of G. Then per(A) is the number of perfect matchings in G. (Note that per(A) is well-defined as it is invariant under reordering of the vertices.)

Proof (Hints). Straightforward.

Proof. Each (perfect) matching corresponds to a bijection $\sigma: X \to Y$ such that $x\sigma(x) \in E(G)$ for all $x \in X$. $\sigma \in S_n$ contributes 1 to the sum iff $x\sigma(x)$ is an edge of G for all $x \in X$ (i.e. iff σ corresponds to a perfect matching), and 0 otherwise.

Bregman's theorem concerns how large per(A) can be if A is a 0,1 matrix and the sum of the entries in the i-th row is d_i (i.e. if the degree of $x_i \in X$ is d_i).

Example 3.3 Let G be a disjoint union of K_{a_i,a_i} 's, i=1,...,k, with $a_1+\cdots+a_k=n$. Then the number of perfect matchings in G is $\prod_{i=1}^k a_i!$.

Theorem 3.4 (Bregman) Let G be a bipartite graph with vertex sets X, Y of size n. Then the number of perfect matchings in G is at most

$$\prod_{x \in X} (\deg(x)!)^{1/\deg(x)}.$$

Proof (Hints).

- For an enumeration $x_1, ..., x_n$ of X and random matching (a bijection) σ , show that $H(\sigma) \leq \log \deg(x_1) + \mathbb{E}_{\sigma} \log \deg^{\sigma}_{x_1}(x_2) + \cdots + \mathbb{E}_{\sigma} \log \deg^{\sigma}_{x_1, ..., x_{n-1}}(x_n)$ (find a suitable expression for $\deg^{\sigma}_{x_1, ..., x_{i-1}}(x_i)$).
- Find another expression for $\deg_{x_1,\dots,x_{i-1}}^{\sigma}(x_i)$ in terms of $\deg(x)$.
- Show that the average of $\log \deg_{x_1,\dots,x_{i-1}}^{\sigma}(x_i)$ is $\frac{1}{d(x)}(\log(d(x)!))$.

Proof (by Radhakrishnan). Each (perfect) matching corresponds to a bijection $\sigma: X \to Y$ such that $x\sigma(x) \in E(G)$ for all $x \in X$. Let σ be chosen uniformly from all such bijections. Then by the Chain Rule,

$$\begin{split} H(\sigma) &= H(\sigma(x_1),...,\sigma(x_n)) \\ &= H(\sigma(x_1)) + H(\sigma(x_2) \ | \ \sigma(x_1)) + \cdots + H(\sigma(x_n) \ | \ \sigma(x_1),...,\sigma(x_{n-1})), \end{split}$$

where $x_1, ..., x_n$ is some enumeration of X. We have $H(\sigma(x_1)) \leq \log \deg(x_1)$ by Maximality, and

$$H(\sigma(x_2) \ | \ \sigma(x_1)) \leq \mathbb{E}_{\sigma} \log \deg_{x_1}^{\sigma}(x_2),$$

where $\deg_{x_1}^{\sigma}(x_2) = |N(x_2) \setminus \{\sigma(x_1)\}|$, by the definition of conditional entropy and Maximality. In general,

$$H(\sigma(x_i) \ | \ \sigma(x_1),...,\sigma(x_{i-1})) \leq \mathbb{E}_{\sigma} \log \deg_{x_1,...,x_{i-1}}^{\sigma}(x_i),$$

where $\deg_{x_1,...,x_{i-1}}^{\sigma}(x_i) = |N(x_i) \setminus {\sigma(x_1),...,\sigma(x_{i-1})}|$.

Key idea: we now regard $x_1,...,x_n$ as a random enumeration of X and take the average. For each $x \in X$, define the **contribution** of x to be $\log \left(d_{x_1,...,x_{i-1}}^{\sigma}(x_i) \right)$, where $x_i = x$. We shall now fix σ and $x \in X$. Let the neighbours of x be $y_1,...,y_k$. Then one of the y_j will be $\sigma(x)$, say y_h . Then $d_{x_1,...,x_{i-1}}^{\sigma}(x_i)$ (given that $x_i = x$) is

$$d(x) - \big| \big\{ j : \sigma^{-1} \big(y_j \big) \text{ comes earlier than } x = \sigma^{-1} (y_h) \big\} \big|.$$

All positions of $\sigma^{-1}(y_h)$ are equally likely, so the average contribution of x is

$$\frac{1}{d(x)}(\log d(x) + \log(d(x) - 1) + \dots + \log(1))$$

$$= \frac{1}{d(x)} \log d(x)!.$$

By linearity of expectation,

$$H(\sigma) \le \sum_{x \in X} \frac{1}{d(x)} \log(d(x)!)$$

So the number of matchings is at most $\prod_{x \in X} (d(x)!)^{1/d(x)}$.

Definition 3.5 Let G be a graph with 2n vertices. A **1-factor** in G is a collection of n disjoint edges.

Theorem 3.6 (Kahn-Lovasz) Let G be a graph with 2n vertices. Then the number of 1-factors in G is at most

$$\prod_{x\in V(G)}(d(x)!)^{1/2d(x)}.$$

 $Proof\ (Hints).$

- Let M be the set of 1-factors of G and let (M_1, M_2) be a uniformly random element of $M \times M$.
- Given a cover of G by M_1 and M_2 , find an expression for the number of pairs (M'_1, M'_2) that could give rise to it, in terms of the number of even cycles.
- Let G_2 be the bipartite graph with two vertex sets V_1, V_2 , which are both copies of V(G). Join $x \in V_1$ to $y \in V_2$ iff $xy \in E(G)$.
- Explain why each perfect matching of G_2 gives a cover of V(G) by isolated vertices, edges and cycles, and find an expression for the number of such perfect matchings that could give rise to it.

Proof (by Alon, Friedman). Let M be the set of 1-factors of G and let (M_1, M_2) be a uniformly random element of $M \times M$. For each M_1, M_2 , the union $M_1 \cup M_2$ is a collection of disjoint edges and even cycles that covers all the vertices of G.

Call such a union a **cover of** G **by edges and even cycles**. If we are given such a cover, then the number of pairs (M_1, M_2) that could give rise to it is 2^k , where k is the number of even cycles. Now let's build a bipartite graph G_2 out of G. G_2 has two vertex sets V_1, V_2 , which are both copies of V(G). Join $x \in V_1$ to $y \in V_2$ iff $xy \in E(G)$.

 G_2 if G is the triangle graph

By Bregman, the number of perfect matchings in G_2 is at most $\prod_{x \in V(G)} (d(x)!)^{1/d(x)}$. Each matching gives a permutation σ of V(G) such that $x\sigma(x) \in E(G)$ for all $x \in V(G)$. Each such σ has a cycle decomposition, and each cycle gives a cycle in G. So σ gives a cover of V(G) by isolated vertices, edges and cycles (not necessarily all even). Given such a cover with k cycles, each cycle can be directed in two ways, so the number of σ that give rise to it is $= 2^k$. So there is an injection from $M \times M$ to the set of matchings

of G_2 , since every cover by edges and and even cycles is a cover by vertices, edges and cycles. So $|M|^2 \leq \prod_{x \in V(G)} (d(x)!)^{1/d(x)}$.

4. Shearer's lemma and applications

Notation 4.1 Given a random variable $X=(X_1,...,X_n)$ and $A\subseteq [n],$ $A=\{a_1<...<a_k\}$, write X_A for the random variable $\left(X_{a_1},...,X_{a_k}\right)$.

Lemma 4.2 (Shearer) Let $X = (X_1, ..., X_n)$ be an RV and let \mathcal{A} be a family of subsets of [n] such that every $i \in [n]$ belongs to at least r of the sets $A \in \mathcal{A}$. Then

$$H(X_1,...,X_n) \leq \frac{1}{r} \sum_{A \in \mathcal{A}} H(X_A).$$

 $\begin{array}{ll} \textit{Proof (Hints)}. \ \ \text{For each} \ \ a \in [n], \ \ \text{write} \ \ X_{< a} \ \ \text{for} \ \ (X_1,...,X_{a-1}). \ \ \text{Show that} \ \ H(X_A) \geq \\ \sum_{a \in A} H(X_a \mid X_{< a}). \end{array}$

Proof. For each $a \in [n]$, write $X_{< a}$ for $(X_1, ..., X_{a-1})$. For each $A \in \mathcal{A}$, $A = \{a_1 < \cdots < a_k\}$, by the Chain Rule and Submodularity,

$$\begin{split} H(X_A) &= H\Big(X_{a_1}\Big) + H\Big(X_{a_2} \mid X_{a_1}\Big) + \dots + H\Big(X_{a_k} \mid X_{a_1}, \dots, X_{a_{k-1}}\Big) \\ &\geq H\Big(X_{a_1} \mid X_{< a_1}\Big) + H\Big(X_{a_2} \mid X_{< a_2}\Big) + \dots + H\Big(X_{a_k} \mid X_{< a_k}\Big) \\ &= \sum_{a \in A} H(X_a \mid X_{< a}). \end{split}$$

Therefore, $\sum_{A \in \mathcal{A}} H(X_A) \ge r \sum_{a=1}^n H(X_a \mid X_{< a}) = rH(X)$.

Example 4.3 $H(X_1, X_2, X_3) \leq \frac{1}{2}(H(X_1, X_2) + H(X_1, X_3) + H(X_2, X_3)).$

Lemma 4.4 Let $X = (X_1, ..., X_n)$ be an RV and let $A \subseteq [n]$ be a randomly chosen subset of [n], according to some probability distribution. Suppose that for each $i \in [n]$, $\mathbb{P}(i \in A) \ge \mu$. Then

$$H(X) \leq \mu^{-1} \cdot \mathbb{E}_A[H(X_A)].$$

Proof (Hints). Very similar to proof of Shearer.

Proof. As in Shearer,

$$H(X_A) \geq \sum_{a \in A} H(X_a \mid X_{< a}).$$

So

$$\mathbb{E}_A[H(X_A)] \geq \mathbb{E}_A\left[\sum_{a \in A} H(X_a \mid X_{< a})\right] \geq \mu \cdot \sum_{a=1}^n H(X_a \mid X_{< a}) = \mu \cdot H(X).$$

Definition 4.5 Let $E \subseteq \mathbb{Z}^n$ and let $A \subseteq [n]$. Then we write $P_A E$, if $A = \{a_1, ..., a_k\}$, for the set of $u \in \mathbb{Z}^A$ such that there exists $v \in \mathbb{Z}^{[n] \setminus A}$ such that $[u, v] \in E$, where [u, v] is u suitably intertwined with v.

Corollary 4.6 Let $E \subseteq \mathbb{Z}^n$ and let \mathcal{A} be a family of subsets of [n] such that every $i \in [n]$ is contained in at least r sets in \mathcal{A} . Then

$$|E| \le \prod_{A \in \mathcal{A}} |P_A E|^{1/r}.$$

Proof (Hints). Straightforward.

Proof. Let X be a uniformly random element of E. Then by Shearer,

$$\log \lvert E \rvert = H(X) \leq \frac{1}{r} \cdot \sum_{A \in \mathcal{A}} H(X_A).$$

But X_A takes values in $P_A E$, so $H(X_A) \leq \log |P_A E|$ by Maximality. Hence,

$$\log|E| \le \frac{1}{r} \sum_{A \in \mathcal{A}} |P_A E|.$$

Corollary 4.7 (Discrete Loomis-Whitney Theorem) If $\mathcal{A} = \{[n] \setminus \{i\} : i = 1, ..., n\}$, we get

$$|E| \le \prod_{i=1}^{n} |P_{[n]\setminus\{i\}}E|^{1/(n-1)}.$$

Theorem 4.8 Let G be a graph with m edges. Then G has at most $\frac{1}{6}(2m)^{3/2}$ triangles.

Remark 4.9 If $m = \binom{n}{2}$, then this bound is fairly sharp.

Proof (Hints). Consider a uniformly random triangle with an ordering on the vertices, and use Shearer. \Box

Proof. Let (X_1, X_2, X_3) be a random triple of vertices such that X_1X_2 , X_1X_3 and X_2X_3 are all edges (so pick a random triangle with an ordering of the vertices). Let t be the number of triangles in G. By Shearer,

$$\log(6t) = H(X_1, X_2, X_3) \leq \frac{1}{2}(H(X_1, X_2) + H(X_1, X_3) + H(X_2, X_3)).$$

Each (X_i, X_j) (for $i \neq j$) is supported in the set of edges of G, given a direction, so $H(X_i, X_j) \leq \log(2m)$ by Maximality.

Definition 4.10 Let V be a set of size n and let \mathcal{G} be a set of graphs, all with vertex set V. Then \mathcal{G} is Δ -intersecting (triangle-intersecting) if $G_1 \cap G_2$ contains a triangle for all $G_1, G_2 \in \mathcal{G}$.

Theorem 4.11 If |V| = n, then a Δ -intersecting family of graphs with vertex set V has size at most $2^{\binom{n}{2}-2}$.

 $Proof\ (Hints).$

- Let \mathcal{G} be a Δ -intersecting family. View $G \in \mathcal{G}$ as a characteristic function from $V^{(2)}$ to $\{0,1\}$. Let $X = (X_e : e \in V^{(2)})$ be chosen uniformly at random from \mathcal{G} .
- Let $G_R = K_R \cup K_{V \setminus R}$, explain why G_R is an intersecting family, use this to give upper bound on $|G_R|$.
- Give an expression for the probability that an edge e is in a random G_R . By considering X_{G_R} taking values in the above family, conclude.

П

Proof. Let \mathcal{G} be a Δ -intersecting family and let X be chosen uniformly at random from \mathcal{G} . We write $V^{(2)}$ for the set of (unordered) pairs of elements of V. We think of any $G \in \mathcal{G}$ as a characteristic function from $V^{(2)}$ to $\{0,1\}$. So $X = \left(X_e : e \in V^{(2)}\right)$, $X_e \in \{0,1\}$ (where we fix an ordering of $V^{(2)}$). For each $R \subseteq V$, let G_R be the graph $K_R \cup K_{V \setminus R}$. For each R, we shall look at the projection X_{G_R} , which we can think of as taking values in the set $\{G \cap G_R : G \in \mathcal{G}\} =: \mathcal{G}_R$.

Note that if $G_1, G_2 \in \mathcal{G}$, $R \subseteq [n]$, then $G_1 \cap G_2 \cap G_R \neq \emptyset$, since $G_1 \cap G_2$ contains a triangle, which must intersect G_R by the pigeonhole principle (the triangle contains 3 vertices, one of which is contained in one of the two components of G_R). Thus, \mathcal{G}_R is an intersecting family, so has size at most $2^{|E(G_R)|-1}$. By Lemma 4.4,

$$H(X) \leq 2 \cdot \mathbb{E}_{R} \Big[H \Big(X_{G_R} \Big) \Big] \leq 2 \cdot \mathbb{E}_{R} [|E(G_R)| - 1] = 2 \cdot \left(\frac{1}{2} {n \choose 2} - 1 \right) = {n \choose 2} - 2,$$

since each e belongs to G_R with probability 1/2 (and so $\mathbb{E}_R[|E(G_R)|] = \frac{1}{2}\binom{n}{2}$).

Definition 4.12 Let G be a graph and let $A \subseteq V(G)$. The **edge-boundary** ∂A of A is the set of edges xy such that $x \in A$, $y \notin A$. If $G = \mathbb{Z}^n$ or $\{0,1\}^n$ and $i \in [n]$, the i-th boundary $\partial_i A$ is the set of edges $xy \in \partial A$ such that $x - y = \pm e_i$, i.e. $\partial_i A$ consists of edges in direction i.

Theorem 4.13 (Edge-isoperimetric Inequality in \mathbb{Z}^n) Let $A \subseteq \mathbb{Z}^n$ be a finite set. Then

$$|\partial A| \geq 2n \cdot |A|^{(n-1)/n}.$$

Proof (Hints). Use Discrete Loomis-Whitney Theorem and a suitable lower bound on $|\partial_i A|$.

Proof. By the Discrete Loomis-Whitney Theorem,

$$\begin{split} |A| &\leq \prod_{i=1}^n \left| P_{[n]\backslash\{i\}} A \right|^{1/(n-1)} \\ &= \left(\prod_{i=1}^n \left| P_{[n]\backslash\{i\}} A \right|^{1/n} \right)^{n/(n-1)} \\ &\leq \left(\frac{1}{n} \sum_{i=1}^n \left| P_{[n]\backslash\{i\}} A \right| \right)^{n/(n-1)} \quad \text{by AM-GM inequality} \end{split}$$

But $|\partial_i A| \geq 2 |P_{[n]\setminus \{i\}} A|$ since each fibre contributes at least 2. So

$$\begin{split} |A| & \leq \left(\frac{1}{2n} \sum_{i=1}^{n} |\partial_i A|\right)^{n/(n-1)} \\ & = \left(\frac{1}{2n} |\partial A|\right)^{n/(n-1)} \end{split}$$

Theorem 4.14 (Edge-isoperimetric Inequality in the Cube) Let $A\subseteq\{0,1\}^n$ (where we take usual graph on $\{0,1\}^n$). Then

$$|\partial A| \ge |A|(n - \log|A|).$$

Proof (Hints).

• Let $X = (X_1, ..., X_n)$ be a uniformly random element of A. Write $X_{i} = X_{i}$ $(X_1,...,X_{i-1},X_{i+1},...,X_n).$

• Use Shearer to show that $\sum_{i=1}^{n} H(X_i \mid X_{\setminus i}) \leq H(X)$. • What are the possible values of $|P_{[n]\setminus\{i\}}^{-1}(u)|$, and what is $H(X_i \mid X_{\setminus i} = u)$ in each case? How many u satisfy $|P_{[n]\setminus\{i\}}^{-1}(u)| = 1$? Use this to deduce an expression for $H(X_i \mid X_{\setminus i}).$

Proof. Let X be a uniformly random element of A and write $X=(X_1,...,X_n)$. Write $X_{\setminus i}$ for $(X_1, ..., X_{i-1}, X_{i+1}, ..., X_n)$. By Shearer,

$$\begin{split} H(X) & \leq \frac{1}{n-1} \sum_{i=1}^n H\Big(X_{\backslash i}\Big) \\ & = \frac{1}{n-1} \sum_{i=1}^n \Big(H(X) - H\Big(X_i \mid X_{\backslash i}\Big)\Big). \end{split}$$

Hence, $\sum_{i=1}^{n} H(X_i \mid X_{\setminus i}) \leq H(X)$. But

$$H\Big(X_i\mid X_{\backslash i}=u\Big)=\begin{cases} 1 \text{ if } \left|P_{[n]\backslash\{i\}}^{-1}(u)\right|=2\\ 0 \text{ if } \left|P_{[n]\backslash\{i\}}^{-1}(u)\right|=1 \end{cases}$$

(Note that we always have $\left|P_{[n]\setminus\{i\}}^{-1}(u)\right| \in \{0,1,2\}$). The number of points of the second kind is $|\partial_i A|$. So

$$\begin{split} H\Big(X_i \mid X_{\backslash i}\Big) &= \sum_{u} \mathbb{P}\Big(X_{\backslash i} = u\Big) H\Big(X_i \mid X_{\backslash i = u}\Big) \\ &= \sum_{u \notin \partial_i A} \mathbb{P}\Big(X_{\backslash i} = u\Big) \\ &= 1 - \sum_{u \in \partial_i A} \mathbb{P}\Big(X_{\backslash i} = u\Big) \end{split}$$

$$=1-\frac{|\partial_i A|}{|A|}.$$

So

$$\begin{split} H(X) & \geq \sum_{i=1}^n \left(1 - \frac{|\partial_i A|}{|A|}\right) \\ & = n - \frac{|\partial A|}{|A|}. \end{split}$$

Also, $H(X) = \log |A|$. So we are done.

Definition 4.15 Let \mathcal{A} be a family of sets of size d. The lower shadow of \mathcal{A} is

$$\partial \mathcal{A} = \{B : |B| = d - 1, \exists A \in \mathcal{A} \text{ s.t. } B \subseteq A\}.$$

Theorem 4.16 (Kruskal-Katona) If $|\mathcal{A}| = {t \choose d} = \frac{t(t-1)\cdots(t-d+1)}{d!}$ for some real number t, then

$$|\partial_i \mathcal{A}| \ge \binom{t}{d-1}.$$

Proof (Hints).

- Let $X = (X_1, ..., X_d)$ be a random ordering of the elements of a uniformly random $A \in \mathcal{A}$. Give an expression for H(X).
- Explain why it is enough to show $H(X_1, ..., X_{d-1}) \ge \log((d-1)!\binom{t}{d-1})$.
- Let $T \sim \text{Bern}(p)$ be independent of $X_1, ..., X_{k-1}$, and given $X_1, ..., X_{k-1}$, let

$$X^* = \begin{cases} X_{k+1} \text{ if } T = 0 \\ X_k \text{ if } T = 1 \end{cases}.$$

- Show that $H(X_k \mid X_{< k}) \ge H(X^*, T \mid X_{\le k}) = h(p) + pH(X_{k+1} \mid X_{\le k})$, and so that $H(X_k \mid X_{< k}) \ge \log \left(2^{H(X_{k+1} \mid X_{\le k})} + 1\right)$.
- Using the chain rule, show that $r+d-1 \le t$, and use this to conclude the desired bound on $H(X_{\le d})$.

Proof. Let $X = (X_1, ..., X_d)$ be a random ordering of the elements of a uniformly random $A \in \mathcal{A}$. Then $H(X) = \log(d!|A|) = \log(d!\binom{t}{d})$. Note that $(X_1, ..., X_{d-1})$ is an ordering of the elements of some $B \in \partial_i A$, so

$$H(X_1,...,X_{d-1}) \leq \log((d-1)!|\partial_i A|)$$

So it's enough to show $H(X_1,...,X_{d-1}) \geq \log \left((d-1)! \binom{t}{d-1} \right)$. Also, $H(X) = H(X_1,...,X_{d-1}) + H(X_d \mid X_1,...,X_{d-1})$ and $H(X) = H(X_1) + H(X_2 \mid X_1) + \cdots + H(X_d \mid X_1,...,X_{d-1})$. We would like an upper bound for $H(X_d \mid X_{< d})$. Our strategy will be to obtain a lower bound for $H(X_k \mid X_{< k})$ in terms of $H(X_{k+1} \mid X_{< k+1})$. We shall prove that $2^{H(X_k \mid X_{< k})} \geq 2^{H(X_{k+1} \mid X_{< k+1})} + 1$ for all k.

Let T be chosen independently of X. Let $T \sim \text{Bern}(1-p)$ (T=0 with probability p, p is to be chosen later). Given $X_1, ..., X_{k-1}$, let

$$X^* = \begin{cases} X_{k+1} \text{ if } T = 0 \\ X_k \text{ if } T = 1 \end{cases}$$

Note that X_k and X_{k+1} have the same distribution (given $X_1,...,X_{k-1}$), so X^* does as well. Then

$$\begin{split} H(X_k \mid X_{< k}) &= H(X^* \mid X_{< k}) \text{ since } X_k \sim X^* \\ &\geq H(X^* \mid X_{\le k}) \quad \text{by Submodularity} \\ &= H(X^*, T \mid X_{\le k}) \quad \text{since } X_{\le k} \text{ and } X^* \text{ determine } T \text{ (since } X_{k+1} \neq X_k) \\ &= H(T \mid X_{\le k}) + H(X^* \mid T, X_{\le k}) \quad \text{by Additivity} \\ &= H(T) + pH(X^* \mid X_{\le k}, T = 0) + (1-p)H(X^* \mid X_{\le k}, T = 1) \\ &= H(T) + pH(X_{k+1} \mid X_{\le k}) + (1-p)H(X_k \mid X_{\le k}) \\ &= h(p) + ps. \end{split}$$

where $s = H(X_{k+1} \mid X_{\leq k})$ and $h(p) = p \log \frac{1}{p} + (1-p) \log \frac{1}{1-p}$. This is maximised when $p = \frac{2^s}{2^s+1}$. Then we get

$$\frac{2^s}{2^s+1}(\log(2^s+1)-\log(2^s))+\frac{1}{2^s+1}(\log(2^s+1))+\frac{s2^s}{2^s+1}=\log(2^s+1).$$

This proves the claim.

Let $r = 2^{H(X_d \mid X_{\leq d})}$. Then by the claim,

$$\begin{split} H(X) &= H(X_1) + \dots + H(X_d \mid X_{< d}) \\ &\geq \log(r + d - 1) + \dots + \log(r) \\ &= \log \left(\frac{(r + d - 1)!}{(r - 1)!}\right) = \log \left(d! \binom{r + d - 1}{d}\right). \end{split}$$

Since $H(X) = \log(d!\binom{t}{d})$ is an increasing function (for $t \ge d$), it follows that $r + d - 1 \le t$, i.e. $r \le t + 1 - d$. It follows that

$$\begin{split} H(X_{< d}) &= \log \left(d! \binom{t}{d} \right) - \log r \\ &\geq \log \left(d! \frac{t!}{d!(t-d)!(t+1-d)} \right) \\ &= \log \left((d-1)! \binom{t}{d-1} \right). \end{split}$$

5. The union-closed conjecture

Definition 5.1 Let \mathcal{A} be a finite family of sets. \mathcal{A} is **union-closed** if $A \cup B \in \mathcal{A}$ for all $A, B \in \mathcal{A}$.

Conjecture 5.2 (Union-closed Conjecture) If \mathcal{A} is a non-empty union-closed family, then there exists x that belongs to at least $\frac{1}{2}|\mathcal{A}|$ sets in \mathcal{A} .

Theorem 5.3 (Gilmer) There exists a constant c > 0 such that if \mathcal{A} is any union-closed family, then there exists x that belongs to at least $c|\mathcal{A}|$ of the sets in \mathcal{A} .

Example 5.4 Let $\mathcal{A} = [n]^{(pn)} \cup [n]^{((\geq (2p-p^2-o(1))n)}$. Then with high probability, if A, B are random elements of $[n]^{(pn)}$, then $|A \cup B| \geq (2p-p^2-o(1))n$ (since the intersect is likely of size at most p^2n). If $1-(2p-p^2-o(1))=p$, then almost all of \mathcal{A} is contained in $[n]^{(pn)}$. The solutions of p occur roughly when $1-3p+p^2=0$, which has solutions $p=\frac{1}{2}(3\pm\sqrt{5})$.

If we want to prove Gilmer, it is natural to let A, B be independent uniformly random elements of \mathcal{A} and to consider $H(A \cup B)$. Since \mathcal{A} is union-closed, $A \cup B \in \mathcal{A}$, so $H(A \cup B) \leq \log |\mathcal{A}|$. Now we would like to get a lower bound for $H(A \cup B)$ assuming that no x belongs to more than $p|\mathcal{A}|$ sets in \mathcal{A} .

Lemma 5.5 Suppose c > 0 is such that $h(xy) \ge c(xh(y) + yh(x))$ for every $x, y \in [0,1]$. Let \mathcal{A} be a family of sets such that every element of $\cup \mathcal{A}$ belongs to fewer than $p|\mathcal{A}|$ members of \mathcal{A} . Let A, B be independent uniformly members of \mathcal{A} . Then

$$H(A\cup B)>c(1-p)(H(A)+H(B)).$$

 $Proof\ (Hints).$

- Think of A, B as characteristic functions. Write $A_{< k}$ for $(A_1, ..., A_{k-1})$.
- Explain why it is enough to prove that $H((A \cup B)_k \mid A_{< k}, B_{< k}) > c(1 p) \Big(H(A_k \mid A_{< k}) + H \Big(B_k \mid H_{B_{< k}} \Big) \Big)$ for all k.
- For each $u, v \in \{0, 1\}^{k-1}$, write $p(u) = \mathbb{P}(A_k = 0 \mid A_{< k} = u)$ and $q(v) = \mathbb{P}(B_k = 0 \mid B_{< k} = v)$. Find a (simple) expression for $H((A \cup B)_k \mid A_{< k} = u, B_{< k} = v)$.
- Expand $H((A \cup B)_k \mid A_{< k}, B_{< k})$, give an upper bound, then simplify it (hint: law of total probability).

Proof. Think of A, B as characteristic functions. Write $A_{< k}$ for $(A_1, ..., A_{k-1})$. By the Chain Rule, it is enough to prove for every k that

$$H((A \cup B)_k \mid (A \cup B)_{< k}) > c(1-p) \Big(H(A_k \mid A_{< k}) + H \Big(B_k \mid H_{B_{< k}} \Big) \Big).$$

By Lemma 1.25,

$$H((A \cup B)_k \ | \ (A \cup B)_{< k}) \geq H((A \cup B)_k \ | \ A_{< k}, B_{< k})$$

For each $u, v \in \{0, 1\}^{k-1}$, write $p(u) = \mathbb{P}(A_k = 0 \mid A_{< k} = u)$ and $q(v) = \mathbb{P}(B_k = 0 \mid B_{< k} = v)$. Then, since A and B are independent,

$$H((A\cup B)_k \mid A_{< k} = u, B_{< k} = v)$$

18

$$= -\sum_{i=0}^{1} \mathbb{P}((A \cup B)_k = i \mid A_{< k} = u, B_{< k} = v) \log \mathbb{P}((A \cup B)_k = i \mid A_{< k} = u, B_{< k} = v)$$

$$= h(p(u)q(v)).$$

which by hypothesis is at least c(p(u)h(q(v)) + q(v)h(p(u))). So

$$\begin{split} H((A \cup B)_k \mid (A \cup B)_{< k}) &\geq c \sum_{u,v} \mathbb{P}(A_{< k} = u) \mathbb{P}(B_{< k} = v) (p(u)h(q(v)) + q(v)h(p(u))) \\ &= c \cdot \sum_{u} \mathbb{P}(A_{< k} = u)p(u) \cdot \sum_{v} \mathbb{P}(B_{< k} = v)h(q(v)) \\ &+ c \cdot \sum_{u} \mathbb{P}_{A_{< k} = u}h(p(u)) \cdot \sum_{v} \mathbb{P}(B_{< k} = v)q(v) \end{split}$$

But by law of total probability,

$$\sum_{u} \mathbb{P}(A_{< k} = u) \mathbb{P}(A_k = 0 \mid A_{< k} = u) = \mathbb{P}(A_k = 0),$$

and

$$\sum_{v} \mathbb{P}(B_{< k} = v) h(q(v)) = \sum_{v} \mathbb{P}(B_{< k} = v) H(B_k \mid B_{< k} = v) = H(B_k \mid B_{< k})$$

Similarly for the other term, so the RHS of the inequality equals

$$c(\mathbb{P}(A_k = 0) H(B_k \mid B_{< k}) + \mathbb{P}(B_k = 0) H(A_k \mid A_{< k})),$$

which by hypothesis (since $\mathbb{P}(A_k=0)=\mathbb{P}(B_k=0)>1-p)$ is greater than

$$c(1-p)(H(A_k \mid A_{< k}) + H(B_k \mid B_{< k}))$$

as required.

Corollary 5.6 Let \mathcal{A} , p and c be as in Lemma 5.5. If \mathcal{A} is union-closed, then we must have $p \geq 1 - 1/2c$.

$$Proof\ (Hints)$$
. Straightforward.

Proof. Let A and B be independent uniformly random elements of \mathcal{A} . Since \mathcal{A} is union-closed, $A \cup B \in \mathcal{A}$, so $H(A \cup B) \leq \log |\mathcal{A}|$. Also, $H(A) = H(B) = \log |\mathcal{A}|$. Hence, by Lemma 5.5, $2c(1-p) \leq 1$.

Corollary 5.6 gives a non-trivial bound as long as c > 1/2. We shall obtain $1/(\sqrt{5}-1)$.

We start by proving the diagonal case, i.e. where x = y.

Lemma 5.7 (Boppana) For every $x \in [0, 1]$,

$$h(x^2) \ge \varphi \cdot x \cdot h(x),$$

where $\varphi = \frac{1}{2} (\sqrt{5} + 1)$.

 $Proof\ (Hints).$

• Let $\psi = 1/\varphi$. Show that equality holds when $x = \psi, 0, 1$.

- Let $f(x) = h(x^2) \varphi \cdot x \cdot h(x)$. Show that f'''(x) = 0 iff $-\varphi x^3 4x^2 + 3\varphi x 4 + 2\varphi = 0$. (Advice: use natural logs and find expressions for h'(x), h''(x) and h'''(x) first).
- Explain why f''' has at most two roots in (0,1) and so f has at most five roots in [0,1].
- Show that f has a double root at 0 and at ψ .
- Explain why f must have constant sign on [0,1], and by considering small x, show that there is x with f(x) > 0.

Proof. Write $\psi = 1/\varphi = \frac{1}{2}(\sqrt{5}-1)$. Then $\psi^2 = 1-\psi$. So $h(\psi^2) = h(1-\psi) = h(\psi)$ and $\varphi\psi = 1$, so $h(\psi^2) = \varphi \cdot \psi \cdot h(\psi)$. So equality holds when $x = \psi$, and also when x = 0, 1.

Toolkit: $\ln(2) \cdot h(x) = -x \ln x - (1-x) \ln(1-x)$. Then

$$\ln(2) \cdot h'(x) = -\ln x - 1 + \ln(1-x) + 1 = \ln(1-x) - \ln(x)$$

and

$$\ln(2) \cdot h''(x) = -\frac{1}{x} - \frac{1}{1-x} = -\frac{1}{x(1-x)}$$

and

$$\ln(2) \cdot h'''(x) = \frac{1}{x^2} - \frac{1}{(1-x)^2} = \frac{1-2x}{x^2(1-x)^2}.$$

Let
$$f(x) = h(x^2) - \varphi \cdot x \cdot h(x)$$
. Then

$$\begin{split} f'(x) &= 2xh'(x^2) - \varphi h(x) - \varphi x h'(x) \\ f''(x) &= 2h'(x^2) + 4x^2h''(x^2) - 2\varphi h'(x) - \varphi x h''(x) \\ f'''(x) &= 4xh''(x^2) + 8xh''(x^2) + 8x^3h'''(x^2) - 3\varphi h''(x) - \varphi x h'''(x) \\ &= 12xh''(x^2) + 8x^3h'''(x^2) - 3\varphi h''(x) - \varphi x h'''(x) \end{split}$$

So

$$\begin{split} \ln(2)f'''(x) &= \frac{-12x}{x^2(1-x^2)} + \frac{8x^3(1-2x^2)}{x^4(1-x^2)^2} + \frac{3\varphi}{x(1-x)} - \frac{\varphi x(1-2x)}{x^2(1-x)^2} \\ &= \frac{-12}{x(1-x^2)} + \frac{8(1-2x^2)}{x(1-x^2)^2} + \frac{3\varphi}{x(1-x)} - \frac{\varphi(1-2x)}{x(1-x)^2} \\ &= \frac{-12(1-x^2) + 8(1-2x^2) + 3\varphi(1-x)(1+x)^2 - \varphi(1-2x)(1+x)^2}{x(1-x)^2(1+x)^2} \end{split}$$

which is zero iff

$$-12 + 12x + 8 - 16x^2 + 3\varphi(1 + x - x^2 - x^3) - \varphi(1 - 3x^2 - 2x^3)$$

$$= -\varphi x^3 - 4x^2 + 3\varphi x - 4 + 2\varphi = 0.$$

So the numerator of f'''(x) is a cubic with negative leading coefficient and constant term, so it has a negative root, so it has at most two roots in (0,1). It follows (by Rolle's theorem) that f has at most five roots in [0,1], up to multiplicity. But

$$f'(x) = 2x(\log(1-x^2) - \log(x^2)) + \varphi(x\log x + (1-x)\log(1-x)) - \varphi x(\log(1-x) - \log x)$$

So f'(0) = 0, so f has a double root at 0. Now

$$\begin{split} f'(\psi) &= 2\psi(\log\psi - 2\log\psi) + \varphi(\psi\log\psi + 2(1-\psi)\log\psi) - (2\log\psi - \log\psi) \\ &= -2\psi\log\psi + \log\psi + 2\varphi\log\psi - 2\log\psi \\ &= 2\log\psi(-\psi + \varphi - 1) \\ &= 2\varphi\log\psi(-\psi^2 - 1 - \psi) = 0 \end{split}$$

So there is a double root at ψ . Also, f(1) = 0. So f is either non-negative on all of [0, 1] or non-positive on all of [0, 1]. If x is small,

$$\begin{split} f(x) &= x^2 \log \frac{1}{x^2} + \left(1 - x^2\right) \log \frac{1}{1 - x^2} - \varphi x \bigg(x \log \frac{1}{x} + (1 - x) \log \frac{1}{1 - x} \bigg) \\ &= 2 x^2 \log \frac{1}{x} - \varphi x^2 \log \frac{1}{x} + O(x^2). \end{split}$$

So, because $2 > \varphi$, there exists x such that f(x) > 0.

Lemma 5.8 The function $f(x,y) = \frac{h(xy)}{xh(y) + yh(x)}$ is minimised on $(0,1)^2$ at a point where x = y.

Proof (Hints).

- Show that we can extend f continuously to the boundary by setting f(x,y) = 1 whenever x or y is 0 or 1 (for the case when x or y tend to 0 separately, consider an expansion for xy small, and for the case when x and y tend to 1, consider when one of x or y is 1).
- Pick any point in $(0,1)^2$ to show that f is minimised somewhere in that region.
- Let (x^*, y^*) be a minimum with $f(x^*, y^*) = \alpha$. Let g(x) = h(x)/x.
- By considering the expression $g(xy) \alpha(g(x) + g(y))$ and partial derivatives, show that $x^*g'(x^*) = y^*g'(y^*)$.
- Show that xg'(x) is an injection by considering its derivative.

Proof. We can extend f continuously to the boundary by setting f(x,y) = 1 whenever x or y is 0 or 1. To see this, note first that it is easy if neither x nor y is 0. If either x or y is small then $h(xy) = -xy(\log x + \log y) + O(xy)$, and

$$xh(y) + yh(x) = -x(y\log y + O(y)) - y(x\log x + O(x))$$
$$= h(xy) \quad \text{up to } O(xy)$$

So it tends to 1 again.

We can check that f(1/2, 1/2) < 1, so f is minimised somewhere in $(0, 1)^2$. Let (x^*, y^*) be a minimum with $f(x^*, y^*) = \alpha$. For convenience, let g(x) = h(x)/x and note that $f(x, y) = \frac{g(xy)}{g(x) + g(y)}$. Also, $g(xy) - \alpha(g(x) + g(y)) \ge 0$ with equality at (x^*, y^*) . So the partial derivatives of the LHS are both 0 at (x^*, y^*) :

$$y^*g'(x^*y^*) - \alpha g'(x^*) = 0$$
$$x^*g'(x^*y^*) - \alpha g'(y^*) = 0.$$

So $x^*g'(x^*) = y^*g'(y^*)$. So it is enough to prove that xg'(x) is an injection. We have

$$g'(x) = \frac{h'(x)}{x} - \frac{h(x)}{x^2}$$

so

$$\begin{split} xg'(x) &= h'(x) - \frac{h(x)}{x} \\ &= \log(1-x) - \log x + \frac{x\log x + (1-x)\log(1-x)}{x} \\ &= \frac{\log(1-x)}{x}. \end{split}$$

Differentiating gives

$$-\frac{1}{x(1-x)} - \frac{\log(1-x)}{x^2} = \frac{-x - (1-x)\log(1-x)}{x^2(1-x)}$$

The numerator differentiates to $-1 + 1 + \log(1 - x)$ which is negative. Also, it equals 0 at 0, so it has a constant sign. Thus, xg'(x) is indeed an injection.

Combining this with Boppana we get that

$$h(xy) \geq \frac{\varphi}{2}(xh(y) + yh(x))$$

This allows us to take $p = 1 - \frac{1}{\varphi} = \frac{3 - \sqrt{5}}{2}$.

6. Entropy in additive combinatorics

We shall need two "simple" results from additive combinatorics due to Imre Ruzsa.

Definition 6.1 Let G be an abelian group and let $A, B \subseteq G$. The sumset A + B of A and B is the set

$$\{x+y:x\in A,y\in B\}$$

and the **difference set** A - B is the set

$$\{x-y:x\in A,y\in B\}.$$

Write 2A for A + A, 3A for A + A + A, etc.

Definition 6.2 The Ruzsa distance d(A, B) is

$$\frac{|A-B|}{|A|^{1/2}\cdot |B|^{1/2}}.$$

Lemma 6.3 (Ruzsa Triangle Inequality) $d(A, C) \leq d(A, B) \cdot d(B, C)$.

Proof (*Hints*). Expand the stated inequality and consider an appropriate injection. \Box *Proof*. This is equivalent to the statement

$$|A - C| \cdot |B| \le |A - B| \cdot |B - C|.$$

For each $x \in A - C$, pick $a(x) \in A$, $c(x) \in C$ such that x = a(x) - c(x). Define the map

$$\varphi: (A-C) \times B \to (A-B) \times (B-C),$$

$$(x,b) \mapsto (a(x)-b,b-c(x)).$$

Adding the coordinates of $\varphi(x, b)$ gives x, so we can calculate a(x) and c(x) from $\varphi(x, b)$, and hence b. So φ is an injection.

Lemma 6.4 (Ruzsa Covering Lemma) Let G be an abelian group and let $A, B \subseteq G$ be finite. Then A can be covered by at most |A + B|/|B| translates of B - B.

Proof (Hints). Consider a maximal subset $\{x_1,...,x_k\}\subseteq A$ such that the x_i+B are disjoint.

Proof. Let $\{x_1, ..., x_k\}$ be a maximal subset of A such that the sets $x_i + B$ are disjoint. Then for all, $a \in A$, there exists i such that $(a + B) \cap (x_i + B) \neq \emptyset$, i.e. $a \in (x_i + (B - B))$. So A can be covered by k translates of B - B. But since the $x_i + B$ are disjoint,

$$|B|k = |\{x_1,...,x_k\} + B| \leq |A+B|.$$

Let X,Y be discrete random variables taking values in an abelian group. What is X+Y when X and Y are independent? For each z, $\mathbb{P}(X+Y=z)=\sum_{x+y=z}\mathbb{P}(X=x)\mathbb{P}(Y=y)$. Writing p_x and q_y for $\mathbb{P}(X=x)$ and $\mathbb{P}(Y=y)$, this gives

$$\sum_{x+y=z} p_x p_y = (p*q)(z)$$

where $p(x) = p_x$, $q(y) = q_y$. So sums of independent random variables correspond to convolutions.

Definition 6.5 Let G be an abelian group and let X, Y be G-valued random variables. The **(entropic) Ruzsa distance** between X and Y is

$$\begin{split} d(X;Y) &= H(X'-Y') - \frac{1}{2}H(X) - \frac{1}{2}H(Y) \\ &= H(X'-Y') - \frac{1}{2}H(X') - \frac{1}{2}H(Y'). \end{split}$$

where X', Y' are independent copies of X, Y.

Lemma 6.6 If A, B are finite subsets of G and X, Y are uniform on A, B respectively, then

$$d(X;Y) \le \log d(A,B)$$
.

Proof (Hints). Straightforward.

Proof. WLOG X, Y are independent. Then

$$\begin{split} d(X,Y) &= H(X-Y) - \frac{1}{2}H(X) - \frac{1}{2}H(Y) \\ &\leq \log\lvert A - B \rvert - \frac{1}{2}\log\lvert A \rvert - \frac{1}{2}\log\lvert B \rvert = \log d(A,B). \end{split}$$

Lemma 6.7 Let X, Y be G-valued random variables. Then

$$H(X-Y) \ge \max\{H(X), H(Y)\} - I(X:Y).$$

Proof (Hints). Use that $H(X-Y) \ge H(X-Y \mid Y)$ and $H(X-Y) \ge H(X-Y \mid X)$.

Proof. We have

$$\begin{split} H(X-Y) &\geq H(X-Y\mid Y) \text{ by } \frac{\text{Subadditivity}}{\text{Subadditivity}} \\ &= H(X-Y,Y) - H(Y) \\ &= H(X,Y) - H(Y) \text{ by } \frac{\text{Invariance}}{\text{Invariance}} \\ &= H(X) + H(Y) - H(Y) - I(X:Y) \\ &= H(X) - I(X:Y). \end{split}$$

We use Invariance with the bijection $(x,y) \mapsto (x-y,y)$. By symmetry, we also have $H(X-Y) \geq H(Y) - I(X:Y)$.

Corollary 6.8 If X, Y are G-valued RVs, then $d(X; Y) \geq 0$.

 $Proof\ (Hints)$. Straightforward.

Proof. WLOG X and Y are independent. Then I(X:Y)=0, so $H(X-Y)\geq \max\{H(X),H(Y)\}\geq \frac{1}{2}(H(X)+H(Y))$.

Lemma 6.9 If X, Y are G-valued RVs, then d(X; Y) = 0 iff there is some (finite) subgroup H of G such that X and Y are uniform on cosets of H.

Proof (Hints).

- \Leftarrow : straightforward.
- \Longrightarrow : assume WLOG that X and Y are independent. By considering entropy, explain why X-Y and Y are independent.
- Deduce that for X supported on A and Y supported on B, for all $z \in A B$ and $y_1, y_2 \in B$, $\mathbb{P}(X = y_1 + z) = \mathbb{P}(X = y_2 + z)$, and show that this implies that $z + B \subseteq A$.

• Deduce that A = B + z for all $z \in A - B$, and so that A - x is constant over $x \in A$.

• Deduce that A - A is a subgroup.

Proof. \Leftarrow : If X, Y are uniform on x + H, y + H then X' - Y' is uniform on (x - y) + H, so H(X' - Y') = H(X) = H(Y).

 \implies : WLOG X and Y are independent. We have $H(X-Y)=\frac{1}{2}(H(X)+H(Y))$. So equality must hold throughout the proof of Lemma 6.7 and Corollary 6.8, thus $H(X-Y\mid Y)=H(X-Y)$. Therefore, X-Y and Y are independent. So for every $z\in A-B$ and $y_1,y_2\in B$,

$$\mathbb{P}(X - Y = z \mid Y = y_1) = \mathbb{P}(X - Y = z \mid Y = y_2),$$

where $A = \{x : \mathbb{P}(X = x) \neq 0\}$ and $B = \{y : \mathbb{P}(Y = y) \neq 0\}$. We can write this as

$$\mathbb{P}(X=y_1+z)=\mathbb{P}(X=y_2+z)$$

So $\mathbb{P}(X=x)$ is constant on z+B. In particular, $z+B\subseteq A$ ($\mathbb{P}(X=x)$ must be non-zero on z+B, as otherwise $(z+B)\cap A=\emptyset$, i.e. $z\notin A-B$). By the same argument, $A-z\subseteq B$. So A=B+z for all $z\in A-B$. So for every $x\in A$ and $y\in B$, A=B+x-y, so A-x=B-y. Hence, A-x is the same for every $x\in A$. Therefore, $A-x=\bigcup_{x\in A}(A-x)=A-A$ for all $x\in A$. It follows that

$$A - A + A - A = (A - A) - (A - A) = A - x - (A - x) = A - A.$$

So A - x = A - A is a subgroup, and so A is a coset of A - A. B = A + x, so B is also a coset of A - A. Also, as stated above, X is uniform on z + B = A and Y is uniform on A - z = B.

Lemma 6.10 (Entropic Ruzsa Triangle Inequality) Let X, Y, Z be G-valued random variables. Then $d(X; Z) \leq d(X; Y) + d(Y; Z)$.

Proof (Hints). Simplify the desired inequality and use Lemma 1.26 (where X-Z depends on two different (pairs of) random variables).

Proof. We must show (assuming WLOG that X, Y, Z are independent) that

$$\begin{split} &H(X-Z) - \frac{1}{2}H(X) - \frac{1}{2}H(Z) \\ &\leq H(X-Y) - \frac{1}{2}H(X) - \frac{1}{2}H(Y) + H(Y-Z) - \frac{1}{2}H(Y) - \frac{1}{2}H(Z), \end{split}$$

i.e. that $H(X-Z)+H(Y)\leq H(X-Y)+H(Y-Z)$. Since X-Z depends on (X-Y,Y-Z) and on (X,Z), by Lemma 1.26,

$$H(X - Y, Y - Z, X, Z) + H(X - Z) \le H(X - Y, Y - Z) + H(X, Z)$$

i.e. $H(X,Y,Z) + H(X-Z) \le H(X,Z) + H(X-Y,Y-Z)$. By independence and Subadditivity, we get $H(X-Z) + H(Y) \le H(X-Y) + H(Y-Z)$.

Lemma 6.11 (Submodularity for Sums) If X, Y, Z are independent G-valued RVs, then

$$H(X + Y + Z) + H(Z) \le H(X + Z) + H(Y + Z)$$

Proof (Hints). Use Lemma 1.26.

Proof. X + Y + Z is a function of (X + Z, Y) and of (X, Y + Z). Therefore, by Lemma 1.26,

$$H(X+Z,Y,X,Y+Z) + H(X+Y+Z) \le H(X+Z,Y) + H(X,Y+Z),$$

thus $H(X,Y,Z) + H(X+Y+Z) \le H(X+Z) + H(Y) + H(X) + H(Y+Z)$. By independence and cancelling equal terms, we get the desired inequality. \Box

Lemma 6.12 Let G be an abelian group and let X be a G-valued random variable. Then $d(X; -X) \leq 2d(X; X)$.

Proof (Hints). Consider independent copies X_1, X_2, X_3 of X, use Lemma $\boxed{6.7}$.

Proof. Let X_1, X_2, X_3 be independent copies of X. Then by Lemma 6.7,

$$\begin{split} d(X;-X) &= H(X_1 + X_2) - \frac{1}{2}H(X_1) - \frac{1}{2}H(X_2) \\ &\leq H(X_1 + X_2 - X_3) - H(X) \\ &\leq H(X_1 - X_3) + H(X_2 - X_3) - H(X_3) - H(X) \\ &= 2d(X;X) \end{split}$$

by Submodularity for Sums and since X_1, X_2, X_3 are all copies of X.

Corollary 6.13 Let X and Y be G-valued random variables. Then $d(X; -Y) \le 5d(X; Y)$.

Proof. By the Entropic Ruzsa Triangle Inequality.

$$\begin{split} d(X;-Y) & \leq d(X;Y) + d(Y;-Y) \\ & \leq d(X;Y) + 2d(Y;Y) \\ & \leq d(X;Y) + 2(d(Y;X) + d(X;Y)) = 5d(X;Y). \end{split}$$

Definition 6.14 Let X, Y, U, V be G-valued random variables. The **conditional** distance is

$$d(X\mid U;Y\mid V) = \sum_{u,v} \mathbb{P}(U=u)\mathbb{P}(V=v)d(X\mid U=u;Y\mid V=v).$$

Definition 6.15 Let X, Y, U be G-valued random variables. The **simultaneous** conditional distance of X to Y given U is

$$d(X;Y \parallel U) \coloneqq \sum_{u} \mathbb{P}(U=u) d(X \mid U=u;Y \mid U=u).$$

26

Definition 6.16 We say that X', Y' are **conditionally independent trials** of X, Y' given U if X' is distributed like X, Y' like Y, and for each $u, X' \mid U = u$ is distributed like $X \mid U = u, Y' \mid U = u$ is distributed like $Y \mid U = u$, and $X' \mid U = u$ and $Y' \mid U = u$ are independent.

In that case,
$$d(X; Y \parallel U) = H(X' - Y' \mid U) - \frac{1}{2}H(X' \mid U) - \frac{1}{2}H(Y' \mid U)$$
.

Lemma 6.17 (Entropic BSG Theorem) Let A, B be G-valued RVs. Then

$$d(A; B \parallel A + B) \le 3I(A : B) + 2H(A + B) - H(A) - H(B).$$

Proof (Hints).

- Let A', B' be conditionally independent trials of A, B given A + B.
- Show that $H(A' \mid A+B) = H(A) + H(B) I(A:B) H(A+B)$.
- Let (A_1, B_1) and (A_2, B_2) be conditionally independent trials of (A, B) given A + B.
- Explain why $H(A_1-B_2) \leq H(A_1-B_2,A_1) + H(A_1-B_2,B_1) H(A_1-B_2,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A_1) + H(A_1-B_1,A$
- Use that $A_1 + B_1 = A_2 + B_2$ to bound each of the first two terms on the RHS of the above, and rewrite the $H(A_1 B_2, A_1, B_1)$ term, using the conditional independence of (A_1, B_1) and (A_2, B_2) , to conclude the result.

Proof. We have

$$d(A,B \parallel A+B) = H(A'-B' \mid A+B) - \frac{1}{2}H(A' \mid A+B) - \frac{1}{2}H(B' \mid A+B),$$

where A', B' are conditionally independent trials of A, B given A + B. Now

$$H(A' \mid A + B) = H(A \mid A + B) = H(A, A + B) - H(A + B)$$

= $H(A, B) - H(A + B)$
= $H(A) + H(B) - I(A : B) - H(A + B)$.

Similarly, $H(B' \mid A+B) = H(A) + H(B) - I(A:B) - H(A+B)$, so

$$\frac{1}{2}H(A'\mid A+B)+\frac{1}{2}H(B'\mid A+B)$$

is also the same. By Subadditivity, $H(A'-B'\mid A+B)\leq H(A'-B')$. Let (A_1,B_1) and (A_2,B_2) be conditionally independent trials of (A,B) given A+B (here, A_1 plays the role of A', B_2 plays the role of B', and each comes with another RV since we know the value of A+B). Then $H(A'-B')=H(A_1-B_2)$. By Submodularity,

$$H(A_1-B_2) \leq H(A_1-B_2,A_1) + H(A_1-B_2,B_1) - H(A_1-B_2,A_1,B_1)$$

Also,

$$H(A_1-B_2,A_1)=H(A_1,B_2)\leq H(A_1)+H(B_2)=H(A)+H(B)$$

and since $A_1 + B_1 = A_2 + B_2$,

$$H(A_1-B_2,B_1)=H(A_2-B_1,B_1)=H(A_2,B_1)\leq H(A)+H(B).$$

Finally, since $A_1 + B_1 = A_2 + B_2$,

$$\begin{split} H(A_1-B_2,A_1,B_1) &= H(A_1,B_1,A_2,B_2) \\ &= H(A_1,B_1,A_2,B_2 \mid A+B) + H(A+B) \\ &= 2H(A,B \mid A+B) + H(A+B) \\ &= 2H(A,B) - H(A+B) \\ &= 2H(A) + 2H(B) - 2I(A:B) - H(A+B). \end{split}$$

where the third line is by conditional independence of (A_1, B_1) and (A_2, B_2) . Adding or subtracting as appropriate all these terms gives the required inequality.