1. Poišči predpise za inverze, $f^{-1}(x)$, spodnjih funkcij. Na katerih območjih v $\mathbb R$ imajo ti predpisi smisel?

(a)
$$f(x) = \frac{x+1}{2x-3}$$
,

(c)
$$h(x) = \log(2x - 1)$$
,

(b)
$$g(x) = \frac{2x}{x^2 + 1}$$
,

(d)
$$k(x) = \sqrt{x^2 + 1}$$
.

2. Skiciraj grafe in poišči definicijska območja funkcij s spodnjimi predpisi. Katera od teh funkcij je soda oz. liha? Katera od funkcij je injektvna/surjektivna? Zakaj je oz. zakaj ni?

(a)
$$3 - 2x^2$$
,

(d)
$$e^x + 2$$
,

(b)
$$sign(3 - 2x^2)$$
,

(e)
$$\log(x + 2)$$
,

(c)
$$6 - 5x + x^2$$

(f)
$$\sin(2x)$$
.

- 3. Ali predpisi x, $\sqrt{x^2}$ ter $(\sqrt{x})^2$ predstavljajo iste funkcije?
- 4. Recimo, da predpisa za *zvezno* funkcijo f ne poznamo, poznamo pa vrednosti $f(t_i)$ pri t_i iz spodnje tabele:

Kako bi (približno, vendar smiselno) poiskal ničle te funkcije, tj. poiskal tiste $t \in [-2, 3]$, za katere velja f(t) = 0?

5. Določi realni števili a in b tako, da bo funkcija s predpisom

$$f(x) = \begin{cases} 2x + a, & x \le 1 \\ x^2 - ax + b, & 1 \le x \le 3 \\ ax, & x \ge 3 \end{cases}$$

zvezna.