

Digital Signal Processing I

4th Week EXPERIMENT

Report

(2nd report of DSP1 course)

Subject	Digital Signal Processing I
Professor	Joon-Hyuk Chang
Submission Date	March 30th, 2021
University	Hanyang University
School	College of Engineering
Department	Department of Computer Science & Engineering
Student ID	Name
2019009261	최가온(CHOI GA ON)

-Contents-

I. Abstraction

- 1. Convolution
 - 1-1. Definition of Convolution
 - 1-2. Visual explanation of convolution
 - 1-3. Matlab implementation of convolution

2. Correlation

- 2-1. Definition of Correlation
- 2-2. Convolution, correlation, autocorrelation

Ⅱ. Exercises

- 1. Matlab codes of each exercise
- 2. Results

I. Abstraction

1. Convolution

1-1. Definition of Convolution

Suppose there is an linear time-invariant system. h(n) is the impulse response. For an signal x(n), convolution is defined as:

$$y(n) = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} x[n-k]h[k]$$

And it is denoted by:

$$y(n) = x(n) * h(n)$$

1-2. Visual explanation of convolution

Convolution can be represented visually by fixing one signals, and shifting flipped other signal. This image¹ shows detailed process of convolution.

¹ https://en.wikipedia.org/w/index.php?title=Convolution&oldid=888199331

- Select one signal from original two signals
- Flip the selected signal
- Slide from $t = -\infty$ to $t = \infty$

The selection of one signal doesn't change the convolution result.

1-3. Matlab implementation of convolution

The following code represents the implementation of convolution with Matlab.

```
편집기 - C:\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Users\Users\Uniongram\Users\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Users\Uniongram\Users\Uniongram\Users\Users\Users\Uniongram\Users\Uniongram\Users\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Users\Uniongram\Uniongram\Uniongram\Users\Uniongram\Users\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongram\Uniongra
```

2. Correlation

2-1. Definition of Correlation

Correlation is an operation used in many applications in digital signal processing. It is a measure of the degree to which two sequences are similar.

$$y_{xh}(n) = \sum_{k=-\infty}^{\infty} x[k]h[k-n] = \sum_{k=-\infty}^{\infty} x[k]h[-(n-k)] = x[n] * h[-n]$$

Correlations are useful because they can indicate a predictive relationship that can be explained in practice.² For example, an electrical utility may produce less power on a mild day baased on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling.

However, in general, the presence of a correlation is not sufficient to infer the presence of a causal relationship.

Correlation between two random variable X and Y with expected values μ_x and μ_y and standard deviations σ_x and σ_y is defined by:

$$\sigma_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_x \sigma_y} = \frac{E\left[(X - \mu_x)(Y - \mu_y)\right]}{\sigma_x \sigma_y}$$

* cov(X, Y) : covariance(공분산)

2-2. Convolution, correlation, autocorrelation

1) Convolution

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n]$$

² https://en.wikipedia.org/wiki/Correlation_and_dependence#Definition

2) Correlation

$$r_{xh}[n] = \sum_{k=-\infty}^{\infty} x[k]h[k-n] = \sum_{k=-\infty}^{\infty} x[k]h[-(n-k)] = x[n] * h[-n]$$

3) Autocorrelation

$$r_{xx}[n] = \sum_{k=-\infty}^{\infty} x[k]x[k-n] = x[n] * x[-n]$$

II. Exercises

In this part, there are 2 exercise questions. Each exercise consists of code and its result. All documents including Matlab code, result, and this report are uploaded in this website:

https://github.com/Gaon-Choi/ELE3076/tree/main/2_convolution

Example 2.8

Given the following two sequences,

$$x(n) = [3, 11, 7, 0, -1, 4, 2]$$
 $-3 \le n \le 3;$

$$h(n) = [2, 3, 0, -5, 2, 1]$$
 $-1 \le n \le 4;$

determine the convolution y(n) = x(n) * h(n).

(Matlab code)

```
편집기 - C:\Users\choig\Documents\MATLAB\example2_8.m

example2_8.m

x = [3, 11, 7, 0, -1, 4, 2]; h = [2, 3, 0, -5, 2, 1];

y = conv(x, h) % y(n) = x(n) * h(n)

3
```

(Result)

```
명령창

>> example2_8

y =
6 31 47 6 -51 -5 41 18 -22 -3 8 2

fx >>
```

Additionally, y(n) can be plotted with "stem()" function in Matlab basic function. The following shows the code and its result.

Example 2.10

In this example we will demonstrate one application of the crosscorrelation sequence. Let

$$x(n) = [3, 11, 7, 0, -1, 4, 2]$$

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version

$$y(n) = x(n - 2) + w(n)$$

where w(n) is Gaussian sequence with mean 0 and variance 1. Compute the crosscorrelation between y(n) and x(n).

(Matlab code)

```
% noise sequence 1
x = [3, 11, 7, 0, -1, 4, 2];
nx = [-3:3];
                                  % given signal x(n)
[y, ny] = sigshift(x, nx, 2);
                                    % obtain x(n - 2)
w = randn(1, length(y)); nw = ny;
                                     % generate w(n)
[y, ny] = sigadd(y, ny, w, nw);
                                     % obtain y(n) = x(n - 2) + w(n)
                                   % obtain x(-n)
[x, nx] = sigfold(x, nx);
[rxy, nrxy] = conv m(y, ny, x, nx); % crosscorrelation
subplot(1, 1, 1), subplot(2, 1, 1); stem(nrxy, rxy)
axis([-5, 10, -50, 250]); xlabel('lag variable 1')
ylabel('rxy'); title('Crosscorrelation: noise sequence 1')
% noise sequence 2
x = [3, 11, 7, 0, -1, 4, 2];
nx = [-3:3];
                                   % given signal x(n)
[y, ny] = sigshift(x, nx, 2);
                                    % obtain x(n - 2)
w = randn(1, length(y)); nw = ny;
                                     % generate w(n)
[y, ny] = sigadd(y, ny, w, nw);
                                     % obtain y(n) = x(n - 2) + w(n)
[x, nx] = sigfold(x, nx);
                                    % obtain x(-n)
[rxy, nrxy] = conv_m(y, ny, x, nx);
                                     % crosscorrelation
subplot(2, 1, 2); stem(nrxy, rxy)
axis([-5, 10, -50, 250]); xlabel('lag variable 1')
ylabel('rxy'); title('Crosscorrelation: noise sequence 2')
```

(Result)

Two graph always shows different result, because they are produced with randn function. We observe that the cross-correlation peaks at l=2, which implies that y[n] is similar to x[n] shifted by 2.