Week 02 F2F Example Solutions

1. Example 2.1

(a)

$$\begin{cases} a = \frac{1}{2} + \frac{5s}{2} - 4t \\ b = 1 + 3s - 4t \\ c = s \\ d = t, \quad s, t \in \mathbb{R} \end{cases}$$

- (b) x = 1, y = 2, z = 3.
- 2. Example 2.2
 - (a) (i) No solution when $a = 5, b \neq 4$. (ii) Exactly one solution when $a \neq 5$. (iii) Infinitely many solutions when a = 5, b = 4.
 - (b) (i) No solution when a = 0 or 2 and $b \neq 0$. (ii) Exactly one solution when $a \neq 0, 2$. (iii) Infinitely many solutions when a = 0 or 2 and b = 0.
- 3. **Example 2.3** Since the solution set is a line that contains the origin, the linear system is homogeneous, which implies d = g = k = 0 and a = e = 1, h = b = 0 (since reduced row-echelon form). Since the line passes through (1, 1, 1), a general solution for the system can be

$$\begin{cases} x = s \\ y = s \\ z = s, \quad s \in \mathbb{R}. \end{cases}$$

So c = -1, f = -1.

- 4. Example 2.4
 - (a) True.
 - (b) False. A non-homogeneous system has at least one equation where the left hand side is non-zero. In this case, $x_1 = x_2 = ... = x_n = 0$ does not satisfy this equation and thus the system cannot have the trivial solution.
 - (c) False. Homogeneous systems can have both trivial and non-trivial solutions.
 - (d) False. Homogeneous systems always have the trivial solution.
 - (e) True.
 - (f) False. The homogeneous system can have non-trivial solutions too.
 - (g) True.
- 5. **Example 2.5**
 - (a) (3,4)-entry of AB.
 - (b) (3,2)-entry of BA.

- (a) $\sum_{k=1}^{p} c_{ik} b_{kj}$
- (b) $\sum_{r=1}^{p} \left(\sum_{k=1}^{n} b_{ik} a_{kr} \right) c_{rj}$