

Straight lines

Problem

1. Which of the following describe a straight line?

a.
$$4x - 2y = 6$$

b. $y = 2$
c. The points $(1, 2)$ and $(0, -1)$
d. $y = 4x$
e. $y = 2x - 3$
f. The point $(3, 3)$ and the direction vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
g. $x = 7y$
h. The points $(-1, -4)$, $(3, 7)$, and $(8, 8)$
i. $y - 10 = 3(x + 2)$
j. The points $\left(\frac{1}{2}, -2\right)$, $(1, -1)$, and $\left(\frac{3}{2}, 0\right)$
k. $y = x^2 + 2$
l. $y^2 = x^2$
m. $0.5x - 7y + 2 = 0$
n. $xy = 1$

How did you decide?

- 2. Can you give any other ways to describe a unique straight line?
- 3. Do any of them represent the same line?

o. $y^2 - 4xy + 4x^2 = 0$

Now look just at the versions that **do** describe a unique straight line.

- 4. Pick two of the descriptions. Can you take a line given by one description and express it using the other?
- 5. Why might one description be more useful than another? Can you identify any advantages or disadvantages of any of these representations?

Relevance

- E2 How is the solution of equations related to problems in geometry?
- G2 What is the connection between algebra and geometry, and how can we exploit it?