TD 9 : Loi des grands nombres, Théorème Central Limite, Vecteurs gaussiens

Une étoile désigne un exercice important.

Exercice 1. Établir que pour toute fonction continue f de [0,1] dans \mathbb{R} :

$$\int_0^1 \cdots \int_0^1 f\left(\frac{x_1 + x_2 \cdots + x_n}{n}\right) dx_1 \cdots dx_n \stackrel{n \to +\infty}{\longrightarrow} f\left(\frac{1}{2}\right), \tag{1}$$

$$\sum_{k=0}^{n} C_n^k p^k (1-p)^{n-k} f\left(\frac{k}{n}\right) \stackrel{n \to +\infty}{\longrightarrow} f(p), \quad p \in [0,1]. \tag{2}$$

Établir que pour toute fonction réelle continue et bornée f définie sur \mathbb{R}_+ :

$$\lim_{n \to +\infty} \sum_{k > 0} e^{-\lambda n} \frac{(\lambda n)^k}{k!} f\left(\frac{k}{n}\right) = f(\lambda), \quad \lambda \in]0, +\infty[.$$

Exercice 2. Soit X_1, \dots, X_n, \dots une suite de variables aléatoires entières, indépendantes suivants la loi $\mathcal{P}(\lambda)$. On a donc, pour tout $k \in \mathbb{N}$, $\mathbb{P}(X_1 = k) = e^{-\lambda} \frac{\lambda^k}{k!}$. On pose

$$Y_n = \prod_{k=1}^n (1 + X_k), \quad Z_n = \prod_{k=1}^n X_k.$$

- 1. Etudier la convergence presque sûre de $\frac{1}{n} \log Y_n$.
- 2. Calculer $\mathbb{P}(Z_n \neq 0)$.
- 3. Montrer que Z_n converge presque sûrement vers 0.
- 4. Etudier la convergence dans L^1 de Z_n .

Exercice 3. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de loi uniforme sur [0,1].

1. Pour tout $n \ge 1$, on pose $Y_n = X_{2n+1} - X_{2n}$. Montrer que la suite

$$\frac{1}{\sqrt{n}}(Y_1+\cdots+Y_n)\,,$$

converge en loi et trouver la loi limite.

2. On définit maintenant la suite $(Z_n)_{n\geq 1}$ par $Z_n=(X_1X_2\cdots X_n)^{1/n}$. La suite (Z_n) converge-t-elle? En quel sens? Préciser sa limite.

Exercice 4. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de loi de Poisson de paramètre $\lambda > 0$.

- 1. Quelle est la loi de $X_1 + \cdots + X_n$? Que vaut $\mathbb{P}(X_1 + \cdots + X_n \leq n)$?
- 2. Utiliser le théorème central limite pour montrer que

$$\lim_{n \to +\infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} = \frac{1}{2}.$$

Exercice 5. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes, de même loi, centrées, de variance σ^2 , de fonction caractéristique Φ . On pose $S_n = X_1 + \cdots + X_n$. On définit aussi la suite $(N_k)_{k\geq 1}$ de v.a. indépendantes telle que pour tout k, N_k est une v.a. de Poisson de paramètre k. On suppose de plus que la suite (N_k) est indépendante de la suite (X_n) . Pour tout $k \geq 1$, on pose

$$\begin{split} Z_k &=& \frac{1}{\sqrt{N_k}} S_{N_k} \quad \text{si} \quad N_k \neq 0 \,, \\ Z_k &=& X_1 \quad \text{si} \quad N_k = 0 \,. \end{split}$$

- 1. Exprimer la fonction caractéristique Φ_k de Z_k en fonction de Φ . Qu'advient-il si X_1 est une gaussienne?
- 2. Montrer que pour tout réel t, $\Phi^n(t/\sqrt{n}) \to \exp(-\sigma^2 t^2/2)$, lorsque $n \to \infty$. En déduire que (Z_k) converge en loi vers une v.a. que l'on précisera.
- * Exercice 6. Soit X_1, \dots, X_n, \dots des v.a. i.i.d. de loi donnée par $\mathbb{P}(X_1 = 1) = 1/3$, $\mathbb{P}(X_1 = 0) = 2/3$. Soit $S_n = X_1 + X_2 + \dots + X_n$.
 - 1. Calculer la limite p.s. de la suite $V_n = \frac{(S_n/n)^{100} (1/3)^{100}}{S_n/n 1/3}$.
 - 2. Calculer la limite en loi de $W_n = \sqrt{n}(S_n/n 1/3)$ et donner $\lim_{n \to \infty} \mathbb{P}(\sqrt{n}(S_n/n 1/3) \le 10)$ sous forme d'une intégrale.
 - 3. Déduire de ce qui précéde la limite en loi de la suite de v.a. $\sqrt{n} \left((S_n/n)^{100} (1/3)^{100} \right)$. Donner l'espérance et la variance de la loi limite.

Exercice 7. Soit $(X_n)_{n\geq 1}$ une suite de v.a. i.i.d. centrées $(\mathbb{E}[X_1]=0)$ réduites $(\operatorname{Var}(X_1)=1)$. On note $Z_n=\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i$.

- 1. Montrer que, pour tout fonction continue bornée f, $\mathbb{E}[f(Z_n)]$ converge quand $n \to \infty$. On souhaite maintenant généraliser cette convergence à d'autre types de fonctions.
- 2. (a) Montrer que, pour tout $r \in (0,2)$ et A > 0, $\mathbb{E}[|Z_n|^r \mathbf{1}_{\{|Z_n| > A\}}] \leq \frac{r}{2-r} A^{-(2-r)}$. Indication : utiliser la formule $\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > t) dt$ pour toute v.a. X positive.
 - (b) En déduire que $\mathbb{E}[|Z_n|^r] \stackrel{n \to \infty}{\to} \mathbb{E}[|Z|^r]$ pour tout $r \in (0,2)$, où $Z \sim \mathcal{N}(0,1)$. Indication: introduire la fonction $g_A(x) = \min(|x|,A)^r$.
- 3. On suppose désormais que $\mathbb{E}[|X_1|^3] < +\infty$. Soit f une fonction C^3 , avec $\sup_{x \in \mathbb{R}} f^{(3)}(x) = K_3 < +\infty$. On va borner $\left| \mathbb{E}[f(Z_n)] \mathbb{E}[f(Z)] \right|$ où $Z \sim \mathcal{N}(0,1)$.
 - (a) Soit $(G_i)_{i\geq 1}$ une suite de v.a. i.i.d. de même loi $\mathcal{N}(0,1)$, indépendante de $(X_i)_{i\geq 1}$. On définit, pour $j\in\{0,\ldots,n\}$

$$Z_{n,j} := \frac{1}{\sqrt{n}} \Big(G_1 + \dots + G_j + X_{j+1} + \dots + X_n \Big).$$

Identifier $Z_{n,0}$, et donner la loi de $Z_{n,n}$.

(b) En définissant $S_{n,j} := \frac{1}{\sqrt{n}} (G_1 + \dots + G_j + X_{j+2} + \dots + X_n)$, montrer que

$$\left| f(Z_{n,j}) - f(S_{n,j}) - f'(S_{n,j}) \frac{X_{j+1}}{\sqrt{n}} - f''(S_{n,j}) \frac{X_{j+1}^2}{2n} \right| \le K_3 \frac{|X_{j+1}|^3}{6n^{3/2}}$$

$$\left| f(Z_{n,j+1}) - f(S_{n,j}) - f'(S_{n,j}) \frac{G_{j+1}}{\sqrt{n}} - f''(S_{n,j}) \frac{G_{j+1}^2}{2n} \right| \le K_3 \frac{|G_{j+1}|^3}{6n^{3/2}}$$

et en déduire

$$\left| \mathbb{E} \left[f(Z_{n,j}) - f(Z_{n,j+1}) \right] \right| \le \frac{K_3}{6n^{3/2}} \left(\mathbb{E}[|Z|^3] + \mathbb{E}[|X_1|^3] \right).$$

(c) Montrer que

$$\left| \mathbb{E}[f(Z_n)] - \mathbb{E}[f(Z)] \right| \le \frac{K_3}{6n^{1/2}} \left(\mathbb{E}[|Z|^3] + \mathbb{E}[|X_1|^3] \right) \stackrel{n \to \infty}{\to} 0.$$

On peut voir cela comme une forme faible du théorème de Berry-Esseen.

Exercice 8. Soit (X,Y) un vecteur gaussien centré, avec $E(X^2) = 4$ et $E(Y^2) = 1$, et tel que les variables 2X + Y et X - 3Y sont indépendantes.

- 1. Déterminer la matrice de covariance de (X, Y).
- 2. Montrer que le vecteur (X + Y, 2X Y) est également gaussien, puis déterminer sa matrice de covariance.

Exercice 9. Soit $(X, Y, Z) \in \mathbb{R}^3$ un vecteur gaussien. On pose U = X + Y + Z et V = X - Y.

- 1. Montrer que $(U, V) \in \mathbb{R}^2$ est gaussien.
- 2. A quelle condition sur la matrice de covariance de (X, Y, Z) les variables U et V sont-elles indépendantes?

Exercice 10. Soit $(X, Y, Z) \in \mathbb{R}^3$ un vecteur gaussien d'espérance $(1, 1, 1)^t$ et de matrice de covariance $2I_3$. Le vecteur (X + 2Y + Z, 2X - Y + Z + 2) est-il gaussien? Déterminer sa loi.

Exercice 11. Soit $X \in \mathbb{R}^3$ un vecteur gaussien centré de matrice de covariance

$$Q = \left(\begin{array}{rrr} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right) \,.$$

- 1. X possède-t-il une densité par rapport à la mesure de Lebesgue sur \mathbb{R}^3 ? Si oui donner son expression.
- 2. Trouver un opérateur linéaire $A: \mathbb{R}^3 \to \mathbb{R}^3$ tel que les composantes du vecteur $A \cdot X$ soient des variables indépendantes.
- 3. Déterminer la loi de $X_1 + 2X_2 X_3$ où $X = (X_1, X_2, X_3)$.

Exercice 12. Soit $(X_1, X_2, \dots, X_n) \in \mathbb{R}^n$ un vecteur gaussien de loi $\mathcal{N}(0, I_n)$.

- 1. Déterminer la loi de X_1^2 .
- 2. Déterminer les lois de $(X_1^2 + X_2^2 + \cdots + X_n^2)$ et de $\sqrt{X_1^2 + X_2^2 + \cdots + X_n^2}$
- 3. Soit Y une v.a. telle que (X_1, \dots, X_n, Y) soit un vecteur gaussien de \mathbb{R}^{n+1} de loi $\mathcal{N}(0, I_{n+1})$. Déterminer la loi de la variable

$$\frac{Y}{\sqrt{X_1^2 + X_2^2 + \dots + X_n^2}}.$$

Exercice 13. Soit $X = (X_1, \dots, X_n)$ un vecteur aléatoire gaussien, centré, réduit, $\mathcal{N}(0, I_n)$. Pour tout $i \in \{1, \dots, n\}$, on pose $Y_i = X_1 + \dots + X_i - X_{i+1}$ (avec la convention $X_{n+1} = 0$). Les v.a. Y_1, \dots, Y_n sont-elles indépendantes?

Exercice 14. Existe t-il un vecteur gaussien de \mathbb{R}^3 dont la matrice de covariance est

$$\left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 3 & 4 \\ 0 & 4 & 2 \end{array}\right)?$$