Sistemas de Múltiplos Classificadores

A novel ensemble method for classifying imbalanced data

Zhongbin Sun, Qinbao Song, Xiaoyan Zhu, Heli Sun, Baowen Xu, Yuming Zhou

Pattern Recognition, 2014

Daniel Bion Barreiros - dbb2@cin.ufpe.br

Dados desbalanceados

Sampling

ClusterBal e SplitBal

Regras de combinação (literatura)

Rule	Strategy	Description					
Max	$R_1 = \arg \max_{1 \le i \le K} P_{i1}, R_2 = \arg \max_{1 \le i \le K} P_{i2}$	Use the maximum classification probability of these K classifiers for each class label					
Min	$R_1 = \arg\min_{1 \le i \le K} P_{i1}, R_2 = \arg\min_{1 \le i \le K} P_{i2}$	Use the minimum classification probability of these K classifiers for each class label					
Product	$R_1 = \prod_{i=1}^{K} P_{i1}, R_2 = \prod_{i=1}^{K} P_{i2}$	Use the product of classification probability of these K classifiers for each class label					
Majority vote	$R_1 = \sum_{i=1}^{K} f(P_{i1}, P_{i2}), R_2 = \sum_{i=1}^{K} f(P_{i2}, P_{i1})$	For the ith classifier, if $P_{i1} \ge P_{i2}$, class C_1 gets a vote, if $P_{i2} \ge P_{i1}$, class C_2 gets a vote					
Sum	$R_1 = \sum_{i=1}^{K} P_{i1}, R_2 = \sum_{i=1}^{K} P_{i2}$	Use the summation of classification probability of these K classifiers for each class label					

The function f(x,y) is defined as follows:

$$f(x,y) = \begin{cases} 1 & x \ge y \\ 0 & x < y \end{cases} \tag{1}$$

Regras de combinação (propostas)

Rule	Strategy	Description
MaxDistance	$R_1 = \arg\max_{1 \le i \le K} \frac{P_{i1}}{D_{i1} + 1}, R_2 = \arg\max_{1 \le i \le K} \frac{P_{i2}}{D_{i2} + 1}$	Use the inverse of average distance to adjust the Max Rule
MinDistance	$R_1 = \arg\min_{1 \le i \le K} \frac{P_{i1}}{P_{i1}+1}, R_2 = \arg\min_{1 \le i \le K} \frac{P_{i2}}{P_{i2}+1}$	Use the inverse of average distance to adjust the Min Rule
ProDistance	$R_1 = \prod_{i=1}^{K} \frac{P_{i1}}{D_{i1}+1}, R_2 = \prod_{i=1}^{K} \frac{P_{i2}}{D_{i2}+1}$	Use the inverse of average distance to adjust the Product Rule
MajDistance	$R_1 = \sum_{i=1}^{K} \frac{f(P_{i1}, P_{i2})}{D_{i2} + 1}, R_2 = \sum_{i=1}^{K} \frac{f(P_{i2}, P_{i1})}{D_{i2} + 1}$	Use the inverse of average distance to adjust the Majority Vote Rule
SumDistance	$R_1 = \sum_{i=1}^{K} \frac{D_{i1} + 1}{D_{i1} + 1}, R_2 = \sum_{i=1}^{K} \frac{D_{i2} + 1}{D_{i2} + 1}$	Use the inverse of average distance to adjust the Sum Rule

Configurações

- 46 conjuntos de dados desbalanceados
- 10-fold Cross Validation
- 6 algoritmos base do Weka (Naive Bayes, C4.5, RIPPER, Random Forest, SMO e IBK)
- 10 regras de combinação de classificadores
- AUC (Area Under ROC Curve)

ClusterBal + Regras

Classifie	er	Max	Mi	n	Product	Majority	Sum	MaxDistanc	e MinDista	ance ProDis	tance	MajDistance	e SumDistanc
Naive B	aves	0.8351	0.8	3457	0.8158	0.8350	0.8305	0.8041	0.8360	0.8297		0.8340	0.8467
C4.5	,	0.7704		715	0.7826	0.7772	0.7667	0.7747	0.7757	0.7783		0.7620	0.7835
RIPPER		0.7838	0.7	633	0.7689	0.7757	0.7791	0.7645	0.7776	0.7672		0.7875	0.7619
Random	Forest	0.8844	0.8	3538	0.8646	0.8895	0.8886	0.8888	0.8896	0.8562		0.8878	0.8479
SMO		0.7899	0.7	836	0.7895	0.8090	0.7835	0.8001	0.7791	0.7875		0.8189	0.7961
IBK		0.8269	0.8	370	0.8310	0.8327	0.8360	0.8340	0.8531	0.8588		0.8422	0.8385
	Classifie	r	Max	Min	Product	Majority	Sum	MaxDistance	MinDistance	ProDistance	MajDista	ance Sum	Distance
_	Naive B	aves	3	10	8	9	4	2	6	5	7	1	
	C4.5	,	2	9	8	9	4	1	6	7	5	3	
	RIPPER		2	8	8	8	4	1	5	7	6	3	
	Random	Forest	9	4	4	7	10	8	2	1	3	6	
	SMO		3	8	8	8	4	2	7	5	6	1	
	IBK		8	5	5	9	10	2	3	1	7	4	
-	Sum		27	44	41	50	36	16	29	26	34	18	
	Rank		4	9	8	10	7	1	5	3	6	2	

SplitBal + Regras

Classifier	Max	Ĭ.	Min	i.	Product	Majority	Sum	MaxDistanc	e MinDista	ance ProDis	tance	MajDistance	SumDistance
Naive Bayes	s 0.61	55	0.53	330	0.5354	0.5453	0.6112	0.6393	0.5869	0.5892		0.5690	0.6473
C4.5	0.66	48	0.52	262	0.5263	0.5262	0.6411	0.6847	0.5932	0.5291		0.5963	0.6595
RIPPER	0.67	70	0.52	223	0.5223	0.5223	0.6563	0.7216	0.6249	0.6024		0.6043	0.6759
Random For	rest 0.67	98	0.76	643	0.7643	0.7148	0.6746	0.7016	0.8072	0.8274		0.7827	0.7393
SMO	0.74	59	0.51	59	0.5159	0.5159	0.7177	0.7632	0.5208	0.5783		0.5562	0.7673
IBK	0.72	99	0.78	316	0.7816	0.7187	0.7176	0.8171	0.8025	0.8378		0.7678	0.7987
C	lassifier	1	Max	Min	Product	Majority	Sum	MaxDistance	MinDistance	ProDistance	MajDist	ance SumDi	stance
N:	aive Bayes	2	4	2	9	5	7	10	3	8	6	1	
C	4.5	8	8	7	2	4	9	6	5	3	10	1	
R	IPPER	2	2	9	6	5	3	8	4	7	1	10	
Ra	andom Fores	t (6	9	7	2	4	3	1	8	5	10	
	MO		5	8	6	2 2 8	9	3	10	7	1	4	
IB	BK	1	10	5	9	8	6	7	2	1	3	4	
Sı	ım		35	40	39	26	38	37	25	34	26	30	-53
	ank		6	10	9	2	8	7	1	5	2	4	

Problema do ClusterBal

Bin	SplitBal		ClusterBal				
	Majority	Minority	Majority	Minority			
1	321	293	760	293			
2	321	293	525	293			
3	321	293	154	293			
4	321	293	82	293			
5	321	293	83	293			

OLA e LCA

Resultado:

$$C1 = 2/5 = 0,4 = 3^{\circ}$$

$$C2 = 4/5 = 0.8 = 1^{\circ}$$

$$C3 = 3/5 = 0,6 = 2^{\circ}$$

C3=2

$$C1(0) = 1$$

 $C2(0) = 2$

$$C2() = 2$$

$$C3() = 1$$

Resultado:

$$C1 = 1/3 = 0.33 = 2^{\circ}$$

$$C2 = 0/2 = 0.0 = 3^{\circ}$$

$$C3 = 2/3 = 0,67 = 1^{\circ}$$

Resultado Final

Classifier	Original	Conventional Imbalance Methods			Proposed by the Author		My methods				
		RUS	ROS	SMOTE	SplitBal+MinDist	ClusterBal+MaxDist	SplitBal+OLA	SplitBal+LCA	ClusterBal+OLA	ClusterBal+LC/	
Naive Bayes	0.8130	0.8157	0.8139	0.8095	0.8360	0.6393	0.8395	0.8453	0.6708	0.7191	
C4.5	0.8162	0.8159	0.8153	0.8160	0.7757	0.6847	0.8445	0.8106	0.6814	0.8206	
RIPPER	0.8118	0.8168	0.8150	0.8144	0.7776	0.7216	0.8302	0.7870	0.7130	0.8113	
Random Forest	0.8165	0.8150	0.8157	0.8156	0.8896	0.7016	0.8762	0.8707	0.7038	0.8386	
SMO	0.8138	0.8161	0.8171	0.8173	0.7791	0.7632	0.8473	0.8451	0.7341	0.8232	
IBK	0.8172	0.8189	0.8159	0.8159	0.8531	0.8151	0.8545	0.8459	0.7128	0.8255	

Observações

- 1. O autor propõe um método de combinação dinâmica de classificadores e compara com métodos de tratamento de dados desbalanceados, ou seleção estática;
- 2. No artigo original o ClusterBal tem bom desempenho, porém não fica claro se existe algum passo adicional para fazê-lo funcionar, pois os problemas listados no artigo aconteceram até mesmo na replicação.
- 3. As regras de combinação propostas são muito lentas;

Referências

- [1] Zhongbin Sun, Qinbao Song, Xiaoyan Zhu, Heli Sun, Baowen Xu, Yuming Zhou, A novel ensemble method for classifying imbalanced data, Pattern Recognition, Volume 48, Issue 5, 2014, Pages 1623-1637.
- [2] J. Alcalá-Fdez, L. Sánchez, S. García, M. del Jesus, S. Ventura, J. Garrell, J. Otero, C. Romero, J. Bacardit, V. Rivas, et al., Keel: a software tool to assess evolutionary algorithms for data mining problems, Soft Comput. Fusion Found. Methodol. Appl. 13 (2009) 307–318.
- [3] Witten I. H. and Frank E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, 2nd edition. Morgan Kaufmann, San Francisco.
- [4] Hornik K., Buchta C. and Zeileis A. (2009). Open-Source Machine Learning: R Meets Weka. Computational Statistics, 225-232.
- [5] Woods K., Kegelmeyer Jr W. P. and Bowyer K., Combination of multiple classifiers using local accuracy estimates, Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 4, pp. 405-410, 1997.