Cmput 466 / 551

Artificial Neural Networks #2: Conjugate Gradient, ...

Covering chapter (HTF) 11

+

"An Intro to Conjugate Gradient Method without Agonizing Pain"

R Greiner
Department of Computing Science
University of Alberta

Thanks: T Dietterich, R Parr, J Shewchuk

Outline

- Introduction
 - Historical Motivation, non-LTU, Objective
 - Types of Structures
- Multi-layer Feed-Forward Networks
 - Sigmoid Unit
 - Backpropagation
- Tricks for Effectiveness
 - Efficiency: Conjugate Gradient, Line Search
 - Generalization: Alternative Error Functions
- Example: Face Recognition
- Hidden layer representations
- Towards Deeper Nets
- Recurrent Networks

Is

Issues

Backprop will (at best)...

- ... slowly ...
 - Conjugate gradient
 - Line search, ...
- ... converge to LOCAL Opt ...
 - Multiple restart
 - simulated annealing, ...
- ... wrt Training Data
 - Early stopping
 - regularization, ...

Gradient Descent

To optimize $J(\mathbf{w})$:
Initialize $\mathbf{w}^{(0)}$ For k = 1..m $\mathbf{w}^{(k+1)} := \mathbf{w}^{(k)} + \alpha^{(k)} \mathbf{d}^{(k)}$

- General description:
 Want w* that minimizes function J(w)
- So far. . .
 - **w**⁽⁰⁾ is random
 - $\alpha^{(k)} = 0.05$

 - $\mathbf{m} = \text{until bored...}$
- Alternatively...
 - 1. Use *small* random values for **w**⁽⁰⁾
 - 2. Use <u>conjugate gradient</u> for direction $\alpha^{(k)}$ **d**(k)
 - 3. Use *line search* for distance $\alpha^{(k)}$
 - 4. Use "cross tuning" for stopping criteria *m*
 - 5. Multiple restarts

Overfitting

Local Opt

Efficiency

1. Proper Initialization (w)

- Start in "linear regions"
 - Start all weights near 0,
 - ⇒ sigmoid units in linear regions.
 - ⇒ whole net ≈ one linear threshold unit
 - ⇒ network ≈ linear in weights...

so moves quickly...
until in "correct region"

- Ensure each unit has different input weights (so hidden units move in different directions)
- Set weight to random number in range $W_{i,j} \sim \text{Uniform}[-1,+1] \times \frac{1}{\sqrt{\text{Fan,In}}}$

Specific for Sigmoid and variants

2. Conjugate Gradient

- At step r, searching along direction (?gradient?) $\mathbf{d}^{(r)}$... using $\mathbf{e}(\alpha) = \mathbf{J}(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)})$
- At (local) minimum α^* : $\frac{\partial}{\partial \alpha} J(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)}) = 0$
- Let $\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} + \alpha^* \mathbf{d}^{(r)}$

$$\frac{\partial}{\partial \alpha} J(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)}) = \nabla J(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)})^T \cdot \frac{\partial}{\partial \alpha} (\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)})$$

$$= \nabla J(\mathbf{w}^{(r+1)})^T \mathbf{d}^{(r)} = 0$$

2. Conjugate Gradient

- At step r, searching along direction (?gradient?) $\mathbf{d}^{(r)}$... using $\mathbf{q}(\alpha) = \mathbf{J}(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)})$
- At (local) minimum α^* : $\frac{\partial}{\partial \alpha} J(\mathbf{w}^{(r)} + \alpha \mathbf{d}^{(r)}) = 0$
- Let $\mathbf{w}^{(r+1)} = \mathbf{w}^{(r)} + \alpha^* \mathbf{d}^{(r)}$ $\Rightarrow \nabla J(\mathbf{w}^{(r+1)})^T \mathbf{d}^{(r)} = 0$
- Gradient ∇J(w^(r+1)) at r +1st step is ORTHOGONAL to previous search direction d^(r)!
- Is this the best direction??

Problem with Steepest Descent

Steepest Descent...from [-2,-2] to [2,-2]

- Path "zigzag"s as each gradient is orthogonal to the previous gradient...
 - ... but aligned with earlier gradients

Descend along Gradient?

- Q: Should we travel along Gradient?
- A: Not necessarily!

- If different curvatures along different axes: local negative gradient -▽J will NOT point towards minimum!
- What to do?

- Each green line is gradient...
- Problematic when going down narrow canyon
- Red is better...

4

Better...

$$\mathbf{g}_{r} = \nabla J(\mathbf{w}_{r})$$

- Problem: Gradients { g_r } are NOT orthogonal to each other
 - so can "repeat" same directions
- Better to use other vector-directions { d_r } ... where ∃ only n of them (dim of space)
 - "Conjugate":
 - Spanning
 - "Orthogonal" (wrt Hessian matrix)
- Then after n steps: must be at (local) optimum!!

Conjugate Gradient Algorithm

- Notation... wrt iteration j
 - Weights: w_i
 - Gradient: $\mathbf{g}_i = \nabla J(\mathbf{w}_i)$
 - Direction: d_i
- Update parameters: $\mathbf{w}_{j+1} := \mathbf{w}_j + \alpha_j \mathbf{d}_j$
 - To find appropriate distance
 - To get DIRECTION d_i
 - $d_1 := -g_1$
 - $\mathbf{d}_{j+1} := -\mathbf{g}_{j+1} + \beta_j \mathbf{d}_j$

4

Conjugate Gradient, IIa

$$\mathbf{g}_{r} = \nabla J(\mathbf{w}_{r}) = \left[\frac{\partial J(\mathbf{w}^{(r)})}{\partial w_{1}}, ..., \frac{\partial J(\mathbf{w}^{(r)})}{\partial w_{n}}\right]$$
 is gradient, wrt \mathbf{r}^{th} iteration

- Let d be DIRECTION of change.
 Perhaps just use d = g ? But ...
- On iteration r, by construction: $g(\mathbf{w}_{r+1})^T \mathbf{d}_r = 0$
- Want this to be true for next direction as well:

$$g(\mathbf{w}_{r+2})^{\mathsf{T}} \mathbf{d}_{r} = 0$$

As

$$\mathbf{w}_{r+2} := \mathbf{w}_{r+1} + \alpha_{r+1} \mathbf{d}_{r+1}$$

need:

$$g(\mathbf{w}_{r+1} + \alpha_{r+1} \mathbf{d}_{r+1})^{T} \mathbf{d}_{r} = 0$$

4

Conjugate Gradient, IIb

First order Taylor expansion:

$$\begin{split} &g(\ \boldsymbol{w}_{r+1} + \boldsymbol{\alpha}_{r+1}\ \boldsymbol{d}_{r+1}\)^{T} \\ &= g(\boldsymbol{w}_{r+1})^{T} + \boldsymbol{\alpha}_{r+1}\boldsymbol{d}_{r+1}^{T}\ \nabla g(\ \boldsymbol{w}_{r+1} + \boldsymbol{\gamma}\ \boldsymbol{d}_{r+1}\) \\ &\text{for some } \boldsymbol{\gamma} \in (0,\ \boldsymbol{\alpha}_{r+1}) \end{split}$$

■ Post-Multiply by \mathbf{d}_r & use $\mathbf{g}(\mathbf{w}_{r+1})^\mathsf{T} \mathbf{d}_r = 0$ to get

$$\alpha_{r+1} \mathbf{d}_{r+1}^{\mathsf{T}} \nabla g(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_{r} = 0$$

■ Let $\mathcal{H}(\mathbf{w}) = \nabla g(\mathbf{w}) = \nabla (\nabla J(\mathbf{w}))$

... a n \times n matrix of 2nd derivatives, evaluated at w

Hessian Matrix (Second Derivatives)

- Consider $J(x, y) = x^2 + 3xy 5x$
- $g(x,y) = \nabla \mathbf{J} = \left[\frac{\partial J(x,y)}{\partial x}, \frac{\partial J(x,y)}{\partial y}\right] = [2x + 3y 5, 3x]$

$$\mathbf{\mathcal{H}} = \nabla \nabla \mathbf{J} = \begin{bmatrix} \frac{\partial}{\partial x} \frac{\partial J(x,y)}{\partial x} & \frac{\partial}{\partial y} \frac{\partial J(x,y)}{\partial x} \\ \frac{\partial}{\partial x} \frac{\partial J(x,y)}{\partial y} & \frac{\partial}{\partial y} \frac{\partial J(x,y)}{\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} (2x + 3y - 5) & \frac{\partial}{\partial y} (2x + 3y - 5) \\ \frac{\partial}{\partial x} (3x) & \frac{\partial}{\partial y} (3x) \end{bmatrix} \\
= \begin{bmatrix} 2 & 3 \\ 3 & 0 \end{bmatrix}$$

- As J(x, y) is quadratic, \mathcal{H} is constant

If $J(x, y) = x^3y^2 + ...$, then \mathcal{H} is function of args

■ But we will assume is ≈constant (in neighborhood)...

4

Conjugate Property

- Want: $\mathbf{d}_{r+1}^{\mathsf{T}} \nabla g(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r = 0$
- Using $\mathcal{H}(\mathbf{w}_r) = \nabla g(\mathbf{w}_r) = \nabla (\nabla J(\mathbf{w}_r))$ $0 = \mathbf{d}_{r+1}^{\mathsf{T}} \nabla g(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r$ $= \mathbf{d}_{r+1}^{\mathsf{T}} \mathcal{H}(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r$ $\approx \mathbf{d}_{r+1}^{\mathsf{T}} \mathcal{H}(\mathbf{w}_{r+1} + \gamma \mathbf{d}_{r+1}) \mathbf{d}_r$
- Challenge: How to find such d_r vectors?
- Assuming $J(\mathbf{w}) = J_0 + b^T \mathbf{w} + \frac{1}{2} \mathbf{w}^T \mathcal{H} \mathbf{w}$ then $g(\mathbf{w}) = \nabla J(\mathbf{w}) = b + \mathcal{H} \mathbf{w}$
- J is min at \mathbf{w}^* s.t. $g(\mathbf{w}^*) = b + \mathcal{H} \mathbf{w}^* = 0$

Conjugate Gradient, IV

Spse ∃ n vectors "mutually conjugate wrt \(\mathcal{H}''\)

$$\mathbf{d}_{i}^{\mathsf{T}} \, \mathcal{H} \, \mathbf{d}_{i} = 0 \quad \forall \, j \neq i$$

Then $\{ \mathbf{d}_i \}$ linearly independent (if \mathcal{H} pos def)

Starting from w₁; want minimum w* In dimensional space

As
$$\{ \mathbf{d}_i \}$$
 spanning, $\mathbf{w}^* - \mathbf{w_1} = \sum_{i=1}^n \alpha_i \mathbf{d}_i$

- As $\mathbf{w}_{j+1} = \mathbf{w}_j + \alpha_j \mathbf{d}_j$ $\Rightarrow \mathbf{w}_j = \mathbf{w}_1 + \sum_{i=1}^{j-1} \alpha_i \mathbf{d}_i$
- Series of steps, each parallel some conjugate direction, of magnitude $\alpha_j \in \Re$

To find α_i ...

- 1. $g(\mathbf{w}_j) = \mathcal{H} \mathbf{w}_j + b$
- 2. $g(\mathbf{w}^*) = \mathbf{0}$ $\Rightarrow \mathcal{H}\mathbf{w}^* = -\mathbf{b}$
- 3. $\mathbf{d}_{i}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{i} = 0 \text{ if } i \neq j$

- To find value for α_i :
 - pre-multiply $\mathbf{w}^* \mathbf{w}_1 = \sum_{i=1}^n \alpha_i \, \mathbf{d}_i$
 - by $\mathbf{d_i}^{\mathsf{T}} \mathcal{H}$:

$$\mathbf{d}_{\mathbf{j}}^{\mathsf{T}}(\mathcal{H} \mathbf{w}^{*} - \mathcal{H} \mathbf{w}_{1}) = \mathbf{d}_{\mathbf{j}}^{\mathsf{T}} \mathcal{H} \sum_{i=1}^{n} \alpha_{i} \mathbf{d}_{j}^{\mathsf{T}}$$

$$\mathbf{d}_{\mathbf{j}}^{\mathsf{T}}(\mathbf{b}) - \mathcal{H} \mathbf{w}_{1}) = \sum_{i=1}^{n} \alpha_{i} \mathbf{d}_{j}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{i} = \alpha_{j} \mathbf{d}_{j}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{j}$$

#2

$$\mathbf{d}_{j}^{\mathsf{T}}\mathcal{H} \mathbf{w}_{j} = \mathbf{d}_{j}^{\mathsf{T}}\mathcal{H} \left[\mathbf{w}_{1} + \sum_{i=1}^{j-1} \alpha_{i} \mathbf{d}_{i} \right]$$

$$= \mathbf{d}_{j}^{\mathsf{T}}\mathcal{H} \mathbf{w}_{1} + \sum_{i=1}^{j-1} \alpha_{i} \mathbf{d}_{j}^{\mathsf{T}}\mathcal{H} \mathbf{d}_{i} = \mathbf{d}_{j}^{\mathsf{T}}\mathcal{H} \mathbf{w}_{1}$$
#3

$$\alpha_{j} = -\frac{\mathbf{d}_{j}^{\mathrm{T}}(\mathbf{b} + \mathcal{H}\mathbf{w}_{1})}{\mathbf{d}_{j}^{\mathrm{T}}\mathcal{H}\mathbf{d}_{j}} = -\frac{\mathbf{d}_{j}^{\mathrm{T}}(\mathbf{b} + \mathcal{H}\mathbf{w}_{1})}{\mathbf{d}_{j}^{\mathrm{T}}\mathcal{H}\mathbf{d}_{j}} = -\frac{\mathbf{d}_{j}^{\mathrm{T}}(\mathbf{g}_{j})}{\mathbf{d}_{j}^{\mathrm{T}}\mathcal{H}\mathbf{d}_{j}}$$

Conjugate Gradient Algorithm

- Notation... wrt iteration j
 - Weights: w_i
 - Gradient: $\mathbf{g}_i = \nabla J(\mathbf{w}_i)$
 - Direction: d_i
- Update parameters: $\mathbf{w}_{j+1} := \mathbf{w}_j + \alpha_j \mathbf{d}_j$
 - To find appropriate distance
 - To get DIRECTION d_i

•
$$d_1 := -g_1$$

$$\bullet \ \mathbf{d}_{j+1} := \ -\mathbf{g}_{j+1} + \beta_j \, \mathbf{d}_j$$

$$\alpha_j = -\frac{\mathbf{d}_j^{\mathrm{T}} \mathbf{g}_j}{\mathbf{d}_j^{\mathrm{T}} \mathcal{H} \mathbf{d}_j}$$

Obtaining d_i from g_i

- Given gradient \mathbf{g}_{i+1} let $\mathbf{d}_{i+1} := -\mathbf{g}_{i+1} + \beta_j \mathbf{d}_j$
- Find β_j such that $\mathbf{d}_{j+1}^T \mathcal{H} \mathbf{d}_j = 0$

 - $\mathbf{g}_{i+1}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{j} = \beta_{j} \mathbf{d}_{j}^{\mathsf{T}} \mathcal{H} \mathbf{d}_{j}$

$$\Rightarrow \beta_{j} = \frac{\mathbf{g}_{j+1}^{T} \mathcal{H} \mathbf{d}_{j}}{\mathbf{d}_{j}^{T} \mathcal{H} \mathbf{d}_{j}}$$

Simpler version of

$$\beta_{j} = \frac{\boldsymbol{g_{j+1}}^{T} \mathcal{H} \mathbf{d_{j}}}{\mathbf{d_{j}}^{T} \mathcal{H} \mathbf{d_{j}}}$$

Observe

$$\mathbf{g}_{j+1} - \mathbf{g}_{j} = [\mathcal{H} \mathbf{w}_{j+1} + \mathbf{b}] - [\mathcal{H} \mathbf{w}_{j} + \mathbf{b}]$$

$$= \mathcal{H} [\mathbf{w}_{j+1} - \mathbf{w}_{j}] = \mathcal{H} [\alpha_{j} \mathbf{d}_{j}] = \alpha_{j} \mathcal{H} \mathbf{d}_{j}$$

• So... $\mathcal{H} \mathbf{d}_j = [\mathbf{g}_{j+1} - \mathbf{g}_j]/\alpha_j$

$$\beta_{j} = \frac{\mathbf{g}_{j+1}^{T} \boldsymbol{\mathcal{H}} \mathbf{d}_{j}}{\mathbf{d}_{j}^{T} \boldsymbol{\mathcal{H}} \mathbf{d}_{j}} = \frac{\mathbf{g}_{j+1}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j}\right] / \alpha_{j}}{\mathbf{d}_{j}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j}\right] / \alpha_{j}} = \frac{\mathbf{g}_{j+1}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j}\right]}{\mathbf{d}_{j}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j}\right]}$$

"Hestenes-Stiefel" Version

Alternative Version $\frac{2 \cdot d_j}{g_j} = -g_j + \beta_{j-1} d_{j-1}$

1.
$$d_j^T g_{j+1} = 0$$

2. $\mathbf{d}_j = -g_j + \beta_{j-1} \mathbf{d}_{j-1}$

• Consider DENOMINATOR: $d_i^T[\mathbf{g}_{i+1} - \mathbf{g}_i]$

$$\mathbf{d}_{j}^{T}[\mathbf{g}_{j+1} - \mathbf{g}_{j}] = \mathbf{d}_{j}^{T}\mathbf{g}_{j+1} - \mathbf{d}_{j}^{T}\mathbf{g}_{j}$$

$$= 0 - (-\mathbf{g}_{j} + \beta_{j-1}\mathbf{d}_{j-1})^{T}\mathbf{g}_{j}$$

$$= \mathbf{g}_{j}^{T}\mathbf{g}_{j} - \beta_{j-1}^{T}(\mathbf{d}_{j-1}\mathbf{g}_{j})$$

$$= \mathbf{g}_{j}^{T}\mathbf{g}_{j}$$

$$\beta_j = \frac{g_{j+1}^T [g_{j+1} - g_j]}{d_j^T [g_{j+1} - g_j]} = \frac{g_{j+1}^T [g_{j+1} - g_j]}{g_j^T g_j}$$

Polak-Ribiere version

Computing Actual Direction d_i

$$\mathbf{d}_{j+1} := -\mathbf{g}_{j+1} + \beta_j \mathbf{d_j} \text{ where } \beta_j = \frac{\mathbf{g}_{j+1}^T \mathcal{H} \mathbf{d_j}}{\mathbf{d_j}^T \mathcal{H} \mathbf{d_j}}$$

Assuming J is quadratic...

- Hestenes-Stiefel:
- Polak-Ribiere:
- Fletcher-Reeves:

$$\beta_j = \frac{\mathbf{g}_{j+1}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j} \right]}{\mathbf{d}_{j}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j} \right]}$$

$$\beta_j = \frac{\mathbf{g}_{j+1}^{T} \left[\mathbf{g}_{j+1} - \mathbf{g}_{j} \right]}{\mathbf{g}_{j}^{T} \mathbf{g}_{j}}$$

$$\beta_j = \frac{\mathbf{g}_{j+1}^T \mathbf{g}_{j+1}}{\mathbf{g}_{j}^T \mathbf{g}_{j}}$$

• If J is NOT quadratic, Polak-Ribiere seems best [If gradients similar, $\beta \approx 0$, so \approx restarting!]

4

Conjugate Gradient Algorithm

- Notation... wrt iteration j
 - Weights: w_i
 - Gradient: $\mathbf{g}_{j} = \nabla J(\mathbf{w}_{j})$
 - Direction: d_i
- Update parameters: $\mathbf{w}_{i+1} := \mathbf{w}_i + \alpha_i \mathbf{d}_j$
 - To find appropriate distance
 - To get DIRECTION d_i
 - $\mathbf{d}_1 := -\mathbf{g}_1$
 - $\bullet \mathbf{d}_{j+1}^{T} := -\mathbf{g}_{j+1}^{T} + \beta_{j} \mathbf{d}_{j}^{T}$

Want
$$\mathbf{w}^* = \min_{\mathbf{w}} J(\mathbf{w})$$

$$\mathbf{g}_{j} = \frac{\mathbf{g}_{j+1}^{\mathrm{T}}[\mathbf{g}_{j+1} - \mathbf{g}_{j}]}{\mathbf{g}_{j}^{\mathrm{T}}\mathbf{g}_{j}}$$

- If J quadratic, converge in n steps!
 If not... sometimes reset: d₁ := -g₁
- Computational cost
 - Do not need to compute Hessian \mathcal{H} for β_i ...
 - But... need ${\mathcal H}$ for α_i

Problem with α_i

$$\alpha_j = -\frac{\mathbf{d}_j^{\mathrm{T}} \mathbf{g}_j}{\mathbf{d}_j^{\mathrm{T}} \mathbf{\mathcal{H}} \mathbf{d}_j}$$

- α_j has closed form!
- But ... requires #
- Size: \mathcal{H} is $n \times n$
 - So if n = 1,000, \mathcal{H} has $\binom{1000}{2} \approx 500,000$ entries!
 - \blacksquare ... if n = 1,000,000 ...

Challenging even if given J(·) ... analytical

- What if need to estimate # empirically ??
 - ... lots of samples ...

3. Line Search

- Task: Seek w that minimize J(w)
- Approach: Given direction $\mathbf{d} \in \mathfrak{R}^n$
 - New value $\mathbf{w'} := \mathbf{w} + \alpha \mathbf{d}$
 - But what value of α ?
- Good news: $\alpha \in \Re \Rightarrow 1$ dim search!
- Let $e(\alpha) = J(\mathbf{w} + \alpha \mathbf{d})$ Want $\alpha^* = \operatorname{argmin}_{\eta} \{ e(\alpha) \}$
- Line Search: Near 0, $e(\alpha) \approx quadratic$

Line Search, con't

 $e(\alpha^*)$

- Find 3 values s.t.
 - $\alpha_A < \alpha_B < \alpha_C$
 - $e(\alpha_A)$, $e(\alpha_C) > e(\alpha_B)$
- Fit 2-D poly to

$$[\alpha_{A}, e(\alpha_{A})], [\alpha_{B}, e(\alpha_{B})], [\alpha_{C}, e(\alpha_{C})]$$

$$h_{\{A,B,C\}}(\alpha) = h(\alpha) = r \alpha^{2} + s \alpha + t$$

- Take min of this h(·) poly...
 - $\Rightarrow \alpha^* = \operatorname{argmin}_{\alpha} h(\alpha)$
- Compute e(α^*)
 - Compare e(α^*) to h(α^*) ...

Line Search, con't

- If e(α^*) \approx h(α^*)
 - Stop: found opt!
- Else:
 - Find 3 new points:
 - Note $\alpha_A \leq \alpha^* \leq \alpha_C$
 - Compare α^* to α_B Compare $e(\alpha^*)$ to $e(\alpha_B)$
 - $\langle \alpha'_{A'} \alpha'_{B'} \alpha'_{C} \rangle :=$

$$\langle \alpha^*, \alpha_B, \alpha_C \rangle$$
 if $\alpha^* < \alpha_B$ & $e(\alpha^*) > e(\alpha_B)$
 $\langle \alpha_A, \alpha^*, \alpha_C \rangle$ if $\alpha^* < \alpha_B$ & $e(\alpha^*) < e(\alpha_B)$
 $\langle \alpha_B, \alpha^*, \alpha_C \rangle$ if $\alpha^* > \alpha_B$ & $e(\alpha^*) < e(\alpha_B)$
 $\langle \alpha_A, \alpha_B, \alpha^* \rangle$ if $\alpha^* > \alpha_B$ & $e(\alpha^*) > e(\alpha_B)$

Recur

Line Search, III

- This is for ONE ITERATION of general search
 - Search can involve m iterations,
 - Each iteration may involve 10's of eval's to get α^*

Issues:

- How to find first 3 values?
- Many other tricks... (Brent's Method)
- Given assumptions, ANALYTIC form

Issues

Backprop will (at best)...

- ... slowly ...
 - Conjugate gradient
 - Line search, ...
- ... converge to LOCAL Opt ...
 - Multiple restarts
 - Simulated annealing, ...
- ... wrt Training Data
 - Early stopping
 - Regularization, ...

Local # Global Optimum

- Techniques so far: Seek LOCAL minimal
- For Linear Separators: PERFECT
 - ∃ 1 minimum
 - ... if everything nearby looks "bad" ⇒ Done!
- Not true in general!
- Multiple Restarts
- Simulated Annealing
 Go wrong-way sometimes ...
 with diminishing probabilities

Issues

Backprop will (at best)...

- ... slowly ...
 - Conjugate gradient
 - Line search, ...
- ... converge to LOCAL Opt ...
 - Multiple restarts
 - Simulated annealing, ...
- ... wrt Training Data
 - Early stopping
 - Regularization, ...

Overfitting in ANNs

When to Stop?

- After R iterations? (for fixed R)
 ?? What value of R?
- When resubstitution error is suff. small?

No: often overfits

- Use "validation data set"
 - 1. Do many iterations, then use weights from high-water mark
 - 2. Cross validation:

```
Plot # iterations vs error \rightarrow opt = r_i
Let \underline{r} =median(r_i)
Use all data, for \underline{r} iterations
```


Regularized Error Functions

Penalize large weights: "Regularizing" ... "weight decay"

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} w_{ij}^2$$

or ...

$$E(\mathbf{w}) = \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} (t_{kd} - o_{kd})^2 + \gamma \sum_{i,j} \frac{w_{ij}^2}{1 + w_{ij}^2}$$

■ ≈ ridge regression

Example

No Weight Decay

Weight Decay=0.02

Neural Network - 10 Units

Other Ideas

 Train on target slopes as well as values: (more constraints...)

$$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in outputs} \left[(t_{kd} - o_{kd})^2 + \mu \sum_{j \in inputs} \left(\frac{\partial t_{kd}}{\partial x_d^j} - \frac{\partial o_{kd}}{\partial x_d^j} \right)^2 \right]$$

- Tie together weights:
 - eg, in phoneme recognition network(Fewer weights, ...)
- Change structure

Dynamically Modifying Network Structure

- So far, assume structure FIXED..... only learning values of WEIGHTS
- Why not modify structure as well?

"Cascade Correlation"

- 1. Initially: NO hidden units
- ... just direct connections from input-output
- 2. Find best weights for this structure
- 3. If good fit: STOP.
 Otherwise... if significant residual error:
- 4. Produce new hidden unit from previous units,
 - connect to all output units w/weights CORRELATED with residual error

Goto 2

"Optimal Brain Damage" start w/ complex network, prune "inessential" connections Inessential if $w_{ij} \approx 0$ Remove node if all outboud ≈ 0

... Deep Nets ...

Outline

- Introduction
 - Historical Motivation, non-LTU, Objective
 - Types of Structures
- Multi-layer Feed-Forward Networks
 - Sigmoid Unit
 - Backpropagation
- Tricks for Effectiveness
 - Efficiency: Conjugate Gradient, Line Search
 - Generalization: Alternative Error Functions
- Example: Face Recognition
- Hidden layer representations

Skip ...

- Towards Deeper Nets
- Recurrent Networks

Neural Nets for Face Recognition

- Performance Task: Recognize DIRECTION of face
- Framework: Different people, poses, "glasses", different background, . . .
- Design Decisions:
 - Input Encoding:
 - Just pixels? (subsampled? averaged?)
 - or perhaps lines/edges?
 - Output Encoding:
 - Single output ([0, 1/n] = #1, ...)
 - Set-of-n outputs (take highest value)
 - Network structure:
 - # of layers
 - How connected?
 - Learning Parameters: Stochastic?
 - Initial values of weights?
 - Learning rate η , Momentum α , . . .
 - Size of Validation Set, . . .

Neural Nets Used

left

strt

rght

up

left strt rght up

Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Deep Learning

- Observation:
 - "Which Features" is more important than "Which Learner"
 - So... spend time finding (or generating) useful features!
- For k-layer Neural Net:
 - Think of first k-1 layers as LEARNING features
 - ... as (complex) combinations of input variables

Deep Learning ⇒ AutoEncoders

- Backprop (esp with Conjugate Gradient) works well for SHALLOW networks
 - 1 or 2 hidden layers
- But (in practice) shallow nets have limited expressibility
 - Features are not sufficiently rich
- So want DEEPER networks
- But "signal" for modifying weights does not "propagate" for deeper layers
- Need other tricks ...
 - for finding features ... autoencoders
 - initializing the weights

Learning Hidden Layer Repr'n

Auto-encoder:

Goal: Learn

Input		Output
10000000	\rightarrow	10000000
01000000	\longrightarrow	01000000
00100000	\longrightarrow	00100000
00010000	\longrightarrow	00010000
00001000	\longrightarrow	00001000
00000100	\longrightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Need to COMPRESS Data!

Hidden Layer Representations

Learned hidden layer representation:

Input		Hidden				Output	
Values							
10000000	\longrightarrow	1	0	0	\rightarrow	10000000	
01000000	\rightarrow	0	0	1	\rightarrow	01000000	
00100000	\rightarrow	0	1	0	\rightarrow	00100000	
00010000	$ \to $	1	1	1	\rightarrow	00010000	
00001000	\longrightarrow	0	0	0	\rightarrow	00001000	
00000100	$ \to $	0	1	1	\rightarrow	00000100	
00000010	$ \to $	1	0	1	\rightarrow	00000010	
00000001	\rightarrow	1	1	0	\rightarrow	00000001	

Training Curve

Training Curve #2

Training Curve #3

Skip Recurrent Networks

Recurrent Networks

- Brain needs short-term memory, . . .
 - ⇒ feedforward network not sufficient.
- Brain has many feed-back connections.
 - ⇒ brain is recurrent network, with Cycles!
- Recurrent nets:
 - Can capture internal state.
 (activation keeps going around)
 - More complex agents
 - Much harder to analyze.
 - ... Unstable, Oscillate, Chaotic
- Main types:
 - Iterative model
 - Hopfield networks
 - Boltzmann machines

Iterative Recurrent Network

(a) Feedforward network

(b) Recurrent network

(c) Recurrent network unfolded in time

Hopfield Networks

- Symmetric connections (W_{i,j} = W_{j,i})
 - Activation only {+1, -1}
 - \bullet $\sigma(.)$ is sign-function
- Train weights to obtain associative memory
 - eg, store patterns
- After learning, can "retrieve" patterns:
 - Set some node values,
 - other nodes settle to best pattern match

Theorem:

An N-unit Hopfield net can store up to 0.138N patterns reliably.

Note: No explicit storage; all in the weights!

Boltzmann Machines

- Symmetric connections $(w_{i,j} = w_{j,i})$
- Activation only $\{+1, -1\}$, but stochastic
- $P(n_i = 1)$ depends on inputs
 - Network in constant motion,
 computing average output value of each node
 like simulated annealing
- Has nice (but slow) learning algorithm.
- Related to probabilistic reasoning
 - ... belief networks!

Other Topics

- Architecture
- Initialization
 - Incorporating Background Knowledge
 - KBANN, ...
- Better statistical models
 - When to use which system?
 - Other training techniques
 - Regularizing
- Other "internal" functions
 - Sigmoid
 - Radial Basis Function

What to Remember

- Neural Nets can represent arbitrarily complex functions
- It can be challenging to **LEARN** the parameters, as multiple local optima
 - ... gradient descent ... using backpropagation
- Many tricks to make gradient descent work!
 - Line search
 - Conjugate gradient
 - ... useful for ANY optimization (not just NN)