Formelsammlung INKT

Mario Felder

16. Juni 2015

Inhaltsverzeichnis

Ein	leitung	5
Basisband- und Bandpasssignale		7
2.1	Amplitudenmodulation	8
2.2	-	8
2.3		8
2.4	- 0 (0 0)	9
2.5		9
2.6		10
2.7		10
2.8	Quadraturamplituden modulation (QAM)	11
Übe	ertragung	13
3.1		13
3.2	<u> </u>	14
		14
		14
		15
3.4		16
3.5	OFDM	16
Ma	tched Filter	19
	Bas 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Ubo 3.1 3.2 3.3	2.1 Amplitudenmodulation 2.2 Digitale Modulation 2.3 Binäre Amplitudenumtastung (On-Off Keying) 2.4 Binäre Phasenumtastung (BPSK) 2.5 Amplitudenumtastung (PAM, AM, ASK) 2.6 Phasenmodulation (PSK) 2.7 Minimum Shift Keying 2.8 Quadraturamplitudenmodulation (QAM) Übertragung 3.1 Mehrweg-Ausbreitung 3.2 Verzerrung 3.3 Schmalband vs. Breitband 3.3.1 Schmalbandige Übertragung 3.3.2 Breitbandige Übertragung 3.4 Mehrträgerübertragung

Einleitung

Energie:

$$E_s = \int_0^T |s(t)|^2 \, \mathrm{d}t$$

Korrelation (Skalarprodukt):

$$\langle s_1, s_2 \rangle = \int_0^T s_1(t) \cdot s_2^*(t) dt$$

zwei Signale sind orthogonal wenn:

$$\langle s_1, s_2 \rangle = 0$$

Amplitudenspektrum:

$$S(f) = \mathcal{F}\left\{s(t)\right\} = \int_{-\infty}^{\infty} s(t) e^{-j2\pi f t} dt$$

Parsevalsches Theorem:

$$\langle s_1, s_2 \rangle = \int_{-\infty}^{\infty} S_1(f) \cdot S_2^*(f) df$$

Leistungsdichtespektrum $\Gamma_{ss}(f)$ (unter der Annahme, dass die Symbolfolge mittelwertfrei, in der Leistung auf 1 normiert und unkorreliert ist):

$$\Gamma_{ss}(f) = \frac{1}{T_s} \left| P(f) \right|^2$$

P-Norm:

$$||x||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

Basisband- und Bandpasssignale

Spektrum von Basisbandsignal:

Spektrum von Bandpasssignal

2.1 Amplitudenmodulation

Trägermodulation:

$$s_{RF}(t) = s(t) \cdot \cos(2\pi f_{RF}t)$$

Träger:

$$\cos(2\pi f_{RF}t) = \frac{{\rm e}^{{\rm j}2\pi f_{RF}t} + {\rm e}^{-{\rm j}2\pi f_{RF}t}}{2}$$

Spektrum:

2.2 Digitale Modulation

mittlere Symbolenergie: ε_s mittlere Bitenergie: $\varepsilon_B = \frac{\varepsilon_s}{\text{Anzahl Bit pro Symbol}}$ minimale euklidische Distanz zwischen zwei Signalpunkten: d

2.3 Binäre Amplitudenumtastung (On-Off Keying)

Basisband:

$$s(t) = \sum_{k} a_k \cdot p(t - kT_b)$$
 , $a_k \in \{0, 1\}$

Bandpasssignal:

$$s_{RF}(t) = s(t)\cos(2\pi f_{RF}t)$$

Signalraum:

$$\varepsilon_s = 0.5$$

2.4 Binäre Phasenumtastung (BPSK)

Basisband:

$$s(t) = \sum_{k} a_k \cdot p(t - kT_b)$$
 , $a_k \in \{-1, 1\}$

Bandpasssignal:

$$s_{RF}(t) = s(t)\cos(2\pi f_{RF}t)$$

Signalraum:

2.5 Amplitudenumtastung (PAM, AM, ASK)

Basisband:

$$s(t) = \sum_{k} a_k \cdot p(t - kT_b)$$
 , $a_k \in \{-\frac{M-1}{2}, \dots, \frac{M-1}{2}\}$

Bandpasssignal:

$$s_{RF}(t) = s(t)\cos(2\pi f_{RF}t)$$

Signalraum:

2.6 Phasenmodulation (PSK)

Basisband:

$$s(t) = \sum_{k} a_k \cdot p(t - kT_b) \qquad , a_k \in \left\{ e^{\frac{j2\pi 0}{M}}, e^{\frac{j2\pi 1}{M}}, \dots, e^{\frac{j2\pi(M-1)}{M}} \right\}$$

Bandpasssignal:

$$s_{RF}(t) = \Re\{s(t)\}\cos(2\pi f_{RF}t) - \Im\{s(t)\}\sin(2\pi f_{RF}t)$$

Signalraum:

2.7 Minimum Shift Keying

Basisband:

$$\phi_s(t) = \pi h \left(\sum_{n = -\infty}^{k-1} a_n + a_k \frac{t - kT_s}{T_s} \right) \text{ mit } k = \left\lfloor \frac{t}{T_s} \right\rfloor,$$
$$a_k \in \{\pm 1, \pm 3, \dots, \pm (M-1)\}$$

Bandpasssignal:

$$s_{RF}(t) = \Re\{s(t)\}\cos(2\pi f_{RF}t) - \Im\{s(t)\}\sin(2\pi f_{RF}t)$$

2.8 Quadraturamplitudenmodulation (QAM)

Basisband:

$$s(t) = \sum_{k} a_k \cdot p(t - kT_s)$$

Bandpasssignal:

$$s_{RF}(t) = \Re\{s(t)\}\cos(2\pi f_{RF}t) - \Im\{s(t)\}\sin(2\pi f_{RF}t)$$

Modulator/Demoudlation:

Bsp: 16-QAM:

Übertragung

Bandbreite des Sendesignals:

$$B \approx \frac{1}{T_S}$$

3.1 Mehrweg-Ausbreitung

Kohärenzbandbreite des Kanals:

$$B_c \approx \frac{1}{\tau_m}$$

3.2 Verzerrung

Impuls am Empfänger:

$$q(t) = (p * h)(t)$$

Leistungsdichtespektrum des Empfangssignals:

$$\Phi_r(f) = \Phi_s(f) \cdot |H(f)|^2$$

3.3 Schmalband vs. Breitband

Symboldauer: T_s Bandbreite: $B \approx \frac{1}{T_S}$

Multipath Spread: τ_m

Kohärenzbandbreite: $B_c \approx \frac{1}{\tau_m}$

schmalbandige Übertragung: $\tau_m < T_s$ breitbandige Übertragung: $\tau_m > T_s$

3.3.1 Schmalbandige Übertragung

Impuls am Empfänger:

$$q(t) \approx \alpha \cdot p(t)$$

Leistungsdichtespektrum des Empfangssignals:

$$\Phi_r(f) \approx |\alpha|^2 \cdot \Phi_s(f)$$

3.3.2 Breitbandige Übertragung

Impuls am Empfänger:

$$q(t) = (p * h)(t)$$

Leistungsdichtespektrum des Empfangssignals:

$$\Phi_r(f) = \Phi_s(f) \cdot |H(f)|^2$$

3.4 Mehrträgerübertragung

Bandbreite des Sendesignals: BBandbreite eines Unterträgers: B_{sc}

3.5 OFDM

Dauer des Kernsymbols: T_{FFT} Dauer des Schutzintervalls: T_{cp}

Bedingung für interferenzfreien Empfang: $T_{cp} \geq \tau_m$

Bandbreite: B

Unterträger: K

Bandbreite Unterträger:

$$F = \frac{B}{K}$$

Dauer des Kernsymbols:

$$T_{FFT} = \frac{1}{F}$$

Dauer des Schutzintervalls:

$$T_{cp} \ge \frac{\text{längster Pfad [m]}}{3 \cdot 10^8 \frac{m}{\text{s}}}$$

Gesamtdauer:

$$T_{OFDM} = T_{cp} + T_{FFT}$$

Bitrate:

$$R_b = \frac{K \cdot \text{Bit pro Symbol}}{T_{OFDM}}$$

Spektrale Effizienz:

$$R/W = \frac{R_b}{B}$$

Matched Filter

Wahrscheinlichkeitsdichte mit Gauss:

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \cdot e^{-\frac{(x-m)^2}{2\sigma^2}}$$

Q-Funktion:

$$Q(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \frac{1}{2} \operatorname{erfc}\left(\frac{z}{\sqrt{2}}\right)$$

Error-Funktion:

$$\operatorname{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-x^{2}} dx = 2Q(\sqrt{2}z)$$

Y ist Gauss-Verteilt mit Mittelwert m und Varianz σ^2 :

$$P(Y \ge z) = Q\left(\frac{z-m}{\sigma}\right) = \frac{1}{2}\operatorname{erfc}\left(\frac{z-m}{\sqrt{2}\sigma}\right)$$

4.1 Weisses gausssches Rauschen am Empfängerfilter

Äquivalente Rauschbandbreite des TP:

$$B_N = A^{-1} \int_0^\infty |H_{RX}(f)|^2 \mathrm{d}f$$

Leistung des reellen Rauschsignals am Filterausgang:

$$\frac{N}{2} = N_0 \int_0^\infty |H_{RX}(f)|^2 df = N_0 A B_N$$

4.1. WEISSES GAUSSSCHES RAUSCHEN AM EMPFÄNGERFILTER

	vor Empfänger-Filter / Abtaster	im Signalraum (nach Abtastung)
Symbolenergie	$\varepsilon_{ m s,RX}$	$\varepsilon_{\rm s} = \varepsilon_{\rm s,RX}$ 1)
spektr. Rauschleistungsdichte	N_0	
Varianz des reellen (oder imaginären) Rauschterms		$\sigma_{\rm n}^{\ 2} = N_0/2$ 1)
Signalleistung S	$arepsilon_{ m s,RX}/T_{ m s}$	$\varepsilon_{ m s}$ 1,2)
Rauschleistung N	N ₀ ·2B ³)	$2\sigma_{\rm n}^{\ 2}$ 2)
Signal-/Rauschleistungs- verhältnis S/N	$\varepsilon_{ m s,RX}/N_0/(2BT_{ m s})$ 3)	$\varepsilon_{ m s}/N_0$ 1)

- 1) mit Matched-Filter (mit Energie in Impulsantwort normiert)
- 2) Leistung normiert auf Abtastrate
- 3) bei Basisband-Kanal mit Bandbreite B