Drehstrom-Asynchronmaschine mit Schleifringläufer

Zusammenfassung—In diesem Versuch soll eine Käfigläufer-Asynchronmaschine genauer untersucht werden. Zur Bestimmung der ESB- Parameter wurde hierzu der Leerlauf, als auch Kurzschlussversuch durchgeführt...

I. ANLAUFMOMENT UND KIPPMOMENT

Bei diesem Versuch wurde das Drehmoment mit einem 40cm langen Stab und einer Digitalen Wage gemessen.

Mit der Gleichung 1 wurde das Drehmoment aus den Messungen berechnet.

$$M = G \cdot g \cdot l = \frac{G(I_1)}{1000} \text{kg} \cdot 9,81 \text{m/s}^2 \cdot 0,4 \text{m}$$
 (1)

In den Abbildungen 1 und 2 wird das Anlaufmoment der ASM über die Spannung graphisch dargestellt.

Die obere Hälfte der Abbildungen zeigt eine linearisierte Extrapolation des Verlaufs der Drehmomente M_{an} und M_{Kipp} über die Spannung U_1^2 , bis 400^2V .

Aber in der unteren Hälfte der Abbildungen wird das Drehmoment der ASM direkt über die Spannung U_1 dargestellt und mit einer quadratischen Polynomfunktion extrapoliert.

$I_1[A]$	$P_1[W]$	U[V]	G[g]	$M_{an}[Nm]$
1,0	28	27,5	35	0,137340
2,0	92	55,0	85	0,333540
3,0	194	82,0	222	0,871128
4,0	352	107,0	426	1,671624
4,2	392	113,0	464	1,820736
5,0	470	134,0	685	2,687940

Tabelle I: Anlaufmoment

Der lineare Verlauf in Abb.1, $M_{an}(U)$ [rot]:

$$0.1511x - 0.07306$$

$$M_{an}(U_N = 400^2 V^2) = 24.11 \text{ Nm}$$

Und die quadratische Polynomfunktion $M_{an}(U)$ [blau]:

$$0,000199x^2 - 0,007889x + 0,190977$$

 $M_{an}(U_N = 400V) = 28,83 \text{ Nm}$

Der lineare Verlauf in Abb.2, $M_{Kipp}(U)$ [rot]:

$$0,1863x-0,1431$$

$$M_{Kipp}(U_N=400^2V^2)=29,67~\mathrm{Nm}$$

Abbildung 1: Anlaufmoment

$I_1[A]$	$P_1[W]$	U[V]	G[g]	$M_{an}[Nm]$
1,0	24	36	32	0,125568
2,0	102	73	218	0,855432
3,0	380	108	508	1,993392
4,0	670	140	891	3,496284
4,2	745	148	1000	3,924000
5,0	1046	175	1425	5,591700

Tabelle II: Kippmoment

Und die quadratische Polynomfunktion $M_{Kipp}(U)$ [blau]:

$$0,000198x^2 - 0,0024495x - 0,035842$$

 $M_{Kipp}(U_N = 400V) = 30,6 \text{ Nm}$

A. Zusammenhang zwischen Drehmoment und Spannung

Bei zunehmender Spannung U_1 steigt das Drehmoment M quadratisch an. Das Drehmoment ist direkt proportional zu U^2 $(M \sim U^2)$ und darauf ergibt sich folgende Beziehnung:

$$M = konst. \cdot U$$

Abbildung 2: Kippmoment

II. BESTIMMUNG DER ERSATZSCHALTBILDPARAMETER

A. Parameterbestimmung aufgrund der Kurzschlussmessung

Umrechnen der gemessenen Widerstandswerte auf die Bezugstemperatur $T=75^{\circ}\mathrm{C}$:

$$\begin{split} R_{1_{75}} &= R_{1_{20}} \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 20^{\circ}\text{C}} \\ &= 2,32~\Omega \cdot \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 20^{\circ}\text{C}} \\ &= 2,820~\Omega \end{split}$$

Berechnen des Läuferwiderstands mithilfe der Übersetzungsverhältnis:

$$R'_{2} = \ddot{u}^{2} \cdot R_{2} = 4,7^{2} \cdot 216 \text{m}\Omega = 4,77\Omega$$

$$R'_{275} = R_{220} \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 20^{\circ}\text{C}}$$

$$= 4,77 \Omega \cdot \frac{235^{\circ}\text{C} + 75^{\circ}\text{C}}{235^{\circ}\text{C} + 20^{\circ}\text{C}}$$

$$= 5.8 \Omega$$

Es gilt:

$$R_k = R_1 + R_2' = 2,820 \ \Omega + 5,8 \ \Omega = 8,62 \ \Omega$$
 (2)

Aus der Kurzschlussmessung in 4.2.1 wird der Kurzschlusswiderstand R_k mit:

$$R_k = \frac{U_k}{I_k} \cdot \cos\varphi_k$$
 (3)

Mit den Werten aus der Tabelle III kann $cos\varphi_k$ berechnet werden:

$I_1[A]$	$P_1[W]$	U[V]	G[g]	$M_{an}[Nm]$
4,2	392	113	464	1,82074

Tabelle III: Kurzschlussmessung 4.2.1

$$cos\varphi_k = \frac{P_1}{\sqrt{3} \cdot I_1 \cdot U} \tag{4}$$

$$cos\varphi_k = \frac{392W}{\sqrt{3} \cdot 4.2A \cdot 113V} = 0,4769$$
 (5)

Da die Maschine im Stern geschaltet ist, ergibt sich für die Spannung U_k :

$$U_k = \frac{U}{\sqrt{3}} = \frac{113\text{V}}{\sqrt{3}} = 65,24\text{V}$$
 (6)

In der Formel 3 einsetzen:

$$R_k = \frac{65,24\text{V}}{4,2\text{A}} \cdot \cos(61,51^\circ) = \underline{7,409\Omega}$$
 (7)

Die Streureaktanzen $X_{1\sigma}$ und $X'_{2\sigma}$ werden mit:

$$X_{1\sigma} + X'_{2\sigma} = \frac{U_k}{I_k} \cdot \sin\varphi_k \tag{8}$$

Da $X_{1\sigma} = X'_{2\sigma}$ ist, ergibt sich:

$$X_{1\sigma} = X'_{2\sigma} = \frac{U_k}{I_k} \cdot \frac{1}{2} \cdot \sin\varphi_k$$
 (9)

$$= \frac{65,24V}{3,69A} \cdot \frac{1}{2} \cdot sin(61,51^{\circ}) \tag{10}$$

$$= 6,826 \Omega$$
 (11)

1) Vergleich zwischen ermittelter und gemessener Kurzschlusswiderstand: Die Werte des berechnete Kurzschlusswiderstands (2) haben eine Abweichung von ca. 15 % zu dem gemessenen Widerstand (7). Diese Differenz ist zu einem großen Teil auf die gewählte Referenztemperatur von 75°C zurück zuführen. Bei einer zügig durchgeführten Messung ist die Wärmeentwicklung der Maschine geringer. Nimmt man also einen geringeren Temperaturanstieg wie etwa 60°C an kommt man dem gemessenen Wert deutlich Näher.

$$R'_{2_{60}} = R'_{2_{20}} \cdot \frac{60^{\circ}\text{C} + 235^{\circ}\text{C}}{20^{\circ}\text{C} + 235^{\circ}\text{C}}$$
 (12)

$$R'_{2_{60}} = 4,77\Omega \cdot \frac{60^{\circ}\text{C} + 235^{\circ}\text{C}}{20^{\circ}\text{C} + 235^{\circ}\text{C}} = 4,77\Omega$$
 (13)

aus (2):

$$R_k = R_1 + R'_{2_{60}} = 2,82\Omega + 4,77\Omega = 7,59\Omega$$
 (14)

B. Parameterbestimmung aufgrund der Leerlaufmessung

Bei dem folgenden Versuch ist Läuferseitig ein Leerlauf und somit kein Läuferstrom I_2 zu messen. Der fließende Strom besteht ausschließlich aus dem Ständerstrom I_1 bzw. dem Magnetisierungsstrom I_0 . Der verwendete Hebelarm aus den letzten Messungen wird entfernt, der Läufer wird mit kurzen Leitungen kurzgeschlossen. Die verwendeten Werte werden Tabelle IV entnommen.

Die gemessene Spannung wird auf die Strangspannung umgerechnet. Anschließende wird über eine Masche der Spannungabfall $U_{h.Fe}$ berechnet.

$$U_{Strang} = \frac{U}{\sqrt{3}} = 230,94$$
V (15)

$$U_{h,Fe} = U_{Strang} - U_1 = U_{Strang} - R_1 \cdot I_0$$

= 230.94V - 2.32\Omega \cdot 2.75A = 224.56V

$$\varphi_0 = \arccos\left(\frac{P_0 - P_{Cu1}}{3 \cdot U_{Strang} \cdot I_0}\right) = 84,35^{\circ} \tag{16}$$

$$I_{Fe+Reib} = I_0 \cdot cos(\varphi) = 0,27A$$
$$I_m = I_0 \cdot sin(\varphi) = 2,7367A$$

$$R_{Fe+Reib} = \frac{U_{h,Fe}}{I_{Fe+Reib}} = 831,7\Omega \tag{17}$$

$$X_h = \frac{U_{h,Fe}}{I_m} = 82,06\Omega$$
 (18)

1) Verhältniss aus Haupt- und Streureaktanz: mit $X_{\sigma}=X_{1,\sigma}+X_{2,\sigma}'$

$$\frac{X_h}{X_\sigma} = \frac{82,06\Omega}{13,652\Omega} = 6,01 \tag{19}$$

Die Hauptreaktanz ist ca. 6 mal größer als die Streureaktanz.

Abbildung 3: Vollständige Ersatzschaltbild

- 2) Vollständige Ersatzschaltbild [ESB]:
- III. TRENNUNG VON EISEN- UND REIBUNGSVERLUSTEN

$I_0[A]$	$P_0[W]$	$P_{Cu}[W]$	$P_{Fe+Reib} \\ [W]$	U[V]	n[min]
2,75	240	19,1400	220,8600	400	1493
1,70	140	11,8320	128,1680	300	1490
1,10	80	7,6560	72,3440	200	1485
0,58	44	4,0368	39,9632	100	1461

Tabelle IV: Trennung von Eisen und Reibungsverlusten

Abbildung 4: Trennung von Eisen- und Reibungsverlusten