Obliczenia

Pomiar tła

N_T	98
t, min	10
poziom tła $I_T = N_T/t$, imp/min	9.8

$$w(N_T) = \frac{u(N_T)}{N_T} = \frac{\sqrt{N_T}}{N_T} = \frac{1}{\sqrt{N_T}}$$

$$w(N_T) = 0.10$$

981/18/11/18/8 Pomiar preparatu promieniotwórczego ok. 1 cm od okienka licznika

N	1000
t, min	0.1667
poziom preparatu $I = N/t$, imp/min	6000

$$w(N) = 0.032$$

Pomiar preparatu przysłoniętego absorbentem

Podczas laboratorium wykorzystaliśmy 20 jednakowych cienkich blaszek, które wkładaliśmy pojedynczo między preparat i okienko licznika. Zmierzyliśmy grubość 10 takich blaszek za pomocą mikrometru. Grubość jednej blaszki oznaczymy jako x_0 .

$$10x_0 = 0.37 \text{ mm}$$

$$x_0 = 0.037 \text{ mm}$$

Niepewności u(I) obliczyliśmy korzystając z prawa propagacji niepewności

$$u(y) = \sqrt{\sum_{i=1}^{k} \left(\frac{\partial y}{\partial x_i} u(x_i)\right)^2}$$

$$u(I) = \sqrt{\left(\frac{\partial I}{\partial N}u(N)\right)^2} = \sqrt{\left(\frac{1}{t}u(N)\right)^2} = \sqrt{\left(\frac{1}{t}\sqrt{N}\right)^2}$$

Nie uwzględniliśmy niepewności pomiaru czasu, ponieważ czas był mierzony z dużo większą dokładnością niż liczba zliczeń.

grubość x, mm	ilość impulsów N	czas t, min	I = N/t, imp/min	u(I), imp/min	
0.000	1000	0.1667	6000	190	
0.037	1000	0.1800	5556	176	
0.074	1000	0.2267	4412	140	
0.111	1000	0.2450	4082	129	
0.148	1000	0.3083	3243	103	
0.185	1000	0.3600	2778	88	
0.222	1000	0.4367	2290	72	
0.259	1000	0.5033	1987	63	Mo.
0.296	1000	0.6367	1571	50	
0.333	1000	0.7767	1288	41	
0.370	1000	0.9833	1017	32	.0
0.407	1000	1.1550	866	27	
0.444	1000	1.3650	733	23	78),
0.481	1000	1.5000	667	21	10.0
0.518	1000	1.6683	599	19	10V
0.555	1000	1.7917	558	18	
0.592	1000	1.9933	502	16	40%
0.629	1000	2.0083	498	16	colamorogalia: ITIMa
0.666	1000	2.1267	470	15	Yes
0.703	1000	2.1567	464	15	
0.740	1000	2.3717	422	13	
				4	-

Zależność natężenia wiązki od grubości absorbenta

Wiedząc, że $I(x)=I_0\exp(-\mu x)$, gdzie μ – liniowy współczynnik pochłaniania promieniowania β dla absorbenta, można dopasować krzywą do wykresu. $\mu\approx4.287\frac{1}{\mathrm{mm}}$

Wykres zależności logarytmu naturalnego z ilości zliczeń w jednostce czasu od grubości absorbenta

Dopasowanie prostej metodą regresji liniowej

We wszystkich wykonanych pomiarach preparatu promieniotwórczego szybkość zliczeń jest wyraźnie większa od szybkości zliczeń odpowiadających promieniowaniu tła, dlatego wykonaliśmy regresję liniową używając wszystkich punktów wykresu.

$$a = -3.907 \frac{1}{mm}$$

$$b = 8.596$$

$$u(a) = 0.17 \frac{1}{\text{mm}}$$

$$u(b) = 0.075$$

$$a = -3.91(17) \frac{1}{mm}$$

$$b = 8.596(75)$$

$$I = I_0 \exp(-\mu x)$$

$$ln(I) = ln(I_0 \exp(-\mu x))$$

$$b = 8.596$$

$$u(a) = 0.17 \frac{1}{mm}$$

$$u(b) = 0.075$$

$$a = -3.91(17) \frac{1}{mm}$$

$$b = 8.596(75)$$

$$I = I_0 \exp(-\mu x)$$

$$ln(I) = ln(I_0 \exp(-\mu x))$$

$$ln(I) = ln(I_0) + ln(\exp(-\mu x))$$

$$ln(I) = ln(I_0) - \mu x$$

$$a = -\mu$$

$$\mu = -a$$

$$\mu = 3.91(17) \frac{1}{mm}$$

$$b = ln(I_0)$$

$$I_0 = e^b$$

$$ln(I) = ln(I_0) - \mu x$$

$$a = -\mu$$

$$\mu = -a$$

$$\mu = 3.91(17) \frac{1}{\text{mm}}$$

$$b = ln(I_0)$$

$$I_0 = e^b$$

$$I_0 = 5413 \frac{1}{\min}$$

Niepewność $u(I_0)$ z prawa propagacji niepewności

$$u(I_0) = \sqrt{\left(\frac{\partial I_0}{\partial b}u(b)\right)^2} = \sqrt{\left(e^b \cdot u(b)\right)^2} = \sqrt{\left(I_0 \cdot u(b)\right)^2}$$

$$u(I_0) = 407 \frac{1}{\min}$$

$$I_0 = 541(41) \frac{10}{\text{min}}$$

 $ln(I_T) = ax_{max} + b$

$$x_{max} = \frac{b - ln(I_T)}{-a}$$

 $x_{max} = 1.616 \text{ mm}$

Niepewność $u(x_{max}\,)$ z prawa propagacji niepewności

$$u(x_{max}) = \sqrt{\left(\frac{\partial x_{max}}{\partial a}u(a)\right)^2 + \left(\frac{\partial x_{max}}{\partial b}u(b)\right)^2 + \left(\frac{\partial x_{max}}{\partial I_T}u(I_T)\right)^2}$$

$$u(x_{max}) = \sqrt{\left(\frac{b - \ln(I_T)}{a^2}u(a)\right)^2 + \left(-\frac{1}{a}u(b)\right)^2 + \left(\frac{1}{I_T a}u(I_T)\right)^2}$$

 $u(x_{max}) = 0.11 \text{ mm}$

 $x_{max} = 1.62(11) \text{ mm}$

Maksymalny zasięg masowy badanego promieniowania w badanym materiale (glin)

$$R_{max}=
ho_{Al}\cdot x_{max}$$
 , gdzie $ho_{Al}=2.72\cdot 10^3~rac{
m kg}{
m m^2}$ $R_{max}=4.395~rac{
m kg}{
m m^2}=439.5~rac{
m mg}{
m cm^2}$

Niepewność $u(R_{max})$ z prawa propagacji niepewności

$$u(R_{max}) = \sqrt{\left(\frac{\partial R_{max}}{\partial x_{max}}u(x_{max})\right)^2}$$

$$u(R_{max}) = \sqrt{\left(\rho_{Al} \cdot u(x_{max})\right)^2} = 0.30 \frac{\text{kg}}{\text{m}^2} = 30 \frac{\text{mg}}{\text{cm}^2}$$

$$R_{max} = 440(30) \frac{\text{mg}}{\text{cm}^2}$$

Zależność maksymalnego zasięgu R_{max} promieniowania eta od jego energii maksymalnej E_{max}

E_{max} , keV	R_{max} , mg/cm ²			
100	13.5			
150	26.5			
200	42			
250	59			
300	78			
400	120			
500	165			
800	310			
1000	420			
contraction of the contraction o				

Odczytaliśmy z wykresu wartość E_{max} dla $R_{max}=439.5~{{
m mg}\over {
m cm}^2}$

 $E_{max} \approx 1030 \; \text{keV}$

$$u(E_{max}) = 26 \text{ keV}$$

$$E_{max} = 1030(26) \text{ keV}$$

Jeżeli R_{max} jest podane w g/cm², to:

$$E'_{max} = \frac{R_{max} + 0.09}{0.52}$$
, MeV

$$R_{max} = 0.4395 \frac{g}{cm^2}$$

$$E'_{max} = 1.018 \text{ MeV} = 1018 \text{ keV}$$

10

Niepewność $u(E_{max}')$ z prawa propagacji niepewności

$$u(E'_{max}) = \sqrt{\left(\frac{\partial E'_{max}}{\partial R_{max}}u(R_{max})\right)^2} = \sqrt{\left(\frac{1}{0.52}u(R_{max})\right)^2}$$

$$u(R_{max}) = 0.030 \frac{g}{\text{cm}^2}$$

$$u(E'_{max}) = 0.057 \text{ MeV} = 57 \text{ keV}$$

$$E'_{max} = 1018(57) \text{ keV}$$

Test zgodności E_{max} i E_{max}'

HWKNOSI-SPIANOZDANIA-IIZWA Warunek zgodności dwóch niezależnych pomiarów

$$|x_1 - x_2| < U(x_1 - x_2)$$

Niepewność rozszerzona

$$U(x_1 - x_2) = k\sqrt{[u(x_1)]^2 + [u(x_2)]^2}$$

$$k=2$$

$$U\left(E_{max} - E'_{max}\right) = 125.8 \text{ keV}$$

$$|E_{max} - E'_{max}| = 12 \text{ keV}$$

$$\left| E_{max} - E'_{max} \right| < U \left(E_{max} - E'_{max} \right)$$

Pomiary E_{max} i E'_{max} są ze sobą zgodne oraz mieszczą się w zakresie energii maksymalnej promieniowania β podawanym w podręcznikach i encyklopediach. Oznacza to, że eksperyment prawdopodobnie został przeprowadzony prawidłowo.

Zestawienie wyników końcowych

prosta dopasowana do zależności $ln(I) = f(x)$	$y = -3.9 \frac{1}{\text{mm}} \cdot x + 8.6$	
liniowy współczynnik pochłaniania promieniowania β dla użytego absorbenta	$\mu = 3.91(17) \frac{1}{\text{mm}}$	W.
wartość przecięcia prostej teoretycznej z prosta poziomu tła	$x_{max} = 1.62(11) \text{ mm}$	SILLY
maksymalny zasięg masowy	$R_{max} = 440(30) \frac{\text{mg}}{\text{cm}^2}$	
energia maksymalna promieniowania β odczytana z wykresu	$E_{max} = 1030(26) \text{ keV}$	
energia maksymalna promieniowania β obliczona z półempirycznej zależności	$E'_{max} = 1018(57) \text{ keV}$	

Wnioski

Za pomocą detektora okienkowego Geigera–Müllera można efektywnie wyznaczyć maksymalną energię promieniowania β wykonując pomiar tła oraz przynajmniej kilkanaście pomiarów preparatu promieniotwórczego stopniowo przysłaniając go coraz grubszą warstwą absorbenta oraz odpowiednio interpretując wyniki. Intensywność badanego promieniowania β malała wraz ze wzrostem grubości materiału absorpcyjnego, co jest zgodne z teoretycznymi oczekiwaniami dotyczącymi interakcji promieniowania jonizującego z materią. Uzyskano dwa zgodne pomiary maksymalnej energii promieniowania β , dwoma różnymi metodami – metodą graficzną i metodą półempiryczną, co dodatkowo potwierdza poprawność eksperymentu. Badanie nie zostało przeprowadzone w pełni zgodnie z instrukcją, ponieważ liczba impulsów preparatu promieniotwórczego zasłoniętego warstwą aluminium nie zbliżyła się wystarczająco do liczby impulsów promieniowania tła. Aby przeprowadzić laboratorium w pełni zgodnie z instrukcją należałoby używać grubszych blaszek lub postawić preparat w większej odległości od okienka licznika.