Ricorsione

Prof. Rocco Zaccagnino 2022/2023

Definizioni ricorsive

Ci sono casi in cui un oggetto (funzioni, insiemi, algoritmi, etc) può essere definito in termini di se stesso, ma di più **piccole dimensioni**

Esempio: Consideriamo la sequenza di potenze di 3, cioè 1, 3, 9, 27, 81, ...

- 1, 3, 9, 27, 81, ..., 3ⁿ, ...
- 3°, 3¹, 3², 3³, 3⁴, ..., 3ⁿ, ...
- $b_n = 3^n$ (n-simo termine della sequenza), $n \in N$

Definizione ricorsiva della sequenza

•
$$b_n = 3.3^{n-1}$$

- $b_n = 3 b_{n-1} \text{ per } n \ge 1$
- $b_0 = 1$ Definizione ricorsiva

Definizioni ricorsive

Esempio: Consideriamo la sequenza aritmetica (progressione aritmetica)

- a, a+d, a+2d, a+3d, ..., a+nd, ...
 ✓ esempio: a= -1 e d= 4 => -1, 3, 7, 11, ..., -1+n4, ...
- $b_n = a+nd$ (n-simo termine della sequenza), $n \in N$

Definizione ricorsiva della sequenza

- $b_n = a + nd = a + (n-1)d + d$
- $b_n = b_{n-1} + d$ per $n \ge 1$
- $b_o = a$ Definizione ricorsiva

Definizioni ricorsive

Esempio: Consideriamo la sequenza **geometrica** (progressione geometrica)

- a, ar, ar², ar³, ..., arⁿ, ... \checkmark esempio: a=6 e r=1/3 => 6, 2, 2/3, 2/9, ..., 6(1/3)ⁿ
- $b_n = ar^n$ (n-simo termine della sequenza), $n \in N$

Definizione ricorsiva della sequenza

- $b_n = ar^n = ar^{n-1}r$
- $b_n = b_{n-1}r$ per $n \ge 1$
- $b_0 = a$ Definizione ricorsiva

Per definire una funzione ricorsiva sull'insieme degli interi non negativi

- **1.** Passo base: Specificare il valore della funzione in o (zero)
- **2.** Passo ricorsivo: Dare una regola per determinare il valore della funzione in n in termini del valore della funzione in interi n-1

Esempio: Funzione fattoriale

- 1. o!=1
- 2. n! = n (n 1)! per $n \ge 1$

Esempio: definire ricorsivamente la funzione f(n) = 2n +1

$$f(1) = 2 * 1 + 1 = 3 = 1 + 2 = f(0) + 2$$

$$f(2) = 2 * 2 + 1 = 5 = 3 + 2 = f(1) + 2$$

$$f(3) = 2 * 3 + 1 = 7 = 5 + 2 = f(2) + 2$$

....

$$f(n) = 2 n + 1 = 2 (n - 1 + 1) + 1 = 2 (n - 1) + 1 + 2 = f(n - 1) + 2$$

Quindi

1.
$$f(0)=1$$

2.
$$f(n)=f(n-1)+2$$
 per $n \ge 1$

Esempio: definire ricorsivamente la funzione che somma i primi n interi positivi

$$f(n) = 1+2+3+....+n$$
 per $n \ge 1$

• f(1)=1

So che f(n) = 1+2+3+....+n-1+n quindi

• f(n) = (1+2+3+....+n-1) + n = f(n-1) + n

Quindi

- f(1)=1
- f(n)=f(n-1)+n per $n \ge 2$

Esempio: definire ricorsivamente la funzione

$$f(n) = n^2 per n \ge 1$$

• f(1)=1

So che $f(n-1) = (n-1)^2$ Devo arrivare a $f(n) = n^2$

• $f(n-1) = (n-1)^2 = n^2 - 2n + 1 = f(n) - 2n + 1$

Quindi

- f(1)=1
- f(n)= f(n-1) +2n-1 per n≥2

Calcolo di funzioni ricorsive

Esempio: sia f una funzione ricorsiva definita come:

1. Passo base
$$f(0)=3$$

2. Passo ricorsivo
$$f(n)=2 f(n-1)+3$$
 per $n\ge 1$

Quale è il valore di :

•
$$f(o) = 3$$
 (passo base)

•
$$f(1) = 2 f(0) + 3 = 2 * 3 + 3 = 9$$

•
$$f(2) = 2 f(1) + 3 = 2 * 9 + 3 = 21$$

•
$$f(3) = 2 f(2) + 3 = 2 * 21 + 3 = 45$$

Calcolo di funzioni ricorsive

Esempio: sia f la funzione fattoriale:

- **1.** Passo base 0!=1
- 2. Passo ricorsivo n! = n (n 1)! per $n \ge 1$

Quale è il valore di 4!:

- 4! = 4 * 3! Passo ricorsivo
- 3! = 3 * 2! Passo ricorsivo
- 2! = 2 * 1! Passo ricorsivo
- 1! = 1 * 0! Passo ricorsivo
- o! = 1 Passo base

Calcolo di funzioni ricorsive

Esempio: sia f la funzione fattoriale:

- 1. Passo base 0!=1
- 2. Passo ricorsivo n! = n (n 1)! per $n \ge 1$

Quale è il valore di 4!:

- o! = 1
- 1! = 1 * 0! = 1 * 1 = 1
- 2! = 2 * 1! = 2 * 1 = 2
- 3! = 3 * 2! = 3 * 2 = 6
- 4! = 4 * 3! = 4 * 6 = 24