

Preliminary Technical Information

Polar[™] Power MOSFET HiPerFET[™]

IXFN52N90P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions		Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$		900	V	
V_{DGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GS} = 1$	ΜΩ	900	V	
V _{GSS}	Continuous		± 30	V	
$V_{\sf GSM}$	Transient		± 40	V	
I _{D25}	T _C = 25°C		43	Α	
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$		104	Α	
I _A	T _C = 25°C		26	A	
E _{as}	$T_{c} = 25^{\circ}C$		2	J	
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150$ °C		20	V/ns	
P _D	T _C = 25°C		890	W	
T _J			-55 +150	°C	
$T_{_{ m JM}}$			150	°C	
T_{stg}			-55 +150	°C	
T _L	1.6mm (0.062 in.) from case for 10s		300	°C	
V _{ISOL}	50/60 Hz, RMS	t = 1min	2500	٧~	
ISOL	$I_{ISOL} \leq 1 mA$	t = 1s	3000	V~	
M _d	Mounting torque Terminal connection torque		1.5/13 1.3/11.5	Nm/lb.in. Nm/lb.in.	
Weight			30	g	

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, unless otherwise specified)$ Min.		aracteris Typ.			
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	900			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$	3.5		6.5	V
l _{gss}	$V_{GS} = \pm 30V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$ T	- - J = 125°C			μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 26A, Note 1$			160	mΩ

 $V_{_{DSS}} = 900V$ $I_{_{D25}} = 43A$ $R_{_{DS(on)}} \le 160m\Omega$ $t_{_{rr}} \le 300ns$

miniBLOC, SOT-227 E153432

G = Gate S = Source D = Drain

Either Source terminal S can be used as the Source terminal or the Kelvin Source (gate return) terminal.

Features

- International standard package
- miniBLOC, with Aluminium nitride isolation
- Avalanche Rated
- Low package inductance
- Fast intrinsic diode

Advantages

- Low gate drive requirement
- High power density

Applications:

- Switched-mode and resonant-mode power supplies
- DC-DC Converters
- Laser Drivers
- AC and DC motor drives
- Robotics and servo controls

Symbol Test Conditions		Characteristic Values			
$(T_J = 25^{\circ}C \text{ ur})$	nless otherwise specified)	Min.	Тур.	Max.	
g _{fs}	$V_{DS} = 20V$, $I_{D} = 26A$, Note 1	20	35	S	
R_{Gi}	Gate input resistance		1.56	Ω	
C _{iss}			19	nF	
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1180	pF	
C _{rss}			24	pF	
t _{d(on)}	Resistive Switching Times		63	ns	
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 26A$		80	ns	
t _{d(off)}	$R_{G} = 1\Omega$ (External)		95	ns	
t _f			42	ns	
$Q_{g(on)}$			308	nC	
Q _{gs}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 26A$		117	nC	
Q_{gd}			132	nC	
\mathbf{R}_{thJC}				0.14 °C/W	
R _{thCS}			0.05	°C/W	

	Characteristic Values			
$T_J = 25^{\circ}\text{C}$ unless otherwise specified) Min.	Тур.	Max.		
$V_{gS} = 0V$		56	Α	
\mathbf{I}_{SM} Repetitive, pulse width limited by \mathbf{T}_{JM}		208	Α	
V_{SD} $I_F = I_S$, $V_{GS} = 0V$, Note 1		1.5	V	
I_{rr} $I_{F} = 26A, -di/dt = 100A/\mu s$		300	ns	
Q > '	1.8		μС	
I_{RM} $\int V_{R} = 100V$	26		A	

.186

-.002

.191 .987

.004

4.72 24.59

-0.05

0.1

Note 1: Pulse test, $t \le 300 \mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 26A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 26A$ Value vs. Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 7. Input Admittance 70 60 50 $T_{J} = 125^{\circ}C$ 40 25°C - 40°C 30 20 10 0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 5.0 9.5 V_{GS} - Volts

 $\ensuremath{\mathsf{IXYS}}$ reserves the right to change limits, test conditions, $% \ensuremath{\mathsf{IXYS}}$ and $% \ensuremath{\mathsf{dimensions}}$.

