

Image Captioning using Encoder Decoder

Project Guide: Dr. Sunita Barve Team Members: Suryansh Ambekar (202201090042) Kaustubh Mahajan (202201070128) Ayush Fating (202201070127)

Introduction

Image captioning is the task of automatically generating descriptive text for images by combining computer vision and natural language processing. It typically uses an encoder-decoder framework, where the encoder extracts visual features and the decoder generates a caption. This technology is useful in applications like image retrieval, accessibility tools, and automated content generation.

Objectives

- 1. Implement and compare three architectures:
- Without Attention
- With Bahdanau Attention
- Self Attention Transformer
- 2. Train and evaluate models on RSICD(Remote Sensing Image Captioning Dataset) dataset.
- 3. Analyze performance using standard performance metrics like BLEU 1, BLEU 4, ROGUE-L, METEOR, CIDEr.

Baseline Research Paper

A TextGCN-Based Decoding Approach for Improving Remote Sensing Image Captioning

Year: 2024 (arXiv version posted October 2024)

Objective: Improve the quality of captions for remote sensing images

Method: Combines TextGCN (for word embeddings) with a multi-layer LSTM decoder

HYPER-PARAMETER RESULTS FOR DIFFERENT EMBEDDING SIZES OF TEXTGCN BY OUR APPROACH ON RSICD DATASET

Size	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR	ROUGE-L	CIDEr
64	0.632	0.462	0.361	0.290	0.256	0.464	0.790
128	0.636	0.462	0.357	0.287	0.259	0.466	0.808
256	0.651	0.482	0.375	0.308	0.275	0.480	0.827
512	0.641	0.466	0.363	0.294	0.262	0.468	0.810

Dataset Description

- RSCID(Remote Sensing Image Captioning Dataset)
- Link: https://paperswithcode.com/dataset/rsicd
- Total records: 1,0921 images
- Content: High-resolution remote sensing (satellite) images
- Categories: Includes diverse land-use scenes like airports, residential areas, farmlands, forests, etc.

Architecture Model

Architecture Model

Results & Graphs

Feature	LSTM (no attention)	LSTM + Attention	Transformer (Self-Attention)
Encoder	ResNet-18	ResNet-18	ResNet-18
Decoder	LSTM	LSTM + Bahdanau Attention	Transformer Decoder
Attention Mechanism	None	Additive (Bahdanau)	Self-Attention (Multi-head)
Inference Complexity	Low	Moderate	High
Model Size	Small	Medium	Large
Training Time/sample	0.005 s	0.009 s	0.015 s

Analysis table and discussion

Feature	No attention	Bahdanau	Self-attention
Context awareness	Weak content handling	Good context focus	Strong global context
Training time	Fast	Medium	Slow
Accuracy(BLEU)	low	better	Highest
Interpretability	Not interpretable	Easy to interpret	Moderate to interpret

Conclusion

The integration of self-attention mechanisms, particularly through Transformer models, has led to significant improvements in image captioning performance. These models enhance the contextual relevance and accuracy of generated captions by effectively capturing long-range dependencies. In comparison to the baseline model presented in the paper, the Transformer model achieved higher BLEU-1 and BLEU-4 scores, demonstrating its superior capability in generating more accurate and coherent image descriptions.