

Aurora Leso

June 2021

Contents

Γ	Disclai	mer	1	ĺ
F	isica i	Nucleare)
2	.1	Ripasso)
		2.1.1	Potenziale centrale)
		2.1.2	Momento angolare)
2	.2	Unità e p	proprietà)
		2.2.1	Definizioni all'interno del nucleo)
		2.2.2	Massa nell'atomo	3
		2.2.3	Carta dei nuclidi	1
2	.3	Modelli		j
		2.3.1	Modello a gas di Fermi	j
		2.3.2	Modello a goccia di liquido	j
		2.3.3	Deutone	j
		2.3.4	Modello a shell atomico e nucleare	j
		2.3.5	Modello collettivo	j
2	.4	Reazioni	nucleari	j
		2.4.1	Fissione nucleare	j
		2.4.2	Fusione nucleare	j
2	.5	Decadim	enti	5 5 5
		2.5.1	Alpha	j
		2.5.2	Beta	j
		2.5.3	Gamma	j
2	.6	Interazio	one radiazione-materia	j
		2.6.1	sezione d'urto	j
		2.6.2	Radiazioni EM	j
		263	Particelle cariche	í

1. DISCLAIMER 1

1 Disclaimer

2 CONTENTS

2 Fisica Nucleare

2.1 Ripasso

2.1.1 Potenziale centrale

Se un potenziale $V(\vec{r})$ è tale che $V(\vec{r}=V(r),r=|\vec{r}|=\sqrt{x^2+y^2+z^2})$ allora posso dividere l'Hamiltoniana in parte radiale + angolare, risolvendo il problema studiando una soluzione fattorizzata in parte radiale ad angolare del tipo $\Psi(r,\theta\phi)=R(r)Y_{lm}(\theta,\phi)$ dove abbiamo riconosciuto in queste ultime le armoniche sferiche, ortogonali tra loro e la cui forma analitica dipende dai polinomi di Legendre e hanno parità $PY=(-1)^lY$ dove si è ridotta la notazione da Y_{lm} a Y e basta. l,m sono numeri quantici, in particolare l è il numero quantico orbitale ed m è il numero quantico magnetico, che va da -l a +l per passi interi, essi vanno a caratterizzare gli autovalori del momento angolare.

2.1.2 Momento angolare

Ricordando come definiamo l'operatore T in campo centrale, ossia

$$T = \frac{\vec{p}^2}{2m} = -\frac{\hbar^2}{2m} \nabla^2 \underbrace{=}_{coord\ sfer} = -\frac{\hbar^2}{2m} \left[\frac{1}{r^2} \frac{\partial^2}{\partial r^2} r^2 \frac{\partial}{\partial r} - \frac{\vec{L}^2}{r^2} \right] \tag{1}$$

ho che $\vec{p}^2 = \vec{p_r}^2 + \frac{\vec{L}^2}{r^2}$. Questo operatore \vec{L} è il **momento angolare orbitale** e le sue componenti sono descritte da operatori differenziali ($\vec{L_i}$ con i da 1 a 3, che sono tutte quantizzate e di spettro $m\hbar$) nelle componenti $(\theta, \phi) \in S^2$, che soddisfano l'algebra di Lie di SO(3) e per cui i commutatori valgono

$$[L_i, L_j] = i\hbar \epsilon_{ijk} L_k \qquad [\vec{L}^2, L_i] = 0 \quad \forall i$$
 (2)

Dal secondo commutatore evinco che posso trovare autofunzioni comuni a \vec{L}^2, L_i che sono proprio le armoniche sferiche.

I momenti angolari $\vec{L} = \vec{L_1} + \vec{L_2}$ si compongono secondo la relazione $|l_1 - l_2| \le l \le |l_1 + l_2|$.

2.2 Unità e proprietà

2.2.1 Definizioni all'interno del nucleo

Ricordiamo subito una relazione fondamentale, ossia $1eV = 1.6022 \cdot 10^{-19} J$.

Collocando centralmente il nucleo atomico, di $r \propto fm = 10^{-15}, E \simeq 8 MeV$, ad energie inferiori troviamo gli **stati eccitati** mentre ad energie maggiori abbiamo i **gradi subnucleari**.

Utili le seguenti tabelle

Ordini di grandezza										
-	Scala nucleare	Scala atomica								
Lunghezza	$fm (= 1 \times 10^{-15}m)$	$Å (= 1 \times 10^{-10} m)$								
Energia	MeV	eV								
	Conversioni utili									
ħc	197.327 MeV fm	1973.27 <i>eV</i> Å								
$e^2/4\pi\varepsilon_0$	1.44 MeV fm	14.4 eV Å								

Particella	Massa (MeV/c^2)	Carica (e)	Spin (s)	Raggio $(\sqrt{(\bar{r}_c^2)})$	Vita media
Elettrone (e)	0.510998	-1	1/2	?	∞
Protone (p)	938.272	+1	1/2	$\sim 0.87 \ fm$	∞
Neutrone (n)	939.565	0	1/2	$\sim -0.1 \ fm$	~ 15 <i>min</i>

Tutte e tre le particelle sopra elencate sono fermioni dato che hanno spin semintero.

Interessante notare che l'elettrone ha raggio che si prospetta nullo, il protone certo fino al secondo decimale e il neutrone ha raggio negativo poichè ha carica complessiva nulla e deve esser fatto da componenti non neutre disposte in modo eterogeneo: pesando per carica i componenti, il raggio medio viene minore di zero. Vita media infinita di p ed e indicano che sono stabili, mentre il neutrone decade spontaneamente in protone+ altre cose. **Protoni e neutroni sono chiamati nucleoni**, e hanno massa molto simile.

Un elemento X della tavola periodica si indica come

$${}_{z}^{A}X_{N}$$

Con A numero di massa pari a somma di protoni e neutroni, N numero di neutroni e Z numero di protoni, dunque A=Z+N.

2. FISICA NUCLEARE 3

2.2.2 Massa nell'atomo

In ogni processo nucleare vale la legge di conservazione per la carica q, per l'energia complessiva E e quindi per la massa m, e per il momento angolare \vec{J} nelle sue componenti orbitale e di spin.

Utile definire la **densità numerica di materia**, ossia il numero di massa A rapportato al volume di una sfera con raggio \mathbf{r} , dunque si ha $\int \int_0^\infty \rho_m(r) r^2 dr d\Omega = A$, generalmente espressa in fm^{-3} e ha profilo

Figura 1.2: Profilo della densità di massa

studiato mediante electron scattering, e si nota che

- A piccole distanze dal centro è costante, densità di saturazione e per ogni elemento $\rho_0 \simeq 0.15 0.2 \ fm^{-3}$
- la pendenza di decrescenza è circa uguale per ogni elemento
- vale la relazione di fermi $r = r_0 \sqrt[3]{A}$, $r_0 \simeq 1.2 fm$ dove r è la distanza dal centro del nucleo per cui la densità numerica è dimezzata rispetto al valore di saturazione. Aspettandomi $V \propto A$ dato che sperimentalmente per ogni A ho $\rho_0 \simeq \frac{A}{V}$ costante, allora $r \propto \sqrt[3]{A}$.

Si indica con **funzione di fermi** la Funzione $F(r) = \frac{1}{1 + e^{r-r_0}/a}$ che si può parametrizzare per usarla nelle densità, ottenendo $\rho_m(r) = \frac{\rho_0}{1 + e^{r-r_0}/a}$ dove ricordiamo che ρ_0 era la densità di saturazione.

Infine definiamo la **diffusività** come il parametro a che ci è uscito nell'equazione sopra, caratteristico di ciascun elemento e che è **indice di quanto rapidamente la densità vada a zero**, e si ha $\lim_{a\to 0} \rho_m(r) = \rho_0 \Theta(r_0 - r)$ dove ricordiamo che $\Theta(r)$ è la funzione di Heaviside. Due casi limite sono

- Effetto alone (**Halo**) per cui in nuclei leggeri la densità protonica va a zero velocemente mentre quella neutronica va giù più lenta, generando una zona di qualche femtometro dove ci sono solo neutroni sparsi.
- Effetto di pelle neutronica (**Neutron skin**). Per elementi pesanti si possono avere molti più neutroni che protoni, ma la densità centrale di saturazione è circa fissa e i neutroni in eccesso vanno a depositarsi sulla superficie nucleare creando una pelle neutronica che avvolge il nucleo.

4 CONTENTS

2.2.3 Carta dei nuclidi

Detta anche carta degli isotopi o carta di Segré, ha come assi (di numeri interi) N(in x, da 0 a 177) e Z(in y, da 0 a 118). Definiamo

- isotopi elementi con stesso Z ma diverso A, nella carta dei nuclidi stanno sulla stessa riga.
- isobari hanno lo stesso numero di massa A, nella carta dei nuclidi stanno sulla stessa diagonale secondaria
- Nuclei speculari, hanno numeri di protoni e neutroni simmetrici
- Isotoni hanno stesso numero di neutroni N, dunque nella carta dei nuclidi sono sulla stessa colonna.
- Isomeri nuclei che con N,Z fissati si presentano in due stati energetici distinti di cui uno fondamentale e uno eccitato che poi decade lentamente detto metastabile.
- vita media τ il tempo necessario affinché il numero di nuclei si riduca di un fattore e, ricordando la relazione $N(t) = N_0 e^{-\frac{t}{\tau}}$. Con tempo di dimezzamentosi intende invece il tempo necessario affinché la popolazione di nuclei dimezzi, e si lega alla vita media con la relazione $T_{\frac{1}{2}} = ln(2)\tau$.

Dalla carte vediamo che le caselle nere (valle di stabilità, stanno al centro della figura) sono corrispondenti ad isotopi particolarmente stabili, e al raffreddarsi dei colori la stabilità diminuisce fino al viola che corrisponde ad isotopi con vita media così breve da non presentarsi in natura. Fino a $Z \simeq 40$ la valle di stabilità segue la bisettrice, deviando un po' a destra oltre tale valore: questo perchè crescono i protoni causando repulsione coulombiana crescente tra essi e dunque la necessità di più neutroni per distanziarli e portare all'equilibrio. Oltre al $^{208}_{82}Pb$ i nuclei diventano troppo compatti e i protoni sono troppo vicini per avere davvero stabilità, quindi avremo ancora specie longeve mentre altre esistono come decadimento di specie più pesanti. Oltre ancora, non esistono più nuclei.

Per N o Z pari ho **i numeri magici**, che presentano isotopi di grande stabilità rispetto a quelli vicini, e a incroci di N e Z entrambi magici ho **numeri doppio magici**. Essi hanno composizione interna del nucleo particolarmente ordinata e dunque molto stabile.

Immaginiamo ora la carta come un grafico 3D di funzione $\frac{1}{\pi}$:

2. FISICA NUCLEARE 5

Salendo i pendii la stabilità diminuisce, fino ai bordi detti **drip lines** di protone(superiore,sx, ben mappata) o neutrone(inferiore,dx, più fumosa) fatte dalle configurazioni nucleari per cui l'energia di separazione protonica o neutronica è nulla, determinanti il confine tra configurazioni di energia di legame positiva e quelle ignote al di fuori delle quali i nucleoni non sono tenuti assieme.

- 2.3 Modelli
- 2.3.1 Modello a gas di Fermi
- 2.3.2 Modello a goccia di liquido
- 2.3.3 Deutone
- 2.3.4 Modello a shell atomico e nucleare
- 2.3.5 Modello collettivo
- 2.4 Reazioni nucleari
- 2.4.1 Fissione nucleare
- 2.4.2 Fusione nucleare
- 2.5 Decadimenti
- 2.5.1 Alpha
- 2.5.2 Beta
- 2.5.3 Gamma
- 2.6 Interazione radiazione-materia
- 2.6.1 sezione d'urto
- 2.6.2 Radiazioni EM
- 2.6.3 Particelle cariche