四、結構桿件設計說明

4-1 鋼筋混凝土梁韌性設計

鋼筋混凝土梁之韌性設計(附篇 B、C) 以 15FL (BAY NO.18),梁編號 B2B 為例

(一) 已知條件

Fy=	4200	kg/cm ²	Fc'=	245	kg/cm ²	
$F_{vy} =$	4200	kg/cm ²	Ln=	7.1	m	
B=	50	cm	H=	75	cm	
d'=	7	cm	d=	68	cm	

₩

(二) 基本設計資料

m=	20.17		$\rho_b = 0.025$
		kg/cm ² cm ²	(0.025×B×d,(f'c+100)/4fy×B×d)
$AS_{min} =$	11.33	cm ²	

(三) 樑分析後所得之應力

FORCE DL	Mi (T-m) -21.23	Vi (T) -16.02	Mj (T-m) -21.06	Vj (T) 15.96
LL	-3.54	-2.63	-3.56	2.63
AEQ	42.76	13.57	-42.72	13.57
BEQ	47.88	15.19	-47.84	15.19
DYN	49.54	15.72	49.51	15.72

(四) 計算樑設計彎矩Mu

載重組合: 1.4×MD+1.7×ML

 $0.75(1.4 \times MD + 1.7 \times ML) \pm 1.00 \times MEh \pm 0.30 \times Mev$ $0.75(1.4 \times MD + 1.7 \times ML) \pm 0.30 \times MEh \pm 1.00 \times Mev$

0.9×MD±1.00×MEh±0.30×MEv 0.9×MD±0.30×MEh±1.00×MEv

NOTE: ME={AEQ; BEQ; DYN}取大值

NOTE	· ME={AEQ , BEQ , DYN	NJ4X/NIE		
i端			j端	
-Mu = -79.80 +Mu = 33.88	T-M (36) T-M (47)	-Mu = +Mu =	-79.61 34.00	T-M (37) T-M (46)

 (九) 計	計算樑AS				
i端				j端	
AST=	34.59	cm² >Asmin OK	AST	= 34.5	cm² >Asmin OK
ASB=	13.74	cm² >Asmin OK	ASB	= 13.79	cm² >Asmin OK

(六) 樑主筋配筋(AST≥ASB/2; ASB≥AST/2)

	i端			j端	
TOP:	5 -#8		TOP:	5 -#8	
	2 -#8			2 -#8	
AST=	35.49	cm² <asmax ok<="" th=""><th>AST =</th><th>35.49</th><th>cm² <asmax ok<="" th=""></asmax></th></asmax>	AST =	35.49	cm² <asmax ok<="" th=""></asmax>
BOT:	0 -#8		BOT:	0 -#8	
БО1.	4 -#8		ы.	4 -#8	
ASB=	20.28	cm² <asmax ok<="" th=""><th>ASB =</th><th>20.28</th><th>cm² <asmax ok<="" th=""></asmax></th></asmax>	ASB =	20.28	cm² <asmax ok<="" th=""></asmax>

(七) 樑剪力筋設計

設計應力組合: 1.4×VD+1.7×VL

 $0.75(1.4 \times VD + 1.7 \times VL) \pm 1.00 \times Veh$

 $0.75(1.4 \times VD + 1.7 \times VL) \pm 0.30 \times VEh \pm 1.00 \times Vev$

 $0.9 \times VD \pm 1.00 \times VEh \pm 0.30 \times VEv$ $0.9 \times VD \pm 0.30 \times VEh \pm 1.00 \times VEv$

NOTE: VE={AEQ; BEQ; DYN}取大值

VPi=(MTi+MBj) / Ln VPj=(MBi+MTj) / Ln

Vei=0.75(1.4xVDi+1.7xVLi)+VPi Vej=0.75(1.4xVDj+1.7xVLj)+VPj

(八) 計算樑彎矩強度 $Mpr(Fs=1.25Fy \varphi=1.0)$

	i端		j端
以AST=	35.49	cm ² 為張力筋	以AST= 35.49 cm ² 為張力筋
ASB=	20.28	cm ² 為壓力筋	ASB= 20.28 cm ² 為壓力筋
得MTi=	-114.95	T-M	得MTj= -114.95 T-M
以AST=	35.49	cm ² 為壓力筋	以AST= 35.49 cm ² 為壓力筋
ASB=	20.28	cm ² 為張力筋	ASB= 20.28 cm ² 為張力筋
得MBi=	67.50	T-M	得MBj= 67.50 T-M

(九) 計算樑設計剪力Vu

i 端 j端

Vpi= (MTi+MBj) / Ln

= 25.7 T

Vvi= 0.75(1.4*VDi+1.7VLi)

= 20.17 T

Vei= Vpi+Vvi

= 45.87 T

Vpj= (MTj+MBi) / Ln

= 25.7 T

Vvj= (0.75(1.4*VDj+1.7VLj)

= 20.11 T

Vej= Vpj+Vvj

= 45.81 T

(十) 計算剪力鋼筋量及配筋

i 端			j端		
Vn= 45.87 ÷	÷0.85	$v_n =$	45.81	÷0.85	
53.96 t	<vmax ok<="" th=""><th></th><th>53.89</th><th>t<vmax ok<="" th=""></vmax></th></vmax>		53.89	t <vmax ok<="" th=""></vmax>	
Vc = 0 (Vpi>0.5Vei)	Vc =	0	(Vpi>0.5Vei)	
$AV/S = (Vn - Vc) \div (fy)$	$v \times d$)	$AV/S = (Vn - Vc) \div (fy \times d)$			
= 0.189 c	em²/cm	=	0.189	cm ² /cm	
STIR: 1-#4@12		STIR:	1-#4@12		
Avt/S = 0.212 c	cm²/cm	Avt/S =	0.212	cm ² /cm	

(十一) 樑(中央)分析後所得之應力及設計彎矩、剪力

FORCE	Mc (T-m)	Vc (T)			
DL	18.59	-9.26	−Mu	= 0.00	T-M (0)
LL	3.24	1.68	+Mu	= 31.53	T-M (1)
AEQ	0.02	13.57	Vu	= 25.25	T (44)
BEQ	0.02	15.19			
DYN	0.02	15.72			

(十二) 計算樑(中央)斷面鋼筋量及配筋

15F B2B (50x75)

4-2 鋼筋混凝土柱韌性設計

鋼筋混凝土柱之韌性設計(附篇 B、C) 以 5FL (COL. NO.15),柱編號 C2B 為例 (CHECK X 向)

(一) 已知條件

Fc'=	245	kg/cm ²	Fy=	4200	kg/cm ²
$D_{maj} =$	80	cm	$D_{min} =$	110	cm
Hn=	230	cm	$F_{vy} =$	4200	kg/cm ²

(二) 柱彈性分析所得之應力

COLUMN FORCES AT LEV	EL 6F	IN FRAME	SPACE FRA	ME			
	(T-m)	(T)	(T-m)	(T)	(T)	(T-m)	
COL OUTPUT OUTPUT	MAJOR	MAJOR	MINOR	MINOR	AXIAL T	ORSIONAL	
ID ID POINT	MOMENT	SHEAR	MOMENT	SHEAR	FORCE	MOMENT	
15 CASE 1 TOP	9.98	-8.80	23.06	-19.97	-682.69	0.06	
BOTTOM	-10.27		-22.95				
15 CASE 2 TOP	1.94	-1.73	3.84	-3.30	-106.83	0.01	
BOTTOM	-2.03		-3.77				
15 CASE 3 TOP	-78.10	69.34	3.69	-2.44	64.51	-3.61	
BOTTOM	81.39		-1.94				
15 CASE 4 TOP	-93.73	82.68	5.97	-5.00	65.32	0.85	
BOTTOM	96.43		-5.55				
15 CASE 5 TOP	91.42	80.06	13.74	12.28	52.59	3.80	
BOTTOM	93.89		15.82				

(三) 柱主筋彈性設計結果

	由第1組載					
	Pu(T)	Mumaj(T-m)	Vumaj(T)	Mumin(T-m)	Vumin(T)	Tu(T-m)
TOP	-1101.05	43.21	-14.67	53.11	-32.45	0.1
BOTTOM		43.21		53.11		
		A	s,req=	33.5	cm ²	


```
(四)
        求樑彎矩強度和ΣMbn Ln=7.30m
                                              Ls1=3.75m
                                                                       ts=18cm
考慮T型梁(僅一側翼板)=min(Ln/12,6×ts,(Ls1)/2)=min(60.83,108,187.5)=60.83cm
版配筋#3@15(fy=2800)
T型梁內版筋總量=1×60.83/15×0.71= 2.88cm2
[柱 頂]
B1B(50x80)
                  (6F bay 17)
                B= 50 cm
D= 80 cm
                                                 AST = 6 - #10 + 2.88 cm2
                                                  ASB =
                                                           6- #10
[Mbpc_clock =Mpj_bottom-Vp_cntclock*col_wide*0.01= 191.42 (t-m)]
[Mbpc_cntclock =Mpj_top -Vp_clock *col_wide*0.01= -187.27 (t-m)]
[Mbnc_clock =Mnj_bottom-Vn_cntclock*col_wide*0.01= 154.38 (t-m)]
[Mbnc_cntclock =Mnj_top -Vn_clock *col_wide*0.01= -150.93 (t-m)]
 -----
               (6F bay 18 )
B= 50 cm
D= 80 cm
B2B(50x80)
                                                           8- #10
                                                  ASB= 6- #10
  -----
 [Mbpc_clock =Mpi_top +Vp_cntclock*col_wide*0.01= -249.29 (t-m)]
[Mbpc_cntclock =Mpi_bottom+Vp_clock *col_wide*0.01= 196.44 (t-m)]
[Mbnc_clock =Mni_top +Vn_cntclock*col_wide*0.01= -201.92 (t-m)]
[Mbnc\_cntclock = Mni\_bottom + Vn\_clock \quad *col\_wide*0.01 = \quad 158.11 \ (t-m)]
 ______
[柱底]
                B\!=\!\begin{array}{ccc} (5F\ bay\ 17\ )\\ B\!=\!\begin{array}{cccc} 50 & cm\\ D\!=\! & 80 & cm \end{array}
B1B(50x80)
                                                  AST = 6 - #10 + 2.88 cm2
                                                   ASB = 6 - #10
  .....
[Mbpc_clock =Mpj_bottom-Vp_cntclock*col_wide*0.01= 191.42 (t-m)]
[Mbpc_cntclock =Mpj_top -Vp_clock *col_wide*0.01= -187.27 (t-m)]
[Mbnc_clock =Mnj_bottom-Vn_cntclock*col_wide*0.01= 154.38 (t-m)]
[Mbnc\_cntclock = Mnj\_top - Vn\_clock *col\_wide*0.01 = -150.93 (t-m)]
 ______
               B= 50 cm
D= 80 cm
B2B(50x80)
                                                  AST = 8- #10
ASB = 6- #10
  ______
[Mbpc_clock =Mpi_top +Vp_cntclock*col_wide*0.01= -249.29 (t-m)]
[Mbpc_cntclock =Mpi_bottom+Vp_clock *col_wide*0.01= 196.44 (t-m)]
 [Mbnc_clock =Mni_top +Vn_cntclock*col_wide*0.01= -201.92 (t-m)]
 [Mbnc_cntclock =Mni_bottom+Vn_clock *col_wide*0.01= 158.11 (t-m)]
 ____
```

(五) 強柱弱樑設計分配彎矩

```
5F上半層柱分配彎矩
                                 0.56
[R top=Mc/fabs(Mc up-Mc)=
[Mcu_top_clock =R_top * 1.2\Sigma(\varphibxMbn_sum_clock) = -203.24(t-m)]
Mcu_top_cntclock=R_top * 1.2\Sigma(\varphibxMbn_sum_cntclock)= -179.59(t-m)]
Mcu_top_clock(face) =fabs(Mcu_top_clock) -fabs(Vcu_clock)*D*0.01 = 109.58
Mcu_top_cntclock(face) =fabs(Mcu_top_cntclock)-fabs(Vcu_cntclock)*D*0.01= 96.83
                                                      [ Mcu = 109.58]
5F下半層柱分配彎矩
[R_bottom=Mc/fabs(Mc-Mc_down)=
                                    0.44
[Mcu_bottom_clock =R_bottom * 1.2\Sigma(\varphi bxMbn_sum_clock) = 159.69(t-m)]
[Mcu_bottom_cntclock=R_bottom * 1.2\Sigma(\varphibxMbn_sum_cntclock)= 141.11(t-m)]
Mcu_bottom_clock(face) = fabs(Mcu_bottom_clock) = 159.69
Mcu_bottom_cntclock(face)=fabs(Mcu_bottom_cntclock)= 141.11
                                                     [Mcu = 159.69]
```

(六) 柱主筋配筋

```
彈性分析鋼筋設計 (第1組載重組合控制)
 Pu = -1101.05 T
                                            Mu_{maj} = 43.21 T-M
Mu_{min} = 53.11
                                             As = 33.5
              T-M
                                                           cm<sup>2</sup>
     強柱弱樑分析鋼筋設計(柱底控制)
                                            Mu_{mai} = 159.4 T-M
 Pu = -1101.05 T
{\tt Mu_{min}} =
       O T-M
                                                            cm^2
                                              As = 139.6
                                                            cm^2
                                          As(req) = 139.6
主筋: 30-#8
                                          As(pro) = 152.1
                                                             cm^2
```


(七) 求柱設計剪力(梁 Mpr : Fs=1.25Fy φ =1.0 , 韌性分析剪力)

```
柱頂分配彎矩
[R_top=Mc/fabs(Mc_up-Mc)=
                      0.56
.....
[Mcp_top_clock = R_top * fabs(Mbp_sum_clock) = -233.09(t-m)]
[Mcp_top_cntclock=R_top * fabs(Mbp_sum_cntclock) = -206.48(t-m)]
柱底分配彎矩
[R_bottom=Mc/fabs(Mc-Mc_down)=
                             0.44
.-----
[Mcp\_bottom\_clock = R\_bottom * fabs(Mbp\_sum\_clock) = 183.14(t-m)]
[Mcp_bottom_cntclock=R_bottom * fabs(Mbp_sum_cntclock) = 162.23(t-m)]
Vp=(Mtop-Mbot)/H
[H= 3.1 m]

      [Vcp_clock = fabs((Mcp_top_clock - Mcp_bottom_clock )/H)= 134.27]

      [Vcp_cntclock=fabs((Mcp_top_cntclock-Mcp_bottom_cntclock)/H)= 118.94]

      ] W產生塑角之對應剪力

[Vp =
                                                 134.27 ]
```

(八) 計算柱橫向鋼筋

```
柱圍東區箍筋量之公式:
      Ash/S=0.30 \times hc \times (Ag/Ac-1) \times (fc'/fy)-----eq.(1)
      Ash/S=0.09 \times hc \times (fc'/fy)-----eq.(2)
  柱中央區剪力筋之公式:
      Av/S=(Vmax/\psi - Vc) / (fyxd) - eq.(3)
(major)
    (IF Pu<0.05Agfc', Vc=0)
         Vu(max) = 134.27
             hc = 100.73cm
             Ag = 8800 cm2
             Ac = 7344cm2
            Ash/S=
                      0.529 cm<sup>2</sup>/cm (圍東區) <--- 由 eq.(2) 控制
                      0.210 cm<sup>2</sup>/cm (中央區)
            Avh/S=
(minor)
            Ash/S= 0.371 cm<sup>2</sup>/cm (圍東區) <--- 由 eq.(2) 控制
                      0.079 cm<sup>2</sup>/cm (中央區)
            Avh/S=
```

(九) 柱圍東區及中央區之箍筋量配置

(major)		
	圍束區: (Hoop:1-#4+Ties:4-#4) @ 10 Ash/S= 0.762 cm ² /cm	
	中央區: (Hoop:1-#4+Ties:4-#4) @ 15	
(minor)		
	圍束區: (Hoop:1-#4+Ties:2-#4) @ 10 Ash/S= 0.508 cm²/cm	
	中央區: (Hoop:1-#4+Ties:2-#4) @ 15	

↓ 柱設計及配筋完成

C2B (COL. LINE:15) +-----| FL:5F (80.0)x(110.0) | Fc'=245 | Fy=4200 | Fyh=4200 l o 30-#8 [152.1] l | As(1)= 139.6< A> - 1 X- 7(0) 1.6%[15] 1 Y-10(0) l Maj.Av/S= 0.529 I Hoop: 1-#4 I Ties: 4-#4 @ 10 - 15| 0.210< B>[15] I 2-#4 | Min.Av/S= 0.371 0.079< B>[15]