Devoir Maison nº 10

Problème - Théorème d'Apéry (1978)

Partie I - Où l'on définit $\zeta(3)$

- 1. Soit $k \ge 2$. Prouver que $\frac{1}{k^2} \le \frac{1}{k(k-1)}$.
- 2. En déduire que, pour tout $n \ge 1$, $\sum_{k=1}^{n} \frac{1}{k^2} \le 2 \frac{1}{n}$.
- 3. Montrer que la suite de terme général $\sum_{k=1}^{n} \frac{1}{k^3}$ converge. Sa limite est appelée $\zeta(3)$, c'est-à-dire que

$$\sum_{k=1}^{n} \frac{1}{k^3} \xrightarrow[n \to +\infty]{} \zeta(3)$$

ce qu'on notera au second semestre $\zeta(3) = \sum_{k=1}^{+\infty} \frac{1}{k^3}$. Le but de ce problème est de prouver que $\zeta(3)$ est irrationnel.

Partie II - Où l'on donne une approximation rationnelle de $\zeta(3)$

On définit dans tout le problème les suites $(a_n)_{n\geq 0}$ et $(b_n)_{n\geq 0}$ de terme général 1 :

$$a_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 \qquad \text{et} \qquad b_n = \sum_{k=0}^n \left(\binom{n}{k}^2 \binom{n+k}{k}^2 \left(\sum_{m=1}^n \frac{1}{m^3} + \sum_{m=1}^k \frac{(-1)^{m-1}}{2m^3 \binom{n}{m} \binom{n+m}{m}} \right) \right)$$

Il est immédiat que, pour tout $n, a_n \in \mathbb{N}^*$ et $b_n \in \mathbb{Q}$. On se donne dans cette partie un entier $n \geq 1$ et un entier $k \in [0; n]$, et on pose

$$c_{n,k} = \sum_{m=1}^{n} \frac{1}{m^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 \binom{n}{m} \binom{n+m}{m}}$$

si bien que

$$b_n = \sum_{k=0}^{n} \left(\binom{n}{k}^2 \binom{n+k}{k}^2 c_{n,k} \right)$$

- 1. Prouver que, pour tout $m \in [1; n]$, $\binom{n}{m}\binom{n+m}{m} \ge n(n+1)$. On pourra utiliser l'exercice 44 du chapitre 3.
- 2. En déduire que

$$\left| c_{n,k} - \sum_{m=1}^{n} \frac{1}{m^3} \right| \le \frac{\zeta(3)}{2n^2}$$

3. Soit $\varepsilon > 0$. Prouver qu'il existe $n_2 \in \mathbb{N}$ tel que, pour tout $n \geq n_2$ et pour tout $k \in [0; n]$,

$$\zeta(3) - 2\varepsilon \le c_{n,k} \le \zeta(3) + 2\varepsilon$$

- 4. En déduire que $b_n/a_n \xrightarrow[n \to +\infty]{} \zeta(3)$.
- $1.\ N'ayez\ pas\ peur\ de\ l'expression\ de\ ces\ suites,\ nous\ n'allons\ pas\ beaucoup\ nous\ servir\ de\ leur\ expression\ exacte...$

Page 1/3 2023/2024

MP2I Lycée Faidherbe

Partie III - Où l'on s'intéresse à une relation de récurrence

On dit qu'une suite (u_n) vérifie la relation de récurrence (R) si :

$$\forall n \ge 1, (n+1)^3 u_{n+1} - (34n^3 + 51n^2 + 27n + 5)u_n + n^3 u_{n-1} = 0$$

On admet qu'il existe deux suites $(x_n)_{n\geq 0}$ et $(y_n)_{n\geq 0}$ strictement positives telles que

$$\frac{\ln(x_n)}{n} \xrightarrow[n \to +\infty]{} \ln\left(\left(\sqrt{2} + 1\right)^4\right) \qquad \text{et} \qquad \frac{\ln(y_n)}{n} \xrightarrow[n \to +\infty]{} \ln\left(\left(\sqrt{2} - 1\right)^4\right)$$

qui engendrent l'ensemble des suites qui vérifient (R), c'est-à-dire que pour toute suite (u_n) vérifiant la relation de récurrence (R), il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que :

$$\forall n \in \mathbb{N}, u_n = \lambda x_n + \mu y_n$$

- 1. (a) Prouver que $x_n \ge 4^n$ à partir d'un certain rang. En déduire que $x_n \xrightarrow[n \to +\infty]{} +\infty$.
 - (b) Montrer de même que $y_n \xrightarrow[n \to +\infty]{} 0$. On donne : $(\sqrt{2} 1)^4 \approx 0.029$.
 - (c) Que dire d'une suite bornée vérifiant la relation de récurrence (R)?
- 2. (a) Vérifier que $a_0 = 1, a_1 = 5, b_0 = 0$ et $b_1 = 6$.
 - (b) Il est immédiat 2 que (a_n) et (b_n) vérifient cette relation de récurrence et donc on l'admettra. Montrer par récurrence que pour tout $n \ge 1$, $b_n a_{n-1} a_n b_{n-1} = \frac{6}{n^3}$. En déduire que la suite (b_n/a_n) est strictement croissante.
- 3. En déduire que $a_n\zeta(3) b_n > 0$ pour tout $n \ge 0$.
- 4. Prouver que la suite de terme général $a_n\zeta(3) b_n$ vérifie la relation de récurrence (R).
- 5. (a) Montrer que, pour tout $N \ge n+1$:

$$\frac{b_N}{a_N} - \frac{b_n}{a_n} = \sum_{k=n+1}^N \frac{6}{k^3 a_k a_{k-1}}$$

(b) Justifier que, pour tout $k \le n$, $\binom{n}{k} \le \binom{n+1}{k}$. En déduire que la suite (a_n) est croissante, puis que

$$a_n \times \frac{b_N}{a_N} - b_n \le \sum_{k=n+1}^N \frac{6}{k^3}$$

(c) En remarquant que, pour tout $k \geq 2$,

$$\frac{1}{k^3} \le \frac{1}{k(k-1)}$$

prouver finalement que la suite de terme général $a_n\zeta(3) - b_n$ est bornée.

6. Montrer finalement que $(a_n\zeta(3)-b_n)^{1/n} \xrightarrow[n\to+\infty]{} (\sqrt{2}-1)^4$.

Partie IV - Où l'on montre que $2\Delta_n^3 b_n$ est un entier

Reprenons les notations du DM n° 6 : on se donne $n \ge 1$ et on note Δ_n le PPCM des entiers $1, 2, \ldots, n$. Le but de cette partie est de prouver que $2\Delta_n^{\ 3}b_n \in \mathbb{Z}$. D'après la partie II,

$$2\Delta_n^3 b_n = \sum_{k=0}^n \left(\binom{n}{k}^2 \binom{n+k}{k}^2 2\Delta_n^3 c_{n,k} \right)$$

1. Justifier qu'il suffit de prouver que, pour tout $k \in [0; n], 2\Delta_n^3 \binom{n+k}{k} c_{n,k} \in \mathbb{Z}$.

On fixe jusqu'à la fin de cette partie un entier $k \in [0; n]$.

Page 2/3 2023/2024

^{2.} Aheum... C'est loin d'être immédiat en fait (essayez!), et Apéry ne l'avait même pas prouvé lorsqu'il a publié son résultat... Il y avait quelques trous dans sa démonstration, comme celui-ci, qui n'ont été comblés que plus tard, par certains de ses collègues consciencieux.

MP2I Lycée Faidherbe

2. Prouver que

$$2\binom{n+k}{k}\Delta_n^3 \times \sum_{m=1}^n \frac{1}{m^3} \in \mathbb{Z}$$

On se donne dans la suite un entier $m \in [1; k]$ et p un nombre premier.

3. (a) Prouver que

$$\frac{\binom{n+k}{k}}{\binom{n}{m}\binom{n+m}{m}} = \frac{\binom{n+k}{k-m}}{\binom{n}{m}\binom{k}{m}}$$

(b) En déduire que

$$v_p\left(\frac{{\Delta_n}^3\binom{n+k}{k}}{m^3\binom{n}{m}\binom{n+m}{m}}\right) \geq 3v_p(\Delta_n) - 3v_p(m) - v_p\left(\binom{n}{m}\right) - v_p\left(\binom{k}{m}\right)$$

où, comme d'habitude, v_p désigne la valuation p-adique.

4. On rappelle (cf. cours) la formule de Legendre:

$$v_p(n!) = \sum_{i=1}^{+\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$$

cette somme allant en fait jusque $\alpha_n = \left| \frac{\ln(n)}{\ln(p)} \right|$, les termes suivants étant nuls.

(a) Prouver que, si $i \leq v_p(m)$,

$$\left\lfloor \frac{n}{p^i} \right\rfloor = \left\lfloor \frac{n-m}{p^i} \right\rfloor + \left\lfloor \frac{m}{p^i} \right\rfloor$$

tandis que si $i > v_p(m)$,

$$\left\lfloor \frac{n}{p^i} \right\rfloor \le \left\lfloor \frac{n-m}{p^i} \right\rfloor + \left\lfloor \frac{m}{p^i} \right\rfloor + 1$$

- (b) En déduire que $v_p\left(\binom{n}{m}\right) \leq \alpha_n v_p(m)$.
- (c) En se souvenant que $v_p(\Delta_n) = \max(v_p(1), \dots, v_p(n))$, prouver que $p^{v_p(\Delta_n)} \leq n < p^{v_p(\Delta_n)+1}$. En déduire que $v_p(\Delta_n) = \alpha_n$.
- (d) Prouver que

$$v_p\left(\frac{\Delta_n^3\binom{n+k}{k}}{m^3\binom{n}{m}\binom{n+m}{m}}\right) \ge v_p(\Delta_n) - v_p(m) + \alpha_n - \alpha_k$$

(e) Conclure.

Partie V - Où l'on prouve le théorème d'Apéry

On veut prouver que $\zeta(3)$ est irrationnel : on fait comme d'habitude un raisonnement par l'absurde et on suppose qu'il existe p et q entiers strictement positifs tels que $\zeta(3) = p/q$.

- 1. Justifier que $2q\Delta_n^3(a_n\zeta(3)-b_n)$ est un entier supérieur ou égal à 1 pour tout $n\geq 1$.
- 2. On rappelle (cf. DM n° 6) que si $\pi(n)$ est le nombre de nombres premiers inférieurs ou égaux à n, alors $\Delta_n \leq n^{\pi(n)}$. On admet le théorème des nombres premiers :

$$\pi(n) \times \frac{\ln(n)}{n} \xrightarrow[n \to +\infty]{} 1$$

Justifier que $\Delta_n \leq 3^n$ pour n assez grand.

3. En utilisant le fait que $27\left(\sqrt{2}-1\right)^4 < 1$, justifier que $2q\Delta_n^3(a_n\zeta(3)-b_n) \xrightarrow[n \to +\infty]{} 0$ et conclure.

Page 3/3 2023/2024