- what should the loyal participants do? - we need a desault action e.g. "retreat" -solution for 1 disloyal general - there must be N=3d+1 (eq ≥4) generals - the commander issues command v to all lieutenants - lieutenants tell each other what they heard and they each store these vis in a vector - each lieutenant acts on V=majority {Vi} eg. 4 generals, V=a (attack), lieutenant 3 is disloyal t. 1's vector [a[a]X], V=majority {a, a, X}

-solutorn for 2 disloyal generals

- need at least n=7 generals - the lieutenants share their vectors with each other and store in a table

- Jeach It. takes the majority heard by each It. e.g. 7 generals, V=a, It. 3 & It. 6 are disloyal

It. I's table	
112314 56	
1 - a X a a X row 1 what his	enterent 1
2 a - X a a X ron 2 what It.	
3 X X - X X	
yaax-ax	
9 a a x a - X	
1XXXXX	
column ala Xala X = majoris	
consersus on $=a$	a, a, X
what It.4 heard	
- summarize	
- there must be N=3d+1 generals who	ere
d=# of disloyal generals	
- # of rounds of communication = d	
- # of rounds of communication = d - runtime complexity = O(nd+1)	

(

- fault tolerant systems
- use redundant sensors, redundant busses,
redundant processors
- their outputs are combined using voters input (vorts by majority or average - Apollo reckets: Triple Modular Redundancy (TMR)
- 3 computes all doing same thing - Dual-Dual systems: used in satellites
- 2 pairs of identical processors all doing
same thing
- if 2 pairs disagrees, then the other takes -éarly autolanders in jets: Bueing 747: TMR Lockheed L-1011: Dual-Dual

- Boeing 777 flight computers
-3 groups of 3 computers
-each group has a command computer, a
monitor computer and a standy computer

- each group has different processors:

Motorola 68040, Intel 80486, AMD 29030

- all software was in Ada but compiled with
3 different compilers

A380 - uses a dual-dual system with a standy pair