Чтобы посчитать угол между плоскостями, необходимо

- а) Построить систему координат
- b) Найти уравнения плоскостей: Ax + By + Cz + D = 0
- с) Найти координаты векторов нормалей к плоскостям
- d) Посчитать угол φ между плоскостями по формуле:

$$cos\varphi = \frac{\vec{a}\vec{b}}{|\vec{a}||\vec{b}|} = \frac{a_{x}b_{x} + a_{y}b_{x} + a_{z}b_{z}}{\sqrt{a_{x}^{2} + a_{y}^{2} + a_{z}^{2}\sqrt{b_{x}^{2} + b_{y}^{2} + b_{z}^{2}}}}$$

- 1. Напишите уравнение плоскости, проходящей через три точки, M(0; 1; 0), N(1; 0; 0), P(1; 1; 1)
- 2. Найдите синус угла, косинус угла и сам угол между двумя пересекающимися плоскостями, определенными в прямоугольной системе координат уравнениями 2x 4y + z + 1 = 0 и 3y z 1 = 0
- 3. В правильной шестиугольной призме ABCDEFA₁ B₁ C₁ D₁ E₁ F₁, все ребра которой равны 1, найдите угол между плоскостями AFF₁ и DEE₁
- 4. В единичном кубе $A...D_1$ найдите тангенс угла между плоскостями ADD_1 и BDC_1 .
- 5. В правильной треугольной призме $ABCA_1B_1C_1D_1$, все ребра которой равны 1, найдите косинус угла между плоскостями ACB_1 и BA_1C_1 .
- 6. Дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$, в котором AB=2, AD=3, $AA_1=7$ и точка E делит сторону AA_1 в отношении 4: 3, считая от точки A. Найдите угол между плоскостями ABC и BED_1 .