פתרון דף הכוונה יונה – סמסטר ב' 2022

.det (A) מצאו את
$$Trace(A^2)=5$$
ו-ד ו- $Trace(A)=3$, $A\in M_{2\times 2}$

 $\chi_A(x) = x^2 - Trace(A)x + \det(A)$ הוא $A \in M_{2 \times 2}$ האופייני של

 $\chi_A(A) = A^2 - Trace(A)A + \det(A) = 0_{2 \times 2}$ נשתמש במשפט קיילי המילטון:

נפעיל Trace על שני הצדדים:

$$Trace(A^2 - Trace(A)A + det(A)) = 0_{2\times 2}$$

 $Trace(\alpha A) = \alpha Trace(A)$ וגם Trace(A+B) = Trace(A) + Trace(B) נזכיר תכונות של עקבה: נשתמש בתכונות אלה ונפתח סוגריים:

$$Trace(A^2) - Trace(A)Trace(A) + \det(A) \cdot Trace(I_{2\times 2}) = 0_{2\times 2}$$

$$5 - 3 \cdot 3 + \det(A) \cdot 2 = 0_{2\times 2} \rightarrow -4 + \det(A) \cdot 2 = 0_{2\times 2} \rightarrow \det(A) = 2$$
נציב את הנתונים:

:דרך נוספת

$$A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $A^2=\begin{bmatrix} a & b \\ c & d \end{bmatrix}\begin{bmatrix} a & b \\ c & d \end{bmatrix}=\begin{bmatrix} a^2+bc & ad+bd \\ ca+dc & cb+d^2 \end{bmatrix}$ ניקח מטריצה מסדר 2×2 שרירותית: 2×2 שרירותית: 2×2 היא סכום של האיברים באלכסון כלומר:

$$Trace(A) = a + d = 3,$$
 $Trace(A^2) = a^2 + bc + cb + d^2 = a^2 + 2bc + d^2 = 5$
$$\left(Trace(A)\right)^2 = (a + d)^2 = a^2 + 2ad + d^2 = 9$$

$$\left(Trace(A)\right)^2 - \left(Trace(A^2) = 2(ad - bc) = 4 \rightarrow ad - bc = \det(A) = 2$$

 $(AB)^2=0_{2 imes 2}$ תהי $B\in M_{2 imes 2}$ תהי תהי $A\in M_{2 imes 2}$ תהי שאלה ב:

 $(BA)^2 = 0_{2 \times 2}$:הוכיחו

פתרון:

$$(AB)^2 = 0_{2\times 2} \to \det(AB)^2 = 0 \to (\det(AB))^2 = 0 \to \det(AB) = 0$$
$$\det(BA) = \det(B) \cdot \det(A) = \det(A) \cdot \det(B) = \det(AB) \to \det(BA) = 0$$

:AB נציג את **משפט קיילי המילטון** עבור

$$(AB)^2-Trace(AB)AB+\det(AB)\cdot I_{2\times 2}=0_{2\times 2} \to Trace(AB)AB=0_{2\times 2} \to Trace(AB)=0$$
נזכיר את תכונה העקבה - $Trace(AB)=Trace(BA)$ עבור מכפלה מוגדרת.

Trace(BA) = 0 אזי גם

כעת נרשום את משפט קיילי המילטון עבור *BA*:

$$(BA)^2 - Trace(BA)BA + \det(BA) \cdot I_{2\times 2} = 0_{2\times 2} \to (BA)^2 = 0_{2\times 2}$$

 $?A^3 = 0_{2 \times 2}$ אבל $A^2 \neq 0_{2 \times 2}$ כך ש $A \in M_{2 \times 2}(\mathbb{C})$ אבל מטריצה אום קיימת מטריצה $A \in M_{2 \times 2}(\mathbb{C})$

 A^k פתרון: נזכיר כי אם λ הוא ערך עצמי של A אזי λ^k הוא ערך עצמי של

\underline{k} הוכחה באינדוקציה על

ערך עצמי היחיד של A הוא 0. ולכן הפולינום 0. ערך עצמי היחיד של A הוא 0. ולכן הפולינום $0_{2\times 2}$ הוא $0_{2\times 2}$ לכן לא קיימת מטריצה כזו. $\chi_A(x)=x^2$ לכן לא קיימת מטריצה כזו.

שאלה 4: תהי A מטריצה ממשית מסדר 3 × 3 כך ש-8 פארוכב. נתון בנוסף שהמספר המרוכב A תהי A מטריצה מטריצה וכיחו $A^3=8I_{3 imes 3}$. הוכיחו $A^3=8I_{3 imes 3}$

 $-1-\sqrt{3}\cdot i$ פתרון: נתון ש- $A+\sqrt{3}\cdot i$ הוא ע"ע של A ולכן גם הצמוד שלו הוא ע"ע של $A+1+\sqrt{3}\cdot i$ פתרון: נתון ש-גם ע"ע. הנ"ל נובע מההגדרה שמעל ממשיים, אם A הוא ע"ע מרוכב של A אז גם A הוא ע"ע.

מכיוון שממד המטריצה 3 אז יכול להיות רק עוד ערך עצמי 1.

ע"י מכפלת הערכים $\det(A)$ ע"י מכפלת הערכים מכיוון שמדברים על מרחב מעל שדה המרוכבים נוכל לחשב את $\det(A) = \lambda_1 \lambda_2 \lambda_3 -$ העצמיים בהתחשב בריבוי האלגברי שלהם

$$\det(A) = (-1 + \sqrt{3} \cdot i)(-1 - \sqrt{3} \cdot i) \cdot \lambda = 8 \to 4 \cdot \lambda = 8 \to \lambda_3 = 2$$

מצאנו שלמטריצה A ישנם 3 ערכים עצמיים שונים והיא מממד 3 ולכן היא ניתנת ללכסון. מהגדרת $A = PDP^{-1}$ כך ש- P^{-1} מטריצה לכסינה, קיימת מטריצה D אלכסונית ומטריצה הפיכה D

המטריצה D מורכבת מערכים עצמיים של A באלכסון הראשי שלה

$$A = P \cdot \begin{bmatrix} -1 + \sqrt{3}i & 0 & 0 \\ 0 & -1 - \sqrt{3}i & 0 \\ 0 & 0 & 2 \end{bmatrix} \cdot P^{-1} \to A^2 = PD^3P^{-1} = P \cdot \begin{bmatrix} \left(-1 + \sqrt{3}i\right)^3 & 0 & 0 \\ 0 & \left(-1 - \sqrt{3}i\right)^3 & 0 \\ 0 & 0 & 8 \end{bmatrix} \cdot P^{-1}$$

$$\left(-1+\sqrt{3}i\right)^3 = \left(-1+\sqrt{3}i\right)^2 \left(-1+\sqrt{3}i\right) = \left(-2-2\sqrt{3}i\right) \left(-1+\sqrt{3}i\right) = 2(1+3) = 8$$

$$\left(-1-\sqrt{3}i\right)^3 = \left(-1-\sqrt{3}i\right)^2 \left(-1-\sqrt{3}i\right) = \left(-2+2\sqrt{3}i\right) \left(-1-\sqrt{3}i\right) = -2(-1-3) = 8$$

$$A^3 = PDP^{-1} = P \cdot \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} \cdot P^{-1} = P8IP^{-1} = 8PI_{3\times3}P^{-1} = 8I_{3\times3}P^{-1} = 8I_{3\times3$$

 $\chi_A(x) = (x-1+\sqrt{3}i)(x-(-1-\sqrt{3}i)(x-2)$ דרך נוספת זה לפתוח את הפולינום האופייני

. לכסינה R- שאלה 5: תהי R- הוכיחו ש $A \in M_{3 \times 3}$ הוכיחו ש $A \in M_{3 \times 3}$ לכסינה.

פתרון: נזכיר 3 $rank(A) \le 3$ מכיוון שממד המטריצה הוא 3. לפי האי שוויון ישנם 3 אפשרויות:

$$0 < 1 < 2$$
, $0 < 2 < 3$, $0 < 1 < 3$, $1 < 2 < 3$

 $rank(A+I_3)=rank(2A)>rank(A)$ אם $R=I_3$ אזי אזי $R=I_3$ אזי אזי אזי אוזי אוזה לא ייתכן אחרת $R=I_3$ אם $R=I_3$ אם רמתירה לנתון. לכן $R=I_3$ אוזה לא ייתכן אחרת $R=I_3$ אם רמתירה לנתון. לכן $R=I_3$ אוזה לא ייתכן אחרת בסתירה לנתון.

 $\det(A) \neq 0$ אם אזי $tank(A) = \dim(A)$ אף שורה לא התאפסה אזי

$$\lambda_1 = 1$$
 ולכן $rank(A - I_3) = rank(A - 1 \cdot I_3) = 1 \rightarrow \det(A - 1I_3) = 0$

$$\lambda_2 = -1$$
 ולכן $rank(A + I_3) = rank(A + 1 \cdot I_3) = 1 \rightarrow \det(A + 1I_3) = 0$

$$g(1) = \dim(NULL(A - 1 \cdot I_3)) = 3 - rank(A - I_3) = 2$$
 ריבויים גאומטריים:

$$g(-1) = \dim(NULL(A + 1 \cdot I_3)) = 3 - rank(A + I_3) = 1$$

-1 ריבויים אלגבריים: $2 \le 2 \le 1 = 1$ לא $1 \le g(1) \le a(1) = 1 \le 2 \le 2$ ריבויים אלגבריים:

$$1 \le g(-1) \le a(-1) = 1 \le 1 \le 1$$

ולפי המשפט "...מטריצה לכסינה אמ"מ עבור כל ערך עצמי שלה מתקיים שוויון בין ריבוי אלגברי לריבוי גאומטרי.

וגם $\det(A) = -1$, $\det(I_6 - A) \neq 0$ שאלה 6: תהי $A \in M_{6 \times 6}$ מטריצה סימטרית ל

הוכיחו ש-A לכסינה. $\dim(Null(A+I_6))=4$

4 אזי -1 אזי -1 אזי אומטרי A עם ריבוי גאומטרי -1 אזי $\dim \left(Null(A+I_6)\right)=4$ פתרון: נתון כי

A אזי 1 הוא לא ערך עצמי של $\det(I_6-A)\neq 0$ נתון:

$$\det(A) = \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \lambda_6 = -1$$
 נתון: $\det(A) = \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \lambda_6 = -1$

A עם ריבוי גאומטרי A אזי הריבוי האלגברי שלו לפחות A עם ריבוי גאומטרי A אזי הריבוי האלגברי שלו

$$(-1)^4 \cdot \lambda_5, \lambda_6 = \lambda_5 \lambda_6 = -1$$

. אם $\lambda_6=1$ אזי $\lambda_6=1$ וזה לא ייתכן בגלל הנתון. כנ"ל גם הפוך

אם λ_5, λ_6 יהיו 2 ע"ע לכל $\lambda_5 = \lambda_6 \to \lambda^2 = -1 \to \lambda_{11} = i, \lambda_{12} = -i$ אם אם $\lambda_5 = \lambda_6 \to \lambda^2 = -1 \to \lambda_{11} = i, \lambda_{12} = -i$ אחד כלומר 4 סה"כ כי נותר מקום רק ל2. ז"א $\lambda_5 \neq \lambda_6 \neq \lambda$ ערכים עצמיים שונים שכל אחד מהם עם ריבוי אלגברי וגאומטרי 1. ז"א שלערך עצמי ($\lambda_5 = \lambda_6 \to \lambda_5 \neq \lambda_6$ ריבוי גאומטרי וריבוי אלגברי 4 – אזי המטריצה $\lambda_5 = \lambda_6 \to \lambda_5 \neq \lambda_6$ ריבוי אלגברי וגאומטרי 1. ז"א שלערך עצמי ($\lambda_5 = \lambda_6 \to \lambda_5 \neq \lambda_6 \neq \lambda_5 \neq \lambda_6$ ריבוי אלגברי וגאומטרי 1. ז"א שלערך עצמי ($\lambda_5 = \lambda_6 \to \lambda_5 \neq \lambda_6 \neq \lambda_$

 $rank(A+i\cdot I_5)=2$, $\det(A)=rac{1-i}{\sqrt{2}}$, $\det(I_5+A)=0$ - עאלה 7: תהי $A\in M_{5 imes 5}$ כך ש-

 $A^8 = I_5$ או במילים אחרות $A^{-1} = A^7$ הוכיחו כי

פתרון:

A אזי -1 אזי $\det(A+I)=0$ נתון

עם ריבוי A עם ריבוי dim $\left(Null(A+i\cdot I_5)\right)=5-2=3$ אזי אזי $rank(A+i\cdot I_5)=2$ כלומר $rank(A+i\cdot I_5)=2$ גאומטרי 3.

$$\det(A) = \frac{1-i}{\sqrt{2}} = \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5 \rightarrow (-1)(-i)^3 \cdot \lambda_5 = -i \cdot \lambda_5 \rightarrow \lambda_5 = \frac{1+i}{\sqrt{2}}$$
:ותון

לסיכום: ערכים עצמיים של A הם A הם A הם (-1), $(-i)^3$, $(\frac{1+i}{\sqrt{2}})$ הם A לסיכום: ערכים עצמיים של A הם לכסינה.

לכן קיימת מטריצה אלכסונית D המורכבת מערכים העצמיים של P ו A הפיכה המורכבת מוקטורים עצמיים של $A^8 = PD^8P^{-1}$ בעזרת זה נחשב את $A = PDP^{-1}$

 $A^8 = I_5$ ואכן

 $A\in \mathcal{C}$ עבור כל $T(A)=A^t$ נסמן: זיניארית. נסמן: מטריצה מטריצה מטריצה שאלה 8: כידוע פעולת שחלוף מטריצה היא העתקה ליניארית. נ

 $M_{n \times n}$ בעצם, ההעתקה T היא פעולת שחלוף מטריצה ריבועית. זו העתקה ליניארית ממרחב בעצם, T והבינו האם T לעצמו. ללא שימוש במטריצה מייצגת, מצאו את כל הערכים העצמיים של T והבינו האם לכסינה.

$$T(A) = \lambda A \rightarrow A^t = \lambda A$$
פתרון: $T(A) = A^t$ ולכן ניתן לומר ש

אם המטריצה סימטרית אז $\lambda=1$ הוא ע"ע של T ו"ע השייכים לו הם מטריצות סימטריות.

אם המטריצה אנטי סימטרית אז $\lambda=-1$ הוא ע"ע של T ו"ע השייכים לו הם מטריצות אנטי סימטרית.

$$A=rac{1}{2}(A+A^t)+rac{1}{2}(A-A^t)$$
 כל מטריצה ריבועית ניתן להציג כצירוף ליניארי של $V_1=\{A\in M_{3 imes3}(\mathbb{C})|A^t=A\}$ מרחב עצמי של מטריצות סימטריות $V_{-1}=\{A\in M_{3 imes3}(\mathbb{C})|A^t=A^{-1}\}$
$$V_1\cap V_{-1}=\{0\} o V_1\oplus V_{-1}=M_{3 imes3}(\mathbb{C})$$
 החיתוך בניהם טריוויאלי $A^t=\lambda A o (A^t)^t=(\lambda A)^t o A=\lambda A^t=\lambda^2 A o (1-\lambda)^2 A=0_{n imes n}$ דרך נוספת: $A^t=\lambda A o (A^t)^t=(\lambda A)^t o A=\lambda A^t=\lambda^2 A o (1-\lambda)^2 A=0_{n imes n}$ ונוכל לרשום כך $A^t=0_{n imes n}$

$$(1 - \lambda)^2 = 0 \rightarrow \lambda_1 = 1 \lambda_2 = -1$$

$$dimV_1 = \frac{n^2 - n}{2} + n = \frac{n^2 + n}{2}$$

$$dimV_{-1} = \frac{n^2 - n}{2}$$

$$dimV_1 + dimV_{-1} = \frac{n^2 + n}{2} + \frac{n^2 - n}{2} = n^2$$

 $A\in M_{n\times n}(\mathbb{C})$ עבור כל $S(A)=A+A^t$ כך: $S:M_{n\times n}(\mathbb{C})\to M_{n\times n}(\mathbb{C})$ עבור כל פאלה 9: נגדיר העתקה S והבינו האם S והבינו האם S לכסינה.

$$A + A^t = \lambda A \rightarrow A^t = \lambda A - A \rightarrow A^t = (\lambda - 1)A$$
 פתרון:

אם המטריצה סימטרית אז $\lambda - 1 = 1 \to \lambda = 1$ הוא ע"ע של T ו"ע השייכים לו הם מטריצות סימטריות.

אם המטריצה אנטי סימטרית אז $\lambda - 1 = -1 \to \lambda = 0$ הוא ע"ע של T ו"ע השייכים לו הם מטריצות אנטי סימטרית.

 $A = \frac{1}{2}(A + A^t) + \frac{1}{2}(A - A^t)$ כל מטריצה ריבועית ניתן להציג כצירוף ליניארי

 $V_2 = \{A \in M_{3 imes 3}(\mathbb{C}) | A^t = A \}$ מרחב עצמי של מטריצות סימטריות

$$V_0 = \{ A \in M_{3 \times 3}(\mathbb{C}) | A^t = A^{-1} \}$$

המטריצה כלומר כלומר סכום הריבויים הגאומטריים שווה לממד עצמו כלומר המטריצה $V_2 \oplus V_0 = M_{3 \times 3}(\mathbb{C})$ סימטרית.

 $B = ((1,1,2), (1,1,3), (2,3,4)), \ G = ((1,0,1), (0,1,-1), (1,2,0))$ שאלה 10: יהיו

 \mathbb{R}^3 שני בסיסים ל

 \mathbb{R}^2 יהיו $\mathcal{C} = ((3,4),(2,3), H = ((2,1),(5,3))$ יהיו

 $[T]^G_H$ כך ש- $[T]^B_C=egin{bmatrix} 1 & 1 & 2 \ 3 & -1 & 1 \end{bmatrix}$ כך ש- $\mathbb{R}^3 o \mathbb{R}^2$ מצאו את המטריצה בעתקה T היא העתקה ליניארית

פתרון:

$$[T]_{H}^{G} = [I]_{H}^{C} \cdot [T]_{C}^{B} \cdot [I]_{B}^{G}$$

:מטריצות מעבר מטרת מעזרת מטונה, כעת נמצא 2 מטריצות מעבר מעבר מטרות נמצא $[T]_{\mathcal{C}}^{B}$

$$\begin{split} [I]_{H}^{C} &= [I]_{H}^{E} \cdot [I]_{E}^{C} = ([I]_{E}^{H})^{-1} \cdot [I]_{E}^{C} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}^{-1} \cdot \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 & 2 \\ 4 & 3 \end{bmatrix} = \begin{bmatrix} -11 & -9 \\ 5 & 4 \end{bmatrix} \\ [I]_{B}^{G} &= [I]_{E}^{E} \cdot [I]_{E}^{G} = ([I]_{E}^{B})^{-1} \cdot [I]_{E}^{G} = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 3 \\ 2 & 3 & 4 \end{pmatrix}^{-1} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} 5 & -2 & -1 \\ -2 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 4 & -1 & 1 \\ -1 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} \end{split}$$

כעת נציב בנוסחה הגדולה:

$$[T]_{H}^{G} = \begin{bmatrix} -11 & -9 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 2 \\ 3 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 & 1 \\ -1 & -1 & -2 \\ -1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -11 & -9 \\ 5 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 1 \\ 12 & -1 & 6 \end{bmatrix}$$

$$= \begin{bmatrix} -119 & 9 & -65 \\ 53 & -4 & 29 \end{bmatrix}$$