Singular Value Decomposition An application to Big Data

Davide Sferrazza

Università degli Studi di Palermo

January 2, 2023

Outline

- 1 Singular Value Decomposition
 - What is it?
 - How can singular values be computed?

Theorem

Given a matrix $A \in \mathbb{R}^{m \times n}$, it can always be found a decomposition such that

$$A = U\Sigma V^T$$

where $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ and $\Sigma \in \mathbb{R}^{m \times n}$.

U and V are two orthogonal matrices and Σ is a diagonal matrix, namely:

$$(\Sigma)_{ij} = \begin{cases} 0, & i \neq j \\ \sigma_i, & i = j \end{cases}$$

where $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$, $p = \min\{m, n\}$.

The non-zero entries of Σ , denoted by σ_i , are called *singular values*. They are arrenged in a nonincreasing order by convention. The column vectors $\boldsymbol{u_i}$ of U are called *left singular vectors* and those $\boldsymbol{v_i}$ of V are called *right singular vectors*.

Since in general $m \neq n$, we have:

$$A = \sum_{i=1}^{p} \boldsymbol{u_i} \sigma_i \boldsymbol{v_i}^T$$

Theorem

If for some r such that $1 \le r < p$ we have

$$\sigma_1 \ge \ldots \ge \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0$$

then

- rank(A) = r

This means that all other p-r dimensions of matrix A are linear combinations of the first r.

Lower rank approximation

Let $A \in \mathbb{R}^{m \times n}$ be a matrix whose rank is rank(A) = r.

If for a fixed integer value k < r we define

$$A_k = \sum_{i=1}^k \sigma_i \boldsymbol{u_i} \boldsymbol{v_i}^T \tag{1}$$

and

$$\mathcal{B} = \left\{ B \in \mathbb{R}^{m \times n} : rank(B) = k \right\}$$

then

$$\min_{B \in \mathcal{B}} ||A - B||_2 = ||A - A_k||_2 = \sigma_{k+1}$$

This result tell us that A_k represents the best approximation (considering the *spectral norm*) of rank k of matrix A.

Singular values computation

To compute the singular values, consider the transponse of \boldsymbol{A} given its decomposition:

$$A^T = (U\Sigma V^T)^T = V\Sigma^T U^T$$

The symmetric matrix A^TA is equal to:

$$A^T A = (V \Sigma^T U^T)(U \Sigma V^T) = V \Sigma^T \Sigma V^T$$

Furthermore, this equation can be written as:

$$A^T A V = V \Sigma^T \Sigma$$

This means that the diagonal entries of the square matrix $\Sigma^T \Sigma$, which are the square of the singular values, are the eigenvalues of matrix $A^T A$ and V is the matrix of eigenvectors.

Singular values computation

Similarly, consider the product of AA^T . It is equal to:

$$AA^{T} = (U\Sigma V^{T})(V\Sigma^{T}U^{T}) = U\Sigma\Sigma^{T}U^{T}$$

Which means that:

$$AA^TU = U\Sigma\Sigma^T$$

Hence U is the matrix of eigenvectors of AA^T .

Since rank(A)=r, only the first r eigenvalues of AA^T and A^TA are non-zero.

References

- Aggarwal, Charu C et al. (2015). Data mining: the textbook. Vol. 1. Springer.
- Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman (2020). *Mining of massive data sets*. Cambridge university press.
- Monegato, Giovanni (2008). Metodi e algoritmi per il calcolo numerico. Clut.