Name-Surname:

Id & Signature:

MATH 317- Homework I

<u>Instructions:</u> All questions are equally weighted. You may edit this file. When you finish, create a pdf file. You are free to use small pictures, screenshots (zoomed), handwriting or equation editor etc.

Question 2. The surface of many airfoils can be described with an equation of the form

$$y = \pm \frac{tc}{0.2} \left[a_0 \sqrt{\frac{x}{c}} + \frac{a_1 x}{c} + a_2 \left(\frac{x}{c} \right)^2 + a_3 \left(\frac{x}{c} \right)^3 + a_4 \left(\frac{x}{c} \right)^4 \right]$$

Where t is the maximum thickness as a fraction of the chord length ($t_{max}=ct$).

Given that c=1 m and t=0.2 m, the following values for y have been measured for a particular airfoil:

X (m)	0.15	0.35	0.5	0.7	0.85
Y(m)	0.08909	0.09914	0.08823	0.06107	0.03421

Determine the constants a_0 , a_1 , a_2 , a_3 and a_4 by using the MINVERSE function of Excel. (Write a system of five equations and five unknowns and use Excel to solve the system.)

Solu	Solution:												
C1	C1 \longrightarrow f_x system of equations												
	Α	В	C	D	Е	F	G	Н	1	J			
1			system of	_					•				
2													
3													
4	x	у											
5	0.15	0.08909		0.0			a2+0.	.15^3a3+0.:	15^4a4				
6	0.35	0.09914		0.0 a2+0.35^3a3+0.35^4a4									
7	0.5	0.08823		0.08823=	0.08823= 3a3+0.5^4a4								
8	0.7	0.06107		0.06107=			3	a3+0.7^4a	4				
9	0.85	0.03421		0.03421=			1.	.85^3a3+0.8	85^4a4				
10													
11													
12		Α						b					
13		0.387	2.45	0.0005	0 000075	^ ^^^506		0.0~309					
14		0.591				006		0.0)14					
15		0.707,107	0.5	0.23	0.013023	0.003906		0.0 323					
16		0.22555	0.7	0.49	0.343	0.2401		0.0.107					
17		0.921954	0.85	0.7225	0.014125	0.522000		0.03 L					
18													

20	A^-1					ā	a's solu	utions	
21	12.63063	-10.7021	0.944405	3.732199	-1.42659		0.3	55	
22	-29.4701	33.18761	-3.55166	-11.0279	4.541458		-(56	
23	23.13343	-36.0754	<u> </u>	12.31233	-4.71656		-0.	56	
24	4.100657	-2.10347	-11.9936	19.39448	-8.77127		-0.	16	
25	-11.1637	16	5.639092	-27.1902	13.89119		0.0	59	
26									
27	ANS	a0=0.3007	55						
28		a1=-0.	j						
29		a2=-01	5						
30		a3=-0.	.6						
31		a4=0.0	59						

Question 3. Plot the voltage as a function of time and use Newton's divided difference method to compute the voltage at t=3.145 sec from the following experimental data:

t(sec)	1	2	3	4	5	6
V(Volt)	9.4	7.31	5.15	3.55	2.81	2.04

Question 4: The boiling temperature of water T_B at various altitudes h is given in the following table.

h(ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
T (F)	213.9	212	206.2	196.2	184.4	172.6	163.1

(a) Compute the straight-line equation $T_{B}=mh+b\;$ that best fits the data.

Solution:

(b) Use Excel's Add Trendline feature to find the straight line that best fits the given data. **Solution**

(c) Use this linear equation for calculating the boiling temperature at 5,000 ft.

Solution

THE END

THANK YOU!!!