Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа _	P3110	Дата и время измерений <u>15:00 7.01.20</u>
Студент	Щербаков Александр Валерьевич	Работа выполнена
Препода	ватель Коробков Максим Петрович	Отчет принят

Рабочий протокол и отчет по лабараторной работе № 1.03

ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА И ЭНЕРГИИ В ПРОЦЕССАХ СТОЛКНОВЕНИЯ

1. Цель работы

Исследование упругого и неупругого центрального соударения тел на примере соударения тележек, движущихся с малым трением.

2. Задачи решаемые при выполнении работы.

Произвеление измерений величины времени прохождения тележками определённых расстояний.

Выполнение расчетов импульса и внутренней энергии.

Построение графиков распределения результатов измерений.

Анализ полученных данных и наблюдение характера их зависимостей.

3. Объект исследования

Процесс удара двух инертных тел и передачи импульса.

4. Метод эксперементального исследования

Виртуальное измерение величин и наблюдение характера их зависимости от начальных параметров.

5. Рабочие формулы и исходные данные

$$X_i = \frac{2m_1}{m_1 + m_2}$$
 $Y_i = \frac{v_2}{v_{10}} = \frac{t_1}{t_2}$

$$\delta W_i^{(9)} = \frac{\Delta W}{W_0} = 1 - \frac{(m_1 + m_2)}{m_1} \frac{v^2}{v_{10}^2} = 1 - \frac{m_1 + m_2}{m_1} \left(\frac{t_1}{t_2}\right)^2$$

6. Измерительные приборы

№ п/п	Наименование	Тип прибора	Измеряемый диапазон	Погрешность прибора
1	Цифроовй счетчик	Электронный	От 0 секунд	±0,1 мс

7. Схема установки (перечень схем, которые составляют Приложение 1)

- 1. Рельс, на котором создается воздушная подушка (длина 180 см)
- 2. Генератор воздушного потока
- 3. Рамки с фотоэлементами (оптические ворота)
- 4. Дополнительные грузы
- 5. Сталкивающиеся тележки с собственной массой 200 г, каждая из которых снабжена флажком шириной 25 мм.
- 6. Цифровой счетчик
- 7. Пусковой механизм
- 8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Измернеия и основные этапы их обработки приложены в Таблицах 1-4.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов)

Расчет Y_i и X_i при упругом и неупругом ударе представленны в таблице 3 и таблице 4.

10. Расчет погрешности измерений (для прямых и косвенных измерений)

11. Графики (перечень графиков, которые составляют Приложение 2)

1. Графики зависимости $\ Y_i \$ от $\ X_i \$ для абсолютно упругого и абсолютно не упругого соударения.

12.Окончательные результаты

- 1. Графики зависимостей.
- 2. Таблицы прямых измерений.
- 3. Таблицы косвенных измерений.

13.Выводы и анализ результатов работы

1. В ходе выполнения лабораторной работы было изучено абсолютно упругое и абсолютно неупругое столкновение. Построен график между рассчитанными данными и полученными при выполнении лабораторной работы.

14. Дополнительные задания

- 15. Выполнение дополнительных заданий
- 16.Замечания преподавателя (исправления, вызванные замечаниями преподавателя, такжепомещают в этот пункт)

Приложение 2. Графики.

График зависимости Y_i от X_i для абсолютно упругого соударения.

График зависимости Y_i от X_i для абсолютно неупругого соударения.

Приложение 3: Таблицы

Таблица 1: результаты прямых измерений для абсолютно упругого удара.

M1, (r)							
		200	220	240	260	280	300
	200	1,9	2,0	2,6	2,7	2,9	3,1
		1,9	1,9	2,4	2,4	2,5	2,5
	220	2,2	2,3	2,2	2,7	3,0	3,0
		2,3	2,3	2,1	2,5	2,7	2,6
142(-)	240	2,1	2,2	2,2	2,4	2,8	3,2
М2(г)		2,3	2,3	2,2	2,3	2,6	2,9
	260	2,0	2,0	2,6	2,3	2,6	2,7
		2,3	2,2	2,7	2,3	2,5	2,6
	280	2,0	2,1	2,5	2,6	2,6	3,1
		2,4	2,4	2,7	2,7	2,6	3,0
	200	2,1	2,3	2,6	2,4	2,9	2,8
	300	2,6	2,7	2,9	2,6	3,1	2,8

Таблица 2: результаты прямых измерений для абсолютно неупругого удара.

	M1(r)							
		200	220	240	260	280	300	
	200	1,9	2,2	2,6	2,4	2,6	3,2	
		3,8	4,2	4,7	4,2	4,5	5,4	
	220	2,2	2,1	2,4	2,5	2,6	3,0	
		4,5	4,2	4,5	4,6	4,6	5,2	
Mare	240	1,9	2,2	2,3	2,8	2,7	3,3	
М2(г)		4,1	4,6	4,5	5,4	5,0	5,9	
	260	1,8	2,1	2,5	2,4	2,6	2,7	
		4,2	4,5	5,2	4,8	5,0	5,1	
	280	2,1	2,1	2,4	2,6	2,6	3,0	
		5,0	4,8	5,1	5,3	5,1	5,9	
	300	2,1	2,3	2,5	2,4	2,5	3,1	
		5,2	5,5	5,6	5,2	5,2	6,2	

Таблица 3: косвенные измерения Y_i и X_i при абсолютно упругом ударе.

1	1,04762	1,09091	1,13043	1,16667	1,2
0,95238	1	1,04348	1,08333	1,12	1,15385
0,90909	0,95652	1	1,04	1,07692	1,11111
0,86957	0,91667	0,96	1	1,03704	1,07143
0,83333		0,92308		1	1,03448
0,8	0,84615	0,88889	0,92857	0,96552	1

Таблица 4: косвенные измерения Y_i и X_i при абсолютно неупругом ударе.

1	1,05263	1,08333	1,125	1,16	1,24
0,95652	1	1,04762	1,08	1,11111	1,15385
0,91304	0,95652	1	1,04348	1,07692	1,10345
0,86957	0,90909	0,96296	1	1,04	1,03846
0,83333	0,875	0,92593	0,96296	1	1,03333
0,80769	0,85185	0,89655	0,92308	0,93548	1