Active vs Passive: Price Discovery in Automated Market Makers

Luke Johnson

Supervisors: Tālis Putniņš, Ester Félez-Viñas

Stage 2 Presentation 24 May 2024

Thesis Background

Thesis title: The Quality of Decentralised Markets

- Decentralised market integrity
- The role decentralised markets play in price formation
- Liquidity in decentralised markets

Thesis Background

Thesis title: The Quality of Decentralised Markets

- Decentralised market integrity
- The role decentralised markets play in **price formation** \leftarrow
- Liquidity in decentralised markets

Active vs Passive: Price Discovery in Automated Market Makers

- AMMs offer stale prices
 - ♦ Trades update prices

- AMMs offer stale prices
 - Trades update prices
- Liquidity providers (LPs) let a mathematical function determine trade prices
 - Prices set by traders (Passive market making)

- AMMs offer stale prices
 - Trades update prices
- Liquidity providers (LPs) let a mathematical function determine trade prices
 - Prices set by traders (Passive market making)
- Quotes drive price discovery in LOB markets (Brogaard, Hendershott, and Riordan, 2019)
 - Prices set by market makers (Active market making)

- AMMs offer stale prices
 - Trades update prices
- Liquidity providers (LPs) let a mathematical function determine trade prices
 - Prices set by traders (Passive market making)
- Quotes drive price discovery in LOB markets (Brogaard, Hendershott, and Riordan, 2019)
 - Prices set by market makers (Active market making)
- Can AMMs contribute to price discovery?
 - ♦ AMM ≠ LOB

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets
 - ▶ Cross border FX payments (Project Mariana)

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets
 - ▶ Cross border FX payments (Project Mariana)
 - More efficient for high volume, low volatility assets (Foley, O'Neill, and Putniņš, 2023)

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets
 - ▶ Cross border FX payments (Project Mariana)
 - More efficient for high volume, low volatility assets (Foley, O'Neill, and Putniņš, 2023)
 - ♦ Save billions on transaction costs (Malinova and Park, 2023)

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets
 - ▶ Cross border FX payments (Project Mariana)
 - More efficient for high volume, low volatility assets (Foley, O'Neill, and Putniņš, 2023)
 - ♦ Save billions on transaction costs (Malinova and Park, 2023)
 - ♦ Improve stability of liquidity (Adams et al., 2023)

- Price discovery is a key function of financial markets
 - \diamond Information \rightarrow Prices
- AMMs have potential to change the future of financial markets
 - ♦ Facilitate the exchange of tokenized assets
 - ▶ Cross border FX payments (Project Mariana)
 - More efficient for high volume, low volatility assets (Foley, O'Neill, and Putniņš, 2023)
 - ♦ Save billions on transaction costs (Malinova and Park, 2023)
 - ♦ Improve stability of liquidity (Adams et al., 2023)
- Compare monthly price discovery shares between Uniswap and Binance
 - Uniswap on Ethereum (CPMM, Concentrated Liquidity)
 - ♦ Binance (LOB)

Uniswap

Constant Product Market Maker

Pricing function (Invariant):

$$\sqrt{xy} = L$$

where \boldsymbol{x} and \boldsymbol{y} are the quantities of the assets in the pool

Uniswap

Constant Product Market Maker

Pricing function (Invariant):

$$\sqrt{xy} = L$$

where x and y are the quantities of the assets in the pool

Holding L constant can be used to calculate the trade:

$$\sqrt{(x+\Delta x)(y+\Delta y)}=L$$

Uniswap

Constant Product Market Maker

Pricing function (Invariant):

$$\sqrt{xy} = L$$

where x and y are the quantities of the assets in the pool

Holding L constant can be used to calculate the trade:

$$\sqrt{(x+\Delta x)(y+\Delta y)}=L$$

Concentrated liquidity:

$$(x + \frac{L}{\sqrt{p_b}})(y + L\sqrt{p_a}) = L^2$$

Luke Johnson

Concentrated Liquidity Example

- The price a trader receives depends on the state of the market

- The price a trader receives depends on the state of the market
- Worse execution for "late" traders

- The price a trader receives depends on the state of the market
- Worse execution for "late" traders
- Who decides the order of the transactions in the block?

- The price a trader receives depends on the state of the market
- Worse execution for "late" traders
- Who decides the order of the transactions in the block?
 - ♦ Maximal extractable value (MEV)

Economics of Ethereum

John et al. (2024)

- Block builders (miners) control transactions

Economics of Ethereum

John et al. (2024)

- Block builders (miners) control transactions
- Proposer Builder Separation (Proof of stake)
 - Searcher, Builder, Relay, Proposer

Economics of Ethereum

John et al. (2024)

- Block builders (miners) control transactions
- Proposer Builder Separation (Proof of stake)
 - Searcher, Builder, Relay, Proposer
- Searchers need to sufficiently incentivise the builder

Informed traders and AMMs

- Why would an informed trader trade on the AMM?
 - State based market
 - ♦ Guarantee inclusion (For a price)
 - ♦ Max profit: settle discrete time market, then the continuous market

Informed traders and AMMs

- Why would an informed trader trade on the AMM?
 - State based market
 - ♦ Guarantee inclusion (For a price)
 - ♦ Max profit: settle discrete time market, then the continuous market
- Only reveal information to the builder
 - ♦ Not the whole market

Informed traders and AMMs

- Why would an informed trader trade on the AMM?
 - State based market
 - ♦ Guarantee inclusion (For a price)
 - ♦ Max profit: settle discrete time market, then the continuous market
- Only reveal information to the builder
 - Not the whole market
- Informed traders are willing to bid for priority execution
 - ♦ (Capponi, Jia, and Yu 2023)

Informed traders and AMMs

- Why would an informed trader trade on the AMM?
 - State based market
 - ♦ Guarantee inclusion (For a price)
 - Max profit: settle discrete time market, then the continuous market
- Only reveal information to the builder
 - Not the whole market
- Informed traders are willing to bid for priority execution
 - ♦ (Capponi, Jia, and Yu 2023)
- Trade off between liquidity and cost of inclusion

Testable hypothesis

Informed traders can bid for priority inclusion to maximise profit

- Cost of inclusion
- Liquidity in AMM
- The AMM will lead the price discovery process when it is more liquid then the LOB

Testable hypothesis

Informed traders can bid for priority inclusion to maximise profit

- Cost of inclusion
- Liquidity in AMM
- The AMM will lead the price discovery process when it is more liquid then the LOB
- The AMM will lead the price discovery process when priority inclusion is cheap

Testable hypothesis

Informed traders can bid for priority inclusion to maximise profit

- Cost of inclusion
- Liquidity in AMM
- The AMM will lead the price discovery process when it is more liquid then the LOB
- The AMM will lead the price discovery process when priority inclusion is cheap
- The AMM will lead the price discovery process when asset volatility is higher

Price Discovery Shares

- Yan-Zivot-Putnins Information Leadership Share (ILS)
- Significant difference in noise between markets
 - ♦ Information/Component Share both measure a relative avoidance of noise
- VECM with 300 lags (\sim 1 hour)
 - ♦ Mid-quote prices for all Uniswap markets and Binance
 - ♦ Ethereum blocktime (~12 seconds)

Information Leadership Share

What Determines Price Discovery?

$$ILS_{i,t} = \alpha_{i,t} + Spread_{i,t} + Depth_{i,t} + Gas_t + Volatility_{i,t} + Controls_{i,t} + \epsilon_{i,t}$$

Spread

- Half Quoted Spread (Fees)
- Effective Spread

Depth

- 0-1%
- 1-2%
- 2-3%

Volatility

- Realized Volatility

Gas

- Gas price

Controls

Volume

Determinants of price discovery

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:	ILS	ILS	ILS	ILS	ILS	ILS	ILS	ILS
QuotedSpread	-0.099***	-0.096***				-0.085***	-0.085***	-0.088***
EffectiveSpread	(-8.84) 0.001 (0.12)	(-8.61)	(-8.65)	(-8.72)	(-8.56) 0.005 (1.13)	(-8.42)	(-8.40)	(-8.50)
$Depth_{[0-1\%]}$	<u>-</u> 0.006	-0.007***			`0.008	-0.003		
$Depth_{[1-2\%]}$	$^{(-1.15)}_{-0.017**}$	(-3.68)	-0.006***		(1.40) 0.029***	(-1.34)	-0.003	
$Depth_{[2-3\%]}$	(-2.48) 0.020***		(-3.09)	-0.002	(-3.64) 0.022***		(-1.36)	0.002
RealizedVolatility	(5.00)	-0.009***			(5.25)	-0.010***		(1.32) -0.008***
Volume	0.015***					(-4.08) 0.011***		(-3.42) 0.007***
Gas	(4.50) -0.015*** (-4.16)	(4.29) -0.010*** (-2.69)	(3.90) -0.009*** (-2.61)	(3.09) -0.010*** (-2.61)	(5.07)	(4.31)	(4.65)	(3.69)
Pair Effects	N	N	N	N	Υ	Υ	Υ	Y
Time Effects Adjusted R^2	N 24.6%	N 23.7%	N 23.3%	N 22.6%	Y 43.3%	Y 42.3%	Y 42.3%	Y 42.2%

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01

Relative determinants of price discovery

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dependent variable:	ILS	ILS	ILS	ILS	ILS	ILS	ILS	ILS
QuotedSpreadRatio	-0.037***	-0.031***		-0.032***	-0.038***	-0.038***	-0.038***	-0.040***
Effective Course d Datie	(-7.41)	(-6.87)	(-7.03)	(-7.15)	(-7.08) 0.008*	(-7.03)	(-7.00)	(-7.05)
EffectiveSpreadRatio	0.007				(1.88)			
$Depth_{[0-1\%]}Ratio$	-0.023***	-0.004*			0.003	-0.005**		
	(-4.46)	(-1.85)			(0.48)	(-2.24)		
$Depth_{[1-2\%]}Ratio$	0.031*** (5.48)		-0.001 (-0.51)		_0.020*** (_2.67)		-0.005** (-2.35)	
$Depth_{[2-3\%]}Ratio$	-0.011***		(-0.51)	-0.003*	0.014***		(-2.35)	0.000
2 open[2=3%] . table	(-4.12)			(-1.65)	(3.69)			(-0.22)
Realized Volatility Ratio	, ,	-0.016***	-0.014***	-0.015***	, ,	0.000	0.000	0.001
VolumeRatio	0.015***	(-6.27) 0.015***	(-5.91) $0.013***$	(-6.16) 0.014***	0.028***	(-0.02) 0.024***	(-0.15) $0.024***$	(0.34) 0.019***
volumeratio	(6.41)	(6.52)	(6.40)	(7.52)	(7.36)	(7.82)	(8.23)	(8.70)
Gas	_0.014***	_0.014***	_0.015***	_0.015***		()	(3:25)	(****)
	(-3.34)	(-3.42)	(-3.51)	(-3.61)				
Pair Effects	N	N	N	N	Υ	Υ	Υ	Υ
Time Effects	N	N	N 1 2/	N	Υ	Υ	Υ	Υ
Adjusted R ²	16.2%	15.1%	14.7%	14.9%	40.2%	39.3%	39.3%	38.9%

Significance: * p < 0.1; ** p < 0.05; *** p < 0.01

AMM Price Leadership

- Informed traders exploit trading costs
 - AMM fee negatively related with ILS
 - ♦ Gas fee negatively related with ILS
- Informed traders in AMM reduce liquidity (depth)
 - ♦ LPs adjust for adverse selection costs

Aoyagi and Ito (2021)

Coexisting exchanges: AMM and LOB Noise traders outpace informed traders

- Noise trader tend to low cost market → AMM liquidity equilibrium ↑

Aoyagi and Ito (2021)

- Noise trader tend to low cost market → AMM liquidity equilibrium ↑
- Informed traders follow liquidity \rightarrow Adverse Selection AMM \uparrow , LOB \downarrow

Aoyagi and Ito (2021)

- Noise trader tend to low cost market o AMM liquidity equilibrium \uparrow
- Informed traders follow liquidity o Adverse Selection AMM \uparrow , LOB \downarrow
- \downarrow LOB spread \rightarrow LOB Noise traders \uparrow

Aoyagi and Ito (2021)

- Noise trader tend to low cost market o AMM liquidity equilibrium \uparrow
- Informed traders follow liquidity o Adverse Selection AMM \uparrow , LOB \downarrow
- \downarrow LOB spread \rightarrow LOB Noise traders \uparrow
- \downarrow AMM liquidity equilibrium \rightarrow Liquidity providers step away

Aoyagi and Ito (2021)

- Noise trader tend to low cost market o AMM liquidity equilibrium \uparrow
- Informed traders follow liquidity \rightarrow Adverse Selection AMM \uparrow , LOB \downarrow
- \downarrow LOB spread \rightarrow LOB Noise traders \uparrow
- \downarrow AMM liquidity equilibrium \rightarrow Liquidity providers step away
- Informed traders follow liquidity \rightarrow Adverse Selection LOB \uparrow , AMM \downarrow

Aoyagi and Ito (2021)

- Noise trader tend to low cost market o AMM liquidity equilibrium \uparrow
- Informed traders follow liquidity \rightarrow Adverse Selection AMM \uparrow , LOB \downarrow
- \downarrow LOB spread \rightarrow LOB Noise traders \uparrow
- \downarrow AMM liquidity equilibrium \rightarrow Liquidity providers step away
- Informed traders follow liquidity \rightarrow Adverse Selection LOB \uparrow , AMM \downarrow
- \uparrow LOB spread \rightarrow Noise trader tend to low cost market

Conclusion

- AMM can play an important informational role in crypto currency markets
- Uniswap v3 0.05% pools have an average ILS of 24.1%
- Uniswap v3 0.01% pools have an average ILS of 61.1%
- Provide evidence of the noise trader feedback loop
 - ♦ Informed traders negatively impact AMM liquidity

Future Work

Progress Update

- AMM Liquidity Measurement
 - ♦ To revise (June 24)
- DEX Manipulation Index
 - ♦ For completion (November 24)
- Finalise Submission
 - ♦ Stage 3 (March 25)
 - Submission (April 25)

Constant Product Market Maker Orderbook Example

For each pair-month, we estimate a reduced form VECM of the log price series $(p_{1,t} \text{ to } p_{n,t})$ with 300 lags (prices are sampled based on the Ethereum block time where trading is continuous in the AMM and the LOB).

$$\Delta p_t = aZ_{t-1} + \sum_{i=1}^{300} b_i \Delta p_{t-i} + \epsilon_t \tag{1}$$

where Δp_t is the $n \times 1$ midquote return vector, α is the $n \times (n-1)$ matrix of error correction coefficients, Z_{t-1} is the $n \times 1$ co-integrating vector, b_i is the $n \times n$ coefficient matrix for lag i and ϵ_t is the $n \times 1$ vector of residuals.

From the reduced form VECM estimates in 1 we derive the corresponding infinite lag VMA representation in structural form assuming recursive contemporaneous causality running from the first through to the last price series.

$$\Delta p_{1,t} = \sum_{l=0}^{\infty} A_{1,l} \varepsilon_{1,t-1} + \sum_{l=0}^{\infty} A_{2,l} \varepsilon_{2,t-1} + \dots + \sum_{l=0}^{\infty} A_{n,l} \varepsilon_{n,t-1}$$

$$\Delta p_{2,t} = \sum_{l=0}^{\infty} B_{1,l} \varepsilon_{1,t-1} + \sum_{l=0}^{\infty} B_{2,l} \varepsilon_{2,t-1} + \dots + \sum_{l=0}^{\infty} B_{n,l} \varepsilon_{n,t-1}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\Delta p_{n,t} = \sum_{l=0}^{\infty} N_{1,l} \varepsilon_{1,t-1} + \sum_{l=0}^{\infty} N_{2,l} \varepsilon_{2,t-1} + \dots + \sum_{l=0}^{\infty} N_{n,l} \varepsilon_{n,t-1}$$

We obtain the structural VMA coefficients by computing the orthogonalized impulse response functions and the (contemporaneously uncorrelated) structural VMA errors ($\varepsilon_{1,t}$ to $\varepsilon_{n,t}$) by mapping their relation to the reduced form errors. Innovations in the permanent component (the efficient price, m_t) are given by

$$\Delta m_t = \theta_{\varepsilon 1} \varepsilon_{1,t} + \theta_{\varepsilon 2} \varepsilon_{2,t} + \dots + \theta_{\varepsilon n} \varepsilon_{n,t}$$

The variance of the innovations in the efficient price is therefore:

$$Var(\Delta m_t) = Var(\theta_{\varepsilon 1}\varepsilon_{1,t} + \theta_{\varepsilon 2}\varepsilon_{2,t} + \dots + \theta_{\varepsilon n}\varepsilon_{n,t})$$
$$= \theta_{\varepsilon 1}^2 Var(\varepsilon_{1,t}) + \theta_{\varepsilon 2}^2 Var(\varepsilon_{2,t}) + \dots + \theta_{\varepsilon n}^2 Var(\varepsilon_{n,t})$$

Information shares (IS) are obtained as each priceas contribution to the variance of the efficient price innovations

$$IS_n = \frac{\theta_{\varepsilon n}^2 Var(\varepsilon_{n,t})}{Var(\Delta m_t)}$$

Component shares (CS) are obtained by normalizing the permanent price impacts of each price series in the reduced form model.

$$CS_n = \frac{\theta_{\epsilon n}}{\sum_{i=1}^n \theta_{\epsilon i}}$$

Finally, we calculate the information leadership share (*ILS*). In the two-price case, marketâs propensity to reflect new information (how much market *is* price responds to an innovation in the efficient price) can be obtained from the ratio $\beta_i = \frac{IS_i}{CS_i}$, which when normalized gives the information leadership share

$$ILS_n = \frac{\beta_n^2}{\sum_{i=1}^n \beta_i^2}$$

