An Elementary Construction of Finite Fields

Uthsav Chitra

August 13, 2014

While most proofs of the existence of finite fields involve splitting fields, we present here a construction that uses no math higher than basic abstract algebra. In particular, this means no Galois theory or the theory behind splitting fields will be used.

1 Setting the Stage

Let p be a prime. Consider $\mathbb{F}_p[x]/(\pi(x))$ for some irreducible $\pi(x) \in \mathbb{F}_p[x]$. Because $\mathbb{F}_p[x]$ is a PID, it follows that $(\pi(x))$ is a maximal ideal, so that $\mathbb{F}_p[x]/(\pi(x))$ is a field. Furthermore, if deg $\pi(x) = n$, then $\mathbb{F}_p[x]/(\pi(x)) = \{a_0 + a_1x + ... + a_{n-1}x^{n-1} : a_i \in \mathbb{F}_p\}$ and $|\mathbb{F}_p[x]/(\pi(x))| = p^n$. Thus, if we can show that for every n > 0, there exists an irreducible polynomial of degree n then we're done.

To do this, we'll develop an expression for the number of irreducible polynomials of degree n in $\mathbb{F}_p[x]$ and then show that this expression must be greater than 0 for all primes p.

2 Multiplying Polynomials

Like most constructions of finite fields, we consider the polynomial $f(x) = x^{p^n} - x$, with $f(x) \in \mathbb{F}_p[x]$ (n is fixed of course). The bulk of this article is in the proof of the following:

Theorem 2.1

Let $g_d(x)$ be the product of all degree d monic irreducible polynomials in $\mathbb{F}_p[x]$. Then,

$$f(x) = \prod_{d|n} g_d(x).$$

Proof. We proceed by strong induction on n. For our base case, let n=1. Then, the product of all monic irreducibles of degree 1 is $x \cdot (x-1) \cdot ... \cdot (x-(p-1)) = x^p - x$ by Fermat's Little Theorem.

Now suppose the statement holds for all n' < n. Let $\pi(x)$ denote a monic irreducible let deg $\pi = d$ where d|n. First we will show that $\pi|f$, which will imply that $\prod_{d|n} g_d |f$.

Consider $F = \mathbb{F}_p[x]/(\pi(x))$. This is a finite field with p^d elements. In particular, F^{\times} is an abelian group of order $p^d - 1$, so for all $a \in F^{\times}$, we have $a^{p^d - 1} = 1$. Therefore for all $a \in F$, $a^{p^d} = a$ (since $0^{p^d} = 0$).

Taking both sides to the p^d -th power gives $(a^{p^d})^{p^d} = a^{p^d} \Rightarrow a^{p^{2d}} = a$. Repeating this process, we see that for any integer y > 0, $a^{p^{(yd)}} = a$. Since d|n, if we let $y = \frac{n}{d}$, we get that $a^{p^n} = a \Rightarrow a^{p^n} - a = 0$.

Setting a = x yields $x^{p^n} - x = 0$ in $F = \mathbb{F}_p[x]/(\pi(x))$, which implies that $\pi(x)|x^{p^n} - x$. From our discussion before, this gives $\prod_{d \mid x} g_d | f$.

We can also easily show that f has no double roots, so that if π is a monic irreducible of degree d such that $\pi|f$ (with d|n), then $\pi^2 \nmid f$. To do this, note that $f' = (p^n)(x^{p^{n-1}}) - 1 = -1$ in $\mathbb{F}_p[x]$. Thus, f' shares no roots with f, so f has no double roots.

Now assume for the sake of contradiction that $f(x) \neq \prod_{d|n} g_d(x)$. Since $\prod_{d|n} g_d \mid f$ and f has no double roots, this means that f has some other factors besides the product of g_d 's. Thus we can assume that there exists some monic irreducible π' such that $\pi' \mid f$ but $\pi' \nmid g_d$ for any $d \mid n$.

Let the degree of π' be d'. For π' not to divide any of the g_d 's, we must have that $d' \nmid n$. So by the inductive hypothesis, $\pi'|f'$, where $f' = x^{p^{d'}} - x$. Since $\pi'|f$ and $\pi'|f'$, we must have that $\pi'|(f', f)$. Using the well-known fact that $(x^n - 1, x^m - 1) = x^{(n,m)} - 1$, we find that:

$$(f', f) = (x^{p^{d'}} - x, x^{p^n} - x)$$

$$= x \cdot (x^{p^{d'}-1} - 1, x^{p^n-1} - 1)$$

$$= x \cdot (x^{(p^{d'}-1, p^n-1)} - 1)$$

$$= x \cdot (x^{p^{(d', n)} - 1} - 1)$$

$$= x^{p^{(d', n)}} - x$$

Therefore $\pi'|x^{p^{(d',n)}} - x$. Since $d' \nmid n$, it follows that (d',n) < d', so by the inductive hypothesis we see that deg $\pi' \le d' = \deg \pi'$, which is clearly a contradiction.

Thus,
$$f = \prod_{d|n} g_d$$
, and we are done.

3 Counting Polynomials

Theorem 3.1

For all natural numbers n, there is an irreducible polynomial of degree n.

Proof. Let p(n) be the number of monic irreducible polynomials of degree n. Degree comparison of Theorem 2.1 yields:

$$p^n = \sum_{d|n} d \cdot p(d) \Rightarrow p^n = \sum_{d|n} h(d),$$

where $h(x) = x \cdot p(x)$. Mobius inversion yields

$$h(n) = \sum_{d|n} \mu(d) \cdot p^{\frac{n}{d}} \Rightarrow p(n) = \frac{1}{n} \left(\sum_{d|n} \mu(d) \cdot p^{\frac{n}{d}} \right)$$
 (1)

We will show that p(n) > 0 for all n > 0. It is sufficient for us to show that h(n) > 0. This is equivalent to

$$h(n) > 0 \iff p^n + \sum_{d|n} \epsilon_d \cdot p^d > 0 \iff p^n > \sum_{d|n} -\epsilon_d \cdot p^d,$$

fi where ϵ_d is either +1, 0, or -1 depending on the value of d. Since $1 \ge -\epsilon_d$,

$$\sum_{d|n} p^d \ge \sum_{d|n} -\epsilon_d \cdot p^d.$$

Furthermore, letting q be the smallest prime factor of n, we get the loose bound

$$\sum_{i=1}^{n/q} p^i \ge \sum_{d \mid n} p^d.$$

Thus, if we can show that $p^n > \sum_{i=1}^{n/q} p^i$, we'll be done.

Noting that the RHS of the above equation is a geometric series, we get:

$$p^{n} > \sum_{i=1}^{\frac{n}{q}} p^{i} \iff p^{n}(p-1) > p^{\frac{n}{q}+1} - 1.$$

Since $p^n(p-1) > p^n > p^n - 1$, it is sufficient to show that

$$p^n > p^{\frac{n}{q}+1}.$$

Looking at exponents:

$$n > \frac{n}{q} + 1$$

$$\iff n(1 - \frac{1}{q}) > 1$$

$$\iff n > \frac{q}{q - 1} \ge 2,$$

since the smallest possible value of q is 2.

Therefore, h(n) > 0 for n > 2. n = 1 and n = 2 can be handled easily by examination. n = 1 is clear, since any monic polynomial of degree 1 is irreducible. For n = 2, let s be a quadratic nonresidue mod p and look $x^2 - s$.

By Theorem 3.1, a monic irreducible polynomial of degree n exists for all n > 0, and so we can construct a finite field of order p^n for any prime p and integer n.

4 Other Facts About Finite Fields

Now that we've constructed finite fields, we want to prove two other things about finite fields to finish up our discussion:

- All finite fields have size p^n .
- If two finite fields have the same size, they must be isomorphic.

Let's start with the first one.

Claim 4.1. If *F* is a finite field, it must have size p^n for some prime *p* and positive integer *n*.

Proof. Let F be a finite field. Since F is finite, it cannot have characteristic 0. Therefore, let F have characteristic p for some prime p. Consider $S = \{1, 1+1, 1+1+1, ..., 1+1+1+...+1\}$, a subset of F, where the last element is the sum of p-1 1's. Note that $S \cong \mathbb{F}_p$, so there exists an embedding of \mathbb{F}_p inside F.

Now, the key insight in the proof is to realize that we can make F a vector space over this copy of \mathbb{F}_p (why not over another field? Because F has characteristic p). So, as a vector space, suppose F has a basis of n elements given by $\{e_1, e_2, ..., e_n\}$. Then, $F = \{c_1e_1 + ... + c_ne_n : c_i \in \mathbb{F}_p\}$, so it follows that $|F| = p^n$ for some n.

For the second item... I'm not sure of a good way to prove it without using splitting fields or the ideas underlying them. There are certainly ways to do it without directly using a splitting field, but the methods I've come across use concepts from the proofs of splitting fields, so it feels like it's cheating to cite those as elementary.