Hypothesis Testing: R Commands

Sr No	Task/Test	Command [IGNORE THE > SIGN IN THE BEGINING while typing]		
Param	Parametric Tests			
	start	install.packages("psych") library(psych)		
1	One Sample t test [file: cs2m.csv] Ho: Mu = 40	<pre>Type > t.test(cs2m\$Age, mu=40)</pre>		
2	Paired Sample t test [file: grades.csv] Ho: Difference, d - D, (mu_Quiz1 – mu_Quiz2 = 0)	<pre>Type > t.test(x=grades\$quiz1, y=grades\$quiz2, alternative = "two.sided", mu=0, paired = TRUE) OR > t.test(grades\$quiz1, grades\$quiz2, paired = T)</pre>		
3	Independent Sample t test [file: cs2m.csv] Ho: Mean BP of two anxiety levels is same in population (ASSUMING UNEQUAL VARIANCE)	<pre>Type > t.test(cs2m\$BP~cs2m\$AnxtyLH) OR > t.test(y1,y2) # where y1 and y2 are numeric</pre>		
	Independent Sample t test [file: cs2m.csv] Ho: Mean BP of two anxiety levels is same in population (ASSUMING EQUAL VARIANCE)	Type > t.test(cs2m\$BP~cs2m\$AnxtyLH, var.equal = TRUE) You can use the var.equal = TRUE option to specify equal variances and a pooled variance estimate. You		
4	One Sample Proportion Test: A researcher believes that market size of diesel cars is 30%. For testing his belief, he had taken a sample of 130 cars and found 50 diesel cars. Ho: p=0.30	<pre>can use the alternative="less" or alternative="greater" option to specify a one tailed test. Type > prop.test(50,130, p=0.30, alternative = "two.sided", conf.level = 0.95,</pre>		

Hypothesis Testing Parametric & Non Parametric

5	Two Samples Proportion Test: A researcher has found 10 stressed faculties out of a sample of 40 at Christ college and 22 out of 50 at St. John. Ho: p1-p2 = 0	<pre>Type > prop.test(c(10,22), c(40,50), alternative = "two.sided", conf.level = 0.95, correct = FALSE)</pre>		
7	One Way ANOVA [File: salescity.csv]	<pre>> salescity <- read.csv("C:/Users/inurture1/Desktop/salescity.csv") > View(salescity) > plot(sales~city, data=salescity, col = "blue") > results<-aov(sales~city, data = salescity) > summary(results)</pre>		
Non Pa	Non Parametric Tests			
1	Chi-square Test: [File: cs2m.csv] Ho: There is no significant association between anxiety level and drug reaction	<pre>Type > chisq.test(cs2m\$AnxtyLH, cs2m\$DrugR)</pre>		
2	Wilcoxon Matched Pair - Small Sample (<,= 15) [File: wmps.csv]	<pre>Type > wilcox.test(wmps\$before, wmps\$after, paired = T)</pre>		
3	Wilcoxon Matched Pair - Large Sample (> 15) [File: wmpl.csv]	<pre>Type: > install.packages("exactRankTests") > library(exactRankTests) > wilcox.exact(wmpl\$In2000, wmpl\$In2005, paired = T, alternative = "two.sided", exact = FALSE)</pre>		
4	Mann-Whitney Small Sample (<,=20) File: mws.csv	<pre>Type > wilcox.test(mws\$prod, mws\$mkt)</pre>		
5	Mann-Whitney Large Sample (>20) File: mwl.csv	<pre>Type > wilcox.test(mwl\$Prod, mwl\$QC)</pre>		

Hypothesis Testing Parametric & Non Parametric

```
6 Kruskal Wallis Test [File: kw.csv] Type
> kruskal.test(rs~org, data = kw)

7 Friedman ANOVA [File: fm.xlsx]
Use R Commander

Friedman.test(.Responses)
Friedman rank sum test
data: .Responses
Friedman chi-squared = 18.16, df = 4, p-value = 0.001148
```