

TECNICAS DE MACHINE LEARNING EM PREVISÃO DA POBREZA DOMÉSTICA NA COSTA RICA

TRABALHO 2

Gabriel Thiago - RA: 107774

Sergio Alvarez - RA: 115735

APREND. MAQ. E MODEL. CONHECIM. INCERTO PROF. DR. WAGNER IGARASHI

SUMÁRIO

- 1 Sobre o problema
- 2 Dados
- 3 Informações
- 4 Procedimentos

- 5 Solução Original
- 6 Comparação
- 7 Conclusão

SOBRE O PROBLEMA

- Base de dados fornecida pelo Banco Interamericano de desenvolvimento
- Objetivo de prever prever a pobreza no nível familiar
- Classificando em:
 - ∘ 1 = pobreza extrema
 - ∘ 2 = pobreza moderada
 - 3 = famílias vulneráveis
 - 4 = famílias não vulneráveis

SOBRE O PROBLEMA

- Conjunto de treinamento possui
 - 9.557 linhas
 - ∘ 143 colunas,
- Conjunto de teste
 - o 23.856 linhas
 - ∘ 142 colunas
- Linha: Indivíduo
- Coluna: Característica
 - o exclusiva do indivíduo ou da família do indivíduo

DADOS

- Base de treinos fornecida pelo Kaggle contém a informação de 9557 pessoas
- Base de testes do kaggle contém 23856 pessoas
- Dados desbalanceados
 - 1 = POBREZA EXTREMA
 - 2 = POBREZA MODERADA
 - 3 = FAMÍLIAS VULNERÁVEIS
 - 4 = FAMÍLIAS NÃO VULNERÁVEIS
- Dados desbalanceados
 - F1 Score Macro

DADOS

Exemplo de dados:

- v2a1: Valor mensal do aluguel pago pela habitação, 0 se é própria.
- hacdor: Se a casa foi construída pelo dono ou não
- rooms: Número de quartos na habitação
- hacapo: Se a casa é de propriedade da família ou não
- v14a: Se há (ou não) abastecimento de água na casa
- refrig: Se a casa possui refrigerador ou não
- paredblolad: Se a habitação tem parede de bloco/bloco de cimento ou não
- paredzocalo: Se a habitação tem parede de pedra, barro ou madeira ou não
- paredpreb: Se a habitação tem paredes de material préfabricado ou não

INFORMAÇÕES

Sobre a solução no Kaggle

- Utilizado para submeter nosso Teste de cada modelo
- Simple Submission = 0.19
- Máximo Score de submissão no problema
 0.44

#	Δ	Team	Members	Score	Entries
1	_	Eric Antoine Scuccimarra		0.44878	140
2	_	yulin pan		0.44785	9
3	_	Reployer		0.44694	76
4	_	CHEN		0.44644	9
5	_	tgvuhn		0.44606	34
6	_	Konstantin V. Grishanov		0.44603	80
7	_	Rashid		0.44510	19
8	_	Mads		0.44508	10
9		Ruby Shepard		0.44503	37

PASSO 1 - PREPARAÇÃO DOS DADOS

- Células nulas e/ou NAN
 - o Filtro com função "isnull" do pandas para listagens
 - train.isnull().sum().sort_values(ascending=False
 - o Correção com "fillna"
 - 0 para somatórios e negação
 - Ex.: famílias que não pagam alugues
 - -1 quando não existir
 - Ex. média de escolaridade dos que não estudaram

PASSO 1 - PREPARAÇÃO DOS DADOS

- Células com strings e números
 - Podendo ser transformadas em binários
 - Nova variável binária com cada célula
 - Se sim: 1
 - Se não: 0
 - Exemplo:
 - edjefa: se o possui escolaridade
 - dependentes: se possui dependentes na familia

PASSO 1 - PREPARAÇÃO DOS DADOS

- Células com strings e números
 - Não podendo ser transformadas em binários
 - Exemplo:
 - idhogar: ID do domicilio que o indivíduo vive
 - Nova variável com ".groupby"
 - Agrupado e contato para cada ID
 - E armazenando o tamanho da familia desde indivíduo nas células correspondentes

PASSO 2 - ANÁLISES PARA SELEÇÃO

- Correlação entre variáveis
- Variável "hogar_min", "tamhog", "hogar_max", "hhsize" e "hogar_total"
 - Altamente correlacionadas
 - 0.75 correlação
 - Redundante!
 - Podemos deixar apenas uma para uso (escolhida a "hogar_total")

PASSO 2 - ANÁLISES PARA SELEÇÃO

• Visualizar histogramas das variáveis separadas por classe para tentar encontrar algum padrão

PASSO 3 - DATAFRAMES PARA O MODELO

- Criação de 2 Dataframe a partir do .CVS
 - o X: contem apenas as variáveis que desejemos como preditora (features) do modelo
 - y: contem a variável de predição ('Target')
- Normalização dos dados

PASSO 4 - APLICAÇÃO DOS MODELOS

RANDOM FOREST

LOGISTIC REGRESSION

PASSO 5 - AVALIAÇÃO E AJUSTE DO MODELO

AVALIAÇÃO

CROSS VALIDATION E MÉTRICA

• Consiste em dividir o conjunto de dados em k subconjuntos (chamados de folds) e usar k-1 subconjuntos para treinamento e o fold restante para validação.

- O F1 Score é a média harmônica da precisão e do recall e varia entre 0 e 1, onde 1 indica uma performance perfeita do modelo.
- O F1 Score é uma métrica útil quando há um desequilíbrio nas classes

F1 Score =
$$\frac{2}{\frac{1}{\text{Precision}} + \frac{1}{\text{Recall}}}$$
$$= \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$$

SOLUÇÃO ORIGINAL

- Tecnicas utilizadas de acordo com a pesquisa
 - Support Vector Classifier (Linear SVC) = Score: 0.28346
 - Gaussian Naive Bayes (Gaussian NB) = Score: 0.17935
 - Multi-layer Perceptron classifier (MLPClassifier) = Score: 0.28674
 - Linear Discriminant Analysis (LDA) = Score: 0.32217
 - Ridge Classifier CrossValidation = Score: 0.27896
 - KNN
 - KNN with 5 neighbors = Score: 0.35078
 - KNN with 10 neighbors = Score: 0.32153
 - KNN with 20 neighbors = Score: 0.31039
 - Extra-trees classifier = Score: 0.32215

RANDOM FOREST

- Combina vários modelos de árvore de decisão para criar um modelo mais poderoso e preciso.
- Seleção aleatória de subconjuntos de dados é feita para reduzir a correlação entre os modelos de árvore de decisão.
- Cada árvore é construída usando um algoritmo de árvore de decisão padrão.
- As previsões de todas as árvores de decisão são combinadas para chegar a uma previsão final.

RANDOM FOREST

- Melhor Configuração
 - N_estimators = 10
 - **•** [5, 10, 25, 100, 200]
 - Max_Depth = None
 - [None, 5, 10]
- K-fold = 3 F1 Score: 0.30915, Std: 0.02397
- K-fold = 5 F1 Score: 0.33290, Std: 0.05407
- K-fold = 10 F1 Score: 0.35287, Std: 0.04929
- Score final de 0.37798 no Kaggle

REGRESSÃO LOGÍSTICA

- Modelo estatístico que permite prever a probabilidade de um evento binário ocorrer
 - o Baseado em um conjunto de variáveis preditoras (features)
- Prever se uma família é pobre ou não com base em um conjunto de variáveis explicativas
 - E então a classifica-las
- Simples e pratico de se aplicar

REGRESSÃO LOGÍSTICA

- Melhores configurações
 - C:0.3
 - **•** [.001, 0.3, .1]
 - solver: newton-cg
 - ['newton-cg', 'lbfgs', 'liblinear', 'saga']
 - max_iter: 1000
 - **•** [1000, 2000, 5000, 1000]
- F1 (score) = 0.33

K-Folds usado 3, 5 e 10

```
Fitting 3 folds for each of 48 candidates, totalling 144 fits
Tuned Hyperparameters : {'C': 0.3, 'max_iter': 1000, 'solver': 'newton-cg'}
Accuracy : 0.3312214371056125
```

```
Fitting 5 folds for each of 48 candidates, totalling 240 fits
Tuned Hyperparameters : {'C': 0.3, 'max_iter': 1000, 'solver': 'lbfgs'}
Accuracy : 0.32887231031433445
```

```
Fitting 10 folds for each of 48 candidates, totalling 480 fits
Tuned Hyperparameters : {'C': 0.3, 'max_iter': 1000, 'solver': 'newton-cg'}
Accuracy : 0.3305188534056273
```


REGRESSÃO LOGÍSTICA

- F1 score macro treino0.33
- F1 score macro teste (Kaggle)0.30

COMPARAÇÃO

Técnicas Kaggle

Classificador	F1 macro
Support Vector (Linear SVC)	0.28346
Gaussian Naive Bayes	0.17935
Multi-layer Perceptron (MLPClassifier)	0.28674
Linear Discriminant Analysis (LDA)	0.32217
KNN with 5 neighbors	0.35078
Extra-trees	0.32215

Técnicas utilizadas

Classificador	F1 macro
Random Forest	0.35287
Regressão Logistica	0.33051

CONCLUSÃO

- Através dos métodos e técnicas de aprendizado de máquina utilizados, conseguimos realizar a classificação da pobreza na Costa Rica com resultados similares aos encontrados no Kaggle.
- Permitiu ampliar nosso conhecimento em tópicos como préprocessamento de dados, seleção de features, modelos de classificação e avaliação de desempenho de modelos.

REFERENCIAS

- Documentação Sklearn, Pandas e matplotlib
- Kaggle notebook "A Complete Introduction and Walkthrough"
- Regressão Logistica https://www.hashtagtreinamentos.com/regressao-logisticaciencias-dados
- Como usar o GridSearchCV https://andersonuyekita.github.io/notebooks/blog/2019/03/21/como-usar-o-gridsearchcv/
- Resolva o Titanic Como um Campeão do Kaggle https://www.youtube.com/playlist? list=PLwnip85KhroW8Q1JSNbgl06iNPeC0SDkx
- Slides de APREND. MAQ. E MODEL. CONHECIM. INCERTO

=)

Obrigado!

Gabriel Thiago Sergio Alvarez

RA<107774, 115735>@uem.br

APREND. MAQ. E MODEL. CONHECIM. INCERTO PROF. DR. WAGNER IGARASHI