Instructions

- Answer all questions (Question no. 1 to 3). Answers must be brief and to the point.
- Avoid writing answers of the various parts of a single question at different locations in your answer-script. For every Question No., start your answer from a new page. Symbols/notations used in the Question paper represent their conventional meanings.
- The final answers (numerical values with unit) should be underlined or enclosed
 box within with unit.
- Show the necessary steps in your answers with high clarity and supported explanation.
- All waveform sketches / diagrams must be neatly drawn and clearly labelled.
- For any value related to any device parameter or circuit parameter, which you may find not given with a problem, assume suitable value for such parameter and clearly write your assumptions.
- 1. In the bridge-rectifier circuit with filter capacitor as shown in Fig. 1, V_γ of each diode is 0.7 V and the load resistance (R) is 100 Ω. The transformer secondary is delivering a sinusoidal signal of 60 Hz of magnitude 12 V (RMS). (a) Find the value of capacitance (C) such that the peak-to-peak ripple voltage becomes 1 V. (b) In this case, what is the DC value of V_{out}? (c) Estimate the maximum current through 'R'. (d) What is PIV of each diode? (e) For a complete sine wave (one time-period) of input, calculate the time duration (in Sec) when a diode conducts.

[2+2+2+2+2=10]

Figure 1

2. Consider the following amplifier circuit (Fig. 2) using a npn BJT. Given that β = 150, V_{BE_ON} = 0.7 V and Early voltage is very high for this transistor. Magnitude of other circuit parameters are indicated in the figure. (a) Estimate the value of emitter current (I_E) and voltage V_C. (b) Neatly draw the complete small signal equivalent circuit and find the magnitude r_π and g_m. (c) Find the small signal voltage gain (A_v) of the amplifier. (d) What will happen to the A_v if you reduce the magnitude of C₂ from 100 μF to 10 nF. (your comment + justification) (e) If V_s = 10 sin(ωt) mV, then neatly draw the waveform of output voltage (V_{out}) along with the waveform of signal source (Vs) in a single plot. Clearly indicate the voltage level in the Y-axis. (f) Find V_x (total voltage at this node).

Figure 2

3. In the following circuit (Figure 3) given that $V_{Thn} = 1 \text{ V}$, $V_{GS} = 2 \text{ V}$, $k'_n = 2 \text{ mA/V}^2$. (a) Find the value of node voltage V_D and (W/L) ratio of the MOSFET. (b) Draw the small signal AC equivalent circuit and calculate the voltage gain. For this part, consider $\lambda = 0.01 \text{ V}^{-1}$. (c) Estimate the small-signal voltage gain if the capacitor C_s is removed from the circuit. Consider $\lambda = 0$ for this part and use suitable approximation for estimating the gain. (d) In the circuit shown in Fig. 3, if the magnitude of C_1 is reduced drastically, then comment on the small-signal voltage gain of the amplifier (compare the gain with that of part (b)). [(2+2)+ (1+2)+ 2+1) = 10]

Upload your Soft-copy using the Google Form.

For Back-up, please send the same by email to intro2electheory@gmail.com