Análise Exploratória dos Dados (EDA) – Will Bank

Autor: Washington (Kim)

Objetivo: Explorar os dados brutos, identificar padrões, falhas e oportunidades de melhoria nos produtos de conta e PIX do Will Bank.

Sumário

- 1. Importação das Bibliotecas
- 2. Carregamento dos Dados
- 3. Data Cleaning e Tratamento
- 4. Análise Exploratória Visão Geral
- 5. KPIs de Sucesso/Fracasso do PIX
- 6. Análise Temporal de Falhas
- 7. Análise Geográfica e Demográfica
- 8. Insights e Recomendações

1. Importação das Bibliotecas

Importamos as bibliotecas necessárias para manipulação dos dados e visualização gráfica.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import display

%matplotlib inline
pd.set_option('display.max_columns', 50)
```

2. Carregamento dos Dados

Nesta etapa, carregamos os arquivos CSV da camada Bronze.

```
In [7]: account = pd.read_csv('../data/bronze/bronze_core_account.csv')
    pix = pd.read_csv('../data/bronze/bronze_core_pix.csv')
    customer = pd.read_csv('../data/bronze/bronze_customer.csv')

print("Account:")
    display(account.head())

print("PIX:")
    display(pix.head())
```

```
print("Customer:")
display(customer.head())
```

Account:

7.0	Account.					
	dt_transaction	dt_month	surrogate_ke	ey cd_seqlan	ds_transaction_type	vl_tra
0	2023-06-26	1970-01-01 00:00:00.000202306	5400	722.0	PIX ENVIADO	
1	2023-03-25	1970-01-01 00:00:00.000202303	5400	00 470.0	PIX ENVIADO	
2	2023-08-05	1970-01-01 00:00:00.000202308	5400	00 832.0	PIX ENVIADO	
3	2023-03-29	1970-01-01 00:00:00.000202303	5400	00 481.0	PIX ENVIADO	
4	2023-05-05	1970-01-01 00:00:00.000202305	5400	00 554.0	PIX ENVIADO	
4						•
ΡI	X:					
	dt_transaction	dt_month	cd_seqlan	ds_transaction_	type vl_transaction	
0	2023-08-15	1970-01-01 00:00:00.000202308	288.0	PIX ENV	IADO 9.5	f1b3
1	2023-08-25	1970-01-01 00:00:00.000202308	1484.0	PIX ENV	IADO 12.3	ae
2	2023-08-24	1970-01-01 00:00:00.000202308	289.0	PIX ENV	IADO 100.0	530e€
3	2023-08-16	1970-01-01 00:00:00.000202308	880.0	PIX ENV	IADO 236.0	e865
4	2023-09-04	1970-01-01 00:00:00.000202309	547.0	PIX ENV	IADO 90.0	c2d0

Customer:

	entry_date	surrogate_key	full_name	birth_date	uf_name	uf	street_name	dt_inge
0	2022-11- 18	1000	Sophie Peixoto	1981-05- 18	Goiás	GO	Passarela Stephany Jesus, 45	2025-(
1	2022-11- 05	2000	Miguel Campos	1988-09- 04	Amazonas	AM	Recanto Maitê Nascimento, 81	2025-(
2	2023-01- 01	3000	Bryan Cardoso	1992-04- 14	Tocantins	ТО	Viaduto de Lima, 49	2025-(
3	2023-03- 21	4000	Nicolas Viana	1984-06- 08	Mato Grosso do Sul	MS	Vereda Isadora Campos, 507	2025-(
4	2022-09- 26	5000	Heitor Cavalcanti	1993-06- 23	Paraná	PR	Campo Aragão, 58	2025-(
4								

3. Introdução à Análise Exploratória

A Análise Exploratória de Dados (EDA) permite entender as características do dataset, identificar problemas de qualidade, outliers, padrões e obter uma visão geral das informações disponíveis.

4. Análise Exploratória – Visão Geral

Vamos analisar:

- Volume de registros em cada tabela
- Tipos de dados e valores nulos
- Estatísticas descritivas dos campos numéricos

```
In [12]: # Volume de registros
         print("Volume de registros:")
         print("Account:", account.shape)
         print("PIX:", pix.shape)
         print("Customer:", customer.shape)
         # Info e valores nulos - Account
         print("\nAccount - Info:")
         account.info()
         print("\nAccount - Valores nulos:")
         print(account.isnull().sum())
         # Info e valores nulos - PIX
         print("\nPIX - Info:")
         pix.info()
         print("\nPIX - Valores nulos:")
         print(pix.isnull().sum())
         # Info e valores nulos - Customer
```

```
print("\nCustomer - Info:")
customer.info()
print("\nCustomer - Valores nulos:")
print(customer.isnull().sum())

# Estatísticas - Account
print("\nAccount - Estatísticas:")
display(account.describe())

# Estatísticas - PIX
print("\nPIX - Estatísticas:")
display(pix.describe())
```

```
Volume de registros:
Account: (64651, 8)
PIX: (64651, 7)
Customer: (500, 8)
Account - Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 64651 entries, 0 to 64650
Data columns (total 8 columns):
 # Column
                        Non-Null Count Dtype
---
                        _____
 0 dt transaction
                       64651 non-null object
                        64651 non-null object
 1
    dt month
 2
    surrogate_key
                      64651 non-null int64
                        64651 non-null float64
 3
    cd_seqlan
    ds_transaction_type 64651 non-null object
                        64651 non-null float64
 5
    vl_transaction
    id_transaction
                        64651 non-null object
 6
 7
    dt ingestion
                        64651 non-null object
dtypes: float64(2), int64(1), object(5)
memory usage: 3.9+ MB
Account - Valores nulos:
dt transaction
dt month
surrogate_key
cd_seqlan
ds_transaction_type
vl_transaction
                     0
id transaction
                     0
                     0
dt_ingestion
dtype: int64
PIX - Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 64651 entries, 0 to 64650
Data columns (total 7 columns):
# Column
                        Non-Null Count Dtype
---
                        -----
 0 dt_transaction
                       64651 non-null object
    dt month
                        64651 non-null object
                        64651 non-null float64
 2
    cd seqlan
    ds_transaction_type 64651 non-null object
 4 vl_transaction 64651 non-null float64
 5
    id_transaction
                        64651 non-null object
    dt_ingestion
                        64651 non-null object
 6
dtypes: float64(2), object(5)
memory usage: 3.5+ MB
PIX - Valores nulos:
dt_transaction
                     0
dt month
cd seqlan
                     0
ds_transaction_type
                     0
vl transaction
id_transaction
                     0
dt_ingestion
                     0
dtype: int64
```

Customer - Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	entry_date	500 non-null	object
1	surrogate_key	500 non-null	int64
2	full_name	500 non-null	object
3	birth_date	500 non-null	object
4	uf_name	500 non-null	object
5	uf	500 non-null	object
6	street_name	500 non-null	object
7	<pre>dt_ingestion</pre>	500 non-null	object

dtypes: int64(1), object(7)
memory usage: 31.4+ KB

Customer - Valores nulos:

entry_date 0
surrogate_key 0
full_name 0
birth_date uf_name 0
uf 0
street_name 0
dt_ingestion 0
dtype: int64

Account - Estatísticas:

	surrogate_key	cd_seqlan	vl_transaction
count	64651.000000	64651.000000	64651.000000
mean	209682.139487	669.465468	87.143946
std	129942.735080	645.440069	247.994322
min	1000.000000	15.000000	3.010000
25%	87000.000000	231.000000	18.000000
50%	201000.000000	493.000000	30.000000
75%	320000.000000	893.000000	70.000000
max	479000.000000	5569.000000	10010.000000

PIX - Estatísticas:

	cd_seqlan	vl_transaction
count	64651.000000	64651.000000
mean	669.465468	87.143946
std	645.440069	247.994322
min	15.000000	3.010000
25%	231.000000	18.000000
50%	493.000000	30.000000
75%	893.000000	70.000000
max	5569.000000	10010.000000

Interpretação dos Resultados

- **Volume:** O dataset 'Account' possui X registros, 'PIX' possui Y e 'Customer' possui Z clientes distintos.
- **Nulos:** Não foram identificados valores nulos críticos, exceto na coluna X em 'Customer', que pode ser analisada posteriormente.
- Distribuição: Os valores das transações variam entre A e B, com média de C e mediana de D.

Esses dados indicam um perfil de movimentação consistente com o esperado para clientes bancários digitais.

5. KPIs de Transações PIX (Camada Bronze)

Nesta seção, analisamos as principais métricas das transações PIX com base nos dados disponíveis na camada Bronze. São explorados:

- Volume total de transações
- Volume por tipo de transação
- Distribuição dos valores
- Valores extremos
- Evolução temporal

Cada KPI é acompanhado de gráficos e interpretação dos resultados.

```
In [22]: total_transacoes = len(pix)
print("Total de transações PIX:", total_transacoes)
```

Total de transações PIX: 64651

Interpretação:

O volume total indica o nível de atividade dos clientes e pode ser comparado com períodos anteriores para análise de crescimento ou retração.

5.2 Volume de Transações por Tipo

Apresenta a quantidade de transações realizadas para cada tipo (ex: pagamento, transferência, etc.).

```
In [23]: tipo_counts = pix['ds_transaction_type'].value_counts()
    tipo_counts.plot(kind='bar')
    plt.title('Transações PIX por Tipo')
    plt.xlabel('Tipo de Transação')
    plt.ylabel('Quantidade')
    plt.show()

print("Transações por tipo:")
    print(tipo_counts)
```


Transações por tipo: ds_transaction_type PIX ENVIADO 64651 Name: count, dtype: int64

Interpretação:

O tipo de transação mais realizado reflete o principal uso do PIX pelos clientes. Uma predominância pode sugerir oportunidades de campanhas ou melhoria em tipos menos utilizados.

5.3 Distribuição dos Valores das Transações PIX

Analisa a frequência dos diferentes valores transacionados, permitindo identificar padrões, concentração de faixas ou presença de outliers.

```
In [24]: pix['vl_transaction'].plot(kind='hist', bins=30)
   plt.title('Distribuição dos Valores das Transações PIX')
   plt.xlabel('Valor da Transação')
   plt.ylabel('Quantidade')
   plt.show()
```



```
In [25]: print("Estatísticas dos valores das transações:")
    print(pix['vl_transaction'].describe())
```

Estatísticas dos valores das transações:

count	64651.000000
mean	87.143946
std	247.994322
min	3.010000
25%	18.000000
50%	30.000000
75%	70.000000
max	10010.000000

Name: vl_transaction, dtype: float64

Interpretação:

É possível observar se há uma faixa de valor mais comum, se há muitos valores pequenos (microtransações) ou grandes (transações atípicas/outliers).

Estatísticas como média, mediana e máximos ajudam a contextualizar.

5.4 Evolução Temporal das Transações PIX

Mostra o comportamento do volume de transações ao longo dos dias, permitindo identificar tendências de crescimento, sazonalidades e eventuais picos.

```
In [26]: pix['dt_transaction'] = pd.to_datetime(pix['dt_transaction'])
    transacoes_por_dia = pix.groupby('dt_transaction').size()
    transacoes_por_dia.plot()
    plt.title('Transações PIX por Dia')
    plt.xlabel('Data')
    plt.ylabel('Quantidade')
    plt.show()
```


Interpretação:

A tendência de alta pode indicar sucesso de campanhas ou crescimento orgânico do uso do produto. Picos em determinados dias podem indicar datas de pagamento, promoções ou outros eventos externos.

5.5 Principais Valores de Transação

Apresenta indicadores rápidos sobre os valores transacionados: total, média, maior e menor valor.

```
In [27]: print("Valor total transacionado: R$", pix['vl_transaction'].sum())
    print("Valor médio das transações: R$", pix['vl_transaction'].mean())
    print("Maior valor transacionado: R$", pix['vl_transaction'].max())
    print("Menor valor transacionado: R$", pix['vl_transaction'].min())
```

```
Valor total transacionado: R$ 5633943.2700000005
Valor médio das transações: R$ 87.14394626533233
Maior valor transacionado: R$ 10010.0
Menor valor transacionado: R$ 3.01
```

Interpretação:

Esses KPIs ajudam a contextualizar o impacto financeiro do PIX no período analisado e podem servir de referência para comparativos futuros.

6.1 Distribuição de Clientes por Estado (UF)

Analisamos agora a distribuição geográfica dos clientes cadastrados no Will Bank, para identificar regiões com maior concentração de usuários.

```
In [28]: uf_counts = customer['uf'].value_counts()
    uf_counts.plot(kind='bar', figsize=(10,4))
    plt.title('Clientes por Estado (UF)')
    plt.xlabel('UF')
    plt.ylabel('Quantidade de Clientes')
    plt.show()

print("Clientes por UF:")
    print(uf_counts)
```



```
Clientes por UF:
      30
MA
DF
      25
PR
      25
РΒ
      24
AC
      23
RO
      22
SC
      22
AΡ
      22
BA
      21
ES
      20
RJ
      20
      20
AL
      20
RN
      19
RR
      18
PΙ
      18
AM
      16
SP
      16
PΕ
      16
MG
      16
CE
      15
G0
      15
MS
      14
TO
      12
PΑ
      12
MT
      10
```

Name: count, dtype: int64

Interpretação:

A maior concentração de clientes está nos estados ___ (completar após rodar a análise). Essas informações podem guiar campanhas regionais ou estratégias de expansão.

6.2 Distribuição de Idade dos Clientes

Agora, exploramos o perfil etário dos clientes para identificar o público predominante do Will Bank.

```
In [29]:
         customer['birth_date'] = pd.to_datetime(customer['birth_date'], errors='coerce')
         customer['idade'] = 2025 - customer['birth_date'].dt.year
         customer['idade'].plot(kind='hist', bins=20)
         plt.title('Distribuição de Idade dos Clientes')
         plt.xlabel('Idade')
         plt.ylabel('Quantidade')
         plt.show()
         print(customer['idade'].describe())
```


count	500.000000
mean	33.632000
std	6.855843
min	22.000000
25%	28.000000
50%	34.000000
75%	39.250000
max	45.000000

Name: idade, dtype: float64

Interpretação:

A maior parte dos clientes está na faixa de ___ anos (completar com o resultado real). Esses dados ajudam a alinhar a comunicação e produtos com o perfil predominante.

7. Insights Finais e Recomendações

- O volume de transações PIX mostra crescimento consistente ao longo do tempo, indicando aumento do uso e adesão dos clientes ao produto.
- Determinados estados concentram a maior parte dos clientes, o que pode direcionar estratégias regionais de marketing.
- A faixa etária predominante dos clientes permite adaptar campanhas e produtos ao perfil mais comum de usuário.
- Não foram encontrados problemas graves de qualidade ou muitos valores nulos nos dados analisados.
- Recomenda-se atenção especial aos valores de transação muito altos (outliers), que podem indicar comportamentos atípicos ou oportunidades para novos produtos.

Esses resultados ajudam a direcionar a tomada de decisão da equipe de dados e dos times de negócio do Will Bank.

8. Próximos Passos e Limitações

- Para aprofundar a análise de sucesso/falha das transações PIX, é necessário utilizar os dados já tratados na camada Silver, onde o status da transação está disponível.
- Uma análise cruzada entre perfil demográfico e comportamento transacional pode revelar oportunidades de personalização.
- Recomenda-se implementar testes automatizados de qualidade dos dados e criar alertas para identificação de anomalias em tempo real.
- Futuramente, análises com dados de satisfação do cliente (NPS) poderão enriquecer o entendimento sobre o impacto do PIX na experiência do usuário.