HarvardX PH125.9x

Course name: Data Science Capstone

Project: MovieLens Project

Name: Amrutha Killada

1 Executive Summary

This project is for educational purposes as a submission for the course HarvardX: PH125.9x Data Science Capstone. The objective of the project is to train a machine learning algorithm that could predict movie ratings.

1.1 Dataset

The dataset used for this project is MovieLens 10M dataset from MovieLens website.

https://grouplens.org/datasets/movielens/10m/ http://files.grouplens.org/datasets/movielens/ml-10m.zip

```
Code for loading the dataset and creating subsets of the data for training and testing:
# Create edx set, validation set
# Note: this process could take a couple of minutes
if(!require(tidyverse)) install.packages("tidyverse", repos =
"http://cran.us.r-project.org")
if(!require(caret)) install.packages("caret", repos =
"http://cran.us.r-project.org")
if(!require(data.table)) install.packages("data.table", repos =
"http://cran.us.r-project.org")
# MovieLens 10M dataset:
# https://grouplens.org/datasets/movielens/10m/
# http://files.grouplens.org/datasets/movielens/ml-10m.zip
dl <- tempfile()</pre>
download.file("http://files.grouplens.org/datasets/movielens/ml-
10m.zip", dl)
ratings <- fread(text = gsub("::", "\t", readLines(unzip(dl, "ml-</pre>
10M100K/ratings.dat"))),
```

```
col.names = c("userId", "movieId", "rating",
"timestamp"))
movies <- str_split_fixed(readLines(unzip(dl, "ml-</pre>
10M100K/movies.dat")), "\\::", 3)
colnames(movies) <- c("movieId", "title", "genres")</pre>
movies <- as.data.frame(movies) %>% mutate(movieId =
as.numeric(levels(movieId))[movieId],
                                              title =
as.character(title),
                                              genres =
as.character(genres))
movielens <- left join(ratings, movies, by = "movieId")</pre>
# Validation set will be 10% of MovieLens data
set.seed(1, sample.kind="Rounding")
# if using R 3.5 or earlier, use `set.seed(1)` instead
test index <- createDataPartition(y = movielens$rating, times = 1, p =
0.1, list = FALSE)
edx <- movielens[-test index,]</pre>
temp <- movielens[test index,]</pre>
# Make sure userId and movieId in validation set are also in edx set
validation <- temp %>%
      semi join(edx, by = "movieId") %>%
      semi join(edx, by = "userId")
# Add rows removed from validation set back into edx set
removed <- anti join(temp, validation)</pre>
edx <- rbind(edx, removed)</pre>
rm(dl, ratings, movies, test index, temp, movielens, removed)
```

We use 'edx' data subset to train the algorithm and 'validation' subset to test movie ratings from the dataset.

1.2 Data set

#first 6 rows of the dataset head(edx)

```
userId movieId rating timestamp
                                                                                      genres
                                                         title
            122
                     5 838985046
                                              Boomerang (1992)
                                                                              Comedy | Romance
1
      1
            185
2
                     5 838983525
                                               Net, The (1995)
                                                                       Action|Crime|Thriller
      1
3
            231
      1
                     5 838983392
                                          Dumb & Dumber (1994)
4
      1
            292
                     5 838983421
                                               Outbreak (1995) Action|Drama|Sci-Fi|Thriller
5
      1
            316
                     5 838983392
                                               Stargate (1994)
                                                                     Action|Adventure|Sci-Fi
            329
                     5 838983392 Star Trek: Generations (1994) Action|Adventure|Drama|Sci-Fi
```

Edx dataset contains "userId", "movieId", "rating", "timestamp", "title"," genres".

```
#summary statistics
summary (edx)
```

```
rating
   userId
                movieId
                                            timestamp
                                                               title
                                                                                genres
Min. : 1
             Min. : 1 Min. :0.500
                                          Min. :7.897e+08
                                                            Length:9000061
                                                                             Length:9000061
1st Qu.:18122
             1st Qu.: 648 1st Qu.:3.000
                                          1st Qu.:9.468e+08
                                                            Class :character
                                                                             Class :character
Median :35743
             Median : 1834
                            Median :4.000
                                          Median :1.035e+09
                                                            Mode :character
                                                                             Mode :character
Mean :35869
              Mean : 4120
                            Mean :3.512
                                          Mean :1.033e+09
3rd Qu.:53602
              3rd Qu.: 3624
                            3rd Qu.:4.000
                                          3rd Qu.:1.127e+09
                            Max. :5.000
Max. :71567
                    :65133
              Max.
                                          Max. :1.231e+09
```

We learn that the movies are rated between 0.5 to 5.0 and mean movie rating is 3.512.

```
n_distinct(edx$movieId)
n_distinct(edx$userId)
n_distinct(edx$genres)
```

This reveals that there are 10677 unique movies, 69878 unique users, and 797 unique genres.

1.3 Data visualization

A plot of dataset mapping ratings and number of each unique ratings is attached below. The majority movie ratings are 4, 3 and 5 respectively.


```
#Top 10 popular genres

pop_genres <- edx %>%
   group_by(genres) %>%
   summarise(number = n()) %>%
   arrange(desc(number))
knitr::kable(head(pop_genres,10))
```

genres	number
:	:
Drama	733353
Comedy	700883
Comedy Romance	365894
Comedy Drama	323518
Comedy Drama Romance	261098
Drama Romance	259735
Action Adventure Sci-Fi	220363
Action Adventure Thriller	148933
Drama Thriller	145359
Crime Drama	137424

We see that Drama and Comedy are the most popular genres.

```
#ratings vs users

edx %>%
   count(userId) %>%
   ggplot(aes(n)) +
   geom_histogram(color = "blue", bin = 30) +
   scale_x_log10() +
   xlab("Number of Ratings") +
   ylab("Number of Users") +
   ggtitle("Users vs Ratings") +
   theme(plot.title = element_text(hjust = 0.5))
```


We can see that most of the users rate between 10 to 100 movies.

100

1.4 Analysis

Litreture Review :RMSE – The Residual Mean Square Error(RMSE) is the error function that will measure accuracy and quantify the typical error when predicting movie ratings in this assignment.

Number of Ratings

1000

1000

Basic Mean Analysis

10

This prediction model uses the mean of the dataset to predict the rating for movies. The model assumes that all differences are due to random error.

```
mu <- mean(edx$rating)
rmse_basic <- RMSE(validation$rating, mu)
rmse_basic</pre>
```

[1] 1.060651

```
#creating a table to display all the results of analysis

rmse_table = tibble(Analysis = "Basic Analysis", RMSE = rmse_basic)

rmse_table %>% knitr::kable()
```

Movie effect model

This model calculates a bias term for each movie based on the difference between the movies mean rating and the overall mean rating.

```
#Introducing movie effect
movie_effect <- edx %>%
   group_by(movieId) %>%
   summarise(a = mean(rating - mu))
predict_ratings <- mu + validation %>%
   left_join(movie_effect, by = "movieId") %>%
   pull(a)
rmse_movie_effect <- RMSE(predict_ratings, validation$rating)
rmse_movie_effect</pre>
```

[1] 0.9437046

```
#Adding Movie effect result to the table
rmse_table <- bind_rows(rmse_table, tibble(Analysis = "Movie Effect
Analysis", RMSE = rmse_movie_effect))
rmse_table %>% knitr::kable()
```

Analysis	RMSE
:	:
Basic Analysis	1.0606506
Movie Effect Analysis	0.9437046

User effect model

This model calculates a bias term for each user based on the difference between the users mean rating and the overall mean rating.

```
#Introducing user effect
user_effect <- edx %>%
  group_by(userId) %>%
  summarise(b = mean(rating - mu))
predict_ratings <- validation %>%
  left_join(user_effect, by = "userId") %>%
  pull(b)
rmse_user_effect <- RMSE(predict_ratings, validation$rating)
rmse_user_effect</pre>
```

[1] 3.645477

```
#Adding the User effect result to the table
rmse_table <- bind_rows(rmse_table, tibble(Analysis = "User Effect
Analysis", RMSE = rmse_user_effect))
rmse_table %>% knitr::kable()
```

Analysis	RMSE	
:	:	
Basic Analysis	1.0606506	
Movie Effect Analysis	0.9437046	
User Effect Analysis	3.6454765	

Genre effect model

This model calculates a bias term for each genre based on the difference between the genres mean rating and the overall mean rating.

```
#Introducing genre effect
genre_effect <- edx %>%
  group_by(genres) %>%
  summarise(c = mean(rating - mu))
predict_ratings <- validation %>%
  left_join(genre_effect, by = "genres") %>%
  pull(c)
rmse_genre_effect <- RMSE(predict_ratings, validation$rating)
rmse_genre_effect</pre>
```

[1] 3.656522

```
#Adding Genre effect result to the table
rmse_table <- bind_rows(rmse_table, tibble(Analysis = "Genre Effect
Analysis", RMSE = rmse_genre_effect))
rmse_table %>% knitr::kable()
```

Analysis	RMSE
:	:
Basic Analysis	1.0606506
Movie Effect Analysis	0.9437046
User Effect Analysis	3.6454765
Genre Effect Analysis	3.6565224

Movie and User effect model

In this model we incorporate user bias to the movie model.

```
#Introducing both movie and user effects
user_effect <- edx %>%
  left_join(movie_effect, by = "movieId") %>%
  group_by(userId) %>%
  summarise(a_u = mean(rating - mu - a))
predict_ratings <- validation %>%
  left_join(movie_effect, by = "movieId") %>%
  left_join(user_effect, by = "userId") %>%
  mutate(d = mu + a + a_u) %>%
  pull(d)
rmse_movie_user_effect <- RMSE(predict_ratings, validation$rating)
rmse_movie_user_effect</pre>
```

[1] 0.8655329

```
#Addind Movie-User Effect result to the table
rmse_table <- bind_rows(rmse_table, tibble(Analysis = "Movied & User
Effect Analysis", RMSE = rmse_movie_user_effect))
rmse_table %>% knitr::kable()
```

Analysis	RMSE
:	:
Basic Analysis	1.0606506
Movie Effect Analysis	0.9437046
User Effect Analysis	3.6454765
Genre Effect Analysis	3.6565224
Movied & User Effect Analysis	0.8655329

Regularized Movie and User Effect

Regularization allows for reduced errors which are caused by movies which have fewer ratings.

```
#regularization
lambdas \leftarrow seq(0, 10, 20, 1)
rmses <- sapply(lambdas, function(1) {</pre>
  mu <- mean(edx$rating)</pre>
 x <- edx %>%
    group by(movieId) %>%
    summarise(x = sum(rating - mu) / (n()+1))
 y <- edx %>%
    left join(x, by = "movieId") %>%
    group by(userId) %>%
    summarise(y = sum(rating - x - mu) / (n()+1))
  predicted_ratings <- validation %>%
    left join(x, by = "movieId") %>%
    left join(y, by = "userId") %>%
    mutate(z = mu + x + y) \%>\%
    pull(z)
  return(RMSE(predicted ratings, validation$rating))
})
rmse regularization <- min(rmses)</pre>
rmse regularization
```

[1] 0.8653141

```
#Adding the Regularization result to the table
rmse_table <- bind_rows(rmse_table, tibble(Analysis = "Regularized
Movie and User Effect", RMSE = rmse_regularization))
rmse_table %>% knitr::kable()
```

Analysis	RMSE
:	:
Basic Analysis	1.0606506
Movie Effect Analysis	0.9437046
User Effect Analysis	3.6454765
Genre Effect Analysis	3.6565224
Movied & User Effect Analysis	0.8655329
Regularized Movie and User Effect	0.8653141

The RMSE is further reduced with regularization.

Results

Analysis	RMSE
:	:
Basic Analysis	1.0606506
Movie Effect Analysis	0.9437046
User Effect Analysis	3.6454765
Genre Effect Analysis	3.6565224
Movied & User Effect Analysis	0.8655329
Regularized Movie and User Effect	0.8653141

The lowest RMSE predicted is 0.8653141

In conclusion the best model is Regularized Movie and User Effect model to predict the Movie ratings.