1 Evaluate the sum $\sum\limits_{k} \epsilon_{ijk} \epsilon_{lmk}$

Since $\epsilon_{ijk} = 0$ when i = j,

(a) i=j

 $\sum_{k} \epsilon_{ijk} \epsilon_{lmk} = 0$

Thus,

(b) i = l

When i = 1,

	<u> </u>	U	U	U		
	2	0	0	1		
	3	0	-1	0		
l		I		l		
						_
			$\sum \epsilon_{1j}$	$\epsilon_k \epsilon_{1mk}$	$_{i}=\langle$	

k

1

0

0

1

-1

0

0

-1

0

0

2

0

0

2

1

1

0

-1

0

0

-1

0

0

1

k

 \mathbf{m}

Likewise, when i = 2,

 \mathbf{m}

 \mathbf{m}

1

1

2

Thus,

$$\sum_{k} \epsilon_{2jk} \epsilon_{2mk} = \begin{cases} 1 & \text{if } j = m \\ 0 & \text{if } j \neq m \end{cases}$$

0

Thus,

Last

$$\sum_{k} \epsilon_{3jk} \epsilon_{3mk} = \begin{cases} 1 & \text{if } j = m \\ 0 & \text{if } j \neq m \end{cases}$$

(c) i = m

(d) j = l

(e) j = m

In sum,

Show that $\sum_{k} \epsilon_{ijk} \epsilon_{lmk} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}$

 $\sum_{k} \epsilon_{ijk} \epsilon_{lmk} = \sum_{k} \epsilon_{ijk} \epsilon_{imk} = \delta_{jm} = \begin{cases} 1 & \text{if } j = m \\ 0 & \text{if } j \neq m \end{cases}$

(f) l=m

(h)
$$j \neq l$$
 or m

(g) $i \neq j$ or m