Parcial I - Lenguajes 2008

- Sea G = ({S}, {a,b}, {S → aSb, S → bSu, S → SS, S → ε}. β). Pruebe que L(G) = {w ∈ (a + b)* : |w|_a = |w|_b}.
 (Si en la prueba por inducción hay casos similares no es necesario probarlos a todos.)
- 2. Verdadero o Falso, justifique.
 - (a) Sean $G=(\{A,B,S\},\Sigma,P,S),\ G'=(\{A,S\},\Sigma,P',S)$ gramaticas tales que $L(G')\subseteq L(G)$. Si $G''=(\{A,B,S\},\Sigma,P\cup P',S)$ entonces L(G'')=L(G).
 - (b) Para cada automata a pila $M=(Q,\Sigma,\Gamma,\delta,q_0,Z_0,F)$ hay un número natural N_M tal que si $w\in L(M)$ hay una sucesión de descripciones instantáneas $(q_0,w,Z_0)\vdash (p_1,w_1,\gamma_1)\vdash \cdots \vdash (p_n,w_n,\gamma_n)\vdash (q,\varepsilon,\gamma_{n+1})$, donde $q\in F$ y $|\gamma_i|\leq N_M$ para todo i=1,...,n+1.
 - (c) Sean $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ un autómata a pila y $w \in N(M)$. Si $(q_0, w, Z_0) \stackrel{*}{\vdash} (q, \varepsilon, \gamma)$ entonces hay un $p \in Q$ tal que $(q, \varepsilon, \gamma) \stackrel{*}{\vdash} (p, \varepsilon, \varepsilon)$.
 - (d) Sean $G=(\{S\},\Sigma,P,S),\ G'=(\{S\},\Sigma,P',S)$ gramáticas tales que L(G)=L(G'). Si $G''=(\{S\},\Sigma,P\cup P',S)$ entonces L(G'')=L(G).
 - (e) Si $M = (Q, \{!, \$\}, \{Z_0\}, \delta, q_0, Z_0, Q)$ es un autómata a pila, entonces $L(M) = \{!, \$\}^*$.