Introduction Weaker models Gathering Problem Orientation Problem Set Formation Problem Conclusion

On the self-stabilization of mobile oblivious robots in uniform rings

Jeremy Krebs - Guillaume Soulié

Université Paris Saclay

9 novembre 2017

- Introduction
 - State of the Art
 - Hypotheses
 - Problems
- Weaker models
 - ASYNC Model global-strong multiplicity detection
 - SSYNC Model global-weak / local strong multiplicity detection
- Gathering Problem
 - Problem
 - Algorithm
- Orientation Problem
- Set Formation Problem
- 6 Conclusion

 mobile robot network goal : achieve tasks by a team of mobile robot with weak capacity.

- mobile robot network goal : achieve tasks by a team of mobile robot with weak capacity.
- Pioneering work Suzuki, I., & Yamashita, M. (1999).
 Distributed anonymous mobile robots: Formation of geometric patterns.

- mobile robot network goal : achieve tasks by a team of mobile robot with weak capacity.
- Pioneering work Suzuki, I., & Yamashita, M. (1999).
 Distributed anonymous mobile robots: Formation of geometric patterns.
- it studies **self-stabilizing** algorithms for anonymous and oblivious robots in uniform ring network.

Each robot repeat cycles. Cycle has three phases :

Look Phase

Each robot repeat cycles. Cycle has three phases :

Each robot repeat cycles. Cycle has three phases :

Our Contribution : investigate the difficulty of probabilistic self-stabilizing algorithms using weak assumptions.

Our Contribution : investigate the difficulty of probabilistic self-stabilizing algorithms using weak assumptions.

 no such algorithms on very weak condition (ASYNC or global-weak multiplicity) Our Contribution : investigate the difficulty of probabilistic self-stabilizing algorithms using weak assumptions.

- no such algorithms on very weak condition (ASYNC or global-weak multiplicity)
- we propose three algorithms:
 self-stabilizing gathering algorithm
 self-stabilizing orientation algorithm
 self-stabilizing formation algorithm

Several work on continuous model.

- Several work on continuous model.
- other work on discrete model :

- Several work on continuous model.
- other work on discrete model:
 - deterministic / stochastic

- Several work on continuous model.
- other work on discrete model:
 - deterministic / stochastic
 - none of them are self stabilizing

• Robots are identical. No distinction, same algorithm,

- Robots are identical. No distinction, same algorithm,
- Robots are oblivious. They have no memory of their moves,

- Robots are identical. No distinction, same algorithm,
- Robots are oblivious. They have no memory of their moves,
- Robots cannot communicated directly.

- Robots are identical. No distinction, same algorithm,
- Robots are oblivious. They have no memory of their moves,
- Robots cannot communicated directly.

However they can observe the positions of the other robots, and it is one of those two cases :

- Robots are identical. No distinction, same algorithm,
- Robots are oblivious. They have no memory of their moves,
- Robots cannot communicated directly.

However they can observe the positions of the other robots, and it is one of those two cases :

Global-Strong Multiplicity Detection

- Robots are identical. No distinction, same algorithm,
- Robots are oblivious. They have no memory of their moves,
- Robots cannot communicated directly.

However they can observe the positions of the other robots, and it is one of those two cases :

- Global-Strong Multiplicity Detection
- Local-Strong and Global-Weak Multiplicity Detection

The scheduler can be of two types:

The scheduler can be of two types:

SSYNC Semi-Synchronous - For each round, a set of robots are activated/executed at the same time.

The scheduler can be of two types:

SSYNC Semi-Synchronous - For each round, a set of robots are activated/executed at the same time.

ASYNC Asynchronous - The robots are activated/executed asynchronously

Orientation Problem : The goal of the set formation problem is to make the robots gather in a configuration such that :

Orientation Problem : The goal of the set formation problem is to make the robots gather in a configuration such that :

There is exactly one tower node

Orientation Problem : The goal of the set formation problem is to make the robots gather in a configuration such that :

- There is exactly one tower node
- There is a 1-robot block of size I

Orientation Problem : The goal of the set formation problem is to make the robots gather in a configuration such that :

- There is exactly one tower node
- There is a 1-robot block of size I

Gathering Problem : The goal of the gathering problem is to group all the robots on the same node.

Orientation Problem : The goal of the set formation problem is to make the robots gather in a configuration such that :

- There is exactly one tower node
- There is a 1-robot block of size I

Set formation problem : The goal of the set formation problem is to gather the robots in a specific predefined configuration.

ASYNC Model

- ASYNC Model
- SSYNC Model global-weak & local-strong multiplicity

- ASYNC Model
- SSYNC Model global-weak & local-strong multiplicity

How to prove non existence of an algorithm?

- ASYNC Model
- SSYNC Model global-weak & local-strong multiplicity

How to prove non existence of an algorithm? play the scheduler

We assume that we have a procedure Proc(X) such as :

Proc(X) activate each robot at least one

We assume that we have a procedure Proc(X) such as :

- Proc(X) activate each robot at least one
- \bigcirc Proc(X) is complete in finite time

We assume that we have a procedure Proc(X) such as :

- Proc(X) activate each robot at least one
- \bigcirc Proc(X) is complete in finite time
- **3** if P(X) := probability that there is no robot change during Proc(X) execution, then $\lim_{X \to \inf} P(X) = 1$

We assume that we have a procedure Proc(X) such as :

- Proc(X) activate each robot at least one
- \bigcirc *Proc*(X) is complete in finite time
- **3** if P(X) := probability that there is no robot change during Proc(X) execution, then $\lim_{X \to \inf} P(X) = 1$

Probability that A achieve gathering in j cycle :

$$P^* < (1 - P(X_1)) + (1 - P(X_2)) + ... + (1 - P(X_i)) < p \square$$

• one robot per node

- one robot per node
- Q = +i $(0 \le i \le n)$ indicates $(v_0, ..., v_{i-1})$ decides to move forward.

- one robot per node
- Q = +i $(0 \le i \le n)$ indicates $(v_0, ..., v_{i-1})$ decides to move forward.

We want to achieve Q = +n or Q = -n.

- if Q = 0: look and compute phases on robot r on v_0 :
 - if r want to stay => Q := 0
 - elif r want to move forward => Q := 1
 - elif r want to move backward => Q:=-1

- if Q = 0: look and compute phases on robot r on v_0 :
 - if r want to stay => Q := 0
 - elif r want to move forward => Q := 1
 - elif r want to move backward => Q := -1
- if Q = +i: look and compute phases on robot r on v_{+i} :
 - if r want to stay => Q := +i
 - if r want to move forward => Q := +(i+1)
 - if r want to move backward : move phase for r and robot of $v_{+(i-1)} => Q := +(i-1)$.

- if Q = 0: look and compute phases on robot r on v_0 :
 - if r want to stay => Q := 0
 - elif r want to move forward => Q := 1
 - elif r want to move backward => Q := -1
- if Q = +i: look and compute phases on robot r on v_{+i} :
 - if r want to stay => Q := +i
 - if r want to move forward => Q := +(i+1)
 - if r want to move backward : move phase for r and robot of $v_{+(i-1)} => Q := +(i-1)$.
- if Q = -i : ...

- if Q=0: look and compute phases on robot r on v_0 :
 - if r want to stay => Q := 0
 - elif r want to move forward => Q := 1
 - elif r want to move backward => Q := -1
- if Q = +i: look and compute phases on robot r on v_{+i} :
 - if r want to stay => Q := +i
 - if r want to move forward => Q := +(i+1)
 - if r want to move backward : move phase for r and robot of $v_{+(i-1)} => Q := +(i-1)$.
- if Q = -i : ...

Stop when Q = +n or Q = -n (or X steps).

• prop 1 and 2 or clearly statisfied.

- prop 1 and 2 or clearly statisfied.
- for prop 3:

•
$$P(Q_{h+1}->Q_h+1)=p_1$$

•
$$P(Q_{h+1}->Q_h-1)=p_2$$

•
$$P(Q_{h+1}->Q_h)=1-p_1-p_2$$

- prop 1 and 2 or clearly statisfied.
- for prop 3:

•
$$P(Q_{h+1}->Q_h+1)=p_1$$

•
$$P(Q_{h+1}->Q_h-1)=p_2$$

•
$$P(Q_{h+1}->Q_h)=1-p_1-p_2$$

This implies from any configuration Q, Q=+/-n is achieved is less than 2n step with probability $p>p_1^{2n}+p_2^{2n}$.

- prop 1 and 2 or clearly statisfied.
- for prop 3:

•
$$P(Q_{h+1}->Q_h+1)=p_1$$

•
$$P(Q_{h+1}->Q_h-1)=p_2$$

•
$$P(Q_{h+1}->Q_h)=1-p_1-p_2$$

This implies from any configuration Q, Q=+/-n is achieved is less than 2n step with probability $p>p_1^{2n}+p_2^{2n}$.

$$P(X) \ge 1 - (1 - p_1^{2n} - p_2^{2n})^{\frac{X}{2n}}$$

- prop 1 and 2 or clearly statisfied.
- for prop 3:

•
$$P(Q_{h+1}->Q_h+1)=p_1$$

•
$$P(Q_{h+1}->Q_h-1)=p_2$$

•
$$P(Q_{h+1}->Q_h)=1-p_1-p_2$$

This implies from any configuration Q, Q=+/-n is achieved is less than 2n step with probability $p>p_1^{2n}+p_2^{2n}$.

$$P(X) \geq 1 - (1 - p_1^{2n} - p_2^{2n})^{rac{X}{2n}} \ \lim_{X o \inf} P(X) = 1$$

• We consider n nodes and k robots in an unoriented ring

- We consider n nodes and k robots in an unoriented ring
- For any configuration C we not M(C) the maximum number of robots on one node

- We consider n nodes and k robots in an unoriented ring
- For any configuration C we not M(C) the maximum number of robots on one node

Idea:

- If there is only once M(C)-node, then the robots "know" where to go
- If there is multiple, the idea is to try to make them move one by one so that a tower node "wins the fight". We must find a why to elect a candidate.
- If there are multiple candidates, find a way to make, in expectation, exactly one of them move

Idea:

- If there is only once M(C)-node, then the robots "know" where to go
- If there is multiple, the idea is to try to make them move one by one so that a tower node "wins the fight". We must find a why to elect a candidate.
- If there are multiple candidates, find a way to make, in expectation, exactly one of them move
- Take care! The scheduler is an enemy and will activate the robots in the worst way.

Let's consider the M(C) nodes :

Let's consider the M(C) nodes :

Case 1 There is only one such node: the tower can be identified by the robots and they can get closer to the tower node.

Let's consider the M(C) nodes :

- Case 1 There is only one such node : the tower can be identified by the robots and they can get closer to the tower node.
 - The scheduler is an enemy!
 - Less than M(C) nodes should move in the same direction!

Case 2 There are multiple such nodes :

Case 2 There are multiple such nodes :

Take h_{min} the minimal distance between a M(C)-robot node and a neighboring robot node. Take V the set of nodes at distance h_{min} of a M(C)-node and R the robots on these nodes.

Case 2 There are multiple such nodes :

Take h_{min} the minimal distance between a M(C)-robot node and a neighboring robot node. Take V the set of nodes at distance h_{min} of a M(C)-node and R the robots on these nodes.

Cas 2.1 |R| = 1 - This robot gets to his closer M(C)-robot node.

Case 2 There are multiple such nodes :

Take h_{min} the minimal distance between a M(C)-robot node and a neighboring robot node. Take V the set of nodes at distance h_{min} of a M(C)-node and R the robots on these nodes.

- Cas 2.1 |R| = 1 This robot gets to his closer M(C)-robot node.
- Cas 2.2 |R| > 1 The robots move to their close M(C)-robot node with probability $\frac{1}{2|R|}$.

Case 2 There are multiple such nodes :

Take h_{min} the minimal distance between a M(C)-robot node and a neighboring robot node. Take V the set of nodes at distance h_{min} of a M(C)-node and R the robots on these nodes.

- Cas 2.1 |R| = 1 This robot gets to his closer M(C)-robot node.
- Cas 2.2 |R| > 1 The robots move to their close M(C)-robot node with probability $\frac{1}{2|R|}$.

Complexity : $O(n \log k)$ rounds and O(kn) moves.

Algorithm for orientation problem :

• based on gathering algorithm

Algorithm for orientation problem :

- based on gathering algorithm
- two phases algorithm

Algorithm for orientation problem :

- based on gathering algorithm
- two phases algorithm
- ! gathering or orientation?

Phase 1:

Phase 1:

Reaches a configuration C_{f1} (if l=1) or in C_{f2} (if $l\geq 2$) in $\mathcal{O}(n\log k)$ expected rounds and $\mathcal{O}(kn)$ expected moves.

Phase 2:

Phase 2:

Reaches a configuration in C_0 in $\mathcal{O}(\ln)$ expected rounds and $\mathcal{O}(\ln(k+n))$ expected moves.

Phase 2:

Reaches a configuration in C_0 in $\mathcal{O}(In)$ expected rounds and $\mathcal{O}(I(k+n))$ expected moves. Global complexity : $\mathcal{O}((\log k + I)n)$ expected rounds and $\mathcal{O}(I(k+n))$ expected moves

We can now apply the two previous algorithms to solve the **set formation problem**.

• Solve the orientation algorithm for I = |SET| - 1,

- Solve the orientation algorithm for I = |SET| 1,
- Now that the ring is oriented, move the robots one by one

- Solve the orientation algorithm for I = |SET| 1,
- Now that the ring is oriented, move the robots one by one

- Solve the orientation algorithm for I = |SET| 1,
- Now that the ring is oriented, move the robots one by one

Complexity : $O((\log k + |SET|)n)$ rounds and O(kn) moves.

Conclusion:

Conclusion:

• Our strong assumptions on the system are mandatory

Conclusion:

- Our strong assumptions on the system are mandatory
- Solving the gathering and orientation issues is very important and leads to tons of other problems solved

Conclusion:

- Our strong assumptions on the system are mandatory
- Solving the gathering and orientation issues is very important and leads to tons of other problems solved

In order to go further we could:

Conclusion:

- Our strong assumptions on the system are mandatory
- Solving the gathering and orientation issues is very important and leads to tons of other problems solved

In order to go further we could:

• Find the problems we can solve with weaker hypotheses,

Conclusion:

- Our strong assumptions on the system are mandatory
- Solving the gathering and orientation issues is very important and leads to tons of other problems solved

In order to go further we could:

- Find the problems we can solve with weaker hypotheses,
- Work with a weaker scheduler, like an oblivious one,

Conclusion:

- Our strong assumptions on the system are mandatory
- Solving the gathering and orientation issues is very important and leads to tons of other problems solved

In order to go further we could:

- Find the problems we can solve with weaker hypotheses,
- Work with a weaker scheduler, like an oblivious one,
- Work with a more complex graph than a ring.

Questions?