Лабораторная работа № 6 Синтез микропрограммного автомата

Цель работы: изучение методов абстрактного и структурного синтеза микропрограммных автоматов

1. Понятие о микропрограммном автомате

При описании узлов и устройств цифровой обработки их часто представляют в виде композиции управляющей и операционной частей или управляющего и операционного автоматов. Операционный автомат (ОА) выполняет конкретные операции преобразования информации (шифраторы, дешифраторы, регистры и т.д.). Функцией управляющего автомата (УА) является координация работы операционных устройств.

Рис. 6.1. Структура микропрограммного автомата

Задача УА — выработка распределенной во времени последовательности сигналов, определяющих порядок работы операционного автомата (рис. 6.1).

Любая операция, выполняемая ОА, может быть представлена совокупностью микроопераций.

Микрооперацией называется элементарный неделимый акт обработки информации в ОА, происходящий в течение одного момента автоматного времени(т.е. за один такт).

Выполняемые ОА микрооперации обозначаются обычно буквами из множества $Y = \{y_1, ..., y_N\}$. Эти микрооперации выполняются под воздействием управляющих сигналов из УА, которые обычно обозначаются также, как и микрооперации - $y_1, ..., y_N$.

Микрооперации, выполняемые одновременно, называются **микрокомандой** и обозначаются $Y_t = \{y_{t1}, ..., y_{tut}\}$, где индекс "t" обозначает микрооперации, выполняемые за один такт автоматного времени.

Порядок выполнения микрокоманд определяется функциями перехода α_{ij} -логическими функциями двоичных переменных из множества $X = \{X_1, ..., X_L\}$ входных переменных УА. Естественно, что

каждая микрокоманда Y_i может быть связана со многими функциями перехода - множеством $\{\alpha_{i1},...,\alpha_{iT}\}$.

Совокупность микрокоманд и функций перехода образуют микропрограмму.

Таким образом, конечный автомат, реализующий микропрограмму работы дискретного устройства, называется **микропрограммным автоматом (МПА)**.

Реализация МПА в виде совокупности ОА и УА была предложена В.М.Глушковым, но она не является единственной. Впервые структура МПА была разработана английским ученым Майклом Уилксом в 1963 году, она называется схемой Уилкса

2. Языки описания МПА

МПА - это специальный автомат, поэтому он задается начальными автоматными языками, к которым относятся: содержательная графсхема алгоритма (микропрограмма), граф-схема алгоритма (ГСА), логическая схема алгоритма (ЛСА), временные диаграммы. Для описания МПА на абстрактном уровне используются и стандартные языки, из которых наиболее удобными являются графы, таблицы, матрицы переходов.

Содержательная граф-схема алгоримма. Содержательная ГСА - это ориентированный граф, содержащий начальную и конечную вершины, а также вершины, в которых микрооперации и условия записаны в содержательных терминах. Пример содержательной ГСА приведен на рис.6.2..

Рис.. 6. 2. Микропрограмма вычисления суммы

Граф-схема алгоримма (ГСА). ГСА - ориентированный граф, но в его вершинах информация представляется в закодированной форме. Обычно операторные вершины кодируются буквами Y_J , условные - X_J , а микрооперации - Y_J (см. рис. 6.2):

$$Y_1: S:=0;$$

 $Y_2: i:=l;$ $X_1:i \le n;$
 $Y_3: S:=S+X_J;$
 $Y_4: i:=i+1.$

В ГСА одинаковые микрооперации и условия обозначаются одними и теми же символами.

По граф-схеме алгоритма можно строить функции перехода α_{ij} , используя следующие правила.

Если переход из вершины Y_i , в вершину Y_j , проходит только через условные вершины, соответствующая функция перехода записывается в виде:

$$\alpha_{ij} = \Lambda x_{ir},$$
 $r=1$

где x_{ir} - логическое условие, записанное в r-й вершине;

R - число условных вершин на пути Y_i - Y_i ;

 e_{jr} - принадлежит $\{0;1\}$ и приписывается выходу условной вершины;

$$x_{ir} = \begin{cases} x_{ir} ...ecnu.e_{ir} = 1; \\ \overline{x}_{ir} ...ecnu.e_{ir} = 0. \end{cases}$$

Если на переходе от Y_i к Y_j имеется несколько путей, проходящих через условные вершины, то функция перехода формируется как дизьюнкция коньюнкций, соответствующих всем путям перехода:

$$\begin{array}{cc} & \text{H} & \text{e}_{\text{ij}} \\ \alpha_{ij} = & \Lambda & \alpha_{ij} \text{,} \\ & & \text{h=1} \end{array}$$

где H - число всевозможных путей от Y_i к Y_j ;

 $\alpha_{ij}{}^h$ - конъюнкция, соответствующая h-му пути от Y_i к Y_j . Например, для ГСА (рис.6.3) формулы перехода имеют вид:

$$\alpha_{12} = x_1 v x_1 x_1 V x_1 x_1 \dots x_1 V \dots$$
 $\alpha_{13} = x_1 x_2;$
 $\alpha_{14} = x_1 x_2.$

Рис. 6.3. Пример построения функций перехода по ГСА

Погическая схема алгоритма (ЛСА). ЛСА - конечная строка, содержащая символы операторов Y_i и условий X_J и верхние и нижние стрелки, пронумерованные числами натурального ряда.

Например: $Y_H Y_1 Y_2 \downarrow^I Y_3 Y_4 x_1 \uparrow^2 w \uparrow^I \downarrow^2 Y_K$

Правила построения ЛСА:

- 1) ЛСА содержит один оператор начала Y_H и один оператор конца Y_K .
- 2) Перед оператором Y_H и после оператора Y_K стрелки не ставятся.
- 3) После логического условия x_i всегда ставится верхняя стрелка \uparrow .
- 4) В ЛСА не может быть одинаковых нижних стрелок.
- 5) Каждой верхней стрелке соответствует одна нижняя.
- 6) Каждой нижней стрелке может соответствовать несколько верхних стрелок.

Переход от ГСА к ЛСА выполняется следующим образом

- 1) В ГСА отмечаются входы всех вершин, к которым подходит более одной стрелки, натуральными числами от I до S.
- 2) Записывается оператор начала Y_H ; если после начальной вершины в ГСА следует отмеченная S вершина, то после Y_H ставится нижняя стрелка с номером S. Далее записывается следующий оператор.
- 3) После условия x ставится верхняя стрелка \uparrow с номером S в том случае, если выход условной вершины по нулю отмечен, в противном случае номер не ставится. Если единичный выход условной вершины верхней стрелка отмечен, то после ставится **РИЖИН** соответствующим номером, после чего записывается оператора, следующего за условной вершиной по выходу "1".
- 4) Процедура записи продолжается, пока в строке не появится нижняя стрелка, записанная ранее, или символ " Y_K " до окончания ЛСА. В этих случаях вместо нижней стрелки и Y_K ставится тождественно ложное условие $w \uparrow$.
- 5) В записанной строке находятся верхние стрелки без номеров, они отмечаются натуральными числами, начиная от S+1.

- 6) Записываются новые строки ЛСА, каждая из которых начинается с нижней стрелки с номером S+1,S+2,..., вслед за которыми записываются символы операторов и условий, соответствующие нулевым выходам условных вершин.
- 7) Все строки объединяются в одну путем их последовательной записи, причем последним символом в ЛСА будет оператор конца с нижней стрелкой $\downarrow Y_K$.
- 8) Проверяется соответствием верхних и нижних стрелок. На рис.6.4 показана ГСА и соответствующая ей ЛСА.

$$Y_{H} \stackrel{1}{\downarrow} Y_{1} x_{2} \stackrel{1}{\uparrow} Y_{2} x_{2} \stackrel{1}{\uparrow} x_{3} \stackrel{1}{\uparrow} x_{3} \stackrel{4}{\uparrow} w \stackrel{3}{\uparrow} \stackrel{4}{\downarrow} Y_{3} \stackrel{2}{\downarrow} x_{2} \stackrel{2}{\uparrow} \stackrel{3}{\downarrow} Y_{K}$$

Рис. 6.4. Пример построения ЛСА по граф-схеме алгоритма

Формулы перехода. Формулы перехода указывают всевозможные пути перехода от оператора Y_l к другим операторам и имеют вид :

$$Y_i \to \overset{T}{\underset{t=1}{V}} \alpha_{it} Y_t$$

где α_{it} , - функция перехода от Y_i к Y_t . Для построения формул перехода удобны ГСА.

Матричная схема алгоритма (МСА). МСА - это квадратная матрица, строки и столбцы второй отмечаются символами операторных вершин, а в поле матрицы записываются функции перехода α_{it} .

Например, для ГСА на рис. 6.4 МСА имеет вид:

$$Y_1$$
 Y_2 Y_3 Y_4 \leftarrow вершины перехода

$$\begin{array}{c} \mathbf{Y}_{\mathrm{H}} \\ \mathbf{Y}_{1} \\ \mathbf{Y}_{2} \\ \mathbf{Y}_{3} \end{array} \left[\begin{array}{cccc} 1 & . & . & . \\ \overline{x}_{1} & x_{1} & . & . \\ \overline{x}_{2}^{1} & . & x_{2}^{1} \overline{x}_{1} & x_{2}^{1} x_{3} \\ . & . & x_{2}^{2} & \overline{x}_{2}^{2} \end{array} \right]$$

3. Синтез микропрограммного автомата по граф-схеме алгоритма (ГСА)

3.1. Синтез абстрактного автомата

Синтез абстрактного автомата, или *абстрактный синтез*, заключается в построении абстрактного автомата на основе имеющегося физического описания работы автомата и состоит из двух этапов:

- 1) описание автомата на одном из стандартных автоматных языков и определение числа внутренних состояний;
- 1) минимизация внутренних состояний автомата.

Стандартными автоматными языками являются таблицы переходов и выходов, графы и матрицы переходов.

Микропрограммные автоматы, как правило, задаются на начальном языке в виде содержательной граф-схемы алгоритма или микропрограммы. Для построения граф-схемы (ГСА) все микрооперации кодируются символами $y_1, y_2,...$, а условия — символами $x_1, x_2,...$; причем одинаковые микрооперации и условия кодируются одинаково.

По закодированной ГСА можно построить граф автомата. Для определения числа внутренних состояний автомата проводится отметка ГСА следующим образом:

для автомата Мили

- 1) символом a_1 отмечается вход первой вершины, следующей за начальной, и вход конечной вершины;
- 1) входы вершин, следующих за операторными, отмечаются разными символами $a_2, a_3, ...$;

для автомата Мура

- 1) символом a_1 отмечаются начальная и конечная вершины ГСА;
- 1) каждая операторная вершина отмечается единственным символом $a_2, a_3,$

Далее составляются слова вида:

- 1) $a_m X(a_m, a_s), Y(a_m, a_s)a_s;$
- 2) $a_m X(a_m, a_s)a_s$;
- 3) $a_m Y(a_m, a_s)a_s$;
- 4) $a_m a_s$.

Слова первого, второго и третьего видов сопоставляются переходам от метки a_m к метке a_s через условные и операторные вершины, условные вершины и операторные вершины соответственно. Слова четвертого вида соответствуют переходу

между операторными вершинами. Очевидно, что слова 1), 2) и 3) определяются для автомата Мили, а слова 2) и 4) — для автомата Мура.

На рис.6.5 приведен пример отметки ГСА для автомата Мили и автомата Мура. Состояния автомата Мура обозначены символами e_1 , e_2 ,..., а для автомата Мили сохранены обозначения a_1 , a_2 ,.... Синтезируемый абстрактный автомат Мили имеет 5 состояний, а автомат Мура – 7.

Переход автомата из ссостояния a_m в состояние a_s ($a_m \rightarrow a_s$) определяется функцией перехода $X(a_m, a_s)$, представляющей конъюнкцию всех условий, записанных в условных вершинах на пути $a_m \rightarrow a_s$. Содержимое операторных вершин $Y(a_m, a_s)$ определяет выходной сигнал на переходе $a_m \rightarrow a_s$.

Рис. 6.5. Пример отметки ГСА для автомата Мили (a) и автомата Мура (б)

При построении графа автомата Мили началу дуги приписывается входной сигнал $X(a_m,a_s)$, а концу — выходной сигнал $Y(a_m,a_s)$. Если выполняется переход вида 2), на месте выходного сигнала ставится "0" или прочерк, при переходе вида 3) входной сигнал $X(a_m,a_s)$ полагается равным единице. При построении автомата Мура содержимое операторных вершин ГСА

приписывается вершинам графа, а дуги помечаются символами входных сигналов. Если выполняется переход вида 4), то $X(a_m, a_s) = 1$. На рис. 6.6 показан граф автомата Мили (рис. 6.5)

Рис.6.6

При синтезе микропрограммного автомата удобнее использовать таблицу переходов в измененном виде. Прямая таблица переходов - таблица, в которой последовательно перечисляются все переходы сначала из первого состояния, затем из второго и т.д. В ряде случаев оказывается удобным пользоваться обратной таблицей переходов, в которой столбцы обозначены точно так же, но сначала записываются все переходы в первое состояние, затем во второе и т.д. В качестве примера приведена прямая таблица переходов микропрограммного автомата Мили на рис.6.6 – табл.6.1.

Таблица.6.1

a_m	a_s	$X(a_m,a_s)$	$Y(a_m,a_s)$	
a_1	a_2	x_1	y 2	
	a_2	$\neg x_1$	<i>y</i> 1, <i>y</i> 2	
a_2	a_3	$\neg x_2$	у з	
	a_3	$\neg x_3 x_2$	-	
	a_5	x_3x_2	<i>y</i> 1, <i>y</i> 4	
a_3	a_4	1	<i>y</i> ₄	
a_4	a_1	1	<i>y</i> 5, <i>y</i> 6	
a_5	a_1	$\neg x_4$	-	
	a_5	x_3x_4	<i>y</i> 1, <i>y</i> 4	
	a_3	$\neg x_3 x_4$	-	

3.2. Структурный синтез МПА.

Структурный синтез микропрограммного автомата состоит в построении структурной схемы автомата и выполняется в соответствии с общим *алгоритмом канонического метода* синтеза:

1) выбирается тип и определяется количество автоматов памяти (AП) по формуле

$$R > \log_2 M$$
 [,

где М – число состояний автомата.

- 1) кодируются состояния автомата;
- 2) составляется структурная таблица автомата;
- 3) по структурной таблице составляется система логических уравнений, связывающих функции выходов и возбуждения с состояниями автомата и входными сигналами;
- 4) проводится минимизация системы логических функций;
- 5) на выбранной элементной базе синтезируется комбинационная схема автомата и строится его структурная схема.

Отличие процедуры синтеза МПА заключается в принципе построения структурной таблицы. В общем случае эта таблица содержит столбцы состояний a_m и a_s , входных сигналов $X(a_m, a_s)$, выходных сигналов $Y(a_m, a_s)$, сигналов возбуждения $F(a_m, a_s)$ и кодов состояний. Каждая строка такой таблицы соответствует одному пути перехода на графе автомата.

При построении функции возбуждения используются таблицы переходов или выходов автоматов памяти. В качестве АП может использоваться любой автомат Мура, но наиболее просто функции возбуждения строятся для элементарных АП, к которым относятся триггеры.

Таблицы переходов и входов D-, T-, RS-и JK-триггеров приведены в работе N $\!\!\!_{2}$ 5.

Пример

На рис.6.7 приведен граф автомата Мили S_6 . Требуется составить структурную таблицу МПА и систему канонических уравнений.

Рис.6.7. Граф автомата Мили S₆

Peшение. Автомат S_6 имеет 4 состояния, для кодирования которых необходимо $R = \log_2 4 = 2$ триггера. В качестве автомата памяти будем использовать RS-триггер.

Для кодирования можно использовать метод единичного кодирования (лаб. работа №4), тогда коды состояний будут такими:

$$K(a_1) - 00$$
, $K(a_2) - 01$, $K(a_3) - 10$, $K(a_4) - 11$.

Структурная таблица отличается от таблицы переходов тем, что содержит коды состояний и сигналы возбуждения, формируемые на переходе (a_m , a_s). Для RS — триггера в столбце сигналов возбуждения указывается сигнал S, если триггер переключается из состояния 0 в состояние 1, и сигнал R, если из состояния 1 в состояние 0.

Табл.6.2. представляет собой расширенную таблицу переходов и содержит помимо кодов состояний сигналы возбуждения, подаваемые на входы соответствующих триггеров.

_					Таблица 6.2	
a_m	$K(a_m)$	a_s	$K(a_s)$	$X(a_m, a_s)$	$Y(a_m, a_s)$	$F(a_m, a_s)$
a_1	00	a_2	01	$\frac{B}{-}\frac{x_1}{-}$	y_I	S_2
		a_3	10	$B \chi_1 \chi_2$	<i>y</i> ₂	S_{I}
		a_3	10	$B \frac{-}{\chi_1 \chi_2}$	у з	S_{I}
a_2	01	a_3	10	_	<i>y</i> ₂	$S_1 R_2$
		a_3	10	x_2 x_2	у з	$S_1 R_2$
	1.0		0.0			
a_3	10	a_1	00	X_1X_3	-	R_1
		a_1	00	$\frac{-}{\chi_1 \chi_3}$	<i>y</i> ₄	R_1
		a_4	11		y_I	S_2
				$\overset{\mathcal{X}_1}{-}$		
a_4	11	a_1	00	\mathcal{X}_3	-	$R_1 R_2$
		a_1	00	\mathcal{X}_3	У4	$R_1 R_2$

Ниже приводится система канонических уравнений автомата S_6 .

$$y_{1} = \tau_{1} \tau_{2} B x_{1} V \tau_{1} \tau_{2} x_{1},$$

$$y_{2} = \tau_{1} \tau_{2} B x_{1} x_{2} V \tau_{1} \tau_{2} x_{1} x_{2},$$

$$y_{3} = \tau_{1} \tau_{2} B x_{1} x_{2} V \tau_{1} \tau_{2} x_{1} x_{2},$$

$$y_{4} = \tau_{1} \tau_{2} x_{1} x_{3} V \tau_{1} \tau_{2} x_{3}.$$

$$R_{1} = \tau_{1} \tau_{2} V \tau_{1} \tau_{2} x_{1},$$

$$R_{2} = \tau_{1} \tau_{2} V \tau_{1} \tau_{2},$$

$$S_{1} = \tau_{1} \tau_{2} B x_{1} V \tau_{1} \tau_{2},$$

$$S_{2} = \tau_{1} \tau_{2} B x_{1} V \tau_{1} \tau_{2} x_{1}.$$

Далее выполняются п.п.5 и 6 алгоритма канонического метода синтеза структурного автомата.

При синтезе МПА по граф-схеме алгоритма предполагается, что автомат имеет наименьшее число состояний, так как это обусловленно

самим принципом построения граф-схемы. Однако в некоторых задачах можно сократить число состояний автомата путем выявления 0-,1-,2-,..., κ -эквивалентных состояний. По существу этот метод мало отличается от метода минимизации автоматов общего типа, однако здесь используется более слабое отношение эквивалентности, что дает возможность провести минимизацию.

0-эквивалентными называются состояния, которые при одинаковых входных сигналах характеризуются одинаковыми выходными сигналами. 1- эквивалентными называются состояния, переход из которых при одних и тех же входных сигналах происходит в одни и те же 0 - эквивалентные состояния и т.п.

Метод минимизации заключается в разбиении множества состояний автомата на эквивалентные классы. Строятся классы 0-эквивалентных состояний (π_0) , 1-эквивалентных, 2-эквивалентиых и т.д. Множество 1-эквивалентных классов обозначается (π_1) и т.д., пока на каком-то $(\kappa+1)$ -м шаге не окажется, что

 $\pi_k = \pi_{k+1}$, т.е. разбиение на (κ) - эквивалентные и (k+1)-эквивалентные классы совпадает. Последнее разбиение π_{k+1} будет соответствовать минимальному автомату.

4. Задания выполнению работы

- 4.1. Синтезировать структурную схему автомата S_6 , использовав в качестве АП D триггеры.
- 4.2. Синтезировать структурную схему автомата S_6 , использовав в качестве АП T триггеры.
- 4.3. Построить автомат Мура S_7 , эквивалентный автомату Мили S_6 ; составить таблицу переходов МПА.
- 4.4. Синтезировать структурную схему автомата S_7 , в качестве $A\Pi$ использовать D триггеры.
 - 4.5. Решить задачу 4.4 для RS триггера.
 - 4.6. Решить задачу 4.4. для T- триггера.
- 4.7. Построить граф автомата Мура, реализующего микропрограмму на рис.6.8., его таблицу переходов и синтезировать схему на RS триггерах.
- 4.8. Построить граф и таблицу переходов автомата Мили, реализующего микропрограмму на рис.6.8. Синтезировать схему автомата на Д-триггерах.
 - 4.9. Решить задачу 4.7 для Т-триггеров.
 - 4.10. Решить задачу 4.7 для D-триггеров
 - 4.11. Решить задачу 4.8 для Т-триггеров

4.12. Решить задачу 4.8 для RS-триггеров

Рис. 6.8. Микропрограммный автомат

5. Контрольные вопросы

- 5.1. Назовите функции операционного и управляющего автоматов.
- 5.2.Приведите основные положения принципа микропрограммного управления.
 - 5.3.Объясните структуру МПА, полученную В.М.Глушковым.
 - 5.4. Способы задания микропрограммных автоматов.
 - 5.5. Что называется микропрограммой?

- 5.6. Объясните отличие содержательной ГСА и ГСА.
- 5.7. Что такое логическая схема алгоритма?
- 5.8. Приведите правила построения ЛСА.
- 5.9. Как происходит переход от ГСА к ЛСА?
- 5.10. Что такое функция перехода?
- 5.11. Что такое формула перехода?
- 5.12. Что такое матричная схема алгоритма?
- 5.13. Приведите основные этапы абстрактного синтеза.
- 5.14. В чем отличие абстрактного синтеза автоматов Мили и Мура?
- 5.15. Как строится таблица переходов или граф МПА?
- 5.16. Какую структуру имеет структурная таблица переходов МПА?

Правила составления логической схемы алгоритма (ЛСА)

1. Обозначения:

 Y_t — символ, обозначающий безусловный оператор, который записывается в прямоугольник (t — номер оператора);

 ${\bf Y}_{{\bf H}}$ – начальный оператор, ${\bf Y}_{{\bf K}}$ – конечный оператор;

 $\mathbf{x}_{\mathbf{m}}$ — символ, обозначающий условный оператор, записываемый в ромб, который обязательно должен иметь обозначения выходов или одного из них (единичного или нулевого), (m — номер условного оператора).

2. Отметка граф-схемы алгоритма (ГСА).

Входы всех вершин ГСА, к которым подходит более одной дуги (стрелки), а также вход последней вершины оператора \mathbf{Y}_{κ} , даже если к ней подходит одна дуга, отмечаются «жирными» точками на этой дуге с числовой отметкой в виде натуральных чисел 1, 2, ..., S, от начального оператора \mathbf{Y}_{κ} к конечному оператору \mathbf{Y}_{κ} .