

Electricity

Consumption Prediction

Yunpeng Wang

Agenda

I. Introduction
II. Data Overview &
Data Preprocessing
III. DeepAR/ Temporal
Fusion Transformer
modeling
IV. Summary

Introduction

Electricity Load Diagrams Data Set from UCI Machine Learning Repository

Data Set

This data set contains electricity consumption of 370 clients who lives in Portugal

Project Objective

Perform a time series analysis and Predict the future electricity demands

Model utilized

Amazon Sagemaker DeepAR and Temporal Fusion Transformer (TFT) models

Data Overview & Data Preprocessing

Data Overview

	MT_001	MT_002	MT_003	MT_004	MT_005	MT_006	MT_007	MT_008	MT_009	MT_010	•••	MT_361	MT_362	MT_363	MT_364	MT_365	MT_366	MT_367	MT_368	MT_369	MT_370
2011-01-01 00:15:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1944	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2011-01-01 00:30:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2011-01-01 00:45:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	11.	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2011-01-01 01:00:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1000	0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
2011-01-01 01:15:00	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.0	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
8777	2455		577	1000	2***		***			(***	8777	***	999	74.94	***	315	(***	975		***	***
2014-12-31 23:00:00	2.538071	22.048364	1.737619	150.406504	85.365854	303.571429	11.305822	282.828283	68.181818	72.043011		276.945039	28200.0	1616.033755	1363.636364	29.986962	5.851375	697.102722	176.961603	651.026393	7621.621622
2014-12-31 23:15:00	2.538071	21.337127	1.737619	166.666667	81.707317	324.404762	11.305822	252.525253	64.685315	72.043011	1,775	279.800143	28300.0	1569.620253	1340.909091	29.986962	9.947338	671.641791	168.614357	669.354839	6702.702703
2014-12-31 23:30:00	2.538071	20.625889	1.737619	162.601626	82.926829	318.452381	10.175240	242.424242	61.188811	74.193548		284.796574	27800.0	1556.962025	1318.181818	27.379400	9.362200	670.763828	153.589316	670.087977	6864.864865
2014-12-31 23:45:00	1.269036	21.337127	1.737619	166.666667	85.365854	285.714286	10.175240	225.589226	64.685315	72.043011		246.252677	28000.0	1443.037975	909.090909	26.075619	4.095963	664.618086	146.911519	646.627566	6540.540541
2015-01-01 00:00:00	2.538071	19.914651	1.737619	178.861789	84.146341	279.761905	10.175240	249.158249	62.937063	69.892473		188.436831	27800.0	1409.282700	954.545455	27.379400	4.095963	628.621598	131.886477	673.020528	7135.135135
140256 rows × 370 colu	amns																				

- 370 columns(clients)
- 2011-01-01 00:15:00 to 2015-01-01 00:00:00
- Power_usage recorded in every 15 minutes

check missing data
 check data aligned with data description
 check outliers (negative values, consecutive daily zero consumption clients)
 Diagnostics
 Aggregation
 Hierarchical clustering:
Agglomerative cluster in different group by clients' daily electricity
 Usage
 Clustering

Sum the electricity consumption data by days for each client

-Data Diagnostic

- 140256 = 1461 (days' count between
 2011-01-01 and 2015-01-01) * 96 (24 hours * 4 quarters)
- This means no missing time slot

No missing data!

```
data.isnull().values.any()
False
```

-Data Diagnostic

Data recorded in every 15 mins

```
data.index
DatetimeIndex(['2011-01-01 00:15:00', '2011-01-01 00:30:00',
               '2011-01-01 00:45:00', '2011-01-01 01:00:00',
               '2011-01-01 01:15:00', '2011-01-01 01:30:00',
               '2011-01-01 01:45:00', '2011-01-01 02:00:00',
               '2011-01-01 02:15:00', '2011-01-01 02:30:00',
               '2014-12-31 21:45:00', '2014-12-31 22:00:00',
               '2014-12-31 22:15:00', '2014-12-31 22:30:00',
               '2014-12-31 22:45:00', '2014-12-31 23:00:00',
               '2014-12-31 23:15:00', '2014-12-31 23:30:00',
               '2014-12-31 23:45:00', '2015-01-01 00:00:00'],
              dtype='datetime64[ns]', length=140256, freq=None)
from datetime import datetime
j = "2011-01-01 00:15:00"
j = datetime.strptime(j,'%Y-%m-%d %H:%M:%S')
diff = []
for i in data.index:
    if i == j:
        continue
    else:
       diff.append(i - j)
        j = i
all(element == diff[0] for element in diff)
True
```

-Data Diagnostic

 The argument, that every year in March time change day (which has only 23 hours) the values between 1:00 am and 2:00 am are zero for all points, is invalid.

The argument, that every year in October time change day (which has 25 hours) the values** between 1:00 am and 2:00 am** aggregate the consumption of two hours, is hard to prove its validity. However, based on observation on data diagram, this statement is false.

Data PreprocessingData Diagnostic

No negative valued data

```
(data < 0).values.any()
False

(data.values < 0.0).any()
False</pre>
```

 No client has 30 consecutive daily zero consumption

Data Preprocessing -Data Aggregation

a = data.resample('D').sum()
a

	MT_001	MT_002	MT_003	MT_004	MT_005	MT_006	MT_007	MT_008	MT_009	MT_010		MT_361	MT_362	MT_363	
2011- 01-01	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	7	0.000000	0.0	0.000000	(
2011- 01-02	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	8775	0.000000	0.0	0.000000	0
2011- 01-03	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	1	0.000000	0.0	0.000000	(
2011- 01-04	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.0	0.000000	(
2011- 01-05	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000		0.000000	0.0	0.000000	(
		377	***	***	3.555	(85%)	***	550.5				***			
2014- 12-28	227.157360	2131.578947	151.172893	14327.235772	6776.829268	20122.023810	429.621255	25255.892256	5118.881119	4794.623656		28815.132049	3272100.0	220721.518987	257477
2014- 12-29	248.730964	2212.660028	160.729800	14067.073171	7198.780488	22824.404762	550.593556	30286.195286	6697.552448	6337.634409	8200	28825.124911	3109100.0	206852.320675	269090
2014- 12-30	232.233503	2205.547653	165.073849	14290.650407	7189.024390	23880.952381	586.772188	30909.090909	6487.762238	6489.247312	6744	28488.222698	2904300.0	204126.582278	263613
2014- 12-31	229.695431	2273.115220	166.811468	14006.097561	7023.170732	23511.904762	690.785755	28700.336700	6211.538462	5034.408602		26970.735189	2748800.0	162556.962025	215886
2015- 01-01	2.538071	19.914651	1.737619	178.861789	84.146341	279.761905	10.175240	249.158249	62.937063	69.892473		188.436831	27800.0	1409.282700	954
1462 row	s × 370 colum	ins													

-Data Clustering


```
corr_mat_a = a.corr(method='pearson')
dist_a = np.sqrt(0.5*(1-corr_mat_a))
```


-Data Clustering

minimum spanning tree structure incorporates hierarchical relationships

-Data Clustering

Correlation-based Clustering Dendrogram

Data Clustering

- max_d = 1.9, decided by evaluating dendrogram visually
- Total number of clusters: 14


```
from scipy.cluster.hierarchy import fcluster
max d = 1.9
clusters a = fcluster(link a, t=max d, criterion='distance')
df_clust_a= pd.DataFrame({'Cluster':clusters_a, 'Feature':a.columns.values.astype('str')})
df clust a.groupby('Cluster').count()
         Feature
Cluster
               8
             121
              16
               3
              15
   10
               6
   11
   12
              34
   13
   14
               6
```

Data PreprocessingData Clustering

Visually check if customers within the same cluster have similar electricity consumption pattern

Cluster 6

Data PreprocessingData Clustering

Visually check if customers within the same cluster have similar electricity consumption pattern

Data PreprocessingData Clustering

Visually check if customers within the same cluster have similar electricity consumption pattern

-Data Visualization

Data PreprocessingData Visualization (PCA)

DeepAR/ Temporal Fusion Transformer modeling(TFT)

Introduction

- Amazon SageMaker is a fully managed machine learning service on Amazon Web Service(AWS)
- Amazon SageMaker provides machine learning (ML) capabilities that are purpose-built for data scientists and developers to prepare, build, train, and deploy high-quality ML models efficiently.
- The Amazon SageMaker DeepAR forecasting algorithm is a supervised learning algorithm for forecasting scalar (one-dimensional) time series using recurrent neural networks (RNN).
- DeepAR outperforms the standard ARIMA and ETS methods when the dataset contains hundreds of related time series.

```
training_data_new_features = [
        "start": str(start dataset),
        "target": ts[
           start_dataset : end_training - timedelta(days=1)
        "dynamic_feat": [w['TAVG'][start_dataset:end_training - timedelta(days=1)].tolist()],
   for ts in timeseries1
print(len(training_data_new_features))
14
num test windows = 4
test data new features = [
       "start": str(start_dataset),
       "target": ts[start_dataset : end_training + timedelta(days=k * prediction_length)].tolist(),
        "dynamic_feat": [w['TAVG'][start_dataset:end_training + timedelta(days=k * prediction_length)].tolist()],
   for k in range(1, num_test_windows + 1)
   for ts in timeseries1
print(len(test_data_new_features))
56
```

```
estimator new features = sagemaker.estimator.Estimator(
   image uri=image name.
   sagemaker session=sagemaker session,
    role=role.
   train instance count=1,
   train instance type="ml.c4.2xlarge",
   base_job_name="deepar-electricity-demo-new-features",
   output path=s3 output path new features,
hyperparameters = {
    "time freq": freq,
    "epochs": "1000",
    "early stopping patience": "20",
    "mini batch size": "64",
   "learning rate": "5E-4",
    "context length": str(context length),
    "prediction length": str(prediction length),
    "num dynamic feat": "auto", # this will use the `dynamic feat` field if
estimator new features.set hyperparameters(**hyperparameters)
estimator new features.fit(
    inputs={
        "train": "{}/train/".format(s3 data path new features),
        "test": "{}/test/".format(s3_data_path_new_features),
   },
    wait=True,
```

```
@interact manual(
    customer id=IntSlider(min=0, max=13, value=1, style=style),
   forecast_day=IntSlider(min=0, max=336, value=10, style=style),
    confidence=IntSlider(min=60, max=95, value=80, step=5, style=style),
   history_weeks_plot=IntSlider(min=1, max=10, value=1, style=style),
    show_samples=Checkbox(value=False),
    continuous_update=False,
def plot interact(customer_id, forecast_day, confidence, show_samples):
    forecast_date = end_training + datetime.timedelta(days=forecast_day)
    ts = timeseries1[customer_id]
    freq = ts.index.freq
   target = ts[start_dataset : forecast_date + prediction_length * freq]
   dynamic_feat = [w['TAVG'].tolist()]
    plot(
        predictor new features,
       target_ts=target,
        dynamic feat=dynamic feat,
        forecast date=forecast date,
        show samples=show samples,
       plot history=7 * 12,
       confidence=confidence,
```

Interactive interface

– forecast of any
customer at any
point in (future)
time

Results

Cluster I validation

Results

Cluster I test

Results

Cluster I future prediction

Results

Cluster I

overall[0].MAPE.mean() 0.08568281996792973

Above is MAPE on test set Right is MAPE on test set plot over time

Results

- For other clusters' results, please check out outputs on Jupyter Notebook and technical documentation
- Overall MAPE are demonstrated as graph below

Introduction

- Temporal Fusion Transformer (TFT) is a transformer-based model that leverages self-attention to capture the complex temporal dynamics of multiple time sequences
- TFT supports:
 - multiple time series
 - multi-horizon forecasting
 - heterogeneous features
 - interpretable predictions

Pre-modeling (feature engineering)

- **DeterministicProcess, CalendarFourier** from statsmodels.tsa.deterministic
- Merge Lisbon's daily avg/max/min temperature and precipitation
- plot_pacf from statsmodels.graphics.tsaplots

Data seasonality and trend analysis

Derived variable creation

Autocorrelation
Power Spectral Density
Seasonality decomposition


```
early stop callback = EarlyStopping(monitor="val loss", min delta=1, patience=10, verbose=True, mode="min")
lr logger = LearningRateMonitor()
logger = TensorBoardLogger("lightning_logs")
trainer1 = pl.Trainer(
    max epochs=100,
    accelerator='gpu',
    devices=1,
    enable model summary=True,
    gradient clip val=0.1,
    callbacks=[lr_logger, early_stop_callback],
    logger=logger)
tft1 = TemporalFusionTransformer.from dataset(
    training1,
    learning_rate=0.1,
    hidden_size=160,
    attention head size=4,
    dropout=0.1,
    hidden_continuous_size=160,
    output size=7, # there are 7 quantiles by default: [0.02, 0.1, 0.25, 0.5, 0.75, 0.9, 0.98]
    loss=OuantileLoss(),
    log interval=10,
    reduce on plateau patience=4)
```

```
trainer1.fit(tft1,
    train_dataloaders=train_dataloader1,
    val dataloaders=val dataloader1)
INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL RANK: 0 - CUDA VISIBLE DEVICES: [0]
INFO:
                                          QuantileLoss
     logging metrics
                                          ModuleList
     input embeddings
                                          MultiEmbedding
     prescalers
                                          ModuleDict
                                                                            10.2 K
     static variable selection
                                          VariableSelectionNetwork
                                                                            313 K
     encoder variable selection
                                          VariableSelectionNetwork
                                                                            3.1 M
     decoder variable selection
                                          VariableSelectionNetwork
                                                                            3.0 M
     static_context_variable_selection
                                          GatedResidualNetwork
                                                                            103 K
     static context initial hidden 1stm
                                          GatedResidualNetwork
                                                                            103 K
     static_context_initial_cell_lstm
                                          GatedResidualNetwork
                                                                            103 K
10 | static_context_enrichment
                                          GatedResidualNetwork
                                                                            103 K
11 | 1stm encoder
                                          LSTM
                                                                            206 K
12 | 1stm decoder
                                          LSTM
                                                                            206 K
     post 1stm gate encoder
                                          GatedLinearUnit
                                                                            51.5 K
     post 1stm add norm encoder
                                          AddNorm
                                                                            320
15 | static enrichment
                                          GatedResidualNetwork
                                                                            128 K
                                          InterpretableMultiHeadAttention
   multihead attn
                                                                            64.4 K
     post_attn_gate_norm
                                          GateAddNorm
                                                                            51.8 K
    pos wise ff
                                          GatedResidualNetwork
                                                                            103 K
                                          GateAddNorm
     pre output gate norm
                                                                            51.8 K
7.8 M
          Trainable params
          Non-trainable params
7.8 M
          Total params
         Total estimated model params size (MB)
31.071
```

Results

Cluster I

Baseline Model Outcome on validation

```
actuals1 = torch.cat([y for x, (y, weight) in iter(val_dataloader1)]).to('cuda')
baseline_predictions1 = Baseline().predict(val_dataloader1).to('cuda')
((actuals1 - baseline_predictions1)/(actuals1)).abs().mean().item()

WARNING: Missing logger folder: /content/lightning_logs
WARNING:lightning.pytorch.loggers.tensorboard:Missing logger folder: /content/lightning_logs
INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0.07389553636312485
```


validation

Results

Cluster I

Boxplot of MAPE on test set


```
mape1 = cluster1['MAPE'].mean()
mape1
0.029311845577712728
```

MAPE on test set

Results

Cluster 2

Baseline Model Outcome on validation

```
actuals2 = torch.cat([y for x, (y, weight) in iter(val_dataloader2)]).to('cuda')
baseline_predictions2 = Baseline().predict(val_dataloader2).to('cuda')
((actuals2 - baseline_predictions2)/(actuals2)).abs().mean().item()

WARNING: Missing logger folder: /content/lightning_logs
WARNING:lightning.pytorch.loggers.tensorboard:Missing logger folder: /content/lightning_logs
INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0.6881226301193237
```


validation

Results

Cluster 2

Boxplot of MAPE on test set


```
mape2 = cluster2['MAPE'].mean()
mape2
0.2042210465002982
```

MAPE on test set

Results

Cluster 3

Baseline Model Outcome on validation

```
actuals3 = torch.cat([y for x, (y, weight) in iter(val_dataloader3)]).to('cuda')
baseline_predictions3 = Baseline().predict(val_dataloader3).to('cuda')
((actuals3 - baseline_predictions3)/(actuals3)).abs().mean().item()

INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0.04628966748714447
```


validation

Results

Cluster 3

Boxplot of MAPE on test set

```
mape3 = cluster3['MAPE'].mean()
mape3

0.02463250434958997
```

MAPE on test set

Results

Cluster 4

Baseline Model Outcome on validation

```
actuals4 = torch.cat([y for x, (y, weight) in iter(val_dataloader4)]).to('cuda')
baseline_predictions4 = Baseline().predict(val_dataloader4).to('cuda')
((actuals4 - baseline_predictions4)/(actuals4)).abs().mean().item()

INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0.0896955281496048
```


validation

Results

Cluster 4

Boxplot of MAPE on test set


```
mape4 = cluster4['MAPE'].mean()
mape4

0.022728467635363264
```

MAPE on test set

Results

Cluster 5

Baseline Model Outcome on validation

```
actuals5 = torch.cat([y for x, (y, weight) in iter(val_dataloader5)]).to('cuda')
baseline_predictions5 = Baseline().predict(val_dataloader5).to('cuda')
((actuals5 - baseline_predictions5)/(actuals5)).abs().mean().item()

INFO: LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
INFO:lightning.pytorch.accelerators.cuda:LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
0.10071036964654922
```


validation

Results

Cluster 5

Boxplot of MAPE on test set


```
mape5 = cluster5['MAPE'].mean()
mape5
0.042938305456993425
```

MAPE on test set

Results

- For other clusters' results, please check out outputs on Jupyter
 Notebook and technical documentation
- Overall MAPE are 0.07007176169746014, calculated by taking weighted average over MAPE of clusters' data

Summary

Summary

- According to our modeling results, Temporal Fusion Transformer (TFT) performs very well on forecasting electricity consumption with the assistance of hierarchical clustering. Its accuracy of forecasting is around 7.0% while DeepAR's MAPE is around 8.9%, which is also a reasonably good score.
- Main advantage of TFT are the interpretability of features' importance and the ability to foretell out-of-sample data even without features' out-of-sample data.
- DeepAR has the edge on TFT in terms of easy implementation and efficient learning and predicting for all clusters at once.
- Further commitment on choosing optimal parameters like epochs, batch_size and learning rate is worthy looking into.

One man gang

Yunpeng Wang