Classification via Probabilities and the Logistic Function

Classification Based on Probability

Class prediction

- Effective and useful
- Doesn't give prediction confidence
- Borderline cases are problematic

Key Idea: Instead of predicting only the class label, output the probability of the instance being within that class \circ i.e., learn $p(y \mid x)$

Types of Discriminative Methods

Class prediction

Probability prediction

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions
 - $\circ h_{\boldsymbol{\theta}}(\boldsymbol{x})$ should give $p(y=1|\boldsymbol{x};\boldsymbol{\theta})$
 - \circ Want $0 \le h_{\theta}(x) \le 1$

Can't just use linear regression with a threshold

Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma\left(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x}\right)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Logistic / Sigmoid Function

Interpretation of Hypothesis Output

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \text{estimated } p(y = 1 \mid \boldsymbol{x}; \boldsymbol{\theta})$$

Example: Ocular tumor diagnosis from size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.85$

→ Tumor has a 70% chance of being malignant

Note that:
$$p(y = 0 | x; \theta) + p(y = 1 | x; \theta) = 1$$

Therefore,
$$p(y = 0 \mid x; \theta) = 1 - p(y = 1 \mid x; \theta)$$

Another Interpretation

Equivalently, logistic regression assumes that

$$\log \underbrace{\frac{p(y=1\mid \boldsymbol{x};\boldsymbol{\theta})}{p(y=0\mid \boldsymbol{x};\boldsymbol{\theta})}}_{\text{odds of }y=1} = \theta_0 + \theta_1 x_1 + \ldots + \theta_d x_d$$

Side Note: the odds in favor of an event is the quantity p / (1 - p), where p is the probability of the event

E.g., If I toss a fair dice, what are the odds that I will have a 6?

ullet So, logistic regression assumes that the log odds is a linear function of $oldsymbol{x}$

Logistic Regression

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})$$
$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Logistic / Sigmoid Function

 $\theta^{\mathsf{T}}x$ should be large positive values for positive instances

Predicting a class: Assume a threshold and...

$$\circ$$
 Predict $y = 1$ if $h_{\theta}(x) \ge 0.5$

$$\circ$$
 Predict $y = 0$ if $h_{\theta}(x) < 0.5$

Non-Linear Decision Boundary

Can apply basis expansion to features, same as with linear regression

$$egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} egin{array}{c} 1 \ x_1 \ x_2 \ x_1x_2 \ x_1^2 \ x_2^2 \ x_1^2x_2 \ x_1x_2^2 \ \vdots \end{array} \end{array}
ight.$$

Logistic Regression

• Given
$$\left\{\left(\boldsymbol{x}_{1},y_{1}\right),\left(\boldsymbol{x}_{2},y_{2}\right),\ldots,\left(\boldsymbol{x}_{n},y_{n}\right)\right\}$$
 where $\boldsymbol{x}_{i}\in\mathbb{R}^{d},\ y_{i}\in\left\{0,1\right\}$

• Model:
$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma\left(\boldsymbol{\theta}^{\intercal}\boldsymbol{x}\right)$$
 ; $\sigma(z) = \frac{1}{1 + e^{-z}}$
$$= \frac{1}{1 + e^{-\theta^{\intercal}\boldsymbol{x}}}$$

where

Maximum Likelihood Estimation for Logistic Regression

Optimizing Logistic Regression

Can't just use squared loss as in linear regression:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} (h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) - y_i)^2$$

 \circ Using the logistic regression model $h_{m{ heta}}(m{x})=rac{1}{1+e^{-m{ heta}^{\mathsf{T}}m{x}}}$ in the above results in a non-convex optimization

We need another way; one that takes probability into account...

• Likelihood of data is given by:
$$l(\theta) = \prod_{i=1}^n p(y_i \mid \boldsymbol{x}_i; \boldsymbol{\theta})$$

Since each probability is in [0,1], this is a very small number

Potential for numeric underflow

• We are looking for the θ that maximizes the likelihood

$$\boldsymbol{\theta}_{\mathrm{MLE}} = \arg\max_{\boldsymbol{\theta}} l(\boldsymbol{\theta}) = \arg\max_{\boldsymbol{\theta}} \prod_{i=1}^{n} p(y_i \mid \boldsymbol{x}_i; \boldsymbol{\theta})$$

• Need to solve
$$m{ heta}_{ ext{MLE}} = rg\max_{m{ heta}} l(m{ heta}) = rg\max_{m{ heta}} \prod_{i=1} p(y_i \mid m{x}_i; m{ heta})$$

We can take the log without changing the solution:

$$m{ heta}_{ ext{MLE}} = rg \max_{m{ heta}} \log \prod_{i=1}^n p(y_i \mid m{x}_i; m{ heta})$$
 This is called the log likelihood
$$= rg \max_{m{ heta}} \sum_{i=1}^n \log p(y_i \mid m{x}_i; m{ heta})$$
 Sum avoids underflow

• Need to solve
$$m{ heta}_{\mathrm{MLE}} = rg \max_{m{ heta}} l(m{ heta}) = rg \max_{m{ heta}} \prod_{i=1}^{n} p(y_i \mid m{x}_i; m{ heta})$$

We can take the log without changing the solution:

$$m{ heta}_{ ext{MLE}} = rg \max_{m{ heta}} \log \prod_{i=1}^n p(y_i \mid m{x}_i; m{ heta})$$
 This is called the log likelihood
$$= rg \max_{m{ heta}} \sum_{i=1}^n \log p(y_i \mid m{x}_i; m{ heta})$$
 Sum avoids underflow

• Need to solve
$$m{ heta}_{ ext{MLE}} = rg \max_{m{ heta}} \sum_{i=1}^n \log p(y_i \mid m{x}_i; m{ heta})$$

$$\begin{aligned} \boldsymbol{\theta}_{\mathrm{MLE}} &= \arg\max_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(y_i \mid \boldsymbol{x}_i; \boldsymbol{\theta}) \\ &= \arg\min_{\boldsymbol{\theta}} - \sum_{i=1}^{n} \log p(y_i \mid \boldsymbol{x}_i; \boldsymbol{\theta}) \end{aligned} \qquad \begin{aligned} & \text{Taking the negative turns a maximization problem into a minimization problem} \\ &= \arg\min_{\boldsymbol{\theta}} - \sum_{i=1}^{n} \log p(y_i \mid \boldsymbol{x}_i; \boldsymbol{\theta}) \end{aligned} \qquad \begin{aligned} & \text{Exploits that } y_i \text{ is either 0 or 1, so only one term is non-zero} \\ &= \arg\min_{\boldsymbol{\theta}} - \sum_{i=1}^{n} \left[y_i \log p(y_i = 1 \mid \boldsymbol{x}_i; \boldsymbol{\theta}) + (1 - y_i) \log (1 - p(y_i = 1 \mid \boldsymbol{x}_i; \boldsymbol{\theta})) \right] \end{aligned}$$

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^n \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1-y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)\right) \right]$$

Cost of a single instance:

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

• Can re-write objective function as $\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \cos \left(h_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i\right)$

Compare to linear regression:
$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_i \right) - y_i \right)^2$$

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

$$\cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1 \\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

$$\cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1 \\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

For positive instances (y = 1)

- Cost = 0 if predicted positive ($h_{\theta}(x) = 1$)
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0$, $\text{cost} \to \infty$

Larger mistakes get larger penalties

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{i=1}^{n} \cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}_i), y_i)$$

$$\cot(h_{\boldsymbol{\theta}}(\boldsymbol{x}), y) = \begin{cases} -\log(h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 1 \\ -\log(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x})) & \text{if } y = 0 \end{cases}$$

For positive instances (y = 1)

- Cost = 0 if predicted positive ($h_{\theta}(x) = 1$)
- As $h_{\boldsymbol{\theta}}(\boldsymbol{x}) \to 0$, $\cos t \to \infty$

For negative instances (y = 0)

- Cost = 0 if predicted negative $(h_{\theta}(x) = 0)$
- As $(1 h_{\theta}(x)) \to 0$, cost $\to \infty$

Regularization and Gradient Descent for Logistic Regression

Regularized Logistic Regression

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right]$$

Use the natural logarithm ($\ln = \log_e$) to cancel with the $\exp()$ in $h_{\boldsymbol{\theta}}(\boldsymbol{x})$

We can regularize logistic regression exactly as before:

$$\mathcal{L}_{\text{regularized}} (\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \lambda \sum_{j=1}^{d} \theta_{j}^{2}$$
$$= \mathcal{L}(\boldsymbol{\theta}) + \lambda \left\| \boldsymbol{\theta}_{[1:d]} \right\|_{2}^{2}$$

Gradient Descent for Logistic Regression

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) \right) \right] + \lambda \left\| \boldsymbol{\theta}_{[1:d]} \right\|_2^2$$

Want $\min_{\boldsymbol{\theta}} \mathcal{L}_{\text{reg}}(\boldsymbol{\theta})$

- Initialize θ
- Repeat until convergence

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} \mathcal{L}_{\text{reg}}(\boldsymbol{\theta})$$
 sim

simultaneous update for $j = 0 \dots d$

Gradient Descent for Logistic Regression

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log \left(1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) \right) \right] + \lambda \left\| \boldsymbol{\theta}_{[1:d]} \right\|_2^2$$

Want $\min_{oldsymbol{ heta}} \mathcal{L}_{\mathrm{reg}}(oldsymbol{ heta})$

- Initialize θ
- Repeat until convergence

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_i \right) - y_i \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_i \right) - y_i \right) x_{ij} + \lambda \theta_j \right]$$

simultaneous update for $j = 0 \dots d$

Gradient Descent for Logistic Regression

- Initialize θ
- Repeat until convergence

$$\theta_0 \leftarrow \theta_0 - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_i \right) - y_i \right)$$

$$\theta_j \leftarrow \theta_j - \alpha \left[\sum_{i=1}^n \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}_i \right) - y_i \right) x_{ij} + \lambda \theta_j \right]$$

simultaneous update for $j = 0 \dots d$

This looks IDENTICAL to linear regression!!!

- Ignoring the 1/n constant
- However, the form of the model is very different: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$

L1 Regularization and Sparsity

Datasets with Many Features

1,000+

SEQN	RIDAGEYR	BMXWAIST	вмхнт	LBXTC	BMXLEG	вмхwт	вмхвмі	RIDRETH1	BPQ020	ALQ120Q	DMDEDUC2	RIAGENDR		DIABETIC
73557	69.0	100.0	171.3	167.0	39.2	78.3	26.7	Non-Hispanic Black	yes	1.0	high school graduate / GED	male	•••	yes
73558	54.0	107.6	176.8	170.0	40.0	89.5	28.6	Non-Hispanic White	yes	7.0	high school graduate / GED	male	•••	yes
73559	72.0	109.2	175.3	126.0	40.0	88.9	28.9	Non-Hispanic White	yes	0.0	some college or AA degree	male	•••	yes
73562	56.0	123.1	158.7	226.0	34.2	105.0	41.7	Mexican American	yes	5.0	some college or AA degree	male	•••	no
73564	61.0	110.8	161.8	168.0	37.1	93.4	35.7	Non-Hispanic White	yes	2.0	college graduate or above	female	•••	no
73566	56.0	85.5	152.8	278.0	32.4	61.8	26.5	Non-Hispanic White	no	1.0	high school graduate / GED	female	•••	no
73567	65.0	93.7	172.4	173.0	40.0	65.3	22.0	Non-Hispanic White	no	4.0	9th-11th grade	male	•••	no
73568	26.0	73.7	152.5	168.0	34.4	47.1	20.3	Non-Hispanic White	no	2.0	college graduate or above	female	•••	no
73571	76.0	122.1	172.5	167.0	35.5	102.4	34.4	Non-Hispanic White	yes	2.0	college graduate or above	male	•••	yes

- L₂ regularization will assign a weight to every feature
 - \circ Many features with little weight \rightarrow complex model
- The need for feature selection
 - Often, it is only a few features that we really want
 - o Irrelevant features should be assigned a coefficient of 0

This is called sparsity

L₁ Regularization

- What we really want is the L_0 norm (count of non-zero coefficients)
 - o But, it is discontinuous, non-convex, and generally difficult to compute
- Instead, approximate using the L $_1$ norm: $\|oldsymbol{v}\|_1 = \sum_i |v_j|$
- Can incorporate into the logistic regression objective:

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right] + \lambda \left\| \boldsymbol{\theta}_{[1:d]} \right\|_1$$

Understanding L₁Regularization

Understanding L₁Regularization

$$\mathcal{L}_{\text{reg}}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right] + \lambda \sum_{j=1}^{d} |\theta_j|$$

Stochastic Gradient Descent

Consider Learning with Numerous Data

Logistic regression objective:

$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^{n} \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1 - y_i) \log (1 - h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right]$$

$$\cot \theta \left(\mathbf{x}_i, y_i \right)$$

Fit via gradient descent:

$$\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^n \left(h_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i \right) x_{ij}$$

• What is the computational complexity in terms of n?

Gradient Descent

Logreg objective:
$$\mathcal{L}(\boldsymbol{\theta}) = -\sum_{i=1}^n \left[y_i \log h_{\boldsymbol{\theta}}(\boldsymbol{x}_i) + (1-y_i) \log (1-h_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) \right]$$

Batch Gradient Descent

Initialize $m{ heta}$ Repeat { $\theta_j \leftarrow \theta_j - \alpha \sum_{i=1}^n \left(h_{\pmb{\theta}}(\mathbf{x}_i) - y_i\right) x_{ij} \ \forall j$ } $\frac{\partial}{\partial \theta_i} J(\pmb{\theta})$

Stochastic Gradient Descent

Initialize **θ**

Randomly shuffle dataset Repeat { (Typically 1 – 10x) For i=1...n, do $\theta_j \leftarrow \theta_j - \alpha \left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_i\right) - y_i\right) x_{ij} \ \forall j$ } $\frac{\partial}{\partial \theta_i} \mathrm{cost}_{\boldsymbol{\theta}}(\boldsymbol{x}_i, y_i)$

Batch vs Stochastic GD

- Learning rate α is typically held constant
- Can slowly decrease α over time to force θ to converge:

e.g.,
$$\alpha_t = \frac{\text{constant1}}{\text{iterationNumber} + \text{constant2}}$$

Adagrad

New Stochastic Gradient Algorithms

So far, we have considered:

- a constant learning rate α
- a time-dependent learning rate α_t via a pre-set formula
- AdaGrad adjusts the learning rate based on historical information
- Adagrad's Key idea: "learn slowly" from frequent features but "pay attention" to rare but informative features
 - o Frequently occurring features in the gradients get small learning rates
 - Infrequent features get higher learning rates

• Define a per-feature learning rate for feature
$$j$$
 as:
$$\alpha_{t,j} = \frac{\alpha}{\sqrt{G_{t,j}}} \quad \text{where} \quad G_{t,j} = \sum_{k=1}^t g_{k,j}^2 \frac{\partial}{\partial \theta_j} \mathrm{cost}_{\pmb{\theta}}(\mathbf{x}_k, y_k)$$

 $G_{t,j}$ is the sum of squares of gradients of feature j through time t

New Stochastic Gradient Algorithms

Adagrad per-feature learning rate: $\alpha_{t,j} = \frac{\alpha}{\sqrt{G_{t,j}}}$ where $G_{t,j} = \sum_{k=1}^{\infty} g_{k,j}^2$

• Adagrad changes the update rule for SGD at time t from $\theta_i \leftarrow \theta_i - \alpha g_{t,j}$ to

$$\theta_j \leftarrow \theta_j - \frac{\alpha}{\sqrt{G_{t,j}} + \zeta} g_{t,j} \qquad \text{In practice, we add a small constant } \zeta > 0 \text{ to prevent}$$

dividing by zero errors

Adagrad converges quickly:

Multi-Class Classification

Multi-Class Classification

Binary classification:

Multi-class classification:

Disease diagnosis:

healthy / cold / flu / pneumonia

Object classification:

desk / chair / monitor / bookcase

Multi-Class Logistic Regression

For 2 classes:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + \exp(-\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})} = \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{weight assigned to } y = 0} \underbrace{\frac{\exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^{\mathsf{T}}\boldsymbol{x})}}_{\text{to } y = 1}$$

• For C classes $\{1, ..., C\}$:

$$p(y = c \mid \boldsymbol{x}; \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_C) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Called the softmax function

Multi-Class Logistic Regression

Split into One vs Rest:

• Train a logistic regression classifier for each class i to predict the probability that y=i with

$$h_c(\boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} \boldsymbol{x})}$$

Implementing Multi-Class Logistic Regression

• Use
$$h_c(x) = \frac{\exp(\boldsymbol{\theta}_c^\mathsf{T} x)}{\sum_{c=1}^C \exp(\boldsymbol{\theta}_c^\mathsf{T} x)}$$
 as the model for class c

- Gradient descent simultaneously updates all parameters for all models \circ Same derivative as before, just with the above $h_{\rm c}({\bf x})$
- Predict class label as the most probable label $\max_{c} h_c({m x})$