Indéfinite connaisent systems whose veys coeffocient has no fonte generalized poles of nonpositive type

Staz, 20.12.2022

Preface

This talk is leased on joint work with Madruger which is not very recent, but most recently found an unergeded and relevant application.

The payers are

[Operators and Matrices 7 (2013), 477 - 555]

[Fields Institute Communications (2023), 103-200]

The recent opplication will be presented on the talk of B. Fidninger offer lunch.

lutroduction

Uswally, I use or undhandlon and allustration for the theory the greated theory of equations with two singular endpoints, for example the Dessel-type equation

$$-\upsilon''(x)+\left(\frac{\ell(\ell+1)}{x^2}+V_0(x)\right)\upsilon(x)=\lambda\upsilon(x), x\in(0,\infty),$$

where 17- 1/2 and 66 L(0,00), × V6(x) 6 L'(0,1).

Toolong I would be should from a come different sole (which leads to the some theoretical aleject, usually suddente amoused systems of a positicular form.).

De Bronges spaces ond measures

Describen: A Hermide-Doelder function som enter function \mathbb{E} without zeroer on \mathbb{C}^+ . It reliable satisfies (we denote $\mathbb{E}^{\pm}(e) := \overline{\mathbb{F}(\bar{e})}$)

 $\left|\frac{\mathbb{C}^{\#(+)}}{\mathbb{E}^{(+)}}\right| < 1$ for $t \in \mathbb{C}^{+}$.

We wrote St for the set of all Hemple-Diebler fundhows. The de Brouges sporce Indused by E = St B vo

УССЕ):= (H²(С+) O = H²(С+)). Е.

The space X63) son regnoducing kend Holbert space of entere functions, and strong head have been some

 $V_{\beta}(\omega, \varepsilon) = \frac{1}{2} - \frac{E^{\pm}(\varepsilon)}{E(\varepsilon)} \cdot \left(\frac{E^{\pm}(\omega)}{E(\omega)}\right)$

Definition: Let NCE) he a de Bronger squee and µ a possible Dorel measure en W. Le song that NCED De contained sometically on L²(µ), and wile NCE) C; L²(µ), of

HFEXED: 11-11 = SIF(E)12 dule).

Ever et gluen de Bronger space & (B) Mere evert many monnes pe with M(E) E; L²(pe), and for every pressure pe Mere evert monny de Bronger spaces M(E) will M(B) E; L²(pe).

Theorem (de Branges): Let je le a possible (nomero)

Dord measure on M., and consider on the set

the equivalence relation

M(En) ~ M(Er) 50 En lounded type on Ct.

Then each equivalence class wit. a le bally ordered.

There equivalence clarer course described by a deffected by a deffected equality a how - dimensional communical cyclem. The or on equation of the form

on on showed of R, where the Homelhaman $H(t) \in \mathbb{R}^{2 \times 2}$ for only ordered on H(t) > 0, $H(t) \neq 0$ a.e. on R.

An ordered (a, b) it colled H-ordevelle, if her H(4) of control and numero or e. on (or, b). We dende by I(H) the under of all H-ordevertle between.

Theorem (de Dronges): det l'he one equinalence class of By modulo v. Then there exists a bunily $(E(\xi, z))_{t \in \mathbb{R}}$ and a Hamiltonian H(t), $t \in \mathbb{R}$, with b + H = 1, such that (i) (A(6,2), A(6,2)) ton to a solution of the amounted organical (Fi) E(t,t) & Sell or & a real constant, (iii) C = { Se(E(6, 2)) | t \in \I(H), E(6,2) and condand } hi general all equileme clomes on By, one of equal robbits. Not so of a so Poisson subsprable. Theorem (de Gronges): Arme S duly 20. Then Mere exert or unique equivalure class & such the elevate of & one generated by Justin E which are themselver of hounded by a The Homblowiam corresponding to this chain has the jurgedy Mad hy (IR (I(H)) > - 0, and Hamiltonium consymbling to other chains do not have that persperty. Theorem (de Bronges): Let H lie or Homel Mondon on IR,

tr H=1, with S:= end ($IR \setminus ICHI$)>-0, and let $(A(t_{i+1}), B(t_{i+1}))$ he the solution of the consist explen with $(A(S_{i+1}), B(S_{i+1})) = (1,0)$. Then there exists a unique Poisson adequable massive in such that $\{S(E(t_{i+1})) \mid f \in IR \setminus ICH), f \neq s\}$ or equivalence does on S_{i} .

The Homiltonian corresponding to this claim how "underste helmism towards -00", and Hamiltonian corresponding to the purposety.

Theorem (LW): Let H le or Hamiltonian on IR, tr H=1, which lay "maderale ledwordens tomander -00". Then there exists or unique soldien of the comonical explan with lin (A(6,2), B(6,2)) = (1,0). There exists or unique to so -00 is mith your quarth, such that I selected in the form of the CE(6,2) | t & IR (I(H))?

I selected as an By.

Method of proof

Reviset le Rosmon subgrable setting.

Consider the Country outegral of M. C. .. regularesed):

This fundion of analytic on C and ling (8) 30, 200. Then the exists on Homillowing H on (0,00), to H=1, such that q is the Week coefficient of H. This H together with the solution having sulferl where (1,0) at 0 over the required ones.

Pover bounded celling: XE/N with of duly 200

Here Pontyages grace bleary comes onto play.

Comeder the Country entegral of se (... regularised):

$$9(2) := (1+2)^{2} \int \frac{1+t^{2}}{t^{2}} \frac{d\mu(t)}{(1+t^{2})^{1+2}}$$

The fundion of omalyte on at much the Newmilians

house
$$N_{q}(\omega_{i}z):=\frac{q(z)-q(\omega)}{z-3}$$

has a funde mulier of negative ogneres. Dur Mare exists on sudefinite Homblombon of such that q is the West coefficient of by.

Conclusion

Under suitable normalisations of H, needelowing byserten lesheren orll measurer wall nower quanth and Hameltonian howing "made ate belowsom Govered - 20".

This extends ble de Branzes correspondence between Bosson Orlegable measurer and Homellowing on the half-love.

A lot of result on also be extended, including

D'Gordbuilly en ledh dhecheur w.r.t. organisale begalogles.

DA Former tromsform letween L2(H) and L2/pr).

DA lissedhen of colubbur and C'hy means of regularissed houday untre at - 00.

..... etc