Department of Statistics, The Chinese University of Hong Kong STAT5010 Advanced Statistical Inference | Term 1, 2019–20

Take-home Examination

<u>Instruction to the candidates:</u> Please attempt all of the questions. Each problem carries an equal weight of 4 points. Your final score will be capped by 20, which is also the defined full mark of this exam. Good luck!

- I. Let $X_1, \ldots X_n$ be a random sample from a $N(\theta, \sigma^2)$ population with σ^2 known. Consider estimating θ using the squared error loss. Let $\pi(\theta)$ be a $N(\mu, \tau^2)$ prior distribution on θ and let δ^{π} be the Bayes estimator of θ . Verify the following formulas for the risk function and Bayes risk.
 - (a) For any constants a and b, the estimator $\delta(\boldsymbol{X}) = a\bar{\boldsymbol{X}} + b$ has risk function

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + \{b - (1 - a)\theta\}^2.$$

(b) Let $\eta = \sigma^2/(n\tau^2 + \sigma^2)$. The risk function for the Bayes estimator is

$$R(\theta, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 (\theta - \mu)^2.$$

(c) The Bayes risk for the Bayes estimator is

$$B(\pi, \delta^{\pi}) = \tau^2 \eta.$$

2. Let X be an observation from the pdf

$$f(x \mid \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1-|x|}, \quad x \in \{-1, 0, 1\}; \theta \in [0, 1].$$

- (a) Find the MLE of θ .
- (b) Define an estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{, if } x = 1 \\ 0 & \text{, otherwise} \end{cases}.$$

Show that T(X) is an unbiased estimator of θ .

- (c) Find a better estimator than T(X) and prove that it is better.
- 3. Consider a Bayesian model in which the prior distribution for Θ is standard exponential and the density for X given Θ is

Ι

$$f(x \mid \theta) = e^{\theta - x} I(x > \theta).$$

- (a) Find the marginal density for X and E(X) in the Bayesian model.
- (b) Find the Bayes estimator for Θ under squared error loss. (Assume X > 0.)

4. Let X_1, X_2, \ldots, X_n be i.i.d. from the uniform distribution on (1, 2), and let H_n denote the harmonic average of the first n variables:

$$H_n = \frac{n}{X_1^{-1} + \ldots + X_n^{-1}}.$$

- (a) Show that $H_n \stackrel{p}{\to} c$ as $n \to \infty$, identifying the constant c.
- (b) Show that $\sqrt{n}(H_n-c)$ converges in distribution, and identify the limit.
- 5. Let X_1,\ldots,X_n be i.i.d. from $N(\theta,1)$ and let U_1,\ldots,U_n be i.i.d. from a uniform distribution on (0,1), with all 2n variables independent. Define $Y_i=X_iU_i,\,i=1,\ldots,n$. If the X_i and U_i are both observed, then \bar{X} would be a natural estimator for θ . If only the products Y_1,\ldots,Y_n are observed, then $2\bar{Y}$ may be a more responsible estimator. Determine the asymptotic relative efficiency (ARE) of $2\bar{Y}$ with respect to \bar{X} , where ARE of $\hat{\theta}_n$ with respect to $\tilde{\theta}_n$ is defined as the ratio $\sigma_{\tilde{\theta}}^2/\sigma_{\hat{\theta}}^2$ if $\sqrt{n}(\hat{\theta}-\theta_0)\stackrel{d}{\to} N(0,\sigma_{\hat{\theta}}^2)$ and $\sqrt{n}(\tilde{\theta}-\theta_0)\stackrel{d}{\to} N(0,\sigma_{\hat{\theta}}^2)$, respectively.
- 6. Suppose $X_1,\ldots,X_n\stackrel{i.i.d.}{\sim}N(\theta,1)$ for some $\theta\in\mathbb{R}$, and we want to estimate θ with respect to squared error loss. Show that the estimator $\delta_a(X)=\bar{X}+a$ is not a Bayes estimator for any a.