ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ МГУ им. М.В.Ломоносова

Козлов Даниил Николаевич daniilkozlov@gmail.com

АЭРОКОСМИЧЕСКИЕ МЕТОДЫ ЛАНДШАФТНОЙ ИНДИКАЦИИ (52-52-76 часов)

часть 3 «АЭРОКОСМИЧЕСКИЕ ТЕХНОЛОГИИ ПРОСТРАНСТВЕННОГО АНАЛИЗА»

3 курс, весенний семестр 2015 г.

Преподаватель:

• Даниил Николаевич Козлов: daniilkozlov@landscape.edu.ru

Информационная поддержка:

• http://landscape.edu.ru – лекционные и практические материалы, задания, статьи, ссылки на тематические сайты

Занятия:

- понедельник, пятница 5 пара, ауд. 2017
- лекции (30%), практические (40%), дома (30%)

Задания:

- реферат статьи 2012-14 года из каталога ELSEVIER
- элементы анализа снимков и их ландшафтная интерпретация
- индивидуальный проект (тематическое картографирование)

Проверка знаний:

- практические задания (80%), зачет (20%)
- зачет выставляется по сумме набранных баллов
- практические (60 б), вопросы экзамена (30 б), активная работа (10 б)

кафедра физической географии и ландшафтоведения (ФГиЛ)

КАК ДЕЛА?

СТУДЕНТ	ДОМАШНЕЕ ЗАДАНИЕ							Σ	ОЦЕНКА	
	1	2	3	4	5	6	7	8	_	ОЦЕПКА
Артемьева А.	+/	+/2	+/							
Бородулина Е.	-/	-/	+/							
Гоников Т.	-/	+/	+/							
Куприянов Д.	+/	+/	+/							
Лозбенев Н.	+/	+/4	+/							
Макалова П.	+/	+/2	+/							
Осика Н.	+/	+/	+/							
Родина В.	+/	+/	+/							
Шадчинов С.	+/	+/2	+/							

Руководствуясь ЗДРАВЫМ СМЫСЛОМ за каждое задание:

- 1 плохо (с ошибками, не полностью, не оформлено)
- 2 нормально (не оформлено, без комментариев)
- 3 великолепно (не придраться)
- +1 выполнено в течение недели
- **-1** за опоздание более чем одну неделю
- **-1** плагиат

> 24 баллов – «ОТЛИЧНО»

16-24 балла — «ХОРОШО»

< 16 баллов – «ПЛОХО»

ДОКЛАД ПО СТАТЬЕ

Артемьева А.	Оценка сезонных значений вегетационного индекса (NDVI) для детектирования и анализа состояния посевов сельскохозяйственных культур
Бородулина Е.	Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability
Гоников Т.	Mapping Banana Plants from High Spatial Resolution Orthophotos to Facilitate Plant Health Assessment
Куприянов Д.	Assessing ecological habitat structure from local to landscape scales using synthetic aperture radar
Лозбенев Н.	Automated crop field extraction from multi-temporal Web Enabled Landsat Data
Макалова П.	Exploring the effects of biophysical parameters on the spatial pattern of rare cold damage to mangrove forests
Осика Н.	Estimating above-ground biomass on mountain meadows and pastures through remote sensing
Родина В.	Surface urban heat island in China's 32 major cities: Spatial patterns and drivers
Шадчинов С.	Remote sensing of vegetation cover dynamics and resilience across southern Africa

СХЕМА ЗОНДИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ

- **А** источник излучения
- **В** взаимодействие с атмосферой (рассеивание, отражение, преломление)
- **C** взаимодействие с земной поверхностью, отражение
- **D** регистрация отраженного излучения сенсором спутника
- Е передача записанного сигнала в приемный наземный центр
- F интерпретация и анализ полученных сигналов (данных)
- **G** использование информации

РЕШАЕМЫЕ ЗАДАЧИ

- 1. ПОДОБРАТЬ СНИМКИ
- 2. ПРОВЕСТИ ИХ ПРЕДВАРИТЕЛЬНУЮ ПОДГОТОВКУ (геометрическую и радиометрическую коррекцию)
- 3. РАСЧИТАТЬ СПЕКТРАЛЬНЫЕ ИНДЕКСЫ (NDVI и др.)
- 4. ПРОВЕСТИ КЛАССИФИКАЦИЮ (типы ландшафтного покрова)
- 5. ОЦЕНИТЬ ЛАНДШАФТНОЕ РАЗНООБРАЗИЕ (метрики ландшафтного разнообразия)

ПРЕДВАРИТЕЛЬНАЯ ПОДГОТОВКА СНИМКОВ

УРОВЕНЬ ОБРАБОТКИ	СОДЕРЖАНИЕ
L0	Необработанные первичные данные съемочного прибора («поток данных»)
L1	Данные, прошедшие радиометрическую коррекцию и калибровку (L1A) и географическую привязку (L1B)
L2	Изображение, преобразованное в заданную картографическую проекцию по набору опорных точек
L2+1+1+	Продукты тематической обработки (учет неоднородности рельефа территории съемки, дешифрирование и др.)

L0 необработанные данные

- Хранятся в центрах приема и обработки информации в специализированных форматах
- Помимо самих данных хранится служебная информация и спутнике и сенсоре в момент съемки
- У каждого оператора свой формат хранения
- Архивирование помещение данных в архив на определенных типах носителей (DLT, HDD, CD, DVD). Как можно более низкий уровень обработки
- Каталогизация создание каталога метаданных, описывающих архивируемые изображения (поиск и выборка снимков из архива)

L1 ОБРАБОТКА СНИМКОВ LANDSAT $0R \rightarrow 1R \rightarrow 1G \rightarrow 1T$

Level 0R Product

Данные «как есть» в момент сканирования в целых числах (DN). До запроса пользователя.

Level 1R Product

Радиометрическая коррекция с устранением огрехов сканирования (полос, пропусков, скореллированности)

Level 1G Product

Привязка в географическую проекцию на основе орбитальных данных

(точность ~250 м)

Worldwide Reference System (WRS) Scene

Number of times each Path/Row is represented in the Landsat 7 archive

http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html

L1 ОБРАБОТКА СНИМКОВ LANDSAT Level 1T Product

Коррекция географической привязки снимка по сети опорных точек с оценкой ошибки

ТОЧНОСТЬ ~ 30 м

L1 РАДИОМЕТРИЧЕСКАЯ КОРРЕКЦИЯ

 исправление аппаратных радиометрических искажений, возникающих при работе съемочного прибора

- Коррекция влияния атмосферы
- Коррекция влияния рельефа
- Пересчет DN в энергетические единицы потока солнечной радиации

L1 РАДИОМЕТРИЧЕСКАЯ КОРРЕКЦИЯ

DN (digital numbers) – значения, пропорциональные количеству приходящей радиации

0 ... 255 – 8 байт

0 ... 2048 — 11 байт

0 ... 32000 – 16 байт

Энергетические единицы потока солнечной радиации 0-2000 W/m²-sr с дробной частью (16-32 байта информации на один пиксель)

ПРЕЖДЕ ЧЕМ НАЧАТЬ РАДИОМЕТРИЧЕСКУЮ КОРРЕКЦИЮ:

- 1. Иметь **ЯСНОЕ ПРЕДСТАВЛЕНИЕ О ЦЕЛИ ИССЛЕДОВАНИЯ** и его предполагаемом результате
- 2. Знать параметры съемки см файл метаданных

ПОТОК ОТРАЖЕННОЙ СОЛНЕЧНОЙ РАДИАЦИИ

Lλ – количество излучения приходящего к сенсору в W/(m2 * ster *μm)

 Lmin – количество приходящего излучения которое после масштабирования становится Qmin

Lmax – количество приходящего излучения, которое после масштабирования становится Qmax

Qmin – минимально калиброванное значение DN (0)

Qmax – максимально калиброванное значение DN (255)

Qcal – калиброванное значение (DN)

Единицы измерения света (радиометрические)

Полный поток источника света Вт

РАДИОМЕТРИЧЕСКАЯ СЪЕМКА

ПРАКТИЧЕСКАЯ РАБОТА №3

- в задании используются сцены LANDSAT, полученные при выполнении ПР№2 (минимум две сцены)
- допустимо вырезать из сцен только целевую прямоугольную область, общую для разных сцен!!!

в SAGA:

- 1. ИМПОРТ многозональной сцены LANDSAT
- 2. Синтезирование цветного изображения
- 3. Конвертация данных ТМ, ETM+ в показатели излучения на сенсоре http://gis-lab.info/qa/dn2radiance.html
- 4. Расчет величины приходящего от Солнца излучения
- 5. Расчет альбедо и поглощенной радиации
- 6. Расчет температуры излучающей поверхности http://gis-lab.info/qa/dn2temperature.html

LANDSAT 8 OLI (Operational Land Imager)

радиометрическое разрешение: 12-bit, диапазон значений 0-4095 (4096)

размер пикселя, м: 15 / 30 / 100

уровень обработки: 1Т (коррекция рельефа)

точность позиционирования: OLI: 12 м. (90 %)

TIRS: 41 m. (90 %)

формат изображений: GeoTIFF

проекция: UTM

система координат: WGS84

КОМПЛЕКТ ПОСТАВКИ LANDSAT 5

tape archive GNU Zip (gzip)
LT51780212007229MOR00.tar.gz – 137 Mδ

↓ разархивировать

↓ распаковать

LT51780212007229MOR00.tar

441 Мб - хранение нескольких файлов

внутри одного

```
111 L5178021 02120070817 B10 TIF 66 144 238
mL5178021_02120070817_B20 TIF 66 144 238
1 L5178021 02120070817 B30 TIF
                                66 144 238
11 L5178021_02120070817_B40 TIF
                                66 144 238
₩L5178021_02120070817_B50
                                66 144 238
                           TIF
₩L5178021_02120070817_B60
                           TIF
                                66 144 238
₩L5178021 02120070817 B70
                           TIF
                                66 144 238
  L5178021_02120070817_GCP txt
                                    19 880
  L5178021_02120070817_MTL
                            txt
                                    65 535
  README
                            GTF
                                     8 462
```

441 M6

КОМПЛЕКТ ПОСТАВКИ LANDSAT 8

tape archive GNU Zip (gzip)

LC81820212013113LGN01.tar.gz — 859 Мб

↓ разархивировать

↓ распаковать

LC81820212013113LGN01.tar

1700 Мб - хранение нескольких файлов

внутри одного

```
MKM
              голубой шLC81820212013113LGN01_B1
                                                    TIF
                                                        123 633 078
0.433-0.453
10.30-11.30 тепловой 1 шLC81820212013113LGN01 B10 TIF
                                                        123 633 078
11.50-12.50 тепловой 2 шLC81820212013113LGN01 B11 TIF
                                                        123 633 078
                синий шLC81820212013113LGN01_B2
                                                    TIF
                                                         123 633 078
0.450-0.515
             зеленый шLC81820212013113LGN01_B3
                                                   TIF
                                                        123 633 078
                                                                      7761 row x 7961 col x 16 bit
0.525-0.600
             красный шLC81820212013113LGN01 В4
                                                   TIF
0.630-0.680
                                                        123 633 078
                 БИК III LC81820212013113LGN01 B5
                                                   TIF
                                                        123 633 078
0.845-0.885
                СИК2 III LC81820212013113LGN01 B6
                                                   TIF
1.560-1.660
                                                        123 633 078
2.100-2.300
                СИКЗ шLC81820212013113LGN01 B7
                                                   TIF
                                                        123 633 078
                                                        494 344 198 — 15521 row x 15921 col x 16 bit
0.500-0.680
             видимый шLC81820212013113LGN01_B8
                                                   TIF
1.360-1.390
                СИК1 шLC81820212013113LGN01 В9
                                                   TIF
                                                         123 633 078
                                                                       7761 row x 7961 col x 16 bit
      качество съемки шLC81820212013113LGN01 BQA TIF
                                                         123 633 078
                        LC81820212013113LGN01 MTL txt
                                                              7 748
          метаданные
```


СНИМКИ В тепловых каналах приведены к разрешению 30 м

LANDSAT 8 OLI МЕТАДАННЫЕ

файл LC81820212013113LGN01_MTL.txt

```
GROUP = IMAGE ATTRIBUTES
 CLOUD COVER = 1.35
 IMAGE QUALITY OLI = 9
 IMAGE_QUALITY_TIRS = 9
 ROLL ANGLE = -0.001
 SUN AZIMUTH = 160.61028301
 SUN ELEVATION = 45.59453595
 EARTH SUN DISTANCE = 1.0055139 - расстояние Земли от Солнца
 GROUND CONTROL POINTS MODEL = 440
 GEOMETRIC_RMSE_MODEL = 7.700
 GEOMETRIC RMSE MODEL Y = 5.633
 GEOMETRIC_RMSE_MODEL_X = 5.250
 GROUND CONTROL POINTS VERIFY = 153
 GEOMETRIC_RMSE_VERIFY = 4.068
END GROUP = IMAGE ATTRIBUTES
```

LANDSAT 8 OLI РАДИОМЕТРИЧЕСКАЯ КАЛИБРОВКА

$$L_{\lambda} = \frac{L \max_{\lambda} - L \min_{\lambda}}{Q c a l \max - Q c a l \min} (Q c a l - Q c a l \min) + L \min_{\lambda}$$

$L \max_{\lambda} - L \min_{\lambda}$

 $GROUP = MIN_MAX_RADIANCE$ $RADIANCE_MAXIMUM_BAND_1 = 772.55371$ $RADIANCE_MINIMUM_BAND_1 = -63.79774$ $RADIANCE_MAXIMUM_BAND_2 = 787.80151$ RADIANCE_MINIMUM_BAND_2 = -65.05690RADIANCE_MAXIMUM_BAND_3 = 721.36041 RADIANCE_MINIMUM_BAND_3 = -59.57018 RADIANCE_MAXIMUM_BAND_4 = 610.94812RADIANCE_MINIMUM_BAND_4 = -50.45229 RADIANCE_MAXIMUM_BAND_5 = 370.73010 RADIANCE_MINIMUM_BAND_5 = -30.61501RADIANCE_MAXIMUM_BAND_6 = 93.40548RADIANCE_MINIMUM_BAND_6 = -7.71346RADIANCE_MAXIMUM_BAND_7 = 30.38463RADIANCE_MINIMUM_BAND_7 = -2.50917RADIANCE_MAXIMUM_BAND_8 = 688.19440 RADIANCE MINIMUM BAND 8 = -56.83132RADIANCE_MAXIMUM_BAND_9 = 152.34837 RADIANCE_MINIMUM_BAND_9 = -12.58098 RADIANCE_MAXIMUM_BAND_10 = 22.00180 RADIANCE MINIMUM BAND 10 = 0.10033 RADIANCE MAXIMUM BAND 11 = 22.00180 RADIANCE_MINIMUM_BAND_11 = 0.10033 END_GROUP = MIN_MAX_RADIANCE

GROUP = MIN_MAX_REFLECTANCE REFLECTANCE_MAXIMUM_BAND_1 = 1.210700 REFLECTANCE_MINIMUM_BAND_1 = -0.099980 REFLECTANCE_MAXIMUM_BAND_2 = 1.210700 REFLECTANCE_MINIMUM_BAND_2 = -0.099980 REFLECTANCE_MAXIMUM_BAND_3 = 1.210700 REFLECTANCE_MINIMUM_BAND_3 = -0.099980 REFLECTANCE_MAXIMUM_BAND_4 = 1.210700 REFLECTANCE_MINIMUM_BAND_4 = -0.099980 REFLECTANCE_MAXIMUM_BAND_5 = 1.210700 REFLECTANCE_MINIMUM_BAND_5 = -0.099980REFLECTANCE_MAXIMUM_BAND_6 = 1.210700 REFLECTANCE_MINIMUM_BAND_6 = -0.099980 REFLECTANCE_MAXIMUM_BAND_7 = 1.210700 REFLECTANCE_MINIMUM_BAND_7 = -0.099980REFLECTANCE_MAXIMUM_BAND_8 = 1.210700 REFLECTANCE_MINIMUM_BAND_8 = -0.099980REFLECTANCE_MAXIMUM_BAND_9 = 1.210700

REFLECTANCE_MINIMUM_BAND_9 = -0.099980

 $Qcal \max - Qcal \min$


```
GROUP = MIN_MAX_PIXEL_VALUE
  QUANTIZE\_CAL\_MAX\_BAND\_1 = 65535
  QUANTIZE_CAL_MIN_BAND_1 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_2 = 65535
  QUANTIZE\_CAL\_MIN\_BAND\_2 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_3 = 65535
  QUANTIZE_CAL_MIN_BAND_3 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_4 = 65535
  QUANTIZE\_CAL\_MIN\_BAND\_4 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_5 = 65535
  QUANTIZE\_CAL\_MIN\_BAND\_5 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_6 = 65535
  QUANTIZE\_CAL\_MIN\_BAND\_6 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_7 = 65535
  QUANTIZE_CAL_MIN_BAND_7 = 1
  QUANTIZE\_CAL\_MAX\_BAND\_8 = 65535
  QUANTIZE_CAL_MIN_BAND_8 = 1
  QUANTIZE_CAL_MAX_BAND_9 = 65535
  QUANTIZE_CAL_MIN_BAND_9 = 1
  QUANTIZE_CAL_MAX_BAND_10 = 65535
  QUANTIZE_CAL_MIN_BAND_10 = 1
  QUANTIZE_CAL_MAX_BAND_11 = 65535
  QUANTIZE_CAL_MIN_BAND_11 = 1
END_GROUP = MIN_MAX_PIXEL_VALUE
```

LANDSAT 8 OLI РАДИОМЕТРИЧЕСКАЯ КАЛИБРОВКА

```
GROUP = RADIOMETRIC_RESCALING
  RADIANCE\_MULT\_BAND\_1 = 1.2762E-02
  RADIANCE_MULT_BAND_2 = 1.3014E-02
  RADIANCE_MULT_BAND_3 = 1.1916E-02
  RADIANCE_MULT_BAND_4 = 1.0092E-02
  RADIANCE_MULT_BAND_5 = 6.1242E-03
  RADIANCE_MULT_BAND_6 = 1.5430E-03
  RADIANCE_MULT_BAND_7 = 5.0193E-04
  RADIANCE\_MULT\_BAND\_8 = 1.1369E-02
  RADIANCE_MULT_BAND_9 = 2.5167E-03
  RADIANCE_MULT_BAND_10 = 3.3420E-04
  RADIANCE_MULT_BAND_11 = 3.3420E-04
  RADIANCE\_ADD\_BAND\_1 = -63.81050
  RADIANCE\_ADD\_BAND\_2 = -65.06992
  RADIANCE\_ADD\_BAND\_3 = -59.58209
  RADIANCE_ADD_BAND_4 = -50.46238 ←
  RADIANCE\_ADD\_BAND\_5 = -30.62114
  RADIANCE\_ADD\_BAND\_6 = -7.71500
  RADIANCE_ADD_BAND_7 = -2.50967
  RADIANCE\_ADD\_BAND\_8 = -56.84269
  RADIANCE_ADD_BAND_9 = -12.58350
  RADIANCE\_ADD\_BAND\_10 = 0.10000
  RADIANCE\_ADD\_BAND\_11 = 0.10000
  REFLECTANCE_MULT_BAND_1 = 2.0000E-05
  REFLECTANCE_MULT_BAND_2 = 2.0000E-05
  REFLECTANCE_MULT_BAND_3 = 2.0000E-05
  REFLECTANCE_MULT_BAND_4 = 2.0000E-05
  REFLECTANCE_MULT_BAND_5 = 2.0000E-05
  REFLECTANCE_MULT_BAND_6 = 2.0000E-05
  REFLECTANCE_MULT_BAND_7 = 2.0000E-05
  REFLECTANCE_MULT_BAND_8 = 2.0000E-05
  REFLECTANCE_MULT_BAND_9 = 2.0000E-05
  REFLECTANCE_ADD_BAND_1 = -0.100000
  REFLECTANCE_ADD_BAND_2 = -0.100000
  REFLECTANCE\_ADD\_BAND\_3 = -0.100000
  REFLECTANCE\_ADD\_BAND\_4 = -0.100000
 REFLECTANCE_ADD_BAND_5 = -0.100000
  REFLECTANCE\_ADD\_BAND\_6 = -0.100000
  REFLECTANCE\_ADD\_BAND\_7 = -0.100000
  REFLECTANCE_ADD_BAND_8 = -0.100000
  REFLECTANCE_ADD_BAND_9 = -0.100000
```

END GROUP = RADIOMETRIC RESCALING

УДОБНО ВМЕСТО:

$$L_{\lambda} = \frac{L \max_{\lambda} - L \min_{\lambda}}{Qcal \max - Qcal \min} (Qcal - Qcal \min) + L \min_{\lambda}$$

ИСПОЛЬЗОВАТЬ

$$L\lambda = RADIANCE_MULT_BAND_\lambda * Qcal_\lambda + RADIANCE_ADD_BAND_\lambda$$

НАПРИМЕР для Qcal_4

 $L4 = 0.010092*Qcal_4 - 50.46238$

КАЛИБРОВОЧНЫЕ КОЭФФИЦИЕНТЫ ДЛЯ ТЕПЛОВОГО КАНАЛА

```
GROUP = TIRS_THERMAL_CONSTANTS
K1_CONSTANT_BAND_10 = 774.89
K1_CONSTANT_BAND_11 = 480.89
K2_CONSTANT_BAND_10 = 1321.08
K2_CONSTANT_BAND_11 = 1201.14
END_GROUP = TIRS_THERMAL_CONSTANTS
```

1. ИМПОРТ ДАННЫХ СЪЕМКИ В SAGA

1. НАСТРОЙКА ДИАПАЗОНА ЗНАЧЕНИЙ

2. СИНТЕЗИРОВАНИЕ ЦВЕТНОГО ИЗОБРАЖЕНИЯ В SAGA

2. СИНТЕЗИРОВАНИЕ ЦВЕТНОГО ИЗОБРАЖЕНИЯ

для каналов Landsat 5/7	ИСТИННЫЙ ЦВЕТ (True Color) Красный: Band 3 Зеленый: Band 2 Синий: Band 1	ЛОЖНЫЙ ЦВЕТ (ближний инфракрасный) (False Color) Красный: Band 4 Зеленый: Band 3 Синий: Band 2	КОРОТКОВОЛНОВОЙ ИНФРАКРАСНЫЙ (SWIR (GeoCover)) Красный: Band 7 Зеленый: Band 4 Синий: Band 2
ДЕРЕВЬЯ И КУСТАРНИКИ	Оливковый зеленый	Красный	Оттенки зеленого
ЗЕРНОВЫЕ КУЛЬТУРЫ	От зеленого до светло- зеленого	От розового до красного	Оттенки зеленого
ВЛАЖНАЯ РАСТИТЕЛЬНОСТЬ	От темно-зеленого к черному	Темно-красный	Оттенки зеленого
ВОДА	Тона голубого и зеленого	Оттенки синего	Черный – темно-синий
СЕЛИТЕБНЫЕ ТЕРРИТОРИИ	От белого к светло- голубому	От голубого к серому	бледно-лиловый цвет
ОТКРЫТЫЕ ПОЧВЫ	От белого к светло-серому	От голубого к серому	красный, бледно-розовый

2. СИНТЕЗИРОВАНИЕ ЦВЕТНОГО ИЗОБРАЖЕНИЯ В SAGA

3. DN → ЭНЕРГЕТИЧЕСКАЯ ЯРКОСТЬ (RADIANCE)

5. ВЫЧИСЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

интегральное альбедо = $\Sigma(Eout_i) / \Sigma(Ein_i)$ поглощенная радиация = $\Sigma(Eout_i)$ - $\Sigma(Ein_i)$, где

Eout – поток отраженной радиации (radiance),

Ein – поток прямой радиации (константа для всех пикселей)

i – номер спектрального диапазона

```
III 01. LC81740232014124LGN00 B2
     🚃 02. LC81740232014124LGN00 B3
     🚃 03. LC81740232014124LGN00 B4
     04. LC81740232014124LGN00 B5
     05. LC81740232014124LGN00 B6
     06. LC81740232014124LGN00 B7
     07. LC81740232014124LGN00 B10
     08. LC81740232014124LGN00_B11
     🌉 09. Composite
     10. LC81740232014124LGN00_B2 [Radiance]
     11. LC81740232014124LGN00_B3 [Radiance]
     12. LC81740232014124LGN00_B4 [Radiance]
     13. LC81740232014124LGN00_B5 [Radiance]
     14. LC81740232014124LGN00_B6 [Radiance]
     15. LC81740232014124LGN00_B7 [Radiance]
     16. LC81740232014124LGN00_B10 [Radiance]
     17. LC81740232014124LGN00_B11 [Radiance]
     18. LC81740232014124LGN00_B2 [Reflectance]
     19. LC81740232014124LGN00_B3 [Reflectance]
        20. LC81740232014124LGN00_B4 [Reflectance]
        21. LC81740232014124LGN00_B5 [Reflectance]
     22. LC81740232014124LGN00_B6 [Reflectance]
     23. LC81740232014124LGN00_B7 [Reflectance]
     24. LC81740232014124LGN00_B10 [Temperature]
     25. LC81740232014124LGN00_B11 [Temperature]
```

6. ДЛИННОВОЛНОВОЕ ИЗЛУЧЕНИЕ

$$T = K_2 / \ln(K_1 / L_{\lambda} + 1)$$

<u>ПРОЧИТАТЬ:</u> «Конвертация данных Landsat TM/ETM+ в значения температуры – Теория» http://gis-lab.info/qa/dn2temperature.html

Камера/Единицы измерения	[watts/(meter squared * ster * m)]	Кельвин
Константа	1	2
TM 4	671.62	1284.30
TM 5	607.76	1260.56
ETM +	666.09	1282.71

$$273,15^{\circ}K = 0^{\circ}C$$

ТЕРМОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ

TEIVITIEPATYPA -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24

В отчетных документах:

- 1. Проект SAGA (без промежуточных)
- 2. Один слайд презентации на подобии текущего (с шкалой легенды и подписями)