

Системный дизайн современных приложений

Лекция №5 Компоненты HLD: базы данных

HLD vs LLD

Основные аспекты SD

- 1. Масштабируемость
- 2. Производительность
- 3. Надежность
 - а. Отказоустойчивость
 - b. Доступность
- 4. Безопасность
- 5. Адаптивность
- 6. Управляемость и мониторинг
- 7. Интеграции

Основные сущности

- 1. Клиент
- 2. Сервис
- 3. Интеграция
- 4. База данных

Базы данных

SQL

Транзакция

Транзакция — упорядоченное множество операций, переводящих базу данных из одного согласованного состояния в другое BEGIN TRANSACTION ... COMMIT

Зачем?

Решение проблем

- 1. при сбоях БД
- 2. при конкурентном доступе до данных в БД

Когда НЕ нужны?

- 1. Читаем/обновляем только одну запись за операцию
- 2. Нет конкурентного доступа до данных

ACID

Набор гарантий безопасности, которые обеспечивают транзакции

Atomicity (атомарность)

Транзакция будет выполнена либо полностью (commit), либо не будет выполнена совсем (abort + rollback)

Итог: 100 рублей растворились

Итог: вернули клиенту ошибку

Consistency (согласованность)

- Атомарность, изоляция и сохраняемость свойства базы данных, в то время как согласованность — свойство приложения.
- 2. По словам Клеппмана добавили в мнемонику для красоты.

Про правильность данных:

Целостность данных (например, внешние ключи, уникальность, проверки СНЕСК).

Бизнес-правила (например, «баланс счета не может быть отрицательным»).

Isolation (изоляция)

Конкурентно выполняемые транзакции не могут помешать друг другу

Примеры:

- Phantom Read: появились/исчезли строки между запросами
- Dirty Read: читаем незакомиченные данные
- Non-Repeatable Read: данные изменились между чтениями

Durability (Устойчивость)

Завершенные (зафиксированные) транзакции не потеряются

- 1) Закоммитили транзакцию
- 2) БД упала

- 1) БД восстановили
- 2) Данные актуальные

NoSQL

NoSQL != No SQL NoSQL == Not Only SQL

Зачем создали?

- 1. Горизонтальное масштабирование
- 2. Новые модели данных
- 3. Гибкость схемы данных
- 4. Новые модели консистентности

BASE

1 млн RPS Транзакции блокируют запись Что делать?

- Basically Available система всегда отвечает, даже с устаревшими данными.
- Soft state данные могут временно быть несогласованными.
- Eventually consistent согласованность достигается со временем.

Виды согласованности

Характеристика	Strong	Eventual
Гарантия согласованности	Данные одинаковые на всех узлах	Разные узлы могут временно содержать разные версии данных
Задержка обновлений	Высокая — каждый запрос ждёт подтверждения от всех узлов	Низкая – изменения распространяю ся асинхронно
Пример использования	Банковские транзакции	Социальные сети, поисковые системы, кэширование
Инфраструктурн ые особенности	Требует синхронной репликации и блокировок	Использует асинхронные механизмы репликации

САР-теорема

САР-теорема про компромиссы

Распределенные системы могут обеспечивать только 2 свойства из 3-х:

- 1. Согласованность (Consistency) (!= Согласованность в ACID (!))
 - а. В любой момент времени на узлах одни и те же данные.
- 2. Доступность (Availability).
 - а. Система всегда отвечает на запросы.
- 3. Устойчивость к разделению (Partition tolerance).
 - а. Если между узлами нет связи, система работает.

САР-теорема аналогия

Проблемы САР-теоремы

- 1. "Идеальный вольтметр"
- 2. В распределенных системах сетевые сбои неизбежны, а значит Р обязательно
- 3. Игнорирование задержек

PACELC

if Partition tolerance -> (Availability or Consistency) Else (Latency or Consistency)

Репликация, шардирование, партиционирование

Репликация

Зачем

- 1. Повышение доступности
- 2. Улучшение производительности
- 3. Геораспределение

Виды

- 1. Single-Leader
- 2. Multi-Leader
- 3. Leaderless

Шардинг и партиционирование

Шардинг и партиционирование

Шардинг (Sharding)

Физическое разделение данных между разными серверами (например, по user_id).

Цель: **Распределить** нагрузку на запись и хранить большие объемы данных.

Партиционирование (Partitioning)

Логическое разделение данных внутри одной БД (например, по датам).

Цель: **Ускорить** запросы и упростить управление данными.

Алгоритм выбора БД

Ряд вопросов:

- 1. Что за данные?
- 2. Какой формат данных?
- 3. Какие отношения между данными? (ERD)
- 4. Какие сценарии использования данных?
- 5. Типовой ли проект?
- 6. Какие функции доступны из коробки?
- 7. Насколько популярна?
- 8. Какая лицензия?
- 9. Легко сопровождать и настраивать?
- 10. Что если данные изменятся?
- 11. (*) Есть ли сертификация/регистрация в ЕРРП?
- + https://docs.google.com/viewerng/viewer?url=htt ps://datafinder.ru/files/Cheat-Sheet-SUBD.pdf

Тренировка №1

Кейс: фото-апп

Ряд вопросов:

- 1. Что за данные?
- 2. Какой формат данных?
- 3. Какие отношения между данными? (ERD)
- 4. Какие сценарии использования данных?
- 5. Типовой ли проект?
- 6. Какие функции доступны из коробки?
- 7. Насколько популярна?
- 8. Какая лицензия?
- 9. Легко сопровождать и настраивать?
- 10. Что если данные изменятся?
- 11. (*) Есть ли сертификация/регистрация в ЕРРП?
 - + https://docs.google.com/viewerng/viewer?url=htt ps://datafinder.ru/files/Cheat-Sheet-SUBD.pdf

Тренировка №2

Кейс: авиасейлс

Ряд вопросов:

- 1. Что за данные?
- 2. Какой формат данных?
- 3. Какие отношения между данными? (ERD)
- 4. Какие сценарии использования данных?
- 5. Типовой ли проект?
- 6. Какие функции доступны из коробки?
- 7. Насколько популярна?
- 8. Какая лицензия?
- 9. Легко сопровождать и настраивать?
- 10. Что если данные изменятся?
- 11. (*) Есть ли сертификация/регистрация в ЕРРП?
 - + https://docs.google.com/viewerng/viewer?url=htt ps://datafinder.ru/files/Cheat-Sheet-SUBD.pdf

Домашка №2 и №3

Интеграции

- 1. Взять ваши ФТ и НФТ
- 2. Подумать какие сервисы будут и какие интеграции между ними лучше сделать
- 3. Выбрать способ взаимодействия между сервисами, написать обоснование, сделать верхнеуровневые схемы

Базы данных

- 4. Взять ваши ФТ и НФТ
- 5. Подумать какие БД будут под какие сценарии, описать сценарий выбора
- 6. Описать дополнительно: репликация, шардинг

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ