1.

11.

21.

King Saud University College of Computer and Information Sciences Computer Science Department

Fi	nal Exam								
A	cademic Ye	ear: 2017/2	018						
Fi	rst Semeste	r							
3.4	, D								
	laster Progra		rammina 1	anguagae ar	d Compile	ation / CSC	340		
	ourse main	C/1 10. . 1 10 §	granning i	anguages ai	ia Compila		3 4 0		
E	xam Date:	3/1/2018:							
E	xam Time:	180 minu	tes: From	8:00 To 11:	00 am.				
Tot	tal Number	r of Pages:	6 pages (i	ncluding th	is cover pa	age)			
St	udent Name	e							
St	tudent ID.								
	E:	NI-		C11 M1-		C4 1-	4 N //1-		
	Exercise No.			Full Mark		Student Mark			
	1			20					
	1.			<u>30</u>					
				4.0					
	2.			<u>10</u>					
		<u>Total</u>		40					
_	A marrome	Please co	py your	answer to	questio	n 1 to this	<u>table.</u>		
<u>Q1</u>	Allswer								
<u>Q1</u>	1			T		1		10.	
	3.	4.	5.	6.	7.	8.	9.	10.	
<u>Q1</u>	1			T		1		10.	
	3.	4.	5.	6.		1		10.	
	3.	4.	5.	6.		1		10. 20.	
<u>Q1</u>	3. C	4. a	5. C	6. C	7.	8.	9.		
<u>Q1</u>	3. C	4. a	5. C	6. C	7.	8.	9.		
	3. C	4. a	5. C	6. C	7.	18.	9.	20.	
<u>Q1</u>	3. C	4. a	5. C	6. C	7.	8.	9.		

Q1) Put a circle around the best answer for each of the following then copy your answer to the table on the first page (only the table will be graded). (30 grades)

- 1. Which of the following regular expressions describe the language over the alphabet {a,b} that consists of all strings that contain at least one 'a'.
 - a. b*aa*b*
 - b. $b^*a(a^*b^*)^*$
 - c. b*ab*a*b*
 - d. none of the above
- 2. Which of the following regular expressions describe the language over the alphabet {a,b} that consists of all strings that begin and end with the same letter.
 - a. ab*a+ba*b
 - b. a(b*a)*+b(a*b)*
 - c. ab*a*b*a+ba*b*a*b
 - d. none of the above
- 3. Converting an NFA that consists of n states to an equivalent DFA would result in a DFA that contains
 - a. exactly 2ⁿ states
 - b. at least 2ⁿ states
 - c. at most 2ⁿ states
 - d. n! states
- 4. A table that represents an NFA of 3 states and deals with 2 terminal symbols consists of
 - a. 3 rows and 2 columns
 - b. 3 rows and 3 columns
 - c. 2 rows and 3 columns
 - d. 5 rows and 2 columns
- 5. Which of the following methods require eliminating left recursion
 - a. Recursive descent parsing
 - b. LL(1) parsing
 - c. a+b
 - d. Bottom up parsing
- 6. Which of the following methods may require left factoring a grammar
 - a. Recursive descent parsing
 - b. Bottom up parsing
 - c. LL(1) parsing
 - d. a+b
- 7. Which of the following productions assigns left associativity for +
 - a. $E \rightarrow int+E$
 - b. $E \rightarrow E + E \mid int$
 - c. E→E+int
 - d. None of the above
- 8. Which of the following grammars is not ambiguous
 - a. $E \rightarrow id + E \mid id * E \mid (E) \mid id$
 - b. $E \rightarrow E + E \mid E * E \mid (E) \mid id$
 - c. $E \rightarrow E + T \mid T$
 - $T \rightarrow T^*F \mid F$
 - $F \rightarrow (E) \mid id$
 - d. a+c

Question 9-12 are related to the following grammar

$$E \rightarrow E+T|T$$

 $T \rightarrow T*F|F$
 $F \rightarrow (E)|id$

- 9. What is the follow set of E?
 - a. {+}
 - b. {\$,+,)}
 - c. {+,)}
 - d. $\{\$, +, \}$
- 10. What is the follow set of F?
 - a. {+}
 - b. {\$,+,),*}
 - c. {+,)}
 - d. $\{\$, +, \}, \epsilon\}$
- 11. What is first set of E?
 - a. { (}
 - b. {(,id}
 - c. {id}
 - d. $\{(, id, \epsilon)\}$
- 12. In the LL(1) table for the above grammar, the entry that contains E+T is
 - a. row E column (
 - b. row E column id
 - c. row E column \$
 - d. a+b

The following assumptions are related to questions 13-15

Assume that a grammar contains the production $E \rightarrow T+F|TF$.

Assume also that first(T)={id, ε }, fist(F)= { * , ε }, follow(E)={id,\$} and follow(T)={+, \$}

- 13. In the corresponding LL(1) table, which entry contains TF
 - a. row E, column id
 - b. row E, column +
 - c. row E, column *
 - d. a and b
- 14. which entry in the LL(1) table must contain ε
 - a. row E, column id
 - b. row E, column +
 - c. a and b
 - d. none of the above
- 15. The grammar is not LL(1) grammar because the entry at
 - a. row E column \$ is multiply defined
 - b. row E column id is multiply defined
 - c. row E column + is multiply defined
 - d. the grammar is LL(1) because no entry is multiply defined

The following assumptions are related to questions 17-20

Assuming that the DFA for recognizing the viable prefixes of a grammar contains the items

E→T.+F

T→F.

- 16. Which types of conflicts does the above grammar contain
 - a. Reduce-reduce conflict
 - b. No conflicts
 - c. Shift reduce conflict
 - d. A+b
- 17. The grammar is not SLR(1) grammar if
 - a. follow(T)={+}
 - b. follow(E)={+,\$}
 - c. first(F)={+}
 - d. none of the above
- 18. If the top of the stack contains + and the next input token is +, then the SLR parsing algorithm
 - a. pops + from the stack
 - b. reports and error
 - c. moves to the next input token
 - d. a+c
- 19. If the top of the stack contains + and the next input token is *, then the SLR parsing algorithm
 - a. pops + from the stack
 - b. moves to the next input token
 - c. reports and error
 - d. a+c
- 20. Which of the following errors are not detected by a parser
 - a. Undeclared identifier
 - b. Unexpected data type
 - c. Identifier declared more than once
 - d. All of the above

Consider the following rule to answer questions 22-24

f is an identifier.

f is a non-member function in scope S.

$$f$$
 has type $(T_1, ..., T_n) \rightarrow U$

 $S \vdash e_i : R_i \text{ for } 1 \le i \le n$

 $R_i \le ??$ for $1 \le i \le n$

$$S \vdash f(e_1, ..., e_n) : ?$$

- 21. What should be written in place of the double question marks (??) in the rule to make correct?
 - a. U
 - b. T_i
 - c. f
 - d. None of the above

- 22. What should be written in place of the question mark (?) in the rule to make correct?
 - a. f
 - b. U
 - c. T_i
 - d. None of the above
- 23. Assuming that a primitive type is convertible to itself, then the above inference rule is applicable for
 - a. Referenced types
 - b. Primitive types
 - c. None of the above
 - d. a and b
- 24. In a stack machine, the heap section of the memory is dedicated for
 - a. Local variables
 - b. Actual arguments
 - c. dynamically allocated objects
 - d. a and b
- 25. The memory section allocated to global variables is allocated
 - a. Dynamically
 - b. Statically
 - c. At execution time
 - d. None of the above
- 26. Bottom-up parsers are preferred because they are
 - a. more efficient than top-down parsers.
 - b. more general than top-down parsers.
 - c. simpler than top-down parsers.
 - d. All of the above
- 27. Recursive descent parsers are not used in real compilers because they are
 - a. too complicated
 - b. require left-factorization
 - c. too inefficient
 - d. all of the above
- 28. One of the following operations is not used on symbol tables
 - a. push scope
 - b. insert symbol
 - c. pop symbol
 - d. look-up symbol
- 29. A type error is detected by
 - a. The parser
 - b. The semantic analyzer
 - c. The lexical analyzer
 - d. The code generator
- 30. An SLR parser uses a DFA to determine
 - a. If what it is on the stack is a viable prefix of the handle
 - b. If what is on the stack is the handle
 - c. What to action to execute next shift or reduce
 - d. a + c

Page	6	of	7	BBB
------	---	----	---	-----

Q2) Assuming that x is the first argument, write down the code that will be generated (by cgen) for the following expressions (i.e. what would be the output of the compiler?).

a) **3+1** (4 grades)

b) **if x=1 then x else f(1,0)**

(6 grades)