

Experimental physik IV

Coulomb Asymmetrie Paarung

 α Z(Z-1)/A^{1/3} α (A-2Z)²/A $\pm \delta$

Weizsäckers Massen Formel

(Tröpfchen Modell)

$$\begin{split} m(Z,A) &= Z \cdot m_{\mathrm{H}} + (A-Z) \cdot m_{\mathrm{n}} - BE_{\mathit{Kern}} - BE_{\mathit{Elektronen}} \\ BE_{\mathit{Kern}} &= a_{\mathrm{v}} \cdot A - a_{\mathrm{s}} \cdot A^{2/3} - a_{\mathrm{C}} \cdot \frac{Z(Z-1)}{A^{1/3}} - a_{\mathrm{a}} \cdot \frac{(A-2 \cdot Z)^2}{A} + \delta \end{split}$$

Volumen Energie

$$a_{\rm v}$$
 A mit $a_{\rm v}=15.56{
m MeV}$

Oberflächen Energie
$$a_s A^{2/3}$$
 mit $a_s = 17.23 \text{MeV}$

Coulomb Energie

$$a_{\rm C} \frac{Z(Z-1)}{A^{1/3}}$$
 mit $a_{\rm C} = 0.7 \text{MeV}$

Asymmetrie Energie

$$a_{\rm a} = \frac{(A - 2Z)^2}{A} \text{mit}$$
 $a_{\rm a} = 23.285 \text{MeV}$

Paarungs Energie

$$\delta = \begin{cases} +11/A^{1/2}MeV \text{ für gerade - gerade} & (gg/ee) \text{ Kerne} \\ \delta = \begin{cases} 0 & \text{für ungerade - gerade} \\ -11/A^{1/2}MeV \text{ für ungerade - ungerade} \end{cases} & (ug/oe) \text{ Kerne} \\ (uu/oo) \text{ Kerne} \end{cases}$$

Bethe Bloch Gleichung

$$-\frac{dE}{ds} = \frac{4\pi \cdot N^{V} z^{2}}{m_{e} v^{2}} \left(\frac{e^{2}}{4\pi \epsilon_{o}}\right)^{2} \cdot B \qquad B = Z \cdot \left[\ln \frac{2m_{e} v^{2}}{I(1-\beta^{2})} - \frac{c_{k}}{Z}\right]$$
$$\beta = \frac{V}{c} \quad I = 11,5 \cdot Z \text{ (eV)}$$

- $-\frac{dE}{ds}$ Bremsvermögen (stopping power)
 - z Kernladungszahl des schweren geladenen Teilchens
- m_e Ruhemasse des Elektrons
- V Geschwindigkeit des schweren Teilchens
- NV Anzahl der Kerne im Absorber pro cm³
- B Bremszahl (atomic stopping number)
- Z Kernladungszahl des Absorbers
- I mittleres Ionisationspotential des Absorbers
- c_k Korrektionsfaktor für E < 4 MeV, 0 < c_k < 1, Umladung

IRS

Alpha Strahlung

Gamow Theorie 1

$$\lambda \equiv \frac{1}{\tau} = \lambda_0 \cdot T_{\alpha} \propto T_{\alpha}$$

Theoretische Bestimmung schwierig Transmission durch Hängt von Kernstruktur ab Potentialbarriere

$$T_{\alpha} \approx e^{-G}$$
 G: Gamov Faktor

Gamow Theorie 2

$$\frac{1}{\lambda} \propto \frac{1}{T_{\alpha}} \tau \propto t_{1/2} \propto e^{G} \qquad G \propto \frac{1}{\sqrt{E_{\alpha}}}$$

$$\ln(t_{1/2}) \propto \frac{1}{\sqrt{E_{\alpha}}}$$

Gamow Theorie 3

$$\frac{1}{\lambda} \propto \frac{1}{T_{\alpha}} \tau \propto t_{1/2} \propto e^{G} \qquad G \propto \frac{1}{\sqrt{E_{\alpha}}}$$

$$\ln(t_{1/2}) \propto \frac{1}{\sqrt{E_{\alpha}}}$$

Nuklid T $_{1/2}$ E_{α} T_{α}

²¹²Po 0,3 ms 8,78 MeV 1,32 · 10-13

²²⁴Ra 3,6 d 5,7 MeV 5,9 · 10-²⁶

144Nd 2·10¹⁵ a 1,83 MeV 2,18 · 10⁻⁴²

Long range alphas

Ac 215 0.17 s	Ac 216 0.44 ms	Ac 217	Ac 218	Ac 219 11.8 μs	Ac 220 26 ms	Ac 221 52 ms	Ac 222	Ac 223 2.10 m	Ac 224 2.9 h
α 7.600; 7.211 γ (396)	α 9.029; 9.105 γ 83; 854; 771	ly 660; 486; 382 a 10.54 a 9.65	α 9.205 9	α 8.664	α 7.85; 7.61; 7.68 γ 134	α 7.65; 7.44; 7.38	a 6.81; 6.75; 6.89; 7.00; m 6.963 fy 2; e 9	α 6.647; 6.662; 6.564; ∈ γ (99; 191; 84	α 6.142; 6.060; 6.214 216; 132
Ra 214 2.46 s	Ra 215 1.67 ms	Ra 216 2.0 ns 0.18 μs 1 ₇ 688;	Ra 217 1.6 μs	Ra 218 25.6 μs	Ra 219 10 ms	Ra 220 23 ms	Ra 221 28 s	Ra 2	Ra 223 11.43 d
α 7.137; 6.505 ε; g γ (642)	α 8.700; 7.879 γ 834; 540	476; 344 a 9.551; 11.028 a 9.349	α 8.99	α 8.39 g	α 7.679; 7.989 γ 316; 214; 592	α 7.46 γ 465	α 6.613; 6.761; 6.668 γ 149; 93; 174. C 14)	α 5.7162; 5.6067 γ 269; 154; 324 C 14; σ 130; σ ₁ <0.7
Fr 213 34.6 s	Fr 214 3.35 ms 5.0 ms	Fr 215 0.09 μs	Fr 216 0.70 µs	Fr 217 16 μs	Fr 218 22 ms 1.0 ms	Fr 219 21 ms	Fr 220 27.4 s α 6.68; 6.63:	4.9 m « 6.341; 6.126	Fr 222 14.2 m β ⁻ 1.8
α 6.775	α 8.477; α 8.426; 8.547 8.356	α 9,36	α 9.01 9	α 8.315	7.680; 7.656 a 7.867; m; g ly g	α 7.312 γ (352; 517)	6.58	γ 218; (101; 411) C 14	γ 206; 211; 242 α ?
Rn 212 24 m	Rn 213 19.5 ms	Rn 214 6.5 ns 0.7 ns 0.27 µs	Rn 215 2.3 μs	Rn 216 45 μs	Rn 217 0.54 ms	Rn 2* 35	An 219 3.96 s	Rn 220 55.6 s	Rn 221 25 m
α 6.264 Υ	α 8.088; 7.252 γ 540	ly 182 1y 696; m ₁ 302 a 10.63 a 10.46 a 9.033	α 8.67 g	α 8.05 9	α 7.740		α 6.819; 6.553; 6.425 γ 271; 402	α 6.288 γ (550) σ <0.2	β 0.8; 1.1 α 6.037; 5.788; 5.778 γ 186; 150
At 211 7.22 h	At 212	At 213 0.11 μs	At 214 0.76µs 0.27µs 0.56µs	At 215 0.1 ms	At 216	At 217 32.3 ms	At 218 ~2 s	At 219 0.9 m	At 220 3.71 m
ε α 5.867 γ (687) g	α 7.84; 7.90 γ 63 e" α 7.68; 7.62 γ 63 e" ε	α 9.08	a 8.782 :m a 8.877 y g a 8.877	α 8.026 γ (405)	α 7.488 α 7.804; 7.691; g γ 103 γ (115; γ 103 418)	α 7.069 β ⁻ γ (259; 334; 595)	α 6.694; 6.653 β¯ γ	α 6.27 β	β ⁻ α 5.493 γ 241; 293; 422
Po 210 138.38 d	Po 211 25.2 s 0.516 s a 7.275;	Po 212 45.1 s 17.1 ns 0.3 μs	Po 213 4.2 μs	Po 7	Po 215 1.78 ms	Po 216 0.15 s	Po 217 1.53 s	Po 218 3.05 m	Po 219 >300 ns
α 5.30438 γ (803); σ <0.0005 + <0.030; σ _{0,α} 0.002; σ ₁ <0.1	8.883 y 570; 1064 y (899) 570	11.65 ly 728; y 2815; 406; 583 223 u a 10	α 8.376 γ (779)	, 298)	α 7.3862 β ⁻ γ (439)	α 6.7783 γ (805)	α 6.543 β ⁻	α 6.0024 β ⁻	β-? α?
Bi 209 100	Bi 2 3.0-10	Bi 211 2.17 m	3i 212	40.00 111	Bi 214 19.9 m	Bi 215 36.9 s 7.7 m	Bi 216 3.6 m 2.17 m	Bi 217 98.5 s	Bi 218 33 s
1.9 · 10 ¹⁹ a α 3.137 σ 0.011 + 0.023 σ _{0,α} <3E-7	649; 686 7 (305; 266)	α 6.6229; 6.2788 β^- γ 351 $\alpha \rightarrow g$; $\beta^- \rightarrow g$	6:30 a 6:051; 6": 7 6:000 pa 10:22; 7727 p" 10:11 pa 10:35 mg ms 9	β ⁻ 1.4 α 5.87 γ 440; (293; 1100)	β ⁻ 1.5; 3.3 α 5.450; 5.513 γ 609; 1764; 1120 βα 9.079	746; 167 β ⁻ γ 294; γ 308; 271; 256; 419 1105	β ⁺ γ 550; γ 550; 419; 360; 419 223	β ⁻ γ265; 254; 890; 436	β ⁻ 3.5; 3.7 γ510; 386; 426; 263
Pb 208 52.4	3.253 h	Pb 210 22.3 a	Pb 211 36.1 m	Pb 212 10.64 h	Pb 213 10.2 m	Pb 214 26.8 m		404	
σ 0.00023 σ _{n, σ} <8E-6	β= 0.6 no γ	β = 0.02; 0.06 γ 47; e = ; g α 3.72 σ < 0.5	β ⁻ 1.4 γ 405; 832; 427	β ⁻ 0.3; 0.6 γ239; 300 9	β-	β ⁼ 0.7; 1.0 γ352; 295; 242		134	

Long range alphas

Po 210 138.38 d α 5.30438 γ (803); σ < 0.0005 + < 0.030;	Po 211 25.2 s 0.516 s α7.275; 8.883 γ 570; 1064 γ (898;	Po 212 45.1 s 17.1 ns 0.3 μs α 11.65 ly 728; γ 2615; 406; 583 223	α 8.376	
Bi 209 100 1.9 · 10 ¹⁹ a α 3.137 σ 0.011 + 0.023 σ _{0,α} < 3E-7	Bi 210 3.0·10 ⁶ a α 4.946; 4.908 γ 266; 304 σ 0.054 570) 570) 5π0) 5π0) 4.649; 4.686 γ (305; 266)	α 6.6229; 6.2788 β γ 351	γ (779) Bi 212 9m 25 m 60.60 m β 23 6.051; 6.090 γ727 β 10.11 β 10.55 9	
Pb 208 52.4 σ 0.00023 σ _{0. α} <8E-6	52.4 3.253 h		Pb 211 36.1 m β ⁻ 1.4 γ 405; 832; 427	

Sehr Meino Ta/2

U-235 Decay Chain: Actinium-Chain

