MAA

EXERCISES [MAA 5.22] **DIFFERENTIAL EQUATIONS**

Compiled by Christos Nikolaidis

0. **Practice questions**

- [Maximum mark: 5] [without GDC] 1.
 - Find the **general** solution of the differential equation $\frac{dy}{dx} = 4x + 1$. [2]
 - Given that y(3) = 1, find the **particular** solution of the differential equation above. [3]

(a)
$$d_{y} = (4x+1)dx$$

 $\int dy = \int (4x+1)dx$
 $y = 2x^{2} + x + C$
(b) $1 = 2(3)^{2} + (3) + C$
 $1 = (8 + 3 + C)$
 $f(x) = 2(3)^{2} + (3) + C$

- 2. [Maximum mark: 7] [without GDC]
 - Find the **general** solution of the d.e. $\frac{dy}{dx} = (4x+1)y^2$ in the form y = f(x), [4]
 - Given that y(3) = 1, find the **particular** solution of the differential equation above. [3]

Co)
$$\int \frac{1}{\sqrt{2}} dy = \int (4x+1) dx$$

$$= \frac{1}{2} = 2x^2 + x + C$$

$$(b) 1 = \frac{1}{2(3)^2 + 3 + C}$$

$$1 = \frac{1}{2(3)^2 + 3 + C}$$

$$1 = \frac{1}{2(3)^2 + 3 + C}$$

$$1 = \frac{1}{2(3)^2 + 3 + C}$$

3. [Maximum mark: 8] [without GDC]

The equation $x^2 + y^2 = 1$ defines the unit circle with its centre at the origin. The circle passes through the point (1,0).

- (a) Use implicit differentiation on $x^2 + y^2 = 1$ to show that $\frac{dy}{dx} = -\frac{x}{y}$. [3]
- (b) Solve the differential equation $\frac{dy}{dx} = -\frac{x}{y}$ given that the curve passes through (1,0)

(a)	Write down a differential equation to represent this information.	[2]
(b)	Find the general solution of the differential equation in (a).	[3
(c)	Given that $y(0) = 1$ and $y(1) = \frac{1}{3}$, express y in terms of x .	[5

5.

_	sider the differential equation $\frac{dy}{dx} = -\frac{y}{x}$, with $y(1) = 2$.					
(a)	$dx = x^{2}$ Solve the equation					
	(i) as a D.E of separable variables(ii) as a homogeneous D.E.					
	(iii) as a linear D.E. of first order (using integrating factor).	[12]				
(b)	Find the actual value of $y(2)$.	[1]				
(c)	Use Euler's method to find two approximations for $y(2)$: (i) use a step of $h = 0.2$ and complete a table of three columns (n, x_n, y_n) ;					
	(ii) use a step of $h = 0.01$; give only the approximation of $y(2)$.	[5]				

A. Exam style questions (SHORT)

D.E. OF SEPARABLE VARIABLES

6.	[Maximum mark: 5]	[without GDC]
	Given that $\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x - 2x$	and $y = 3$ when $x = 0$, find an expression for y in terms of x .
7.		[without GDC]
		equation $\frac{dy}{dx} = 2xy^2$ given that $y = 1$ when $x = 0$. Give your
	answer in the form $y =$	f(x).

	e the differential equation $x \frac{dy}{dx} - y^2 = 1$, given that $y = 0$ when $x = 2$. Give y
ınsv	wer in the form $y = f(x)$.
	simum mark: 6] [without GDC] e the differential equation $xy \frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.
	e the differential equation $xy\frac{dy}{dx} = 1 + y^2$, given that $y = 0$ when $x = 2$.

- **10.** [Maximum mark: 6] **[without GDC]**
 - (a) Show that $\frac{1}{x(5-x)} = \frac{1}{5} \left(\frac{1}{x} + \frac{1}{5-x} \right)$
 - (b) Find the general solution of the differential equation $\frac{dx}{dt} = kx(5-x)$

where 0 < x < 5, and k is a constant.

11.	[Maximum mark: 6]	[without GDC]			
	Solve the differential e	equation $(x^2+1)\frac{dy}{dx}$	-xy = 0 where x	x > 0, y > 0 , give	en that $y = 1$
	when $x = 1$.				
			•••••		

12.	[Maximum mark: 6]	[without GDC	7		
	Solve the differential e	equation $(x+2)^2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4xy \ (x > -2),$	given that $y = 1$ v	vhen
	x = -1.				
				•••••	
					•••••
				•••••	

13.	[Maximum mark: 6]	
	Solve the differential e	equation $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1+y^2}{1+x^2}$, given that $y = \sqrt{3}$ when $x = \frac{\sqrt{3}}{3}$.
	Give your answer in the	the form $y = \frac{ax + \sqrt{a}}{a - x\sqrt{a}}$ where $a \in Z^+$.

14.	[Maximum mark: 6] [wi	thout GDC]
	The equation of motion of a	particle with mass $\it m$, subjected to a force $\it kx$ can be written as
	$kx = mv \frac{dv}{dx}$, where x is the d	isplacement and v is the velocity. When $x=0$, $v=v_0$.
	Find v , in terms of m , k as	nd $v_{\scriptscriptstyle 0}$.
15.		th GDC]
	•	terial decays at a rate which is proportional to the amount of
	48 grams in 10 years.	ple. Find the half-life of the material if 50 grams decay to
	To grams in 10 years.	

16.	[Maximum mark: 6] [without GDC]
	The tangent to the curve $y = f(x)$ at the point $P(x, y)$ meets the x -axis at $Q(x-1,0)$.
	The curve meets the y -axis at $R(0,2)$. Find the equation of the curve.

17.	[Maximum mark: 6]	[without GDC]
-----	-------------------	---------------

When air is released from an inflated balloon it is found that the rate of decrease of the volume of the balloon is proportional to the volume of the balloon. This can be represented by the differential equation $\frac{\mathrm{d}v}{\mathrm{d}t} = -kv$, where v is the volume, t is the time and k is the constant of proportionality.

(a) If the initial volume of the balloon is v_0 , find an expression, in terms of k, for the volume of the balloon at time t.

(b)	Find an expression,	in terms of k	for the time when	the volume is	$\frac{v_0}{2}$.
(5)	Tind an expression,	m torrio or n	To the time when	ano volumo lo	2

HOMOGENEOUS D.E

18.	[Maximum	mark: 5	[without	GDC 1
	IIVIANIIIIAIII	man. O	jiiiiout	000

Show that the solution of the homogeneous differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + 1 \,, \ x > 0 \,,$$

given that y = 0 when x = e, is $y = x(\ln x - 1)$.

19.	[Maximum mark: 11]	[without GDC]	
	Solve the differential e	quation	$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} = y^2 + 3xy + 2x^2$	
	given that $y = -1$ when	n $x=1$. Give yo	ur answer in the form y	=f(x).

20.	[Maximum mark: 9]	[without GDC]
	Solve the differential e	equation $x^2 \frac{dy}{dx} = y^2 + xy + 4x^2$, given that $y = 2$ when $x = 1$. Give
	your answer in the for	$\mathfrak{m} \ y = f(x) .$

21 .	[Maximum	mark: 13	[with	GDC]
	IIVIAMIIIIAIII	III CIII II	,,,,,,,	000

Consider the differential equation $\frac{dy}{dx} = \frac{y^2 + x^2}{2x^2}$ for which y = -1 when x = 1.

- (i) Solve the differential equation giving your answer in the form y = f(x).
- (ii) Find the value of y when x = 2.

This the value of y when $x = 2$.

22.	[Maximum mark: 13] [without GDC]
	Solve the differential equation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{x} + \frac{y^2}{x^2} \text{ (where } x > 0 \text{)}$
	given that $y = 2$ when $x = 1$. Give your answer in the form $y = f(x)$.

FIRST ORDER LINEAR D.E

23.	[Maximum mark: 10] [without GDC]
	The variables x and y are related by $\frac{dy}{dx} - y \tan x = \cos x$.
	Solve the differential equation given that $y=0$ when $x=\pi$. Give the solution in the
	form $y = f(x)$.

24.	[Maximum mark: 8]	[without GDC]
	Solve the differential ed	quation $(\cos x - \sin x) \frac{dy}{dx} + (\cos x + \sin x)y = (\cos x - \sin x)$
	given that $y = -1$ when	$1 \ \ x = \frac{\pi}{2} \ .$

25 .	[Maximum mark: 11]	[with GDC]	
	Given that $\frac{\mathrm{d}y}{\mathrm{d}x} + 2y \tan y$	$x = \sin x$, and $y = 0$ when $x = \frac{\pi}{3}$, find the maximum value of $y.$

26.	[Maximum mark: 8]	[without GDC]			
	Solve the differential e	equation $(u+3v^3)\frac{d}{dt}$	$\frac{ v }{ u } = 2v$. Give you	ır answer in the fo	rm u = f(v).

27. [Maximum mark: 13]	[without GDC]
-------------------------------	---------------

Consider the differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y = \frac{x^3}{x^2 + 1}.$$

	x + 1	
(a) (b)	Find an integrating factor for this differential equation. Solve the differential equation given that $y = 1$ when $x = 1$, giving your answer in	[5]
	the form $y = f(x)$.	[8]

28*	[Maximum	mark: 9	[without	GDC1
2 0.	IIVIANIIIIUIII	main. 3	IVVILITUAL	ODO

A curve that passes through the point $(1,\,2)$ is defined by the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left(1 + x^2 - y\right)$$

29.	M. Javimum	mark: 11	1 Fusithaut	CDCI
4 3.	[Maximum	IIIain. I i] [without	GDC_{I}

(a)	Express $\frac{1}{(x+1)(x+2)}$	in partial fractions.	[4]
	(x+1)(x+2)		

[7]

(b) Solve the following differential equation
$$(x+1)(x+2)\frac{\mathrm{d}y}{\mathrm{d}x}+y=x+1$$
 giving your answer in the form $y=f(x)$.

30.	[Maximum	mark: 101	[with	GDC]
JU.	IIVIANIIIIUIII	main. IUI	1 44 1 (11	GDCI

Consider the differential equation $\frac{dy}{dx} + \frac{xy}{4-x^2} = 1$, where |x| < 2 and y = 1 when x = 0.

- (i) By first finding an integrating factor, solve this differential equation. Give your answer in the form y = f(x).
- (ii) Calculate, correct to two decimal places, the value of y when x = 1.

EULER'S METHOD

		EULER 3 METHOD	
31.	[Max	kimum mark: 6] [with GDC]	
	Con	sider the differential equation $\frac{dy}{dx} = x^2 + y^2$ where $y = 1$ when $x = 0$.	
	Use	Euler's method with a step length of 0.1 for the following:	
	(a)	Show the first two steps (for the calculation of $y_{\scriptscriptstyle 1}$ and $y_{\scriptscriptstyle 2}$) analytically.	[3]
	(b)	Find an approximate value of y when $x = 0.4$.	[3]
32.	[Max	kimum mark: 5] <i>[with GDC]</i>	
	l et	$\frac{dy}{dx} - 2y^2 = e^x$ and $y = 1$ when $x = 0$. Use Euler's method with $h = 0.1$ to f	find an
	appr	coximation for the value of y when $x = 0.4$. Give all intermediate values in	ı a table.

33.	-	imum mark: 5]	-	-						
	Cons	ider the differentia	al equation	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y^2}{2}$	$\frac{+x^2}{2x^2}$	for wh	ich $y = -$	-1 when	x = 1.	
		Euler's method wi								x=2.
		•••••								
34.	[Max	imum mark: 6]	[with GD	CJ						
	A cur	ve that passes th	rough the p	oint (1, 2	2) is d	efined	by the d	ifferentia	al equat	ion
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x$	$\left(1+x^2-y\right)$	·).					
	(i)	Use Euler's meth	od to get a	n approx	kimate	value	of y whe	en x = 1.	3, takir	ng steps
		of 0.1 . Show inte	ermediate s	teps to fo	our de	ecimal	places ir	ı a table		
	(ii)	How can a more	accurate a	nswer be	e obta	ined us	sing Eule	er's meth	nod?	
							•••••			•••••

35.	[Max	imum mark: 7]	
	Cons	sider the differential equation $\frac{dy}{dy} + \frac{xy}{4-x^2} = 1$, where $ x < 2$ and $y = 1$ when $x = 0$.	
	(a)	Use Euler's method with $h=0.25$, to find an approximate value of y when $x=1$,	
		giving your answer to two decimal places.	[4]
	The	exact solution of this equation is $y = \sqrt{4 - x^2} \left(\arcsin\left(\frac{x}{2}\right) + \frac{1}{2} \right)$ and $y(1) = 1.77$.	
	(b)	Sketch the graph of $y = f(x)$ for $0 \le x \le 1$. Use your sketch to explain why your	
		approximate value of y is greater than the true value of y .	[3]