CS251: Introduction to Language Processing

Bottom-Up Parsing

Vishwesh Jatala

Department of CSE
Indian Institute of Technology Bhilai
vishwesh@iitbhilai.ac.in

Acknowledgement

- Today's slides are modified from that of Stanford University:
 - https://web.stanford.edu/class/archive/cs/cs
 143/cs143.1128/

LR(0) Table

(1)	S	\longrightarrow	Ε
/			

$$\textbf{(3)} \quad \textbf{E} \rightarrow \textbf{E} + \textbf{T}$$

$$(4) T \rightarrow int$$

$$(5) \mathsf{T} \rightarrow (\mathsf{E})$$

	Action					Goto	
	int	+	()	\$	Е	Т
1	S 3					2	4
2	r1	S5/r1	r1	r1	r1		
3 (r4	r4	r4	r4	r4		
4	r2	r2	r2	r2	r2		
5	S 3		S 7				6
6	r3	r3	r3	r3	r3		
7	S 3		S 7			8	4
8		S5		<u>59</u>			
9	55/	r5	r5	r5	r5		

LR Conflicts

- A shift/reduce conflict is an error where a shift/reduce parser cannot tell whether to shift a token or perform a reduction.
 - Often happens when two productions overlap.
- A reduce/reduce conflict is an error where a shift/reduce parser cannot tell which of many reductions to perform.
 - · Often the result of ambiguous grammars.
- A grammar whose handle-finding automaton contains a shift/reduce conflict or a reduce/reduce conflict is not LR(0).
- Can you have a shift/shift conflict?

Example

- (1) $S \rightarrow E$
- **(2) E** → **T**
- (3) $E \rightarrow E + T$
- $(4) T \rightarrow int$
- $(5) \mathsf{T} \rightarrow (\mathsf{E})$

Try to parse int+int using LR(0)

SLR(1)

- Simple LR(1)
- Minor modification to LR(0) automaton that uses lookahead to avoid shift/reduce conflicts.

SLR(1) Table

(1)	S	\longrightarrow	Ε
/			

(3)
$$E \rightarrow E + T$$

$$(4) T \rightarrow int$$

$$(5) \mathsf{T} \rightarrow (\mathsf{E})$$

	Action					Goto	
	int	+	()	\$	Е	Т
1	S3					2	4
2		S 5					
3							
4							
5	S 3		S 7				6
6							
7	S 3		S7			8	4
8		S 5		S 9			
9							

SLR(1) Table

(1)	S	\longrightarrow	Ε
		,	

(3)
$$E \rightarrow E + T$$

$$(4) T \rightarrow int$$

$$(5) \mathsf{T} \rightarrow (\mathsf{E})$$

	Action				Goto		
	int	+	()	\$	Е	Т
1	S3					2	4
2		S 5			r1		
3		r4		r4	r4		
4		r2		r2	r2		
5	S 3		S 7				6
6		r3		r3	r3		
7	S 3		S 7			8	4
8		S 5		S9			
9		r5		r5	r5		

SLR(1)

- Simple LR(1)
- Idea: Only reduce A → ω if the next token
 t is in FOLLOW(A).
- Automaton identical to LR(0) automaton; only change is when we choose to reduce.

•

Example

- $(1) \quad S \to E$
- **(2) E** → **T**
- (3) $E \rightarrow E + T$
- $(4) T \rightarrow int$
- $(5) \mathsf{T} \rightarrow (\mathsf{E})$

Try to parse int+int using SLR(1)

Analysis of SLR(1)

- Exploits lookahead in a small space.
 - Small automaton same number of states as in as LR(0).
 - Works on many more grammars than LR(0)
- Too weak for most grammars: lose context from not having extra states.

```
S \rightarrow E
E \rightarrow L = R
E \rightarrow R
L \rightarrow id
L \rightarrow *R
R \rightarrow L
```


 $E \rightarrow L \cdot = R$ tells us to shift on seeing = tells us to reduce on FOLLOW(R).

tells us to reduce on FOLLOW(R).

 $R \rightarrow L$

$$E \rightarrow L \cdot = R$$
 tells us to shift on seeing = tells us to reduce on FOLLOW(R).

$$= \in FOLLOW(R)$$
.

 $R \rightarrow L$

We have a conflict!

Why is SLR(1) Weak?

- With SLR(1), minimal context.
 - FOLLOW(A) means "what could follow A somewhere in the grammar?," even if in a particular state A couldn't possibly have that symbol after it.
- With LR(1), we have contextual information.

Constructing LR(1) Items

- Begin in a state containing S → E, \$ where
 S is the start symbol and \$ is lookahead
- Compute the closure of the state:
 - If $A \rightarrow a \cdot B\omega$, l is in the state, add $B \rightarrow \gamma$, t to the state for each production $B \rightarrow y$ and for each terminal $t \in FIRST^*(\omega 1)$

Deterministic LR(1) Automata

- $(1) \quad \mathsf{S} \to \mathsf{E}$
- **(2) E** → **T**
- (3) $E \rightarrow E + T$
- $(4) T \rightarrow int$
- $(5) T \rightarrow (E)$

Deterministic LR(1) Automata

(1) $S \rightarrow E$ (2) $E \rightarrow T$ (3) $E \rightarrow E + T$ (4) $T \rightarrow int$ (5) $T \rightarrow (E)$

Deterministic LR(1) Automata

	int	()	+	\$	Τ	E
1	s5					s4	s2
2				s6	ACCEPT		
3				r3	r3		
4				r2	r2		
5				r5	r5		
6	s5	s7				s3	
7	s10	s14				s10	s8
8			s9	s12			
9				r5	r5		
10			r2	r2			
11			r4	r4			
12	s11					s13	
13			r3	r3			
14	s11		s14			s10	s15
15			s16	s12			
16			r5	r5			

 $S \rightarrow E$

 $\mathsf{E} \to \mathsf{T}$

 $E \rightarrow E + T$

 $T \rightarrow int$

T → **(E)**

(1)

(2)

(4)

(5)

(3)

The LR(1) Parsing Algorithm

- Begin with an empty stack and the input set to $\omega \$$, where ω is the string to parse. Set state to the initial state.
- Repeat the following:
 - Let the next symbol of input be t.
 - If action[state, t] is shift, then shift the input and set state = goto[state, t].
 - If action[state, t] is reduce $A \rightarrow \omega$:
 - Pop $|\omega|$ symbols off the stack; replace them with A.
 - Let the state atop the stack be top-state.
 - Set state = goto[top-state, A]
 - If action[state, t] is accept, then the parse is done. If
 - action[state, t] is error, report an error.

Constructing LR(1) Parse Tables

- For each state X:
 - If there is a production $A \rightarrow \omega$ [t], set action[X, t] = reduce $A \rightarrow \omega$.
 - If there is the special production $S \to E$ · [\$], where S is the start symbol, set action[X, t] = accept.
 - If there is a transition out of s on symbol t, set action[X, t] = shift.
- Set all other actions to error.
- If any table entry contains two or more actions, the grammar is not LR(1).