MATT JOHNSON, CHICAGO BOTANIC GARDEN

mjohnson@chicagobotanic.org

@mossmatters

OUTLINE

Locus selection: two strategies

Examples at different phylogenetic scales

PAFTOL probe design from 1KP

Hands On With MarkerMiner

PROBE DESIGN: TWO STRATEGIES

Genome Skimming

- 10x 20x genome coverage
- Intron location information
- May not be suitable for large genomes
- Organellar genome assembly

Transcriptome Sequencing

- 20-30 million RNASeq reads
- Reduced genome representation: exons only
- Tissue and time dependent
- Can multiplex several species

Align moss transcripts (1KP) to Physcomitrella genome

Select genes expressed in at least two pleurocarpous mosses

Design probes from multiple sequences

96 Samples

150 Genes

Liu, Johnson, et al., in prep

Liu, Johnson, et al., in prep

Comparing divergence between probe sequences and:

Sequences recovered by HybPiper (left)
Transcripts from 1KP (right)

In mosses far diverged from Physcomitrella

Liu, Johnson, et al., in prep

THE IMPORTANCE OF MULTIPLE ORTHOLOGS PER GENE

More accurate alignment

Provides redundancy (free extra tiling)

Expands phylogenetic breadth

17x Whole-Genome Sequencing (Artocarpus camansi)

Determined orthology with Morus

333 "phylogeny" genes, plus MADS-Box and volatiles

Gardner et al., APPS, 2016

Transcript

Transcript

Probes spanning intron/exon boundaries may not work

With genome, probes extend to intron/exon boundaries Remainder of probe can be filled with T

Johnson et al., APPS, 2016

PAFTOL PROBE DESIGN

Build a genus level phylogeny of flowering plants

One Kit to Rule Them All?

Which genes? Which orthologs?

Data: 400 genes from 1000 Plant Transcriptome Project (1KP)

PAFTOL HYBSEQ PROJECT: COVERING ALL ANGIOSPERMS

onekp.com

PAFTOL HYBSEQ PROJECT: COVERING ALL ANGIOSPERMS

17 May 2017

PAFTOL HYBSEQ PROJECT: COVERING ALL ANGIOSPERMS

Data: 400 loci used for phylogenetics

Orthology already determined (using genomes)

Pre-screened for low-copy in Viridiplantae

Too many sequences to start (600+ Angiosperms)

What if we only select from genomes?

Too far for HybSeq!

Reducing the dimensionality with K-means clustering

K-means clustering on the DNA sequence dataset (PCA-reduced distance matrix) Centroids are marked with white cross

Reducing the dimensionality with K-means clustering

Reducing the dimensionality with K-means clustering

603 total angiosperm sequences

603 total angiosperm sequences

PAFTOL ANGIOSPERM PROBE DESIGN

Using k-medoids method, 354 loci selected

Between 6 and 15 medoids represent > 95% of all 1KP angiosperms

80,000 probes, designed by MycroArray (Michigan, USA)

Pilot project: Sequencing 288 Angiosperms

Stay tuned...

HANDS ON EXERCISE

Chamala et al., APPS, 2015

Align transcriptomes to existing genomic resources

Select single-copy loci

Generate alignments ready to submit for probe design

Command line or web interface

IMPORTANT WEBSITES

atmo.cyverse.org

github.com/mossmatters/KewHybSeqWorkshop

mossmatters.com