Problem 3: 6210422036 ธนัท เอี่ยมปรีดี

3.1 ให้ใช้ simple exponential smoothing

กำหนดให้ initial level ℓ_0 = 7014 (ข้อมูลตัวแรกสุด) และให้ smoothing parameter = 0.1 จงแสดงวิธีคำนวณ level และ one-step ahead forecast ที่ได้ ณ เวลา t=1,2,3

- ullet ณ เวลา t=1 ค่า observed net sales คือ 7014 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{2|1}$ เป็นเท่าใด
- ullet ณ เวลา t=2 ค่า observed net sales คือ 6935 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{3|2}$ เป็นเท่าใด
- ullet ณ เวลา t=3 ค่า observed net sales คือ 7224 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{4|3}$ เป็นเท่าใด

$$\hat{y}_{t+h|t} = l_t$$

$$\hat{y}_{2|1} = l_1 = 7014 \qquad (3.1) 1$$

	A	U		U	
	Initial Level		7014.00		
!	Smoothing parameter		0.1000		
1	t	Net Sales	Level	Forecast	
Ļ	0		7014.00		
ï	1	7014	7014.00	7014.00	
į	2	6935	7006.10	7014.00	
•	3	7224	7027.89	7006.10	
ŀ	4			7027.89	
1					
	1				

3.2 เฉพาะข้อ 3.2 ให้ใช้ R ทำ time series cross validation เพื่อเลือกระหว่าง Holt กับ Additive Holt-Winters โดยคำนวณ RMSE ของ multi-step errors ที่มี forecast horizon เป็น 1,2,3,4 (ใช้ R โดยไม่ต้องระบุ parameters ใดๆ เพิ่มเติมไม่ว่าจะ เป็น initial states หรือ damping parameters. ให้ใช้เป็นค่า default.)

RMSE (หน่วย: million USD)	h=1	h=2	h=3	h=4
Holt				
Additive Holt-Winters'				

ให้เหตุผลในการเลือก

```
dts
# cx - holt
multieHolt <- tsCV(dts, forecastfunction = holt, h=4)
sqrt(colMeans(multieHolt^2, na.rm=TRUE))
# HW additive by default
multieHWA <- tsCV(dts, forecastfunction = hw, h=4)
sqrt(colMeans(multieHWA^2, na.rm=TRUE))</pre>
```

```
> # cv - holt
> multieHolt <- tsCV(dts, forecastfunction = holt, h=4)
> sqrt(colMeans(multieHolt^2, na.rm=TRUE))
    h=1    h=2    h=3    h=4
    1532.825 1898.321 2267.329 2248.913    Holt CV result
> # HW additive by default
> multieHWA <- tsCV(dts, forecastfunction = hw, h=4)
> sqrt(colMeans(multieHWA^2, na.rm=TRUE))
    h=1    h=2    h=3    h=4
    746.0316 673.9894 911.3911 1174.0268   HW Additive CV result
> | HW Additive CV result
```

เลือก Additive Holt-Winters เพราะค่า RMSE ต่ำกว่า Holt แบบเห็นได้ชัด ทุก ๆ h = 1,2,3,4