1. Librerías a utilizar

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

2. Importar csv

```
In [ ]: sales = pd.read_csv('sales_data.csv')
```

3. Visualización simple de las primeras líneas

```
sales.head(3)
In [ ]:
Out[]:
                                  Year Customer_Age Age_Group Customer_Gender Country
            Date Day
                          Month
            2013-
                   26 November 2013
                                                  19 Youth (<25)
                                                                                Μ
                                                                                    Canada
            11-26
            2015-
                   26 November 2015
                                                  19
                                                      Youth (<25)
                                                                                Μ
                                                                                    Canada
            11-26
                                                       Adults (35-
            2014-
                                                  49
                   23
                           March 2014
                                                                                M Australia
            03-23
                                                             64)
```

4. Cantidad de filas y columnas

```
In [ ]: sales.shape
Out[ ]: (113036, 18)

5. Información de las columnas
In [ ]: sales.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 113036 entries, 0 to 113035
Data columns (total 18 columns):

	(,	
#	Column	Non-Null Count	Dtype
0	Date	113036 non-null	object
1	Day	113036 non-null	int64
2	Month	113036 non-null	object
3	Year	113036 non-null	int64
4	Customer_Age	113036 non-null	int64
5	Age_Group	113036 non-null	object
6	Customer_Gender	113036 non-null	object
7	Country	113036 non-null	object
8	State	113036 non-null	object
9	Product_Category	113036 non-null	object
10	Sub_Category	113036 non-null	object
11	Product	113036 non-null	object
12	Order_Quantity	113036 non-null	int64
13	Unit_Cost	113036 non-null	int64
14	Unit_Price	113036 non-null	int64
15	Profit	113036 non-null	int64
16	Cost	113036 non-null	int64
17	Revenue	113036 non-null	int64

dtypes: int64(9), object(9)
memory usage: 15.5+ MB

6. Datos estadísticos de las columnas con numeros (int - float)

```
In [ ]: sales.describe()
```

Out[

•	Day	Year	Customer_Age	Order_Quantity	Unit_Cost	
count	113036.000000	113036.000000	113036.000000	113036.000000	113036.000000	11
mean	15.665753	2014.401739	35.919212	11.901660	267.296366	
std	8.781567	1.272510	11.021936	9.561857	549.835483	
min	1.000000	2011.000000	17.000000	1.000000	1.000000	
25%	8.000000	2013.000000	28.000000	2.000000	2.000000	
50%	16.000000	2014.000000	35.000000	10.000000	9.000000	
75 %	23.000000	2016.000000	43.000000	20.000000	42.000000	
max	31.000000	2016.000000	87.000000	32.000000	2171.000000	
4						•

7 Análisis por columnas

a) Columna 'Unit_Cost'

In []: sales['Unit_Cost'].describe()

```
113036.000000
Out[]: count
                      267.296366
         mean
                      549.835483
         std
                        1.000000
         min
         25%
                        2.000000
         50%
                        9.000000
         75%
                       42.000000
                     2171.000000
         max
         Name: Unit_Cost, dtype: float64
In [ ]: sales['Unit_Cost'].mean()
         267.296365759581
Out[ ]:
In [ ]: sales['Unit_Cost'].median()
Out[]: 9.0
        sales['Unit_Cost'].plot(kind="box", vert=False, figsize=(14,6))
Out[]: <Axes: >
       Unit_Cost
                                                                  000
                                                 1000
                                                                  1500
                                                                                   2000
In [ ]: sales['Unit_Cost'].plot(kind="density", figsize=(14,6))
Out[]: <Axes: ylabel='Density'>
        0.005
        0.004
       Density
E00.0
        0.002
        0.001
        0.000
                -1000
                                                  1000
                                                                   2000
                                                                                     3000
In [ ]: ax = sales['Unit_Cost'].plot(kind='density', figsize=(14,6))
         ax.axvline(sales['Unit_Cost'].mean(), color='red')
```

```
ax.axvline(sales['Unit_Cost'].median(), color='green')
```

```
Out[]: <matplotlib.lines.Line2D at 0x23605ca68d0>
```



```
In [ ]: ax = sales['Unit_Cost'].plot(kind='hist', figsize=(14,6))
    ax.set_ylabel('Number of Sales')
    ax.set_xlabel('Dollars')
```

Out[]: Text(0.5, 0, 'Dollars')

b) Columna 'Age_Group'

Out[]: <Axes: ylabel='count'>


```
In [ ]: ax = sales['Age_Group'].value_counts().plot(kind='bar', figsize=(6,6))
    ax.set_ylabel('Number of Sales')
```

Out[]: Text(0, 0.5, 'Number of Sales')

Correlación entre columnas

```
In [ ]: sales_num = sales.select_dtypes(include=[np.number])
    corr = sales_num.corr()
    corr
```

Out[]:		Day	Year	Customer_Age	Order_Quantity	Unit_Cost	Unit_Pı
	Day	1.000000	-0.007635	-0.014296	-0.002412	0.003133	0.0037
	Year	-0.007635	1.000000	0.040994	0.123169	-0.217575	-0.213
	Customer_Age	-0.014296	0.040994	1.000000	0.026887	-0.021374	-0.0207
	Order_Quantity	-0.002412	0.123169	0.026887	1.000000	-0.515835	-0.5159
	Unit_Cost	0.003133	-0.217575	-0.021374	-0.515835	1.000000	0.997
	Unit_Price	0.003207	-0.213673	-0.020262	-0.515925	0.997894	1.0000
	Profit	0.004623	-0.181525	0.004319	-0.238863	0.741020	0.749
	Cost	0.003329	-0.215604	-0.016013	-0.340382	0.829869	0.826
	Revenue	0.003853	-0.208673	-0.009326	-0.312895	0.817865	0.818
	4						+
In []:	<pre>fig = plt.figur plt.matshow(complt.xticks(range) plt.yticks(range)</pre>	rr, cmap=' ge(len(cor	RdBu', fig r.columns)), corr.column	s, rotation='ve	rtical')	


```
In [ ]: sales_num.plot(kind='scatter', x='Customer_Age', y='Revenue', figsize=(6,6))
```

Out[]: <Axes: xlabel='Customer_Age', ylabel='Revenue'>

In []: sales_num.plot(kind='scatter', x='Revenue', y='Profit', figsize=(6,6))

Out[]: <Axes: xlabel='Revenue', ylabel='Profit'>


```
In [ ]: ax = sales[['Profit', 'Age_Group']].boxplot(by='Age_Group', figsize=(10,6))
ax.set_ylabel('Profit')
```

Out[]: Text(0, 0.5, 'Profit')

Agregar nuevas columnas

Columna nueva 'Revenue_per_age'

```
In [ ]: | sales['Revenue_per_Age'] = sales['Revenue']/sales['Customer_Age']
         sales['Revenue_per_Age'].head()
Out[ ]:
         0
              50.000000
         1
              50.000000
         2
              49.000000
         3
              42.612245
         4
               8.893617
         Name: Revenue_per_Age, dtype: float64
In [ ]: sales['Revenue_per_Age'].plot(kind='density', figsize=(14,6))
Out[]: <Axes: ylabel='Density'>
```



```
In [ ]: sales['Revenue_per_Age'].plot(kind='hist', figsize=(14,6))
```

Out[]: <Axes: ylabel='Frequency'>

Columna 'Calculated_Cost'

```
sales['Calculated_Cost'] = sales['Order_Quantity'] * sales['Unit_Cost']
In [ ]:
        sales['Calculated_Cost'].head()
Out[]:
               360
        1
               360
         2
              1035
               900
         3
              180
        Name: Calculated_Cost, dtype: int64
        (sales['Calculated_Cost'] != sales['Cost']).sum()
Out[]: 0
        sales.plot(kind='scatter', x='Calculated_Cost', y='Profit', figsize=(6,6))
Out[ ]: <Axes: xlabel='Calculated_Cost', ylabel='Profit'>
```


Columna 'Calculated_Revenue'

Modificar todos los precios de 'Unit_Price', agregando 3% de taxes a estos

Obtener todas las ventas realizadas en el estado de Kentucky

```
In [ ]: sales.loc[sales['State'] == 'Kentucky']
```

Out[]:		Date	Day	Month	Year	Customer_Age	Age_Group	Customer_Gend	ler	Co
	156	2013- 11-04	4	November	2013	40	Adults (35- 64)		М	L :
	157	2015- 11-04	4	November	2015	40	Adults (35- 64)		М	ل :
	23826	2014- 04-16	16	April	2014	40	Adults (35- 64)		М	L S
	23827	2016- 04-16	16	April	2016	40	Adults (35- 64)		М	L S
	31446	2014- 04-16	16	April	2014	40	Adults (35- 64)		М	L •
	31447	2016- 04-16	16	April	2016	40	Adults (35- 64)		М	L •
	79670	2014- 04-16	16	April	2014	40	Adults (35- 64)		М	L S
	79671	2014- 04-16	16	April	2014	40	Adults (35- 64)		М	ر ڊ
	79672	2016- 04-16	16	April	2016	40	Adults (35- 64)		М	L •
	79673	2016- 04-16	16	April	2016	40	Adults (35- 64)		М	ل •
	10 rows × 21 columns									
	Obtener el Revenue promedio del grupo Adultos (Adults 35-64)									
In []:	sales.	loc[sal	es['A	ge_Group']	== 'A	dults (35-64)'	, 'Revenue'].mean()		
Out[]:	762.82	8765405	55604							
	Cuantos records pertenecen al grupo 'Youth (<25)' o 'Adults (35-64)'									
In []:	<pre>sales.loc[(sales['Age_Group'] == 'Youth (<25)') (sales['Age_Group'] == 'Adults</pre>									lts
Out[]:	73652									

Obtener el Revenue promedio del grupo 'Adults (35-64)' en Estados Unidos

```
In [ ]: sales.loc[(sales['Age_Group'] == 'Adults (35-64)') & (sales['Country'] == 'Unite
Out[]: 726.7260473588342
        Incrementar el Revenue en 10% por cada venta hecha en Francia
In [ ]: sales.loc[sales['Country'] == 'France','Revenue']*=1.1
       C:\Users\lancenterstore\AppData\Local\Temp\ipykernel_11184\3980652493.py:1: Futur
       eWarning: Setting an item of incompatible dtype is deprecated and will raise in a
       future error of pandas. Value '[ 865.7 865.7 3252.7 ... 473. 1386. 1327.7]' h
       as dtype incompatible with int64, please explicitly cast to a compatible dtype fi
         sales.loc[sales['Country'] == 'France','Revenue']*=1.1
In [ ]: sales.loc[sales['Country'] == 'France', 'Revenue'].head()
Out[]: 50
               865.7
        51
               865.7
        52
              3252.7
        53
              3136.1
        60
                688.6
        Name: Revenue, dtype: float64
```