

Circuitos combinacionales

© Luis Entrena, Celia López, Mario García, Enrique San Millán Universidad Carlos III de Madrid

Circuitos combinacionales y secuenciales

Combinacionales:

- Salida depende sólo de la entrada
- Ejemplo: sumador de dos operandos

- Salida depende de las entradas y del estado
- Ejemplo: sumador acumulador

Índice

- Codificadores
- Decodificadores
- Multiplexores
- Demultiplexores
- Comparadores

- Funcionalidad
- Implementación
- Asociación
- Uso para implementación de funciones
- Utilidad

1. Codificadores

- Definición:
 - Circuito combinacional que permite transformar un nivel activo en una de sus entradas en un valor codificado
- Ejemplo: teclado numérico
 - Entradas: dígitos 0-9
 - Salidas: codificación binaria (4 bits)

Activar E5 => S="0101" (=5)

Codificadores sin prioridad

Características

- Suponen que sólo una entrada puede estar activa
- Si se activan varias entradas a la vez, la salida puede ser errónea.

Funciones lógicas

$$S_3 = E_8 + E_9$$

$$S_2=E_4+E_5+E_6+E_7$$

$$S_1=E_2+E_3+E_6+E_7$$

$$S_0=E_1+E_3+E_5+E_7+E_9$$

Problemas:

- E1 y E4 activas dan resultado 5
- Ninguna entrada activa da resultado 0

_	
Entrada activa	S ₃ S ₂ S ₁ S ₀
E ₀	0000
E 1	0001
E ₂	0010
E ₃	0011
E ₄	0100
E 5	0101
E ₆	0110
E ₇	0111
E ₈	1000
E ₉	1001

Ejemplo: codificador 4:2 sin prioridad

- M:N ⇒ 'M' entradas, 'N' salidas
- EO: "Enable Output"
 - Sirve para diferenciar el caso de activarse E₀ y el de que no haya nada activo
 - También sirve para asociar varios codificadores
- Casos no contemplados
 - Cualquier combinación de activación múltiple
 - Las salidas son indiferentes

E 3	E ₂	E 1	Eo	S ₁	So	EO
0	0	0	1	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
1	0	0	0	1	1	0
0	0	0	0	0	0	1
Re	esto d	Χ	Χ	Χ		

Ejemplo: codificador 4:2 sin prioridad

E ₃	E ₂	E 1	Eo	S ₁	So	ЕО
0	0	0	1	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
1	0	0	0	1	1	0
0	0	0	0	0	0	1
Re	sto d	e cas	X	X	X	

E1E0 E3E2	00	01	11	10
00	0	0	Х	0
01	1	Х	Χ	X
11	X	Χ	Χ	X
10	1	Х	Х	Х

$$S_1 = E_2 + E_3$$

$$EO = \overline{E_3} \overline{E_2} \overline{E_1} \overline{E_0}$$

E ₁ E ₀ E ₃ E ₂	00	01	11	10
00	0	0	X	1
01	0	X	Х	Χ
11	×	Χ	Х	Χ
10	1	Χ	X	X

$$S_0 = E_1 + E_3$$

Codificadores con prioridad

Características

- Si se activan varias entradas a la vez, dan prioridad a una de ellas
- Prioridad:
 - Al bit más significativo: se da prioridad a la entrada mayor
 Si se activan E1 y E5, el resultado es 5
 - Al bit menos significativo: se da prioridad a la entrada menor Si se activan E1 y E5, el resultado es 1

- M:N ⇒ 'M' entradas, 'N' salidas
- EO: "Enable Output"
- El ó E: "Enable Input" o "Enable".
 Habilitación
 - Sirve para habilitar:
 - '0' (deshabilitado) implica que las salidas valen '0'
 - '1' (habilitado) indica funcionamiento normal
 - Junto con EO también sirve para asociar varios codificadores

EI	E 3	E2	E 1	E ₀	S1	S ₀	EO
0	Χ	Χ	Χ	Χ	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	Χ	0	1	0
1	0	1	Χ	Χ	1	0	0
1	1	Χ	Χ	Χ	1	1	0

Ejemplo: codificador 4:2 con prioridad al más significativo

- Recordatorio
 - 'X' en las salidas \Rightarrow 'X' en el diagrama
 - 'X' en las entradas ⇒ múltiples casos

E1E0 E3E2	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	J	1	1	1
10	7	1	1	1

$$S_1 = EI(E_2 + E_3)$$

E1E0 E3E2	00	01	11	10
00	0	0	1	1
01	0	0	0	0
11	1	1	1	1
10	7	1	1	1

$$S_0 = EI(E_1 \overline{E_2} + E_3)$$

E1E0 E3E2	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

$$S_1 = EI(E_2 + E_3)$$
 $S_0 = EI(E_1 \overline{E_2} + E_3)$ $EO = EI(\overline{E_3} \overline{E_2} \overline{E_1} \overline{E_0})$

Asociación de codificadores: COD8:3 con dos COD 4:2

- Se encadenan los El y EO
- Cuando un COD está activo (EI='1') y no tiene ninguna entrada activa, activa al siguiente COD (EO='1').

Utilidad de los codificadores

- Sensores de piso de un ascensor
 - Codifican cada sensor al número de piso
 - No necesita prioridad, ya que el ascensor sólo puede estar en un piso
- Botonera
 - Codifica el valor de la tecla pulsada
 - Necesita prioridad, ya que se pueden pulsar varios botones a la vez

2. Decodificadores

- Definición:
 - Circuito combinacional que transforma un valor codificado en la activación de la salida correspondiente al dicho valor.
 - Realizan la función inversa a los codificadores

Ε	E ₁	E ₀	S 3	S ₂	S ₁	So
0	Χ	Χ	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Decodificadores

- Funciones lógicas:
 - Cada salida del decodificador es un mintérmino

E1	Eo	S ₃	S ₂	S ₁	So
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$S_0 = \overline{E_1} \overline{E_0}$$

$$S_1 = \overline{E_1} E_0$$

$$S_2 = E_1 \overline{E_0}$$

$$S_3 = E_1 E_0$$

Decodificadores

- Decodificador con salidas activas por nivel bajo:
 - Cada salida del decodificador es un maxtérmino

E1	Eo	S ₃	S ₂	S ₁	So
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

$$S_0 = E_1 + E_0$$

$$S_1 = E_1 + \overline{E_0}$$

$$S_2 = \overline{E_1} + E_0$$

$$S_3 = \overline{E_1} + \overline{E_0}$$

Asociación de decodificadores

- DEC3:8 con DEC2:4
 - Sólo uno de los decodificadores está activo, dependiendo del valor de E2
 - El inversor hace la función de un DEC1:2
 - No tiene Enable global

Asociación de decodificadores

- DEC4:16 con DEC2:4
 - Sólo uno de los decodificadores está activo, dependiendo del valor de E2
 - El decodificador de la izquierda se comporta como un DEC1:2
 - Tiene Enable Global. Si E='0', ningún decodificador se activa y las salidas valen '0'

Asociación de decodificadores

- DEC4:16 con DEC2:4
 - Sólo uno de los decodificadores está activo, dependiendo del valor de E3 y E2

- Se pueden implementar funciones lógicas con un DEC y una puerta OR
- Las salidas del DEC son los mintérminos. Se suman las que valgan '1' en la tabla de verdad
- $S_0 = \overline{ab}$ $S_0 = \overline{ab}$ $S_1 = \overline{ab}$ $S_2 = \overline{ab}$ $S_2 = a\overline{b}$ $S_3 = ab$
- El dual se hace con DEC de salidas a nivel bajo y una puerta AND.

m	а	b	f
0	0	0	0
1	0	1	1
2	1	0	0
3	1	1	1

Decodificador BCD-decimal

- Decodifica un dígito decimal codificado en BCD (natural) a 10 salidas que representan 0-9
- El comportamiento no está definido si la entrada no es un dígito decimal

Decodificador BCD-7 segmentos

 Decodifica un dígito decimal codificado en BCD (natural) a los LEDs de un "display 7-segmentos"

Utilidad de los decodificadores

- Microprocesadores:
 - Decodificación de instrucciones
 - Puertos de E/S, direcciones de memoria, etc.

3. Multiplexores

Definición:

- Circuito que permite seleccionar una de las entradas y copiar su valor a la salida. La entrada seleccionada depende del valor que se dé a las entradas de control.
- Se denominan por el número de entradas de dato: MUX2, MUX4, ...
- N=entradas de datos, n=entradas de control $\Rightarrow 2^n = N$

Multiplexores

Función lógica

$$S = \overline{C_1}\overline{C_0}E_0 + \overline{C_1}C_0E_1 + C_1\overline{C_0}E_2 + C_1C_0E_3$$

Implementación con puertas

Multiplexores

Función lógica

$$S = \overline{C_1}\overline{C_0}E_0 + \overline{C_1}C_0E_1 + C_1\overline{C_0}E_2 + C_1C_0E_3$$

 Implementación con decodificador

Asociación de multiplexores

MUX8 a partir de MUX4 y MUX2

- MUX2 selecciona entre los MUX4, dependiendo del valor del bit de control más significativo (C2)
- Los bits de C y E deben asignarse según su peso

Asociación de multiplexores

MUX8 a partir de MUX4

- El MUX4 de la derecha se comporta como un MUX2
- Recordatorio: las entradas de un circuito DEBEN estar conectadas; las salidas pueden quedar desconectadas

Implementación de funciones lógicas con multiplexores

- Con un MUX de tantas entradas de control como variables tiene la función
 - Las variables de la función van al control del MUX, ordenadas por peso
 - Los valores de la función en la tabla de verdad son las entradas de datos del MUX

а	b	С	f
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Implementación de funciones lógicas con multiplexores

- Con un MUX de menos entradas de control que variables tiene la función
 - Agrupar la tabla de verdad según las variables menos significativas
 - Las variables de la función de mayor peso van al control del MUX, ordenadas por peso
 - Los valores de la función en la tabla de verdad son las entradas de datos del MUX

4. Demultiplexores

- Definición: circuito que copia el valor de la entrada de datos en la salida indicada por el valor de las señales de control.
- Son el circuito opuesto a los multiplexores
- Son equivalentes a decodificadores, si equiparamos las entradas de control (Ci) del DEMUX a las de datos (Ei) del DEC, y la señal de dato del DEMUX (D) al Enable del DEC (E)

D	C ₁	Co				
Е	E1	Εo	S ₃	S ₂	S ₁	So
0	Χ	Χ	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

Utilidad de multiplexores y demultiplexores

Transmisión serie multiplexada

5. Comparadores

- Definición: circuito que permite determinar si dos datos son iguales, o si uno es mayor que otro.
- N es el número de bits de los datos

Comparador 1-bit

_	h	a=b	a>h	ach	<i>c</i> —
d	Ŋ	a-b	a/D	a\D	$f_{a=b} = a \oplus$
0	0	1	0	0	
0	1	0	0	1	$f_{a>b} = ab$
1	0	0	1	0	f = -ah
1	1	1	0	0	$f_{a < b} = ab$

Comparadores

Comparador 3-bit

$$\begin{split} f_{a=b} &= \overline{(a_2 \oplus b_2)} \cdot \overline{(a_1 \oplus b_1)} \cdot \overline{(a_0 \oplus b_0)} \\ &= a_2 = b_2 \quad \text{a1=b1} \quad \text{a0=b0} \\ f_{a>b} &= a_2 \overline{b_2} + \\ &+ \overline{(a_2 \oplus b_2)} \cdot a_1 \overline{b_1} + \\ &+ \overline{(a_2 \oplus b_2)} \cdot \overline{(a_1 \oplus b_1)} \cdot a_0 \overline{b_0} \quad \text{a2=b2, a1=b1 y a0>b0} \\ f_{a>b} &= \overline{a_2} b_2 + \\ &+ \overline{(a_2 \oplus b_2)} \cdot \overline{a_1} b_1 + \\ &+ \overline{(a_2 \oplus b_2)} \cdot \overline{(a_1 \oplus b_1)} \cdot \overline{a_0} b_0 \quad \text{a2=b2, a1=b1 y a0$$

- Se puede generalizar
- De este modo se reutilizan muchas puertas (XOR)

Bibliografía

- "Circuitos y Sistemas Digitales". J. E. García Sánchez, D. G. Tomás, M. Martínez Iniesta. Ed. Tebar-Flores
- "Electrónica Digital", L. Cuesta, E. Gil, F. Remiro, McGraw-Hill
- "Fundamentos de Sistemas Digitales", T.L Floyd, Prentice-Hall