- 1. (2 pontos) Seja f uma imagem contínua que deseja-se converter para o formato digital. Este processo compreende a realização das etapas de amostragem e quantização. Sobre este processo de digitalização, responda as questões a seguir:
 - a. O que é amostragem? Explique. Pegar os pixels da imagem continua e amostrá-los em uma função. 🗸
 - b. A cena capturada na imagem contínua f possui alguma influência na amostragem? Não. Não.
 - c. O que é quantização? Explique. Pegar os valores amostrados e coloca-los na escala de quantização, mapeando-os ao valor na escala mais próximo do real.
 - d. Ao utilizar menos bits por pixel do que é adequado para a quantização de um caso específico, o que pode ser observado na imagem quantizada? Caso as imagens tenham muitos detalhes, pode-se perder um pouco de detalhamento.
- 2. (2 pontos) Considere o segmento de imagem a seguir e faça o que se pede:

a. Sendo $V = \{0, 1\}$, esboce os caminhos -4, -8 e -m mais curtos entre os pixels p e q. Se um caminho específico (-4, -8 ou -m) não existir entre esses dois pixels, explique por quê.

-4: Não, pois os pixels (1, 2) e 'q' não são vizinhos 4 entre si, e a interseção dos seus vizinhos 4 não pertencem a V, impossibilitando sua ligação.

b. Faça o mesmo para $V = \{1, 2\}$.

- 3. (2 pontos) Sobre histograma de imagens, responda o que se pede:
 - a. O que é o histograma de uma imagem? Explique.
 É a função que um pixel de determinado valor de intensidade aparece na imagem determinadas vezes, para todos os pixels da imagem.
 - b. A tabela a seguir apresenta os valores de intensidade de uma imagem hipotética de 8 bits e tamanho 8x8 pixels. Utilizando como base esses valores, construa o histograma desta imagem. Observação: não é necessário normalizar o histograma.

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50
50	50	50	50	50	50	50	50
150	150	150	150	150	150	150	150
200	200	200	200	200	200	200	200
200	200	200	200	200	200	200	200

4. (2 pontos) Suponha que uma imagem de 3 bits (*L*=8) de dimensões 64 x 64 pixels (*MN*=4096) tenha a distribuição de intensidade demonstrada na tabela e histograma a seguir ([0, L - 1] = [0, 7]):

r _k	n _k	$p_r(r_k) = n_k / MN$
r ₀ = 0	790	0,19
r ₁ = 1	1.023	0,25
$r_2 = 2$	850	0,21
r ₃ = 3	656	0,16
$r_4 = 4$	329	0,08
$r_5 = 5$	245	0,06
r ₆ = 6	122	0,03
r ₇ = 7	81	0,02

O que se pede:

a. Aplique a equação de equalização de histograma para cada intensidade de pixel e esboce a função de transformação T(r) gerada.

Cálculos

0 -> 1,33 -> 1 1 -> 3,08 -> 3 2 -> 4,55 -> 5 3 -> 5,67 -> 6 4 -> 6,23 -> 6 5 -> 6,65 -> 7 6 -> 6,86 -> 7

7 -> 7,00 -> 7

b. Calcule e esboce o histograma equalizado $p_s(s_k)$.

Para consulta, segue a equação de equalização de histograma:

$$s_{k} = T(r_{k})$$

$$= (L-1) \sum_{j=0}^{k} p_{r}(r_{j}) = (L-1) \sum_{j=0}^{k} \frac{n_{j}}{MN} = \frac{(L-1)}{MN} \sum_{j=0}^{k} n_{j},$$

$$k = 0, 1, 2, ..., L-1$$

5. (2 pontos) Indique no quadro a seguir qual transformação de intensidade produz o efeito descrito:

Transformação	Efeito esperado		
implied X	Reverte os níveis de intensidade de uma imagem,		
imhist	produzindo o equivalente a um negativo fotográfico.		
	Expande os valores de pixels mais claros ao mesmo		
transformação Qual?	tempo comprime os valores de nível mais baixo. Não é		
transionnação	possível flexibilizar a curva de transformação.		
	Mapeia uma faixa estreita de valores escuros em uma		
	faixa mais ampla de valores de saída, com o posto se		
Equalização X	aplicando a valores mais altos de entrada. Pode		
de histograma	realizar o processo oposto variando um parâmetro de		
do motograma	equação, flexibilizando a curva de transformação.		
Favolino a a de	Expande a faixa de níveis de intensidade de uma		
Equalização de	imagem de modo a incluir todo o intervalo de		
histograma	intensidade disponível.		