CN A – Teste 2020 Resolução

Felipe B. Pinto 71951 – EQB

17 de dezembro de 2024

Conteúdo

Questao I	_	Questao 3							O
Questão 2	3	Questão 6							7
Questão 3	4	Questão 7							12
Questão 4	5	Questão 8							16

Seja $x \in \mathbb{R}$ e \hat{x} uma aproximação de x com 5 algarismos significativos e $10^3 \le |x| < 10^4$. Quantas casas decimais podemos garantir para \hat{x} ?

Resposta

$$k: |\varepsilon_x| \le 0.5 * 10^{-k} = 0.5 * 10^{m+1-5};$$

 $10^3 \le |x| \le 10^{m+1} = 10^4 \implies k = 1$

seja m_3 um polinómio de grau 3 que ajusta o conjunto de pontos (x_i, y_i) , $i \in [0, 4]$ contidos no intervalo [a, b], usando o método dos mínimos quadrados. Seja p_4 o polinómio de grau ≤ 4 interpolador de pontos (x_i, y_i) , $i \in [0, 4]$ e S o spline cúbico interpolador dos mesmos pontos. Qual das seguintes afirmações não é verdadeira?

a)
$$\sum_{i=0}^{4} (m_{3(x_i)} - y_i)^2 > \sum_{i=0}^{4} (S_{(x_i)} - p_{4(x_i)})^2$$

b) Existe pelomenos um $x_i, i \in [0, 4]: m_{3(x_i)} \neq p_{4(x_i)}$

c)
$$\sum_{i=0}^{4} (p_{4(x_i)} - S_{(x_i)})^2 = 0$$

d)
$$S_{(x)} = p_{4(x)}, \forall x \in [a, b]$$

Seja $f_{(x)} = \int_{i=0}^{3} a_i x^i \cos a_3 = 1$ e p_2 um polinómio interpolador de f nos nodos distintos $x_i \in \mathbb{R}, i = \{0, 1, 2\}$. A expressão para $f_{(x)}$ pode ser obtida por:

a)
$$f_{(x)} = p_{2(x)} + 6 \prod_{i=0}^{2} (x - x_i), \quad \forall x \in \mathbb{R}$$

b)
$$f_{(x)} = p_{2(x)} + \frac{1}{6} \prod_{i=0}^{2} (x - x_i), \quad \forall x \in \mathbb{R}$$

c)
$$f_{(x)} = p_{2(x)} + x^3$$
, $\forall x \in \mathbb{R}$

d)
$$f_{(x)} = p_{2(x)} + \prod_{i=0}^{2} (x - x_i), \quad \forall x \in \mathbb{R}$$

Seja

$$I=\int_0^4 f_{(x)} \; \mathrm{d}x \qquad f_{(x)} \in C^4[0,4]$$
 f verifica $\left|f_{(x)}^{(n)}
ight| \leq rac{2^n}{n!}, \, orall \, x \in [0,4] \wedge n \in \mathbb{N}$

Se pretende determinar um valor aproximado de I, com pelomenos 4 casa decimais significativas, utilizando a regra de Simpson, qual o menor número de sub-intervalos de qual amplitude em que teria de dividir o intervalo [0,4]?

Resposta

$$\left| I - \hat{I}_S \right| = \left| -n \frac{h^5}{90} f_{(x)}^{(4)} \right| \le \left| -n \frac{\left(\frac{b-a}{2n} \right)^5}{90} \frac{2^4}{4!} \right| = \left| \frac{-n(4-0)^5 * 2^4}{90 * 2^5 n^5 4!} \right| =$$

$$= \left| \frac{-4^4}{90 * 2 n^4 3!} \right| = \frac{4^4}{90 * 2 n^4 3!} \le 0.5 \, \text{E}^{-4} \implies$$

$$\implies n = \lceil 8.2978 \rceil = 9 \implies \text{numero de subintervalos: } 2n = 18$$

Seja

$$I = \int_0^1 rac{\log(x)}{x+1} \, \mathrm{d}x$$

Qual dos valores seguintes representa um valor aproximado para I, \hat{I} , com 5 casas décimais devidamente arredondadas, utilizando uma regra de integração numérica de aplicação simples que permita obter um grau de precisão de 3?

Considere a seguinte tabela de dados para a função *f* :

Sabe-se que

$$f_{[x_2,x_3]}=3; \hspace{0.5cm} f_{[x_1,x_2,x_3]}=2; \hspace{0.5cm} f_{[x_1,x_2,x_3,x_4]}=2/3$$

Q6 a.

Determine $f_{[x_0,x_1]}; f_{[x_1,x_2]}; f_{[x_0,x_1,x_2]}; f_{(0)}; f_{(2)}$.

Q6 b.

Determine o polinómio de Newton de grau ≤ 3 interpolador de f nos nodos $x_i, i = \{0, 1, 2, 3\}$. (caso não tenha conseguido fazer a linha a) considere $f_{(0)} = -1/2$ e $f_{(2)} = 1/2$).

Q6 c.

Obtenha o polinómio de grau 1, $q_{1(x)}$, que ajusta o conjunto de pontos $(x_i, f_{(x_i)}), i = \{0, 1, 2, 3\}$, utilizando a técnica dos mínimos quadrados e considerando $f_{(3)} = -1/2$ em véz de 2.

Q6 d.

 $\sum_{i=0}^{3} \left(f_{(x_i)} - p_{1(x_i)} \right)^2$

Seja $p_{1(x)} = a + bx$, $\{a,b\} \in \mathbb{R}$. Prove usando a alínea anterior que

Considere o seguinte spline cúbico interpolador duma função $f_{(x)}$ no intervalo $f_{(x)}$

$$S_{(x)} = egin{cases} 1+a\,x+2\,x^2-2\,x^3, & 0 \leq x < 1 \ 1+b\,(x-1)-4\,(x-1)^2+7\,(x-1)^3, & 1 \leq x \leq 2 \end{cases}$$

Q7 a.

Encontre a e b e escreva a expressão do spline.

Q7 b.

considere a tabela de valores para a função f

x_i	0	1	2
$f_{(x_i)}$	1	1	2
$f'_{(x_i)}$	0	4	11

Que tipo de spline é $S_{(x)}$? Completo ou natural? Justifique

Q7 c.

Obtenha uma aproximação para $f_{(0,5)}$. Quantas casa decimáis significativas se pode no minimo garantir para essa aproximação sabendo que $\left|f_{(x)}^{(3)}\right| \leq 0.1$?

 $I=\int_{-2}^0 x\,e^{-x}\;\mathrm{d}x$

08 a.

Determine um valor aproximado \hat{I} de I pela regra do ponto médio com 4 aplicações. Obtenha um majorante para o erro absoluto associado a essa aproximação. Nos cálculos ultilize 6 casas decimais convenientemente arredondadas.

08 b.

Determine um valor aproximado \hat{I} de I pela regra do ponto médio com 2 aplicações. Obtenha um majorante para o erro absoluto associado a essa aproximação. Nos cálculos ultilize 6 casas decimais convenientemente arredondadas.