Herbst 15 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Es sei $f: \mathbb{C} \to \mathbb{C}$ eine ganze Funktion. Für ein $M \in \mathbb{R}^+$ und ein $\alpha \in \mathbb{R}$ gelte:

$$|f(z)| \le M|z|^{\alpha} \quad \forall z \in \mathbb{C}.$$

Zeigen Sie: $f^{(n)}(0) = 0$ für alle $n \in \mathbb{N}$ mit $n > \alpha$, hierbei bezeichne $f^{(n)}$ die n-te Ableitung von f, $f^{(0)} = f$.

- b) Es sei $n_0 \in \mathbb{N}_0, p : \mathbb{C} \to \mathbb{C}$ eine ganze Funktion mit $p^{(n)}(0) = 0$ für alle $n > n_0$. Zeigen Sie: p ist ein Polynom vom Grad n_0 .
- c) f erfülle die Voraussetzungen von Aufgabenteil a). Zeigen Sie: f ist entweder konstant oder hat mindestens eine Nullstelle.

Lösungsvorschlag:

a) Wir unterscheiden die Fälle $\alpha \leq 0$ und $\alpha > 0$: $\alpha \leq 0$: (Wir setzen hier $0^{\alpha} = \infty$ für negative α und $0^{0} = 1$, damit die rechte Seite wohldefiniert ist). In diesem Fall ist f beschränkt, denn für $|z| \geq 1$ ist $|f(z)| \leq M$ und auf der kompakten Menge $\overline{B_{1}(0)}$ ist f stetig als holomorphe Funktion, also ebenfalls beschränkt. Nach dem Satz von Liouville muss $f \equiv c$ konstant sein. Für $\alpha < 0$ erhalten wir wegen $c = \lim_{n \to \infty} f(n) = 0$ bereits c = 0, woraus trivialerweise $f^{(n)}(0) = 0$ für alle $n \in \mathbb{N}_{0}$ folgt. Für $\alpha = 0$ ist f konstant und die Ableitung erfüllt $f^{(1)} \equiv 0$. Natürlich folgt dann $f^{(n)}(0) = 0$ für alle n > 0. $\alpha > 0$: Wir schätzen mit Cauchys Formel für höhere Ableitungen ab; es gilt:

$$|f^{(n)}(0)| = \left| \frac{n!}{2\pi i} \int_{\partial B_r(0)} \frac{f(z)}{(z-0)^{n+1}} dz \right| \le \frac{n!}{2\pi} |\partial B_r(0)| \frac{Mr^{\alpha}}{r^{n+1}} = n! Mr^{\alpha-n} \text{ für } r > 0.$$

Hierbei bezeichnet $|\partial B_r(0)|$ die Länge der Parametrisierung $[0, 2\pi] \ni t \mapsto re^{it} \in \mathbb{C}$. Der Grenzübergang $r \to \infty$ zeigt für $n > \alpha$ dann $0 \le |f^{(n)}(0)| \le 0$, also $0 = f^{(n)}(0)$.

- b) Wir entwickeln p in eine Potenzreihe um 0. Es ist $p(z) = \sum_{n=0}^{\infty} \frac{p^{(n)}(0)}{n!} z^n = \sum_{n=0}^{n_0} \frac{p^{(n)}(0)}{n!} z^n$, was ein Polynom vom Grad (höchstens) n_0 ist.
- c) Nach dem Satz von Archimedes existiert ein $n_0 \in \mathbb{N}$ mit $n_0 > \alpha$. Die Aufgabenteile a) und b) zeigen dann, dass f ein Polynom vom Höchstgrad n_0 ist. Aus dem Fundamentalsatz der Algebra folgt dann die Aussage.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$