МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Методы оптимизации»

Тема: Решение прямой и двойственной задачи

Студент гр. 0303	Калмак Д.А.	
Преподаватель	 Мальцева Н.В.	

Санкт-Петербург

Цели работы.

- 1. Постановка задачи линейного программирования и её решение с помощью стандартной программы.
- 2. Исследование прямой и двойственной задачи.

Задание.

Вариант 5. Для изготовления двух видов продукции P1, P2 используют три вида сырья: S1, S2, S3. Запасы сырья, количество единиц сырья, затрачиваемых на изготовление единицы продукции, а также величина прибыли, получаемая от реализации единицы продукции, приведены в табл. 1. Прибыль от единицы продукции первого вида составляет 50 р., второго вида — 40 р.

Необходимо составить такой план выпуска продукции, чтобы при ее реализации получить максимальную прибыль.

Таблица 1 - Данные

Виды сырья	Запас сырья	Количество единиц сырья, идущих на изготовление единицы продукции	
		P1	P2
S1	20	2	5
S2	40	8	5
S3	30	5	6

Основные теоретические положения.

Если исходная задача линейного программирования представлена в виде: найти минимум функции f = (c, x) на множестве

$$X = \left\{ x \in \mathbb{R}^n : Ax \ge B, x \ge 0 \right\},\tag{3.1}$$

то двойственная задача линейного программирования может быть сформулирована следующим образом:

найти максимум функции (B,λ) на множестве $\lambda = \left\{\lambda \in R^m : \mathbf{A}^T \lambda \leq c, \lambda \geq 0\right\}$, где A^T - матрица, транспонированная к A. Двойственная к двойственной задаче есть исходная задача.

Известно, что если существует решение исходной задачи, то существует решение и двойственной задачи, причем значения экстремумов совпадают. При этом координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в исходной задаче по коэффициентам вектора B.

Рассмотрим видоизмененную исходную задачу:

Найти min(c,x) на множестве $\{x: x \ge 0, Ax \ge B + \varepsilon e_i\}$, где $\varepsilon > 0$,

$$e_i = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ 1 \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$

Если исходная задача имеет единственное решение , то при малых $\varepsilon > 0$ и видоизмененная задача имеет решение ; причем если α^{i}_{ε} -значение минимума , то существует

Выполнение работы.

По заданной содержательной постановке задачи поставим задачу формально, а именно приведем к виду 3.1:

Найти минимум f=(c,x), где c=(20,40,30). Целевая функция принимает вид: $f=20x_1+40x_2+30x_3$.

Ограничения имеют следующий вид $X = \left\{x \in \mathbb{R}^n : Ax \ge B, x \ge 0\right\}$, где $A = {285 \choose 556}, \qquad B = {50 \choose 40}.$ Получаем систему ограничений: $\begin{cases} 2x_1 + 8x_2 + 5x_3 \ge 50 \\ 5x_1 + 5x_2 + 6x_3 \ge 40 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_2 > 0 \end{cases}$

Необходимо минимизировать функцию: $f = 20x_1 + 40x_2 + 30x_3 \rightarrow min$ Введем данные и поставим задачу в программе:

Получим решение с помощью программы:

Поставим двойственную задачу:

Найти максимум $f=(B,\lambda)$, где B=(50,40). Целевая функция принимает вид: $f=50\lambda_1+40\lambda_2$.

Ограничения имеют следующий вид $\lambda = \left\{ \lambda \in \mathbb{R}^m : \mathbf{A}^T \lambda \leq c, \lambda \geq 0 \right\}$, где $A^T =$

$$\binom{2\ 5}{8\ 5}$$
, $c = \binom{20}{40}$. Получаем систему ограничений:

$$\begin{cases} 2\lambda_1 + 5\lambda_2 \le 20 \\ 8\lambda_1 + 5\lambda_2 \le 40 \\ 5\lambda_1 + 6\lambda_2 \le 30 \\ \lambda_1 \ge 0 \\ \lambda_2 \ge 0 \end{cases}$$

Необходимо максимизировать функцию: $f = 50\lambda_1 + 40\lambda_2 \rightarrow max$.

Введем данные и поставим задачу в программе:

Получим решение с помощью программы:

Определим коэффициенты чувствительности исходной задачи по координатам правой части ограничений (вектора B). Для этого:

Найдем min(c,x) на множестве $\{x: x \ge 0, Ax \ge B + \varepsilon e_i\}$, где $\varepsilon > 0$,

$$e_{i} = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ 1 \\ i \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$
, otbet - $\varphi_{i}(\varepsilon)$;

Коэффициент чувствительности вычислим по формуле $\overset{\sim}{\chi}_i = (\varphi_i(\varepsilon) - \varphi_i(0))/\varepsilon$ i=1

$$B = {50 + 0.001 \choose 40} = {50.001 \choose 40}$$

$$\varphi_1 = 265.221$$

$$\bar{x_1} = \frac{265.221 - 265.217}{0.001} = 4$$

В двойственной задаче $\lambda_1=3.913,$ что примерно равно $\bar{x_1}.$

$$B = {50 \choose 40 + 0.001} = {50 \choose 40.001}$$

$$\varphi_2 = 265.219$$

$$\bar{x_2} = \frac{265.219 - 265.217}{0.001} = 2$$

В двойственной задаче $\lambda_2 = 1.739$, что примерно равно $\bar{x_2}$.

Получилось, что коэффициенты чувствительности исходной задачи примерно равны решению двойственной задачи.

Повторим определение коэффициентов чувствительности исходной задачи, но по коэффициентам целевой функции – компонентам вектора \mathcal{C} . Для этого:

Найдем $min(c + \varepsilon e_i, x)$ на множестве $X = \{x \in \mathbb{R}^n : Ax \ge B, x \ge 0\}$, где $\varepsilon > 0$,

$$e_{i} = \begin{pmatrix} 0 \\ \cdot \\ \cdot \\ \cdot \\ 1 \\ i \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{pmatrix}$$
, otbet - $\varphi_{i}(\varepsilon)$;

Коэффициент чувствительности вычислим по формуле $\overset{\sim}{\chi}_i = (\varphi_i(\varepsilon) - \varphi_i(0))/\varepsilon$ i=1

$$c = (20 + 0.001, 40, 30) = (20.001, 40, 30)$$

$$\varphi_1 = 265.217$$

$$\bar{x_1} = \frac{265.217 - 265.217}{0.001} = 0$$

В исходной задаче $x_1 = 0.000$, что равно $\bar{x_1}$.

$$c = (20, 40 + 0.001, 30) = (20, 40.001, 30)$$

$$\varphi_2 = 265.222$$

$$\bar{x}_2 = \frac{265.222 - 265.217}{0.001} = 5$$

В исходной задаче $x_2 = 4.348$, что не совсем равно $\bar{x_2}$, однако программа показывает значение целевой функции до тысячных и превышение на 15 %, что не совсем большая разница.

i = 3

$$c = (20, 40, 30 + 0.001) = (20, 40, 30.001)$$

$$\varphi_3 = 265.220$$

$$\bar{x_3} = \frac{265.220 - 265.217}{0.001} = 3$$

В исходной задаче $x_3 = 3.043$, что примерно равно $\bar{x_3}$.

Получилось, что коэффициенты чувствительности исходной задачи при изменении коэффициентов целевой функции — компонент вектора $\mathcal C$ примерно равны решению исходной задачи.

Протокол работы программы с исходной задачей представлен на рис. 1-6, протокол работы программы с двойственной задачей представлен на рис. 7.

Рисунок 1 – Исходная задача

```
Решение задачи линейного программирования

Целевая функция:
20 40 30 --> min
Ограничения:
2 8 5 >=50.001
5 5 6 >=40
Решение:
------
х1= 0.000
x2= 4.348
x3= 3.043
Значение целевой функции f = 265.221
```

Рисунок 2 — Исходная задача с $b_1 = 50.001$

Рисунок 3 — Исходная задача с $b_2 = 40.001$

Рисунок 4 –Исходная задача с $c_1 = 20.001$

Рисунок 5 – Исходная задача с $c_2 = 40.001$

Рисунок 6 – Исходная задача с $c_3 = 30.001$

Рисунок 7 – Двойственная задача

Вывод.

Таким образом, была поставлена задача линейного программирования и решена с помощью стандартной программы. Проведено исследование прямой и двойственной задач, из которого можно сказать, что значения экстремумов прямой и двойственной задач совпадают, а координаты экстремальной точки для двойственной задачи являются коэффициентами чувствительности результата в прямой задаче по коэффициентам вектора B.