1. Elijo el ejercicio 1

2.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.neighbors import KNeighborsClassifier
clientes = pd.read_csv("creditos.csv")
#graficar los datos
buenos = clientes[clientes["cumplio"]==1]
malos = clientes[clientes["cumplio"]==0]
plt.scatter(buenos["edad"], buenos["credito"],
       marker="*", s=150, color="skyblue",
       label="Sí pagó (Clase: 1)")
plt.scatter(malos["edad"], malos["credito"],
       marker="*", s=150, color="red",
       label="No pagó (Clase: 0)")
plt.ylabel("Monto del crédito")
plt.xlabel("Edad")
plt.legend(bbox_to_anchor=(1, 0.2))
#Normalizar los datos
datos = clientes[["edad", "credito"]]
clase = clientes["cumplio"]
escalador = preprocessing.MinMaxScaler()
datos = escalador.fit_transform(datos)
#Entrenar el clasificador
clasificador = KNeighborsClassifier(n_neighbors=3)
clasificador.fit(datos, clase)
edad = 53
monto = 350000
#Escalar los datos del nuevo solicitante
solicitante = escalador.transform([[edad, monto]])
#Calcular clase y probabilidades
print("Clase:", clasificador.predict(solicitante))
```


3.

3														
Modelou	lo de	10	p 106	0611	Jod.	Una	10	stan	ciol	per	lene	700	a	
Una c														
Lap	r0606	vo: P	1 de	11x)	e ou	0 14	stand	'ho x	6.	rte	net	0 0	la	
función														
real en	, el	inter	volo	(0)	1)									
Q(5).	- 1 + 6	3-												
Pro 606	ilidad	de	lose	Per	0606	1110	ed c	ve i	JU OI	145	louci	0 (perte-	
nez co														
PCY=1							1							
y gue	Sea	499	otiv	0	1-	P (7	= 1	x)						
Funcio le 1 m	n de	1054	e	red,	re	10	ron	en	tre	10	5 0	red	(ceio	
								3						
L(4, 9,														
Se esta	blece	el	vm6r	01	par	9	red	ecir	0	19	se			

- 4. Elijo el ejercicio4
- 5. Elijo el ejercicio 5

6.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import make_blobs
import matplotlib
X, y = make_blobs(n_samples=50, n_features=2, centers=2, random_state=21, center_box=(0, 10.0))
# Creamos el modelo SVM para clasificación con kernel lineal y entrenamos el modelo
clf = svm.SVC(kernel='linear', C=100)
clf.fit(X, y)
cmap = matplotlib.colors.ListedColormap(['blue', 'red'])
plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=cmap)
ax = plt.gca()
x \lim = ax.get_x \lim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision\_function(xy).reshape(XX.shape)
# Graficamos el hiperplano y el margen
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100, facecolors='none', edgecolors='k')
Z_pred = clf.predict(np.c_[XX.ravel(), YY.ravel()])
Z_pred = Z_pred.reshape(XX.shape)
cmap = matplotlib.colors.ListedColormap(['pink', 'yellow'])
```

```
plt.pcolormesh(XX, YY, Z_pred, cmap=cmap, alpha=0.1)
# Predicción para un nuevo punto y gráfica del nuevo punto
new_x = [[5, 0.5]]
new_z = clf.predict(new_x)
if new_z[0] == 0:
  color = 'blue'
else:
  color = 'red'
plt.scatter(new_x[0][0], new_x[0][1], marker='+', color=color, s=300)
plt.grid()
plt.show()
                Figure 1
                      2
                      1
                      0
                ☆ ♦ ♦ ♦ Q ≢ 🖺
```

7. Elijo el ejercicio 7