What is claimed is:

5

10

15

20

25

30

1. A method of preparing layered lithium-chromium-manganese oxides for lithium batteries, comprising the steps of:

preparing a homogeneous precipitation by adding lithium hydroxide (LiOH) solution to a mixed solution of chromium acetate (Cr₃(OH)₂(CH₃CO₂)₇) and manganese acetate ((CH₃CO₂)₂Mn•4H₂O);

preparing precursor powders having the formula $\text{Li}[\text{Cr}_x\text{Li}_{(1/3-x/3)}\text{Mn}_{(2/3-2x/3)}]\text{O}_2$ where $0.1 \leq X \leq 0.5$ by firing the homogeneous precipitation; and

preparing layered oxide powders by heat treating the precursor powders.

2. The method as claimed in claim 1, wherein the preparation of the precursor powder comprises:

heating the homogeneous precipitation to remove excess water; and firing the homogeneous precipitation by heating the homogeneous precipitation on a hot plate.

- 3. The method as claimed in claim 2, wherein the firing of the homogeneous precipitation on a hot plate is performed after the viscous precipitation is coated on titanium foil.
- 4. The method as claimed in claim 1, wherein the heat treatment of the precursor powders comprises:

firing at a temperature T_1 , which is in the range of 650 to 700° C; and annealing at a temperature T_2 which is higher than T_1 temperature.

- 5. The method as claimed in claim 4, wherein the temperature T_2 is in the range of 900 to 1000° C.
- 6. The method as claimed in claim 4, further comprising grinding the precursor powders fired at temperature T_1 before annealing at temperature T_2 .

- 7. The method as claimed in claim 4, wherein the annealing at temperature T_2 is performed in air.
- 8. The method as claimed in claim 4, further comprising quenching the precursor powders annealed at temperature T_2 .