Algoritmos e Estruturas de Dados III

3º Período Engenharia da Computação

Prof. Edwaldo Soares Rodrigues

Email: edwaldo.rodrigues@uemg.br

- Introdução:
 - Edsger Dijkstra:
 - "A Ciência da computação tem tanto a ver com o computador como a Astronomia com o telescópio, a Biologia com o microscópio, ou a Química com os tubos de ensaio. A Ciência não estuda ferramentas, mas o que fazemos e o que descobrimos com elas.";

• Introdução:

• Um grafo é uma estrutura de abstração muito útil na representação e solução de problemas computacionais, por representarem relações de interdependência entre elementos de um conjunto;

- Introdução:
 - Em 1735, Euler ganha fama mundial ao resolver um problema que por décadas foi desafio para os matemáticos da época (Série infinita da soma dos inversos dos quadrados;
 - Conhecido como problema da Basiléia;
 - A maioria dos grandes matemáticos de seu tempo tentaram sem êxito encontrar o resultado desta série infinita;
 - Euler possuía apenas 28 anos na época;

- Introdução:
 - Um ano mais tarde (1736), Euler resolve o problema conhecido como as Sete Pontes de Konigsberg :
 - No século XVIII, havia na cidade de Konigsberg um conjunto de sete pontes que cruzavam o rio Pregel. Elas conectavam duas ilhas (C e D) entre si e as ilhas com as margens (A e B).

- Introdução:
 - Pontes de Konigsberg:
 - Os moradores locais questionavam se seria possível começando em um dos blocos de terra (A, B, C ou D), caminhar exatamente uma única vez sobre cada uma das pontes e retornar ao ponto de partida.

UNIDADE DIVINÓPOLIS

- Introdução:
 - Pontes de Konigsberg:

- Introdução:
 - Pontes de Konigsberg:
 - Euler provou através de grafos que não é possível realizar tal façanha!

UNIDADE DIVINÓPOLIS

- Mais alguns problemas clássicos:
 - O problema das três casas:
 - Suponha que existam três casas e que cada uma delas deve ser conectada a três serviços básicos: água, eletricidade e telefone

- Mais alguns problemas clássicos:
 - O problema das três casas:
 - Considerando que todos os fios e canos estão no mesmo plano, é possível fazer todas as conexões sem haver cruzamento de tubulação?

UNIDADE DIVINÓPOLIS

- Mais alguns problemas clássicos:
 - O problema das três casas:
 - Não é possível fazer as conexões sem cruzamentos!

- Mais alguns problemas clássicos:
 - O problema da Coloração de Mapas:
 - Considere o mapa da região Nordeste:

• Com quantas cores é possível pintar os estados fazendo com que nenhum estado tenha a mesma cor de seus vizinhos?

- Mais alguns problemas clássicos:
 - O problema da Coloração de Mapas:

- Com quantas cores é possível pintar os estados fazendo com que nenhum estado tenha a mesma cor de seus vizinhos?
 - R: 4 cores;

- Definição formal:
 - Grafo G = (V, A)
 - Conjunto V com n vértices (também chamados nós)
 - $\{v_1, v_2, \ldots, v_n\}$
 - Conjunto A com m arestas ou arcos
 - {a₁, a₂, ..., a_m}

- Definição formal:
 - Exemplo de grafo: G = (V, A):
 - V = {v1, v2, v3, v4, v5, v6};
 - A = {(v1, v2), (v1, v3), (v2, v3), (v2, v4), (v2, v5), (v3, v4)};

- Por que estudar grafos?
 - Importante ferramenta matemática com diversas aplicações:
 - Um grande número de problemas pode ser representado como problemas em grafos;
 - Possui diversas soluções prontas para uso;
 - A maior dificuldade está em expressar (modelar) o problema em grafos;

• Processo de abstração:

- Grafo Não Direcionado (GND):
 - Ligações expressas em Arestas
 - Se o vértice *a* está ligado a *b*, a recíproca é verdadeira;
 - Cada aresta é representada por um conjunto {v1, v2}, indicando os dois vértices envolvidos.

- Grafo Direcionado (GD):
 - Ligações expressas em Arcos →;
 - Cada arco é representada por um par ordenado (v1, v2), indicando os dois vértices envolvidos;

• Incidência:

• Uma aresta e = (V1, V2) é dita incidente a v1 e a v2;

• Os vértices que a aresta conecta também são ditos incidentes à aresta;

• Adjacência:

• Dois vértices que são incidentes a uma mesma aresta são ditos adjacentes:

• Duas arestas que são incidentes a um mesmo vértice são ditas adjacentes:

- Terminologia:
 - Laço: uma aresta cujas duas extremidades incidem em um mesmo vértice;

- Terminologia:
 - Arestas paralelas: mais de uma aresta associada ao mesmo par de vértices

- Terminologia:
 - Grafo Simples: grafo que não possui laços e nem arestas paralelas;

• Terminologia:

• Vértices Adjacentes: vértices que são os pontos finais de uma mesma aresta;

• Terminologia:

- Grau de um vértice:
 - O grau (d(i)) de um vértice i em um grafo não direcionado é igual o número de arestas incidentes a i;
 - O grau de entrada (d-(i)) de um vértice i em um grafo direcionado é igual o número de arestas que entram em i;
 - O grau de saída (d+(i)) de um vértice i em um grafo direcionado é igual o número de arestas que saem de i;

- Conceito:
 - Teorema do Aperto de Mãos Handshaking:
 - A soma dos graus de todos os vértices de um GND G é duas vezes o número de arestas de G;

$$\sum_{i=1}^n d(i) = 2m$$

• O número de vértices de grau ímpar em um GND é par;

• Terminologia:

- Vértice isolado:
 - Vértice de grau 0;
- Vértice pendente:
 - Vértice de grau 1;
- Grafo nulo:
 - Grafo sem nenhuma aresta;
- Grafo trivial:
 - Grafo de apenas 1 vértice e nenhuma aresta;

$$|E| = \emptyset$$

(grafo nulo)

• Terminologia:

• Grafo Completo: um grafo completo com n vértices, denominado K_n é um grafo simples contendo exatamente uma aresta para cada par de vértices distintos;

- Terminologia:
 - Grafo Regular: grafo no qual todos os vértices possuem o mesmo grau;
 - Obs: qualquer grafo completo é regular;

- Terminologia:
 - Vértice Isolado: vértice com nenhuma aresta incidente;

- Terminologia:
 - Grafo Conexo: Para todo par de vértices i e j de G existe pelo menos um caminho entre i e j;
 - Grafo Desconexo: Consiste de 2 ou mais grafos conexos, chamados de componentes;

• Terminologia:

- Grafo Complemento:
 - Seja G = (V, A) um grafo simples dirigido ou não-dirigido, o complemento de G, G
 (ou C(G)), é um grafo formado da seguinte maneira:
 - Os vértices de G são todos os vértices de G;
 - As arestas de \bar{G} são exatamente as arestas que faltam em G para formarmos um grafo completo;

- Tipos de grafos:
 - Subgrafos:
 - Dois grafos G1 e G2 são iguais se V1 = V2 e A1 = A2;
 - Um grafo GB é um subgrafo de G se e somente se os conjuntos de vértices e arestas de GB estão contidos nos conjuntos de vértices e arestas de G;

- Tipos de grafo:
 - Clique:
 - O clique de um grafo é um subgrafo de G que seja completo;

- Tipos de grafo:
 - Grafos valorados:
 - São utilizados rótulos também nas arestas;

• Grafos valorados podem ser direcionados e não direcionados;

- Tipos de grafo:
 - Grafos valorados:
 - Geralmente utilizamos rótulos em arestas para representar o custo de alguma coisa;
 - Por exemplo, a distância para sair da cidade a e chegar na cidade b;
 - Ou o tempo necessário;
 - Em redes de computadores, a aresta muitas vezes recebe o RTT (round-trip time), tempo de ida e volta;

- Tipos de grafo:
 - Grafos bipartidos:
 - Um grafo G(V,A) é chamado de grafo bipartido se o seu conjunto de vértices puder ser dividido em dois subconjuntos V_1 e V_2 sem intersecção;
 - E as arestas conectam apenas os vértices que estão em subconjuntos diferentes, ou seja, uma aresta sempre conecta um vértice de V_1 a V_2 ou vice-versa, porém ela nunca conecta vértices do mesmo subconjunto entre si;

- Tipos de grafo:
 - Grafos Hamiltonianos:
 - Um grafo hamiltoniano é um tipo especial de grafo que possui um caminho que visita todos os seus vértices apenas uma vez;
 - A esse caminho, dá-se o nome de caminho hamiltoniano;
 - Um ciclo hamiltoniano é um ciclo no qual cada vértice é visitado exatamente uma vez, retornando ao seu ponto de partida (esse é o único vértice que se repete).

- Tipos de grafo:
 - Grafos Eulerianos:
 - Um grafo euleriano é um tipo especial de grafo que possui um ciclo que visita todas as suas arestas apenas uma vez, iniciando e terminando no mesmo vértice;
 - A esse ciclo dá-se o nome de ciclo euleriano;

UNIDADE DIVINÓPOLIS

- Tipos de grafo:
 - Grafos Semieulerianos:
 - Um grafo semieuleriano é um tipo especial de grafo que possui um caminho aberto (não é um ciclo) que visita todas as suas arestas apenas uma vez;
 - A esse caminho dá-se o nome de caminho euleriano;

- Pontes de Konigsberg Voltando ao problema:
 - Os moradores locais questionavam se seria possível começando em um dos blocos de terra (A, B, C ou D), caminhar exatamente uma única vez sobre cada uma das pontes e retornar ao ponto de partida.
 - Vimos anteriormente que Euler chegou a conclusão de que não era possível, mas porque?

- Pontes de Konigsberg Voltando ao problema:
 - Partindo do vértice A, e percorrendo outros vértices, podemos ver a utilização de no mínimo duas arestas (pontes) "chegada" e a de "saída";
 - Assim, se for possível achar uma rota que usa todas as arestas do grafo e começa e termina em A, então o número total de "chegadas" e "saídas" de cada vértice deve ser um valor múltiplo de 2;

- Pontes de Konigsberg Voltando ao problema:
 - No entanto, temos:
 - Grau(A) = Grau(C) = Grau(D) = 3;
 - Grau(B) = 5;

 Assim, por este raciocínio não é possível percorrer as faixas de terra passando por cada ponte uma única vez, retornando ao vértice de partida;

UNIDADE DIVINÓPOLIS

Aplicações:

Facebook: Fevereiro de 2017, ≈ 2,13 bilhão de usuários ativos.

Aplicações:

UNIDADE DIVINÓPOLIS

- Aplicações:
 - Sistemas Operacionais: abstraindo os estados de processos/threads;

- Aplicações:
 - Sistemas Operacionais: Hierarquia de processos Árvores são grafos especiais;

- Aplicações:
 - Sistemas Operacionais: Detecção de deadloacks, por meio de ciclo no grafo;

- Aplicações:
 - Programação: Garbage collector Java;

UNIVERSIDADE

- Aplicações:
 - Teoria da computação e Engenharia de Software;

Algoritmos e Estruturas de Dados III

• Bibliografia:

• Básica:

- ASCENCIO, Ana C. G. Estrutura de dados. Rio de Janeiro: Pearson. 2011.
- CORMEN, Thomas; RIVEST, Ronald; STEIN, Clifford; LEISERSON, Charles. Algoritmos. Rio de Janeiro: Elsevier, 2002.
- ZIVIANI, Nívio. Projeto de algoritmos com implementação em Pascal e C. São Paulo: Cengage Learning, 2010.

Complementar:

- EDELWEISS, Nina, GALANTE, Renata. Estruturas de dados. Porto Alegre: Bookman. 2009. (Coleção Livros didáticos de informática UFRGS, 18).
- PINTO, W.S. Introdução ao desenvolvimento de algoritmos e estrutura de dados. São Paulo: Érica, 1990.
- PREISS, Bruno. Estruturas de dados e algoritmos. Rio de Janeiro: Campus, 2000.
- TENEMBAUM. Aaron M. Estruturas de Dados usando C. São Paulo: Makron Books. 1995.
- VELOSO, Paulo A. S. Complexidade de algoritmos: análise, projeto e métodos. Porto Alegre: Sagra Luzzatto, 2001.

Algoritmos e Estruturas de Dados III

