STEP 1

unpack operands

S	е	e	е	е	1.	m	m	m	m	m	S	е	е	е	е	1.	m	m	m	m	m

STEP 2

$$d = X_E - Y_E$$

$$if \ d < 0 \rightarrow SWAP \ X \leftrightarrow Y$$

$$Z_E = X_E$$

• STEP 3

$$sign(X) \neq sign(Y) \rightarrow Y_{M_{C2}}$$

• STEP 4

$$\begin{aligned} Allign \ Y_M : RSH \gg |d| \\ if \ Y_{M_{C_2}} in \ step \ 3 \rightarrow introduce \ 1's \\ else \rightarrow introduce \ 0's \\ preserve \ g,r,s \end{aligned}$$

• STEP 5

$$\begin{split} Z_M &= X_M + Y_{M_{al}} \\ sign(X) &= sign(Y) \rightarrow preserve\ Cout\ if\ gen. \\ sign(X) &\neq sign(Y) \rightarrow \begin{cases} Cout \rightarrow Z_{M_{C_2}}\ COMP \\ Cout \rightarrow discard \end{cases} \end{split}$$

• STEP 6

$$determine \ Z_{M_{norm}} \rightarrow update \ Z_{E}$$

$$RSH \ll until \ Z_{M} = 1. zzzz$$

• STEP 7

calculate
$$R, S: Z_M = 1.zzzz_{-m}|RS$$

• STEP 9

SWAP (STEP 2)	COMP (STEP 5)	SIGN
YES		sign(Z) = sign(Y) before swap
NO	YES	sign(Z) = sign(Y)
NO	NO	sign(Z) = sign(X)

STEP 8

ROUNDING MODE	+Z	-Z
to 0	_	_
towards −∞	_	if R or $S \rightarrow Z_{M_{norm}} - 1$
$towards + \infty$	if $R \text{ or } S \to Z_{M_{norm}} + 1$	_
to nearest even	if R and $(S \text{ or } z_{-m}) \rightarrow Z_{M_{norm}} + 1$	if R and $(S \text{ or } z_{-m}) \rightarrow Z_{M_{norm}} - 1$