元素及其化合物・一・「钠 (Na) 及其化合物」

钠单质

化学性质

1. Na 与氧气反应: $\begin{cases} 4\operatorname{Na} + \operatorname{O}_2 &= 2\operatorname{Na}_2\operatorname{O} \\ 2\operatorname{Na} + \operatorname{O}_2 & \stackrel{\Delta}{==} \operatorname{Na}_2\operatorname{O}_2 \end{cases}$

2. Na 与氯气反应: $2 \operatorname{Na} + \operatorname{Cl}_2 \stackrel{\Delta}{=\!=\!=} 2 \operatorname{NaCl}$

3. Na 与水 反应: 2 Na + 2 H₂O = 2 NaOH + H₂ ↑

现象: 「浮熔游响红」

钠的密度比水小,会浮在水面上;反应时,钠迅速熔化成小球(说明反应剧烈、大量放

热、钠熔点偏低);产生的氢气推动钠在水面上游动;发出响声;滴加酚酞后变红

4. Na 与 CuSO_4 水溶液反应: $\begin{cases} Frist. & 2\,\mathrm{Na} + 2\,\mathrm{H}_2\mathrm{O} = 2\,\mathrm{NaOH} + \mathrm{H}_2\uparrow \\ Second. & 2\,\mathrm{NaOH} + \mathrm{CuSO}_4 = \mathrm{Cu}(\mathrm{OH})_2\downarrow + \mathrm{Na}_2\mathrm{SO}_4 \end{cases}$

5. Na 与乙醇反应: $2C_2H_5OH + 2Na \longrightarrow 2C_2H_5ONa + H_2 \uparrow$

现象: 钠沉于无水乙醇的底部(或因产生的氢气使得钠上下跳动),表面有气泡产生,慢慢消失; 放出的气体可在空气中安静地燃烧,火焰呈淡蓝色(H_2); 烧杯壁上有水珠生成; 澄清石灰水未变浑浊(无 CO_2)

解释:由于烷基具有推电子作用 $(CH_3\overset{
ightarrow}{C}H_2-O-H)$,使得 O-H 键极性变弱,因此反应 不会很剧烈

知识点

1. 支取: 2 NaCl(熔融) ^{通电} 2 Na + Cl₂↑

2. 用途: 钠、钾合金 (液态) 可用于原子反应堆的导热剂; 冶炼某些金属 (如钛金属); 用作电光源,制作高压钠灯

3. 密度: $p(H_2O) > p(Na) > p(煤油)$ (密封保存,通常保存在石蜡油或煤油中)

氧化钠与过氧化钠

	氧化钠 (Na ₂ O)	过氧化钠 (Na ₂ O ₂)
电子式	Na ⁺ [:Ö:] Na ⁺ (仅含有离子 键)	Na ⁺ [:Ö:Ö:] ²⁻ Na ⁺ (含有离子键和非极性共价键)
离子个数比4	${ m Na^+}:{ m O}^{2-}=2:1$	$\mathrm{Na^{+}}:\!O_{2}^{2-}\!=2:1$
化合物类型1	离子化合物(碱性氧化物)	离子化合物(非碱性氧化物,为过氧化物)
颜色、状态	白色、固体	淡黄色、固体
主要性质	具有碱性氧化物的通性	具有强氧化性 ²
稳定性	不稳定,加热生成 $\mathrm{Na_2O_2}^{3}$	较稳定
与水反应	$\mathrm{Na_2O} + \mathrm{H_2O} = 2\mathrm{NaOH}$	$2\mathrm{Na_2}\overset{-1}{\mathrm{O}_2} + 2\mathrm{H_2O} \overset{2e^-}{=\!=\!=\!=} 4\mathrm{NaOH} + \overset{0}{\mathrm{O}_2} \overset{5}{\uparrow}$
与CO ₂ 反应	$\mathrm{Na_2O} + \mathrm{CO_2} = \mathrm{Na_2CO_3}$	$2\operatorname{Na_2O_2}^{-1} + 2\operatorname{CO_2} \stackrel{2e^-}{=\!=\!=\!} 2\operatorname{Na_2CO_3} + \stackrel{0}{\operatorname{O}_2} \uparrow^5$

- 1. 碱性氧化物与酸反应生成盐和水: $Na_2O+2HCl=2NaCl+H_2O$ $(Na_2O_2$ 不是碱性氧化物: $2Na_2O_2+4HCl=4NaCl+2H_2O+O_2\uparrow$)
- 2. Na_2O_2 加入品红溶液中,在水中生成 H_2O_2 ,利用其氧化性,使得品红溶液褪色;如将其加入滴加酚酞的水中, Na_2O_2 会先变红,后褪色
- 3. Na $\xrightarrow{O_2}$ Na₂O $\xrightarrow{O_2}$ Na₂O₂ $\xrightarrow{H_2O}$ NaOH
- 4. 考点: $1mol \operatorname{Na_2O} + \operatorname{Na_2O_2}$ 混合溶液的离子数为 $3N_A$
- 5. 考点: $\operatorname{Na_2O_2} + \operatorname{H_2O}(g) + \operatorname{CO_2}(g)$ 反应产生 $1mol \ \operatorname{O_2}$,即转移了 $2mol \ e^-$

碳酸钠与碳酸氢钠

	7 世界会址 ()	碳酸氢纳(
	碳酸钠(碳酸氢钠 (
俗名	纯碱、苏打	小苏打
溶解度	易溶于水	在水中溶解度比 $\mathrm{Na_2CO_3} \mathrm{J}^1$
热稳定性 ²	稳定,受热难分解	受 热 易 分 解 : $2 \operatorname{NaHCO}_3 \stackrel{\Delta}{=\!\!\!=} \operatorname{Na_2CO}_3 + \operatorname{CO}_2 \uparrow + \operatorname{H}_2 \operatorname{O}$
与酸反应	$\mathrm{Na_{2}CO_{3}} \xrightarrow{\mathrm{H^{+}}} \mathrm{NaHCO_{3}} \xrightarrow{\mathrm{H^{+}}} \mathrm{CO_{2}} \uparrow^{3}$	$\mathrm{NaHCO_3} \xrightarrow{\mathrm{H}^+} \mathrm{CO_2} \uparrow$
与 CO ₂ 反应	$\mathrm{Na_{2}CO_{3}+CO_{2}\uparrow +H_{2}O_{2}=NaHCO_{3}}$	不反应4
与 Ca(OH) ₂ 反应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} \ = \ \mathrm{CaCO_3} \downarrow$	$ m NaCHO_3$ 少量: $ m HCO_3^- + OH^- + Ca^{2+} = CaCO_3 \downarrow + H_2O$ $ m Ca(OH)_2$ 少量: $ m 2HCO_3^- + 2OH^- + Ca^{2+} = CaCO_3 \downarrow + 2H_2O$

	碳酸钠 (Na ₂ CO ₃)	碳酸氢钠 (NaHCO ₃)
与 CaCl ₂ /BaCl ₂ 反应	$\mathrm{Ca^{2+}} + \mathrm{CO_3^{2-}} \ = \ \mathrm{CaCO_3} \downarrow$	不沉淀

- 1. 侯 氏 制 碱 法 中 , 向 饱 和 NaCl(aq) 中 依 次 通 入 NH $_3$ 和 CO $_2$, 溶 液 中 存 在 NH $_4^+$ 、Na $^+$ 、Cl $^-$ 、CO $_3^{2-}$ 、HCO $_3^-$,其中HCO $_3^-$ 最先析出,加热析出的 NaHCO ,得到 Na $_2$ CO $_3$
- 2. 实验: 比较碳酸钠与碳酸氢钠的热稳定性

碳酸钠在外层,温度高,碳酸氢钠在内层,温度低,II 的澄清石灰水变浑浊,证明碳酸钠的热稳定性更强

3. 实验:辨别 HCl 和 Na₂CO₃

互滴。如 HCl 逐滴滴入 Na_2CO_3 溶液中,开始时没有气泡,后来有;如 Na_2CO_3 逐滴滴入 HCl 溶液中,一开始就有气泡

4. 考点: 除去 CO₂ 中的 HCl

除杂:

1. 固体 Na₂CO₃(NaHCO₃):加热至恒重

2. 水溶液 Na₂CO₃(NaHCO₃):加 NaOH

3. 水溶液 NaHCO₃(Na₂CO₃):加足量 CO₂

鉴别

物质 $\left\{ egin{array}{ll} % & \left\{ egin{array} {ll} % & \left\{ egin{array}{ll} & \left\{ egin{array}{ll} & \left\{$