# Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

# «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа ядерных технологий Направление – Ядерные физика и технологии Отделение ядерно-топливного цикла

# Отчет по практической работе $N_2$ 1

по дисциплине

«Теория каскадов для разделения двухкомпонентных изотопных смесей»

# Изучение описания программного обеспечения для расчета каскадов и проведение тестовых расчетов

Вариант 6

| Исполнитель:      |         |      |                |
|-------------------|---------|------|----------------|
| Студент, гр. 0А8Д | подпись | дата | Кузьменко А.С. |
| Проверил:         |         |      |                |
| Профессор ОЯТЦ    | подпись |      | Орлов А.А.     |

#### ЦЕЛЬ РАБОТЫ

Изучение описания программного обеспечения для расчета каскадов и проведение тестовых расчетов каскада постоянной ширины.

#### 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

В практике центробежного разделения изотопов не урановых элементов чаще всего применяют каскады постоянной ширины, в которых все разделительных ступени содержат одинаковое количество центрифуг, соединенных параллельно. Такие установки представляют собой прямоугольные каскады (ПК).

# 2. ИСХОДНЫЕ ДАННЫЕ

Таблица 1 – Исходные данные

| Количество | Ступень | Количество   | Концентрация | Концентрация |
|------------|---------|--------------|--------------|--------------|
| ступеней   | питания | ГЦ в ступени | отбора, %    | отвала, %    |
| 4          | 2       | 35000        | 3            | 0,2          |

#### 3. ПРАКТИЧЕСКАЯ ЧАСТЬ

Проведен расчет каскада в соответствии с данными варианта, представленными в таблице 1. Результаты расчета приведены на рисунках 1 и 2.

| Результаты расчета в виде таблиц |        |        |        |         |         |        |         |        |       |         |        |
|----------------------------------|--------|--------|--------|---------|---------|--------|---------|--------|-------|---------|--------|
|                                  | C-, %  | C+, %  | C, %   | G-, r/c | G+, r/c | G, r/c | g, mr/c | Θ      | Х     | To, r/c | Ko, %  |
| 1                                | 0.2000 | 0.4512 | 0.3836 | 1.07    | 2.90    | 3.96   | 0.11    | 0.7308 | 2.262 |         |        |
| 2                                | 0.3836 | 0.8212 | 0.6179 | 3.96    | 4.57    | 8.53   | 0.24    | 0.5354 | 2.150 | 1.30    | 0.7110 |
| 3                                | 0.7013 | 1.5169 | 0.9865 | 4.33    | 2.33    | 6.66   | 0.19    | 0.3496 | 2.181 |         |        |
| 4                                | 1.3478 | 3.0000 | 1.5169 | 2.09    | 0.24    | 2.33   | 0.07    | 0.1023 | 2.264 |         |        |
|                                  |        |        |        |         |         |        |         |        |       |         |        |

Рисунок 1 – Результаты расчета



Рисунок 2 – Окно программы

Полученные данные коэффициента деления потока, полного коэффициента разделения, эффективной и фактической разделительных способностей ступени приведены в таблице 2.

Таблица 2 – Результаты расчета

| n | $\theta$ | χ     | $E_{ m e}_{\phi}$ , г/с | $E_{\phi a \kappa m}, \Gamma / { m c}$ |
|---|----------|-------|-------------------------|----------------------------------------|
| 1 | 0,73     | 2,262 | 0,226                   | 0,226                                  |
| 2 | 0,54     | 2,150 | 0,416                   | 0,597                                  |
| 3 | 0,35     | 2,181 | 0,296                   | 0,485                                  |
| 4 | 0,10     | 2,264 | 0,088                   | 0,088                                  |

По данным таблицы 2 построен график зависимости коэффициента деления потока от номера ступени (рисунок 3).



Рисунок 3 – Зависимость коэффициента деления потока от номера ступени

Из рисунка 3 видно, что значение коэффициента деления потока линейно уменьшается при увеличении номера ступени. Коэффициент деления потока уменьшается с 0,73 до 0,10 (на 86,3 %). Максимальное значение коэффициента деления потока 0,73 наблюдается на ступени отбора тяжелой фракции; минимальное значение коэффициента деления потока 0,10 наблюдается на ступени отбора легкой фракции.

По данным таблицы 2 построена зависимость полного коэффициента разделения от номера ступени (рисунок 4).



Рисунок 4 — Зависимость полного коэффициента разделения от номера ступени

Из рисунка 4 видно, что зависимость полного коэффициента разделения от номера ступени нелинейная с минимумом на ступени подачи питания (полный коэффициент разделения равен 2,15).

Максимальные значения полного коэффициента разделения достигаются на крайних ступенях: на ступени отбора легкой фракции 2,264; на ступени отбора тяжелой фракции 2,262.

На рисунке 5 представлен график зависимости эффективной и фактической разделительных способностей от номера ступени.



Рисунок 5 — Зависимость эффективной и фактической разделительных способностей от номера ступени

Из рисунка 5 видно, что эффективная и фактическая разделительные способности изменяются нелинейно с максимумом на ступени подачи питания, в которой значения эффективной и фактической разделительных способностей равны 0,42 г/с и 0,60 г/с соответственно. Фактическая разделительная способность больше эффективной разделительной способности. В крайних ступенях эффективная и фактическая способность разделения практически совпадают.

# выводы

Изучено описание программного обеспечения для расчета каскадов, проведен тестовый расчет каскада постоянной ширины.

- 1. Установлено, что коэффициент деления потока имеет максимальное значение на ступени отбора тяжелой фракции.
- 2. Показано, что максимальное значение коэффициента разделения достигается на ступенях отбора тяжелой и легкой фракции.
- 3. Определено, что на ступени подачи питания наблюдается максимум эффективной и фактической разделительных способностей.