CHAPTER ELEVEN

SPECIFIC HEAT CAPACITY AND HEAT CAPACITY

The specific heat capacity:

- The specific heat capacity of a substance is defined as the heat required to raise a unit mass of it through 1^{0c} .
- Its S.I unit is J/Kg⁰C, and the symbol used to represent it is C.
- This mass refers to a mass of 1kg.

The heat capacity:

- This is also known as the thermal capacity.
- The heat capacity of a substance or a body is defined as the heat required to raise it temperature by 1^{0} c.
- The S.I unit for the heat capacity is joule per degree Celsius i.e. J/°C or J/°k.
- The heat capacity = mass \times specific heat capacity.
- (Q1) The specific heat capacity of copper is 400J/kg⁰C. Find the heat capacity of 5kg of copper.

Soln:

Since heat capacity = mass \times specific heat capacity,

=> heat capacity = $5 \times 400 = 2000 \text{J} \text{k}^{-1} = 2000 \text{J}/\text{k} = 2 \text{kJ/k}$

N/B: 2kJ/k is the same as $2kJk^{-1}$.

Also 40J/k can also be written as 40Jk⁻¹.

(Q2) Calculate the heat capacity of a substance whose specific heat capacity is $25Jk^{-1}{}^{0}C^{-1}$, if it has a mass of 10kg.

Soln:

$$Mass = M = 10kg.$$

Specific heat capacity = $C = 25J/kg^0C$.

Heat capacity = $MC = 10 \times 25$

 $= 250 J/^{0}C.$

(Q3) The mass of a substance is 4000g. If its specific heat capacity is 50J/kg⁰C, determine its heat capacity.

Soln:

M = 4000g = 4kg.

 $C = 50J/kg^0C$.

Heat capacity = MC

$$= 4 \times 50 = 200 \text{J}/^{0}\text{C} = 0.2 \text{Kj}/^{0}\text{c}.$$

N/B: (1) 1kJ = 1000J and 1kg = 1000g.

(1) The heat gained by a substance = $M \times C \times \triangle \theta$, where M = the mass of the substance in kg.

C = its specific heat capacity.

 $\Delta \theta$ = the change in temperature.

- (2) The heat lost by a substance or a body is also = $M \times C \times \triangle \theta$. $where \triangle \theta$ = the increase (rise) or decrease (fall) in temperature.
- (Q1) The specific heat capacity of a substance is $20J/kg^0C$. If the substance has a mass of 15kg and it temperature rises by 10^0C , calculate the heat gained by the substance.

Soln:

 $C = 20J/kg^0C$.

M = 15kg.

$$\triangle \theta$$
 = 10°C.

Heat gained = $M \times C \times \triangle \theta$

 $= 15 \times 20 \times 10 = 3000 \text{J} = 3 \text{kJ}.$

(Q2) The mass of a metal is 7000g and its specific heat capacity is $30 \text{Jkg}^{-1}\text{c}^{-1}$. If its temperature is raised from 4^{0c} to 6^{0C} , determine the amount of heat energy that it will gain.

Soln:

M = 7000g = 7kg.

 $C = 30Jkg^{-1} = 30J/kg$.

$$\Delta\theta = 6 - 4 = 2^{0C}$$

Amount of heat gained = $M \times C \times \triangle \theta = 7 \times 30 \times 2 = 420J$.

N/B:

Heat gained or lost by a body = $M \times C \times \triangle \theta$.

But since $m \times c =$ the heat capacity,

then heat lost or gained by a body = $m \times c \times \Delta \theta$ = Heat capacity $\times \Delta \theta$.

(Q3) The heat capacity of a substance is $320J/^{0}C$. If its temperature is increased by 4^{0c} , determine the amount of heat gained.

Soln:

Heat gained = heat capacity \times rise in temperature.

Therefore heat gained = $320 \times 4 = 1280J = 1.28kJ$.

(Q4) The temperature of a substance was decreased by 8° C. If it has a mass of 50kg, and a specific heat capacity of $10J/kg^{\circ}$ C, determine the amount of heat lost by the substance.

Soln:

$$\triangle \theta = 8^{\circ} c$$

$$c = 10J/ kg^0C$$
.

m = 50kg.

Heat lost =
$$m \times c \times \triangle \theta$$

$$= 50 \times 10 \times 8 = 4000 J = 4 k J.$$

(Q5) The heat capacity of a body is 200J/ kg 0 C. If its temperature falls from 22 0 C to 20 0 C, calculate the amount of heat lost.

Soln:

Heat capacity = $m \times c = 200J/ {}^{0}C$.

$$\triangle \theta = 22 - 20 = 2^{\circ}$$
C.

Heat lost = Heat capacity x change in temperature = $200 \times 2 = 400$ J

Soln:

Fall in temperature = $\Delta \theta$ = ?

$$M = 200g = 0.2kg$$
.

$$C = 10Jkg^{-10}c^{-1}$$

Heat lost = 12J.

But since heat lost = $M \times C \times \triangle \theta$

N/B:

(I) $10J.kg^{-10}C^{-1}$ is the same as or equivalent to $10Jkg^{-10}k^{-1}$.

- (II) Also 10Jkg⁻¹⁰k⁻¹ can also be written as 10J/kg⁰k.
- (III)In short, degrees kelvin and degrees celcius are interchangeable.
- (Q6) Given that the heat capacity of a metal is 80J/kg ^{0}k , find its specific heat capacity, if it has a mass of 5kg.

Soln:

Heat capacity = $80J/^{0}k$.

$$M = 5kg, C = ?$$

Since heat capacity = $m \times c$,

=> heat capacity = 5 \times c, => 80 = 5c,

$$\Rightarrow$$
 c = $\frac{80}{5}$ = 16.

The specific heat capacity = $1 \text{ 6J/kg}^0\text{k}$.

N/B:

- The change in temperature (i.e. the increase or decrease in temperature) $\Delta\theta$ is also $= \theta_2 - \theta_1$, where θ_2 = the higher temperature and θ_1 = the lower temperature

Therefore heat lost or heat gained = $m \times c \times \triangle \theta = m \times c \times (\theta_2 - \theta_1)$.

(Q1) How many jouls of heat is given out, when a piece of iron of mass 2kg and specific heat capacity $460J/kg^0C$, cools from 30^0C to 20^0c .

Soln:

M = 2kg, C = 460J/kg⁰C,
$$\theta_2$$
 = 30°C and θ_1 = 20°c.

Heat given out = $m \times c \times (\theta_2 - \theta_1)$

$$= 2 \times 460 \times (30 - 20)$$

$$= 2 \times 460 \times 10 = 9200J = 9.2kJ.$$

(Q2) Determine the amount of heat given out, when 50g of iron cools from 45° C to 15° C, if its specific heat capacity is $460J/kg^{\circ}$ C.

Soln:

$$\theta_2 = 45^{\circ}\text{C}$$
, $\theta_1 = 15^{\circ}\text{C}$,

$$m = 50g = 0.05kg$$
, $c = 460J/kg^0C$.

Heat given out = $m \times c \times (\theta_2 - \theta_1)$

$$= 0.05 \times 460 \times (45 - 15)$$

$$= 0.05 \times 460 \times 30 = 690$$
J

N/B:

- θ_2 may also be referred to as the final temperature.
- θ_1 may also be referred to as the initial temperature.
- $(\theta_2 \theta_1)$ = the change in temperature.
- (Q3) (a) Explain what is meant by the statement, the specific heat capacity of iron is 460J/kg°C.

Soln:

This means that when the temperature of 1kg of iron changes by 1^{0c} , the heat given out or taken in is 460J.

(Q4) What will be the final temperature of the mixture, if 100g of water at a temperature 70° C is added to 200g of cold water whose temperature is 10° c and well stirred. Neglect the heat absorbed by the container. [Specific heat capacity of water = 4200J/kg $^{\circ}$ C].

Soln:

Heat given out by hot water = Heat gained by cold water.

Let θ = the final temperature of the mixture.

With reference to the hot water, θ , the final temperature of the mixture will be lower than the temperature of the hot water (i.e. 70° C).

=> For the hot water, the change in temperature = $(70^{\circ} - \theta)$.

Heat lost by hot water when it cools from 70°C to θ °C = m × c × (70 - θ)

$$= 100g \times 4200 \times (70 - \theta)$$

$$= 0.1 \text{kg} \times 4200 \times (70 - \theta)$$
.

With reference to the cold water, the final temperature of the mixture which is θ , will be higher that the temperature of the cold water, (10°C).

=> The change in temperature of the cold water = $(\theta - 10)$.

The heat gained by the cold water in warming from 10°C to θ °C = m × c × (θ - 10)

$$= 200g \times 4200 \times (\theta - 10)$$

$$= 0.2 \text{kg} \times 4200 (\theta - 10).$$

Since heat lost by hot water = heat gained by cold water,

$$=> 0.1 \times 4200 \times (70 - \theta) = 0.2 \times 4200 \times (\theta - 10),$$

$$\Rightarrow$$
 420(70 – θ) = 840 (θ - 10), \Rightarrow 29400 - 420 θ = 840 θ - 8400,

$$\Rightarrow$$
 29400 + 8400 = 840 θ + 420 θ ,

$$=> 37800 = 1260 \ \theta$$

$$\Rightarrow \theta = \frac{37800}{1260} = 30^{\circ}$$
C.

The final temperature of the mixture = 30° C.

(Q5) A piece of copper of mass 250g was heated to 100° C, and then transferred into a well lagged aluminum can of mass 10.0g, which contained 120g of methylated spirit whose temperature was 10° C. Determine the final steady temperature of the mixture, after the spirit had been well stirred. [The specific heat capacity of copper = 400J/kg $^{\circ}$ C, of aluminum = 900J/kg $^{\circ}$ C, of methylated spirit = 2400J/kg $^{\circ}$ C].

N/B:

- Since the methylated spirit was contained within the aluminum can, => heat gained by the aluminum can + the heat gained by the methylated spirit = heat lost by the piece of copper.
- Secondly, since the methtylated spirit is within the aluminium can(i.e. in contact with each other), then they will also have the same temperature.
- Therefore if the temperature of the methylated spirit is 10° C, then that of the aluminium can will also be 10° C.

Soln:

Let θ = the final temperature of the mixture.

Sine the initial temperature of the copper (i.e. 100° C) will be higher than this θ ,

 \Rightarrow change in temperature = $(100 - \theta)$.

Heat lost by the copper in cooling from 100°C to $\theta = m \times c \times (100 - \theta)$

=
$$250g \times 400 \times (100 - \theta) = 0.25kg \times 400 \times (100 - \theta) = 100(100 - \theta) = 10,000 - 100 \theta$$
.

Since the hot piece of copper was dropped into the aluminum can which contained the methylated spirit whose temperature was 10° C, then the final temperature θ will be higher than this 10° C, which is the initial temperature of both the aluminum can and the methylated spirit.=> For both the aluminium can and the methylated spirit, the change in temperature = $(\theta - 10^{\circ}$ C). Heat gained by the aluminum can = m × c × $(\theta - 10^{\circ}$ C)

$$= 10g \times 900 (\theta - 10)$$

=
$$0.01$$
kg \times 900 \times (θ – 10)

$$= 9(\theta - 10) = 9\theta - 90.$$

Lastly, heat gained by the methylated spirit = $m \times c \times (\theta - 10)$

$$= 120g \times 2400 \times (\theta - 10)$$

$$= 0.12 \text{kg} \times 2400 \times (\theta - 10)$$

$$= 288(\theta - 10) = 288 \theta - 2880.$$

Since the heat lost by the copper = the heat gained by the aluminum can + the heat gained by the methylated spirit, then $10000 - 100\theta = 9\theta - 90 + 288\theta - 2880$,

$$\Rightarrow$$
 10,000 + 90 + 2880 = 9 θ + 288 θ + 100 θ ,

$$\Rightarrow$$
 12970 = 397 θ

$$\Rightarrow \theta = \frac{12970}{397} = 33$$

=> The final temperature = 33°C.

(Q6) 500g of a certain metal was heated to 100° C, and then placed in a 200g of water whose temperature was 15° C. If the final temperature of the mixture rose to 20° C, calculate the specific heat capacity of the metal.

N/B: The final temperature will be the same for both the metal and the water.

[Specific heat capacity of water = 4200J/kg⁰C].

Soln:

For the metal:

Let C = the specific heat capacity.

Mass =
$$500g = 0.5kg$$
.

Initial temperature = 100° C.

Final temperature = 20° C.

Change in temperature = $\Delta \theta$

$$= 100 - 20 = 80^{\circ}$$
C.

Heat lost by the metal = $m \times c \times \Delta \theta = 0.5 \times c \times 80 = 40cJ$

.

For the water:

Mass = 200g = 0.2kg.

Specific heat capacity = 4200J/kg⁰C.

Initial temperature = 15^{0c}

Final temperature = 20^{0c}

Change in temperature = θ

$$= 20 - 15 = 5^{0c}$$

Heat gained by water = m \times c $\times \Delta \theta$ = 0.2 \times 4200 \times 5 = 4200J.

But since heat lost by metal = heat gained by water => 40C = 4200, => C = $\frac{4200}{40}$

$$=> C = 105J/kg^{0}C.$$

(Q7) A brass cylinder of mass 100g was heated to 100° C, and then transferred into a thin aluminium can of negligible heat capacity, containing 150g of paraffin whose temperature was 11° C. If the final steady temperature after stirring was 20° C, calculate the specific heat capacity of the paraffin. [The specific heat capacity of brass = 0.38J/kg $^{\circ}$ C].

N/B: - Since the aluminum can has negligible heat capacity, then we do not consider it during calculation.

- Therefore in this particular case, the heat lost by the brass = the heat gained by the paraffin only.

Soln:

For the brass:

Mass =
$$100g = 0.1kg$$
.

Initial temperature = 100° C.

Final temperature = 20° .

$$\triangle \theta = 100 - 20 = 80^{\circ} \text{c}.$$

$$c = 0.38J/kg^{0}C$$
.

Heat lost by the brass in cooling from 100°C to 20°C = m \times c $\times \triangle \theta$ = 0.1 \times 0.38 \times 80 = 3.04J.