

Mei Wangzhihui 2019124044

Task 1

The two-spiral problem is a two class problem, which is non-linear.

Figure 1: two-spiral problem

I use a 2-layer MLP to solve this problem as the problem is non-linear. First I try to use a single-hidden-layer to fit the problem. But the graph fluctuate heavily. I try to turn down the learning rate(LR) and turn up the momentum (Mtm) so that it can converange more smoothly. But the wrong rate is high.

Figure 2: 3-layer MLP

The I add one hidden layer to solve it.

Figure 3: 4-layer MLP

The model applied on test dataset is: AvgError = 0.001843, Error rate = 0.82%. Generally, It's a good model. But the performance is not optimized. Adding an extra layer into it:

Figure 4: 5-layer MLP

For Test Set AvgError = 0.0028466 and Errorrate = 1.56% though it predict weeker than the second MLP, but it perform better in computation complexisity.

Task 2

1-hidden-layer MLP

Figure 5: MLP

The performance of these MLP is:

Hidden Layer	Average Error	Error rate	Training Time
16	0.071	0.23	5s
48	0.075	0.238	16s
16, 16	0.07	0.224	34s
48, 256	0.072	0.238	273s
32, 32, 16	0.071	0.226	158s
48, 64, 64	0.070	0.224	213s

Table 1: Performance of MLPs

With the consideration of the balance between Accuracy and performance, The 2-hidden-layer (16,16) is the best choice.

Task 3

Figure 6: bad example

Figure 7: MLP with 1-hidden layer $\,$

The final AverageError = 0.205 and ErrorRate = 4%, The time to converange the MLP is 100000 epochs.