Proof Theoretic Semantics for Questions

November 9, 2016

In addition to \mathcal{L}_e , we construct another language, called \mathcal{L}_Q which has two categories of well-formed expressions: d-wffs and e-wffs, that is, claims and questions. (For simplicity, we drop the 'e' notation from our turnstile.) The syntax of \mathcal{L}_Q is just that of \mathcal{L}_e plus the following: ?, $\{,\}$, and the comma. D-wffs are just sentences of \mathcal{L}_e . E-wffs, on the other hand, are expressions of the following form: ?, $\{A_1, \ldots, A_n\}$ where n > 1 and $A_1 \ldots A_n$ are pairwise syntactically distinct d-wffs of \mathcal{L}_e . If ?, $\{A_1, \ldots, A_n\}$ is a question, then each of the d-wffs $A_1 \ldots A_n$ is a possible direct answer to the question, and these are the only possible direct answers. Not that any question in \mathcal{L}_Q has at least two possible direct answers and that the set of those answers is always finite. We must stress that e-wffs are NOT sets of d-wffs, but rather singular expressions of a strictly defined form. We can paraphrase e-wffs as aksing Which of the following claims am I entitled to: A_1, \ldots, A_n ?

Here are possible rules for e-wffs:

Right rule for
$$\{A_1, \ldots, A_n\}$$

$$\frac{\Gamma,\,A_1 \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} B \ldots \Gamma,\,A_n \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} B}{\Gamma,\,B \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \{A_1,\ldots,A_n\}} \qquad \text{where } \Gamma,B \not\sim\hspace{-0.9em}\mid\hspace{0.58em} A_1\ldots\Gamma,B\not\sim\hspace{-0.9em}\mid\hspace{0.58em} A_n$$

Possible left rule for $\{A_1, \ldots, A_n\}$

$$\frac{\Gamma \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} A_{i}}{\Gamma, ?\{A_{1}, \ldots, A_{n}\} \hspace{0.2em}\sim\hspace{-0.9em}\mid\hspace{0.58em} \bot} \qquad \text{where } 1 \leq i \leq n$$

(Negative) Partial Answer

$$\frac{\Gamma, B, A_i \triangleright \bot}{\Gamma, B, ?\{A_1, \dots, A_n\} \triangleright ?\{A_1, \dots, A_{n-1}\}} \quad \text{where } n > 2 \text{ and } 1 \le i \le n$$

We can give the semantics for a non-factive why-question, Why B?, as follows:

$$?{A_1 \twoheadrightarrow B, \ldots, A_n \twoheadrightarrow B}$$

Once \mathcal{L}_e is extended to include traditional logical operators, we can give the semantics for *factive* why questions, e.g. *Why B?*, as follows:

$$\{(A_1 \twoheadrightarrow B) \land B, \dots, (A_n \twoheadrightarrow B) \land B\}$$

Notice that once one has an answer to this question, one is entitled to the explanans.

$$\frac{\Gamma, A \stackrel{\uparrow}{\triangleright}_{e} B}{\Gamma \vdash_{e} A \twoheadrightarrow B} \quad \text{EER}$$

$$\frac{\Gamma \vdash_{e} A \twoheadrightarrow B}{\Gamma, A \stackrel{\uparrow}{\triangleright}_{e} B} \quad \text{EES}$$

$$\frac{\Gamma, A \stackrel{\uparrow}{\triangleright}_{e} B}{\Gamma, B, A \twoheadrightarrow B \vdash_{e} A} \quad \text{EEL}$$

Quantified Material Consequence (QMC):

$$\Gamma, A
ightharpoonup^W B \iff_{df} \begin{cases} 1. \ W \subseteq \mathcal{P}(\mathcal{L}) & \text{and} \\ 2. \ \forall \Delta \in W(\Gamma, A, \Delta \vdash B) \end{cases}$$

Modally Robust Consequence (MRC):

$$\Gamma, A
\stackrel{\uparrow^{*}W}{\triangleright} B \iff_{df} \begin{cases} 1. \ \Gamma, A \ \stackrel{\uparrow^{*}W}{\triangleright} B & \text{and} \\ 2. \ \forall W'(\Gamma, A \ \stackrel{\uparrow^{*}W'}{\triangleright} B \implies W' \subseteq W) & \text{and} \end{cases}$$

$$3. \ \forall \Delta(\Gamma, A, \Delta \ \stackrel{\uparrow}{\triangleright} \ \bot \implies \Delta \notin W)$$

Sturdy Consequence (SC): [Sets]

$$\Gamma, \Sigma \not \stackrel{\uparrow}{\sim} B \Longrightarrow \begin{cases} 1. \ \Gamma, \ \Sigma \not \stackrel{\uparrow}{\sim} B & \text{where } B \not \in \Sigma, \text{ and} \\ 2. \ \forall \Theta \ (\Gamma, \Theta \not \stackrel{\uparrow}{\sim} W' B \Longrightarrow W \not \subset W') & \text{where } B \not \in \Theta \end{cases}$$