Домашня робота #2 (перша частина) з курсу "Комплексний аналіз"

Студента 3 курсу групи МП-31 Захарова Дмитра 30 жовтня 2023 р.

Завдання 1.

Умова. Записати за допомогою нерівностей область \mathcal{D} , якщо її границя $\partial \mathcal{D}$ визначається кривою, що задана параметрично:

1.
$$z = t + it^2, t \in (-\infty, +\infty);$$

2.
$$z = \begin{cases} e^{i\pi t}, & t \in [0, 1) \\ t - 2, & t \in [1, 3] \end{cases}$$

3.
$$z = i \cos t, \ t \in [0, 2\pi]$$

Пункт 1.

Спочатку, зобразимо $\partial \mathcal{D}$. На комплексній площині маємо параметрично задану криву $\{\operatorname{Re} z, \operatorname{Im} z\}(t) = \{t, t^2\}$ для $t \in (\infty, +\infty)$. Це, очевидно, є параболою $\operatorname{Im} z = (\operatorname{Re} z)^2$.

Отже, границя $\partial \mathcal{D}$ зображена на рис. 1

Рис. 1: Синім відмічена границя $\partial \mathcal{D}$

Перевірити, що орієнтація кривої така, як на рис. 1, можна наступним чином: будемо збільшувати t від 0 до $+\infty$. Тоді, на кривій $\{t,t^2\}$ абсциса та ордината буде збільшуватись, таким чином отримуємо праву гілку, починаючи з (0,0). Якщо будемо навпаки, зменшувати t, то будемо рухатись по зменшенню абсциси, але збільшенню ординати, тобто від (0,0) по лівій гілці параболи.

Сама область \mathcal{D} буде знаходитись над цим графіком, оскільки в такому разі крива $\partial \mathcal{D}$ буде пробігати навколо \mathcal{D} проти годинникової стрілки. Таким чином, відповідь зображена на рис. 2.

Нерівність ж буде записуватись як:

$$\operatorname{Im} z > (\operatorname{Re} z)^2$$

Рис. 2: Синім відмічена границя $\partial \mathcal{D}$, зеленим – область \mathcal{D}

Пункт 2.

Крива $z_1(t)=e^{i\pi t}, t\in [0,1)$ є дугою одиничного кола з центром в (0,0) (оскільки $z_1(t)=\cos\pi t+i\sin\pi t$, тобто в декартових координатах $\{\cos\pi t,\sin\pi t\}$). Для t=0 маємо $z_1(0)=1$, а для t=1 отримуємо $z_1(1)=\cos\pi+i\sin\pi=-1$.

Таким чином, маємо рух по півколу $\{z\in\mathbb{C}:|z|=1\land {\rm Im}\,z\geq 0\}\setminus \{-1\}$ проти годинникової стрілки (без точки -1 оскільки t=1 не включено).

Крива $z_2(t)=t-2, t\in [1,3]$ є відрізком на ${\rm Im}\,z=0$ від $z_2(1)=-1$ до $z_2(3)=1.$ Рух йде "праворуч". Ітоговий результат зображено на рис. 3.

Рис. 3: Червоним відмічено криву $z_1(t) = e^{i\pi t}$, синім – криву $z_2(t) = t-2$ для відповідних границь. Для червоної кривої ми не виключали -1 щоб не склалось враження, що $\partial \mathcal{D}$ не містить точку $z_0 = -1$.

Помітимо, що $\partial \mathcal{D}$ оббігає півкруг, що міститься "всередині", проти годинникової стрілки. Отже, цей півкруг і є областю \mathcal{D} . Таким чином, відповідь зображена на рис. 4, а нерівностями записується таким чином:

$$|z| < 1 \wedge \operatorname{Im} z > 0$$

Рис. 4: Червоним відмічено криву $z_1(t)=e^{i\pi t}$, синім – криву $z_2(t)=t-2$ для відповідних границь; зеленим – область $\mathcal D$

Пункт 3.

 $z(t)=i\cos t,\ t\in [0,2\pi]$ є відрізком на $\mathrm{Re}\,z=0$ (оскільки $\cos t$ – неперервна функція). Мінімальне значення $\cos t$ на $[0,2\pi]$ це -1, а максимальне 1, тому це відрізок від -i до +i. Цю множину можна записати як:

$$\partial \mathcal{D} = \{ z \in \mathbb{C} : \operatorname{Re} z = 0 \land |\operatorname{Im} z| \le 1 \}$$

Область $\mathcal{D} = \overline{\partial \mathcal{D}}$. Запишемо:

$$\mathcal{D} = \{ z \in \mathbb{C} : \overline{\operatorname{Re} z = 0 \land |\operatorname{Im} z| \le 1} \}$$
$$= \{ z \in \mathbb{C} : \operatorname{Re} z \ne 0 \lor |\operatorname{Im} z| > 1 \}$$

Таким чином маємо нерівність $\operatorname{Re} z \neq 0 \vee |\operatorname{Im} z| > 1$.

Відповідь.

Пункт 1. Im $z > (\text{Re } z)^2$.

Пункт 2. $|z| < 1 \wedge \text{Im } z > 0$.

Пункт 3. Re $z \neq 0 \lor |\text{Im } z| > 1$.

Завдання 2.

Умова. Нехай $\operatorname{Re} f = u$. Відновити аналітичну функцію f(x+iy) = u(x,y) + iv(x,y):

1.
$$u(x,y) = x^2 - y^2 + xy$$
;

2.
$$u(x,y) = x^3 + 6x^2y - 3xy^2 - 2y^3$$
, $f(0) = 0$.

Розв'язок. За означенням, функція є аналітичною тоді, коли вона є С-диференційованою. Отже, мають виконуватися умови Коші-Рімана. Інакшими словами:

$$u_x' = v_y' \wedge u_y' = -v_x'$$

Далі потрібно розв'язати цю систему диференціальних рівнянь відносно v(x,y). Для цього спочатку інтегруємо перше рівняння:

$$v'_y = u'_x \implies v = \int u'_x(x,y)dy$$

і підставляємо результат у друге.

Пункт 1.

Розписавши, маємо:

$$\begin{cases} v_y' = 2x + y \\ v_x' = 2y - x \end{cases}$$

З першого рівняння $v(x,y)=2xy+\frac{y^2}{2}+\varphi(x)$. Підставляючи у друге, маємо:

$$2y + \varphi'(x) = 2y - x \implies \varphi'(x) = -x \implies \varphi(x) = -\frac{x^2}{2} + C$$

Отже, остаточно отримуємо

$$v(x,y) = -\frac{x^2}{2} + \frac{y^2}{2} + 2xy + C$$

Пункт 2.

Знову підставляємо умову Коші-Рімана:

$$\begin{cases} v'_y = 3x^2 + 12xy - 3y^2 \\ v'_x = 6y^2 + 6xy - 6x^2 \end{cases}$$

Інтегруємо:

$$v = 3x^2y + 6xy^2 - y^3 + \varphi(x)$$

Підставляємо у друге:

$$6xy + 6y^2 + \varphi'(x) = 6y^2 + 6xy - 6x^2 \implies \varphi'(x) = -6x^2 \implies \varphi(x) = -2x^3 + C$$

Отже:

$$v(x,y) = 3x^2y + 6xy^2 - y^3 - 2x^3 + C$$

Також використаємо умову, що f(0)=0. Ця умова еквівалентна u(0,0)=v(0,0)=0. Одразу видно, що u(0,0)=0, а v(0,0)=C. Отже, C=0. Тому остаточно

$$v(x,y) = -2x^3 - y^3 + 3x^2y + 6xy^2$$

Відповідь.

1.
$$v(x,y) = -\frac{x^2}{2} + \frac{y^2}{2} + 2xy + C$$
. 2. $v(x,y) = -2x^3 - y^3 + 3x^2y + 6xy^2$