MAT 222 Linear Algebra Week 10 Lecture Notes 2

Murat Karaçayır

Akdeniz University
Department of Mathematics

8th May 2025

Least Squares Problems

 Last week we observed that the orthogonal projection of a vector y onto a vector space V is the point in V that is closest to y. More explicitly,

$$\|\mathbf{y} - \mathsf{proj}_{V}\mathbf{y}\| < \|\mathbf{y} - \mathbf{u}\|$$

for any other vector \mathbf{u} of V.

- Now we will discuss the same problem in a similar context.
- If V is a subspace of the Euclidean space \mathbb{R}^m , then $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ for some vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathbb{R}^m$.
- V can also be written $V = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\} = C(A)$, where A is the $m \times n$ matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

- Then, given a vector **b** not in V, we may be interested in finding the vector in V that is closest to **b**.
- This amounts to the following: Find a vector $\hat{\mathbf{x}}$ in \mathbf{R}^n such that $\|\mathbf{b} A\hat{\mathbf{x}}\| \le \|\mathbf{b} A\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^n$.
- This is called a least squares problem.

Least Square Solutions to $A\mathbf{x} = \mathbf{b}$

- Our previous work shows that, a least squares problem can be reduced to the problem of finding an $\hat{\mathbf{x}}$ such that the vector $A\hat{\mathbf{x}}$ is equal to the projection of \mathbf{b} on C(A).
- In other words, the vector $A\hat{\mathbf{x}}$ is as close to **b** as possible.
- Such a problem may arise if we have an inconsistent system
 Ax = b and still want to find the "best" solution to this problem.
- Instead of solving $A\mathbf{x} = \mathbf{b}$, we solve $A\mathbf{x} = \hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto C(A).
- Any vector $\hat{\mathbf{x}}$ that is a solution of $A\mathbf{x} = \hat{\mathbf{b}}$ is called a **least** squares solution of $A\mathbf{x} = \mathbf{b}$.
- The difference $\|\mathbf{b} A\hat{\mathbf{x}}\|$ is called the **least squares error**. It is the distance of **b** to the vector space C(A).
- Note that, if $\mathbf{b} \in C(A)$, then least squares solutions of $A\mathbf{x} = \mathbf{b}$ are its actual solutions and the least squares error is equal to 0.

Least Squares Problem: Example

Example: Given
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$, find the least squares solutions of $A\mathbf{x} = \mathbf{b}$.

- Any least square solution of Ax = b satisfies the system Ax = b, where b is the projection of b onto C(A).
- $\hat{\mathbf{b}}$ can be calculated as $\hat{\mathbf{b}} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$. (Exercise)
- The system $A\mathbf{x} = \hat{\mathbf{b}}$ becomes $\begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$, whose solution is unique and equal to $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- Thus, the system $A\mathbf{x} = \mathbf{b}$ has a unique least squares solution, which is $\hat{\mathbf{x}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

Alternative Way to Compute Least Square Solutions

- Finding the orthogonal projection of **b** onto C(A) involves finding an orthogonal basis for C(A) and computing projections onto these basis vectors. This process may be tedious.
- Recall that $\mathbf{b} A\hat{\mathbf{x}}$ is orthogonal to every vector in C(A), in particular it is orthogonal to the columns of A.
- This means that $A^{T}(\mathbf{b} A\hat{\mathbf{x}}) = \mathbf{0}$, the zero vector.
- Rearranging, We can write this as $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.
- Therefore, every least squares solution of $A\mathbf{x} = \mathbf{b}$ satisfies the system $A^T A \mathbf{x} = A^T \mathbf{b}$. This system is known as **normal equations** for $A\mathbf{x} = \mathbf{b}$.
- Solving normal equations is generally easier as it does not require computing the projection of **b** onto C(A).
- If A^TA is invertible, then there is a unique least squares solution.
- For the previous example, $A^T A = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}$ and one can find its inverse as $(A^T A)^{-1} = \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix}$.
- Thus, we obtain the least squares solution $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, same as before. This solution is unique.

Least Squares Problem: Example

Example: Let
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & -3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$, find the least squares solutions of $A\mathbf{x} = \mathbf{b}$.

Let us form the normal equations.

$$\bullet \ A^T A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -3 \\ 3 & 5 & -7 \\ -3 & -7 & 11 \end{bmatrix} \text{ and } A^T \mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 6 \end{bmatrix}.$$

• The augmented matrix $[A^TA \mid A^T\mathbf{b}]$ can be row-reduced as

$$\begin{bmatrix} 3 & 3 & -3 & | & 6 \\ 3 & 5 & -7 & | & 0 \\ -3 & -7 & 11 & | & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & | & 5 \\ 0 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \longrightarrow \begin{cases} x_1 + x_3 = 5 \\ x_2 - 2x_3 = -3 \end{cases}.$$

- We have infinitely many solutions given by $\hat{\mathbf{x}} = \begin{bmatrix} 5 \\ -3 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$.
- In this example the columns of A are linearly dependent (Please check). In general, this causes the matrix $A^T A$ to be singular and hence the least squares problem to have infinitely many solutions.

Least Squares Problem: Example

Example: Let
$$A = \begin{bmatrix} 1 & -6 \\ 1 & -2 \\ 1 & 1 \\ 1 & 7 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ 1 \\ 6 \end{bmatrix}$, find the least squares solutions

of $A\mathbf{x} = \mathbf{b}$ and compute the least squares error.

- We notice that the columns of A are orthogonal. This makes it easy to compute the orthogonal projection $\hat{\mathbf{b}}$ of \mathbf{b} onto C(A) and thus there is no need to form the normal equations.
- If we name the columns of A by \mathbf{a}_1 and \mathbf{a}_2 , then

$$\hat{\mathbf{b}} = \operatorname{proj}_{\mathbf{a}_1} \mathbf{b} + \operatorname{proj}_{\mathbf{a}_2} \mathbf{b} = \frac{\mathbf{b} \cdot \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_1} \mathbf{a}_1 + \frac{\mathbf{b} \cdot \mathbf{a}_2}{\mathbf{a}_2 \cdot \mathbf{a}_2} \mathbf{a}_2 = \frac{8}{4} \mathbf{a}_1 + \frac{45}{90} \mathbf{a}_2 = A \begin{bmatrix} 2 \\ 0.5 \end{bmatrix}.$$

- This shows that the least squares solution is $\hat{\mathbf{x}} = \begin{bmatrix} 2 \\ 0.5 \end{bmatrix}$.
- Least squares error is

$$\|\mathbf{b} - \hat{\mathbf{b}}\| = \begin{bmatrix} -1\\2\\1\\6 \end{bmatrix} - \begin{bmatrix} -1\\1\\2.5\\5.5 \end{bmatrix} = \sqrt{1 + 2.25 + 0.25} = \sqrt{3.5} \approx 1.871$$

This example shows the advantage of orthogonal columns in A.

Least Square Lines

- Suppose there are two variables x and y with experimental data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$.
- In many cases this data resembles a line.
- We want to find a line $y = \beta_0 + \beta_1 x$ close to the data points.
- The vertical (not perpendicular!) distance between the data points and points on the line (predicted *y* values) are called the **residuals**.

- The most common approach is to minimize the sum of the squares of these residuals.
- This becomes a least squares problem. We will write it as $X\beta = y$. X is called the **design matrix**, β the **parameter vector** and y the **observation vector**. β_1 and β_2 are called **regression coefficients**.
- The goal is to determine the parameter vector.

Least Squares Line

Predicted y value	Observed y value		
$\beta_0 + \beta_1 x_1$	<i>y</i> ₁		
$\beta_0 + \beta_1 x_2$	<i>y</i> ₂		
÷	÷		
$\beta_0 + \beta_1 x_n$	Уn		

• In the above table, if the left column was equal to the right column, we would have the system $X\beta = \mathbf{y}$, where

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

- Since not all the observed data lie on the line $y = \beta_0 + \beta_1 x$, the system $X\beta = \mathbf{y}$ is inconsistent.
- What we can do is to find a parameter vector β that minimizes the distance $\|\mathbf{y} X\beta\|$. This is a least squares problem.

Least Squares Line: Example

Example: The data points (2,1),(5,2),(7,3) and (8,3) are given. Find the line $\beta_0 + \beta_1 x$ that best fits the data (in the least squares sense).

- The design matrix and observation vector are $X = \begin{bmatrix} 1 & 2 \\ 1 & 5 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}$.
- Let us construct the normal equations. $X^TX = \begin{bmatrix} 4 & 22 \\ 22 & 142 \end{bmatrix}$ and $X^T\mathbf{y} = \begin{bmatrix} 9 \\ 57 \end{bmatrix}$.
- The parameter vector is obtained by $\beta = (X^T X)^{-1} X^T \mathbf{y} = \frac{1}{84} \begin{bmatrix} 142 & -22 \\ -22 & 4 \end{bmatrix} \begin{bmatrix} 9 \\ 57 \end{bmatrix} = \begin{bmatrix} 2/7 \\ 5/14 \end{bmatrix}.$
- Thus, the regression coefficients are $\beta_0=\frac{2}{7}$ and $\beta_1=\frac{5}{14}$. The least squares line is given by

$$y=\frac{2}{7}+\frac{5}{14}x$$

• It can be used to make predicitions at unknown x values. For example y(4) is predicted as $\frac{18}{7}$.

Least Squares Parabola

- Sometimes the observed data does not look like a line. In such cases, a different fitting curve should be used.
- An example is a parabola $y = \beta_0 + \beta_1 x + \beta_2 x^2$. (See the figure)

$$y_{1} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{1}^{2} + \epsilon_{1}$$

$$y_{2} = \beta_{0} + \beta_{1}x_{2} + \beta_{2}x_{2}^{2} + \epsilon_{2}$$

$$\vdots = \vdots$$

$$y_{n} = \beta_{0} + \beta_{1}x_{n} + \beta_{2}x_{n}^{2} + \epsilon_{n}$$

Then we have the equalities

where $\epsilon_1, \epsilon_2, \dots, \epsilon_n$ are the residuals.

• It can be written as $\mathbf{y} = X\beta + \epsilon$, where

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \ X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}, \ \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

• Finding β that minimizes $\|\epsilon\|^2$ is a least squares problem.

Least Squares Parabola: Example

Example: Given the data points (-1, 1/2), (1, -1), (2, -1/2), (3, 2), find the parabola that best approximates them.

• We have
$$X = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} 1/2 \\ -1 \\ -1/2 \\ 2 \end{bmatrix}$.

• The normal equations are $X^T X \beta = X^T y$, where

$$X^T X = \begin{bmatrix} 4 & 5 & 15 \\ 5 & 15 & 35 \\ 15 & 35 & 99 \end{bmatrix}, X^T \mathbf{y} = \begin{bmatrix} 1 \\ 3.5 \\ 15.5 \end{bmatrix}.$$

• The solution is given by
$$\beta = (X^T X)^{-1} X^T \mathbf{y} = \begin{bmatrix} -\frac{41}{44} \\ -\frac{379}{440} \\ \frac{53}{88} \end{bmatrix}$$
. (Please check)

- Thus, the least squares parabola is $y = -\frac{41}{44} \frac{379}{440}x + \frac{53}{88}x^2$.
- Exercise: Compute the least squares error.

Distances of Planets to Sun: Example

Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus
0.39	0.72	1.00	1.52	5.20	9.54	19.2

- The above table includes the average distances of the first seven planets to the Sun, using Earth's distance as a unit.
- Labeling the planets from 1 to 7, their graph does not look like a line, it resembles an exponential curve, so the log of y values looks like a line.

 Considering there is a missing planet between Mars and Jupiter that broke apart somewhere in time, if we label Jupiter by 6, the data looks like a line even more.

Distances of Planets to Sun: Example (Continued)

• Thus, we can find the least square regression line of ln(y) on x, instead of y on x. The data is given below.

• Thus, we have
$$X = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 6 \\ 1 & 7 \\ 1 & 8 \end{bmatrix}$$
 and $\mathbf{Y} = \begin{bmatrix} -0.94 \\ -0.33 \\ 0 \\ 0.42 \\ 1.65 \\ 2.26 \\ 2.95 \end{bmatrix}$, where $Y = \ln(y)$.

- The solution of this least squares problem is $\beta = \begin{bmatrix} -1.5613\\ 0.54635 \end{bmatrix}$, giving rise to the least squares line $Y = -1.5613 + 0.54635\bar{x}$. (Exercise)
- According to this result, the logarithm of the average distance of Neptune to the Sun is $Y(9) \approx 3.36$. So the distance itself is $y(9) = e^{Y(9)} \approx 28.67.$
- Thus, the average distance of Neptune to the Sun is predicted as $(28.67) \cdot 1.496 \times 10^8 \approx 4.289 \times 10^9$ km. Quite accurate!

Mean-Deviation Form: Example

- Given the values x_1, x_2, \ldots, x_n for the independent variable, let $\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$ be their arithmetic mean.
- Then defining a new variable by $x^* = x \bar{x}$ substantially simplifies the solution. This new variable is called the **mean-deviation**.

Example: The data points (2,1), (5,2), (7,3) and (8,3) are given. Use the mean-deviation of x to find the least squares line $\beta_0 + \beta_1 x$.

- The arithmetic mean is $\bar{x} = 5.5$ and since $x^* = x \bar{x}$, the values of the mean-deviation become $x_1^* = 2 5.5 = -3.5$, $x_2^* = 5 5.5 = -0.5$, $x_3^* = 7 5.5 = 1.5$, $x_4^* = 8 5.5 = 2.5$.
- Thus, data points (x_i^*, y_i) become (-3.5, 1), (-0.5, 2), (1.5, 3) and (2.5, 3).
- Based on this data, the new problem becomes $X^*\beta = \mathbf{y}$, where

$$X^* = \begin{bmatrix} 1 & -3.5 \\ 1 & -0.5 \\ 1 & 1.5 \\ 1 & 2.5 \end{bmatrix} \text{ and } \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \end{bmatrix}.$$

- Observe that the columns of X* are orthogonal.
- This means that we can easily compute the projection of **y** onto $C(X^*)$.

Mean-Deviation Form: Example

- Let a₁ and a₂ be the columns of X*, respectively.
- One can show that

$$\hat{m{y}} = \operatorname{proj}_{\mathcal{C}(X^*)} m{y} = rac{9}{4} m{a}_1 + rac{5}{14} m{a}_2.$$
 (Exercise)

• Thus, the parameter vector is obtained by $\beta = \begin{bmatrix} \frac{9}{4} \\ \frac{5}{14} \end{bmatrix}$, giving rise to the

least squares regression line $\frac{9}{4} + \frac{5}{14}x^*$ in the mean-deviation form.

• In order to return to the original variable x, just use $x^* = x - 5.5$. So we have

$$y = \frac{9}{4} + \frac{5}{14}(x - 5.5) = \frac{9}{4} + \frac{5}{14}x - \frac{55}{28} = \frac{2}{7} + \frac{5}{14}x,$$

as before.

Exercise: Solve the mean-deviation form of the problem using the normal equations. What do you observe? (Exercise)

QR-Factorization

- Consider an $m \times n$ matrix A with linearly independent columns. (Note that this implies $m \geq n$.)
- Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be the columns of A. $\{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$ is a basis for C(A) and Gram-Schmidt process can be used to find an orthogonal basis. We can normalize it to construct an orthonormal basis $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}.$
- Let Q be the $m \times n$ matrix whose columns are $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$.
- Gram-Schmidt process ensures that for any k = 1, 2, ..., n, $Span\{a_1, a_2, ..., a_k\} = Span\{u_1, u_2, ..., u_k\}.$
- This shows, in particular that $\mathbf{a}_k \in \operatorname{Span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$, so there are constants $r_{1k}, r_{2k}, \ldots, r_{kk}$ such that

QR Factorization of a matrix

- But this is valid for all k = 1, 2, ..., n so we have A = QR, where the columns of Q is an orthonormal basis for C(A) and R is an upper triangular matrix whose k-th column consists of the coordinates of \mathbf{a}_k with respect to $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$.
- Note that if any of the diagonal entries r_{kk} of R is negative, multiplying both it and \mathbf{u}_k does not spoil the relation A = QR.
- In summary, we have the following.

QR-factorization

If A is an $m \times n$ matrix whose columns are linearly independent, it can be factored as A = QR where Q is $m \times n$ whose columns from an orthonormal basis for C(A) and R is an $n \times n$ upper triangular matrix whose diagonal entries are positive.

QR Factorization: Example

Example: Find the *QR*-factorization of
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
.

- Let the columns of A be $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$. Then Gram-Schmidt process applied to the set $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$ produces the orthogonal basis $\{(0, 1, -1, 0)^T, (0, \frac{1}{2}, \frac{1}{2}, 1)^T, (1, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{3})\}$. (Please check)
- Normalizing gives the orthonormal basis $\{\frac{1}{\sqrt{2}}(0,1,-1,0)^T,(0,\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},\frac{2}{\sqrt{6}})^T,(\frac{3}{2\sqrt{3}},-\frac{1}{2\sqrt{3}},-\frac{1}{2\sqrt{3}},\frac{1}{2\sqrt{3}})\}.$

$$\bullet \ \, \text{This gives } Q = \left[\begin{array}{cccc} 0 & 0 & \frac{3}{2\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{2\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{2\sqrt{3}} \end{array} \right].$$

- As for the entries of R, we observe that since the columns of Q are orthonormal we have Q^TQ = I (we say Q is an orthogonal matrix).
 Thus, A = QR implies Q^TQR = R → Q^TA = R.
- Exercise: Compute R and obtain the QR-factorization of A.

Using QR-Factorization in Least Squares Problems

- Suppose you want to find a least squares solution to $A\mathbf{x} = \mathbf{b}$, where the columns of A are linearly independent.
- Consider the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$. Since the columns of A are linearly independent, $A^{T}A$ is invertible and the unique solution of normal equations is $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}$.
- Now use the QR-factorization of A. We have

$$\hat{\mathbf{x}} = ((QR)^T QR)^{-1} (QR)^T \mathbf{b} = (R^T Q^T QR)^{-1} R^T Q^T \mathbf{b} = (R^T \mathbf{I} R)^{-1} R^T Q^T \mathbf{b} = R^{-1} (R^T)^{-1} R^T Q^T \mathbf{b} = R^{-1} Q^T \mathbf{x}.$$

Example: Let
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}$. Calculate the least squares

solution to $A\mathbf{x} = \mathbf{b}$.

• The *QR*-factorization of *A* is
$$A = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$$
.

(Please check)

Using QR-Factorization in Least Squares Problems

- The inverse of R can be found as $R^{-1} = \begin{bmatrix} 1/2 & -1 & 1/4 \\ 0 & 1/2 & -3/4 \\ 0 & 0 & 1/2 \end{bmatrix}$.
- Thus, the least squares solution is calculated by

$$\hat{\mathbf{x}} = R^{-1}Q^{T}\mathbf{b}$$

$$= \begin{bmatrix}
1/2 & -1 & 1/4 \\
0 & 1/2 & -3/4 \\
0 & 0 & 1/2
\end{bmatrix}
\begin{bmatrix}
1/2 & 1/2 & 1/2 & 1/2 \\
1/2 & -1/2 & -1/2 & 1/2 \\
1/2 & -1/2 & 1/2 & -1/2
\end{bmatrix}
\begin{bmatrix}
3 \\
5 \\
7 \\
-3
\end{bmatrix}$$

$$= \begin{bmatrix}
10 \\
-6 \\
2
\end{bmatrix}.$$

