

Earth's Primary (First) Atmosphere

Earth's primary (first) atmosphere immediately after accretion 4.57 billion years ago consisted mainly of hydrogen captured from the solar nebula by Earth's gravity. Bombarding planetesimals contributed additional gases such as water vapor, carbon monoxide, methane, and ammonia.

Earth Struck With A Mars-sized Object ~4.5 B.Y. Ago

The moonforming impact event 'blew' most of the primary atmosphere back into space

Earth's Secondary Atmosphere

- Intense heating by the Moonforming impact left Earth with a magma ocean
- As the early magma ocean cooled, reactions between water vapor and the magma 'mush' (melt + minerals) released H₂ and possibly CH₄ into the atmosphere
- Magma ocean eventually solidified to form a hard basaltic crust on Earth's surface

Earth's Secondary Atmosphere

- Continued cooling of Earth led to further development of a secondary atmosphere via three processes:
 - Outgassing of bombarding meteorites
 - Outgassing of Earth's interior (major contributor)
 - Photochemical reactions involving atmospheric gases and UV radiation from the Sun

Water vapor eventually condensed from the cooling atmosphere and rained down on the surface to form the early oceans by 4.4 billion years ago

Photochemical Dissociation Hypothesis

- Early atmosphere contained abundant methane, ammonia and water vapor
- This early atmosphere was exposed to ultraviolet light from the sun
- No ozone layer back then, so ultraviolet light reached the surface of the early earth

Photochemical Reactions

- 1. Dissociation of water vapor to hydrogen and oxygen with hydrogen escaping into space:
 - $-2H_2O + uv light = 2H_2 + O_2$
- 2. Newly formed oxygen reacted with methane to form carbon dioxide and water:
 - $-CH_4 + 2O_2 = CO_2 + 2H_2O$
- 3. Oxygen also reacted with ammonia to form nitrogen and water:
 - $-4NH_3 + 3O_2 = 2N_2 + 6H_2O$

Two Sources of Free Oxygen (O₂) in Earth's Early Atmosphere

- Photochemical dissociation:
 - Eventually all the methane and ammonia were converted to carbon dioxide and nitrogen
 - Excess oxygen (O₂) started to accumulate as more water vapor dissociated
- Ancient photosynthetic cyanobacteria:
 - First appeared ~3.6 billion years ago
 - Released oxygen as a byproduct

Cyanobacterial Mats in Ancient Oceans (Source of Early Free Oxygen)

Cyanobacterial mats in Precambrian oceans

Fossilized mats preserved as stromatolites

Atmospheric Oxygen Accumulates

- Photosynthetic cyanobacteria released oxygen (O₂) into the oceans and atmosphere
- Over time, oxygen in atmosphere continued to increase:
 - Aerobic bacteria appeared by ~2.0 billion years ago as anaerobic forms sought oxygen-poor environments
 - Stratospheric ozone layer gradually began to develop and was likely in place by 400 million years ago

Atmospheric Layers Based On Temperatures Layers/Boundaries: Thermosphere Mesopause Mesosphere Stratopause Stratopause Tropopause Tropopause Tropopause Tropopause Tropopause Tropopause Tropopause

Variable Atmospheric Components

- The troposphere contains variable natural and humangenerated gases, dust particles, and chemicals
- Aerosols like soot have produced a dimming of sunlight reaching Earth's surface by 4-8%
- World Health Organization estimates that air pollution kills ~4.3 million people worldwide

Sources of Natural Variable Gases and Materials				
Source	Contribution			
Volcanoes	Sulfur oxides, particulates			
Forest fires Carbon monoxide and dioxide, nit oxides, particulates				
Plants	Hydrocarbons, pollens			
Decaying plants	Methane, hydrogen sulfides			
Soil	Dust and viruses			
Ocean	Salt spray and particulates			

Anthropogenic Pollution

- Human-caused air pollution most prevalent in urbanized regions;
 - Particulates and aerosols: small particles of dust, soot and suspended pollution
 - Combustion of fossil fuels
 - Power and industrial plants
 - Photochemical smog resulting from interaction between sunlight and combustion products
 - Industrial Smog

Name	Symbol	Sources	Description and Effects of Criteria Pollutants
Carbon monoxide	со	Incomplete combustion of fuels, mainly vehicle emissions	Odorless, colorless, tasteless gas Toxicity; affinity for hemoglobin Displaces O ₂ in bloodstream; 50 to 100 ppm causes headaches and vision and judgment losses
Nitrogen oxides	NO, (NO, NO ₂)	Agricultural activities, fertilizers, and high temperature/pressure combus- tion, mainly from vehicle emissions.	Reddish-brown choking gas Inflames respiratory system, destroys lung tissue Leads to acid deposition
Volatile organic compounds	voc	Incomplete combustion of fossil fuels such as gasoline; cleaning and paint solvents	Prime agents of surface ozone formation
Ozone	O ₃	Photochemical reactions	Highly reactive, unstable gas Irritates human eyes, nose, and throat Damages plants
Peroxyacetyi nitrates	PAN	Photochemical reactions	No human health effects Major damage to plants, forests, crops
Sulfur oxides	SO _x (SO _{2x} SO ₃)	Combustion of sulfur-containing fuels	Colorless, but with irritating smell, Impairs breathing, taste threshold Causes human asthma, bronchitis, emphysema Leads to acid deposition
Particulate matter	PM	Industrial activities, fuel combustion, vehicle emissions, agriculture	Complex mixture of solids and aerosols, including dust, soot, salt, metals, and organics Dust, smoke, and haze affect visibility Various health effects: bronchitis, pulmonary function
Carbon dioxide	CO ₂	Complete combustion of fossil fuels	Principal greenhouse gas (see Chapter 7)
Methane	CH ₄	Organic processes	Secondary greenhouse gas (see Chapter 7)
Water vapor	H ₂ O vapor	Combustion processes, steam	See Chapter 5

Natural Factors Affecting Air Pollution Winds: Gather and move pollutants Movement of pollutants from one country to another can affect international relations Local and Regional Landscapes: Surrounding mountains and hills can form barriers to air movement Volcanoes eruptions can erupt particulates into the atmosphere and lead to acid rain Temperature inversion

Photochemical Smog · Photochemical smog developed with the advent of the automobile · Smog results from interaction of sunlight with combustion products in automobile exhaust (mainly nitrogen oxides and VOCs) Major air pollutants: Peroxyacetyl nitrate (PAN) damages plants Ground-level ozone Nitrogen dioxide (interacts Fig. 2.24 with water vapor to produce nitric acid)

Causes of Ozone Depletion High-energy particles from solar flares and sunspots bombard our atmosphere and may also affect ozone Volcanic gases and ash particles react with ozone to break it down Release of CFC's into the atmosphere

Discovery of CFC's in Stratosphere

- In 1974, CFC's (Chlorine-Fluorine-Carbon) compounds were detected in stratosphere:
- Major sources of CFCs:
 - Air conditioning and refrigeration
 - Production of foam
 - Aerosol sprays
- Solvents in electronics industry
- A single chlorine atom can destroy 100,000 ozone molecules

Formation of Antarctic Ozone Hole

- CFCs from northern hemisphere are transported southward by atmospheric winds and concentrated over Antarctica
- During the Antarctic winter, polar stratospheric clouds form under dark, extremely cold conditions:
 - Strong westerly winds start to circulate around the continent, creating an atmospheric container (vortex) that traps and chills the air
 - Low temperatures form ice crystals that trap compounds

Formation of Antarctic Ozone Hole

- During Antarctic spring, emerging sunlight provides energy to drive photochemical reactions:
 - Photochemical reactions release trapped compounds
 - Chlorine is freed to take part in chemical reactions that lead to ozone destruction

 40% loss during winter of 2011 described as "unprecedented" by the UN weather agency

What Can Be Done?

- In 1987, 24 nations signed the Montreal Protocol:
 Pledged to reduce CFCs by 1999
- Target amended five times since then
- CFC manufacturing has now been phased out
- In 2005, the IPCC (Intergovernmental Panel on Climate Change) summary report suggested that global average ozone depletion has now stabilized:
 - Ozone layer expected to begin to recover in the coming decades due to decline in CFC concentrations, assuming full compliance with the Montreal Protocol
 - Antarctic ozone layer not expected to return to 1980 global levels until 2050 and be completely eliminated by 2065

The Mesosphere extends from 50 km (at the Stratopause) to 80 km above Earth's surface Temperature decreases at higher altitudes within the Mesosphere because of the decreasing influence of ozone Mesosphere does not absorb any significant portion of solar radiation

Ozone Depletion