

2N7323D, 2N7323R 2N7323H

REGISTRATION PENDING Currently Available as FRF9150(D, R, H)

March 1996

Radiation Hardened P-Channel Power MOSFETs

Features

- 23A, -100V, $r_{DS(ON)} = 0.140\Omega$
- · Second Generation Rad Hard MOSFET Results From New Design Concepts
- Gamma
- Meets Pre-RAD Specifications to 100K RAD (SI)
- Defined End Point Specs at 300K RAD (SI) and 1000K RAD (SI)
 - Performance Permits Limited Use to 3000K RAD (SI)
- · Gamma Dot
- Survives 3E9 RAD (SI)/s at 80% BV_{DSS} Typically
 Survives 2E12 Typically If Current Limited to IDM
- · Photo Current 7.0nA Per-RAD (SI)/s Typically
- Neutron
- Pre-RAD Specifications for 3E13 Neutrons/cm²
- Usable to 3E14 Neutrons/cm²
- Single Event
- Typically Survives 1E5ions/cm² Having an
 - LET \leq 35MeV/mg/cm² and a Range \geq 30 μ m at 80% BV_{DSS}

Description

The Harris Semiconductor Sector has designed a series of SECOND GENERATION hardened power MOSFETs of both N and P channel enhancement types with ratings from 100V to 500V, 1A to 60A, and on resistance as low as $25 m\Omega$. Total dose hardness is offered at 100K RAD (Si) and 1000K RAD (Si) with neutron hardness ranging from 1E13n/cm² for 500V product to 1E14n/cm² for 100V product. Dose rate hardness (GAMMA DOT) exists for rates to 1E9 without current limiting and 2E12 with current limiting. Heavy ion survival from signal event drain burn-out exists for linear energy transfer (LET) of 35 at 80% of rated voltage.

This MOSFET is an enhancement-mode silicon-gate power field effect transistor of the vertical DMOS (VDMOS) structure. It is specially designed and processed to exhibit minimal characteristic changes to total dose (GAMMA) and neutron (n°) exposures. Design and processing efforts are also directed to enhance survival to heavy ion (SEE) and/or dose rate (GAMMA DOT) exposure.

This part may be supplied as a die or in various packages other than shown above. Reliability screening is available as either non TX (commercial), TX equivalent of MIL-S-19500, TXV equivalent of MIL-S-19500, or space equivalent of MIL-S-19500. Contact the Harris Semiconductor High-Reliability Marketing group for any desired deviations from the data sheet.

Package

TO-254AA

Symbol

Absolute Maximum Ratings T_C = +25°C, Unless Otherwise Specified

	2N7323D, R, H	UNITS
Drain-Source VoltageV _{DS}	-100	V
Drain-Gate Voltage (R _{GS} = 20kΩ)	-100	V
Continuous Drain Current		
$T_C = +25^{\circ}C$ I_D	23	Α
$T_C = +100$ °C	15	Α
Pulsed Drain Current	69	Α
Gate-Source Voltage	±20	V
Maximum Power Dissipation		
T _C = +25°CPT	125	W
$T_C = +100^{\circ}C$	50	W
Derated Above +25°C	1.00	W/°C
Inductive Current, Clamped, L = 100μH, (See Test Figure)	69	Α
Continuous Source Current (Body Diode)	23	Α
Pulsed Source Current (Body Diode)	69	Α
Operating And Storage Temperature	-55 to +150	°C
Lead Temperature (During Soldering)		
Distance > 0.063 in. (1.6mm) From Case, 10s Max	300	℃

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright Harris Corporation 1996

File Number 3243.1

4302271 0066163 305

Specifications 2N7323D, 2N7323R, 2N7323H - Registration Pending

Pre-Radiation Electrical Specifications T_C = +25°C, Unless Otherwise Specified

			LIMITS		UNITS	
PARAMETER	SYMBOL	TEST CONDITIONS	MIN MAX			
Drain-Source Breakdown Volts	BV _{DSS}	V _{GS} = 0, I _D = 1mA	-100	-	٧	
Gate-Threshold Volts	V _{GS(TH)}	$V_{DS} = V_{GS}$, $I_D = 1mA$	-2.0	-4.0	٧	
Gate-Body Leakage Forward	I _{GSSF}	V _{GS} = -20V	-	100	nA	
Gate-Body Leakage Reverse	I _{GSSR}	V _{GS} = +20V	-	100	nA	
Zero-Gate Voltage Drain Current	I _{DSS1} I _{DSS2} I _{DSS3}	$V_{DS} = -100V, V_{GS} = 0$ $V_{DS} = -80V, V_{GS} = 0$ $V_{DS} = -80V, V_{GS} = 0, T_{C} = +125^{\circ}C$	- - -	1 0.025 0.25	mA	
Rated Avalanche Current	I _{AR}	Time = 20µs	-	69	Α	
Drain-Source On-State Volts	V _{DS(ON)}	V _{GS} = -10V, I _D = 23A	-	-3.38	٧	
Drain-Source On Resistance	r _{DS(ON)}	V _{GS} = -10V, I _D = 15A	-	0.140	Ω	
Turn-On Delay Time	t _{D(ON)}	V _{DD} = -50V, I _D = 23A	-	170		
Rise Time	t _R	Pulse Width = 3μs	-	620	ns ns	
Turn-Off Delay Time	t _{D(OFF)}	Period = 300μs, R _G = 25Ω		600		
Fall Time	t _F	0 ≤ V _{GS} ≤ 10 (See Test Circuit)	-	242		
Gate-Charge Threshold	Q _{G(TH)}		4	16		
Gate-Charge On State	Q _{G(ON)}		60	240	nc	
Gate-Charge Total	Q _{GM}	$V_{DD} = -50V, I_{D} = 23A$ $I_{GS1} = I_{GS2}$	126	504		
Plateau Voltage	V _{GP}	GS1 = GS2 0 ≤ V _{GS} ≤ 20	3	14	٧	
Gate-Charge Source	Q_{GS}		17	68	nc	
Gate-Charge Drain	Q_{GD}		21	86		
Diode Forward Voltage	V _{SD}	I _D = 23A, V _{GD} = 0	-0.6	-1.8	٧	
Reverse Recovery Time	t⊤	l = 23A; di/dt = 100A/μs	-	700	ns	
Junction-To-Case	R _{BJC}		-	1.0	°C/W	
Junction-To-Ambient	R _{eJA}	Free Air Operation	-	48] ""	

FIGURE 1. SWITCHING TIME TESTING

FIGURE 2. CLAMPED INDUCTIVE SWITCHING, ILM

Specifications 2N7323D, 2N7323R, 2N7323H - Registration Pending

Post-Radiation Electrical Specifications T_C = +25°C, Unless Otherwise Specified

					LIM	пѕ	
PARAMETER		SYMBOL	TYPE	TEST CONDITIONS	MIN	MAX	UNITS
Drain-Source	(Notes 4, 6)	BV _{DSS}	2N7323D, R	V _{GS} = 0, I _D = 1mA	-100	-	٧
Breakdown Volts	(Notes 5, 6)	BV _{DSS}	2N7323H	V _{GS} = 0, I _D = 1mA	-95	-	V
Gate-Source	(Notes 4, 6)	V _{GS(TH)}	2N7323D, R	$V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	-2.0	-4.0	٧
Threshold Volts	(Notes 3, 5, 6)	V _{GS(TH)}	2N7323H	$V_{GS} = V_{DS}$, $I_D = 1 \text{mA}$	-2.0	-6.0	٧
Gate-Body	(Notes 4, 6)	I _{GSSF}	2N7323D, R	V _{GS} = -20V, V _{DS} = 0	-	100	nA
Leakage Forward	(Notes 5, 6)	l _{GSSF}	2N7323H	V _{GS} = -20V, V _{DS} = 0	-	200	nA
Gate-Body Leakage Reverse	(Notes 2, 4, 6)	I _{GSSR}	2N7323D, R	V _{GS} = 20V, V _{DS} = 0	-	100	nA
	(Notes 2, 5, 6)	IGSSR	2N7323H	V _{GS} = 20V, V _{DS} = 0	-	200	nA
Zero-Gate Voltage Drain Current	(Notes 4, 6)	I _{DSS}	2N7323D, R	V _{GS} = 0, V _{DS} = -80V	-	25	μΑ
	(Notes 5, 6)	I _{DSS}	2N7323H	V _{GS} = 0, V _{DS} = -80V	-	100	μА
Drain-Source On-State Volts	(Notes 1, 4, 6)	V _{DS(ON)}	2N7323D, R	V _{GS} = -10V, I _D = 23A	-	-3.38	٧
	(Notes 1, 5, 6)	V _{DS(ON)}	2N7323H	V _{GS} = -16V, I _D = 23A	-	-5.07	٧
Drain-Source	(Notes 1, 4, 6)	r _{DS(ON)}	2N7323D, R	V _{GS} = -10V, I _D = 15A	-	0.140	Ω
On Resistance	(Notes 1, 5, 6)	r _{DS(ON)}	2N7323H	V _{GS} = -14V, l _D = 15A	-	0.210	Ω

NOTES:

- 1. Pulse test, 300µs (Max)
- 2. Absolute value
- 3. Gamma = 300K RAD (Si)
- 4. Gamma = 10K RAD (Si) for "D", 100K RAD (Si) for "R". Neutron = 3E13
- 5. Gamma = 1000K RAD (Si). Neutron = 3E13
- 6. In situ Gamma bias must be sampled for both V_{GS} = -10V, V_{DS} = 0V and V_{GS} = 0V, V_{DS} = 80% BV_{DSS}
- 7. Gamma data taken 1/18/91 on TA 17751 devices by GE ASTRO SPACE; EMC/SURVIVABILITY LABORATORY; KING OF PRUSSIA, PA 19401
- 8. Single event drain burnout testing by Titus, J.L., et al of NWSC, Crane, IN at Brookhaven Nat. Lab. Dec 11-14, 1989
- 9. Neutron derivation, HARRIS Application note AN-8831, Oct. 1988

2N7323D, 2N7323R, 2N7323H - Registration Pending

4302271 0066166 014 📟 4

Hermetic Metal Packages

TO-254AA 3 LEAD JEDEC TO-254AA HERMETIC METAL PACKAGE

	INCHES		MILLIM		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
Α	0.249	0.260	6.33	6.60	-
A ₁	0.040	0.050	1.02	1.27	-
Øb	0.035	0.045	0.89	1.14	2, 3
D	0.790	0.800	20.07	20.32	-
E	0.535	0.545	13.59	13.84	-
е	0.150 TYP		3.81 TYP		4
e ₁	0.300 BSC		7.62 BSC		4
H ₁	0.245	0.265	6.23	6.73	-
J ₁	0.140	0.160	3.56	4.06	4
L	0.520	0.560	13.21	14.22	•
ØP	0.139	0.149	3.54	3.78	-
Q	0.110	0.130	2.80	3.30	-

NOTES:

- These dimensions are within allowable dimensions of Rev. A of JEDEC outline TO-254AA dated 11-86.
- 2. Add typically 0.002 inches (0.05mm) for solder coating.
- Lead dimension (without solder).
- Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
- 5. Die to base BeO isolated, terminals to case ceramic isolated.
- 6. Controlling dimension: Inch.
- 7. Revision 1 dated 1-93.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA

FAX: (407) 729-5321

Harris Semiconductor P. O. Box 883, Mail Stop 53-210 Melbourne, FL 32902 TEL: 1-800-442-7747 (407) 729-4984

EUROPE

Harris Semiconductor Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Harris Semiconductor PTE Ltd. No. 1 Tannery Road Cencon 1, #09-01 Singapore 1334 TEL: (65) 748-4200 FAX: (65) 748-0400

