Exercise Sheet 2

Exercise 1

Which of the following rings are Dedekind domains?

- 1. $\mathbb{Z} \times \mathbb{Z}$.
- 2. $\mathbb{Z}[X]/(X^2+3)$.
- 3. $\mathbb{F}_{11}[X]$.
- 4. $\mathbb{R}[X,Y]$.
- 5. $\mathbb{C}[X,Y]/(X^5+Y-13)$.

Solution

- 1. $\mathbb{Z} \times \mathbb{Z}$ is not a Dedekind domain as it is not even an integral domain. Take $(1,0) \in \mathbb{Z} \times \mathbb{Z}$ and $(0,1) \in \mathbb{Z} \times \mathbb{Z}$ for example. $(1,0) \cdot (0,1) = (0,0)$ even though we chose nonzero elements.
- 2. $\mathbb{Z}[X]/(X^2+3)$ is not a Dedekind domain as it is not integrally closed.

First, define a ring homomorphism $\varphi: \mathbb{Z}[X] \to \mathbb{Z}$ that substitues X with $\sqrt{-3}$. We have $\varphi(\mathbb{Z}[X]) = \mathbb{Z}[\sqrt{-3}]$ and $\ker(\varphi) = (X^2 + 3)$. With the isomorphism theorem, we have $\mathbb{Z}[X]/(X^2 + 3) \cong \mathbb{Z}[\sqrt{-3}]$.

Consider

$$\alpha := \frac{1}{2} + \frac{1}{2}\sqrt{-3} \in \operatorname{Quot}(\mathbb{Z}[\sqrt{-3}]) = \mathbb{Q}(\sqrt{-3}). \tag{1}$$

From example 3.2.5. (script), we know that

$$\mathcal{O}_{\mathbb{O}(\sqrt{-3})} = \mathbb{Z}[\alpha]. \tag{2}$$

Therefore, α is integral over \mathbb{Z} and hence over $\mathbb{Z}[\sqrt{-3}]$ as well, but it does not lie in $\mathbb{Z}[\sqrt{-3}]$. We conclude $\mathbb{Z}[\sqrt{-3}]$ and with it $\mathbb{Z}[X]/(X^2+3)$ is not integrally closed.

3. $\mathbb{F}_{11}[X]$ is a Dedekind domain.

From remark 1.0.3. / 2. (script), we have that the ring of polynomials in one variable over a field is a Euclidean ring, so $\mathbb{F}_{11}[X]$ is a Euclidean ring. Every Euclidean ring is a principal ideal domain (remark 1.0.3. / 3. from the script) and every principal ideal domain is a Dedekind domain (example 4.1.10. from the script). Hence, $\mathbb{F}_{11}[X]$ is a Dedekind domain.

4. $\mathbb{R}[X,Y]$ is not a Dedekind domain because not all nonzero prime ideals are maximal.

Consider the ideal $(X^2 - Y)$ and the quotient generated $\mathbb{R}[X,Y]/(X^2 - Y)$. If we can show that the quotient is an integral domain, but not a field, then the ideal $(X^2 - Y)$ is prime, but not maximal.

Define a ring homomorphism $\varphi: \mathbb{R}[X,Y] \to \mathbb{R}[X]$ that substitues the variable Y with X^2 . We have that $\varphi(\mathbb{R}[X,Y]) = \mathbb{R}[X]$ and $\ker(\varphi) = X^2 - Y$. From the isomorphism theorem, we get $\mathbb{R}[X,Y]/(X^2 - Y) \cong \mathbb{R}[X]$.

As $\mathbb{R}[X]$ is a integral domain (polynomial rings over integral domains are again an integral domain), but not a field, the ideal $(X^2 - Y)$ is a nonmaximal prime ideal. Hence $\mathbb{R}[X, Y]$ is not a Dedekind domain.

5. $\mathbb{C}[X,Y]/(X^5+Y-13)$ is a Dedekind domain.

As we did in 2., define a ring homomorphism $\varphi: \mathbb{C}[X,Y] \to \mathbb{C}[X]$ as

$$\varphi(p(X,Y)) := p(X, X^5 - 13). \tag{3}$$

 φ is surjective and the kernel is (X^5+Y-13) . With the first isomorphism theorem for rings, we have the isomorphism $\mathbb{C}[X,Y]/(X^5+Y-13)\cong\mathbb{C}[X]$.

Using similar argument as in 3., $\mathbb{C}[X]$ is a principal ideal domain and hence $\mathbb{C}[X,Y]/(X^5+Y-13)$ is a Dedekind domain.