Tutorial 4 - Week 8

Brittany Blankinship

30-05-2022

Contents

Practice Document	1
But first an aside	1
Brittany's solution	2
Kevin's solution	2
Data Wrangling	3
Data Visualization	4
How might we visualize the following: Since 2010, what influence does gender have on the	
rate of death for different diagnoses for those aged $75+$ vs those under $75?$	4
What about a table?	6

Practice Document

For this demonstration, we will be using the Heart Disease datasets which are openly available from Public Heath Scotland. In particular, we will be focusing on the on the mortality rates dataset.

But first an aside...

When knitting to PDF, you can wrap the code and comments using the formatR package and the arguments tidy.opts=list(width.cutoff=80), tidy = TRUE (see the output for the very...very long comment when

knitted). However, this does not wrap strings, such as URLs due to LaTeX specific issues. There are very complicated ways around this, which we will not be covering as it requires other coding knowledge, but Kevin and Brittany have come up with 2 possible (though convoluted) solutions. For the Programming Assignment, the easiest solution may be to load the data from a saved file instead.

Brittany's solution

When you are writing code chunks and R leaves a blank space in the line number when the code is wrapped (e.g. line 64, blank space, line 65). When knitting to HTML the knitted document reflects this, unfortunately not the case when knitting to PDF. To unwrap the code, click enter at the beginning of the link without the number. This **however** means that the URL is not longer able to run without error. So, in a convoluted work around, you could have a chunk set to eval=FALSE meaning the code is not run but the knitted document shows the code. Then you could include a chunk below which will actually load the data (i.e., the code is run) but not show this in the knitted document (echo=FALSE)... convoluted as I said.

Kevin's solution

Kevin's solution is slightly different: for each data set, add a variable such as link1, echo=FALSE and then use it in the code to be printed. If you adopt this method, for reproducibility sake, in the text you could include the full URL to be printed out. For example:

The heart disease activity dataset was from the Public Health Scotland website: https://www.opendata.nhs.scot/dataset/0e17f3fc-9429-48aa-b1ba-2b7e55688253/resource/748e2065-b447-4b75-99bd-f17f26f3eaef/download/hd activitybyhbr.csv

or

The hearth disease activity dataset downloads from link1

```
activity_raw2 <- read_csv(link1)</pre>
```

Data Wrangling

```
activity_raw %>%
 glimpse()
## Rows: 43,200
## Columns: 15
## $ FinancialYear
                     <chr> "2011/12", "2011/12", "2011/12", "2011/12", "2011/12", "2011~
## $ HBR
                     <chr> "S08000015", "S08000015", "S08000015", "S08000015~
## $ HBRQF
                     <chr> "All", "All", "All", "All", "All", "All", "All", ~
## $ AdmissionType
                     ## $ AdmissionTypeQF
## $ AgeGroup
                     <chr> "0-44 years", "0-44 years", "45-64 years", "45-64~
## $ AgeGroupQF
                     <chr> "Males", "Females", "Males", "Females", "Males", ~
## $ Sex
## $ SexQF
                     ## $ Diagnosis
                     <chr> "Coronary Heart Disease", "Coronary Heart Disease~
## $ NumberOfDischarges
                     <dbl> 104, 55, 1087, 385, 760, 411, 663, 638, 35, 10, 3~
<dbl> 109.22649, 56.11901, 2078.07601, 683.64230, 4057.~
## $ CrudeRate
## $ CrudeRateQF
                     ## $ EASR
                     <dbl> 109.75422, 53.33447, 2064.89207, 680.54949, 4071.~
activity <- activity_raw %>%
 left_join(hb, by = c("HBR" = "HB")) %>%
 select(FinancialYear,
       HBName,
       AdmissionType,
       AgeGroup,
       Sex,
       Diagnosis,
       NumberOfDischarges) %>%
 clean_names() %>%
 separate(financial_year, into = c("Year", NA), sep = "/", convert = TRUE) %>%
 mutate(sex = str_replace(sex, "Females", "Female"),
       sex = str_replace(sex, "Males", "Male")) %>%
 filter(sex
                   != "All",
                   != "All",
       age_group
       admission_type != "All",
       hb name
                   != "S92000003")
mortality <- mortality_raw %>%
 left_join(hb, by = c("HBR" = "HB")) \%
 select(Year,
       HBName,
       AgeGroup,
       Sex,
       Diagnosis,
       NumberOfDeaths) %>%
 clean_names() %>%
 mutate(sex = str replace(sex, "Females", "Female"),
       sex = str_replace(sex, "Males", "Male")) %>%
```

```
filter(sex != "All",
    age_group != "All",
    hb_name != "S92000003")
```

Is the activity dataset in long or wide format?

```
activity %>%
 head(n = 10)
## # A tibble: 10 x 7
##
      Year hb name
                         admission_type age_group sex
                                                        diagnosis number_of_disch~
##
      <int> <chr>
                                        <chr>
                                                  <chr> <chr>
                         <chr>
                                                                             <dh1>
  1 2011 NHS Ayrshire~ Elective
                                        0-44 yea~ Male Coronary~
                                                                                18
## 2 2011 NHS Ayrshire~ Elective
                                        0-44 yea~ Fema~ Coronary~
                                                                                10
## 3 2011 NHS Ayrshire~ Elective
                                        45-64 ye~ Male Coronary~
                                                                               292
## 4 2011 NHS Ayrshire~ Elective
                                                                               102
                                        45-64 ye~ Fema~ Coronary~
## 5 2011 NHS Ayrshire~ Elective
                                                                               205
                                        65-74 ye~ Male Coronary~
## 6 2011 NHS Ayrshire~ Elective
                                                                                94
                                        65-74 ye~ Fema~ Coronary~
## 7 2011 NHS Ayrshire~ Elective
                                        75plus y~ Male Coronary~
                                                                                70
## 8 2011 NHS Ayrshire~ Elective
                                                                                55
                                        75plus y~ Fema~ Coronary~
## 9 2011 NHS Borders
                         Elective
                                        0-44 yea~ Male Coronary~
                                                                                 4
```

Data Visualization

10 2011 NHS Borders

How might we visualize the following: Since 2010, what influence does gender have on the rate of death for different diagnoses for those aged 75+ vs those under 75?

0-44 yea~ Fema~ Coronary~

1

There are at least 2 different coding approaches you can take to this:

Elective

1. Create a separate data frame for plotting, which you can then reuse for other plots or tables.

```
mortality plot <- mortality %>%
  filter(year >= 2015,
         age group %in% c("under75 years", "75plus years")) %>%
  group_by(diagnosis, sex, age_group, year) %>%
  summarise(total_deaths = sum(number_of_deaths, na.rm=TRUE)) %>%
  #wrap string "Coronary Heart Disease" for better plotting
  mutate(diagnosis = str_wrap(diagnosis, width = 15))
mortality_plot %>%
  ggplot(aes(x = year, y = total_deaths, color = sex)) +
  geom_line(aes(linetype = diagnosis), lwd = 1) +
  facet_wrap(~age_group) +
  labs(title = "Rate of Death due to Heart Disease Across Scotland",
      subtitle = "2015-2019",
      caption = "Data source: Public Health Scotland",
      y = "Total Deaths",
      x = "Year"
      color = "Sex",
      linetype = "Diagnosis") +
  theme bw()
```

Rate of Death due to Heart Disease Across Scotland 2015–2019

Data source: Public Health Scotland

2. Pipe the data into the ggplot but do some data wrangling first.

```
mortality %>%
  filter(year >= 2015,
         age_group %in% c("under75 years", "75plus years")) %>%
  group_by(diagnosis, sex, age_group, year) %>%
  summarise(total_deaths = sum(number_of_deaths, na.rm=TRUE)) %>%
  #wrap string "Coronary Heart Disease" for better plotting
  mutate(diagnosis = str_wrap(diagnosis, width = 15)) %>%
  ggplot(aes(x = diagnosis, y = total_deaths, fill = sex)) +
  geom_col(position = "dodge") +
  facet_grid(age_group~year) +
  #compare facet_grid to facet_wrap
  #facet_wrap(~age_group~year) +
  labs(title = "Rate of Death due to Heart Disease Across Scotland",
      subtitle = "2015-2019",
      caption = "Data source: Public Health Scotland",
      y = "Total Deaths",
      x = "Diagnosis",
      fill = "Sex") +
  coord_flip() +
  theme_bw() +
  #adjust the text on the x axis to be more legible
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
```


Data source: Public Health Scotland

What about a table?

For analysis and data visualisation, tidy data (i.e., long data) is the ideal. However, for tables often wide data is more readable.

```
mortality_plot %>%
  pivot_wider(names_from = diagnosis, values_from = total_deaths) %>%
  gt()
```

year	Coronary Heart Disease	Heart Attack	Heart Failure	
Female - 75plus years				
2015	2262	1190	200	
2016	2034	1131	173	
2017	1974	1197	155	
2018	1934	1221	126	
2019	1842	1168	158	
2020	1815	1192	162	
Female - under75 years				
2015	651	313	19	
2016	709	387	18	
2017	682	419	9	
2018	644	407	16	
2019	682	418	16	

2020	673	440	23
Male - 75plus years			
2015	2223	1151	110
2016	2031	1131	101
2017	2107	1172	97
2018	2109	1303	105
2019	2133	1346	105
2020	2176	1355	113
Male - under75 years			
2015	1865	800	15
2016	1815	909	22
2017	1847	1028	15
2018	1814	1028	18
2019	1806	1042	19
2020	1962	1127	38

Heart Disease Mortality in Scotland 2015-2019

			Diagnosis		
Year	Sex	Age Group	Coronary Heart Disease	Heart Attack	Heart Failure
2015	Female	75plus years	2262	1190	200
2016	Female	75 plus years	2034	1131	173
2017	Female	75 plus years	1974	1197	155
2018	Female	75 plus years	1934	1221	126
2019	Female	75 plus years	1842	1168	158
2020	Female	75 plus years	1815	1192	162
2015	Female	under75 years	651	313	19
2016	Female	under75 years	709	387	18
2017	Female	under75 years	682	419	9
2018	Female	under75 years	644	407	16
2019	Female	under75 years	682	418	16
2020	Female	under75 years	673	440	23
2015	Male	75 plus years	2223	1151	110
2016	Male	75 plus years	2031	1131	101
2017	Male	75 plus years	2107	1172	97
2018	Male	75plus years	2109	1303	105
2019	Male	75plus years	2133	1346	105

2020	Male	75 plus years	2176	1355	113
2015	Male	under75 years	1865	800	15
2016	Male	under75 years	1815	909	22
2017	Male	under75 years	1847	1028	15
2018	Male	under75 years	1814	1028	18
2019	Male	under75 years	1806	1042	19
2020	Male	under75 years	1962	1127	38

Source: Public Health Scotland