Mathematik in Medien und Informatik

Elemente der Analytischen Geometrie

6

Prof. Dr. Thomas Schneider

Stand: 05.10.2022

Inhalt

- 1 Geraden in der Ebene
- 2 Geraden im Raum
- 3 Ebenen im Raum
- 4 Abstandsprobleme
- 5 Diskussion der AKG für Geraden in der Ebene

Einführung

Generelle Vereinbarung

Im Folgenden wird stets vorausgesetzt, dass eine physikalische oder mathematische Ebene (bezeichnet als "die Ebene") betrachtet wird, in der ein kartesisches Koordinatensystem $(O; \overrightarrow{b_1}, \overrightarrow{b_2})$ gegeben ist.

Bekannt aus der Schule ist die

Geradengleichung y = mx + b

Für gegebene Werte von m und b wird hierdurch die Menge

$$\{(x,y)\mid y=mx+b\}$$

beschrieben, d.h. die Menge aller Punkte P der Ebene mit Koordinaten $(P)_K = (x, y)$, für welche die Aussage y = mx + b zutrifft.

Einführung

Geradengleichung y = mx + b

 $m = \frac{\Delta y}{\Delta x}$ ist die **Steigung** der Geraden $g = \{(x, y) \mid y = mx + b\}$, b ist der sogenannte y-Achsenabschnitt.

Einführung

Feststellung

Vertikale Geraden lassen sich mit der Gleichung y = mx + b **nicht** darstellen.

Betrachten Sie z. B. die Gerade $\{(x, y) \mid x = 3\}$:

Bei dieser Geraden ist weder eine Steigung noch ein *y*-Achsenabschnitt definiert.

Ausblick:

In dieser Lehreinheit betrachten wir drei Typen von Gleichungen, mit denen sich jeweils **alle** Geraden der Ebene beschreiben lassen.

Parametergleichung (PG) für Geraden in der Ebene

Parametergleichung für Ursprungsgeraden

- Gegeben sei ein Punkt R in der Ebene. Die Gerade, welche durch R und den Ursprung O verläuft, heiße g.
- Ferner sei \vec{r} der Verbindungsvektor \overrightarrow{OR} .
- Heftet man ein beliebiges Vielfaches $t\vec{r}$ von \vec{r} am Ursprung an, so liegt der resultierende Punkt $O + t\vec{r}$ auf der Ursprungsgeraden g.
- Anders ausgedrückt: Jedes Vielfache $\vec{x} = t \vec{r}$ von \vec{r} bildet den Ortsvektor eines Punktes, der auf der Ursprungsgeraden g liegt.
- Umgekehrt existiert zu jedem Punkt X auf der Ursprungsgeraden g ein Wert t derart, dass $X = O + t\vec{r}$ gilt. Für den Vektor $x := \overrightarrow{OX}$ gilt dann $x = t\vec{r}$.

Parametergleichung (PG) für Geraden in der Ebene

Bezeichnungen

Ist ein R ein Punkt, g die Ursprungsgerade durch R und $\vec{r} = \overrightarrow{OR}$ der zu R gehörige (Orts-)Vektor, so beschreibt

- die Gleichung $X = O + t\vec{r}, t \in \mathbb{R}$ alle **Punkte** von g,
- die Gleichung $\vec{x} = t \vec{r}, t \in \mathbb{R}$ alle **Ortsvektoren der Punkte** von g.

Wir nennen jede dieser Gleichungen eine **Parametergleichung** der Geraden *g*.

Parametergleichung (PG) für Geraden in der Ebene

Zu Ursprungsgeraden parallele Geraden

Es sei R ein Punkt, u die Ursprungsgerade durch R und $\vec{r} = \overrightarrow{OR}$ der zu R gehörige (Orts-)Vektor.

- Die Ursprungsgerade u lässt sich an einen beliebigen Punkt P verschieben.
- Dies wird dadurch erreicht, dass der Vektor \vec{r} und jedes Vielfache $t\vec{r}$ von \vec{r} am Punkte P (anstatt, wie zuvor, am Ursprung) angeheftet werden.
- Die Punkte X auf der so konstruierten Geraden g lassen sich somit beschreiben durch die Gleichung $X = P + t \vec{r}$ mit $t \in \mathbb{R}$.
- Der (Orts-)Vektor $\vec{x} := \overrightarrow{OX}$ eines jeden Punktes X auf g lässt sich in der Form $\vec{x} = \vec{p} + t\vec{r}$ mit $t \in \mathbb{R}$ darstellen.

Parametergleichung (PG) für Geraden in der Ebene

Parametergleichung der Verbindungsgeraden zweier Punkte.

- Wähle zwei Punkte P, Q, bezeichne deren Verbindungsgerade mit g. Setze ferner $\vec{p} := \overrightarrow{OP}$ und $\vec{q} := \overrightarrow{OQ}$
- Betrachte $\vec{r} := \overrightarrow{PQ} = \vec{q} \vec{p}$ sowie $t \vec{r}$ mit $t \in \mathbb{R}$.
- Hefte den Vektor $t\vec{r}$ am Punkt P an. Der resultierende **Punkt** $X = P + t\vec{r}$ liegt auf g.
- Alternativ hierzu: Bilde $\vec{x} := \vec{p} + t\vec{r}$. Dann ist \vec{x} der **Ortsvektor** eines Punktes auf g.

Parametergleichung (Variante für Punkte):

$$X = P + t \overrightarrow{PQ}$$

= $P + t (\overrightarrow{q} - \overrightarrow{p}), t \in \mathbb{R}$

Parametergleichung (Variante für Ortsvektoren):

$$\vec{x} = \vec{p} + t \overrightarrow{PQ}$$

$$= \vec{p} + t (\vec{q} - \vec{p}), t \in \mathbb{R}$$

Parametergleichung (PG) für Geraden in der Ebene

Parametergleichung – Bezeichnungen

Wird eine Gerade durch die Gleichung $\vec{x} = \vec{p} + t\vec{r}$ bzw. $X = P + t\vec{r}$ mit $t \in \mathbb{R}$ beschrieben, so

- heißt t Parameter,
- wird r Richtungsvektor genannt,
- heißt P Aufpunkt,
- bezeichnet man \vec{p} als **Stützvektor** (oder als Ortsvektor eines Aufpunktes).

Parametergleichung (PG) für Geraden in der Ebene

Merke

Für zwei gegebene Punkte P,Q mit Ortsvektoren \vec{p} und \vec{q} erhält man einen Richtungsvektor \vec{r} der Verbindungsgeraden g durch P und Q wie folgt:

$$ec{r}=ec{q}-ec{p}$$
 Denn aus der Skizze folgt $ec{p}+ec{r}=ec{q}
ightharpoonup ec{r}=ec{q}-ec{p}.$

Parametergleichung (PG) für Geraden in der Ebene

Hörsaalübung:

Es seien die Punkte A=(2,0) und B=(1,2) gegeben. Finden Sie eine Parametergleichung der Form

$$\vec{x} = \vec{p} + t\vec{r}$$

bzw.

$$X = P + t\vec{r}$$

mit $t \in \mathbb{R}$ für die Verbindungsgerade g von A und B.

Parametergleichung (PG) für Geraden in der Ebene

Hörsaalübung – Lösung

Zu bestimmen ist eine Parametergleichung

$$\vec{x} = \vec{p} + t\vec{r}$$

bzw.

$$X = P + t\vec{r}$$

mit $t \in \mathbb{R}$ für die Verbindungsgerade g der Punkte A = (2,0) und B = (1,2):

Wähle z.B.

$$P = A$$
, also $\vec{p} = \vec{a} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$

und

$$\vec{r} = \vec{b} - \vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix}.$$

Dies ergibt die Parametergleichung

$$\vec{x} = \vec{a} + t\vec{r}$$
 $\vec{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \end{pmatrix}, t \in \mathbb{R}$

Parametergleichung (PG) für Geraden in der Ebene

Eine Gerade – viele Parametergleichungen

Es gibt viele Möglichkeiten, zu einer gegebenen Geraden eine Parametergleichung zu bestimmen. Dies sei am Beispiel der vorigen Hörsaalübung illustriert.

•
$$\vec{x_1}(t_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -1 \\ 2 \end{pmatrix}, t_1 \in \mathbb{R},$$

•
$$\vec{x_2}(t_2) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t_2 \begin{pmatrix} -1 \\ 2 \end{pmatrix}, t_2 \in \mathbb{R},$$

•
$$\vec{x_3}(t_3) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t_3 \begin{pmatrix} 1 \\ -2 \end{pmatrix}, t_3 \in \mathbb{R}.$$

•
$$\vec{x_4}(t_4) = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t_4 \begin{pmatrix} 1 \\ -2 \end{pmatrix}, t_4 \in \mathbb{R}.$$

Jede der voranstehenden Parametrisierungen beschreibt dieselbe Gerade. Jedoch ist die Zuordnung von Parameterwerten zu Punkten unterschiedlich. So gilt beispielsweise

$$\vec{x_1}(1) = \vec{x_2}(0) = \vec{x_3}(-1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\vec{x_1}(0) = \vec{x_2}(-1) = \vec{x_4}(+1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Parametergleichung (PG) für Geraden in der Ebene

Diskussion / Illustration

 Nutzen Sie eine der soeben gefundenen Parametergleichungen für die Gerade g, z.B.

$$\vec{x}(t) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -1 \\ 2 \end{pmatrix}, t \in \mathbb{R}$$

bzw.

$$X(t) = (2, 0) + t \begin{pmatrix} -1 \\ 2 \end{pmatrix}, t \in \mathbb{R},$$

um mindestens drei verschiedene auf g liegende Punkte auszurechnen.

• Wir klären (durch Rechnung an der Tafel) mit der gegebenen Parametergleichung, ob der Punkt C=(4,-5) auf der Geraden g liegt.

Parametergleichung (PG) für Geraden in der Ebene

Hörsaalübung – typischer Fehler

Die Skizze zeigt einen typischen Fehler: Der Verbindungsvektor $\vec{r} = \overrightarrow{PQ}$ wurde zwar richtig bestimmt. Jedoch liegt der Punkt $O + \vec{r}$ **nicht** auf der Verbindungsgeraden g der Punkte P und Q. In der Skizze ist die fehlerhaft gezeichnete Gerade durchgezogen dargestellt, die Gerade g gestrichelt.

Anders ausgedrückt: \vec{r} ist ein **Richtungsvektor** der Geraden, er kann **nicht als Ortsvektor** eines Punktes auf der Geraden verwendet werden.

Allgemeine Koordinatengleichung (AKG)

Definition:

Es seien A, B, C reelle Zahlen, wobei A und B **nicht beide** Null sind. Dann heißt die Gleichung:

$$A \cdot x_1 + B \cdot x_2 + C = 0$$

Allgemeine Koordinatengleichung (AKG) in der Ebene.

Satz:

Für $(A, B) \neq (0, 0)$ ist die Lösungsmenge

$$\{(x_1, x_2) \in \mathbb{R}^2 \mid A \cdot x_1 + B \cdot x_2 + C = 0 \text{ wahr} \}$$

der AKG immer eine Gerade in der Ebene.

Allgemeine Koordinatengleichung (AKG)

Anstelle eines Beweises illustrieren wir anhand eines Beispieles, wie man zu einer gegebenen AKG eine PG findet.

Beispiel:

Es sei gegeben die AKG $2x_1 + x_2 - 4 = 0$.

Führe einen Parameter t ein: Setze z. B. $x_2 = t, t \in \mathbb{R}$

 \rightarrow Löse die resultierende Gleichung nach x_1 auf: $2x_1 + t - 4 = 0$

$$\rightarrow x_1 = \frac{4-t}{2} = \frac{1}{2}(4-t) = 2 - \frac{1}{2}t$$

Bemerkung:

Im Allgemeinen lassen sich im Falle $A \neq 0$ aus einer gegebenen AKG die folgenden Beziehungen ableiten:

$$x_1 = -rac{B}{A}t - rac{C}{A}, \quad x_2 = t \qquad \rightsquigarrow inom{x_1}{x_2} = inom{-rac{C}{A}}{0} + t inom{-rac{B}{A}}{1}, \ t \in \mathbb{R}.$$

Allgemeine Koordinatengleichung (AKG)

Satz:

Jede Gerade lässt sich mittels einer AKG darstellen.

Anstelle eines Beweises illustrieren wir anhand eines Beispieles, wie man zu einer gegebenen PG eine AKG findet.

Beispiel:

Es sei gegeben die Parametergleichung $\vec{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}, t \in \mathbb{R}$

$$ightharpoonup ext{Schreibe} egin{pmatrix} X_1 \\ X_2 \end{pmatrix} ext{ anstelle von } \vec{x} ext{:} egin{pmatrix} X_1 \\ X_2 \end{pmatrix} = egin{pmatrix} 2 \\ 0 \end{pmatrix} + t egin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} = egin{pmatrix} 2 - \frac{1}{2}t \\ 0 + t \end{pmatrix}$$

$$\rightarrow x_1 = 2 - \frac{1}{2}t$$
 (Glg. 1) und $x_2 = t$ (Glg. 2)

→ Elimination des Parameters t:

(2) in (1):
$$x_1 = 2 - \frac{1}{2}x_2 \longrightarrow \left| 1 \cdot x_1 + \frac{1}{2} \cdot x_2 - 2 \right| = 0$$
 (AKG)

Allgemeine Koordinatengleichung (AKG)

Diskussion:

Wie sieht die Lösungsmenge der Gleichung

$$A \cdot x_1 + B \cdot x_2 + C = 0$$

aus, wenn **sowohl** A = 0 **als auch** B = 0 gilt?

Normalenvektor

Definition:

Es sei eine Gerade g gegeben. Ein Vektor \vec{n} heißt **Normalenvektor** von g, wenn \vec{n} senkrecht auf jedem (beliebig gewählten) Richtungsvektor von g steht.

Über diese Beziehung zwischen Normalenvektoren und Richtungsvektoren erhält man eine weitere Darstellungsform von Geraden.

Hesse'sche Normalengleichung (HNG)

<u>Idee:</u> Lege eine Gerade g durch einen Aufpunkt P mit Ortsvektor \vec{p} und einen sogenannten Normalenvektor \vec{n} von g fest.

Für den Ortsvektor \vec{x} eines beliebigen Punktes X auf g gilt:

$$\overrightarrow{PX} \perp \vec{n}$$

$$\sim \vec{x} - \vec{p} \perp \vec{n}$$

$$\rightsquigarrow \left| \vec{n} \cdot (\vec{x} - \vec{p}) = 0 \right|.$$

Eine Gleichung dieser Form heißt Hesse'sche Normalengleichung (HNG).

Hesse'sche Normalengleichung (HNG)

Hörsaalübung:

Es sei die Gerade g durch die PG $\vec{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$ gegeben. **Bestimmen Sie** eine HNG der Form $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ für g.

- Wählen Sie z. B. $\vec{p} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
- Suchen Sie $\vec{n} = \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$ mit $\vec{n} \perp \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$,

d. h.
$$\binom{n_1}{n_2} \cdot \binom{-\frac{1}{2}}{1} = 0,$$

$$\sim \qquad -\frac{1}{2} n_1 + n_2 = 0, \qquad \text{wähle z. B. } \binom{n_1}{n_2} = \binom{1}{\frac{1}{2}}$$

Eine mögliche HNG für g ist somit

$$\begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \vec{x} - \begin{pmatrix} 2 \\ 0 \end{pmatrix} \end{pmatrix} = 0.$$

Hesse'sche Normalengleichung (HNG)

Bemerkung:

Falls allgemein ein Normalenvektor $\vec{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ zu einem gegebenen Richtungsvektor $\vec{r} = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix}$ gesucht ist, wähle $\vec{n} = \begin{pmatrix} -r_2 \\ r_1 \end{pmatrix}$ oder $\vec{n} = \begin{pmatrix} r_2 \\ -r_1 \end{pmatrix}$ oder Vielfache hiervon.

Beispiel:

Gesucht ist
$$\vec{n} \perp \vec{r}$$
 mit $\vec{r} = \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix}$
Lösung: $\vec{r} = \begin{pmatrix} -\frac{1}{2} \\ 1 \end{pmatrix} \xrightarrow[\text{umdrehen}]{} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix} \xrightarrow[\text{ein}]{} \begin{pmatrix} 1 \\ -\left(-\frac{1}{2}\right) \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix} := \vec{n}$. Vorzeichen ändern

Zusammenfassung Geradengleichungen

Geradengleichungen in der Ebene:

PG:
$$X = P + t\vec{r}, t \in \mathbb{R}$$
 bzw. $\vec{x} = \vec{p} + t\vec{r}, t \in \mathbb{R}$

AKG:
$$A x_1 + B x_2 + C = 0$$

HNG:
$$\vec{n} \cdot (\vec{x} - \vec{p}) = 0$$

Parametergleichung

Aussage:

Jede Gerade g im Raum lässt sich (wie in der Ebene) mit einer Parametergleichung darstellen.

Das heißt: Ist P ein Punkt auf der Geraden (mit Ortsvektor \vec{p}) und ist \vec{r} ein Richtungsvektor von g, so lässt sich jeder beliebige Punkt X auf der Geraden in der Form

$$X = P + t\vec{r}, t \in \mathbb{R}$$
 bzw.

$$\vec{x} = \vec{p} + t\vec{r}, t \in \mathbb{R}$$

darstellen.

Bei Verwendung der Koordinatendarstellungen ergibt sich

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix} + t \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}, \ t \in \mathbb{R}.$$

Bemerkung:

AKG und HNG gibt es für Geraden im Raum nicht.

Beispiel: Gerade im Hörsaal

Hörsaalübung:

- Wählen Sie ein Koordinatensystem im Hörsaal und schätzen Sie die Koordinaten der Punkte *P* (Eckpunkt vorne rechts oben) und *Q* (hinten links unten).
- Stellen Sie eine Parametergleichung für die Gerade g auf, welche durch die Punkte P und Q verläuft.
- Was müssen Sie ändern, wenn Sie nur die Punkte der **Verbindungsstrecke** \overline{PQ} parametrisieren wollen?

Beispiel: Gerade im Hörsaal

Daten aus dem Wintersemester 2016/17

- Der Ursprung des Koordinatensystem liegt im Hörsaal in der Ecke vorne links oben.
 Die x-Achse weise nach unten, die y-Achse nach rechts, die z-Achse auf die Studierenden zu. Die Einheitsvektoren haben jeweils die Länge 1 m.
- Mit P = (0, 8, 0) und Q = (4, 0, 12) ergibt sich der Richtungsvektor

$$\vec{r} = \overrightarrow{PQ} = \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}$$
.

• Die Gerade $g = P \lor Q$ (Verbindungsgerade der Punkte P und Q) hat die Parametergleichung

$$\vec{x} = \begin{pmatrix} 0 \\ 8 \\ 0 \end{pmatrix} + t \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}, \quad t \in \mathbb{R}.$$

• Möchte man nur die Strecke PQ parametrisieren, so ist

$$\vec{x} = \begin{pmatrix} 0 \\ 8 \\ 0 \end{pmatrix} + t \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}, \quad t \in [0, 1].$$

Beispiel: Interpretation als Bewegung

Interpretation als Bewegung:

- Wir können die gegebene Gleichung $\vec{x} = P + t\vec{r}$ so interpretieren, dass Sie die **Bewegung** einer Modell-Drahtseilbahn beschreibt, die sich entlang der Strecke PQ bewegt.
- Dann stellt der Parameter t die Zeit dar. Wir wählen als Einheit die Sekunde s.
- Wenn t den Wert t = 0s annimmt, so befindet sich die Seilbahn am Startpunkt $\vec{x} = P + 0 \vec{r} = P$.
- Für t = 1 s ergibt sich $\vec{x} = P + 1 \vec{r} = P + \overrightarrow{PQ} = Q$.
- Somit legt die Seilbahn in einer Sekunde die Wegstrecke ℓ zurück, die der Länge der Vektors \overrightarrow{PQ} entspricht: $\ell = d(P,Q) = \|\overrightarrow{PQ}\|$.
- Wir haben als Längeneinheit das Meter m gewählt, also gilt

$$\ell = \left\| \overrightarrow{PQ} \right\| = \sqrt{4^2 + (-8)^2 + 12^2} \, m = \sqrt{224} \, m \approx 15 \, m.$$

• Die **Geschwindigkeit** der Seilbahn beträgt also rund 15 m/s.

Beispiel: Interpretation als Bewegung

Interpretation als Bewegung:

- Die Geschwindigkeit von rund 15 m/s ist sehr hoch.
- Möchte man eine neue Parametrisierung erhalten, bei der die Geschwindigkeit nur 1 m/s beträgt, so muss man den Richtungsvektor normieren:

$$\hat{r} = \frac{1}{\|\vec{r}\|} \vec{r} = \frac{1}{\sqrt{224}} \begin{pmatrix} 4 \\ -8 \\ 12 \end{pmatrix}$$

Die neue Parametrisierung sieht dann wie folgt aus:

$$\vec{x} = P + \bar{t}\,\hat{r}$$

$$= \begin{pmatrix} 0 \\ 8 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} \frac{4}{\sqrt{224}} \\ \frac{-8}{\sqrt{224}} \\ \frac{12}{\sqrt{224}} \end{pmatrix}, \quad t \in \left[0, \sqrt{224}\right].$$

Parametergleichung

Hinführung:

- Wähle drei nicht kollineare Punkte P, Q, R im Raum.¹
- Bezeichne die Verbindungsebene dieser drei Punkte mit *E*.
- Bilde die Vektoren $\vec{u} = \overrightarrow{PQ}$ und $\vec{v} = \overrightarrow{PR}$.
- Wähle $s, t \in \mathbb{R}$ und bilde

$$X = P + s\vec{u} + t\vec{v}$$

bzw.

$$\vec{x} = \vec{p} + s\vec{u} + t\vec{v}.$$

• Dann ist X ein Punkt auf der Ebene E mit Ortsvektor \vec{x} .

¹Eine Menge von Punkten heißt **kollinear**, wenn die Punkte **auf einer Geraden** liegen.

Parametergleichung

Aussage:

Es sei E eine Ebene im Raum und X ein Punkt auf E, dessen Ortsvektor sei \vec{x} . Ferner seien $\vec{u} \neq O$ und $\vec{v} \neq 0$ Richtungsvektoren der Ebene, die **linear unabhängig**, insbesondere nicht parallel oder antiparallel sind.

Dann existieren Werte $s, t \in \mathbb{R}$ mit

$$X = P + s\vec{u} + t\vec{v}$$
 bzw. $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$.

Bezeichnungsweise:

P: Aufpunkt \vec{p} : Stützvektor

s, t: Parameter

 \vec{u}, \vec{v} : Richtungsvektoren

Parametergleichung

Bemerkung:

Falls drei nicht kollineare Punkte P, Q, R im Raum gegeben sind, so erhält man zwei linear unabhängige Richtungsvektoren \vec{u} und \vec{v} für die Verbindungsebene dieser drei Punkte wie folgt:

$$\vec{u} = \overrightarrow{PQ}$$

$$\vec{v} = \overrightarrow{PR}$$
.

Parametergleichung

Hörsaalübung:

Beschreiben Sie eine Ebene *E* im Hörsaal, die die linke obere Ecke der Tafel enthält und parallel zur Fensterebene ist. Hinweis: Wählen Sie zunächst ein Koordinatensystem im Hörsaal.

Parametergleichung

Hörsaalübung – Beispiellösung aus einem früheren Semester:

Beschreiben Sie eine Ebene *E* im Hörsaal, die die linke obere Ecke der Tafel enthält und parallel zur Fensterebene ist. Wählen Sie zunächst ein Koordinatensystem im Hörsaal.

Tafelecke: P(2; 0, 3; 1)

weitere Punkte auf E: Q = (2, 0, 1), R = (2, 6, 5)

$$\vec{u} = \overrightarrow{PQ} = \begin{pmatrix} 2-2 \\ 0-0,3 \\ 1-1 \end{pmatrix} = \begin{pmatrix} 0 \\ -0,3 \\ 0 \end{pmatrix}, \vec{v} = \overrightarrow{PR} = \begin{pmatrix} 2-2 \\ 6-0,3 \\ 5-1 \end{pmatrix} = \begin{pmatrix} 0 \\ 5,7 \\ 4 \end{pmatrix}$$

Hieraus ergibt sich eine Parametergleichung:

$$ec{\mathbf{x}} = \left(egin{matrix} 2 & 0,3 \ 1 & 1 \end{array}
ight) \ + \ \mathbf{s} \left(egin{matrix} 0 & 0,3 \ -0,3 \ 0 & 1 \end{array}
ight) \ + \ t \left(egin{matrix} 5 & 7 \ 4 \ 0 & 1 \end{array}
ight); \mathbf{s}, t \in \mathbb{R}$$

Normalenvektor einer Ebene

Definition:

Ein Vektor \vec{n} heißt **Normalenvektor** einer Ebene E, wenn \vec{n} senkrecht auf allen Richtungsvektoren von E steht.

Bemerkung:

Falls eine Ebene E durch eine Parametergleichung $X = P + s\vec{u} + t\vec{v}$ bzw. $\vec{x} = \vec{p} + s\vec{u} + t\vec{v}$ gegeben ist, erhält man einen Normalenvektor \vec{n} von E durch Kreuzproduktbildung:

$$\vec{n} = \vec{u} \times \vec{v}$$

Hesse'sche Normalengleichung

<u>Idee:</u> Lege eine Ebene fest durch Angabe eines Aufpunktes P mit Ortsvektor \vec{p} und eines Normalenvektors \vec{n} .

Für den Ortsvektor \vec{x} eines beliebigen Punktes X auf E gilt:

$$\overrightarrow{PX} \perp \overrightarrow{n}$$

$$\rightsquigarrow \overrightarrow{x} - \overrightarrow{p} \perp \overrightarrow{n}$$

$$\rightsquigarrow \overrightarrow{n} \cdot (\overrightarrow{x} - \overrightarrow{p}) = 0$$

Im Raum definiert die HNG eine Ebene. Denn alle Vektoren, die senkrecht zum Normalenvektor stehen, liegen in einer Ebene (sind also Verbindungsvektoren zweier Punkte in dieser Ebene).

Hesse'sche Normalengleichung

Diskussion:

Wir stellen eine Hesse'sche Normalengleichung für die zuvor diskutierte (im Hörsaal gedachte) Ebene auf.

Allgemeine Koordinatengleichung

Definition:

Seien A, B, C, D reelle Zahlen, wobei $(A, B, C) \neq (0, 0, 0)$ gelten soll. Dann heißt die Gleichung

$$Ax_1 + Bx_2 + Cx_3 + D = 0$$

Allgemeine Koordinatengleichung (AKG) im Raum.

Bemerkungen:

- a) Die Lösungsmenge einer jeden AKG im Raum ist eine Ebene.
- b) Jede Ebene lässt sich durch eine AKG im Raum darstellen.

Allgemeine Koordinatengleichung

Diskussion:

Wir stellen eine Allgemeine Koordinatengleichung für die zuvor diskutierte (im Hörsaal gedachte) Ebene auf. Dies geschieht dadurch, dass man die Gleichung

$$\vec{n}\cdot(\vec{x}-\vec{p})=0$$

mit Koordinaten schreibt und dann ausmultipliziert.

Erinnerung: Abstandsprobleme und orthogonale Projektionen

Zusammenhang:

Wir stellen den Zusammenhang her zu dem Abstandsproblem, das wir im vorigen Kapitel diskutiert haben:

- a) Wir haben gesehen, dass $\vec{OL} = \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}$ gilt.
- b) Da der Vektor \vec{OL} parallel zur Geraden g ist, schreiben wir \vec{u}_{\parallel} oder auch $\vec{u}_{\parallel g}$ für \vec{OL} .
- c) Da der Vektor $\overrightarrow{LU} = \overrightarrow{u} \overrightarrow{OL}$ senkrecht auf \overrightarrow{v} bzw. auf auf g steht, schreiben wir auch $\overrightarrow{u}_{\perp}$ oder $\overrightarrow{u}_{\perp g}$ für \overrightarrow{LU} .
- d) Mit $\vec{u} = \vec{u}_{\parallel} + \vec{u}_{\perp}$ liegt nun eine Zerlegung von \vec{u} in orthogonale Komponenten vor.

Erinnerung: Abstandsprobleme und orthogonale Projektionen

Alternative Notation:

Wenn $\vec{n} = \overrightarrow{ON}$ ein Normalenvektor für die Ursprungsgerade g ist, so können wir die Zerlegung des Vektors \vec{u} auch bezüglich der Normalgeraden $\langle \vec{n} \rangle = O \vee N$ notieren:

- a) Der Vektor \vec{OL} steht **senkrecht** zur Geraden $\langle \vec{n} \rangle$, wir können daher $\vec{u}_{\perp \langle \vec{n} \rangle}$ für \vec{OL} schreiben.
- b) Da der Vektor \overrightarrow{LU} parallel zur Geraden $\langle \vec{n} \rangle$ ist, schreiben wir auch $\vec{u}_{\parallel \langle \vec{n} \rangle}$ für \overrightarrow{LU} , und es ist $\vec{u}_{\parallel \langle \vec{n} \rangle} = \frac{\vec{u} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n}$.
- c) Somit ist

$$\overrightarrow{OL} = \vec{u}_{\parallel g} = \vec{u}_{\perp \langle \vec{n} \rangle} = rac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \ \vec{v} \ \overrightarrow{LU} = \vec{u}_{\perp g} = \vec{u}_{\parallel \langle \vec{n} \rangle} = rac{\vec{u} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \ \vec{n}$$

HNG in der Ebene – Abstand Punkt-Gerade

Problemstellung und Lösungsansatz

Eine Gerade *g* in der Ebene sei gegeben durch eine HNG

$$\vec{n}\cdot(\vec{x}-\vec{p})=0.$$

Gesucht ist der (orthogonale) Abstand eines Punktes X von der Geraden g.

Der Skizze entnehmen wir den Lösungsansatz, den wir verfolgen werden. Wir verwenden den durch die HNG gegebenen Punkt P (mit Ortsvektor \vec{p}) und zerlegen den Verbindungsvektor $\vec{v} := \overrightarrow{PX}$ in eine Komponente $\vec{v}_{\parallel n}$ parallel zur Normalgeraden n und eine dazu senkrechte Komponente.

Die Länge des Vektors $\vec{v}_{\parallel n}$ entspricht dem gesuchten Abstand.

HNG in der Ebene – Abstand Punkt-Gerade

Durchführung (1):

Mit den Bezeichnungen der Abbildung gilt für den Abstand d := d(X, g) des Punktes X von der Geraden g die Beziehung

$$d = \|\overrightarrow{LX}\| = \|\overrightarrow{v}_{\parallel n}\|$$

$$= \|\left(\frac{\overrightarrow{v} \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}}\right) \overrightarrow{n}\|$$

$$= \|\left(\frac{(\overrightarrow{x} - \overrightarrow{p}) \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}}\right) \overrightarrow{n}\|.$$

HNG in der Ebene – Abstand Punkt-Gerade

Durchführung (2):

Wir formen den für den Abstand d := d(X, g) gefundenen Ausdruck weiter um und verwenden hierfür Eigenschaften der Länge und des Skalarprodukts von Vektoren sowie des Betrags reeller Zahlen:

$$d = \left\| \left(\frac{(\vec{x} - \vec{p}) \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \right) \vec{n} \right\|$$

$$= \left| \frac{(\vec{x} - \vec{p}) \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \right| \| \vec{n} \|$$

$$= \frac{\left| (\vec{x} - \vec{p}) \cdot \vec{n} \right|}{\| \vec{n} \|^2} \| \vec{n} \|$$

$$= \frac{\left| \vec{n} \cdot (\vec{x} - \vec{p}) \right|}{\| \vec{n} \|}$$

HNG in der Ebene – Abstand Punkt-Gerade

Bemerkungen:

Für den Abstand d (X, g) des Punktes X von der Geraden g ergibt sich also

$$d(X,g) = \frac{\left| \vec{n} \cdot (\vec{x} - \vec{p}) \right|}{\|\vec{n}\|}.$$

Wir erkennen auf der rechten Seite den Betrag des Ausdrucks, der in der HNG auftritt, dividiert durch die Norm (Länge) des Normalenvektors.

• Man erhält den Abstand d(O,g) des **Ursprungs** von der Geraden g, wenn man für \vec{x} den Nullvektor einsetzt. Dann ergibt sich

$$d(O,g) = \frac{\left| \vec{n} \cdot (\vec{0} - \vec{p}) \right|}{\| \vec{n} \|}$$
$$= \frac{\left| \vec{n} \cdot \vec{p} \right|}{\| \vec{n} \|}$$

HNG in der Ebene – Abstand Punkt-Gerade

Abstand Ursprung-Gerade:

Wie eben gesehen, gilt für den Abstand $d\left(O,g\right)$ des **Ursprungs** von der Geraden g die Gleichung

$$d(O,g) = \frac{\left| \vec{n} \cdot \vec{p} \right|}{\left\| \vec{n} \right\|}.$$

Wir zeigen, dass dies genau der Länge der Komponente $\vec{p}_{\parallel n}$ des Vektors \vec{p} parallel zur Normalgeraden n entspricht. Mit den Bezeichnungen des Diagramms gilt

$$d(O,g) = \|\overrightarrow{OL}\| = \|\overrightarrow{p}_{\parallel n}\|$$

$$= \|\frac{\overrightarrow{p} \cdot \overrightarrow{n}}{\overrightarrow{n} \cdot \overrightarrow{n}} \overrightarrow{n}\| = \frac{|\overrightarrow{p} \cdot \overrightarrow{n}|}{\|\overrightarrow{n}\|^{2}} \|\overrightarrow{n}\|$$

$$= \frac{|\overrightarrow{n} \cdot \overrightarrow{p}|}{\|\overrightarrow{n}\|}.$$

HNG im Raum - Abstand Punkt-Ebene

Analogie:

Ist eine Ebene E im Raum durch eine HNG $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ gegeben, so erhalten wir völlig analoge Resultate:

• Für den Abstand d(X, E) des Punktes X von der Ebene E gilt

$$d(X, E) = \frac{\left| \vec{n} \cdot (\vec{x} - \vec{p}) \right|}{\|\vec{n}\|}.$$

• Für den Abstand d (O, E) des **Ursprungs** von der Geraden E gilt

$$d(O, E) = \frac{\left| \vec{n} \cdot \vec{p} \right|}{\left\| \vec{n} \right\|}$$

AKG in der Ebene – Abstand Punkt-Gerade

Bemerkungen:

Eine Gerade g in der Ebene durch eine Allgemeine Koordinatengleichung gegeben:

$$A x_1 + B x_2 + C = 0,$$
 $(A, B) \neq (0, 0).$

Für den Abstand d(X,g) des Punktes X mit Koordinaten (x_1, x_2) von der Geraden g gilt

$$d(X,g) = \frac{|Ax_1 + Bx_2 + C|}{\sqrt{A^2 + B^2}}.$$

Dies folgt aus der Formel $d(X,g) = \frac{\left|\vec{n}\cdot(\vec{x}-\vec{p})\right|}{\|\vec{n}\|}$, die wir mit der HNG ermittelt hatten, wie folgt:

- Wenn der Punkt P auf g liegt, so gilt $Ap_1 + Bp_2 + C = 0$, also $C = -(Ap_1 + Bp_2)$.
- Der Vektor $\begin{pmatrix} A \\ B \end{pmatrix}$ ist ein Normalenvektor¹ für die Gerade g, wir setzen also $\vec{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ und erhalten $\vec{n} \cdot \vec{x} = A x_1 + B x_2$ und $-\vec{n} \cdot \vec{p} = -(A p_1 + B p_2) = C$ sowie $\|\vec{n}\| = \sqrt{A^2 + B^2}$.
- Somit gilt

$$d(X,g) = \frac{\left| \vec{n} \cdot (\vec{x} - \vec{p}) \right|}{\left\| \vec{n} \right\|} = \frac{\left| \vec{n} \cdot \vec{x} - \vec{n} \cdot \vec{p} \right|}{\left\| \vec{n} \right\|}$$
$$= \frac{\left| A x_1 + B x_2 + C \right|}{\sqrt{A^2 + B^2}}.$$

¹ Vgl. Folie 53 im folgenden Kapitel.

AKG in der Raum – Abstand Punkt-Ebene

Abstand Punkt-Ebene bei gegebener AKG:

Eine Ebene *E* in der Ebene durch eine Allgemeine Koordinatengleichung gegeben:

$$A x_1 + B x_2 + C x_3 + D = 0,$$
 $(A, B, C) \neq (0, 0, 0).$

Dann gilt für den Abstand d(X, E) des Punktes X mit Koordinaten (x_1, x_2, x_3) von der Ebene E die Beziehung

$$d(X,E) = \frac{|Ax_1 + Bx_2 + Cx_2 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Dies folgt völlig analog zur vorigen Folie aus der Formel

$$d(X,E) = \frac{\left| \vec{n} \cdot (\vec{x} - \vec{p}) \right|}{\| \vec{n} \|},$$

die wir mit der HNG ermittelt hatten.

Zusammenfassung

Abstandsformeln für Geraden in der Ebene bzw. für Ebenen im Raum:

	Bei gegebener HNG $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$	Bei gegebener AKG $Ax_1 + Bx_2 + C = 0$ bzw. $Ax_1 + Bx_2 + Cx_2 + D = 0$
Abstand Punkt-Gerade in der Ebene	$d(X,g) = \frac{ \vec{n}\cdot(\vec{x}-\vec{p}) }{ \vec{n} }$	$d(X,g) = \frac{ Ax_1 + Bx_2 + C }{\sqrt{A^2 + B^2}}$
Abstand Punkt-Ebene im Raum	$d(X, E) = \frac{\left \vec{n} \cdot (\vec{x} - \vec{p})\right }{\ \vec{n}\ }$	$d(X, E) = \frac{ Ax_1 + Bx_2 + Cx_2 + D }{\sqrt{A^2 + B^2 + C^2}}$

Abstandsformeln für Geraden im Raum:

	Für Ursprungsgerade g mit Parametergleichung $ec{x} = t ec{v}, t \in \mathbb{R}$	Für (affine) Gerade g mit Parametergleichung $ec{x} = ec{p} + t ec{v}, \ t \in \mathbb{R}$
Abstand des Punktes U mit Ortsvektor \vec{u} von der Geraden	$d(U,g) = \ \vec{u} - \frac{\vec{u} \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v}\ $	$d(U,g) = \ \vec{u} - \vec{p} - \frac{(\vec{u} - \vec{p}) \cdot \vec{v}}{\vec{v} \cdot \vec{v}} \vec{v} \ $
Abstand des Punktes U mit Ortsvektor \vec{u} von der Geraden	$d(U,g) = \frac{\ \vec{u} \times \vec{v}\ }{\ \vec{v}\ }$	$d(U,g) = \frac{\ (\vec{u}-\vec{p}) \times \vec{v}\ }{\ \vec{v}\ }$

Diskussion: Geraden in der Ebene

Problemstellung und Lösungsansatz

Es seien A, B und C reelle Zahlen mit $(A, B) \neq (0, 0)$. Wir betrachten die Gleichung

$$A \cdot x_1 + B \cdot x_2 + C = 0$$

und diskutieren die Bedeutung der Konstanten A, B und C.

Hierzu betrachten wir zwei Punkte $P=(p_1,p_2)$ und $Q=(q_1,q_2)$, welche diese Gleichung erfüllen. Mithin gilt

$$A \cdot q_1 + B \cdot q_2 + C = 0$$
 und

$$A \cdot p_1 + B \cdot p_2 + C = 0$$

Diskussion: Geraden in der Ebene

Fortsetzung

Subtraktion der Gleichungen

$$A \cdot q_1 + B \cdot q_2 + C = 0$$
 und

$$A \cdot p_1 + B \cdot p_2 + C = 0$$

ergibt

$$A \cdot (q_1 - p_1) + B \cdot (q_2 - p_2) = 0.$$

Mit der Notation als Spaltenvektoren:

$$\begin{pmatrix} A \\ B \end{pmatrix} \cdot \begin{pmatrix} q_1 - p_1 \\ q_2 - p_2 \end{pmatrix} = 0.$$

Diskussion: Geraden in der Ebene

Fortsetzung

- Wir stellen also fest, dass $\begin{pmatrix} A \\ B \end{pmatrix}$ senkrecht auf dem Verbindungsvektor $\overrightarrow{PQ} = \vec{q} \vec{p}$ steht.
- Die Punkte P und Q sind wie alle Lösungen der gegebenen AKG Elemente einer Geraden g, der Verbindungsvektor \overrightarrow{PQ} ist ein Richtungsvektor dieser Geraden.
- Damit ist $\binom{A}{B}$ ein *Normalenvektor* der Geraden g.

Wir verwenden im Folgenden stets die Abkürzungen

$$\vec{n} = \begin{pmatrix} A \\ B \end{pmatrix}$$
 sowie $\|\vec{n}\| = \sqrt{A^2 + B^2}$.

Geraden in der Ebene – Bedeutung der Konstanten C

AKG und normierte **AKG** – Bedeutung der Konstanten *C*

- Falls C < 0 gilt, so liegt die Gerade g vom Ursprung aus gesehen in \vec{n} -Richtung.
- Falls C > 0 gilt, so liegt die Gerade g vom Ursprung aus gesehen in der zu in \vec{n} entgegengesetzten Richtung.
- Für C = 0 ist die Gerade g eine Ursprungsgerade.

Geraden in der Ebene – Bedeutung der Konstanten C

Abbildung: Beispiel mit C < 0: Gerade liegt vom Ursprung aus gesehen in \vec{n} -Richtung.

Geraden in der Ebene – Bedeutung der Konstanten C

Abbildung: Beispiel mit C > 0, Gerade liegt vom Ursprung aus entgegengesetzt zur \vec{n} -Richtung.

Geraden in der Ebene – Bedeutung der Konstanten C

Begründung:

Liegt ein Punkt X mit Ortsvektor $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ auf der Geraden, die durch die AKG $A \cdot x_1 + B \cdot x_2 + C = 0$ beschrieben wird, so folgt:

$$C = -A \cdot x_1 + B \cdot x_2 = -\begin{pmatrix} A \\ B \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\vec{n} \cdot \vec{x}.$$

Dieser Ausdruck findet sich in dem Ausdruck wieder, welcher den Anteil $\vec{x}_{\parallel \langle \vec{n} \rangle}$ des Ortsvektors \vec{x} beschreibt, der **parallel** zu der von $\vec{n} = \begin{pmatrix} A \\ B \end{pmatrix}$ erzeugten Ursprungsgerade $\langle \vec{n} \rangle$ ist. Genauer gilt (vergleiche Folie 41):

$$ec{x}_{\parallel\langle\vec{n}\rangle} = rac{ec{x}\cdotec{n}}{ec{n}\cdotec{n}}\ ec{n} = rac{ec{n}\cdotec{x}}{ec{n}\cdotec{n}}\ ec{n} = rac{-C}{ec{n}\cdotec{n}}\ ec{n}$$

Falls also C<0 gilt, so zeigt der Projektionsvektor $\vec{x}_{\parallel\langle\vec{n}\rangle}$ in \vec{n} -Richtung, für C>0 ist $\vec{x}_{\parallel\langle\vec{n}\rangle}$ entgegengesetzt zu \vec{n} gerichtet.

Geraden in der Ebene – Bedeutung der Konstanten C

Abbildung: Beispiel mit C < 0. Für jeden Punkt X auf der Geraden zeigt der Vektor $\vec{x}_{\parallel \langle \vec{n} \rangle}$ in die \vec{n} -Richtung.

Geraden in der Ebene – Bedeutung der Konstanten C

Satz:

Wird eine Gerade g durch die AKG

$$A \cdot x_1 + B \cdot x_2 + C = 0$$

beschrieben, so gilt für den Abstand d(O,g) des Ursprungs von der Geraden die Beziehung

$$d(O,g) = \frac{|C|}{\sqrt{A^2 + B^2}}.$$

Geraden in der Ebene – Bedeutung der Konstanten C

Begründung:

Liegt ein Punkt X mit Ortsvektor $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ auf der Geraden g, die durch die AKG $A \cdot x_1 + B \cdot x_2 + C = 0$ beschrieben wird, so gilt

$$C = -A \cdot x_1 + B \cdot x_2 = -\begin{pmatrix} A \\ B \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = -\vec{n} \cdot \vec{x}.$$

Der Abstand d(O,g) des Ursprungs von der Geraden g ist gleich der **Länge** des Projektionsvektors $\vec{x}_{\parallel\langle\vec{n}\rangle}$. Mit $\vec{x}_{\parallel\langle\vec{n}\rangle}=\frac{\vec{x}\cdot\vec{n}}{\vec{n}\cdot\vec{n}}$ folgt

$$\begin{aligned} \left\| \vec{X}_{\parallel \langle \vec{n} \rangle} \right\| &= \left\| \frac{\vec{X} \cdot \vec{n}}{\vec{n} \cdot \vec{n}} \vec{n} \right\| = \left\| \frac{-C}{\vec{n} \cdot \vec{n}} \vec{n} \right\| \\ &= \left| \frac{-C}{\vec{n} \cdot \vec{n}} \right| \left\| \vec{n} \right\| = \frac{\left| -C \right|}{\vec{n} \cdot \vec{n}} \left\| \vec{n} \right\| = \frac{\left| C \right|}{\left\| \vec{n} \right\|^{2}} \left\| \vec{n} \right\| = \frac{\left| C \right|}{\left\| \vec{n} \right\|} \\ &= \frac{\left| C \right|}{\sqrt{A^{2} + B^{2}}}. \end{aligned}$$

Geraden in der Ebene – Bedeutung der Konstanten C

Abbildung: Der Abstand d(O, g) ist gegeben durch den Ausdruck $\frac{|C|}{\|\vec{n}\|}$.

Geraden in der Ebene – Bedeutung der Konstanten C

Normierte AKG – Bedeutung der Konstanten C

- Wird eine Gerade g durch die AKG $A \cdot x_1 + B \cdot x_2 + C = 0$ beschrieben und gilt $A^2 + B^2 = 1$, so sprechen wir davon, dass eine **normierte AKG** vorliegt.
- In diesem Fall ist |C| gleich dem Abstand d(O, g) des Ursprungs von der Geraden.
- Denn aus Satz 59 folgt dann unmittelbar

$$d(O,g) = \frac{|C|}{\sqrt{A^2 + B^2}} = \frac{|C|}{1} = |C|.$$

Geraden in der Ebene – Bedeutung der Konstanten C

Normierung einer AKG

Wird eine Gerade g durch die AKG $A \cdot x_1 + B \cdot x_2 + C = 0$ beschrieben so erhalten wir eine *normierte AKG*, indem wir die gegebene AKG auf beiden Seiten mit dem Faktor $\frac{1}{\|\vec{n}\|} = \frac{1}{\sqrt{A^2 + B^2}}$ durchmultiplizieren.

Begründung: Wir betrachten die resultierende Gleichung

$$\frac{A\cdot x_1+B\cdot x_2+C}{\sqrt{A^2+B^2}}=0$$

und setzen $A' = \frac{A}{\sqrt{A^2 + B^2}}$ und $B' = \frac{B}{\sqrt{A^2 + B^2}}$. Dann gilt:

$$(A')^2 + (B')^2 = \frac{A^2 + B^2}{(\sqrt{A^2 + B^2})^2} = 1.$$

Geraden in der Ebene – Bedeutung der Konstanten C

Bemerkung:

Wurde eine gegebene AKG wie beschrieben normiert, so hat die resultierende Gleichung

$$\frac{A\cdot x_1+B\cdot x_2+C}{\sqrt{A^2+B^2}}=0$$

den konstanten Term $C' = \frac{C}{\sqrt{A^2 + B^2}}$. Natürlich gilt

$$|C'| = \left| \frac{C}{\sqrt{A^2 + B^2}} \right| = \frac{|C|}{\sqrt{A^2 + B^2}} = d(O, g).$$

