VI – Fourier et signaux

Exercice 1

- a) Calculer la transformée de Fourier des sinusoïdes $\cos \omega t$ et $\sin \omega t$ pour $\omega \in \mathbb{R}$.
- b) Résoudre, en passant par la transformée de Fourier, l'équation différentielle

$$x''(t) + \omega^2 x(t) = 0$$

et vérifier la cohérence de vos résultats.

Exercice 2

Déterminer la transformée de Fourier d'une fonction triangle...

- a) par calcul direct;
- b) en obtenant tout d'abord la transformée de sa dérivée;
- c) en l'exprimant comme la convolution de deux portes.

En déduire avec un minimum de calculs la représentation en série de Fourier d'une onde triangulaire (comparer avec l'expression donnée en cours).

Exercice 3

a) Soit $\operatorname{sg}(t)$ la fonction « signe » définie par $\operatorname{sg}(t) = \begin{cases} +1 & \text{si } t > 0, \\ 0 & \text{si } t = 0, \\ -1 & \text{si } t < 0. \end{cases}$

En considérant sa dérivée $\operatorname{sg}'(t)=2\,\delta(t),$ montrer que sa transformée est de la forme

$$\widehat{\operatorname{sg}}(f) = \frac{1}{\pi \mathrm{i} f} + A \, \delta(f)$$

et déterminer la valeur appropriée de la constante A.

b) En exprimant l'échelon d'Heaviside H(t) en fonction de sg(t), en déduire $\widehat{H}(f)$.

Exercice 4

- a) À partir de la définition de la transformée de Fourier, (ré)établir la formule pour la transformée d'une porte $\Pi_a(t)$ de largeur a>0.
- b) Expliquer comment on peut en déduire la transformée d'un sinus cardinal : $\widehat{\mathrm{sinc}}(f) = \pi \prod_{\frac{1}{\pi}}(f)$.
- c) On considère le signal temporel $x(t) = \sum_{n=-\infty}^{\infty} \operatorname{sinc}(t n\pi)$. Vérifier qu'on a $x(k\pi) = 1$ pour tout $k \in \mathbb{Z}$.
- d) Exprimer le signal x(t) de la question précédente comme la convolution d'un sinus cardinal avec un signal y(t) que vous préciserez; en déduire $\hat{x}(f)$ puis une expression simple pour x(t).

Transformation de Fourier

domaine temporel	domaine fréquentiel
$x(t) = \int_{-\infty}^{+\infty} \widehat{x}(f) e^{2\pi i f t} df$	$\widehat{x}(f) = \int_{-\infty}^{+\infty} x(t) e^{-2\pi i f t} dt$
$\lambda x_1(t) + \mu x_2(t)$	$\lambda \widehat{x_1}(f) + \mu \widehat{x_2}(f)$
x(at)	$\frac{1}{ a }\widehat{x}\bigg(\frac{f}{a}\bigg)$
x(-t)	$\widehat{x}(-f)$
$\overline{x(t)}$	$\overline{\widehat{x}(-f)}$
x(t-a)	$e^{-2\pi i a f} \widehat{x}(f)$
$e^{2\pi i at}x(t)$	$\widehat{x}(f-a)$
$\frac{\mathrm{d}x}{\mathrm{d}t}$	$2\pi \mathrm{i} f \widehat{x}(f)$
$-2\pi\mathrm{i}tx(t)$	$\frac{\mathrm{d}\widehat{x}}{\mathrm{d}f}$
$(x_1 * x_2)(t)$	$\widehat{x_1}(f)\cdot\widehat{x_2}(f)$
$x_1(t) \cdot x_2(t)$	$(\widehat{x_1} * \widehat{x_2})(f)$
$\Pi_a(t)$	$a \operatorname{sinc}(\pi a f)$
$H(t) e^{-\lambda t}, \operatorname{Re}(\lambda) > 0$	$\frac{1}{\lambda + 2\pi \mathrm{i} f}$
$\frac{1}{1+t^2}$	$\pi e^{-2\pi f }$
e^{-t^2}	$\sqrt{\pi}e^{-\pi^2f^2}$
$\delta(t)$	1
1	$\delta(f)$
$\mathrm{III}_T(t)$	$\frac{1}{T}\mathrm{III}_{\frac{1}{T}}(f)$

$$(x * y)(t) = \int_{-\infty}^{+\infty} x(u) y(t - u) du = \int_{-\infty}^{+\infty} x(t - u) y(u) du$$