STAT 453: NYC Taxi Tip Prediction

Clarity Kummer, Bruce Peng, Abigail Sikora, Angela Wei

Background

Can we predict how well people tip for yellow taxi trips in Manhattan in June of 2021?

What does the data look like?

- Taxi Info: Vendor, Rate Code ID, Store And Forward Trip
- Passenger Trip Info: Pickup Date/Time, Pickup Location, Drop-off
 Date/Time, Drop-off Location, Trip Distance, Passenger Count
- Payment Info: Payment Type, Fare Amount, Extra Cost, MTA Tax, Tolls Amount, Improvement Surcharge, Congestion Surcharge, Airport Fee, Tip Range
- Daily Average Weather: Temperature, Dew Point, Humidity,
 Wind Speed, Pressure, and Total Precipitation

Exploratory Data Analysis

Correlation Matrix Heatmap passenger_count trip_distance -RatecodeID - 0.75 store and fwd flag -PULocationID -DOLocationID -- 0.50 payment_type fare amount extra mta_tax -- 0.25 tolls amount ovement surcharge ongestion_surcharge airport_fee -- 0.00 tip_bin -J_day_in_june_2021 -PU_time_hour -PU_time_min -D_day_in_june_2021 -DO time hour -DO_time_min -- -0.50 avg_temp avg_dew_pt avg humidity avg_wind_speed -- -0.75 avg_pressure total precipitation -

extra mta_tax

tolls_amount ent_surcharge ion_surcharge airport_fee

senger_count

RatecodeID and_fwd_flag PULocationID DOLocationID payment_type fare_amount

VendorID

tip_bin

in june_2021 PU_time_hour PU_time_min in june 2021 DO_time_hour DO_time_min avg_temp 1.00

- -0.25

g_wind_speed

avg_humidity

|_precipitation

List of Models

Multilayer Perceptron Neural Network

Decision Tree Classifier/ Random Forest

Softmax

Multinomial Logistic Regression

Minibatch Cost (SGD optimizer)

Training Accuracy	58.72
Validation Accuracy	58.69
Testing Accuracy	58.77

Table 1: Optimizer: SGD

Training vs Validation Loss; SGD Optimizer

Minibatch Cost (ADAM optimizer)

Training Accuracy	80.67
Validation Accuracy	80.53
Testing Accuracy	80.49

Table 1: Optimizer: ADAM

Training vs Validation Loss; ADAM Optimizer

Decision Tree (Test $R^2 = 0.8058$)

Random Forest (Test $R^2 = 0.8056$)

Advanced Method (Receiver Operating Characteristic, ROC):

Definition: The ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. It is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings.

Multinomial Logistic Regression

Model Identifier	Solver	Penalty	Training Time	Accuracy
Model 1	Ibfgs	12	~6 mins	80.61%
Model 2	Ibfgs	None	~9 mins	80.61%
Model 3	newton-cg	None	~18 mins	80.61%
Model 4	newton-cg	12	~16 mins	80.61%
Model 5	sag	None	~85 mins	80.61%
Model 6	saga	None	~93 mins	80.61%

Multinomial Logistic Regression Confusion Matrix for Model 1

Conclusion/ Recommendations

Traditional ML works well for tabular data (NN not as much)

Apply the models to more data (i.e. for hire trip

reviews, driver ratings, etc.)

Do more models (TabPFN, TP-BERTa, etc.)

Group tips into more buckets

Thank you!