

A Multilayer-Based Framework for Online Background Subtraction

with Freely Moving Cameras

Yizhe Zhu

Ahmed Elgammal

Rutgers University, Department of Computer Science
yizhe.zhu@rutgers.edu, elgammal@cs.rutgers.edu

Motivation

 An increasing amount of videos are captured from moving platforms

- real time.Most general Background Subtraction methods are
- restricted to binary segmentation.

 Contributions
- We formulate Background Subtraction as an online multi-label segmentation problem by modeling multiple foreground objects in different layers.
- We design an processing block to handle the information in each layer separately and simultaneously.

Our Proposed Framework

- The accumulated appearance models and probability maps of each layer are fed to "processing blocks".
- With the collection of probability maps produced by each "processing block", we use Multi-label Graphcut to carry out the segmentation.
- Add the new color feature (RGB) in the current frame to update the corresponding appearance model.

Processing Block

Trajectory labeling:

- Recursive normalized cuts to get the initial labels of trajectories.
- Label propagation to infer labels in the following frames. Motion estimation:
- In each layer, Motion estimation is performed based on Gaussian Belief Propagation with motion of trajectories as the evidence.

$$P(\mathcal{M}_t^k | \mathcal{P}_t^k) \propto \prod_{(i,j) \in \varepsilon} \Psi(m_{k,t}^i, m_{k,t}^j) \prod_{i \in S_{k,t}} \Phi(m_{k,t}^i)$$

- Shift the appearance model and the prior probability from the previous one with the estimated motion model.
- Estimate Posterior map

$$P_{post}(l_t^i|I_t^i,\mathcal{P}_t) \propto P(I_t^i|l_t^i)P_{prior}(l_t^i|\mathcal{P}_t)$$
 Likelihood estimated by KDE with the appearance model
$$\frac{1}{N}\sum_{f=1}^N K_G(I_t^i-I_f^i)$$
 Prior propagated from last frame

Results Compared with State-of-the-art

Two-label Background Subtraction

Table 1: Two-label background subtraction performance comparison on the videos with different numbers of moving objects.

	MLBS	GBSSP[1]	FOF[2]	OMCBS[3]	GBS[4]	BSFMC[5]
1	84.05	80.70	59.20	54.22 71.48 57.02	47.82	31.20
2	91.14	81.51	83.19	71.48	80.30	62.75
≥ 3	74.99	65.05	66.26	57.02	55.72	45.05

Figure 1: Qualitative comparisons. Ours , GBS, OMCBS, GBSSP

Multi-label Background Subtraction

Table2: Performance comparison of Multi-foreground segmentation on Hopkins Dataset.

Precision Recall F-Score

r	Hopkins Dataset.		Precision	Recall	F-Score
	First 10 Frames	ours SLT Baseline	89.79 90.70 61.23	83.00 78.94 62.32	85.06 83.41 61.35
	All Frames	ours SLT Baseline	88.60 89.51 63.63	85.05 78.24 66.22	86.16 82.00 64.35

Figure 2: The Multilabel segmentation performance comparison with SLT[6]

