Восстановление изображения с известной функцией рассеяния точки (Non-blinding Deblurring)

Попова Елизавета Юрьевна МФТИ ФРКТ Б01-307

Модель процесса искажения

$$g(x,y) = h(x,y) * f(x,y) + n(x,y)$$
 '*'- операция свертки $g(x,y) = h(x,y) * f(x,y) = \sum_{i=-a}^{a} \sum_{j=-b}^{b} h(i,j) f(x+i,y+j)$

Переход в частотную область. Теорема о свертке.

Искажающая функция

Свертка в пространственной области аналогична умножению в частотной области

$$h(x, y) * f(x, y) <=> H(u, v) F(u, v)$$

$$G(u, v) = H(u, v) \cdot F(u, v) + N(u, v)$$

Функция Гаусса

$$G(r)=rac{1}{2\pi\sigma^2}e^{-rac{r^2}{2\sigma^2}}$$
, где $r=\sqrt{(x-x_0)^2+(y-y_0)^2}$, x_0,y_0 – центр фильтра

Винеровский метод основан на рассмотрении изображений и шума как случайных переменных, и задача ставится следующим образом: найти такую оценку f~ для неискаженного изображения f, чтобы средний квадрат отклонения этих величин друг от друга (ошибка) было минимальным. Стоит задачи минимизации величины

$$e^2 = E\{ (f - f^*)^2 \}$$

Минимум среднего квадрата отклонения достигается на функции, которая задается в частотной области выражением:

$$\widetilde{F}(u,v) = \left(rac{H^*(u,v)}{|H(u,v)|^2 + rac{S_{\eta}(u,v)}{S_f(u,v)}}
ight) G(u,v) \qquad \qquad \widetilde{F}(u,v) = rac{H^*(u,v)}{|H(u,v)|^2 + K} \cdot G(u,v)$$

Метод обратной свертки Люси-Ричардсона относится к классу нелинейных итерационных методов. Алгоритм Люси-Ричардсона основан на максимизации правдоподобия, которое может быть достигнуто при выполнении условия сходимости последовательности итераций.

$$\hat{f}_{k+1}(x,y) = \hat{f}_k(x,y) \left[h(-x,-y) * \frac{g(x,y)}{h(x,y) * \hat{f}_k(x,y)} \right]$$

Algorithm 1 Half-quadratic Splitting Algorithm

Input: Blurred image y, filter banks $\{\mathbf{f}_i^l\}_{i,l}$, positive constant parameters $\left\{\zeta_{i}^{l}, \lambda_{i}^{l}\right\}_{i,l}, \varepsilon$, number of iterations L.

Output: Estimated kernel $\widetilde{\mathbf{k}}$, feature maps $\{\widetilde{\mathbf{g}}_i\}_{i=1}^C$.

1: Initialize
$$\mathbf{k} \leftarrow \delta; \mathbf{z}_i \leftarrow 0, i = 1, \dots, C$$
.

2: for
$$l=1$$
 to L do

3: for
$$i = 1$$
 to C do

4:
$$\mathbf{y}_i^l \leftarrow \mathbf{f}_i^l * \mathbf{y}$$
,

5:
$$\mathbf{g}_{i}^{l+1} \leftarrow \mathcal{F}^{-1} \left\{ \frac{\zeta_{i}^{l} \hat{\mathbf{k}}^{l} \cdot \hat{\mathbf{y}}_{i}^{l} + \hat{\mathbf{z}}_{i}^{l}}{\zeta_{i}^{l} |\hat{\mathbf{k}}^{l}|^{2} + 1} \right\},$$

6:
$$\mathbf{z}_i^{l+1} \leftarrow \mathcal{S}_{\lambda_i^l \zeta_i^l} \left\{ \mathbf{g}_i^{l+1} \right\},$$

8:
$$\mathbf{k}^{l+\frac{1}{3}} \leftarrow \mathcal{F}^{-1} \left\{ \frac{\sum_{i=1}^{C} \widehat{\mathbf{z}_{i}^{l+1}}^{*} \circ \widehat{\mathbf{y}_{i}^{l}}}{\sum_{i=1}^{C} \left|\widehat{\mathbf{z}_{i}^{l+1}}\right|^{2} + \epsilon} \right\},$$
9:
$$\mathbf{k}^{l+\frac{2}{3}} \leftarrow \left[\mathbf{k}^{l+\frac{1}{3}}\right]_{+}, \mathbf{k}^{l+1} \leftarrow \frac{\mathbf{k}^{l+\frac{2}{3}}}{\|\mathbf{k}^{l+\frac{2}{3}}\|},$$

9:
$$\mathbf{k}^{l+\frac{2}{3}} \leftarrow \left[\mathbf{k}^{l+\frac{1}{3}}\right]_{+}, \mathbf{k}^{l+1} \leftarrow \frac{\mathbf{k}^{l+\frac{2}{3}}}{\left\|\mathbf{k}^{l+\frac{2}{3}}\right\|},$$

10: end for

$$\min_{\mathbf{k}, \mathbf{g}_{1}, \mathbf{g}_{2}} \frac{1}{2} \left(\|D_{x}\mathbf{y} - \mathbf{k} * \mathbf{g}_{1}\|_{2}^{2} + \|D_{y}\mathbf{y} - \mathbf{k} * \mathbf{g}_{2}\|_{2}^{2} \right) \\
+ \lambda_{1} \|\mathbf{g}_{1}\|_{1} + \lambda_{2} \|\mathbf{g}_{2}\|_{1} + \frac{\epsilon}{2} \|\mathbf{k}\|_{2}^{2}, \\
\text{subject to } \mathbf{1}^{T}\mathbf{k} = 1, \quad \mathbf{k} \geq 0, \\
\lim_{\mathbf{k}, \{\mathbf{g}_{i}\}_{i}} \sum_{i=1}^{C} \left(\frac{1}{2} \|\mathbf{f}_{i} * \mathbf{y} - \mathbf{k} * \mathbf{g}_{i}\|_{2}^{2} + \lambda_{i} \|\mathbf{g}_{i}\|_{1} \right) + \frac{\epsilon}{2} \|\mathbf{k}\|_{2}^{2}, \\
\text{subject to } \|\mathbf{k}\|_{1} = 1, \quad \mathbf{k} \geq 0, \qquad (2) \\
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\widetilde{\mathbf{x}} \leftarrow \underset{\mathbf{x}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \widetilde{\mathbf{k}} * \mathbf{x} \|_{2}^{2} + \sum_{i=1}^{C} \frac{\eta_{i}}{2} \|\mathbf{f}_{i} * \mathbf{x} - \widetilde{\mathbf{g}}_{i}\|_{2}^{2} \\
= \mathcal{F}^{-1} \left\{ \frac{\widehat{\widetilde{\mathbf{k}}}^{*} \odot \widehat{\mathbf{y}} + \sum_{i=1}^{C} \eta_{i} \widehat{\mathbf{f}}_{i}^{*} \odot \widehat{\mathbf{g}}_{i}}{\left|\widehat{\widetilde{\mathbf{k}}}\right|^{2} + \sum_{i=1}^{C} \eta_{i} \left|\widehat{\mathbf{f}}_{i}\right|^{2}} \right\},$$

Параметры для оценки качества изображения

PSNR (Peak signal-to-noise ratio)

$$ext{PSNR} = 20 \cdot \log_{10} \left(rac{ ext{MAX}_I}{\sqrt{ ext{MSE}}}
ight)$$

SSIM (structure similarity)

$$ext{SSIM}(x,y) = rac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$

Результаты

Восстановление изображения

Файл	Шум	PSNR (BL)	SSIM (BL)	PSNR (RE)	SSIM (RE)	d_ss	d_ps
1	0.01	16.74	0.5281	25.60	0.82	0.29	8.86
1	0.05	16.27	0.1783	24.41	0.64	0.46	8.13
1	0.1	15.13	0.0668	22.12	0.44	0.38	6.99
2	0.01	15.96	0.5232	24.88	0.80	0.28	8.92
2	0.05	15.59	0.1791	24.05	0.67	0.49	8.47
2	0.1	14.53	0.0638	22.40	0.50	0.44	7.87
3	0.01	16.28	0.5458	22.41	0.73	0.18	6.13
3	0.05	15.87	0.1881	22.11	0.68	0.49	6.25
3	0.1	14.77	0.0666	21.54	0.59	0.53	6.77
4	0.01	15.60	0.5260	25.06	0.81	0.28	9.46
4	0.05	15.23	0.1833	23.90	0.63	0.44	8.68
4	0.1	14.25	0.0651	21.80	0.44	0.37	7.55

Усиление шума при большом количестве итераций

Файл	Шум	PSNR (BL)	SSIM (BL)	PSNR (RE)	SSIM (RE)	d_ss	d_ps
1	0.01	16.74	0.5281	26.16	0.80	0.27	9.42
1	0.05	16.27	0.1783	24.22	0.59	0.41	7.95
1	0.1	15.13	0.0668	16.11	0.18	0.12	0.98
2	0.01	15.96	0.5232	25.44	0.78	0.26	9.47
2	0.05	15.59	0.1791	23.89	0.61	0.43	8.30
2	0.1	14.53	0.0638	16.88	0.22	0.16	2.35
3	0.01	16.28	0.5458	22.84	0.72	0.17	6.56
3	0.05	15.87	0.1881	22.10	0.59	0.40	6.23
3	0.1	14.77	0.0666	21.31	0.56	0.50	6.54
4	0.01	15.60	0.5260	25.43	0.78	0.26	9.83
4	0.05	15.23	0.1833	23.43	0.56	0.37	8.20
4	0.1	14.25	0.0651	16.07	0.18	0.12	1.82

Файл	Шум	PSNR(BL)	SSIM(BL)	PSNR(RE)	SSIM(RE)	d_ss	d_ps
1	0,01	16,74	0,5281	23,57	0,78	0,25	6,83
1	0,05	16,27	0,1783	23,47	0,76	0,58	7,2
1	0,1	15,13	0,0668	23,21	0,71	0,65	8,08
2	0,01	15,96	0,5232	22,97	0,75	0,22	7,01
2	0,05	15,59	0,1791	23,1	0,75	0,57	7,51
2	0,1	14,53	0,0638	22,91	0,7	0,64	8,38
3	0,01	16,28	0,5458	21,38	0,7	0,16	5,1
3	0,05	15,87	0,1881	21,3	0,69	0,5	5,44
3	0,1	14,77	0,0666	21,2	0,67	0,6	6,44
4	0,01	15,6	0,526	23,43	0,78	0,25	7,82
4	0,05	15,23	0,1833	23,32	0,76	0,57	8,09
4	0,1	14,25	0,0651	23,05	0,7	0,63	8,8

Сравнение(1)

Файл	Шум	PSNR(BL)	SSIM(BL)	PSNR (RE)	SSIM (RE)	d_ssim	d_psnr	PSN (RE)	SSIM (RE)	d_ss	d_ps	PSN (RE)	SSIM (RE)	d_ss	d_ps
1	0.01	16.74	0.5281	25.60	0.82	0.29	8.86	26.16	0.80	0.27	9.42	23,57	0,78	0,25	6,83
1	0.05	16.27	0.1783	24.41	0.64	0.46	8.13	24.22	0.59	0.41	7.95	23,47	0,76	0,58	7,2
1	0.1	15.13	0.0668	22.12	0.44	0.38	6.99	16.11	0.18	0.12	0.98	23,21	0,71	0,65	8,08
2	0.01	15.96	0.5232	24.88	0.80	0.28	8.92	25.44	0.78	0.26	9.47	22,97	0,75	0,22	7,01
2	0.05	15.59	0.1791	24.05	0.67	0.49	8.47	23.89	0.61	0.43	8.30	23,1	0,75	0,57	7,51
2	0.1	14.53	0.0638	22.40	0.50	0.44	7.87	16.88	0.22	0.16	2.35	22,91	0,7	0,64	8,38
3	0.01	16.28	0.5458	22.41	0.73	0.18	6.13	22.84	0.72	0.17	6.56	21,38	0,7	0,16	5,1
3	0.05	15.87	0.1881	22.11	0.68	0.49	6.25	22.10	0.59	0.40	6.23	21,3	0,69	0,5	5,44
3	0.1	14.77	0.0666	21.54	0.59	0.53	6.77	21.31	0.56	0.50	6.54	21,2	0,67	0,6	6,44
4	0.01	15.60	0.5260	25.06	0.81	0.28	9.46	25.43	0.78	0.26	9.83	23,43	0,78	0,25	7,82
4	0.05	15.23	0.1833	23.90	0.63	0.44	8.68	23.43	0.56	0.37	8.20	23,32	0,76	0,57	8,09
4	0.1	14.25	0.0651	21.80	0.44	0.37	7.55	16.07	0.18	0.12	1.82	23,05	0,7	0,63	8,8

Винер Ричардсон-Люси HQS frt3_noise_0.1

Винер Ричардсон-Люси HQS frt3_noise_0.05

Сравнение(2)

Файл	Шум	PSNR(BL)	SSIM(BL)	PSNR(RE)	SSIM(RE	d_ssim	d_psnr	PSN R(RE)_r	SSIM (RE)_ r	d_ss	d_ps	PSN R(RE)_h	SSIM (RE)_ h	d_ss _h	d_ps _h
1	0,01	16,81	0,5457	22,49	0,73	0,18	5,68	22,98	0,7	0,16	6,16	21,28	0,7	0,15	4,47
1	0,05	16,34	0,2034	21,84	0,56	0,36	5,5	20,89	0,39	0,19	4,55	21,21	0,68	0,47	4,87
1	0,1	15,28	0,0841	20,74	0,42	0,33	5,46	18,55	0,26	0,17	3,27	20,97	0,63	0,55	5,69
2	0,01	15,76	0,5336	21,96	0,71	0,17	6,2	22,39	0,69	0,16	6,64	20,98	0,69	0,15	5,22
2	0,05	15,38	0,197	21,48	0,58	0,39	6,11	20,9	0,43	0,23	5,52	20,89	0,66	0,47	5,52
2	0,1	14,5	0,0805	20,57	0,44	0,36	6,07	18,66	0,27	0,19	4,16	20,66	0,63	0,55	6,17
3	0,01	15,37	0,5424	20,85	0,67	0,12	5,48	21,17	0,66	0,11	5,8	20,28	0,66	0,12	4,91
3	0,05	15,03	0,2018	20,7	0,62	0,42	5,67	20,6	0,53	0,32	5,57	20,23	0,65	0,45	5,21
3	0,1	14,19	0,0817	20,24	0,54	0,46	6,05	19,2	0,38	0,3	5,01	20,05	0,63	0,55	5,86
4	0,01	14,85	0,5152	22,49	0,73	0,21	7,65	22,87	0,7	0,18	8,03	21,3	0,7	0,19	6,45
4	0,05	14,56	0,1929	21,97	0,57	0,38	7,41	21,1	0,4	0,21	6,54	21,23	0,68	0,49	6,67
4	0,1	13,83	0,0768	20,6	0,39	0,31	6,77	18,19	0,23	0,15	4,36	20,94	0,63	0,56	7,11

Винер Ричардсон-Люси HQS frt3_noise_0.01

Сравнение(3)

Файл	Шум	PSNR(BL)	SSIM(BL)	PSNR (RE)	SSIM (RE)	d_ss	d_ps	PSN (RE)_ r	SSIM (RE)_ r	d_ss _r	d_ps _r	PSN(RE)_ h	SSIM (RE)_ h	d_ss _h	d_ps _h
1	0,01	14,73	0,3706	22,79	0,62	0,25	8,06	22,73	0,61	0,24	8	21,87	0,58	0,21	7,14
1	0,05	14,44	0,1511	22,13	0,51	0,36	7,69	22,09	0,53	0,38	7,66	21,78	0,57	0,42	7,34
1	0,1	13,64	0,0588	20,69	0,37	0,31	7,06	19,53	0,3	0,24	5,89	21,48	0,52	0,46	7,85
2	0,01	13,64	0,3576	22,37	0,6	0,24	8,74	22,42	0,59	0,23	8,78	21,57	0,57	0,21	7,94
2	0,05	13,4	0,1433	21,9	0,51	0,37	8,5	21,81	0,53	0,39	8,41	21,5	0,56	0,41	8,11
2	0,1	12,76	0,0564	20,7	0,39	0,34	7,94	19,76	0,33	0,27	7	21,27	0,52	0,46	8,51
3	0,01	14,44	0,3787	21,26	0,55	0,17	6,82	21,32	0,55	0,17	6,87	20,8	0,54	0,16	6,36
3	0,05	14,16	0,1525	21,08	0,52	0,37	6,92	20,98	0,51	0,36	6,82	20,75	0,53	0,38	6,59
3	0,1	13,41	0,0576	20,49	0,45	0,4	7,08	20,01	0,41	0,35	6,6	20,57	0,51	0,45	7,16
4	0,01	13,6	0,3564	22,76	0,62	0,26	9,16	22,81	0,61	0,26	9,21	21,7	0,57	0,22	8,1
4	0,05	13,37	0,1435	22,08	0,5	0,36	8,71	22,04	0,52	0,37	8,67	21,64	0,56	0,42	8,27
4	0,1	12,74	0,0546	20,53	0,36	0,3	7,79	19,35	0,29	0,24	6,61	21,45	0,54	0,48	8,72

Винер Ричардсон-Люси HQS frt4_noise_0.1

Сравнение(4)

Файл	Шум	PSNR(BL)	SSIM(BL	PSNR(RE)	SSIM(RE)	d_ss	d_ps	PSN R(RE)_r	SSIM (RE)_ r	d_ss _r	d_ps _r	PSN R(RE)_h	SSIM (RE)_ h	d_ss _h	d_ps _h
1	0,01	10,11	0,2818	10,69	0,21	-0,07	0,59	10,73	0,22	-0,06	0,63	10,38	0,28	0,001 8	0,27
1	0,05	10,01	0,1142	10,66	0,21	0,09	0,64	10,68	0,21	0,09	0,66	10,36	0,28	0,17	0,35
1	0,1	9,79	0,0522	10,52	0,18	0,13	0,73	10,5	0,17	0,12	0,72	10,3	0,29	0,24	0,52
2	0,01	10	0,2981	10,6	0,22	-0,08	0,6	10,73	0,22	-0,08	0,73	10,26	0,33	0,03	0,26
2	0,05	9,91	0,1058	10,56	0,21	0,11	0,66	10,55	0,19	0,08	0,64	10,25	0,33	0,22	0,34
2	0,1	9,7	0,0426	10,44	0,2	0,15	0,75	10,15	0,13	0,09	0,45	10,2	0,32	0,28	0,5
3	0,01	10,05	0,3265	10,23	0,34	0,02	0,18	10,29	0,31	-0,01	0,24	10,14	0,35	0,03	0,1
3	0,05	9,95	0,1093	10,22	0,32	0,21	0,26	10,24	0,26	0,15	0,29	10,14	0,35	0,24	0,18
3	0,1	9,73	0,044	10,16	0,28	0,24	0,43	10,1	0,19	0,15	0,37	10,1	0,34	0,3	0,37
4	0,01	10,11	0,2797	10,6	0,21	-0,07	0,49	10,71	0,22	-0,06	0,61	10,34	0,27	-0,01	0,23
4	0,05	10,02	0,1137	10,56	0,2	0,09	0,54	10,57	0,18	0,07	0,55	10,33	0,27	0,16	0,31
4	0,1	9,8	0,0537	10,43	0,17	0,12	0,62	10,23	0,13	0,08	0,43	10,27	0,28	0,23	0,47

Спасибо за внимание

Попова Елизавета Юрьевна Б01-307 МФТИ ФРКТ