P05,505

1090797

DEC-2 1980

ARSTRACT OF THE DISCLOSURE

A group of 7,8-dihydromy-2,3,4,5-totrohydro-18-3bansospisso with otrustures containing a thionyl or furyl ring
ot position 1 which here depositoring activity. Partirular operior
of this group include 7,8-dihydromy-1-(3'-extbyl-2'-thionyl)2,3,4,5-totrohydro-18-3-bansospins and its disarbyl other derivative,
7,8-dihydromy-1-(2'-thionyl)-2,3,4,5-totrohydro-18-3-bansospins and
its disarbyl other or well on 7,8-dihydromy-1-(3'-thionyl)-2,3,4,5totrohydro-18-3-bansospins ond its disarbyl other and 7,8-dimethony3-mathyl-1-(3'-exthyl-2'-thionyl)-3,3,4,3-totrohydro-18-3-bansospins-line-3-bansospins-li

This invention comprises a new group of compounds which have structures characterized by being 1-thienyl and 1-furyl-2,3,4,5-tetrahydro-IE-3-benzazepines having two hydroxy substituents in the benz-ring of the benzazepine nucleus. These new compounds have utility as medicinally active compounds especially as cardiovascular agents due to their peripheral dopaminergic activity. They also demonstrate activity in animal tests which are known to predict anti-Parkinsonism activity by means of activity at the central dopamine receptors.

Generally speaking therefore they may have both peripheral or central dopaminergic activity.

The structures of the compounds of this invention are specifically identified by having a thienyl or furyl hetero ring at the 1-position of the 2,3,4,5-tetrahydro-1H-3-benzazepine system. Exemplary of this new group of compounds are those represented by the following structural formulas:

in which:

1

10

15

20

25

R is hydrogen, phenethyl, benzyl, lower alkanoyl of from 1-5 carbons such as formyl, acetyl or trifluoroacetyl, lower alkyl of 1-5 carbon atoms, hydroxyethyl or lower alkenyl of 3-5 carbon atoms;

 \mathbf{R}_1 is hydrogen, halo, trifluoromethyl, lower alkylthio such as methylthio or ethylthio, trifluoromethylthio, methyl or methoxy;

 \mathbf{R}_2 and \mathbf{R}_3 are each hydrogen, lower alkyl of 1-5 carbon atoms, lower alkanoyl of 2-5 carbon atoms or, when taken together, methylene or ethylene;

 B_{Δ} is hydrogen, halo such as F, Cl or Br, cyanomethyl, carbomethoxy or methyl and

X is -0- or -S- .

In the above structural formulas those skilled in the art will recognize that the hetero ring is attached at its 2' (a) or 3' (5) position. The substituents on the two hetero rings are merely limited by the constraints of furan or thiophena chemistry but are of course C-attached.

The thienyl containing congeners are preferred. The furyl congeners may be less active and more toxic than their thienyl counterparts.

15

10

A subgeneric group of compounds within the above illustrative generic group are those of Formula I in which:

The compounds of this invention may also have a fourth benz

R is hydrogen or methyl;

R1 is hydrogen or chloro;

R₂ and R₃ are the same and are hydrogen, methyl or acetyl:

0

R, is hydrogen or methyl; and

X is -S- .

substituent such as at the 9 position but these have not yet been aboun to have any particular advantage from the viewpoint of their biological utility. The compounds in which R₂ and R₃ are higher alkyl or alkanoyl groups or form an alkylene chain such as the methylenedicary-containing compounds at the 7.8-positions as well as the N-benzyl, phenethyl or

alkanoyl containing congeners are of primary interest as intermediates. Methylenedioxy-3-benzazepines in another series are reported in U.S.

Patent 3,795,683.

5

10

15

acid.

The pharmaceutically acceptable acid addition salts having the utility of the free bases of formula I, prepared by methods well known to the art, are formed with both inorganic or organic acids, for example: maleic, fumaric, benzoic, ascorbic, pamoic, succinic, bismethylene-salicylic, methanesulfonic, ethanedisulfonic, acetic. oxalic, propionic, tartaric, salicylic, citric, gluconic, aspartic, stearic, palmitic, itaconic, glycolic, p-aminobenzoic, glutamic. benzenesulfonic, hydrochloric, hydrobromic, sulfuric, cyclohexylsulfamic, phosphoric and nitric acids. Similarly the quarternary salts inculde those prepared from organic halides such as methyl iodide, ethyl iodide or benzyl chloride, methyl tosylate or mesylate which read at the basic 3-center or at a reactive thio center. While the 1-furylbenzazepines form salts readily with strong mineral acids such as sulfuric or bydrochloric acid, such salts are less stable and hard to purify. Therefore the furyl containing compounds are best used either as the base or as a salt with an organic or weak inorganic

20

Certain 1-phenyl-2,3,4,5-tetrahydro-IH-3-benzazepines have been described in U.S. Patent 3,393,192; British Fatent Specification 1,118,688; and Swiss Fatent 555,831, including general methods of preparation. However these references disclose no 1-heterosubstituted compounds.

25

4

It will be obvious to one skilled in the art that the compounds of Formula I may be present as diastereoisomers which may be resolved into d or l optical isomers. Resolution of the optical isomers may be conveniently accomplished by fractional crystallization of the salts of the base form or of solid derivatives thereof with optically active acids from appropriate solvents. Unless otherwise specified herein or in the claims, it is intended to include all isomers, whether separated or mixtures thereof. Where isomers are separated, the desired pharmacological activity will usually predominate in one of the isomers,

most often in the d-isomer.

5

10

BOOK TO SEE STATE OF THE PARTY OF THE PARTY

The compounds of Formula I in which R is hydrogen are generally prepared from intermediates of the following formula:

in which R is hydrogen, lower alkyl, benzyl or lower alkmyl; R₁ and X are as defined above; R₂ and R₃ are lower alkyl or together are lower alkylene; and R₄ is bydrogen or a chemically inert substituent of the group described above, by means of an intramolecular cyclization effected by reaction with a reagent such as sulfuric acid alone or mixed with suitable solvents such as trifluoroacetic acid, polyphosphoric acid or a similar dehydrating agent.

Mixed alkowy substituted compounds are prepared by selecting the proper heteroarylethylamine starting material.

The cyclization is best run to form the methylenedioxy or dimethoxy ethers, then these ether groups are optionally taken off using a mild splitting agent such as boron trichloride for the methylenedioxy or tribromide for the dimethoxy ether.

The heteroarylethylamines (IV) which are used as starting materials for this method are either known or are prepared by methods similar to those disclosed in the illustrative examples. The 6-substituted compounds are alternatively prepared by oxidizing a 7,8-dihydroxy-1-(furyl or thienyl)-2,3,4,5-tetrahydro-Hi-3-benzazepine with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone or similar hydroquinone-oxidizing agent to form the 7,8-dione. This is then reacted with a quinone additive agent, a neucleophic reagent, such as methyl mercaptan, trifluoromathyl mercaptan, hydrogen chloride or hydrogen bromide (in the case where no acid sensitive centers are present) in methanol at about room temperature to give the desired

6-substituted compound.

The 6-brown containing compound may optionally serve as an intermediate in a number of ways such as for preparing the 6-chloro or 6-iodo congeners or the 6-lithium intermediates. The latter lithium compounds can be reacted with a number of other conventional reactants to introduce 6-substituents such as with iodine or hexachloroethane to introduce iodo or chloro.

To prepare the compounds of Formula I where R is bydroxyethyl, lower alkyl or lower alkenyl, the corresponding benzarepines wherein R is bydrogen are alkylated by standard methods with ethylene oxide, a reactive lower alkyl halide such as the bronide or chloride or a reactive alkenyl halide such as an allyl bronide or chloride. Advantageously, to obtain the products where R2 amd/or R3 are hydrogen the reaction with the alkylating agent is carried out on the corresponding methoxy substituted benzarepines in am inert solvent such as methanol or acetone, preferably at reflux temperature and in the presence of a basic condensing agent such as potassium hydroxide or carbonate. Treatment of the resulting product with, for example boron tribronide or other ether splitting agents gives the active hydroxy substituted benzarepines. If a reactive center such as a methylthio group is present the sulfortim quarternary salt is prepared. This may be optionally converted back to the methylthio

25

10

15

by heating in hrine, 1N hydrohromic acid or another source of halide ions. The 3-methyl congeners are an important part of this invention.

The compounds of Pormula I where R is methyl are conveniently prepared from 7,8-dimethoxy substituted benzazepines wherein R is hydrogen by reaction with formic acid/formaldehyde. Treatment of the resulting product with boron tribromide gives the corresponding 7,8-dihydroxy substituted benzazepines. Another method for preparing the important N-methyl compounds is converting the 3-hydrogen compound into the N-formyl congener then reducing with lithium aluminum hydride, a two step reaction sequence.

The dialkanoyloxy derivatives such as the important 7,8-diacetoxy compounds can also be prepared by direct 0-acylation of the dihydroxy compound having the N-position blocked by protonation such as using the 6-halo-7,8-dihydroxy-1-pheny1-2,3,4,5-tetrahydro-18-3-benzazepine hydrobromide in trifluoroacetic acid at ambient temperature with the anhydride or halide. The N or 3-lower alkanoyl congeners in the dihydroxy series are prepared conveniently by N-acylating the methoxy or methylenedioxy derivative followed by splitting the protective group with boron tribromide or chloride. Also direct N-alkanoylation of the dihydroxy compounds is possible under controlled conditions and quantities of reactants as known to the art. As noted in the illustrative examples any undesired 0-acylation may necessitate a mild bydrolysis treatment.

The intermediates of Formula III above are conveniently prepared by heating equimolar amounts of an epoxyethylthiophene or furan with a 3,4-dialkoxyphenethylamine which is either known or prepared by methods known to the art, each appropriately substituted, either alone or in an inert organic solvent such as tetrahydrofuran. Preferably the heating is effected on a steam bath or at reflux temperature for from 12 to 24 hours. The required ethylene oxide is

COMPANY OF THE SECOND COMPANY CONTRACTOR OF THE SECOND CONTRACTOR OF TH

10

15

20

conveniently prepared by reaction of the hetero aldebyde with sodium hydride/trimethylsulfonium iodide.

The compounds of this invention can also be conveniently prepared by a process we believe is unique in the benzazepine series as illustrated by the following:

10

15

5

The 1-hydroxy-2,3,4,5-tetrahydro-IH-3-benzarepines of Formula IV are reacted with compounds (V) in which R-R₄ and X are as defined above. As one skilled in the art will recognize certain compounds such as thiopheme will react at the position adjacent to the hetero ring member unless that position is occupied. For example the method works nicely to prepare 2'-thienyl compounds. The reaction can also be run to obtain mixtures of mono and poly substituted products which can be separated by methods known to the art. If one or both the a-positions on the heterocycle are occupied, reaction proceeds either in the remaining a or on to the 8-position.

0

The reaction can also be run using IV and in place of a heterocyclic V using benzene having activating groups such as phenol or anisole to produce substituted 1-phenylbenzazepines. R-R₆ are as defined above but for convenience the reaction is usually run on the 1-hydroxybenzazepines in the form of the diether (for example, R₂, R₃ = methyl or, together, methylene) with or without the N or 3-position protected such as N-protective groups known to the art, for example benzyl or carbobenzoxy to prepare the 3-hydrogen compounds.

The reaction is run at ambient temperature such as at

room temperature for convenient periods of time such as from 1-24 hours. Overnight at room temperature is a convenient laboratory time period. The solvent may be any inert organic solvent or an excess of an organic acid solvent in which the reactants are soluble for example trifluoroacetic acid, methylene chloride, trichloroethylene, chloroform or carbon tetrachloride. Also at least one equivalent of acid catalyst must be present such as trifluoroacetic acid, sulfuric acid, boron trifluoroachereate, etc. Certain 1-bydroxy or alkoxy benzazepines are known to the art such as G. Bazebroucq, Compt. Rend. 257, 923 (1963) [C.A. 59, 12759] or J. Likforman, Compt. Rend. 268, 2340 (1969) [C.A. 71, 61184]. However, the specific 1-bydroxy-7,8-dibydroxy-benzazepine starting materials

used here are new and are prepared by methods disclosed in the

examples.

The active dopaminergic compounds of this investion used herein stimulate peripheral dopamine receptors, for example they increase remal blood flow and have as an end result hypotensive activity. This remal vasodilator activity of the benzazepine compounds of Formula I is measured in an anesthetized dog. In this pharma-cological procedure, a test compound is administered at progressively increasing (3-fold) infusion rates beginning at 0.1 meg/kg/min up to 810 meg/kg/min for 5 minutes each to anesthetized normotensive dogs and the following parameters are measured: remal artery blood flow, iliac artery blood flow, arterial blood pressure and heart rate. Results are reported as a percent change, increase or decrease, at time of peak response (from pre-drug controls), and for a significant effect remal blood flow (increase) and remal vascular resistance (decrease) should be approximately 10% or greater. The effect on remal vascular resistance can be calculated from any change in remal blood

flow and arterial blood pressure. To confirm the mechanism of action, representative active renal vasodilator compounds are checked for blockade by bulbocapnine which is known to be a specific blocker of renal dopamine receptors. Representative of compounds of Formula I for example: 7,8-dihydroxy-1-(2'-thieny1)-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide tested by i.v. infusion as described above produced a decrease of renal vascular resistance of 30% at 30 mcg/kg; 7,8-dimethoxy-1-(5'-methyl-2'-thienyl)-2,3,4,5-tetrahydro-1H-3-benzazepine bydrochloride had an ED, of 2.3 mcg/kg; 7,8-dihydroxy-1-(3'-. 10 thieny1)-2,3,4,5-tetrahydro-1E-3-benzazepine hydrobromide had an ED, of 40; the 5-methyl-2-thienyl, 50. ED, therefore is the cumulative dose by infusion which produces a 15% decrease in renal vascular resistance (R = B.F. in mm/hg).

15

20

5

In addition to the renal vasodilator activity via a dopaminergic effect, certain benzazepine compounds of Formula I have demonstrated weak diwretic activity. Such dinretic activity is measured in the standard saline-loaded rat procedure. A test compound is administered i.p. at doses of from 10 to 40 mg/kg and the parameters measured are urine volume (hourly for three hours) plus sodium and potassium ion concentrations. Also conventional diuretic tests in the dog may be used. 7,8-Dihydroxy-1-(2-thieny1)-2,3,4,5-tetrahydro-1E-3-benzazepine hydrobromide tested in the phosphate mannitol dog produced a significant increase in renal plasma flow and natriuresis at a dose as low as IO and 20 µg/kg/min i.v. Similar results were obtained at oral doses of 20 mg/kg.

25

The benzazepine compounds of Formula I also have some antiparkinsonism activity due to central dopaminergic activity as demonstrated by employing a modified standard animal pharmacological test procedure reported by Ungerstedt et al., in Brain Research 24, 1970,

30 -

1 485-493. This procedure is based on a drug induced rotation of rats having extensive unilateral lesions of the substantia nigra. Briefly, the test comprises the quantitative recording of rotational behavior in rats in which 6-hydroxydopamine lesions of 5 the nigrostriatal dopamine system have been produced. A unilateral brain lesion in the left substantia nigra causes the dopamine receptor in the left caudate to become hypersensitive following the resulting degeneration of the nigral cell bodies. These lesions destroy the source of the neurotransmitter dopamine in the caudate 10 but leave the caudate cell bodies and their dopamine receptors intact. Activation of these receptors by drugs which produce contralateral rotation, with respect to the lesioned side of the brain, is used as a measure of central dopaminergic activity of the drug.

Compounds which are known to be clinically effective in controlling parkinsonism, such as, for example, L-dopa and apomorphine, are also effective in the rate turning model. These compounds directly activate the dopamine receptors and cause contralateral rotation of the lesioned rat.

Rotational activity is defined as the ability of a compound to produce 500 contralateral rotations during a two-hour period after administration, usually intraperitoneally. The dose corresponding to 500 contralateral rotations per two hours is obtained and assigned as the RD 500 value.

Once again representative compounds of Formula I, 7,8-dihydroxy1-(2'-thienyl)-2,3,4,5-tetrahydro-IH-3-benzazepine hydrobromide, the
3-thienyl and the 5'-methyl-3'-thienyl congeners when tested as described
above in rats produced activity, i.p. at 5.5 (ED₅₀₀), 5 (active) and
1.5 (ED₅₀₀) mg/kg respectively. Further the compounds have a low
potential for inducing emesis or sterotyped behavior at doses which are
effective in the rat turning model.

15

20

10

15

__

÷

T. W. C. W. C. S.

. Ž25

30

The pharmaceutical compositions of this invention having dopaminergic activity are prepared in conventional dosage unit forms by incorporating a compound of Formula I, an isomer or a pharmaceutically acceptable addition of salt thereof, with a nontoxic pharmaceutical carrier according to accepted procedures in a nontoxic amount sufficient to produce the desired pharmacodynamic activity in a subject, animal or human. Preferably the compositions will contain the active ingredient in an active but nontoxic amount selected from about 25 mg to about 500 mg of active ingredient per dosage unit but this quantity depends on the specific biological activity desired and the conditions of patient. Generally speaking lower doses are needed to stimulate central dopamine receptors than peripheral receptors. The dosage units are given from 1-5 times daily.

The pharmaceutical carrier employed may be, for example, either a solid or liquid. Exemplary of solid carriers are lactose, terra alba, sucrose, talc, gelatin, agar, pectin, acacia, magnesium stearate, stearic acid, and the like. Exemplary of liquid carriers are syrup, peanut oil, olive oil, water and the like. Similarly the carrier or diluent may include any time delay material well known to the art, such as glyceryl monostearate or glyceryl distearate alone or with a wax.

A wide variety of pharmaceutical forms can be employed. Thus, if a solid carrier for oral administration is used the preparation can be tableted, placed in a hard gelatin capsule in powder or pellet form, or in the form of a troche or loxenge. The amount of solid carrier will vary widely but preferably will be from about 25 mg to about 1 g. If a liquid carrier is used, the preparation will be in the form of a syrup, emulsion, soft gelatin capsule, sterile injectable liquid such as an ampul, or an aqueous or nonaqueous liquid suprematon.

5

10

15

20

25

Service Services

The pharmaceutical preparations are made following the conventional techniques of the pharmaceutical chemist involving mixing, granulating and compressing when necessary, or variously mixing and dissolving the ingredients as appropriate to give the desired end product.

The method of producing dopaminergic activity in accordance with this invention comprises administering internally to a subject in need of such activity a compound of Formula I or a pharmaceutically acceptable acid addition salt thereof, usually combined with a pharmaceutical carrier, in a nontoxic amount sufficient to produce said activity as described above. The route of administration may be any route which effectively transports the active compound to the . dopamine receptors which are to be stimulated such as orally or parenterally, the oral route being preferred. Advantageously, equal doses will be administered several times such as two or three times a day with the daily dosage regimen being selected from about 50 mg to about 2 g. When the method described above is carried our hypotensive, diuretic or antiparkinsonism activity is produced with a minimum of side effects.

The following examples are designed solely to illustrate the preparation and use of the compounds of this invention. The Temperatures are Centigrade. Other variations of these examples will be obvious to those skilled in the art.

EXAMPLE 1

4.84 Grams of sodium hydride (57% of mineral oil dispersion), after being washed with hexane to remove the oil, was stirred in 70 ml of dry dimethylsulfoxide and heated to 65-68° under argon for 1 hour. At this point a greenish clear solution resulted. The heating source was removed and 75 ml of dried tetrahydrofuran was then added. The resulting solution was cooled to 5° by means of a methanol-ice bath,

and 19 g (93 mmoles) of trimethylsulfonium iodide in 100 ml dry dimethylsulfoxide was added in about 5 minutes. The reaction mixture was stirred for another 5 minutes after complete addition.

A solution of 10.4 grams (93 mmoles) of 2-thiophenecarboxaldehyde in 120 ml of tetrahydrofurem was added to a moderate rate while keeping the reaction mixture at 0° to -5°. The mixture was stirred for another 5 minutes after complete addition and at room temperature for 1 hour, the mixture was diluted with 500 ml of ice water and extracted four times with ether. The combined extracts were washed with saturated brine solution and dried. Removal of the drying agent and solvent gave 10.1 of crude 2-epoxyethylthiophene (yellowish liquid), which was distilled under vacuum to give 8.1 g (69%) of light yellow liquid (b.p. 0.15 mm, 43-5°).

A mixture of 11.6 g (64 mmoles) of homoveratrylamine and 8.1 g (64 mmoles) of 2-epoxyethylthiophene was heated with stirring and under argon at 100° overnight. The reaction mixture was cooled to room temperature and was chromatographed in a silica column (700 g) and aluted with benzene-ethyl acetate gradient. The desired product and its isomer were thus separated. After recrystallization from ethyl acetate/hexane, 3.6 g (18.4%) of pure N-(8-hydroxy-8-2-thienyl) ethyl homoveratrylamine was obtained (m.p. 102°).

C16H21NO3S

Calculated: 62.51% C; 6.89% H; 4.56% N Found: 62.36% C; 6.69 H; 4.51% N

3.6 Grams (11.8 mmoles) of N-(8-hydroxy-8-2-thienyl)ethylhomoveratrylamine was dissolved in a mixture of 36 ml of acetic
acid and 18 ml of conc. hydrochloric acid. The resulting solution
was heated at reflux for 3 hours. The reaction mixture was evaporated
under reduced pressure to a brown residue which was then suspended in
5% sodium carbonate solution and thoroughly extracted with ethyl acetate.

10

15

20

The extracts were combined, washed once with saturated brine, and dried. Removal of the drying agent and solvent gave 3.3 g of a thick oily residus (96% yield); 1-(2'-thienyl)-7,8-dimethoxy-2,3,4,5-tetrahydro-18-3-benzazopine.

The procedure outlined above is the basic method for preparing the compounds of this invention. Others may be prepared by substituting equivalent amounts of the appropriate heterocyclic carboxaldehyde or ethylepoxide for the 2'-thienyl reactants in the reactions detailed.

This compound is also prepared by treatment of 8.9 g (40 mmoles) of 1-hydroxy-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzasepine with 5 ml of thiophene in 45 ml of trifluoroacetic acid under argon at room temperature overnight. After stripping off the volatiles, the residue was dissolved in 250 ml 3M hydrochloric acid. This acidic solution was thoroughly washed with ether, basified with conc. mmonium, extracted 3 times with ethyl acetate. The extracts were combined, washed once with saturated brine and dried anhydrous potassium carbonate. Removal of drying agent and solvent gave 9.2 of the desired base as an oily residue (81%).

A sample of this oily residue was dissolved in ethyl ether and ethereal hydrogen browlds was added. An off-white precipitate was obtained. This was recrystallized from methanol-ethyl acetate to sive the pure hydrobromide (m.p. 215*).

C16H19SO2S-HBr

Calculated: 51.90% C, 5.44% H, 3.78% N

Found: 52.10% C; 5.58% H; 3.65% N

10

15

20

EXAMPLE 2

3.5 Grams (12 mmoles) of 1-(2'-thieny1)-7.8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepine dissolved in 60 ml of methylene chloride was cooled to -12° by means of a methanol-ice bath, and 6 ml (62 mmoles) boron tribromide was added dropwise. The resulting solution was stirred at room temperature for 1.5 hours and was then evaporated to a brown residue under reduced pressure. The residue was cooled in ice and treated slowly with methanol. The methanol was evaporated at room temperature under reduced pressure. The residue was treated with methanol again and stripped under reduced pressure in a 50° hot-water bath. This treatment was repeated 3 times. The final residue was either chromatographed on a silicacolumn eluted with 9:1 chloroform/methanol or dissolved in water. any undissolved material filtered off and the aqueous filtrate lyophilized to give pure 1-(2'-thienyl)-7,8-dihydroxy-2,3,4,5tetrahydro-3-1E-benzazepine hydrobromide salt. m.p. 239-40° (dec). ca. 70% vield.

C14H15NO2S.HBr

Calculated: 49.13% C; 4.71% H; 4.09% N; 9.37% S

Found: 48.91% C; 4.59% H; 4.10% N; 9.10% S

The free base is obtained by dissolving the salt in a minimum amount of water and slowly adding 5% sodium bicarbonate solution until the base separates.

EXAMPLE 3

3-Thiophenecarbonaldehyde was prepared by following a literature procedure (Org. Syn. Coll. Vol. IV pp. 918-9) from 3-thenyl bromide which in turn was prepared also by following a literature procedure (Org. Syn. Coll. Vol. IV, pp 921-3) from 3-methylthiophene.

25

5

10

11.7 Grams (0.28 mole) of sodium hydride (57% of mineral oil dispersion having been washed with hexame to remove the oil) was stirred in dry dimethylsulfoxide (196 ml) at 60-65° for 2 hours under argon. The mixture was diluted with dry tetrahydrofuran (196 ml), cooled to -5° and trimethylsulfonium iodide (57.12 g, 0.28 moles) in 196 ml of dry dimethylsulfoxide was added at such a rate that the temperature of the reaction mixture did not exceed 0°. After stirring for another minute after complete addition, 3-thiophenecarboxaldehyde (13.4 g. 0.12 moles) in 84 ml of tetrahydrofuran was added. The methanol/ice bath was removed and the reaction mixture was allowed to warm to room temperature for 1.5 hours, then diluted with 1.1 of ice water and extracted throughly with ether. The extracts were combined, washed with saturated sodium chloride solution and dried with anhydrous sodium sulfate. Removal of the drying agent and solvent gave 16.5 g crude 3-epoxyethylthiophene. Since spectral data (ir, nmr) were satisfactory the epoxide was used without further purification.

20

10

A mixture of 39.8 g (0.22 moles) of homoveratrylamine and 24.8 g (0.195 moles) of 3-epoxyethylthiophene was heated with stirring at 100° overnight. The reaction mixture was cooled to room temperature and stirred with 5% ethyl acetate in petrolaum ether. The solution was decanted and the crystals were washed twice more with the same solvent mixture to give N-(8-hydroxy-8-3'-thienyl) ethylhomoveratrylamine. After recrystallization from ethyl acetate, 21.5 g of pure product was obtained, m.p. 113-4° (36% yield).

25

C₁₆H₂₁NO₃S

Calculated: 62.51Z C; 6.89Z H; 4.56Z N

Found: 61.87Z C; 6.92Z H; 4.65Z N

9.2 Grams (30 mmoles) N-(8-hydroxy-8-3-thienyl)-

5

375

ethylhomoveratrylamine was dissolved in 92 ml of acetic acid and 46 ml of conc. hydrochloric acid. The mixture was heated at reflux

tetrahydro-1H-3-benzazepine.

for 3 hours, stripped under reduced pressure to a brown residue, which was then treated with 5% carbonate solution and thoroughly extracted with ethyl acetate. The organic extracts were combined and washed twice with brine and dried over anhydrous sodium sulfate. Removal of drying agent and solvent gave 8.7 g of thick oily residue (99% yield), 1-(3'-thienyl)-7,8-dimethoxy-2,3,4,5-

A sample of this free base was dissolved in methanol and ethereal hydrogen chloride was added until acidic. This acidic, solution was evaporated to dryness. Recrystallization of the residue from methanol-ethyl acetate gave the pure hydrochloride salt (m.p. 178°).

5.25 Grams (18 mmoles) of 1-(3'-thienyl)-7.8-dimethoxy-2.3.4.5-tetrahydro-3-lH-benzazepine dissolved in 90 ml of methylene

20

chloride was cooled to -12° by means of a methanol/ice bath and 9 ml of boron tribromide (93 mmoles) was added dropwise. The resulting solution was allowed to warm to room temperature for 1.5 hours. The solvent was stripped off to give a brown residue which was chilled and carefully treated with methanol. The methanol was evaporated under reduced pressure and the resulting residue was again treated with methanol and stripped at 50°. This process was repeated 3 times and 4.2 g of crude 1-(3'-thieny1)-7, 8-dihydroxy-2,3,4,5-tetrahydro-3-lH-benzazepine hydrobromide was obtained. This was further purified by chromatography over silica. eluted with 9:1 chloroform:methanol, and dissolved in water.

25

30

charcoaled, and filtered. Lyophilization of the filtrate gave 2.8 g

of buff colored amorphous powder (m.p. 254-6° dec.).

C, H, NO, S'HBT 1/4H,0

Calculated:

recrystallized from ethanol (m.p. 204-6°).

acetaldebyde dimethyl acetal.

46.10% C; 5.11% H; 3.84% N; 8.73% S

Found:

45.84% C: 4.89% H; 3.68% N; 8.39% S

EXAMPLE 4 To 181 g (1 mole) of homoveratrylamine in 1 1. of ethanol

5

was added 117 g (1.1 mole) of benzaldehyde. The mixture was stirred at room temperature for 15 minutes. A solution of 100 g of potassium borohydride in 500 ml cold water was then slowly added while the solution was kept at near room temperature by external cooling. After complete addition of the hydride solution, the reaction mixture was

10

stirred for 5 hours and then chilled and acidified with 6N hydrochloric acid. Further chilling to 0° precipitated the N-benzyl homoveratrylamine hydrochloride salt which was collected by filtration. The crude product

15

20

44 Grams (0.143 moles) of the N-benzylhomoveratrylamine hydrochloride salt was suspended in 440 ml of dry dimethylformamide. To this were added 100 g (0.725 moles) of powdered anhydrous potassium carbonate and 29 g (0.17 mole) of bromoacetaldehyde dimethyl acetal. The reaction mixture was heated at reflux with stirring for 20-24 hours under argon. The salts were then removed by filtration, and the filtrate was evaporated under reduced pressure to yield a dark brown oil. This was dissolved in a water-ethyl acetate mixture and the layers were separated. The water layer was thoroughly extracted with ethyl acetate. The combined organic layers were back washed once with brine solution, dried, and the solvent evaporated to give 46 g of crude product (brown syrup 90% yield). Chromatography gave a 64% yield of pure N-benzyl-N-(β-3,4-dimethoxyphenyl)ethylamino-

25

5

The dimethyl acetal (24 g) was dissolved in 240 al of cone. ECL: BOAc: E_O (3:2:1 ratio) and allowed to stand overnight at room temperature. It was then poured into 1 l. ice-water, basified to pE = 8 by addition of cone. ammonia, and extracted with ethyl acetate. The extracts were combined, back washed once with saturated brine and dried over anhydrous sodium sulfate. Removal of the drying agent and solvent gave 19.5 g of crude product (92% yield).

10

15

Chromatography over a cilica column gave pure N-benzyl-1-hydroxy-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepine in a 512 yield. The cily product could be crystallized from athyl acetate-hexane.

20

The "dimethylacetal" reaction described in detail above is another general method which may be used to prepare various 1-hydroxybenzazepine intermediates of this invention using as starting materials various substituted N-lover alkyl or phenalkylhomoveratry-lamines especially the N-methyl, N-benzyl or N-phenethylhomoveratry-lamines. The reaction apparently does not go on the N-H amines. The R-benzyl compounds are of most general use because the protective benzyl group can be readily removed as described hereafter.

25

1.1 Grams of the pure N-benzyl-1-bydroxyl benzazepine was dissolved in 50 ml methanol and 220 mg 10% palladium on charcoal wetted with butanol was added. The solution was shaken for 4 bours under hydrogen at 40 psi. The catalyst was removed by filtration and the filtrate was evaporated under reduced pressure to give a slightly yellow syrup which was crystallized from ethyl acetate. Recrystallization from acetonitrile (m.p. 153-4°) gave pure 1-bydroxy-7,8-dimethoxy-2,3,4,5-tetrabydro-18-3-benzazepine a key new intermediate.

30 -

2,3,4,5-tetrahydro-IR-3-benzazepine and 2.5 nl of 2-methyl-thiophene were dissolved in 45 nl trifluoroacetic acid. The reaction mixture was allowed to stand at room temperature overnight, then evaporated under reduced pressure to an oily residue which was dissolved in 250 nl of 3N hydrochloric acid. The acidic solution was thoroughly washed with ether, then basified with conc. ammonia, and finally extracted with ethyl acetate. The organic extracts were combined, washed with saturated brine, and dried over anhydrous sodium sulfate. Romoval of drying agent and solvent gave 10.1 g. of 1-(5'-methyl-2'-chienyl)-7,8-dimathoxy-2,3,4,5-tetrahydro-IR-3-benzazepine as an

oil-(83.3%); m.p. (HCl) 227-228°. In the same way 1-(2'-thienyl)-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepine, and 1-(2'-furyl)-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepine; are made using thiophene, 2-bromothiophene and furan.

10

15 EXAMPLE 5

20

4.6 Grams (15 mmoles) of 1-(5'-methyl-2'-thiemyl)7,8-dimethoxy-2,3,4,5-tetrahydro-3-IH-benzarepine was dissolved in
45 ml mathylene chloride under argon; the solution was cooled to
-12° by a methanol-ice bath, and 78 ml of boron tribrowide in
methylene chloride (1 g/5 ml) was slowly added. The dark brown
solution which resulted was allowed to warm to room temperature
for one hour, and evaporated under reduced pressure to a brown
residue. This was chilled to 0°, methanol was slowly added and
then evaporated. This was repeated 5 times and the resulting dark
brown gun was dissolved in water and filtered through a pad of
"Supercel". The filtrate was lyophilized to give a yellowish
powder which was further purified by chromotography on silica gel.
Elution with 9:1 chloroformmethanol gave 2.4 g of pure 1-(5'-methyl2'-thiemyl)-7,8-dihydroxy-2,3,4,5-tetrahydro-IB-3-benzarepine

hydrobromide (m.p. 169° dec.).

C15H17NO2S-HBR 3/4H20

Calculated: 48.72% C; 4.91% H; 3.78% N

Pound: 48.86% C: 4.84% H: 3.87% N

In similar mammer the 7,8-dihydroxy-1-(2'-thienyl), (5'-bromo-2'-thienyl) and (2'-furyl) congeners are made from the 7,8-dimethoxy commounds of Eramole 4.

EXAMPLE 6

A mixture of 10.2 g (0.056 mole) of homoveratrylamine and 5.9 g (0.053 mole) of 2-epoxyethylfuran were mixed and heated on the steam bath overnight and worked up as in Example 1 to give N-(\$-bydroxy-\$-2'-furyl)ethylhomoveratrylamine, as a crystalline solid which was recrystallized from ethyl acetate-petroleum ether (m.p. 90°).

The furylaminoalcohol (2.9 g) was cyclized in 30 ml of trifluoroacetic acid at room temperature overnight. The black mixture was poured into 20 ml of ammonium hydroxide/300 ml of ice amd 40 ml of othyl acetate, and more ammonia was added to pl 9. The combined organic layer and subsequent extracts were washed with brine and dried over anhydrous sodium sulfate. Evaporation of the solvent in yacuo after removal of the drying agent gave 2.51 g of oily product, l-(2'-furyl)-7,8-dimethoxy-2,3,4,5-tetrahydro-IH-3-benzarepine. This material is identical to the same product prepared by catalytic hydrogenation of the N-benzyl derivative (Examples 7 and 8) using palladium on charcoal in methanol at 50°.

EXAMPLE 7

A solution of 20.1 g (64 mmole) of 1-hydroxy-N-benzyl-7,8-dimethoxy-2,3,4,5-tetrahydro-IH-3-benzazepine in 130 ml of methylene chloride was treated with 14 g (0.2 mole) of furan and 16 ml of ethereal boron trifluoride. After standing overnight at room temperature the reaction mixture was stirred with concentrated

25

5

10

ammonium hydroxide and ice. The methylene chloride phase was separated and extracted with 1M phosphoric acid. The acid extracts were seutralized and extracted with ethyl acetate. The dried extracts were evaporated to 19.8 g of crude product [1-(2'-furyl)-3-bensyl-7,8-dimethoxy-2,3,4,5-tetrahydro-1B-3-benszaepine] which was purified by chromatography over silica.

EXAMPLE 8

The N-benzyl product (14.2 g, 0.12 mole), prepared as in Example 7, in methylme chloride was reacted with 145 ml of boron tribromide-methylene chloride (1 g/5 ml) at room temperature for 1.25 hours. The desired 1-(2'-furyl)-3-benzyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1B-3-benzazepine was isolated as described above. This compound was debenzylated by hydrogenolysis as described in Example 6 to give 1-(2'-furyl)-3-benzyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1B-3-benzazepine was isolated as described above. This compound was debenzylated by hydrogenalysis as described in Example 6 to give 1-(2'-furyl)-7,8-dihydroxy-2,3,4,5-tetrahydro-1B-3-benzazepine. It's hemi-fumarate salt was prepared in methanol and was recrystallized from water (n.p. 267' dec.).

C14H15NO3.1/2C4H404.1/4H30

Calculated: 62.43% C; 5.73% H; 4.56% N
Found: 62.78% C: 6.14% H: 4.52% N

EXAMPLE 9

Three solutions each with 0.31 g (1 mmole) of 1-hydroxy3-benzyl-7.8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benzazepine in 2 ml
of methylene chloride containing boron trifluoride etherate were
respectively reacted with an excess of furan, 2-methylfuran and
2-cyanomethylfuran at room temperature overnight. Each was quenched
in ammonia solution, isolated and passed over silica gel. This layer
chromatography on silica gel using cyclohexane-ethyl acetate (7:3)

25

5

10

.

5

10

15

20

からこのではないのはないのはないのできない

STREET, STREET

gave R_f values of 0.68, 0.70 and 0.43 respectively with the starting material at 0.14. These are the 2'-furyl, 5'-methyl-2'-furyl and 5'-cyanomethyl-2'-furyl congeners which can be optionally debenzylated and demethylated as described to give 1-(2'-furyl)-7,8-dihydroxy-2,3,4,5-tetrahydro-1B-3-benzarepine, its methylfuryl and its cyanomethylfuryl congeners.

Repeating this reaction with 1-hydroxy-3-methyl-7,8dimethoxy-2,3,4,5-tetrahydro-1R-3-benzazepine (prepared from N-methylhomoveratrylamine as in Example 4 and 2-methylthiophene gives 1-(5'-methyl-2'-thienyl)-3-methyl-7,8-dimethoxy-2,3,4,5tetrahydro-1R-3-benzazepine. Demethylation as described above gives 1-(5'-methyl-2'-thienyl)-3-methyl-7,8-dihydroxy-2,3,4,5-tetrahydro-1R-3-benzazepine hydrobromide.

EXAMPLE 10

A mixture of 7.9 g (25.2 mmoles) of 1-bydroxy-3-benxy1-7,8-dimathoxy-2,3,4,5-tetrahydro-1R-3-benxzepine, 6.35 g (50.4 mmoles) of methyl furoate and 6.2 ml (50.4 mmoles) of boron trifluoride etherate was reacted at room temperature for 1.5 hours. Another 3.1 ml of trifluoride was added followed by standing at room temperature overnight. The product, 1-(5'-carbomethoxy-2'-fury1)-benxy1-7,8-dimethoxy-2,3,4,5-tetrahydro-1H-3-benxzepine was isolated and purified by methods similar to those of the previous examples. This material was demethylated to the 7,8-dihydroxy compound and debenxylated as described above to give 1-(5'-carbomethoxy-2'-fury1)-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzzepine hemifumarate hydrate, u.p. 198-200' (dec.).

25

EXAMPLE 11

Reacting 2-chloro-3,4-dimethoxyphenylethylamine,2-fluoro-3,4-dimethoxyphenylethylamine or 2-trifluoromethyl-3,4-dimethoxyphenylethylamine (prepared via 2-trifluoromethyl-3,4-dimethoxytoluene) in a stoichiometric quantities with 2-epoxyethylthiophene as in Example 1

gives 2-chloro-1-(2'thieny1)-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine, 6-fluoro-1-(2'-thieny1)-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine and 6-trifluoromethy1-1-(2'-thieny1)'7,8-dihydroxy-2,3,4,5-tetrahydro-1H-3-benzazepine via their 7,8-dimethy1 ethers.

EXAMPLE 12

10

15

20

25

30

A mixture of 4.5 g of 6-chloro-7,8-dimethoxy-1-(2'-thieny1)-2,3,4,5-tetrahydro-1H-3-benzazepine, 0.02 ml of n-buty1 bromide and 0.02 mol of potassium hydroxide is dissolved in 120 ml of dry methanol and refluxed for 48 hours. The reaction mixture is evaporated to dryness, taken up in ethyl acetate and filtered to remove inorganic salts. The filtrate is washed with water, dried and evaporated to give 3-n-buty1-6-chloro-7,8-dimethoxy-1-(2'-thieny1)-2,3,4,5-tetrahydro-1H-3-benzazepine.

The 3-n-butyl benzazepine (0.01 mol) is dissolved in 120 ml of dry methylene chloride and 0.032 mol of boron tribromide is added dropwise at -10°. The solution is warmed to room temperature and stirred for two hours. The excess boron tribromide is destroyed with methanol added dropwise with ice-cooling. The cold solution is refluxed on the steam bath to remove hydrogen bromide and evaporated. The residue is treated with brine at reflux for 2 hours to yield 3-n-butyl-6-chloro-7,8-dihydroxy-1-(2'-thienyl)-2,3,4,5-tetrahydro-18-3-benzazepine hydrobromide.

Using N-alkylation procedures described above but using 7,8-dimethoxy-1-(5'-methyl-2'-thienyl)-2,3,4,5-tetrahydro-18-3-benzazepine as a model compound the N-allyl, N-phenethyl, N-butyl, N-amyl or N-2,2-dimethylallyl derivatives are prepared. Bydrolysis of the methoxy groups as described gives the active 7,8-dihydroxy compounds.

EXAMPLE 13

A 3.9 g sample of 7,8-dihydroxy-1-(3'-thieny1)-2,3,4,5-tetrahydro-1H-3-benzazepine is slurried in 25 ml of acetone and 0.7 g __25 _

(0.016 mol, 10% excess) of ethylene oxide is added. The mixture is placed in a pressure bottle and stirred at ambient temperature for about 40 hours. The reaction mixture is then heated to 60-80° for 30 minutes, cooled and filtered. Concentration of the filtrate gives a solid which is taken up in ethyl actate and reprecipitated with other. The solid thus obtained is dissolved in ethamol and treated with ethereal hydrogen chloride to give 7,8-dihydroxy-3-(2-hydroxy-ethyl)-1-(3'-thienyl)-2,3,4,5-tetrahydro-18-3-benzazepine hydrochloride.

EXAMPLE 14

A 4.0 g sample of 3-benzyl-7,8-dihydroxy-1-(2'-thiemyl)-2,3,
4,5-tetrahydro-IR-3-benzarepine (prepared from the 3-unsubstituted
benzarepine by reaction with benzyl broade in the presence of potassium
carbonate) is dissolved in 50 ml of scetic anhydride and the solution
is beared on a steam bath for one hour. The reaction mixture is cooled,
ice-water is added and the solution is evaporated to dryness. The
residue is triturated with ethyl accepte, the solution washed with
water, dried and the solvent removed in vacuo to leave an oil. The
latter is dissolved in ether and ethereal bydrogen chloride is added
to precipitate 3-benzyl-7,8-diacetoxy-1-(2'thiemyl)-2,3,4,5-tetrahydroIR-3-benzarepine bydrochloride.

20

10

7,8-dihydroxy-1-(2'-thienyl)-2,3,4;5-tetrahydro-1E-3benzazepine hydrobromide (10 g) is dissolved in trifluoroacetic acid and reacted with a stoichiometric amount of scatyl bromids at room temperature for 1-2 hours. The reaction mixture is evaporated and the residue is triturated in ether-i-propanol to give the desired diacetoxy derivative.

25

Substituting other alkanoyl anhydrides or chlorides gives various 7,8-alkanoyl derivatives such as the discetoxy derivatives of 2'-furyl, 5'-methyl-2'-furyl, 5'-cyanomethyl, 3'-thienyl, 5'-methyl-2'-thienyl, and 5'-bromo-2'-thienyl compounds.

EXAMPLE 15

7,8-Dihydroxy-1-(2'-thieny1)-2,3,4,5-tetrahydro-IR-3benzazepine (5 g) is suspended in 500 cc of benzene. Trifluoroacetic
mhydride (15 g) is added dropvise rspidly. The solution is stirred
an additional hour and the volatiles stripped off, leaving the N,0,0tris-trifluoroacetyl derivative. This is added directly to 500 cc
of methanol and hydrogen chloride gas bubbled in for a few minutes.
The reaction is stirred for 2 hours and then the solvent stripped off,
leaving 7,8-dihydroxy-1-(2'-thieny1)-3-trifluoroacety1-2,3,4,5-tetrahydro-IR-3-benzazepine.

EXAMPLE 16

Dry dimethylformamide (50 ml) is deoxygenated four times by pulling a vacuum and refilling the vacuated flask with argon. 7,8-Dihydroxy-1-(2'-thiemyl)-3-trifluoroacetyl-2,3,4,5-tetrahydro-1R-3-benzazepine (5 g) is added and dissolved as the solution is deoxygenated once more. Methylene bromide (5.3 g) potassium carbonate (5 g) and cuptic oxide (0.13 g) are added and the solution is deoxygenated a final time. The reaction is heated at 150° under argon for 2 hours.

It is worked up by pouring into 2 1. of ice water while stirring. The equeous suspension is extracted four times with 300-400 cc ether, and the ether is back extracted three times with 1.5 1. water. The ether is dried and evaporated. The residue is dissolved in chloroform and chromatographed on silics gel to give 7.8-methylanediozy-1-(2'-thiemyl)-3-trifluoroscetyl-2.3.4.5-tetrahydro-1R-3-benzazepine.

EXAMPLE 17

A suspension of 7,8-dihydroxy-1-(2'-thienyl)-2,3,4,5-tetrahydro-1H-3-benzarepine hydrobromide (3.4 g) in methanol (40 ml) is reacted with 2.5 g of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone in methanol at 0° for 1 hour. The 1-(2'-thienyl)-2,3,4,5-tetrahydro-1H-3benzarepine-7,8-dione hydrobromide was collected by filtration and washed with ether. The dione hydrobromide salt is added to an excess

25

5

IO.

Ľ5

of methyl mercaptan in methanol. After 1 hour the solution is evaporated to give a residue of the 6-methylthio and 9-methylthio isomers. Separation over a silica gel column gives 6-methylthio-1-(2'-thieny1)-2,3,4,5-tetrahydro-1E-3-benzazepine bydrobromide salt.

Similarly 6-methylthio-3'-thienyl and 2'-furyl congeners are made.

5

Company of the Compan

20 25

Ÿ

10

15

EXAMPLE 18

5.5 Grams (18 mm) of 7,8-dimethoxy-1-(5'-methyl-2'-thienyl-2,3,4,5-tetrahydro-1H-3-benzarepine was dissolved in 120 ml of ethyl-formate and was heated at reflux for 24 hours. After addition of 50 ml of ethyl ether, the reaction mixture was washed with 3 x 30 ml of 3N hydrochloric acid, 2 x 20 ml of 5N sodium bicarbonate, and then brine. After drying over sodium sulfate and removal of the drying agent, the solvent was evaporated to give 4.8 g of the oily N-formyl derivative.

EXAMPLE 19

To 120 ml of ethyl ether under argon, 2.15 g of lithium aluminum hydride was added followed by addition of 4.7 g (14.2 mmoles) of the B-formyl derivative in 80 ml of benzene. The resulting suspension was gently refluxed for 5 hours. It was then cooled and the excess hydride was decomposed by addition of 6 ml of methanol in 25 ml ether, 2.15 ml of water, 2.15 ml of 10% alkali, and 6.45 ml of water, in that sequence. The solid formed was removed by filtration. The filtrate was evaporated to an oil which was teken up in ethyl acetate and thoroughly extracted with 3% hydrochloric acid. The acidic extracts were combined, washed with ether, basified to pH 8, and thoroughly extracted with ethyl acetate. The organic extracts were combined and dried over anhydrous sodium carbonate. Removal of the drying agent and solvent gave 3.6 g of 1-(5'-methyl-2-thienyl)-3-methyl-7,8-dimethoxy-2,3,4,5-tetrahydro-HB-3-benzarepine.

This was dissolved in methanol and ethereal hydrogen chloride was added. The solution was stripped to dryness under reduced pressure to give 7,8-dimethoxy-1-(5'-methyl-2'-thienyl)-3-methyl-2,3,4,5-tetrahydro-

IE-3-benzazepine which was recrystallized from methanol-ethyl acetate bydrochloride (m.p. 227-8°).

Substituting the 1-(2'-thienyl), 1-(3'-thienyl) or 1-(2'-furyl) congeners in the procedures of Examples 19-20 with obvious variations gives 7,8-dimethoxy-1-(2'-thienyl)-3-methyl-3,3,4,5-terrabydro-1H-3-benzazepine bydrochloride, 7,8-dimethoxy-1-(3'-thienyl)-3-methyl-2,3,4,5-terrabydro-1H-3-benzazepine bydrochloride or 7,8-dimethoxy-1-(2'-furyl)-3-methyl-2,3,4,5-terrabydro-1H-3-benzazepine bemifumarate. Splitting the ethers as described above gives the three dibydroxy congeners.

EXAMPLE 20

Treatment of the dione hydrobromide salt with embydrous hydrogen bromide in methylene chloride or with diluted hydrobromic acid, gives 6-bromo-1-(2'-thieny1)-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide salt. Similarly the 6-bromo-1-(5'-methyl-2'-thieny1), 6-bromo-1-(2'-fury1), 6-bromo-3'-thieny1 analogs are prepared.

Ingredients

Mg. per Capsule

7,8-Dihydroxy-1-(5'-methyl-2'-thienyl)-2,3,4,5-tetrahydro-IH-3-benzazepine (as am acid addition salt)

Magnesium Stearate

2

Lactose

200

The above ingredients are thoroughly mixed and placed into hard gelatin capsules. Such capsules are administered orally to subjects in need of treatment from 1-5 times daily to induce dopaminergic activity.

25

ì,

100 Sept. 100 Se

40000

李明的 一下一大日本教教教院以外教育者以及此一次的

10

15

20

EXAMPLE 21

Ingredients	Mg. per Tablet	
7,8-Dihydroxy-l-(2'-thiemyl)-2,3,4,5- tetrahydro-12-3-benzazepine (as an acid addition salt)	200 (free base)	
Corn starch	30	
Polyvinyl pyrrolidone	12	
Corn starch	16	
Magnesium Stearate	3	

5

10

15 -

30

The first two ingredients are thoroughly mixed and granulated. The granules obtained are dried, mixed with the remaining corn starch and magnesium stearate, and compressed into tablets.

The capsules or tablets thusly prepared are administered orally to an animal or human requiring stimulation of either peripheral or central dopamine receptors to induce hypotension or to treat the symptoms of Parkinson's disease within the dose ranges set forth hereinabove.

Similarly other compounds of Formula I and the illustrative examples can be formulated in the same manner to give pharmaceutical compositions useful in the methods of this invention based on the chemical characteristics and relative biological activity using the test methods outlined.

A subgeneric group of compounds within the illustrative generic group of Formula I are those in which:

R is phenethyl, benzyl, lower alkyl of 1-5 carbon atoms, hydroxyethyl or lower alkenyl of 3-5 carbon atoms;

 R_1 is hydrogen, halo, trifluoromethyl, lower alkylthio, trifluoromethylthio, methyl or methoxy;

R: and R: are each hydrogen, lower alkyl of 1-5 carbon atoms, lower alkanoyl of 2-5 carbon atoms or, when taken together, methylene or ethylene; R: is hydrogen, halo or methyl; and

X is -0- or -S-.

In this subgeneric group, particular compounds are those in which R is methyl or allyl; R_i is hydrogen, chloro, brome or methylthio; R_i and R_i are the same and are hydrogen, methyl or acetyl; R_i is hydrogen or 5'-methyl; and X is -S-.

The compounds of the above subgeneric group have particularly useful hypotensive activity, producing arterial hypotension and concomitant bradycardia. This activity is demonstrated in anesthetized spontaneously hypertensive rats (SHR). In this pharmacological procedure, adult male SHR, weighing approximately 350-400 grams, are anesthetized with pentobarbital sodium (65 mg/kg, i.p.). The trachea is cannulated and the rats are allowed to respire spontaneously, Pulsatile arterial blood pressure is measured from a cannulated carotid artery using a Statham transducer (P23AA). Mean . arterial blood pressure is calculated as diastolic blood pressure plus 1/3 pulse pressure. Cardiac rate is monitored by means of a cardiotachometer triggered by the systolic blood pressure pulse. Phasic arterial blood pressure and cardiac rate are recorded using a multichannel oscillograph. Drug solutions are administered through a cannulated tail vain. Approximately 10 minutes are allowed to elapse, following surgery, for equilibration of the preparation. After the equilibration period, a control tracing of the directly measure parameters is taken. Each rat then receives an initial dose of 1 mcg/kg of a test compound. Arterial blood pressure and cardiac rate responses are recorded and expressed as absolute change from the respective control value established immediately prior to the injection. This sequence is repeated at approximately 5-10 minute intervals, with increasing dose levels of the test compound, until each rat has received individual doses of 1, 3, 10, 30, 100, 300 and 1000 mcg/kg.

30

5

10

15

20.

. 25

1

5

10

15

20

25

30

The following table sets forth mean arterial blood pressure and cardiac rate responses produced in the anesthetized SHR, according to the above described procedure, upon i.v. administration to 3 rats of 7,8-dimethoxy-3-methyl-1-(5'-methyl-2'-thienyl)-2,3,4,5-tetrahydro-1H-3-benzazepine as its hydrochloride aalt (doses refer to mcg/kg of the free base).

Change in Mean Arterial Blood Pressure (mmHg)

1 msg/kg 3 msg/kg 10 msg/kg 30 msg/kg 100 msg/kg 300 msg/kg 1000 msg/kg +5,6±1.3 +10.0±1.1 +7.3±1.7 -21.6±11.3 -88.0±7.9 -75.0±7.2 -67.2±4.4

Change in Cardiac Rate (beats/minute)

1 msg/kg 3 msg/kg 10 msg/kg 30 msg/kg 100 msg/kg 1000 msg/kg 1000 msg/kg 4.6±1,7 -1.0±1,5 -0.6±2,8 -73.6±25,4 -174±29,7 -144±30.8 -98±25,2 This compound therefore produced average maximum changes in arterial blood pressure of -88 mmHg and cardiac rate of -174 beats/minute with dose-related hypotension from 30-1000 msg/kg and bradycardia over the entire dose range.

- 32 -

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

The method of preparing a compound of the formula:

Formul I

in which:

R is hydrogen, benzyl, phenethyl, lower alkanoyl of 1-5 carbons, lower alkyl of 1-5 carbons, hydroxyethyl or lower alkenyl of 3-5 carbons;

 \mathbf{R}_1 is hydrogen, halo, trifluoromethyl, methylthio, trifluoromethylthio, methyl or methoxy;

 $\rm R_2$ and $\rm R_3$ are each hydrogen, lower alkyl of 1-5 carbons, lower alkanoyl of 2-5 carbons or, when taken together, methylene or ethylene,

 $R_{\frac{1}{2}}$ is hydrogen, halo, cyanomethyl, methyl or carbomethoxy; and

X is -0- or -S- ;

or the pharmaceutically acceptable nontoxic salts thereof, comprising reacting a compound of the formula:

30

25.

in which R is lower alkyl, benzyl or phenethyl, R₁ is hydrogen, halo, trifluoromethyl, methylthio, trifluoromethylthio, methyl or methoxy; and R₂ and R₃ are lower alkyl, and, when taken together, methylene or ethylene; with a compound of the formula:

CONTRACT.

in which R_4 is hydrogen, halo, methyl, cyanomethyl or carbomethoxy in the presence of at least one equivalent of an acid catalyst; followed by optional N-alkylation of a compound of Formula I in which R is hydrogen to give a compound in which R is benzyl, phenethyl, lower alkyl, hydroxy ethyl or lower alkenyl and optional O-dealkylation of a compound of Formula I in which R_2 and R_3 are alkyl or, when taken together, methylene or ethylene to give a compound of Formula I in which R_2 and R_3 are hydrogen and then optional salt formation by reacting a base of Formula I with an inorganic or organic acid.

- 2. The method of claim 1 in which R is methyl, and X is -S-.
- 3. The method of claim 1 in which R is methyl, R_1 is hydrogen, R_2 and R_3 are methyl, R_4 is 5'-methyl, X is -8-and the thienyl ring is attached at position 2'.
- The method of claim 3 in which a nontoxic salt is formed.
- The method of claim 4 in which the hydrochloride or methanesulfonate salt is formed.
 - 6. A compound of the formula:

in which:

A COMPANY OF THE PROPERTY OF T

15

The second secon

25

30

R is hydrogen, benzyl, phenethyl, lower alkanoyl of 1-5 carbons, lower alkyl of 1-5 carbons, hydroxyethyl or lower alkenyl of 3-5 carbons;

 $\mathbf{R}_{\hat{\mathbf{l}}}$ is hydrogen, halo, trifluoromethyl, methylthio, trifluoromethylthio, methyl or methoxy;

R₂ and R₃ are each hydrogen, lower alkyl of 1-5 carbons, lower alkanoyl of 2-5 carbons or, when taken together, methylene or ethylene;

 $\mathbf{R}_{\mathbf{4}}$ is hydrogen, halo, cyanomethyl, methyl or carbomethoxy and

X is -0- or -S- ;

or the pharmaceutically acceptable nontoxic salts thereof when prepared by the method of claim 1 or by their obvious chemical equivalents.

· 7. A compound of the formula:

in which ${\bf R}_4$ is methyl as the base or as the hydrochloride or methanesulfonate when prepared by the method of claim 3 or by their obvious chemical equivalents.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

•	
☐ BLACK BORDERS	
\square image cut off at top, bottom or sides	
☐ FADED TEXT OR DRAWING	
\Box BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
\square color or black and white photographs	
☐ GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
\square reference(s) or exhibit(s) submitted are poor quality	ГҮ
☐ OTHER:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.