

《人工智能数学原理与算法》 第 3 章: 神经网络基础

3.2 神经网络优化

连德富 liandefu@ustc.edu.cn 01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

前馈神经网络(多层感知机)

口各神经元分别属于不同的层,层内无连接;相邻两层之间的神经元全部两两连接 口整个网络中无反馈,信号从输入层向输出层单向传播

梯度下降 (Gradient Descent)

口给定训练集为 $D = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$,将每个样本 $x^{(n)}$ 输入给前馈神经网络,得到网络输出为 $\hat{y}^{(n)}$,其在数据集D上的结构化风险函数为:

$$\mathcal{L}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\boldsymbol{y}^{(n)}, \widehat{\boldsymbol{y}}^{(n)}) + \frac{1}{2} \lambda ||\boldsymbol{W}||_F^2$$

口梯度下降 (Gradient Descent, GD)

$$\boldsymbol{\theta}^{(l+1)} \leftarrow \boldsymbol{\theta}^{(l)} - \alpha \frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}^{(l)}}$$
学习率

思考: 为什么梯度下降能保证损失是非递增的? 有没有什么前提条件?

梯度下降

随机梯度下降 (SGD)

口由于数据集可能很大,无法全部放入内存计算梯度

口一般采用小批量随机梯度下降法,每次从数据集中采样一部分样本(称为batch),计 算batch上的梯度,并进行参数更新。

口给定训练集为 $D = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$, 每次采样B个样本

梯度下降

小批量随机梯度下降

$$\mathcal{L}_D(\boldsymbol{W}, \boldsymbol{b}) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\boldsymbol{y}^{(n)}, \widehat{\boldsymbol{y}}^{(n)}) + \frac{1}{2} \lambda \|\boldsymbol{W}\|_F^2$$

$$\mathcal{L}_B(\boldsymbol{W}, \boldsymbol{b}) = \frac{1}{B} \sum_{i=1}^{B} \mathcal{L}(\boldsymbol{y}^{(i)}, \widehat{\boldsymbol{y}}^{(i)}) + \frac{1}{2} \lambda \|\boldsymbol{W}\|_F^2$$

$$\frac{\partial \mathcal{L}_D(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(n)}, \widehat{\boldsymbol{y}}^{(n)})}{\partial \boldsymbol{W}^{(l)}}$$

$$\frac{\partial \mathcal{L}_B(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(i)}, \widehat{\boldsymbol{y}}^{(i)})}{\partial \boldsymbol{W}^{(l)}}$$

思考:数据集规模、模型大小以及GPU内存大小之间的关系

随机梯度下降 vs. 梯度下降

梯度下降

用所有样本对参数更新

随机梯度下降

每个批都对参数更新 更新次数更多

神经网络随机梯度下降的终止条件

算法 2.1: 随机梯度下降法

输入: 训练集
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$$
, 验证集 \mathcal{V} , 学习率 α

- 1 随机初始化 θ ;
- 2 repeat

3 対训练集
$$\mathcal{D}$$
中的样本随机重排序;
4 for $n = 1 \cdots N$ do
5 从训练集 \mathcal{D} 中选取样本 $(\mathbf{x}^{(n)}, y^{(n)})$;
// 更新参数
6 $\theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}(\theta; x^{(n)}, y^{(n)})}{\partial \theta}$;
7 end

8 until 模型 $f(\mathbf{x}; \theta)$ 在验证集 V 上的错误率不再下降; 输出: θ

梯度下降和随机梯度下降 01

反向传播算法 02

深度学习的三个步骤和快速入门 03

随机梯度下降可能存在的问题 04

神经网络训练优化要点与技巧 05

参数初始化

目录

06

如何计算梯度?

口神经网络为一个复杂的复合函数

口反向传播算法

根据前馈网络的特点而设计的高效方法:由最深层开始向浅层依次根据链式法则计算导数值。

口一个更加通用的计算方法

自动微分 (Automatic Differentiation, AD)

如何计算梯度?

口神经网络为一个复杂的复合函数

$$y = \sigma (W_3 \sigma (W_2 \sigma (W_1 x)))$$

(σ 为激活函数,不考虑偏置项 b)
我们定义每一层"激活":
 $z_1 = W_1 x; \ a_1 = \sigma (z_1)$
 $z_2 = W_2 a_1; \ a_2 = \sigma (z_2)$
 $z_3 = W_3 a_2; \ a_3 = \sigma (z_3) = y$

计算梯度
$$\frac{\partial y}{\partial W_{i}}$$
 $\frac{\partial y}{\partial W_{3}} = \frac{\partial y}{\partial z_{3}} \frac{\partial z_{3}}{\partial W_{3}}$ 链式求导法则 $\frac{\partial y}{\partial W_{2}} = \frac{\partial y}{\partial z_{3}} \frac{\partial z_{3}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}} \frac{\partial z_{1}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}} \frac{\partial z_{1}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{1}}{\partial z_{1}} \frac{\partial z_{1}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial z_{2}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{2}}{\partial z_{1}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{1}} \frac{\partial z_{2}}{\partial w_{2}} \frac{\partial$

 $\frac{\partial y}{\partial z_3}$, $\frac{\partial a_2}{\partial z_2}$ 等在计算 y 对于第二层和第一层的参数的导数时重复出现,可以存储复用。

观察1: 计算梯度过程中需要计算神经网络各层激活值。(前向传播)

观察2: 计算梯度过程中的部分中间结果(如 $\frac{\partial a_3}{\partial z_3}$, $\frac{\partial a_2}{\partial z_2}$)可以复用。(后向传播)

反向传播算法

 $f_2(\cdot)$: 输出层激活函数

 $w_{hi}^{(2)}$: 隐层与输出层神经元之间的连接权重

 $b_i^{(2)}$: 输出层神经元的偏置

 $f_2(\cdot)$: 隐层激活函数

wih: 输入层与隐层神经元之间的连接权重

b_h(1): 输出层神经元的偏置

网络中需要 (d+l+1)q+l 个参数需要优化

输出l维实值向量y

输入示例x由d个属性描述

BP是一个迭代学习算法, 在迭代的每一轮中采用广义的感知机学习规则对参数进行更新估计, 任意的参数v的更新估计式为

$$v \leftarrow v + \Delta v$$

反向传播算法

反向传播算法—前向

前向预测

$$x \xrightarrow{f_1(z_h^{(1)})} \sum_{i=1}^d w_{ih}^{(1)} x_i \qquad z_j^{(2)} = \sum_{h=1}^q w_{hj}^{(2)} a_h \qquad y_j$$

反向传播算法——后向

后向传播

$$w_{hj}^{(2)} = w_{hj}^{(2)} + \Delta w_{hj}^{(2)} + \Delta w_{hj}^{(2)} = \eta \frac{e_j^{(2)} a_h}{a_h} = \eta \text{Error}_j \text{Output}_h \mathcal{L}(\boldsymbol{d}, \boldsymbol{y}) = \frac{1}{2} \sum_{j=1}^{l} (y_j - d_j)^2$$

$$\Delta w_{hj}^{(2)} = -\eta \frac{\partial \mathcal{L}(\boldsymbol{d}, \boldsymbol{y})}{\partial w_{hj}^{(2)}} = -\eta \frac{\partial \mathcal{L}(\boldsymbol{d}, \boldsymbol{y})}{\partial y_j} \frac{\partial y_j}{\partial z_j^{(2)}} \frac{\partial z_j^{(2)}}{\partial w_{hj}^{(2)}} = \eta (d_j - y_j) f_2'(z_j^{(2)}) a_h = \eta e_j^{(2)} a_h$$

反向传播算法——后向

后向传播

$$w_{ih}^{(1)} = w_{ih}^{(1)} + \Delta w_{ih}^{(1)} \stackrel{\Delta w_{ih}^{(1)} = \eta e_h^{(1)} x_i = \eta \text{Error}_h \text{Output}_i}{\longleftarrow} \mathcal{L}(\boldsymbol{d}, \boldsymbol{y}) = \frac{1}{2} \sum_{i=1}^{l} (y_i - d_i)^2$$

$$\Delta w_{ih}^{(1)} = -\eta \frac{\partial \mathcal{L}(\boldsymbol{d}, \boldsymbol{y})}{\partial w_{ih}^{(1)}} = -\eta \frac{\partial \mathcal{L}(\boldsymbol{d}, \boldsymbol{y})}{\partial a_h} \frac{\partial a_h}{\partial z_h^{(1)}} \frac{\partial z_h^{(1)}}{\partial w_{ih}^{(1)}} = \eta \sum_j e_j^{(2)} w_{hj}^{(2)} f_1'(z_h^{(1)}) x_i = \eta e_h^{(1)} x_i$$

$$e_h^{(1)} = f_1'(z_h^{(1)}) \sum_j e_j^{(2)} w_{hj}^{(2)}$$

反向传播算法: 简单例子

口考虑如下简单网络 假设激活函数为Sigmoid函数

Input: $0.35 \times 0.1 + 0.9 \times 0.8 = 0.755$ 0.7525

Output: 0.68 0.6797

Error: $e1=g*w1*o*(1-o)=-0.0406*0.3*0.68*(1-0.68)=-2.650*10^{-3}$

 $w3+e1*A=0.1+(-2.650*10^{-3})*0.35=0.0991$ 0.1Input 0.3 ψ 1+=w1+g*o1=0.3+ (-0.0406)* 0.68=0.2724 A = 0.350.8 0.7976 Output=0.5 0.4-0.3971 Input: $0.3 \times 0.68 + 0.9 \times 0.6637 = 0.80133$ 0.7631 0.6 Output: 0.69 0.6820 误差从0.19降到0.1820 Input 0.9 Error: g=(t-o)(1-o)o=(0.5-0.69)(1-0.69)0.69=-0.0406B = 0.9 $w2^{+}=w2+g*o2=0.9+(-0.0406)*0.6637=0.8731$ $w6^{+}=w6+e2*B=0.6+(-8.156*10^{-3})*0.9=0.5927$

Input: $0.35 \times 0.4 + 0.9 \times 0.6 = 0.68 \quad 0.6724$

Output: 0.6637 0.6620

Error: $e2=g*w2*o*(1-o)=-0.0406*0.9*0.6637*(1-0.6637)=-8.156*10^{-3}$

后向传播算法 — 一般情形

前向计算激活过程

后向计算梯度过程
链式法则
$$\frac{\partial \mathcal{L}(y, \widehat{y})}{\partial w_{ij}^{(l)}} = \langle \frac{\partial \mathcal{L}(y, \widehat{y})}{\partial z^{(l)}}, \frac{\partial z^{(l)}}{\partial w_{ij}^{(l)}} \rangle$$

$$\frac{\partial \mathcal{L}(y, \widehat{y})}{\partial z^{(l)}} \triangleq e^{(l)}$$
 误差项
$$\frac{\partial \mathcal{L}(y, \widehat{y})}{\partial w_{ij}^{(l)}} = \delta(k = l)a_j^{(l-1)}$$

链式法则
$$\frac{\partial \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}})}{\partial \boldsymbol{b}^{(l)}} = \langle \frac{\partial \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}})}{\partial \boldsymbol{z}^{(l)}}, \frac{\partial \boldsymbol{z}^{(l)}}{\partial \boldsymbol{b}^{(l)}} \rangle$$
 $\frac{\partial \boldsymbol{z}^{(l)}}{\partial \boldsymbol{b}^{(l)}} = \boldsymbol{1}_{m^{(l)}}$ 单位阵

后向传播算法 — 一般情形

前向计算激活过程

$$x = a^{(0)} \rightarrow z^{(1)} \rightarrow a^{(1)} \rightarrow z^{(2)} \rightarrow a^{(2)} \rightarrow \cdots \rightarrow a^{(L-1)} \rightarrow z^{(L)} \rightarrow a^{(L)}$$

后向计算梯度过程

$$\mathbf{z}^{(l+1)} = \mathbf{W}^{(l+1)} \mathbf{a}^{(l)} + \mathbf{b}^{(l+1)} \qquad \mathbf{a}^{(l)} = f_l(\mathbf{z}^{(l)}) \implies a_k = f_l(\mathbf{z}^{(l)}_k)$$

误差项分解
$$e^{(l)} = \frac{\partial \mathcal{L}(y, \hat{y})}{\partial z^{(l)}}$$

$$\frac{\partial \mathbf{z}^{(l+1)}}{\partial \mathbf{a}^{(l)}} = \mathbf{W}^{(l+1)}$$

链式求导法则
$$= \frac{\partial \mathcal{L}(y, \hat{y})}{\partial z^{(l+1)}} \frac{\partial z^{(l+1)}}{\partial z^{(l)}} \frac{\partial a^{(l)}}{\partial z^{(l)}} = \frac{\partial f_l(z^{(l)})}{\partial z^{(l)}} = \text{diag}(\nabla f_l(z^{(l)}))$$

$$= e^{(l+1)} W^{(l+1)} \operatorname{diag} \left(\nabla f_l(\mathbf{z}^{(l)}) \right)$$

$$= \nabla f_l(\mathbf{z}^{(l)}) \odot \left(e^{(l+1)} W^{(l+1)} \right)$$
 观察: $e^{(l+1)}$ 可以用来计算 $e^{(l)}$

$$= \nabla f_l(\mathbf{z}^{(l)}) \odot (\mathbf{e}^{(l+1)} \mathbf{W}^{(l+1)})$$

后向传播算法 — 一般情形

回过头来

$$\frac{\partial z_{k}^{(l)}}{\partial w_{ij}^{(l)}} = \delta(k = i)a_{j}^{(l-1)}$$

$$\frac{\partial \mathcal{L}(\mathbf{y}, \widehat{\mathbf{y}})}{\partial w_{ij}^{(l)}} = \langle \mathbf{e}^{(l)}, \frac{\partial \mathbf{z}^{(l)}}{\partial w_{ij}^{(l)}} \rangle = e_{i}^{(l)}a_{j}^{(l-1)} \qquad \qquad \frac{\partial \mathcal{L}(\mathbf{y}, \widehat{\mathbf{y}})}{\partial \mathbf{W}^{(l)}} = \mathbf{e}^{(l)}(\mathbf{a}^{(l-1)})^{\mathsf{T}}$$

后向传播算法计算参数梯度的核心公式组

$$e^{(l)} = \nabla f_l(\mathbf{z}^{(l)}) \odot (e^{(l+1)} \mathbf{W}^{(l+1)})$$

$$\frac{\partial \mathcal{L}(\mathbf{y}, \widehat{\mathbf{y}})}{\partial \mathbf{W}^{(l)}} = e^{(l)} (a^{(l-1)})^{\mathsf{T}}$$
 观察: $e^{(l+1)}$ 可以用来计算 $e^{(l)}$

$$\frac{\partial \mathcal{L}(\boldsymbol{y}, \widehat{\boldsymbol{y}})}{\partial \boldsymbol{b}^{(l)}} = \langle \boldsymbol{e}^{(l)}, \frac{\partial \boldsymbol{z}^{(l)}}{\partial \boldsymbol{b}^{(l)}} \rangle = \boldsymbol{e}^{(l)}$$

反向传播算法

口前馈神经网络的训练过程可以分为以下步骤

数据准备:从训练集中随机采样 k 个样本,作为一个训练batch

前向计算: 从第一层开始计算每一层的状态和激活值, 直到最后一层

反向计算: 从最后一层开始计算每一层的参数的偏导数

更新参数: 使用合适的学习率更新每一层的参数

01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

深度学习的三个步骤

深度学习就是这么简单

Keras'快速入门

https://keras.io/examples/

```
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import SGD
model = Sequential()
model.add(Dense(output_dim=64, input_dim=100))
model.add(Activation("relu"))
model.add(Dense(output_dim=10))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.fit(X_train, Y_train, nb_epoch=5, batch_size=32)
loss = model.evaluate(X_test, Y_test, batch_size=32)
```

Pytorch快速入门

```
class NeuralNet(nn.Module):
   def __init__(self, input_size, hidden_size, num_classes):
       super(NeuralNet, self).__init__()
       self.fc1 = nn.Linear(input_size, hidden_size)
       self.relu = nn.ReLU()
       self.fc2 = nn.Linear(hidden_size, num_classes)
                                                model = NeuralNet(input_size, hidden_size, num_classes).to(device)
   def forward(self, x):
       out = self.fc1(x)
       out = self.relu(out)
                                                # Loss and optimizer
       out = self.fc2(out)
                                                criterion = nn.CrossEntropyLoss()
       return out
                                                optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
                                                # Train the model
                                                total_step = len(train_loader)
                                                for epoch in range(num_epochs):
                                                   for i, (images, labels) in enumerate(train_loader):
                                                     # Move tensors to the configured device
                                                     images = images.reshape(-1, 28*28).to(device)
                                                     labels = labels.to(device)
                                                     # Forward pass
                                                     outputs = model(images)
                                                     loss = criterion(outputs, labels)
                                                     # Backward and optimize
                                                     optimizer.zero_grad()
                                                     loss.backward()
                                                     optimizer.step()
```

01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

随机梯度下降的问题

随机梯度下降的问题

优化算法的对比

01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

样本随机性的影响

口在每次迭代时,随机选择B个样本,这里的 随机性非常重要

$$\frac{\partial \mathcal{L}_{D}(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(n)}, \widehat{\boldsymbol{y}}^{(n)})}{\partial \boldsymbol{W}^{(l)}} \qquad \frac{\partial \mathcal{L}_{B}(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(i)}, \widehat{\boldsymbol{y}}^{(i)})}{\partial \boldsymbol{W}^{(l)}}$$

假设你想知道全校本科生喜欢看什么课外书,但你没法每次都问全校8000人,于是你每次随机找50个人来问,这就是一个 batch

- 如果问 "在座的50位同学",那你很可能得到偏见的结果,比如都喜欢《电磁学干题解》,但这不代表全校的喜好。
- · 每次你都要**随机从全校抽取**,这样才能保证你的"调查"是**尽可能代表整个学校的意见**。

样本随机性的影响

- 口在每次迭代时,随机选择B个样本,这里的 随机性非常重要
- 口但随机性在大规模数据情况下很难满足
- 口实践中通常将样本顺序打乱一次,然后按照 这个顺序存储起来
- 口虽然偏离真实随机采样,但不会有严重的有 害影响

$$\frac{\partial \mathcal{L}_{D}(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{N} \sum_{n=1}^{N} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(n)}, \widehat{\boldsymbol{y}}^{(n)})}{\partial \boldsymbol{W}^{(l)}} \qquad \frac{\partial \mathcal{L}_{B}(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(i)}, \widehat{\boldsymbol{y}}^{(i)})}{\partial \boldsymbol{W}^{(l)}}$$

$$\frac{\partial \mathcal{L}_B(\boldsymbol{W}, \boldsymbol{b})}{\partial \boldsymbol{W}^{(l)}} = \frac{1}{B} \sum_{i=1}^{B} \frac{\partial \mathcal{L}(\boldsymbol{y}^{(i)}, \widehat{\boldsymbol{y}}^{(i)})}{\partial \boldsymbol{W}^{(l)}}$$


```
train loader = torch.utils.data.DataLoader(dataset=train dataset,
                                            batch size=batch size,
                                            shuffle=True)
test loader = torch.utils.data.DataLoader(dataset=test dataset,
                                           batch size=batch size,
                                           shuffle=False)
```

样本随机性的影响

批量大小的影响

口批量大小不影响梯度期望,但会影响梯度方差,一般为2的幂数

批量大小的影响

口批量大小不影响梯度期望,但会影响梯度方差,一般为2的幂数

- 批量越大,随机梯度的方差越小,引入的噪声也越小,训练也越稳定,因此可以设置较大的学习率
- 批量较小时,需要设置较小的学习率,否则模型会不收敛

小批量梯度下降中,每次选取样本数量对损失下降的影响

学习率的影响

学习率衰减

- 学习率一开始要保持大 些保证收敛速度
- 在收敛到最优点附近时要小些以避免来回振荡

梯级衰减 (step decay) 线性衰减 (Linear Decay) 1/t衰减 (1/t decay)

正则化 (Regularization)

口新优化目标:不仅最小化损失,而且要让权重尽可能小

$$\mathcal{L}'(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{1}{2}\lambda \|\boldsymbol{\theta}\|_{2}^{2} \longrightarrow$$
 正则化项目

损失, 比如平方损失, 交叉熵损失等等

$$\boldsymbol{\theta} = \{w_1, w_2, \dots\}$$

L2 正则:

$$\|\boldsymbol{\theta}\|_{2}^{2} = (w_{1})^{2} + (w_{2})^{2} + \cdots$$

一般不考虑bias

L1 正则:

$$\|\boldsymbol{\theta}\|_1 = |w_1| + |w_2| + \cdots$$

正则化 (Regularization)

L2 正则:

$$\|\boldsymbol{\theta}\|_{2}^{2} = (w_{1})^{2} + (w_{2})^{2} + \cdots$$

$$\mathcal{L}'(\boldsymbol{\theta}) = \mathcal{L}(\boldsymbol{\theta}) + \frac{1}{2}\lambda \|\boldsymbol{\theta}\|_2^2$$

梯度:
$$\nabla \mathcal{L}' = \nabla \mathcal{L} + \lambda \, \boldsymbol{\theta}$$

梯度下降更新:

$$\boldsymbol{\theta}^{t} \leftarrow \boldsymbol{\theta}^{t-1} - \eta \nabla \mathcal{L}' = \boldsymbol{\theta}^{t-1} - \eta \nabla \mathcal{L} - \eta \lambda \, \boldsymbol{\theta}^{t-1}$$
$$\eta < 1, \lambda < 1 = (\underline{1 - \eta \lambda}) \boldsymbol{\theta}^{t-1} - \eta \nabla \mathcal{L}$$

越来越小 ,但由于 $-\eta VL$ 项,使得参数不会变为0

L2正则也称权重衰减 (weight decay)

神经网络示例

口 不同正则项权重对于分类性能的影响

http://playground.tensorflow.org/

提前终止 (Early Stop)

- ・ 验证集上准确率下降 (损失上升) 的时候停止训练
- ・训练很长时间,保存在验证集上最优的模型

Dropout

口在训练时,取得一个batch后,以概率p设置一些神经元为0

Dropout

口在训练时,取得一个batch后,以概率p设置一些神经元为0

- 网络结构发生了变化
- 用新网络在batch上计算梯度
- 在新网络上进行参数更新

每次取新batch时,都需要重新随机对神经元置为0

Dropout—训练时的实现

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
 """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) 
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
```

输入单元被包括概率为0.8, 隐藏单元为0.5

Dropout

- 口测试时,没有dropout,即所有的神经员都处于激活状态
- 口缩放激活函数的输出,使得每个神经元测试时输出等于训练时的期望输出

权重比例推断规则

如果训练时dropout 的概率为 p, 那么所有的权重要<mark>乘以 1 - p</mark>

Dropout—训练和测试时实现

```
该概率为保留概率
                               ng a unit active. higher = less dropout
def train_step(X):
  """ X contains the data """
  # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = np.random.rand(*H1.shape) < p # first dropout mask
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = np.random.rand(*H2.shape) < p # second dropout mask
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

Dropout—直观解释

训练时dropout

dropout 概率为0.5

测试时dropout

Dropout动机

1 强制网络有冗余特征表示

2)防止特征的co-adaptation

co-adaptation: feature detectors只有 在一些其它特定的feature detectors 存在时才能发挥作用的情况

Dropout动机

口人脸识别情形下的动机:

模型学得通过鼻检测脸的隐藏单 元h_i, 丢失h_i 对应于擦除图像中 有鼻子的信息

模型必须学习另一种h_i,要么是 鼻子存在的冗余编码,要么是像 嘴这样的脸部的另一特征

DropConnect

DropConnect: 将节点中的每个与其相连的输入权值以1-p的概率变成0

Dropout: 随机的将隐层节点的输出变成0

01 梯度下降和随机梯度下降

02 反向传播算法

03 深度学习的三个步骤和快速入门

04 随机梯度下降可能存在的问题

05 神经网络训练优化要点与技巧

06 参数初始化

目录

参数初始化

口参数不能全部初始化为0! 为什么?

- 对称权重问题: 前馈神经网络中同一层权重初始化为相同值。
- 前向传播中得到的每一层中的不同神经元激活值相同。
- 反向传播中得到的同一层的各个权重参数的梯度值相同。
- 使得隐层神经元没有区分性,神经网络无法有效学习数据中的特征。

口初始化方法

- 预训练初始化
- 随机初始化
- 固定值初始化 (例如:偏置 (Bias)通常用0来初始化)

随机初始化: 基于固定方差的初始化

口Gaussian分布初始化

• 参数从一个固定均值(比如0)和固定方差(比如0.01)的Gaussian分布进行随机初始化。

$$W = \sigma * \text{np. random. randn(fan_in, fan_out)}$$

口均匀分布初始化

• 参数可以在区间[-r,r]内采用均匀分布进行初始化

$$W = 2 * r * \text{np. random. rand(fan}_{\text{in}}, \text{fan}_{\text{out}}) - r$$

作业习题

(1) 在如下神经网络,假设激活函数为ReLU,用平方损失 $\frac{1}{2}(y-\hat{y})^2$ 计算误差,请用BP算法更新一次所有参数(学习率为1),给出更新后的参数值,并计算给定输入值x=(0.2,0.3)时初始时和更新后的输出值,检查参数更新是否降低了平方损失值

- (2) 计算 $\sigma(x) = \frac{1}{1 + \exp(-x)}$ 的一阶和二阶导数、 $\log \operatorname{softmax}(x)_{[i]} = \log \frac{\exp(x_i)}{\sum_{j=1}^{C} \exp(x_j)}$ 的梯度
- (3) 假设有一个前馈神经网络,包含L层(不包括输入层),每一层的输入和输出维度都是n,即每层有n个输入和n个神经元。激活函数为Sigmoid,损失函数为均方误差。在前向传播中,每一层主要进行哪些运算?大约需要多少次乘法和加法操作?整个网络的前向传播,总共大约需要多少次乘法操作?(请用n和L表示);在反向传播中,每一层需要计算误差项并更新权重,主要涉及哪些计算?每层大约需要多少次乘法操作?整个网络的反向传播,总共大约需要多少次乘法操作?

作业习题

(4) 如果用如下卷积替换前馈网络中的线性变换,试计算误差项 $\frac{\partial L}{Z_{ij}^{(l)}}$ 的递推式

$$z_{ij}^{(l)} = \sum_{u=0}^{K-1} \sum_{v=0}^{K-1} w_{uv} a_{i+u,j+v}^{(l-1)}$$
$$a_{ij}^{(l)} = f\left(z_{ij}^{(l)}\right)$$

(5) 如果有池化层,这一层的误差如何反向传播?