1. Considere los siguientes mapas de contornos en torno al siguiente antibacteriano prototipo, el cual está reportado en la literatura como un inhibidor de la proteína bacterial FtsZ: (3 ptos c/u, 15 ptos. en total)

- A. Haga una descripción detallada del mapa de potencial electrostático
- B. Ídem para el mapa estérico
- C. Considerando la estructura del prototipo, señale e indique claramente qué tipo de interacciones intermoleculares con el receptor debería presentar este compuesto
- D. ¿Qué otro tipo de sustituciones utilizaría en vez del patrón 2,6-difluoro en la benzamida y el conector oxígeno de ambos anillos?
- E. ¿Por qué otro tipo de fragmento podría reemplazar el benceno conectado al oxazol? De al menos 3 variaciones posibles.
- 2. De un análisis de Hansch de una serie de compuestos diseñados como antineoplásicos de estructura general "Z" se obtuvieron las siguientes correlaciones: (Preguntas 2.1-2.3). 2 ptos c/u, 6 ptos en total.

Donde I=1 ó 0 indica la presencia o ausencia de un grupo etilo sobre el nitrógeno. MR₉ es la refractividad molar del sustituyente Y₉. Por otra parte π y σ son las constantes de lipofilia de Hansch y electrónica de Hammet respectivamente para los sustituyentes X o Y según se indique.

2.1. Es correcto que:

- I. El aumento de la lipofilia siempre es beneficioso para la actividad
- II. El aumento de la refractividad (CMR) siempre aumenta la actividad pues el aporte de CMR² es despreciable.
- III. La presencia de un grupo etilo no es beneficiosa para la actividad antitumoral pues aumenta la lipofilia IV. Conviene que X e Y sean de reducida lipofilia
- a) solo IV
- b) solo III
- c) I, III y IV
- d) III, IV
- e) Todas
- 2.2. Es correcto que:
- I. X podría ser un sustituyente poco lipofílico y donor electrónico como -OH
- II. El uso de un átomo de Yodo como sustituyente en Y₉ debiese ser más favorable para la actividad que el uso de un átomo de cloro
- III. grupos como –NO₂ o –CN en X serían beneficiosos para la actividad
- IV. Los efectos electrónicos son más importantes que los efectos hidrofóbicos en la actividad antitumoral
- a) solo I
- b) II y III
- c) solo III
- d) I, II, IV
- e) II, III, IV
- 2.3. ¿Qué información **no** podría derivar usted de las ecuaciones QSAR acá presentadas?
- I. Conviene que el sustituyente X sea un grupo atractor electrónico y de baja lipofilia
- II. Es bueno para la actividad que Y sea un grupo donor electrónico y de baja lipofilia.
- III. Es beneficiosa la presencia de un grupo voluminoso en el nitrógeno piperidínico (I).
- IV. El incremento en la refractividad molar es beneficioso pero tiene un límite como valor óptimo.
- a) II y III
- b) I y III
- c) I, II y III
- d) I y II
- e) solo IV

- 3) En las siguientes dos tablas se presenta la actividad antitumoral (EC₅₀) de dos series de compuestos isósteros estrechamente relacionados con el mismo mecanismo de acción. En la primera tabla se entregan los valores de lipofilia para los sustituyentes en X e Y. En la Tabla 2 se muestra la refractividad del grupo Y (MR_Y), así como la contribución de Free-Wilson de los fragmentos I (= 1 si es que hay imidino en Y, ó 0 si no lo hay) e l₁ (=1 si es que hay metil en X ó 0 si es que hay H o etil). Para cada tabla halle mediante regresión multilineal simple una ecuación 2D-QSAR. Recuerde que puede además crear columnas adicionales con la lipofilia o refractividad elevado al cuadrado. En base a las ecuaciones hallas responda: (3 ptos cada ecuación)
- a) ¿Cómo es conveniente que sea la lipofilia de los sustituyentes X e Y? 2 ptos.
- b) ¿Cómo es conveniente que sea la refractividad molar de Y? 2 ptos.
- c) ¿Conviene que en X halla metil? 2 ptos.
- d) conviene que en Y halla imidino? 2 ptos.
- e) ¿Cuáles son las propiedades o fragmentos que más contribuyen a la actividad en cada caso? 2 ptos.
- f) Proponga 4 moléculas nuevas en base a la información analizada. Recuerde utilizar los criterios de relación estructural vistos en clases. **2 ptos.**

Table 1. Biological (EC $_{50}$ or IC $_{50}$; mol L^{-1}) 127 and Physicochemical Parameters

			log 1/EC ₅₀ (eq 10)				
No.	X	Y	obsd.	$\pi_{ m X}$	$\pi_{ m Y}$		
1	CH_3	Н	5.97	0.56	0.00		
2	CH_2CH_3	H	5.35	1.02	0.00		
3^a	(CH2)2CH3	H	5.14	1.55	0.00		
4^a	(CH2)3CH3	H	5.14	2.13	0.00		
5	Н	OH	6.46	0.00	-0.67		
6	CH_3	OH	6.89	0.56	-0.67		
7	CH_2CH_3	OH	6.49	1.02	-0.67		
8	(CH2)2CH3	OH	6.22	1.55	-0.67		
9	(CH2)3CH3	OH	6.28	2.13	-0.67		
10	H	OCH_3	6.14	0.00	-0.02		
11	CH_3	OCH_3	5.62	0.56	-0.02		
12	CH ₂ CH ₃	OCH_3	5.55	1.02	-0.02		
13	(CH2)2CH3	OCH_3	5.35	1.55	-0.02		
14	(CH2)3CH3	OCH_3	5.55	2.13	-0.02		

^a Not included in the derivation of QSAR 22 ^b ND = not determined.

Table 2. Biological (IC $_{50}$; mol L^{-1}), 128 Physicochemical, and Structural Parameters

			log 1/IC ₅₀			
No.	X	Y	obsd.	MR_{Y}	I	I_1
1	Н	Н	6.42	0.00	0	0
2	C_2H_5	H	6.47	0.00	0	0
3	CH_3	Br	7.55	0.78	0	1
4	C_2H_5	Br	6.91	0.78	0	0
5	CH_3	CN	6.84	0.48	0	1
6	C_2H_5	CN	6.57	0.48	0	0
7	CH_3	CH_2NH_2	6.63	0.83	0	1
8	C_2H_5	CH_2NH_2	6.78	0.83	0	0
9	C_2H_5	C(NH ₂)NOH	7.15	1.48	1	0
10	C_2H_5	C(NH ₂)NH	7.48	1.02	1	0
11	CH_3	$C \equiv CCH_2NH_2$	6.30	1.71	0	1
12	C_2H_5	$C \equiv CCH_2NH_2$	5.97	1.71	0	0
13	C_2H_5	$C \equiv CCH_2N(CH_3)_2$	5.88	2.64	0	0
14	CH_3	$C \equiv CCH_2(-NCH_2CH_2OCH_2CH_2-)$	5.95	3.54	0	1
15	C_2H_5	$(CH_2)_3N(CH_3)_2$	5.83	2.69	0	0
16	C_2H_5	COOC ₂ H ₅	6.02	1.58	0	0
17	C_2H_5	CONH(CH ₂) ₂ N(CH ₃) ₂	5.03	3.09	0	0

I = imidino

I1 = metil / 0 H o etil

<u>Nota:</u> en este video puede ver como activar la opción de regresión multilineal en excell y como crear ecuaciones de regresión multilineal:

https://www.youtube.com/watch?v=Bye0ZBdd6iI