St. Xavier's College (Autonomous), Kolkata

Department of Statistics

MSc in Data Science

Semester 1

Paper 3

(Module I)

Linear Algebra

Introduction to Matrices

Definition: A rectangular array of numbers is called a matrix.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its columns.

A matrix having m rows and n columns is said to have the order $m \times n$. A matrix A of order m \times n can be represented in the following form:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

In a compact form the above matrix is represented by $A = [a_{ij}], 1 \le i \le m, 1 \le j \le n$, or simply $[a_{ij}]_{m \times n}$

A matrix having only one column is called a column vector; and a matrix with only one row is called a row vector.

$$A = [\underline{\boldsymbol{a}}_{*1} \quad \underline{\boldsymbol{a}}_{*2} \quad \cdots \underline{\boldsymbol{a}}_{*(n-1)} \quad \underline{\boldsymbol{a}}_{*n}] : (Row) \text{ Vector of column vectors}$$

Or

$$A = \begin{pmatrix} \frac{\underline{a'}_{1*}}{\underline{a'}_{2*}} \\ \vdots \\ \underline{a'}_{m*} \end{pmatrix} : (Column) \text{ Vector of the row vectors}$$

A 1xn matrix is called a row vector and an mx1 matrix is called a column vector.

Equality of two Matrices: Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ having the same order mxn are equal if $a_{ij} = b_{ij}$ for each i = 1, 2, ..., m and j = 1, 2, ..., n.

Different Types of Matrices

Square Matrix: An m x n matrix A is said to be a square matrix if m = n i.e. number of rows = number of columns.

Null Matrix or Zero Matrix

A matrix in which each entry is zero is called a zero-matrix, denoted by 0. For example $O_{2\times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \ O_{2\times 3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$

Diagonal Matrix

A square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$, is said to be a diagonal matrix if $a_{ij} = 0$ for $i \neq j$. In other words, the non-zero entries appear only on the principal diagonal. For example, the zero matrix O_n and $\begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$ are a few diagonal matrices.

A diagonal matrix D of order n with the diagonal entries $(d_1, d_2, ..., d_n)$ is denoted by D = diag $(d_1, d_2, ..., d_n)$. If d_i = d for all i = 1, 2, ..., n then the diagonal matrix D is called a *scalar matrix*.

Identity Matrix

A square matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{n \times n}$, with $a_{ij} = \begin{cases} 1 \text{ for } i = j \\ 0 \text{ for } i \neq j \end{cases}$ is called the identity matrix, denoted by I_n . For example, $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Triangular Matrix

A square matrix in which all the elements below the principal diagonal are zero is called Upper Triangular matrix.

A square matrix in which all the elements above the principal diagonal are zero is called Lower Triangular matrix.

Given a square matrix $A = [a_{ij}]_{n \times n}$, for upper triangular matrix, $a_{ij} = 0$, i > j and for lower triangular matrix, $a_{ij} = 0$, i < j.

Operations on Matrices

let $A = [a_{ij}]$ and $B = [b_{ij}]$ be are two m×n matrices, then

i. Then for any element $k \in R$, $kA = [ka_{ij}]$ is an mxn matrix. [Multiplying a Scalar to a Matrix]

Example: For example, if $A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & -2 & 5 \end{bmatrix}$ and k = 5, then $5A = \begin{bmatrix} 20 & 5 & 10 \\ 0 & -10 & 25 \end{bmatrix}$.

ii. Then the sum A + B is defined to be the matrix D = $[d_{ij}]$ with $d_{ij} = a_{ij} + b_{ij}$ [Addition of Matrices]

Note that, we define the sum of two matrices only when the order of the two matrices are same.

iii. Let $A = [a_{ij}]_{m \times n}$, be an $m \times n$ matrix and $C = [c_{ij}]_{n \times r}$, be an $n \times r$ matrix.

The product AC is a matrix $Z = [z_{ij}]_{m \times r}$ of order $m \times r$,

with
$$zij = \sum_{k=1}^{n} a_{ik} c_{kj} = a_{i1} c_{1j} + a_{i2} c_{2j} + \cdots + a_{in} c_{nj}$$

Observe that the product AC is defined if and only if the number of columns of A = the number of rows of C.

In a square matrix, $A = [a_{ij}]_{n \times n}$, of order n, the entries a_{11} , a_{22} ,...., a_{nn} are called the diagonal entries and form the principal diagonal of A.

Trace of a Matrix

The sum of the elements of a square matrix A lying along the principal diagonal is called the trace of A i.e. tr(A). Thus if $A = \left[a_{ij}\right]_{n \times n}$

then
$$tr(A) = \sum_{i=1}^{n} a_{ii} = a_{11} + a_{22} + \dots + a_{nn}$$
.

For two square matrices, A and B of the same order, (a) tr(A + B) = tr(A) + tr(B). (b) tr(AB) = tr(BA), in case both AB and BA are defined. • Let A, B and C be matrices of order $m \times n$, and let $k, \ell \in R$.

Then

- i. A + B = B + A (commutative).
- ii. (A + B) + C = A + (B + C) (associative).
- iii. 0+A = A+0 [existence of additive identity]
- iv. A+(-A) = (-A)+A = 0 [existence of additive inverse]
- v. k(A+B) = kA+kB
- vi. $(k + \ell)A = kA + \ell A$
- vii. $k(\ell A) = (k\ell)A$.
- Suppose that the matrices A, B and C are so chosen that the matrix multiplications are defined.
 - i. Then (AB)C = A(BC). That is, the matrix multiplication is associative.
 - ii. For any $k \in R$, (kA)B = k(AB) = A(kB).
 - iii. Then A(B + C) = AB + AC. That is, multiplication distributes over addition.
 - iv. If A is an $n \times n$ matrix then $AI_n = I_n A = A$. [Multiplicative identity]
 - v. For any square matrix A of order n and $D = D = diag(d_1, d_2, ..., d_n)$, we have the first row of DA is d_1 times the first row of A;

for $1 \le i \le n$, the i th row of DA is d_i times the ith row of A.

A similar statement holds for the columns of A when A is multiplied on the right by D.

• Two square matrices A and B are said to commute if AB = BA.

In general, the matrix product is not commutative.

For example, consider the following two matrices $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. Check whether AB=BA.

Transpose of a Matrix

The matrix obtained from any given matrix A, by interchanging its rows and columns, is called the transpose of A and is denoted by A'.

If
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
, and $A' = \begin{bmatrix} b_{ij} \end{bmatrix}_{m \times m}$, then $b_{ij} = a_{ij}$, \forall i, j.

Properties of Transpose

- (i) (A')' = A
- (ii) (A + B)' = A' + B', A and B being conformable for addition
- (iii) $(\alpha A)' = \alpha A'$, α being scalar
- (iv) (AB)' = B'A', A and B being conformable for multiplication

Some More Different types of Matrices

Symmetric Matrix and Skew-Symmetric Matrices

A matrix A over R is called symmetric if $A^t = A$ and skew-symmetric if $A^t = -A$.

A matrix A is said to be orthogonal if $AA^t = A^tA = I$ [in case all the columns of A are mutually orthogonal]

Example: A =
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & -1 \\ 3 & -1 & 4 \end{pmatrix}$$
, B = $\begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{pmatrix}$, C = $\begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} \end{pmatrix}$

A is symmetric, B is skew-symmetric and C an orthogonal matrix.

Nilpotent Matrix

The matrices A for which a positive integer k exists such that $A^k = 0$ are called nilpotent matrices.

The least positive integer k for which $A^k = 0$ is called the order of nilpotency.

Example: 1. Let
$$A = [a_{ij}]_{n \times n}$$
 be an $n \times n$ matrix with aij $= \begin{cases} 1 & \text{if } i = j + 1 \\ 0 & \text{otherwise} \end{cases}$.

Then $A^n = 0$ and $A^l \neq 0$ for $1 \leq \ell \leq n - 1$.

2. B =
$$\begin{pmatrix} 0 & 2 & 1 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Find the order of nilpotency.

Idempotent Matrix

Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
. Then $A^2 = A$.

The matrices that satisfy the condition that $A^2 = A$ are called idempotent matrices

Submatrix of a Matrix

A matrix obtained by deleting some of the rows and/or columns of a matrix is said to be a submatrix of the given matrix.

$$A = \begin{bmatrix} 4 & 1 & 2 \\ 0 & -2 & 5 \end{bmatrix}.$$

Some of the submatrices of A are: [4],
$$\begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 \\ -2 & 5 \end{bmatrix}$, $\begin{bmatrix} 4 & 2 \\ 0 & 5 \end{bmatrix}$

The matrices $\begin{bmatrix} 4 & 1 \\ 1 & -2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -2 \end{bmatrix}$ are not submatrices of A.

Partitioning of Matrices:

Let A be an $n \times m$ matrix and B be an $m \times p$ matrix. Suppose r < m.

Then, we can decompose the matrices A and B as $A = [P^{nxr} \ Q^{nx(m-r)}]$ and $B = \begin{bmatrix} H^{rxp} \\ K^{(m-r)xp} \end{bmatrix}$; where P has order $n \times r$ and H has order $r \times p$.

That is, the matrices P and Q are submatrices of A and P consists of the first r columns of A and Q consists of the last m - r columns of A.

Similarly, H and K are submatrices of B and H consists of the first r rows of B and K consists of the last m - r rows of B.

Result: Let
$$A = [a_{ij}] = [P^{nxr} \ Q^{nx(m-r)}]$$
 and $B = [b_{ij}] = \begin{bmatrix} H^{rxp} \\ K^{(m-r)xp} \end{bmatrix}$ be defined as above. Then $AB = P H + QK$.

It may be possible to block the matrix in such a way that a few blocks are either identity matrices or zero matrices. In this case, it may be easy to handle the matrix product using the block form.

Example: 1.
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$

$$AB = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \end{pmatrix} (e \quad f)$$

Assignment:

1. Let
$$A = (a_1, a_2, ..., a_n)$$
 and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$. Find AB and BA

- 2. Find examples for the following statements.
- a). Suppose that the matrix product AB is defined. Then the product BA need not be defined.
- b). Suppose that the matrices A and B are square matrices of order n. Then AB and BA may or may not be equal.
 - 3. Show that for any square matrix A, $S = \frac{1}{2}(A + A^t)$ is symmetric, $T = \frac{1}{2}(A A^t)$ is skew-symmetric, and A = S + T.
 - 4. Show that the product of two lower triangular matrices is a lower triangular matrix. A similar statement holds for upper triangular matrices.
 - 5. Show that the diagonal entries of a skew-symmetric matrix are zero.