Named Entity Recognition (NER)

(Natural Language Processing)

Randil Pushpananda

rpn@ucsc.cmb.ac.lk

Named Entity Recognition (NER)

- Find and classify all the named entities in a text.
- What is a named entity?
 - A mention of an entity using its name.
 - Kansas Jayhawks
 - This is a subset of the possible mentions...
 - Kansas, Jayhawks, the team, it, they
- Find means identify the exact span of the mention
- Classify means determine the category of the entity being referred to

Proper Nouns	Common Nouns	
Havaianas	slippers	
Coconut	tree	
Jolibee	fastfood	
Acer	computer	
Robert	man/boy	
Maria	woman/gir_l	

Example

I hear Berlin is wonderful in the winter

- The category can be generic like Organization, Person, Location, Time, etc., or a custom category depending on the use case such as Healthcare Terms, Programming Language, etc.
- For example, an NER model detects "football" as an entity in a paragraph and classifies it into the category of sports.

Example

 The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Example

 The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Person, Date, Organization

NE Types

Туре	Tag	Sample Categories	
People	PER	Individuals, fictional characters, small groups	
Organization	ORG	Companies, agencies, political parties, religious groups, sports teams	
Location	LOC	Physical extents, mountains, lakes, seas	
Geo-Political Entity	GPE	Countries, states, provinces, counties	
Facility	FAC	Bridges, buildings, airports	
Vehicles	VEH	Planes, trains, and automobiles	

Type	Example
People	Turing is often considered to be the father of modern computer science.
Organization	The <i>IPCC</i> said it is likely that future tropical cyclones will become more intense.
Location	The Mt. Sanitas loop hike begins at the base of Sunshine Canyon.
Geo-Political Entity	Palo Alto is looking at raising the fees for parking in the University Avenue dis-
	trict.
Facility	Drivers were advised to consider either the Tappan Zee Bridge or the Lincoln
	Tunnel.
Vehicles	The updated Mini Cooper retains its charm and agility.

```
If your task is to find out
'where',
'what',
'who',
'when' from a sentence,
```

NER is the solution.

Ambiguity in NE

Name	Possible Categories
Washington	Person, Location, Political Entity, Organization, Facility
Downing St.	Location, Organization
IRA	Person, Organization, Monetary Instrument
Louis Vuitton	Person, Organization, Commercial Product

[PERS Washington] was born into slavery on the farm of James Burroughs.

[ORG Washington] went up 2 games to 1 in the four-game series.

Blair arrived in [LOC Washington] for what may well be his last state visit.

In June, [GPE Washington] passed a primary seatbelt law.

The [FAC Washington] had proved to be a leaky ship, every passage I made...

NER Approaches

- As with partial parsing and chunking there are two basic approaches (and hybrids)
 - Rule-based (regular expressions)
 - Lists of names
 - Patterns to match things that look like names
 - Patterns to match the environments that classes of names tend to occur in.
 - ML-based approaches
 - Get annotated training data
 - Extract features
 - Train systems to replicate the annotation

NER Pipeline

NER Features

- Features may include
 - the word
 - POS tag
 - IOB tag
 - Inside
 - Outside
 - Beginning
 - the shape of the word

Features				Label
American	NNP	B_{NP}	cap	BORG
Airlines	NNPS	I_{NP}	cap	IORG
,	PUNC	0	punc	0
a	DT	B_{NP}	lower	0
unit	NN	I_{NP}	lower	0
of	IN	B_{PP}	lower	0
AMR	NNP	B_{NP}	upper	BORG
Corp.	NNP	I_{NP}	cap_punc	IORG
,	PUNC	0	punc	0
immediately	RB	B_{ADVP}	lower	0
matched	VBD	B_{VP}	lower	0
the	DT	B_{NP}	lower	0
move	NN	I_{NP}	lower	0
,	PUNC	0	punc	0
spokesman	NN	B_{NP}	lower	0
Tim	NNP	I_{NP}	cap	B_{PER}
Wagner	NNP	I_{NP}	cap	I_{PER}
said	VBD	B_{VP}	lower	0
	PUNC	0	punc	0

• The 2-by-2 contingency table

	Correct	Not correct
Selected	True-Positive	False-Positive
Not Selected	False-Negative	True-Negative

• The 2-by-2 contingency table

	Correct	Not correct
Selected	True-Positive	False-Positive
Not Selected	False-Negative	True-Negative

Selected and Not selected (Predicted Values)
Correct and not correct (Actual Values)

	Correct	Not correct
Selected	True-Positive	False-Positive
Not Selected	False-Negative	True-Negative

Precision: % of selected items that are correct = tp / (tp + fp)

- From all the classes we have predicted as positive, how many are actually positive.
- Precision should be high as possible.

Recall: % of correct items that are selected = tp / (tp + fn)

- From all the positive classes, how many we predicted correctly.
- Recall should be high as possible.

Precision & Recall

у	y pred	output for threshold 0.6	Recall	Precision	Accuracy
0	0.5	0			
1	0.9	1			
0	0.7	1			
1	0.7	1	1/2	2/3	4/7
1	0.3	0			
0	0.4	0			
1	0.5	0			

Precision =
$$\frac{TP}{TP + FP}$$
 Recall = $\frac{TP}{TP + FN}$ Accuracy = TP + TN / Total

- A combined measure: F
 - A combined measure that assesses the P/R tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\partial \frac{1}{P} + (1 - \partial) \frac{1}{R}} = \frac{(b^2 + 1)PR}{b^2 P + R}$$

- People usually use balanced F₁ measure
 - i.e., with $\beta = 1$ (that is, $\alpha = \frac{1}{2}$), then

$$F_1 = 2PR/(P+R)$$
 $F_2 = 2PR/(P+R)$ $F_3 = 2PR/(P+R)$ $F_4 = 2PR/(P+R)$ $F_4 = 2PR/(P+R)$ Recall *Precision

Quiz

$$F_1 = 2PR/(P+R)$$

•
$$P = 40\%$$
 $R = 40\%$ $F_1 =$

•
$$P = 75\%$$
 $R = 25\%$ $F_1 =$

Quiz

$$F_1 = 2PR/(P+R)$$

•
$$P = 40\%$$
 $R = 40\%$ $F_1 = 40.0\%$

•
$$P = 75\%$$
 $R = 25\%$ $F_1 = 37.5\%$