GEI-720 MODÉLISATION ET COMMANDE MULTIVARIABLES

Jean de Lafontaine

CHAPITRE 1

Introduction

Connaissances et compétences

- Connaître la nature et les exigences des systèmes "complexes"
- Connaître l'évolution de la commande classique à la commande moderne
- Reconnaître les différences entre la commande classique et la commande moderne
- Connaître les éléments d'un système de commande multivariable

Contenu de ce chapitre

1	INT	RODUCTION	1-1
	1.1	Définitions	1-1
	1.2	Commande classique et commande moderne	1-2
		Utilités de la modélisation et de la commande multivariables	
	1.4	Applications de la modélisation et de la commande multivariables	1-5

1 INTRODUCTION

1.1 DÉFINITIONS

• Système

Agencement organisé de composants qui se coordonnent pour assurer une fonction déterminée ou pour concourir à un résultat désiré.

- chaque élément d'un système peut être un système en soi (appelés sous-systèmes)
- un système produit des résultats ou des effets (appelées sorties) à partir d'objectifs ou de causes (appelées entrées)

• Systèmes "complexes"

Systèmes qui ont une ou plusieurs des caractéristiques suivantes:

- système qui intègre plus d'une discipline des sciences physiques (e.g. mécanique, électrique, fluidique, thermodynamique, aérodynamique, pneumatique, chimie, etc)
- système dont la réalisation requiert la coordination de plusieurs équipes de travail
- système qui comporte une structure hiérarchique sur plusieurs niveaux, à partir des composantes de base, en passant par les sous-systèmes, jusqu'au système complet
- système qui, à cause de son coût, de sa complexité ou des dangers qu'il représente, doit être conçu à un très haut niveau de détail avant que la réalisation sur matériel ne soit initiée, d'où la nécessité de représenter le système sous forme de modèle mathématique
- système qui a une autonomie intégrée, qui a une certaine "intelligence" embarquée, lui permettant de prendre des décisions autonomes (i.e. sans intervention humaine).

Modèle

La description et la représentation, sous formes de symboles et de relations symboliques, des lois qui régissent le fonctionnement d'un système.

• Modèle mathématique

Représentation sous forme de relations logiques/algébriques/différentielles/intégrales.

• Modèle mathématique multivariable

Un modèle multivariable est un modèle mathématique qui est soumis à des entrées multiples, qui produit des sorties multiples (SIMO, MISO, MIMO) et qui possède plusieurs variables internes (variable d'état) qui déterminent en tout temps l'état dynamique du système.

Les modèles de systèmes complexes sont normalement des modèles multivariables.

• Commande multivariable

La théorie et la pratique de l'asservissement de systèmes représentés par des modèles multivariables et qui utilise les variables d'état dans le calcul des lois de commande.

Commande moderne

Terme utilisé pour la commande multivariable, par opposition à la commande "classique" à entrée-sortie uniques et qui utilise uniquement les variables d'entrée et de sortie (PID et avance-retard de phase).

1.2 COMMANDE CLASSIQUE ET COMMANDE MODERNE

• Commande classique

- ⇒ Les techniques de conception de l'asservissement sont basées sur le lieu des racines (plan s) et la réponse en fréquence obtenus à partir d'un modèle de type **fonction de transfert**.
- ⇒ Les lois de commande sont calculées à partir de la sortie: rétroaction par "retour de sortie"

Commande classique

• Commande moderne

- ⇒ Les techniques de conception de l'asservissement sont basées sur un modèle temporel multivariable du système, i.e. un modèle de type variables-d'état.
- ⇒ Les lois de commande sont calculées à partir des variables d'état ("retour d'état) ou des variables de sortie.
- ⇒ Deux types d'asservissements: les **régulateurs** et les **suiveurs**,

 $\dot{x} = Ax + Bu$ équation d'état y = Cx + Du équation de sortie

x = matrice-colonne des variables d'état

Commande moderne

Régulateur à retour d'état

Régulateur avec estimateur d'état

Suiveur (traqueur)

Comparaison: commande classique et commande moderne

Commande classique	Commande moderne
•	
utilisée pour des modèles à entrée-sortie	utilisée pour des modèles à entrées-sorties
unique, de type fonction de transfert, dans le	multiples, de type variable-d'état (A,B,C,D),
plan s et/ou des fréquences	dans le domaine du temps
le retour de sortie (output feedback) est	le retour d'état (state feedback) ou le retour
utilisé comme signal de rétroaction	des sorties est utilisé comme rétroaction
seul un modèle de la dynamique entrée-	un modèle de la dynamique interne du
sortie est requis dans la conception	système est requis (variables d'état)
l'asservissement contient normalement 2 ou	l'asservissement contient des matrices de
3 paramètres de commande à ajuster	paramètres de commande à ajuster
il y a un lien direct entre les paramètres de	le monde physique est séparé des paramètres
commande et les paramètres physiques (e.g.	de commande par des calculs
PID); le design intuitif est possible	mathématiques complexes qui obscurcissent
	le design; perte de l'intuition
possibilités de commande optimale plutôt	permet la commande optimale (temps
limitées (nombre limité de paramètres)	minimum, erreur minimum, énergie
	minimum, etc.)
il est possible de faire un design de	le design de compensateur nécessite
compensateur par calculs à la main ou par	d'importants calculs et solution d'équations
construction graphique	algébriques/différentielles matricielles
le système asservi possède une robustesse	la robustesse du design (dans le cas du
naturelle aux erreurs dans le modèle	retour des sorties) n'est pas assurée
le design par le lieu des racines a pour	le design par le lieu des racines permet de
objectif le positionnement de 2 ou 3 pôles	placer tous les pôles du système (si certaines
dominants, selon la réponse désirée	conditions sont remplies)
le design par la réponse en fréquence	le design par la réponse en fréquence doit
(amplitude et phase) a pour objectif	être généralisé (valeurs singulières) et a pour
l'assurance d'une tolérance aux retards et aux	objectif l'assurance de la robustesse du
variations de gain dans la boucle de	design aux erreurs/omissions dans le modèle
commande (marges de gain, de phase)	mathématique utilisé
le design du système de commande peut être	la performance du système de commande est
exécuté sans aucun modèle mathématique	dépendante de la précision du modèle
du système (e.g. tracé de Bode)	mathématique utilisé dans la conception
alantic contact and a land	11/2 Na dashmalasis na Ziri
adaptée aux technologies analogue (ampli-	liée à la technologie numérique seulement
op) et numérique (μp, DSP)	
adaptée à la commande de systèmes	adaptée à la commande de systèmes
relativement simples	"complexes"

Pour un système multivariable avec r entrées et p sorties, peut-on faire le design de l'asservissement en appliquant les techniques de commande classique (lieu des racines, lieu de Bode) pour chacune des r*p fonctions de transfert, en fermant les boucles une à la fois?

1.3 UTILITÉS DE LA MODÉLISATION ET DE LA COMMANDE MULTIVARIABLES

- Utilités de la modélisation et de la commande multivariables:
 - pour les systèmes complexes, dont l'ordre du modèle est souvent très élevé, l'approche par fonctions de transfert donne de faux résultats à cause des problèmes numériques engendrés; on ne retrouve pas ces problèmes avec un modèle temporel variable-d'état
 - avec un modèle multivariable, la commande peut utiliser beaucoup plus d'information dans la rétroaction (en fait, toutes les variables internes) et peut donc permettre une commande plus complète, plus efficace et plus performante du système qu'il est possible de le faire avec la modélisation et la commande classiques; sous certaines conditions, on peut "refaire" la dynamique complète du système (replacer tous les pôles du système)
 - presque toutes les techniques de conception d'asservissements qui permettent une performance optimale du système en boucle fermée (i.e. minimiser ou maximiser des critères de performance) sont basées sur les modèles et la commande multivariables
 - l'utilisation de modèles multivariables permet des changements de base dans lesquelles certaines propriétés du système sont mises en évidence (commandabilité, observabilité, relative importance des modes et simplification du modèle) et permet ainsi une meilleure compréhension du système à commander.
- Inconvénients de la modélisation et de la commande multivariables:
 - exigent un modèle mathématique du système à commander et engendre donc une dépendance de la performance sur la qualité du modèle (problème de robustesse)
 - exigent souvent des calculs (on-line et off-line) plus complexes que la commande classique

1.4 APPLICATIONS DE LA MODÉLISATION ET DE LA COMMANDE MULTIVARIABLES

- Contrôle de procédés : industrie chimique, pharmaceutique, pâtes et papier, métallurgie
- Commande et contrôle de processus biologiques: cancer, anomalies cardiaques, respiratoires.
- Commande de systèmes mécatroniques complexes: centrale nucléaire, satellite/véhicule d'exploration, robot, manipulateur, automobile, aéronef, navire, etc.