A Sample PhD Thesis

A. N. Other

A Thesis submitted for the degree of Doctor of Philosophy

School of Something University of Somewhere

July 2012

Contents

Ad	cknowledgements	V
Αŀ	bstract	vi
1	Introduction	1
2	Technical Introduction	2
	2.1 Listings	2
	2.2 Theorems	2
	2.3 Algorithms	3
3	Method	4
4	Results	5
5	Conclusions	6

123456789 i

List of Figures

123456789 ii

List of Tables

Listings

2.1 Sample

123456789 iv

Acknowledgements

I would like to thank my supervisor, Professor Someone. This research was funded by the Imaginary Research Council.

123456789 \mathbf{v}

Abstract

A brief summary of the project goes here.

123456789 vi

1 Introduction

2 Technical Introduction

2.1 Listings

Some sample code is shown in Listing 2.1.

Listing 2.1: Sample

```
#include <stdio.h> /* needed for printf */
#include <math.h> /* needed for sqrt */

int main()
{
   double x = sqrt(2.0); /* x = \sqrt{2} */
   printf("x_{\square}=_{\square}%f\n", x);
   return 1;
}
```

2.2 Theorems

Definition 1 (Tautology) A tautology is a proposition that is always true for any value of its variables.

Definition 2 (Contradiction) A contradiction is a proposition that is always false for any value of its variables.

Theorem 1 If proposition P is a tautology then $\sim P$ is a contradiction, and conversely.

Example 1 "It is raining or it is not raining" is a tautology, but "it is not raining and it is raining" is a contradiction.

Remark 1 Example 1 used De Morgans Law $\sim (p \lor q) \equiv \sim p \land \sim q$.

2.3 Algorithms

Using algorithm (theorem-like) and tabbing environments:

Algorithm 1 (Gauss-Seidel Algorithm)

- 1. For k = 1 to maximum number of iterations
 - 2. For i=1 to n $\operatorname{Set} x_i^{(k)} = \frac{b_i \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}}{a_{ii}}$
 - 3. If $|\vec{x}^{(k)} \vec{x}^{(k-1)}| < \epsilon$, where ϵ is a specified stopping criteria, stop.

Using floating algorithm2e environment:

 $\begin{array}{c|c} \textbf{for } k \leftarrow 1 \textbf{ to } maximum \ iterations \ \textbf{do} \\ \hline & \textbf{for } i \leftarrow 1 \textbf{ to } n \textbf{ do} \\ \hline & \begin{vmatrix} x_i^{(k)} = \frac{b_i - \sum_{j=1}^{i-1} a_{ij} x_j^{(k)} - \sum_{j=i+1}^n a_{ij} x_j^{(k-1)}}{a_{ii}}; \\ \textbf{end} \\ \hline & \textbf{if } |\vec{x}^{(k)} - \vec{x}^{(k-1)}| < \epsilon \textbf{ then} \\ \hline & \textbf{Stop} \\ & \textbf{end} \\ \hline & \textbf{end} \\ \hline \end{array} \right.;$

Algorithm 2: Gauss-Seidel Algorithm

3 Method

The distance was measured in km and the area in km². The acceleration was given in $\rm m\,s^{-2}.$

4 Results

Out of 12 890 experiments, 1289 of them had a mean squared error of 0.346 and 128 of them had a mean squared error of 1.23×10^{-6} .

The acceleration was approximately $9.78\,\mathrm{m\,s^{-2}}.$

Conclusions