

Y36PSI Fyzická vrstva

Osnova

- kapacita kanálu
- kódování
- metalická média
- optická média

Rozlehlost

$$a = \frac{t_{odesilani}}{t_{prenosu}}$$

Multiplex

- FDMA
- frekvenční multiplex
 časový multiplex
- TDMA

Kapacita přenosového kanálu

Nyquistova věta

$$C=2.W.\log_2(V)[b/s, Hz]$$

Shannonova věta

$$C = 2.W.\log_2(1 + S/N)[b/s, Hz]$$

W max. kmitočet

C přenosová rychlost

V počet diskrétních hodnot

S/N odstup signál-šum

Kódování

- stejnosměrná složka,
- časová synchronizace,
- šířka pásma,
- přenosová rychlost,

Non Return to Zero

chybí auto synchronizace (lze doplnit kódováním)

Non Return to Zero Inverted

- 1 změna stavu
- USB

Bipolar

nemá stejnosměrnou složku

Alternative Mark Inversion

MLT-3

- cyklus -1,0,1,0,...
- FDDI, 100BaseTx

Manchester

- dvojnásobná šířka pásma oproti NRZ,
- IEEE 802.3 Ethernet,
- IEEE 802.4 Token Bus

Diferenciální manchester

- 1 otáčí hranu,
- ignoruje polaritu,
- IEEE 802.5 Token Ring

4B5B

- zajištění hodin,
- 100BaseTx, 100BaseFx

0	0000	11110 hex data 0	8	1000	10010 hex data 8
1	0001	01001 hex data 1	9	1001	10011 hex data 9
2	0010	10100 hex data 2	Α	1010	10110 hex data A
3	0011	10101 hex data 3	В	1011	10111 hex data B
4	0100	01010 hex data 4	С	1100	11010 hex data C
5	0101	01011 hex data 5	D	1101	11011 hex data D
6	0110	01110 hex data 6	Е	1110	11100 hex data E
7	0111	01111 hex data 7	F	1111	11101 hex data F

Metalická vedení

symetrická

nesymetrická

UTP kabely

- cat 3 16MHz, 10Mbps
- cat 4 20MHz, 16Mbps
- cat 5 100MHz, 100Mbps (1Gbps)
- cat 5e 100MHz, 1Gbps
- cat 6 250MHz, 1Gbps (10Gbps)
- cat 6a 500MHz, 10Gbps (2/2008)
- cat 7 600MHz, 100Gbps (2013)

ANIXTER		DIN	ISO/IEC	CELENEC frekvence
Level 5	Cat 5		Cat 5, Class D	100 MHz
Level 6	Cat 5+			
Level 7	Cat 6		Cat 6, Class E	200 MHz
		Cat 6 Klasse E	Cat 7. Class F	600 MHz

Jan Kubr - Y36PSI 15 10/2008

Konektory

Chyby na vedení

Přeslechy

Útlum a přeslech

Optická vedení

Řez vláknem

Snellův zákon lomu

$$n_1 \sin \phi_1 = n_2 \sin \phi_2$$

nebo

$$\frac{\sin\phi_1}{\sin\phi_2} = \frac{n_2}{n_1}$$

Kritický úhel lomu

Když
$$\sin \phi_1 = \frac{n_2}{n_1} \text{ potom } \phi_2 = \sin^{-1} \left(\frac{n_1}{n_2} \sin(\phi_1) \right) = 90^{\circ}$$

Takže, kritický úhel lomu je definován

$$\sin \phi_c = \frac{n_2}{n_1}$$

Jev totální vnitřního odrazu

Když $\phi_1 > \phi_c$ potom dochází k jevu totálního vnitřní odrazu a:

$$\phi_1 = \phi_2$$

Přenos paprsku v ideálním optickém vlákně

Maximální úhel navázaní

Maximální úhel navázaní

Maximální úhel navázání

Numerická apertura

- míra schopnosti vlákna navázat paprsek do jádra
- závisí na okolí

$$NA = n_0 \cdot \phi_a$$

 $NA = (n_1^2 - n_2^2)^{1/2}$

- $n_0 = 1$ pro vzduch
- ϕ_0 maximální úhel navázání

Typy vláken

Útlum

Disperze

- vidová
- chromatická

Mezisymbolová interference

Parametry vláken

- útlum, měrný útlum,
- šířka přenosového pásma

		rozměr			
	50/125	50/125	62.5/125	100/140	um
útlum 850nm		2,6	3,4	3,7	dB/km
útlum 1300nm	0,3	0,48	0,63	0,67	dB/km
bandwidth	~100000	1400	1000	500	MHz.km

Konektory

Poděkování

Děkuji Jiřímu Hájkovi a Janu Janečkovi za poskytnuté materiály využité v této přednášce.