

Table des matières

\mathbf{Rec}	collements
1.1	Union disjointe
	1.1.1 Faisceau
	1.1.2 Topologie
1.2	Cas général
1.3	Topologie
1.4	Faisceau
1.5	Conditions de recollements explicites
	1.5.1 Cas de deux ouverts $(X_1 \sqcup X_2)/\sim_{\rho} = X$
	1.5.2 Cas général : $X = (\sqcup X_i) / \sim \ldots$
1.6	Sections de \mathbb{P}^n_k
1.7	Cas de \mathbb{P}^1_k

TABLE DES MATIÈRES

Chapitre 1

Recollements

1.1 Union disjointe

En gros ça va être le recollement selon des ouverts vides :

$$X = \sqcup X_i$$

1.1.1 Faisceau

Le faisceau est clair via

$$0 \to \mathcal{O}_X \to \mathcal{O}_X|_{X_1} \times \ldots \times \mathcal{O}_X|_{X_k} \to \prod \mathcal{O}_X(X_i \cap X_j) \to 0$$

mais le dernier terme c'est le faisceau nul.

1.1.2 Topologie

Ducoup là la topologie est assez claire, c'est des unions d'ouverts des X_i . En particulier les X_i sont ouverts.

1.2 Cas général

- 1. Des variétés affines $(X_i)_i$,
- 2. Des ouverts $U_i j \subset X_i$,
- 3. Des isomorphismes

$$\varphi_{ij} \colon U_i j \simeq U_{ji}$$

tels que $\varphi_{ij} = \varphi_{kj} \circ \varphi_{ik}$ en se restreignant aux bons ouverts, i.e.

 X_i X_j

 X_k

Ça fait une relation d'équivalence $x_i \sim x_j$ si $\varphi_{ij}(x_i) = x_j$. En particulier, on peut former

$$\pi \sqcup_i X_i \to (\sqcup_i X_i)/\sim$$

maintenant faut décrire le faisceau et la topologie!

1.3 Topologie

Donc naturellement on met la topologie quotient. Et on regarde le morphisme

$$\pi \sqcup_i X_i \to (\sqcup_i X_i)/\sim$$
.

Donc un sous-ensemble E du quotient est ouvert ssi $p^{-1}E$ est ouvert. Comme on part d'une union disjointe, ça va être une unione disjointe d'ouverts et on peut regarder essentiellement (réflechir un peu plus à comment les décrire)

$$p^{-1}p(U)$$

pour $U \subset X_i$.

Proposition 1.3.1. Pour $U \subset X_i$ on a

$$p^{-1}p(U) = U \cup \sqcup_j \varphi_{ij}U \cap U_{ij}.$$

Et ces ouverts sont une base de la topologie. (Faut juste intersecter avec les $\bar{(}X_i)$ qui sont ouverts)

1.4 Faisceau

À nouveau on va étudier

$$\mathcal{O}_X \to \pi_* \mathcal{O}_{\sqcup_i X_i}$$

sur les intersections.

1.5 Conditions de recollements explicites

1.5.1 Cas de deux ouverts $(X_1 \sqcup X_2)/\sim_{\rho} = X$

Essentiellement, la surjectivité de $X_1 \sqcup X_2 \to X$ induit une injection

$$\mathcal{O}_X \hookrightarrow \mathcal{O}_{X_1 \sqcup X_2}|_{X_1} \times \mathcal{O}_{X_1 \sqcup X_2}|_{X_2}$$

Remarque 1. En fait plus naturellement, des "fonctions" sur $U \subset X$ c'est vraiment des fonctions sur $X_1 \sqcup X_2$ qui passent au quotient.

Ducoup le morphisme on le décrit via

$$\mathcal{O}_X(\pi(X_i)) \ni g_i \mapsto (g_i \circ \pi|_{X_i}, g_i \circ \pi \circ \rho_{ji})$$

sur $\pi(X_i)$ parce que

$$\pi^{-1}(\pi(X_i)) = X_i \sqcup \rho_{ij}(X_i \cap U_{ij} = U_{ij}).$$

Et pour $U \subset X_i$ on écrit

$$\mathcal{O}_X(\pi(U)) \ni g_i \mapsto (g_i \circ \pi|_U, g_i \circ \pi \circ \rho_{ji}|_{\rho_{ij}(U \cap U_{ij})})$$

Bon maintenant les conditions de recollement peuvent s'écrire par restriction:

$$(q_1 \circ \pi|_{X_1})|_{U_{12}} = q_2 \circ \pi \circ \rho_{12}$$

 et

$$g_1 \circ \pi \circ \rho_{21} = (g_2 \circ \pi|_{X_2})|_{U_{21}}$$

mais en fait avoir l'un ou l'autre c'est équivalent vu que $\rho_{21} \circ \rho_{12} = id_{U_{21}}$.

1.5.2 Cas général : $X = (\sqcup X_i)/\sim$

Cette fois faut noter à nouveau que

$$\pi^{-1}\pi X_i = X_i \sqcup \bigsqcup_{j \neq i} U_{ji}$$

et donc si on a $g_i \in \pi(X_i)$ qu'on voir si on peut les relever on écrit via $\mathcal{O}_X \hookrightarrow \pi_* \mathcal{O}_{\sqcup X_i}$:

$$g_i \mapsto (g_i \circ \pi|_{X_i}, (g_i \circ \pi \circ \rho_{ji})_j)$$

alors pour g_{j_1} et g_{j_2} on a la condition sur $\pi(U_{j_1j_2})$:

$$g_{j_1} \circ \pi|_{U_{j_1j_2}} = g_{j_2} \circ \pi \circ \rho_{j_1j_2}$$

et les autres conditions sur $\rho_{j_1i}(U_{j_1j_2} \cap U_{j_1i}) = \rho_{j_2i}(U_{j_2j_1} \cap U_{j_2i}) = V$ (Je crois que c'est égal mais ça change rien) données par

$$g_1 \circ \pi \circ \rho_{ij_1}|_V = g_2 \circ \pi \circ \rho_{ij_2}|_V$$

mais $V \subset U_{ij_1} \cap U_{ij_2}$ et on a les deux identités

$$\rho_{ij_1} \circ \rho_{j_1i} = id$$

$$\rho_{ij_2} \circ \rho_{j_1i} = \rho_{j_1j_2}$$

en particulier suffit de vérifier que la première condition.

1.6 Sections de \mathbb{P}^n_k

Question 1. Étant donné une section sur $\mathbb{A}^n(k)$ non constante est-ce qu'on peut relever à $\mathbb{P}^n(k)$?

Donc là $X_i = \mathbb{A}^n(k)$ pour tout $i = 0, \dots, n$ le changement de carte $\rho_{ij} \colon U_{ij} \to U_{ji}$ est donnée par

$$\rho_{ij}(t_0,\ldots,\hat{t}_i,\ldots,t_n) \mapsto (t_0/t_j,\ldots,\hat{t}_j,\ldots,t_{i-1}/t_j,1/t_j,\ldots,t_n/t_j)$$

d'où la flèche

$$(\rho_{ij})_*: k[T_0, \dots, \hat{T}_j, \dots, T_n]_{T_i} = k[U_{ji}] \to k[U_{ij}]k[T_0, \dots, \hat{T}_i, \dots, T_n]_{T_i}$$

est donnée

$$(\rho_{ij})_*(T_k) = \begin{cases} 1/T_j \text{ si } k = i \\ T_k/T_j \text{ sinon.} \end{cases}$$

En particulier dès qu'on a un polynôme non trivial P sur X_i et que T_j apparaît disons bah via $(\rho_{ji})_*$ on obtient une section

$$(\rho_{ji})_*(P) \in k[U_{ji}] \backslash k[X_j]$$

donc se relève pas (parce que $1/T_i$ apparait et est pas déf globalement).

1.7 Cas de \mathbb{P}^1_k

J'entends souvent Aphelli parler de k[X,Y]/(XY-1) comme de l'intersection de U_0 et U_1 . Faudrait explorer.

Chapitre 2

Propriété explicite de faisceau

Quand on a une variété X on peut y penser via un recollement d'affines. C'est à dire via (déjà deux ouverts) :

$$0 \to \mathcal{O}_X(U \cup V) \to \mathcal{O}_X(U) \times \mathcal{O}_X(V) \to \mathcal{O}_X(U \cap V) \to 0$$

donné par