Concurrencia

Dr. Francisco E. Cabrera

Concurrencia

Concurrencia

Es la capacidad del procesador para ejecutar mas de un proceso al mismo tiempo.

- El Task Scheduler del SO se encarga de gestionarlo.
 - Decide qué proceso se va a ejecutar y cuándo.
 - Gestiona los recursos.
 - Prioriza procesos.
 - Interrumpe procesos.
 - Realiza cambios de contexto.

Paralelismo

Consiste en aprovechar la concurrencia para realizar una tarea más rápido.

Paralelismo

Paralelismo

- Dividimos el problema inicial en tareas más pequeñas.
 - Que podamos realizar al mismo tiempo.
- Ejecutamos de manera concurrente estas tareas.
- Una vez estén todas completadas, unimos los resultados.

Problemas comunes en concurrencia

Al ejecutar varios procesos al mismo podemos tener los siguientes problemas:

- Condiciones de carrera (Race conditions).
- Interbloqueos (Deadlocks).
- Sincronización.

Race Conditions

- Se producen cuando varios procesos acceden y modifican un mismo recurso.
- Sin sincronización puede llevar a resultados impredecibles.

Deadlock

- Ocurre cuando dos o mas procesos se bloquean mutuamente.
 - Proceso A espera a proceso B para continuar.
 - Proceso B espera a proceso A para continuar.
- En esta situación ningún proceso puede continuar.

Sincronización

- Esencial cuando se emplean recursos compartidos.
 - ► Técnicas y mecanismos que aseguran que las operaciones se realicen de manera ordenada y segura.
- Herramientas de sincronización:
 - ▶ Bloqueos (Locks y Mutex).
 - Semáforos.
 - ► Colas (Queues).

Sincronización

Cerraduras (Locks o Mutex)

- Son mecanismos que permiten que solo un hilo acceda a un mecanismo en un momento dado.
 - ► Antes de acceder al recurso, el hilo adquiere el lock.
 - Hasta que el hilo no libere el lock, ningún otro proceso puede acceder al recurso.
 - ► Cuando necesiten el recurso, deberán esperar.
 - Cuando deja de utilizarlo, el hilo libera el lock.
- Se usa para prevenir las Race Conditions.

Sincronización

Semáforo

- Utiliza un contador para controlar el acceso a recursos compartidos.
- El contador indica el número de accesos permitidos simultáneamente.
- Permite que un número específico de hilos acceda de forma simultanea.
 - ► Controla el uso del recurso compartido.

Colas

- Permiten la comunicación entre hilos y procesos.
- Gestionan los elementos en orden FIFO (First-in, First-out) e implementan mecanismos de bloqueo interno.
- Se usan para modelos de productor-consumidor.
 - ▶ Unos hilos producen datos y otros los consumen.
- Facilitan la coordinación sin tener que gestionar manualmente los locks.

Ejemplo

Queremos aplicar la función f(x) a cada elemento de una lista.

Ejemplo

Enfoque iterativo

```
res = []
for x in datos:
    resultados.append(f(x))
```

- Fácil implementación.
- Sin problemas de sincronización.
- No aprovecha múltiples núcleos.
- Tiempo (t) = Suma de los tiempos individuales.

Enfoque concurrente

Dividir datos en k partes

Para cada parte en paralelo:

procesar aplicando f(x) a cada elemento

Combinar los resultados de todas las partes.

- Aprovecha la capacidad de múltiples núcleos.
- Posible reducción del tiempo (idealmente t/núcleos).
- Introduce overhead
 - ► Tiempo de dividir, sincronizar y combinar el trabajo.

Consideraciones

¿Qué enfoque debería elegir?

Proceso Iterativo

- Tareas pequeñas.
- Coordinar las subtareas es computacionalmente costoso.
- El overhead es mayor que el beneficio.
- No tengo una ventaja apreciable en un enfoque multinucleo.

Concurrencia

- Cada subtarea tiene una carga de trabajo significativa.
 - Por ejemplo, una función difícil de calcular.
- Tengo un problema grande y computacionalmente costoso.

Ejemplo práctico

Contar números primos.

Dado dos números, contar cuántos números primos hay entre ellos.

- Enfoque Iterativo:
 - ► Recorrer el rango completo.
- Enfoque Concurrente:
 - Dividir el rango en N partes.
 - Lanzar N procesos en el que cada uno cuente los primos en su rango.
 - Sumarlo todo al final.