

Universidade Federal de Ouro Preto - UFOP

Departamento de Computação - DECOM

Tutoria de Programação de Computadores I BCC701 Aula 01 Entrada e Saída

Exercício 1

O comportamento dos gases ideais é regido pela equação de *Clapeyron*:

PV = nRT

onde:

P = pressão (em atm)

V = volume (em litros)

n = número de mols

R = 0,082 atm.L/(mol.K) (constante universal dos gases)

T = temperatura (Kelvin)

Escreva um programa para determinar o volume ocupado por 3 mols de um gás, considerando que o usuário digitará pelo teclado os seguintes dados: pressão (em atm) e temperatura (em graus Celsius).

A conversão da temperatura em graus Celsius para graus Kelvin é feita pela expressão: K = C + 273,15

A seguir, dois exemplos de execução do programa.

Exemplo de Execução 1

```
Digite a pressão (em atm): 2
Digite a temperatura (em graus Celsius): 50
3 mols de um gás a 50 graus Celsius e a 2 atm, ocupam
39.7474 litros
```

Exemplo de Execução 2

```
Digite a pressão (em atm): 1
Digite a temperatura (em graus Celsius): 0
3 mols de um gás a 0 graus Celsius e a 1 atm, ocupam 67.1949 litros
```


Universidade Federal de Ouro Preto – UFOP

Instituto de Ciências Exatas e Biológicas - ICEB

Departamento de Computação - DECOM

Exercício 02

Pode-se calcular a área e o perímetro de um triângulo escaleno, dados os comprimentos dos seus lados, s1, s2 e s3, de acordo com as seguintes fórmulas (Fórmulas de Heron):

area =
$$\sqrt{s x (s - s1) x (s - s2) x (s - s3)}$$

onde, s = (s1 + s2 + s3) / 2 é o semiperímetro; e o perimetro = s1 + s2 + s3

Escreva um programa que leia os comprimentos dos lados de um triângulo, s1, s2 e s3, e imprima o perímetro e a área do triângulo, conforme o exemplo de execução abaixo.

Observação: Não é necessário validar os dados de entrada, isto é, o programa não precisa verificar se os valores digitados para os comprimentos dos três lados são positivos, nem se eles realmente definem um triângulo.

10

Exemplo de Execução

CÁLCULO DA ÁREA DE UM TRIÂNGULO: DIGITE O LADO 1 DO TRIÂNGULO (m):

DIGITE O LADO 2 DO TRIÂNGULO (m): 10

DIGITE O LADO 3 DO TRIÂNGULO (m):
PERÍMETRO DO TRIÂNGULO = 28 m

ÁREA DO TRIÂNGULO = 36.6606 m^2

Universidade Federal de Ouro Preto – UFOP

Departamento de Computação - DECOM

Exercício 03

O cilindro, como todo sólido geométrico, possui um volume que determina a sua capacidade. Todo cilindro possui uma base no formato de circunferência de raio $\bf r$ e altura $\bf h$. Seu volume é dado pela multiplicação entre a área da base ($\bf A$) e a medida da altura. Observe:

Área da base circular
$$\rightarrow$$
 $A = \pi r^2$
Volume \rightarrow $V = Ah \rightarrow V = \pi r^2h$

Esse tipo de sólido geométrico é muito utilizado no cotidiano como reservatório de substâncias líquidas e gasosas. Assim como diversas outras empresas, a Transp Brasil, uma empresa de transporte de produtos alimentícios utiliza-se deste tipo de tanque no formato cilíndrico para o armazenamento de combustível utilizado em seus caminhões. A Transp Brasil, ainda iniciante no mercado de transporte de produtos alimentícios, gostaria de realizar uma melhor previsão de quantos caminhões seria possível abastecer com o combustível armazenado em seus tanques de armazenamento.

Desenvolva um programa para a Transp Brasil que leia o raio e altura do tanque de armazenamento de combustível e informe o volume do reservatório e quantos tanques de combustível de caminhões poderiam ser abastecidos com a quantidade de combustível armazenado no reservatório. Desta forma, este programa também deve solicitar ao usuário a capacidade (em metros cúbicos) dos tanques dos caminhões.

Exemplo de Execução 1

```
Transp Brasil
Digite o raio do reservatório de combustível: 4
Digite a altura do reservatório de combustível: 12
Digite a capacidade (m3) de armazenamento de comb. dos caminhões: 3.8151
O volume do reservatório é 603.19 m3.
158 caminhões poderiam ser abastecidos com este reservatório.
```

Exemplo de Execução 2

```
Transp Brasil
Digite o raio do reservatório de combustível: 4
Digite a altura do reservatório de combustível: 12
Digite a capacidade (m3) de armazenamento de comb. dos caminhões: 2.314
O volume do reservatório é 603.19 m3.
260 caminhões poderão ser abastecidos com este reservatório.
```