Vorlesung Methoden der Funktionalanalysis

Wintersemester 2018/2019

Vorlesung: Prof. Dr. Ralph Chill Mitschrift: Willi Sontopski

8. Oktober 2018

Inhaltsverzeichnis

0	Einführung	2
1	Akkretive Operatoren	3
	Das "Bracket"	

0 Einführung

Eine $\mathbf{Halbgruppe}$ ist

$$t\mapsto S(t)$$

$$S(t):C\to C$$

$$S(0)=\mathrm{id}$$

$$S(t+s)=S(t)\circ S(s)$$

1 Akkretive Operatoren

Im Folgenden sei X ein Banachraum mit Norm $\|\cdot\|$ und H ein Hilbertraum mit Skalarprodukt $\langle\cdot,\cdot\rangle$.

Definition 1.0.1 Ein (nichtlinearer) **Operator** auf X ist eine Relation $A \subseteq X \times X$. Wir schreiben

- $\bullet \ Au := \{ f \in X : (u, f) \in A \} \ \forall u \in X$
- $dom(A) := \{u \in X : Au \neq \emptyset\}$ Definitionsbereich von A
- $\operatorname{rg}(A) := \{ f \in X : \exists u \in X : (u, f) \in A \}$ Bild von A
- $A^{-1} := \{(f, u) \in X \times X : (u, f) \in A\}$ inverser Operator
- $I := \{(u, u) \in X \times X : u \in X\}$ identischer Operator
- Offenbar gilt $dom(A^{-1}) = rg(A)$
- Sind $A, B \subseteq X \times X$ zwei Operatoren, $\lambda \in \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, dann ist

$$A + B := \{(u, f_1 + f_2) : f_1 \in A, f_2 \in B\}$$

$$:= \{(u, f) \in X \times X : \exists f_1, f_2 \in X : (u, f_1) \in A \land (u, f_2) \in B \land f = f_1 + f_2\}$$

$$\lambda \cdot A := \{(u, \lambda \cdot f : (u, f) \in \} := \{(u, f) \in X \times X : \exists f_1 \in X : (u, f_1) \in X \land f = \lambda \cdot f_1\}$$

1.1 Das "Bracket"

Sei $(X, \|\cdot\|)$ ein Banachraum. Für alle $u, v \in X$ und alle $\lambda \in \mathbb{R}_{>0}$ sei

$$[u,v]_{\lambda} := \frac{\|u+\lambda \cdot v\| - \|u\|}{\lambda} \text{ und}$$
$$[u,v] := \inf_{\lambda > 0} [u,v]_{\lambda}.$$

Die A