30 V P-Channel POWERTRENCH® MOSFET

General Description

This P-Channel MOSFET is a rugged gate version of ON Semiconductor's advanced POWERTRENCH process. It has been optimized for power management applications requiring a wide range of gave drive voltage ratings (4.5 V - 25 V).

Features

- -40 A, -30 V
 - $R_{DS(ON)} = 20 \text{ m}\Omega @ V_{GS} = -10 \text{ V}$
 - $R_{DS(ON)} = 30 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$
- Fast Switching Speed
- High Performance Trench Technology for Extremely Low R_{DS(ON)}
- High Power and Current Handling Capability
- Qualified to AEC Q101
- This Device is Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

DPAK3 (TO-252 3 LD) CASE 369AS

MARKING DIAGRAM

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

&3 = Numeric Date Code

kK = Lot Code

FDD6685 = Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, Unless otherwise noted)

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage		-30	V
V_{GSS}	Gate-Source Voltage		±25	V
I _D	Continuous Drain Current	@T _C = 25°C (Note 5)	-40	Α
		@T _A = 25°C (Note 3a)	-11	
		Pulsed, PW ≤ 100 μs (Note 3b)	-100	
P _D	Power Dissipation for Single Operation	(Note 3)	52	W
		(Note 3a)	3.8	
		(Note 3b)	1.6	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +175	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ hetaJC}$	Thermal Resistance, Junction-to-Case (Note 3)	2.9	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient (Note 3a)	40	°C/W
$R_{ heta JA}$	Thermal Resistance, Junction-to-Ambient (Note 3b)	96	°C/W

^{1.} This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at http://www.aecouncil.com/

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Device	Reel Size	Tape Width	Quantity
FDD6685	FDD6685	13"	16 mm	2500 Units

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
DRAIN-SOUR	CE AVALANCHE RATINGS (NOTE 4)	•				
E _{AS}	Single Pulse Drain-Source Avalanche Energy	I _D = -11 A		42		mJ
I _{AS}	Maximum Drain-Source Avalanche Current			-11		Α
OFF CHARACT	TERISTICS	•				
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	-30			V
$\Delta BV_{DSS} / \Delta T_{J}$	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		-24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -24 V, V _{GS} = 0 V			-1	μΑ
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 25V, V_{DS} = 0 V$			±100	nA
ON CHARACT	ERISTICS					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-1	-1.8	-3	V
$\Delta V_{GS(th)} / \Delta T_{J}$	Gate Threshold Voltage Temperature Coefficient	I_D = -250 μ A, Referenced to 25°C		5		mV/°C
R _{DS(on)}	Static Drain-Source	$V_{GS} = -10 \text{ V}, I_D = -11 \text{ A}$		14	20	mΩ
	On-Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -9 \text{ A}$		21 20	30	
		$V_{GS} = -10 \text{ V}, I_D = -11 \text{ A}, T_J = 125^{\circ}\text{C}$				

^{2.} All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
ON CHARACT	TERISTICS			•	•	•
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -5 \text{ V}$	-20			Α
9FS	Forward Transconductance	$V_{DS} = -5 \text{ V}, I_D = -11 \text{ A}$		26		S
DYNAMIC CH	ARACTERISTICS	•				
C _{iss}	Input Capacitance	V _{DS} = -15 V, V _{GS} = 0 V, f = 1.0 MHz		1715		pF
C _{oss}	Output Capacitance			440		pF
C _{rss}	Reverse Transfer Capacitance			225		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		3.6		Ω
SWITCHING C	CHARACTERISTICS				•	
t _{d(on)}	Turn-On Delay Time	V_{DD} = -15 V, I_{D} = -1 A, V_{GS} = -10 V, R_{GEN} = 6 Ω		17	31	ns
t _r	Turn-On Rise Time			11	21	ns
t _{d(off)}	Turn-Off Delay Time			43	68	ns
t _f	Turn-Off Fall Time			21	34	ns
Qg	Total Gate Charge	$V_{DS} = -15V$, $I_D = -11$ A, $V_{GS} = -5$ V		17	24	nC
Q _{gs}	Gate-Source Charge			9		nC
Q _{gd}	Gate-Drain Charge			4		nC
DRAIN-SOUR	CE DIODE CHARACTERISTICS AND M	AXIMUM RATINGS	•		•	•
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = -3.2 \text{ A (Note 4)}$		-0.8	-1.2	٧
Trr	Diode Reverse Recovery Time	IF = -11 A, diF/dt = 100 A/μs		26		ns
Qrr	Diode Reverse Recovery Charge			13		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

3. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

4. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

5. Maximum current is calculated as: $\overline{R}_{DS(ON)}$

where P_D is maximum power dissipation at T_C = 25°C and $R_{DS(on)}$ is at $T_{J(max)}$ and V_{GS} = 10 V. 6. Starting T_J = 25°C, L = 0.69 mH, I_{AS} = -11 A

TYPICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

Figure 2. On–Resistance Variation with Drain Current and Gate Voltage

Figure 3. On-Resistance Variation with Temperature

Figure 4. On-Resistance Variation with Gate-to-Source Voltage

Figure 5. Transfer Charactersistics

-V_{SD}, Body Diode Forward Voltage [V]

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature

TYPICAL CHARACTERISTICS (continued)

Figure 9. Maximum Safe Operating Area

Figure 10. Single Pulse Minimum Power Dissipation

Figure 11. Transient Thermal Response Curve

- NOTES:
- 7. Thermal characterization performed using the conditions described in Note 3b.
- 8. Transient thermal response will change depending on the circuit board design.

POWERTRENCH registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DPAK3 (TO-252 3 LD) CASE 369AS **ISSUE O DATE 30 SEP 2016** 6.73 6.35 5,46 5.55 MIN-6.50 MIN 6.40 Ċ 0.25 MAX PLASTIC BODY STUB MIN DIODE PRODUCTS VERSION (0.59)-1.25 MIN 0.89 ⊕ 0.25 M AM C 2.29 2.28 4.56 4.57 LAND PATTERN RECOMMENDATION NON-DIODE PRODUCTS VERSION В 2.39 SEE 2.18 4.32 MIN **NOTE D** 0.58 0.45 5.21 MIN 10.41 9.40 SEE DETAIL A 2 3 NON-DIODE PRODUCTS VERSION DIODE PRODUCTS VERSION ○ 0.10 B 0,51 **GAGE PLANE** NOTES: UNLESS OTHERWISE SPECIFIED 0.61 0.45 A) THIS PACKAGE CONFORMS TO JEDEC, TO-252, (1.54)ISSUE C, VARIATION AA. B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONING AND TOLERANCING PER 10°

1 78

1,40

(2.90)

0.127 MAX

DETAIL A

SEATING PLANE

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ASME Y14.5M-2009.

CORNERS OR EDGE PROTRUSION.

F) DIMENSIONS ARE EXCLUSSIVE OF BURSS,

MOLD FLASH AND TIE BAR EXTRUSIONS.

D) SUPPLIER DEPENDENT MOLD LOCKING HOLES OR CHAMFERED

E TRIMMED CENTER LEAD IS PRESENT ONLY FOR DIODE PRODUCTS

G) LAND PATTERN RECOMENDATION IS BASED ON IPC7351A STD TO228P991X239-3N.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative