Subhalos from the Hierarchical Bound-Tracing Code

Jiaxin Han

With: Yipeng Jing, Huiyuan Wang and Wenting Wang

Outline

- Physics of subhalos
- What we do in HBT
- What's the subhalos like in HBT
- What you can get from HBT
- How to get them from HBT

I. Physics

What We Want

What is a subhalo

- 1. it is an overdense region inside a halo, which we call its host halo
- 2. it is self-bound so that it's dynamical significant
- 3. it was a halo before it mergers into its current host halo

Life of subhalos

- birth: growth of density peak to above resolution; stripped out structure
- growth: accretion and merger in the halo stage
- decay: strip as satellite, tidal force and dynamical friction
- transition: merger
- secondary effect:
 - inner accretion/merger, within satellite tidal radius from sub-in-sub
 - local accretion, background capture: negligible.

What we do in HBT

- Bound-Tracing
 - Surviving merged-in halo
 - Main sub:
 - biggest self-bound part of the FoF halo
 - can accrete from within its FoF
 - Satellite sub:
 - lose mass to the main sub under stripping or merging
 - Hierarchical merging → Historical Sub in Sub
 - Subhalos can accrete from their sub-in-subs: sat-sat merger
 - Local accretion: omittable
 - Self-bound (E=T+U<0)</p>
 - Satellites: re-accretion of lost particles allowed
 - Exotic staff
 - Splinters
 - Quasi-halos

II. Algorithm

To trace safely: robustness and reaccretion

To trace confidently: Time resolution requirement

Secondary effect: Satellite Accretion

Secondary effect: Local Accretion

What we found in HBT

III. Result

Comparison to SubFind

III. Result

III. Result

$$I_{ij} = \sum_{p \in A} (x_{i,p} - x_{i,0})(x_{j,p} - x_{j,0})$$

$$\zeta = \frac{\sqrt{\frac{1}{2} \sum_{i=1}^{3} (I_{ii} - \bar{I})^2}}{\bar{I}} \qquad \gamma = \frac{\max(I_{11}, I_{22}, I_{33})}{\min(I_{11}, I_{22}, I_{33})}$$

Summary

- Bound-Tracing
 - Surviving merged-in halo
 - Main sub:
 - Satellite sub:
 - lose mass to the main sub under stripping or merging
 - can accrete from their sub-in-subs: sat-sat merger
 - Re-accretion of lost particles allowed
 - Self-bound (E=T+U<0)</p>
- Merit:
 - Constructing merger tree together with finding subhalos, less ambiguity
 - Remain good resolution in high density region, avoid over-truncation, bigger satellites than SUBFIND (15% in mass and 20%~30% in size)
 - No need for density interpolation and spatial searching, thus faster

What you can get from HBT

- subhalo catalogue:
 - particles sorted with energy
- merger hierarchy
- progenitor-descendent link, two-way
- Properties already have:....
- Additional properties:
 - halo prof, param
 - subhalo prof, size, shape
 - Evolution catalogue:node entries; parameters

V. Usage

How you can get them from HBT

- C library
 - Simulation/Halo IO
 - Subhalo IO
- Fortran module
 - Subhalo routines
- Document:
 - paper
 - readme

Practice

- Directory structure
- Data structure
- Functions and Examples