SMACC

SDSS MOC4 Asteroid Color Classification

Ben Montgomery

University of Southern Maine

June 8, 2019

From Last Time...

- The Sloan Digital Sky Survey is a multi-spectral survey of celestial objects, most notably of asteroids.
- · Records the UGRIZ color bands.
- Has 471,569 observations in it.
- Assorted people thought there were 2, 4, and 16 distinct asteroid compositions in the SDSS.
- Carvano [1] made that 16 class claim, so I'm trying to check his results using unsupervised learning.

• Do the same data corrections that Carvano did.

- Do the same data corrections that Carvano did.
- Apply the K-Means, K-Medoids, HDBSCAN*, and Agglomerative unsupervised clustering algorithms to come up with a classification scheme.

- Do the same data corrections that Carvano did.
- Apply the K-Means, K-Medoids, HDBSCAN*, and Agglomerative unsupervised clustering algorithms to come up with a classification scheme.
- Determine how good the classifications are.

- Do the same data corrections that Carvano did.
- Apply the K-Means, K-Medoids, HDBSCAN*, and Agglomerative unsupervised clustering algorithms to come up with a classification scheme.
- Determine how good the classifications are.
- ???
- · Profit.

Data Correction

Carvano's corrections were limited to removing solar contribution from the color data. in an error-correcting manner. For the i^{th} band λ_i in UGRIZ, the reflectance color is calculated as

$$C_{\lambda_i} = -2.5 \left(\log_{10} R_{\lambda_i} + \log_{10} R_{\lambda_{ref}} \right)$$

in order to produce the color reflectance gradient

$$\gamma_j = -0.4 \frac{\mathsf{C}_{\lambda_{i+1}} - \mathsf{C}_{\lambda_i}}{\lambda_{i+1} - \lambda_i}$$

First downside: only four columns to make predictions from.

Data Correction

There is all kinds of error in the SDSS, such as phase reddening and zenith-induced error. It is expected that not correcting for these factors will produce significantly errant results [2, 3].

Visualizing Carvano's Classifications

K-Means++

Applying K-Means++

Applying K-Means++

K-Medoids

Applying K-Mediods

Applying K-Mediods

HDBSCAN*

Applying HDBSCAN*

Agglomerative Clustering

Applying Agglomerative Clustering

Applying Agglomerative Clustering

How Good are the Results?

For a given asteroid a out of n total, having m_a observations, and the number of class occurrences $c1_a, c2_a...cn_a$ for a given classification cn, consistency will be defined as:

$$\sum_{a=0}^{n} \frac{\max(c1_a, c2_a...cn_a)}{m_a}$$

	K-Means++	K-Medoids	HDBSCAN*	Agglomerative
Consistency	87.8%	77.3%	97.2%	99.8%
Blind-Guess	60.0%	25.7%	97.2%	99.3%
# Classes	9	9	0 - 3000+ (14)	9

How Good are the Results?

References

J. M. Carvano, P. H. Hasselmann, D. Lazzaro, and T. Mothé-Diniz, "SDSS-based taxonomic classification and orbital distribution of main belt asteroids," Astronomy and Physics, 2009.

J. A. S. et al., "Phase reddening on near-earth asteroids: Implications for mineralogical analysis, space weathering and taxonomic classification," Icarus, 2012. [Online]. Available: https://www.sciencedirect.com/science/ article/abs/pii/S0019103512001376?via%3Dihub

P. H. H. et al., "Adapted g-mode clustering method applied to asteroid taxonomy," PROC. OF THE 12th PYTHON IN SCIENCE CONFERENCE, 2013.

