16. 4. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 4月18日

REC'D 10 JUN 2004

PCT

WIPO

出 願 番 号 Application Number:

特願2003-114695

[JP2003-114695]

願 人

Applicant(s):

出

[ST. 10/C]:

日本テクノ株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月27日

今井康

【書類名】

特許願

【整理番号】

HP003362-1

【提出日】

平成15年 4月18日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

H01M 8/06

B01B 3/02

C25B 1/04

【発明者】

【住所又は居所】 神奈川県藤沢市片瀬山5丁目28番11号

【氏名】

大政 龍晋

【特許出願人】

【識別番号】 392026224

【氏名又は名称】 日本テクノ株式会社

【代理人】

【識別番号】 100094466

【弁理士】

【氏名又は名称】 友松 英爾

【電話番号】

03-3226-4701

【選任した代理人】

【識別番号】 100116481

【弁理士】

【氏名又は名称】 岡本 利郎

【電話番号】

03-3226-4701

【手数料の表示】

【予納台帳番号】

007777

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1 【物件名】

要約書 1

【包括委任状番号】 0013121

【包括委任状番号】

0013120

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 燃料電池およびそれを用いた発電方法

【特許請求の範囲】

【請求項1】 マイナス極/電解質層/プラス極よりなる単セルまたはそれ を積層したスタックよりなる燃料電池であって、

- (A) 電解液を電気分解するための電解槽、
- (B) 該電解槽内に収容される電解液と接するように配置される陽極部材 および陰極部材よりなる電極対と、前記陽極部材および陰極部材の間に 電圧を印加する電源とを含んでなる電気分解手段、
- (C) 前記電解槽に収容される電解液を振動流動撹拌するための振動撹拌 手段、
- (D) 前記電解槽内に収容される電解液の前記電気分解手段による電気分解 で発生する水素ガスおよび酸素ガスを分離、捕集するための水素ガス および酸素ガス捕集手段、

を有する水素ガスおよび酸素ガス発生手段、

を用いて得られた水素ガスを供給するための供給口をマイナス極側に設け、かつ 水素ガスを供給される側の電極はガス透過性としたことを特徴とする燃料電池。

【請求項2】 マイナス極/電解質層/プラス極よりなる単セルまたはそれ を積層したスタックよりなる燃料電池であって、

- (A) 電解液を電気分解するための電解槽、
- (B) 該電解槽内に収容される電解液と接するように配置される陽極部材 および陰極部材よりなる電極対と、前記陽極部材および陰極部材の間に 電圧を印加する電源とを含んでなる電気分解手段、
- (C) 前記電解槽に収容される電解液を振動流動撹拌するための振動撹拌 手段、
- (D) 前記電解槽内に収容される電解液の前記電気分解手段による電気分解 で発生する水素ガスおよび酸素ガスを捕集するためのガス捕集手段、 を有する水素-酸素混合ガス発生手段、

を用いて得られた水素-酸素混合ガス(水素2原子に対し、酸素1原子の割合の

混合ガス)を供給するための供給口をマイナス極側に、またはマイナス極側とプ ラス極側の両方に設け、かつ水素-酸素混合ガスを供給される側の電極はガス透 過性としたことを特徴とする燃料電池。

【請求項3】 燃料電池に供給されるガスは、(1)前記水素ガスおよび酸 素ガス発生手段および(2)前記水素-酸素混合ガス発生手段よりなる群から選 ばれたガス発生手段のみから得られたガスである請求項1または2記載の燃料電 池。

【請求項4】 前記マイナス極とプラス極の間にガス透過性を有する電解質 層を設けてなる請求項1~3いずれか記載の燃料電池。

該電解質層が固体高分子電解質、固体酸化物電解質、酸塩電 【請求項5】 解質、リン酸電解質およびアルカリ電解質よりなる群から選ばれた電解質である 請求項1~4いずれか記載の燃料電池。

【請求項6】 インバーターにより振動モーターを10~500Hzの間の 所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒 を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数5 00~3000回/分で振動させることにより電解液を流動撹拌しながら電気 分解することにより得られた水素ガスを燃料電池に供給することを特徴とする燃 料電池を用いた発電方法。

【請求項7】 インバーターにより振動モーターを10~500Hzの間の 所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒 を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数5 00~3000回/分で振動させることにより電解液を流動撹拌しながら電気 分解することにより得られた水素ガスと酸素ガスのみを燃料電池に供給すること を特徴とする燃料電池を用いた発電方法。

【請求項8】 インバーターにより振動モーターを10~500Hzの間の 所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒 を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数5 00~3000回/分で振動させることにより電解液を流動撹拌しながら電気 分解することにより得られた水素ー酸素混合ガスを、マイナス極/電解質層/プ ラス極よりなる単位セルまたはそれを積層したスタックにより構成された燃料電池のガス透過性マイナス極側に、またはガス透過性マイナス極とガス透過性プラス極の両方に、燃料として供給して発電することを特徴とする燃料電池を用いた発電方法。

【請求項9】 前記燃料電池が請求項1~5いずれか記載のものを用いる請求項6~8いずれか記載の発電方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、振動撹拌手段を利用して得られた水素ガスを用いた発電方法および 燃料電池に関する。とくに、本発明は、振動撹拌手段を用いて得られた水素2原 子と酸素1原子の割合よりなる水素-酸素混合ガスを供給して発電することを可 能とした燃料電池およびそれを用いた発電方法に関する。

[0002]

【従来の技術】

従来、燃料電池による発電は水素をマイナス極に供給し、一方酸素または空気 をプラス極に供給することにより行われている。

[0003]

その理由は、マイナス極には水素のみを供給しなければ

 $2 \text{ H}_2 \rightarrow 4 \text{ H} + 4 \text{ e}^-$

の反応は進まず、またプラス極に酸素または空気のような酸素含有ガスを供給しなければ、

 $O_2 + 4 H + 4 e \rightarrow 2 H_2 O$

の反応は起きないと考えられていたからである。

この技術に関連して特許文献1では、水中でプラズマアークを照射して加水分解することにより得られたブラウンガスを燃料電池の燃料として用いているが、この場合は、水素と酸素を分離するための分離器が必要であり、燃料ガスの原価を押上げる大きな要因になっていた。ところが、前記のような反応を考えると水素と酸素の分離は避けて通れないものと思うのは当然のことでもあった。

[0004]

ところが、前記水の電気分解工程において振動撹拌手段を用いて電解液を振動 撹拌してやると水の電解効率が大幅に向上し、かつ、得られた水素ガスや酸素ガ スが振動撹拌手段を用いないものと較べて微妙に異なっていることが判ってきた 。すなわち、振動撹拌手段を利用して得られた水素ガスや酸素ガスには、図71 にみられるようにH α や O H の存在を示す二次光のピークがみられるが、従来の ブラウンガスにはこのようなピークの存在は認められない。そして、理由は未だ 充分解明されていないが、このような相違点が本発明の振動撹拌手段を利用して 得られた水素ガスまたは水素一酸素混合ガスを燃料電池の燃料として用いると、 今までの燃料電池では得られなかった驚くべき発電効率を示すことが判ってきた

[0005]

【特許文献1】

特開2000-313401号公報

[0006]

【発明が解決しようとする課題】

本発明の第一の目的は、振動撹拌手段を利用して製造した水素ガスを用いた発電方法と燃料電池を提供する点にある。

本発明の第二の目的は、燃料電池の燃料として水素と酸素とをわざわざ分離して使用しないで、水素-酸素混合ガスとくに水素2原子に対して酸素1原子の混合ガスのままでマイナス極に供給して、あるいはマイナス極とプラス極の両方に供給して発電を行う発電方法と燃料電池を提供する点にある。

本発明の第三の目的は、水素ガスを燃料とした従来の燃料電池に比べてはるかに高い電力を発生させる発電方法と燃料電池を提供する点にある。

[0007]

【課題を解決するための手段】

本発明の第1は、マイナス極/電解質層/プラス極よりなる単セルまたはそれ を積層したスタックよりなる燃料電池であって、

(A) 電解液を電気分解するための電解槽、.

- (B) 該電解槽内に収容される電解液と接するように配置される陽極部材 および陰極部材よりなる電極対と、前記陽極部材および陰極部材の間に 電圧を印加する電源とを含んでなる電気分解手段、
- (C) 前記電解槽に収容される電解液を振動流動撹拌するための振動撹拌 手段、
- (D) 前記電解槽内に収容される電解液の前記電気分解手段による電気分解 で発生する水素ガスおよび酸素ガスを分離、捕集するための水素ガス および酸素ガス捕集手段、

を有する水素ガスおよび酸素ガス発生手段、

を用いて得られた水素ガスを供給するための供給口をマイナス極側に設け、かつ水素ガスを供給される側の電極はガス透過性としたことを特徴とする燃料電池に関する。

本発明の第2は、マイナス極/電解質層/プラス極よりなる単セルまたはそれ を積層したスタックよりなる燃料電池であって、

- (A) 電解液を電気分解するための電解槽、
- (B) 該電解槽内に収容される電解液と接するように配置される陽極部材 および陰極部材よりなる電極対と、前記陽極部材および陰極部材の間に 電圧を印加する電源とを含んでなる電気分解手段、
- (C) 前記電解槽に収容される電解液を振動流動撹拌するための振動撹拌 手段、
- (D) 前記電解槽内に収容される電解液の前記電気分解手段による電気分解 で発生する水素ガスおよび酸素ガスを捕集するためのガス捕集手段、

を有する水素-酸素混合ガス発生手段、

を用いて得られた水素-酸素混合ガス(水素2原子に対し、酸素1原子の割合の混合ガス)を供給するための供給口をマイナス極側に、またはマイナス極側とプラス極側の両方に設け、かつ水素-酸素混合ガスを供給される側の電極はガス透過性としたことを特徴とする燃料電池に関する。

なお、本発明におけるマイナス極とプラス極は、従来技術ではマイナス極は燃料極と、プラス極は空気極と、それぞれ呼ばれているものであり、燃料電池によ

り発生した電気を取り出す電極は別途存在しているのは当然である。たとえば図69における白プレート(マイナス表示)および白プレート(プラス表示)が発生した電気を取り出すための電極である。

本発明の第3は、燃料電池に供給されるガスは、(1)前記水素ガスおよび酸素ガス発生手段および(2)前記水素-酸素混合ガス発生手段よりなる群から選ばれたガス発生手段のみから得られたガスである請求項1または2記載の燃料電池に関する。

本発明の第4は、前記マイナス極とプラス極の間にガス透過性を有する電解質層を設けてなる請求項1~3いずれか記載の燃料電池に関する。

本発明の第5は、該電解質層が固体高分子電解質、固体酸化物電解質、酸塩電解質、リン酸電解質およびアルカリ電解質よりなる群から選ばれた電解質である 請求項1~4いずれか記載の燃料電池に関する。

本発明の第6は、インバーターにより振動モーターを10~500Hzの間の所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数500~3000回/分で振動させることにより電解液を流動撹拌しながら電気分解することにより得られた水素ガスを燃料電池に供給することを特徴とする燃料電池を用いた発電方法に関する。

本発明の第7は、インバーターにより振動モーターを10~500Hzの間の所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数500~3000回/分で振動させることにより電解液を流動撹拌しながら電気分解することにより得られた水素ガスと酸素ガスのみを燃料電池に供給することを特徴とする燃料電池を用いた発電方法に関する。

本発明の第8は、インバーターにより振動モーターを10~500Hzの間の所望の振動を発生させ、この振動を振動応力分散手段を介して電解槽内の振動棒を一段または多段に固定した振動羽根を振幅0.01~30.0mm、振動数500~3000回/分で振動させることにより電解液を流動撹拌しながら電気分解することにより得られた水素一酸素混合ガスを、マイナス極/電解質層/プ

ラス極よりなる単位セルまたはそれを積層したスタックにより構成された燃料電池のガス透過性マイナス極側に、またはガス透過性マイナス極とガス透過性プラス極の両方に、燃料として供給して発電することを特徴とする燃料電池を用いた発電方法に関する。

本発明の第9は、前記燃料電池が請求項1~5いずれか記載のものを用いる請求項6~8いずれか記載の発電方法に関する。

[0008]

本発明で規定している振動撹拌手段を用いることにより得られる水素-酸素混合ガスは、従来のこの種のガス中には原子状〇H(水酸基)、いいかえれば活性〇H(水酸基)や原子状水素の存在は全く確認できないのに対し、本発明に用いる水素-酸素混合ガス中には驚くべきことに原子状〇H(水酸基)と原子状水素が存在することが火炎の輝度スペクトルを測定する(火口から15mmの個所で測定した場合も20mmの個所で測定した場合も、同一波長のところでピークがみられた)ことにより確認されている。ちなみに約620mmに原子状〇Hの存在を示すピークが、約630mmに原子状水素の存在を示すピークが認められた

しかも、この原子状〇H(水酸基)と原子状水素の存在確認は、本発明の振動 撹拌手段を用いて発生した水素-酸素混合ガスを直ちに測定した場合と水素-酸 素混合ガスをガス溜めに12時間程度溜めてあったガスを測定した結果はほぼ同 様であった。したがって、製造により得られたガス中に原子状〇H(水酸基)や 原子状水素がある瞬間のみ存在していたというわけではないのである。そして、 これが水素-酸素混合ガスの燃焼にさいし、核融合物反応を呈し、とくに高温を 発生できるものと考えられる。

[0009]

電解槽内に設けられる陽極部材と陰極部材は、通常いずれも電極板であることが好ましい。この場合、振動撹拌手段を用いない従来技術においては電極の間隔を最短でも50mm程度の間隔を必要としていた。この程度以上の間隔を設けないと、過電流となり事故が発生するおそれがあったからである。ところが、本発明では振動撹拌手段を用いることにより電極間距離を1~20mmといった程度

まで接近させることができ、これにより電流効率を大幅に向上させることができた。本発明では実用的には電極間距離を5~400mmとすることが好ましい。

[0010]

本発明においては、絶縁式振動撹拌手段を用いて、振動羽根や振動補助羽根を電極としても機能させる場合がある。その例は、図33、図38~55に示すとおりである。本発明においては、例えば図40に示すように、電極対(2x、2y)に加えて絶縁式振動撹拌手段の振動羽根(16f)と振動補助羽根(16f)をも電極として用いるケースや、例えば図43や図47にみられるように絶縁式振動撹拌手段の振動羽根や振動補助羽根のみを電極とするケースとがある。これらの場合の振動羽根および/または振動補助羽根の形をとっている電極と電極の間の距離は通常3~50mm、好ましくは5~20mmとすることができる

[0011]

[0012]

前記電解質としては、水溶性のアルカリ金属水酸化物、アルカリ土類金属酸化物、第4級アルキルアンモニウム、あるいは硫酸、リン酸などの無機酸、有機酸などを挙げることができる。

[0013]

本発明で使用する水は、蒸留水が好ましが、井戸水、工業用水、水道水、河川水、池の水なども使用できる。

[0014]

本発明の振動撹拌手段の基本的態様は、少なくとも1つの振動発生手段と、該 振動発生手段に連係して前記電解槽内で振動する少なくとも1つの振動棒及び該 振動棒に取り付けられた少なくとも1つの振動羽根からなる振動撹拌部材とから

[0015]

また、本発明の振動撹拌手段の他の基本的態様は、少なくとも1つの振動発生 手段と、該振動発生手段に連係した前記電解槽内で振動する少なくとも1つの振 動棒、該振動棒に取り付けられた少なくとも1つの振動羽根及び前記振動棒と前 記振動発生手段との連結部に又は前記振動棒の振動羽根を取り付けた部分より前 記連結部に近い部分に設けられた電気的絶縁領域からなる絶縁式振動撹拌部材と からなる絶縁式振動撹拌手段である。そして、本発明における撹拌手段としては 絶縁式振動撹拌手段が好ましい。

[0016]

絶縁式振動撹拌手段における絶縁式振動撹拌部材の振動棒には、振動羽根に加 えて通電線と電気的に接続された電極用補助羽根を取り付けることができる。ま た電極用補助羽根は前記振動羽根と交互に位置するように振動棒に取り付けられ ていることが好ましい。さらに電極用補助羽根は振動羽根より大きな面積を持ち 且つ振動羽根の先端部よりも更に突出していることが好ましい。

[0017]

振動撹拌手段または絶縁式振動撹拌手段の発生手段は振動モータを含み、振動撹拌手段は振動モータを $10\,Hz\sim500\,Hz$ 、好ましくは $10\,Hz\sim200\,Hz$ 、とくに好ましくは $20\,Hz\sim60\,Hz$ の振動数で振動させるよう制御するためのインバータと併用することが好ましい。

[0018]

前記絶縁式振動撹拌手段における振動棒の電気的絶縁領域より振動羽根側の位置に通電線を接続することにより、振動羽根や振動補助羽根を電解のための電極、すなわち陽極部材または陰極部材として使用することができる。

この場合、例えば図50に示すように、振動羽根は、液を振動撹拌させる機能と電極としての機能を兼務するが、振動補助羽根は、液を振動撹拌する機能はほとんどあるいは全くもたず、もっぱら電極として機能する。

[0019]

絶縁式振動撹拌手段は、例えば図52における電極対と併用することもできる

が、絶縁式振動撹拌手段をもって前記電極対の代役をさせることもできる。この場合、図47に示すように、1つの絶縁式振動撹拌手段を陽極として利用し、他の1つの絶縁式撹拌手段を陰極として利用することもできる。また、一台の絶縁式振動撹拌手段であっても、例えば図48に示すように、振動棒を二本有するタイプのものであれば、一方の振動棒側を陽極とし、他方の振動棒側を陰極として使用することもできる。

[0020]

以上の様な本発明においては、振動撹拌手段の振動羽根により電解液中強力な振動流動が生ぜしめられるので、電解液は電極と十分良好な均一性をもって且つ十分な供給量をもって接触せしめられる。このため、陽極と陰極との間の距離を従来より著しく小さくしても、それらの間に電気分解に必要なイオンを十分に供給することが可能になり、また電極に発生する電解熱を迅速に放熱することができる。従って、高い電流密度で電気分解を行なって、高い効率で水素一酸素混合ガスを製造することができる。また、以上のように陽極と陰極との間の距離を小さくすることができる。また、以上のように陽極と陰極との間の距離を小さくすることで、単位容積あたりに配置される電極の有効表面積を十分に高めることができる。

特に、以上の様な振動撹拌手段による電解液の振動撹拌を併用して電気分解を行う場合には、電極近傍にて発生する水素や酸素が気泡を形成する前に電解液面へと運ばれて気相へと移行するので、電解液中にて生成せしめられた水素や酸素が電極表面に気泡として付着し電気抵抗を増加させるようなことがない。このため、上記の様に容易に高い電流密度での電気分解の実現が可能となり、水素一酸素混合ガスを従来法より多量に発生させることができる。

[0021]

以下、図面を参照しながら本発明の具体的な実施の形態を説明する。尚、図面において、同様な機能を有する部材又は部分には同一の符号が付されている。

[0022]

図1~図6は本発明による水素-酸素混合ガス発生方法の実施される水素-酸素混合ガス発生手段の一具体例の構成を示す図である。ここで、図1、図4は断

面図であり、図2、図5は平面図であり、図3は側面図で、図6は断面図である。

これらの図において、10Aは電解槽であり、該電解槽には電解液14が収容されている。16は振動撹拌手段である。該振動撹拌手段16は、電解槽10Aとは別に配置された支持台100に防振ゴムを介して取り付けられた基台16a、該基台に下端を固定された振動吸収部材としてのコイルバネ16b、該コイルバネの上端に固定された振動部材16c、該振動部材に取り付けられた振動モータ16d、振動部材16cに上端を取り付けられた振動棒(振動伝達ロッド)16e、該振動棒の下半部において電解液14に浸漬する位置に回転不能に複数段に取り付けられた振動羽根16fを有する。振動モータ16d及び振動部材16cを含んで振動発生手段が構成され、該振動発生手段が振動棒16eと連係している。また、振動棒16e及び振動羽根16fを含んで振動撹拌部材が構成され、該振動撹拌部材と上記振動発生部材とを含んで振動撹拌手段が構成されている。コイルバネ16b内には、後述の図16その他に示されているように、棒状のガイド部材を配置することができる。

[0023]

尚、振動発生手段としては、振動発生源として一般の機械式振動モータを用いたもの以外にマグネット振動モータやエアー振動モータ等を用いたものを使用することも可能である。

[0024]

振動モータ16 dは例えばインバータを用いた制御により例えば10~500 Hz、好ましくは10~200Hz、更に好ましくは10~120Hz、とくに好ましくは20~60Hzで振動する。振動モータ16 dで発生した振動は、振動部材16 c及び振動棒16 eを介して振動羽根16 fに伝達される。振動羽根16 fは、電解液14中で所要の振動数で先端縁が振動する。この振動は、振動羽根16 fが振動棒16 eへの取り付け部分から先端縁へと「しなる」ように発生する。この振動の振幅及び振動数は、振動モータ16 dのものとは異なるが、振動伝達経路の力学的特性及び電解液14との相互作用の特性などに応じて決まり、本発明では、通常、振幅0.01~30mm、好ましくは0.1~10mm

で、振動数600~30000、好ましくは600~12000回/分、更に好ましくは600~7200回/分、特に好ましくは1200~3600回/分である。

[0025]

図11は振動部材16cへの振動棒16eの取り付け部111の拡大断面図である。振動棒16eの上端に形成されたオネジ部に、振動部材16cの上側から振動応力分散部材16g及びワッシャ16hを介してナット16iを適合させており、振動部材16cの下側から振動応力分散部材16gを介してナット16iを適合させている。振動応力分散部材16gは、振動応力分散手段として用いられており、例えばゴムからなる。振動応力分散部材16gは、例えば硬い天然ゴム、硬い合成ゴム、合成樹脂等のショアーA硬度80~120、好ましくは90~100の硬質弾性体により構成することができる。とくに、ショアーA硬度90~100の硬質ウレタンゴムが耐久性、耐薬品性の点で好ましい。振動応力分散手段を使用することにより、振動部材16cと振動棒16eとの接合部分の近辺への振動応力の集中が防止され、振動棒16eが折れにくくなる。とくに、振動モータ16dの振動周波数を100Hz以上に高くした場合の振動棒16eの折れ発生防止の効果は顕著である。

[0026]

図12は振動部材16cへの振動棒16eの取り付け部111の変形例を示す 拡大断面図である。この変形例は、図11の取り付け部とは、振動部材16cの 上側に振動応力分散部材16gを配置しないこと、及び振動部材16cと振動応 力分散部材16gとの間に球面スペーサ16xを介在させたことが異なるのみで あり、他は同様である。

[0027]

図13は振動棒16 eへの振動羽根16 fの取り付け部の拡大断面図である。振動羽根16 fの各々の上下両側には、振動羽根固定部材16 jが配置されている。隣接する振動羽根16 f どうしの間には固定部材16 jを介して振動羽根16 f の間隔設定のためのスペーサリング16 kが配置されている。尚、最上部の振動羽根16 f の上側及び最下部の振動羽根16 f の下側には、図1や図4に示

されているように、スペーサリング16kを介して又は介することなく、振動棒 16eに形成されたオネジに適合するナット16mが配置されている。図13に 示されているように、各振動羽根16fと固定部材16iとの間にフッ素系樹脂 やフッ素系ゴムなどからなる振動応力分散手段としての弾性部材シート16pを 介在させることで、振動羽根16fの破損を防止することができる。弾性部材シ ート16pは、振動羽根16fの破損防止効果を一層高めるために、固定部材1 6 j から若干はみ出すように配置するのが好ましい。図示されているように、上 側の固定部材16jの下面(押圧面)は凸状面とされており、下側の固定部材1 6 j の上面(押圧面)は対応する凹状面とされている。これにより、固定部材1 6 jにより上下方向から押圧される振動羽根16fの部分は湾曲せしめられ、振 動羽根16fの先端部は水平面に対して角度αをなしている。この角度αは、例 えばー30°以上30°以下好ましくはー20°以上20°以下とすることがで きる。特に、角度 α は、-30°以上-5°以下または5°以上30°以下、好 ましくは-20°以上-10°以下または10°以上20°以下とするのが好ま しい。固定部材 16 j の押圧面を平面とした場合には、角度 α は 0 ° である。角 度αは、全ての振動羽根16fについて同一である必要はなく、例えば、下方の 1~2枚の振動羽根16fについては−の値(即ち下向き:図13に示される向 き)とし、それ以外の振動羽根16fについては+の値(即ち上向き:図13に 示されるものと逆の向き)とすることができる。

[0028]

振動羽根16fとしては、弾力性のある金属板、合成樹脂板またはゴム板などを用いることができる。振動羽根16fの厚みは、振動条件や電解液14の粘度などにより好ましい範囲は異なるが、振動撹拌手段16の作動時に、振動羽根が折れることなく、振動撹拌の効率を高めるように振動羽根16fの先端部分が"フラッター現象"(波打つような状態)を呈するように設定される。振動羽根16fがステンレス鋼板などの金属板からなる場合には、その厚みは0.2~2mmとすることができる。また、振動羽根16fが合成樹脂板やゴム板からなる場合には、その厚みは0.5~10mmとすることができる。振動羽根16fと固定部材16jとを一体成形したものを使用することもできる。この場合は、振動

羽根16fと固定部材16jとの接合部に電解液14が浸入し固形分が固着して 洗浄に手間がかかるというような問題を回避することができる。

[0029]

金属製の振動羽根16fの材質としては、チタン、アルミニウム、銅、鉄鋼、ステンレス鋼、磁性鋼などの磁性金属、これらの合金が挙げられる。合成樹脂製の振動羽根16fの材質としては、ポリカーボネート、塩化ビニル系樹脂、ポリプロピレンなどが挙げられる。振動羽根は、プラスチック部材の表面にめっきなどにより導電処理を施したものであってもよい。

[0030]

電解液14内での振動羽根16fの振動に伴って発生する振動羽根の"フラッター現象"の程度は、振動モータ16dの振動の周波数、振動羽根16fの長さ(固定部材16jの先端縁から振動羽根16fの先端縁までの寸法:図36のD2)と厚み、及び電解液14の粘度や比重などによって変化する。与えられた周波数においてもっともよく"しなる"振動羽根16fの長さと厚みとを選択することができる。振動モータ16dの振動の周波数と振動羽根16fの厚みとを一定にして、振動羽根16fの長さを変化させてゆくと、振動羽根のしなりの程度は図14に示すようになる。即ち、長さmが大きくなるに従って、ある段階までは大きくなるが、それをすぎるとしなりの程度Fは小さくなり、ある長さのときには殆どしなりがなくなり、さらに振動羽根を長くするとまたしなりが大きくなるという関係をくりかえすことが判った。

[0031]

振動羽根の長さは、第1回目のピークを示す長さ L_1 か、第2回目のピークを示す長さ L_2 を選択することが好ましい。 L_1 にするか L_2 にするかは、系の振動を強くするかに応じて適宜選択できる。

振動周波数 $3.7 \sim 6.0$ H z、7.5 k Wの振動モータでステンレススチール(SUS 3.0.4)製の振動羽根の種々の厚みのものについて、 L_1 及び L_2 を求めたところ、以下のような結果が得られた。

 厚み
 L1
 L2

 0.10mm
 約15mm
 —

0.	2 0 mm	約25mm	約70mm
0.	3 0 mm	約45mm	$1\ 1\ 0 \sim 1\ 2\ 0\ mm$
0.	4 0 mm	約50mm	$1 \ 4 \ 0 \sim 1 \ 5 \ 0 \ mm$
0.	5 0 mm	約55mm	約170mm

尚、この実験において、振動棒 16e の中心から固定部材の先端までの距離は 27mmであり、振動羽根 16f の傾斜角度 α は上向き 15 α α α α とした。

[0032]

以上のような振動撹拌手段16としては、以下の文献(これらは本発明者の発明に係る特許出願に関するものである)及び本出願人による特許出願である特願2001-135528、特願2001-338422に記載されているような振動撹拌機(振動撹拌装置)を使用することが可能である:

特開平3-275130号公報(特許第1941498号)、 特開平6-220697号公報(特許第2707530号)、 特開平6-312124号公報(特許第2762388号)、 特開平8-281272号公報(特許第2767771号)、 特開平8-173785号公報(特許第2852878号)、 特開平7-126896号公報(特許第2911350号)、 特開平9-40482号公報(特許第2911393号)、 特開平11-189880号公報(特許第2988624号)、 特開平7-54192号公報(特許第2989440号)、 特開平6-330395号公報(特許第2992177号)、 特開平6-287799号公報(特許第3035114号)、 特開平6-280035号公報(特許第3244334号)、 特開平6-304461号公報(特許第3142417号)、 特開平10-43569号公報(特許第3320984号)、 特開平10-369453号公報、 特開平11-253782号公報、 特開2000-317295号公報。

[0033]

本発明において、振動撹拌手段16は、図1や図4に示されている様に、電解槽の両端部に配置しても良いが、一方の端部のみに配置しても良い。また、振動羽根として両側に対称的に延びているものを使用すれば、振動撹拌手段16を電解槽の中央に配置し、その両側に後述の様な電極群を配置することも可能である

[0034]

なお、本発明において、特開平6-304461号公報に記載されている様な 振動羽根が電解槽の底部に存在するタイプの振動撹拌手段を用いることにより、 電解槽内の電極群の配置スペースが広くなり、電解槽の容積あたりのガス発生量 を高めることができるとともに、上下方向に沿って電極を配置する場合には電極 として後述の多孔性のものを使用する必要がなくなるという利点がある。

[0035]

再び図1~図6を参照する。本発明における水素-酸素混合ガス発生手段の具体例では、電解槽10Aの両端部にそれぞれ上記の様な振動撹拌手段16が配置されている。電解槽10Aの中央部には、電極対は構成する板状の陽極部材2x及び板状の陰極部材2yが互いに平行に配置されている。一方の振動撹拌手段16は陽極部材2xの表面(主面)と対向するように配置されており、他方の振動撹拌手段16は陰極部材2yの表面(主面)と対向するように配置されている。

[0036]

陽極部材 $2 \times \mathcal{D}$ び陰極部材 $2 \times \mathcal{D}$ 0 でとない、通常の水の電気分解に使用されるものを使用することができる。たとえば、陽極部材として二酸化鉛、マグネタイト、フェライト、黒鉛、白金、P t - I r6金、チタン合金、貴金属被覆チタン (例えば白金被覆チタン) などが例示でき、陰極部材としてロジウム、ニッケル、ニッケル合金 ($N i - Mo_2$ 、N i - Co、N i - Fe、N i - Mo - Cd、N i - Sx、ラネーニッケル等)、チタン合金等の貴金属が例示できる。陽極と陰極との間の距離は、例えば $5 \text{ mm} \sim 400 \text{ mm}$ である。

[0037]

陽極部材2x及び陰極部材2yは板状体であるから、これを多孔性のものとす

ることで、図1や図4に示すように、振動撹拌手段16の振動羽根16fによる 振動撹拌で発生せしめられる電解液14の流動を遮るように振動羽根16fを向 いた方向に対してほぼ直角に設けられる場合にも、小孔を通って電解液14がス ムースに流動することができる。小孔の形状は円形状でも多角形状でもよく、特 に制限はない。また、小孔の大きさや数は電極本来の目的と多孔性にする目的と の双方のバランスを考えて、適宜設定するのが好ましい。電極における小孔の面 積割合は、有効面積(即ち電解液14と接触する面積)で、電極面積が50%以 上となる様にするのが好ましい。多孔性電極は網状または籠状であっても良い。

[0038]

陽極部材2x及び陰極部材2yは、それぞれ不図示の陽極主ブスバー及び陰極主ブスバーに接続されており、これら陽極主ブスバー及び陰極主ブスバーは図1や図4に示されている電源34に接続されている。該電源34と陽極部材2x及び陰極部材2yとを含んで電気分解手段が構成される。

[0039]

電極を一定の間隔で多数枚を電解槽内にセットするためには、絶縁体枠/電極 /絶縁体枠/……電極/絶縁体枠という形で電極群を組み立てることが好ましい 。図8Aにその基本的組合せである絶縁体枠70と電極71の組合せ態様を示す 、図9Aは、図8に用いた絶縁体枠の平面図であり、図9Bは電極の平面図であ り、図8Bは図8Aの絶縁体枠70の後に図9Bの電極を重ねたときの平面図で ある。電極は板状体であるから、例えば図1や図2に示すように振動撹拌手段の 作用をさえぎるように振動撹拌手段の方向に対して直角に電極板を設ける場合に は電極板を多孔質のものとする必要がある。一方方向に電極板を設ければ電極板 を多孔質にする必要は必ずしもないが、電極間隔を詰めるのに限界が生じる。前 記絶縁体枠を形成している絶縁体としては、天然ゴム、合成ゴム、合成樹脂など を用いることができる。

[0040]

電源34は、直流を発生するものであればよく、通常の平滑な直流でもよいが、その他の種々の波形の電流を使用することができる。この様な電解電流の波形は、例えば、「電気化学」第24巻398~403頁、同449~456頁、1

996年4月15日全国鍍金材料組合連合会発行、「めっき技術ガイド」378~385頁、昭和58年6月15日(株)広信社発行「表面技術総覧」301~302頁、同517~527頁、同1050~1053頁、昭和46年7月25日日刊工業新聞社発行「めっき技術便覧」365~369頁、同618~622頁等に記載されている。

[0041]

本発明では、とりわけ、エネルギー効率の向上の観点から、パルス波形のうちの矩形波パルス波形のものを使用することが好ましい。この様な電源(電源装置)は、交流電圧から矩形波状電圧を作成することができるものであり、このような電源は例えばトランジスタを用いた整流回路を有するものであり、パルス電源装置として知られている。このような電源装置または整流器としては、トランジスタ調整式電源、ドロッパー方式の電源、スイッチング電源、シリコン整流器、SCR型整流器、高周波型整流器、インバータデジタル制御方式の整流器〔例えば(株)中央製作所製のPower Master〕、(株)三社電機製作所製のKTSシリーズ、四国電機株式会社製のRCV電源、スイッチングレギュレータ式電源とトランジスタスイッチとからなりトランジスタスイッチがON-OFFすることで矩形波状のパルス電流を供給するもの、高周波スイッチング電源(交流をダイオードにて直流に変換した後にパワートランドスタで20~30KHzの高周波をトランスに加えて再度整流、平滑化し出力を取り出す)、PR式整流器、高周波制御方式の高速パルスPR電源〔例えばHiPRシリーズ(株)千代田〕などが利用可能である。

[0042]

陽極部材と陰極部材との間に印加する電圧は、通常の水の電気分解の場合と同様である。

[0043]

電解液14は、電解質を含む水である。ここにおける電解質としては、水溶性のアルカリ金属水酸化物(KOH、NaOHなど)またはアルカリ土類金属水酸化物〔例えばBa(OH)2、Mg(OH)2、Ca(OH)2など〕、あるいは第4級アルキルアンモニウムなど、またリン酸や硫酸など、従来公知のものを

使用することができる。これらの中でもKOHが好ましい。電解液中の電解質の含有量は、5~30%が好ましい。また、電解液のpHは、7~10であるのが好ましい。但し、NaClやHClのように電気分解によりハロゲンガスを発生するものは、大量に使用した場合の環境汚染防止の観点から使用を避けるのが好ましい。

[0044]

図1~図6に示されている様に、電解槽10Aの上部には蓋部材10Bが付設されている。該蓋部材には、電解により発生する水素一酸素混合ガスを回収するための水素一酸素混合ガス取出口10B′が設けられている。該取出口10B′には、水素一酸素混合ガス採取管10B″が接続されている。これらの蓋部材10B及び水素一酸素混合ガス採取管10B″を含んで、水素一酸素混合ガス捕集手段が構成される。

[0045]

この具体例では、水素一酸素混合ガスは水素ガスと酸素ガスとの均一な混合ガスとして回収される。

[0046]

電解槽10A及び蓋部材10Bの材質としては、例えばステンレススチール、 銅、その他の金属に絶縁被覆を施したものあるいはポリカーボネート等の合成樹 脂が例示される。尚、電解槽10Aには、内部の電解液14のレベル調整のため の配管10A′が接続されている。

[0047]

振動撹拌手段16の振動棒16eは、蓋部材10Bを上下方向に貫通して延びている。この貫通は、図7及び図10に示されている様に、蓋部材10Bに設けられた開口の内端縁に付された固定部材10Dと振動棒16eの外面に付された固定部材10Eとの間をゴム板等のフレキシブル部材10Cにより気密にシールしたものとすることができる。あるいは、気密シールのための手段は、振動棒16eにサポートベアリングの内輪を取り付け、該サポートベアリングの外輪を蓋部材10Bの開口の内端縁に取り付け、外輪に対して内輪を上下に適宜のストロークにわたって移動可能にしたものであっても良い。蓋部材10Bに設けられた

開口に、振動棒16eが通過する部分のみ開口したゴム板またはその積層体等の 気密シール手段を取り付けてもよい。このシール手段としては例えば、ゴム、特 に変形性良好な軟らかいゴムが使用できる。振動棒の上下振動の振幅は、通常2 0mm以下、好ましくは10mm以下、特に好ましくは5mm以下であり、その 下限は例えば0.1mm以上、好ましくは0.5mm以上といった程度であるか ら、シール部材としてゴムなどを使用することで、追従が可能となり摩擦熱の発 生も少なく良好な気密状態が実現される。

なお、より一層完全なシールを達成する手段としては、図68に示すようなタイプがある。このようなケースにおいては振動棒とパッキンの間のシールを一層安全、確実にするためたとえばシリコーン樹脂系の潤滑性シーリング剤(図68中ではシリコン充填と表現)を存在させたものである。

[0048]

また、安全装置として図59と図60の装置を一体化した図72のものを安全 装置として使用することもできる。なお、ガス溜めは当然本発明のガス発生装置 である電解槽に連結している。

[0049]

電解は、液温 $20 \sim 100$ ℃で、電流密度 $7 \sim 40$ A $/ dm^2$ で行なうのが好ましい。電解により発生する水素-酸素混合ガスは、図 59 に示されている様に、ガス採取管 108 『に接続されたシールポット 108 』 を経て取り出される。シールポット 108 』 もガス捕集手段を構成する。図 60 は、ガス発生装置により回収された水素-酸素混合ガスを利用するガス燃焼装置の一例を示す図である。水素-酸素混合ガスは、所要の容量のガス溜め、除湿器及び炎止めタンクを経て水素-酸素混合ガス供給口へと供給される。

[0050]

図15は振動撹拌手段の一変形例を示す断面図である。この例では、基台16 a は、振動吸収部材41を介して電解槽10Aの上部に取り付けられた取り付け台40上に固定されている。また、取り付け台40には、垂直方向に上方へと延びた棒状のガイド部材43が固定されており、該ガイド部材43はコイルバネ16b内に位置している。振動モータ16dとそれを駆動するための電源136と

の間には、振動モータ16dの振動周波数を制御するためのトランジスタ・イン バータ35が介在している。電源136は、例えば200Vである。このような 振動モータ16dの駆動手段は、上記その他の本発明の具体例においても使用す ることができる。

[0051]

図16は振動撹拌手段の一変形例を示す断面図である。この例では、振動部材 16cに垂直方向に下方へと延びた棒状の上側ガイド部材 144が固定されてお り、取り付け台40に垂直方向に上方へと延びた棒状の下側ガイド部材 145が 固定されており、これらガイド部材 144、145はコイルバネ 16b内に位置 している。上側ガイド部材 144の下端と下側ガイド部材 145の上端との間に は、振動部材 16cの振動を許容するような適度の間隙が形成されている。

図17は振動撹拌手段の一変形例を示す断面図である。この例では、振動モータ16 d は、振動部材 160 の上側に付設された付加的振動部材 16c の下側に取り付けられている。また、振動棒 16e は、電解槽 10 A内において分岐して2つの部分 134 とされており、これら2つのロッド部分 134 の間に振動羽根 16f が掛け渡されて取り付けられている。

[0052]

図18及び図19は振動撹拌手段の一変形例を示す断面図である。この例では、最も下側の振動羽根16fが下向きに傾斜しており、その他の振動羽根16fが上向きに傾斜している。このようにすると、電解槽10Aの底部に近い部分の電解液14の振動撹拌を充分に行うことができ、電解槽底部に溜りが発生するのを防止することができる。また、振動羽根16fの全部を下向きに傾斜させることができる。

図20及び図21は本発明装置を構成する振動撹拌手段の電解槽への取り付けの他の形態を示す断面図であり、図22はその平面図である。図20及び図21はそれぞれ図22のX-X′断面及びY-Y′断面に相当する。

[0053]

この形態では、振動吸収部材として上記コイルバネ 16b に代えてゴム板 2b 金属板 1、 1 との積層体 3 が用いられている。即ち、積層体 3 は、電解槽 1 0

Aの上端縁部に固定された取り付け部材118に防振ゴム112を介して取り付けられた金属板1′をボルト131により固定し、該金属板1′上にゴム板2を配置し、該ゴム板2上に金属板1を配置し、これらをボルト116及びナット117により一体化することで形成されている。

[0054]

振動モータ16 d は支持部材115を介してボルト132により金属板1に固定されている。また、振動棒16eの上端部はゴムリング119を介して積層体3特に金属板1とゴム板2とに取り付けられている。即ち、上側金属板1は図1、図4その他に記載されている具体例の振動部材16cの機能をも発揮するものであり、下側金属板1′は図1、図4その他に記載されている具体例の基台16aの機能をも発揮するものである。そして、これら金属板1、1′を含む積層体3(主としてゴム板2)が図1、図4その他に記載されているコイルバネ16bと同様な振動吸収機能を発揮する。

[0055]

図23A~23Cは積層体3の平面図を示す。図20~22の形態に対応する図23Aの例では、積層体3には振動棒16eを通すための貫通孔5が形成されている。また、図23Bの例では、積層体3は貫通孔5を通る分割線により2分割された2つの部分3a、3bからなり、これによれば装置組立の際に振動棒16eを容易に通すことができる。また、図23Cの例では、積層体3は、電解槽10Aの上端縁部に対応する環形状をなしており、中央部に開口部6が形成されている。

[0056]

図23A、23Bの例では、電解槽10Aの上部が積層体3により塞がれ、これにより上記の蓋部材10Bと同等の機能が発揮される。

[0057]

図24A、24Bは、このような積層体3による電解槽の閉塞(シール)の様子を示す断面図である。図24Aの形態では、ゴム板2が貫通孔5において振動棒16eに当接してシールがなされる。また、図24Bの形態では、積層体3の開口部6において該積層体3と振動棒16eとに取り付けられこれらの間の空隙

を塞ぐフレキシブルシール部材136′が設けられている。

[0058]

図25A~25Eに振動吸収部材としての積層体3の例を示す。図25Bの例は上記図20~22の具体例のものである。図25Aの例では、積層体3は金属板1とゴム板2とからなる。図25Cの例では、積層体3は上側金属板1と上側ゴム板2と下側金属板1′と下側ゴム板2′とからなる。図25Dの例では、積層体3は上側金属板1′と下側ゴム板2′とからなる。図25Dの例では、積層体3は上側金属板1と上側ゴム板2と中間金属板1″と下側ゴム板2′と下側金属板1″と下側ゴム板2′と下側金属板1′とからなる。積層体3における金属板やゴム板の数は、例えば1~5とすることができる。尚、本発明においては、ゴム板のみから振動吸収部材を構成することも可能である。

[0059]

金属板1、1″ の材質としては、ステンレス鋼、鉄、銅、アルミニウム、その他適宜の合金を使用することができる。金属板の厚さは、例えば10~40mmである。但し、積層体以外の部材に対して直接固定されない金属板(例えば上記中間金属板1″)は0. 3~10 mmと薄くすることができる。

[0060]

ゴム板 2、 2 、の材質としては、合成ゴム又は天然ゴムの加硫物を使用することができ、 JIS K6386で規定される防振ゴムが好ましく、更に特に静的 剪断弾性率 $4\sim22$ kg f / c m 2 好ましくは $5\sim10$ k g f / c m 2 、伸び 2 50%以上のものが好ましい。合成ゴムとしては、クロロプレンゴム、ニトリルゴム、ニトリルークロロプレンゴム、スチレンークロロプレンゴム、アクリロニトリルーブタジエンゴム、イソプレンゴム、エチレンープロピレンージエン共重合体ゴム、エピクロルヒドリン系ゴム、アルキレンオキシド系ゴム、フッ素系ゴム、シリコーン系ゴム、ウレタン系ゴム、多硫化ゴム、フォスファゼンフッ素ゴムを例示することができる。ゴム板の厚さは、例えば $5\sim60$ mmである。

[0061]

図25 Eの例では、積層体3は上側金属板1とゴム板2と下側金属板1′とからなり、ゴム板2が上側ソリッドゴム層2aとスポンジゴム層2bと下側ソリッドゴム層2cとからなる。ソリッドゴム層2a、2cのうちの一方を除去しても

よいし、更に複数のソリッドゴム層と複数のスポンジゴム層とを積層したものであってもよい。

[0062]

図26は、振動撹拌手段16の変形例を示す図である。この例では、振動モータ16dが電解槽10Aの側方に位置しており、振動部材16cが電解槽10Aの上方へと水平に延びている。そして、該振動部材16cに振動棒16eが取り付けられている。この構成によれば、電解槽10Aに対する上記蓋部材10Bの着脱が容易になる。尚、図26には電解槽10Aの一側方に位置する振動撹拌手段16のみが示されているが、電解槽10Aの両側方に振動撹拌手段16を配置してもよい。

[0063]

以上の具体例においては、陽極部材及び陰極部材の少なくとも一方の表面に対向するように振動撹拌手段の振動撹拌部材を配置することで、陽極部材または陰極部材が1つであっても、その高いガス発生効率に基づき、装置あたりの高いガス発生量を得ることが出来る。

[0064]

図27~図29は本発明による水素-酸素混合ガス発生方法の実施される水素-酸素混合ガス発生手段の一具体例の構成を示す図である。ここで、図27~図28は断面図であり、図29は平面図である。

[0065]

本具体例においては、振動撹拌手段として絶縁式のものを用いている。即ち、 絶縁式振動撹拌部材として、振動部材16cに上端を取り付けられた振動棒上部 分16e′と、該振動棒上部分の下方に絶縁領域16e″を介して取り付けられ た振動棒下部分16e′″とを含んでなる振動棒を使用している。

[0066]

振動モータ16 dとそれを駆動するための不図示の電源(例えば200V)との間には、振動モータ16 dの振動周波数を制御するためのトランジスタ・インバータが介在している。このような振動モータ16 dの駆動手段は、その他の本発明の具体例においても使用することができる。振動モータ16 dは、インバー

タを用いた制御により、上記具体例と同様に $10\sim500\,\mathrm{Hz}$ で振動する。振動モータ $16\,\mathrm{d}$ で発生した振動は、振動部材 $16\,\mathrm{c}$ 及び振動棒($16\,\mathrm{e}$ 、 $16\,\mathrm{e}$ ' ') を介して振動羽根 $16\,\mathrm{f}$ に伝達される。

[0067]

図30は、振動棒の電気的絶縁領域16e″の近傍を示す部分拡大断面図である。また、図31は電気的絶縁領域16e″の斜視図を示し、図32はその平面図を示す。

[0068]

電気的絶縁領域16e"は、例えば合成樹脂またはゴムで形成することができる。電気的絶縁領域16e"は、振動棒を構成するものであるから、振動により破損せず、振動モータの振動を効率よく伝達でき、十分な絶縁性を発揮する材料を選択するのが好ましい。この様な観点から硬質ゴムが最も好ましい。その一例としては、硬質ポリウレタンゴムを挙げることができる。なお、このような絶縁材料のみからなる部材では強度的に不十分である場合には、絶縁性を損なわない範囲で、絶縁部材のみからなる部材の周囲などを例えば金属などで補強して、所要の機械的強度を得ることができる。

絶縁領域16 e "は、具体的には、例えば、図示される様な硬質ゴム製の円柱 状絶縁部材(多角形状等形状は任意)よりなり、その中央の上部分及び下部分に 、振動棒上部分16 e '及び振動棒下部分16 e' "をそれぞれ嵌合させるため の嵌合用穴124、125が設けられている。これらの嵌合用穴は上下には貫通 しておらず、そのため、これら嵌合用穴の間の非貫通部分は絶縁部として機能す る。

[0069]

上下の嵌合用穴を貫通させた場合には、振動棒上部分16 e′と振動棒下部分16 e′″とが接触しないように、上記非貫通部分に対応する箇所に絶縁材料を充填するか、絶縁に十分な程度の空間を設ける。円柱状絶縁部材の嵌合用穴124、125は、振動棒上部分16 e′と振動棒下部分16 e′″の接合のために機能する。接合は、ネジ止め(たとえば、図示されている様に、振動棒上部分16 e′の下端部と振動棒下部分16 eの上端部とに雄ネジを切り、嵌合用穴12

4、125に雌ネジを切って、両者を結合させ、必要に応じて更にその上にワッシャーリングを当て、ビス止めする)でもよいし、接着剤による接合でもよい。いずれにしても、これらの部分の構造は、目的とするガスを充分生成できれば、その他のいかなる構造であってもよい。

[0070]

たとえば、振動棒の直径が $1.3\,\mathrm{mm}$ の場合には、絶縁領域 $1.6\,\mathrm{e}$ "は、長さ(高さ) Lが例えば $1.0\,\mathrm{0\,mm}$ であり、外径 r_2 が例えば $4.0\,\mathrm{mm}$ であり、嵌合用 穴 $1.2\,4$ 、 $1.2\,5$ の内径 r_1 が $1.3\,\mathrm{mm}$ である。

図30及び図27~図28に示されている様に、振動棒下部分16eの上部には、絶縁領域16e″の直下にて通電線127が接続されている。通電線127は電源34に接続されている。ここで、図27に示されているように、一方の絶縁式振動撹拌手段16(陽極部材2xに近接する方)の通電線127は電源の正極に接続されており、他方の絶縁式振動撹拌手段16(陰極部材2yに近接する方)の通電線127は電源の負極に接続されている。陽極部材2x及び陰極部材2yは、それぞれ図29に示される陽極主ブスバー201及び陰極主ブスバー202を介して電源34に接続されている。

[0071]

振動棒下部分16 e、固定部材16 j及び振動羽根16 f は導電性部材例えば 金属からなる。これにより、一方の絶縁式振動撹拌手段の振動棒下部分16 e、 固定部材16 j及び振動羽根16 f をも陽極部材として利用し、他方の絶縁式振 動撹拌手段の振動棒下部分16 e、固定部材16 j及び振動羽根16 f をも陰極 部材として利用して通電し、電気分解を行うことが出来る。更には、陽極部材及 び陰極部材のうちの少なくとも一方を除去して、電気分解を行うことも可能であ る。

[0072]

振動羽根16fを陽極部材または陰極部材として利用する際には、特にこれらとは別の陽極部材または陰極部材を使用しない場合のように電極面積が不足する時には、出来るだけ振動羽根の面積を増加させるのが好ましい。そのためには、振動羽根の長さは、図14に示す第2回目のピークを示す長さL2または第3回

目のピークを示す長さL3を選択することが好ましい。

[0073]

本具体例では、絶縁式振動撹拌手段により電解液 1 4 を振動撹拌しながら電気 分解を行うので、非絶縁式の振動撹拌手段を用いた場合と同様に、陽極部材と陰 極部材との間の距離を例えば 2 0 ~ 4 0 0 mmとしてもショートすることなく電 解処理を行なうことができる。

[0074]

本具体例においては、振動棒上部分16 e′は絶縁領域16 e″により振動棒下部分16 e′″とは電気的に絶縁されているので、振動棒下部分16 eを介する通電の影響が振動モータ16 dへと及ぶことはない。更に、本具体例では、絶縁領域16 e″が熱絶縁性をも有するので、振動棒上部分16 e′は振動棒下部分16 e′″とは熱的にも絶縁され、電解液14の温度の影響が振動モータ16 dへと及ぶことは少ない。

[0075]

また、本具体例の装置において、絶縁式振動撹拌手段の振動羽根を陽極部材又は陰極部材として用いずに電気分解を行なう場合においても、絶縁領域16 e ″が存在するので、電解液14内の通電の影響が振動モータ16 dへと及ぶことがないという利点がある。

[0076]

図33は、絶縁式振動撹拌手段の他の具体例を示す側面図である。この具体例は、振動棒下部分16eに、振動羽根16fの他にこれと交互に配置された電極用補助羽根16f′を取り付けたことが、図27~図29の例と異なる。電極用補助羽根16f′は、導電性を有しており、振動棒下部分16eと電気的に接続されていて、電解液14に対する通電の際の一方の電極として機能し、従って振動撹拌の機能は必須ではない。電極用補助羽根16f′を使用する目的は電極面積の増加と当該電極と反対側の電極との間隔の低減とにあるので、電極用補助羽根16f′の大きさ(面積)は振動羽根16fより大きいほうが好ましく、また図示されている様に、補助羽根16f′の先端縁(右端縁)は振動羽根16fの先端縁(右端縁)は振動羽根16fの

[0077]

電極用補助羽根16 f′は、振動羽根と振動羽根との中間に位置する様に振動棒に取り付けるのが好ましいが、必ずしもこれに限定されることはなく、振動撹拌の効果を著しく低減させない限りは、上下一方の振動羽根に近接して配置することも可能である。振動棒下部分16 eへの電極用補助羽根16 f′の取り付けは、振動羽根16 f の取り付けと同様にして行なうことができる。

[0078]

電極用補助羽根16 f′の材質としては、電極として使用され得るものであればよいが、振動棒の振動に従って振動するものであるから、振動に耐え得ることが要求され、例えば振動羽根として使用可能な導電体例えば金属例えばチタン(表面に白金めっきを施すことができる)またはステンレス(表面に白金めっきを施すことができる)を使用することができる。尚、電極用補助羽根16 f′を使用する場合には、振動羽根16 f は必ずしも導電性材料からなる必要はなく、合成樹脂製のものを使用することも可能である。

[0079]

図34及び図35は絶縁式振動撹拌手段の他の具体例を示す断面図である。本 具体例では、2つの振動棒にわたって各振動羽根が取り付けられている。

[0800]

図36は振動羽根16fの近傍を示す断面図である。振動羽根16fは固定部材16jからはみ出した部分が振動流動の発生に寄与するのであり、このはみ出した部分は幅 D_1 で長さ D_2 である。本具体例では、複数の振動棒にわたって各振動羽根が取り付けられているので、各振動羽根の面積を十分大きくとることができる。かくして、大きな振動流動を得ることができ、また電極として使用される面積を大きくすることが可能である。

[0081]

本具体例においては、図示はしないが、図27~図29に関し説明した様な電気分解手段の電源34が使用される。本具体例においても、図33の具体例と同様に、電極用補助羽根を使用することができる。

[0082]

図38は絶縁式振動撹拌手段の1つの具体例を示す断面図である。本具体例の 絶縁式振動撹拌手段16においては、振動モータ16dは、電解槽10A外に配 置されていて、振動部材16cが電解槽10Aの方へと延びている。本具体例に おいても、図示はしないが、図27~図29に関し説明した様な電気分解手段の 電源34が使用される。本具体例においても、図33の具体例と同様に、電極用 補助羽根を使用することができる。また、図では絶縁式振動撹拌手段が電解槽の 片側にのみ配置されているが、もう一方の側にも同様な絶縁式振動撹拌手段を配 置することが可能である。

[0083]

図39は絶縁式振動撹拌手段の他の具体例を示す断面図である。本具体例では、図38の具体例と同様な振動モータ16d、振動部材16c、振動棒16e及び絶縁領域16e″の組が、電解槽10Aの両側に配置されている。そして、振動棒16eは、コの字形状をなしており、その2つの垂直部分が2つの絶縁領域16e″にそれぞれ対応して配置されている。これら2つの垂直部分の上端がそれぞれ絶縁領域16e″を介して2つの振動棒16eにそれぞれ接続されている。振動羽根16fは、振動棒16eの水平部分にほぼ垂直に取り付けられている。図では振動羽根16fは上方に突出しているが、下方に突出していてもよい。また、振動羽根16fは垂直方向に対して傾斜をもって配置されてもよいことは上記と同様である。

[0084]

図示されている絶縁式振動撹拌手段の上方突出の振動羽根を陽極部材として使用し、他の絶縁式振動撹拌手段の下方突出の振動羽根を陰極部材として使用して、電解処理を行うことが出来る。この場合、後述の図43に関し説明するように、双方の絶縁式振動撹拌手段の振動羽根同士を互いに入り組んだ形態とすることが可能である。

[0085]

本具体例のように、振動棒は必ずしも上下方向を向いて配置される必要はなく 、電解槽の形状などに応じて適宜の形状及び配置のものを使用することが出来る

[0086]

本具体例においても、図示はしないが、図27~図29に関し説明した様な電気分解手段の電源34が使用される。本具体例においても、図33の具体例と同様に、電極用補助羽根を使用することができる。

[0087]

図40~図42は水素-酸素混合ガス発生手段の一具体例を示す図である。ここで、図40~図41は断面図であり、図42は平面図である。本具体例は、図27~図29の具体例において電極用補助羽根16f′を追加使用したものに相当する。

[0088]

図43~図44は水素-酸素混合ガス発生手段の一具体例を示す図である。ここで、図43は部分断面図であり、図44は断面図である。

[0089]

本具体例では、2つの絶縁式振動撹拌手段が電解槽10A内に配置されており、一方の絶縁式振動撹拌手段の隣接する電極用補助羽根16f′どうしの間に他方の絶縁式振動撹拌手段の電極用補助羽根16f′が位置している。これにより、2つの絶縁式振動撹拌手段の一方を陽極側として使用し且つ他方を陰極側として使用することで、大面積の陽極部材と陰極部材とを互いに近接して配置することができ、電流密度を著しく向上させることができる。このような非接触で互いに入り組んだ形態での陽極部材と陰極部材との配置は、2つの絶縁式振動撹拌手段の振動羽根同士でも同様にして行うことが出来る。

[0090]

本具体例においては、互いに上下方向に近接して配置される陽極部材(振動羽根または電極用補助羽根)と陰極部材(振動羽根または電極用補助羽根)との距離を例えば5~50mmとすることができる。本具体例においては、2つの絶縁式振動撹拌手段の電極用補助羽根16f′どうしが接触してショートするのを防止するために、図37に示す様に、電極用補助羽根16f′の両面の外周部等を絶縁テープ16faなどの貼付や絶縁塗料の塗布などにより絶縁部とすることが好ましい。電極部材として使用する振動羽根16f同士を同様にして互い違いに

配置することも可能であり、その場合にも同様な絶縁部を形成することが出来る。或いは、同様な絶縁効果を得るために、同等の形状を有するプラスチック製絶縁板を配置してもよい。

[0091]

図45~図47は、絶縁式振動撹拌手段の1例を示す模式図である。これらの例では、共通の振動部材16 c に複数の振動棒が接続されている。各振動棒下部分16 e に接続される通電線127は、それぞれ電源の図示される極に接続されるが、これに限定されることはなく、適宜変更してもよい。

[0092]

以上の具体例においては、絶縁式振動撹拌部材の一部(例えば、振動羽根、電極用補助羽根)を陽極部材または陰極部材として使用することで、絶縁式振動撹拌部材以外の陽極部材または陰極部材がなくとも、その高いガス発生効率に基づき、装置あたりの高いガス発生量を得ることが出来る。

[0093]

図48は絶縁式振動撹拌手段の他の具体例の構成を示す部分断面図であり、図49はその部分側面図である。本具体例では、2つの振動棒16eを機械的に接続する様に取り付けられている振動羽根16f及び固定部材16jを2つの群に区分し、第1の群を一方の振動棒16eと電気的に接続させ、第2の群を他方の振動棒16eと電気的に接続させ、これら2つの群の間で電圧を印加することで、電解液14に通電し電解処理を行なう様にしている。

[0094]

即ち、図48において、上側から奇数番目の振動羽根16f及び固定部材16jは、右側の振動棒16eとは電気的に接続されているが、左側の振動棒16eとは絶縁ブッシュ16s及び絶縁座金16tを介して取り付けられることで電気的に絶縁されている。一方、上側から偶数番目の振動羽根16f及び固定部材16jは、左側の振動棒16eとは電気的に接続されているが、右側の振動棒16eとは絶縁ブッシュ16s及び絶縁座金16tを介して取り付けられることで電気的に絶縁されている。かくして、上側から奇数番目の振動羽根16f及び固定部材16jを第1の群とし、上側から偶数番目の振動羽根16f及び固定部材1

6 j を第2の群とし、左側の振動棒16 e に接続されている通電線127と右側の振動棒16 e に接続されている通電線127との間に不図示の処理用電源により所要の電圧を印加することで、第1の群(陽極部材)と第2の群(陰極部材)との間で電解液14に通電することができる。尚、図49では絶縁ブッシュ16 s 及び絶縁座金16 t の図示が省略されている。

[0095]

本具体例においては、絶縁領域16e″は振動棒16eと振動発生手段を構成する振動部材16cとの間に設けられている。即ち、ここでは、絶縁領域16e″が、上記具体例における振動部材16cへの振動棒16eの取り付け部111の機能を兼ねている。

本具体例においては、陽極側となる振動羽根16fとしてはチタンの表面に白金めっきを施したものが好ましく用いられ、陰極側となる振動羽根16fとしてはチタンが好ましく用いられる。

本具体例によれば、絶縁式振動撹拌手段に対する給電のみで電解処理が可能となるので、装置をコンパクトなものとすることができる。また、振動羽根16fを陽極部材及び陰極部材のそれぞれとして兼用しているので、この点からも装置のコンパクト化がなされている。

[0096]

図50は絶縁式振動撹拌手段の他の具体例の構成を示す部分側面図である。本具体例では、図48及び図49の具体例における上側から偶数番目の振動羽根16fに代えて陽極部材(振動補助羽根)16f″を使用している。この陽極部材16f″は、振動撹拌には寄与せず、図の右側にのみ延びている。陽極部材16f″としては、例えばチタン製ラス網(表面に白金めっきを施したもの)が好ましく用いられる。一方、上側から奇数番目の振動羽根16fに対してスペーサ16uを介して陰極部材(振動補助羽根)16f″′を追加している。この陰極部材16f″′も、振動撹拌には寄与せず、図の右側にのみ延びている。陰極部材16f″′としては、例えばチタン板が好ましく用いられる。尚、陰極部材の場合と同様に、陽極部材とともに振動羽根を取り付けてもよい。本具体例では、振動羽根16fとは別に電極部材としての陽極部材16f″及び陰極部材16f″

を使用しているので、電極材料の選択の自由度が増加する。図50のように陽極部材や陰極部材は振動羽根とは反対方向に伸びているので、振動羽根と接触する心配がなく、そのため振動羽根と陽極部材または陰極部材の間隔を一層つめることができる。

[0097]

図51は水素-酸素混合ガス発生手段の一具体例の構成を示す断面図である。 本具体例は、図48~図49の絶縁式振動撹拌手段を2つ使用したものである。

[0098]

以上の具体例においては、絶縁式振動撹拌部材に陽極部材及び陰極部材の双方を取り付けて、これらの間で電解液14を介して通電することで電解処理を行うので、装置の小型化が可能であり、更にその高いガス発生効率に基づき、装置あたりの高いガス発生量を得ることが出来る。

[0099]

図52~図53は水素-酸素混合ガス発生手段の一具体例の構成を示す断面図である。本具体例では、振動撹拌手段として非絶縁式のものが用いられており、陽極部材及び陰極部材からなる電極対として、図48~図49の絶縁式振動撹拌手段と類似の構成体を使用したものである。即ち、上下方向に互いに平行に配列された2本の導電性棒状体116eに、陽極部材116f″及び陰極部材116f″/を図48~図49の絶縁式振動撹拌手段の第1群の振動羽根及び第2群の振動羽根の場合と同様にして取り付け、各導電性棒状体116eを電源の正極及び負極の所要のものに接続している。

[0100]

図54及び図55は水素-酸素混合ガス発生手段の一具体例を示す断面図である。本具体例では、絶縁式振動撹拌手段16の振動羽根16fを陰極部材として使用し、陽極部材86として、図56に示される円柱状チタン網ケース内に複数の金属製ボールを充填したものを使用し、金属製ボールを入れた金網を水平方向に保持したもの(図55参照)を用いている。陽極部材86の保持手段82は例えば陽極ブスバーである。

陽極部材86としては、例えばチタン製ラス網(表面に白金めっきを施したも

のが好ましい)からなるものを使用することが出来る。図57にラス網陽極部材 の正面図を示す。上部に吊下げ用の孔が2つ設けられており、中央部から下部に かけて網状部とされており、この網状部が電解液中に浸漬される。

[0101]

図58A~図58Eは、振動発生手段と振動撹拌部材との接続形態の例を示す 模式図である。図58Aの例では、振動発生手段の振動部材16cに直接振動撹 拌部材の振動棒16eが接続されている。これに対して、図58B~図58Eの 例では、振動部材16cに中間部材16ccが取り付けられており、該中間部材 16ccに振動棒16eが接続されている。

[0102]

電解槽内で発生した水素ー酸素混合ガスを均一に混合した状態で捕集するための捕集手段は、電解槽の上方を覆う蓋部材とその蓋部材に設けられたガス取出口とそれに連結されたガス採取管を含むものである。とくに蓋部材には、前記電解槽を上方から包みこむように密閉した囲み部材を付設し、発生したガスの漏れを完全に防止する(例えば図61参照)。本発明の振動撹拌手段の具体例などを説明する図面においては、発生するガスを効率よく捕集するための前記蓋部材は省略して画かれているが、実際には必ず蓋部材を使用する。

[0103]

蓋部材と囲み部材により発生した水素-酸素混合ガスを包み込むとその部分のガス圧が上る。ガス圧はある程度ある方が、その後のガスの取り扱い上便利な面が生じる。しかし、ガス圧を調節する手段が併設できれば一層好都合である。ガス圧調節手段の1例としては図59に示すようなシステムがある。シールポットは例えば水80%、メタノール(着色料)20%よりなる液体を入れたものである。また、図60に示すように水素-酸素混合ガス供給口とガス発生手段あるいはガス溜めとの間に炎止めタンク、フレームアスレターを設け、炎の逆流を防止することが好ましい。なお、燃料電池へ直結する場合はシールポットは必ずしも必要ではない。

[0104]

図61に、蓋部材10日の変形例を示す。この例では、蓋部材10日は、図1

に示されている電極群2x、2yの上方の部分のみにおいて、電解槽10Aに付設される。そして、該蓋部材10Bの両端部には、下方へと延びた囲み部材63が付設されている。この囲み部材63には、その下部の電解液中に浸漬される部分に該電解液の流通を可能となすための開口65が形成されている。囲み部材63には、該開口65の上部領域の一部を遮蔽する遮蔽板64を上下位置調節可能に取り付けることができる。この上下位置調節のために、遮蔽板64に上下方向の長孔66を形成し、該長孔を介して、囲み部材63に形成されたネジ穴68にボルト67を適合させるようにすることができる。遮蔽板64の上下位置を調節することで、電極群2x、2yの上方の部分の液位を調節することができ、ひいてはガス圧が調節される。

この蓋部材を使用する場合には、振動撹拌手段の振動棒 1 6 e は蓋部材を貫通 しないが、上記の様な密閉シール構造とすることが、水素 - 酸素混合ガスの回収 効率向上や電解液の飛散防止等の観点から、好ましい。

[0105]

図62~図64の水素-酸素混合ガス発生手段は、図52~図53の水素-酸素混合ガス発生手段を一層具体化した装置を示すものである。

[0106]

燃料電池のマイナス極側に設けられた供給口から、水素-酸素混合ガスを供給すると、水素はマイナス極に電子を与えながら、水素-酸素混合ガスはガス透過性であるマイナス極を通り抜けて電解質層にはいり込む。ガス透過性にするためにはマイナス極を例えばポーラスな構造とすることにより達成できる。

[0107]

例えば、電解質として固体高分子電解質を用いるとすると、カチオン交換膜を 電解質とした場合には、次のような電池反応が起こる。

陽極 : $1/2O_2+2H^++2e\rightarrow H_2O$ (1)

陰極 : H₂→2H⁺+2e (2)

全反応: $1/2O_2+H_2\rightarrow H_2O$ (3)

アニオン交換膜を電解質とした場合には、次のような電池反応が起こる。

陽極 : $1/2O_2 + H_2O + 2e \rightarrow 2OH^-$ (4)

陰極 : H₂+2OH⁻→2H₂O+2e (5)

全反応:1/2O₂+H₂→H₂O (6)

固体高分子電解質をガス透過性とするためには、電解質となる固体高分子を繊維状とし、これを織布や不織布の形体とすることなどにより達成できる。

[0108]

したがって、反応生成物である水は電解質層の所定の個所から排出する必要があり、また未反応ガスがある場合を考えると、ガスの流れをスムースにするため、電解質層にガス排出口も設けることが好ましい。なお、未反応ガスと反応生成物の水とを同時に1つの排出口から系外へ出すこともできる。

[0109]

燃料電池は、それに用いる電解質の種類によりいろいろのタイプに分類される。例えば、アルカリ型燃料電池、固体酸化物型燃料電池(SOFC)、燃料溶解型燃料電池、リン酸型燃料電池(PAFC)、固体高分子電解質型燃料電池(PEFC/PEM)、溶融炭酸塩型燃料電池などがあり、本発明は、いずれのタイプの燃料電池にも使用できるが、リン酸型燃料電池、固体高分子電解質型燃料電池、固体酸化物型燃料電池あるいはメタノール直接型燃料電池(当然本発明では燃料としてメタノールを用いるのではなく、本発明の水素一酸素混合ガスを用いる)に適用するのが好ましく、とりわけ固体高分子電解質型燃料電池や固体酸化物型燃料電池に適用するのがもっとも好ましい。

[0110]

固体高分子電解質型燃料電池は、固体高分子電解質を使用するのが、この固体高分子電解質としては各種の高分子イオン交換膜を挙げることができ、その例としては、平成5年3月15日株式会社オーム社発行、「燃料電池発電システム」第100~103頁とくに第101頁表-1記載の「フェノールスルフォン酸樹脂」、「ポリスチレンスルフォン酸」、「ポリトリフルオロスチレンスルフォン酸」、「(ポリ) パーフルオロカーボンスルフォン酸」をどが挙げられる。とくに「(ポリ) パーフルオロカーボンスルフォン酸」としては、下記式

【化1】

$$-(CF_{2}-CF_{2})_{X}-(CF_{2}-CF)-CF_{2}$$

$$CF_{2}$$

$$CF_{3}-CF$$

$$O$$

$$CF_{2}$$

$$CF_{3}$$

で示される構造のものが用いられている(xは重合度によって変化する)。

 $m \ge 1$ 、n = 2 のものは商品名Nafionとして、

m=0、n=2 のものは商品名DOW膜として、

それぞれ市販されており、これらの物性は、2001年11月30日コロナ社発行「燃料電池発電」第 $116\sim128$ 頁、とくに第120頁表6, 1に記載されている。

また、この種の固体高分子電解質型燃料電池の構造は、昭和62年9月30日 (株)サイエンスフォーラム発行「燃料電池設計技術」第102頁の図-2、図 -3および「燃料電池発電」第118頁、第122頁および2001年6月29 日 日経BP社発行「日経メカニカル別冊」第46~47頁に記載されている。

[0111]

【実施例】

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。

[0112]

実施例1

本実施例で使用した水素-酸素混合ガス発生手段の概略を図65~図67に示す。

(イ) 使用する振動撹拌手段

日本テクノ (株) 商品名超振動 α - 撹拌機 α - 1 型 (電解液中を流れている 電流が振動モータにまで流れることがないように配慮され ている)

振動モータ: 75W×200V×3相

(株) 村上精機製作所製低周波振動モータ

商品名ユーラスバイブレーター

振動棒:SUS304製直径16mmのもの2本

振動羽根:SUS304製厚さ6mmのもの4枚

固定部材: SUS304製

弾性部材シート:商品名テフロン(登録商標)シート

(口) 固定電極

プラス極:チタン板に白金めっき被覆したもの27枚マイナス極:チタン板24枚・

- (ハ) 使用インバータ: 富士電機 (株) 製商品名FVR-E11S 45 Hzに調整して使用
- (二)使用整流器(振動モータ用):中央製作所製 Power Master 、200V
- (ホ)電解槽:SUS304製(内面に塩化ビニル樹脂被覆したもの) 内径220mm×320mm×400mm(H) 蓋部材はSUS304である。
- (へ) 蓋部材と振動棒との間のシール(図68参照)
振動モータの振動軸への振動によってもガス漏れが発生しないようシリコン充填によりシールを完全にした。
- (ト)水素-酸素混合ガスを電解槽から燃料電池に導くに当っては、図59や図60の安全装置を使用するが、本実施例では図59と図60の安全装置を併用したタイプの図72のシステムを用いた。

(チ)使用電解液:蒸留水にKOH20wt%を溶解したもの 55℃、pH10で電解を行い必要量の水を補充する。本実施例では100アンペアー、3Vで約1000リットル /分の水素-酸素混合ガスを製造できた。

(リ) 燃料電池の構造と使用法:

本発明の水素-酸素混合ガスを用いて、市販の小型固体高分子型燃料電池を利用して発電を行った。この電池の各部品の構成は図69に示すとおりであり、これを組立てた燃料電池の断面図を図70に示す。図70の左側の開口部(この市販装置はこの開口部より水素ガスを供給する)より水素-酸素混合ガスを供給し、右側の開口部(この市販装置ではこの開口部より酸素含有ガス、例えば空気を供給する)はシールする。

図69の市販小型固体高分子型燃料電池の構成において、外周ゴムリング付プレートに膜/電極接合体すなわちMEA(2001年8月20日 株式会社日本実業出版社発行、池田宏之助編著「燃料電池のすべて」第146~147頁参照)が単セルの機能部分であって、固体高分子電解質である商品名Nafionをマイナス極とプラス極でサンドイッチしたものの外周をゴムリングで覆った構造のものである。本発明においては、水素一酸素混合ガスは図69に示すとおり、図69における図の上部に存在する中央の孔から供給されるが、図69における図の下部にある孔(本来空気供給用の孔)はゴム栓によりシールされている。

この電池を単セルとして、市販小型固体高分子型燃料電池の本来の使用方法で発電した場合(従来例)は、その出力は $0.6\sim0.7$ V、 $0.15\sim0.2$ Wであるが、実施例1の場合の出力は0.6 V、0.5 Wであり、出力が2.5 倍となっている。

また、従来の使用方法で発電した場合は、長時間使用すると100℃近くまで 発熱するので、長時間の使用が困難であるが、この実施例の場合は余り発熱せず 、長時間の使用が可能である。

図70に示すように、これを単セルとして使用するときは接続端子1をマイナス極とし、接続端子3をプラス極として使用し、2セルとして使用するときは、接続端子3をマイナス極とし、接続端子2をプラス極として使用し、3セルとし

て使用するときは、接続端子1をマイナス極とし、接続端子2をプラス極として 使用する。

なお、この電池における電解質層は、図69の外周ゴムリング付プレートに相当しており、この層は水を含浸した多孔質高分子(通常、トリエチルホスフェートを可塑剤にしたポリパーフルオロカーボンスルフォン酸の多孔質膜;デュポン社商品名Nafion)であり、水素と酸素とが反応して生成する反応水はここから浸み出して外部に排出される。

[0113]

実施例1で得られた水素-酸素混合ガスをボンベに貯蔵し、これをスペクトル 分析器によりスペクトルを測定した。その結果、図71に示すスペクトルが得ら れた。このスペクトルは火口から吹き出し方向に15mm離れた個所で測定した ものである。

このスペクトルによれば、620n m近傍にOH基の存在を示すピークが認められ、630n m近傍にはH α (原子状水素としてはH α 、H β 、H γ の3種の存在が認識されており、そのエネルギーは α 、 β 、 γ の順で低くなるが、いずれも原子状のものであり、活性、高エネルギーである)の存在を示すピークが認められる。このようなピークをもつ水素-酸素混合ガスは、振動撹拌手段を採用した場合のみに認められることであり、これ以外の方法で得られた水素ガス、酸素ガス、水素-酸素混合ガスではほとんど認められないピークである。

[0114]

実施例2

実施例1のように電解槽で発生したガスを安全装置を通して直接燃料電池に送ることをせず、電解槽で発生した実施例1の水素-酸素混合ガスをガス溜めに貯蔵し、1日放置後、実施例1の燃料電池の水素ガス供給口に前記水素-酸素混合ガスを供給したが、実施例1と同一の効果が得られた。

[0115]

実施例3

本実施例で使用する水素-酸素混合ガス発生手段の概略を図50に示す。図50の断面図は基本的には図48(ただし羽根の数が異なっている)に対応するものである。

(イ) 振動撹拌手段(絶縁式振動撹拌手段)

日本テクノ (株) 商品名超振動 α - 撹拌機 (α - 2型)

振動モータ: 150W×200V×3相

振動棒:SUS304製直径16mmのもの2本

振動羽根:SUS304製厚さ6mmのもの5枚

振動補助羽根

極板マイナス側: SUS304製3枚

極板プラス側 : SUS304製に白金めっき (10μm厚)

したもの2枚

(ロ)使用インバータ:富士電機(株)製商品名FVR-E11S

55Hzに調整して使用

(ハ) 使用整流器:中央製作所製Hi-Mini、200V

(二) 電解槽: SUS304製

内径220mm×320mm×440mm (H)

内面塩化ビニル樹脂被覆したもの

蓋部材はSUS304である。

(ホ) 蓋部材と振動棒との間のシール (図68参照)

振動モータの振動軸への振動によってもガス漏れが発生しないようシリコン充填によりシールを完全にした。

- (へ)水素-酸素混合ガスを電解槽から燃料電池に導くに当っては、図59や図60の安全装置を使用するが本実施例では図59と図60の安全装置を併用したタイプの図72のシステムを用いた。
- (ト)使用電解液:蒸留水にKOH20wt%を溶解したもの 50℃、pH10で電解を行い必要量の水を補充する。液は 冷却しなくても温度上昇は認められなかった。

本実施例では100アンペアー、3Vで約1000リットル /分の水素-酸素混合ガスを製造できた。

以上の手段により生成した水素-酸素混合ガスは、やはり図71に示すように 約620 nmに〇H基のピークを、約630 nmにHaのピークをもつという特 有の性質を示した。この水素-酸素混合ガスを図73に示す固体高分子電解質型 燃料電池に供給した。ただし、この燃料電池においてはマイナス極外側に水素-酸素混合ガスを供給し、未反応のガス成分と反応生成物の水はプラス極外側より 排出した。マイナス極もプラス極もガス透過性の白金触媒担持電極であり、固体 高分子電解質膜はデュポン社の商品名Nafion(ポリパーフルオロカーボンスルフォン酸)に水を含浸した通気性のものを用いた。

その結果、実施例1と同程度の発電効果が得られた。

[0116]

実施例4

実施例1において、燃料電池として図74に示す燃料電池を用いた以外は実施 例1を繰り返した。

固体電解質膜は、ガス透過性のイオン導電性薄膜(500nm以下)で白金製のガス透過性マイナス極と白金製のプラス極に挟まれており、マイナス極はガス透過性になっている。

前記ガス透過性のイオン導電性薄膜としては、前記ポリパーフルオロカーボンスルフォン酸に相当する商品名Nafionを用いた。また、前記ガス透過性マイナス極は、多孔性の薄い導電性カーボンペーパーに粉末状白金をまぶして固定したものを用いた。

この実施例では、市販水素ガスボンベを水素ガス燃料として用いた燃料電池に 較べてほぼ3~3.5倍の電力が得られるのは驚くべきことであり、これは、振 動撹拌手段を用いて得られた水素-酸素混合ガスの驚異的成果である。

[0117]

実施例 5

実施例1における振動モータを高周波振動モータ商品名ハイフレユーラスKH E2-2Tに変更し、インバータで120Hzで振動させた以外は実施例1を繰 り返した。実施例1とほぼ同様の結果が得られた。

[0118]

実施例6

図35に本発明に用いた水素-酸素混合ガス発生手段の概略的図面を示し、図48は振動羽根等の枚数が図35や図50のものと異なるが、振動棒への振動羽根等の取付け状態を示し、図50は、図48の側面側の側面図を示している。振動羽根と振動補助羽根(陰極部材)の数は後述(イ)の項目に述べたとおりである。

(イ) 使用する振動撹拌手段

日本テクノ (株) 商品名絶縁式超振動 α - 撹拌機 α - 2型

振動モータ: 150W×200V×3相

(株) 村上精機製作所製低周波振動モータ

商品名ユーラスバイブレーター

振動棒:SUS304製直径16mmのもの2本

振動羽根:SUS304製厚さ6mmのもの5枚

振動補助羽根(電極部材):

陰極部材: SUS304 3枚

陽極部材:SUS304に10μmの白金めっきを

したもの 2枚

固定部材:SUS304製

弾性部材シート:商品名テフロン(登録商標)シート

(ロ) 使用インバータ:富士電機(株) 製商品名FVR-E11S-2

55Hzに調整して使用

- (ハ) 使用整流器(振動モーター用):中央製作所製Power Master、200V
- (二)電解槽:SUS304製(内面に塩化ビニル樹脂被覆したもの) 内径220mm×320mm×400mm(H) 蓋部材はSUS304である。
- (ホ) 蓋部材と振動棒との間のシール (図68参照)

振動モータの振動軸への振動によってもガス漏れが発生しないようシリコン充填によりシールを完全にした。

- (へ)水素-酸素混合ガスを電解槽から燃料電池に導くに当っては、図59や図60の安全装置を使用するが、本実施例では図59と図60の安全装置を併用したタイプの図72のシステムを用いた。
- (ト)使用電解液:蒸留水にKOH20wt%を溶解したもの(約55℃以上に 昇温することはないため、電解液を冷却する必要はない。)55℃:pH10で電解を行い、必要量の水を補充した。
- (チ) 燃料電池の構造と使用法、

図73に示す燃料電池の構造物(2001年6月29日、日経BP社発行、日経メカニカル別冊、「燃料電池開発最前線」図3-1-1および図3-1-2参照)を利用した。

図73に示す高分子固体電解質膜は、前述の商品名Nafionである。電極は、カーボンブラックの微粒子に白金系触媒を担持したものであって、白金系触媒を高分子電解質ポリマーに分散し、これをカーボンペーパー上にスクリーン印刷して得られたものである。この電極の間に前記Nafionを挟み、熱圧着してMEA(膜/電極接合体)としたものを一単位のセルとし、これを20枚積層したのが図73の下段に示すスタックである。

図73に示すアノード(陰極)側より本発明の水素-酸素混合ガスを導入し、排出口から反応残渣を排出する。なお、本実施例においてはカソード側の空気口はシールして使用した(図73のものの本来の使用法はアノードに水素を、カソードに空気をそれぞれ供給するため、アノード側とカソード側にそれぞれ供給口があるが、本発明ではアノード側に水素-酸素混合ガスを供給するため、カソード側に空気すなわち酸素を供給する必要はない)。

本実施例の場合は、水冷をしなくても80℃以下に保たれた状態で2日間連続発電が可能であったが、図73本来の使用法によると、冷却をしないと電池は100℃以上に発熱し、高分子膜が破壊した。また発電効率も本発明のものは、本来の使用法の場合に較べて30~40%向上した。

[0119]

実施例7

本実施例6のように、補助羽根を振動羽根と反対側に設置することにより極間 距離を短くしても相互の接触が発生しないという大きなメリットがある。

また、このようなタイプの補助羽根と振動羽根を用いることにより実施例1や2のような固定電極を設けるスペースがはぶけるので、実施例6の電解槽の両端に振動撹拌電極をセットすることができた。

このような水素-酸素混合ガス発生手段を用いて実施例 6 の燃料電池を用いて 発電を行った。

[0120]

比較例1

実施例6の燃料電池に市販の水素ガスボンベより水素ガスを供給し、該燃料電池の空気口より空気を供給して、発電を行った。

[0121]

実施例6および7と比較例1の発電状況は、下記表のとおりである。

【表1】

	燃料ガス 圧送量(リットル/分)	電圧 (V)	発生電流 (A)
比較例 1	1.2 ~ 1.3	24	2~3
実施例 6	1.2 ~ 1.3	24	2.5~4.5
実施例 7	2.0 ~ 2.5	24	5.0~9.0

[0122]

実施例8

実施例1において、燃料電池として図74に示す燃料電池を用いた以外は実施 例1を繰り返した。

図74に示す構成の燃料電池は、「Nature」vol. 343, 8 Fe bruary 1990, 第547~548頁に記載されているものである。

固体電解質膜は、ガス透過性のイオン導電性薄膜(500nm以下)で白金製のガス透過性マイナス極と白金製のプラス極に挟まれており、マイナス極はガス 透過性になっている。 前記ガス透過性のイオン導電性薄膜としては、 $Al_2O_3 \cdot 2H_2O$ の組成をもつ低密度ベーマイト型($\gamma-AlOOH$)無機材料を用いた。また、前記ガス透過性マイナス極は、多孔性の薄い導電性カーボンペーパーに粉末状白金をまぶして固定したものを用いた。

この実施例では、前記Nature記載の燃料電池に較べてほぼ3~3.5倍の電力が得られるのは驚くべきことであり、これは、振動撹拌手段を用いて得られた水素-酸素混合ガスの驚異的成果である。

[0123]

実施例9

2001年6月29日、日経BP社発行、日経メカニカル別冊、「燃料電池開発最前線」の「自動車、携帯機器、家庭電源が替る」第68~69頁とくに図44に示されているManhattan Scientifics社の「Micro Fuel Cell」(図75に示す)を用いた。この電池のメタノール供給口にメタノールの代わりに本発明の水素一酸素混合ガスを供給し、空気供給口はシールして燃料電池を機能させた。

その結果、メタノールを燃料として用いた場合よりも良好な発電結果が得られた。

[0124]

実施例10

本実施例は、特開2002-280015号公報記載の単室型固体電解質型燃料電池に、炭化水素と空気の混合ガスを供給する代りに、本発明の水素-酸素混合ガスを供給することにより行い、0.5W/cm²の電力が得られた。

この単室型固体電解質型燃料電池の構成は、前記特開2002-280015 号公報記載のとおりであるが、一応以下にそれを説明する。

この単室型固体電解質型燃料電池は、図76及び図77に示すように、円盤状の酸素イオン伝導性固体電解質の同一面に、それぞれ正極及び負極を備える構成である。また、本単室型固体電解質型燃料電池は、アルミナ管中に収め、このアルミナ管にメタンと空気の混合気体を流通させた状態で使用する。

酸素イオン伝導性固体電解質は、 La_{1-z} . $Sr_{z}Ga_{1-w}Mg_{w}O_{3-\delta}$

または $Ce_{1-\gamma}Ln_{\gamma}O_{2-\delta}$ を用いた。また、正極は、ストロンチウムをドープした $Ln_{1-x}Sr_{x}CoO_{3\pm\delta}$ (前記Ln;希土類元素、特にLa、Sm、GdまたはYb)であり、とくに Sm_{0} . 5 Sr_{0} . 5 $CoO_{3\pm\delta}$ を用いた。更に、負極は、Looperate Looperate Looperate

この単室型固体電解質型燃料電池を次に示すように作製した。始めは、酸素イオン伝導性固体電解質の表面に負極を形成する。酸化ニッケル粉末とSDC粉末を所定量秤量し、適当な有機溶媒を用いて混合粉砕した後、所定量の酸化パラジウム粉末を加えて混合粉砕してペースト状の電極材を調節する。これを酸素イオン伝導性固体電解質上にスクリーン印刷し、1400℃にて焼き付け処理を行った。

次いで、酸素イオン伝導性固体電解質の負極が形成された面の同じ側に負極との間に所定の間隙を空けて正極を形成する。 $\operatorname{Ln}_{1-x}\operatorname{Sr}_{x}\operatorname{CoO}_{3}$ (ここでは、 $\operatorname{Sm}_{0.5}\operatorname{Sr}_{0.5}\operatorname{CoO}_{3\pm\delta}$ を使用した。)を有機溶媒に溶解させて粉砕してペースト状の電極材を調節する。これを酸素イオン伝導性固体電解質の負極と反対側の面にスクリーン印刷し、 $\operatorname{900}$ にて焼き付け処理を行った。

電極の間隔は 3×10^{-3} mとした。また、負極のP d 添加量は5 w t %とし、酸素イオン伝導性固体電解質は、 $\Box 7\times10^{-3}$ m、厚さ0. 3×10^{-3} m、表面粗さP a 0. 0.6×10^{-6} mのものを用いた。

[0125]

実施例11

実施例1に使用した水素-酸素混合ガス発生手段を用い、発生した水素-酸素混合ガスを酸素分離器を用いて酸素ガスと水素ガスを分離し、実施例6で用いた燃料電池のアノード(陰極)側より前記水素ガスを、カソード(陽極)側より前記酸素ガスを供給して発電を行った。なお、電解槽内のマイナス極とプラス極の

間に隔膜を設け、発生する水素ガスと酸素ガスを発生段階から分離、捕集し、その水素ガスを燃料電池の陰極に、酸素ガスを燃料電池の陽極に供給して発電を行っても全く同様の結果が得られた。これらの結果、市販の水素ボンベと酸素ボンベを用いて同様の発電を行った場合に較べて約5割アップの発電効率を示した。これはガス中のHαやOHの存在が寄与しているものと推定するほかはない。

[0126]

実施例12

本実施例で使用した水素-酸素混合ガス発生手段の概略を図65~図67に示す。

(イ) 使用する振動撹拌手段

日本テクノ (株) 商品名絶縁式超振動 α - 撹拌機 α - 3型

(図49に示す) 2台を電解槽中に振動羽根がそれぞれ

向き合うように設置

振動モータ: 250W×200V×3相

(株)村上精機製作所製低周波振動モータ

商品名ユーラスバイブレーター

振動棒:SUS304製直径16mmのもの2本

振動羽根: SUS304製厚さ6mmのもの7枚

固定部材: SUS304製

弾性部材シート:商品名テフロン(登録商標)シート

前記絶縁式超振動 α 一撹拌機の一方をプラス極に、一方をマイナス極として使用し、両者の間には隔膜を設けて水素ガスと酸素ガスを別々に採取した。なお、振動羽根をプラス極として使用する場合にかぎり、SUS板に白金めっき被覆を設ける。

- (ロ) 使用インバータ: (株) 中央製作所製
 - 50Hzに調整して使用
- (ハ)使用整流器(振動モータ用):中央製作所製 Power Master

, 200V

(二) 電解槽: SUS304製(内面に塩化ビニル樹脂被覆したもの)

内径700mm×500mm×500mm (H) 蓋部材はSUS304である。

(ホ) 蓋部材と振動棒との間のシール (図68参照)

振動モータの振動軸への振動によってもガス漏れが発生しないよ うシリコン充填によりシールを完全にした。

- (へ) 水素 酸素混合ガスを電解槽から燃料電池に導くに当っては、水素ガスと酸素ガスを分離し、いずれのガスも図59の安全装置を通し、水素ガスは実施例6の燃料電池の陰極側に、酸素ガスは実施例6の燃料電池の陽極側に供給して発電を行った。
- 一方、比較のために、市販の水素ガスボンベの水素ガスを実施例 6 の燃料電池 の陰極側に供給し、陽極側には空気を供給して発電を行った。

比較例のものに較べて本実施例のものの発電効率は約50%アップしていた。

[0127]

【発明の効果】

本発明により、従来の水素単独ガスを燃料として用いる燃料電池発電に較べて、2~3.5倍の電力を発生させることができる。本発明において水素一酸素混合ガスを用いる場合には燃料電池の発熱がほとんどなく、従来タイプの燃料電池のような冷却手段が不要である。

【図面の簡単な説明】

【図1】

図1は、本発明による水素-酸素混合ガス発生手段の1例を示す断面図である

【図2】

0

図2は、図1の水素-酸素混合ガス発生手段の平面図である。

【図3】

図3は、図1の手段の側面図である。

【図4】

図4は、本発明による水素-酸素混合ガス発生手段の他の1例を示す断面図である。

【図5】

図5は、図4の手段の平面図である。

【図6】

図6は、図4の手段の断面図である。

[図7]

図7は、図1または図4の手段の部分拡大断面図である。

【図8】

図8Aは、電極群の構成を示す斜視図である。

図8日は、電極群の構成を示す正面図である。

【図9】

図9Aは、電極群を構成する絶縁体枠を示す正面図である。

図9日は、電極群を構成する電極を示す正面図である。

【図10】

図10は、図4の手段の部分拡大平面図である。

【図11】

図11は、図1、図4の手段の振動部材への振動棒の取り付け部の拡大断面図である。

【図12】

図12は、振動部材への振動棒の取り付け部の変形例を示す拡大断面図である

【図13】

図13は、図1、図4の手段の振動棒への振動羽根の取り付け部の拡大断面図である。

【図14】

図14は、振動羽根の長さとしなりの程度との関係を示すグラフである。

【図15】

図15は、振動撹拌手段の変形例を示す断面図である。

【図16】

図16は、振動撹拌手段の変形例を示す断面図である。

【図17】

図17は、振動撹拌手段の変形例を示す断面図である。

【図18】

図18は、振動撹拌手段の変形例を示す断面図である。

【図19】

図19は、振動撹拌手段の変形例を示す断面図である。

【図20】

図20は、本発明による水素-酸素混合ガス発生手段を構成する振動撹拌手段 の電解槽への取り付けの形態を示す断面図である。

【図21】

図21は、図20に示される振動撹拌手段の断面図である。

【図22】

図22は、図20に示される振動撹拌手段の平面図である。

【図23】

図23A~23Cは、積層体の平面図である。

【図24】

図24A、24Bは、積層体による電解槽の閉塞の様子を示す断面図である。

【図25】

図25A~25Eは、積層体の断面図である。

【図26】

図26は、振動撹拌手段の変形例を示す断面図である。

【図27】

図27は、本発明による水素一酸素混合ガス発生手段の1例を示す断面図である。

【図28】

図28は、図27の手段の断面図である。

【図29】

図29は、図27の手段の平面図である。

【図30】

図30は、振動棒の電気的絶縁領域の近傍を示す部分拡大断面図である。

【図31】

図31は、振動棒の電気的絶縁領域の斜視図である。

【図32】

図32は、振動棒の電気的絶縁領域の平面図である。

【図33】

図33は、絶縁式振動撹拌手段の側面図である。

【図34】

図34は、絶縁式振動撹拌手段の断面図である。

【図35】

図35は、絶縁式振動撹拌手段の断面図である。

【図36】

図36は、振動羽根の近傍を示す断面図である。

【図37】

図37は、電極用補助羽根を示す図である。

【図38】

図38は、絶縁式振動撹拌手段の断面図である。

【図39】

図39は、絶縁式振動撹拌手段の断面図である。

【図40】

図40は、本発明による水素-酸素混合ガス発生手段の1例を示す断面図である。

【図41】

図41は、図40の手段の断面図である。

【図42】

図42は、図40の手段の平面図である。

【図43】

図43は、本発明による水素ー酸素混合ガス発生手段の1例を示す部分断面図である。

【図44】

図44は、図43の水素一酸素混合ガス発生手段の断面図である。

【図45】

図45は、絶縁式振動撹拌手段の1例を示す模式図である。

【図46】

図46は、絶縁式振動撹拌手段の1例を示す模式図である。

【図47】

図47は、絶縁式振動撹拌手段の1例を示す模式図である。

【図48】

図48は、絶縁式振動撹拌手段の1例を示す部分断面図である。

【図49】

図49は、図48の手段の部分側面図である。

【図50】

図50は、絶縁式振動撹拌手段の1例を示す部分側面図である。

【図51】

図51は、本発明による水素-酸素混合ガス発生手段の1例を示す断面図である。

【図52】

図52は、本発明による水素-酸素混合ガス発生手段の1例を示す断面図である。

【図53】

図53は、図52の手段の断面図である。

【図54】

図54は、本発明による水素-酸素混合ガス発生手段の1例を示す断面図である。

【図55】

図55は、図54の手段の断面図である。

【図56】

図56は、電極部材を構成する円柱状チタン網ケースの斜視図である。

【図57】

図57は、電極部材の正面図である。

【図58】

図58A~58Eは、振動発生手段と振動撹拌部材との接続形態を示す模式図である。

【図59】

図59は、本発明による水素-酸素混合ガス発生手段のガス捕集手段の一部を 示す図である。

【図60】

図60は、本発明の水素-酸素混合ガス発生手段から燃料電池のマイナス極へ 水素-酸素混合ガスを送る場合の安全装置の1例を示す。

【図61】

図61は、蓋部材の変形例を示す斜視図である。

【図62】

本発明の水素-酸素混合ガス発生手段の他の1例を示す断面図である

【図63】

図62のX-X線断面図である。

【図64】

図62の上面図である。

【図65】

本発明の水素-酸素混合ガス発生手段の他の1例を示す断面図である。

【図66】

図65のX-X線断面図である。

【図67】

図65の上面図である。

【図68】

振動棒部分のシール(気密化)手段の1例を示す断面図である。

【図69】

実施例1で利用した市販小型固体高分子型燃料電池の構成を示す図である。

【図70】

図69の構成を組み立てた燃料電池の外観を示す図である。

【図71】

本発明の水素-酸素混合ガスを火口から15mmの位置においてとった火焔スペクトル図である。

【図72】

水素-酸素混合ガスを用いるときの安全装置の1例を示す図である。

【図73】

固体高分子電解質型燃料電池の1例を示す構成図である。

【図74】

実施例4に用いた燃料電池の構造をモデル的に示す図である。

【図75】

実施例9に転用したメタノール燃料電池の概略図を示す。

【図76】

実施例10に転用した単室型固体酸化物型燃料電池の概略図を示す。

【図77】

図76の部分拡大斜視図である。

【符号の説明】

- 1 金属板
- 1′ 金属板
- 2 ゴム板
- 2 a 上側ソリッドゴム層
- 2 b スポンジゴム層
- 2 c 下側ソリッドゴム層
- 2 x 陽極部材
- 2 y 陰極部材
- 2′ 下側ゴム板
- 3 積層体
- 5 貫通孔

- 6 開口部
- 10A 電解槽
- 10B 蓋部材
- 10日 水素一酸素混合ガス取出口
- 10 B″ 水素-酸素混合ガス採取管
- 10B' ″シールポット
- 10C フレキシブル部材
- 10D 固定部材
- 14 電解液
- 16 振動撹拌手段
- 16 a 基台
- 16b コイルバネ
- 16c 振動部材
- 16 c′ 付加的振動部材
- 16d 振動モータ
- 16e 振動棒
- 16e' 振動棒上部分
- 1 6 e" 絶縁領域
- 16 e"/ 振動棒下部分
- 16f 振動羽根
- 16 f′ 電極用補助羽根(振動補助羽根)
- 16f"陽極部材
- 16 f'" 陰極部材
- 16g 振動応力分散部材
- 16h ワッシャ
- 16 i ナット
- 16j 振動羽根固定部材
- 16k スペーサリング
- 16p 弾性部材シート

- 16s 絶縁ブッシュ
- 16 t 絶縁座金
- 16u スペーサ
- 3 4 電源
- 35 インバータ
- 40 取り付け台
- 43 ガイド部材
- 70 絶縁体枠
- 71 電極
- 7 4 空孔
- 82 保持手段
- 86 陽極部材
- 112 防振ゴム
- 115 支持部材
- 116 ボルト
- 116e 導電性棒状体 (電極シャフト)
- 116 f " 陽極部材 (プラス電極)
- 116 f'" 陰極部材 (マイナス電極)
- 117 ナット
- 118 取付部材
- 119 ゴムリング
- 124 嵌合用穴
- 125 嵌合用穴
- 127 通電線
- 131 ボルト
- 132 ボルト
- 134 ロッド部分
- 136 電源
- 136′ フレキシブルシール部材

- 144 ガイド部材
- 145 ガイド部材
- 201 陽極主ブスバー
- 202 陰極主ブスバー

【書類名】 図面 · 【図1】

【図2】

【図3】

【図4】

【図5】

【図10】

【図11】

【図12】

【図14】

【図15】

【図17】

【図19】

【図20】

【図21】

【図22】

【図23】

【図24】

【図26】

【図27】

【図28】

【図29】

【図30】

【図31】

【図32】

【図33】

【図35】

【図36】

【図37】

【図38】

【図40】 16 10B" 10B ₅127 16e" 16e" 16e--16e 127 10A 16f² 16f 2y | 2x

【図41】

2x

 $2^{i}y$

16e' 16e' 10B 16e' 127
16e 16e' 10A

【図44】

【図45】

【図46】

【図47】

【図48】

【図49】

【図50】

【図52】

【図53】

【図54】

【図55】

【図56】

【図57】

【図58】 A 16c 16cc 16c _16e 16e ,16c ,16 cc 16f 16e E 16cc 16cc -16e _16 e

【図60】

【図61】

【図62】

【図63】

【図64】

【図65】

【図66】

【図67】

【図68】

【図69】

【図70】

【図71】

【図72】

【図73】

【図74】

【図75】

【図77】

【書類名】 要約書

【要約】

【課題】 燃料電池の燃料として水素と酸素とをわざわざ分離して使用しないで、水素-酸素混合ガスとくに水素2原子に対して酸素1原子の混合ガスのままでマイナス極に供給して発電を行う発電方法と燃料電池の提供。

【解決手段】 マイナス極/電解質層/プラス極よりなる単セルまたはそれを積 層したスタックよりなる燃料電池であって、

- (A) 電解液を電気分解するための電解槽、
- (B) 該電解槽内に収容される電解液と接するように配置される陽極部材 および陰極部材よりなる電極対と、前記陽極部材および陰極部材の間に 電圧を印加する電源とを含んでなる電気分解手段、
- (C) 前記電解槽に収容される電解液を振動流動撹拌するための振動撹拌 手段、
- (D) 前記電解槽内に収容される電解液の前記電気分解手段による電気分解 で発生する水素ガスおよび酸素ガスを分離、捕集するための水素ガス および酸素ガス捕集手段、

を有する水素ガスおよび酸素ガス発生手段、

を用いて得られた水素ガスを供給するための供給口をマイナス極側に設け、かつ 水素ガスを供給される側の電極はガス透過性としたことを特徴とする燃料電池。

【選択図】 なし

特願2003-114695

出願人履歴情報

識別番号

[392026224]

1. 変更年月日

1999年11月17日

[変更理由]

住所変更

住 所

東京都大田区久が原2丁目14番10号

氏 名 日本テクノ株式会社