Oct		20
$\omega \omega$	•	70

1. One categorical variable.

1) Models

Model I (Regression model)

Categorical variable m levels $\Rightarrow (m-1)$ dummy variables (or indicator variables)

$$y_i = \beta_0 + \alpha_1 * g_{i,1} + \ldots + \alpha_{m-1} * g_{i,m-1} + e_i$$

for i = 1, ..., n, where $g_{i,j} = 1$ if i^{th} observation is in j^{th} level and $g_{i,j} = 0$ otherwise.

Model II (ANOVA model)

$$y_{ij} = \mu_i + e_{ij}$$

for $i = 1, ..., m, j = 1, ..., n_i$.

1. Model I is the model we normally use if there are both categorical and continuous independent variables.

2. Model I and Model II are equivalent such that $\mu_i = \beta_0 + \alpha_i$ for $i = 1, \ldots, m-1$ and $\mu_m = \beta_0$, i.e., $\beta_0 = \mu_m$ and $\alpha_i = \mu_i - \mu_m$ for $i = 1, \dots, m-1$. Thus, the last group is called reference group.

2) Inference. (model II) Unknown param: Ui, i=1,"; m; o²

1) Point est.

$$\hat{\mathcal{U}}_i = \vec{y}_i$$
 ith group. $\hat{\mathcal{C}}^2 = \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} (y_{ij} - \vec{y}_{i.})^2}{\sum_{i=1}^{m} n_i - m}$

Properties:

$$\mathbb{E} \hat{\mu}_i = \mu_i \quad \text{Var} \hat{\mu}_i = \frac{\sigma^2}{n_i} \quad \text{Cov}(\hat{\mu}_i, \hat{\mu}_j) = 0, \quad i \neq j$$

$$E \hat{\sigma}^2 = \sigma^2$$
.

(2) (1-a) C.I. for Ui:

$$\overline{y}_i$$
. \mp $t_{\underline{w}}(\overline{z}_i^2 n_i - m) \hat{\sigma} \sqrt{\frac{1}{n_i}}$

3 HT. (single param)

Ho:
$$\mu_i = \mu_{io}$$
 (given)

Text stat
$$t = \frac{\overline{y_i} - \mathcal{L}_{io}}{\widehat{\sigma} / \sqrt{n_i}}$$

Reject Ho if Ital > ta(En: -m)

4)	HT	(multi-param)
\mathbf{v}		\ IIIIVOOV\-DVUIDOIN

partitioning:
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} \left[(y_{ij} - \overline{y}_{..})^2 \right] = \sum_{i=1}^{m} n_i (\overline{y}_{.i} - \overline{y}_{..})^2 + \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i..})^2$$

$$\sum_{i=1}^{m} n_i - m$$

One-way ANOVA:

Source of Variation	Sum of Squares	Degrees of freedom	Mean Square	$\begin{array}{c} \text{Computed} \\ f \end{array}$	
Model	$\sum\limits_{i=1}^{m}n_{i}(ar{y}_{i.}-ar{y}_{})^{2}$	m-1	$\frac{\sum\limits_{i=1}^{m}n_{i}(\bar{y}_{i}\bar{y}_{})^{2}}{m-1}$	$\underbrace{\frac{(\sum\limits_{i=1}^{m}n_{i}-m)\sum\limits_{i=1}^{m}n_{i}(\bar{y}_{i.}-\bar{y}_{})^{2}}{(m-1)\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n_{i}}(y_{ij}-\bar{y}_{i.})^{2}}}$	Test stat.
	m n_i	m	$\sum_{i=1}^{m}\sum_{j=1}^{n}(y_{ij}-ar{y}_{i.})^2$		

Error
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2 \quad \sum_{i=1}^{m} n_i - m \quad \frac{\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i.})^2}{\sum_{i=1}^{m} n_i - m}$$

Total
$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2 \sum_{i=1}^{m} n_i - 1$$

- Computation:

$$SST = \left(\sum_{i=1}^{\infty} n_i - i\right) S_T^2$$

$$RSS = SSE = \sum_{i=1}^{M} (n_i - i) S_i^2$$

5 Single-DF Comparison

-Gottrast
$$\omega = \sum_{i=1}^{m} c_{ij} \mu_{i}$$
 gt. $\sum_{i=1}^{m} c_{i} = 0$.

Est.
$$\hat{\omega} = \sum_{i=1}^{m} C_i \vec{y}_i$$

- Ho:
$$\sum_{i=1}^{m} c_i \mu_i = 0$$
. Ho

- Ho:
$$\sum_{i=1}^{m} C_{i} \mathcal{U}_{i} = 0$$
. Ho $F(1, \sum_{i=1}^{m} n_{i} - m)$.

Test stat $F = \frac{SSW}{6^{2}}$, where $SSW = \frac{\left(\sum_{i=1}^{m} C_{i} \overline{Y}_{i}\right)^{2}}{\sum_{i=1}^{m} C_{i}^{2} / n_{i}}$

1. Standard statistical inference. interpretation	
2. Prediction	
Correlation causation $Y = \beta_0 + \beta_1 X + E \qquad H_0: \beta_0 = \beta_1 = 0.$ causal inference	$\begin{array}{c} X \longrightarrow Y \\ Y \longrightarrow X \end{array}$
3. Other analysis beyond correlation.	XTAIS