TWEET SENTIMENT ANALYSIS

Importing Libraries

```
In [96]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import plotly.express as px
    import warnings
    warnings.filterwarnings("ignore")
```

Reading csv

```
In [97]: Final_df=pd.read_csv("tweets-engagement-metrics.csv")

In [98]: Final_df.head()

Out[98]:

Unnamed: UserID Gender LocationID City State StateCode Country

Out[98]: The stateCode Country

Out[98]: The stateCode Country

Out[98]: The stateCode Country
```

	0								
c	0	tw- 1267804344	Unknown	1	Elbasan	Elbasan	AL	Albania	6981552
1	1	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6905067
2	? 2	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6983158
3	3	tw- 928769635	Female	13	NaN	NaN	NaN	Argentina	6856630
4	4	tw- 457193677	Unknown	13	NaN	NaN	NaN	Argentina	7032934
4									•

In [99]: Final_df=Final_df.drop('Unnamed: 0',axis=1)
Final_df

Out[99]:

	UserID	Gender	LocationID	City	State	StateCode	Country	
0	tw- 1267804344	Unknown	1	Elbasan	Elbasan	AL	Albania	698155297 ⁻
1	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6905067968
2	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6983158424
3	tw- 928769635	Female	13	NaN	NaN	NaN	Argentina	6856630986
4	tw- 457193677	Unknown	13	NaN	NaN	NaN	Argentina	7032934828
102057	tw- 75190953	Male	6279	Ho Chi Minh City	Ho Chi Minh City	VN	Vietnam	6975631294
102058	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	6847509184
102059	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	689738393(
102060	tw- 95376359	Unisex	6287	Ndola	Copperbelt	ZM	Zambia	7025818249
102061	tw- 448919812	Unisex	6288	Harare	Harare Province	ZW	Zimbabwe	7050555349
102062	rows × 19 co	lumns						
1 2 3 3 2								•
								,

Understanding the structure of the Data

```
In [100]:
         Final_df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 102062 entries, 0 to 102061
          Data columns (total 19 columns):
           #
               Column
                             Non-Null Count
                                              Dtype
               -----
                             -----
           0
               UserID
                             102062 non-null object
           1
               Gender
                             102062 non-null
                                             object
           2
               LocationID
                             102062 non-null int64
           3
               City
                             99783 non-null
                                              object
           4
               State
                             100165 non-null object
               StateCode
                             100336 non-null object
           6
               Country
                             102062 non-null object
           7
               TweetID
                             102062 non-null object
           8
               Hour
                             102062 non-null
                                             int64
           9
               Day
                             102062 non-null int64
           10
               Weekday
                             102062 non-null object
           11
               IsReshare
                             102062 non-null
                                             bool
           12
              Reach
                             102062 non-null int64
           13
               RetweetCount
                             102062 non-null
                                             int64
           14 Likes
                             102062 non-null int64
           15 Klout
                             102062 non-null int64
           16
               Sentiment
                             102062 non-null float64
                             102062 non-null object
           17
               Lang
           18
               text
                             102062 non-null object
          dtypes: bool(1), float64(1), int64(7), object(10)
          memory usage: 14.1+ MB
```

In [101]: Final_df.describe()

Out[101]:

	LocationID	Hour	Day	Reach	RetweetCount	Like	
count	102062.000000	102062.000000	102062.000000	1.020620e+05	102062.000000	102062.00000	
mean	2836.207687	11.416149	15.898709	8.426389e+03	7.986449	0.14968 ₄	
std	1330.294460	6.062294	8.401409	8.777762e+04	96.914644	2.55749	
min	1.000000	0.000000	1.000000	0.000000e+00	0.000000	0.000000	
25%	1601.000000	7.000000	9.000000	1.520000e+02	0.000000	0.000000	
50%	3738.000000	11.000000	16.000000	4.540000e+02	0.000000	0.000000	
75%	3774.000000	16.000000	23.000000	1.519000e+03	3.000000	0.000000	
max	6289.000000	23.000000	31.000000	1.034245e+07	26127.000000	133.00000	
4							

In [102]: Final_df.shape

Out[102]: (102062, 19)

Handling the missing values

```
In [104]:
          missing values = Final df.isnull().sum()
          missing_values
Out[104]: UserID
                               0
          Gender
                               0
           LocationID
                               0
          City
                            2279
           State
                            1897
           StateCode
                            1726
                               0
           Country
           TweetID
                               0
          Hour
                               0
           Day
                               0
                               0
          Weekday
                               0
           IsReshare
                               0
           Reach
           RetweetCount
                               0
                               0
           Likes
           Klout
                               0
           Sentiment
                               0
                               0
           Lang
                               0
           text
           dtype: int64
```

In [105]: Final_df.dropna(inplace=True)
Final_df

Out[105]:

	UserID	Gender	LocationID	City	State	StateCode	Country	
0	tw- 1267804344	Unknown	1	Elbasan	Elbasan	AL	Albania	698155297 ⁻
1	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6905067968
2	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6983158424
11	tw- 3339262295	Unisex	14	Buenos Aires	Buenos Aires F.D.	AR	Argentina	685668386 ⁻
12	tw- 40031027	Unknown	14	Buenos Aires	Buenos Aires F.D.	AR	Argentina	688021501
102057	tw- 75190953	Male	6279	Ho Chi Minh City	Ho Chi Minh City	VN	Vietnam	697563129 ₄
102058	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	6847509184
102059	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	6897383930
102060	tw- 95376359	Unisex	6287	Ndola	Copperbelt	ZM	Zambia	7025818249
102061	tw- 448919812	Unisex	6288	Harare	Harare Province	ZW	Zimbabwe	7050555349
99768 rows × 19 columns								
4								>

In [106]: Final_df.shape

Out[106]: (99768, 19)

Visualisation

Gender

```
In [107]: gender_distribution = Final_df['Gender']

sns.countplot(x=gender_distribution,edgecolor='black',palette='viridis')
plt.title('Distribution of Gender')
plt.xlabel('Gender')
plt.ylabel('Frequency')
plt.show()
```


Inference:

Data shows significant male skewness & 'Unknown' presence, but engagement within identified genders appears balanced.

Hour

```
In [108]: plt.figure(figsize=(15, 5))
    sns.histplot(Final_df['Hour'], bins=20, kde=True)
    plt.title(f'Distribution of Hour')
    plt.show()
Distribution of Hour
```


Inferences:

The distribution of Hour shows that there is a peak in the afternoon. There is also a smaller peak in the evening.

```
In [109]: plt.figure(figsize=(15, 5))
  plt.boxplot(Final_df['Hour'])
  plt.title('Boxplot of Hour')

plt.show()
```


Inferences:

The boxplot suggests two peaks: a larger one in the afternoon and a smaller one in the evening. The distribution is bimodal, symmetric, and includes a few outliers.

Day

```
In [110]: # Distribution of Tweets by Day
    plt.subplot(2, 1, 1)
    sns.countplot(x='Day', data=Final_df, palette='viridis')
    plt.title('Distribution of Tweets by Day')
    plt.show()
```


Inference:

Tweets peak on Sun-mornings & evenings, hinting at weekend joy & workday neutrality, with potential Sunday language shift.

Weekday

```
In [111]: weekday_distribution = Final_df['Weekday']

sns.countplot(x=weekday_distribution, edgecolor='black',palette='inferno')
plt.title('Weekday Distribution')
plt.xlabel('Weekday')
plt.ylabel('Count')
plt.show()
```


Inference:

The distribution of Day shows that there is a slight peak in the number of users on Saturdays and Sundays. This is likely because these are the weekends. There is also a small peak in the number of users on Fridays.

Klout

```
In [112]: sns.histplot(Final_df['Klout'], bins=20, kde=True)
    plt.title('Distribution of Klout')
    plt.show()
```


Inferences:

Klout scores are calculated is biased towards people who have a lot of followers and who are very active on social media.

```
In [113]: plt.figure(figsize=(8, 6))
    plt.boxplot(Final_df['Klout'])
    plt.title('Box Plot of Klout')
    plt.xlabel('Klout')
    plt.show()
```


Inferences:

Most people have a relatively low Klout score, but there are a few people with very high Klout scores.

Klout Per Country

Out[114]:

	Country	Klout
14	Botswana	59.000000
98	Republic of the Congo	54.000000
72	Mali	52.500000
76	Mongolia	49.428571
28	Cyprus	47.625000
39	Georgia	46.500000
50	Iceland	46.071429
18	Burundi	46.000000
45	Guinea	45.590909
115	Syria	45.000000
17	Burkina Faso	45.000000
121	Turkey	44.348303
47	Haiti	44.000000
68	Macao	44.000000
70	Malawi	44.000000
87	Pakistan	43.414062
40	Germany	43.146810
7	Bahamas	43.000000
64	Latvia	42.932203
10	Belgium	42.465649

```
In [115]:
    plt.plot(kpc['Country'], kpc['Klout'], marker='o')
    plt.title('Mean of Klout Of a Country')
    plt.xlabel('Country')
    plt.ylabel('Klout')
    plt.xticks(rotation=50)
    plt.grid(True)
    plt.show()
```


Inferences:

A significant portion of highly engaged tweets on Twitter, as measured by Klout scores, originate from African countries, with the notable exception of US.

Language

```
In [116]: lang_counts = Final_df['Lang'].value_counts().reset_index()
    lang_counts.columns = ['Language', 'Count']

plt.plot(lang_counts['Language'], lang_counts['Count'], marker='o')
    plt.title('Tweet Frequency per Language')
    plt.xlabel('Language')
    plt.ylabel('Count')
    plt.xticks(rotation=45)
    plt.grid(True)
    plt.show()
```


Inference:

English reigns, yet a vibrant multilingual mix beckons: consider diverse engagement and non-English outreach.

Coorelation Analysis

```
In [117]: sns.set(style="whitegrid")
    numerical_features = ['Hour', 'Day', 'Reach', 'RetweetCount', 'Likes', 'Klout'
    correlation_matrix = Final_df[numerical_features].corr()

    plt.figure(figsize=(10, 8))
    sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", linewiplt.title('Correlation Matrix for Numerical Features')
    plt.show()
```


Inference:

Tweets with a neutral mood received more likes than negative tweets b ut less than positive tweets. This suggests that people are somewhat interested in neutral content, but it doesn't evoke the same strong e motions as positive or negative content.

Model Building:

Filter out non-English languages from the dataset.

```
In [119]: Final_df = Final_df[Final_df['Lang']=='en']
```

Text processing

```
In [120]: Final_df['text']=Final_df['text'].astype(str)
Final_df['text']=Final_df['text'].apply(lambda x:x.lower())
```

Removing the stop words [LIMIT-5000Characters]

```
In [121]: from sklearn.feature extraction.text import CountVectorizer
          cv=CountVectorizer(max features=5000,stop words='english')
In [122]: vectors= cv.fit transform(Final df['text']).toarray()
In [123]: vectors
Out[123]: array([[0, 0, 0, ..., 0, 0, 0],
                 [0, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 0, \ldots, 0, 0, 0],
                  [0, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 0, \ldots, 0, 0, 0],
                 [0, 0, 0, ..., 0, 0, 0]], dtype=int64)
In [124]:
          from sklearn.model_selection import train_test_split
          from sklearn.feature_extraction.text import TfidfVectorizer
          from sklearn.preprocessing import LabelEncoder
          from sklearn.pipeline import Pipeline
          from sklearn.naive bayes import MultinomialNB
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.metrics import accuracy score, classification report
```

Substituting stem

```
In [125]: import nltk
    from nltk.stem.porter import *
    ps=PorterStemmer()

In [126]: def stem(text):
    y=[]
    for i in text.split():
        y.append(ps.stem(i))
    return " ".join(y)
In [127]: Final_df['text']= Final_df['text'].apply(stem)
```

In [128]: Final_df

Out[128]:

	UserID	Gender	LocationID	City	State	StateCode	Country	
0	tw- 1267804344	Unknown	1	Elbasan	Elbasan	AL	Albania	698155297 ⁻
1	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	690506796
2	tw- 4762500137	Female	10	Luanda	Luanda	АО	Angola	6983158424
12	tw- 40031027	Unknown	14	Buenos Aires	Buenos Aires F.D.	AR	Argentina	688021501
13	tw- 40031027	Unknown	14	Buenos Aires	Buenos Aires F.D.	AR	Argentina	703289433(
	•••				•••	•••		
102057	tw- 75190953	Male	6279	Ho Chi Minh City	Ho Chi Minh City	VN	Vietnam	6975631294
102058	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	684750918
102059	tw- 594926522	Male	6283	Lusaka	Lusaka	ZM	Zambia	689738393(
102060	tw- 95376359	Unisex	6287	Ndola	Copperbelt	ZM	Zambia	7025818249
102061	tw- 448919812	Unisex	6288	Harare	Harare Province	ZW	Zimbabwe	7050555349
91887 rows × 20 columns								
→							•	
from sklearn.preprocessing import LabelEncoder								

```
In [129]: from sklearn.preprocessing import LabelEncoder
le_model = LabelEncoder()
Final_df['Label'] = le_model.fit_transform(Final_df['Mood'])
```

Training model:

Splitting the dataset into testing and training sets:

Model Training

The prevalence of neutral sentiment tweets far surpasses the relatively low count of negative tweets, making a meaningful comparison between the two challenging.

Evaluation of the Model

```
In [134]:
    from sklearn.metrics import accuracy_score, classification_report

In [135]: # Get the predictions for X_test and store it in y_pred
    y_pred = clf.predict(X_test)

In [136]: print(accuracy_score(y_test, y_pred))
    0.9123408423114594
```

```
# Print classification report
In [137]:
          print(classification_report(y_test, y_pred))
                         precision
                                       recall f1-score
                                                            support
                      0
                               0.98
                                          0.52
                                                    0.68
                                                               1014
                      1
                               0.89
                                          0.99
                                                    0.94
                                                              12286
                      2
                               0.96
                                          0.80
                                                    0.87
                                                               5078
                                                    0.91
                                                              18378
               accuracy
                                                    0.83
              macro avg
                               0.94
                                          0.77
                                                              18378
                                                    0.91
          weighted avg
                               0.92
                                         0.91
                                                              18378
```

Testing our model:

```
In [138]: | test_df=Final_df.iloc[:50000, :]
In [139]: | test=Final df['text'][1000]
In [140]: | test_text = test_df['text'][1000]
          print(f"{test} ===> {test_df['Label'][1000]}")
          rt @awscloud: new the aw #bigdata blog: turn emr into a massiv s3 process eng
          in with campanil https://blogs.aws.amazon.com/bigdata/post/tx1xu0oqazer3mi/tu
          rning-amazon-emr-into-a-massive-amazon-s3-processing-engine-with-campanile?ad
          bsc=social_blogs_20160129_57773736&adbid=693195696921403394&adbpl=tw&adbpr=66
          780587 (https://blogs.aws.amazon.com/bigdata/post/tx1xu0oqazer3mi/turning-ama
          zon-emr-into-a-massive-amazon-s3-processing-engine-with-campanile?adbsc=socia
          l blogs 20160129 57773736&adbid=693195696921403394&adbpl=tw&adbpr=66780587) h
          ttps:// (https://) ===> 1
In [141]: | test = clf.predict([test_text])
In [142]: | classes = ['Negative', 'Neutral', 'Positive']
          print(f"True Label: {test_df['Mood'][1000]}")
          print(f'Predict Label: {classes[test[0]]}')
```

True Label: Neutral Predict Label: Neutral

Conclusion:

We have analysed the sentiment of the tweet with the accuracy : 91% .