Multi-agent deep reinforcement learning in mobile robotics

Maxime TOQUEBIAU

1ère année de thèse

Présentation

Mon parcours

- ECE Paris Diplôme d'ingénieur, Majeure Big Data & Analytics
- Stages:
 - Openvalue Reconnaissance faciale (Computer Vision, Machine Learning)
 - Ministère des Armées Création d'un chatbot (Génération automatique de texte)
- Thèse: janvier 2021 → décembre 2023

Sujet de la thèse

Multi-agent deep reinforcement learning in mobile robotics

Sujet de la thèse

DEEP REINFORCEMENT LEARNING

Multi-agent deep reinforcement learning in mobile robotics

MULTI-AGENT SYSTEMS

MOBILE ROBOTICS

Exemples d'applications

Soccer - RoboCup

Logistique - GreyOrange

Surveillance/Exploration - SMP Robotics

Sécurité/Militaire -Icarus Swarms

Exemple d'application

Flotte de véhicules autonomes:

Compétences requises:

- Autonomie
- Planification
- Communication
- Négociation
- Adaptation

Multi-agent Systems

Définitions (1/2)

Agent intelligent = entité autonome capable de percevoir son environnement et d'agir sur celui-ci.

OUTPUT

Accélérateur Frein Volant

•••

Multi-agent Systems

Définitions (2/2)

Système multi-agent = système composé de plusieurs agents intelligents, capables d'interagir entre eux et avec différentes parties de leur environnement

Reinforcement learning

Définitions (1/2)

Apprentissage par renforcement: Apprendre par l'interaction

Reinforcement learning

Définitions (2/2)

• *Policy function* = Stratégie d'un agent

$$\pi:S o\mathbb{R}$$
 $\pi(s)=a$ $\pi:S o\mathbb{R}$ $\pi(s,a)=\mathbb{P}[a|s]$

• *Value function* = Récompense espérée en partant d'un état s

$$V_{\pi}(s) = E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} | S_{t} = s \right], \gamma \in [0, 1]$$

Deep reinforcement learning

Publications majeures:

- **Deep Q-Learning**: *Playing Atari with Deep Reinforcement Learning*, Mnih et al., 2013
- **Deep Deterministic Policy Gradient**: *Continuous control with deep reinforcement learning*, Lillicrap et al., 2015
- Muzero: Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model, Schrittwieser et al., 2019

Deep reinforcement learning

Avantages du Deep learning:

- Extraction automatique des informations utiles pour le contrôle d'un agent
- Possibilité de traiter des espaces état-action de plus grandes dimensions
- Mieux généraliser

Applications possibles:

Jeux à grandes dimensions:

AlphaGo (Silver et al., 2016)

Monde réel:

Conduite autonome

Multi-agent deep reinforcement learning

Nowé, Vrancx and De Hauwere, 2012

Multi-agent deep reinforcement learning

Défis:

- Apprendre des interactions sociales
- Plusieurs agents => espace de recherche plus grand
- Plusieurs agents en apprentissage => non-stationnarité
- Communiquer quoi ? A qui ? Quand ?
 - ▲ Communiquer des informations non-pertinentes peut altérer la performance ou la rapidité d'apprentissage d'un agent (Tan, 1993)

Mobile robotics

<u>Def:</u> Un robot mobile est un robot capable de se déplacer de manière autonome dans un environnement.

Contraintes:

Complexité de l'environnement

Imperfection des capteurs/actionneurs

Contraintes de communication

Environnement dynamique

Sécurité

Problématiques de recherche

Partage des intentions d'action:

Y-a-t-il un lien entre le niveau de connaissance sur la stratégie des autres agents et la performance ?

- Robustesse par la coopération et la communication:
 - Comment mettre à profit la communication entre agents pour compenser aux contraintes du monde réel ?

Encadrement

Encadrant

Jae Yun JUN KIM

<u>Poste:</u> Enseignant chercheur

Affiliation: ECE Paris

<u>Spécialité:</u> Robotique, Reinforcement Learning

Co-directeur

Faïz BEN-AMAR

Poste: Professeur

<u>Affiliation:</u> ISIR, Sorbonne Université

Spécialité: Robotique

Co-directeur

Nicolas BREDECHE

Poste: Professeur

<u>Affiliation:</u> ISIR, Sorbonne Université

<u>Spécialité:</u> Systèmes multi-agent

Merci pour votre attention! Des questions?