Integrierter Kurs IV

Theoretische Physik II Tom Folgmann

5. Mai 2023

 $[Das\ Passwort\ f\"ur\ die\ offiziellen\ Kursfolien\ ist\ "2023ik4".]$

1 Einleitung und Wellenfunktion

Einleitung	VL 1
Bei der Auffassung kleinster Teilchen gab es Probleme mit dem Teilchenmodell.	25.04.2023, 08:15
$\hfill \square$ Stelle dieses Problem $deutlich$ dar. Skizziere eine Lösung desselben.	(№1)
Schwarzkörperstrahlung	
Jede sogenannte $Mode$ mit der Frequenz $\nu=c_0/\lambda$ des elektromagnetischen Feldes kann beliebige Energien enthalten, enthält jedoch nach dem $\ddot{A}quipositionsprinzip$ im Mittel die Energie $E=k_B\cdot T$, bekannt als das $Rayleigh$ - $Jeans$ - $Gesetz$.	
Photoeffekt	
Compton Effekt	
$[\rightarrow$ IK4 Exp. II]	
Welleneigenschaften der Materie	
$[\rightarrow$ IK4 Exp. II]	
Doppelspaltexperiment mit Elektronen	
$[\rightarrow$ IK4 Exp. II]	
\square Lies im Skript der $\textit{Experimentalphysik II}$ die Inhalte der Überschriften nach.	(№2)
→ Was ist die Wellenfunktion beim Doppelspaltexperiment? Wie erklärt man, daß ein Elektron durch beide Spalten gehen kann? Was passiert mit einem einzeln eingestrahlten Elektron?	(№2.1)
	(2.2.2)
\rightarrow Wie lautet die de Broglie Relation?	(2.2 $)$

(&2.3) \rightarrow Kann man das Doppelspaltexperiment auch mit massiveren Teilchen oder Molekülen durchführen? Gibt es hierbei eine Grenze? Recherchiere den Beitrag zur Doppelspaltuntersuchung der *Universität Konstanz*.

.....

Welle-Teilchen-Dualismus

Wir haben beobachtet:

- \rightarrow elektromagnetische Wellen verhalten sich wie Teilchen
- \rightarrow materielle Teilchen verhalten sich wie Wellen

Als Ziel unserer folgenden Untersuchungen setzen wir eine einheitliche Theorie, welche sowohl die Wellen- als auch die Teilcheneigenschaften beschreibt.

Wellenfunktion und Wahrscheinlichkeitsinterpretation

Wir wollen den folgenden Zusammenhang herstellen:

freies Teilchen	ebene Welle
Impuls $p \in \mathbb{R}^3$	Wellenvektor $k \in \mathbb{R}^3$
Energie $E(p) = p^2/2m$	Kreisfrequenz $\omega(k) = \hbar k^2/2m = c_0$.
	$ \ k _2$
	Amplidute am Ort $r(t)$ mit $\psi(t, r(t)) =$
	$C \cdot \exp\left(i(\langle r(t), k \rangle - \omega \cdot t)\right) \rightarrow Wellen$
	funktion

Tabelle 1: Gegenüberstellung der Teilchen- und Welleneigenschaften.

Es kommen nun die folgenden Fragen auf:

- \rightarrow Wie hängen p und k zusammen?
- \rightarrow Was ist die physikalische Bedeutung von $\psi \in C^1(\mathbb{R} \times \mathbb{R}^3, \mathbb{R})$?

Es stellt sich heraus, daß wir die erste Frage bereits mit der de Broglie Relation [\rightarrow IK4 Exp II] beantworten können: $p(k) = \hbar \cdot k$, wobei $\hbar := h/(2\pi)$ mit $h = 6.6 \cdot 10^{-34} \mathrm{J}\,\mathrm{s}$. Für die Energie finden wir aus der Schwarzkörperstrahlung den Zusammenhang $E(\omega) = \hbar \cdot \omega$ (Einstein/Planck) mit $\omega = 2\pi \cdot \nu$. In die Funktion ψ eingesetzt folgt

$$\psi(t,r(t)) = C \cdot \exp\Biggl(\frac{\stackrel{\circ}{\imath} \cdot (\langle p,r(t),-\rangle \, E(p) \cdot t)}{\hbar}\Biggr).$$

Für die Dispersion der Welle gilt

$$E(\omega) = \hbar \cdot \omega = \begin{cases} \frac{\hbar^2 \cdot k^2}{2 \cdot m} & m > 0 \\ \hbar \cdot c_0 \cdot ||k||_2 & \text{sonst} \end{cases} = \begin{cases} \frac{\langle p, p \rangle}{2 \cdot m} & m > 0 \\ c_0 \cdot ||p||_2 & \text{sonst} \end{cases}$$

Für die physikalische Interpretation müssen wir uns der Wahrscheinlichkeitsinterpretation widmen:

Teilchen	Welle
Aufenthaltswahrscheinlichkeit	Intensität der Welle $ \psi(t, r(t)) ^2$
des Teilchens (pro Volumen) am	
Ort $r(t)$ zur Zeit $t \in \mathbb{R}$	

Prinzipiell ist es möglich, den *Ort* zum *Zeitpunkt* eines Teilchens zu kennen; anders ist es bei quantenmechanischen Wellen. Wir bemerken:

- $\rightarrow \psi$ bezeichnet man auch als Wahrscheinlichkeitsamplitude.
- \rightarrow Die Aufenthaltswahrscheinlichkeit des durch r beschriebenen Teilchens ist gegeben als Integral

$$P(t,V) := \int \left| \psi(t,x) \right|^2 \lambda_V (dx) =: \mu(V)$$

mit Wahrscheinlichkeitsmaß $P(t,\cdot)=:\mu$ auf $(\mathbb{R}^3,\sigma(\mathbb{R}^3))$. Ist der Aufenthalt in einem Volumen $V\subseteq\mathbb{R}^3$ bekannt, so sei

$$P(t,V) := \begin{cases} \int |\psi(t,x)|^2 \ \lambda_V(dx) & V \in \sigma(\mathbb{R}^3) \\ \infty & \text{sonst} \end{cases}$$

eine Umdefinition des Maßes.

 \rightarrow Aus der Wahrscheinlichkeitsmaß-Eigenschaft $\mu(\mathbb{R}^3)=1$ folgt

$$P(t, \mathbb{R}^3) = \int |\psi(t, x)|^2 \lambda_V(dx) = 1.$$

 \to In einem Volumen $W\subseteq V\subseteq \mathbb{R}^3$ gilt $\mu|_V(W)=\lambda(V)\cdot |C|^2$ und für W=V folgt $|C|^2=1/\lambda(V).$

Ebene Wellen beschreiben also Teilchen mit wohldefiniertem Impuls $p = \hbar \cdot k$, aber vollständig unbestimmtem Ort.

......

 \Box Überlege dir den Spezialfall eines Punktes $\{x\}\subseteq\mathbb{R}^3$ als Testvolumen. Wie sieht die Aufent- (§3) haltswahrscheinlichkeit aus?

Wellenpakete

Als nächstes beschäftigen wir uns mit der Frage, wie wir Teilchen mit genau definiertem Aufenthaltsort beschreiben. Wir wenden uns hierbei an das Prinzip der Superposition, konkreter der Fourier-Summation, bei der wir eine Funktion $f \in \mathcal{L}^2(\mathbb{R}^3)$ zerlegen in Funktionen des Typus der ebenen Welle:

$$\psi(t,r(t)) = \frac{1}{(2 \cdot \pi)^3} \int \left(\exp \left(\stackrel{\circ}{\imath} \cdot (\langle x, r(t) \rangle - \frac{\hbar \cdot x^2}{2 \cdot m} \cdot t) \right) \right)_{x \in \mathbb{R}^3} \left(\mathbb{1}_V \cdot \tilde{\psi} \right) \quad V \subseteq \mathbb{R}^3,$$

wobei $(\mathbb{R}^3,\sigma(\mathbb{R}^3),\tilde{\psi})$ ein Maßraum ist. Wir haben dabei den Zusammenhang

$$E = \hbar \cdot \omega(k) = \frac{\hbar \cdot k^2}{2 \cdot m}.$$

.....

(§4) \square Warum wird bei der Fourier-Summation keine Wurzel im Vorfaktor gezogen? Recherchiere verschiedene Konventionen. [Tipp: Bedenke $\hbar = h/(2 \cdot \pi)$ und die Definition des Impulses über k.]

VL 2 27.04.2023,

10:00 Gaußsches Wellenpaket

Als fundamentale Funktion eines Wellenpaketes zählt das sogenannte Gaußsche Wellenpaket. Es wird beschrieben durch die Funktion

$$\psi(k) = A \cdot \exp\left(\frac{-(k-k_0)^2}{4 \cdot \pi^2}\right), \quad \psi \in \text{Abb}\left(\mathbb{R}^3, \mathbb{R}^3\right),$$

wobei $4\pi^2$ mit der "Breite" korreliert und k_0 der mittlere~Wellenvektorist. Die Funktion hat die Form

Abbildung 1: Die Gaußkurve für A = 1, $k_0 = 1$ in \mathbb{R} .

Das Ergebnis der Fourier-Summation angewendet auf die Gaußfunktion ergibt

$$|\psi(t, r(t))|^2 = \frac{1}{\sqrt{2 \cdot \pi} \cdot w(t)}^{\frac{3}{2}} \cdot \exp\left(-\frac{(r(t) - v \cdot t)^2}{2 \cdot w(t)^2}\right)$$

mit der Definition $v:=\hbar\cdot k/m=\frac{\mathrm{d}}{\mathrm{d}t}\left[\omega(k_0+t\cdot h)]\right|_{t=0}=d\omega(k_0)(h)$ und $w(t):=\sqrt{w(0)^2+((\hbar\cdot t)/(2\cdot w(0)\cdot m))}$ mit dem Startwert $w(0)=1/(2\cdot\sigma)$.

......

(№5)

☐ Man spricht bei Fourier-Summationen vom Raumwechsel. Was ist damit gemeint? Welche Räume haben wir hier verwendet?

.....

Abbildung 2: Die Forier-Summierte Gaußkurve für $A=1,\ k_0=1$ in $\mathbb R$ zum Zeitpunkt t=0 und t=10

Zusammenfassung

→ Das Wellenpaket bewegt sich mit der Aufenthalserwartung

$$\langle r(t) \rangle = \int (r \cdot |\psi(t, r)|)_{r \in \mathbb{R}^3} \lambda(dr).$$

- \rightarrow Das Wellenpaket im Ortsraum ist ebenfalls eine Gaußfunktion mit Peakbreite w(t) und Startwert $w(0) = 1/(2 \cdot \sigma)$.
- \rightarrow Das Wellenpaket erfährt Dispersion für t>0 durch die Funktionsdefinition w:
- \to Für $t>>w(0)^2\cdot m/\hbar$ ist $w(t)\approx \hbar\cdot t/(2\cdot w(0)\cdot m)$ linear von t abhängig. Für lange t ist die Dispersion also linear (und nicht proportional zu \sqrt{t}).
- \rightarrow Für die Mittelung $\langle r(t) \rangle$ folgt

$$\Delta r^2 := \langle r(t_1) - \langle r(t_0) \rangle \rangle = \int \left((r - \langle r \rangle) \cdot |\psi(t, r)| \right)_{r \in \mathbb{R}^3} \lambda(dr) = w(t)^2.$$

.....

□1 Berechne die Integrale $\int x \cdot \exp(-x^2) \lambda(dx)$, $\int x \cdot \exp(-(x-x_0)^2) \lambda(dx)$ und $\int (x-x_0) \cdot \exp(-(x-x_0)^2) \lambda(dx)$ für $x_0 \in \mathbb{R}$ auf $(\mathbb{R}, \sigma(\mathbb{R}), \lambda)$. Wie ist die Struktur?

 \square Rechne die Dispersion des Wellenpaketes für t>0 gemäß w nach und zeige $w(t)^2>w(0)$. (§9)

1.1 Die Heisenbergsche Unschärferelation

Zunächst bemerken wir die Eigenschaft der Normerhaltung gemäß des Satzes von Parseval der Fourier-Summation. Es gilt

$$\int |\psi(t,r)|^2 \,\lambda(dr) = \int \frac{\left|\tilde{\psi}(k)\right|^2}{(2\cdot\pi)^3} \,\lambda(dk) = \int \frac{\left|\tilde{\psi}(p)\right|^2}{(2\cdot\pi\cdot\hbar)^3} \,\lambda(dp)$$

und für die Mittelung

$$\langle p \rangle = \int \frac{p \cdot \left| \tilde{\psi}(p) \right|^2}{(2 \cdot \pi \cdot \hbar)^3} \lambda \left(dp \right) := \int \frac{p \cdot \exp\left(-\frac{(p - p_0)^2}{4 \cdot \hbar^2 \cdot \sigma^2} \right)}{(2 \cdot \pi \cdot \hbar)^3} \lambda \left(dp \right) \stackrel{\text{(.??)}}{=} p_0 = \hbar \cdot k_0.$$

Die mittlere Schwankung, also physikalisch die Genauigkeit des Impulses im Impulsraum, ergibt sich zu

$$\Delta p^2 = \langle (p - \langle p \rangle^2)^2 \rangle = \hbar^2 \cdot \sigma^2,$$

wobei unter Verwendung von $\Delta r^2 = w(t)^2$ folgt

$$\Delta r^2 = w(t)^2 \geq \left(\frac{1}{2 \cdot \sigma}\right)^2 = \frac{1}{4 \cdot \sigma^2},$$

sodaß mit beiden Gleichungen unter Produktbildung und Wurzelzug eine Ausdrucksweise der Unschärferelation, konkret jene von Heisenberg, folgt:

$$\Delta r \cdot \Delta p \ge \frac{\hbar}{2}.$$

.....

(\bigcirc 10) \square Lässt sich die Wellenfunktion direkt experimentell bestimmen? Recherchiere die *Quanten-Zustands-Tomographie*.

.....

Physikalische Bedeutung

Aus der Unschärferelation folgen folgende physikalische Konsequenzen:

- \rightarrow Unmittelbar ist ablesbar, daß bei genauerer Ortsbestimmung die Impulsgenauigkeit abnimmt.
- \rightarrow Für $\Delta p \rightarrow 0$ (Fall ebene Welle) ist $\Delta r \rightarrow \infty$.
- \rightarrow Der Phasenraum ist infolge der Unschärferelation quantisiert in Einheiten von \hbar .

1.2 Die Schrödingergleichung für freie Teilchen

Als Ziel der Untersuchungen ist eine Wellengleichung für die Wahrscheinlichkeitsamplitude Ψ zu finden. Wir lassen hierbei den mathematischen Beweis fallen und versuchen, die Gleichung zu "erraten". Mit unserem Ausdruck der Fouriertransformation $\mathscr F$ und dem Diffeomorphismus $p(t) := \hbar \cdot k(t)$ auf $\hat{\psi} := \mathscr F \psi$ erhalten wir

$$\psi(t,r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \tilde{\psi}(p) \cdot f(t,r(t)) \,\lambda\left(dp\right) = (\mathscr{F}\hat{\psi})(t,r(t)).$$

Die Funktion f war dabei eine Abkürzung einer exp Verkettung, welche wir in zwei Kinderfunktionen aufteilen können:

$$f := \left(\exp\left(\hat{\imath}\cdot(\langle p, r(t)\rangle - p^2\cdot t/2m)/\hbar\right)\right)_{(t,r)\in\mathbb{R}\times\mathbb{R}^d} = f_1(t,r(t))\cdot f_2(t,r(t)).$$

Für die Ableitung gilt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\mathscr{F} \hat{\psi}(s,r(s)) \right] \right|_{s=t} = \frac{1}{(2\pi\hbar)^3} \int \left(\frac{-\stackrel{\circ}{i}}{2m\hbar} \right) \cdot p^2 \cdot f(t,r(t)) \, \lambda \left(dp \right).$$

 \square Rechne nach, daß es sich bei p um einen Diffeomorphismus zwischen $(\mathbb{R}, \tau_{\mathbb{R}})$ und $(\mathbb{R}^3, \tau_{\mathbb{R}^3})$ (\mathbb{R}^3) handelt und der Transformationssatz greifen kann. Welche Annahme musst du dabei machen?

□ Wie lautet die Ableitungen $df_1(t,r)(0,h)$ und $df_2(t,r)(0,h)$? Notiere den Ausdruck in verschiedenen Ableitungsdarstellungen. Ersetze $p^2 \cdot f_1(t,r(t))$ durch den entsprechenden Ableitungsausdruck.

.....

Mit der Aufgabe folgt dann

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\psi(s, r(s)) \right]_{s=t} = \frac{\hat{i} \cdot \hbar}{2 \cdot m} d(\mathscr{F} \tilde{\psi})(t, r(t))(\hbar)(\hbar)$$

mit der Definition

$$\mathbb{D}_{(\hbar,\hbar)}(\mathscr{F}\hat{\psi})(t,r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \hat{\psi}(p) \cdot f(t,r(t)) \, \lambda \, (dp) \, .$$

Wir erhalten also die zeitabhängige Schrödingergleichung für freie Teilchen der Form

$$\frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \frac{\stackrel{\circ}{i} \cdot \hbar}{2 \cdot m} \cdot \mathbb{D}_{(\hbar,\hbar)} (\mathscr{F} \hat{\psi})(t,r(t)) = \frac{\stackrel{\circ}{i} \cdot \hbar}{2 \cdot m} \cdot \mathbb{D}_{(\hbar,\hbar)} \psi(t,r(t)).$$

......

- \square Berechne die Ableitung df(t, r(t))(0, h). Berechne weiter $d\psi(t, r(t))(1, 0)$ und verifiziere dadurch (\$13) den oberen Funktionsausdruck.
- □ Klassifiziere die Schrödingergleichung. Welche Ordnung hat sie? Schreibe sie in eine Form, bei (\$14) welcher die rechte Seite reell ist.
- \square Benenne drei Beispiele $(s, S) \in Anfangswert(\psi)$. (§15)
- $\square \text{ Wie steht die erhaltene Schrödingergleichung mit der Diffusionsgleichung } \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\phi(s,x(s)) \right] \right|_{s=t} = \quad (\$16)$
- $D \cdot \mathbb{D}_{(h,h)} \psi(t,s(t))$ im Zusammenhang? Stelle Ähnlichkeiten und Unterschiede heraus.
- □ Betrachte die Dispersionsreihe (\$17)

$$E(p) = \sum_{n(x)=0}^{\infty} \sum_{n(y)=0}^{\infty} \sum_{n(z)=0}^{\infty} c(n(x), n(y), n(z)) \cdot p(1)^{n(x)} \cdot p(2)^{n(y)} \cdot p(3)^{n(z)}.$$

Wie kann man die Reihe umdefinieren für Operatoren? In welchem Raum liegt $\mathscr{E}_E := E(o)$, wenn $o = -i \hbar \cdot \mathbb{D}_{(\hbar,\hbar)}$?

 $(@18) \quad \Box$ Verallgemeinere mit dem Operator \mathscr{E}_E die Gleichung auf beliebige Dispersionen.

.....

VL 4 03.05.2023, 08:15 Um eine Lösung dieser partiellen Differentialgleichung zu erhalten, müssen wir mit dem Seperationsansatz beginnen.

Zeitunabhängige Schrödingergleichung

Wir spalten unser ϕ in die Funktionen ϕ und χ auf nach der Form $\psi(t,r(t))=\phi(r(t))\cdot \chi(t)$. Wir nehmen hierbei an, daß dies problemlos möglich ist; typische Tücken des Seperationsansatz. Wir fordern sogar weiter, daß $\int |\psi(t,r(t))| \, \lambda(dt) = 1$, sodaß die implizite Bedingung $\chi(t) \neq 0$ für alle $t \in \mathbb{R}$ folgt. Setzen wir diesen Ansatz in die Schrödingergleichung ein, so erhalten wir

$$\phi(r(t)) \cdot \stackrel{\circ}{i} \hbar \cdot \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\chi(s) \right] \right|_{s=t} = \chi \left(-\frac{\hbar^2}{2m} \right) \cdot \mathrm{D}_{(\hbar,\hbar)} \phi \left(t \right).$$

.....

(§19)
$$\square$$
 Rechne nach, daß $\int |\psi(t,r(t))| \lambda(dt) = 1$ zu $\chi(t) \neq 0$ für alle $t \in \mathbb{R}$ führt.

.....

Nun ist der weitere Ansatz das Dividieren durch $\phi(r(t))$ und $\chi(t)$, um gemäß der Seperationschablene zeit- und ortsabhängige Funktionen voneinander zu trennen. Für $\chi(t)$ wissen wir durch unsere Annahme, daß sie ungleich Null sein wird; Für $\phi(r(t))$ müssen wir eine Fallunterscheidung machen. Schematisch erhalten wir zunächst

$$\hat{i} \, \hbar \cdot \frac{\mathrm{d}}{\mathrm{d}s} \left[\chi(s) \right] \big|_{s=t} \cdot \frac{1}{\chi(t)} = -\frac{\hbar^2}{2 \cdot m} \cdot \mathrm{D}_{(\hbar, \hbar)} \chi \left(t \right) \cdot \frac{1}{\phi(r(t))} = const. =: E.$$

Mit dem Analyseblick erkennen wir $(\frac{d}{dt}\chi(t))/\chi(t) = \frac{d}{dt}\ln(t)$, sodaß

$$\frac{\mathrm{d}}{\mathrm{d}s} \left[\chi(s) \right]_{s=t} = -\frac{\mathring{\imath} \cdot E}{\hbar} \Leftrightarrow \chi(t) = C_1 \cdot \exp\left(-\frac{\mathring{\imath} \cdot E \cdot t}{\hbar} \right),$$

Wobei die Konstante C_1 Resultat der Integration $\int f dt$ ist. Für die rechte Seite gilt zunächst

$$-\frac{\hbar^2}{2m} \cdot \mathbf{D}_{(\hbar,\hbar)} \phi(r(t)) = E \cdot \phi(r(t)),$$

schematisch nahe der Laplace-Gleichung. Wir haben es hierbei konkret mit einem verallgemeinerten Eigenwertproblem zutun, welche wir spezieller in $[\to \text{math. Grund. der Quant.}]$ behandeln werden. In diesem Kontext reicht uns der Name zeitunabhängige Schrödingergleichung. Der ausstehenden Fallunterscheidung kommen wir nun nach: Für $\phi(r(t)) = 0$ erhalten wir $D_{(\hbar,\hbar)}\phi(r(t)) = 0$, wodurch die Schrödingergleichung ebenfalls gilt; Wir hatten also bei unserem zunächst frei angenommenen Seperationsansatz Glück.

......

- (§20) \square Begründe, warum die Annahme der Konstante E im Seperationsansatz gerechtfertigt ist.
- (\geq 21) \square Zeige, daß aus $\phi(r(t)) = 0$ folgt, daß $D_{(\hbar,\hbar)}\phi(r(t)) = 0$.

.....

Als Lösungen der zeitunabhängigen Schrödingergleichung erhalten wir $\phi(r(t)) = C_2 \cdot \exp\left(\stackrel{\circ}{i} \cdot \langle k, r(t) \rangle\right)$, welche der Form einer implizit zeitunabhängigen ebenen Welle

entspricht. Zusammengesetzt gilt für ψ demnach

$$\psi(t, r(t)) = C \cdot \exp\left(\stackrel{\circ}{i} \cdot \left(\langle k, r(t) \rangle - \frac{\hbar \cdot k^2}{2m} \cdot t\right)\right),$$

wobei wir $E = \hbar^2 \cdot k^2/(2m)$ setzen.

1.3 Allgemeine Form der Schrödingergleichung

Bisherig nahmen wir an, daß unsere betrachteten Teilchen kräftefrei sind. Erweitern wir unseren Blick auf konservativ kräftebefallene Teilchen, existiert ein Kraftpotential V sodaß F(t,r(t)) = -dV(t,r(t))(h) gilt. Im klassischen Betrachtungsfall haben wir bereits die Hamiltonfunktion kennengelernt:

$$H(t, (r(t), p(t))) = \frac{p(t)}{2m} + V(t, r(t)).$$

Wir wollen nun die Schrödingergleichung erraten: angenommen, wir haben ein sehr schmales Wellenpaket relativ zur Änderung von V, sodaß wir eine gute Approximation von V am Ort (t, r(t)) durch $V(t_0, r(t_0))$ erhalten. Für die Funktion $p \mapsto H(t, (r, p))$ mit der Dispersionsreihe $\mathscr E$ erhalten wir

$$\mathring{i}\,\hbar\cdot\frac{\mathrm{d}}{\mathrm{d}s}\left[\psi(s,r(s))\right]|_{s=t}=\mathscr{E}_{H}(\psi(t,r(t)))(=H(t,(r(t),-\mathring{i}\,\hbar\nabla))),$$

wobei der geklammerte Term eine Schreibweise zur Erinnerung an die klassische Hamiltonfunktion ist. Damit folgt die allgemeinste Version der zeitunabhängigen Schrödingergleichung für einzelne Teilchen als fundamentalen quantenmechanischen Zusammenhang:

$$\stackrel{\circ}{\imath} \cdot \hbar \cdot \frac{\mathrm{d}}{\mathrm{d}s} \left. \left[\psi(s,r(s)) \right] \right|_{s=t} = \left(-\frac{\hbar^2}{2m} \mathbb{D}_{(\hbar,\hbar)} + V(t,r(t)) \right) (\psi(t,r(t))).$$

Es handelt sich hier wieder um ein AWP: Die Gleichung löst sich also eindeutig für einen Anfangswert $(s, S) \in AW(\psi)$.

......

- \square Wie muss man $t_0 \in \mathbb{R}$ wählen, sodaß die Approximation von V ausreichend gut ist? Was (\otimes 22) bedeutet "schmal relativ zur Änderung von V"?
- \square Wie sieht die suggerierte Auswertung des Ausdrucks $(\cdot + \cdot)(\psi(\cdot))$ aus? Was bedeutet die (\bigcirc 23) Schreibweise?
- \square Kläre den Zusammenhang der Schrödingergleichung mit der Newtongleichung F=ma. (\lozenge 24) Recherchiere dazu im Nolting und beachte die folgende Optikanalogie:

Mechanik	Optik
Schrödingergleichung	Wellenoptik
‡	\
klassische Mechanik	geometrische Optik

 \square Schlage alternative Formulierungen der Schrödingergleichung nach. Beachte als Beispiel die (\lozenge 25) Feynmanschen Pfadintegrale ausgehend von Langrangian.

$$\hat{i} \hbar \cdot c_i'(t) = E_i c_i(t) \iff c_i(t) = c_i(0) \cdot \exp(-\hat{i} E_i t/\hbar),$$

und mit ϕ Orthonormalbasis

11

Theoretische Physik II Skript

wobei die $c_i(0)$ aus den Anfangsbedingungen folgen:

$$c_i(0) = \int \overline{\phi_i}(x) \cdot \psi(0, x) \lambda(dx).$$

Damit können wir im letzten Schritt durch Zusammenfassung eine allgemeine Lösung der zeitabhängigen AWPs konstruieren:

$$\Phi(t, r(t)) = \sum_{i \in I} c_i(0) \cdot \exp\left(-\stackrel{\circ}{i} Et/\hbar\right) \cdot \phi_i(r(t)).$$

1.3.1 Stationäre Zustände

Im letzten Abschnitt haben wir eine Lösung der zeitunabhängigen Schrödingergleichung konstruiert. Ist Φ nun eine solche konstruierte Lösung, dann ist für ein spezielles $c \in \text{Abb}(I, C^1(\mathbb{R}, \mathbb{C}))$ mit $c_n(t) \neq 0$ für ein singuläres $n \in I$ für Φ der Ausdruck

$$\Phi(t,r(t)) = c_n(t) \cdot \phi_n(r(t)) \cdot \exp\left(-\stackrel{\circ}{i} Et/\hbar\right) = c_n(t) \cdot \Phi(0,r(t)) \cdot \exp\left(-\stackrel{\circ}{i} Et/\hbar\right),$$

wobei in dem Absolutbetrag $|\psi(t,r(t))| = |\psi(0,r(t))|$ gilt. Man spricht hier von einem stationären Zustand.

1.4 Normierung und Erwartungswert

Wir wollen nun den Wahrscheinlichkeitsaspekt von $|\psi(t,r(t))|^2$ näher betrachten. Wir definieren zunächst das $Ma\beta$ mit Dichte $\mu_{\psi}:=\left(\int |\psi(t,x)| \; \lambda_A\left(dx\right)\right)_{A\in\mathscr{B}(\mathbb{R}^3)}$. Nun fordern wir von $\Gamma:=\left(\left|\psi(t,r(t))\right|^2\right)_{(t,r(t))\in\mathrm{Def}(\psi)}$ als Gewichtungsfunktion die Eigenschaft $\mu_{\psi}(\mathbb{R}^3)=1$.

 \square Zeige für $\psi = c_1 \cdot \psi_1 + c_2 \cdot \psi_2$ mit geeigneten Gewichtungsfunktionen c_1, c_2 die Eigenschaft ($^{\circ}$ 29) $\mu_{\psi}(\mathbb{R}^3) \neq 1$. Ist dies ein Widerspruch zwischen dem Superpositionsprinzip und der Normierung?

Normierbare ψ müssen nach der Aufgabe also die Eigenschaften (i) $\psi \in \mathcal{L}^2(\mathbb{R}^3)$ und (ii) $\mu_{\psi}(\mathbb{R}^3) \neq 0 \Leftrightarrow \psi \neq 0$ erfüllen. Dann ergibt sich eine Normierung durch

$$P_{\psi}(t, r(t)) := \frac{\left|\psi(t, r(t))\right|^2}{\mu_{\psi}(\mathbb{R}^3)},$$

wobei P eine Wahrscheinlichkeitsverteilung ist.

.....

- \square Zeige, daß alle ψ , welche die Normierungsbedingungen erfüllen, zusammen mit dem Nullvektor (\gg 30) $0_{\mathscr{L}^2(\mathbb{R}^3)}$ einen Vektorraum bilden. Welcher Raum ist es dann?
- \square Zeige, daß die ψ zwar einen physikalischen Zustand beschreiben, jedoch nicht eindeutig wählbar (\otimes 31) sind.

Zeitabhängigkeit der Normierung

Betrachten wir die Zeitableitung unseres auf ψ konstruierten Maßes P_{ψ} auf einer Menge $A \subseteq \mathbb{R}^3$, müssen wir zunächst sicherstellen, daß $\mu_{\psi}(\mathbb{R}^3)$ zeitunabhängig ist:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mu_{\psi}(\mathbb{R}^{3}) = \frac{\mathrm{d}}{\mathrm{d}t}\int\left|\psi(t,x)\right|^{2}\,\lambda_{\mathbb{R}^{3}}\left(dx\right) = \int\frac{\mathrm{d}}{\mathrm{d}t}\overline{\psi(t,x)}\,\lambda_{\mathbb{R}^{3}}\left(dx\right) + \int\frac{\mathrm{d}}{\mathrm{d}t}\overline{\psi(t,x)}\,\lambda_{\mathbb{R}^{3}}\left(dx\right).$$

Schreibt man die Definitionen sauber aus, dann bleibt nach Kürzung lediglich

$$\frac{\mathrm{d}}{\mathrm{d}t}\mu_{\psi}(\mathbb{R}^{3}) = \frac{-\stackrel{\circ}{i}\hbar}{2m} \cdot \int \overline{\psi(t,x)} \cdot D_{h}^{2}\psi(t,x) - \psi(t,x) \cdot D_{h}^{2}\overline{\psi}(t,x) \,\lambda_{\mathbb{R}^{3}}(dx)$$

$$= -\int D_{h}\left(\frac{-\stackrel{\circ}{i}\hbar}{2m} \cdot \left[\overline{\psi} \cdot D_{h}\psi - \psi \cdot D_{h}\overline{\psi}\right]\right)(t,x) \,\lambda_{\mathbb{R}^{3}}(dx).$$

.....

- ($\$ 32) $\$ Rechne alle Schritte gründlich nach, um den letzten Ausdruck zu erhalten. [In der Vorlesung war der Vorgang zu schnell.]
- (\$33) \square Wende nun den Satz von Gauß auf den letzten Ausdruck an. Wie muss man korrekt Umgehen mit der Hilfsidee "Rand von \mathbb{R}^3 "? Erhalte im letzten Schritt $\frac{d}{dt}\mu_{\psi}(\mathbb{R}^3) = 0$.
- (34) \square Berechne nun die Ableitung $\frac{d}{dt}\mu_{\psi}(A)$.

Definiere nun den Wahrscheinlichkeitsstrom

$$j(t, r(t)) := \frac{-\stackrel{\circ}{i} \hbar}{2m} \cdot \left[\overline{\psi} \cdot D_h \psi - \psi \cdot D_h \overline{\psi} \right].$$

Dann kann man die Kontinuitätsgleichung wiederfinden:

$$\frac{\mathrm{d}}{\mathrm{d}t}\Gamma(t,r(t)) + D_h j(t,r(t)) = 0.$$

Erwartungswerte

Als Mittelung über die Wahrscheinlichkeitsverteilung P_{ψ} definieren wir den Erwartungswert als

$$E_{P,r}(t) := \left(\int r \cdot P_{\psi}(t,r) \, \lambda_{A}\left(dx\right) \right)_{A \in \mathscr{B}(\mathbb{R}^{3})},$$

und für allgemeinere Funktionen des Ortes $f \in \text{Abb}(\mathbb{R}^3, \mathbb{R}^3)$

$$E_{P,r,f}(t) := \left(\int f(r) \cdot P_{\psi}(t,r) \, \lambda_A\left(dx\right) \right)_{A \in \mathscr{B}(\mathbb{R}^3)}.$$

1.5 Wellenfunktion im Impulsraum

Wir hatten bereits gesehen, daß wir ein Wellenpaket mit $\psi(0, r(t)) = \mathscr{F}\psi(0, (p \circ r)(t))$ konstruieren können. Für ein allgemeineres $t \in \mathbb{R}$ haben wir

$$\psi(t, r(t)) = \int \frac{1}{(2\pi\hbar)^3} \cdot \mathscr{F}\psi(t, p) \cdot \exp\left(-\frac{\mathring{i} p \cdot r(t)}{\hbar}\right) \lambda \left(dp\right)$$

13

Theoretische Physik II Skript

und

$$\mathscr{F}\psi(t,(p\circ r)(t)) = \int \psi(t,x) \cdot \exp\left(\frac{\hat{i}\left\langle (p\circ r)(t),x\right\rangle}{\hbar}\right) \lambda\left(dx\right).$$

Die Auswirkungen auf die Wahrscheinlichkeitsverteilung sind

$$P_{\mathscr{F}\psi}(t,(p\circ r)(t)) = \frac{1}{(2\pi\hbar)^3} \cdot P_{\psi}(t,(p\circ r)(t)).$$

.....

 \square Weise die letzte Gleichung nach. Verwende hierzu die Definition von P und nutze Linearität. (4

 \square Berechne nun die Erwartungswerte $E_{P,p}(t)$ und $E_{P,p,f}(t)$. (\$36)

VL 6 05.05.2023, 11:45

1.6 Operatoren

Zunächt sei ein dringender Verweis zur Funktionalanalysis I&II und Mathematische Grundlagen der Quantenmechanik gegeben.

Wir stellen uns die Frage, ob oder < g(p) > direkt aus $\psi(t, r(t))$ bei fixiertem $t \in \mathbb{R}$ berechnet werden kann, ohne die Fouriertransformation zu verwenden. Zunächst gilt

$$:= E_{P(\mathscr{F}\psi),p}(t) = \frac{1}{(2\pi)^3} \cdot \int p \cdot \left| \mathscr{F}\psi(t,p) \right|^2 \, \lambda_{\mathbb{R}^3} \left(dp \right),$$

wobei wir den komplexen Betrag der Fouriertransformierten von ψ verwenden. Es gilt weiter nach Definition

$$\frac{1}{(2\pi)^3} \cdot \int p \cdot \int \int \overline{\psi(R)} \cdot \psi(r) \cdot \exp \Biggl(-\frac{\stackrel{\circ}{\imath} \cdot p \cdot (r-R)}{\hbar} \Biggr) \, \lambda_{\mathbb{R}^3} \left(dR \right) \, \lambda_{\mathbb{R}^3} \left(dr \right) \, \lambda_{\mathbb{R}^3} \left(dp \right),$$

wobei wir durch Umsortieren der Integrale

$$\frac{1}{(2\pi)^3} \cdot \int \left(\int \left[\int \overline{\psi(R)} \cdot \psi(r) \cdot \mathring{i} \, h \cdot D_h(\exp \circ g_R)(r) \, \lambda_{\mathbb{R}^3} (dR) \right] \, \lambda_{\mathbb{R}^3} (dr) \right) \, \lambda_{\mathbb{R}^3} (dp)$$

mit $g_R := (-\stackrel{\circ}{i} \cdot p \cdot (r-R))_{r \in \mathbb{R}^3}$ und $h \in \mathbb{R}^3$. Mit partieller Integration $\int f'(x) \cdot g(x) \left(\mathbb{1}_{[a,b]} \cdot \mu(dx)\right) = [f(x) \cdot g(x)]_a^b - \int f(x) \cdot g'(x) \left(\mathbb{1}_{[a,b]} \cdot \mu(dx)\right)$ folgt

$$-\int \int \overline{\psi(R)} \cdot \mathring{\imath} \, \hbar \cdot D_{\hbar} \psi(r) \, \lambda_{\mathbb{R}^{3}} \left(dR \right) \, \lambda_{\mathbb{R}^{3}} \left(dr \right) \cdot \underbrace{\int \frac{1}{(2\pi)^{3}} \cdot \exp \left(\frac{-\mathring{\imath} \, p \cdot (r-R)}{\hbar} \right) \lambda_{\mathbb{R}^{3}} \left(dp \right)}_{=\int R \left(\mathbb{1}_{\mathbb{R}^{3}} \cdot \delta_{r} \right)}.$$

Mit $\int R (\mathbb{1}_{\mathbb{R}^3} \cdot \delta_r) = 1$ für r = R folgt

$$\int \overline{\psi(r) \cdot (-\stackrel{\circ}{i} \hbar D_h) \psi(r)} \, \lambda_{\mathbb{R}^3} (dr) =:< P>,$$

wobei $<\cdot>$ den Erwartungswert des \cdot -es ist, welcher in diesem Fall der *Operator* P ist.

Messgröße	Operator
Energie	$\hat{H} = H(t, (r(t), \hat{p}(t)))$ "
Impuls	$,\hat{p} = -\stackrel{\circ}{i}\hbar D_h$ "
Ort	$,\hat{r}=r(t)$ "

.....

(§37) \square Verifiziere $\mathscr{F}(1)_{x\in\mathbb{R}^3} = \int x \left(\mathbbm{1}_{\mathbb{R}^3} \cdot \delta_{0_{\mathbb{R}}^3}\right)$. Schreibe hierzu die Fouriertransformation $\mathscr{F}(1)_{x\in\mathbb{R}^3}$ aus. Was ergibt $\int f(x) \cdot \mathscr{F}(1)(x) \, \lambda_{\mathbb{R}^3} \, (dx)$?

.....

Zusammenfassen

Für einen linearen stetigen Operator $T \in L_S(\mathcal{H})$ auf dem Hilbertraum \mathcal{H} gilt für den Erwartungswert

 $< T > := \int \overline{\psi(r)} \cdot (T \circ \psi)(r) \, \lambda_{\mathscr{H}}(dr) \,.$

.....

(§38) \square Zeige der vorigen Rechnung folgend die Aussage $\langle g(p) \rangle = \langle g(P) \rangle$ für $p \in \mathbb{R}^3$ und $P \in L_S(\mathbb{R}^3)$, indem man für analytische g eine Potenzreihenentwicklung durchführt.

.....

Wenn $x \in \mathbb{R}^3$ ein Vektor der Form $[3] \to \mathbb{R}$ ist, dann ist der zugeörige Operator X eine Abbildung aus dem Definitionsbereich von x in den Raum $L_S(\mathbb{R})$ der stetigen linearen Operatoren auf R gemäß $X : [3] \to L_S(\mathbb{R})$.

Operatoren der Quantenphysik

In der Quantenmechanik beschreiben wir Observable nun durch Identifikation mit Operatoren: Wie in der Physik üblich handelt es sich hier allerdings nur um *Sprechweisen*, welche an die mathematischen Hintergründe im physikalisch ausreichenden Sinne *erinnern*.

Die sogenannten Eigenzustände sind Lösungen des verallgemeinerten Eigenwertproblemes $T(\psi) = \lambda \cdot \psi$ zu dem verallgemeinerten Eigenwert $\lambda \in \mathbb{C}$ und einem Operator $T \in L_S(\mathcal{H})$ über dem komplexen Hilbertraum \mathcal{H} . Ist ψ ein solcher Eigenzustand von T, so ist der Erwartungswert

$$E_{T(\psi),}(t) = \int \overline{\psi(t,r)} \cdot (T \circ \psi)(t,r) \,\lambda_{\mathbb{R}^3} (dr)$$
$$= \int \overline{\psi(t,r)} \cdot \lambda \cdot \psi(t,r) \,\lambda_{\mathbb{R}^3} (dr) = \lambda \cdot E_{P(\psi),r}(t)(\mathbb{R}^3) = \lambda.$$

- (§39) \square Zeige die Aussage $E_{T(\psi),x}(t)(\mathbb{R}^3) = \lambda^2$.
- (§40) \square Zeige die *Varianz* des Operators $T \in L_S(\mathbb{H})$ mit $\psi \in \mathbb{H}$ als Eigenzustand zu $\lambda \in \mathbb{C}$. Erhalte $\langle \operatorname{var}(T^2) \rangle = \lambda^2 \lambda^2 = 0$. Benutze hierzu das Ergebnis $E_{T^2(\psi),x}(t) = \lambda^2$.

Literatur