HW #10, DUE: 2015, APRIL 20

CAL STATE LONG BEACH

1. Consider the veracity or falsehood of each of the following statements. For bonus, argue for those that you believe are true while providing a counterexample for those that you believe are false.

1 There is an integral domain with 6 elements.

Let k be a positive integer. Let $\bar{z} \to \mathbb{Z}_k$ be the mod function. Thus, e.g., if k=7, then $\overline{25}=4$. This leads naturally to a homomorphism $\bar{z} \to \mathbb{Z}_k[x]$. Thus, e.g., if k=7, then $\overline{25x^2+12}=4x^2+5=-3x^2-2$. Consider the veracity or falsehood of each of the following statements. For those that are true give an argument, for those that are false, give a counterexample. Let $p(x) \in \mathbb{Z}[x]$ be monic.

- (2) If p(x) has a root in \mathbb{Z} , then $\overline{p(x)}$ has a root in \mathbb{Z}_k .
- (3) If $\overline{p(x)}$ has a root in \mathbb{Z}_k , then p(x) has a root in \mathbb{Z} .
- (4) If p(x) is irreducible, then so is $\overline{p(x)}$.
- (5) If $\overline{p(x)}$ is irreducible, then so is p(x).

Solution.

- (1) a
- 2. Consider the integral domain $R = \mathbb{Z}[\sqrt{3}]$. Let $A = \begin{pmatrix} 5 & 3 \\ 9 & 5 \end{pmatrix}$.
 - (1) Find a nontrivial unit, and show it has infinite order.
 - ② Compute $\frac{A}{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}$ and its reciprocal $\frac{\begin{pmatrix} 20 & 6 \\ 18 & 20 \end{pmatrix}}{A}$. These elements may not be

in the domain, but they are certainly in the field of quotients.

- (3) Decide if A and $\begin{pmatrix} 19 & 11 \\ 33 & 19 \end{pmatrix}$ are associates.

Solution.

- (1) a
- 3. Consider the following element $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ of $GL(3, \mathbb{Z}_2)$.
 - (1) Compute all of its powers.

- (2) How many elements would you have to add for this set of powers to be closed under addition?
- (3) Find the characteristic polynomial of each of the powers.
- (4) Find the lowest degree polynomial that all of the powers satisfy.
- (5) Have you constructed a field?

Bonus. Show that every irreducible cubic over \mathbb{Z}_2 has a root among these powers.

Solution.

(1) a

4. On $\mathbb{Z}_2[x]$. Consider the ring of polynomials $\mathbb{Z}_2[x]$ with coefficients in \mathbb{Z}_2 ,

$$p(x) = a_0 + a_1 x + \dots + a_n x^n.$$

- 1 How many polynomials of degree n are there? **Hint.** Consider $n = 1, 2, 3, \ldots$
- (2) Consdier the function $E: \mathbb{Z}_2[x] \to \mathbb{Z}_2$ that sends any polynomial p(x) to p(1). Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (3) Consider the function $S: \mathbb{Z}_2[x] \to \mathbb{Z}_2[x]$ that sends any polynomial p(x) to $p^2(x)$, it square. Decide if it is a (ring) homomorphism or not. Decide if it is one-to-one and onto. Argue your case.
- (4) Count the number of irreducible quadratics in $\mathbb{Z}_2[x]$.
- (5) Count the number of irreducible cubics in $\mathbb{Z}_2[x]$.
- 6 Count the number of irreducible quartics in $\mathbb{Z}_2[x]$.

Solution.

(1) a