Binary Prediction - Client Churn or No-churn

Table 5.1: Model Development Summary

Dataset at Label Window Train (4,130 obs.) & Test (1,000 obs.) with 74 variables

Binary outcome variable (Churn or No Churn)

Feature Selection Significant Logit vars. + RF important vars. - Pearson Correlated vars.

Candidate prediction models Logistic Regression (Logit), Random Forest, C5.0

Prediction probability threshold 50% for all models and then

to mean probability of (TP+TN) to adjusts for population bias

Model Comparison Over-all prediction accuracy and others

Area under ROC

Validation 10-fold cross validation (90%-10% training/test split)

Attempted Misclassification penalty 2 to 1 in favour of Type II(misclassified churns)

I'll cover in this talk my journey ...

- Definitions client churns and churn measure
- Literature Review
- Feature and model selection and comparison
- Improving accuracy of selected model
- Will dwell more on techniques/ R, not industry insights
- Coming from a data dev background

• Q & A

Definition – Client Churn

In Strouse [1999], churn (aka 'attrition') is the annual turn-over of the market base.

```
Churn Flag \Leftarrow function
(Client Program Enrollments, Discharge Reason)
```

 $\Leftarrow \begin{cases} 1 \text{ (Churn) } Discharge \, Reason \in R \text{ and} \\ Client \, Program \, Enrollment \, type \in P \text{ and} \\ Client \, Program \, Enrollment \, count = 0 \\ 0 \text{ (non Churn) } otherwise. \end{cases}$

where

R is a set of Discharge Reason $r_1, r_2, ..., r_n$ and P is a set of monitored Client Programs $p_1, p_2, ..., p_n$ and Client Program Enrollment count is the remaining program(s) after discharge.

Measure - Churn Rate

$$Active \ Clients_{(at \ end \ month)} = \\ \sum Active \ Clients_{(at \ begin \ month)} \\ + \sum new \ Clients_{(within \ month)} \\ - \sum Churned \ Clients_{(within \ month)}$$
 (2)

 $-\sum Non\,churn\,\,Client\,\,Exits_{(within\,month)}$

where K is set of States $s_1, s_2..., s_k$

Literature Review – Prediction Models

Table 3.1: Client Churn Prediction Models reviewed

Title of Paper	Models and Techniques
Model of Customer Churn Prediction on Support Vector Machine	Factor Analysis, SVM
Telco Churn Prediction with	Logit, C4.5, SVM
Big Data	Naive Bayes, ANN
Churn prediction in subscription services: An application of	SVM, Logit, RF
SVM while comparing two parameter-selection techniques	
Improving customer attrition prediction by integrating emotions from	SVM, Logit, RF
client/company interaction emails and evaluating multiple classifiers	
Customer churn prediction by hybrid neural networks	SOM Cluster, ANN
Variable selection by association rules for customer churn prediction	C5.0, ANN
of multimedia on demand	
Storm Prediction: Logistic Regression vs RFfor Unbalanced Data	Logit, RF
Prediction modelling and pattern recognition for patient readmission	CART, CHAID, C5.0 , ANN
Building comprehensible customer churn prediction models with	$\operatorname{AntMiner}$
advance rule induction techniques	(Ant Colony Optimization)
	ALBA (SVM)

Literature Review — Home-based Care Services

Table 3.2: Churn associated studies on Home-based Care Services

Title of Paper	Models Used
A data mining approach in home healthcare:	CART(Classification
outcomes and service use	and Regression Tree)
Data mining techniques for patient satisfaction data	Box Analysis, Segmentation,
in home care	CHAID and ANOVA
The home care satisfaction measure: a self-centred approach	Correlation
to assessing the satisfaction of frail older adults	and Common Factor Analysis
with home care services	

Attributes and Feature Selection

- Client Demographics e.g. gender, home state, age
- Client Program Enrollments
 - e.g. enrolled program, services, discharges
- Service Delivery and Expectations e.g. time sheet, service preference
- Client Interactions e.g. customer complaints, communications
- Client Satisfaction Survey e.g. Net Promote Score survey
- Derived Attributes –e.g. home care worker ratio, issues raised and other RFM values

Table 5.3: Logistic Regression significant variables

	Estimate	Pr(> z)	Signif.
ClientTypeYou	4.4516080	3.084973e-03	**
${\bf MostUsedBillingGrade.L}$	0.9074320	4.072909e-04	***
Frequents ched Status Group Cancelled	0.6448600	3.036731e-02	*
Issues_Raised	0.4031573	1.482545 e-16	***
$default_contract_groupPrivate/Commercial$	0.3977963	7.502689 e-03	**
PCNeedsFlagY	0.2815010	3.345663e-02	*
$Client_Programs_count_at_observation_cutoff$	0.1484453	7.854017e-03	**
MinCoreProgramHours	0.1203954	2.865223 e - 02	*
MaxCoreProgramHours	-0.2197452	2.671882e-03	**
Client_Initiated_Cancellations	-0.2415312	5.610230 e-03	*
AgeAtCreation	-0.3542742	7.664414e-17	***
RespiteNeedsFlagY	-0.4273024	3.742558 e - 02	*
HOME_STR_stateNSW	-0.5914624	1.272792e-02	*
MostUsedBillingGrade.C	-0.6602870	4.304246e-02	*
HOME_STR_stateVIC	-1.1414711	1.011449e-02	*

Signif. codes: 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1

d2_corr <- cor(d2, method = "pearson")
corrplot(d2_corr, type = "lower") # High collinearity (>=.814)

Logistic Regression

Z-score normalization applied only to regression, not on tree based models

Table 5.5: Standardised Logistic Regression Coefficients

	Estimate	Std. Error	Pr(> z)	Significance	Od
(Intercept)	0.4337	145.78538	0.997626		
Issues_Raised	0.34927	0.05183	1.60E- 11	***	1.4
AgeAtCreation	-0.36461	0.04645	4.17E15	***	0.6
MostUsedBillingGrade.L	0.93084	0.19525	1.87E-06	***	2.5
MostUsedBillingGrade.Q	-7.24166	445.36776	0.987027		
MostUsedBillingGrade.C	-0.26828	0.20914	0.199576		
MostUsedBillingGrade.4	7.59609	493.3888	0.987716		
MostUsedBillingGrade.5	0.58078	0.1972	0.003228	**	1.7
MostUsedBillingGrade.6	-10.04761	671.41712	0.98806		
ClientTypeCAC	1.68353	1.21489	0.165823		
ClientTypeCCP	1.10212	1.16913	0.345839		
ClientTypeCom	-0.16902	1.13103	0.881206		
HOME_STR_stateVIC	-1.25828	0.47128	0.007587 *	* 0.	28
HOME_STR_stateWA	-0.39709	0.36099	0.271331		
PCNeedsFlagY	0.18885	0.14038	0.178552		
Average Core Program Hours	-0.72001	0.09461	2.74E-14 *	*** 0.	49
HCW_Ratio	-0.3221	0.09466	0.000667 *	*** 0.	72

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

To ascertain, the p-value of less than 0.001 below tells us that our model was statistically and significantly better than the null model.

kc.glm <- glm(Label ~ ., family = binomial(link = "logit"), train.scaled)
pr.kc.glm <- predict(kc.glm, newdata = test.scaled, type = 'response')

```
Call:

glm(formula = Label ~ ., family = binomial(link = "logit"),

data = train.scaled)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2030 -0.6639 -0.4741 -0.1776 3.3285

(Dispersion parameter for binomial family taken to be 1) mm

AIC: 3563.8

Number of Fisher Scoring iterations: 14
```

fitted.results.glm <- ifelse(pr.kc.glm > .5, 1, 0) confusion_maxtix <- table(test.scaled\$Label, fitted.results.glm)

```
fitted.results.glm
0 1
Accuracy across
1 654 172
```

Common way of computing prediction Accuracy across all candidate models

Random Forest

Type of random forest: classification

Number of trees: 1000

No. of variables tried at each split: 2

Chosen accuracy measure is mean decease in accuracy for BOTH label class (kc_RF_var_imp_measure)

OOB estimate of error rate: 17.7%

Confusion matrix:

0 1 class.error

0 3164 140 0.04237288

1 591 235 0.71549637

bestmtry <- tuneRF(train[,-ndxLabel], train\$Label, ntreeTry = 1000, plot = TRUE, type - kc_RF_var_imp_measure)

varImpPlot(kc.rf, sort = TRUE,type = k_RF_var_imp_type, class = NULL, scale = FALSE, main = ")

mod d2

C5.0 Decision Tree

kc.c50 <- C50::C5.0(x = train[-ndxLabel], y = train\$Label, trial = C5.0Trials_param, rules = FALSE, = C5.0Control(earlyStopping = TRUE))
pr.kc.c50 <- predict(kc.c50, type = "prob", newdata = test[-ndxLabel])[, 2]
kc.c50.rules <-C50::C5.0(x = train[,-ndxLabel], y = train\$Label, trial = C5.0Trials_param, rules = TRUE, control = C5.0Control(bands = 100, earlyStopping = TRUE))

Fig. 5. C5.0 Model Decision Tree n.b. Tree above is sample graph only.

```
Number of boosting iterations: 10
Average tree size: 17.6
                 641(15.5%) <<
boost
                 <-classified as
    (a)
         (b)
   3191
         113
                 (a): class 0
                 (b): class 1
    528
    Trial
                 Decision Tree
        Size
                  Errors
              25 671(16.2%)
              11 788(19.1%)
              15 946(22.9%)
              22 938(22.7%)
              15 1026(24.8%)
              15 881(21.3%)
              18 920(22.3%)
              20 823(19.9%)
              21 734(17.8%)
       9
              14 745(18.0%)
                     641(15.5%) <<
     boost
```

Model Comparison and Selection

Table 5.8: Comparison of Prediction Model Performances
tp+tn/(tp+tn+tp+tn) tp/(tp+fn) tp/(tp+fp) 2*prec*rec/(1+rec)

	Train	Test					10-fold	
Population	$4,\!130$	1,000					Cross Validation	
	Accuracy	Accuracy	Precision	Recall	F-score	AUC	Accuracy	AUC
Logit	.8162	0.832	0.7353	0.250	0.3731	0.7993	0.8162	0.7594
RF	.8447	0.831	0.8039	0.205	0.3267	0.7817	0.8259	0.7822
C50	.8230	0.838	0.9524	0.200	0.3306	0.7793	0.8283	0.7772

rocGLM <- roc(test.scaled\$Label, pr.kc.glm)
rocRF <- roc(test\$Label, pr.kc.rf)
roctest.eval.GLM.RF <- roc.test(rocGLM, rocRF, method = "delong", paired = TRUE)

Table 5.9: Pair-wise comparison of model significance (AUC)

	p-Value Test	•	95% C.I. on Test?	95% C.I. on 10-fold X Val
Logit to RF	0.2912	3e-04	No	Yes
Logit to C50	0.2074	0.0046	No	Yes
RF to C50	0.8668	0.304	No	No

Selected Model: C5.0

- Highest over-all prediction accuracy at 83.8%
- Simplicity and interpretability

Improving C5.0 Model accuracy

Rebuild model to cater for

Population bias of minority class (i.e. Churns). Adjust threshold from default 50% to mean prob. value of TP&TN
 fitThreshold.adj <- summary(y[, 2])[4] #Mean Probability value
 fitted.results.c50 <- ifelse(pr.kc.c50 > fitThreshold.adj, 1, 0)

Introducing misclassification penalty

```
miscosts <- matrix(c(NA, 2, 1, NA), nrow = 2, ncol = 2, byrow = TRUE)
C50::C5.0(x = train[-ndxLabel], y = train$Label, trial = C5.0Trials_param, costs = miscosts, rules = FALSE, control = C5.0Control(earlyStopping = TRUE))
```

Table 5.10: C5.0 model parameter tuning

	Accuracy	Precision	Recall	F-score
No tuning	0.838	0.9524	0.200	0.3306
Probability threshold set at 25%	0.812	0.5405	0.400	0.4598
Type 2 misclassification penalty	0.829	0.8372	0.180	0.2963
of 2 to 1				

Without rebuilding model, assign unequal weights to precision and recall and recompute F-score

Conclusion

"In a major IT company-sponsored tournament in developing client churn systems participated by practitioners and academics alike, it was concluded that

- Logistic Regression and tree approaches perform well and were good techniques to begin with by companies starting up a predictive modelling function.
- Exploring several techniques to develop one model may not pay off. "

Neslin, S. A. et. al, 'Defection detection: Measuring and understanding the predictive accuracy of customer churn models', Journal of Marketing Research, 2006.

Thank you!

Raul Manongdo

raul@manongdo.com

https://www.linkedin.com/in/raulmanongdo/