# Esercizi

Corso di Architettura degli Elaboratori (A.A. 2021/22)

Tutor: Dall'Occo Francesco (francesco.dallocco@unife.it

## Ripasso: Branch

In assembler spesso bisogna ragionare «al contrario», quando si implementano gli IF.

Se la condizione viene verificata, si effettua il salto **fuori** dall'IF (quindi non si esegue il codice dentro all'IF)

Spesso è necessario definire il controllo al contrario:

Es: if(a<=0): a=2\*a

Dovrò effettuare il salto (e quindi non eseguire la funzione all'interno) solo se a>0

If (senza else)

[...]
lw \$t0,a
bgtz \$t0, ifNonVerificato
sll \$t0,\$t0,1

ifNonVerificato:
#il resto del programma

## Ripasso: Branch

#### If-then-else

```
[...]
bne $t0,$t1,else

#istruzioni da eseguire dentro all'if

# ovvero se la condizione di salto NON è verificata

j out #esco dall'if
else:

#istruzioni da eseguire nell'else
out:

#Il resto del programma
[...]
```

#### While loop

```
[...]
Startloop:

#istruzioni da eseguire dentro al ciclo
bne $t0,$t1, Exitloop # condizione di uscita
dal ciclo

#se la condizione precedente non viene
verificata, salto all'inizio del ciclo
j Startloop

Exitloop:
#codice da eseguire usciti dal ciclo
[...]
```

## Ripasso: Branch

Il mips implementa solo i comandi di branch riportati in tabella.

Per effettuare altri confronti (es. è \$t0 minore di \$t1?) è necessario usare questi comandi in congiunzione con **slt** 

| Beq  | Branch if equal                    |
|------|------------------------------------|
| Bne  | Branch if NOT equal                |
| Bgtz | Branch if greater than zero        |
| Bltz | Branch if less than zero           |
| Bgez | Branch if greater or equal to zero |
| Bleq | Branch if less or equal to zero    |

### Esercizio: valore assoluto

Vogliamo calcolare il valore assoluto di una variabile intera (32 bit) salvata in memoria, e stamparlo a schermo

- Se il valore è positivo, dobbiamo solo stamparla
- Se il valore è negativo, dobbiamo effettuare il complemento a 1 e poi aggiungere 1

Provate ad eseguire l'esercizio: se non ce la fate, nella prossima slide ci sono dei suggerimenti

### Esercizio: valore assoluto

#### Suggerimento 1:

- Lavorando con gli IF, non è sempre banale decidere la condizione che porta ad effettuare il salto.
- Devo entrare nell'IF se il numero è positivo? O se il numero è negativo?

#### Suggerimento 2:

- Per ottenere il complemento a 1 di un bit, possiamo fare lo xor con 1.
- Per ottenere il complemento a 1 di una parola di 32 bit, dobbiamo fare lo xor bit a bit con una parola di soli 1.

### Esercizio: successione di Fibonacci

Vogliamo calcolare l'n-esimo valore della successione di Fibonacci.

La successione di Fibonacci è definita in questo modo:

• 
$$F_i = F_{i-1} + F_{i-2}$$

• 
$$F_0 = 0$$

• 
$$F_1 = 1$$

Usate un ciclo per calcolare e stampare a schermo  $F_{15}$ 

### Esercizio: successione di Fibonacci

#### Suggerimento 1:

- Di fatto dovete implementare un ciclo FOR, e stampare a schermo il risultato una volta usciti dal ciclo
- Un FOR altri non è che un WHILE con un incremento subito prima del jump

#### Suggerimento 2:

- Ad ogni ciclo, dovrete aggiornare i valori dei registri che contengono  $F_i, F_{i-1}, F_{i-2}$
- Per aiutarvi a riconoscerli (e non confonderli) potete usare la direttiva .eqv

#### Suggerimento 3:

• Fate molta attenzione all'ordine con cui aggiornate i registri

La comunicazione fra due entità (es: client con il server, chip con chip, microcontrolloresensore/trasduttore...) è in genere molto lenta, e spesso porta a dei rallentamenti nelle operazioni.

Poiché in genere i pacchetti hanno una dimensione massima limitata, per ridurre il numero di comunicazioni da effettuare e risparmiare un po' di tempo, si cerca di compattare quante più informazioni nel minor numero di byte possibile.



Supponiamo di avere un drone, controllato da un microcontrollore e dotato di diversi sensori per la navigazione.

Il microcontrollore deve essere in grado di tradurre i pacchetti ricevuti da questi sensori, in modo da poter gestire al meglio il volo



In particolare, vogliamo far comunicare il microcontrollore (es. arduino) con un accelerometro, montato sul drone:

Dal datasheet del sensore, vediamo che ci invia dei pacchetti a 32 bit in questo formato:

| b31 | b30      | b29      | b28      | b27 | b26 | b25 | b24 | b23 | b22    | b21 | b20 | b19 | b18 | b17 | b16 | b15 | b14    | b13 | b12 | b11 | b10 | b9 | b8 | b7 | b6     | b5 | b4 | b3 | b2 | b1 | b0 |  |
|-----|----------|----------|----------|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|----|----|----|--------|----|----|----|----|----|----|--|
| r/w | num<br>1 | num<br>2 | num<br>3 |     | pz  | ру  | рх  |     | z-axis |     |     |     |     |     |     |     | y-axis |     |     |     |     |    |    |    | x-axis |    |    |    |    |    |    |  |

#### Dove:

X-axis: intero con segno a 8 bit, che indica l'accelerazione misurata sull'asse x, in dG (decimi dell'accelerazione di gravità)

Y-axis: accelerazione sull'asse y, in dG

Z-axis: accelerazione sull'asse z, in dG

px: bit di parità per il valore di accelerazione su x

(py e pz: analogo a px, ma per y-axis e z-axis)

(il bit di parità è spesso necessario perché, durante la comunicazione, possono esserci dei disturbi che alterano il valore del payload)

r/w, num1-3, cont: segnali di controllo per la

comunicazione

Note le specifiche della slide precedente, vogliamo effettuare un controllo sull'accelerazione del drone.

#### Vogliamo quindi:

- Estrarre il valore dell'accelerazione sull'asse z
- Assicurarsi che l'accelerazione sia compresa fra -20dG e +20dG:
  - in tal caso, stampare a schermo il valore 0
- Se così non fosse, il drone rischia di danneggiarsi gravemente in caso di collisione, e bisogna prendere provvedimenti.
  - Scrivere nella variabile «desired\_acceleration» lo scarto fra l'accelerazione misurata e il range «safe» di operabilità, e stampare questo valore a schermo.
  - Es, se l'accelerazione misurata è 33, dovremo stampare -13 a schemo (20-33=-13)
  - Es, se l'accelerazione misurata è -82, dovremo stampare 62 a schermo (-20+82=62)

Il pacchetto ricevuto sarà una word che dovrete dichiarare nell'area dati del codice

Inizializzate quella word con i seguenti valori, ed eseguite il codice:

- 0x00D4F614
- 0x01562210
- 0x000F4499
- 0x00F6DD11

#### Suggerimento 1:

• Questo problema, nel suo complesso, è molto difficile da risolvere. Vi conviene dividere il macroproblema in più diversi sottoproblemi

#### Suggerimento 2:

Il problema può essere diviso in questo modo:

- 1. Estrazione del valore di accelerazione
- 2. Verifica del valore di accelerazione
  - 1. Verifica che l'accelerazione sia minore di +20
    - In caso contrario, prendere provvedimenti
  - 2. Verifica che l'accelerazione sia maggiore di -20
    - In caso contrario, prendere provvedimenti
  - 3. Saltare alla stampa a schermo
- 3. Stampa a schermo

#### Suggerimento 3:

Riformuliamo le operazioni del suggerimento 2

- 1. Estrazione del valore di accelerazione
- 2. Verifica del valore di accelerazione
  - 1. Verifica che l'accelerazione sia minore di +20
    - 1. Se è valido, saltare al prossimo controllo
    - 2. Se non è valido, prendere provvedimenti
    - 3. Stampare a schermo e uscire
  - 2. Verifica che l'accelerazione sia maggiore di -20
    - 1. Se è valido, saltare al caso in cui tutto è corretto
    - 2. Se non è valido, prendere provvedimenti
    - 3. Stampare a schermo e uscire
  - 3. Caso in cui tutto è corretto
    - Stampare 0 e uscire