铋

东南大学考试卷(A卷)

课程名称		概率统计		考试学期 15-1		-16-2	6-2 得分		
适用专		全校	全校 考试形		闭卷		考试时间长度 120 分钟		
题号				四	五.	六	七	八	
得分									
$\Phi(x) =$	$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\pi}}$	-t²/2dt 表示	标准正态	5分布的分	布函数,		ST-		
	227.5	Φ(-1.96 Φ(1.9			.5; $\Phi(1)$: (2) = 0.97				
$T_n \sim t(n)$	P(T)	$\frac{1}{25} \ge 2.060$) = 0.025	•	$P(T_{25} \ge 1.$	710) = 0	.05;		
	$P(T_2)$	$_{24} \ge 2.064$	= 0.025;		$P(T_{24}\geq 1.$	711) = 0.	.05;		
一、填充	题(每空	格 2', 共 3	36')						
1)	己知 P(B)	=0.4, P(A)=0.5, P(AUB)=0.8	,则 P(A B	3)=	_;P(A-B)=	o	
2)	一盒中有	5 个一级片	品,2个_	二级品,3	个三级品,	每次抽耳	又一个产品,	取后不放	
	回,连续打	由取4次,	则第二次I	取得一级品	日第三次	取得二级	品的概率为	,	
	首次取到	三级品发生	上在第4岁	文取球的概	率为	· · · · · · · · · · · · · · · · · · ·			
3)	设随机变	量 X 服从」	上态分布 。	N(-1, 4)	$P(X \ge 3)$	materials assumed	•		
4)	随机变量	X,Y相互	[独立,X~N	N(-2,2), Y-	-N(-1,1), J	则 X-Y 的	概率密度为	o	
¥1	5) 随机	.变量 X,	Y的單	美合分布	律为: P((X=5,Y=1))=b; P(X=5	,Y=2)=0.4;	
	P(X=	=2,Y=1)=0.2	2; P(X=2,	,Y=2)=0.2 a	,则常数	b=	则 X-2`	Y 分布律	
	为			o					
6)					互 独 3	立, D	P(A)=1,D(B)=	=2 ,则	
	cov(A-1)	(2B, A+B)	=	0					
7)	设随机图	变量序列	{Xn,n=1,	2,} 独立	1 同分于	均值为	2 的指数	分布,则	
	$\frac{1}{n}(X_1^3 +$	$X_2^3 + +$	X_n^3)——	-→ 。					
8)	设总体 X	服从均匀分	分布 U[0,1	$[X_1, X_2,$, X 10 是来	此该总体	的样本, $ar{X}$	S^2 分别	

第1页共4页-

表示样本均值和样本方差,则 $\mathbf{E}(\bar{X}^2) = ____, P(X_1 + X_3 > 0.2) = ______。$

- 9) 随机变量 X 的分布律为 P(X= 2)=0.2, P(X=3)=0.4, P(X=4)=0.2 则其分布函数 为____。
- 10) 随机变量 X 服从均值为 2 的指数分布,则 Y=-2X+1, 的密度函数为____。
- 11) 设 X_1, X_2, X_3, X_4, X_5 是来自正态总体 N(0,4) 的简单随机样本,若 $a(X_1^2 + X_2^2 + X_3^2) \sim \chi^2(3)$,则 $a = _____$,则若 $b = ____$,则若 $b = ____$,则常数 $b = ____$ 。
- 12) 对假设检验问题 H_0 : a = 0.5, $v.s H_1$: $a \neq 0.5$, 若在原假设成立时检验统计量的 T分布为 U[0,1],设检验的水平为 0.05,试写出该检验问题的拒绝域_____。
- 13) 设总体服从均匀分布U[-a,a],a为未知参数,若 1,-1,2,3,-2,1 是来自该总体的容量为 6 的样本,a的矩估计值为_____。
- 二、(10') 设有甲乙丙三个箱子,甲中有红球 4 只,白球 2 只; 乙箱中有红球 2 只,白球 1 只; 丙中有红球 6 只,白球 3 两只。首先随机地从标号 1 至 10 的十个球中任取一球,若取出球的号码小于 4,选甲箱; 若取出球的号码大于 8,选 乙箱,否则取丙箱,然后从选取的箱中任选两球。(1) 求取出的两球为红球的概率; (2) 如果已知取出的两球为红球,则这两球取自甲箱的概率是多少?

三、(15') 设随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} axy & 0 < x < y < 1 \\ 0 & \text{#} \dot{\mathbf{z}} \end{cases},$$

求(1) 常数 a; (2)Y 的边缘密度函数; (3) 求条件概率 P(X<0.2|Y>0.5)。

姓名

四、(10') 假设某产品的误差服从均匀分布 U[-0.5,0.5],若误差的绝对值小于 0.4 是为合格品,现从中随机抽取 100 件测量其误差。试用中心极限定理近似计算 100 件产品中合格品的个数不少于 84 件的概率。

五、(10')设总体 X 的分布律如下,

$$P(X = 2) = p, P(X = 3) = 1 - p$$

设 $X_1,...X_n$ 为来自该总体的样本, (1)求参数 p 的最大似然估计量 \hat{p} , (2) \hat{p} 是否是 p 的无偏估计量, 说明理由。.

六、(9')设总体 X 服从正态分布 N (u,1),u 未知。现有来自该总体样本容量为 25 的样本, 其样本均值为 3. (1)试检验 H_0 : u=3.5.0 v.s. H_1 : u<3.5(检验水平 $\alpha=0.05$), (2)求 u 的置信度为 95%的置信区间。

七(10')设随机变量 X 和 Y 的联合概率密度为

$$f(x,y) = \begin{cases} 3x & 0 < y < x < 1 \\ 0 & \text{ 其他} \end{cases}$$

试求: Z=X-Y的概率密度。