Nelinearni upori in senzorji

Senzor je elektronski element, katerega izhodna električna količina (izhodni signal) je odvisna od neke fizikalne količine (temperature, osvetljenisti ...). V našem primeru bomo sestavili senzor temperature. V delilnik napetosti bomo vezali termistor in upor s konstantno upornostjo, kot prikazuje sl. 1.

Slika 1: Temperaturni senzor.

NALOGA: SENZOR TEMPERATURE - vezje vezje.

Sestavite obe vezji iz sl. 1 in preverite kako se izhodna napetost spreminja glede na temperaturo. Ugotovitev zapišite za oba primera.

Premislimo, kako lahko razumemo delovanje senzorja na sl. 1:

- 1. Če se temperatura poveča, se bo upornost termistorja R_{NTC} zmanjšala.
- 2. Ker se skupna upornost $R' = R_{NTC} + R_1$ zmanjša, bo tok, ki teče po tem vezju večji $I' = \frac{V_{CC}}{R'}$.
- 3. Ker je sedaj tok skozi vezje večji in le-ta teče tudi skozi upor R_1 bo na njem napetost večja $U_{R_1}=R_1I'.$
- 4. Napetost na uporu R_1 je enaka napetostnemu potencialu na izhodnemu priključku senzorja.
- 5. Zaključimo lahko, da se napetostni potencial na izhodnem priključku poveča, če se je tudi temperatura povečala.

NALOGA: SENZOR TEMPERATURE - delovanje

Sledite točkam razmišljanja od 1 - 5 in zapišite konkretne vrednosti električnih količin iz vašega vezja.

fiz. količina	pri nižji temp.	pri višji temperaturi
temperatura		
R_{NTC}		
I'		
U_{R_1}		
U_{IZHOD}		

Izbira referenčnega upora

Odzivnost senzorja (t.j. sprememba izhodnega napetostnega potenciala ob dani spremembi temperature) je zelo odvisna od prave izbire upora R_1 iz sl. 1 - desno. Temu uporu rečemo tudi **referenčni upor**.

NALOGA: DOLOČITEV REFERENČNEGA UPORA

Za različne referenčne upore preverite odziv senzorja. Pri izpeljavi meritev bodite pozorni, da boste temperaturo spremenili vedno v istem območju, npr. vedno iz temperature 10°C na 40°C. Referenčni upori naj bodo v dekadnem razmerju.

$R_{Ref}[\Omega]$	$T_1[^{\circ}C]$	$T_2[^{\circ}C]$	$U_{IZH}(T_1)[V]$	$U_{IZH}(T_2)[V]$	$\Delta U[V]$
100					
1k					
10k					
100k					
1M					

Iz prejšnje naloge ste verjetno opazili, da je odziv senzorja zelo odvisen od izbire referenčnega upora. Zato poskusimo nastaviti enačbo za izračun le-tega. Če bi iz meritev iz prejšnje naloge narisali graf $\Delta U(R_{Ref})$ bi lahko ugotovili, da ima ta funkcija en maksimum pri $R_{Ref-MAX}$. Za izračun tega upora (določitev maksimuma funkcije) moramo poiskati ničlo odvoda funkcije $\Delta U(R_{Ref})$.

NALOGA: IZRAČUN REFERENČNEGA UPORA

- 1. Nastavite enačbo za izračun izhodne napetosti U_{IZH} pri temperaturi T_1 . a
- 2. Nastavite enačbo za izračun izhodne napetosti U_{IZH} pri temperaturi T_2 .
- 3. Nastavite enačbo za ΔU .
- 4. Enačbo ΔU odvajajte po R_{Ref} in jo rešite za $rac{\partial U_{IZH}}{\partial R_{Ref}}=0$

 $[^]a$ Upornost termistorja pri temperaturi T_1 je različna od uporanosti pti T_2 , zato jih morate ločiti in označiti drugače, npr.: R_{NTC-T1} in R_{NTC-T2} .