Piezoelektričnost

Urh Trinko

1. januar 2021

1 UVOD

Piezoelektričnim kristalom se ob mehanski obremenitvi spremeni električna ploarizacija, velja pa tudi obratno, saj zunanje električno polje povzroči deformacijo kristala. Piezoelektrični kristali se uporabljajo v napravah za meritev spremembe tlaka/sil, mikrofone, generatorje ultrazvoka ter pri delovanju tunelskega mikroskopa.

Pri vaji bomo opazovali piezoelektrični odziv ploščice iz piezokeramike, ko nanjo delujemo z neko silo. Ko na ploščico pritisnemo s silo F je ustvarjena (tlačna) napetost T enaka $\frac{F}{S}$, zato nastane polarizacija $P_3 = d \cdot T$. Ob tem se med gostoto elektrinega polja D in polarizacijo P_3 vspostavi zveza:

$$D = \epsilon \epsilon_0 E + P_3$$

 $(\epsilon$ - dielektrična konstanta piezoelektrika)

Za naboj na posamezni plošči keramike iz zgornje enačbe ter q=DS sledi:

$$q = \frac{\epsilon \epsilon_0 S}{b} U + d \cdot F$$

Rdeči člen predstavlja le drug način za zapis naboja na ploščatem kondenzatorju:

$$C = \frac{\epsilon \epsilon_0 S}{b} \tag{1}$$

(S - ploščna kondenzatorja, b - debelina, C - kapaciteta) Iz tega sledi, da lahko enačbo za naboj q preoblikujemo v:

$$q = CU + d \cdot F \tag{2}$$

Za časovno spreminjanje napetosti pa velja:

$$U_s(t) = sU_0 e^{-t/\tau} (3)$$

(s=+ pri obremenitvi, s=- pri razbremenitvi, časovna konstanta τ je enaka RC, kjer je R upor, C pa kapaciteta kondenzatorja)

2 POTREBŠČINE

- merilna valjasta posoda s piezoelektrično keramiko
- elektrometrski ojačevalnik z baterijskim napajalnikom
- digitalni osciloskop
- USB kjuč

3 NALOGA

- 1. Izmeri dielektrično konstanto piezoelektrične keramike.
- 2. Izraunaj piezoelektrični koeficient keramike.

4 MERITVE

- mase uteži: $(1005, 502, 195 \pm 1)$ g
- upor $R = 5 G\Omega$
- dimenzije piezokeramike: $2r = (38 \pm 1) \text{ mm}, b = (6.5 \pm 0.1) \text{ mm}$

5 IZRAČUNI

5.1 Časovna konstanat τ in dielektričnost piezokeramike

Podatke o spreminjanju napetosti s časom pri obremenitvi in razbremenitvi sem najprej nanesel na graf kot prikazujeta sliki 1 in 2.

Slika 1: Spreminjanje napetsoti v odvisnosti od časa pri obremenitvi z različnimi utežmi

Slika 2: Spreminjanje napetsoti v odvisnosti od časa pri razbremnitvi z različnimi utežmi

Kot je razvidno iz slik je sunek napetosti pri obremenitvi v pozitvini smeri, pri razbremenitvi pa v negativni. V obeh primerih pa nato napetost eksponentno pada proti nič.

Da bi dobil podatek o časovni konstanti τ , ki je enaka pri vseh obremenitvah/razbremenitvah, saj zanjo velja $\tau = RC$, sem s pomočjo knjižnice scipy s funkcjio curvefit prilagodil podatkom enačbo $U_s(t) = U_b + sU_0e^{-t/\tau}$ (kjer je U_b napetost ozadja). V curvefit pa sem nesel le izmerjene podatke po sunku napetosti, tako da sem res lahko "fital" eksponentno funkcijo. Iz povprečja zbranih podatkov sem lahko izračunal τ , ki je znašal 7.5 (1 ± 0.03) s. Za primerjavo sem na primeru podatkov za razbremenitev pri uteži z maso $1005g\ \tau$ izračunal

Za primerjavo sem na primeru podatkov za razbremenitev pri uteži z maso 1005g τ izračunal še na drug način. In sicer tako, da sem na krivuljo pri času $t_1 = 5$ s narisal tangento ter odčital, kje ta tangenta seka abscizo. To je bilo pri času $t_2 = (12 \pm 1)$ s, τ pa je enak razliki t_1 in t_2 , in je v tem primeru zanašal (7 ± 1) s, kar se ujema s prvim pridobljenim razultatom. Postopek pridobotve tega rezultata je prikazan na sliki 3.

S pomočjo relacije $\tau=RC$, ter znanega upora preko katerega se je nastali kondenzator praznil sem lahko izračunal kapaciteto C, ki je znašala $1.5 (1 \pm 0.03)$ nF. Končno sem lahko

Slika 3: Postopek pridobivanja časovne konstante s tangento na graf.

uporabil enačbo (1) ter podatke o dimenziji piezo keramike, da sem izračunal dielektričnost piezoelektrične snovi:

$$C = \frac{\pi r^2 \epsilon \epsilon_0}{b}$$

$$\downarrow \qquad \qquad \qquad \epsilon = \frac{bC}{\pi r^2 \epsilon_0}$$

Dielektrična konstanta piezoelektrika je znašala $240(1 \pm 0.1)$.

5.2 Skok napetosti v odvisnosti od obremenitve F in piezoelektrični koeficient

Slika 4: Začetni skok napetosti v odvisnsoti od obremenitve.

Iz slike 3 je razvidno, da sta med skokom napetosti ter obremenitvijo vlada linearna odvisnost. Na grafu sem razbremenitve označil z negativnim predznakom. Naklon grafa je znašal $(0.14 \pm 0.06) \frac{V}{N}$ (napaka določen s "fitanjem" na podatke).

S pomočjo grafa na sliki 3 sem nato lahko določil piezoelekrični faktor d. Sprva sem preoblikoval enačbo (2):

$$U = -\frac{d}{C}F + \frac{q}{C}$$

V tej obliki sem prepoznal odvisnost U(F), v rdečem faktorju pa naklon grafa na sliki 3. Faktor d sem tako lahko določil iz znane vrednosti naklona ter kapacitete s povezavo $d = -C \cdot k$. Znašal je $(2,1 \cdot 10^{-10}) \frac{As}{N}$.

6 ZAKLJUČEK IN KOMENTAR

V prvem delu naloge sem izračunal časovno konstanot τ na dva načina, in sicer s "fitanjem" podatkov na eksponentno funkcijo ter risanjem tangente na izbrano točko na krivulji. V obeh primerih sem dobil podoben rezultat, vendar je bil tisti s prvo metodo bolj natančen. Podatek o časovni konstanti mi je omogočil, da sem izračunal kapaciteto, kondenzatorja, ki je nastal, ko smo obremenili piezokeramiko, in končno še dielektrično konstanot danega materiala.

V druegm delu pa sem opazoval odvisnost skoka napetosti od obremenitvene oz. razbremenitvene sile. S pomočjo naklona grafa, ki sem ga pridobil s podatki pa sem lahko izračunal še piezoelektrični koeficient.