ESTRUCTURAS ALGEBRAICAS

(22-12-2015) - 10:30

Grado en Matemáticas Curso 2015-2016

SOLUCIONES

- 1. Estudia si las siguientes afirmaciones son verdaderas o falsas. Justifica tu repuesta. (Recuerda que si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo):
- a) (2 puntos) Sea G un grupo de orden 25. Entonces G es isomorfo a \mathbb{Z}_{25} o a $\mathbb{Z}_5 \times \mathbb{Z}_5$.

Solución: VERDADERO. Sabemos que si G es un grupo finito de orden p^2 , para p primo, entonces G es abeliano. Ahora utilizando el Teorema de clasificación de grupos abelianos finitos sabemos que sólo (salvo isomorfismo) hay dos posibles grupos abelianos de orden p^2 . Por lo tanto, $G \simeq \mathbb{Z}_{p^2}$ o $G \simeq \mathbb{Z}_p \times \mathbb{Z}_p$. En el enunciado se tiene p = 5.

b) (2 puntos) $\mathbb{Q}[x]/\langle x^2 - 4 \rangle \simeq \mathbb{Q}$.

Solución: FALSO. \mathbb{Q} es un cuerpo, mientras que $\mathbb{Q}[x]/\langle x^2-4\rangle$ no es ni siquiera domino. Esto es debido a que x^2-4 es reducible y por lo tanto la clase de x-2 es un divisor de cero en el anillo cociente $\mathbb{Q}[x]/\langle x^2-4\rangle$.

- **2.** Sea $A = \mathbb{Q}[x]/\langle x^7 3x^6 + 9x^3 + 21x + 3 \rangle$. Determinar:
- a) (1 punto) Si A es un dominio.

Solución: Sea $f(x) = x^7 - 3x^6 + 9x^3 + 21x + 3$. Por el criterio de Eisenstein con el primo p = 3 se tiene que f(x) es irreducible en $\mathbb{Q}[x]$. Por lo tanto el ideal que genera, $I = \langle f(x) \rangle$, es maximal. Esto es debido a que si existiera un ideal $J \subset \mathbb{Q}[x]$ tal que $I \subset J$, entonces como $\mathbb{Q}[x]$ es un DIP existiría un polinomio $g(x) \in \mathbb{Q}[x]$ tal que $f(x) \in J = \langle g(x) \rangle$. Por lo tanto g(x) dividiría a f(x). Pero esto no es posible salvo que $g(x) \in \mathcal{U}(\mathbb{Q}[x]) = \mathbb{Q}^*$ y entonces $J = \mathbb{Q}[x]$; o bien, g(x) es asociado con f(x) y entonces J = I. Así, aplicando un resultado que nos dice que un ideal es maximal si y sólo si el anillo cociente es un cuerpo, tenemos demostrado que A es un cuerpo, en particular un dominio.

b) (1 punto) Si A es un cuerpo.

Solución: Ver solución del apartado anterior.

c) (1 punto) El número de elementos de A.

Solución: Aplicando el Algoritmo de Euclides de la división: tomando un polinomio cualquiera h(x) y lo dividimos por f(x) obtenemos un resto que es de grado menor que 7. Por lo tanto, los representantes de las clases de equivalencia son los polinomios de grado menor a 7. Ahora, hay infinitos polinomios de grado menor a 7 con coeficientes en \mathbb{Q} . Por lo tanto $|A| = \infty$.

3. Clasificación de los grupos de orden 99.

a) (1.5 puntos) Demuestra que todo grupo de orden 99 es abeliano.

Solución: El Tercer Teorema de Sylow nos da información sobre el número de p-subgrupos de Sylow de un grupo finito. Concretamente, lo que dice es que si G es un grupo de orden $|G| = p^n \cdot m$ con p primo y (m,p) = 1, entonces el número de p-subgrupos de Sylow de G, s_p , satisface:

$$s_p \mid m$$
 y $s_p \equiv 1 \pmod{p}$.

En nuestro caso tenemos $99 = 3^2 \cdot 11$. Por lo tanto,

$$p = 3 \implies \begin{cases} s_3 | 11 \Longrightarrow s_3 = 1, 11 \\ s_3 \equiv 1 \pmod{3} \end{cases} \implies s_3 = 1,$$

$$p = 11 \implies \begin{cases} s_{11} | 9 \Longrightarrow s_{11} = 1, 3, 9 \\ s_{11} \equiv 1 \pmod{11} \end{cases} \implies s_{11} = 1.$$

Es decir, $\operatorname{Syl}_3(G) = \{P_3\}$ y $\operatorname{Syl}_{11}(G) = \{P_{11}\}$ con $|P_3| = 9$ y $|P_{11}| = 11$. Entonces (resultado visto en clase) G es isomorfo al producto directo de P_3 y P_{11} . Como $|P_3| = 3^2$ tenemos que P_3 es abeliano (ver Ejercicio 1 (a)) y como $|P_{11}| = 11$ se tiene que P_{11} es cíclico, en particular abeliano. Concluyendo que $P_3 \times P_{11}$ es abeliano.

b) (1.5 puntos) Determina todo los grupos de orden 99 salvo isomorfismo.

Solución: Sabemos por el apartado anterior que un grupo G de orden 99 es abeliano. Por lo tanto para clasificar los grupos de orden 99 solo tenemos que aplicar el Teorema de clasificación de grupos abelianos finitos. Como $99 = 3^2 \cdot 11$ se tiene:

$$\mathbb{Z}_{99} \simeq \mathbb{Z}_9 \times \mathbb{Z}_{11}$$
 o $\mathbb{Z}_3 \times \mathbb{Z}_{33} \simeq \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_{11}$.