Replication of Green & Vasudevan

Zenobia Chan, Alicia Cooperman, & Lauren Young

Columbia University

October 2015

Overview

- Theory
- lacksquare Design
- Replication of main results
- Robustness to other coding of vote buying
- Heterogeneous effects

Theory

- Two-party system: (1) Vote-buying vs. (2) Non-vote-buying
- Representative agent model:

$$U(v, l, x) = \alpha \ln(v) + \beta \ln(l) + \gamma \ln(x)$$
reciprocity leisure public good

■ Public good:

$$x(s,t) = t^h s^{h_1} (1-s)^{h_2}$$
 where h is honesty vote-shares

- The message affects voter behavior by:
 - Decreasing voter reciprocity towards the vote-buying party
 - 2 Changing voter expectations of honesty of the two parties

Design

- 2014 Indian General Election
- Radio campaigns immediately before polling
 - 60-sec dramatized vignette
 - With information on (1) the nature of vote-buying and (2) its hidden social costs
 - Translated into Hindi and four regional languages

Design

Randomization occurs at radio station-level

Replication process

■ Both Stata and Matlab codes were used originally

Suggestions for replication package

- Code written in Matlab + Stata
 - Randomization Stata
 - Data Building Stata
 - Regressions Matlab
 - Standard Errors Matlab
 - Randomization Inference Simulations Stata
 - p-values Matlab
- Possible to do everything in R
- Include a roadmap (master R file, markdown, etc)

Main results from the paper

Table 6: Average Treatment Effect (ATE) of receiving radio ads on vote-share of votebuying parties and on the voter turnout rate

	Vote-share of vote-buying parties (%)						Turnout rate (%)		
	Specific	Specification 15		Specification 1 ⁵ Specification 2 Specifi		Specific	cation 3	Turnout	Tate (70)
	IPW	FE	IPW	FE	IPW	FE	IPW	FE	
ATE ¹	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41	-0.49	-0.61	
SE ²	3.97	4.08	3.92	4.18	1.92	2.04	0.96	0.99	
p-value ³	0.08	0.08	0.00	0.00	0.02	0.03	0.64	0.57	
R-squared	0.44	0.43	0.38	0.28	0.51	0.33	0.80	0.76	
Mean ⁴ (Control)	67.	.23	90.85		91.73		68	.45	
N	62	28	6	665 665		6	65		
Control	31	15	324		324		33	24	
Treatment	31	13	341		341		1 341		

All specifications have the lagged outcome variable as covariate.

¹IPW are inverse probability weighted and FE are fixed effects regression estimates respectively.

²Standard errors are robust to heteroskedasticity and known cross-sectional dependence of the error term.

³p-values obtained from randomization inference with 10,000 iterations.
⁴Control Means are inverse probability weighted.

⁵Responses identifying vote-buying parties for 37 ACs are missing.

Main results from the paper

	Spe	ec 1	Spec 2		Spec 3	
	IPW	FE	IPW	FE	IPW 1	$_{ m FE}$
ATE^1	-5.86	-6.04	-7.68	-7.73	-3.68	-3.41
SE^2	3.97	4.08	3.92	4.18	1.92	2.04
p-value $(Barrios)^3$	0.07	0.07	0.03	0.03	0.03	0.05
p-value (RI) ⁴	0.08	0.08	0.00	0.00	0.02	0.03
\mathbb{R}^2	0.44	0.43	0.38	0.28	0.51	0.33
Mean (Control)	67.	.24	90.82		91.68	
N	62	28	665		665	
control	315		324		324	
treat	3.	13	341		341	

ATEs are estimated using OLS weighted by the inverse propensity of receiving treatment (IPW) or with dummies for the probability of receiving treatment as fixed effects (FE). All specifications include the pre-treatment measure of the outcome as a covariate.

 $^{^2}$ Standard errors that are robust to heterosked asticity and known cross-sectional dependence of the error term calculated using the Barrios et al (2012) method.

 $^{^3}$ p-values obtained from the Barrios et al (2012) estimates of uncertainty.

 $^{^4}$ p-values obtained from randomization inference with 10,000 simulations.

Imagine a scenario of 3 clusters with 2 units each.

Table: Constant error variance

Table : Not-constant error
$$\Sigma$$

1	Table: Not-constant error Z							
		e_{12}	e_{21}	e_{22}	e_{31}	e_{32}		
e_{11}	σ_{11}^2	0	0	0	0	0		
e_{12}	0	σ_{12}^2	0	0	0	0		
e_{21}	0	0	σ_{21}^2	0	0	0		
e_{22}	0	0	0	σ_{22}^2	0	0		
e_{31}	0	0	0	0	σ_{31}^2	0		
e_{32}	0	0	0	0	0	σ_{32}^2		

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\Sigma X)(X'X)^{-1}$$

Huber-White "Robust" SEs estimate $\hat{\Sigma}$ where σ_i^2 is \hat{u}_i^2 But, still assumes no clustered or spatial correlation

Imagine a scenario of 3 clusters with 2 units each.

Cluster-robust "block diagonal"

Table : Cluster robust								
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}		
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	0	0	0	0		
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	0	0	0	0		
e_{21}	0	0	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0		
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0		
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$		
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2		

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

Table: Barrios Dependency Matrix

	i i		F		,	
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}
e_{11}	1	1	1	0	0	0
e_{12}	1	1	1	0	0	0
e_{21}	1	1	1	1	0	0
e_{22}	0	0	1	1	0	0
e_{31}	0	0	0	0	1	1
e_{32}	0	0	0	0	1	1

Multiply this matrix element-by-element with $\hat{u}\hat{u}'$

Imagine a scenario of 3 clusters with 2 units each, but Station 1 covers 11, 12, 21; Station 2 covers cluster 2; Station 3 covers cluster 3.

Table : Barrios $\hat{\Sigma}$								
	e_{11}	e_{12}	e_{21}	e_{22}	e_{31}	e_{32}		
e_{11}	σ_{11}^2	$\sigma_{11}\sigma_{12}$	$\sigma_{11}\sigma_{21}$	0	0	0		
e_{12}	$\sigma_{12}\sigma_{11}$	σ_{12}^2	$\sigma_{12}\sigma_{21}$	0	0	0		
e_{21}	$\sigma_{21}\sigma_{11}$	$\sigma_{21}\sigma_{12}$	σ_{21}^2	$\sigma_{21}\sigma_{22}$	0	0		
e_{22}	0	0	$\sigma_{22}\sigma_{21}$	σ_{22}^2	0	0		
e_{31}	0	0	0	0	σ_{31}^2	$\sigma_{31}\sigma_{32}$		
e_{32}	0	0	0	0	$\sigma_{32}\sigma_{31}$	σ_{32}^2		

$$Var(\hat{\beta}) = (X'X)^{-1}(X'\hat{\Sigma}X)(X'X)^{-1}$$

- Very innovative measure of illicit electoral technique
 - Cost-effective
 - Draws on local expertise
 - Covers comprehensive area
- What is the data generating process?
 - Journalistic ethics to tell the truth
 - Ideological biases
 - Pay more attention to major parties
- How to think about uncertainty with journalist data?
 - Under-identification (uninformedness, bias towards parties)
 - Over-identification (bias against parties)
 - Random noise

Robustness to the definition of vote buying party

Robustness to the definition of vote buying party

Heterogeneous effects: Urban

Dummy: More than 90% Rural

	Coef.	SE	p
Treat	-4.68	3.6	0.1
$\mathrm{Rural} > \!\! 90~\mathrm{pc}$	1.69	2.55	0.25
Treat:Rural90	-3.16	3.83	0.2
R squared	0.44		

Continuous Rural								
	Coef.	SE	p					
Treat	1.79	6.79	0.4					
Rural pc	-0.01	0.05	0.45					
Treat:Rural pc	-0.1	0.06	0.06					
R squared	0.44							

Histogram of Percent Rural in AC

Heterogeneous effects: Minority voters

Dummy:	>50%	SC_{i}	/ST
--------	------	----------	-----

	Coef.	SE	p
Treat	-6	4.4	0.09
SC/ST > 50 pc	-4.88	3.66	0.09
Treat:SC/ST50	1.87	5.06	0.36
R squared	0.44		

Continuous SC/ST

	Coef.	SE	р
Treat	-6.03	6.36	0.17
ST/SC pc	-0.06	0.09	0.26
Treat:SC/ST pc	0.01	0.11	0.48
R squared	0.44		

Histogram of Percent SC/ST in AC

Heterogeneous effects: Date of election

Table : Elec Date by State									
	Andhra	Bihar	Bihar Chattisgarh		Jharkhand	Karnataka			
	Pradesh								
2014-04-10	0	6		0	2	0			
2014-04-17	0	8		0	30	75			
2014-04-24	0	0		42	0	0			
2014-04-30	63	0		0	0	0			
2014-05-07	50	0		0	0	0			
2014-05-12	0	0		0	0	0			
	Madhya	Mahara	shtra	Orissa	Rajasthan	Uttar			
	Pradesh					Pradesh			
2014-04-10	17		19	30	0	0			
2014-04-17	10		45	19	64	24			
2014-04-24	18		34	0	32	4			
2014-04-30	0		0	0	0	5			
2014-05-07	0		0	0	0	30			
2014-05-12	0		0	0	0	1			

Heterogeneous effects: Date of election

	Dependent variable:	=		
	Vote Share VB 2014	Table : Treatment by Date		
Treat	-17.979^{***} (3.543)		С	Т
Poll 2014-04-17	-3.271 (2.818)	2014-04-10	37	37
Poll 2014-04-24	0.678 (3.120)	2014-04-17	131	144
Poll 2014-04-30	-15.522****(3.316)	2014-04-24	65	65
Poll 2014-05-07	32.088*** (3.730)			
Vote Share VB 2009	0.634*** (0.025)	2014-04-30	49	19
Num Radio 1	4.927 (15.262)	2014-05-07	33	47
Num Radio 2	5.406 (15.391)	2014-05-12	0	1
Treat:Poll 2014-04-17	17.296*** (4.003)			
Treat:Poll 2014-04-24	12.344*** (4.445)			
Treat:Poll 2014-04-30	22.415*** (5.438)			
Treat:Poll 2014-05-07	-13.280^{***} (4.940)			
Constant	26.732*(15.507)	_		
Observations	627			
\mathbb{R}^2	0.590	_		
Note:	*p<0.1; **p<0.05; ***p<0.01	-		

Omitted Date 2014-04-10, Excludes 2014-05-12

^{**} SEs and p-values not adjusted for station-level treatment **

Heterogeneous effects: Competitiveness of election

Table

Note:

_	Dependent variable:	
	VB Share 2014	
Treat	-4.213(3.111)	
Margin 5-10	2.896 (3.058)	
Margin 10-20	-1.788(3.042)	
Margin 20-30	-0.441(3.811)	ž
Margin 30+	1.873 (5.742)	
VB share 2009	0.557*** (0.031)	ē
1 Station	6.856 (18.436)	ů
2 Stations	9.066 (18.595)	
Treat:Margin 5-10	-1.423(4.333)	
Treat:Margin 10-20	1.862 (4.436)	
Treat:Margin 20-30	-5.958 (5.393)	
Treat:Margin 30+	-5.392(7.175)	
Constant	27.781 (18.620)	
Observations	531	
\mathbb{R}^2	0.407	

*p<0.1; **p<0.05; ***p<0.01

Histogram of Margin of Victory in 2009

Heterogeneous effects: State

Table: Treatment Status of ACs by State		
	Control AC	Treated AC
Andhra Pradesh	82	31
Bihar	0	14
Chattisgarh	15	27
Jharkhand	15	17
Karnataka	50	25
Madhya Pradesh	27	18
Maharashtra	60	38
Orissa	23	26
Rajasthan	42	54
Uttar Pradesh	1	63

Heterogeneous effects: State

	Dependent variable:
	2014 Vote Share
	Vote Buying Parties
State Bihar	-26.287**** (5.571)
State Chattisgarh	-5.774(4.893)
State Jharkhand	-3.946 (4.916)
State Karnataka	-8.440^{***} (3.115)
State Madhya Pradesh	-2.123(3.875)
State Maharashtra	-4.945*(2.909)
State Orissa	-4.407(4.084)
State Rajasthan	1.235 (3.420)
State Uttar Pradesh	-61.526*** (17.276)
Vote Share 2009	0.588*** (0.030)
Num Radio 1	2.224 (17.458)
Num Radio 2	1.392 (17.560)
Constant	35.029** (17.569)

Treat	4.353 (3.702)
Treat:Bihar	
Treat:Chattisgarh	-9.903 (6.618)
Treat:Jharkhand	0.761 (7.062)
Treat:Karnataka	-3.484 (5.559)
Treat:Madhya Pradesh	-11.592*(6.357)
Treat:Maharashtra	-8.632*(5.113)
Treat:Orissa	-8.085 (6.116)
Treat:Rajasthan	-14.242^{***} (5.046)
Treat:Uttar Pradesh	43.523** (17.650)
Constant	35.029** (17.569)
Observations	628
\mathbb{R}^2	0.485
Adjusted R ²	0.467
Residual Std. Error	17.111 (df = 606)
F Statistic	$27.158^{***} (df = 21; 606)$
Note:	*p<0.1; **p<0.05; ***p<0.01

Interpretation of the results

Common to switch parties and punish incumbents in India. Among 289 comp. ACs in 2009, 179 switched parties in 2014.

Interpretation of the results

Are people fleeing major parties and voting for minor parties? Does this change the results of elections?

Next step:

- Among ACs competitive in 2009, would the treatment have changed election outcome?
- Check if winner, runner-up parties in 2014 were vote-buyers
- Is the winner non-VB party while runner-up is VB party?
- Check margin of victory in 2014 smaller than ATE?