Audio data augmentation

Лукьянов Павел Александрович МГУ им. М. В. Ломоносова

27 октября 2020 г.

Image augmentation

Augmentation - method used to increase the amount of data by adding modified copies of already existing data or created synthetic data from existing data.

Рис. 1: Example of image augmentation

Lukianov Pavel (MSU) Audio data augmentation 27 октября 2020 г. 1 / 14

Audio in DL

Speed augmentation

point - $\mathcal{U}(0,T)$, window_length - $\mathcal{U}(0,a)$, speed - $\mathcal{U}(p_1,p_2)$

Рис. 2: Example of speed augmentation

SpecAugment

Introduction

Erasing a rectangle region of arbitrary size

Random erasing

Рис. 3: Example of random erasing

Noise augmentation

Рис. 4: Example of noise augmentation

Introduction

- Loudness control value = minimum + $(1 \lambda) \cdot (\text{value minimum})$
- Shift augmentation shift $\mathcal{U}(0, \alpha)$ direction -Bernoulli(0, 0.5)

	ConvClassifier (CC)	SubSpectral Network (SSN)	SubSpectral Classifier (SSC)	Residual Conv- Classifier (RCC)	Max.
Raw	64.71 ± 0.30	63.54 ± 0.26	65.82 ± 0.39	64.53 ± 0.53	65.82
Speed	64.71 ± 0.40	63.54 ± 0.91	66.40 ± 0.34	64.07 ± 0.77	66.40
Noise	63.62 ± 0.22	61.35 ± 0.67	64.48 ± 0.46	63.38 ± 0.41	64.48
Loudness	64.31 ± 0.43	62.87 ± 0.64	65.65 ± 0.50	64.14 ± 0.37	65.65
Shift	65.40 ± 0.55	66.31 ± 0.70	68.20 ± 0.44	64.38 ± 0.78	68.20
Masking	64.27 ± 0.34	62.27 ± 0.33	65.10 ± 0.32	64.30 ± 0.45	65.10
Combined	65.03 ± 0.41	63.49 ± 0.79	66.35 ± 0.34	64.12 ± 0.42	66.35
Max.	65.40	66.31	68.20	64.38	
Model Parameters	633,219	1,801,621	1,533,321	1,095,171	

Puc. 5: Model performance under the influence of a variety of data augmentation strategies

Lukianov Pavel (MSU) Audio data augmentation 27 οκτября 2020 г. 7 / 14

SpecAugment

Introduction

- 3 kinds of deformations:
 - 1 Time warping
 - Frequency masking
 - 3 Time masking

Model	Clean (No LM)	Other (No LM)	Clean (LM)	Other (LM)
LAS	4.1	12.5	3.2	9.8
LAS + SpecAugment	2.8	6.8	2.5	5.8

Рис. 6: LibriSpeech 960h WERs (%)

Introduction

Рис. 7: Original, Time warping, Frequency masking, Time masking

Lukianov Pavel (MSU) Audio data augmentation 27 октября 2020 г.

Introduction

Time warping contributes, but is not a major factor in improving performance

Augmentations	test
All 3 augmentations	3.7
Without Time warping	3.8
Without Frequency masking	4.0
Without Time masking	4.1

Рис. 8: WER without LM (%)

Discussions

Introduction

Augmentation converts an over-fitting problem into an under-fitting problem

Рис. 9: LAS-6-1280 on LibriSpeech

Multi-Window Data Augmentation

Lukianov Pavel (MSU) Audio data augmentation 27 октября 2020 г. 12 / 14

Introduction

- SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, Quoc V. Le https://arxiv.org/pdf/1904.08779.pdf
- Multi-Window Data Augmentation Approach for Speech Emotion Recognition Sarala Padi, Dinesh Manocha, Ram D.Sriram https://arxiv.org/pdf/2010.09895.pdf
- Mel-spectrogram augmentation for sequence-to-sequence voice conversion Yeongtae Hwang, Hyemin Cho, Hongsun Yang, Dong-Ok Won, Insoo Oh, and Seong-Whan Lee https://arxiv.org/pdf/2001.01401.pdf

Lukianov Pavel (MSU) Audio data augmentation 27 октября 2020 г.

- Surgical Mask Detection with Convolutional Neural Networks and Data Augmentations on Spectrograms
 Steffen Illium, Robert Muller, Andreas Sedlmeier and Claudia Linnhoff-Popien https://arxiv.org/pdf/2008.04590.pdf
- Mask Detection and Breath Monitoring from Speech: on Data Augmentation, Feature Representation and Modeling Haiwei Wu, Lin Zhang, Lin Yang, Xuyang Wang, Junjie Wang, Dong Zhang, Ming Li https://arxiv.org/pdf/2008.05175.pdf

Lukianov Pavel (MSU) Audio data augmentation 27 октября 2020 г. 14 / 14