

Circuitos Combinacionais

Prof. Me. João Ricardo

joao.ricardo1@unemat.br

Arquitetura de

Computadores

AULA PASSADA: EXPRESSÕES E FUNÇÕES LÓGICAS

Tabela verdade da conjunção (e)

X	Y	$X \cdot Y$
0	0	0
0	1	0
1	0	0
1	1	1

Tabela verdade da disjunção (ou)

X	Y	X + Y
0	0	0
0	1	1
1	0	1
1	1	1

Tabela verdade da negação (não)

X	X
0	1
1	0

Conjunção (e): resultado verdadeiro apenas se X e Y forem verdadeiros.

Disjunção (ou): resultado verdadeiro apenas se Y ou Y forem verdadeiros.

Negação (não): resultado só será verdadeiro se X não for verdadeiro.

PORTAS LÓGICAS

Trata-se de circuitos que efetuam operações básicas da álgebra booleana

$$X + Y$$

$$Y$$
Porta **or**

$$X \rightarrow X \oplus Y$$
Porta **xor**

PORTAS LÓGICAS COM SAÍDAS INVERTIDAS

Também existem as seguintes portas com saída invertida (negada)

Quaisquer portas lógicas podem ser construídas usando-se apenas as portas básicas not, and com duas entradas e or com duas entradas.

Ex: and com 5 entradas

Quaisquer portas lógicas podem ser construídas usando-se apenas as portas básicas not, and com duas entradas e or com duas entradas.

Ex: and com 5 entradas

Δ.	D		D	-	ARCDE
A	В	С		E	A.B.C.D.E
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
0	0	0	1	1	0
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	0
0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	0	1	0
0	1	1	1	0	0
0	1	1	1	1	0
1	0	0	0	0	0
1	0	0	0	1	0
1	0	0	1	0	0
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	0	1	0
1	1	0	1	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	0	1	0
1	1	1	1	0	0
1	1	1	1	1	1

Quaisquer portas lógicas podem ser construídas usando-se apenas as portas básicas not, and com duas entradas e or com duas entradas.

Ex: xor com 2 entradas

 $\overline{X}.Y + X.\overline{Y}$

X	Υ	_ X	_ Y		X. \ Y	 XY + XY
0	0	1	1	0	0	0
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	1	0	0	0	0	0

Geralmente, usamos portas lógicas encontradas em circuitos integrados.

Por exemplo, 7408 (4 portas and com 2 entradas)

Geralmente, usamos portas lógicas encontradas em circuitos integrados.

Encontram-se circuitos integrados para:

inversor (7404 / CD4049) and (7408 / CD4081) or (7432 / CD4071) xor (7486) nand (7400 / CD4012) nor (7402 / CD4001) xnor (CD4077) 74xx – tradicionalmente de tecnologia TTL (74LSxx) + Robustez

CD40xx – tecnologia CMOS

- + Integração
- Consumo

Circuitos com portas lógicas com até 8 entradas também estão disponíveis

Exemplo 1 $S = (A.B) \cdot (B+C)$

Tabela Verdade $S = (A.B) \cdot (B+C)$

A	В	С	A.B	B+C	(A.B). (B+C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	0	0	0
1	0	1	0	1	0
1	1	0	1	1	1
1	1	1	1	1	1

Exemplo 2
$$S = (A.B.C) + [(\overline{C+D}) + \overline{A}]$$

Tabela Verdade S = $(A.B.C) + [(\overline{C+D}) + \overline{A}]$

Α	В	С	D	A.B.C	C+D	C+D	Α	(C + D) + A)	S
0	0	0	0	0	0	1	1	1	1
0	0	0	1	0	1	0	1	1	1
0	0	1	0	0	1	0	1	1	1
0	0	1	1	0	1	0	1	1	1
0	1	0	0	0	0	1	1	1	1
0	1	0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1	1	1
0	1	1	1	0	1	0	1	1	1
1	0	0	0	0	0	1	0	1	1
1	0	0	1	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0
1	0	1	1	0	1	0	0	0	0
1	1	0	0	0	0	1	0	1	1
1	1	0	1	0	1	0	0	0	0
1	1	1	0	1	1	0	0	0	1
1	1	1	1	1	1	0	0	0	1

Atividades

Realize as seguintes expressões logicas seguido de sua tabela verdade

a)
$$S = (A+B+C) . A+D$$

Atividade 1 $S=(A+B+C) \cdot A+D$

Tabela Verdade $S = (A+B+C) \cdot A+D$

A	В	С	D	A+B+C	A+D	S
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	1	1	1	1
0	1	0	0	1	0	0
0	1	0	1	1	1	1
0	1	1	0	1	0	0
0	1	1	1	1	1	1
1	0	0	0	1	1	1
1	0	0	1	1	1	1
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Atividade 2

Realize as seguintes expressões logicas seguido de sua tabela verdade

a)
$$S = (A+B+C) \cdot (A.D) \cdot (C.B)$$

Atividade 2 S=(A+B+C).(A.D).(C.B)

Tabela Verdade $S = S = (A+B+C) \cdot (A.D) \cdot (C.B)$

Α	В	С	D	A+B+C	A.D	B.C	S
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	0	0
0	1	1	0	1	0	1	0
0	1	1	1	1	0	1	0
1	0	0	0	1	0	0	0
1	0	0	1	1	1	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	1	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	1	0	0
1	1	1	0	1	0	1	0
1	1	1	1	1	1	1	1

Atividade 3

Realize as seguintes expressões logicas seguido de sua tabela verdade

a)
$$S = (\overline{A+B+C}) + [(\overline{C.D}).\overline{A}]$$

Exercício 3

$$S = (\overline{A+B+C}) + [\overline{(C.D).A}]$$

Tabela Verdade $S = (\overline{A+B+C}) + [\overline{(C.D)}.\overline{A}]$

Α	В	С	D	A+B+C	A+B+C	C.D	C.D	A	(C.D).A	S
0	0	0	0	0	1	0	1	1	1	1
0	0	0	1	0	1	0	1	1	1	1
0	0	1	0	1	0	0	1	1	1	1
0	0	1	1	1	0	1	0	1	0	0
0	1	0	0	1	0	0	1	1	1	1
0	1	0	1	1	0	0	1	1	1	1
0	1	1	0	1	0	0	1	1	1	1
0	1	1	1	1	0	1	0	1	0	0
1	0	0	0	1	0	0	1	0	0	0
1	0	0	1	1	0	0	1	0	0	0
1	0	1	0	1	0	0	1	0	0	0
1	0	1	1	1	0	1	0	0	0	0
1	1	0	0	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1	0	0	0
1	1	1	0	1	0	0	1	0	0	0
1	1	1	1	1	0	1	0	0	0	0

Atividade 4

Realize as seguintes expressões logicas seguido de sua tabela verdade

a)
$$S = \overline{((A.B) + (B.C)) \oplus [(A+B+C).D]}$$

Exercício 4 $s = ((A.B) + (B.C)) \oplus [(A+B+C).\overline{D}]$

TABELA

$$S = ((A.B) + (B.C)) \oplus [(A+B+C).\overline{D}]$$

Α	В	С	D	A.B	B.C	(A.B)+(B.C)	(A+B+C)	D	(A+B+C).D	$((A.B) + (B.C)) \oplus [(A+B+C).D]$	S
0	0	0	0	0	0	0	0	1	0	0	1
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	1	1	1	1	0
0	0	1	1	0	0	0	1	0	0	0	1
0	1	0	0	0	0	0	1	1	1	1	0
0	1	0	1	0	0	0	1	0	0	0	1
0	1	1	0	0	1	1	1	1	1	0	1
0	1	1	1	0	1	1	1	0	0	1	0
1	0	0	0	0	0	0	1	1	1	0	1
1	0	0	1	0	0	0	1	0	0	0	1
1	0	1	0	0	0	0	1	1	1	1	0
1	0	1	1	0	0	0	1	0	0	0	1
1	1	0	0	1	0	1	1	1	1	1	0
1	1	0	1	1	0	1	1	0	0	1	0
1	1	1	0	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	0	0	1	0

Atividade 5

Realize as seguintes expressões logicas seguido de sua tabela verdade

a) S=
$$((A+\overline{C}) \oplus (\overline{A}.C)) \cdot [(\overline{A \oplus B \oplus C})+D]$$

Exercício 4 $s = ((\overline{A} + C) \oplus (A.\overline{C})) \cdot [(\overline{A} \oplus \overline{B} \oplus C) + D]$

TABELA

$S = ((\overline{A} + C) \oplus (A \cdot \overline{C})) \cdot [(\overline{A \oplus B \oplus C} + D]$

А	В	С	D	A	A+C	C	A+C	$\overline{((A+C) \oplus (A.C))}$	A ⊕ B ⊕ C	A ⊕ B ⊕ C	[(A ⊕ B ⊕ C)+D]	$(\overline{(A+C)} \oplus (A.\overline{C)}) \cdot [\overline{(A \oplus B \oplus C)} + D]$	S
0	0	0	0	1	1	1	1	0	0	1	1	0	1
0	0	0	1	1	1	1	1	1	0	1	1	1	0
0	0	1	0	1	1	0	0	1	1	0	0	0	1
0	0	1	1	1	1	0	0	1	1	0	1	1	0
0	1	0	0	1	1	1	1	0	1	0	0	0	1
0	1	0	1	1	1	1	1	0	1	0	1	0	1
0	1	1	0	1	1	0	0	1	1	0	0	0	1
0	1	1	1	1	1	0	0	1	1	0	1	1	0
1	0	0	0	0	0	1	1	1	1	0	0	0	1
1	0	0	1	0	0	1	1	1	1	0	1	1	0
1	0	1	0	0	1	0	1	0	1	0	0	0	1
1	0	1	1	0	1	0	1	0	1	0	1	0	1
1	1	0	0	0	0	1	1	1	1	0	0	0	1
1	1	0	1	0	0	1	1	1	1	0	1	1	0
1	1	1	0	0	1	0	1	0	0	1	1	0	1
1	1	1	1	0	1	0	1	0	0	1	0	0	1