Let A/B = {wl wx? A for some x? B}. Show that if A is context free and B is regular, then A/B is context free.

Step-by-step solution

Step 1 of 1

From the problem statement assume a language A is context free and a language B is regular.

From the theorem 2.20: A language is a context free language if and only if some push down automaton recognizes it.

From the corollary 1.40: A language is regular if and only if some nondeterministic finite automaton (NFA) recognizes it.

To prove that A/B is context free then it must be recognized by some push down automaton.

The proof is as follows

Firstly construct a push down automata P_A for the context free language A

Consider the following pushdown automata P_a :

$$P_A = (Q_A, \Sigma, \Gamma, \delta_A, q_A, F_A)$$

and a NFA M for the regular language B.

Consider the following NFA M:

$$M=(Q_B, \Sigma, \delta_B, q_B, F_B)$$

Assume $P_{A/B}$ is the push down automaton that recognizes the Context free language A/B.

$$P_{A/B} = (Q^{A/B}, \Sigma, \Gamma^{A/B}, \delta_{A/B}, q_{A/B}, F_{A/B})$$

- Now $P_{A/B}$ will read the prefix \mathbf{w} of the input string.
- PA/B will guess that it has reached to the end of input string w at a non-deterministically chosen point;
- $P_{A/B}$ will behave like P_{a} and M running concurrently, except that it will guess the input string \mathbf{x} , rather than actually reading it as input.
- If it is feasible in this way to concurrently to reach an accepting state of both P_A and M then $P_{A/B}$ accepts.
- · Note that there is no reason why the stack would have to be empty at the point where $P_{A/B}$ begins the guessing phase.
- So it is essential for $P_{A/B}$ to carry on *modeling* P_A in order to properly account for the stack contents.

 $P_{A/B}$ is defined as follows:

- $Q^{A/B}=Q_A (Q_A \times Q_B)$
- Γ^{A/B} = Γ
- $q_{A/B} = q_0 P_A$ where $q_{0=q_A} = q_B$
- $F_{A/R} = F_A \times F_R$
- $\delta_{{}_{A/B}}$ is defined as follows: For $\,{}_{Q_A} \in \,{}_{Q_A}$ (i.e. if $P_{A/B}$ is the initial phase):

$$\delta_{\scriptscriptstyle A/B}(q_{\scriptscriptstyle A},a,u) = \begin{cases} \delta_{\scriptscriptstyle A}(q_{\scriptscriptstyle A},a,u), & \text{if } a \in \Sigma, \\ \delta_{\scriptscriptstyle A}(q_{\scriptscriptstyle A},\in,u) \cup \{(q_{\scriptscriptstyle A},q_{\scriptscriptstyle B,0}),\in\} & \text{if } a=\in. \end{cases}$$

For $(q_A, q_B) \in Q_A \times Q_B$ (is the guessing phase):

$$\delta_{\scriptscriptstyle{A/B}}((q_{\scriptscriptstyle{A}},q_{\scriptscriptstyle{B}}),a,u) = \begin{cases} \phi, & \text{if } a \in \Sigma, \\ \bigcup_{b \in \Sigma_c} \{((r_{\scriptscriptstyle{A}},r_{\scriptscriptstyle{B}}),v) : (r_{\scriptscriptstyle{A}},v) \in \delta_{\scriptscriptstyle{A}}(q_{\scriptscriptstyle{A}},b,u) \text{ and } r_{\scriptscriptstyle{A}} \in \delta_{\scriptscriptstyle{B}}(q_{\scriptscriptstyle{B}},b) \}, \text{ if } a = \in. \end{cases}$$

- Therefore it can be claimed that $P_{A/B}$ accepts \mathbf{w} if and only if there occurs a string \mathbf{x} such that P_A accepts $\mathbf{w}\mathbf{x}$ and M accepts \mathbf{x} .
- For instance an acceptance calculation of $P_{A/B}$ on input \mathbf{w} , all of \mathbf{w} must be read during the 1st stage.
- The input symbols b that are predicted through the 2nd stage determine a string **x** that is recognized M and is such that **wx** is recognized by P_A .
- Contrariwise, if w is a string with the property that \mathbf{wx} belongs to A for some x belong to B, then there is an acceptance calculation of $P_{A/B}$ in which w is read through the 1st stage, and the input x is predicted in the 2nd stage.
- In this instance the P_A components of the states determine an acceptance calculation on P_A on input **wx** and the *M* components of the states determine an acceptance calculation of B on input **x**.

Hence, it is proved A/B is context free language by using $P_{\mathrm{A/B}}$ from the above discussion.