$t \rightarrow S(t)\tilde{g}$ is not differentiable in $t' \in \mathbb{R}_{+}$.

Assume that there exists a solution of (RCP). By the preceding considerations

 $u(t) = S(t)g(0) + \int_0^t S(t-s)\Phi(u_s) ds = S(t)\tilde{g} + \int_0^t S(t-s)\Phi(u_s) ds$. Thus u is not differentiable in t' and we have a contradiction.

<u>Corollary</u> 3.3. Keep the above notation and let F be finite dimensional. Then the solution semigroup $(T(t))_{t\geq 0}$ in E corresponding to (RCP) is compact for each t>1 and therefore is eventually norm continuous.

<u>Proof.</u> Let t > 1. By the translation property (T) we have T(t)f(s) = T(t+s)f(0). Whenever t + s > 0 then Rem.2 following Cor.3.2 shows that (T(t)f)(s) = (T(t+s)f)(0) = u(t+s) is differentiable with respect to $s \in [-1,0]$ for each $f \in E$.

Since t > 1 we thus have $T(t)f \in C^1([-1,0],F)$ for all $f \in E$. The closed graph theorem yields the continuity of T(t) from E into C^1 . Hence T(t) maps the unit ball of E into a bounded set of $C^1([-1,0],F)$. Again we use the assertion that dim $F < \infty$ and obtain by the theorem of Arzela-Ascoli that every bounded set of $C^1([-1,0],F)$ is relatively compact in E. Thus T(t) is compact for each t > 1.

The assertion of Cor.3.3 remains true if $(S(t))_{t\geq 0}$ is a compact semigroup on a (not necessarily finite dimensional) Banach space F (see [Travis-Webb (1974)]).

In order to describe the asymptotic behavior of the solutions of (RCP) it is enough to examine the corresponding semigroup $(T(t))_{t\geq 0}$ on E. Indeed, Cor.3.2 shows that the solutions u are given by u(t)=T(t)g(0) for all t>0 and thus the long term behavior of u can be deduced from that one of $(T(t))_{t\geq 0}$. Our approach is based on the characterization of the stability of the semigroup $(T(t))_{t\geq 0}$ by the location of the spectrum $\sigma(A)$ of the generator A as developed in A-IV,Sec.1, B-IV,Sec.1 and C-IV,Sec.1.

We define, for
$$\lambda \in \mathbb{C}$$
, operators $\Phi_{\lambda} \in L(F)$ by (3.3)
$$\Phi_{\lambda} x := \Phi(\epsilon_{\lambda} \otimes x) , x \in F .$$

Since $^{\phi}_{\lambda}$ is bounded the operator B + $^{\phi}_{\lambda}$ is a generator on F. The spectrum of A can now be characterized in terms of the spectrum of the operators B + $^{\phi}_{\lambda}$.