Statistical Inference Assignment December 2014

Martin Sawtell

Part 1: Simulation

The exponential distribution can be simulated in R with rexp(n, lambda) where lambda is the rate parameter. The mean of exponential distribution is 1/lambda and the standard deviation is also also 1/lambda. Set lambda = 0.2 for all of the simulations. In this simulation, you will investigate the distribution of averages of 40 exponential(0.2)s. Note that you will need to do a thousand or so simulated averages of 40 exponentials.

1. Show where the distribution is centered at and compare it to the theoretical center of the distribution.

| Rstudio output:

calculating the mean of 40 exponential(0.2) results.	
<pre>> set.seed(123) > lambda = 0.2 > numsims = 1:1000 > n = 40 > simdata <- data.frame(x = sapply(numsims, function(x) {mean(rexp(n, lambda))})) > head(simdata)</pre>	x 1 4.811212 2 5.360077 3 4.592871 4 4.900051 5 5.516619 6 5.612835
Take the mean of the simulated means: > mean(simdata\$x)	[1] 5.011911

1000 repetitions of the rexp function, each time

Question 1 ANSWER:

Theoretical result: "The mean of exponential distribution is 1/lambda" == 1/0.2 == 5

- -This seems to be approximated by the sim result as we know that the mean of the sample converges to the mean of the population.
- 2. Show how variable it is and compare it to the theoretical variance of the distribution.

Calculate the variance:	Rstudio output:
> sd(simdata\$x)^2	[1] 0.6004928
Theoretical variance of rexp:	
((1/lambda)/sqrt(40))^2	[1] 0.625

Question 2 ANSWER:

The calculated variance is similar to the theoretical variance, as demonstrated with the above calculations.

Statistical Inference Assignment December 2014

Martin Sawtell

3. Show that the distribution is approximately normal.

Lets draw it as a histogram along with a normal distribution curve:

Rstudio output:

Question 3 ANSWER:

As you can see, the simdata distribution follows/approximates a normal distribution.