Combinatorics 2018 Fall

Teaching by: Professor Xiande Zhang

2018.10.08

Key words: Möbius Inversion, Poset

Recall:
$$f = \{f(n)\}, g = \{g(n)\}$$

(1)
$$(f \odot g)(n) = \sum_{d \mid n} f(d)g(\frac{n}{d})$$

(2) Identity:
$$I = \{I(n)\} = \{1, 0, 0, \dots\}, f \odot I = I \odot f = f$$
 if $f \odot g = I$, say f is D-invertible $\iff f(1) \neq 0$

(3)
$$e = \{e(n)\} = \{1, 1, 1, \dots\}, (f \odot e)(n) = \sum_{d \mid n} f(d)$$

 $\mu = \{\mu(n)\}, \text{ where } \mu(n) = \begin{cases} 1 & n = 1\\ (-1)^r & n = p_1 p_2 \cdots p_r\\ 0 & n \text{ is not square-free} \end{cases}$

(4) Möbius Inversion:
$$f(n) = \sum_{d|n} g(d) \iff g(n) = \sum_{d|n} \mu(\frac{n}{d}) f(d)$$

(5) Euler Function:
$$\varphi = \{\varphi(n)\}\$$

$$N = \{N(n)\} = \{1, 2, 3, \dots\}$$

$$N = \varphi \odot e, \text{ i.e. } n = \sum_{d|n} \varphi(d)$$

$$\varphi = N \odot \mu, \text{ i.e. } \varphi(n) = \sum_{d|n} \frac{n}{d} \mu(d)$$

(6) $C_m(n) = \sharp$ cycles of length n over [m] $L(p) = \sharp \text{ lines of length } n \text{ with period } p$ $M(p) = \sharp \text{ cycles of length } n \text{ with period } p$ $f(n) = \sharp \text{ lines of length } n \text{ over } [m] = m^n$ Let's compute $C_m(n)$:

(1)
$$M(p) \cdot p = L(p)$$
, $C_m(n) = \sum_{d \mid n} M(p)$, $f(n) = \sum_{d \mid n} L(p)$, i.e. $f = L \odot e \Longrightarrow L = f \odot \mu \Longrightarrow C_m(n) = \sum_{p \mid n} \frac{1}{p} \sum_{d \mid p} \mu(\frac{p}{d}) m^d$
(2) $C = M \odot e$, $f = L \odot e$, $L = NM$.

(2)
$$C = M \odot e$$
, $f = L \odot e$, $L = NM$,
 $\Longrightarrow NC = N(M \odot e) = (NM) \odot (Ne) = L \odot N = f \odot \mu N = f \odot \varphi$
 $\Longrightarrow C_m(n) = \frac{1}{n} \sum_{d \mid n} \varphi(\frac{n}{d}) m^d$

Ex: prove
$$N(M \odot e) = (NM) \odot (Ne)$$

E.g. $C_{10}(9) = \frac{1}{9}(\varphi(9) \cdot 10^1 + \varphi(3) \cdot 10^3 + \varphi(1) \cdot 10^9) = 111111340$

n-th cyclotomic polynomial:

 $z^n = 1$, roots $z = \theta^0, \theta^1, \dots, \theta^{n-1}, \theta^k$ is the primitive root if (k, n) = 1, then $\Phi_n(z) = \prod_{1 \le i \le n \atop (i,n)=1} (z - \theta^i)$ is the n-th cyclotomic polynomial.

Theorem 5. $z^n - 1 = \prod_{d|n} \Phi_d(z)$

$$\begin{array}{l} \underline{proof} \colon z^n - 1 = \prod_{t=0}^{n-1} (z - \theta^t) \\ \text{if } (t,n) = d \text{, then } (\frac{t}{d},\frac{n}{d}) = 1 \\ \text{Let } t' = \frac{t}{d}, n' = \frac{n}{d} \text{, then } \theta^t = e^{\frac{2\pi i}{n}t} = e^{\frac{2\pi i}{n'}t'} \\ \Longrightarrow \theta^t \text{ is n'-th primitive root.} \\ \Longrightarrow z^n - 1 = \prod_{d \mid n} \prod_{t=0 \atop (t,n) = d}^{n-1} (z - \theta^t) = \prod_{d \mid n} \Phi_{\frac{n}{d}}(z) = \prod_{d \mid n} \Phi_{d}(z) \end{array}$$

Theorem 6. $\Phi_n(z) = \prod_{d|n} (z^d - 1)^{\mu(\frac{n}{d})}$

$$\underline{proof}: \ln(z^n - 1) = \sum_{d|n} \ln(\Phi_d(z))$$

$$\Longrightarrow \ln(\Phi_n(z)) = \sum_{d|n} \mu(\frac{n}{d}) \ln(z^d - 1)$$

$$\Longrightarrow \Phi_n(z) = \prod_{d|n} (z^d - 1)^{\mu(\frac{n}{d})}$$

Inversion Formula on Poset

Def: A partially ordered set(**poset**) $P = (X, \leq)$ is a set X with a relation " \leq " on X, s.t.

(1) Reflectivity: $x \leq x$;

(2) Antisymmetry: If $x \leq y$ and $y \leq x$, then x = y;

(3) Transitivity: If $x \leq y$ and $y \leq z$, then $x \leq z$.

E.g.

(1) $(\mathbb{Z}_{>0},<)$, with usual order.

(2) $(\mathbb{Z}_{>0}, \leq)$, divisibility relation, $a \leq b \Leftrightarrow a \mid b$.

(3) $(2^X, \leq)$, inclusion relation, $A \leq B \Leftrightarrow A \subseteq B$.

Def: A locally finite poset $[a,b] = \{z : a \le z \le b\}$

Def: $P = (X, \ge)$, locally finite, the incidence algebra of P is

$$\mathbb{A}(P) = \{ f : P^2 \to \mathbb{R} | f(x,y) = 0, whenever \ x \nleq y \}$$

E.g.

(1) 0(x,y) = 0.

(2) delta function: $\delta(x,y) = \begin{cases} 1, & x = y \\ 0, & x \neq y \end{cases}$.

(3) Zeta function: $\zeta(x,y) = \begin{cases} 1, & x \leq y \\ 0, & else \end{cases}$.

Facts:

(1) $f, g \in \mathbb{A}(P) \Rightarrow f + g \in \mathbb{A}(P)$.

(2) $f \in \mathbb{A}(P) \Rightarrow cf \in \mathbb{A}(P), \forall c \in \mathbb{R}.$

Def: Let $f, g \in \mathbb{A}(P)$, the Dedekind convolution of f and g is $f * g \in \mathbb{A}(P)$, where $(f * g)(x, y) = \sum_{z: x \le z \le y} f(x, z)g(z, y)$.

Fact:

- (1) * is non-commutative, associative, distributive.
- (2) $\mathbb{A}(P)$, *, +, · form an incidence algebra.
- (3) (f * 0)(x, y) = 0. $(f * \delta)(x,y) = f(x,y)\delta(y,y) = f(x,y) = (\delta * f)(x,y)$, so δ is the identity. $(f * \zeta)(x, y) = \sum_{z: x \le z \le y} f(x, z)$

Def: If $f * g = \delta$, we say f is left-inverse of g if $f * g_1 = \delta = g_2 * f$, then $g_1 = g_2$

Theorem 1. $f \in A(P)$, then f has a (left)right inverse $\iff f(x,x) \neq A(P)$ $0, \forall x \in P.$

 $f(x,x) \neq 0$ "\(\infty\)": Find $g \in \mathbb{A}(P)$, s.t. $f * g = \delta$.

$$\begin{cases} f(x,x)g(x,x) = \delta(x,x) = 1 & \Longrightarrow g(x,x) = \frac{1}{f(x,x)}, \forall x \\ \sum_{x \leq \frac{z}{z} \leq y} f(x,z)g(z,y) = \delta(x,y) = 0 & x \neq y \end{cases}$$

Then

$$f(x,x)g(x,y) + \sum_{\substack{x < z \le y \ x < z \le y}} f(x,z)g(z,y) = 0,$$

i.e.
$$g(x,y) = -\frac{1}{f(x,x)} \left(\sum_{\substack{z \ x < z \le y}} f(x,z)g(z,y) \right) = 0$$
, by recursion.

4

Note: to compute left-inversr, $g(x,y) = -\frac{1}{f(y,y)} \left(\sum_{\substack{z \ x \le z < y}} g(x,z) f(z,y) \right)$.

Def: Möbius Function over P is $\mu_P = \zeta^{-1}$, where

$$\mu_P(x,y) = \begin{cases} 1, & x = y \\ -\sum_{x < z \le y} \mu_P(z,y) = -\sum_{x \le z < y} \mu_P(x,z), & x < y \\ 0, & else \end{cases}.$$

<u>Theorem</u> 2. (Inverse Formula I) If P has a minimum element $m(i.e.\ m \le x, \ \forall x \in P)$. Let f, g be functions $P \to \mathbb{R}$, then

$$f(y) = \sum_{z \le y} g(z), \ \forall y \in P \iff g(y) = \sum_{z \le y} f(z) \mu_P(z, y), \ \forall y \in P$$

Note: m' is a minimal element of P if $\nexists x \in P$ s.t. $x \leq m'$