

UNIFEI - UNIVERSIDADE FEDERAL DE ITAJUBÁ CURSO DE GRADUAÇÃO EM SISTEMAS DE INFORMAÇÃO

SIN110 - ALGORITMOS E GRAFOS RESOLUÇÃO DOS EXERCÍCIOS E08 DO DIA 09/10/2015

ITAJUBÁ 2015

$\underline{Exercícios\ E08-09/10/15}$

Aluna: Karen Dantas **Número de matrícula:** 31243

1) a) Execução do algoritmo de Bellmann-Ford:

Arco (u, v)	Peso
1-2	1
2-3	1
2-4	3
2-5	2
3-1	3
3-4	2
4-6	2
5-4	-3
6-5	3

<u>1ª iteração</u>						
Vértice	Predecessores	d[v]				
1	-	0				
2	1	∞ /1				
3	2	∞/2				
4	2/5	∞ / -4 /0				
5	2	∞ /3				
6	4	∞ / 6				

<u>2ª iteração</u>							
Vértice	Predecessores	d[v]					
1	-	0					
2	1	1					
3	2	2					
4	5	0					
5	2	3					
6	4	6/2					

<u>3ª iteração</u>						
Vértice	Predecessores	d[v]				
1	-	0				
2	1	1				
3	2	2				
4	5	0				
5	2	3				
6	4	2				

<u>4ª iteração</u>						
Vértice	Predecessores	d[v]				
1	-	0				
2	1	1				
3	2	2				
4	5	0				
5	2	3				
6	4	2				

<u>5ª iteração</u>						
Vértice	Predecessores	d[v]				
1	-	0				
2	1	1				
3	2	2				
4	5	0				
5	2	3				
6	4	2				

<u>Verifica existência de ciclo negativo</u>					
Arco (u, v)	Peso	d[v] > d[u] + w(u, v)	Resposta		
1-2	1	1 > 1	Não		
2-3	1	2 > 2	Não		
2-4	3	0 > 4	Não		
2-5	2	3 > 3	Não		
3-1	3	0 > 5	Não		
3-4	2	0 > 4	Não		
4-6	2	2 > 2	Não		
5-4	-3	0 > 0	Não		
6-5	3	3 > 5	Não		

A partir da análise da tabela acima, como nenhuma resposta contida na 4ª coluna é afirmativa, conclui-se que o dígrafo não possui ciclos negativos.

b) Execução do algoritmo de Floyd-Warshall:

D 0:	1	2	3	4	5	6
1	0	1	8	8	8	8
2	∞	0	1	3	2	∞
3	3	∞	0	2	∞	∞
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

D1:	1	2	3	4	5	6
1	0	1	∞	∞	∞	∞
2	∞	0	1	3	2	8
3	3	4	0	2	6	5
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

D2:	1	2	3	4	5	6
1	0	1	2	4	3	2
2	8	0	1	3	2	∞
3	3	4	0	2	6	5
4	∞	∞	∞	0	∞	2
5	8	8	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

D3:	1	2	3	4	5	6
1	0	1	2	4	3	2
2	4	0	1	3	2	5
3	3	4	0	2	6	5
4	∞	∞	∞	0	∞	2
5	∞	8	∞	-3	0	∞
6	∞	∞	∞	∞	3	0

D4:	1	2	3	4	5	6
1	0	1	2	4	3	2
2	4	0	1	3	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	∞	3	0

D5:	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	-1	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	∞	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	0	3	0

D6:	1	2	3	4	5	6
1	0	1	2	0	3	2
2	4	0	1	-1	2	1
3	3	4	0	2	6	4
4	∞	∞	∞	0	5	2
5	∞	∞	∞	-3	0	-1
6	∞	∞	∞	0	3	0

Mariz de predecessores \prod :

	1	2	3	4	5	6
1	NIL	1	2	5	2	4
2	3	NIL	2	5	2	4
3	3	1	NIL	3	2	4
4	NIL	NIL	NIL	NIL	6	4
5	NIL	NIL	NIL	5	NIL	4
6	NIL	NIL	NIL	5	6	NIL

Caminho mais curto para todos os pares de vértices:

$$(1, 2): 1 \rightarrow 2$$

$$(1,3): 1 \to 2 \to 3$$

$$(1, 4): 1 \to 2 \to 5 \to 4$$

$$(1, 5): 1 \to 2 \to 5$$

$$(1, 6): 1 \to 2 \to 5 \to 4 \to 6$$

$$(2, 1): 2 \to 3 \to 1$$

$$(2,3): 2 \to 3$$

$$(2, 4): 2 \to 5 \to 4$$

$$(2,5): 2 \to 5$$

$$(2, 6): 2 \to 5 \to 4 \to 6$$

$$(3, 1): 3 \to 1$$

$$(3, 2): 3 \to 1 \to 2$$

$$(3, 4): 3 \rightarrow 4$$

$$(3,5): 3 \to 1 \to 2 \to 5$$

$$(3, 6): 3 \to 4 \to 6$$

$$(4, 5): 4 \to 6 \to 5$$

$$(4, 6): 4 \rightarrow 6$$

$$(5, 4): 5 \rightarrow 4$$

$$(5, 6): 5 \to 4 \to 6$$

$$(6, 4): 6 \rightarrow 5 \rightarrow 4$$

$$(6,5): 6 \rightarrow 5$$

Os pares de vértices que não foram citados acima não possuem ligação.

- 2) No fim da execução do algoritmo de Floyd-Warshall observa-se que o vértice do dígrafo G que é percorrido por todos os outros vértices e as distâncias até ele são a menores possíveis se comparadas às distâncias até os outros vértices, é o vértice 4:
- (1, 4): $1 \rightarrow 2 \rightarrow 5 \rightarrow 4$, distância 0.
- (2, 4): $2 \rightarrow 5 \rightarrow 4$, distância -1.
- (3, 4): $3 \rightarrow 4$, distância 2.
- $(5, 4): 5 \to 4$, distância -3.
- (6, 4): $6 \rightarrow 5 \rightarrow 4$, distância 0.

Pode-se observar que o caminhoneiro que estava na cidade 3 irá percorrer a maior distância que é 2 e que é a mínima possível. E o caminhoneiro que estava na cidade 5 irá percorrer uma distância -3 que será a menor distância dentre as distâncias percorridas pelos outros caminhoneiros.

Através da análise da imagem acima, obtém-se o fluxo máximo: 9+5+5+7+3+5=34. Logo, o fluxo máximo é 34.