Western New England University College of Engineering ECE Department Wave Transmission and Reception EE 457/557 Fall 2023 Design Project #2 Due: November 13, 2023

Name:	 	 		
References:	 			

Design Project #2

	Score	Max
Design		200
HFSS		300
Tables		100
Presentation		100
Total		700

- 1. Design a 16-GHz probe-fed microstrip patch antenna. The substrate is 20-mil thick (h = 20 mils = 0.508 mm) Duroid 5880 ($\varepsilon_r = 2.2$). The probe formed by using the center conductor of a 0.085" semi-rigid copper coax cable. The dielectric of the coax is Teflon ($\varepsilon_r = 2.1$). The inner and outer radii of the coax are 10 mils ($r_i = 10 \text{ mils}$) and 33 mils ($r_o = 33 \text{ mils}$), respectively.
- 2. Simulate the 16-GHz probe-fed microstrip patch antenna using HFSS.
 - Tune the patch until the input return loss at 16 GHz is better than 25 dB $(RL_{in} \ge +25 \text{ dB or } |\Gamma_{in}| \le |S_{11}| \le -25 \text{ dB}|).$
 - Determine a value for the gain (G) at a frequency of 16 GHz.
 - Determine a value for the E-Plane beamwidth (BW_{EP}) at a frequency of 16 GHz.
 - Determine a value for the H-Plane beamwidth (BW_{HP}) at a frequency of 16 GHz.
 - Plot $|S_{11}|$ over the range of -40 to 0 dB. Employ a frequency range of 15 to 17 GHz.
 - Determine the bandwidth and percent bandwidth for which the input return loss is better than 10 dB ($RL_{in} \ge +10$ dB or $|\Gamma_{in}| \le |S_{11}| \le -10$ dB).
- 3. Complete the following tables (Table 1, Table 2, Table 3, and Table 4).

Table 1 Summary of the calculated design parameters for the 16-GHz probe-fed microstrip patch antenna.

Parameter	Calculated	
λ_g		mm
L_e		mm
ΔL		μm
W		mm
${\cal E}_r^{\it eff}$		
ΔL		μm
L_p		mm
G_1		mS
G_{12}		μS
B_1		mS
$G_{\it Edge}$		mS
R_{Edge}		Ω
x_f		mm

Table 2 Summary of the simulated design parameters for the 16-GHz probe-fed microstrip patch antenna.

Parameter	Initial Design	Final Design	
W			mm
L_e			mm
ΔL			μm
L_p			mm
x_f			mm

Table 3 Summary of the simulated gain (at 16 GHz) for the 16-GHz probe-fed microstrip patch antenna.

Parameter	HFSS	
G		W/W
G		dB
BW_{EP}		0
BW_{HP}		0

Table 4 Summary of the calculated and simulated frequency response for the 16-GHz probe-fed microstrip patch antenna.

Parameter	Calculated	HFSS	
BW_f			MHz
BW_f			%

Design Project 2

16GHz Patch Antenna

Name	Value	Unit	Evaluated V	Туре
h	0.508	mm	0.508mm	Design
Le	6.262947717	mm	6.2629477mm	Design
del_L	266.272104	um	266.2721um	Design
L	Le - 2*del_L		5.7304035mm	Design
W	1.5*L		8.5956053mm	Design
Ls	2*L		11.460807mm	Design
Ws	2*W		17.191211mm	Design
t	80	um	80um	Design
SCALE	0.825		0.825	Design
Xf	2.07*SCALE	mm	1.70775mm	Design
X0	(1/2)*Le-Xf		1.4237239mm	Design
r_i	10	mil	10mil	Design
r_o	33	mil	33mil	Design
r_o2	r_o+10*t		1.6382mm	Design
Lc	10	mm	10mm	Design
d_cap	10*t		800um	Design

Calculations

Table 1

Parameter	Calculated	
f_0	16	GHz
h	0.508	mm
\mathcal{E}_{r}	2.2	
λ_g	12.632482	mm
L_e	6.316241	mm
W'	9.4743615	mm
$arepsilon_r^{eff}$	2.068033	
ΔL	266.272104	μm
L_p	5.78369	mm
W	8.67554	mm
R_{edge}	189.33921	Ω
x_f	0.270	mm

Table 2

Parameter	Initial Design	Final Design	
W	8.67554	8.5956033	mm
L_{e}	6.316241	6.262947717	mm
ΔL	266.272104	266.2721	μ m
L_p	5.78369	5.7304033	mm
x_f	0.270	1.70775	mm

Table 3

Parameter	HFSS	
G	6.9002	W/W
G	8.3886	dB
BW_{EP}	61.0790	O
BW_{HP}	79.0974	0

Table 4

Parameter	Calculated	HFSS	
BW_f	628.492714	625.00000	MHz
BW_f	3.92807	3.8824	%

(3)
$$Le = \frac{1}{2} \cdot 7g$$

= $\frac{1}{2} \times 12.632482$.
= 6.316241 mm.

(5)
$$\leq n^{66} = \left[\left(\frac{1}{2} \right) \left(\epsilon_{n+1} \right) \right] + \left[\left(\frac{1}{2} \right) \left(\epsilon_{n-1} \right) \right] \left[\frac{1}{12} \left(\frac{1}{12} \right) \left(\frac{1}{12} \right) \right] = \left[\left(\frac{1}{2} \right) \left(\frac{1}{12} \right) \left(\frac{1}{12} \right) \right] \left[\frac{1}{12} \left(\frac{1}{12} \right) \left(\frac{1}{12} \right) \right] = \left[\frac{1}{12} \left(\frac{1}{12} \right) \left(\frac{1}{12} \right) \right] = \frac{1}{12} \cdot \frac{1}{12}$$

$$= 0.412 \left(0.508\right) \left[\frac{2.068033 + 0.3}{2.068033 - 0.258}\right] \left[\frac{18.65031 + 0.264}{18.65031 + 0.8}\right]$$

$$\frac{4}{5} L_{P} = L_{e} - 2DL$$

$$= 6.316241 - [2(0.266272104)]$$

$$= 6.316241 - 1.065088$$

$$= 5.78369 mm.$$

```
% Srinivas N EE-457 DP 2
clearvars
clc
close all
%-----
G = 10^9;
M = 10^6;
c = 10^-2;
m = 10^-3;
u = 10^{-6};
n = 10^-9;
p = 10^-12;
f = 10^{-15};
%-----
f0 = 16*G;
substrate_Thickness = 0.508*m;
er = 2.2; % Duroid 5880
er_t = 2.1; % Teflon
uc = 2.99792458 *10^8; % m/s
n_0 = 376.7303; % Ohms
Z0 = 50;
%-----
Ifs = uc/f0; % Freespace wavelength
ko = 2*pi / Ifs; %
hmax = (0.3/(2*pi*sqrt(er)))*lfs; % maximum thickness
Print_Real_Unit('lfs',lfs,'m')
Print_Real_Unit('ko',ko,'rad/m')
Print_Real_Unit('hmax',hmax,'m')
```

```
Print_Break
%-----
% Design 01
%h = 1.5748*m; %design param
h = 0.508*m;
%-----
lambda_g = lfs/sqrt(er);
Le = (1/2)*lambda_g;
W prime = 1.5*Le;
Er_{eff} = [(1/2)*(er+1)]+[((1/2)*(er-1))]*[(1+12*(h/W_prime))]^-(1/2);
delta_L = 0.412 * h * ((Er_eff + 0.3) / (Er_eff - 0.258)) * (((W_prime / h) +
0.264) / ((W_prime / h) + 0.8));
Lp = Le - 2*delta_L;
W = 1.5*Lp;
%-----
Print_Real_Unit('Er_eff',Er_eff,")
Print_Real_Unit('delta_L',delta_L,'m')
Print_Real_Unit('Lp',Lp,'m')
Print_Real_Unit('W',W,'m')
%-----
Print_Break
Print_Real_Unit('lambda_g',lambda_g,'m')
Print_Real_Unit('Le',Le,'m')
Print_Real_Unit('W_prime',W_prime,'m')
%-----
[Gedge,G1,G12,B1,~,~]=...
EE457_Microstrip_Patch_Conductance(Le,W,h,ko,lfs,n_0);
Rin = Z0;
```

```
Redge = 1/Gedge;
xf = (Le/pi)*acos(sqrt(Rin/Redge));
x0 = (1/2)*Le - xf;
Gedge = 2*(G1+G12);
%-----
Print_Break
Print_Real_Unit('G1',G1,'S')
Print_Real_Unit('G12',G12,'S')
Print_Real_Unit('B1',B1,'S')
Print_Real_Unit('Gedge',Gedge,'S')
Print_Real_Unit('Redge',Redge,'Ohm') % Resistance at the edge of the patch
Print_Real_Unit('xf',xf,'m')
Ifs = 18.7370 mm
ko = 335.3352 \text{ rad/m}
hmax = 603.1575 um
Er_{eff} = 2.0680
delta_L = 266.272104 um
Lp = 5.78369 mm
W = 8.67554 mm
_____
lambda_g = 12.632482 mm
Le = 6.316241 mm
W prime = 9.4743615 mm
-----
G1 = 2.0849 \text{ mS}
G12 = 569.1455 um
B1 = 4.4371 \text{ mS}
Gedge = 5.3081 mS
Redge = 189.33921 Ohm
xf = 2.0700 \text{ mm}
```

```
lambda0 = Ifs;

f0 = 16*G;

BWf = 3.7771 * ((er - 1) / (er^2)) * (h / lambda0) * ( W/Lp) * f0;

BWp = (BWf*100)/f0;

Print_Real_Unit('BWf',BWf,'Hz')

Print_Real_Unit('BWp',BWp,'%')

BWf = 628.492714 MHz
```

BWp = 3.92807 %