Wayne Green Victoria Haley Joshua Lilly Math 290 - Group Assignment I 8/31/2016

	$_{-}$ 2a.										
P	Q	R	$(P \vee R)$	$(P \wedge Q)$	$(P \wedge R)$	$(P \wedge (Q \vee R))$	$(P \land Q) \lor (P \land R)$				
F	F	F	F	F	F	F	F				
F	F	Т	Т	F	F	F	F				
F	Т	F	Т	F	F	F	F				
F	Т	Т	Т	F	F	F	F				
T	F	F	F	F	F	F	F				
T	F	Т	Т	F	Т	T	Т				
T	Т	F	T	T	F	T	Т				
Т	Т	Τ	Т	Т	Т	Т	Т				

- 2b. Not possible for this problem since the problem statement is the definition of the distributive property of and over or
- 2c. In order to show that $P \wedge (Q \vee R)$ is equivalent to $(P \wedge Q) \vee (P \wedge R)$ we must show two things.

(1)
$$P \wedge (Q \vee R)$$
 then $(P \wedge Q) \vee (P \wedge R)$
(2) $(P \wedge Q) \vee (P \wedge R)$ then $P \wedge (Q \vee R)$

- (1) Suppose $P \wedge (Q \vee R)$ is true. In this case we must also show that $(P \wedge Q) \vee (P \wedge R)$ is true. For $(P \wedge Q) \vee (P \wedge R)$ to be true either $(P \wedge Q)$ must be true $OR (P \wedge R)$ must be true. Since $P \wedge (Q \vee R)$ is true, P must be true and either Q OR R must be true. Since P must be true and either Q OR R must be true, then it follows that at least $(P \wedge Q)$ is true $OR (P \wedge R)$ is true.
- (2) assume (P \wedge R) is true. If (P \wedge R) is true then it must be the case that P AND R are both true. Since P AND R are both true, since P AND R must be true, then (Q \vee R) must be true since R is true. and the statement P \wedge (Q \vee R) must also be true since P is also true. Therefore, P \wedge (Q \vee R) and (P \wedge Q) \vee (P \wedge R) must be equivalent.

				4a.			
P	Q	R	$(Q \wedge R)$	$(P \implies R)$	$(P \implies Q)$	$(P \implies (Q \land R))$	$(P \implies Q) \land (P \implies R)$
F	F	F	F	F	F	F	F
F	F	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	Т	Т	Т	F	F	F	F
Т	F	F	F	F	F	F	F
Т	F	Т	T	F	Т	T	T
T	Т	F	T	Т	F	T	T
Т	Т	Т	Т	Т	Т	Т	Т

4b
$$(P \Longrightarrow (Q \land R)) \equiv (Implication removal)$$

 $\neg P \lor (Q \land R) \equiv (Distribute)$
 $(\neg P \lor Q) \land (\neg P \lor R) \equiv (Introduce implications)$
 $(P \Longrightarrow Q) \land (P \Longrightarrow R)$

4c In order to show that $(P \implies (Q \land R))$ is equivalent to $(P \implies Q) \land (P \implies R)$ we must show two things.

(1)
$$(P \implies (Q \land R))$$
 then $(P \implies Q) \land (P \implies R)$

(2) (P
$$\implies$$
 Q) \land (P \implies R) then (P \implies (Q \land R))

- (1) Assume $(P \implies (Q \land R))$ is true since the statement is true it follows that Q AND R must both be true. This says nothing about P however, since Q AND R both must be true it is not possible for either $(P \implies Q)$ OR $(P \implies R)$ to ever be false since the only way for the implication to be false is if either Q OR R is also false. Since both $(P \implies Q)$ AND $(P \implies R)$ must be true it must be true when $(P \implies (Q \land R))$ is true.
- (2) Assume $(P \Longrightarrow Q) \land (P \Longrightarrow R)$ is true. Which means P, Q AND R can be all false, OR Q AND R can be true. When P, Q, AND R are false. $(Q \land R)$ is false, which means since P is false $(P \Longrightarrow (Q \land R))$ must be true. Which is consistent with $(P \Longrightarrow Q) \land (P \Longrightarrow R)$. When Q AND R are true, it is not possible for $(P \Longrightarrow Q) \land (P \Longrightarrow R)$ to ever be false since the implication can only evaluate to false when either Q OR R are false. Additionally, since Q AND R are both true, $(Q \land R)$ must also be true, forcing $(P \Longrightarrow (Q \land R))$ to also always be true. Therefore, $(P \Longrightarrow (Q \land R))$ must be equivalent to $(P \Longrightarrow Q) \land (P \Longrightarrow R)$