Life Expectancy Analysis

Jaiden Atterbury, Tanner Huck

Motivation and background

Importance:

- Measure of number of years an individual is expected to life.
- Implications for public health and overall social well-being.
- Understanding geographical data and factors that impact life expectancy may help us understand how to increase life expectancy and give aid to nations with low expectancy.

Data Exploration and Preprocessing

- Clean the data and handle any of the found missing values through the process of imputation or complete removal
- Must be careful when choosing to remove or fix any of the data set – missing data may provide valuable insights or tell a story about the data
- Gain insights into the distribution and relationships among certain variables of interest
- Make histograms, scatter plots, or other types of graphs to visually understand these relationships

	Life_expectancy
Infant Deaths	-0.9200319194470860
Under Five Deaths	-0.920419133640263
Adult Mortality	-0.9453603642730650
Alcohol Consumption	0.39915910757917200
Hepatitis B	0.41780443201507800
Measles	0.49001858940944100
вмі	0.5984233246973870
Polio	0.6412174553454280
Diphtheria	0.6275413923742570
Incidents_HIV	-0.5530274644851240
GDP_per_capita	0.5830897215324400
Population_mln	0.026297879724181600
Thinness_ten_nineteen_years	-0.4678244950192930
Thinness_five_nine_years	-0.45816622746008500
Schooling	0.7324844688915010
Life_expectancy	1.0

Data Exploration and Preprocessing

Factors affecting Life Expectancy

Research Question 1: Predicting Life Expectancy

 Which combination of variables creates the most significant/best model for predicting the life expectancy of a given country?

- Methodology:

- 1. Find the distribution of life expectancy.
- 2. Make necessary transformations, based on 1.
- 3. Fit initial model to find significant predictors.
- 4. Check the VIF of the significant predictors.
- 5. Split data into training and test set, fit a new model.
- 6. Check model assumptions (linearity, normality, etc.).
- 7. Check the model accuracy.

Research Question 1: Predicting Life Expectancy

Results:

- 1. Distribution of life expectancy wasn't normal.
- No transformation did the trick.
- Significant predictors: Infant Deaths, Under Five Deaths, Adult Mortality, Alcohol Consumption, Hepatitis B, BMI, Incidents_HIV, GDP_per_capita, Thinness_ten_nineteen_years, and Schooling.
- 4. Calculating VIF dropped these down to 5 for the final model.
- 5. Final equation shown below.
- 6. 3 out of the 6 assumptions were violated.
- 7. Training set mean squared error was 5.222004318670649, and the testing mean squared error was 5.489100109185608.

Research Question 2: Classifying Development Status

- Which combination of variables creates the most significant/best model for classifying if a nation is developing or developed? Furthermore, in terms of accuracy, how does a logistic regression compare to a decision tree classifier when fit onto this data set?

Methodology:

- 1. Build a logistic regression model to find significant predictors.
- 2. Drop all insignificant predictors and split the data into a training and test set.
- 3. Refit the logistic regression model onto the training set.
- 4. Find training and testing accuracy.
- 5. Fit a DecisionTreeClassifier onto the same data.
- 6. Find training and testing accuracy.
- 7. Compare the results.

Research Question 2: Classifying Development Status

- Results:

- 1. The significant predictors of the developmental status variable are: infant deaths, under five deaths, adult mortality, alcohol consumption, HIV incidents, GDP per capita, "thinness" of individuals aged 10 to 19 years old, and lastly schooling
- 2. Model equation shown below.
- 3. The logistic regression model has a training accuracy score of 97.4% and a testing accuracy score of 97.6%, while the DecisionTreeClassifier has a training accuracy score of 100% and a testing accuracy score of 98.1%.
- 4. Thus, the DecisionTreeClassifier is only slightly better than the logistic regression model for this specific split of training and testing data.
- 5. It is important to note that all models in this report would change depending on which data points made the training set versus the testing set and vice versa.

Research Question 3: Temporal and Geographical Analysis

How does life expectancy vary across different areas of the world?

- Using different visualizations, we will analyze how life expectancy changes for different locations and identify regions where life expectancy and disease prevalence are most and least prevalent.

Research Question 3: Temporal and Geographical Analysis

Impacts and Future work

- An important impact and one of our main motivations were the possible public health interventions that can be made with the aid of our analysis.
- Develop targeted public health interventions that may improve life expectancy in the areas that need help.
- Governments, healthcare organizations, and policymakers may use our findings to design strategies to improve health and extend life expectancy.
- Advocacy and awareness of life expectancy. This project may raise attention to different factors that reduce life expectancy and help people avoid them.

Works cited:

Here is a list of resources we used to write the code for this report, as well as some of the inspiration for the project in general:

- Plotly documentation: https://plotly.com/python/
- Plotly express documentation: https://plotly.com/python/plotly-express/
- Inspiration for making interactive cloropleth map using plotly express:
 <u>https://stackoverflow.com/questions/75980836/i-made-a-plotly-express-choropleth-mapbox-of-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zip-codes-can-i-add-a-choropleth-map-us-zi</u>
- Inspiration for making multiple scatter plots in a single figure: https://stackoverflow.com/questions/55126088/scatter-plot-grid-faceted-by-columns-in-matplotlib-or-seaborn
- Matplotlib documentation: https://matplotlib.org/stable/index.html
- Seaborn distplot documentation: https://seaborn.pydata.org/generated/seaborn.displot.html
- Statsmodel documentation: https://www.statsmodels.org/stable/index.html
- Inspiration for making studentized residual plot: https://rpubs.com/pfr088883/1033107
- Rule of thumb for the Durbin-Watson test: https://www.statology.org/durbin-watson-test-python/