Assignemnt 1

Qizheng Wang

1/26/2020

Question 1

Question 1a

Equation for question of interest: $seasonNumber = \beta_1 * I_1 + \beta_2 * I_2 + \beta_3 * I_3 + \epsilon_i$ Anoava Assumptions: 1. Errors are independent 2. Errors are normally distributed 3. Constant variance

Question 1b

Null hypotheses: $\mu_1 = \mu_2 = \mu_3$ Alternative hypotheses: $\exists i \neq j, s.t \, \mu_i \neq \mu_j$ where μ_1 is the mean of season_rating when 1990s, μ_2 is the mean of season_rating when 2000s, and μ_3 is the mean of season_rating when 2010s

Question 1c

```
crime_show_data <- readRDS("crime_show_ratings.RDS")

crime_show_data %>%
    ggplot(aes(x = decade, y = season_rating)) + geom_boxplot() +
    ggtitle("Boxplots of average rating by decade for crime TV shows")
```

Boxplots of average rating by decade for crime TV shows

crime_show_data %>% ggplot(aes(x = season_rating)) + geom_histogram(bins=20) + facet_wrap(~decade) + gg

I prefer the Boxplot, becasue it's easier to compare the mean. How to improve:

Based on the plots, I think there is a significance difference between the means. The means are gradually increasing over the decades.

Question 1d

```
anovald <- aov(season_rating~decade, data=crime_show_data)
summary(anovald)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## decade 2 1.09 0.5458 1.447 0.238
## Residuals 162 61.08 0.3771
```

Based on the P-value = 0.238, $P-value \le 0.05$, thus consider the result significant. We reject the null hypotheses, and there is evidence that the means of season rating differs by decades.

Question 1e

```
plot(anovald, 1)
```


plot(anova1d, 2)


```
crime_show_data %>% group_by(decade) %>% summarise(var_rating = sd(season_rating)^2)
```

0.4804055/0.2033781

[1] 2.36213

Residuals vs Fitted plot does not have obvious pattern, thus the assumption for constant variance is satisfied. Also, by rule of thumb: $s_{max}^2/s_{min}^2 = 0.4804055/0.2033781 = 2.36213 \le 3$ Thus the assumption of constant variance is probably satisfied.

The Normal Q-Q plot checks the normality. The plot forms nearly a straight line, thus the assumption of normality is satisfied.

Question 1f

```
lm1f <- lm(season_rating~decade, data=crime_show_data)</pre>
summary(lm1f)
##
## Call:
## lm(formula = season_rating ~ decade, data = crime_show_data)
## Residuals:
##
      Min
                1Q Median
                                3Q
## -3.2222 -0.2589 0.0135 0.3862 1.6778
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 7.9222
                            0.0828 95.679
                                             <2e-16 ***
## decade2000
                 0.1368
                            0.1171
                                     1.168
                                             0.2444
## decade2010
                 0.1938
                            0.1171
                                     1.655
                                             0.0998 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6141 on 162 degrees of freedom
## Multiple R-squared: 0.01756,
                                   Adjusted R-squared:
## F-statistic: 1.447 on 2 and 162 DF, p-value: 0.2382
7.9222+0.1368
## [1] 8.059
7.9222+0.1938
## [1] 8.116
```

Interpret the coefficients from this linear model in terms of the mean season ratings for each de linear model: Since there are no decade1990, thus decade1990 is the reference group, which means $\bar{\mu}_{1990} = 7.9222$.

The second coefficient $\beta_1 = 0.1368$ means $\bar{\mu}_{2000} - \bar{\mu}_{1990}$, thus $\bar{\mu}_{2000} = \bar{\mu}_{1990} + 0.1368 = 7.9222 + 0.1368 = 8.059$ The third coefficient $\beta_2 = 0.1938$ means $\bar{\mu}_{2010} - \bar{\mu}_{1990}$, thus $\bar{\mu}_{2010} = \bar{\mu}_{1990} + 0.1928 = 8.116$

Question 2

```
smokeFile = 'smokeDownload.RData'
if(!file.exists(smokeFile)){
  download.file( 'http://pbrown.ca/teaching/303/data/smoke.RData', smokeFile) }
(load(smokeFile))
## [1] "smoke"
                      "smokeFormats"
```

	Estimate	Std. Error	z value	$\Pr(> z)$
(Intercept)	-2.700	0.082	-32.843	0.000
ageC	0.341	0.021	16.357	0.000
Rural Urban Rural	0.959	0.088	10.934	0.000
Raceblack	-1.557	0.172	-9.068	0.000
Racehispanic	-0.728	0.104	-6.981	0.000
Raceasian	-1.545	0.342	-4.515	0.000
Racenative	0.112	0.278	0.404	0.687
Racepacific	1.016	0.361	2.814	0.005
SexF	-1.797	0.109	-16.485	0.000

```
logOddsMat = cbind(est=smokeModel$coef, confint(smokeModel, level=0.99))
```

Waiting for profiling to be done...

```
oddsMat = exp(logOddsMat)
oddsMat[1,] = oddsMat[1,] / (1+oddsMat[1,])
rownames(oddsMat)[1] = 'Baseline prob'
knitr::kable(oddsMat, digits=3)
```

	est	0.5 %	99.5 %
Baseline prob	0.063	0.051	0.076
ageC	1.407	1.334	1.485
Rural Urban Rural	2.610	2.088	3.283
Raceblack	0.211	0.132	0.320
Racehispanic	0.483	0.367	0.628
Raceasian	0.213	0.077	0.466
Racenative	1.119	0.509	2.163
Racepacific	2.761	0.985	6.525
SexF	0.166	0.124	0.218

Question 2a

 $\log \frac{\mu_i}{1-\mu_i} = X_i \beta$ Where X_i represents the age parameter, the rural or urban factor, and dummy variables for races

Question 2b

Baselin pro in the table is $\exp(\text{Intercept})$ when $X_1, X_2...X_n = 0$ which implies age=16, white race, M, lives in Urban area.

Question 2c

```
##
             Race ageC RuralUrban
     Sex
## 1
       Μ
            white
                      0
                              Rural
## 2
       Μ
            white
                      0
                              Urban
## 3
       M hispanic
                      0
                              Urban
## 4
       F
            black
                      0
                             Urban
## 5
       F
            asian
                      0
                              Urban
```

smokePred

```
## fit se.fit lower upper

## 1 -1.740164 0.05471340 -1.904304 -1.576024

## 2 -2.699657 0.08219855 -2.946253 -2.453062

## 3 -3.427371 0.10692198 -3.748137 -3.106605

## 4 -6.053341 0.19800963 -6.647370 -5.459312

## 5 -6.041103 0.35209311 -7.097383 -4.984824
```

```
expSmokePred = exp(smokePred[,c('fit','lower','upper')])
knitr::kable(cbind(newData[,-3],1000*expSmokePred/(1*expSmokePred)), digits=1)
```

Sex	Race	RuralUrban	fit	lower	
M	white	Rural	149.3	129.6	
M	white	Urban	63.0	49.9	
M	hispanic	Urban	31.5	23.0	
F	black	Urban	2.3	1.3	
F	asian	Urban	2.4	0.8	
Based	on the fit	, lower and u	pper, Wh	ite who	
Female	minorites	fit's value a	re $2.3+2$.4 = 4.7,	which divided by 1000 is smaller than the 0.5%. Thus it is reasonable.

Question 3

knitr::kable(cbind(summary(fijiRes)\$coef,exp(logRateMat)),digits=3)

	Estimate	Std. Error	z value	$\Pr(> z)$	est	0.5 %	99.5 %
(Intercept)	-1.181	0.017	-69.196	0.000	0.307	0.294	0.321
ageMarried0to15	-0.119	0.021	-5.740	0.000	0.888	0.841	0.936
ageMarried18to20	0.036	0.021	1.754	0.079	1.037	0.983	1.093
ageMarried20to22	0.018	0.024	0.747	0.455	1.018	0.956	1.084
ageMarried 22 to 25	0.006	0.030	0.193	0.847	1.006	0.930	1.086
ageMarried25to30	0.056	0.048	1.159	0.246	1.057	0.932	1.195
ageMarried30toInf	0.138	0.098	1.405	0.160	1.147	0.882	1.462
ethnicityindian	0.012	0.019	0.624	0.533	1.012	0.964	1.061
ethnicityeuropean	-0.193	0.170	-1.133	0.257	0.824	0.514	1.242
ethnicitypartEuropean	-0.014	0.069	-0.206	0.837	0.986	0.822	1.171
ethnicitypacificIslander	0.104	0.055	1.884	0.060	1.110	0.959	1.276
ethnicityroutman	-0.033	0.132	-0.248	0.804	0.968	0.675	1.336
ethnicitychinese	-0.380	0.121	-3.138	0.002	0.684	0.492	0.920
ethnicityother	0.668	0.268	2.494	0.013	1.950	0.895	3.622
literacyno	-0.017	0.019	-0.857	0.391	0.984	0.936	1.034
urbansuva	-0.159	0.022	-7.234	0.000	0.853	0.806	0.902
urbanother Urban	-0.068	0.019	-3.513	0.000	0.934	0.888	0.982

```
fijiSub$marriedEarly = fijiSub$ageMarried == 'Oto15'
fijiRes2 = glm(children ~ offset(logYears) + marriedEarly + ethnicity + urban,family=poisson(link=log),
logRateMat2 = cbind(est=fijiRes2$coef, confint(fijiRes2, level=0.99))
```

Waiting for profiling to be done...

```
knitr::kable(cbind(summary(fijiRes2)$coef,exp(logRateMat2)),digits=3)
```

	Estimate	Std. Error	z value	$\Pr(> z)$	est	0.5 %	99.5 %
(Intercept)	-1.163	0.012	-93.674	0.000	0.313	0.303	0.323
marriedEarlyTRUE	-0.136	0.019	-7.189	0.000	0.873	0.832	0.916
ethnicityindian	-0.002	0.016	-0.154	0.877	0.998	0.958	1.039
ethnicityeuropean	-0.175	0.170	-1.034	0.301	0.839	0.524	1.262
ethnicitypartEuropean	-0.014	0.068	-0.202	0.840	0.986	0.823	1.171
ethnicity pacific Islander	0.102	0.055	1.842	0.065	1.107	0.957	1.273
ethnicityroutman	-0.038	0.132	-0.285	0.775	0.963	0.672	1.330
ethnicitychinese	-0.379	0.121	-3.130	0.002	0.684	0.493	0.921
ethnicityother	0.681	0.268	2.545	0.011	1.976	0.907	3.667
urbansuva	-0.157	0.022	-7.162	0.000	0.855	0.808	0.904
urban other Urban	-0.066	0.019	-3.414	0.001	0.936	0.891	0.984

lmtest::lrtest(fijiRes2, fijiRes)

```
## Likelihood ratio test
##
## Model 1: children ~ offset(logYears) + marriedEarly + ethnicity + urban
## Model 2: children ~ offset(logYears) + ageMarried + ethnicity + literacy +
## urban
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 11 -9604.3
## 2 17 -9601.1 6 6.3669 0.3834
```

Question 3a

The model is $log(children) = log(Years) + X_i\beta$ Where $X_i\beta$ is indicator agedMarried, ethnicity, literacy, urban.

Question 3b

Yes, it is comparing nested models. Constraints: $\beta_{literacy} = 0$, ageMarried="0to15"

Question 3c

By comparing the est col of two models, we can see that the race est and urban est in the fijiRes2 model has slightly increase, while these columns represent the situation when other $\beta = 0$, meaning improving education and delaying marriage will result in having fewer children.