MELANOBS workshop – Noumea, April 2024

MELANOBS: forest cover change, carbon, and biodiversity data in Melanesia

Ghislain VIEILLEDENT¹ Philippe BIRNBAUM¹ David BRUY² Thomas IBANE7²

[1] Cirad UMR AMAP, [2] IRD UMR AMAP

European

Outline

- Introduction
 - Context
- Forest cover change data
 - FAO FRA estimates
 - Global datasets
 - National data

- Carbon stock data
 - Global data-sets
 - National data-sets
- Biodiversity data

- Introduction
 - Context
- - FAO FRA estimates
 - Global datasets
 - National data

- - Global data-sets
 - National data-sets

Introduction

- Tropical forests: 50% of terrestrial biodiversity.
- Tropical deforestation : 15% of anthropogenic carbon emissions.
- Mapping forest cover, carbon stocks and biodiversity is essential for conservation planning.

Objectives

- MELANOBS: building a Melanesian forest observatory.
- Which data on forest cover, carbon stock and biodiversity is available for Melanesian countries?

- - Context
- Forest cover change data
 - FAO FRA estimates
 - Global datasets
 - National data

- - Global data-sets
 - National data-sets

FAO FRA estimates, forest cover

Forest cover estimates (in Kha).

Source	FRA 2015	prim. forest	GFC30 2020	TMF 2020
PNG	36024	27200	39000	39304
Salomon Islands	2527	1738	2350	2739
Vanuatu	442	205	986	1152
Fiji	1107	0	1050	NA
New Caledonia	839	338	1150	855

- Forest Ressources Assessment (FRA) from the Food and Agriculture Organization (FAO).
- Estimates are reported by countries to FAO.
- Not frequently updated.
- There is no map of forest cover change provided by FAO.

FAO FRA estimates, gross deforestation

Mean annual deforestation (in ha).

Source	FRA	GFC30	TMF
	2015-2020	2010-2020	2010-2020
PNG	34000	104678	48691
Salomon Islands		13460	1751
Vanuatu		939	564
Fiji		2663	NA
New Caledonia		1328	2425

- Rather good estimates of forest cover but poor estimates of deforestation/regrowth.
- Differentiate forest types : forest, primary forest, plantations

Global Forest Change (GFC)

- Global Forest Change (Hansen et al. 2013, Univ. of Maryland).
- Used by Global Forest Watch (GFW): platform about the world forests. GFW releases the Global Forest Review.
- It is in fact a tree cover change product. User must define a tree cover threshold to define the forest (e.g. 30%).
- Derive from Landsat images from 2000. 30m resolution. One mosaic per year.
- Largely overestimate forest cover if low tree cover threshold (e.g. 30%).
- Underestimate small-scale deforestation (shifting agriculture, logging).

SCIENCE ADVANCES | RESEARCH ARTICLE

ENVIRONMENTAL STUDIES

Long-term (1990–2019) monitoring of forest cover changes in the humid tropics

C. Vancutsem¹*, F. Achard¹, J.-F. Pekel¹, G. Vieilledent^{1,2,3,4}, S. Carboni⁵, D. Simonetti¹, J. Gallego¹, L. E. O. C. Aragão⁶, R. Nasi⁷

- Tropical Moist Forests (Vancutsem et al. 2021, from Joint Research Center).
- Only consider evergreen tropical forests (tropical moist forests, mangroves, evergreen dry tropical forests). Cannot be used to monitor deciduous dry forests.
- Derive from Landsat images from 1990. 30m resolution. Time-series at the pixel scale.
- Fiji is not entirely available (beyond the 180th meridian).
- Overestimate forest cover in some areas (e.g. Vanuatu, Mare island in New Caledonia).

National data

- There is room to improve forest cover change map at the national scale.
- MELANOBS objectives :
 - State of the forest cover change data available at the national scale.
 - Derive up to date forest cover change maps for participating countries

In New-Caledonia

- Coarse vegetation maps from IRD (Jaffre, Morat).
- Forest cover change map for 2000-2010-2020 derived from TMF.
- Natural forest cover map for year ~2020 derived from photo-interpretation of aerial images.

- - Context
- - FAO FRA estimates
 - Global datasets
 - National data

- Carbon stock data
 - Global data-sets
 - National data-sets

Global data-sets

Name	Resolution	Reference	Epoch	Method
Saatchi	1 km	Saatchi 2011	2000	GLAS, MODIS, QSCAT, SRTM
WHRC-Baccini	500 m	Baccini 2012	2008	GLAS, MODIS, SRTM
Avitabile	1 km	Avitabile 2016	2008	fusion of Saatchi and Baccini
GFW-Baccini	30 m	Baccini 2017	2000	GLAS, Landsat, SRTM
CCI Biomass	100 m	Santoro 2019	2020	ALOS2, PALSAR 2, Sentinel 1
GEDI	1 km	Dubayah 2023	2020	LiDAR GEDI 2, ALS
more				

- Usually* a three step approach: field data, LiDAR, satellite images (optical or radar).
- * somewhat different for the GEDI product.

Disadvantages of global products

Figure - Field plots used in Saatchi et al. 2011

- Some countries might be absent from the final map (eg. New Caledonia for Saatchi, WHRC-Baccini and Avitabile).
- Global models might not be accurate for countries with no field data for calibration.
- High discrepancies between maps.
- Resolutions might be coarse : >= 500 m.

GEDI derived AGB map

- No extrapolation using satellite images and SRTM.
- GEDI footprints are aggregated within 1 km grid cells.
- Low resolution: 1 km, location uncertainty of about 25 m.
- Same problem as for other data-sets: no field data from Melanesia for calibration.

National data-sets

- - Context
- - FAO FRA estimates
 - Global datasets
 - National data

- - Global data-sets
 - National data-sets
- Biodiversity data

