

- An Example of System Design
- High Level Synthesis (HLS)
- Scheduling and Binding
- · Schedding and Diname
- Operation Scheduling
 - > ASAP Scheduling
 - ALAP Scheduling
- Constrained Scheduling
 - > Hu's Algorithm
 - List Scheduling
 - > Force-Directed Scheduling
 - ➤ Linear Programming
- Binding
 - Compatibility and Conflicts
 - ➤ Left-edge Algorithm
 - > ILP Formulation of Binding
 - Module Selection Problem

Andy, Yu-Guang Chen

Design a Grading System

- ◆5 homework assignments (25%)
- ◆6 in-class quizzes (ignore lowest score) (25%)
- ◆1 midterm examination (25%)
- ◆1 final-term examination (25%)
- ◆1 extra term project
- ◆Some bonus class participation
- ◆Can you design a grading system?

Andy, Yu-Guang Chen

- ◆ An Example of System Design
- High Level Synthesis (HLS)
- Scheduling and Binding
- ◆ Operation Scheduling
 - > ASAP Scheduling
 - > ALAP Scheduling
- Constrained Scheduling
 - > Hu's Algorithm
 - List Scheduling
 - Force-Directed Scheduling
 - Linear Programming
- Binding
 - Compatibility and Conflicts
 - Left-edge Algorithm
 - ILP Formulation of Binding
 - Module Selection Problem

Andy, Yu-Guang Chen

3

High Level Synthesis (HLS)

- ◆ A process of converting high-level description of a design to a netlist
 - ➤ Input:
 - High-level languages (ex: C/C++/System C)
 - Behavioral hardware description languages (ex: Verilog, VHDL)
 - Structural HDLs (ex: Verilog, VHDL)
 - State diagrams & logic networks
 - > Tools:
 - Parser
 - Library of modules
 - Constraints:
 - Area constraints (ex: # modules of a certain type)
 - Delay constraints (ex: set of operations should finish in λ clock cycles)
 - > Output:

- Operation scheduling (time) and binding (resource)
- Control generation and detailed interconnections

Andy, Yu-Guang Chen

Behavioral Optimization

- ◆ Techniques used in software compilation
 - Expression tree-height reduction
 - Constant and variable propagation
 - Common sub-expression elimination
 - ➤ Dead-code elimination
 - \triangleright Operator strength reduction (ex: *4 \rightarrow << 2)
- ◆ Typical Hardware transformations
 - Conditional expansion
 - If (c) then x=A else x=B
 - → compute A and B in parallel, x=(C)?A:B

Andy, Yu-Guang Chen

37

Architectural Synthesis

- ◆ Deals with "computational" behavioral descriptions
 - ➤ Behavior as sequencing graph (aka dependency graph, or data flow graph DFG)
 - > Hardware resources as library elements
 - Pipelined or non-pipelined
 - Resource performance in terms of execution delay
 - Constraints on operation timing
 - Constraints on hardware resource availability
 - Storage as registers, data transfer using wires
- Objective
 - Generate a synchronous, single-phase clock circuit
 - Might have multiple feasible solutions (explore tradeoff)
 - Satisfy constraints, minimize objective:
 - Maximize performance subject to area constraint
 - Minimize area subject to performance constraints

Andy, Yu-Guang Chen

Operation Types

- ◆ For each operation, define its type
- For each resource, define a resource type and its delay (in terms of # cycles)
- ◆ T is a relation that maps an operation to a resource type that can implement it
 - > $T: V → \{1, 2, ..., n_{res}\}.$
- ♦ More general case:
 - A resource type may implement more than one operation type (ex: ALU)
- ◆ Resource binding:
 - Map each operation to a resource with the same type
 - Might have multiple options

Andy, Yu-Guang Chen

Schedule in Spatial Domain

- ◆ Resource sharing
 - ➤ More than one operation is bound to same resource
 - Operations have to be serialized
 - Can be represented using hyperedges (define vertex partition)

Andy, Yu-Guang Chen

40

HLS Subtasks: Allocation, Scheduling, Assignment

- ◆ Subtasks in high-level synthesis
 - ➤ Allocation (Module selection): specify the hardware resources that will be necessary.
 - Scheduling: determine for each operation the time at which it should be performed such that no precedence constraint is violated.
 - Assignment (Binding): map each operation to a specific functional unit and each variable to a register.
- ◆ Remarks:
 - ➤ Though the subproblems are strongly interrelated, they are often solved separately.
 - However, to attain a better solution, an iterative process executing these three subtasks must be performed.
 - Most scheduling problems are NP-complete ⇒ heuristics are used.

Andy, Yu-Guang Chen

- ◆ An Example of System Design
- ◆ High Level Synthesis (HLS)
- Scheduling and Binding
- ◆ Operation Scheduling
 - > ASAP Scheduling
 - ➤ ALAP Scheduling
- ◆ Constrained Scheduling
 - > Hu's Algorithm
 - List Scheduling
 - Force-Directed Scheduling
 - Linear Programming
- Binding
 - Compatibility and Conflicts
 - Left-edge Algorithm
 - ILP Formulation of Binding
 - Module Selection Problem

Andy, Yu-Guang Chen

4

Scheduling and Binding

- ◆ Resource constraints:
 - Number of resource instances of each type $\{a_k: k=1, 2, ..., n_{res}\}$
- ◆ Scheduling:
 - \triangleright Labeled vertices $\phi(v_3)=1$
- ♦ Binding:
 - \triangleright Hyperedges (or vertex partitions) $\beta(v_2)$ =adder₁
- ◆ Cost:
 - ➤ Number of resources ≈ area Resource dominated
 - Registers, steering logic (mux, bus), wiring, control unit Control dominated
- ◆ Delay:
 - > Start time of the "sink" node
 - Might be affected by steering logic and scheduling (control logic) resource-dominated vs. control-dominated

Andy, Yu-Guang Chen

Architectural Optimization

- ◆ Optimization in view of design space flexibility
- ◆ A multi-criteria optimization problem:
 - \triangleright Determine schedule ϕ and binding β .
 - ▶ Under area A, latency λ , and cycle time τ objectives
- ◆ Find non-dominated points in solution space
- ◆ Solution space tradeoff curves:
 - Non-linear, discontinuous
 - > Area, latency, cycle time (more?)
- ◆ Evaluate (estimate) cost functions
- Unconstrained optimization problems for resource dominated circuits:
 - Min area: solve for minimal binding

49

Scheduling and Binding

- Cost λ and A determined by both ϕ and β
 - > Also affected by floorplan and detailed routing
- $igoplus \beta$ affected by ϕ :
 - Resources cannot be shared among concurrent operations
- $\blacklozenge \phi$ affected by β :
 - Resources cannot be shared among concurrent operations
 - When register and steering logic delays added to execution delays, might violate cycle time
- ♦Order?
 - > Apply either one (scheduling, binding) first

Andy, Yu-Guang Chen

- ◆Hardware is normally partitioned into two parts:
 - **Data path:** a network of functional units, registers, multiplexers and buses.
 - The actual "computation" takes place in the data path.
 - ➤ **Control:** the part of the hardware that takes care of having the data present at the right place at a specific time, of presenting the right instructions to a programmable unit, etc.
- Often high-level synthesis concentrates on <u>data-</u> path synthesis.
 - ➤ The control part is then realized as a finite state machine or in microcode.

Andy, Yu-Guang Chen

5

How Is the Datapath Implemented?

- Assuming the following scheduling and binding
 - Wires between modules?
 - ➤ Input selection?
 - How do binding and scheduling affect congestion?
 - How do binding and scheduling affect steering logic?

Andy, Yu-Guang Chen

- ◆ An Example of System Design
- ♦ High Level Synthesis (HLS)
- Scheduling and Binding
- Operation Scheduling
 - > ASAP Scheduling
 - ➤ ALAP Scheduling
- Constrained Scheduling
 - ➤ Hu's Algorithm
 - ➤ List Scheduling
 - Force-Directed Scheduling
 - Linear Programming
- Binding
 - Compatibility and Conflicts
 - ➤ Left-edge Algorithm
 - ILP Formulation of Binding
 - Module Selection Problem

Andy, Yu-Guang Chen

5

Operation Scheduling

- ♦ Input:
 - Sequencing graph G(V, E), with n vertices
 - \triangleright Cycle time τ
 - \triangleright Operation delays $D = \{d_i: i=0..n\}$
- Output:
 - \triangleright Schedule ϕ determines start time t_i of operation v_i
 - \triangleright Latency $\lambda = t_n t_0$
- ◆ Goal: determine area & latency tradeoff
- ♦ Issues:
 - > Non-hierarchical and unconstrained
 - > Latency constrained
 - > Resource constrained
 - Hierarchical

Andy, Yu-Guang Chen

Min Latency Unconstrained Scheduling

- ◆ Simplest case: no constraints, find minimum latency
- ♦ Given set of vertices V, delays D, and partial order on operations E, find an integer labeling of operations $\phi: V \rightarrow Z^+$, such that:

$$> t_i = \phi(v_i)$$

$$\triangleright t_i \ge t_i + d_i \quad \forall (v_i, v_i) \in E$$

- $\lambda = t_n t_0$ is minimum
- ◆ Solvable in polynomial time
- ◆ Bounds on latency for resource constrained problems
- ◆ ASAP algorithm used: topological order
- ◆ Applying the DFG algorithm to finding the longest path between the start and end nodes leads to the latency of the result

Andy, Yu-Guang Chen

- An Example of System Design
- ◆ High Level Synthesis (HLS)
- Scheduling and Binding
- ◆ Operation Scheduling
 - > ASAP Scheduling
 - > ALAP Scheduling
- Constrained Scheduling
 - > Hu's Algorithm
 - List Scheduling
 - Force-Directed Scheduling
 - Linear Programming
- Binding
 - Compatibility and Conflicts
 - Left-edge Algorithm
 - ILP Formulation of Binding
 - Module Selection Problem

iviodule selection Proc

Andy, Yu-Guang Chen

EO

Constrained Scheduling

- Constrained scheduling
 - ➤ General case NP-complete
 - Minimize latency, given constraints on area or the resources (ML-RCS)
 - ➤ Minimize resources subject to bound on latency (MR-LCS)
- ◆ Exact solution methods
 - ➤ Hu's heuristic algorithm for identical processors (operations)
 - > ILP: Integer Linear Programming
- ◆ Heuristics
 - List scheduling
 - > Force-directed scheduling

Andy, Yu-Guang Chen

Constrained Scheduling

- Constrained scheduling
 - ➤ General case NP-complete
 - Minimize latency, given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - ➤ Hu's heuristic algorithm for identical processors (operations)
 - > ILP: Integer Linear Programming
- Heuristics
 - ➤ List scheduling
 - > Force-directed scheduling

Andy, Yu-Guang Chen

65

List Scheduling

- ◆ Greedy algorithm for ML-RCS and MR-LCS
 - ➤ Does NOT guarantee optimum solution
- ◆Similar to Hu's algorithm
 - Operation selection decided by criticality
 - ➤ O(n) time complexity
- ◆More general input
 - > Resource constraints on different resource types

Andy, Yu-Guang Chen

Constrained Scheduling

- Constrained scheduling
 - ➤ General case NP-complete
 - Minimize latency, given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - ➤ Hu's heuristic algorithm for identical processors (operations)
 - > ILP: Integer Linear Programming
- Heuristics
 - List scheduling
 - Force-directed scheduling

Andy, Yu-Guang Chen

Force-Directed Scheduling

- Similar to list scheduling
 - Can handle ML-RCS and MR-LCS
 - For MR-LCS, schedules step-by-step
 - > BUT, selection of the operations tries to find the globally best set of operations
- ◆ Idea time frame:
 - Find the mobility $\mu_i = t_i^L t_i^S$ of operations
 - Look at the operation type probability distributions
 - Try to flatten the operation type distributions
- Definition: operation probability density
 - $\triangleright p_i(1) = \Pr \{v_i \text{ starts at step } l\}$

Assume uniform distribution:
$$p_i(l) = \frac{1}{\mu_i + 1} \quad for \ l \in [t_i^S, t_i^L]$$

Andy, Yu-Guang Chen

Force-Directed Scheduling: Definitions

Operation-type distribution (NOT normalized to 1)

$$q_k(l) = \sum_{i:T(v_i)=k} p_i(l)$$

Operation probabilities over control steps:

$$p_i = \{ p_i(0), p_i(1), \dots, p_i(n) \}$$

Distribution graph of type k over all steps:

$$\{q_k(0), q_k(1), \dots, q_k(n)\}$$

 $ightharpoonup q_k(\ l\)$ can be thought of as *expected* operator cost for implementing operations of type k at step l.

Andy, Yu-Guang Chen

Force

- ◆Used as priority function
- ◆Force is related to concurrency:
 - > Sort operations for least force
- ◆Mechanical analogy:
- ◆Force = constant × displacement
 - \triangleright Constant = operation-type distribution, $q_k(l)$
 - Displacement = change in probability

Andy, Yu-Guang Chen

75

Self Force

- ◆Sum of forces to feasible schedule steps
- lack Self-force for operation v_i in step l

self – force
$$(i,l) = \sum_{m=i_s^s}^{t_i^L} q_k(m) (\delta_{lm} - p_i(m))$$

$$= q_k(l) - \frac{1}{\mu_i + 1} \sum_{m=t_i^s}^{t_i^L} q_k(m)$$

$$\delta_{lm} = \begin{cases} 1, & \text{if } l = m \\ 0, & \text{if } l \neq m \end{cases}$$

Andy, Yu-Guang Chen

Self Force Example: v_6

- Op v6 can be scheduled in the first two steps
 - p(1) = 0.5; p(2) = 0.5; p(3) = 0; p(4) = 0
 - Distribution: q (1) = 2.8; q (2) = 2.3
- ◆ Assign v6 to step 1:
 - variation in probability 1 0.5 = 0.5 for step 1
 - variation in probability 0 − 0.5 = -0.5 for step 2
 - ➤ Self-force: 2.8 * 0.5 2.3 * 0.5 = + 0.25
 - No successor force
- ♦ Assign v6 to step 2:
 - variation in probability 0 − 0.5 = -0.5 for step 1
 - \triangleright variation in probability 1 0.5 = 0.5 for step 2
 - > Self-force: -2.8 * 0.5 + 2.3 * 0.5 = -0.25
 - Successor-force:
 - \triangleright Successor (v7) force is 2.3 * (0 0.5) + 0.8 * (1 0.5) = -0.75
 - Total force = -1 1*0.8 0.5*(2.3 + 0.8) = -0.75
- Hence, assign v6 to step 2

Andy, Yu-Guang Chen

Predecessor/successor Force

- ◆ Related to the predecessors/successors
 - ➤ Fixing an operation timeframe restricts timeframe of predecessors/successors
 - ➤ Ex: Delaying an operation implies delaying its successors

$$ps-force(i,l) = \frac{1}{\widetilde{\mu}_i + 1} \sum_{m=\widetilde{t}_i}^{\widetilde{t}_i^L} q_k(m) - \frac{1}{\mu_i + 1} \sum_{m=t_i^S}^{t_i^L} q_k(m)$$

Andy, Yu-Guang Chen

P/S Force Example: $v_7 \& v_9$

- ◆ Type 1 (v7) distribution:
 - \Rightarrow q(1) = 2.8; q(2) = 2.3; q(3) = 0.8; q(4) = 0
- ◆ Assign v6 to step 2:
 - > Time frame of v7 is reduced
 - → 1 * (0.8) 0.5 * (2.3 + 0.8) = -0.75
- ◆ Type 2 (v9) distribution:

```
ightharpoonup q(1) = 0.3; q(2) = 1; q(3) = 2; q(4) = 1.6
```

- ◆ Assign v8 to step 2:
 - > Time frame of v9 is reduced
 - \triangleright 0.5 * (2 + 1.6) 0.3 * (1 + 2 + 1.6) = 0.42

Andy, Yu-Guang Chen

81

Force-Directed Scheduling: Algorithm

Andy, Yu-Guang Chen

Force-Directed Scheduling: Algorithm

- ◆ Very similar to LIST_L(G(V,E), a)
 - Compute mobility of operations using ASAP and ALAP
 - > Select and schedule operations
 - Go to next control step
- Difference with list scheduling in selecting operations
 - Compute operation probabilities and type distributions
 - Select operations with least force
 - Update operation probabilities and type distributions
 - Consider the effect on the type distribution
 - Consider the effect on p/s nodes and their type distributions
 - Complexity: O(n³)

Andy, Yu-Guang Chen

83

Resource Constraint Scheduling

- Constrained scheduling
 - ➤ General case NP-complete
 - Minimize latency given constraints on area or the resources (ML-RCS)
 - Minimize resources subject to bound on latency (MR-LCS)
- Exact solution methods
 - > ILP: Integer Linear Programming
 - Hu's heuristic algorithm for identical processors (operations)
- Heuristics
 - List scheduling
 - Force-directed scheduling

Andy, Yu-Guang Chen

ILP Formulation of ML-RCS

- Use binary decision variables
 - > i = 0, 1, ..., n
 - $> l = 1, 2, ..., \lambda'+1$ λ' : given upper-bound on latency
 - $x_{i,l} = 1$ if operation i starts at step l, 0 otherwise.
- Set of linear inequalities (constraints), and an objective function (min latency)
- ◆ Observations

$$x_{i,l} = 0 \quad for \quad l < t_i^S \quad and \quad l > t_i^L \quad \text{feasibility}$$

$$(t_i^S = ASAP(v_i), t_i^L = ALAP(v_i))$$

- t_i = start time of op i
- $\sum_{m=l-d_i+1}^{l} x_{i,m} = 1$
- If op v_i takes d_i steps, is op v_i (still) executing at step l?

Andy, Yu-Guang Chen

Start Time vs. Execution Time

- lacktriangle For each operation v_i , only one start time
- \bullet If $d_i=1$, then the following questions are the same:
 - \triangleright Does operation v_i start at step l?
 - \triangleright Is operation v_i running at step l?
- ♦ But if $d_i > 1$, then the two questions should be formulated as:
 - \triangleright Does operation v_i start at step l?
 - Does $x_{i,l} = 1$ hold?
 - \triangleright Is operation v_i running at step l?

Andy, Yu-Guang Chen

89

Operation v_i Still Running at Step I?

lacktriangle Assume that v_Q takes 3 steps, is v_Q running at step 6?

$$>$$
 Is $x_{9,6} + x_{9,5} + x_{9,4} = 1$?

 $x_{9,4} = 1$

- \bullet Note: $x_{9,6}=1$
 - > Only one (if any) of the above three cases can happen
 - ➤ To meet resource constraints, we have to ask the same question for ALL steps, and ALL operations of that type

Andy, Yu-Guang Chen

Operation v_i Still Running at Step I?

lacktriangle Is v_i running at step l?

> Is
$$x_{i,l} + x_{i,l-1} + ... + x_{i,l-d_i+1} = 1$$
?

 $x_{i} = 1$

 $x_{i,l-1} = 1$

Andy, Yu-Guang Chen

91

 $x_{i,l-d_i+1}=1$

ILP Formulation of ML-RCS (Cont.)

- ◆ Constraints:
 - Variables Start times: $\sum_{l} x_{i,l} = 1, \quad i = 0,1,\dots,n$
 - > Sequencing (dependency) relations must be satisfied

$$t_i \ge t_j + d_j \ \forall (v_j, v_i) \in E \Rightarrow \sum_l l \cdot x_{i,l} \ge \sum_l l \cdot x_{j,l} + d_j$$

Resource constraints

$$\sum_{i:T(v_i)=k} \sum_{m=l-d_i+1}^{l} x_{i,m} \le a_k, \quad k = 1, \dots, n_{res}, \quad l = 1, \dots, \overline{\lambda} + 1$$

- lacktriangle Objective: min $c^T t$.
 - > t =start times vector, c =cost weight (ex: [0 0 ... 1])
 - When $c = [0 \ 0 \ ... \ 1], c^T t = \sum_{l} l \cdot x_{n,l}$

Andy, Yu-Guang Chen

TLP Example: Unique Start Times Constraint

$$x_{1,1} + x_{1,2} + x_{1,3} + x_{1,4} = 1$$

 $x_{2,1} + x_{2,2} + x_{2,3} + x_{2,4} = 1$

•••

...

...

$$x_{11,1} + x_{11,2} + x_{11,3} + x_{11,4} = 1$$

☐ Using ASAP and ALAP:

$$x_{1,1} = 1$$

$$x_{2,1} = 1$$

$$x_{3,2} = 1$$

$$x_{4,3} = 1$$

$$x_{5,4} = 1$$

$$x_{6,1} + x_{6,2} = 1$$

$$x_{7,2} + x_{7,3} = 1$$

$$x_{8,1} + x_{8,2} + x_{8,3} = 1$$

$$x_{9,2} + x_{9,3} + x_{9,4} = 1$$

• • •

Andy, Yu-Guang Chen

LP Example: Dependency Constraints

◆Using ASAP and ALAP, the non-trivial inequalities are: (assuming unit delay for + and *)

$$\begin{aligned} 2 \cdot x_{7,2} + 3 \cdot x_{7,3} - 1 \cdot x_{6,1} - 2 \cdot x_{6,2} - 1 &\geq 0 \\ 2 \cdot x_{9,2} + 3 \cdot x_{9,3} + 4 \cdot x_{9,4} - 1 \cdot x_{8,1} - 2 \cdot x_{8,2} - 3 \cdot x_{8,3} - 1 &\geq 0 \\ 2 \cdot x_{11,2} + 3 \cdot x_{11,3} + 4 \cdot x_{11,4} - 1 \cdot x_{10,1} - 2 \cdot x_{10,2} - 3 \cdot x_{10,3} - 1 &\geq 0 \\ 4 \cdot x_{5,4} - 2 \cdot x_{7,2} - 3 \cdot x_{7,3} - 1 &\geq 0 \\ 5 \cdot x_{n,5} - 2 \cdot x_{9,2} - 3 \cdot x_{9,3} - 4 \cdot x_{9,4} - 1 &\geq 0 \\ 5 \cdot x_{n,5} - 2 \cdot x_{11,2} - 3 \cdot x_{11,3} - 4 \cdot x_{11,4} - 1 &\geq 0 \end{aligned}$$

Andy, Yu-Guang Chen

9

ILP Example: Resource Constraints

◆ Resource constraints (assuming 2 adders and 2 multipliers)
x = + x = + x = + x = < 2</p>

$$\begin{aligned} x_{1,1} + x_{2,1} + x_{6,1} + x_{8,1} &\leq 2 \\ x_{3,2} + x_{6,2} + x_{7,2} + x_{8,2} &\leq 2 \\ x_{7,3} + x_{8,3} &\leq 2 \\ x_{10,1} &\leq 2 \\ x_{9,2} + x_{10,2} + x_{11,2} &\leq 2 \\ x_{4,3} + x_{9,3} + x_{10,3} + x_{11,3} &\leq 2 \\ x_{5,4} + x_{9,4} + x_{11,4} &\leq 2 \end{aligned}$$

♦Objective:

Since λ =4 and sink has no mobility, any feasible solution is optimum, but we can use the following anyway: $Min = 1 \cdot x_{n,1} + 2 \cdot x_{n,2} + 3 \cdot x_{n,3} + 4 \cdot x_{n,4}$

Andy, Yu-Guang Chen

ILP Formulation of MR-LCS

- ◆ Dual problem to ML-RCS
- ◆Objective:
 - ➤ Goal is to optimize total resource usage, a.
 - ightharpoonup Objective function is c^Ta , where entries in c are respective area costs of resources
- **♦**Constraints:
 - Same as ML-RCS constraints, plus:
 - > Latency constraint added:

$$\sum_{l} l \cdot x_{n,l} \le \overline{\lambda} + 1$$

Note: unknown a_k appears in constraints.

Andy, Yu-Guang Chen

97

Further Study of ILP

- **♦**Linear programming
 - http://www.cs.sunysb.edu/~algorith/files/linear-programming.shtml
- **♦**Linear programming tools
 - http://lpsolve.sourceforge.net/5.5/

Andy, Yu-Guang Chen

Optimum Sharing Problem

- ◆Scheduled sequencing graphs
 - ➤ Operation concurrency well defined
- ◆ Consider *operation types* independently
 - ➤ Problem decomposition
 - ➤ Perform analysis for each resource type

Andy, Yu-Guang Chen

102

Compatibility and Conflicts

- Operation compatibility:
 - > Same type
 - ➤ Non-concurrent

t1	x=a+b	y=c+d	1	2
t2	s=x+y	t=x-y	3	4
t3	z=a+t		5	

- **♦** Compatibility graph:
 - ➤ Vertices: operations
 - ➤ Edges: compatibility relation
- ◆ Conflict graph:
 - ➤ Complement of compatibility graph

Conflict graph

5

Andy, Yu-Guang Chen

Graph Terminologies

- igspace Clique number $\omega(G)$: the cardinality of the largest clique (maximum clique)
- ♦ Clique cover number $\kappa(G)$: the cardinality of a minimum clique cover
- lacktriangle Stability number $\alpha(G)$: The cardinality of the largest stable set (independent set)
- lacktriangle Chromatic number $\chi(G)$: The smallest number that can be the cardinality of stable set partition

Andy, Yu-Guang Chen

107

Example

- igspace Clique number $\omega(G)$
- lacktriangle Clique cover number $\kappa(G)$
- lack Stability number $\alpha(G)$
- igspace Chromatic number $\chi(G)$

Andy, Yu-Guang Chen

Graph Properties

- ϕ ω(G) ≤ χ(G): clique number ≤ chromatic number
- ϕ α(G) ≤ κ(G): stability number ≤ clique cover number
- ◆Perfect graph: "=" holds

Andy, Yu-Guang Chen

109

Perfect Graph

- ◆The chromatic number of every induced subgraph equals the size of the largest clique of that subgraph
 - ➤ In all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time

Andy, Yu-Guang Chen

Compatibility and Conflict Graphs

- Clique partitioning gives an assignment in a compatibility graph.
- Graph coloring gives an assignment in the complementary conflict graph.

Andy, Yu-Guang Chen

111

Compatibility and Conflicts

- ◆Compatibility graph:
 - ➤ Partition the graph into a minimum number of cliques
 - \triangleright Find clique cover number κ (G₊)
- ◆Conflict graph:
 - ➤ Color the vertices by a minimum number of colors
 - Find the chromatic number $\chi(G_{-})$
- ◆NP-complete problems:
 - ► Heuristic algorithms

Andy, Yu-Guang Chen

The Assignment Problem

- Assumption: assignment follows scheduling.
- ◆ The claim of a task on an agent is an interval ⇒ minimum resource utilization can be found by left-edge algorithm.
- ◆ In case of iterative algorithm, interval graph becomes circular-arc graph ⇒ optimization is NP-complete.

Andy, Yu-Guang Chen

115

Special Perfect Graphs

- **◆**Comparability graph:
 - ➤ Graph G (V, E) has an orientation G (V, F) with the transitive property

$$(v_i, v_i) \in F$$
 and $(v_i, v_k) \in F \Rightarrow (v_i, v_k) \in F$

- ◆Interval graph:
 - > Vertices correspond to intervals
 - ➤ Edges correspond to interval intersection

- ➤ Subset of *chordal* graphs
 - Every loop with more than three edged has a chord

Andy, Yu-Guang Chen

Andy, Yu-Guang Chen


```
Left-edge Algorithm

Left-edge Algorithm

Left-edge Algorithm

Left-edge Algorithm

Left-edge Algorithm

Sort elements of I in a list L in ascending order of I_i; c = 0;

while (some interval has not been colored) do {

S = \emptyset;

r = 0;

while (exists s \in L such that I_s > r) do {

s = \text{First element in the list } L \text{ with } I_s > r;

S = S \cup \{s\};

r = r_s;

Delete s from L;

}

c = c + 1;

Label elements of S with color c;

Andy, Yu-Guang Chen
```


ILP Formulation of Binding

- ◆Boolean variable b_{ir}
 - ➤ Operation *i* bound to resource *r*
- ◆ Boolean variables x_{il}
 - ➤ Operation *i* scheduled to start at step *l*

$$\sum_{r} b_{ir} = 1$$
 for all operations i

 $\sum_{i} b_{ir} \sum_{m=l-di+1..l} x_{im} \le 1$ for all steps l and resources r

Andy, Yu-Guang Chen

Module Selection Problem

- **◆**Extension of resource sharing
 - ➤ Library of resources
 - ➤ More than one resource per type
- ◆Example:
 - ➤ Ripple-carry adder
 - ➤ Carry-look-ahead adder
- ◆ Resource modeling:
 - > Resource subtypes with
 - (area, delay) parameters

Andy, Yu-Guang Chen

12

Module Selection Solution

- **♦ILP** formulation:
 - > Decision variables
 - Select resource sub-type
 - Determine (area, delay)
- ◆ Heuristic algorithm
 - ➤ Determine *minimum latency* with fastest resource subtypes
 - Recover area by using slower resources on noncritical paths

Andy, Yu-Guang Chen

