ВИБРАЦИЯ МАШИН С ВОЗВРАТНО-ПОСТУПАТЕЛЬНЫМ И ВРАЩАТЕЛЬНЫМ ДВИЖЕНИЕМ

ТРЕБОВАНИЯ К СРЕДСТВАМ ИЗМЕРЕНИЙ

Издание официальное

53 3-98/53

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск

Предисловие

1 РАЗРАБОТАН Российской Федерацией

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 11—97 от 25 апреля 1997 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Армения	Армгосстандарт
Республика Белоруссия	Госстандарт Белоруссии
Республика Казахстан	Госстандарт Республики Казахстан
Киргизская Республика	Киргизстандарт
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главная государственная инспекция Туркменистана
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

- 3 Настоящий стандарт представляет собой аутентичный текст международного стандарта ИСО 2954—75 «Механическая вибрация машин с вращательным и возвратно-поступательным движением. Требования к приборам для измерения интенсивности вибрации»
- 4 Постановлением Государственного комитета Российской Федерации по стандартизации, метрологии и сертификации от 17 сентября 1998 г. № 351 межгосударственный стандарт ГОСТ ИСО 2954—97 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1999 г.

5 ВВЕДЕН ВПЕРВЫЕ

Введение

Настоящий стандарт является прямым применением международного стандарта ИСО 2954, который, в свою очередь, дает метрологическое обеспечение стандартов ИСО серии 10816, посвященных контролю вибрации машин по результатам ее измерения на невращающихся частях. В этих документах параметром вибрации, который принят в качестве характеристики для оценки степени опасности вибрации с точки зрения возможностей эксплуатации машин, является среднее квадратическое значение виброскорости. ИСО 2954 содержит требования к средствам измерений указанного параметра вибрации в характерном диапазоне частот 10...1000 Гц, в котором заключена основная энергия колебаний для машин многих видов. Эти требования призваны обеспечить необходимую точность измерения вибрации (т.е. среднего квадратического значения виброскорости), позволяющую сравнивать полученные значения с границами зон состояний (см., например, ИСО 10816-1 [1]). Кроме того, в настоящем стандарте содержится ряд требований к тому, какие характеристики средств измерений, позволяющие оценить возможность использования данных средств для измерений в целях контроля вибрационного состояния машин, должны быть указаны изготовителем.

В стандарте приведены только те требования к средствам измерений, которые служат для обеспечения вышеуказанных целей. В то же время ничто не препятствует конструкторам создавать приборы, которые, полностью удовлетворяя данным требованиям, могут быть предназначены для выполнения ряда дополнительных функций: углубленного анализа вибрации в целях диагностирования, балансировки и т.п.

ГОСТ ИСО 2954—97

Содержание

1	Область применения	ĺ
2	Нормативные ссылки	l
3	Определения	Į
4	Общие требования	l
5	Требования к преобразователю вибрации и соединительному кабелю	3
6	Требования к блоку измерения и индикации	1
7	Требования к блоку питания	3
Π	риложение А Библиография	;

ВИБРАЦИЯ МАШИН С ВОЗВРАТНО-ПОСТУПАТЕЛЬНЫМ И ВРАЩАТЕЛЬНЫМ ДВИЖЕНИЕМ

Требования к средствам измерений

Mechanical vibration of rotating and reciprocating machinery. Requirements for instruments for measuring vibration severity

Дата введения 1999-07-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на средства измерений вибрации машин с возвратнопоступательным и вращательным движением (далее — приборы) на невращающихся частях (например опорах и корпусах подшипников) в целях контроля вибрации в соответствии с нормами, установленными в соответствующих стандартах и технических условиях, и определяет требования, которым должен соответствовать прибор, чтобы погрешности измерений не превышали заданных.

Приборы, на которые распространяется настоящий стандарт, позволяют получить отсчет или регистрацию показаний среднего квадратического значения виброскорости, которое принято в качестве характеристики вибрационного состояния машин.

Примечание — Эти приборы могут быть использованы также для других объектов и задач, связанных с измерением вибрации, где требуется аналогичная точность измерения в установленном для данных приборов диапазоне частот, например измерение виброскорости конструкций, тоннелей, мостов и т.д.

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 16819—71 Приборы виброизмерительные. Термины и определения

ГОСТ 24346—80 (СТ СЭВ 1926—79) Вибрация. Термины и определения

ГОСТ 30296—95 Аппаратура общего назначения для определения основных параметров вибрационных процессов. Общие технические требования

3 ОПРЕДЕЛЕНИЯ

В настоящем стандарте применены термины по ГОСТ 16819 и ГОСТ 24346.

4 ОБЩИЕ ТРЕБОВАНИЯ

- 4.1 Прибор должен удовлетворять общим техническим требованиям к аппаратуре для измерения параметров вибрации по ГОСТ 30296.
 - 4.2 Прибор должен содержать следующие основные узлы:
 - преобразователь вибрации;
- блок измерения и индикации, который может содержать усилитель, фильтр (или несколько фильтров), устройства для получения среднего квадратического значения виброскорости, устройства отсчета и регистрации показаний;
 - блок питания.
- 4.3 Прибор должен измерять вибрацию в диапазоне частот 10...1000 Гц. В таблице 1 и на рисунке 1 указаны предельно допустимые отклонения коэффициента преобразования прибора относительно коэффициента преобразования на калибровочной частоте 80 Гц.

Рисунок 1 — Номинальное значение относительного коэффициента передачи и пределы допустимого отклонения

Таблица 1 — Значения относительного коэффициента преобразования

Частота, Гц	Значение относительного коэффициента преобразования			
	номинальное	минимальное	максимальное	
1,0		_	0,010	
2,5	0,016	0,010	0,025	
10,0	1,000	0,800	1,100	
20,0	1,000	0,900	1,100	
40,0	1,000	0,900	1,100	
80,0	1,000	1,000	1,000	
160,0	1,000	0,900	1,100	
500,0	1,000	0,900	1,100	
1000,0	1,000	0,800	1,100	
4000,0	0,016	0,010	0,025	
10000,0	_	_	0,010	

Примечание — Иногда для исключения составляющих вибрации, не связанных с оценкой вибрационного состояния машины, приходится ограничивать диапазон частот измерений с помощью дополнительных фильтров. Следует иметь в виду, что в этом случае измеренное значение не может быть использовано для оценки интенсивности вибрации в соответствии с теми стандартами и техническими условиями, в которых это значение определено для всего диапазона измерений ($10...1000~\Gamma_{\rm II}$). Во избежание путаницы рекомендуется указывать граничные частоты диапазона измерений для измеряемой величины [например для среднего квадратического значения виброскорости $\nu_{r.m.s.}$ (от 40 до $100~\Gamma_{\rm II}$) = 7,5 мм/с].

4.4 Следует указывать диапазон измерения среднего квадратического значения виброскорости, что может найти отражение в названии прибора, например: «Прибор для измерения вибрации в диапазоне 0,28...28 мм/с».

Показание, соответствующее нижней границе диапазона измерений, должно составлять не менее 30 % конечного значения шкалы.

4.5 Основная погрешность прибора, определяемая допустимыми отклонениями частотной характеристики в соответствии с 4.3, погрешностью в оценке коэффициента преобразования на калибровочной частоте 80 Гц (погрешность калибровки), отклонениями от линейности преобразования в измерительной цепи прибора в диапазоне измерений и ценой деления шкалы и установленная для среднего квадратического значения виброскорости, соответствующего 80 % конечного значения шкалы, не должна превышать $\frac{+10}{-20}$ % измеренного значения. Это предельное значение погрешности относится ко всему рабочему диапазону температур, установленному для преобразователей вибрации и блоков измерения и индикации (см. 5.8 и 6.4), для всех способов крепления преобразователей вибрации (раздел 5), для различных длин кабеля, соединяющего преобразователь вибрации и блок измерения и индикации, предусмотренного производителем (см. 5.12), и для колебаний напряжения питания в пределах ± 10 %.

 Π р и м е ч а н и е — Контроль влияния вышеперечисленных факторов проводят для каждого фактора в отдельности.

4.6 Калибровку проводят посредством возбуждения преобразователя вибрации синусоидальной вибрацией, направление которой отклоняется от оси чувствительности указанного преобразователя не более чем на 5°. Общие гармонические искажения вибрации не должны превышать 5 %. Погрешность задания амплитуды возбуждаемой вибрации — не более 3 % во всем диапазоне частот измерений.

Рекомендуется определять коэффициент преобразования на калибровочной частоте 80 Γ ц при значении $v_{r,m,s}=100$ мм/с и температуре воздуха (22±3) °C.

5 ТРЕБОВАНИЯ К ПРЕОБРАЗОВАТЕЛЮ ВИБРАЦИИ И СОЕДИНИТЕЛЬНОМУ КАБЕЛЮ

- 5.1 Следует использовать преобразователь вибрации (далее преобразователь) инерционного типа, позволяющий измерить вибрацию относительно некоторой неподвижной системы координат, которая определяется положением преобразователя.
- 5.2 Для преобразователей контактного типа должно быть предусмотрено жесткое механическое крепление (шпилька, зажим, отвердевающие клеи). Резонансная частота системы крепления должна лежать вне рабочего диапазона частот преобразователя.
- 5.3 Относительный коэффициент поперечного преобразования должен быть не менее 10 % для всех способов крепления во всем диапазоне частот измерений.

Амплитудная характеристика преобразователя должна быть линейной вплоть до значений, превышающих, по крайней мере, в 3 раза конечное значение шкалы.

5.4 Следует указывать эффективную массу преобразователя.

Примечание — Поскольку измеряемая вибрация не должна существенно изменяться вследствие крепления преобразователя, знание эффективной массы позволяет потребителю оценить пригодность данного преобразователя для использования в конкретных условиях. Для проверки этого рекомендуется удвоить массу преобразователя с помощью дополнительного груза. Если новые показания отличаются от первоначальных более чем на 12 %, то масса преобразователя является слишком большой для данного объекта и результаты измерений нельзя считать достоверными.

- 5.5 Амплитудный и частотный рабочие диапазоны преобразователя должны допускать проведение измерений в пределах допустимой погрешности, определенной в 4.5.
- 5.6 Преобразователь должен выдерживать без изменения своих характеристик вибрацию во всех направлениях, превышающую установленные для него максимальные значения диапазона измерений не менее чем в 3 раза. Следует указывать максимально допустимые значения вибрации и удара вдоль любой оси преобразователя, которые тот может выдерживать без повреждений.
- 5.7 Следует указывать значение дополнительной погрешности, вызванной влиянием на результат измерения магнитного и электрического полей, акустического шума, а также в случае, если преобразователь имеет электропроводящее соединение с объектом измерения и последовательно соединен с устройством измерения и индикации, электрического тока в контуре заземления (если значение погрешности зависит от ориентации поля относительно преобразователя, следует рассмат-

ГОСТ ИСО 2954-97

ривать наиболее неблагоприятный случай). Данную погрешность определяют в ходе испытаний при воздействии следующих влияющих величин:

- Преобразователь подвергают воздействию однородного магнитного поля напряженностью 100 А/м и частотой 50 или 60 Гц. Напряженность поля должна быть измерена перед помещением в него преобразователя.
- Преобразователь подвергают воздействию однородного шумового поля со средним квадратическим значением уровня звукового давления 100 дБ (по отношению к $2 \cdot 10^{-5} \text{ Па}$) в каждой октаве, производимого генератором случайного шума или генератором качающей частоты в диапазоне $32...2000 \text{ }\Gamma\textsc{i}$.
- Преобразователь подвергают воздействию тока на частоте питания со средним квадратическим значением 100 мА, который подается на заземленные концы преобразователя и разряжается на клеммах заземления блока измерения и индикации.

Полученные значения дополнительной погрешности должны быть в пределах ±10 %.

- 5.8 Следует указывать температурный диапазон работы преобразователя и соединительного кабеля, в пределах которого погрешность измерения не превосходит значений, указанных в 4.5, а также диапазон температур, в пределах которого преобразователь и соединительный кабель могут работать без повреждений.
- 5.9 Следует указывать максимальную влажность, при которой преобразователь и соединительные кабели могут функционировать с установленными характеристиками.

Если преобразователь должен быть использован в какой-либо другой агрессивной среде, например в коррозийной атмосфере, должна быть указана способность преобразователя работать в этих условиях. Если преобразователь должен быть использован во взрывоопасной среде, он должен отвечать требованиям взрывобезопасности.

- 5.10 Рекомендуется указывать коэффициент влияния деформации на выходной сигнал преобразователя.
- 5.11 Рекомендуется указывать прогнозируемый срок эксплуатации, среднее время между отказами и межповерочный интервал.
- 5.12 Длина соединительного кабеля между преобразователем и блоком измерения и индикации не должна быть менее 1 м. Изготовитель должен указывать, какие дополнительные кабели могут быть использованы без нарушения допуска, установленного в 4.5.

6 ТРЕБОВАНИЯ К БЛОКУ ИЗМЕРЕНИЯ И ИНДИКАЦИИ

- $6.1\,$ В приборе могут быть использованы отсчетные устройства стрелочного, графического или цифрового типов, обеспечивающие показание истинного среднего квадратического значения виброскорости. Отсчетное устройство должно давать легкосчитываемое показание, начиная со значения, составляющего $^{1}/_{5}$ конечного значения измерительной шкалы. Погрешность градуировки отсчетного устройства не должна превышать $\pm 2,5\,\%$ конечного значения шкалы.
- 6.2 При подаче на вход блока измерения и индикации (далее блок) синусоидального сигнала частотой, лежащей внутри частотного диапазона измерений прибора, и напряжением, соответствующим 70 % конечного значения измерительной шкалы, первоначальное отклонение показаний отсчетного устройства сверх установившегося значения не должно превышать 10 % этого значения.
- 6.3~ Для проверки коэффициента усиления блока должна быть предусмотрена возможность установки общего коэффициента усиления на определенной частоте (например 80 Γ ц) с погрешностью менее чем 2~%.
 - 6.4 Следует указывать рабочий диапазон температур блока измерения и индикации.
- 6.5 Следует указывать максимальную влажность, при которой блок может функционировать с сохранением установленных характеристик.

Если блок должен быть использован в какой-либо другой агрессивной среде, например в коррозийной атмосфере, должна быть указана его способность работать в этих условиях. Блок, используемый во взрывоопасной среде, должен отвечать требованиям взрывобезопасности.

7 ТРЕБОВАНИЯ К БЛОКУ ПИТАНИЯ

Следует указывать требования к подводимой мощности и напряжению для преобразователя и блока измерения и индикации.

ПРИЛОЖЕНИЕ А (справочное)

БИБЛИОГРАФИЯ

[1] ИСО 10816-1—95 Вибрация. Контроль вибрационного состояния машин по измерениям вибрации на невращающихся частях. Общее руководство

УДК 534.108:006.354

MKC 17.160

П17

ОКП 42 7710

Ключевые слова: приборы, машины вращательного и возвратно-поступательного действия, вибрация, виброскорость, среднее квадратическое значение, измерение, погрешности, преобразователи вибрации

Редактор Л.В. Афанасенко Технический редактор О.Н. Власова Корректор В.И. Кануркина Компьютерная верстка Л.А. Круговой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 28.09.98. Подписано в печать 29.10.98. Усл. печ. л. 1,40. Уч.-изд. л. 0,69. Тираж 336 экз. С1361. Зак. 2033.