Metody Numeryczne Sprawozdanie z Projketu 1

1 Treść zadania

23. Obliczanie wskaźnika uwarunkowania cond(A) macierzy nieosobliwej $A \in \mathbb{R}^{n \times n}$:

$$cond(A) = ||A^{-1}||_1 \cdot ||A||_1.$$

Zaimplementować metodę eliminacji Gaussa z pełnym wyborem elementu głównego do wyznaczenia macierzy A^{-1} .

2 Metoda rozwiązania

Metoda Gaussa z pełnym wyborem elementu głównego (GECP) jest modyfikacją zwykłej metody eliminacji Gaussa (GE). Działanie GE polega na tym, że dla każdego $i=1,\dots,n-1$, dla każdego $j=i,\dots,n$ wykonujemy eliminację na wierszach, czyli wierszowi a_j przypisujemy wartość $a_j - \frac{a_{i,j}}{a_{i,i}} \cdot a_i$. Sprawia to, że elementy w kolumnie i pod elementem $a_{i,i}$ są zerami. Jednocześnie w macierzy jednostkowej o tych samych wymiarach zapisujemy współczynniki eliminacji, czyli używane wcześniej $\frac{a_{i,j}}{a_{i,j}}$.

Modyfikacja w GECP polega na tym, że na początku każdego kroku i następuje wybór tzw. elementu wiodącego, czyli największego co do modułu elementu z podmacierzy $A^{(i\cdots n)\times (i\cdots n)}$, a następnie zamiana wierszy i kolumn w taki sposób, by element wiodący znalazł się na miejscu $i\times i$.

Odwracanie macierzy trójkątnych dolnych i górnych za pomocą metody Gaussa odbywa się w następujący sposób: do macierzy X dopisujemy macierz jednostkową. Następnie sprowadzamy X do macierzy jednostkowej poprzez operacje na wierszach, wykonując te same operacje na dopisanej macierzy I. Z układu [X|I] doszliśmy do [I|Y], i okazuje się, że $Y = X^{-1}$.

3 Sposób działania programu

Używając zadanej metody GECP funkcja $my_gecp(A)$ program znajduje rozkład PAQ = LU taki, że:

- P i Q macierze permutacji wierszy i kolumn,
- L macierz trójkatna dolna z jedynkami na przekatnej,
- U macierz trójkatna górna.

Zauważmy, że PAQ = LU jest równoważne zapisowi $A^{-1} = QU^{-1}L^{-1}P$. Oznacza to, że wystarczy odwrócić macierze L i U (funkcje inverse_L(L) i inverse_U(U)), a następnie wymnożyć te macierze.

Gdy mamy już A^{-1} (inverse_A(A)), należy znaleźć normę kolumnową macierzy A i jej odwrotności (my_colnorm(A)), czyli ich największe sumy wartości bezwzględnych elementów w każdej z kolumn.

Na końcu funkcja my_cond(A), zwraca wynik zadany przez treść zadania - docelowo identyczny z cond(A, 1).

Przykłady 4

1000

258274.4397

1.9799e-13

Funkcja my_cond.m jest testowana na różnych rozmiarów (od 5 do 1000 wierszy i kolumn) macierzy losowych, macierzy Hilberta i macierzy z funkcji gallery ('lehmer').

Dla każdego przypadku w skrypcie testy.m obliczane są wyniki działania funkcji my_cond(A) oraz cond(A, 1), a także różnica tych wyników; czasy ich działania i ich różnica: r_R i r_R , wyliczone przy odwracaniu macierzy A. Następnie w skrypcie tabele.m liczone są błędny względne i dane są porządkowane.

Do przekształcenia macierzy z MATLAB do formatu .tex użyłem skryptu matrix2latex.m, który napisał Moritz Koehler. Kod i licencja zostały załączone do kodów projektu.

Uwaga: skrót "b.w." oznacza "błąd względny", a czas podawany jest w sekundach

b.w. my_cond(A) Wym. my_cond(A) cond(A, 1) czas my_cond(A) czas cond(A, 1) b.w. czasów r_L 3.2194e-17226.6786 226.67866.2692e-160.0300530.0035197.5402 7.5884e-1710 1154.8109 9.8446e-16 0.001402 6.1138e-17 5.7368e-17 1154.8109 7.2e-0518.4722 15 479.1358 479.13583.7964e-150.000518 3.9e-0512.2821 3.1702e-17 6.0889e-176.9002e-17 20 780.9473 780.9473 1.4558e-15 0.000707 0.000511 0.38356 2.7634e-1725 882.749 882.749 0.001249 0.0006310.97945.9294e-175.6445e-170.33744 1.2803e-16 5.8501e-17 30 1040.1021 1040.1021 3.4977e-15 0.001193 0.000892 50 2627.6608 2627.6608 4.3265e-150.00286 0.000108 25.4815 7.5597e-17 4.51e-17 75 2013.5371 2013.5371 9.1467e-150.007068 0.002393 1.9536 8.8715e-17 1.0636e-16 100 11111.4489 11111.4489 1.3587e-140.0104260.0009769.68246.3103e-174.819e-179391.4236 9391.4236 1.9369e-150.054731 $0.\overline{009796}$ 4.58715.9551e-17 7.3365e-17 150 200 40158.4013 40158.4013 3.7505e-140.10371 0.000625 164.9312 9.5892e-17 5.4306e-17 250 88726.6032 88726.6032 1.1792e-13 0.10047 0.001 99.467 8.442e-17 1.1921e-16 778390.8723 0.001171 133.6422 300 778390.8723 9.8455e-130.157676.3477e-17 7.639e-1764489.6271 64489.6271 1.0583e-13 0.36335 0.001796 201.309 1.0548e-169.0479e-17400 500 471195.4813 471195.4813 1.1978e-120.61917 0.002868 214.8888 1.2791e-16 7.3313e-17 600 79263.6062 79263.6062 4.2409e-14 1.0122 0.008884112.934 1.5912e-16 1.2027e-16 42918.2073 42918.2073 0.006099 2.4223e-16 3.0018e-16700 2.1361e-14 1.786 291.836 3.4484e-152.7883 151915.9856 151915.9856 0.00854 325.4958 1.1328e-16 1.2451e-16 800 634161.3956 634161.3956 3.7064e-134.54250.013845 327.0946 2.5963e-16 1.0479e-16 324.2584 258274.4397

0.017224

1.8232e-16

9.42e-17

Tabela 1: Wyniki dla macierzy losowych

Wyniki obliczania współczynnika uwarunkowania niemalże nie odbiegaja od siebie błąd wzglęgny jest bardzo mały. Widać jednak, że działanie funkcji MATLABowej jest dużo szybsze.

5.6023

Tabela 2: Wyniki dla macierzy Hilberta

Wym.	my_cond(A)	cond(A, 1)	b.w. my_cond(A)	czas my_cond(A)	czas cond(A, 1)	b.w. czasów	r_R	r_L
5	943656	943656	4.8125e-13	0.00829	0.000757	9.9511	1.8034e-17	1.7358e-17
10	$3.53538e{+14}$	$3.53523\mathrm{e}{+14}$	4.2107e-05	0.004284	0.000197	20.7462	2.3863e-17	2.1487e-17
15	$1.10093e{+}18$	$1.20924e{+}18$	0.089564	0.000434	0.000245	0.77143	4.7757e-17	1.6117e-17
20	$2.34526e{+}19$	$1.04795\mathrm{e}{+19}$	1.2379	0.000605	0.000225	1.6889	3.3531e-17	3.0215e-17
25	2.07646e+19	$1.73572e{+}19$	0.19631	0.001255	0.000511	1.456	2.5374e-17	5.0509e-17
30	3.74342e+19	$5.59337e{+}18$	5.6926	0.001412	0.000467	2.0236	1.9881e-17	7.1831e-17
50	1.44962e + 20	3.21565e + 19	3.508	0.006674	0.000311	20.4598	8.4356e-17	2.0381e-17
75	1.25756e + 20	2.12100e + 20	0.40709	0.006826	0.000335	19.3761	6.3545e-17	5.2265e-17
100	1.79939e+20	$2.08655\mathrm{e}{+21}$	0.91376	0.010006	0.000451	21.1863	3.9772e-17	2.5306e-17
150	3.72037e + 20	5.55342e + 20	0.33008	0.04338	0.000703	60.707	3.8809e-17	3.2694e-17
200	3.98503e+20	$6.92506\mathrm{e}{+20}$	0.42455	0.068183	0.001025	65.52	5.0257e-17	5.4765e-17
250	5.84930e + 20	$1.51833e{+21}$	0.61476	0.10743	0.001391	76.2293	4.32e-17	4.2848e-17
300	3.98835e+21	3.42437e + 20	10.647	0.14218	0.001746	80.4324	7.2779e-17	3.4217e-17
400	8.49319e+20	9.84821e + 20	0.13759	0.34716	0.002651	129.954	7.6985e-17	7.5184e-17
500	4.41617e + 21	1.34863e + 22	0.67255	0.63462	0.003857	163.5377	4.6449e-17	8.2937e-17
600	3.26791e+22	3.37741e + 21	8.6758	0.97205	0.006311	153.0249	4.0718e-17	4.4776e-17
700	3.21559e+21	$1.71660\mathrm{e}{+21}$	0.87323	1.7322	0.008224	209.6274	8.2301e-17	5.9592e-17
800	5.59125e + 22	5.67497e + 23	0.90148	2.8909	0.012978	221.753	1.5937e-16	6.8261e-17
900	5.62476e + 22	7.59416e + 21	6.4067	4.426	0.014466	304.9608	2.2166e-16	4.9862e-17
1000	1.81475e + 22	$2.15101\mathrm{e}{+22}$	0.15633	5.4985	0.016006	342.5286	8.2701e-17	4.7985e-17

W tych macierzach błąd względny wyników jest bardzo duży, co ciekawe - zwłaszcza dla wymiarów 30, 300, 600 i 900. Być może to, że te liczby są podzielne przez 3, dodatkowo wpływa na dokładność w odwracaniu macierzy. Macierze Hilberta same w sobie są źle uwarunkowane - na tyle, że przy uruchamianu funkcji cond(A, 1) MATLAB wypisuje ostrzeżenie o niedokładności wyniku.

Tabela 3: Wyniki dla macierzy z gallery('lehmer')

Wym.	my_cond(A)	cond(A, 1)	b.w. my_cond(A)	czas my_cond(A)	czas cond(A, 1)	b.w. czasów	r_R	r_L
5	26.8	26.8	2.6513e-16	0.002436	8.1e-05	29.0741	4.3275e-17	4.797e-17
10	114.7286	114.7286	3.716e-16	0.000348	3.9e-05	7.9231	3.0018e-17	3.5746e-17
15	263.2937	263.2937	3.2384e-15	0.000452	3.7e-05	11.2162	5.9627e-17	2.2783e-17
20	472.5052	472.5052	6.7369e-15	0.000627	4.1e-05	14.2927	5.6287e-17	3.9073e-17
25	742.365	742.365	2.1593e-14	0.001326	0.000298	3.4497	3.3753e-17	3.8152e-17
30	1072.8737	1072.8737	1.9074e-14	0.001186	7.7e-05	14.4026	3.5292e-17	5.7495e-17
50	3001.8149	3001.8149	6.4081e-14	0.002588	6.5e-05	38.8154	6.3353e-17	3.6936e-17
75	6777.6224	6777.6224	1.825e-13	0.00582	0.000103	55.5049	6.2403e-17	3.5159e-17
100	12069.6708	12069.6708	3.9184e-14	0.01036	0.000493	20.0142	5.3242e-17	4.1035e-17
150	27202.4856	27202.4856	7.7567e-15	0.052917	0.000479	109.4739	5.1717e-17	4.809e-17
200	48400.6129	48400.6129	1.8024e-13	0.057541	0.000686	82.879	6.4665e-17	4.1714e-17
250	75664.4098	75664.4098	3.2502e-13	0.099009	0.001017	96.354	5.9467e-17	4.2653e-17
300	108993.164	108993.164	9.7624e-13	0.18213	0.001493	120.9886	5.4368e-17	4.7721e-17
400	193846.9046	193846.9046	2.1772e-12	0.3356	0.002764	120.4175	6.0101e-17	5.1933e-17
500	302961.4763	302961.4763	3.7976e-12	0.59056	0.003205	183.263	6.0249e-17	4.9927e-17
600	436337.7939	436337.7939	7.7787e-12	1.0719	0.004785	223.0161	6.3634e-17	4.8616e-17
700	593975.1673	593975.1673	1.0377e-11	1.782	0.006425	276.3494	6.0782e-17	5.2554e-17
800	775873.3711	775873.3711	1.4039e-11	3.0826	0.010296	298.4021	6.7524e-17	5.3556e-17
900	982033.4556	982033.4557	1.871e-11	4.6122	0.016064	286.1157	6.83e-17	4.9197e-17
1000	1212454.4616	1212454.4617	2.8272e-11	5.2394	0.016088	324.6684	6.0561e-17	5.428e-17

W tym wypadku wyniki nie odbiegają zbytnio od wyników dla macierzy losowych.

5 Analiza wyników

Czas działania autorskiej funkcji do wyliczania wskaźnika uwarunkowania jest dużo większy dla większych macierzy - już dla rozmiarów 1000×1000 zajmuje mu to 5 sekund, co jest ponad 300 razy wolniejsze od domyślnej MATLABowej funkcji. Warto zauważyć, że dla macierzy losowych błąd względny otrzymanych wyników był pomijalnie mały - oznacza to, że zadany algorytm został zaimplementowany w poprawny sposób.