2nd Annual VIMS Datathon Competition 2021

Ferdowsi University of Mashhad (FUM)
Mashhad, Iran

September 2021

Objectives

- Train Machine Learning Algorithm
- Automatic Detection

Approach

- 1. Getting to know data
- 2. Visualize Data
- 3. Model Selection
- 4. Manual Labeling
- 5. Training Model
- 6. Model Performance
- 7. Proposed Ideas

Get to Know Data

Pointcloud data

- Each record has 7 numerical attributes:
 - 3 float numerical format for XYZ coordinates
 - 1 integer for intensity
 - 3 integers for "Red", "Green", "Blue" (range 0-255)
 - No Nan-field detected.

Visualize Data

CloudCompare V. 2.11.1 Application used for visualization

Model Selection

- Assessed Models:
- 1. PointNet
- 2. PointRCNN
- 3. RandLA-Net

Model Selection

	OA(%)	mAcc(%)	mIoU(%)	ceil.	floor	wall	beam	col.	wind.	door	table	chair	sofa	book.	board	clut.
PointNet [43]	78.6	66.2	47.6	88.0	88.7	69.3	42.4	23.1	47.5	51.6	54.1	42.0	9.6	38.2	29.4	35.2
RSNet [21]	-	66.5	56.5	92.5	92.8	78.6	32.8	34.4	51.6	68.1	59.7	60.1	16.4	50.2	44.9	52.0
3P-RNN [67]	86.9	-	56.3	92.9	93.8	73.1	42.5	25.9	47.6	59.2	60.4	66.7	24.8	57.0	36.7	51.6
SPG [26]	86.4	73.0	62.1	89.9	95.1	76.4	62.8	47.1	55.3	68.4	73.5	69.2	63.2	45.9	8.7	52.9
PointCNN [33]	88.1	75.6	65.4	94.8	97.3	75.8	63.3	51.7	58.4	57.2	71.6	69.1	39.1	61.2	52.2	58.6
PointWeb [70]	87.3	76.2	66.7	93.5	94.2	80.8	52.4	41.3	64.9	68.1	71.4	67.1	50.3	62.7	62.2	58.5
ShellNet [69]	87.1	-	66.8	90.2	93.6	79.9	60.4	44.1	64.9	52.9	71.6	84.7	53.8	64.6	48.6	59.4
KPConv [54]	-	79.1	70.6	93.6	92.4	83.1	63.9	54.3	66.1	76.6	57.8	64.0	69.3	74.9	61.3	60.3
RandLA-Net(Ours)	88.0	82.0	70.0	93.1	96.1	80.6	62.4	48.0	64.4	69.4	69.4	76.4	60.0	64.2	65.9	60.1

- Better Accuracy rate
- Better mIOU

Manual Labeling

Tool Selection

Tools	Website	Explanation
CloudCompare	http://www.cloudcompare.org/	Free with a great UI
Amazon SageMaker	https://aws.amazon.com/sagemaker	Not accessible in Iran
Supervisely	https://supervise.ly/lidar-3d-cloud/	Payment
cloudfactory	https://info.cloudfactory.com/thankyou?submissionGuid=f167efb0-6dc3- 4c12-9499-51103619dae3	Payment
MeshLab	https://www.meshlab.net/	Free but very slow
LATTE	https://github.com/bernwang/latte	Generating binary point cloud instead of 3D
labelCloud	https://github.com/ch-sa/labelCloud	Suitable for lightweight 3D point cloud
LIDAR PCD	https://github.com/DEEPI-LAB/LiDAR-Point-Cloud-Preprocessing-matlab	Very slow
ByteBridge	https://docsv2.bytebridge.io/#payment-refund	Payment

Manual Labeling

Output: TXT file format

```
label1.txt 🖸
    13.27499962 31.99500084 17.00200081 24 24
    15.19799995 31.95499992 15.99899960 19 19 19 -1452.000000
    15.16600037 31.93199921 15.99400043 19 19 19 -1381.000000
    13.02600002 31.94700050 10.04100037 94 90 91 -1347.000000
    13.10799980 31.87400055 9.79899979 106 105 103 -1268.000000
    12.99100018 31.95299911 9.79399967 74 79 85 -1253.000000
    12.99300003 31.91300011 9.79399967 75 82 90 -1368.000000
    13.00500011 31.94300079 9.78400040 70 83 91 -1306.000000
 11 13.00899982 31.99799919 9.73299980 64 71 79 -1394.000000
   13.00500011 31.98800087 9.69200039 69 74 80 -1376.000000
   13.01000023 32.00000000 9.71399975 72 72 84 -1427.000000
 14 13.11400032 31.97999954 9.74899960 108 104 105 -1468.000000
   13.14299965 31.95899963 9.73200035 123 123 121 -1314.000000
 16 13.18799973 31.93199921 9.71300030 54 61 71 -1332.000000
   13.13799953 31.94899940 9.74699974 100 111 107 -1275.000000
 18 13.16199970 31.96100044 9.72000027 112 118 114 -1288.000000
    13.15600014 31.94700050 9.73400021 111 122 118 -1329.000000
20 13.17399979 31.94499969 9.72000027 86 97 93 -1391.000000
21 13.17199993 31.94000053 9.73700047 66 73 79 -1396.000000
22 13.12800026 31.96899986 9.73799992 121 119 122 -1316.000000
23 13.23700047 31.94599915 9.72299957 56 60 71 -1291.000000
24 13.23799992 31.95000076 9.70600033 56 60 71 -1403.000000
25 13.24100018 31.95499992 9.74499989 56 60 71 -1345.000000
26 13.04899979 31.95700073 9.76700020 95 93 96 -1376.000000
27 13.02099991 31.98200035 9.77799988 110 112 109 -1299.000000
```

Manual Labeling

Training Model

S3DIS Dataset format comprises of 6-column point cloud consisted of XYZ and RGB

Input Data Format

Training Model

Input Data Format

Training Model

Model Performance

• IoU_{Class1}: 16.23

• IoU_{Class2}: 36.18

• IoU_{Class3}: 2.67

• IoU_{Class4}: 30.65

Mean IoU: 21.43

Proposed Ideas for Future Research

Proposed Ideas (1)

1. CloU vs. loU

CloU has better convergence rate in comparison to IoU

Generally, the IoU-based loss is defined as (Zheng et al., 2020):

$$\mathcal{L} = 1 - IoU + \mathcal{R}(B, B^{gt})$$

$$IoU = \frac{|B \cap B^{gt}|}{|B \cup B^{gt}|}$$

Proposed Ideas (1)

CloU vs. loU

The proposed approach applied an improved on CloU based on Pseuso-Huber loss (Barron et al.,2019). Pseuso-Huber loss used in robust regression. It can be defined:

$$L_{\delta}(y) = \delta^{2} \left(\sqrt{1 + \left(\frac{y}{\delta}\right)^{2}} - 1 \right)$$

Where y is difference between the target and predicted values and δ is an adjustable parameter. In this way, the penalty operates like squared error loss when the error is within $[-\delta,\delta]$ but becomes linear outside this range (Barron et al., 2019). Therefore, we improved CloU loss by replacing Pseudo-Huber formula instead of Euclidean distance:

$$\mathcal{R}_{improved_{Clov}} = \left(\frac{\delta^2}{c^2}\right) \left(\sqrt{1 + \frac{\rho^2(b, b^{gt})}{\delta^2}} - 1\right) + \alpha v$$

Finally, the proposed loss function can be written as:

$$L_{improved_CIoU} = 1 - \text{IoU} + \left(\frac{\delta^2}{c^2}\right) \left(\sqrt{1 + \frac{\rho^2(b, b^{gt})}{\delta^2}} - 1\right) + \alpha v$$

Proposed Ideas (2)

Optimize Model (Heuristics)

Proposed Ideas (2)

2. Optimize Model (Heuristics)

For Local Spatial Encoding (LocSE) Unit:

- 1. Define L-levels of neighbourhood
- 2. Select K/L neighbours form each level
- 3. Each level is K^L of nearest neighbour

It is expected that this heuristic method will leader to better segmentation performance of the mode.

Thank you