# IATEX, GNU/Linux и русский стиль.

# © Е.М. Балдин\*



Эта статья была опубликована в ноябрьском номере русскоязычного журнала Linux Format (http://www.linuxformat.ru) за 2006 год. Статья размещена с разрешения редакции журнала на сайте http://www.inp.nsk.su/~baldin/ и до апреля месяца все вопросы с размещением статьи в других местах следует решать с редакцией Linux Format. Затем все права на текст возвращаются ко мне.

Текст, представленный здесь, не является точной копией статьи в журнале. Текущий текст в отличии от журнального варианта корректор не просматривал. Все вопросы по содержанию, а так же замечания и предложения следует задавать мне по электронной почте mailto:E.M.Baldin@inp.nsk.su.

Текст на текущий момент является просто *текстом*, а не книгой. Поэтому результирующая доводка в целях улучшения восприятия текста не проводилась.

<sup>\*</sup>e-mail: E.M.Baldin@inp.nsk.su

Эмблемы Т<sub>E</sub>X и METAFONT, созданные Дуайном Бибби, взяты со странички Д.Э. Кнута. Цветной пингвин взят из пакета ps2pdf от Ральфа Найпрашека (Rolf Niepraschk)

# Оглавление

| 3. | Наб  | ор ма  | тематики               | 1  |
|----|------|--------|------------------------|----|
|    | 3.1. | Набор  | формул                 | 2  |
|    | 3.2. | Кирил  | ілица в формулах       | 3  |
|    |      |        | ьная математика        |    |
|    |      | 3.3.1. | Индексы                | 4  |
|    |      | 3.3.2. | Математические символы | 5  |
|    |      | 3.3.3. | Дроби                  | 6  |
|    |      | 3.3.4. | Корни                  | 7  |
|    |      | 3.3.5. | Квадратное уравнение   | 7  |
|    |      |        | Функции                |    |
|    |      | 3.3.7. | Производная и интеграл | 8  |
|    |      | 3.3.8. | Скобки                 | 9  |
|    | 3.4. | Перен  | ос формул              | 10 |
|    | 3.5  | Заклю  | рчение                 | 11 |



# Набор математики

Полиграфисты относят математические работы к каторжным...

Д.Э. Кнут. Математическая типография.

Иногда от незнакомых с  $\text{Те}_{\text{E}}$ Хнологиями людей приходится слышать, что  $\text{Е}_{\text{E}}$ Х годится monbko для набора математики. При знакомстве же с истинными  $\text{Те}_{\text{E}}$ Хнологиями возникает понимание, что  $\text{Е}_{\text{E}}$ Х настолько хорош, что с его помощью можно набирать daxee математику.

Набор математики всегда считалась вершиной типографского искусства. Дело в том, что формулы для концентрации информации и дополнительной выразительности в отличии от обычного текста являются многоуровневыми. Д.Э. Кнут к своей программе компьютерной типографии создал язык для описания формул. После короткого периода обучения пользователь в состоянии читать и набирать формулы на этом языке практически любой сложности.

LATEX не единственная программная среда, использующая ТеX-нотацию. Эта же нотация рекомендуется при наборе всех сколько-нибудь сложных формул на страницах Википедии (http://ru.wikipedia.org статья «Википедия:Формулы»).

Становлению Т<sub>Е</sub>X как стандарта для набора формул в значительной степени поспособствовало Американское математическое сообщество (The American Mathematical Society — AMS), которое в начале восьмидесятых годов прошлого столетия субсидировало разработку расширение Т<sub>Е</sub>X известного как  $\mathcal{A}_{M}\mathcal{S}$ -Т<sub>Е</sub>X. В 1987 году наработки  $\mathcal{A}_{M}\mathcal{S}$ -Т<sub>Е</sub>X были добавлены в ЕТ<sub>Е</sub>X в виде пакета **amsmath**. Вместе с **amsmath** в ЕТ<sub>Е</sub>X было добавлено множество улучшений, позволяющих набирать действительно изощрённую математику. Поэтому при использовании в тексте математики в шапке документа следует в обязательном порядке загружать пакет **amsmath**:

\usepackage {amsmath}

В дальнейшем предполагается, что этот пакет уже загружен.

Полностью описать *все* команды языка описания формул в рамках короткой статьи нереально, так как математика, как и способы её описания, безгранична. Поэтому основное внимание будет уделено базовым правилам и русскому стилю в формулах. В любой сколько-нибудь большой книге по IATEX будет полный список всех команд. Если серьёзно работать с математикой, то подобная книжка в любом случае понадобится.

# 3.1. Набор формул

При формирования текста формулы подразделяются на *строчные* и выносные. Строчные формулы набираются внутри абзаца вместе текстом. По описанию формулы  $\LaTeX$  создаёт бокс, который обрабатывается наравне с обычными текстовыми боксами. Как правило, строковые формулы это небольшие вставки, вроде  $E=mc^2$ . Выносные или выключенные формулы выводятся за пределы абзаца.

Строчная формула в тексте ограничивается с помощью символа доллара  $\phi$  формула» или с помощью команд-скобок  $\phi$  («формула»). При наборе предпочтительно использовать второй вариант оформления, так как он позволяет легко определить где начинается, а где кончается формула. «Долларовое» (\$) окружение лучше тем, что оно чуть-чуть короче, кроме этого команда  $\phi$  крепкая в отличии от командскобок.

Однострочные выносные формулы формируются с помощью окружения equation. Так как в этом случае формула вынесена за пределы абзаца, то её можно пронумеровать. Например:

Нумерация формул удобна для того, чтобы позже в тексте на неё можно было легко сослаться с помощью команды  $\ensuremath{\cdot}$  еqref $\{eq:math:1\}^3$ . Если же формул немного и не хочется никакой нумерации, то можно воспользоваться окружением equation\* $^4$ .

 $<sup>^1</sup>$ Есть более формальное оформление строчной формулы как окружения: \begin{math} «формула» \end{math}. Но в силу понятных причин никто подобное описание не использует в пользу кратких обозначений.

<sup>&</sup>lt;sup>2</sup>Когда начинаешь изучать команды І<sup>А</sup>Т<sub>Е</sub>Х, то довольно быстро сталкиваешься с понятиями «хрупкости»/«крепкости». Крепкие команды в отличии от хрупких можно использовать в качестве аргументов других команд. С другой стороны хрупкие команды тоже можно использовать как параметры, защитив их с помощью команды \protect. Эти понятия в большинстве своём пережитки прошлого и их постепенно изживают, но пока их следует иметь в виду.

<sup>&</sup>lt;sup>3</sup>Метка выставляется с помощью команды \label.

<sup>&</sup>lt;sup>4</sup>K equation добавляется звёздочка. Подобный приём в создании команд применяется достаточно часто. Команда со \* обычно не нумеруется и не отображается ни в каких автоматически-составляемых списках.

При создании выключенной формулы размер шрифта для улучшения читаемости немного увеличивается. IPTEX имеет несколько стилей для оформления математических формул. При желании можно выбрать необходимый стиль в ручную:

```
\displaystyle — стиль, используемый для выносных формул, \textstyle — стиль строчных формул, \scriptstyle — в этом стиле набираются индексы, \scriptscriptstyle — индексы второго уровня.
```

С помощью этих команд можно увеличить размер шрифта для формул внутри абзаца, или заставить индексы выглядеть как базовые символы. Для примера сравните:

Пробелы в формулах отмечают только конец команды, а сами по себе смысла не имеют — LATEX, как правило, гораздо лучше знает как сформировать результат.

# 3.2. Кириллица в формулах

Всё дело в имеющихся шрифтах — они красивые, разнообразные, но в большинстве своём англоязычные. В настоящее время кириллические математические шрифты в «дикой природе» отсутствуют, поэтому приходится пользоваться их текстовыми версиями.

Стиль **mathtext** (пакет t2), позволяет использовать кириллицу в формулах без дополнительных ухищрений. Стиль может быть подключён с опцией warn— в этом случае он сообщает обо всех случаях использования кириллических букв в формулах. **mathtext** следует загружать до **babel** и/или **fontenc**.

```
\usepackage [warn] { mathtext }
```

$$v_{\rm cp} = \frac{S_{\rm конец} - S_{\rm начало}}{\delta t}$$

Здесь для создание выключенной формулы используется команда \ [«формула»\] — краткий аналог окружения equation\*. В отличии от латиницы русские буквы в формулах печатаются прямым шрифтом — это было сделано специально. Чтобы изменить это умолчание в преамбуле следует добавить команду для переопределения шрифта:

```
\\ \setminus DeclareSymbolFont\{T2\,A\,letters\,\}\{T2A\}\{cmr\}\{m\}\{\,i\,t\,\}\\
```

Стиль **amstext** (загружается автоматически при загрузке **amsmath**) определяет команду \text, которая позволяет вставлять в формулу обычный тест. Текст может быть и русским:

```
\[v_{cp}=
  \frac{\text{конец пути}-
  \text{начало пути}}
  {\text{время в пути}}\]
```

$$v_{\mathrm{cp}} = \frac{\mathrm{конец}\; \mathrm{пути} - \mathrm{начало}\; \mathrm{пути}}{\mathrm{время}\; \mathrm{в}\; \mathrm{пути}}$$

Преимущество такого подхода заключается в том, что внутри команды  $\$  text пробелы воспринимаются как нормальные символы и слова не сливаются. Использование  $\$  text предпочтительно и для целей переносимости.

#### 3.3. Школьная математика

Математика в школе — это явление, через которое проходит каждый. Именно поэтому фактически любой вменяемый россиянин умеет обращаться с дробями, знает теорему Пифагора, с лёгкостью решает квадратные уравнения и что-то слышал про интеграл и производную. Разберёмся с этим поподробнее.

#### 3.3.1. Индексы

Букв в латинском алфавите не так уж и много, а научных понятий без числа. Один из способов отличать обозначения друг от друга, это индексы, как верхние, так и нижние:

 $A_{
m Huжhuй\ uhgekc}$   $B^{
m Bepxhuй\ uhgekc}$   $C^k_n$ 

Обратите внимание, что если в индексе ровно один знак, то фигурные скобки вокруг него можно и нужно опустить. Теперь можем записать теорему Пифагора:  $(a^2+b^2=c^2)$ 



#### 3.3.2. Математические символы

Кроме символов латиницы и кириллицы математики используют множество самых разнообразных значков. Да и латиница не так уж и проста. Если воспользоваться пакетом amsfonts то она может стать:

```
\begin{itemize}
 \item \(ABCD\) "--- обычной,
 \item \(\mathbf{ABCD}\) "--- жирной,
 \item \(\mathbb{ABCD}\) "--- ажурной,
 \item \(\mathcal{ABCD}\) "---
                            прописной.
```

\end{itemize}

- ABCD обычной,
- ABCD жирной,
- $\mathbb{ABCD}$  ажурной,
- $\mathcal{ABCD}$  прописной.

Это далеко не все возможные шрифтовые стили которые можно применять в математической моде. Но лучше особо не перегружать формулы всякой «готикой» (например, команда \mathfrak).

Не единой латиницей жив математик. Традиционно везде, где только можно, используются греческие буквы. В ИТБХ присутствует полный набор и за исклю-

| Греческие символы |                                          |          |                              |          |                            |          |                             |               |                              |
|-------------------|------------------------------------------|----------|------------------------------|----------|----------------------------|----------|-----------------------------|---------------|------------------------------|
| $\alpha$          | \alpha                                   | β        | \beta                        | $\gamma$ | \gamma                     | δ        | $\backslash \mathbf{delta}$ | $\varepsilon$ | \epsilon                     |
| $\zeta$           | $\setminus \mathbf{zeta}$                | $\eta$   | $ackslash\mathbf{eta}$       | $\theta$ | $\backslash {f theta}$     | $\iota$  | $\setminus {f iota}$        | $\varkappa$   | $\setminus$ kappa            |
| $\lambda$         | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ | $\mu$    | $ackslash \mathbf{mu}$       | $\nu$    | $\setminus \mathbf{nu}$    | ξ        | $ackslash\mathbf{xi}$       | O             | O                            |
| $\pi$             | $ackslash \mathbf{pi}$                   | $\rho$   | $ackslash{	ext{rho}}$        | $\sigma$ | $\setminus \mathbf{sigma}$ | au       | $\setminus \mathbf{tau}$    | v             | $\setminus \mathbf{upsilon}$ |
| $\varphi$         | $ackslash \mathbf{phi}$                  | $\chi$   | $ackslash \mathbf{chi}$      | $\psi$   | $ackslash \mathbf{psi}$    | $\omega$ | ackslashomega               | $\Gamma$      | $\backslash \mathbf{Gamma}$  |
| $\Delta$          | $\backslash \mathbf{Delta}$              | $\Theta$ | $\backslash \mathbf{Theta}$  | Λ        | $\setminus$ Lambda         | Ξ        | $ackslash \mathbf{Xi}$      | Π             | $ackslash\mathbf{Pi}$        |
| $\sum$            | $\setminus \mathbf{Sigma}$               | Υ        | $\setminus \mathbf{Upsilon}$ | Φ        | $ackslash \mathbf{Phi}$    | Ψ        | $ackslash \mathbf{Psi}$     | Ω             | $\backslash \mathbf{Omega}$  |

чением трёх букв начертание вполне привычное. Для исправления непривычных начертаний эти буквы были переопределены с помощью пакета amssymb:

```
% Переопределение \kappa, \epsilon и \phi на русский лад \renewcommand {\kappa} {\varkappa} \renewcommand {\epsilon} {\varepsilon} \renewcommand {\phi} {\varphi}
```

Спецсимволов в LaTeX великое множество. В стандартной поставке TeX Live идёт «Всеобъемлющий список символов LaTeX» (The Comprehensive LaTeX Symbols List — файл symbols-a4.pdf) в котором перечислено 3300 распространённых символа, используемых пользователями LaTeX. Почти наверняка любой операнд, который вам нужен, там уже есть. Ниже будут перечислены только та часть символов, которая с моей точки зрения может пригодиться в наборе школьной математики. Пакет amssymb для использования обязателен.

| «Школьные» символы |                            |             |                            |           |                                  |             |                                  |                 |                             |  |
|--------------------|----------------------------|-------------|----------------------------|-----------|----------------------------------|-------------|----------------------------------|-----------------|-----------------------------|--|
| $\hat{a}$          | $\hat{a}$                  | $\bar{a}$   | $\mathbf{bar}\{a\}$        | $\vec{a}$ | $\sqrt{\operatorname{vec}\{a\}}$ | $\dot{a}$   | $\setminus \mathbf{dot}\{a\}$    | $\tilde{a}$     | $	ext{tilde}\{a\}$          |  |
| $\pm$              | $ackslash \mathbf{pm}$     | $\mp$       | $ackslash \mathbf{mp}$     | $\times$  | $\setminus \mathbf{times}$       |             | $\setminus \mathbf{cdot}$        | •               | $\backslash {f div}$        |  |
| $\vee$             | $\setminus \mathbf{lor}$   | $\wedge$    | $\setminus$ land           | $\neg$    | $\setminus \mathbf{neg}$         | $\forall$   | $\setminus$ forall               | $\exists$       | $\setminus \mathbf{exists}$ |  |
| $\leq$             | $\setminus \mathbf{le}$    | $\geqslant$ | $\setminus \mathbf{ge}$    | $\ll$     | $\setminus 11$                   | $\gg$       | $\setminus \mathbf{g}\mathbf{g}$ | $\neq$          | $\setminus \mathbf{neq}$    |  |
| $\equiv$           | $\setminus$ equiv          | $\sim$      | $\setminus \mathbf{sim}$   | $\simeq$  | $\setminus \mathbf{simeq}$       | $\approx$   | $\setminus$ approx               | $\propto$       | $\setminus \mathbf{propto}$ |  |
|                    | $\setminus$ parallel       | $\perp$     | $\backslash \mathbf{perp}$ | _         | $\setminus$ angle                | $\triangle$ | $\setminus$ triangle             | $\triangleleft$ | $\setminus$ sphirical angle |  |
| $\infty$           | $\setminus \mathbf{infty}$ | $\ell$      | $\backslash \mathbf{ell}$  | $\sum$    | $\setminus \mathbf{sum}$         | Π           | $\backslash \mathbf{prod}$       | Ø               | \varnothing                 |  |

Для соответствия русским традициям два символа были переопределены:

```
% Переопределение \le и \ge на русский лад \renewcommand {\le} {\leqslant} \renewcommand {\ge} {\geqslant}
```

## 3.3.3. Дроби

Дроби формируются с помощью команды  $\backslash \mathbf{frac}^5$ :

```
\[ дробь=\frac{числитель}{знаминатель} \] дробь = \frac{\text{числитель}}{\text{знаминатель}}
```

Как и практически вся математика в L<sup>2</sup>Т<sub>E</sub>X дробь записывается как читается само выражение.

 $<sup>^5</sup>$ От слова fraction — дробь.

### 3.3.4. Корни

Для рисования знака корня используется команда

```
\{\mathbf{sqrt}\ [ «степень» ]\{ «подкоренное выражение» \}
```

Степень можно упустить. В этом случае рисуется обычный квадратный корень.

```
\[ \overline{\\ \underline{\\Large} \sqrt[3]{a}+\sqrt[2]{b}+\sqrt[99]{g} \\ \] \] \[ \frac{3\sqrt[3]{a}+\sqrt[2]{b}+\sqrt[99]{g}}{\frac{3\sqrt[3]{a}+\sqrt[2]{b}+\sqrt[99]{g}}{\frac{3}{a}+\sqrt[3]{b}+\sqrt[99]{g}} \]
```

Обратите внимание, что знак корня размещается в соответствии с размерами подкоренного выражения. Если в выражении присутствует только один корень, то это самое разумное поведение, но в случае нескольких корней, как вышеприведённом примере, то необходимо выравнивание.

Для выравнивания по высоте используется команда  $\mbox{\bf mathstrut}^6$ . В результате её применения вставляется невидимый символ нулевой толщины высотой в точности равной высоте круглой скобки:

```
\[\Large \sqrt[3]{\mathstrut a}+ \sqrt[2]{\mathstrut b}+ \sqrt[99]{\mathstrut g} \]
```

### 3.3.5. Квадратное уравнение

И наконец вершина школьной математики — это решение квадратного уравнения  $ax^2 + bx + c = 0$ :

\[ x\_{1,2}=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] 
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Теперь можно смело писать методички по школьной математике ©.

 $<sup>^6{</sup>m O}$ т английского strut — подпорка или страта.

### 3.3.6. Функции

Все символы в математической моде печатаются курсивом, поэтому названия функций для выделения печатаются прямым шрифтом. Кроме смены шрифта функции с обоих сторон должны правильно «отбиваться» пробелами, иначе будет некрасиво. При загрузке русского языка с помощью пакета babel кроме стандартных имён функций доопределяется несколько сокращений применяемых в русскоязычной литературе. Среди часто употребляемых функций можно упомянуть: cos, arccos, sin, arcsin, tg, arctg, ctg, arcctg, sh, ch, th, cth, exp, ln, log, lim, min и max. В математической моде эти функции можно использовать в качестве команд:

```
\begin{equation*} \\ begin{split} \\ \& \log_2 10 = \ln 0/\ln 2 \le 3.32 \\ \& \lim_{x\to 0} \frac{\sin x}{x} = 1 \\ \& (a+b)^n = \sum_{k=1}^n C^k_n a^kb^{n-k} \\ end{split} \\ end{equation*} \\ \end{equation*}
```

```
\log_2 10 = \ln 10 / \ln 2 \simeq 3.32
\lim_{x \to 0} \frac{\sin x}{x} = 1
(a+b)^n = \sum_{k=1}^n C_n^k a^k b^{n-k}
```

Обратите внимание на обработку индексов для функции log (логарифм) и lim (предел). Для доопределения новых функций правильнее всего воспользоваться в преамбуле командой \DeclareMathOperator:

```
% В преамбуле — определение новых функций \DeclareMathOperator {\log-like} {log-like} \DeclareMathOperator*{\lim-like} {lim-like}
```

В зависимости от варианта команды индексы отображаются как для логарифма (команда без звёздочки) или как для предела (команда со звёздочкой).

## 3.3.7. Производная и интеграл

В старших классах в конце обучения чуть-чуть касаются понятий интегрирования и дифференцирования. Возможно для того, чтобы правильно подсчитать сдачу в магазине, эти знания не являются необходимыми. Но для изучения физики и, как следствие, химии и биологии без интегралов никак — поверьте мне на слово.

Производная, обычно отмечается штрихом. В физике производная по времени выделяется точкой, для того чтобы отличать её от производной по координате. Можно честно написать  $\mathbf{frac}\{d\ F(x)\}\{dx\}$ . Для частной производной вместо буквы d используется спецсимвол  $\mathbf{partial}$ :

$$f'$$
  $f''$   $\dot{f}$   $\ddot{f}$   $\frac{df}{dx}$   $\frac{\partial f}{\partial x}$ 

Производная есть обратная функция от интегрирования:

\[ \frac{d}{dx}\int F(x) dx=F(x) \ \] 
$$\frac{d}{dx} \int F(x) dx = F(x)$$

Приглядевшись к имеющемуся здесь примеру, можно отметить, что в отличии от русских математических традиций представленный здесь интеграл не прямой, а наклонный. Это можно исправить, например, загрузив пакет **wasysym** с опцией **integrals**. К сожалению получающиеся интегралы «не смотрятся». Поэтому пока лучше использовать начертания по умолчанию в надежде, что в будущем ситуация изменится к лучшему.

Неопределённый интеграл хорошо, но с определённым тоже надо работать. Качественное оформление пределов интегрирования важно для восприятия формулы.

$$\label{eq:continuity} $$ \int_0^\infty \int_0^\infty \sum_{i=1}^n \sum_{i=1}$$

По умолчанию пределы размещаются справа от интеграла. Ситуацию можно поправить с помощью команды \limits. Команда \nolimits делает всё ровно наоборот.

#### 3.3.8. Скобки

Для визуальной группировки символов внутри формулы скобки вещь незаменимая. Особенно здорово, если скобки автоматически подбирают свой размер под выражение, которое они окружают. Парные команды  $\ensuremath{\backslash} \mathbf{left}$  и  $\ensuremath{\backslash} \mathbf{right}$  включают режим подобной подстройки:

```
\[\left(
   \left[
    \left\langle
     \left\{
      \left\uparrow
       \left\lceil
         \left|
          \left\lfloor
          \text{4TO-TO}^{10}
          \right\rfloor^9
         \right|^8
       \right\rceil^7
      \right\downarrow^6
     \left(\frac{1}{2}\right)^5
    \right\rangle^4
   \right]^3
  \right)^2\]
```

$$\left( \left[ \left\langle \left\{ \left\lceil \left\lceil \left\lfloor \frac{4}{4}\right\rceil \right\rceil \right\rceil \right]^{9} \right\rceil^{8} \right\rceil^{7} \right\rfloor^{6} \right\}^{5} \right\rangle^{4} \right]^{3} \right)^{2}$$

Иногда хочется размер выставить в ручную, тогда перед скобкой можно выставить одну из следующих команд:

Эстеты в зависимости от ситуации в конце команды могут добавить модификатор позиционирования разделителя как левого — 1 (отбивка как для  $\setminus left$ ), правого — r (отбивка как для  $\setminus right$ ) и среднего — m.

## 3.4. Перенос формул

В русскоязычной литературе принято, что при переносе строчной формулы на другую строку знак, по которому формула разрывается дублируется на следующей строке. Например так:

```
a + b =
= c
```

По умолчанию этого не происходит. Проще всего решить эту проблему с помощью следующего макроса<sup>7</sup>, который необходимо определить в преамбуле:

```
\% перенос формул в тексте 
\newcommand*{\\lm}[1]{#1\nobreak\discretionary{}% {\\hbox{$\mathbb{5}$ mathsurround=0pt #1$}}{}}
```

<sup>&</sup>lt;sup>7</sup>Рецепт от Евгения Миньковского из fido7.ru.tex.

#### 3 Набор математики

Здесь определена команда  $\hm m$ , которую следует добавлять в местах потенциального переноса формулы, примерно, так:  $\hm = c \hm =$ 

Разрыв математических формул при переносе предпочтителен на знаках отношения  $(=,>,<,\leqslant,\geqslant,\neq,\simeq)$ ; во вторую очередь на отточии, знаках сложения и вычитания; в третью — на знаке умножения в виде косого креста. Не рекомендуется разбивать формулу на знаке деления и на каких-либо других знаках, кроме упомянутых выше.

#### 3.5. Заключение

Изложенных правил и приёмов вполне хватит для набора в рамках школьной математики. Для более изощрённых формул требуются более продвинутые приёмы и конструкции. Всё это будет, но чуть попозже.

# Врезка: Вики

«Движок» который использует Википедия для отображения формул называется WikiTeX. Основной сайт проекта, естественно, представляет из себя вики по адресу http://wikisophia.org/. Используя это программное обеспечение в связки с LATeX, можно не только сносно отображать математические формулы на WWW без особых ухищрений, но и отрисовывать шахматные партии, химические формулы, фейнмановские диаграммы, нотные записи и многое другое.

ТЕХ сразу разрабатывался как программа, которая может формировать изображения для разных устройств, даже для тех, о которых на момент создания этого текстового процессора профессору Д.Э. Кнуту ничего известно не было. Поэтому ТЕХ обретается в самых неожиданных местах.



Рис. 3.1. WikiTeX за работой.

Сделайте так, чтобы Ваш форум или вики заговорил на языке ВТ<sub>Б</sub>Х.