Fall, 2019 Instructor: Dr. M..E. Kim

November 26 (Tue.), 2019

Due: by the end of day, December 10th (Tue.)

# **Home Assignment 8: Graph Algorithms (200 + 100 optional)**

### **Q1 – Q4.** For a given graph G1=(V, E) in the figure, perform the given tasks.

In DFS and BFS, a weight of edge is not considered and a priority for selection is given to the vertex whose alphabetic order is the lower: e.g.) s < w < y in DFS or in BFS from the starting vertex q.



#### Q1. [25] Breadth First Search (BFS)

Traverse the graph *G1* from a start vertex *q* by *breadth first search (BFS)*.

- 1.1) [10] List the vertices in the order of traversal
- qstwvxyz
- 1.2) [10] Give a list of the discovery edges in your DFS tree
  - Q:S
  - Q:T
  - Q:W
  - S:V
  - T:X
  - T:Y X:Z
- 1.3) [5] Mark the DFS tree with the discovery edges in red and the cross edges in blue, respectively in the given graph.



Date:

#### Q2. [35] Depth First Search (DFS)

Traverse the graph *G1* from a start vertex *q* by *depth first search (DFS)*.

2.1) [10] List the vertices in the order of traversal with their start time & finish time.

| Vertex | Start | Finish |
|--------|-------|--------|
| Q      | 1     | 9      |
| S      | 2     | 5      |
| v      | 3     | 5      |
| W      | 4     | 5      |
| t      | 5     | 9      |
| X      | 6     | 8      |
| Z      | 7     | 8      |
| у      | 8     | 9      |

2.2) [10] Give a list of the discovery edges in your DFS tree.

Q : S

S:V

V:W

O:T

T: X

X:ZT: Y

2.3) [10] Give a list of back edge, forward edge and cross edge, respectively, if there were any.

Back edge:

W:S

Y:Q

Z: X

Forward Edge:

R:Y

R:U

U:Y

2.4) [5] Mark the DFS tree with the discovery edges in the given graph.



### Q3. [30] A Single-Source Shortest Path (SSSP)

EITHER by applying Dijkstra's algorithm

OR by applying Bellman-Ford algorithm to the directed graph G1, find the shortest path from q to each vertex, respectively.

3.1) [20] List the edges in the shortest path.

| Vertex | Path | Distance from Source Q |
|--------|------|------------------------|
| q      |      | 0                      |
| r      |      | INF                    |
| S      | q    | 3                      |
| t      | q    | 7                      |
| u      |      | INF                    |
| V      | sq   | 8                      |
| W      | q    | 11                     |
| X      | tq   | 9                      |
| у      | tq   | 13                     |
| Z      | xtq  | 13                     |

3.2\_[10] Mark the shortest path in the graph.



**Q3B. [25, optional]** Implementation in Python/Java. Print the outcomes of 3.1). Specify which algorithm you've applied.

### **Q4.** [40] Strongly Connected Component (SCC)

From the Depth-First Search(DFS) in Q2, showing the finishing times of the vertices,

4.1) [10] Arrange the vertices in decreasing order of its finishing time,  $w\ v\ s\ z\ x\ y\ t\ q\ u\ r$ 

4.2) [5] Draw the transposed graph  $G1^T$  of G1.



4.3) [10] Perform DFS on  $G1^T$ . Show the DFS tree(s) in the  $G1^T$  in the map.

```
u: u
q: q y t
t:
y:
x: x z
z:
s: s w v
v:
w:
4.4) [10] Show each SCC of G1:: e.g.) SCC1 = {q, s, t}, SCC2 = {x, y, z}
q y t SCC1
x z SCC2
s w v SCC3
```

4.5) [5] draw the acyclic *component graph*  $G^{SCC}$ .



Assume that the loop of DFS considers vertices in alphabetical order.

## **Q4B. [25, optional]** Implementation in Python/Java. Print the outcomes of 4.1) and 4.4)

```
elenacorpus@Elenas-MBP ~ % /Library/Developer/CommandLineTools/usr/bin/python3 /Users/elenacorpus/Desktop/HW8/q4B.py
SCC graph:
q : s t w
r : u y
s : v
t : x y
u : y
v : w
w : s
x : z
y : q
z : x
transpose graph
q : y
r :
s : q w
t : q
u : r
v : s
w : q v
t : q
u : r
v : s
w : q v
x : t z
y : r t u
z : x
finishing time order
w v s z x y t q u r
SCC:
r: r
u : u
q: q y t
t : y x x x z
z : s s w v
v : w ?
elenacorpus@Elenas-MBP ~ % ■
```

### Q5. In the given modified Directed Acyclic Graph (DAG) G2,



### Q5. [40] Single Source Shortest Path in the DAG

- 5.1) [15] Sort the vertices in the *topological order* starting from q and give its list. q t x s v w z y
  - 5.2) [10] Redraw the graph by arranging the vertices in the sorted order.



5.3) [15] Find the shortest path from a vertex q to each vertex. You have to show the proper steps of edge relaxations, updating a key, D[v] of each vertex v,  $v \in V(G2)$ .

| Vertex | Path | Distance from the Source Q |
|--------|------|----------------------------|
| q      |      | 0                          |
| r      |      | INF                        |
| S      | q    | 1                          |
| t      | q    | 4                          |
| u      |      | INF                        |
| v      | sq   | 3                          |
| W      | vsq  | 2                          |
| X      | tq   | 7                          |
| у      | zxtq | 8                          |
| Z      | xtq  | 5                          |

**Q5B. [25, optional]** Implementation in Python/Java. Print the outcomes of 5.1) and 5.3): the vertices in the topological order and the list of edges in the shortest path from q, respectively.

```
elenacorpus@Elenas-MBP ~ % /Library/Developer/CommandLineTools/usr/bin/python3 /Users/elenacorpus/Desktop/HW8/q58.py
Graph:
q : s t w z
r : u y
s : v w
t : x y
u : y
v : w
w : z
x : y z
y :
z : y
toplogical sort:
q t x s v w z y
Vertex Path Distance from Source q
q 0
r 9223372036854775807
s q 1
t q 4
u 9223372036854775807
v s q 3
w v s q 2
x t q 5
elenacorpus/Desktop/HW8/q58.py
Graph:
```

# **Q6.** In the given undirected graph G3 below:



## Q6. [30] Minimum Spanning Tree

EITHER by applying *Prim*'s algorithm

OR by applying Kruskal's algorithm

find the Minimum Spanning Tree (MST) of G3.

6.1) [20] List the edges in the MST.

| Edge  | Weight |
|-------|--------|
| A : B | 4      |
| F : C | 3      |
| B : D | 6      |
| F : E | 5      |
| I : F | 6      |
| D : H | 7      |
| D : I | 4      |
| I : J | 2      |
| I : K | 9      |

6.2) [10] Mark the edges of the MST in the graph.

Q6B. [25, optional] Implementation in Python/Java. Print the outcomes of 6.1) or 6.2).

Specify which algorithm you've applied.

elenacorpus@Elenas-MBP ~ 4 /Library/Developer/CommandLineTools/usr/bin/python3 /Users/elenacorpus/Desktop/HW8/q6B.py

```
elenacorpus@Elenas-MBP \sim \frac{6}{8} /Library/Developer/CommandL\overline{l}neTools/usr/bin/python3 /Users/elenacorpus/Desktop/HW8/q6B.py Prims MST Edge Weight a = b 4 f = c 3 b = d 6 f = e 5 i = f 6 d = h 7 d = i 4 i = j 2 i = k 9 elenacorpus/Desktop/HW8/q6B.py
```