STATISTICA
DIAGRAMMI DI
DISPERSIONE.
REGRESSIONE
LINEARE

Prof. Rosario Lo Franco – Lezione 8

Diagramma di dispersione

Esempio 9.1.1. Per i = 1, 2, ..., 10, consideriamo le 10 coppie di valori (x_i, y_i) , che legano y (il rendimento percentuale di un esperimento di laboratorio), a x (la temperatura a cui è stato condotto l'esperimento):

i	1	2	· 3	4	5	6	7	8	.9	10
x_i	100	110	120	130	140	150	160	170	180	190
y.	45 .	52	54	63	62	. 68	75	76	92	88

Quello rappresentato in Figura 9.1 è un diagramma di dispersione delle coppie di dati raccolti. In pratica, si tratta di tracciare un segno per ogni coppia, con le due coordinate pari ai valori di x e y rispettivamente (si veda anche quanto detto a proposito di statistica descrittiva nella Sezione 2.6). Poiché il grafico mostra, a meno di errori casuali, una relazione lineare tra y e x, sembra che la scelta di un modello di regressione lineare sia in questo caso appropriata.

Figura 9.1 Diagramma di dispersione.

Coefficiente di correlazione

Definizione 2.6.1. Sia dato un campione bivariato (x_i, y_i) , per i = 1, 2, ..., n, con medie campionarie \bar{x} e \bar{y} e deviazioni standard campionarie s_x e s_y , per i soli dati x e per i soli dati y rispettivamente. Allora di dice coefficiente di correlazione campionaria e si denota con r la quantità

$$r := \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y}$$

$$= \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(2.6.1)

Quando r > 0 i dati sono correlati positivamente, mentre se r < 0 sono correlati negativamente.

Proposizione 2.6.1. Di seguito diamo alcune delle proprietà del coefficiente di correlazione campionaria.

- 1. $-1 \le r \le 1$.
- 2. Se per oppurtune costanti $a \in b$, con b > 0, sussiste la relazione lineare

$$y_i = a + bx_i, \quad \forall i = 1, 2, \dots, n$$

allora r=1.

3. Se per oppurtune costanti $a \in b$, con b < 0 sussiste la relazione lineare

$$y_i = a + bx_i, \quad \forall i = 1, 2, \dots, n$$

allora r = -1.

4. Se r è il coefficiente di correlazione del campione (x_i, y_1) , i = 1, ..., n, allora lo è anche per il campione

$$(a+bx_i,c+dy_i) \forall i=1,2,\ldots,n$$

purché le costanti b e d abbiano lo stesso segno.

Regressione Lineare

Relazione lineare semplice tra risposta Y e predittore x, con un errore non osservabile e:

$$Y = \alpha + \beta x + e$$

Metodo dei minimi quadrati per stimare α e β con A e B.

$$SS := \sum_{i=1}^{n} (Y_i - A - Bx_i)^2$$

Si minimizzano i residui SS per determinare A e B, derivando e uguagliando a zero rispetto ad A e B la precedente. Si ottiene:

$$B = \frac{\sum_{i} x_{i} Y_{i} - \bar{x} \sum_{i} Y_{i}}{\sum_{i} x_{i}^{2} - n\bar{x}^{2}}$$
$$A = \overline{Y} - B\bar{x}$$

La retta y = A + Bx è la stima della retta di regressione,

Regressione Lineare

Esempio 9.2.1. Il materiale grezzo usato per la produzione di una particolare fibra sintetica è immagazzinato in un ambiente che non dispone di controllo dell'umidità. Per 15 giorni vengono prese misurazioni abbinate dell'umidità atmosferica e dell'acqua assorbita dal materiale, ottenendo i risultati seguenti (in punti percentuali),

Questi dati sono rappresentati nella Figura 9.2. Per calcolare gli stimatori dei minimi quadrati e la stima della retta di regressione utilizziamo il Programma 9.2, ottenendo la schermata che compare in Figura 9.3.

Figura 9.2 Diagramma di dispersione dei dati dell'Esempio 9.2.1.