

Koniec

Spis treści

1. Wprowadzenie

1.1. Literatura

Adam Zagdański i Artur Suchowałko: *Analiza i prognozowanie szeregów czasowych*, PWN 2016 http://quantup.pl/o-nas/ksiazka-szeregi-czasowe/

Maria Cieślak: *Prognozowanie gospodarcze. Metody i zastosowania*, PWN 2001–2005 Aleksander Zeliaś, Barbara Pawełek, Stanisław Wanat; *Prognozowanie ekonomiczne. Teoria, przykłady, zadania*, PWN 2004

Strona tytułowa

Strona 2 z 25

Powrót

Full Screen

Zamknij

Koniec

1.2. Oprogramowanie

R/Rstudio do pobrania z:

https://cran.r-project.org/bin/windows/base/

https://www.rstudio.com/products/rstudio/download/

Oprogramowanie wspomagające (system kontroli wersji git):

https://git-scm.com/downloads

1.3. Namiary na materiały/kontakt

https://github.com/hrpunio/PPE

tprzechlewski@acm.org

1.4. Zaliczenie

Projekt zaliczeniowy wykonany w formie pisemnej składający się z dwóch części:

1) **raportu z przeprowadzonego badania** oraz 2) **eseju** dotyczący niestandardowej/nieomawianej na zajęciach metody prognozowania lub innego ciekawego aspektu problematyki prognozowania (szczegóły do ustalenia).

Autorzy projektu powinni **samodzielnie określić ciekawy problem prognostyczny** (co będzie dodatkowo punktowane), jeżeli będą do tego niezdolni to takowy zostanie zaproponowany przez prowadzącego

Zaliczenie projektu odbędzie się na ostatnich zajęciach.

Strona tytułowa

Strona 3 z 25

Powrót

Full Screen

Zamknij

Koniec

2. Informacje wstępne

2.1. Przegląd metod prognozowania

Metoda prognozowania to sposób przetworzenia danych o przyszłości oraz sposób przejścia od danych przetworzonych do prognozy [C.37]: faza diagnozowania → faza określenia przyszłości

Diagnozowanie to budowa modelu formalnego lub myślowego

Reguła prognozy to sposób przejścia od danych przetworzonych do prognozy: podstawowa, podstawowa z poprawką, największego prawdopodobieństwa i minimalnej straty [C.39]

Podstawowa. Prognozą jest stan zmiennej prognozowanej w należącym do przyszłości momencie/okresie, otrzymany z modelu przy przyjęciu założenia, że model będzie aktualny w chwili, na którą określa się prognozę.

Prognozę otrzymuje się wskutek ekstrapolacji modelu poza próbę. Użyteczna w prognozowaniu zjawisk **o dużej inercji**.

2.2. Etapy prognozowania

Wg [C.59]: sformułowanie zadania prognostycznego (obiekt/zjawisko/zmienne, którego stan podlega prognozowaniu, cel prognozowania, wymagania odnośnie dopuszczalności i horyzontu) \rightarrow podanie przesłanek prognostycznych \rightarrow wybór metody \rightarrow wyznaczenie prognozy \rightarrow ocena dopuszczalności \rightarrow weryfikacja.

Mniej formalnie/bardziej praktycznie [ZS.23]

3. Wczytanie/oczyszczenie/transformacja danych

Git/github/praca grupowa. Koncepcja reproducible research

4. Analiza opisowa

4.1. Wykresy

Sposób działania funkcji plot() zależy od typu obiektu

library(TSAFBook)

Zamknij

Powrót

Full Screen

Koniec

Strona tytułowa

Strona 5 z 25

Powrót

Full Screen

Zamknij

Koniec

```
# install.packages("TSAFBook")
# package 'TSAFBook' is not available (for R version 3.2.2)
# Pobierz ze strony http://quantup.pl/o-nas/ksiazka-szeregi-czasowe/
# Wykonaj (pierwszy parametr to nazwa pliku ze ścieżką):
# install.packages("C:\\Users\\E5410\\Downloads\\TSAFBook_0.1.tar.gz",
# repos = NULL, type="source")

data(AirPass)

par(mfrow = c(2,1))
#?par
# szereg typu ts
plot(AirPass, main="Szereg AirPass")

# File -> Save As. / pdf("mygraph.pdf")
# zwykły wektor
plot(as.vector(AirPass), main="Szereg AirPass", type="1")
```

4.2. Funkcja xyplot

```
Funkcja xyplot() z pakietu lattice modyfikacja aspect-ratio /podział (długiego szeregu) na panele: library ("lattice")
```

```
xyplot (AirPass)
xyplot(AirPass, aspect = 1/4)
```

```
Strona główna
```


Strona tytułowa

Strona 6 z 25

Powrót

Full Screen

Zamknij

Koniec

```
xyplot(AirPass, strip=T, cut = list(number=3, overlap=0,5))
Wykresy sezonowe - monthplot
library ("TSAFBook")
library("expsmooth")
data(AirPass)
data(usgdp)
par(mfrow = c(2,1))
monthplot(AirPass, main="Szereg AirPass")
monthplot(usgdp, main="Szereg USGDP")
Wykresy sezonowe - seasonplot
library (forecast)
par(mfrow = c(2,1))
seasonplot(AirPass, col=rainbow"12'', year.labels=T, pch=19)
seasonplot(usgdp, col=rainbow"12'', year.labels=T, pch=19)
```

4.3. Autokorelacja

Czy i w jakim stopniu wcześniejsze obserwacje mają wpływ na aktualną wartość szeregu = jak silna jest autokorelacja

Strona tytułowa

Strona 7 z 25

Powrót

Full Screen

Zamknij

Koniec

Metody graficzne wykrywania autokorelacji: lag plots, funkcja autokorelacji (ACF), funkcja cząstowej autokorelacji (PACF)

lag plot to wykres rozrzutu (scatter plot) dla par (X_t, X_{t-h})

b.szum <- as.ts (rnorm(100)) # dane losowe

lag.plot(bialy.szum, lags = 4, do.lines=F, main="Biały szum wykres")

lag.plot(AirPass, lags = 12, do.lines=F, main="AirPass wykres")

Autokorelacja rzędu k jest funkcją, która argumentowi naturalnemu k przypisuje wartość współczynnika korelacji Pearsona pomiędzy szeregiem czasowym, a tym samym szeregiem cofniętym o k jednostek czasu.

Funkcja autokorelacji (ACF)

$$ACF(h) = \rho(k) = \gamma(k)/\gamma(0)$$
 (1)

$$\gamma(h) = cov(X_t, X_{t+h}) \tag{2}$$

 $ACF(0) = 1; ACF(h) \in [-1, 1]$

Interpretacja wykresu ACF (korelogramu):

dodatnie i powoli znikające wartości ACF wskazują na trend

powoli i cyklicznie znikające wartości ACF wskazują na sezonowość

Funkcja autokorelacji cząstkowej (PACF)

$$\alpha(1) = \operatorname{Corr}(X_2, X_1) = \rho(1) \quad \text{oraz} \tag{3}$$

$$\alpha(h) = \operatorname{Corr}(X_{h+1} - P_{\overline{S}P\{1, X_2, \dots x_h\}} X_{h+1}, X_1 - P_{\overline{S}P\{1, X_2, \dots x_h\}} X_{h+1})$$
(4)

$$dla h \geqslant 2 \tag{5}$$

Strona tytułowa

Strona 8 z 25

Powrót

Full Screen

Zamknij

Koniec

gdzie

 $P_{\overline{s}p\{1,x_2,\dots x_h\}}$ oznacza rzut ortogonalny na podprzestrzeń liniową wyznaczoną przez $1,X_2,\dots,X_h$

5. Dekompozycja szeregów czasowych

Dekompozycja: wyodrębnienie **składowej systematycznej** oraz **składowej przypadkowej**.

Składowa systematyczna: **trend** (długoterminowa ogólna tendencja rozwojowa); **cykliczność** (regularne wzorce wzrostó/spadków); **sezonowość** (krótkie, powtarzające się cykle, związanie najczęściej z porami roku/dnia);

5.1. Rodzaje dekompozycji

Ogólna formuła

$$Y_t = f(s_t, m_t, Z_t) \tag{6}$$

gdzie: s_t – składowa sezonowa, m_t – trend; Z_t – zakłócenie losowe

Dekompozycja addytywna (amplituda wahań stała):

$$Y_t = s_t + m_t + Z_t \tag{7}$$

Dekompozycja multiplikatywna (amplituda wahań rośnie/maleje):

$$Y_t = s_t \cdot m_t \cdot Z_t \tag{8}$$

Zamiast dekompozycji multiplikatywnej można zastosować najpierw transformację Boxa-Coxa a następnie model dekompozycji addytywnej.

Strona tytułowa

Strona 9 z 25

Powrót

Full Screen

Zamknij

Koniec

5.2. Parametryczne/nieparametryczne metody dekompozycji

Parametryczne – oparte o określony model formalny (np. liniowa f. trendu). Nieparametryczne – średnia ruchoma, ważona śrenia ruchoma

5.3. Średnia ruchoma

Symetryczna średnia ruchoma [ZS.146]:

$$m(t) = 1/(2q+1) \sum_{j=-q}^{q} Y_{t-j}$$
(9)

Do obliczania średniej ruchomej służy funkcja filer z pakietu albo ma z pakietu forecast stats:

```
library ("forecast")
library("expsmooth")
##> install.packages("expsmooth")
##Installing package into 'C:/Users/E5410/Documents/R/win-library/3.1'

data("dji")

## summary(dij)
dji.close <- dji[, "Close"]

m3 <- ma (dji.close, order=3)
## albo
m3 <- filter (dji.close, sides=2, filter=rep(1/3, 3))</pre>
```

```
Strona główna
```

Strona tytułowa

Strona 10 z 25

Powrót

Full Screen

Zamknij

Koniec

```
## ?rep
plot(m3)
ts.plot(m3,dji.close)
##?ts.plot
## jeszcze więcej wygłaszania
m11 <- ma(dji.close, order = 11)
m21 <- ma (dji.close, order=21)
ts.plot(m3,dji.close, m21)
## albo standardowe plot:
plot(m3, main = paste (" Metoda symetrycznej ruchomej sredniej"),
  col = "blue". ltv = 2)
lines(m11, col = "red", lty = 2)
lines(m21, col = "green", lty = 2)
lines(dji.Close , col = " black ", lty = 1)
legend("bottomright",
legend = c(" wyjsciowy szereg ", "ruchoma srednia (q=1)",
  "ruchoma srednia (q=5)", "ruchoma srednia (q =10)"),
col = c("black", "blue", "red", "green"), lty = c(1, 2, 2, 2))
```

Podstawowy problem: jaki wybrać rząd wygładzania – za mały, zbyt duża zmienność; za duży, zbyt duże wygładzenie.

Strona tytułowa

Strona 11 z 25

Powrót

Full Screen

Zamknij

Koniec

Dekompozycja (funkcja decompose z pakietu stats):
dji.close.decomp.add <- decompose(dji.close, type = "additive")</pre>

summary(dji.close.decomp.add)

plot(dji.close.decomp.add)

5.4. Średnia ruchoma ważona

Ważona średnia ruchoma [ZS.151]:

$$m(t) = \sum_{j=-q}^{q} w_j \cdot Y_{t-j} \tag{10}$$

gdzie: $w_{-q} + w_{-q+1} + \cdots + w_{q-1} + w_q = 1$ oraz $w_i = w_{-i}$

Przykład: Filtr Spencera [ZS.151], dla którego rząd q=7 i wagi określamy następująco:

$$[w_0, \dots, w_7] = 1/320 \cdot [74, 67, 46, 21, 3, -5, -6, -3] \tag{11}$$

m.spencer <- filter (x=dji.Close, (1/320) * c(-3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 21, 3, -5, -6, -3), sides=2)

plot(m3, main="Metoda średniej ruchomej", col = "blue", lty=2)
lines(m11, col="red", lty=2)
lines(m21, col="magenta", lty=2)
lines(m.spencer, col="green", lty=2)
lines(dji.Close, col="black", lty=1)
grid()

Strona tytułowa

Strona 12 z 25

Powrót

Full Screen

Zamknij

Koniec

5.5. Model regresji

Prosta regresja liniowa:

$$Y_t = a + b \cdot t + Z_t, \quad t = 1, 2, \dots$$
 (12)

```
library("TSAFBook")
## Pobierz ze strony http://quantup.pl/o-nas/ksiazka-szeregi-czasowe/
## Wykonaj (pierwszy parametr to nazwa pliku ze ścieżką):
## install.packages("C:\\Users\\E5410\\Downloads\\TSAFBook_0.1.tar.gz",
      repos = NULL, type="source")
##
## Biblioteka jest instalowana gdzieś tutaj:
## C:/Users/E5410/Documents/R/win-library/3.1'
library("TSAFBook")
data(pkb)
# dekompozycja na podstawie modelu regresji: trend liniowy
pkb.tslm.t <- tslm(pkb ~ trend)</pre>
summary(pkb.tslm.t)
tsdisplay(residuals(pkb.tslm.t), main = "reszty losowe")
# dekompozycja na podstawie modelu regresji: trend liniowy + sezonowość
pkb.tslm.s <- tslm(pkb ~ trend + season)</pre>
summary(pkb.tslm.s)
tsdisplay(residuals(pkb.tslm.s), main = "reszty losowe")
```

Strona 13 z 25

Powrót

Full Screen

Zamknij

Koniec

```
# dekompozycja zlogarymowanych danych: trend liniowy + sezonowość
# transformacja Boxa-Coxa (lambda=0)
pkb.log.tslm.l <- tslm(pkb ~ season + trend, lambda = 0)</pre>
summary(pkb.log.tslm.l)
tsdisplay(residuals(pkb.log.tslm.l), main = "reszty losowe")
# dekompozycja zlogarymowanych danych: trend kwadratowy + sezonowość
pkb.log.tslm.sq <- tslm(pkb ~ season + trend + I(trend ~ 2), lambda = 0)
summary(pkb.log.tslm.sq)
tsdisplay(residuals(pkb.log.tslm.sq), main = "reszty losowe")
# porównanie modeli dekompozycji
plot(pkb, col = "black", main = " Dane oryginalne ")
lines(fitted(pkb.tslm.s), col = "blue")
lines(fitted(pkb.log.tslm.l), col = "red")
lines(fitted(pkb.log.tslm.sq), col = "green")
legend("bottomright",legend=c("oryginalny szereg",
  "trend liniowy + sezonowość", "trend liniowy + sezonowość (dane zlog.)",
  "trend kwadartowy + sezonowość (dane zlog.)"),
 col = c("black","blue","red","green"), lwd=1)
```

6. Modele ARIMA

→ Następne spotkanie

Strona tytułowa

Strona 14 z 25

Powrót

Full Screen

Zamknij

Koniec

7. Prognozowanie

7.1. Ocena dokładności prognoz

Trafność prognozy to jakość prognoz ustalana ex-post. Dokładność prognozy to jakość prognoz ustalana ex-ante.

Dopuszczalność prognozy: prognoza jest dopuszczalna, gdy jest obdarzona przez odbiorcę stopniem zaufania wystarczającym do tego, aby mogła być wykorzystana w celu, dla którego została ustalona [C.54]

Maksymalny horyzont prognozy to należący do przyszłości najdalszy moment/okres, dla którego prognoza jest dopuszczalna.

Wiele metod prognozowania (większość?) **nie pozwalaja** na ustalenie błędu ex-ante/prawdopodobieństwa realizacji prognozy.

7.2. Miary dokładności prognozowania

Błąd prognozy:

$$PE_t = Y_t - F_t \tag{13}$$

gdzie: PE_t – błąd predykcji (*prediction error*); Y_t – wartość rzeczywista; F_t – wartość prognozowana

Średni błąd kwadratowy (MSE)

$$MSE = \frac{1}{n} \sum_{t=1}^{n} (Y_t - F_t)^2$$
 (14)

Pierwiastek błędu średniokwadratowego (RMSE)

$$RMSE = \sqrt{MSE} \tag{15}$$

Strona tytułowa

Strona 15 z 25

Powrót

Full Screen

Zamknij

Koniec

Inne współczynniki → [ZS.254]

Implementacja w R: funkcja accuracy z pakietu forecast (przykłady w następnym punkcie)

7.2.1. Przedziały predykcyjne

Przedziałem predykcyjnym jest przedział losowy $\mathrm{PI}(h) = [L,P]$, skonstuowany tak, aby zawierał przyszłą (nieznaną) obserwację Y_{n+h} z określonym prawdopodobieństwem.

Gaussowskie przedziały predykcyjne (Boxa-Jenkinsa). Jeżeli szereg czasowy jest gaussowskim szeregiem czasowym, to błąd predykcji $\mathrm{PE}(h) \sim N(0, \mathrm{PMSE}(h).$ Stąd końce przedziałów dane są wzorem:

$$PI_{BJ}(h) = [F_{n+h} - z_{\frac{1}{2}(1+\gamma)}\sqrt{PMSE(h)}, F_{n+h} + z_{\frac{1}{2}(1+\gamma)}\sqrt{PMSE(h)}]$$
 (16)

gdzie: F_{n+h} – prognozowana wartość Y_{t+h} ;

 $\sqrt{\mathrm{PMSE}(h)} = \sqrt{E(F_{n+h} - Y_{n+h})^2}$ – pierwiastek średniokwadratowego błędu predykcji (prediction MSE); $z_{\frac{1}{2}(1+\gamma)}$ – kwantyl rzędu $\frac{1}{2}(1+\gamma)$ z rozkładu N(0,1).

Implementacja w R: z automatu, należy podać w argumencie level poziom ufności, np:

library("forecast")
library("TSAFBook")
data(usgdp)

95% przedział predykcyjny
usgdp.forecast.rwf <- rwf(usgdp, drift =T, h=20, level=0.95)
summary(usgdp.forecast.rwf)</pre>

co jest w środku obiektu usgdp.forecast.rwf?:
attributes(usgdp.forecast.rwf)

Strona tytułowa

Strona 16 z 25

Powrót

Full Screen

Zamknij

Koniec

```
## drukowanie
cat(sprintf("%f %f\n", usgdp.forecast.rwf$lower, usgdp.forecast.rwf$upper))
## c(usgdp.forecast.rwf$lower, usgdp.forecast.rwf$upper) nie zadziała
plot(usgdp.forecast.rwf)
```

7.2.2. Wykresy wachlarzowe (fanplots)

Porównanie przedziałów predykcyjnych dla różnych poziomów ufności

```
usgdp.forecast.rwf.fp <- rwf(usgdp, drift =T, h=20, level=c(0.8, 0.95))
summary(usgdp.forecast.rwf)</pre>
```

```
## co jest w środku obiektu usgdp.forecast.rwf?:
attributes(usgdp.forecast.rwf)
```

```
plot(usgdp.forecast.rwf.fp, main="Przedziały predykcyjne, pu=0,80 i 0,95")
```

7.2.3. Podział na zbiór uczący i testowy

Trik pozwalający na ocenę dokładności prognoz: dzielimy dostępną próbę na dwie części: uczącą (*training set*) oraz testową (*training set*).

Część ucząca jest wykorzystywana w fazie diagnozowania do dopasowania modelu i konstrukcji prognoz. Część testowa jest wykorzystywana do oceny dokładności prognoz.

```
usgdp.train <- window(usgdp, end = c(1999,4))
usgdp.test <- window(usgdp, start = c(2000,1))</pre>
```

```
length(usgdp.test) # powinno wypisać 25
Strona główna
                         ### Wyznaczenie prognoz
                         usgdp.train.f1 <- meanf(usgdp.train, h=25)</pre>
                         usgdp.train.f2 <- naive(usgdp.train, h=25)</pre>
Strona tytułowa
                         usgdp.train.f3 <- rwf(usgdp.train, drift=T, h=25)</pre>
                         usgdp.train.f4 <- rwf(usgdp.train, drift=T, h=25, lambda=0)</pre>
                         ### Porównanie prognoz na wykresie:
                         y.zakres <- c(0.9, 1.1) * range(usgdp, usgdp.test)</pre>
                         par(mfrow = c(4,1))
                         plot(usgdp.train.f1, ylim=y.zakres)
                         lines (usgdp.test, col="red", lty=2)
                         plot(usgdp.train.f2, ylim=y.zakres)
Strona 17 z 25
                         lines (usgdp.test, col="red", lty=2)
                         plot(usgdp.train.f3, ylim=y.zakres)
  Powrót
                         lines (usgdp.test, col="red", lty=2)
                         ## zgłasza błąd dla czterech?
 Full Screen
                         plot(usgdp.train.f4, ylim=y.zakres)
                         lines (usgdp.test, col="red", lty=2)
```

Zamknij

Koniec

Strona tytułowa

Strona 18 z 25

Powrót

Full Screen

Zamknij

Koniec

7.2.4. Analiza własności reszt

Jeżeli metoda prognozowania działa dobrze to szereg reszt powinien zachowywać się jak biały szum (brak korelacji).

Nie powinno być widocznych regularności (trend/cykliczność)

histogram, wykres ACF, test losowości Ljung-Boxa

```
reszty.1 <- residuals(usgdp.train.f1)
reszty.2 <- residuals(usgdp.train.f2)
reszty.3 <- residuals(usgdp.train.f3)</pre>
par(mfrow = c(3,1))
plot(reszty.1, main = "Reszty f1")
plot(reszty.2, main = "Reszty f2")
plot(resztv.3, main = "Resztv f3")
## ACF i histogramy (normalność)
par(mfrow=c(3,2))
Acf(reszty.1, lag.max=30, main = "Reszty f1")
hist(reszty.1, main = "Reszty f1")
Acf(reszty.2, lag.max=30, main = "Reszty f2")
hist(reszty.2, main = "Reszty f2")
Acf(reszty.3, lag.max=30, main = "Reszty f3")
hist(reszty.3, main = "Reszty f3")
## Test losowości reszt Ljunga-Boxa
Box.test(reszty.1, lag=10, type="Ljung-Box")
```

Strona tytułowa

Strona 19 z 25

Powrót

Full Screen

Zamknij

Koniec

7.3. Metody naiwne

Prognoza dla chwili t jest równa obserwacji w chwili t-1:

$$F_t = Y_{t-1} \tag{17}$$

Wariant: sezonowa metoda naiwna

$$F_t = Y_{t-s} \tag{18}$$

gdzie s – liczba okresów w cyklu sezonowości (dla danych miesięcznych $s=12)\,$

Wariant: metoda naiwna z dryfem [ZS.248]:

$$F_{n+h} = Y_n + \frac{h}{n-1} \sum_{t=2}^{n} (Y_t - Y_{t-1}) = Y_n + h(\frac{Y_n - Y_1}{n-1})$$
(19)

Prognoza jest równa ostatniej obserwacji do której dodawana jest średnia zmiana. Implementacja w R: funkcje naive/snaive z pakietu forecast:

standardowa metoda naiwna
AirPass.forecast.naive <- naive(x = AirPass, h = 24)
AirPass.forecast.naive
summary(AirPass.forecast.naive)</pre>

accuracy.AirPass.forecast.naive <- accuracy(AirPass.forecast.naive)
accuracy.AirPass.forecast.naive
plot(AirPass.forecast.naive)</pre>

sezonowa metoda naiwna
AirPass.forecast.snaive <- snaive(x = AirPass, h = 24)</pre>

Strona tytułowa

Strona 20 z 25

Powrót

Full Screen

Zamknij

Koniec

AirPass.forecast.snaive
summary(AirPass.forecast.snaive)

accuracy.AirPass.forecast.snaive <- accuracy(AirPass.forecast.snaive)
accuracy.AirPass.forecast.snaive
plot(AirPass.forecast.snaive)</pre>

metoda uwzględniająca dryf
AirPass.forecast.rwf <- rwf(x = AirPass, drift = TRUE, h = 24)
AirPass.forecast.rwf
summary(AirPass.forecast.rwf)</pre>

accuracy.AirPass.forecast.rwf <- accuracy(AirPass.forecast.rwf)
accuracy.AirPass.forecast.rwf
plot(AirPass.forecast.rwf)</pre>

7.4. Oparte o średniej

W przypadku prostej średniej ruchomej jako prognozę dla chwili t przyjmuje się średnią arytmetyczną n wcześniejszych wartości szeregu:

$$F_t = (Y_{t-1} + Y_{t-2} + \dots + Y_{t-n})/n \tag{20}$$

Implementacja w R: funkcja meanf (pakiet forecast):

prognoza oparta na średniej
AirPass.forecast.mean <- meanf (x = AirPass, h = 24)
AirPass.forecast.mean
summary(AirPass.forecast.mean)
plot(AirPass.forecast.mean)</pre>

Strona tytułowa

Strona 21 z 25

Powrót

Full Screen

Zamknij

Koniec

7.5. dekompozycja klasyczna [ZS8.5]

. . .

7.6. modele ARIMA [ZS.267]

```
# model 1: ARIMA(0,1,12)(0,1,0)[12]
ARIMA.model1 <- Arima(AirPass, order = c(0, 1, 12), seasonal = list(order = c(0, 1, 12))
ARIMA.model1.prognozy <- forecast(ARIMA.model1, h = 24)
ARIMA.model1.prognozy
# model 2: ARIMA(13,1,0)(0,1,0)[12]
ARIMA.model2 <- Arima(AirPass, order = c(13, 1, 0), seasonal = list(order = c(0, 1, 1, 0))
ARIMA.model2.prognozy <- forecast(ARIMA.model2, h = 24)
ARIMA.model2.prognozy
# automatycznie wybrany model ARIMA
ARIMA.model.auto <- auto.arima(AirPass)
ARIMA.model.auto.prognozy <- forecast(ARIMA.model.auto, h = 24)
ARIMA.model.auto.prognozy
# porównanie prognoz
par(mfrow = c(3, 1))
plot(ARIMA.model1.prognozy)
plot(ARIMA.model2.prognozy)
```

prognozowanie na podstawie modeli ARIMA(p,d,q)(P,D,Q)[s]

Strona tytułowa

Strona 22 z 25

Powrót

Full Screen

Zamknij

Koniec

plot(ARIMA.model.auto.prognozy)
par(mfrow = c(1, 1))

7.7. Wygładzanie wykładnicze SES

Załóżmy, że znamy X_1, X_2, \ldots, X_n . Chcemy wyznaczyć prognozy dla nieznanych X_{n+h} , gdzie $h=1,2,\ldots$

Prognoza jednokrokowa SES F_{t+1} jest określana przez następujące równanie rekurencyjne:

$$F_{n+1} = \alpha X_n + (1 - \alpha)F_n \tag{21}$$

gdzie: F_{n+1} – prognoza na okres n+1; F_n prognoza dla aktualnego okresu czasu, X_n – wartość rzeczywista dla aktualnego okresu czasu; α – stała wygładzająca ($\alpha \in (0,1)$)

Parametr wygładzający jest dobierany przez prognostę. Jeżeli $\alpha<0,5$ to mniejsza waga będzie przykładana aktualnej wartości X_n , a większa prognozie tej wartości F_n

Jeżeli h > 1 prognoza ma postać (flat forecast):

$$F_{n+h} = F_{n+1}, \quad h = 2, 3, \dots$$
 (22)

Wniosek: metoda SES nie nadaje się w przypadku szeregów, w których obserwuje się trend/sezonowość.

proste wygładzanie wykładnicze (algorytm SES)
kurs.EUR.PLN.ses <- ses(kurs.EUR.PLN, initial = "simple", h = 24)
summary(kurs.EUR.PLN.ses)
plot(kurs.EUR.PLN.ses)</pre>

Strona tytułowa

Strona 23 z 25

Powrót

Full Screen

Zamknij

Koniec

7.8. Algorytm Holta

Uogólnienie SES dla przypadku szeregu w którym występuje trend:

Poziom:
$$L_t = \alpha X_t + (1 - \alpha)(L_{t-1} + b_{t-1})$$
 (23)

Trend:
$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$
 (24)

gdzie: L_t określa poziom, b_t zaś trend w momencie t; α oraz β to parametry wygładzjące $(\alpha, \beta \in (0, 1).)$

Równanie prognozy:

$$F_{n+h} = L_n + hb_n \qquad \text{dla} h = 1, 2, \dots \tag{25}$$

Implementacja w R:

```
# algorytm Holta
usgdp.holt <- holt(usgdp, h = 24)
usgdp.holt.damped <- holt(usgdp, h = 20, damped = TRUE) # trend tłumiony
usgdp.holt.exp <- holt(usgdp, h = 20, exponential = TRUE) # trend wykładniczy</pre>
```

```
par(mfrow = c(3, 1))
plot(usgdp.holt)
plot(usgdp.holt.damped)
plot(usgdp.holt.exp)
par(mfrow = c(1, 1))
```

7.9. Algorytm Holta-Wintersa

Uogólnienie algorytmu Holta dla przypadku szeregu, w którym występuje oprócz trendu także sezonowość. Dla addytywnej metody H-W mamy:

Poziom:
$$L_t = \alpha(X_t - S_{t-s}) + (1 - \alpha)(L_{t-1} + b_{t-1})$$
 (26)

Strona tytułowa

Strona 24 z 25

Powrót

Full Screen

Zamknij

Koniec

Trend:
$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$
 (27)

Sezonowość:
$$S_t = \gamma(X_t - L_t) + (1 - \gamma)S_{t-s}$$
 (28)

gdzie: s – liczba okresów w cyklu sezonowości (dla danych miesięcznych s=12); α , β , γ to parametry wygładzjące $(\alpha, \beta, \gamma \in (0, 1).)$

Dla multiplikatywnej metody H-W mamy:

Poziom:
$$L_t = \alpha \frac{X_t}{S_{t-s}} + (1 - \alpha)(L_{t-1} + b_{t-1})$$
 (29)

Trend:
$$b_t = \beta(L_t - L_{t-1}) + (1 - \beta)b_{t-1}$$
 (30)

Sezonowość:
$$S_t = \gamma \frac{X_t}{L_t} + (1 - \gamma)S_{t-s}$$
 (31)

gdzie: s – liczba okresów w cyklu sezonowości (dla danych miesięcznych s=12); α , β , γ to parametry wygładzjące $(\alpha, \beta, \gamma \in (0, 1).)$

Równanie prognozy (wersja addytywna/multiplikatywna):

$$F_{n+h} = L_n + hb_n + S_{n+h-s}$$
 dla $h = 1, 2, \dots F_{n+h} = (L_n + hb_n)S_{n+h-s}$ dla $h = 1, 2, \dots (32)$

Implementacja w R:

```
# algorytm Holta-Wintersa
pkb.hw.add <- hw(pkb, h = 20, seasonal = "additive")  # wariant addytywny
pkb.hw.mult <- hw(pkb, h = 20, seasonal = "multiplicative") # wariant multiplikaty
par(mfrow = c(2, 1))
plot(pkb.hw.add)
plot(pkb.hw.mult)
par(mfrow = c(1, 1))</pre>
```

Strona główna Strona tytułowa Strona 25 z 25 Powrót Full Screen Zamknij

Koniec

8. Metody sztucznych sieci neuronowych

ightarrow Następne spotkanie

9. Metody niekonwencjonalne

 $\to \mathsf{Następne}\;\mathsf{spotkanie}$