

XXXX

\underline{XXXXX}

学院	
专业	
学号	
姓名	

2025年8月29日

摘要

XXXXX **关键词:** XXX

目录

1	四级抽象与相互作用	1	
	1.1 总体框架	1	
	1.2 级联效应	1	
2	无约束优化与凸性	1	
	2.1 极小值与平滑性	1	
	2.2 凸函数的关键性质	1	
	2.3 梯度下降与学习率	1	
3	多维曲率、Hessian 与病态条件	2	
	3.1 方向曲率与 Hessian	2	
	3.2 病态条件与学习率各向异性	2	
	3.3 鞍点	2	
4	线性规划(LP):线性目标 + 线性不等式	2	
	4.1 形式与几何	2	
	4.2 与"线性可分"的对应	3	
5	二次规划(QP)与最大间隔 SVM	3	
	5.1 QP 基本形态与可解性	3	
	5.2 从"可分"到"最大间隔"的推导	3	
	5.3 软间隔与合页损失的等价	3	
	5.4 核技巧一言以蔽之	3	
	5.5 QP 求解算法与对比	4	
6	实践要点与易错清单	4	
	6.1 学习率与收敛	4	
	6.2 数据与特征处理	4	
	6.3 从 LP 到 QP 的识别技巧	4	
7	概念速查表	5	
8	关键推导与证明摘要		

1 四级抽象与相互作用

1.1 总体框架

- 1. **Application / Data (应用与数据)**。首先判断数据是否带标签。若有标签,进一步区分分类(离散标签)与回归(连续标签);若无标签,则多为聚类(相似性)或降维(定位)。
- 2. **Model (模型/假设空间)**。允许哪些假设:线性/多项式/逻辑回归/神经网络/最近邻/决策树等。模型容量影响过拟合与欠拟合,也影响可解释性与推断。
- 3. **Optimization Problem(优化问题)**。把任务转写成"变量+目标函数+约束"的形式。常见有:无约束最优化、凸规划、最小二乘、PCA等。
- 4. Optimization Algorithm (优化算法)。选择实际的求解器,如梯度下降、单纯形法、SVD等。

1.2 级联效应

- 1. 模型不同会改变目标形式与可解性,从而改变可用的算法。
- 2. 从线性分类器切换到神经网络,不仅假设空间改变,优化问题也由凸变为高度非凸,对应的算法与调参策略都要随之改变。

2 无约束优化与凸性

2.1 极小值与平滑性

- 1. 目标函数 f(w) 连续可导且梯度连续时称为光滑(smooth)。
- 2. 全局极小 w_{\star} 满足 $f(w_{\star}) \leq f(v)$ 对任意 v 成立; 局部极小在某个邻域内不可继续下降。

2.2 凸函数的关键性质

1. 定义: 在凸域上,任意 x,y与 $\beta \in [0,1]$,有

$$f(x + \beta(y - x)) \le (1 - \beta)f(x) + \beta f(y).$$

- 2. 凸函数之和仍凸;许多风险函数(如感知机风险、逻辑回归负对数似然)是多个样本损失的和, 因此保持凸性。
- 3. 在封闭凸域上,连续凸函数要么无下界,要么只有一个局部极小,要么是由*全局等值极小点*构成的连通集合。后两种情形中,沿"下坡方向"迭代最终可达全局最优(或其等值集合)。

2.3 梯度下降与学习率

- 1. 基本迭代: $w_{t+1} = w_t \varepsilon \nabla f(w_t)$ 。
- 2. ε 过大导致发散或震荡; 过小导致收敛缓慢。一个简单的自适应策略是: 若本步 f 上升则减小步长。

3. 在实践中,梯度下降通常是"趋近"极小值而不精确到达,这表现为收敛。

3 多维曲率、Hessian 与病态条件

3.1 方向曲率与 Hessian

定义 1 (Hessian). 设 $f: \mathbb{R}^d \to \mathbb{R}$ 二阶可微,Hessian 为二阶导矩阵 $H(w) = \nabla^2 f(w)$ 。

命题 1 (方向曲率的二次型表示). 对任意单位向量 v,令 $\phi(t) = f(w_0 + tv)$,则

$$\phi''(0) = v^{\top} H(w_0) v.$$

证明要点: 链式法则 $\phi'(t) = \nabla f(w_0 + tv)^{\top} v$,再对 t 求导得 $\phi''(0) = v^{\top} \nabla^2 f(w_0) v$; 或用二阶泰勒展 开取 t^2 项系数即可。

命题 2 (特征值等于特征方向的曲率). 当 H 为对称实矩阵(由二阶混合偏导可交换得知),存在正交分解 $H = Q\Lambda Q^{\mathsf{T}}$ 。若取方向 $v = q_i$ (第 i 个特征向量),则

$$v^{\top}Hv = q_i^{\top}Hq_i = \lambda_i,$$

即对应特征值就是该方向的二阶曲率。

命题 3 ("Rayleigh - Ritz"上下界的朴素推导). 任意单位 v 在特征向量基下写成 $v = \sum_i \alpha_i q_i$ 且 $\sum_i \alpha_i^2 = 1$ 。于是

$$v^{\top} H v = \sum_{i} \lambda_{i} \alpha_{i}^{2}.$$

因此 $v^{\mathsf{T}}Hv$ 是特征值的加权平均,必位于 $[\lambda_{\min}, \lambda_{\max}]$ 区间内,端点由 $v = q_{\min}$ 或 $v = q_{\max}$ 取得。

3.2 病态条件与学习率各向异性

- 1. 若 $\kappa(H) = \lambda_{\max}/\lambda_{\min}$ 很大,则不同方向曲率差异悬殊,等高线呈细长椭圆,称为病态(ill-conditioning)。
- 2. 单一学习率难以同时适配所有方向: 对陡峭方向过大易发散,对平缓方向过小又收敛慢。
- 3. 典型缓解:特征缩放/标准化、预条件化、以及自适应学习率(Adam、RMSProp等按坐标自调步长)。

3.3 鞍点

- 1. 鞍点是梯度为零但存在正负曲率方向并存的点,例如 $f(x,y) = x^2 y^2$ 在原点。
- 2. 在非凸问题(神经网络)中常见; SGD 的噪声有助于逃离部分鞍点。

4 线性规划 (LP):线性目标+线性不等式

4.1 形式与几何

1. 形式: $\max / \min c^{\top} w$ s.t. Aw < b。可行域是凸多面体。

2. *活跃约束*:在最优解处以等号成立的约束。可能存在多重最优(如目标方向与某边界平行时一整条边都最优);所有最优解的集合仍是凸的。

4.2 与"线性可分"的对应

- 1. 存在线性分类器等价于可行域非空: 寻找 (w,α) 使 $y_i(w^Tx_i+\alpha) \geq 1$ 对所有 i。
- 2. LP 的挑战是确定最终会成为活跃的约束组合,组合数量呈指数级;常用**单纯形法**在多面体顶点间沿边移动直至最优。

5 二次规划(QP)与最大间隔 SVM

5.1 QP 基本形态与可解性

- 1. 形式: $\min f(w) = w^{\top}Qw + c^{\top}w$ s.t. $Aw \leq b$, 其中 Q 对称半正定则凸可解,Q 正定则解唯一。
- 2. 若Q不定,目标非凸,普遍为NP-hard。

5.2 从"可分"到"最大间隔"的推导

1. 目标是最大化几何间隔

$$\gamma = \min_{i} \frac{y_i \left(w^{\top} x_i + b \right)}{\|w\|}.$$

- 2. 通过缩放标准化约束 $y_i(w^{\top}x_i + b) \ge 1$,此时 $\gamma = 1/||w||$ 。
- 3. 因而"最大间隔"等价于

$$\min_{w,b} \frac{1}{2} ||w||^2 \quad \text{s.t.} \quad y_i(w^\top x_i + b) \ge 1,$$

即二次目标+线性不等式约束的 QP。

4. 最优点处贴边的样本构成支持向量,是几何上的活跃约束。

5.3 软间隔与合页损失的等价

1. 带松弛变量的带约束形式:

$$\min_{w,b,\xi} \ \tfrac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i \quad \text{s.t.} \quad y_i(w^\top x_i + b) \ge 1 - \xi_i, \ \xi_i \ge 0.$$

2. 由约束得 $\xi_i \ge \max(0, 1 - y_i(w^\top x_i + b))$; 由于目标对 ξ_i 单调,在最优处取下界,故等价为无约束:

$$\min_{w,b} \ \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i(w^\top x_i + b)),$$

第二项即合页损失 (hinge loss)。

5.4 核技巧一言以蔽之

1. 将内积 $x^{\top}z$ 替换为核函数 $K(x,z)=\langle \Phi(x),\Phi(z)\rangle$,在隐式高维中作线性分类,从而得到非线性判别边界。

5.5 OP 求解算法与对比

- 1. **单纯形类 (Simplex-like)**: 适用广、能精确解一般 QP; 但大规模慢、内存压力大; 更偏"组合/离散"风格。
- 2. **SMO** (Sequential Minimal Optimization): 把对偶 QP 分解成反复求解 2 变量子问题;中等规模核 SVM 高效,LIBSVM 与 sklearn.SVC 采用;但超大规模或核矩阵存储时仍受限。
- 3. **坐标下降(Coordinate Descent)**: 逐坐标优化,极擅长超大规模稀疏线性 SVM(文本/点击率等),LIBLINEAR 与 LinearSVC 采用;但不直接适配核 SVM,收敛速度依赖坐标选择策略。

6 实践要点与易错清单

6.1 学习率与收敛

- 1. 一维: 步长过大发散,过小缓慢;多维病态时单一步长无法兼顾各方向。
- 2. 简便诊断:若某步 f 上升,缩小步长;使用学习率衰减或自适应策略(Adam、RMSProp)。

6.2 数据与特征处理

- 1. 线性模型前建议标准化特征;对病态问题可考虑预条件化。
- 2. 核 SVM 的核宽度、正则系数 C 需网格或贝叶斯调参; 大数据优先线性 SVM 或近似核方法。

6.3 从 LP 到 OP 的识别技巧

- 1. 只需"可分"的分类 ⇒ LP 可行性问题: 判断不等式系统是否有解。
- 2. 追求"最大间隔" \Rightarrow QP: 最小化 $\frac{1}{2}||w||^2$ 加线性约束。
- 3. 不可分且希望鲁棒 ⇒ 软间隔 + 合页损失 (等价无约束)。

7 概念速查表

术语	要点
局部/全局极小	全局对所有点最小; 局部在邻域内最小
凸函数	连线在图像之上; 凸和仍凸; 许多经验风险是凸的
Hessian	二阶导矩阵;方向曲率为 $v^{\top}Hv$
病态 (条件数)	$\kappa = \lambda_{\max}/\lambda_{\min} \gg 1$,不同方向曲率差异大
鞍点	梯度为零但存在正负曲率方向并存
LP	线性目标+线性不等式;可行域多面体;单纯形法
QP	二次凸目标 + 线性不等式; $Q \succeq 0$ 则凸可解
SVM (硬间隔)	$\min rac{1}{2} \ w\ ^2$ s.t. $y_i(w^{ op} x_i + b) \geq 1$
SVM (软间隔)	加松弛 ξ_i ; 等价于 $\frac{1}{2} w ^2 + C\sum \max(0, 1 - y_i f_i)$
核技巧	用 $K(x,z) = \langle \Phi(x), \Phi(z) \rangle$ 替代内积
SMO	核 SVM 常用;逐个两变量子问题精解
坐标下降	线性 SVM 大规模稀疏数据利器

8 关键推导与证明摘要

A. 方向曲率 = 二次型

设 $\phi(t) = f(w_0 + tv)$,链式法则给出 $\phi''(0) = v^\top \nabla^2 f(w_0) v$ 。因此 Hessian 的特征值是特征方向上的曲率,任意方向曲率为特征值的非负加权平均,从而被夹在 $[\lambda_{\min}, \lambda_{\max}]$ 内。

B. 软间隔 SVM ⇒ 合页损失

约束 $y_i(w^\top x_i + b) \ge 1 - \xi_i$ 与 $\xi_i \ge 0$ 蕴含 $\xi_i \ge \max(0, 1 - y_i f_i)$ 。 目标对 ξ_i 单调,最优取下界,代回得 $\min \frac{1}{2} ||w||^2 + C \sum \max(0, 1 - y_i f_i)$ 。