Análisis Estadístico Completo - Algoritmo ABC

Welded Beam Design Problem

Este proyecto implementa un análisis estadístico completo para optimizar los parámetros del algoritmo ABC (Artificial Bee Colony) aplicado al problema Welded Beam Design.

Estructura del Proyecto

🚀 Instalación y Configuración

1. Instalar los Scripts

Coloca todos los archivos generados en tu estructura de proyecto:

```
    (experimento_completo.py) → raíz del proyecto
```

- (analisis_estadistico.py) → raíz del proyecto
- (setup_dependencias.py) → raíz del proyecto
- (ejecutor_principal.py) → raíz del proyecto

2. Verificar Dependencias

```
python setup_dependencias.py
```

3. Instalación Manual de Dependencias (si es necesario)

pip install pandas numpy matplotlib seaborn scipy statsmodels scikit-posthocs

111

Metodología del Experimento

Parámetros Analizados (5 factores \times 3 niveles = 3^5 = 243 combinaciones)

Parámetro	Nivel 1 (Bajo)	Nivel 2 (Medio)	Nivel 3 (Alto)	Descripción
numb_bees	50	150	450	Número de abejas (tamaño población)
max_itrs	100	500	1000	Número máximo de iteraciones
p_f	0.25	0.45	0.75	Probabilidad jerarquización estocástica
limit	10	50	150	Límite de abandono de fuente
modification_rate	0.1	0.5	0.9	Factor de modificación de solución
4			•	•

Diseño Experimental

• Total de combinaciones: 243

• **Repeticiones por combinación:** 30 (usando semillas fijas)

• Total de ejecuciones: 7,290

• Semillas utilizadas: Primeros 30 números primos [2, 3, 5, 7, 11, ..., 113]

♦ Uso del Sistema

Opción 1: Ejecutor Principal (Recomendado)

bash

python ejecutor_principal.py

El ejecutor principal te guiará a través de un menú interactivo con las siguientes opciones:

- 1. Verificar dependencias Instala librerías necesarias
- 2. **Ejecutar experimentos completos** 7,290 ejecuciones (3-6 horas)
- 3. **Ejecutar análisis estadístico** Analiza resultados previos
- 4. Proceso completo Ejecuta todo desde cero
- 5. **Prueba rápida** Verificación con 160 ejecuciones (5 minutos)
- 6. Salir

Opción 2: Ejecución Manual Paso a Paso

Paso 1: Experimentos Completos

bash

python experimento_completo.py

Paso 2: Análisis Estadístico

bash

python analisis_estadistico.py resultados/experimento_YYYYMMDD_HHMM/master_table.csv

Opción 3: Prueba Rápida

Para verificar que todo funciona correctamente:

bash

Usar opción 5 del ejecutor principal python ejecutor_principal.py

📊 Análisis Estadístico Implementado

1. Análisis Exploratorio

- Estadísticas descriptivas por combinación
- Diagramas de caja (boxplots) por parámetro
- Histogramas y distribuciones

2. Verificación de Supuestos ANOVA

- Normalidad de residuos: Prueba de Shapiro-Wilk
- Homogeneidad de varianzas: Prueba de Levene
- Gráficos de diagnóstico

3. Análisis Inferencial

Si se cumplen supuestos (Análisis Paramétrico):

- ANOVA Factorial Completo con efectos principales e interacciones
- Pruebas Post-hoc de Tukey para comparaciones múltiples

• Análisis de interacciones con gráficos

Si NO se cumplen supuestos (Análisis No Paramétrico):

- Pruebas de Kruskal-Wallis por parámetro
- Pruebas Post-hoc de Dunn con corrección Bonferroni
- Análisis visual de interacciones

4. Resultados y Conclusiones

- Identificación de parámetros más influyentes
- Mejor configuración encontrada
- Recomendaciones finales
- Variables de diseño óptimas

Estructura de Resultados

Después de Ejecutar Experimentos:

```
resultados/

— experimento_YYYYMMDD_HHMM/

— master_table.csv  # Datos completos (7,290 filas)

— configuracion_experimento.csv # Parámetros usados

— resultados_intermedio.csv  # Backup de progreso
```

Después del Análisis Estadístico:

```
analisis/

analisis_YYYYMMDD_HHMM/

estadisticas_descriptivas.csv # Estadísticas por combinación

tabla_anova.csv # Resultados ANOVA (si aplica)

resultados_kruskal_wallis.csv # Resultados no paramétricos (si aplica)

tukey_[parametro].txt # Pruebas post-hoc Tukey

dunn_[parametro].csv # Pruebas post-hoc Dunn

conclusiones_finales.txt # Resumen y recomendaciones

boxplots_parametros.png # Diagramas de caja

distribucion_fitness.png # Histogramas y Q-Q plots

diagnosticos_modelo.png # Gráficos de diagnóstico ANOVA

graficos_interacciones.png # Análisis de interacciones
```

Tiempos de Ejecución Estimados

Proceso	Tiempo Aproximado	Descripción	
Prueba rápida	5-10 minutos	32 combinaciones × 5 repeticiones = 160 ejecuciones	
Experimentos completos	3-6 horas	243 combinaciones × 30 repeticiones = 7,290 ejecuciones	
Análisis estadístico	2-5 minutos	Procesamiento de resultados y generación de gráficos	
◀	•	•	

Los tiempos varían según el hardware utilizado.

Interpretación de Resultados

Archivo (conclusiones_finales.txt)

Este archivo contiene:

- 1. Parámetros más influyentes Factores con efectos significativos
- 2. **Mejor configuración encontrada** Combinación óptima de parámetros
- 3. Variables de diseño Valores óptimos para el problema Welded Beam
- 4. Recomendaciones finales Configuración sugerida para uso práctico
- 5. **Resumen estadístico** Métricas generales del experimento

Interpretación de p-valores

- **p < 0.05:** Efecto estadísticamente significativo
- **p** ≥ **0.05**: No hay evidencia de efecto significativo

Gráficos de Interacción

- Líneas paralelas: No hay interacción
- Líneas que se cruzan: Interacción presente
- Líneas con pendientes diferentes: Posible interacción

Solución de Problemas

Error: "Module not found"

bash

python setup_dependencias.py

Error: "No space left on device"

Los experimentos generan ~100MB de datos

Asegúrate de tener al menos 500MB libres

Error: "Process killed"

- Reduce el número de procesos paralelos en (experimento_completo.py)
- Modifica la línea: (num_procesos = min(cpu_count(), 4))

Experimentos muy lentos

- Usa la **prueba rápida** para verificar funcionamiento
- Considera ejecutar en horarios de menor carga del sistema

Soporte

Para problemas específicos:

- 1. Verifica que todos los archivos estén en las ubicaciones correctas
- 2. Ejecuta (python setup_dependencias.py) para verificar librerías
- 3. Usa la **prueba rápida** para verificar funcionamiento básico
- 4. Revisa los logs de error en la consola

o Próximos Pasos

Después de completar el análisis:

- 1. **Revisa conclusiones_finales.txt** para los resultados principales
- 2. Examina los gráficos para entender las tendencias
- 3. Implementa la configuración recomendada en tu algoritmo ABC
- 4. **Documenta los hallazgos** para futuras referencias

¡Buena suerte con tu análisis estadístico! 🚀