

Test Report for FCC

FCC ID: 2ABUY-BHA-WC100

					FCC ID . ZABUT-BHA-WCTUU	
Repo	rt Number	ESTF15	ESTF151402-003			
	Company name	EMW C	Co., Ltd.			
Applicant	Address	80B-4L, 680-3, Gojan-Dong, Namdong-Gu, Incheon, Korea				
	Telephone	82-2-2	2107-5615			
	Product name	Wired&Wireless IP Camera				
Product	Model No.	ВН	A-WC100	Manufacturer	EMW Co., Ltd.	
	Serial No.		NONE	Country of origin	KOREA	
Test date	2014-01-	12~ 2014	-01-14	Date of issue	11 - Feb - 14	
Testing location	97 - 1,	Hoeeok-		l Co., Ltd. n, Icheon-si, Gy	eonggi-do, Korea	
Standard	FCC PART 15	Subpart (C (15.247):2010 , ,	ANSI C 63.4(2009)	, KDB 558074 D01(2013)	
Measurement facility registration number 915135			35			
Tested by	Engineer J.H.Kim			•		
Reviewed by	Engineering Manager J.M.Yang (Signature)					
Abbreviation	OK, Pass = Pass	ed, Fail	= Failed, N/A =	not applicable		
1						

- * Note
- This test report is not permitted to copy partly without our permission
- This test result is dependent on only equipment to be used
- This test result based on a single evaluation of one sample of the above mentioned

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 1 of 57

ESTECH Co., Ltd.

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

Contents

1. Laboratory Information	3
2. Description of EUT	4
3. Test Standards	5
4. Measurement condition	8
5. DTS bandwidth	9
5.1 Test procedure	9
5.2 Test instruments and measurement setup	9
5.3 Measurement results	9
5.4 Trace data	11
6. Maximum Peak Output Power	15
6.1 Test procedure	15
6.2 Test instruments and measurement setup	15
6.3 Measurement results	15
6.4 Trace data	15
7. Maximum conducted (average) output power	18
7.1 Test procedure	
7.2 Test instruments and measurement setup	16
7.3 Measurement results	16
7.4 Trace data	18
8. Maximum power spectral density level in the fundamental emission	25
8.1 Test procedure	25
8.2 Test instruments and measurement setup	25
8.3 Measurement results	25
8.4 Trace data	27
9. Emissions in non-restricted frequency bands	31
9.1 Test procedure	31
9.2 Test instruments and measurement setup	31
9.3 Measurement results	31
9.4 Trace data of band-edge & out of emissioin	33
10. Measurement of radiated emission	
10.1 Measurement equipment	41
10.2 Environmental conditions	
10.3 Measurement Instrument setting for Radiated Emission	
10.4 Test Data for Wi-Fi Binary CDMA(2.4 GHz)	
10.5 Test Data for Wi-Fi Binary CDMA (5.8 GHz)	
	51
11.1 Measurement equipment	51
11.2 Environmental conditions	51
11.3 Test Data for Wi-Fi Binary CDMA (2.4 GHz)	52
11.4 Test Data for Wi-Fi Binary CDMA (5.8 GHz)	53
12. Photographs of test setup	54
12.1.Setup for Radiated Test : (30 ~ 1 000) MHz	54
·	55
12.3. Setup for Conducted Test: (0.15 ~ 30) MHz	
12.4. Photographs of EUT	57
Appendix 1. Special diagram	
Appendix 2. Antenna Requirement	

•

1. Laboratory Information

1.1 General

This EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards and is tested in accordance with the measurement procedures as indicated in this report.

ESTECH Lab attests to accuracy of test data. All measurement reported herein were performed by ESTECH Co., Ltd.

ESTECH Lab assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

1.2 Test Lab.

Corporation Name: ESTECH Co., Ltd.

Head Office: Rm 1015, World Venture Center II, 426-5, Gasan-dong, Geumcheon-gu, Seoul, Korea

EMC/Telecom/Safety Test Lab: 97-1, Hoeeok-ri, Majang-myeon, Icheon-si, Gyeonggi-do, Korea

1.3 Official Qualification(s)

KCC : Granted Accreditation from Ministry of Information & Communication for EMC, Safety and Telecommunication

KOLAS: Accredited Lab By Korea Laboratory Accreditation Schema base on CENELEC requirements

FCC : Conformity Assessment Body(CAB) with registration number 659627 under APEC TEL MRA between the RRA and the FCC

VCCI: Granted Accreditation from Voluntary Control Council for Interference from ITE

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 3 of 57

ESTECH Co., Ltd.

Am 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Seoul. 158-803, Korea

Electromagnetic Interference **Test Report**

2. Description of EUT

2.1 Summary of Equipment Under Test (Wi-Fi Binary CDMA)

: Wi-Fi Binary CDMA Modulation Type

: up to 65 Mbps Transfer Rate

Number of Channel : 2.4 GHz : 5 ch , 5 GHz : 15 ch

PEAK Output Power : 2.4 GHz: 0.184 W , 5.8 GHz: 0.079 W

INPUT: (100 - 240) Va.c., (50 - 60) Hz, 1.2 A Rating

OUTPUT: 12 Vd.c., 1.5 A

The highest operating frequency is 5815 MHz(Wi-Fi Binary CDMA) X-tal list(s) or

: XTAL : 32.768 kHz , OSC : 22 MHz,25 MHz, 26 MHz, 24 MHz, 18.432 MHz Frequencies generated

Wi-Fi Binary CDMA: 5815 MHz

2.2 General descriptions of EUT

		Specification
	Resolution	SD (720X480).
Video	(NTSC/PAL)	HD (1280X720)
VIGCS	Frame Rate	@30 fps (MAX)
	Compression	H.264/AVC Baseline, Main, High Profile Support
	Scanning	Deinterlace Scan
	Duplex	Full-Duplex Audio In/Out
Audio	MIC/Speaker	MIC In/Speaker Out
	Compression	PCM Coding
	Ethernet	RJ-45 (10/100BASE-T)
	★ Wireless	ISC/IEC 24771 KOINONIA Binary CDMA Compliant
	IP	IPv4
Network	UPnP	UPnP Support
	Protocol	TCP/IP, UDP/IP, RTP, NTP, DHCP, FTP, SMTP, ICMP, DNS, DDNS, HTTP
	Viewer OS	Windows XP, Windows Vista, Windows 7, Android, iOS
	1150 (0)	USB 2.0 Host Support
	USB (Option)	(Wireless LAN Module Interface)
	HDMI (Option)	HDMI 1.3 Support (720p. 1080i, 1080p) – NTSC, PAL
Function	Motion Detection	On/Off Area Motion Detection
	Alarm Notice	SMS, E-Mail, Warning Sound
	Firmware	Auto Firmware Update
	1/0	RS232/485, PTZ, Sensor 2ch, Relay 2ch
Dim	ensions	132mm (L) x 40mm (W) x 66mm (H)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 4 of 57

3. Test Standards

Test Standard: FCC PART 15 Subpart C (15.247): 2010 & IC RSS-210 Issue8: 2010

This Standard sets out the regulations under which an intentional, unintentional, or incidental radiator may be operated without an individual license. It also contains the technical specifications, administrative requirements and other conditions relating to the marketing of Part 15 devices.

Test Method: ANSI C 63.4 (2009) & KDB558074 D01(2013)

This standard sets forth uniform methods of measurement of radio-frequency (RF) signals and noise emitted from both unintentional and intentional emitters of RF energy in the frequency range 9 kHz to 40 GHz. Methods for the measurement of radiated and AC power-line conducted radio noise are covered and may be applied to any such equipment unless otherwise specified by individual equipment requirements. These methods cover measurement of certain decides that deliberately radiate energy, such as intentional emitters, but does not cover licensed transmitters. This standard is not intended for certification/approval of avionic equipment or for industrial, scientific, and medical (ISM) equipment These method apply to the measurement of individual units or systems comprised of multiple units

Summary of Test Results

outlinary of Test Results					
Арі	olied Satandar	d:47 CFR Part 15 Subpart C & RS	S 210 - Pa	rt I and II	remark
Standard	IC Standard	Test Type Result Remark		Limit	
15.207	RSS-Gen 7.2.2	AC Power Conducted Emission	Pass	Meet the requirement	
15.205 & 15.209	A8.5	Restricted band / Intentional Radiated Emission	Pass	Meet the requirement	
15.247(a)(2)	A8.2(a)	6 dB Bandwidth	Pass	Meet the requirement	Min. 500 kHz
	RSS-Gen 4.6.1	99 % Bandwidth			
15.247(b)(3)	A8.4(4)	Maximum Peak/average ouput power	Pass	Meet the requirement	Max. 30 dBm
15.247(c)	A8.5	Transmitter Radiated Emission	Pass	Meet the requirement	Table 15.209
15.247(e)	A8.2(b)	Power Spectral Density	Pass	Meet the requirement	Max. 8 dBm
15.247(d)	A8.5	Band Edge Measurement	Pass	Meet the requirement	20 dB less
15.107	RSS-Gen 7.2.2	Receiver conducted Emission	Pass	Meet the requirement	
15.109	RSS-Gen 7.2.3.2	Receiver radiated emission	Pass	Meet the requirement	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 5 of 57

4. Measurement Condition

4.1 EUT Operation(For 2.4 GHz and 5.8 GHz)

a. Channel

Ch.	Frequency	Ch.	Frequency
0	2410 MHz		
1	2426 MHz		
2	2442 MHz		
3	2458 MHz		
4	2474 MHz		
12	5735 MHz		
13	5751 MHz	16	5799 MHz
14	5767 MHz	17	5815 MHz
15	5783 MHz		

- b. Measurement Channel: WLAN: Low(2410 MHz), Middle(2442 MHz), High(2474 MHz), Low(5735MHz), Middle(5783 MHz), High(5815 MHz)
- c. Test Mode: Continuous Output, Wi-Fi Binary CDMA
- d. Test rate: the worst case of rate Wi-Fi Binary CDMA 2.4 GHz(1 Mbps), 5.8 GHz (6 Mbps),
- e. This device is satisfied with frequency stability

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 6 of 57

4.2 EUT Operation.

- * The EUT was in the following operation mode during all testing
- * The operational conditions of the EUT was determined by the manufacturer according to emission
- * Execute a RF test program to enable EUT under transmission/receiving condition continuously at specific channel frequency.
- *. Transmit mode and receive mode was each test.
- *. Highest frequency of the EUT is above 1 GHz, the measurement shall be made up to 10 th the highest frequency or 40 GHz, But the EUT wasn't Detected from 3th any other spurings and harmonic emissions.

4.3 Configuration and Peripherals

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 7 of 57

4.4 EUT and Support equipment

Equipment Name	Model Name	S/N	Manufacturer	Remark (FCC ID)
Wired&Wireless IP Camera	BHA - WC100	NONE	EMW Co., Ltd.	EUT
Adapter	ZF120A -1201500	NONE	Shenzhen Zhen Huan Electronic Co., Ltd.	

4.5 Cable Connecting

Start Equipment		End Equip	End Equipment		Cable Standard	
Name	I/O port	Name	I/O port	Length	Shielded	Remark
Wired&Wireless IP Camera	POWER	ADAPTER	-	2.0	Unshielded	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 8 of 57

5. DTS bandwidth

5.1 Test procedure

558074 D01 DTS Meas Guidance v03 8.2 Option 2 :The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW 3 RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be 6 dB.

5.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- . RBW = 100 KHz
- . VBW=1 MHz
- . Span=40 MHz
- . Sweep = suitable duration based on the EUT specification.

Limits: FCC § 15.247(a)(2), IC RSS-210 A8.2(a)

6dB Bandwidth Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041281	2015-01-23
RF Cable	Length: 6cm	-	
-Spectrum Analyzer <=> EUT	Loss: 0.5dB	-	

5.3 Measurement results

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 44 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

(2.4 GHz)

Channel Frequency (MHz)	Emission bandwidth	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
2410	12.34	9.08	0.5	PASS
2442	12.75	11.49	0.5	PASS
2474	12.76	11.74	0.5	PASS

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 9 of 57

ESTECH Co., Ltd.

Am 1015, World Venture Center II. 426-5 Gasan dong, Gumcheon gu. Seoul, 158-803, Korea

Electromagnetic Interference Test Report

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 44 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

(5.8 GHz)

Channel Frequency (MHz)	Emission bandwidth	Bandwidth at 6dB below(MHz)	Minimum Limit (MHz)	PASS/FAIL
5735	12.71	11.30	0.5	PASS
5783	12.78	11.45	0.5	PASS
5815	12.74	11.65	0.5	PASS

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 10 of 57

5.4 Trace data (2.4 GHz)

2410MHz

2442MHz

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 11 of 57

2474MHz

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 12 of 57

(5.8 GHz) 5735MHz

5783MHz

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 13 of 57

5815MHz

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 14 of 57

6. Maximum peak conducted output power

6.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V03r01 9.1.2 Integrated band power method

6.2 Test instruments and measurement setup

- a) Set the RBW = 1 MHz.
- b) Set the VBW 3 RBW
- c) Set the span 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function,

Limits: FCC § 15.247, IC RSS-210 A8.4

Maximum Peak Output Power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	FSV40	100939	2015-01-23
Spectrum Analyzer	4440A	US42041281	2015-01-23
RF Cable	Length: 6cm	-	
-Spectrum Analyzer <=> EUT	Loss: 0.5 dB	-	

6.3 Measurement results

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 15 of 57

ESTECH Co., Ltd.

No 1015, World Venture Center II. 426 5 Gasan dong, Guncheon gu. Secul. 158 803, Korea

Electromagnetic Interference Test Report

(2.4 GHz)

OLIANINIEI	Channel requency	Conduc	cted Powe	r Output(dBm)	Limit[1W]	DA 00/EAU
CHANNEL	(MHz)	Detector	(dBm)	(W)	(dBm)	PASS/FAIL
LOW	2410	PEAK	22.64	0.184	30.0	PASS
MID	2442	PEAK	22.44	0.175	30.0	PASS
HI	2474	PEAK	22.52	0.179	30.0	PASS

(5.8 GHz)

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

OLIANINEI	Channel Frequency	Conduc	cted Powe	r Output(dBm)	Limit[1W]	D400/E41
CHANNEL	(MHz)	Detector	(dBm)	(W)	(dBm)	PASS/FAIL
LOW	5735	PEAK	18.96	0.079	30.0	PASS
MID	5783	PEAK	18.02	0.063	30.0	PASS
HI	5815	PEAK	17.48	0.056	30.0	PASS

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 16 of 57

7. Maximum conducted (average) output power

7.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V03r01 9.2.2.4 Method AVGSA -2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction)

7.2 Test instruments and measurement setup

- a) Measure the duty cycle, x, of the transmitter output signal as described in 6.0.
- b) Set span to at least 1.5 times the OBW.
- c) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- d) Set VBW 3 x RBW.
- e) Number of points in sweep 2 span / RBW. (This gives bin -to -bin spacing RBW/2, so that narrowband signals are not lost between frequency bins.)
- f) Sweep time = auto.
- g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h) Do not use sweep triggering. Allow the sweep to 'free run'.
- i) Trace average at least 100 traces in power averaging (i.e., RMS) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the on and off periods of the transmitter.
- j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- k) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times (because the measurement represents an average over both the on and off times of the transmission). For example, add 10 log (1/0.25) = 6 dB if the duty cycle is 25 %.

Maximum Peak Output Power Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	4440A	US42041281	2015-01-23
RF Cable	Length: 6cm	-	
-Spectrum Analyzer <=> EUT	Loss: 0.5 dB	-	

7.3 Measurement results

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 17 of 57

(2.4 GHz)

CHANNEL	Channel requency Conducted Power Output(dBm)		Measured +	Measured + Duty		
CHANNEL	(MHz)	Detector	(dBm)	Duty Cycle	Duty Cycle(dBm)	Cycle(mW)
LOW	2410	AVG	16.56	0.000	16.560	45.290
MID	2442	AVG	16.45	0.000	16.450	44.157
НІ	2474	AVG	16.12	0.000	16.120	40.926

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	24 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz	Duty Cycle	100%

(5.8 GHz)

CHANNEL	Channel requency	Con	ducted Power	Output(dBm)	Measured +	Measured + Duty
CHANNEL	(MHz)	Detector	(dBm)	Duty Cycle	Duty Cycle(dBm)	Cycle(mW)
LOW	5735	AVG	11.83	0.000	11.830	15.241
MID	5783	AVG	10.77	0.000	10.770	11.940
НІ	5815	AVG	10.57	0.000	10.570	11.402

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 18 of 57

6.4 Trace data

LOW

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 19 of 57

MID

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 20 of 57

HI

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 21 of 57

LOW

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 22 of 57

MID

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 23 of 57

HI

(Peak)

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 24 of 57

8. Maximum power spectral density level in the fundamental emission

8.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V03r01 10.2 Method PKPSD (peak PSD)

8.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: 3 kHz RBW 100 kHz.
- d) Set the VBW 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Limits FCC § 15.247, IC RSS -210 A8.2

The peak power density Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E440A	US42041281	2015-01-23
RF Cable	Length: 6cm	-	
-Spectrum Analyzer <=> EUT	Loss: 0.4 dB	-	

8.3 Measurement results

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	23 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
LOW	2410	-7.68	8.0	15.68
MID	2442	-6.76	8.0	14.76
HI	2474	-8.93	8.0	16.93

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 25 of 57

ESTECH Co., Ltd.

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guacheon-gu. Scoul, 158-803, Korea

Electromagnetic Interference Test Report

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	23 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

(5.8 GHz)

CHANNEL	Channel Frequency (MHz)	Measured Power Spectral Density (dBm)	Maximum Permissible Power Density (dBm/3kHz)	Margin
LOW	5735	-12.51	8.0	20.51
MID	5783	-13.15	8.0	21.15
HI	5815	-14.77	8.0	22.77

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 26 of 57

8.4 Trace data

LOW

MID

Report Number: ESTF151402 -003, Web: www. estech. co. kr Page 27 of 57

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 28 of 57

8.4 Trace data

LOW

MID

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 29 of 57

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 30 of 57

9. Emissions in non-restricted frequency bands

9.1 Test procedure

KDB 558074 D01 DTS Meas Guidance V03r01 11.0 Emissions in non-restricted frequency

9.2 Test instruments and measurement setup

The spectrum analyzer is set to as following.

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz)
- c) Set the VBW 3 x RBW)
- d) Detector = peak.
- e) Ensure that the number of measurement points span/RBW
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level.

Limits FCC § 15.247, IC RSS -210 A8.5

Band Edge&Out of Emission Test Instruments

Description	Model	Serial Number	Cal. Due Date
Spectrum Analyzer	E4440A	US42041281	2015-01-23
Spectrum Analyzer	FSV40	100939	2015-01-23
RF Cable	Length: 6cm		-
-Spectrum Analyzer <=> EUT	Loss: 1.5dB		-

9.3 Measurement results of band-edge & out of emission

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	23 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

2GHz

CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
LOW	2410	20dBc	PASS
HI	2474	20dBc	PASS

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 31 of 57

9.3 Measurement results of band-edge & out of emission

EUT	Wired&Wireless IP Camera	MODEL	BHA -WC100
MODE	Wi -Fi Binary CDMA	ENVIRONMENTAL CONDITION	23 , 43 % R.H.
INPUT POWER	120 Va.c., 60 Hz		

5.8 GHz

CHANNEL	Channel Frequency (MHz)	limit	PASS/FAIL
LOW	5735	20dBc	PASS
HI	5815	20dBc	PASS

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 32 of 57

9.4 Trace data of band-edge & Out of Emission LOW

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 33 of 57

LOW

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 34 of 57

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 35 of 57

MID

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 36 of 57

LOW

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 37 of 57

ESTECH Co., Ltd.

Rm 1015, World Venture Center II. 426-5 Gasan-dong, Guncheon-gu, Scoul, 158-803, Korea

Electromagnetic Interference Test Report

HI

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 38 of 57

EST -QP -20 -01(1) -(F15)

MID

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 39 of 57

EST -QP -20 -01(1) -(F15)

LOW

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 40 of 57

EST -QP -20 -01(1) -(F15)

10. Measurement of radiated disturbance

Above 30 MHz Electric Field strength was measured in accordance with FCC PART 15.205, 15.209 & IC RSS-210 (A8.5). The test setup was made according to ANSI C 63.4 (2009) & KDB 558074 D01 Semi-anechoic chamber, which allows a 3 m distance measurement. The EUT was placed in the center of styrofoam. turntable. The height of this table was 0.8 m. The measurement was conducted with both horizontal and vertical antenna polarization. The turntable has fully rotated. For further description of the configuration refer to the picture of the test setup.

10.1 Measurement equipments

<u>. i Measurement eq</u>	шршеша			
Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
TEST Receiver	ESCI7	ROHDE & SCHWARZ	1166.5950.07	13 - Jan - 15
Logbicon Antenna	VULB 9168	SCHWARZBECK	237	13 - Jan - 15
Turn Table	DT3000-2t	Innco System GmbH	N/A	-
Antenna Mast	MA4000 - EP	Innco System GmbH	N/A	-
PREAMPLIFIER	8449B	AGILENT	3008A00595	13 - Jan - 15
Horn Antenna	BBHA9120D	SCHWARZBECK	469	11 - Nov - 14
Test Receiver	ESPI7	ROHDE & SCHWARZ	100185	13 - Jan - 15
Spectrum Analyzer	R3273	ADVANTEST	110600592	13 - Jan - 15
Turn Table	DT1500-S	Innco System GmbH	N/A	-
Antenna Mast	MA4000 - EP	Innco System GmbH	N/A	-
Pyramidal Horn Antenna	3160-09-01	EST-LINDGREN	102642	14 - Nov - 14
Antenna Master & Turn table controller	C02000-P	Innco System GmbH	CO2000/642 /28051111/L	-
Spectrum Analyzer	FSV40	ROHDE & SCHWARZ	100939	23 - Jan - 15
Double Ridged Horn Antenna	SAS-574	A.H.SYSTEMS	154	20 - Mar - 14
PREAMPLIFIER	83051A	AGILENT	3950M00201	13 - Jan - 15

10.2 Environmental Condition

Below 1 GHz -Test Place : 10 m Semi-anechoic chamber

2.4 GHz Mode

Temperature (°C) : 22.2

Humidity (% R.H.) : 48.2 % R.H.

5.8 GHz Mode

Temperature (°C) : 22.2

Humidity (% R.H.) : 48.2 % R.H.

Above 1 GHz-Test Place : 3 m Semi-anechoic chamber

2.4 GHz Mode

Temperature (°C) : 21.2

Humidity (% R.H.) : 50.4 % R.H.

5.8 GHz Mode

Temperature (°C) : 22.1

Humidity (% R.H.) : 51.2 % R.H.

10.3 Measurement Instrument setting for Radiated Emission

10.3.1 Frequency range below 1 GHz

RBW: 120 kHz , VBW: 3 x RBW , Detector: Quasi Peak

10.3.2 Frequency range above 1 GHz

Peak Power Measurement Procedure (KDB 558074 section 12.2.4)

a.RBW: 1 MHz , VBW: 3 MHz b.Trace mode = max hold

c.Detector: Peak
d.Sweep time = auto

Average Power Measurement Procedures (KDB 558074 section 12.2.5.2)

a. Set analyzer center frequency to the frequency associated with the emission

b.RBW: 1 MHz, VBW: 3 MHz

c.Detector : power average (RMS) detector

d.Sweep time = auto

Note

Band	Duty cycle(%)	Ton (ms)	Ton + Toff (ms)	DCF=10*log(1/Duty) (dB)
2.4 GHz	100.0		0.000	0.00
5.8 GHz	100.0		0.000	0.00

^{*}If the EUT can be configured or modified to transmit continuously (duty cycle 98 percent then the average emission levels shall be measured using the following method (with EUT transmitting continuously).

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 42 of 57

10.4 Test Data for Wi-Fi Binary CDMA 2.4 GHz

Test Date: 12-Jan-14 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	n Factor		Result Value)
(MHz)	(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB <i>µ</i> V/m)	Result (dBμV/m)	Margin (dB)
70.50	6.97	Н	3.1	11.00	1.38	40.00	19.34	-20.66
84.80	19.14	٧	1.0	8.61	1.54	40.00	29.29	-10.71
89.80	11.36	Н	3.1	7.74	1.58	43.50	20.68	-22.82
90.50	25.78	٧	1.0	7.73	1.58	43.50	35.10	-8.40
145.40	15.48	V	1.0	12.32	1.95	43.50	29.76	-13.74
154.00	11.07	Н	2.6	12.66	1.99	43.50	25.73	-17.77
264.00	10.27	Н	1.6	11.92	2.56	46.00	24.75	-21.25
352.00	17.27	Н	1.3	14.57	2.94	46.00	34.78	-11.22
396.00	11.04	Н	1.3	15.70	3.12	46.00	29.86	-16.14
440.00	16.05	Н	1.2	16.56	3.27	46.00	35.88	-10.12
484.00	9.62	Н	1.0	17.40	3.41	46.00	30.42	-15.58
764.60	5.80	Н	1.0	21.81	4.32	46.00	31.94	-14.06

H: Horizontal, V: Vertical TEST MODE: 2.4 GHz-CH2(2442 MHz)

Remark

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 43 of 57

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}CL = Cable Loss(In case of below 1000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

10.4-1 Test Data for Wi-Fi Binary CDMA 2.4 GHz

Test Date 12-Jan-14 Measurement Distance : 3 m

Test Date	12-Jan-14					ivie	asurement	Distance :	3 M
Fraguanay	Reading	Position	Uoiabt	Correction	n Factor	Duty Cycle	R	esult Value	!
Frequency (MHz)	(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Duty Cycle Correction(dB)	Limit (dB <i>µ</i> V/m)	Result (dBμV/m)	Margin (dB)
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
2316.0	53.20	Н	1.1	26.78	-28.15	0.00	74.00	51.83	-22.17
2316.0	52.85	V	1.2	26.78	-28.15	0.00	74.00	51.48	-22.52
2385.0	53.98	Н	1.0	26.97	-28.09	0.00	74.00	52.86	-21.14
2385.0	53.95	V	1.0	26.97	-28.09	0.00	74.00	52.83	-21.17
4820.0	45.60	Н	1.0	31.50	-23.90	0.00	74.00	53.20	-20.80
4820.0	49.32	V	1.1	31.50	-23.90	0.00	74.00	56.92	-17.08
			AV	(RBW: 1 M	Hz VBV	V: 3 MHz)			
2316.0	43.66	Н	1.1	26.78	-28.15	0.00	54.00	42.29	-11.71
2316.0	42.24	V	1.2	26.78	-28.15	0.00	54.00	40.87	-13.13
2385.0	43.22	Н	1.0	26.97	-28.09	0.00	54.00	42.10	-11.90
2385.0	44.21	V	1.0	26.97	-28.09	0.00	54.00	43.09	-10.91
4820.0	36.65	Н	1.0	31.50	-23.90	0.00	54.00	44.25	-9.75
4820.0	40.14	V	1.1	31.50	-23.90	0.00	54.00	47.74	-6.26
Remark	*The TX sign *Checked in	nal wasn't de all 3 axis an	tected fro		cs. d data were	2410 MHz) reported.(Worst data p Gain + Duty Cycle C		osition)	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 44 of 57

10.4-2 Test Data for Wi-Fi Binary CDMA 2.4 GHz

Test Date 12-Jan-14 Measurement Distance: 3 m

	12-5aii-14							Distance .	•
Frequency	Reading	Position	Haiaht	Correction	Factor	Duty Cycle	R	esult Value	
(MHz)	(dB _μ V)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB <i>µ</i> V/m)	Result (dB <i>μ</i> V/m)	Margin (dB)
			PEA	K(RBW: 1 I	MHz VE	BW: 3 MHz)			
4884.0	45.53	Н	1.0	31.63	-23.72	0.00	74.00	53.43	-20.57
4884.0	49.58	V	1.1	31.63	-23.72	0.00	74.00	57.48	-16.52
			AV	(RBW: 1 MI	Hz VBV	V: 3 MHz)			
4884.0	35.21	Ι	1.0	31.63	-23.72	0.00	54.00	43.11	-10.89
4884.0	40.53	V	1.1	31.63	-23.72	0.00	54.00	48.43	-5.57
Remark	*Checked in	nal wasn't de all 3 axis an	tected fro		cs. d data were	2442 MHz) reported.(Worst data p Gain + Duty Cycle C		osition)	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 45 of 57

10.4-3 Test Data for Wi-Fi Binary CDMA 2.4 GHz

Test Date 12-Jan-14 Measurement Distance: 3 m

Reading (dB <i>µ</i> V)	Position (V/H)	Height (m)			Duty Cycle	R	esult Value		
•					Reading Position Height Correction Factor Duty Cycle				
			Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB <i>µ</i> V/m)	Result (dB <i>µ</i> V/m)	Margin (dB)	
		PEA	K(RBW: 1 I	MHz VE	BW: 3 MHz)				
53.22	Н	1.1	27.25	-27.84	0.00	74.00	52.63	-21.37	
54.35	V	1.2	27.25	-27.84	0.00	74.00	53.76	-20.24	
55.56	Н	1.1	27.27	-27.83	0.00	74.00	55.00	-19.00	
56.24	V	1.2	27.27	-27.83	0.00	74.00	55.68	-18.32	
45.60	Н	1.1	31.76	-23.45	0.00	74.00	53.91	-20.09	
49.32	V	1.0	31.76	-23.45	0.00	74.00	57.63	-16.37	
		AV	(RBW: 1 MI	Hz VBW	/: 3 MHz)			-	
44.58	Н	1.1	27.25	-27.84	0.00	54.00	43.99	-10.01	
45.99	V	1.2	27.25	-27.84	0.00	54.00	45.40	-8.60	
45.55	Н	1.1	27.27	-27.83	0.00	54.00	44.99	-9.01	
45.81	V	1.2	27.27	-27.83	0.00	54.00	45.25	-8.75	
36.65	Н	1.1	31.76	-23.45	0.00	54.00	44.96	-9.04	
41.61	V	1.0	31.76	-23.45	0.00	54.00	49.92	-4.08	
*The TX sigr *Checked in	nal wasn't de all 3 axis an	tected from	m 3th harmonio imum measure	cs. d data were	reported.(Worst data		osition)		
	55.56 56.24 45.60 49.32 44.58 45.99 45.55 45.81 36.65 41.61 H: Horizonta *The TX sign *Checked in	55.56 H 56.24 V 45.60 H 49.32 V 44.58 H 45.99 V 45.55 H 45.81 V 36.65 H 41.61 V H: Horizontal, V: Verti *The TX signal wasn't de *Checked in all 3 axis an	55.56 H 1.1 56.24 V 1.2 45.60 H 1.1 49.32 V 1.0 AV 44.58 H 1.1 45.99 V 1.2 45.55 H 1.1 45.81 V 1.2 36.65 H 1.1 41.61 V 1.0 H: Horizontal, V: Vertical TES *The TX signal wasn't detected from *Checked in all 3 axis and the max	55.56 H 1.1 27.27 56.24 V 1.2 27.27 45.60 H 1.1 31.76 49.32 V 1.0 31.76 AV(RBW: 1 MI) 44.58 H 1.1 27.25 45.99 V 1.2 27.25 45.55 H 1.1 27.27 45.81 V 1.2 27.27 36.65 H 1.1 31.76 41.61 V 1.0 31.76 *The TX signal wasn't detected from 3th harmonic *Checked in all 3 axis and the maximum measure.	55.56 H 1.1 27.27 -27.83 56.24 V 1.2 27.27 -27.83 45.60 H 1.1 31.76 -23.45 49.32 V 1.0 31.76 -23.45 AV(RBW: 1 MHz VBW 44.58 H 1.1 27.25 -27.84 45.99 V 1.2 27.25 -27.84 45.55 H 1.1 27.27 -27.83 45.81 V 1.2 27.27 -27.83 36.65 H 1.1 31.76 -23.45 41.61 V 1.0 31.76 -23.45 H: Horizontal, V: Vertical TEST MODE: 2.4 GHz-CH2(2) *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were	55.56 H 1.1 27.27 -27.83 0.00 56.24 V 1.2 27.27 -27.83 0.00 45.60 H 1.1 31.76 -23.45 0.00 49.32 V 1.0 31.76 -23.45 0.00 AV(RBW: 1 MHz VBW: 3 MHz) 44.58 H 1.1 27.25 -27.84 0.00 45.99 V 1.2 27.25 -27.84 0.00 45.81 V 1.2 27.27 -27.83 0.00 36.65 H 1.1 31.76 -23.45 0.00 41.61 V 1.0 31.76 -23.45 0.00 *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were reported.(Worst data were reported.)	55.56	55.56	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 46 of 57

10.5 Test Data for Wi-Fi Binary CDMA 5.8 GHz

Test Date: 13-Jan-14 Measurement Distance: 3 m

Frequency	Reading	Position	Height	Correction	n Factor		Result Value)
(MHz)	(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Limit (dB <i>µ</i> V/m)	Result (dBμV/m)	Margin (dB)
54.80	15.39	Н	1.0	12.57	1.24	40.00	29.20	-10.80
70.50	6.84	Н	3.1	11.00	1.38	40.00	19.21	-20.79
89.60	11.34	Н	2.9	7.78	1.58	43.50	20.70	-22.80
145.40	14.42	Н	1.0	12.32	1.95	43.50	28.70	-14.80
154.00	11.07	Н	2.0	12.66	1.99	43.50	25.73	-17.77
264.00	10.32	Н	1.3	11.92	2.56	46.00	24.80	-21.20
352.00	17.27	Н	1.2	14.57	2.94	46.00	34.78	-11.22
396.00	11.09	Н	1.0	15.70	3.12	46.00	29.91	-16.09
440.00	16.28	Н	1.0	16.56	3.27	46.00	36.11	-9.89
704.10	10.45	П	1.0	20.79	4.16	46.00	35.40	-10.60
764.60	5.25	Н	1.0	21.81	4.32	46.00	31.39	-14.61

H: Horizontal, V: Vertical TEST MODE: 5.8 GHz - CH12 (5735 MHz)

Remark

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 47 of 57

^{*}Checked in all 3 axis and the maximum measured data were reported.(Worst data is Z axis of position)

^{*}CL = Cable Loss(In case of below 1000 MHz)

^{*}Result Value = Reading + Ant Factor + Cable loss

^{*}The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection at frequency below 1 GHz.

ESTECH Co., Ltd.

No 1015, World Venture Center II, 426-5 Gasan-dong, Guncheon-gu, Seoul, 158-803, Korea

Electromagnetic Interference Test Report

10.5-1 Test Data for Wi-Fi Binary CDMA 5.8 GHz

Test Date 13-Jan-14 Measurement Distance : 3 m

13-Jaii- 14								<u> </u>
Pooding	Position	Hojaht	Correction	n Factor	Duty Cyclo	R	esult Value	
(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)		Limit (dB <i>µ</i> V/m)	Result (dBμV/m)	Margin (dB)
		PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
44.20	Н	1.1	32.10	-22.79	0.00	74.00	53.51	-20.49
44.30	V	1.2	32.10	-22.79	0.00	74.00	53.61	-20.39
43.80	Н	1.1	32.03	-22.99	0.00	74.00	52.84	-21.16
44.34	V	1.0	32.03	-22.99	0.00	74.00	53.38	-20.62
44.34	Н	1.1	39.98	-16.26	0.00	74.00	68.06	-5.94
43.29	V	1.0	39.98	-16.26	0.00	74.00	67.01	-6.99
		AV	(RBW: 1 M	Hz VBV	V: 3 MHz)			
33.21	Н	1.1	32.10	-22.79	0.00	54.00	42.52	-11.48
33.12	٧	1.2	32.10	-22.79	0.00	54.00	42.43	-11.57
32.90	Н	1.1	32.03	-22.99	0.00	54.00	41.94	-12.06
32.91	V	1.0	32.03	-22.99	0.00	54.00	41.95	-12.05
23.56	П	1.1	39.98	-16.26	0.00	54.00	47.28	-6.72
23.11	V	1.0	39.98	-16.26	0.00	54.00	46.83	-7.17
*The TX sigr *Checked in	nal wasn't de all 3 axis an	tected fro	m 3th harmonio imum measure	cs. d data were	reported.(Worst data		osition)	
	Reading (dBµV) 44.20 44.30 43.80 44.34 44.34 43.29 33.21 33.12 32.90 32.91 23.56 23.11 H: Horizont *The TX sign*Checked in	Reading (dBμV) Position (V/H) 44.20 H 44.30 V 43.80 H 44.34 H 43.29 V 33.21 H 33.12 V 32.90 H 32.91 V 23.56 H 23.11 V	Reading (dBμV) Position (V/H) Height (m) PEA 44.20 H 1.1 44.30 V 1.2 43.80 H 1.1 44.34 V 1.0 44.39 V 1.0 43.29 V 1.0 33.21 H 1.1 33.90 H 1.1 32.91 V 1.0 23.56 H 1.1 23.11 V 1.0 H: Horizontal, V: Vertical TES *The TX signal wasn't detected from the max axis and the max axis axis and the max axis axis axis axis axis axis axis ax	Reading (dBμV) Position (V/H) Height (m) Correction Ant Factor (dB) 44.20 H 1.1 32.10 44.30 V 1.2 32.10 43.80 H 1.1 32.03 44.34 V 1.0 32.03 44.34 H 1.1 39.98 43.29 V 1.0 39.98 43.29 V 1.0 39.98 33.12 V 1.2 32.10 32.90 H 1.1 32.03 32.91 V 1.0 39.98 23.11 V 1.0 39.98 43.11 V 1.0 39.98 33.12 V 1.0 39.98 33.91 V 1.0 39.98 43.11 V 1.0 39.98	Reading (dBμW) Position (V/H) Height (m) Correction Factor Ant Factor (dB) Cable (dB) 44.20 H 1.1 32.10 -22.79 44.30 V 1.2 32.10 -22.79 43.80 H 1.1 32.03 -22.99 44.34 V 1.0 32.03 -22.99 44.34 H 1.1 39.98 -16.26 43.29 V 1.0 39.98 -16.26 33.12 V 1.2 32.10 -22.79 32.90 H 1.1 32.03 -22.99 32.91 V 1.0 39.98 -16.26 23.11 V 1.0 39.98 -16.26 43.11 V 1.0 39.98 -16.26	Reading (dBμV) Position (V/H) Height (m) Correction Factor (dB) Duty Cycle Correction(dB) PEAK(RBW: 1 MHz VBW: 3 MHz) 44.20 H 1.1 32.10 -22.79 0.00 43.80 H 1.1 32.03 -22.99 0.00 44.34 V 1.0 32.03 -22.99 0.00 44.34 H 1.1 39.98 -16.26 0.00 43.29 V 1.0 39.98 -16.26 0.00 33.12 V 1.2 32.10 -22.79 0.00 32.90 H 1.1 32.03 -22.99 0.00 32.91 V 1.0 32.03 -22.99 0.00 23.56 H 1.1 39.98 -16.26 0.00 23.11 V 1.0 39.98 -16.26 0.00 H: Horizontal, V: Vertical TEST MODE: 5.8 GHz - CH12 (5735 MHz) *The TX signal wasn't detected from 3th harmonics. *Checked in all 3 axis and the maximum measured data were reported.(Worst data were reported.)	Reading (dBμV) Position (V/H) Height (m) Correction Factor (dB) Duty Cycle Correction(dB) R Limit (dBμV/m) PEAK(RBW: 1 MHz VBW: 3 MHz) 44.20 H 1.1 32.10 -22.79 0.00 74.00 44.30 V 1.2 32.10 -22.79 0.00 74.00 43.80 H 1.1 32.03 -22.99 0.00 74.00 44.34 V 1.0 32.03 -22.99 0.00 74.00 43.29 V 1.0 39.98 -16.26 0.00 74.00 43.29 V 1.0 39.98 -16.26 0.00 74.00 33.12 V 1.2 32.10 -22.79 0.00 54.00 32.90 H 1.1 32.03 -22.99 0.00 54.00 32.91 V 1.0 32.03 -22.99 0.00 54.00 23.56 H 1.1 39.98 -16.26 0.00 54.00	Reading (dBμW)

Report Number: ESTF151402-003, Web: www. estech. co. kr

Page 48 of 57

10.5-2 Test Data for Wi-Fi Binary CDMA 5.8 GHz

Test Date 13-Jan-14 Measurement Distance : 3 m

rest Date	13-Jaii- 14	_				IVIE	asurement	Distance.	3 III
Frequency	Reading	Position	Height	Correction	n Factor	Duty Cycle	R	Result Value	;
(MHz)	(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB <i>µ</i> V/m)	Result (dBμV/m)	Margir (dB)
			PEA	K(RBW: 1	MHz VE	BW: 3 MHz)			
11566.0	43.21	V	1.0	39.86	-16.17	0.00	74.00	66.89	-7.11
11566.0	42.65	Н	1.1	39.86	-16.17	0.00	74.00	66.33	-7.67
			AV	(RBW: 1 M	Hz VBV	√: 3 MHz)			
11566.0	23.55	V	1.0	39.86	-16.17	0.00	54.00	47.23	-6.77
11566.0	22.95	Н	1.1	39.86	-16.17	0.00	54.00	46.63	-7.37
Remark	*Checked in	nal wasn't de all 3 axis an	etected fro		cs. d data were	(5783. MHz) reported.(Worst data p Gain + Duty Cycle C		oosition)	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 49 of 57

10.5-3 Test Data for Wi-Fi Binary CDMA 5.8 GHz

Test Date 13-Jan-14 Measurement Distance: 3 m

Tool Balo							204101110111		• • • • • • • • • • • • • • • • • • •
Frequency	Reading	Position	Hoight	Correction	n Factor	Duty Cycle	R	tesult Value	
(MHz)	(dBμV)	(V/H)	(m)	Ant Factor (dB)	Cable (dB)	Correction(dB)	Limit (dB <i>µ</i> V/m)	(dBμV/m) (dBμV/m) (00 65.84 00 66.38 00 47.29 00 46.38 dis of position)	Margin (dB)
			PEA	K(RBW: 1 I	MHz VE	BW: 3 MHz)			
11630.0	42.11	Η	1.1	39.77	-16.04	0.00	74.00	65.84	-8.16
11630.0	42.65	V	1.0	39.77	-16.04	0.00	74.00	66.38	-7.62
			AV	(RBW: 1 MI	Hz VBV	V: 3 MHz)			
11630.0	23.56	Н	1.1	39.77	-16.04	0.00	54.00	47.29	-6.71
11630.0	22.65	V	1.0	39.77	-16.04	0.00	54.00	46.38	-7.62
				T.1.ODF 5.0	011 0114	7/5045 1411)			
				T MODE : 5.8		((5815 MHz)			
Remark	*Checked in	all 3 axis an	d the max		d data were	reported.(Worst data p Gain + Duty Cycle C		osition)	

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 50 of 57

11. Measurement of conducted disturbance

The continuous disturbance voltage of AC Mains in the frequency from 0.15 MHz to 30 MHz was measured in accordance to FCC PART 15.207 & IC RSS-Gen 7.2.2. The test setup was made according to ANSI C 63.4 (2009) in a shielded room. The EUT was placed on a non-conductive table at least 0.8 m above the ground plan. A grounded vertical reference plane was positioned in a distance of 0.4 m from the EUT. The distance from the EUT to other metal surfaces was at least 0.8 m. The EUT was only earthen by its power cord through the line impedance stabilizing network. The power cord has been bundled to a length of 1.0 m. The test receiver with Quasi Peak detector complies with CISPR 16.

11.1 Measurement equipments

Equipment Name	Туре	Manufacturer	Serial No.	Next Calibration date
EMI TEST Receiver	ESPI	Rohde & Schwarz	100005	13 - Jan - 15
LISN	ENV216	Rohde & Schwarz	101231	24 - Aug - 14
LISN	ESH3-Z5	Rohde & Schwarz	838979/010	13 - Jan - 15
Pulse Limiter	ESH3Z2	Rohde & Schwarz	NONE	13-Jan-15

11.2 Environmental Condition

Test Place : Shielded Room

Wireless 2.4 GHz Mode

Temperature (°C) : 21.9

Humidity (% R.H.) : 47.9 % R.H.

Wireless 5..8 GHz Mode

Temperature (°C) : 22.1

Humidity (% R.H.) : 48.9 % R.H.

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 51 of 57

11.3 Test Data for Wi-Fi Binary CDMA 2.4 GHz

Test Date: 14-Jan-14

Frequency	Correction	on Factor	Line	Qu	asi-peak Va	lue	A	Average Valu	е
(MHz)	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB <i>µ</i> V)	Reading (dBµV)	Result (dBµV)	Limit (dB <i>µ</i> V)	Reading (dBµV)	Result (dB)
0.15	0.13	0.17	N	66.00	43.53	43.83	56.00	21.18	21.48
0.17	0.13	0.17	N	64.91	44.10	44.40	54.91	28.90	29.20
0.21	0.13	0.16	N	63.21	37.42	37.71	53.21	22.55	22.84
0.24	0.13	0.16	Н	61.99	48.15	30.99	51.99	15.18	15.47
4.15	0.18	0.36	Н	56.00	22.89	23.43	46.00	10.69	11.23
5.31	0.20	0.33	Н	60.00	25.30	25.83	50.00	13.66	14.19
24.16	0.78	0.47	N	60.00	20.95	22.20	50.00	14.90	16.15

TEST MODE: 2.4 GHz - CH 2(2442 MHz)

Remark H: Hot Line, N: Neutral Line

*Correction Factor = Lisn + Cable *Result = Correction Factor + Reading

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 52 of 57

11.4 Test Data for Wi-Fi Binary CDMA 5.8 GHz

Test Date: 14-Jan-14

Frequency (MHz)	Correction Factor		Line	Quasi-peak Value			Average Value		
	Lisn (dB)	Cable (dB)	(H/N)	Limit (dB <i>µ</i> V)	Reading (dB <i>µ</i> V)	Result (dBμV)	Limit (dB <i>µ</i> V)	Reading (dBµV)	Result (dB)
0.15	0.13	0.17	N	66.00	47.81	48.11	56.00	22.78	23.08
0.17	0.13	0.17	Н	64.77	45.53	45.83	54.77	29.12	29.42
0.25	0.13	0.16	N	61.89	32.07	32.36	51.89	14.97	15.26
4.06	0.18	0.36	N	56.00	29.30	29.84	46.00	12.46	13.00
5.42	0.20	0.34	Н	60.00	30.42	30.95	50.00	15.78	16.31
24.48	0.79	0.48	N	60.00	26.38	27.65	50.00	15.85	17.12

TEST MODE: 5.8 GHz-CH15 (5783 MHz)

Remark H: Hot Line, N: Neutral Line

*Correction Factor = Lisn + Cable *Result = Correction Factor + Reading

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 53 of 57

12. Photographs of test setup

12.1.Setup for Radiated Test : (30 \sim 1 000) MHz

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 54 of 57

12.2.Setup for Radiated Test: Above 1 GHz

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 55 of 57

12.3. Setup for Conducted Test : (0.15 \sim 30) MHz

[Front]

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 56 of 57

12.4. Photographs of EUT

[Rear]

Report Number: ESTF151402-003, Web: www. estech. co. kr Page 57 of 57

Appendix 1. Special diagram for Wireless LAN

2.4 GHz 2CH *HOT

Comment: BHA-WC100 2.4 GHz HOT Date: 14.JAN.2014 11:58:41

Special diagram for Wireless LAN 2.4 GHz 2CH

*NEUTRAL

Comment: BHA-WC100 2.4 GHz NEUTRAL 14. JAN. 2014 11:53:03

Special diagram for Wireless LAN 5.8 GHz cf 15CH

*HOT

Comment: BHA-WC100 5.8 GHz HOT 15. JAN. 2014 12:03:31

Special diagram for Wireless LAN 5.8 GHz 15 CH

5.8 GHz 15 CH *NEUTRAL

Comment: BHA-WC100 5.8 GHz NEUTRAL Date: 15.JAN.2014 12:07:58

Appendix 2. Antenna Requirement

1. Antenna Requirement

1.1 Standard Applicable

Antenna restrictions

The transmitter must be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device (section 15.203). Either the antenna must be integrated, permanently attached, or a unique connector must be used. The connector could be a reverse

This device has been tested with Reverse Polarity SMA connectors with the antennas.

1.2 Antenna Connected Construction

The antenna types used in this product are Dipole Antenna. The maximum Gain of this antenna of 2.4 GHz is 3.21 dBi and 5 GHz is 2.5 dBi.