1 Introduction to Databases

Database Nomenclature

Files	Databases				
File	Table				
Records	Tuples / Records				
Fields	Attributes				
Data Items	Values				
Key Field	Primary Key				

Filing systems

Consider the existence of two files:

• Employee File

This would contain items such as ID number, name, surname, address, email and date of birth.

• Salary File

This would contain items such as hours worked, rates of pay, overtime done, sick leave periods and vacation hours.

To obtain a link between these two files (*i.e binding a salary file to an employee file*) one must repeat all the data manually creating redundancies, duplications, inconsistencies, losses of data integrity, decentralization and, loss of security.

2 | Database systems

To completely omit filing systems, database systems are used instead. These avoid data duplication, redundancy, inconsistency, loss of integrity, insecurity and decentralization.

The IDE of databases are called **DBMS**¹. The various types of databases are:

• Flat File

¹Data base management system

- Relational
- Hierarchical
- Network
- Object Oriented

Flat File Database

Below you can find the CSV version of a flat file database and its visual representation.

Order, AccountNumber, Name, Address, OrderDate, ItemName, ItemQty, ItemPrice, OrderTotal 12, 3, Peppi, B'kara, 10/2/2021, Pizza, 7, 4.20, 29.40 12, 3, Peppi, B'kara, 10/2/2021, Pasta, 1, 6.90, 6.90 13, 4, Cikku, B'bugia, 11/3/2021, Pomodoro, 3, 1.00, 3.00

Order	A/C no.	Name	City	Date	Item	Quantity	Price E.A	Total
12	3	Peppi	B'kara	10/2/2021	Pizza	7	€4.20	€29.40
12	3	Peppi	B'kara	10/2/2021	Pasta	1	€6.90	€6.90
13	4	Cikku	B'bugia	11/3/2021	Pomodoro	3	€1.00	€3.00

Relational Database

The three types of relations can be denoted with the notation that is referred to as *Crow's Foot* notation. Edgar F. Codd invented a set of related tables using normalization rules which include 3 forms: 1st, 2nd and 3rd normal forms.

Jargon	Notation	
one to none	#	
one to many	#	Crow's foot notation.
many to none	}	
many to one	+-+	
many to many	} K	

First normal form

In this form, the multi-variable categories should be exported in another, separate table.

order_id	ac_no	name	city	date	item	quantity	item_price	total_price
12	3	Peppi	B'kara	10/2/2021	Pizza	7	€4.20	€29.40
12	3	Peppi	B'kara	10/2/2021	Pasta	1	€6.90	€6.90
13	4	Cikku	B'bugia	11/3/2021	Pomodoro	3	€1.00	€3.00

Second normal form

All the attributes in the table should be functionally dependent on the primary key. $\phi(a)\phi(b)=\phi(ab)$