ASSIGNMENT-4

CUSTOMER SEGMENTATION ANALYSIS

Assignment Date	28 October 2022
Student Name	Kalaiselvan.V
Student Roll Number	731719104012
Maximum Marks	2 Marks

Importing the libraries import

pandas **as** pd **import** numpy **as** np **import** matplotlib.pyplot **as** plt **import** seaborn **as** sns

Loading the dataset: Input:

df = pd.read_csv('Mall_Customers.csv') df

Output:

CustomerID Gender Age Annual Income (k\$) Spending Score (1-100)

0	1	Male	19	15	39			
1	2	Male	21	15	81			
2	3	Female	20	16	6			
3	4	Female	23	16	77			
4	5	Female	31	17	40	 	 	
195	196	Female	35	120	79			
196	197	Female	45	126	28			
197	198	Male	32	126	74			
198	199	Male	32	137	18			
199	200	Male	30	137	83			
200	$rows \times 5$	5 column	S					

Encoding Categorical Columns

Input:

from sklearn.preprocessing import LabelEncoder le
= LabelEncoder() df['Gender'] =
le.fit_transform(df['Gender']) df

Output:

Cust	omerID	Gender Age	Annual	Income (l	x\$) Spen	ding Sco	re (1-100)	Cluster	
0	1 1	19	15.00	39	2				
1	2 1	21	15.00	81	2				
2	3 0	20	16.00	6	2				
3	4 0	23	16.00	77	2				
4	5 0	31	17.00	40	2				
									•••
195	196	0	35	120.00	79	3			
196	197	0	45	126.00	28	1			
197	198	1	32	126.00	74	3			

60.55

60.55

18

83

1

3

 $200 \text{ rows} \times 6 \text{ columns}$

Visualizations Univariate Analysis

Input: plt.hist(df['Age'])

1

1

32

30

Output:

198 199

199 200

```
(array([31., 19., 34., 29., 16., 26., 15., 10., 6., 14.]), array([18., 23.2, 28.4, 33.6, 38.8, 44., 49.2, 54.4, 59.6, 64.8, 70.]), )
```


Input:

plt.hist(df['Annual Income (k\$)'])

Output:

plt.hist(df['Spending Score (1-100)']) **Output:**

```
(array([16., 20., 10., 17., 35., 37., 11., 24., 14., 16.]),
array([ 1. , 10.8, 20.6, 30.4, 40.2, 50. , 59.8, 69.6, 79.4, 89.2, 99. ]),
)
```


Input: sns.countplot(df['Gender']) Output:

Bi-Variate Analysis

Input:

sns.scatterplot(df['Annual Income (k\$)'], df['Spending Score (1-100)'])

Input: sns.barplot(df['Gender'], df['Age']) Output:

Input: sns.heatmap(df.corr(), annot = True) Output:

Multi-variate Analysis

Input: sns.pairplot(df) output:

Descriptive Statistics

Input: df.info() Output:

RangeIndex: 200 entries, 0 to 199 Data

columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	int64
2	Age	200 non-null	int64
3	Annual Income (k\$) 100) 200 non-null		int64 4 Spending Score (1-64(5) memory usage: 7.9 KB

Input: df.describe() Output:

C	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
C	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000	200.000000
mean	100.500000	0.440000	38.850000	60.560000	50.200000
std	57.879185	0.497633	13.969007	26.264721	25.823522

1.000000	15.000000	18.000000	0.000000	1.000000	min
34.750000	41.500000	28.750000	0.000000	50.750000	25%
50.000000	61.500000	36.000000	0.000000	100.500000	50%
73.000000	78.000000	49.000000	1.000000	150.250000	75%
99.000000	137.000000	70.000000	1.000000	200.000000	max

Input:

df.skew() Output:

 CustomerID
 0.000000

 Gender
 0.243578

 Age
 0.485569

 Annual Income (k\$)
 0.321843

Spending Score (1-100) -0.047220 dtype:

float64

Input:

df.kurt()

Output:

CustomerID -1.200000
Gender -1.960375
Age -0.671573
Annual Income (k\$) -0.098487

Spending Score (1-100) -0.826629 dtype: float64

Input:

df.corr()

	CustomerI	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	0.057400	-0.026763	0.977548	0.013835
Gender	0.057400	1.000000	0.060867	0.056410	-0.058109
Gender	0.037400	1.000000	0.000807	0.030410	-0.038103
Age	-0.026763	0.060867	1.000000	-0.012398	-0.327227

Annual Income (k\$) 0.977548	0.056410 -0.012398 1.000000	0.009903
Spending Score (1-100) 0.013835	-0.058109 -0.327227 0.009903	1.000000
<pre>Input: df.var() Output:</pre>		
CustomerID	3350.000000	
Gender	0.247638	
Age	195.133166	
Annual Income (k\$)	689.835578	
Spending Score (1-100)	666.854271 dtype:	
float64		
<pre>Input: df.std()</pre>		
Output:		
CustomerID	57.879185	
Gender	0.497633	
Age	13.969007	
Annual Income (k\$)	26.264721	
Spending Score (1-100)	25.823522 dtype: float64	

Checking for missing values

Input:

df.isna().sum()

Output:

CustomerID	0	
Gender	0	
Age	0	
Annual Income (k\$)	0	
Spending Score (1-100)	0	dtype:
int64 Input:		
<pre>df.isna().sum().sum()</pre>		
Output: 0 Input:		
<pre>df.duplicated().sum()</pre>		
Output:		
0		

Finding & Handling Ouliers

```
Input:
  quantile = df.quantile(q = [0.25, 0.75])
  quantile Output:
```

Customer	ID Gender	Age	Annual Income (k\$))	Spending Score (1-100)
0.25	50.75	0.0	28.75	41.5	34.75
0.75	150.25	1.0	49.00	78.0	73.00

```
Input:
```

```
IQR = quantile.iloc[1] - quantile.iloc[0] IQR

Output:

CustomerID 99.50

Gender 1.00

Age 20.25

Annual Income (k$) 36.50

Spending Score (1-100) 38.25 dtype:
float64

Input:
```

upper = quantile.iloc[1] + (1.5 *IQR)
upper

Output:

I Cl I CA Impute	
Spending Score (1-100)	130.375
Annual Income (k\$)	132.750
Age	79.375
Gender	2.500
CustomerID	299.500

dtype: float64 Input:

lower = quantile.iloc[0] - (1.5* IQR)

lower Output:

CustomerID		-98.500
Gender		-1.500
Age		-1.625
Annual Income	(k\$)	-13.250

Spending Score (1-100) -22.625 dtype:

float64 Input: df.mean() Output:
CustomerID 100.50
Gender 0.44
Age 38.85
Annual Income (k\$) 60.56
Spending Score (1-100) 50.20
dtype: float64 Input: df['Annual

Income (k\$)'].max() Output:

137

Input:

sns.boxplot(df['CustomerID']) Output:

Input: sns.boxplot(df['Gender']) Output:

Input: sns.boxplot(df['Age']) Output:

Input: sns.boxplot(df['Annual Income (k\$)']) Output:

Input: df['Annual Income (k\$)'].max() Output: 126.0

Input: sns.boxplot(df['Spending Score (1100)'])

Scaling the data

Input:

```
from sklearn.preprocessing import StandardScaler
ss = StandardScaler().fit transform(df) ss Output:
array([[-1.7234121 , 1.12815215, -1.42456879, -1.78843062, -0.43480148],
[-1.70609137, 1.12815215, -1.28103541, -1.78843062, 1.19570407],
       [-1.68877065, -0.88640526, -1.3528021, -1.74850629, -1.71591298],
       [-1.67144992, -0.88640526, -1.13750203, -1.74850629,
                                                             1.04041783],
       \hbox{\tt [-1.6541292\ ,\ -0.88640526,\ -0.56336851,\ -1.70858195,\ -0.39597992],}
       [-1.63680847, -0.88640526, -1.20926872, -1.70858195, 1.00159627],
       [-1.61948775, -0.88640526, -0.27630176, -1.66865761, -1.71591298],
       [-1.60216702, -0.88640526, -1.13750203, -1.66865761, 1.70038436],
       [-1.5848463 , 1.12815215, 1.80493225, -1.62873328, -1.83237767],
       [-1.56752558, -0.88640526, -0.6351352, -1.62873328, 0.84631002],
       [-1.55020485, 1.12815215, 2.02023231, -1.62873328, -1.4053405],
       [-1.53288413, -0.88640526, -0.27630176, -1.62873328, 1.89449216],
       [-1.5155634, -0.88640526, 1.37433211, -1.58880894, -1.36651894],
       [-1.49824268, -0.88640526, -1.06573534, -1.58880894, 1.04041783],
       [-1.48092195, 1.12815215, -0.13276838, -1.58880894, -1.44416206],
       [-1.46360123, 1.12815215, -1.20926872, -1.58880894, 1.11806095],
       [-1.4462805, -0.88640526, -0.27630176, -1.5488846, -0.59008772],
       [-1.42895978, 1.12815215, -1.3528021, -1.5488846, 0.61338066],
       [-1.41163905, 1.12815215, 0.94373197, -1.46903593, -0.82301709],
       [-1.39431833, -0.88640526, -0.27630176, -1.46903593, 1.8556706],
       [-1.3769976, 1.12815215, -0.27630176, -1.42911159, -0.59008772],
       [-1.35967688, 1.12815215, -0.99396865, -1.42911159, 0.88513158],
        [-1.34235616, \ -0.88640526, \ \ 0.51313183, \ -1.38918726, \ -1.75473454], 
       [-1.32503543, 1.12815215, -0.56336851, -1.38918726, 0.88513158],
       [-1.30771471, -0.88640526, 1.08726535, -1.26941425, -1.4053405],
       [-1.29039398, 1.12815215, -0.70690189, -1.26941425, 1.23452563],
       [-1.27307326, -0.88640526, 0.44136514, -1.26941425, -0.7065524],
       [-1.25575253, 1.12815215, -0.27630176, -1.26941425, 0.41927286],
       \hbox{\tt [-1.23843181, -0.88640526, 0.08253169, -1.22948991, -0.74537397],}
       [-1.22111108, -0.88640526, -1.13750203, -1.22948991, 1.42863343],
       [-1.20379036, 1.12815215, 1.51786549, -1.18956557, -1.7935561],
       [-1.18646963, -0.88640526, -1.28103541, -1.18956557, 0.88513158],
       [-1.16914891, 1.12815215, 1.01549866, -1.06979256, -1.7935561],
       [-1.15182818, 1.12815215, -1.49633548, -1.06979256, 1.62274124],
        \hbox{\tt [-1.13450746, -0.88640526, 0.7284319, -1.06979256, -1.4053405], }
       [-1.11718674, -0.88640526, -1.28103541, -1.06979256, 1.19570407],
       [-1.09986601, -0.88640526, 0.22606507, -1.02986823, -1.28887582],
       [-1.08254529, -0.88640526, -0.6351352, -1.02986823, 0.88513158],
       [-1.06522456, -0.88640526, -0.20453507, -0.91009522, -0.93948177],
       [-1.04790384, -0.88640526, -1.3528021, -0.91009522, 0.96277471],
       [-1.03058311, -0.88640526, 1.87669894, -0.87017088, -0.59008772],
        [-1.01326239, \quad 1.12815215, \quad -1.06573534, \quad -0.87017088, \quad 1.62274124], 
       [-0.99594166, 1.12815215, 0.65666521, -0.83024654, -0.55126616],
       [-0.97862094, -0.88640526, -0.56336851, -0.83024654, 0.41927286],
       [-0.96130021, -0.88640526, 0.7284319, -0.83024654, -0.86183865],
       [-0.94397949, -0.88640526, -1.06573534, -0.83024654, 0.5745591], [-0.94397949, -0.88640526, -1.06573534, -0.83024654]
       0.92665877, -0.88640526, 0.80019859, -0.79032221, 0.18634349],
       [-0.90933804, -0.88640526, -0.85043527, -0.79032221, -0.12422899],
       [-0.89201732, -0.88640526, -0.70690189, -0.79032221, -0.3183368],
       [-0.87469659, -0.88640526, -0.56336851, -0.79032221, -0.3183368],
```

```
[-0.85737587, -0.88640526, 0.7284319, -0.71047353, 0.06987881],
       [-0.84005514, 1.12815215, -0.41983513, -0.71047353, 0.38045129],
       [-0.82273442, -0.88640526, -0.56336851, -0.6705492, 0.14752193],
       [-0.80541369, 1.12815215, 1.4460988, -0.6705492, 0.38045129],
       [-0.78809297, -0.88640526, 0.80019859, -0.6705492, -0.20187212],
       [-0.77077224, 1.12815215, 0.58489852, -0.6705492, -0.35715836],
       [-0.75345152, -0.88640526, 0.87196528, -0.63062486, -0.00776431],
       [-0.73613079, 1.12815215, 2.16376569, -0.63062486, -0.16305055],
       [-0.71881007, -0.88640526, -0.85043527, -0.55077619, 0.03105725],
       [-0.70148935, 1.12815215, 1.01549866, -0.55077619, -0.16305055],
       [-0.68416862, 1.12815215, 2.23553238, -0.55077619, 0.22516505],
       [-0.6668479, 1.12815215, -1.42456879, -0.55077619, 0.18634349],
       [-0.64952717, -0.88640526, 2.02023231, -0.51085185, 0.06987881],
        [-0.63220645, \ -0.88640526, \ \ 1.08726535, \ -0.51085185, \ \ 0.34162973], 
       [-0.61488572, 1.12815215, 1.73316556, -0.47092751, 0.03105725],
       [-0.597565 , 1.12815215, -1.49633548, -0.47092751, 0.34162973],
       [-0.58024427, -0.88640526, 0.29783176, -0.47092751, -0.00776431],
       [-0.56292355, -0.88640526, 2.091999, -0.47092751, -0.08540743],
       [-0.54560282, 1.12815215, -1.42456879, -0.47092751, 0.34162973],
       [-0.5282821, -0.88640526, -0.49160182, -0.47092751, -0.12422899],
       [-0.51096138, 1.12815215, 2.23553238, -0.43100318, 0.18634349],
       [-0.49364065, -0.88640526, 0.58489852, -0.43100318, -0.3183368],
      [-0.47631993, -0.88640526, 1.51786549, -0.39107884, -0.04658587],
      [-0.4589992, -0.88640526, 1.51786549, -0.39107884, 0.22516505],
       [-0.44167848, 1.12815215, 1.4460988, -0.23138149, -0.12422899],
       [-0.42435775, 1.12815215, -0.92220196, -0.23138149, 0.14752193],
       [-0.40703703, -0.88640526, 0.44136514, -0.23138149, 0.10870037],
       [-0.3897163, 1.12815215, 0.08253169, -0.23138149, -0.08540743],
       [-0.37239558, -0.88640526, -1.13750203, -0.23138149, 0.06987881],
       [-0.35507485, -0.88640526, 0.7284319, -0.23138149, -0.3183368],
       [-0.33775413, 1.12815215, 1.30256542, -0.23138149, 0.03105725],
       [-0.3204334, 1.12815215, -0.06100169, -0.23138149, 0.18634349],
        [-0.30311268, \quad 1.12815215, \quad 2.02023231, \quad -0.23138149, \quad -0.35715836], 
       [-0.28579196, -0.88640526, 0.51313183, -0.23138149, -0.24069368],
       [-0.26847123, -0.88640526, -1.28103541, -0.23138149, 0.26398661],
      [-0.25115051, 1.12815215, 0.65666521, -0.23138149, -0.16305055],
       [-0.23382978, -0.88640526, 1.15903204, -0.11160848, 0.30280817],
       [-0.21650906, -0.88640526, -1.20926872, -0.11160848, 0.18634349],
        [-0.19918833, \ -0.88640526, \ -0.34806844, \ -0.07168415, \ \ 0.38045129], 
       [-0.18186761, -0.88640526, 0.80019859, -0.07168415, -0.16305055],
       [-0.16454688, -0.88640526, 2.091999, -0.03175981, 0.18634349],
       [-0.14722616, 1.12815215, -1.49633548, -0.03175981, -0.35715836],
       [-0.12990543, 1.12815215, 0.65666521, 0.00816453, -0.04658587],
       [-0.11258471, -0.88640526, 0.08253169, 0.00816453, -0.39597992], [-0.09526399, -0.88640526, -0.49160182, 0.00816453, -0.3183368],
[-0.07794326, 1.12815215, -1.06573534, 0.00816453, 0.06987881],
0.06062254, -0.88640526, 0.58489852, 0.00816453, -0.12422899],
0.04330181, -0.88640526, -0.85043527, 0.00816453, -0.00776431],
       [-0.02598109, 1.12815215, 0.65666521, 0.04808886, -0.3183368],
       [-0.00866036, 1.12815215, -1.3528021, 0.04808886, -0.04658587],
        \hbox{\tt [ 0.00866036, -0.88640526, -1.13750203, 0.0880132, -0.35715836], } 
       [\ 0.02598109,\ -0.88640526,\ 0.7284319\ ,\ 0.0880132\ ,\ -0.08540743],
       [ 0.04330181, 1.12815215, 2.02023231, 0.0880132 , 0.34162973],
    [0.06062254, 1.12815215, -0.92220196, 0.0880132, 0.18634349],
       [ 0.07794326, 1.12815215, 0.7284319 , 0.0880132 , 0.22516505],
       [\ 0.09526399,\ -0.88640526,\ -1.28103541,\ 0.0880132,\ -0.3183368\ ],
       [ 0.11258471, -0.88640526, 1.94846562, 0.12793754, -0.00776431],
       [0.12990543, 1.12815215, 1.08726535, 0.12793754, -0.16305055],
       [ 0.14722616, 1.12815215, 2.091999 , 0.12793754, -0.27951524],
```

```
[0.16454688, 1.12815215, 1.94846562, 0.12793754, -0.08540743],
       [ 0.18186761, 1.12815215, 1.87669894, 0.12793754, 0.06987881],
       [ 0.19918833, -0.88640526, -1.42456879, 0.12793754, 0.14752193],
        \hbox{\tt [ 0.21650906, -0.88640526, -0.06100169, 0.16786187, -0.3183368 ], } \\
       [0.23382978, 1.12815215, -1.42456879, 0.16786187, -0.16305055],
       [0.25115051, -0.88640526, -1.49633548, 0.20778621, -0.08540743],
       [0.26847123, -0.88640526, -1.42456879, 0.20778621, -0.00776431],
       [0.28579196, -0.88640526, 1.73316556, 0.20778621, -0.27951524],
       [ 0.30311268, -0.88640526, 0.7284319 , 0.20778621, 0.34162973], [ 0.3204334 , -0.88640526, 0.87196528, 0.28763488, -0.27951524],
       [0.33775413, -0.88640526, 0.80019859, 0.28763488, 0.26398661],
       [0.35507485, 1.12815215, -0.85043527, 0.28763488, 0.22516505],
       [0.37239558, -0.88640526, -0.06100169, 0.28763488, -0.39597992],
       [ 0.3897163 , -0.88640526, 0.08253169, 0.36748356, 0.30280817],
       [ 0.40703703, 1.12815215, 0.010765 , 0.36748356, 1.58391968],
       [0.42435775, -0.88640526, -1.13750203, 0.40740789, -0.82301709],
       [0.44167848, -0.88640526, -0.56336851, 0.40740789, 1.04041783],
       [ 0.4589992 , 1.12815215, 0.29783176, 0.44733223, -0.59008772],
       [0.47631993, 1.12815215, 0.08253169, 0.44733223, 1.73920592],
       [ 0.49364065, 1.12815215, 1.4460988, 0.44733223, -1.52180518],
       [ 0.51096138, 1.12815215, -0.06100169, 0.44733223, 0.96277471],
       [ 0.5282821 , 1.12815215, 0.58489852, 0.44733223, -1.5994483 ],
       [\ 0.54560282,\ 1.12815215,\ 0.010765\ ,\ 0.44733223,\ 0.96277471],
       [0.56292355, -0.88640526, -0.99396865, 0.48725657, -0.62890928],
       [0.58024427, -0.88640526, -0.56336851, 0.48725657, 0.80748846],
       [0.597565, 1.12815215, -1.3528021, 0.5271809, -1.75473454],
       [0.61488572, -0.88640526, -0.70690189, 0.5271809, 1.46745499],
       [\ 0.63220645,\ -0.88640526,\ 0.36959845,\ 0.5271809,\ -1.67709142],
       [ 0.64952717, 1.12815215, -0.49160182, 0.5271809 , 0.88513158],
       [ 0.6668479 , 1.12815215, -1.42456879, 0.56710524, -1.56062674],
       [0.68416862, -0.88640526, -0.27630176, 0.56710524, 0.84631002],
       [0.70148935, -0.88640526, 1.30256542, 0.60702958, -1.75473454],
       [ 0.71881007, 1.12815215, -0.49160182, 0.60702958, 1.6615628 ],
       [ 0.73613079, -0.88640526, -0.77866858,  0.64695391, -0.39597992],
       [0.75345152, -0.88640526, -0.49160182, 0.64695391, 1.42863343],
       [ 0.77077224, 1.12815215, -0.99396865, 0.68687825, -1.48298362],
       [ 0.78809297, 1.12815215, -0.77866858, 0.68687825, 1.81684904],
       [ 0.80541369, 1.12815215, 0.65666521, 0.68687825, -0.55126616],
       [0.82273442, -0.88640526, -0.49160182, 0.68687825, 0.92395314],
       [ 0.84005514, -0.88640526, -0.34806844, 0.72680259, -1.09476801],
       [ 0.85737587, 1.12815215, -0.34806844, 0.72680259, 1.54509812],
       [0.87469659, 1.12815215, 0.29783176, 0.72680259, -1.28887582],
       [0.89201732, 1.12815215, 0.010765, 0.72680259, 1.46745499],
[ 0.90933804, -0.88640526, 0.36959845, 0.72680259, -1.17241113],
                                                                          [
0.92665877, -0.88640526, -0.06100169, 0.72680259, 1.00159627],
0.94397949, -0.88640526, 0.58489852, 0.72680259, -1.32769738],
       [0.96130021, -0.88640526, -0.85043527, 0.72680259, 1.50627656],
       [ 0.97862094, 1.12815215, -0.13276838, 0.72680259, -1.91002079],
     \hbox{\tt [ 0.99594166, -0.88640526, -0.6351352 , 0.72680259, 1.07923939], } 
    [1.01326239, 1.12815215, -0.34806844, 0.72680259, -1.91002079],
       [1.03058311, -0.88640526, -0.6351352, 0.72680259, 0.88513158],
    [ 1.04790384, -0.88640526, 1.23079873, 0.76672692, -0.59008772],
       [ 1.06522456, -0.88640526, -0.70690189, 0.76672692, 1.27334719],
       [ 1.08254529, 1.12815215, -1.42456879, 0.8465756 , -1.75473454],
       [ 1.09986601, -0.88640526, -0.56336851, 0.8465756 , 1.6615628 ],
        \hbox{\tt [ 1.11718674, 1.12815215, 0.80019859, 1.00627294, -0.93948177],} 
        \hbox{\tt [ 1.13450746, -0.88640526, -0.20453507, 1.00627294, 0.96277471],} 
       [ 1.15182818, 1.12815215, 0.22606507, 1.04619728, -1.17241113],
       [1.16914891, -0.88640526, -0.41983513, 1.04619728, 1.73920592],
```

```
[ 1.18646963, -0.88640526, -0.20453507, 1.08612162, -0.90066021],
       [ 1.20379036, 1.12815215, -0.49160182, 1.08612162, 0.49691598],
       [ 1.22111108, 1.12815215, 0.08253169, 1.08612162, -1.44416206],
                    1.12815215, -0.77866858, 1.08612162, 0.96277471],
       [ 1.23843181,
       [ 1.25575253, 1.12815215, -0.20453507, 1.08612162, -1.56062674],
       [ 1.27307326, 1.12815215, -0.20453507, 1.08612162, 1.62274124],
       [ 1.29039398, -0.88640526, 0.94373197, 1.12604595, -1.44416206],
       [ 1.30771471, -0.88640526, -0.6351352 , 1.12604595, 1.38981187],
       [ 1.32503543, 1.12815215, 1.37433211, 1.12604595, -1.36651894], [ 1.34235616, 1.12815215, -0.85043527, 1.12604595, 0.72984534],
       [\ 1.35967688,\ 1.12815215,\ 1.4460988,\ 1.32566764,\ -1.4053405\ ],
       [ 1.3769976 , 1.12815215, -0.27630176, 1.32566764, 1.54509812],
       [ 1.39431833, -0.88640526, -0.13276838, 1.48536498, -0.7065524 ],
       [ 1.41163905, -0.88640526, -0.49160182, 1.48536498, 1.38981187],
       [ 1.42895978, 1.12815215, 0.51313183, 1.52528932, -1.36651894],
       [ 1.4462805 , -0.88640526, -0.70690189, 1.52528932, 1.46745499],
       [ 1.46360123, -0.88640526, 0.15429838, 1.56521366, -0.43480148],
       [ 1.49824268, -0.88640526, 1.08726535, 1.64506233, -1.01712489],
       [ 1.5155634 , 1.12815215, -0.77866858, 1.64506233, 0.69102378],
        \hbox{\tt [ 1.53288413, -0.88640526, 0.15429838, 1.724911 , -1.28887582], } 
       [ 1.55020485, -0.88640526, -0.20453507, 1.724911 , 1.35099031],
       [ 1.56752558, -0.88640526, -0.34806844, 1.724911 , -1.05594645],
       [ 1.5848463 , -0.88640526, -0.49160182, 1.724911 , 0.72984534],
       [ 1.60216702, 1.12815215, -0.41983513, 2.12415437, -1.63826986],
       [ 1.61948775, -0.88640526, -0.06100169, 2.12415437, 1.58391968],
       [ 1.63680847, -0.88640526, 0.58489852, 2.40362473, -1.32769738],
       [ 1.6541292 , -0.88640526, -0.27630176, 2.40362473, 1.11806095],
        \hbox{\tt [ 1.67144992, -0.88640526, 0.44136514, 2.64317075, -0.86183865], } 
       [ 1.68877065, 1.12815215, -0.49160182, 2.64317075, 0.92395314],
       [1.70609137, 1.12815215, -0.49160182, 0.03012291, -1.25005425],
[ 1.7234121 , 1.12815215, -0.6351352 , 0.03012291, 1.27334719]]) Clustering
Algorithm
from sklearn.cluster import KMeans
```

Input:

Output:

plt.plot(k,TWSS, 'ro--')

```
TWSS = [] k = list(range(2,9)) for i
  kmeans = KMeans(n clusters = i , init = 'k-means++')
kmeans.fit(df)
  TWSS.append(kmeans.inertia)
TWSS Output:
 [381507.64738523855,
 268062.55433747417,
 191550.08627670942,
 153777.55391034693,
 119166.15727643928,
 101239.32626154403,
 85744.901392218921 Input:
```


model = KMeans(n_clusters = 4) Input:

model.fit(df) Output:
KMeans(n_clusters=4)

Input: mb =

pd.Series(model.labels_)
df['Cluster'] = mb df

Customer II Clusto		Age	Annual Income (k\$)			Spending Score (1-100)			
			0		1 1	19	15.00	39	2
			1		2 1	21	15.00	81	2
Customer II Clusto	D Gender er	Age	Annual Income (k\$)			Spending Score (1-100)			
			2		3 0	20	16.00	6	2
			3		4 0	23	16.00	77	2
			4		5 0	31	17.00	40	2
•••									
195	196	0	35	120.00	79	3			
196	197	0	45	126.00	28	1			

197	198	1	32	126.00	74	3
198	199	1	32	60.55	18	1
199	200	1	30	60.55	83	3

 $200 \text{ rows} \times 6 \text{ columns}$