ANALYSE 3B - TRAVAUX DIRIGÉS CHAPITRE 2 - INTÉGRALES DES FONCTIONS DE PLUSIEURS VARIABLES

MATTEO TOMMASINI

Si vous trouvez des erreurs de français (très probable) ou de mathématiques (moins improbable, mais pas impossible), dite-le-moi, merci!

Exercice 7.1(1) Calculer en fonction de $a, b \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f(x) = xe^{x^2}$$

et préciser quelle conditions il faut mettre sur a,b pour que l'intégrale ait un sens.

La fonction f(x) est bien définie pour tout $a, b \in \mathbb{R}$. On a:

$$\int_{a}^{b} x e^{x^{2}} dx = \frac{1}{2} \int_{a}^{b} 2x e^{x^{2}} dx = \frac{1}{2} \left[e^{x^{2}} \right]_{a}^{b} = \frac{e^{b^{2}} - e^{a^{2}}}{2}.$$

Exercice 7.1(2) Calculer en fonction de $a,b,c \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f_c(x) = \sinh(cx)$$

et préciser quelle conditions il faut mettre sur a, b, c pour que l'intégrale ait un sens.

On rappelle que

$$\sinh(y) = \frac{e^y - e^{-y}}{2}$$
 et $\cosh(y) = \frac{e^y + e^{-y}}{2}$.

Donc l'intégrale est bien définie pour tout $a, b, c \in \mathbb{R}$. Si c = 0, on a $f_0(x) = 0$ pour tout $x \in \mathbb{R}$, donc $\int_a^b f_0(x) dx = 0$. Si $c \neq 0$, on a:

$$\int_{a}^{b} f_{c}(x) dx = \frac{1}{2} \int_{a}^{b} e^{cx} - e^{-cx} dx = \frac{1}{2c} \left[e^{cx} + e^{-cx} \right]_{a}^{b} =$$
$$= \frac{1}{2c} \left(e^{cb} + e^{-cb} - e^{ca} - e^{-ca} \right).$$

Exercice 7.1(3) Calculer en fonction de $a,b,c \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f_c(x) = c^x$$

et préciser quelle conditions il faut mettre sur a, b, c pour que l'intégrale ait un sens.

Date: December 5, 2014.

La fonction c^x est bien définie seulement pour $c \ge 0$ (et pour tout $x \in \mathbb{R}$, donc a, b peuvent varier librement en \mathbb{R}). Pour c = 0, on a $\int_a^b f_c(x) dx = 0$. Si c = 1, on a $\int_a^b f_c(x) dx = \int_a^b dx = b - a$. Si $c \in \mathbb{R}_{>0} \setminus \{1\}$, on a

$$\int_a^b f_c(x) dx = \int_a^b e^{\log(c)x} dx =$$

$$= \left[\frac{e^{\log(c)x}}{\log(c)} \right]_a^b = \frac{e^{b\log(c)} - e^{a\log(c)}}{\log(c)} = \frac{c^b - c^a}{\log(c)}.$$

Exercice 7.1(5) Calculer en fonction de $a,b,c \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f_c(x) = \frac{1}{1 + (cx)^2}$$

et préciser quelle conditions il faut mettre sur a, b, c pour que l'intégrale ait un sens.

La fonction et l'intégrale a priori sont bien définies pour tout $a,b,c\in\mathbb{R}$. Si c=0, on a $\int_a^b f_0(x)\,\mathrm{d} x=\int_a^b \mathrm{d} x=b-a$. Si $c\neq 0$, on considère le changement de variable x=y/c, donc $\mathrm{d} x=\mathrm{d} y/c$ et on a:

$$\int_a^b \frac{1}{1 + (cx)^2} \, \mathrm{d} \mathbf{x} = \frac{1}{c} \int_{ca}^{cb} \frac{1}{1 + y^2} \, \mathrm{d} \mathbf{y} \,.$$

On rappelle que si f est une fonction lisse inversible, avec inverse lisse g, alors on a:

$$g'(t) = \frac{1}{f'(g(t))}.$$

En plus, on rappelle que

$$\frac{\partial}{\partial x}\tan(x) = 1 + \tan^2(x).$$

Donc si on note arctan(-) la fonction inverse de tan(-), alors on a:

$$\arctan'(t) = \frac{1}{1+t^2}.$$

Vu que arctan est bien définie sur toute la droite réelle, on a:

$$\frac{1}{c} \int_{ca}^{cb} \frac{1}{1+y^2} \, \mathrm{dy} = \frac{1}{c} \left[\arctan(y) \right]_{ca}^{cb} = \frac{\arctan(cb) - \arctan(ca)}{c}$$

Exercice 7.1(6) Calculer en fonction de $a,b,c \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f_c(x) = \frac{1}{\sqrt{1 + (cx)^2}}$$

et préciser quelle conditions il faut mettre sur a, b, c pour que l'intégrale ait un sens.

a,b peuvent varier librement en \mathbb{R} . Si c=0, alors $\int_a^b f_0(x) \, \mathrm{d} x = b-a$. Si $c \neq 0$, alors on considère le changement de variables x=y/c, donc on a $\mathrm{d} x = \mathrm{d} y/c$ et

$$\int_{a}^{b} f_{c}(x) dx = \frac{1}{c} \int_{ca}^{cb} \frac{1}{\sqrt{1+y^{2}}} dy.$$

Maintenant, une primitive de $\frac{1}{\sqrt{1+y^2}}$ est $F(y) := \log(y + \sqrt{1+y^2})$ parce que:

$$F'(y) = \frac{1}{y + \sqrt{1 + y^2}} \cdot \left(1 + \frac{2y}{2\sqrt{1 + y^2}}\right) = \frac{1}{y + \sqrt{1 + y^2}} \cdot \frac{y + \sqrt{1 + y^2}}{\sqrt{1 + y^2}} = \frac{1}{\sqrt{1 + y^2}}.$$

La fonction F est bien définie parce que pour tout $y \in \mathbb{R}$ on a:

$$y + \sqrt{1 + y^2} > y + \sqrt{y^2} = y + |y| \ge 0.$$

Donc on a:

$$\frac{1}{c} \int_{ca}^{cb} \frac{1}{\sqrt{1+y^2}} \, \mathrm{dy} = \frac{1}{c} \Big[\log \Big(y + \sqrt{1+y^2} \Big) \Big]_{ca}^{cb} = \frac{1}{c} \log \left(\frac{cb + \sqrt{1+c^2b^2}}{ca + \sqrt{1+c^2a^2}} \right).$$

Exercice 7.1(7) Calculer en fonction de $a,b,c \in \mathbb{R}$ l'intégrale entre a e b de la fonction

$$f_c(x) = \frac{1}{\sqrt{1 - (cx)^2}}$$

 $et\ pr\'eciser\ quelle\ conditions\ il\ faut\ mettre\ sur\ a,b,c\ pour\ que\ l'int\'egrale\ ait\ un\ sens.$

Pour chaque $c \in \mathbb{R}$, f_c est bien définie pour $x \in]-1/c,1/c[$, donc il faut

$$-\frac{1}{c} < a \le b < \frac{1}{c}.$$

On considère le changement de variables x = y/c, donc dx = dy/c et on a:

$$\int_{a}^{b} \frac{1}{\sqrt{1 - (cx)^2}} = \frac{1}{c} \int_{ca}^{cb} \frac{1}{\sqrt{1 - x^2}} =$$
$$= \frac{1}{c} \left[\arcsin(y) \right]_{ca}^{cb} = \frac{\arcsin(cb) - \arcsin(ca)}{c}$$

si -1 < ca < cb < 1 (ici $\arcsin(-)$ est la fonction inverse de $\sin(-)$, définie sur le domaine [-1,1]).

Exercice 7.2(1) Déterminer les primitives de la fonction

$$f_n(t) := t^n \log(t)$$
 pour $n \ge 1$.

On prend une intégration par parties et on ignore toutes les constantes additives. Donc on a:

$$\int t^n \log(t) dt = \frac{t^{n+1}}{n+1} \log(t) - \int \frac{t^{n+1}}{n+1} \cdot \frac{1}{t} dt = \frac{t^{n+1}}{n+1} \log(t) - \frac{t^{n+1}}{(n+1)^2} = \frac{t^{n+1}}{(n+1)^2} \left((n+1) \log(t) - 1 \right).$$

Donc les primitives de $f_n(t)$ sont toutes de la forme:

$$\frac{t^{n+1}}{(n+1)^2}\log\left(\frac{t^{n+1}}{e}\right) + \mu, \qquad \forall\, \mu \in \mathbb{R}.$$

Exercice 7.2(2) Déterminer les primitives de la fonction

$$g(t) := \arctan(t),$$

où $\arctan(-)$ est la fonction inverse de $\tan(-)$, définie sur tout \mathbb{R} .

On prend une intégration par parties. Donc on a:

$$\int \arctan(t) dt = t \arctan(t) - \int t \cdot \frac{1}{1+t^2} dt =$$

$$= t \arctan(t) - \frac{1}{2} \int \frac{2t}{1+t^2} = t \arctan(t) - \frac{1}{2} \log(1+t^2) = t \arctan(t) - \log(\sqrt{1+t^2}).$$

Donc toutes le primitives de arctan(t) sont de la forme

$$t \arctan(t) - \log(\sqrt{1+t^2}) + \mu \quad \forall \mu \in \mathbb{R}.$$

Exercice 7.3 On pose pour tout $n \in \mathbb{N}$:

$$I_n := \int_0^{\pi/2} \sin^n(t) \, \mathrm{d}t \,.$$

Montrer que pour tout $n \geq 2$ on a $nI_n = (n-1)I_{n-2}$.

Si $n \ge 2$, alors on on peut écrire:

$$\sin^{n}(t) = \sin^{n-2}(t)(1 - (\cos^{2}(t))) = \sin^{n-2}(t) - \cos^{2}(t)\sin^{n-2}(t) =$$
$$= \sin^{n-2}(t) - \frac{\cos(t)}{n-1} \cdot \frac{\partial \sin^{n-1}(t)}{\partial t}.$$

Donc si on prend une intégration par parties on as

$$I_n = \int_0^{\pi/2} \sin^n(t) dt = \int_0^{\pi/2} \sin^{n-2}(t) dt - \int_0^{\pi/2} \frac{\cos(t)}{n-1} \cdot \frac{\partial \sin^{n-1}(t)}{\partial t} dt =$$

$$= I_{n-2} - \left[\frac{\cos(t)}{n-1} \cdot \sin^{n-1}(t) \right]_0^{\pi/2} + \int_0^{2\pi} \frac{-\sin(t)}{n-1} \cdot \sin^{n-1}(t) dt =$$

$$= I_{n-2} - 0 - \frac{1}{n-1} \int_0^{2\pi} \sin^n(t) dt = I_{n-2} - \frac{1}{n-1} \cdot I_n.$$

Donc on a:

$$I_n + \frac{1}{n-1} \cdot I_n = I_{n-2} \implies \frac{n}{n-1} \cdot I_n = I_{n-2},$$

Donc on a $nI_n = (n-1)I_{n-2}$ pour tout $n \ge 2$.

Exercice 7.4 Calculer en fonction de t les déterminantes des matrices 2×2 suivantes:

$$A := \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}, \quad B := \begin{pmatrix} \cosh(t) & 2\sinh(t) \\ \sinh(t) & 2\cosh(t) \end{pmatrix},$$
$$C := \begin{pmatrix} 2t+1 & (2t+1)^2 \\ 1 & 2t-1 \end{pmatrix}.$$
$$\det(A) = \cos^2(t) + \sin^2(t) = 1,$$

$$\det(B) = 2(\cosh^2(t) - \sinh^2(t)) = 2\left(\frac{e^{2t} + 2 + e^{-2t}}{4} - \frac{e^{2t} - 2 + e^{-2t}}{4}\right) = 2 \cdot 1 = 2.$$

$$\det(C) = (2t+1)(2t-1) - (2t+1)^2 = 4t^2 - 1 - 4t^2 - 4t - 1 = -4t - 2.$$

Exercice 7.5 Calculer les déterminantes des matrices suivantes:

$$D := \begin{pmatrix} 7 & 11 \\ -8 & 4 \end{pmatrix}, \quad E := \begin{pmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{pmatrix},$$

$$F := \begin{pmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{pmatrix}, \quad G := \begin{pmatrix} 1 & 0 & -1 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{pmatrix}.$$

$$\det(D) = 28 + 88 = 116,$$

$$\det(E) = \det\left(\begin{array}{cc} 4 & 15 \\ 6 & 21 \end{array}\right) + 6\det\left(\begin{array}{cc} 3 & 4 \\ 5 & 6 \end{array}\right) = 84 - 90 + 6(18 - 20) = -6 - 12 = -18.$$

$$\det(F) = \det\left(\begin{array}{cc} 4 & 5 \\ 6 & 7 \end{array}\right) + 2\det\left(\begin{array}{cc} 3 & 4 \\ 5 & 6 \end{array}\right) = 28 - 30 + 2(18 - 20) = -2 - 4 = -6.$$

$$\det(G) = \det\begin{pmatrix} 3 & 5 \\ 1 & 3 \end{pmatrix} - \det\begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix} = 9 - 5 - (2 - 12) = 4 + 10 = 14.$$

Exercice 7.6(1) Calculer l'aire du parallélogramme P construit sur les vecteurs

$$\overrightarrow{u} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 et $\overrightarrow{v} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

On a

$$Aire(P) = \det \left| \left(\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array} \right) \right| = |8 - 3| = 5.$$

Exercice 7.6(2) Calculer le volume du parallélépipède P construit sur les vecteurs

$$\overrightarrow{u} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \qquad \overrightarrow{v} = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix} \quad \text{et} \quad \overrightarrow{w} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

On a

$$Vol(P) = \det \left| \left(\begin{array}{ccc} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 3 & 1 \end{array} \right) \right| = \left| \det \left(\begin{array}{ccc} 1 & 1 \\ 3 & 1 \end{array} \right) + \det \left(\begin{array}{ccc} 2 & 1 \\ 0 & 3 \end{array} \right) \right| = |1 - 3 + 6| = 4.$$

Exercice 7.6(3) Montrer que le volume d'un parallélépipède P dont les sommets sont des points de \mathbb{R}^3 à coefficients entiers est un nombre entier.

On choisi un sommet Q_0 quelconque de P. Puis on nomme Q_1, Q_2 et Q_3 les 3 sommets de Q qui sont lié à Q_0 à travers un côté de P. Enfin, pour tout i=1,2,3 on nomme v_i le vecteur de \mathbb{R}^3 qui lie Q_i et Q_0 , c'est-à-dire $v_i=Q_i-Q_0$. Alors chaque v_i a coordonnées entières. En plus, le volume de P est la valeur absolue

du déterminant de la matrice 3×3 avec v_1, v_2 et v_3 sur les colonnes (de manière équivalente, sur les lignes), donc le volume de P est encore un nombre entier.

Exercice 7.7 Calculer l'intégrale sur $[0,1] \times [1,3]$ de la fonction définie par $f(x,y) = xy + y^2$.

$$\int_{[0,1]\times[1,3]} xy + y^2 \, dx \, dy = \int_0^1 \left(\int_1^3 xy + y^2 \, dy \right) dx =$$

$$= \int_0^1 \left[\frac{xy^2}{2} + \frac{y^3}{3} \right]_1^3 dx = \int_0^1 \frac{9x}{2} + 27 - \frac{x}{2} - \frac{1}{3} \, dx =$$

$$= \int_0^1 4x + \frac{80}{9} \, dx = \left[2x^2 + \frac{80x}{9} \right]_0^1 = 2 + \frac{80}{9} = \frac{98}{9}.$$

Exercice 7.8(1) Déterminer l'aire de la partie bornée D du plan délimitée par les courbes d'équation y = x et $y = x^2$.

On peut écrire:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \quad x \le y \le \sqrt{x} \},$$

donc on a

$$Aire(D) = \int_{D} dx dy = \int_{0}^{1} \left(\int_{x}^{\sqrt{x}} dy \right) dx =$$

$$= \int_{0}^{1} \sqrt{x} - x dx = \left[\frac{2x^{3/2}}{3} - \frac{x^{2}}{2} \right]_{0}^{1} = \frac{2}{3} - \frac{1}{2} = \frac{1}{6}.$$

Exercice 7.8(2) Calculer l'intégrale sur D (voir Exercice 7.8(1)) de la fonction définie par f(x,y) = x + y.

$$\int_D x + y \, dx \, dy = \int_0^1 \left(\int_x^{\sqrt{x}} x + y \, dy \right) dx =$$

$$= \int_0^1 \left[xy + \frac{y^2}{2} \right]_{y=x}^{y=\sqrt{x}} dx = \int_0^1 x\sqrt{x} + \frac{x}{2} - x^2 - \frac{x^2}{2} dx =$$

$$= \int_0^1 x^{3/2} + \frac{x}{2} - \frac{3x^2}{2} dx = \left[\frac{2x^{5/2}}{5} + x^2 - \frac{x^3}{2} \right]_0^1 = \frac{2}{5} + 1 - \frac{1}{2} = \frac{9}{10}.$$

Exercice 7.9(1) Calculer l'intégrale de la fonction f définie par $f(x,y) = x^2y$ sur le domaine D défini par

$$D = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0, \quad x + y \le 1, \quad y - x \le 1\}.$$

On peut écrire

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le y \le 1, y - 1 \le x \le 1 - y\},\$$

donc on a:

$$\int_{D} x^{2} y \, dx \, dy = \int_{0}^{1} \left(\int_{y-1}^{1-y} x^{2} y \, dx \right) dy =$$

$$= \int_0^1 \left[\frac{x^3 y}{3} \right]_{x=y-1}^{x=1-y} dy = \int_0^1 \frac{(1-y)^3 y - (y-1)^3 y}{3} dy =$$

$$= \int_0^1 \frac{y(1-3y+3y^2-y^3-y^3+3y^2-3y+1)}{3} dy = \frac{2}{3} \int_0^1 y - 3y^2 + 3y^3 - y^4 dy =$$

$$= \frac{2}{3} \left[\frac{y^2}{2} - y^3 + \frac{3y^4}{4} - \frac{y^5}{5} \right]_0^1 = \frac{2}{3} \left(\frac{1}{2} - 1 + \frac{3}{4} - \frac{1}{5} \right) = \frac{2}{3} \cdot \frac{1}{20} = \frac{1}{30}.$$

Exercice 7.9(2) Calculer l'intégrale de la fonction f définie par $f(x,y) = \sin(x)\sin(y)$ sur le domaine D défini par

$$D = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \quad y \ge 0, \quad x + y \le \pi \}.$$

On peut écrire

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le \pi, \quad 0 \le y \le \pi - x \},\,$$

donc on a:

$$\int_{D} \sin(x)\sin(y) \, dx \, dy = \int_{0}^{\pi} \left(\int_{0}^{\pi-x} \sin(x)\sin(y) \, dx = \right)$$

$$= \int_{0}^{\pi} \left[-\sin(x)\cos(y) \right]_{y=0}^{y=\pi-x} \, dx = \int_{0}^{\pi} -\sin(x)\cos(\pi-x) + \sin(x) \, dx =$$

$$= \int_{0}^{\pi} \sin(x)\cos(x) + \sin(x) \, dx = \left[\frac{\sin^{2}(x)}{2} - \cos(x) \right]_{0}^{\pi} = 0 - (-1) - (0-1) = 1 + 1 = 2.$$

Exercice 7.10 Calculer

$$\int_{0 \le y \le x \le 1} \frac{y}{1 + x^2} \, \mathrm{d}x \, \mathrm{d}y \,.$$

On a:

$$\left\{ (x,y) \in \mathbb{R}^2 \,|\, 0 \le y \le x \le 1 \right\} = \left\{ (x,y) \in \mathbb{R}^2 \,|\, 0 \le x \le 1, \, 0 \le y \le x \right\},$$
donc on a:

$$\int_{0 \le y \le x \le 1} \frac{y}{1+x^2} dx dy = \int_0^1 \left(\int_0^x \frac{y}{1+x^2} dy \right) dx =$$

$$= \int_0^1 \left[\frac{y^2}{2(1+x^2)} \right]_{y=0}^{y=x} dx = \frac{1}{2} \int_0^1 \frac{x^2}{1+x^2} dx.$$

Maintenant une primitive de $x^2/(1+x^2)$ est la fonction

$$F(x) = x - \arctan(x)$$

(où $\arctan(-)$ est la fonction inverse de $\tan(-)$) parce que

$$F'(x) = 1 - \frac{1}{1+x^2} = \frac{1+x^2-1}{1+x^2} = \frac{x^2}{1+x^2}.$$

Donc on a:

$$\frac{1}{2} \int_0^1 \frac{x^2}{1+x^2} dx = \frac{1}{2} \left[x - \arctan(x) \right]_0^1 = \frac{1}{2} [1 - \arctan(1) - \arctan(0)] = \frac{1}{2} [1 - \pi/4 - 0] = \frac{1}{2} [1 - \frac{\pi}{8}].$$

Exercice 7.11 Déterminer le centre de gravité d'un demi-disque réalisé dans un matériau homogène.

Si on a un nombre fini n de particules $\{P_i = (X_i, Y_i)\}_{i=1,\dots,n}$ dans \mathbb{R}^2 , de masse m_1, \dots, m_n , la masse totale est $M = \sum_i m_i$ et le centre de gravité est $G = (X_G, Y_G)$, avec:

$$X_G := \frac{1}{M} \sum_{i=1}^n m_i X_i$$
 et $Y_G := \frac{1}{M} \sum_{i=1}^n m_i Y_i$.

Dans le cas d'un corps continu sur un domaine $\Omega \subset \mathbb{R}^2$, on note $\rho : \Omega \to \mathbb{R}_{\geq 0}$ la distribution de masse du corps (densité), et on a:

$$M = \int_{\Omega} \rho(x, y) \, \mathrm{d} x \, \mathrm{d} y, \quad X_G = \frac{1}{M} \int_{\Omega} x \rho(x, y) \, \mathrm{d} x \, \mathrm{d} y \quad \text{et} \quad Y_G = \frac{1}{M} \int_{\Omega} y \rho(x, y) \, \mathrm{d} x \, \mathrm{d} y \, .$$

Un corps est dit homogène si la densité est constante, disons $\rho \in \mathbb{R}_{>0}$.

On suppose que le centre du disque est le point (X_0, Y_0) , on note R > 0 son rayon, et D/2 le demi-disque "supérieur, donc on a:

$$D/2 = \left\{ (x, y) \in \mathbb{R}^2 \mid X_0 - R \le x \le X_0 + R, \quad Y_0 \le y \le Y_0 + \sqrt{R^2 - (x - X_0)^2} \right\}.$$

Donc la masse est:

$$M = \int_{D/2} \rho(x, y) \, dx \, dy = \rho \int_{X_0 - R}^{X_0 + R} \left(\int_{Y_0}^{Y_0 + \sqrt{R^2 - (x - X_0)^2}} dy \right) dx =$$
$$= \rho \int_{X_0 - R}^{X_0 + R} \sqrt{R^2 - (x - X_0)^2} \, dx.$$

Maintenant on considère le changement de variables

$$\phi:\,[0,\pi]_t\longrightarrow [X_0-R,X_0+R]_x,\qquad \phi(t):=R\cos(t)+X_0.$$
 On a dx = $-R\sin(t)$ dt, donc

$$M = \rho \int_{\pi}^{0} \sqrt{R^2 - R^2 \cos^2(t)} (-R \sin(t)) \, \mathrm{d}t = \rho \int_{0}^{\pi} R |\sin(t)| R \sin(t) \, \mathrm{d}t \, .$$

Vu que $t \in [0, \pi]$, on a $\sin(t) > 0$, donc on a:

$$M = \rho R^2 \int_0^{\pi} \sin^2(t) dt = \rho R^2 \left[\frac{t - \sin(t) \cos(t)}{2} \right]_0^{\pi} = \frac{\rho \pi R^2}{2}.$$

La coordonnée X_G est égale à X_0 pour des raisons de symétrie. Pour la coordonnée Y_G , on a:

$$Y_G = \frac{1}{M} \int_D y \rho \, dx \, dy = \frac{2}{\rho \pi R^2} \rho \int_{X_0 - R}^{X_0 + R} \left(\int_{Y_0}^{Y_0 + \sqrt{R^2 - (x - X_0)^2}} y \, dy \right) dx =$$

$$= \frac{2}{\pi R^2} \int_{X_0 - R}^{X_0 + R} \left[\frac{y^2}{2} \right]_{y = Y_0}^{y = Y_0 + \sqrt{R^2 - (x - X_0)^2}} dx =$$

$$= \frac{1}{\pi R^2} \int_{X_0 - R}^{X_0 + R} Y_0^2 + R^2 - (x - X_0)^2 + 2Y_0 \sqrt{R^2 - (x - X_0)^2} - Y_0^2 \, dx =$$

$$\begin{split} &=\frac{1}{\pi R^2}\int_{X_0-R}^{X_0+R}R^2-(x-X_0)^2+2Y_0\sqrt{R^2-(x-X_0)^2}\,\mathrm{d}\mathbf{x}=\\ &=\frac{1}{\pi R^2}\int_{X_0-R}^{X_0+R}R^2\,\mathrm{d}\mathbf{x}-\frac{1}{\pi R^2}\int_{X_0-R}^{X_0+R}(x-X_0)^2\,\mathrm{d}\mathbf{x}+\frac{2Y_0}{\pi R^2}\int_{X_0-R}^{X_0+R}\sqrt{R^2-(x-X_0)^2}\,\mathrm{d}\mathbf{x}=\\ &=\frac{2R}{\pi}-\frac{1}{\pi R^2}\left[\frac{(x-X_0)^3}{3}\right]_{X_0-R}^{X_0+R}+\frac{2Y_0}{\pi R^2}\int_{X_0-R}^{X_0+R}\sqrt{R^2-(x-X_0)^2}\,\mathrm{d}\mathbf{x}\,. \end{split}$$

On a déjà calculé le dernier terme (pour calculer la masse M), donc on a

$$Y_G = \frac{2R}{\pi} - \frac{1}{\pi R^2} \left[\frac{R^3 + R^3}{3} \right] + \frac{2Y_0}{\pi R^2} \cdot \frac{\pi R^2}{2} =$$
$$= \frac{2R}{\pi} - \frac{2R}{3\pi} + Y_0 = \frac{4R}{3\pi} + Y_0.$$

Une autre méthode (un peu plus simple) pour calculer le centre de masse est celle de considérer coordonnées polaires (voir solution du devoir n.1).

Exercice 7.12 Utiliser une intégrale double pour calculer l'aire de la sphère S de rayon R dans \mathbb{R}^3 .

On note

$$S_{+} := \left\{ (x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = R^{2}, \ z \ge 0 \right\} =$$

$$= \left\{ (x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} \le R^{2}, \ z = \sqrt{R^{2} - x^{2} - y^{2}} \right\}$$

et

$$S_{-} := \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = R^2, \ z < 0 \right\} =$$

$$= \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 < R^2, \ z = -\sqrt{R^2 - x^2 - y^2} \right\}.$$

On a $S = S_+ \coprod S_-$, donc $Aire(S) = Aire(S_+) + Aire(S_-)$. On cherche une parametrisation pour la surface S_+ . On note

$$D := \left\{ (x, y) \in \mathbb{R}^2 \, | \, x^2 + y^2 \le R^2 \right\}$$

et on choisi

$$\phi: D \longrightarrow S_+ \subset \mathbb{R}^3, \qquad \phi(x,y) := (x, y, \sqrt{R^2 - x^2 - y^2}).$$

 ϕ est une fonction lisse et inversible (sur $S_+).$ Il faut calculer:

$$\partial_x \phi = \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \frac{1}{2} \cdot \frac{1}{\sqrt{R^2 - x^2 - y^2}} \cdot (-2x) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{-x}{\sqrt{R^2 - x^2 - y^2}} \end{pmatrix}$$

et

$$\partial_y \phi = \begin{pmatrix} 0 \\ 1 \\ \frac{-y}{\sqrt{R^2 - x^2 - y^2}} \end{pmatrix}.$$

Il faut contrôler que ϕ est une parametrisation valide, c'est-à-dire que le vecteur $(\partial_x \phi)(x,y)$ et $(\partial_y \phi)(x,y)$ sont linéairement indépendants pour chaque $(x,y) \in D$. Cela est vrai parce que la matrice

$$\left(\begin{array}{ccc}
1 & 0 \\
0 & 1 \\
\frac{-x}{\sqrt{R^2 - x^2 - y^2}} & \frac{-y}{\sqrt{R^2 - x^2 - y^2}}
\end{array}\right)$$

a une sous-matrice 2×2

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

avec déterminant qui n'est pas zéro.

Maintenant il faut calculer le produit extérieur

$$((\partial_x \phi)(x,y)) \times ((\partial_y \phi)(x,y)).$$

On rappelle que en général

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}.$$

Donc on a

$$((\partial_x \phi)(x,y)) \times ((\partial_y \phi)(x,y)) = \begin{pmatrix} \frac{x}{\sqrt{R^2 - x^2 - y^2}} \\ \frac{y}{\sqrt{R^2 - x^2 - y^2}} \\ 1 \end{pmatrix}.$$

Maintenant il faut aussi trouver un champ unitaire de vecteurs orthogonal à S_+ , orienté vers le dehors de la sphère. On défini un champs de vecteurs sur \mathbb{R}^3 comme:

$$N: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, \qquad N(x, y, z) := \left(\frac{x}{R}, \frac{y}{R}, \frac{z}{R}\right).$$

Si on considère N seulement défini sur S_+ , on a que le vecteur N(x, y, z) est orthogonal à S_+ en (x, y, z). En plus, pour chaque point (x, y) en D on a:

$$N(\phi(x,y)) = \left(\frac{x}{R}, \frac{y}{R}, \frac{\sqrt{R^2 - x^2 - y^2}}{R}\right),$$

donc:

$$||N(\phi(x,y))|| = \sqrt{\frac{x^2}{R^2} + \frac{y^2}{R^2} + \frac{R^2 - x^2 - y^2}{R^2}} = \sqrt{\frac{R^2}{R^2}} = 1,$$

donc le champ N est un champ unitaire de vecteurs. Maintenant il faut calculer le produit scalaire

$$\begin{split} &((\partial_x \phi)(x,y)) \times ((\partial_y \phi)(x,y)) \cdot N(\phi(x,y)) = \\ &= \left(\frac{x}{\sqrt{R^2 - x^2 - y^2}}, \frac{y}{\sqrt{R^2 - x^2 - y^2}}, 1\right) \cdot \left(\frac{x}{R}, \frac{y}{R}, \frac{\sqrt{R^2 - x^2 - y^2}}{R}\right) = \\ &= \frac{1}{R} \left(\frac{x^2 + y^2}{\sqrt{R^2 - x^2 - y^2}} + \sqrt{R^2 - x^2 - y^2}\right) = \\ &= \frac{1}{R} \cdot \frac{x^2 + y^2 + R^2 - x^2 - y^2}{\sqrt{R^2 - x^2 - y^2}} = \frac{R}{\sqrt{R^2 - x^2 - y^2}}. \end{split}$$

Donc

$$Aire(S_{+}) = \int_{D} |((\partial_{x}\phi)(x,y)) \times ((\partial_{y}\phi)(x,y)) \cdot N(\phi(x,y))| \, dx \, dy =$$

$$= \int_{D} \frac{R}{\sqrt{R^{2} - x^{2} - y^{2}}} \, dx \, dy.$$

Maintenant on considère le changement de coordonnés

$$\psi:]0,R]_r \times [0,2\pi[_\theta \longrightarrow D_{(x,y)} \smallsetminus \{(0,0)\}, \qquad \psi(r,\theta):=(r\cos(\theta),r\sin(\theta)).$$
 Comme d'habitude, on a $|\det(J_\psi)|=r$, donc

$$Aire(S_{+}) = \int_{0}^{R} \int_{0}^{2\pi} \frac{rR}{\sqrt{R^{2} - r^{2}}} dr d\theta =$$

$$= 2\pi R \int_{0}^{R} \frac{r}{\sqrt{R^{2} - r^{2}}} dr = 2\pi R \left[-\sqrt{R^{2} - r^{2}} \right]_{0}^{R} = 2\pi R \sqrt{R^{2}} = 2\pi R^{2}.$$

Pour raisons de symétrie, on a aussi $Aire(S_{-}) = 2\pi R^{2}$, donc $Aire(S) = Aire(S_{+}) + Aire(S_{-}) = 4\pi R^{2}$.

Exercice 7.13 Soit a > 0 et soit

$$T_a := \{(x, y) \in \mathbb{R}^2 \mid x > 0, \quad y > 0, \quad x + y < a \}.$$

Calculer

$$\int_{T} \sqrt{xy} e^{-x-y} \, \mathrm{d}x \, \mathrm{d}y$$

en utilisant le changement de variable x = tu, y = (1 - t)u.

On considère la fonction

$$\phi: \mathbb{R}^2_{(u,t)} \longrightarrow \mathbb{R}^2_{(x,y)} \qquad \phi(u,t) := (tu, (1-t)u)$$

(c'est-à-dire $\phi_x(u,t)=tu,\,\phi_y(u,t)=(1-t)u$). Le Jacobien de ϕ est alors

$$J_{\phi} = \left(\begin{array}{cc} \partial_{u}\phi_{x} & \partial_{t}\phi_{x} \\ \partial_{u}\phi_{y} & \partial_{t}\phi_{y} \end{array} \right) = \left(\begin{array}{cc} t & u \\ 1-t & -u \end{array} \right),$$

donc

$$|\det J_{\phi}| = |-tu - u(1-t)| = |-tu - u + tu| = |-u| = |u|.$$

Donc en général ϕ n'est pas un changement de coordonnées valide sur tout \mathbb{R}^2 (le déterminant de son Jacobien est = 0 pour tout $(0,t) \in \mathbb{R}^2$). La seule chose importante à vérifier est le fait que son Jacobien n'as pas déterminant zéro sur le domaine $\phi^{-1}(T_a)$. Maintenant on a

$$R_a := \phi^{-1}(T_a) = \{(t, u) \in \mathbb{R}^2 \mid tu > 0, \quad (1 - t)u > 0, \quad tu + (1 - t)u < a\} =$$

$$= \{(t, u) \in \mathbb{R}^2 \mid tu > 0, \quad u > tu, \quad tu + u - tu < a\} =$$

$$= \{(t, u) \in \mathbb{R}^2 \mid u < a, \quad tu > 0, \quad u > tu\}.$$

Vu que tu > 0 sur R_a , alors $u \neq 0$. Si u < 0, alors:

- tu > 0 implique t < 0;
- u > tu implique 1 < t.

Ces deux conditions sont incompatibles, donc on a nécessairement u > 0. Donc

$$R_a = \{(u, t) \in \mathbb{R}^2 \mid 0 < u < a, 0 < t < 1\} =]0, a[\times]0, 1[.$$

Maintenant la fonction

$$\phi|_{R_a}: R_a \longrightarrow T_a$$

est une bijection, avec déterminant du Jacobien non zéro partout. Donc elle a une inverse, qui est lisse par le théorème de fonctions implicites. Donc on peux calculer:

$$\int_{T_a} \sqrt{xy} e^{-x-y} \, \mathrm{d}x \, \mathrm{d}y = \int_{R_a} \sqrt{tu(1-t)u} e^{-tu-u+tu} \cdot |\det J_{\phi}| \, \mathrm{d}u \, \mathrm{d}t =$$

$$= \int_0^1 \left(\int_0^a \sqrt{u^2(t-t^2)} e^{-u} |u| \, \mathrm{d}u \right) \, \mathrm{d}t \, .$$

Vu que (t,u) varie sur $]0,1[\times]0,a[$, on a |u|=u, t=|t| et |1-t|=1-t, donc on a:

$$\int_0^1 \left(\int_0^a \sqrt{t-t^2} e^{-u} u^2 \, \mathrm{d} \mathbf{u} \right) \mathrm{d} \mathbf{t} = \int_0^1 \sqrt{t} \sqrt{1-t} \, \mathrm{d} \mathbf{t} \cdot \int_0^a e^{-u} u^2 \, \mathrm{d} \mathbf{u} \, .$$

Maintenant on utilise le changement de variable $\psi:[0,1]_s \to [0,1]_t$ défini par $\psi(s):=s^2$. Comme ça, on a dt = 2s ds, donc

$$\int_0^1 \sqrt{t} \sqrt{1-t} \, dt = \int_0^1 2s \cdot s \sqrt{1-s^2} \, ds = \int_0^1 2s^2 (1-s^2)^{1/2} \, ds.$$

On prend le changement de coordonnées $\rho:[0,\pi/2]_{\theta}\to [0,1]_s$ défini par $\rho(\theta):=\cos\theta$, donc ds $=-\sin(\theta)\,\mathrm{d}\theta$, et

$$\int_0^1 2s^2 (1 - s^2)^{1/2} ds = \int_{\pi/2}^0 2\cos^2(\theta)\sin(\theta) \cdot (-\sin(\theta)) d\theta =$$

$$= \int_0^{\pi/2} 2\cos^2(\theta)\sin^2(\theta) d\theta = \int_0^{\pi/2} 2\cos^2(\theta) - 2\cos^4(\theta) d\theta =$$

$$= \left[\theta + \sin(\theta)\cos(\theta) - \frac{3\theta}{4} - \frac{\sin(2\theta)}{2} - \frac{\sin(4\theta)}{16}\right]_0^{\pi/2} =$$

$$= \left(\frac{\pi}{2} + 0 - \frac{3\pi}{8} - 0 - 0\right) - \left(0 + 0 - 0 - 0 - 0\right) = \frac{\pi}{8}.$$

En plus, si on prend une intégration par parties deux fois, on a

$$\int_0^a e^{-u}u^2 du = \left[-e^{-u}(u^2 + 2u + 2) \right]_0^a = -e^{-a}(a+1)^2 + 2$$

Donc on a:

$$\int_{T_a} \sqrt{xy} e^{-x-y} \, dx \, dy = \frac{\pi (2 - e^{-a} (a+1)^2)}{8}.$$

Exercice 7.14(1) Soit R > 0 et soit $D_R := [0, R] \times [0, R]$. Montrer que

$$\int_{D_R} e^{-x^2 - y^2} \, dx \, dy = \left(\int_0^R e^{-x^2} \, dx \right)^2.$$

Par séparation de variables (et changement de variables x = y), on a

$$\int_{D_R} e^{-x^2 - y^2} dx dy = \int_0^R e^{-x^2} dx \cdot \int_0^R e^{-y^2} dy =$$

$$= \int_0^R e^{-x^2} dx \cdot \int_0^R e^{-x^2} dx = \left(\int_0^R e^{-x^2} dx \right)^2.$$

Exercice 7.14(2) Soit R > 0, notons

$$C_R := \{(x, y) \in \mathbb{R}^2 \mid x > 0, \quad y > 0, \quad x^2 + y^2 < R^2 \}.$$

Calculer

$$I(R) := \int_{C_R} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y.$$

On considère le changement de coordonnées

$$\phi:]0, R[r \times]0, \pi/2[\theta \longrightarrow C_R, \quad \phi(r, \theta) := (r\cos(\theta), r\sin(\theta)).$$

On sait déjà que $|\det J_{\phi}| = r$, donc

$$I(R) = \int_0^{\pi/2} \left(\int_0^R r e^{-r^2} dr \right) d\theta = \frac{\pi}{2} \int_0^R r e^{-r^2} dr =$$
$$= \frac{\pi}{2} \left[\frac{-e^{-r^2}}{2} \right]_{r=0}^{r=R} = \frac{\pi (1 - e^{-R^2})}{4}.$$

Exercice 7.14(3) Montrer que pour tout R > 0 on a

$$I(R) \le \int_{D_R} e^{-x^2 - y^2} dx dy \le I(\sqrt{2}R).$$

Pour tout R > 0 on a

$$C_R \subseteq D_R \subseteq C_{\sqrt{2}R}$$

(le premier est un quart de disque avec rayon R, le deuxième est un carré avec diagonal $\sqrt{2}R$, le troisième est un quart de disque avec rayon $\sqrt{2}R$). En plus, on a $e^{-x^2-y^2}>0$ pour chaque $(x,y)\in\mathbb{R}^2$. Donc

$$\int_{C_R} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \le \int_{D_R} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \le \int_{C_{\sqrt{2}R}} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y.$$

Donc en utilisant l'Exercice 7.14(2) on a:

$$\frac{\pi(1 - e^{-R^2})}{4} \le \int_{D_R} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \le \frac{\pi(1 - e^{-2R^2})}{4}.$$

Exercice 7.14(4) En utilisant 7.14(1), 7.14(2) et 7.14(3), déduire l'intégrale entre 0 et ∞ de e^{-x^2} .

En utilisant l'Exercice 7.14(3) et le théorème de deux gendarmes, on a

$$\lim_{R \to +\infty} \frac{\pi(1 - e^{-R^2})}{4} \le \lim_{R \to +\infty} \int_{D_R} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \le \lim_{R \to +\infty} \frac{\pi(1 - e^{-2R^2})}{4}.$$

C'est-à-dire

$$\frac{\pi}{4} \le \lim_{R \to +\infty} \int_{[0,R] \times [0,R]} e^{-x^2 - y^2} \, \mathrm{d}x \, \mathrm{d}y \le \frac{\pi}{4},$$

donc

$$\lim_{R\to +\infty}\int_{[0,R]\times[0,R]}e^{-x^2-y^2}\,\mathrm{d}\mathbf{x}\,\mathrm{d}\mathbf{y}=\frac{\pi}{4}.$$

En utilisant l'Exercice 7.14(1), on a

$$\lim_{R \to +\infty} \left(\int_{[0,R]} e^{-x^2} \, \mathrm{dx} \right)^2 = \frac{\pi}{4}.$$

Vu que $\int_{[0,R]} e^{-x^2} dx$ est non-négatif, alors cela implique que

$$\int_0^\infty e^{-x^2} dx = \lim_{R \to +\infty} \int_{[0,R]} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Exercice 7.15 Calculer l'intégrale curviligne

$$\int_C (x+y) \, \mathrm{d} x + (x-y) \, \mathrm{d} y$$

où C est le cercle unité, paramétré dans le sens trigonométrique.

On considère la paramétrisation de C:

$$c: [0, 2\pi[_{\theta} \longrightarrow C \subset \mathbb{R}^2_{(x,y)}, \qquad c(\theta) := (\cos(\theta), \sin(\theta)).$$

Donc on a $dx = -\sin(\theta) d\theta$, $dy = \cos(\theta) d\theta$ et

$$\int_C (x+y) \, \mathrm{d}x + (x-y) \, \mathrm{d}y =$$

$$= \int_0^{2\pi} (\cos(\theta) + \sin(\theta))(-\sin(\theta)) + (\cos(\theta) - \sin(\theta)) \cos(\theta) \, \mathrm{d}\theta =$$

$$= \int_0^{2\pi} -\cos(\theta) \sin(\theta) - \sin^2(\theta) + \cos^2(\theta) - \sin(\theta) \cos(\theta) \, \mathrm{d}\theta =$$

$$= \int_0^{2\pi} -2\cos(\theta) \sin(\theta) - 2\sin^2(\theta) + 1 \, \mathrm{d}\theta =$$

$$= \left[\cos^2(\theta) - (\theta + \sin(\theta) \cos(\theta)) + \theta \right]_0^{2\pi} = \left[\cos^2(\theta) - \sin(\theta) \cos(\theta) \right]_0^{2\pi} = 1 - 1 = 0.$$

Exercice 7.16(1) Calculer l'intégrale curviligne

$$\int_{C} \frac{(y+z) dx + (z+x) dy + (x+y) dz}{x^{2} + y^{2}}$$
(0.1)

où C es le segment de droite dont les extrémités sont les points de coordonnée (1,1,1) et (2,2,2).

Une paramétrisation du segment de droite C est:

$$c: [1,2]_t \longrightarrow C \subset \mathbb{R}^3_{(x,y,z)}, \qquad c(t) := (t,t,t).$$

On a dx = dy = dz = dt, donc

$$\int_C \frac{(y+z)\operatorname{dx} + (z+x)\operatorname{dy} + (x+y)\operatorname{dz}}{x^2 + y^2} =$$

$$= \int_{1}^{2} \frac{(t+t) + (t+t) + (t+t)}{t^{2} + t^{2}} dt = \int_{1}^{2} \frac{3}{t} dt = \left[3 \log|t| \right]_{1}^{2} = 3 \log(2).$$

Exercice 7.16(2) Calculer l'intégrale curviligne (0.1) où C est la partie d'hélice paramétré par la fonction qui a t associe $(\cos(t), \sin(t), t)$ pour tout $t \in [0, 2\pi]$.

On considère la paramétrisation:

$$c: [0, 2\pi]_t \longrightarrow C \subset \mathbb{R}^3_{(x,y,z)}, \qquad c(t) := (\cos(t), \sin(t), t).$$

On a $dx = -\sin(t) dt$, $dy = \cos(t) dt$ et dz = dt, donc:

$$\int_{C} \frac{(y+z) dx + (z+x) dy + (x+y) dz}{x^{2} + y^{2}} =$$

$$= \int_{0}^{2\pi} \frac{(\sin(t) + t)(-\sin(t)) + (\cos(t) + t) \cos(t) + (\cos(t) + \sin(t))}{\cos^{2}(t) + \sin^{2}(t)} dt =$$

$$= \int_{0}^{2\pi} -\sin^{2}(t) - t \sin(t) + \cos^{2}(t) + t \cos(t) + \cos(t) + \sin(t) dt =$$

$$= \int_{0}^{2\pi} -2 \sin^{2}(t) - t \sin(t) + t \cos(t) + \cos(t) + \sin(t) + 1 dt =$$

$$= \left[(\sin(t) \cos(t) - t) + (t \cos(t) - \sin(t)) + (t \sin(t) + \cos(t)) + \sin(t) - \cos(t) + t \right]_{0}^{2\pi} =$$

$$= \left[\sin(t) \cos(t) + t \cos(t) + t \sin(t) \right]_{0}^{2\pi} = 0 + 2\pi + 0 - (0 + 0 + 0) = 2\pi.$$

Exercice 7.17 Soit D le domaine borné bordé par la courbe d'équation $x^2+y^2-2y=0$. Calculer en utilisant la formule de Green

$$\int_D (x^2 - y^2) \, \mathrm{d}x \, \mathrm{d}y \,.$$

On a

$$\partial D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + (y-1)^2 = 1\},\,$$

donc ∂D est un cercle centré en (0,1), avec rayon 1. Pour utiliser la formule de Green, il faut donner une paramétrisation de ∂D en sens trigonométrique, c'est-à-dire une paramétrisation telle que le dehors de D reste à droite quand on suit ∂D . Donc on considère la paramétrisation

$$\phi: [0, 2\pi[_{\theta} \longrightarrow \partial D \subset \mathbb{R}^2_{(x,y)}, \quad \phi(\theta) := (\cos(\theta), \sin(\theta) + 1).$$

Donc on a: $dx = -\sin(\theta) d\theta$ et $dy = \cos(\theta) d\theta$.

On note:

$$u(x,y) := \frac{y^3}{3}$$
 et $v(x,y) := \frac{x^3}{3}$.

Comme ça, on a:

$$\frac{\partial v}{\partial x} = x^2$$
 et $\frac{\partial u}{\partial y} = y^2$,

donc avec la formule de Green on a:

$$\begin{split} \int_D (x^2 - y^2) \, \mathrm{d}x \, \mathrm{d}y &= \int_D \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial D} u(x,y) \, \mathrm{d}x + v(x,y) \, \mathrm{d}y = \\ &= \int_{\partial D} \frac{y^3}{3} \, \mathrm{d}x + \frac{x^3}{3} \, \mathrm{d}y = \\ &= \int_0^{2\pi} \frac{(\sin(\theta) + 1)^3}{3} (-\sin(\theta)) + \frac{\cos^3(\theta)}{3} \cos(\theta) \, \mathrm{d}\theta = \\ &= \int_0^{2\pi} -\frac{\sin^4(\theta)}{3} - \sin^3(\theta) - \sin^2(\theta) - \frac{\sin(\theta)}{3} + \\ &+ \frac{\cos^4(\theta)}{3} + \cos^3(\theta) + \cos^2(\theta) + \frac{\cos(\theta)}{3} \, \mathrm{d}\theta = \\ &= \int_0^{2\pi} \frac{\cos^4(\theta) - \sin^4(\theta)}{3} + \cos^2(\theta) - \sin^2(\theta) \, \mathrm{d}\theta + \\ &+ \int_0^{2\pi} \cos^3(\theta) - \sin^3(\theta) + \frac{\cos(\theta) - \sin(\theta)}{3} \, \mathrm{d}\theta \, . \end{split}$$

Maintenant, on a:

$$\frac{\cos^4(\theta) - \sin^4(\theta)}{3} + \cos^2(\theta) - \sin^2(\theta) =$$

$$= \frac{(\cos^2(\theta) - \sin^2(\theta))(\cos^2(\theta) + \sin^2(\theta))}{3} + \cos^2(\theta) - \sin^2(\theta) =$$

$$= \frac{\cos^2(\theta) - \sin^2(\theta)}{3} + \cos^2(\theta) - \sin^2(\theta) =$$

$$= \frac{4}{3}(\cos^2(\theta) - \sin^2(\theta)) = \frac{\partial}{\partial \theta} \left(\frac{4\sin(\theta)\cos(\theta)}{3}\right).$$

On a aussi:

$$\cos^{3}(\theta) - \sin^{3}(\theta) + \frac{\cos(\theta) - \sin(\theta)}{3} =$$

$$= \cos(\theta) - \cos(\theta)\sin^{2}(\theta) - \sin(\theta) + \cos^{2}(\theta)\sin(\theta) + \frac{\cos(\theta) - \sin(\theta)}{3} =$$

$$= \frac{4(\cos(\theta) - \sin(\theta))}{3} - \cos(\theta)\sin^{2}(\theta) + \sin(\theta)\cos^{2}(\theta) =$$

$$= \frac{\partial}{\partial \theta} \left(\frac{4(\sin(\theta) + \cos(\theta))}{3} - \frac{\sin^{3}(\theta)}{3} - \frac{\cos^{3}(\theta)}{3}\right).$$

Donc

$$\int_{D} (x^2 - y^2) = \left[\frac{4\sin(\theta)\cos(\theta)}{3} \right]_{0}^{2\pi} + \left[\frac{4(\sin(\theta) + \cos(\theta))}{3} - \frac{\sin^3(\theta)}{3} - \frac{\cos^3(\theta)}{3} \right]_{0}^{2\pi} = 0.$$

Exercice 7.18(1) Soit C la courbe fermée constituée d'un segment de la parabole d'équation $x^2 = y$ et d'un segment de la parabole d'équation $y^2 = x$, et soit D le domaine borné qu'elle délimite. Calculer

$$\int_C (2xy - x^2) \, \mathrm{d}x + (x + y^2) \, \mathrm{d}y.$$

On note C_1 et C_2 les parties des courbes comme dans le dessin (noter bien l'orientation: comme ça, la courbe $\partial D = C_1 \coprod C_2$ est orientée dans le sens trigonométrique). Une paramétrisation de C_1 est:

$$c_1: [0,1]_t \longrightarrow C_1 \subset \mathbb{R}^2_{(x,y)}, \qquad c_1(t):=(t,t^2)$$

donc on a dx = dt, dy = 2t dt et

$$\int_{C_1} (2xy - x^2) dx + (x + y^2) dy = \int_0^1 (2t^3 - t^2) + (t + t^4) \cdot 2t dt =$$

$$= \int_0^1 2t^3 - t^2 + 2t^2 + 2t^5 dt = \int_0^1 2t^5 + 2t^3 + t^2 dt =$$

$$= \left[\frac{t^6}{3} + \frac{t^4}{2} + \frac{t^3}{3} \right]_0^1 = \frac{1}{3} + \frac{1}{2} + \frac{1}{3} = \frac{7}{6}.$$

Maintenant on note $-C_2$ la courbe C_2 orientée dans le sens opposé. Donc une paramétrisation de $-C_2$ est

$$c_2: [0,1]_t \longrightarrow \mathbb{R}^2_{(x,y)}, \qquad c_2(t):=(t^2,t),$$

donc on a dx = 2t dt, dy = dt et

$$\int_{C_2} (2xy - x^2) dx + (x + y^2) dy = -\int_{-C_2} (2xy - x^2) dx + (x + y^2) dy =$$

$$= -\int_0^1 (2t^3 - t^4) \cdot 2t + (t^2 + t^2) dt = -\int_0^1 4t^4 - 2t^5 + 2t^2 dt =$$

$$= \int_0^1 2t^5 - 4t^4 - 2t^2 dt = \left[\frac{t^6}{3} - \frac{4t^5}{5} - \frac{2t^3}{3} \right]_0^1 = \frac{1}{3} - \frac{4}{5} - \frac{2}{3} = -\frac{17}{15}.$$

Donc

$$\int_C (2xy - x^2) dx + (x + y^2) dy = \frac{7}{6} - \frac{17}{15} = \frac{1}{30}.$$

Exercice 7.18(2) Vérifier le résultat de l'Exercice 18(1) avec la formule de Green.

On peut écrire:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \quad x^2 \le y \le \sqrt{x} \}.$$

On a déjà orienté C dans le sens trigonométrique. On note:

$$u(x,y) := 2xy - x^2$$
 et $v(x,y) := x + y^2$,

donc en utilisant la formule de Green, on a:

$$\int_C (2xy - x^2) \, dx + (x + y^2) \, dy =$$

$$= \int_{\partial D} u(x, y) \, dx + v(x, y) \, dy = \int_D \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \, dx \, dy =$$

$$= \int_0^1 \left(\int_{x^2}^{\sqrt{x}} (1 - 2x) \, dy \right) \, dx = \int_0^1 (1 - 2x)(\sqrt{x} - x^2) \, dx =$$

$$= \int_0^1 x^{1/2} - 2x^{3/2} - x^2 + 2x^3 \, dx = \left[\frac{2x^{3/2}}{3} - \frac{4x^{5/2}}{5} - \frac{x^3}{3} + \frac{x^4}{2} \right]_0^1 =$$

$$= \frac{2}{3} - \frac{4}{5} - \frac{1}{3} + \frac{1}{2} = \frac{1}{30}.$$

Exercice 7.19(1) Soit

$$D := \{(x, y) \in \mathbb{R}^2 \mid x \ge 0, \quad y \ge 0, \quad x + y \le 1\}$$

et soit Γ son bord, orienté dans le sens trigonométrique. Calculer directement

$$\int_{\Gamma} xy^2 \, \mathrm{d} x + 2xy \, \mathrm{d} y \, .$$

On note $\Gamma_1, \Gamma_2, \Gamma_3$ les segments de droite orientés comme dans le dessin. Pour chaque i = 1, 2, 3, on a une paramétrisation c_i de Γ_i comme ça:

$$c_1: [0,1] \longrightarrow \Gamma_1, \qquad c_1(t) := (t,0),$$

 $c_2: [0,1] \longrightarrow \Gamma_2, \qquad c_1(t) := (1-t,t),$
 $c_3: [0,1] \longrightarrow \Gamma_3, \qquad c_1(t) := (0,1-t),$

Donc on a:

$$\int_{\Gamma_1} xy^2 \, dx + 2xy \, dy = 0,$$

$$\int_{\Gamma_2} xy^2 \, dx + 2xy \, dy = \int_0^1 (1 - t)t^2(-1) + 2(1 - t)t \, dt =$$

$$= \int_0^1 t^3 - 3t^2 + 2t \, dt = \left[\frac{t^4}{4} - t^3 + t^2 \right]_0^1 = \frac{1}{4} - 1 + 1 = \frac{1}{4}$$

 et

$$\int_{\Gamma_3} xy^2 \, \mathrm{d}\mathbf{x} + 2xy \, \mathrm{d}\mathbf{y} = 0.$$

Donc

$$\int_{\Gamma} xy^2 \, dx + 2xy \, dy = 0 + \frac{1}{4} + 0 = \frac{1}{4}.$$

Exercice 7.19(2) Retrouver le résultat de l'Exercice 7.19(1) en utilisant la formule de Green.

On peut écrire le domaine D comme:

$$D = \{(x, y) \in \mathbb{R}^2 \mid 0 \le x \le 1, \quad 0 \le y \le 1 - x\}.$$

On note

$$u(x,y) := xy^2$$
 et $v(x,y) := 2xy$.

Avec la formule de Green, on a:

$$\int_{\Gamma} xy^{2} \, dx + 2xy \, dy = \int_{\partial D} u(x, y) \, dx + v(x, y) \, dy = \int_{D} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx \, dy =$$

$$= \int_{0}^{1} \left(\int_{0}^{1-x} 2y - 2xy \, dy \right) dx =$$

$$= \int_{0}^{1} \left[y^{2} - xy^{2} \right]_{0}^{1-x} dx = \int_{0}^{1} (1-x)^{2} - x(1-x)^{2} \, dx =$$

$$= \int_{0}^{1} (1-x)^{3} \, dx = -\int_{0}^{1} (x-1)^{3} \, dx = -\left[\frac{(x-1)^{4}}{4} \right]_{0}^{1} = \frac{1}{4}.$$

Exercice 7.20 Soit Σ une surface orientée dans \mathbb{R}^3 , munie d'un champ de vecteurs orthogonal unitaire N, et soit $u: \Sigma \to \mathbb{R}$ une fonction continue. On se donne deux paramétrisations respectant l'orientation $\phi: \Omega \to \Sigma$ et $\phi': \Omega' \to \Sigma$ de Σ par 2 ouverts Ω, Ω' de \mathbb{R}^2 . Montrer que la définition de l'intégrale de u sur Σ ne dépend pas de la paramétrisation choisie, c'est-à-dire que:

$$\int_{\Omega} u(\phi(x,y))(\partial_x \phi \times \partial_y \phi) \cdot N \, dx \, dy = \int_{\Omega'} u(\phi'(x,y))(\partial_x \phi' \times \partial_y \phi') \cdot N \, dx \, dy.$$

La partie de gauche est

$$A:=\int_{\Omega}u(\phi(x,y))\left(\frac{\partial\phi(x,y)}{\partial x}\times\frac{\partial\phi(x,y)}{\partial y}\right)\cdot N(\phi(x,y))\,\mathrm{d}x\,\mathrm{d}y\,.$$

Si on change coordonnées (x', y') := (x, y), la partie de droite est

$$B := \int_{\Omega'} u(\phi'(x',y')) \left(\frac{\partial \phi'(x',y')}{\partial x'} \times \frac{\partial \phi'(x',y')}{\partial y'} \right) \cdot N(\phi'(x',y')) \operatorname{dx'} \operatorname{dy'}.$$

Donc il faut prouver que A=B. Maintenant on considère le changement de coordonnées (en 2 dimensions):

$$\psi: \Omega'_{(x',y')} \longrightarrow \Omega_{(x,y)}, \qquad \psi:=\phi' \circ \phi^{-1}$$

 $(\psi \text{ est un changement de coordonnées parce que } \phi \text{ et } \phi' \text{ sont 2 paramétrisations de } \Sigma)$. Vu que ϕ et ϕ' respectent l'orientation de Σ , alors on a $\det(J_{\psi}) > 0$, donc $|\det(J_{\psi})| = \det(J_{\psi})$. Alors si on note $\psi = (\psi_1, \psi_2)$, on a:

$$A = \int_{\Omega'} (\det(J_{\psi}(x', y'))) \cdot u(\phi \circ \phi^{-1} \circ \phi'(x', y')) \cdot \frac{\partial \phi \circ \phi^{-1} \circ \phi'(x', y')}{\partial \psi_{1}(x', y')} \times \frac{\partial \phi \circ \phi^{-1} \circ \phi'(x', y')}{\partial \psi_{2}(x', y')} \cdot N(\phi \circ \phi^{-1} \circ \phi'(x', y')) \, dx' \, dy' = \int_{\Omega'} u(\phi'(x', y')) \cdot (\det(J_{\psi}(x', y'))) \cdot \frac{\partial \phi'(x', y')}{\partial \psi_{1}(x', y')} \times \frac{\partial \phi'(x', y')}{\partial \psi_{2}(x', y')} \cdot N(\phi'(x', y')) \, dx' \, dy'.$$

$$(0.2)$$

Maintenant on a:

$$\frac{\partial \phi'(x',y')}{\partial \psi_1(x',y')} = \frac{\partial \phi'(x',y')}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_1(x',y')} + \frac{\partial \phi'(x',y')}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_1(x',y')}$$

 et

$$\frac{\partial \phi'(x',y')}{\partial \psi_2(x',y')} = \frac{\partial \phi'(x',y')}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_2(x',y')} + \frac{\partial \phi'(x',y')}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_2(x',y')}.$$

Donc on a:

$$\begin{split} \frac{\partial \phi'(x',y')}{\partial \psi_1(x',y')} \times \frac{\partial \phi'(x',y')}{\partial \psi_2(x',y')} &= \\ &= \left(\frac{\partial \phi'}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_1}\right) \times \left(\frac{\partial \phi'}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_2}\right) + \left(\frac{\partial \phi'}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_1}\right) \times \left(\frac{\partial \phi'}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_2}\right) + \\ &+ \left(\frac{\partial \phi'}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_1}\right) \times \left(\frac{\partial \phi'}{\partial x'} \cdot \frac{\partial x'}{\partial \psi_2}\right) + \left(\frac{\partial \phi'}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_1}\right) \times \left(\frac{\partial \phi'}{\partial y'} \cdot \frac{\partial y'}{\partial \psi_2}\right). \end{split}$$

On rappelle que pour tout $v, w \in \mathbb{R}^3$ et pour tout $\lambda \in \mathbb{R}$ on a $v \times w = -w \times v$, $(\lambda v) \times w = \lambda(v \times w) = v \times (\lambda w)$ et $v \times v = 0$. Dans l'expression en haut, les objets de la forme $\partial \phi'/\partial x'$ et $\partial \phi'/\partial y'$ sont vecteurs de \mathbb{R}^3 (pour chaque x', y' fixé en Ω'), et tous les autres objets sont scalaires en \mathbb{R} (de nouveau, pour chaque x', y' fixé en Ω'). Donc:

$$\frac{\partial \phi'(x', y')}{\partial \psi_1(x', y')} \times \frac{\partial \phi'(x', y')}{\partial \psi_2(x', y')} =$$

$$= 0 + \frac{\partial x'}{\partial \psi_1} \cdot \frac{\partial y'}{\partial \psi_2} \cdot \frac{\partial \phi'}{\partial x'} \times \frac{\partial \phi'}{\partial y'} + \frac{\partial y'}{\partial \psi_1} \cdot \frac{\partial x'}{\partial \psi_2} \cdot \frac{\partial \phi'}{\partial y'} \times \frac{\partial \phi'}{\partial x'} + 0 =$$

$$= \left(\frac{\partial x'}{\partial \psi_1} \cdot \frac{\partial y'}{\partial \psi_2} - \frac{\partial y'}{\partial \psi_1} \cdot \frac{\partial x'}{\partial \psi_2}\right) \cdot \frac{\partial \phi'}{\partial x'} \times \frac{\partial \phi'}{\partial y'} =$$

$$= \det(J_{\psi^{-1}}(\psi(x', y')) \cdot \frac{\partial \phi'}{\partial x'} \times \frac{\partial \phi'}{\partial y'} =$$

$$= \frac{1}{\det(J_{\psi}(x', y'))} \cdot \frac{\partial \phi'}{\partial x'} \times \frac{\partial \phi'}{\partial y'}.$$

Si on replace ça en (0.2), on a A = B.

Exercice 7.21 En utilisant la formule de Stokes, calculer le flux du champ de vecteurs (x, y, -z) à travers la demi-sphère S/2 d'équation $x^2 + y^2 + z^2 = 1, z > 0$.

On note Σ le domaine de \mathbb{R}^3 bordé par la demi-sphère S/2. On considère le champs de vecteurs V sur \mathbb{R}^3 de coordonnées $(V_x, V_y, V_z) := (x, y, -z)$. Son rotationnel est plane:

$$\nabla \times V = \left(\partial_y V_z - \partial_z V_y, \partial_z V_x - \partial_x V_z, \partial_x V_y - \partial_y V_x\right) = (0, 0, 0),$$

donc en utilisant la formule de Stokes on a

$$\int_{S/2} x \, dx + y \, dy - z \, dz = \int_{\Sigma} \nabla \times V \, d\Sigma = 0.$$

Exercice 7.22 Soit C le cercle de \mathbb{R}^3 d'équation

$$\begin{cases} x^2 + y^2 + z^2 = R^2 \\ x + y + z = 0. \end{cases}$$

Calculer

$$\int_C (y+z) dx + (z+x) dy + (x+y) dz$$

d'abord en appliquant la formule de Stokes, puis directement.

On note Σ le domaine borné bordé par C en \mathbb{R}^3 , c'est-à-dire:

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid z = -x - y, \quad x^2 + y^2 + 2xy \le R^2/2\}.$$

On note V le champ de vecteurs sur \mathbb{R}^3 défini par $(V_x, V_y, V_z) := (y+z, z+x, x+y)$. Alors on a:

$$\nabla \times V = \left(\partial_y V_z - \partial_z V_y, \partial_z V_x - \partial_x V_z, \partial_x V_y - \partial_y V_x\right) = (1 - 1, 1 - 1, 1 - 1) = (0, 0, 0),$$

donc en appliquant la formule de Stokes on a:

$$\int_C (y+z) dx + (z+x) dy + (x+y) dz = \int_{\Sigma} \nabla \times V d\Sigma = 0.$$

On va retrouver le même résultat avec une intégrale curviligne. Avant tout, il faut trouver une paramétrisation pour C. On peut écrire un système d'équations pour C aussi comme ça:

$$\left\{ \begin{array}{c} z = -x - y \\ x^2 + y^2 + (-x - y)^2 = R^2 \end{array} \right. \iff \left\{ \begin{array}{c} z = -x - y \\ x^2 + y^2 + 2xy = R^2/2. \end{array} \right.$$

D'abord, il faut trouver une paramétrisation pour la courbe de \mathbb{R}^2 :

$$D := \left\{ (x,y) \in \mathbb{R}^2 \, | \, x^2 + y^2 + 2xy = R^2/2 \right\}.$$

D est une ellipse faite comme ça:

Donc il est difficile de trouver directement une paramétrisation de D. Avant tout, on considère une rotation de $-\pi/4$ au sens trigonométrique. C'est-à-dire, on considère le changement de variables ϕ de \mathbb{R}^2 (avec coordonnées (x',y')) vers \mathbb{R}^2 avec (avec coordonnées (x,y)):

$$\phi(x', y') = \left(\frac{x' + y'}{\sqrt{2}}, \frac{-x' + y'}{\sqrt{2}}\right).$$

Si on fixe un point (x', y') in \mathbb{R}^2 , alors $\phi(x', y') \in D$ si et seulement si

$$\frac{R^2}{2} = x^2 + y^2 + 2xy = \left(\frac{x' + y'}{\sqrt{2}}\right)^2 + \left(\frac{-x' + y'}{\sqrt{2}}\right)^2 + \frac{(x' + y')(-x' + y')}{\sqrt{2}\sqrt{2}} = \frac{x'^2 + 3y'^2}{2},$$

si et seulement si

$$x'^2 + 3y'^2 = R^2.$$

Donc on considère le domaine de \mathbb{R}^2

$$E := \{ (x', y') \in \mathbb{R}^2 \mid x'^2 + 3y'^2 = R^2 \}.$$

E est encore une ellipse (parce que ϕ est une rotation), et elle est dans la forme standard:

Donc une paramétrisation pour E est facile à trouver:

$$\rho: [0, 2\pi[_{\theta} \longrightarrow E \subset \mathbb{R}^2_{(x',y')}, \qquad \rho(r,\theta) := \left(r\cos(\theta), \frac{r}{\sqrt{3}}\sin(\theta)\right).$$

Donc une paramétrisation pour D est la fonction

$$\phi \circ \rho : [0, 2\pi[_{\theta} \longrightarrow D \subset \mathbb{R}^2_{(x,y)}]$$

donnée par

$$\phi \circ \rho(\theta) := \left(\frac{R}{\sqrt{2}}\cos(\theta) + \frac{R}{\sqrt{6}}\sin(\theta), -\frac{R}{\sqrt{2}}\cos(\theta) + \frac{R}{\sqrt{6}}\sin(\theta)\right).$$

Vu que $C=\{(x,y,z)\in\mathbb{R}^3\,|\, (x,y)\in D,\, z=-x-y\},$ alors une paramétrisation pour C est la fonction

$$\psi: [0, 2\pi[_{\theta} \longrightarrow C \subset \mathbb{R}^3_{(x,y,z)}]$$

définie par

$$\psi(\theta) := \left(\frac{R}{\sqrt{2}}\cos(\theta) + \frac{R}{\sqrt{6}}\sin(\theta), -\frac{R}{\sqrt{2}}\cos(\theta) + \frac{R}{\sqrt{6}}\sin(\theta), -\frac{2R}{\sqrt{6}}\sin(\theta)\right).$$

Donc on a

$$dx = -\frac{R}{\sqrt{2}}\sin(\theta) + \frac{R}{\sqrt{6}}\cos(\theta) d\theta,$$

$$dy = \frac{R}{\sqrt{2}}\sin(\theta) + \frac{R}{\sqrt{6}}\cos(\theta) d\theta,$$

$$dz = -\frac{2R}{\sqrt{6}}\cos(\theta) d\theta.$$

Donc on a:

$$\int_C (y+z) \, \mathrm{d}x + (z+x) \, \mathrm{d}y + (x+y) \, \mathrm{d}z =$$

$$= \int_0^{2\pi} \left(-\frac{R}{\sqrt{2}} \cos(\theta) - \frac{R}{\sqrt{6}} \sin(\theta) \right) \cdot \left(-\frac{R}{\sqrt{2}} \sin(\theta) + \frac{R}{\sqrt{6}} \cos(\theta) \right) +$$

$$+ \left(\frac{R}{\sqrt{2}} \cos(\theta) - \frac{R}{\sqrt{6}} \sin(\theta) \right) \cdot \left(\frac{R}{\sqrt{2}} \sin(\theta) + \frac{R}{\sqrt{6}} \cos(\theta) \right) +$$

$$+ \frac{2R}{\sqrt{6}} \sin \theta \cdot \left(-\frac{2R}{\sqrt{6}} \cos(\theta) \right) \, \mathrm{d}\theta =$$

$$= \int_0^{2\pi} -\frac{R^2}{2} \cos(\theta) \sin(\theta) - \frac{R^2}{2\sqrt{3}} \cos^2(\theta) + \frac{R^2}{2\sqrt{3}} \sin^2(\theta) - \frac{R^2}{6} \cos(\theta) \sin(\theta) +$$

$$+ \frac{R^2}{2} \cos(\theta) \sin(\theta) + \frac{R^2}{2\sqrt{3}} \cos^2(\theta) - \frac{R^2}{2\sqrt{3}} \sin^2(\theta) - \frac{R^2}{6} \cos(\theta) \sin(\theta) -$$

$$- \frac{2R^2}{6} \cos(\theta) \sin(\theta) \, \mathrm{d}\theta =$$

$$= \int_0^{2\pi} -\frac{R^2}{6} \cos(\theta) \sin(\theta) - \frac{R^2}{6} \cos(\theta) \sin(\theta) - \frac{2R^2}{6} \cos(\theta) \sin(\theta) =$$

$$= \frac{R^2}{3} \int_0^{2\pi} -2 \cos(\theta) \sin(\theta) \, \mathrm{d}\theta = \frac{R^2}{3} \left[\cos^2(\theta) \right]_0^{2\pi} = 0.$$

MATHEMATICS RESEARCH UNIT UNIVERSITY OF LUXEMBOURG 6, RUE RICHARD COUDENHOVE-KALERGI L-1359 LUXEMBOURG

WEBSITE: HTTP://MATTEOTOMMASINI.ALTERVISTA.ORG/

EMAIL: MATTEO.TOMMASINI2@GMAIL.COM