Plano de Ensino (CEE22106) Conversão Eletromecânica da Energia I

Metodologia

Aulas expositivas, dialogadas e práticas.

† Excepcionalmente nesse semestre, devido às restrições decorrentes da pandemia do COVID-19 e para complementação do curto calendário acadêmico 2022.1, parte das aulas serão ministradas na modalidade não presencial (ANP), em acordo com a regulamentação vigente no IFSC campus Florianópolis.

Ementa

- i) Transformadores monofásicos, trifásicos e autotransformadores;
- ii) Motores de indução trifásicos e monofásicos;
- iii) Motores especiais: motor universal, motor com espira de sombra, motor a imã permanente e motor de passo.

Competências

Compreender o funcionamento de máquinas elétricas a partir dos fenômenos eletromagnéticos, da análise de seus circuitos equivalentes e de ensaios práticos.

Habilidades

- i) Analisar e descrever os elementos construtivos básicos dos transformadores, motores de indução e motores especiais;
- ii) Analisar e descrever os fenômenos eletromagnéticos nos quais se baseiam o funcionamento dos transformadores, motores de indução e motores especiais;
- iii) Analisar e descrever as características operativas dos transformadores, motores de indução e motores especiais, para diferentes condições de operação;
- iv) Calcular os valores das grandezas características do funcionamento de transformadores, motores de indução e motores especiais, utilizando os respectivos circuitos equivalentes;
- v) Realizar ensaios e outras observações práticas visando medir e calcular os valores das grandezas características do funcionamento de transformadores, motores de indução e motores especiais.

Requisitos

- Eletromagnetismo I
- Circuitos Elétricos II

Unidade Curricular: (CEE22106) Conversão Eletromecânica da Energia I 31 de março de 2022 Curso: Engenharia Eletrônica Página 1 de 3

Professor: Jackson Lago, Dr. Eng.

Avaliação da Aprendizagem

A avaliação da aprendizagem será feita através de duas provas individuais e sem consulta (P_1 e P_2), e por um trabalho de pesquisa (T) a ser apresentado na forma de seminário. Os valores de referência para os pesos dessas avaliações e seus conteúdos são:

 P_1 : (peso 40%) transformadores elétricos

 P_2 : (peso 50%) motores elétricos de indução

T: (peso 10%) motores especiais

Segundas chamadas serão realizadas **exclusivamente** para os casos previstos no Art. 162 da RDP e deverão ser solicitadas diretamente à coordenação do curso (e não ao professor que leciona a disciplina).

As avaliações serão individuais. Respostas iguais de dois alunos ou **cópias** de livros ou internet, **mesmo que parciais** por fragmentos de textos ou figuras, **configuram plágio** e, como consequência, será atribuída nota geral zero para a avaliação (de ambos os alunos).

Resultados numéricos errados, mesmo que com procedimentos parcialmente corretos, não pontuarão nas avaliações.

Resultados numéricos corretos, mas sem desenvolvimento de cálculo consistente não pontuarão nas avaliações.

Como previsto pelo regulamento didático-pedagógico do IFSC, para as duas provas $(P_1 \ e \ P_2)$ serão realizadas recuperações $(R_1 \ e \ R_2)$. As recuperações se darão ao final do semestre.

A nota a ser registrada será o maior valor entre a nota da prova e a de sua recuperação.

As notas de cada avaliação serão registradas em valores inteiros de 0 a 10, adotando critério de arredondamento da ABNT quando necessário.

A nota final será calculada pela média ponderada das avaliações:

$$M = \frac{4 \cdot \max\{P_1, R_1\} + 5 \cdot \max\{P_2, R_2\} + T}{10}$$

e será registrada em valores inteiros de 0 a 10. Valores para a média ponderada final iguais ou superiores a 5.5 poderão ser arredondados tanto para 5 como para 6, dependendo da participação e desempenho do aluno nas atividades práticas de laboratório e demais atividades propostas. Valores da média ponderada final inferiores a 5.5 serão arredondados para 5.

Será aprovado o aluno que atingir nota final superior ou igual a 6.

Adicionalmente, para aprovação, o aluno deverá acumular presença **superior** ou **igual** a 75%. Caso esse percentual mínimo não for atingido, o aluno estará **reprovado** e a ele será atribuída a nota **zero**. Recomenda—se ao aluno o acompanhamento semanal dos registros de frequência realizado pelo professor no SIGAA.

Bibliografia Básica

- [1] Fitzgerald, A. E.; Kingsley, Charles Jr.; Umans, Stephen D. *Máquinas Elétricas*. McGraw–Hill, 6ª edicão, 2006.
- [2] Chapman, Stephen. Fundamentos de Máquinas Elétricas. McGraw-Hill, 5ª edição, 2013.

Curso: Engenharia Eletrônica Professor: Jackson Lago, Dr. Eng.

Bibliografia Complementar

- [3] Kosow, Irwing L. Máquinas Elétricas e Transformadores. Globo, 15ª edição, 1996.
- [4] Toro, Vicent del. Fundamentos de Máquinas Elétricas. LTC, 6ª edição, 2006.
- [5] Wasynczuk, Oleg; Krause, Paul C.; Sudhoff, Scott D.; Pekarek, Steven. Analysis of Electrical Machinery and Drive Systems. Willey, 2002.

Calendário e Planejamento

	2022.1		
	ter	qui	sáb
	5	7	
abril	12	14	
	19	21	23
	26	28	
	3	5	7
0	10	12	
maio	17	19	
	24	26	
	31	2	4
	7	9	
ho	14	16	18
oduní	21	23	25
	28	30	
	5	7	9
ho	12	14	
julho	19	21	
	26	28	

- -feriados
- teóricas
- práticas
- avaliações
- ANPs sáb.
- ANPs extras
- seminário

_	

abril	5	apresentação do plano de ensino; revisão de circuitos
	7	revisão de eletromagnetismo; ex00
	12	dúvidas dos exercícios 00
	14	transformador ideal; reflexão de impedância; isolação; ex01
	19	dúvidas dos exercícios 01
	21	feriado
	23	videoaula: não idealidade e circuito equivalente; ex02
	26	ensaios de magnetização e relação de transformação
	28	circuito equivalente; rendimento; regulação; ex03
maio	3	ensaio para determinação da polaridade dos enrolamentos
	5	estimação de parâmetros; autotransformador; ex04
	7	exercícios
	10	ensaios em vazio e de curto-circuito do transformador
	12	transformador trifásico; ex05
	17	ensaios do transformador com carga
	19	P1: prova sobre transformadores
	24	ensaios do transformador trifásico
	26	introdução aos motores elétricos
	31	continuação dos ensaios do transformador trifásico
	2	circuito do estator e campo girante; ex06
	4	videoaula: circuito do rotor e torque induzido
	7	aula para finalizar/refazer ensaios não concluídos
	9	circuito equivalente monofásico do MIT; ex07
	14	ensaio com rotor travado
oho	16	feriado
aní	18	trabalho de pesquisa sobre motores outros motores
	21	ensaio com rotor livre
	23	circuito equivalente; torque partida; torque máximo; ex08
	25	videoaula: velocidade de acomodação; gerador de indução
	28	ensaio do MIT com carga
	30	motor de indução monofásico
odluť	5	levantamento dos parâmetros do MIT; ex09
	7	P2: prova sobre motores de indução
	9	trabalho de pesquisa sobre motores outros motores
	12	acionamento do motor monofásico
	14	R1: recuperação da prova sobre transformadores
	19	apresentação dos trabalhos sobre motores
	21	R2: recuperação da prova sobre motores de indução
	26	apresentação dos trabalhos sobre motores
	28	divulgação dos resultados e encerramento

Unidade Curricular: (CEE22106) Conversão Eletromecânica da Energia I Curso: Engenharia Eletrônica

Professor: Jackson Lago, Dr. Eng.