HKDSE MATH EP

M2

HONG KONG EDUCATIONAL PUBLISHING COMPANY

HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

MATHEMATICS Extended Part

Module 2 (Algebra and Calculus) MOCK EXAM 5 Question-Answer Book

Time allowed: 2½ hours

This paper must be answered in English

INSTRUCTIONS

- 1. After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5, 7, 9 and 11.
- 2. This paper consists of TWO sections, A and B.
- 3. Attempt ALL questions in this paper. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** this book.
- 5. Unless otherwise specified, all working must be clearly shown.
- 6. Unless otherwise specified, numerical answers must be exact.
- 7. In this paper, vectors may be represented by bold-type letters such as **u**, but candidates are expected to use appropriate symbols such as **u** in their working.
- 8. The diagrams in this paper are not necessarily drawn to scale.
- 9. No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

©	香港教育圖書公司	保留版權	
Hon	ng Kong Educational	Publishing	Company
All I	Rights Reserved 201	6	

Please	stick	the	bar	code	e la	bel	her	e.
								,
Candidate							_	

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2 \sin A \cos B = \sin (A + B) + \sin (A - B)$$

$$2\cos A\cos B = \cos (A+B) + \cos (A-B)$$

$$2 \sin A \sin B = \cos (A - B) - \cos (A + B)$$

$$\sin A + \sin B = 2\sin\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

2014

Answers written in the margins will not be marked.

[2014]
1. Let $x = 4y - \cos y$, where $0 \le y \le \pi$. Find the values of x and y when $\frac{d^2y}{dx^2} = 0$.

(3 marks)

Please stick the barcode label here.

- 2. (a) Using integration by parts, show that $\int e^x \cos 2x \, dx = \frac{e^x (2 \sin 2x + \cos 2x)}{5} + C$, where C is a constant.
 - (b) Evaluate $\int_0^{\frac{\pi}{4}} 5e^x \cos^2 x \, dx$.

(5 marks)

Answers written in the margins will not be marked.

·	
<u> </u>	

Answers written in the margins will not be marked.

EP(M2) MOCK 5-3

Please stick the barcode label here.

•	a	4	•	ı
10.00	н	t I	а	ľ
1.0	•			n

- 4. Consider a curve C: $y = \frac{1}{x} + x$.
 - (a) Find $\frac{dy}{dx}$ from first principles.
 - (b) Find the range of values of x when the slope of tangent to C is positive.

(4 marks)

	 				_	
*						
						
		1,0,07.79		- 47		
	 				<u>-</u>	

- 5. The line L: $y = \frac{1}{\ln 10}x \frac{1}{\ln 10}$ touches the curve C: $x = 10^y$ at the point P.
 - (a) Find the coordinates of P.
 - (b) Find the area of the region bounded by the curve C, the line L and the line y = 1.

(6 marks)

_		 		
	,			
		 	•	
:				
		 · · · · · · · · · · · · · · · · · · ·		

.

Please stick the barcode label here.

Consider a continuous function $f(x) = \frac{x^3 + 9x}{x^2 + 1}$. It is given that

x	$x < -\sqrt{3}$	$x = -\sqrt{3}$	$-\sqrt{3} < x < 0$	x = 0	$0 < x < \sqrt{3}$	$x = \sqrt{3}$	$x > \sqrt{3}$
f'(x)	. +	0	+	+	+	0	+
f"(x)	_	0	+	0	-	0	+

('+' and '-' denote 'positive value' and 'negative value' respectively.)

- (a) Find all the maximum and/or minimum point(s) and point(s) of inflexion.
- (b) Find the asymptote(s) of the graph of y = f(x).
- (c) Sketch the graph of y = f(x).

(6 marks)

Answers written in the margins will not be marked.

- 7. Consider the following system of linear equations in real variables x, y and z: $(E): \begin{cases} mx + y + z = 1 \\ x + my + z = 2 \end{cases}$, where m is a real number. (x + y + mz = 4)
 - (a) Find the range of values of m for which (E) has a unique solution.
 - (b) Someone claims that (E) cannot have infinitely many solutions. Do you agree? Explain your answer.

(5 marks)

Answers written in the margins will not be marked.

		.					
							
•							
					_		

		-					
	•				•	'	
		→					
			*		**		
						<u>.</u>	
		_ -					
 							
	·	·		•	****		
		<u> </u>					
•							

Please stick the barcode label here.

- 8. (a) Let $-\frac{\pi}{2} < k < \frac{\pi}{2}$. It is given that $\cos(x + k) \cos(x k) = \sin x$ for any real x. Find the value of k.
 - (b) Without using a calculator, find the value of $\begin{vmatrix} \cos\frac{-\pi}{6} & 0 & \cos\frac{\pi}{6} \\ \cos\frac{\pi}{6} & 2\sqrt{3} & \cos\frac{\pi}{2} \\ \cos\frac{\pi}{12} & 2\sqrt{2} & \cos\frac{5\pi}{12} \end{vmatrix}$

(5 marks)

 -			
			,
		*** <u>*</u>	
	<u> </u>		
 			
		.	
 			,
		-	

Answers written in the margins will not be marked.

EP(M2) MOCK 5-9

(a) Fi	nd the are	a of ABCD	in terms o	of x.					
` '		of <i>ABCD</i> is) a rectang	le? Explair	ı vour ansı	ver.	
(0) 11	the area c)1 /1DCD 13	mmmzea	, 15 71000	a rootang	io. Expiai	1 your unio		(5 marks
									
			·····						. "
				•					
		·							
·									
,				-					 .
					•				
								·	
						-			
									
		-							
						-			
	1	<u>.</u>	 -						
								-	

Answers written in the margins will not be marked.

Please stick the barcode label here.

- 10. Let $X = \begin{pmatrix} 1 & 0 \\ 1 & 3 \end{pmatrix}$ and $Y = \begin{pmatrix} 1 & 0 \\ 13 & 27 \end{pmatrix}$.
 - (a) Prove, by mathematical induction, that $X^n = \begin{pmatrix} 1 & 0 \\ \frac{3^n 1}{2} & 3^n \end{pmatrix}$ for all positive integers n.
 - (b) Hence find $|XY^3|$.

(7 marks)

Answers written in the margins will not be marked.

			•			
 	 	•		 -		_
 	 			.	 	

Answers written in the margins will not be marked.

EP(M2) MOCK 5-12

SECTION B (50 marks)

2013

- 11. (a) (i) Let a > 0. Using a suitable substitution, show that $\int \frac{du}{u^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{u}{a} + C$, where C is a constant.
 - (ii) Using (a)(i), show that $\int_0^{\frac{1}{\sqrt{3}}} \frac{dx}{x^2 \sqrt{3}x + 1} = \frac{\pi}{3}.$

(6 marks)

(b) Evaluate $\int_0^{\frac{\pi}{6}} \frac{(\tan^2 \alpha + \sqrt{3} \tan \alpha + 1)(\tan^2 \alpha + 1)}{\tan^4 \alpha - \tan^2 \alpha + 1} d\alpha.$

(6 marks)

Answers written in the margins will not be marked.

		•		
	<u>.</u>	, .	***************************************	
	-		. "	

			1.0	

W.C.				
*	- ''			,
		<u> </u>		-,,

- (a) (i) Express $A^{-1}MA$ in terms of k and p.
 - (ii) Suppose p = k. Using (i), show that $M^n = \frac{1}{1-p} \begin{pmatrix} 1-p^{n+1} & p^n-1 \\ p-p^{n+1} & p^n-p \end{pmatrix}$, where n is a positive integer.

(8 marks)

(b) A sequence is defined by

$$x_1 = 0$$
, $x_2 = 3$ and $x_n = 3x_{n-1} - 2x_{n-2}$ for $n = 3, 4, 5, ...$

It is known that this sequence can be expressed in the matrix form

$$\begin{pmatrix} x_n \\ 2x_{n-1} \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ 2x_{n-2} \end{pmatrix}$$

Using the result of (a)(ii), express x_n in terms of n.

(4 marks)

Answers written in the margins will not be marked.

-		•
	. ••	
_		

13. In Figure 1, \overrightarrow{ABCD} is an isosceles trapezium with \overrightarrow{AD} // \overrightarrow{BC} and $\overrightarrow{AB} = \overrightarrow{DC}$. \overrightarrow{O} is a point lying on \overrightarrow{AD} . Let $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. It is given that $|\mathbf{a}| = 7$, $|\mathbf{b}| = 12$ and the angle between \mathbf{a} and \mathbf{b} is $\frac{\pi}{3}$.

(a) Express \overline{DC} in terms of **a** and **b**.

(5 marks)

- (b) P and Q are points lying on DC and CB respectively such that DP : PC = CQ : QB = r : 1 and PQ // DB, where r > 0. It is given that AD is a diameter of the circle ABCD.
 - (i) Find the value of r.
 - (ii) Find the acute angle between AP and OB. Give the answer correct to the nearest degree.

(8 marks)

Answers written in the margins will not be marked.

		 		_	
		 			
		 			
-	_,	 	****		
	<u> </u>				
		 			-
		 		, .	
				-	
		<u> </u>			

14. Figure 2 shows a rail AOB with $\angle AOB = \frac{2\pi}{3}$ and AO lying on the horizontal plane. A rod MN of length 14 m is connected to the centres of two identical spheres of radius $\sqrt{3}$ m. The two spheres are free to slide on the rail and they touch OA and OB at P and Q respectively. It is given that the points A, B, O, P, Q, M and N lie on the same vertical plane. Let OP = x m and OQ = y m.

(a) Show that $\frac{dy}{dx} = -\frac{2x + y - 3}{x + 2y - 3}.$

(4 marks)

Answers written in the margins will not be marked.

(b) The sphere with centre N is moving towards O at a constant speed of 2 m s⁻¹ and the angle between the rod MN and the horizontal plane is θ (in radians). When x = 11, find the rate of increase of θ .

(9 marks)

EP(M2) MOCK 5-24