Seminar Eingebettete Systeme

AdderNet

and its Minimalist Hardware Design for Energy-Efficient Artificial Intelligence

ML, CNNs, Convolution kernels

INTRODUCTION / MOTIVATION

Introduction

Machine Learning

- Part of Al
- Countless applications
 - Computer vision
 - Image classification
 - Autonomous driving
 - Cybersecurity
 - Medical imaging
 - Media generation
 - Natural language processing

Introduction

Convolutional neural networks

- Important for computer vision, speech recognition, signal processing...
- Type of Deep neural network
- Achieves dimensionality reduction
 - e.g. extracting meaningful information from images
- Supervised learning
- Has convolutional layers
- Needs millions of multiplication-operations / layer

Architecture of VGG-16

Introduction

Convolution kernel

- Kernel size
- Weights
- Goes over array
 - Step size can reduce resolution
- Sum of weight * input
- Can have more dimensions

Motivation

CNN drawbacks

- Computation power
- Energy consumption
- Embedded systems
 - Resource utilization targets
 - No high-performance graphics card
 - Needs reliability on weak hardware
- Millions of multiplication operations expensive
 - Need for kernel that doesn't multiply

Alternative kernel designs

shift-CNN shift core

Shift-CNN: Shifts bits of input value, multiplied with sign

$$F_{out} = \sum shift(F_{in}) \cdot sign()$$

XNORnet **XNOR logic core**

XNORnet: Works with bits, either flips or leaves them

$$F_{out} = \sum XNOR(F_{in}, W)$$

Kernels are subsets of CNN multiplication

*4

Adder core design

ADDERNET CONVOLUTION

Addernet Convolution

Addernet kernel design

- Measures similarity
 between filters and
 inputs
- L1-norm

adder core Addernet +2 0 0 0 0 +2 -2 0 $|\ln_{11}|\ln_{12}|\ln_{13}|$ Out₁₁Out₁₂Out₁₃ $|\ln_{21}|\ln_{22}|\ln_{23}|$ 0 $|\mathsf{Out}_{21}|\mathsf{Out}_{22}|\mathsf{Out}_{23}|$ $|\ln_{31}|\ln_{32}|\ln_{33}|$ 0 Out₃₁Out₃₂Out₃₃ $F_{\text{out}} = -\sum |F_{in} - W|$ 0 0 0

Addernet Convolution

Addernet kernel design

Measures similarity
 between filters and
 inputs

- L1-norm

FPGA, quantization, parallelization, ...

HARDWARE IMPLEMENTATION

- 1C1A: 1 Comparator, 1 Adder
 - Compare input with kernel weight
 - Return *larger value smaller value*
 - Consumes less resources
 - Higher gate-delay => slower

- 2A architecture: 2 Adders
 - Calc. *input kernel* and *kernel input*
 - Return the positive result
 - Parallel calculations => higher perform.
 - Higher circuit area

AdderNet implementation

[Wang et al., 2021]

Field-programmable gate array (FPGA)

- Integrated circuit
- Reconfigurable hardware
 - Hardware description language
 - Interconnect programmable logic blocks
- Cheap, tiny, fast, reliable, easy to use
- Simulate hardware performance
 - without manufacturing expensive custom chips

Universal
AdderNet
accelerator

Quantization

Data can be quantized in 8-bit integers

- Covers 98% of values
 with normalizing
- Zero accuracy-loss after training

All on-chip design of AdderNet

- FPGA based CNN accelerator
- LeNet-5 network
- No data input/output needed, without off-chip data
- Data storage and calculations on-board

Accuracy, complexity, energy consumption, logic area

COMPARISON TO OTHER KERNELS

Performance / Prediction accuracy

Neural Network	ResNet-18 on ImageNet			et-50 ageNet	VGG-16 on ImageNet		ResNet-20 on CIFAR100	
Intrinstic performance	Top-1	Top-5	Top-1	Top-5	Top-1 Top-5		accuracy	
AdderNet (this work)	68.80%	88.60%	76.80%	93.30%	71.40%	90.40%	69.93%	
CNN (baseline)	69.76%	89.08%	76.13%	92.86%	71.59%	90.38%	68.75%	
low-bit CNN (5bit)	65.00%	85.90%	70.10%	89.70%	-	-	-	
XNOR (BNN)	51.20%	73.20%	55.80%	78.40%	-	-	50.50%	
DeepShift (6bit-W)	65.63%	86.33%	75.29%	92.55%	70.87%	90.09%	-	

Energy consumption

Energy consumption

Energy consumption

Energy consumption

Energy consumption

Logic circuit area utilization

FUTURE RESEARCH &

FURTHER IMPLEMENTATIONS

Further implementations

DNN Training without Multiplications

- Add 2 floats like int to approx. multiplication (~12.5% accuracy)
- Competitive or equal performance on ResNet-50

ShiftAddNet

- Multiplication by a constant
- Sequence of bit-shifts and adds
- High performance due to hardware implementations

Further implementations

Adder Super Resolution

- Use AdderNets with shortcuts as enhancements
- Super-resolution network
- Achieves similar performance as normal CNNs

Kernel Based Progressive Distillation for AdderNNs

- Train normal CNN as teacher network
- Teacher guides learning of AdderNet
- Both have same architecture
- Better performance than directly training AdderNet

Input image Output image

Adder VDSR (ours)

Adder EDSR (ours)

CONCLUSION

Conclusion

- Possible to create CNNs without multiplications
 - Needs less resources
 - 16% faster
 - 47.85% 77.9% less power consumption
 - 67.4% 71.4% less logic resource utilization
 - Competitive results
 - Implementable in FPGA, no custom manufacturing
 - Useful for AI in embedded systems
- Accuracy could be different on other network types
- Recommended kernel depends on use case / hardware req.
- Existing alternatives to avoid multiplications

Sources

- Cysmith. (2018, August 3). cysmith/neural-style-tf. GitHub. https://github.com/cysmith/neural-style-tf.
- Eckstein, M. (2021, June 2). Adaptierbare Embedded-Systeme erfolgreich entwickeln. https://www.elektronikpraxis.vogel.de/adaptierbare-embedded-systeme-erfolgreich-entwickeln-a-1027845/.
- Ferguson, M., Ak, R., Lee, Y. T. T., & Law, K. H. (2017, December). Automatic localization of casting defects with convolutional neural networks. In 2017 IEEE international conference on big data (big data) (pp. 1726-1735). IEEE.
- Greenholt, V. (2020). Social Network for Programmers and Developers. RSS. https://morioh.com/p/6349bbe063b2.
- Mogami, T. (2020). Deep Neural Network Training without Multiplications. arXiv preprint arXiv:2012.03458.
- Shaw, K. (2019, October 29). PBS Science Show NOVA Shines its Spotlight on Self-Driving Cars. Robotics Business Review. https://www.roboticsbusinessreview.com/unmanned/unmanned-ground/pbs-science-show-nova-shines-its-spotlight-on-self-driving-cars/.
- Song, D., Wang, Y., Chen, H., Xu, C., Xu, C., & Tao, D. (2020). Addersr: Towards energy efficient image super-resolution. arXiv preprint arXiv:2009.08891.
- Thakur, A. (2019, July 12). Field Programmable Gate Array (FPGA): An Overview. Engineers Garage. https://www.engineersgarage.com/field-programmable-gate-array-fpga-an-overview/.
- Wang, Y., Huang, M., Han, K., Chen, H., Zhang, W., Xu, C., & Tao, D. (2021). AdderNet and its Minimalist Hardware Design for Energy-Efficient Artificial Intelligence. arXiv preprint arXiv:2101.10015.
- Xu, Y., Xu, C., Chen, X., Zhang, W., Xu, C., & Wang, Y. (2020). Kernel based progressive distillation for adder neural networks. arXiv preprint arXiv:2009.13044.
- You, H., Chen, X., Zhang, Y., Li, C., Li, S., Liu, Z., ... & Lin, Y. (2020). Shiftaddnet: A hardware-inspired deep network. arXiv preprint arXiv:2010.12785.

QUESTIONS?

Introduction / Motivation

- ML, CNNs, Convolution kernels
- CNN Drawbacks, alternative designs

AdderNet convolution

- Adder core design

Hardware implementation

- FPGA, quantization, parallelization, ...

Comparison to other kernels

- Accuracy, complexity, energy consumption, logic area

Further implementations, future research

Conclusion

Convolution kernel formulas

Traditional multiply core
$$g(x,y) = \omega * f(x,y) = \sum_{dx=-a}^{\infty} \sum_{dy=-b}^{\infty} \omega(dx,dy) f(x+dx,y+dy)$$

Shift core

$$g(x,y) = \sum_{dx=-a}^{a} \sum_{dy=-b}^{b} \omega_{sign} (dx, dy) 2^{\omega_{exponent}(dx, dy)} f(x + dx, y + dy)$$

XNOR logic core

$$g(x,y) = \sum_{dx=-a}^{a} \sum_{dy=-b}^{b} XNOR(\omega(dx,dy), f(x+dx,y+dy))$$

Adder core

$$g(x,y) = -\sum_{dx=-a}^{a} \sum_{dy=-b}^{b} |\omega(dx, dy) - f(x + dx, y + dy)|$$

Memristor-CNN

- Analogue multiplier using Memristor
- Analogue implementation of multiplier
- Consists of 2 parallel 1-Transistor-1-Memristor, 1 Differential circuit

Backup slides

Circuit complexity

- Kernels are made up of...

CNN multiplication 1 multiplier

Shift-CNN 1 Serial-Shift-Register, 1 Multiplexer,

1 N-bit*1-bit Multiplier (sign)

(more Shift-Registers and Adders

if data-width of weight > 1)

XNOR several AND/NAND gates

AdderNet2 Adders (or 1 Comparator, 1 Adder)

Performance / Prediction accuracy

Kernel	Neural Network	ResNet-18 on ImageNet		ResNet-50 on ImageNet		VGG-16 on ImageNet		ResNet-20 on CIFAR100
operation	Intrinstic performance	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	accuracy
adder	adder AdderNet (this work)		88.60%	76.80%	93.30%	71.40%	90.40%	69.93%
multiplication	CNN (baseline)	69.76%	89.08%	76.13%	92.86%	71.59%	90.38%	68.75%
	low-bit CNN (5bit)	65.00%	85.90%	70.10%	89.70%	-	-	-
bit-level operation	mix-precision	59.47%	-	-	-	-	-	62.36%
	XNOR (BNN)	51.20%	73.20%	55.80%	78.40%	-	-	50.50%
analogue $I_{out} = \sum (V_{in}/R)$	memristor-CNN				-			
shift (with sign flip) (or with adder)	DeepShift (1bit-W)	41.53%	67.29%	41.30%	65.10%	65.25%	86.30%	
	DeepShift (6bit-W)	65.63%	86.33%	75.29%	92.55%	70.87%	90.09%	-
	ShiftAdder	-	-	-	-	-	-	61.50%

Logic circuit area utilization

data width	AdderNet		CNN		Deep	oShift	XNOR	memristor
	1Comparator + 1Adder	2 Adders	multiplier	low-bit multiplier	1bit-weight	6bit-weight		
1bit							~1	
4bit				~18				~2
8bit	58	72	282					
16bit	112	134						
32bit	227	274	3495					
FP32bit		8368	7700					

