MA 503: Homework 3

Dane Johnson

September 16, 2020

Definition A set $\mathcal{O} \subset \mathbb{R}$ is **open** if for each $x \in \mathcal{O}$ there is a $\delta > 0$ such that each y with $|x-y| < \delta$ belongs to \mathcal{O} .

Proposition 8 Every open set of real numbers is the union of a countable collection of disjoint open sets.

Proof:

Proposition 14 The complement of an open set is closed and the complement of a closed set is open.

Corollary 4 Between any two real numbers is a rational; that is, if x < y there is a rational r with x < r < y.

Problem 24

Is the set of rational numbers open or closed?

Let $r \in \mathbb{Q}$ be arbitrary. For every $\delta > 0$, there exists an irrational number in the interval $(r - \delta, r + \delta)$ so $(r - \delta, r + \delta) \not\subset \mathbb{Q}$. Since this holds for every δ , there does not exist a $\delta > 0$ such that if $|x - y| < \delta$ then y must belong to \mathcal{O} . Therefore \mathbb{Q} is not open.

If it is necessary to demonstrate a specific irrational number in this interval, consider that by the Axiom of Archimedes there is an $n \in \mathbb{N}$ such that $0 < 1/\delta < n/2 \implies 0 < 1/n < \delta/2$. Then $r < r + \sqrt{2}/n < \sqrt{2}\delta/ < r + \delta \implies r + \sqrt{2}/n \in (r - \delta, r + \delta)$ but $r + \sqrt{2}/n \notin \mathbb{Q}$.

Suppose $\mathbb Q$ is closed. By Proposition 14, $\mathbb R\setminus\mathbb Q$ must be open. Let $x\in\mathbb R\setminus\mathbb Q$ be arbitrary. Given any $\delta>0$, there exists by Corollary 4 a rational number r such that $x-\delta< r< x+\delta\iff |x-r|<\delta$. Since this holds for every $\delta>0$, there does not exist a $\delta>0$ such that y belongs to $\mathbb R\setminus\mathbb Q$ whenever $|x-y|<\delta$. But this is a contradiction since $\mathbb R\setminus\mathbb Q$ is open. That $\mathbb R\setminus\mathbb Q$ is open followed from the assumption that $\mathbb Q$ is closed and so the contradiction arose from the assumption that $\mathbb Q$ is closed. Therefore $\mathbb Q$ is not closed.

Definition A real number x is a **point of closure** of a set E if for every $\delta > 0$, there is a y in E such that $|x - y| < \delta$. We denote the set of points of closure of E by \overline{E} .

Definition A set F is closed if $F = \overline{F}$.

Problem 25

What are the sets of real numbers that are both open and closed?

Suppose $\emptyset \subsetneq A \subsetneq \mathbb{R}$ is open. Let $a \in A$. Since $A \neq \mathbb{R}$, $A^c \neq \emptyset$. Let $z \in A^c$. Without loss of generality assume a < z (because we can switch the labeling of A and A^c). Since A is open, there is a y > x such that $(a, y) \subset A$. This shows that that the set $\{y : (x, y) \subset A\}$ is nonempty. To see that $\{y : (x, y) \subset A\}$ is bounded above, consider that if this set were not bounded above there must exist a y > z > x such that $(x, y) \subset A$. But this implies that $z \in A$, contradicting the assumption that $z \in A^c$. Let $b = \sup\{y : (x, y) \subset A\}$. Then for any $\delta > 0$, since $b - \delta$ is not an upper bound of $\{y : (x, y) \subset A\}$ and so there exists a y with $b > y > b - \delta$ such that $(x, y) \subset A$.

But this means that for any δ , there is a y such that $\delta > b - y = |b - y|$. Since there is a y' such that y < y' < b with $(x, y') \subset A$ as well (using the definition of supremum again), we can also conclude that $y \in A$. So b is a point of closure of A. For any $\delta > 0$, $(b, b + \delta) \not\subset A$, so there is a $w \in A^c$ with $b < w < b + \delta \implies 0 < w - b < \delta$. This means that for any $\delta > 0$, there is a $w \in A^c$ such that $|w - b| < \delta$ so that b is a point of closure of A^c . By Proposition 14, the assumption that A is open implies that A^c is closed and therefore $b \in A^c$. But we have also shown that b is a point of closure of A. If A were closed then we would have $b \in A$ as well. Thus, if A is open then A cannot be closed. Equivalently, if $\emptyset \subsetneq A \subsetneq \mathbb{R}$ then A cannot be both open and closed.

The set $\mathbb R$ is open. Let $x \in \mathbb R$. Then $(x-1,x+1) \subset \mathbb R$ so each y with |x-y| < 1 belongs to $\mathbb R$. The statement that \emptyset is open is vacuously true since there does not exist $x \in \emptyset$ and so the statement for each $x \in \emptyset$ there is a $\delta > 0$ such that each y with $|x-y| < \delta$ belongs to \emptyset always holds. By Proposition 14, $\mathbb R^c = \emptyset$ is closed and $\emptyset^c = \mathbb R$ is closed. So we conclude that \emptyset and $\mathbb R$ are both open and closed and that if A is any set of real numbers such that $A \neq \emptyset$ and $A \neq \mathbb R$, then A cannot be both open and closed.

Problem 27

Show that x is a point of closure of E if and only if there is a sequence (y_n) with $y_n \in E$ and $x = \lim y_n$.

Let x be a point of closure of E. Then since 1>0, there is an element of E, which we denote y_1 such that $|x-y_1|<1$. Similarly, since 1/2>0 there is a $y_2\in E$ such that $|x-y_2|<1/2$ and a $y_3\in E$ such that $|x-y_3|<1/3$. Continue in this way to construct a sequence (y_n) with $y_n\in E$ for all n using the fact that for each $n\in\mathbb{N}$, there is a $y_n\in E$ (y_n) is not necessarily distinct from $y_1,\ldots,y_{n-1})$ with $|x-y_n|<1/n$. Let $\epsilon>0$. By the Axiom of Archimedes there is an $N\in\mathbb{N}$ such that $0<1/\epsilon< N\iff 0<1/N<\epsilon$. Then for all $n\ge N$, $|x-y_n|<1/n< 1/N<\epsilon$. This shows that for the sequence (y_n) we have constructed with $y_n\in E$ that $\lim y_n=x$.

Definition A point x is called an interior point of the set A if there is a $\delta > 0$ such that the interval $(x - \delta, x + \delta)$ is contained in A. The set of interior points of A is denoted by A^o .

Proposition 10 If $A \subset B$, then $\overline{A} \subset \overline{B}$. Also, $\overline{(A \cup B)} = \overline{A} \cup \overline{B}$.

Proposition 12 The union $F_1 \cup F_2$ of two closed sets F_1 and F_2 is closed.

Problem 34

a. Show that A is open if and only if $A = A^o$.

Assume A is open. We have $x \in A$ if and only if there is a δ such that y with $|x - y| < \delta$ belongs to A which is true if and only if y with $x - \delta < y < x + \delta$ belongs to A. This is equivalent to the statement $(x - \delta, x + \delta) \subset A$. Thus if A is open it follows that $x \in A$ if and only $x \in A^o$. That is, if A is open then $A = A^o$.

Assume $A = A^o$. Let $x \in A$. Then by the assumption $A = A^o$, it is also the case that $x \in A^o$. By definition of $x \in A^o$, there is a $\delta > 0$ such that $(x - \delta, x + \delta)$ is contained in A. But this means that for y with $|x - y| < \delta$, $y \in (x - \delta, x + \delta)$ and thus $y \in A$. Since x was arbitrary, this shows that for any $x \in A$, there is a $\delta > 0$ such that y with $|x - y| < \delta$ belongs to A. Therefore, A is open.

b. Show that
$$A^o = \left(\overline{A^C}\right)^C$$
.

Let $a \in A^o$. There is a $\delta > 0$ such that $(x - \delta, x + \delta) \subset A$. This implies that $A^c \subset (x - \delta, x + \delta)^c = (-\infty, x - \delta] \cup [x + \delta, \infty)$. By Proposition 10, $\overline{A^c} \subset \overline{(-\infty, x - \delta]} \cup [x + \delta, \infty)$. Since $(-\infty, x - \delta)^c = (x - \delta, \infty)$ and $[x + \delta, \infty)^c = (-\infty, x + \delta)$ are open*, $(-\infty, x - \delta]$ and $[x + \delta, \infty)$ are closed by Proposition 14. By Proposition 12 $(-\infty, x - \delta] \cup [x + \delta, \infty)$ is closed and so by definition of a closed set $\overline{(-\infty, x - \delta]} \cup [x + \delta, \infty) = (-\infty, x - \delta] \cup [x + \delta, \infty)$. Thus $\overline{A^c} \subset (-\infty, x - \delta] \cup [x + \delta, \infty)$ which implies $(x - \delta, x + \delta) = (-\infty, x - \delta] \cup [x + \delta, \infty)^c \subset (\overline{A^c})^c$. Since $x \in (x - \delta, x + \delta)$, $x \in (\overline{A^c})^c$. Because x was arbitrary this proves $A^o \subset (\overline{A^c})^c$.

*(Let $y \in (-\infty, x + \delta)$). Then $-\infty < y < x + \delta$ and so there exists a real number z such that $-\infty < y < z < x + \delta$. Then for any w with |y - w| < z - y, w belongs to $(-\infty, x + \delta)$. To show that $(x - \delta, \infty)$ is open is similar).

Let $a \in (\overline{A^c})^c$ so that $a \notin \overline{A^c}$. The definition of $x \in \overline{A^c}$ requires that for any $\delta > 0$, there is a $y \in A^c$ such that $|x-y| < \delta$. Negating this statement in the case of $a \notin \overline{A^c}$ means that there is $\delta > 0$ such that for all $y \in A^c$ we have $|a-y| \ge \delta$. But this means there is a δ such that if $|a-z| < \delta$, then z cannot be in A^c (because if $z \in A^c$ then $|a-z| \ge \delta$). So far we have established that if $a \in (\overline{A^c})^c$, there is a $\delta > 0$ such that z with $|a-z| < \delta$ does not belong to A^c . Equivalently, if $a \in (\overline{A^c})^c$, there is a $\delta > 0$ such that if $|a-z| < \delta$ then $z \in A$. This is then finally equivalent to the statement that if $a \in (\overline{A^c})^c$, there is a $\delta > 0$ such that $(a-\delta,a+\delta) \subset A$. By definition this shows that $a \in A^o$ and therefore $(\overline{A^c})^c \subset A^o$.

Problem 36

Let (F_n) be a sequence of nonempty closed sets of real numbers with $F_{n+1} \subset F_n$. Show that if one of the sets F_n is bounded, then $\bigcap_{n\in\mathbb{N}}F_n\neq\emptyset$.

Suppose F_N is bounded for some natural number N. Then since $F_k \subset F_N$ for all $k \geq N$ (because $F_k \subset F_{k-1} \subset ... \subset F_N$), F_k is bounded for each $k \geq N$. Then for all $k \geq N$, F_k is a nonempty set of real numbers bounded below and thus has an infimum. For each F_k with $k \geq N$, using the definition of infimum we have for every $n \in \mathbb{N}$ a $y_n \in F_k$ such that inf $F_k \leq y_n < \inf F_k + 1/n$. Then the sequence $(y_n) \subset F_k$ has $\lim y_n = \inf F_k$. By problem 27, this shows that $\inf F_k$ is a point of closure of F_k and therefore $\inf F_k = \min F_k \in F_k$. For each $k \geq N$, set $x_k = \min F_k$ to construct the sequence (x_k) . Since $F_{k+1} \subset F_k$ for all k, $x_{k+1} \geq x_k$ for all k and since $F_{k+1} \subset F_k \subset ... \subset F_N$, $x_{k+1} \in F_N$. That is, all terms of the sequence (x_k) are contained in the closed and bounded set F_N . Then (x_k) is a bounded monotone set of real numbers and so by the Monotone Convergence Theorem $\lim x_k = \sup_{k \in \mathbb{N}} x_k$. Also since $F_N \subset F_{N-1} \subset ... \subset F_1$, we also have $x_k \in F_j$ for j = 1, ..., N-1 as well (we just needed to use the bounded set F_N in order to use results relying on set being closed and bounded). Since for any choice of k we have $x_l \in F_k$ for all $l \geq k$, we have $x \in F_k$. Since this choice of k is arbitary, $x \in F_k$ for all $k \in \mathbb{N}$ (also F_n for n = 1, ..., k-1) and so $x \in \bigcap_{k=1}^\infty F_k$. So the intersection is nonempty.