

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

### Bayesian Belief Networks

Bayesian belief network (or Bayesian network, probabilistic network):

 allows class conditional independencies between *subsets* of variables  $FH, S FH, \sim S \sim FH, S \sim FH, \sim S$ 

 $\sim LC$ 0.3 0.9



Two components:

- A directed acyclic graph (called a structure)
- A set of conditional probability tables (CPTs)

• A (*directed acyclic*) graphical model of causal influence relationships

- Represents <u>dependency</u> among the variables

 Gives a specification of joint probability distribution

Nodes: random variables

Links: dependency

X and Y are the parents of Z, and Y is the parent of P

No dependency between Z and P

Has no loops/cycles

# A Bayesian Network and Some of Its CPTs

 Derivation of the probability of a particular combination of values of X, from CPT:



 CPT shows the conditional probability for each possible combination of its parents

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(x_i))$$

#### **CPT: Conditional Probability Tables**

| Fire  | Smoke | $\Theta_{s f}$ |
|-------|-------|----------------|
| True  | True  | .90            |
| False | True  | .01            |

| Fire  | Tampering | Alarm | Θ <sub>a f,t</sub> |
|-------|-----------|-------|--------------------|
| True  | True      | True  | .5                 |
| True  | False     | True  | .99                |
| False | True      | True  | .85                |
| False | False     | True  | .0001              |

# How Are Bayesian Networks Constructed?

- F T
- Subjective construction: Identification of (direct) causal structure
  - People are quite good at identifying direct causes from a given set of variables & whether the set contains all relevant direct causes
  - Markovian assumption: Each variable becomes independent of its non-effects once its direct causes are known
    - E.g.,  $S \leftarrow F \rightarrow A \leftarrow T$ , path  $S \rightarrow A$  is blocked once we know  $F \rightarrow A$
  - HMM (Hidden Markov Model): often used to model dynamic systems whose states are not observable, yet their outputs are
- Synthesis from other specifications
  - E.g., from a formal system design: block diagrams & info flow
- Learning from data (e.g., from medical records or student admission record)
  - Learn parameters give its structure or learn both structure and parms
  - Maximum likelihood principle: favors Bayesian networks that maximize the probability of observing the given data set

# Training Bayesian Networks: Several Scenarios

- Scenario 1: Given both the network structure and all variables observable: compute only the CPT entries
- Scenario 2: Network structure known, some variables hidden: *gradient* descent (greedy hill-climbing) method, i.e., search for a solution along the steepest descent of a criterion function
  - Weights are initialized to random probability values
  - At each iteration, it moves towards what appears to be the best solution at the moment, w.o. backtracking
  - Weights are updated at each iteration & converge to local optimum
- Scenario 3: Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Scenario 4: Unknown structure, all hidden variables: No good algorithms known for this purpose
- D. Heckerman. <u>A Tutorial on Learning with Bayesian Networks</u>. In *Learning in Graphical Models*, M. Jordan, ed. MIT Press, 1999.

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

#### Neural Network for Classification

- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
  - During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples
- Also referred to as connectionist learning due to the connections between units
- Backpropagation: A neural network learning algorithm

#### Neuron: A Hidden/Output Layer Unit

- An n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping
- The inputs to unit are outputs from the previous layer. They are multiplied by their corresponding weights to form a weighted sum, which is added to the bias associated with unit. Then a nonlinear activation function is applied to it.



### A Multi-Layer Feed-Forward Neural Network

$$w_j^{(k+1)} = w_j^{(k)} + \lambda (y_i - \hat{y}_i^{(k)}) x_{ij}$$



# How a Multi-Layer Neural Network Works

- The inputs to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a hidden layer
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the output layer, which emits the network's prediction
- The network is **feed-forward**: None of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform nonlinear regression
  - Given enough hidden units and enough training samples, they can closely approximate any function



### Defining a Network Topology

- Decide the network topology
  - Specify # of units in the input layer, # of hidden layers (if > 1), #
     of units in each hidden layer, and # of units in the output layer
- Normalize the input values for each attribute measured in the training tuples to [0.0—1.0]
- One **input** unit per domain value, each initialized to o
- **Output**, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a different network topology or a different set of initial weights

### **Back Propagation**

- Back propagation: Reset weights on the "front" neural units and this is sometimes done in combination with training where the correct result is known
- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"
- Steps
  - Initialize weights to small random numbers, associated with biases
  - Propagate the inputs forward (by applying activation function)
  - Backpropagate the error (by updating weights and biases)
  - Terminating condition (when error is very small, etc.)

## From Neural Networks to Deep Learning

- Train networks with many layers (vs. shallow nets with just a couple of layers)
- Multiple layers work to build an improved feature space
  - First layer learns 1<sup>st</sup> order features (e.g., edges, ...)
  - 2<sup>nd</sup> layer learns higher order features (combinations of first layer features, combinations of edges, etc.)
  - In current models, layers often learn in an unsupervised mode and discover general features of the input space—serving multiple tasks related to the unsupervised instances (image recognition, etc.)
  - Then final layer features are fed into supervised layer(s)
    - And entire network is often subsequently tuned using supervised training of the entire net, using the initial weightings learned in the unsupervised phase
  - Could also do fully supervised versions (back-propagation)

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

# Classification: A Mathematical Mapping

- Classification: predicts categorical class labels
  - E.g., Personal homepage classification
    - $X_i = (X_1, X_2, X_3, ...), y_i = +1 \text{ or } -1$
    - $x_1$ : # of word "homepage"
    - $x_2$ : # of word "welcome"
- Mathematically,  $x \in X = \Re^n$ ,  $y \in Y = \{+1, -1\}$ ,
  - We want to derive a function f:  $X \rightarrow Y$
- Linear Classification
  - Binary Classification problem
  - Data above the red line belongs to class 'x'
  - Data below red line belongs to class 'o'
  - Examples: SVM, Perceptron, Probabilistic Classifiers



#### Discriminative Classifiers

#### Advantages

- Prediction accuracy is generally high
  - As compared to Bayesian methods
- Robust, works when training examples contain errors
- Fast evaluation of the learned target function
  - Bayesian networks are normally slow

#### Criticism

- Long training time
- Difficult to understand the learned function (weights)
  - Bayesian networks can be used easily for pattern discovery
- Not easy to incorporate domain knowledge
  - Easy in the form of priors on the data or distributions

### SVM: Support Vector Machines

- A relatively new classification method for both <u>linear and</u> <u>nonlinear</u> data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")
- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors
   ("essential" training tuples) and margins (defined by the support vectors)

### SVM: History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- <u>Used for</u>: classification and numeric prediction
- Applications:
  - handwritten digit recognition, object recognition, speaker identification, benchmarking time-series prediction tests

### SVM: General Philosophy



## SVM: Margins and Support Vectors



### SVM: When Data Is Linearly Separable

Let data D be  $(X_1, y_1)$ , ...,  $(X_{|D|}, y_{|D|})$ , where  $X_i$  is the set of training tuples associated with the class labels  $y_i$ 

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., maximum marginal hyperplane (MMH)





### SVM: Linearly Separable

A separating hyperplane can be written as

$$\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$$

where  $\mathbf{W} = \{w_1, w_2, ..., w_n\}$  is a weight vector and b a scalar (bias)

- For 2-D it can be written as:  $W_0 + W_1 X_1 + W_2 X_2 = 0$
- The hyperplane defining the sides of the margin:

$$H_1: W_0 + W_1 X_1 + W_2 X_2 \ge 1$$
 for  $y_i = +1$ , and  $H_2: W_0 + W_1 X_1 + W_2 X_2 \le -1$  for  $y_i = -1$ 

- Any training tuples that fall on hyperplanes H<sub>1</sub> or H<sub>2</sub> (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem:
  - Quadratic objective function and linear constraints  $\rightarrow$  Quadratic Programming (QP)  $\rightarrow$  Lagrangian multipliers

# Why is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the # of support vectors rather than the dimensionality of the data
- The support vectors are the <u>essential or critical training</u> <u>examples</u> —they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found
- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

# Kernel Functions for Nonlinear Classification

 Instead of computing the dot product on the transformed data, it is mathatically equivalent to applying a kernel function K(X<sub>i</sub>, X<sub>i</sub>) to the original data, i.e.,

$$-K(X_i, X_j) = \Phi(X_i) \Phi(X_j)$$

Typical Kernel Functions

Polynomial kernel of degree  $h: K(X_i, X_j) = (X_i \cdot X_j + 1)^h$ 

Gaussian radial basis function kernel:  $K(X_i, X_i) = e^{-\|X_i - X_j\|^2/2\sigma^2}$ 

Sigmoid kernel:  $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$ 

 SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

## Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to # of data objects in terms of training time and memory usage
- CB-SVM (Clustering-Based SVM): H. Yu, J. Yang, and J. Han, "Classifying Large Data Sets Using SVM with Hierarchical Clusters", KDD'03
- Clustering-Based SVM: Algorithm outline
  - Construct two CF-trees (hierarchical clusters)
  - Train an SVM from the centroids of the root entries
  - De-cluster the entries near the boundary into the next level
    - The children entries de-clustered from the parent entries are accumulated into the training set with the non-declustered parent entries
  - Repeat until nothing is accumulated
- At deriving support vectors, de-cluster micro-clusters near "candidate vector" to ensure high classification accuracy

#### CF-Tree: Hierarchical Micro-cluster



- One scan of the data set: Construct two CF-trees (i.e., statistical summary of the data) from positive and negative data sets independently
- Micro-clustering: Hierarchical indexing structure
  - Provide finer samples closer to the boundary and coarser samples farther from the boundary

27

# Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E<sub>i</sub> such that
  - $-D_i R_i < D_s$ , where  $D_i$  is the distance from the boundary to the center point of  $E_i$  and  $R_i$  is the radius of  $E_i$
  - Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary

• "Support cluster": The cluster whose centroid is a support vector



# Accuracy and Scalability on Synthetic Dataset

 Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm



Figure 6: Synthetic data set in a two-dimensional space. '[': positive data; '-': negative data

#### **SVM Related Links**

- SVM Website: <a href="http://www.kernel-machines.org/">http://www.kernel-machines.org/</a>
- Representative implementations
  - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.
  - SVM-light: simpler but performance is not better than
     LIBSVM, support only binary classification and only in C
  - SVM-torch: another recent implementation also written in C

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

#### Using IF-THEN Rules for Classification

- Represent the knowledge in the form of IF-THEN rules
   R<sub>1</sub>: IF age = youth AND student = yes THEN buys\_computer = yes
  - Rule antecedent/precondition vs. rule consequent
- Assessment of a rule: coverage and accuracy
  - $n_{covers} = # of tuples covered by R_1$
  - $n_{correct}$  = # of tuples correctly classified by  $R_1$  coverage( $R_1$ ) =  $n_{covers}/|D|$  /\* D: training data set \*/ accuracy( $R_1$ ) =  $n_{correct}/n_{covers}$
- If more than one rule are triggered, need conflict resolution
  - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the most attribute tests)
  - Class-based ordering: decreasing order of prevalence or misclassification cost per class
  - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts

#### Rule Extraction from a Decision Tree

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive
- Example: Rule extraction from our buys\_computer decision-tree

IF age = young AND student = no

IF age = young AND student = yes

IF age = mid-age

IF age = old AND credit\_rating = excellent

IF age = old AND credit\_rating = fair



yes

31..40

>40

excellent

no

credit rating?

<=30

no

THEN buys\_computer = yes

# Rule Induction: Sequential Covering Method

- Sequential covering algorithm: Extracts rules directly from training data
- Typical sequential covering algorithms: FOIL, AQ, CN2, RIPPER
- Rules are learned *sequentially*, each for a given class C<sub>i</sub> will cover many tuples of C<sub>i</sub> but none (or few) of the tuples of other classes
- Steps:
  - Rules are learned one at a time
  - Each time a rule is learned, the tuples covered by the rules are removed
  - Repeat the process on the remaining tuples until termination condition,
     e.g., when no more training examples or when the quality of a rule returned is below a user-specified threshold
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

## Pattern-Based Classification, Why?



- Pattern-based classification: An integration of both themes
- Why pattern-based classification?
  - Feature construction
    - Higher order; compact; discriminative
    - E.g., single word → phrase (Apple pie, Apple i-pad)
  - Complex data modeling
    - Graphs (no predefined feature vectors)
    - Sequences
    - Semi-structured/unstructured Data





# Pattern-Based Classification on Graphs



## Associative or Pattern-Based Classification

- Data: Transactions, microarray data, ... → Patterns or association rules
- Classification Methods (Some interesting work):
  - CBA [Liu, Hsu & Ma, KDD'98]: Use high-conf., high-support class association rules to build classifiers
  - Emerging patterns [Dong & Li, KDD'99]: Patterns whose support changes significantly between the two classes
  - CMAR [Li, Han & Pei, ICDM'01]: Multiple rules in prediction
  - CPAR [Yin & Han, SDM'03]: Beam search on multiple prediction rules
  - RCBT [Cong et al., SIGMOD'05]: Build classifier based on mining top-k covering rule groups with row enumeration (for high-dimensional data)
  - Lazy classifier [Veloso, Meira & Zaki, ICDM'o6]: For a test t, project training data D on t, mine rules from D<sub>t</sub>, predict on the best rule
  - Discriminative pattern-based classification [Cheng et al., ICDE'07]

## CBA: Classification Based on Associations

- CBA [Liu, Hsu and Ma, KDD'98]
- Method
  - Mine high-confidence, high-support class association rules
  - LHS: conjunctions of attribute-value pairs); RHS: class labels  $p_1 \wedge p_2 \dots \wedge p_l \rightarrow \text{``A}_{class-label} = C'' \text{ (confidence, support)}$
  - Rank rules in descending order of confidence and support
  - Classification: Apply the first rule that matches a test case; o.w. apply the default rule
  - Effectiveness: Often found more accurate than some traditional classification methods, such as C<sub>4.5</sub>
  - Why? Exploring high confident associations among multiple attributes may overcome some constraints introduced by some classifiers that consider only one attribute at a time

38

# CMAR: Classification Based on Multiple Association Rules

- Rule pruning whenever a rule is inserted into the tree
  - Given two rules,  $R_1$  and  $R_2$ , if the antecedent of  $R_1$  is more general than that of  $R_2$  and conf( $R_1$ ) ≥ conf( $R_2$ ), then prune  $R_2$
  - Prunes rules for which the rule antecedent and class label are not positively correlated, based on the  $\chi^2$  test of statistical significance
- <u>Classification</u> based on generated/pruned rules
  - If only one rule satisfies tuple X, assign the class label of the rule
  - If a rule set S satisfies X
    - Divide S into groups according to class labels
    - Use a weighted  $\chi^2$  measure to find the strongest group of rules, based on the statistical correlation of rules within a group
    - Assign X the class label of the strongest group
- CMAR improves model construction efficiency and classification accuracy

## Discriminative Pattern-Based Classification

- Discriminative patterns as features for classification [Cheng et al., ICDE'07]
- **Principle:** Mining discriminative frequent patterns as high-quality features and then apply any classifier
- Framework (PatClass)
  - Feature construction by frequent itemset mining
  - Feature selection (e.g., using Maximal Marginal Relevance (MMR))
    - Select discriminative features (i.e., that are relevant but minimally similar to the previously selected ones)
    - Remove redundant or closely correlated features
  - Model learning
    - Apply a general classifier, such as SVM or C4.5, to build a classification model

## On the Power of Discriminative Patterns

- K-itemsets are often more informative than single features (1-itemsets) in classification
- Computation on real datasets shows: The discriminative power of k-itemsets (for k > 1 but often  $\leq 10$ ) is higher than that of single features



Information Gain vs. Pattern Length

# Information Gain vs. Pattern Frequency

- Computation on real datasets shows: Pattern frequency (but not too frequent) is strongly tied with the discriminative power (information gain)
- Information gain upper bound monotonically increases with pattern frequency



Information Gain Formula:  $IG(C \mid X) = H(C) - H(C \mid X)$  Conditional entropy of given data  $H(C) = -\sum_{i=1}^{m} p_i \log_2(p_i)$   $H(C \mid X) = \sum_{j} P(X = x_j) H(Y \mid X = x_j)$  42

# Discriminative Pattern-Based Classification: Experimental Results

Table 1. Accuracy by SVM on Frequent Combined Features vs. Single Features

Table 2. Accuracy by C4.5 on Frequent Combined Features vs. Single Features

| Data     | Si          | ngle Fea   | Freq. Pattern |            |           |
|----------|-------------|------------|---------------|------------|-----------|
|          | $Item\_All$ | $Item\_FS$ | $Item\_RBF$   | $Pat\_All$ | $Pat\_FS$ |
| anneal   | 99.78       | 99.78      | 99.11         | 99.33      | 99.67     |
| austral  | 85.01       | 85.50      | 85.01         | 81.79      | 91.14     |
| auto     | 83.25       | 84.21      | 78.80         | 74.97      | 90.79     |
| breast   | 97.46       | 97.46      | 96.98         | 96.83      | 97.78     |
| cleve    | 84.81       | 84.81      | 85.80         | 78.55      | 95.04     |
| diabetes | 74.41       | 74.41      | 74.55         | 77.73      | 78.31     |
| glass    | 75.19       | 75.19      | 74.78         | 79.91      | 81.32     |
| heart    | 84.81       | 84.81      | 84.07         | 82.22      | 88.15     |
| hepatic  | 84.50       | 89.04      | 85.83         | 81.29      | 96.83     |
| horse    | 83.70       | 84.79      | 82.36         | 82.35      | 92.39     |
| iono     | 93.15       | 94.30      | 92.61         | 89.17      | 95.44     |
| iris     | 94.00       | 96.00      | 94.00         | 95.33      | 96.00     |
| labor    | 89.99       | 91.67      | 91.67         | 94.99      | 95.00     |
| lymph    | 81.00       | 81.62      | 84.29         | 83.67      | 96.67     |
| pima     | 74.56       | 74.56      | 76.15         | 76.43      | 77.16     |
| sonar    | 82.71       | 86.55      | 82.71         | 84.60      | 90.86     |
| vehicle  | 70.43       | 72.93      | 72.14         | 73.33      | 76.34     |
| wine     | 98.33       | 99.44      | 98.33         | 98.30      | 100       |
| ZOO      | 97.09       | 97.09      | 95.09         | 94.18      | 99.00     |

| Dataset  | $\mathbf{Single}$ | Features   | Frequent Patterns |        |  |  |
|----------|-------------------|------------|-------------------|--------|--|--|
|          | $Item\_All$       | $Item\_FS$ | $Pat\_All$        | Pat_FS |  |  |
| anneal   | 98.33             | 98.33      | 97.22             | 98.44  |  |  |
| austral  | 84.53             | 84.53      | 84.21             | 88.24  |  |  |
| auto     | 71.70             | 77.63      | 71.14             | 78.77  |  |  |
| breast   | 95.56             | 95.56      | 95.40             | 96.35  |  |  |
| cleve    | 80.87             | 80.87      | 80.84             | 91.42  |  |  |
| diabetes | 77.02             | 77.02      | 76.00             | 76.58  |  |  |
| glass    | 75.24             | 75.24      | 76.62             | 79.89  |  |  |
| heart    | 81.85             | 81.85      | 80.00             | 86.30  |  |  |
| hepatic  | 78.79             | 85.21      | 80.71             | 93.04  |  |  |
| horse    | 83.71             | 83.71      | 84.50             | 87.77  |  |  |
| iono     | 92.30             | 92.30      | 92.89             | 94.87  |  |  |
| iris     | 94.00             | 94.00      | 93.33             | 93.33  |  |  |
| labor    | 86.67             | 86.67      | 95.00             | 91.67  |  |  |
| lymph    | 76.95             | 77.62      | 74.90             | 83.67  |  |  |
| pima     | 75.86             | 75.86      | 76.28             | 76.72  |  |  |
| sonar    | 80.83             | 81.19      | 83.67             | 83.67  |  |  |
| vehicle  | 70.70             | 71.49      | 74.24             | 73.06  |  |  |
| wine     | 95.52             | 93.82      | 96.63             | 99.44  |  |  |
| ZOO      | 91.18             | 91.18      | 95.09             | 97.09  |  |  |

# Discriminative Pattern-Based Classification: Scalability Tests

Table 3. Accuracy & Time on Chess Data

| $min\_sup$ | #Patterns | Time (s) | SVM (%) | C4.5 (%) |
|------------|-----------|----------|---------|----------|
| 1          | N/A       | N/A      | N/A     | N/A      |
| 2000       | 68,967    | 44.703   | 92.52   | 97.59    |
| 2200       | 28,358    | 19.938   | 91.68   | 97.84    |
| 2500       | 6,837     | 2.906    | 91.68   | 97.62    |
| 2800       | 1,031     | 0.469    | 91.84   | 97.37    |
| 3000       | 136       | 0.063    | 91.90   | 97.06    |

Table 4. Accuracy & Time on Waveform Data

| $\overline{min\_sup}$ | #Patterns | Time (s) | SVM (%) | C4.5 (%) |
|-----------------------|-----------|----------|---------|----------|
| 1                     | 9,468,109 | N/A      | N/A     | N/A      |
| 80                    | 26,576    | 176.485  | 92.40   | 88.35    |
| 100                   | 15,316    | 90.406   | 92.19   | 87.29    |
| 150                   | 5,408     | 23.610   | 91.53   | 88.80    |
| 200                   | 2,481     | 8.234    | 91.22   | 87.32    |

### Mining Concise Set of Discriminative Patterns

Frequent pattern mining, then getting discriminative patterns: Expensive, large model



DDPMine [Cheng et al., ICDE'08]: Direct mining of discriminative patterns: Efficient



DPClass [Shang et al, SDM'16]: A better solution — Efficient, effective, and generating a very limited number of (such as only 20 or so) patterns

#### DPClass: Discriminative Patternbased Classification

- Input: A feature table for training data
- Adopt every prefix path in an (extremely) random forest as a candidate pattern
  - The split points of continuous variables are automatically chosen by random forest →
     No discretization!
- Run top-k (e.g., top-20) pattern selection based on training data
- Train a generalized linear model (e.g., logistic regression) based on "bag-of-patterns" representations of training data



### Explanatory Discriminative Patterns: Generation

- Example: For each patient, we have several uniformly sampled features as follows
  - Age (A): Positive Integers no more than 6o
  - Gender (G): Male or Female.
  - Lab Test 1 (LT1): Categorical values from (A, B, O, AB)
  - Lab Test 2 (LT2): Continuous values in [o..1]
- The positive label of the hypo-disease will be given when at least one of the following rules holds
  - (age > 18) and (gender = Male) and (LT1 = AB) and (LT2  $\geq$  0.6)
  - (age > 18) and (gender = Female) and (LT1 = O) and (LT2  $\ge$  0.5)
  - (age  $\leq$  18) and (LT2  $\geq$  0.9)
- Training:  $10^5$  random patients + 0.1% noise
  - Flip the binary labels with 0.1% probability
- Testing:  $5 \times 10^4$  random patients in test

### Explanatory Discriminative Patterns: Evaluation

- Accuracy:
  - DPClass 99.99% (perfect)
  - DDPMine 95.64% (reasonable)
- Top-3 Discriminative Patterns:
  - DPClass (perfect):
    - (age > 18) and (gender = Female) and (LT1 = 0) and (LT2  $\ge$  0.496)
    - (age  $\leq$  18) and (LT2  $\geq$  0.900)
    - (age > 18) and (gender = Male) and (LT1 = AB) and (LT2  $\ge$  0.601)
  - DDPMine (poor):
    - $(LT_2 > 0.8)$
    - (gender = Male) and (LT1 = AB) and (LT2  $\geq$  0.6) and (LT2 < 0.8)
    - (gender = Female) and (LT1 = O) and (LT2  $\geq$  0.6) and (LT2 < 0.8)

# A Comparison on Classification Accuracy

- DPClass: Discriminative & frequent at the same time, then select top-k
  - Only top-20 patterns are used in DPClass
- Two methods on pattern selection
  - Forward vs. LASSO
  - In comparison with DDPMine and Random Forest, DPClass maintains high accuracy
- An extension of DPClass has been applied to health study
  - Cheng et al, "Mining
     Discriminative Patterns to
     Predict Health Status for
     Cardiopulmonary
     Patients", ACM-BCB'16

|                      | Dataset | DPClass<br>(Forward) | DPClass<br>(LASSO) | DDPMine | Random<br>Forest |
|----------------------|---------|----------------------|--------------------|---------|------------------|
| low-<br>dimensional  | adult   | 85.66%               | 84.33%             | 83.42%  | 85.45%           |
| data                 | hypo    | 99.58%               | 99.28%             | 92.69%  | 97.22%           |
|                      | sick    | 98.35%               | 98.87%             | 93.82%  | 94.03%           |
|                      | crx     | 89.35%               | 87.96%             | 87.96%  | 89.35%           |
|                      | sonar   | 85.29%               | 83.82%             | 73.53%  | 83.82%           |
|                      | chess   | 92.25%               | 92.05%             | 90.04%  | 94.22%           |
| high-<br>dimensional | namao   | 97.17%               | 96.94%             | 96.83%  | 97.86%           |
| data                 | musk    | 95.92%               | 95.71%             | 93.29%  | 96.60%           |
|                      | madelon | 74.50%               | 76.00%             | 59.84%  | 56.50%           |

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

#### Lazy vs. Eager Learning

- Lazy vs. eager learning
  - Lazy learning (e.g., instance-based learning): Simply stores training data (or only minor processing) and waits until it is given a test tuple
  - Eager learning (the above discussed methods): Given a set of training tuples, constructs a classification model before receiving new (e.g., test) data to classify
- Lazy: less time in training but more time in predicting
- Accuracy
  - Lazy method effectively uses a richer hypothesis space since it uses many local linear functions to form an implicit global approximation to the target function
  - Eager: must commit to a single hypothesis that covers the entire instance space

### Lazy Learner: Instance-Based Methods

- Instance-based learning:
  - Store training examples and delay the processing ("lazy evaluation") until a new instance must be classified
- Typical approaches
  - <u>k</u>-nearest neighbor approach
    - Instances represented as points in a Euclidean space.
  - Locally weighted regression
    - Constructs local approximation
  - Case-based reasoning
    - Uses symbolic representations and knowledge-based inference

### The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor are defined in terms of Euclidean distance, dist(X<sub>1</sub>, X<sub>2</sub>)
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to  $x_q$
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples





### Discussion on the k-NN Algorithm

- k-NN for <u>real-valued prediction</u> for a given unknown tuple
  - Returns the mean values of the k nearest neighbors
- <u>Distance-weighted</u> nearest neighbor algorithm
  - Weight the contribution of each of the k neighbors according to their distance to the query  $x_q$ 
    - Give greater weight to closer neighbors  $w = \frac{1}{d(x_a, x_i)^2}$
- Robust to noisy data by averaging k-nearest neighbors
- <u>Curse of dimensionality</u>: distance between neighbors could be dominated by irrelevant attributes
  - To overcome it, axes stretch or elimination of the least relevant attributes

### Case-Based Reasoning (CBR)

- CBR: Uses a database of problem solutions to solve new problems
- Store <u>symbolic description</u> (tuples or cases)—not points in a Euclidean space
- Applications: Customer-service (product-related diagnosis), legal ruling
- Methodology
  - Instances represented by rich symbolic descriptions (e.g., function graphs)
  - Search for similar cases, multiple retrieved cases may be combined
  - Tight coupling between case retrieval, knowledge-based reasoning, and problem solving
- Challenges
  - Find a good similarity metric
  - Indexing based on syntactic similarity measure, and when failure, backtracking, and adapting to additional cases

#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

### Genetic Algorithms (GA)

- Genetic Algorithm: based on an analogy to biological evolution
- An initial population is created consisting of randomly generated rules
  - Each rule is represented by a string of bits
  - E.g., if  $A_1$  and  $-A_2$  then  $C_2$  can be encoded as 100
  - If an attribute has k > 2 values, k bits can be used
- Based on the notion of survival of the **fittest**, a new population is formed to consist of the fittest rules and their offspring
- The *fitness of a rule* is represented by its classification accuracy on a set of training examples
- Offspring are generated by crossover and mutation
- The process continues until a population P evolves when each rule in P satisfies a pre-specified threshold
- Slow but easily parallelizable

### Rough Set Approach

- Rough sets are used to approximately or "roughly" define equivalent classes
- A rough set for a given class C is approximated by two sets: a lower approximation (certain to be in C) and an upper approximation (cannot be described as not belonging to C)
- Finding the minimal subsets (**reducts**) of attributes for feature reduction is NP-hard but a **discernibility matrix** (which stores the differences between attribute values for each pair of data tuples) is used to reduce the computation intensity



#### Fuzzy Set Approaches

- Fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of membership (such as in a *fuzzy membership grαph*)
- Attribute values are converted to fuzzy values. Ex.:
  - Income, x, is assigned a fuzzy membership value to each of the discrete categories {low, medium, high}, e.g. \$49K belongs to "medium income" with fuzzy value 0.15 but belongs to "high income" with fuzzy value 0.96
  - Fuzzy membership values do not have to sum to 1.
- Each applicable rule contributes a vote for membership in the categories

• Typically, the truth values for each predicted category are summed, and these

sums are combined



#### Classification: Advanced Methods

- Bayesian Belief Networks
- Neural Networks
- Support Vector Machines
- Rule/Pattern-based Classification
- Lazy Learners and K-Nearest Neighbors
- Other Classification Methods: Genetic Algorithms, Fuzzy Sets and Rough Sets
- Additional Topics: Semi-Supervised Methods, Active Learning, etc.

#### Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
  - Given m classes, train m classifiers: one for each class
  - Classifier j: treat tuples in class j as positive & all others as negαtive
  - To classify a tuple X, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
  - Given m classes, construct m(m-1)/2 binary classifiers
  - A classifier is trained using tuples of the two classes
  - To classify a tuple X, each classifier votes
    - X is assigned to the class with maximal vote
- Comparison
  - All-vs.-all tends to be superior to one-vs.-all
  - Problem: Binary classifier is sensitive to errors, and errors affect vote count

61

## Error-Correcting Codes for Multiclass Classification

 Originally designed to correct errors during data transmission for communication tasks by exploring data redundancy

Example

A 7-bit codeword associated with classes 1-4

| Class                                | Error-Corr. Codeword |   |   |   |   |   |   |
|--------------------------------------|----------------------|---|---|---|---|---|---|
| $C_{\scriptscriptstyle{\mathtt{1}}}$ | 1                    | 1 | 1 | 1 | 1 | 1 | 1 |
| C <sub>2</sub>                       | 0                    | 0 | 0 | 0 | 1 | 1 | 1 |
| C <sub>3</sub>                       | 0                    | 0 | 1 | 1 | 0 | 0 | 1 |
| C <sub>4</sub>                       | 0                    | 1 | 0 | 1 | 0 | 1 | 0 |

- Given a unknown tuple X, the 7-trained classifiers output: 0001010
- Hamming distance: # of different bits between two codewords
- $H(X, C_1) = 5$ , by checking # of bits between [1111111] & [0001010]
- $H(X, C_2) = 3$ ,  $H(X, C_3) = 3$ ,  $H(X, C_4) = 1$ , thus  $C_4$  as the label for X
- Error-correcting codes can correct up to (h-1)/2 1-bit error, where h is the minimum Hamming distance between any two codewords
- If we use 1-bit per class, it is equiv. to one-vs.-all approach, the code are insufficient to self-correct
- When selecting error-correcting codes, there should be good rowwise and col.-wise separation between the codewords

#### Semi-Supervised Classification

Semi-supervised: Uses labeled and unlabeled data to build a classifier







- Repeat the above process
- Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
  - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f<sub>1</sub>
  - Then f<sub>1</sub> and f<sub>2</sub> are used to predict the class label for unlabeled data X
  - Teach each other: The tuple having the most confident prediction from f<sub>1</sub> is added to the set of labeled data for f<sub>2</sub> & vice versa
- Other methods, e.g., joint probability distribution of features and labels 63



#### **Active Learning**

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
  - L: a small subset of D is labeled, U: a pool of unlabeled data in D
  - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
  - The newly labeled samples are added to L, and learn a model
  - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using *learning curves*: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- Research issue: How to choose the data tuples to be queried?
  - Uncertainty sampling: choose the least certain ones
  - Reduce version space, the subset of hypotheses consistent w. the training data
  - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions



## Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks



# Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
  - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
  - Require only labeling a small amount of target data
  - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues
  - Negative transfer: When it performs worse than no transfer at all
  - Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
  - Large-scale transfer learning

#### Summary

- Effective and advanced classification methods
  - Bayesian belief network (probabilistic networks)
  - Backpropagation (Neural networks)
  - Support Vector Machine (SVM)
  - Pattern-based classification
  - Other classification methods: lazy learners (KNN, casebased reasoning), genetic algorithms, rough set and fuzzy set approaches
- Additional Topics on Classification
  - Multiclass classification
  - Semi-supervised classification
  - Active learning
  - Transfer learning

#### References

- C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995
- L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth International Group, 1984
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2(2): 121-168, 1998
- N. Cristianini and J. Shawe-Taylor, Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, 2000
- H.Yu, J. Yang, and J. Han. Classifying large data sets using SVM with hierarchical clusters.
   KDD'03
- A. J. Dobson. An Introduction to Generalized Linear Models. Chapman & Hall, 1990
- R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2ed. John Wiley, 2001
- T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-Verlag, 2001
- S. Haykin, Neural Networks and Learning Machines, Prentice Hall, 2008
- D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 1995
- H. Cheng, X. Yan, J. Han & C.-W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, ICDE'07
- W. Cohen. Fast effective rule induction. ICML'95

#### References (cont.)

- H. Cheng, X. Yan, J. Han & P. S. Yu, Direct Discriminative Pattern Mining for Effective Classification, ICDE'08
- G. Cong, K. Tan, A. Tung & X. Xu. Mining Top-k Covering Rule Groups for Gene Expression Data, SIGMOD'05
- M. Deshpande, M. Kuramochi, N. Wale & G. Karypis. Frequent Substructure-based Approaches for Classifying Chemical Compounds, TKDE'05
- G. Dong & J. Li. Efficient Mining of Emerging Patterns: Discovering Trends and Differences, KDD'99
- W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu & O. Verscheure. Direct Mining of Discriminative and Essential Graphical and Itemset Features via Model-based Search Tree, KDD'08
- W. Li, J. Han & J. Pei. CMAR: Accurate and Efficient Classification based on Multiple Class-association Rules, ICDM'01
- B. Liu, W. Hsu & Y. Ma. Integrating Classification and Association Rule Mining, KDD'98
- J. R. Quinlan and R. M. Cameron-Jones. FOIL: A midterm report. ECML'93
- Jingbo Shang, Wenzhu Tong, Jian Peng, and Jiawei Han, "<u>DPClass: An Effective but Concise</u>
   <u>Discriminative Patterns-Based Classification Framework</u>", SDM'16
- J. Wang and G. Karypis. HARMONY: Efficiently Mining the Best Rules for Classification, SDM'05
- X. Yin & J. Han. CPAR: Classification Based on Predictive Association Rules, SDM'03