REMARKS

This Preliminary Amendment revises claims 1 and 4 in accordance with the Amendment under PCT Article 34 that was made in the Japanese language during the international phase of the subject international application. For the Examiner's convenience, claim 1 is amended in the last three paragraphs of this claim, and claim 4 is almost completely replaced with new language.

No new matter has been added.

Entry of this amendment and favorable consideration of this application are respectfully requested.

Respectfully submitted,

MANELLI DENISON & SELTER, PLLC

Paul E. White, Jr.

Reg. No. 32,011

Tel. No.: (202) 261-1050 Fax No.: (202) 887-0336

2000 M Street, N.W. Seventh Floor Washington, D.C. 20036-3307 (202) 261-1000

APPENDIX SHOWING REVISIONS OF CLAIMS

Proposed Amendments To Claims 1 and 4 Showing Deletions And Insertions.

Claim 1. (Amended) A phthalamide derivative represented by the following general formula (I):

$$Xn = \bigcup_{\substack{Z^1 \\ | | \\ | | \\ | Z^2}} N(R^3)Q$$
 (I)

wherein R^1 , R^2 and R^3 , which may be same or different, represent hydrogen atom, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group or - A^1 -(G)_r (in this formula, A^1 represents C_1 - C_8 alkylene group, C_3 - C_6 alkenylene group or C_3 - C_6 alkynylene group; G, which may be same or different, represents hydrogen atom, halogen atom, cyano group, nitro group, halo C_1 - C_6 alkyl group, C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxycarbonyl group, di(C_1 - C_6) alkoxyphosphoryl group in which the (C_1 - C_6) alkoxy groups may be same or different, di(C_1 - C_6) alkoxythiophosphoryl group in which the (C_1 - C_6) alkoxy groups may be same or different, diphenylphosphino group, diphenylphosphono group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylsulfinyl group, heterocyclic group (as used

herein, the term "heterocyclic group" means pyridyl group, pyridine-N-oxide group, pyrimidinyl group, furyl group, tetrahydrofuryl group, thienyl group, tetrahydrothienyl group, tetrahydropyranyl group, oxazolyl group, isoxazolyl group, oxadiazolyl group, thiazolyl group, isothiazolyl group, thiadiazolyl group, imidazolyl group, triazolyl group or pyrazolyl group), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁- C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, or -Z³-R⁴ (in this formula, Z³ represents -O-, -S-, -SO-, -SO₂-, -N(R⁵)- (in this formula, R⁵ represents hydrogen atom, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁- $\rm C_6$ alkylthio group, halo $\rm C_1$ - $\rm C_6$ alkylthio group, $\rm C_1$ - $\rm C_6$ alkylsulfinyl group, halo $\rm C_1$ - $\rm C_6$ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenyl C₁-C₄ alkoxycarbonyl group, substituted phenyl C₁-C₄ alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁- C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, C₁-C₆ alkylsulfonyl group or halo C₁-C₆ alkylsulfonyl group), -C(=O)- or -C(=NOR6)- (in this formula, R6 represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo

 $\rm C_3$ - $\rm C_6$ alkenyl group, $\rm C_3$ - $\rm C_6$ alkynyl group, $\rm C_3$ - $\rm C_6$ cycloalkyl group, phenyl $\rm C_1$ - $\rm C_4$ alkyl group, or substituted phenyl C₁-C₄ alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group), and R4 represents hydrogen atom, C1-C6 alkyl group, halo C1-C6 alkyl group, C_3 - C_6 alkenyl group, halo C_3 - C_6 alkenyl group, C_3 - C_6 alkynyl group, halo C₃-C₆ alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkylthio C_1 - C_6 alkyl group, formyl group, C_1 - C_6 alkylcarbonyl group, halo C_1 - C_6 alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, mono (C₁-C₆) alkylaminocarbonyl group, di(C₁-C₆) alkylaminocarbonyl group in which the (C₁-C₆) alkyl groups may be same or different, mono(C₁-C₆) alkylaminothiocarbonyl group, di(C₁-C₆) alkylaminothiocarbonyl group in which the (C₁-C₆) alkyl groups may be same or different, $di(C_1-C_6)$ alkoxyphosphoryl group in which the (C_1-C_6) alkoxy groups may be same or different, di(C₁-C₆) alkoxythiophosphoryl group in which the (C₁-C₆) alkoxy groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 -C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenyl C₁-C₄ alkyl group, substituted phenyl (C₁-C₄) alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo

 C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group); and r represents an integer of 1 to 4); further, R1 and R2 may be taken conjointly to form 4to 7-membered rings which may be intercepted by 1 to 3, same or different oxygen atom, sulfur atom or nitrogen atom;

X, which may be same or different, represents halogen atom, cyano group, nitro group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or -A²-R⁷ [in this formula, A² represents -O-, -S-, -SO₂-, -NR⁸- (in this formula R⁸ represents

hydrogen atom, C_1 - C_6 alkylcarbonyl group, halo C_1 - C_6 alkylcarbonyl group, C_1 - C_6 alkoxycarbonyl group, phenylcarbonyl group, substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenyl C_1 - C_4 alkoxycarbonyl group or substituted phenyl C_1 - C_4 alkoxycarbonyl group or substituted phenyl C_1 - C_4 alkoxycarbonyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfonyl group, halo C_1 - C_6 alkylsulfonyl group, C_1 - C_6 alkylene group,

(1) in cases where A^2 represents -O-, -S-, -SO-, -SO₂- or -NR⁸- (in this formula, R⁸ is as defined above), R⁷ represents hydrogen atom, halo C_3 - C_6 cycloalkyl group, halo C_3 - C_6 cycloalkenyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group

consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, or -A³-R⁹ (in this formula, A³ represents C₁-C₆ alkylene group, halo C₁-C₆ alkylene group, C₃-C₆ alkenylene group, halo C₃-C₆ alkenylene group, C_3 - C_6 alkynylene group or halo C_3 - C_6 alkynylene group; and R^9 represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C_1 - C_6 alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁- C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, or -A⁴-R¹⁰ (in this formula, A⁴ represents -O-, -S-, -SO-, -SO₂- or -C(=O)-; and R¹⁰ represents C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C₃-C₆ alkenyl group, halo C₃-C₆ alkenyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆

alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group));

- in cases where A² represents -C(=O)- or -C(=NOR⁶)- (in this (2) formula, R⁶ is as defined above), R⁷ represents hydrogen atom, C₁-C₆ alkyl group, halo $\rm C_1$ - $\rm C_6$ alkyl group, $\rm C_2$ - $\rm C_6$ alkenyl group, halo $\rm C_2$ - $\rm C_6$ alkenyl group, $\rm C_3$ - $\rm C_6$ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, mono(C₁-C₆) alkylamino group, di(C₁-C₆) alkylamino group in which the (C₁-C₆) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenylamino group, substituted phenylamino group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group; and
- in cases where A² represents C₁-C₆ alkylene group, halo C₁-C₆

alkylene group, C_2 - C_6 alkenylene group, halo C_2 - C_6 alkenylene group, C_2 - C_6 alkynylene group or halo C₃-C₆ alkynylene group, R⁷ represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxycarbonyl group, $tri(C_1-C_6)$ alkylsilyl group in which the (C_1-C_6) alkyl groups may be same or different, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo $\mathrm{C_{1}\text{-}C_{6}}$ alkylsulfonyl group, or -A5-R11 (in this formula, A5 represents -O-, -S-, -SO- or -SO₂-; and R¹¹ represents C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at lest one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group,

halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, or -A⁶-R¹² (in this formula, A⁶ represents C₁-C₆ alkylene group, halo C₁-C₆ alkylene group, C₂-C₆ alkenylene group, halo C₂-C₆ alkenylene group, C₂-C₆ alkynylene group or halo C₃-C₆ alkynylene group; and R¹² represents hydrogen atom, halogen atom, C₃-C₆ cycloalkyl group, halo C_3 - C_6 cycloalkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenoxy group, substituted phenoxy group having at least one, same or different substituents selected from the group consisting of halogen atom, $\rm C_1\text{-}C_6$ alkyl group, halo $\rm C_1\text{-}C_6$ alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenylthio group, substituted phenylthio group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁- C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), or substituted heterocyclic group (the term heterocyclic

group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group and halo C_1 - C_6 alkylsulfonyl group))];

n represents an integer of 0 to 4; further, X may be taken conjointly with the adjacent carbon atom on the phenyl ring to form a fused ring (as used herein, the term fused ring means naphthalene, tetrahydronaphthalene, indene, indane, quinoline, quinazoline, chroman, isochroman, indole, indoline, benzodioxane, benzodioxole, benzofuran, dihydrobenzofuran, benzothiophene, dihydrobenzothiophene, benzoxazole, benzothiazole, benzimidazole or indazole), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, $\rm C_1$ - $\rm C_6$ alkoxy group, halo $\rm C_1$ - $\rm C_6$ alkoxy group, $\rm C_1$ - $\rm C_6$ alkylthio group, halo $\rm C_1$ - $\rm C_6$ alkylthio group, C₁-C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - $\rm C_6$ alkylsulfinyl group, halo $\rm C_1$ - $\rm C_6$ alkylsulfinyl group, $\rm C_1$ - $\rm C_6$ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C₁-C₆ alkylthio

MACHIYA et al. – New pln. Filed December 19, 2001

group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group;

Q represents an N-, S- or O-containing, optionally substituted, heterocyclic group or fused heterocyclic group, selected from the group consisting of the following formulas Q1 to Q60;

Q29

Q30

Q32

Q31

Q33

Q57

Q59

Q58

Q60

(in these formulas, Y, which may be same or different, represents halogen atom, cyano group, nitro group, halo C₃-C₆ cycloalkyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined above), substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C₁-C₆ alkoxy group, halo C₁-C₆ alkoxy group, C₁-C₆ alkylthio group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, or -A2-R7 (in this formula, A2 and R⁷ are as defined above); m represents an integer of 0 to 6; R¹³ in the formula Q22 and Q23 represents hydrogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₃-C₆ alkenyl group, halo C₃-C₆ alkenyl group, C₃-C₆ alkynyl group, halo C₃-C₆ alkynyl group, C₃-C₆ cycloalkyl group, halo C₃-C₆ cycloalkyl group, C₁-C₆ alkoxy C₁- C_6 alkyl group, halo C_1 - C_6 alkoxy C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, halo C₁-C₆ alkylthio C₁-C₆ alkyl group, C₁-C₆ alkylsulfinyl C₁-C₆ alkyl group, halo C₁- $\rm C_6$ alkylsulfinyl $\rm C_1$ - $\rm C_6$ alkyl group, $\rm C_1$ - $\rm C_6$ alkylsulfonyl $\rm C_1$ - $\rm C_6$ alkyl group, halo $\rm C_1$ - $\rm C_6$ alkylsulfonyl C_1 - C_6 alkyl group, C_1 - C_6 alkylsulfonyl group, halo C_1 - C_6 alkylsulfonyl group, C₁-C₆ alkylcarbonyl group, halo C₁-C₆ alkylcarbonyl group, C₁-C₆ alkoxycarbonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy

group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group, phenyl C_1 - C_4 alkyl group, substituted phenyl C_1 - C_4 alkyl group having, on the ring thereof, at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, phenylcarbonyl group, or substituted phenylcarbonyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C₁-C₆ alkylsulfonyl group);

alternatively, Y may be taken conjointly with adjacent carbon atom on the ring to form a fused ring (the fused ring is as defined above), and said fused ring may have at least one, same or different substituents selected from the group consisting of halogen atom, C₁-C₆ alkyl group, halo C₁-C₆ alkyl group, C₁-C₆ alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 -C₆ alkylsulfinyl group, halo C₁-C₆ alkylsulfinyl group, C₁-C₆ alkylsulfonyl group, halo C₁-C₆ alkylsulfonyl group, phenyl group, substituted phenyl group having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group, heterocyclic group (the term heterocyclic group is as defined

above), and substituted heterocyclic group (the term heterocyclic group is as defined above) having at least one, same or different substituents selected from the group consisting of halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkyl group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfonyl group and halo C_1 - C_6 alkylsulfonyl group;

W represents O, S or N-R¹³ (in this formula, R¹³ is as defined above); and Z^1 and Z^2 represent oxygen atom or sulfur atom;

provided that (1) when X, R¹ and R³ simultaneously represent hydrogen atom, Z¹ and Z² simultaneously represent oxygen atom, Q represents Q27, and Y is a chlorine atom of 2-position, then R² is not 1,2,2-trimethylpropyl group 1.

- (2) when X, R¹ and R³ simultaneously represent hydrogen atom, Z¹ and Z² simultaneously represent oxygen atom, Q represents Q27 and m is 0, then R² is not 1,2,2-trimethylpropyl group, and
- (3) when X, R¹ and R³ simultaneously represent hydrogen atom, Z¹ and Z² simultaneously represent oxygen atom, Q represents Q16 and Y represents methylthio group, then R² is not hydrogen atom and methyl group.

Claim 4. (Amended) A heterocyclic amine derivative represented by the following general formula (IV'):

$$Q'-NH_2$$
 (IV')

wherein:

(1) in cases where Q' represents one of Q26, Q28-Q31 and Q33-Q39,

Y, which may be same or different, represents hydrogen atom, halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group or halo C_1 - C_6 alkylsulfonyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl group;

and

in a case where Q' represents Q27 and Q32:

Y, which may be same or different, represents hydrogen atom, halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylthio group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkylsulfonyl group or halo C_1 - C_6 alkylsulfonyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl group, halo C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy halo C_1 - C_6 alkoxy group or halo C_1 - C_6 alkylthio group $\ref{eq:condition}$

in cases where Q' represents one of Q26, Q32 and Q34,

Y, which may be same or different, represents halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl group; and

(2) <u>in a case where Q' represents Q27:</u>

Y, which may be same or different, represents halogen atom, C_1 - C_6 alkyl group, halo C_1 - C_6 alkyl group, C_1 - C_6 alkoxy group, halo C_1 - C_6 alkoxy group, C_1 - C_6 alkylthio

group, halo C_1 - C_6 alkylthio group, C_1 - C_6 alkylsulfinyl group, halo C_1 - C_6 alkylsulfinyl group, C_1 - C_6 alkyl-sulfonyl group or halo C_1 - C_6 alkylsulfonyl group, m represents an integer of 1 to 4, and at least one of Y, of which total number is m, is perfluoro C_2 - C_6 alkyl group, halo C_1 - C_6 alkoxy group or halo C_1 - C_6 alkylthio group, provided that Y is not 2,2,2-trifluoroethoxy group.