Hands on 6 (NO 3)

- 1. Mathematically derive the average runtime complexity of the non-randomized pivot version of quicksort.
 - Solution: Here,
 - ⇒ To derive the average runtime complexity of the non-randomized pivot of quicksort we must follow the below steps:

⇒ Recurrence Relation:

- At each step, Quicksort partitions the array around a pivot.
- On average, it splits the array into two subarrays of approximately equal size.
- The recurrence relation is:

$$T(n) = 2T(\frac{n}{2}) + O(n)$$

• The O(n) term represents partitioning.

⇒ Expanding the Recurrence:

• Expand for multiple levels:

$$T(n) = 2T(\frac{n}{2}) + cn$$

$$= 2(2T(\frac{n}{4}) + c(\frac{n}{2})) + cn$$

$$= 4T(\frac{n}{4}) + 2cn + cn$$

$$= 8T(\frac{n}{8}) + 3cn$$

• Continue expanding until T(1), which takes constant time.

⇒ Depth of Recursion Tree:

- The recursion depth is determined by how many times n can be divided by 2 until it reaches 1.
- This occurs at depth $\log_2 n$ meaning $O(\log n)$ levels.

• Total Work Per Level:

- Each level of recursion does O(n) work.
- There are O(logn) levels.

• Final Complexity:

- Summing across all levels: $O(n) \times O(\log n) = O(n \log n)$
- Thus, the average runtime complexity of Quicksort is $O(n \log n)$.