Kylinsky 3D

基于进化算法的步态稳定优化

01. 进化算法的基本思想
The basic idea of evolutionary algorithms

02. 基于倒立摆模型的建模 Modeling based on inverted pendulum model

03. CMA-ES
Introduction to the CMA - ES

PART 01

进化算法的基本思想

The basic idea of evolutionary algorithms

进化算法的基本思想

The basic idea of evolutionary algorithms

进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个"算法簇"。与传统的基于微积分的方法和穷举方法等优化算法相比,进化计算是一种成熟的具有高鲁棒性和广泛适用性的全局优化方法,具有自组织、自适应、自学习的特性,能够不受问题性质的限制,有效地处理传统优化算法难以解决的复杂问题。

进化算法的关键在于进化。从达尔文进化论的角度来讲,进化是在一个系统中,个体在每一代的更替中通过变异和选择来不断的产生下一代群体。所以,这便是进化算法所模拟的进化系统。

进化算法的基本思想

The basic idea of evolutionary algorithms

在进化算法中,从一组随机生成的初始个体出发,主要采用复制、交换、突变这三种一串操作,衍生出下一代的个体。再根据适应度的大小进行个体的优胜劣汰,提高新一代群体的质量,在经过反复多次迭代,逐步逼近最优解。从数学角度讲,进化算法实质上是一种搜索寻优的方法。仿效生物的遗传方式,其应包含以下四点:

- (1). 一个或多个种群中的所有个体竞争有限资源
- (2). 种群受到个体的出生或死亡率等因素的影响而不断地改变
- (3). 个体生存繁衍的能力由其自身的环境适应能力而定
- (4). 新增个体的特征从父代继承,但是由于交叉或变异还会产生新的特征

因而,进化是一个不断迭代的过程,在每一次迭代中,通过交叉、变异和选择等基本 算子产生新的个体。

图一 进化算法基本执行流程

PART 02

基于倒立摆模型的建模

Modeling based on inverted pendulum model

基于倒立摆模型的建模

Modeling based on inverted pendulum model

图二 足步行问题的模型优化

- 假定机器人的所有质量集中于其质心位置
- 假设机器人的腿无质量,它与地面的接触是通过一个可以 转动的支点实现

倒立摆模型的三个阶段:

(a) 单足支撑落脚阶段

(b) 双足支撑阶段

(c) 单足支撑抬脚阶段

PART 03

CMA-ES

Introduction to the CMA - ES

CMA-ES Introduction to the CMA - ES

协方差矩阵自适应进化策略,英文名称为Covariance Matrix Adaptation Evolutionary Strategies,简称CMA-ES。

其主要用于解决连续优化问题,尤其在病态条件下的连续优化问题。进化策略算法主要作为求解参数优化问题的方法,模仿生物进化原理,假设不论基因发生何种变化,产生的结果(性状)总遵循这零均值,某一方差的高斯分布。

在CMA-ES算法中,新个体在多维正态分布中采样产生。假设当前是第g代,则第g+1代中的每个个体服务从一下分布:

$$x_k^{(g+1)} \sim m^{(g)} + \delta^{(g)} \mathcal{N}(0, C^{(g)}), k=1,\dots,\lambda$$

其中 $\mathbf{m}^{(g)}$ 是第g代的样本均值, $\delta^{(g)}$ 是第g带的样本方差。 $\mathcal{N}(0,\mathbf{C}^{(g)})$ 是均值为0的正太分布,其协方差矩阵 $\mathbf{C}^{(g)}$ 是第g代的样本协方差矩阵。 λ 是种群中的个体数目。

遗传算法(Genetic Algorithm,GA)

差分进化算法(Differential Evolution, DE)

粒子群优化算法(Particle Swarm Optimization, PSO)

我们选择了:

CMA-ES

```
#define CMA_ES
extern ParseMessage messageParser;
extern WorldModel wm;
Action SoccerbotBehavior::GetMyBeamCoordinateForKick()
 stringstream ss("");
 Vector3 beamPos;
 switch( wm.GetMyNumber() )
 wm.SetMyBeamCoordinate(beamPos);
 ss<<"(beam "<<beamPos.x()<<" "<<beamPos.y()<<" "<<beamPos.z()<<")";
 return ss.str();
```

我们为什么会选择使用这个算法?

非线性非凸包性问题

很多的恒定性质

应用领域

is is it is it is it is it is it is it. The is it is it is it. The is it.

不足之处请批评指正

Please point out the shortcomings