CryptoPage-1

_

Vers la fin du piratage informatique?

Ronan Keryell

__

Laboratoire d'Informatique des Télécommunications École Nationale Supérieure des Télécommunications de Bretagne

EUROSEC'2001

15 mars 2001

Introduction 1

- Développement de média de forte capacité bon marché : CD-ROM, DVD,...
- Permettent diffusion de contenus numériques : logiciels, artistiques (films, musique)
- Faible coût de production échappant aux lois économiques classiques:
 - Recopier simplement des suites de « 0 » et de « 1 »
 - Coût concentré dans la confection de l'original plutôt que dans les copies
- Démocratisation d'Internet et des réseaux rapides : possibilité de télécharger des contenus virtuels
- Développement de média en version inscriptible et faible prix du disque dur
- → ∃ Débordements du cadre de la copie privée de sauvegarde...

- Besoin de systèmes résistants
 - ▶ Banques, distributeurs de billets
 - ► Commerce électronique
 - ▶ Systèmes défense nationale
 - ► Réseaux sécurisés
- Attaques possibles
 - ▶ Interception des communications ou des bus
 - ► Injections de fausses données (bus, mémoires, ports, réseaux,...)
 - ▶ Glitches
 - ► Rétro-ingéniérie (décapage chimique, micro-sonde ionique,...)
 - ► Accélérateur de particule
 - **...**

CryptoPage-1

-Introduction-

<u>Plan</u> 3

- Principe de base
- L'existant
- CryptoPage-1
 - ▶ Matériel
 - ► Logiciel

Principe 4

- Spécialisation du processeur : devient unique au monde
 - ▶ Utilisation de cryptographie à clé publique/clé secrète
 - ► Producteur du logiciel crypte avec la clé publique du processeur
 - ▶ Processeur exécute le programme en déchiffrant avec sa clé secrète
 - ▶ Impossible de déchiffrer avec la clé publique
- Communications secrètes
 - ► Algorithme de routage secret
 - ▶ On ne sait plus ce qui passe sur la ligne : bruit ou données?
- Contenu numérique artistique
 - ▶ Même si crypté, piratage possible lors de la matérialisation en son ou image
 - ▶ Possibilité de crypter le contenu multimédia associé (DVD,...)

Carte à puce 5

- Utilise cryptographie forte
- Sécurité garantie par des mécanismes physiques de protection (détection d'ouverture,...)
- Ordinateur embarqué complet mais... petit
- Cadre trop restreint pour un ordinateur standard : besoin de
 - ► Vitesse > 1 GFLOPS
 - ► Grosse mémoire
 - ▶ Bus rapide(s)
 - ► Périphériques rapides (disques, écran)
 - ► Système d'exploitation standard

- Chiffrement des bus du processeur
- Exemple du DS5002FP (8051 sécurisé pour terminaux cartes bancaires) :

▶ Pour éviter les attaques à texte connu (zones de 0...)

$$d_c = C_D(c_s, a, d)$$

- Le circuit a été « cassé » C_D est bijective : toute instruction lue en mémoire va être exécutée. Jeu d'instruction sur 8 bits : 256 essais d'injection à faire après le RESET \sim construction de proche en proche d'un programme sortant sur un port la mémoire déchiffrée!
- Dans les circuits proposés par Robert M. Best toute instruction invalide provoque la destruction du processeur. bugs, virus,...

- Rajouter une signature électronique à des « Pages » ou lignes de cache de données
- ullet Au lieu de chiffrer \boxed{d} on chiffre \boxed{d} H(d)
- \bullet Au déchiffrage on a $\fbox{ d'' \ \ h''}$ et il suffit de vérifier que H(d'')=h''
- $\bullet\,$ Si H fournit des valeurs sur b_s bits la probabilité d'être trompé est de 2^{-b_s} :

pour $b_s=128$, cela fait une chance sur $3{,}4.10^{38}$, raisonnable dans l'état actuel de la technologie

- Rajout de b_s bits par page de b bits...
- $\begin{cases} \begin{cases} \beaton & begin{cases} \begin{cases} \begin{cases} \begin{cases} \be$
- Corollaire: modifier
 l'adressage mémoire dans le traducteur adresse virtuelle
 adresse physique
- 2 solutions étudiées
- Solution dilatée plus simple pour les programmes : connexité est préservée (sauvegarde sur disque,...).

Une adresse a se retrouve en:

$$\left[\left\lfloor \frac{a}{b}\right\rfloor \frac{b+b_s}{b}, \left\lfloor \frac{a}{b}+1 \right\rfloor \frac{b+b_s}{b}-1\right]$$

CryptoPage-1

- Pas de chiffrement au niveau adresse (au moins au niveau des pages)
- Bénéficie du support système de la mémoire virtuelle
- Faire attention aux programmes gérant simultanément des programmes/données chiffrés et en clair: éviter les conflits d'adresse → géré par malloc()
- Si chaînage à la CBC : encore des bits supplémentaires

-Matériel

Mise en œuvre 12

- Cryptographie
 - ► Algorithme à clé publique utilisé pour décoder le descripteur Peu critique et possibilité de faire des caches de descripteurs décryptés
 - Algorithme symétrique plus critique car fait le chiffrement entre le cache et la mémoire CS Cipher par exemple : 8 Go/s à 1 GHz. Si plus : parallélisable, pipelinable,...
- Pour mieux résister
 - ► Faire suivre tout chiffreur par un déchiffreur et réciproquement pour vérifier l'intégrité physique
 - ► Faire voter plusieurs chiffreurs/déchiffreurs pour détecter *glitches*, variations de fréquence d'horloge, température, rayonnements ionisants,...

CryptoPage-1
LABORATOIRE INFORMATIQUE & TÉLÉCOMMUNICATIONS — ENST BRETAGNE

-Matériel—

Mise en œuvre 13

 \blacktriangleright Cible : processeurs de 10^7 ou 10^8 transistors \leadsto coût faible de la redondance

Destruction du processeur si incohérence

- Tests
 - ▶ Suppression du JTAG en mode crypté
 - ► Possibilité de faire un test en mode crypté en usine puis grillage de *plusieurs* fusibles
- Étudier le graphe de dépendance afin de prouver qu'une donnée chiffrée ne peut pas être dirigée vers une donnée non chiffrée

CryptoPage-1

LABORATOIRE INFORMATIQUE & TÉLÉCOMMUNICATIONS — ENST BRETAGNE

-Matériel

- Nouvelles instructions (version RISC)
 - ▶ RTIEC r: ReTurn from Interrupt on an Enciphered Context
 - ▶ LDNC r_d , r_a , r_{ac} : LoaD Non-Ciphered
 - ightharpoonup STNC r_d , r_a , r_{ac} : STore Non-Ciphered
- Exemple dans Unix (sources disponibles, robuste et souvent libre)
 - ▶ Un processus peut être [root,user] × [clair,chiffré]
 - ► Même root (piratable,...) ne peut pas espionner un processus crypté
 - ► Pour partager de l'information chiffrée entre processus : partage d'une clé commune
 - ▶ Déverminage d'un processus crypté : le dévermineur doit être crypté avec la même clé

—Logiciel-

- Un processus crypté doit pouvoir utiliser les services du noyau non crypté
- Déchiffrage par le processus crypté des arguments avant le trap
 - ▶ Pas d'édition de lien dynamique possible directement
 - ► Compatibilité système ascendante à gérer au niveau trap
- Appels systèmes exportent/importent des données chiffrées
 - ► Pour garder la sémantique Unix, les tailles des données sont celles des données cryptées
- Bibliothèques standards : existent en version cryptées et en clair
 - ▶ malloc() et calloc() alloue la place supplémentaire pour la signature et aligne tout sur des blocs entiers

- Cartes à puces virtuelles
- Protection des serveurs WWW,...
- Dongles virtuels
- Routeurs à logiciel crypté
- Machines virtuelles
- Agents secrets (code mobile, Applets,...)
- Grilles de calcul cryptées
- Antivols électroniques pour ordinateur

CryptoPage-1

—Conclusion-

Éthique 17

> • Avoir une clause au contrat de vente permettant de transférer un programme vers un autre ordinateur (panne, vol,...)

- A On ne peut même plus savoir ce qui tourne sur son ordinateur
 - ▶ Bugs irréparables
 - ▶ Comportements cachés
- Mais la boîte de Pandore existe déjà
 - ▶ Mais actuellement c'est déjà difficile (OS propriétaires,...), même avec les sources (empilements logiciels gloutons,...)
 - ▶ Il y a déjà des closes interdisant la rétro-ingéniérie sur des contrats de logiciels et des comportements cachés
- Rien que l'identifieur unique du Pentium III a provoqué des réactions...
- On n'a pas le droit de regarder ses DVD avec des logiciels libres

Conclusion 18

- Sujet « chaud » avec les actions judiciaires entre éditeurs/artistes et sites pirates
- Doit pouvoir empêcher le piratage par une entité non-étatique
- Coût matériel faible
- · Acceptation sociale?
- Pas de solution satisfaisante pour les contenus artistiques numériques (qui est prêt à se faire greffer des implants neuronaux?)
- Version suivante doit empêcher les attaques par rejouage de vieilles données

List of Slides

1 Introduction

Introduction

- 2 Sécurité des systèmes
- 3 Plan
- 4 Principe

Principe

5 Carte à puce

Existant

- 6 Crypto-processeurs
- 8 Signature électronique

Matériel

- 9 Adressage mémoire
- 11 La grande image
- 12 Mise en œuvre
- 14 Mise en œuvre logicielle

Logiciel

- 15 Appels systèmes
- 16 Quelques applications

Conclusion

- 17 Éthique
- 18 Conclusion
- 19 Table des matières

CryptoPage-1

—Conclusion-

