Indian Institute of Technology Madras Engineering Design Department

ED 5220 - Vehicle Dynamics

Jan - May 2024

End Semester

Instructions:

- MATLAB/Simulink inbuilt vehicle model or vehicle component models cannot be used for the exam
- Report should be submitted in pdf format. Along with report submit your codes/Simulink model, zipped together as a single file
- Report should include clearly labelled figures, relevant assumptions & explanations, references (wherever required). Handwritten scanned copies are accepted.
- Zip file should be named with roll numbers. Ex. <Sem_Ed24b001.zip>.

Question

Your classmate has established a startup of manufacturing autonomous cars as direct competition to Tesla. Trusting your knowledge acquired from VD course, he has hired you for a handsome package as a Senior Manager to design and evaluate vehicle dynamics. The first task assigned is to design and evaluate performance of a conventional FWD passenger car. Please help our friend to

You are required to do a vehicle level modelling and analyze its performance based on standard tests

	Vehicle DOFs			Wheel DOFs			
Passenger vehicle 15 DOF	6		2	2 per wheel – total 8			
	Translational	Rotational					
	Longitudinal	Pitch		Translational	Rotational		
	Lateral	Roll		vertical	rolling		
	Vertical	Yaw					
		_	1	1 front steering			

The vehicle needs to be maneuvered as per driver signals. These form input to the vehicle system.

All other signals needs generated by the vehicle are the outputs. Vehicle outputs should be global coordinates.

Inputs		Outputs		
Gas, brake		Global coord - (X,Y,Z)		
		V_x , V_y , V_z		
Steering Road excitation		a_x, a_y, a_z		
		Global coord - θ, φ, ψ		
		θ, φ, ψ		
		Θ, φ, ψ		
	FL – Front Left	$\lambda_{FL}, \lambda_{FR}, \lambda_{RL}, \lambda_{RR}$		
	FR – Front Right	Tire forces and Moments		
	RL – Rear Left			
	RR – Rear Right	$(F_{\chi}, F_{y}, F_{z}, M_{\chi}, M_{y}, M_{z})_{FL,FR,RL,RR}$		

Some of vehicle parameters are given

Class	Parameter	Value	
	Mass	1200 Kg	
Physical	Distance from CG to – Front-axle Rear-axle	1.0 m 1.6 m	
	lxx lyy lzz	500 Kg*m² 1600 Kg*m² 1800 Kg*m²	
Suspension	Spring stiffness – FL,FR RL,RR	To be calculated N/m To be calculated N/m	
	Damper – FL, FR RL, RR	1600 N*s/m 1600 N*s/m	
	Antiroll bar stiffness Front Rear	15000 N/m 15000 N/m	
Tires	Full Magic Formula	Example tire in simscape multibody toolbox	
steering	Steering ratio : driver hand to wheel	15:1	

```
TirFilename = 'sm_car_heave_roll_tire_245_60_R16.tir';
TireParameters = simscape.multibody.tirread(TirFilename);
% Wheel mass and inertia
WheelMass = 20;  % kg
WheelInertia = [1 2 1]; % kg*m^2
```

<u>Tasks</u>

- Derive equations for the 14 DOF vertical dynamics vehicle model (including antiroll bar). Given natural frequencies of vertical vibrations for front and rear as 0.9Hz and 1.5Hz, calculate suspension stiffnesses and plot mode shapes. [10 marks]
- Build a full 15 DOF simulation model (including steering). [15 marks]
- Performance analysis. [15 marks]
 - Perform step steer test and compute response metrics (see Appendix for test details) with and without antiroll bar.
 - Perform impulse steer test with and without antiroll bar and plot mimuro figure (see Appendix for test details). Also plot simulated and transfer function estimated responses (aY and yaw rate).
 - What test would you perform to compute understeer gradient? Can you simulate, compute and explain with resultant graphs. What vehicle parameters affect understeer gradient?
 - [Hint]: Antiroll bars are used to minimize roll and stabilize vehicle by improving
 tire contact with ground. A simple way to implement antiroll bar simulation is to
 compute difference in suspension deflection between left and right sides, multiply
 with antiroll stiffness and apply the resultant force in opposite direction to left
 and right wheels.
- Based on the metrics obtained, can you improve performance of the vehicle? Explain in detail with necessary equations/simulations and resultant graphs [10 marks]

Appendix

1. Step Steer Test [ISO 7401 : 2003 (E)]

Input and Output

- steering wheel angle δ_H
- lateral acceleration a_Y
- yaw rate ψ
- longitudinal velocity v_X
- ullet lateral velocity $v_{\scriptscriptstyle Y}$

Important time and frequency domain characteristics

- Time lags between input δ_H and responses a_Y and $\dot{\psi}$.
- Response times of a_Y and $\dot{\Psi}$.
- a_Y and $\dot{\Psi}$ gains
- a_V and $\dot{\Psi}$ overshoot
- a_Y and $\dot{\Psi}$ phase delays wrt to δ_H

Test procedure

- Test vehicle be run at $v_X = 60 \, kmph$ with 3s 5s neutral steering
- Determine the δ_H amplitude by steady state driving on a circle radius of which gives the preselected steady state a_Y . The standard steady state $a_Y = 4m/s^2$
- Time between 10% and 90% steering wheel input should be maximum 0.15s

Data analysis

- 1 50% steering wheel input
- 2 time for (1)
- 3 peak response
- 4 steady state response
- 5 90% steady state response
- 6 response time
- 7 peak response time

Figure: Step Response

Table: Step input - response data

Parameter	Symbol	Iteration 1	Iteration 2	Iteration 3	
Comments					
Lat accl response time	T_{aY}				
Lat accl peak response time	$T_{aY,max}$				
Lat accl steady state gain	$\left(\frac{a_Y}{\delta_H}\right)_{SS}$		<u> </u>		
Lat accl overshoot	U_{aY}				
Yaw rate response time	$T_{\dot{\Psi}}$				
Yaw rate peak response time	$T_{\psi,max}$				
Yaw rate steady state gain	$\left(\frac{\dot{\Psi}}{\delta_H}\right)_{SS}$				
Yaw rate overshoot	$U_{\dot{\Psi}}$				
Roll angle response time	$T_{oldsymbol{\phi}}$				
Roll angle peak response time	$T_{\phi,max}$				
Roll angle steady state gain	$\left(rac{\phi}{\delta_H} ight)_{_{SS}}$				
Roll angle overshoot	$U_{oldsymbol{\phi}}$				

2. Pulse Steer Test [ISO 7401: 2003 (E)] extended to Mimuro plot

Input and Output

- steering wheel angle δ_H
- lateral acceleration a_Y
- yaw rate ψ
- longitudinal velocity v_X
- lateral velocity v_Y

Important time and frequency domain characteristics

- Time lags between input δ_H and responses a_Y and $\dot{\psi}$.
- Response times of a_Y and $\dot{\Psi}$.
- a_Y and $\dot{\psi}$ gains
- a_Y and $\dot{\Psi}$ overshoot
- a_Y and $\dot{\Psi}$ phase delays wrt to δ_H

Test procedure

- Test vehicle be run at desired $v_X = 60kmph$ with 3s 5s neutral steering
- Pulse steering amplitude is found such that peak $a_Y = 4m/s^2$
- Steering pulse width to within 0.3s 0.5s

Data analysis

Post-process of data to produce both transfer function

$$\left(\frac{a_Y(s)}{\delta_H(s)}\right) = a_1 \frac{1 + b_1 s + b_2 s^2}{1 + 2\zeta \frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

$$\left(\frac{\dot{\psi}(s)}{\delta_H(s)}\right) = a_2 \frac{1 + b_3 s}{1 + 2\zeta \frac{s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

Figure: Impulse steer response and Mimuro plot

- Following 4 parameters are thus deduced
 - a_1 : steady state gain of yaw rate response
 - f_n : natural frequency of yaw rate response
 - ζ: damping of yaw velocity response
 - φ: phase delay at 1Hz of lateral acceleration

Table: pulse steer response data

Parameter	Symbol	Iteration 1	Iteration 2	Iteration 3	
Comments					
steady state gain of yaw rate response	a_1				
natural frequency of yaw rate response	f_n				
damping of yaw velocity response	ζ		<u> </u>		
phase delay at 1Hz of lateral acceleration	ф				