Discrete Logarithms and the Diffie-Hellman protocol

Reading

• Section 10.4

Practice Problems

10.4 1-5

Notes

Discrete Logarithms

We have seen that when working modulo a prime p there is a primitive root $\bar{a} \in \mathbb{Z}_p$, with the property that any non-zero element is a power of \bar{a} , unique modulo p-1.

We call the number $\bar{y} \in \mathbb{Z}_{p-1}$ the **discrete logarithm** of $\bar{x} \in \mathbb{Z}_p$ with base \bar{a} if

$$\bar{a}^y = \bar{x}$$

We write $\bar{y} = \log_{\bar{a}}(\bar{x})$.

We can think of the logarithm by saying that we have a 1-1 and onto function:

$$\mathbb{Z}_{p-1} \longrightarrow \mathbb{Z}_p^*$$

Defined by $\bar{y} \mapsto \bar{a}^{\bar{y}}$. This function is 1-1 and onto, and turns addition into multiplication, and the discrete logarithm is its inverse.

Let's do an example, with p=37. In the previous section we showed that $\bar{2}$ is one of the primitive roots. We will find the logarithms of some elements:

X	log
1	0
2	1
4	2
8	3
16	4
32	5
27	6
17	7
34	8
31	9
25 ₁	10

Basically the only efficient way to find the discrete logarithm of a number is to try all the exponents out up to p-2, noone has found a faster way.

Given \bar{a} and \bar{x} , there is no efficient way to compute $\log_{\bar{a}}(\bar{x})$.

The Diffie-Hellman protocol

The problem solved by Diffie, Hellman and Merkle is the following:

Key exchange problem

How can two parties agree on a key in such a way that someone intercepting their communications will be unable to determine the value of the key?

Unlike public key cryptography and RSA, where each party provided their own version of a "public key" and a "private key", in this case the goal is to create a **shared private key**. Discrete logarithms are a key step in the process.

At the heart of the process is the following:

- Fast exponentiation allows us to quickly raise a primitive root to any power.
- The reverse process, discrete logarithm, is practically not possible.

Here are the steps in the protocol:

- Alice and Bob agree on a prime p and a primitive root \bar{a} modulo p. Everyone is aware of p, \bar{a} .
- Alice randomly chooses a number $1 \le m \le p-2$ and computes $\bar{M} = \bar{a}^m$. She transmits \bar{M} to Bob.
- Bob similarly chooses at random a number $1 \le n \le p-2$ and computes $\bar{N} = \bar{a}^n$. Bob transmits N to Alice.
- Eavesdroppers can see M, N, but they do not see and cannot compute m, n.
- Both Alice and Bob can compute $\bar{k} = \bar{a}^{mn} = N^m = M^n$. Eavesdroppers cannot.
- Alice finds their secret key by computing N^m .
- ullet Bob finds their secret key by computing M^n .

For a little example, let us revisit our example with p=37 and $\bar{a}=2$. We need to pick two random numbers between 0 and 35, and let's say we end up with m=29 and n=31.

Alice sees the m=29 and she computes $M=2^{29}=2^{10}2^{10}2^9=25\cdot 25\cdot 31=24$. She shares that number with Bob.

Bob sees the N=31 and he computes $N=2^{31}=(2^{10})^32=25^32=22$. He shares that number with Alice.

To find their secret key, Alice would compute $22^{29} = 19$. Bob would instead compute $24^{31} = 19$. 19 is their secret key.