Topología II: Conceptos Básicos

Daniel Monjas Miguélez 2 de diciembre de 2021

Índice

1. Grupo Fundamental

3

1. Grupo Fundamental

Definición: Sea X un espacio topológico. Un lazo en X con base un punto del espacio, $x \in X$ es un arco $\alpha : [0,1] \to X$ continuo con $\alpha(0) = \alpha(1) = x$. Se denota $\Omega_x(X)$ al conjunto de todos los lazos en X con base x.

Sean $\alpha, \beta \in \Omega_x(X)$, se define el producto de lazo como

$$\alpha * \beta : [0,1] \to X$$

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Definción: Sean α , $\beta \in \Omega_x(X)$, se dicen que son homotópicos, y se denota por $\alpha \simeq \beta$, si existe una aplicación:

$$H: [0,1] \times [0,1] \rightarrow X$$
 continua $y:$

- $H(t,0) = \alpha(t) \quad \forall t \in [0,1]$, es decir, $H(*,0) = \alpha$.
- $H(t,1) = \beta(1) \quad \forall t \in [0,1], \text{ es decir}, H(*,1) = \beta.$
- $H(0,s) = H(1,s) = x \quad \forall s \in [0,1], \text{ es decir}, H(0,*) = H(1,*) = \varepsilon_x$

Se dice que H es un homotopía de α a β , y se escribe:

$$H:\alpha\simeq\beta$$

Propiedades de las homotopías:

- 1. Si $\alpha \in \Omega_x(X)$, entonces $\alpha \simeq \alpha$ con $H: [0,1] \times [0,1] \to X$ tal que $H(t,s) = \alpha(t)$.
- 2. Si $h:[0,1] \to [0,1]$ es un homomorfismo con h(0) = 0 y h(1) = 1 entonces $\alpha \simeq \alpha \circ h$ donde $\alpha \circ h$ es un reparametrización de α preservando orientación.
- 3. Sea $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \simeq \beta$ entonces $\beta \simeq \alpha$.
- 4. Sean $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \simeq \beta$ y $\beta \simeq \gamma$ entonces $\alpha \simeq \gamma$.

Proposición: Sean X un espacio topológicos y puntos $p,q,r \in X$. Sean $\alpha, \alpha' \in \Omega_{p,q}(X)$ y $\beta, \beta' \in \Omega_{q,r}(X)$ arcos tales que $\alpha \simeq \alpha'$ y $\beta \simeq \beta'$. Entonces $\alpha * \beta \simeq \alpha' * \beta'$.

Proposición: Sean X un espacio topológico y puntos $p, q, r, s \in X$. Sean $\alpha \in \Omega_{p,q}(X), \beta \in \Omega_{q,r}(X)$ y $\gamma \in \Omega_{r,s}(X)$. Las siguientes propiedades son ciertas:

- $\bullet \alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma)$
- $\bullet (\alpha * \varepsilon_p = \varepsilon_p * \alpha = \alpha$
- $\bullet \alpha * \overline{\alpha} = \varepsilon_p$

Teorema: Sea X un espacio topológico y $p \in X$ un punto arbitrario. La ley de composición interna

$$*: \Pi_1(X, p) \times \Pi_1(X, p) \to \Pi_1(X, p) \qquad [\alpha] * [\beta] = [\alpha * \beta]$$

está bien definida y dota al conjunto $\Pi_1(X,p)$ de estructura de grupo algebraico.

El grupo $(\Pi_1(X, p), *)$ es conocido como **Grupo Fundamental o de Poin-**caré del espacio en el punto p. Recalcar que $\Pi_1(X, p) = \Omega_p(X)/\simeq$.

Proposición: Sea (X, τ) un espacio arcoconexo, $x, y \in X$. Entonces los grupos $\Pi_1(X, x)$ y $\Pi_1(X, y)$ son isomorfos.

Observación: Sea γ un arco que une los puntos $x_1, x_2 \in X$ entonces

$$\phi: \Pi_1(X, x_1) \to \Pi_1(X, x_2), \qquad \phi([\alpha]) = [\gamma^{-1}][\alpha][\gamma]$$

es un isomorfismo de grupos.

Corolario: El grupo fundamental $\Pi_1(X, p)$ está unívocamente determinado salvo isomorfismos por la arcocomponente C_p del punto p. En particular, si X es arcoconexo entonces la clase de isomorfía de $\Pi_1(X, p)$ no depende del punto $p \in X$. En este caso la notación es $\Pi_1(X)$.

Proposición: Sean X e Y espacios topológicos y $\varphi: X \to Y$ una aplicación continua. Consideremos $\alpha, \beta \in \Omega_{p,q}(X)$ y los correspondientes $\varphi \circ \alpha, \varphi \circ \beta \in \Omega_{\varphi(p),\varphi(q)}(Y)$. Se tiene que

$$\alpha \simeq \beta \Rightarrow \varphi \circ \alpha \simeq \varphi \circ \beta$$

En particular:

- La aplicación $\varphi_*: \Pi_1(X,p) \to \Pi_1(Y,\varphi(p)), \quad \varphi_*([\alpha]) = [\varphi \circ \alpha]$ está bien definida yes un homomorfismo de grupos.
- \blacksquare Si $\psi:Y\to Z$ es otra aplicación continua y consideramos los homomorfismos de grupos

$$\psi_*: \Pi_1(X, \varphi(p)) \to \Pi_1(Y, \psi(\varphi(p)))$$
$$(\psi \circ \varphi)_*: \Pi_1(X, p) \to \Pi_1(Z, \psi(\varphi(p)))$$

entonces se tiene que $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$