КЛАСТЕРИЗАЦИЯ

ЦЕЛИ ЗАНЯТИЯ

В КОНЦЕ ЗАНЯТИЯ ВЫ НАУЧИТЕСЬ:

- производить кластеризацию данных
- выбирать наиболее подходящий алгоритм для задачи

О ЧЁМ ПОГОВОРИМ И ЧТО СДЕЛАЕМ

- 1. Задача кластеризации: постановка и примеры
- 2. Основные алгоритмы
- 3. Метрики качества кластеризации

1. ЗАДАЧА КЛАСТЕРИЗАЦИИ

ТИПЫ ЗАДАЧ

- * классификация
- * ранжирование
- * регрессия
- * кластеризация

ПРИМЕРЫ ЗАДАЧ КЛАСТЕРИЗАЦИИ

Пользовательская сегментация. Как выглядят типичные пользователи? (находим сектора, работаем с ними отдельно)

Логистика. Где расположить магазины, чтобы охватить большее колво покупателей?

Новости. О чём сейчас пишут СМИ? (Я.Новости кластеризуют новости и выдают их отдельными темами)

EDA. Есть 100млн обращений пользователей. О чём они пишут?

ДОПОЛНИТЕЛЬНЫЕ ПРИЛОЖЕНИЯ

Создание дополнительных фич. Можно дополнить имеющиеся данные метками принадлежности к одному из классов

Разметка данных. Если нет проставленных классов, но нужно сделать классификатор, то в создании разметки для обучающей выборки сильно поможет кластеризация

Поиск структуры данных как часть эксплоративного анализа

ДОПОЛНИТЕЛЬНЫЕ ПРИЛОЖЕНИЯ

Сокращение объема данных. Сократить объём хранимых данных, оставив по одному представителю от каждого кластера (задачи сжатия данных).

Выделение нетипичных объектов. Нетипичные объекты не подойдут ни к одному из кластеров.

Построение иерархии объектов (задача таксономии). Близкие объекты объединить в кластеры. Потом мелкие кластеры в более крупные и так далее.

ПОСТАНОВКА ЗАДАЧИ

$$X^{n \times k} \Rightarrow y^{n \times 1}$$

$$\rho: X \times X \to [0, \infty)$$

Каждому объекту поставить в пару метку кластера так, чтобы **близкие** объекты лежали в одном кластере, а далёкие - в разных

Это математически некорректная задача, в ней есть неоднозначности и нет правильного ответа

Кластеры могут быть очень разными

Кластеры могут быть очень разными

Масштаб признаков

Результат зависит от нормировки признаков:

2. АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ

АЛГОРИТМОВ - МНОГО. ЗАЧЕМ?

Как и в других задачах:

разные алгоритмы справляются лучше с разными формами зависимостей

* sklearn, сравнение кластеризаторов

SKLEARN ALGO CHEATSHEET

ТИПЫ КЛАСТЕРИЗАЦИИ

Жёсткая кластеризация

(1 объект - 1 класс)

Мягкая (fuzzy) кластеризация

(1 объект - несколько (или 0) классов)

Иерархическая кластеризация

(объект внутри кластера 2.1 -> внутри кластера 2)

K-MEANS

АЛГОРИТМ

Задать начальные значения центроидов кластеров

Повторять, пока центроиды смещаются:

- * присвоить наблюдениям номер кластера с **ближайшим** к ним центром
- * передвинуть центроиды кластеров к среднему значению координат членов кластера

Update Cluster Assignments

ЦЕЛЬ

Минимизировать внутриклассовые отличия от центроида:

$$\sum_{i=0}^{n} \min_{\mu_j} (||x_i - \mu_j||)^2$$

Связанные с этим проблемы:

- * предположение о выпуклости и однородности кластеров
- * проклятие размерности

Update Cluster Assignments

ОГРАНИЧЕНИЯ

Алгоритм может выдавать контринтуитивные результаты:

- 1. Если указано не то число кластеров
- 2. Кластеры не сферические и близко расположены
- 3. Разная дисперсия близких кластеров

КОЛИЧЕСТВО КЛАСТЕРОВ

Идея: перебирать от 1 до N кластеров, засечь, с какого момента качество перестанет быстро улучшаться **Качество** - сумма квадратов расстояний от точек до центроидов кластеров

НАЧАЛЬНОЕ ПРИБЛИЖЕНИЕ

Алгоритм очень зависит от начального приближения: метод сойдётся всегда, но к разным локальным минимумам.

Какие точки выбрать?

- * Мультистарт: N наборов начальных приближений, выбор лучшего
- * Наиболее удалённые друг от друга точки:
 - * удалить аномалии (посчитать среднее расстояние до q ближайших соседей, отбросить □% самых удалённых)
 - * взять 2 самые дальние друг от друга точки, они составят множество U
 - * k-2 раз добавлять в U по 1 точке, расстояние которой до ближайшей из старых точек U будет максимально большим

УСКОРЕНИЕ. СЭМПЛИРОВАНИЕ

- 1. Провести кластеризацию N раз на N разных подмножествах
- 2. Посчитать функционал качества N полученных результатов на полной выборке, выбрать лучшее разбиение

УСКОРЕНИЕ. MINI BATCH KMEANS

Способ: каждый шаг брать не все точки, а лишь подмножества (batch), обновляя центроиды как среднее признаков объектов кластера как текущего, так и всех предыдущих шагов

Результат: рост скорости с мизерным падением качества

РАЗВИТИЕ. МЯГКИЙ ВАРИАНТ (ЕМ)

Более мягкий вариант KMeans: каждому объекту ставить в соответствие не 1 кластер, а вектор близости к каждому кластеру

Повторять, пока центроиды смещаются:

- * оценить близость каждого объекта к каждому центроиду кластеров
- * присвоить объектам номер кластера с ближайшим к ним центром
- * передвинуть центроиды кластеров к **средневзвешенному** значению координат всех объектов, взвешивая по близости объекта к текущему центровку кластера

РЕАЛИЗАЦИЯ B SKLEARN

sklearn.cluster.KMeans

- * n clusters=8
- * init='k-means++'
- * n_init=10
- * max_iter=300
- * tol=0.0001
- * precompute_distances='auto'
- * verbose=0
- * random_state=None
- * copy_x=True
- * n_jobs=1
- * algorithm='auto'

Основные параметры

- * n_clusters количество кластеров для разбиения
- * init: 'k-means+', 'random', ndarray начальное приближение
- * max_iter кол-во итераций
- * n_jobs кол-во процессоров (-1 max)

Основные характеристики

- * 11 параметров
- * по умолчанию: 10 начальных умных запусков на 1 процессоре, кластеризация на 8 групп

Основные методы

* fit, fit_predict, fit_transform, transform, predict

HIERARCHICAL CLUSTERING

ИДЕЯ

АЛГОРИТМ

Все объекты - отдельные кластеры

Повторять, пока > 1 кластера:

* соединить 2 ближайших кластера

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. HIERARCHICAL CLUSTERING

ПРИМЕР

Дендрограмма кластеризации цветков ириса.

Проведена иерархическая кластеризация, визуально отображаемая в виде дендрограммы.

На картинке цветом линии отмечены 3 кластера, а цветом надписи - настоящий вид цветка

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\mathsf{G}}(W,S) = \min_{w,s} \rho(w,s)$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\mu}(W,S) = \max_{w,s} \rho(w,s)$$

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{\Gamma}(W,S) = \frac{1}{|W| * |S|} \sum_{w} \sum_{s} \rho(w,s)$$

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{II}(W, S) = \rho^2(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|})$$

РАССТОЯНИЕ МЕЖДУ КЛАСТЕРАМИ

- * Ближнего соседа
- * Дальнего соседа
- * Групповое среднее
- * Расстояние между центрами
- * Расстояние Уорда

$$R^{y}(W,S) = \frac{|W| * |S|}{|W| + |S|} \rho^{2} \left(\sum_{w} \frac{w}{|W|}, \sum_{s} \frac{s}{|S|} \right)$$

СВОЙСТА РАССТОЯНИЙ

Расстояние **монотонно, если** при каждом слиянии расстояние между кластерами растёт: $R_2 <= R_3 <= R_4$..

Расстояние между центрами - не монотонно. Остальные - да

Расстояние расстягивающее, если при каждом слиянии увеличение расстояний между кластерами растёт:

$$R_3-R_2 <= R_4-R_3 <= R_5-R_4...$$

Расстояние дальнего соседа и Уорда - растягивающие

РЕКОМЕНДУЕМОЕ РАССТОЯНИЕ

Расстояние Уорда (Ward)

Оно:

- * монотонное
- * растягивающее
- * работает с центрами кластеров

РАССТОЯНИЕ МЕЖДУ ОБЪЕКТАМИ

Межкластерное расстояние основывается на расстоянии между объектами. Если с межкластерным расстоянием есть рекомендация брать Уорда, то выбор функции расстояния между объектами более зависит от данных. Слева представлен пример оригинальных данных 3 сигналов, с которыми не справляется косинусное и евклидово расстояние, однако справляется расстояние городских кварталов (I1)

^{*} sklearn, clustering example

РЕАЛИЗАЦИЯ B SKLEARN

AgglomerativeClustering

- * n clusters=2
- * affinity='euclidean'
- * memory=Memory(cachedir=None)
- * connectivity=None
- * compute_full_tree='auto'
- * linkage='ward'
- * pooling_func=<function mean>

Основные параметры

- * n_clusters количество кластеров для разбиения
- * linkage: «ward», «complete», «average»
- affinity: "euclidean", "l1", "l2", "manhattan", "cosine", «precomputed» (для linkage = «ward» доступно только евклидово)
- * connectivity априорные знания о структуре данных, подробнее на следующем слайде

Основные методы

* fit, fit_predict

РЕАЛИЗАЦИЯ В SKLEARN. CONNECTIVITY

структуру, отличную от сферической

DBSCAN

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Рассматриваем объекты как ядра, вокруг которых собираются другие объекты

Если не собираются - это выброс

Если ядра связаны - то они и достижимые из них объекты образуют кластер

ИДЕЯ Density-Based Spatial Clustering of Applications with Noise

Все точки делятся на 3 типа:

- * ядра (в eps-окрестности >= N точек)
- * достижимые из ядра (в eps-окрестности < N точек, > 0 ядер)
- * выбросы (остальные)

Ядра и достижимые из них точки образуют кластеры Выбросы не принадлежат ни одному кластеру

РЕАЛИЗАЦИЯ B SKLEARN

DBSCAN

- * eps=0.5
- * min_samples=5
- * metric='euclidean'
- * algorithm='auto'
- * leaf_size=30
- * p=None
- * n_jobs=1

Основные параметры

- * eps размер окрестности
- * min_samples кол-во точек в окрестности ядра
- * n_jobs кол-во процессоров для расчёта (-1 max)

Основные методы

* fit, fit_predict

ДОСТОИНСТВА И НЕДОСТАТКИ

Достоинства:

- * не нужно указывать кол-во кластеров
- * произвольная форма данных
- * обнаруживает выбросы

Недостатки:

- * сложность выбора eps
- * плохо работает с кластерами разной плотности

AFFINITY PROPAGATION

ИДЕЯ

Объекты обмениваются двумя видами сообщений:

- * насколько объект 1 готов быть экземпляром объекта 2
- * насколько объект 2 готов предоставить право быть объекту 1 своим экземпляром

Итог:

К объектов - представителей кластеров

АЛГОРИТМ

Установить:

$$r(i,i) = 0, a(i,i) = 0$$

Повторять, пока экземпляры меняются:

$$r(i,k) \leftarrow s(i,k) - \max_{k'
eq k} \left\{ a(i,k') + s(i,k')
ight\}$$

$$egin{aligned} a(i,k) \leftarrow \min\left(0, r(k,k) + \sum_{i'
otin \{i,k\}} \max(0, r(i',k))
ight) & ext{for } i
eq k \ a(k,k) \leftarrow \sum_{i'
otin k} \max(0, r(i',k)). \end{aligned}$$

Итог:

экземпляры c r(i,i)+a(i,i) > 0

РЕАЛИЗАЦИЯ B SKLEARN

Affinity Propogation

- * damping=0.5
- * max_iter=200
- * convergence_iter=15
- * copy=True
- * preference=None
- * affinity='euclidean'
- * verbose=False

Основные параметры

- * preference априорные знания о возможности быть экземпляром
- * damping скорость затухания [0.5-1]
- * convergence_iter условие останова, сколько должно пройти итераций без изменений

Основные методы

* fit, fit_predict

QUIZ

АЛГОРИТМЫ КЛАСТЕРИЗАЦИИ. QUIZ

K-Means

Aglomerative

DBSCAN

Affinity Propogation

КАКОЙ АЛГОРИТМ ВЫБРАТЬ?

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples,	General-purpose, even cluster	Distances between points
		medium n_clusters	size, flat geometry, not too	
		with MiniBatch code	many clusters	
Affinity	damping, sample	Not scalable with	Many clusters, uneven cluster	Graph distance (e.g.
propagation	preference	n_samples	size, non-flat geometry	nearest-neighbor graph)
Agglomerative	number of	Large n_samples and	Many clusters, possibly	Any pairwise distance
clustering	clusters, linkage	n_clusters	connectivity constraints, non	
	type, distance		Euclidean distances	
DBSCAN	neighborhood size	Very large n_samples,	Non-flat geometry, uneven	Distances between
	J	medium n_clusters		nearest points

^{*} sklearn, сравнение кластеризаторов

3. МЕТРИКИ КАЧЕСТВА КЛАСТЕРИЗАЦИИ

МЕТРИКИ КАЧЕСТВА

^{*} sklearn, metrics guide

^{*} sklearn, metrics descriptions

ARI: ADJUSTED RAND INDEX

Дано:

y_pred - вектор меток кластеризации

y_true - реальные кластеры

[0, 0, 0, 1, 1, 1]

[2, 2, 2, 7, 7, 7]

 $ARI \in [-1, 1];$

1 - точное соответствие

0 - случайное разбиение кластеров

 $ARI(y_pred, y_true) = 1$

Метрике не важны названия кластеров

СИЛУЭТ

нет знания правильных кластеров.

Оценим, насколько сильно один объект сидит внутри своего кластера и далеко от ближайшего соседнего:

$$s = \frac{b - a}{max(a, b)}$$

а - среднее расстояние до объектов внутри кластера

b - среднее расстояние до объектов ближайшего кластера

$$s = mean(s)$$

среднее значение по всем объектам - силуэт

СРАВНЕНИЕ МЕТРИК

ЧТО МЫ СЕГОДНЯ УЗНАЛИ

- 1. Кластеризация позволяет находить структуру в незамеченных данных, что может послужить дополнительными признаками обучения или являться самодостаточной целью
- 2. В задаче кластеризации нет правильного решения. Метрики качества служат лишь слабым приближением для создания новых алгоритмов или нахождениям критерия останова
- 3. Разные алгоритмы кластеризации принципиально **работают по-разному**, для конкретного набора данных необходимо выбирать наиболее подходящий

ПОЛЕЗНЫЕ МАТЕРИАЛЫ

- 1. Документация sklearn по кластеризации
- 2. Метрики sklearn для задач кластеризации
- 3. Open Data Science, habrahabr: Обучение без учителя: РСА и кластеризация
- 4. Книжка

Спасибо за внимание!