Complex Analysis in Engineering

Your Name

1 Introduction

This document covers the application of complex analysis in engineering.

2 Complex Functions

2.1 Cauchy-Riemann Equations

2.2 Example Problem

Determine if the function $f(z) = z^2$ is analytic and find its derivative.

Solution

The function $f(z) = z^2$ can be written as $f(z) = (x + iy)^2 = x^2 - y^2 + 2ixy$. Separating into real and imaginary parts, we have $u(x,y) = x^2 - y^2$ and v(x,y) = 2xy. To be analytic, the Cauchy-Riemann equations must hold:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.

Calculating the partial derivatives, we get:

$$\frac{\partial u}{\partial x}=2x,\quad \frac{\partial v}{\partial y}=2x,\quad \frac{\partial u}{\partial y}=-2y,\quad \frac{\partial v}{\partial x}=2y.$$

Since $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$ and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$, the Cauchy-Riemann equations are satisfied, so $f(z) = z^2$ is analytic. The derivative of f(z) is given by:

$$f'(z) = \frac{d}{dz}(z^2) = 2z.$$