Α

UMI count Matrix

##		CCTAAGCTCCGCAAGG	AGCATCACCATAGAAC	GCGTCACTCCGTGACG
##	${\tt Gene_0001}$	57	45	98
##	${\tt Gene_0002}$	38	0	7
##	Gene_0003	0	48	0
##	${\tt Gene_0004}$	0	0	0
##	Gene_0005	0	0	0

Cell-level metadata

##		clusters	cell_type	UMAP_1	UMAP_2
##	CCTAAGCTCCGCAAGG	1	T	-1.2718440	0.1879957
##	AGCATCACCATAGAAC	1	Mac	-0.8520433	0.2962663
##	GCGTCACTCCGTGACG	2	Mac	1.2252609	0.6999774
##	GTCGAATAAACAACTG	2	В	1.4901552	-0.8958026
##	TGCATAACAGTCGAGT	2	B	-1.3291095	-0.8355533

В

${\bf Single Cell Experiment}$

```
mdata <- as.data.frame(colData(sce))
umap <- reducedDim(sce, "UMAP")
colnames(umap) <- c("UMAP_1", "UMAP_2")
mdata <- cbind(mdata, umap)
write.csv(mdata, file = "cell-level-mdata.csv")</pre>
```

Seurat

```
mdata <- cbind(seurat_object@meta.data, Embeddings(seurat_object, "umap"))
write.csv(mdata, file = "cell-level-mdata.csv")</pre>
```

Scanpy

```
import scanpy
import pandas
adata = scanpy.datasets.pbmc3k_processed()
mdata = adata.obs
umap = adata.obsm.to_df()[[X_umap1", "X_umap2"]]
pandas.concat([mdata, umap]).to_csv*(cell-level-metadata.csv*)
```

C