INTRODUCTION TO TIME SERIES ANALYSIS USING PYTHON

Application Areas

Case Study

Background

• Annual Sales for a specific company from year 1961 to 2017

Objective

• To plot a time series object

Available Information

- Number of cases: 57
- Variables: Year, sales(in 10's GBP)

Data Snapshot

turnover_annual data

١,	•	•		
Va	rı	ıa	n	les
v u		ч	\sim	-

		1	
		Year	sales
ſ	_	1961	224786
לווא טוו שואכו הנה ווווה אכמות		1962	230034
		1963	236562
		1964	250960
		1965	261615
		1966	268316
		1967	283589
		1968	280160
		1969	301422
		1970	308018
5		1971	329825

Columns	Description	Type	Measurement	Possible values
Year	Financial Year	Numeric	-	-
sales	sales(in 10's GBP)	Numeric	In British Pound	Positive values

Time Series in Python

```
# Import turnover_annual Data
import pandas as pd
salesdata = pd.read_csv('turnover_annual.csv')

# Creating a Time Series Object

rng = pd.date_range('01-01-1961','31-12-2017',freq='Y')
s = salesdata.sales.values
salesseries = pd.Series(s, rng)
```

- date_range() creates pandas date object.
- When the time series has seasonal components, argument freq = can be included. It denotes number of observations per unit of time. Eg. If data is quarterly: freq = 'Q', if data is monthly: freq = 'M'.
- **pd.Series()** combines time series variable object "s" and date object "rng".

The part calesceries will be used for further applysis

Plotting Time Series in Python

```
# Plotting a Time Series Object
salesseries.plot(color='red', title ="Sales Time Series (Simple
Plot)")
# Output

plot() generates a simple line
chart.
```


Interpretation:

The time-series clearly shows upward trend.

Subsetting Time Series in Python

- Large volumes of data are required for most real world analytics, time series is no exception.
- Subsetting is an important tool as it facilitates partitioning the data within Python for micro-level specific analysis.

```
# Subsetting a Time Series Object
salesseries2 = salesseries.loc['1990-12-31':'2016-12-31']
```

loc[] is a generic function which extracts the subset of the object x observed between the times **specified** within the range.

Subsetting Time Series in Python

salesseries2.plot(color='red', title ="Sales Time Series (Subset)")

Output

Plot from 1990 to 2016 shows increasing trend

What is Stationarity of Time Series?

Time series process is called **Stationary if statistical properties of the process remain unchanged over time.**

If Y_t is a stationary time series where t=1,2,3,...

then,

$$E(Y_t) = \mu_t = \mu$$
 (constant)

$$Var(Y_t) = \sigma_t^2 = \sigma^2 \text{ (constant)}$$

 $cov(Y_t, Y_{t+s})$ depends only on **s** (lag), and is independent of **t**

Stationary vs. Non-Stationary Time Series

Interpretation:

- A stationary time series has a constant long term mean and variance.
- The first diagram shows a stationary time series whereas the second shows a non-stationary series.

Importance of Stationary Time Series

 Calibration (estimation of model parameters using historical data) is an important concept in the forecasting of time series values.

• In the calibration of time series models we need a stationary time series.

• With a non stationary time series we get into **spurious** regression which badly affects forecasting.

How to Make a Non Stationary Time Series Stationary?

Two Methods for Making Time Series Stationary

Differencing

$$Y_{t} = Y_{t-1} + U_{t}$$
; $t=1,2,3....$

 U_t is a random series with Constant mean μ , Constant variance σ^2 , and is serially uncorrelated i.e (Ut is stationary).

Hence, Y₊ is differenced:

$$Y_{t} - Y_{t-1} = \Delta Y = U_{t}$$

Differencing can be well applied in case of stochastic time series

De-trending

$$Y_t = \beta_1 + \beta_2 t + U_t$$
 ; $t=1,2,3....$

 U_t is a stationary with **zero mean** and **constant variance** σ^2 . When Trend element $(\beta_1 + \beta_2 t)$ is subtracted, the result is a stationary process:

$$Y_t - (\beta_1 + \beta_2 t) = U_t$$

De-trending is useful when trend is deterministic

Identifying Stationary Time Series & Concept of Autocorrelation

Checking Stationarity - Correlogram

ACF Plot

import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
plot_acf(salesseries)

plot_acf() returns an ACF (Auto Correlation Function) plot.

Output

Interpretation:

We can observe that there is a very slow decay which is a sign of Nonstationarity.

Plot of 1st Order Differenced Time Series

Creating and Plotting a Difference Series

```
from statsmodels.tsa.statespace.tools import diff
salesdiff = diff(salesseries)
salesdiff.plot()
```

- diff() gives 1st order differences
- plot function gives line chart for differenced series

Output

Interpretation:

Even after first order differencing, the series looks nonstationary.

Correlogram for 1st Order Differenced Time Series

```
# ACF Plot
plot_acf(salesdiff)
```

Output

Interpretation:

- ACF plot shows slow decay
- Stationarity is not achieved with first difference.

Plot of 2nd Order Differenced Time Series

#Creating and Plotting 2nd Difference Series

```
salesdiff2 = diff(salesdiff)
salesdiff2.plot(color='red')
```

Output

Interpretation:

After 2nd order differencing, the series looks stationary.

Correlogram for 2nd Order Differenced Time Series

```
# ACF Plot
plot_acf(salesdiff2)
```

Output

Interpretation:

 Stationarity is achieved with 2nd order difference.

Dickey Fuller Test

```
# Install "arch"

pip install arch

# Import "ADF" from library "arch"

from arch.unitroot import ADF

adf = ADF(salesseries,lags=0,trend='nc')
adf.summary()
```

- ADF() performs a Dickey Fuller unit root test on time series data.
- lags= allows to mention the number of lags to use in the ADF regression. We have used zero.
- trend='nc' specifies no trend and constant in regression

Output

Augmented Dickey-Fuller Results		
Test Statistic P-value Lags	19.275 1.000 0	
Null Hypothesis: The	1 (1%), -1.95 (5%), -1.61 (10%) process contains a unit root. s: The process is weakly stationary.	

Interpretation:

Time series is non-stationary as value of test statistic is greater than 5% critical value.

Dickey Fuller Test

```
# Checking stationarity for series with difference of order 2
adf = ADF(salesdiff2,lags=0,trend='n')
adf.summary()
```

Output

Alternative Hypothesis: The process is weakly stationary.

Interpretation:

Time series is stationary as value of test statistic is less than 5% critical value.

THANK YOU!!

