ПРИЛОЖЕНИЕ 2 (справочное) Пример получения информации о стабилитроне

Параметры стабилитрона 1N4747A

1N4747A. **Характеристики**. Стабилитрон, или диод Зенера — это кремниевый полупроводниковый диод, работающий при обратном смещении в режиме пробоя.

Кларенс Мэлвин Зенер (англ. Clarence Melvin Zener, 1 декабря 1905 — 15 июля 1993) американский физик, который первым описал электрические свойства стабилитрона во время работы в Bell Labs.

Зенер работал в области теоретической физики и основ математики, написал также ряд статей в областях сверхпроводимость, металлургия и геометрическое программирование.

Зенер родился в Индианаполисе, Индиана, США, и защитил диссертацию доктора философии по физике с названием *Квантовая механика образования некоторых видов двухатомных молекул* в Гарварде, в 1930 году. Преподавал в нескольких американских университетах до работы в en:Watertown Arsenal во время Второй мировой войны. Преподавал в Чикагском Университете (1945—1951), работал в Вестингауз (1951—1965), преподавал в Техасском Университете А&М (1966—1968)), и затем в Университете Карнеги — Меллон (1968—1993).

Название «зенеровский диод» (калька с английского zener diode, по имени первооткрывателя туннельного пробоя <u>Кларенса Зенера</u>), согласно ГОСТ 15133—77 «Приборы полупроводниковые. Термины и определения», в (РОССИЙСКОЙ) технической литературе **не допустимо**[2].

И, наоборот, в англоязычной литературе понятие zener или zener diode («зенеровский диод») применяется к стабилитронам всех типов.

Входим в базу, выбираем интересующий стабилитрон:

Запрашиваем подробные сведения (Detail report):

Database Name: Master Database Database Name: Family Group: Family: Diodes Family: ZENER 1N4747A Name: Author: PΖ Date: June 16, 1998 Function: Description: Vz=20.00 Zz@Iz=22.00@12.50 Pd=1.00 Package=D0-41 Thermal resistance junction: 0.00 Thermal resistance junction:
Thermal resistance case:
Power dissipation:
Derating Knee Point:
Min Operating Temp:
Max Operating Temp:
ESD: 0.00 0.00 50.00 -65.00 200.00 ESD: 0.00 Motorola Obsoleted by:

Напряжение стабилизации Vz=20 В. Строчка ниже становится понятной, если посмотреть информацию по ссылке http://www.radiochip.ru/cgi-bin/goodra.cgi?act=detail&qui=3&un=171

diff

1N4747A BZV85C стабилитрон 20B, 1Вт

основные параметры и характеристики			
товара:			
наименование	1N4747A DO-41		
краткое описание	BZV85C стабилитрон 20B, 1Bт		
производитель	Gembird		
минимальное напряжение стабилизации	19		
номинальное напряжение стабилизации	20		
максимальное напряжение стабилизации	21		
ток I1	12.5		
ток I2			
минимальное динамичееское сопротивление при I1 на частоте 1кГц	22		
максимальное динамическое сопротивление при I2 на частоте 1кГц	750		
максимальная рассеиваемая мощность, мВт	1000		
интервал рабочих температур	-65+175		
аналоги	BZV85C20		
Дополнительные данные: стабилитроны применяются для стабилизации напряжения. Обычно характеризуются током и напряжением стабилизации. Напряжение стабилизации - это интервал при котором стабилитрон способен удерживать напряжение в определенных пределах. Стабилитроны ВZX не содержат свинца, обладают высокой стабильностью и низким собственным шумом.			

Получаем, что Zz — это минимальное динамическое сопротивление при токе I1 на частоте 1 кГц, а Iz — это ток I1. В таблице не указана размерность токов (размерность напряжения указана в заголовке)... Если обратить внимание на мощность (и внешний вид), приходим к выводу, что ток должен быть в мА (миллиамперах). Однако моделирование даёт такой результат:

Видим, что стабилитрон «держит» 20 В в широком диапазоне токов (654 А ... 1 А). И даже при мА напряжение стабильное, но характеристика – горизонтальная линия!!:

Основные теоретические положения

Стабилитроны обладают характеристиками нелинейного сопротивления. Ток через эти элементы может меняться в больших пределах, при неизменном падении напряжении на них. Стабилитроны обладают данным свойством благодаря лавинному пробою p-n перехода, на который подано запирающее напряжение.

В этом режиме незначительное увеличение напряжения, приложенного к p-n переходу, вызывает рост генерации носителей заряда и увеличение обратного тока через стабилитрон.

На рисунке 1 представлена вольтамперная характеристика (ВАХ) стабилитрона.

Рабочий участок ВАХ соответствует интервалу ΔI , где напряжение стабилизации $\underline{U}_{\text{CT}}$ изменяется незначительно на величину ΔU . Качество стабилизации характеризуется дифференциальным сопротивлением:

$$R_{\mathcal{I}} = \frac{\Delta U}{\Delta I}.$$

Значение $U_{\rm CT}$ у различных типов стабилитронов составляет от 3 до 180 В, величина $R_{\rm Д}$ для низковольтных стабилитронов: от 1 до 30 Ом, а для высоковольтных: от 18 до 300 Ом.

На рис. 2 представлена схема простейшего стабилизатора напряжения. Расчет этой схемы сводится к определению величины балластного сопротивления $R_{\rm B}$, при котором ток через стабилитрон будет не меньше $I_{\rm CT.MIN}$, когда утрачиваются стабилизирующие свойства, и не более $I_{\rm CT.MAX}$, что грозит тепловым пробоем стабилитрона.

Напряжение U_{CT} зависит от температуры, что характеризует температурный коэффициент напряжения (ТКН). Этот параметр определяет изменение напряжения в процентах при изменении температуры окружающей среды на 1° С и может быть положительным или отрицательным.

Прямая ветвь ВАХ, показанная на рис. 1, у некоторых стабилитронов отсутствует и их сопротивление в этом режиме велико.

Кроме стабилитронов также используются стабисторы. Их назначение — стабилизация малых напряжений, порядка от 1 до 3 В. Эти приборы работают на прямой ветви ВАХ диода.

Подробности посмотрим в Википедии (https://ru.wikipedia.org/):

Токи и напряжения стабилизации

ГОСТ 25529—82 «Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров» определяет *ток стабилизации* (I_{cm}) и *напряжение стабилизации* (U_{cm}) стабилитрона как значения постоянных напряжений и токов в режиме стабилизации ^[50]. Режим стабилизации возможен в достаточно широкой области токов и напряжений, поэтому в технической документации указываются допустимые минимальные и максимальные значения токов ($I_{cm,muh}$, $I_{cm,makc}$) и напряжений ($U_{cm,muh}$, $U_{cm,makc}$) стабилизации. Внутри этих диапазонов лежат выбранные производителем *номинальные* значения I_{cm} и U_{cm} . Минимальный ток стабилизации обычно приравнивается к току на выходе из зоны перелома обратной ВАХ, максимальный ограничен допустимой рассеиваемой мощностью, а номинальный ток обычно устанавливается на уровне от 25 до 35 % от максимального ^[51]. Минимальные токи низковольтных лавинных диодов измеряются единицами и десятками микроампер ^[52], минимальные токи «обычных» стабилитронов — единицами миллиампер.

Например, номинальное напряжение советского стабилитрона 2C133B, как следует из его обозначения, равно 3,3 B, а номинальный ток стабилизации — ток, при котором измеряются его паспортные характеристики — равен 5 мА. Минимальный ток

стабилизации для всех рабочих температур (—60...+125° C) установлен на уровне 1 мА, максимальный — зависит от температуры и атмосферного давления. При нормальном атмосферном давлении и температуре, не превышающей +35° C, ток не должен превышать 37,5 мА, а при температуре +125° С — 15 мА. При снижении давления до 665 Πa (5 мм рт.ст, или 1/150 нормального атмосферного давления) максимальные токи снижаются вдвое из-за худшего теплоотвода в разреженной среде. Паспортный разброс напряжения стабилизации ($U_{cm.мин}...U_{cm.макc}$) этого прибора нормируется для тока 5 мА и четырёх различных температур от —60° С до +125° С. При —60° С разброс напряжений составляет 3,1...3,8 В, при +125° С — 2,8...3,5 В $^{[53]}$.

Дальше можно и про динамические параметры почитать.

Поинтересуемся аналогами импортных стабилитронов: http://trzrus.narod.ru/rec/recany.htm?4../zener.htm

Наименование		Напряжение стабилизации, В
Импортные стабилитроны		
BZX55C0V8 - BZX55C100		0.8-100 (0.5 Вт, 5% и 2%)
BZX85C3V6 - BZX85C100		3.6-200 (1.3 Вт, 5% и 2%)
1N4728 - 1N4764		3.3-100 (1 Вт, 10% и 5%)
Отечественные интегральные аналоги стабилитрона		
K142EH19		2.5-30 (ток до 100мА)
K1156EP5		2.5-36 (ток до 100мА) 1%
Отечественные прецизионные стабилитроны (до 5%)		
Д818(А-Е)		8, 8.5, 9, 9.5
2C108(Γ-P)		6,4
2C166(A-B),KC166(A-B)	7	6.4, 6.6
2C164(H-K)		6.4, 6.6
2С190(Б-Д),КС190(Б-Д)		9
2C190(E-T)		9
2C191(M-P),KC191(M-P)		9,1
2C191(C-Φ),KC191(C-Φ)		9,1

Варианты обозначений на схемах:

