$\ \ \ S'(k,m) = S(k,m \oplus m)$ and	
$V'(k,m,t)=V(k,\ m\oplus m,\ t)$	
$igsim S'(k,m) = igl[t \leftarrow S(k,m), ext{ output } (t,t) igr)$ and	
$V'ig(k,m,(t_1,t_2)ig) = \left\{egin{array}{ll} V(k,m,t_1) & ext{if } t_1 = t_2 \ ext{"0"} & ext{otherwise} \end{array} ight.$	
(i.e., $V'\left(k,m,(t_1,t_2) ight)$ only outputs "1"	
if t_1 and t_2 are equal and valid)	
\checkmark Correct a forger for (S',V') gives a forger for (S,V) .	
$S'(k,m) = ig(S(k,m),S(k,0^n)ig)$ and	
$V'ig(k,m,(t_1,t_2)ig)=ig[V(k,m,t_1) ext{ and } V(k,0^n,t_2)ig]$	
(i.e., $V'ig(k,m,(t_1,t_2)ig)$ outputs ${}^{\cdot\cdot}$ 1" if both t_1 and t_2 are valid tags)	
This should not be selected This construction is insecure because the adversary can query for	
the tag of the message 1^{n} and then obtain a valid tag for	
the message 0^n . The adversary can then output an existential	
forgery for the message 0^n .	
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
$V'(k,m,t) = V(k,m \oplus 1^n,t).$	
\square $S'(k,m) = S(k,$ $m[0,\ldots,n-2] \ 0)$ and	
$V'(k,m,t) = V(k, \ m[0,\dots,n-2] \ 0, \ t)$	
 Recall that the ECBC-MAC uses a fixed IV (in the lecture we simply set the IV to 0). Suppose instead 	0 / 1 point
we	
the IV in the tag.	
the IV in the tag. In other words, $S(k,m) := (r, \; \mathrm{ECBC}_r(k,m))$	
where $\mathrm{ECBC}_r(k,m)$ refers to the ECBC function using r as	
the IV. The verification algorithm V given key k , message m ,	
and tag (r,t) outputs ``1" if $t=\mathrm{ECBC}_r\left(k,m ight)$ and outputs	
``0" otherwise.	
The resulting MAC system is insecure.	
An attacker can query for the tag of the 1-block message \boldsymbol{m}	
and obtain the tag (\boldsymbol{r},t) . He can then generate the following	
existential forgery: (we assume that the underlying block cipher	
operates on n -bit blocks)	
The tag $(r\oplus 1^n,\ t)$ is a valid tag for the 1-block message $m\oplus 1^n$.	
$lacksquare$ The tag $(r,\ t\oplus r)$ is a valid tag for the 1-block message 0^n .	
$igcup$ The tag $(r\oplus t,\ m)$ is a valid tag for the 1-block message 0^n .	
$igcup$ The tag $(m\oplus t,\ r)$ is a valid tag for the 1-block message 0^n .	
Incorrect	
The right half of the tag, $t \oplus r$, is not likely to be the	
result of the CBC MAC.	
4. Suppose Alice is broadcasting packets to 6 recipients	1/1 point
B_1,\dots,B_6 . Privacy is not important but integrity is.	
In other words, each of B_1,\dots,B_6 should be assured that the	
packets he is receiving were sent by Alice.	
packets he is receiving were sent by Alice. Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid.	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid.	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice.	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$.	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 .	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $ S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_5\}, S_6 = \{k_3,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user?	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3,k_4\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3\}, S_5 = \{k_2,k_3,k_4\}, S_6 = \{k_3,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user?	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_2,k_3,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3,k_4\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3,k_4\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	1/1 point
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the B_1 and B_2 the whould Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_1 some subset $S_1\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_1 receives a packet he accepts it as valid only if all tags corresponding to his keys in S_1 are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have S_i or S_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_i = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_i = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}, S_$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_2,k_3\}, S_i = \{k_2,k_3,k_4\}, S_i = \{k_3,k_4\}$ $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_2\}, S_i = \{k_1,k_4\}, S_i =$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_0 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_i can use the key k to send packets with a valid tag to users B_2,\ldots,B_0 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\ldots,k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_i or k_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_2 = \{k_1,k_3,k_4\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_i = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_2 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_2\}, S_6 = \{k_1,k_4\}$ $S_i = \{k_1,k_2\}, S_i = \{k_2,k_3\}, S_i = \{k_3,k_4\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_4$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_0 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_1 verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_0 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_k\}$. She gives each user B_1 some subset $S_1\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_1 receives a packet he accepts it as valid only if all tags corresponding to his keys in S_1 are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_1 or k_2 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1=\{k_1,k_2\}, S_2=\{k_1,k_3\}, S_3=\{k_1,k_4\}, S_4=\{k_2,k_3,k_4\}, S_3=\{k_2,k_3\}, S_6=\{k_3,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_3\}, S_3=\{k_1,k_4\}, S_4=\{k_1,k_3\}, S_5=\{k_1,k_2\}, S_6=\{k_1,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_3\}, S_3=\{k_3,k_4\}, S_4=\{k_1,k_3\}, S_5=\{k_1,k_2\}, S_6=\{k_1,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_4\}, S_3=\{k_3,k_4\}, S_4=\{k_1,k_3\}, S_5=\{k_1,k_2\}, S_6=\{k_1,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_4\}, S_3=\{k_3,k_4\}, S_4=\{k_1,k_3\}, S_5=\{k_1,k_4\}, S_6=\{k_1,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_4\}, S_3=\{k_3,k_4\}, S_4=\{k_1,k_3\}, S_5=\{k_1,k_4\}, S_6=\{k_1,k_4\}$ $S_1=\{k_1,k_2\}, S_2=\{k_2,k_4\}, S_3=\{k_2,k_4\}, S_6=\{k_1,k_4\}, S_6=\{k_1,k_4$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_9 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_1 verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_k\}$. She gives each user B_1 some subset $S_1\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_1 receives a packet he accepts it as valid only if all tags corresponding to his keys in S_1 are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_1 or k_2 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_2 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_3 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}, S$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_i can use the key k to send packets with a valid tag to users B_2,\dots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_3 or k_4 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_2 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_2 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}, S_$	
Alice decides to use a MAC. Suppose Alice and B_1,\ldots,B_9 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_1 verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2,\ldots,B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S=\{k_1,\ldots,k_k\}$. She gives each user B_1 some subset $S_1\subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_1 receives a packet he accepts it as valid only if all tags corresponding to his keys in S_1 are valid. For example, if user B_1 is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_1 cannot validate the 3rd and 4th tags because he does not have k_1 or k_2 . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_2,k_3\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_2 = \{k_2,k_3\}, S_2 = \{k_2,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_3 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}$ $S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_1,k_4\}, S$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_s all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i , verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_i can use the key k to send packets with a valid tag to users B_1,\dots,B_s and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\dots,k_4\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_i or k_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_2,k_3,k_4\}, S_i = \{k_2,k_3\}, S_i = \{k_3,k_4\}$ $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_2\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_4\}$ $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_2\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_4\}$ $S_i = \{k_1,k_2\}, S_i = \{k_1,k_3\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_2\}, S_i = \{k_1,k_4\}, S_i = \{k_1,k_4\},$	
Alice decides to use a MAC. Suppose Alice and B_1, \dots, B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i , verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2, \dots, B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1, \dots, k_k\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1, k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_0 or k_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1, k_2\}, S_2 = \{k_1, k_3\}, S_3 = \{k_1, k_4\}, S_4 = \{k_2, k_3, k_4\}, S_5 = \{k_2, k_3\}, S_6 = \{k_3, k_4\}$ $S_1 = \{k_1, k_2\}, S_2 = \{k_1, k_3, k_4\}, S_3 = \{k_1, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_2, k_3, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_1, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_1, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_2, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_1, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_2, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_1, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_2, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_1, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_2, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_1, k_4\}, S_6 = \{k_1, k_4\}$ $S_1 = \{k_2, k_3\}, S_2 = \{k_2, k_3\}, S_3 = \{k_3, k_4\}, S_4 = \{k_1, k_3\}, S_5 = \{k_2, k_3\}$	
Alice decides to use a MAC. Suppose Alice and B_1, \dots, B_6 all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_1 can use the key k to send packets with a valid tag to users B_2, \dots, B_6 and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1, \dots, k_k\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1, k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the 3rd and 4th tags because he does not have k_2 or k_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1, k_2\}, S_i = \{k_1, k_3\}, S_i = \{k_1, k_4\}, S_i = \{k_2, k_3, k_4\}, S_i = \{k_3, k_3\}, S_i = \{k_3, k_4\}$ $S_i = \{k_1, k_2\}, S_i = \{k_1, k_2, k_3\}, S_i = \{k_1, k_3\}, S_i = \{k_1, k_3\}, S_i = \{k_1, k_4\}, S_i = \{k_1, k_2\}, S_i = \{k_1, k_3\}, S_i = \{k_1$	
Alice decides to use a MAC. Suppose Alice and B_1,\dots,B_n all share a secret key k . Alice computes a tag for every packet she sends using key k . Each user B_i verifies the tag when receiving the packet and drops the packet if the tag is invalid. Alice notices that this scheme is insecure because user B_i can use the key k to send packets with a valid tag to users B_2,\dots,B_n and they will all be fooled into thinking that these packets are from Alice. Instead, Alice sets up a set of 4 secret keys $S = \{k_1,\dots,k_k\}$. She gives each user B_i some subset $S_i \subseteq S$ of the keys. When Alice transmits a packet she appends 4 tags to it by computing the tag with each of her 4 keys. When user B_i receives a packet he accepts it as valid only if all tags corresponding to his keys in S_i are valid. For example, if user B_i is given keys $\{k_1,k_2\}$ he will accept an incoming packet only if the first and second tags are valid. Note that B_i cannot validate the Brd and 4th tags because he does not have k_i or k_i . How should Alice assign keys to the 6 users so that no single user can forge packets on behalf of Alice and fool some other user? $S_i = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_1 = \{k_1,k_4\}, S_4 = \{k_2,k_3,k_4\}, S_5 = \{k_1,k_4\}, S_6 = \{k_3,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_1,k_3\}, S_3 = \{k_1,k_4\}, S_4 = \{k_2,k_3\}, S_5 = \{k_1,k_3\}, S_6 = \{k_1,k_4\}$ $S_1 = \{k_1,k_2\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_3,k_4\}$ $S_2 = \{k_2,k_3\}, S_2 = \{k_2,k_3\}, S_3 = \{k_3,k_4\}, S_4 = \{k_1,k_2\}, S_5 = \{k_1,k_4\}, S_6 = \{k_3,k_4\}$ $S_3 = \{k_3,k_3\}, S_3 = \{k_3,k_4\}, S_3 = \{k_3,k_4\}, S_4 = \{k_3,k_3\}, S_5 = \{k_1,k_4\}, S_6 = \{k_3,k_4\}$ $S_4 = \{k_3,k_4\}, S_6 = \{k_3,k_4\}$	

6. Let H:M
ightarrow T be a collision resistant hash function.

(as usual, we use \parallel to denote string concatenation)

This construction is not collision resistant

a collision finder for H^\prime gives a collision finder for H .

a collision finder for H^\prime gives a collision finder for H.

Which of the following is collision resistant:

 $\hspace{0.5cm} \boxed{\hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} \hspace{0.5cm} H'(m) = H(H(m))}$

H'(m) = H(m)[0, ..., 31]

(i.e. output the first 32 bits of the hash)

This construction is not collision resistant

because an attacker can find a collision in time 2^{16} using

This should not be selected

the birthday paradox.

This should not be selected

This should not be selected

because H(0)=H(1).

7. Suppose H_1 and H_2 are collision resistant

hash functions mapping inputs in a set M to $\{0,1\}^{256}$.

Our goal is to show that the function $H_{2}\left(H_{1}\left(m
ight)
ight)$ is also

suppose $H_{2}\left(H_{1}\left(\cdot
ight)
ight)$ is not collision resistant, that is, we are

This will prove that if H_1 and H_2 are collision resistant

then so is $H_2(H_1(\cdot)).$ Which of the following must be true:

collision resistant. We prove the contra-positive:

given x
eq y such that $H_2(H_1(x)) = H_2(H_1(y))$.

We build a collision for either $H_{\scriptscriptstyle 1}$ or for $H_{\scriptscriptstyle 2}$.

 \bigcirc Either $x,H_{1}\left(y
ight)$ are a collision for H_{2} or

 $H_{2}\left(x
ight) ,y$ are a collision for H_{1} .

x,y are a collision for H_2 .

 \bigcirc Either x,y are a collision for H_2 or

✓ Correct

 $f_1(x,y) = \operatorname{AES}(y,x) \bigoplus y$,

igcup Either $H_2\left(x
ight),H_2\left(y
ight)$ are a collision for H_1 or

 $H_{1}\left(x
ight) ,H_{1}\left(y
ight)$ are a collision for H_{1} .

 $H_{1}\left(x
ight) ,H_{1}\left(y
ight)$ are a collision for H_{2} .

If $H_{2}\left(H_{1}\left(x
ight)
ight)=H_{2}\left(H_{1}\left(y
ight)
ight)$ then

either $H_{\scriptscriptstyle 1}\left(x
ight)=H_{\scriptscriptstyle 1}\left(y
ight)$ and x
eq y , thereby giving us

 $H_{2}(H_{1}(x))=H_{2}(H_{1}(y))$ giving us a collision on H_{2} .

Either way we obtain a collision on $H_1\,$ or $H_2\,$ as required.

8. In this question you are asked to find a collision for the compression function:

Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ?

igotimes Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

 \bigcirc Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

 \bigcirc Choose x_1,y_1,y_2 arbitrarily (with $y_1
eq y_2$) and let $v := AES(y_1,x_1)$.

 \bigcirc Choose x_1,y_1,x_2 arbitrarily (with $x_1
eq x_2$) and let $v := AES(y_1,x_1)$.

9. Repeat the previous question, but now to find a collision for the compression function

10. Let H:M o T be a random hash function where $|M|\gg |T|$ (i.e. the size of M is much larger

Which of the following methods finds the required (x_1,y_1) and (x_2,y_2) ?

 \bigcirc Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

igotimes Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

 \bigcirc Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

 \bigcirc Choose x_1, x_2, y_1 arbitrarily (with $x_1
eq x_2$) and set

that finding a collision on H can be done with $O(|T|^{1/2})$

random samples of $\boldsymbol{H}.$ How many random samples would it take

until we obtain a three way collision, namely distinct strings $x,y,z\,$

An informal argument for this is as follows: suppose we

samples is n choose 3 which is $O(n^3)$. For a particular

triple x,y,z to be a 3-way collision we need H(x)=H(y)

with probability $1/\lvert T \rvert$ (assuming H behaves like a random

function) the probability that a particular triple is a 3-way

collision is $O(1/|T|^2)$. Using the union bound, the probability

that some triple is a 3-way collision is $O(n^3/|T|^2)$ and since

we want this probability to be close to 1, the bound on \boldsymbol{n}

and H(x)=H(z). Since each one of these two events happens

collect n random samples. The number of triples among the n

 $y_2 = y_1 \oplus AES(x_1, x_1) \oplus AES(x_2, x_2)$

Your goal is to find two distinct pairs (x_1,y_1) and (x_2,y_2) such that $f_1(x_1,y_1)=f_1(x_2,y_2)$.

a collision on H_1 . Or $H_1\left(x
ight)
eq H_1\left(y
ight)$ but

where $\operatorname{AES}(x,y)$ is the AES-128 encryption of y under key x.

Set $x_2 = AES^{-1}(y_2,\ v \oplus y_1 \oplus y_2)$

Set $x_2=AES^{-1}(y_2,\ v\oplus y_2)$

Set $x_2=AES^{-1}(y_2,\ v\oplus y_1)$

Correct

You got it!

 $f_2(x,y) = AES(x,x) \oplus y.$

 $y_2=y_1\oplus AES(x_1,x_1)$

Incorrect

than the size of T).

 $O(|T|^{2/3})$

 $O(|T|^{3/4})$

 $O(|T|^{1/4})$

Correct

follows.

 $\bigcirc O(|T|)$

In lecture we showed

This does not work

in M such that H(x)=H(y)=H(z)?

 $y_2=y_1\oplus x_1\oplus AES(x_2,x_2)$

 $y_2 = AES(x_1, x_1) \oplus AES(x_2, x_2)$

Set $y_2 = AES^{-1}(x_2,\ v \oplus y_1 \oplus x_2)$

 \longrightarrow H'(m) = H(0)

✓ Correct

(where $m\oplus 1^{|m|}$ is the complement of m)

because H(000) = H(111).

This construction is not collision resistant

This construction is not collision resistant

a collision finder for H^\prime gives a collision finder for H .

✓ Correct

This should not be selected

because H(0) = H(1).

0 / 1 point

1/1 point

1/1 point

0 / 1 point

1/1 point

Due Nov 18, 1:29 PM IST

GRADE

50%

0 / 1 point

0 / 1 point

Week 3 - Problem Set

I Try again once you are ready

What tampering attacks are not prevented by this system?

1. Suppose a MAC system (S,V) is used to protect files in a file system by appending a MAC tag to

each file. The MAC signing algorithm ${\cal S}$ is applied to the file contents and nothing else.

Replacing the tag and contents of one file with the tag and contents of a file

The MAC tag will fail to verify if any file data is changed.

from another computer protected by the same MAC system, but a different key.

2. Let (S,V) be a secure MAC defined over (K,M,T) where $M=\{0,1\}^n$ and $T=\{0,1\}^{128}$. That is, the key space is K, message space is $\{0,1\}^n$, and tag space is $\{0,1\}^{128}$.

Which of the following is a secure MAC: (as usual, we use | to denote string concatenation)

Week 3 - Problem Set

Swapping two files in the file system.

Erasing the last byte of the file contents.

 $igspace S'(k,m) = S(k,\,m \| m)$ and

V'(k, m, t) = V(k, m || m, t).

Incorrect

Changing the first byte of the file contents.

TO PASS 80% or higher

LATEST SUBMISSION GRADE

50%

Graded Quiz • 20 min