Statistical Theory Notes

September 2, 2018

Contents

1		Point Estimation 3					
	1.2 Suffi	sistency					
		aplete statistics					
		illary statistics					
		aised estimation					
		orm minimal variance unbaised estimation (UMVUE)					
		er bound for variance in unbiased estimation					
	-	· ·					
	1.9 Met	hods of moment					
2		m likelihood 10					
		imum likelihood estimators (MLE)					
		queness and existence of MLEs					
	2.3 Exp	onential family: Part II					
		riance					
	2.5 Asyı	mptotic consistency and normality					
3	Hypothe	esis Testing 14					
_		oduction to hypothesis testing					
		man-Pearson theory					
		otone likelihood ratio (MLR) property					
		iased tests					
		onential family: Part III					
		eralized likelihood ratio tests (GLRT)					
		er large sample tests					
		dness-of-fit and Pearson's χ^2 -test					
4	Desision	Theory and Bayes Methods 21					
4		Theory and Bayes Methods c Setting: Bayes methods					
		c Setting: Decision theory					
		imax rules					
		es rules					
		sissability					
		imax rules: Revisited					
5		nce Estimation 23					
		fident bounds and confident intervals					
		fident sets and uniformly most accuracy (UMA)					
		lity between confident sets and hypothesis tests					
		iased confident sets					
		ts					
	5.6 Shor	test length confident intervals					

	.7 Bayes credible intervals	
	.8 Large sample confident intervals	. 26
\mathbf{A}	Appendix: Derivatives of matrices and vectors	27
В	Appendix: Distributions	27
	3.1 List of distributions	
	3.2 Related distributions	. 28
	3.3 Order statistics	. 30
	3.4 Conditional distributions	. 30
\mathbf{C}	Appendix: Exponential family	30

1 Point Estimation

Problem. From the observed data, choose a plausible value for unknown θ , or $\psi(\theta)$ for some known ψ .

1.1 Consistency

Definition 1.1. A sequence of estimators T_n based on a sample X_1, \ldots, X_n is said to be <u>consistent of</u> $\psi(\theta)$ if

$$T_n \xrightarrow{\mathbb{P}} \psi(\theta)$$

for each $\theta \in \Theta$.

 T_n is called <u>a_n</u>-consistent if $a_n(T_n - \psi(\theta)) = o_p(1)$.

Proposition 1.2. If $\mathbb{E}T_n \to \psi(\theta)$ and $\operatorname{Var}T_n \to \psi(\theta)$, then T_n is consistent for $\psi(\theta)$.

1.2 Sufficient statistics and minimal sufficient statistics

Definition 1.3. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F_{\theta}$, $\theta \in \Theta$. A statistic $T(X_1, \ldots, X_n)$ is sufficient for θ if the distribution of X|T=t does not depend on θ for any t.

Example 1. Let $X_i \stackrel{\text{iid}}{\sim} N(\theta, 1)$. Let $U_{n \times n}$ be an orthogonal matrix s.t. the first row is $u_1 = \frac{1}{\sqrt{n}}(1, \dots, 1)$. If Y = UX, then

$$Y_j \sim N(\sqrt{n}\theta u_j^T u_1, 1).$$

So $Y_1 = \sqrt{n}\bar{X}$ is sufficient; however, $Y_2, \dots, Y_n \stackrel{\text{iid}}{\sim} N(0,1)$ contain no information about θ ! To prove this, we need to compute the distribution of

$$(X_1,\ldots,X_n)|\bar{X}=t.$$

To be added.

Theorem 1.4. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} f_{\theta}$, $\theta \in \Theta$. T(X) is sufficient for θ if and only if there are non-negative functions h and g s.t.

$$f_{\theta}(x_1,\ldots,x_n) = h(x_1,\ldots,x_n)g(T(X);\theta).$$

Remark.

• Invariance.

If T is sufficient for θ , and f is one-to-one, then f(T) is also sufficient.

Example 2. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(\theta_1, \theta_2), \ \theta_2 > \theta_1, \ \theta_j \in \mathbb{R}.$

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i} \frac{\mathbf{1}(\theta_1 < x_i < \theta_2)}{\theta_2 - \theta_1}$$
$$= (\theta_2 - \theta_1)^{-n} \cdot \mathbf{1}(\theta_1 < x_{(1)}) \mathbf{1}(x_{(n)} < \theta_2)$$

$$\implies T(X) = (X_{(1)}, X_{(n)}).$$

Example 3. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(-\theta, \theta), \ \theta > 0.$ (so $(X_{(1)}, X_{(n)})$ is sufficient)

$$f_{\theta}(x_1, \dots, x_n) = \prod_{i} \frac{\mathbf{1}(-\theta < x_i < \theta)}{2\theta}$$
$$= (2\theta)^{-n} \cdot \mathbf{1}(\max(-x_{(1)}, x_{(1)}) < \theta)$$

$$\implies T(X) = \max(-X_{(1)}, X_{(1)}).$$

Definition 1.5. T(X) is called <u>minimal sufficient</u> if

- a) it is sufficient, and
- b) If S(X) is sufficient, $\exists w \text{ s.t. } T(X) = w \circ S(X)$

Theorem 1.6. Let $A = \{(x,y) \mid \exists k(x,y) \neq 0 \text{ s.t. } f_{\theta}(x) = k(x,y)f_{\theta}(y) \ \forall \theta \in \Theta \}$, and T is sufficient. T is minimal sufficient if

$$(x,y) \in A \implies T(x) = T(y).$$

Remark. Usually, we can follow the recipe below to show the minimal sufficiency of T:

- 1. Show T is sufficient.
- 2. Check $(x, y) \in A \implies T(x) = T(y)$;
- 3. or if $\{x: f_{\theta}(x) \geq 0\}$ doesn't depend on θ , check $f_{\theta}(x)/f_{\theta}(y)$ indep. of $\theta \implies T(x) = T(y)$

Example 4. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} U(\theta, -\theta), \ \theta > 0.$ Notice that $f_{\theta}(x) = \theta^{-n} \mathbf{1}(x_{(n) < \theta}).$

- $\implies T(X) = X_{(n)}$ is sufficient.
- \implies Taking $(x,y) \in A$, we have, for some $k(x,y) \neq 0$,

$$\theta^{-n} \mathbf{1}(x_{(n)<\theta}) = k(x,y)\theta^{-n} \mathbf{1}(y_{(n)<\theta}).$$

 $\implies T(x) = T(y)$. Thus, T is minimal sufficient.

Example 5. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, 1)$. Obviously, $T = \sum X_i$ is sufficient.

If we assume

$$\frac{f_{\theta}(x)}{f_{\theta}(y)} = \exp\left(\frac{1}{2}[\sum y_i^2 - \sum x_i^2]\right) \exp\left(\mu[T(x) - T(y)]\right)$$

is indep. of μ , we must have T(x) = T(y). By Theorem 1.6, T is minimal.

1.3 Complete statistics

Definition 1.7.

• Let $\mathcal{F} = \{f_{\theta} \mid \theta \in \Theta\}$ be a family of pmfs or pdfs. Then \mathcal{F} is complete if

$$\mathbb{E}_{\theta} q(X) = 0 \ \forall \theta \implies \mathbb{P}_{\theta} (q(X) = 0) = 1 \ \forall \theta.$$

• A statistic T is called complete if the induced family of distributions for T is complete, i.e.

$$\mathbb{E}_{\theta}g(T(X)) = 0 \ \forall \theta \implies \mathbb{P}_{\theta}(g(T(X)) = 0) = 1 \ \forall \theta.$$

Example 6. $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bin}(1, p), \ 0 Consider <math>T(X) = \sum_{i=1}^n X_i$. Then

$$\mathbb{E}_{p}g(T) = \sum_{t=0}^{n} \mathbb{P}(T=t) \cdot g(t)$$

$$= \sum_{t=0}^{n} g(t) \binom{n}{t} p^{t} (1-p)^{n-t}$$

$$= (1-p)^{n} \sum_{t=0}^{n} g(t) \binom{n}{t} (\frac{p}{1-p})^{t}$$

is a polynonial in $\frac{p}{1-p}$. Thus,

$$\mathbb{E}_p g(T) = 0 \ \forall p \implies g(t) \binom{n}{t} = 0 \ \forall t.$$

It means g(t) = 0 for $t \in \{0, ..., n\}$. T is a complete statistic.

Example 7 (not complete). $X \sim \text{Bin}(n, p), \ p \in \{1/4, 3/4\}$, is not a complete family. Construct g s.t. the definition of compelteness is not satisfied.

$$g(X) = (X - \frac{n}{4})(X - \frac{3n}{4}) - \frac{3n}{16}$$

1.4 Ancillary statistics

Definition 1.8. A statistic A is called ancillary if its distribution doesn't depend on θ .

Remark. Usually, we have two ways to prove something is ancillary:

- 1. Compute its distribution directly.
- 2. Check if $\mathbb{P}_{\theta}(A(X) \in B)$ is a function of θ .

Example 8. $X_i \stackrel{\text{iid}}{\sim} N_i(\mu, \sigma_0^2)$. σ_0^2 known. We know that $S^2 \sim \frac{\sigma_0^2}{n-1} \chi_{n-1}^2$. It doesn't depend on θ .

Example 9. Let f be a pdf, and for $\theta \in \mathbb{R}$, set $f_{\theta}(x) = f(x - \theta)$ (location family).

If $X_i \stackrel{\text{iid}}{\sim} f_{\theta}$, $X_i - \bar{X}$ are all ancillary for θ . It is because $X_i - \bar{X}$ is location invariant. Let S be location invariant; that is

$$S(x) = S(x+c),$$

then we have

$$\mathbb{P}_{\theta}(S(\underline{X}) \in B) = \mathbb{P}_{\theta}(S(\underline{X} - \theta) \in B).$$

Notice that $\underline{X} - \theta$ doesn't depend on θ .

Example 10. Let f be a pdf, and for $\theta \in \mathbb{R}$, set $f_{\theta}(x) = \frac{1}{\theta} f(\frac{x}{\theta}), \theta > 0$ (location-scale family).

If $X_i \stackrel{\text{iid}}{\sim} \theta$, then $\frac{\bar{X}}{S}$ is ancillary for θ . It is because this statistic is location-scale invariant! So we don't need to compute its distribution.

Theorem 1.9 (Basu). If S is complete and sufficient, S is independent of any ancillary statistics.

Proof. Let A be ancillary and $Y = \mathbb{E}_{\theta}(\mathbf{1}(A \leq a)|S)$. To show that A is independent of S, it suffices to show

$$Y = \mathbb{E}_{\theta}(\mathbf{1}(A \leq a)).$$

Clearly, $\mathbb{E}_{\theta}Y = \mathbb{P}(A \leq a)$. So $\mathbb{E}_{\theta}(Y - \mathbb{P}(A \leq a)) = 0$ holds for all θ .

By completeness, $Y = \mathbb{P}(A \leq a)$ almost surely; that is A and S are independent.

1.5 Unbaised estimation

Definition 1.10. Let \mathcal{F}_{θ} be a family of distributions, and φ be a function of θ .

• A statistice T is unbiased for θ if

$$\mathbb{E}_{\theta}T = \varphi(\theta), \ \forall \theta \in \Theta.$$

• Any function φ is called estimable if there always exists an unbiased estimator.

Remark.

- Unbiased estimates may not exist.
- If T is unbiased for θ , g(T) may not be so for $g(\theta)$.
- Usually, we take $\varphi = \mathbf{Id}_{\Theta}$.

1.6 Uniform minimal variance unbaised estimation (UMVUE)

Definition 1.11. Let \mathcal{U} be the set of all unbaised estimators of $\varphi(\theta)$ that have finite variance. $T \in \mathcal{U}$ is called uniformly minimum variance unbiased estimator (UMVUE) of θ if

$$\operatorname{Var}_{\theta} T \leq \operatorname{Var}_{\theta} S, \quad \forall S \in \mathcal{U}, \ \forall \theta \in \Theta.$$

Remark. Invariance.

- If T_i is the UMVUE for ψ_i , then $\sum_{i=1}^n \lambda_i T_i$ is the UMVUE for $\sum_{i=1}^n \lambda_i \psi_i$.
- Let T_n be a sequence of UMVUEs. If $T_n \xrightarrow{L^2} T$, then T is also a UMVUE.

Theorem 1.12. Let $\mathcal{U}_0 = \{v : \mathbb{E}_{\theta}(v) = 0 \text{ and } \mathrm{Var}_{\theta}(v) < \infty\}$. Then $T \in \mathcal{U}$ is the UMVUE of $\varphi(\theta)$ if and only if $\mathbb{E}(Tv) = 0$ for all θ and for all $v \in \mathcal{U}_0$.

Theorem 1.13 (Rao-Blackwell). Let \mathcal{F}_{θ} be a paremetric family of distributions, and $h \in \mathcal{U}$ an unbiased estimator of $\psi(\theta)$. If T is sufficient for θ , then $\mathbb{E}(h|T) \in \mathcal{U}$ and

$$\operatorname{Var}_{\theta}\left(\mathbb{E}(h|T)\right) \leq \operatorname{Var}_{\theta}(h), \quad \forall \theta \in \Theta$$

with equality if and only if h is a function of T.

Theorem 1.14 (Lehmann-Scheffé). Suppose T is complete and sufficient. If there exists h s.t.

$$\mathbb{E}_{\theta}(h) = \psi(\theta) \text{ and } \operatorname{Var}_{\theta}(h) < \infty,$$

then $\mathbb{E}_{\theta}(h|T)$ is the UMVUE for ψ .

Remark.

- \bullet In Rao-Blackwell, we only require the sufficiency of T; however, in Lehmann-Scheffé, we require both of the completeness and sufficiency of T.
- By LS, we can follow this recipe to find the UMVUE:
 - 1. Find a complete sufficient statistic T and a unbiased estimate h.
 - 2. Compute $\mathbb{E}_{\theta}(h|T)$.

Example 11. $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$. Obviously, \bar{X} is complete and sufficient for $\lambda \in (0, \infty)$.

• Since $X_i \in \mathcal{U}$, and $T = \bar{X}$ is complete and sufficient, by LS,

$$\mathbb{E}(X_i|\bar{X}) = \bar{X}$$

is the UMVUE for λ . (Recall that $X_i | \sum_{j=1}^n X_j \sim \text{Bin}(n\bar{X}, \frac{1}{n})$.)

• Or we can directly choose $h = \bar{X}$. Notice that $\mathbb{E}_{\lambda}(\bar{X}) = \lambda$, so \bar{X} is the UMVUE for λ .

Example 12. $X_i \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda)$. Find the UMVUE of $\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \leq 1)$. A complete sufficient statistic is $T = \sum_{i=1}^n X_i$. And let

$$h(\underline{X}) = \mathbf{1}(X_j \le 1)$$

be a unbiased estimator for $\psi(\lambda)$. Therefore, the UMVUE of $\psi(\lambda)$ is

$$\mathbb{E}(h(X)|T) = \mathbb{P}(X_j \le 2|\sum_{i=1}^n X_i = t)$$

$$= \mathbb{P}(\frac{X_j}{\sum_{i=1}^n X_i} \le \frac{2}{t}|\sum_{i=1}^n X_i = t)$$

$$= \mathbb{P}(\frac{X_j}{\sum_{i=1}^n X_i} \le \frac{2}{t})$$

$$= \mathbb{P}(Z \le \frac{2}{t})$$

where $Z \sim \text{Beta}(1, n-1)$. Finally, we get the UMVUE of $\psi(\lambda)$:

$$\mathbb{E}(h(X)|T) = \begin{cases} 1 & T \le 1; \\ 1 - (1 - \frac{1}{T})^{n-1} & T > 1. \end{cases}$$

Proposition 1.15. If T is complete and sufficient, and $\mathbb{E}_{\theta}(T^2)$ is finite for all θ , then T is minimal sufficient.

Proof. By LS, T is UMVUE for $\mathbb{E}_{\theta}(T)$. Let S be any sufficient statistic, and define

$$h(S) = \mathbb{E}_{\theta}(T|S).$$

Obviously, it is unbiased for $\mathbb{E}_{\theta}(T)$ and satisfies

$$\operatorname{Var}_{\theta}(h(S)) \leq \operatorname{Var}_{\theta}(T)$$

by Rao-Blackwell. However, as T is the UMVUE, by the uniqueness, h(S) = T almost surely; i.e. T is a function of S. By the definiton, T is minimal sufficient.

1.7 Lower bound for variance in unbiased estimation

Definition 1.16. Let \mathcal{F}_{Θ} be a parametric familiy of distributions for a RV X.

• The score function is defined as

$$\frac{\partial}{\partial \theta} \log f_{\theta}(x).$$

• The Fisher information is defined as the variance of the score function:

$$I(\theta) = \operatorname{Var}_{\theta} \left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right).$$

Remark. If $X_i \stackrel{\text{iid}}{\sim} f_{\theta}$, let $I_n(\theta)$ denote the FI for $\prod f_{\theta}(x)$.

Proposition 1.17 (Properties of Fisher information). Under regularity conditions, we have:

- $I(\theta) = \mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f_{\theta}(x) \right)^2 \right) = -\mathbb{E}_{\theta} \left(\frac{\partial^2}{\partial \theta^2} \log f_{\theta}(x) \right);$
- $I_n(\theta) = nI_1(\theta)$.

Theorem 1.18. If $\Theta \subset \mathbb{R}$ is an open interval and

- (i) $s = \{x : f_{\theta}(x) > 0\}$ is indep. of θ
- (ii) The score exists and is finite for all $x \in s$, $\theta \in \Theta$.
- (iii) $\exists \mathbb{E}_{\theta}(h(x))$ for all θ implies:

$$\int h(X) \frac{\partial}{\partial \theta} f_{\theta}(x) dx = \frac{\partial}{\partial \theta} \int h(x) f_{\theta}(x) dx.$$

then if T is an unbiased estimator of $\varphi(\theta)$, and $0 < I(t) < \infty$,

$$\operatorname{Var}_{\theta}(T) \ge \frac{[\varphi'(\theta)]^2}{I(\theta)}.$$

Remark.

• The lower bound is attained if and only if $T(\underline{X})$ and $\frac{\partial}{\partial \theta} \log f(\underline{X})$ are perfectly correlated, that is,

$$T(X) - \psi(\theta) = k(\theta) \frac{\partial}{\partial \theta} \log f(\underline{X})$$

for some function $k(\theta)$.

• If $\theta \in \mathbb{R}^k$,

$$\operatorname{Var}_{\theta}(T(X)) \ge \psi'(\theta)^T I(\theta)^{-1} \psi(\theta).$$

• Suppose $\eta = \eta(\theta)$ is strictly monotonic, then

$$I(\eta) = \operatorname{Var}(\frac{\partial}{\partial \eta} \log f_{\eta}(X)) = \operatorname{Var}(\frac{\partial}{\partial \theta} \cdot \frac{\partial \theta}{\partial \eta} \cdot \log f_{\theta}(X)) = I(\theta) \cdot (\frac{\mathrm{d}\theta}{\mathrm{d}\eta})^{2}.$$

and letting $\tilde{\psi}(\eta) = \psi(\theta)$,

$$\frac{\left[\frac{\mathrm{d}}{\mathrm{d}\theta}\psi(\theta)\right]^2}{I(\theta)} = \frac{\left[\frac{\mathrm{d}}{\mathrm{d}\eta}\frac{\mathrm{d}\eta}{\mathrm{d}\theta}\psi(\theta)\right]^2}{I(\eta)/(\frac{\mathrm{d}\theta}{\mathrm{d}\eta})^2} = \frac{\left[\frac{\mathrm{d}}{\mathrm{d}\eta}\tilde{\psi}(\eta)\right]^2}{I(\eta)}.$$

- Note: Scale families with bounded support and $U(0,\theta)$ don't satisfy the conditions.
- If a unbiased estimator attains the lower bound of variance, then it is UMVUE!

Example 13. $X_i \stackrel{\text{iid}}{\sim} \text{Exp}(\lambda)$. Then

$$f_{\lambda}(x) = \frac{1}{\lambda^n} e^{-T(x)/\lambda} \mathbf{1}(X_{(1)} > 0).$$

• Compute the Fisher information for λ

$$\implies T(X) = \sum_{i=1}^{n} X_i, \ \frac{\partial}{\partial \lambda} \log f_{\lambda}(x) = T(X)/\lambda^2 - n = n\bar{X}/\lambda^2 - n.$$

$$\implies I(\lambda) = \operatorname{Var}_{\lambda}(T(X)/\lambda^2) = \frac{1}{\lambda^4} n\lambda^2 = \frac{n}{\lambda^2}.$$

• Lower bound for variance of λ

$$\implies$$
 If $S(X)$ is unbiased for λ , $Var S(X) \geq \frac{1}{I(\lambda)} = \frac{\lambda^2}{n} = Var_{\lambda}(\bar{X})$.

• Lower bound for variance of $\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \leq 1)$

For
$$\psi(\lambda) = \mathbb{P}_{\lambda}(X_1 \le 1), \ \psi'(\lambda) = -e^{-1/\lambda}/\lambda^2$$

$$\implies$$
 If $S(X)$ is unbiased for $\psi(\lambda)$, $\operatorname{Var} S(X) \geq \frac{[\psi'(\lambda)]^2}{I(\lambda)} = e^{-2/\lambda}/n\lambda^2$.

Theorem 1.19. Assume $\theta \mapsto f_{\theta}$ is injective, and T is unbiased for $\psi(\theta)$, and $\mathbb{E}_{\theta}(T(X)) < \infty$. Let $\theta \in \Theta$ and

$$S_{\theta} = \Big\{ \varphi \in \Theta : \{x : f_{\varphi}(x) > 0\} \subset \{x : f_{\theta}(x) > 0\} \Big\} \backslash \Big\{ \theta \Big\}.$$

Then

$$\operatorname{Var}_{\theta}(T(X)) \ge \sup_{\varphi \in S_{\theta}} \frac{[\psi(\varphi) - \psi(\theta)]^2}{\operatorname{Var}_{\theta}(\frac{f_{\varphi}(x)}{f_{\theta}(x)})}.$$

Example 14. $X \sim U(0,\theta)$. Then $S_{\theta} = (0,\theta)$. And 2X is the UMVUE for θ with the variance

$$Var(2X) = 4VarX = \frac{\theta^2}{3}.$$

Notice that $\frac{f_{\varphi}}{f_{\theta}} = (\frac{\theta}{\varphi}) \cdot \mathbf{1}(0, \varphi)$ for $\varphi \in S_{\theta} = (0, \theta)$. Then

$$\sup_{0 < \varphi < \theta} \frac{[\varphi - \theta]^2}{\operatorname{Var}_{\theta}[(\frac{\theta}{\varphi}) \cdot \mathbf{1}(0, \varphi)]} = \sup_{0 < \varphi < \theta} \frac{(\varphi - \theta)^2}{\frac{\theta^2}{\varphi^2} \cdot \frac{\varphi}{\theta} \cdot (1 - \frac{\varphi}{\theta})}$$
$$= \sup_{0 < \varphi < \theta} \frac{(\varphi - \theta)^2}{\frac{\theta}{\varphi} - 1}$$
$$= \frac{\theta^2}{4}$$

Although 2X is the UMVUE, $Var(2X) > \frac{\theta^2}{4}$.

Exponential family: Part I

Definition 1.20. Let $\{f_{\theta}\}$ be a family of PDFs with

$$f_{\theta}(x) = h(x) \exp \left\{ \sum_{j=1}^{k} Q_i(\theta) T_j(x) + D(\theta) \right\}.$$

Theorem 1.21 (Sufficient and complete statistics). Let $\mathcal{F}_{\theta} = \{f_{\theta} : \theta \in \Theta\}$ be a k-parameter exponential family on \mathbb{R}^n , where $\Theta \subset \mathbb{R}^k$ is an interval and $k \leq n$. Then

- a) T is sufficient.
- b) If the range of (Q_1, \ldots, Q_k) contains an open set in \mathbb{R}^k , T is complete.

The theorem above gives a simple way to find sufficient statistics (see the example below); however, T may not be complete in general.

Example 15. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2), \ \mu \in \mathbb{R}, \ \sigma^2 > 0.$ We re-write its pdf as the form of exponential family:

$$f_{\mu,\sigma^2}(x) = (2\pi)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 - \frac{n}{2} \log(\sigma^2)\right\}$$
$$= (2\pi)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{\mu}{\sigma^2} \sum_{i=1}^n x_i - \frac{n\mu^2}{2\sigma^2} - \frac{n}{2} \log(\sigma^2)\right\}$$

Thus, $T_1(X) = \sum_{i=1}^n X_i$, $T_2(X) = \sum_{i=1}^n X_i^2$, and (T_1, T_2) is sufficient. Moreover, we are interested in its completeness. Notice that $Q_i(\mu, \sigma^2) = \frac{\mu}{\sigma^2}$ and $Q_2(\mu, \sigma^2) = -\frac{1}{2\sigma^2}$. The range of $Q = (Q_1, Q_2)$ is $\mathbb{R} \times \mathbb{R}^-$, and it contains an open set in \mathbb{R}^2 . So T is complete.

Example 16. $X_i \stackrel{\text{iid}}{\sim} N(\theta, \theta^2), \ \theta > 0.$

Obviously, (T_1, T_2) is still sufficient for θ , since

$$f_{\theta}(x) = (2\pi)^{-n/2} \exp\left\{\frac{1}{\theta}T_1(x) - \frac{1}{2\theta^2}T_2(x) + D(\theta)\right\}.$$

However, T is not complete.

Notice that $T_1 \sim N(n\theta, n\theta^2) \implies \mathbb{E}_{\theta} T_1^2(X) = n(n+1)\theta^2$. Similarly, $\mathbb{E}_{\theta} T_2(X) = 2n\theta^2$. So

$$\mathbb{E}_{\theta}\left(2T_1^2(X) - (n+1)T_2(X)\right) = 0, \forall \theta.$$

Thus, we can construct $g:(t_1,t_2)\mapsto 2t_1^2-(n+1)t_2$ that is not identically 0 on $\mathbb{R}\times\mathbb{R}^+$.

1.9 Methods of moment

Definition 1.22. The method of moments estimator of $\theta = h(m_1, \dots, m_k)$ is

$$T_h = h(\hat{m}_1, \dots, \hat{m}_k)$$

where $\hat{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.

Remark. Note: $m_n := \mathbb{E}X^n$. And $m_{n_1,\dots,n_k} := \mathbb{E}X_1^{n_1} \dots X_k^{n_k}$.

Example 17.
$$X_i \stackrel{\text{iid}}{\sim} \text{Bin}(m, p)$$
. $h(p) = \mathbb{P}_p(X_1 = 2) = \binom{m}{2} \frac{(mp)^2}{m^2} (1 - \frac{mp}{m})^{m-2}$.

The method of moments estimator is

$$T_h(X) = {m \choose 2} \frac{(\bar{X}^2)^2}{m^2} (1 - \frac{\bar{X}}{m})^{m-2}.$$

$$\textbf{Example 18.} \ \ X_i \overset{\text{iid}}{\sim} N(\mu, \sigma^2). \ \ h(\mu, \sigma^2) = \begin{pmatrix} \mu \\ \sigma^2 \end{pmatrix} = \begin{pmatrix} \mu \\ \mathbb{E}(X^2) - \mu^2 \end{pmatrix}.$$

The method of moments estimator is

$$T_h(X) = \begin{pmatrix} \bar{X} \\ \frac{1}{n} \sum X_i^2 - \bar{X}^2 \end{pmatrix} = \begin{pmatrix} \bar{X} \\ \frac{n-1}{n} S^2 \end{pmatrix}.$$

$\mathbf{2}$ Maximum likelihood

2.1Maximum likelihood estimators (MLE)

Definition 2.1. Let \mathcal{F}_{Θ} be a family of pmfs/pdfs.

• The likelihood function is

$$L(\theta; x) = f_{\theta}(x), \quad \theta \in \Theta.$$

• The log-likelihood is

$$l(\theta; x) = \log L(\theta; x).$$

Remark. If $X_i \stackrel{\text{iid}}{\sim} f_{\theta}$, then $L(\theta; X) = \prod_{i=1}^n f_{\theta}(X_i)$ and $l(\theta; X) = \sum_{i=1}^n \log f_{\theta}(X_i)$.

Definition 2.2. If $X_i \stackrel{\text{iid}}{\sim} f_{\theta}$ and X = x is observed.

$$\hat{\theta}(x) = \arg\max_{\theta \in \Theta} L(\theta; x),$$

if it exists, is called a maximum likelihood estimate of θ .

Remark. By the strict monotonity of log, we have

$$\hat{\theta}(x) = \arg\max_{\theta \in \Theta} l(\theta; x) = \arg\max_{\theta \in \Theta} \sum_{i=1}^{n} f_{\theta}(x_i).$$

Example 19. $X_i \stackrel{\text{iid}}{\sim} \operatorname{Poisson}(\theta), \ \Theta = (0, \infty).$ Compute its likelihood function:

$$L(\theta; x) = e^{-n\theta} \cdot \frac{e^{(\log \theta) \cdot \sum x_i}}{\prod x_i!}$$
$$l(\theta; x) = (\sum x_i) \log \theta - n\theta - \sum \log(x_i!)$$

Compute its partial derivatives:

$$\frac{\partial}{\partial \theta} = \frac{\sum x_i}{\theta} - n = 0 \implies \theta = \bar{x}$$

$$\frac{\partial^2}{\partial \theta^2} = -\frac{\sum x_i}{\theta^2} \le 0$$

Thus, $\hat{\theta}(x) = \bar{x}$ is the MLE except when $\bar{x} = 0$; because when $\bar{x} = 0$, $\theta = 0 \notin \Theta$.

Example 20. $X_i \stackrel{\text{iid}}{\sim} U(\theta_1, \theta_2)$.

Compute its likelihood function:

$$L(\theta; x) = \prod f_i(x_i) = \prod \left(\frac{1}{\theta_2 - \theta_1} \mathbf{1}(\theta_1 \le x_i \le \theta_2) \right)$$
$$= \begin{cases} 0 & \theta_1 \ge x_{(1)} \text{ or } \theta_2 < x_{(n)} \\ \frac{1}{(\theta_2 - \theta_1)^n} & \text{o.w.} \end{cases}$$

Notice: when $\theta_1 \leq x_{(1)}$ and $\theta_2 \geq x_{(n)}$,

$$(\theta_2 - \theta_1) \downarrow \Longrightarrow L(\theta; x) \uparrow$$
.

Therefore, $(\hat{\theta}_1, \hat{\theta}_2) = (x_{(1)}, x_{(n)})$ is the MLE.

Proposition 2.3. Let T be sufficient for θ for a family of pdfs/pmfs. If an MLE exists, there is an MLE such that $\hat{\theta} = g(T)$.

Proof. Compute its likelihood function:

$$L(\theta; x) = f_{\theta}(x)$$
 (By Thm 1.4.)
$$= h(x)g_{\theta}(T(x))$$

Assume θ^* maximizes $L(\theta; x)$. It also maximizes $w_x(\theta) = g_\theta(T(x))$.

Define $S(x) = \{\theta^* \in \Theta : g_{\theta^*}(T(x)) = \max_{\theta} g_{\theta}(T(x))\}$. (Note: the maxima may not be unique.)

Notice that $T(x) = T(y) \implies S(x) = S(y)$, so we can choose $\hat{\theta}(x) \in S(x)$ such that it is a function of T(x).

2.2 Uniqueness and existence of MLEs

The following example shows: (1) MLE may not be unique. (2) MLE could be a function of T; however, some MLEs may not be a function of T.

Example 21. $X_i \stackrel{\text{iid}}{\sim} U(\theta - 1, \theta + 1)$.

Compute its likelihood function:

$$L(\theta; x) = \frac{1}{2^n} \cdot \mathbf{1}(x_{(1)} \ge \theta - 1) \cdot \mathbf{1}(x_{(n)} \le \theta + 1)$$
$$= \frac{1}{2^n} \cdot \mathbf{1}(x_{(n)} - 1 \le \theta \le x_{(1)} + 1)$$

 \implies any estimator $\hat{\theta}(x) \in [x_{(n)} - 1, x_{(1)} + 1]$ is an MLE. (not unique) In particular,

$$\hat{\theta}(x) = \alpha(x_{(n)} - 1) + (1 - \alpha)(x_{(1)} + 1)$$

for $0 \le \alpha \le 1$ is an MLE that is a function of $T = (x_{(1)}, x_{(n)})$; however, so is

$$\sin^2(\bar{x})(x_{(n)}-1) + \cos^2(\bar{x})(x_{(1)}+1),$$

not a function of T.

Theorem 2.4.

• Existence

Suppose $l:\Theta\to\mathbb{R}$, Θ open in \mathbb{R}^k , is continuous. If $l(\theta;x)\to-\infty$ as $\theta\to\partial\Theta$, then

$$\{\theta \in \Theta : l(\theta) = \max_{\theta \in \Theta} l(\theta)\} \neq \emptyset.$$

• Existence and uniqueness

Suppose $X \sim f_{\theta}$, $\theta \in \Theta \subset \mathbb{R}^k$ open set. If $l(\theta; x)$ is strictly convave, is continuous, and moreover, $l(\theta; x) \longrightarrow -\infty$ as $\theta \to \partial \Theta$, then the MLE exists and is unique.

2.3 Exponential family: Part II

Lemma 2.5. Let \mathcal{F}_{η} be a k-parameter exponential family in canonical parameter. The following statements are equivalent:

- a) The log-likelihood function $l(\eta; x)$ is strictly convave
- b) $A(\eta)$ is strictly convex
- c) $A''(\eta) = Var(T) > 0$ (aka full rank).

Theorem 2.6. Suppose \mathcal{F}_{Θ} is a k-parameter exponential family with

$$f_{\eta} = h(x) \exp \left\{ \sum_{j=1}^{k} \eta_j T_j(x) - A(\eta) \right\}$$

such that Θ is open and $A''(\eta) > 0$. Let x be the deserved value and $t_0 = T(x) \in \mathbb{R}^k$.

a) If $\mathbb{P}_{\eta}(c^TT(x) > c^Tt_0) > 0$ for all $c \neq 0$, $\eta \in \Theta$, then $\hat{\eta}$ exists, is unique, and satisfies

$$A'(\hat{\eta}(x)) = \mathbb{E}_{\hat{\eta}(x)}(T(x)) = t_0.$$

b) If $\exists c \neq 0$ such that $\mathbb{P}(c^T T(x) > c^T t_0) = 0$, there is no MLE.

Corollary 2.7. Let C_T be the convex hull of the support of T. Then the MLE exists and is unique if and only if $t_0 \in C_T^{\circ}$.

Corollary 2.8. If T has a continuous distribution, the MLE exists and is unique.

Corollary 2.9. Let the exponential family be

$$f_{\theta}(x) = h(x) \exp \left\{ \sum_{j=1}^{k} Q_j(\theta) T_j(x) - B(\theta) \right\}.$$

If $\mathbb{E}_{\theta}T_j = T_j$ have a solution $\hat{\theta}(X) \in Q(\Theta)^{\circ}$, it is the unique MLE.

Example 22. $X \sim \text{Bin}(n, \theta)$. Then $\hat{\theta} = \frac{X}{n}$ is the MLE unless X = 0.

Example 23. $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)$. The MLE exists and is unique.

Invariance

Theorem 2.10. Let \mathcal{F}_{θ} be a family of pdfs/pmfs, $\theta \in \mathbb{R}^k$. If $\hat{\theta}$ is an MLE and $h : \mathbb{R}^k \to \mathbb{R}^p$ with $p \leq k$, then $h(\hat{\theta})$ is an MLE for $h(\theta)$.

Example 24. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2), \ \mu \in \mathbb{R} \text{ and } \sigma > 0.$ Obviously, $\hat{\mu} = \bar{X} \text{ and } \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$ are MLEs for μ and σ^2 . We may be interested in the MLE of μ/σ . Let $h: (x,y) \mapsto \frac{x}{y}$, then $h(\hat{\mu}, \hat{\sigma})$ is the MLE for $h(\mu, \sigma)$. Thus, the MLE for μ/σ is $\bar{X}/\hat{\sigma}$.

Asymptotic consistency and normality

Theorem 2.11 (Wald). Recall that $D(\theta_0, \theta) = \mathbb{E}_{\theta_0}(\log f_{\theta}(x))$. Suppose

$$\sup_{\theta \in \Theta} \left(\frac{1}{n} \sum_{i=1}^{n} \log f_{\theta}(x) - D(\theta_{0}, \theta) \right) \xrightarrow{\mathbb{P}} 0,$$

and for all $\epsilon > 0$,

$$\sup_{\theta: |\theta - \theta_0| \ge \epsilon} D(\theta_0, \theta) < D(\theta_0, \theta_0).$$

Then we have

$$\hat{\theta} \xrightarrow[\theta_0]{\mathbb{P}} \theta_0.$$

Remark. Generally, consistency of $\hat{\theta}$ can be found in other ways (e.g. continuous mapping theorem,

The following theorem gives a sufficient conditions for a sequence of MLEs $\hat{\theta}_n$ based on a sample $X_1,\ldots,X_n\stackrel{\mathrm{iid}}{\sim} f_{\theta}$ to be asymptotically normal. Let $\theta_0\in\Theta$ be the true parameter.

Theorem 2.12. If the following conditions hold

- (A1) The score function ψ is well-defined and $0 < I(\theta) < \infty$;
- (A2) $\frac{\partial^2}{\partial \theta^2} \psi(x;\theta)$ is continuous;

(A3) For some ϵ , g such that $\mathbb{E}_{\theta_0}g(X) < \infty$,

$$\sup_{|\theta-\theta_0|\leq \epsilon} |\frac{\partial^2}{\partial \theta^2} \psi(x;\theta)| < g(x);$$

and $\hat{\theta}_n$ exists, is unique, and is consistent under H_0 , then

$$\hat{\theta} = \theta_0 + \frac{1}{nI(\theta_0)} \sum_{i=1}^n \psi(X_i; \theta) + o_p(n^{-1/2}),$$

and

$$\sqrt{n}(\hat{\theta} - \theta_0) \xrightarrow{D} N(0, I^{-1}(\theta_0)).$$

Remark. For suitable h, we can also show AN of $h(\hat{\theta})$ using the delta-method.

Example 25. $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, 1)$. The MLE $\hat{\alpha}$ is the solution to

$$\frac{n\Gamma'(\alpha)}{\Gamma(\alpha)} = \sum_{i=1}^{n} \log(X_i).$$

It can only be computed numerically. If we want to do inference for α , since

$$I(\alpha) = -\mathbb{E}_{\alpha}(\frac{\partial^2}{\partial \alpha^2} \log f_{\alpha}(x)) = \frac{\Gamma''(\alpha)\Gamma(\alpha) - \Gamma'(\alpha)^2}{\Gamma(\alpha)^2},$$
$$\sqrt{nI(\alpha)}(\hat{\alpha} - \alpha) \xrightarrow{D}_{\alpha} N(0, 1).$$

Example 26. $X_i \stackrel{\text{iid}}{\sim} U(0,\theta)$. The conditons for AN do not hold. Its MLE is $\hat{\theta} = X_{(n)}$. So

$$n(\theta - \hat{\theta}) \xrightarrow{D} \text{Exp}(\theta).$$

3 Hypothesis Testing

3.1 Introduction to hypothesis testing

Definition 3.1. Let φ be a test, and $\beta_{\varphi}(\theta) = \mathbb{E}_{\theta}(\varphi(X))$.

• The size of a test φ is defined as

$$\sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta) = \sup_{\theta \in \Theta_0} \mathbb{E}_{\theta}(\varphi(X)).$$

• Let φ be a test of size α . For any $\theta \in \Theta_1$, the power of φ for detecting θ is

$$\beta_{\varphi}(\theta) = \mathbb{E}_{\theta}(\varphi(X)) = \mathbb{P}_{\theta}(H_0 \text{ rejected}).$$

Remark. As a function of θ , β_{φ} is called the power function. If $\varphi(X) = \mathbf{1}(T(X) \in C)$, T is called a test statistic, and C is called the critical region.

Example 27. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^s)$, $\mu \in \mu_0, \mu_1$ ($\mu_0 < \mu_1$), and $\sigma^2 > 0$ known. $H_0 : \mu = \mu_0$ vs $H_1 : \mu = \mu_1$. Conider a rule $\varphi(\bar{X}) = \mathbf{1}(\bar{X} > k)$, for some k, corresponding to the critical region $c_k = \{X : \bar{X} > k\}$. Fix its size:

$$\beta_{\varphi}(\mu_0) = \mathbb{P}_{\mu_0}(\bar{X} > k) = 1 - \Phi(\frac{\sqrt{n(k - \mu_0)}}{\sigma}) = \alpha.;$$

so we take k s.t. $\frac{\sqrt{n}(k-\mu_0)}{\sigma} = \Phi^{-1}(1-\alpha) = z_{1-\alpha}$; i.e.

$$k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha},$$

leading the test

$$\varphi(\bar{X}) = \begin{cases} 1 & \bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \\ 0 & \text{o.w.} \end{cases}.$$

The power function is given by

$$\beta_{\varphi}(\mu_1) = \mathbb{P}_{\mu_1}(\bar{X} > \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}) = 1 - \Phi(\frac{\sqrt{n}(\mu_0 - \mu_1)}{\sigma} + z_{1-\alpha}).$$

Definition 3.2. Let Φ_{α} be all test functions of size $\leq \alpha$. Then $\varphi^* \in \Phi_{\alpha}$ is said to be <u>most powerful</u> against $\theta \in \Theta_1$, if

$$\beta_{\varphi^*}(\theta) \ge \beta_{\varphi}(\theta) \quad \forall \varphi \in \Phi_{\alpha}.$$

And φ^* is said to be uniformly most powerful if

$$\beta_{\varphi^*}(\theta) \ge \beta_{\varphi}(\theta) \quad \forall \varphi \in \Phi_{\alpha}, \ \theta \in \Theta_1.$$

3.2 Neyman-Pearson theory

Theorem 3.3 (Neyman-Pearson). Let $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$, be simple hypothese. Then

a) any test of the form

$$\varphi(x) = \begin{cases}
1 & f_1(x) > kf_0(x) \\
\gamma(x) & f_1(x) = kf_0(x) \\
0 & f_1(x) < kf_0(x)
\end{cases} \tag{1}$$

for $k \geq 0$ and $0 \leq \gamma(x) \leq 1$ is most powerful for its size.

b) Given $\alpha \in (0,1)$, there exists a test of the form above with $\gamma(x) = \gamma$ a constant s.t. φ has size α .

Proof. This proof is important. Because it gives us a method to construct the most powerful test under the simple hypothese.

For part (a), let φ^* be a test which size is less than φ ; that is,

$$\mathbb{E}_{\theta_0}\varphi^*(X) \leq \mathbb{E}_{\theta_0}\varphi(X).$$

We hope prove $\mathbb{E}_{\theta_1} \varphi^*(X) \leq \mathbb{E}_{\theta_1} \varphi(X)$. Notice that

$$\mathbb{E}_{\theta_1}\varphi(X) - \mathbb{E}_{\theta_1}\varphi^*(X) \le \mathbb{E}_{\theta_1}\varphi(X) - \mathbb{E}_{\theta_1}\varphi^*(X) - k[\mathbb{E}_{\theta_0}\varphi(X) - \mathbb{E}_{\theta_0}\varphi^*(X)]$$
$$= \int D(x)[f_1(x) - kf_0(x)] dx$$

where $D := \varphi - \varphi^*$. Let $A_0 = \{f_1 < kf_0\}$ and $A_1 = \{f_1 > kf_0\}$. In continuous case,

$$\int D(x)[f_1(x) - kf_0(x)] dx = \int_{A_0} D(x)[f_1(x) - kf_0(x)] dx + \int_{A_1} D(x)[f_1(x) - kf_0(x)] dx$$

$$> 0$$

by noticing that $D \leq 0$ on A_0 and $D \geq 0$ on A_1 .

Part (b). Let $\alpha \in (0,1]$. We want to find a test of the form (1) with size α where $\gamma(x)$ is a constant γ . Thus, we have the following equation:

$$\mathbb{E}_{\theta_0}\varphi(X) = \alpha;$$

that is,

$$\mathbb{P}_{\theta_0}\Big(f_1(X) > kf_0(X)\Big) + \gamma \mathbb{P}_{\theta_0}\Big(f_1(X) = kf_0(X)\Big) = \alpha$$

$$\mathbb{P}_{\theta_0}\Big(f_1(X) \le kf_0(X)\Big) - \gamma \mathbb{P}_{\theta_0}\Big(f_1(X) = kf_0(X)\Big) = 1 - \alpha.$$

Let $\lambda = \frac{f_1}{f_0}$. G_0 be the CDF of λ under θ_0 . So we have

$$G_0(k) - \gamma \mathbb{P}_{\theta_0} \left(\lambda(X) = k \right) = 1 - \alpha.$$
 (2)

Define $k = G_0^{-1}(1 - \alpha) = \inf\{\tilde{k} : G_0(\tilde{k}) > 1 - \alpha\}.$

- Case (i). If G_0 is continuous at k, let $\gamma = 0$.
- Case (ii). If G_0 is not continuous at k, let $\gamma = \frac{G_0(k) (1-\alpha)}{\mathbb{P}_{\theta_0}(\lambda(X) = k)}$.

Proposition 3.4. If T is sufficient for X, the NP test is a function of T.

Example 28. $X \sim \text{Poisson}(\lambda), H_0: \lambda = \lambda_0 = 1 \text{ vs } H_1: \lambda = \lambda_1 = 2.$

• Compute the CDF of $\frac{f_1}{f_0}$:

Since
$$\frac{f_1(x)}{f_0(x)} = \frac{e^{-\lambda_1} \frac{\lambda_1^x}{x!}}{e^{-\lambda_0} \frac{\lambda_0^x}{x!}} = e^{\lambda_0 - \lambda_1} (\frac{\lambda_1}{\lambda_0})^x = \frac{2^x}{e},$$

$$\mathbb{P}_{\lambda_0}(\frac{f_1(X)}{f_0(X)} \le k) = \mathbb{P}_{\lambda_0}(\frac{2^X}{e} \le k) = \mathbb{P}_{\lambda_0}(X \le \frac{\ln k + 1}{\ln 2}).$$

• Compute k and γ :

The formula (2) becomes:

$$\mathbb{P}_{\lambda_0}(X \le \frac{\ln k + 1}{\ln 2}) - \gamma \mathbb{P}_{\lambda_0}(\frac{2^X}{e} = k) = 1 - \alpha.$$

If $\alpha = 0.05$, $F_{\lambda_0}^{-1}(1 - \alpha) = 3$, so we set $k = \frac{8}{e}$,

$$\gamma = \frac{0.981 - 0.95}{0.061} = 0.5$$

and thus the NP test is

$$\varphi(x) = \begin{cases} 1 & x > 3 \\ 0.5 & x = 3 \\ 0 & x < 3 \end{cases}$$

The test statistic is X itself, while the p-value is $\mathbb{P}_{\lambda}(X > x_0)$, where x_0 is the observed value (since $\lambda_1 > \lambda_0$).

3.3 Monotone likelihood ratio (MLR) property

Definition 3.5. Let \mathcal{F}_{Θ} be a family of pdfs/pmfs, where $\Theta \subset \mathbb{R}$ is an interval. We say \mathcal{F}_{Θ} has the monotone likelihood ratio (MLR) property in T(X) if, for $\theta_1, \theta_2 \in \Theta$, $\theta_1 < \theta_2$, $\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)}$ is an non-decreasing function of T(X) on $\{x: f_{\theta_1}(x) \neq 0 \text{ or } f_{\theta_2}(x) \neq 0\}$.

Example 29. $X_i \stackrel{\text{iid}}{\sim} U(0,\theta), \ \theta > 0.$ Let $\theta_1 < \theta_2$, so for $x \in \mathbb{R}^n$ such that $x_{(n)} < \theta_2$,

$$\begin{split} \frac{f_{\theta_2}(x)}{f_{\theta_1}(x)} &= \frac{(\frac{1}{\theta_2})^n \mathbf{1}(x_{(n) < \theta_2})}{(\frac{1}{\theta_1})^n \mathbf{1}(x_{(n)} < \theta_1)} \\ &= \frac{\theta_1^n}{\theta_2^n} \cdot \frac{1}{\mathbf{1}(x_{(n)} < \theta_1)} \\ &= \begin{cases} \frac{\theta_1^n}{\theta_2^n} & \theta_{(1)} > x_{(n)} \\ \infty & \theta_{(1)} \le x_{(n)} < \theta_2 \end{cases} \end{split}$$

 \implies it has the MLR in $T(X) = X_{(n)}$.

Example 30. $X_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \ \sigma^2 > 0.$ Let $\sigma_1^2 < \sigma_2^2$.

$$\frac{f_{\sigma_2}(x)}{f_{\sigma_1}(x)} = \frac{\sigma_1^n}{\sigma_2^n} + \frac{1}{2} \left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2}\right) \sum_{i=1}^n x_i^2;$$

so it has the MLR property in $T(X) = \sum_{i=1}^{n} X_i^2$.

Theorem 3.6.

• If $X \sim f_{\theta}$, where $\{f_{\theta} : \theta \in \Theta\}$ has the MLR property in T(X), then for $H_0 : \theta \leq \theta_0$ vs $H_1 : \theta > \theta_0$, any test of the form

$$\varphi(x) = \begin{cases} 1 & T(x) > t_0 \\ \gamma & T(x) = t_0 \\ 0 & T(x) < t_0 \end{cases}$$

has $\beta_{\varphi}(\theta)$ non-decreasing and is UMP for size $\alpha = \mathbb{E}_{\theta_0}(\varphi(X))$ if this is non-zero.

• Also, for any $\alpha \in (0,1)$, $\exists t_0 \in \mathbb{R}$ and $\gamma \in (0,1)$ s.t. the above test is UMP of size α .

Example 31. $X_i \stackrel{\text{iid}}{\sim} \text{Gamma}(\alpha, 1), \ \alpha > 0.$ Find a UMP test for $H_0 : \alpha \geq \alpha_0 \text{ vs } H_1 : \alpha < \alpha_0.$ Note that

$$f(x) = \frac{1}{[\Gamma(\alpha)]^n \prod_{i=1}^n x_i} \exp\left\{\alpha \sum_{i=1}^n n \log x_i - \sum_{i=1}^n x_i\right\}$$

has the MLR property in $T(x) = \sum_{i=1}^{n} \log(x_i)$. Therefore, applying the theorem, any test of the form

$$\varphi(x) = \begin{cases} 1 & T(x) < t_0 \\ 0 & T(x) \ge t_0 \end{cases}$$

is UMP for its size $\alpha^* = \mathbb{E}_{\alpha_0}(\varphi(X))$.

For a fixed $\alpha^* \in (0,1)$, let F_0 be the CDF of T(X) under α_0 , and choose $t_0 = F^{-1}(\alpha^*)$, so that

$$\mathbb{E}_{\alpha_0}(\varphi(X)) = \mathbb{P}_{\alpha_0}(T(X) < t_0) = \alpha^*.$$

3.4 Unbiased tests

Definition 3.7.

• A test φ of $H_0: \theta \in \Theta_0$ against $H_1: \theta \in \Theta_1$ is said to be unbiased at size α if

$$\beta_{\varphi}(\theta) \le \alpha \quad \forall \theta \in \Theta_0$$
$$\beta_{\varphi}(\theta) \ge \alpha \quad \forall \theta \in \Theta_1$$

- Let U_{α} be the class of all unbiased size α tests.
- If $\exists \varphi \in U_{\alpha}$ s.t. $\beta_{\varphi}(\theta) \geq \beta_{\varphi'}(\theta) \ \forall \varphi' \in U_{\alpha}, \ \forall \theta \in \Theta_1$, then φ is called a UMP unbiased test.

Example 32. content...

Definition 3.8.

• A test φ is said to be α -similar on $\Theta^* \subset \Theta$ if

$$\beta_{\varphi}(\theta) = \alpha \quad \forall \theta \in \Theta^*.$$

- Let $\Lambda = \bar{\Theta}_0 \cap \bar{\Theta}_1$.
- A test which is UMP over all tests that are α -similar on Λ is said to be a UMP α -similar test.

Remark. If $\beta_{\varphi}(\theta)$ is continuous in θ for all φ , then any unbiased size α test φ is α -similar on Λ .

It is easier to find a UMP α -similar test than to find a UMP unbiased test. The following theorem tells us tests that are UMP α -similar on the boundary are often UMP unbiased.

Theorem 3.9. If β_{φ} is continuous in θ for all φ . And φ^* is UMP α -similar test on Λ with size α , then φ^* is a UMP unbiased test.

Proof. content...

Example 33. content...

3.5 Exponential family: Part III

Theorem 3.10. The 1-parameter exponential family

$$f_{\theta}(x) = h(x) \exp\{Q(\theta)T(x) - D(\theta)\}\$$

has the MLR in T if Q is non-decreasion.

Remark. Depending on the parametrization, Q may be non-increasing. Take Q' = -Q and T' = -T.

Example 34. $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda), \ \lambda > 0.$ The sufficient statistic is $T(X) = \sum_{i=1}^n X_i$, where $Q(\lambda) = \log(\lambda)$ is increasing.

Corollary 3.11. Let \mathcal{F}_{Θ} be a 1-par exponential family. There exists a UMP test of

$$H_0: \theta \leq \theta_{00} \text{ or } \theta \geq \theta_{01} \text{ vs } H_1: \theta_{00} < \theta < \theta_{01}$$

of the form

$$\varphi(x) = \begin{cases} 1 & t_{00} < T(x) < t_{01} \\ \gamma_j & T(x) = t_{0j} \\ 0 & T(x) < t_{00} \text{ or } T(x) > t_{01} \end{cases}$$

with t_{0j} determined by $\mathbb{E}_{\theta_{00}}(\varphi(X)) = \mathbb{E}_{\theta_{01}}(\varphi(X)) = \alpha$.

Remark. UMP tests for one-parameter exponential families don't exist for

- $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0, \text{ or }$
- $H_0: \theta_{00} < \theta < \theta_{01}$.

Theorem 3.12. Let \mathcal{F}_{Θ} be a one-parameter exponential family, so that β_{φ} is continuous in θ for all φ . Consider testing

- a) $H_0: \theta_1 < \theta < \theta_2 \text{ vs } \theta < \theta_1 \text{ or } \theta > \theta_2$
- b) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0.$

Then

$$\varphi_a(x) = \begin{cases} 1 & T(x) < c_1 \text{ or } T(x) > c_2 \\ \gamma_i & T(x) = c_i \\ 0 & o.w. \end{cases}$$

where c_i, γ_i are chosen s.t. $\mathbb{E}_{\theta_1} \varphi_a(X) = \mathbb{E}_{\theta_2} \varphi_a(X) = \alpha$, is a UMP unbiased size α test, and

$$\varphi_b(x) = \begin{cases} 1 & T(x) < d_1 \text{ or } T(x) > d_2 \\ \gamma_i & T(x) = d_i \\ 0 & o.w. \end{cases}$$

where d_i, γ_i are chosen s.t. $\mathbb{E}_{\theta_0} \varphi_b(X) = \alpha$ and $\mathbb{E}_{\theta_0}(T(X)\varphi_b(X)) = \alpha \mathbb{E}_{\theta_0}(T(X))$, is a UMP unbiased size α test

Example 35. content...

3.6 Generalized likelihood ratio tests (GLRT)

Definition 3.13. For testing $H_0: \theta \in \Theta_0$ vs $H_1: \theta \in \Theta_1$, we could use the likelihood ratio

$$r(x) = \frac{\sup_{\theta \in \Theta_1} f_{\theta}(x)}{\sup_{\theta \in \Theta_0} f_{\theta}(x)}$$

and reject H_0 if r(x) is large.

Definition 3.14. The generalized likelihood ratio is

$$\lambda(x) = \frac{\sup_{\theta \in \Theta_0} f_{\theta}(x)}{\sup_{\theta \in \Theta} f_{\theta}(x)}$$

and a test that rejects H_0 if $\lambda(x) < c$ is a generalized likelihood ratio test (GLRT).

Remark. We choose c such that $\sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}(\lambda(x) > c) = \alpha$.

Proposition 3.15.

- a) $r(x) > k \iff \lambda(x) < c \text{ for some } c = c(k)$.
- b) If T is sufficient, then λ can be writen as the function of T.

Proposition 3.16.

- a) The NP tests are GLRT's.
- b) MLR one-sided tests are GLRT's.

Example 36. $X_i \stackrel{\text{iid}}{\sim} N(\mu, 1)$. $H_0: \mu = 0 \text{ vs } H_1: \mu \neq 0$. Then

$$\varphi(x) = \begin{cases} 1 & |\bar{x}| > \sqrt{n}z_{1-\alpha} \\ 0 & \text{o.w.} \end{cases}$$

is UMPU. Now, compute the GLR,

$$\lambda(x) = \exp(-\frac{n}{2}\bar{x}^2) < c$$

 $\iff |\bar{x}| > c'$, so an α -level GLRT is UMPU.

Example 37. $X_i \stackrel{\text{iid}}{\sim} f_{\theta,a}, \ f_{\theta,a} = \frac{1}{\theta} e^{-\frac{(x-a)}{\theta}} \mathbf{1}(x \ge a). \ H_0: \theta = 1 \text{ vs } H_1: \theta \ne 1.$

$$\hat{a} = X_{(1)}, \quad \hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} (X_i - X_{(1)}).$$

Then the GLR is

$$\lambda(x) = \frac{\exp(-\sum_{i=1}^{n} (x_i - x_{(1)}))}{\frac{1}{\hat{\theta}^n} \sum_{i=1}^{n} (x_i - x_{(1)})} = \hat{\theta}^n \exp(-n(\hat{\theta} + 1));$$

and the GLRT rejects H_0 if and only if $\hat{\theta} < c_1$ or $\hat{\theta} > c_2$. Note that, under H_0 , the distribution of $\hat{\theta}$ is independent of a. to be checked

Definition 3.17. A test function φ is said to have asymptotic size α if

$$\limsup_{n} \sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta) \le \alpha.$$

Theorem 3.18 (Wilk).

• Under the regularity conditions, if $H_0: \theta = \theta_0$, $\hat{\theta}_n$ is the MLE for $\theta \in \Theta \subset \mathbb{R}^k$, and $X_i \stackrel{iid}{\sim} f_\theta$. Then $-2 \log \lambda(x) \xrightarrow{w} \chi_{\iota}^2$.

Example 38. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$.

Example 39. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$.

3.7 Other large sample tests

Definition 3.19. Begin again with

$$H_0: \theta = \theta_0 \quad H_1: \theta \neq \theta_0.$$

• Rao score test

$$R_n = n\psi_n(\theta_0)^T I^{-1}(\theta_0)\psi_n(\theta_0)$$

where $\psi_n(\theta) = \frac{1}{n} \sum_{i=1}^n \psi(x_i; \theta)$.

• Wald test

$$W_n = n(\hat{\theta}_n - \theta_0)^T I(\theta_0)(\hat{\theta}_n - \theta_0)$$

where $\hat{\theta}_n$ is the general MLE.

 $Remark.\ \, {\rm content...}$

Proposition 3.20. a) $R_n \xrightarrow{w} \chi_k^2$ as $n \to \infty$.

b)
$$W_n \xrightarrow{w} \chi_k^2 \text{ as } n \to \infty.$$

c)
$$W_n = -2 \log \lambda(x) + o_p(1)$$
.

Proof. content...

Example 40. $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta)$. $H_0: \theta = \theta_0 \text{ vs } H_1: \theta \neq \theta_0$.

- GLRT:
- Score test:
- Wald test:

Definition 3.21. Extension to composite nulls:

$$H_0: \theta \in \Theta_0,$$

where
$$\Theta_0 = \{ \theta \in \Theta : \theta_j = \theta_{0,j}, \ j = 1, \dots, q \}.$$

3.8 Goodness-of-fit and Pearson's χ^2 -test

4 Decision Theory and Bayes Methods

4.1 Basic Setting: Bayes methods

Definition 4.1. Let $X \sim f_{\theta} = f(\theta|x)$.

- A prior distribution π is a probability distribution of Θ .
- The posterior distribution for θ is

$$\pi(\theta|x) = \frac{f(\theta|x)\pi(\theta)}{f(x)}$$

or $\pi(\theta|x) \propto f(\theta|x)\pi(\theta)$.

• Let \mathcal{F}_{Θ} be a class of pdfs/pmfs. A family Π of prior distributions on Θ is a <u>conjugate family</u> for \mathcal{F}_{Θ} if

$$\pi(\theta|x) \in \Pi$$

for all x and for all $\pi \in \Pi$.

Example 41. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. σ^2 known. $\mu \sim N(\mu_0, \tau_0^2)$. Compute the posterior distribution:

$$\pi(\theta|x) \propto f(\theta|x)\pi(\theta)$$

$$= \exp\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\} \cdot \exp\{-\frac{1}{2\tau_0^2} (\mu - \mu_0)^2\}$$

$$\propto \exp\{-\frac{1}{2\sigma^2} [n\mu^2 - n\bar{x}\mu] - \frac{1}{2\tau_0^2} [\mu^2 - 2\mu\mu_0]\}$$

$$= \exp\{-\frac{1}{2} (\frac{n}{\sigma^2} + \frac{1}{\tau_0^2})\mu^2 + (\frac{n\bar{x}}{\sigma^2} + \frac{\mu_0}{\tau_0^2})\mu\}$$

$$\propto \exp\{-\frac{1}{2\tau_1^2} (\mu - \mu_1)^2\}$$

$$\implies \mu | X = x \sim N(\mu_1, \tau_1^2).$$

Example 42. $X_i \stackrel{\text{iid}}{\sim} \text{Bin}(m, p)$. m known.

$$f(x|p) = {m \choose x} \exp\{x \log(\frac{p}{1-p} + n \log(1-p))\}.$$
...

Example 43. $X_i \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2)$. σ^2 known. $\pi(\theta) \propto 1$. So

$$\pi(\theta|x) \propto f(\theta|x) \propto \exp\{\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \theta)^2\}$$
$$\propto \exp\{-\frac{n}{2\sigma^2} (\theta - \bar{x})^2\}$$

$$\implies \theta | X = x \sim N(\bar{x}, \sigma^2/n).$$

4.2 Basic Setting: Decision theory

Definition 4.2.

- Model: \mathcal{F}_{Θ} a space of distributions.
- Action Space: \mathcal{A} is the set of valid decisions one can make.
- Loss Function: $l: \Theta \times \mathcal{A} \to \mathbb{R}^+$ indicating the loss caused by taking action $a \in \mathcal{A}$ if $\theta \in \Theta$ is the true parameter value.

• Decision Rule: $\delta : \underline{X} \to \mathcal{A}$ a statistic.

Definition 4.3. Let \mathcal{D} be the class of decision rules and l be a specified loss function. The risk function of $\delta \in \mathcal{D}$ is

$$R(\theta, \delta) = \mathbb{E}_{\theta}(l(\theta, \delta(X))).$$

Example 44. Let $A = \Theta$ (estimation).

- i)
- ii)

4.3 Minimax rules

4.4 Bayes rules

Definition 4.4.

• For a given prior π on Θ , the Bayes' risk of $\delta \in \mathcal{D}$ is

$$r(\pi, \delta) = \mathbb{E}_{\pi} \Big(R(\theta, \delta(X)) \Big) = \mathbb{E}_{\pi} \Big(\mathbb{E} \big(l(\theta, \delta(X) \mid \theta) \big) \Big).$$

- A Bayes' rule δ^* satisfies

$$r(\pi, \delta^*) = \inf_{\delta \in \mathcal{D}} r(\pi, \delta)$$

for some prior π .

• The posterior risk of decision a given X = x and a prior π is

$$r_{\pi}(a|x) = \mathbb{E}(l(\theta, a)|X = x).$$

Example 45. • Under squared-error loss, the Bayes rule for estimating θ is

• Under absolute loss, the Bayes rule for estimating θ is

Example 46. $X_i | \theta \stackrel{\text{iid}}{\sim} N(\theta, \sigma_0^2)$.

Example 47. $X_i | \theta \stackrel{\text{iid}}{\sim} \text{Poisson}(\theta)$.

- 4.5 Admissability
- 4.6 Minimax rules: Revisited

5 Confidence Estimation

Confident bounds and confident intervals 5.1

Definition 5.1. Begin with a family \mathcal{F}_{Θ} , $\Theta \subset \mathbb{R}$.

• For $\alpha \in (0,1)$, $\theta(X)$ is a lower confident bound (LCB) for θ of level $1-\alpha$ if

$$\inf_{\theta} \mathbb{P}_{\theta}(\underline{\theta}(X) \le \theta) \ge 1 - \alpha.$$

• For $\alpha \in (0,1)$, $\bar{\theta}(X)$ is a upper confident bound (UCB) for θ of level $1-\alpha$ if

$$\inf_{\theta} \mathbb{P}_{\theta}(\bar{\theta}(X) \ge \theta) \ge 1 - \alpha.$$

• $(\underline{\theta}(X), \overline{\theta}(X))$ is a level $1 - \alpha$ confident interval (CI) if

$$\inf_{\theta} \mathbb{P}_{\theta}(\underline{\theta}(x) \le \theta \le \bar{\theta}(x)) \ge 1 - \alpha.$$

Remark. Confident bounds and intervals are not unique.

Example 48. $X \sim N(\theta, \sigma^2)$. σ known. (So $\frac{X-\theta}{\sigma} \sim N(0, 1)$.) We show: A LCB is $\underline{\theta}(X) = X - \sigma z_{1-\alpha}$. Since

$$\mathbb{P}_{\theta}(X - \sigma z_{1-\alpha} \le \theta) = \mathbb{P}(\frac{X - \theta}{\sigma} \le z_{1-\alpha}) = 1 - \alpha.$$

Similarly, a UCB is $\bar{\theta}(X) = X + \sigma z_{1-\alpha}$. Since

$$\mathbb{P}_{\theta}(X + \sigma z_{1-\alpha} \ge \theta) = \mathbb{P}(\frac{X - \theta}{-\sigma} \le z_{1-\alpha}) = 1 - \alpha.$$

And a CI is $(X - \sigma z_{1-\frac{\alpha}{2}}, X + \sigma z_{1-\frac{\alpha}{2}})$.

Confident sets and uniformly most accuracy (UMA)

Definition 5.2.

• Suppose $\underline{\theta}^1, \underline{\theta}^2$ are level $1-\alpha$ lower confident bounds. We say $\underline{\theta}^1$ is more accurate than $\underline{\theta}^2$ if for any $\theta \in \Theta$ and $\tilde{\theta} < \theta$,

$$\mathbb{P}_{\theta}(\underline{\theta}^{1}(X) \leq \tilde{\theta}) \leq \mathbb{P}_{\theta}(\underline{\theta}^{2}(X) \leq \tilde{\theta}).$$

• Let $\underline{\theta}^*$ be a level $1 - \alpha$ LCB. If for any other level $1 - \alpha$ LCB $\underline{\theta}, \underline{\theta}^*$ is more accurate than $\underline{\theta}$, then θ^* is uniformly most accurate (UMA).

Remark. We try to minimize the false converage rate $\mathbb{P}_{\theta}(\underline{\theta}(X) \leq \tilde{\theta})$. The related notions for UCB are similar.

Definition 5.3.

• A set-valued statistic $S: \underline{X} \to 2^{\Theta}$ is a level $1 - \alpha$ confident set if

$$\inf_{\theta} \mathbb{P}_{\theta}(S(X) \ni \theta) \ge 1 - \alpha.$$

• S^* is said to be uniformly most accurate if $\forall \theta \in \Theta, \ \tilde{\theta} \neq \theta$, and S another level $1 - \alpha$ confident set

$$\mathbb{P}_{\theta}(S^*(X) \ni \tilde{\theta}) \le \mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}).$$

5.3 Duality between confident sets and hypothesis tests

In this subsection, we focus on the relationship between the confident sets and hypothesis tests. Usually, we can construct a level $1-\alpha$ confident set using a deterministic size α test; and conversely, if we have a level $1-\alpha$ confident set, we can define a deterministic size α test. The correspondence is described below

1. For each $\theta_0 \in \Theta$, assume there is a size α test for $H_0: \theta = \theta_0$:

$$\varphi(x; \theta_0) = \begin{cases} 1 & x \notin A(\theta_0); \\ 0 & x \in A(\theta_0). \end{cases}$$

Recall that if $\varphi(x;\theta_0) = 1$ means H_0 is rejected; that is $\theta \neq \theta_0$. Thus, if the observed data X is in $A(\theta_0)$, it means θ_0 is closed to the real parameter θ . We define

$$S(X) = \{ \theta \in \Theta : X \in A(\theta) \}.$$

2. Let S(X) be a level $1-\alpha$ confident set. For each $\theta_0 \in \Theta$, define a test for $H_0: \theta = \theta_0$ by

$$\varphi(x;\theta_0) = \mathbf{1}(\theta_0 \notin S(x)).$$

More generally, we can construct a confident set using a randomized test. Letting $u \sim U(0,1)$ independent of X, set $\tilde{\varphi}_{\lambda_0}(x) = \mathbf{1}(\varphi_{\lambda_0}(x) \geq 1 - u)$.

Proposition 5.4. Let φ be a size α randomized test, and $\tilde{\varphi}$ defined above.

- a) $\tilde{\varphi}$ and φ have the same power functions.
- b) $\tilde{\varphi}$ and φ have the same size.

Proof. We only consider the simplest case. Assume $\varphi = \begin{cases} 1 \\ \gamma \\ 0 \end{cases}$. Then we can compute the $\mathbb{E}_{\theta}(\tilde{\varphi})$:

$$\mathbb{E}_{\theta}(\tilde{\varphi}) = \mathbb{P}(\varphi = 1)\mathbb{P}(1 - \gamma > u > 0) + [\mathbb{P}(\varphi = 1) + \mathbb{P}(\varphi = \gamma)]\mathbb{P}(u \le 1 - \gamma)$$

$$= \mathbb{P}(\varphi = 1) + \gamma\mathbb{P}(\varphi = \gamma)$$

$$= \mathbb{E}_{\theta}(\varphi)$$

Notice they are always same whenever $\theta \in \Theta_1$ or $\in \Theta_0$.

Theorem 5.5. Let $A: \Theta \to 2^{\underline{X}}$ and $S(X) = \{\theta \in \Theta : X \in A(\theta)\}$. Then S(X) is a level $1 - \alpha$ confident set if and only if $\mathbb{P}_{\theta}(X \notin A(\theta)) \leq \alpha$, $\forall \theta \in \Theta$.

Example 49. $X_i \stackrel{\text{iid}}{\sim} \text{Poisson}(\lambda)$. $H_0: \lambda = \lambda_0; \ H_1: \lambda \neq \lambda_0$. Its UMPU test is of form

$$\varphi_{\lambda_0}(x) = \begin{cases} 1 & \bar{x} < c_1, \ \bar{x} > c_2 \\ \gamma_i & \bar{x} = c_j \\ 0 & \text{o.w.} \end{cases}$$

where c_j and γ_j are chosen to have size α . Now, we want to find a level $1 - \alpha$ confident set for λ . Letting $u \sim U(0,1)$ independent of X_i , set

$$\tilde{\varphi}_{\lambda_0} = \mathbf{1}(\varphi_{\lambda_0}(x) \ge 1 - u);$$

notice that $\tilde{\varphi}$ is a size α deterministic test. Its acceptance region is:

$$A(\lambda_0) = \begin{cases} (c_1, c_2) & \min(\gamma_1, \gamma_2) > 1 - u \\ [c_1, c_2) & \gamma_1 < 1 - u \le \gamma_2 \\ (c_1, c_2] & \gamma_2 < 1 - u \le \gamma_1 \\ [c_1, c_2] & \max(\gamma_1, \gamma_2) < 1 - u \end{cases}$$

Theorem 5.6 (UMP \implies UMA). Let $\underline{\theta}$ be a level $1 - \alpha$ LCB for $\theta \in \mathbb{R}$ for which

$$\varphi(x; \theta_0) = \begin{cases} 1 & \underline{\theta}(x) > \theta_0 \\ 0 & o.w. \end{cases}$$

is a UMP size α test for $H_0: \theta = \theta_0$ vs $H_1: \theta > \theta_0$, $\forall \theta_0 \in \Theta$. Then $\underline{\theta}$ is UMA.

5.4 Unbiased confident sets

Definition 5.7.

• A confident set S(X) of level $1-\alpha$ is unbiased if

$$\mathbb{P}_{\theta}(S(X) \ni \theta) \ge 1 - \alpha \quad \forall \theta$$

$$\mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}) < 1 - \alpha \quad \tilde{\theta} \ne \theta$$

• A level $1 - \alpha$ confident set S(X) is uniformly most accurate unbiased (UMAU) if it is unbiased and for any other unbiased level $1 - \alpha$ confident set S'(X)

$$\mathbb{P}_{\theta}(S(X) \ni \tilde{\theta}) \leq \mathbb{P}_{\theta}(S'(X) \ni \tilde{\theta}), \quad \forall \theta \in \Theta, \ \tilde{\theta} \neq \theta.$$

Theorem 5.8 (UMPU \Longrightarrow UMPA). For each $\theta_0 \in \Theta$, let $A(\theta_0)$ be the acceptance region of a size α UMPU test of $H_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Then $S(X) = \{\theta: X \in A(\theta)\}$ is UMAU level $1 - \alpha$.

Example 50. $X_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$. μ, σ^2 unknown.

5.5 Pivots

Definition 5.9. Let $X \sim f_{\theta}$. A RV $T(X, \theta)$ is called a pivot if its distribution is free of θ .

Theorem 5.10. If a set C satisfies $\mathbb{P}(T(X,\theta) \in C) \geq 1 - \alpha$, then

$$S(X) = \{ \theta \in \Theta : T(X, \theta) \in C \}$$

is a level $1-\alpha$ confident set.

Example 51 (Universal pivots). content...

Example 52. $X_i \stackrel{\text{iid}}{\sim} U(0, \theta)$.

5.6 Shortest length confident intervals

5.7 Bayes credible intervals

Definition 5.11. A level $1 - \alpha$ credible interval is a random set $S(X) \subset \Theta$ such that

$$\mathbb{P}(\theta \in S(X) \mid X = x) = 1 - \alpha.$$

Example 53. $X_i \stackrel{\text{iid}}{\sim} \text{Bin}(1, p)$. $p \sim \text{Beta}(\alpha, \beta)$.

Compute its posterior: $p|X = x \sim \text{Beta}(\alpha + n\bar{X}, \beta + n - n\bar{X}).$

Compute l(x) and u(x) such that

$$\mathbb{P}(l(x) \le p \le u(x) \mid X = x) = 1 - \alpha.$$

Then (l(x), u(x)) is a level $1 - \alpha$ credible interval.

5.8 Large sample confident intervals

Example 54. content...

Example 55. $X_i \stackrel{\text{iid}}{\sim} \text{Bin}(1, p)$.

• Option 1

Notice that

$$\sqrt{n}(\hat{p}-p) \xrightarrow{w} N(0, p(1-p))$$

where $\hat{p} = \bar{X}$.

By Slusky's,
$$\sqrt{n}(\hat{p}-p)/\sqrt{\hat{p}(1-\hat{p})} \xrightarrow{w} N(0,1)$$
.

$$\implies \hat{p} \pm \sqrt{\hat{p}(1-\hat{p})/n}z_{1-\alpha}$$
 is asymptotic level $1-\alpha$.

• Option 2

Let $g: x \mapsto 2\arcsin(\sqrt{x})$. Then

$$\sqrt{n}(g(\hat{p}) - g(p)) \xrightarrow{w} N(0, 1).$$

$$\implies g(\hat{p}) \pm \frac{1}{\sqrt{n}} z_{1-\alpha}$$
 is an asymptotic level $1 - \alpha$ CI for $g(p)$.

$$\implies S(X) = \{p: |g(p) - g(\hat{p})| \leq \tfrac{1}{\sqrt{n}} z_{1-\alpha}\} \text{ is an asymptotic level } 1 - \alpha \text{ CI for } p.$$

A Appendix: Derivatives of matrices and vectors

Proposition A.1.

$$\frac{\partial a^T x}{\partial x} = a$$

$$\frac{\partial a^T X b}{\partial X} = ab^T$$

$$\frac{\partial a^T X b}{\partial X} = ba^T$$

$$\frac{\partial a^T X^T b}{\partial X} = ba^T$$

$$\frac{\partial b^T X^T D X c}{\partial X} = D^T X b c^T + D X c b^T$$

B Appendix: Distributions

B.1 List of distributions

B.1.1 List of Continuous Distributions

Distribution	PDF	Mean	Variance	CDF	CF
$\operatorname{Exp}(\lambda)$	$\lambda e^{-\lambda} x \cdot 1[0, \infty)$	λ^{-1}	λ^{-2}	$1 - e^{-\lambda x}$	$\frac{\lambda}{\lambda - it}$
$N(\mu,\sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	-	$e^{i\mu t - \frac{\sigma^2 t}{2}}$
N(0,1)	$\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$	0	1	Φ	$e^{-\frac{t^2}{2}}$
U[a,b]	$rac{1}{b-a}\cdot 1[a,b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{x-a}{b-a}1[a,b] + 1(b,\infty)$	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
U[0,1]	1 [0,1]	$\frac{1}{2}$	$\frac{1}{2}$	$x1[0,1] + 1(1,\infty)$	$rac{e^{it}-1}{it}$
$\operatorname{Gamma}(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}1(x>0)$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	-	$\left(1 - \frac{it}{\beta}\right)^{-\alpha}$
$\chi^2(k)$	$\frac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}1(x>0)$	k	2k	-	$\left (1-2it)^{-k/2} \right $
$\mathrm{Beta}(\alpha,\beta)$	$\frac{1}{\mathrm{B}(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}1[0,1]$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	-	-
Cauchy	$\frac{1}{\pi(1+x^2)}$	-	-	$\frac{1}{\pi}\arctan(x) + \frac{1}{2}$	$e^{- t }$

Table 1: List of Continuous Distributions

B.1.2 List of Discrete Distributions

Distribution	PMF	Mean	Variance	CDF	CF
$\operatorname{Poisson}(\lambda)$	$\mathbb{P}(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} k \in \mathbb{N}_0$	λ	λ	-	$\exp(\lambda(e^{it} - 1))$ $(1 - p + pe^{it})^n$ $1 - p + pe^{it}$
Bin(n, p)	$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k} k = 0, 1, \dots, n$	np	np(1-p)	-	$ (1 - p + pe^{it})^n $
$\operatorname{Bin}(1,p)$	$\mathbb{P}(X=0) = 1 - p, \ \mathbb{P}(X=1) = p$	p	p(1-p)	-	$1 - p + pe^{it}$
MultiNomial					
Geometric					
NegativeBin					
HypGeometric					

Table 2: List of Discrete Distributions

B.2 Related distributions

B.2.1 Gamma function and Beta function

Proposition B.1.

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x.$$

a)
$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

b)
$$\Gamma(1) = 1$$

c)
$$\Gamma(z+1) = z\Gamma(z)$$

d)
$$\Gamma(n) = (n-1)!$$

Proposition B.2.

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

a)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

b)
$$B(n,m) = \frac{(n-1)!(m-1)!}{(x+y-1)!}$$

c)
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{1}{(n+1)B(n-k+1,k+1)}$$

B.2.2 Gamma distribution and Beta distribution

Proposition B.3.

- a) $Gamma(1, \lambda) \sim Exp(\lambda)$
- b) $\mathrm{Gamma}(\frac{n}{2},\frac{1}{2}) \sim \chi^2(n)$
- $c) \ \ X \sim \operatorname{Gamma}(\alpha_1,\beta) \ \ and \ \ Y \sim \operatorname{Gamma}(\alpha_2,\beta) \ \ \Longrightarrow \ \ \ X + Y \sim \operatorname{Gamma}(\alpha_1 + \alpha_2,\beta) \ \ indep. \ \ of \ \frac{X}{Y}.$
- d) $X \sim \text{Gamma}(\alpha_1, \beta)$ and $Y \sim \text{Gamma}(\alpha_2, \beta) \implies \frac{X}{X+Y} \sim \text{Beta}(\alpha_1, \alpha_2)$

B.2.3 Normal distribution

Proposition B.4. Let $X \sim N(\mu, \sigma^2)$.

- $a) \ \mathbb{E}(X-\mu)^{2k+1} = 0$
- b) $\mathbb{E}(X \mu)^{2k} = \sigma^{2k} \cdot (2k 1)!!$
- c) Stein's lemma. $\mathbb{E}g'(X) = \mathbb{E}Xg(X)$.

Proposition B.5. Let $\underline{X} \sim N_n(\mu, \Sigma)$.

- a) Its pdf is
- b) Its MGF is

c)

B.2.4 Chi-square, t-distribution, and F-distribution

B.3 Order statistics

Distribution of \underline{X}	Distribution of $X_{(k)}$	Distribution of X_1	Distribution of X_n
$X_i \stackrel{\text{iid}}{\sim} U(0,1)$			
$X_i \stackrel{\text{iid}}{\sim} \operatorname{Gamma}(1, n\beta)$			

Table 3: List of Order Statistics

B.4 Conditional distributions

Distribution of X	Y	Distribution of $\underline{X} Y$ or of $X_i Y$
$X_i \stackrel{\mathrm{iid}}{\sim} \mathrm{Poisson}(\lambda)$	$Y = \sum_{i=1}^{n} X$	$\mathbb{P}(\underline{X} = \underline{x} \mid Y = N) = \frac{N!}{\prod_{i=1}^{n} x_i!} (\frac{1}{n})^{\sum_{i=1}^{n} x_i} \cdot 1(\sum_{i=1}^{n} x_i = N)$
		Note: $X_i Y=N\sim \mathrm{Bin}(N,\frac{1}{n})$
$X_i \stackrel{\mathrm{iid}}{\sim} \mathrm{Exp}(\lambda)$	$Y = \sum_{i=1}^{n} X$	$f_{X_i Y=y}(x) = \frac{1}{B(1,n-1)} (1 - \frac{x}{y})^{n-2} \frac{1}{y} \cdot 1[0,y]$
$X_i \stackrel{\mathrm{iid}}{\sim} N(\mu, \sigma^2)$	$Y = \sum_{i=1}^{n} X$	$X_i Y=y\sim N(\frac{y}{n},\sigma^2(1-\frac{1}{n}))$
		Note: $(X_i, Y) \sim N_2(\begin{pmatrix} \mu \\ n\mu \end{pmatrix}, \sigma^2 \begin{pmatrix} 1 & 1 \\ 1 & n \end{pmatrix})$
$X = {X^{(1)} \choose X^{(2)}} \sim N_{r+s}(\mu, \Sigma)$	$Y = X^{(2)}$	$X Y = y \sim N_r(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(y - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{2}\Sigma_{21})$

Table 4: List of Conditional Distributions

C Appendix: Exponential family

Definition C.1.

$$f_X(x|\theta) = h(x)e^{\eta(\theta)T(x)-A(\eta)}$$

Proposition C.2. The moment generating function of $T(\underline{X})$ is

$$M_T(u) = e^{A(\eta + u) - A(\eta)}.$$

Corollary C.3.

$$\mathbb{E}T_j = \frac{\partial}{\eta_j} A(\eta)$$
$$Cov(T_i, T_j) = \frac{\partial^2}{\partial \eta_i \partial \eta_j} A(\eta)$$