DSP56001A

24-bit Digital Signal Processor

The DSP56001A is an MPU-style general purpose Digital Signal Processor (DSP) composed of an efficient 24-bit digital signal processor engine, program and data memories, various peripherals, and support circuitry. The 56000-Family-compatible DSP engine is fed by on-chip program RAM, two independent data RAMs, and two data ROMs with sine, A-law, and mlaw tables. The DSP56001A contains a Serial Communication Interface (SCI), Synchronous Serial Interface (SSI), and parallel Host Interface (HI). This combination of features, illustrated in Figure 1, makes the DSP56001A a cost-effective, high-performance solution for high-precision general-purpose digital signal processing. The DSP56001A is intended as a replacement to the DSP56001. The DSP56002 should be considered for new designs.

Figure 1 DSP56001A Block Diagram

Motorola reserves the right to change or discontinue this product without notice.

DSP56001A Features

Digital Signal Processing Engine

- Efficient, object code compatible, 24-bit 56000-Family DSP engine
 - Up to 16.5 Million Instructions Per Second (MIPS) –
 60.6 ns instruction cycle at 33 MHz
 - Up to 99 Million Operations Per Second (MOPS) at 33 MHz
 - Executes a 1024-point complex Fast Fourier Transform (FFT) in 59,898 clocks
 - Highly parallel instruction set with unique DSP addressing modes
 - Two 56-bit accumulators including extension byte
 - Parallel 24 × 24-bit multiply-accumulate in 1 instruction cycle (2 clock cycles)
 - Double precision 48 × 48-bit multiply with 96-bit result in 6 instruction cycles
 - 56-bit Addition/Subtraction in 1 instruction cycle
 - Fractional arithmetic with support for multiprecision arithmetic
 - Hardware support for block-floating point FFT
 - Hardware nested DO loops
 - Zero-overhead fast interrupts (2 instruction cycles)
 - Four 24-bit internal data buses and three 16-bit internal address buses for maximum information transfer on-chip

Memory

- On-chip Harvard architecture permitting simultaneous accesses to program and two data memories
- 512 × 24-bit on-chip program RAM and 64 × 24-bit bootstrap ROM
- Two 256 × 24-bit on-chip data RAMs
- Two 256×24 -bit on-chip data ROMs containing sine, A-law and μ -law tables
- External memory expansion with 16-bit address and 24-bit data buses
- Bootstrap loading from external data bus or Host Interface

Peripheral and Support Circuits

- Byte-wide Host Interface (HI) with Direct Memory Access (DMA) support
- Synchronous Serial Interface (SSI) to communicate with codecs and synchronous serial devices
 - 8-, 12-, 16-, and 24-bit word sizes
 - Up to 32 software-selectable time slots in network mode
- Serial Communication Interface (SCI) for full-duplex asynchronous communications
- On-chip peripheral registers memory mapped in data memory space
- Double buffered peripherals

- Up to 24 general-purpose I/O (GPIO) pins
- Two external interrupt request pins

Miscellaneous Features

- Power-saving Wait and Stop modes
- Fully static, HCMOS design for operating frequencies from 33 MHz down to 4 MHz
- 88-pin Ceramic Pin Grid Array (PGA) package; 13 × 13 array
- 132-pin Plastic Quad Flat Pack (PQFP) surface-mount package; 24 × 24 × 4 mm
- 132-pin Ceramic Quad Flat Pack (CQFP) surface-mount package; 22 × 22 × 4 mm
- 5 V power supply

Product Documentation

This data sheet plus the two manuals listed in Table 1 are required for a complete description of the DSP56001A and are necessary to properly design with the part. Documentation is available from a local Motorola distributor, a Motorola semiconductor sales office, or through a Motorola Literature Distribution Center.

Table 1 DSP56001A Documentation

Topic	Description	Order Number
DSP56001 User's Manual	Detailed description of the 56001 architecture, 24-bit DSP processor, memory, peripherals, and instruction set	DSP56001UM/AD
DSP56000 Family Manual	Detailed description of the 56000- family architecture and the 24-bit core processor and instruction set	DSP56KFAMUM/AD
DSP56001A Data Sheet	Pin and package descriptions, and electrical and timing specifications	DSP56001A/D

Product Documentation

Related Documentation

Table 2 lists additional documentation relevant to the DSP56001A.

Table 2 DSP56001A Related Documentation

Document Name	Description	Order Number
Motorola's 16-, 24-, and 32-bit Digital Signal Processing Families	Overview of all of the DSP product families.	BR1105/D
Digital Sine-Wave Synthesis	Application Report. Uses the DSP56001 look-up table.	APR1/D
Digital Stereo 10-band Graphic Equalizer	Application Report. Includes code and circuitry; features the DSP56001.	APR2/D
Fractional and Integer Arithmetic	Application Report. Includes code.	APR3/D
Implementation of Fast Fourier Transforms	Application Report. Comprehensive FFT algorithms and code for DSP56001, DSP56156, and DSP96002.	APR4/D
Implementation of PID Controllers	Application Report. PWM using the SCI timer and three phase output using modulo addressing.	APR5/D
Convolutional Encoding and Viterbi Decoding with a V.32 Modem Trellis Example	Application Report. Theory and code; features the DSP56001.	APR6/D
Implementing IIR/FIR Filters	Application Report. Comprehensive example using the DSP56001.	APR7/D
Principles of Sigma-Delta Modulation for A-to-D Converters	Application Report. Features the DSP56ADC16; improving resolution with half-band filters	APR8/D
Full-Duplex 32-kbit/s CCITT ADPCM Speech Coding	Application Report. Features the DSP56001	APR9/D
DSP56001 Interface Techniques and Examples	Application Report. Interfaces for pseudo static RAM, dynamic RAM, ISA bus, Host	APR11/D
Twin CODEC Expansion Board for the DSP56000 ADS	Application Report. Circuit, code, FIR filter design for two voice band CODECs connecting to the SSI	APR12/D
Conference Bridging in the Digital Telecommunications Environment	Application Report. Theory and code; features the DSP56001/002	APR14/D
Implementation of Adaptive Controllers	Application Report. Adaptive control using reference models; generalized predictive control; includes code	APR15/D

 Table 2
 DSP56001A Related Documentation (Continued)

Document Name	Description	Order Number
Calculating Timing Requirements of External SRAM	Application Report. Determination of SRAM speed for optimum performance	APR16/D
Low Cost Controller for DSP56001	Application Report. Circuit and code to connect two DSP56001s to an MC68008	APR402/D
G.722 Audio Processing	Application Report. Theory and code using SB-ADPCM	APR404/D
Minimal Logic DRAM Interface	Application Report. 1M x 480 ns DRAM, 1 PAL, code	APR405/D
Logarithmic/Linear Conversion Routines	Application Report. μ-law and A-law companding routines for PCM mono-circuits	ANE408/D
Dr. BuB Bulletin Board Flyer. Motorola's electronic bulletin where free DSP software is available.		BR297/D
DSP Development Tools	Overview of Motorola's hardware and software development tools	DSPTOOLSP/D
Third Party Compendium	Brochures from companies selling hard- ware and software that supports Motorola DSPs	DSP3RDPTYPAK/D
University Support Program	Flyer. Motorola's program supporting Universities in DSP research and education	BR382/D
Technical Training Schedule	Technical Training Schedule	BR348AD/D
Audio Course Information	Audio Course Information	BR928/D
Real Time Signal Processing Applications with Motorola's DSP56000 Family	Textbook by Mohamed El-Sharkawy; 398+ pages. (This is a charge item.)	Prentice-Hall, 1990; ISBN 0-13-767138-5

Data Sheet Contents
Data Sheet Conventions

Data Sheet Contents

This data sheet contains:

		<u>Page</u>
•	Pin Descriptions	9
•	Electrical Specifications	. 15
•	Package and Tray Descriptions	. 51
•	Pin Tables	. 59
•	Design Considerations	. 71
•	ROM Table Listings	. 84
•	Ordering Information	. 91

Data Sheet Conventions

This data sheet uses the following conventions:

- OVERBARS are used to indicate a signal that is active when pulled to ground (see Table 3) e.g. the HREQ pin is active when pulled to ground. Therefore, references to the HREQ pin will always have an overbar.
- The word "assert" (see Table 3) means that a high true (active high) signal is pulled high to V_{CC} or that a low true (active low) signal is pulled low to ground.
- The word "deassert" (see Table 3) means that a high true signal is pulled low to ground or that a low true signal is pulled high to $V_{\rm CC}$.

Signal/Symbol	Logic State Signal State		Voltage
PIN	True	Asserted	Ground
PIN	False	False Deasserted	
PIN	True	Asserted	V _{CC}
PIN	False	Deasserted	Ground

Table 3 High True / Low True Signal Conventions

NOTES:

- 1. PIN is a generic term for any pin on the chip.
- Ground is an acceptable low voltage level. See the DC electrical specifications for the range of acceptable low voltage levels (typically a TTL logic low).
- 3. V_{CC} is an acceptable high voltage level. See the DC electrical specifications for the range of acceptable high voltage levels (typically a TTL logic high).

Pin Groupings

The input and output signals of the DSP56001A are organized into functional groups as shown in Table 4 and as illustrated in Figure 2.

Table 4 DSP56001A Functional Pin Groupings

Functional Group	Number of Pins
Address Bus	16
Data Bus	24
Bus Control	7
Host Interface (HI) *	15
Serial Communication Interface (SCI) *	3
Synchronous Serial Interface (SSI) *	6
Interrupt and Mode Control	3
Clock	2
Power (V _{CC})	5 / 10
Ground (GND)	7 / 14
Reserved (no connect)	0 / 32 **
Total Number of Pins	88 / 132 **

^{*} alternately, general purpose I/O pins

^{**} package dependent

Pin Groupings

Figure 2 DSP56001A Pin Functions

Pin Descriptions

All unused inputs should have pull-up resistors for two reasons:

- 1. floating inputs draw excessive power
- 2. floating inputs can cause erroneous operation

For example, during reset, all signals are three-stated unless noted otherwise. Without pull-up resistors, the \overline{PS} and \overline{DS} signals may be interpreted by peripheral circuitry as being asserted, causing two or more memory chips to try to simultaneously drive the external bus, which can damage the memory chips. A pull-up resistor in the 50 K-ohm range should be sufficient.

Address and Data Bus

The Port A address and data bus signals control the access to external memory. They are three-stated during hardware reset.

- A0-A15 (Address Bus) three-state, active high outputs. These pins specify the address for external program and data memory accesses. If there is no external bus activity, A0-A15 remain at their previous values to reduce power consumption. A0-A15 are three-stated when the bus grant signal is asserted.
- D0-D23 (Data Bus) three-state, active high, bidirectional input/outputs.

 These pins provide the bidirectional data bus for external program and data memory accesses. D0-D23 are three-stated when the bus grant signal is asserted.

Bus Control

The bus control signals provide a means to connect additional bus masters (which may be additional DSPs, microprocessors, Direct Memory Access (DMA) controllers, etc.), control external memory, and force wait states through Port A to the DSP56001A. These pins are three-stated during reset unless noted otherwise and may require pull-up resistors to assure expected operation.

- PS (Program Memory Select) threestate, active low output. This output is asserted only when external program memory is referenced.
- DS (Data Memory Select) three-state, active low output. This output is asserted only when external data memory is referenced.
- X/Y (X/Y Select) three-state output. This output is driven low during external Y data memory accesses. It is also driven low during external exception vector fetches when operating in the development mode.
- RD (Read Enable) three-state output. This output is asserted to read external memory on the data bus (D0-D23).
- WR (Write Enable) three-state output.

 This output is asserted to write external memory on the data bus (D0–D23).
- BR/WT (Bus Request/Wait) three-state, active low, bidirectional input/outputs. The bus request input BR allows another device such as a processor or DMA controller to become the master of external data bus D0-D23 and external address bus A0-A15. When operating mode register (OMR) bit 7 is clear

Interrupt and Mode Control

and \overline{BR} is asserted, the DSP56001 will always release the external data bus D0-D23, address bus A0-A15, and bus control pins \overline{PS} , \overline{DS} , X/\overline{Y} , \overline{RD} , and \overline{WR} (i. e., Port A), by placing these pins in the high-impedance state after execution of the current instruction has been completed. The \overline{BR} pin should be pulled up when not in use.

If OMR bit 7 is set, this pin is an input that allows an external device to force wait states during an external Port A operation for as long as WT is asserted.

BG/BS (Bus Grant/Bus Strobe) — three-state, active low, bidirectional input/outputs. If OMR bit 7 is clear, this output is asserted to acknowledge an external bus request after Port A has been released. If OMR bit 7 is set, this pin is bus strobe and is asserted when the DSP accesses Port A. This pin is three-stated during RESET.

Interrupt and Mode Control

The interrupt and mode control pins select the chip's operating mode as it comes out of hardware reset, and then receive interrupt requests from external sources.

MODA/ (Mode Select A/External Interrupt IRQA Request A/STOP Recovery) — input. This input pin has three functions:

- to work with the MODB pin to select the chip's operating mode
- to receive an interrupt request from an external source

 to turn on the internal clock generator, causing the chip to recover from the stop processing state. Reset causes this input to act as MODA.

As the chip comes out of reset, it reads the states of MODA and MODB, writes the information to the Operating Mode Register, and thus sets the chip's operating mode. (For more information, see the *DSP56001 User's Manual* (DSP56001UM/AD).) Therefore, during reset, this pin should be forced to the desired state. After the chip has left the reset state, the MODA pin automatically changes to external interrupt request \overline{IRQA} .

IRQA receives external interrupt requests. It can be programmed to be level sensitive or negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage level, V_{ILM}, and is not directly related to the fall time of the interrupt signal. However, as the fall time of the interrupt signal increases, the probability that noise on IRQA will generate multiple interrupts also increases.

MODB/

(Mode Select B/External Interrupt Request B) — input. This input pin works with the MODA pin to select the chip's operating mode, and it receives an interrupt request from an external source. Reset causes this input to act as MODB.

During reset, this pin should be forced to the desired state, because as the chip comes out of reset, it reads the states of the mode pins and writes the information to the Operating Mode Register, and thus sets the chip's operating mode. After the chip has left the reset state, the

MODB pin automatically changes to external interrupt request $\overline{\text{IRQB}}$.

 \overline{IRQB} receives external interrupt requests. It can also be programmed to be level sensitive or negative edge triggered. When the signal is edge triggered, triggering occurs at a voltage level, V_{ILM} , and is not directly related to the fall time of the interrupt signal. However, as the fall time of the interrupt signal increases, the probability that noise on \overline{IRQB} will generate multiple interrupts also increases.

WARNING

A Non-Maskable Interrupt (NMI) function was previously accessible on the DSP56001 by applying 10 Volts to the MODB/IRQB pin. The DSP56001A does not support a non-maskable interrupt (NMI).

DO NOT APPLY 10 VOLTS TO ANY PIN OF THE DSP56001A (including MODB)! Subjecting any pin of the DSP56001A to voltages in excess of the specified TTL/CMOS levels will permanently damage the device.

Host Interface (HI)

The host interface signals provide a convenient connection to another processor through Port B on the DSP56001A.

H0–H7 (Host Data Bus) — bidirectional. This data bus transfers data between the host processor and the DSP56001A. It acts as an input unless HR/W is high and HEN is asserted, making H0–H7 become outputs and allowing the host processor to read DSP56001A data. It is high impedance when HEN is deasserted. H0-H7 become outputs when HACK is asserted during HREQ assertion. H0–H7 can be programmed as general-purpose I/O pins (PB0–PB7) when the host interface is not selected. These pins are configured as GPIO input pins during hardware reset.

HA0-HA2(Host Address) — input*. These inputs provide the address selection for each host interface register. HA0-HA2 can be programmed as general-purpose I/O pins (PB8-PB10) when the host interface is not selected. These pins are configured as GPIO input pins during hardware reset.

HR/\overline{W} (Host Read/Write) — input*. This input selects the direction of data transfer for each host processor access. If HR/\overline{W} is high and \overline{HEN} is asserted, H0-H7 are outputs and DSP data is transferred to the host processor. If HR/\overline{W} is low and \overline{HEN} is asserted, H0-H7 are inputs and host data is transferred to the DSP. HR/\overline{W} must be stable when \overline{HEN} is asserted. It can be programmed as a general-purpose I/O pin (PB11) when the host interface is not selected. This pin is configured as a GPIO input pin during hardware reset.

^{*} These pins can be input or output when programmed as general purpose I/O.

Serial Communications Interface (SCI)

HEN (Host Enable) — input*. This input enables a data transfer on the host data bus. When $\overline{\text{HEN}}$ is asserted and $\overline{\text{HR}}/\overline{\text{W}}$ is high, H0-H7 become outputs and the host processor may read DSP56001A data. When HEN is asserted and HR/\overline{W} is low, H0–H7 become inputs. Host data is latched inside the DSP on the rising edge of HEN. Normally, a chip select signal derived from host address decoding and an enable strobe are used to generate HEN. HEN can be programmed as a general-purpose I/O pin (PB12) when the host interface is not selected. This pin is configured as a GPIO input pin during hardware reset.

HREQ (Host Request) — open drain output*. This signal is used by the host interface to request service from the host processor, DMA controller, or a simple external controller. HREQ can be programmed as a general-purpose (not open-drain) I/O pin (PB13) when the host interface is not selected. This pin is configured as a GPIO input pin during hardware reset.

NOTE: HREQ should always be pulled high when it is not in use.

HACK (Host Acknowledge) — input*. This input has two functions. It provides a host acknowledge handshake signal for DMA transfers and it receives a host interrupt acknowledge compatible with MC68000 Family processors. When the port is defined as the host interface, the user may program this input as either a general-purpose I/O pin, or as the HACK pin. This pin is configured as a GPIO input pin during hardware reset.

NOTE: HACK should always be pulled high when it is not in use.

Serial Communications Interface (SCI)

RXD (Receive Data) — input*. This input receives byte-oriented data and transfers the data to the SCI receive shift register. Input data can be sampled on either the positive edge or on the negative edge of the receive clock, depending on how the SCI control register is programmed. RXD can be programmed as a general-purpose I/O pin (PC0) when it is not needed as an SCI pin. This pin is configured as a GPIO input pin during hardware reset.

TXD (Transmit Data) — output*. This output transmits serial data from the SCI transmit shift register. In the default configuration, the data changes on the positive clock edge and is valid on the negative clock edge. The user can reverse this clock polarity by programming the SCI control register appropriately. TXD can be programmed as a general-purpose I/O pin (PC1) when the SCI TXD function is not being used. This pin is configured as a GPIO input pin during hardware reset.

SCLK (SCI Serial Clock) — bidirectional. This pin provides an input or output clock from which the transmit and/or receive baud rate is derived in the asynchronous mode, and from which data is transferred in the synchronous mode. SCLK can be programmed as a general-purpose I/O pin (PC2) when the SCI SCLK function is not being used. This pin is configured as a GPIO input pin during hardware reset.

^{*} These pins can be input or output when programmed as general purpose I/O.

Synchronous Serial Interface (SSI)

Power and Ground

Clock Generator

Synchronous Serial Interface (SSI)

The SSI operating mode affects the definition and function of the SC0, SC1 and SC2 control pins.

- SC0 (Serial Clock 0) bidirectional. This pin's function is determined by whether the SCLK is in synchronous or asynchronous mode. In synchronous mode, this pin is used for serial flag I/O. In asynchronous mode, this pin receives clock I/O. SC0 can be programmed as a general-purpose I/O pin (PC3) when the SSI SC0 function is not being used. This pin is configured as a GPIO input pin during hardware reset.
- SC1 (Serial Control 1) bidirectional. The SSI uses this bidirectional pin to control flag or frame synchronization. This pin's function is determined by whether the SCLK is in synchronous or asynchronous mode. In asynchronous mode, this pin is frame sync I/O. For synchronous mode with continuous clock, this pin is serial flag SC1 and operates like the SC0. SC0 and SC1 are independent serial I/O flags but may be used together for multiple serial device selection. SC1 can be programmed as a general-purpose I/O pin (PC4) when the SSI SC1 function is not being used. This pin is configured as a GPIO input pin during hardware reset.
- SC2 (Serial Control 2) bidirectional.

 The SSI uses this bidirectional pin to control frame synchronization only. As with SC0 and SC1, its function is defined by the SSI operating mode. SC2 can be programmed as a general-purpose I/O pin (PC5) when the SSI SC2

function is not being used. This pin is configured as a GPIO input pin during hardware reset.

- SCK (SSI Serial Clock) bidirectional.

 This bidirectional pin provides the serial bit rate clock for the SSI when only one clock is being used. SCK can be programmed as a general-purpose I/O pin (PC6) when it is not needed as an SSI pin. This pin is configured as a GPIO input pin during hardware reset.
- SRD (SSI Receive Data) input*. This input pin receives serial data into the SSI receive shift register. SRD can be programmed as a general-purpose I/O pin (PC7) when it is not needed as an SSI pin. This pin is configured as a GPIO input pin during hardware reset.
- STD (SSI Transmit Data) output*. This output pin transmits serial data from the SSI transmit shift register. STD can be programmed as a general-purpose I/O pin (PC8) when it is not needed as an SSI pin. This pin is configured as a GPIO input pin during hardware reset.

Power and Ground

V_{CC} (Power) — Power pins (see Table 22).GND (Ground) — Ground pins (see Table 22).

Clock Generator

EXTAL (External Clock/Crystal Input) — input. The EXTAL input interfaces the internal oscillator input to an external crystal or an external clock.

^{*} These pins can be input or output when programmed as general purpose I/O.

Clock Generator

XTAL (Crystal) — output. This output connects the internal oscillator output to an external crystal. If an external clock is used, XTAL should be left unconnected.

Electrical Specifications

The DSP56001A is fabricated in high density CMOS with TTL compatible inputs and outputs.

Table 5 Maximum Ratings (GND = 0 Vdc)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.3 to +7.0	V
All Input Voltages	V _{IN}	GND - 0.5 to V _{CC} + 0.5	V
Current Drain per Pin Excluding V _{CC} and GND	I	10	mA
Operating Temperature Range	TJ	-40 to +105	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Table 6 Thermal Characteristics — PGA Package

Thermal Resistance	Symbol	Value	Unit
Junction to Ambient	Θ_{JA}	27/<	°C/W
Junction to Case	$\Theta_{\sf JC}$	6.5) °C/W

Table 7 Thermal Characteristics — CQFP/PQFP Packages

Thermal Resistance	Symbol	Value PQFP	Value CQFP	Unit
Junction to Ambient	Θ_{JA}	47	40	°C/W
Junction to Case	$\Theta_{\sf JC}$	13	7.0	°C/W

DC Electrical Characteristics

(V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz; V_{CC} = 5.0 Vdc \pm 5% for 33 MHz; T_J = -40° to +105° C)

Table 8 DC Electrical Characteristics for the DSP56001A

Characteristics	Symbol	Min	Тур	Max	Units
Supply Voltage 20, 27 MHz	MHz V _{CC}	4.5 4.75	5.0	5.5 5.25	V
Input High Voltage • Except EXTAL, RESET, MODA, MODB • EXTAL • RESET • MODA, MODB	V _{IH} V _{IHC} V _{IHR} V _{IHM}	2.0 4.0 2.5 3.5	_ _ _ _	V _{CC} V _{CC} V _{CC}	V V V
Input Low Voltage • Except EXTAL, MODA, MODB • EXTAL • MODA, MODB	V _{IL} V _{ILC} V _{ILM}	-0.5 -0.5 -0.5	_ _ _	0.8 0.6 2.0	V V
Input Leakage Current EXTAL, RESET, MODA/IRQA, MODBR/WT	DB/IRQB,	-1	_	1	μА
Three-State (Off-State) Input Current (@ 2.4 V / 0.4 V)	I _{TSI}	-10		10	μА
Output High Voltage (I _{OH} = -0.4 mA)	V _{OH}	2.4	/ />-	\ <u></u>	V
Output Low Voltage (I_{OL} = 1.6 mA; $\overline{\text{HREQ}}\ I_{OL}$ = 6.7 mA, TXD I_{OL} = 6.7	mA)	_ <	7(0)	0.4	V
Internal Supply Current at 33MHz (Se • in Wait Mode (See Note 1) • in Stop Mode (See Note 1)	e Note 3) I _{CCI} I _{CCW} I _{CCS}	_ _ _	80 10 2	115 25 2000	mA mA μA
Input Capacitance (See Note 2)	C _{IN}	_	10	~	pF

NOTES:

- 1. In order to obtain these results all inputs must be terminated (i.e., not allowed to float).
- 2. Periodically sampled and not 100% tested.
- 3. The "Power Consumption" section describes how to calculate the external supply current.

AC Electrical Characteristics

The timing waveforms for the DSP56001A in the AC Electrical Characteristics are tested with a V_{IL} maximum of 0.5 V and a V_{IH} minimum of 2.4 V for all pins, except EXTAL, $\overline{RESET},$ MODA, MODB.. These four pins are tested using the input levels set forth in the DC Electrical Characteristics section. AC timing specifications which are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal's transition. DSP56001A output levels are measured with the production test machine V_{OL} and V_{OH} reference levels set at 0.8 V and 2.0 V respectively.

Clock Operation

Clock Operation

The DSP56001A system clock may be derived from the on-chip crystal oscillator as shown in Figure 3, or it may be externally supplied. An externally supplied square wave voltage source (see Figure 4) should be connected to EXTAL, leaving XTAL physically not connected to the board or socket. The rise and fall time of this external clock should be 4 ns maximum.

Fundamental Frequency Crystal Oscillator

Suggested Component Values

 $Forf_{OSC} = 4 MHz$

 $R = 680 \text{ K}\Omega \pm 10\%$

 $C = 20 \text{ pf} \pm 20\%$

 $Forf_{OSC} = 30 MHz$

 $R = 680 K\Omega \pm 10\%$

 $C = 20 \text{ pf} \pm 20\%$

NOTE:

 The suggested crystal source is ICM, # 433163 - 4.00 (4MHz fundamental, 20 pf load) or # 436163 - 30.00 (30 MHz fundamental, 20 pf load).

3rd Overtone Crystal Oscillator

Suggested Component Values

 $R1 = 470 \text{ K}\Omega \pm 10\%$

 $R2/= 330 \Omega \pm 10\%$

 $0.1 = 0.1 \, \mu f \pm 20\%$

22 = 26 pf + 20%

 $C3 = 20 \text{ pf} \pm 10\%$

 $L1 = 2.37 \,\mu\text{H} \pm 10\%$

XTAL = 33 MHz, AT cut, 20 pf load,

 50Ω max series resistance

NOTES:

- 1. *3rd overtone crystal.
- The suggested crystal source is ICM, # 471163 - 33.00 (33 MHz 3rd overtone, 20 pf load).
- 3. R2 limits crystal current.
- Reference Benjamin Parzen, <u>The Design of Crystal and Other Harmonic Oscillators</u>, John Wiley & Sons, 1983.

Figure 3 Crystal Oscillator Circuits

NOTE: The midpoint is V_{ILC} + 0.5 (V_{IHC} - V_{ILC}).

Figure 4 External Clock Timing

Table 9 Clock Operation

Num	Characteristics	Symbol	20.5	MHz	27 I	MHz	33 1	ИНz	Unit
Num	Cital acteristics <	Symbol	Min	Max	Min	Max	Min	Max	Onic
	Min Frequency of Operation (EXTAL Pin)	f//	4/	20.5	4	27.0	4	33.0	MHz
1	Clock Input High (See Note) • 46.7% - 53.3% duty cycle	T _H	22	150	17	150	13.5	150	ns
2	Clock Input Low (See Note) • 46.7% - 53.3% duty cycle	T _L	22	150	7 17	150	13.5	150	ns
3	Clock Cycle Time	T _C	48.75	250	37	250	30	250	ns
4	Instruction Cycle Time = $I_{CYC} = 2 \times T_C$ (See Note)	lcyc	97.5	500	74	500	60	500	ns

NOTE: External Clock Input High and External Clock Input Low are measured at 50% of the input transition.

Reset, Stop, Mode Select, and Interrupt Timing

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz, T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

WS = Number of wait states (1 WS = T_C) programmed into external bus access using BCR (WS = 0 - 15)

Table 10 Reset, Stop, Mode Select, and Interrupt Timing

Mission	Clyanothristian	20.5	MHz	27 MHz		33 MHz		Unit
Num	Characteristics	Min	Max	Min	Max	Min	Max	Unit
9	Delay from RESET Assertion to Address High Impedance (periodically sampled and not 100% tested).	_	50	_	38	_	31	ns
10	Minimum Stabilization Duration • Internal Osc. (See Note 1)	75000 ×	_	75000 × T _C	_	75000 × T _C	_	ns
	External clock (See Note 2)	25×T _C	<u></u>	$25 \times T_{C}$	_	$25 \times T_C$	_	ns
11	Delay from Asynchronous RESET Deas- sertion to First External Address Output (Internal Reset Deassertion)	8×T _C	9×T _C +	8×T _C	9×T _C +	8×T _C	9×T _C + 25	ns
12	Synchronous Reset Setup Time from RESET Deassertion to Falling Edge of External Clock	20	T _C - 10	15	T _C -8	13	T _C - 7	ns
13	Synchronous Reset Delay Time from the Falling Edge of External Clock to the First External Address Output	8×T _C +	8×T _C +	8×T _C +	8×T _C + 23	8×Tc+	8×T _C +	ns
14	Mode Select Setup Time	100	_	77	_	62	1-1/	ns
15	Mode Select Hold Time	0	_	0		0 _] //	ns
16	Minimum Edge-triggered Interrupt Request Assertion Width	25	_	17	_	16	_	ns
16a	Minimum Edge-triggered Interrupt Request Deassertion Width	15	_	10	_	10	_	ns
17	Delay from IRQA, IRQB, Assertion to External Memory Access Address Out Valid							
	Caused by First Interrupt Instruction Fetch	5×T _C + T _H	_	5×T _C + T _H	_	5×T _C + T _H	_	ns
	Caused by First Interrupt Instruction Execution	9×T _C + T _H	_	9×T _C + T _H	_	9×T _C + T _H	_	ns

 Table 10
 Reset, Stop, Mode Select, and Interrupt Timing (continued)

Num	Characteristics	20.5 MHz		27	MHz	33	Unit	
Num	Characteristics	Min	Max	Min	Max	Min	Max	Onit
18	Delay from IRQA, IRQB, Assertion to General Purpose Transfer Output Valid caused by First Interrupt Instruction Execution	11 + T _C + T _H	_	11 × T _C + T _H		11 × T _C + T _H		ns
19	Delay from Address Output Valid caused by First Interrupt Instruction Execute to Interrupt Request Deassertion for Level Sensitive Fast Interrupts (See Note 3)	_	2×T _C + T _L + (T _C × WS) - 44	-	$2 \times T_C + T_L + (T_C \times WS) - 34$	_	$2 \times T_C + T_L + (T_C \times WS) - 27$	ns
20	Delay from RD Assertion to Interrupt Request Deassertion for Level Sensitive Fast Interrupts (See Note 3)	_	$2 \times T_C + (T_C \times WS) - 40$	_	$2 \times T_C + (T_C \times WS) - 31$	_	2×T _C + (T _C × WS) - 25	ns
21	Delay from WR Assertion to Interrupt Request Deassertion for Level Sensitive- Fast Interrupts • WS = 0 • WS > 0 (See Note 3)	-	$ \begin{array}{c} 2 \times T_{C} - \\ 40 \end{array} $ $ T_{C} + T_{L} + \\ (T_{C} \times \\ $		$2 \times T_{C} - 31$ $T_{C} + T_{L} + (T_{C} \times 10^{-1})$	_	$2 \times T_{C}$ - 25 $T_{C} + T_{L} + (T_{C} \times T_{C})$	ns ns
22	Delay from General-Purpose Output Valid to Interrupt Request Deassertion for Level Sensitive Fast Interrupts - If Second Interrupt Instruction is: Single cycle Two cycles	_	T _L - 60		WS) - 31 T _L - 46 (2×T _C)+	<u> </u>	WS) - 25 T _L - 37 (2×T _C)+	ns ns
23	(See Note 3) Synchronous Interrupt Setup Time from IRQA, IRQB, Assertion to the Rising Edge of External Clock	25	T _L - 60	19	T _L - 46 T _C - 8	16	T _L - 37	ns
24	Synchronous Interrupt Delay Time from the Rising Edge External Clock to the First External Address Output Valid caused by the First Instruction Fetch after coming out of Wait State	13×T _C + T _H +7	13×T _C + T _H +30			13×T _C + T _H +5	13×T _C + T _H +19	ns
25	Duration for IRQA Assertion to Recover from stop state	25	_	19	_	16	_	ns

Table 10 Reset, Stop, Mode Select, and Interrupt Timing (continued)

Num	Characteristics	20.5 MHz		27 MHz		33 MHz		Unit
Num		Min	Max	Min	Max	Min	Max	Ullit
26	Delay from IRQA Assertion to Fetch of First Interrupt Instruction (when exiting 'STOP') • Internal Crystal Oscillator Clock, OMR bit 6 = 0	65548 × T _C	_	65548× T _C	_	65548× T _C	_	ns
	• Stable External Clock, OMR bit 6 = 1 (See Note 4)	20 × T _C		$20 \times T_C$	_	20 × T _C	_	ns
27	Duration of Level Sensitive IRQA Assertion to ensure interrupt service (when exiting 'STOP') • Internal Crystal Oscillator Clock, OMR		_	65534×	_	65534×	_	ns
	bit 6 = 0 • Stable External Clock, OMR bit 6 = 1 (See Note 4)	$T_C + T_L$ $6 \times T_C +$	_	$T_C + T_L$ $6 \times T_C + T_L$ T_L	_	$ \begin{array}{c c} T_C + T_L \\ 6 \times T_C + \\ T_L \end{array} $	_	ns
28	Delay from Level Sensitive IRQA Assertion to Fetch of First Interrupt Instruction (when exiting 'Stop') • Internal Crystal Oscillator Clock,	65548×	>	65548×	_	65548×	_	ns
	OMR bit 6 = 0	T _C /		T _C	·	T _C		
	• Stable External Clock, OMR bit 6 = 1 (See Note 4)	20×T		/20×T _C	_	$20 \times T_{C}$	_	ns

NOTES:

- 1. A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:
 - after power-on reset, and
 - when recovering from Stop mode.

During this stabilization period, T_C , T_H and T_L will not be constant. Since this stabilization period varies, a delay of $75,000 \times T_C$ is typically allowed to assure that the oscillator is stable before executing programs. While it is possible to set OMR bit 6 = 1 when using the internal crystal oscillator, it is not recommended and these specifications do not guarantee timings for that case.

- 2. Circuit stabilization delay is required during reset when using an external clock in two cases;
 - after power-on reset, and
 - when recovering from Stop mode.
- 3. When using fast interrupts and IRQA and IRQB are defined as level-sensitive, then timings 19 through 22 apply to prevent multiple interrupt service. To avoid these timing restrictions, the deassertive edge-triggered mode is recommended when using fast interrupt. Long interrupts are recommended when using level-sensitive mode.
- 4. A clock stabilization delay is required when using the on-chip crystal oscillator in two cases:
 - after power-on reset, and
 - when recovering from Stop mode.

During this stabilization period, T_C , T_H and T_L will not be constant. Since this stabilization period varies, a delay of $75,000 \times T_C$ is typically allowed to assure that the oscillator is stable before executing programs. While it is possible to set OMR bit 6 = 1 when using the internal crystal oscillator, it is not recommended and these specifications do not guarantee timings for that case.

Figure 7 Operating Mode Select Timing

Figure 8 External Level-Sensitive Fast Interrupt Timing

Figure 10 Synchronous Interrupt from Wait State Timing

A0-A15, \overline{DS} \overline{PS} , X/\overline{Y}

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz, T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

Active low lines should be "pulled up" in a manner consistent with the AC and DC specifications.

Table 11 Host I/O Timing

Num	Characteristics	20.5 MHz		27 MHz		33 MHz		Unit
Num		Min	Max	Min	Max	Min	Max	Jiii
30	Host Synchronous Delay (see Note 1)	TL	T _C + T _L	TL	T _C + T _L	TL	T _C + T _L	ns
31	HEN/HACK Assertion Width (See Note 2) • CVR, ICR, ISR, RXL Read	T _C + 60	_	T _C + 46	_	T _C + 37	_	ns
	• VR, RXH/M Read	50	_	39	_	31	_	ns
	• Write	25		19	_	16	_	ns
32	HEN/HACK Deassertion Width (See Note 2)	25	_	19	_	16	_	ns
	Between Two TXL Writes (See Note 3)	2×T _C +		2×T _C + 46	_	2×T _C + 37	_	ns
	Between Two CVR, ICR, ISR, RXL Reads (See Note 4)	2×T _C +		2×T _C +	_	2×T _C + 37	_	ns
33	Host Data Input Setup Time Before HEN/HACK Deassertion	5	4/	4	_	4		ns
34	Host Data Input Hold Time After HEN/HACK Deassertion	5	_	4	172	4	_	ns
35	HEN/HACK Assertion to Output Data Active from High Impedance	0	_	0		0	> -	ns
36	HEN/HACK Assertion to Output Data Valid	_	50	_	39	/_	31	ns
37	HEN/HACK Deassertion to Output Data High Impedance (See Note 6)	_	35	_	27	_	22	ns
38	Output Data Hold Time After HEN/HACK Deassertion (See Note 7)	5	_	4	_	4	_	ns
39	HR/\overline{W} Low Setup Time Before \overline{HEN} Assertion	0	_	0	_	0	_	ns
40	HR/\overline{W} Low Hold Time After \overline{HEN} Deassertion	5	_	4	_	4	_	ns
41	HR/W High Setup Time to HEN Assertion	0	_	0	_	0	_	ns

Table 11 Host I/O Timing (continued)

Norma	Characteristics	20.5	MHz	27 MHz		33 MHz		l lnit
Num		Min	Max	Min	Max	Min	Max	Unit
42	HR/W High Hold Time After HEN/HACK Deassertion	5	_	4	_	4	_	ns
43	HA0-HA2 Setup Time Before HEN Assertion	0	_	0	_	0	_	ns
44	HA0-HA2 Hold Time After HEN Deassertion	5	_	4	_	4	_	ns
45	DMA HACK Assertion to HREQ Deassertion (See Note 5)	5	60	4	46	4	46	ns
46	DMA HACK Deassertion to HREQ Assertion (See Notes 4, 5) • for DMA RXL Read	t _{HSDL} + T _C + T _H + 5	_	t _{HSDL} + T _C + T _H + 4	_	t _{HSDL} + T _C + T _H + 4	_	ns
	for DMA TXL Writeall other cases	t _{HSDL} + T _C +5	> -	$t_{HSDL} + T_C + 4$	_	$t_{HSDL} + T_C + 4$	_	ns
47	Delay from HEN Deassertion to HREQ Assertion for RXL Read (See Notes 4, 5)	t _{HSDL} + T _C + T _H + 5		t _{HSDL} + T _C + T _H +4	_	t _{HSDL} + T _C + T _H + 4	_	ns
48	Delay from HEN Deassertion to HREQ Assertion for TXL Write (See Notes 4, 5)	t _{HSDL} + T _C + 5		t _{HSDL} + T _C +4		t _{HSDL} + T _C + 4	_	ns
49	Delay from HEN Assertion to HREQ Deassertion for RXL Read, TXL Write (See Notes 4, 5)	5	75	4	70	34	65	ns

NOTES:

- Host synchronization delay (t_{HSDL}) is the time period required for the DSP56001 to sample any external asynchronous input signal, determine whether it is high or low, and synchronize it to the DSP56001 internal clock.
- 2. See HOST PORT CONSIDERATIONS.
- 3. This timing must be adhered to only if two consecutive writes to the TXL are executed without polling TXDE or HREQ.
- 4. This timing must be adhered to only if two consecutive reads from one of these registers are executed without polling the corresponding status bits or HREQ
- 5. $\overline{\mathsf{HREQ}}$ is pulled up by a 1 k Ω resistor.
- 6. Specifications are periodically sampled and not 100% tested.
- 7. May decrease to 0 ns for future versions.

Figure 13 Host Interrupt Vector Register (IVR) Read

Figure 14 Host Read Cycle (Non-DMA Mode)

Figure 15 Host Write Cycle (Non-DMA Mode)

Figure 16 Host DMA Read Cycle

Synchronous Communications Interface (SCI) Timing

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz,

 T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

 t_{SCC} = Synchronous Clock Cycle Time (for internal clock, t_{SCC} is determined by the SCI clock control register and T_{C})

Table 12 SCI Synchronous Mode Timing

Nivers	Characteristics	20.5	20.5 MHz		MHz	33	Unit	
Num		Min	Max	Min	Max	Min	Max	Unit
55	Synchronous Clock Cycle — t _{SCC}	8×T _C	_	8×T _C	_	8×T _C	_	ns
56	Clock Low Period	4×T _C - 20	_	4×T _C - 15	_	4×T _C - 13	_	ns
57	Clock High Period	4×T _C -	_	4×T _C - 15	_	4×T _C - 13	_	ns
58	< intentionally blank >	\	_	_	_	_	_	
59	Output Data Setup to Clock Falling Edge (Internal Clock)	2 × T _C + T _L - 50		2×T _C + T _L -39	_	2×T _C + T _L -31	_	ns
60	Output Data Hold After Clock Rising Edge (Internal Clock)	2 × T _C - T _L - 15	//-/>	2 × T _C - T _L - 11	_	2×T _C - T _L - 9	_	ns
61	Input Data Setup Time Before Clock Rising Edge (Internal Clock)	2×T _C + T _L +45		2×T _C + T _L +35	_	2×T _C + T _L +28	_	ns
62	Input Data Not Valid Before Clock Rising Edge (Internal Clock)	_	2×T _C + T _L -10	4	2×T _C + T _L -8	_	2×T _C + T _L -6	ns
63	Clock Falling Edge to Output Data Valid (External Clock)	_	63		48		39	ns
64	Output Data Hold After Clock Rising Edge (External Clock)	T _C + 12	_	T _C + 9		T _C +8	> -	ns
65	Input Data Setup Time Before Clock Rising Edge (External Clock)	30	_	23	_ <	19	_	ns
66	Input Data Hold Time After Clock Rising Edge (External Clock)	40	_	31	_	25	_	ns

Synchronous Communications Interface (SCI) Timing

Table 13 SCI Asynchronous Mode Timing — 1X Clock

Num	Characteristics	20.5 MHz		27 [ИHz	33 MHz		Unit
		Min	Max	Min	Max	Min	Max	Oilit
67	Asynchronous Clock Cycle — t _{ACC}	64×T _C	_	64×T _C	_	64×T _C	_	ns
68	Clock Low Period	32×T _C -	_	32×T _C - 15	_	32×T _C -	_	ns
69	Clock High Period	32×T _C - 20	_	32×T _C - 15	_	32×T _C - 13	_	ns
70	< intentionally blank >	_	_	_	_	_	_	_
71	Output Data Setup to Clock Rising Edge (Internal Clock)	32×T _C - 100	_	32×T _C - 77	_	32×T _C - 61	_	ns
72	Output Data Hold After Clock Rising Edge (Internal Clock)	32×T _C - 100		32×T _C - 77	_	32×T _C - 61	_	ns

Synchronous Communications Interface (SCI) Timing

Figure 18 SCI Synchronous Mode Timing

NOTE: In the wire-OR mode, TXD can be pulled up by 1 $K\Omega$

Figure 19 SCI Asynchronous Mode Timing

Synchronous Serial Interface (SSI) Timing

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz, T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

 t_{SSICC} = SSI clock cycle time

TXC (SCK Pin) = Transmit Clock

RXC (SC0 or SCK Pin) = Receive Clock

FST (SC2 Pin) = Transmit Frame Sync

FSR (SC1 or SC2 Pin) = Receive Frame Sync

ick = Internal Clock

xck = External Clock

gck = Gated Clock

ick a = Internal Clock, Asynchronous Mode (Asynchronous implies that

STD and SRD are two different clocks)

icks = Internal Clock, Synchronous Mode (Synchronous implies that

STD and SRD are the same clock)

bl = bit length

wl = word length/

Table 14 / SSI Timing

Num	Characteristics	20.5	MHz	27/1	MHz//	33	MHz	Case	Unit
Num	Gilaracteristics	Min	Max	Min	Max	Min	Max	Case	Oiiit
80	Clock Cycle — t _{SSICC} (See Note 1)	4×T _C	_	4×T _C	<u> </u>	4×T _C		1	ns
81	Clock High Period	2×T _C - 20	_	2×T _C - 15	_	2×T _C - 13			ns
82	Clock Low Period	2×T _C -	_	2×T _C - 15	_	2×T _C -	_ >		ns
83	< intentionally blank >		_	_	_	_			_
84	SRD Rising Edge to FSR Out (bl) High		80 50	_	61 38	_	48 31	x ck i ck a	ns ns
85	SRD Rising Edge to FSR Out (bl) Low	_	70 40	_	54 31		43 25	x ck i ck a	ns ns
86	SRD Rising Edge to FSR Out (wl) High	_	70 40	_	54 31	_	43 25	x ck i ck a	ns ns
87	RXC Rising Edge to FSR Out (wl) Low	_	70 40	_	54 31		43 25	x ck i ck a	ns ns

 Table 14
 SSI Timing (continued)

Nium	Characteristics	20.5	MHz	27	MHz	33	MHz	Casa	l lmi4
Num	Characteristics	Min	Max	Min	Max	Min	Max	Case	Unit
88	Data In Setup Time Before RXC (SCK in Synchronous Mode) Falling Edge	15 35 25		12 27 19	_ _ _	10 22 16	_ _ _	x ck i ck a i ck s	ns ns ns
89	Data In Hold Time After RXC Falling Edge	35 5	_	27 4	_	22 4	_	x ck i ck	ns ns
90	FSR Input (bl) High Before RXC Falling Edge	15 35	_	12 27	_	10 23	_	x ck i ck a	ns ns
91	FSR Input (wl) High Before RXC Falling Edge	20 55	_	15 42	_	13 34	_	x ck i ck a	ns ns
92	FSR Input Hold Time After RXC Falling Edge	35 5		27 4		22 4		x ck i ck	ns ns
93	Flags Input Setup Before RXC Falling Edge	30 50		23 39		19 31		x ck i ck s	ns ns
94	Flags Input Hold Time After RXC Falling Edge	35 5		27 4		22 4		x ck i ck s	ns ns
95	TXC Rising Edge to FST Out (bl) High	/_//	70 30	$\overline{\diamondsuit}$	54 23	<u> </u>	43 19	x ck i ck	ns ns
96	TXC Rising Edge to FST Out (bl) Low	_ <	65 35	/-/->	50 27	_ _	40 22	x ck i ck	ns ns
97	TXC Rising Edge to FST Out (wl) High	_	65 35	(7	50 27	_	40 22	x ck i ck	ns ns
98	TXC Rising Edge to FST Out (wl) Low	_	65 35	_<	50 27) /	40 22	x ck i ck	ns ns
99	TXC Rising Edge to Data Out Enable from High Impedance	_	65 40	_	50 31		40 25	x ck i ck	ns ns
100	TXC Rising Edge to Data Out Valid	_	65 40	_ _	50 31	=	40 25	x ck i ck	ns ns
101	TXC Rising Edge to Data Out High Impedance (See Note 2)	_	70 40	_ _	54 31	_	43 25	x ck i ck	ns ns
101A	TXC Falling Edge to Data Out High Impedance (See Note 2)	_	T _C + T _H	_	T _C + T _H	_	T _C + T _H	g ck	ns
102	FST Input (bl) Setup Time Before TXC Falling Edge	15 35	_	12 27	_	10 23	_	x ck i ck	ns ns
103	FST Input (wl) to Data Out Enable from High Impedance	_	60	_	46	_	37		ns

Table 14 SSI Timing (continued)

Num	Characteristics	20.5 MHz		27 MHz		33 MHz		Case	Unit
Num	Characteristics	Min	Max	Min	Max	Min	Max	Case	Offic
104	FST Input (wl) Setup Time Before TXC Falling Edge	20 55	_	15 42	-	13 34	_	x ck i ck	ns ns
105	FST Input Hold Time After TXC Falling Edge	35 5	_	27 4		22 4		x ck i ck	ns ns
106	Flag Output Valid After TXC Rising Edge	_	70 40	_	54 31	_	43 25	x ck i ck	ns ns

NOTES:

For internal clock, External Clock Cycle is defined by I_{cyc} and SSI control register.
 Periodically sampled, and not 100% tested

NOTE: In the Network mode, output flag transitions can occur at the start of each time slot within the frame. In the Normal mode, the output flag state is asserted for the entire frame period.

Figure 20 SSI Transmitter Timing

Figure 21 SSI Receiver Timing

External Bus Asynchronous Timing

External Bus Asynchronous Timing

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz, T_{I} = -40° to +105° C, C_{L} = 50 pF + 1 TTL Load

WS = Number of Wait States, as determined by BCR register (WS = 0 to 15)

Capacitance Derating

The DSP56001A External Bus Timing Specifications are designed and tested at the maximum capacitive load of 50 pF, including stray capacitance. Typically, the drive capability of the External Bus pins (A0-A15, D0-D23, \overline{PS} , \overline{DS} , \overline{RD} , \overline{WR} , X/\overline{Y}) derates linearly at 1 ns per 12 pF of additional capacitance from 50 pF to 250 pF of loading. Port B and C pins derate linearly at 1 ns per 5 pF of additional capacitance from 50 pF to 250 pF of loading. Active low lines should be "pulled up" in a manner consistent with the AC and DC specifications.

Table 15 External Bus Asynchronous Timing

Num	Characteristics	20.5	MHz	27	MHz	33	MHz	Unit
Num	Characteristics	Min	Max	Min	Max	Min	Max	Oilit
115	Delay from BR Assertion to BG Assertion • With no external access from the DSP	2×T _C +T _H	4×T _C + T _H +20	2×T _C +T _H	4×T _C + T _H +15	2×T _C +T _H	4×T _C + T _H +13	ns
	During external read or write access	T _C +T _H	$4 \times T_{C} + T_{H} + T_{C} \times WS + 20$	T _C +T _H	$4 \times T_{C} + T_{H} + T_{C} \times WS + 15$	T _C +T _H	$ 4 \times T_C + T_H + T_C \times WS + 13 $	ns
	During external read- modify-write access	T _C +T _H	$6 \times T_{C} + T_{H} + 2 \times T_{C} \times WS + 20$		$6 \times T_{C} + T_{H} + 2 \times T_{C} \times WS + 15$	T _C +T _H	$6 \times T_C + T_H + 2 \times T_C \times WS + 13$	ns
	During stop mode — external bus will not be released and BG will not go low	∞	_	8	_	∞		ns
	During wait mode	T _H + 4	T _C + T _H + 30	T _H + 3	T _C + T _H + 23	T _H + 3	T _C + T _H + 19	ns
116	Delay from BR Deassertion to BG Deassertion	2×T _C	$4 \times T_C + 20$	2×T _C	4 × T _C + 15	2×T _C	$4 \times T_C + 13$	ns
117	BG Deassertion Duration	2×T _C + T _H -10	_	2×T _C + T _H -8	_	2×T _C + T _H -6	_	ns

 Table 15
 External Bus Asynchronous Timing (continued)

Nium	Characteristics	20.5	MHz	27	MHz	33	MHz	Unit
Num	Characteristics	Min	Max	Min	Max	Min	Max	Unit
118	Delay from Address, Data, and Control Bus High Impedance to BG Assertion	0	_	0	_	0	_	ns
119	Delay from BG Deassertion to Address and Control Bus Enabled	l	T _H - 10	_	T _H - 8	ı	T _H - 6	ns
120	Address Valid to WR Assertion WS = 0 WS > 0	T _L - 9 T _C - 9	T _L +5 T _C +5	T _L - 7 T _C - 7	T _L + 5 T _C + 5	T _L - 5.5 T _C - 5.5	T _L +5 T _C +5	ns ns
121	WR Assertion Width • WS = 0 • WS > 0	T _C -9 WS×T _C +/	7-	$T_C - 7$ WS×T _C +	_ 	$T_C - 5.0$ WS× $T_C +$	_ 	ns ns
122	WR Deassertion to Address Not Valid	T _L - 9		T _L - 7	_	T _L - 5.0	_	ns
123	WR Assertion to Data Out Active From High Impedance • WS = 0	T _H - 9	T _H +10	T _H -7	T _H +8	T _H - 5.5	T _H + 6.5	ns
	• WS > 0	0	10	0	8/	0	6.5	ns
124	Data Out Hold Time from WR Deassertion (the maximum specification is periodically sampled, and not 100% tested)	T _H - 9	T _H + 7	T _H - 7	T _H +6	T _H - 5.5	T _H + 4.5	ns
125	Data Out Setup Time to WR Deassertion • WS = 0	T _L - 5	_	T _L - 5	_	T _L - 5	_	ns
	• WS > 0	WS×T _C + T _L -5	_	WS×T _C + T _L -5	_	WS×T _C + T _L -5	_	ns
126	RD Deassertion to Address Not Valid	T _H - 9	_	T _H - 7	_	T _H - 5.5	_	ns

External Bus Asynchronous Timing

 Table 15
 External Bus Asynchronous Timing (continued)

Num	Characteristics	20.5	MHz	27	MHz	33	MHz	l lmi4
Num	Characteristics	Min	Max	Min	Max	Min	Max	Unit
127	Address Valid to RD Deassertion							
	• WS = 0	T _C + T _L - 8	_	T _C + T _L - 6	_	T _C + T _L - 6	_	ns
	• WS > 0	$((WS + 1) \times T_C) + T_L - 8$		$((WS + 1) \times T_C) + T_L - 6$		$((WS + 1) \times T_C) + T_L - 6$	_	ns
128	Input Data Hold Time to RD Deassertion	0	_	0	_	0	_	ns
129	RD Assertion Width • WS ≠ 0	T _C - 9	_	T _C - 7	_	T _C - 5.5	_	ns
	• WS > 0	((WS+1)× T _C)-9	_	((WS + 1) × T _C) - 7	_	((WS + 1) × T _C) - 5.5	_	ns
130	Address Valid to Input Data Valid • WS = 0		/T _C /+ T _L -	_	T _C + T _L -	_	T _C + T _L -	ns
	• WS > 0	_	$(WS + 1) \times T_C) + T_L - 18$	2	14 ((WS+1)× T _C)+T _L -	_	$ \begin{array}{c c} & 11 \\ & ((WS + 1) \times \\ & T_C) + T_L - \\ & 11 \end{array} $	ns
131	Address Valid to RD Assertion	T _L - 9	T _L + 5	T.(-7/	T _L +/5	T _L - 5.5	T _L + 5	ns
132	RD Assertion to Input Data Valid • WS = 0	_	T _C - 14	_	T _C - 11/		Т _С - 9	ns
	• WS > 0	_	((WS + 1) × T _C) - 14	_	((WS + 1) × T _C) - 11	7/	((WS+1)× T _C) - 9	ns
133	WR Deassertion to RD Assertion	T _C - 15	_	T _C - 12	_	T _C - 10	7/	ns
134	RD Deassertion to RD Assertion	T _C - 10	_	T _C - 8	_	T _C - 6.5		ns
135	WR Deassertion to WR Assertion • WS = 0	T _C - 15	_	T _C - 12	_	T _C - 10		ns
	• WS > 0	T _C + T _H - 15	_	T _C + T _H - 12	_	T _C + T _H - 10	_	ns
136	RD Deassertion to WR Assertion • WS = 0	T _C - 10	_	T _C - 8	_	T _C - 6.5	_	ns
	• WS > 0	T _C + T _H - 10	_	T _C + T _H - 8	_	T _C + T _H - 6.5	_	ns

Figure 22 Bus Request / Bus Grant Timing

NOTE: During Read-Modify-Write instructions, the address lines do not change state.

External Bus Asynchronous Timing

Figure 23 External Bus Asynchronous Timing

External Bus Synchronous Timing

 V_{CC} = 5.0 Vdc ± 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc ± 5% for 33 MHz, T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

Capacitance Derating

The DSP56001A External Bus Timing Specifications are designed and tested at the maximum capacitive load of 50 pF, including stray capacitance. Typically, the drive capability of the External Bus pins (A0-A15, D0-D23, \overline{PS} , \overline{DS} , \overline{RD} , \overline{WR} , X/\overline{Y}) derates linearly at 1 ns per 12 pF of additional capacitance from 50 pF to 250 pF of loading. Port B and C pins derate linearly at 1 ns per 5 pF of additional capacitance from 50 pF to 250 pF of loading. Active low lines should be "pulled up" in a manner consistent with the AC and DC specifications.

Table 16 External Bus Synchronous Timing

20.5 MHz 27 MHz 33 MHz Num Characteristics Unit Min Min Max Min Max Max 24 19 19 Clk Low transition to Address Valid ns 140 Clk High transition to WR Assertion 141 • WS=0 0 19 0 0 17 17 ns ns 0 WS>0 $T_{H} + 19$ $T_{H} + 17$ 0 $T_{H} + 17$ (See Note 1) 142 Clk High transition to WR Deassertion 5 21 5 16 5 13 ns Clk High transition to RD Assertion 19 0 143 0 16 0 16 ns 144 Clk High transition to RD Deassertion 3 17 3 13 3 10.5 ns Clk Low transition to Data-Out Valid 145 25 19 19 ClkLlow transition to Data-Out Invalid 5 3.5 ns (See Note 3) 147 Data-In Valid to Clk High transition 4 4 ns (Setup) 148 Clk High transition to Data-In Invalid 12 12 12 ns (Hold) Clk Low transition to Address Invalid 2 2 2 ns

(See Note 3)

- 1. AC timing specifications which are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal's transition.
- 2. WS are wait state values specified in the BCR.
- 3. Clk Low transition to data-out invalid (specification # T146) and Clk Low transition to address invalid (specification # T149) indicate the time after which data/address are no longer guaranteed to be valid.
- 4. Timings are given from Clk midpoint to V_{OL} or V_{OH} of the corresponding pin(s).

External Bus Synchronous Timing

Figure 24 DSP56001A Synchronous Bus Timing

Bus Strobe / Wait Timing

 V_{CC} = 5.0 Vdc \pm 10% for 20.5 MHz and 27 MHz, V_{CC} = 5.0 Vdc \pm 5% for 33 MHz, T_J = -40° to +105° C, C_L = 50 pF + 1 TTL Load

Table 17 Bus Strobe / Wait Timing

Mana	Oh ana ataniatia a	20.5	MHz	27	MHz	33 MHz		11:4
Num	Characteristics	Min	Max	Min	Max	Min	Max	Unit
150	Clk Low transition to BS Assertion	3	24	3	19	2.5	19	ns
151	WT Assertion to Clk Low transition (setup time)	4	_	3	_	2.5	_	ns
152	Clk Low transition to WT Deassertion for Minimum Timing	14	T _C - 8	11	T _C - 6	12	T _C - 5	ns
153	WT Deassertion to Clk Low transition for Maximum Timing (2 wait states)	8	_	6	_	5	_	ns
154	Clk High transition to BS Deassertion	3	26	3	20	3	19	ns
155	BS Assertion to Address Valid	2	10	-2	8	-2	6.5	ns
156	BS Assertion to WT Assertion (See Note 2)	0	T _C - 15	0	T _C - 11	0	T _C - 10	ns
157	BS Assertion to WT Deassertion (See Note 2 and Note 4) • WS ≤ 2	Tc	2×T _C - 15	Tc	2×T _C -	T _C +4	2×T _C - 10	ns
	• WS ≥ 2	(WS - 1) × T _C	WS × T _C - 15	(WS - 1) × T _C	WS × T _C - 11		WS× T _C - 10	ns
158	WT Deassertion to BS Deassertion	T _C + T _L	2×T _C + T _L +23	T _C + T _L	2×T _C + T _L +17	T _C 4 T _L	2×T _C + T _L + 15	ns
159	Minimum BS Deassertion Width for Consecutive External Accesses	T _H - 7	_	T _H - 6	_	T _H - 4.5]+/	ns
160	BS Deassertion to Address Invalid (See Note 3)	T _H - 10		T _H - 8		T _H - 6.5		ns
161	Data-In Valid to RD Deassertion (Set Up)	16	_	12	_	10	_	ns

- 1. AC timing specifications which are referenced to a device input signal are measured in production with respect to the 50% point of the respective input signal's transition.
- 2. If wait states are also inserted using the BCR and if the number of wait states is greater than 2, then specification numbers 156 and 157 can be increased accordingly.
- 3. BS deassertion to address invalid indicates the time after which the address are no longer guaranteed to be valid.
- 4. The minimum number of wait states when using BS/WT is two (2).
- 5. For read-modify-write instructions, the address lines will not change states between the read and the write

cycle. However, \overline{BS} will deassert before asserting again for the write cycle. If wait states are desired for each of the read and write cycle, the \overline{WT} pin must be asserted once for each cycle.

NOTE: During Read-Modify-Write Instructions, the address lines do not change state. However, $\overline{\text{BS}}$ will deassert before asserting again for the write cycle.

Figure 25 DSP56001A Synchronous BS / WT Timings

NOTE: During Read-Modify-Write instructions, the address lines do not change state. However, $\overline{\text{BS}}$ will deassert before asserting again for the write cycle.

Figure 26 DSP56001A Asynchronous \overline{BS} / \overline{WT} Timings

Package and Tray Descriptions

Top and bottom views of each of the three packages are shown in Figure 27 - Figure 32 with their pin-outs.

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2.An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
- 3.To simplify locating the pins, each fifth pin is shaded in the illustration.

Figure 27 Top View of the 132-pin Plastic (FC) Quad Flat Package

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2.An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
- 3.To simplify locating the pins, each fifth pin is shaded in the illustration.

Figure 28 Bottom View of the 132-pin Plastic (FC) Quad Flat Package

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2.An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
- 3. To simplify locating the pins, each fifth pin is shaded in the illustration.

Figure 29 Top View of the 132-pin Ceramic (FE) Quad Flat Package

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2.An OVERBAR indicates the signal is asserted when the voltage = ground (active low).
- 3.To simplify locating the pins, each fifth pin is shaded in the illustration.

Figure 30 Bottom View of the 132-pin Ceramic (FE) Quad Flat Package

MOTOROLA

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).

Figure 31 Top View of the 88-pin Ceramic (RC) 13 x13 Pin Grid Array Package

PGA Bottom View

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2. An OVERBAR indicates the signal is asserted when the voltage = ground (active low).

Figure 32 Bottom View of the 88-pin Ceramic (RC) 13 x 13 Pin Grid Array Package

Figure 33 PGA Shipping Tray

Figure 34 PQFP Shipping Tray

Figure 35 CQFP Shipping Tray

Pin Tables

The DSP56001A signals which may be programmed as general purpose I/O are listed with their primary function in Table 18. Table 19 and Table 20 identify pins on each package in numeric order. Table 21 identifies each signal name in order while giving the pin number for each of the packages. Table 22 groups power and ground leads. Mechanical drawings of the packages are presented in Figure 36 - Figure 38.

 Table 18
 DSP56001A General Purpose I/O Pin Identification

General Purpose I/O I D	Primary Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
PB0	H0	25	D12
PB1	H1	22	C13
PB2	H2	20	C12
PB3	H3	19	B13
PB4	H4	16	B12
PB5	H5	15	A13
PB6	H6	14	A12
PB7	H7	11	B11
PB8	HA0	5	B8
PB9	HA1	2	A8
PB10	HA2	1	A7
PB11	HR/W	9	A11
PB12	HEN	8	A10
PB13	HREQ	10	B10
PB14	HACK	6	A9
PC0	RXD	27	D13
PC1	TXD	28	E13
PC2	SCLK	29	F13
PC3	SC0	31	F12
PC4	SC1	40	K13
PC5	SC2	37	H13
PC6	SCK	32	G13
PC7	SRD	42	J12
PC8	STD	39	J13

Table 19 DSP56001A PGA Pin Identification by Pin Number

88 pin "RC" PGA Pin #	Signal Name	88 pin "RC" PGA Pin #	Signal Name	88 pin "RC" PGA Pin #	Signal Name
A1	D19	D1	D14	L6	GNDN
A2	D21	D2	D16	L8	Vccn
А3	D22	D3	GNDD	L9	GNDN
A4	MODB/IRQB	D12	H0/PB0	L12	RD
A5	RESET	D13	RXD/PC0	L13	BR/WT
A6	XTAL	E1	D13	M1	D3
A7	HA2/PB10	E11	GNDH	M2	D1
A8	HA1/PB9	E13	TXD/PC1	М3	A15
A9	HACK/PB14	F1	D11	M5	A11
A10	HEN/PB12	F2	D12	M6	A9
A11	HR/W/PB11	F12	SC0/PC3	M8	A5
A12	H6/PB6	F13	SCLK/PC2	M9	А3
A13	H5/PB5	G1	D10	M11	A0
B1	D17	G3	VCCD	M12	DS
B2	D20	G11	GNDQ	M13	WR
B4	D23	G12	Vccq	N1	D0
B5	MODA/ĪRQĀ	G13	SCK/PC6	N2	A14
B6	EXTAL	H1	D9	N3	A13
В7	GNDQ	H13	SC2/PC5	N4	A12
В8	HA0/PB8	J1	D8	N5	A10
B10	HREQ/PB13	J2	D7	N6	A8
B11	H7/PB7	J3	GNDD	N7	A7
B12	H4/PB4	J12	SRD/PC7	N8	A6
B13	H3/PB3	J13	STD/PC8	N9	A4
C1	D15	K1	D6	N10	A2
C2	D18	K2	D5	N11	A1
C6	Vccq	K12	BG/BS	N12	PS
C9	Vcch	K13	SC1/PC4	N13	X/\(\overline{Y} \)
C12	H2/PB2	L1	D4		
C13	H1/PB1	L2	D2		

PQFP and CQFP by Pin Number

 Table 20
 DSP56001A
 PQFP or CQFP Pin Identification by Pin Number

132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name	132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name	132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name
1	HA2/PB10	28	TXD/PC1	55	GNDN
2	HA1/PB9	29	SCLK/PC2	56	GNDN
3	nc	30	nc	57	A2
4	nc	31	SC0/PC3	58	А3
5	HA0/PB8	32	SCK/PC6	59	nc
6	HACK/PB14	33	GNDQ	60	A4
7	nc	34	GNDQ	61	A5
8	HEN/PB12	35	Vccq	62	nc
9	HR/W/PB11	36	Vccq	63	Vccn
10	HREQ/PB13	37	SC2/PC5	64	Vccn
11	H7/PB7	38	nc	65	A6
12	Vссн	39	STD/PC8	66	nc
13	Vссн	40	SC1/PC4	67	A7
14	H6/PB6	41	nc	68	A8
15	H5/PB5	42	SRD/PC7	69	nc
16	H4/PB4	43	BG/BS	70	A9
17	nc	44	nc	71	A10
18	nc	45	BR/WT	72	nc
19	H3/PB3	46	WR	73	GNDN
20	H2/PB2	47	RD	74	GNDN
21	nc	48	X/\(\overline{Y}\)	75	A11
22	H1/PB1	49	DS	76	A12
23	GNDH	50	nc	77	A13
24	GNDH	51	nc	78	nc
25	H0/PB0	52	PS	79	A14
26	nc	53	A0	80	A15
27	RXD/PC0	54	A1	81	D0

PQFP and CQFP by Pin Number

 Table 20
 DSP56001A
 PQFP or CQFP Pin Identification by Pin Number (Continued)

132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name	132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name	132 pin "FC" PQFP or "FE" CQFP Pin #	Signal Name
82	D1	99	D11	116	nc
83	nc	100	VCCD	117	nc
84	nc	101	VCCD	118	D21
85	D2	102	D12	119	D22
86	D3	103	nc	120	D23
87	D4	104	D13	121	MODB/IRQB
88	D5	105	D14	122	nc
89	nc	106	D15	123	MODA/IRQA
90	GNDD	107	nc	124	RESET
91	GNDD	108	D16	125	nc
92	D6	109	D17	126	XTAL
93	D7	110	nc	127	EXTAL
94	D8	111	GNDD	128	Vccq
95	nc	112	GNDD	129	Vccq
96	D9	113	D18	130	GNDQ
97	D10	114	D19	131	GNDQ
98	nc	115	D20	132	nc

^{1. &}quot;nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.

^{2.} An OVERBAR indicates the signal is asserted when the voltage = ground (active low).

 Table 21
 DSP56001A Pin Identification by Signal Name

Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #	Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
A0	53	M11	D7	93	J2
A1	54	N11	D8	94	J1
A2	57	N10	D9	96	H1
А3	58	M9	D10	97	G1
A4	60	N9	D11	99	F1
A5	61	M8	D12	102	F2
A6	65	N8	D13	104	E1
A7	67	N7	D14	105	D1
A8	68	N6	D15	106	C1
A9	70	M6	D16	108	D2
A10	71	N5	D17	109	B1
A11	75	M5	D18	113	C2
A12	76	N4	D19	114	A1
A13	77	N3	D20	115	B2
A14	79	N2	D21	118	A2
A15	80	M3	D22	119	A3
BG	43	K12	D23	120	B4
BR	45	L13	DS	49	M12
BS	43	K12	EXTAL	127	B6
D0	81	N1	GNDD	90	D3
D1	82	M2	GNDD	91	J3
D2	85	L2	GNDD	111	
D3	86	M1	GNDD	112	
D4	87	L1	GNDH	23	E11
D5	88	K2	GNDH	24	
D6	92	K1	GNDN	55	L6

 Table 21
 DSP56001A Pin Identification by Signal Name (Continued)

Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #	Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
GNDN	56	L9	NMI	none	none
GNDN	73		PB0	25	D12
GNDN	74		PB1	22	C13
GNDQ	33	B7	PB2	20	C12
GNDQ	34	G11	PB3	19	B13
GNDQ	130		PB4	16	B12
GNDQ	131		PB5	15	A13
H0	25	D12	PB6	14	A12
H1	22	C13	PB7	11	B11
H2	20	C12	PB8	5	B8
Н3	19	B13	PB9	2	A8
H4	16	B12	PB10	1	A7
H5	15	A13	PB11	9	A11
H6	14	A12	PB12	8	A10
H7	11	B11	PB13	10	B10
HA0	5	B8	PB14	6	A9
HA1	2	A8	PC0	27	D13
HA2	1	A7	PC1	28	E13
HACK	6	A9	PC2	29	F13
HEN	8	A10	PC3	31	F12
HR/W	9	A11	PC4	40	K13
HREQ	10	B10	PC5	37	H13
ĪRQĀ	123	B5	PC6	32	G13
ĪRQB	121	A4	PC7	42	J12
MODA	123	B5	PC8	39	J13
MODB	121	A4	PS	52	N12

Table 21 DSP56001A Pin Identification by Signal Name (Continued)

Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #	Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
RD	47	L12	nc	4	
RESET	124	A5	nc	7	
RXD	27	D13	nc	17	
SC0	31	F12	nc	18	
SC1	40	K13	nc	21	
SC2	37	H13	nc	26	
SCK	32	G13	nc	30	
SCLK	29	F13	nc	38	
SRD	42	J12	nc	41	
STD	39	J13	nc	44	
TXD	28	E13	nc	50	
VCCD	100	G3	nc	51	
VCCD	101		nc	59	
Vссн	12	C9	nc	62	
Vссн	13		nc	66	
Vccn	63	L8	nc	69	
Vccn	64		nc	72	
Vccq	35	C6	nc	78	
Vccq	36	G12	nc	83	
Vccq	128		nc	84	
Vccq	129		nc	89	
WR	46	M13	nc	95	
WT	45	L13	nc	98	
X/\(\overline{Y}\)	48	N13	nc	103	
XTAL	126	A6	nc	107	
nc	3		nc	110	

By Signal Name

 Table 21
 DSP56001A Pin Identification by Signal Name (Continued)

Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #	Pin Function	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
nc	116		nc	125	
nc	117		nc	132	
nc	122				

- 1. "nc" are No Connection pins that are reserved for possible future enhancements. Do not connect these pins to any power, ground, signal traces, or vias.
- 2. An $\overline{\text{OVERBAR}}$ indicates the signal is asserted when the voltage = ground (active low).

 Table 22
 DSP56001A Power Supply Pin Identification

Circuit Supplied	Power Supply	132 pin "FC" PQFP or "FE" CQFP Pin #	88 pin "RC" PGA Pin #
	Vccn	63	L8
	VCCIN	64	
Address Bus		55	L6
Buffers	GNDN	56	L9
	GNDN	73	
		74	
	Voor	100	G3
	VCCD	101	
Data		90	D3
Bus Buffers	GNDD	91	J3
	GNDD	111	
		112	
		35	C6
	Vccq	36	G12
	VCCQ	128	
Internal		129	
Logic		33	В7
	GNDQ	34	G11
	GNDQ	130	
		131	
	Vссн	12	C9
Peripherals	VCCH	13	
reliplielais	GNDH	23	E11
	GNDH	24	

Power and ground pins have special considerations for noise immunity. See the section "Design Considerations".

132-pin PQFP

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14-5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSIONS A, B, J, AND P DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION FOR DIMENSIONS A AND B IS 0.01((0.25), FOR DIMENSIONS J AND P IS 0.007 (0.18).

 4. DATUM PLANE—H- IS LOCATED AT THE
- 4. DATUM PLANE 14-15 LUCALED AT THE UNDERSIDE OF LEADS WHERE LEADS EXIT PACKAGE BODY.

 5. DATUMS -L-, -M-, AND -N- TO BE DETERMINED WHERE CENTER LEADS EXIT PACKAGE BODY AT DATUM -H-.
- 6. DIMENSIONS U AND V TO BE DETERMINED AT SEATING PLANE, DATUM. T.
 7. DIMENSIONS A, B, J, AND P TO BE DETERMINED AT DATUM PLANE. HI-
- DIMENSION F DOES NOT INCLUDE DAMBAR
 PROTRUSIONS. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.019

	INC	HES	MILLIM	ETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.950	BSC	24.13 BSC			
A1	0.475	BSC	12.06	BSC		
В	0.950	BSC	24.13	BSC		
B1	0.475	BSC	12.06	BSC		
С	0.160	0.180	4.06	4.57		
C1	0.020	0.040	0.51	1.02		
C2	0.135	0.145	3.43	3.68		
D	0.008	0.012	0.20	0.30		
D1	0.012	0.016	0.30	0.41		
D2	0.008	0.011	0.20	0.28		
E	0.006	0.008	0.15	0.20		
E1	0.005	0.007	0.13	0.18		
F	0.012	0.014	0.30	0.36		
G	0.025	BSC	0.64	BSC		
J	1.100	BSC	27.94	BSC		
J1	0.550	BSC	13.97 BSC			
K	0.034	0.044	0.86	1.11		
K1	0.010	BSC	0.25 BSC			
P	1.100	BSC	27.94 BSC			
P1	0.550	BSC	13.97 BSC			
R1	0.015	REF	0.38	BSC		
S	1.080	BSC	27.43	BSC		
S1	0.540	BSC	13.72	BSC		
U	0.025	REF	0.64	REF		
٧	1.080	BSC	27.43	BSC		
V1	0.540	BSC	13.72 BSC			
W	0.006	0.008	0.15	0.20		
01	0°	8°	0°	8°		

CASE 831A-02 ISSUE B

Figure 36 132-pin Plastic Quad Flat Pack (PQFP) Mechanical Information

Figure 37 132-pin Ceramic Quad Flat Pack (CQFP) Mechanical Information

	INCHE	SS	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	1.340	1.380	34.04	35.05		
В	1.340	1.380	34.04	35.05		
С	0.085	0.120	2.16	3.04		
D	0.017	0.020	0.44	0.50		
G	0.10	0 BSC	2.54 BSC			
К	0.165	0.200	4.20	5.08		

CASE 789D-01 ISSUE O

Figure 38 88-pin Ceramic Pin Grid Array (PGA) Package Mechanical Information

Design Considerations

Substituting the DSP56001A for the DSP56001

This section highlights the differences between the DSP56001 and DSP56001A that need to be taken into consideration when substituting the DSP56001A for the DSP56001. New designs should use the DSP56002 due to its enhanced features and speed.

Hardware Considerations

Non-Maskable Interrupt (NMI)

A Non-Maskable Interrupt (NMI) function was previously accessible on the DSP56001 by applying 10 Volts to the MODB/ \overline{IRQB} pin. The DSP56001A does not support a non-maskable interrupt (NMI).

DO NOT APPLY 10 VOLTS TO ANY PIN OF THE DSP56001A (including MODB)! Subjecting any pin of the DSP56001A to voltages in excess of the specified TTL/CMOS levels will permanently damage the device.

AC Electrical Characteristics

The DSP56001A die utilizes a faster technology than the DSP56001. As a result, many DSP56001A signals exhibit faster rise- and fall-times than the same signals on the DSP56001. These faster edges may generate more radiated noise and EMI, and may require more attention to these issues (e.g., the DSP56001A based circuit may require better decoupling).

Software/Application Considerations

Software written for the DSP56001 will generally run unmodified on the DSP56001A. There are, however, certain differences which should be noted. Users should consider the impact these differences may have on each application.

AGU Modify Registers

Numbers between \$8000 and \$FFFE (inclusive) are not valid values for loading into the modify registers (M0-M7) of the address generation unit on the DSP56001. Certain values within this range, however, enable wraparound addressing modes on the DSP56001A that are not supported, and inadvertent enabling of these addressing modes may yield unexpected results. Do *not* load the modify registers of the DSP56001A with values from \$8000 to \$FFFE.

Reserved Memory Locations

Certain memory locations are designated as reserved on the DSP56001. Accesses to these memory locations on the DSP56001A will result in unpredictable processor behavior *including the possibility of halting the processor completely*. In particular, writes to the following X memory locations should be avoided on the DSP56001A:

X:\$FFDE, X:\$FFDF, X:\$FFFC, X:\$FFFD

Substituting the DSP56001A for the DSP56001

MOVEP to Rn/Nn/Mn Registers

On the DSP56001 there is a pipeline delay when using the MOVEP instruction to change the contents of an address register (Mn, Nn, or Rn). The new contents of the destination address register will not be available for use during the following instruction (i.e, there is a single instruction cycle delay).

On the DSP56001A this pipeline delay has been removed. If an address register (Mn, Nn, or Rn) is directly changed with a MOVEP instruction, the updated contents will be available for use during the following instruction. DSP56001 software which depends on this pipeline delay must be modified when moved onto the DSP56001A.

MOVEP to/from Data ALU Registers

MOVEP Instructions to/from Data ALU Registers take 2 instruction cycles on the DSP56001. On the DSP56001A, these instructions take only 1 instruction cycle. DSP56001 software which is dependent on the timing of this form of the MOVEP instruction must be modified when ported to the DSP56001A.

MOVEP Immediate

MOVEP Immediate instructions take 3 instruction cycles on the DSP56001. On the DSP56001A, these instructions take only 2 instruction cycles. DSP56001 software which is dependent on the timing of this form of the MOVEP instruction must be modified when ported to the DSP56001A.

Illegal Instructions

The instructions listed in Table 23 will **not** generate an illegal instruction interrupt on the DSP56001A. None of these instructions are tested on the DSP56001A and should **not** be used.

Note: The DEBUG and DEBUGcc instructions are microcoded on the DSP56001A, but the peripherals necessary to make use of this instruction are not available. Any use of the DEBUG or DEBUGcc instructions will completely halt the processor. The processor will exit this state only on reset.

STOP/WAIT Timing

Wake-up from the stop and wait operating modes with \overline{IRQn} is longer on the DSP56001A by one Tc period.

Table 23 Illegal Instructions

Instruction Symbol	Instruction Name
DEBUG — DO NOT USE	Enter debug mode
DEBUGcc — DO NOT USE	Enter debug mode conditionally
DEC	Decrement by one
INC	Increment by one
MAC #iiii	Signed multiply-accumulate immediate
MPY #iiii	Signed multiply immediate
MACR #iiii	Signed multiply-accumulate and round immediate
MPYR #iiii	Signed multiply and round immediate

SCI/SSI Initialization Timing

On the DSP56001A, the SCI and SSI clocks are stopped when the peripherals are not enabled in order to save power. As a result, the initialization time of the SCI and SSI is longer on the DSP56001A than on the DSP56001.

Control Registers

The OMR and the Status Register on the DSP56001A have been altered from those on the DSP56001. Refer to Table 24 for details of these alterations.

Host Command Vector Register

The DSP56001A's Host Command Vector Register (CVR) also differs from that of the DSP56001 (see Table 25).

Heat Dissipation

The average chip junction temperature, T_J , in $^{\circ}$ C, can be obtained from:

$$T_{I} = T_{\Delta} + (P_{D} \times \Theta_{I\Delta}) \tag{1}$$

Where:

 T_A = ambient temperature, °C Θ_{IA} = package thermal resistance,

junction-to-ambient, °C/W

 $P_D = P_{INT} + P_{I/O}$

 $P_{\text{INT}} \ = \ I_{\text{CC}} \times V_{\text{CC}} \, watts - - chip \, internal$

power

P_{I/O} = power dissipation on input and output pins — user determined

Table 24 Summary of Control Register Differences

REGISTER	BIT	DSP56001 DEFINITION	DSP56001A DEFINITION	EXPLAINATION OF DIFFERENCE
Status Register	7	Reserved - Read/Written as zero.	Reserved - read as don't care.	On the 001A this bit may be read as 0 or 1. The user should not rely on this bit being a given value.
	14	Reserved - Read/Written as zero.	Reserved - write as zero only, read as don't care.	If this bit is set on the 56001A, the operations performed by the Data ALU change, and 56001 code will yield erroneous results. Write this bit only as zero.
Operating Mode Register	3	Reserved - Read/Written as zero.	Reserved - write as zero only, read as don't care.	If this bit is set, memory reads may be from incorrect locations. Write this bit only as zero.
Port B Control Register	1	Reserved - Written as zero.	Reserved - Written as zero.	Writing this bit as a 1 will result in behavior differences between the 001 and the 001A.

 Table 25
 Summary of Host Command Vector Register Differences

REGISTER	віт	DSP56001 DEFINITION	DSP56001A DEFINITION	EXPLAINATION OF DIFFERENCE
Host Command Vector Register (CVR)	5	Reserved - read as zero.	Reserved - read as don't care.	This bit should be written with only a zero on the 56001A.

Heat Dissipation

Power, Ground, and Noise

For most applications $P_{\rm I/O}$ < $P_{\rm INT}$ and $P_{\rm I/O}$ can be neglected. An appropriate relationship between $P_{\rm D}$ and $T_{\rm J}$ (if $P_{\rm I/O}$ is neglected) is:

$$P_{\rm D} = K/(T_{\rm J} + 273) \tag{2}$$

Solving equations (1) and (2) for K gives:

$$K = P_D \times (T_A + 273) + P_D \times \Theta_{JA}$$
 (3)

Where: K is a constant pertaining to the particular package

K can be determined from equation (2) by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations (1) and (2) iteratively for any value of T_A . The total thermal resistance of a package (Θ_{JA}) can be separated into two components, Θ_{JC} and Θ_{CA} , representing the barrier to heat flow from the semiconductor junction to the package (case) surface (Θ_{JC}) and from the case to the outside ambient (Θ_{CA}) . These terms are related by the equation:

$$\Theta_{IA} = \Theta_{IC} + \Theta_{CA} \tag{4}$$

 Θ_{JC} is device-related and cannot be influenced by the user. However, Θ_{CA} is user-dependent and can be minimized by thermal management techniques such as heat sinks, ambient air cooling, and thermal convection. Thus, good thermal management can significantly reduce Θ_{CA} so that Θ_{JA} approximately equals Θ_{JC} . Values for thermal resistance presented in this document, unless estimated, were derived using the procedure described in Motorola Reliability Report 7843, "Thermal Resistance Measurement Method for MC68XX Microcomponent Devices", and are

provided for design purposes only. Thermal measurements are complex and dependent on procedure and setup. User-derived values for thermal resistance may differ.

Note: Table 6 and Table 7 (page 15) contain the package thermal values for this chip.

Power, Ground, and Noise Host Port Considerations

Power, Ground, and Noise

Each $V_{\rm CC}$ pin on the DSP should be provided with a low-impedance path to the board's supply. Each GND pin should also be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip as shown in Table 26.

The V_{CC} power supply should be bypassed to GND using at least four 0.1 μF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} and GND should be less than 0.5" per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes. All output pins on this DSP have fast rise and fall times. Printed Circuit Board (PCB) trace lengths should be minimal. This recommendation particularly applies to the address and data buses as well as the \overline{RD} , \overline{WR} , \overline{IRQA} , \overline{IRQB} , \overline{HEN} , and HACK pins. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC} and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.

Power Consumption

Power dissipation is a key issue in portable DSP applications. The following describes some factors which affect current consumption. Current consumption is described by the formula:

$$I = C \times V \times f$$

where: C = node/pin capacitance

V = voltage swing

f = frequency of node/pin toggle

For example, for an address pin loaded with a 50 pF capacitance and operating at 5.5V with a 33 MHz clock, toggling at its maximum possible rate (which is 8.25 MHz), the current consumption is:

$$I = 50 \times 10^{-12} \times 5.5 \times 8.25 \times 10^{6} = 227 \text{ mA}$$

The maximum internal current value (I_{CCI} -max), reflects the maximum possible switching of the internal buses, which is not necessarily a real application case. The typical internal current value (I_{CCI} -typ) reflects the average switching of the internal buses.

The following steps are recommended for applications requiring very low current consumption:

- minimize external memory accesses; use internal memory accesses instead
- 2. minimize the number of pins which are switching
- 3. minimize the capacitive load on the pins
- connect the unused inputs to pull-up or pull-down resistors

Host Port Considerations

Host Port Considerations

Careful synchronization is required when reading multi-bit registers that are written by another asynchronous system. This is a common problem when two asynchronous systems are connected. The situation exists in the host interface. The following paragraphs present considerations for proper operation.

Host Programming Considerations

- 1. Unsynchronized Reading of Receive Byte Registers
 When reading receive byte registers,
 RXH or RXL, the host program should use interrupts or poll the RXDF flag which indicates that data is available.
 This assures that the data in the receive byte registers will be stable.
- 2. Overwriting Transmit Byte Registers The host program should not write to the transmit byte registers, TXH or TXL, unless the TXDE bit is set, indicating that the transmit byte registers are empty. This guarantees that the transmit byte registers will transfer valid data to the HRX register.
- 3. Synchronization of Status Bits from DSP to Host HC, HREQ, DMA, HF3, HF2, TRDY, TXDE, and RXDF status bits are set or cleared from inside the DSP and read by the host processor (refer to the *User's* Manual for descriptions of these status bits). The host can read these status bits very quickly without regard to the clock rate used by the DSP, but the state of the bit could be changing during the read operation. Generally, this is not a system problem, since the bit will be read correctly in the next pass of any host polling routine. However, if the host asserts $\overline{\text{HEN}}$ for more than timing number (31), with a minimum cycle time of timing number (31)+(32), then these status bits are guaranteed to be stable. Exercise care when reading status bits HF3 and HF2 as an encoded pair. If the DSP changes HF3 and HF2 from 00 to 11, there is a small probability that the host could read the bits during the transition and receive 01 or 10 instead of 11. If the com-

Host Port Considerations

bination of HF3 and HF2 has significance, the host could read the wrong combination. Therefore, read the bits twice and check for consensus.

- 4. Overwriting the Host Vector
 The host program should change the
 Host Vector register only when the Host
 Command bit (HC) is clear. This change
 will guarantee that the DSP interrupt
 control logic will receive a stable vector.
- 5. Cancelling a Pending Host Command Exception

The host processor may elect to clear the HC bit to cancel the host command exception request at any time before it is recognized by the DSP. Because the host does not know exactly when the exception will be recognized (due to exception processing synchronization and pipeline delays), the DSP may execute the host command exception after the HC bit is cleared. For these reasons, the HV bits must not be changed at the same time that the HC bit is cleared.

6. Variance in the Host Interface Timing The Host Interface (HI) may vary. Therefore, a host which attempts to load (bootstrap) the DSP should first make sure that the part has completed its HI port programming (e.g. by setting the INIT bit in ICR then polling it and waiting it to be cleared, then reading the ISR or by writing the TREQ/RREQ together with the INIT and then polling INIT, ISR, and the HREQ pin).

DSP Programming Considerations

 Synchronization of Status Bits from Host to DSP DMA, HF1, HF0, and HCP, HTDE, and HRDF status bits are set or cleared by the host processor side of the interface.

These bits are individually synchronized to the DSP clock. (Refer to the *User's Manual* for descriptions of these status bits.)

2. Reading HF0 and HF1 as an Encoded Pair

Care must be exercised when reading status bits HF0 and HF1 as an encoded pair, i.e., the four combinations 00, 01, 10, and 11 each have significance. A very small probability exists that the DSP will read the status bits synchronized during transition. Therefore, HF0 and HF1 should be read twice and checked for consensus.

Application Examples

Application Examples

The lowest cost DSP56001A-based system is shown in Figure 39. It uses no run time external memory and requires only two chips, the DSP56001A and a low cost EPROM. The EPROM read access time should be less than 780 nanoseconds when the DSP56001A is operating at a clock rate of $20.5 \, \mathrm{MHz}$.

NOTES:

- 1. *These diodes must be Schottky diodes.
- 2. All resistors are 15 K Ω unless noted otherwise.
- 3. When in Reset, IRQA and IRQB must be deasserted by external peripherals.

Figure 39 No Glue Logic, Low Cost Memory Port Bootstrap — Mode 1

A system with external data RAM memory requires no glue logic to select the external EPROM from bootstrap mode. \overline{PS} is used to enable the EPROM and \overline{DS} is used to enable the high speed data memories as shown in Figure 40.

NOTES:

- 1. All resistors are 15 $K\Omega$ unless noted otherwise.
- 2. When in Reset, IRQA and IRQB must be deasserted by external peripherals.

Figure 40 Port A Bootstrap with External Data RAM — Mode 1

Figure 41 shows the DSP56001A bootstrapping via the Host Port from an MC68000.

NOTES:

- 1. All resistors are 15 $K\Omega$ unless noted otherwise.
- 2. When in Reset, $\overline{\text{IRQA}}$ and $\overline{\text{IRQB}}$ must be deasserted by external peripherals.

Figure 41 DSP56001A Host Bootstrap Example — Mode 5

In Figure 42, the DSP56001A is operated in mode 3 with external program memory and the reset vector at location \$0000. The programmer can overlay the high speed on-chip P:RAM with DSP algorithms by using the MOVEM instruction.

- 1. All resistors are 15 $K\Omega$ unless noted otherwise.
- 2. When in Reset, IRQA and IRQB must be deasserted by external peripherals.

Figure 42 32K Words of External Program ROM — Mode 3

Application Examples

Figure 43 shows a circuit which waits until V_{CC} on the DSP56001A is at least 4.5 V before initiating a 75,000 \times T_C oscillator stabilization delay required for the on-chip oscillator (only 25 \times T_C is required for an external oscillator). This insures that the DSP is operational and stable before releasing the reset signal.

appropriate for the application.

Figure 43 Reset Circuit Using MC34064/MC33064

^{2.} MODA and MODB must be driven to the logic levels appropriate for the application.

Figure 44 shows the DSP56001A connected to the bus of an IBM-PC computer. This circuit is complete and does not require external ROM or RAM to load and execute code from the PC. The PAL equations and other details of this circuit are available in the application report entitled "DSP56001 Interface Techniques and Examples" (APR11/D).

Figure 44 DSP56001A -to- ISA Bus Interface Schematic

ROM Table Listings

μ-Law/A-Law Expansion Tables

The following table contains the mu-law (μ -law) and A-law expansion listings.

Table 23 μ-Law/A-Law Expansion Table Contents

	ORG	X:\$100			M_29	DC	\$15FC00	;	1407
;					M_2A	DC	\$14FC00	;	1343
M_00	DC	\$7D7C00	;	8031	M_2B	DC	\$13FC00	;	1279
M_01	DC	\$797C00	;	7775	M_2C	DC	\$12FC00	;	1215
M_02	DC	\$757C00	;	7519	M_2D	DC	\$11FC00	;	1151
M_03	DC	\$717C00	;	7263	M_2E	DC	\$10FC00	;	1087
M_04	DC	\$6D7C00	;	7007	M_2F	DC	\$0FFC00	;	1023
M_05	DC	\$697C00	;	6751	M_30	DC	\$0F3C00	;	975
M_06	DC	\$657C00	;	6495	M_31	DC	\$0EBC00	;	943
M_07	DC	\$617C00	;	6239	M_32	DC	\$0E3C00	;	911
M_08	DC	\$5D7C00	;	5983	M_{33}	DC	\$0DBC00	;	879
M_09	DC	\$597C00	;	5727	M_34	DC	\$0D3C00	;	847
M_0A	DC	\$557C00	;	5471	M_{35}	DC	\$0CBC00	;	815
M_0B	DC	\$517C00	;	5215	M_36	DC	\$0C3C00	;	783
M_0C	DC	\$4D7C00	;	4959	M_{37}	DC	\$0BBC00	;	751
M_0D	DC	\$497C00	;	4703	M_38	DC	\$0B3C00	;	719
M_0E	DC	\$457C00	;	4447	M_39	DC	\$0ABC00	;	687
M_0F	DC	\$417C00	;	4191	M_3A	DC	\$0A3C00	;	655
M_10	DC	\$3E7C00	;	3999	M_3B	DC	\$09BC00	;	623
M_{11}	DC	\$3C7C00	;	3871	M_3C	DC	\$093C00	;	591
M_12	DC	\$3A7C00	;	3743	M_3D	DC	\$08BC00	;	559
M_13	DC	\$387C00	;	3615	M_3E	DC	\$083C00	;	527
M_14	DC	\$367C00	;	3487	M_3F	DC	\$07BC00	;	495
M_15	DC	\$347C00	;	3359	M_40	DC	\$075C00	;	471
M_16	DC	\$327C00	;	3231	M_41	DC	\$071C00	;	455
M_17	DC	\$307C00	;	3103	M_42	DC	\$06DC00	;	439
M_18	DC	\$2E7C00	;	2975	M_43	DC	\$069C00	;	423
M_19	DC	\$2C7C00	;		M_44	DC	\$065C00	;	407
M_1A	DC	\$2A7C00	;		M_45	DC	\$061C00	;	391
M_1B	DC	\$287C00	;		M_46	DC	\$05DC00	;	375
M_1C	DC	\$267C00	;		M_47	DC	\$059C00	;	359
M_1D	DC	\$247C00	;		M_48	DC	\$055C00	;	343
M_1E	DC	\$227C00	;	2207	M_49	DC	\$051C00	;	327
M_1F	DC	\$207C00	;	2079	M_4A	DC	\$04DC00	;	311
M_20	DC	\$1EFC00	;		M_4B	DC	\$049C00	;	295
M_21	DC	\$1DFC00	;	1919	M_4C	DC	\$045C00	;	279
M_22	DC	\$1CFC00	;	1855	M_4D	DC	\$041C00	;	263
M_23	DC	\$1BFC00	;	1791	M_4E	DC	\$03DC00	;	247
M_24	DC	\$1AFC00	;		M_4F	DC	\$039C00	;	231
M_25	DC	\$19FC00	;	1663	M_50	DC	\$036C00	;	219
M_26	DC	\$18FC00	;	1599	M_51	DC	\$034C00	;	211
M_27	DC	\$17FC00	;		M_52	DC	\$032C00	;	203
M_28	DC	\$16FC00	;	1471	M_53	DC	\$030C00	;	195

 $ROM \ Table \ Listings \\ \mu\text{-Law/A-Law Expansion Table}$

Table 23 μ-Law/A-Law Expansion Table Contents (continued)

M_54	DC	\$02EC00	;	187	A_84	DC	\$118000	;	560
M_55	DC	\$02CC00	;	179	A_85	DC	\$108000	;	528
M_56	DC	\$02AC00	;	171	A_86	DC	\$138000	;	624
M_57	DC	\$028C00	;	163	A_87	DC	\$128000	;	592
M_58	DC	\$026C00	;	155	A_88	DC	\$1D8000	;	944
M_59	DC	\$024C00	;	147	A_89	DC	\$1C8000	;	912
 M_5A	DC	\$022C00	;	139	A_8A	DC	\$1F8000	;	1008
_ М_5В	DC	\$020C00	;	131	_ A_8B	DC	\$1E8000	;	976
_ M_5C	DC	\$01EC00	;	123	A_8C	DC	\$198000	;	816
M_5D	DC	\$01CC00	;	115	A_8D	DC	\$188000	;	784
M_5E	DC	\$01AC00	;	107	A_8E	DC	\$1B8000	;	880
M_5F	DC	\$018C00	;	99	A_8F	DC	\$1A8000	;	848
M_60	DC	\$017400	;	93	A_90	DC	\$0AC000	;	344
M_61	DC	\$016400	;	89	A_91	DC	\$0A4000	;	328
M_62	DC	\$015400	;	85	A_92	DC	\$0BC000	;	376
M_63	DC	\$014400	;	81	A_93	DC	\$0B4000	;	360
M_64	DC	\$013400	;	77	A_94	DC	\$08C000	;	280
M_65	DC	\$013100	;	73	A_95	DC	\$084000	;	264
M_66	DC	\$012100	;	69	A_96	DC	\$09C000	;	312
M_67	DC	\$011400	;	65	A_97	DC	\$094000	;	296
M_68	DC	\$010400 \$00F400	;	61	A_97 A_98	DC	\$094000 \$0EC000	;	472
M_69	DC	\$00F400 \$00E400	;	57	A_98 A_99	DC	\$0EC000 \$0E4000	;	456
M_6A	DC	\$00E400 \$00D400	;	53	A_9A	DC	\$0E4000 \$0FC000	;	504
M_6B				49		DC		;	488
	DC	\$00C400	;		A_9B		\$0F4000		
M_6C	DC	\$00B400	;	45	A_9C	DC	\$0CC000	;	408
M_6D	DC	\$00A400	;	41	A_9D	DC	\$0C4000	;	392
M_6E	DC	\$009400	į	37	A_9E	DC	\$0DC000	;	440
M_6F	DC	\$008400	į	33	A_9F	DC	\$0D4000	;	424
M_70	DC	\$007800	į	30	A_A0	DC	\$560000	;	2752
M_71	DC	\$007000	;	28	A_A1	DC	\$520000	;	2624
M_72	DC	\$006800	;	26	A_A2	DC	\$5E0000	;	3008
M_73	DC	\$006000	;	24	A_A3	DC	\$5A0000	;	2880
M_74	DC	\$005800	;	22	A_A4	DC	\$460000	;	2240
M_75	DC	\$005000	;	20	A_A5	DC	\$420000	;	2112
M_76	DC	\$004800	;	18	A_A6	DC	\$4E0000	;	2496
M_77	DC	\$004000	;	16	A_A7	DC	\$4A0000	;	2368
M_78	DC	\$003800	;	14	A_A8	DC	\$760000	;	3776
M_79	DC	\$003000	;	12	A_A9	DC	\$720000	;	3648
M_7A	DC	\$002800	;	10	A_AA	DC	\$7E0000	;	4032
M_7B	DC	\$002000	;	8	A_AB	DC	\$7A0000	;	3904
M_7C	DC	\$001800	;	6	A_AC	DC	\$660000	;	3264
M_7D	DC	\$001000	;	4	A_AD	DC	\$620000	;	3136
M_7E	DC	\$000800	;	2	A_AE	DC	\$6E0000	;	3520
M_7F	DC	\$000000	;	0	A_AF	DC	\$6A0000	;	3392
A_80	DC	\$158000	;	688	A_B0	DC	\$2B0000	;	1376
A_81	DC	\$148000	;	656	A_B1	DC	\$290000	;	1312
A_82	DC	\$178000	;	752	A_B2	DC	\$2F0000	;	1504
A_83	DC	\$168000	;	720	A_B3	DC	\$2D0000	;	1440

 Table 23
 μ-Law/A-Law Expansion Table Contents (continued)

A_B4	DC	\$230000	;	1120	A_DA	DC	\$00F800	;	31
A_B5	DC	\$210000	;	1056	A_DB	DC	\$00E800	;	29
A_B6	DC	\$270000	;	1248	A DC	DC	\$009800	;	19
A_B7	DC	\$250000	;	1184	A_DD	DC	\$008800	;	17
A_B8	DC	\$3B0000	;	1888	A_DE	DC	\$00B800	;	23
A_B9	DC	\$390000	;	1824	A_DF	DC	\$00A800	;	21
A_BA	DC	\$3F0000	;	2016	A_E0	DC	\$056000	;	172
A_BB	DC	\$3D0000	;	1952	A_E1	DC	\$052000	;	164
A_BC	DC	; \$330000	;	1632	A_E2	DC	; \$05E000	;	188
A_BD	DC	\$310000	;	1568	A_E3	DC	\$05A000	;	180
A_BE	DC	\$370000	;	1760	A_E4	DC	\$046000	;	140
A_BF	DC	\$350000	;	1696	A_E5	DC	\$042000	;	132
A_C0	DC	\$015800	;	43	A_E6	DC	\$04E000	;	156
A_C1	DC	\$014800	;	41	A_E7	DC	\$04A000	;	148
A_C2	DC	\$017800	;	47	A_E8	DC	\$076000	;	236
A_C3	DC	\$016800	;	45	A_E9	DC	\$072000	;	228
A_C4	DC	\$011800	;	35	A_EA	DC	\$07E000	;	252
A_C5	DC	\$010800	;	33	A_EB	DC	\$07A000	;	244
A_C6	DC	\$013800	;	39	A_EC	DC	\$066000	;	204
A_C7	DC	\$012800	;	37	A_ED	DC	\$062000	;	196
A_C8	DC	\$01D800	;	59	A_EE	DC	\$06E000	;	220
A_C9	DC	\$01C800	;	57	A_EF	DC	\$06A000	;	212
A_CA	DC	\$01F800	;	63	A_F0	DC	\$02B000	;	86
A_CB	DC	\$01E800	;	61	A_F1	DC	\$029000	;	82
A_CC	DC	\$019800	;	51	A_F2	DC	\$02F000	;	94
A_CD	DC	\$018800	;	49	A_F3	DC	\$02D000	;	90
A_CE	DC	\$01B800	;	55	A_F4	DC	\$023000	;	70
A_CF	DC	\$01A800	;	53	A_F5	DC	\$021000	;	66
A_D0	DC	\$005800	;	11	A_F6	DC	\$027000	;	78
A_D1	DC	\$004800	;	9	A_F7	DC	\$025000	;	74
A_D2	DC	\$007800	;	15	A_F8	DC	\$03B000	;	118
A_D3	DC	\$006800	;	13	A_F9	DC	\$039000	;	114
A_D4	DC	\$001800	;	3	A_FA	DC	\$03F000	;	126
A_D5	DC	\$000800	;	1	A_FB	DC	\$03D000	;	122
A_D6	DC	\$003800	;	7	A_FC	DC	\$033000	;	102
A_D7	DC	\$002800	;	5	A_FD	DC	\$031000	;	98
A_D8	DC	\$00D800	;	27	A_FE	DC	\$037000	;	110
A_D9	DC	\$00C800	;	25	A_FF	DC	\$035000	;	106

ROM Table Listings Sine Wave Table

Sine Wave Table

This sine wave table (Table 24) is normally used by FFT routines which use bit-reversed address pointers. This table can be used as it is for up to 512 point FFTs; however, for larger FFTs, the table must be copied to a different memory location to allow the reverse-carry addressing mode to be used (see REVERSE-CARRY MODIFIER (Mn = \$0000) in the *DSP56001 User's Manual* for additional information).

Table 24 Sine Wave Table Contents

	ORG	Y:\$100						
;								
S_00	DC	\$000000	;	+0.000000000	S_24 DC	\$62F202	;	+0.7730104923
S_01	DC	\$03242B	;	+0.0245412998	S_25 DC	\$64E889	;	+0.7883464098
S_02	DC	\$0647D9	;	+0.0490676016	S_26 DC	\$66CF81	;	+0.8032075167
S_03	DC	\$096A90	;	+0.0735644996	S_27 DC	\$68A69F	;	+0.8175848722
S_04	DC	\$0C8BD3	;	+0.0980170965	S_28 DC	\$6A6D99	;	+0.8314697146
S_05	DC	\$0FAB27	;	+0.1224106997	S_29 DC	\$6C2429	;	+0.8448535204
S_06	DC	\$12C810	;	+0.1467303932	S_2A DC	\$6DCA0D	;	+0.8577286005
S_07	DC	\$15E214	;	+0.1709619015	S_2B DC	\$6F5F03	;	+0.8700870275
S_08	DC	\$18F8B8	;	+0.1950902939	S_2C DC	\$70E2CC	;	+0.8819212914
S_09	DC	\$1C0B82	;	+0.2191012055	S_2D DC	\$72552D	;	+0.8932244182
S_0A	DC	\$1F19F9	;	+0.2429800928	S_2E DC	\$73B5EC	;	+0.9039893150
S_0B	DC	\$2223A5	;	+0.2667128146	S_2F DC	\$7504D3	;	+0.9142097235
S_0C	DC	\$25280C	;	+0.2902846038	S_30 DC	\$7641AF	;	+0.9238795042
S_0D	DC	\$2826B9	;	+0.3136816919	S_31 DC	\$776C4F	;	+0.9329928160
S_0E	DC	\$2B1F35	;	+0.3368898928	S_32 DC	\$788484	;	+0.9415441155
S_0F	DC	\$2E110A	;	+0.3598949909	S_33 DC	\$798A24	;	+0.9495282173
S_10	DC	\$30FBC5	;	+0.3826833963	S_34 DC	\$7A7D05	;	+0.9569402933
S_11	DC	\$33DEF3	;	+0.4052414000	S_35 DC	\$7B5D04	;	+0.9637761116
S_12	DC	\$36BA20	;	+0.4275551140	S_36 DC	\$7C29FC	;	+0.9700313210
S_13	DC	\$398CDD	;	+0.4496113062	S_37 DC	\$7CE3CF	;	+0.9757022262
S_14	DC	\$3C56BA	;	+0.4713967144	S_38 DC	\$7D8A5F	;	+0.9807853103
S_15	DC	\$3F174A	;	+0.4928981960	S_39 DC	\$7E1D94	;	+0.9852777123
S_16	DC	\$41CE1E	;	+0.5141026974	S_3A DC	\$7E9D56	;	+0.9891765118
S_17	DC	\$447ACD	;	+0.5349975824	S_3B DC	\$7F0992	;	+0.9924796224
S_18	DC	\$471CED	;	+0.5555701852	S_3C DC	\$7F6237	;	+0.9951847792
S_19	DC	\$49B415	;	+0.5758082271	S_3D DC	\$7FA737	;	+0.9972904921
S_1A	DC	\$4C3FE0	;	+0.5956993103	S_3E DC	\$7FD888	;	+0.9987955093
S_1B	DC	\$4EBFE9	;	+0.6152315736	S_3F DC	\$7FF622	;	+0.9996988773
S_1C	DC	\$5133CD	;	+0.6343932748	S_40 DC	\$7FFFFF	;	+0.9999998808
S_1D	DC	\$539B2B	;	+0.6531729102	S_41 DC	\$7FF622	;	+0.9996988773
S_1E	DC	\$55F5A5	;	+0.6715589762	S_42 DC	\$7FD888	;	+0.9987955093
S_1F		\$5842DD	;	+0.6895405054	S_43 DC	\$7FA737	;	+0.9972904921
S_20		\$5A827A	;	+0.7071068287	S_44 DC	\$7F6237	;	+0.9951847792
S_21		\$5CB421	;	+0.7242470980	S_45 DC	\$7F0992	;	+0.9924796224
S_22		\$5ED77D	;	+0.7409511805	S_46 DC	\$7E9D56	;	+0.9891765118
S_23	DC	\$60EC38	;	+0.7572088242	S_47 DC	\$7E1D94	;	+0.9852777123

ROM Table Listings Sine Wave Table

 Table 24
 Sine Wave Table Contents
 (continued)

S_48		\$7D8A5F	;	+0.9807853103	S_78 DC	\$18F8B8	;	+0.1950902939
S_49	DC	\$7CE3CF	;	+0.9757022262	S_79 DC	\$15E214	;	+0.1709619015
S_4A	DC	\$7C29FC	;	+0.9700313210	S_7A DC	\$12C810	;	+0.1467303932
S_4B	DC	\$7B5D04	;	+0.9637761116	S_7B DC	\$0FAB27	;	+0.1224106997
S_4C	DC	\$7A7D05	;	+0.9569402933	S_7C DC	\$0C8BD3	;	+0.0980170965
S_4D		\$798A24	;	+0.9495282173	S_7D DC	\$096A90	;	+0.0735644996
S_4E		\$788484	;	+0.9415441155	S 7E DC	\$0647D9	;	+0.0490676016
S_4F		\$776C4F		+0.9329928160	S_7F DC	\$03242B	:	+0.0245412998
S_50		\$7641AF		+0.9238795042	S_80 DC	\$000000	;	+0.0000000000
S_50		\$7504D3	;		S_81 DC	\$FCDBD5		-0.0245412998
S 52					S_81 DC S 82 DC			-0.0245412998
_		\$73B5EC	;		-	\$F9B827		
S_53		\$72552D	;	+0.8932244182	S_83 DC	\$F69570		-0.0735644996
S_54		\$70E2CC		+0.8819212914	S_84 DC	\$F3742D		-0.0980170965
S_55		\$6F5F03		+0.8700870275	S_85 DC	\$F054D9		-0.1224106997
S_56		\$6DCA0D		+0.8577286005	S_86 DC	\$ED37F0		-0.1467303932
S_57		\$6C2429		+0.8448535204	S_87 DC	\$EA1DEC	;	-0.1709619015
S_58	DC	\$6A6D99	;	+0.8314697146	S_88 DC	\$E70748	;	-0.1950902939
S_59	DC	\$68A69F	;	+0.8175848722	S_89 DC	\$E3F47E	;	-0.2191012055
S_5A	DC	\$66CF81	;	+0.8032075167	S_8A DC	\$E0E607	;	-0.2429800928
S_5B	DC	\$64E889	;	+0.7883464098	S 8B DC	\$DDDC5B	;	-0.2667128146
S 5C		\$62F202	;	+0.7730104923	S_8C DC	\$DAD7F4	;	-0.2902846038
S_5D		\$60EC38		+0.7572088242	S 8D DC	; \$D7D947		-0.3136816919
S_5E		\$5ED77D		+0.7409511805	S_8E DC	\$D4E0CB		-0.3368898928
S_5E		\$5CB421		+0.7242470980	S_8F DC	\$D1EEF6		-0.3598949909
S_60		•		+0.7242470980	S_90 DC	\$CF043B		-0.3826833963
		\$5A827A			S_90 DC S 91 DC			
S_61		\$5842DD		+0.6895405054	-	\$CC210D		-0.4052414000
S_62		\$55F5A5		+0.6715589762	S_92 DC	\$C945E0		-0.4275551140
S_63		\$539B2B	;	+0.6531729102	S_93 DC	\$C67323		-0.4496113062
S_64		\$5133CD	;		S_94 DC	\$C3A946		-0.4713967144
S_65		\$4EBFE9	;		S_95 DC	\$C0E8B6		-0.4928981960
S_66	DC	\$4C3FE0	;	+0.5956993103	S_96 DC	\$BE31E2	;	-0.5141026974
S_67	DC	\$49B415	;	+0.5758082271	S_97 DC	\$BB8533	;	-0.5349975824
S_68	DC	\$471CED	;	+0.5555701852	S_98 DC	\$B8E313	;	-0.5555701852
S_69	DC	\$447ACD	;	+0.5349975824	S_99 DC	\$B64BEB	;	-0.5758082271
S_6A	DC	\$41CE1E	;	+0.5141026974	S_9A DC	\$B3C020	;	-0.5956993103
S_6B	DC	\$3F174A	;	+0.4928981960	S_9B DC	\$B14017	;	-0.6152315736
S_6C	DC	\$3C56BA	;	+0.4713967144	S_9C DC	\$AECC33	;	-0.6343932748
S_6D		\$398CDD		+0.4496113062	S_9D DC	\$AC64D5		-0.6531729102
S_6E		\$36BA20		+0.4275551140	S 9E DC	\$AA0A5B		-0.6715589762
S_6F		\$33DEF3		+0.4052414000	S 9F DC	\$A7BD23		-0.6895405054
S_70		\$30FBC5		+0.3826833963	S_A0 DC	\$A57D86		-0.7071068287
S_70 S_71				+0.3520033903				-0.7242470980
		\$2E110A			S_A1 DC	\$A34BDF		
S_72		\$2B1F35		+0.3368898928	S_A2 DC	\$A12883		-0.7409511805
S_73		\$2826B9		+0.3136816919	S_A3 DC	\$9F13C8		-0.7572088242
S_74		\$25280C		+0.2902846038	S_A4 DC	\$9D0DFE		-0.7730104923
S_75		\$2223A5		+0.2667128146	S_A5 DC	\$9B1777		-0.7883464098
S_76		\$1F19F9		+0.2429800928	S_A6 DC	\$99307F		-0.8032075167
S_77	DC	\$1C0B82	;	+0.2191012055	S_A7 DC	\$975961	;	-0.8175848722

ROM Table Listings Sine Wave Table

 Table 24
 Sine Wave Table Contents
 (continued)

					` ,		
S_A8 DC	\$959267	;	-0.8314697146	S_D4 DC	\$8F1D34	;	-0.8819212914
S_A9 DC	\$93DBD7	;	-0.8448535204	S_D5 DC	\$90A0FD	;	-0.8700870275
S_AA DC	\$9235F3	;	-0.8577286005	S_D6 DC	\$9235F3	;	-0.8577286005
S_AB DC	\$90A0FD	;	-0.8700870275	S_D7 DC	\$93DBD7	;	-0.8448535204
S_AC DC	\$8F1D34	;	-0.8819212914	S_D8 DC	\$959267	;	-0.8314697146
S_AD DC	\$8DAAD3	;	-0.8932244182	S_D9 DC	\$975961	;	-0.8175848722
S_AE DC	\$8C4A14	;	-0.9039893150	S_DA DC	\$99307F	;	-0.8032075167
S_AF DC	\$8AFB2D	;	-0.9142097235	S_DB DC	\$9B1777	;	-0.7883464098
S_B0 DC	\$89BE51	;	-0.9238795042	S_DC DC	\$9D0DFE	;	-0.7730104923
S_B1 DC	\$8893B1	;	-0.9329928160	S_DD DC	\$9F13C8	;	-0.7572088242
S_B2 DC	\$877B7C	;	-0.9415441155	S_DE DC	\$A12883	;	-0.7409511805
S_B3 DC	\$8675DC	;	-0.9495282173	S_DF DC	\$A34BDF	;	-0.7242470980
S_B4 DC	\$8582FB	;	-0.9569402933	S_E0 DC	\$A57D86	;	-0.7071068287
S_B5 DC	\$84A2FC	;	-0.9637761116	S_E1 DC	\$A7BD23	;	-0.6895405054
S_B6 DC	\$83D604	;	-0.9700313210	S_E2 DC	\$AA0A5B	;	-0.6715589762
S_B7 DC	\$831C31	;	-0.9757022262	S_E3 DC	\$AC64D5	;	-0.6531729102
S_B8 DC	\$8275A1	;	-0.9807853103	S_E4 DC	\$AECC33	;	-0.6343932748
S_B9 DC	\$81E26C	;	-0.9852777123	S_E5 DC	\$B14017	;	-0.6152315736
S_BA DC	\$8162AA	;	-0.9891765118	S_E6 DC	\$B3C020	;	-0.5956993103
S_BB DC	\$80F66E	;	-0.9924796224	S_E7 DC	\$B64BEB	;	-0.5758082271
S_BC DC	\$809DC9	;	-0.9951847792	S_E8 DC	\$B8E313	;	-0.5555701852
S_BD DC	\$8058C9	;	-0.9972904921	S_E9 DC	\$BB8533	;	-0.5349975824
S_BE DC	\$802778	;	-0.9987955093	S_EA DC	\$BE31E2	;	-0.5141026974
S_BF DC	\$8009DE	;	-0.9996988773	S_EB DC	\$C0E8B6	;	-0.4928981960
S_C0 DC	\$800000	;	-1.0000000000	S_EC DC	\$C3A946	;	-0.4713967144
S_C1 DC	\$8009DE	;	-0.9996988773	S_ED DC	\$C67323	;	-0.4496113062
S_C2 DC	\$802778	;	-0.9987955093	S_EE DC	\$C945E0	;	-0.4275551140
S_C3 DC	\$8058C9	;	-0.9972904921	S_EF DC	\$CC210D	;	-0.4052414000
S_C4 DC	\$809DC9	;	-0.9951847792	S_F0 DC	\$CF043B	;	-0.3826833963
S_C5 DC	\$80F66E	;	-0.9924796224	S_F1 DC	\$D1EEF6	;	-0.3598949909
S_C6 DC	\$8162AA	;	-0.9891765118	S_F2 DC	\$D4E0CB	;	-0.3368898928
S_C7 DC	\$81E26C	;	-0.9852777123	S_F3 DC	\$D7D947	;	-0.3136816919
S_C8 DC	\$8275A1	;	-0.9807853103	S_F4 DC	\$DAD7F4	;	-0.2902846038
S_C9 DC	\$831C31	;	-0.9757022262	S_F5 DC	\$DDDC5B	;	-0.2667128146
S_CA DC	\$83D604	;	-0.9700313210	S_F6 DC	\$E0E607	;	-0.2429800928
S_CB DC	\$84A2FC	;	-0.9637761116	S_F7 DC	\$E3F47E	;	-0.2191012055
S_CC DC	\$8582FB	;	-0.9569402933	S_F8 DC	\$E70748	;	-0.1950902939
S_CD DC	\$8675DC	;	-0.9495282173	S_F9 DC	\$EA1DEC	;	-0.1709619015
S_CE DC	\$877B7C		-0.9415441155	S_FA DC	\$ED37F0	;	-0.1467303932
S_CF DC	\$8893B1	;	-0.9329928160	S_FB DC	\$F054D9		-0.1224106997
S_D0 DC	\$89BE51	;	-0.9238795042	S_FC DC	\$F3742D		-0.0980170965
S_D1 DC	\$8AFB2D	;	-0.9142097235	S_FD DC	\$F69570	;	-0.0735644996
S_D2 DC	\$8C4A14		-0.9039893150	S_FE DC	\$F9B827		-0.0490676016
S_D3 DC	\$8DAAD3	;	-0.8932244182	S_FF DC	\$FCDBD5	;	-0.0245412998

Ordering Information

Table 25 lists the pertinent information needed to place an order. Consult a Motorola Semiconductor sales office or authorized distributor to determine availability and to order parts.

Table 25 DSP56001A Ordering Information

Part	Package Type	Pin Count	Frequency (MHz)	Order Number
DSP56001A	Ceramic Pin-Grid Array (PGA)	88	20.5	DSP56001ARC20
			27	DSP56001ARC27
			33	DSP56001ARC33
	Plastic Quad Flat Pack (PQFP)	132	20.5	DSP56001AFC20
			27	DSP56001AFC27
			33	DSP56001AFC33
	Ceramic Quad Flat Pack (CQFP)	132	20.5	DSP56001AFE20
			27	DSP56001AFE27
			33	DSP56001AFE33

All product and brand names appearing herein are trademarks or registered trademarks of their respective holders.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and b are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, United Kingdom.

JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.

ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbor Center, No. 2 Dai King Street, Tai Po Industrial

Estate, Tai Po, N.T., Hong Kong.

