Chapter 2 Section 2

Andrew Taylor

April 6 2022

The letter L can be represented by the vectors (0,2) and (1,0).

The following problems ask for a linear transformation of the letter L. In the following problems, give the matrix of the transformation and plot the result.

Problem 1. Scale L by a factor of $\frac{1}{2}$

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0.5 & 0.0 \\ 0.0 & 0.5 \end{bmatrix}$$

After the scaling, the L looks like this

Note that in creating this shape, we scaled both vectors that make up the L.

Problem 2. Rotate L ninety degrees counterclockwise

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

After the rotation, the L looks like this

Problem 3. Reflect L about the Y axis

Solution. The matrix of the transformation is

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

The plot looks like this

Problem 4. Reflect L about the X axis

Solution. The matrix of the transformation is

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Problem 5. Rotate L forty five degrees counterclockwise

Solution. The matrix of the transformation is

$$\begin{bmatrix} \cos(\frac{\pi}{4}) & -1 * \sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}$$

Problem 6. Find the orthogonal projection of L onto the x-axis **Solution.** The matrix of the transformation is

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Problem 7. Find the orthogonal projection of L onto the y-axis **Solution.** The matrix of the transformation is

$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Problem 8. Find the matrix P of the orthogonal projection onto the line L spanned by $\vec{w} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$

Solution.

$$P = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{bmatrix}$$
$$= \frac{1}{25} \begin{bmatrix} 9 & 12 \\ 12 & 16 \end{bmatrix}$$
$$= \begin{bmatrix} 0.36 & 0.48 \\ 0.48 & 0.64 \end{bmatrix}$$

Problem 9. Let V be the plane defined by $2x_1 + x_2 - 2x_3 = 0$ and let $\vec{x} = \begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix}$. Find ref_V \vec{x} .

Solution. The vector $\vec{v} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ is perpendicular to the plane V.

We can get the unit vector \vec{u} perpendicular to the plane by

$$\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v}$$

$$= \frac{1}{\sqrt{2^2 + 1^2 + (-2)^2}} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$$

We can now use the formula

$$\operatorname{ref}_{V} \vec{x} = \operatorname{proj}_{V} \vec{x} - \operatorname{proj}_{L} \vec{x}$$

$$= \vec{x} - 2 \operatorname{proj}_{L} \vec{x}$$

$$= \vec{x} - 2(\vec{x} \cdot \vec{u})\vec{u}$$

$$= \begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix} - 2 \begin{pmatrix} 5 \\ 4 \\ -2 \end{bmatrix} \cdot \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix} - 4 \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$= \begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \\ -8 \end{bmatrix}$$

$$= \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}$$

The reflection of the vector \vec{x} over the plane V is the vector

$$\operatorname{ref}_{V} \vec{x} = \begin{bmatrix} -3\\0\\6 \end{bmatrix}$$

Problem 10. Give the matrix of a counterclockwise rotation through $\frac{\pi}{6}$.

Solution. The matrix of a counterclockwise rotation through $\frac{\pi}{6}$ is

$$\begin{bmatrix} \cos\left(\frac{\pi}{6}\right) & -\sin\left(\frac{\pi}{6}\right) \\ \sin\left(\frac{\pi}{6}\right) & \cos\left(\frac{\pi}{6}\right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

Problem 11. Let $T(\vec{x})$ be the linear transformation

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \vec{x}$$
$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

How does the linear transformation $T(\vec{x})$ affect the letter L? Remember that our letter L is composed of vectors $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Solution. The vector $\begin{bmatrix} a \\ b \end{bmatrix}$ can be written in polar coordinates as

$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} r\cos(\theta) \\ r\sin(\theta) \end{bmatrix}$$

We can substitute these polar coordinates into the linear transformation, and write it as

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} r\cos(\theta) & -r\sin(\theta) \\ r\sin(\theta) & r\cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= r \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

The linear transformation rotates the vector counterclockwise through an angle of θ and scales the vector by a factor of r.

For example, let $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Then we have

$$T(\vec{x}) = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\approx 5 \begin{bmatrix} \cos(53.1^\circ) & -\sin(53.1^\circ) \\ \sin(53.1^\circ) & \cos(53.1^\circ) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

This rotates L approximately 53.1° and scales L by a factor of 5.

Thus we see that the linear transformation

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= r \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

rotates L counterclockwise through θ degrees and scales L by a factor of r.

Problem 12. Sketch the image of the standard L under the linear transformation

$$T(\vec{x}) = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \vec{x}$$

Solution. We can apply the linear transformation to both vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ that make up our L.

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3 & 1\\1 & 2\end{bmatrix}\begin{bmatrix}1\\0\end{bmatrix}$$
$$= \begin{bmatrix}3\\1\end{bmatrix}$$

$$T\left(\begin{bmatrix}0\\2\end{bmatrix}\right) = \begin{bmatrix}3 & 1\\1 & 2\end{bmatrix}\begin{bmatrix}0\\2\end{bmatrix}$$
$$= \begin{bmatrix}2\\4\end{bmatrix}$$

We can now draw these vectors on the Cartesian plane.

Problem 13. Find the matrix of a rotation through an angle of 60° in the counterclockwise direction.

Solution. The matrix of the rotation is

$$\begin{bmatrix} \cos(\frac{\pi}{3}) & -\sin(\frac{\pi}{3}) \\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$

Problem 14. Consider a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 . Use $T(\vec{e_1})$ and $T(\vec{e_2})$ to describe the image of the unit square geometrically.

Solution. Let \vec{x} be a vector in the unit square. We can write the vector \vec{x} as

$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2}$$

where $0 \le x_1, x_2 \le 1$ and $\vec{e_1}$, $\vec{e_2}$ are the unit vectors. Thus

$$T(\vec{x}) = T(x_1\vec{e_1} + x_2\vec{e_2})$$

= $T(x_1\vec{e_1}) + T(x_2\vec{e_2})$
= $x_1T(\vec{e_1}) + x_2T(\vec{e_2})$

The vectors $T(\vec{e_1})$ and $T(\vec{e_2})$ describe a parallelogram in \mathbb{R}^3 .

Thus $T(\vec{x}) = x_1 T(\vec{e_1}) + x_2 T(\vec{e_2})$ is a vector in that parallelogram in \mathbb{R}^3 .

Note that we got our equation for $T(\vec{x})$ using the properties of linear transformations.

T(a+b) = T(a) + T(b) and T(ka) = kT(a) for vectors a, b and scalar k.

Problem 15. Interpret the following linear transformation geometrically:

$$T(\vec{x}) = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \vec{x}$$

Solution. The matrix of the transformation is a rotation matrix combined with a scaling. Since a rotation matrix has the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

We see that $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

The vector $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ forms a -45° angle with the X axis. The vector has magnitude $\sqrt{2}$.

Thus the linear transformation T applies a rotation of 45° in the clockwise direction and a scaling of $\sqrt{2}$.

Problem 16. The matrix

$$\begin{bmatrix} -0.8 & -0.6 \\ 0.6 & -0.8 \end{bmatrix}$$

represents a rotation. Find the angle of rotation (in radians).

Solution. We have $\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} -0.8 \\ 0.6 \end{bmatrix}$ and $a^2 + b^2 = 1$.

Thus $\cos(\theta) = -0.8$ and $\sin(\theta) = 0.6$ where θ is the angle of rotation.

We can solve for θ .

$$cos(\theta) = -0.8$$

 $\theta = cos^{-1}(-0.8) = 2.49809...$

Thus $\theta \approx 2.49809$ radians.

Problem 17. Let L be the line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$. Find the orthogonal projection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto L.

Solution. Let
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$.

$$\operatorname{proj}_{L} \vec{x} = \begin{pmatrix} \vec{x} \cdot \vec{w} \\ \vec{w} \cdot \vec{w} \end{pmatrix} \vec{w}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \\ \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} & \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{5}{9} \end{pmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{10}{9} \\ \frac{5}{9} \\ \frac{10}{9} \end{bmatrix}$$

Since the magnitude of \vec{x} is $\sqrt{3}$, it's fine that the first and third components of $\operatorname{proj}_L \vec{x}$ exceed 1.

The vector $\operatorname{proj}_L \vec{x}$ represents the component of \vec{x} that is parallel to \vec{w} .

Let V be the plane perpendicular to L.

$$\vec{x} = \operatorname{proj}_{L} \vec{x} + \operatorname{proj}_{V} \vec{x}$$

$$= \begin{bmatrix} \frac{10}{9} \\ \frac{5}{9} \\ \frac{10}{9} \end{bmatrix} + \begin{bmatrix} \frac{-1}{9} \\ \frac{4}{9} \\ \frac{-1}{9} \end{bmatrix}$$

Problem 18. Let L be the line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$. Find the reflection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto L.

Solution.

$$\operatorname{ref}_{L} \vec{x} = 2 \operatorname{proj}_{L} \vec{x} - \vec{x}$$

$$= 2 \begin{bmatrix} \frac{10}{9} \\ \frac{5}{9} \\ \frac{10}{9} \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{20}{9} \\ \frac{10}{9} \\ \frac{20}{9} \end{bmatrix} - \begin{bmatrix} \frac{9}{9} \\ \frac{9}{9} \\ \frac{20}{9} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{11}{9} \\ \frac{1}{9} \\ \frac{11}{9} \end{bmatrix}$$

Problem 19. Interpret the following linear transformation geometrically:

$$T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{x}$$

Solution. The matrix of the transformation represents a reflection. Recall that a reflection matrix is of the form

$$\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

Here we have
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

In the linear transformation $T(\vec{x})$, the vector \vec{x} is reflected about the line spanned by the vector $\begin{bmatrix} 0 \\ -1 \end{bmatrix}$

Problem 20. Interpret the following linear transformation geometrically:

$$T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \vec{x}$$

Solution. The linear transformation is a vertical shear with k = 1. Recall that a vertical shear has a matrix of the form

$$\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$$

We can apply the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ to a vector $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

$$T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
$$= \begin{bmatrix} x_1 \\ x_1 + x_2 \end{bmatrix}$$

Problem 21. Find the matrix of the orthogonal projection onto the line L spanned by the vector $\vec{w} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$

Solution.

$$\begin{aligned} \operatorname{proj}_{L} \vec{x} &= \frac{1}{w_{1}^{2} + w_{2}^{2}} \begin{bmatrix} w_{1}^{2} & w_{1}w_{2} \\ w_{1}w_{2} & w_{2}^{2} \end{bmatrix} \vec{x} \\ &= \frac{1}{4^{2} + 3^{2}} \begin{bmatrix} 4^{2} & 4*3 \\ 4*3 & 3^{2} \end{bmatrix} \vec{x} \\ &= \frac{1}{25} \begin{bmatrix} 16 & 12 \\ 12 & 9 \end{bmatrix} \vec{x} \\ &= \begin{bmatrix} \frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25} \end{bmatrix} \vec{x} \end{aligned}$$

Thus the matrix of the orthogonal projection onto the line spanned by \vec{w} is

$$P = \begin{bmatrix} \frac{16}{25} & \frac{12}{25} \\ \frac{12}{25} & \frac{9}{25} \end{bmatrix}$$