МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

3BIT

до індивідуального завдання №3 з дисципліни «Моделі статистичного навчання»

Виконав студент групи ПМіМ-12: Бордун Михайло

Перевірив:

Проф. Заболоцький Т. М.

Хід виконання

1. Аналіз даних Weekly, що містять 1 089 щотижневі дохідності за 21 рік, з початку 1990 р. до кінця 2010 року.

Розглянемо датасет Weekly. Для кожної дати наявна дохідність для попередніх 5 днів Lag1,...,Lag5. Змінна Volume містить дані про обсяг торгів попереднього дня у млн., Today — сьогоднішня дохідність, та змінна Direction, яка вказує чи зріс ринок чи впав.

```
Year
                    Lag1
                                       Lag2
                                                           Lag3
Min.
       :1990
               Min.
                      :-18.1950
                                  Min.
                                          :-18.1950
                                                     Min.
                                                             :-18.1950
               1st Qu.: -1.1540
1st Qu.:1995
                                  1st Qu.: -1.1540
                                                      1st Qu.: -1.1580
Median :2000
               Median : 0.2410
                                  Median :
                                            0.2410
                                                     Median :
                                                               0.2410
       :2000
                      : 0.1506
                                            0.1511
3rd Qu.:2005
               3rd Qu.: 1.4050
                                                      3rd Qu.: 1.4090
                                  3rd Qu.: 1.4090
Max.
       :2010
               Max.
                      : 12.0260
                                          : 12.0260
                                                             : 12.0260
                                  Max.
                                                     Max.
                                          Volume
     Lag4
                        Lag5
                                                             Today
Min.
       :-18.1950
                   Min.
                          :-18.1950
                                      Min.
                                              :0.08747
                                                        Min.
                                                                :-18.1950
1st Qu.: -1.1580
                   1st Qu.: -1.1660
                                      1st Qu.:0.33202
                                                        1st Qu.: -1.1540
Median : 0.2380
                   Median : 0.2340
                                      Median :1.00268
                                                        Median: 0.2410
Mean
       : 0.1458
                   Mean
                          : 0.1399
                                             :1.57462
                                                        Mean
                                                                : 0.1499
                                      Mean
3rd Qu.: 1.4090
                   3rd Qu.: 1.4050
                                      3rd Qu.:2.05373
                                                         3rd Qu.: 1.4050
       : 12.0260
                   Max.
                         : 12.0260
                                      Max.
                                              :9.32821
                                                        Max.
                                                                : 12.0260
Direction
Down: 484
   :605
```

1.1 Розглянуто кореляції між змінними нашого датасету за допомогою функції cor().

```
Lag1
                                       Lag2
        1.00000000 -0.032289274 -0.033339001 -0.03000649 -0.031127923
Year
       -0.03228927 1.000000000 -0.07485305
                                             0.05863568 -0.071273876
Lag1
       -0.03339001 -0.074853051
                                1.000000000
                                            -0.07572091
Lag3
       -0.03000649 0.058635682 -0.07572091
                                             1.000000000
Lag4
       -0.03112792 -0.071273876
                                0.05838153 -0.07539587
       -0.03051910 -0.008183096 -0.07249948 0.06065717 -0.075675027
Lag5
Volume 0.84194162 -0.064951313 -0.08551314 -0.06928771 -0.061074617
Today
       -0.03245989 -0.075031842 0.05916672 -0.07124364 -0.007825873
               Lag5
                         Volume
                                       Today
Year
       -0.030519101 0.84194162 -0.032459894
Lag1
       -0.008183096 -0.06495131 -0.075031842
Lag2
       -0.072499482 -0.08551314 0.059166717
Lag3
        0.060657175 -0.06928771 -0.071243639
Lag4
       -0.075675027 -0.06107462 -0.007825873
        1.000000000 -0.05851741
Volume -0.058517414
                     1.00000000 -0.033077783
        0.011012698 -0.03307778 1.0000000000
```

Як бачимо чітку кореляцію тільки між змінною Year та Volume. Можна представити це графічно за допомогою функції plot().

Бачимо, що змінна Volume зростає з плином часу, при чому загалом бачимо експоненціальний зріст.

1.2 Побудовано логістичну регресію, де Direction — залежна змінна, а п'ять зміщенних дохідностей та змінна Volume незалежні.

```
Call:
glm(formula = Direction ~ Lag1 + Lag2 + Lag3 + Lag4 + Lag5 +
      Volume, family = binomial, data = Weekly)
Deviance Residuals:
     Min 1Q Median 3Q
                                                       Max
-1.6949 -1.2565 0.9913 1.0849 1.4579
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.26686 0.08593 3.106 0.0019 **
         Lag1

      Lag2
      0.05844
      0.02686
      2.175
      0.0296

      Lag3
      -0.01606
      0.02666
      -0.602
      0.5469

      Lag4
      -0.02779
      0.02646
      -1.050
      0.2937

      Lag5
      -0.01447
      0.02638
      -0.549
      0.5833

      Volume
      -0.02274
      0.03690
      -0.616
      0.5377

Lag2
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
     Null deviance: 1496.2 on 1088 degrees of freedom
Residual deviance: 1486.4 on 1082 degrees of freedom
AIC: 1500.4
Number of Fisher Scoring iterations: 4
```

Для нашої моделі бачимо, що найменше p-value відповідає змінній Lag2, тобто кореляція є суттєва. Тим паче, є наявний позитивний коефіцієнт біля цієї змінної, що вказує на те, що якщо позавчора ринок мав негативну дохідність, то сьогодні більше шансів зрости.

1.3 Побудовано матрицю помилок та обчислено загальну частку правильних прогнозів.

```
Direction
pred.glm Down Up
Down 54 48
Up 430 557
[1] "Correct predictions rate: 0.561065197428834"
[1] "Correct predictions rate when the market goes up: 0.920661157024793"
[1] "Correct predictions rate when the market goes down: 0.111570247933884"
```

Тобто, загальна частка правильних прогнозів становить 56.1%, що є досить поганим результатом прогнозування. Впродовж тижнів коли ринок йде вгору, модель правильно прогнозує у 92.1% випадків (557/(48+557))%. Впродовж тижнів коли ринок спадає, модель має рацію лише в 11.2% випадків (54/(54+430))%.

1.4 Побудовано модель логістичної регресії з використанням навчальних даних з 1990 по 2008 рр., з єдиним предиктором Lag2.

```
train = (Year >= 1990 & Year <= 2008)
Weekly.test = Weekly[!train, ]
Direction.test = Direction[!train]

cat("\n")
print(paste("Rows of train data: ", dim(Weekly.test)[1]))</pre>
```

```
[1] "Rows of test data: 104"
Call:
glm(formula = Direction ~ Lag2, family = binomial, data = Weekly,
   subset = train)
Deviance Residuals:
Min 1Q Median 3Q
-1.536 -1.264 1.021 1.091
                                1.368
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.20326 0.06428 3.162 0.00157 **
           0.05810 0.02870 2.024 0.04298 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 1354.7 on 984 degrees of freedom
Residual deviance: 1350.5 on 983 degrees of freedom
AIC: 1354.5
Number of Fisher Scoring iterations: 4
```

```
Direction.test

pred.glm2 Down Up

Down 9 5

Up 34 56

[1] "Correct predictions rate: 0.625"

[1] "Correct predictions rate when the market goes up: 0.918032786885246"

[1] "Correct predictions rate when the market goes down: 0.209302325581395"
```

3 огляду на матрицю помилок, бачимо, що модель схильна позначати більшу частину тестових даних як підйом ринку. Загалом частка правильних прогнозів становить 62.5%. Впродовж тижнів коли ринок йде вгору, модель правильно прогнозує у 91.8% випадків (56/(56+5))%. Впродовж тижнів коли ринок спадає, модель має рацію лише в 20.9% випадків (9/(34+9))%.

1.5 Побудовано модель лінійного дискримінантного аналізу з використанням навчальних даних з 1990 по 2008 рр., з єдиним предиктором Lag2.

```
Call:
lda(Direction ~ Lag2, data = Weekly, subset = train)
Prior probabilities of groups:
0.4477157 0.5522843
Group means:
Down -0.03568254
    0.26036581
Coefficients of linear discriminants:
          LD1
Lag2 0.4414162
     Direction.test
      Down Up
 Down
[1] "Correct predictions rate: 0.625"
 1] "Correct predictions rate when the market goes up: 0.918032786885246"
   "Correct predictions rate when the market goes down: 0.209302325581395"
```

Як бачимо навчальні дані ϵ досить добре розподілені і 55% вибірки позначено як зростання ринку. Ми також отримали групові середні, з яких бачимо, що позавчора коли ринок спада ϵ , то дохідність ϵ негативна і навпаки.

3 огляду на матрицю помилок, бачимо, що модель схильна позначати більшу частину тестових даних як підйом ринку. Загалом частка правильних прогнозів становить 62.5%. Впродовж тижнів коли ринок йде вгору, модель правильно прогнозує у 91.8% випадків (56/(56+5))%. Впродовж тижнів коли ринок спадає, модель має рацію лише в 20.9% випадків (9/(34+9))%.

1.6 Побудовано модель квадратичного дискримінантного аналізу з використанням навчальних даних з 1990 по 2008 рр., з єдиним предиктором Lag2.

Бачимо цікаву картину аналізуючи матрицю помилок. Тобто, модель позначає весь час тестові дані як підйом ринку. Загалом частка правильних прогнозів становить 58.7%. Впродовж тижнів коли ринок йде вгору, модель правильно прогнозує у 100% випадків і навпаки, коли ринок спадає, модель робить повністю хибні прогнози.

1.7 Побудовано класифікатор К-найближчих сусідів з K=1 з використанням навчальних даних з 1990 по 2008 рр., з єдиним предиктором Lag2.

Нижче наведений код для формування перших двох аргументів для функції прогнозування. Тобто формуємо матриці з предиктора Lag2, які пов'язані чисто з навчальними даними та тестовими. Set.seed(1) встановлено для випадку, якщо кілька спостережень розглядатимуться як найближчі сусіди, то R буде випадковим чином вибирати потрібну кількість.

```
train.X = as.matrix(Lag2[train])
test.X = as.matrix(Lag2[!train])

Direction.train = Direction[train]
set.seed(1)
pred.knn = knn(train.X, test.X, Direction.train, k = 1)
```

```
Direction.test

pred.knn Down Up

Down 21 30

Up 22 31

[1] "Correct predictions rate: 0.5"

[1] "Correct predictions rate when the market goes up: 0.508196721311475"

[1] "Correct predictions rate when the market goes down: 0.488372093023256"
```

3 огляду на матрицю помилок бачимо, що частка правильних прогнозів становить 50%. Впродовж тижнів коли ринок йде вгору, модель правильно прогнозує у 50.8% випадків (31/(30+31))%. Впродовж тижнів коли ринок спадає, модель має рацію в 48.8% випадків (21/(22+21))%.

1.8

```
"Test error rate table"

"Knn test error rate : 0.5"

"Qda test error rate : 0.413461538461538"

"Lda test error rate : 0.375"

"Glm test error rate : 0.375"
```

Вище наведено таблицю тестових помилок вищезгаданих моделей. Звідси очевидно, що найбільш відповідними для нашої вибірки виявились LDA та GLM моделі.

1.9 Поекспериментував з різними комбінаціями предикторів, використовуючи у тому числі можливі перетворення та взаємодії.

```
fit.glm3 = glm(Direction ~ Lag2*Lag1, data = Weekly, family = binomial, subset = t
rain)
```

```
Direction.test
pred.glm3 Down Up
Down 7 8
Up 36 53
[1] "Correct predictions rate: 0.576923076923077"
```

fit.lda2 = lda(Direction ~ Lag2:Lag1 + Lag1, data = Weekly, subset = train)

```
Direction.test
Down Up
Down 4 4
Up 39 57
[1] "Correct predictions rate: 0.586538461538462"
```

fit.qda2 = qda(Direction ~ Lag2 + abs(Lag2), data = Weekly, subset = train)

```
Direction.test
Down Up
Down 11 12
Up 32 49
[1] "Correct predictions rate: 0.576923076923077"
```

```
Direction.test
pred.knn2 Down Up
    Down 15 20
    Up
          28 41
[1] "Correct predictions rate: 0.538461538461538"
       Direction.test
pred.knn3 Down Up
    Down 20 20
         23 41
    Up
[1] "Correct predictions rate: 0.586538461538462"
       Direction.test
pred.knn4 Down Up
    Down 19 23
          24 38
[1] "Correct predictions rate: 0.548076923076923"
```

В наступних результатах подані матриці помилок для моделей К-найближчих сусідів відповідно із значеннями К= 5, 15, 30. Тобто для значення К=15 бачимо найкращу частку правильних прогнозів на тестових даних, а саме 58.7%, це найкращий результат прогнозування серед всіх попередньо розглянутих класифікаторів К-найближчих сусідів. Такого ж результату було досягнуто з використання LDA, де було використано змінну взаємодії та змінну Lag1. Але, бачимо, що використання змінних взаємодії не приносить покращень щодо прогнозування і базові моделі логістичної регресії та LDA мають найкращу точність (62.5%).

2. Модель класифікації для передбачення, чи вибране авто має велике або низьке споживання газу на базі даних Auto.

2.1 Було створено двійкову змінну mpg01, яка містить 1, якщо mpg містить значення вище медіани, і 0, якщо mpg містить значення нижче його медіани. А також створено єдиний набір даних , що містить як mpg01, так і інші змінні з датасету Auto.

```
attach(autos)
mpg01 = rep(0, length(mpg))
mpg01[mpg > median(mpg)] = 1
autos = data.frame(autos, mpg01)
```

2.2 Дослідимо змінні та їх залежності з датасету Auto. Для початку використано функцію cor(), щоб побачити настільки сильна чи слаба кореляція між змінними. А також за допомогою функції pairs() виведено графічну залежність всіх змінних.

	mpg	cylinders	displacement	horsepower	weight	acceleration	year
mpg	1.00	-0.78	-0.81	-0.78	-0.83	0.42	0.58
cylinders	-0.78	1.00	0.95	0.84	0.90	-0.50	-0.35
displacement	-0.81	0.95	1.00	0.90	0.93	-0.54	-0.37
horsepower	-0.78	0.84	0.90	1.00	0.86	-0.69	-0.42
weight	-0.83	0.90	0.93	0.86	1.00	-0.42	-0.31
acceleration	0.42	-0.50	-0.54	-0.69	-0.42	1.00	0.29
year	0.58	-0.35	-0.37	-0.42	-0.31	0.29	1.00
origin	0.57	-0.57	-0.61	-0.46	-0.59	0.21	0.18
mpg01	0.84	-0.76	-0.75	-0.67	-0.76	0.35	0.43
	origin	mpg01					
mpg	0.57	0.84					
cylinders	-0.57	-0.76					
displacement	-0.61	-0.75					
horsepower	-0.46	-0.67					
weight	-0.59	-0.76					
acceleration	0.21	0.35					
year	0.18	0.4 3					
origin	1.00	0.51					
mpg01	0.51	1.00					

З числових даних бачимо, що ϵ досить сильна залежність між mpg01 та змінними cylinders, displacement, horsepower та weight, але тут варто наголосити що це ϵ від'ємна кореляція. Тобто далі будемо досліджувати детальніше вищезгадані змінні. Це було виконано з використанням функції boxplot().

Displacement vs mpg01

Horsepower vs mpg01

Всі наведені вище коробчасті діаграми вказують, що справді є наявна від'ємна кореляція між змінними cylinders, displacement, horsepower, weight та нашою якісною змінною mpg01. Хоча варто сказати, що для всіх цих змінних існують значення при mpg01 = 1, які є більші за середнє при mpg01 = 0 (тобто коли mpg містить значення нижче його медіани), проте таких небагато.

2.3 Розбито дані на начальний та тестовий набори. Це було виконано взявши посортовану вибірку year та розділивши на дві половини, де перша — це тренувальний набір, а друга відповідно тестовий.

```
train = (year >= min(year) & year <= min(year) + (max(year) - min(year)) %/% 2)
autos.train = autos[train, ]
autos.test = autos[!train, ]
mpg01.test = mpg01[!train]</pre>
```

2.4 Застосовано лінійний дискримінантний аналіз на навчальних даних. В ролі предикторів було взято найбільш залежні від mpg01 змінні, тобто cylinders, displacement, horsepower та weight.

```
Call:
lda(mpg01 ~ cylinders + weight + displacement + horsepower, data = autos,
   subset = train)
Prior probabilities of groups:
       0
0.6635514 0.3364486
Group means:
 cylinders weight displacement horsepower
0 6.830986 3672.106 282.0775 134.02817
1 4.055556 2228.125
                       105.5347 78.45833
Coefficients of linear discriminants:
cylinders -0.3505402344
            -0.0009436055
displacement -0.0057104148
horsepower 0.0145160830
  mpg01.test
   48 13
   "Test error rate: 0.106741573033708"
```

Як бачимо, тільки третина навчальних даних відповідає тому, що mpg містить значення вище своєї медіани, тобто вибірка не є ідеально розподілена. Також цікаво наголосити, що коефіцієнт лінійного дискримінанту для змінної cylinders становить -0.35, що значною мірою буде впливати на правило для прийняття рішень щодо прогнозування. Тестова помилка отриманої моделі є 10%, при чому вона не сильно відрізняється в залежності чи значення mpg є нижче за медіану чи навпаки.

2.5 Застосовано квадратичний дискримінантний аналіз на навчальних даних. В ролі предикторів було взято найбільш залежні від mpg01 змінні.

Тестова помилка цієї моделі становить 13.5%, що є гіршим показником в порівнянні з LQA. Але тут як бачимо з матриці помилок прогнозування відбується дуже точно для mpg01=0, а саме тестова помилка становить (4/54)% = 7.4%, що звісно також означає про гірші показники прогнозування для значень змінної mpg01, які дорівнюють одиниці.

2.6 Застосовано логістичну регресію на навчальних даних. В ролі предикторів було взято найбільш залежні від mpg01 змінні.

```
Call:
glm(formula = mpg01 ~ cylinders + weight + displacement + horsepower,
    family = binomial, data = autos, subset = train)
Deviance Residuals:
    Min
           10
                     Median
                                3Q
                                            Max
-2.33108 -0.14028 -0.00528 0.23930 2.06076
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.894724 2.834852 4.196 2.72e-05 ***
cylinders 0.282914 0.711223 0.398 weight -0.002338 0.001198 -1.951
                                  0.398
                                           0.6908
                                           0.0511 .
displacement -0.027274   0.016790  -1.624   0.1043
horsepower -0.035785 0.025278 -1.416 0.1569
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 273.343 on 213 degrees of freedom
Residual deviance: 85.446 on 209 degrees of freedom
AIC: 95.446
Number of Fisher Scoring iterations: 8
       mpg01.test
pred.glm 0 1
       0 52 37
[1] "Test error rate: 0.219101123595506"
```

3 огляду на наведені вище дані, бачимо що найменше p-value відповідає змінній weight, тобто кореляція є суттєва. Змінна cylinders виділяється за рахунок того, що є наявний позитивний коефіцієнт біля цієї змінної, однак через велике p-value неможливо говорити про зв'язок між залежною змінною в даній моделі. Всі інші коефіцієнти вказують на від'ємну кореляцію із залежною змінною. Тестова помилка становить 21.9%, що є найгіршим результатом прогнозування серед вищезгаданих моделей, при чому точність прогнозування для mpg01=0 сильно зростає, а саме (2/54)% = 3.7%.

2.7 Застосовано метод К-найближчих сусідів з різними значеннями для К на навчальних даних. Нижче наведений код для формування перших двох

аргументів для функції прогнозування. Тобто за допомогою функції cbind() утворюється матриці з предикторами, які пов'язані чисто з навчальними даними та тестовими.

```
train.X = cbind(cylinders, weight, displacement, horsepower)[train, ]
test.X = cbind(cylinders, weight, displacement, horsepower)[!train, ]
mpg01.train = mpg01[train]
set.seed(1)
```

В наступних результатах подані матриці помилок для моделей К-найближчих сусідів відповідно із значеннями K=1, 5, 15. Тобто для значення K=5 бачимо найкращу тестову помилку, а саме 15.2%, що є гіршим результатом ніж у моделях LDA та QDA. З огляду на те, що більшість навчальних даних відповідає тому, що тру містить значення нижче своєї медіани, то і знову бачимо що дуже висока точність для прогнозування значень, де mpg01=0, а саме тестова помилка становить (3/54)% = 5.6%.

3. Написання функцій.

3.1 Створено функцію Power(), що виводить результат піднесення 2 до 3-ої степені.

```
Power = function() {2^3}
print(paste("raising 2 to the 3rd power: ", Power()))
```

"raising 2 to the 3rd power: 8"

3.2 Запрограмовано нову функцію Power2(), яка дозволяє передавати будь-які два числа, х і а, і виводить значення х^а.

```
print(paste("x: 5, a: 3 -> power: ", Power2(5, 3)))

"x: 5, a: 3 -> power: 125"
```

3.3 Для демонстрації виконання функції Power2(), написано нижче наведений цикл з використання згенерованої вибірки значень для аргументів х та а.

```
for (x in sample(1:25, 3)) {
   a = sample(1:10, 1)
   print(paste("x: ", x, " a:", a, " -> power: ", Power2(x, a)))
}
```

```
"x: 18 a: 2 -> power: 324"
"x: 17 a: 2 -> power: 289"
"x: 16 a: 9 -> power: 68719476736"
```

3.4 Написано нову функцію Power3(), яка фактично повертає результат х^а як об'єкт R, а не просто друкує його на екран.

```
Power3 = function(x, a) {
    result = x^a
    return(result)
}
power_res_3_3 = Power3(3, 3)
```

3.5 Використовуючи функцію Power3(), побудовано графік $f(x) = x^2$. Як вибірку значень для осі абсцис взято діапазон цілих чисел від 1 до 10. Вісь ординат відповідно відображає x^2 .

Також розглянув можливість відображення обох осей в логарифмічній шкалі використовуючи аргумент log="xy" у функції plot().

3.6 Запрограмовано функцію PlotPower(), яка дозволяє будувати графік функції x^a для фіксованого а та для діапазону значень x. Виконано це завдяки використанню функції plot() та її аргументу для значення осі ординат як виклик функції Power3(x, a).

```
PlotPower = function(x, a) {
  plot(x, Power3(x, a), xlab = "x", ylab = "x^a", main = "x^a vs x")
}
```


4. Модель класифікації для передбачення у вибраному районі рівня злочинності більшого чи меншого за медіану на основі даних Boston.

Для початку нам потрібно визначити бінарну змінну crim01, яка містить 1, якщо сгіт містить значення вище медіани, і 0, якщо сгіт містить значення нижче його медіани. А також створено єдиний набір даних , що містить як crim01, так і інші змінні з датасету Boston.

Далі необхідно розбити дані на начальний та тестовий набори. Це було виконано взявши вибірку стіт та розділивши на дві половини, де перша — це тренувальний набір, а друга відповідно тестовий.

Нижче також наведений код для дослідження логістичної регресії. В ролі предикторів було взято всі змінні, окрім crim01, crim, а також zn та rad для уникнення застережень про ідеальне розділення одиниць та нулів в target-змінній.

```
train = (crim %in% crim[1:(length(crim) %/% 2)])

Boston.train = Boston[train, ]
Boston.test = Boston[!train, ]
crim01.test = crim01[!train]

fit.glm = glm(crim01 ~. - crim01 - crim - zn - rad,
    data = Boston, family = binomial, subset = train)
probs = predict(fit.glm, Boston.test, type = "response")
pred.glm = rep(0, length(probs))
pred.glm[probs > 0.5] = 1
print(table(pred.glm, crim01.test))
print(paste("Test error rate: ", mean(pred.glm != crim01.test)))
```

```
crim01.test
pred.glm 0 1
0 69 16
1 21 147
[1] "Test error rate: 0.146245059288538"
```

Результат показує, що тестова помилка отриманої моделі є 14.6%, при чому з матриці помилок бачимо, що точність прогнозування у вибраному районі рівня злочинності більшого за медіану зростає, а саме помилка є (16/(147+16))% = 9.8%.

Розглянемо також моделі лінійного та квадратичного дискримінантного аналізу.

Верхня матриця помилок відноситься до LDA, нижня відповідно до QDA. Бачимо очевидну різницю, оскільки тестова помилка для LDA становить 13%, що робить цю модель також більш придатною в порівнянні з моделлю логістичної регресії для нашої задачі прогнозування. З іншого боку бачимо жахливу тестову помилку для моделі QDA, при чому знову розглядається сильний контраст у прогнозуванні, оскільки для рівня злочинності більшого за медіану набагато більше неправильних прогнозувань, тоді як для рівня злочинності меншого за медіану точність є більша ніж навіть у моделі LDA.

Далі розглянемо прогнозування з використанням моделі KNN. Нижче наведений код для формування перших двох аргументів для функції прогнозування. Тобто за допомогою функції cbind() утворюється матриці з предикторами, які пов'язані чисто з навчальними даними та тестовими.

```
train.X = cbind(indus, chas, nox, rm, age, dis,
  tax, ptratio, black, lstat, medv)[train, ]
test.X = cbind(indus, chas, nox, rm, age, dis,
  tax, ptratio, black, lstat, medv)[!train, ]
crim01.train = crim01[train]
set.seed(1)
```

В наступних результатах подані матриці помилок для моделей К-найближчих сусідів відповідно із значеннями K=1, 5, 15. Тобто для значення K=15 бачимо найкращу тестову помилку, а саме 11%, це найкращий результат прогнозування серед всіх попередньо розглянутих моделей. Найгірший результат прогнозування ϵ для моделі з K=1, але це не означа ϵ , що ϵ якась залежність між кількістю K та точністю, оскільки вже для значень K=100 результат був найгірший і складав точність майже 50%.