

CONFUSION MATRIX

- The confusion matrix is a handy presentation of the accuracy of a model with two or more classes.
- The table presents predictions on the x-axis and accuracy outcomes on the y-axis.
- The cells of the table are the number of predictions made by a machine learning algorithm.

		Actual class		
		Cat	Dog	Rabbit
Predicted class	Cat	5	2	0
	Dog	3	3	2
	Rabbit	0	1	11

Accuracy (ACC) = $\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$

Positive predictive value (PPV), Precision = $\frac{\Sigma \text{ True positive}}{\Sigma \text{ Predicted condition positive}}$

True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$

CONFUSION MATRIX

		True condition		
	Total population	Condition positive	Condition negative	
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	
	Predicted condition negative	False negative, Type II error	True negative	

CLASSIFICATION ACCURACY

- Classification accuracy is the number of correct predictions made as a ratio of all predictions made.
- This is the most common evaluation metric for classification problems
- Also the most misused!!
- It is really only suitable when there are an equal number of observations in each class (which is rarely the case) and that all predictions and prediction errors are equally important, which is often not the case.

 $\frac{\text{Accuracy (ACC)} =}{\sum \text{True positive} + \sum \text{True negative}}{\sum \text{Total population}}$

F1 SCORE

- \bullet The F_1 score is the harmonic average of the precision and recall
- F₁ score reaches its best value at 1 (perfect precision and recall) and worst at 0.

$$F_1 \text{ score} = \frac{2}{\frac{1}{\text{Recall}} + \frac{1}{\text{Precision}}}$$

