Workshop Introdução ao Arduino

Arduino – História

O professor italiano, Massimo Banzi, desejava ensinar programação de computadores, mas aplicando este conhecimento a projetos de arte, automação e robótica.

Deparou-se, então, com um grande problema:

Não existiam placas que fossem didáticas e ao mesmo tempo poderosas e baratas.

Decidiu então desenvolver a sua própria placa juntamente com o engenheiro espanhol David Cuartielles, Massimo e com a ajuda de um de seus alunos chamado David Mellis, que ficou responsável pela linguagem de programação do Arduino.

Arduino - Modelos mais comuns

Lilypad

Arduino Mega

Arduino Nano

Arduino Mini

Arduino – Aplicações

Arduino

Input (Ler)

Sensor de luz

Output (Escrever)

Motor DC

Arduino

Led – Emissor de luz

1º - Ligar o cabo USB ao Arduino após verificação das ligações

2º - Selecionar a placa

3º - Selecionar a porta

Led aceso

Atenção:

Led a piscar (Blink)

Desafio 1 – Semáforo

Regras de funcionamento do semáforo:

Só pode estar uma cor acesa.

Sequência de cores:

Acende Verde (5 segundos e passa a Amarelo)

Acende Amarelo (1 segundo e passa a Vermelho)

Acende Vermelho (5 segundos e passa a Verde)

Led acende com o botão

Sensor de Luz com LDR

Led com Fade

Leds que acendem quando o utilizador digita uma letra

(R – Red, Y – Yellow, G – Green)

Nota:

Se o utilizador digitar A todos os leds se apagam. Se o utilizador digitar L todos os leds se ligam.

Alarme

Funções:

tone() – Ativa um som no buzzer noTone() – Desativa o som

Nota:

Nesta atividade pretende-se construir um circuito que permita construir um sistema de alarme. Quando o sensor ultrassónico detetar um indivíduo a menos de 20cm de distância, vai ativar o buzzer e o led RGB deverá acender com cores aleatórias em intervalos de 250ms

Piano

Funções:

tone() – Ativa um som no buzzer noTone() – Desativa o som

Nota:

Definir um array de 4 posições com os valores de frequência (notas musicais) associados ao som de cada botão: {262,294,330,349}

Sensor Temperatura

Fórmula para calcular a voltagem:

voltagem = (sensorVal / 1024.0) * 5.0;

Fórmula para calcular a temperatura:

temperatura = (voltagem - 0.5) * 100;

Sensor Ultrassónico

Material necessário:

1 Sensor Ultrassónico (Input Digital)

Fios

Biblioteca Ultrasonic.h:

Ultrasonic nome_objeto(trigPin, echoPin);

Funções:

timing() – Tempo que o sinal demorou a colidir com o obstáculo e retornar convert() – Conversão do tempo para distância (cm)

Motor Servo


```
Biblioteca Servo.h:
    Servo myServo;

void setup() {
    myServo.attach(pin);
    }

myServo.write(angle);
```


Motor DC – Ventoinha

Bluetooth e Anprino

Material necessário:

1 x Sensor Ultrassónico HC – SR04

1 x Módulo Bluetooth (HC-06)

1 x L298NH Motor Driver

1 x Base Shield Sensor I/O Shield Expansion Board

Fim da sessão