Name:

Teacher:

ST MARK'S COPTIC ORTHODOX COLLEGE

Mathematics Department

2011

Year 11 Extension 1

Assessment Task One

GENERAL INSTRUCTION

- Working Time 1 hour
- Write in black or blue pen only
- o Approved calculators may be used
- All necessary working must be shown
- o Begin each question on a new booklet
- Attempt all questions

Question	1	2	3	4	Total	%
Marks	/14	/14'	/15	/15		,
		\mathcal{U}^{\perp}			55	

Question 1 (14 Marks)

Mark

a) Find the domain & range of the function: $y = \sqrt{x-5}$

2

3

b) Simplify $\frac{x^2+2x-15}{(x+5)^2} \div \frac{x^2-9}{x^3+27}$.

c) Solve for x: $12 + 5x - 2x^2 \le 0$

3

d) If $x = \frac{\sqrt{7} + \sqrt{5}}{\sqrt{7} - \sqrt{5}}$, find the value of $x - \frac{1}{x}$.

3

e) Simplify $\frac{4x-3}{2x+1} \ge 3$

3

Question 2 (14 Marks) Start work on a new page

Mark

a) Factorise fully $y^4 - 50y^2 + 49$

2

b) Simplify $\frac{a+1}{a^2-a} - \frac{a+1}{a^2-1}$

3

c) Solve for $x: 2 \le |2x+3| \le 11$

3

d) In the diagram below, AB // CD and O is the centre of the circle. $\angle AOD = 130^{\circ}$, $\angle CBD = 20^{\circ}$. Find $\angle BCE$, giving all reasons.

3

3

Solve simultaneously:

b)

Question 3 (15 Marks) Start work on a new page

Marks

a) Simplify by expressing your answer in its lowest bases:

3

$$\frac{4^{3-x} \times 12^{2x-1}}{8^x \times 15^{-2x}}$$

2x - y - z = 11

$$x + 3y + z = -2$$

$$3x - 2y + z = 23$$

- c) (i) Find the domain & range of the function $y = \sqrt{25 x^2}$.
 - (ii) Hence sketch the region $y \le \sqrt{25 x^2}$.
- d) In the figure shown, AT is a tangent to the circle at T.

 ABC is a secant to the circle and AD bisects $\angle CAT$.

 Prove that TP = TD.

Question 4 (15 Marks) Start work on a new page

Marks

3

2

1

3

4

- a) (i) Determine algebraically whether the function $f(x) = \frac{2}{1-x^2}$ is odd, even or neither.
 - (ii) Hence sketch the function, showing all main features.

b)
$$f(x) = \begin{cases} x^2 - 2x - 8 & x < 0 \\ 2x - 8 & 0 \le x \le 5 \\ 2 & x > 5 \end{cases}$$

- (i) Evaluate f(-1) and f(4)
- (ii) Is this function continuous at x = 5, give reasons.
- (iii) Sketch the function showing all points of intersection with both x and y axis.
- c) Two equal circles intersect at A and B such that each circle passes through the centre of the other circle. O and H are the centres of the two circles. AOC is the diameter of the upper circle. The tangent to the lower circle at B meets AC in D. Prove that $AC \perp BD$. Copy this diagram in your answer booklet and show your working steps on it.

END OF EXAM