Quarto Incontro: esercitiamoci sui limiti di successioni

Test di Riscaldamento

Domanda 1. Quanto vale $\lim_{n\to\infty} (\sqrt{7})^n - 2^n$?

Domanda 2. Quanto vale $\lim_{n\to\infty} 2^n + 6^n - 8^n$?

- (A) $\sqrt{7} 2$
- (B) 0
- (C) $+\infty$
- (D) -∞
- (E) Nessuna delle precedenti

- (A) Non esiste il limite
- (B) 0
- (C) +∞
- (D) -∞
- (E) Nessuna delle precedenti

Domanda 3. Quanto vale $\lim_{n\to\infty} (n!)^4 \cdot \left(1 - 2\cos\frac{1}{n!} + \cos^2\frac{1}{n!}\right)$?

- (A) 0
- (B) 1/2
- (C) 1/4
- (D) +∞
- (E) Nessuna delle precedenti

Domanda 4. Quanto vale $\lim_{n\to\infty} \sqrt[n]{4^n+7}$?

- (A) 1
- (B) $\sqrt{11}$
- (C) $\sqrt{7}$
- $(D) +\infty$
- (E) Nessuna delle precedenti

Domanda 5. Quanto vale $\lim_{n\to\infty} \frac{1-e^{\frac{3}{2n^n}}}{\frac{1}{n^n}}$?

- (A) -3/2
- (B) -2/3
- (C) 3/2
- (D) 2/3
- (E) Nessuna delle precedenti

Domanda 6. Quanto vale $\lim_{n\to\infty} (n!)^{\alpha} \cdot \log\left(1+\frac{7}{n!}\right)$?

- (A) Per $\alpha \le 1$ converge e quando $\alpha = 1$ vale 1
- (B) Per $\alpha \le 1$ converge e quando $\alpha = 1$ vale 7
- (C) Per $\alpha \le 0$ converge e quando $\alpha = 0$ vale 1
- (D) Per $\alpha \ge 1$ converge e quando $\alpha = 1$ vale 1
- (E) Per $\alpha \ge 1$ converge e quando $\alpha = 1$ vale 7