Applied Probability

1 Continuous time Markov Chains

1.1 Poisson process

– Poisson process with intensity λ

(i) $N(0) = 0, N(s) \le N(t)$ for s < t

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Theorem 1.1. $N(t) \sim Poi(\lambda t)$

Proof. derive differential equation, then generating function

 $- p_j(t) = \mathbb{P}(N(t) = j)$

- Generating function $G(s,t) = \sum p_j(t)s^j$
- Arrival time T_n
- interarrival time U_n

Theorem 1.2.

(i) $U_i \sim Exp(\lambda)$

(ii) U_i independent

Proof. use N(t) Poisson

Fact. $N(t) \ge j \iff T_j \le t$

- order statistics

Theorem 1.3. T_1, \ldots, T_n conditional on $\{N(t) = n\}$ same as joint distribution of order statistics of n i.i.d. Uniform[0,t]

Proof. U to T, then calculate density

1.2 Birth process

- birth process with birth rates $\lambda_0, \lambda_1, \dots$

(i)
$$N(0) = 0, N(s) \le N(t)$$
 for $s < t$

(ii)
$$\mathbb{P}(N(t+h) = n + m | N(t) = n) = \begin{cases} \lambda_n h + o(h) & \text{if } m = 1\\ o(h) & \text{if } m > 1\\ 1 - \lambda_n h + o(h) & \text{if } m = 0 \end{cases}$$

(iii) N(t) - N(s) independent of $(N(k))_{k \le s}$

Example.

- (i) Poisson process: $\lambda_n = \lambda$
- (ii) Simple birth: $\lambda_n = n\lambda$
- (iii) Simple birth with immigration: $\lambda_n = n\lambda + \nu$

$$-T_{\infty} = \lim T_n = \sum_{i=1}^{\infty} U_i$$

– non-explosive / honest —— $\mathbb{P}(T_{\infty} = \infty) = 1$

Theorem 1.4. birth process N, $\lambda_n > 0$, then non-explosive $\iff \sum_n \frac{1}{\lambda_n} = \infty$

Lemma 1.5. $U_n \sim Exp(\lambda_n)$, independent, then $\mathbb{P}(T_\infty < \infty) = \begin{cases} 0 & \text{if } \sum_n \frac{1}{\lambda_n} = \infty \\ 1 & \text{if } \sum_n \frac{1}{\lambda_n} < \infty \end{cases}$

- forward system of equations: $p'_{ij}(t) = \lambda_{j-1}p_{i,j-1}(t) \lambda_{j}p_{ij}(t)$
- backward system of equations: $p'_{ij}(t) = \lambda_i p_{i+1,j}(t) \lambda_i p_{ij}(t)$

Theorem 1.6.

- (i) forward system has unique solution $\{p_{ij}(t)\}$
- (ii) $\{p_{ij}(t)\}$ satisfy backward system

Theorem 1.7. $\{p_{ij}(t)\}$ unique solution of forward equations, $\{\pi_{ij}(t)\}$ any solution of backward equations, then $p_{ij}(t) \leq \pi_{ij}(t)$

Fact. $\sum_{j} p_{ij}(t) = 1 \iff \mathbb{P}(T_{\infty} > t) = 1$

- weak Markov property
- stopping time

- strong Markov property
- right continuity
- stationary independent increments
 - (i) N(t) N(s) only depends on t s
 - (ii) $\{N(t_i) N(s_i)\}$ independent where $s_1 \leq t_1 \leq \cdots \leq s_n \leq t_n$

1.3 Continuous Markov Chain

Setting 1. (X(t)) takes values in countable S

- Markov property $\mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1}, \dots, X(t_1) = i_1) = \mathbb{P}(X(t_n) = j | X(t_{n-1}) = i_{n-1})$
- continuous-time Markov chain —— right-continuous, Markov property
- transition probability $p_{ij}(s,t) = \mathbb{P}(X(t) = j | X(s) = i)$
- homogeneous —— $p_{ij}(s,t) = p_{ij}(0,t-s)$
- transition semigroup $(P_t)_{ij} = p_{ij}(t)$
- stochastic semigroup
 - (i) $P_0 = I$
 - (ii) P_t stochastic non-negative entries, row sum 1
 - (iii) (Chapman-Kolmogorov) $P_{s+t} = P_s P_t$

Setting 2. (X(t)) homogeneous Markov chain

Theorem 1.8. P_t stochastic semigroup

- \mathbb{P}_i probability measure conditional on X(0) = i
- $-\mathbb{E}_{i}$
- t-historical —— events given by $\{X(s) : s < t\}$
- t-future —— events given by $\{X(s): s > t\}$
- stopping time T —— $\{T \le t\}$ given by $\{X(s): s \le t\}$

Theorem 1.9 (Extended Markov property). H t-historical, F t-future, then $\mathbb{P}(F|X(t)=j,H)=\mathbb{P}(F|X(t)=j)$

Theorem 1.10 (Strong Markov property). T stopping time, conditional on $\{T \leq T_{\infty}\} \cap \{X(T) = i\}$, then

- (i) $(X_{T+u})_u$ continuous Markov chain start at state i
- (ii) same transition prob
- (iii) independent to $\{X(s) : s < T\}$

Setting 3. X(0) = i

$$-U_0 = \inf\{t : X(t) \neq i\}$$

Fact. right continuous $\Rightarrow U_0 > 0$

Theorem 1.11.

- (i) $U_0 \sim Exp(g_i)$
- (ii) U_0 stopping time

Proof. Extended Markov and homogeneity to deduce memoryless

- transition matrix $\mathbf{Y} = (y_{ij})$ - $y_{ij} = \begin{cases} \delta_{ij} & \text{if } g_i = 0\\ \mathbb{P}_i(X(U_0) = j) & \text{if } g_i > 0 \end{cases}$

- generator
$$\mathbf{G} = (g_{ij})$$
 — $g_{ij} = \begin{cases} g_i y_{ij} & \text{if } j \neq i \\ -g_i & \text{if } j = i \end{cases}$

Fact. $\mathbb{P}(X(t+h) = j | X(t) = i) = g_{ij}h + o(h)$

Fact. $g_{ij} = g_i(y_{ij} - \delta_{ij})$

Theorem 1.12. X(0) = i, then

- (i) $X(U_0)$ independent of U_0
- (ii) conditional on $X(U_0) = j$, $X^*(s) = X(U_0 + s)$ continuous-time Markov chain, same transition prob, initial state j, independent to the past
- $-T_m$
- holding time $U_m = T_{m+1} T_m$
- jump chain $Y = \{Y_n\}$
- $T_{\infty} = \lim T_n$
- minimal process
- explode from state $i \mathbb{P}_i(T_{\infty} < \infty) > 0$

Proposition 1.13. X minimal process, then $P_{s+t} = P_s$

Proof. may go to $\{\infty\}$

Theorem 1.14. $i \in S$, non-explosive from i if any of the following holds:

- (i) S finite
- (ii) $\sup_j g_j < \infty$
- (iii) i recurrent in jump chain Y

Proof. be dominated by Poisson process which is non-explosive

– irreducible — $\forall i, j, \exists t > 0, p_{ij}(t) > 0$

Theorem 1.15.

- (i) (Levy dichotomy) X irreducible, then $\forall t > 0, p_{ij}(t) > 0$
- (ii) X irreducible \iff Y irreducible

Proof. look at jump chain, $g_{i_0} \cdots g_{i_n} > 0$, $p_{i_k,i_{k+1}}(t) > 0$

Fact. birth process not irreducible

- recurrent $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 1$
- transient —— $\mathbb{P}(\{t: X(t) = i\} \text{ unbounded}) = 0$
- $R_i = \inf \{t > U_0 : X(t) = i\}$
- mean return time $m_i = \mathbb{E}(R_i)$
- positive recurrent / non-null recurrent —— $m_i < \infty$

Theorem 1.16. continuous-time chain X, jump chain Y

- (i) $g_i = 0$, then i recurrent for X
- (ii) $g_i > 0$, then i recurrent for $X \iff$ recurrent for Y
- (iii) i recurrent $\iff \int p_{ii}(t)dt = \infty$
- (iv) i transient $\iff \int p_{ii}(t)dt < \infty$
- (v) X irreducible, then every state recurrent or every state transient

Proof. main point is no explosion. Interchange summation, then old result.

- Forward equation: $P'_t = P_t G$ with boundary condition $P_0 = 1$
- Backward equation: $P'_t = GP_t$ with boundary condition $P_0 = 1$

Fact. If states S finite, then $P_t = e^{tG}$

- minimal solution $p_{ij}(t) \leq \pi_{ij}(t)$
- sub-stochastic $\sum_{i} p_{ij}(t) < 1$

Theorem 1.17. S countable, X minimal Markov chain with generator G, then

(i) P_t minimal non-negative solution of backward equation $P'_t = GP_t$ with boundary condition $P_0 = 1$

(ii) P_t minimal non-negative solution of forward equation $P_t' = P_t G$

Proof. Solution: condition on $T_1 > t$ or $T_1 \leq t$.

Minimal: reverse argument and induction.

Fact. any solution to both equations sub-stochastic

Fact. non-explosive $\Rightarrow P_t$ unique solution to both equations

- measure
- stationary measure $\pi = \pi P_t$
- stationary distribution
- unique measure —— unique up to scalar multiplication
- first return time R_i
- $-m_i = \mathbb{E}_i(R_i)$

Theorem 1.18. X irreducible, $|S| \geq 2$

- (i) some state k positive recurrent, then
 - (a) \exists unique stationary distribution π
 - (b) unique distribution st $\pi G = 0$
 - (c) all states positive recurrent
- (ii) X non-explosive, $\exists \pi \text{ st } \pi G = 0$, then
 - (a) all states positive recurrent
 - (b) π stationary
 - (c) $\pi_k = \frac{1}{m_k g_k}$

Proof. (i) use 1.19(iv) $\pi = \mu(k)/m_k$, then uniqueness of measure \Rightarrow all state non-null

(ii)
$$\nu' = \frac{\pi_i g_i}{\pi_k g_k}$$
, then $\rho(k) \leq \nu'$ from discrete MC

 $- \nu_i = x_i g_i$

$$- \boldsymbol{\mu}(k) = (\mu_j(k))_j - \mu_j(k) = \mathbb{E}_k \left(\int_0^{R_k} \mathbb{1} \left\{ X(s) = j \right\} ds \right)$$

– $\rho(k) = (\rho_j(k))$ —— mean visit to j starting from k in jump chain Y

Lemma 1.19. X irreducible Markov chain, $|S| \geq 2$

- (i) measure x, then $xG = 0 \iff \nu Y = \nu$
- (ii) X recurrent, xG = 0 unique measure
- (iii) x measure, xG = 0, then $x_i > 0$
- (iv) X recurrent, $k \in S$, then $\mu(k)G = 0$ and stationary

Proof. (i) expand

- (ii) $\nu Y = \nu$, then uniqueness from discrete MC
- (iii) $\mu_j(k) = \frac{1}{g_j} \rho_j(k)$, then $\boldsymbol{\rho}(k) \boldsymbol{Y} = \boldsymbol{\rho}(k)$ from discrete MC
- (iv) strong Markov to shift time t

Fact. X non-explosive, then $R_k = \sum_j \int_0^{R_k} \mathbb{1} \{X(s) = j\} ds$

Fact. X irreducible, \exists more than one stationary distribution, then X explosive

Theorem 1.20 (Markov chain limit theorem). X irreducible, non-explosive

- (i) if \exists stationary distribution π , then
 - (a) π unique
 - (b) $p_{ij}(t) \to \pi_j$
- (ii) if no stationary distribution, then $p_{ij}(t) \rightarrow 0$

Proof. skeleton
$$Z_n = X(nh)$$

Lemma 1.21. X minimal, then $|p_{ij}(t+u) - p_{ij}(t)| \le 1 - e^{-g_i u}$

1.4 Birth-death process and imbedding

- birth rate $\lambda_0, \lambda_1, \dots$

- death rate μ_1, μ_2, \ldots

- birth-death process

Theorem 1.22. X birth-death process, generator G

(i) measure $x_n = \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} x_0$ satisfies $\mathbf{x}\mathbf{G} = 0$

(ii) \exists distribution π satisfies $\pi G = 0 \iff \sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} < \infty$

(iii) if $\sum \frac{\lambda_0 \lambda_1 \cdots \lambda_{n-1}}{\mu_1 \mu_2 \cdots \mu_n} (\lambda_n + \mu_n) < \infty$, then π stationary

Proof. (i) solve xG = 0

(ii) trivial

(iii) condition for jump chain Y recurrent, then non-explosive

Example.

- Pure birth $\mu_n = 0$

- Simple death with immigration $\lambda_n = \lambda, \mu_n = n\mu$

Theorem 1.23. X(t) asymptotically $Poi(\rho) = Poi\left(\frac{\lambda}{\mu}\right)$

- Simple birth-death $\lambda_n = n\lambda, \mu_n = n\mu, X(0) = I$

Fact. state 0 absorbing

$$\textbf{Theorem 1.24.} \ G(s,t) = \mathbb{E}(s^{X(t)}) = \begin{cases} \left(\frac{\lambda t(1-s)+s}{\lambda t(1-s)+1}\right)^I & \text{if } \mu = \lambda \\ \left(\frac{\mu(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}{\lambda(1-s)-(\mu-\lambda s)e^{-t(\lambda-\mu)}}\right)^I & \text{if } \mu \neq \lambda \end{cases}$$

Proof. Forward equation

Fact. non-explosive as $\sum p_j(t) = G(1,t) = 1$

Fact. $\mathbb{E}_I(X(t)) \to \begin{cases} 0 & \text{if } \rho < 1 \\ \infty & \text{if } \rho > 1 \end{cases}$

• extinction probability $\eta(t) = \mathbb{P}_I(X(t) = 0)$

Corollary 1.25.
$$\eta(t) \to \begin{cases} 1 & \text{if } \rho \leq 1 \\ \rho^{-I} & \text{if } \rho > 1 \end{cases}$$

- imbedded random walk —— jump chain Y with parameter $\frac{\lambda}{\lambda+\mu}$, absorbing at 0
- imbedded branching process —— lives $Exp(\lambda+\mu)$, then born n individuals where $\begin{cases} p_0 = \mathbb{P}(n=0) = \frac{\mu}{\lambda+\mu} \\ p_2 = \mathbb{P}(n=2) = \frac{\lambda}{\lambda+\mu} \end{cases}$
- age-dependent branching process
- age density function $f_T(u) = (\lambda + \mu)e^{-(\lambda + \mu)u}$
- family-size generating function $G(s) = \frac{\mu + \lambda s^2}{\mu + \lambda} = p_0 + p_2 s^2$