Birla Institute of Technology and Science, Pilani 333031 Second Semester 2016-17

Course No: MATH F242, Course Name :Operations Research Class Test II: Closed Book

Max. Marks: 10 Time: 25 mins	Date: 23/02/2017	
Time. 25 mms	ID No.	
,	Time: 25 mins	Time. 25 mms

- Q1. In an $(M \mid M \mid 1)$: $(FCFS \mid \infty \mid \infty)$ queueing model, customers arrive at the mean rate of 10 per hour. Calculate the mean service rate μ in order that the probability that a new arrival will not [4] have to wait ≥ 0.5 .
- Q2. The demand for an item in a company is 1800 units per year. The company can produce the items at a rate 300 per month. If the cost of one setup is Rs. 500, holding cost of one unit per month is Rs. 5 and the shortage cost of one unit is Rs. 10 per month, then find the optimum manufacturing quantity (Q*) per month. If shortages are not allowed then what will be the Q*. [6]

1 = 10

P [new arrival does not have to wait] = Po

Account of there are no customers in the systemie, seen

was to be feel

$$P_{o} = \left(\sum_{i=0}^{\infty} C_{in}\right)^{-1} = \left(\sum_{i=0}^{\infty} \frac{A_{i}}{m_{2+i}}\right)^{-1} = \left(1 + \frac{10}{m} + \left(\frac{10}{m}\right)^{2} - \dots\right)^{-1}$$

$$= \frac{1}{1-\frac{10}{M}} > 0.5$$

=)
$$\frac{10}{m}$$
 $\frac{1}{2}$ $\frac{1}{m-20}$

K = B500

Cz = 10/month / mit