M2 CRYPTO RÉSEAUX EUCLIDIENS EN CRYPTOGRAPHIE - TD 1

Exercice 1. Soit $\mathcal{L}_1, \mathcal{L}_2$ deux réseaux de $\mathbb{R}^m.$ Montrer que :

- si $\mathcal{L}_1 + \mathcal{L}_2$ est un réseau, alors $\operatorname{rk}(\mathcal{L}_1 + \mathcal{L}_2) \ge \max(\operatorname{rk} \mathcal{L}_1, \operatorname{rk} \mathcal{L}_2)$;

Donner des exemples où les inégalités sont atteintes, et non atteintes.

Exercice 2. Autour des réseaux de rang 1 :

- L'ensemble $\mathbb{Z} + \sqrt{2}\mathbb{Z}$ est-il un réseau de \mathbb{R} ?
- L'ensemble $\mathbb{Z} \oplus \sqrt{2}\mathbb{Z}$ est-il un réseau de \mathbb{R}^2 ?
- Montrer que les sous-groupes de \mathbb{R} sont soit dense, soit de la forme $\alpha \mathbb{Z}$ pour $\alpha \in \mathbb{R}$.

Exercice 3. Soit \mathcal{L} un réseau de dimension n. Montrer que le nombre de vecteurs $x \in \mathcal{L}$ tels que $||x|| = \lambda_1(\mathcal{L})$ est majoré par 3^n . Ce nombre s'appelle aussi le *kissing number*. On pourra regarder le volume des boules ouvertes centrées en ces points et de rayon $\lambda_1/2$.

Exercice 4. Soit $\mathcal{L}, \mathcal{L}'$ deux réseaux de même rang.

- (1) Montrer que si $\mathcal{L}' \subsetneq \mathcal{L}$, alors $\det \mathcal{L}' > \det \mathcal{L}$.
- (2) Plus généralement, on veut montrer que $[\mathcal{L}:\mathcal{L}'] = \frac{\det \mathcal{L}'}{\det \mathcal{L}}$.
 - (a) On appelle domaine fondamental d'une base \mathbf{B} de \mathbb{R}^n l'ensemble

$$\mathcal{D}_{\mathbf{B}} = \big\{ \sum_{i \le n} x_i \mathbf{b}_i : x_i \in [0, 1) \big\}.$$

Montrer que $\mathbb{R}^n = \bigcup_{\mathbf{u} \in \mathcal{L}} (\mathbf{u} + \mathcal{D}_{\mathbf{B}})$, où l'union est disjointe.

- (b) Soit $\mathcal{D}_{\mathbf{B}}$ et $\mathcal{D}_{\mathbf{B}'}$ des domaines fondamentaux pour \mathcal{L} et \mathcal{L}' . Montrer que pour tout $\mathbf{u} \in \mathcal{L}$, on a $\sum_{\mathbf{x} \in \mathbf{u} + \mathcal{L}'} \operatorname{Vol}(\mathcal{D}_{\mathbf{B}'} \cap (\mathbf{x} + \mathcal{D}_{\mathbf{B}})) = \operatorname{Vol}(\mathcal{D}_{\mathbf{B}})$.
- (c) En déduire que \mathcal{L}/\mathcal{L}' est fini, puis le résultat annoncé.