

Generative Adversarial Nets

Shuang Xie 8912983 Jingyi Zou

GANS

Basic approach

Generative models

Discriminative models

How do GANs work

GANS

Basic approach

Generative models

Discriminative models

How do GANs work

Basic approach

Purpose:

Train a desire Generative Model

Idea:

Add a Discriminative Model

Basic approach

Basic approach

Set up a game between two neural nets

- the generator creates samples
- the discriminator classifies these samples as real or fake
- both train together together or in turns?

我觉得这边讲的时候可以把Generator和Discriminator的互相作用这一块着重讲一下:G的作用是尽可能生成可以以假乱真的图片,D的作用是尽可能分辨出图片的真伪。随着G生成的图片越来越真实,又会激励D的分辨能力变强;反之,D的分辨能力变强,又会激励G生成的图片更加可以以假乱真。G和D构成的是一个动态的"博弈过程"。

然后我觉得在这边可以把总的一个核心公式加上:min max...那个,然后再用数学方法解释一下的和D的作用。

GANS

Basic approach

Generative models

Discriminative models

How do GANs work

GANs

Generative Models

- G trying to recover the training data distribution
 - The generative model can be thought of as
- analogous to a team of counterfeiters trying to produce fake currency and use it without detection

Training Approach

Generative Models

Generative Models

Upsampling with fractionally-strided convolution

Opposite of convolutional neural nets

GANS

Basic approach

Generative models

Discriminative models

How do GANs work

GANs

Discriminative Model

learns to determine whether a sample is from the model distribution or the data distribution

estimates the **probability** that a sample came from the training data rather than G

$$D(x) = \frac{P_{data}(x)}{P_{data}(x) + P_{model}(x)}$$
 这个公式需要稍微解释一下吗?

GANS

Basic approach

Generative models

Discriminative models

How do GANs work

或者也可以在这边写那个总的核心公式,跟着图一起解释。

Loss Function

Minimax Game

$$J^{(D)} = -\frac{1}{2} E_{x \sim P_{data}} \log D(x) - \frac{1}{2} E_x \log(1 - D(G(z)))$$
$$J^{(G)} = -J^{(D)}$$

What is the problem?

Non-Saturating

Minimax Game

$$J^{(D)} = -\frac{1}{2} E_{x \sim P_{data}} \log D(x) - \frac{1}{2} E_x \log(1 - D(G(z)))$$
$$J^{(G)} = -\frac{1}{2} E_z \log D(G(z))$$

When the Discriminator is too smart, G still has a learning signal

ALGORITHM

Minimax Game

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

ALGORITHM

Minimax Game

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

ALGORITHM

Minimax Game

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(\boldsymbol{G}\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\mathbf{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

这边需不需要解释一下当Pg=Pdata的时候, min max...=-log 4? 即生成模型能完美地复制数据的生成过程。

Global optimality:

$$P_{data}(x) = P_{model}(x)$$

Thank you!

Questions?