データエンジニアリング研修 Day 1

技術部データ基盤チーム 小松ももか 2022.07.29

GMO NIT

小松 ももか @UsaMomokawa

2020年新卒入社 データエンジニア 技術部 データ基盤チーム (2021/11~)

1日目のゴール

目標

● 自サービスで ○○ を分析するために Bigfoot を使う方法が分かる

演習

- データを目的に沿って変換する
- データをData Studioで可視化する

2日目のゴール

目標

• データのELT(Extract, Load, Transform)する方法を学ぶ

演習

• BigQueryにデータをロードする

データエンジニアリングって なんですか?

データ基盤を構築、管理する技術領域全般をデータエンジニアリングと呼びます。

データエンジニアリングを駆使し、ビジネスに価値をもたらすのがデータエンジニアと呼ばれる比較的新しい専門職です。

下田 倫大,寳野 雄太,饗庭 秀一郎,吉田 啓二 (2021) 「Google Cloud ではじめる実践データエンジニアリング入門」技術評論社, Kindle版 - はじめに, 8段落目より引用

データエンジニアリングってなんですか?

データとは

- データ つ インフォメーション
 - データは「インフォメーションの原材料」
 - インフォメーションは「<u>コンテキストを持った</u>データ」

DAMA International (2018)「データマネジメント知識体系ガイド 第二版」 日経BP社 P.43より引用

データエンジニアリングってなんですか?

date-id-name-num0-num1-num2-num3

2021-07-15-0123456789-test0-12-34-567-890

2021-07-15-9876543210-test1-98-76-543-210

date-id-name-num0-num1-num2-num3

2021-07-15-0123456789-test0-12-34-567-890

2021-07-15-9876543210-test1-98-76-543-210

date,id,name,num0,num1,num2,num3

2021-07-15,0123456789,test0,12,34,567,890

2021-07-15,9876543210,test1,98,76,543,210

手段1: インフォメーションになりうるデータをつくる

- そもそもデータを集めるのはなぜか?
 - 何かを知りたいから
 - 適切な理解は適切なデータ作成から
- データを作るにはナレッジ(ドメイン知識)が必要
 - 目的に沿ったデータを作ることが大事
 - システムだけでなく人もデータを作る
 - スプレッドシート
 - Notion etc···

データエンジニアリングってなんですか?

手段2: 既存のデータをインフォメーションに変換する

- 誰もが分かる表現に加工する
 - 例)0~6 で曜日を表現している
- 別のデータとつなぎ合わせる
 - 例)ユーザー情報 * 注文情報
- メタデータ(データを説明するデータ)を追加する
 - 例)5W1H

データに基づいた判断を行う段階

1	顧客接点のデジタル化
2	事業活動データの収集
3	データ蓄積・分析基盤
4	データ処理パイプライン
5	データ可視化とリテラシー
6	機械学習プロジェクト管理
7	マーケティング自動化
8	自動的な意思決定

1: 収集

データが出力され、取りまとめられている段階

2: 分析

取りまとめたデータを可視化、一元的に分析できる段階

3: 活用

データにより継続的なサービス改善を行える段階

各段階で必要になる知識・技術

		実行のために 仕組みとして必要なもの	データを解釈するために 必要なもの	
	段階	システム	+ リテラシ =	= データ駆動
1 顧客接点のデジタル化	」1: 収集	データウェアハウス		
2 事業活動データの収集	データが出力され、 取りまとめられている段階	Logger		
3 データ蓄積・分析基盤			1	
4 データ処理パイプライン	2: 分析 取りまとめたデータを可視化、	BI / Dashboard ワークフロー	データ集計 統計知識 -	▶ 統計的な判断
5 データ可視化とリテラシー	一元的に分析できる段階	データ連携	事業価値の理解	
6 機械学習プロジェクト管理			 	
7 マーケティング自動化	3: 活用 データにより継続的な サービス改善を行える段階	機械学習基盤 適応的改善機構	情報推薦 _ 機械学習	サービスの動的改善 自動的な意思決定
8 自動的な意思決定	ッ ころ以言で11人の权相		 	

Bigfoot 入門

BigQuery 入門

Google Cloud BigQuery

- 大規模データ分析対応のフルマネージド型データウェアハウス
- 一般的なデータベースと同様に標準SQLが利用可能
- コンピュート、ストレージ、メモリが分離され、それぞれ独立してスケーリングできる
 - https://cloud.google.com/blog/products/bigquery/bigquery-under-the-hood
 - データの保存量が事実上無制限
 - クエリ実行速度が超速
- Bigfoot の BigQuery は定額なので、気軽にクエリを投げてください

Google BigQuery: インターフェース

- Google Data Studio
- Google Sheets
- BigQuery Web Console
- Google Apps Script
- Google Colaboratory
- bg command-line tool
- API Client Libraries
 - C#, Go, Java, Node.js, PHP, Python, Ruby
- REST API

Google BigQuery: インターフェース

- Google Data Studio
- BigQuery Web Console
- Google Sheets
- bq command-line tool

1日目の演習課題で扱います

2日目の演習課題で扱います

データウェアハウスとリレーショナルデータベースの違い

- BigQuery などのデータウェアハウスは列指向が多い
 - 特定列に対する集計処理が得意
 - 例)1億行10列のテーブルで列Aの平均を算出 → 列ごとにデータを保存しているので列Aのみ走査
- MySQL, PostgreSQLなどのリレーショナルデータベースは**行指向**
 - 特定行に対する操作が得意
 - 行の特定を高速に行う仕組み(インデックス)がある
 - 構造的に全列を走査するので列方向の集計処理はリソース効率的に向いていない

BigQueryは大規模なデータを効率よく処理できる。

一方で、行単位の更新や削除が頻繁に行われるデータを格納するのは苦手。

BigQueryでクエリを叩いてみよう

https://console.cloud.google.com/bigguery

Google BigQuery入門

プロジェクト

GCPのリソースやコストの管理をするためのグループ

データセット

テーブルやビューをグループ化する概念 Bigfootでは、サービス単位で作成している データセットでアクセス権限を管理

スキャン量の違いを見てみよう


```
SELECT
  *
FROM
  training.github_coverages
;
```

```
SELECT
repo
FROM
training.github_coverages
;
```

時間が余ったら、WHERE や LIMIT をかけてスキャン量を見てみよう

スキャン量の違いを見てみよう

全ての列を指定すると 表全体をスキャン

特定の列を指定すると その列のみをスキャン

```
SELECT
  *
FROM
  training.github_coverages
;
```

```
SELECT
repo
FROM
training.github_coverages
;
```

時間が余ったら、WHERE や LIMIT をかけてスキャン量を見てみよう

BigQuery 演習

- (1-1) GitHub Enterprise Server (GHES)のリポジトリ単位で、 日別のコードカバレッジを集計してください
 - コードカバレッジ は「コードカバレッジで対象となるコードの行数に対する、テストによってカバーできている行数の割合(%)」
- BigQueryのリファレンスはこちら
 - https://cloud.google.com/bigquery/docs/reference/libraries-overview

NOTE:

演習では、octocov で収集したコードメトリクスを利用しています https://github.com/k1LoW/octocov

BigQuery 演習

- (1-2) 1-1 の集計結果を新しいテーブルに書き込んでください
 - SQLを使ってテーブルを作成し書き込んでください

回答例

● (1-1) GHESのリポジトリ単位で、日別のコードカバレッジを集計してください

考え方: 同リポジトリで同日に複数レコードが登録されているので、最新のレコードを使いたい

```
SELECT
  owner,
  repo,
  coverage_covered,
  coverage_total,
  TIMESTAMP_TRUNC(timestamp, DAY, 'Asia/Tokyo') AS_date,
FROM
  training.github_coverages
ORDER BY
 date DESC
```


1-1: 回答例1

```
経過時間 消費したスロット時間 ② シャッフルされたバイト数 ② 1秒 2秒 371.69 KB
```

```
SELECT
 *
FROM (
  SELECT
    owner,
    repo,
    CONCAT(owner, '/', repo) AS owner repo,
    coverage covered,
    coverage total,
    timestamp,
    TIMESTAMP TRUNC(timestamp, DAY, "Asia/Tokyo") AS date,
    IF(coverage total > 0, ROUND(100 * coverage covered / coverage total, 1), 0) AS coverage percentage,
  FROM
    training.github coverages
QUALIFY
ROW_NUMBER() OVER (PARTITION BY owner, repo, _date ORDER BY timestamp DESC) = 1
```


1-1: 回答例2

経過時間 350 ミリ秒 消費したスロット時間 **②** 175 ミリ秒 シャッフルされたバイト数 **②** 393.15 KB

```
WITH coverages AS (
SELECT
coverage.*,
 date.
FROM (
SELECT
 owner,
 repo,
 TIMESTAMP TRUNC(timestamp, DAY, 'Asia/Tokyo') AS date,
 ARRAY AGG(t ORDER BY t.timestamp DESC LIMIT 1)[offset(0)] AS coverage
 FROM
 training.github coverages AS t
 GROUP BY
 owner,
 repo,
  date
SELECT
CONCAT(owner, '/', repo) AS owner repo,
 date.
coverage covered,
coverage total,
IF(coverage total > 0, ROUND(100 * coverage covered / coverage total, 1), 0) AS coverage percentage,
FROM
coverages
```

ARRAY AGG() で絞る方法が推奨されています

https://cloud.google.com/bigguery/docs/best-practices-performance-compute

Google BigQuery入門

● (1-2) 1-1 の集計結果を新しいテーブルに書き込んでください

CREATE TABLE training_test.github_coverages AS

...

Data Studio 入門

Data Studio

- Google マーケティングプラットフォーム で提供されているBIサービス
- Google アナリティクスも、Google マーケティングプラットフォームのサービスのひとつ
- 日本では「データポータル」と呼ばれていますが、ここでの表記は Data Studio に統一します。

どうやってアクセスするの?

こちらへ

https://datastudio.google.com/

使い方

<u>公式のヘルプページ</u> の解説がわかりやすいです。

Data Studio のホーム画面に表示されているチュートリアルもおすすめです。

Data Studio 演習

- (1-3) リポジトリ単位で日別のコードカバレッジを出し、過去3ヶ月分のコードカバレッジの時系列推移を表示してみましょう
 - データソースは、1-2 の課題で作成したテーブルを指定してください
 - グラフの横軸を日付、縦軸をコードカバレッジ(%)にしてください
 - リポジトリ別に色分けして表示するには…? => 内訳ディメンション
 - スタイル > 全般 > 線形補完 で線をなだらかにできます
 - フィルタ機能を使ってデータを絞りましょう

回答例

テストカバレッジ

可視化の事例紹介: Verne

- Verne(ヴェルヌ)
- Dashboard as Code を実現しています

https://tech.pepabo.com/2022/04/25/code-metrics-dashboard/

参考文献

DAMA International (2018) 『データマネジメント知識体系ガイド 第二版』 日経BP社

ゆずたそ,はせりょ(2020)『データマネジメントが30分でわかる本』

ゆずたそ,渡部徹太郎,伊藤徹郎『実践的データ基盤への処方箋』技術評論社

下田 倫大, 寳野 雄太, 饗庭 秀一郎, 吉田 啓二 (2021)『Google Cloud ではじめる実践データエンジニアリング入門』 技術評論社