HW1

HW 0224Q1- C02Q01(a,b,c)

a.

X	y	$x-\bar{x}$	$(x-\bar{x})^2$	$y-\bar{y}$	$(x-\bar{x})(y-\bar{y})$	x^2	y^2	xy
3	4	2	4	g. 2	4	9	16	12
2	2	1	1	0	0	4	4	4
1	3	0	0	1	0	1	9	3
-1	1	-2	4	-1	2	1	1	-1
0	0	-1	1	-2	2	0	0	0
5	10	0	10	0	8	15	30	18

$$\bar{x} = \frac{5}{5} = 1$$

$$\bar{y} = \frac{10}{5} = 2$$

b.
$$b_2 = \frac{8}{10} = 0.8$$

 $b_1 = 2 - 0.8 \times 1 = 1.2$

c.
$$\sum x^2 - N\bar{x}^2 = 15 - 5 \times 1^2 = 10 = \sum (x - \bar{x})^2$$
$$\sum xy - N\bar{x}\bar{y} = 18 - 5 \times 1 \times 2 = 8 = \sum (x - \bar{x})(y - \bar{y})$$

HW 0224Q1-C02Q01(d)

X	y	\hat{y}	ê	\hat{e}^2	хê	$(x-\bar{x})^2$	$(y-\bar{y})^2$	$(x-\bar{x})(y-\bar{y})$
3	4	3.6	0.4	0.16	1.2	4	4	4
2	2	2.8	-0.8	0.64	-1.6	1	0	0
1	3	2	1	1	1	0	1	0
-1	1	0.4	0.6	0.36	-0.6	4	1	2
0	0	1.2	-1.2	1.44	0	1	4	2
5	10	10	0	3.6	0	10	10	8

$$s_y^2 = \frac{10}{5-1} = 2.5$$
 $CV_x = 100 \frac{\sqrt{2.5}}{1} \approx 158.11$ $s_x^2 = \frac{10}{5-1} = 2.5$ Median of $x = 1$ $s_{xy} = \frac{8}{5-1} = 2$ $r_{xy} = \frac{2}{\sqrt{2.5}\sqrt{2.5}} = 0.8$

HW 0224Q2- C02Q01(e,f,g)

e.f.

Yes, fitted line pass through (\bar{x}, \bar{y})

g.

X	У	\hat{y}
3	4	3.6
2	2	2.8
1	3	2
-1	1	0.4
0	0	1.2
5	10	10

$$b_1 + b_2 \bar{x} = 1.2 + 0.8 \times \frac{5}{5} = 2 = \frac{10}{5} = \bar{y}$$

HW 0224Q3-C02Q01(h,i,j)

h.

$$\bar{\hat{y}} = \frac{10}{5} = \bar{y}$$

i.			
	$\hat{\sigma}^2 =$	$=\frac{3.6}{1.0}=$	- 1 3
	0 -	- 	- 1.2

j.
$$\widehat{var}(b_2|x) = \frac{1.2}{10} = 0.12$$

$$se(b_2) = \sqrt{0.12} \approx 0.3464$$

X	У	\hat{y}	ê	\hat{e}^2	$(x-\bar{x})^2$
3	4	3.6	0.4	0.16	4
2	2	2.8	-0.8	0.64	1
1	3	2	1	1	0
-1	1	0.4	0.6	0.36	4
0	0	1.2	-1.2	1.44	1
5	10	10	0	3.6	10

HW 0224Q4- C02Q14(a,b,c)

a.
$$\overline{EDUC} = \frac{\overline{WAGE} + 4.88}{1.80} = \frac{19..74 + 4.88}{1.80} \approx 13.6778$$

$$\hat{\varepsilon} = 1.80 \times \frac{13.6778}{19.74} \approx 1.2472$$

b.
$$\overline{WAGE} = -10.76 + 2.46\overline{EDUC} = 22.8928$$

$$\hat{\varepsilon} = 2.46 \times \frac{13.68}{22.8928} \approx 1.47$$

$$SE(\hat{\varepsilon}) = \sqrt{(\frac{13.68}{22.8928} \times 0.16)^2 + (\frac{2.46 \times 13.68}{22.8928^2} \times 0)^2} = \frac{13.68}{22.8928} \times 0.16 \approx 0.0956$$

C.

EDUC =
$$12y$$
 EDUC = $16y$ urban $-10.76+2.46(12) = 18.76$ $-10.76+2.46(16) = 28.60$ rural $-4.88+1.8(12) = 16.72$ $-4.88+1.8(16) = 23.92$

HW 0224Q5- C02Q16(a,b)

a.

```
If we treat r_j-r_f as dependent variable y r_m-r_f as independent variable x CAPM model is similar to a regression model y=\alpha+\beta x+e \alpha, \beta are the coefficients b_1, b_2 and e is the error term
```

b.

```
firm alpha pvalue beta

GE -0.0009586682 0.8287072 1.1479521

BM 0.0060525497 0.2122303 0.9768898

Ford 0.0037789112 0.7121467 1.6620307

Microsoft 0.0032496009 0.5909844 1.2018398

Disney 0.0010469237 0.8231091 1.0115207

Exxon-Mobil 0.0052835329 0.1368343 0.4565208
```

Ford appears most aggressive Exxon-Mobil appears most defensive

HW 0224Q6- C02Q16(c)

```
firm alpha pvalue beta

GE -0.0009586682 0.8287072 1.1479521

IBM 0.0060525497 0.2122303 0.9768898

Ford 0.0037789112 0.7121467 1.6620307

Microsoft 0.0032496009 0.5909844 1.2018398

Disney 0.0010469237 0.8231091 1.0115207

Exxon-Mobil 0.0052835329 0.1368343 0.4565208
```

The p-values of α are greater than 0.05, there is no enough evidence to prove that $\alpha \neq 0$. Thus, α should be 0

Microsoft stock regression line

HW 0224Q6- C02Q16(d)

```
firm beta beta_noalpha change

GE 1.1479521 1.1467633 0.001188808

BM 0.9768898 0.9843954 -0.007505539

Ford 1.6620307 1.6667168 -0.004686085

Microsoft 1.2018398 1.2058695 -0.004029708

Disney 1.0115207 1.0128190 -0.001298251

Exxon-Mobil 0.4565208 0.4630727 -0.006551910
```

 β has shown nearly no change(less than 2%)