STATISTIK

Prinsip-prinsip Statistik Untuk Teknik & Sains

Dosen : Ir. Iwan Setyadi, MT

ESTIMASI Ijt KL 6 Estimasi Proporsi atau Persentase Populasi Estimasi Varians Populasi

Estimasi Proporsi atau Persentase Populasi (π)

Khusus untuk sampel ukuran besar : np (perkalian ukuran sampel dengan Persentase sampel)≥ 500

Error standard dapat diestimasi sebagai berikut:

Jika anggota populasi tak terhingga:

$$\hat{\sigma}_p = \sqrt{\frac{p(100 - p)}{n}} \tag{8.11}$$

Jika anggota populasi terhingga sejumlah N:

$$\hat{\sigma}_{p} = \sqrt{\frac{p(100 - p)}{n}} \sqrt{\frac{N - n}{N - 1}}$$
(8.12)

Selanjutnya estimate interval persentase populasi dapat dibentuk sebagai:

$$p - z\hat{\sigma}_p < \pi < p + z\hat{\sigma}_p \tag{8.13}$$

Prosedur

Estimasi Proporsi atau Persentase Populasi (π)

Contoh 8.6

Suatu jajak pendapat terhadap konsumen merupakan salah satu contoh pemakaian estimasi interval persentase populasi. Misalkan suatu jajak pendapat pada 1200 orang pemilik kendaraan, menunjukkan bahwa 532 orang di antaranya memilih menggunakan minyak pelumas lokal, sementara sisanya menggunakan minyak pelumas import. Maka dengan tingkat keyakinan 95% persentase populasi pemakai minyak pelumas lokal dapat diestimasi sebagai berikut:

$$n = 1200$$
; $p = 532/1200 = 44,33\%$; tingkat kepercayaan = 95%

$$\hat{\sigma}_{\bar{x}} = \sqrt{\frac{p(100 - p)}{n}} = \sqrt{\frac{44,33(100 - 44,33)}{1200}} = 1,43$$

Dengan tingkat kepercayaan 95%, nilai z adalah 1,96, sehingga estimate intervalnya adalah:

$$\begin{aligned} p - z \hat{\sigma}_p &< \pi < p + z \hat{\sigma}_p \\ 44,33 - 1,96(1,43) &< \pi < 44,33 + 1,96(1,43) \\ 41,53 &< \pi < 47,13 \end{aligned}$$

Jadi dari populasi pemilik kendaraan diperkirakan pemakai minyak pelumas lokal antara 41,53 sampai 47,13 persen.

Estimasi Varians Populasi (σ_x^2)

Menggunakan tabel Distribusi Chi Kuadrat (X²)

8.4.2 Interval Estimasi Varians

Estimate interval varians populasi berbentuk:

$$\frac{vs^2}{\chi^2_{\alpha/2, \nu}} < \sigma_x^2 < \frac{vs^2}{\chi^2_{1-\alpha/2, \nu}}$$
 (8.15)

di mana:

 $\chi^2_{\alpha/2, \nu}$ = nilai kritis χ^2 yang tergantung tingkat kepercayaan dan derajat kebebasan $\alpha = 1$ - tingkat kepercayaan (sering disebut *chance of error*) $\nu = 0$ derajat kebebasan (df) = n - 1

Estimasi Varians Populasi (σ_x^2)

Contoh 8.7

Suatu mesin pengisi gandum ke dalam kemasan dirancang untuk bekerja mengisi gandum ke dalam kotak rata-rata sebanyak 25 kg. Suatu pemeriksaan terhadap 15 kotak menunjukkan bahwa deviasi standard pengisian gandum itu adalah 0,0894 kg. Maka dengan tingkat kepercayaan 95% deviasi standard populasi dapat diestimasi sebagai berikut:

$$s = 0.0894 \rightarrow s^2 = 0.008$$
; $n = 15$; $n = n - 1 = 14$;

Tingkat kepercayaan = $95\% \rightarrow \alpha = 1 - 0.95 = 0.05$

Estimate interval variansnya adalah:

$$\frac{(15-1)s^2}{\chi^2_{0,05/2,14}} < \sigma_x^2 < \frac{(15-1)s^2}{\chi^2_{1-0,05/2,14}}$$

$$\frac{14s^2}{\chi^2_{0,025,14}} < \sigma_x^2 < \frac{14s^2}{\chi^2_{0,975,14}}$$

v= denjot hobdoots -

Dengan menggunakan Tabel 8.3 diperoleh:

$$\frac{(14)(0,008)}{26,1} < \sigma_x^2 < \frac{(14)(0,008)}{5,63}$$

$$0.0043 < \sigma_x^2 < 0.0199$$

$$\sqrt{0,0043} < \sigma_x < \sqrt{0,0199}$$

$$0,066 < \sigma_x < 0,141$$

Estimasi Varians Populasi (σ_x^2)

Tabel 8.3 Distribusi-χ²: Luas ujung kurva (curve tail areas)

t	α									
	0,995	0,990	0,975	0,950	0,900	0,100	0,050	0,025	0,010	0,005
1	0,000	0,000	0,001	0,004	0,016	2,706	3,841	5,024	6,635	7,879
2	0,010	0,020	0,051	0,103	0,211	4,605	5,991	7,378	9,210	10,59
3	0,072	0,115	0,216	0,352	0,584	6,251	7,815	9,348	11,345	12,83
4	0,297	0,297	0,484	0,711	1,064	7,779	9,488	11,143	13,277	14,86
5	0,412	0,554	0,831	1,145	1,610	9,236	11,070	12,832	15,086	16,75
6	0,676	0,872	1,237	1,635	2,204	10,645	12,592	14,449	16,812	18,54
7	0,989	1,239	1,690	2,167	2,833	12,017	14,067	16,013	18,475	20,27
8	1,344	1,647	2,180	2,733	3,490	13,362	15,507	17,535	20,090	21,95
9	1,735	2,088	2,700	3,325	4,168	14,684	16,919	19,023	21,666	23,58
10	2,156	2,558	3,247	3,940	4,865	15,987	18,307	20,483	23,209	25,18
11	2,603	3,053	3,816	4,575	5,578	17,275	19,675	21,920	24,725	26,75
12	3,074	3,571	4,404	5,226	6,304	18,549	21,026	23,337	26,217	28,30
13	3,565	4,107	5,009	5,892	7,041	19,812	22,362	24,736	27,688	29,819
(4)	4,075	4,660	5,629	6,571	7,790	21,064	23,685	26,119	29,141	31,319
15	4,601	5,229	6,262	7,261	8,547	22,307	24,996	27,488	30,578	32,80
16	5,142	5,812	6,908	7,962	9,312	23,542	26,296	28,845	32,000	34,26
17	5,697	6,408	7,564	8,672	10,085	24,769	27,587	30,191	33,409	35,71
18	6,265	7,015	8,231	9,390	10,865	25,989	28,869	31,526	34,805	37,15
19	6,844	7,633	8,907	10,117	11,651	27,204	30,144	32,852	36,191	38,58
20	7,434	8,260	9,591	10,851	12,443	28,412	31,410	34,170	37,566	39,99
21	8,034	8,897	10,283	11,591	13,240	29,615	32,671	35,479	38,932	41,40
22	8,643	9,542	10,982	12,338	14,041	30,813	33,924	36,781	40,289	42,79
23	9,260	10,196	11,689	13,091	14,848	32,007	35,172	38,076	41,638	44,18
24	9,886	10,856	12,401	13,848	15,659	33,196	36,415	39,364	42,980	45,558
25	10,520	11,524	13,120	14,611	16,473	34,382	37,652	40,646	44,314	46,92
26	11,160	12,198	13,844	15,379	17,292	35,563	38,885	41,923	45,642	48,29
27	11,808	12,878	14,573	16,151	18,114	36,741	40,113	43,195	46,963	49,64
28	12,461	13,565	15,308	16,928	18,939	37,916	41,337	44,461	48,278	50,99
29	13,121	14,256	16,047	17,708	19,768	39,087	42,557	45,722	49,588	52,33
30	13,787	14,953	16,791	18,493	20,599	40,256	43,773	46,979	50,892	53,672
32	15,134	16,362	18,291	20,072	22,271	42,585	46,194	49,480	53,486	56,32
34	16,501	17,789	19,806	21,664	23,952	44,903	48,602	51,966	56,061	58,964
36	17,887	19,233	21,336	23,269	25,643	47,212	50,998	54,437	58,619	61,58
38	19,289	20,691	22,878	24,884	27,343	49,513	53,384	56,895	61,162	64,18
40	20,707	22,164	24,433	26,509	29,051	51,805	55,758	59,342	63,691	66,766

Penentuan Ukuran atau Jumlah Sampel untuk Estimasi Mean Populasi

Penentuan Ukuran atau Jumlah Sampel untuk Estimasi Mean Populasi

Contoh 8.8

- Pipa-pipa yang digunakan untuk pengeboran minyak (drilling pipe) akan diuji tarik di laboratorium untuk menentukan kekuatan/tegangan tariknya (N/cm²). Dari pengalaman selama ini pada pipa yang serupa diketahui bahwa deviasi standard kekuatan/tegangan tariknya adalah 300 N/cm². Jika dari pengujian ini diinginkan tingkat keakuratan/kesalahan estimate tidak melewati ±75 N/cm² dengan tingkat kepercayaan 95% maka ukuran sampel dapat ditentukan dengan mengikuti prosedur yang ditunjukkan diagram alir pada Gambar 8.12 sebagai berikut:
 - Tingkat keakuratan/kesalahan estimate yang dikehendaki, E = 75
 - Tingkat kepercayaan estimasi = 95%
 - Skor z untuk tingkat kepercayaan 95%, z = 1,960
 - Error standard dari mean sampling, $\sigma_{\bar{x}} = \frac{E}{z} = \frac{75}{1,960} = 38,265$
 - Asumsi deviasi standard populasi, $\sigma_x = 300$
 - Ukuran sampel yang digunakan, $n = \frac{\sigma_x^2}{\sigma_{\bar{x}}^2} = \frac{300^2}{38,265^2} = 61,47$
 - Jadi ukuran sampel (banyaknya sampel) yang digunakan adalah n = 62

Penentuan Ukuran Sampel untuk Estimasi Proporsi Populasi

Batas kepercayaan = $p \pm z\sigma_p = p \pm E$

di mana:

p = proporsi sampel (dalam persentase)

 $E = z\sigma_n$ = kesalahan estimate (error of estimate)

Mulai

Penentuan Ukuran Sampel untuk Estimasi Proporsi Populasi

- Fakultas Teknik Universitas Indonesia ingin memperkirakan persentase mahasiswa yang berminat untuk mengikuti pelatihan keterampilan di bidang teknologi informasi. Unit pelaksana teknis yang akan melaksanakan pelatihan tersebut menginginkan agar perkiraan tersebut berada dalam kisaran ± 5% dari nilai sesungguhnya. Estimasi akan dilakukan dengan tingkat kepercayaan 95%. Maka besarnya ukuran sampel dapat ditentukan dengan mengikuti prosedur yang ditunjukkan diagram alir pada Gambar 8.13 sebagai berikut:
 - Tingkat keakuratan/kesalahan estimate yang dikehendaki, E = 5
 - Tingkat kepercayaan estimasi = 95%
 - Skor z untuk tingkat kepercayaan 95%, z = 1,960
 - Error standard dari mean sampling, $\sigma_p = \frac{E}{z} = \frac{5}{1,960} = 2,55$
 - Karena perkiraan persentase populasi tidak diketahui sebelumnya, asumsikan $\pi = 50$
 - Ukuran sampel yang digunakan, $n = \frac{\pi(100 \pi)}{\sigma_p^2} = \frac{50(50)}{2,55^2} = 385$.
 - Jadi ukuran sampel (banyaknya sampel) yang digunakan adalah n = 385 mahasiswa.

SOAL

1. Data eksperimen yang diperoleh dari pengukuran 64 sampel menunjukkan nilai-nilai sebagai berikut:

1110	1192	1196	1406	1161	1492	1170	1258
1181	1273	1020	1042	1136	1233	1158	1233
1040	1217	1175	1273	1163	1235	931	1270
1185	1051	1218	1303	1055	1081	1162	1333
1197	1146	1231	923	1393	1302	1249	1368
1095	1051	1250	1021	1152	1482	1028	1341
1124	1200	1058	1449	1094	1254	1160	1141
1065	1141	1416	1055	1399	924	1361	1216

Estimasikan dengan tingkat kepercayaan 95%:

- (a) Mean populasi
- (b) Standard deviasi populasi

Ulighat hopotous

6. Tentukan nilai t kritis untuk estimasi interval dengan situasi sebagai berikut:

Luch lintagan lumis Vi

- (a) tingkat kepercayaan 95% dan derajat kebebasan 10
- (b) tingkat kepercayaan 95% dan derajat kebebasan 15
- (c) tingkat kepercayaan 99% dan ukuran sampel 5
- (d) tingkat kepercayaan 99% dan ukuran sampel 28

Soal

2. Sebuah artikel di ASME Journal melaporkan bahwa dari 871 perusahaan yang bergerak di bidang industri 22 di antaranya tidak mensyaratkan insinyur yang bekerja di perusahaan tersebut memiliki sertifikasi insinyur profesional. Dengan tingkat kepercayaan 90% tentukan persentase populasi dari perusahaan yang mensyaratkan diperlukan sertifikat insinyur untuk bisa diterima bekerja.

4. Sebuah sampel acak yang terdiri dari 110 sinyal radar yang dikirimkan dari daerah tertentu menghasilkan pantulan radar balik dalam jangka waktu rata-rata 0,81 detik dan deviasi standard 0,34 detik. Hitunglah estimate interval dari rata-rata waktu pantul populasinya dengan tingkat kepercayaan 99%.

Soal

- 5. Dalam suatu artikel mengenai kinerja kiln (tungku pemroses bahan keramik) dilaporkan informasi sebagai berikut. Kekuatan terhadap retak 168 batang keramik yang diproses dengan kiln tersebut mempunyai rata-rata 89,10 MPa dan deviasi standard 3,73 MPa.
 - (a) Hitunglah estimate interval dari kekuatan retak rata-rata sesungguhnya (populasi) dengan tingkat kepercayaan 99%.
 - (b) Andaikan seorang peneliti berdasarkan data sebelumnya meyakini bahwa deviasi standard populasi adalah 4 MPa. Berdasarkan hal tersebut berapakah jumlah (ukuran) sampel yang harus digunakannya untuk membuat estimate interval atas kekuatan retak rata-rata sesungguhnya dalam kisaran ± 0,5 MPa dengan tingkat kepercayaan 95%?

Soal

7. Suatu studi tentang kemampuan orang berjalan dalam sebuah lintasan lurus yang dilaporkan dalam sebuah makalah ilmiah melaporkan data waktu yang dibutuhkan oleh sampel yang terdiri laki-laki sehat untuk berjalan sepanjang suatu lintasan lurus yang telah ditentukan sebagai berikut (dalam menit):

0,95	0,85	0,92	0,95	0,93	0,86	1,00	0,92	0,85	0,81
0,78	0,93	0,93	1,05	0,93	1,06	1,06	0,96	0,81	0,96

Tentukanlah dengan tingkat kepercayaan 95% estimate interval rata-rata waktu berjalan pada populasinya.

Sekian & terimakasih