# Práctica 1 - Difuminado de imagen POSIX

Ronald Alexander Sarmiento Galviz Universidad Nacional Bogotá, Colombia Email:roasarmientoga@unal.edu.co

Resumen—Se implementa un algoritmo de difuminado de imagen para paralelizar y evaluar en varios casos de prueba su eficiencia. Se concluye que debido a las características del equipo es mas eficiente paralelizar, usualmente no suman eficiencia lanzar mas de 4 hilos.

#### I. Introducción.

### I-A. Difuminado de imagen (Blur)

El algoritmo de difuminado de imagen consiste en intercambiar cada pixel por un promedio de los valores RGB que se encuentran en los pixeles adyacentes a él. El nivel de difuminado, o kernel determina la aplitud del rango que se toma para evaluar el promedio. Es decir, si se escoge un kernel de 5 significa que cada pixel será cambiado por el promedio que hay en los pixeles de la matriz 5 x 5 cuyo centro es el pixel en cuestión.

# II. PARALELIZACIÓN DEL ALGORITMO.

Para distribuir la carga se tomó en ancho de la imagen de entrada y se dividió en el numero de hilos, asi cada hilo procesa una imagen de  $(width/THREADS)x\ height$ .

#### III. EXPERIMENTOS Y RESULTADOS.

EL algoritmo se probó usando variando el kernel y numero de hilos para 3 tipos de imagenes (720px , 1080 px y 4K). Con los valores  $kernel: 4, 6, 8, 10, 12, 14 \ hilos: 2, 4, 8, 16$ 



Figura 2: Speedup vs kernel - imagen 1080px



Figura 3: Speedup vs kernel - imagen 4K



Figura 1: Speedup vs kernel - imagen 720px

Las siguientes tablas muestran el Speedup para los casos de cada imagen.

## CONCLUSIONES.

La practica muestra que el algoritmo de difuminado es paralelizable, sin embargo demuestra que la eficiencia de la paralelización tiene un pico facilmente acotable por lo que para calculos extensos no es necesario paralelizar con hilos a un numero mayor al de los cores del equipo.

| 720    | Speedup      |             |             |             |
|--------|--------------|-------------|-------------|-------------|
| Kernel | 2 Hilos      | 4 Hilos     | 8 Hilos     | 16 Hilos    |
| 4      | 0,8174157303 | 1,141176471 | 1,106463878 | 1,093984962 |
| 6      | 1,013333333  | 1,288135593 | 1,301369863 | 1,310344828 |
| 8      | 1,257978723  | 1,367052023 | 1,351428571 | 1,351428571 |
| 10     | 1,365296804  | 1,472906404 | 1,483870968 | 1,469287469 |
| 12     | 1,49112426   | 1,558762887 | 1,558762887 | 1,5782881   |
| 14     | 15,32786885  | 1,623263889 | 1,620450607 | 1,612068966 |

Cuadro I: Valores Speedup para imagen 720px

| 1080   | Speedup     |             |             |             |
|--------|-------------|-------------|-------------|-------------|
| Kernel | 2 Hilos     | 4 Hilos     | 8 Hilos     | 16 Hilos    |
| 4      | 1,311764706 | 1,319526627 | 1,363914373 | 1,347432024 |
| 6      | 1,430523918 | 1,457076566 | 1,463869464 | 1,460465116 |
| 8      | 1,803691275 | 1,909413854 | 1,8728223   | 1,933453237 |
| 10     | 1,940414508 | 2,083449235 | 1,973649539 | 2,01615074  |
| 12     | 1,869035533 | 1,998914224 | 1,994582882 | 1,992424242 |
| 14     | 1,76607717  | 1,892334195 | 1,895599655 | 1,905464007 |

Cuadro II: Valores Speedup para imagen 1080px

| 4K     | Speedup     |             |             |             |
|--------|-------------|-------------|-------------|-------------|
| Kernel | 2 Hilos     | 4 Hilos     | 8 Hilos     | 16 Hilos    |
| 4      | 1,617977528 | 1,746967071 | 1,730967373 | 1,751013318 |
| 6      | 1,894245723 | 2,067911715 | 2,100724388 | 2,089910776 |
| 8      | 1,648994841 | 2,048850575 | 2,039832746 | 2,04839779  |
| 10     | 1,932943795 | 2,0839958   | 2,001728858 | 1,965483095 |
| 12     | 1,795095635 | 1,939692634 | 1,900415369 | 1,920558296 |
| 14     | 1,842920354 | 1,891699295 | 1,877438408 | 1,818777293 |

Cuadro III: Valores Speedup para imagen 4K