THEOREMS ABOUT CONVERGENCE WARMUP

Which of the following implications about sequences hold in general? Either mention a relevant theorem or give a counterexample.

(a) monotone \implies convergent

- (d) convergent \implies monotone
- (b) increasing + convergent \implies bounded
- (e) convergent \implies bounded
- (c) bounded + decreasing ⇒ convergent
- (f) bounded \implies convergent

Divergence to $\pm \infty$

It is sometimes useful to distinguish between sequences like $\{(-1)^n\}_{n=1}^{\infty}$ that diverge because they "oscillate", and sequences like $\{n\}_{n=1}^{\infty}$ that diverge because they "head toward infinity".

- (I) In intuitive language, a sequence converges to L if no matter how close we want or sequence to be to L, all values past some point are at least that close. Intuitively, a sequence diverges to $+\infty$ if no matter how large we want our sequence to be, all values past some point are at least that large. Write a precise definition for a sequence to diverge to $+\infty$.
- (II) Write a precise definition for a sequence to diverge to $-\infty$.

CHECK ANSWERS TO I & II BEFORE CONTINUING

- (1) Use the definition to prove that the sequence $\{\sqrt{n}\}_{n=1}^{\infty}$ diverges to $+\infty$.
- (2) Prove that if a sequence $\{a_n\}_{n=1}^{\infty}$ diverges to $+\infty$ then it is not bounded above.
- (3) Use (2) to show that if a sequence diverges to $+\infty$ then it diverges.
- (4) Disprove the following: If a sequence is not bounded above, then it diverges to $+\infty$.
- (5) Disprove the following: If a sequence diverges to $+\infty$ then it is increasing.