

TPLGPASSLPPQSFLLKCLEQVRKIQGDGAALQEKLCAKYKLCHPEELVLLGHSLIGIPWA
PLSSCPSQALQLLAGCISQLHSGLFLYQGLLQALEGISPELGPTLDTLQLDVADEFATTIW
QQMEEELGMAPALQOPTQGAMPFAFASAFQRAGGVLVASHLQSFSLEVSYRVLRHLAQPP

hGCSF wild type

ATGACTCCATTAGGTCCAGCTTCCCTCTGCCGAAAGCTTCCTGCTGAAATGCCCTGGAACAGGTTCGTAAAATCCAGGGTGTGATGG
TGCTGCTCTGCAGGAAAACCTACAAACTGTGGCTCACCTACAAACTGTGGTTCCTGCTGGGTCACTCCCTGGGTATTC
CGTGGGGCCGCTGAGCTCCTGCCAGGGCTCTGGCAGCTGGCTGGTGGCTGGCACAGGGCCTTTCCTGTAC
CAGGGTCTGCTGCAAGCTCTGGAAGGTATCTCCCGGAACTCTGGTCCGACCTGGACACTCTGGCAGCTGGACGCTGGACTTCGC
TACCACCATCTGGCAGGAGATGGAAAGAACCTGGGTATGGCTCCGGCTCTGGCAGGCCAGGGTGTGCTATGCCGGCTTTCGCTTCCG
CTTTCCAGGGTGGCAGGGTGGCTTCTGGCTAGCCACCTGGCTAGGCTTCCAGAGCTTCCAGAAGTTCTGCGGTACCTACCGTTCTGCGTCAACCTG
GCTCAGCCGTGA

FIG. - 1

2 / 16

core3	17 95	21 99	24 103	28 106	31 110	35 113	41 114	47 117	54 140	56 151	75 152	78 153	82 154	85 157	88 160	89 161	92 168
core4	17 150	21 151	24 152	28 153	31 154	75 157	78 160	82 161	85 168	89 161	103 168	106 161	110 168	113 161	114 168	117 161	149 168
core4v	17 152	21 153	24 154	28 157	31 160	75 161	78 167	82 168	85 168	89 168	103 168	106 168	110 168	113 168	114 168	117 168	151 168
bndry4_2	14 120	20 145	27 146	32 147	34 148	38 155	77 155	79 156	84 156	91 164	94 170	91 170	99 170	102 170	107 170	109 170	116 170
bndry4_core4	14 120	20 145	27 146	32 147	34 148	38 155	77 155	79 156	84 164	91 170	94 170	91 170	99 170	102 170	107 170	109 170	116 170
bndry4_AD	14 20	20 27	27 32	34 38	38 145	146 146	146 147	147 147	148 148	148 148	155 155	155 156	156 164	156 164	156 170	156 170	156 170
bndry4_AD_core4	14 20	20 27	27 32	34 38	38 145	146 146	146 147	147 147	148 148	148 148	155 155	155 156	156 164	156 164	156 170	156 170	156 170

FIG.-2

G-CSF Designs - Optimal Sequences Selected by PDA*

	1	10	20	30	40	50	60
hGCSFwt	MTPLGPASSLQPQSSLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVILLGHSLGIPWAP						
bndry4_2	I	L	E	I	I	K	
bndry4_core4	I	L	EA	L	E	H	
bndry4_AD	I	L	E	I	E	H	
bndry4_AD_core4	I	L	EA	L	E	H	
core4	I	L	EA	L	E	H	
core4_V167A	I	A	A	A	A		
core3	I	A	I	A	I		
sm0	A	A	A	A	A		
fm2	A	A	A	A	A		
fm3	L	A	A	A	A		
fm4	L	A	A	A	A		
fm7	L	A	A	A	A		
hGCSFwt	LSSCPSQALQLAGCQLSQLHSGLFLYQGLLQALEGISPELGPFTLDTLQLDVADEFATTIWWQQ						
bndry4_2	L	K	V	I	E	I	
bndry4_core4	FL	F	KV	I	EI	L	
bndry4_AD	FL	F	V	I	I	L	
bndry4_AD_core4	F	F	V	I	I	L	
core4	F	F	V	I	I	L	
core4_V167A	F	F	I	I	I	L	
core3	F	F	F	F	F	L	
sm0	F	F	F	F	F	L	
fm2	F	F	F	F	F	L	
fm3	F	F	F	F	F	L	
fm4	F	F	F	F	F	L	
fm7	F	F	F	F	F	L	

FIG.-3A

hGCSFwt	MEELGMAPALQOPTQGAMPFAFASAFAQRRAGGVILWASHIQSSFLEVSYRVLRHLAQP
bndry4_2	KED IL A
bndry4_core4	KED I I A F
bndry4_AD	KET IL A
bndry4_AD_core4	KED I I A F
core4	I I F
core4_V167A	I I WF AF F
core3	I I F
-	-
sm0	I I
fm2	F
fm3	F
fm4	I I
fm7	I I

*Sequences shown below dotted lines were not obtained from PDA calculations but were derived by reverting some core4 or core3 mutant positions to wild type. Core4 mutant positions are indicated in bold. The sequence selected for Core4_V167A is not the ground state; Monte Carlo analysis shows the ground state with Phe instead of Trp for position 160, and Leu instead of Phe for position 161 (see Table 4).

FIG.-3B

**Core4 - Monte Carlo Analysis - Ground State and Allowed Amino Acids
and Their Number of Occurrences (For the Top 1000 Sequences)**

hG-CSF	Position	Ground State	
CYS	17	LEU	736
VAL	21	VAL	687
ILE	24	VAL	38
GLY	28	ALA	747
LEU	31	VAL	251
LEU	75*	LEU	999
LEU	78	PHE	974
LEU	82*	LEU	974
TYR	85	PHE	847
LEU	89	LEU	628
LEU	103	VAL	351
LEU	106*	LEU	940
VAL	110	VAL	415
PHE	113	LEU	999
ALA	114*	ALA	999
ILE	117*	ILE	956
GLY	149*	GLY	999
GLY	150*	GLY	999
VAL	151	ILE	999
LEU	152*	LEU	999
VAL	153	VAL	411
ALA	154*	ALA	999
LEU	157	LEU	805
PHE	160	PHE	565
LEU	161	LEU	838
LEU	168	PHE	999

FIG.-4

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

FIG.-5

Table 4. Core4v - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences)

hG-CSF	Position	Ground State						
CYS	17	LEU	697	ILE	51	ILE	251	
VAL	21	VAL	682	VAL	682	ILE	300	PHE 17
ILE	24	ILE	938	VAL	61			
GLY	28	ALA	806	LEU	193			
LEU	31	LEU	694	ALA	1	VAL	257	ILE 47
LEU	75*	LEU	999					
LEU	78	PHE	982	VAL	17			
LEU	82	LEU	982	PHE	17			
TYR	85	PHE	887	VAL	2	ILE	16	TYR 94
LEU	89	LEU	637	PHE	314	TRP	48	
LEU	103	VAL	357	ALA	78	LEU	269	ILE 295
LEU	106	LEU	945	VAL	54			
VAL	110	ILE	445	VAL	405	LEU	149	
PHE	113	LEU	999					
ALA	114*	ALA	999					
ILE	117*	ILE	938	VAL	61			
VAL	151	ILE	999					
LEU	152*	LEU	999					
VAL	153	ILE	585	VAL	414			
ALA	154*	ALA	999					
LEU	157	LEU	797	VAL	18	ILE	184	
PHE	160	PHE	551	TRP	448			
LEU	161	LEU	843	PHE	156			
VAL	167	ALA	999					
LEU	168	PHE	999					

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

Table 5. Core3 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

FIG.—6A

FIG.-6B

Table 5. Core3 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

hG-CSF	Position	Ground State	
PHE	140*	PHE	999
VAL	151	ILE	999
LEU	152*	LEU	999
VAL	153	ILE	999
ALA	154*	ALA	999
LEU	157	LEU	694
PHE	160	PHE	574
LEU	161	LEU	784
LEU	168	PHE	999
		ALA	22
		TRP	425
		ALA	6
		VAL	55
		PHE	154

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

FIG.-7

Table 6. Endry4_2 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

hG-CSF	Position	Ground State
LEU	14	ILE 998
GLN	20	LEU 999
ASP	27	GLU 999
GLN	32	ILE 999
LYS	34	LYS 717
THR	38	VAL 409
GLN	77*	GLN 999
HIS	79	LEU 999
LEU	84*	LEU 999
ALA	91	LYS 999
LEU	99	VAL 759
THR	102	LEU 562
GLN	107	ILE 993
VAL	109	GLU 525
THR	116	ILE 749
GLN	120	LEU 999
GLN	145	GLN 650
ARG	146	LYS 891
ARG	147	GLU 999
ALA	148	THR 401
SER	155	ILE 999
HIS	156	LEU 999
SER	164	ALA 999
HIS	170	HSP 380
		LEU 111
		GLU 248
		GLN 227

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

FIG.-8

Table 7. Bndry4_core4 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

hG-CSF	Position	Ground State																	
LEU	14	ILE	941																
GLN	20	LEU	999																
ASP	27	GLU	970	SER	29														
GLN	32	LEU	631	VAL	125														
LYS	34	GLU	961	GLN	22	LYS	16												
THR	38	HSP	931	VAL	19	ILE	4	GLU	5	LYS	40								
GLN	77*	GLN	999																
HIS	79	LEU	999																
LEU	84*	LEU	999																
ALA	91	LYS	999	GLU	77														
LEU	99	LEU	922	THR	14	VAL	150	LEU	2	ILE	71	GLU	14	GLN	19				
THR	102	LYS	729	ILE	968	VAL	30	LEU	1										
GLN	107	ILE	968	GLU	591	VAL	402	ASP	2	GLN	4								
VAL	109	ILE	647	VAL	15	VAL	275	LEU	1	LYS	61								
THR	116	ILE	999																
GLN	120	LEU	999	GLU	658	GLU	341												
GLN	145	LYS	857	GLU	998	GLN	142												
ARG	146	ASP	359	ASP	359	LYS	1	ALA	310	THR	330								
ARG	147	GLU	999	ILE	999														
ALA	148	ALA	999	LEU	999														
SER	155	ALA	999	HSP	380	ASP	26	LEU	109	GLU	239	GLN	214	LYS	31				
HIS	156	ALA	999																
SER	164	ALA	999																
HIS	170	HSP	380																

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

FIG.-9

Table 8. Bndry4_AD - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

Position	Ground State							
14	ILE	887	LEU	112				
20	LEU	999						
27	GLU	984						
32	ILE	931						
34	GLU	357	ILE	68	GLN	223	LYS	277
38	VAL	287	ILE	133	HSP	225	GLU	217
145	GLN	605	GLU	394				
146	LYS	786	GLN	213				
147	GLU	962						
148	THR	373	ALA	305	ASP	321		
155	ILE	976						
156	LEU	994						
164	ALA	999						
170	HSP	304	ASP	55	LEU	136	GLU	230
							GLN	209
							LYS	62

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

FIG.-10

Table 9. Bndry4_AD_core4 - Monte Carlo Analysis (Ground State and Allowed Amino Acids and Their Number of Occurrences (For the Top 1000 Sequences))

Position	Ground State								
14	ILE	896	LEU	103					
20	LEU	999							
27	GLU	996							
32	LEU	523	VAL	194	ILE	271			
34	GLU	400	GLN	207	LYS	341			
38	VAL	300	ILE	89	HSP	277	GLU	203	
145	GLN	623	GLU	376			LYS	130	
146	LYS	820	GLN	179					
147	GLU	986							
148	ASP	344	ALA	332	THR	323			
155	ILE	998							
156	LEU	996							
164	ALA	999							
170	HSP	330	LEU	134	GLU	234	GLN	216	

*position where Monte Carlo didn't find an alternative and where the top amino acid is the wild type

Core3

```

ATGACTCCATTAGGTCCAGCTTCTGCCAAAGCTTCCTGCTGAAACTGCTGGAACAGGTTCCAGGTTCAAGCTTGCTGATA
AGCTGCTCTGCAAGGAAAAAATCTGGCTTACAAACTGTGCCATTCGGAAAGAACACTGGTTCTGCTGGTCACTCCCTGGGTATC
CGTGGGGCCGGCTGAGCTCCTGGCCAGGCCAGGCTCTGCAGCTGGCTGGTGGCTGGTCCAAATTCCACAGGGCCTTTTCTGTTTC
CAGGGTCTGTTAGGTATCTGGAAAGGTAATGGCTGGAGACTGGGTTATGGCTGGAGATGGAAAGAACCTGGGTCTGGCTGGCTATG
TACCAACCATTGGCAGCAGATGGCAAGGAAACTGGGTATGGCTGGAGACTGGGTCTGGCTGGAGACTGGGTCTGGCTGGCTGGC
CTTTCAGGGTGGCAGGCTAGCCACCTGCTGATCGCTGAGGCTCCTGGAAAGTTCCAGGTGTTACCGTGTACCGCTGACACCTG
GCTCAGGGGTGA

```

FIG.- 11A

Core4

```

ATGACTCCATTAGGTCCAGCTTCTGCCAAAGCTTCCTGCTGAAACTGCTGGAACAGGTTCCAGGTTCAAGCTTGCTGATA
AGCTGCTCTGCAAGGAAAAAATCTGGCTTACAAACTGTGCCATTCGGAAAGAACACTGGTTCTGCTGGTCACTCCCTGGGTATC
CGTGGGGCCGGCTGAGCTCCTGGCCAGGCCAGGCTCTGCAGCTGGCTGGTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGG
CAGGGTCTGCTGCAAGGCTGGAAAGGTAATGGCTGGAGACTGGGTTATGGCTGGAGATGGAAAGAACCTGGGTCTGGCTGGCTGG
TACCAACCATTGGCAGCAGATGGAAAGAACCTGGGTATGGCTGGAGACTGGGTCTGGCTGGAGACTGGGTCTGGCTGGCTGGC
CTTTCAGGGTGGCAGGCTAGCCACCTGCTGATCGCTGAGGCTCCTGGAAAGTTCCAGGTGTTACCGTGTACCGTGTACCGCTG
GCTCAGGGGTGA

```

FIG.- 11B

Core4v

```

ATGACTCCATTAGGTCCAGCTTCTGCCAAAGCTTCCTGCTGAAACTGCTGGAACAGATCCGTTAAATCCAGGGGTGA
AGCTGCTCTGCAAGGAAAAAATCTGGCTTACAAACTGTGCCATTCGGAAAGAACACTGGTTCTGCTGGTCACTCCCTGGGTATC
CGTGGGGCCGGCTGAGCTCCTGGCCAGGCCAGGCTCTGCAGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGCTGGC
CAGGGTCTGCTGCAAGGCTGGAAAGGTAATGGCTGGAGACTGGGTTATGGCTGGAGACCTGGCTGGACATCGCTGACACCTGG
TACCAACCATTGGCAGCAGATGGAAAGAACCTGGGTATGGCTGGAGACTGGGTCTGGCTGGAGACTGGGTCTGGCTGGCTGGC
CTTTCAGGGTGGCAGGCTAGCCACCTGCTGATCGCTGAGGCTCCTGGAAAGTTCCAGGTGTTACCGTGTACCGTGTACCGCTG
GCTCAGGGGTGA

```

FIG.- 11C

14 / 16

FIG._ 12**-Melting Temperature (T_m)**

	T_m (°C)	Extinction Coefficient ($M^{-1} cm^{-1}$)
hG-CSFwt	60	15720
core4	72	14230
core4v	61	19730
core3	58	14230
sm0*	63	15720
fm4*	63	15720
fm7*	70	14230

* Derived by reverting some core4 or core3
mutant positions to wild type

FIG._ 16

15 / 16

FIG._ 13**FIG._ 14**

