Retraction of a viscoplastic sheet

By

Hiranya Deka, Jean-Lou Pierson and Edson Soares

IFP Energies Nouvelles Solaize, 69360 France

Introduction

Fig. Photograph of a bursting soap film (Savva and Bush (2009))

Fig. Photograph of a bursting bubble (www.flickr.com)

- Sheet fragmentation and atomization.
- Fragmentation is desirable in spray formation and undesirable in curtain coating.

Dupré (1867)	$\sqrt{2\sigma/\rho h}$		
Ranz (1959)	The retraction velocity is less than that predicted by Dupré's formula.		
Taylor (1959), Culick (1959)	$\sqrt{\sigma/ ho h}$		
McEntree & Mysels (1969)	Experimentally verified the Taylor-Culick velocity.		
Debrégeas et al. (1995)	Rupture of polymeric films; No rim formation and exponential hole growth with time.		
Brenner and Gueyffier (1999), Savva and Bush (2009)	Absence of rim can be a result of pure viscous effect.		

Bingham model (Bingham (1922)):
$$\mu_1 = \begin{cases} \infty, & \text{if} \quad \tau \leq \tau_y, \\ \mu_p + \tau_y \, / \, \dot{\gamma}, & \text{if} \quad \tau \geq \tau_y. \end{cases}$$

Deformation rate,
$$\dot{\gamma}_{i,j} = \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}$$
 and $\dot{\gamma} = \sqrt{\sum \dot{\gamma}_{i,j}^2/2}$

Regularized version of Bingham model ($\mu_{\rm l} = \mu_p + \frac{\tau_y}{\dot{\gamma} + \epsilon},$ Allouche et al. (2000), Frigaard et al (2005)) : $\epsilon = \tau_y / \mu_{max}$

Characteristic shear rate

$$\dot{\gamma}_c = \sqrt{\frac{\sigma}{\rho h^3}}$$

Characteristic viscosity

$$\eta_c = \mu_p + \tau_y \, / \, \dot{\gamma}_c$$

Plastic number

$$Pl = \tau_y / (\tau_y + \mu_p \dot{\gamma}_c)$$

Ohnesorge number

$$Oh = \eta_c / \sqrt{\rho_1 \sigma h}$$

Viscosity

$$\mu_{1} = \mu_{p} \left(1 + \frac{Pl}{(1 - Pl)\overline{\dot{\gamma}}} \right)$$

Governing equations:

$$\overline{\rho} \left[\frac{\partial \overline{u_i}}{\partial \overline{t}} + \overline{u_i} \frac{\partial \overline{u_j}}{\partial \overline{x_j}} \right] = \frac{\partial \overline{P}}{\partial \overline{x_i}} + Oh \frac{\partial}{\partial \overline{x_j}} \left[\overline{\mu} \left(\frac{\partial \overline{u_i}}{\partial \overline{x_j}} + \frac{\partial \overline{u_j}}{\partial \overline{x_i}} \right) \right] + \overline{\kappa} \mathbf{n} \delta_s$$

 $\frac{\partial c}{\partial t} + u_j \frac{\partial c}{\partial x_i} = 0$; c is volume fraction and is 1 for fluid 1 and 0 for fluid 2

$$\rho = \rho_1 c + \rho_2 (1 - c),$$
 $\mu = \mu_1 c + \mu_2 (1 - c).$

We can use a general Herschel-Bulkley formulation, with here N=1,

	Basillisk - sandbox/M1EMN/Exemples/column_SCC.c - Mozilla Firefox					× ×
Basilisk - sandbox/M1EMN/F	Basilisk - sandbox/M1EMN/E × +					
(←) → ♂ ↔	basilisk.dalembert.upmc.tr/sandbox/M1EMN/Exemples/column_SCC.c	T (110	os) (9 0	lii\ Œ	=
() / C II				и	iii d	-
	Collapse of a Bingham flow					
	Physcical problem					
	application to mud flows: slump, application to wet concrete flow: collapse of columns (Abrahams cone test).					
	equations					
	We propose an implementation of the Bingham rheology. For those flows, when stress is larger than a yield value, the media flows. For non Newtonian fluids, the "viscosity" is at least a function of tensor that we define here as (other definitions proportional to this one are possible):	he second p	orincipal inva	riant of the shear strain r	ate	
	$D_2 = \sqrt{\sum_{i,j} D_{ij} D_{ij}}$					
	In littérature two norms are used, the Euclidian:					
	$ D =\sqrt{rac{1}{2}\sum_{i:i}D_{ij}D_{ij}}$					
	and the Frobenius one:					
	$ D = \sqrt{\sum_{i,j} D_{ij} D_{ij}}$					
	Obviously					
	$ D = \sqrt{\frac{1}{2}} D = \frac{D_2}{\sqrt{2}}$					
	The strain rate tensor is $D_{ij}=(\partial_i u_j+\partial_j u_i)/2$, it has unit of s^{-1} , the components in 2D:					
	$D_{11} = \frac{\partial u}{\partial x}, D_{12} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), D_{21} = D_{12} = \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right), D_{22} = \frac{\partial v}{\partial y}$					
	And where the second invariant is $D_2 = \sqrt{D_{ij}D_{ij}}$					
	$D_2^2 = D_{ij}D_{ij} = D_{11}D_{11} + D_{12}D_{21} + D_{21}D_{12} + D_{22}D_{22}$					
	hence, as $D_{12}D_{21}=D_{21}D_{12}$: $D_2^2=D_{ij}D_{ij}=(\frac{\partial u}{\partial x})^2+(\frac{\partial v}{\partial u})^2+\frac{1}{2}(\frac{\partial u}{\partial u}+\frac{\partial v}{\partial x})^2$					
	We have by definition of the Bingham rheology					
	$ au_{ij} = 2\mu_1 D_{ij} + au_y rac{D_{ij}}{\ D\ }$					
	(hence if $ \tau_{ij} > \tau_g$ there is a flow). In order to identify this as an effective viscosity, $s(i) = 2$ (off) D_{ij} s ,					
	$ au_{ij}=2\mu D_{ij}+ au_{\mathbb{F}}rac{D}{\ D\ }=2(\mu+rac{ au_y}{2\ D\ })D_{ij}$					
	then the equivalent, or effective, of apparent viscosity is with $D_2=\sqrt{2}\ D\ $					
	$\mu_{eq} = \mu_1 + rac{ au_y}{\sqrt{2}D_2}$					
	$\sqrt{2}D_2$					

Non-dimensional Parameter	Range
Oh	0.1-10
PI	0-0.9
L_0 / h	10

Grid cell size =
$$10^{-3} \times h$$

Optimization of infinite viscosity:

$$Oh = 1.0, Pl = 0.5$$

$$\mu_{\text{max}} = 10^5 \times \eta_c$$

Oh = 0.1

Momentum balance

$$-\frac{d}{dt}\left(2\rho h(L_0 - x_m(t))\frac{d}{dt}(x_m(t))\right) = 2\sigma$$

Assumption:

Mass of the blob = $2\rho h(L_0 - x_m(t))$

$$u_{tip}(t) = -\frac{dx_m(t)}{dt} - \frac{dR(t)}{dt}$$

$$\overline{u}_{tip}(\overline{t}) = \left(1 - \frac{1}{2\sqrt{\pi}} \left((\overline{L}_0 - \overline{x}_m(0))^2 + \overline{t}^2 \right)^{-1/4} \right) \frac{\overline{t}}{\sqrt{(\overline{L}_0 - \overline{x}_m(0))^2 + \overline{t}^2}} \dots (16)$$

$$Oh = 1$$
, $Pl = 0.1$

$$Oh = 1$$
, $Pl = 0.1$

$$Oh = 1$$
, $Pl = 0.5$

$$Oh = 1$$
, $Pl = 0.5$

$$Oh = 10$$

$$\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} = 0$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial t} = \frac{4\nu}{h} \frac{\partial}{\partial x} \left(h \frac{\partial u}{\partial x} \right) - \frac{\sigma}{\rho} \frac{\partial \kappa}{\partial x}$$

$$-\frac{\partial L}{U_v \partial t} = \frac{4(L_0/W_0 - 1) + \pi}{(t/t_v - 4)^2} - \frac{1}{4} \left(1 - \frac{\pi}{4}\right)$$

$$Oh = 10$$
, $Pl = 0.5$

$$Oh = 10$$
, $Pl = 0.5$

$$\tau_y h / \sigma < 1$$

$$\tau_y h / \sigma = Oh \times Pl < 1$$

Acknowledgement

✓ I acknowledge the financial support of IFPEN.

THANK YOU