Линейная алгебра и геометрия

Slava Boben

September 9, 2019

Содержание

1	Лекция 1			
	1.1	Общая	я информация	2
		1.1.1	Контакты	2
		1.1.2	О дисциплине	2
		1.1.3	Оценка	2
		1.1.4	Содержание курса	2
	1.2		ицы	
			Операции над матрицами	
			\mathbb{R}^n	
		1.2.3	Транспонирование	
		1.2.4	Умножение матриц	4

1 Лекция 1

1.1 Общая информация

1.1.1 Контакты

Авдеев Роман Сергеевич

- suselr@yandex.ru
- ravdeev@hse.ru

1.1.2 О дисциплине

1 - 4 модули

Письменный экзамен: 2, 4 модули

1.1.3 Оценка

- 1. Экзамен
- 2. Коллоквиум
- 3. Контрольная работа
- 4. Больше ДЗ
- 5. Работа на семинарах
- 6. Бонус Задачи из листков

$$O_{\rm Итог} = \min(10, {\rm Округлениe}(0.4*O_{\rm Эк3} + 0.22*O_{\rm Колл} + 0.16*O_{\rm KP} + 0.16*O_{\rm Д3} + 0.08*O_{\rm Cem} + 0.08*O_{\rm Л}), 10)$$

$$O$$
кругление $(x) = [x]$

1.1.4 Содержание курса

- 1. Начало алгебры 9 10 занятий
 - Матрицы
 - Системы линейных уравнений
 - Определители
 - Комплексные числа
- 2. Собственно линейная алгебра
 - Вектороное пространство

1.2 Матрицы

Определение 1. Матрица размера $n \times m$ — это прямоугольная таблица высоты m и ширины n

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

 $a_i j$ – элемент на пересечении і-й строки и ј-го столбца

Краткая запись – $A = (a_{ij})$

Множество всех матриц размера $m \times n$ с коэффициентами из \mathbb{R} (множество всех действительных чисел) — $\mathrm{Mat}_{n*m}(\mathbb{R})$ или Mat_{n*m}

Определение 2. Две матрицы $A \in \mathrm{Mat}_{n \times m}$ и $B \in \mathrm{Mat}_{p \times q}$ называются *равными*, если m = p, n = q, и соответствующие элементы равны

2

Пример.
$$\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \end{pmatrix} \neq \begin{pmatrix} \circ & \circ \\ \circ & \circ \\ \circ & \circ \end{pmatrix}$$

Операции над матрицами

 $A, B \in \mathrm{Mat}_{m*n}$

- $Cymma\ A + B := (a_{ij} + b_{ij})$
- Произведение на скаляр $\alpha \in \mathbb{R} \implies \lambda A := (\lambda a_{ij})$

Свойства суммы и произведения на скаляр

 $\forall A, B, C \in \operatorname{Mat}_{m*n} \forall \lambda, \mu \in \mathbb{R}$

- (1) A + B = B + A (коммутативность)
- (2) (A + B) + C = A + (B + C) (ассоциативность)
- (3) A + 0 = 0 + A = A, где 0 =
- (4) A + (-A) = 0

-A — Противоположная матрица

- (5) $(\lambda + \mu)A = \lambda A + \mu A$
- (6) $\lambda(A+B) = \lambda A + \lambda B$
- (7) $\lambda(\mu A) = \lambda \mu A$
- (8) 1A = A

Упраженение. Доказать эти свойства

Примечание. Из свойств (1)-(8) следует, что $\mathrm{Mat}_{n*m}(\mathbb{R})$ является векторным пространством над \mathbb{R}

1.2.2 \mathbb{R}^n

$$\mathbb{R}^n:=\{(x_1,\ldots,x_n)\mid x_i\in\mathbb{R}\ \forall i=1,\ldots,n\}$$
 $\mathbb{R}^1=\mathbb{R}$ — числовая прямая

$$\mathbb{R}^1 = \mathbb{R}$$
 — числовая прямая

 \mathbb{R}^2 – плоскость

$$\mathbb{R}^3$$
 — трехмерное пространство

Договоримся отождествлять \mathbb{R}^n со столбцами высоты n

$$(x_1,\ldots,x_n)\leftrightarrow \left(egin{array}{c} x_1\ dots\ x_n \end{array}
ight)$$
 — "вектор столбец"

$$\mathbb{R}^n \leftrightarrow \mathrm{Mat}_{n*m}(\mathbb{R})$$

$$\begin{bmatrix} x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathbb{R}^n \end{bmatrix} \implies [x = y \iff x_i = y_i \forall i]$$

$$x + y := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$x + y := \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

$$\lambda \in \mathbb{R} \implies \lambda x_i := (\lambda x_1, \dots)$$

1.2.3Транспонирование

$$A \in \operatorname{Mat}_{m*n} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \rightsquigarrow A^T \in \operatorname{Mat}_{n*m} := \begin{pmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{pmatrix}$$

3

 A^T — Транспонированная матрип

Свойства:

(1)
$$(\Delta^T)^T = \Delta$$

$$\begin{array}{ll} (1) \ \ (A^T)^T = A \\ (2) \ \ (A+B)^T = A^T + B^T \end{array}$$

(3)
$$(\lambda A)^T = \lambda A^T$$

Пример.
$$\begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}^T = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}^T = \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}$$

1.2.4 Умножение матриц

$$A = (a_{ij})$$

$$A_{(i)}$$
 – i -я строка матрицы A

$$A_{(i)}-i$$
-я строка матрицы A $A^{(j)}-j$ -й столбец матрицы A

(1) Частный случай: Произведение строки на столбец одинаковой длинны

$$\underbrace{(x_1,\ldots,x_n)}_{1\times n}\underbrace{\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}}_{n\times 1} = x_1*y_1+\cdots+x_n*y_n$$

(2) A - матрица размера m * n

$$B$$
 - матрица размера $n * p$

Кол-во строк матрицы A равно кол-ву столбцов матрицы B — условие согласованности матриц $AB := C \in \mathrm{Mat}_{m*p}$, где $C_{ij} = A_{(i)}B^{(j)}$

Пример.
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \begin{pmatrix} x_1 & \dots & x_n \end{pmatrix} := \begin{pmatrix} x_1y_1 & x_2y_1 & \dots & x_ny_1 \\ x_1y_2 & x_2y_2 & \dots & x_ny_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1y_n & x_2y_m & \dots & x_ny_m \end{pmatrix}$$

Пример.
$$\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \end{pmatrix} \times \begin{pmatrix} 2 & -1 \\ 0 & 5 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1*2+0*0+2*1 & 1*(-1)+0*5+2*1 \\ 0*2+(-1)*0+3*1 & 0*(-1)+(-1)*5+3*1 \end{pmatrix} = \begin{pmatrix} 4 & 1 \\ 3 & -2 \end{pmatrix}$$