

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística

Plano de Ensino

1) Identificação

Disciplina: INE5202 - Cálculo Numérico em Computadores

Turma(s): 03211

Carga horária: 72 horas-aula Teóricas: 36 Práticas: 36

Período: 2º semestre de 2018

2) Cursos

- Engenharia Eletrônica (235)

- Engenharia, área Civil, habilitação Engenharia Civil (201)
- Engenharia, área Civil, habilitação Engenharia de Produção Civil (212)
- Engenharia, área Civil, Habilitação Engenharia Sanitária e Ambiental (211)
- Engenharia, área Eletricidade, habilitação Engenharia de Produção Elétrica (213)
- Engenharia, área Eletricidade, habilitação Engenharia Elétrica (202)
- Engenharia, área Mecânica, habilitação Engenharia de Produção Mecânica (214)
- Engenharia, área Mecânica, habilitação Engenharia Mecânica (203)
- Engenharia, área Química, habilitação Engenharia de Alimentos (215)
- Engenharia, área Química, habilitação Engenharia Química (216)
- Física Licenciatura (225)

3) Requisitos

- Engenharia Eletrônica (235)
 - INE5201 Introdução à Ciência da Computação
 - MTM3102 Cálculo 2
 - MTM3112 Álgebra Linear
- Engenharia, área Civil, habilitação Engenharia Civil (201)
 - INE5201 Introdução à Ciência da Computação
 - MTM3103 Cálculo 3
 - MTM5163 Cálculo C
- Engenharia, área Civil, habilitação Engenharia de Produção Civil (212) (currículo: 19911)
 - EPS7001 Informática para Engenharia de Produção
 - MTM5161 Cálculo A
- Engenharia, área Civil, habilitação Engenharia de Produção Civil (212) (currículo: 20071)
 - EPS7001 Informática para Engenharia de Produção
- Engenharia, área Civil, Habilitação Engenharia Sanitária e Ambiental (211) (currículo: 19911)
 - INE5201 Introdução à Ciência da Computação
 - MTM5162 Cálculo B
 - MTM5245 Álgebra Linear
- Engenharia, área Civil, Habilitação Engenharia Sanitária e Ambiental (211) (currículo: 20151)
 - INE5201 Introdução à Ciência da Computação
 - INE5201 Introdução à Ciência da Computação
 - MTM3102 Cálculo 2
 - MTM5162 Cálculo B
 - MTM5245 Álgebra Linear
 - MTM5245 Álgebra Linear
- Engenharia, área Eletricidade, habilitação Engenharia de Produção Elétrica (213) (currículo: 19911)
 - EPS7001 Informática para Engenharia de Produção
 - MTM5161 Cálculo A
- Engenharia, área Eletricidade, habilitação Engenharia de Produção Elétrica (213) (currículo: 20071)
 - EPS7001 Informática para Engenharia de Produção
- Engenharia, área Eletricidade, habilitação Engenharia Elétrica (202)
 - INE5201 Introdução à Ciência da Computação
 - MTM3102 Cálculo 2
 - MTM3112 Álgebra Linear
- Engenharia, área Mecânica, habilitação Engenharia de Produção Mecânica (214) (currículo: 19911)
 - EPS7001 Informática para Engenharia de Produção

- MTM5161 Cálculo A
- Engenharia, área Mecânica, habilitação Engenharia de Produção Mecânica (214) (currículo: 20071)
 - EPS7001 Informática para Engenharia de Produção
- Engenharia, área Mecânica, habilitação Engenharia Mecânica (203) (currículo: 19911)
 - INE5201 Introdução à Ciência da Computação
 - MTM5161 Cálculo A
- Engenharia, área Mecânica, habilitação Engenharia Mecânica (203) (currículo: 20061)
 - INE5201 Introdução à Ciência da Computação
 - INE5231 Computação Científica I
- Engenharia, área Química, habilitação Engenharia de Alimentos (215)
 - INE5201 Introdução à Ciência da Computação
 - INE5201 Introdução à Ciência da Computação
 - MTM3103 Cálculo 3
 - MTM5163 Cálculo C
- Engenharia, área Química, habilitação Engenharia Química (216)
 - INE5201 Introdução à Ciência da Computação
 - INE5201 Introdução à Ciência da Computação
 - MTM5103 Calculo Diferencial e Integral
 - MTM5163 Cálculo C
- Física Licenciatura (225)
 - FSC7114 Introdução à Fisica Computacional
 - MTM5117 Calculo III

4) Ementa

Erros e Sistemas de Numeração. Solução de equações algébricas e transcendentais. Solução de equações polinomiais. Sistemas de equações lineares e não lineares. Interpolação Ajustamento de curvas. Integração numérica. Solução numérica de equações diferenciais ordinárias e sistemas de equações diferenciais.

5) Objetivos

Geral: Tornar o aluno apto a utilizar recursos computacionais na solução de problemas que envolvam métodos numéricos. Complementar a formação do profissional de engenharia na área de matemática aplicada. Fornecer ferramentas numéricas para obtenção de soluções aproximadas de problemas de cálculo de engenharia que não apresentam soluções exatas conhecidas.

Específicos:

- Identificar os erros que afetam os resultados numéricos fornecidos por máquinas digitais.
- Resolver equações não lineares por métodos numéricos iterativos.
- Conhecer as propriedades básicas dos polinômios e determinar as raízes das equações polinomiais.
- Resolver sistemas de equações lineares por métodos diretos e iterativos.
- Resolver sistemas não lineares por métodos iterativos.
- Conhecer e usar o método dos mínimos quadrados para o ajuste polinomial e não polinomial.
- Conhecer e utilizar a técnica de interpolação polinomial para a aproximação de funções.
- Efetuar integração por meio de métodos numéricos.
- Resolver equações e sistemas de equações diferenciais ordinárias através de métodos numéricos.
- Elaborar algoritmos correspondentes a todos os métodos numéricos abordados e implementá-los em computador.

6) Conteúdo Programático

- 6.1) PARTE 1: Introdução [8 horas-aula]
 - Geração de sistemas de numeração.
 - Conversões entre sistemas.
 - Representação em ponto flutuante.
 - Tipos, causas e consequências de erros.
- 6.2) PARTE 2: Equações Algébricas e Transcendentes [10 horas-aula]
 - Localização de raízes de f(x)=0.
 - Métodos de partição: Bissecção e Falsa-Posição.
 - Métodos iterativos: Newton e Secante.
 - Resolução de Equações Polinomiais.
 - Propriedades de polinômios: Existência, Localização e Multiplicidade de raízes.
 - Métodos de Birge-Vieta e Müller.
- 6.3) PARTE 3: Sistemas Lineares [10 horas-aula]
 - Resolução de Sistemas Lineares (Aspectos Computacionais).
 - Métodos Diretos: Eliminação Gaussiana e Decomposição LU.

- Métodos iterativos: Jacobi, Gauss-Seidel, Sobre e Sub-relaxação.
- 6.4) PARTE 4: Sistemas Não Lineares [10 horas-aula]
 - Resolução de sistemas não lineares: Método de Newton e Quasi-Newton.
- 6.5) PARTE 5: Ajustamento de Curvas [8 horas-aula]
 - Ajuste de curvas pelo método dos Mínimos Quadrados (funções polinomiais e não polinomiais).
- 6.6) PARTE 6: Interpolação Polinomial [8 horas-aula]
 - Existência e unicidade do polinômio interpolador.
 - Interpolação pelos métodos de Lagrange, Newton e Spline Cúbica.
- 6.7) PARTE 7: Integração Numérica [8 horas-aula]
 - Integração numérica. Métodos de Newton-Côtes e Gauss-Legendre.
- 6.8) PARTE 8: Equações Diferenciais [10 horas-aula]
 - Resolução numérica de equações e sistemas de equações diferenciais ordinárias. Métodos baseados em série de Taylor: Euler e Runge-Kutta.

7) Metodologia

O conteúdo é ministrado através de aulas expositivas, nas quais os métodos numéricos listados no programa da disciplina são discutidos e ilustrados com exemplos como fundamentos para construção dos algoritmos. Assim, estimula-se à participação dos alunos na utilização de recursos didáticos e computacionais para a construção dos algoritmos e a sua implementação em uma linguagem de programação. O material de apoio será postado no Moodle e os algoritmos correspondentes aos métodos numéricos serão implementados durante as aulas, com o auxílio do software Matlab ou com softwares livres como Octave, FreeMat, Scilab. Uma lista de exercícios é proposta como complemento a cada tópico apresentado. Assume-se que, semanalmente, os alunos do curso dedicarão um número de horas no mínimo igual à carga horária semanal da disciplina para revisar o material visto em aula, estudar os tópicos indicados e resolver os exercícios e trabalhos propostos. Em caso de dúvidas sobre o conteúdo da disciplina, os alunos do curso poderão recorrer a atendimento extra classe, em horários fixados pelo professor no Moodle.

8) Avaliação

A verificação do rendimento escolar compreenderá frequência e aproveitamento nos estudos, os quais deverão ser atingidos conjuntamente. Será obrigatória a frequência às atividades correspondentes a cada disciplina, no mínimo a 75% das mesmas (Frequência Suficiente - FS), ficando reprovado o aluno com mais de 25% de faltas (Frequência Insuficiente - FI).

Serão realizadas 03(três) provas escritas:

· Prova Escrita 1 : P1 · Prova Escrita 2 : P2

· Prova Escrita 3: P3

compondo uma média das Provas (MP), calculada da seguinte forma: MP=(P1+P2+P3)/3

Serão realizados até 03 trabalhos compondo uma média (aritmética simples) de trabalhos: MT

A média final (MF) será calculada da seguinte forma: MF=0.9*MP+0.1*MT

OBSERVAÇÃO: O aluno, que por motivo de força maior e plenamente justificado conforme Art. 74, faltar alguma das avaliações deverá em até 72 horas (três dias úteis) após a data da realização da avaliação, requerer junto à secretaria do INE a realização de uma avaliação de "reposição", sendo que estas avaliações de reposição serão realizadas, no final do semestre, em um mesmo dia.

A avaliação de recuperação (REC), quando aplicável, será efetuada por uma única prova englobando todo o conteúdo da disciplina. As notas dos trabalhos não são passiveis de recuperação.

A nota mínima para aprovação na disciplina será MF>=6,0 (seis) e Frequência Suficiente (FS). (Art. 69 e 72 da Res. nº 17/CUn/1997).

Conforme parágrafo 2º do artigo 70 da Resolução 17/CUn/97, o aluno com frequência suficiente (FS) e média final no período (**MF**) entre 3,0 e 5,5 terá direito a uma nova avaliação ao final do semestre (**REC**), sendo a nota final (**NF**) calculada conforme parágrafo 3º do artigo 71 desta resolução, ou seja: **NF** = (**MF** + **REC**) / 2.

9) Cronograma

As provas escritas serão realizadas nas seguintes datas:

- · Prova Escrita 1: P1 06/09/2018
- · Prova Escrita 2: P2 11/10/2018
- · Prova Escrita 3: P3 21/11/2018

Os trabalhos serão aplicados ao longo do semestre.

Data para prova de reposição: 29/11/2018.

A prova de REC será realizada na semana de 03 a 05/12/2018.

10) Bibliografia Básica

- RUGGIERO, M. e LOPES, V., Cálculo Numérico: Aspectos Teóricos e Computacionais. McGraw-Hill, 1996. (Há 51 exemplares)
- CLÁUDIO, D. M. e MARINS, J. M., Cálculo Numérico Computacional Teoria e Prática. São Paulo : Atlas, 1989. (Há 53 exemplares)
- CHENEY, W. and KINCAID, D., Numerical Mathematics and Computing, Brooks/Cole Publishing Company, 1994. (Há 5 exemplares)
- FAIRES, J.D. and BURDEN, R. L., Numerical Methods, PWS Publishing Company, 1993. (Há 2 exemplares)

11) Bibliografia Complementar

- CONTE, S. D., Elementos de Análise Numérica. São Paulo : Globo:1977. (Há 7 exemplares)
- PRESS, W.H., et al., Numerical Recipes in C The Art of Scientific Computing, Cambridge Press, 2nd ed., 1992. (Há 1 exemplar)