TABEL DE NTEGRALE NEDEFINITE

Nr. Crt.	FUNCTIA	INTEGRALA NEDEFINITA
1.	$f: \mathbb{R} \to \mathbb{R}, f(x) = x^n, n \in \mathbb{N}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c$
2.	$f: I \to \mathbb{R}, f(x) = x^a, a \in \mathbb{R} \setminus \{-1\}, I \subset (0, \infty)$	$\int x^a dx = \frac{x^{a+1}}{a+1} + c$
3.	$f: I \to \mathbb{R}, f(x) = \frac{1}{x}, I \subset (0, \infty)$	$\int \frac{1}{x} dx = \ln x + c$
4.	$f: \mathbb{R} \to \mathbb{R}, f(x) = a^x, a > 0, a \neq 1$	$\int a^x dx = \frac{a^x}{\ln a} + c$
5.	$f: \mathbb{R} \to \mathbb{R}, f(x) = e^x$	$\int e^x dx = e^x + c$
6.	$f: I \to \mathbb{R}, I \subset \mathbb{R} \setminus \{\pm a\}, f(x) = \frac{1}{x^2 - a^2}$	$\int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + c$
7.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{x^2 + a^2}, a \neq 0$	$\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c$
8.	$f: I \to \mathbb{R}, I \subset (-a, a), a \neq 0, f(x) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c$
9.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{\sqrt{x^2 + a^2}}, a \neq 0$	$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2}) + c$
10.	$f: I \to \mathbb{R}, I \subset (-\infty, -a), I \subset (a, \infty), a > 0$ $f(x) = \frac{1}{\sqrt{x^2 - a^2}}$	$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left x + \sqrt{x^2 - a^2} \right + c$
11.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \sin x$	$\int \sin x dx = -\cos x + c$
12.	$f: \mathbb{R} \to \mathbb{R}, f(x) = \cos x$	$\int \cos x dx = \sin x + c$
13.	$f: I \to \mathbb{R}, I \subset \mathbb{R} \setminus \{(2k+1)\frac{\pi}{2}; k \in \mathbb{Z}\}$	$\int \frac{1}{\cos^2 x} dx = tgx + c$
	$f(x) = \frac{1}{\cos^2 x}$	
14.	$f: I \to \mathbb{R}, I \subset \mathbb{R} \setminus \{(k\pi; k \in \mathbb{Z})\}$	$\int \frac{1}{\sin^2 x} dx = -ctgx + c$
	$f(x) = \frac{1}{\sin^2 x}$	$\int \sin^2 x$
15.	$f: I \to \mathbb{R}, I \subset \mathbb{R} \setminus \{((2k+1)\frac{\pi}{2}; k \in \mathbb{Z})\}$	$\int tgxdx = -\ln\left \cos x\right + c$
16.	$f(x) = tgx$ $f: I \to \mathbb{R}, I \subset \mathbb{R} \setminus \{(k\pi; k \in \mathbb{Z})\}$	Catanda Inlain al La
10.	f(x) = ctgx	$\int ctgxdx = \ln\left \sin x\right + c$
	1	1