Question number	Scheme	Marks	
10 (a)	$f\left(\frac{3}{4}\right) = 16\left(\frac{3}{4}\right)^3 + 11\left(\frac{3}{4}\right) - 15$	M1	
	$\left(\frac{27}{4} + \frac{33}{4} - 15\right) = 0$	A1cso [2]	
(b)(i)	$[\sin 2\theta - \sin(\theta + \theta)] = \sin \theta \cos \theta + \sin \theta \cos \theta$	M1	
	$(\sin 2\theta =) 2\sin \theta \cos \theta \qquad *$	A1cso [2]	
(b)(ii)	$[\cos 2\theta - \cos(\theta + \theta)] = \cos \theta \cos \theta - \sin \theta \sin \theta = \cos^2 \theta - \sin^2 \theta$	M1	
	$=\cos^2\theta - (1-\cos^2\theta) = 2\cos^2\theta - 1 *$	M1 A1cso [3]	
(c)	$27\cos\theta(2\cos^2\theta - 1) + 19\sin\theta(2\sin\theta\cos\theta) - 15(=0)$	M1	
	$54\cos^{3}\theta - 27\cos\theta + 38(1-\cos^{2}\theta)\cos\theta - 15(=0)$	M1	
	$54\cos^{3}\theta - 27\cos\theta + 38\cos\theta - 38\cos^{3}\theta - 15(=0)$ $(16\cos^{3}\theta + 11\cos\theta - 15 = 0) \text{ oe}$	A1	
	(When $x = \cos \theta$) $16x^3 + 11x - 15 = 0$ *	A1cso [4]	
(d)	$(16x^3 + 11x - 15 = 0 \Rightarrow (4x - 3)(4x^2 + 3x + 5) = 0) \rightarrow 4x^2 + 3x + 5$	M1	
	$b^2 - 4ac = 9 - 80 < 0 $ (So no real roots)	M1 A1	
	(Only solution is) $4x-3=0$ or $4\cos\theta-3=0$ so $\cos\theta=\frac{3}{4}$	A1cso [4]	
Total 15 marks			

Part	Marks	Notes	
(a)	M1	For $f\left(\frac{3}{4}\right) = 16\left(\frac{3}{4}\right)^3 + 11\left(\frac{3}{4}\right) - 15$	
	A1*cso	For a fully correct solution, with = 0 stated, with no errors seen	
(b)(i)	M1	For sight of $\sin \theta \cos \theta + \sin \theta \cos \theta$	
	A1*cso	For obtaining the given expression, with no errors seen	
(b)(ii)	M1	For $\cos\theta\cos\theta - \sin\theta\sin\theta = \cos^2\theta - \sin^2\theta$	
	M1	For correctly using $\sin^2 \theta = 1 - \cos^2 \theta$	
	A1*cso	For obtaining the given expression with no errors seen	
(c)	M1	For correctly substituting $\sin 2\theta = 2\sin\theta\cos\theta$ and $\cos 2\theta = 2\cos^2\theta - 1$	
	M1	For expanding the first set of brackets (allow one error only in expansion) and correct use of $\sin^2 \theta = 1 - \cos^2 \theta$,	
	A1	$54\cos^3\theta - 27\cos\theta + 38\cos\theta - 38\cos^3\theta - 15 = 0$ oe all brackets expanded	
	A1*cso	For obtaining the given equation	
(d)	M1	For any valid, complete method to find the quadratic factor which must be of the form $4x^2 + ax \pm 5$	
	M1	For use of the discriminant from their quadratic factor	
	A1	For $b^2 - 4ac = 9 - 80 < 0$	

Question number	Scheme	Marks
11 (a)(i)	(a=)-8	B1 [1]
(a)(ii)	$e^{2x} = 9 \Rightarrow 2x = \ln 9$	M1
	$x = \frac{1}{2} \ln 9 = \ln 3$ *	A1cso [2]
ALT	$e^{2x} = 9 \Longrightarrow \left[\left(e^x \right)^2 = 3^2 \right] \Longrightarrow e^x = 3$	M1
	$x = \ln 3$ *	Alcso
(b)	$\pi \int_0^{\ln 3} \left(e^{2x} - 9 \right)^2 dx$	M1
	$\pi \int_0^{\ln 3} \left(e^{4x} - 18e^{2x} + 81 \right) dx$	A1
	$(\pi) \left[\frac{1}{4} e^{4x} - 9e^{2x} + 81x \right]_{(0)}^{("\ln 3")}$ oe	M1 A1ft
	$\left(\pi\right)\left[\left(\frac{81}{4}-81+81\ln 3\right)-\left(\frac{1}{4}-9\right)\right]$	M1
	$\pi(81 \ln 3 - 52)$	A1
		[6] Fotal 9 marks
	A1*cso For a fully correct solution.	2 Over > mumals

Part	Mark	Notes
(a)(i)	B1	For $(a=)-8$
(a)(ii)	M1	For substituting y = 0 and rearranging to $2x = \ln 9$ or $x = \frac{1}{2} \ln 9$
	A1*cso	For a fully correct solution with no errors – must see $x = \frac{1}{2} \ln 9 or 2x = 2 \ln 3$
ALT	M1	For substituting $y = 0$ and manipulating to give $e^x = 3$
	A1*cso	For a fully correct solution with no errors
(b)	M1	For $\pi \int_0^{\ln 3} (e^{2x} - 9)^2 dx$
	A1	For $\pi \int_0^{\ln 3} (e^{4x} - 18e^{2x} + 81) dx$ oe. If π seen for first M1, can be omitted.
	M1	For minimally acceptable attempt to integrate two terms of their expression (at least one term integrated correctly). π and limits can be omitted.
	A1ft	For $\frac{1}{4}e^{4x} - 9e^{2x} + 81x$ Ft their expression of the form $e^{4x} + ce^{2x} + d$ π and limits can be omitted
	M1	For correct substitution of 0 and their b into a changed expression. The substitution must be fully shown for this mark. π can be omitted. This mark can be implied by a correct final answer.
	A1	For obtaining the correct expression

 π must only be present for the final A1 mark and the first M1 mark (can be implied by first or final A1)