CS-AD 220 – Spring 2016

Natural Language Processing

Session 17: 2-Apr-16

Prof. Nizar Habash

NYUAD Course CS-AD 220 – Spring 2016 Natural Language Processing Assignment #3: POS Tagging and Parsing Assigned Mar 31, 2016 / Due Apr 17, 2016 (11:59pm)

I. Grading & Submission

This assignment is about the development of a dependency parser and a part-of-speech (POS) tagger for English. The assignment accounts for 15% of the full grade. It consists of five exercises. **There is also a bonus exercise that can count for up to 5% of the full grade**. The additional exercise consists of a parsing competition on an unseen test set. Participation earns 2%. The first, second and third ranked systems earn additional 3%, 2% and 1%, respectively.

Assignment #3 posted on NYU Classes

START EARLY!

DEADLINE PUSHED FORWARD TO APR 17

Moving Legislative Day Class

- Spring Break is March 18 25, 2016
- Sat March 26, 2016 is a Legislative Thursday
- Move to

Today, Now, Here

Treebanks

- Treebanks are corpora in which each sentence has been paired with a parse tree (presumably the right one).
- These are generally created
 - By first parsing the collection with an automatic parser
 - And then having human annotators correct each parse as necessary.
 - How to check for quality? Inter-annotator Agreement (IAA)
- This generally requires detailed annotation guidelines that provide a POS tagset, a grammar and instructions for how to deal with particular grammatical constructions.

Penn Treebank

Penn TreeBank is a widely used treebank.

- •Most well known is the Wall Street Journal section of the Penn TreeBank.
 - ■1 M words from the 1987-1989 Wall Street Journal.

```
( (S ('' '')
    (S-TPC-2
      (NP-SBJ-1 (PRP We) )
      (VP (MD would)
        (VP (VB have)
          (S
            (NP-SBJ (-NONE- *-1))
            (VP (TO to)
              (VP (VB wait)
                (SBAR-TMP (IN until)
                    (NP-SBJ (PRP we) )
                    (VP (VBP have)
                       (VP (VBN collected)
                         (PP-CLR (IN on)
                           (NP (DT those)(NNS assets))))))))))))))
    (, ,) (''')
    (NP-SBJ (PRP he) )
    (VP (VBD said)
      (S (-NONE - *T*-2))
    (. .) ))
```

Treebank Grammars

- Treebanks implicitly define a grammar for the language covered in the treebank.
- Simply take the local rules that make up the sub-trees in all the trees in the collection and you have a grammar.
- Not complete, but if you have decent size corpus, you'll have a grammar with decent coverage.

Treebank Grammars

 Such grammars tend to be very flat due to the fact that they tend to avoid recursion.

 For example, the Penn Treebank has 4500 different rules for VPs. Among them...

```
egin{array}{llll} \mbox{VP} & 
ightarrow \mbox{VBD} & \mbox{PP} & \mbox{PP} \\ \mbox{VP} & 
ightarrow \mbox{VBD} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{VP} & 
ightarrow \mbox{VBD} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} \\ \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP} & \mbox{PP}
```

Heads in Trees

- Finding heads in treebank trees is a task that arises frequently in many applications.
 - Particularly important in statistical parsing
- We can visualize this task by annotating the nodes of a parse tree with the heads of each corresponding node.

Lexically Decorated Tree

Head Finding

- The standard way to do head finding is to use a simple set of tree traversal rules specific to each non-terminal in the grammar.
 - aka head-percolation rules

Noun Phrases

Treebank Uses

 Treebanks (and headfinding) are particularly critical to the development of statistical parsers

- Also valuable to Corpus Linguistics
 - Investigating the empirical details of various constructions in a given language

Types of Syntactic Analyses

- Phrase Structure Parsing
 - aka constituency parsing
- Dependency Parsing
- Chunking
 - Base-phrase chunking

Syntactic Analysis

- Famous example of how a sentence can be grammatical but its semantics nonsensical.
 - From "Syntactic Structures" (Chomsky, 1957)

Syntactic Parsing

• Produce the correct syntactic parse tree for a sentence.

I ate the spagnetti with chopsticks. I ate the spagnetti with meatballs.

Syntactic Parsing

• Produce the correct syntactic parse tree for a sentence.

Simple CFG for ATIS* English

Grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $S \rightarrow VP$

NP → **Pronoun**

NP → **Proper-Noun**

 $NP \rightarrow Det Nominal$

Nominal → **Noun**

Nominal → **Nominal Noun**

Nominal → **Nominal PP**

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Lexicon

Det \rightarrow the | a | that | this

Noun → book | flight | meal | money

Verb \rightarrow **book** | **include** | **prefer**

Pronoun \rightarrow I | he | she | me

Proper-Noun → **Houston** | **NWA**

 $Aux \rightarrow does$

Prep \rightarrow from | to | on | near | through

Parsing

- Given a string of terminals and a CFG, determine if the string can be generated by the CFG.
 - Also return a parse tree for the string
 - Also return all possible parse trees for the string
- Must search space of derivations for one that derives the given string.
 - Top-Down Parsing: Start searching space of derivations for the start symbol.
 - Bottom-up Parsing: Start search space of reverse deivations from the terminal symbols in the string.

Parsing Example

book that flight

Top Down vs. Bottom Up

- Top down never explores options that will not lead to a full parse, but can explore many options that never connect to the actual sentence.
- Bottom up never explores options that do not connect to the actual sentence but can explore options that can never lead to a full parse.
- Relative amounts of wasted search depend on how much the grammar branches in each direction.

Dynamic Programming Parsing

- To avoid extensive repeated work, must cache intermediate results, i.e. completed phrases.
- Caching (memoizing) critical to obtaining a polynomial time parsing (recognition) algorithm for CFGs.
- Dynamic programming algorithms based on both top-down and bottom-up search can achieve $O(n^3)$ recognition time where n is the length of the input string.

Dynamic Programming Parsing Methods

- **CKY** (Cocke-Kasami-Younger) algorithm based on bottom-up parsing and requires first normalizing the grammar.
- Earley parser is based on top-down parsing and does not require normalizing grammar but is more complex.
- More generally, **chart parsers** retain completed phrases in a chart and can combine top-down and bottom-up search.

CKY

- First, the grammar must be converted to Chomsky normal form (CNF) in which productions must have either exactly 2 nonterminal symbols on the RHS or 1 terminal symbol (lexicon rules).
- Parse bottom-up storing phrases formed from all substrings in a triangular table (chart).

ATIS English Grammar Conversion

Original Grammar

$S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

$S \rightarrow VP$

Lexicon

 $\begin{array}{l} Det \rightarrow the \mid a \mid that \mid this \\ Noun \rightarrow book \mid flight \mid meal \mid money \\ Verb \rightarrow book \mid include \mid prefer \\ Pronoun \rightarrow I \mid he \mid she \mid me \\ Proper-Noun \rightarrow Houston \mid NWA \\ Aux \rightarrow does \\ Prep \rightarrow from \mid to \mid on \mid near \mid \\ through \end{array}$

NP → **Pronoun**

NP → **Proper-Noun**

 $NP \rightarrow Det Nominal$

Nominal → **Noun**

Nominal → **Nominal Noun**

Nominal → **Nominal PP**

 $VP \rightarrow Verb$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

Chomsky Normal Form

 $S \rightarrow NPVP$

 $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid prefer$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

 $NP \rightarrow Houston \mid NWA$

 $NP \rightarrow Det Nominal$

Nominal → book | flight | meal | money

Nominal → **Nominal Noun**

Nominal → **Nominal** PP

 $VP \rightarrow book \mid include \mid prefer$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

PP → **Prep NP**

function CKY-PARSE(words, grammar) returns table

```
for j \leftarrow from 1 to LENGTH(words) do table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\} for i \leftarrow from j-2 downto 0 do for \ k \leftarrow i+1 \ to \ j-1 \ do table[i,j] \leftarrow table[i,j] \cup \{A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k,j]\}
```


CKY Parser

CKY Parser

```
for j \leftarrow from 1 to LENGTH(words) do

table[j-1,j] \leftarrow \{A \mid A \rightarrow words[j] \in grammar\}

for i \leftarrow from j-2 downto 0 do

for k \leftarrow i+1 to j-1 do

table[i,j] \leftarrow table[i,j] \cup
```

	Book j= 1	the 2	flight 3	through 4	Houston 5
i= 0					
1					
2					
3					
4			76		

Cell[*i,j*]
contains all
constituents
(non-terminals)
covering words *i* +1 through *j*

 ${A \mid A \rightarrow BC \in grammar, B \in table[i,k], C \in table[k,j]}$

 $S \rightarrow NP VP$

 $S \rightarrow X1 \ VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid ...$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

 $NP \rightarrow Houston \mid NWA$

 $NP \rightarrow Det Nominal$

Nominal \rightarrow book | flight |...

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow book \mid include \mid \dots$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

 $Det \rightarrow the$

Noun \rightarrow book | flight |...

Prep \rightarrow in | on | through | ...

fl:~L4

4h warrah II arratan

	Book	the	flight	through	Houston
	S, VP, Verb , Nominal, Noun	None	S VP		
		Det	V NP		
			Nominal, Noun		
function CKY-PARSE(w	ords, grammar)) returns tabl	e		
for $j \leftarrow$ from 1 to LENG $table[j-1,j] \leftarrow \{A$ for $i \leftarrow$ from $j-2$ de	$ A \rightarrow words[$	$j] \in \mathit{gramma}$	r }		
for $k \leftarrow i + 1$ to j					
$table[i,j] \leftarrow ta$	- 0 -				
$\{A$	$A \mid A \rightarrow BC \in$	_			
	$B \in table[i, C \in table[k]]$	•	8	0	_

416 0

Daal

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid ...$ $S \rightarrow Verb NP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid he \mid she \mid me$ $NP \rightarrow Houston \mid NWA$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight |... Nominal → Nominal Noun Nominal → Nominal PP $VP \rightarrow book \mid include \mid \dots$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$ $Det \rightarrow the$ Noun \rightarrow book | flight |... Prep \rightarrow in | on | through | ...

through Houston

	Book	the	flight	through	Houston
	S, VP, Verb, Nominal, Noun	None	S VP		
		None			
			NP		
		Det			
			Nominal, Noun		
function CKY-PARSE(we	ords, grammar) returns table	e		
for $j \leftarrow$ from 1 to LENG $table[j-1,j] \leftarrow \{A \mid$	$A \rightarrow words[$	$j] \in \mathit{gramma}$	r }		
for $i \leftarrow$ from $j-2$ do for $k \leftarrow i+1$ to j					
$table[i,j] \leftarrow ta$		grammar,			
	$B \in table[i, C \in table[k]]$	•	8	1	

4ha

Daalr

```
S \rightarrow NP VP
S \rightarrow X1 VP
X1 \rightarrow Aux NP
S \rightarrow book \mid include \mid ...
S \rightarrow Verb NP
S \rightarrow VP PP
NP \rightarrow I \mid he \mid she \mid me
NP \rightarrow Houston \mid NWA
NP \rightarrow Det Nominal
Nominal \rightarrow book | flight |...
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow book \mid include \mid \dots
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Det \rightarrow the
Noun \rightarrow book | flight |...
Prep \rightarrow in | on | through | ...
```

	Book	the	flight	through	Houston
	S, VP, Verb,		S		
	Nominal, Noun	None	VP	None	
			NP		
		Det	111	None	
			Nominal, Noun	None	
function CKY-PARSE(w	ords, grammar) return s table	e		
for $j \leftarrow$ from 1 to LENG table $[j-1,j] \leftarrow \{A$	$ A \rightarrow words[$		r }	Prep	
for $i \leftarrow$ from $j-2$ d					
for $k \leftarrow i+1$ to j					
table[i,j] ← ta	- 0 -				
{ <i>A</i>	$A \mid A \rightarrow BC \in B \in B \in A$		0.	2	
	$C \in table[k]$	•	82	4	

```
S \rightarrow NP VP
S \rightarrow X1 VP
X1 \rightarrow Aux NP
S \rightarrow book \mid include \mid ...
S \rightarrow Verb NP
S \rightarrow VP PP
NP \rightarrow I \mid he \mid she \mid me
NP \rightarrow Houston \mid NWA
NP \rightarrow Det Nominal
Nominal \rightarrow book | flight |...
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow book \mid include \mid \dots
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Det \rightarrow the
Noun \rightarrow book | flight |...
Prep \rightarrow in | on | through | ...
```

	Book	the	flight	through	Houston
	S, VP, Verb, Nominal, Noun	None	S VP	None	
		Det	NP	None	
			Nominal, Noun	None	
function CKY-PARSE(we for $j \leftarrow$ from 1 to LENG $table[j-1,j] \leftarrow \{A \mid A\}$	$A \rightarrow words$			Prep€	P P
for $i \leftarrow$ from $j-2$ do for $k \leftarrow i+1$ to j $table[i,j] \leftarrow ta$ $\{A$	-1 do	,k],	8	3	V NP ProperNoun

 $S \rightarrow X1 \text{ VP}$ $X1 \rightarrow \text{Aux NP}$ $S \rightarrow \text{book} \mid \text{include} \mid ...$ $S \rightarrow \text{Verb NP}$ $S \rightarrow \text{VP PP}$ $NP \rightarrow I \mid \text{he} \mid \text{she} \mid \text{me}$ $NP \rightarrow \text{Houston} \mid \text{NWA}$ $NP \rightarrow \text{Det Nominal}$ $Nominal \rightarrow \text{book} \mid \text{flight} \mid ...$

Nominal → Nominal Noun Nominal → Nominal PP VP → book | include | ...

Noun \rightarrow book | flight |... Prep \rightarrow in | on | through | ...

 $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$

 $Det \rightarrow the$

 $S \rightarrow NP VP$

	Book	the	flight	through	Houston
	S, VP, Verb,		S		
	Nominal, Noun	None	VP	None	
		Det	NP	None	
			Nominal, < Noun	None	– Nominal /
unction CKY-PARSE(w			le		
for $j \leftarrow$ from 1 to LENC $table[j-1,j] \leftarrow \{A$	$ A \rightarrow words[$		ar	Prep	PP
for $i \leftarrow$ from $j - 2$ d					
for $k \leftarrow i+1$ to j		NP			
$table[i,j] \leftarrow ta$	- 0 -				ProperNoun
$\{A$	$A \mid A \rightarrow BC \in$				
	$B \in table[i]$	•	8	4	
	C 11 [1	-13			

 $C \in table[k, j]$

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$

 $X1 \rightarrow Aux NP$

 $S \rightarrow book \mid include \mid ...$

 $S \rightarrow Verb NP$

 $S \rightarrow VP PP$

 $NP \rightarrow I \mid he \mid she \mid me$

 $NP \rightarrow Houston \mid NWA$

 $NP \rightarrow Det Nominal$

Nominal \rightarrow book | flight |...

Nominal → Nominal Noun

Nominal → Nominal PP

 $VP \rightarrow book \mid include \mid \dots$

 $VP \rightarrow Verb NP$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prep NP$

 $Det \rightarrow the$

Noun \rightarrow book | flight |...

Prep \rightarrow in | on | through | ...

	Book	the	flight	throug	h Houston
	S, VP, Verb,		S		
	Nominal, Noun	None	VP	None	
			NP		NP
		Def		None	
			Nominal, Noun	None	Nominal
function CKY-PARSE(w	vords, grammar) returns tal	ble		
for $j \leftarrow$ from 1 to LENe table $[j-1,j] \leftarrow \{A$	$ A \rightarrow words[$		ar	Prep	PP
for $i \leftarrow$ from $j-2$ of					
for $k \leftarrow i+1$ to $table[i,j] \leftarrow table[i,j]$	•				NP N
	$A \mid A \rightarrow BC \in$	orammar			ProperNoun
ι,	$B \in table[i]$		8	5	
	C - 11 [1		O		

 $C \in table[k, j]$

```
S \rightarrow NP VP
S \rightarrow X1 VP
X1 \rightarrow Aux NP
S \rightarrow book \mid include \mid ...
S \rightarrow Verb NP
S \rightarrow VP PP
NP \rightarrow I \mid he \mid she \mid me
NP \rightarrow Houston \mid NWA
NP \rightarrow Det Nominal
Nominal \rightarrow book | flight |...
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow book \mid include \mid \dots
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Det \rightarrow the
Noun \rightarrow book | flight |...
Prep \rightarrow in | on | through | ...
```

fl:~L4

4b way ab II ay at an

	Book	the	flight	through	Houston
	S, VP, Verb,◀ Nominal, Noun	None	S VP	None	V P
		Det	NP	None	NР
			Nominal, Noun	None	Nominal
function CKY-PARSE(we for $j \leftarrow$ from 1 to LENC $table[j-1,j] \leftarrow \{A$	$GTH(words)$ do $\mid A \rightarrow words[$			Prep	PP
for $i \leftarrow$ from $j - 2$ d for $k \leftarrow i + 1$ to j $table[i,j] \leftarrow ta$ $\{A$	$egin{aligned} i-1 & \mathbf{do} \ ible[i,j] & \cup \ A \mid A & \rightarrow BC \end{aligned}$				NP ProperNoun
	$B \in table[i]$	[K]	86	3	

416 0

Daal

 $C \in table[k, j]$

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid ...$ $S \rightarrow Verb NP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid he \mid she \mid me$ $NP \rightarrow Houston \mid NWA$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight |... Nominal → Nominal Noun Nominal → Nominal PP $VP \rightarrow book \mid include \mid \dots$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$ $Det \rightarrow the$ Noun \rightarrow book | flight |... Prep \rightarrow in | on | through | ...

	Book	the	flight	througl	n Houston
	S, VP, Verb,◀		S		
	Nominal, Noun		VP	None	$\perp_{\mathbf{s}}$
	110411	None		None	V̈́Ρ
					N _P
		Det	NP	None	INF
			Nominal, Noun	None	Nominal
function CKY-PARSE(words, grammar) returns tab	ole		
for $j \leftarrow$ from 1 to LE1 table $[j-1,j] \leftarrow \{$	Prep	PP			
for $i \leftarrow$ from $j-2$					
for $k \leftarrow i + 1$ to $table[i,j] \leftarrow$		NP ProperNoun			
	$\{A \mid A \rightarrow BC \in$	grammar,			Troperroun
	$B \in table[i$,k],	8	7	

 $C \in table[k, j]$

```
S \rightarrow NP VP
S \rightarrow X1 VP
X1 \rightarrow Aux NP
S \rightarrow book \mid include \mid ...
S \rightarrow Verb NP
S \rightarrow VP PP
NP \rightarrow I \mid he \mid she \mid me
NP \rightarrow Houston \mid NWA
NP \rightarrow Det Nominal
Nominal \rightarrow book | flight |...
Nominal → Nominal Noun
Nominal → Nominal PP
VP \rightarrow book \mid include \mid \dots
VP \rightarrow Verb NP
VP \rightarrow VP PP
PP \rightarrow Prep NP
Det \rightarrow the
Noun \rightarrow book | flight |...
Prep \rightarrow in | on | through | ...
```

	Book	the	flight	throug	h Houston
	S, VP, Verb, Nominal,		S VP		VP VP
	Noun	None		None	\$ VP
			NP		NP
		Det		None	
			Nominal, Noun	None	Nominal
function CKY-PARSE(ห	vords, grammar) returns tab	ole		
for $j \leftarrow$ from 1 to LENe table $[j-1,j] \leftarrow \{A$	$ A \rightarrow words[$		ar}	Prep	PP
for $i \leftarrow$ from $j-2$ of					
for $k \leftarrow i+1$ to	•				NP
$table[i,j] \leftarrow table[i,j]$	- 0 -				ProperNoun
{.	$A \mid A \rightarrow BC \in$			_	
	$B \in table[i$		8	8	

 $C \in table[k, j]$

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid ...$ $S \rightarrow Verb NP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid he \mid she \mid me$ $NP \rightarrow Houston \mid NWA$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight |... Nominal → Nominal Noun Nominal → Nominal PP $VP \rightarrow book \mid include \mid \dots$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$ $Det \rightarrow the$ Noun \rightarrow book | flight |... Prep \rightarrow in | on | through | ...

	Book	the	flight	through	Houston
	S, VP, Verb, Nominal, Noun	None	S	None	- S VP S VP
		Det	NP	None	NP
			Nominal, Noun	None	Nominal
function CKY-PARSE(w for $j \leftarrow$ from 1 to LENG $table[j-1,j] \leftarrow \{A$	Prep	V PP			
for $i \leftarrow$ from $j-2$ d for $k \leftarrow i+1$ to j $table[i,j] \leftarrow ta$		NP ProperNoun			
	$B \in table[i$ $C \in table[k]$	•	89	9	

 $S \rightarrow NP VP$ $S \rightarrow X1 VP$ $X1 \rightarrow Aux NP$ $S \rightarrow book \mid include \mid ...$ $S \rightarrow Verb NP$ $S \rightarrow VP PP$ $NP \rightarrow I \mid he \mid she \mid me$ $NP \rightarrow Houston \mid NWA$ $NP \rightarrow Det Nominal$ Nominal \rightarrow book | flight |... Nominal → Nominal Noun Nominal → Nominal PP $VP \rightarrow book \mid include \mid \dots$ $VP \rightarrow Verb NP$ $VP \rightarrow VP PP$ $PP \rightarrow Prep NP$ $Det \rightarrow the$

Noun \rightarrow book | flight |... Prep \rightarrow in | on | through | ...

Complexity of CKY (recognition)

- There are $(n(n+1)/2) = O(n^2)$ cells
- Filling each cell requires looking at every possible split point between the two non-terminals needed to introduce a new phrase.
- There are O(n) possible split points.
- Total time complexity is $O(n^3)$

Complexity of CKY (all parses)

- Previous analysis assumes the number of phrase labels in each cell is fixed by the size of the grammar.
- If computing all derivations for each nonterminal, the number of cell entries can expand combinatorially.
- Since the number of parses can be exponential, so is the complexity of finding all parse trees.

Effect of CNF on Parse Trees

- Parse trees are for CNF grammar not the original grammar.
- A post-process can repair the parse tree to return a parse tree for the original grammar.

Midterm and Assignment#2

- Assignment #2
 - Average 97; Min=89; Max=100
- Midterm
 - Average 68; Min=49; Max=97
 - Model answer

Next Time

- Read J+M Chap 13
- Come with questions about Assignment #3