

LOW DROP POWER SCHOTTKY RECTIFIER

MAIN PRODUCTS CHARACTERISTICS

$I_{F(AV)}$	2 x 8 A
V_{RRM}	40 V
$T_j(\text{max})$	150 °C
$V_F(\text{max})$	0.45 V

FEATURES AND BENEFITS

- LOW FORWARD VOLTAGE DROP FOR LESS POWER DISSIPATION
- NEGLIGIBLE SWITCHING LOSSES ALLOWING HIGH FREQUENCY OPERATION
- AVALANCHE CAPABILITY SPECIFIED

DESCRIPTION

Dual center tap Schottky barrier rectifier designed for high frequency Switched Mode Power Supplies and high frequency DC to DC converters.

Packaged in TO-220AB this device is intended for use in low voltage, high frequency converters, free-wheeling and polarity protection applications.

ABSOLUTE RATINGS (limiting values, per diode)

Symbol	Parameter			Value	Unit
V_{RRM}	Repetitive peak reverse voltage			40	V
$I_{F(\text{RMS})}$	RMS forward current			30	A
$I_{F(\text{AV})}$	Average forward current	$T_c = 140^\circ\text{C}$	Per diode	8	A
		$\delta = 0.5$	Per device	16	A
I_{FSM}	Surge non repetitive forward current	$t_p = 10 \text{ ms sinusoidal}$		180	A
I_{RRM}	Repetitive peak reverse current	$t_p = 2 \mu\text{s square } F=1\text{kHz}$		1	A
I_{RSR}	Non repetitive peak reverse current	$t_p = 100 \mu\text{s square}$		2	A
P_{ARM}	Repetitive peak avalanche power	$t_p = 1 \mu\text{s } T_j = 25^\circ\text{C}$		4000	W
T_{stg}	Storage temperature range			- 65 to + 150	°C
T_j	Maximum operating junction temperature *			150	°C
dV/dt	Critical rate of rise of reverse voltage			10000	V/μs

* : $\frac{dP_{tot}}{dT_j} < \frac{1}{R_{th}(j - a)}$ thermal runaway condition for a diode on its own heatsink

TO-220AB

STPS16L40CT

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
$R_{th(j-c)}$	Junction to case	2.2	°C/W
	Per diode Total	1.3	
$R_{th(c)}$	Coupling	0.3	

When the diodes 1 and 2 are used simultaneously :

$$\Delta T_j(\text{diode 1}) = P(\text{diode 1}) \times R_{th(j-c)}(\text{Per diode}) + P(\text{diode 2}) \times R_{th(c)}$$

STATIC ELECTRICAL CHARACTERISTICS (per diode)

Symbol	Parameter	Tests Conditions		Min.	Typ.	Max.	Unit
I_R^*	Reverse leakage current	$T_j = 25^\circ\text{C}$	$V_R = V_{RRM}$			0.7	mA
		$T_j = 100^\circ\text{C}$			15	35	mA
V_F^*	Forward voltage drop	$T_j = 25^\circ\text{C}$	$I_F = 8 \text{ A}$			0.5	V
		$T_j = 125^\circ\text{C}$	$I_F = 8 \text{ A}$			0.39	
		$T_j = 25^\circ\text{C}$	$I_F = 16 \text{ A}$			0.63	
		$T_j = 125^\circ\text{C}$	$I_F = 16 \text{ A}$			0.55	

Pulse test : * $t_p = 380 \mu\text{s}$, $\delta < 2\%$

To evaluate the conduction losses use the following equation :

$$P = 0.26 \times I_F(\text{AV}) + 0.024 I_F^2(\text{RMS})$$

Fig. 1: Average forward power dissipation versus average forward current (per diode).

Fig. 2: Average current versus ambient temperature ($\delta = 0.5$) (per diode).

Fig. 3: Normalized avalanche power derating versus pulse duration.

Fig. 4: Normalized avalanche power derating versus junction temperature.

Fig. 5: Non repetitive surge peak forward current versus overload duration (maximum values) (per diode).

Fig. 6: Relative variation of thermal impedance junction to case versus pulse duration .

Fig. 7: Reverse leakage current versus reverse voltage applied (typical values) (per diode).

Fig. 8: Junction capacitance versus reverse voltage applied (typical values) (per diode).

Fig. 9: Forward voltage drop versus forward current (maximum values) (per diode).

STPS16L40CT

PACKAGE MECHANICAL DATA

TO-220AB

REF.	DIMENSIONS			
	Millimeters		Inches	
	Min.	Max.	Min.	Max.
A	4.40	4.60	0.173	0.181
C	1.23	1.32	0.048	0.051
D	2.40	2.72	0.094	0.107
E	0.49	0.70	0.019	0.027
F	0.61	0.88	0.024	0.034
F1	1.14	1.70	0.044	0.066
F2	1.14	1.70	0.044	0.066
G	4.95	5.15	0.194	0.202
G1	2.40	2.70	0.094	0.106
H2	10	10.40	0.393	0.409
L2	16.4 typ.		0.645 typ.	
L4	13	14	0.511	0.551
L5	2.65	2.95	0.104	0.116
L6	15.25	15.75	0.600	0.620
L7	6.20	6.60	0.244	0.259
L9	3.50	3.93	0.137	0.154
M	2.6 typ.		0.102 typ.	
Diam.	3.75	3.85	0.147	0.151

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
STPS16L40CT	STPS16L40CT	TO-220AB	2g	50	Tube

- EPOXY MEETS UL94,V0
- COOLING METHOD : C
- RECOMMENDED TORQUE VALUE : 0.55 M.N
- MAXIMUM TORQUE VALUE : 0.70 M.N

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany

Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

<http://www.st.com>