

Basic Statistics Using R

LECTURE 04

DR. GAURAV DIXIT

DEPARTMENT OF MANAGEMENT STUDIES

- Descriptive Statistics
 - Open RStudio
- Hypothesis Testing
 - Formulate an assertion and test it using data
 - Comparing populations, e.g., comparing performance of students in exams for two different class sections
 - Testing the difference of the means from two data samples
 - A common technique to assess the difference or significance of the same

- Common assumption in Hypothesis testing
 - No difference between two samples
 - Referred as NULL Hypothesis H₀
 - Alternative Hypothesis (H_A) : There is difference between two samples
- Example:
 - H₀: Students from class A and B had same performance in the examinations
 - H_Δ: Students from class A performed better than students from class B

- Hypothesis test leads to:
 - Either rejection of the null hypothesis in favor of the alternative
 - Or acceptance of the null hypothesis
- Examples:
 - H₀: New data mining model does not predict better than existing model
 - H_Δ: New data mining model predicts better than existing model

Examples:

- H₀: Regression coefficient is zero, i.e., variable has no impact on outcome
- H_A: Regression coefficient is nonzero, i.e., variable has an impact on outcome
- A typical hypothesis test is comparing the means of two populations
- Normal Distribution
 - A common continuous probability distribution and useful due to Central limit theorem

Difference of Means

- Drawing inferences on two populations: P1 and P2
- Compare means: μ_1 and μ_2
- $H_0: \mu_1 = \mu_2$
- $H_A: \mu_1 \neq \mu_2$
- Basic approach: compare observed sample means: \overline{x}_1 and \overline{x}_2

Student's t-test

- Assumptions: Two population distributions (P1 and P2) have equal but unknown variances
- Two samples of n₁ and n₂ observations drawn randomly and independently from P1 and P2, respectively

- Student's t-test
 - If P1 and P2 are normally distributed with same mean and variance
 - Then t-statistic follows a t-distribution with n₁+n₂-2 degrees of freedom

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 Where $S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$

• Student's t-test

- S_p is pooled standard deviation, S_1 and S_2 are sample standard deviation
- Shape of t-distribution is similar to normal distribution and becomes identical to normal distribution as degrees of freedom reach 30 or more
- Numerator of t is the difference of the sample means
 - Observed t value of 0 indicates the sample results are exactly equal to H₀
 - Observed t value being far enough from 0 and t-distribution indicating a low enough probability (<0.05) will lead to rejection of H₀
 - t-value falling in corresponding areas in the curve less than 5% of the time

Thanks...