

CONTROL OF AIRCRAFT PRACTICAL WORK

Jean-Pierre NOUAILLE

November 6, 2020

Some pieces of advice

CONTROL OF AIRCRAFT

- IN FLIGHT OPERATING POINT
- AIRCRAFT CHARACTERISTICS
- STUDY OF THE UNCONTROLLED AIRCRAFT
- CONTROLLERS SYNTHESIS
- 5 SOME PIECES OF ADVICE

In flight operating point

Aircraft characteristics
Study of the uncontrolled aircraft
Controllers synthesis
Some pieces of advice

Choose an operating point for the aircraft modeling and the controllers synthesis (a different flight point for each group). Subject number as a function of operating point:

Mach						
	0.80	1.04	1.15	1.40	1.56	1.80
Altitude (ft)						
900	11	12	13	14	15	16
3500	21	22	23	24	25	26
8000	31	32	33	34	35	36
12800	41	42	43	44	45	46
14000	51	52	53	54	55	56
18000	61	62	63	64	65	66
24000	71	72	73	74	75	76
29000	81	82	83	84	85	86

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

CONTROL OF AIRCRAFT

- IN FLIGHT OPERATING POINT
- AIRCRAFT CHARACTERISTICS
- STUDY OF THE UNCONTROLLED AIRCRAFT
- CONTROLLERS SYNTHESIS
- 5 SOME PIECES OF ADVICE

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

AIRCRAFT CHARACTERISTICS

The considered aircraft is a fighter aircraft of MIRAGE III class.

Total length

Mass m=8400 kg c=52 %

Aircraft centering (center of gravity position)

(as % of total length)

 $S=34 m^2$ Rerence surface (Wings)

Radius of gyration

 r_g =2,65 m ℓ_{ref} =5,24 m = $\frac{2}{3}\ell_t$ Reference length

For the calculus of air density and sound speed as a function of altitude, we will use the US standard atmosphere 76 model.

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

HYPOTHESIS

- Symmetrical flight, in the vertical plane (null sideslip and roll)
- Thrust axis merged with aircraft longitudinal axis
- Inertia principal axis = aircraft transverse axis (diagonal inertia matrix)
- Fin control loop: its dynamics will be neglected for the controller synthesis
- The altitude sensor is modeled by a 1st order transfer function with a time constant $\tau = 0.71 \ s$

Study of the uncontrolled aircraft
Controllers synthesis
Some pieces of advice

AIRCRAFT AERODYNAMIC MODEL

The aircraft aerodynamic coefficients for the longitudinal motion (drag, gradient of drag and lift, aerodynamic center for body and fins, polar coefficient and damping coefficient) are given on the following slides as functions of Mach number.

In flight operating point

Aircraft characteristics

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

Drag coefficient for null incidence Cx_0

Study of the uncontrolled aircraft
Controllers synthesis
Some pieces of advice

LIFT GRADIENT COEFFICIENT WRT α Cz_{α} (rad^{-1})

Control of aircraft - Practical Work

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

LIFT GRADIENT COEFFICIENT WRT δ_m Cz_{δ_m} (rad^{-1})

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

EQUILIBRIUM FIN DEFLECTION FOR NULL LIFT

 δ_{m_0} (rad)

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

Incidence for null lift and null fin deflection α_0 (rad)

Some pieces of advice

Study of the uncontrolled aircraft Controllers synthesis

AERODYNAMIC CENTER OF BODY AND WINGS f

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

AERODYNAMIC CENTER OF FINS (PITCH AXIS) f_{δ}

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

POLAR COEFFICIENT k

Study of the uncontrolled aircraft Controllers synthesis Some pieces of advice

Damping coefficient $Cm_q(s/rad)$

CONTROL OF AIRCRAFT

- IN FLIGHT OPERATING POINT
- AIRCRAFT CHARACTERISTICS
- STUDY OF THE UNCONTROLLED AIRCRAFT
- CONTROLLERS SYNTHESIS
- **SOME PIECES OF ADVICE**

STUDY OF THE UNCONTROLLED AIRCRAFT

- Determine the equilibrium conditions around the chosen operating point (see slide 47 of the presentation on aircraft longitudinal control for the algorithm to find the equilibrium point).
- Build a small signals model: give the state space representation (A, B, C, D) around this equilibrium point, Considering the following state vector, with 6 variables:

$$X = \begin{pmatrix} V & \gamma & \alpha & q & \theta & z \end{pmatrix}^T$$
 and as the command vector, only $U = (\delta_m)$.

 Study of open loop modes: give the values of the modes, their damping ratio and their proper pulsation.

- Study the transient phase of the uncontrolled aircraft (short period and phugoid oscillation modes):
 - Give the poles associated with each mode;
 - Give their damping ratio and their proper pulsation;
 - Give the state space representation for each mode;
 - Give the transfer function associated with each variable associated with each mode;
 - Plot the step response for each variable associated with each mode.
- We will now consider that the speed is controlled with an auto-throttle which is perfect (with an instantaneous response). The speed V can be removed from the state vector. We will now consider the following 5×1 state vector $X = \begin{pmatrix} \gamma & \alpha & q & \theta & z \end{pmatrix}^T$ and $U = \begin{pmatrix} \delta_m \end{pmatrix}$ as the command vector.

 γ feedback loop z feedback loop Saturation Flight management

g feedback loop

CONTROL OF AIRCRAFT

- IN FLIGHT OPERATING POINT
- AIRCRAFT CHARACTERISTICS
- STUDY OF THE UNCONTROLLED AIRCRAFT
- CONTROLLERS SYNTHESIS
- 5 SOME PIECES OF ADVICE

q feedback loop

 γ feedback loop z feedback loop Saturation

q FEEDBACK LOOP

We are beginning to build an autopilot by adding a gyrometric feedback loop (with *q* as the measured variable).

- With the help of sisotool (see sisopy31.py), choose the gain K_r of q feedback loop such as the closed loop damping ratio is $\xi = 0.65$. Justify the choice.
- give the closed loop state space representation (q is the output);
- give the transfer function of the closed loop;
- give the poles of the closed loop, their damping ratio, their proper pulsation;
- plot the step response of the closed loop.

q feedback loop

- γ feedback loop z feedback loop
- Saturation
 Flight management

• Choose the time constant τ of the washout filter $\left(\frac{\tau s}{1+\tau s}\right)$ allowing to have the same steady state gain for α with or without the q feedback loop. Plot the open loop response, the closed loop response without filter and the closed loop response with the washout filter. In the following of this study, this filter will not be taken into account.

q feedback loop
γ feedback loop
z feedback loop
Saturation
Flight management

γ FEEDBACK LOOP

We consider that the auto-throttle perfectly ensures that the speed is constant, so that $\dot{v} = \frac{dv}{dt} = 0$.

A flight path angle feedback loop is added to the preceding controlled system (with the q feedback loop, keeping the preceding $K_{\bar{r}}$ tuning). \equiv Control of aircraft - Practical Work 25/34

q feedback loop γ feedback loop z feedback loop Saturation Flight management

- Choose the gain K_{γ} of this flight path angle control loop with the help of sisotool;
- Propose a first choice of a gain allowing a gain margin ≥ 7 dB and a phase margin ≥ 35° and an optimized settling time (to within a 5 % threshold). Comment;
- Choose a second tuning (that will be kept for going on with the study), with the following requirements:
 - an overshoot D₁ ≤ 5%;
 - a settling time at 5% t_{r5%} for a step response that must be optimized (meaning minimized);
 - ullet the pseudo-periodic modes must be correctly damped ($\xi \geq 0.5$).
- give the closed loop state space representation (γ is the output);
- give the transfer function of the closed loop;
- give the poles of the closed loop, their damping ratio, their proper pulsation;
- plot the step response of the closed loop.

 $\begin{array}{l} {\bf q} \ {\bf feedback} \ {\bf loop} \\ {\bf \gamma} \ {\bf feedback} \ {\bf loop} \end{array}$

z feedback loop Saturation Flight management

Z FEEDBACK LOOP

We add another control loop, using the measurement of the altitude z to the previous controlled system (aircraft + q feedback loop + γ feedback loop, while keeping K_r and K_γ tuning)

Control of aircraft - Practical Work

27/34

- Choose the gain K_Z (using sisotool from sisopy31) of this superior mode, whose damping depends on flight angle control loop and rotation speed control loop (do not forget the transfer function of the altitude sensor);
- The expected performances are:
 - an overshoot $D_1 \le 5\%$;
 - a settling time (with 5% threshold) t_{r5%} that must be optimized (meaning minimized);
 - the pseudo-periodic modes must be correctly damped ($\xi \geq 0.5$).
- give the closed loop state space representation (z is the output);
- give the transfer function of the closed loop;
- give the poles of the closed loop, their damping ratio, their proper pulsation;
- plot the step response of the closed loop.

- q feedback loop γ feedback loop
- z feedback loop
- Saturation Flight management

f ADDITION OF A SATURATION IN THE γ CONTROL LOOP

A saturation is added at the input of the γ feedback loop.

Some pieces of advice

- build the state space representation of the closed loop between $\gamma_{\textit{c}_{\textit{sat}}}$ and α ;
- Determine the value γ_{max} of the flight path angle (at input of flight path angle control loop) such as the transverse load factor does reach a value of $\Delta n_z = 2.8~g$, which corresponds to searching the value of γ for which α equal α_{max} (see next slide); You will use a bisection method in order to find the maximum flight path angle corresponding to the maximum load factor Δn_z .
- What other methods could be used? Propose a simple one.

 $\begin{array}{l} \gamma \text{ feedback loop} \\ \text{z feedback loop} \\ \text{Saturation} \\ \text{Flight management} \end{array}$

g feedback loop

Addition of a saturation in the γ control loop (continuation)

As the load factor is generated by incidence α , you will use the following simplified relations, in order to determine the maximum incidence α corresponding to the load factor Δn_z :

$$egin{aligned} mg \cdot n_z &= rac{1}{2}
ho S V_e^2 C z_lpha (lpha - lpha_0) \ mg &= rac{1}{2}
ho S V_e^2 C z_lpha (lpha_{\acute{e}q} - lpha_0) \ n_z &= rac{lpha - lpha_0}{lpha_{\acute{e}q} - lpha_0} = 1 + rac{lpha - lpha_{\acute{e}q}}{lpha_{\acute{e}q} - lpha_0} \end{aligned}$$

$$\Delta \emph{n}_{\emph{z}} = rac{lpha - lpha_{\acute{e}q}}{lpha_{\acute{e}q} - lpha_{0}}$$
 $lpha_{\emph{max}} = lpha_{\acute{e}q} + (lpha_{\acute{e}q} - lpha_{0})\Delta \emph{n}_{\emph{z}}$

 $\begin{array}{l} \textbf{q} \text{ feedback loop} \\ \gamma \text{ feedback loop} \\ \textbf{z} \text{ feedback loop} \\ \textbf{Saturation} \\ \textbf{Flight management} \end{array}$

FLIGHT MANAGEMENT

Create a script allowing to link the following control modes, by taking the previous control loops:

- an ascent phase with a constant flight path angle (in steady state)
- a cruise flight at constant altitude (of about 100 s)
- a descent phase with a constant flight path angle
- a final flare and a small phase of level flight at constant altitude

The choice of the initial, cruise and final altitude, as well as initial and final flight path angle is free, but has to be consistent with synthesized controller and representative of a fighter aircraft capability.

CONTROL OF AIRCRAFT

- IN FLIGHT OPERATING POINT
- AIRCRAFT CHARACTERISTICS
- STUDY OF THE UNCONTROLLED AIRCRAFT
- CONTROLLERS SYNTHESIS
- **SOME PIECES OF ADVICE**

SOME PIECES OF ADVICE

- Minutes (report) is expected at the end of all the sessions dedicated to this mini project, and must imperatively be transmitted at the end of the last session of practical work. It will be supplied as a computer file under pdf format plus the original format (e.g. .doc, .odt or .tex) and all the Python script files written during the practical work must be provided;
- This report must showcase your work. It must be clear, easily workable, full, correctly written and present relevant conclusions;
- A graph must have its caption (and don't forget the units);
- The python code must be commented, and prefer international standard units for the calculus (and change to the desired units for plots and outputs only)
- The tunings must be justified (curves illustrating the obtained results) and the results have to be analyzed.