Predicting Turnover

A Data-Driven Approach to Employee Retention

Marah, Rayshawn, Cyril, Domenic

OBJECTIVES OF THE PROJECT

OBJECTIVES

OUR AIM

Develop a classification model to predict whether an employee is at risk of leaving a company.

THE GOAL

Identify individuals who may be at risk of leaving the company, so that the company may enact appropriate measures of outreach and support.

Project Overview

- Exploring which components of employee data matter most towards determining whether or not an employee will leave their company
- Visualizing how each component relates to the number of employees leaving each year
- Determining a classification model that best predicts employees who are at risk of leaving

EMPLOYEE DATA

Factors Influencing Employee's **Decision: Key Features for** Payment Tier (1, 2, or 3)

- 2. Gender
- 3. Education (Bach., Mast., PhD.)
- 4. Age
- 5. Joining Year
- 6. Experience in Current Domain

 Did the employee leave

Breakdown of Feature Importance

2

VISUALIZING KEY FEATURES

#1 – Payment Tier

#2 - Education

#3 - Gender

#4 - Age

#5 – Joining Year

#6 - Experience in Current Field

Target Variable

Employee Retention Status

- Employee stays with the company
- Employee leaves the company

A classification model will be used to predict if an employee might leave or stay

Classification Models Tested

Optimization Process

#	Model Type	Accuracy	Precision	Recall	Notes
1	Random Forest	85%	83%	71%	skewed by outlier 2018 data
2	Random Forest	81%	75%	56%	2018 data removed
3	Random Forest	77%	69%	43%	2018 data, EverBenched data, and City data removed
4	Random Forest	84%	87%	54%	2018 data removed + now using GridSearch / Cross Validation
5	Random Forest	75%	73%	56%	adjust GridSearch to focus on recall rather than accuracy
6	Random Forest	69%	50%	77%	reduced decision threshold from 0.5 to 0.35
7	Random Forest	77%	60%	71%	corrected code error, adjusted decision the shold to 0.415
8	Random Forest	75%	58%	65%	applied SMOTE
9	Random Forest	74%	56%	66%	applied SMOTE-EEN
10	Random Forest	74%	56%	65%	applied SMOTE-EEN, removed GridSearch
11	Support Vector Machines	75%	72%	47%	skewed by outlier 2018 data
12	Support Vector Machines	76%	71%	34%	2018 data removed
13	K-Nearest Neighbors (KNN)	83%	81%	66%	skewed by outlier 2018 data
14	K-Nearest Neighbors (KNN)	80%	73%	55%	2018 data removed
15	K-Nearest Neighbors (KNN)	81%	77%	53%	applied SMOTE
16	K-Nearest Neighbors (KNN)	77%	61%	64%	applied SMOTE-ENN
17	GaussianNB	100%	100%	100%	Target varable was not removed from the X factors
18	GaussianNB	62%	66%	85%	Removed target variable from X factors # note this is better at recalling 0 then 1

What This Means

Higher Recall Rate = Less False Negatives

Recall

What This Means

Higher Recall Rate = Less False Negatives

When the model thinks an employee is NOT at risk of leaving, when in fact, they ARE at risk.

Recall

EXAMPLE

Let's take 10 employees who are at risk of leaving.

Recall

EXAMPLE

Employees at risk of leaving would be flagged by the model as "at risk" about 7 out of every 10 instances of employees considering leaving. Recall

EXAMPLE

Employees at risk of leaving would be flagged by the model as "at risk" about 7 out of every 10 instances of employees considering leaving. Recall

EXAMPLE

Employees at risk of leaving would be flagged by the model as "at risk" about 7 out of every 10 instances of employees considering leaving. Recall

71%

Provide outreach and support; Increase employee satisfaction; Retain employees \rightleftharpoons

What This Means

Precision

Higher Precision Rate = Less False Positives

What This Means

Precision

Higher Precision Rate = Less False Positives

When the model thinks an employee IS at risk of leaving, when in fact, they are NOT at risk.

EXAMPLE Precision

Let's take 10 employees who are not at risk of leaving.

EXAMPLE Precision

Employees NOT at risk of leaving would be flagged as "at risk" by the model about 4 out of every 10 instances of an employee NOT considering leaving.

What This Means

Precision

Employees NOT at risk of leaving would be flagged as "at risk" by the model about 4 out of every 10 instances of an employee NOT considering leaving.

60%

Provide outreach and support; Oops, you're already satisfied! Employees say "wow HR is really looking out for me" \rightleftharpoons

Breakdown of Feature Importance

THANKS!

