Spatial task allocation and scheduling problem in heterogeneous multi-robot team

1

Notation

- A: Agents
- ▶ T: Tasks
- ▶ G = (𝒯, E): Traversability graph (i, j) ∈ E if task j can be scheduled right after i. we can simplify the formulation and assume a complete graph E = 𝒯 × 𝒯.
- R_{τ} : Reward associated to the initial workload of τ ; In the non-atomic setting, if by the end of the mission a fraction p of the workload of task τ has been performed, then we consider that the team obtained a reward equal to $p \cdot R_{\tau}$ from that task.
- $\varphi_k(\tau)$: Efficiency models; fraction of task τ that k can perform in one time step.
- $ightharpoonup t_{ij}$: travelling time between tasks i and j.
- au_0 is chosen as starting point, meaning that agents start at the location of this task. In the following, we also assume that au_0 does not require service, therefore we can specify $\phi_k(0)=0$ for all agents $k\in\mathcal{A}$. Also, the reward $R_{ au_0}=0$.
- T: time horizon in number of steps

Example

- Traversability graph (complete), with associated travelling times (symmetric). E.g.,
 - $\begin{array}{ll} \blacktriangleright & t_{01}=t_{02}=t_{03}=t_{13}=t_{14}=1,\\ \blacktriangleright & t_{05}=t_{04}=t_{12}=t_{16}=1.5 \end{array}$

Example

- $\phi_1(\tau_0) = 0$,
- $\phi_1(\tau_1) = 1,$
- $\phi_1(\tau_2) = 0.25.$
- i.e., agent 1 can not do task τ_0 , can do τ_1 in a single time step, and can do $\frac{1}{4}$ of τ_2 in one time step.

- Efficacy model for agent 2, e.g.,
 - $\phi_2(\tau_0) = 0$,
 - $\phi_2(\tau_1) = 0.5,$
 - $\phi_2(\tau_2) = 0.5.$
 - i.e., agent 2 can not do task τ_0 , can do $\frac{1}{2}$ of τ_1 and τ_2 in one time step.

Example: Solution

This is the optimal solution for a time horizon T = 8 time steps.

- We considered two agents a_1 , a_2 .
- A solution can be represented by a set of paths, and a set of schedules.
- A path shows the sequence of tasks that an agent perform (or partially does).
- A schedule indicates the amount of time that an agent spends in doing (or partially doing) each task in its path.
- Here the paths are:
 - For a_1 : $< \tau_0, \tau_2, \tau_3, \tau_6 >$.
 - For a_2 : $< \tau_0, \tau_1, \tau_4, \tau_3 >$.
- The schedules, number of time steps at each task:
 - For a_1 , $\tau_2 = \tau_6 = 2$, $\tau_3 = 1$.
 - For a_2 : $\tau_1 = 1$, $\tau_3 = \tau_4 = 2$.