Student: Arfaz Hossain Instructor: Muhammad Awais Assignment: HW-6 [Sections 10.4, 10.5]

Date: 03/07/22 Course: Math 101 A04 Spring 2022 & 10.6]

Use any method to determine if the series converges or diverges. Give reasons for your answer.

$$\sum_{n=1}^{\infty} \frac{(n+8)!}{8! n! 8^n}$$

The nth-Term Test states that $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from zero. Since $\lim_{n\to\infty} \frac{(n+8)!}{8!n!8^n} = 0$, the nth-Term Test is inconclusive. Since the terms contain n as factorials and exponents, use the Ratio Test.

Let $\sum a_n$ be any series and suppose that $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho$. The Ratio Test states that the series converges absolutely if ρ < 1 and diverges if ρ > 1 or ρ is infinite. The test is inconclusive if ρ = 1.

In this case, $a_n = \frac{(n+8)!}{8!n!8^n}$. Determine a_{n+1} .

$$a_{n+1} = \frac{(n+9)!}{8!(n+1)!8^{n+1}}$$

The limit for the Ratio Test is as shown below.

$$\lim_{n \to \infty} \frac{\frac{(n+9)!}{8!(n+1)!8^{n+1}}}{\frac{(n+8)!}{8!n!8^n}} = \rho$$

Simplify the limit.

$$\rho = \lim_{n \to \infty} \frac{\frac{(n+9)!}{8!(n+1)!8^{n+1}}}{\frac{(n+8)!}{8!n!8^n}}$$

$$= \lim_{n \to \infty} \frac{\frac{(n+9)!}{8!(n+1)!8^{n+1}} \cdot \frac{8!n!8^n}{(n+8)!}}{\frac{8!}{8!} \cdot \frac{8^n}{8^{n+1}} \cdot \frac{n!}{(n+1)!} \cdot \frac{(n+9)!}{(n+8)!}}$$

$$= \lim_{n \to \infty} \frac{\frac{8!}{8!} \cdot \frac{8^n}{8^{n+1}} \cdot \frac{n!}{(n+1)!} \cdot \frac{(n+9)!}{(n+8)!}}{\frac{n+9}{8n+8}}$$

Evaluate this limit.

$$\lim_{n \to \infty} \left| \frac{n+9}{8n+8} \right| = \frac{1}{8}$$

Thus, $\rho = \frac{1}{8}$. Therefore, as $\rho < 1$, the series $\sum_{n=1}^{\infty} \frac{(n+8)!}{8!n!8^n}$ converges.