

## Hoja de Trabajo No. 5

## Introducción a los Algoritmos de Optimización para Ciencia de Datos

- 1. Determine si las siguientes proposiciones son verdaderas o falsas, en cualquier caso, justifique su respuesta.
  - a) En general, los algoritmos de optimización nos proveen una expresión matemática cerrada para poder resolver un problema de optimización.
  - b) La tasa de convergencia de un algoritmo de optimización describe que tan "rápido" dicho algoritmo converge a la solución del problema.
  - c) En la práctica, un algoritmo con una tasa de convergencia cuadrática se aproxima más rápido a la solución que uno con tasa de convergencia lineal.
  - d) En la práctica, un algoritmo con tasa de convergencia superlineal es comparable a uno con tasa de convergencia cuadrática.
- 2. Considere la sucesión definida mediante:

$$x_0 = a > 0$$
 y  $x_{k+1} = \frac{1}{2} \left( x_k + \frac{a}{x_k} \right)$ .

Si  $x_k \to \sqrt{a}$  cuando  $k \to \infty$ , determine la tasa de convergencia (rate of convergence) y la constante (rate constant) respectiva para la sucesión  $\{x_k\}$ .

3. (Problema Extra – 3 puntos netos) Sea  $f: \mathbb{R} \to \mathbb{R}$  una función con primera y segunda derivadas continuas. Sea  $x^*$  una solución de la ecuación no lineal f(x) = 0 con  $f'(x^*) \neq 0$ . Demuestre que, si  $|x_0 - x^*|$  es suficientemente pequeña, entonces la sucesión  $\{x_k\}_{k=0}^{\infty}$  producida por el método de Newton tiene una tasa de convergencia cuadrática (quadratic convergence rate) con constante  $C = \left| \frac{f''(x^*)}{2f'(x^*)} \right|$ . Asuma que  $\{x_k\}_{k=0}^{\infty}$  converge a  $x^*$ .