Αποσύνθεση χωρίς Απώλεια Πληροφορίας

(Lossless-Join Decomposition)

- Η κανονικοποίηση σχημάτων σχεσιακών ΒΔ εξαρτάται από τη δυνατότητα αποσύνθεσης σχημάτων σε "μικρότερα" αποφεύγοντας συγχρόνως ανωμαλίες ενημέρωσης.
- Δεδομένης μιας σχέσης R, μια αποσύνθεση (decomposition) της R σε k σχέσεις είναι ένα σύνολο $\{R_1, R_2, \ldots, R_k\}$ τέτοιο ώστε $Head(R) = \bigcup_{i=1}^k Head(R_i)$. Δεδομένου ενός στιγμιότυπου της R, το περιεχόμενο κάθε μιας από τις σχέσεις R_i καθορίζεται από την προβολή των πλειάδων της R στα γνωρίσματα της R_i .

- Μια αποσύνθεση $\{R_1, R_2, \ldots, R_k\}$ της σχέσης R με συναρτησιακές εξαρτήσεις F λέγεται αποσύνθεση χωρίς απώλεια πληροφορίας (lossless-join decomposition) av, ανεξάρτηστα από το περιεχόμενο της R, οι συναρτησιακές εξαρτήσεις εξασφαλίζουν ότι $R = R_1 \bowtie R_2 \bowtie \ldots \bowtie R_k$.
- Σε μια αποσύνθεση χωρίς απώλεια πληροφορίας, μπορούμε πάντα να ανακατασκευάσομε την αρχική σχέση από τον υπολογισμό της συνένωσης (Join) των σχέσεων που προκύπτουν από την αποσύνθεση.
- Διαφορετικά, η συνένωση των σχέσεων μπορεί να δώσει πληροφορία η οποία δεν υπήρχε στην αρχική σχέση.

Παράδειγμα: Αποσύνθεση με απώλεια πληροφορίας

R (ABC)

A	В	O
a_1	100	c_1
a_2	200	c_{2}
a_3	300	c_3
a_4	200	c_4

R1 (AB)

A	В
a_1	100
a_2	200
a_3	300
a_4	200

R2 (BC)

101 (20)		
В	C	
100	c_1	
200	c_2	
300	c_3	
200	c_{4}	

R1 ⋈ R2

A	В	С
a_1	100	c_1
a_2	200	c_{2}
a_2	200	c_4
a_3	300	c_3
a_4	200	c_{2}
a_4	200	c_{4}

Εξετάζοντας μόνο τις R1 και R2 δεν μπορούμε να πούμε από ποιά σχέση προήλθαν. Θα μπορούσαν να έχουν προέλθει και από την

A	В	С
a_1	100	c_1
a_2	200	c_{2}
a_2	200	c_4
a_3	300	c_3
a_4	200	c_{4}

Η απώλεια πληροφορίας προήλθε από τις πλειάδες $(a_2, 200, c_4)$ και $(a_4, 200, c_2)$. Εμφανίζονται στην $R1 \bowtie R2$ επειδή έχουν κοινή τιμή στο γνώρισμα B αλλά όχι στην αρχική σχέση.

Παράδειγμα: Αποσύνθεση με απώλεια πληροφορίας

R (ABC)

A	В	С
a_1	100	c_1
a_2	200	c_{2}
a_3	300	c_3

R1 (AB)

A	В
a_1	100
a_2	200
a_3	300

R2 (BC)

В	С
100	c_1
200	c_{2}
300	c_3

 $R1 \bowtie R2 = R$

Τι θα συμβεί όμως αν το περιεχόμενο της R αλλάξει και προστεθεί μια πλειάδα με τιμή που ήδη υπάρχει στο κοινό γνώρισμα?

- Δεν μπορούμε να κρίνομε αν μια αποσύνθεση πάσχει από απώλεια πληροφορίας εξετάζοντας μόνο το περιεχόμενο των σχέσεων.
- Χρειάζονται επιπλέον κανόνες οι οποία λαμβάνουν υπόψη τους τις συναρτησιακές εξαρτήσεις.

Παράδειγμα: Εστω ότι η εξάρτηση $B \to C$ ισχύει για την σχέση R.

R (ABC)

A	В	С
a_1	100	c_1
a_2	200	c_2
a_3	300	c_3

R1 (AB)

A	В
a_1	100
a_2	200
a_3	300

R2 (BC)

В	C
100	c_1
200	c_2
300	c_3

Η εισαγωγή της πλειάδας $(a_4, 200, c_4)$ αποτυγχάνει γιατί ισχύει η εξάρτηση $B \to C$. Η εισαγωγή της πλειάδας $(a_4, 200, c_2)$ επιτρέπεται.

Η ακόλουθη αποσύνθεση δεν πάσχει από απώλεια πληροφορίας.

R (ABC)

A	В	U
a_1	100	c_1
a_2	200	c_2
a_3	300	c_3
a_4	200	c_2

R1 (AB)

A	В
a_1	100
a_2	200
a_3	300
a_4	200

R2 (BC)

В	С
100	c_1
200	c_2
300	c_3

Το ακόλουθο θεώρημα προσδιορίζει τη σχέση μεταξύ κλειδιών σχέσεων και συναρτησιακών εξαρτήσεων.

Θεώρημα: Εστω μια σχέση R και ένα σύνολο γνωρισμάτων $X \subseteq Head(R)$. Τότε οι ακόλουθες προτάσεις είναι ισοδύναμες: (1) X είναι κλειδί της R; (2) X προσδιορίζει συναρτηασιακά όλα τα γνωρίσματα στην R.

Απόδειξη:

 $(1) \Rightarrow (2)$: αν το X είναι κελιδί, τότε δεν μπορούν να υπάρχουν στην R πλειάδες οι οποίες συμφωνούν σε όλα τα γνωρίσματα του X. Αρα, δεν είναι δυνατόν να υπάρχουν πλειάδες οι οποίες συμφωνούν στισ τιμές των γνωρισμάτων X και δεν συμφωνούν στα υόλοιπα γνωρίσματα. Εξ'ορισμού η συναρτησιακή εξάρτηση $X \to Head(R)$ ισχύει.

 $(2)\Rightarrow (1)$: αν ισχύει η $X\to Head(R)$, τότε δεν είναι δυνατόν να υπάρχουν δύο πλειάδες οι οποίες συμφωνούν στα γνωρίσματα X και δεν συμφωνούν στα υπόλοιπα γνωρίσματα. Αρα, είτε δύο πλειάδες οι οποίες συμφωνούν στα γνωρίσματα X θα συμφωνούν και στα υπόλοιπα γνωρίσματα, είτε όλες οι πλειάδες έχουν διακεκριμένες τιμές στα γνωρίσματα του X. Καθώς δεν επιτρέπεται να υπάρχουν επαναλαμβανόμενες πλειάδες σε μια σχέση, και οι δύο αυτές περιπτώσεις μας οδηγούν στο συμπέρασμα ότι το X είναι κλειδί της R. Αρα, $(1) \equiv (2)$.

Μια ικανή συνθήκη για έλεγχο της ιδιότητας της μη-απώλειας πληροφορίας για μια αποσύνθεση:

Θεώρημα: Δεδομένης μιας σχέσης R και ενός συνόλου ΣE F οι οποίες πληρούνται στην R, μια αποσύνθεση της R στις σχέσεις R_1 και R_2 δεν πάσχει από απώλεια πληροφορίας αν τουλάχιστον μία από τις ακόλουθες ΣE είναι λογική συνέπεια των ΣE στο F:

- (1) $Head(R_1) \cap Head(R_2) \rightarrow Head(R_1)$
- (2) $Head(R_1) \cap Head(R_2) \rightarrow Head(R_2)$

Παράδειγμα: Εστω ότι η ΣΕ $B \to C$ ισχύει στη σχέση R(ABC). Η R αποσυντίθεται στις $R_1(AB)$ και $R_2(BC)$. Εξετάστε αν η αποσύνθεση πάσχει από απώλεια πληροφορίας.

 $Head(R_1) \cap Head(R_2) = B$

Πρέπει να δείξομε ότι ισχύει μια από τις ΣΕ (1) $B \to AB$ και (2) $B \to BC$.

Από την $B \to C$ εξάγεται η $B \to BC$ με χρήση του κανόνα επαύξησης.

Αρα, η αποσύνθεση δεν πάσχει από απώλεια πληροφορίας.

Πόρισμα: Αν $\{R_1, R_2\}$ είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας για τη σχέση R και $\{R_3, R_4\}$ είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας της σχέσης R_2 , τότε $\{R_1, R_3, R_4\}$ είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας της R.

Παράδειγμα: Αποσύνθεση της σχέσης emp_info.

emp_info

emp_id emp_name skill_id skill_name skill_date skill_lvl
--

Συναρτησιακές Εξαρτήσεις:

- 1. $emp_id \rightarrow emp_name emp_phone dept_name$
- 2. dept_name → dept_phone dept_mgrname
- 3. $skill_id \rightarrow skill_name$
- 4. emp_id skill_id \rightarrow skill_date skill_lvl

Η ακόλουθη αποσύνθεση δεν πάσχει από απώλεια πληροφορίας: emps

emp_id emp_name emp_phone dept_name

depts

dept_name dept_phone dept_mgrname

emp-skills

emp_id | skill_id | skill_date | skill_lvl

skills

skill_id skill_name

Κανονικές Μορφές (Normal Forms)

- Παρέχουν ένα τυπικό πλαίσιο για ανάλυση σχεσιακών σχημάτων βασισμένη στον ορισμό κλειδιών και συναρτησιακών εξαρτήσεων.
- Σχεσιακά σχήματα που ανήκουν σε συγκεκριμένες κανονικές μορφές έχουν ορισμένες επιθυμητές ιδιότητες (π.χ. έλλειψη ανωμαλιών ενημέρωσης).
- Οι κανονικές μορφές καθορίζονται με βάση κάποιες συνθήκες οι οποίες αν δεν πληρούνται έχουν ως αποτέλεσμα την αποσύνθεση σχημάτων σε σχέσεις οι οποίες πληρούν τις κανονικές μορφές.

Ορισμός: Δεδομένης μιας καθολικής σχέσης R, ενός συνόλου F από ΣE και μιας αποσύθνεσης $\{R_1, \ldots, R_k\}$ της R, η ΣE $X \to Y$ του F διατηρείται σε κάποια σχέση R_i της αποσύνθεσης αν και μόνο αν $X \cup Y \subseteq Head(R_i)$.

- Η διατήρηση των ΣΕ είναι μια επιθυμητή ιδιότητα:
 αν μια ΣΕ X → Y διατηρέιται σε μια σχέση R_i, τότε η επαλήθευση της ΣΕ μετά από κάποια ενημέρωση της σχέσης μπορεί να γίνει τοπικά, δηαλδή χωρίς να χρειάζεται να υπολογιστεί κάποιο ⋈.
- Μας ενδιαφέρουν αποσυνθέσεις σε κανονικές μορφές χωρίς απώλεια πληροφορίας και με διατήρηση των ΣΕ.

Παραάδειγμα: Κάθε μια από τις ΣΕ

- 1. $emp_id \rightarrow emp_name emp_phone dept_name$
- 2. dept_name → dept_phone dept_mgrname
- 3. $skill_id \rightarrow skill_name$
- 4. emp_id skill_id \rightarrow skill_date skill_lvl

διατηρείται σε κάποια από τις σχέσεις του σχήματος:

emps

emp_id	emp_name	emp_phone	dept_name
--------	----------	-----------	-----------

skills

skill_id | skill_name

Κανονική Μορφή Boyce-Codd

Μια σχέση R σε ένα σχεσιακό σχήμα με ΣE F είναι σε κανονική μορφή Boyce-Codd (BCNF) αν ισχύει η παρακάτω ιδιότητα:

για οποιαδήποτε ΣΕ $X \to A$ του F^+ η οποία διατηρείται στην R και για την οποία $A \notin X$, το X είναι κλειδί της R.

- Ενα σχεσιακό σχήμα είναι σε κανονική μορφή Boyce-Codd αν κάθε σχέση του είναι σε κανονική μορφή Boyce-Codd.
- Αν μια σχέση είναι σε BCNF αυτό σημαίνει ότι κανένα γνώρισμα της σχέσης δεν εξαρτάται συναρτησιακά από κανένα υποσύνολο των γνωρισμάτων της σχέσης το οποίο δεν είναι κλειδί.

Παράδειγμα: Η συναρτησιακή εξάρτηση

 $emp_id skill_id \rightarrow skill_date skill_lvl$

διατηρείται στη σχέση

emp-skills

emp_id	skill_id	skill_date	skill_lvl
--------	----------	------------	-----------

Από την emp_id skill_id \rightarrow skill_date skill_lvl εξάγονται με χρήση του κανόνα της αποσύνθεσης οι ΣE

 $emp_id skill_id \rightarrow skill_date$ $emp_id skill_id \rightarrow skill_lvl$

Και οι δύο διατηρούνται στη σχέση emp-skills. Δεν υπάρχει άλλη εξάρτηση η οποία διατηρείται στη σχέση αυτή. Το μοναδικό κλειδί της σχέσης είναι το ζεύγος (emp_id, skill_id). Αρα, η σχέση είναι σε BCNF.

Παρόμοια, η εξάρτηση emp_id \rightarrow emp_name emp_phone dept_name διατηρείται στη σχέση

emps

emp_id	emp_name	emp_phone	dept_name
--------	----------	-----------	-----------

Από αυτή την εξάρτηση, εξάγονται οι ακόλουθες ΣΕ

 $emp_id \rightarrow emp_name$

 $emp_id \rightarrow emp_phone$

 $emp_id \rightarrow dept_name$

οι οποίες όλες διατηρούνται στη σχέση emps. Καμία άλλη ΣΕ δεν διατηρείται στη σχέση αυτή.

Το μοναδικό κλειδί της σχέσης είναι το γνώρισμα emp_id. Αρα η σχέση είναι σε BCNF.

Με παρόμοιο τρόπο μπορούμε να δείξομε ότι ολόκληρο το σχήμα είναι σε BCNF.

Εστω τώρα ότι θέλομε να προσθέσομε την εξάρτηση dept_mgrname \rightarrow dept_name. Συνεχίζει το σχήμα να είναι σε BCNF?

Οι ΣΕ οι οποίες διατηρούνται είναι:

 $\texttt{dept_name} \to \texttt{dept_phone}$

 $\texttt{dept_mgrname} \to \texttt{dept_name}$

 $\mathtt{dept_mgrname} \to \mathtt{dept_phone}$

Αρα, το σχήμα συνεχίζει να είναι σε BCNF.

- Η κανονική μορφή BCNF είναι πολύ περιοριστική: δεν είναι πάντα δυνατόν να βρεθεί μια αποσύνθεση σε BCNF η οποία ταυτόχρονα να μην πάσχει από απώλεια πληροφορίας και να διατηρεί τις συναρτησιακές εξαρτήσεις.
- Λιγότερο περιοριστικές κανονικές μορφές μας επιτρέπουν να ορίζομε αποσυνθέσεις σχημάτων χωρίς απώλεια πληροφορίας και με διατήρηση των εξαρτήσεων.

