MAXIMUM LIKELIHOOD ESTIMATION

Leopoldo Catania

Aarhus University and CREATES

leopoldo.catania@econ.au.dk

Program for today

Today we (briefly) review the maximum likelihood estimator and see its implementation in R

- Writing a log-likelihood function
- Maximizing the log-likelihood function
- Asymptotic covariance matrix of parameters
- Standard errors
- Hypothesis Testing with the LR test

The principle of maximum likelihood

The method of maximum likelihood (ML) is a fundamental and very general estimation method, that encompasses other estimation methods, such as least squares.

Maximum likelihood estimates of parameter vector, θ , are easily obtained under few hypothesis:

- Models are *parametric*, in the sense the probability distribution can be described by a finite number of parameters, θ;
- The sample $\mathbf{X} = \{X_1, ..., X_T\}$ is draw from a family of probability distributions parametrized by an unknown parameter vector θ ;
- This probability distribution is known;
- Data drawn from this probability are iid.

The principle of maximum likelihood

The likelihood estimation is obtained, given the specification of the model, by the joint density associated with our dataset $f(X;\theta)$. Given θ fixed, then f(X;.) is the density of \mathbf{X} . Then, given that X_t is iid, we can compute the joint density of the entire sample as

$$f(\mathbf{X};\theta) = \prod_{t=1}^{T} f(X_t;\theta)$$
 (1)

The likelihood function is then defined as the joint density function, $f(\mathbf{X}; \theta)$, given **X** fixed, as a function of θ , i.e. $L(\theta; \mathbf{X}) = f(\mathbf{X}; \theta)$. Note that $L(\theta; \mathbf{X})$ is a function of θ , while **X** is fixed. We usually work with the log of the likelihood function:

$$\log L(\theta; \mathbf{X}) = \sum_{t=1}^{T} \log f(X_t; \theta)$$
 (2)

The parameter vector, θ is identified if for any $\theta_1 \neq \theta$, $L(\theta; \mathbf{X}) \neq L(\theta_1; \mathbf{X})$.

The principle of maximum likelihood

- The principle of maximum likelihood means of choosing an asymptotically efficient estimator for a set of parameters, θ , by maximizing the likelihood function with respect to this set of parameters.
- The estimation entails the calculation of the first and second derivatives of the the likelihood function with respect to the parameter vector.
- In some cases, derivatives are in closed form, but, in general, the derivatives must be computed numerically.
- The necessary first-order condition for maximizing log $L(\theta; \mathbf{X})$ is

$$\frac{\partial \log L(\theta; \mathbf{X})}{\partial \theta} \Big|_{\theta = \hat{\theta}} = 0 \tag{3}$$

Writing and maximizing a likelihood function in R

In R the steps are:

- Write a function that computes the negative of log-likelihood function
- The inputs of this function are:
 - **1** A parameter vector, θ ;
 - \bigcirc The data, X;
 - Additional optional inputs
- The output is the negative of the sum of the log-likelihood.
- Set initial values for θ.
- Maximize the log-likelihood function using the optimization routines of R such as optim().

Example: Exponential i.i.d. observations

Suppose that we have a sample, $\{x_t\}_{t=1,\dots,T}$, of i.i.d. observations extracted from an exponential distribution. We denote $X_t \stackrel{iid}{\sim} Exp(\lambda)$ with

$$f_X(x_t,\lambda) = \lambda e^{-\lambda x_t},$$
 (4)

where $x_t > 0$.

- We want to estimate the coefficient λ by ML using the information coming from the i.i.d. sample, $\{x_t\}_{t=1,...,T}$.
- Let's write an R code for this!

ML in the case of dependent observations

In financial time-series observations are rarely *iid* that is:

$$f(X_t, X_{t-s}) \neq f(X_t)f(X_{t-s}). \tag{5}$$

for s = 1, 2, ...

However, recall that every joint distribution can be decomposed in the product of the conditional and marginal distribution:

$$f(X_t, X_{t-s}) = f(X_t | X_{t-s}) f(X_{t-s}).$$
(6)

ML in the case of dependent observations

Suppose to have a time–series of T observations: X_1, \ldots, X_T . Its joint distribution can be factorized as:

$$f(X_1,...,X_T) = f(X_1) \prod_{t=2}^T f(X_t|X_1,...,X_{t-1})$$

In general we identify with \mathcal{F}_t with all the information contained in the observations up to time t, that is $\mathcal{F}_t = \{X_1, \dots, X_t\}$, with $F_0 = \{\emptyset\}$. In this way we can write:

$$f(X_1,\ldots,X_T)=\prod_{t=1}^T f(X_t|\mathcal{F}_{t-1}).$$

In financial econometrics we usually make a parametric assumption on $f(X_t|\mathcal{F}_{t-1})$ and $f(X_1)$ in order to estimate models.

Leopoldo Catania FINANCIAL ECONOMETRICS FE

Under the assumption of correct model specification, identification of the parameters, continuity and finiteness of the first three derivatives of $\log(f(\theta, X_t))$ wrt θ , the ML estimator has the following properties:

- Asymptotic Normality:

$$\sqrt{T}(\hat{\theta}-\theta_0)\stackrel{d}{
ightarrow} N(0,\Sigma(\theta_0))$$

3 $\Sigma(\theta_0) = I(\theta_0)^{-1}$, with

$$I(\theta_0) = -E_{\theta_0} \left[\frac{\partial^2 L(\theta; X)}{\partial \theta \partial \theta'} \Big|_{\theta = \theta_0} \right]$$

which is called Fisher information matrix. Detailed derivation in Newey and McFadden (1994), M-estimators.

- **1** ML estimator is the most efficient unbiased estimator, as the inverse of the Fisher information matrix is the lower bound on the variance of any estimator of θ (Cramer-Rao bound).
- **1** Invariance: The maximum likelihood estimator of $\gamma_0 = c(\theta_0)$ is $c(\hat{\theta})$ if $c(\cdot)$ is a continuous and continuously differentiable function. (By an application of the continuous mapping theorem)

Asymptotic Variance I

Given the previous results, the asymptotic covariance matrix of the MLE can be computed as

$$\begin{split} & \Sigma(\hat{\theta}) = -H(\hat{\theta})^{-1} \\ & H(\hat{\theta}) = \left. \frac{\partial^2 \log L(\theta; X)}{\partial \theta \partial \theta'} \right|_{\theta = \hat{\theta}} \end{split}$$

where $H(\hat{\theta})$ is evaluated numerically in $\hat{\theta}$.

Alternative Estimators of the asymptotic covariance matrix

Other estimators of the asymptotic covariance matrix are

• BHHH (Berndt-Hall-Hall-Hausman) or gradient outer-product:

$$\Sigma(\hat{ heta}) = \left[\sum_{i=1}^N \hat{g}_i \hat{g}_i'
ight]^{-1}$$

where \hat{g}_i is the gradient for the i-th observation computed in $\hat{\theta}$.

• Sandwich estimator (QML estimator):

$$\Sigma(\hat{\theta}) = [-H(\hat{\theta})^{-1}] \left(\sum_{i=1}^{N} \hat{g}_i \hat{g}_i' \right) [-H(\hat{\theta})^{-1}]$$

Delta Method

Delta method is an approximate method to derive the standard errors of functions of the parameter estimates. Given that:

$$\frac{\hat{\theta} - \theta}{S.E.(\theta)} \to N(0, 1) \tag{7}$$

then

$$\frac{f(\hat{\theta}) - f(\theta)}{f'(\theta)S.E.(\theta)} \to N(0,1) \tag{8}$$

The multivariate version implies an asymptotic covariance matrix of the parameters, Λ ,

$$\Lambda = J(\theta)' \Sigma(\theta) J(\theta) \tag{9}$$

where $J(\theta)'$ is the $p \times p$ matrix with the first derivatives, $f'(\theta)$ with respect to the p parameters in θ , and Σ is the asymptotic covariance matrix of θ .

Hypothesis testing in the ML context

We now focus on one of the most common testing procedure related to ML estimation: the Likelihood-ratio (LR) test.

The LR test is based on the idea that under the null hypothesis values of the log-likelihood of the unrestricted model, log L_U , and the model under \mathcal{H}_0 , log L_R , must be close. The test takes the form

$$LR = 2 \cdot (\log L_U - \log L_R)$$

As $N \to \infty$.

$$LR \rightarrow \chi^2(p)$$

where p is the number of restrictions imposed.