scheikund h1 chemisch rekenen

By: Merlet guide 2022

Borh:

elektronen die bewegen in verschilende schillen rond de atoom kern

```
K- schil:
```

2 elektronen max

L-schil:

8 elektronen max

M-schil:

18 elektronen max

Valentie elektronen:

de elektronen in de buitenste schil van de atoom

Atoom massa = Protonen + neutronen

Atoon nummer = aantal protonen

Neutronen = atoom massa - protonenl

Elektronen = antal protonen

Bijv:

```
metaal Mg(mangaan)
atoomnummer = 25
protonen = 12 (kijk in binas voor het atoom nummer)
neutonen = 13
elektronen = 12
```

Note:

een matriaal kan een verschilende hoeveel heid neutronen hebben maar het aantal protonen blijft gelijk

De atoom massa moet je afronden naar een heel getal voor de hoeveel heden neutronen en protonen

isotopen:

atoomen met een andere aantal neutronen dan protonen

Mol:

chemische hoeveel heden van een stof

Significante cijfers:

de cijfers die de nauwkeurigheid bepalen

Note

Bij significante cijfers tellen de eerste nullen niet mee aleen de nullen na het eerste cijfer

Vermenig vuldigen / delen:

antwoord in evenveel cijfers als het getal met de minte cijfers

Op / af tellen:

antwoord met evenveel decimalen als het cijfer met de minste decimalen

Massa percentage	volume per	ppm(parts per miljoen)	ppb(parts per biljoen)
massa per 100	volume per 100	parts per miljoen	parts per biljoen
deel/geheel X 100	deel/geheel X 100	deel/geheel X10^6	deel/geheel X10^9

Molariteit:

aantal mol per lieter

Concentratie:

hoeveelheid stof per lieter

Volume(V)

Vaste stof(cm³)

Vloeistof(ml)

Massa(g)

Molariteit(M) in mol/L

gas(L)

Mol(n)

Deeltjes(N)

Mol schema

V -> Massa

X dichtheid

V <- Massa

/ dichtheid

Massa -> n

/ molaire massa

Massa <- n

X molaire massa

n -> M

/ volume in L

M <- n

X volume in L

n -> N

mol X 6.02 X 10²³

n <- N

mol / 6.02 X 10^23