Operações com Transformações Lineares

Definição [3.5]: Adição (soma) de funções

Sejam $S:V\to W$ e $T:V\to W$ duas funções com o mesmo domínio, V, e o mesmo conjunto de chegada, W. Define-se a *adição*, ou *soma*, das funções S e T como sendo a função $S+T:V\to W$, tal que

$$\forall x \in V (S+T)(x) = S(x) + T(x)$$

Definição [3.6]: **Multiplicação** (produto) de uma função por um escalar Seja $T:V\to W$ uma função. Se c é um escalar de W, define-se a *multiplicação*, ou *produto*, de T pelo escalar c como sendo a função $cT:V\to W$, tal que

$$\forall x \in V (cT)(x) = cT(x)$$

Teorema [3.5]: Se V e W são espaços lineares sobre um corpo Ω e $S: V \to W$ e $T: V \to W$ são *transformações lineares*, então as funções $S+T: V \to W$ e $cT: V \to W$ são, também, *transformações lineares*.

 Seja L(V,W) o conjunto de todas as transformações lineares de domínio V e conjunto de chegada W.

Teorema [3.6]: O conjunto de todas as transformações lineares de domínio V e conjunto de chegada W, L(V,W), é um espaço linear (vectorial).

Sejam as funções S: V → W e T: V → W. A operação subtração de funções pode ser entendida como um caso particular da adição. A função S-T: V → W

$$\forall x \in V (S-T)(x) = S(x) - T(x)$$

pode ser considerada como o resultado da adição a $S: V \to W$ da função $-T: V \to W$, que é o elemento *simétrico* (ou *oposto*) de T.

Exemplo 22 [3.34]: Sejam as transformações lineares $R, U \in L(\mathbb{R}^3, \mathbb{R}^3)$, tais que

$$R(x, y, z) = (z, y, x)$$
 e $U(x, y, z) = (x, x + y, x + y + z)$

Determine as transformações lineares R+U e 3R-2U.

Solução:

$$(R+U)(x,y,z) = R(x,y,z) + U(x,y,z) = (x+z,x+2y,2x+y+z)$$

$$(3R-2U)(x,y,z) = 3R(x,y,z) - 2U(x,y,z) = (-2x+3z,-2x+y,x-2y-2z)$$

Concluindo

$$R + U : \mathbb{R}^3 \to \mathbb{R}^3$$
 e $(R + U)(x, y, z) = (x + z, x + 2y, 2x + y + z)$

$$3R-2U: \mathbb{R}^3 \to \mathbb{R}^3 \text{ e } (3R-2U)(x,y,z) = (-2x+3z,-2x+y,x-2y-2z)$$

Definição [3.7]: Composição de funções

Sejam as funções $T:U\to V$ e $S:V\to W$, em que o conjunto de chegada de T é coincidente com o domínio de S. Define-se a *composição* de S com T, como sendo a *função* composta $ST:U\to W$, tal que

$$\forall x \in U (ST)(x) = S(T(x))$$

A função composta ST : U → W é muitas vezes designada por "S após T" e representa-se por S∘T : U → W.

Teorema [3.9]: Sejam U, V e W espaços lineares sobre um corpo Ω . Se $T: U \to V$ e $S: V \to W$ são *transformações lineares*, então a função composta $ST: U \to W$ é uma *transformação linear*.

A composição satisfaz a propriedade associativa.

Teorema [3.7]: Sejam as transformações lineares $T: U \rightarrow V$, $S: V \rightarrow W$ e $R: W \rightarrow Q$. Então existe a *função composta* $RST: U \rightarrow Q$, em que

$$RST = R(ST) = (RS)T$$

 A composição não satisfaz a propriedade comutativa. Duas transformações lineares T: V → V e S: V → V dizem-se comutativas (comutam entre si) ou permutáveis se ST = TS.

Teorema [3.8]: Seja a transformação linear $T: V \rightarrow V$. Tem-se, então, TI = IT = T, em que $I: V \rightarrow V$ é a *transformação identidade*.

Definição [3.8]: Potências inteiras positivas

Seja $T:V\to V$ uma transformação linear que tem V como domínio e conjunto de chegada. Definem-se as *potências inteiras positivas* de T do seguinte modo

$$T^{k} = TT^{k-1} = T^{k-1}T$$
 , $k \in \mathbb{Z}^{+}$

e, por convenção,

$$T^0 = I$$

onde *l* é a transformação identidade. Além disso, a *lei associativa* para a *composição* permite ainda estabelecer a seguinte lei de expoentes

$$T^pT^q=T^{p+q}$$
, $p,q\in\mathbb{Z}_0^+$

Teorema [3.10]: Sejam U, V e W espaços lineares sobre um corpo Ω e as transformações lineares $S:V\to W$ e $T:V\to W$. Então:

a) Para qualquer transformação linear $R: U \rightarrow V$ e $k \in \Omega$ tem-se

$$(S+T)R = (SR) + (TR)$$
 e $(kT)R = T(kR) = k(TR)$

em que
$$(S+T)R:U\to W$$
 e $(kT)R:U\to W$.

b) Para qualquer transformação linear $R: W \rightarrow U$ e $k \in \Omega$ tem-se

$$R(S+T) = (RS) + (RT)$$
 e $R(kT) = (kR)T = k(RT)$

em que $R(S+T): V \rightarrow U e R(kT): V \rightarrow U$.

Exemplo 23 [3.35]: Sejam as transformações lineares $R, U \in L(\mathbb{R}^3, \mathbb{R}^3)$ e $T \in L(\mathbb{R}^2, \mathbb{R}^3)$, tais que

$$R(x, y, z) = (z, y, x)$$
 $U(x, y, z) = (x, x + y, x + y + z)$ $U(x, y, z) = (x, x + y, x + y + z)$

Determine as transformações lineares RU, UR, RU - UR, RUT, $(RU)^2$ e $(RU - UR)^2$.

Solução:

$$RU : \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ e } (RU)(x,y,z) = R(U(x,y,z)) = (x+y+z,x+y,x)$$

$$UR : \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ e } (UR)(x,y,z) = U(R(x,y,z)) = (z,y+z,x+y+z)$$

$$RU - UR : \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ e }$$

$$(RU - UR)(x,y,z) = (RU)(x,y,z) - (UR)(x,y,z) = (x+y,x-z,-y-z)$$

$$RUT : \mathbb{R}^{2} \to \mathbb{R}^{3} \text{ e } (RUT)(x,y) = (RU)(T(x,y)) = (x+y,0,x-y)$$

$$(RU)^{2} : \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ e }$$

$$(RU)^{2}(x,y,z) = (RU)((RU)(x,y,z)) = (3x+2y+z,2x+2y+z,x+y+z)$$

$$(RU - UR)^{2} : \mathbb{R}^{3} \to \mathbb{R}^{3} \text{ e }$$

$$(RU - UR)^{2}(x,y,z) = (RU - UR)((RU - UR)(x,y,z)) =$$

$$= (2x+y-z,x+2y+z,-x+y+2z)$$