Audition CRCN CNRS 2022 Efficient Exploration of Colossal Configurable Spaces

Paul TEMPLE

March 2022

Equipes : Spirals (Lille) ; ProGresS (Bordeaux) ; NaoMod (Nantes)

P TEMPLE Audition CNRS March 2022 1 / 17

Software variability & system complexity

JHipster: 50 options

Software variability & system complexity

Linux Kernel: 15.000 options

 $2^{15,000} \approx 10^{3,250} >> 10^{1,000} >>$ estimated # of particules

Sébastien Mosser @petitroll · 25 févr.

"the number of atoms in the visible universe is 10^80. There are 2^15000 different versions of the Linux kernel. So astrophysicists works with things way simpler than software engineers". @jmjezequel

Software variability & performances

encoding time $= 2 \ h$

encoding time = 10 h

Evaluating performance is complex

	Program Variants				
		264	264		264
Inputs		12	1		5
		1	348		10
		50	101		260

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Siegmund *et al.*, Perf. Prediction with feature interaction, ICSE'12 Siegmund *et al.*, Perf.-Influence models for config. systems, FSE'15 Guo *et al.*, Var.-aware perf. prediction, ASE'13

P TEMPLE Audition CNRS March 2022

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Assign a measure without measuring

- Similar configurations produce similar performances
- Performance prediction

Siegmund *et al.*, Perf. Prediction with feature interaction, ICSE'12 Siegmund *et al.*, Perf.-Influence models for config. systems, FSE'15 Guo *et al.*, Var.-aware perf. prediction, ASE'13

Assumptions

- Exploring all configurations is **impossible**
- Measuring performances is costly

Assign a measure without measuring

- Similar configurations produce similar performances
- Performance prediction
 - Linear models (+ interactions)
 - Incremental learning

Siegmund *et al.*, Perf. Prediction with feature interaction, ICSE'12 Siegmund *et al.*, Perf.-Influence models for config. systems, FSE'15 Guo *et al.*, Var.-aware perf. prediction, ASE'13

Assumptions

- Exploring all configurations is impossible
- Measuring performances is costly

Assign a measure without measuring

- Similar configurations produce similar performances
- Performance prediction

Users know what they want

- Technically & performance-wise
- Few configurations are acceptable
- ightarrow **Scope** the configuration space

Temple et al., Using machine learning to infer constraints for product lines, SPLC'46.

Reducing configuration space with ML

Temple et al., Using machine learning to infer constraints for product lines, SPLC'46.

P TEMPLE Audition CNRS March 2022 7 / 17

Improving the classification of software configurations

Impacts

Machine Learning is based on $\underline{\text{statistics}} \rightarrow \underline{\text{errors}}$

- Over-constraining
- Under-constraining

Improving the classification of software configurations

Impacts

Machine Learning is based on $\underline{\text{statistics}} \rightarrow \underline{\text{errors}}$

- Over-constraining
- Under-constraining

Over-constraining

- Forbid more configurations than necessary
- Lack of flexibity

Improving the classification of software configurations

Impacts

Machine Learning is based on statistics \rightarrow errors

- Over-constraining
- Under-constraining

Over-constraining

- Forbid more configurations than necessary
- Lack of flexibity

Under-constraining

- Allow more configurations than necessary
- Waste of resources and can have dramatic outcome

Improving the pipeline

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow et al., Adversarial examples, ICLR'15

Elsayed et al., Fool both humans and computers, NeurIPS'18

Sharif et al., Accessorize to crime, CCS'16

中医医学 医医医性医医性原因

Improving the pipeline

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Improving the pipeline

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow *et al.*, Adversarial examples, ICLR'15 Elsayed *et al.*, Fool both humans and computers, NeurIPS'18 Sharif *et al.*, Accessorize to crime, CCS'16

Robustifying the model

Configurations with high risk of misclassification

- ullet Adversarial retraining o retrain a model
- Enhanced exploration → what make them misclassified?

Biggio *et al.*, Evasion attacks against SVMs, ECML'13 Temple *et al.*, Adv. Configs for config. systems, EMSE'21 PRALab website

Robustifying the model

Configurations with high risk of misclassification

- ullet Adversarial retraining o retrain a model
- Enhanced exploration → what make them misclassified?

Adversarial Configurations for configurable systems

- ullet 1st application of evasion attacks to configurable systems
- Opportunity to work with PRALab
- SPLC'19 \rightarrow EMSE'21

Biggio et al., Evasion attacks against SVMs, ECML'13 Temple et al., Adv. Configs for config. systems, EMSE'21

PRALab website

10 / 17

Research Project: Adversarial ML for software testing

Support for constraints

- ullet Constraints on feature values and combinations o forbidding exploring subspaces
- Constraints may be complex → involve several features
- ullet Generation process is iterative o constraint checking strategy

Delobelle et al., Ethical Adversaries, SIGKDD Exploration NewsLetters = > 3 000

P TEMPLE Audition CNRS March 2022

11 / 17

Research Project: Adversarial ML for software testing

Support for constraints

- ullet Constraints on feature values and combinations o forbidding exploring subspaces
- ullet Constraints may be complex o involve several features
- ullet Generation process is iterative o constraint checking strategy

Future directions

- ullet Adversarial for improvement o fairness
- Adversarial sampling

Delobelle et al., Ethical Adversaries, SIGKDD Exploration NewsLetters : Section 1997 - Section 1

11 / 17

P TEMPLE Audition CNRS March 2022

Research Project: Find an efficient representation for configurations

What is wrong?

- Similar configurations → similar performances
- options as a feature vector → interactions?

Research Project: Find an efficient representation for configurations

What is wrong?

- ullet Similar configurations o similar performances
- options as a feature vector → interactions?

March 2022

Research Project: ML models design with variability management tools

Modern ML models

- 100 epochs ImageNet to train AlexaNet in 24*minutes* for **only 1.2M dollars**
- ⇒ Impossible if you are not GAFAM

P TEMPLE Audition CNRS March 2022 13 /

Research Project: ML models design with variability management tools

Modern ML models

- 100 epochs ImageNet to train AlexaNet in 24*minutes* for **only 1.2M dollars**
- \Rightarrow Impossible if you are not GAFAM

Goal of variability management

- Reducing costs to make it accessible
- Green computing
- ullet Reduce complexity of models o explainability

You et al., ImageNet trained in 24 Minutes, ICPP'18 () () () () () ()

P TEMPLE Audition CNRS March 2022 13 / 17

Integration in Spirals

One of the **most active** French configurable systems team

Variability, prediction performance

- Edouard Guegain
- Clément Quinton
- Romain Rouvoy

Adaptable systems

- Laurence Duchien
- Lionel Seinturier

Machine learning

Patrick Bas

Integration in ProGresS

Missing a ML dimension to start collaborations

Software variability and evolution

- Thomas Degueule
- Laurent Réveillère

Green computing

Jean-Rémy Falleri

Machine learning and explainability

Collaborations with BKB

Integration in NaoMod

Research in relations with companies

Software variability and architecture

- Gerson Sunyé
- Dalila Tamzalit

ML4SE

- Dalila Tamzalit
- Project with GEODES (Montréal, Canada)

Low-code

- Lowcomote EU project
- User in the loop

Efficient Exploration of Colossal Configurable Spaces

- Software variability; Machine learning; Performance
- Testing performances of configurable systems is difficult
- Adversarial configurations
- Research Project:
 - representation problem
 - ullet adversarial for improvement o fairness; adversarial sampling
 - ullet var. management for models o green computing, reducing complexity
- teams:
 - Spirals, Lille
 - ProGresS, Bordeaux
 - NaoMod, Nantes

March 2022

17 / 17