Ling 413 Term Project: Topic Models for Healthcare

Jacob Fuehne jfuehne2

Issued: 11/16/2020

Due:

Task#1: 12/04/2020 (by midnight): hard deadline!!!

Tasks #2a and #2b: 12/18/2020 (by midnight): hard deadline!!!

Total points: 100

The goal of this assignment is to give you hands on experience with topic models for a real application. Thus, you will implement and experiment with some topic models, and then write a short report about your experiences and findings (in a file called analysis.txt). As you know, topic models capture the most important topics in a text corpus.

Note: This project with this healthcare dataset is NOT publishable (due to data compliance issues, as explained in class)!!!

Scenario:

You are a newly employed text analyst at a data analytics company. Congratulations! Your first project is for a new client, a (new) healthcare company. This company is in the process of collecting a very large dataset of patient comments from all their clinical locations throughout the country and is interested in getting insights on patient experience from this collection (i.e., insights into patient comments about doctors, nurses, clinics, healthcare services, etc.). They will deliver the data in 6 months.

However, since this is the first project on healthcare for your company, your boss would like you to start working on it ASAP and is asking you to perform some explorative analysis of a similar dataset (of your choice) and prepare a preliminary report on what kinds of insights can be generated from such data.

For this assignment, you will sit down and decide on the design decisions you need to make to solve the task, then test your models on a relevant healthcare dataset, and finally write a report on the results. Specifically, to help you in this process, you are asked to work on a series of tasks which describe the exploratory analytics process for this application.

1) <u>Task#1: Corpus collection and Corpus Descriptive analysis</u> [20 points]

First, you have to find and collect a dataset that is similar to the one the healthcare client will provide later. The task is rather challenging since such secondary data are difficult to find due to compliance issues. However, after considerable research, you manage to find a freely-available patient review dataset from RateMD (http://ratemds.com), one of the most popular platforms for physician reviews in the United States (Note: we obtained IRB approval for using this dataset for this purpose).

RateMD Data Description:

Founded in 2004, RateMD has the largest number of user-submitted reviews with narratives by a large margin. In RateMD, every doctor is given an ID which uniquely specifies a doctor's profile information: name, gender, location, specialization. The website also provides the overall average rating for a doctor (a real number between 1 and 5, with 1 being the worst rating) and the review text. For this project you decided to download and collect a corpus of 20,421 patient reviews together with some meta-data (as shown below).

For each doctor, the entry consists of a line of 4 tab-separated fields: [Dr's Name; Gender; Location; Specialization] followed by [Overall rating; Review text], one per line, depending how many people rated this doctor.

For example, Dr. Thomas here has been reviewed by two people, so there are two lines [Overall rating; Review text]:

Dr. Shirley A. Thomas Female Fishers, IN Gynecologist (OBGYN)

Overall rating: 4.75 Best doctor in the world. She not only is beyond knowledgeable from her 40 years of practice but she cares about us.. A lot. She doesn't need the money, she does this because it gives her joy delivering babies. I would fly from Cali to see her, that's how much I trust her.

Overall rating: 3.75 Dr Thomas stays up to date with new information, which makes me feel confident each time I see her. I feel like she is very through and great about making sure that all of my questions are answered, and I trust her advice, which adds ...

You will work on the following problems:

Problem#1:

Do a descriptive analysis of your corpus and provide (using the table below): the distribution of reviews per gender and sentiment (show both count and percent coverage). Here the sentiment can be only positive or negative -- determined by mapping the overall ratings of at most 3 into negative (i.e., [1,3]) and the rest into positive (i.e., (3,5]). E.g., the overall ratings of the example above maps into positive sentiments.

Gender		timent t and %)	Total (count and %)
	Positive (count, % of gender, % of total)	Negative (count, % of gender, % of total)	
Female	2953 61.44% 14.46%	1853 38.55% 9.07%	4806 23.53%
Male	10616 67.98% 51.98%	4999 32.01% 24.47%	15615 76.45%

Also provide and comment on the size of the reviews in the corpus: i.e., the length of the smallest review and of the largest review, as well as the average length of the reviews in the corpus. Here the length of a review is defined as the number of tokens (i.e., any sequence of characters separated by space and/or beginning/end of review).

ANSWER:

(assuming we exclude the reviews that were blank)

The longest review is 899 tokens. The shortest review is 1 token. And the average length of reviews was 65 tokens long.

Problem#2:

Analyze and explain why this dataset from RateMD is a valid, relevant corpus for your project. For this, you are referred to the corpus design principles discussed in class (i.e., language variety of interest, sampling, representativeness, etc.). In particular, consider the following helping questions and fill in the entries in the table below.

Note: Your reference corpus is the corpus to be provided by the healthcare company.

No.	Questions	RateMD corpus	Healthcare company's
			corpus
			(i.e., reference corpus)
1	What is the language variety of the	Reviews written by	Reviews written by
	corpus (i.e., genre)?	patients that have been	patients of the
		seen by doctors on	company's clinics
		RateMD	
2	What is the size of the corpus?	20,421 reviews	500,000 reviews
3	What meta-data is provided with the	Doctor's name, gender,	Doctor's name, gender,
	reviews?	office location, type of	clinic location; review
		doctor, review	sentiment
		sentiment	
4	What socio-demographic information is	N/A	Gender, age, economic
	provided about the patients who wrote		and educational status
	the reviews?		
5	Is the corpus balanced along the meta-	No (the dimensions are	No (the dimensions are
	data dimensions considered? (look only	not uniformly	not uniformly
	at sentiment and gender)	distributed. There are	

more than 3x the	distributed; they exhibit
number of reviews for	a natural distribution)
male doctors. There is	
also a slight bias	
between the % number	
of positive and negative	
reviews for male and	
female. It's a natural	
distribution)	

Compare the answers to the questions in the table above (3rd and 4th columns) and use this comparison to identify and comment on one important disadvantage of using RateMD as a good, relevant corpus for this project (i.e., 'good, relevant' here means how similar it is to the corpus the healthcare company will provide in the future).

<u>Hint:</u> Think of who is writing the reviews for RateMD. How does this compare with the healthcare company's data (i.e., who wrote of the reviews).

ANSWER:

Since the goal of the project in the scenario is to get insights into the patient experience, the fact that the RateMD corpus has no demographic information about patients is a big disadvantage. With these anonymous reviews, there is no way to get insight into how people of different backgrounds are experiencing their visits to different doctors. If there was a certain demographic of patients that was disproportionately having negative experiences, it would be impossible to find out with this dataset. And if that were true, it would be something that the hypothetical company in the scenario would be very interested to know about.

2) Task#2a: Exploratory Analysis of Corpus with LDA [40 points]

You have to write a python program that takes as input the corpus (i.e., your RateMD corpus) along with a given number of topics k, and generates these topics. For this task you will experiment with LDA (Latent Dirichlet Allocation).

Specifically, as explained in class, in this procedure you have to consider a number of steps:

Step 1: Clean the corpus

Your text corpus has to be cleaned before you give it as input to the topic model.

Thus, you have to decide on what kind of cleaning steps you need to consider. Start by considering the cleaning procedures suggested for the Wikipedia case study done in class.

- Lowercase and Punctuation Removal
- Stop word removal
- Stemming vs. Lemmatization

- Other data cleaning steps
 - o removal of File attachment,
 - o removal of Image attachments, URLs, Infobox, XML labels, etc.
 - o Spelling correction
 - o Your own stop list
 - Filter extremes
 - remove any words that were in at most i documents (i.e., i = 5) and any word that appeared in more than x% of documents (i.e., x = 60)
 - Other word removal

Which of these steps make sense here? Any other steps necessary but not listed there? Moreover, you will experiment with lemmatization as well, so you have to run the LDA model *with* and *without* lemmatization (as shown below). And you have to calculate the runtime for the lemmatization. How long did it take?

ANSWER:

It makes sense to convert tokens to lowercase, to remove punctuation, remove stop words, remove words with length less than 3, and to filter out the extremes. Specifically, I choose to filter out the words that have occurred in less than 4 articles and filter out the words that have occurred in more than 40% of the articles.

Step 2: Create the dictionary

After you have cleaned your corpus, you will create the term dictionary. How large is your dictionary? **ANSWER:**

8162 unique tokens

<u>Step 3:</u> Convert the list of documents in your corpus into Document-Term Matrix using the dictionary prepared at Step 2 (again, a term is a word).

Step 4: Run the LDA model on the document-term matrix

Here you have to run LDA with two sets of parameters:

- 1) Set 1: number of topics (k = 10), number of passes (pass = 20), and number of iterations (iterations = 2000).
- 2) Set 2: number of topics (k = 20), number of passes (pass = 20), and number of iterations (iterations = 2000).

For each LDA run you have to calculate the runtime. How long did it take to run with Set 1 and how long with Set2?

ANSWER:

```
In [127]: #Task 2a - Run the LDA model on the document term matrix
          # LDAset1 = Lda.load("../assignment/LDAset1model-NoLemma/model")
          # if model is lost, create a new file with this code
          start = time.process_time()
          LDAset1 = Lda(mycorpus, num_topics=10,id2word=dictionary,passes=20,iterations=2000)
          set1TimeElapsed = time.process time()-start
          print("Elapsed time for set1 in seconds:", set1TimeElapsed)
          #save that model with this code:
          LDAset1modelNoLemma = "../assignment/LDAset1model-NoLemma/model"
          LDAset1.save(LDAset1modelNoLemma)
          Elapsed time for set1 in seconds: 125.734375
In [128]: #Task 2a - Run the LDA model on the document term matrix
          #Set2:
          # LDAset2 = Lda.load("../assignment/LDAset2model-NoLemma/model")
          # if model is lost, create a new file with this code
          start = time.process_time()
          LDAset2 = Lda(mycorpus, num_topics=20,passes=20,id2word=dictionary, iterations=2000)
          set2TimeElapsed = time.process_time()-start
          print("Elapsed time for set2:", set2TimeElapsed)
          #save that model with this code:
          LDAset2modelNoLemma = "../assignment/LDAset2model-NoLemma/model"
          LDAset2.save(LDAset2modelNoLemma)
          Elapsed time for set2: 271.796875
```

It took 125.73 seconds to run with Set 1 and it took 271.80 seconds to run with Set 2. The preprocessing step took about 2.05 seconds.

Step 5: For each of the k topics, print the top 10 words

After following the LDA procedure outlined in steps 1-5 above, work on the following problems:

Problem#1:

Here you run the LDA models (with Set1 and Set2, respectively) without lemmatization. Place the topics in two tables (showing the top 10 words per topic as done in class: Table 2.1 shows the Topics 1-5, and Table 2.2. shows the Topics 6-10). Then analyze the goodness of your topics – meaning, manually label each topic with a topic word or phrase identifying its theme. Could you find a label for each of your topics? Which ones were easy to label and which were noisier (and thus, not easy to label)? SET 1 - NO LEMMA

Topic1 – waiting time	Topic2 – bedside manners	Topic3 – Obstetrics	Topic4 – Las Vegas surgeons	Topic5 – Fuzzy, semantic category
				not clear
office	doctor	daughter	pain	doctor
staff	recommend	son	surgery	patients
time	manner	child	back	patient
wait	great	baby	years	like
appointment	bedside	pregnancy	vegas	care
doctor	excellent	delivered	two	medical
get	knowledgeable	first	months	doctors
see	would	old	without	time
never	caring	birth	severe	dont
room	highly	hospital	las	know

Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Chronic issues	Highly praised	Time	Critical	Fuzzy,
	reviews	dedication	procedures	semantic
				category
				not clear
years	doctor	time	surgery	told
knee	best	staff	surgeon	would
issues	ever	always	would	said
tooth	years	great	recommend	doctor
health	one	feel	staff	went
doc	ive	questions	procedure	back
top	life	doctor	went	never
care	doctors	takes	great	didnt
helped	hes	friendly	cancer	could
skin	seen	office	experience	see

SET 2 – NO LEMMA

Topic1 – Fuzzy, semantic	Topic2 – Fuzzy, semantic	Topic3 – waiting time	Topic4 – comfort	Topic5 – Fuzzy, semantic
category not	category not	8		category not clear
clear	clear			
01001				
doctor	surgery	wait	feel	son
like	pain	time	staff	reviews
time	surgeon	appointment	great	rather
dont	back	room	made	could
get	procedure	waiting	like	year
know	went	minutes	comfortable	one
good	performed	hour	really	old
doesnt	breast	long	make	school
see	still	exam	makes	read
want	done	waited	office	may
Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Obstetrics	Life Saving	Second opinion	Orthopedics/plastic	Fuzzy, semantic
0000000	2110 2011115	Second opinion	surgery	category not clear
			Surgery	category not crear
child	life	second	patel	care
baby	husband	opinion	hes	patient
pregnancy	cancer	eye	tooth	health
children	years	straight	many	primary
daughter	saved	correct	able	years
delivered	heart	clinic	years	issues
pregnant	daughter	eyes	nose	specialist
first	mother	arrogant	helped	lack

love	god	get	teeth	quality
kids	thank	fix	top	uncaring
T : 11	T. : 12	T. 12	T 1.1.4	m : 15
Topic11 –	Topic12 –	Topic13 –	Topic14 –	Topic15 –
Fuzzy, semantic	bedside	Time dedication	Phone calls	Highly praised
category not	manners			reviews
clear				
told	manner	questions	office	best
doctor	bedside	time	staff	doctor
went	good	answer	rude	ever
said	cold	staff	doctor	patients
would	weight	always	front	one
problem	manners	answered	never	cares
didnt	root	answers	phone	years
back	pleasant	concerns	service	doctors
never	efficient	professional	calls	ive
got	loss	treatment	ever	hes
Topic16 –	Topic17 –	Topic18 –	Topic19 –	Topic20 –
Highly praised r	Phone calls 2?	Insurance coverage	Very negative	Highly praised revie
eviews 2?	Thone cans 2.	msurance coverage	reviews	ws 3?
recommend	called	insurance	doctor	doctor
would	office	medical	rude	staff
highly	call	test	ever	time
anyone	would	tests	worst	always
doctor	told	results	even	great
great	get	patients	side	caring
excellent	even	also	away	knowledgeable
family	said	treatment	experience	helpful
staff	back	medication	horrible	takes
wonderful	see	health	stay	excellent

ANSWER:

For Set1, I was able to come up with a label for 8 out of 10 of the topics. I found waiting time, bedside manners, obstetrics, Time dedication, and Highly praised reviews easy to label, and I found chronic issues, critical procedures, and Las Vegas surgeons to be more difficult to label. As mentioned, I was unable to find a clear label for Topic5 and Topic10.

For Set2, I was able to come up with a label for 15 out of 20 of the topics. I also found myself with several topics (16,17,20) that I would consider to be semantic duplicates of other topics. With labelling, I found waiting time, comfort, Obstetrics, Life Saving, Second opinion, bedside manners, Time dedication, Phone calls, very negative reviews, and Insurance coverage to be easy to label. I think that the various highly praised reviews topics (15, 16, 20) had clear cohesion, but it was not clear why they formed seperate topics. The same would apply to the two phone calls labels (14,17). As mentioned, I was unable to find a clear label for Topics 1, 2, 5, 10, and 11. I found Topic9 Orthopedics/plastic

surgery to be difficult to label because I thought it originally might have been something related to dentistry, but after looking at instances of Patel and thinking about this topic carefully, I came to the conclusion that topic9 is likely relating to reconstructive/appearance based procedures that orthopedic surgeons and plastic surgeons would perform. I believe Patel was included here because there is an orthopedic surgeon named Patel with many reviews where they are mentioned by name.

Problem#2:

Follow the instructions for Problem#1 above, but with lemmatization this time. Consider both noun and verb lemmatization (with WordNetLemmatizer from NLTK). Don't forget to calculate the runtime for the lemmatization step.

ANSWER:

```
In [145]: #Task 2a - Run the LDA model on the document term matrix
          #Set1 Lemma:
          # LDAset1Lemma = Lda.load("../assignment/Lemma/LDAset1model-Lemma/model")
          # if model is lost, create a new file with this code
          start = time.process_time()
          LDAset1Lemma = Lda(mycorpusLemma, num_topics=10,id2word=dictionaryLemma,passes=20,iterations=2000)
          set1TimeElapsed = time.process_time()-start
          print("Elapsed time for set1 lemma in seconds:", set1TimeElapsed)
          #save that model with this code:
          LDAset1modelLemma = "../assignment/Lemma/LDAset1model-Lemma/model"
          LDAset1Lemma.save(LDAset1modelLemma)
          Elapsed time for set1 lemma in seconds: 153.21875
In [146]: #Task 2a - Run the LDA model on the document term matrix
          #Set2 Lemma:
          # LDAset2Lemma = Lda.load("../assignment/Lemma/LDAset2model-Lemma/model")
          # if model is lost, create a new file with this code
          start = time.process time()
          LDAset2Lemma = Lda(mycorpusLemma, num_topics=20,id2word=dictionaryLemma,passes=20,iterations=2000)
          set2TimeElapsed = time.process_time()-start
          print("Elapsed time for set2 lemma in seconds:", set2TimeElapsed)
```

Elapsed time for set2 lemma in seconds: 254.0625

LDAset2modelLemma = "../assignment/Lemma/LDAset2model-Lemma/model"

#save that model with this code:

LDAset2Lemma.save(LDAset2modelLemma)

Repeating my answers for problem1, but with using lemma, I kept all of the same filters for my preprocessing and simply added lemmatizing for noun and verbs. I found that the new dictionary was 7041 unique tokens and that the preprocessing step with lemmatization is 67.59 seconds (compared to 2.05 seconds without lemmatization). Training the LDA model for set1 with the lemmatized dictionary took 153.22 seconds (compared to 125.73 seconds without) and it took 254.06 seconds for set2 (compared to 271.80 seconds without). This leads me to conclude that the preprocessing time considerably increases with lemmatization, but the time to train the model may increase or decrease with lemmatization, depending on the number of topics.

SET 1 - LEMMA

SEI I - LEIVINIA		1	T	1
Topic1 –	Topic2 –	Topic3 –	Topic4 –	Topic5 –
Highly positive	Highly positive	Time dedication	Fuzzy,	Critical
reviews	reviews 2?		semantic	procedures
			category not	
			clear	
doctor	great	recommend	doctor	surgery
care	life	staff	like	procedure
patient	staff	doctor	say	surgeon
year	patel	would	know	recommend
best	save	great	would	would
time	best	highly	get	result
see	thank	time	want	perform
always	doctor	question	make	cancer
take	doc	answer	never	breast
ever	know	helpful	dont	first
Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Phone calls	Waiting time	Chronic issues	Insurance	Prescriptions
			coverage	and
				diagnosing
staff	wait	pain	tell	problem
office	time	surgery	test	medication
call	appointment	back	call	treatment
rude	see	year	insurance	prescribe
doctor	hour	glyman	say	diagnose
patient	get	dentist	would	condition
phone	room	knee	doctor	side
front	minute	work	get	help
service	doctor	life	see	give
nurse	office	problem	take	medical

SET 2 - LEMMA

Topic1 –	Topic2 –	Topic3 –	Topic4 –	Topic5 –
Waiting time	Highly positive	bedside manners	Office staff	Responsiveness
	reviews			
wait	care	manner	staff	call
time	recommend	make	service	day
office	patient	feel	office	tell
doctor	doctor	bedside	medical	get
see	year	child	wife	back
get	would	baby	poor	take
appointment	excellent	great	competent	would
staff	physician	comfortable	provide	see
hour	highly	deliver	lack	week
patient	family	pregnancy	receive	give
Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Insurance coverag	Fuzzy, semantic	Very negative	Highly positive	Chronic issues
e	category not	reviews	reviews 2?	
	clear			
insurance	say	son	staff	tooth
test	tell	practice	great	arrogant
doctor	would	rude	doctor	hip
pay	didnt	stay	helpful	allergy
medical	want	staff	friendly	disorder
result	know	away	knowledgeable	root
bill	never	else	office	anxiety
refuse	get	terrible	recommend	perfect
send	back	wouldnt	always	open
visit	think	worst	time	headache
Topic11 –	Topic12 –	Topic13 –	Topic14 –	Topic15 –
Fuzzy, semantic	Prescriptions	Long term joint	Time dedication	Fuzzy, semantic
category not clear	and treatment	pain		category not clear
daughter	medication	pain	time	surgery
hospital	find	year	question	surgeon
clinic	patient	back	answer	would
accept	try	knee	take	breast
brain	help	life	concern	result
old	get	surgery	make	recommend
completely	listen	ago	feel	great
dad	work	help	ask	recovery
tumor	treatment	injury	listen	fix
incompetent	prescribe	month	like	hand
Topic16 –	Topic17 –	Topic18 –	Topic19 –	Topic20 –
Highly positive re	Serious	Fuzzy, semantic	Stressful	Highly positive revie
views 3?	condition	category not clear	exams/procedures	ws 4?
, 10 W 5 5 .	diagnosis	category not creat	Orams, procedures	115 1.
	diagnosis			

doctor	treatment	husband	procedure	doctor
life	condition	tell	perform	best
patient	diagnose	year	exam	ever
care	opinion	take	check	see
like	diagnosis	one	use	year
know	treat	see	prompt	one
treat	cancer	look	nervous	ive
people	option	find	felt	know
help	disease	month	prior	love
save	second	still	examination	doc

ANSWER CONT.:

For set1 lemma, I was able to come up with a label for 9 out of 10 of the topics. I found time dedication, critical procedures, phone calls, waiting time, chronic issues, insurance coverage, and prescriptions and diagnosing to be easy to label. As had happened previously in problem1, I found that there were multiple topics that seemed to have a theme of highly positive reviews. And just as before, these topics had clear cohesion, but they may not have needed to have been seperate topics. I was unable to come up with a label for Topic4.

For set2 Lemma, I was able to come up with a label for 17 out of 20 of the topics. I also found myself with several topics (9,16,20) that I would consider to be semantic duplicates of other topics. I found that waiting time, bedside manners, office staff, responsiveness, insurance coverage, chronic issues, prescriptions and treatments, long term joint pain, time dedication, serious condition diagnosis, and stressful exams/procedures to be easy to label. As with the No Lemma set two, I think that the various highly praised reviews topics (2,9,16,20) had clear cohesion, but it was probably not semantically necessary for them to be in different topics. I was unable to come up with a label for topics 7, 11, and 15.

Problem#3:

Compare your program's outputs with and without lemmatization for k=10 and also for k=20 (Sets 1 and 2). Which of these settings generates better topics? Is lemmatization worth doing? For this, compare the goodness of the topics with and without lemmatization and across parameter sets. Analyze and explain.

ANSWER:

Comparing the results of set 1 and 2, with and without lemmatization, I think it is clear to see that lemmatization will provide better cohesion among topics, and it will produce less ambigious topic groupings. The best overall approach would appear to be Set 1 with 10 topics and applying lemmatization, as this results in the smallest percentage of "fuzzy" labels. Considering that in Set 1 without lemmatization, I came up with a label of "las vegas surgeons" (chosen after skimming through the dataset because there was a seemingly disproportionate high number of reviews for surgeons in the Las Vegas area, and it seemed that the LDA model had grouped these together), I think it is also reasonable to say that the topics generated with lemmatization seemed to be more useful/generalizable.

3) Task#2b: Exploratory Analysis of Corpus with ccLDA [40 points]

Problem#1:

Split the RateMD corpus into two collections of reviews along the gender dimension: collection C1 will contain reviews about female doctors, and C2 reviews about male doctors. Further, split each collection in two sub-collections on the sentiment dimension: e.g., C1.1 (positive reviews about female doctors) and C1.2 (negative reviews about female doctors), etc.

Replicate the data preparation step in Task#2a above (i.e., data cleaning) and run the model with ccLDA instead of LDA. You have to make sure that the data you give as input to ccLDA is in the format required by ccLDA. For this, you have to read the readme file and run the topic model with two sets of parameters:

Set1: 10 topics and 2000 iterations
 Set2: 20 topics and 2000 iterations

Calculate the runtime of ccLDA in each setting.

What do you notice? Is the ccLDA runtime faster than the LDA running time in Python (across similar sets of parameters)?

Show the 10 topics (top 10 words per topic) and the 20 topics, respectively. Can you label them? How many do you think are noisier?

ANSWER:

I found that the ccLDA model takes 333.66 seconds for Set1 and 508 seconds for Set2, thus making ccLDA considerably slower than LDA with lemmatization (153.22 and 254.06 seconds respectively). However, for topic cohesion, ccLDA is clearly superior for the 10 topic list, as I found that I was able to label 9 out of 10 of the topics for set1. I think this was less true of the 20 topic list, as I found myself confused when labelling groups. I only achieved 16 out of 20 for set2. While not listed because there are too many top ten lists, being able to cross-reference the top ten lists of the different collections was very beneficial to deciphering uncertain topic labels, or to make others more specific (ie, highly positive reviews can clearly be seen as sentiment based reviews by cross referencing the negative collections top ten lists). I do think, however, that the 1 fuzzy topic label left for set1 was slightly less semantically coherent than it was for LDA. I think this was also true for the 4 fuzzy labels of set2. It would seem to me that ccLDA has the effect of making clear labels more clear, while making some fuzzy labels even worse.

SET 1 - ccLDA

Topic1 –	Topic2 –	Topic3 –	Topic4 –	Topic5 –
Wait times	Diagnosing	Chronic issues	Time	Family
			dedication	doctor/pediatricians?
wait	patient	back	time	year
call	medical	pain	best	best
appointment	treatment	problem	question	see
get	physician	month	like	take
time	condition	year	feel	husband
see	diagnosis	week	answer	life
office	issue	would	never	son

hour	practice	get	make	hospital
minute	health	find	talk	could
day	problem	could	listen	never
Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Fuzzy, semantic catego	Office staff	Bedside manners	Appearance	Sentiment focused
ry not clear			related	reviews
			procedures	
get	staff	best	best	doctor
say	best	would	would	best
tell	office	doctor	look	patient
want	doctor	recommend	procedure	care
dont	patient	manner	experience	ever
try	service	bedside	make	see
didnt	work	anyone	one	know
think	visit	child	result	one
know	good	baby	work	help
ask	need	first	even	find

SET 2 - ccLDA

Topic1	Topic2 –	Tonio?	Topical	Tonio5
Topic1 –		Topic3 –	Topic4 –	Topic5 –
Fuzzy, semantic	Office staff	Fuzzy, semantic	Family doctor	Chronic issues
category not clear		category not clear		
one	staff	get	patient	pain
find	best	see	medical	back
review	office	first	care	year
say	nurse	could	year	help
give	great	day	physician	give
enough	extremely	one	practice	walk
believe	also	visit	health	better
read	nice	come	family	problem
different	helpful	make	treat	physical
may	always	find	many	month
Topic6 –	Topic7 –	Topic8 –	Topic9 –	Topic10 –
Time dedication	Fuzzy, semantic	Sentiment based	Sentiment based	Obstetrics
	category not clear	reviews	reviews 2?	
time	know	doctor	would	child
question	dont	ever	best	daughter
answer	like	best	recommend	first
take	want	one	anyone	baby
concern	people	life	doctor	son
ask	think	ive	need	old
explain	doesnt	see	experience	husband

best	help	meet	refer	pregnancy
give	someone	year	extremely	best
seem	see	find	friend	since
Topic11 –	Topic12 –	Topic13 –	Topic14 –	Topic15 –
Fuzzy, semantic	Bedside	Comfort/ability to	Wait times	Insurance
category not clear	manners	feel at ease		
tell	best	make	wait	office
say	patient	like	time	insurance
didnt	manner	feel	appointment	visit
even	care	time	hour	service
ask	bedside	felt	see	get
take	doctor	patient	room	pay
get	listen	really	minute	need
come	knowledge	never	long	work
see	seem	listen	get	try
need	interested	much	late	make
Topic16 –	Topic17 –	Topic18 –	Topic19 –	Topic20 –
Critical procedure	Phone service	Diagnosing	Sentiment based	Appearance related p
S			reviews 3?	rocedures
surgery	call	treatment	best	best
hospital	get	problem	doctor	look
would	office	condition	good	procedure
day	back	diagnose	care	eye
perform	phone	medication	really	result
cancer	never	test	take	face
surgeon	return	diagnosis	doc	year
procedure	day	symptom	job	work
put	appointment	give	nice	breast
two	even	also	happy	want

Here is where you can download ccLDA: http://michaeljpaul.com/downloads/mftm.php Here is a link to the ccLDA paper that might help you in this process. You do not have to fully understand the model details, but you should know how to run it, what kind of input it accepts and what kind of output it generates:

http://www.aclweb.org/anthology/D09-1146

Extra-credit problem: [15 points]

[Due date: 12/18/2020 (by midnight): hard deadline!!!]

a) Repeat **Task#2a** above, but this time, instead of giving LDA a bag of words as input, train it on a tf-idf representation (i.e., the new corpus representation: tf-idf real-valued weights). (Note: use **ntc** as the SMART scheme).

Show the 10 topics and the 20 topics, respectively (for each, show the top 10 words per topic). Can you label them? How many do you think are noisier? Are the output topics better than the ones you obtained at Task#2a? Why/why not? Explain.

b) In your opinion, is tf-idf useful for topic modeling? Explain. If yes, in which steps of the process (i.e., for what purpose)? Elaborate.

Project Deliverables:

- write a README file including a detailed description of the functionality of your code, and complete instructions on how to run them;
- make sure you include your name (code and README file);
- make sure all your programs run correctly (Jupyter notebook file(s) or a python-program.py);
- include the answers to all the questions at each task (i.e., your report) in in a file analysis.txt (i.e.: submit the file analysis.txt with answers to Task#1 no later than Dec. 4th; and the same file, with the answers to all tasks by Dec. 18th).