Manas Jyoti Buragohain

Website: manasburagohain.github.io Mobile: 734-881-5295 Github: github.com/manasburagohain LinkedIn: linkedin.com/in/manas-jyoti

EDUCATION

University of Michigan

Ann Arbor, MI, USA

Email: manasjb@umich.edu

Master of Science in Robotics

Sept 2019 - April 2021 (expected)

GPA: 3.90/4.0

Courses: Deep Learning for Computer Vision, Foundations of Computer Vision, Advanced Topics in Computer Vision, Machine Learning, Applied GPU Programming

Delhi Technological University

Delhi, India

Bachelor of Engineering in Electronics and Communication Engineering

Aug 2013 - May 2017

Courses: Digital Image Processing, Computer Vision, Pattern Recognition, Robotics & Object Tracking Leadership Experience: Team Lead for DTU - AUV Student Research Team (Aug 2014 – May 2017)

SKILLS SUMMARY

- Concentration Areas: Computer Vision, Deep Learning, 3D Reconstruction
- Progamming Languages: Python, C, C++, JavaScript, HTML, Bash
- Tools: PyTorch, PyTorch3D, OpenCV, CUDA, Caffe, NumPy, Matplotlib

Research Experience

Johnson AI Lab, University of Michigan

Ann Arbor, MI, USA

Jan 2020 - Present

- Graduate Research Assistant | Advisor: Justin Johnson
 - $\circ\,$ Designed a grid based point cloud prediction network using ResNet-50 backbone achieving state of the art performance.
 - Developed a novel approach for point cloud refinement using local context and attention-based supervision through an augmented Transformer Architecture.
 - Implemented differentiable Top-K selection through Reparameterizable Subset Sampling for face selection using customized CUDA Kernels.

Work Experience

NXP Semiconductors

Noida, India

* ADAS Engineer, Functional Validation

Aug 2017 - feb 2019

- Coded C++ programs for Advanced Driver Assistance System (ADAS) system to perform Lane and Pedestrian Detection using SSD architecture optimized for embedded systems.
- Executed continuous testing and integration of Low Light Noise Reduction and Histogram of Gradients Generation modules for accelerating hardware computation on ADAS system.
- Formulated and streamlined C++ unit tests of FlexCAN and LINFlex protocol modules for intra vehicular communication.

Selected Projects

- Sparse Neural Generative Inference Based Pose Estimation: Attempted to build a particle filter based pose estimator where each particle learns latent embedding to infer pose, object likelihood, and re-sampling objective iteratively. Key: Particle Filter, PyTorch, Pose Estimation, RGB-D
- Single Image 3D Reconstruction based on Conditional Generative Adverserial Networks: An end-to-end conditional GAN framework for generating 3D objects from single RGB image. We achieve improved qualitative 3D reconstructions compared to the Pixel2Mesh baseline. Key: 3D Reconstruction, PyTorch, Deep Learning, GAN
- Probabilistic Data Association for Semantic SLAM with Loop Closure Detection: Replicate and improve upon the work of Bowman et al with augmentations to object detection framework along with incorporation of loop closure for better offline map generation. Key: SLAM, Objection Detection, Stereo Vision, Depth Estimation, PyTorch, Python, MATLAB
- Robot Middle-ware Development: Developed a web-based dynamic simulator and set-point controller for mobile manipulators like Fetch, Baxter and Sawyer. Implemented motion planners like A*, Bi-directional RRT-connect and RRT* in the simulator for any obstacle environment. Key: JavaScript, Path Planning, Manipulator Modelling, A-Star, RRT
- Slam and Path Planning for MBot: Explored and implemented various mapping, path planning and motion control algorithms on a simulation model for a differential drive robot. Key: C++, LIDAR, SLAM, A-Star, Path Planning
- 6-DOF Serial Link Robotic Manipulator: Produced a codebase in Python to drive serially connected motors autonomously, employing object detection using a kinect camera suite for pick-n-place operation. Key: Python, Manipulator Modelling, Objection Detection, OpenCV, Path Planning Smoothing, State Machines
- Mobile Inverted Pendulum System: Designed a cascaded control architecture to balance a two-wheeled robot and to autonomously drive in pre-defined trajectories. Key: C, inverted Pendulum, Trajectory Following, IMU, PID, Beaglebone, Robot Control Library

PUBLICATIONS

• Fish species classification using graph embedding discriminant analysis: Conference on Machine Vision and Information Technology, 2017. Authors: Manas Jyoti Buragohain*, Snigdhaa Hasija*, and S. Indu