Mathematical Logic Assignment 3

522030910158 Song Yuanyi

November 2024

- **1.** Let $\alpha = ((A \vee (B \wedge C)) \leftrightarrow ((A \vee B) \wedge (A \vee C)))$. Applying the parsing algorithm, check α from left to right.
 - 1. The first symbol is (, and the second symbol is (, so scan for balanced expressions to $\operatorname{find}(A \vee (B \wedge C))$ and $((A \vee B) \wedge (A \vee C))$ are connected by \leftrightarrow . Then we can create two child nodes for them.
 - 2. All nodes are not sentence symbol. Check $(A \lor (B \land C))$ and the second symbol is not \neg , so scan for balanced expressions to find A and $(B \land C)$ are connected by \lor . Then we can create two child nodes for A and $(B \land C)$.
 - 3. Check $((A \lor B) \land (A \lor C))$ and the second symbol is not \neg , so scan for balanced expressions to find $(A \lor B)$ and $(A \lor C)$ are connected by \land . Then we can create two child nodes for $(A \lor B)$ and $(A \lor C)$.
 - 4. Now we only get one sentence symbol leaf A. By the similar method and process, in the following three times iterations, we can create leaf nodes B and C from $(B \wedge C)$, A and B from $(A \vee B)$, A and C from $(A \vee C)$.
 - 5. Now all leaf nodes are sentence symbol. We get the parse tree of α .
- **2.** Rewrite the set: $\Sigma = \{ \neg (A_n \to A_{n-1} \to \cdots \to A_1) | n = 1, 2, \dots \}$. The priority is group to the right, so $\neg (A_n \to A_{n-1} \to \cdots \to A_1) \equiv \neg (A_n \to (A_{n-1} \to \cdots \to A_1)) \equiv \neg (\neg A_n \lor (A_{n-1} \to \cdots \to A_1)) \equiv A_n \land \neg (A_{n-1} \to \cdots \to A_1)$ Therefore, $\neg (A_n \to A_{n-1} \to \cdots \to A_1)$ is true if and only if A_n and $\neg (A_{n-1} \to \cdots \to A_1)$ are both true. If and only if A_1 is false and A_2 is true, $\neg A_1$ and $\neg (A_2 \to A_1)$ are both true. Suppose $\neg (A_i \to \cdots \to A_1)$ is true and A_{i+1} for all $i \geq 2$. By induction, we can get $\neg (A_{i+1} \to A_i \to \cdots \to A_1)$ is true.

Figure 1: Parse Tree in Question 1

To sum up, the truth assignment that satisfy Σ is unique, which is $A_1 = F \cdot A_i = T, i \geq 2$.

3.(a) First make sentence symbols: $A_1 =$ "Zhong Kui were able to catch ghosts.", $A_2 =$ "Zhong Kui were willing to catch ghosts.", $A_3 =$ "Zhong Kui does catch ghosts.", $A_4 =$ "Zhong Kui is powerless.", $A_5 =$ "Zhong Kui is malevolent.", $A_6 =$ "Zhong Kui does exist." Therefore, KB= $\{(A_1 \land A_2) \to A_3, \neg A_1 \to A_4, \neg A_2 \to A_5, \neg A_3, A_6 \to (\neg A_4 \land \neg A_5)\}$.

- **3.(b)** The question is "Does Zhong Kui exists?". A_6 = "Zhong Kui does exist." We can analyse KB to find its truth assignments. $\neg A_3 = T$ and $((A_1 \land A_2) \to A_3) = T$ so $A_3 = F$ and $(A_1 \land A_2)$ is false. $A_6 \to (\neg A_4 \land \neg A_5)$ means as long as A_4 or A_5 is true, $(\neg A_4 \land \neg A_5)$ is false, so A_6 must be false. $\mathcal{M}(KB) = \{\{A_1 = T, A_2 = F, A_3 = F, A_4 = T/F, A_5 = T, A_6 = F\}, \{A_1 = F, A_2 = T, A_3 = F, A_4 = T/F, A_5 = T/F, A_6 = F\}, \{A_1 = F, A_2 = F, A_3 = F, A_4 = T/F, A_5 = T/F, A_6 = F\}\}$. Therefore, the answer is "Zhong Kui does not exist."
- **3.(c)** The result of this action is rejection. It tells A_6 is true. From (b) we know $KB \cup \{A_6\}$ is not satisfiable, so it results in contradiction.

4.

$$(\neg A \land (B \to C)) \to \neg(\neg B \lor C)$$

$$\equiv \neg(\neg A \land (B \to C)) \lor \neg(\neg B \lor C)$$

$$\equiv (A \lor \neg(B \to C)) \lor \neg(\neg B \lor C)$$

$$\equiv (A \lor \neg(\neg B \lor C)) \lor \neg(\neg B \lor C)$$

5. Let \bar{v} be the set of truth assignments v that satisfies the set of well-formed formulas. Let $\Sigma: \bar{v}_1, \Delta: \bar{v}_2, \{\alpha\}: \bar{v}_3, \{\beta\}: \bar{v}_4$. Therefore, $\Sigma \models \alpha$ means $v_1 \subset v_3$, $\mathcal{M}(\Delta; \alpha) = v_2 \cap v_3$, $\Delta; \alpha \models \beta$ means $v_2 \cap v_3 \subset v_4$. $v_1 \subset v_3$ so $v_2 \cap v_1 \subset v_2 \cap v_3 \subset v_4$. The truth assignments of $\Sigma \cup \Delta$ need to satisfy both Σ and Δ , so $\mathcal{M}(\Sigma \cup \Delta) = v_2 \cap v_1$. $v_2 \cap v_1 \subset v_4$ means every truth assignments of $\Sigma \cup \Delta$ also satisfy β . Therefore, if $\Sigma \models \alpha$ and $\Delta; \alpha \models \beta$, then $\Sigma \cup \Delta \models \beta$.