CSC2547 Project Proposal

Haoping Xu, Tao Wu, Zhoujie Zhao

1 Introduction

3D shape estimation is an area of growing interest in past decades. Recent advances in RGB-D cameras allow us to automate the construction of 3D shapes and scenes modeling the real world. Nevertheless, the performance of standard 3D sensors falls short for transparent materials such as plastic bottles and glass mugs which are very common in everyday life. Many classic stereo vision algorithms fail to fit transparent objects due to their special visual property. Hence, generating accurate depth estimates for transparent objects is a challenging task.

In this project, we propose to extend the ClearGrasp algorithm [1]. We will first train a segmenting model that predicts a mask of transparent objects in a 2D color image. The major procedure then is to predict the correct depth image for masked areas using 3D point cloud completion. We plan to employ state-of-the-art techniques like GRNet [2]. In addition, we propose to collect a novel dataset by capturing RGB-D images and augmenting them with alternative illumination and scenes.

2 Related work

2.1 ClearGrasp

ClearGrasp [1] aims to fix the distorted and incomplete raw depth due to transparent object. It is based on the deep depth completion network [3], where the surface normal and occlusion boundary are predicted from single RGB image. The raw depth map from the RGBD sensor is then combine with the estimated depth to do global optimization. This process is aimed to minimize a weighted error between raw depth, estimated depth, neighboring pixel depth and the predicted normal. On top of that, cleargrasp includes a segment head to predict the mask for transparent objects, and remove their corresponding depth information during global optimization. The masking operation utilize the capability of deep depth completion network's ability to complete missing depth map.

ClearGrasp uses synthetic dataset generated by blender as the training set and collects the validation and testing dataset from the real world using matched transparent and opaque objects and manually place them at same location.

2.2 Keypose

Keypose network [4] can predict a set of key points from a transparent object which can be used to determining its pose for downstream applications, i.e. robot manipulation. Unlike ClearGrasp [1], keypose use stereo images as input, and predict each key point using a 2D image location as well as the disparity between left and right image to obtain the 3D location. This paper proposes two variations to compute them, for early fusion model, it computes the disparity map and one 2D location, whereas the later fusion network estimates a pair of 2D location from each stereo pair and compute the disparity using the matched key points.

Keypose collects its dataset using a eye-in-hand robot arm and tracking system, Apriltag 2[5]. The camera path is calculated using Apriltag, and along the scan trajectory, several frames' keypoints are manually labelled, where the rest are labeled based on the trajectory. Also, authors also collect the depth info using a similar replacing method as CleatGrasp [1].

3 Method

3.1 Depth correction as 3D completion

Due to the optical proprieties of transparent objects, the depth information from common RGBD sensors are usually distorted and incomplete. We propose to segment out the incorrect depth map via the mask predicted from color image, similar to ClearGrasp [1]. But instead of training the segment network only on generated data, the model will be trained on much larger real world dataset, like Trans10K [6] and LabPic [7], and use architecture specifically designed to handle transparent object, i.e. TransLab [6], instead of general purpose network used in ClearGrasp.

With the isolated depth for transparent objects, Raw geometry to true geometry conversion can be treated as 3D point cloud completion task. Where the raw depth will be projected to a distorted and incomplete point cloud of the transparent object, and the actual point cloud sampled from the object's mesh is the target. We propose to use the SOTA model in this task, GRNet [2] and train it using dataset from Keypose [4] as well as new dataset collected by us. With the completed point cloud, we can test its performance by combining it with robot grip pose estimation and actual robot picking transparent objects.

3.2 Automate data collection

We will use an eye-in-hand Franka Emika Panda with Inteal realsense RGBD camera to collect the dataset. To automate the data collection and annotation process, a virtual scene with matched transparent object location, and same eye-in-hand robot setup will be created to replicate the real setup. And the robot's joint state can be replicated to the simulation, which can generate the ground truth point cloud, depth map and segmentation mask. Additionally, the virtual scene allows us to do synthetic data generation using the actual raw depth as input and virtual depth as target. Another method to fully automate the annotation is using the Apriltag 2, and placed the object to a fixed location and pose respect to the tags, which can be used later generate the ground truth with the object mesh.

4 Evaluation

We will evaluate our model's ability to estimate the shape of transparent objects in the following ways. To measure the depth error, we will use Root Mean Squared Error and the percentage of pixels that are close to the ground truth (e.g. the distance is smaller than a threshold). We will test our algorithm on the dataset containing unseen object shapes to examine the generalization ability of our model. ClearGrasp [1] will serve as a baseline for quantitative comparison, and several ablated version of our model will also be evaluated. The completed point cloud from our model will finally be incorporated as part of the robot picking system to check if the robot can grasp the transparent object through our output.

References

- [1] Shreeyak S. Sajjan, Matthew Moore, Mike Pan, Ganesh Nagaraja, Johnny Lee, Andy Zeng, and Shuran Song. Cleargrasp: 3d shape estimation of transparent objects for manipulation. *CoRR*, abs/1910.02550, 2019.
- [2] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao, Shengping Zhang, and Wenxiu Sun. Grnet: Gridding residual network for dense point cloud completion, 2020.
- [3] Yinda Zhang and Thomas Funkhouser. Deep depth completion of a single rgb-d image, 2018.
- [4] Xingyu Liu, Rico Jonschkowski, Anelia Angelova, and Kurt Konolige. Keypose: Multi-view 3d labeling and keypoint estimation for transparent objects. *CoRR*, abs/1912.02805, 2019.
- [5] J. Wang and E. Olson. Apriltag 2: Efficient and robust fiducial detection. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4193–4198, 2016.
- [6] Enze Xie, Wenjia Wang, Wenhai Wang, Mingyu Ding, Chunhua Shen, and Ping Luo. Segmenting transparent objects in the wild, 2020.

