Sistemas de ecuaciones lineales y matrices

Bibliografía: Álgebra lineal de Stanley Grossman

Sean
$$A = \begin{bmatrix} 1 & -2 \\ -3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 \\ 5 & -2 \end{bmatrix}$, $Y C = \begin{bmatrix} 8 & -2 \\ -6 & 4 \end{bmatrix}$. determine la matriz X que satisfaga

$$2X + B = -3A + C$$

$$2X + B + (-B) = -3A + C + (-B)$$

$$\frac{1}{x}.\cancel{\lambda}.X = \frac{1}{2}(-3A + C - B)$$

$$X = \frac{1}{2} \left(-3A + C - B \right)$$

$$X = \frac{1}{2} \left\{ -3 \begin{pmatrix} 1 & -2 \\ -3 & 4 \end{pmatrix} + \begin{pmatrix} 8 & -2 \\ -6 & 4 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 5 & -2 \end{pmatrix} \right\}$$

$$X = \frac{1}{2} \left[\begin{pmatrix} -5 & 6 \\ 9 & -12 \end{pmatrix} + \begin{pmatrix} 8 - 2 \\ 6 & 4 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 5 - 2 \end{pmatrix} \right]$$

$$X = \frac{1}{2} \begin{pmatrix} 5 & 3 \\ -2 & -6 \end{pmatrix} \Rightarrow X = \begin{pmatrix} 5/2 & 3/2 \\ -1 & -3 \end{pmatrix}$$

$$4.x = 8$$
 $\frac{1}{4}.4.x = \frac{1}{4}.8$

$$1.x = 2$$

$$x = 2$$

Representación matricial de un sistema de ecuaciones lineales

Sea

$$\begin{cases} a_{11}.x_1 + a_{12}.x_2 + \dots + a_{1n}.x_n = b_1 \\ a_{21}.x_1 + a_{22}.x_2 + \dots + a_{2n}.x_n = b_2 \\ a_{31}.x_1 + a_{32}.x_2 + \dots + a_{3n}.x_n = b_2 \\ \dots \\ a_{n1}.x_1 + a_{n2}.x_2 + \dots + a_{nn}.x_n = b_n \end{cases}$$

n×n

Diremos que:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}_{\underline{\mathbf{n}} \times \mathbf{n}} , \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix}_{\underline{\mathbf{n}} \times \underline{\mathbf{1}}} , \quad \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ \dots \\ b_n \end{pmatrix}_{\underline{\mathbf{n}}}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \dots \\ x_n \end{pmatrix}$$

Entonces:

$$A \cdot \mathbf{x} = \mathbf{b}$$

Matriz identidad

Matriz identidad: $I = (b_{ij})_{n \times n}$ es la matriz cuadrada tal que

$$b_{ij} = \begin{cases} 1 & \mathbf{si} & i = j \\ 0 & \mathbf{si} & i \neq j \end{cases} \qquad \mathbf{I}_{\mathbf{2}} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix} \qquad \mathbf{I}_{\mathbf{3}} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{pmatrix}$$

■ Teorema: Sea A una matriz cuadrada de n x n. Entonces:

$$A \cdot I_n = I_n \cdot A = A$$

$$A = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$$

$$A \cdot I_n = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix} \quad \text{T. } A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$$

Inversa de una matriz cuadrada

La matriz $A = (a_{ij})_{n \times n}$ es **invertible**, **regular o no singular** si y sólo existe una matriz $B = (b_{ij})_{n \times n}$ tal que su producto por A, a izquierda y a derecha, es la identidad.

A es invertible
$$\Leftrightarrow \exists B/A.B = B.A = I_n$$

- ightharpoonup Si la matriz inversa existe, es única y se denota A^{-1} \checkmark
- Ejemplo: Si $A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

$$A \cdot A^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ y } A^{-1} \cdot A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \cdot \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \qquad A \cdot B = B \cdot A = I$$

$$\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} a+1C & b+2d \\ a+5c & b+3d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{cases} a+2c=1\\ a+b.c=0 \end{cases}$$

$$A^{-1} = B = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 3 & -1 \\ -1 & 1 \end{pmatrix}$$

Teoremas:

Unicidad de la matriz inversa: Si una matriz A es invertible, entonces su inversa es única.

Demostración:

Suponemos que A admite dos matrices inversas: B y C

$$A \cdot B = B \cdot A = I$$

 $A \cdot C = C \cdot A = I$

por igualdad de matrices

$$B \cdot A = B \cdot A$$

$$B \cdot A \cdot C = B \cdot A \cdot C$$

$$(B \cdot A) \cdot C = B \cdot (A \cdot C)$$

$$I \cdot C = B \cdot I$$

$$C = B$$

vego: La inversa es única

Volvemos a los sistemas de ecuaciones lineales

$$\begin{cases} x + y + z = 0 \\ y + z = 1 \\ x + y = 1 \end{cases} \qquad A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad X = \begin{pmatrix} X \\ Y \\ 0 \\ \frac{1}{2} \end{pmatrix} \qquad b = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$A \cdot X = b$$
 $A^{-1} \cdot A \cdot X = A^{-1} \cdot b$
 $1 \cdot X = A^{-1} \cdot b$
 $X = A^{-1} \cdot b$

$$x + y + z = 0$$
$$y + z = 1$$
$$x + y = 1$$

	x + y	= 1									
	_/	A			I						
	1	1	1 }	1	Ö	D	_				
	0	1	1	O	1	0	- - - +	3 + F (-1			
	1	1	0	0	O	1	5				
	1	1	1	1	0	O					
/	0	1	1.	0	1	0	T.	+1+ F2	(-1)		
/	0	0	-1	-1	0	ላ	1	1 1	(')		
	٨	O	Ö	1	- 1	0	- +	-> ∓ ₃ ·(-	λ		
	0	1	1	0	1	O		_			
	0	0		<u> </u>	0	1	F ₂	$\rightarrow \mp_{L}$	+\f_3		
	<u>(1)</u>	D	0	1	- 1	0) A	A-1=	11	_1	0
	0	0	4/	/ — /I	() - C	-1	A =	-1	1	1 -1

Procedimiento para obtener la inversa

Sea A_{nxn}, una matriz, a su derecha se escribe la matriz identidad (de orden n x n). Se aplican operaciones elementales por renglones hasta transformar A en la identidad. La matriz resultante a la derecha es la inversa de A.

\boldsymbol{A}	I_n
I_n	A^{-1}

Ejemplo:
$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & -1 & 0 \\ -3 & 2 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & -2 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ -3 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \quad F_1 \rightleftarrows F_2$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 2 & 1 & -2 & 1 & 0 & 0 \\ -3 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \quad F_2 \to F_2 + F_1 \cdot (-2)$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 3 & -2 & 1 & -2 & 0 \\ 0 & -1 & 1 & 0 & 3 & 1 \end{pmatrix} \quad F_2 \rightleftarrows F_3$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 3 & 1 \\ 0 & 3 & -2 & 1 & -2 & 0 \end{pmatrix} \quad F_2 \rightleftarrows F_2 \cdot (-1)$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 3 & 1 \\ 0 & 3 & -2 & 1 & -2 & 0 \end{pmatrix} \quad F_2 \to F_2 \cdot (-1)$$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 3 & -2 & 1 & -2 & 0 \end{pmatrix} \quad F_1 \to F_1 + F_2 \\ F_3 \to F_3 + F_2 \cdot (-3)$$

$$\begin{pmatrix} 1 & 0 & -1 & 0 & -2 & -1 \\ 0 & 1 & -1 & 0 & -3 & -1 \\ 0 & 0 & 1 & 1 & 7 & 3 \end{pmatrix} \quad F_1 \to F_1 + F_3 \\ F_2 \to F_2 + F_3$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 5 & 2 \\ 0 & 1 & 0 & 1 & 4 & 2 \\ 0 & 0 & 1 & 1 & 7 & 3 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 1 & 5 & 2 \\ 1 & 4 & 2 \\ 1 & 7 & 3 \end{pmatrix}$$