

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

RECEIVED TC 1700

In re PATENT application of:

Applicants: Kenneth Snowdon et al.

Serial No: 09/698,800

Filed:

October 27, 2000

Title:

GLASS FIBRE FIXATIVE AND FIXING PROCESS

Art Unit:

1731

Examiner: Michael Colaianni

POWER OF ATTORNEY BY ASSIGNEE OF ENTIRE INTEREST (REVOCATION OF PRIOR POWERS)

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Dear Sir:

The assignee of the entire right, title and interest of the above identified patent application, hereby revokes all powers of attorney previously given and hereby appoints the following attorneys to prosecute and transact all business in the Patent and Trademark Office connected with the above referenced application.

Mark D. Saralino, Registration No. 34,243

Send correspondence and direct telephone calls to:

Mark D. Saralino, Esq. RENNER, OTTO, BOISSELLE & SKLAR 1621 Euclid Avenue, 19th Floor Cleveland, Ohio 44115

> Tel: 216-621-1113 Fax: 216-621-6165

The undersigned has reviewed all the documents in the chain of title of the patent application identified above and, to the best of the undersigned's knowledge and belief, title is in the assignee identified below.

A statement under 37 CFR 3.73(b) is submitted herewith.

The undersigned further declares that he is empowered to act on behalf of the assignee, and that all statements made herein of his own knowledge are true, and that all statements made on information and belief are believed to be true; and further, that these statements are made with the knowledge that willful false statements, and the like so made, are punishable by fine or imprisonment, or both, under Section 1001, Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

**BOOKHAM TECHNOLOGY PLC** 

Intellectual Property Manager

Z:\SEC154\MDS\MARS\P145us\POA Revocation.wpd;POW-ASS.FRM (9/96)

Under the Paperwork Reseation Act of 1995

PTO/SB/96 (08-00)
Approved for use through 10/31/2002. OMB 0651-0031
U.S.Patent and Trademark Office; U.S. DEPARTMENT OF COMMERCE

persons are required to respond to a collection of information unless it displays a valid OMB control number.

## STATEMENT UNDER 37 CFR 3.73(b)

| Linder the Paperwork Reportion Act of 1995, to persons are                         | required to respond to a collection of information unless it displays a valid OMB control number.                             |              |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| & TRADE                                                                            | Docket No.MARSP0145US                                                                                                         | ٥,           |
| STATEM                                                                             | ENT UNDER 37 CFR 3.73(b)                                                                                                      | K)           |
| Applicant/Patent Owner: Kenneth Snowd                                              | on, et al.                                                                                                                    |              |
| Applicant/Patent Owner: New 19/698 800                                             | Filed/Issue Date: October 27, 2000                                                                                            | PROPINED TOO |
| Application No./Patent No.: 0970907000                                             | ETYING PROCESS                                                                                                                | 300          |
| Entitled: GLASS FIBRE FIXATIVE AND                                                 | Garagetion                                                                                                                    | 0            |
| BOOKHAM TECHNOLOGY PLC                                                             | a COPPORATION (Type of Assignee, e.g., corporation, partnership, university, government agency, etc.)                         | 90           |
| (Name of Assignee)                                                                 | (Type of Addignost Sign Salpassan)                                                                                            |              |
| -A-A Abot it io:                                                                   |                                                                                                                               |              |
| states that it is:                                                                 | and interest: Or                                                                                                              | 1            |
| 1. The assignee of the entire right, title, a                                      |                                                                                                                               |              |
| 2. an assignee of less than the entire right The extent (by, percentage) of its ow | nership interest is%                                                                                                          |              |
| in the patent application/patent identified at                                     | pove by virtue of either:                                                                                                     |              |
| the inventor(s)                                                                    | of the patent application/patent identified above. The assignment atent and Trademark Office at Reel, Frame, or for           |              |
| OR                                                                                 |                                                                                                                               |              |
| assignee as shown below:                                                           | of the patent application/patent identified above, to the current                                                             |              |
|                                                                                    | n the United States Patent and Trademark Office at 0325, or for which a copy thereof is attached.  To: BOOKHAM TECHNOLOGY PLC |              |
| 2 From Nortel Networks Co                                                          | orp. To: BOOKHAM TECHNOLOGY PLC                                                                                               |              |
| The design of the property of i                                                    | n the United States Patent and Trademark Office at, or for which a copy thereof is attached.                                  |              |
| 3. From:                                                                           | To:                                                                                                                           |              |
| The design of was recorded in                                                      | in the United States Patent and Trademark Office at, or for which a copy thereof is attached.                                 |              |
| [ ] Additional documents in the o                                                  | chain of title are listed on a supplemental sheet.                                                                            |              |
| must be submitted to Assignment Divisor recorded in the records of the USPTO.      | sion in accordance with 37 CFR Part 3, if the assignment is to be . <u>See</u> MPEP 302.08]                                   |              |
| The undersigned (whose title is supplied b                                         | elow) is authorized to act on behalf of the assignee.                                                                         |              |
| 2 9,000                                                                            | Haydn Jones                                                                                                                   |              |
| Date                                                                               | Typed or printed name  Hayd- Signature                                                                                        |              |
|                                                                                    | Intellectual Property Manager                                                                                                 |              |
|                                                                                    | Title                                                                                                                         |              |

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Washington, DC 20231.

## AMENDMENT TO THE PATENT ASSIGNMENT AGREEMENT

This Amendment (this "Amendment"), effective as of November 8, 2002, to the Patent Assignment Agreement made on November 8, 2002 (the "PAA") is hereby made by and among NORTEL NETWORKS CORPORATION, a corporation duly incorporated under the laws of Canada, having its executive offices at 8200 Dixie Road, Suite 100, Brampton, Ontario L6T 5P6 Canada, and each of its subsidiaries that are listed on the signature pages hereto (collectively, the "Assigning Parties") and BOOKHAM TECHNOLOGY PLC, a public limited company incorporated under the laws of England and Wales having its executive offices at 90 Milton Park, Abingdon, Oxfordshire OX14, 4RY United Kingdom (the "Assignee") (each of the Assigning Parties and Assignee, a "Party" and, collectively, the "Parties").

WHEREAS, the Parties, having entered into the PAA, desire to amend the PAA to update the schedule of patents, patent applications and invention disclosures attached thereto.

NOW THEREFORE, in consideration of the foregoing premises and the mutual terms and conditions set forth herein, and for U.S. \$1.00 (ONE DOLLAR) and other good and valuable consideration, receipt and adequacy of which is hereby acknowledged, the Parties hereby agree that the PAA be, and is, amended as follows:

- 1. Schedule A of the PAA is deleted in its entirety and replaced with the new Schedule A attached hereto.
- 2. Except as expressly amended by this Amendment, all of the terms, covenants and conditions of the PAA shall remain unamended and in full force and effect.
- 3. This Amendment is hereby incorporated in, and forms a part of, the PAA. For the avoidance of doubt, this Amendment shall be governed by and enforced in accordance with the laws of the State of New York, without giving effect to any conflicts of law principles.
- 4. This Amendment shall be binding on, and shall inure to the benefit of, the Parties and their respective successors and assigns.
- 5. This Amendment may be executed in any number of counterparts, each of which shall be deemed to be an original but all of which shall constitute one and the same instrument.

[Remainder of page intentionally left blank]

IN WITNESS WHEREOF, the Parties have duly executed this Amendment as of the date first above written.

> NORTEL NETWORKS CORPORATION

Name: Khush Dadyburjor, as Attorney-in-

Fact

NORTEL NETWORKS

INCORPORATED

Name: Knush Dadyburjor, as Attorney-in-

Fact

NORTEL NETWORKS LIMITED

Name: Khush Dadyburjor, as Attorney-in-

Fact

NORTEL NETWORKS PROPERTIES

LIMITED

Name: Khush Dadyburjor, as Attorney-in-

Fact

| MONTED MET MONING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TECHNOLOGY CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jely on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Name: Khush Dadyburjor, as Attorney-in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORTEL NETWORKS (ASIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| July Study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name: Khush Dadyburjor, as Attorney-in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TO THE PROPERTY OF THE PROPERT |
| NORTEL NETWORKS OPTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COMPONENTS (SWITZERLAND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Du / Matter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| By: Name: Khush Dadyburjor, as Attorney-in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORTEL NETWORKS (U.K.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mill fally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name: Khush Dadyburjor, as Attorney-in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NORTEL NETWORKS OPTICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| COMPONENTS LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CONTRONEM 19 LIMITED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| all States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ву:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Name: Khush Dadyburjor, as Attorney-in-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| NORTEL NETWORKS OPTICAL COMPONENTS INCORPORATED  By: Name: Khush Dadyburjor, as Attorney-in- Fact |
|---------------------------------------------------------------------------------------------------|
| NORTEL NETWORKS HPOCS INCORPORATED  By: Name: Khush Dadyburjor, as Attorney-in- Fact              |
| NORTEL NETWORKS PHOTONICS PTY LIMITED  By: Name: Khush Dadyburjor, as Attorney-in- Fact           |
| NORTEL NETWORKS SHANNON LIMITED  By:  Name: Khush Dadyburjor, as Attorney-in- Fact                |

BOOKHAM TECHNOLOGY PLC

By:\_\_\_ Name: Title:

On this <u>On</u> day of <del>December, 200</del>2, before me appeared <u>Musical Auditorial</u>, the person who signed this instrument, who acknowledged that he/she signed it as a free act on his/her own behalf or on behalf of the Assigning Parties with authority to do so.

| figure State of | Ontario | ) | SS. | fy. | ~ |
|-----------------|---------|---|-----|-----|---|
| (7.2)           |         |   |     |     |   |

| On this day of December, 2002, before me appeared who signed this instrument, who acknowledged that he/she si behalf or on behalf of Bookham Technology plc with authorit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gned it às a free act on his/her own |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| State of Kingland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |
| State of <u>Limited</u> )  County of <u>Charles</u> State of <u>Similard</u> State of |                                      |
| Hent Cemb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |
| STUART P. B. CAPEL SOLICITOR & NOTARY PUBLIC 6 EAST SAINT HELEN STREET ABINGDON, OXON, OX14 5EW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |
| TEL: 01235 - 523411<br>FAX: 01235 - 533283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |

## SCHEDULE A

| anier sie          | Disclosure little                                                         | Ciy | eSetial No.es | Patent No. | Subs                                             | Altinviniois villi | Application tries                                                                           |
|--------------------|---------------------------------------------------------------------------|-----|---------------|------------|--------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------|
| No.                |                                                                           |     |               |            | Status                                           | S ADERLANDS AS     | PHOTODETECTOR WITH                                                                          |
| 10289RO            | PHOTODETECTOR WITH<br>SPECTRALLY EXTENDED<br>RESPONSIVITY                 | CA  | 2,269,298     |            |                                                  |                    | SPECTRALLY EXTENDED<br>RESPONSIVITY                                                         |
| 10289RO            | PHOTODETECTOR WITH<br>SPECTRALLY EXTENDED<br>RESPONSIVITY                 | US  | 09/294,114    | 6,222,200  |                                                  |                    | PHOTODETECTOR WITH<br>SPECTRALLY EXTENDED<br>RESPONSIVITY                                   |
| 10412RO            | EXTERNAL CAVITY<br>LASER                                                  | US  | 09/688,873    |            |                                                  |                    | EXTERNAL CAVITY LASER USING<br>ANGLE-TUNED FILTER AND<br>METHOD OF MAKING SAME              |
| 10413ID            | FIBRE TERMINATION<br>COMPOUND GRADED<br>INDEX LENSES                      | US  | 09/750,874    |            |                                                  |                    | FIBRE TERMINATION COMPOUND GRADED INDEX LENSES                                              |
| 10485RO            | ELECTRICALLY CONTROLLED OPTICAL ATTENUATOR WITH COPLANAR ELECTRODES       | US  | 09/726,409    |            |                                                  |                    | ELECTROCHROMIC OPTICAL ATTENUATOR  ALIGNMENT METHOD FOR                                     |
| 10509RO            | ALIGNMENT METHOD<br>FOR SEMICONDUCTOR<br>OPTICAL DEVICES UPON<br>CARRIERS | US  | 09/472,121    | 6,287,401  |                                                  |                    | SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS  ALIGNMENT METHOD FOR                           |
| 10509RO            | ALIGNMENT METHOD<br>FOR SEMICONDUCTOR<br>OPTICAL DEVICES UPON<br>CARRIERS | CA  | 2,328,279     |            |                                                  |                    | SEMICONDUCTOR OPTICAL DEVICES UPON CARRIERS  MODULATOR ASSEMBLIES                           |
| 11006ID            | MODULATOR<br>ASSEMBLIES                                                   | US  | 09/496,917    |            |                                                  |                    |                                                                                             |
| 11920ID            | PUMPED OPTICAL<br>AMPLIFICATION DEVICE                                    | us  | 09/557,891    |            |                                                  |                    | PUMPED OPTICAL<br>AMPLIFICATION DEVICE                                                      |
| 11945ID            | A RAMAN FIBRE LASER                                                       | us  | 09/573,238    |            |                                                  |                    | A RAMAN FIBRE LASER                                                                         |
| 11954ID            | A RAMAN FIBRE LASER                                                       | us  | 09/573,236    |            |                                                  |                    | A RAMAN FIBRE LASER                                                                         |
| 12242RO            | INVERTED INP/INGAAS<br>AVALANCHE                                          | US  | 09/733,060    |            |                                                  |                    | EPITAXIALLY GROWN<br>AVALANCHE PHOTODIODE                                                   |
| 10000ID            | PHOTODIODE  OPTICAL FIBER DEVICE                                          | us  | 09/653,985    | +          | <del>                                     </del> |                    | OPTICAL FIBER DEVICE                                                                        |
| 12339ID<br>12349RO | COMPACT CHIP<br>LABELING USING                                            | CA  | 2,320,612     |            |                                                  |                    | COMPACT CHIP LABELING<br>USING STEPPER TECHNOLOGY                                           |
| 12349RO            | STEPPER TECHNOLOGY.  COMPACT CHIP LABELING USING STEPPER TECHNOLOGY.      | US  | 09/688,366    |            |                                                  |                    | COMPACT CHIP LABELING<br>USING STEPPER TECHNOLOGY                                           |
| 12526RC            |                                                                           | US  | 09/660,542    | 6,409,241  |                                                  |                    | APPARATUS FOR GRIPPING<br>CERAMIC SUBSTRATES  PACKAGING ATMOSPHERE AND                      |
| 12615ID            | PACKAGING ATMOSPHERE AND METHOD OF PACKAGING A MEMS DEVICE                | US  | 09/676,256    |            |                                                  |                    | METHOD OF PACKAGING A<br>MEMS DEVICE                                                        |
| 12634RC            | 0.50                                                                      | us  | 09/741,350    |            |                                                  |                    | STRUCTURE AND METHOD FOR DOPING OF III-V COMPOUNDS                                          |
| 12665R0            | PRINT QUALITY TEST<br>STRUCTURE FOR DEVIC<br>MANUFACTURING.               | US  | 09/667,620    |            |                                                  |                    | PRINT QUALITY TEST STRUCTURE FOR LITHOGRAPHIC DEVICE MANUFACTURING GLASS FIBER FIXATIVE AND |
| 126861             | GLASS FIBER FIXATIVE<br>AND FIXING PROCESS                                | US  | 09/698,800    |            |                                                  |                    | FIXING PROCESS  METHODS FOR MAKING                                                          |
| 12715R0            |                                                                           | US  | 09/667,622    |            |                                                  |                    | PATTERNS IN RADIATION<br>SENSITIVE POLYMERS                                                 |

| and see a | MEDISCIOSUFE TALLE                                                             | Giv   | Serial No.    | PatentiNo                                        | SUD                   | Alinyenios vili<br>Laik Nos                                                       | Application wile                                                                                     |
|-----------|--------------------------------------------------------------------------------|-------|---------------|--------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| No        |                                                                                |       |               | 5.930,441                                        | Status                |                                                                                   | SPLIT-BEAM FOURIER FILTER                                                                            |
| 12800AU   | SPLIT-BEAM FOURIER FILTER                                                      | US    | 08/793,729    | 5,930,441                                        |                       |                                                                                   | INTEGRATED OPTICAL                                                                                   |
| 12841ID   | INTEGRATED OPTICAL TRANSMITTER                                                 | US    | 09/616,659    |                                                  |                       |                                                                                   | TRANSMITTER CONFINEMENT LAYER OF                                                                     |
| 12847RO   | BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER                                 | CA    | 2,328,641     |                                                  |                       |                                                                                   | BURIED HETEROSTRUCTURE<br>SEMICONDUCTOR LASER                                                        |
| 12847RO   | BURIED HETEROSTRUCTURE LASER CONFINEMENT LAYER                                 | US    | 10/014,807    |                                                  |                       |                                                                                   | CONFINEMENT LAYER OF<br>BURIED HETEROSTRUCTURE<br>SEMICONDUCTOR LASER                                |
| 12849ID   | OPTICAL AMPLIFIER METHOD AND APPARATUS                                         | US    | 09/710,372    |                                                  |                       |                                                                                   | OPTICAL AMPLIFIER METHOD AND APPARATUS                                                               |
| 12849ID   | OPTICAL AMPLIFIER METHOD AND APPARATUS                                         | WO F  | CT/GB01/04944 |                                                  |                       |                                                                                   | OPTICAL AMPLIFIER METHOD<br>AND APPARATUS                                                            |
| 12948ID   | OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE | υs    | 09/731,434    |                                                  |                       |                                                                                   | OPTICAL AMPLIFIER, OPTICAL<br>AMPLIFIER HYBRID ASSEMBLY<br>AND METHOD OF<br>MANUFACTURE              |
| 12948ID   | OPTICAL AMPLIFIER, OPTICAL AMPLIFIER HYBRID ASSEMBLY AND METHOD OF MANUFACTURE | CA    | 2,364,383     |                                                  |                       |                                                                                   | OPTICAL AMPLIFIER, OPTICAL<br>AMPLIFIER HYBRID ASSEMBLY<br>AND METHOD OF<br>MANUFACTURE              |
| 13063CK   | AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINEWIDTH                        | US    | 08/726,049    | 6,041,071                                        |                       |                                                                                   | ELECTRO-OPTICALLY TUNABLE<br>EXTERNAL CAVITY MIRROR FOR<br>A NARROW LINEWIDTH<br>SEMICONDUCTOR LASER |
| 13063CK   | AGILE, WIDELY TUNABLE                                                          | US    | 60/004,620    |                                                  |                       |                                                                                   | AGILE, WIDELY TUNABLE DIODE<br>LASER WITH NARROW<br>LINEWIDTH                                        |
| 13063CK   | NARROW LINEWIDTH AGILE, WIDELY TUNABLE DIODE LASER WITH NARROW LINEWIDTH       | US    | 09/532,529    |                                                  |                       |                                                                                   | ELECTRO-OPTICALLY TUNABLE<br>EXTERNAL CAVITY MIRROR FOR<br>A NARROW LINEWIDTH<br>SEMICONDUCTOR LASER |
| 13144CK   | LASER WITH SETTABLE<br>WAVELENGTHS                                             | US    | 0             |                                                  | Mailed<br>Application | TAYEBATI, PARVIZ<br>(7043-5010439),<br>VAKHSHOORI,<br>DARYOOSH (7068-<br>5010442) | LASER WITH SETTABLE<br>WAVELENGTHS                                                                   |
| 13144CK   | LASER WITH SETTABLE                                                            | US    | 60/099,252    | <del>                                     </del> |                       |                                                                                   | LASER WITH SETTABLE WAVELENGTHS                                                                      |
| 13144CH   | WAVELENGTHS LASER WITH SETTABLE                                                | US    | 60/099,308    |                                                  |                       |                                                                                   | LASER WITH SETTABLE<br>WAVELENGTHS                                                                   |
| 13144Ck   | WAVELENGTHS LASER WITH SETTABLE                                                | US    | 09/386,604    |                                                  | <del> </del>          |                                                                                   | LASER WITH SETTABLE<br>WAVELENGTHS                                                                   |
| 13144CF   | WAVELENGTHS  LASER WITH SETTABLE                                               | CA    | 2,317,133     |                                                  |                       |                                                                                   | LASER WITH SETTABLE<br>WAVELENGTHS                                                                   |
|           | WAVELENGTHS  ( SINGLE ETALON OPTICA  WAVELENGTH                                | 1     | 60/148,017    |                                                  |                       |                                                                                   | SINGLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                              |
|           | REFERENCE DEVICE  K SINGLE ETALON OPTICA WAVELENGTH REFERENCE DEVICE           | Į.    | 09/636,817    |                                                  | N. All Div            |                                                                                   | SINGLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE SINGLE ETALON OPTICAL                              |
|           | K SINGLE ETALON OPTICA<br>WAVELENGTH<br>REFERENCE DEVICE                       | _i    |               | 04                                               | Nat'l Phas<br>Filed   | e e                                                                               | WAVELENGTH REFERENCE<br>DEVICE<br>SINGLE ETALON OPTICAL                                              |
| 1         | K SINGLE ETALON OPTICA<br>WAVELENGTH<br>REFERENCE DEVICE                       |       |               |                                                  |                       |                                                                                   | WAVELENGTH REFERENCE<br>DEVICE<br>SINGLE ETALON OPTICAL                                              |
| 13199C    | K SINGLE ETALON OPTICA<br>WAVELENGTH<br>REFERENCE DEVICE                       | AL EP | 973357.7      |                                                  |                       |                                                                                   | WAVELENGTH REFERENCE<br>DEVICE                                                                       |

|                | DisclosureJule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Civ/ | seralizo:      | aleni (No | STID<br>STILLS       | All thy and rewalls.<br>To app (100s | . Application filts                                                                             |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----------|----------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|
| No.<br>13201CK | DOUBLE ETALON<br>OPTICAL WAVELENGTH<br>REFERENCE DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | US   | 60/148,148     |           |                      |                                      | DOUBLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                         |
| 13201CK        | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WOF  | PCT/US00/21905 |           | Nat'i Phase<br>Filed |                                      | DOUBLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                         |
| 13201CK        | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US   | 09/636,807     |           |                      |                                      | DOUBLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                         |
| 13201CK        | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CA   | 2,381,665      |           |                      |                                      | DOUBLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                         |
| 13201CK        | DOUBLE ETALON OPTICAL WAVELENGTH REFERENCE DEVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP   | 00957375.9     |           |                      |                                      | DOUBLE ETALON OPTICAL<br>WAVELENGTH REFERENCE<br>DEVICE                                         |
| 13391RO        | MONOLITHICALLY INTEGRATED OPTICALLY PUMPED EDGE EMITTING SEMICONDUCTOR LASER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | US   | 09/987,785     |           |                      |                                      | MONOLITHICALLY INTEGRATED OPTICALLY-PUMPED EDGE- EMITTING SEMICONDUCTOR LASER METHOD OF ETCHING |
| 13417RO        | GRATING ETCHING WITH<br>INP MASKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US   | 09/750,124     |           |                      |                                      | PATTERNS INTO EPITAXIAL MATERIAL MICROELATION FOR DWDM                                          |
| 13444CK        | MICROELATION FOR DWDM TELECOMMUNICATIONS APPLICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | US   | 09/859,938     |           |                      |                                      | TELECOMMUNICATIONS APPLICATIONS MICROELATION FOR DWDM                                           |
| 13444CK        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wo   | PCT/US01/14918 |           |                      |                                      | TELECOMMUNICATIONS APPLICATIONS  METHOD AND APPARATUS FOR                                       |
| 13494ID        | METHOD AND APPARATUS FOR MINIMIZING GAIN DEVIATION IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | US   | 09/821,580     |           |                      |                                      | MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS  METHOD AND APPARATUS FOR                 |
| 13494ID        | 100 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EP   | 02251194.3     |           |                      |                                      | MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS  METHOD AND APPARATUS FOR                 |
| 13494ID        | 100 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CA   | 2,374,557      |           |                      |                                      | MINIMIZING GAIN DEVIATION IN OPTICAL FIBRE AMPLIFIERS  OPTICAL MODULATORS                       |
| 13495ID        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US   | 09/679,165     | 6,377,717 |                      | <u> </u>                             | OPTICAL FIBER TERMINATION                                                                       |
| 13502R0        | DALL TO STEEL TO DALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | US   | 09/735,571     |           |                      |                                      | A METHOD AND SYSTEM FOR                                                                         |
| 13524R0        | THE PROPERTY OF THE PARTY OF TH | US   | 10/196,956     |           |                      |                                      | FABRICATING SEMICONDUCTOR LASERS  SEMICONDUCTOR LASER                                           |
| 13544R         | TOTOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | us   | 10/141,914     |           |                      |                                      | ELECTRODE TERMINATION FOR                                                                       |
| 13584R         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US   | 09/709,646     |           |                      |                                      | REDUCED LOCAL HEATING IN AN OPTICAL DEVICE  ELECTRODE TERMINATION FOR                           |
| 13584R         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CA   | 2,361,683      |           |                      |                                      | REDUCED LOCAL HEATING IN AN OPTICAL DEVICE  ELECTRODE TERMINATION FOR                           |
| 13584P         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP   | 01309541.9     |           |                      |                                      | REDUCED LOCAL HEATING IN AN OPTICAL DEVICE                                                      |
| 13591          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S GE | 0031241.3      |           |                      |                                      | OF HOAL MODULATORS                                                                              |

|         | Diselbsure-rule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cty | Sena No. 9      | arene No. | Siib                  |                                       |                                                                                                                                  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----------|-----------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|         | OPTICAL MODULATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3   | TERM TERMINET   |           | Status                | panelos -                             | OPTICAL MODULATOR                                                                                                                |
| 13614ID | OPTICAL PULSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | US  | 09/993,849      |           |                       |                                       | OPTICAL PULSE GENERATION                                                                                                         |
| 13614ID | GENERATION OPTICAL PULSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wo  | PCT/GB02/03664  |           |                       |                                       | OPTICAL PULSE GENERATION                                                                                                         |
| 13721RO | GENERATION AN NON-DESTRUCTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | us  | 0               |           | Mailed<br>Application | QIAN, YAHONG<br>(C115-0531819,1), AN, | AN NON-DESTRUCTIVE AND<br>FAST WAY TO DETECT                                                                                     |
|         | AND FAST WAY TO<br>DETECT DIFFUSION<br>DEPTH AND UNIFORMITY<br>CROSS A WAFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |                 |           | Application           | SERGUEI (5C33-<br>0510038,1)          | DIFFUSION DEPTH AD UNIFORMITY CROSS A WAFER MONOLITHICALLY INTEGRATED                                                            |
| 13813RO | HIGH POWER LASER<br>DIODE AND METHOD OF<br>FABRICATION THEREOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | US  | 10/141,862      |           |                       |                                       | HIGH POWER LASER OPTICAL DEVICE                                                                                                  |
| 13816RO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                 |           | Unfiled               |                                       | ISOLATION OF MICROWAVE                                                                                                           |
| 14224ID | ISOLATION OF<br>MICROWAVE<br>TRANSMISSION LINES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US  | 10/032,416      |           |                       |                                       | TRANSMISSION LINES  HYBRID CONFINEMENT LAYERS                                                                                    |
| 14404RO | THE PARTY OF A STATE AND A STA | US  | 10/027,229      |           |                       |                                       | OF BURIED HETEROSTRUCTURE<br>SEMICONDUCTOR LASER  OPTICAL BEAM SAMPLING                                                          |
| 14429ID | OPTICAL BEAM<br>SAMPLING MONITOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | US  | 10/006,509      |           |                       |                                       | MONITOR  A TITANIUM NITRIDE DIFFUSION                                                                                            |
| 14433JD | TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CA  | 2,292,769       |           |                       |                                       | BARRIER FOR USE IN NON- SILICON TECHNOLOGIES AND METALLIZATION METHOD  A TITANIUM NITRIDE DIFFUSION                              |
| 14433JD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EP  | 99919257.8      |           |                       |                                       | BARRIER FOR USE IN NON-<br>SILICON TECHNOLOGIES AND<br>METALLIZATION METHOD                                                      |
| 14433JD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JP  | 11-552490       |           |                       |                                       | A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON- SILICON TECHNOLOGIES AND METALLIZATION METHOD  TITANIUM NITRIDE DIFFUSION   |
| 14433JD | DITTANIUM NITRIDE DIFFUSION BARRIER FOF USE IN NON-SILICON TECHNOLOGIES AND METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | US  | 09/063,173      | 6,204,560 |                       |                                       | BARRIER FOR USE IN NON-<br>SILICON TECHNOLOGIES AND<br>METHOD                                                                    |
| 14433JE | The state of the s | 2   | 10-1999-7012042 |           |                       |                                       | A TITANIUM NITRIDE DIFFUSION BARRIER FOR USE IN NON- SILICON TECHNOLOGIES AND METALLIZATION METHOD  A TITANIUM NITRIDE DIFFUSION |
| 14433JI | DITTANIUM NITRIDE DIFFUSION BARRIER FOI USE IN NON-SILICON TECHNOLOGIES AND METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | PCT/EP99/02665  |           | Nat'l Phase<br>Filed  | 3                                     | BARRIER FOR USE IN NON-<br>SILICON TECHNOLOGIES AND<br>METALLIZATION METHOD                                                      |

| TEN ALS     | Papisciosure ritie                                                                | iv.  | senanos P      | ien xo | Sili<br>Seits        | Allinanios adb.                                                                                                                                                                                                                                         | Application for                                                                                             |
|-------------|-----------------------------------------------------------------------------------|------|----------------|--------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 1433JD<br>D | TITANIUM NITRIDE IFFUSION BARRIER FOR USE IN NON-SILICON TECHNOLOGIES AND METHOD  | JP   | 0              |        |                      | DAETWYLER, ANDREAS (- GPS4097856), DEUTSCH, URS (EXTR-GPS4097859), HARDER, CHRISTOPH (AA54-5050202), HEUBERGER, WILHELM (EXTR-GPS4097866), LATTA, ERNST-EBERHARD (EXTR-GPS4097878), JAKUBOWICZ, ABRAM (-GPS4097872), OOSENBRUG, ALBERTUS (- GPS4097875) | A TITANIUM NITRIDE DIFFUSION<br>BARRIER FOR USE IN NON-<br>SILICON TECHNOLOGIES AND<br>METALLIZATION METHOD |
| 4434JD      | STABILIZED LASER                                                                  | EP   | 99810837.7     |        |                      | <u> </u>                                                                                                                                                                                                                                                | STABILIZED LASER SOURCE                                                                                     |
| 4434JD      | SOURCE<br>STABILIZED LASER<br>SOURCE                                              | us   | 10/049,886     |        |                      |                                                                                                                                                                                                                                                         | STABILIZED LASER SOURCE SUPPORTING STRUCTURE FOR                                                            |
| 4435JD      | SUPPORTING<br>STRUCTURE FOR FIBER<br>FIXING AND SUBMICRON<br>FINE ALIGNMENT       | EΡ   | 99811030.8     |        |                      |                                                                                                                                                                                                                                                         | FIBER FIXING AND SUBMICRON FINE ALIGNMENT SUPPORTING STRUCTURE FOR                                          |
| 14435JD     | SUPPORTING<br>STRUCTURE FOR FIBER<br>FIXING AND SUBMICRON<br>FINE ALIGNMENT       | wo   | PCT/IB00/01530 |        | Nat'l Phase<br>Filed |                                                                                                                                                                                                                                                         | OPTICAL FIBER FIXING AND SUBMICRONFINE ALIGNMENT SUPPORTING STRUCTURE FOR                                   |
| 14435JD     | SUPPORTING<br>STRUCTURE FOR FIBER<br>FIXING AND SUBMICRON<br>FINE ALIGNMENT       | US   | PCT/IB00/01530 |        | Nat'l Phase<br>Filed |                                                                                                                                                                                                                                                         | FIBER FIXING AND SUBMICRON<br>FINE ALIGNMENT<br>SUPPORTING STRUCTURE FOR                                    |
| 14435JD     | SUPPORTING<br>STRUCTURE FOR FIBER<br>FIXING AND SUBMICRON<br>FINE ALIGNMENT       | CA   | 2,390,916      |        | Nat'l Phase<br>Filed |                                                                                                                                                                                                                                                         | FIBER FIXING AND SUBMICRON FINE ALIGNMENT                                                                   |
| 14480RO     | GAIN COUPLED DISTRIBUTED FEEDBACK LASER USING SELF- ASSEMBLED QUANTUM DOTS        |      |                |        | Unfiled              |                                                                                                                                                                                                                                                         | HIGH POWER SEMICONDUCTOR                                                                                    |
| 14549JD     | HIGH POWER<br>SEMICONDUCTOR LASER<br>DIODE                                        | บร   | 09/852,994     | _      |                      |                                                                                                                                                                                                                                                         | LASER DIODE HIGH POWER SEMICONDUCTOR                                                                        |
| 14549JD     | HIGH POWER SEMICONDUCTOR LASEF DIODE                                              | CA   | 2,385,653      |        |                      |                                                                                                                                                                                                                                                         | LASER DIODE HIGH POWER SEMICONDUCTOR                                                                        |
| 14549JD     |                                                                                   | EP   | 2405380.3      |        |                      |                                                                                                                                                                                                                                                         | LASER DIODE                                                                                                 |
| 14549JD     | HIGH POWER<br>SEMICONDUCTOR LASE                                                  | JP   | 2002-134066    |        |                      |                                                                                                                                                                                                                                                         | HIGH POWER SEMICONDUCTOR<br>LASER DIODE                                                                     |
| 14551JD     | DIODE  CARRIER DESIGN FOR MODULES WITH HIGH POWER LASER DIODES                    | US   | 10/026,150     |        |                      |                                                                                                                                                                                                                                                         | HIGH POWER LASER CARRIER  ANTI-REFLECTION COATINGS                                                          |
| 14552JD     | DEST FORM                                                                         | US   | 09/993,824     |        |                      |                                                                                                                                                                                                                                                         | FOR SEMICONDUCTOR LASERS                                                                                    |
| 1459210     |                                                                                   | E US | 10/024,972     |        |                      |                                                                                                                                                                                                                                                         | ALIGNMENT ASSEMBLY FOR A<br>SENSITIVE OPTICAL ALIGNMEN<br>ENHANCED LINK OPERATION O                         |
| 14676R0     | ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN- COUPLED GRATINGS | ) U  | 60/334,013     |        |                      |                                                                                                                                                                                                                                                         | DIRECTLY MODULATED LASER USING GAIN-COUPLED GRATINGS                                                        |

| DEE     | DISGOSUTATUR                                                                                             |      | -Settali (IO-U) | atent No | Status  | Toeps Nos | - Application file                                                                                 |
|---------|----------------------------------------------------------------------------------------------------------|------|-----------------|----------|---------|-----------|----------------------------------------------------------------------------------------------------|
| 4676RO  | ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS USING GAIN- COUPLED GRATINGS                        | US   | 10/025,866      |          |         |           | ENHANCED LINK OPERATION OF DIRECTLY MODULATED LASERS COUPLED-COUPLED GRATINGS                      |
| 4681ID  | THERMAL COMPENSATION AND ALIGNMENT FOR OPTICAL DEVICES                                                   | US   | 10/032,421      |          |         |           | ALIGNMENT FOR OPTICAL DEVICES                                                                      |
| 4716RO  | WAVEGUIDE MODE<br>STRIPPER FOR<br>INTEGRATED OPTICAL<br>COMPONENTS                                       | us   | 10/073,101      |          |         |           | WAVEGUIDE MODE STRIPPER FOR INTEGRATED OPTICAL COMPONENTS  METHOD AND APPARATUS FOR                |
| 4794RO  | A METHOD FOR MAKING<br>FLOATING GRATINGS                                                                 | US   | 10/259,745      |          |         |           | FLOATING GRATINGS IN DFB<br>(DISTRIBUTED FEEDBACK)<br>LASERS                                       |
| 14854RO | A METHOD FOR MINIMIZING CROSSTALK DUE TO LASER WAVELENGTH VARIATIONS WITH NON- IDEAL FILTERS             |      |                 |          | Unfiled |           | CURRENT TUNED MACH-                                                                                |
| 14864RO | POLARIZATION AND WAVELENGTH INDEPENDENT MHZ SPEED OPTICAL ATTENUATOR                                     | บร   | 10/190,592      |          |         |           | ZEHNDER OPTICAL ATTENUATOR  RE-CIRCULATING OPTICAL                                                 |
| 14942RO |                                                                                                          | บร   | 10/116,168      |          |         |           | PULSE GENERATOR  MICRO-MIRRORS WITH                                                                |
| 15004RO | DEFORMABLE POLYMER<br>MICRO MIRRORS (DPMM)                                                               | US   | 10/098,446      |          |         |           | VARIABLE FOCAL LENGTH, AND<br>OPTICAL COMPONENTS<br>COMPRISING MICRO-MIRRORS                       |
| 15004RO | DEFORMABLE POLYMER<br>MICRO MIRRORS (DPMM)                                                               | US   | 10/098,446      |          |         |           | MICRO-MIRRORS WITH<br>VARIABLE FOCAL LENGTH, AND<br>OPTICAL COMPO ENTS<br>COMPRISING MICRO-MIRRORS |
| 15004RC | DEFORMABLE POLYMER<br>MICRO MIRRORS (DPMM)                                                               | US   | 10/098,446      |          |         |           | MICRO-MIRRORS WITH<br>VARIABLE FOCAL LENGTH, AND<br>OPTICAL COMPONENTS<br>COMPRISING MICRO-MIRRORS |
| 15093RC | MULTIPLE-CONTACT<br>SEMICONDUCTOR<br>OPTICAL AMPLIFIERS                                                  | US   | 60/414,404      |          |         |           | MULTIPLE-CONTACT OPTICAL AMPLIFIERS FREQUENCY IDENTIFICATION                                       |
| 15095R0 |                                                                                                          | US   | 10/108,856      |          |         |           | WITH FREQUENCY LOCKER WAVELENGTH STABILIZED                                                        |
| 15113CI | METHOD TO IMPROVE TEMPERATURE STABILITY OF FREQUENCY LOCKER IN OPTOELECTRONIC                            | US   | 10/165,465      |          |         |           | OPTICAL DEVICE                                                                                     |
| 15116   | MODULES  D NEW STRAIGHT-FLARED STRAIGHT WAVEGUIDE                                                        | - US | 10/131,335      |          |         |           | HIGH POWER SEMICONDUCTO<br>LASER DIODE AND METHOD FO<br>MAKING SUCH A DIODE                        |
| 15117J  | I WITH IMPROVED                                                                                          | us   | 0               |          |         |           | *PUMP LASER DIODE WITH<br>IMPROVED WAVELENGTH<br>STABILITY                                         |
| 15138   | WAVELENGTH STABILIT  D AN IMPROVED METHOD FOR TERMINATING AN OPTICAL WAVEGUIDE INTO AN OPTICAL COMPONENT | US   | 10/161,523      |          |         |           | AN IMPROVED METHOD FOR<br>TERMINATING AN OPTICAL<br>WAVEGUIDE INTO AN OPTICA<br>COMPONENT          |

|                    | Dispositiculity                                                                                                   | ely .   | Suring :   | alenti No-   | Saus                  | S-Depts No.54                                                                                                                                           | LEVIPLE LOFTMEN                                                                  |
|--------------------|-------------------------------------------------------------------------------------------------------------------|---------|------------|--------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                    | SINGLE MODE, HIGH<br>INDEX CONTRAST<br>POLYMER FLEXIBLE<br>WAVEGUIDES                                             | US      | 60/352,572 |              |                       |                                                                                                                                                         | WAVEGUIDES FOR OPTICAL WIRE BONDS                                                |
|                    | SINGLE MODE, HIGH<br>INDEX CONTRAST<br>POLYMER FLEXIBLE                                                           | US      | 60/352,572 |              |                       |                                                                                                                                                         | WAVEGUIDES FOR OPTICAL WIRE BONDS  METHOD FOR INTEGRATING                        |
| 150RO   II         | WAVEGUIDES  METHOD FOR NTEGRATING A LASER JITH A WAVEGUIDE IN A SINGLE EPITAXIAL GROWTH STEP                      | US      | 0          |              | Mailed<br>Application | (5C33-0519/25),<br>GREENSPAN,<br>JONATHAN (C116-<br>0262541)                                                                                            | OPTICAL DEVICES IN A SINGLE EPITAXIAGROWTH STEP  METHOD FOR INTEGRATING          |
| 150RO              | METHOD FOR<br>INTEGRATING A LASER<br>VITH A WAVEGUIDE IN A<br>SINGLE EPITAXIAL<br>GROWTH STEP                     | US      | 0          |              | Mailed<br>Application | GLEW, RICK (C116-<br>2819324), BETTY, IAN<br>(5C33-0519725),<br>GREENSPAN,<br>JONATHAN (C116-<br>0262541)                                               | OPTICAL DEVICES IN A SINGLE<br>EPITAXIAGROWTH STEP                               |
| 5164RO             | A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF- ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER. | US      | 0          |              | Mailed<br>Application | 0531388),<br>LICHTENSTEIN,<br>NORBERT L (AA55-<br>5050260), FILY,<br>ARNAUD (AA55-<br>5053588)                                                          | A GUIDED SELF-ALIGNED LASEF<br>STRUCTURE WITH INTEGRAL<br>CURRENT BLOCKING LAYER |
| 5164RO             | A DOPANT-INDUCED REAL REFRACTIVE INDEX-GUIDED SELF- ALIGNED LASER STRUCTURE WITH INTEGRAL CURRENT BLOCKING LAYER. | US      | 0          |              | Mailed<br>Application | GLEW, RICK (C116-<br>2819324), REID,<br>BENOIT (5C32-<br>0531388),<br>LICHTENSTEIN,<br>NORBERT L (AA55-<br>5050260), FILY,<br>ARNAUD (AA55-<br>5053568) | A GUIDED SELF-ALIGNED LASE<br>STRUCTURE WITH INTEGRAL<br>CURRENT BLOCKING LAYER  |
|                    |                                                                                                                   | US      | 60/391,648 | <del> </del> |                       |                                                                                                                                                         | LASER TRANSMITTER                                                                |
| 15181ID            | LASER TRANSMITTER                                                                                                 |         |            |              | -                     |                                                                                                                                                         | LASER TRANSMITTER OPTIMIZED PERFORMANCE O                                        |
| 15181ID<br>15193RO | INGAASP/INP COMPAC<br>ON-CHIP POLARIZATION                                                                        | US<br>T |            |              |                       |                                                                                                                                                         | INGAASP/INP COMPACT ON-CI-<br>POLARIATION CONVERTER                              |
| 15193RO            | CONVERTER                                                                                                         | US<br>T | 3          |              | Mailed<br>Application | JONES, TREVOR<br>(C115-1342592,2),<br>YEVICK, D (EXTR<br>GPS0380642,2)                                                                                  | POLARIATION CONVERTER                                                            |
| 15320RC            |                                                                                                                   |         | 0          |              | Mailed<br>Application | on (5C33-0526051),<br>BETTY, IAN (5C33<br>0519725)                                                                                                      | WITH CONTINUOUSLY                                                                |
| 15338R             | DISTRIBUTED FEEDBA<br>LASER                                                                                       | CK      |            |              | Unfiled               | TRAUT SILKE (42'                                                                                                                                        | 12- HIGH POWER SEMICONDUCT                                                       |
| 15386Ji            | T THE STREET                                                                                                      | 1 1     | 0          |              | Applicati             | 5050415), SCHMID<br>BERTHOLD (AAS-<br>5050359,4),<br>SVERDLOV, BOR<br>(AA54-5050400,1<br>THIES, ACHIM (42<br>5050409,1)                                 | MAKING SUCH A DIODE                                                              |
| 15389              | ID LASER STABILIZATION USING VERY HIGH RELATIVE FEEDBA                                                            | 1 [     |            |              | Unfile                | d                                                                                                                                                       |                                                                                  |

| of a second  | Of acquerul                                                                                                                                | Cly | Sound Vic   | eatent/No. | Status                | Dept 105                                                                                                                                                                                       | Application) rule                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| No.<br>390RO | ON-CHIP POLARIZATION<br>SPLITTER/COMBINER                                                                                                  | US  | 60/404,166  |            |                       |                                                                                                                                                                                                | ON-CHIP POLARIZATION<br>SPLITTER/COMBINER DEVICE       |
| 390RO        | DEVICE<br>ON-CHIP POLARIZATION                                                                                                             | US  | 60/404,166  |            |                       |                                                                                                                                                                                                | ON-CHIP POLARIZATION<br>SPLITTER/COMBINER DEVICE       |
| 2000 10      | SPLITTER/COMBINER DEVICE A GUIDED SELF-ALIGNED                                                                                             | US  | 60/390,882  |            |                       |                                                                                                                                                                                                | A GUIDED SELF-ALIGNED LASER<br>STRUCTURE WITH INTEGRAL |
| 33930        | LASER STRUCTURE WITH<br>INTEGRAL CURRENT<br>BLOCKING LAYER                                                                                 |     |             |            |                       | LICHTENSTEIN,                                                                                                                                                                                  | CURRENT BLOCKING LAYER  A GUIDED SELF-ALIGNED LASER    |
| 5399JD       | A GUIDED SELF-ALIGNED<br>LASER STRUCTURE WITH<br>INTEGRAL CURRENT<br>BLOCKING LAYER                                                        | US  |             |            | Mailed<br>Application | NORBERT L (AA55-<br>5050260), FILY,<br>ARNAUD (AA55-<br>5053568,1), SCHMIDT,<br>BERTHOLD (AA54-<br>5050359,2), REID,<br>BENOIT (5C32-<br>0531388,2), KNIGHT,<br>D. GORDON (C116-<br>1529664,1) | STRUCTURE WITH INTEGRAL<br>CURRENT BLOCKING LAYER      |
| 5502RO       | A P-SUBSTRATE SELF-                                                                                                                        | -   |             |            | Unfiled               |                                                                                                                                                                                                |                                                        |
| 5502110      | ALIGNED LASER STRUCTURE WITH IRON DOPED CURRENT BLOCKING LAYERS                                                                            |     |             |            |                       |                                                                                                                                                                                                |                                                        |
| 5507RO       | DOTES OF THE                                                                                                                               |     |             |            | Unfiled               |                                                                                                                                                                                                |                                                        |
|              | WAVEGUIDE TE/TM MODE CONVERTER IN SEMICONDUCTING MATERIALS                                                                                 |     |             |            |                       |                                                                                                                                                                                                |                                                        |
| 15558RC      | MANUFACTURE OF A GRATING TEMPLATE ANI ITS TRANSFER INTO AL (IN, GA)AS MATERIAL USING IN-SITU ETCHING AND REGROWTH INSIDE A GROWTH REACTOR. | 4   |             |            | Unfiled               |                                                                                                                                                                                                |                                                        |
| 15592R0      | D ETCHING OF INDEX- OF<br>GAIN-COUPLED<br>GRATINGS INTO<br>INGASP MATERIAL<br>USING IN-SITU ETCHING<br>IN A GROWTH REACTO                  | 3   |             |            |                       |                                                                                                                                                                                                |                                                        |
| 15649JI      | LASER STRUCTURE WIT<br>LARGE OPTICAL<br>SUPERLATTICE<br>WAVEGUIDE                                                                          | H   |             |            | Unfiled               |                                                                                                                                                                                                |                                                        |
| 15655R       | O HIGH TEMPERATURE<br>OPERATION LASER<br>DIODES                                                                                            |     |             |            | Unfiled               |                                                                                                                                                                                                |                                                        |
| 15656R       | THE STREET A                                                                                                                               | SPI |             |            | unfiled               |                                                                                                                                                                                                | SUPERIMPOSED GRATING WDI                               |
| HQ005        |                                                                                                                                            |     | A 2,228,683 | 2,228,683  | 3                     |                                                                                                                                                                                                | TUNABLE LASERS  SUPERIMPOSED GRATING WD                |
| HQ005        | SUPERIMPOSED GRATING WDM TUNAB LASERS                                                                                                      |     | 09/253,129  | 6,141,37   | 0                     |                                                                                                                                                                                                | TUNABLE LASERS                                         |

| Disco       | ં આવેલીઓના મુક્                                       | Cty.    | Sential Vo.                                      |                 | Sub<br>Filte        |    | witu ใช้อยใช้สมองเล่าเอ                                              |
|-------------|-------------------------------------------------------|---------|--------------------------------------------------|-----------------|---------------------|----|----------------------------------------------------------------------|
| No<br>D0032 | OPTO ELECTRONIC COMPONENTS                            | US      | <b>第二次 1000 1000 1000 1000 1000 1000 1000 10</b> | 5,534,442       |                     |    | OPTO ELECTRONIC<br>COMPONENTS                                        |
| ID0079      | SEMICONDUCTOR -                                       | GB      | 9216363.3                                        | 2 269 268       |                     |    | SEMICONDUCTOR - SLICE<br>CLEAVING                                    |
| 10075       | SLICE CLEAVING                                        |         | 08/093,766                                       | 5,393,707       |                     |    | SEMICONDUCTOR - SLICE                                                |
| ID0079      | SEMICONDUCTOR -<br>SLICE CLEAVING                     | US      | 08/093,700                                       | 5,550,70        |                     |    | CLEAVING HYBRID OPTIC SOLUTION                                       |
|             | HYBRID OPTIC SOLUTION                                 | } ]_    | 95307824.3                                       | 695 04<br>280.7 |                     |    | HYBRID OPTIC SOLUTION                                                |
|             | HYBRID OPTIC SOLUTION                                 | 1 1     | 95307824.3                                       | 0 713 271       |                     |    | HYBRID OPTIC SOLUTION                                                |
|             | HYBRID OPTIC SOLUTION                                 | 1 1     | 9423282.4                                        | 2 293 203       |                     |    | HYBRID OPTIC SOLUTION                                                |
|             | HYBRID OPTIC SOLUTION                                 | 1 1     | 08/560,312                                       | 5,668,823       |                     |    | HYBRID OPTIC SOLUTION                                                |
|             | HYBRID OPTIC SOLUTION SEMICONDUCTOR                   | FR      | 94301114.8                                       | 0 614 214       |                     |    | SEMICONDUCTOR ETCHING PROCESS                                        |
| ID0134      | ETCHING PROCESS                                       |         |                                                  |                 |                     |    | SEMICONDUCTOR ETCHING                                                |
| ID0134      | SEMICONDUCTOR<br>ETCHING PROCESS                      | GB      | 94301114.8                                       | 0 614 214       |                     |    | PROCESS                                                              |
| 1D0134      | SEMICONDUCTOR<br>ETCHING PROCESS                      | DE      | 69401370.6                                       | 69401370.6      |                     |    | SEMICONDUCTOR ETCHING PROCESS                                        |
| ID0134      | SEMICONDUCTOR                                         | GB      | 9303257.1                                        | 2 275 364       |                     |    | SEMICONDUCTOR ETCHING PROCESS                                        |
|             | ETCHING PROCESS                                       | JP      | 6-45068                                          |                 |                     |    | SEMICONDUCTOR ETCHING PROCESS                                        |
| ID0134      | SEMICONDUCTOR<br>ETCHING PROCESS                      | J       |                                                  |                 |                     |    | SEMICONDUCTOR ETCHING                                                |
| ID0134      | SEMICONDUCTOR<br>ETCHING PROCESS                      | US      | 08/197,071                                       | 5,419,804       |                     |    | PROCESS                                                              |
| ID0137      | PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS | GB      | 9417975.1                                        | 2 293 248       |                     |    | PROVIDING OPTICAL COUPLING<br>BETWEEN OPTICAL<br>COMPONENTS          |
| ID013       | PROVIDING OPTICAL COUPLING BETWEEN OPTICAL COMPONENTS | US<br>S | 08/507,613                                       | 5,574,811       |                     |    | PROVIDING OPTICAL COUPLING<br>BETWEEN OPTICAL<br>COMPONENTS          |
| ID017       | AND AND                                               |         | 08/201,473                                       | 5,365,534       |                     |    | INJECTION LASER AND PHOTOSENSOR ASSEMBLY                             |
| ID019       | 3 FILAMENT COOLER                                     | GB      | 9404290.0                                        | 2 287 244       |                     |    | FILAMENT COOLER                                                      |
| ID019       | 3 FILAMENT COOLER                                     | us      | 08/388,151                                       | 5,568,728       |                     |    | FILAMENT COOLER  CO & COUNTER-PUMPED                                 |
| ID019       | OPTICAL AMPLIFIER                                     | ED US   | 08/303,367                                       | 5,542,011       |                     |    | OPTICAL AMPLIFIER                                                    |
| 1D020       | DE ELECTRO ABSORPTIO<br>OPTICAL MODULATOR             | N US    | 08/303,374                                       | 5,530,580       |                     |    | ELECTRO ABSORPTION OPTICAL MODULATORS                                |
| 1D02        |                                                       | ON EF   | 94306216.6                                       | 0 643 317       | Nat'l Phas<br>Filed | se | ELECTRO ABSORPTION OPTICA<br>MODULATORS<br>ELECTRO ABSORPTION OPTICA |
| 1D02        | 06 ELECTRO ABSORPTIO<br>OPTICAL MODULATOR             | ON GI   | B 9417001.6                                      | 2 281 785       |                     |    | MODULATORS                                                           |

| tsac .    | Disclosine title                                                                                        | àg/ | Solidation | alenta Vo       | Sinns.               | Anninganos militar Anninganos militar<br>Tenjekos                     |
|-----------|---------------------------------------------------------------------------------------------------------|-----|------------|-----------------|----------------------|-----------------------------------------------------------------------|
| No 2006 E |                                                                                                         | DE  | 94306216.6 | 694 26<br>796.1 |                      | ELECTRO ABSORPTION OPTICAL MODULATORS                                 |
| ł         | OPTICAL MODULATORS                                                                                      |     | 04206216.6 | 0 643 317       |                      | ELECTRO ABSORPTION OPTICAL                                            |
| 0206 E    | DETICAL MODULATORS                                                                                      | FR  | 94306216.6 | 00.30           |                      | MODULATORS                                                            |
| 00206 E   | LECTRO ABSORPTION                                                                                       | JP  | 216309/94  |                 |                      | ELECTRO ABSORPTION OPTICAL MODULATORS                                 |
| 10        | OPTICAL MODULATORS                                                                                      | l_  |            |                 |                      | PROVIDING OPTICAL COUPLING                                            |
|           | PROVIDING OPTICAL<br>COUPLING WITH SINGLE<br>CRYSTAL SUBSTRATE<br>MOUNTED ELECTRO-<br>OPTIC TRANSDUCERS | DE  | 94305060.9 | 694 10<br>032.3 |                      | WITH SINGLE CRYSTAL<br>SUBSTRATE MOUNTED<br>ELECTRO-OPTIC TRANSDUCERS |
|           |                                                                                                         | FR  | 94305060.9 | 0 636 912       |                      | PROVIDING OPTICAL COUPLING                                            |
| 00216     | PROVIDING OPTICAL<br>COUPLING WITH SINGLE<br>CRYSTAL SUBSTRATE<br>MOUNTED ELECTRO-<br>OPTIC TRANSDUCERS |     | 94303000.3 |                 |                      | WITH SINGLE CRYSTAL<br>SUBSTRATE MOUNTED<br>ELECTRO-OPTIC TRANSDUCER  |
|           | PROVIDING OPTICAL                                                                                       | GB  | 9315789.9  | 2 280 544       |                      | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL                        |
| D0216     | COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS                               |     |            |                 |                      | SUBSTRATE MOUNTED<br>ELECTRO-OPTIC TRANSDUCER                         |
|           |                                                                                                         | GB  | 94305060.9 | 0 636 912       |                      | PROVIDING OPTICAL COUPLIN<br>WITH SINGLE CRYSTAL                      |
| D0216     | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS             | GB  | 34303000.3 |                 |                      | SUBSTRATE MOUNTED ELECTRO-OPTIC TRANSDUCER                            |
|           | _                                                                                                       |     | 180288/94  |                 |                      | PROVIDING OPTICAL COUPLING                                            |
| ID0216    | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS             | JP  | 180200/34  |                 |                      | WITH SINGLE CRYSTAL<br>SUBSTRATE MOUNTED<br>ELECTRO-OPTIC TRANSDUCEI  |
|           |                                                                                                         | US  | 08/283,264 | 5,522,000       |                      | PROVIDING OPTICAL COUPLIN<br>WITH SINGLE CRYSTAL                      |
| ID0216    | PROVIDING OPTICAL COUPLING WITH SINGLE CRYSTAL SUBSTRATE MOUNTED ELECTRO- OPTIC TRANSDUCERS             |     | 00/200,20  |                 |                      | SUBSTRATE MOUNTED<br>ELECTRO-OPTIC TRANSDUCE                          |
| 10.000    | DIRECT AMPLITUDE                                                                                        | US  | 08/216,301 | 5,502,741       |                      | DIRECT AMPLITUDE MODULATION OF LASERS                                 |
| ID0237    | MODULATION OF LASERS                                                                                    | S   |            |                 |                      | HADDOVENENTS IN CRYSTA                                                |
| ID0261    | IMPROVEMENTS IN<br>CRYSTAL SUBSTRATE<br>PROCESSING                                                      | EP  | 96301377.6 | 0 732 739       | Nat'l Phase<br>Filed | SUBSTRATE PROCESSING                                                  |
| ID0261    | IMPROVEMENTS IN                                                                                         | JP  | 52013/96   |                 |                      | IMPROVEMENTS IN CRYSTA<br>SUBSTRATE PROCESSING                        |
| الاعتابا  | CRYSTAL SUBSTRATE PROCESSING                                                                            |     |            |                 |                      |                                                                       |
| ID0261    | IMPROVEMENTS IN                                                                                         | US  | 08/612,314 | 5,933,707       |                      | IMPROVEMENTS IN CRYSTA<br>SUBSTRATE PROCESSING                        |
| 100201    | CRYSTAL SUBSTRATE PROCESSING                                                                            |     |            |                 |                      |                                                                       |
| ID0261    | IMPROVEMENTS IN CRYSTAL SUBSTRATE PROCESSING                                                            | GE  | 96301377.6 | 0 732 739       |                      | IMPROVEMENTS IN CRYSTA<br>SUBSTRATE PROCESSING                        |
| ID0261    | IMPROVEMENTS IN CRYSTAL SUBSTRATE                                                                       | DE  | 96301377.6 | 696 18<br>264.5 |                      | IMPROVEMENTS IN CRYSTA<br>SUBSTRATE PROCESSING                        |

| Disc   | Disclosifornie                                              | 9 <i>V</i> / | Seral (O       | relitevity      | Sems                 | a tope No A | Application file                                         |
|--------|-------------------------------------------------------------|--------------|----------------|-----------------|----------------------|-------------|----------------------------------------------------------|
| D0261  | IMPROVEMENTS IN<br>CRYSTAL SUBSTRATE<br>PROCESSING          | FR           | 96301377.6 0   | 732 739         |                      | 170         | SUBSTRATE PROCESSING                                     |
| 00287  | POLARISATION-<br>INSENSITIVE OPTICAL<br>MODULATORS          | DE           | 195 28 165.9   |                 |                      |             | POLARISATION-INSENSITIVE OPTICAL MODULATORS              |
| 00287  | POLARISATION-<br>INSENSITIVE OPTICAL<br>MODULATORS          | GB           | 9515400.1 2    | 291 979         |                      |             | POLARISATION-INSENSITIVE<br>OPTICAL MODULATORS           |
| D0287  | POLARISATION-<br>INSENSITIVE OPTICAL<br>MODULATORS          | FR           | 9509417        | 2723485         |                      |             | POLARISATION-INSENSITIVE OPTICAL MODULATORS              |
| D0287  | POLARISATION-<br>INSENSITIVE OPTICAL<br>MODULATORS          | us           | 08/510,752     | 5,275,321       |                      |             | POLARISATION-INSENSITIVE<br>OPTICAL MODULATORS           |
| D0295  | OPTICALLY COUPLING<br>OPTICAL FIBRES TO<br>INJECTION LASERS | EP           | 95308872.1     | 717 297         | Vat'l Phase<br>Filed |             | OPTICALLY COUPLING OPTICAL<br>FIBRES TO INJECTION LASERS |
| ID0295 | OPTICALLY COUPLING<br>OPTICAL FIBRES TO<br>INJECTION LASERS | GB           | 9425022.2      | 2 296 101       |                      |             | OPTICALLY COUPLING OPTICAL<br>FIBRES TO INJECTION LASERS |
| ID0295 | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS       | US           | 08/570,983     | 5,570,444       |                      |             | OPTICALLY COUPLING OPTICAL<br>FIBRES TO INJECTION LASERS |
| ID0295 | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS       | DE           | 95308872.1     | 695 26<br>563.6 |                      |             | OPTICALLY COUPLING OPTICAL<br>FIBRES TO INJECTION LASERS |
| ID0295 | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS       | GB           | 95308872.1     | 0 717 297       |                      |             | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS    |
| ID0295 | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS       | FR           | 95308872.1     | 0 717 297       |                      |             | OPTICALLY COUPLING OPTICA<br>FIBRES TO INJECTION LASERS  |
| ID0295 | OPTICALLY COUPLING OPTICAL FIBRES TO INJECTION LASERS       | iπ           | 95308872.1     | 0 717 297       |                      |             | OPTICALLY COUPLING OPTICA<br>FIBRES TO INJECTION LASERS  |
| ID0311 | OPTICAL AMPLIFIER                                           | DE           | 96308900.8     | 696 03<br>935.4 |                      |             | OPTICAL AMPLIFIER                                        |
| ID0311 | OPTICAL AMPLIFIER                                           | EP           | 96308900.8     |                 | Nat'l Phase<br>Filed |             | OPTICAL AMPLIFIER                                        |
| ID0311 | AND FIED                                                    | IT           | 96308900.8     | 0 779 689       |                      |             | OPTICAL AMPLIFIER                                        |
| ID0311 | · · · · · · · · · · · · · · · · · · ·                       | FR           | 96308900.8     | 0 779 689       |                      |             | OPTICAL AMPLIFIER                                        |
| ID0311 | ALADI ITIED                                                 | GB           | 9525766.3      | 2 308 222       |                      |             | OPTICAL AMPLIFIER                                        |
| 1D031  |                                                             | US           | 08/760,175     | 5,872,649       |                      |             | OPTICAL AMPLIFIER                                        |
| ID034  |                                                             | EB           | PCT/GB96/01406 | -               | Nat'i Phase          | Э           | LASERS                                                   |
| 1D038  | 0.001                                                       | GB           | 9515004.1      | 2 303 467       |                      |             | HERMETIC OPTICAL FIBRE FEI                               |
| ID038  | 4 HERMETIC OPTICAL<br>FIBRE FEED-THROUGH                    | US           | 08/684,128     | 5,664,043       |                      |             | HERMETIC OPTICAL FIBRE FEE<br>THROUGH                    |

| N 22 1 | - alicalication (                                                      | cty  | eserial No. | alei(No         | es Sub = 1           | Alunyenor v | TALON APPANGEMENT                                                    |
|--------|------------------------------------------------------------------------|------|-------------|-----------------|----------------------|-------------|----------------------------------------------------------------------|
|        |                                                                        | EP   | 97305110.5  |                 | Siaus                |             | ETALON ARRANGEMENT                                                   |
|        | ETALON ARRANGEMENT                                                     | JP   | 179766/1997 |                 |                      |             | ETALON ARRANGEMENT                                                   |
|        | ETALON ARRANGEMENT                                                     | JP   | 179766/1997 |                 |                      |             | ETALON ARRANGEMENT                                                   |
| D0426  |                                                                        |      | 2,203,845   | 2,203,845       |                      |             | ETALON ARRANGEMENT                                                   |
| D0426  | ETALON ARRANGEMENT                                                     | CA   |             | 5,828,689       |                      |             | ETALON ARRANGEMENT                                                   |
| D0426  | ETALON ARRANGEMENT                                                     | us   | 08/848,337  |                 |                      |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | DE   | 97901693.8  | 697 00<br>830.4 |                      |             |                                                                      |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | EΡ   | 97901693.8  | 0 876 696       | Nat'l Phase<br>Filed |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | FR   | 97901693.8  | 0 876 696       |                      |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | GB   | 9601703.3   | 2 309 581       |                      |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | GB   | 97901693.8  | 0 876 696       |                      |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | IT   | 97901693.8  | 0 876 696       |                      |             | SEMICONDUCTOR LASERS                                                 |
| D0431  | SEMICONDUCTOR<br>LASERS                                                | JP   | 526680/1997 |                 |                      |             | SEMICONDUCTOR LASERS                                                 |
| ID0431 | SEMICONDUCTOR<br>LASERS                                                | US   | 09/091,684  | 6,058,125       |                      |             | SEMICONDUCTOR LASERS                                                 |
| ID0467 | CONTROLLED DISPENSE<br>OF GLUE ONTO A<br>SILICON V-GROOVE<br>SUBSTRATE | EP   | 97902473.4  | 0 879 435       | Nat'l Phase<br>Filed |             | SECURING AN OPTICAL FIBRE IN<br>A V-GROOVE                           |
| ID0467 | CONTROLLED DISPENSE OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE          | GB   | 9602564.8   | 2 310 052       |                      |             | CONTROLLED DISPENSE OF<br>GLUE ONTO A SILICON V-<br>GROOVE SUBSTRATE |
| ID0467 | CONTROLLED DISPENSE<br>OF GLUE ONTO A<br>SILICON V-GROOVE<br>SUBSTRATE | JP   | 528272/1997 |                 |                      |             | CONTROLLED DISPENSE OF<br>GLUE ONTO A SILICON V-<br>GROOVE SUBSTRATE |
| ID0467 | CONTROLLED DISPENSI OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE          | US   | 08/952,676  | 5,985,086       |                      |             | CONTROLLED DISPENSE OF<br>GLUE ONTO A SILICON V-<br>GROOVE SUBSTRATE |
| 1D0467 | 7 CONTROLLED DISPENS OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE         | E DE | 97902473.4  | 697 10<br>047.2 |                      |             | SECURING AN OPTICAL FIBRE I<br>A V-GROOVE                            |
| ID046  | 7 CONTROLLED DISPENS OF GLUE ONTO A SILICON V-GROOVE SUBSTRATE         | EIT  | 97902473.4  | 0 879 435       | 5                    |             | SECURING AN OPTICAL FIBRE<br>A V-GROOVE                              |

| The second | ausolósure mie                                                         | SU           | Scialing.      | Self 70   | Selies #             | Depuille. | jib Wajipileatioparus - 22                                                  |
|------------|------------------------------------------------------------------------|--------------|----------------|-----------|----------------------|-----------|-----------------------------------------------------------------------------|
| 0467 C     | ONTROLLED DISPENSE<br>OF GLUE ONTO A<br>SILICON V-GROOVE<br>SUBSTRATE  | FR           | 97902473.4     | 0 879 435 |                      |           | A V-GROOVE                                                                  |
| 0467       | CONTROLLED DISPENSE<br>OF GLUE ONTO A<br>SILICON V-GROOVE<br>SUBSTRATE | <b>W</b> O F | PCT/GB97/00320 |           | Nat'l Phase<br>Filed |           | CONTROLLED DISPENSE OF<br>GLUE ONTO A SILICON V-<br>GROOVE SUBSTRATE        |
| 0519       | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                  | JP           | 507707/1998    |           |                      |           | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                       |
| 0519       | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                  | US           | 09/214,634     | 6,188,118 |                      |           | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                       |
| 0519       | SEMICONDUCTOR<br>PHOTODETECTOR                                         | CA           | 2,258,178      |           |                      |           | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                       |
| 00519      | PACKAGING  SEMICONDUCTOR PHOTODETECTOR PACKAGING                       | EP           | 97933796.1     |           |                      |           | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                       |
| 00519      | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                  | wo           | PCT/GB97/0205  | 3         | Nat'l Phase<br>Filed |           | SEMICONDUCTOR PHOTODETECTOR PACKAGING                                       |
| 0651       | DIRECT AMPLITUDE MODULATION OF LASER                                   | SEP          | 98303274.9     |           |                      |           | DIRECT AMPLITUDE<br>MODULATION OF LASERS                                    |
| DOSE1      | DIRECT AMPLITUDE<br>MODULATION OF LASER                                | US           | 08/865,760     | 5,901,164 |                      |           | DIRECT AMPLITUDE MODULATION OF LASERS  DIRECT AMPLITUDE                     |
| D0651      | DIRECT AMPLITUDE<br>MODULATION OF LASER                                | CA           | 2,235,179      |           |                      |           | MODULATION OF LASERS  DIRECT AMPLITUDE                                      |
| D0651      | DIRECT AMPLITUDE<br>MODULATION OF LASER                                | JP<br>RS     | 146072/1998    |           |                      |           | MODULATION OF LASERS OPTICAL TRANSMITTER OUTPL                              |
| D0687      | OPTICAL TRANSMITTE<br>OUTPUT MONITORING<br>TAP                         | R US         | 08/984,894     | 6,124,956 | 5                    |           | MONITORING TAP                                                              |
| ID0691     | BONDING RIDGE<br>STRUCTURE LASER<br>DIODES TO SUBSTRATI                | US<br>ES     | 09/072,810     | 6,075,800 |                      |           | BONDING RIDGE STRUCTURI LASER DIODES TO SUBSTRATI , REMOVABLY COATED OPTICA |
| ID0764     | A REMOVABLY COATE OPTICAL FIBRE                                        | D U          | 99/374,807     | 6,351,58  | 9                    |           | FIBRE FIBRE FIBRE                                                           |
| ID0803     | TI FOTDICALLY                                                          | AL EI        | 98309206.5     |           |                      |           | OPTICAL ATTENUATOR                                                          |
| ID0803     | B ELECTRICALLY CONTROLLABLE OPTIC ATTENUATOR                           | CAL          | P 365470/1998  | 3         |                      |           | OPTICAL ATTENUATOR                                                          |
| ID080      | 3 ELECTRICALLY CONTROLLABLE OPTIC ATTENUATOR                           |              | S 08/997,752   | 5,956,43  | 37                   |           | ELECTRICALLY CONTROLLAR OPTICAL ATTENUATOR                                  |
| ID080      | 3 ELECTRICALLY CONTROLLABLE OPTI                                       |              | A 2,254,148    |           |                      |           | ELECTRICALLY CONTROLLAE<br>OPTICAL ATTENUATOR                               |

| Dist-  | Disclosure (ille-                                       | 22/6 | -semire     | Signify.    | Shius        | Deput VDIs | Application and SEMICONDUCTOR OPTO-                                |
|--------|---------------------------------------------------------|------|-------------|-------------|--------------|------------|--------------------------------------------------------------------|
| D0908  | SEMICONDUCTOR OPTO<br>ELECTRONIC DEVICE<br>PACKAGING    | US   | 09/070,899  | 6,407,438   |              |            | PACKAGING                                                          |
| D1107  | MACH ZENDER                                             | EP   | 00301124.4  |             |              |            | INTEGRATED OPTICAL MACH<br>ZEHNDER STRUCTURES                      |
| D1107  | STRUCTURES  INTEGRATED OPTICAL  MACH ZENDER  STRUCTURES | us   | 09/280,360  | 6,240,221   |              |            | INTEGRATED OPTICAL MACH ZEHNDER STRUCTURES INTEGRATED OPTICAL MACH |
| ID1107 |                                                         | CA   | 2,299,794   |             |              |            | ZEHNDER STRUCTURES  INJECTION LASER PACKAGES                       |
| ID8512 | INJECTION LASER PACKAGES                                | us   | 06/514,066  | 4,615,031   |              |            | INJECTION LASER PACKAGES                                           |
| ID8512 | INJECTION LASER<br>PACKAGES                             | GB   | 8317959     | 2 124 402   |              |            | OPTICAL AMPLIFIERS                                                 |
| ID8850 | OPTICAL AMPLIFIERS                                      | us   | 06/888,274  | 4,720,684   |              |            |                                                                    |
| ID8850 | OPTICAL AMPLIFIERS                                      | CA   | 469,211     | 1,245,328   |              |            | OPTICAL AMPLIFIERS                                                 |
| ID8852 | MANUFACTURING<br>OPTICAL FIBRE                          | US   | 06/736,327  | 4,608,276   |              |            | MANUFACTURING OPTICAL<br>FIBRE                                     |
| ID8852 | MANUFACTURING<br>OPTICAL FIBRE                          | CA   | 482,229     | 1,261,632   |              |            | MANUFACTURING OPTICAL<br>FIBRE                                     |
| ID8960 | OPTICAL FIBRE MANUFACTURE                               | us   | 06/940,232  | 4,735,648   |              |            | OPTICAL FIBRE MANUFACTURE                                          |
| ID9003 | COATING OPTICAL<br>FIBRES                               | DE   | 85306977.1  | 356 83 25.2 |              |            | COATING OPTICAL FIBRES                                             |
| ID9003 | COATING OPTICAL<br>FIBRES                               | JP   | 222908/85   | 2029150     |              |            | COATING OPTICAL FIBRES                                             |
| ID9003 | COATING OPTICAL<br>FIBRES                               | บร   | 06/782,930  | 4,631,078   |              |            | COATING OPTICAL FIBRES                                             |
| ID9003 | COATING OPTICAL<br>FIBRES                               | GB   | 85306977.1  | 0 178 107   |              |            | COATING OPTICAL FIBRES                                             |
| 1D9003 | COATING OPTICAL FIBRES                                  | CA   | 492,574     | 1,226,411   |              |            | COATING OPTICAL FIBRES                                             |
| ID9186 | LASER MANUFACTURE                                       | US   | 07/296,946  | 4,949,352   | -            |            | LASER MANUFACTURE                                                  |
| ID9186 | TO A A A H I TO A OTHER                                 | GB   | 8512321     | 2 175 442   |              |            | LASER MANUFACTURE                                                  |
|        | THE SUBMOS                                              | US   | 06/858,617  | 4,748,307   |              |            | TUBE FURNACE                                                       |
| ID9209 | - FIRE                                                  | US   | 06/896,518  | 4,793,840   | <del> </del> |            | OPTICAL FIBRE MANUFACTURE                                          |
| ID9312 | MANUFACTURE                                             |      |             | <u> </u>    |              |            | OPTICAL FIBRE MANUFACTURE                                          |
| ID9312 | OPTICAL FIBRE MANUFACTURE                               | GB   | 8520945     | 2 179 339   |              |            | OPTICAL FIBRE CABLE HAVING                                         |
| ID9315 | OPTICAL FIBRE CABLE<br>HAVING SLOTTED CORE              | DE   | 365 02 56.1 | 365 02 56.  | 1            |            | SLOTTED CORE                                                       |
| ID9315 | OPTICAL FIBRE CABLE HAVING SLOTTED CORE                 | FR   | 86306868.0  | 0 216 548   |              |            | OPTICAL FIBRE CABLE HAVING<br>SLOTTED CORE                         |

| Dise              | edeclosoperdie                                  | Ciy | i striji XO | Patent No.  | Silb (e Allinventois with s | a sypplication relieves and                     |
|-------------------|-------------------------------------------------|-----|-------------|-------------|-----------------------------|-------------------------------------------------|
| The second second |                                                 | 66  | 000000000   | 0 216 548   |                             | OPTICAL FIBRE CABLE HAVING                      |
| ID9315            | OPTICAL FIBRE CABLE<br>HAVING SLOTTED CORE      | GB  | 86306868.0  | 0 210 540   |                             | SLOTTED CORE                                    |
| ID9315            | OPTICAL FIBRE CABLE<br>HAVING SLOTTED CORE      | NZ  | 217514      | 217514      |                             | OPTICAL FIBRE CABLE HAVING<br>SLOTTED CORE      |
| ID9315            | OPTICAL FIBRE CABLE<br>HAVING SLOTTED CORE      | US  | 07/636,902  | RE34,516    |                             | OPTICAL FIBRE CABLE HAVING<br>SLOTTED CORE      |
| ID9379            | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER | US  | 06/934,440  | 4,772,086   |                             | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER |
| ID9379            | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER | GB  | 8530797     | 2 184 255   |                             | OPTICAL FIBRE INTEGRATED OPTICAL DEVICE COUPLER |
| ID9495            | LASER ARRAY                                     | DE  | 87302417.8  | 376 44 10.6 |                             | LASER ARRAY                                     |
| ID9495            | LASER ARRAY                                     | JP  | 129591/87   | 2511969     |                             | LASER ARRAY                                     |
| ID9495            | LASER ARRAY                                     | us  | 07/032,779  | 4,760,580   |                             | LASER ARRAY                                     |
| ID9552            | OPTICAL FIBRE CABLES                            | DE  | 3883556.8   | 3883556.8   |                             | OPTICAL FIBRE CABLES                            |
| ID9552            | OPTICAL FIBRE CABLES                            | FR  | 88300817.9  | 0 278 648   |                             | OPTICAL FIBRE CABLES                            |
| ID9552            | OPTICAL FIBRE CABLES                            | GB  | 8703255     | 2 201 008   |                             | OPTICAL FIBRE CABLES                            |
| ID9552            | OPTICAL FIBRE CABLES                            | υs  | 07/154,866  | 4,830,459   |                             | OPTICAL FIBRE CABLES                            |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | DE  | 88306994.0  | 388 13 01.7 |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | FR  | 88306994.0  | 0 304 182   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | GB  | 8719590     | 2 208 944   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | GB  | 88306994.0  | 0 304 182   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | NL  | 88306994.0  | 0 304 182   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | SE  | 88306994.0  | 0 304 182   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9604            | FIBRE TAILED OPTO-<br>ELECTRONIC<br>TRANSDUCER  | US  | 07/230,057  | 4,988,159   |                             | FIBRE TAILED OPTO-<br>ELECTRONIC TRANSDUCER     |
| ID9617            | EDGE EMITTING LIGHT<br>EMISSIVE DIODE           | US  | 07/239,403  | 4,937,638   |                             | EDGE EMITTING LIGHT EMISSIVE<br>DIODE           |
| ID9661            | WAVEGUIDE TO OPTO-<br>ELECTRONIC<br>TRANSDUCER  | GB  | 8823873.8   | 2 213 957   |                             | WAVEGUIDE TO OPTO-<br>ELECTRONIC TRANSDUCER     |

| काई.   |                                                                      | Giy, | Similar.     | Patent No.      | Sidi) — I.<br>Siene | Alfroeios Viir.<br>Par V65 | (Spileting rije                                                           |
|--------|----------------------------------------------------------------------|------|--------------|-----------------|---------------------|----------------------------|---------------------------------------------------------------------------|
| ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | DE   | 690 20 050.1 | 690 20<br>050.1 |                     |                            | CONTACTLESS MEASUREMENT<br>OF THE ELECTRICAL<br>RESISTANCE PERUNIT LENGTH |
| ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | FR   | 90305474.0   | 0 400 853       |                     |                            | CONTACTLESS MEASUREMENT<br>OF THE ELECTRICAL<br>RESISTANCE PERUNIT LENGTH |
| ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | GB   | 8912458.0    | 2 232 260       |                     |                            | CONTACTLESS MEASUREMENT<br>OF THE ELECTRICAL<br>RESISTANCE PERUNIT LENGTH |
| ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | JP   | 141220/1990  | 2991238         |                     |                            | CONTACTLESS MEASUREMENT<br>OF THE ELECTRICAL<br>RESISTANCE PERUNIT LENGTH |
| ID9715 | CONTACTLESS MEASUREMENT OF THE ELECTRICAL RESISTANCE PER UNIT LENGTH | US   | 07/531,791   | 5,083,090       |                     |                            | CONTACTLESS MEASUREMENT<br>OF THE ELECTRICAL<br>RESISTANCE PERUNIT LENGTH |
| ID9716 | CARB ON COATING OF<br>OPTICAL FIBRES                                 | DE   | 690 10 282.8 | 0 400 938       |                     |                            | CARB ON COATING OF OPTICAL<br>FIBRES                                      |
| ID9716 | CARB ON COATING OF OPTICAL FIBRES                                    | FR   | 90305776.8   | 0 400 938       |                     |                            | CARB ON COATING OF OPTICAL<br>FIBRES                                      |
| ID9716 | CARB ON COATING OF<br>OPTICAL FIBRES                                 | GB   | 9011933.0    | 2 236 331       |                     |                            | CARB ON COATING OF OPTICAL<br>FIBRES                                      |
| ID9716 | CARB ON COATING OF<br>OPTICAL FIBRES                                 | JP   | 141221/1990  | 2866707         |                     |                            | CARB ON COATING OF OPTICAL<br>FIBRES                                      |
| ID9716 | CARB ON COATING OF OPTICAL FIBRES                                    | US   | 07/531,859   | 5,062,687       |                     |                            | CARB ON COATING OF OPTICAL<br>FIBRES                                      |
| ID9731 | BONDING A<br>SEMICONDUCTOR TO A<br>SUBSTRATE                         | GB   | 8818522.8    | 2 221 570       |                     |                            | BONDING A SEMICONDUCTOR<br>TO A SUBSTRATE                                 |
| ID9742 | OPTICAL FILTERS                                                      | GB   | 8823078.4    | 2 223 324       |                     |                            | OPTICAL FILTERS                                                           |
| ID9750 | DIFFRACTION GRATING                                                  | DE   | 68928711.9   | 0365125         |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | FR   | 89308702.3   | 0 365 125       |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | GB   | 8821898.7    | 2 222 891       |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | IT   | 22874/BE/98  | 0 365 125       |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | JP   | 239789/1989  | 2889608         |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | JP   | 239789/1989  | 2889608         |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | JP   | 239789/1989  | 2889608         |                     |                            | DIFFRACTION GRATING                                                       |
| ID9750 | DIFFRACTION GRATING                                                  | us   | 07/579,081   | 5,029,981       |                     |                            | DIFFRACTION GRATING                                                       |

| 774    | near arrante                                             | CIV. | SenaliNo    | Palentivica     | Silbe C                                          | Altivence viii.       | Application frite                                      |
|--------|----------------------------------------------------------|------|-------------|-----------------|--------------------------------------------------|-----------------------|--------------------------------------------------------|
| 17/10  |                                                          |      |             |                 | Status                                           | a a grant of the same | DIFFRACTION GRATING                                    |
| ID9750 | DIFFRACTION GRATING                                      | JP   | 239789/1989 | 2005000         |                                                  |                       | DIFFRACTION GRATING                                    |
| ID9750 | DIFFRACTION GRATING                                      | JP   | 239789/1989 | 2889608         |                                                  |                       | DIFFRACTION GRATING                                    |
| ID9750 | DIFFRACTION GRATING                                      | JP   | 239789/1989 | 2889608         |                                                  |                       |                                                        |
| ID9750 | DIFFRACTION GRATING                                      | NL   | 89308702.3  | 0 365 125       |                                                  |                       | DIFFRACTION GRATING                                    |
| ID9752 | VAPOUR PHASE<br>PROCESSING                               | GB   | 8823233.5   | 2 223 509       |                                                  |                       | VAPOUR PHASE PROCESSING                                |
| ID9763 | MULTICHANNEL CAVITY<br>LASER                             | DE   | 89312024.6  | 689 18<br>238.4 |                                                  | ·                     | MULTICHANNEL CAVITY LASER                              |
| ID9763 | MULTICHANNEL CAVITY<br>LASER                             | FR   | 89312024.6  | 0 370 739       |                                                  |                       | MULTICHANNEL CAVITY LASER                              |
| ID9763 | MULTICHANNEL CAVITY<br>LASER                             | GB   | 8827385.9   | 2 225 482       |                                                  |                       | MULTICHANNEL CAVITY LASER                              |
| ID9763 | MULTICHANNEL CAVITY<br>LASER                             | US   | 07/625,818  | 5,115,444       |                                                  |                       | MULTICHANNEL CAVITY LASER                              |
| ID9774 | INTEGRATED OPTICS<br>ASYMMETRIC Y-<br>COUPLER            | GB   | 8902391.5   | 2 227 854       | ·                                                |                       | INTEGRATED OPTICS ASYMMETRIC Y-COUPLER                 |
| ID9806 | OPTICAL FIBRE CABLE                                      | us   | 07/544,678  | 5,082,380       |                                                  |                       | OPTICAL FIBRE CABLE                                    |
| ID9837 | AERIAL OPTICAL FIBRE CABLE                               | US   | 07/596,381  | 5,050,960       |                                                  |                       | AERIAL OPTICAL FIBRE CABLE                             |
| 1D9856 | SEMICONDUCTOR<br>OPTICAL SOURCE                          | GB   | 8924725.8   | 2 237 654       |                                                  |                       | SEMICONDUCTOR OPTICAL SOURCE                           |
| ID9870 | RING LASER                                               | FR   | 90309362.3  | 0 419 059       |                                                  |                       | RING LASER                                             |
| ID9870 | RING LASER                                               | GB   | 8921295.5   | 2 236 426       |                                                  |                       | RING LASER                                             |
| ID9870 | RING LASER                                               | DE   | 69003780.5  | 0 419 059       |                                                  |                       | RING LASER                                             |
| ID9870 | RING LASER                                               | JP   | 249922/1990 | 3004336         | <del>                                     </del> |                       | RING LASER                                             |
| ID9870 | RING LASER                                               | US   | 07/583,590  | 5,056,096       |                                                  |                       | RING LASER                                             |
| MO0068 | OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE   | FR   | 90304772.8  | 0401971         |                                                  |                       | OPTICAL WAVEGUIDE AND<br>METHOD FOR ITS<br>MANUFACTURE |
| MO0068 | OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE   | CA   | 2,013,849   | 2,013,849       |                                                  |                       | OPTICAL WAVEGUIDE AND<br>METHOD FOR ITS<br>MANUFACTURE |
| MO0068 | B OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE | DE   | 90304772.8  | 0401971         |                                                  |                       | OPTICAL WAVEGUIDE AND<br>METHOD FOR ITS<br>MANUFACTURE |
| WO0068 | B OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE | EP   | 90304772.8  | 0401971         |                                                  |                       | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE       |
| MO006  | 8 OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE | US   | 07/363,006  | 4,934,774       | 1                                                |                       | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE       |

| TOEs ! | ยัเรสดริยัย เมีย 🚈                                                                                                              | Si) | , સ્ટાગનાય છે. | Pigipile  | o Suble<br>Status | Aldinendessins<br>Designess |                                                                                                                                |
|--------|---------------------------------------------------------------------------------------------------------------------------------|-----|----------------|-----------|-------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| MO0068 | OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE                                                                          | US  | 07/501,990     | 5,035,916 |                   |                             | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE                                                                               |
| MO0068 | OPTICAL WAVEGUIDE<br>AND METHOD FOR ITS<br>MANUFACTURE                                                                          | GB  | 90304772.8     | 0401971   |                   |                             | OPTICAL WAVEGUIDE AND METHOD FOR ITS MANUFACTURE                                                                               |
| MO0166 | A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM AN OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER | US  | 08/710,775     | 5,703,980 |                   |                             | A METHOD FOR LOW LOSS INSERTION OF AN OPTICAL SIGNAL FROM A OPTICAL FIBER TO A WAVEGUIDE INTEGRATED ONTO A SEMICONDUCTOR WAFER |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           | CA  | 2,209,548      |           |                   |                             | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                          |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           | EP  | 97111629.8     |           |                   |                             | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                          |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           | JP  | 9-185588       |           |                   |                             | A METHOD FOR THE HYBRID<br>INTEGRATION OF DISCRETE<br>ELEMENTS ON A<br>SEMICONDUCTOR SUBSTRATE                                 |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           | US  | 08/677,922     | 5,793,913 | ·                 |                             | A METHOD FOR THE HYBRID<br>INTEGRATION OF DISCRETE<br>ELEMENTS ON A<br>SEMICONDUCTOR SUBSTRATE                                 |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           |     | 09/079,480     | 6,158,901 |                   |                             | A METHOD FOR THE HYBRID<br>INTEGRATION OF DISCRETE<br>ELEMENTS ON A<br>SEMICONDUCTOR SUBSTRATE                                 |
| MO0167 | A METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                           | US  | 09/584,792     | 6,391,214 |                   |                             | METHOD FOR THE HYBRID INTEGRATION OF DISCRETE ELEMENTS ON A SEMICONDUCTOR SUBSTRATE                                            |
| RE1009 | FIBER OPTIC COUPLER                                                                                                             | CA  | 476,580        | 1,258,787 |                   |                             | FIBER OPTIC COUPLER                                                                                                            |
| RE1009 | FIBER OPTIC COUPLER                                                                                                             | US  | 07/442,878     | 4,950,046 |                   |                             | FIBER OPTIC COUPLER                                                                                                            |
| RE1037 | OPTICAL SIGNAL<br>MODULATORS                                                                                                    | CA  | 507,411        | 1,257,923 |                   |                             | OPTICAL SIGNAL MODULATORS                                                                                                      |
| RE1037 | OPTICAL SIGNAL<br>MODULATORS                                                                                                    | US  | 06/856,887     | 4,730,171 |                   |                             | OPTICAL SIGNAL MODULATORS                                                                                                      |
| RO1624 | HERMETIC OPTICAL<br>ATTENUATOR                                                                                                  | us  | 06/233,500     | 4,695,125 |                   |                             | HERMETIC OPTICAL<br>ATTENUATOR                                                                                                 |

| Disciplin       | The grade and                                                                      | Civ. | Strippo -  |           | Sind All Inventors (Au) Avail anonytic Single Copy (As                         |
|-----------------|------------------------------------------------------------------------------------|------|------------|-----------|--------------------------------------------------------------------------------|
| No 42<br>RO1807 | DIFFUSION EQUIPMENT                                                                | CA   | 416,834    | 1,204,986 | DIFFUSION EQUIPMENT                                                            |
| RO1807          | DIFFUSION EQUIPMENT                                                                | US   | 06/446,441 | 4,493,287 | DIFFUSION EQUIPMENT                                                            |
| RO1809          | A PLANAR NARROW-<br>STRIPE LASER WITH<br>IMPROVED CHARGE<br>CARRIER<br>CONFINEMENT | US   | 06/448,383 | 4,530,099 | A PLANAR NARROW-STRIPE<br>LASER WITH IMPROVED CHARGE<br>CARRIER<br>CONFINEMENT |
| RO1882          | MELT DISPENSING<br>LIQUID PHASE EPITAXY<br>BOAT                                    | CA   | 448,169    | 1,201,220 | MELT DISPENSING LIQUID PHASE EPITAXY BOAT                                      |
| RO1882          | MELT DISPENSING<br>LIQUID PHASE EPITAXY<br>BOAT                                    | US   | 06/583,985 | 4,574,730 | MELT DISPENSING LIQUID PHASE EPITAXY BOAT                                      |
| RO1903          | METHOD FOR<br>SCREENING LASER<br>DIODES                                            | CA   | 447,814    | 1,196,080 | METHOD FOR SCREENING<br>LASER DIODES                                           |
| RO1903          | METHOD FOR<br>SCREENING LASER<br>DIODES                                            | US   | 06/582,956 | 4,489,477 | METHOD FOR SCREENING<br>LASER DIODES                                           |
| RO1944          | PHASED LINEAR LASER<br>ARRAY                                                       | CA   | 465,981    | 1,238,707 | PHASED LINEAR LASER ARRAY                                                      |
| RO1944          | PHASED LINEAR LASER<br>ARRAY                                                       | us   | 06/663,424 | 4,661,962 | PHASED LINEAR LASER ARRAY                                                      |
| RO1961          | ZINC DIFFUSION INTO<br>INDIUM PHOSPHIDE                                            | CA   | 495,084    | 1,290,656 | ZINC DIFFUSION INTO INDIUM<br>PHOSPHIDE                                        |
| RO1961          | ZINC DIFFUSION INTO<br>INDIUM PHOSPHIDE                                            | US   | 07/243,138 | 4,889,830 | ZINC DIFFUSION INTO INDIUM<br>PHOSPHIDE                                        |
| RO1987          | DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE                            | CA   | 483,077    | 1,238,973 | DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE                        |
| RO1987          | DOUBLE HETEROSTRUCTURE SURFACE EMITTING LASER STRUCTURE                            | US   | 06/673,644 | 4,660,207 | DOUBLE HETEROSTRUCTURE<br>SURFACE EMITTING LASER<br>STRUCTURE                  |
| RO1994          | A SURFACE EMITTING<br>LASER                                                        | CA   | 474,029    | 1,238,971 | A SURFACE EMITTING LASER                                                       |
| RO1994          | A SURFACE EMITTING<br>LASER                                                        | US   | 06/701,839 | 4,675,877 | A SURFACE EMITTING LASER                                                       |
| RO2005          | A BRAGG DISTRIBUTED<br>FEEDBACK SURFACE<br>EMITTING LASER                          | US   | 06/701,707 | 4,675,876 | LASER                                                                          |
| RO2005          | A BRAGG DISTRIBUTED<br>FEEDBACK SURFACE<br>EMITTING LASER                          | GA   | 474,030    | 1,238,972 | LASER                                                                          |
| RO2268          | AN INTERRUPTED LIQUI<br>PHASE EPITAXY<br>TECHNIQUE                                 | D CA | 562,885    | 1,293,179 | EPITACT TECHNIQUE                                                              |
| RO2268          | AN INTERRUPTED LIQUI<br>PHASE EPITAXY<br>TECHNIQUE                                 | D US | 07/179,834 | 4,859,628 | AN INTERRUPTED LIQUID PHASE<br>EPITAXY TECHNIQUE                               |

| Disa   | Dedeşirê rûle                                                                   | Giy, | Seridavió  | Patenti No.     | Sijo Ajdiye, idis Aidiye.<br>Sijos Deni Abs | Application frie                                                          |
|--------|---------------------------------------------------------------------------------|------|------------|-----------------|---------------------------------------------|---------------------------------------------------------------------------|
| RO2314 | MONOLITHIC INTEGRATION OF OPTOELECTRONIC AND ELECTRONIC DEVICES                 | US   | 07/176,120 | 4,847,665       |                                             | MONOLITHIC INTEGRATION OF<br>OPTOELECTRONIC AND<br>ELECTRONIC<br>DEVICES  |
| RO2349 | GROWTH OF SEMI-<br>INSULATING INP BY<br>LIQUID PHASE EPITAXY                    | US   | 07/201,155 | 4,849,373       |                                             | GROWTH OF SEMI-INSULATING<br>INP BY LIQUID PHASE EPITAXY                  |
| RO2349 | GROWTH OF SEMI-<br>INSULATING INP BY<br>LIQUID PHASE EPITAXY                    | CA   | 568,369    | 1,313,107       |                                             | GROWTH OF SEMI-INSULATING<br>INP BY LIQUID PHASE EPITAXY                  |
| RO2461 | OPTOELECTRONIC APPARATUS AND METHOD FOR ITS FABRICATION                         | US   | 07/369,883 | 4,969,712       |                                             | OPTOELECTRONIC APPARATUS<br>AND METHOD FOR ITS<br>FABRICATION             |
| RO2468 | PACKAGING METHOD<br>AND PACKAGE FOR<br>EDGE COUPLED<br>OPTOELECTRONIC<br>DEVICE | CA   | 2,018,900  | 2,018,900       |                                             | PACKAGING METHOD AND PACKAGE FOR EDGE COUPLED OPTOELECTRONIC DEVICE       |
| RO2468 | PACKAGING METHOD<br>AND PACKAGE FOR<br>EDGE COUPLED<br>OPTOELECTRONIC<br>DEVICE | US   | 07/385,599 | 4,953,006       |                                             | PACKAGING METHOD AND<br>PACKAGE FOR EDGE COUPLED<br>OPTOELECTRONIC DEVICE |
| RO2564 | LASER DIODE<br>STRUCTURE                                                        | FR   | 91908207.3 | 0 530 212       |                                             | LASER DIODE STRUCTURE                                                     |
| RO2564 | LASER DIODE<br>STRUCTURE                                                        | DE   | 91908207.3 | 691 07<br>845.9 |                                             | LASER DIODE STRUCTURE                                                     |
| RO2564 | LASER DIODE<br>STRUCTURE                                                        | GВ   | 91908207.3 | 0 530 212       |                                             | LASER DIODE STRUCTURE                                                     |
| RO2564 | LASER DIODE<br>STRUCTURE                                                        | US   | 07/522,015 | 4,989,214       |                                             | LASER DIODE STRUCTURE                                                     |
| RO2579 | MULTICHANNEL FIBER<br>OPTIC TRANSMITTER<br>RECEIVER                             | US   | 07/582,464 | 5,050,953       |                                             | MULTICHANNEL FIBER OPTIC<br>TRANSMITTER RECEIVER                          |
| RO2579 | MULTICHANNEL FIBER<br>OPTIC TRANSMITTER<br>RECEIVER                             | GB   | 91185124   | 2 248 968       |                                             | MULTICHANNEL FIBER OPTIC<br>TRANSMITTER RECEIVER                          |
| RO2714 | APPARATUS FOR USE<br>WITH ANALYTICAL<br>MEASURING<br>INSTRUMENTS                | US   | 07/996,411 | 5,350,923       |                                             | APPARATUS FOR USE WITH<br>ANALYTICAL MEASURING<br>INSTRUMENTS             |
| RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION                | DE   | 94915483.5 | 694 08<br>144.2 |                                             | OPTICAL PHASE MODULATING<br>DEVICES AND METHODS FOR<br>THEIR<br>OPERATION |
| RO2785 | OPTICAL PHASE MODULATING DEVICES AND METHODS FOR THEIR OPERATION                | FR   | 94915483.5 | 0 708 930       |                                             | OPTICAL PHASE MODULATING<br>DEVICES AND METHODS FOR<br>THEIR<br>OPERATION |

| DIS-   | เปรดีอัสเราเป็น                                                                                                                         | G.V     | semMc.      | PatentiNos | esube. | Appletonite                                                                                                                  |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|-------------|------------|--------|------------------------------------------------------------------------------------------------------------------------------|
| 02785  | OPTICAL PHASE<br>MODULATING DEVICES<br>AND METHODS FOR<br>THEIR<br>OPERATION                                                            | GB      | 94915483.5  | 0 708 930  |        | OPTICAL PHASE MODULATING<br>DEVICES AND METHODS FOR<br>THEIR<br>OPERATION                                                    |
| RO2785 | OPTICAL PHASE<br>MODULATING DEVICES<br>AND METHODS FOR<br>THEIR<br>OPERATION                                                            | JP      | 7-504252-95 | 2691638    |        | OPTICAL PHASE MODULATING<br>DEVICES AND METHODS FOR<br>THEIR<br>OPERATION                                                    |
| O2785  | OPTICAL PHASE<br>MODULATING DEVICES<br>AND METHODS FOR<br>THEIR<br>OPERATION                                                            | US      | 08/091,708  | 5,363,457  |        | OPTICAL PHASE MODULATING<br>DEVICES AND METHODS FOR<br>THEIR<br>OPERATION                                                    |
|        | METHOD OF REDUCING<br>THE THERMALLY<br>INDUCED SHIFT IN THE<br>EMISSION WAVELENGTH<br>OF LASER DIODES                                   | US      | 08/118,273  | 5,345,459  |        | METHOD OF REDUCING THE<br>THERMALLY INDUCED SHIFT IN<br>THE<br>EMISSION WAVELENGTH OF<br>LASER DIODES                        |
| RO2799 | GAIN COUPLED DFB<br>LASER WITH INDEX<br>COUPLING<br>COMPENSATION                                                                        | US      | 08/170,074  | 5,452,318  |        | GAIN COUPLED DFB LASER WIT<br>INDEX COUPLING<br>COMPENSATION                                                                 |
| RO2809 | METHODS AND ASSEMBLIES FOR PACKAGING ELECTRONIC DEVICES AND FOR COUPLING OPTICAL FIBERS TO THE PACKAGED DEVICES                         | US      | 08/158,545  | 5,586,207  |        | METHODS AND ASSEMBLIES<br>FOR PACKAGING ELECTRONIC<br>DEVICES AND<br>FOR COUPLING OPTICAL FIBER<br>TO THE PACKAGED DEVICES   |
| RO2817 | CIRCULAR GRATING<br>LASERS                                                                                                              | US      | 08/158,543  | 5,448,581  |        | CIRCULAR GRATING LASERS                                                                                                      |
| RO2875 | CHIRP CONTROL OF A MACH ZEHNDER OPTICAL MODULATOR USING NON EQUAL POWER                                                                 | US      | 08/450,841  | 5,524,076  | •      | CHIRP CONTROL OF A MACH<br>ZEHNDER OPTICAL MODULATO<br>USING NON<br>EQUAL POWER SPLITTING                                    |
| RO2879 | SPLITTING  SEMICONDUCTOR LASEF STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE |         | 08/242,653  | 5,483,547  |        | SEMICONDUCTOR LASER STRUCTURE FOR IMPROVED STABILITY OF THE THRESHOLD CURRENT WITH RESPECT TO CHANGES IN AMBIENT TEMPERATURE |
| RO2956 | SEMICONDUCTOR MODULATOR WITH A 2-2 SHIFT                                                                                                | GB      | 9513146.2   | 2 302 738  |        | SEMICONDUCTOR MODULATO<br>WITH A 2-2 SHIFT                                                                                   |
| RO2956 | SEMICONDUCTOR<br>MODULATOR WITH A 2-2<br>SHIFT                                                                                          | JP      | 8-188293    |            |        | SEMICONDUCTOR MODULATO<br>WITH A 2-2 SHIFT                                                                                   |
| RO2956 | SEMICONDUCTOR<br>MODULATOR WITH A 2-2<br>SHIFT                                                                                          | CA<br>2 | 2,176,099   | 2,176,099  |        | SEMICONDUCTOR MODULATO<br>WITH A SHIFT                                                                                       |

| Diss   | Disebsing title                                                                                   | Gly | क्रिकार्ट- ः | Satem Mer | Siliber | Alunyanas Albr<br>Salungas 7 | Apple dominie i i i                                                                               |
|--------|---------------------------------------------------------------------------------------------------|-----|--------------|-----------|---------|------------------------------|---------------------------------------------------------------------------------------------------|
| RO2956 | SEMICONDUCTOR<br>MODULATOR WITH A 2-2<br>SHIFT                                                    | US  | 08/612,555   | 5,694,504 |         |                              | SEMICONDUCTOR MODULATOR<br>WITH A 2-2 SHIFT                                                       |
| RO2969 | METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL                          | US  | 08/450,839   | 5,567,659 |         |                              | METHOD OF ETCHING PATTERNS IN III-V MATERIAL WITH ACCURATE DEPTH CONTROL                          |
| RO2974 | MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY               | US  | 08/413,555   | 5,536,085 |         |                              | MULTI WAVELENGTH GAIN COUPLED DISTRIBUTED FEEDBACK LASER ARRAY WITH FINE TUNABILITY               |
| RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | CA  | 2,209,455    |           |         |                              | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS |
| RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | EP  | 97304743.4   |           |         |                              | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS |
| RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | JР  | 9-174942     |           |         |                              | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS |
| RO2999 | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS | US  | 08/675,757   | 5,799,119 |         |                              | COUPLING OF STRONGLY AND WEAKLY GUIDING WAVEGUIDES FOR COMPACT INTEGRATED MACH ZEHNDER MODULATORS |
| RO3007 |                                                                                                   | US  | 08/728,991   | 6,028,875 |         |                              | BURIED HETEROSTRUCTURE LASER WITH QUATERNARY CURRENT BLOCKI G LAYER ,                             |
| RO3015 | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS                                         | GB  | 9700985.6    | 2 309 335 |         |                              | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS                                         |
| RO3015 | THIN FILM RESISTOR<br>FOR OPTOELECTRONIC<br>INTEGRATED CIRCUITS                                   | JP  | 9-009795     |           |         |                              | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS                                         |
| RO3015 | THIN FILM RESISTOR<br>FOR OPTOELECTRONIC<br>INTEGRATED CIRCUITS                                   | us  | 08/977,371   | 5,960,014 |         |                              | THIN FILM RESISTOR FOR OPTOELECTRONIC INTEGRATED CIRCUITS                                         |
| RO3066 | LASER DIODE AND METHOD OF FABRICATION THEREOF                                                     | US  | 09/093,399   | 6,151,347 |         |                              | LASER DIODE AND METHOD OF<br>FABRICATION THEREOF                                                  |

| Disco        | Disclosure talle-                                                                               | GI. | Sejain.    |                 | M Silb III<br>Stati  | All preside and | And is more the con-                                                                                       |
|--------------|-------------------------------------------------------------------------------------------------|-----|------------|-----------------|----------------------|-----------------|------------------------------------------------------------------------------------------------------------|
| No<br>RO3090 | CONFIGURABLE CHIRP<br>MACH-ZEHNDER<br>OPTICAL MODULATOR                                         | CA  | 2,220,240  | 2,220,240       |                      |                 | ZEHNDER OPTICAL MODULATOR                                                                                  |
| RO3090       | CONFIGURABLE CHIRP<br>MACH-ZEHNDER<br>OPTICAL MODULATOR                                         | ΕP  | 97308615.0 |                 |                      |                 | CONFIGURABLE CHIRP MACH-<br>ZEHNDER OPTICAL MODULATOR                                                      |
| RO3090       | CONFIGURABLE CHIRP<br>MACH-ZEHNDER<br>OPTICAL MODULATOR                                         | US  | 08/745,168 | 5,778,113       |                      |                 | CONFIGURABLE CHIRP MACH-<br>ZEHNDER OPTICAL MODULATOR                                                      |
| RO3090       | CONFIGURABLE CHIRP<br>MACH-ZEHNDER<br>OPTICAL MODULATOR                                         | บร  | 09/057,602 | 5,991,471       |                      |                 | CONFIGURABLE CHIRP MACH-<br>ZEHNDER OPTICAL MODULATOR                                                      |
| RO3092       | POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE | US  | 08/686,355 | 5,777,793       |                      |                 | POLARIZATION INSENSITIVE MULTILAYER PLANAR REFLECTION FILTERS WITH NEAR IDEAL SPECTRAL RESPONSE            |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | CA  | 2,209,558  |                 |                      |                 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                            |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | EP  | 97111630.6 | 0 818 859       | Nat'l Phase<br>Filed |                 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                            |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | US  | 08/680,284 | 5,825,792       |                      |                 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                            |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | JP  | 9-186204   |                 |                      |                 | WAVELENGTH MONITORING AND<br>CONTROL ASSEMBLY FOR WDM<br>OPTICAL<br>TRANSMISSION SYSTEMS                   |
| RO3139       |                                                                                                 | GB  | 97111630.6 | 0 818 859       |                      |                 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                            |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | DE  | 97111630.6 | 697 11<br>126.1 |                      |                 | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS  WAVELENGTH MONITORING AND |
| RO3139       | WAVELENGTH MONITORING AND CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                 | FR  | 97111630.6 | 0 818 859       |                      |                 | CONTROL ASSEMBLY FOR WDM OPTICAL TRANSMISSION SYSTEMS                                                      |

| DIE-15 | orsolosure telle                                                                                           | Θij | Semila (       | Parifolio. | eseiter | Altinvenio/syd<br>Danis XDS | ire — Apólicator aple                                                                                      |
|--------|------------------------------------------------------------------------------------------------------------|-----|----------------|------------|---------|-----------------------------|------------------------------------------------------------------------------------------------------------|
|        | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | EP  | 98307439.4     |            |         |                             | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE |
|        | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | JP  | 10-264323      |            |         |                             | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE |
|        | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE | US  | 08/933,529     | 5,936,994  |         |                             | TWO SECTION COMPLEX COUPLED DISTRIBUTED FEEDBACK SEMICONDUCTOR LASER WITH ENHANCED WAVELENGTH TUNING RANGE |
| RO3479 | DISTRIBUTED FEEDBACK<br>SEMICONDUCTOR LASER<br>WITH GAIN<br>MODULATION                                     | US  | 08/953,015     | 6,026,110  |         |                             | DISTRIBUTED FEEDBACK<br>SEMICONDUCTOR LASER WITH<br>GAIN<br>MODULATION                                     |
| RO3610 | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        | EΡ  | 98310111.4     |            |         |                             | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        |
| RO3610 | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        | JР  | 10-366380      |            |         |                             | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        |
| RO3610 | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        | US  | 08/998,071     | 6,104,739  |         |                             | SERIES OF STRONGLY<br>COMPLEX COUPLED DFB<br>LASERS                                                        |
| RO3746 | ETCHING OF INDIUM PHOSPHIDE MATERIALS FOR MICROELECTRONICS FABRICATION                                     | US  | 08/994,453     | 5,869,398  |         |                             | ETCHING OF INDIUM PHOSPHIDE<br>MATERIALS FOR<br>MICROELECTRONICS<br>FABRICATION                            |
| RO3920 | HIGH ORDER GAIN<br>COUPLED DFB LASERS                                                                      | wo  | PCT/CA99/01067 |            |         | ï                           | A GAIN COUPLED DISTRIBUTED<br>FEEDBACK SEMICONDUCTOR<br>LASER                                              |
| RO3920 | HIGH ORDER GAIN<br>COUPLED DFB LASERS                                                                      | CA  | 2,310,604      |            |         |                             | A GAIN COUPLED DISTRIBUTED<br>FEEDBACK SEMICONDUCTOR<br>LASER                                              |
| RO3920 | HIGH ORDER GAIN<br>COUPLED DFB LASERS                                                                      | EP  | 99973441.1     |            |         |                             | A GAIN COUPLED DISTRIBUTED<br>FEEDBACK SEMICONDUCTOR<br>LASER                                              |
| RO3920 | HIGH ORDER GAIN<br>COUPLED DFB LASERS                                                                      | JP  | 2000-588867    |            |         |                             | A GAIN COUPLED DISTRIBUTED<br>FEEDBACK SEMICONDUCTOR<br>LASER                                              |

| المحاسف والا | Disabaticatile                                                                                               | ĊΥ | Sciaino.       | Palentino, |                      | Allingangeridi.<br>Dani dos | Application (III)                                                                     |
|--------------|--------------------------------------------------------------------------------------------------------------|----|----------------|------------|----------------------|-----------------------------|---------------------------------------------------------------------------------------|
| RO4144       | COMPACT PROGRAMMABLE MATRIX OF STRONGLY COMPLEX COUPLED DFB LASERS FOR WIDE AND CONTINUOUS SINGLE WAVELENGTH | US | 09/209,860     | 6,201,824  |                      |                             | STRONGLY COMPLEX COUPLED<br>DFB LASERS SERIES                                         |
| RO4324       | CONTINUOUSLY TUNABLE HIGH REPETITION RATE SHORT PULSE GENERATION USING DUAL MODE HIGHLY GAIN-COUPLED DEB     | US | 09/213,088     |            |                      |                             | GENERATION OF SHORT<br>OPTICAL PULSES USING<br>STRONGLY COMPLEX COUPLED<br>DFB LASERS |
| RO4416       | LASER DIODES  VARIABLE OPTICAL  ATTENUATOR                                                                   | US | 09/388,628     | 6,246,826  |                      |                             | VARIABLE OPTICAL<br>ATTENUATOR WITH PROFILED<br>BLADE                                 |
| RO4504       | ACTIVE REFLECTION MODULATOR                                                                                  | US | 09/409,036     |            |                      |                             | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM                                    |
| RO4504       | ACTIVE REFLECTION<br>MODULATOR                                                                               | wo | PCT/CA00/00856 |            | Nat'l Phase<br>Filed |                             | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM                                    |
| RO4504       | ACTIVE REFLECTION MODULATOR                                                                                  | CA | 2,351,381      |            |                      |                             | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM                                    |
| RO4504       | ACTIVE REFLECTION MODULATOR                                                                                  | EP | 947728.2       |            |                      |                             | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM                                    |
| ŖO4504       | ACTIVE REFLECTION MODULATOR                                                                                  | JP | 2001-527411    |            |                      |                             | COMPOUND CAVITY REFLECTION MODULATION LASER SYSTEM                                    |

|         |                                                        | a seed | Meaning 1      | Pelent No. | ទួលនាការទ                                                                                              |
|---------|--------------------------------------------------------|--------|----------------|------------|--------------------------------------------------------------------------------------------------------|
| Disc.   | solisciosure due a                                     |        |                |            | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES                                                                  |
| 10163ID | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES                  | CA     | 2,311,961      |            |                                                                                                        |
| 10163ID | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES                  | EP     | 304657         |            | PHASE ADJUSTER USING SLOTTED,<br>CONCATENATED WAVEGUIDES AND THERMO-<br>OPTIC OR ELECTRO-OPTIC INSERTS |
| 10163ID | SLOTTED MONOLITHIC                                     | us     | 09/346,320     | 6,424,755  | SLOTTED MONOLITHIC OPTICAL WAVEGUIDES                                                                  |
| 11550RO | FOR A MEMS OPTICAL                                     | CA     | 2,355,450      |            | HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH                                                        |
| 11550RO | SWITCH HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH | US     | 09/672,703     |            | HYBRID ATTACH MIRRORS FOR A MEMS OPTICAL SWITCH                                                        |
| 12801AU | TOD ATOD                                               | EP     | 96940631.3     |            | FIBRE OPTIC CIRCULATOR                                                                                 |
|         | A CONTRACTOR                                           | US     | 08/942,601     | 6,014,475  | FIBRE OPTIC CIRCULATOR                                                                                 |
| 12801AU | OPTICAL FILTERING METHOD                               |        | 2,318,674      |            | OPTICAL FILTERING METHOD AND DEVICE                                                                    |
|         | AND DEVICE                                             |        |                | 0.400.704  | OPTICAL FILTERING METHOD AND DEVICE                                                                    |
| 12802AU | OPTICAL FILTERING METHOD AND DEVICE                    | US     | 09/660,147     | 6,466,704  |                                                                                                        |
| 12802AU | OPTICAL FILTERING METHOD AND DEVICE                    | wo     | PCT/AU00/00735 |            | OPTICAL FILTERING METHOD AND DEVICE                                                                    |
| 12803AU | THE PARTY OF MICH                                      | CA     | 2,313,311      |            | REFLECTIVE NON RECIPROCAL OPTICAL DEVICE                                                               |
| 12803AL |                                                        | EP     | 202289.5       |            | REFLECTIVE NON RECIPROCAL OPTICAL DEVICE                                                               |

| PARAGE VIII | Disclostreavite                                              | Civa | in Asarau No.  | Paterii No      | SUBSMUS              |                                                           |
|-------------|--------------------------------------------------------------|------|----------------|-----------------|----------------------|-----------------------------------------------------------|
| No.         |                                                              |      |                | <b>30</b>       |                      | REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE                  |
| 12803AU     | REFLECTIVE NON<br>RECIPROCAL OPTICAL                         | US   | 09/345,027     | 6,263,131       |                      | REFLECTIVE NON-RECIPHOCAL OPTICAL DEVICE                  |
| 12803AU     | DEVICE REFLECTIVE NON RECIPROCAL OPTICAL                     | US   | 09/610,601     | 6,415,077       |                      | REFLECTIVE NON-RECIPROCAL OPTICAL DEVICE                  |
| 12804AU     | DEVICE WAVELENGTH DEPENDENT                                  | CA   | 10/129828      |                 | Nat'l Phase<br>Filed | WAVELENGTH DEPENDENT ISOLATOR                             |
| 12804AU     | USOLATOR WAVELENGTH DEPENDENT                                | us   | PCT/AU00/01380 |                 | Nat'l Phase<br>Filed | WAVELENGTH DEPENDENT ISOLATOR                             |
| 12804AU     | ISOLATOR WAVELENGTH DEPENDENT ISOLATOR                       | wo   | PCT/AU00/01380 |                 | Nat'l Phase<br>Filed | WAVELENGTH DEPENDENT ISOLATOR                             |
| 13240AU     | POLARISATION SPLITTING<br>CIRCULATOR METHOD AND<br>DEVICE    | US   | 09/736,095     |                 |                      | POLARISATION SPLITTING CIRCULATOR METHOD AND DEVICE       |
| 14081ID     | FIBRE OPTICAL COMPONENT                                      | US   | 09/888,888     |                 |                      | FIBRE OPTICAL COMPONENT                                   |
| 14669AU     | VARIABLE ATTENUATION<br>AND SPECTRAL SLOPE<br>OPTICAL DEVICE | US   | 10/218,267     |                 |                      | VARIABLE ATTENUATION AND SPECTRAL SLOPE<br>OPTICAL DEVICE |
| 15087ID     | AN OPTICAL GRATING DEVICE                                    | us   | 10/109,916     |                 |                      | AN OPTICAL GRATING DEVICE                                 |
| 1D0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | DE   | 95308065.2     | 695 27<br>251.9 |                      | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | EP   | 95308065.2     | 0 713 109       | Nat'l Phase<br>Filed | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | FR   | 95308065.2     | 0 713 109       |                      | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | GB   | 9521916.8      | 2 295 245       |                      | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | JP   | 293047/1995    |                 |                      | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0190      | WAVELENGTH RESONANT<br>FUSED FIBRE COUPLER                   | US   | 08/557,857     | 5,703,976       |                      | WAVELENGTH RESONANT FUSED FIBRE COUPLER                   |
| ID0226      | OPTICAL WAVEGUIDE<br>GRATINGS                                | GB   | 9318670.8      | 2 281 787       |                      | OPTICAL WAVEGUIDE GRATINGS                                |
| ID0291      | OPTICAL WAVEGUIDE<br>GRATING FILTER                          | DE   | 95308201.3     | 695 25<br>223.2 |                      | OPTICAL WAVEGUIDE GRATING FILTER                          |
| ID0291      | OPTICAL WAVEGUIDE<br>GRATING FILTER                          | EP   | 95308201.3     | 0 713 110       | Nat'l Phase<br>Filed | OPTICAL WAVEGUIDE GRATING FILTER                          |
| ID0291      | OPTICAL WAVEGUIDE<br>GRATING FILTER                          | FR   | 95308201.3     | 0 713 110       |                      | OPTICAL WAVEGUIDE GRATING FILTER                          |
| ID0291      | OPTICAL WAVEGUIDE<br>GRATING FILTER                          | GB   | 9523489.4      | 2 295 247       |                      | OPTICAL WAVEGUIDE GRATING FILTER                          |
| ID0291      | OPTICAL WAVEGUIDE GRATING FILTER                             | US   | 08/558,709     | 5,638,473       |                      | OPTICAL WAVEGUIDE GRATING FILTER                          |
| 1D0309      | BRAGG GRATINGS IN WAVEGUIDES                                 | US   | 08/647,795     | 5,730,888       |                      | BRAGG GRATINGS IN WAVEGUIDES                              |
| ID0355      |                                                              | DE   | 96302352.8     | 696 22<br>778.9 | -                    | OPTICAL NOTCH FILTER MANUFACTURE                          |
| ID0359      |                                                              |      | 96302352.8     | 0 736 784       | Nat'l Phase          | OPTICAL NOTCH FILTER MANUFACTURE                          |

| ADIS-  | เกาะเบิระัธร์เหลือนี้เล                    | 301y | Sid No.        | Palentino-      | Sub-Agine            | Application with                                         |
|--------|--------------------------------------------|------|----------------|-----------------|----------------------|----------------------------------------------------------|
| NO.    |                                            |      | 96302352.8     | 0 736 784       |                      | OPTICAL NOTCH FILTER MANUFACTURE                         |
| ID0355 | ALL-FIBRE OPTICAL FILTER                   | FR   | 96302332.8     | 0 7 30 7 0 7    |                      |                                                          |
| ID0355 | ALL-FIBRE OPTICAL FILTER                   | GB   | 96302352.B     | 0 736 784       |                      | OPTICAL NOTCH FILTER MANUFACTURE                         |
| ID0355 | ALL-FIBRE OPTICAL FILTER                   | US   | 08/628,579     | 5,708,740       |                      | ALL-FIBRE OPTICAL FILTER                                 |
| ID0421 | PLANAR WAVEGUIDES                          | us   | 08/842,021     | 5,904,491       |                      | PLANAR WAVEGUIDES                                        |
| ID0423 | PLANAR WAVEGUIDE<br>CLADDING               | US   | 08/842,022     | 5,885,881       |                      | PLANAR WAVEGUIDE CLADDING                                |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | CA   | 2,241,189      |                 |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| 1D0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | DE   | 97906822.8     | 697 09<br>330.1 |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | EP   | 97906822.8     | 0 891 570       | Nat'l Phase<br>Filed | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | FR   | 97906822.8     | 0 891 570       |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | GB   | 9605320.2      | 2 311 145       |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | GB   | 97906822.8     | 0 891 570       |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| 1D0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | IT   | 97906822.8     | 0 891 570       |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | JP   | 532348/1997    |                 |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO<br>PHOTODETECTOR<br>ASSEMBLY | US   | 09/101,276     |                 |                      | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY                     |
| ID0444 | WAVEGUIDES TO PHOTODETECTOR ASSEMBLY       | wo   | PCT/GB97/00606 |                 | Nat'l Phase<br>Filed | WAVEGUIDES TO PHOTODE/ECTOR ASSEMBLY                     |
| ID0449 | WAVEGUIDE PAIR WITH CLADDING               | CA   | 2,239,118      |                 |                      | WAVEGUIDE PAIR WITH CLADDING                             |
| ID0449 | WAVEGUIDE PAIR WITH CLADDING               | DE   | 97900292       | 697 02<br>299.4 | Filed                | METHOD OF PRODUCING A CLADDED WAVEGUIDE<br>PAIR ASSEMBLY |
| ID0449 | WAVEGUIDE PAIR WITH<br>CLADDING            | EP   | 97900292       | 0 873 531       | Nat'l Phase<br>Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE<br>PAIR ASSEMBLY |
| ID0449 | WAVEGUIDE PAIR WITH CLADDING               | FR   | 97900292       | 0 873 531       | Filed                | METHOD OF PRODUCING A CLADDED WAVEGUIDE PAIR ASSEMBLY    |
| ID0449 | WAVEGUIDE PAIR WITH CLADDING               | GB   | 97900292       | 0 873 531       | Nat'l Phase<br>Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE<br>PAIR ASSEMBLY |

|        | Displostre-title                                                                                  | On/ | Section (In.   | Parent Mo       | ន្ទាប់នគ្គាចេ        | Appolle fibre of le                                                                                     |
|--------|---------------------------------------------------------------------------------------------------|-----|----------------|-----------------|----------------------|---------------------------------------------------------------------------------------------------------|
| ID0449 | WAVEGUIDE PAIR WITH<br>CLADDING                                                                   | ΙΤ  | 97900292       | 0 873 531       | Nat'l Phase<br>Filed | METHOD OF PRODUCING A CLADDED WAVEGUIDE<br>PAIR ASSEMBLY                                                |
| ID0449 | WAVEGUIDE PAIR WITH<br>CLADDING                                                                   | JР  | 524974/1997    |                 |                      | WAVEGUIDE PAIR WITH CLADDING                                                                            |
| 1D0449 | WAVEGUIDE PAIR WITH<br>CLADDING                                                                   | US  | 09/091,257     | 6,044,192       |                      | WAVEGUIDE PAIR WITH CLADDING                                                                            |
| 1D0449 | WAVEGUIDE PAIR WITH<br>CLADDING                                                                   | wo  | PCT/GB97/00040 |                 | Nat'l Phase<br>Filed | WAVEGUIDE PAIR WITH CLADDING                                                                            |
| ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | CA  | 2,211,244      |                 |                      | OPTICAL WAVEGUIDE BRAGG REFLECTION GRATINGS                                                             |
| ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | GB  | 9715185.6      | 2 316 185       |                      | MANUFACTURE OF PLANAR WAVEGUIDE<br>COMPONENTS WITH DISPERSIVE ELEMENTS AND<br>FINE LOCAL REF. INDEXCON. |
| ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | JP  | 209343/97      | -               |                      | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON.       |
| ID0509 | MANUFACTURE OF PLANAR WAVEGUIDE COMPONENTS WITH DISPERSIVE ELEMENTS AND FINE LOCAL REF. INDEXCON. | US  | 08/896,092     | 6,115,518       |                      | OPTICAL WAVEGUIDE BRAGG REFLECTION<br>GRATINGS                                                          |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | CA  | 2,282,939      |                 |                      | OPTICAL EQUALIZER                                                                                       |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | DE  | 99306728.9     | 699 01<br>419.0 |                      | OPTICAL GAIN EQUALIZER                                                                                  |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | EP  | 99306728.9     | 1 009 078       | Nat'l Phase<br>Filed | OPTICAL GAIN EQUALIZER                                                                                  |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | FR  | 99306728.9     | 1 009 078       |                      | OPTICAL GAIN EQUALIZER                                                                                  |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | GB  | 99306728.9     | 1 009 078       |                      | OPTICAL GAIN EQUALIZER                                                                                  |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | iΤ  | 99306728.9     | 1 009 078       |                      | OPTICAL GAIN EQUALIZER                                                                                  |
| ID0997 | SERIAL FILTERING FOR<br>WAVELENGTH FLATTENING<br>OF E.D.F.A.                                      | US  | 09/209,387     | 6,321,000       |                      | OPTICAL EQUALIZER                                                                                       |
| ID8550 | OPTICAL FIBRES                                                                                    | GB  | 8230675        | 2 129 152       |                      | OPTICAL FIBRES                                                                                          |

| DISE<br>VKI | เมื่อเลืองบระเบีย                                                                      | . B.y. | Saffa i Mo  | Picheo.     | Sidentis<br>F | topileand mits                                                                              |
|-------------|----------------------------------------------------------------------------------------|--------|-------------|-------------|---------------|---------------------------------------------------------------------------------------------|
| ID9170      | BEAM SPLITTER/COMBERS                                                                  | CA     | 500,513     | 1,288,267   |               | BEAM SPLITTER/COMBERS                                                                       |
| ID9170      | BEAM SPLITTER/COMBERS                                                                  | GB     | 8503506     | 2 170 920   |               | BEAM SPLITTER/COMBERS                                                                       |
| ID9170      | BEAM SPLITTER/COMBERS                                                                  | US     | 06/819,125  | 4,756,589   |               | BEAM SPLITTER/COMBERS                                                                       |
| ID9441      | DIRECTIONAL COUPLER                                                                    | DE     | 378 25 37.2 | 378 25 37.2 |               | DIRECTIONAL COUPLER                                                                         |
| ID9441      | DIRECTIONAL COUPLER                                                                    | FR     | 87302418.6  | 0 246 737   |               | DIRECTIONAL COUPLER                                                                         |
| ID9441      | DIRECTIONAL COUPLER                                                                    | GB     | 8612660     | 2 190 762   |               | DIRECTIONAL COUPLER                                                                         |
| ID9441      | DIRECTIONAL COUPLER                                                                    | JP     | 118687/87   | 2022576     |               | DIRECTIONAL COUPLER                                                                         |
| ID9441      | DIRECTIONAL COUPLER                                                                    | US     | 07/032,783  | 4,801,185   |               | DIRECTIONAL COUPLER                                                                         |
| ID9579      | GLASS CLAD OPTICAL FIBRE<br>DIRECTIONAL COUPLERS                                       | GB     | 8716382     | 2 207 254   |               | GLASS CLAD OPTICAL FIBRE DIRECTIONAL<br>COUPLERS                                            |
| ID9730      | DOPED ELEMENTS                                                                         | GB     | 8820848.3   | 2 222 400   |               | DOPED ELEMENTS                                                                              |
| ID9758      | "OPTICAL WAVEGUIDE<br>TAPER HAVING CORE,<br>INTERLAYER AND<br>CLADDING"                | GB     | 8926061.6   | 2 238 396   |               | "OPTICAL WAVEGUIDE TAPER HAVING CORE,<br>INTERLAYER AND CLADDING"                           |
| RO2922      | POLARIZATION INDEPENDENT WAVELENGTH TUNABLE FILTER BASED ON BIREFRINGENCE COMPENSATION | US     | 08/329,923  | 5,488,679   |               | POLARIZATION INDEPENDENT WAVELENGTH<br>TUNABLE FILTER BASED ONBIREFRINGENCE<br>COMPENSATION |