

Multi-purpose Library of Recommender System Algorithms for the Item Prediction Task Presentation of my Bachelor Thesis

Julius Kolbe

L3S Research Center / Leibniz University of Hanover Hannover, Germany

July 1, 2013

Item Prediction Task and Implicit Feedback

Recsyslab

Recommendation Algorithms

Evaluation

Item Prediction Task and Implicit Feedback

Implicit Feedback

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1		1	-60
The Godfather	<-/	1	1	
The Godfather: Part II	7	1		1
Pulp Fiction	1	1		1 0
The Good, the Bad and the Ugly	1		1	

Item Prediction Task

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1		1	?
The Godfather	\ /	1	1	?
The Godfather: Part II	7~	1		1
Pulp Fiction	1	1		1
The Good, the Bad and the Ugly	1		1	?

Notation

50.	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	\ <u>/</u>	1	1
The Godfather		1	1	
The Godfather: Part II	1	1		1
Pulp Fiction	1	1		1
The Good, the Bad and the Ugly	1		1	11 %

Items Users **Interactions** Basket of u

Recsyslab

Motivation for recsyslab

- ▶ Python for easy readable source code
- ► simple usage
- ▶ for education
- ▶ for research
- open source license: GPLv3

General Structure

Get recsyslab

```
github.com/Foolius/recsyslab
```

github.com/Foolius/recsyslab/archive/master.zip

```
$ git clone
   https://github.com/Foolius/recsyslab.git
```


Recommendation Algorithms

k-Nearest-Neighbor [2]

- 1. Compute similarity of each item, item pair
- 2. For each item, save the k items with the highest similarity (= neighbors)
- 3. Compute the union of the neighbors of the basket of u
- 4. For each item in this set compute the sum of similarities to the basket of u
- 5. Sort by this score and return the first N items

$$sim(i,j) = cos(\vec{i}, \vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2 ||\vec{j}||_2}$$
(1)

k-Nearest-Neighbor [2]

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

$$\mathrm{sim}(i,j) = \cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2||\vec{j}||_2} = \frac{0}{2} = 0$$

k-Nearest-Neighbor [2]

	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

$$sim(i,j) = cos(\vec{i},\vec{j}) = \frac{\vec{i} \cdot \vec{j}}{||\vec{i}||_2||\vec{j}||_2} = \frac{2}{\sqrt{2}\sqrt{3}}$$

Matrix Factorization [1]

Ole and	Anna	Berta	Claudia	Dagmar
The Shawshank Redemption	1	0	1	0
The Godfather	0	1	1	0
The Godfather: Part II	0	1	0	1
Pulp Fiction	1	1	0	1
The Good, the Bad and the Ugly	1	0	1	0

Find W and H so: $\hat{M} = W H^{\top}$.

$$Score(u, i) = W_u I_i^{\top}. \tag{2}$$

Matrix Factorization, Training

```
U = randomly chosen user
I = randomly chosen item U interacted with
J = randomly chosen item U did not interact with
X=H[i] - H[j]
wx = dot product of W[u] and X
dloss = (derivative of the
        loss function of wx and 1)
        learningRate
W[u] += dloss * (H[i] - H[j]) #These three lines
H[i] += dloss * W[u]
                              #have to be
H[j] += dloss * -W[u]
                              #executed at once
```



```
u = random.choice(R.kevs())
userItems = [x[0] \text{ for } x \text{ in } R[u]]
# the positive example
i = userItems[np.random.random_integers(0, len(userItems) - 1)]
# the negative example
j = np.random.random_integers(0, m_items)
# if j is also relevant for u we continue
# we need to see a negative example to contrast the positive one
while i in userItems:
    i = np.random.random integers(0, m items)
X = H[i] - H[i]
wx = np.dot(W[u], X)
dloss = dlossF(wx, y)
# temp
wu = W [u]
hi = H[i]
hi = H[i]
if dloss I = 0.0:
    # Updates
    eta_dloss = learningRate * dloss
    W[u] += eta_dloss * (hi - hj)
    H[i] += eta_dloss * wu
    H[i] += eta dloss * (-wu)
    W[u] *= scaling factorU
    H[i] *= scaling_factorI
    H[j] *= scaling_factorJ
```


Evaluation

Leave-one-out Protocol

- 1. Randomly choose one interaction per user and hide them
- 2. Train the recommender system with the remaining interactions
- 3. Get recommendations for every user
- 4. Compute the chosen evaluation metric with the hidden items and the recommendations

Hitrate/Recall@N [2, 5]

$$Recall@N = \frac{\sum_{u \in U} H_u \cap topN_u}{|H|}$$
 (3)

H hidden interactions

 H_u the hidden interaction of u

U set of users

 $topN_u$ N recommendations for u

Precision [5]

$$Precision = \frac{\sum_{u \in U} H_u \cap topN_u}{N \times |U|}$$
 (4)

H hidden interactions

 H_u the hidden interaction of u

U set of users

 $topN_u$ N recommendations for u

F1 [5]

$$F1 = \frac{2 \times \text{Recall@N} \times \text{Precision}}{\text{Recall@N} + \text{Precision}}.$$
 (5)

hidden interactions H_u the hidden interaction of uU set of users $topN_u$ N recommendations for u

Mean Reciprocal Hitrate [3]

$$MRHR = \frac{1}{|U|} \sum_{u \in U} \frac{1}{\mathsf{pos}(\mathsf{topN}_u, H_u)},\tag{6}$$

hidden interactions

 H_u the hidden interaction of u

U set of users

 $topN_u$ N recommendations for u

 $pos(topN_u, H_u)$ position of the hidden item in the list of recommendations

Area under the ROC (AUC) [4]

$$AUC = \frac{1}{|U|} \sum_{u \in U} \frac{1}{|E(u)|} \sum_{(i,j) \in E(u)} \delta(x_{ui} > x_{uj}), \tag{7}$$

$$\delta(x) = \begin{cases} 1, & \text{if x is true,} \\ 0, & \text{otherwise.} \end{cases}$$
 (8)

$$E(u) = \{(i,j) | (u,i) \in H \land (u,j) \not\in (H \cup T)\}.$$
 (9)

hidden interactions

 H_u the hidden interaction of u

set of users

 x_{ui} predicted score of the interaction between u and i

G. Karypis.

Evaluation of item-based top-n recommendation algorithms. In Proceedings of the tenth international conference on Information and knowledge management, CIKM '01, pages 247-254, New York, NY, USA, 2001. ACM.

X. Ning and G. Karypis. Slim: Sparse linear methods for top-n recommender systems. In D. J. Cook, J. Pei, W. Wang, O. R. Zaïane, and X. Wu, editors, ICDM, pages 497-506. IEEE, 2011.

S. Rendle, C. Freudenthaler, Z. Gantner, and Schmidt-Thieme.

Bpr: Bayesian personalized ranking from implicit feedback.

In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI '09, pages 452-461, Arlington, Virginia, United States, 2009. AUAI Press.

B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of dimensionality reduction in recommender system – a case study. In IN ACM WEBKDD WORKSHOP, 2000.