#### MDI and background studies with IDEA tracker

Niloufar Alipour Tehrani on behalf of FCCee MDI group

**Experiments: Simulation and reconstruction** 

FCCee Workshop 2019 CERN

10 January 2019





#### Introduction

- ▶ The current status of the simulation of the IDEA detector with FCCSW
- ▶ Validation of the detector
- Study of the impact of beam-background on the IDEA drift chamber
- Few investigations for the tracking

#### FCCSW: FCC Software

- Common software for all FCC experiments
  - ee, hh & eh
- Detector and physics studies
  - ► Fast & full simulations
  - ▶ One software stack from event generation to physics analysis
- Collaborative approach

#### The IDEA detector concept for FCC-ee

▶ The IDEA detector is one of the two detector concepts for the FCC-ee

- Main features of the IDEA concept
  - Vertex detector: MAPS
  - Ultra-light drift chamber with particle identification
  - Dual-readout calorimetry
  - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to serve as a precise tracking layer and a pre showering device
  - 2 T axial magnetic field
  - Instrumented return yoke



#### Give it a try!

#### https://github.com/HEP-FCC/FCCSW



#### The IDEA detector as visualized with FCCSW



#### The IDEA drift chamber

► The parameters of the drift chamber

| Gas                       | 90 % Helium &<br>10 % isobutane (C <sub>4</sub> H <sub>10</sub> ) |
|---------------------------|-------------------------------------------------------------------|
| Length                    | 4 m                                                               |
| Inner radius              | 0.345 m                                                           |
| Outer radius              | 2 m                                                               |
| Nb. layer                 | 112                                                               |
| Cell size                 | 12 mm - 14.7 mm                                                   |
| Number of sensitive wires | 56'448                                                            |
| Transverse resolution     | 0.1 mm                                                            |
| Longitudinal resolution   | 1 mm                                                              |



- ▶ Field wires surround the sense wires to provide homogeneous electric field for each cell.
- ► The wires are rotated with an average stereo angle of 0.1 radians to improve the longitudinal resolution along them.

#### The simulation chain in FCCSW

- Detector geometry description with DD4hep
  - Collaborative effort with CLIC, ILC and LHCb
  - ► The IR region and the VXD from CLD are as well implemented in DD4hep
  - ► Definition of the gas layers in the DCH (with hyperboloid volumes)
- 2. Segmentation of the sensitive areas
  - ▶ Information on the position of the sense wires instead of placing physical volumes
  - Speeds up the simulation
- 3. Geant4 simulation
  - ► Calculate the E<sub>dep</sub> for each ionisation action
  - ► Charge drift to the wires
- 4. Hit reconstruction
  - Combination of individual hit calculations from (3)
  - Calculation of the signal in the wire
- 5. Track reconstruction with ACTS ⇒ under investigation



## The simulation of the drift chamber using FCCSW

- ► The sensitive wires as simulated in the first layer of the drift chamber with FCCSW.
- The DD4hep segmentation (DDSegmentation) is responsible to associate a hit to the wire it drifts to
  - Reduces the running time by avoiding to place each wire individually



- ► The coverage of the drift chamber as a function of the polar angle  $\theta$  is investigated.
- ► High coverage in the barrel region by  $\sim$  112 wires in average.
- ► In the forward region, silicon disks are foreseen to improve the track angle coverage.



#### Beam-induced backgrounds at FCC-ee

- ▶ Three main sources of beam-induced backgrounds at FCC-ee
  - ▶ **Incoherent**  $e^+e^-$  **pairs** due to bremstrahlung photons  $\Rightarrow$  highest source of background
  - $ightharpoonup \gamma \gamma 
    ightharpoonup hadrons 
    ightharpoonup Expected to have a very low impact$
  - ► **Synchrotron radiation (SR)** ⇒ Dictates the design of the interaction region (IR)
    - Defines the beampipe radius, the design of the shielding (in Tungesten)
    - Mostly stopped by the shielding, few SR photons can hit the detector

- ► The trajectory of the  $e^+e^-$  pairs in a 2 T magnetic field (using helix extrapolation).
- No direct hits in the drift chamber (with inner radius of 345 mm)



## The impact of the incoherent background pairs

- ▶ e<sup>+</sup>e<sup>-</sup> pairs is the background with the highest Impact
- ► The occupancy is defined as the percentage of wires hits per layer
- The average bunch spacing
  - At the Z stage ( $\sqrt{s} = 91.2 \text{ GeV}$ ): 19.6 ns
  - ► At the top stage ( $\sqrt{s}$  =365 GeV): 3396 ns
- At the Z stage, the background is integrated over 4 BX to take into account the readout time for the signal.



#### Conclusions on the beam-induced backgrounds

| Background                        | Average occupancy     |                      |
|-----------------------------------|-----------------------|----------------------|
|                                   | $\sqrt{s}$ = 91.2 GeV | $\sqrt{s}$ = 365 GeV |
| $e^+e^-$ pair background          | 1.1%                  | 2.9%                 |
| $\gamma\gamma  ightarrow hadrons$ | 0.001%                | 0.035%               |
| Synchrotron radiation             | negl.                 | 0.2%                 |

- Based on experience from the MEG2 drift chamber, this is believed to be a manageable level.
- Exploiting the power of the drift chamber timing measurement, the background level can be greatly reduced.
- ► The track reconstruction in the presence of the beam-induced background needs to be investigated with the current simulation tools.

## Tracking & FCCSW

- ACTS: A Common Tracking Software
- High-level track reconstruction modules to be used for any tracking detector
- Ultimate goal for tracking in FCCSW



- ▶ Implementations needed for the DCH
  - ► The geometry (wires, rotations with the stereo angle)
  - ▶ In the extrapolation step, a new strategy to manage the high number of wires to limit the computation time (ex. navigation, ...)
- ► For FCCSW, the Tricktrack software provides the seeding algorithms (initially implemented for FCC-hh and based on the CMS tracking software)

#### Tracking: Hough transform

- Before tackling ACTS, a faster solution is to use the Hough transform
- ▶ Used for feature extraction in image analysis, computer vision, ...
  - Identification of lines, ellipses, circles
- Initially invented for the analysis of bubble chamber photographs
- A possible solution for the drift chamber
  - Use Tricktrack for seeding in the VXD and limit the search region in the drift chamber.
  - ► Hough Transform for pattern recognition ⇒ track reconstruction efficiency
  - The track parameters are obtained by using the extrapolation algorithms provided by ACTS or Tricktrack

## Example: detecting a simple line

Represented as a point (b, m) in the parameter space

$$y = m \cdot x + b$$

▶ Hough space:  $(r, \theta)$ 

$$r = x \cdot \cos(\theta) + y \cdot \sin(\theta) \tag{2}$$

► A line corresponds to local maxima in the Hough space.





(1)

ď

-5

0.0

0.5

1.0

1.5

2.0

2.5

## A track in a magnetic field

- Parametrization by a helix
  - $ightharpoonup \phi_0$ : initial azimuthal angle
  - ▶ *d*<sub>0</sub>: distance of closest approach
  - $ightharpoonup r_{T,0}$ : the radius of the track
  - $\theta_0$ : the initial polar angle
  - ► z<sub>0</sub>: the initial z-coordinate at the point of closest approach
- ► Algorithm:
  - Map a helix trajectory into a straight line (conformal transform)
  - Find track parameters in the Hough space
  - ► Computation of the track parameters
- ightharpoonup Reference ightarrow DOI:
  - 10.1051/epjconf/201715000014





## Summary & Outlook

- ► The IDEA detector well integrated within FCCSW
- ▶ The impact of the beam-induced backgrounds on the drift chamber is studied
  - Estimation of the occupancy
  - Reasonable based on past experience with the drift chamber for MEG2
- ▶ Investigation on the tracking ⇒ methods to be implemented soon.

#### Thank you for your attention!

# Backup slides

# The dimensions of the vertex & tracking detectors

#### ► FCCee\_o1\_v02

| FCCee (Si)  | FCCee (IDEA)                                                                         |
|-------------|--------------------------------------------------------------------------------------|
| 17 mm       | 17 mm                                                                                |
| 59 mm       | 59 mm                                                                                |
| 250 mm      | 250 mm                                                                               |
| 24 - 45 mm  | 24 - 45 mm                                                                           |
| 102 mm      | 102 mm                                                                               |
| 159-301 mm  | 159-301 mm                                                                           |
| 127 mm      | 345 mm                                                                               |
| 2100 mm     | 2000 mm                                                                              |
| 2528 mm     | 4500 mm                                                                              |
| 78 mm       | N.A.                                                                                 |
| 2080 mm     | N.A.                                                                                 |
| 524:2190 mm | N.A. mm                                                                              |
|             | 17 mm 59 mm 250 mm 24 - 45 mm 102 mm 159-301 mm 127 mm 2100 mm 2528 mm 78 mm 2080 mm |