MARKING SCHEME SAMPLE QUESTION PAPER 2019-20 CLASS XII (BIOLOGY)

TIME 3 HOURS MM 70

	Section – A	
1.	b) Leydig cells OR b)Amniocentesis	1
2.	d) Cell-mediated immune response OR d) ii and iv	1
3.	d) P enzyme is Restriction endonuclease and Q enzyme is ligase	1
4.	a) Sal I	1
5.	b) Habitat loss and fragmentation	1
	Section B	l
6.	Encysted <i>Amoeba</i> divides by multiple fission / produces amoeba or pseudopodiospores /cyst wall bursts out/spores are liberated to grow as amoebae(sporulation) OR Gemmule-asexual reproductive structure in sponges Conidia-asexual reproductive structure in <i>Penicillium</i> .(or any other correct example) $(\frac{1}{2}+\frac{1}{2}=1 \text{ Mark})$	2
7.	CuT,Cu7,Multiload 375 (Any two) ($\frac{1}{2}$ and $\frac{1}{2}$ =1Mark) Cu ions released suppresses sperm motility and the fertilizing capacity of sperms. ($\frac{1}{2} + \frac{1}{2} = 1$ Mark)	2
8.	Control crosses cannot be performed in human beings, Alternate method-Pedigree analysis (study of the traits in several generations of a family). (1+1=2 Marks)	2
9.	A is more reactive 2'-OH group present in the pentose sugar Makes it more labile/ catalytic and easily degradable. 1/2 Mark 1/2 Mark 1/2 Mark	2
10.	 Tissue culture Meristem apical or axillary is excised. Explant grown in a test tube under sterile condition/special nutrient medium ½+½=1 Mark 	2

11.	 RNA interference silencing of a specific mRNA due to a complementary RNA dsRNA/Introduction of DNA was such that it produced both sense/ and anti-sense RNA in the host cells/these two RNAs formed dsRNA that initiated RNAi 1 Mark 	2
12.	T ₃ Fishes Zooplanktons Pyramid of biomass The pyramid is inverted because the biomass of fishes is much more than that of the zooplankton and phytoplankton. 1+1= 2 Marks	2
	Section C	
13.	Pollen tube Antipodal Polar nuclei Egg cell Synergid (Diagram =1 Mark) (Any four labellings ½ x 4=2)	
14.	Failure of segregation of chromatids during cell division cycle results in the gain or loss of a chromosome(s) (aneuploidy) (1 Mark) Autosomes:- Down's Syndrome: The cause is the presence of an additional copy of the chromosome number 21 (trisomy of 21). (½ Mark) The affected individual is • short statured with small round head, • furrowed tongue and partially open mouth • Palm is broad with characteristic palm crease. • Physical, psychomotor and mental development is retarded. (Any one symptom ½ Mark) Sex chromosomes:- Klinefelter's Syndrome: This is caused due to the presence of an additional copy of X-chromosome resulting into a karyotype of 47, XXY. ½ Mark	3

	Such an individual has overall masculine development				
	has overall masculine development				
	• feminine development is also expressed by the development of breast/ Gynaecomastia). Such individuals are sterile.				
	(Any one symptom ½ Mark)				
	If students give the example of Turner's Syndrome, it should be considered and marks given.				
	OR				
	a) i. point mutation/ single base substitution \(\frac{1}{2} \) Mark				
	ii. point mutation/ single base deletion /2 Mark				
	b) i 4 aminoacids 1 Mark				
	ii 4 aminoacids 1 Mark				
15.					
	embryo without fertilization. 1 Mark				
	In many Citrus and Mango varieties some of the nucellar cells surrounding the embryo sac start				
	dividing, protrudes into the embryo sac and develops into the embryos. In such species each ovule				
	contains many embryos. 2 Mark				
16.	a.) Chemical evolution – First form of life originated from pre-existing non-living organic	3			
	molecules.				
	b.) Amino acids				
	c.) H_2 1x3 = 3 Mark				
17.	a.)	3			
	Amino acid Phe Val DNA Code in Gene AAA CAC				
	Codon in mRNA i)UUU ii)GUG				
	Anticodon in tRNA iii)AAA iv)CAC				
	1Mark				
	b.)				
	 i) A polypeptide containing 14 different amino acid = 14x3=42 base pairs. ii) 14 different types of RNA are needed for the synthesis of polypeptide. 1Mark 				
18.	ii) 14 different types of RNA are needed for the synthesis of polypeptide. 1Mark Advantages:-Inbreeding is necessary if we want to evolve a pure line in any animal.	3			
10.	It helps in accumulation of superior genes and elimination of less desirable genes	3			
	 Inbreeding exposes harmful recessive genes that are to be eliminated by selection. 				
	 Where there is selection at each step, it increases the productivity of inbred population. 				
	(Any two 1 Mark each)				
	Disadvantages:-				
	• reduces fertility				
	decreases productivity.				
	(Any two $\frac{1}{2}$ x2=1 Mark)				
19.	Specific Bt toxin genes isolated from <i>Bacillus thuringiensis</i> is incorporated into cotton is coded	3			
	by the genes <i>cryIAc</i> and <i>cryIIAb</i> that control the cotton bollworms $(\frac{1}{2} + \frac{1}{2} = 1 \text{ Mark})$				
	• Bacillus forms protein crystals that contain a toxic insecticidal protein.				
	• once an insect ingest the inactive toxin, it is converted into an active form				
	• The activated toxin binds to the surface of gut epithelial cells and perforate the walls				
	causing the death of insect larva (½ x2=2 Marks)				
	 The toxin in the form of crystals gets solubilised due to alkaline pH in the gut The activated toxin binds to the surface of gut epithelial cells and perforate the walls 				

20.	criteria for determining biodiversity hot spots are: –	3			
20.	• high levels of species richness (1 Mark)	J			
	• High degree of endemism. (1 Mark)				
	hotspots In India - Western Ghats, Himalaya (Indo-Burma/Sunderland to be accepted)				
	(Any 2) ($\frac{1}{2}$ + $\frac{1}{2}$ = 1Mark)				
OR					
In-situ Conservation— Threatened /endangered plants and animals are provided with urgent measures to save from extinction within their natural habitat and they are protected and allowed to grow naturally.					
	Example- wildlife sanctuaries/ national parks /biosphere reserves/ sacred groves				
	(Any one example) (½ Mark, 1 Mark for difference)				
	Ex-situ Conservation – Threatened animals and plants are taken out from their natural				
	habitat and placed in a setting where they can be protected and given care				
	Example- in botanical gardens/ zoological gardens/ seed/pollen/gene banks				
	(Any one example) (½ Mark, 1 Mark for difference)				
21.	(a) To maintain the cells in their physiologically most active log/exponential phase. 1 Mark	3			
	(b) Temperature, pH, substrate, salts, vitamins, oxygen (Any 4) (½ x4 = 2 Mark)				
	Section D				
22.	a.) Each primary spermatocyte will undergo meiosis-I and meiosis-2 which will result in 4	3			
	spermatozoa				
	300 million/4=75 million 1 Mark				
	b) Since replication has occurred by this stage				
	46x2 = 92 chromatids 1 Mark				
	Meiosis –I is completed by this time 92/2 =46 chromatids - 1 Mark				
23.	a) Vigorous growth of useful aerobic microbes into flocs. 1 Mark	3			
	b) Activated sludge – some of it is pumped back into the aeration tank to serve as the inoculum $\frac{1}{2} + \frac{1}{2} \text{ Mark}$				
	c) During this digestion, a mixture of gases such as methane, hyrogensulphide is made and carbon				
	dioxide. These gases form biogas.				
24.	Platinum-pallidium Rhodium (Any two $\frac{1}{2} + \frac{1}{2} = 1$ Mark)	3			
	CO_2,H_20 and CO [any 2] $\frac{1}{2} + \frac{1}{2} = 1$ Mark				
	Nitric oxide 1 Mark				
Section E					
25.	Polygenic inheritance 1 Mark	5			
	If we assume <u>skin colour</u> is controlled by three genes A, B, C				
	• Dominant forms (A,B,C) are responsible for dark skin colour and recessive form (a, b, c) for				
	light skin colour 1 Mark				
	• The genotype with all dominant alleles (AABBCC) will be darkest skin colour and with				
	recessive alleles will be light test skin colour (aabbcc) (1+1=2 Marks)				

	• The genotypes (AaBbCc) will be of intermediate skin colour i.e. with three dominant alleles and three recessive alleles 1 Mark						
		OR					
	 The sequences were arranged based on some overlapping regions present in them (Alignmof these sequences was not humanly possible) Therefore, specialized computer based programme was developed. These sequences were subsequently annotated and were assigned to each chromosome-1Mathematical Chromosome 1 						
		Caenorhabditis elegans		1Mark			
	26. a) Inducing mutation artificially using chemicals /radiations /and selecting plants desirable characters Mung Bean Yellow mosaic virus Artificially using chemicals /radiations /and selecting plants 1/2 x 2 = 1 M						
		b) AQUACULTURE	PISCICULTURE	,			
		1. It involves production and culturing of all	Production and culturing of fis				
		types of aquatic organisms in water bodies.	pisciculture.	1x2=2 Mark			
				TAZ Z WILLIK			
		C	OR .				
		a) AIDS caused by the Human Immuno deficien	ncy Virus (½	$+\frac{1}{2} = 1 \text{ Mark}$			
		b) Vaccines prevent microbial infections by antigens to neutralise the pathogenic agents d		s against these			
	The vaccines also generate memory – B and T-cells that recognize the pathogen quickly subsequent exposure. (1/2)						
	c) Normal cells show a property called contact inhibition by virtue of which contact with of cells inhibits their uncontrolled growth. Cancer cells appear to have lost this property.(1) These cells grow very rapidly, invading and damaging the surrounding normal tisses. Cells sloughed from such tumors reach distant sites through blood, and wherever they lodged in the body, they start a new tumor there. This property called metastasis . (1) 2 Ma						
		d) Physiological barriers : Acid in the stomach	and saliva in the mouth	½ Mark			
F	27.	a) I hysiological varieties. Acid in the stolliden	and sanva in the mouth.	/2 IVIAIK	5		
CFCs 14% CFCs 14% CFCs 14% Carbon dioxide							
		(Marks to be given only if relative contribution is	s correct) $(\frac{1}{2} \times \frac{1}{2})$	1 = 2 Marks)			
L		5					

Pie chart - ½ Marks to be detected if not given in form of pie chart

Clouds and gases reflect one-fourth of incoming solar radiation/absorb some of it/but almost half of incoming solar radiation falls on Earth's surface heating it/while a small is reflected backs/Earth's surface re-emits heat in the form of infra red radiation/but part of this does not escape into space as atmospheric gases absorb a major fraction of it.

 $(\frac{1}{2} \times 6 \text{ points} = 3 \text{ Marks})$

OR

(a) – Amensalism (1 Mark)

(b) – Predation (1 Mark)

Justifications-

- Nature's way of transferring energy fixed by plants to higher trophic levels/conduits for energy transfer.
- Keep prey population under control
- Predators help in maintaining species diversity in a community, by reducing the intensity of competition among competing prey species.

(1x3 Points = 3 Marks)