A New Framework for Distance-based Metrics in High Dimension

Xianyang Zhang

Going Beyond Linearity

In many statistical and machine learning problems, it is important to extract nonlinear features.

• Spline, trees, neural networks, kernel tricks...

Embedding

Measuring distances between probability distributions through kernel embedding:

Figure 1.1: Embedding of marginal distributions: Each distribution is mapped into an RKHS via an expectation operation.

$$\begin{array}{ll} \mathbb{P},\mathbb{Q} & \stackrel{\text{embedding}}{\Longrightarrow} & \mu_{\mathbb{P}},\mu_{\mathbb{Q}} \text{ in some RKHS} \\ \mathbb{P}=\mathbb{Q} & \Longleftrightarrow & \|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\|^2=0 \\ \|\mu_{\mathbb{P}}-\mu_{\mathbb{Q}}\|^2 \text{ typically has a nice and simple expression.} \end{array}$$

Distance and Kernel-based Methods

- Testing for similarities in two datasets
 - energy distance, maximum mean discrepancy
- Determine strength of dependence ($\mathbb{P} = \mathbb{P}_{XY}$ and $\mathbb{Q} = \mathbb{P}_{X}\mathbb{P}_{Y}$)
 - ▶ distance covariance, Hilbert-Schmidt independence criterion
- Measuring strength of
 - conditional dependence
 - mutual dependence
 - interaction dependence
 - conditional mean/quantile dependence

Distance and Kernel-based Metrics

• Distance and kernel-based measures are getting popular.

• Can be applied to a wide range of statistical problems.

Applications

- Signal detection
- High-dimensional feature screening
- Undirected/directed graph modeling
- Change-point detection
- Independent component analysis
- Dimension reduction
- Time series analysis
- Training Generative Adversarial Network
-

This Talk

For two high dimensional random vectors \boldsymbol{X} and $\boldsymbol{Y},$ we are interested in studying the behaviors of

• Dependence metrics: $\|\mu_{\mathbb{P}_{\mathbf{XY}}} - \mu_{\mathbb{P}_{\mathbf{X}}\mathbb{P}_{\mathbf{Y}}}\|^2$

• Homogeneity metrics: $\|\mu_{\mathbb{P}_{\mathbf{X}}} - \mu_{\mathbb{P}_{\mathbf{Y}}}\|^2$

Distance Covariance

Distance Covariance (Székely, Rizzo and Bakirov, 2007) is a powerful measure of dependence between two random vectors of *arbitrary but fixed dimensions*.

Distance Covariance and Correlation

Consider two random vectors $\mathbf{X} \in \mathbb{R}^p$ and $\mathbf{Y} \in \mathbb{R}^q$ with $\mathbb{E} \|\mathbf{X}\|_p < \infty$ and $\mathbb{E} \|\mathbf{Y}\|_q < \infty$, where $\|\cdot\|_p$ denotes the Euclidean norm of \mathbb{R}^p .

(Squared) Distance Covariance

$$dCov^{2}(\mathbf{X},\mathbf{Y}) = \frac{1}{c_{p}c_{q}} \int_{\mathbb{R}^{p+q}} \frac{|f_{\mathbf{X},\mathbf{Y}}(t,s) - f_{\mathbf{X}}(t)f_{\mathbf{Y}}(s)|^{2}}{\|t\|_{p}^{p+1} \|s\|_{q}^{q+1}} dtds,$$

where f_X , f_Y and $f_{X,Y}$ are the individual and joint characteristic functions of X and Y. dCov(X,Y) = 0 if and only if X and Y are independent.

(Squared) Distance Correlation

$$\textit{dCor}^2(\mathbf{X},\mathbf{Y}) = \frac{\textit{dCov}^2(\mathbf{X},\mathbf{Y})}{\sqrt{\textit{dCov}^2(\mathbf{X},\mathbf{X})\textit{dCov}^2(\mathbf{Y},\mathbf{Y})}}.$$

An Integration Formula and Alternative expression

Integration formula:

$$\int_{\mathbb{R}^{p}} \frac{1 - \cos(t^{\top}x)}{c_{p} \|t\|_{p}^{p+1}} dt = \|x\|_{p}.$$

• Alternative expression:

$$\begin{split} \textit{dCov}^2(\mathbf{X},\mathbf{Y}) = & \mathbb{E}\|\mathbf{X} - \mathbf{X}'\|_{\rho}\|\mathbf{Y} - \mathbf{Y}'\|_{q} - 2\mathbb{E}\|\mathbf{X} - \mathbf{X}'\|_{\rho}\|\mathbf{Y} - \mathbf{Y}''\|_{q} \\ & + \mathbb{E}\|\mathbf{X} - \mathbf{X}'\|_{\rho}\mathbb{E}\|\mathbf{Y} - \mathbf{Y}'\|_{q} \\ = & \mathbb{E}U_{\mathbf{X}}(\mathbf{X},\mathbf{X}')U_{\mathbf{Y}}(\mathbf{Y},\mathbf{Y}'), \end{split}$$

where $(\mathbf{X}', \mathbf{Y}')$ and $(\mathbf{X}'', \mathbf{Y}'')$ are independent copies of (\mathbf{X}, \mathbf{Y}) , and

$$\textit{U}_{\textbf{X}}(\textbf{x},\textbf{x}') = \mathbb{E}\|\textbf{x}-\textbf{X}'\|_{\rho} + \mathbb{E}\|\textbf{X}-\textbf{x}'\|_{\rho} - \|\textbf{x}-\textbf{x}'\|_{\rho} - \mathbb{E}\|\textbf{X}-\textbf{X}'\|_{\rho},$$

for $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^p$.

Estimation

Unbiased Estimator

Given $\mathbf{X}_i = (X_{i,1}, \dots, X_{i,p})$ and $\mathbf{Y}_i = (Y_{i,1}, \dots, Y_{i,q})$ for $1 \le i \le n$, define

$$\widehat{dCov^2}(\mathbf{X}, \mathbf{Y}) = \frac{1}{n(n-3)} \sum_{k \neq l} \widehat{U}_{\mathbf{X}}(\mathbf{X}_k, \mathbf{X}_l) \widehat{U}_{\mathbf{Y}}(\mathbf{Y}_k, \mathbf{Y}_l),$$

where $\widehat{U}_{\mathbf{X}}(\mathbf{X}_k, \mathbf{X}_l)$ is the sample version of $U_{\mathbf{X}}(\mathbf{X}_k, \mathbf{X}_l)$.

When *p* and *q* are fixed and $n \to +\infty$:

 dCov² is an unbiased and strongly consistent estimator for dCov².

Question: What happens if *p* and *q* are large?

Intuition: Euclidean Distance in High Dimension

• As $p \to +\infty$,

$$\begin{split} \frac{\|\mathbf{X} - \mathbf{X}'\|_{\rho}}{\tau_{\mathbf{X}}} = & \sqrt{1 + \frac{\|\mathbf{X} - \mathbf{X}'\|_{\rho}^2 - \tau_{\mathbf{X}}^2}{\tau_{\mathbf{X}}^2}} \\ \approx & 1 + \frac{\|\mathbf{X} - \mathbf{X}'\|_{\rho}^2 - \tau_{\mathbf{X}}^2}{2\tau_{\mathbf{X}}^2} + \text{Remainder term}, \end{split}$$

where
$$\tau_{\mathbf{X}}^2 = \mathbb{E} \|\mathbf{X} - \mathbf{X}'\|_{p}^2$$
.

- Euclidean distance behaves as the squared Euclidean distance.
- Squared Euclidean distance fails to capture nonlinearity as

$$\begin{split} & \mathcal{U}_{\mathbf{X}}(\mathbf{x},\mathbf{x}') \approx \frac{(\mathbf{x} - \mathbb{E}[\mathbf{X}])^{\top}(\mathbf{x}' - \mathbb{E}[\mathbf{X}])}{\tau_{\mathbf{X}}}, \\ & \mathcal{C}ov^{2}(\mathbf{X},\mathbf{Y}) = \mathbb{E}\mathcal{U}_{\mathbf{X}}(\mathbf{X},\mathbf{X}')\mathcal{U}_{\mathbf{Y}}(\mathbf{Y},\mathbf{Y}') \approx \frac{1}{\tau_{\mathbf{X}}\tau_{\mathbf{Y}}}\|\text{cov}(\mathbf{X},\mathbf{Y})\|_{F}^{2}. \end{split}$$

Asymptotic Expansions

Population dCov

Under some assumptions and as $p, q \to +\infty$,

$$dCov^2(\mathbf{X}, \mathbf{Y}) = \underbrace{\frac{1}{\tau} \sum_{i=1}^{p} \sum_{j=1}^{q} cov^2(X_i, Y_j)}_{\text{leading term}} + \text{Remainder term},$$

where *cov* denotes the covariance, and $\tau = \tau_{\mathbf{X}} \tau_{\mathbf{Y}} > 0$.

Ratio of $dCov^2(\mathbf{X}, \mathbf{Y})$ and the leading term:

<i>p</i> = 20	<i>p</i> = 40	<i>p</i> = 60	<i>p</i> = 80	<i>p</i> = 100
0.980	0.993	0.994	0.989	0.997

Asymptotic Expansions

Sample dCov

Under mild assumptions, as $p, q \to +\infty$ and n is fixed or growing slowly,

$$\widehat{dCov^2}(\mathbf{X}, \mathbf{Y}) = \frac{1}{\tau} \sum_{i=1}^{p} \sum_{j=1}^{q} \widehat{cov^2}(X_i, Y_j) + \text{Remainder term},$$

where $\widehat{cov^2}$ denotes the unbiased estimator of the squared covariance.

Fixed p, Growing q

If X is low-dimensional and Y is high-dimensional (fixed p, growing q),

$$dCov^{2}(\mathbf{X}, \mathbf{Y}) \approx \frac{1}{\tau_{\mathbf{Y}}} \mathbb{E}[U_{\mathbf{X}}(\mathbf{X}, \mathbf{X}')(\mathbf{Y} - \mathbb{E}[\mathbf{Y}])^{\top}(\mathbf{Y}' - \mathbb{E}[\mathbf{Y}])]$$

$$= \frac{1}{\tau_{\mathbf{Y}}} \sum_{j=1}^{q} \underbrace{\mathbb{E}[U_{\mathbf{X}}(\mathbf{X}, \mathbf{X}')(Y_{j} - \mathbb{E}[Y_{j}])(Y'_{j} - \mathbb{E}[Y_{j}])]}_{MDD^{2}(Y_{j}|\mathbf{X})}.$$

Martingale difference divergence (Shao and Zhang, 2014)

 $MDD^2(Y_j|\mathbf{X})$ denotes the (squared) martingale difference divergence which characterizes the *conditional mean dependence* of Y_j given \mathbf{X} in the sense that

$$E[Y_i|\mathbf{X}] = E[Y_i]$$
 almost surely iff $MDD^2(Y_i|\mathbf{X}) = 0$.

Curse of Dimensionality

Numerical Evidence

Two high-dimensional vectors **X** and **Y** are nonlinearly dependently.

New Metrics for Euclidean Space

• A metric space (\mathcal{X}, ρ) is said to have negative type if for all $n \ge 1$, $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathcal{X}$ and $a_1, \dots, a_n \in \mathbb{R}$ with $\sum_{i=1}^n a_i = 0$, we have

$$\sum_{i,j=1}^n a_i a_j \rho(\mathbf{x}_i, \mathbf{x}_j) \leq 0.$$

Suppose $P, Q \in \mathcal{M}_1(\mathcal{X})$ with finite first moments. When (\mathcal{X}, ρ) has negative type,

$$\int_{\mathcal{X}} \rho(x_1, x_2) \, d(P - Q)^2(x_1, x_2) \le 0. \tag{1}$$

We say that (\mathcal{X}, ρ) has strong negative type if it has negative type and the equality in (1) holds only when P = Q.

- $(\mathbb{R}^p, \|\cdot \cdot\|_p)$ is of strong negative type.
- Replacing $\|\cdot \cdot\|_{\rho}$ by any $\rho(\cdot, \cdot)$ that is of strong negative type preserves the property: $dCov_{\rho}(\mathbf{X}, \mathbf{Y}) = 0$ if and only if \mathbf{X} and \mathbf{Y} are independent.

New Metrics for Euclidean Space

A new class of distances

For $\mathbf{x} \in \mathbb{R}^p$, we partition \mathbf{x} into R subvectors:

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_R), \quad \mathbf{x}_i \in \mathbb{R}^{p_i}.$$

Let ρ_i be a metric of strong negative type on \mathbb{R}^{p_i} . Define

$$K_{\mathbf{p}}(\mathbf{x}, \mathbf{x}') = \sqrt{\rho_1(\mathbf{x}_1, \mathbf{x}'_1) + \dots + \rho_R(\mathbf{x}_R, \mathbf{x}'_R)},$$

where **p** = $(p_1, ..., p_R)$.

- K_p is a metric of strong negative type on \mathbb{R}^p .
- If $p_i = 1$ and $\rho_i(x_i, x_i') = |x_i x_i'|$, then $K_p(\mathbf{x}, \mathbf{x}') = ||\mathbf{x} \mathbf{x}'||_1^{1/2}$.
- If $\rho_i(\mathbf{x}_i, \mathbf{x}_i') = \|\mathbf{x}_i \mathbf{x}_i'\|^2$, then K becomes the usual Euclidean distance. However, ρ_i is no longer a metric (but a semi-metric).
- Euclidean distance does not belong to the above class.

Properties of Generalized dCov

Generalized dCov

Given the metric *K* introduced above, define

$$\begin{split} \textit{GdCov}^2(\textbf{X},\textbf{Y}) = & \mathbb{E} \mathcal{K}_{\textbf{p}}(\textbf{X},\textbf{X}') \mathcal{K}_{\textbf{q}}(\textbf{Y},\textbf{Y}') - 2 \mathbb{E} \mathcal{K}_{\textbf{p}}(\textbf{X},\textbf{X}') \mathcal{K}_{\textbf{q}}(\textbf{Y},\textbf{Y}'') \\ & + \mathbb{E} \mathcal{K}_{\textbf{p}}(\textbf{X},\textbf{X}') \mathbb{E} \mathcal{K}_{\textbf{q}}(\textbf{Y},\textbf{Y}'). \end{split}$$

for two random vectors $\mathbf{X} \in \mathbb{R}^p$ and $\mathbf{Y} \in \mathbb{R}^q$

- $GdCov^2(\mathbf{X}, \mathbf{Y}) = 0$ if and only if **X** and **Y** are independent.
- An estimator for $GdCov^2$, denoted by $GdCov^2$, can be constructed by replacing the usual Euclidean distance by the new distance K in $\widehat{dCov^2}$.
- When p, q are fixed and $n \to +\infty$, $GdCov^2$ inherits all the nice properties of the usual dCov.

Asymptotic Expansions

Population GdCov

When $\rho_i(\mathbf{x}_i, \mathbf{x}_i') = \|\mathbf{x}_i - \mathbf{x}_i'\|$ and $R, S \to +\infty$,

$$GdCov^2(\mathbf{X}, \mathbf{Y}) = \frac{1}{4\tau} \sum_{i=1}^{H} \sum_{j=1}^{S} dcov^2(\mathbf{X}_i, \mathbf{Y}_j) + \text{Remainder term.}$$

Sample GdCov

When $\rho_i(\mathbf{x}_i, \mathbf{x}_i') = ||\mathbf{x}_i - \mathbf{x}_i'||, R, S \to +\infty$ and n is fixed or growing slowly,

$$\widehat{\textit{GdCov}}^2(\mathbf{X},\mathbf{Y}) = \frac{1}{4\tau} \sum_{i=1}^R \sum_{j=1}^S \widehat{\textit{dcov}^2}(\mathbf{X}_i,\mathbf{Y}_j) + \text{Remainder term},$$

where $\widehat{dcov^2}$ denotes the unbiased estimator of the squared dCov.

High dimensional t-test

Define

$$T_n = \sqrt{v_n - 1} \frac{\widehat{GdCor^2}(\mathbf{X}, \mathbf{Y})}{\sqrt{1 - (\widehat{GdCor^2}(\mathbf{X}, \mathbf{Y}))^2}},$$

where $v_n = n(n-3)/2$ and

$$\widehat{\textit{GdCov}^2}(\boldsymbol{X},\boldsymbol{Y}) = \frac{\widehat{\textit{GdCov}^2}(\boldsymbol{X},\boldsymbol{Y})}{\sqrt{\widehat{\textit{GdCov}^2}(\boldsymbol{X},\boldsymbol{X})\widehat{\textit{GdCov}^2}(\boldsymbol{Y},\boldsymbol{Y})}}.$$

High-dimensional t-test

Fixed n

As $R, S \rightarrow +\infty$,

$$T_n
ightharpoonup^d \begin{cases} t_{v_n-1}, & ext{if } \mathbf{X}, \mathbf{Y} ext{ are independent,} \\ t_{v_n-1,W}, & ext{if } \mathbf{X}, \mathbf{Y} ext{ are dependent,} \end{cases}$$

with $W^2 \sim c\chi_{\nu_n}^2$. If $\rho_i(\mathbf{x}_i, \mathbf{x}_i') = \|\mathbf{x}_i - \mathbf{x}_i'\|$, c is proportional to

$$\lim_{R,S\to+\infty}\frac{1}{RS}\sum_{i=1}^R\sum_{j=1}^S dcov^2(\mathbf{X}_i,\mathbf{Y}_j).$$

Growing n

As $R, S \to +\infty$,

 $T_n \rightarrow^d N(0,1)$, if **X**, **Y** are independent.

Data Example

- Monthly stock returns of p = 127 companies under the finance sector and q = 125 companies under the healthcare sector.
- The dependence among financial asset returns is usually nonlinear.

Table: p-values corresponding to the different tests for cross-sector independence of stock returns.

GdCov-E	GdCov-L	GdCov-G	dCov	HSIC-L	HSIC-G
5.70×10^{-13}	2.36×10^{-10}	7.99×10^{-11}	0.120	0.093	0.040

A Quick Summary

- *GdCov* completely characterizes dependence in low dimension.
- GdCov detects groupwise nonlinear dependence in high dimension.

- The computational complexity of the t-test only grows linearly with the dimensions p, q.
- Grouping allows us to go from pairwise dependence to groupwise dependence.
 - Motivated by applications: gene set, neighboring regions.
 - Random grouping.

Homogeneity Metrics

A classical problem in statistics is to test if

P = Q for two probability measures P, Q.

- Kolmogorov-Smirnov test, Wald-Wolfowitz runs test, k-nearest neighbor (k-NN) graphs.....
- Energy distance:

$$ED(\mathbf{X}, \mathbf{Y}) = 2\mathbb{E} \|\mathbf{X} - \mathbf{Y}\|_{p} - \mathbb{E} \|\mathbf{X} - \mathbf{X}'\|_{p} - \mathbb{E} \|\mathbf{Y} - \mathbf{Y}'\|_{p}$$
$$= \|\Pi(P) - \Pi(Q)\|_{\mathcal{H}}^{2},$$

for $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^p$ and $\mathbf{X} \sim P, \mathbf{Y} \sim Q$. An important property:

$$ED(\mathbf{X}, \mathbf{Y}) = 0 \text{ iff } P = Q.$$

Estimation

Unbiased Estimator

Given $\{\mathbf{X}_i\}_{i=1}^n$ and $\{\mathbf{Y}_i\}_{i=1}^m$, define

$$\widehat{ED}(\mathbf{X}, \mathbf{Y}) = \frac{2}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \|\mathbf{X}_{i} - \mathbf{Y}_{j}\|_{p} - \frac{1}{n(n-1)} \sum_{i \neq j} \|\mathbf{X}_{i} - \mathbf{X}_{j}\|_{p} - \frac{1}{m(m-1)} \sum_{i \neq j} \|\mathbf{Y}_{i} - \mathbf{Y}_{j}\|_{p}.$$

When *p* is fixed and $n \to +\infty$:

• $\widehat{ED}(\mathbf{X}, \mathbf{Y})$ is unbiased and strongly consistent.

Generalized Energy Distance

Generalized ED

For two random vectors $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^p$, define

$$\mathsf{GED}(\mathbf{X}, \mathbf{Y}) = 2\mathbb{E} \mathcal{K}_{\mathbf{p}}(\mathbf{X}, \mathbf{Y}) - \mathbb{E} \mathcal{K}_{\mathbf{p}}(\mathbf{X}, \mathbf{X}') - \mathbb{E} \mathcal{K}_{\mathbf{p}}(\mathbf{Y}, \mathbf{Y}').$$

- The generalized energy distance (GED) and its sample version (GED) are defined by replacing the Euclidean distance by K.
- All nice properties of energy distance are preserved for fixed p.

Homogeneity Metrics in High Dimension

Curse of dimensionality

As $p \to +\infty$ and n is fixed or growing slowly, both \widehat{ED} and \widehat{GED} have the expansions

C + Asymptotic normal term + Remainder term.

For ED

$$C=0$$
 iff $\mu_{\mathbf{X}}=\mu_{\mathbf{Y}}$ and $\mathrm{tr}(\Sigma_{\mathbf{X}})=\mathrm{tr}(\Sigma_{\mathbf{Y}}).$

For GED

$$C = 0$$
 iff \mathbf{X}_i and \mathbf{Y}_i have the same distribution.

High Dimensional Two-sample t-test

Define

$$T_{n,m} = \frac{\widehat{GED}}{\sqrt{\left(\frac{1}{nm} + \frac{1}{2n(n-1)} + \frac{1}{2m(m-1)}\right)S_{n,m}}},$$

where

$$S_{n,m} = \frac{4v_{n,m}\widehat{CGdCov^2}(\boldsymbol{X},\boldsymbol{Y}) + 4v_n\widehat{GdCov^2}(\boldsymbol{X},\boldsymbol{X}) + 4v_m\widehat{GdCov^2}(\boldsymbol{Y},\boldsymbol{Y})}{(n-1)(m-1) + v_n + v_m}$$

is the pool sample variance estimator.

High Dimensional Two-sample t-test

Asymptotics

When P = Q and $p \to +\infty$,

$$T_{n,m} o^d egin{cases} t_{(n-1)(m-1)+v_n+v_m}, & \text{if } n,m \text{ are fixed}, \\ N(0,1), & \text{if } n,m o +\infty. \end{cases}$$

When $P \neq Q$ and $p \rightarrow +\infty$,

$$\frac{\widehat{GED} - C}{\sqrt{\left(\frac{1}{nm} + \frac{1}{2n(n-1)} + \frac{1}{2m(m-1)}\right)S_{n,m}}} \to^d \text{Nondegenerate limit.}$$

Numerical Results

Table: Power comparison among GED, ED and MMD, where $P \neq Q$ but have the same first two moments.

				GED		ED		MMD	
	n	m	p	10%	5%	10%	5%	10%	5%
(1)	50	50	50	0.472	0.357	0.294	0.214	0.044	0.042
(1)	50	50	100	0.574	0.476	0.397	0.297	0.086	0.086
(1)	50	50	200	0.668	0.589	0.472	0.375	0.107	0.106
(2)	50	50	50	1.000	1.000	0.124	0.072	0.078	0.044
(2)	50	50	100	1.000	1.000	0.107	0.061	0.076	0.030
(2)	50	50	200	1.000	1.000	0.101	0.051	0.067	0.032
(3)	50	50	50	1.000	1.000	0.138	0.076	0.009	0.002
(3)	50	50	100	1.000	1.000	0.112	0.063	0.014	0.007
(3)	50	50	200	1.000	1.000	0.084	0.039	0.022	0.018

Summary of Different Distance-base Metrics

Choice of $\rho_i(x, x')$	Asymptotic behavior of homogeneity metrics	Asymptotic behavior of dependence metrics
the semi-metric $ x - x' ^2$	sum of squared Euclidean distances	sum of squared Pearson correlations
the Euclidean distance $ x - x' $	sum of groupwise energy distances	sum of groupwise (squared) distance covariances
$k_i(x,x) + k_i(x',x') - 2k_i(x,x')$, where k_i is a characteristic kernel on $\mathbb{R}^{p_i} \times \mathbb{R}^{p_i}$	sum of groupwise MMD with the characteristic kernel k_i	sum of groupwise HSIC with the characteristic kernel k_i

More on Grouping

The new distance corresponds to a semi-norm

$$B(x) = \sqrt{\rho_1(x_{(1)}) + \dots, \rho_p(x_{(p)})}.$$

• An interpretation of the semi-norm $B(\cdot)$ based on a tree:

More on Grouping

- Grouping allows us to detect a wider range of alternatives.
- Trees with more levels:

• The induced distance $B(\cdot - \cdot)$ is of strong negative type.

Summary

- Understand the curse of dimensionality for distance and kernel-based metrics.
- Provide a cautionary note on the use of classical metrics in high dimension.
- Propose a general class of metrics and a unified framework for studying them.
- Applications to statistical inference and learning, e.g., high-dimensional change-point detection, kernel-based learning and training Generative Adversarial Network.
- This talk is based on
 - Chakraborty, S., and Zhang, X. (2021) A New Framework for Distance and Kernel-based Metrics in High-dimension.
 - ▶ Zhu, C., Zhang, X., Yao, S., and Shao, X. (2020) Distance-based and RKHS-based Dependence Metrics in High-dimension.

THANK YOU!