

Gate-IC-Lock
КОНТРОЛЛЕРКОНЦЕНТРАТОР
СКУД GATE-IP

Паспорт и инструкция по эксплуатации

Права и их защита

Всеми правами на данный документ обладает компания «Равелин Лтд». Не допускается копирование, перепечатка и любой другой способ воспроизведения документа или его части без согласия

Об этом документе

Настоящее руководство по эксплуатации описывает порядок установки, подключения и эксплуатации контроллера системы управления доступом Gate-IC-Lock (в дальнейшем контроллера). Перед монтажом контроллера тщательно изучите данную инструкцию.

Характеристики и параметры контроллера описаны в разделе **Характеристики**. В разделе **Термины** дается объяснения встречающихся в данном документе терминов. Внешний вид контроллера, описание контактов и режимов работы приводится в разделе **Описание и работа**. Порядок монтажа, и настройка контроллера описаны в разделе **Порядок работы с устройством**

Внимание! Перед монтажом и подключением контроллера следует внимательно изучить настоящее руководство по эксплуатации. Выполнение монтажа, подключения контроллера допускается только лицами или организациями, имеющими соответствующие полномочия от производителя.

Обучение и техническая поддержка

Курсы обучения, охватывающие вопросы установки и использования контроллера Gate-IC-Lock, проводятся компанией «Равелин ЛТД».

Вся техническая информация доступна на сайте компании http://skd-gate.ru

Там же можно подписаться на рассылку новостей и задать вопрос группе технической поддержки.

Содержание

Краткое описание контроллера	4
Назначение прибора	4
Характеристики	4
Термины	5
Описание и работа	6
Устройство контроллера	6
Назначение контактов, перемычек и кнопок контроллера	7
Светозвуковая индикация контроллера	8
Работа контроллера	8
Работа коммуникатора	8
Построение системы беспроводных замков	11
Развертывание системы беспроводных замков	12
Порядок работы с устройством	15
Порядок подключения	15
Рекомендации по монтажу	16
Коммуникация	16
Проводная компьютерная сеть (Ethernet)	17
Порядок программирования контроллера	18
Сервисное обслуживание	18
Сброс в заводские установки	18
Переход в режим программирования	19
Замена микропрограммы устройства	19
Заводские настройки	19
Техническое обслуживание и ремонт	20
Хранение	20
Транспортирование	20
Маркировка	20
Комплектность поставки	21
Гарантийные обязательства	21

Краткое описание контроллера

Контроллер Gate-IC-Lock — устройство, предназначенное для управления доступом в жилые и производственные помещения, учета времени прохода и событий. Исполняющими устройствами, выполняющими функции ограничения доступа в помещения, являются беспроводные дверные контроллеры Gate-IP-Lock.

Gate-IC-Lock обрабатывает информацию, поступающую от беспроводных контроллеров Gate-IP-Lock посредством беспроводного радио интерфейса (ISM). Для расширения области действия радио интерфейса используются ретрансляторы Gate-Hub (Gate-Hub-Ethernet и Gate-Hub-WiFi). Для их подключения к Gate-IC-Lock используются интерфейсы Ethernet (проводная компьютерная сеть) и существующая компьютерная сеть.

В контроллере предусмотрена функция программирования сетевых настроек и обновления его микропрограммы через стандартный порт USB (micro USB B).

Питание контроллера может осуществляться как от источника 12В, так и с помощью технологи PoE (Power over Ethernet, IEEE 802.3af, подача питания по кабелю компьютерной сети), что значительно упрощает установку приборов.

Контроллер Gate-IC-Lock имеет развитые аппаратные возможности и интеллектуальные функции для обеспечения работы до 512 устройств (ретрансляторов и модулей расширения).

Тщательно продуманные технические и конструкторские решения, простой монтаж, коммуникация по компьютерной сети, питание с помощью технологии РоЕ, энергонезависимая память и часы — все это позволяет использовать контроллер для построения самых различных систем управления доступом.

Назначение прибора

Контроллер Gate-IC-Lock предназначен для организации сети беспроводных замков на базе беспроводных контроллеров Gate-IP-Lock. Контроллер Gate-IC-Lock позволяет увеличить автономность их работы, сохраняя журналы событий в своей энергонезависимой памяти, и предоставляет прозрачный командный интерфейс с Gate-IP.

Контроллеры и ретрансляторы объединяются по компьютерной сети с сервером СКУД.

Характеристики

- Питание:
 - Внешний источник 12В:
 - Ток потребления от источника 12 В, не более 150 мА
 - Амплитуда пульсаций источника питания постоянного тока, не более 500 мВ
 - Модификация 2: IEEE 802.3af PoE. Класс потребления PoE class 1, до 3,84 Вт
 - Разъем mictroUSB

- Работает с контролерами Gate-IP-Lock напрямую:
 - ISM устройство с двусторонней коммуникацией. Поддерживаемые частоты ISM - ITU Регион 1 (Европа): 868.0-868.6 МГц
 - о Дальность до 20 м
 - Для расширения области действия ISM используются ретрансляторы Gate-Hub (Gate-Hub-Ethernet и Gate-Hub-WiFi). Интерфейс связи с ними – компьютерная сеть.
- Порт Ethernet с гальванической развязкой, 10BASE-T/100BASE-TX, 802.3af РоЕ
- Один порт micro USB для конфигурации сетевых настроек и обновления микропрограммы контроллера
- Контроль вскрытия корпуса прибора
- Полная конфигурация выполняется с помощью ПО СКУД через компьютерную сеть. Есть режим автоконфигурации в одноранговой сети,
- Часы реального времени
- Энергонезависимая память:

Буфер событий	47000
Обрабатываемых устройств	512

Термины

Идентификаторы

В системах управления доступом каждый пользователь имеет идентификатор с уникальным кодом. Идентификаторы могут иметь вид пластиковой карточки, брелока и др.

Считыватель

Для чтения кодов идентификаторов предназначены считыватели, подключаемые к контроллеру СКУД.

PIN код

Если считыватели имеют встроенную клавиатуру, то в качестве идентификатора может выступать код, вводимый с клавиатуры. Обычно этот код называют PIN кодом, он может являться самостоятельным идентификатором или служить дополнением к карточке или брелоку, тогда после предъявления карточки считыватель "ожидает" ввода PIN кода.

Точка доступа

Место, где непосредственно осуществляется контроль доступа (например, дверь, турникет, кабина прохода, оборудованные необходимыми средствами контроля).

Загрузка

После программирования параметров контроллера, необходимо выполнить загрузку контроллера. При загрузке данные о настройках попадают из компьютера в контроллер.

Gate - IP

Описание и работа

Устройство контроллера

Внешний вид контроллера представлен на рис. 1 (а и б).

Рис. 1a. Внешний вид Gate-IC-Lock модификации 1

- 1. Корпус устройства
- 2. Порт для подключения кабеля Ethernet
- 3. Порт Usb microВ
- 4. Кнопка сброса к заводским установкам (FUNC)
- 5. Съемная клеммная колодка

Рис. 1. Внешний вид Gate-IC-Lock модификации 2

Расположение на плате контроллера перемычек (джамперов), кнопок, разъёмов и их назначение показано на рис. 2 (а и б).

Рис. 2а. Внешний вид платы контроллера модификации 1

Рис. 2. Внешний вид платы контроллера

Назначение контактов, перемычек и кнопок контроллера

Контакт	Название	Назначение		
+12V		Подключение внешнего источника питания		
GND				
Разъем USB				
USB micro B	USB разъем	Используется для начальной конфигурации		
		сетевых настроек и обновления		
		микропрограммы		
Перемычки				
BAT		Включение батарейки поддержки часов и		
		памяти контроллера		
Кнопки				
FUNC		Функциональная кнопка сервисного		
		обслуживания		

Светозвуковая индикация контроллера

Светодиоды слева-направо:

Светодиод Link:

• светится - Ethernet кабель исправен

Светодиод Аст.:

• частое мигание – происходит обмен данными

Двухцветный светодиод - LED:

- дежурный режим (периодическое мигание):
 - красный, 2 коротких импульса раз в секунду связь с сервером СКУД отсутствует,
 - зеленый 1 короткий импульс раз в секунду связь с сервером СКУД в норме;
- режим загрузчика быстрое мигание красным

Работа контроллера

Контроллеры поставляются в незагруженном состоянии, в заводских настройках. В этом состоянии двухцветный светодиод на контроллере мигает 2 раза в секунду красным. Для работы контроллера в СКУД необходимо загрузить в него сетевые настройки с помощью программы "Конфигуратор", или воспользоваться режимом автоконфигурации.

После загрузки настроек в контроллер, он переходит в режим "Дежурный".

Сброс контроллера в незагруженное состояние производится либо командой с компьютера, либо с помощью процедуры, описанной в разделе "Сервисное обслуживание".

Работа коммуникатора

Контроллер Gate-IC-Lock работает в автоматическом режиме. После загрузки конфигурации с сервера выполняется отработка данных от разрешенных ретрансляторов и беспроводных контроллеров Gate-IP-Lock, обработка оповещений о событиях доступа для предъявляемых карточек и отправляются события об этом на сервер.

Коммуникатор контроллера работает в режиме **нотификации**, то есть при наличии события (проход, нарушение зоны) инициируется передача данных на сервер СКУД.

Контроллер Gate-IC-Lock может быть подключен к компьютерной сети с помощью проводного соединения (Ethernet).

При этом обеспечивается как работа внутри **локальной** сети предприятия (см. рис 3), так и **через сеть Интернет** (см. рис. 4) с использованием ретрансляторов, что позволяет строить распределенные системы доступа любого масштаба.

Рис 3. Пример локальной сети смешанного типа (Ethernet и Wi-Fi)

Рис 4. Пример распределенной сети

При построении общей сети центрального офиса и филиалов для дополнительной защиты рекомендуется использовать VPN технологии, а для обеспечения резервирования каналов связи - роутеры с двумя разнородными каналами доступа в Интернет.

Алгоритм работы внутри локальной сети

- После включения контроллера, выполняется проверка, включен ли режим DHCP (IP адрес прибора 0.0.0.0), или прибор получил статический IP адрес;
- 2. Если включен режим DHCP, будет запущена процедура динамического назначения IP адреса;
- 3. Периодическое обновление статуса IP адреса (продление зарезервированного IP, если включен режим DHCP)
- 4. Определение доступности сервера СКУД (по IP или DNS имени)
- 5. Периодическая отправка тестовых сигналов
- 6. Отправка событий доступа
- 7. Ожидание команд от сервера.

Алгоритм работы через сеть Интернет (локальная проводная сеть)

 После включения контроллера, выполняется проверка, включен ли режим DHCP (IP адрес прибора 0.0.0.0), или прибор получил статический IP адрес;

Gate - IP

- Если включен режим DHCP, будет запущена процедура динамического назначения IP адреса;
- 3. Периодическое обновление статуса IP адреса (продление зарезервированного IP, если включен режим DHCP)
- 4. Определение возможности выхода в Интернет (доступность IP адресов маршрутизаторов)
- 5. Определение доступности сервера СКУД (по IP или DNS имя)
- 6. Периодическая отправка тестовых сигналов
- 7. Отправка событий доступа
- 8. Ожидание команд сервера.

Построение системы беспроводных замков

Построение системы имеет четкую иерархическую структуру. Все исполняющие контроллеры Gate-IP-Lock работают в автоматическом режиме, т.е. принимают решение о предоставлении доступа на основе загруженных в них ранее правил.

Контроллер Gate-IC-Lock выполняет маршрутизацию данных от разрешенных беспроводных контроллеров Gate-IP-Lock через ретрансляторы Gate-Hub (Ethernet или Wi-Fi). Интерфейс связи между Gate-IC-Lock и сервером СКУД, а также между Gate-IC-Lock и Gate-Hub — компьютерная сеть. Интерфейс связи между Gate-IC-Lock, Gate-Hub и Gate-IP-Lock — ISM радио.

Беспроводные дверные контроллеры Gate-IP-Lock

Рис 5. Построение системы беспроводных замков

Развертывание системы беспроводных замков

Использование сетевой существующей инфраструктуры, стандартных сетевых протоколов (например, DHCP) позволили реализовать принцип "подключил и работаешь". Режим автоконфигурации адреса сервера в устройствах значительно облегчает развертывание системы беспроводных замков.

Процедура развертывания системы состоит из трех шагов (см. рис. 6):

- 1. подключение контроллера Gate-IC-Lock,
- 2. подключение ретрансляторов Gate-Hub,
- 3. подключение беспроводных контроллеров беспроводных контроллеров Gate-IP-Lock

Рис 6. Развертывание системы беспроводных замков

Алгоритмы работы автоконфигурации для каждого шага, описаны ниже.

Автоконфигурация адресов сервера для Gate-IC-Lock

- После включения контроллера, выполняется проверка, включен ли режим DHCP (IP адрес прибора 0.0.0.0), или прибор получил статический IP адрес;
- Если включен режим DHCP, будет запущена процедура динамического назначения IP адреса;
- 3. Если не задан адрес сервера СКУД (IP или DNS имя), включается режим автоконфигурации контроллера:
 - Прибор выполняет рассылку пакетов данных, оповещающих сервер СКУД о себе как о новом устройстве в локальной сети.

Gate - IP

Хотя данная рассылка широковещательная, но она ограничена одноранговой локальной сетью, и активным сетевым оборудованием. Поэтому для сетей со сложной топологией IP адреса сервера СКУД задаются вручную.

- b. При получении пакета данных от нового прибора оператору системы будет выдано оповещение. Далее оператор должен добавить прибор в базу данных (БД).
- с. После добавления устройства в БД прибор получает пакет с ответом от сервера СКУД. Инициализируется запись адреса сервера в настройки контроллера и прекращается широковещательная рассылка.
- d. После настройки параметров контроллера в БД оператор должен выполнить загрузку устройства. Прибор будет связан с данной СКУД, что исключит возможность перехвата управления.

Чтобы отменить привязку контроллера к СКУД, его следует сбросить к заводским настройкам.

е. В случае смены адреса сервера, устройство повторно выполнит автоконфигурацию, но обмен данными будет возможен только со СКУД, к которой был привязан прибор.

Автоконфигурация адресов Gate-IC-Lock для ретрансляторов, подключаемых к контроллеруконцентратору

- 1. После включения ретранслятора, выполняется проверка, включен ли режим DHCP (IP адрес прибора 0.0.0.0), или прибор получил статический IP адрес;
- 2. Если включен режим DHCP, будет запущена процедура динамического назначения IP адреса;
- 3. Если не задан адрес контроллера Gate-IC-Lock (IP или DNS имя), включается режим автоконфигурации ретранслятора:
 - а. Прибор выполняет рассылку пакетов данных, оповещающих контроллер-концентратор о себе как о новом устройстве в локальной сети.

Хотя данная рассылка широковещательная, но она ограничена одноранговой локальной сетью, и активным сетевым оборудованием. Поэтому для сетей со сложной топологией IP адреса концентратора Gate-IC-Lock задаются вручную.

- b. При получении пакета данных от нового прибора с помощью Gate-IC-Lock оператору системы будет выдано оповещение. Далее оператор должен добавить прибор в базу данных (БД).
- с. После добавления устройства в БД оператор должен выполнить загрузку контроллера-концентратора Gate-IC-Lock.
- d. После загрузки Gate-IC-Lock прибор, получает пакет с ответом от контроллера-концентратора. Инициализируется запись адреса

Grate - IP

Gate-IC-Lock в настройки ретранслятора и прекращается широковещательная рассылка. Прибор будет связан с данной СКУД, что исключит возможность перехвата управления.

Чтобы отменить привязку ретранслятора к СКУД его следует сбросить к заводским настройкам.

e. В случае смены адреса Gate-IC-Lock, устройство повторно выполнит автоконфигурацию, но обмен данными будет возможен только с контроллерами-концентраторами СКУД, к которой был привязан прибор.

Автоконфигурация контроллеров Gate-IP-Lock

- 1. После включения прибор выполняет самоанонс по радиоинтерфейсу (ISM).
- 2. Если прибор не связан ни с одним Gate-IC-Lock, включается режим автоконфигурации:
 - а. Прибор выполняет рассылку пакетов данных, оповещающих о себе как о новом устройстве.
 - b. Пакеты данных принимают ретрансляторы Gate-Hub и передают их контроллеру-концентратору Gate-IC-Lock.
 - Gate-IC-Lock отправляет извещение о новом устройстве на сервер СКУД.
 - d. При получении пакета данных от нового прибора оператору системы будет выдано оповещение. Далее оператор должен добавить прибор в базу данных (БД).
 - e. После добавления устройства в БД оператор должен выполнить загрузку контроллера-концентратора Gate-IC-Lock.
 - f. Затем, после настройки параметров контроллера Gate-IP-Lock в БД, оператор должен выполнить загрузку устройства. Прибор будет связан с данной СКУД, что исключит возможность перехвата управления.

Чтобы отменить привязку прибора к СКУД его следует сбросить к заводским настройкам.

3. Gate-IP-Lock переходит в штатный режим работы.

Порядок работы с устройством

Контроллер поставляется в пластиковом корпусе без источника питания. Габаритные размеры прибора указаны на рис. 7 (а и б).

86,50

Порядок подключения

- 1. Перед установкой, при необходимости, если нет возможности получить настройки автоматически, произведите начальную настройку (а именно задайте параметры сетевых настроек) контроллера с помощью утилиты "Конфигуратор" через USB порт
 - Рис 7a. Габаритные размеры, модификация 1

- 2. В месте установки контроллера выполните подготовку (см. Error! Reference source not found.)
- 3. Выполните подводку кабеля Ethernet
- 4. Выполните подводку кабеля от блока питания (по необходимости)
- 5. Выполните укладку монтажных кабелей в стене

Рис 7б. Габаритные размеры, модификация 2

- 6. Установите и закрепите корпус контроллера,
- 7. Подключите в ПО СКУД контроллер (в соответствии с инструкцией СКУД)
- 8. С помощью ПО СКУД выполните полную загрузку контроллера.
- 9. Устройство готово к работе

Рекомендации по монтажу

Размещать контроллер следует в месте, доступном для обслуживания.

Для установки контроллера на стене необходимо выполнить следующие действия:

Модификация 1 (См. Рис. 8а):

- откройте крышку корпуса, извлеките плату из корпуса, приложите его к предполагаемому месту крепления и выполните разметку отверстий;
- пропустите провода в отверстия в стенке корпуса;
- закрепите корпус контроллера;
- выполните подключение проводов.

Рис 8a. Разметка крепежных отверстий, модификация 1

Модификация 2 (См. Рис. 8б):

- выполните разметку отверстий, используя приложенный чертеж;
- закрепите корпус контроллера;
- выполните подключение проводов.

Коммуникация

Для связи с сервером СКУД контроллер Gate-IC-

Рис 8б. Разметка крепежных отверстий, модификация 2

Lock может использовать проводную компьютерную сеть. При соответствующей настройке обеспечивается (при конфигурации с ПК с помощью ПО "Конфигуратор"):

- назначение статического или динамического (DHCP) IP адреса устройству;
- работа с двумя (основной и резервный) IP или DNS (доменными именами компьютера) адресами сервера СКУД;
- Работа через сеть Интернет с возможностью резервирования путей в Интернет через второй маршрутизатор (роутер).

Контроллер работает в автоматическом режиме - после загрузки данных с сервера выполняет маршрутизацию данных от разрешенных беспроводных контроллеров

Gate - IP

через ретрансляторы, подключенные по сети Ethernet, отправляет события доступа от контроллеров на сервер СКУД.

Коммуникатор контроллера работает в режиме **нотификации**, то есть при наличии события (проход, нарушение зоны) инициируется передача данных на сервер СКУД.

При работе в компьютерной сети контроллер обеспечивает защиту от несанкционированного вмешательства благодаря криптостойкости (шифрование пакета данных с использованием 256-битного ключа) и имитостойкости (контроль уникального серийного номера устройства), а также контролю канала связи посредством периодических тестовых сигналов от устройства.

Проводная компьютерная сеть (Ethernet)

Интерфейс Ethernet используется для объединения компонентов системы в сеть, а также при использовании технологии РоЕ для подачи питания. Длина кабеля Ethernet без использования дополнительного оборудования может составлять до 100 метров, при этом обеспечивается скорость передачи данных до 100Мбит/с.

На рис. 9 показаны примеры подключения кабеля Ethernet.

Коннектор 1	Коннектор 2	12345678 12345678
	очение к свитчу или роутеру	
1. бело-желтый 1. бело-желтый		MRQ NO
2. желтый	2. желтый	
3. бело-зеленый	3. бело-зеленый	
4. синий	4. синий	
5. бело-синий	5. бело-синий	
6. зеленый	6. зеленый	
7. бело-коричневый	7. бело-коричневый	
8. коричневый	8. коричневый	
Обратный обжим, подключение к компьютеру		12345678 12345678
1. бело-желтый	1. бело-зеленый	
2. желтый	2. зеленый	8
3. бело-зеленый	3. бело-желтый	Cross-over
4. синий	4. синий	
5. бело-синий	5. бело-синий	
6. зеленый	6. желтый	1111111 111111
7. бело-коричневый	7. бело-коричневый	10001 1000
8. коричневый	8. коричневый	
		Рис.9. Подключение кабеля Ethernet

При настройке Ethernet коммуникатора контроллера следует выполнить:

 Настройку сетевых параметров контроллера (при использовании DHCP – не задаются):

Gate - IP

- о ІР адрес
- о Маска подсети
- IP адрес шлюза (роутера) интернет 1(необязательно в локальной сети)
- о ІР адрес шлюза (роутера) в интернет 2 (необязательно)
- IP адрес DNS сервера 1 (если используется передача данных на доменное имя)
- IP адрес DNS сервера 2 (необязательно, если используется передача данных на доменное имя)
- Настройку коммуникации с сервером (по необходимости, если не используется режим автоконфигурации):
 - о IP или DNS адрес сервера СКУД
 - Порты доступа (порт чтения и порт записи)
 - о Частота проверки канала связи (отправки тестового сигнала)

Порядок программирования контроллера

Программное	Действия		
обеспечение			
	1. Определение режима конфигурации контроллера:		
	автоконфигурация или ручная		
	2. Если конфигурация ручная – ввод начальных параметров, а		
	именно сетевых настроек контроллера:		
ПО "Конфигуратор"	а. Настройки сервера: IP адрес или DNS имя сервера,		
	порты доступа (порт чтения, порт записи)		
Через порт USB	Пункт b при наличии DHCP (динамических адресов) в сети		
	не нужно выполнять		
	b. Настройки устройства: IP адрес устройства в		
	компьютерной сети, маска подсети, IP DNS сервера.		
	шлюз в Интернет		
	3. Подключение и регистрация устройства в ПО СКУД (см.		
	руководство по СКУД);		
по скуд	4. Настройка устройства с помощью ПО СКУД:		
	а. Приписка ретрансляторов;		
	b. Приписка беспроводных дверных контроллеров.		
	5. После формирования и загрузки конфигурации из ПО СКУД		
	устройство готово к работе.		

Сервисное обслуживание

Сброс в заводские установки

Для возврата контроллера к заводским установкам следует выполнить следующие действия:

- 1. Обесточьте контроллер
- 2. Нажмите и удерживайте кнопку FUNC

- 3. Подайте питание
- 4. Подождите 10 секунд, пока не загорится светодиод LED красным, и затем отпустите кнопку FUNC
- 5. Светодиод LED 6 раз вспыхнет красным процесс возврата к заводским установкам завершен

Переход в режим программирования

Для перевода контроллера в режим программирования достаточно подключить его USB кабелем к компьютеру.

Далее выполните настройку прибора с помощью программного обеспечения "Конфигуратор"

Замена микропрограммы устройства

- 1. Подключите USB кабель сначала к компьютеру, а затем к контроллеру
- 2. C помощью специального программного обеспечения выполните замену микропрограммы контроллера
- 3. После загрузки ПО в контроллер ОБЯЗАТЕЛЬНО подождите 25-30 секунд

Заводские настройки

DHCP включён (не установлен IP контролера), адрес сервера СКУД не указан (автоконфигурация разрешена).

Техническое обслуживание и ремонт

Гарантийное и послегарантийное обслуживание контроллеров Gate-IC-Lock выполняется лицами или организациями, получившими на это полномочия от производителя.

Хранение

- Приборы должны храниться в условиях 2 ГОСТ 15150 при отсутствии в воздухе кислотных, щелочных и других активных примесей.
- Хранение приборов без тары не допускается.
- Хранение запакованных в индивидуальную или транспортную тару приборов на складах допускается при укладке в штабель без прокладок между ними. Количество рядов в штабеле не больше шести.
- Срок хранения приборов не более шести месяцев с момента изготовления.
- В складских помещениях должны быть обеспечены температура воздуха от 5 до 50 °C, относительная влажность до 80 %, отсутствие в воздухе кислотных и щелочных и других активных примесей.

Транспортирование

- Упакованные приборы допускается транспортировать в условиях 5 ГОСТ 15150 в диапазоне температур от минус 50 до плюс 50 °С, при защите от прямого действия атмосферных осадков и механических повреждений.
- Упакованные в индивидуальную или транспортную тару приборы могут транспортироваться всеми видами закрытых транспортных средств в соответствии со следующими документами:
- "Правила перевозок грузов автомобильным транспортом" 2 изд., М., "Транспорт", 1983
- "Правила перевозки грузов", М., "Транспорт", 1983
- "Технические условия погрузки и крепления грузов", М., "Транспорт", 1990

Маркировка

На приборе нанесена маркировка, содержащая:

- название, условное обозначение и вариант исполнения;
- порядковый номер;
- вид питания;
- номинальное напряжение сети электропитания;
- номинальную частоту сети электропитания;
- обозначение соединителей;
- обозначение клеммы заземления;
- "Знак соответствия" для приборов, имеющих сертификат соответствия.

На индивидуальной таре наклеена этикетка, на которой обозначены:

- товарный знак производителя;
- название и условное обозначение прибора;
- масса прибора;
- дата изготовления.

На транспортной таре нанесена маркировка:

- товарный знак производителя;
- название и условное обозначение прибора;
- манипуляционные знаки 1, 3, 5, 11, 19 по ГОСТ 14192.

Комплектность поставки

В комплект поставки входит:

Контроллер - 1 шт.;
 Паспорт и инструкция по эксплуатации - 1 шт.;
 Упаковка - 1 шт.

Гарантийные обязательства

Производитель гарантирует соответствие изделия Контроллера Gate-IC-Lock требованиям безопасности и электромагнитной совместимости при соблюдении Покупателем правил транспортирования, хранения, монтажа и эксплуатации изделия. В течение гарантийного срока производится бесплатный ремонт изделия в мастерской Производителя или в сертифицированных сервисных центрах Производителя. Производитель оставляет за собой право отремонтировать неисправное изделие или заменить его аналогичным исправным. Срок ремонта определяется Производителем при сдаче изделия в ремонт.

Кроме гарантий, указанных выше, Производитель не предоставляет никаких других гарантий относительно совместимости данного изделия программным обеспечением или с изделиями, произведёнными другими изготовителями, а также гарантий годности изделия для целей, не предусмотренных эксплуатационной документацией на данное изделие. Гарантией не предусматриваются претензии относительно технических параметров изделия, если они соответствуют указанным Производителем. Данное изделие относится к технически сложным товарам, поэтому Производитель не принимает обратно исправное изделие, если оно по каким-либо причинам не подошло Покупателю. Если в результате проведённой Производителем экспертизы рекламационного изделия дефекты не обнаружатся, и изделие будет признано исправным, то на Покупателя ложится обязанность оплаты расходов Производителя на экспертизу.

Сроки гарантийных обязательств

Гарантийный срок эксплуатации изделия составляет 12 месяцев с даты продажи, если иное не оговорено в договоре с Покупателем на поставку изделия.

Ответственность по гарантии

В максимальной степени, допустимой действующим законодательством, Производитель не несет ответственности ни за какие прямые или косвенные убытки

Покупателя, включая убытки от потерь прибыли и информации, убытки от простоя, упущенную выгоду и другие убытки, связанные с использованием или невозможностью использования изделий и программного обеспечения, в том числе из-за возможных ошибок и сбоев в работе программного обеспечения.

Условия предоставления гарантийных обязательств

Гарантия действительна на территории Российской Федерации.

Гарантийные обязательства поставщика не смогут быть исполнены, если Клиент не предоставит при обращении к поставщику или уполномоченному сервисному центру неисправное оборудование, а так же гарантийный талон без каких-либо исправлений с наименованием модели оборудования, серийным номером, датой продажи и печатью изготовителя.

Гарантия не распространяется на изделия, имеющие механические повреждения корпуса, следы постороннего вмешательства или ремонта, а также имеющие повреждения и неисправности, вызванные действием непреодолимой силы (стихийных бедствий, вандализма и т.д.) или сторонних обстоятельств (скачков напряжения электропитания, электрических разрядов, попадания внутрь жидкостей, инородных предметов и т.д.).

Производитель имеет право вносить в конструкцию изделия изменения, не влияющие на основные технические характеристики и надежность изделия.

Гарантийный талон контроллера Gate-IC-Lock

Серийный номер:
Фирма-продавец:
Адрес фирмы-продавца:
Телефон, факс фирмы-продавца:
Дата продажи:
Печать:

Шаблоны разметки для установки прибора

http://skd-gate.ru Версия 1.007