#### 数据驱动测试报告

姓名: 蔡挺, 周泽龙

学号: 2020214022, 2020213990

课程: 软件测试技术 日期: 2020年12月5日

#### 1 实验内容

- 1.1 要求
- 1.2 完成内容

#### 2 现有分类器评估

- 2.1 AdaBoostClassifier
- 2.2 CBLOF (无监督)
- 2.3 DecisionTreeClassifier
- 2.4 GaussianNB
- 2.5 GaussianProcessClassifier
- 2.6 KNeighborsClassifier
- 2.7 MLPClassifier
- 2.8 QuadraticDiscriminantAnalysis
- 2.9 RandomForestClassifier
- 2.10 SVC
- 2.11 XGBOD

#### 3 论文算法复现

- 3.1 ISDA
- $3.2\;\mathrm{BaggingClassifierPU}$
- 3.3 JSFS

总结分析

参考文献

# 1 实验内容

## 1.1 要求

- 设计机器学习算法,利用NASA数据集和CK数据集进行软件缺陷预测;
- 利用10%, 20%及30%的随机样本数据进行训练, 使用剩余数据进行测试;
- 统计在两个数据集上的测试结果。

## 1.2 完成内容

- 调用库,评估现有分类器的效果
  - 如 MLPClassifier、DecisionTreeClassifier、RandomForestClassifier 等等
  - 包含无监督、半监督、监督算法
- 复现相关论文算法
  - ISDA [1]

- BaggingClassifierPU[2]
- JSFS [3]

# 2 现有分类器评估

部分子数据集实验结果较差,在报告中忽略,具体结果可查看.\MultipleMethods\result 目录。

## 2.1 AdaBoostClassifier

AdaBoostClassifier (CK/ant1)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 34                  | 69                 | 104                 |
| defective train samples | 9                   | 18                 | 27                  |
| precision               | 0.4838709677419355  | 0.5483870967741935 | 0.559322033898305   |
| recall                  | 0.3614457831325301  | 0.4594594594594595 | 0.5076923076923077  |
| pf                      | 0.13675213675213677 | 0.1346153846153846 | 0.14285714285714285 |
| F-measure               | 0.41379310344827586 | 0.5                | 0.532258064516129   |
| accuracy                | 0.7318611987381703  | 0.7588652482269503 | 0.7651821862348178  |
| AUC                     | 0.6123468231901967  | 0.6624220374220374 | 0.6824175824175824  |

#### AdaBoostClassifier (CK/jedit4)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 30                 | 61                  | 91                  |
| defective train samples | 7                  | 15                  | 22                  |
| precision               | 0.4536082474226804 | 0.515625            | 0.47916666666666667 |
| recall                  | 0.6470588235294118 | 0.55                | 0.4339622641509434  |
| pf                      | 0.2548076923076923 | 0.16756756756756758 | 0.15432098765432098 |
| F-measure               | 0.5333333333333333 | 0.5322580645161291  | 0.4554455445544555  |
| accuracy                | 0.7210144927536232 | 0.763265306122449   | 0.7441860465116279  |
| AUC                     | 0.6961255656108598 | 0.6912162162162162  | 0.6398206382483113  |
|                         |                    |                     |                     |

AdaBoostClassifier (CK/lucene2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 33                 | 67                 | 101                |
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.6451612903225806 | 0.6927710843373494 | 0.76               |
| recall                  | 0.546448087431694  | 0.7055214723926381 | 0.6643356643356644 |
| pf                      | 0.4435483870967742 | 0.4636363636363636 | 0.3125             |
| F-measure               | 0.591715976331361  | 0.6990881458966565 | 0.7089552238805971 |
| accuracy                | 0.5504885993485342 | 0.6373626373626373 | 0.6736401673640168 |
| AUC                     | 0.55144985016746   | 0.6209425543781372 | 0.6759178321678321 |

AdaBoostClassifier (CK/synapse1)

| ( 7 1 /                 |                     |                     |                    |
|-------------------------|---------------------|---------------------|--------------------|
|                         | 10%                 | 20%                 | 30%                |
| train samples           | 25                  | 51                  | 76                 |
| defective train samples | 8                   | 17                  | 25                 |
| precision               | 0.5476190476190477  | 0.5492957746478874  | 0.5223880597014925 |
| recall                  | 0.2948717948717949  | 0.5652173913043478  | 0.5737704918032787 |
| pf                      | 0.12418300653594772 | 0.23529411764705882 | 0.2689075630252101 |
| F-measure               | 0.3833333333333333  | 0.5571428571428572  | 0.5468749999999999 |
| accuracy                | 0.6796536796536796  | 0.697560975609756   | 0.6777777777777    |
| AUC                     | 0.5853443941679236  | 0.6649616368286444  | 0.6524314643890343 |

#### AdaBoostClassifier (CK/xalan2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 79                 | 160                | 240                |
| defective train samples | 38                 | 77                 | 116                |
| precision               | 0.5778894472361809 | 0.5813953488372093 | 0.6188925081433225 |
| recall                  | 0.6590257879656161 | 0.5645161290322581 | 0.7011070110701108 |
| pf                      | 0.448              | 0.3783783783783784 | 0.4006849315068493 |
| F-measure               | 0.6157965194109772 | 0.5728314238952538 | 0.6574394463667821 |
| accuracy                | 0.6035911602209945 | 0.5940902021772939 | 0.6483126110124334 |
| AUC                     | 0.605512893982808  | 0.5930688753269399 | 0.6502110397816308 |

#### AdaBoostClassifier (NASA/pc4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 128                 | 257                 | 386                 |
| defective train samples | 17                  | 35                  | 53                  |
| precision               | 0.4125874125874126  | 0.475               | 0.59                |
| recall                  | 0.36875             | 0.4014084507042254  | 0.47580645161290325 |
| pf                      | 0.08408408408408409 | 0.07094594594594594 | 0.05276705276705277 |
| F-measure               | 0.38943894389438943 | 0.4351145038167939  | 0.5267857142857142  |
| accuracy                | 0.8403796376186368  | 0.8563106796116505  | 0.8823529411764706  |
| AUC                     | 0.642332957957958   | 0.6652312523791397  | 0.7115196994229253  |

## AdaBoostClassifier (NASA/pc5)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 171                 | 342                 | 513                 |
| defective train samples | 47                  | 94                  | 141                 |
| precision               | 0.4470588235294118  | 0.5186567164179104  | 0.5358851674641149  |
| recall                  | 0.3584905660377358  | 0.3687002652519894  | 0.3393939393939394  |
| pf                      | 0.16845878136200718 | 0.13004032258064516 | 0.11175115207373272 |
| F-measure               | 0.3979057591623037  | 0.43100775193798446 | 0.4155844155844156  |
| accuracy                | 0.7012987012987013  | 0.7319211102994887  | 0.7370617696160268  |
| AUC                     | 0.5950158923378642  | 0.619329971335672   | 0.6138213936601032  |

## 2.2 CBLOF (无监督)

#### CBLOF (CK/ant1)

| , ,                     |                     |                     |                     |
|-------------------------|---------------------|---------------------|---------------------|
|                         | 10%                 | 20%                 | 30%                 |
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.5882352941176471  | 0.7021276595744681  | 0.5769230769230769  |
| recall                  | 0.3614457831325301  | 0.44594594594594594 | 0.23076923076923078 |
| pf                      | 0.08974358974358974 | 0.0673076923076923  | 0.06043956043956044 |

|           | 10%                | 20%                | 30%                |
|-----------|--------------------|--------------------|--------------------|
| F-measure | 0.4477611940298508 | 0.5454545454545454 | 0.3296703296703296 |
| accuracy  | 0.7665615141955836 | 0.8049645390070922 | 0.7530364372469636 |
| AUC       | 0.6358510966944703 | 0.6893191268191269 | 0.5851648351648352 |

CBLOF (CK/ivy2)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 35                  | 70                  | 105                |
| defective train samples | 4                   | 8                   | 12                 |
| precision               | 0.33962264150943394 | 0.2926829268292683  | 0.3684210526315789 |
| recall                  | 0.5                 | 0.375               | 0.5                |
| pf                      | 0.12455516014234876 | 0.116               | 0.1095890410958904 |
| F-measure               | 0.4044943820224719  | 0.32876712328767116 | 0.4242424242424242 |
| accuracy                | 0.832807570977918   | 0.8262411347517731  | 0.8461538461538461 |
| AUC                     | 0.6877224199288255  | 0.6295000000000001  | 0.6952054794520548 |

CBLOF (CK/jedit4)

| y                       |                     |                    |                     |
|-------------------------|---------------------|--------------------|---------------------|
|                         | 10%                 | 20%                | 30%                 |
| train samples           | 30                  | 61                 | 91                  |
| defective train samples | 7                   | 15                 | 22                  |
| precision               | 0.6296296296296297  | 0.6086956521739131 | 0.5263157894736842  |
| recall                  | 0.5                 | 0.4666666666666667 | 0.18867924528301888 |
| pf                      | 0.09615384615384616 | 0.0972972972972973 | 0.055555555555555   |
| F-measure               | 0.5573770491803278  | 0.5283018867924527 | 0.2777777777777777  |
| accuracy                | 0.8043478260869565  | 0.7959183673469388 | 0.7581395348837209  |
| AUC                     | 0.701923076923077   | 0.6846846846846847 | 0.5665618448637316  |

CBLOF (CK/lucene2)

|                         | 10% | 20% | 30% |
|-------------------------|-----|-----|-----|
| train samples           | 33  | 67  | 101 |
| defective train samples | 20  | 40  | 60  |

|           | 10%                 | 20%                 | 30%                  |
|-----------|---------------------|---------------------|----------------------|
| precision | 0.8243243243243243  | 0.84                | 0.8260869565217391   |
| recall    | 0.333333333333333   | 0.25766871165644173 | 0.13286713286713286  |
| pf        | 0.10483870967741936 | 0.07272727272727272 | 0.041666666666666664 |
| F-measure | 0.47470817120622566 | 0.3943661971830986  | 0.22891566265060243  |
| accuracy  | 0.5602605863192183  | 0.5274725274725275  | 0.46443514644351463  |
| AUC       | 0.6142473118279569  | 0.5924707194645844  | 0.5456002331002332   |

CBLOF (CK/synapse1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 25                  | 51                  | 76                  |
| defective train samples | 8                   | 17                  | 25                  |
| precision               | 0.5454545454545454  | 0.5789473684210527  | 0.6071428571428571  |
| recall                  | 0.6153846153846154  | 0.3188405797101449  | 0.2786885245901639  |
| pf                      | 0.26143790849673204 | 0.11764705882352941 | 0.09243697478991597 |
| F-measure               | 0.5783132530120482  | 0.411214953271028   | 0.3820224719101123  |
| accuracy                | 0.696969696969697   | 0.6926829268292682  | 0.694444444444444   |
| AUC                     | 0.6769733534439417  | 0.6005967604433077  | 0.5931257749001241  |

CBLOF (NASA/mc2)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 12                 | 24                  | 37                  |
| defective train samples | 4                  | 8                   | 13                  |
| precision               | 0.4473684210526316 | 0.5769230769230769  | 0.5625              |
| recall                  | 0.85               | 0.4166666666666667  | 0.2903225806451613  |
| pf                      | 0.5753424657534246 | 0.16923076923076924 | 0.12280701754385964 |
| F-measure               | 0.5862068965517242 | 0.48387096774193544 | 0.3829787234042554  |
| accuracy                | 0.5752212389380531 | 0.6831683168316832  | 0.6704545454545454  |
| AUC                     | 0.6373287671232877 | 0.6237179487179487  | 0.5837577815506508  |

## $2.3 \; {\it DecisionTreeClassifier}$

DecisionTreeClassifier (CK/ant1)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 34                  | 69                 | 104                 |
| defective train samples | 9                   | 18                 | 27                  |
| precision               | 0.5                 | 0.4657534246575342 | 0.4915254237288136  |
| recall                  | 0.3373493975903614  | 0.4594594594594595 | 0.4461538461538462  |
| pf                      | 0.11965811965811966 | 0.1875             | 0.16483516483516483 |
| F-measure               | 0.4028776978417266  | 0.4625850340136054 | 0.46774193548387105 |
| accuracy                | 0.7381703470031545  | 0.7198581560283688 | 0.7327935222672065  |
| AUC                     | 0.6088456389661209  | 0.6359797297297297 | 0.6406593406593407  |

#### DecisionTreeClassifier (CK/jedit4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 30                  | 61                  | 91                  |
| defective train samples | 7                   | 15                  | 22                  |
| precision               | 0.39344262295081966 | 0.4186046511627907  | 0.5357142857142857  |
| recall                  | 0.7058823529411765  | 0.6                 | 0.5660377358490566  |
| pf                      | 0.3557692307692308  | 0.2702702702702703  | 0.16049382716049382 |
| F-measure               | 0.5052631578947367  | 0.49315068493150693 | 0.5504587155963302  |
| accuracy                | 0.6594202898550725  | 0.6979591836734694  | 0.772093023255814   |
| AUC                     | 0.6750565610859729  | 0.664864864864865   | 0.7027719543442813  |

## DecisionTreeClassifier (CK/lucene2)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 33                 | 67                  | 101                 |
| defective train samples | 20                 | 40                  | 60                  |
| precision               | 0.624390243902439  | 0.7006369426751592  | 0.676056338028169   |
| recall                  | 0.6994535519125683 | 0.6748466257668712  | 0.6713286713286714  |
| pf                      | 0.6209677419354839 | 0.42727272727272725 | 0.47916666666666667 |
| F-measure               | 0.6597938144329897 | 0.6875              | 0.6736842105263159  |
|                         |                    |                     |                     |

|          | 10%                | 20%                | 30%                |
|----------|--------------------|--------------------|--------------------|
| accuracy | 0.5700325732899023 | 0.6336996336996337 | 0.6108786610878661 |
| AUC      | 0.5392429049885422 | 0.623786949247072  | 0.5960810023310023 |

DecisionTreeClassifier (CK/synapse1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 25                  | 51                  | 76                  |
| defective train samples | 8                   | 17                  | 25                  |
| precision               | 0.5263157894736842  | 0.4605263157894737  | 0.4418604651162791  |
| recall                  | 0.2564102564102564  | 0.5072463768115942  | 0.6229508196721312  |
| pf                      | 0.11764705882352941 | 0.3014705882352941  | 0.40336134453781514 |
| F-measure               | 0.3448275862068965  | 0.48275862068965514 | 0.5170068027210885  |
| accuracy                | 0.670995670995671   | 0.6341463414634146  | 0.605555555555555   |
| AUC                     | 0.5693815987933634  | 0.60288789428815    | 0.609794737567158   |

DecisionTreeClassifier (CK/xalan2)

| Decision receitasine (Cic Amail 2) |                    |                    |                    |
|------------------------------------|--------------------|--------------------|--------------------|
|                                    | 10%                | 20%                | 30%                |
| train samples                      | 79                 | 160                | 240                |
| defective train samples            | 38                 | 77                 | 116                |
| precision                          | 0.56575682382134   | 0.5876923076923077 | 0.6212624584717608 |
| recall                             | 0.6532951289398281 | 0.6161290322580645 | 0.6900369003690037 |
| pf                                 | 0.4666666666666667 | 0.4024024024024024 | 0.3904109589041096 |
| F-measure                          | 0.6063829787234042 | 0.6015748031496062 | 0.6538461538461537 |
| accuracy                           | 0.5911602209944752 | 0.6065318818040435 | 0.6483126110124334 |
| AUC                                | 0.5933142311365807 | 0.6068633149278311 | 0.649812970732447  |

DecisionTreeClassifier (NASA/mc2)

|                         |     | (    |                   |
|-------------------------|-----|------|-------------------|
|                         | 10% | 20%  | 30%               |
| train samples           | 12  | 24   | 37                |
| defective train samples | 4   | 8    | 13                |
| precision               | 0.5 | 0.32 | 0.454545454545453 |
|                         |     |      |                   |

|           | 10%                 | 20%                 | 30%                 |
|-----------|---------------------|---------------------|---------------------|
| recall    | 0.475               | 0.22222222222222    | 0.3225806451612903  |
| pf        | 0.2602739726027397  | 0.26153846153846155 | 0.21052631578947367 |
| F-measure | 0.48717948717948717 | 0.26229508196721313 | 0.3773584905660377  |
| accuracy  | 0.6460176991150443  | 0.5544554455445545  | 0.625               |
| AUC       | 0.6073630136986302  | 0.4803418803418804  | 0.5560271646859083  |

DecisionTreeClassifier (NASA/pc4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 128                 | 257                 | 386                 |
| defective train samples | 17                  | 35                  | 53                  |
| precision               | 0.452               | 0.41818181818181815 | 0.4921875           |
| recall                  | 0.70625             | 0.4859154929577465  | 0.5080645161290323  |
| pf                      | 0.13713713713713713 | 0.10810810810810811 | 0.08365508365508366 |
| F-measure               | 0.551219512195122   | 0.4495114006514658  | 0.5                 |
| accuracy                | 0.8412424503882657  | 0.8359223300970874  | 0.8601553829078802  |
| AUC                     | 0.7845564314314314  | 0.6889036924248192  | 0.7122047162369742  |

DecisionTreeClassifier (NASA/pc5)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 171                | 342                 | 513                 |
| defective train samples | 47                 | 94                  | 141                 |
| precision               | 0.3974025974025974 | 0.4447058823529412  | 0.42771084337349397 |
| recall                  | 0.3608490566037736 | 0.5013262599469496  | 0.4303030303030303  |
| pf                      | 0.2078853046594982 | 0.23790322580645162 | 0.21889400921658986 |
| F-measure               | 0.3782447466007416 | 0.4713216957605985  | 0.42900302114803623 |
| accuracy                | 0.6733766233766234 | 0.6902848794740687  | 0.6844741235392321  |
| AUC                     | 0.5764818759721377 | 0.631711517070249   | 0.6057045105432202  |

## 2.4 GaussianNB

#### GaussianNB (CK/ant1)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 34                 | 69                  | 104                 |
| defective train samples | 9                  | 18                  | 27                  |
| precision               | 0.5128205128205128 | 0.5540540540540541  | 0.5909090909090909  |
| recall                  | 0.4819277108433735 | 0.5540540540540541  | 0.6                 |
| pf                      | 0.1623931623931624 | 0.15865384615384615 | 0.14835164835164835 |
| F-measure               | 0.4968944099378882 | 0.5540540540540541  | 0.5954198473282443  |
| accuracy                | 0.7444794952681388 | 0.7659574468085106  | 0.7854251012145749  |
| AUC                     | 0.6597672742251055 | 0.697700103950104   | 0.7258241758241758  |

#### GaussianNB (CK/jedit4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 30                  | 61                  | 91                  |
| defective train samples | 7                   | 15                  | 22                  |
| precision               | 0.22797927461139897 | 0.5423728813559322  | 0.4925373134328358  |
| recall                  | 0.6470588235294118  | 0.5333333333333333  | 0.6226415094339622  |
| pf                      | 0.7163461538461539  | 0.14594594594594595 | 0.20987654320987653 |
| F-measure               | 0.3371647509578544  | 0.5378151260504201  | 0.55                |
| accuracy                | 0.37318840579710144 | 0.7755102040816326  | 0.7488372093023256  |
| AUC                     | 0.46535633484162897 | 0.6936936936936936  | 0.7063824831120429  |

#### GaussianNB (CK/lucene2)

|                         | 10%                | 20%                 | 30%                  |
|-------------------------|--------------------|---------------------|----------------------|
| train samples           | 33                 | 67                  | 101                  |
| defective train samples | 20                 | 40                  | 60                   |
| precision               | 0.6632124352331606 | 0.8                 | 0.7674418604651163   |
| recall                  | 0.6994535519125683 | 0.4171779141104294  | 0.46153846153846156  |
| pf                      | 0.5241935483870968 | 0.15454545454545454 | 0.208333333333333334 |
| F-measure               | 0.6808510638297872 | 0.5483870967741935  | 0.5764192139737991   |
|                         |                    |                     |                      |

|          | 10%                | 20%                | 30%                |
|----------|--------------------|--------------------|--------------------|
| accuracy | 0.6091205211726385 | 0.5897435897435898 | 0.5941422594142259 |
| AUC      | 0.5876300017627357 | 0.6313162297824875 | 0.6266025641025642 |

GaussianNB (CK/synapse1)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 25                  | 51                 | 76                  |
| defective train samples | 8                   | 17                 | 25                  |
| precision               | 0.43902439024390244 | 0.5340909090909091 | 0.625               |
| recall                  | 0.23076923076923078 | 0.6811594202898551 | 0.6557377049180327  |
| pf                      | 0.1503267973856209  | 0.3014705882352941 | 0.20168067226890757 |
| F-measure               | 0.3025210084033614  | 0.5987261146496815 | 0.64                |
| accuracy                | 0.6406926406926406  | 0.6926829268292682 | 0.75                |
| AUC                     | 0.540221216691805   | 0.6898444160272804 | 0.7270285163245626  |

GaussianNB (NASA/mc2)

| Guassian (b (1415)      |                    |                     |                     |
|-------------------------|--------------------|---------------------|---------------------|
|                         | 10%                | 20%                 | 30%                 |
| train samples           | 12                 | 24                  | 37                  |
| defective train samples | 4                  | 8                   | 13                  |
| precision               | 0.5925925925925926 | 0.8                 | 0.5652173913043478  |
| recall                  | 0.4                | 0.22222222222222    | 0.41935483870967744 |
| pf                      | 0.1506849315068493 | 0.03076923076923077 | 0.17543859649122806 |
| F-measure               | 0.4776119402985075 | 0.3478260869565218  | 0.4814814814814815  |
| accuracy                | 0.6902654867256637 | 0.7029702970297029  | 0.68181818181818    |
| AUC                     | 0.6246575342465753 | 0.5957264957264957  | 0.6219581211092248  |

GaussianNB (NASA/pc4)

|                     | ` I /              |                   |
|---------------------|--------------------|-------------------|
| 10%                 | 20%                | 30%               |
| 128                 | 257                | 386               |
| 17                  | 35                 | 53                |
| 0.38926174496644295 | 0.5546218487394958 | 0.577777777777777 |
|                     | 128<br>17          | 128 257<br>17 35  |

|           | 10%                 | 20%                  | 30%                 |
|-----------|---------------------|----------------------|---------------------|
| recall    | 0.3625              | 0.4647887323943662   | 0.20967741935483872 |
| pf        | 0.09109109109109109 | 0.059684684684684686 | 0.02445302445302445 |
| F-measure | 0.37540453074433655 | 0.5057471264367815   | 0.30769230769230765 |
| accuracy  | 0.8334771354616048  | 0.874757281553398    | 0.8701442841287459  |
| AUC       | 0.6357044544544544  | 0.7025520238548408   | 0.5926121974509072  |

## $2.5\; \textit{GaussianProcessClassifier}$

GaussianProcessClassifier (CK/ant1)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 34                  | 69                  | 104                |
| defective train samples | 9                   | 18                  | 27                 |
| precision               | 0.5909090909090909  | 0.6461538461538462  | 0.6833333333333333 |
| recall                  | 0.3132530120481928  | 0.5675675675675675  | 0.6307692307692307 |
| pf                      | 0.07692307692307693 | 0.11057692307692307 | 0.1043956043956044 |
| F-measure               | 0.40944881889763785 | 0.6043165467625901  | 0.655999999999999  |
| accuracy                | 0.7634069400630915  | 0.8049645390070922  | 0.8259109311740891 |
| AUC                     | 0.6181649675625579  | 0.7284953222453222  | 0.7631868131868133 |

GaussianProcessClassifier (CK/jedit4)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 30                  | 61                 | 91                  |
| defective train samples | 7                   | 15                 | 22                  |
| precision               | 0.5909090909090909  | 0.5142857142857142 | 0.5757575757575758  |
| recall                  | 0.38235294117647056 | 0.3                | 0.3584905660377358  |
| pf                      | 0.08653846153846154 | 0.0918918918918919 | 0.08641975308641975 |
| F-measure               | 0.46428571428571425 | 0.3789473684210526 | 0.441860465116279   |
| accuracy                | 0.782608695652174   | 0.7591836734693878 | 0.7767441860465116  |
| AUC                     | 0.6479072398190044  | 0.6040540540540541 | 0.6360354064756581  |

## GaussianProcessClassifier (CK/lucene2)

|                         | 10%                | 20%                 | 30%                |
|-------------------------|--------------------|---------------------|--------------------|
| train samples           | 33                 | 67                  | 101                |
| defective train samples | 20                 | 40                  | 60                 |
| precision               | 0.527777777777778  | 0.5585585585585     | 0.7068965517241379 |
| recall                  | 0.3114754098360656 | 0.3803680981595092  | 0.5734265734265734 |
| pf                      | 0.4112903225806452 | 0.44545454545454544 | 0.3541666666666667 |
| F-measure               | 0.3917525773195876 | 0.45255474452554745 | 0.6332046332046333 |
| accuracy                | 0.4234527687296417 | 0.45054945054945056 | 0.602510460251046  |
| AUC                     | 0.4500925436277102 | 0.4674567763524819  | 0.6096299533799533 |

#### GaussianProcessClassifier (CK/synapse1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 25                  | 51                  | 76                  |
| defective train samples | 8                   | 17                  | 25                  |
| precision               | 0.4857142857142857  | 0.5245901639344263  | 0.6086956521739131  |
| recall                  | 0.4358974358974359  | 0.463768115942029   | 0.45901639344262296 |
| pf                      | 0.23529411764705882 | 0.21323529411764705 | 0.15126050420168066 |
| F-measure               | 0.45945945945945943 | 0.49230769230769234 | 0.5233644859813085  |
| accuracy                | 0.6536796536796536  | 0.6780487804878049  | 0.7166666666666667  |
| AUC                     | 0.6003016591251885  | 0.625266410912191   | 0.6538779446204711  |

## GaussianProcessClassifier (CK/xalan2)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 79                  | 160                 | 240                |
| defective train samples | 38                  | 77                  | 116                |
| precision               | 0.5833333333333334  | 0.5376344086021505  | 0.5833333333333334 |
| recall                  | 0.12034383954154727 | 0.16129032258064516 | 0.5166051660516605 |
| pf                      | 0.08                | 0.12912912912913    | 0.3424657534246575 |
| F-measure               | 0.1995249406175772  | 0.24813895781637718 | 0.5479452054794521 |
| accuracy                | 0.5345303867403315  | 0.5287713841368584  | 0.5896980461811723 |
|                         |                     |                     |                    |

|     | 10%                | 20%               | 30%                |
|-----|--------------------|-------------------|--------------------|
| AUC | 0.5201719197707737 | 0.516080596725758 | 0.5870697063135015 |

## $2.6 \; \mathit{KNeighborsClassifier}$

KNeighborsClassifier (CK/ant1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.5263157894736842  | 0.6610169491525424  | 0.5769230769230769  |
| recall                  | 0.3614457831325301  | 0.527027027027027   | 0.46153846153846156 |
| pf                      | 0.11538461538461539 | 0.09615384615384616 | 0.12087912087912088 |
| F-measure               | 0.42857142857142855 | 0.5864661654135338  | 0.5128205128205129  |
| accuracy                | 0.7476340694006309  | 0.8049645390070922  | 0.7692307692307693  |
| AUC                     | 0.6230305838739574  | 0.7154365904365904  | 0.6703296703296703  |

#### KNeighborsClassifier (CK/jedit4)

| The total moon of the control of the |                     |                     |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10%                 | 20%                 | 30%                 |
| train samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                  | 61                  | 91                  |
| defective train samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7                   | 15                  | 22                  |
| precision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.546875            | 0.4166666666666667  | 0.5757575757575758  |
| recall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5147058823529411  | 0.333333333333333   | 0.3584905660377358  |
| pf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.13942307692307693 | 0.15135135135135136 | 0.08641975308641975 |
| F-measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5303030303030303  | 0.3703703703703704  | 0.441860465116279   |
| accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.7753623188405797  | 0.7224489795918367  | 0.7767441860465116  |
| AUC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.6876414027149321  | 0.590990990990991   | 0.6360354064756581  |

#### KNeighborsClassifier (CK/lucene2)

|               | 10% | 20% | 30% |
|---------------|-----|-----|-----|
| train samples | 33  | 67  | 101 |

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.6108108108108108 | 0.6613756613756614 | 0.6811594202898551 |
| recall                  | 0.6174863387978142 | 0.7668711656441718 | 0.6573426573426573 |
| pf                      | 0.5806451612903226 | 0.5818181818181818 | 0.4583333333333333 |
| F-measure               | 0.6141304347826086 | 0.71022727272727   | 0.6690391459074733 |
| accuracy                | 0.5374592833876222 | 0.6263736263736264 | 0.6108786610878661 |
| AUC                     | 0.5184205887537459 | 0.592526491912995  | 0.599504662004662  |

KNeighborsClassifier (CK/synapse1)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 25                  | 51                 | 76                  |
| defective train samples | 8                   | 17                 | 25                  |
| precision               | 0.4626865671641791  | 0.5263157894736842 | 0.6166666666666667  |
| recall                  | 0.3974358974358974  | 0.5797101449275363 | 0.6065573770491803  |
| pf                      | 0.23529411764705882 | 0.2647058823529412 | 0.19327731092436976 |
| F-measure               | 0.42758620689655175 | 0.5517241379310345 | 0.6115702479338844  |
| accuracy                | 0.6406926406926406  | 0.6829268292682927 | 0.738888888888889   |
| AUC                     | 0.5810708898944191  | 0.6575021312872975 | 0.7066400330624054  |

KNeighborsClassifier (CK/xalan2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 79                 | 160                | 240                |
| defective train samples | 38                 | 77                 | 116                |
| precision               | 0.6209150326797386 | 0.5955414012738853 | 0.59               |
| recall                  | 0.5444126074498568 | 0.603225806451613  | 0.6531365313653137 |
| pf                      | 0.3093333333333333 | 0.3813813813813814 | 0.4212328767123288 |
| F-measure               | 0.5801526717557252 | 0.5993589743589743 | 0.6199649737302977 |
| accuracy                | 0.6201657458563536 | 0.6111975116640747 | 0.6145648312611013 |
| AUC                     | 0.6175396370582618 | 0.6109222125351158 | 0.6159518273264925 |

## KNeighborsClassifier (NASA/mc2)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 12                 | 24                  | 37                  |
| defective train samples | 4                  | 8                   | 13                  |
| precision               | 0.65               | 0.47058823529411764 | 0.6                 |
| recall                  | 0.325              | 0.22222222222222    | 0.3870967741935484  |
| pf                      | 0.0958904109589041 | 0.13846153846153847 | 0.14035087719298245 |
| F-measure               | 0.433333333333333  | 0.3018867924528302  | 0.47058823529411764 |
| accuracy                | 0.6991150442477876 | 0.6336633663366337  | 0.69318181818182    |
| AUC                     | 0.614554794520548  | 0.541880341880342   | 0.623372948500283   |

## 2.7 MLPClassifier

#### MLPClassifier (CK/ant1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.5423728813559322  | 0.546875            | 0.6410256410256411  |
| recall                  | 0.3855421686746988  | 0.47297297297297297 | 0.38461538461538464 |
| pf                      | 0.11538461538461539 | 0.13942307692307693 | 0.07692307692307693 |
| F-measure               | 0.4507042253521127  | 0.5072463768115941  | 0.4807692307692308  |
| accuracy                | 0.7539432176656151  | 0.7588652482269503  | 0.7813765182186235  |
| AUC                     | 0.6350787766450416  | 0.6667749480249481  | 0.6538461538461539  |

## MLPClassifier (CK/jedit4)

|                         |                     | ( )                 |                     |
|-------------------------|---------------------|---------------------|---------------------|
|                         | 10%                 | 20%                 | 30%                 |
| train samples           | 30                  | 61                  | 91                  |
| defective train samples | 7                   | 15                  | 22                  |
| precision               | 0.30120481927710846 | 0.5161290322580645  | 0.48717948717948717 |
| recall                  | 0.36764705882352944 | 0.5333333333333333  | 0.3584905660377358  |
| pf                      | 0.27884615384615385 | 0.16216216216216217 | 0.12345679012345678 |

|           | 10%                | 20%                | 30%                 |
|-----------|--------------------|--------------------|---------------------|
| F-measure | 0.3311258278145696 | 0.5245901639344263 | 0.41304347826086957 |
| accuracy  | 0.6340579710144928 | 0.763265306122449  | 0.7488372093023256  |
| AUC       | 0.5444004524886878 | 0.6855855855855856 | 0.6175168879571394  |

## MLPClassifier (CK/lucene2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 33                 | 67                 | 101                |
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.6048780487804878 | 0.6848484848484848 | 0.673469387755102  |
| recall                  | 0.6775956284153005 | 0.6932515337423313 | 0.6923076923076923 |
| pf                      | 0.6532258064516129 | 0.4727272727272727 | 0.5                |
| F-measure               | 0.6391752577319587 | 0.6890243902439025 | 0.6827586206896552 |
| accuracy                | 0.5439739413680782 | 0.6263736263736264 | 0.6150627615062761 |
| AUC                     | 0.5121849109818438 | 0.6102621305075293 | 0.5961538461538461 |

## MLPClassifier (CK/synapse1)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 25                  | 51                  | 76                 |
| defective train samples | 8                   | 17                  | 25                 |
| precision               | 0.6530612244897959  | 0.5303030303030303  | 0.55               |
| recall                  | 0.41025641025641024 | 0.5072463768115942  | 0.5409836065573771 |
| pf                      | 0.1111111111111111  | 0.22794117647058823 | 0.226890756302521  |
| F-measure               | 0.5039370078740157  | 0.5185185185185185  | 0.5454545454545455 |
| accuracy                | 0.7272727272727273  | 0.6829268292682927  | 0.694444444444444  |
| AUC                     | 0.6495726495726495  | 0.6396526001705031  | 0.657046425127428  |

#### MLPClassifier (CK/xalan2)

|                         | 10% | 20% | 30% |
|-------------------------|-----|-----|-----|
| train samples           | 79  | 160 | 240 |
| defective train samples | 38  | 77  | 116 |

|           | 10%                | 20%                 | 30%                |
|-----------|--------------------|---------------------|--------------------|
| precision | 0.5935828877005348 | 0.5975232198142415  | 0.6186046511627907 |
| recall    | 0.6361031518624641 | 0.6225806451612903  | 0.4907749077490775 |
| pf        | 0.4053333333333333 | 0.39039039039039036 | 0.2808219178082192 |
| F-measure | 0.6141078838174274 | 0.6097946287519748  | 0.5473251028806585 |
| accuracy  | 0.6146408839779005 | 0.6158631415241057  | 0.6092362344582594 |
| AUC       | 0.6153849092645655 | 0.6160951273854499  | 0.6049764949704292 |

#### MLPClassifier (NASA/mc2)

|                         | 10%                 | 20%                | 30%                |
|-------------------------|---------------------|--------------------|--------------------|
| train samples           | 12                  | 24                 | 37                 |
| defective train samples | 4                   | 8                  | 13                 |
| precision               | 0.35398230088495575 | 0.3564356435643564 | 0.3522727272727273 |
| recall                  | 1.0                 | 1.0                | 1.0                |
| pf                      | 1.0                 | 1.0                | 1.0                |
| F-measure               | 0.522875816993464   | 0.5255474452554745 | 0.5210084033613446 |
| accuracy                | 0.35398230088495575 | 0.3564356435643564 | 0.3522727272727273 |
| AUC                     | 0.5                 | 0.5                | 0.5                |

## MLPClassifier (NASA/pc5)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 171                 | 342                | 513                 |
| defective train samples | 47                  | 94                 | 141                 |
| precision               | 0.14695945945945946 | 0.2788104089219331 | 0.28761061946902655 |
| recall                  | 0.20518867924528303 | 0.9946949602122016 | 0.98484848484849    |
| pf                      | 0.4525089605734767  | 0.9778225806451613 | 0.9274193548387096  |
| F-measure               | 0.17125984251968504 | 0.4355400696864112 | 0.4452054794520548  |
| accuracy                | 0.45324675324675323 | 0.2899926953981008 | 0.32387312186978295 |
| AUC                     | 0.3763398593359032  | 0.5084361897835202 | 0.5287145650048877  |

## $2.8\,{\it Quadratic Discriminant Analysis}$

QuadraticDiscriminantAnalysis (CK/lucene2)

|                         | 10%                 | 20%                | 30%                |
|-------------------------|---------------------|--------------------|--------------------|
| train samples           | 33                  | 67                 | 101                |
| defective train samples | 20                  | 40                 | 60                 |
| precision               | 0.5609756097560976  | 0.6698113207547169 | 0.6739130434782609 |
| recall                  | 0.12568306010928962 | 0.8711656441717791 | 0.6503496503496503 |
| pf                      | 0.14516129032258066 | 0.6363636363636364 | 0.46875            |
| F-measure               | 0.20535714285714288 | 0.7573333333333333 | 0.6619217081850534 |
| accuracy                | 0.4201954397394137  | 0.6666666666666666 | 0.602510460251046  |
| AUC                     | 0.49026088489335445 | 0.6174010039040714 | 0.5907998251748252 |

#### QuadraticDiscriminantAnalysis (CK/xalan2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 79                 | 160                | 240                |
| defective train samples | 38                 | 77                 | 116                |
| precision               | 0.56047197640118   | 0.601593625498008  | 0.5977653631284916 |
| recall                  | 0.5444126074498568 | 0.4870967741935484 | 0.3948339483394834 |
| pf                      | 0.3973333333333333 | 0.3003003003003003 | 0.2465753424657534 |
| F-measure               | 0.5523255813953489 | 0.5383244206773619 | 0.47555555555555   |
| accuracy                | 0.574585635359116  | 0.5972006220839814 | 0.5808170515097691 |
| AUC                     | 0.5735396370582617 | 0.5933982369466241 | 0.5741293029368649 |

#### QuadraticDiscriminantAnalysis (NASA/pc5)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 171                | 342                 | 513                 |
| defective train samples | 47                 | 94                  | 141                 |
| precision               | 0.3341584158415842 | 0.5095057034220533  | 0.6159420289855072  |
| recall                  | 0.6367924528301887 | 0.35543766578249336 | 0.25757575757575757 |
| pf                      | 0.482078853046595  | 0.13004032258064516 | 0.06105990783410138 |
| F-measure               | 0.4383116883116883 | 0.41874999999999996 | 0.36324786324786323 |
|                         |                    |                     |                     |

|          | 10%                | 20%                | 30%                |
|----------|--------------------|--------------------|--------------------|
| accuracy | 0.5506493506493506 | 0.7282688093498905 | 0.7512520868113522 |
| AUC      | 0.5773567998917969 | 0.6126986716009241 | 0.5982579248708281 |

## $2.9\,{\it Random} {\it ForestClassifier}$

RandomForestClassifier (CK/ant1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.5510204081632653  | 0.6557377049180327  | 0.6862745098039216  |
| recall                  | 0.3253012048192771  | 0.5405405405405406  | 0.5384615384615384  |
| pf                      | 0.09401709401709402 | 0.10096153846153846 | 0.08791208791208792 |
| F-measure               | 0.409090909090909   | 0.5925925925925926  | 0.6034482758620688  |
| accuracy                | 0.7539432176656151  | 0.8049645390070922  | 0.8137651821862348  |
| AUC                     | 0.6156420554010915  | 0.7197895010395011  | 0.7252747252747253  |

#### RandomForestClassifier (CK/jedit4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 30                  | 61                  | 91                  |
| defective train samples | 7                   | 15                  | 22                  |
| precision               | 0.5348837209302325  | 0.5873015873015873  | 0.6923076923076923  |
| recall                  | 0.6764705882352942  | 0.6166666666666667  | 0.5094339622641509  |
| pf                      | 0.19230769230769232 | 0.14054054054054055 | 0.07407407407407407 |
| F-measure               | 0.5974025974025974  | 0.6016260162601625  | 0.5869565217391305  |
| accuracy                | 0.7753623188405797  | 0.8                 | 0.8232558139534883  |
| AUC                     | 0.7420814479638009  | 0.738063063063063   | 0.7176799440950384  |

#### RandomForestClassifier (CK/lucene2)

|               | 10% | 20% | 30% |
|---------------|-----|-----|-----|
| train samples | 33  | 67  | 101 |

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.6697674418604651 | 0.6813186813186813 | 0.7446808510638298 |
| recall                  | 0.7868852459016393 | 0.7607361963190185 | 0.7342657342657343 |
| pf                      | 0.5725806451612904 | 0.5272727272727272 | 0.375              |
| F-measure               | 0.7236180904522613 | 0.7188405797101449 | 0.7394366197183099 |
| accuracy                | 0.6416938110749185 | 0.6446886446886447 | 0.6903765690376569 |
| AUC                     | 0.6071523003701744 | 0.6167317345231456 | 0.6796328671328671 |

RandomForestClassifier (CK/synapse1)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 25                  | 51                  | 76                 |
| defective train samples | 8                   | 17                  | 25                 |
| precision               | 0.5818181818181818  | 0.6567164179104478  | 0.6086956521739131 |
| recall                  | 0.41025641025641024 | 0.6376811594202898  | 0.6885245901639344 |
| pf                      | 0.1503267973856209  | 0.16911764705882354 | 0.226890756302521  |
| F-measure               | 0.48120300751879697 | 0.6470588235294118  | 0.6461538461538463 |
| accuracy                | 0.7012987012987013  | 0.7658536585365854  | 0.744444444444445  |
| AUC                     | 0.6299648064353947  | 0.7342817561807331  | 0.7308169169307067 |

 $RandomForestClassifier\ (CK/xalan2)$ 

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 79                  | 160                 | 240                |
| defective train samples | 38                  | 77                  | 116                |
| precision               | 0.5931758530183727  | 0.654275092936803   | 0.6486486486486487 |
| recall                  | 0.6475644699140402  | 0.567741935483871   | 0.7084870848708487 |
| pf                      | 0.41333333333333333 | 0.27927927927927926 | 0.3561643835616438 |
| F-measure               | 0.6191780821917807  | 0.6079447322970639  | 0.6772486772486772 |
| accuracy                | 0.6160220994475138  | 0.6469673405909798  | 0.6749555950266429 |
| AUC                     | 0.6171155682903534  | 0.6442313281022958  | 0.6761613506546024 |

#### RandomForestClassifier (NASA/mc2)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 12                  | 24                  | 37                  |
| defective train samples | 4                   | 8                   | 13                  |
| precision               | 0.6190476190476191  | 0.375               | 0.55555555555556    |
| recall                  | 0.325               | 0.25                | 0.3225806451612903  |
| pf                      | 0.1095890410958904  | 0.23076923076923078 | 0.14035087719298245 |
| F-measure               | 0.42622950819672134 | 0.3                 | 0.40816326530612246 |
| accuracy                | 0.6902654867256637  | 0.5841584158415841  | 0.6704545454545454  |
| AUC                     | 0.6077054794520548  | 0.5096153846153846  | 0.5911148839841539  |

## RandomForestClassifier (NASA/pc5)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 171                 | 342                 | 513                 |
| defective train samples | 47                  | 94                  | 141                 |
| precision               | 0.4611872146118721  | 0.59555555555555    | 0.5977011494252874  |
| recall                  | 0.23820754716981132 | 0.35543766578249336 | 0.3151515151515151  |
| pf                      | 0.1057347670250896  | 0.09173387096774194 | 0.08064516129032258 |
| F-measure               | 0.31415241057542764 | 0.44518272425249167 | 0.41269841269841273 |
| accuracy                | 0.7136363636363636  | 0.7560262965668371  | 0.7529215358931552  |
| AUC                     | 0.5662363900723608  | 0.6318518974073757  | 0.6172531769305962  |

## 2.10 SVC

#### SVC (CK/ant1)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 34                  | 69                  | 104                |
| defective train samples | 9                   | 18                  | 27                 |
| precision               | 0.6046511627906976  | 0.6530612244897959  | 0.6724137931034483 |
| recall                  | 0.3132530120481928  | 0.43243243243243246 | 0.6                |
| pf                      | 0.07264957264957266 | 0.08173076923076923 | 0.1043956043956044 |

|           | 10%                 | 20%                | 30%                |
|-----------|---------------------|--------------------|--------------------|
| F-measure | 0.41269841269841273 | 0.5203252032520326 | 0.6341463414634146 |
| accuracy  | 0.7665615141955836  | 0.7907801418439716 | 0.8178137651821862 |
| AUC       | 0.62030171969931    | 0.6753508316008315 | 0.7478021978021979 |

SVC (CK/synapse1)

|                         | 10%                  | 20%                 | 30%                 |
|-------------------------|----------------------|---------------------|---------------------|
| train samples           | 25                   | 51                  | 76                  |
| defective train samples | 8                    | 17                  | 25                  |
| precision               | 0.574468085106383    | 0.6037735849056604  | 0.6341463414634146  |
| recall                  | 0.34615384615384615  | 0.463768115942029   | 0.4262295081967213  |
| pf                      | 0.13071895424836602  | 0.15441176470588236 | 0.12605042016806722 |
| F-measure               | 0.432000000000000005 | 0.5245901639344263  | 0.5098039215686274  |
| accuracy                | 0.6926406926406926   | 0.7170731707317073  | 0.72222222222222    |
| AUC                     | 0.6077174459527401   | 0.6546781756180733  | 0.6500895440143271  |

SVC (CK/xalan2)

|                         | 10%                  | 20%                | 30%                 |
|-------------------------|----------------------|--------------------|---------------------|
| train samples           | 79                   | 160                | 240                 |
| defective train samples | 38                   | 77                 | 116                 |
| precision               | 0.6703910614525139   | 0.6282722513089005 | 0.7121212121212122  |
| recall                  | 0.3438395415472779   | 0.3870967741935484 | 0.17343173431734318 |
| pf                      | 0.157333333333333333 | 0.2132132132132132 | 0.06506849315068493 |
| F-measure               | 0.4545454545454545   | 0.4790419161676647 | 0.2789317507418398  |
| accuracy                | 0.6022099447513812   | 0.5940902021772939 | 0.5683836589698046  |
| AUC                     | 0.5932531041069723   | 0.5869417804901677 | 0.5541816205833292  |

SVC (NASA/mc2)

|                         | 10% | 20% | 30% |
|-------------------------|-----|-----|-----|
| train samples           | 12  | 24  | 37  |
| defective train samples | 4   | 8   | 13  |

|           | 10%                | 20%                 | 30%                 |
|-----------|--------------------|---------------------|---------------------|
| precision | 0.8571428571428571 | 1.0                 | 0.733333333333333   |
| recall    | 0.15               | 0.02777777777777776 | 0.3548387096774194  |
| pf        | 0.0136986301369863 | 0.0                 | 0.07017543859649122 |
| F-measure | 0.2553191489361702 | 0.05405405405405406 | 0.47826086956521735 |
| accuracy  | 0.6902654867256637 | 0.6534653465346535  | 0.72727272727273    |
| AUC       | 0.5681506849315068 | 0.513888888888888   | 0.6423316355404641  |

## 2.11 XGBOD

XGBOD (CK/ant1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.547945205479452   | 0.5686274509803921  | 0.55555555555555    |
| recall                  | 0.4819277108433735  | 0.3918918918918919  | 0.5384615384615384  |
| pf                      | 0.14102564102564102 | 0.10576923076923077 | 0.15384615384615385 |
| F-measure               | 0.5128205128205129  | 0.464               | 0.5468749999999999  |
| accuracy                | 0.7602523659305994  | 0.7624113475177305  | 0.7651821862348178  |
| AUC                     | 0.6704510349088663  | 0.6430613305613305  | 0.6923076923076922  |

## XGBOD (CK/jedit4)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 30                  | 61                  | 91                  |
| defective train samples | 7                   | 15                  | 22                  |
| precision               | 0.37037037037037035 | 0.44285714285714284 | 0.6341463414634146  |
| recall                  | 0.14705882352941177 | 0.5166666666666667  | 0.49056603773584906 |
| pf                      | 0.08173076923076923 | 0.21081081081081082 | 0.09259259259259    |
| F-measure               | 0.21052631578947367 | 0.47692307692307695 | 0.5531914893617021  |
| accuracy                | 0.7282608695652174  | 0.7224489795918367  | 0.8046511627906977  |
| AUC                     | 0.5326640271493213  | 0.6529279279279279  | 0.6989867225716283  |

#### XGBOD (CK/lucene2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 33                 | 67                 | 101                |
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.6363636363636364 | 0.7094972067039106 | 0.695364238410596  |
| recall                  | 0.6502732240437158 | 0.7791411042944786 | 0.7342657342657343 |
| pf                      | 0.5483870967741935 | 0.4727272727272727 | 0.4791666666666667 |
| F-measure               | 0.6432432432432432 | 0.7426900584795323 | 0.7142857142857142 |
| accuracy                | 0.5700325732899023 | 0.6776556776556777 | 0.6485355648535565 |
| AUC                     | 0.5509430636347612 | 0.653206915783603  | 0.6275495337995337 |

## XGBOD (CK/synapse1)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 25                 | 51                  | 76                  |
| defective train samples | 8                  | 17                  | 25                  |
| precision               | 0.4766355140186916 | 0.55                | 0.5757575757575758  |
| recall                  | 0.6538461538461539 | 0.4782608695652174  | 0.6229508196721312  |
| pf                      | 0.3660130718954248 | 0.19852941176470587 | 0.23529411764705882 |
| F-measure               | 0.5513513513513513 | 0.5116279069767442  | 0.5984251968503937  |
| accuracy                | 0.6406926406926406 | 0.6926829268292682  | 0.7166666666666667  |
| AUC                     | 0.6439165409753644 | 0.6398657289002557  | 0.693828351012536   |

#### XGBOD (CK/xalan2)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 79                  | 160                 | 240                |
| defective train samples | 38                  | 77                  | 116                |
| precision               | 0.6184615384615385  | 0.597972972972973   | 0.6085626911314985 |
| recall                  | 0.5759312320916905  | 0.5709677419354838  | 0.7343173431734318 |
| pf                      | 0.33066666666666666 | 0.35735735735735735 | 0.4383561643835616 |
| F-measure               | 0.5964391691394659  | 0.5841584158415841  | 0.6655518394648829 |
|                         |                     |                     |                    |

|          | 10%                | 20%                | 30%                |
|----------|--------------------|--------------------|--------------------|
| accuracy | 0.6243093922651933 | 0.6080870917573873 | 0.6447602131438721 |
| AUC      | 0.6226322827125119 | 0.6068051922890632 | 0.6479805893949351 |

#### XGBOD (NASA/mc2)

|                         | 10%                | 20%                 | 30%                 |
|-------------------------|--------------------|---------------------|---------------------|
| train samples           | 12                 | 24                  | 37                  |
| defective train samples | 4                  | 8                   | 13                  |
| precision               | 0.4166666666666667 | 0.5789473684210527  | 0.4666666666666667  |
| recall                  | 0.25               | 0.305555555555556   | 0.6774193548387096  |
| pf                      | 0.1917808219178082 | 0.12307692307692308 | 0.42105263157894735 |
| F-measure               | 0.3125             | 0.4000000000000001  | 0.5526315789473684  |
| accuracy                | 0.6106194690265486 | 0.6732673267326733  | 0.6136363636363636  |
| AUC                     | 0.5291095890410958 | 0.5912393162393162  | 0.6281833616298811  |

#### XGBOD (NASA/pc4)

| nebob (Maintpol)        |                     |                     |                      |
|-------------------------|---------------------|---------------------|----------------------|
|                         | 10%                 | 20%                 | 30%                  |
| train samples           | 128                 | 257                 | 386                  |
| defective train samples | 17                  | 35                  | 53                   |
| precision               | 0.5740740740740741  | 0.44285714285714284 | 0.6753246753246753   |
| recall                  | 0.3875              | 0.21830985915492956 | 0.41935483870967744  |
| pf                      | 0.04604604604604605 | 0.04391891891891892 | 0.032175032175032175 |
| F-measure               | 0.4626865671641791  | 0.29245283018867924 | 0.5174129353233831   |
| accuracy                | 0.8757549611734253  | 0.8543689320388349  | 0.8923418423973363   |
| AUC                     | 0.6707269769769769  | 0.5871954701180052  | 0.6935899032673227   |

#### XGBOD (NASA/pc5)

|                         | 10%                | 20%                | 30%  |
|-------------------------|--------------------|--------------------|------|
| train samples           | 171                | 342                | 513  |
| defective train samples | 47                 | 94                 | 141  |
| precision               | 0.4878048780487805 | 0.5741444866920152 | 0.59 |

|           | 10%                 | 20%                  | 30%                 |
|-----------|---------------------|----------------------|---------------------|
| recall    | 0.2830188679245283  | 0.4005305039787798   | 0.3575757575757576  |
| pf        | 0.11290322580645161 | 0.11290322580645161  | 0.0944700460829493  |
| F-measure | 0.3582089552238806  | 0.471875000000000004 | 0.44528301886792454 |
| accuracy  | 0.7207792207792207  | 0.7531044558071585   | 0.7545909849749582  |
| AUC       | 0.5850578210590383  | 0.6438136390861641   | 0.6315528557464042  |

## 3 论文算法复现

#### 3.1 ISDA

一种改进的子类判别分析算法(Improved Subclass Discriminant Analysis),主要用于处理类不平衡问题。同时,通过 SSTCA 进行特征迁移,可实现跨项目缺陷预测。 [1]



TABLE 3 ISDA-Based Within-Project Prediction

| Input:<br>Output: | $X = [X_1, X_2]$ and $y$ .<br>Class label of $y$ .                                                                                                                                           |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1.           | Determine the optimal number of subclass $H_{1opt}$ for the defective class and the optimal number $H_{2opt}$ for the defect-free class by using the improved LOOT criterion in Formula (4). |
| Step 2.           | Separately divide $X_1$ and $X_2$ into $H_{1opt}$ and $H_{2opt}$ subclasses by using the NNC algorithm [42].                                                                                 |
| Step 3.           | For the obtained $H_{opt} = H_{1opt} + H_{2opt}$ subclasses, calculate $\Sigma_B$ and $\Sigma_X$ by using Formulae (2) and (3), respectively.                                                |
| Step 4.           | Obtain the projective transformation $V$ by using Formula (1), which consists of eigen-vectors corresponding to the nonzero eigen-values of $\Sigma_X^{-1}\Sigma_B$ .                        |
| Step 5.           | Obtain the projected features of the training data and target instance by using $X^f = V^T X$ and $y^f = V^T y$ .                                                                            |
| Step 6.           | Use the random forest classifier to classify $y^f$ .                                                                                                                                         |

TABLE 4
SSTCA+ISDA for Cross-Project Prediction

| Input:<br>Output: | $X_S$ and $X_T$ .<br>Class labels of instances in $X_T$ .                                                                  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|
| Step 1.           | Input $X_S$ and $X_T$ into the SSTCA method and achieve the transferred source and target project data $X'_S$ and $X'_T$ . |
| Step 2.           | Regard $X'_S$ as the training data and learn ISDA projective transformation $V$ .                                          |
| Step 3.           | Obtain the projected features of $X'_S$ and $X'_T$ by using $X^f_S = V^T X'_S$ and $X^f_T = V^T X'_T$ .                    |
| Step 4.           | Use the random forest classifier to classify each instance in $X_T^f$ .                                                    |

## ISDA (CK/ant1)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 34                  | 69                  | 104                 |
| defective train samples | 9                   | 18                  | 27                  |
| precision               | 0.4666666666666667  | 0.47368421052631576 | 0.543859649122807   |
| recall                  | 0.42168674698795183 | 0.4864864864864865  | 0.47692307692307695 |
| pf                      | 0.17094017094017094 | 0.19230769230769232 | 0.14285714285714285 |
| F-measure               | 0.4430379746835443  | 0.479999999999999   | 0.5081967213114754  |
| accuracy                | 0.722397476340694   | 0.723404255319149   | 0.757085020242915   |
| AUC                     | 0.6253732880238904  | 0.6470893970893971  | 0.6670329670329671  |

## ISDA (CK/lucene2)

|                         | 10%                | 20%                | 30%                |
|-------------------------|--------------------|--------------------|--------------------|
| train samples           | 33                 | 67                 | 101                |
| defective train samples | 20                 | 40                 | 60                 |
| precision               | 0.56               | 0.6162162162162163 | 0.6506849315068494 |
| recall                  | 0.5355191256830601 | 0.6993865030674846 | 0.6643356643356644 |
| pf                      | 0.6209677419354839 | 0.6454545454545455 | 0.53125            |
| F-measure               | 0.547486033519553  | 0.6551724137931035 | 0.6574394463667821 |
| accuracy                | 0.4723127035830619 | 0.5604395604395604 | 0.5857740585774058 |
| AUC                     | 0.4572756918737882 | 0.5269659788064696 | 0.5665428321678322 |

#### ISDA (CK/synapse1)

|                         | 10%                | 20%                 | 30%                |
|-------------------------|--------------------|---------------------|--------------------|
| train samples           | 25                 | 51                  | 76                 |
| defective train samples | 8                  | 17                  | 25                 |
| precision               | 0.5164835164835165 | 0.46153846153846156 | 0.5                |
| recall                  | 0.6025641025641025 | 0.5217391304347826  | 0.5901639344262295 |
| pf                      | 0.2875816993464052 | 0.3088235294117647  | 0.3025210084033613 |
| F-measure               | 0.5562130177514794 | 0.4897959183673469  | 0.5413533834586466 |
| accuracy                | 0.6753246753246753 | 0.6341463414634146  | 0.6611111111111111 |
| AUC                     | 0.6574912016088487 | 0.606457800511509   | 0.6438214630114341 |

## ISDA (CK/xalan2)

|                         | 10%                 | 20%                 | 30%                |
|-------------------------|---------------------|---------------------|--------------------|
| train samples           | 79                  | 160                 | 240                |
| defective train samples | 38                  | 77                  | 116                |
| precision               | 0.5866666666666667  | 0.5539568345323741  | 0.5475285171102662 |
| recall                  | 0.6303724928366762  | 0.4967741935483871  | 0.5313653136531366 |
| pf                      | 0.41333333333333333 | 0.37237237237237236 | 0.4075342465753425 |
| F-measure               | 0.6077348066298343  | 0.5238095238095238  | 0.5393258426966292 |
| accuracy                | 0.6077348066298343  | 0.5645412130637636  | 0.5630550621669627 |
|                         |                     |                     |                    |

|     | 10%                | 20%                | 30%               |
|-----|--------------------|--------------------|-------------------|
| AUC | 0.6085195797516715 | 0.5622009105880074 | 0.561915533538897 |

#### ISDA (NASA/mc2)

|                         | 10%                 | 20%                | 30%                 |
|-------------------------|---------------------|--------------------|---------------------|
| train samples           | 12                  | 24                 | 37                  |
| defective train samples | 4                   | 8                  | 13                  |
| precision               | 0.5909090909090909  | 0.5333333333333333 | 0.4827586206896552  |
| recall                  | 0.325               | 0.444444444444444  | 0.45161290322580644 |
| pf                      | 0.1232876712328767  | 0.2153846153846154 | 0.2631578947368421  |
| F-measure               | 0.41935483870967744 | 0.4848484848484848 | 0.4666666666666667  |
| accuracy                | 0.6814159292035398  | 0.6633663366336634 | 0.6363636363636364  |
| AUC                     | 0.6008561643835616  | 0.6145299145299146 | 0.5942275042444822  |

#### ISDA (NASA/pc5)

|                         | `                   | ••••                | 200/                |
|-------------------------|---------------------|---------------------|---------------------|
|                         | 10%                 | 20%                 | 30%                 |
| train samples           | 171                 | 342                 | 513                 |
| defective train samples | 47                  | 94                  | 141                 |
| precision               | 0.33729216152019004 | 0.4022346368715084  | 0.32558139534883723 |
| recall                  | 0.33490566037735847 | 0.3819628647214854  | 0.296969696969697   |
| pf                      | 0.25                | 0.2157258064516129  | 0.23387096774193547 |
| F-measure               | 0.336094674556213   | 0.39183673469387753 | 0.31061806656101426 |
| accuracy                | 0.6357142857142857  | 0.6734842951059167  | 0.6368948247078464  |
| AUC                     | 0.5424528301886792  | 0.5831185291349363  | 0.5315493646138807  |

## 3.2 BaggingClassifierPU

## 一种半监督分类器,利用正样本和无标签样本。[2]

#### BaggingClassifierPU (CK/ant1)

|               | 10% | 20% | 30% |
|---------------|-----|-----|-----|
| train samples | 34  | 69  | 104 |

|                         | 10%                | 20%                 | 30%                |
|-------------------------|--------------------|---------------------|--------------------|
| defective train samples | 9                  | 18                  | 27                 |
| precision               | 0.5333333333333333 | 0.4915254237288136  | 0.4576271186440678 |
| recall                  | 0.5783132530120482 | 0.7837837837837838  | 0.8307692307692308 |
| pf                      | 0.1794871794871795 | 0.28846153846153844 | 0.3516483516483517 |
| F-measure               | 0.5549132947976878 | 0.604166666666666   | 0.5901639344262295 |
| accuracy                | 0.7570977917981072 | 0.7304964539007093  | 0.6963562753036437 |
| AUC                     | 0.6994130367624344 | 0.7476611226611226  | 0.7395604395604396 |

BaggingClassifierPU (CK/ivy2)

|                         | 10%                 | 20%                 | 30%                 |
|-------------------------|---------------------|---------------------|---------------------|
| train samples           | 35                  | 70                  | 105                 |
| defective train samples | 4                   | 8                   | 12                  |
| precision               | 0.2753623188405797  | 0.24210526315789474 | 0.30158730158730157 |
| recall                  | 0.527777777777778   | 0.71875             | 0.6785714285714286  |
| pf                      | 0.17793594306049823 | 0.288               | 0.2009132420091324  |
| F-measure               | 0.3619047619047619  | 0.36220472440944884 | 0.41758241758241754 |
| accuracy                | 0.7886435331230284  | 0.7127659574468085  | 0.7854251012145749  |
| AUC                     | 0.6749209173586397  | 0.715375            | 0.7388290932811481  |

BaggingClassifierPU (CK/jedit4)

|                         | 10%                 | 20%                   | 30%                 |
|-------------------------|---------------------|-----------------------|---------------------|
| train samples           | 30                  | 61                    | 91                  |
| defective train samples | 7                   | 15                    | 22                  |
| precision               | 0.3240223463687151  | 0.3636363636363636365 | 0.4074074074074074  |
| recall                  | 0.8529411764705882  | 0.8                   | 0.6226415094339622  |
| pf                      | 0.5817307692307693  | 0.4540540540540541    | 0.2962962962963     |
| F-measure               | 0.46963562753036436 | 0.5000000000000001    | 0.49253731343283585 |
| accuracy                | 0.5253623188405797  | 0.6081632653061224    | 0.6837209302325581  |
| AUC                     | 0.6356052036199095  | 0.672972972972973     | 0.6631726065688329  |

## BaggingClassifierPU (CK/synapse1)

|                         | 10%                   | 20%                | 30%                 |  |
|-------------------------|-----------------------|--------------------|---------------------|--|
| train samples           | 25                    | 51                 | 76                  |  |
| defective train samples | 8                     | 17                 | 25                  |  |
| precision               | 0.4886363636363636365 | 0.4948453608247423 | 0.52                |  |
| recall                  | 0.5512820512820513    | 0.6956521739130435 | 0.8524590163934426  |  |
| pf                      | 0.29411764705882354   | 0.3602941176470588 | 0.40336134453781514 |  |
| F-measure               | 0.5180722891566266    | 0.5783132530120482 | 0.6459627329192545  |  |
| accuracy                | 0.6536796536796536    | 0.6585365853658537 | 0.6833333333333333  |  |
| AUC                     | 0.6285822021116139    | 0.6676790281329923 | 0.7245488359278137  |  |

#### BaggingClassifierPU (CK/xalan2)

|                         | 10%                             | 20%                 | 30%                |  |
|-------------------------|---------------------------------|---------------------|--------------------|--|
| train samples           | 79                              | 160                 | 240                |  |
| defective train samples | 38                              | 77                  | 116                |  |
| precision               | 0.5528455284552846              | 0.5956873315363881  | 0.5988857938718662 |  |
| recall                  | 0.7793696275071633              | 0.7129032258064516  | 0.7933579335793358 |  |
| pf                      | 0.5866666666666667              | 0.45045045045045046 | 0.4931506849315068 |  |
| F-measure               | 0.6468489892984542              | 0.6490455212922174  | 0.6825396825396826 |  |
| accuracy                | 0.5897790055248618              | 0.6283048211508554  | 0.6447602131438721 |  |
| AUC                     | AUC 0.5963514804202483 0.631226 |                     | 0.6501036243239146 |  |

## BaggingClassifierPU (NASA/mc2)

|                         | 10%                 | 20%                | 30%                |
|-------------------------|---------------------|--------------------|--------------------|
| train samples           | 12                  | 24                 | 37                 |
| defective train samples | e train samples 4 8 |                    | 13                 |
| precision               | 0.4528301886792453  | 0.410958904109589  | 0.5454545454545454 |
| recall                  | 0.6                 | 0.8333333333333334 | 0.7741935483870968 |
| pf                      | 0.3972602739726027  | 0.6615384615384615 | 0.3508771929824561 |
| F-measure               | 0.5161290322580645  | 0.5504587155963302 | 0.64               |
| accuracy                | 0.6017699115044248  | 0.5148514851485149 | 0.6931818181818182 |
|                         |                     |                    |                    |

|     | 10%                | 20%               | 30%                |
|-----|--------------------|-------------------|--------------------|
| AUC | 0.6013698630136987 | 0.585897435897436 | 0.7116581777023203 |

## BaggingClassifierPU (NASA/pc3)

|                         | 10%                 | 20%                 | 30%                 |  |
|-------------------------|---------------------|---------------------|---------------------|--|
| train samples           | 107                 | 214                 | 322                 |  |
| defective train samples | 13                  | 26                  | 40                  |  |
| precision               | 0.2837370242214533  | 0.24456521739130435 | 0.25075528700906347 |  |
| recall                  | 0.6776859504132231  | 0.8333333333333334  | 0.8829787234042553  |  |
| pf                      | 0.24381625441696114 | 0.36821192052980134 | 0.3751891074130106  |  |
| F-measure               | 0.4                 | 0.3781512605042017  | 0.39058823529411774 |  |
| accuracy                | 0.7463917525773196  | 0.657010428736964   | 0.6569536423841059  |  |
| AUC                     | 0.716934847998131   |                     | 0.7538948079956224  |  |

## BaggingClassifierPU (NASA/pc4)

|                         | 10%                | 20%                 | 30%                 |  |
|-------------------------|--------------------|---------------------|---------------------|--|
| train samples           | 128                | 257                 | 386                 |  |
| defective train samples | 17                 | 35                  | 53                  |  |
| precision               | 0.3347547974413646 | 0.35543766578249336 | 0.4166666666666667  |  |
| recall                  | 0.98125            | 0.9436619718309859  | 0.9274193548387096  |  |
| pf                      | 0.3123123123123123 | 0.27364864864864863 | 0.2072072072072072  |  |
| F-measure               | 0.4992050874403816 | 0.5163776493256261  | 0.57500000000000001 |  |
| accuracy                | 0.728213977566868  | 0.7563106796116504  | 0.8113207547169812  |  |
| AUC                     | 0.8344688438438438 | 0.8350066615911685  | 0.8601060738157512  |  |

#### BaggingClassifierPU (NASA/pc5)

|                         | 10%                | 20%                 | 30%                |  |
|-------------------------|--------------------|---------------------|--------------------|--|
| train samples           | 171                | 342                 | 513                |  |
| defective train samples | 47                 | 94                  | 141                |  |
| precision               | 0.4244604316546763 | 0.42199108469539376 | 0.4066115702479339 |  |
| recall                  | 0.6957547169811321 | 0.753315649867374   | 0.7454545454545455 |  |

|           | 10%                 | 20%                 | 30%                 |
|-----------|---------------------|---------------------|---------------------|
| pf        | 0.35842293906810035 | 0.39213709677419356 | 0.41359447004608296 |
| F-measure | 0.5272564789991063  | 0.540952380952381   | 0.5262032085561498  |
| accuracy  | 0.6564935064935065  | 0.647918188458729   | 0.6302170283806344  |
| AUC       | 0.6686658889565159  | 0.6805892765465902  | 0.6659300377042313  |

#### 3.3 JSFS

一种联合贝叶斯半监督特征选择和分类算法(JSFS),该算法采用贝叶斯方法自动选择相关特征并同时学习分类器。 [3]

数据预处理:为解决数据量小,数据分布不均衡的问题,使用SMOTE算法生成新的样本.

#### SMOTE算法流程:

- 1、采样KNN算法,计算出每个少数类样本的K个近邻;
- 2、从K个近邻中随机挑选N个样本进行随机线性插值;
- 3、构造新的少数类样本;
- 4、将新样本与原数据合成,产生新的训练集;

#### 扩充后的数据集结果:

| Nr - 1                                  |     |     | 训练数据 |     |     | 测试数据 |     | 类别   | 类别 比例 |     | 训练数据 |     |      | 测试数据 |      |
|-----------------------------------------|-----|-----|------|-----|-----|------|-----|------|-------|-----|------|-----|------|------|------|
| 类别                                      | 比例  | 总数  | 正例   | 负例  | 总数  | 正例   | 负例  | - 天끼 |       | 总数  | 正例   | 负例  | 总数   | 正例   | 负例   |
|                                         | 10% | 50  | 25   | 25  | 317 | 83   | 234 |      | 10%   | 56  | 28   | 28  | 295  | 38   | 257  |
| ant1                                    | 20% | 102 | 51   | 51  | 282 | 74   | 208 | cm1  | 20%   | 114 | 57   | 57  | 262  | 34   | 228  |
| anti                                    |     |     | 77   |     |     |      |     | -    | 30%   | 170 | 85   | 85  | 230  | 30   | 200  |
|                                         | 30% | 154 |      | 77  | 247 | 65   | 182 | -    | 10%   | 30  | 15   | 15  | 176  | 33   | 143  |
|                                         | 10% | 62  | 31   | 31  | 317 | 36   | 281 | kc3  | 20%   | 62  | 31   | 31  | 156  | 29   | 127  |
| ivy2                                    | 20% | 124 | 62   | 62  | 282 | 32   | 250 |      | 30%   | 94  | 47   | 47  | 137  | 26   | 111  |
|                                         | 30% | 186 | 93   | 93  | 247 | 28   | 219 |      | 10%   | 16  | 8    | 8   | 113  | 40   | 73   |
|                                         | 10% | 46  | 23   | 23  | 276 | 68   | 208 | mc2  | 20%   | 32  | 16   | 16  | 101  | 36   | 65   |
| jedit4                                  | 20% | 92  | 46   | 46  | 245 | 60   | 185 |      | 30%   | 48  | 24   | 24  | 88   | 31   | 57   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 30% | 138 | 69   | 69  | 215 | 53   | 162 | -    | 10%   | 44  | 22   | 22  | 229  | 25   | 204  |
|                                         | 10% | 40  | 20   | 20  | 307 | 183  | 124 | mw1  | 20%   | 90  | 45   | 45  | 203  | 22   | 181  |
|                                         | 20% | 1.0 |      |     | 273 | 163  |     | -    | 30%   | 134 | 67   | 67  | 178  | 19   | 159  |
| lucene2                                 |     | 80  | 40   | 40  |     |      | 110 | _    | 10%   | 128 | 64   | 64  | 635  | 55   | 580  |
|                                         | 30% | 120 | 60   | 60  | 239 | 143  | 96  | pc1  | 20%   | 256 | 128  | 128 | 565  | 49   | 516  |
|                                         | 10% | 34  | 17   | 17  | 231 | 78   | 153 |      | 30%   | 386 | 193  | 193 | 494  | 43   | 451  |
| synapse1                                | 20% | 68  | 34   | 34  | 205 | 69   | 136 |      | 10%   | 188 | 94   | 94  | 970  | 121  | 849  |
|                                         | 30% | 102 | 51   | 51  | 180 | 61   | 119 | pc3  | 20%   | 376 | 188  | 188 | 863  | 108  | 755  |
|                                         | 10% | 10  | 5    | 5   | 93  | 60   | 33  |      | 30%   | 564 | 282  | 282 | 755  | 94   | 661  |
| velocitv1                               | 20% | 30  | 15   | 15  | 83  | 50   | 33  | -    | 10%   | 222 | 111  | 111 | 1159 | 160  | 999  |
|                                         | 30% | 38  | 19   | 19  | 73  | 46   | 27  | pc4  | 20%   | 444 | 222  | 222 | 1030 | 142  | 888  |
|                                         | 10% | 82  | 41   | 41  | 724 | 349  | 375 | -    | 30%   | 666 | 333  | 333 | 901  | 124  | 777  |
|                                         | 20% | 166 | 83   | 83  | 643 |      | 333 |      | 10%   | 248 | 124  | 124 | 1540 | 424  | 1116 |
| xalan2                                  |     |     |      |     |     | 310  |     | pc5  | 20%   | 496 | 248  | 248 | 1369 | 377  | 992  |
|                                         | 30% | 248 | 124  | 124 | 563 | 271  | 292 |      | 30%   | 744 | 372  | 372 | 1198 | 330  | 868  |

JSFS算法流程:

#### Algorithm 1 The proposed JSFS algorithm

```
1: Input: Training data X \in \mathbb{R}^{n \times d}, parameters \gamma and \mu.
 2: Output: The selected feature indexes and their corre-
     sponding weight vector w for the linear classifier.
 3: Initialize w_i, \lambda_j, \alpha_i, and c_j for i=1,\ldots,d and j=1,\ldots,d
     l+1,\ldots,n.
 4: Construct the affinity matrix S and graph Laplacian L.
5: Obtain the pseudo label vector \tilde{y}_u via label propagation.
6: While \max_i |w_i^{\text{new}} - w_i^{\text{old}}| > 10^{-3} do
 7: If \|g_w\|/d < 10^{-3} then
         Fix \lambda, compute g_w and H_w by Eqs. (10) and (11), and update w \leftarrow w - H_w^{-1} g_w;
 8:
 9.
       end if
        Remove the i-th feature if |w_i| < 10^{-3};
10:
       If \|\boldsymbol{g}_{\lambda}\|/u < 10^{-3} then
11:
          Fix w, compute g_{\lambda} and H_{\lambda} by Eqs. (13) and (14),
12:
          and update \lambda \leftarrow \lambda - H_{\lambda}^{-1} g_{\lambda};
       Remove the j-th unlabeled sample if |\lambda_j| < 10^{-3};
```

Update  $\alpha$  and c using Eqs. (18) and (20);

JSFS与每个数据集的超参等配置见文件config.json

由于JSFS本身是半监督的,为了更好的效果,基本上保留了所有CK或NASA的数据标签 JSFS的情况与问题:

- 1、论文实验中部分超参缺少说明;
- 2、算法收敛条件固定,使得需要将x的特征值归一化到0-0.001等很小的值才能达到收敛条件;
- 3、算法要么不收敛,要么在前五次迭代即收敛,与数据集相关;

14: 15:

16: end while

- 4、求出的y的值往往值域、量级或精确度差别较大,缺少二分类的可解释性说明,效果很受对y值二分类阈值划分 的影响,而论文未说明;
- 5、算法过程中包含其他模型的使用,这些模型相关的选取与参数配置未说明,且没做消融实验等;

#### JSFS实验结果:

JSFS (CK/ant1)

|           | 10%                 | 20%                 | 30%                 |
|-----------|---------------------|---------------------|---------------------|
| precision | 0.5625              | 0.5434782608695652  | 0.4956521739130435  |
| recall    | 0.43373493975903615 | 0.33783783783783783 | 0.8769230769230769  |
| pf        | 0.11965811965811966 | 0.10096153846153846 | 0.31868131868131866 |
| F-measure | 0.4897959183673469  | 0.4166666666666666  | 0.6333333333333333  |
| accuracy  | 0.7634069400630915  | 0.75177304964539    | 0.7327935222672065  |
| AUC       | 0.6570384100504583  | 0.6184381496881496  | 0.7791208791208791  |

#### JSFS (CK/ivy2)

|           | 10%                | 20%    | 30%                 |
|-----------|--------------------|--------|---------------------|
| precision | 0.6666666666666666 | 0.25   | 0.21686746987951808 |
| recall    | 0.111111111111111  | 0.5625 | 0.6428571428571429  |

|           | 10%                   | 20%                 | 30%                 |
|-----------|-----------------------|---------------------|---------------------|
| pf        | 0.0071174377224199285 | 0.216               | 0.2968036529680365  |
| F-measure | 0.1904761904761905    | 0.34615384615384615 | 0.32432432432432434 |
| accuracy  | 0.8927444794952681    | 0.7588652482269503  | 0.6963562753036437  |
| AUC       | 0.5519968366943456    | 0.67325             | 0.6730267449445533  |

JSFS (CK/jedit4)

|           | 10%                  | 20%                 | 30%                 |
|-----------|----------------------|---------------------|---------------------|
| precision | 0.717948717948718    | 0.373015873015873   | 0.37815126050420167 |
| recall    | 0.4117647058823529   | 0.783333333333333   | 0.8490566037735849  |
| pf        | 0.052884615384615384 | 0.42702702702702705 | 0.4567901234567901  |
| F-measure | 0.5233644859813085   | 0.5053763440860215  | 0.5232558139534883  |
| accuracy  | 0.8152173913043478   | 0.6244897959183674  | 0.6186046511627907  |
| AUC       | 0.6794400452488687   | 0.678153153153153   | 0.6961332401583974  |

JSFS (CK/lucene2)

| Joi 5 (Girliacolle2) |                                                                                                             |                                                                                                                                                                                                                                                                |
|----------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10%                  | 20%                                                                                                         | 30%                                                                                                                                                                                                                                                            |
| 0.7687074829931972   | 0.7019867549668874                                                                                          | 0.7007874015748031                                                                                                                                                                                                                                             |
| 0.6174863387978142   | 0.6503067484662577                                                                                          | 0.6223776223776224                                                                                                                                                                                                                                             |
| 0.27419354838709675  | 0.4090909090909091                                                                                          | 0.3958333333333333                                                                                                                                                                                                                                             |
| 0.6848484848484848   | 0.6751592356687899                                                                                          | 0.6592592592592593                                                                                                                                                                                                                                             |
| 0.6612377850162866   | 0.6263736263736264                                                                                          | 0.6150627615062761                                                                                                                                                                                                                                             |
| 0.6716463952053587   | 0.6206079196876743                                                                                          | 0.6132721445221446                                                                                                                                                                                                                                             |
|                      | 0.7687074829931972<br>0.6174863387978142<br>0.27419354838709675<br>0.6848484848484848<br>0.6612377850162866 | 0.7687074829931972       0.7019867549668874         0.6174863387978142       0.6503067484662577         0.27419354838709675       0.409090909090909091         0.6848484848484848       0.6751592356687899         0.6612377850162866       0.6263736263736264 |

JSFS (CK/synapse1)

|           | 10%                | 20%                 | 30%                |
|-----------|--------------------|---------------------|--------------------|
| precision | 0.4632352941176471 | 0.43283582089552236 | 0.4330708661417323 |
| recall    | 0.8076923076923077 | 0.8405797101449275  | 0.9016393442622951 |
| pf        | 0.477124183006536  | 0.5588235294117647  | 0.6050420168067226 |
| F-measure | 0.588785046728972  | 0.5714285714285715  | 0.5851063829787234 |
| accuracy  | 0.6190476190476191 | 0.5756097560975609  | 0.5666666666666667 |

|     | 10%                | 20%                | 30%                |
|-----|--------------------|--------------------|--------------------|
| AUC | 0.6652840623428858 | 0.6408780903665814 | 0.6482986637277862 |

JSFS (CK/velocity1)

|           | 10%                 | 20%                 | 30%                |
|-----------|---------------------|---------------------|--------------------|
| precision | 0.7627118644067796  | 0.85                | 0.7058823529411765 |
| recall    | 0.75                | 0.34                | 0.782608695652174  |
| pf        | 0.42424242424242425 | 0.09090909090909091 | 0.55555555555555   |
| F-measure | 0.7563025210084034  | 0.4857142857142858  | 0.7422680412371134 |
| accuracy  | 0.6881720430107527  | 0.5662650602409639  | 0.6575342465753424 |
| AUC       | 0.6628787878787877  | 0.6245454545454546  | 0.6135265700483092 |

JSFS (CK/xalan2)

|           | 10%                | 20%                | 30%                 |
|-----------|--------------------|--------------------|---------------------|
| precision | 0.5585585585585    | 0.515625           | 0.48491879350348027 |
| recall    | 0.3553008595988539 | 0.6387096774193548 | 0.7712177121771218  |
| pf        | 0.2613333333333333 | 0.5585585585585    | 0.7602739726027398  |
| F-measure | 0.4343257443082311 | 0.5706051873198847 | 0.5954415954415955  |
| accuracy  | 0.5538674033149171 | 0.536547433903577  | 0.4955595026642984  |
| AUC       | 0.5469837631327603 | 0.5400755594303982 | 0.5054718697871909  |

JSFS (NASA/cm1)

|           | 10%                 | 20%                 | 30%                 |
|-----------|---------------------|---------------------|---------------------|
| precision | 0.39361702127659576 | 0.6829268292682927  | 0.4520547945205479  |
| recall    | 1.0                 | 0.875               | 0.9705882352941176  |
| pf        | 0.22093023255813954 | 0.05652173913043478 | 0.20408163265306123 |
| F-measure | 0.5648854961832062  | 0.767123287671233   | 0.616822429906542   |
| accuracy  | 0.8067796610169492  | 0.9351145038167938  | 0.8217391304347826  |
| AUC       | 0.8895348837209303  | 0.9092391304347827  | 0.8832533013205283  |

|           | 10%                 | 20%                 | 30%                |
|-----------|---------------------|---------------------|--------------------|
| precision | 1.0                 | 0.4146341463414634  | 0.5217391304347826 |
| recall    | 0.29411764705882354 | 0.944444444444444   | 1.0                |
| pf        | 0.0                 | 0.17391304347826086 | 0.088              |
| F-measure | 0.45454545454545453 | 0.576271186440678   | 0.6857142857142856 |
| accuracy  | 0.9318181818181818  | 0.8397435897435898  | 0.9197080291970803 |
| AUC       | 0.6470588235294118  | 0.8852657004830918  | 0.9560000000000001 |

JSFS (NASA/mc2)

|           | 10%                  | 20%                | 30%                |
|-----------|----------------------|--------------------|--------------------|
| precision | 0.6666666666666666   | 0.3783783783783784 | 0.361111111111111  |
| recall    | 0.4                  | 0.7368421052631579 | 0.9285714285714286 |
| pf        | 0.043010752688172046 | 0.2804878048780488 | 0.3108108108108108 |
| F-measure | 0.5                  | 0.5                | 0.52               |
| accuracy  | 0.8584070796460177   | 0.7227722772277227 | 0.7272727272727273 |
| AUC       | 0.678494623655914    | 0.7281771501925546 | 0.8088803088803089 |

JSFS (NASA/mw1)

|           | 10%                 | 20%                 | 30%                 |
|-----------|---------------------|---------------------|---------------------|
| precision | 0.45121951219512196 | 0.49295774647887325 | 0.4262295081967213  |
| recall    | 1.0                 | 1.0                 | 1.0                 |
| pf        | 0.234375            | 0.21428571428571427 | 0.23026315789473684 |
| F-measure | 0.6218487394957983  | 0.660377358490566   | 0.5977011494252873  |
| accuracy  | 0.8034934497816594  | 0.8226600985221675  | 0.8033707865168539  |
| AUC       | 0.8828125           | 0.8928571428571428  | 0.8848684210526316  |

JSFS (NASA/pc1)

|           | 10%                 | 20%                 | 30%                  |
|-----------|---------------------|---------------------|----------------------|
| precision | 0.2018348623853211  | 0.3978494623655914  | 0.7666666666666667   |
| recall    | 1.0                 | 1.0                 | 0.7931034482758621   |
| pf        | 0.29441624365482233 | 0.10606060606060606 | 0.015053763440860216 |

|           | 10%                 | 20%                | 30%                |
|-----------|---------------------|--------------------|--------------------|
| F-measure | 0.33587786259541985 | 0.5692307692307692 | 0.7796610169491527 |
| accuracy  | 0.7259842519685039  | 0.9008849557522124 | 0.9736842105263158 |
| AUC       | 0.8527918781725888  | 0.94696969696969   | 0.889024842417501  |

JSFS (NASA/pc3)

|           | 10%                  | 20%                 | 30%                  |
|-----------|----------------------|---------------------|----------------------|
| precision | 0.6619718309859155   | 0.352112676056338   | 0.822222222222222    |
| recall    | 0.8703703703703703   | 0.9615384615384616  | 0.7872340425531915   |
| pf        | 0.026200873362445413 | 0.11344019728729964 | 0.011299435028248588 |
| F-measure | 0.752                | 0.5154639175257731  | 0.8043478260869565   |
| accuracy  | 0.9680412371134021   | 0.8910776361529548  | 0.976158940397351    |
| AUC       | 0.9220847485039624   | 0.924049132125581   | 0.8879673037624715   |

JSFS (NASA/pc4)

|           | 10%                  | 20%                 | 30%                 |
|-----------|----------------------|---------------------|---------------------|
| precision | 0.5925925925925926   | 0.25806451612903225 | 0.3142857142857143  |
| recall    | 0.6956521739130435   | 0.8421052631578947  | 0.7333333333333333  |
| pf        | 0.009683098591549295 | 0.04549950544015826 | 0.02708803611738149 |
| F-measure | 0.639999999999999    | 0.3950617283950617  | 0.44                |
| accuracy  | 0.9844693701466781   | 0.9524271844660194  | 0.9689234184239733  |
| AUC       | 0.8429845376607471   | 0.8983028788588683  | 0.8531226486079759  |

JSFS (NASA/pc5)

|           | 1 /                |                    |                    |
|-----------|--------------------|--------------------|--------------------|
|           | 10%                | 20%                | 30%                |
| precision | 1.0                | 0.996742671009772  | 1.0                |
| recall    | 0.6516257465162575 | 0.6866118175018698 | 0.5501285347043702 |
| pf        | 0.0                | 0.09375            | 0.0                |
| F-measure | 0.7890719164323022 | 0.8131089459698848 | 0.7097844112769487 |
| accuracy  | 0.6590909090909091 | 0.6917457998539079 | 0.5617696160267112 |
| AUC       | 0.8258128732581287 | 0.7964309087509349 | 0.775064267352185  |
|           |                    |                    |                    |

## 总结分析

对于现有分类器的评估,还是随机森林大法好,F值最高能达到0.7以上。其它方法各有优缺点,但统一的情况都会出现部分测试数据集的结果很不理想。对于论文算法的复现,ISDA 算法主要处理类不平衡问题,可能由于本次测试数据集规模较小,表现并不佳。BaggingClassifierPU 和 JSFS 在 CK 和 NASA 上的表现都不错,JSFS 甚至能达到 0.8 以上的F值。



## 参考文献

- [1] Jing, Xiao-Yuan, et al. "An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems." *IEEE Transactions on Software Engineering* 43.4 (2016): 321-339.
- [2] Mordelet, Fantine, and J-P. Vert. "A bagging SVM to learn from positive and unlabeled examples." *Pattern Recognition Letters* 37 (2014): 201-209.
- [3] Jiang, Bingbing, et al. "Joint semi-supervised feature selection and classification through Bayesian approach." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 2019.