IoTO++: An Enhanced Interoperability Based on Semantic for IoT Environments

Ana Aguilera¹ Dominique Garrido¹ Irvin Dongo² María Cornejo²

¹Escuela de Ing Informática, Universidad de Valparaíso, Chile

²Dept de Ing Eléctrica y Electrónica, Universidad Católica San Pablo, Perú

50ª Conferencia Latinoamericana de Informática (L CLEI 2024)

Ana Aguilera CLEl'2024 Agosto 12-16, 2024 1/30

Outline

- 1 Contexto: Interoperabilidad Semántica en IoT
- 2 IoTO++: Nuestra propuesta
- 3 Validaciones
- 4 Conclusiones y trabajos futuros

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 2 / 30

Agenda

- 1 Contexto: Interoperabilidad Semántica en IoT
- $exttt{2}$ loTO++: Nuestra propuesta
- Validaciones
- 4 Conclusiones y trabajos futuros

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 3 / 30

Interoperabilidad Semántica en IoT

Ontologías

- Marco estructurado para definir y categorizar los datos y sus relaciones.
- Representación y gestión del conocimiento
- Base para comprensión compartida e interpretación coherente de la información.

Sistemas IoT

- Dispositivos y sensores que observan múltiples actividades en diferentes dominios del quehacer humano.
- Heterogeneidad de sus múltiples fuentes con diferentes estándares, protocolos y sistemas operativos.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024

Interoperabilidad en IoT

Interoperabilidad

- Se refiere a la capacidad de diferentes dispositivos y sistemas para comunicarse y compartir datos de manera efectiva, lo que permite una mejor gestión y coordinación de los recursos.
- Ofrece ventajas considerables en términos de eficiencia, conveniencia y recopilación de datos.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 5 / 30

Interoperabilidad Semántica en IoT

Ontologías + IoT

Marco semántico establece las bases para la interoperabilidad en IoT

- Asegurando que los dispositivos y sistemas no solo intercambien datos, sino que también entiendan su significado de manera uniforme y coherente.
- Permitiendo que los sistemas IoT no solo se comuniquen, sino que también "comprendan" y actúen de manera más autónoma y eficaz sobre la información intercambiada.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 6 / 30

Interoperabilidad Semántica en IoT

Limitaciones atuales (1/2)

- Lograr interoperabilidad semántica universal con dispositivos y sistemas heterogéneos que demandan características de conocimientos particulares de acuerdo a cada contexto de aplicación.
- Consumo energético ineficiente e insostenible y la dispersión de la información relacionada con él.
 - No existen medios suficientes para controlar, monitorear, estimar y adaptar el uso de energía de los sistemas IoT en respuesta a las situaciones dinámicas y circunstancias que los influyen.
 - Existen muchos estándares y métricas que no proveen una manera conveniente de diseñar soluciones que requieran interoperabilidad e intercambio de información energética entre industrias, estándares y métricas relacionadas.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024

Limitaciones atuales (2/2)

- Aspectos asociados a privacidad y seguridad de los datos.
 - Protección de la privacidad es compleja y difícil de manejar.
 - Ataques utilizando dispositivos de bajo rendimiento.
 - Aplicación de nuevas tecnologías y análisis de datos para inferir datos privados.
- Ética en el uso de IoT.
 - Situaciones que pongan en peligro valores humanos esenciales o causar daños físicos o emocionales.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 8 / 30

Agenda

- 1 Contexto: Interoperabilidad Semántica en IoT
- 2 IoTO++: Nuestra propuesta
- Walidaciones
- 4 Conclusiones y trabajos futuros

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 9 / 30

IoTO++: Ontología mejorada para IoT

Sensor, Observation, Sample, and Actuator (SOSA) Ontology: Interoperabilidad

- Representa la interacción entre entidades que participan en actividades de observación, actuación y muestreo.
- Versión rediseñada de la ontología W3C-XG Semantic Sensor Network.
- Considera conceptos relacionados a la descripción de los elementos del sistema de IoT (sosa:sensor, sosa:Sampler, sosa:Actuator) y los datos que generan (sosa:Observation, sosa:Result, sosa:Stimulus).

IoTO++ extiende de SOSA clases como: sosa:phenomenonTime y sosa:resultTime para un anclaje espacio-temporal de los datos.

sosa:FeatureOfInterest seas: Connection seas: ConnectionPoint sosa: Sample ssn: System sosa:ObservableProperty sosa: Observation sosa:Procedure sosa:Result sosa: Sample sosa:Sampling ssn:Condition ssn: OperatingRange ssn:Platform ssn:Property ssn:Stimulus ssn:System • (a) : RecommendedSystem seas:ElectricPowerSystem sosa: Actuator sosa: Sampler 📄 sosa: Sensor ssn: SystemCapability

lot-Collaborative Privacy Protection Knowledge Management Ontology (ColPri): Seguridad y privacidad

- Conceptos como la normativa, las certificaciones y la procedencia, métodos de control de acceso y los mecanismos de autenticación.
- Actores envueltos en la seguridad de los datos como ds4iot:CapabilityManager, ds4iot:AuthenticationProvider y ds4iot:CryptoManager
- Categorización de los datos seguros: ds4iot:SecureData con sus subclases ds4iot:ProtectedData y ds4iot:SecretData.
- Protección de datos: ds4iot:CryptoManager, ds4iot:EncryptedData o ds4iot:hiddenData
- Pseudononimización o anonimización: PseudoAnonymousData y colpri: AnonymousData.

En IoTO++, se creó la clase :SecurityCommunityMember para incluir a todas estas clases.

```
colpri: DataCategory
  colpri: AnonymousData
🕶 🛑 colpri: PersonalData
    colpri: NonSensitivePersonalData

    colpri: SensitivePersonalData

      colpri: CriminalData
      colpri: HabitData
     Colpri: HealthData
      colpri:IdentityData
   colpri: PseudoAnonymousData
    ds4iot:SecureData
  colpri:Purpose
  colpri: Advertisina
   colpri: ApplicationFunctionning
colpri: Recommendation Attribute
 skos: Actor
SecurityCommunityMember
• Colpri: PrivacyCommunityMember
    :DataController
     colpri: Administrator
      colpri: Contributor
      4 D > 4 D > 4 D > 4 D >
```

12 / 30

Smart Energy- Aware Systems Ontology (SEAS): Consciencia del medio ambiente

- Tipos de Energía consumidos por los elementos del sistema IoT: seas:ElectricEnergyProperty y seas:ElectricPowerEnergy
- Tipos de Energía que utilizan/producen los sistemas IoT: seas:ElectricEnergy, seas:HeatEnergy.

Tomamos de SSN clases como: ssn:OperatingPowerRange, ssn:BatteryLifetime y ssn:SystemLifetime que tienen énfasis en la energía requerida para el funcionamiento de los elementos IoT

Ethics: Aspectos éticos

- Comportamiento ético mediante el concepto de categorías éticas y modos éticos y en las subclases de :EthicCategory y :EthicMode.
- Para relacionarlo con las otras ontologías que forman parte de loTO++ se agregaron relaciones y restricciones.
- Legislaciones y regulaciones: relación :isProtectedIn que tiene :LegalRight como dominio y :Country como rango. Se relacionan los 5 derechos de: cancelación, acceso, rectificación, oposición y portabilidad.

Agenda

- Contexto: Interoperabilidad Semántica en IoT
- 2 IoTO++: Nuestra propuesta
- 3 Validaciones
- 4 Conclusiones y trabajos futuros

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 15 / 30

Validaciones

Cardinale et al.¹ propone un proceso metodológico para comparar cualitativa y cuantitativamente ontologías a nivel:

- Léxico: incluye aspectos lingüísticos, de vocabulario y sintácticos. Usa métricas de similitud para analizar la proximidad de conceptos y vocabulario relacionado dentro del dominio.
- Estructural: usa el framework OQuaRE² considerando su modelo y métricas de calidad. OQuaRE está basado en SQuaRE un estándar para la evaluación de calidad del software.
- Conocimiento del dominio: considera su nivel de cobertura.

Ana Aguilera CLEI'2024

¹doi:10.1108/IJWIS-03-2021-0036

²doi/10.3316/ielapa.265844843145749

Validaciones: Nivel léxico

Similitud lingüística (LS)

- StringSim: la similitud de cadenas usando la distancia de Levenshtein.
- DocSim: la similitud de documentos relacionada a la ocurrencia de un recurso en la ontología (TFIDFVectorizer, scikit-sklearn de Python).
- $LS(O_i, O_j) = \gamma * StringSim(O_i, O_j) + \sigma * DocSim(O_i, O_j)$ con $\gamma = \sigma = 0.5$

Pair	StringSim	DocSim	LS
SEAS/SSN-SOSA	0.80	0.37	0.59
SEAS/colpri	0.31	0.23	0.27
SEAS/ds4IoT	0.39	0.20	0.29
SSN-SOSA/ColPri	0.35	0.23	0.29
SSN-SOSA/ds4IoT	0.33	0.21	0.27
ColPri/ds4IoT	0.62	0.63	0.62

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 17 / 30

Validaciones: Nivel estructural

Ontología	Clases		Relaciones		Propiedades	Anotaciones
		is-a	has-*	other		
SOSA	41	129	73	0	44	286
SEAS	101	83	50	90	140	741
ColPri	68	60	29	0	21	77
ds4IoT	27	25	15	0	5	2
IoTO++	153	144	76	0	52	392

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 18 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE³

- Lack of Cohesion in Methods (LCOMOnto): The semantic and conceptual relatedness of classes can be used to measure the separation of responsibilities and independence of components of ontologies. $LCOMOnto = \sum path(|C(leaf)i|)/m$, where path|C(leaf)i| is the length of the path from the leaf class i to Thing, and m is the total number of paths in the ontology.
- Weighted Method Count (WMCOnto): Mean number of properties and relationships per class. $WMCOnto = (\sum |P_{Ci}| + \sum |R_{Ci}|)/\sum |Ci|$, where Ci is the i-th class in the ontology.
- Depth of subsumption hierarchy (DITOnto): Length of the largest path from *Thing* to a leaf class. $DITOnto = Max(\sum D|Ci|)$, where Ci are the classes and D|Ci| is the length of the path from the ith leaf class of the ontology to Thing.
- Number of Ancestor Classes (NACOnto): Mean number of ancestor classes per leaf class. It is the number of direct superclasses per leaf class. $NACOnto = \sum |Sup_{C(Leaf)i}| / \sum |C(leaf)i)|$
- Number of Children (NOCOnto): Mean number of direct subclasses. It is the number of relationships divided by the number of classes minus the relationships of *Thing*. $NOCOnto = \sum |R_{Ci}|/(\sum |Ci| |R_{Thing}|)$

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 19 / 30

³https://www.irit.fr/publis/MELODI/OQuareExpertSystemAppli2013.pdf

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Score					
Metric	1	2	3	4	5
LCOMOnto	> 8	(6-8]	(4,6]	(2, 4]	<=2
WMCOnto	> 15	(11,15]	(8,11]	(5,8]	<=5
DITOnto	> 8	(6-8]	(4,6]	(2, 4]	[1,2]
NACOnto	> 8	(6-8]	(4,6]	(2, 4]	[1,2]
NOCOnto	> 12	(8-12]	(6,8]	(3,6]	[1,3]
CBOOnto	> 8	(6-8]	(4,6]	(2, 4]	[1,2]
RFCOnto	> 12	(8-12]	(6-8]	(3-6]	[1-3]
NOMOnto	> 8	(6-8]	(4,6]	(2, 4]	<=2
RROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%
AROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%
INROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%
CROnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%
ANOnto	[0,20]%	(20-40]%	(40-60]%	(60-80]%	> 80%
TMOnto	> 8	(6-8]	(4,6]	(2, 4]	(1,2]

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Métricas	SSN	-SOSA	SI	EAS	Co	olPri	ds	4IoT	IoTO++	
	Valor	Puntaje	Valor	Puntaje	Valor	Puntaje	Valor	Puntaje	Valor	Puntaje
Lack of Cohesion in Methods (LCOMOnto)	3.778	4	2.417	4	3.971	4	1.600	5	2.531	4
Weigth method per class (WMCOnto)	6.000	4	1.061	5	2.755	5	1.330	5	2.183	5
Depth of subsumption hierarchy (DITOnto)	4.000	4	3.000	4	5.000	3	3.000	4	5.000	3
Number of Ancestor Concepts (NACOnto)	5.611	3	1.621	5	1.816	5	1.666	5	0.854	5
Number of Children Concepts (NOCOnto)	4.280	4	3.435	4	3.000	5	2.500	5	4.028	4
Coupling between Objects (CBOOnto)	0.651	5	0.804	5	0.897	5	1.923	5	1.000	5
Response for a concept (RFCOnto)	0.651	0	3.390	4	1.435	5	1.250	5	1.293	5
Number of properties (NOMOnto)	1.073	5	1.386	5	0.308	5	0.185	5	0.339	5
Relationship Richness (RROnto)	17%	1	51%	3	19%	1	11%	1	21%	2
Attribute Richness(AROnto)	129%	5	100%	5	275%	5	174%	5	418%	5
Relationships per concept (INROnto)	492%	5	131%	5	130%	5	148%	5	128%	5
Annotation Richness (ANOnto)	697%	5	733%	5	113%	5	7%	1	256%	5
Tangledness (TMOnto)		5	0.781	5	0.884	5	0.890	5	0.874	5

https://github.com/Alex23013/ontoSLAM/tree/main/formal-validation

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 21 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Modelo de Calidad considera las siguientes categorías:

- Estructural
- Adecuación Funcional
- Fiabilidad
- Operabilidad
- Compatibilidad
- Transferibilidad y
- Mantenibilidad

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 22 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Adecuación Funcional: capacidad de las ontologías para proporcionar funciones concretas. Subcaracterísticas evaluadas:

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 23 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Adecuación Funcional: capacidad de las ontologías para proporcionar funciones concretas. Subcaracterísticas evaluadas:

 Adquisición de conocimientos - representación: capacidad de la Ontología para representar el conocimiento adquirido. Métricas: ANOnto, RROnto y NOMOnto.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 23 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Adecuación Funcional: capacidad de las ontologías para proporcionar funciones concretas. Subcaracterísticas evaluadas:

- Adquisición de conocimientos representación: capacidad de la Ontología para representar el conocimiento adquirido. Métricas: ANOnto, RROnto y NOMOnto.
- Reutilización del conocimiento: grado en que el conocimiento de la ontología puede ser utilizado para construir otras ontologías.
 Métricas: ANOnto, AROnto, INROnto, NOMOnto y LCOMOnto.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 23 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Adecuación Funcional: capacidad de las ontologías para proporcionar funciones concretas. Subcaracterísticas evaluadas:

- Adquisición de conocimientos representación: capacidad de la Ontología para representar el conocimiento adquirido. Métricas: ANOnto, RROnto y NOMOnto.
- Reutilización del conocimiento: grado en que el conocimiento de la ontología puede ser utilizado para construir otras ontologías.
 Métricas: ANOnto, AROnto, INROnto, NOMOnto y LCOMOnto.
- Búsqueda y consulta consistente: grado en que el modelo y la estructura de la ontología, proporcionan un contexto semántico para evaluar cuáles son los datos deseados por los usuarios, permitiendo mejores métodos de búsqueda y consulta. Métricas: ANOnto,RROnto, AROnto y INROnto.

Ana Aguilera CLEl'2024 Agosto 12-16, 2024 23 / 30

Validaciones: Nivel estructural usando el Puntaje de Métricas OQUARE

Validaciones: Nivel de conocimiento

Considera lo bien que se cubre el conocimiento del dominio y cómo se mejoran los resultados de la aplicación loT mediante el uso de la ontología.

1. Interoperability:

- (a) IoT elements description
- (b) IoT data description
- (c) Spatio-temporal anchoring of data
- (d) Automated Orchestration
- (e) Standardized Protocols

2. Data Privacy:

- (a) Privacy Policies
- (b) Privacy Data Actors
- (c) Sensitive and non-sensitive data
- (d) Consent
- (e) Data Protection Principles

3. Security:

- (a) Secure Data
- (b) Categorizes Access Control
- (c) Regulations & Certifications
- (d) Data Security Actors
- (e) Data Protection Techniques

4. Environmental Awareness:

- (a) IoT elements Energy Consumption
- (b) Energy Types Categorization

5. Ethics:

- (a) Ethics Categories
- (h) Ethics Modes
- (c) Ethics Actors
- (d) Legislations

Figure: Gold Standard

Validaciones: Nivel de conocimiento

Resultado de la evaluación de Cobertura del Conocimiento donde se evidencia loTO++ alcanza la mejor adecuación de la ontología pues considera todos los aspectos críticos lo que la hace más general.

Ontologies		Inte	ropera	blity		Data Privacy				Security				Environmental Awareness		Ethics				Questions answered		
	(a)	(b)	(c)	(d)	(e)	(a)	(b)	(c)	(d)	(e)	(a)	(b)	(c)	(d)	(e)	(a)	(b)	(a)	(b)	(c)	(d)	%
SOSA	✓	✓	✓		✓											✓						23.81
SEAS		✓		✓	✓											✓	✓					23.81
ColPri			✓			✓	✓	✓	✓	✓					✓							19.05
ds4IoT											✓	✓	V	✓	✓							23.81
IoTO++	✓	✓	√	✓	✓	✓	✓	V	✓	✓	✓	✓	V	✓	✓	✓	✓	✓	✓	✓	✓	100%

Agenda

- Contexto: Interoperabilidad Semántica en IoT
- IoTO++: Nuestra propuesta
- Validaciones
- 4 Conclusiones y trabajos futuros

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 27 / 30

Conclusiones y trabajos futuros

Conclusiones y trabajos futuros

Resumen

 Este trabajo presenta una ontología mejorada en el contexto de la interoperabilidad llamada IoTO++ que incluye aspectos críticos como la consciencia energética, la seguridad y privacidad de los datos y aspectos éticos.

• La ontología se diseña, implementa y valida teniendo en cuenta diferentes niveles como el léxico, la estructura y el conocimiento del dominio.

 4 □ → 4 ⊕ → 4 ≣ → 2 □ → 2 ○

 Ana Aguilera
 CLEI'2024
 Agosto 12-16, 2024
 28 / 30

Conclusiones y trabajos futuros

Conclusiones y trabajos futuros

Trabajos futuros

- Aunque las ontologías pretenden ser de alto nivel para ser reutilizables y
 fáciles de aplicar en diferentes escenarios. La categoría de conocimiento de
 ética, leyes y reglamentos está vinculada a un carácter más especializado,
 por lo que el módulo de ética propuesto podría ampliarse:
 - Especificaciones de leyes y reglamentos por país.
 - Adaptarse a las normas internacionales (Unión Europea, APEC y OCDE).
- La validación posterior podría incluir evaluaciones empíricas del rendimiento de IoTO++ en entornos reales.

| 4 日 ト 4 **日** ト 4 **目** ト 4 **目** 9 9 9 0 0 0

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 29 / 30

Gracias!

ana.aguilera@uv.cl

Este estudio fue financiado por PROCIENCIA como entidad ejecutora de CONCYTEC bajo el acuerdo de subvención no.PE501083407-2023-PROCIENCIA, proyecto: Repositorio Semántico y Distribuido para Dispositivos de Bajos Recursos y Rápida Respuesta en Turismo Urbano.

Ana Aguilera CLEI'2024 Agosto 12-16, 2024 30 / 30