A Scalable Algorithm for Maximizing Range Sum in Spatial Databases

Dong-Wan Choi, KAIST, Korea Chin-Wan Chung, KAIST, Korea Yufei Tao, KAIST & CUHK, Hong Kong

MOTIVATION

Where is the most representative spot in a city for a tourist?

Maximize the number of tourist attractions within a movable range

MOTIVATION

- Where is the most profitable place to set up a new pizza store?
 - Maximize the number of residents within a delivery range

MOTIVATION

Where is the best location that maximizes the number of objects covered by a given range?

FORMAL DEFINITION

- MaxRS (Maximizing Range Sum) problem
 - Given a set O of weighted objects and a rectangle r of a given size,
 - Find a location p of r that maximizes:

 $\sum_{o \in O_{r(p)}} w(o)$, where

r(p) is the rectangle centered at a location p, $O_{r(p)}$ is the set of objects covered by r(p), and w(o) is the weight of $o \in O$

- MaxCRS (Maximizing Circular Range Sum) problem
 - The circle version of the MaxRS problem

CONTENTS

- *Motivation
- *Formal Definition
- Preliminary
- Our Algorithms
 - * ExactMaxRS
 - ApproxMaxCRS
- Theoretical Results
- Experimental Results
- Conclusion and Future works

Preliminary

- A naïve solution
 - Issuing range aggregate queries for every location
 - Problem: Infinite # of locations!
- Problem transformation

Given a set of rectangles, find the most dense region where the most rectangles intersect

EXACTMAXRS

- Exact algorithm that solves MaxRS
- External-memory algorithm
 - Scalable for a massive dataset
- Follows the divide-and-conquer strategy:
 - Recursively divide the entire dataset into smaller subsets
 - Compute a local solution for each subset
 - Merge local solutions of subsets

DIVISION PHASE

- Divide the space vertically into m sub-spaces, called slabs, each of which has roughly the same # of rectangles
 - Until the # of rectangles can fit in the main memory
- Do not pass spanning rectangles to the next level of recursion

SLAB-FILES

- The structure to be returned after conquering the sub-problem w.r.t. a slab
 - The set of tuples, each of which is $t = \langle y, [x_i, x_j], sum \rangle$
 - In the upward direction, after y, the most dense region (whose total weights is sum) is in the x-range $[x_i, x_i]$.

SLAB-FILES

An example of a slab-file

MERGING PHASE

- Sweep a horizontal line across the slab-files $(S_1, ..., S_4)$ and the spanning rectangle file (R')
- When encountering several tuples at a horizontal line, choose a tuple with a maximum sum

APPROXMAXCRS

- Approximation algorithm for MaxCRS
- Uses the ExactMaxRS algorithm as a tool
- Overall Flow
 - 1. Transform MaxCRS into MaxRS with MBRs
 - 2. Do ExactMaxRS on the transformed dataset
 - 3. Generate candidate points based on the result from ExactMaxRS
 - 4. Choose the best point among the candidate points

TRANSFORMATION

- ► MaxCRS → MaxRS with MBRs
 - Construct the MBR for each circle

Find the most dense region of MaxRS with MBRs

CANDIDATE POINTS

- Generate five candidate points based on the result from ExactMaxRS
 - p_0 : the center point of the most dense region returned from ExactMaxRS
 - $\triangleright p_1, p_2, p_3, p_4$: four shifted points from p_0

$$\sigma \in \left(\left(\sqrt{2} - 1 \right) \frac{d}{2}, \frac{d}{2} \right)$$

, where d is the diameter of circles

- Return the best point p_i among $p_0,...,p_4$
 - such that the total weight of the circles covering p_i is maximized.

THEORETICAL RESULTS

- ExactMaxRS
 - Optimal in terms of the I/O complexity
 - ▶ O((N/B)log_{M/B}(N/B)) I/O's, where N is the # of objects, M is the memory size, and B is the block size
 - ☐ The counterpart of O(nlogn) in the main memory

optimal time complexity

- ApproxMaxCRS
 - ▶ (1/4)-approximation bound
 - Much better in practice

Environment Setting

- Synthetic datasets
 - Uniform distribution and Gaussian distribution
 - Cardinality: 100,000~500,000
- Real datasets
 - NE and UX datasets from the R-tree Portal site
 - Cardinality: 123,593 for NE, 19,499 for UX
- Compared approaches
 - ▶ Naïve plane sweep, O(n²)
 - Plane sweep using aSB-tree, O(nlogn)
 - □ <u>Adaptation of the optimal in-memory algorithm</u> for the MaxRS problem

▶ I/O cost with varying the buffer size

<Gaussian distribution>

<Uniform distribution>

▶ I/O cost with varying the range size

<Gaussian distribution>

<Uniform distribution>

▶ I/O cost with varying the cardinality

<Gaussian distribution>

<Uniform distribution>

Error ratio of ApproxMaxCRS with varying the diameter

CONCLUSION & FUTURE WORKS

Contributions

- Proposed the first optimal external-memory algorithm for the MaxRS problem
- Proposed the (1/4)-approximation algorithm for the MaxCRS problem
- Proved theoretically the correctness, optimality, approximation bound, and tightness of the bound
- Evaluated experimentally the efficiency and accuracy
- Future works
 - Max kRS problem
 - MinRS problem

Thank You

- The proof sketch of the correctness of ExactMaxRS
 - The x-range of a tuple in a slab-file is called "max-interval".
 - Let I* be the max-interval w.r.t. entire space and I^ be a piece of I for a recursion level. Then I^ is also the max-interval w.r.t. the subspace corresponding to the recursion level.
 - There cannot be an interval I' whose sum is larger than I', since spanning rectangles can affect all or none of intervals in a slab.

- ▶ The proof sketch of (1/4)-approximation bound
 - The four circles together cover the region for MaxRS, which covers *k* points. Hence, at least one of those circles covers *k/4* points.

 $\sigma = \left(\sqrt{2} - 1\right) \frac{d}{2}$

- The proof sketch of the tightness of the approximation bound
 - $\rightarrow 4p_i \leq p^*$

Results on real datasets

