#### תרגילים: רדוקציה

הגדרה. בהינתן פוסנציה

מתקיים:  $x\in \Sigma^*$  אומרים כי מ"ט M מחשבת את את  $f:\Sigma^* o \Sigma^*$ 

- x פגיעה ל- acc בסוף החישוב על M
- f(x) על סרט הפלט של M כתוב את (2

הערה. פ"ט שפחשבת פונקציה עוצרת על כל קלט.

הגדרה. בהינתן שתי שפות  $L_1$  ו-  $L_2$ , אוטרים כי  $L_1$  ויתנת לרזוקציה ל-  $L_2$  (נסטן  $L_1$ ) אם E פונקציה להגדרה. בהינתן שתי שפות את התנאים הבאים:  $f: \Sigma^* \to \Sigma^*$ 

- חשיבה. f (1
- לכל  $\Sigma^*$  מתקיים (2

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2 \ .$$

הגדרה.

$$R = ig\{ L \subseteq \Sigma^* \mid L$$
 קייומת מ"ט המכריעה את

הגדרה.

$$RE = \left\{ L \subseteq \Sigma^* \mid L$$
 קיימת פ"ט המקבלת את

משפט (משפט הרדוקציה). לכל שתי שפות  $L_1$  ו-  $L_2$  אז לכל אז לכל

- $.L_1 \in R$  in  $L_2 \in R$  dh (1
- $.L_{1}\in RE$  in  $L_{2}\in RE$  dh (2
  - $L_2 \notin R$  in  $L_1 \notin R$  dh (3
- $.L_{2}\notin RE$  in  $L_{1}\notin RE$  dh (4

לסיכום:

$$L_{2} \in R \qquad \Rightarrow \qquad L_{1} \in R$$

$$L_{2} \in RE \qquad \Rightarrow \qquad L_{1} \in RE$$

$$L_{2} \notin R \qquad \Leftarrow \qquad L_{1} \notin R$$

$$L_{2} \notin RE \qquad \Leftarrow \qquad L_{1} \notin RE$$

שאלה 1 נתונה השפה

$$L = \{P | L(P) \neq \emptyset\}$$

או במילים אחרות

$$L = \{ \langle M \rangle \, | L(M) \neq \emptyset \}$$

- L השפה את המקבלת הטרמיניסטית הטורינג אירינג מכונת תארו (א
- L תארו מכונת טיורינג אי-דטרמיניסטית המקבלת את השפה

- ג) הוכיחו שהשפה L לא כריעה (על ידי רדוקציה).
  - $L \leq ar{L}$  הוכיחו שלא קיימת רדוקציה (ד

## שאלה 2 הוכיחו כי התנאים הבאים שקולים:

$$A \leq_m B$$
 (x

$$ar{A} \leq_m B$$
 (ء

$$ar{A} \leq_m ar{B}$$
 (x

$$A \leq_m \bar{B}$$
 (ד

## שאלה 3 תהי $\,L\,$ השפה

$$L = \left\{ \langle M, w \rangle \, \middle| \, L(M) = L(D)$$
 ו- DFA הוא  $D$  - מ"ט ו-  $M$ 

הוכיחו כי  $ar{L}$  לא כריעה.

### שאלה 4 תהי $\,L$ הפשה

$$L = \{ \langle M \rangle \, \big| w \in L(M) \Leftrightarrow |w| < 50 \}$$

.50-מקבלת מילים באורך פחות מ-50. הוכיחו כי L לא קבילה.

שאלה 5 תהי A שפה. הוכיחו:

$$A \leq_m A$$
.

## **שאלה 6** תהי A שפה.

הוכיחו או הפריכו:

$$A \leq_m \bar{A}$$
.

#### **שאלה 7** תהי

$$EQ_{TM} = \{ \langle M_1, M_2 \rangle | L(M_1) = L(M_2) \}$$

:הוכיחו

$$A_{\mathrm{TM}} \leq_m EQ_{\mathrm{TM}}$$
 (x

$$A_{ exttt{TM}} \leq_m ar{E}Q_{ exttt{TM}}$$
 (2

#### תשובות

#### שאלה 1

### א) הרעיון

. בהינתן קלט M - מילה ש מילה לבדוק נרצה לבדוק  $x = \langle M \rangle$  מקבלת בהינתן קלט

לשם כך נרצה לסמלץ את M על כל המילים האפשרייות ב-  $\Sigma^*$  ואם נמצא מילה שמתקבלת ע"י M נדע שר כך נרצה לסמלץ את  $(M) \in L$  ולכן שר של  $L(M) \neq \emptyset$  .

#### הבעיה

יתכן שנסמלץ את M על מילה ו- M לא תעצור עליה, למרות שקיימת מילה אחרת ש- M מקבלת. במקרה זה המכונה לא תעצור על  $\langle M \rangle$  למרות ש-  $M \rangle$ .

## הפתרון

 $:M_L$  נבנה מ"ט

- . על כל מילה אפשרית למשך מספר על צעדים בכל פעם. M על על את  $M_L$ 
  - . על כל המילים באורך 0 במשך M על על כל המילים באורך  $\bullet$
  - .אחד. צעד את במשך במשך את n < 1 במשך את M על כל המילים באורך n < 1
  - . אח"כ נריץ את M על כל המילים באורך  $n \leq 2$  במשך  $n \leq 2$  צעד אחד.
  - ...ים, אמשך i במשך באורך על כל המילים את נריץ את M את נריץ את המילים באורך  $\dots ullet$
  - $M \sim 2$ בכל שלב, אם נמצאה מילה ש- M קיבלה, נפסיק את הריצה ונקבל את lacktriangle

לשם כך נשתמש במ"ט  $U_t$  כדי לסמלץ את ריצת הקלט M על מילה x לשמך לעדים.

תזכורת:

$$L\left(U_{t}
ight)=\left\{ \left\langle M,w,t
ight
angle \;\;|\;\;$$
צעדים  $t$  צעדים  $M$ 

:x על קלט  $M_L$  תיאור פעולת

- עם מיט). בודקת אם x מהצורה (M מהצורה מחקי אם בודקת  $M_L$  (1 אם x דוחה את  $M_L \Leftarrow M_L$  אם לא
  - $t \leftarrow 0$  (2
- (M,w) על הקלט  $U_t$  את מריצה ו $w|\leq t$  -ש כך ע $w\in \Sigma^*$  לכל מילה לכל מילה  $M_L \Leftarrow M_L \Leftrightarrow M_L$ 
  - $.t \leftarrow t + 1$  (4
  - **.(3** חוזרת לשלב 3).



## $:M_L$ הוכחת הנכונת המכונה

 $L = L\left(M_L
ight)$  יש להוכיח כי אכן מתקיים לשם כך נוכיח כי מתקיים

$$x\in L \quad \Rightarrow \quad x\in L\left(M_L\right) \; ,$$
 
$$x\notin L \quad \Rightarrow \quad x\notin L\left(M_L\right) \; , \qquad \text{($x$ עוצרת על $x$)} \; .$$

# $x \in L \Rightarrow x \in L\left(M_L\right)$

- $L(M) = \emptyset$  -1  $x = \langle M \rangle \Leftarrow x \in L$  ullet
- $w\in L(M)$  -כך ש-  $w\in \Sigma^*$  קיימת פרט המילה w מתקבלת ע"י מספר סופי של צעדים.
- Mיהי M מספר הצעדים עד לקבלת w ב- M. לפי פעולת  $M_L$ , אם תריץ  $U_t\left(\langle M,w,t\rangle\right)$  עבור  $U_t\left(\langle M,w,t\rangle\right)$  תקבל את M תקבל את M ולכן לבסוף גם M תקבל את M התיואר של M. (לפי שלב 3 של התיואר של M).
  - $x = \langle M \rangle$  מקבלת את  $M_L \Leftarrow ullet$ 
    - $x \in L(M_L) \Leftarrow \bullet$

$$x \in L \Rightarrow x \in L(M_L)$$

:שני מקרים  $\Leftarrow x \notin L$ 

"מבצ בידו חוקי של  $x\neq \langle M \rangle$  מבצ ממנט.  $x\neq \langle M \rangle$  מבצ

 $x \notin L\left(M_L
ight) \Leftarrow$  (1 לפי שלב) x את תדחה  $M_L$ 

## $.L(M)=\emptyset$ -ו $x=\langle M angle$ (2 מבצ

- במקרה זה לא קיימת מילה w (בכל אורך שהוא) המתקבלת ע"י M. ז"א לכל w לא מתקבלת בשום מספר סופי של צעדים ולכן w לא מקבלת לא מקבלת w לא מקבלת w לאף w לאף w לאף w לאף w לאף w
  - x אוצרת על 3 בשלב הלולאה x
    - .x לא עוצרת על  $M_L \Leftarrow ullet$
  - $x \notin L\left(M_L
    ight)$  לכן  $M_L$  לא מקבלת את לא  $M_L$

#### ב) הריעון

נבנה מ"ט אי-דטרמיניסטית  $N_L$  שבהינתן קלט  $x=\langle M \rangle$  תנחש שבהינתן שבהינתן את ריצתה של  $w\in \Sigma^*$  תנחש מילה  $w\in \Sigma^*$  אל M

x אם  $N_L$  אז M מקבלת את מקבלת את אם M

# x על קלט $N_L$ תיאור פעולת

- עם מיט). בודקת אם x מהצורה (האם x מהצורה מ"ט). בודקת אם א $N_L$  (1 אם אם  $N_L \leftarrow N_L \leftarrow N_L$  אם לא
  - $.w \in \Sigma^*$  מנחשת מילה  $N_L$  (2
  - .w על M על את מסמלצת מסמלצת (3
  - . מקבלת  $N_L$  אם M עצרה וקיבלה את אז M מקבלת אם M
    - בוחה.  $N_L$  אם M עצרה ודחתה אז M

# $: N_L$ הוכחת נכונות המכונה

 $L=L\left(N_{L}
ight)$  יש להוכיח כי אכן מתקיים לשם כך נוכיח כי מתקיים

 $x\in L \quad \Rightarrow \quad x\in L\left(N_L\right)\;,$   $x\notin L \quad \Rightarrow \quad x\notin L\left(N_L\right)\;,$  ( ז"א  $x\notin L \quad \Rightarrow \quad x\notin L\left(N_L\right)\;,$ 

## $x \in L \Rightarrow x \in L(N_L)$

- $.L(M) 
  eq \emptyset$  -1  $x = \langle M \rangle \Leftarrow x \in L$  ullet
- $w \in L(M)$  -כך ש-  $w \in \Sigma^*$  קיימת  $\Leftrightarrow ullet$
- לפי  $x=\langle M \rangle$  שך את תקבל את w, ולכן w, תקבל את על  $w \in \Sigma^*$  שך שבריצה  $w \in \Sigma^*$  שלר  $w \in \Sigma^*$ 
  - $x=\langle M 
    angle$  את המקבל את של של של  $N_L$  איים חישוב  $\Leftarrow ullet$ 
    - $x \in L(N_L) \Leftarrow \bullet$

$$x \notin L \Rightarrow x \notin L(N_L)$$

שני מקרים אפשריים.  $\Leftarrow x \notin L$ 

מצב 1)  $x \neq \langle M \rangle$  מצב 1, כלומר x אינה קידוד חוקי של מ"ט.

 $x \notin L\left(N_L\right) \Leftarrow 1$  דוחה את את (לפי שלב 1 $x \notin N_L \Leftarrow 1$ 

$$L\left(M
ight)=\emptyset$$
 -ו  $x=\langle M
angle$  (2 מצב

- M (בכל אורך שהוא) המתקבלת ע"י w
  - M ניחוש של  $w \in \Sigma^*$  המתקבלת ע"י
    - w את מקבלת את את  $w\in \Sigma^*$  לכל  $\Leftrightarrow ullet$
  - .(3 אם M לפי שלב  $N_L \Leftarrow w$  אם אדוחה את א אם \*
- x אם  $N_L$  לא עוצרת על + הסימולציה לא הסימולציה לש אוצרת על א אם א אוצרת אוצרת אוצרת א אם א
  - $x \notin L(N_L) \Leftarrow x$  את מקבלת אל  $N_L$  לכן •

# שאלה 2

$$A \leq_m B$$
 -ניח ש-  $1) \Rightarrow 2)$ 

ז"א

- $2) \Rightarrow 3)$
- $3) \Rightarrow 4)$
- $4) \Rightarrow 1)$

### שאלה 3 נוכיח כי

 $A_{TM} \leq_m L$ .

 $A_L$  את שמכריעה שמכריעה מ"ט  $B_L$  נניח בשלילה מ"ט א שמכריעה את נבנה מ"ט מבנה מ"ט א

$$:\langle M,w
angle$$
 על הקלט "  $=R$ 

. בונים קידוד של מ"ט חדשה  $\langle M' \rangle$  כמפורט להלן.

$$x$$
 על הקלט " =  $M'$ 

- .rej  $\leftarrow x \neq w$  אם \*
- w על M על x=w אם x=w
- . אם M מקבלת אז M מקבלת -
  - ".חרת M' דוחה. -
- $L(D) = L(w) = \{w\}$  כך ש- סך DFA חדשה סFA בונים קידוד של
  - $^{\prime\prime}.M_L$  את הפלט את ומחזירים את על  $\langle M',D \rangle$  על של מריצים •

w אז M מקבלת את  $M,w \in A_{TM}$  אם לכן M' מקבלת את M' ודוחה כל מילה אחרת. לכן  $L(M')=\{w\}$  לכן L(M')=L(D) לכן L(M')=L(D) מקבלת L(M',D) מקבלת את L(M,w).

w אז M לא מקבלת את אם M אז M אז M לא  $A_{TM}$  לכן לכן  $L(M')=\emptyset$  מסיבה לכך ש-  $L(D)=\{w\}$  מסיבה לכך ש-  $L(M')\neq L(D)$  לכן M דוחה את M ולכן M דוחה את לכן M

## שאלה 4 רמז:

 $E_{TM} \leq_m L$ .

שאלה 6 הטענה לא נכונה.