### The Normal Distribution



### History of the Normal Distribution

Binomial distribution
Useful to answer questions like

If a fair coin is flipped 100 times, what is the probability of getting 60 or more heads?



## Probability with Binomial Distribution

$$P(x) = \frac{N!}{x!(N-x)!} \pi^{x} (1-\pi)^{N-x}$$

$$P(60)+P(61)+P(62)+...$$



### Probability with **Binomial Distribution**

$$P(x) = \frac{N!}{x!(N-x)!} \pi^{x} (1-\pi)^{N-x}$$

$$P(60) + P(61) + P(62) + \dots$$





### Important to Gamblers

- Abraham de Moivre
  - -Consultant to gamblers
  - Noticed that as the number of events increased, the distribution approached a smooth curve.

### **Binomial Distribution**





### **Binomial Distribution**





### **Binomial Distribution**





# Discovery of the Normal Curve





# Importance of the Normal Curve





#### Central Limit Theorem

- Laplace discovered the same distribution in 1778.
  - Derived the "Central Limit Theorem"
  - Distribution of means is approximately normal



### Application to Humans

- Quételet was the first to apply the normal distribution to human characteristics
- Noted that characteristics such as height, weight, and strength were normally distributed



### Introduction to Normal Distributions

The most important distribution in statistics

 The most widely used distribution in statistics



### Naming the Normal Distribution



Normal Distribution = Bell Curve



### Naming the Normal Distribution



Normal Curve = Bell Curve = Gaussian Curve



### Naming the Normal Distribution



#### Varieties of Normal Distributions

It is not correct to talk about "the normal distribution"

There are many normal distributions



#### Varieties of Normal Distributions

Normal distributions can differ in their means

 Normal distributions can differ in their standard deviations



### Varieties of Normal Distributions





### Normal Distributions

- All three distributions are symmetric
- All have relatively more values at the center of the distribution and relatively few in the tails





# Formula for the Density of the Normal Distribution

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 This formula can be thought of as the height for a given value on the X axis.



# Formula for the Density of the Normal Distribution

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 $\mu$  is the mean  $\sigma$  is the standard deviation e is the base of the natural logarithm  $\pi$  is the constant pi



# Formula for the Density of the Normal Distribution

$$\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

 Don't worry if this expression confuses you. We will **not** be referring back to it.



#### Features of Normal Distributions

- 1. Normal distributions are symmetric around their mean.
- 2. The mean, median, and mode of a normal distribution are equal.
- 3. The area under the normal curve is equal to 1.0.



#### Features of Normal Distributions

- 4. Normal distributions are denser in the center and less dense in the tails.
- 5. Normal distributions are defined by two parameters, the mean  $(\mu)$  and the standard deviation  $(\sigma)$ .
- 6. 68% of the area of a normal distribution is within one standard deviation of the mean.



#### Areas Under Normal Distributions

 Areas under portions of a normal distribution can be computed using calculus.

 We are going to use computer programs and tables to find the area under normal distributions.



#### Areas Under Normal Distributions

 The normal distribution shown here has a mean of 50 and a standard deviation of 10.





## One Standard Deviation from the Mean

The shaded area between 40 and 60 contains 68% of the distribution





# Normal Distribution with a Mean of 100 an SD of 20





# One Standard Deviation from the Mean

68% of the area





## One Standard Deviation from the Mean

 68% of the area of any normal distribution is within one standard deviation of the mean.



# 1.96 Standard Deviations from the Mean





# 1.96 Standard Deviations from the Mean





## Two Standard Deviations from the Mean

- For normal distributions 95% of the area is within 1.96 standard deviations of the mean
- For an approximation 2 can be used



### Standard Normal Distribution

 A normal distribution with a mean of 0 and a standard deviation of 1 is called a standard normal distribution





## Transforming to a Standard Normal Distribution

 A value from any normal distribution can be transformed into its corresponding value on a standard normal distribution using this formula:

$$Z = (X-\mu)/\sigma$$



## Transforming to a Standard Normal Distribution

$$Z = (X-\mu)/\sigma$$

- Z is the value on the standard normal distribution
- X is the value on the original distribution
- μ is the mean of the original distribution
- σ is the standard deviation of the original distribution



### An Example

 What portion of a normal distribution with a mean of 50 and a standard deviation of 10 is below 26?

$$Z = (X-\mu)/\sigma$$
  
= (26 - 50)/10  
= -2.4



### An Example

• From the table we can see that 0.0082 of the distribution is below -2.4.

| Z     | Area below Z |
|-------|--------------|
| -2.50 | 0.0062       |
| -2.49 | 0.0064       |
| -2.48 | 0.0066       |
| -2.47 | 0.0068       |
| -2.46 | 0.0069       |
| -2.45 | 0.0071       |
| -2.44 | 0.0073       |
| -2.43 | 0.0075       |
| -2.42 | 0.0078       |
| -2.41 | 0.0080       |
| -2.40 | 0.0082       |
| -2.39 | 0.0084       |
| -2.38 | 0.0087       |
| -2.37 | 0.0089       |
| -2.36 | 0.0091       |
| -2.35 | 0.0094       |
| -2.34 | 0.0096       |
| -2.33 | 0.0099       |
| -2.32 | 0.0102       |



### Standard Normal Distribution





#### Standard Normal Distribution

- If all values transformed to Z scores, then the distribution will have a mean of 0 and a standard distribution
- This process is called standardizing the distribution

