```
#import the Libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

#1. Read the dataset

df = pd.read\_csv("/content/titanic.csv")
df

| ₹ |   | PassengerId | Survived | Pclass | Name                                                          | Sex    | Age  | SibSp | Parch | Ticket              | Fa    |
|---|---|-------------|----------|--------|---------------------------------------------------------------|--------|------|-------|-------|---------------------|-------|
|   | 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                                 | male   | 22.0 | 1     | 0     | A/5 21171           | 7.25  |
|   | 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs<br>Th | female | 38.0 | 1     | 0     | PC 17599            | 71.28 |
|   | 2 | 3           | 1        | 3      | Heikkinen,<br>Miss.<br>Laina                                  | female | 26.0 | 0     | 0     | STON/O2.<br>3101282 | 7.92  |
|   | 3 | 4           | 1        | 1      | Futrelle,<br>Mrs.<br>Jacques<br>Heath<br>(Lily May<br>Peel)   | female | 35.0 | 1     | 0     | 113803              | 53.10 |
|   | 4 |             |          |        |                                                               |        |      |       |       |                     | •     |

#2. Observe the shape of dataset
df.shape

**→** (891, 12)

#3. Observe the statistics of the dataset
df.describe()

| ₹ | PassengerId Survive |                   | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       |  |
|---|---------------------|-------------------|------------|------------|------------|------------|------------|------------|--|
|   | count               | 891.000000        | 891.000000 | 891.000000 | 714.000000 | 891.000000 | 891.000000 | 891.000000 |  |
|   | mean                | 446.000000        | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |  |
|   | std                 | 257.353842        | 0.486592   | 0.836071   | 14.526497  | 1.102743   | 0.806057   | 49.693429  |  |
|   | min                 | 1.000000 0.000000 |            | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |  |
|   | 25%                 | 223.500000        | 0.000000   | 2.000000   | 20.125000  | 0.000000   | 0.000000   | 7.910400   |  |
|   | 50%                 | 446.000000        | 0.000000   | 3.000000   | 28.000000  | 0.000000   | 0.000000   | 14.454200  |  |
|   | 75%                 | 668.500000        | 1.000000   | 3.000000   | 38.000000  | 1.000000   | 0.000000   | 31.000000  |  |
|   | max                 | 891.000000        | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |  |

#4. Observe the number of Non-NULL and datatype of each feature of the dataset df.info()

<<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 891 entries, 0 to 890

| Data | columns (tota | al 12 columns): |         |
|------|---------------|-----------------|---------|
| #    | Column        | Non-Null Count  | Dtype   |
|      |               |                 |         |
| 0    | PassengerId   | 891 non-null    | int64   |
| 1    | Survived      | 891 non-null    | int64   |
| 2    | Pclass        | 891 non-null    | int64   |
| 3    | Name          | 891 non-null    | object  |
| 4    | Sex           | 891 non-null    | object  |
| 5    | Age           | 714 non-null    | float64 |
| 6    | SibSp         | 891 non-null    | int64   |
| 7    | Parch         | 891 non-null    | int64   |
| 8    | Ticket        | 891 non-null    | object  |
|      |               |                 |         |

```
9 Fare 891 non-null float64
10 Cabin 204 non-null object
11 Embarked 889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

```
#5. Bifurcate the categorical and numerical features of the dataset
cat_cols = df.select_dtypes(include=['object']).columns.tolist()
num_cols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
print("Categorical columns:", cat_cols)
print("Numerical columns:", num_cols)
```

Categorical columns: ['Sex', 'Cabin', 'Embarked']

Numerical columns: ['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare']

#6. Observe the number of null (N/A) values for each feature df.isnull().sum()

```
→ PassengerId
    Survived
                     0
    Pclass
                     0
    Name
                     0
    Sex
                     0
                   177
    Age
    SibSp
                     0
                     0
    Parch
    Ticket
                     0
    Fare
                     0
    Cabin
                   687
    Embarked
    dtype: int64
```

#7. Observe the percentage of null (N/A) values for each feature df.isnull().sum() \* 100 / len(df)

```
→ PassengerId
                    0.000000
    Survived
                    0.000000
    Pclass
                    0.000000
                    0.000000
    Name
    Sex
                    0.000000
                   19.865320
    Age
    SibSp
                    0.000000
    Parch
                    0.000000
    Ticket
                    0.000000
                    0.000000
    Fare
                   77.104377
    Cabin
    Embarked
                    0.224467
    dtype: float64
```

#8. Drop the "Ticket" and "Name" features from the dataset
drop\_cat=['Ticket','Name']
df.drop(drop\_cat, inplace=True, axis=1)
df

| ⋺₹ |     | DassanganTd | Cunvivad | Delace | Sav    | 100  | ciben | Daneh | Fano    | Cabin | Embankad |
|----|-----|-------------|----------|--------|--------|------|-------|-------|---------|-------|----------|
|    |     | PassengerId | Survivea | PCIASS | Sex    | Age  | SibSp | Parcn | Fare    | Cabin | Embarked |
|    | 0   | 1           | 0        | 3      | male   | 22.0 | 1     | 0     | 7.2500  | NaN   | S        |
|    | 1   | 2           | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | C85   | С        |
|    | 2   | 3           | 1        | 3      | female | 26.0 | 0     | 0     | 7.9250  | NaN   | S        |
|    | 3   | 4           | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | C123  | S        |
|    | 4   | 5           | 0        | 3      | male   | 35.0 | 0     | 0     | 8.0500  | NaN   | S        |
|    |     |             |          |        |        |      |       |       |         |       |          |
|    | 886 | 887         | 0        | 2      | male   | 27.0 | 0     | 0     | 13.0000 | NaN   | S        |
|    | 887 | 888         | 1        | 1      | female | 19.0 | 0     | 0     | 30.0000 | B42   | S        |
|    | 888 | 889         | 0        | 3      | female | NaN  | 1     | 2     | 23.4500 | NaN   | S        |
|    | 889 | 890         | 1        | 1      | male   | 26.0 | 0     | 0     | 30.0000 | C148  | С        |
|    | 890 | 891         | 0        | 3      | male   | 32.0 | 0     | 0     | 7.7500  | NaN   | Q        |
|    |     |             |          |        |        |      |       |       |         |       |          |

891 rows × 10 columns

#9. Drop the feature corresponding to the highest missing values
df1= df.drop(df[df["Cabin"].isnull()].index)
df1

| <del>_</del> |     | PassengerId | Survived | Pclass | Sex    | Age  | SibSp | Parch | Fare    | Cabin             | Embarked |
|--------------|-----|-------------|----------|--------|--------|------|-------|-------|---------|-------------------|----------|
|              | 1   | 2           | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | C85               | С        |
|              | 3   | 4           | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | C123              | S        |
|              | 6   | 7           | 0        | 1      | male   | 54.0 | 0     | 0     | 51.8625 | E46               | S        |
|              | 10  | 11          | 1        | 3      | female | 4.0  | 1     | 1     | 16.7000 | G6                | S        |
|              | 11  | 12          | 1        | 1      | female | 58.0 | 0     | 0     | 26.5500 | C103              | S        |
|              |     |             |          |        |        |      |       |       |         |                   |          |
|              | 871 | 872         | 1        | 1      | female | 47.0 | 1     | 1     | 52.5542 | D35               | S        |
|              | 872 | 873         | 0        | 1      | male   | 33.0 | 0     | 0     | 5.0000  | B51<br>B53<br>B55 | S        |
|              | 879 | 880         | 1        | 1      | female | 56.0 | 0     | 1     | 83.1583 | C50               | С        |
|              | 887 | 888         | 1        | 1      | female | 19.0 | 0     | 0     | 30.0000 | B42               | S        |
|              | 889 | 890         | 1        | 1      | male   | 26.0 | 0     | 0     | 30.0000 | C148              | С        |

#10. Drop the observations with missing values in the "Embarked" feature
df.dropna(subset=['Embarked'], inplace=True)
df

| ₹ |     | PassengerId | Survived | Pclass | Sex    | Age  | SibSp | Parch | Fare    | Cabin             | Embarked |
|---|-----|-------------|----------|--------|--------|------|-------|-------|---------|-------------------|----------|
|   | 1   | 2           | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | C85               | С        |
|   | 3   | 4           | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | C123              | S        |
|   | 6   | 7           | 0        | 1      | male   | 54.0 | 0     | 0     | 51.8625 | E46               | S        |
|   | 10  | 11          | 1        | 3      | female | 4.0  | 1     | 1     | 16.7000 | G6                | S        |
|   | 11  | 12          | 1        | 1      | female | 58.0 | 0     | 0     | 26.5500 | C103              | S        |
|   |     |             |          |        |        |      |       |       |         |                   |          |
|   | 871 | 872         | 1        | 1      | female | 47.0 | 1     | 1     | 52.5542 | D35               | S        |
|   | 872 | 873         | 0        | 1      | male   | 33.0 | 0     | 0     | 5.0000  | B51<br>B53<br>B55 | S        |
|   | 879 | 880         | 1        | 1      | female | 56.0 | 0     | 1     | 83.1583 | C50               | С        |
|   | 887 | 888         | 1        | 1      | female | 19.0 | 0     | 0     | 30.0000 | B42               | S        |
|   | 889 | 890         | 1        | 1      | male   | 26.0 | 0     | 0     | 30.0000 | C148              | С        |

#11. Fill the missing values of the "Age" feature with mean value

df["Age"].fillna(df["Age"].mean(), inplace=True)
df

| <b>→</b> |     | PassengerId | Survived | Pclass | Sex    | Age  | SibSp | Parch | Fare    | Cabin             | Embarked |
|----------|-----|-------------|----------|--------|--------|------|-------|-------|---------|-------------------|----------|
|          | 1   | 2           | 1        | 1      | female | 38.0 | 1     | 0     | 71.2833 | C85               | С        |
|          | 3   | 4           | 1        | 1      | female | 35.0 | 1     | 0     | 53.1000 | C123              | S        |
|          | 6   | 7           | 0        | 1      | male   | 54.0 | 0     | 0     | 51.8625 | E46               | S        |
|          | 10  | 11          | 1        | 3      | female | 4.0  | 1     | 1     | 16.7000 | G6                | S        |
|          | 11  | 12          | 1        | 1      | female | 58.0 | 0     | 0     | 26.5500 | C103              | S        |
|          |     |             |          |        |        |      |       |       |         |                   |          |
|          | 871 | 872         | 1        | 1      | female | 47.0 | 1     | 1     | 52.5542 | D35               | S        |
|          | 872 | 873         | 0        | 1      | male   | 33.0 | 0     | 0     | 5.0000  | B51<br>B53<br>B55 | S        |
|          | 879 | 880         | 1        | 1      | female | 56.0 | 0     | 1     | 83.1583 | C50               | С        |
|          | 887 | 888         | 1        | 1      | female | 19.0 | 0     | 0     | 30.0000 | B42               | S        |
|          | 889 | 890         | 1        | 1      | male   | 26.0 | 0     | 0     | 30.0000 | C148              | С        |

plt.boxplot(df['Age'])



```
#12. Observe the boxplot of the "Age" feature
sns.boxplot(df['Age'])
```

0

```
#13. Nomalize the features with the numerical values using MinMaxScaler

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range=(0, 1))

numeric = [col for col in df.columns if df[col].dtype != 'object']

x=df

x[numeric] = scaler.fit_transform(x[numeric])

x.describe()
```