Scilab Textbook Companion for Basic Fluid Mechanics by Peerless¹

Created by
Kvppradeep
Fluid mechanics
Electrical Engineering
IIT Bombay
College Teacher
None
Cross-Checked by
Lavitha Pereira

May 17, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Basic Fluid Mechanics

Author: Peerless

Publisher: Pergamon Press

Edition: 1

Year: 1967

ISBN: 978-0080110981

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		
2	Similarity	6
3	Dimensional Analaysis	11
5	Control Volume Analysis	13
6	Steady one dimensional reversible flow	16
7	Steady one dimensional Irreversible flow	22
8	analysis of dimensional constant density laminar flow	30
9	analysis of dimensional constant density turbulent flow	32
10	External flows	34
11	elementary analysis	39
12	TURBOMACHINES	46
13	Hydraulic power transmission	50
14	Further Devolopments	53

List of Scilab Codes

Exa 2.1	Force applied	6
Exa 2.3	force required	6
Exa 2.4	force at the end	7
Exa 2.5	air speed	8
Exa 2.6	ratio of resultant forces	8
Exa 2.7	Temperature a exit	9
Exa 3.1	dimensions of g	11
Exa 3.2	dimensions of vectors	12
Exa 3.5	dimensions of velocity	12
Exa 4.1	ex 1	13
Exa 5.2	ex 2	14
Exa 5.3	ex 3	14
Exa 5.5	ex 5	15
Exa 6.1	ex 1	16
Exa 6.2	ex 2	16
Exa 6.3	ex 3	17
Exa 6.4	ex 4	17
Exa 6.5	ex 5	18
Exa 6.7	ex 7	19
Exa 6.9	ex 9	20
Exa 6.10	ex 10	20
Exa 7.1	ex 1	22
Exa 7.2	ex 2	22
Exa 7.3	ex 3	23
Exa 7.4	ex 4	24
Exa 7.5	ex 5	24
Exa 7.6	ex 6	25
Exa 7.7	ex 7	25

Exa 7.9	ex 9	26
Exa 7.10	ex 10	27
Exa 7.11	ex 11	28
Exa 8.2	ex 2	30
Exa 8.3	ex 3	30
Exa 8.4	ex 4	31
Exa 9.1	ex 1	32
Exa 9.3	ex 3	33
Exa 10.1	ex 1	34
Exa 10.2	ex2	35
Exa 10.3	ex 3	35
Exa 10.4	ex 4	36
Exa 10.5	ex 5	36
Exa 10.6	ex 6	37
Exa 11.1	ex 1	39
Exa 11.2	ex 2	40
Exa 11.3	ex 3	41
Exa 11.4	ex 4	41
Exa 11.5	ex 5	42
Exa 11.6	ex 6	43
Exa 11.7	ex 7	44
Exa 12.1	ex 1	46
Exa 12.2	ex 2	47
Exa 12.3	ex 3	47
Exa 12.4	ex 4	48
Exa 12.5	ex 5	49
Exa 13.1	ex 1	50
Exa 13.2	ex 2	51
Exa 13.3	ex 3	52
Exa 14.1	ex 1	53
Eva 14.2	ev 9	54

Similarity

Scilab code Exa 2.1 Force applied

```
1 clc
2 //initialisation of variables
3 clear
4 r= 4
5 l1= 4 //units
6 l2= 10 //units
7 //CALCULATIONS
8 sxy= (4/r)
9 sxy1= l1^2
10 sxy2= l2^2
11 //RESULTS
12 printf ('x^2+4*y^2 = %.f',sxy)
13 printf ('\n x^2+4*y^2 = %.f',sxy1)
14 printf ('\n x^2+4*y^2 = %.f',sxy2)
```

Scilab code Exa 2.3 force required

```
1 clc
```

```
2 //initialisation of variables
3 clear
4 vo= 10 // ft / sec
5 a = 0.5 //ft^-1
6 b = 1 //ft
7 x = -2 // ft
8 y = 2 // ft
9 b1 = 2
10 a1= 3/5 //ft
11 //CALCULATIONS
12 Vx = vo/(a*x^2+b)
13 Vy = -2*a*b*vo*x*y/(a*x^2+b)^2
14 V = sqrt(Vx^2+Vy^2)
15 fx = -2*a*b^2*vo^2*x/(a*x^2+b)^3
16 fy= 2*a*b^2*vo^2*y*(b-a*x^2)/(a*x^2+b)^4
17 f = sqrt(fx^2+fy^2)
18 r = b1^2/a1
19 f1 = f * r
20 //RESULTS
21 printf ('Vx = \%.2 f ft/sec', Vx)
22 printf ('\n Vx = \%.2 \, \text{f} \, \text{ft/sec}', Vy)
23 printf ('\n V = \%.2 \,\mathrm{f} ft/sec',V)
24 printf ('\n fx = \%.2 \, \text{f} \, \text{ft/sec}^2',fx)
25 printf ('\n fy = \%.2 \, \text{f} \, \text{ft/sec}^2',fy)
26 printf ('\n f = \%.2 \,\mathrm{f} ft/sec^2',f)
27 printf ('\n r = \%.2 f in the present case',r)
28 printf ('\n f1 = \%.2 f ft/sec^2',f1)
```

Scilab code Exa 2.4 force at the end

```
1 clc
2 //initialisation of variables
3 clear
4 r= 1/5
5 b1= 2 //ft
```

```
6 a1= 3/5 //ft
7 //CALCULATIONS
8 r= (a1*b1)^2*r
9 //RESULTS
10 printf ('ratio of resultant forces acting on coorresponding fluid elements = %.2 f ',r)
```

Scilab code Exa 2.5 air speed

```
1 clc
2 //initialisation of variables
3 clear
4 vos= 70 // ft / sec
5 \text{ as} = 78 // ft
6 \text{ am} = 72 // ft
7 ls1 = 6 //ft
8 lm = 2 //ft
9 um = 386 // ft / sec
10 us= 372 // ft / sec
11 \text{ dm} = 0.4
12 //CALCULATIONS
13 vom= vos*as*ls1*um/(am*lm*us)
14 Ds = dm*(am/as)*(us/um)^2
15 //RESULTS
16 printf ('Air speed = \%. f ft/sec', vom)
17 printf ('\n Ds = \%.3 f lbf', Ds)
```

Scilab code Exa 2.6 ratio of resultant forces

```
1 clc
2 //initialisation of variables
3 clear
4 vom= 236 //ft/sec
```

```
5 as= 0.072 //ft
6 am= 62.4 //ft
7 ls1= 2 //ft
8 lm= 8 //ft
9 um= 248 //ft/sec
10 us= 3.86 //ft/sec
11 r= 0.4/3.3
12 //CALCULATIONS
13 voh= vom*as*ls1*um/(am*lm*us)
14 Ds= r*(as/am)*(um/us)^2*(ls1/lm)*(lm-ls1)
15 //RESULTS
16 printf ('Air speed = %.2 f ft/sec', voh)
17 printf ('\n Drag force = %.3 f lbf', Ds)
```

Scilab code Exa 2.7 Temperature a exit

```
1 clc
2 //initialisation of variables
3 clear
4 To1= 540 //R
5 po3= 12.6 //lbf/in^2
6 \ 13 = 3 \ //ft
7 po1= 14.7 / lbf/in^2
8 11 = 1 // ft
9 vo1= 500 // ft / sec
10 r = 0.83
11 P1= 1 // lbf/in^2
12 //CALCULATIONS
13 To3= To1*(po3*13/(po1*11))^r
14 Vo3= vo1*sqrt(To3/To1)
15 P3 = P1*po3*13/(po1*11)
16 //RESULTS
17 printf ('To3 = \%. f R', To3)
18 printf ('\n Vo3 = \%. f ft/sec', Vo3)
19 printf ('\n P3 = \%.2 \, \text{f lbf/ft'}, P3)
```

Dimensional Analaysis

Scilab code Exa 3.1 dimensions of g

```
1 clc
2 //initialisation of variables
3 clear
4 g= 32.2 // ft / sec^2
5 t = 1 //hr
6 g1= 32.2 // ft / sec^2
7 g2= 32.2 //lbm ft/lbf
8 u = 2.4*10^{-5} // lbf sec/ft^2
9 //CALCULATIONS
10 q2= g*(t*60*60)^2
11 go = g*(t*60*60)^2
12 q3 = g/g2
13 u1 = u/(t*60*60)
14 //RESULTS
15 printf ('q2 = \%.2e lbm ft/lbf hr^2',q2)
16 printf ('\n go = \%.2e lbm ft/lbf hr^2',go)
17 printf ('\n go = \%. f slug ft/lbf sec^2',q3)
18 printf ('\n viscosity = \%.2e lbf hr/ft<sup>2</sup>',u1)
```

Scilab code Exa 3.2 dimensions of vectors

```
1 clc
2 //initialisation of variables
3 clear
4 g= 32.2 //ft/sec^2
5 m= 1 //lb
6 //CALCULATIONS
7 m1= g/m
8 //RESULTS
9 printf ('1 lbf/sec ft^2 = %.1f lbm/ft sec',m1)
```

Scilab code Exa 3.5 dimensions of velocity

```
1 clc
2 //initialisation of variables
3 clear
4 n1=1
5 n2 = 3
6 n3=2
7 //CALCULATIONS
8 a1 = -n1
9 a2 = -n3
10 \quad a3 = -n1 - a2 + 3 * a1
11 b1 = -n1
12 b2 = -n1
13 b3 = n1 + 3 * b1 - b2
14 //RESULTS
15 printf ('a1 = \%. f ',a1)
16 printf ('\n a2 = \%. f', a2)
17 printf ('\n a3 = \%. f ', a3)
18 printf ('\n b1 = \%. f', b1)
19 printf ('\n b2 = \%. f ', b2)
20 printf ('\n b3 = \%.f',b3)
```

Control Volume Analysis

Scilab code Exa $4.1 \, \text{ex} \, 1$

```
1 clc
 2 //initialisation of variables
 3 clear
 4 \text{ w= } 20 \text{ //lbm/sec}
 5 \text{ sh} = 0.004
6 \text{ m1= 0.12 } //\text{lbm/sec}
 7 \text{ m2} = 12.2 //\text{lbm/sec}
 8 \text{ m3} = 0.130 //\text{lbm/sec}
 9 //CALCULATIONS
10 mw1 = w/((1/sh)+1)
11 \quad mal = w-mwl
12 \text{ ma4} = \text{ma1} - \text{m2}
13 \text{ mw4} = \text{mw1} + \text{m1} - \text{m3}
14 \text{ mr} = \text{ma4} + \text{mw4}
15 \text{ sh1} = \text{mw4/ma4}
16 //RESULTS
17 printf ('mw1 = \%.4 \, \text{f lbm/sec}', mw1)
18 printf ('\n ma1 = \%.2 \text{ f lbm/sec}', ma1)
19 printf ('\n ma4 = \%.2 \text{ f lbm/sec}', ma4)
20 printf ('\n mw4 = \%.2 \text{ f lbm/sec',mw4})
21 printf ('\n mr = \%.2 f lbm/sec',mr)
```

Scilab code Exa 5.2 ex 2

Scilab code Exa 5.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 F1= 237 //lb
5 dp= 50 //lbf/in^2
6 D= 6 //in
7 //CALCULATIONS
8 F2= dp*144*(%pi/4)*(D/12)^2
9 Fb= F1-F2
10 //RESULTS
11 printf ('Load on the bolts = %.f lbf',Fb)
```

Scilab code Exa 5.5 ex 5

```
1 clc
 2 //initialisation of variables
3 clear
4 w1= 0.0286 / lbm/ft^3
5 v = 2500 //ft/sec
6 \text{ A= } 2.5 // \text{ft}^3
7 k = 0.015
8 p2= 700 // lbf/ft^2
9 p1= 628 // lbf/ft^2
10 v2= 3500 // ft / sec
11 g= 32.17 // ft / sec^2
12 //CALCULATIONS
13 ma = w1 * v * A
14 \text{ mf} = k*ma
15 \text{ mt} = \text{ma} + \text{mf}
16 F = (p2-p1)*A+(mt*v2/g)-(ma*v/g)
17 //RESULTS
18 printf ('air mass flow rate = \%.2 \,\mathrm{f}\,\,\mathrm{lbm/sec}', ma)
19 printf ('\n Fuel flow rate = \%.2 \, \text{f lbm/sec}',mf)
20 printf ('\n Fuel flow rate at station 2 = \%.2 \, f \, lbm/
       sec', mt)
21 printf ('\n Thrust force = \%.f lbf',F)
```

Steady one dimensional reversible flow

Scilab code Exa 6.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 g= 32.2 //ft/sec^2
5 h= 4 //ft
6 d2= 0.16 //ft
7 d1= 0.3 //ft
8 dp= 12.6 //lbf/in^2
9 //CALCULATIONS
10 Q= (%pi/4)*sqrt(2*g*dp*h/((1/d2^4)-(1/d1^4)))
11 //RESULTS
12 printf ('Volumetric flow rate = %.2 f ft^3/sec',Q)
```

Scilab code Exa 6.2 ex 2

1 clc

```
2 //initialisation of variables
3 clear
4 w= 0.0765 //lbm/ft^3
5 v1= 120 //ft/sec
6 g= 32.2 //ft/sec^2
7 //CALCULATIONS
8 dp= w*v1^2/(2*2*g)
9 //RESULTS
10 printf ('Difference in pressure= %.2 f lbf/ft^2',dp)
```

Scilab code Exa 6.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 r=1.4
5 g= 32.2 //ft/sec^2
6 R= 53.3 //lbf ft/lbm
7 T1= 760 //R
8 p2= 2 //lbf/in^2
9 p1= 3 //lbf/in^2
10 //CALCULATIONS
11 V2= sqrt(2*r*R*g*T1*(1-(p2/p1)^((r-1)/r))/(r-1))
12 //RESULTS
13 printf ('Velocity in working section = %.f ft/sec', V2)
```

Scilab code Exa 6.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 r= 1.4
```

```
5 \text{ g} = 32.2 // \text{ft/sec}^2
6 R = 53.3 //lbf ft/lbm
7 T = 32 //C
8 T1 = 2000 //R
9 r1 = 1.32
10 p= 1440 // lbf/in^2
11 v1= 1.2306 // \text{ft }^3/ \text{lbm}
12 v2= 1.2546 // ft^3/lbm
13 bm = 3.13*10^5 / lbf/in^2
14 w= 62.4 / lbf/ft^3
15 //CALCULATIONS
16 a1= sqrt(r*R*(460+T)*g)
17 a2= sqrt(r1*R*T1*g)
18 r2 = p/(v1 - v2)
19 a3= sqrt(-g*(v1+v2)^2*0.5^2*r2)
20 	 a4 = sqrt(bm*144*g/w)
21 //RESULTS
22 printf ('Acoustic veloctiy = \%. f ft/sec',a1)
23 printf ('\n Acoustic veloctiy = \%.f ft/sec',a2)
24 printf ('\n Acoustic veloctiy = \%. f ft/sec', a3)
25 printf ('\n Acoustic veloctiy = \%. f ft/sec',a4)
```

Scilab code Exa 6.5×5

```
1 clc
2 //initialisation of variables
3 clear
4 r= 1.4
5 ma2= 2.5 //ft/sec
6 g= 32.17 //ft/sec^2
7 p2= 1 //lbf/in^2
8 ps= 17.08 //lbf/in^2
9 ps2= 75 //lbf/in^2
10 Ts= 720 //R
11 R= 53.3 //lbf ft/lbm
```

```
12 A = 4 // ft^2
13 ps3= 0.4 / lbf/in^2
14 A2= 0.685 // ft^2
15 P = 5 //per cent
16 //CALCULATIONS
17 R1= (1+0.5*(r-1)*ma2^2)^(r/(r-1))
18 R2= (2*(r/(r-1))*(p2/ps)^(2/(r))*(1-(p2/ps)^((r-1)/r))
      )))^0.5
19 m2 = R2*ps2*144*(g/(R*Ts))^0.5*0.1
20 \quad m = m2 * A
21 At = A*R2/A2
22 \text{ m1} = \text{m} * (1 - (P/100))
23 \text{ mrp} = (1-(P/100))*R2
24 //RESULTS
25 printf ('Mass flow rate= %.1 f lbm/sec',m)
26 printf ('\n Area of throat= \%.3 \, f ft<sup>2</sup>',At)
27 printf ('\n Mass flow rate= \%.1 \, \text{f lbm/sec',m1})
28 printf ('\n Mass flow rate parameter = \%.4 \,\mathrm{f}',mrp)
```

Scilab code Exa 6.7 ex 7

```
1 clc
2 //initialisation of variables
3 clear
4 r1= 10 //ft
5 r2= 0.2 //miles
6 w= 0.0765 //lbm/ft^2
7 g= 32.2 //ft/sec^2
8 V1= 1 //ft/sec
9 //CALCULATIONS
10 k= r2*5280*V1
11 dp= w*k^2*10*((1/r1)^2-(1/(5280*r2))^2)/(2*g)
12 //RESULTS
13 printf ('k = %.f ft^2/sec',k)
14 printf ('\n pressure difference = %.1f lbf/ft^2',dp)
```

Scilab code Exa 6.9 ex 9

```
1 clc
2 //initialisation of variables
3 clear
4 w= 12 //ft
5 q= 300 //ft^3/sec
6 h= 10 //ft
7 g= 32.2 //ft/sec^2
8 R= 2.6
9 //CALCULATIONS
10 hc= ((q/12)^2/g)^(1/3)
11 r= h/hc
12 h1= hc*(((h/hc)+0.5*(hc/h)^2)-0.5*R^2)
13 //RESULTS
14 printf ('hc = %.2 f ft',hc)
15 printf ('\n stream depth = %.2 f ft',h1)
```

Scilab code Exa 6.10 ex 10

```
1 clc
2 //initialisation of variables
3 clear
4 Q= 400 //ft^3/sec
5 b1= 25 //ft
6 b2= 20 //ft
7 h1= 6 //ft
8 z1= 2.5 //ft
9 z2= 3.3 //ft
10 g= 32.2 //ft/sec^2
11 //CALCULATIONS
```

```
12 hc1= (Q^2/(g*b1^2))^(1/3)
13 hc2= (Q^2/(g*b2^2))^(1/3)
14 r= (hc1/hc2)*((h1/hc1)+0.5*(hc1/h1)^2)+((z1-z2)/hc2)
15 //RESULTS
16 printf ('hc1 = %.3 f ft',hc1)
17 printf ('\n hc2 = %.3 f ft',hc2)
18 printf ('\n Ratio = %.3 f',r)
```

Steady one dimensional Irreversible flow

Scilab code Exa 7.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 r= 1.5
5 f= 0.025
6 //CALCULATIONS
7 r1= (2/f)*(r^2-1)
8 //RESULTS
9 printf ('ratio L/D2 = %.f',r1)
```

Scilab code Exa 7.2 ex 2

```
1 clc
2 //initialisation of variables
3 clear
4 a= 6 //degrees
```

```
5 r = 1.5
6 1 = 100 //ft
7 f = 0.025
8 K = 0.15
9 //CALCULATIONS
10 R = r^4 - 1
11 R1= cotd(a/2)*(1-(1/r))
12 p1 = f * 1
13 p2 = 2.5*(1-p1)/1
14 p3 = (1-r^2)^2
15 p4 = K*p3
16 pt = p4 + p2
17 //RESULTS
18 printf ('lowest ratio = \%.2 \,\mathrm{f}',R)
19 printf ('\n contribtuion of friction in pipe = \%.1 f
      lbf/ft^2, p1)
20 printf ('\n contribtuion of diffuser in pipe = \%.3 f
      lbf/ft^2, p2)
21 printf ('\n stagnant pressure drop = \%.3 \, f \, lbf/ft^2',
      p3)
22 printf ('\n contribtuion of friction in pipe after
      reduction = \%.3 f lbf/ft^2, pt)
```

Scilab code Exa 7.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 d= 4 //in
5 q= 0.5 //ft^3/sec
6 w= 62.4 //lb/ft^3
7 u= 2.7*10^-5 //lbf sec/ft^2
8 e= 0.0005 //ft
9 g= 32.1 //ft/sec^2
10 f= 0.0235
```

```
11  lt= 400  // ft
12  //CALCULATIONS
13  V= 4*q/(%pi*(d/12)^2)
14  Re= w*V*(d/12)/(u*g)
15  r= e/(d/12)
16  dz= (V^2/(2*g))*(1.7+f*lt/(d/12))
17  //RESULTS
18  printf ('mean flow velocity = %.2 f ft/sec',V)
19  printf ('\n Reynolds number = %.2 e',Re)
20  printf ('\n Relative roughness = %.4 f',r)
21  printf ('\n difference in the levels of water = %.1 f ft',dz)
```

Scilab code Exa 7.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 d= 4 //in
5 v= 6.64 //ft/sec
6 //CALCULATIONS
7 Q= %pi*0.25*(d/12)^2*v
8 //RESULTS
9 printf ('Flow rate= %.3 f ft^3/sec',Q)
```

Scilab code Exa 7.5 ex 5

```
1 clc
2 //initialisation of variables
3 clear
4 d= 0.366 //ft
5 i= 12
6 //CALCULATIONS
```

```
7 pd= d*i
8 //RESULTS
9 printf ('Required pipe diameter = %.2 f in',pd)
```

Scilab code Exa 7.6 ex 6

```
1 clc
2 //initialisation of variables
3 clear
4 Ps1= 1050 // lbf/ft^2
5 \text{ fr} = 10.7
6 p= 36.6 / lbf/ft^2
7 p1= 195 // lbf/ft^2
8 \text{ fr1} = 16
9 \text{ fr2} = 1.8
10 //CALCULATIONS
11 p2= fr*p
12 dp= Ps1-p2
13 lc = dp/p
14 \text{ sp= Ps1+p1-p*(fr1+fr2)}
15 lc1= sp/p
16 //RESULTS
17 printf ('Pressure = \%. f lbf/ft<sup>2</sup>',p1)
18 printf ('\n pressure difference = \%. f lbf/ft<sup>2</sup>',dp)
19 printf ('\n Loss coefficient = \%.f ',1c)
20 printf ('\n Loss coefficient = \%.1 \,\mathrm{f} ',lc1)
```

Scilab code Exa $7.7 \, \text{ex} \, 7$

```
1 clc
2 //initialisation of variables
3 clear
4 p1= 50 //lbf/in^2
```

```
5 R= 96.3 //ft lbf/lbm R
6 T = 80 //F
7 p2= 20 // lbf/in^2
8 r = 1.31
9 u= 2.34*10^-7 //lbf sec/ft^2
10 e= 0.00005 //ft
11 m = 5*10^4 / lbm / sec
12 d = 1.5 //ft
13 g= 32.2 // ft / sec^2
14 f= 0.113
15 //CALCULATIONS
16 w1= p1*144/(R*(460+T))
17 V1= 4*(m/3600)/(\%pi*w1*d^2)
18 Ma1= V1/(r*R*g*(460+T))^0.5
19 Re= w1*V1*d/(u*g)
20 dx = (((1/(r*Ma1^2))*10*(1-(p2/p1)^2))+log(p2/p1))*d/
      f
21 //RESULTS
22 printf ('density = \%.3 \text{ f lbm/ft}^3',w1)
23 printf ('\n mean flow velocity = \%.1 \, \text{f} \, \text{ft/sec}', V1)
24 printf ('\n Match number = \%.4 \,\mathrm{f}', Ma1)
25 printf ('\n Reynolds number = \%.2e', Re)
26 printf ('\n Length of pipe = \%.2e ft', dx)
```

Scilab code Exa 7.9 ex 9

```
1 clc
2 //initialisation of variables
3 clear
4 r= 1.4
5 R= 53.3 //ft lbf/lbm R
6 g= 32.2 //ft/sec^2
7 T1= 410 //R
8 v= 2500 //ft/sec
9 P1= 628 //lbf/in^2
```

```
//CALCULATIONS
//CALCULATIONS
11 v1= sqrt(r*g*R*T1)
// Ma1= v/v1
// Ts1= T1*(1+0.5*(r-1)*Ma1^2)
// Ps1= P1*(1+0.5*(r-1)*Ma1^2)^(r/(r-1))
// Ps2= Ps1*((r+1)/(2*r*Ma1^2-r+1))^(1/(r-1))*(0.5*(r+1)*Ma1^2/(1+0.5*(r-1)*Ma1^2))^(r/(r-1))
//RESULTS
// printf ('acoustic velocity = %.f ft/sec',v1)
// printf ('\n Match number = %.2f',Ma1)
// printf ('\n Stagnition temperature = %.f R',Ts1)
// printf ('\n Stagnition pressure = %.f lbf/ft^2',Ps1)
// printf ('\n Stagnition pressure = %.f lbf/ft^2',Ps2)
```

Scilab code Exa 7.10 ex 10

```
1 clc
2 //initialisation of variables
3 clear
4 p2= 67.2 / lbf/in^2
5 p1= 63 // lbf / in 62
6 r = 1.4
7 n = 0.6
8 T1 = 870 //R
9 \text{ ma1} = 0.8 // \text{ft/sec}
10 //CALCULATIONS
11 dt = (p2/p1)^{((r-1)/r)-1}
12 dt1 = dt/n
13 T2 = T1 * (1 + dt1)
14 Ts1= T1*(1+0.5*(r-1)*ma1^2)
15 ps1= p1*(1+0.5*(r-1)*ma1^2)^(r/(r-1))
16 ps2= p2*(Ts1/T2)^(r/(r-1))
17 dp= ps1-ps2
18 //RESULTS
19 printf ('dT = \%.5 f', dt)
```

```
20     printf ('\n dT1 = %.5 f ',dt1)
21     printf ('\n Temperature = %.f R',T2)
22     printf ('\n Temperature = %.1 f R',Ts1)
23     printf ('\n Pressure = %.1 f lbf/in^2',ps1)
24     printf ('\n Pressure = %.1 f lbf/in^2',ps2)
25     printf ('\n pressure difference = %.1 f lbf/in^2', dp)
```

Scilab code Exa 7.11 ex 11

```
1 clc
2 //initialisation of variables
3 clear
4 r = 1.4
5 ma3= 3 //ft/sec
6 ps= 80 //lbf/ft^2
7 Ts= 840 //R
8 \text{ r1} = 53.3 // \text{ft lbm/ft}^3
9 A3= 2 //in^2
10 g= 32.2 // ft / sec^2
11 ma1= 1.6
12 //CALCULATIONS
13 R= (1+(r-1)*0.5*ma3^2)^(r/(r-1))
14 p3 = ps/R
15 R1 = 1 + 0.5 * (r-1) * ma3^2
16 T3= Ts/R1
17 \text{ w3} = \text{p3}*144/(\text{r1}*\text{T3})
18 V3= ma3*sqrt(r*r1*g*T3)
19 \text{ m} = \text{w3*V3*A3}/144
20 ra= ((r+1)/(2*r*ma1^2-(r-1)))^(1/(r-1))*(0.5*(r+1)*
      ma1^2/(1+0.5*(r-1)*ma1^2))^(r/(r-1))
21 ps2= ps*ra
22 	 dp = ps - ps 2
23 //RESULTS
printf ('outlet pressure = \%.2 \,\mathrm{f}\,\mathrm{lbf/in}\,^2',p3)
```

analysis of dimensional constant density laminar flow

Scilab code Exa 8.2 ex 2

```
1 clc
2 //initialisation of variables
3 clear
4 w= 78.9 //lbf.ft^3
5 d= 0.01 //in
6 u= 8.67*10^-9 //lbf/ hr ft^2
7 h= 18 //ft
8 l= 10 //ft
9 //CALCULATIONS
10 Q= %pi*w*(d/12)^4*(h+1)/(1*128*u)
11 //RESULTS
12 printf ('Flow rate = %.2e ft^3/hr',Q)
```

Scilab code Exa 8.3 ex 3

1 clc

```
2 //initialisation of variables
3 clear
4 x = 0.1 // ft
5 \text{ w} = 62.4 // lbf/ft^3
6 v1= 10 // ft / sec
7 u = 2.4*10^-5 //lbf/ft
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 k = 4.91
10 //CALCULATIONS
11 s= k*x*(w*v1*x/(u*g))^-0.5
12 Tw= 0.332*w*v1^2*(u*g/(w*x*v1))^0.5/g
13 R = 0.332*6*Tw
14 //RESULTS
15 printf ('Thickness = \%.2e*ft',s)
16 printf ('\n Shear stress = \%.3 \, f \, lbf/ft^2', Tw)
17 printf ('\n Shear stress = \%.3 \, f \, lbf/ft',R)
```

Scilab code Exa 8.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 r=1
5 r1=1
6 //CALCULATIONS
7 e1= r+r1
8 e2= r-r1
9 //RESULTS
10 printf ('vorticity = %.f*k',e1)
11 printf ('\n vorticity = %.f',e2)
```

analysis of dimensional constant density turbulent flow

Scilab code Exa 9.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 n=7
5 \text{ w} = 62.4 // \text{lbf/ft}^3
6 \text{ v} = 6 // \text{ft} / \text{sec}
7 d = 2 //in
8 u = 2.34*10^{-5} // lbf/ft^3
9 f = 0.0178
10 g= 32.2 // ft / sec^2
11 R= 1.224
12 R1= 8 // ft / sec
13 //CALCULATIONS
14 r = (n+1)*(2*n+1)/(2*n^2)
15 Red= w*v*(d/12)/(u*g)
16 C= (d/Red)^(1/7)*R*(R1/f)^(4/7)
17 V = v*sqrt(f/8)
18 //RESULTS
19 printf ('V \max / V = \%.3 \, f', r)
```

```
20 printf ('\n Red = %.2e',Red)
21 printf ('\n C = %.2f',C)
22 printf ('\n Velocity = %.3f ft/sec',V)
```

Scilab code Exa 9.3 ex 3

```
1 clc
 2 //initialisation of variables
3 clear
4 \text{ Re} = 5
5 \text{ g} = 32.2 // \text{ft/sec}^2
6 u = 2.34*10^-5 //lbf/ft sec
7 \text{ w= } 62.4 // lbf/ft^3
8 v = 0.283 //ft/sec
9 \text{ Re1} = 70
10 v1= 0.0374 // ft / sec
11 //CALCULATIONS
12 y = Re*u*g/(w*v)
13 y1 = Re1 * u * g / (w * v)
14 y2 = Re*u*g/(w*v1)
15 y3 = Re1*u*g/(w*v1)
16 //RESULTS
17 printf ('y = \%.6 \, f \, ft',y)
18 printf ('\n y = \%.5 \, \text{f} ft', y1)
19 printf ('\n y = \%.5 f ft', y2)
20 printf ('\n y = \%.4 \, \text{f} ft', y3)
```

External flows

Scilab code Exa 10.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 \text{ g} = 32.2 // \text{ft/sec}^2
5 u = 3.6*10^{-5} // lbf sec/ft^{2}
6 d = 64 / \frac{lbm}{ft^2}
7 1 = 20 // ft
8 a = 0.5
9 //CALCULATIONS
10 sw= u*g/(a*d)
11 sw1 = u^2*g*1/(2*a*d)
12 Re=[1 2 3 4 5 6 7 8 9 10]*10^5
13 Vinf=Re*u*g/(d*a)
14 Cd=[1.2 1.15 0.94 0.68 0.305 0.31 0.32 0.33 0.34
      0.35]
15 \text{ cdre=Cd.*Re}^2
16 \quad D=sw1*cdre
17 //RESULTS
18 printf ('velocity = \%.2e ft/sec',sw)
19 printf ('\n Force = \%.2e lbf',sw1)
20 disp(Vinf)
```

```
21 disp(D)
```

Scilab code Exa 10.2 ex2

```
1 clc
2 //initialisation of variables
3 clear
4 g= 32.2 // ft / sec^2
5 u = 3.6*10^{-5} //lbf sec/ft^{2}
6 d = 64 / lbm / ft^2
7 1 = 20 // ft
8 a = 0.5
9 //CALCULATIONS
10 sw= u*g/(a*d)
11 sw1 = u^2*g*1/(2*a*d)
12 Re=[1 2 3 4 5 6 7 8 9 10]*10^5
13 Vinf=Re*u*g/(d*a)
14 Cd=[1.2 1.15 0.94 0.68 0.305 0.31 0.32 0.33 0.34
      0.35]
15 \text{ cdre=Cd.*Re}^2
16 D=sw1*cdre
17 //RESULTS
18 plot(Vinf,D)
19 xtitle("","Vinf, ft/sec", "D, lbf")
20
21 //data for curves b,c,d is not given
```

Scilab code Exa 10.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 v1= 10 //ft/sec
```

```
5  v2= 9 //ft/sec
6  a= 1.02
7  r= 5.95
8  //CALCULATIONS
9  ca= (v1/v2)^2
10  Cd= r*(ca-1+2-2*ca)+2*a*ca
11 //RESULTS
12  printf ('Drage coeffcieicnt = %.2f',Cd)
```

Scilab code Exa 10.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 A= 320 // ft /^2
5 \text{ w} = 18000 // \text{lbf}
6 v = 230 //ft/sec
7 ad= 0.0765 / lbm/ft^3
8 p = 5 //per cent
9 c = 0.055
10 n = 1.75
11 g= 32.2 // ft / sec^2
12 //CALCULATIONS
13 CL= 2*w*(1-(p/100))*g/(ad*v^2*A)
14 D = w*(1-(p/100))*c*n/CL
15 //RESULTS
16 printf ('lift coeefieicnt = \%.2 \,\mathrm{f}',CL)
17 printf ('\n Drage force = \%.f',D)
```

Scilab code Exa 10.5 ex 5

```
1 clc
2 //initialisation of variables
```

```
3 clear
4 bi= 70 // degrees
5 i = 8 // degrees
6 \text{ bo} = 130 // \text{degrees}
7 \text{ s= } 5 \text{ //degrees}
8 vi= 1200 // ft / sec
9 \text{ g= } 32.2 // \text{ft/sec}^2
10 a = 0.48
11 s1= 1.4 //in
12 b = 5 //in
13 \text{ Cx} = 0.06
14 //CALCULATIONS
15 O= bo-s-bi+i
16 Vo= vi*sind(bi-i)/sind(bo-s)
17 Fy= -a*vi*sind(bi-i)*(s1/12)*(b/12)*(Vo*cosd(bo-s)-
      vi*cosd(bi-i))/g
18 dp= a*(Vo^2*(1+Cx)-vi^2)/(2*g)
19 //RESULTS
20 printf ('Fluid deflection angle = \%. f degrees',0)
21 printf ('\n Vo = \%. f ft/sec', Vo)
22 printf ('\n Force on each blade = \%.f lbf', Fy)
23 printf ('\n Pressure difference = \%. f lbf/ft<sup>2</sup>',dp)
```

Scilab code Exa 10.6 ex 6

```
1 clc
2 //initialisation of variables
3 clear
4 ari= 62 //degrees
5 aro= 125 //degrees
6 vri= 1200 //ft/sec
7 vro= 1294 //ft/sec
8 vrr= 550 //ft/sec
9 //CALCULATIONS
10 v1= vri*sind(ari)
```

```
11  v2= vrr+vri*cosd(ari)
12  vi= sqrt(v1^2+v2^2)
13  ai= atand(v1/v2)
14  vo= vro*sind(aro)
15  vo1= vro*cosd(aro)+vrr
16  vo2= sqrt(vo^2+vo1^2)
17  ao= atand(vo/vo1)+180
18  //RESULTS
19  printf ('absolute velocity = %. f ft/sec', vi)
20  printf ('\n direction = %.1 f degrees', ai)
21  printf ('\n absolute velocity = %. f ft/sec', vo2)
22  printf ('\n direction = %.1 f degrees', ao)
```

elementary analysis

Scilab code Exa 11.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 rt= 1.3 // ft
5 \text{ rr} = 0.6 // ft
6 \ Q = 75 \ //ft^3
7 \text{ rm} = 0.95
8 \text{ w1} = 40 //\text{rev/sec}
9 bim= 153 // degrees
10 bom = 147 / degrees
11 w= 62.4 //lb/ft^3
12 g= 32.2 // ft / sec^2
13 //CALCULATIONS
14 A= %pi*(rt^2-rr^2)
15 Va= Q/A
16 \text{ Vbm} = \text{rm} * \text{w1}
17 a= acotd(-Vbm/Va)
18 im= a-bim
19 vwm = Vbm + Va * cotd (bom)
20 \text{ dvwm} = \text{rm} * \text{vwm}
21 C = w * Q * dvwm/g
```

```
22  Cw= C*w1
23  dp= Cw/Q
24  //RESULTS
25  printf ('Incidence = %.1f degrees',im)
26  printf ('\n Oulet velocity = %.2f ft/sec',vwm)
27  printf ('\n Change of whirl at the mean radius = %.2 f ft^2/sec',dvwm)
28
29  printf ('\n Torque = %.f lbf/ft',C)
30  printf ('\n Rate of working = %.f ft lbf/sec',Cw)
31  printf ('\n Workdone by the rotor = %.f lbf/ft^2',dp
)
```

Scilab code Exa 11.2 ex 2

```
1 clc
2 //initialisation of variables
3 clear
4 vbm = 38 // ft / sec
5 \text{ va} = 17.94 // \text{ft/sec}
6 \text{ a= } 147.5 // \text{degrees}
7 vwm = 10.37 // ft / sec
8 C = 1430 // lbf/ft
9 P= 763 / 1bf/ft^2
10 //CALCULATIONS
11 vwm1= vbm+va*cotd(a)
12 p = (vwm - vwm1) / vwm
13 C1= C*(1-p)
14 P1 = P*(1-p)
15 //RESULTS
16 printf ('Oulet Velocity = \%.2 f ft/sec', vwm1)
17 printf ('\n Torque = \%. f lbf/ft',C1)
18 printf ('\n Workdone by the rotor = \%. f lbf/ft<sup>2</sup>',P1
```

Scilab code Exa 11.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 = 154 // degrees
5 vbm= 38 // ft / sec
6 bom = 147 / degrees
7 \text{ vwm} = -7.78 // \text{ft/sec}
8 \text{ w} = 62.4 // \text{lbf/ft}^3
9 g= 32.2 // ft / sec^2
10 vb= 38 // ft / sec
11 A = 4.18 / ft^2
12 e = 0.95
13 //CALCULATIONS
14 vat= (vwm-vb)*tand(bom)
15 Q= vat*A
16 a1= acotd(-vbm/vat)
17 \text{ imt} = a1-a
18 \text{ C= } w*Q*vwm*e/g
19 //RESULTS
20 printf ('Flow rate = \%.1 \,\mathrm{f}\, ft ^3',Q)
21 printf ('\n Incidence angle= \%. f degrees', imt)
22 printf ('\n Torque= \%. f lbf ft', C)
```

Scilab code Exa 11.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 rt= 0.5 //ft
5 rr= 0.16 //ft
```

```
6 dv1= 88.3 // ft / sec
7 b= 150 // degrees
8 r = [0.16 0.3 0.5]
9 \text{ vw} = [2.5 5 7.5]
10 vb= [46.6 88.3 132.5]
11 vrb= [44.16 88.3 132.5]
12 \text{ v1} = [-1.154 - 0.385]
13 //CALCULATIONS
14 A= %pi*(rt^2-rr^2)
15 \text{ Va= } -\text{dv1*tand(b)}
16 Q= Va*A
17 a = atand(v1) + 180
18 i = b-a
19 //RESULTS
20 printf ('Velocity = \%.2 \, \text{f} \, \text{ft/sec}', Va)
21 printf ('\n Flow rate = \%.1 f ft^3',Q)
22 disp(v1)
23 disp(a)
24 disp(i)
```

Scilab code Exa 11.5 ex 5

```
1 clc
2 //initialisation of variables
3 clear
4 rt= 0.5 //ft
5 rr= 0.16 //ft
6 dv1= 88.3 //ft/sec
7 b= 150 //degrees
8 a= 5 //degrees
9 v1= [-0.933 -0.311]
10 i= [1.0 5.0 6.7]
11 //CALCULATIONS
12 b1= b+a
13 A= %pi*(rt^2-rr^2)
```

```
14  Va = -dv1*tand(b1)
15  Q = Va*A
16  a1 = atand(v1)+180
17
18  //RESULTS
19  printf ('Velocity = %.2 f ft/sec', Va)
20  printf ('\n Flow rate = %.1 f ft^3/sec', Q)
21
22  disp(v1)
23  disp(a1)
24  disp(i)
```

Scilab code Exa 11.6 ex 6

```
1 clc
2 //initialisation of variables
3 clear
4 r = 1 //in
5 b = 0.75 //in
6 \text{ w} = 180 //\text{rev/sec}
7 B= 120 // degrees
8 Bo = 150 // degrees
9 \text{ ro} = 3 // ft
10 bo = 0.5 // ft
11 Vbo= 180 // ft / sec
12 w1= 62.4 / lbf/ft^3
13 g= 32.2 // ft / sec^2
14 //CALCULATIONS
15 Q = -2*\%pi*(r/12)^2*(b/12)*w*tand(B)
16 Vfo= Q/(2*\%pi*(ro/12)*(bo/12))
17 Vwo = Vbo*(ro/12) + Vfo*cotd(Bo)
18 C = w1*Q*Vwo*(ro/12)/g
19 dp= w1*Vwo*w*(ro/12)/g
20 ari= atand(-Q*0.8/(2*\%pi*(r/12)^2*(b/12)*w))+180
21 i1= ari-B
```

```
//RESULTS
printf ('Flow rate = %.2 f ft^3/sec',Q)
frintf ('\n radial velocity= %.2 f ft/sec',Vfo)
frintf ('\n outlet whirl velocity= %.2 f ft/sec',Vwo)
frintf ('\n Torque= %.2 f lbf ft',C)
frintf ('\n Stagnant pressure = %.f lbf/ft^2',dp)
frintf ('\n Incidence angle = %.1 f degrees',i1)
```

Scilab code Exa 11.7 ex 7

```
1 clc
2 //initialisation of variables
3 clear
4 r = 1.4
5 Mai= 0.5 //ft/sec
6 T = 582 / R
7 psi= 3040 // lbf/in^2
8 R = 53.3 //ft lbf/lbm
9 \text{ g= } 32.2 \text{ // ft/sec}^2
10 Vwi= 300 // ft / sec
11 m = 35 //lb/sec
12 rm = 0.7 / ft
13 \text{ rp} = 4.25
14 w= 1200 // \text{rev/sec}
15 \text{ cp} = 0.24
16 J = 778 // lb
17 //CALCULATIONS
18 \text{ tr} = 1+0.5*(r-1)*Mai^2
19 Ti = T/tr
20 \text{ pr= tr}(r/(r-1))
21 pi= psi/pr
22 ai= pi/(R*Ti)
23 Vi= Mai*(r*R*g*Ti)^0.5
24 Vai= sqrt(Vi^2-Vwi^2)
25 h= m/(2*\%pi*ai*rm*Vai)
```

```
26  pr1= rp^(1/12)
27  Vwo= Vwi+(pr1^((r-1)/r)-1)*(cp*J*g*T/(rm*w))
28  B0= acotd((Vwo-w*rm)/Vai)
29  //RESULTS
30  printf ('Absolute air velocity = %. f ft/sec', Vi)
31  printf ('\n air velocity = %. f ft/sec', Vai)
32  printf ('\n Blade height = %.3 f ft',h)
33  printf ('\n velocity = %. f ft/sec', Vwo)
34  printf ('\n outlet balde angle = %.1 f degrees', BO)
```

TURBOMACHINES

Scilab code Exa 12.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 d = 0.0764 / lbm / ft^3
5 u = 3.74*10^-7 //lbf sec/ft^2
6 D = 15 //in
7 g= 32.2 // ft / sec^2
8 p= 14.7 // lb / in^2
9 r1= [0.02 0.04 0.06 0.08 0.1 1.15]
10 r2= [0.0338 0.0267 0.0199 0.0159 0.0132 0.0100]
11 r3= [0.46 0.92 1.38 1.84 2.3 2.64]
12 r4= [2.97 2.35 1.75 1.4 1.16 0.88]
13 r5= [0.0206 0.0163 0.0121 0.0097 0.0081 0.0061]
14 //CALCULATIONS
15 re= (d/u)*(p*100*2*\%pi/60)*(D/12)^2/g
16 //RESULTS
17 printf ('Reynolds Number = \%.2e',re)
18 xtitle("","m lbm/sec", "dPs lbf/ft^2")
19
20 disp(r1)
21 disp(r2)
```

```
22 disp(r3)
23 disp(r4)
24 disp(r5)
25 plot(r3,r5)
```

Scilab code Exa 12.2 ex 2

```
1 clc
2 //initialisation of variables
3 clear
4 psif = 10.2 / lbf/in^2
5 usit= 3.8*10^-7 //lbf sec/ft^2
6 usif = 3.52*10^--7 //lbf sec/ft<sup>2</sup>
7 Tsit= 530 / R
8 Tsif= 480 //R
9 \text{ wf} = 15000 // \text{rev/min}
10 //CALCULATIONS
11 Psit= psif*usit*sqrt(Tsit/Tsif)/usif
12 wt= wf*sqrt(Tsit/Tsif)
13 //RESULTS
14 printf ('Pressure in the test cell = \%.1 f lbf/in^2',
      Psit)
15 printf ('\n Compressor speed = \%. f rev.min', wt)
```

Scilab code Exa 12.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 w= 62.3 //lbf/ft^3
5 d= 0.375 //in
6 ro= 0.75 //ft
7 l= 1.25 //ft
```

```
8 b = 120 // degrees
9 \text{ do} = 0.25 //in
10 p= 750 // lbf/in^2
11 g= 32.1 // ft / sec^2
12 f = 0.03
13 f1= 0.9
14 f2 = 0.3
15 w1= 60 // \text{rad/sec}
16 //CALCULATIONS
17 Q = sqrt(((p/w)+((60*ro)^2/(2*g))+do)*%pi^2*g*(d/12)
       ^4/((d/do)^4-1+(1*f/(d/12))+f1+f2))*0.353
18 Vwo= w1*ro+(4*Q/(\%pi*(do/12)^2))*cosd(b)
19 C = w * Q * V w o * r o / g
20 //RESULTS
21 printf ('Flow Rate = \%.4 \,\mathrm{f} ft ^3/\mathrm{sec}',Q)
22 printf ('\n Vwo = \%.2 \, \text{f} \, \text{ft/sec}', Vwo)
23 printf ('\n Driving Torque = \%.3 f lbf ft',C)
```

Scilab code Exa 12.4 ex 4

```
1 clc
2 //initialisation of variables
3 clear
4 W= 38 //rev/sec
5 w= 62.4 //lbf/ft^3
6 m= 2000 //lbm/sec
7 g= 32.2 //ft/sec^2
8 ps= 5000 //lbf/ft^2
9 S3= 4.6
10 e= 0.91
11 //CALCULATIONS
12 S1= W*(w*m^2/(g*ps)^3)^0.25
13 D= S3*(m^2/(w*g*ps))^0.25
14 //RESULTS
15 printf ('S1 = %.3f',S1)
```

```
16 printf ('\n Diameter = \%.2 \text{ f ft',D})
17 printf ('\n efficiency = \%.2 \text{ f',e})
```

Scilab code Exa 12.5 ex 5

```
1 clc
2 //initialisation of variables
3 clear
4 d = 6 //in
5 f = 0.25
6 1 = 1200 // ft
7 p = 55 // lbm / ft^3
8 \text{ w} = 740 //\text{rev/min}
9 \text{ g= } 32.2 \text{ // ft/sec}^2
10 n = 0.87
11 d1= 1.78 //ft
12 //CALCULATIONS
13 D= (0.13*\%pi^2*(d/12)^5/(8*f*1*0.012^2))^0.25*d1
14 \text{ m} = 0.012*p*(w*2*\%pi/60)*D^3
15 dps= 0.13*p*(w*2*\%pi*D/60)^2/g
16 P = m*10*dps/(p*n)
17 //RESULTS
18 printf ('Diameter = \%.2 \, f ft',D)
19 printf ('\n Mass flow rate = \%.1 \, \text{f lbm/sec}',m)
20 printf ('\n pressure rise = \%.1 f lbf/ft^2', dps)
21 printf ('\n shaft power = \%.2e ft lbf/sec',P)
```

Hydraulic power transmission

Scilab code Exa 13.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 \text{ nop= } 0.88
5 \text{ nom} = 0.88
6 \text{ Pm} = 75 //\text{hp}
7 p = 3000 // lb / in^2
8 d = 54.5 / lbm / ft^3
9 u = 1.05 * 10^{-4}
10 d1= 0.5 //in
11 g= 32.2 // ft / sec^2
12 //CALCULATIONS
13 nt = (7/11)*nop*nom
14 pp = Pm/nt
15 \ Q = nop*pp*550/(p*144)
16 Re= 4*d*Q/(%pi*u*(d1/12)*g)
17 //RESULTS
18 printf ('n trans = \%.3 \,\mathrm{f} ',nt)
19 printf ('\n Input power = \%. f hp',pp)
20 printf ('\n Flow rate = \%.3 \, \text{f ft} \, ^3/\, \text{sec}',Q)
21 printf ('\n Reynolds Number = \%.1e', Re)
```

Scilab code Exa 13.2 ex 2

```
1 clc
2 //initialisation of variables
3 clear
4 lc = 0.25
5 = 90 // degrees
6 p = 3000 // lb / in^2
7 g= 32.2 // ft / sec^2
8 d1 = 0.5 //in
9 Q= 0.171 // ft^3 / sec
10 d= 54.5 / \frac{lbm}{ft^3}
11 \quad n1 = 2
12 \quad n2 = 6
13 \ 1c1 = 0.9
14 \text{ nop= } 0.88
15 \text{ nom} = 0.88
16 //CALCULATIONS
17 P1 = 4*p*144/11
18 P2= 8*d*Q^2*(n1*lc+n2*lc1)/(%pi^2*(d1/12)^4*g)
19 pt = P1 + P2
20 \text{ dpm} = (p*144-pt)
21 ntrans= nop*nom*dpm/(p*144)
22 //RESULTS
23 printf ('Frictional pressure drop = \%.2e lbf/ft<sup>2</sup>',
      P1)
24 printf ('\n Extra Frictional pressure drop = \%.2e
      lbf/ft^2, P2)
25 printf ('\n Total pressure drop = \%.2e lbf/ft<sup>2</sup>',pt)
26 printf ('\n Motor pressure drop = \%.2e lbf/ft<sup>2</sup>',dpm
27 printf ('\n Overall transmission coefficiency = \%.3 f
      ',ntrans)
```

Scilab code Exa 13.3 ex 3

```
1 clc
2 //initialisation of variables
3 clear
4 bip= 135 // degrees
5 \text{ bop= } 150 \text{ } // \text{degrees}
6 bot= 140 // degrees
7 bos = 137 / degrees
8 r = 1.8
9 r1 = 1.8
10 \text{ r2} = 0.7
11 \text{ r3} = 0.95
12 //CALCULATIONS
13 R= (1+(\cot (bip)/\cot (bos)))*r^2-r1*(\cot (bop)/\cot (bop))
       bos))
14 R1= r2*r3^2*(1+(cotd(bip)/cotd(bos)))-(cotd(bot)/
       cotd(bos))
15 R2= (R1-R)/(R-1)
16 //RESULTS
17 printf ('R1 = \%.2 \, \text{f',R})
18 printf ('\n R2 = \%.2\,\mathrm{f}',R1)
19 printf ('\n Torque ratio = \%.2 \,\mathrm{f}', R2)
```

Further Devolopments

Scilab code Exa 14.1 ex 1

```
1 clc
2 //initialisation of variables
3 clear
4 a = 60.5
5 \ Q = 0.2 \ // ft^3 / sec
6 d = 3 //in
7 u = 0.0325
8 \text{ g} = 32.2 // \text{ft/sec}^2
9 T= [50.0 60.0 70.0 80.0 90.0 100.0]
10 Ep= [294.5 188.6 113.2 60.4 37.7 24.5]
11 Eh= [0 69.9 139.8 209.7 279.5 349.4]
12 Et= [295 258 253 270 317 374]
13 //CALCULATIONS
14 re= a*4*Q/(\%pi*(d/12)*u*g)
15 //RESULTS
16 printf ('Reynolds Number = %.1 f',re)
17 disp(T)
18 disp(Ep)
19 disp(Eh)
20 disp(Et)
21 plot(T, Ep)
```

```
22 plot(T,Eh)
23 plot(T,Et)
24
25 xtitle("","T (F)", "Eh,Ep,Eh&Ep (kW)")
```

Scilab code Exa 14.2 ex 2

```
2 //initialisation of variables
3 clear
4 wcb= 2 //ton
5 \text{ wc} = 100 // ton
6 wa= 6.5 // ton
7 \text{ wca} = 20
8 r = 0.8
9 r1 = 1.2
10 //CALCULATIONS
11 \text{ wca1} = \text{wc/wa}
12 \text{ wca2} = \text{wcb}*(\text{wca1/wca})^1.5
13 Wca= wcb*r(9/4)*(1/r1)^(9/4)*(wca1/wca)^1.5
14 //RESULTS
15 printf ('(Wc/W) a = \%.2 \, \text{f}', wca1)
16 printf ('\n Wc, a = %.2 f ton', wca2)
17 printf ('\n Wc, a = %.2 f ton', Wca)
```