

Europäisches Patentamt Europ an Patent Office Office européen des brevets

(1) Publication number:

0 382 990 A1

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 89400428.2

(5) Int. Cl.5: C12N 15/32, A01N 63/00

② Date of filing: 15.02.89

Date of publication of application: 22.08.90 Bulletin 90/34

Designated Contracting States:
AT BE CH DE ES FR GB GR IT LI LU NL SE

(1) Applicant: PLANT GENETIC SYSTEMS, N.V. Kolonel Bourgstraat 106 Bus 1 B-1040 Brussel(BE)

2 Inventor: Peferoen, Marnix
J.P. Minckelersstraat 129
B-3000 Leuven(BE)
Inventor: Lambert, Bart
Zuidveldstraat 1
B-8030 Beernem(BE)
Inventor: Joos, Henk
Oostmolen Zuid 5
B-9880 Aalter(BE)

Representative: Gutmann, Ernest et al S.C. Ernest Gutmann - Yves Plasseraud 67, boulevard Haussmann F-75008 Paris(FR)

Strains of bacillus thuringiensis.

Two new Bacillus thuringiensis strains, which are deposited at the DSM under accession nos. 5131 and 5132, produce crystal proteins during sporulation that are toxic to Coleoptera. The crystal proteins contain 74 kDa and 129 kDa protoxins, respectively, which can yield 67 and 66 kDa toxins, respectively, as trypsin-digestion products. A plant, the genome of which is transformed with a DNA sequence that comes from either one of the strains and that codes for its respective toxin, is resistant to Coleoptera. Each strain, itself, or its crystals, crystal proteins, protoxin or toxin can be used as the active ingredient in an insecticidal composition for combatting Coleoptera.

EP 0 382 990 A1

NEW STRAINS OF BACILLUS THURINGIENSIS

This invention relates to two new strains of B. thuringiensis (the "BtPGSl208 strain" and the "BtPGSl245 strain"), each of which produces crystallized proteins (the "BtPGSl208 crystal proteins" and the "BtPGSl245 crystal proteins", respectively) which are packaged in crystals (the "BtPGSl208 crystals" and the "BtPGSl245 crystals", respectively) during sporulation. The BtPGSl208 and BtPGSl245 strains wer deposited under the provisions of the Budapest Treaty at the Deutsche Sammlung Für Mikroorganismen and Zellkulturen ("DSM"), Mascheroder Weg 1B, D-3300 Braunschweig, Federal Republic of Germany, under accession numbers 5131 and 5132, respectively, on January 19, 1989.

This invention also relates to an insecticide composition that is active against Coleoptera and that comprises the BtPGSI208 or BtPGSI245 strain, as such, or preferably the BtPGSI208 or BtPGSI245 crystals, crystal proteins or the active component(s) thereof as an active ingredient.

This invention further relates to:

- 1) a DNA sequence (the "btPGSI208 gene"), from the genome of the BtPGSI208 strain, which encodes a 74 kDa protein (the "BtPGSI208 protoxin") that is found in the BtPGSI208 crystals; and
- 2) A DNA sequence (the "btPGSI245 gene), from the genome of the BtPGSI245 strain, which encodes a 129 kDa protein (the "BtPGSI245 protoxin") that is found in the BtPGSI245 crystals. The BtPGSI208 and BtPGSI245 protoxins are the proteins that are produced by their respective BtPGSI208 and BtPGSI245 crystals.

This invention still further relates to a 67 kDa protein ("the BtPGSI208 toxin") and a 66 kDa protein (the "BtPGSI245 toxin") which can be obtained from the BtPGSI208 protoxin and the BtPGSI245 protoxin, respectively. The BtPGSI208 and BtPGSI245 toxins are insecticidally active proteins which can be liberated from the BtPGSI208 crystals and the BtPGSI245 crystals, respectively, produced by the BtPGSI208 strain and the BtPGSI245 strain, respectively, and each toxin has a high activity against Coleoptera. The BtPGSI208 and BtPGSI245 toxins are believed to represent the smallest portions of their respective BtPGSI208 and BtPGSI245 protoxins which are insecticidally effective against Coleoptera.

This invention yet further relates to a chimaeric gene that can be used to transform a plant cell and that contains:

- 1) a part of the <u>btPGSI208</u> or <u>btPGSI245</u> gene (the "insecticidally effective <u>btPGSI208</u> or <u>btPGSI245</u> gene part") encoding an insectidicidally effective portion of the respective <u>BtPGSI208</u> or <u>BtPGSI245</u> protoxin, preferably a truncated part of the <u>btPGSI208</u> or <u>btPGSI245</u> gene (the "truncated <u>btPGSI208</u> or <u>btPGSI245</u> gene") encoding just the respective <u>BtPGSI208</u> or <u>BtPGSI245</u> toxin;
- 2) a promoter suitable for transcription of the insecticidally effective btPGSI208 or btPGSI245 gene part in a plant cell; and
- 3) suitable transcription termination and polyadenylation signals for expressing the insecticidally effective btPGSI208 or btPGSI245 gene part in a plant cell. This chimaeric gene is hereinafter generally referred to as the "btPGSI208 or btPGSI245 chimaeric gene." Preferably, the insecticidally effective btPGSI208 or btPGSI245 gene part is present in the btPGSI208 or btPGSI245 chimaeric gene as a hybrid gene comprising a fusion of the truncated btPGSI208 or btPGSI245 gene and a selectable marker gene, such as the neo gene (the "btPGSI208-neo or btPGSI245-neo hybrid gene").

This invention also relates to:

- 1) a cell (the "transformed plant cell") of a plant, such as potato, the genome of which is transformed with the insecticidally effective btPGSI208 or btPGSI245 gene part; and
- 2) a plant (the "transformed plant") which is regenerated from the transformed plant cell or is produced from the so-regenerated plant, the genome of which contains the insecticidally effective btPGSI208 or btPGSI245 gene part and which is resistant to Coleoptera.

Background of the Invention

B. thuringiensis ("Bt") is a gram-positive bacterium which produces endogenous crystals upon sporulation. The crystals are composed of proteins which are specifically toxic against insect larvae. Three different Bt pathotypes have been described: pathotype A that is active against Lepidoptera, e.g., caterpillars; pathotype B that is active against certain Diptera, e.g., mosquitos and black flies; and pathotype C that is active against Coleoptera, e.g., beetles (Ellar et al, 1986).

A Bt strain, whose crystals are toxic to Coleoptera, has been described as Bt tenebrionis (US patent 4,766,203; European patent publication 0,149,162), Bt M-7 or Bt San Diego (European patent publication

45

0,213,818; U.S. patent 4,771,131) and BtS1 (European patent application 88/402,115.5).

The fact that conventional submerged fermentation techniques can be used to produce Bt spores on a large scale makes Bt bacteria commercially attractive as a source of insecticidal compositions.

Gene fragments from some Bt strains, encoding insecticidal proteins, have heretofore been identified and integrated into plant genomes in order to render the plants insect-resistant. However, obtaining expression of such Bt gene fragments in plants is not a straightforward problem. To achieve optimal expression of an insecticidal protein in plant cells, it has been found necessary to engineer each Bt gene fragment in a specific way so that it encodes a water-soluble part of a Bt protoxin that retains substantial toxicity against its target insects (European patent applications 86/300,291.1 and 88/402,115.5; U.S. patent application 821,582, filed January 22, 1986)

Summary of the Invention

15

35

40

In accordance with this invention, the two new Bt strains of pathotype C, i.e., the BtPGSI208 and BtPGSI245 strains, are provided. The BtPGSI208 and BtPGSI245 crystals, crystal proteins, protoxins and toxins, produced by the respective strains during sporulation, as well as insecticidally effective portions of the BtPGSI208 and BtPGSI245 protoxins, each possess insecticidal activity and can therefore be formulated into insecticidal compositions against Coleoptera in generally especially against Leptinotarsa decemlineata, Agelastica alni, Diabrotica luteola, Haltica tombacina, Anthonomus grandis, Tenebrio molitor and Triboleum castaneum and particularly against the Colorado potato beetle, Leptinotarsa decemlineata, which is a major pest of economically important crops.

Also in accordance with this invention, a plant cell genome is transformed with the insecticidally effective btPGSI208 or btPGSI245 gene part, preferably the truncated btPGSI208 or btPGSI245 gene. It is preferred that this transformation be carried with the btPGSI208 or btPGSI245 chimaeric gene. The resulting transformed plant cell can be used to produce a transformed plant in which the plant cells in some or all of the plant tissues: 1) contain the insecticidally effective btPGSI208 or btPGSI245 gene part as a stable insert in their genome and 2) express the insecticidally effective btPGSI208 or btPGSI245 gene part by producing an insecticidally effective portion of its respective BtPGSI208 or BtPGSI245 protoxin, preferably its respective BtPGSI208 or BtPGSI208 or BtPGSI245 toxin, thereby rendering the plant resistant to Coleoptera.

Yet further in accordance with this invention, a process is provided for rendering a plant resistant to Coleoptera by transforming the plant cell genome with the insecticidally effective btPGSI208 or btPGSI245 gene part, preferably the truncated btPGSI208 or btPGSI245 gene. In this regard, it is preferred that the plant cell be transformed with the btPGSI208 or btPGSI245 chimaeric gene.

Still further in accordance with this invention, there are provided the BtPGSI208 and BtPGSI245 protoxins, the insecticidally effective portions of such protoxins and the BtPGSI208 and BtPGSI245 toxins, as well as the btPGSI208 and btPGSI245 genes, the insecticidally effective btPGSI208 and btPGSI245 gene parts, the truncated btPGSI208 and btPGSI245 genes.

Detailed Description of the Invention

In accordance with this invention, the BtPGSI208 and BtPGSI245 protoxins can be isolated in a conventional manner from, respectively, the BtPGSI208 strain, deposited at the DSM under accession number 5131, and the BtPGSI245 strain, deposited at the DSM under accession number 5132. For example, the BtPGSI208 and BtPGSI245 crystals can be isolated from sporulated cultures of their respective strains (Mahillon and Delcour, 1984), and then, the respective protoxins can be isolated from these crystals according to the method of Höfte et al (1986). The protoxins can be used to prepare monoclonal or polyclonal antibodies specific for these protoxins in a conventional manner (Höfte et al, 1988). The BtPGSI208 toxin can then be obtained by removing (e.g., by trypsin digestion) approximately 57 N-terminal amino acids from the BtPGSI208 protoxin. The BtPGSI245 toxin can be obtained by removing (e.g., by trypsin digestion) approximately 52 N-terminal and approximately 501 C-terminal amino acids from the BtPGSI245 protoxin.

The btPGSI208 and btPGSI245 genes can also be isolated from their respective strains in a conventional manner. For example, the btPGSI208 or btPGSI245 gene can be identified in its respective BtPGSI208 or BtPGSI245 strain, using the procedure described in U.S. patent application 821,582 and in European patent applications 86/300,291.1 and 88/402,115.5 (which are incorporated herein by reference). Preferably, the btPGSI208 and btPGSI245 genes are each identified by: digesting total DNA from their

respective BtPGSI208 and BtPGSI245 strains with one or more restriction enzymes; size fractionating the DNA fragments, so produced, into DNA fractions of 5 to 10 Kb; ligating such fractions to cloning vectors; transforming E. coli with the cloning vectors; and screening the clones with a suitable DNA probe. The DNA probe can be constructed: 1) from a highly conserved region of a Bt gene which codes for another crystal protoxin against Coleoptera such as: the bt13 gene described in European patent application 88/402,115.5 and by Höfte et al (1987); or 2) on the basis of the N-terminal amino acid sequence of the protoxin encoded by the respective btPGSI208 or btPGSI245 gene, which sequence can be determined by gas-phase sequencing of the immobilized protoxin (European Patent application 88/402,115.5).

Alternatively, the 5 to 10 kB fragments, prepared from total DNA of the BtPGSI208 or BtPGSI245 strain, can be ligated in suitable expression vectors and transformed in E. coli, and the clones can then be screened by conventional colony immunoprobing methods (French et al. 1986) for expression of the BtPGSI208 or BtPGSI245 toxin with monoclonal or polyclonal antibodies raised against the toxin.

The so-identifed btPGSI208 and btPGSI245 genes can then each be sequenced in a conventional manner (Maxam and Gilbert, 1980) to obtain the DNA sequences shown in Figs. 1 and 2, respectively.

A truncated part of each of the sequenced genes, encoding an insecticidally effective portion of its protoxin and preferably encoding just its toxin, can be made in a conventional manner from the gene after the gene has been sequenced. The aminoacid sequences of the BtPGSI208 and BtPGSI245 protoxins and toxins can be determined from the DNA sequences of their respective btPGSI208 and btPGSI245 genes and truncated btPGSI208 and btPGSI245 genes

The insecticidally effective btPGSI208 or btPGSI245 gene part, encoding an insecticidally effective portion of its respective BtPGSI208 or BtPGSI245 protoxin, can be stably inserted in a conventional manner into the nuclear genome of a single plant cell, and the so-transformed plant cell be used in a conventional manner to produce a transformed plant that is insect-resistant. In this regard, a disarmed Ti-plasmid, containing the insectidicidally effective btPGSI208 or btPGSI245 gene part, in Agrobacterium tumefaciens can be used to transform the plant cell, and thereafter, a transformed plant can be regenerated from the transformed plant cell using the procedures described, for example, in European patent publication 0,116,718, PCT publication WO 84/02,913 and European patent application 87/400,544.0 (which are also incorporated herein by reference). The resulting transformed plant can be used in a conventional plant breeding scheme to produce more transformed plants with the same characteristics or to introduce the insecticidally effective btPGSI208 or btPGSI245 gene part in other varieties of the same or related plant species. Seeds, which are obtained from the transformed plants, contain the insecticidally effective btPGSI208 or btPGSI245 gene part as a stable genomic insert.

The insecticidally effective btPGSI208 or btPGSI245 gene part, preferably the truncated btPGSI208 or btPGSI245 gene, is inserted in a plant cell genome so that the inserted part of the gene is downstream of, and under the control of, a promoter which can direct the expression of the gene part in the plant cell. This is preferably accomplished by inserting the btPGSI208 or btPGSI245 chimaeric gene in the plant cell genome. Preferred promoters include: the strong constitutive 35S promoters (the "35S promoters") of the cauliflower mosaic virus of isolates CM 1841 Gardner et al, 1981), CabbB-S (Franck et al, 1980) and CabbB-JI (Hull and Howell, 1987); and the TR1 promoter and the TR2 promoter (the "TR1 promoter" and "TR2' promoter", respectively) which drive the expression of the 1' and 2' genes, respectively, of the T-DNA (Velten et al. 1984). Alternatively, a promoter can be utilized which is not constitutive but rather is specific for one or more tissues or organs of the plant (e.g., leaves and/or roots) whereby the inserted btPGSI208 or btPGSI245 gene part is expressed only in cells of the specific tissue(s) or organ(s). For example, the btPGSI208 or btPGSI245 gene part could be selectively expressed in the leaves of a plant (e.g., potato) by placing the gene part under the control of a light-inducible promoter such as the promoter of the ribulose-1,5-bisphosphate carboxylase small subunit gene of the plant itself or of another plant such as pea as disclosed in U.S. patent application 821,582 and European patent application 86/300,291.1. Another alternative is to use a promoter whose expression is inducible (e.g., by temperature or chemical

The insecticidally effective btPGSI208 or btPGSI245 gene part is inserted in the plant genome so that the inserted part of the gene is upstream of suitable polyadenylation and transcription termination signals. This is preferably accomplished by inserting the btPGSI208 or btPGSI245 chimaeric gene in the plant cell genome. Preferred polyadenylation and transcription termination signals include those of the octopine synthase gene (Gielen et al. 1984) and the T-DNA gene 7 (Velten and Schell, 1985), which act as 3'-untranslated DNA sequences in transformed plant cells.

It is preferred that the inserted insecticidally effective <u>btPGSI208</u> or <u>btPGSI245</u> gene part be in the same transcriptional unit as, and under the control of, the same promoter as a selectable marker gene. This is preferably accomplished by inserting a btPGSI208 or btPGSI245 chimaeric gene, containing the marker

15

20

gene, in the plant cell genome. Any conventional marker gene can be utilized, the expression of which can be used to select transformed plant cells. An example of a suitable selectable marker gene is an antibiotic resistance gene such as the neo gene coding for kanamycin resistance (Reiss et al. 1984; European patent application 87/400,544.0; U.S. patent application 821,582; European patent application 86/300,291.1). Thereby, the insecticidally effective btPGSI208 or btPGSI245 gene part and the marker gene (e.g., the btPGSI208-neo or btPGSI245-neo hybrid gene) are expressed in a transformed plant as a fusion protein (U.S. patent application 821,582; European patent application 86/300,291.1; Vaeck et al, 1987).

Each of the BtPGSI208 and BtPGSI245 strains can be fermented by conventional methods (Dulmage, 1981) to provide high yields of cells. Under appropriate conditions which are well understood (Dulmage, 1981), the BtPGSI208 and BtPGSI245 strains each sporulate to provide their respective BtPGSI208 and BtPGSI245 crystal proteins in high yields.

An insecticide composition of this invention can be formulated in a conventional manner using the BtPGSI208 or BtPGSI245 strain or preferably their respective crystals, crystal proteins, protoxin, toxin and/or insecticidally effective portions of their respective protoxin, as active ingredient(s), together with suitable carriers, diluents, emulsifiers and/or dispersants. This insecticide composition can be formulated as a wettable powder, pellets, granules or a dust or as a liquid formulation with aqueous or non-aqueous solvents as a foam, gel, suspension, concentrate, etc. The concentration of the BtPGSI208 or BtPGSI245 strain, crystals, crystal proteins, protoxin, toxin and/or protoxin portions in such a composition will depend upon the nature of the formulation and its intended mode of use. Generally, an insecticide composition of this invention can be used to protect a potato field for 2 to 4 weeks against Coleoptera with each application of the composition. For more extended protection (e.g., for a whole growing season), additional amounts of the composition should be applied periodically.

The following examples illustrate the invention. The figures, referred to in the examples, are as follows:

Figure 1 - DNA sequence of the <u>btPGSI208</u> gene. The derived aminoacid sequence of the encoded BtPGSI208 protoxin is presented beneath this sequence. The arrow separates the N-terminal 57 aminoacids from the C-terminal portions encoding the BtPGSI208 toxin.

Figure 2 - DNA sequence of the <u>btPGSI245</u> gene. The derived aminoacid sequence of the encoded BtPGSI245 protoxin is presented beneath this sequence. The arrows delineate the BtPGSI245 toxin between aminoacids 54 and 638 of the BtPGSI245 protoxin.

Figure 3 - Total protein patterns by SDS-PAGE of sporulated BtPGSI208 and BtPGSI245 and other Bacillus cultures. Among the comparison strains, B. subt. is Bacillus subtilis, B. cer. is Bacillus cereus, and Bt Darm is Bacillus thuringiensis subsp. darmstadiensis. These comparison strains were obtained from the sources set forth in Table 1, hereinafter. "MW" designates molecular weight markers.

Figure 4A- Protein blotting of total proteins and trypsinized crystal proteins from strains BtS1 and BtPGSI208. Total protein patterns were stained with Indian ink, while crystal proteins were visualized with an antiserum against Bt13 toxin ("anti-CryIIIA"). "HMW" designates molecular weight markers.

Figure 4B- Protein blotting of total proteins and trypsinized crystal proteins from strains BtS1, BtPGSI245 and Bt HD-110. Total protein patterns were probed for their immunoreactivity with an antiserum against Bt13 toxin ("anti-CryIIIA") and an antiserum against Bt2 protoxin ("anti-CryIA(b)"). "LMW" designates molecular weight markers. The comparison strain, HD-110, was Bt HD-110, obtained from Dr. H. Dulmage, Cotton Insect Laboratories, U.S.D.A., Brownsville, Texas, U.S.A.

Unless otherwise stated in the Examples, all procedures for making and manipulating recombinant DNA are carried out by the standardized procedures described in Maniatis et al, Molecular Cloning - A laboratory Manual, Cold Spring Harbor Laboratory (1982).

Example 1: Characterization of the BtPGSI208 and BtPGSI245 strains

45

UCDOCIO- -ED 0202000A1

The BtPGSI208 strain was isolated from grain dust sampled in Belgium and was deposited at the DSM on January 19, 1989 under accession No. 5131.

The BtPGSI245 strain was isolated from cow dung sampled in the United States and was deposited at the DSM on January 19, 1989 under accession No. 5132.

Each strain can be cultivated on conventional standard media, preferably LB medium (Bacto-tryptone 10 g/l, yeast extract 5 g/l, NaCl 10 g/l and agar 15 g/l), preferably at 28 °C. For long term storage, it is preferred to use LB liquid medium containing 50% glycerol at -70 °C or lyophilization. For sporulation, the use of T₃ medium (tryptone 3 g/l, tryptose 2 g/l, yeast extract 1.5 g/l, 5 mg MnCl₂, 0.05 M Na₂PO₄, pH 6.8 and 1.5% agar) is preferred for 24 hours at 28 °C, followed by storage at 4 °C. During its vegetative phase, each of the BtPGSI208 and BtPGSI245 strains can also grow under facultative anaerobic conditions, but

sporulation only occurs under aerobic conditions.

Sterilization of each strain occurs by autoclave treatment at 120°C (1 bar pressure) for 20 minutes. Such treatment totally inactivates the spores and the crystalline BtPGSI208 and BtPGSI245 protoxins. UV radiation (254 nm) inactivates the spores but not the protoxins.

After cultivating on Nutrient Agar ("NA", Difco Laboratories, Detroit, MI, USA) for one day, colonies of each of the BtPGSI208 and BtPGSI245 strains form opaque white colonies with irregular edges. Cells of each strain (Gram positive rods of 1.7-2.4 x 5.6-7.7 μm) sporulate after three days cultivation at 28°C on NA.

The crystal proteins produced during sporulation are packaged in flat rhomboid crystals in the BtPGSI208 strain and in bipyramidal crystals in the BtPGSI245 strain. Both of these crystal forms are clearly different from the flat square crystals of the BtS1 strain (from DSM under accession no. 4288) or Bt tenebrionis (from DSM under accession no. 2803).

For the biochemical characterization of the two strains, the following tests were carried out using well known methods as described for example by Sneath et al (1986). Growth was observed in Nutrient Broth ("NB", Difco) supplemented with 2 and 5% NaCl. No growth of the BtPGSI208 strain and only weak growth of the BtPGSI245 strain were observed in the presence of 7% NaCl. Neither strain grew in medium supplemented with 10% NaCl. The BtPGSI208 and BtPGSI245 strains grew well on NA at 20, 28 and 37 °C, but not at 4, 10 (although the BtPGSI245 strain grew slowly at this temperature), 50 and 60 °C. Both strains grew in NB at pH = 5, pH = 6 and pH = 7 and on NB containing 100 units of lysozyme (Sigma Chemical Company, St Louis, MO, USA) per ml of NB. Growth on NA under anaerobiosis was very weak.

Metabolic characteristics of the two strains were determined using API-20E test strips (API Systems S.A., Montalieu-Vercieu, France). The results of these assays are shown in Table 1, below.

Table 1

25

30

35

40

45

Metabolic characteristics of the BtPGSI208 and BtPGSI245 strains as compared with other Bacillus strains													
(+ = positive reaction; - = negative reaction; w = weak reaction; nd = not determined).													
Activity	Bt PGSI 208												
ONPG	-	-	-		-	-	+						
ADH	-	+	+	+	+	+	-						
LDC	-												
ODC	-	-	-	-	-	-	-						
CIT	-	-	•	-	-	-	-						
H2S	-	•	. .	-	_ '	-	-						
URE	-	-	-	-	-	-	-						
TDA		-	· -	+	w	+	+						
IND		-	-	•	-	-	-						
VP	-	-	-	w	w	w	+						
GEL	-	+	-	+	+	+	+						
ox	+	+ + + + + +											
NO2	+	+	+	+	+	+	nd						
N2	-	-	-		-	-	nd						

50

ONPG = β -galactosidase activity.

DH = arginine dihydrolase activity.

LDC = lysine decar oxylase activity.

0DC = ornithine decarboxylase activity.

CIT = use of citrate as sole carbon source.

H2S = H₂S formation from thiosulphate.

URE = urease activity.

TDA = tryptophan deaminase activity.

IND = indol formation from tryptophan.

VP = acetoin formation from sodium pyruvate.

GEL = gelatin liquefaction. OX = oxidase activity. NO2 = nitrate reduction to nitrite. $N2 = N_2$ gas production from nitrate. BTS1 = Bacillus thuringiensis BtS1 from DSM under accession no. 4288. BTEN = Bacillus thuringiensis subsp. tenebrionis from DSM under accession no. 2803. BDAR = Bacillus thuringiensis subsp. darmstadiensis from (Institut für Landwirtschaftliche Bacteriologie und Gärungsbiologie der Eidgenössiche Technische Hochschüle, Zürich, Switzerland ("LBG"), under accession 10 no. 4447 BCER = Bacillus cereus from Laboratorium voor Microbiologie, Gent, Belgium ("LMG"), under accession no. 2098. BSUB = Bacillus subtilis from Agricultural Research Culture Collection, Peoria, Illinois, USA, under accession no. NRRL B-237. 15 Both strains were found to rapidly decompose casein in skim-milk agar and to deaminate phenylalanine in tests described by Sneath et al (1986). Acid production from different sugars by the two strains was determined using API-50CHB test strips (API Systems SA). The results are shown in Table 2, below. 20 25 30 35 40 45 50

Table 2: Acid production by the BtPGSI208 and BtPGSI245
strains as compared with other bacilli (+ = positive reaction
; - = negative reaction ; w = weak reaction).

	Substrate :	Bt PGSI 208	Bt PGSI 245	Bts1	BTEN	BDAR	BCER	BSUB
	Control	-	-	_	-	-	-	-
	Glycerol	-	W	+	+	+	+	+
	Erythritol	-	•	-	-	-	-	-
	D-arabinose	-	-	-	-	-	-	-
	L-arabinose	-	-	-	-	-	-	+
	Ribose	+	+	+	+	+	+	+
	D-Xylose	_	-	-	-	-	-	+
	L-Xylose	-	-	_	-	_	-	-
	Adonitol	_	-	-	-	-	-	-
	B Methyl-xyloside	-	-	_	-	-	-	-
	Galactose	-	-	_	_	-	-	+
	D-Glucose	+	+	+	+	+	+	+
	D-Fructose	+	+	+	+	+	+	+
	D-Mannose	-	+	+	+	-	_	+
	L-Sorbose	_	-		_	-	-	_ `
	Rhamnose	_	_	-	_	-	-	-
	Dulcitol	-	_	_	_	_	-	-
	Inositol	-	-	-	_	_	-	+
	Mannitol	-	_	-	_		_	+
	Sorbitol	-	-	_	_		_	+
	α-Methyl-D-mannoside	-	-	-	-	_	_	_
	α-Methyl-D-glucoside	-	_	-	-	_	_	+
	N-Acetylglucosamide		+	+	+	+	+	_
	Amygdaline	_	-	_	Ĺ	_	_	+
	Arbutine	+	+	+	+	+	_	+
	Esculine	+	+	+	+	+	+	+
•	Salicine	+	W	_	_	_	_	+
	Cellobiose	_	w	_	_	-	-	+
	Maltose	+	+	+	+	+	+	+
	Lactose	1 -	_	_	_	_	_	+
	Melibiose	-	-	_	_	_	_	+
	Saccharose	+	+	+	+	_	+	+
	Trehalose	+	+	+	+	+	+	+
	Inuline	-	_	_	_	-	_	i.

Table 2 (C ntinued)

Substrate :	1	Bt PGSI 245	BtS1	BTEN	BDAR	BCER	BSUB
Melizitose	-	_	-	-	-		-
D-Raffinose	-	-	-	-	-	-	+
Starch	+	+	+ .	+ -	+	+	+
Glycogen	+	+	+	+	+	+	+
Xylitol	-	_	-	-	-	_	_
B Gentiobiose	-	-	-	-	-	_	-
D-Turanose	-	-	-	-	-	_	+
D-Lyxose	-	-	-	-	_	-	-
D-Tagatose	-	-	~	-	-	_	-
D-Fucose	-	-	-	-	-	-	_
L-Fucose	-	-	╼.	-	-	-	-
D-Arabitol	-	-	-	-	-	-	-
L-Arabitol	-	-	-	-	-	-	-
Gluconate	-	-	-	-	-	-	_
2 Ketogluconate	-	-	-	_	-	_	_
5 Ketogluconate	-	-	-	-	-	-	-

Sensitivity of the two strains towards different antibiotics was tested using Oxoid Susceptibility Test Discs on Oxoid Isosensitest agar ("CM471" of Oxoid Ltd., Basingstoke, Hampshire, England). The results are shown in Table 3, below.

Table 3

	Antibiotic sensitivity as shown by the diameters (in mm) of inhibition zones observed after 24 hours on antibiotic-containing agar, seeded with different bacilli													
35	(R = resistant colonie	es or no growth o	detected).					· · · · ·						
	Antibiotic	amount/disc	Bt PGSI 208	Bt PGSI 245	BtS1	BTEN	BDAR	BCER	BSUB					
	Chloramphenicol	30 ug	25/R	17	19/R	20	22	28	33					
40	Bacitracin	10 i.u	11	10	8	7	14	18	7					
ı	Gentamycin	10 ug	26	20	21	20	28	9	25/R					
	Neomycin	30 ug	24	20/R	13/R	13	26	10	20					
	Tetracyclin	30 ug	14/R	10	17/R	16/R	10/R	21	22					
	Carbenicillin	100 ug	8	11	0	0	10	0	19					
45	Rifampicin	2 ug	. 12	13	0	8	8	19	26					
- 1	Penicillin G	10 i.u	7	8	0	0	0	14/R	14					
į	Streptomycin	10 ug	25/R	15	16	17	20	14	0					
ſ	Spectinomycin	10 ug	0	0	0	0	0	12/R	0					
- 1	Kanamycin	30 ug	20/R	21/R	0	0	24	15	24					
50	Nalidixic acid	30 ug	25/R	23/R	18/R	25/R	30/R	7	19					
ĺ	Sulphamethoxazole	25 ug	0	0	0	0	0	0	0					
	Trimethoprim	2.5 ug	0	0	0	0	0	0	26					
	Ampicillin	10 u	7	9/R	0	0	0	15/R	18					

55

25

The enzyme spectra of the BtPGSI208 and BtPGSI245 strains were determined using the extended API-ZYM strips (API Systems S.A.). The results are shown in Table 4, below. Esterase-, peptidase- (AP1, AP2, AP3, AP4, AP5 and AP6 test strips) and osidase-test strips were inoculated with 50 µl cell suspension

(10 7 cfu/ml). The osidase reaction was revealed after 4 hours incubation (28 $^\circ$ C) with 25 μ l 0.1N NaOH. All other reactions were with 25 μ l ZYM A and ZYM B reagent (API no. 7048).

Table 4

5

45

50

3					
•	Enzymatic spectra of the BtPGSI208 and Bti other Bt stra		trains as c	ompared t	o two
10	(0 = no substrate used; 1, 2, 3, 4, 5 = 5, 10, 2 substrate hydrolysed respectively).	20, 30 and	≥ 40 nano	moles of	
	Substrate	Bt PGSI 208	Bt PGSI 245	BTS1	BDAR
	Esterases.				
15	2-naphtyl-valerate 2-naphtyl-caproate 2-naphtyl-caprylate 2-naphtyl-nonanoate	4 5 5 5	4 5 5 5	2 5 5 4	4 5 5 5
20	2-naphtyl-caprate 2-naphtyl-laurate 2-naphtyl-myristate 2-naphtyl-palmitate 2-naphtyl-stearate	5 2 1 0 2	3 2 2 0	3 1 1 1 2	5 2 1 0 2
25	Peptidases.				
30	L-pyrrolidonyl-\$-naphtylamide Glycyl-\$-naphtylamide L-glutamyl-\$-naphtylamide L-leucyl-glycyl-\$-naphtylamide L-seryl-L-tyrosyl-\$-naphtylamide L-glutamine-\$-naphtylamide L-glutamyl-\$-naphtylamide	0 0 0 0 4 1	5 0 0 1 5 5	5 0 0 5 4 3	5 0 0 5 5 3
	Osidases.]		
35	Paranitrophenol-D-galactopyranoside Paranitrophenol-βD-galactopyranoside Paranitrophenol-aD-glucopyranoside Paranitrophenol-βD-glucopyranoside	0 0 5 0	0 0 5 2	0 0 5 0	0 0 5 0
40	Paranitrophenol-a-maltoside Paranitrophenol-β-maltoside Paranitrophenol-N-acètyl-βD-glucosamidine Paranitrophenol-βD-xylapyranoside	2 0 3 0	4 0 5 0	3 0 5	5 0 5 0

Example 2: Characteristics of the BtPGSI208 and BtPGSI245 crystals

The BtPGSI208 and BtPGSI245 strains were grown for 48 to 72 hours at 28° C on T_3 medium. After sporulation, the spores and crystals were harvested in phosphate buffered saline solution ("PBS" from Oxoid Ltd.) by scraping with a Trihalski spatula. The resulting aqueous spore-crystal suspensions were centrifuged, and the pellets were resuspended and incubated overnight in aqueous solutions containing 50mM Na_2CO_3 and 5mM dithiotreitol ("DTT") at pH 10. After centrifugation, the supernatants were recovered containing the respective crystal proteins.

The BtPGSI208 protoxin and toxin, as well as the BtPGSI245 toxin, react only with a polyclonal antiserum raised against the Bt13 toxin as shown in Fig. 4. In contrast, the BtPGSI245 protoxin reacts with polyclonal antisera against the Bt13 toxin and the Bt2 protoxin (U.S. patent application 821,582; European

patent application 86/300,291.1) as shown in Fig. 4.

The total protein patterns of the BtPGSI208 and BtPGSI245 strains, compared to other Bacillus strains, are shown in Fig. 3. For this comparison, the crystal proteins of each strain were analyzed on a 12.5% SDS-PAGE gel (Laemmli, 1970) and stained with Coomassie brilliant blue R-250 according to Lambert et al (1987). The crystal proteins were dissolved by exposing the spore-crystal mixtures overnight at 37 °C to 50 mM Na₂CO₃, pH 10, 5 mM DTT. Solubilized crystal proteins were digested by adjusting the pH to 9.0 with 0.5 M HCl and by trypsinization (1 µg bovine trypsin/25 µg protein). Trypsin digestion of the BtPGSI208 and BtPGSI245 crystal proteins was performed at 37 °C overnight and revealed the presence of tryptic fragments of 68 kDa (Fig. 4). Immunoblotting experiments, performed according to Peferoen (1988) with polyclonal antisera raised against the Bt13 toxin and the Bt2 protoxin demonstrated, in Figs. 4A and B, that the BtPGSI208 and BtPGSI245 protoxins and toxins are immunologically related to the Bt13 toxin. In addition, the BtPGSI245 protoxin was also shown, in Fig. 4B, to be immunologically related to the Bt2 protoxin. After blotting, the proteins were stained with Indian ink (Sutherland and Skerritt, 1986) to show both immunoreactive and non-immunoreactive proteins (Fig. 4).

15

Example 3: Insecticidal activity of the BtPGSI208 and BtPGSI245 crystal proteins

As in Example 2, both strains were grown for 48 to 72 hrs at 28 °C on T₃ medium. After sporulation, the spores and crystals were harvested in PBS with a Trihalski spatula. The resulting spore-crystal suspensions were centrifuged, and the pellets were resuspended and incubated overnight in aqueous Na₂CO₃ and DTT solutions as described in Example 2. After centrifugation, the supernatants were recovered, and their contents of the respective crystal proteins of the two strains were determined.

Potato leaves were dipped in aqueous dilutions of the supernatant solutions and then air dried for two hours. Colorado potato beetle larvae of the second instar were placed on the treated leaves, and mortality of the larvae was measured after three days. These results were compared with the mortality of larvae fed leaves treated with solubilized crystals of Bt HD-1 ("Bt kurstaki Dipel" from Abbott Laboratories, Abbott Park, North Chicago, Ill., USA) as a control. LC₅₀, expressed as ug of solubilized crystals/ml, was calculated by Probit analysis (Finney, 1971). The results are summarized in Table 5, below.

30

35

Table 5

Strain	LC50	FL95min	FL95max	Slope
BtPGSI208	5.0	3.5	7.3	2.4
BtPGSI245	25.1	14.7	43.3	1.5
Control	>500	-	•	-

40

45

Example 4: Identification and cloning of the btPGSI208 gene

))

The BtPGSI208 protoxin from the BtPGSI208 strain was detected by ELISA (Engvall and Pesce, 1978) with a polyclonal antiserum against the Bt13 coleoptera toxin (Höfte et al, 1987). The btPGSI208 gene was identified in the BtPGSI208 strain by preparing total DNA of the BtPGSI208 strain and then digesting the DNA with the restriction enzymes HindIII, EcoRI and Clal. The so-digested DNA was analyzed by Southern blotting, probing with a nick-translated 2.9 kb HindIII fragment from the genome of the BtS1 strain (European patent application 88/402,115.5) containing the bt13 gene. After hybridization with the probe, the blot was washed under low stringency conditions (2XSSC, 0.1%SDS at 68°C for 2x15 min), showing the presence of the btPGSI208 gene, related to the bt13 gene. The hybridization pattern with the probe also showed that the btPGSI208 gene was clearly different from the bt13 gene.

In order to isolate the btPGSI208 gene, total DNA was prepared from the BtPGSI208 strain. The total DNA preparation was partially digested with Sau3A and was size-fractionated on a sucrose gradient. Fractions containing DNA between 5 kb and 10 kb were ligated to the BgIII-digested and bovine alkaline phosphatase ("BAP")-treated cloning vector pEcor251 (Deposited at the DSM on July 13, 1988 under accession number DSM 4711). Recombinant E. coli clones containing the vector were then screened with

the 2.9 kb HindIII DNA fragment containing the bt13 gene, as a probe, to identify DNA fragments of clones containing the btPGSI208 gene. The so-identified DNA fragments were then sequenced according to Maxam and Gilbert (1980).

Based on the analysis of the DNA sequence of the btPGSI208 gene, the gene is cut with an appropriate restriction enzyme to give the truncated btPGSI208 gene, encoding the BtPGSI208 toxin of about 67 kDa.

Example 5: Identification and cloning of the btPGSI245 gene

The BtPGSI245 protoxin from the BtPGSI245 strain was detected by ELISA (Engvall and Pesce, 1978) with a polyclonal antiserum directed against the Bt13 coleoptera toxin. Colony hybridization of the BtPGSI245 strain and Southern blotting of the BtPGSI245 total DNA, that had been probed with the 2.9 kb HindIII DNA fragment containing the bt13 gene and washed under the previously described low stringency conditions, revealed no hybridizing DNA.

In order to isolate the btPGSI245 gene, total DNA from the BtPGSI245 strain was prepared and partially digested with Sau3A. The digested DNA was size fractionated on a sucrose gradient and fragments ranging from 5 kb to 10 kb were ligated to the BamHI,-digested and BAP-treated cloning vector pUC18 (Yannisch-Perron et al, 1985). Recombinant clones containing the vector were then screened by colony immunoprobing (French et al, 1986) with an antiserum against the Bt13 toxin. Positive colonies were purified, and total protein preparations were again analyzed by immunoblotting with the antiserum against the Bt13 toxin. DNA fragments, containing the BtPGSI245 gene, from clones expressing the BtPGSI245 protoxin, were then sequenced according to Maxam and Gilbert (1980).

Based on the analysis of the DNA sequence of the btPGSI245 gene, the gene is cut with an appropriate restriction enzyme to give the truncated btPGSI245 gene, encoding the BtPGSI245 toxin of about 66 kDa.

Example 6: Construction of a btPGSI208-neo hybrid gene and a btPGSI245-neo hybrid gene

Following the procedure of European patent application 88/402,115.5, the truncated btPGSI208 and btPGSI245 genes from Examples 4 and 5, respectively, are each fused to the neo gene to form the corresponding hybrid gene.

Example 7: Insertion of the btPGSI208 and btPGSI245 genes, the truncated btPGSI208 and btPGSI208 and btPGSI208-neo and btPGSI245-neo hybrid genes in E. coli and insertion of the truncated btPGSI208 and btPGSI245 genes and the btPGSI208-neo and btPGSI245-neo hybrid genes in potato plants

The btPGSI208 and btPGSI245 genes and the truncated btPGSI208 and btPGSI245 genes from Examples 4 and 5 and the btPGSI208-neo and btPGSI245-neo hybrid genes from Example 6 are each inserted into, and expressed by, different E. coli in a conventional manner, using E. coli expression vectors as described by Botterman and Zabeau (1987).

Using the procedures described in U.S. patent application 821,582 and European patent application 86/300,291.1 and 88/402,115.5, the truncated btPGSI208 and btPGSI245 genes and the btPGSI208-neo and btPGSI245-neo hybrid genes are inserted into intermediate plant expression vectors. To provide major expression in plants, the hybrid genes and truncated genes are placed under the control of strong constitutive promoters such as the Cabb-JI 35S promotor (Hull and Howell, 1987) or the TR2 promoter (Velten et al, 1984) and are fused to transcription termination and polyadenylation signals such as those the octopine synthase gene (Gielen et al, 1984).

Using standard procedures (Deblaere et al, 1985), the intermediate plant expression vectors, containing the truncated btPGSI208 and btPGSI245 genes and the btPGSI208-neo and btPGSI245-neo hybrid genes are transferred into the Agrobacterium strain C 58 C1 Rif^R (US patent application 821,582; European pater application 86/300,291.1) carrying the disarmed Ti-plasmid pGV2260 (Vaeck et al, 1987). Selection for spectinomycin resistance yields cointegrated plasmids, consisting of pGV2260 and the respective into mediate plant expression vectors. Each of these recombinant Agrobacterium strains is then used transform different potato plant cells so that the truncated btPGSI208 gene, the truncated btPGSI245 genes the btPGSI208-neo hybrid gene and the btPGSI245-neo hybrid gene are contained in, and expressed to different cells.

Example 8: Expression of the truncated btPGSI208 and btPGSI245 genes and the btPGSI208-neo and btPGSI245-neo hybrid genes in potato plants

The insecticidal activity against Coleoptera of the expression products of the truncated btPGSI208 and btPGSI245 genes and the btPGSI208-neo and btPGSI245-neo hybrid genes in leaves of transformed potato plants, generated from the transformed potato plant cells of Example 7, is evaluated by recording the growth rate and mortality of Leptinotarsa decemlineata larvae fed on these leaves. These results are compared with the growth rate of larvae fed leaves from untransformed potato plants. Toxicity assays are performed as described in European Patent application 88/402,115.5, U.S. patent application 821,582 and European patent application 86/300,291.1. A significantly higher mortality rate is obtained among larvae fed on leaves of transformed potato plants containing the truncated btPGSI208 gene, the truncated btPGSI245 gene, the btPGSI208-neo hybrid gene or the btPGSI245-neo hybrid gene than among larvae fed the leaves of untransformed plants.

Needless to say, this invention is not limited to the BtPGSI208 (DSM 5131) strain and the BtPGSI245 (DSM 5132) strain. Rather, the invention also includes any mutant or variant of the BtPGSI208 or BtPGSI245 strain which produces crystals, crystal proteins, protoxin or toxin having substantially the same properties as the BtPGSI208 or BtPGSI245 crystals, crystal proteins, protoxin or toxin. In this regard, variants of the BtPGSI208 and BtPGSI245 strains include variants whose total protein pattern is substantially the same as the protein pattern of either the BtPGSI208 strain or the BtPGSI245 strain as shown in Fig. 3.

This invention also is not limited to potato plants transformed with the truncated <u>btPGSl208</u> or <u>btPGSl245</u> gene. It also includes any plant, such as tomato, tobacco, rapeseed, alfalfa, sunflowers, cotton, corn, soybeans, potato, brassicas, sugar beets and other vegetables, transformed with an insecticidally effective part of the btPGSl208 or btPGSl245 gene.

Nor is this invention limited to the use of Agrobacterium tumefaciens Ti-plasmids for transforming plant cells with an insecticidally effective btPGSI208 or btPGSI245 gene part. Other known techniques for plant cell transformations, such as by means of liposomes, by electroporation or by vector systems based on plant viruses or pollen, can be used for transforming monocotyledons and dicotyledons with such a gene part.

Furthermore, DNA sequences other than those of an insecticidally effective <u>btPGSI208</u> or <u>btPGSI245</u> gene part can be used for transforming plants. In this regard, the DNA sequence of either gene part can be modified by: 1) replacing some codons with others that code either for the same amino acids or for other amino acids; and/or 2) deleting or adding some codons; provided that such modifications do not substantially alter the properties of the encoded, insecticidally effective portion of the BtPGSI208 or BtPGSI245 protoxin.

Also, other DNA recombinants containing the aforementioned DNA sequences in association with other foreign DNA, particularly the DNA of vectors suitable for transforming plants and microorganisms other than E. coli, are encompassed by this invention. In this regard, this invention is not limited to the specific plasmids containing the btPGSI208 and btPGSI245 genes, or parts thereof, that were heretofore described, but rather, this invention encompasses any DNA recombinants containing a DNA sequence that is their equivalent. Further, the invention relates to all DNA recombinants that include all or part of either the btPGSI208 gene or the btPGSI245 gene and that are suitable for transforming microorganisms (e.g., plant associated bacteria such as Bacillus subtilis, Pseudomonas, and Xanthomonas or yeasts such as Streptomyces cerevisiae) under conditions which enable all or part of the gene to be expressed and to be recoverable from said microorganisms or to be transferred to a plant cell.

References

35

- Botterman and Zabeau, DNA 6, 583-591 (1987)
- Deblaere, R., Bijtebier, B. De Greve, H., Debock, F., Schell, J., Van Montagu, M. and Leemans, J., Nucleic Acids Research 13, 4777-4788 (1985).
 - Dulmage, H.T., "Production of Bacteria for Biological Control of Insects" in Biological Control in Crop Production, Ed. Paparizas, D.C., Osmun Publishers, Totowa, N.J., USA, pp. 129-141 (1981).
- Ellar, D.J., Knowles, B.H., Drobniewski, S.A. and Haider, M.Z., in "Fundamental and Applied aspects of Invertebrate Pathology". Ed. Samson, R.A., Vlak, J.M. and Peters, D. (1986) pp. 7-10. Wageningen, Foundation of the fourth International Colloquem of Invertebrate Pathology.
 - Engvall and Pesce, Scand. Immunol. Suppl. 7 (1978)
 - Finney, Probit Analysis, 3rd Edition, Cambridge University Press (1971)

- Franck, Guilley, Jonard, Richards and Hirth, Cell 21, 285-294 (1980)
- French, B.T., Maui, H.N. and Maui, G.G., Anal.Biochem. 156, 417423 (1986)
- Gardner, Howarth, Hahn, Brown-Luedi, Shepard and Messing, Nucleic Acids Research 9, 2871-2887 (1981)
- Gielen, J., De Beukeleer, M., Seurinck, J., Deboeck, F., De Greve, H., Lemmers, M., Van Montagu, M. and Schell, J., EMBO J 3, 835-845 (1984).
 - Goldberg, R.B., Science 240, 1460-1467 (1988)
 - Höfte, H., De Greve, H., Seurinck, J., Jansens, S., Mahillon, J., Ampe, Vandekerckhove, J, Vanderbruggen, H., Van Montagu, M., Zabeau, M. and Vaeck, M., Eur. J. Biochem. 161, 273-280 (1986)
- 10 Höfte, H., Seurinck, J., Van Houtven A. and Vaeck, M., Nucleic Acids Research 15, 7183 (1987)
 - Höfte, H., Dissertation thesis at the State University of Ghent, Belgium (1988).
 - Höfte, H., Van Rie, J., Jansens, S., Van Houtven, A., Verbruggen, H. and Vaeck, M., Applied and Environmental Microbiology 54, 2010-2017 (1988)
 - Hull and Howell, Virology 86, 482-493 (1987)
 - Kuhlemeier, Green and Chua, Ann. Rev. Plant Physiol. 38, 221-257 (1987)
 - Laemmli V., Nature 227, 680-685 (1970)
 - Lambert, B., Leyns, F., Van Rooyen, L., Gosselé, F., Papon, Y. and Swings, J. Applied and Environmental Microbiology 53, 1866-1871 (1987).
 - Mahillon, J. and Delcour, J., J. Microbiol. Methods 3, 69-73 (1984)
- Maxam, A.M. and Gilbert, W., Methods in Enzymol. 65, 499-560 (1980).
 - Odell, J.T., Nagy, J., and Chua, N., Nature 313, 810-812 (1985).
 - Peferoen, M. in Methods in Molecular Biology, vol. 3: New Protein Techniques, p. 395-402, Ed. John M. Walker, Humana Press (1988).
 - Reiss, B., Sprengel, R., Will, H. and Schaller, H., Gene 30, 217-223 (1984)
- Sneath, P., Mair, N., Sharpe, M. and Holt, J., (1986) in Bergey's Manual of Systematic Bacteriologie, Vol. 2, pp. 1104-1139. Eds. Williams and Wilkins, Baltimore, London.
 - Sutherland, M.W. and Skerritt, J.M., Electrophoresis, 7, 401-406 (1986)
 - Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., De Beuckeleer, M., Dean, C., Zabeau, M., Van Montagu, M. and Leemans, J., Nature 327, 33-37(1987).
- o Velten, J., Velten, L., Hain, R. and Schell, J., EMBO J 3, 2723-2730 (1984).
 - Velten, J. and Schell, J. Nucleic Acids Research 13, 6981-6998 (1985)
 - Yannisch-Perron, C., Vierra, J. and Messing, J., Gene 33, 103-119 (1985).

35 Claims

- 1. The BtPGSI208 strain or the BtPGSI245 strain.
- 2. The BtPGSI208 or BtPGSI245 crystals, crystal proteins, protoxin or toxin.
- 3. The btPGSI208 or btPGSI245 gene, the insecticidally effective btPGSI208 or btPGSI245 gene part, the truncated btPGSI208 or btPGSI245 gene, the btPGSI208 or btPGSI245 chimaeric gene or a hybrid thereof with a selectable marker gene, such as the neo gene.
 - 4. An insecticidal composition, particularly against Coleoptera, which comprises an active ingredient selected from the group consisting of: the BtPGSI208 or BtPGSI245 strain, crystals, crystal proteins, protoxin and toxin and insecticidally effective portions of the BtPGSI208 or BtPGSI245 protoxin.
- 5. A transformed microorganism, particularly E. coli, characterized by the gene, the gene part, the truncated gene, the chimaeric gene or the hybrid of claim 3.
- 6. A transformed plant cell, characterized by the insecticidally effective btPGSI208 or btPGSI245 gene part, the truncated btPGSI208 or btPGSI245 gene, the btPGSI208 or btPGSI245 chimaeric gene, or a hybrid thereof with a selectable marker gene, such as the neo gene.
 - 7. A plant or a seed thereof containing the plant cell of claim 6.
- 8. A plant genome containing, integrated therein, the gene part, the truncated gene or the chimaeric gene of claim 6.
 - 9. A plant tissue, the cells of which have the plant genome of claim 8.
- 10. A process for rendering a plant resistant to Coleoptera characterized by: providing the plant with the transformed cell of claim 6.
 - 11. In a process for producing plants and reproduction material, such as seeds, of said plants including a heterologous genetic material stably integrated in the genom thereof and capable of being expressed therein in the form of a protein toxic to insects, comprising the non-biological steps of: a) producing

transformed plants cells or plant tissue including said heterologous genetic material from starting plant cells or plant tissue not expressing said protein, b) producing regenerated plants or reproduction material of said plants or both from said transformed plant cells or plant tissue including said heterologous genetic material, and c) optionally, biologically replicating said regenerated plants or reproduction material or both; wherein said step of producing said transformed plant cells or plant tissue including said heterologous genetic material is characterized by transforming said starting plant cells or plant tissue with the gene part, the truncated gene or the hybrid of claim 6 as well as regulatory elements which are capable of enabling the expression of the gene part, the truncated gene or the hybrid in said plant cells or plant tissue, to cause the stable integration of the gene part, the truncated gene or the hybrid in transformed plant cells or plant tissue, as well as in said plants and reproduction material produced therefrom throughout generations.

12. A process for controlling an insect pest, especially, Coleoptera, particularly Leptinotarsa decemlineata, Agelastica alni, Diabrotica luteola, Haltica tombacina Anthonomus grandis, Tenebrio molitor and Triboleum castaneum, characterized by contacting the pest with the insecticidal composition of claim 4.

			EP (0 382 990) A1		
	10	20	30	40	50	60	70
TTATCTA	CAT TTAAT	CATCT CCAT	TATAAA TAT	aatatet aa	VACACATTG TTGC	aagaga attaatac	TA
	80	90	100	110	120	130 1	40
CTTTGAT	ATT TTAA	ntatac tta/	ACCTAAT GTA	ATTETTAA 61	TAATATAG AAAT	ATACCT ATATTAAC	AA
	150	160	170	180	190	200 2	10
GGAATTT	att aa aa	ATAATT TTG1	TATACTT TTO	CATTETAA TA	vacatgatt tita	aaacaa aaaastst	AT
	220	230	240	250	• 260	270 2	80
AAACAAC	tta tcag	eaacsc GGG	satgege A a v	agaataaa a <i>k</i>	agagaatge ttat	AATGTT CAATGGTT	TT
	290	300	310	320	330	340 >	
ATAGGAA	GGC ATTT	TATCAG GTA	GAAAGTT ATI	ETATTATG A	TAAGAATGG GAGG		
350		359	368	377	386	395	
					AG GTT ACA CCT		
					ys Val Thr Pro		
404		413	422	431	440	449	
					AC AAT CCA ÅA1 ISP ASN Pro Ast		
456	:	467	476	485	494	503	
					CT 6CA 6AC AAT		
512		521	530	539	iii nia nsp nsi 548	557	
	↓						
					igg ACA 66A AT ily Thr 6ly Il		
560	;	5 75	584	593	602	611	
					SCT 666 6C6 CT		
62i		629 1 ply val v	638 638	rro rne f 647	Ala Gly Ala Le 656	u inr ser rne 665	
*** **							
					SAT GCT GAC CC ASP Ala ASP Pr		
67	4	683	692	701	710	719	
					AAA ATA GAG GA Lys Ile Glu G1		

_																		
										382	99		1					
		728			737			746			755			764	j. 		773	
																6AT		GTA U.1
	JC.	_	****			•										Har		
		782			791			800	•		809			818			827	
																CGA Arg		
				1100			-,-									· 3		•
		836			845			854			863			872			881	
																CGT Arg		
																,	•	•••
		890			899			908		***	917		•	926			935	
																ACA Thr		
		944			953			962			971			980			989	
																TTT Phe		
		998			1007			1016			1025			1034			043	
		770																
																CAA Gin		
		052			1061			070	•		1079			088			097	-•-
																6GA 61y		
		106			1115			124	-,-		133			142			151	
																III		
	ser	Leu	Hrg	ath	Ser	ınr	ıyr	HSP	HIS	ITP	VāI	LYS	rne	HEN	Hrg	Phe	Hrg	Arg
	1	160		1	1169		1	178		1	187		1	196		1	205	
																TAT		
	Glu	FIE !	Iħr	Leu	inr							Leu	the	Pro	Fhe	Tyr	asp	Val
	. 1	214		1	1223		1	232		1	241		1	250		1	259	
																īīī i		
	Arg	Leu	Tyr	Ser	Lys	6ly	Val	Lys	Thr	6lu	Leu	Thr	Arg	Asp	Ile	Phe	Thr	Asp
	1	268		1	277		1	286		1	295		1	304		1	313	
	CCA .	ĀTĪ	ΪĪĪ	ĀCĀ	CTC	AAT	6CT	ctt	CAA	GAG	TAT	66A	CCA	ACT	ĪĪĪ	TCG i	AGT	ATA
	Pro	lle	Phe	Thr	Leu	Asn	Ala	Leu	G In	G lu	Tyr	Gly	Pro	Thr	Phe	Ser !	Ser	He
	1	322		1	331		1	340		1	349		1	358		1	367	
	6AA	AAC	TCT	ĀŦŦ	CGA	ĀĀĀ	αŒΤ	CAT	TTA	ΠĪ	GAT	TAT	TTG	CST	666	ĀTT I	GAA	TTT
	Glu																	

1376	1385	1394	1403	1412	1421
737 A76 767	בירו בביר דדי	EST TAT TET	566 AAA 6AT	TOT TTO AAT	TAT THE TOT
				Ser Phe Asn	
1436	1439	1448	1457	1466	1475
257 AAT TAT					
				AAT GAT ACA Asn Asp Thr	
way name iji		5 110 00.	,11 -17 -0.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
1484	1493	1502	1511	1520	1529
				AAG CTA AGC	
Pro Phe Tyr	Gly Asp Lys	Ser Ile Glu	Pro Ile Gir	Lys Leu Ser	Phe Asp Gly
1538	1547	1556	1565	• 1574	1583
CAA AAA STT	TAT CGA ACT	ATA GCT AAT	ACA GAC ATA	SCG SCT TTT	CCG GAT GGC
				Ala Ala Phe	
1592	1601	1610	1619	1628	1637
AAG ATA TAT	TTA TAR TIT 1	ACS AAA STI	GAT TIT AGT	CAA TAT GAT	GAT CAA AAA
				61n Tyr Asp	
1646	1655	1664	1673	1682	1691
ΔΔΤ <u>Κ</u> ΔΔ ΔΓ1	1 AGT AGA CAA	ACA TAT 607	TO AND AGE	TAC AAT SGC	TAT TTA GET
				Tyr Asn Gly	
1700	1709	1718	1727	1736	1745
500 CVC 6V.	T TOT ATC 600	777 ATT AA1	CC0 G00 000	ACA GAT GAA	CCA CTT GAA
				Thr Asp Glu	
1754	1763	1772	1781	1790	1799
				TTC TTA ATG	
Lys Ala ly	r Ser His Gir	i Leu Asri Tyr	Ala Glu Cy	s Phe Leu MET	bin Asp Arg
1808	1817	1826	1835	1944	1853
CGT GGA AC	A ATT CCA TTI	TTT ACT TG	ACA CAT AG	A AGT GTA RAC	TTT TTT AAT
Arg 61y Th	r Ile Pro Ph	Phe Thr Tr	Thr His Ar	g Ser Val Ass	Phe Phe Asn
1862	1871	1880	1889	1898	1907
ACA ATT GA	T GCT GAA AA	ATT ACT CA	CTT CCA GT	A GTG AAA GCA	TAT SCC TTG
				l Val Lys Ala	
1916	1925	1934	1943	1952	1961
TOT TO SE	74 201 709 3	T ATT GOA GG	TT 433 433 T	C ACA GGA GG	ATT TTA CTA
					Asn Leu Leu
1970	1979	1988	1997	2006	2015
TTC CT6 00	A TOT AG A	TA 47T TAA T	T AAA T79 T	14 TT2 444 T	TTA AAT TCA
					r Leu Asn Ser

		FD	0 382 990	Δ1		
2024	2033		2051	2060	2069	
					TCA ACC ACT	
HIS HIS I	en ren elu	Arg lyr Arg	val arg lie	HLB IAL HIS	Ser Thr Thr	ASN
2078	2087	2096	2105	2114	2123	
CTA CGA C	TT TTC STG	CAA AAT TCA	AAC AAT GAT	717 CTT 6TC	ATC TAC ATT	ΔΔΤ
					Ile Tyr Ile	
,					.,	
2132	2141	2150	2159	2168	2177	
			_		GAT TTC GCA	
Lys Thr P	ET Asn Ile	Asp Gly Asp	Leu Thr Tyr	61n Thr Phe	Asp Phe Ala	Thr
		***	2212	•		
2186	2195	2204	2213	2222	2231	
AGT AAT T	TAA TA	GGA TTC TCT	20 TAS TOS	AAT 6AC TTT	ATA ATA GGA	204
					Ile Ile Gly	
DEL HELL S	er men men	ath the set	gril web rut	אאו אאר רוופ	tie tie giv i	HIG
2240	2249	2258	2267	2276	2285	
CAA TOT T	TO GTT TOT	AAA AAA TAA	ATC TAT ATA	<u> </u>	GAA TIT ATC (
					6lu Phe Ile i	
ata ser r	HE ART DEL	Man ara FA2	Tie iyi ile	Wah The Ite	ora Luc IIe i	-10
2294	> 23	307 231	7 2327	2337	2347	2357
GTA CAA T	— '	ATT TTGGAATAT	a s ecceatest	CAAAATGAAA	GGATAAGAAG 61	GAATTTTG
Agt gtu	•					

ATGGTTAGGA AAGATTCTTT TAACAAAAGC AACATGGAAA AGTATACAGT ACAAATGGGT ACCGAGCT

Figure | (cont. 3)

Figure 2.

10	20	30	40	50	60 70
TTTGGATTGT GASCA	ATGTAC AGGTT	retga tttaca/	asca aaa ccaat	CT ECGAAGAT	TE TTETCATTTT
80	90	100	110 1	20 1	30 140
ATAAAGGTAA CAGG	atatti tcaaa	FTTGT ACCGATI	Taaaaaa	at ttagatta	AC ACTETTETTT
150	160	170	180	189	198
TTTACAACTA TCCG	tatgga caaat	TTAAC AAGGAGT	BAA AAT ATG	AAT TTA AAT Asn Leu Asn	
267	216	225	234	243	252
GAT GGA TAT GAA ASP Gly Tyr Glu					
261	270	279	288	297	306
CAA AAA GCA TTA Gln Lys Ala Leu					
315	324	333	342 L	351	360
ATA ACT GAG AGG Ile Thr Glu Arg					
369	378	387	396	405	414
ACT GTA GTT AGT Thr Val Val Ser					
423	432	441	450	459	468
AGT TTT ATC ACT Ser Phe Ile Thr					
477	486	495	504	513	522
66A AAA ATT T66 Gly Lys Ile Trp					
531	540	549	558	567	576
ATA GAA GAA TAT Ile Glu Glu Tyr					
585	594	603	612	621	630
GCC TTA GAT AAA Ala Leu Asp Lys					
63 9	648	657	666	675	684
CCA GAA GCT ATA					

							 -	F	PΛ	382	990) A1						
Figure 2	(col	nt.	. i)			_		-00								
rigure 2	`	693			702			711			720			729)		738	}
į			ACT	ATC		TCA	777			A^*T	664	TAT	CAA	ATA				
											66A 61y							
		747			756			765			774			783	ł		792	è
;												===	=					
											6CT Ala							
		801			810			819			828			837			846	
											AAC Asn							
·	•			-,,,		,				,,,,,,		•••						
_		855			864			873			882			891			900	
											CAT His							
•	***			111 3		6-61	aıu		JEI	nap		V) 2	1717		***	',,,		OC1
		909			918			927			93E			945			954	
											6AA							
•	11 A		SEI	nı y		u31	GIA		1718	ıyı	61u	9111	117		HSI	ışı	HSTI	HIB
		963			972			98 1			990			999			1008	
											6AT							
r			Hrg	aiu	FIC I	116	ren	RE!	HIS	Leu	Asp	reu	491	HIĀ	AFI	rne	rro	rne
	1	1017			1026		1	1035		1	1044		1	053			1062	
											AGT							
K	115	asp	Fro	Arg	Arg	Tyr	Ser	MET	61u	Thr	Ser	Thr	Gln	Leu	Thr	Arg	6lu	Val
	1	071		1	080		1	089		1	1098		1	107		1	116	
											AAT							
T	yr	Thr	Asp	Pro	Val	Ser	Leu	Ser	Ile	Ser	Asn	Pro	Asp	Ile	Gly	Pro	Ser	Phe
	1	125		. 1	134		1	143		1	152		1	161		1	170	
											CCA							
S	er	6ln	HET	6lu	Asn	Thr	Ala	Ile	Arg	Thr	Pro	His	Leu	Val	Asp	Tyr	Leu	ASP
	1	179		1	188		1	197		1	206		1	215		1	224	
											6CA							
6	lu	Leu	Tyr	He	Tyr	Thr	Ser	Lys	Tyr	Lys	Ala	Phe	Ser	His	6lu	Ile	6ln	Pro
	1	233		1	242		i	251		1	260		1	269		1	278	
G	AC	CTA	Πī	TAT	T66	ĀĞŢ	6CA	CAT	AAG	ēŦŦ	Ã6C	iii	AAA	AAA	TCG	6A6	CAA	TCC
A	SP	Leu	Phe	Tyr	Trp	Ser	Ala	His	Lys	Val	Ser	Phe	Lys	Lys	Ser	6lu	61n	Ser

AAT TTA TAT ACA ACA GGC ATA TAT GGT AAA ACA AGT GGA TAT ATT TCA TCA GGG Asn Leu Tyr Thr Thr Gly Ile Tyr Gly Lys Thr Ser Gly Tyr Ile Ser Ser Gly

	1341	1350	1359	1368	. 1377	1386
Figure 2 (cont. 2)				ATC TAT AGA AC		
	1395	1404	1413	1422	1431	1440
				TAT GGT GTC GA Tyr Gly Val Gl		
	1449	1458	1467	1476	1485	1494
				GGA GAT AAC AA		
	Val Lys 6	ly His Val	His Tyr Arg	61y Asp Asn Ly	s Tyr Asp Leu	The Tyr Asp
	1503	1512	1521	- 1530	153 9	1548
			_	GGA GAA CCA AT		
	1557	1566	1575		1593	1602
				TTT AAA TCA AC		
				Phe Lys Ser Th		
	1611	1620	1629	1639	1647	1656
				CAT AGA AGT 60		
	Thr Ile P	ro Ile Phe	Ser Trp Thr	His Arg Ser Al	a Glu Tyr Tyr	Asn Arg Ile
	1665	1674	1683	1692	1701	1710
				CCA GCT GTA AF		
	1719	1728	1737	1746	1755	1764
	CCA TCT A	CA GTT GTC	AAA 666 CCT	GGA TTT ACA GA	T GGA GAT TTA	GT AAG AGA
				Gly Phe Thr 6		
	1773	1782	1791	1800	1809	1818
				ATA AAG GCT AG		
				lle Lys Ala Ti		
	1827	1836	1845		1863 == === ===	1872
				A TAC GCT ACT AL Tyr Ala Thr A		
	1881	1890	1899	1908	1917	1926
	GTG TAT A	ATT AAT GAT	AAA ATA ACC	CTT CAA ACA A	AG TTT CAA AAT	ACT GTA GAA
	Val Tyr I	lle Asn Asp	Lys Ile The	Leu Gln Thr L	ys Phe Giln Asr	The Val Glu
	1935	1944	1950	3 1962	1971	1980
				ACC TAT GGT T		
				u Thr Tyr Gly S		
	1989	1998	200	7 2016	2025 	2034
				T GAG CAT CCA A P Glu His Pro L		

 _	382		A 4
 	.502	990	M I

			EP 0 38	2 990 A1		
	2043	2052	2061	2070	2079	2088
	GAT TIG AGT	AAC AAT TOA	TCA TIT TAT	STA SAT TCA	ATC GAA TIT	ATC CCT STA
Figure 2 (cont. 3)			Ser Phe Tyr			
(cone. 3)	2097	2106	2115	2124	2133	2142
	GAT GTA AAT	TAT GCT GAA	AAA GAA AAA	CTA GAA AAA G	SCA CAG AAA	SCC STS AAT
	- '		Lys Glu Lys			
	2151	2160	2169	2178	2187	21%
	ACC TTG TTT	ACA GAG GGA	AGA AAT GCA	CTC CAA AAA 6	AC GTG ACA	GAT TAT AAA
			Arg Asn Ala			
	2205	2214	2223 .	2232	2241	2250
	GTG GAC CAG	GTT TCA ATT	TTA GTG GAT	TGT ATA TCA G	SES GAT TTA	TAT CCC AAT
			Leu Val Asp			
	2259	2268	2277	2286	2295	2304
	GAS AAA CGC	GAA CTA CAA	AAT CTA GTC	AAA TAC GCA A	AA CGT TTG	AGC TAT TCC
			Asn Leu Val			
	2313	2322	2331	2340	2349	2358
			CCA ACA TTC			
	Arg Asn Leu	Leu Leu Asp	Pro Thr Phe	Asp Ser Ile A	ksn Ser Ser	Glu Glu Asn
·	2367	2376	2385	2394	2403	2412
			GGT ATT GTG			
	aly irp lyr	aly Ser Ash	6ly lle Val	ile diy Asn b	ily Asp Me	Val Phe Lys
	2421	2430	2439	2448	2457	2466
			TCA GGT ACC			
	GIY ASA IYr	Leu IIe Phe	Ser Gly Thr	Ash Asp inr b	iin lyr rro	inr lyr Leu
	2475	2484	2493	2502	2511	2520
			TCC AAA CTC			
	iyr ain Lys	ile ASP BIU	Ser Lys Leu	Lys alu lyr I	nr Hrg lyr	Lys Leu Lys
	2529	2538	2547	2556	2565	2574
			CAG GAT TTA			
	2583	2592	61n Asp Leu (2601	али нла туг v 2610	2619	2628
			GTT TCT GAT (
	2637	2646	2655	2664	2673	2682
			AAT CEC TEC			
	Asn Thr Cys	6ly 6lu Pro	Asn Arg Cys	Ala Ala 61n 6	iln Tyr Leu	Asp 61u Asn
	2691	2700	2709	2718	2727	2736
	_	_	TCG ATG CAA			
	Pro Ser Pro	6lu Cys Ser	Ser MET Gin	Asp Gly Ile i	.eu Ser Asp	ser His Ser

	2	745		2	754	2	763		2	772		2	781		2	75 0	•
Figure 2 (cont.4)	TTT Phe																
•	2	799		2	808	2	817		2	826		2	835		2	844	
										66A Gly							
	2	853		2	862	2	871		2	880		2	889		2	898	
										6AA 61u							
*	2	907		2	916	2	925		. 2	934		2	943		2	952	
										CAA Gln							
	2	961		2	970	2	979		2	2988		2	9 97		3	3006	
		_	_							AAT Asn							
	3	8015		3	3024	;	3033		;	3042		3	051		3	3060	
										6AA Glu							
	3	3069		3	3078	,	3087		;	3096		3	105		;	3114	
										TGG Trp							
	;	3123		;	3132	(3141			3150		;	3159		(3168	
						 _				C&A Arg		-					
	(3177		;	3186		3195			3204			3213			3222	
										C&A Arg							6AT Asp
	,	3231			3240		3249			3258			3267	,		3276	
								-									TTA
		3285			3294		3303			3312			3321			3330	
			_	_	_										_		GAC
						Ala			Lec	ı Glr	ASN				ı Tyr		ASP
		3339			3348	 	3357			3366			337:			3384	
.														_			TAT Tyr

ΕF	0	382	2 9	30	Δ1

						-	. •	UU2.	. 55	·								
	3393		;	3402		;	3411		;	3420			3429	,	;	3438	t	
Figure 2 (cont.5)	ATA ACG	ĀTT	AC6	GAT	GAA	GAA	866	CAT	ĀČĀ	GAT	CAA	TTG	A64	TTT	ACT	6CA	T6 T	
	Ile Thr	Ile	Thr	Asp	6lu	6lu	61 y	His	Thr	Asp	61n	Leu	Arg	Phe	Thr	Ala	Cys	
	3447		;	3456		;	3465		;	3474			3483	ı	;	3492		
	GAA GAG	ĀTT	RAT	<u>223</u>	TOT	ΔΔΤ	373	TTT	ΔΤΔ	TOO	Taa	TAT	ATT	Δ.ν	AXA	6:00	ato	
	6lu 6lu																	
	3501		;	3510		;	3519		,	3528			3537	•	;	3546	1	
	GAA TTC	TTC	CCA	GAT	ACA	646	AAA	6TG	CAT	ĀTĀ	GAA	ĀTĀ	660	644	ACA	GAA	66A	
	61u Phe																	
	3555		;	3564		;	3573		;	3582	•	;	3591		3	3600		3610
	ATA TTC																TAGE	16AGATT
	Ile Phe	Leu	Val	Glu	Ser	lie	6]u	Leu	Phe	Leu	MET	Glu	6lu	Leu	Cys	•		
	36	20		363	30		3640)	;	3 6 50		3	660		367	10		3680
	ATTCAACA	¥AA	TATT	TETT	rg A	TTCA	AAAT	A AA	ATAA/	ATG	CAT	ACAA	TCC	TOTT	TATC#	ig a	CGGTA	ITTTC
	.36	90		370	00		3710)	3	3720		3	730		374	10		3750
	TAATAATT	TAT :	AAAT	ATA G (at t	6144	STTA	AA/	MTA	\AAA	CACE	CTA	TTC	CCAT	TACTA	NG A	AGGAG	iGGAG
	37	60		377	70		3780)	;	3790		39	300		381	Û		3820
	TAACGTGT	TTT	TTTC	ATGA6	at A	AAAA	AACA	A TT/	AGCT/	ATAT	TTA	TCTA	TTC	TCTA	TAGAA	16 A	agcge	iATTG
	38	30		384	10		3850)	3	3860		34	870		388	KO		3890
	ataagaa(23	TAAG	TGAC#	ବର ଲ	AATA(CAT	TA1	TATC	TAT	AGT(CAA	etc	CAAA:	HAAT	16 A	666T/	¥GTAG
	39	00		391	0		3920)	3	3930		3	940		395	iO		3960
	ASTGAÇÃA	AA	ACGC	TTGA	ag T	TTTC	CAAA	AA	BAAAT	CAA	GTA	CAAA	TT6	AAAT	:ASTA	K A	ACAAA	HETT
	39	70		398	30		399()	4	1000								

ATTICITTAS TAGAACGTAT AGAATTATTA TGTTTGGAAG ATGA

Total protein pattern of sporulated <u>B.t.</u>s by SDS-PAGE

Figure 3

Protein blotting of BtS1 and PGSI208 proteins and trypsinized crystal proteins

Figure 4a

Protein blotting of HD110, PGSI245 and BtS1 solubilized and trypsinized crystal proteins

Eigure. 4b

EUROPEAN SEARCH REPORT

EP 89 40 0428

Category		indication, where appropriate,	Relevant to claim	CLASSIFICATION OF TH APPLICATION (Int. Cl.5)
A	WO-A-8 808 880 (E0 * abstract; page 13 line 29; page 38, 1 line 35; page 41, 1 line 30; figure 8; 1-5,8-14,17-25,28-5	COGEN INCORPORATED) 3, line 25 - page 14, ine 30 - page 39, ine 30 - page 42, claims	1-12	C 12 N 15/32 A 01 N 63/00
D,A	EP-A-0 213 818 (MY * abstract; column column 3, line 54 - column 5, lines 1-3 1-16; column 6, lin 2-5; tables A,B; cl	2, lines 5-17; column 4, line 54; 37; column 6, lines ses 31-34; examples	2-5,12	
A	EP-A-0 289 479 (MC * whole document *	NSANTO COMPANY)	1-12	
A	PROCEEDINGS OF THE SCIENCES OF THE USA vol. 84, no. 20, Oc		2-5,12	
į	7036-7040, Washingt SEKAR et al.: "Mole	on, DC, USA; V.		TECHNICAL FIELDS SEARCHED (Int. CI.5)
	characterization of crystal protein gen	the insecticidal		C 12 N 15/32 C 12 N 15/82 A 01 N 63/00 A 01 N 63/02
A	of Bacillus-Thuring coleopteran larvae sequence of the tox	olation and EG2158 a new strain iensis toxic to	1-5	
	The present search report has h			
BE	Place of search RLIN	Date of completion of the search 27-09-1989	JUL	Exeminer IA P.
X : part Y : part doci	CATEGORY OF CITED DOCUME icularly relevant if taken alone icularly relevant if combined with an iment of the same category inological background written disclosure	E : earlier paient after the filing other D : document cite L : document cite	document, but pub ; date d in the application	lished on, or n

EUROPEAN SEARCH REPORT

Application Number

EP 89 40 0428

Category	Citation of document with indi of relevant passs	cation, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
D,A	EP-A-O 193 259 (PLAN N.V.) * whole document *	NT GENETIC SYSTEMS	1-12	
!				
				TECHNICAL FIELDS SEARCHED (Int. Cl.5)
	×			
	·			
	The present search report has bee	<u> </u>		
В	Place of search ERLIN	Date of completion of the search 27-09-1989	1	Examiner LIA P.
Y: pa	CATEGORY OF CITED DOCUMENT rticularly relevant if taken alone rticularly relevant if combined with anoth culent of the same category chological background	E : earlier pater after the fil her D : document ci L : document ci	ited in the application ited for other reason	blished on, or on IS
Y: pai do: A: tec O: no	rticularly relevant if taken alone rticularly relevant if combined with anoti	E: earlier pater after the file ber D: document c L: document	nt document, but puing date ing date ited in the application ted for other reason	blished on, or on s