Swelling Model – "stretching" case

Jason D. McNeill, Clemson University

May 2014

These derivations are for the continuous swelling model. This contrasts with the "vacancy" model we have also been developing. The basic idea is that we start with a 3D grid, similar to the starting point for the vacancy model. Each site represents a chromophore.

First let's clarify some aspects of the 3D grid model. If we assume that the chromophore is a certain size, say, that of 2 polymer repeat units, then we must set up out grid spacing so that it is consistent with this picture. If we have a chromophore weight, w_c , and we assume that the density or specific gravity is 1 g / cm³, then after a bit of rearrangement and unit conversion, we obtain the chromophore volume v_c . From this, we obtain our grid spacing,

$$\Delta x = v_c^{1/3}.$$

Note: This calculation **needs to be done**, and we should be careful in that Δx is not to be treated as a fairly unimportant calculation detail as in our continuum model, where it was best to make the spacing as small as possible. For the present model, Δx has a *physical meaning*. OK, now we introduce a swelling fraction or density parameter f, which varies between 1, representing a close-packed nanoparticle or film, and 0, which represents "infinite" swelling. We define our swelling parameter using the expression,

$$f = \frac{V_0}{V}$$

where V_o represents the unswelled nanoparticle volume, and V is the volume of the swelled (swollen?) nanoparticle. Note: the way we have defined it, f is **not** the ratio of the particle diameters. Rather, it is the ratio of the cube of the particle radii,

$$f = \frac{r_0^3}{r^3},$$

where r_0 is the unswelled radius, and r is the swelled radius. Of course, for this expression we can also use diameters, since f is a ratio and the factors of 2 cancel.

If we assume that swelling increases the grid spacing, then for the swelled particle, the lattice spacing becomes d, defined as,

$$\frac{d}{\Delta x} = f^{-1/3}.$$

Carefully note the minus sign in the exponent. Now let's go back to our (unswelled) lattice gas model for a moment. We previously found that the probability of energy transfer from one site to a nearest-neighbor site is given by,

$$p_{et} = \frac{2D\Delta t}{\Delta x^2}.$$

If we wish to roughly follow Silbey/Beljonne's reasoning, then the probability of energy transfer depends on the spacing raised to some power k, where k is typically 2-4 for excitonic systems (see Silbey and references therein), at least in theory. Combining the two above expressions with the ansatz that $p \propto d^{-k}$, we obtain,

$$p_{et} = \frac{2D\Delta t}{\Delta x^2} f^{k/3}$$

It is obvious that for f = 1, this returns the unswelled result, as required, and that the hopping probability decreases as the amount of swelling increases.

Another possibility is that the hopping can be thought of as a tunneling process with an exponential dependence on distance. Since the $p \propto d^{-k}$ approach seems supported by other related work (Silbey, etc.), maybe we should just leave it there.

Exponential version

OK, just in case the above model doesn't work, let's take a look at the exponential case. We can safely assume that the hopping probability is unity (100%) for d = 0, which is the case of zero spacing between chromophores. If we assume that it drops off exponentially with distance (this is a quite drastic assumption!),

$$p = e^{-\kappa d}$$
,

then the problem is to determine κ . We have a second point on out curve at $d = \Delta x$, which is the above expression

$$p_{et} = \frac{2D\Delta t}{\Delta x^2}.$$

Combining these expressions, we obtain,

$$e^{-\kappa \Delta x} = \frac{2D\Delta t}{\Delta x^2},$$

which rearranges to,

$$\kappa = \frac{1}{\Delta x} \ln \left\{ \frac{\Delta x^2}{2D\Delta t} \right\}.$$

This expression for κ can be reinserted into the expression $p = exp(-\kappa d)$ and there are likely further simplification steps, but I'll leave the algebra to you, and the above expression is good enough for writing a matlab script even if you are not in the mood to do the algebra.