The Effect of Unaligned Words in Phrase Based Statistical Machine Translation

DTC- Seminar Francisco Guzman October 2, 2009

Outline

- 1) Research stay @ Carnegie Mellon
- 2) Brief intro to PBSMT
 - Word Alignments
 - Phrase Extraction
- 3) Quality of word alignments
- 4) Analysis of phrase extraction
 - Manual evaluation of phrases
 - The effect of unaligned words
- 5) Lessons learned: Improving translation
- 6) Conclusions

My Research Stay

- At Carnegie Mellon University (Pittsburgh)
- August 08 August 09
- Statistical Machine Translation
- Collaborated mainly with Stephan Vogel
- Attended several courses and seminars
- Got involved in important projects (GALE, Avenue)
- Learned a lot!!!

MT @ CMU

- Carnegie Mellon University (Pittsburgh)
 - School of Computer Science
 - Language Technologies Institute
 - Avenue Group (Xfer)
 - Interlingua
 - Example Based
 - Inter/ACT
 - CMU SMT

CMU SMT

CMU SMT

Stephan Vogel

- Phrase Based/ Syntax Augmented
- Moses/STTK decoder/SAMT decoder

CMU Avenue

Alon Lavie

- Syntax Based Rules + Statistical Engine
- Xfer decoder

Gale Project

- Funded by DARPA
- Three main consortia: Nightingale (SRI), Rosetta (IBM), Agile(BBN)
- Rosetta Team:
 - CMU
 - Apptek
 - IBM
 - JHU
 - Columbia
 - Stanford
 - RTWH
- GALE Conference in Traimpa" (May 09)

Evaluation Campaigns

- Gale P3.5 (Chinese)
 - great
- NIST Eval (Arabic)
 - Not so
- Gale P4 (Arabic)
 - In progress.

Publications

Gale-Book (to be published)

Word Alignment Revisited: we present the summary of our work in word alignment analysis. Shed some light in how Discriminative Models can be used to boost WA performance

MTSummitXII

We follow an analysis from word alignment to phrase extraction in detail, and reveal how the former affects the latter. We also perform a manual evaluation that unveils the impact of unaligned words in exacted phrase pairs.

Brief Introduction to SMT

Statistical Machine Translation

- Started in 80's (IBM Candide).
- Phrase-based concept introduced (Och)
- Koehn et al. (2003) Introduced the concept of Phrase based Statistical Machine Translation

How does it work?

Translation model

- Preprocessing
- Training
- Decoding

Translation model estimation

Word Alignment

- Estimate the likelihood of individual words to be translated into each other
- Based on coocurrences
- IBM Models
- EM Algorithm

Phase Extraction

 Use heuristics to extract phrases that are consistent with the word alignment

Mary || Maria
Did not || no
Slap || daba una bofetada
The || a la
Green || verde
Witch || bruja
Mary did not || Maria no
Mary did not slap || Maria daba una bofetada

Phrase Extraction

Phrase Scoring

Phrase Scoring

 Score each phrase-pair according to MLE

$$p(\text{la bruja verde}|\text{the green witch}) = \frac{count(\text{la bruja verde, the green witch})}{count(\text{the green witch})}$$

Word Alignment

Phrase Extraction

Phrase Scoring

How does it work?

Jargon

Source Language

 Language from which we want to translate (es)

Target Language

 Language to which we want to translate (en)

Phrase Pair

Source phrase || Target phrase

Phrase Table

 Database of phrases (lexicon), with scores (probs)

SMT

Statistical Machine Translation

BLEU

De facto translation quality metric

AER

De facto alignment quality metric

Gaps

Unaligned words at a phrase level

Alignment Quality

Word Alignment

- Beginning of SMT pipeline.
- Most subsequent steps based on WA.
- A lot of work to improve WA quality.
- Widely available Hand Alignments enabled discriminative approaches.
- New discriminative models based on metrics such AER.

Good vs. Bad alignments

To get a quality score, a reference is needed

Alignment

La Maison Blanche

Good vs. Bad alignments

- To get a quality score, a reference is needed
- We get the agreement in number of links

Good vs. Bad alignments

- To get a quality score, a reference is needed
- We get the agreement in number of links
- We extract errors type I and II
- Keep the count!

Reference

La Maison Blanche

La Casa Blanca

$$OK = 1$$

$$ET2 = 2$$

Different types of Metrics

- AER
- Precision
- Recall
- F-score
 - Alpha F-Score.
- etc

AER vs BLEU

Fraser and Marcu, 2004

 $AER \neq BLEU$

- Evaluated correlation between BLEU and AER.
- Possible links => flaws.
- Variation of F-measure, uses a coefficient to modify balance between precision and recall.
- The optimal coefficient depends on the corpus.
- Vilar et al., 2004
 - Better BLEU scores can be obtained with "degraded" alignments.
 - Mismatch between alignment and translation models.
 - Support the use of AER.

Going beyond

Ayan and Dorr, 2004

- Analyze the quality of the alignments and resulting phrase tables.
- Several types of alignments.
- Several lexical weightings
- CPER (Consistent Phrase Error Rate)
- Do not analyze other characteristics of the alignment/ phrase table

Word Alignment & Phrase Extraction Analysis

Setup

- We analyzed different types of alignments
- Chinese English
- The objective was to determine which characteristic was more relevant
 - Quality?
 - Structure?
- Analysis beyond alignment quality.

Word Alignment Metrics

- Qualitative:
 - AER (F-measure)
 - Precision
 - Recall

- Quantitative:
 - Number of links
 - Number of unaligned words

DTC Seminar - Guzman, 2009

source

Alignment quality results

- DWA alignments: higher threshold=>more precision
- Best AER from slightly more precise alignment (DWA-0.5)
- GIZA=> more precision than recall.
- SYM lower AER than GIZA.

Links

- Hand Align closer to (DWA-0.3)
- DWA aligns: high threshold=>fewer links
- Best AER (DWA-0.5) fewer links than HA

Unaligned Words

- HA Source: closer to SYM, DWA-0.3
- HA Target: closer to DWA-0.4, DWA-0.3
- GIZA asymmetry
- DWA: higher threshold, more unalignments.
- DWA: lower threshold=> more proportion Chinese words unaligned.

Word Alignment: Summary

- Diversity of balance precision/recall between alignments.
- Usually precision prevails over recall.
- Two ways of describing an alignment: links and unaligned words.
- In next section, we'll observe the importance of such factors in the generation of phrase pairs.

Analysis II: Phrase Extraction

Metrics

- Quantitative:
 - Number of phrases
 - Singletons (unique entries)
 - Phrase lengths
 - Gaps (unaligned words inside phrase pair)

- Qualitative:
 - Manual Evaluation

What do we mean by gaps?

Number of Phrases

- PT grows as our alignment gets sparser
- Related to unaligned words rather than number of links

Number of Phrases

- PT grows as our alignment gets sparser
- Related to unaligned words rather than number of links

Singletons

- Most of the phrase-pairs are singletons.
- Repeated phrase-pairs grow at a slower rate.

Singletons

- Most of the phrase-pairs are singletons.
- Repeated phrase-pairs grow at a slower rate.

Phase Length

 As our PT grows, entries become longer and longer.

Gaps

- The gaps inside a phrase pair increases too.
- The distribution of gaps in the generated phrases follows the distribution of unaligned words in the alignment

Human Evaluation of Phrase Pairs

Setup:

- Native Chinese Speakers
- Each subject was asked whether a phrase pair was adequate
- No contextual information
- Included a noisy input
- Included phrases extracted from Hand Aligned data.

Sampling

Results

- HA w/o gaps yields better results than HA w/ gaps.
- DWA-0.1 very good (short phrase pairs)
- DWA-0.5 not so great
- Random pairings are usually bad

Phrase Extraction: Summary

Lessons Learned: Mind your gaps

Taking into account GAPS

- Gaps inside phrase pairs have considerable impact on human perceived quality of phrase pair.
- Do they affect translation?
- Translation Experiment:
 - Include gap count as a feature (similar to WC)
 - Compare the performance of the different systems w/o the features

Setup

- Training
 - GALE P3 Data
 - Maximum sentence length 30
 - 1 Million sentences (random)
- Tuning
 - MT05
- Test
 - GALE DEV07-Blind

Tuning

- Baseline gets get better results
- Over-fitting?

Experimental Results

- Overall gains
- Web performs better (~2 BP)
- Best system shifts to a higher precision alignment (DWA-0.5 => DWA-0.6)
- Higher recall alignments without much change

Experimental Results

- Overall gains
- Web performs better (~2 BP)
- Best system shifts to a higher precision alignment (DWA-0.5 => DWA-0.6)
- Higher recall alignments without much change

Conclusions

- We can describe an alignment by its quality and its structure (links, unaligned words).
- Unaligned words have an important role in phrase extraction (more than number links).
- The distribution of the gaps inside a phrase pair is related to the distribution of unaligned words in the alignment.
- Extracted phrase pairs with more gaps have lower human perceived quality.
- Taking into account the number of gaps in an extracted phrase pair as features achieved overall improvements.

What's next?

- Determine which phrases are now chosen by the decoder and why.
- Determine if improvement holds for other language pairs.
- Incorporate unalignment information in other stages of SMT (phrase extraction, scoring).

About a research stay

If you can, take the chance.