1). If a set has n elements, then its power set has
a) 2^n elements b) n^2 elements c) n^n elements d) 2 elements
2) What is the cardinality of $\{\phi\}$ a) 0 b) 1 c) ϕ d) $\{\phi\}$
3) If $\overline{A \cup B} = \{a, b, c\}$ then $\overline{A} \cap \overline{B} = a$) $\{\{a\}, \{b\}, \{c\}\}\}$ b) $\{a, \{b\}, c\}$ c) $\{a, b, c\}$ d) $\{a, \{b, c\}\}$
4) The dual of the statement of $(A \cap B) \cup (\overline{A} \cap B) \cup (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap \overline{B}) = U$ is
a) $(A \cap B) \cap (\overline{A} \cap B) \cap (A \cap \overline{B}) \cap (\overline{A} \cap \overline{B}) = U$ b) $(A \cup B) \cap (\overline{A} \cup B) \cap (\overline{A} \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) = \emptyset$
c) $(A \cup B) \cup (\overline{A} \cup B) \cup (A \cup \overline{B}) \cup (\overline{A} \cup \overline{B}) = \phi$ d) $(A \cup B) \cap (\overline{A} \cup B) \cap (\overline{A} \cup \overline{B}) \cap (\overline{A} \cup \overline{B}) \neq \phi$
5) Simplification of $(A \cap B) \cup (A \cap B \cap \overline{C} \cap D) \cup (\overline{A} \cap B) =$
a) A b) U c) \(\phi \) d) B
6) The number of elements in a power set $\{\phi\}$ is a) 1 b) 2 c) 0 d) 2^2
7) A subset R of the Cartesian product A x B i s called a
a) function b) relation c) set d) universal set
8) Which of the following is true?
a) $A \times B = B \times A$ b) $A \times B \neq B \times A$ c) $A \times B \cong B \times A$ d) $A \times B \leq B \times A$
 9) If A×B = φ then the sets A and B are a) at least one set is empty set b) A ≠ φ and B ≠ φ c) A = universal set and B = { 1} d) A and B are singleton sets 10) If n(A) = 3 and n(B) = 4 then the total number of relations from A to B is a) 2³ b) 2² c) 2¹² d) 2⁰
11) The smallest relation on N is a) Identity relation b) empty relation c) universal relation d) NxN
12) A relation R on a set A is said to be anti-symmetric if
a) (a, b) and $(b, a) \in R$ then $a = b$ b) (a, b) and $(b, a) \in R$ then $a \neq b$
c) (a, b) and $(b, a) \notin R$ then $a = b$ d) (a, b) and $(b, a) \notin R$ then $a \neq b$
13) A relation R on a set A is called an equivalence relation, if
a) R is irreflexive, symmetric and transitive b) R is reflexive, antisymmetric and transitive
c) R is reflexive, symmetric and transitive d) R is irreflexive, antisymmetric and transitive

- 14) A relation R on a set A is called a partial order relation, if
 - a) R is irreflexive, symmetric and transitive b) R is reflexive, antisymmetric and transitive
 - c) R is reflexive, symmetric and transitive d) R is irreflexive, antisymmetric and transitive
- 15) The partition of the set $\{1,2,3,4,5,6\}$ is

16) If R is a relation from a set $A = \{2,4,6,8\}$ to the set $B = \{3,5,7\}$ and R is defined by

R = { (2,3),(2,5),(4,5),(4,7),(6,3),(6,70,(8,7)) then the matrix $M_{R^{-1}}$ =

a)
$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix}$

17). The directed graph of the relation

 $R = \{ (1,1), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (4,1) \}$ on the set $\{ 1,2,3,4 \}$ is

18) In the Hasse diagram

- the maximal element is
- a) c b) a and b c) d d) b, c

- 19) list the ordered pairs in the relations represented by the directed graph
 - a) {(a,b),(a,c) ,(b,c),(c,a)}

- b) {(a,a),(a,b),(a,c),(b,c),(c,a)}
- c) {(a,a),(a,c),(b,a),(b,b),(b,c),(c,c)}
- d) {(a,b),(a,c),(b,c),(c,a)}
- 20) Let R be the relation on the set $A = \{0, 1, 2, 3\}$ containing the ordered pairs (0, 1), (I, I), (1, 2), (2, 0), (2, 2), and (3, 0). The reflexive closure of R is
 - a) $R \cap \Delta$, where $\Delta = \{(a,a)/a \notin A\}$ b) $R \cup \Delta$, where $\Delta = \{(a,a)/a \in A\}$

- c). $R \cup \Delta$, where $\Delta = \{(a, a) / a \notin A\}$ d) $R \cap \Delta$, where $\Delta = \{(a, a) / a \in A\}$
- 21). The upper and lower bounds of a subset of a poset are not necessarily
 - a) equal **b) uniqe** c) different d) undefined
- 22) The LUB and GLB of a subset of a poset, if they exist, are
 - a) equal **b) uniqe**
- c) different
- d) undefined
- 23) The relation R on the set of integers defined by |a-b| = 1 is
 - a) reflexive **b) symmetric** c) antisymmetric c) transitive
- 24) The relation R which is both equivalence and partial order relation is
 - a) empty relation b) void relation c) **Identity relation** d) Reflexive relation
- 25) If R is the relation on the set of integers such that $(a, b) \in R$ if and only if $b = a^2$ for some positive integer m, then R is
 - a) Reflexive relation b) Symmetric relation c) Anti -symmetric relation d) Transitive relation
- 26) If R is the equivalence relation on the set $A = \{1, 2, 3, 4, 5, 6\}$ is $R = \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3, 4, 5, 6)\}$
 - (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6), The partition of A induced by R is
 - a) {1, 5}, {3}, {4, 2}, {6} b) {1, 2}, {3}, {4, 6}, {5} c) {1, 3}, {2}, {4, 5}, {6} d) {1, 2}, {3}, {4, 5}, {6}
- 27) The relation R represented by the matrix $M_R = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ is
 - a) Partial order relation b) equivalence relation c) universal relation d) empty relation

- 28) The ordered pairs in the relation represented by the digraph
- a)Partial order relation b) equivalence relation c) universal relation d) empty relation 29) The Hasse diagram for ({3, 4, 12, 24, 48, 72}, /) is

30) Which one of the following is a Hasse Diagram

31) The symmetric closure of the relation $R = \{(a,b) / a > b\}$ on the set of positive integers is

a)
$$R \cup R^{-1} = \{(a,b)/a \neq b\}$$

b)
$$R \cup R^{-1} = \{(a,b)/a = b\}$$

c)
$$R \cap R^{-1} = \{(a,b) / a \neq b\}$$

d)
$$R \cap R^{-1} = \{(a,b)/a = b\}$$

32) Warshall's algorithm is based on the construction of a sequence of

a) zero-one matrices. b) one-zero matrices c) zero-zero matrices d) one-one matrices

33) Using Warshall's algorithm write the relation matrix
$$W_1$$
 if $W_0 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$,

$$a)\begin{pmatrix}1&0&0&1\\0&1&0&1\\0&0&0&1\\1&0&0&0\end{pmatrix} \ \, \boldsymbol{b})\begin{pmatrix}1&0&0&1\\0&1&0&1\\0&0&0&1\\1&0&0&1\end{pmatrix} \ \, c)\begin{pmatrix}1&0&0&1\\0&1&0&1\\0&0&1&1\\1&0&0&1\end{pmatrix} \ \, d)\begin{pmatrix}1&0&0&1\\0&0&0&1\\0&0&0&1\\1&0&0&1\end{pmatrix}$$

34) Using Warshall's algorithm write the relation matrix
$$W_2$$
 if $W_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ is

a)
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$

35) If f:A \rightarrow A defined by $\{(1, a), (2, 2), (3, 3)\}$ is identity function, then "a" =

- 36) The domain of $f(x) = \frac{1}{x-1}$ is a) R **b) R-{1}** c) Z d) Z-{-1}
- 37) If f: A \rightarrow R is defined by $f(x) = 2x^2 3$ and if A={0, 1, 2} then the range of f =
 - a) { 3,-1,5} b) { 3,-1,-5 } c) { -3,-1,5 } d) { -3,-1,-5 }
- 38) Let f be the function that assigns the last two bits of a bit string of length 2 or greater to that string, then the codomain and range are the set
 - a){ 00, 01, 10, 11 } b) { 00, 11 } c) { 01, 10 } d) { 00, 10, 11}
- 39) The inverse of the function $f(x) = e^{2x-5}$ is
 - a) $\frac{1}{2} (\log x 5)$ b) $\frac{1}{2} (\log x + 5)$ c) $2(\log x 5)$ d) $2(\log x + 5)$
- 40) Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Then f is
 - a) In to function b) many to one function c) bijective function d) only one to one
- 41) If $g \circ f$ is not defined, because
 - a) the range of f is not a subset of the domain of g b) the range of f is a subset of the domain of g
 - c) the domain of f is not a subset of the range of g d) the domain of f is a subset of the range of g
- 42) Let f and g be the functions from the set of integers to the set of integers defined by
 - f(x) = 2x + 3 and g(x) = 3x + 2. Then $f \circ g$ is
 - a) 7x 6 b) 7x + 6 c) 6x 7 d) 6x + 7
- 43) Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 8, 9\}$ and the functions f and g is defined as $f = \{(1, 8), (1, 8)\}$ (3.9), (4.3), (2.1), (5.2)} and $g = \{(1.2), (3.1), (2.2), (4.3), (5.2)\}$ then $(f \circ g)(3) =$
 - **b) 8** c) 3
- 44) If $f, g: R \to R$, where f(x) = ax + b, $g(x) = 1 x x^2$ and $(g \circ f)(x) = 9x^2 9x + 3$ then the value of 'a', 'b' is a) a = 3,b = -4 or a = -3, b = 2 b) a = 3,b = 4 or a = -3, b = -2c) a = 3,b = 2 or a = -3, b = -1 d) a = -4,b = 3 or a = 4, b = -2
- 45) The inverse of the function $f: N \to N$ defined by $f(x) = \begin{pmatrix} 2x 1 & \text{if } x > 0 \\ -2x & \text{if } x \le 0 \end{pmatrix}$, then $f^{-1} = \frac{1}{2} \int_{-\infty}^{\infty} f(x) \, dx$
- a) $f^{-1}(x) = \begin{cases} -\frac{x+1}{2} & \text{if } x = 1,3,5...... \\ \frac{x}{2} & \text{if } x = 0,2,4,...... \end{cases}$ b) $f^{-1}(x) = \begin{cases} \frac{x-1}{2} & \text{if } x = 1,3,5...... \\ \frac{x}{2} & \text{if } x = 0,2,4,...... \end{cases}$ c) $f^{-1}(x) = \begin{cases} \frac{x+1}{2} & \text{if } x = 0,2,4,...... \\ -\frac{x}{2} & \text{if } x = 1,3,5,...... \end{cases}$ d) $f^{-1}(x) = \begin{cases} \frac{x+1}{2} & \text{if } x = 1,3,5...... \\ -\frac{x}{2} & \text{if } x = 0,2,4,....... \end{cases}$