9 עבודה עצמית

שאלה 1 שני יצרנים 1 ו- 2 מייצרים אותו מוצר ומתרחים על שוק הקונים הפוטנציאלים. היצרנים מחליטים על הכמות שהם ייצרו, וההיצע הכולל קובע את מחיר המוצר, שהוא זהה לשני היצרנים. נסמן ב- q_1 וב- q_2 את על הכמויות שמיצרים היצרנים 1 ו- 2 בהתאמה. אזי הכמות הכוללת של המוצרים בשוק הוא q_1+q_2 . נניח כי המחיר של יחידה שווה ל- $P=a-q_1-q_2$ כאשר $P=a-q_1-q_2$ פרמטר הביקוש. עלות הייצור של יחידה ליצרן השני אך הינה אינה משותפת בין שני היצרנים ושווה ל- q_1-q_2 . עלות הייצור של יחידה ליצרן השני ידוע ליצרן השני אך אינה ידוע ליצרן הראשון. כל שיצרן זה יודע הוא שהעלות שווה ל- q_1-q_2 (עלות יצור נמוך) בהסתברות q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה) בהסתברות q_1-q_2 (עלות יצור גבוהה)

האם קיים שיווי משקל בייסיאני במשחק זה? אם כן, מה הוא?

פתרונות

 $q_2:2$ כמות של יצרן $q_1:1:1$ כמות של יצרן כמות של יצרן בי

 $P = a - q_1 - q_2$:מחיר ליחדה אחת של המוצר

עלות ליחידה לשחקן $c_1=1:1$ והוא ידיעה משותפת.

 $c_2=c_2^L$ או $c_2=c_2^H$ ולא לשחקו ליחידה ליחידה ליחידה מו $c_2=c_2^L$ או ל $c_2=c_2^H$

 $c_1 - heta$ בהסתברות ברות וו $c_2 = c_2^H$ ווועבור בהסתברות ברות בהסתברות ווועבור שחקן

צורה בייסיאנית של המשחק:

$$.N = \{1, 2\} \bullet$$

$$T_2 = \{c_2^H, c_2^L\}$$
 , $T_1 = \{1\}$

$$.p_I(t_2 = c_2^L | t_1 = 1) = p_I(t_2 = c_2^L) = \theta \bullet$$

$$p_I(t_2 = c_2^H | t_1 = 1) = p_I(t_2 = c_2^H) = 1 - \theta$$

$$A_2 = \{q_2^H, q_2^L\}$$
 , $A_1 = \{q_1\}$ $ullet$

 $\cdot 1$ פורנצית תשלום לשחקו \bullet

$$u_1(s_1(t_1), s_2(t_2), t_1 = 1)$$

:2 פורנצית תשלום לשחקן

$$u_2(s_1(t_1), s_2(t_2), t_2)$$

$$s_1(t=1) = q_1$$
, $s_2(t_2 = c_2^L) = q_2^L$, $s_2(t_2 = c_2^H) = q_2^H$.

 $s_2(t_2=c_2^H)=q_2^H$ -ו heta בהסתברות $s_2(t_2=c_2^L)=q_2^L$,1 לשחקן $s_2(t_2=c_2^L)=s_2(t_2=c_2^L)$

$$u_1(s_1(t_1), s_2(t_2), t_1 = 1) = u_1(q_1, q_2^H, q_2^L)) = q_1(a - q_1 - \theta q_2^L - (1 - \theta)q_2^H - c_1)$$

 $: c_2 = c_2^L$ לשחקן 2, אם

$$u_2(s_1(t_1), s_2(t_2 = c_2^L), t_2 = c_2^L) = u_2(q_1, q_2^L) = q_2^L(a - q_1 - q_2^L - c_2^L)$$
.

 $c_2 = c_2^H$ אם

$$u_2(s_1(t_1), s_2(t_2 = c_2^H), t_2 = c_2^H) = u_2(q_1, q_2^H) = q_2^L(a - q_1 - q_2^H - c_2^H)$$
.

$$.q_2^{H^*} = \mathop{\arg\max}_{q_2^H \in [0,\infty)} u_2\left(q_1^*,q_2^H\right)$$

$$(u_2)'_{q_2^H} = a - c_2^H - q_1^* - 2q_2^H \stackrel{!}{=} 0 \quad \Rightarrow \quad q_2^{H^*} = \frac{a - c_2^H - q_1^*}{2} .$$

$$(u_2)'_{q_2^L} = a - c_2^L - q_1^* - 2q_2^L \stackrel{!}{=} 0 \quad \Rightarrow \quad q_2^{L^*} = \frac{a - c_2^L - q_1^*}{2} .$$

$$(u_1)'_{q_1} = a - 2q_1 - \theta q_2^{L^*} - (1 - \theta)\theta q_2^{H^*} - c_1 \stackrel{!}{=} 0 \quad \Rightarrow \quad q_1^* = \frac{a - \theta q_2^{L^*} - (1 - \theta)q_2^{H^*} - c_1}{2} .$$

נציב $c_1=1$ -ו $c_2^H=rac{5}{4}$, $c_2^L=rac{3}{4}$,a=2 נציב

$$q_1^* = \frac{1}{3} , \qquad q_2^{H^*} = \frac{5}{24}, \qquad q_2^{L^*} = \frac{11}{24} .$$

התשלומים הם:

$$u_1 \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \frac{1}{9} ,$$

$$u_2^H \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \left(\frac{5}{24} \right)^2 ,$$

$$u_2^L \left(q_1^* = \frac{1}{3}, q_2^{H^*} = \frac{5}{24}, q_2^{L^*} = \frac{11}{24} \right) = \left(\frac{11}{24} \right)^2 .$$