The definite integral, by definition, is given as limit of a sum:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x_i.$$

A sum of this form is called a Riemann sum.

The Indefinite Integral, of a function f, is defined to be the antiderivatives of f:

$$\int f(x) dx = F(x) + c.$$

Properties of integral:

$$\int x^n dx = \frac{x^{n+1}}{n+1}, \quad n \neq -1.$$

$$\int k f(x) dx = k \int f(x) dx.$$

$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx.$$

General power formula:

$$\int [f(x)]^n f'(x) dx = \frac{[f(x)]^{n+1}}{n+1}, \quad n \neq -1.$$

Example 1. Evaluate the integral $\int (x^2 + 1)^{-1/2} 2x dx$.

Example 2. Integrate $\int x^2 \sqrt{x^3 + 1} dx$.

Example 3. Integrate $\int \frac{x \, dx}{\sqrt[3]{1 - x^3}}$.

Example 4. Integrate $\int (x^2 - 1)^2 dx$.

Example 5.
$$\int_{-\sqrt{6}}^{-1} \frac{x \, dx}{\sqrt{10 - x^2}} \, .$$