Normalization of Prostate MRIs using Conditional Generative Adversarial Networks for Cancer Detection

<u>Thomas DeSilvio</u>¹, Stefania Moroianu², Indrani Bhattacharya², and <u>Mirabela Rusu</u>²

¹Case Western Reserve University, Cleveland, OH; ²Stanford University, Stanford, CA

Introduction and Significance

Problem:

- Non-uniformity of MRI intensity distribution challenging for computational tasks
- Limitations of current statistical normalization approaches:
 - May require additional inputs
 - Multiple models needed for different institutions

Previous Work:

GANs used to normalize intensities on MRI

Novel Contribution:

 We present a conditional GAN for MRI intensity normalization to aid deep learning detection of clinically significant cancer on prostate MRI

Experimental Design

- Dataset:
 - Pre-operative mpMRI: T2 and Apparent Diffusion Coefficient (ADC)
 - Patients who underwent radical prostatectomy (n=102) or biopsy (n=338)

Results & Conclusions

Patient-level quantitative evaluation of the cancer detection model trained on T2w and ADC MRIs with no normalization, nyul normalization, and GAN normalization.

HED Model	AUC	Accuracy
HED _{Raw}	0.69 ± 0.15	0.82 ± 0.12
HED _{Nyúl}	0.70 ± 0.13	0.88 ± 0.04
HED _{GAN}	0.68 ± 0.13	0.89 ± 0.06