| NAM | E:  |   |     |   |     |    |     | CLA | ASS: 11 | :30am | OR   | 4pm |
|-----|-----|---|-----|---|-----|----|-----|-----|---------|-------|------|-----|
| 1   | /5  | 2 | /10 | 3 | /10 | 4  | /10 | 5   | /10     | 6     | /10  |     |
| 7   | /10 | 8 | /7  | 9 | /10 | 10 | /10 | 11  | /8      | Т     | /100 |     |

MATH 2415 (Fall 2012) Final Exam, Dec 14th

No calculators, books or notes! Show all work and give **complete explanations**. Don't spend too much time on any one problem. This 2 hour 30 minute exam is worth 100 points.

(1) [5 pts] Find an equation of the form ax + by + cz = d for the plane through the point (2,0,1) that is perpendicular to the line x = 3t, y = 2 - t, z = 3 + 4t.

(2) [10 pts] Make labelled sketches of the traces of the surface

$$x^{2} + \left(\frac{y}{2}\right)^{2} - \left(\frac{z}{3}\right)^{2} = -1.$$

in the planes x = 0, y = 0, and z = k for a few appropriately chosen values of k. Then sketch the surface.

| 1 | 3)         | [10 | nta | 1 Lot | $\mathcal{C}$ | ho | tho | 011777 | in    | tho | nlano | parametrized | l b | v r.( | <i>ŧ</i> ) | _ ( | <b>4</b> 2 | <i>4</i> 3\   | $\mathbf{for}$ | Λ.  | / +          | / 0      | )  |
|---|------------|-----|-----|-------|---------------|----|-----|--------|-------|-----|-------|--------------|-----|-------|------------|-----|------------|---------------|----------------|-----|--------------|----------|----|
| ( | <b>O</b> ) | TO  | pus | те п  | $\cup$        | рe | ше  | curve  | ; 111 | ше  | prane | parametrized | L D | y I ( | l)         | = ( | $\iota$ ,  | $(\iota^{-})$ | 101            | U : | $\geq \iota$ | $\geq$ 4 | ú. |

(a) Calculate a parametrization of the tangent line to the curve C at t = 1.

(b) Integrate the vector field  $\mathbf{F} = y\mathbf{i} + x^2\mathbf{j}$  over the curve C. What is the physical meaning of this integral in the case that  $\mathbf{F}$  is a force field?

(4) [10 pts] Suppose that z = f(x, y) is a function with the following table of values.

| (a,b)   | f(a,b) | $\nabla f(a,b)$ | $f_{xx}(a,b)$ | $f_{xy}(a,b)$ | $f_{yy}(a,b)$ |
|---------|--------|-----------------|---------------|---------------|---------------|
| (1,2)   | 0      | (0,0)           | 5             | 3             | 1             |
| (7, -2) | 0      | (0,1)           | 5             | 3             | 1             |
| (3,4)   | 7      | (0,0)           | -5            | -3            | -2            |
| (5, -3) | 68     | (0,0)           | 8             | -4            | 2             |
| (2,1)   | 35     | (0,0)           | 5             | 3             | 2             |

Identify any local maxima, minima, and saddle points of f. Explain the reasons for your answers.

(5) [10 pts] Use a double integral to calculate the volume of the solid above the paraboloid  $z = x^2 + y^2$ and below the plane z = 4.



(b) Define what it means for vector field to be conservative.

(c) Let  $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$  be a vector field in the plane. Prove that:

If **F** is conservative then 
$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$$
.

(7) [10 pts] Use the change of variables  $x=2u+3v,\,y=3u+5v$  to calculate the integral  $\iint_R (7x+2y)\,dA$ , where R is the parallelogram in the xy-plane with vertices  $(0,0),\,(2,3),\,(3,5)$  and (5,8).

(8) [7 pts] Let  $\mathbf{F}$  be the vector field  $\mathbf{F}(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$ . Show that  $\mathbf{F}$  is conservative and calculate  $\int_C \mathbf{F} \cdot d\mathbf{r}$ , where C is an arbitrary (unknown) curve from (0,0) to (1,1).

| <ul> <li>(9) [10 pts] Let F be the vector field in the plane given by F(x, y) = x²yi + (x² - y²)j.</li> <li>(a) Calculate the divergence of F.</li> </ul>                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
| (b) Calculate the curl of <b>F</b> .                                                                                                                                                                                     |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
| (c) Suppose that the vector field $\mathbf{F}$ given above is the velocity vector field of a fluid flowing in the plane. On average is the fluid flowing in or out of a small disk centered at the point $(-1,2)$ ? Why? |
|                                                                                                                                                                                                                          |

(10) [10 pts] Let S be the surface that is parametrized by

$$\mathbf{r}(u,v) = (\cos v, u, \sin v)$$
 for  $0 \le u \le 2$  and  $0 \le v \le \pi$ .

(a) Find an equation of the form F(x, y, z) = 0 for this surface.

(b) Sketch the graph of the surface. Also sketch the grid curves u=1 and  $v=\frac{\pi}{4}$  on the surface together with the vector  $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$  at the point on the surface where  $(u,v)=(1,\pi/4)$ .

| (11) [8 pts] Calculate the integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ , where $S$ is the surface parametrized by $\mathbf{r}(u, v) = v\mathbf{i} + uv\mathbf{j} + u\mathbf{k}$ for $0 \le u \le 3$ and $0 \le v \le 2$ , and $\mathbf{F}$ is the vector field $\mathbf{F} = x\mathbf{i} + xy^2\mathbf{j} - z\mathbf{k}$ . The surface $S$ is oriented so that the normal to the surface has a positive $y$ component. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Please sign the following honor statement:                                                                                                                                                                                                                                                                                                                                                                                 |
| On my honor, I pledge that I have neither given nor received any aid on this exam.                                                                                                                                                                                                                                                                                                                                         |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                 |