Documents, portable, tablette et calculatrice sont NON AUTORISES

Contrôle continu — ALGEBRE 1 — 24-Nov-2016 — Durée : 01H:30'

Exercice 1: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. On considère les assertions suivantes:

 \mathbf{P} : " $\forall x \in \mathbb{R}, f(x) = 0$ "

Q: " $(\forall x \in \mathbb{R}, f(x) > 0)$ ou $(\forall x \in \mathbb{R}, f(x) < 0)$ "

1- Donner la négation de P et de Q.

2- Montrer que $\overline{\mathbf{P}} \Rightarrow \overline{\mathbf{Q}}$ est une assertion fausse. (Raisonnez par contraposition)

Exercice 2: Soit $(u_n)_n$ une suite de réels convergente vers une limite l. Raisonnez par l'absurde pour montrer que: $Si \ \forall n \in \mathbb{N} \ u_n > a \ (respectivement \ u_n \geq a) \ alors \ l \geq a.$

Exercice 3: Soit $\varphi : \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante. Montrer par récurrence que $\forall n \in \mathbb{N} \ \varphi(n) \geq n$.

Exercice 4: Soient A, B et C trois ensembles. (Ne pas utiliser de table de vérité).

1- Montrer que: $(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$ et que $(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}.$

2- En déduire que: $(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$.

Exercice 5: Soit f l'application $\left\{ \begin{array}{c} \mathbb{C} \to \mathbb{C} \\ z \mapsto \dfrac{z}{1+|z|} \end{array} \right.$, |z| est le module de z.

- **1-** Montrer que si $f(z_1) = f(z_2)$ alors $|z_1| = |z_2|$. Déduire que $z_1 = z_2$.
- **2-** On note $D = \{z \in \mathbb{C} / |z| < 1\}$. Montrer que $f(\mathbb{C}) \subset D$.
- **3-** Donner $f^{-1}(\{i\})$.
- **4- (cours)** f est-elle bijective de \mathbb{C} sur D?

Corrigé du contrôle continu — ALGEBRE 1 — 24-Nov-2016

Exo 1 (2 points) : *Soit* $f : \mathbb{R} \to \mathbb{R}$ *une fonction continue.*

On considère les assertions suivantes:

 \mathbf{P} : " $\forall x \in \mathbb{R}, f(x) = 0$ "

Q: " $(\forall x \in \mathbb{R}, f(x) > 0)$ ou $(\forall x \in \mathbb{R}, f(x) < 0)$ "

Question 1- Donner la négation de P et de Q.

Réponse: (1 point)

 $\overline{\mathbf{P}}$: " $\exists x \in \mathbb{R} \ tel \ que \ f(x) \neq 0$ "

 $\overline{\mathbf{Q}}$: " $(\exists x \in \mathbb{R}, tel \ que \ f(x) \le 0)$ et $(\exists x \in \mathbb{R}, tel \ que \ f(x) \ge 0)$ "

Question 2- Montrer que $\overline{\mathbf{P}} \Rightarrow \overline{\mathbf{Q}}$ est une assertion fausse. (Raisonnez par contraposition)

Réponse: (1 point)

La contraposée de $\overline{\mathbf{P}} \Rightarrow \overline{\mathbf{Q}}$ est $\mathbf{Q} \Rightarrow \mathbf{P}$. On a $(\overline{\mathbf{P}} \Rightarrow \overline{\mathbf{Q}}) \Leftrightarrow (\mathbf{Q} \Rightarrow \mathbf{P})$.

 $\mathbf{Q} \Rightarrow \mathbf{P}$ est fausse. En effet: On suppose que l'assertion

Q: " $(\forall x \in \mathbb{R}, f(x) > 0)$ ou $(\forall x \in \mathbb{R}, f(x) < 0)$ " est vraie, donc une des deux assertions

 $(\forall x \in \mathbb{R}, f(x) > 0)$ OU $(\forall x \in \mathbb{R}, f(x) < 0)$ est vraie. (Elles ne peuvent pas être vraies à la fois). Cependant il n'existe aucune valeur réelle de x pour laquelle f(x) est nulle.

Exo 2 (4 points) : Soit $(u_n)_n$ une suite de réels convergente vers une limite l.

Question - Raisonnez par l'absurde pour montrer que: Si $\forall n \in \mathbb{N} \ u_n > a \ (respectivement \ u_n \geq a) \ alors \ l \geq a.$

Réponse: " u_n convergente vers l" si et seulement si $(\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ tel que } \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow |u_n - l| \leq \epsilon)$. Ceci veut dire qu'à partir d'un certain rang n_0 tous les termes (la majorité) de la suite (u_n) se trouvent dans l'intervalle $[l - \epsilon, l + \epsilon]$. (1 point) Supposons par l'absurde que: $(\forall n \in \mathbb{N} |u_n > a \text{ (resp } u_n > a) \text{ et } l < a)$

Supposons par l'absurde que: $(\forall n \in \mathbb{N} \ u_n > a \ (resp \ u_n \ge a) \ et \ l < a)$ est vraie. (1 point)

Dans ce cas on peut fixer $\epsilon > 0$, par exemple $\epsilon = \frac{a-l}{2}$, de telle manière que a, avec a > l, soit en dehors de l'intervalle $[l - \epsilon, l + \epsilon]$. (1 point) Donc l'assertion " $\forall n \in \mathbb{N} \ u_n > a \ (resp \ u_n \geq a)$ " supposée vraie contredit le fait que la majorité des termes de la suite (u_n) se trouvent dans l'intervalle $[l - \epsilon, l + \epsilon]$. (1 point)

Remarque (Exo2): Si $u_n := \frac{1}{n+1}$, on a $u_n > 0$ mais $\lim u_n = 0$; on ne peut donc pas garder les inégalités strictes en passant à la limlite.

Exo 3 (4 points) : Soit $\varphi : \mathbb{N} \to \mathbb{N}$ une fonction strictement croissante. **Question -** Montrer par récurrence que $\forall n \in \mathbb{N} \ \varphi(n) \geq n$.

Réponse: Comme φ est définie dans \mathbb{N} alors $\varphi(0)$ existe et comme φ est à valeurs dans \mathbb{N} alors $\varphi(0) \in \mathbb{N}$ donc forcément $\varphi(0) \geq 0$. (1 point) Fixons n dans \mathbb{N} et supposons que $\varphi(n) \geq n$. Montrons alors que pour ce n fixé on a $\varphi(n+1) \geq n+1$. (1 point)

Or φ est strictement croissante. Ceci veut dire que:

 $\forall n, m \in \mathbb{N}, m > n \Rightarrow \varphi(m) > \varphi(n)$ (1 point)

Dans ce cas et puisque n+1 > n alors on a $\varphi(n+1) > \varphi(n) \ge n$. Donc $\varphi(n+1) > n$.

Or $\varphi(n+1) \in \mathbb{N}$ donc on a forcément $\varphi(n+1) \geq n+1$.(1 point) Donc: $\forall n \in \mathbb{N} \ \varphi(n) \geq n$.

Exo 4 (5 points): Soient A, B et C trois ensembles.

(Ne pas utiliser de table de vérité).

Question 1- Montrer que: $(A \cap B) \cap (\overline{A \cap C}) = A \cap B \cap \overline{C}$ et que $(A \cap C) \cap (\overline{A \cap B}) = A \cap C \cap \overline{B}$.

Réponse:
$$(A \cap B) \cap (\overline{A \cap C}) = (A \cap B) \cap (\overline{A} \cup \overline{C})$$

= $(A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C})$
= $\emptyset \cup (A \cap B \cap \overline{C})$
= $A \cap B \cap \overline{C}$ (2 points)

Pour la seconde il suffit d'intervertir B et C.(1 point)

Question 2- En déduire que: $(A \cap B)\Delta(A \cap C) = A \cap (B\Delta C)$.

Réponse:
$$(A \cap B)\Delta(A \cap C) = (A \cap B) \setminus (A \cap C) \cup ((A \cap C) \setminus (A \cap B))$$

$$= ((A \cap B) \cap \overline{(A \cap C)}) \cup ((A \cap C) \cap \overline{(A \cap B)})$$

$$= (A \cap B \cap \overline{C}) \cup (A \cap C \cap \overline{B})$$

$$= A \cap ((B \cap \overline{C}) \cup (C \cap \overline{B}))$$

$$= A \cap ((B \setminus C) \cup (C \setminus B))$$

$$= A \cap (B\Delta C). (2 points)$$

Exo 5 (5 points): Soit f l'application $\begin{cases} \mathbb{C} \to \mathbb{C} \\ z \mapsto \frac{z}{1+|z|} \end{cases}$ Question 1- Montrer que si $f(z_1) = f(z_2)$ alors $|z_1| = |z_2|$. Déduire que $z_1 = z_2$.

Réponse: Soient z_1, z_2 dans \mathbb{C} . $f(z_1) = f(z_2) \Rightarrow \frac{z_1}{1 + |z_1|} = \frac{z_2}{1 + |z_2|}$ $\Rightarrow \left| \frac{z_1}{1 + |z_1|} \right| = \left| \frac{z_2}{1 + |z_2|} \right|$ $\Rightarrow \frac{|z_1|}{1 + |z_1|} = \frac{|z_2|}{1 + |z_2|}$ $\Rightarrow |z_1| = |z_2| . (1point)$ Si $|z_1| = |z_2|$ alors $f(z_1) = f(z_2) \Rightarrow \frac{z_1}{1 + |z_1|} = \frac{z_2}{1 + |z_1|} \Rightarrow z_1 = z_2 . (1point)$

Question 2- On note $D = \{z \in \mathbb{C} \mid |z| < 1\}$. Montrer que $f(\mathbb{C}) \subset D$.

Réponse: Si $Z \in f(\mathbb{C})$ alors $Z = f(z) = \frac{z}{1+|z|}$ avec $z \in \mathbb{C}$. On remarque $que |Z| = \left| \frac{z}{1+|z|} \right| = \frac{|z|}{1+|z|} < 1$, soit $Z \in D$. Donc $f(\mathbb{C}) \subset D$.(1 point)

Question 3- Donner $f^{-1}(\{i\})$.

Réponse: $i \in \mathbb{C}$ (ensemble d'arrivée). Comme les éléments de $f(\mathbb{C})$ ont des modules infrieurs à 1 $(f(\mathbb{C}) \subset D)$, alors le complexe i de module 1 n'est pas dans $f(\mathbb{C})$ et par suite $f^{-1}(\{i\}) = \emptyset$.(1 point)

Question 4- f est-elle bijective de \mathbb{C} sur D?

Réponse: L'application f est injective puisque pour $z_1, z_2 \in \mathbb{C}$, on a: $f(z_1) = f(z_2) \Rightarrow z_1 = z_2$, d'après la réponse 1). (0.25 point) L'application f est surjective de \mathbb{C} sur D. En effet: Soit $Z \in D$ tel que $Z = \frac{z}{1+|z|}$. On pose $Z = \operatorname{Re}^{i\Theta}$ et $z = re^{i\theta}$. On a $\operatorname{Re}^{i\Theta} = \frac{re^{i\theta}}{1+r}$, soit $\begin{cases} r(1-R) = R, & R < 1 \\ \theta = \Theta + 2kpi, & k \in \mathbb{Z} \end{cases}$. D'ou l'existence de $z = \frac{R}{1-R}e^{i\Theta}$.(0.5 point)

En conclusion f est bijective de \mathbb{C} sur D.(0.25 point)