

OVERVIEW

- Introduction
 - Problem description
 - Business need
- Data description
- Exploratory data analysis
- Data analysis
 - Approach 1
 - Approach 2
 - Approach 3
- Result

INTRODUCTION

- Problem definition:
 - Predict hotels based on browsing history of customer
- Business need:
 - To help the client to build a recommendation system, which will predict types of hotel the customer is looking for.

DATA DESCRIPTION

- Data source: Kaggle competition sponsored by Expedia
- The training set given in competition is considered as parent source for training and test set for this project.
- The given dataset contains 37 millions observation and 24 fields from year
 2013 and 2014
- Aim is to predict the hotel cluster the customer is going to book.

DATA DESCRIPTION

Destination type, continent, country, city etc.

The desired time for stay by customer

Package or not

Expected occupancy

EXPLORATORY DATA ANALYSIS

Count of booking and click event present in given dataset

Trend of hotel search over month

EXPLORATORY DATA ANALYSIS

Trend of booking events for days of the week as a ratio of total events

Search trend of hotels in seven continents

EXPLORATORY DATA ANALYSIS

Frequency of hotel cluster

ANALYSIS: APPROACH 1 METHOD

- > 1% of given data is randomly sampled and then split into training test set in 70-30 ratio.
- ➤ ID of hotel cluster = Target attribute
- > Rest 23 fields = feature
- > Correlation among target attribute and feature attribute is calculated
 - ➤ No correlation is present; linear regression would not fit here.
- Classification methods (Decision tree, SVM)
 - Unsatisfactory model accuracy; 12% and 3% respectively

ANALYSIS: APPROACH 1 LIMITATION

- Only 1% of 37 million observation is not enough
- The timestamp provided in the given data can be used to create more features
- Total 100 cluster is present as target attribute, which makes hard to predict for machine learning algorithm
- Working with top 10 cluster would make the problem doable.

ANALYSIS: APPROACH 2 METHOD

- Observation for top 10 clusters are selected
- More features are created from the timestamp
- Then split into training test set.
- 10 Logistic regression model with stochastic gradient descent (SGD) learning is trained as a binary classification.
- Models are evaluated by model accuracy, precision, recall, f1 score, confusion matrix, area under ROC curve.

ANALYSIS: APPROACH 2 LIMITATIONS

- Model accuracy is good; ranging from 91% to 80%
- Same as precision, recall but area under ROC curve is not up to the mark

Cluster ID	Accuracy %	Precision	Recall	Area under ROC curve
64	87.3	0.91	0.94	0.59
65	89.6	0.90	0.99	0.50
98	91.2	0.91	0.98	0.49
59	91.6	0.91	0.998	0.50
5	90.8	0.90	0.999	0.50
41	88.6	0.88	0.999	0.49
42	90.8	0.91	0.986	0.50
48	88.9	0.88	0.995	0.50
21	91.9	0.91	0.999	0.50
91	82.6	0.84	0.968	0.50

ANALYSIS: APPROACH 2 LIMITATIONS

Precision recall curve for all cluster

ROC curve for cluster 64

ANALYSIS: APPROACH 2 LIMITATIONS

Confusion matrix for cluster 64

ANALYSIS: APPROACH 3 METHOD

- Categorical attributes and numerical attributes are treated separately
- Repeat the training of logistics regression with SGD learning like approach 2
- Models are evaluated using precision-recall curve, area under ROC curve, confusion matrix, precision, recall etc.

RESULT

Precision recall curve for all cluster

ROC curve for all cluster

RESULT

