Math 11: Discussion 10

TA: Thu Nguyen Tue. 06/02/2020

Contents

10.1	Upcoming assignments	1
10.2	Regression Inference	2
	10.2.1 Testing for Regression Coefficient	2
	10.2.2 Confidence Interval vs. Prediction Interval	3
10.3	Chi-squared tests	5
	10.3.1 Goodness-of-fit test	5
	10.3.2 Independence test	6
	//	

10.1 Upcoming assignments

Assignments	Chapters	Deadlines
Homework	Ch. 21	Wed. 06/03
Quiz	Ch. 21	Thu. 06/04
Homework	Ch. 23	Sat. 06/06
Quiz	Ch. 23	Sun. 06/07
Homework	Ch. 22	Wed. 06/10
Quiz	Ch. 22	Wed. 06/10
Lab 8		Fri. 05/05

Key concepts (not exhaustive):

1. Regression inference

2. Goodness-of-fit test: Not on Finals

3. Independence test: Not on Finals

10.2 Regression Inference

10.2.1 Testing for Regression Coefficient

Recall the setting of building *linear regression model* which was introduced at the beginning of the quarter. Suppose we have some data points

$$\{(x_i, y_i)\}$$
 for $i = 1, 2, \dots, n$

We modeled this as

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

The "best" estimates (in terms of least squares) are

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x};$$

$$\hat{\beta}_1 = r \cdot \frac{s_y}{s_x} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Motivation: Suppose we have now built the model (ie. calculating $\hat{\beta}_0$ and $\hat{\beta}_1$). We want to take a step back and investigate if there was indeed a relationship between x and y. In particular

$$\hat{\beta}_1 \neq 0 \implies x \text{ and } y \text{ were indeed linearly related}$$

We formulate this as a hypothesis test. For example, we want to test

$$H_0: \hat{\beta}_1 = 0$$
 vs. $H_A: \hat{\beta}_1 \neq 0$

or ${\cal H}_A$ other one-sided inequality, depending on the context.

We first define some quantities:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$s_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$SE(\hat{\beta}_{1}) = \frac{s}{s_{x}\sqrt{n-1}}$$

where $SE(\hat{\beta}_1)$ is the standard error of our estimate $\hat{\beta}_1$. The appropriate test statistics is

$$T = \frac{\hat{\beta}_1 - \beta_1^{(0)}}{SE(\hat{\beta}_1)} \sim T_{n-2}$$

where $\beta_1^{(0)}$ is the current belief for $\hat{\beta}_1$, here $\beta_1^{(0)} = 0$.

TA: Thu Nguyen

10.2.2 Confidence Interval vs. Prediction Interval

Now, given a new value of \hat{y} , suppose we have already calculated the predicted new value of \hat{y} . Given $(1-\alpha)\%$, we can find the appropriate critical t^* value. We then have:

1. Confidence Interval. the Margin of Error is:

$$ME_{CI} = t^* \cdot s \cdot \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

which gives the Confidence Interval:

$$(1-\alpha)\%$$
 CI = $(\hat{\mu}_u \pm ME_{CI})$

2. Prediction Interval. the Margin of Error is:

$$ME_{PI} = t^* \cdot s \cdot \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

which gives the Prediction Interval:

$$(1 - \alpha)\% \text{ PI} = (\hat{y} \pm ME_{PI})$$

Remark. The only difference between the ME for Confidence interval and for Prediction interval is that the ME for Prediction interval has a +1 term in the square root, which accounts for the error of any particular observation.

Example 1. We recall an example from some weeks ago where we modeled the grades as a linear function of the number of hours spent on studying.

For your convenience, let H be the number of hours spent, and G the grade, we have:

$$\bar{H} = 10.93;$$
 $s_H = 2.22;$ $\bar{G} = 80.8;$ $s_G = 12.74;$
$$\sum_{i=1}^{n} (H_i - \bar{H})^2 = 93.86;$$
 $n = 20$

And the fitted model has

$$\hat{\beta}_0 = 25.21; \qquad \hat{\beta}_1 = 5.09; \qquad s^2 = 36.27$$

which gives the model of

$$\hat{G} = 25.21 + 5.09(H)$$

Let us now consider these questions:

- (a) Build a 95% CI for $\hat{\beta}_1$.
- (b) Assume a confidence level of .05. Test for if $\beta_1 = 0$ or not.
- (c) Suppose a student studies for 10 hours a week. Build a 95% CI and 95% PI for the predicted grade.
- (d) Interpret the intervals in part (c).

TA: Thu Nguyen

TA: Thu Nguyen Tue. 06/02/2020

Solution:

(a) Since our sample size is 20, $\hat{\beta}_1/SE(\hat{\beta}_1) \sim T_{n-2}$, which has df of 18, At $\alpha = .05$, the critical value is $t^* = 2.1$. The 95% CI is

95%
$$CI = \left(\hat{\beta}_1 \pm t^* SE\left(\hat{\beta}_1\right)\right)$$

= $\left(5.09 \pm 2.1 \cdot \frac{\sqrt{36.27}}{2.22\sqrt{19}}\right) = \left(5.09 \pm 2.1 \cdot (.62)\right) = (5.09 \pm 1.3)$

(b) We first write out the hypothesis:

$$H_0: \beta_1 = 0; \qquad H_A: \beta_1 \neq 0$$

We now calculate the test statistics:

$$T = \frac{\hat{\beta}_1}{SE(\hat{\beta}_1)} = \frac{5.09}{.62} = 8.21$$

We observe that

$$T = 8.21 \notin (5.09 \pm 1.3) \implies Reject H_0$$

(c) Given the new value H = 10, we have the predicted score:

$$\hat{G} = 25.21 + 5.09(10) = 76.11$$

At $\alpha = .05$, we obtain from t-distribution with df = 18 the critical value of $t^* = 2.1$:

• Confidence interval:

95%
$$CI = \left(\hat{\mu}_G \pm t^* s \sqrt{\frac{1}{n} + \frac{(H - \bar{H})^2}{\sum (H_i - \bar{H})^2}}\right)$$

= $\left(76.11 \pm (2.1)(6.02) \sqrt{\frac{1}{20} + \frac{(10 - 10.93)^2}{93.86}}\right) = (76.11 \pm 3.07)$

• Prediction interval:

95%
$$PI = \left(\hat{G} \pm t^* s \sqrt{1 + \frac{1}{n} + \frac{(H - \bar{H})^2}{\sum (H_i - \bar{H})^2}}\right)$$

= $\left(76.11 \pm (2.1)(6.02)\sqrt{1 + \frac{1}{20} + \frac{(10 - 10.93)^2}{93.86}}\right) = (76.11 \pm 13.01)$

- (d) Confidence interval: We are 95% confident that the expected (average) grade given 10 hours of study is between 73.04 and 79.18.
 - Prediction interval: We are 95% confident that the predicted grade given 10 hours of study is between 63.1 and 89.12.

10.3 Chi-squared tests

Given observations and expectations, the test statistics is

$$D = \sum \frac{(Obs - Exp)^2}{Exp}$$

10.3.1 Goodness-of-fit test

Very straightforward where the expected count for group i is

$$\operatorname{Exp}_i = np_i$$

where p_i is the default probability of being in group i. The df is df = k - 1, where k is the number of groups.

Example 2. Let us consider the demographic of student in a Math 11 class. It is commonly believed that among them, 50% are first year, 30% are second year, 15% are third year, and 5% are forth year and beyond.

Suppose the current Math 11 has 240 students, with the number of students from 1^{st} year to 4^{th} year in this order as 132, 75, 27, 6.

Assume a confidence level of .05. Determine if this class fits the current belief.

Solution:

We first write the hypothesis:

 H_0 : the distribution indeed follows the 50-30-15-5 rule H_A : otherwise

For the χ^2 test, to calculate the test statistics, it is easiest to do it in table form:

Group	Year 1	Year 2	Year 3	Year 4
Observation	132	75	27	6
Expected	120	72	36	12
$(\mathrm{Obs} - \mathrm{Exp})^2$	12^{2}	3^{2}	9^{2}	6^{2}
$\frac{(Obs-Exp)^2}{Exp}$	1.2	.125	2.25	3

Hence the test statistics is

$$D = \sum \frac{(Obs - Exp)^2}{Exp} = 6.575$$

Given n=4, we are working with χ^2 distribution with df = 3. Since our χ^2 -table does not return p value, we have to instead look-up the threshold χ^2_{α} . Given $\alpha=.05$, we have $\chi^2_{\alpha}=7.815$. We observe that

$$D~=~6.575~<~7.815~=~\chi^2_{\alpha}~~\Longrightarrow~$$
 Fail to Reject H_0

We conclude that at the confidence level of $\alpha = .05$ there appears evidence that the demographic of this Math 11 class follows the 50 - 30 - 15 - 5 rule.

TA: Thu Nguyen

10.3.2 Independence test

In this case, it is a little more involved to calculate the expected counts. Suppose our data is presented with I groups and J categories, put in a form of a I-row, J-column table, then the expected count of group i and category j is

$$\operatorname{Exp}_{i,j} = \frac{R_i C_j}{n}$$

where n is the total sample size, R_i the total number of row i and C_j is the total of column j. The df is df = (I-1)(J-1), ie. the product of #(rows) - 1 and #(columns) - 1.

Example 3. Ever thought about Med school? (FYI, there is a very chance that your classmates are pre-Med.)

Let us consider Humanities students and see if the decision to go on to Med school is independent of their majors. Suppose we have carried out a survey and obtained the following:

To Med school?	History	Geograph	Literature
Yes	8	5	7
No	22	35	23

Assume a confidence level of 5%, determine if it is indeed true that the decision is independent of their majors.

Solution:

We first write the hypothesis:

 H_0 : the decision to go to Med school is indeed independent of their majors H_A : otherwise

For the *Independence* test, it is highly recommended that you calculate the total sample size, row and column totals first. The total is n = 100.

Different from the previous example, since the data is 2-dimensional, we can't combine *Observations* and *Expectations* on the same table. As such, we calculate the expectation table separately:

To Med school?	History	Geograph	Literature
Yes	6	8	6
No	24	32	24

Hence the test statistics is

$$D = \sum \frac{(Obs - Exp)^2}{Exp} = \frac{2^2}{6} + \frac{2^2}{24} + \dots + \frac{1^2}{6} + \frac{1^2}{24} = 2.45$$

To calculate df, we note that I=2, J=3, which gives df=(2-1)(3-1)=2. Given $\alpha=5\%, \chi^2_{\alpha}=5.99$. We observe that

$$D = 2.45 < 5.99 = \chi_{\alpha}^2 \implies \text{Fail to Reject } H_0$$

We conclude that at the confidence level of $\alpha = .05$ there appears evidence that the decision to go on to Med school among the History, Geography and Literature majors is independent of the majors.

TA: Thu Nguyen