

XCPC-Template

CREATED BY

Luliet Lyan & Bleu Echo

NSCC-GZ School of Computer Science & Engineering Sun Yat-Sen University

Supervisor: Dr Dan Huang Co-Supervisor: Dr Zhiguang Chen

				4	Bas	ic Math	17
\mathbf{C}	ont	tents			4.1	Prime Numbers	17
	OII	001105				4.1.1 Judging Prime Numbers	17
	_		_			4.1.2 Prime Factorization	17
0		face	5			4.1.3 Euler's Sieve	17
	0.1	Template	5		4.2	Divisor	17
	$0.2 \\ 0.3$	Operator Precedence	5 5		4.2	4.2.1 Find All Divisors	17
	$0.3 \\ 0.4$	Time Complexity	6			4.2.2 The Number of Divisors	
	0.4	II \Dits/stdc++.ii> Paned	U				17
1	Bas	sic Algorithm	7			4.2.3 The Sum of Divisors	17
	1.1	Quick Sort	7			4.2.4 Euclidean Algorithm	18
	1.2	Binary Search	7		4.3	Euler Function	18
	1.3	Ternary Search	7			4.3.1 Simple Method	18
	1.4	High Precision	7			4.3.2 Euler's Sieve Method	18
		1.4.1 High Precision Add	7		4.4	Exponentiating by Squaring	18
		1.4.2 High Precision Subsection	8		4.5	Extended Euclidean Algorithm	18
		1.4.3 High Precision Multiply	8		4.6	Chinese Remainder Theorem	18
		1.4.4 High Precision Divide	8		4.7	Gauss-Jordan Elimination	19
	1.5	Prefix Sum & Difference Array	8			4.7.1 Linear Equation Group	19
		1.5.1 1D Prefix Sum	8			4.7.2 XOR Linear Equation Group	19
		1.5.2 2D Prefix Sum	9		4.8	Combinatorial Counting	19
		1.5.3 1D Difference Array	9		4.0	4.8.1 Recurrence Relation	19
		1.5.4 2D Difference Array	9				
2	Bas	sic Data Structures	10			4.8.2 Preprocessing & Inverse Element	19
	2.1	Linked List	10			4.8.3 Lucas Theorem	20
		2.1.1 Singly Linked List	10			4.8.4 Factorization Method	20
		2.1.2 Bidirectional Linked List	10			4.8.5 Catalan Number	20
	2.2	Stack & Queue	10		4.9	Inclusion-Exclusion Principle	20
		2.2.1 Monotonic Stack	10		4.10	Game Theory	21
		2.2.2 Monotonic Queue	10			4.10.1 NIM Game	21
	2.3	KMP	10				
	2.4	Trie	10	5	Bas	ic DP	22
	2.5	Disjoint-Set	11		5.1	Knapsack Problem	22
	2.6	Hash	11			5.1.1 01 Knapsack	22
		2.6.1 Simple Hash	11			5.1.2 Complete Knapsack	22
	0.7	2.6.2 String Hash	11			5.1.3 Mutiple Knapsack	22
	2.7	STL	11			5.1.4 Grouped Knapsack	22
3	Sea	rch & Graph Theory	13		5.2	Linear DP	22
	3.1	Representation of Tree & Graph	13			5.2.1 LIS	22
		3.1.1 Adjacency Matrix	13			5.2.2 LCS	23
		3.1.2 Adjacency List	13		5.3	Interval DP	23
	3.2	DFS & BFS	13				
		3.2.1 DFS	13		5.4	Counting DP	23
		3.2.2 BFS	13		5.5	Digit DP	23
	3.3	Topological Sort	13		5.6	State Compression DP	24
	3.4	Shortest Path	13		5.7	Tree DP	24
		3.4.1 Dijkstra	13		5.8	Memoized Search	25
		3.4.2 Bellman-Ford	13				
		3.4.3 SPFA	14	6	Adv	vanced Basic	27
		3.4.4 Detecting Negative Circle in SPFA			6.1	Slow Multiplication	27
	9 5	3.4.5 Floyd	14		6.2	Sum of Geometric Series	27
	3.5	Minimum Spanning Tree	14 14		6.3	Sort	27
		3.5.1 Prim	14 15			6.3.1 Card Balancing Problem	27
	3.6	Bipartite Graph	15			6.3.2 2D Card Balancing Problem	27
	5.0	3.6.1 Coloring Method	15			6.3.3 Dual Heaps	27
		3.6.2 Hungarian Algorithm	16		6.4	RMQ	28
		U U	-		_	· · · · · · · · · · · · · · · · · · ·	_

7	Advanced Data Structures			11 Advanced DP		
	7.1	Binary Indexed Tree	29		47	
	7.2	Segment Tree	29	1 0	47	
		7.2.1 Maintain the Maximum	29		47	
		7.2.2 Maintain the Maximum Subar-			47	
		ray Sum	29		47	
		7.2.3 Maintain the GCD	30	•	47	
		7.2.4 Optimize Range Updates	30	11.3.1 Multiple Knapsack Problem 4 11.3.2 Two-Dimensional Cost Knap-	47	
	7.3	Persistent Data Structure	31	-	48	
		7.3.1 Persistent Trie	31		48	
		7.3.2 Persistent Segment Tree	31	11.3.4 Maximum Linearly Independent	10	
	7.4	Treap	32		48	
	7.5	AC Automaton	33		48	
	1.5	AC Automaton	99	11.3.6 Dependent Knapsack Problem	49	
8	Adv	vanced Search	34		49	
Ŭ	8.1	Flood-Fill	34		49	
	8.2	Multi-source BFS	34	0	49	
	8.3	BFS with Deque	34	11.6 Queue Optimization for DP	50	
			35			
	8.4	Bidirectional BFS				
	8.5	A*	35			
	8.6	DFS Connectivity Model	35			
	8.7	IDDFS	35			
	8.8	Bidirectional DFS	36			
	8.9	IDA*	36			
9	Adv	vanced Graph Theory	37			
	9.1	Detecting Negative Cycles	37			
	9.2	SPFA-SLF	37			
	9.3	SPFA-Stack	37			
	9.4	SPFA & MIN & MAX	37			
	9.5	Second Shortest Path	38			
	9.6	Second Shortest Lath Second Minimum Spanning Tree	38			
	9.0	9.6.1 brute-force	38			
	0.7	9.6.2 LCA				
	9.7	Difference Constraints	40			
		9.7.1 Maximum-Shortest Path	40			
	0.0	9.7.2 Minimum-Longest Path	41			
	9.8	LCA	41			
	9.9	SCC	41			
	9.10	DCC	42			
		9.10.1 e-DCC	42			
		9.10.2 v-DCC	42			
	9.11	Bipartite Graph	42			
		9.11.1 maximum matching	42			
		9.11.2 minimum vertex cover	43			
		9.11.3 maximum independent set	43			
		9.11.4 minimum path cover	43			
	9.12	Eulerian Circuit & Eulerian Path	44			
		9.12.1 Eulerian Circuit	44			
		9.12.2 Eulerian Path	44			
		136.0	4.0			
10		vanced Math	46			
	10.1	Euler's Totient Function	46			
		10.1.1 GCD	46			
	10.2	Matrix Multiplication	46			

Part I: Basic Template

CREATED BY

Luliet Lyan & Bleu Echo

NSCC-GZ School of Computer Science & Engineering Sun Yat-Sen University

Supervisor: Dr Dan Huang Co-Supervisor: Dr Zhiguang Chen

$0 \star Preface$

0.1 Template

```
#define itn int
   #define nit int
3 #define nti int
   #define tin int
   #define tni int
6 #define retrun return
   #define reutrn return
   #define rutren return
9
   #define fastin
10
        ios_base::sync_with_stdio(0); \
11
        cin.tie(0), cout.tie(0);
   #include <bits/stdc++.h>
12
13 using namespace std;
14 typedef long long LL;
15 typedef long double LD;
16 typedef pair<int, int> PII;
   typedef pair<long long, long long> PLL;
   typedef pair<double, double> PDD;
19
   typedef vector<int> VI;
20
   #ifndef ONLINE_JUDGE
21
    #define dbg(args...)
22
23
            cout << "\033[32;1m" << #args << "
24
        -> "; \
25
            err(args);
26
        } while (0)
27
    #else
28
   #define dbg(...)
29
   #endif
30
   void err()
   { cout << "\033[39;0m" << endl; }
31
32
   template <template <typename...> class T,
        typename t, typename... Args>
33
   void err(T<t> a, Args... args)
34
   {
35
        for (auto x : a) cout << x << ' ';</pre>
36
        err(args...);
37
   template <typename T, typename... Args>
   void err(T a, Args... args)
   { cout << a << ' '; err(args...); }
40
41
   const int INF = 0x3f3f3f3f;
42 const int mod = 1e9 + 7;
43
   const double eps = 1e-6;
44
   int main()
45
46
   #ifndef ONLINE_JUDGE
        freopen("test.in", "r", stdin);
47
        freopen("test.out", "w", stdout);
48
49
   #endif
50
        fastin;
51
52
        return 0;
  }
53
```

0.2 Operator Precedence

- 括号成员排第一; 全体单目排第二;
- 乘除余三加减四; 移位五, 关系六;
- 等于不等排第七; 位与异或和位或;
- 三分天下八九十; 逻辑与或十一二;
- 条件赋值十三四; 逗号十五最末尾。

0.3 Time Complexity

- In most ACM or coding interview problems, the time limit is usually 1 or 2 seconds. Under such constraints, C++ programs should aim to stay within about $10^7 \sim 10^8$ operations.
- Below is a guide on how to choose algorithms based on different input size ranges:
 - 1. $n \le 30 \rightarrow$ Exponential complexity: DFS with pruning, State Compression DP
 - 2. $\mathbf{n} \leq \mathbf{100} \rightarrow \mathbf{O}(\mathbf{n}^3)$: Floyd, DP, Gaussian Elimination
 - 3. $\mathbf{n} \leq \mathbf{1000} \to \mathbf{O}(\mathbf{n^2}), \ \mathbf{O}(\mathbf{n^2}\log\mathbf{n})$: DP, Binary Search, Naive Dijkstra, Naive Prim, Bellman-Ford
 - 4. $\mathbf{n} \leq \mathbf{10000} \rightarrow \mathbf{O}(\mathbf{n}^{\frac{3}{2}})$: Block Linked List, Mo's Algorithm
 - 5. n ≤ 100000 → O(n log n): sort, Segment Tree, Fenwick Tree (BIT), set/map, Heap, Topological Sort, Dijkstra (heap optimized), Prim (heap optimized), Kruskal, SPFA, Convex Hull, Half Plane Intersection, Binary Search, CDQ Divide and Conquer, Overall Binary Search, Suffix Array, Heavy-Light Decomposition, Dynamic Trees
 - 6. $\mathbf{n} \leq \mathbf{1000000} \rightarrow \mathbf{O}(\mathbf{n})$, or small-constant $\mathbf{O}(\mathbf{n} \log \mathbf{n})$: Monotonic Queue, Hashing, Two Pointers, BFS, Union Find, KMP, Aho-Corasick Automaton
 - 7. $\mathbf{n} \leq \mathbf{10000000} \rightarrow \mathbf{O}(\mathbf{n})$: Two Pointers, KMP, Aho-Corasick Automaton, Linear Sieve for Primes
 - 8. $n \leq 10^9 \rightarrow O(\sqrt{n})$: Primality Testing
 - 9. $\mathbf{n} \leq \mathbf{10^{18}} \rightarrow \mathbf{O}(\log \mathbf{n})$: GCD, Fast Exponentiation, Digit DP
 - 10. $\mathbf{n} \leq \mathbf{10^{1000}} \rightarrow \mathbf{O}((\log \mathbf{n})^2)$: Big Integer Arithmetic (Add/Subtract/Multiply/Divide)
 - 11. $\mathbf{n} \leq \mathbf{10^{100000}} \rightarrow \mathbf{O}(\log \mathbf{k} \cdot \log \log \mathbf{k})$, where k is the number of digits: Big Integer Add/Subtract, FFT/NTT

0.4 If <bits/stdc++.h> Failed

Replace it with:

```
1 #include <algorithm>
 2 #include <bitset>
3 #include <complex>
4 #include <deque>
5 #include <exception>
6 #include <fstream>
7 #include <functional>
8 #include <iomanip>
9 #include <ios>
10 #include <iosfwd>
11 #include <iostream>
12 #include <istream>
13 #include <iterator>
14 #include inits>
15 #include <list>
16 #include <locale>
17 #include <map>
18 #include <memory>
19 #include <numeric>
20 #include <ostream>
21 #include <queue>
22 #include <set>
23 #include <sstream>
24 #include <stack>
25 #include <stdexcept>
26 #include <streambuf>
27 #include <string>
28 #include <typeinfo>
29 #include <utility>
30 #include <valarray>
31 #include <vector>
32 #include <unordered_map>
33 #include <unordered_set>
```

$1 \star \text{Basic Algorithm}$

1.1 Quick Sort

Sort the given array from index 1 to n.

```
void quick_sort(int 1, int r)
3
        if (1 >= r) return;
4
        int x = a[(1 + r) >> 1], i = 1 - 1, j =
        r + 1;
        while (i < j)
 5
6
7
            do i++; while (a[i] < x);</pre>
            do j--; while (a[j] > x);
            if (i < j) swap(a[i], a[j]);</pre>
10
11
        quick_sort(1, j);
12
        quick_sort(j + 1, r);
13
        return;
14 }
```

1.2 Binary Search

```
1 // 区间 [1, r] 被划分成 [1, mid] 和 [mid + 1,
        r] 时使用
   // 大于等于区间的最小值, check 应为 target <=
        a[mid]
   int bsearch_1(int 1, int r)
 4
 5
       while (1 < r)
 6
 7
           int mid = 1 + r >> 1;
           if (check(mid)) r = mid;
           else 1 = mid + 1;
9
10
       }
11
       return 1;
12 }
   // 区间 [1, r] 被划分成 [1, mid - 1] 和 [mid,
        r] 时使用
   // 小于等于区间的最大值, check 应为 target >=
        a[mid]
15
   int bsearch_2(int 1, int r)
16
   {
17
       while (1 < r)
18
19
          // 为什么要 1 + r + 1: 因为 1 的更新
        条件是 mid 本身
          // 当 r == 1 + 1 时 mid 向下取整必定
20
       取 1, 有可能在满足 check(mid) 时导致无限
       循环
21
           int mid = 1 + r + 1 >> 1;
22
           if (check(mid)) 1 = mid;
23
           else r = mid - 1;
24
25
       return 1;
26 }
27 // 浮点数二分
28 double bsearch_3(double 1, double r)
29 {
30
       // eps 表示精度, 取决于题目对精度的要求
31
       const double eps = 1e-6;
```

1.3 Ternary Search

```
1
    // 整数三分
    void tsearch_1(int 1, int r)
3
    {
 4
        while (1 < r)
 5
6
            int lmid = 1 + (r - 1) / 3, rmid = r
         -(r-1)/3;
 7
            lans = cal(lmid), rans = cal(rmid);
 8
            if (lans <= rans) r = rmid - 1;</pre>
9
            else l = lmid + 1;
10
            if (lans <= rans) l = lmid + 1;</pre>
11
            else r = rmid - 1;
12
13
        // 求凹函数的极小值
14
        cout << min(lans, rans) << endl;</pre>
15
        // 求凸函数的极大值
16
        cout << max(lans, rans) << endl;</pre>
17
   }
   // 浮点数三分
18
19
   void tsearch_2(int 1, int r)
20
21
        const double eps = 1e-6;
22
        while (r - 1 < eps)
23
24
            double lmid = 1 + (r - 1) / 3;
25
            double rmid = r - (r - 1) / 3;
26
            lans = cal(lmid), rans = cal(rmid);
27
            // 求凹函数的极小值
28
            if (lans <= rans) r = rmid;</pre>
29
            else 1 = lmid;
            // 求凸函数的极大值
30
            if (lans <= rans) l = lmid;</pre>
31
32
            else r = rmid;
33
        }
34 }
```

1.4 High Precision

1.4.1 High Precision Add

```
1 string s1, s2;
2 vector<int> a, b, c;
3 void add(vector<int> &a, vector<int> &b)
4 {
5     if (a.size() < b.size())
6     { add(b, a); return; }
7     int t = 0;
8     for (int i = 0; i < a.size(); i++)
9     {</pre>
```

```
10
            t += a[i];
            if (i < b.size()) t += b[i];</pre>
11
12
            c.push_back(t % 10);
13
            t /= 10;
14
        }
        while (t)
15
16
            c.push_back(t % 10), t /= 10;
17
    }
18
    int main()
19
20
        cin >> s1 >> s2;
21
        for (int i = s1.size() - 1; i >= 0; i--)
22
             a.push_back(s1[i] - '0');
23
        for (int i = s2.size() - 1; i >= 0; i--)
            b.push_back(s2[i] - '0');
24
25
        add(a, b);
26
        for (int i = c.size() - 1; i >= 0; i--)
27
            cout << c[i];
28
        return 0;
29 }
```

1.4.2 High Precision Subsection

```
vector<int> a, b, c;
   string s1, s2;
   void sub(vector<int> &a, vector<int> &b)
 4
 5
         int t = 0;
 6
         for (int i = 0; i < a.size(); i++)</pre>
 7
         {
 8
             t = a[i] - t;
 9
             if (i < b.size()) t -= b[i];</pre>
10
             c.push_back((t + 10) \% 10);
11
             if (t < 0) t = 1;
12
             else t = 0;
13
14
        while (c.size() > 1 && c.back() == 0)
15
             c.pop_back();
16 }
17
    int main()
18
19
         cin >> s1 >> s2;
20
         for (int i = s1.size() - 1; i >= 0; i--)
             a.push_back(s1[i] - '0');
21
22
         for (int i = s2.size() - 1; i >= 0; i--)
             b.push_back(s2[i] - '0');
23
         if (s1.size() < s2.size())</pre>
24
             cout << '-', sub(b, a);</pre>
25
26
         else if (s1.size() == s2.size() && s1 <</pre>
         s2)
27
             cout << '-', sub(b, a);</pre>
28
         else sub(a, b);
29
         for (int i = c.size() - 1; i >= 0; i--)
30
             cout << c[i];
31
         return 0;
32 }
```

1.4.3 High Precision Multiply

```
1 string s1, s2;
2 vector<int> a, c;
3 int b;
```

```
void mul(vector<int> &a, int b)
 5
    {
 6
        for (int i = 0, t = 0; i < a.size() || t</pre>
         ; i++)
 7
            if (i < a.size()) t += a[i] * b;</pre>
 8
 9
            c.push_back(t % 10);
            t /= 10;
10
11
12
        while (c.size() > 1 && c.back() == 0)
13
             c.pop_back();
    }
14
15
    int main()
16
17
        cin >> s1 >> b;
18
        for (int i = s1.size() - 1; i >= 0; i--)
19
            a.push_back(s1[i] - '0');
20
        mul(a, b):
21
        for (int i = c.size() - 1; i >= 0; i--)
22
             cout << c[i];
23
        return 0;
24 }
```

1.4.4 High Precision Divide

```
string s1, s2;
    vector<int> a, c;
   int b, r;
4
    void divide(vector<int> &a, int b, int &r)
5
    {
6
        r = 0;
 7
        for (int i = a.size() - 1; i >= 0; i--)
 8
 9
            r = r * 10 + a[i];
10
            c.push_back(r / b);
11
            r %= b;
12
13
        reverse(c.begin(), c.end());
14
        while (c.size() > 1 && c.back() == 0)
15
            c.pop_back();
16
   }
17
    int main()
18
19
        cin >> s1 >> b;
20
        for (int i = s1.size() - 1; i >= 0; i--)
21
            a.push_back(s1[i] - '0');
22
        divide(a, b, r);
23
        for (int i = c.size() - 1; i >= 0; i--)
24
            cout << c[i];
        cout << '\n' << r;
25
26
        return 0;
27 }
```

1.5 Prefix Sum & Difference Array

1.5.1 1D Prefix Sum

```
1 S[i] = a[1] + a[2] + ... a[i]
2 a[1] + ... + a[r] = S[r] - S[1 - 1]
```

1.5.2 2D Prefix Sum

```
      1 // S[i, j] = i 行 j 列左上部分所有元素和为:

      2 s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j]

      3 // 以 (x1, y1) 为左上角, (x2, y2) 为右下角的子矩阵的和为:

      4 S[x2][y2] - S[x1 - 1][y2] - S[x2][y1 - 1] + S[x1 - 1][y1 - 1]
```

1.5.3 1D Difference Array

```
1 const int N = 100010;
 2 int n, m;
3 int a[N], b[N];
 4 void insert(int 1, int r, int c)
5 \{ b[1] += c; b[r + 1] -= c; \}
6 int main()
7 {
8
        cin >> n >> m;
9
        for (int i = 1; i <= n; i++)</pre>
10
            cin >> a[i];
11
        for (int i = 1; i <= n; i++)</pre>
            insert(i, i, a[i]);
12
13
        while (m--)
14
        {
15
            int 1, r, c;
16
            cin >> 1 >> r >> c;
17
            insert(1, r, c);
18
19
        for (int i = 1; i <= n; i++)</pre>
20
            b[i] += b[i - 1],
            cout << b[i] << ' ';
21
22
        return 0;
23 }
```

1.5.4 2D Difference Array

```
1 const int N = 1010;
 2 int n, m, q, a[N][N], b[N][N];
 3 void insert(int x1, int y1, int x2, int y2,
        int c)
 4 {
        b[x1][y1] += c;
 5
 6
        b[x2 + 1][y2 + 1] += c;
 7
        b[x1][y2 + 1] -= c;
 8
        b[x2 + 1][y1] -= c;
 9
   }
10
   int main()
11
12
        cin >> n >> m >> q;
        for (int i = 1; i <= n; i++)</pre>
13
            for (int j = 1; j <= m; j++)</pre>
14
                cin >> a[i][j];
15
        for (int i = 1; i <= n; i++)</pre>
16
17
            for (int j = 1; j <= m; j++)</pre>
18
                 insert(i, j, i, j, a[i][j]);
19
        while (q--)
20
21
             int x1, x2, y1, y2, c;
22
             cin >> x1 >> y1 >> x2 >> y2 >> c;
```

2 * Basic Data Structures

2.1 Linked List

2.1.1 Singly Linked List

```
1 const int N = 100010;

2 int n, h[N], e[N], ne[N], idx = 1;

3 void init() { ne[0] = -1; }

4 void insert(int k, int x) // 第 k 个节点后

插入

5 { e[idx] = x, ne[idx] = ne[k], ne[k] = idx

++; }

6 void del(int k) // 第 k 个节点后删除

7 { ne[k] = ne[ne[k]]; }
```

2.1.2 Bidirectional Linked List

```
1 const int N = 100010;
2 \text{ int } n, r[N], l[N], e[N], idx = 2;
3 void init() { r[0] = 1; l[1] = 0; }
4 void insert(int k, int x) // 第 k 个节点后插
  {
5
6
       e[idx] = x;
       r[idx] = r[k];
7
       l[idx] = k;
8
       l[r[k]] = idx;
9
10
       r[k] = idx++;
  }
11
12 void remove(int k) // 删除 k 本身
13 { r[l[k]] = r[k]; l[r[k]] = l[k]; }
```

2.2 Stack & Queue

2.2.1 Monotonic Stack

```
1 // 常见模型: 找出每个数左边离它最近的比它大/小
的数
2 int tt = 0;
3 for (int i = 1; i <= n; i ++ )
4 {
5 while (tt && check(stk[tt], i)) tt --;
6 stk[++tt] = i;
7 }
```

2.2.2 Monotonic Queue

```
1 // 常见模型: 找出滑动窗口中的最大值/最小值
2 int hh = 0, tt = -1;
3 for (int i = 0; i < n; i ++ )
4 {
5 while (hh <= tt && check_out(q[hh]))
6 hh++; // 判断队头是否滑出窗口
7 while (hh <= tt && check(q[tt], i))
8 tt--;
```

```
9 q[++tt] = i;
10 }
```

2.3 KMP

```
const int N = 100010, M = 1000010;
    int n, m;
    char p[N], s[M];
    void getNext(int ne[])
 6
         for (int i = 2, j = 0; i <= n; i++)</pre>
 7
 8
             while (j \&\& p[j + 1] != p[i])
 9
                 j = ne[j];
10
             if (p[j + 1] == p[i]) j++;
            ne[i] = j;
11
12
13
14
    int KMP()
15
16
         int *ne = new int[n + 1];
17
         getNext(ne);
18
        for (int i = 1, j = 0; i <= m; i++)
19
20
             while (j \&\& p[j + 1] != s[i])
21
                 j = ne[j];
22
             if (p[j + 1] == s[i]) j++;
23
             if (j == n) cout << i - n << ' ';</pre>
24
        return -1;
25
26 }
```

2.4 Trie

```
1 const int N = 100010;
 2 int trie[N][26], cnt[N], idx = 0;
   void insert(string &str)
                             // 插入到 Trie
        数组
 4
 5
        int p = 0;
 6
        for (auto c : str)
 7
        {
 8
            int u = c - 'a';
9
            if (!trie[p][u])
10
               trie[p][u] = ++idx;
11
            p = trie[p][u];
12
13
        cnt[p]++;
   }
14
                              // 查询字符串出现
15
   int query(string &str)
        的次数
16
17
        int p = 0;
18
        for (auto c : str)
19
20
            int u = c - 'a';
21
            if (!trie[p][u]) return 0;
22
            p = trie[p][u];
23
24
        return cnt[p];
```

2.5 Disjoint-Set

```
const int N = 100010;
   int n, m, p[N], Size[N], D[N];
3
   void init()
4
   {
        for (int i = 1; i <= n; i ++ )</pre>
5
6
            p[i] = i, Size[i] = 1, D[i] = 0;
   }
7
   int find(int x)
8
9
   {
10
        if (p[x] != x)
11
        {
            int u = find(p[x]);
12
            D[x] += D[p[x]]; // 视具体情况计算
13
14
            p[x] = u;
15
16
        return p[x];
   }
17
18
   void merge(int a, int b, int distance)
19
20
        int x = find(a), y = find(b);
21
        if(x != y)
22
        {
23
            p[x] = y;
24
            D[x] = distance; // 视具体情况计算
25
            Size[y] += Size[x];
26
27
   }
```

2.6 Hash

2.6.1 Simple Hash

```
// (1) 拉链法
   int h[N], e[N], ne[N], idx;
   void insert(int x)
 4
 5
        int k = (x \% N + N) \% N;
6
        e[idx] = x, ne[idx] = h[k], h[k] = idx
        ++ ;
 7
    }
   bool find(int x)
 8
9
    {
10
        for (int i = h[(x % N + N) % N]; i !=
        -1; i = ne[i])
            if (e[i] == x) return true;
11
12
        return false;
13
    // (2) 开放寻址法
14
   int find(int x)
15
16
   {
17
        int t = (x \% N + N) \% N;
        while (h[t] != null && h[t] != x)
18
19
        \{ t ++ ; if (t == N) t = 0; \}
20
        return t;
21 }
```

1 typedef unsigned long long ULL; 2 ULL h[N], p[N]; 3 void init() 4 { 5 p[0] = 1; 6 for (int i = 1; i <= n; i ++) { h[i] = h[i - 1] * P + str[i]; p[i] = p[i - 1] * P; } 7 } 8 ULL get(int l, int r) { return h[r] - h[l - 1] * p[r - l + 1]; }</pre>

2.7 STL

```
// vector
  size()
             返回元素个数
  empty()
              返回是否为空
  clear()
              清空
  front()/back()
  push_back()/pop_back()
   begin()/end()
8
   []
9
   支持比较运算,按字典序
10
   // pair<int, int>
11
   first
             第一个元素
              第二个元素
12
   second
   支持比较运算,以first为第一关键字,以second为
       第二关键字 (字典序)
14
   // string
   size()/length() 返回字符串长度
15
16
  empty()
17
   clear()
  substr(起始下标,(子串长度)) 返回子串
18
           返回字符串所在字符数组的起始地址
19
   c_str()
20
   // queue
21
   size()
22
   empty()
23
              向队尾插入一个元素
  push()
24 front()
              返回队头元素
25
  back()
             返回队尾元素
   pop()
26
             弹出队头元素
27
   // priority_queue
28
  size()
29
   empty()
30
   push()
             插入一个元素
31
   top()
             返回堆顶元素
32
   pop()
              弹出堆顶元素
   定义成小根堆的方式: priority_queue<int,
33
       vector<int>, greater<int>> q;
34
   // stack
35
  size()
36
   empty()
|37|
              向栈顶插入一个元素
   push()
38
              返回栈顶元素
   top()
             弹出栈顶元素
39
   pop()
   // deque
40
41
  size()
42
  empty()
43
  clear()
44
  front()/back()
   push_back()/pop_back()
```

```
46 push_front()/pop_front()
47 begin()/end()
48 []
49
  // set, map, multiset, multimap: 基于平衡二叉
       树 (红黑树) 动态维护有序序列
50
  size()
51
   empty()
52
   clear()
53 begin()/end()
   ++, -- 返回前驱和后继, 时间复杂度 O(logn)
   // set/multiset
55
      insert() 插入一个数
56
               查找一个数
57
      find()
               返回某一个数的个数
58
      count()
59
      erase()
          (1) 输入是一个数x, 删除所有x, O(k +
60
      logn)
61
          (2) 输入一个迭代器, 删除这个迭代器
62
      lower_bound()/upper_bound()
63
          lower_bound(x) 返回大于等于x的最小的
       数的迭代器
64
          upper_bound(x) 返回大于x的最小的数的
       迭代器
   // map/multimap
65
      insert() 插入的数是一个pair
66
67
      erase()
               输入的参数是pair或者迭代器
68
      find()
69
      注意multimap不支持此操作。 时间
       复杂度是 O(logn)
      lower_bound()/upper_bound()
  // unordered_set, unordered_map,
      unordered_multiset, unordered_multimap
72
  增删改查的时间复杂度是 0(1)
73 不支持 lower_bound()/upper_bound(), 迭代器的
      ++, --
74 // bitset
75 bitset<10000> s;
76 ~, &, |,
77 >>, <<
78 ==, !=
79 []
80 count()
             返回有多少个1
81 any()
             判断是否至少有一个1
82 none()
             判断是否全为0
83 set()
             把所有位置成1
84 set(k, v)
             将第k位变成v
85 reset()
             把所有位变成0
86 flip()
             等价于~
87 flip(k)
             把第k位取反
```

3 ★ Search & Graph Theory

3.1 Representation of Tree & Graph

3.1.1 Adjacency Matrix

```
1 // g[a][b] = a->b
```

3.1.2 Adjacency List

```
1 int h[N], e[N], ne[N], idx;
2 void init() { memeset(h, -1, sizeof h); }
3 void add(int a, int b) { e[idx] = b, ne[idx] = h[a], h[a] = idx++; }
```

3.2 DFS & BFS

3.2.1 DFS

```
1 int dfs(int u)
2 {
3    st[u] = true; // 表示点 u 已经被遍历过
4    for (int i = h[u]; i != -1; i = ne[i])
5    { int j = e[i]; if (!st[j]) dfs(j); }
6 }
```

3.2.2 BFS

```
1 queue<int> q;
2 st[1] = true; q.push(1);
3 while (q.size())
4 {
5    int t = q.front(); q.pop();
6    for (int i = h[t]; i != -1; i = ne[i])
7    if (!st[e[i]]) { st[e[i]] = true; q. push(e[i]); }
8 }
```

3.3 Topological Sort

```
1 const int N = 100010;
 2 \text{ int e}[2 * N], ne[2 * N], h[N], d[N], idx;
 3 int n, m, q[N];
 4 void init() { memset(h, -1, sizeof h); }
5 void add(int a, int b) { e[idx] = b, ne[idx]
          = h[a], h[a] = idx++, d[b]++; }
6
  bool topSort()
 7
8
        int hh = 0, tt = -1;
        for (int i = 1; i <= n; i++)</pre>
10
            if (!d[i]) q[++tt] = i;
11
        while (hh <= tt)</pre>
```

3.4 Shortest Path

3.4.1 Dijkstra

```
const int N = 1010;
    int n, dist[N];
   int h[N], w[N], e[N], ne[N], idx;
   bool st[N];
   void add(int a, int b, int c) { e[idx] = b,
        w[idx] = c, ne[idx] = h[a], h[a] = idx
        ++; }
6
   int dijkstra()
                        // 需要初始化 dist 与 h
7
   {
8
        dist[1] = 0;
9
        priority_queue<PII, vector<PII>, greater
        <PII>> heap;
10
        heap.push({0, 1});
11
        while (heap.size())
12
13
            auto t = heap.top();
14
            heap.pop();
15
            int ver = t.second, distance = t.
16
            if (st[ver]) continue;
17
            st[ver] = true;
18
            for (int i = h[ver]; i != -1; i = ne
19
                if (dist[e[i]] > distance + w[i
        ])
20
                    dist[e[i]] = distance + w[i
21
        ];
22
                    heap.push({dist[e[i]], e[i
        ]});
23
24
25
        if (dist[n] == 0x3f3f3f3f) return -1;
26
        return dist[n];
27
```

3.4.2 Bellman-Ford

```
const int N = 100010;
   int n, m, dist[N], backup[N];
 3
    struct Edge
 4
        int a, b, w;
5
    }edges[N];
7
    int bellman_ford()
8
9
        memset(dist, 0x3f, sizeof dist);
10
        dist[1] = 0;
11
        for (int i = 0; i < n; i ++ )</pre>
12
```

```
13
            memcpy(backup, dist, sizeof dist);
14
            for (int j = 0; j < m; j++)
15
            {
16
                 int a = edges[j].a, b = edges[j
        ].b, w = edges[j].w;
17
                dist[b] = min(dist[b], backup[a]
          + w):
18
            }
19
20
        if (dist[n] > 0x3f3f3f3f / 2) return -1;
21
        return dist[n];
22 }
```

3.4.3 SPFA

```
1 const int N = 100010;
 2 int n, m, dist[N];
3 \, int e[2 * N], ne[2 * N], w[2 * N], h[N], idx
4 bool vis[N];
   void spfa()
                    // 需要初始化 dist 与 h
6
   {
7
        queue<int> q;
        q.push(1); vis[1] = true;
9
        while (q.size())
10
11
            int t = q.front();
12
            q.pop();
13
            vis[t] = false;
            for (int i = h[t]; ~i; i = ne[i])
14
15
                if (dist[e[i]] > dist[t] + w[i])
16
                    dist[e[i]] = dist[t] + w[i];
17
                     if (!vis[e[i]]) vis[e[i]] =
18
        true, q.push(j);
19
                }
20
        dist[n] > INF / 2 ? cout << "impossible"</pre>
21
         : cout << dist[n];</pre>
22 }
```

3.4.4 Detecting Negative Circle in SPFA

```
1
   void spfa()
                   // 只需要初始化 h
 2
   {
 3
        queue<int> q;
 4
        // 基于虚拟原点假设, 所有点放入队列
        for (int i = 1; i <= n; i++) q.push(i),</pre>
5
        st[i] = true;
6
        while (q.size())
7
8
            int t = q.front();
9
            q.pop();
            vis[t] = false;
10
            for (int i = h[t]; ~i; i = ne[i])
11
12
                if (dist[e[i]] > dist[t] + w[i])
13
14
                   dist[e[i]] = dist[t] + w[i];
15
                   // 新增
16
                   cnt[j] = cnt[t] + 1;
```

3.4.5 Floyd

```
const int N = 210;
    int g[N][N], n, m, k;
    int main()
 4
 5
         cin >> n >> m >> k;
 6
         memset(g, 0x3f, sizeof g);
 7
         for (int i = 1; i <= n; i++) g[i][i] =
 8
         while (m--)
 9
         {
10
             int a, b, c;
11
             cin >> a >> b >> c;
12
             g[a][b] = min(g[a][b], c);
13
14
         for (int k = 1; k <= n; k++)</pre>
15
             for (int i = 1; i <= n; i++)</pre>
16
                 for (int j = 1; j \le n; j++)
17
                     g[i][j] = min(g[i][k] + g[k]
         ][j], g[i][j]);
18
         // 后续代码略
19
         return 0;
20 }
```

3.5 Minimum Spanning Tree

3.5.1 Prim

```
const int N = 510;
   int n, m, g[N][N], dist[N];
    bool vis[N];
 4
    void prim()
 5
 6
         int res = 0;
 7
         for (int i = 0; i < n; i++)</pre>
 8
         {
 9
             int t = -1;
10
             for (int j = 1; j \le n; j++)
11
                  if (!vis[j] && (t == -1 || dist[
         j] < dist[t])) t = j;</pre>
12
             if (i && dist[t] == INF) { res = INF
         ; break; }
             if (i) res += dist[t];
13
14
             vis[t] = true;
             for (int j = 1; j <= n; j++) dist[j]</pre>
15
          = min(dist[j], g[t][j]);
16
         }
         res == INF ? cout << "impossible" : cout</pre>
17
          << res;
18
    }
19
    int main()
20
    {
```

```
21
        memset(g, 0x3f, sizeof g);
22
        memset(dist, 0x3f, sizeof dist);
23
        cin >> n >> m;
24
        while (m--)
25
        {
26
            int a, b, c;
27
            cin >> a >> b >> c;
            g[a][b] = min(g[a][b], c);
28
29
            g[b][a] = min(g[b][a], c);
30
31
        prim();
32
        return 0;
33 }
```

3.5.2 Kruskal

```
const int N = 100010;
   int n, m;
   int p[N];
 4
    struct Edge
 5
 6
        int a, b, w;
        bool operator<(const Edge &e) const {</pre>
 7
        return w < e.w; };</pre>
   } edge[2 * N];
   void init() { for (int i = 1; i <= n; i++) p</pre>
         [i] = i; }
10 int find(int x)
11 {
12
        if (x != p[x]) p[x] = find(p[x]);
13
        return p[x];
14 }
   void merge(int x, int y) { p[find(x)] = find
         (y); }
   void kruskal()
16
17
18
        int res = 0, cnt = 0;
19
        for (int i = 1; i <= m; i++)</pre>
             if (find(edge[i].a) != find(edge[i].
20
        b))
21
22
                 merge(edge[i].a, edge[i].b);
23
                 res += edge[i].w;
24
                 cnt++;
            }
25
26
        if (cnt < n - 1) res = INF;
27
        res == INF ? cout << "impossible" : cout</pre>
          << res;
28
   }
29
   int main()
30
   {
31
        init();
32
        cin >> n >> m;
33
        for (int i = 1; i <= m; i++) cin >> edge
        [i].a >> edge[i].b >> edge[i].w;
34
        sort(edge + 1, edge + m + 1);
35
        kruskal();
36
        return 0;
37 }
```

3.6 Bipartite Graph

3.6.1 Coloring Method

To check if a given graph is bipartite.

```
const int N = 100010, M = 200010;
   int n, m;
   int e[M], ne[M], h[N], color[N], idx;
   bool dfs(int u, int c)
6
    color[u] = c;
7
    for (int i = h[u]; ~i; i = ne[i])
8
        if (color[e[i]] == -1)
9
        {
10
            if (!dfs(e[i], !c)) return false;
11
12
        else if (color[e[i]] == c) return false;
13
    return true;
14
    }
15
    bool check()
16
17
    for (int i = 1; i <= n; i++)</pre>
        if (color[i] == -1)
18
            if (!dfs(i, 0)) return false;
19
20
    return true;
21
    }
22
   int main()
23
24
   // 注意另外初始化 h 与 color
25
   cin >> n >> m;
26
    while (m--)
27
28
        int a, b;
29
        cin >> a >> b;
30
        add(a, b), add(b, a);
   }
31
   // 其余过程略
32
33
   }
```

3.6.2 Hungarian Algorithm

To find the maximum matching for a given graph.

```
1 const int N = 510, M = 100010;
2 int n1, n2, m;
3 int e[M], ne[M], h[N], match[N], idx;
4 bool vis[N];
 5 bool find(int x)
6 {
7 for (int i = h[x]; ~i; i = ne[i])
8
       if (!vis[e[i]])
9
       {
10
           vis[e[i]] = true;
11
           if (match[e[i]] == 0 || find(match[e
        [i]]))
12
           {
13
               match[e[i]] = x;
14
               return true;
15
           }
       }
16
17 return false;
18 }
19 int main()
20 {
21 // 注意初始化 h
22 cin >> n1 >> n2 >> m;
23 while (m--)
24 {
25
        int a, b;
26
        cin >> a >> b;
27
        add(a, b);
28 }
29 int res = 0;
30 for (int i = 1; i <= n1; i++)
31 {
32
       memset(vis, false, sizeof vis);
33
       if (find(i)) res++;
34 }
35 cout << res;
36 return 0;
37 }
```

4 * Basic Math

4.1 Prime Numbers

4.1.1 Judging Prime Numbers

 $O(\sqrt{n})$

```
1 bool is_prime(int x)
2 {
3     if (x < 2) return false;
4     for (int i = 2; i <= x / i; i ++ )
5         if (x % i == 0) return false;
6     return true;
7 }</pre>
```

4.1.2 Prime Factorization

```
void divide(int x)
2 {
3
        for (int i = 2; i <= x / i; i ++ )</pre>
4
            if (x \% i == 0)
5
            { // 此条件成立时 i 一定是质数
6
                int s = 0;
7
                while (x \% i == 0) x /= i, s ++
8
                cout << i << ' ' << s << '\n';
9
        if (x > 1) cout << x << ' ' << 1 << '\n'</pre>
10
11 }
```

4.1.3 Euler's Sieve

```
1 int primes[N], cnt;
 2 bool st[N];
 3 void get_primes(int n)
4 {
        for (int i = 2; i <= n; i ++ )</pre>
 5
6
            if (!st[i]) primes[cnt++] = i;
 7
8
            for (int j = 0; primes[j] <= n / i;</pre>
        j ++ )
9
10
                 st[primes[j] * i] = true;
11
                 if (i % primes[j] == 0) break;
12
            }
13
        }
14 }
```

4.2 Divisor

4.2.1 Find All Divisors

```
1 vector<int> get_divisors(int x)
2 {
3    vector<int> res;
4    for (int i = 1; i <= x / i; i ++ )</pre>
```

4.2.2 The Number of Divisors

```
const int mod = 1e9 + 7;
   int n;
3
   int main()
 4
    ł
 5
        cin >> n;
 6
        unordered_map<int, int> h;
 7
        while (n--)
8
        {
9
            int x;
10
             cin >> x;
            for (int i = 2; i <= x / i; i++)</pre>
11
                 while (x \% i == 0) \{ h[i] ++; x =
12
         x / i; }
13
            if (x > 1) h[x]++;
14
15
        long long res = 1;
        for (auto iter = h.begin(); iter != h.
16
        end(); iter++)
17
            res = res * (iter->second + 1) % mod
18
        cout << res;</pre>
19
        return 0;
20 }
```

4.2.3 The Sum of Divisors

```
1 const int mod = 1e9 + 7;
 2 int n;
 3 long long getSum(int x, int c)
 4
 5
        long long s = 1;
 6
        while(c--) s = (s * x + 1) \% mod;
 7
        return s;
    }
 8
9
   int main()
10
11
        cin >> n;
12
        unordered_map<int, int> h;
13
        while (n--)
14
        {
15
            int x;
16
            cin >> x;
            for (int i = 2; i <= x / i; i++)</pre>
17
                 while (x \% i == 0) \{ h[i] ++; x =
18
         x / i; }
19
            if (x > 1) h[x]++;
20
21
        long long res = 1;
22
        for (auto iter = h.begin(); iter != h.
        end(); iter++)
```

4.2.4 Euclidean Algorithm

```
1 int gcd(int a, int b)
2 { return a % b == 0 ? b : gcd(b, a % b); }
```

4.3 Euler Function

4.3.1 Simple Method

```
int phi(int x)
2
   {
3
        int res = x;
 4
        for (int i = 2; i <= x / i; i ++ )</pre>
 5
            if (x \% i == 0)
 6
 7
                 res = res / i * (i - 1);
 8
                 while (x \% i == 0) x /= i;
9
10
        if (x > 1) res = res / x * (x - 1);
11
        return res;
12 }
```

4.3.2 Euler's Sieve Method

```
1 const int N = 1000010;
 2 int n, primes[N], phi[N], cnt;
3 bool st[N];
 4 void getEuler()
6
       phi[1] = 1;
 7
       for (int i = 2; i <= n; i++)</pre>
 8
       {
9
           if (!st[i])
10
               primes[cnt++] = i;
11
12
               // i 是质数,它只会被本身整除,所
        以直接赋值 i - 1
13
               phi[i] = i - 1;
14
15
           for (int j = 0; primes[j] <= n / i;</pre>
        j++)
16
17
               st[i * primes[j]] = true;
               if (i % primes[j] == 0)
18
19
20
                   // 如果 i % primes[j] == 0
        成立表示 primes[j] 是 i 的最小质因子
21
                   // 也是 primes[j] * i 的最小
        质因子
22
                   // 1 - 1 / primes[j] 这一项
        在 phi[i] 中计算过了,只需将基数 N 修正为
        primes[j] 倍
```

```
phi[primes[j] * i] = phi[i]
       * primes[j];
24
                  break;
25
              }
26
              // 否则, primes[j] 不是 i 的质因
       子, 只是 primes[j] * i 的最小质因子
27
              // 不仅需要将基数 N 修正为 primes
       [i] 倍
28
              // 还需要补上 1 - 1 / primes[j]
        的分子项,因此最终结果为 phi[i] * (primes
29
              phi[primes[j] * i] = phi[i] * (
       primes[j] - 1);
30
31
32 }
```

4.4 Exponentiating by Squaring

```
LL qmi(int m, int k, int p)
3
        LL res = 1 \% p, t = m;
4
        while (k)
5
6
            if (k&1) res = res * t % p;
7
            t = t * t % p;
8
            k >>= 1;
9
10
        return res;
11
```

4.5 Extended Euclidean Algorithm

```
1
    int exgcd(int a, int b, int &x, int &y)
 2
    {
 3
        if (!b)
 4
        {
 5
            x = 1;
 6
            y = 0;
 7
            return a;
 8
9
        int d = exgcd(b, a % b, y, x);
10
        y = (a / b) * x;
11
        return d:
12 }
```

4.6 Chinese Remainder Theorem

```
1 LL exgcd(LL a, LL b, LL &x, LL &y)
2 {
3     if (!b) { x = 1, y = 0; return a; }
4     LL d = exgcd(b, a % b, y, x);
5     y -= a / b * x;
6     return d;
```

```
int main()
9
    {
10
        int n:
11
        cin >> n;
12
        LL x = 0, m1, a1;
13
        cin >> m1 >> a1;
14
        for (int i = 0; i < n - 1; i++)
15
16
            LL m2, a2;
17
             cin >> m2 >> a2;
18
            LL k1, k2;
19
            LL d = exgcd(m1, m2, k1, k2);
            if ((a2 - a1) \% d) \{ x = -1; break; \}
20
21
            k1 *= (a2 - a1) / d;
22
            k1 = (k1 \% (m2 / d) + m2 / d) \% (m2
         / d);
23
            x = k1 * m1 + a1;
24
            LL m = abs(m1 / d * m2);
25
            a1 = k1 * m1 + a1;
26
            m1 = m;
27
        }
28
        if (x != -1)
29
            x = (a1 \% m1 + m1) \% m1;
30
        cout << x << '\n';
31
        return 0;
32
   }
```

4.7 Gauss-Jordan Elimination

4.7.1 Linear Equation Group

```
int gauss()
 2
   {
 3
        int c, r;
        for (c = 0, r = 0; c < n; c++)
 4
 5
            int t = r;
 7
            for (int i = r; i < n; i++)</pre>
        找绝对值最大的行
                if (fabs(a[i][c]) > fabs(a[t][c
        ]))
 9
                    t = i;
10
            if (fabs(a[t][c]) < eps)</pre>
                                            //
        此时没必要对该列该行处理
11
                continue;
12
            for (int i = c; i <= n; i++)</pre>
13
                swap(a[t][i], a[r][i]);
                                            //
        将绝对值最大的行换到最顶端
            for (int i = n; i >= c; i--)
14
                a[r][i] /= a[r][c];
15
        将当前行的首位变成1
16
            for (int i = r + 1; i < n; i++) //</pre>
        用当前行将下面所有的列消成0
17
                if (fabs(a[i][c]) > eps)
                    for (int j = n; j >= c; j--)
18
                        a[i][j] -= a[r][j] * a[i
19
        ][c];
20
            r++;
21
22
        if (r < n)
23
```

```
24
            for (int i = r; i < n; i++)</pre>
25
                 if (fabs(a[i][n]) > eps)
26
                     return 2; // 无解
                               // 有无穷多组解
27
            return 1;
28
        }
29
        for (int i = n - 1; i >= 0; i--)
30
            for (int j = i + 1; j < n; j++)
31
                a[i][n] -= a[i][j] * a[j][n];
32
        return 0;
                              // 有解
33 }
```

4.7.2 XOR Linear Equation Group

```
int gauss()
 2
3
         int c, r;
 4
         for (c = 0, r = 0; c < n; c++)
 5
         {
 6
             int t = r;
             for (int i = r; i < n; i++)</pre>
 7
 8
                 if (a[i][c])
9
                      t = i;
10
             if (!a[t][c])
11
                 continue;
12
             for (int i = c; i <= n; i++)</pre>
13
                 swap(a[r][i], a[t][i]);
14
             for (int i = r + 1; i < n; i++)</pre>
15
                 if (a[i][c])
16
                      for (int j = n; j \ge c; j--)
                          a[i][j] ^= a[r][j];
17
18
             r++;
19
        }
20
        if (r < n)
21
        {
22
             for (int i = r; i < n; i++)</pre>
23
                  if (a[i][n])
24
                      return 2;
25
             return 1;
        }
26
27
        for (int i = n - 1; i >= 0; i--)
             for (int j = i + 1; j < n; j++)
28
                 a[i][n] ^= a[i][j] * a[j][n];
29
30
         return 0;
31 }
```

4.8 Combinatorial Counting

4.8.1 Recurrence Relation

```
1 void init()
2 {
3     for (int i = 0; i < N; i++)
4         for (int j = 0; j <= i; j++)
5             if (!j) c[i][j] = 1;
6             else c[i][j] = (c[i - 1][j] + c[
                  i - 1][j - 1]) % mod;
7 }</pre>
```

4.8.2 Preprocessing & Inverse Element

```
1 const int N = 100010, mod = 1e9 + 7;
 2 int n, fact[N], infact[N];
3 int qmi(int a, int b, int p)
4
 5
        int res = 1;
        while (b)
 6
7
 8
            if (b & 1)
9
               res = (LL)res * a % p;
10
            a = (LL)a * a % p;
11
            b >>= 1;
12
        }
13
        return res;
14 }
15 int main()
16
   {
17
        fact[0] = infact[0] = 1;
18
        for (int i = 1; i < N; i++)</pre>
19
20
            fact[i] = (LL)fact[i - 1] * i % mod;
21
            infact[i] = (LL)infact[i - 1] * qmi(
        i, mod - 2, mod) % mod;
22
        // 此后 C(a, b) = (LL)fact[a] * infact[b
23
        ] % mod * infact[a - b] % mod
24 }
```

4.8.3 Lucas Theorem

```
1
   int qmi(int a, int k, int p)
 2
   {
3
        int res = 1 % p;
 4
        while (k)
5
6
            if (k & 1)
7
               res = (LL)res * a % p;
8
            a = (LL)a * a % p;
9
            k >>= 1;
10
        }
11
        return res;
12 }
13 int C(int a, int b, int p)
14 {
15
        if (a < b) return 0;</pre>
16
        LL x = 1, y = 1;
17
        // x = a * (a - 1) * (a - 2) * ... * (a
        -b+1) = a! / (a - b)! \pmod{p}
18
        // y = 1 * 2 * ... * b = b! \pmod{p}
19
        for (int i = a, j = 1; j <= b; i--, j++)
20
        \{ x = (LL)x * i % p; y = (LL)y * j % p; \}
21
        return x * (LL)qmi(y, p - 2, p) % p;
22 }
23
   int lucas(LL a, LL b, int p)
24 {
25
        if (a 
26
           return C(a, b, p);
27
        return (LL)C(a % p, b % p, p) * lucas(a
        / p, b / p, p) % p;
28 }
```

4.8.4 Factorization Method

```
1 const int N = 5010;
 2 int n, primes[N], sum[N], cnt;
 3 bool st[N];
 4 void getPrimes(int n) { // 略 }
 5 // 求 n! 中 p 的幂次
6 int get(int n, int p)
7
 8
        int res = 0;
9
        while (n) { res += n / p; n /= p; }
10
        return res;
11
12
    void mul(vector<int> &a, int b) { // 高精度
         乘, 略 }
13
   int main()
14
15
        int a, b;
        cin >> a >> b;
16
17
        getPrimes(a);
18
        for (int i = 0; i < cnt; i++)</pre>
19
20
            int p = primes[i];
21
            sum[i] = get(a, p) - get(b, p) - get
         (a - b, p);
22
        }
23
        vector<int> res;
24
        res.push_back(1);
25
        for (int i = 0; i < cnt; i++)</pre>
26
            for (int j = 0; j < sum[i]; j++)</pre>
27
                mul(res, primes[i]);
        for (int i = res.size() - 1; i >= 0; i
29
            cout << res[i];</pre>
30 }
```

4.8.5 Catalan Number

```
const int N = 100010, mod = 1e9 + 7;
   int qmi(int a, int k, int p) { // 略 }
   int main()
3
4
5
        int n:
 6
        cin >> n;
 7
        int a = n * 2, b = n, res = 1;
8
        for (int i = a; i > a - b; i--)
9
            res = (LL)res * i % mod;
10
        for (int i = 1; i <= b; i++)</pre>
11
            res = (LL)res * qmi(i, mod - 2, mod)
12
        res = (LL)res * qmi(n + 1, mod - 2, mod)
         % mod;
13 }
```

4.9 Inclusion-Exclusion Principle

```
1  const int N = 20;
2  int n, m, res = 0, p[N];
3  int main()
```

```
{
4
       cin >> n >> m;
5
6
       for (int i = 0; i < m; i++)</pre>
7
           cin >> p[i];
       // 使用二进制数字表示数字选取情况
8
9
       for (int i = 1; i < 1 << m; i++)</pre>
10
       {
11
           int t = 1, cnt = 0;
12
           // 遍历每个被选取的质数
13
           for (int j = 0; j < m; j++)
14
               if (i >> j & 1)
15
16
                  cnt++;
                   // 一个质数能被选取的条件应该
17
        是其累乘积不超过目标数字
18
                  if ((LL)t * p[j] > n)
19
                  { t = -1; break; }
20
                  t *= p[j];
21
               }
22
           if (t != -1)
23
               // 容斥原理公式中奇数个并集系数为
        1, 反之为 -1
24
               if (cnt % 2) res += n / t;
25
               else res -= n / t;
26
27
       cout << res;</pre>
28
   }
```


int x;

30

4.10 Game Theory

4.10.1 NIM Game

```
1 const int N = 110, M = 100010;
 2 int k, n, s[N], f[M];
3 int sg(int x)
4
       if (f[x] != -1) return f[x];
 5
       // 到达节点得 SG 函数集合
 6
       unordered_set<int> S;
 7
       // 能取走石子就说明能到达,并且递归向下求
 9
       for (int i = 0; i < k; i++)</pre>
10
       {
11
           int sum = s[i];
12
           if (x >= sum) S.insert(sg(x - sum));
13
14
       // SG 从小到达遍历并返回,找到最小的、不包
        含在 SG 函数集合中的自然数
       for (int i = 0;; i++)
15
           if (!S.count(i))
16
17
               return f[x] = i;
18 }
19
20 int main()
21 {
22
       cin >> k;
23
       for (int i = 0; i < k; i++) cin >> s[i];
24
       cin >> n;
25
       memset(f, -1, sizeof f);
26
       int res = 0;
27
       // 每一堆石子都是一个入度为 0 的起始点
28
       for (int i = 0; i < n; i++)</pre>
29
       {
```

$5 \star \text{Basic DP}$

5.1 Knapsack Problem

5.1.1 01 Knapsack

```
const int N = 1010;
   int n, m, v[N], w[N], f[N];
   int main()
4
5
        cin >> n >> m;
        for (int i = 1; i <= n; i++)</pre>
6
7
            cin >> v[i] >> w[i];
        for (int i = 1; i <= n; i++)
9
            for (int j = m; j >= v[i]; j++)
10
                 f[j] = max(f[j], f[j - v[i]] + w
        [i]);
11
        cout << f[m];</pre>
12 }
```

5.1.2 Complete Knapsack

```
const int N = 1010;
   int n, m, v[N], w[N], f[N];
3
   int main()
4
        cin >> n >> m;
5
        for (int i = 1; i <= n; i++)</pre>
6
            cin >> v[i] >> w[i];
7
        for (int i = 1; i <= n; i++)</pre>
8
9
            for (int j = v[i]; j <= m; j++)</pre>
10
                 f[j] = max(f[j], f[j - v[i]] + w
         [i]);
11
        cout << f[m];
12 }
```

5.1.3 Mutiple Knapsack

```
1 const int N = 25000;
 2 int n, m, v[N], w[N], f[N];
 3 int main()
 4
 5
         cin >> n >> m;
 6
        int cnt = 0:
 7
         for (int i = 1; i <= n; i++)</pre>
 8
 9
             int a, b, s;
10
             cin >> a >> b >> s;
11
             int k = 1;
12
             while (k <= s)</pre>
13
             {
14
                 cnt++;
                 v[cnt] = a * k, w[cnt] = b * k;
15
                 s -= k, k *= 2;
16
17
             }
18
             if (s > 0)
19
20
21
                 v[cnt] = a * s, w[cnt] = b * s;
```

```
22      }
23      }
24      n = cnt;
25      for (int i = 1; i <= n; i++)
26          for (int j = m; j >= v[i]; j--)
27          f[j] = max(f[j], f[j - v[i]] + w
          [i]);
28      cout << f[m];
29     }</pre>
```

5.1.4 Grouped Knapsack

```
const int N = 120;
    int n, m, s[N], v[N][N], w[N][N], f[N];
3
    int main()
 4
 5
         cin >> n >> m;
6
         for (int i = 1; i <= n; i++)</pre>
7
8
             cin >> s[i];
9
             for (int j = 1; j <= s[i]; j++)</pre>
10
                  cin >> v[i][j] >> w[i][j];
11
12
        for (int i = 1; i <= n; i++)</pre>
13
             for (int j = m; j >= 0; j--)
                 for (int k = 1; k <= s[i]; k++)</pre>
14
15
                      if (v[i][k] <= j)</pre>
16
                           f[j] = max(f[j], f[j - v])
         [i][k]] + w[i][k]);
17
         cout << f[m];
18 }
```

5.2 Linear DP

5.2.1 LIS

Here is an $O(n^2)$ solution:

```
const int N = 1010;
    int n, a[N], f[N];
3
    int main()
 4
 5
         cin >> n;
6
         for (int i = 1; i <= n; i++)</pre>
7
             cin >> a[i];
8
         for (int i = 1; i <= n; i++)</pre>
9
10
             f[i] = 1;
11
             for (int j = 1; j < i; j++)
12
                  if (a[j] < a[i])</pre>
13
                      f[i] = max(f[i], f[j] + 1);
14
15
         int res = 0;
16
         for (int i = 1; i <= n; i++)</pre>
17
             res = max(res, f[i]);
18
         cout << res;</pre>
19 }
```

Another is an O(nlogn) solution:

```
1 const int N = 100010;
2 int n, a[N], q[N];
```

```
3 int main()
 4
   {
5
        cin >> n;
6
        for (int i = 1; i <= n; i++) cin >> a[i
        ];
7
        int len = 0;
        q[len] = -INF;
 8
9
        for (int i = 1; i <= n; i++)
10
11
             int 1 = 0, r = len;
12
             while (1 < r)
13
14
                 int mid = 1 + r + 1 >> 1;
                 if (q[mid] < a[i]) 1 = mid;</pre>
15
                 else r = mid - 1;
16
17
18
             len = max(r + 1, len);
19
             q[r + 1] = a[i];
20
21
        cout << len;</pre>
22 }
```

5.2.2 LCS

```
1 const int N = 1010;
2 int n, m, f[N][N];
3 char a[N], b[N];
4 int main()
6
        cin >> n >> m >> (a + 1) >> (b + 1);
7
        for (int i = 1; i <= n; i++)</pre>
8
            for (int j = 1; j <= m; j++)
9
10
                f[i][j] = max(f[i - 1][j], f[i][
        j - 1]);
                if (a[i] == b[j])
11
12
                    f[i][j] = max(f[i][j], f[i -
         1][j-1]+1);
13
        cout << f[n][m];
14
15 }
```

5.3 Interval DP

In this case we focus on an interval, whose sum of its elements can represent the answer we want to find:

```
const int N = 310;
    int n, s[N], f[N][N];
 3
    int main()
 4
    {
5
         cin >> n;
         for (int i = 1; i <= n; i++)</pre>
6
             cin >> s[i], s[i] += s[i - 1];
7
         for (int len = 2; len <= n; len++)</pre>
 8
             for (int i = 1; i + len - 1 <= n; i</pre>
9
         ++)
10
11
                  int l = i, r = i + len - 1;
12
                 f[1][r] = INF;
13
                 for (int k = 1; k < r; k++)</pre>
```

5.4 Counting DP

```
const int N = 1010, M = 1e9 + 7;
    int n, f[N][N];
3
   int main()
4
    {
5
        cin >> n;
6
        f[0][0] = 1;
7
        for (int i = 1; i <= n; i++)</pre>
8
            for (int j = 1; j \le i; j++)
9
                 f[i][j] = (f[i-1][j-1] + f[i
          - j][j]) % M;
10
        int ans = 0;
11
        for (int i = 1; i <= n; i++)
12
            ans = (ans + f[n][i]) \% M;
13
        cout << ans;</pre>
14 }
```

5.5 Digit DP

```
// 求数 n 的位数
   int get(int n)
3
   {
4
       int res = 0;
       while (n) n /= 10, res++;
5
6
       return res;
   }
7
8
   int count(int n, int i)
9
   {
10
       int res = 0, dgt = get(n);
11
       for (int j = 1; j <= dgt; j++)</pre>
12
13
          // p 为当前遍历位次(第 j 位)的数大小
       <10<sup>(右边的数的位数)</sup>, Ps: 从左往右(从高
       位到低位)
          // 1 为第 j 位的左边的数, r 为右边的
14
       数, dj 为第 j 位上的数
15
          int p = pow(10, dgt - j), l = n / p
       / 10, r = n % p, dj = n / p % 10;
16
          // 求要选的数在 i 的左边的数小于 1 的
       情况:
17
                 1)、当 i 不为 O 时 xxx:
          //
       0...0~1-1, 即 1*(右边的数的位数)
       == 1 * p 种选法
                 2)、当 i 为 O 时 由于不能有前
18
          //
       导零 故 xxx: 0....1~1-1, 即 (1-1)
       * (右边的数的位数) == (1 - 1) * p 种选法
          if (i) res += 1 * p;
19
          else res += (1 - 1) * p;
20
21
          // 求要选的数在 i 的左边的数等于 1 的
       情况: (即视频中的xxx == 1 时)
22
          //
                 1)、i > dj 时 0 种选法
23
          //
                 2)、i == dj 时 yyy : 0...0 ~
        r 即 r + 1 种选法
```

```
24
                     3)、i < dj 时 yyy : 0...0~
        9...9 即 10<sup>(右边的数的位数) == p 种选法</sup>
25
            if (i == dj) res += r + 1;
26
            if (i < dj) res += p;</pre>
27
28
        return res;
29
    }
30
    int main()
31
32
        int a, b;
33
        while (cin >> a >> b, a)
34
35
             if (a > b) swap(a, b);
36
            for (int i = 0; i <= 9; ++i)</pre>
37
                 cout << count(b, i) - count(a -</pre>
         1. i) << ' ':
            // 利用前缀和思想: [1, r] 的和 = s[r]
          -s[1-1]
39
            cout << '\n';
40
41 }
```

```
// 遍历当前列的每一种用二进制数字
      表示的摆放状态: 1 指横向摆放, 0 指空位
             for (int j = 0; j < 1 << n; j++)</pre>
35
36
                // 遍历上一列的每一种用二进制
       数字表示的摆放状态: 1 指横向摆放, 0 指空
                for (int k = 0; k < 1 << n;
37
                   // 满足两个条件: 两列的摆
      放互不冲突; 两列摆放状态的结合状态是一个可
      取的状态则累加情况数
39
                   if (!(j & k) && st[j | k
      ])
40
                      f[i][j] += f[i - 1][
41
         // 输出摆放好第 m 列且第 (m + 1) 列没
      有任何方格的状态数
42
         cout << f[m][0] << '\n';</pre>
43
44 }
```

5.6 State Compression DP

```
1 const int N = 12, M = 1 << 12;
   int n, m;
   LL f[N][M];
   bool st[M];
5
   int main()
6
   {
7
       while (cin >> n >> m, n \mid\mid m)
8
9
           memset(f, 0, sizeof f);
           for (int i = 0; i < 1 << n; i++)</pre>
10
11
12
               st[i] = true;
               // 统计连续 0 的个数, 若连续 0 为
13
        奇数个就不能正好放得下竖放的方格
14
               int cnt = 0;
15
               for (int j = 0; j < n && st[i];</pre>
       j++)
16
                  if (i >> j & 1)
17
                       // 当前格子被使用
18
19
                       // 如果连续 0 的数量为奇
        数个, 当前格子被使用的后果就是导致格子重
        合, 所以不可取
20
                       if (cnt & 1)
21
                          st[i] = false;
22
                       // 刷新状态
23
                       cnt = 0;
24
                  }
25
                   else cnt++;
26
               // 最后再判断一次, 防止漏判
27
               if (cnt & 1)
28
                  st[i] = false;
29
           }
30
           // 没有摆放任何棋子的状态默认只有 1
        种取法
31
           f[0][0] = 1;
32
           // 遍历每一列
33
           for (int i = 1; i <= m; i++)</pre>
```

5.7 Tree DP

```
// Don't use I/O functions from stdio.h!!!
    #define itn int
 3
    #define nit int
    #define nti int
    #define tin int
    #define tni int
    #define retrun return
    #define reutrn return
    #define rutren return
   #define INF 0x3f3f3f3f
10
   #include <bits/stdc++.h>
11
12 using namespace std;
13
   typedef pair<int, int> PII;
   typedef long long LL;
14
15
16
   const int N = 6010;
17
18
19
   int e[N], ne[N], happy[N], h[N], idx;
   int f[N][2];
20
    bool has_father[N];
    void add(int a, int b)
   \{ e[idx] = b, ne[idx] = h[a], h[a] = idx++;
24
    void dfs(int u)
25
26
        f[u][1] = happy[u];
27
        for (int i = h[u]; ~i; i = ne[i])
28
29
            dfs(e[i]);
30
            f[u][0] += max(f[e[i]][0], f[e[i
        ]][1]);
31
            f[u][1] += f[e[i]][0];
32
33
   }
34
   int main()
35
36
        memset(h, -1, sizeof h);
37
|38|
        for (int i = 1; i <= n; i++) cin >>
```

```
happy[i];
39
        for (int i = 0; i < n - 1; i++)</pre>
40
41
             int a, b;
42
             cin >> a >> b;
43
            has_father[a] = true;
44
            add(b, a);
45
46
        int root = 1;
47
        while (has_father[root]) root++;
48
        dfs(root);
49
        cout << max(f[root][0], f[root][1]);</pre>
50 }
```

5.8 Memoized Search

```
int &v = f[x][y];
         if (v != -1) return v;
9
        v = 1;
10
        for (int i = 0; i < 4; i++)</pre>
11
12
             int a = x + dx[i], b = y + dy[i];
13
             if (a >= 1 && a <= n && b >= 1 && b
         \le m && h[a][b] < h[x][y])
14
                 v = max(v, dp(a, b) + 1);
         }
15
16
         return v;
    }
17
    int main()
18
19
    {
20
         cin >> n >> m;
21
        for (int i = 1; i <= n; i++)</pre>
22
             for (int j = 1; j <= m; j++)</pre>
23
                 cin >> h[i][j];
24
        memset(f, -1, sizeof f);
25
         int res = 0;
26
         for (int i = 1; i <= n; i++)</pre>
27
             for (int j = 1; j <= m; j++)</pre>
28
                 res = max(res, dp(i, j));
29
         cout << res;</pre>
30 }
```


Part II: Advanced Template

CREATED BY

Luliet Lyan & Bleu Echo

NSCC-GZ School of Computer Science & Engineering Sun Yat-Sen University

Supervisor: Dr Dan Huang Co-Supervisor: Dr Zhiguang Chen

$6 \star Advanced Basic$

6.1 Slow Multiplication

```
1 LL mul(LL a, LL b, LL p)
2 {
3     LL ans = 0;
4     while (b)
5     {
6         if (b & 1) ans = (ans + a) % p;
7         a = a * 2 % p; b >>= 1;
8     }
9     return ans;
10 }
```

6.2 Sum of Geometric Series

```
const int mod = 9901;
 2 int a, b;
   int qmi(int a, int k)
        int res = 1;
6
        a \%= mod;
7
        while (k)
8
9
            if (k & 1)
10
                res = res * a % mod;
            a = a * a % mod;
11
12
            k >>= 1;
13
14
        return res;
15
16
   int sum(int p, int k)
17
18
        if (k == 1) return 1;
        if (k % 2 == 0)
19
20
            return (1 + qmi(p, k / 2)) * sum(p,
        k / 2) % mod;
        return (sum(p, k - 1) + qmi(p, k - 1)) %
21
         mod:
22 }
23
   int main()
24
25
        // 以 a^b 约数之和为例求等比数列和
26
        cin >> a >> b;
27
        int res = 1;
28
        for (int i = 2; i <= a / i; i++)</pre>
29
            if (a % i == 0)
30
            {
31
                int s = 0:
32
                while (a \% i == 0) a /= i, s++;
33
                res = res * sum(i, b * s + 1) %
        mod;
34
35
        if (a > 1) res = res * sum(a, b + 1) %
36 }
```

6.3 Sort

6.3.1 Card Balancing Problem

```
1 cin >> n;
2 for (int i = 1; i <= n; i++)
3     cin >> a[i], avg += a[i];
4 avg /= n;
5 for (int i = 1; i <= n; i++)
6     if (a[i] != avg)
7         a[i + 1] += a[i] - avg, ans++;
8 cout << ans;</pre>
```

6.3.2 2D Card Balancing Problem

```
const int N = 100010;
   int row[N], col[N], c[N], s[N];
 3
   LL work(int n, int a[])
 4
 5
        for (int i = 1; i <= n; i++)</pre>
 6
             s[i] = s[i - 1] + a[i];
 7
        if (s[n] % n) return -1;
 8
        int avg = s[n] / n;
 9
        c[1] = 0;
10
        for (int i = 2; i <= n; i++)</pre>
11
             c[i] = s[i - 1] - (i - 1) * avg;
        sort(c + 1, c + n + 1);
12
13
        LL res = 0;
        for (int i = 1; i <= n; i++)</pre>
14
             res += abs(c[i] - c[(n + 1) / 2]);
15
16
        return res;
17
   }
18
   int main()
19
20
        int n, m, cnt;
21
        cin >> n >> m >> cnt;
22
        while (cnt--)
23
24
             int x, y;
25
             cin >> x >> y;
26
             row[x]++; col[y]++;
27
        LL r = work(n, row);
28
29
        LL c = work(m, col);
30
        if (r != -1 && c != -1)
31
             cout << "both " << r + c;
32
        else if (r != -1)
             cout << "row " << r;
33
34
        else if (c != -1)
             cout << "column " << c;
35
        else cout << "impossible";</pre>
36
37 }
```

6.3.3 Dual Heaps

```
6  if (up.size() > down.size())
7     down.push(up.top()), up.pop();
8  if (i % 2)
9  {
10     cout << down.top() << ' ';
11     if (++cnt % 10 == 0) cout << '\n';
12  }</pre>
```

6.4 RMQ

```
1 const int N = 200010, M = 18;
2 int n, m, w[N], f[N][M];
3 void init()
4 {
5
       for (int j = 0; j < M; j++)
6
           for (int i = 1; i + (1 << j) - 1 <=
       n; i++)
7
               if (!j) f[i][j] = w[i];
8
                     // 也可以是最小值
9
                  f[i][j] = max(f[i][j-1], f
        [i + (1 << j - 1)][j - 1]);
10 }
11 int query(int 1, int r)
12 {
13
       int len = r - l + 1;
14
       int k = \log(len) / \log(2);
       return max(f[1][k], f[r - (1 << k) + 1][
15
16 }
```

7 * Advanced Data Structures

7.1 Binary Indexed Tree

```
1 // 支持区间修改、区间查询
 2 // 利用变差分求二阶区间和
 3 const int N = 100010;
 4 int n, m, a[N];
 5 LL tr1[N], tr2[N];
 6 int lowbit(int x) { return x & -x; }
   void add(LL tr[], LL x, LL c)
 8
9
        for (int i = x; i <= n; i += lowbit(i))</pre>
10
            tr[i] += c;
11
    }
12
   LL sum(LL tr[], LL x)
13
14
        LL res = 0;
15
        for (int i = x; i; i -= lowbit(i))
16
            res += tr[i];
17
        return res;
   }
18
19
   LL prefix_sum(LL x)
    { return sum(tr1, x) * (x + 1) - sum(tr2, x)
20
        ; }
21
   int main()
22
   {
23
        cin >> n >> m;
24
        for (int i = 1; i <= n; i++)</pre>
25
            cin >> a[i];
26
        for (int i = 1; i <= n; i++)</pre>
27
28
            int b = a[i] - a[i - 1];
29
            add(tr1, i, b);
30
            add(tr2, i, (LL)i * b);
31
        }
32
        while (m--)
33
        {
34
            char op[2];
35
            int 1, r, d;
36
            cin >> op >> 1 >> r;
37
            if (*op == 'Q')
38
                 cout << prefix_sum(r) -</pre>
        prefix_sum(l - 1) << '\n';</pre>
39
            else
40
41
                 cin >> d;
42
                 add(tr1, 1, d), add(tr2, 1, (LL)
        1 * d),
43
                 add(tr1, r + 1, -d),
                 add(tr2, r + 1, (LL)-(r + 1) * d
44
        );
45
46
        }
47 }
```

7.2 Segment Tree

7.2.1 Maintain the Maximum

```
1 struct Node
```

```
{ int 1, r, v; } tr[N * 4];
   void pushup(int u)
 4
   {
5
        tr[u].v = max(tr[u << 1].v, tr[u << 1 |</pre>
        1].v);
6
    }
    void build(int u, int 1, int r)
 7
8
    {
9
        tr[u] = {1, r};
10
        if (1 == r) return;
        int mid = 1 + r >> 1;
11
12
        build(u << 1, 1, mid),
13
        build(u << 1 | 1, mid + 1, r);
   }
14
15
   int query(int u, int 1, int r)
16
17
        if (tr[u].1 >= 1 && tr[u].r <= r)</pre>
18
            return tr[u].v;
19
        int mid = tr[u].l + tr[u].r >> 1;
20
        int v = 0;
21
        if (1 <= mid)</pre>
22
            v = query(u << 1, 1, r);</pre>
23
        if (r > mid)
24
            v = max(v, query(u << 1 | 1, 1, r));
25
        return v;
26
   }
27
    void modify(int u, int x, int v)
28
29
        if (tr[u].1 == x && tr[u].r == x)
30
            tr[u].v = v;
31
        else
32
33
             int mid = tr[u].l + tr[u].r >> 1;
34
             if (x \le mid)
35
                 modify(u \ll 1, x, v);
36
37
                 modify(u << 1 | 1, x, v);
38
            pushup(u);
39
        }
40 }
```

7.2.2 Maintain the Maximum Subarray Sum

```
struct Node
 2 { int 1, r, sum, lmax, rmax, tmax; } tr[N *
 3
   void pushup(Node &u, Node &l, Node &r)
 4
 5
        u.sum = 1.sum + r.sum;
 6
        u.lmax = max(1.lmax, 1.sum + r.lmax);
 7
        u.rmax = max(r.rmax, r.sum + 1.rmax);
 8
        u.tmax = max(max(1.tmax, r.tmax), 1.rmax
          + r.lmax);
9
    }
10
    void pushup(int u)
    { pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
11
12
    void build(int u, int 1, int r)
13
14
        if (1 == r)
15
            tr[u] = \{1, r, w[r], w[r], w[r], w[r]\}
16
        else
```

```
17
         {
18
             tr[u] = {1, r};
19
             int mid = 1 + r >> 1;
20
             build(u \ll 1, 1, mid),
21
             build(u << 1 | 1, mid + 1, r);
22
             pushup(u);
23
24
    }
25
    void modify(int u, int x, int v)
26
27
         if (tr[u].1 == x && tr[u].r == x)
28
             tr[u] = \{x, x, v, v, v, v\};
29
         else
30
         {
31
             int mid = tr[u].1 + tr[u].r >> 1;
32
             if (x <= mid)</pre>
33
                  modify(u << 1, x, v);
34
                  modify(u << 1 | 1, x, v);
35
36
             pushup(u);
37
         }
38
    }
39
    Node query(int u, int 1, int r)
40
    {
41
         if (tr[u].1 >= 1 && tr[u].r <= r)</pre>
42
             return tr[u];
43
         else
44
         {
45
             int mid = tr[u].1 + tr[u].r >> 1;
46
             if (r <= mid)</pre>
47
                  return query(u << 1, 1, r);</pre>
48
             else if (1 > mid)
49
                  return query(u << 1 | 1, 1, r);</pre>
50
             else
51
52
                  auto left = query(u << 1, 1, r);</pre>
53
                  auto right = query(u << 1 | 1, 1</pre>
         , r);
54
                  Node res;
55
                  pushup(res, left, right);
56
                  return res;
57
58
         }
59
   }
```

7.2.3 Maintain the GCD

```
1 struct Node
 2 { int 1, r; LL sum, d; } tr[N * 4];
 3 LL gcd(LL a, LL b)
   { return b ? gcd(b, a % b) : a; }
    void pushup(Node &u, Node &l, Node &r)
 6
 7
        u.sum = 1.sum + r.sum;
 8
        u.d = gcd(1.d, r.d);
   }
9
10
    void pushup(int u)
11
    { pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
12
   void build(int u, int 1, int r)
13
   {
14
        if (1 == r)
15
        {
16
            LL b = w[r] - w[r - 1];
```

```
17
             tr[u] = {1, r, b, b};
18
         }
19
         else
20
         {
21
             tr[u].1 = 1, tr[u].r = r;
22
             int mid = 1 + r >> 1;
23
             build(u << 1, 1, mid),
24
             build(u << 1 | 1, mid + 1, r);
25
             pushup(u);
26
    }
27
    void modify(int u, int x, LL v)
28
29
30
         if (tr[u].1 == x && tr[u].r == x)
31
32
             LL b = tr[u].sum + v;
33
             tr[u] = \{x, x, b, b\};
34
35
         else
36
         {
37
             int mid = tr[u].1 + tr[u].r >> 1;
38
             if (x \le mid)
39
                  modify(u \ll 1, x, v);
40
41
                  modify(u \ll 1 \mid 1, x, v);
42
             pushup(u);
43
         }
44
    }
45
    Node query(int u, int 1, int r)
46
47
         if (tr[u].1 >= 1 && tr[u].r <= r)</pre>
48
             return tr[u];
49
         else
50
51
             int mid = tr[u].l + tr[u].r >> 1;
52
             if (r <= mid)</pre>
53
                 return query(u << 1, 1, r);</pre>
             else if (1 > mid)
54
55
                 return query(u << 1 | 1, 1, r);</pre>
56
             else
57
             {
58
                  auto left = query(u << 1, 1, r);</pre>
59
                  auto right = query(u << 1 | 1, 1</pre>
         , r);
60
                  Node res;
61
                  pushup(res, left, right);
62
                  return res;
63
             }
64
         }
65
    }
```

7.2.4 Optimize Range Updates

Use this when you need to get summary of a specific range of an array but you also need to modify a specific range of an array:

```
&left = tr[u << 1],
9
              & right = tr[u << 1 | 1];
10
        if (root.add)
11
        {
12
             left.add += root.add,
13
             left.sum += (LL)(left.r - left.l +
         1) * root.add;
             right.add += root.add,
15
             right.sum += (LL)(right.r - right.l
         + 1) * root.add;
16
             root.add = 0;
17
18 }
   void build(int u, int 1, int r)
19
20
21
        if (1 == r) tr[u] = {1, r, w[r], 0};
22
        else
23
        {
24
             tr[u] = \{1, r\};
25
             int mid = 1 + r >> 1;
26
             build(u << 1, 1, mid);
27
             build(u << 1 | 1, mid + 1, r);
28
             pushup(u);
29
        }
30 }
31
    void modify(int u, int 1, int r, int d)
32
33
        if (tr[u].1 >= 1 && tr[u].r <= r)</pre>
34
             tr[u].sum += (LL)(tr[u].r - tr[u].1
35
         + 1) * d;
36
             tr[u].add += d;
        }
37
38
        else
39
40
             pushdown(u);
             int mid = tr[u].1 + tr[u].r >> 1;
41
             if (1 <= mid)</pre>
42
                 modify(u \ll 1, l, r, d);
43
44
             if (r > mid)
45
                 modify(u << 1 | 1, 1, r, d);
46
             pushup(u);
47
        }
48
  }
49
   LL query(int u, int 1, int r)
50
   {
51
        if (tr[u].1 >= 1 && tr[u].r <= r)</pre>
52
             return tr[u].sum;
        pushdown(u);
53
54
        int mid = tr[u].1 + tr[u].r >> 1;
55
        LL sum = 0;
56
        if (1 <= mid)</pre>
57
             sum += query(u << 1, 1, r);</pre>
58
        if (r > mid)
59
             sum += query(u << 1 | 1, 1, r);
60
        return sum;
61 }
```

7.3 Persistent Data Structure

7.3.1 Persistent Trie

```
1 const int N = 600010, M = N * 25;
```

```
2 int n, m, s[N], root[N], idx;
    int trie[M][2], max_id[M];
 4
    void insert(int i, int k, int p, int q)
 5
    {
6
        if (k < 0)
 7
        {
 8
            \max_{i} [q] = i;
 9
            return;
10
11
        int v = s[i] >> k & 1;
12
            trie[q][v ^ 1] = trie[p][v ^ 1];
13
14
        trie[q][v] = ++idx;
        insert(i, k - 1, trie[p][v], trie[q][v])
15
16
        max_id[q] = max(max_id[trie[q][0]],
        max_id[trie[q][1]]);
17
18
   int query(int root, int C, int L)
19
20
        int p = root;
21
        for (int i = 23; i >= 0; i--)
22
23
            int v = C >> i & 1;
            if (max_id[trie[p][v ^ 1]] >= L)
24
25
                p = trie[p][v ^ 1];
26
            else
27
                p = trie[p][v];
28
        }
29
        return C ^ s[max_id[p]];
30
31
    // insert(i, 23, root[i - 1], root[i]);
    // query(root[r - 1], l - 1, x ^ s[n]);
32
```

7.3.2 Persistent Segment Tree

```
const int N = 100010, M = 10010;
 2 int n, m, a[N], root[N], idx;
    vector<int> nums;
    struct Node
        int 1, r;
        int cnt;
    tr[N * 4 + N * 17];
 9
    int find(int x)
10
11
        return lower_bound(nums.begin(), nums.
         end(), x) - nums.begin();
12
    }
13
    int build(int 1, int r)
14
15
        int p = ++idx;
16
        if (1 == r)
17
            return p;
18
        int mid = 1 + r >> 1;
        tr[p].l = build(l, mid), tr[p].r = build
19
         (mid + 1, r);
20
        return p;
21
    }
22
    int insert(int p, int 1, int r, int x)
23
24
        int q = ++idx;
25
        tr[q] = tr[p];
26
        if (1 == r)
```

```
27
        {
28
             tr[q].cnt++;
29
            return q;
30
31
        int mid = 1 + r >> 1;
32
        if (x \le mid)
33
             tr[q].1 = insert(tr[p].1, 1, mid, x)
34
        else
35
             tr[q].r = insert(tr[p].r, mid + 1, r
         , x);
36
        tr[q].cnt = tr[tr[q].1].cnt + tr[tr[q].r
        ].cnt;
37
        return q;
38
    }
39
    int query(int q, int p, int l, int r, int k)
40
   {
41
        if (1 == r)
42
            return r;
43
        int cnt = tr[tr[q].1].cnt - tr[tr[p].1].
44
        int mid = 1 + r >> 1;
45
        if (k <= cnt)
46
            return query(tr[q].1, tr[p].1, 1,
        mid, k);
47
48
            return query(tr[q].r, tr[p].r, mid +
          1, r, k - cnt);
49
   }
```

7.4 Treap

```
1 const int N = 100010, INF = 1e8;
 2 int n, root, idx;
 3 struct Node
 4
   { int 1, r, key, val, cnt, size; } tr[N];
 5
   void pushup(int p)
 6
   {
 7
        tr[p].size = tr[tr[p].1].size +
 8
                     tr[tr[p].r].size + tr[p].
         cnt:
 9
    }
10
   int get_node(int key)
11
    {
12
        tr[++idx].key = key;
13
        tr[idx].val = rand();
14
        tr[idx].cnt = tr[idx].size = 1;
15
        return idx;
   }
16
17
    void zig(int &p)
18
19
        int q = tr[p].1;
20
        tr[p].l = tr[q].r, tr[q].r = p, p = q;
21
        pushup(tr[p].r), pushup(p);
   }
22
23
   void zag(int &p)
24
   {
25
        int q = tr[p].r;
26
        tr[p].r = tr[q].1, tr[q].1 = p, p = q;
27
        pushup(tr[p].1), pushup(p);
28
   }
29
   void build()
30
   {
```

```
31
        get_node(-INF), get_node(INF);
32
        root = 1, tr[1].r = 2;
33
        pushup(root);
34
        if (tr[1].val < tr[2].val) zag(root);</pre>
35
    }
36
    void insert(int &p, int key)
37
    ł
38
        if (!p) p = get_node(key);
39
        else if (tr[p].key == key) tr[p].cnt++;
40
        else if (tr[p].key > key)
41
42
             insert(tr[p].1, key);
43
             if (tr[tr[p].1].val > tr[p].val)
44
                 zig(p);
45
        }
46
        else
47
        {
48
             insert(tr[p].r, key);
49
             if (tr[tr[p].r].val > tr[p].val)
50
                 zag(p);
51
52
        pushup(p);
53
    }
54
    void remove(int &p, int key)
55
56
        if (!p) return;
57
        if (tr[p].key == key)
58
59
             if (tr[p].cnt > 1) tr[p].cnt--;
60
            else if (tr[p].l || tr[p].r)
61
62
                 if (!tr[p].r || tr[tr[p].1].val
        > tr[tr[p].r].val)
63
64
                     zig(p);
65
                     remove(tr[p].r, key);
                 }
66
67
                 else
68
                 ₹
69
                     zag(p):
70
                     remove(tr[p].1, key);
71
72
            }
73
             else p = 0;
74
75
        else if (tr[p].key > key)
76
            remove(tr[p].1, key);
77
        else remove(tr[p].r, key);
78
        pushup(p);
79
80
    int get_rank_by_key(int p, int key)
81
82
        if (!p) return 0;
83
        if (tr[p].key == key)
84
             return tr[tr[p].1].size + 1;
85
        if (tr[p].key > key)
86
            return get_rank_by_key(tr[p].1, key)
87
        return tr[tr[p].1].size + tr[p].cnt +
        get_rank_by_key(tr[p].r, key);
88
89
    int get_key_by_rank(int p, int rank)
90
91
        if (!p) reutrn INF;
92
        if (tr[tr[p].1].size >= rank)
93
            reutrn get_key_by_rank(tr[p].1, rank
```

```
94
         if (tr[tr[p].1].size + tr[p].cnt >= rank
95
             reutrn tr[p].key;
96
         return get_key_by_rank(tr[p].r, rank -
         tr[tr[p].1].size - tr[p].cnt);
97
    }
98
    int get_prev(int p, int key)
99
100
         if (!p) return -INF;
101
         if (tr[p].key >= key)
             reutrn get_prev(tr[p].1, key);
102
103
         return max(tr[p].key, get_prev(tr[p].r,
         key));
104
    }
105
    int get_next(int p, int key)
106
107
         if (!p) reutrn INF;
108
         if (tr[p].key <= key)</pre>
109
             return get_next(tr[p].r, key);
110
         return min(tr[p].key, get_next(tr[p].l,
111
    }
```

7.5 AC Automaton

```
const int N = 10010, M = 1000010, S = 55;
 2 int n, tr[N * S][26], cnt[N * S], idx;
 3 \quad int q[N * S], ne[N * S];
 4 char str[M];
   void insert()
5
6
7
        int p = 0;
        for (int i = 0; str[i]; i++)
8
9
10
             int t = str[i] - 'a';
11
             if (!tr[p][t]) tr[p][t] = ++idx;
12
            p = tr[p][t];
13
14
        cnt[p]++;
15
    }
    void build()
16
17
    {
18
        int hh = 0, tt = -1;
19
        for (int i = 0; i < 26; i++)</pre>
20
             if (tr[0][i]) q[++tt] = tr[0][i];
21
        while (hh <= tt)</pre>
22
        {
23
             int t = q[hh++];
24
             for (int i = 0; i < 26; i++)</pre>
25
26
                 int p = tr[t][i];
27
                 if (!p) tr[t][i] = tr[ne[t]][i];
28
                 else
29
30
                     ne[p] = tr[ne[t]][i];
31
                     q[++tt] = p;
32
33
            }
34
        }
35 }
```

8 * Advanced Search

8.1 Flood-Fill

```
const int N = 1010, M = N * N;
2 int n, m;
3 char g[N][N];
4 PII q[M];
   bool st[N][N];
   void bfs(int sx, int sy)
7
8
        int hh = 0, tt = 0;
9
        q[0] = {sx, sy}; st[sx][sy] = true;
10
        while (hh <= tt)</pre>
11
12
            PII t = q[hh++];
            for (int i = t.first - 1; i \le t.
13
        first + 1; i++)
                 for (int j = t.second - 1; j \le 
        t.second + 1; j++)
15
16
                     if (i == t.first && j == t.
         second)
17
                         continue;
                     if (i < 0 || i >= n || j < 0
18
          || j >= m)
19
                         continue:
20
                     if (g[i][j] == '.' || st[i][
        j])
21
                         continue;
22
                     q[++tt] = \{i, j\};
23
                     st[i][j] = true;
24
                 }
25
        }
   }
26
27
   int main()
28
   {
29
        int cnt = 0;
        for (int i = 0; i < n; i++)</pre>
30
31
            for (int j = 0; j < m; j++)
                 if (g[i][j] == 'W' && !st[i][j])
32
33
                 { bfs(i, j); cnt++; }
34
   }
```

8.2 Multi-source BFS

```
1 const int N = 1010, M = N * N;
 2 int n, m, dist[N][N];
   char g[N][N];
 4 PII q[M];
   int dx[4] = \{-1, 0, 1, 0\},\
        dy[4] = \{0, 1, 0, -1\};
6
7
    void bfs()
8
9
        memset(dist, -1, sizeof dist);
10
        int hh = 0, tt = -1;
11
        for (int i = 1; i <= n; i++)</pre>
             for (int j = 1; j <= m; j++)</pre>
12
13
                 if (g[i][j] == '1')
14
15
                     dist[i][j] = 0;
```

```
16
                      q[++tt] = \{i, j\};
17
                 }
18
         while (hh <= tt)</pre>
19
         ₹
20
             auto t = q[hh++];
21
             for (int i = 0; i < 4; i++)</pre>
22
23
                  int a = t.x + dx[i], b = t.y +
         dy[i];
24
                  if (a < 1 || a > n | b < 1 || b
         > m) continue;
                  if (dist[a][b] != -1) continue;
25
                  dist[a][b] = dist[t.x][t.y] + 1;
26
27
                  q[++tt] = {a, b};
28
             }
29
         }
30 }
```

8.3 BFS with Deque

```
const int N = 510, M = N * N;
   int n, m, dist[N][N];
 3
    char g[N][N];
 4
    bool st[N][N];
 5
    int dx[4] = \{-1, -1, 1, 1\},\
 6
        dy[4] = \{-1, 1, 1, -1\},\
 7
        ix[4] = \{-1, -1, 0, 0\},\
        iy[4] = \{-1, 0, 0, -1\};
 8
 9
    int bfs()
10
11
        memset(dist, 0x3f, sizeof dist);
        memset(st, 0, sizeof st);
12
13
        dist[0][0] = 0;
14
        deque<PII> q;
15
        q.push_back({0, 0});
16
        char cs[] = "\\/\\/";
17
        while (q.size())
18
19
             PII t = q.front();
20
             q.pop_front();
21
             if (st[t.x][t.y]) continue;
22
             st[t.x][t.y] = true;
23
             for (int i = 0; i < 4; i++)</pre>
24
25
                 int a = t.x + dx[i], b = t.y +
        dy[i];
26
                 if (a < 0 || a > n || b < 0 || b
          > m) continue;
27
                 int ca = t.x + ix[i], cb = t.y +
          iy[i];
28
                 int d = dist[t.x][t.y] +
29
                 (g[ca][cb] != cs[i]);
                 if (d < dist[a][b])</pre>
30
31
32
                     dist[a][b] = d;
33
                     if (g[ca][cb] != cs[i])
34
                          q.push_back({a, b});
35
                     else
36
                          q.push_front({a, b});
37
                 }
38
             }
39
        }
|40
        return dist[n][m];
```

```
41 }
```

8.4 Bidirectional BFS

```
int bfs()
    {
 3
         if (A == B) return 0;
 4
         queue<string> qa, qb;
         unordered_map<string, int> da, db;
 6
         qa.push(A), qb.push(B);
 7
         da[A] = db[B] = 0;
 8
         int step = 0;
9
         while (qa.size() && qb.size())
10
11
             int t;
12
             if (qa.size() < qb.size())</pre>
13
                 // PROCESS
14
15
                 // PROCESS
16
             if (t <= 10) return t;</pre>
17
             if (++step == 10) return -1;
18
19
         return -1;
20 }
```

```
33
         priority_queue<PIII, vector<PIII>,
         greater<PIII>> heap;
34
         heap.push({dist[S], {0, S}});
35
         while (heap.size())
36
37
             auto t = heap.top();
             heap.pop();
38
39
             int ver = t.y.y, distance = t.y.x;
40
             cnt[ver]++;
41
             if (cnt[T] == K) return distance;
42
             for (int i = h[ver]; ~i; i = ne[i])
43
44
                 int j = e[i];
                 if (cnt[j] < K)</pre>
45
46
                     heap.push({distance + w[i] +
          dist[j], {distance + w[i], j}});
47
48
49
         return -1;
50
    }
51
    int main()
52
    {
53
         // PROCESS
54
         dijkstra(); cout << astar();
         // PROCESS
55
56
    }
```

8.5 A*

```
const int N = 1010, M = 200010;
 2 int n, m, S, T, K;
 3 int h[N], rh[N], e[M], w[M], ne[M], idx;
 4 int dist[N], cnt[N];
 5 bool st[N];
   void dijkstra()
6
 7
    {
 8
        priority_queue<PII, vector<PII>, greater
        <PII>> heap;
 9
        heap.push({0, T});
10
        memset(dist, 0x3f, sizeof dist);
11
        dist[T] = 0;
12
        while (heap.size())
13
14
            auto t = heap.top();
15
            heap.pop();
16
            int ver = t.y;
17
            if (st[ver]) continue;
18
            st[ver] = true;
19
            for (int i = rh[ver]; ~i; i = ne[i])
20
21
                 int j = e[i];
22
                 if (dist[j] > dist[ver] + w[i])
23
24
                     dist[j] = dist[ver] + w[i];
25
                     heap.push({dist[j], j});
26
                 }
27
            }
28
        }
29
   }
30
    int astar()
32
   {
```

8.6 DFS Connectivity Model

```
char g[N][N];
   int xa, ya, xb, yb;
   int dx[4] = \{-1, 0, 1, 0\}, dy[4] = \{0, 1, 0,
         -1};
    bool st[N][N];
 4
    bool dfs(int x, int y)
 5
 6
 7
        if (g[x][y] == '#') return false;
 8
        if (x == xb && y == yb) return true;
9
        st[x][y] = true;
10
        for (int i = 0; i < 4; i++)</pre>
11
12
             int a = x + dx[i], b = y + dy[i];
            if (a < 0 || a >= n || b < 0 || b >=
13
         n) continue;
            if (st[a][b]) continue;
14
15
            if (dfs(a, b)) return true;
16
17
        return false;
18
```

8.7 IDDFS

```
1  const int N = 110;
2  int n, path[N];
3  bool dfs(int u, int k)
4  {
5    if (u == k)
6      return path[u - 1] == n;
7   bool st[N] = {0};
8   for (int i = u - 1; i >= 0; i--)
```

```
for (int j = i; j >= 0; j--)
9
                                                       9
10
                                                       10
                                                                if (f() > maxn - depth) return false;
11
                 int s = path[i] + path[j];
                                                       11
                                                                if (depth == maxn) return true;
                                                       12
12
                 if (s > n || s <= path[u - 1] ||</pre>
                                                                for (int i = 0; i <= n; i++)</pre>
                                                       13
          st[s]) continue;
13
                st[s] = true;
                                                       14
                                                                    // OPERATION
                                                       15
14
                path[u] = s;
                                                                    if (IDAstar(depth + 1, maxn))
15
                 if (dfs(u + 1, k)) return true;
                                                       16
                                                                        return true;
16
                                                       17
                                                                    // OPERATION
17
                                                       18
18
        return false;
                                                       19
                                                                return false;
19 }
                                                       20 }
```

8.8 Bidirectional DFS

```
const int N = 1 \ll 24;
 2 int n, m, k, cnt = 0, ans;
    int g[50], weights[N];
    void dfs(int u, int s)
 5
 6
        if (u == k)
 7
        {
 8
            weights[cnt++] = s;
 9
            return;
10
11
        if ((LL)s + g[u] <= m)
            dfs(u + 1, s + g[u]);
12
13
        dfs(u + 1, s);
14 }
15 void dfs2(int u, int s)
16
   {
17
        if (u == n)
18
        {
19
            int 1 = 0, r = cnt - 1;
20
            while (1 < r)
21
22
                 int mid = 1 + r + 1 >> 1;
23
                 if (weights[mid] + (LL)s <= m)</pre>
24
                     l = mid;
25
                 else r = mid - 1;
26
            }
27
            if (weights[1] + (LL)s <= m)</pre>
28
                 ans = max(ans, weights[1] + s);
29
            return;
30
31
        if ((LL)s + g[u] <= m)
32
            dfs2(u + 1, s + g[u]);
        dfs2(u + 1, s);
33
34 }
```

8.9 IDA*

```
1  const int N = 1e2;
2  int n, a[N];
3  string t;
4  int f()
5  {
6     // YOUR_F_FUNCTION
7  }
8  bool IDAstar(int depth, int maxn)
```

9 * Advanced Graph Theory

9.1 Detecting Negative Cycles

```
int n, m1, m2;
 2 int h[N], e[M], w[M], ne[M], idx;
   int dist[N], q[N], cnt[N];
   bool st[N];
   bool spfa()
 6
   {
 7
      memset(dist, 0, sizeof dist);
 8
      memset(cnt, 0, sizeof cnt);
 9
      memset(st, 0, sizeof st);
10
      int hh = 0, tt = 0;
11
      for (int i = 1; i <= n; i++)</pre>
12
      {
13
        q[tt++] = i;
14
        st[i] = true;
15
16
      while (hh != tt)
17
        int t = q[hh++];
18
        if (hh == N) hh = 0;
19
20
        st[t] = false;
21
        for (int i = h[t]; ~i; i = ne[i])
22
23
          int j = e[i];
24
          if (dist[j] > dist[t] + w[i])
25
26
            dist[j] = dist[t] + w[i];
27
            cnt[j] = cnt[t] + 1;
28
            if (cnt[j] >= n) return true;
29
            if (!st[j])
30
31
              q[tt++] = j;
32
              if (tt == N) tt = 0;
33
              st[j] = true;
34
35
36
      }
37
38
      return false;
39
```

9.2 SPFA-SLF

Using deque to solve SPFA question.

```
1
    void spfa()
 3
      memset(dist, 0x3f, sizeof dist);
 4
      memset(st, 0, sizeof st);
      deque<int> q;
 6
      q.push_back(s);
 7
      st[s] = 1, dist[s] = 0;
      while (q.size())
8
9
10
        int t = q.front();
11
        q.pop_front();
12
        st[t] = 0;
13
        for (int i = h[t]; ~i; i = ne[i])
14
```

```
15
           int j = e[i];
16
           if (dist[j] > dist[t] + w[i])
17
18
             dist[j] = dist[t] + w[i];
19
             if (!st[j])
20
             {
21
               st[j] = true;
22
               if (q.size() && dist[j] < dist[q.</pre>
         front()])
23
                  q.push_front(j);
24
               else
25
                 q.push_back(j);
26
27
          }
28
        }
29
      }
30
    }
```

9.3 SPFA-Stack

```
bool spfa()
 1
 2
   {
 3
      int hh = 0, tt = 1;
      memset(dist, -0x3f, sizeof dist);
 4
 5
      dist[0] = 0;
 6
      q[0] = 0;
 7
      while (hh != tt)
 8
 9
        int t = q[--tt];
10
        st[t] = false;
11
        for (int i = h[t]; ~i; i = ne[i])
12
13
          int j = e[i];
          if (dist[j] < dist[t] + w[i])
14
15
16
            dist[j] = dist[t] + w[i];
17
            cnt[j] = cnt[t] + 1;
            if (cnt[j] >= n + 1) return true;
18
19
            if (!st[j])
20
21
               st[j] = true;
22
               q[tt++] = j;
23
24
          }
25
        }
26
27
      return false;
28
```

9.4 SPFA & MIN & MAX

Using SPFA to maintain the minimum and maximum. In this case we need **Original Graph** and **Reverse Graph**, in which we can use **type** == **0** or **type** == **1** to describe.

```
1 void spfa(int h[], int dist[], int type)
2 {
3   int hh = 0, tt = 1;
4   if (type == 0)
5   {
```

```
memset(dist, 0x3f, sizeof dmin);
 7
        dist[1] = w[1];
8
        q[0] = 1;
9
      }
10
      else
11
        memset(dist, -0x3f, sizeof dmax);
12
        dist[n] = w[n];
13
14
        q[0] = n;
15
16
      while (hh != tt)
17
18
        int t = q[hh++];
        if (hh == N) hh = 0;
19
20
        st[t] = false;
21
        for (int i = h[t]; ~i; i = ne[i])
22
23
          int j = e[i];
          if (type == 0 && dist[j] > min(dist[t
24
        ], w[j]) || type == 1 && dist[j] < max(
        dist[t], w[j]))
25
          {
26
            if (type == 0)
27
              dist[j] = min(dist[t], w[j]);
28
29
              dist[j] = max(dist[t], w[j]);
30
            if (!st[j])
31
32
              q[tt++] = j;
33
              if (tt == N) tt = 0;
34
               st[j] = true;
35
36
          }
37
        }
      }
38
39 }
```

9.5 Second Shortest Path

```
const int N = 1010, M = 20010;
 2 struct Ver
 3 {
 4
      int id, type, dist;
      bool operator>(const Ver &W) const
 5
 6
 7
        return dist > W.dist;
 8
      }
 9 };
10 int n, m, S, T, dist[N][2], cnt[N][2];
    int h[N], e[M], w[M], ne[M], idx;
    bool st[N][2];
13
    void add(int a, int b, int c)
14
      e[idx] = b, w[idx] = c, ne[idx] = h[a], h[
15
        a] = idx++;
16 }
   int dijkstra()
17
18 {
19
      memset(st, 0, sizeof st);
20
      memset(dist, 0x3f, sizeof dist);
21
      memset(cnt, 0, sizeof cnt);
22
      dist[S][0] = 0, cnt[S][0] = 1;
23
      priority_queue<Ver, vector<Ver>, greater<</pre>
```

```
Ver>> heap;
24
      heap.push({S, 0, 0});
25
      while (heap.size())
26
      {
27
        Ver t = heap.top();
28
        heap.pop();
29
        int ver = t.id, type = t.type, distance
        = t.dist, count = cnt[ver][type];
30
        if (st[ver][type])
31
          continue;
32
        st[ver][type] = true;
33
        for (int i = h[ver]; ~i; i = ne[i])
34
35
          int j = e[i];
36
          if (dist[j][0] > distance + w[i])
37
38
            dist[j][1] = dist[j][0], cnt[j][1] =
          cnt[j][0];
39
            heap.push({j, 1, dist[j][1]});
40
            dist[j][0] = distance + w[i], cnt[j
        ][0] = count;
41
            heap.push({j, 0, dist[j][0]});
42
          }
43
          else if (dist[j][0] == distance + w[i
44
            cnt[j][0] += count;
45
          else if (dist[j][1] > distance + w[i])
46
47
            dist[j][1] = distance + w[i], cnt[j
        ][1] = count;
48
            heap.push({j, 1, dist[j][1]});
49
50
          else if (dist[j][1] == distance + w[i
51
            cnt[j][1] += count;
52
        }
      }
53
      int res = cnt[T][0];
54
55
      if (dist[T][0] + 1 == dist[T][1])
56
        res += cnt[T][1];
57
      return res;
58
```

9.6 Second Minimum Spanning Tree

9.6.1 brute-force

```
const int N = 510, M = 10010;
   int n, m, p[N], dist1[N][N], dist2[N][N];
   int h[N], e[N * 2], w[N * 2], ne[N * 2], idx
4
   struct Edge
5
6
      int a, b, w;
7
      bool f;
      bool operator<(const Edge &e) const</pre>
8
9
      { return w < e.w; }
10
   } edge[M];
11
   void add(int a, int b, int c)
12
13
      e[idx] = b, w[idx] = c, ne[idx] = h[a], h[
        a] = idx++;
```

9.6.2 LCA

```
14 }
15 int find(int x)
16
   {
17
      if (p[x] != x) p[x] = find(p[x]);
18
      return p[x];
19
    }
20
    void dfs(int u, int fa, int maxd1, int maxd2
         , int d1[], int d2[])
21
22
      d1[u] = maxd1, d2[u] = maxd2;
23
      for (int i = h[u]; ~i; i = ne[i])
24
25
        int j = e[i];
26
         if (j != fa)
27
28
          int td1 = maxd1, td2 = maxd2;
29
           if (w[i] > td1)
30
            td2 = td1, td1 = w[i];
           else if (w[i] < td1 && w[i] > td2)
31
32
             td2 = w[i];
33
           dfs(j, u, td1, td2, d1, d2);
34
      }
35
36 }
37
   int main()
38
   {
39
      cin >> n >> m;
40
      memset(h, -1, sizeof h);
41
      for (int i = 0; i < m; i++)</pre>
42
        cin >> edge[i].a >> edge[i].b >> edge[i
43
      sort(edge, edge + m);
44
      for (int i = 1; i <= n; i++) p[i] = i;</pre>
45
      LL sum = 0;
46
      for (int i = 0; i < m; i++)</pre>
47
48
         int a = edge[i].a, b = edge[i].b, w =
         edge[i].w;
49
         int pa = find(a), pb = find(b);
50
         if (pa != pb)
51
52
          p[pa] = pb;
53
           sum += w;
54
           add(a, b, w), add(b, a, w);
55
           edge[i].f = true;
56
        }
57
      }
58
      for (int i = 1; i <= n; i++)</pre>
59
         dfs(i, -1, -1e9, -1e9, dist1[i], dist2[i
         ]);
60
      LL res = 1e18;
      for (int i = 0; i < m; i++)</pre>
61
62
         if (!edge[i].f)
63
64
          int a = edge[i].a, b = edge[i].b, w =
         edge[i].w;
65
          LL t;
          if (w > dist1[a][b])
66
67
            t = sum + w - dist1[a][b];
68
           else if (w > dist2[a][b])
69
             t = sum + w - dist2[a][b];
70
          res = min(res, t);
71
72 }
```

```
const int N = 100010, M = 300010;
 2 int n, m, p[N], q[N];
 3 int h[N], e[M], w[M], ne[M], idx;
    int depth[N], fa[N][17], d1[N][17], d2[N
         ][17];
    struct Edge
 5
 6
   {
 7
      int a, b, w;
      bool used;
 9
      bool operator<(const Edge &t) const</pre>
10
      { return w < t.w; }
11
   } edge[M];
    void add(int a, int b, int c)
12
13
    \{ e[idx] = b, w[idx] = c, ne[idx] = h[a], h[
         a] = idx++; }
14
    int find(int x)
15
    {
16
      if (p[x] != x) p[x] = find(p[x]);
17
      return p[x];
18
19
   LL kruskal()
20
21
      for (int i = 1; i <= n; i++) p[i] = i;</pre>
|22|
      sort(edge, edge + m);
23
      LL res = 0;
24
      for (int i = 0; i < m; i++)</pre>
25
26
         int a = find(edge[i].a), b = find(edge[i
         ].b), w = edge[i].w;
27
         if (a != b)
28
          p[a] = b; res += w;
29
30
           edge[i].used = true;
31
32
      }
33
      return res;
34
   }
35
    void build()
36
    {
37
      memset(h, -1, sizeof h);
38
      for (int i = 0; i < m; i++)</pre>
39
         if (edge[i].used)
40
           int a = edge[i].a, b = edge[i].b, w =
41
         edge[i].w;
42
           add(a, b, w), add(b, a, w);
43
44
    }
45
    void bfs()
46
      memset(depth, 0x3f, sizeof depth);
47
48
      depth[0] = 0, depth[1] = 1, q[0] = 1;
49
      int hh = 0, tt = 0;
50
      while (hh <= tt)</pre>
51
|52|
         int t = q[hh++];
53
        for (int i = h[t]; ~i; i = ne[i])
54
55
           int j = e[i];
56
           if (depth[j] > depth[t] + 1)
57
58
             depth[j] = depth[t] + 1;
|59|
             q[++tt] = j;
```

```
60
             fa[j][0] = t;
61
             d1[j][0] = w[i], d2[j][0] = -INF;
62
             for (int k = 1; k <= 16; k++)</pre>
63
64
               int anc = fa[j][k-1];
65
               fa[j][k] = fa[anc][k - 1];
66
               int distance[4] = \{d1[j][k-1],
                                    d2[j][k - 1],
67
                                    d1[anc][k - 1],
68
69
                                    d2[anc][k -
         1]};
70
               d1[j][k] = d2[j][k] = -INF;
71
               for (int u = 0; u < 4; u++)
72
73
                  int d = distance[u];
74
                  if (d > d1[j][k])
75
                    d2[j][k] = d1[j][k], d1[j][k]
         = d:
                  else if (d != d1[j][k] && d > d2
76
         [j][k])
77
                    d2[j][k] = d;
78
79
             }
80
           }
81
         }
82
       }
83
    }
84
    int lca(int a, int b, int w)
85
86
       static int distance[N * 2];
87
       int cnt = 0;
88
       if (depth[a] < depth[b])</pre>
89
         swap(a, b);
90
       for (int k = 16; k \ge 0; k--)
91
         if (depth[fa[a][k]] >= depth[b])
92
93
           distance[cnt++] = d1[a][k];
94
           distance[cnt++] = d2[a][k];
95
           a = fa[a][k];
96
97
       if (a != b)
98
99
         for (int k = 16; k \ge 0; k--)
100
           if (fa[a][k] != fa[b][k])
101
           {
102
             distance[cnt++] = d1[a][k];
             distance[cnt++] = d2[a][k];
103
             distance[cnt++] = d1[b][k];
104
             distance[cnt++] = d2[b][k];
105
.06
             a = fa[a][k], b = fa[b][k];
07
801
         distance[cnt++] = d1[a][0];
109
         distance[cnt++] = d1[b][0];
110
111
       int dist1 = -INF, dist2 = -INF;
       for (int i = 0; i < cnt; i++)</pre>
112
113
114
         int d = distance[i];
         if (d > dist1)
115
           dist2 = dist1, dist1 = d;
116
         else if (d != dist1 && d > dist2)
^{117}
118
           dist2 = d;
119
       }
120
       if (w > dist1) return w - dist1;
121
       if (w > dist2) return w - dist2;
122
       return INF;
```

```
123
124
    int main()
25
    {
126
       cin >> n >> m;
127
       for (int i = 0; i < m; i++)</pre>
28
29
         int a, b, c;
         cin >> a >> b >> c;
30
31
         edge[i] = {a, b, c};
32
.33
       LL sum = kruskal();
.34
       build();
.35
       bfs();
       LL res = 1e18;
136
137
       for (int i = 0; i < m; i++)</pre>
138
         if (!edge[i].used)
139
40
            int a = edge[i].a, b = edge[i].b, w =
          edge[i].w:
41
            res = min(res, sum + lca(a, b, w));
142
         }
       cout << res;</pre>
143
144
    }
```

9.7 Difference Constraints

- size == N: Feasible Solution
- size == 1: Maximum/Minimum
- Maximum: Shortest Path
- Minimum: Longest Path

9.7.1 Maximum-Shortest Path

```
1
    bool spfa(int size)
 2
    {
 3
      int hh = 0, tt = 0;
 4
      memset(dist, 0x3f, sizeof dist);
      memset(st, 0, sizeof st);
 5
      memset(cnt, 0, sizeof cnt);
 7
      for (int i = 1; i <= size; i++)</pre>
 8
 9
         q[tt++] = i;
10
         dist[i] = 0;
11
         st[i] = true;
12
13
      while (hh != tt)
14
15
         int t = q[hh++];
         if (hh == N) hh = 0;
16
17
         st[t] = false;
18
        for (int i = h[t]; ~i; i = ne[i])
19
|20|
           int j = e[i];
21
           if (dist[j] > dist[t] + w[i])
22
23
             dist[j] = dist[t] + w[i];
24
             cnt[j] = cnt[t] + 1;
25
             if (cnt[j] >= n) return true;
26
             if (!st[j])
27
             {
|28
               st[j] = true;
```

```
29
               q[tt++] = j;
30
               if (tt == N) tt = 0;
31
32
          }
33
        }
34
35
      return false;
36
37
    int main()
38
39
      // add(a, b, k) means x_b \le x_a + k
      // PROCESS
40
41 }
```

9.7.2 Minimum-Longest Path

```
bool spfa(int size)
 2 {
 3
      int hh = 0, tt = 0;
 4
      memset(dist, -0x3f, sizeof dist);
 5
      memset(st, 0, sizeof st);
 6
      memset(cnt, 0, sizeof cnt);
 7
      for (int i = 1; i <= size; i++)</pre>
 8
      {
 9
        q[tt++] = i;
10
        dist[i] = 0;
11
        st[i] = true;
12
13
      while (hh != tt)
14
        int t = q[hh++];
15
16
        if (hh == N) hh = 0;
17
        st[t] = false;
18
        for (int i = h[t]; ~i; i = ne[i])
19
20
          int j = e[i];
21
          if (dist[j] < dist[t] + w[i])</pre>
22
23
            dist[j] = dist[t] + w[i];
24
            cnt[j] = cnt[t] + 1;
25
            if (cnt[j] >= n) return false;
26
            if (!st[j])
27
28
               st[j] = true;
29
               q[tt++] = j;
               if (tt == N) tt = 0;
30
31
32
33
        }
34
35
      return ture;
36 }
37
   int main()
38
39
      // add(a, b, k) means x_a + k \le x_b
40
      // PROCESS
41
```

9.8 LCA

```
1 int n, m, h[N], e[M], ne[M], idx;
```

```
int depth[N], fa[N][16], q[N];
 3
   void bfs(int root)
 4
   {
 5
      memset(depth, 0x3f, sizeof depth);
6
      depth[0] = 0;
 7
      depth[root] = 1;
 8
      int hh = 0, tt = 0;
 9
      q[0] = root;
      while (hh <= tt)</pre>
10
11
12
        int t = q[hh++];
        for (int i = h[t]; ~i; i = ne[i])
13
14
15
          int j = e[i];
16
          if (depth[j] > depth[t] + 1)
17
18
             depth[j] = depth[t] + 1;
19
             q[++tt] = j;
             fa[i][0] = t;
20
21
             for (int k = 1; k \le 15; k++)
22
               fa[j][k] = fa[fa[j][k - 1]][k -
         1];
23
24
        }
25
      }
26
   }
27
    int lca(int a, int b)
28
29
      if (depth[a] < depth[b]) swap(a, b);</pre>
30
      for (int k = 15; k \ge 0; k--)
31
        if (depth[fa[a][k]] >= depth[b])
32
          a = fa[a][k];
33
      if (a == b) return a;
      for (int k = 15; k \ge 0; k--)
34
35
        if (fa[a][k] != fa[b][k])
36
        {
37
          a = fa[a][k];
38
          b = fa[b][k];
39
40
      return fa[a][0];
41
```

9.9 SCC

```
1
    void tarjan(int u)
 2 {
 3
      dfn[u] = low[u] = ++timestap;
 4
      stack[++top] = u, in_stk[u] = true;
      for (int i = h[u]; ~i; i = ne[i])
 5
 6
 7
         int j = e[i];
 8
         if (!dfn[j])
 9
10
           tarjan(j);
11
           low[u] = min(low[u], low[j]);
12
         else if (in_stk[j])
13
14
          low[u] = min(low[u], dfn[j]);
15
16
      if (dfn[u] == low[u])
17
18
         int y;
19
        ++scc_cnt;
```

```
20 do

21 {

22             y = stk[top--];

23             in_stk[y] = false;

24             id[y] = scc_cnt;

25             } while (y != u);

26             }

27             }
```

9.10 DCC

9.10.1 e-DCC

```
const int N = 5010, M = 20010;
 2 int n, m, h[N], e[M], ne[M], idx;
 3 int dfn[N], low[N], timestamp;
 4 \quad {\tt int} \ {\tt stk[N]} \,, \ {\tt top, id[N]} \,, \ {\tt dcc\_cnt, \ d[N]} \,;
 5 bool is_bridge[M];
6 void tarjan(int u, int from)
7 {
      dfn[u] = low[u] = ++timestamp;
8
9
      stk[++top] = u;
10
      for (int i = h[u]; ~i; i = ne[i])
11
12
         int j = e[i];
13
         if (!dfn[j])
14
15
           tarjan(j, i);
16
           low[u] = min(low[u], low[j]);
17
           if (dfn[u] < low[j])</pre>
18
             is_bridge[i] = is_bridge[i ^ 1] =
         true:
19
20
         else if (i != (from ^ 1))
21
           low[u] = min(low[u], dfn[j]);
22
23
      if (dfn[u] == low[u])
24
25
         ++dcc_cnt;
26
         int y;
27
         do
28
29
           y = stk[top--];
30
           id[y] = dcc_cnt;
31
         } while (y != u);
32
33 }
```

9.10.2 v-DCC

```
1  const int N = 1010, M = 1010;
2  int n, m, h[N], e[M], ne[M], idx;
3  int dfn[N], low[N], timestamp;
4  int stk[N], top, dcc_cnt, root;
5  vector<int> dcc[N];
6  bool cut[N];
7  void init()
8  {
9   for (int i = 1; i <= dcc_cnt; i++)
10   dcc[i].clear();
11  idx = n = timestamp = top = dcc_cnt = 0;</pre>
```

```
12
      memset(h, -1, sizeof h);
13
      memset(dfn, 0, sizeof dfn);
14
      memset(cut, 0, sizeof cut);
15
16
    void tarjan(int u)
17
18
      dfn[u] = low[u] = ++timestamp;
19
      stk[++top] = u;
20
      if (u == root && h[u] == -1)
21
22
         dcc_cnt++;
23
         dcc[dcc_cnt].push_back(u);
24
         return;
25
26
      int cnt = 0;
27
      for (int i = h[u]; ~i; i = ne[i])
28
29
         int j = e[i];
30
         if (!dfn[j])
31
32
           tarjan(j);
33
           low[u] = min(low[u], low[j]);
34
           if (dfn[u] <= low[j])</pre>
35
36
             cnt++;
37
             if (u != root || cnt > 1)
38
               cut[u] = true;
39
             ++dcc_cnt;
40
             int y;
41
             do
42
43
               y = stk[top--];
44
               dcc[dcc_cnt].push_back(y);
45
             } while (y != j);
46
             dcc[dcc_cnt].push_back(u);
47
48
        }
49
50
           low[u] = min(low[u], dfn[j]);
51
52
   }
```

9.11 Bipartite Graph

The maximum matching (by the Hungarian algorithm) = the minimum vertex cover = total number of vertices - maximum independent set = total number of vertices - minimum path cover.

9.11.1 maximum matching

```
1  const int N = 110;
2  int n, m;
3  int dx[4] = {-1, 0, 1, 0}, dy[4] = {0, 1, 0, -1};
4  PII match[N][N];
5  bool g[N][N], st[N][N];
6  bool find(int x, int y)
7  {
```

```
for (int i = 0; i < 4; i++)</pre>
9
10
        int a = x + dx[i], b = y + dy[i];
11
        if (a && a <= n && b && b <= n && !g[a][</pre>
        b] && !st[a][b])
12
13
          st[a][b] = true;
          PII t = match[a][b];
14
15
          if (t.x == -1 \mid | find(t.x, t.y))
16
17
            match[a][b] = \{x, y\};
18
             return true;
19
20
        }
21
      }
22
      return false;
23 }
24 int main()
25 {
26
      // PROCESS
27
      memset(match, -1, sizeof match);
28
      int res = 0;
29
      for (int i = 1; i <= n; i++)</pre>
30
        for (int j = 1; j \le n; j++)
          if ((i + j) % 2 && !g[i][j])
31
32
33
             memset(st, 0, sizeof st);
34
             if (find(i, j))
35
               res++;
36
37
      // PROCESS
38 }
```

9.11.2 minimum vertex cover

```
1 const int N = 110;
 2 int n, m, k, match[N];
 3 bool g[N][N], st[N];
 4 bool find(int x)
 5
 6
      for (int i = 0; i < m; i++)</pre>
 7
        if (!st[i] && g[x][i])
 8
 9
          st[i] = true;
10
          if (match[i] == -1 || find(match[i]))
11
12
            match[i] = x;
13
            return true;
14
15
16
      return false;
17
    }
18
    int main()
19
20
      while (cin >> n, n)
21
22
        cin >> m >> k;
23
        memset(g, 0, sizeof g);
24
        memset(match, -1, sizeof match);
25
        while (k--)
26
        {
27
          int t, a, b;
28
          cin >> t >> a >> b;
29
          if (!a || !b) continue;
```

```
30
          g[a][b] = true;
31
         }
32
         int res = 0;
33
         for (int i = 0; i < n; i++)</pre>
34
35
           memset(st, 0, sizeof st);
36
           if (find(i)) res++;
37
38
         cout << res << '\n';
39
40 }
```

9.11.3 maximum independent set

```
const int N = 110;
 2 int n, m, k;
3 PII match[N][N];
 4 bool g[N][N], st[N][N];
   int dx[8] = \{-2, -1, 1, 2, 2, 1, -1, -2\};
   int dy[8] = \{1, 2, 2, 1, -1, -2, -2, -1\};
7
    bool find(int x, int y)
8
9
        for (int i = 0; i < 8; i++)
10
        {
11
            int a = x + dx[i], b = y + dy[i];
12
            if (a < 1 || a > n || b < 1 || b > m
13
                 continue;
14
            if (g[a][b]) continue;
15
             if (st[a][b]) continue;
16
            st[a][b] = true;
17
            PII t = match[a][b];
18
            if (t.x == 0 \mid | find(t.x, t.y))
19
20
                 match[a][b] = \{x, y\};
21
                 return true;
22
23
        }
24
        return false;
25
   }
   int main()
|26|
|27
28
        // PROCESS
29
        int res = 0;
30
        for (int i = 1; i <= n; i++)</pre>
31
            for (int j = 1; j \le m; j++)
32
33
                 if (g[i][j] || (i + j) % 2)
                     continue;
34
35
                 memset(st, 0, sizeof st);
36
                 if (find(i, j)) res++;
37
38
        cout << n * m - k - res << '\n';
39 }
```

9.11.4 minimum path cover

- Only for DAG.
- If you need to compute the **minimum path cover with repeated nodes**, you need to perform transitive closure as shown in the following code.

```
const int N = 210, M = 30010;
   int n, m, match[N];
 3 bool d[N][N], st[N];
 4 bool find(int x)
 5
 6
      for (int i = 1; i <= n; i++)</pre>
 7
        if (d[x][i] && !st[i])
 8
 9
          st[i] = true;
10
          int t = match[i];
          if (t == 0 || find(t))
11
12
13
             match[i] = x;
14
             return true;
15
16
        }
17
      return false;
18
    }
19
    int main()
20
21
      // 传递闭包
22
      for (int k = 1; k <= n; k++)</pre>
23
        for (int i = 1; i <= n; i++)</pre>
24
          for (int j = 1; j \le n; j++)
             d[i][j] |= d[i][k] & d[k][j];
25
26
      int res = 0;
27
      for (int i = 1; i <= n; i++)</pre>
28
29
        memset(st, 0, sizeof st);
30
        if (find(i)) res++;
31
32
      cout << n - res;</pre>
33 }
```

9.12 Eulerian Circuit & Eulerian Path

9.12.1 Eulerian Circuit

- Undirected Graph: If and only if it is connected and every vertex has even degree.
- **Directed Graph**: If and only if it is strongly connected and each vertex has equal in-degree and out-degree.

```
1 int type, n, m;
   int h[N], e[M], ne[M], idx;
 3 bool used[M];
   int ans[M], cn, din[N], dout[N];
    void add(int a, int b)
   \{ e[idx] = b, ne[idx] = h[a], h[a] = idx++;
7
   void dfs(int u)
8
      for (int &i = h[u]; ~i;)
9
10
11
        if (used[i])
12
        {
13
          i = ne[i];
14
          continue;
15
```

```
16
         used[i] = true;
         if (type == 1) used[i ^ 1] = true;
17
18
         int t;
19
         if (type == 1)
20
         {
21
           t = i / 2 + 1;
22
           if (i \& 1) t = -t;
23
24
         else t = i + 1;
25
         int j = e[i];
26
         i = ne[i];
27
         dfs(j);
28
         ans[++cnt] = t;
29
30
    }
31
    int main()
32
33
       cin >> type >> n >> m;
34
      memset(h, -1, sizeof h);
35
       for (int i = 0; i < m; i++)</pre>
36
37
         int a, b;
38
         cin >> a >> b;
39
         add(a, b);
40
         if (type == 1) add(b, a);
         din[b]++, dout[a]++;
41
42
43
       if (type == 1)
44
45
         for (int i = 1; i <= n; i++)</pre>
46
           if (din[i] + dout[i] & 1)
47
48
             cout << "NO\n";</pre>
49
             return 0;
50
       }
51
52
       else
53
54
         for (int i = 1; i <= n; i++)</pre>
           if (din[i] != dout[i])
55
56
57
             cout << "NO\n";
58
             return 0;
59
60
       }
       for (int i = 1; i <= n; i++)</pre>
61
         if (h[i] != -1)
62
63
         {
64
           dfs(i);
65
           break;
66
67
    }
```

9.12.2 Eulerian Path

Undirected Graph

If and only if it is connected (ignoring isolated vertices) and has exactly 0 or 2 vertices with odd degree.

```
1 const int N = 510;

2 int n = 500, m, g[N][N];

3 int ans[1100], cnt, d[N];

4 void dfs(int u)

5 {
```

```
for (int i = 1; i <= n; i++)</pre>
7
        if (g[u][i])
8
9
          g[u][i]--, g[i][u]--;
10
          dfs(i);
11
12
      ans[++cnt] = u;
13
14
    int main()
15
    {
16
      cin >> m;
      while (m--)
17
18
        int a, b;
19
        cin >> a >> b;
20
21
        g[a][b]++, g[b][a]++;
22
        d[a]++, d[b]++;
23
24
      int start = 1;
25
      while (!d[start])
26
        ++start;
27
      for (int i = 1; i <= 500; i++)</pre>
28
        if (d[i] % 2)
29
30
           start = i;
31
          break;
32
33
      dfs(start);
34
```

Directed Graph

If and only if it is connected in terms of non-zero degree vertices, and

- At most one vertex has (out-degree) (indegree) = 1
- At most one vertex has (in-degree) (out-degree) = 1
- All other vertices have equal in-degree and out-degree

```
1 const int N = 30;
 2 int n, p[N], din[N], dout[N];
 3 \quad bool \quad st[N];
 4 int find(int x)
 5 {
 6
      if (x != p[x]) p[x] = find(p[x]);
 7
      return p[x];
   }
 8
 9
    int main()
10
11
      char str[1010];
12
      int T;
      cin >> T;
13
      while (T--)
14
15
      {
16
         cin >> n;
17
        memset(din, 0, sizeof din);
18
        memset(dout, 0, sizeof dout);
19
        memset(st, 0, sizeof st);
         for (int i = 0; i < 26; i++) p[i] = i;</pre>
20
|21|
         for (int i = 0; i < n; i++)</pre>
```

```
22
23
           cin >> str;
           int a = str[0] - 'a',
24
25
               b = str[strlen(str) - 1] - 'a';
26
           st[a] = st[b] = true;
27
           dout[a]++, din[b]++;
          p[find(a)] = find(b);
28
29
30
         int start = 0, end = 0;
31
         bool success = true;
         for (int i = 0; i < 26; i++)</pre>
32
           if (din[i] != dout[i])
33
34
35
             if (din[i] == dout[i] + 1) end++;
36
             else if (din[i] + 1 == dout[i])
37
               start++;
38
             else
39
             {
40
               success = false;
41
               break;
42
43
         if (success && !(!start && !end || start
44
          == 1 && end == 1))
           success = false;
45
46
         int rep = -1;
47
         for (int i = 0; i < 26; i++)</pre>
48
           if (st[i])
49
50
             if (rep == -1) rep = find(i);
51
             else if (rep != find(i))
52
53
               success = false;
54
               break;
55
56
157
       }
58
      return 0;
59
   }
```

10 ★ Advanced Math

10.1 Euler's Totient Function

10.1.1 GCD

```
1 const int N = 1e7 + 10;
 2 int primes[N], cnt, phi[N];
3 bool st[N];
 4 LL s[N];
   void init(int n)
6
7
        for (int i = 2; i <= n; i++)</pre>
 8
9
             if (!st[i])
10
11
                 primes[cnt++] = i;
12
                 phi[i] = i - 1;
13
            }
14
            for (int j = 0; primes[j] * i <= n;</pre>
         j++)
15
            {
16
                 st[primes[j] * i] = true;
17
                 if (i % primes[j] == 0)
18
19
                     phi[i * primes[j]] = phi[i]
         * primes[j];
20
                     break;
21
22
                 phi[i * primes[j]] = phi[i] * (
        primes[j] - 1);
23
            }
24
25
        for (int i = 1; i <= n; i++)</pre>
26
            s[i] = s[i - 1] + phi[i];
27 }
28 int main()
29 {
30
        int n; cin >> n;
31
        init(n);
32
        LL res = 0;
33
        for (int i = 0; i < cnt; i++)</pre>
34
35
            int p = primes[i];
36
            res += s[n / p] * 2 + 1;
37
38 }
```

10.2 Matrix Multiplication

```
1 const int N = 3;
 2 int n, m;
3
   void mul(int c[], int a[], int b[][N])
4
        int temp[N] = \{0\};
5
6
        for (int i = 0; i < N; i++)</pre>
 7
            for (int j = 0; j < N; j++)
8
                temp[i] = (temp[i] + (LL)a[j] *
        b[j][i]) % m;
9
        memcpy(c, temp, sizeof temp);
10
   }
```

```
void mul(int c[][N], int a[][N], int b[][N])
11
12
    {
13
        int temp[N][N] = {0};
14
        for (int i = 0; i < N; i++)</pre>
15
            for (int j = 0; j < N; j++)
16
                 for (int k = 0; k < N; k++)
                     temp[i][j] = (temp[i][j] + (
17
        LL)a[i][k] * b[k][j]) % m;
18
        memcpy(c, temp, sizeof temp);
    }
19
20
    int main()
21
    {
22
        while (n)
23
24
            if (n & 1) mul(f1, f1, a);
25
            mul(a, a, a); n >>= 1;
26
27 }
```

11 * Advanced DP

11.1 Advanced Linear DP

11.1.1 Two-pass grid collection problem

In this case we run DP on two different roads at the same time:

```
const int N = 15;
   int n, w[N][N], f[N * 2][N][N];
3
   int main()
4
5
      cin >> n;
6
      int a, b, c;
7
      while (cin >> a >> b >> c, a || b || c)
8
        w[a][b] = c;
9
      for (int k = 2; k \le n * 2; k++)
10
        for (int i1 = 1; i1 <= n; i1++)</pre>
11
          for (int i2 = 1; i2 <= n; i2++)</pre>
12
13
            int j1 = k - i1, j2 = k - i2;
14
            if (j1 >= 1 && j1 <= n && j2 >= 1 &&
          j2 \le n
15
            {
16
               int t = w[i1][j1];
17
               if (i1 != i2) t += w[i2][j2];
               int &x = f[k][i1][i2];
18
19
               x = max(x, f[k - 1][i1 - 1][i2 -
20
               x = max(x, f[k - 1][i1 - 1][i2] +
        t);
21
               x = max(x, f[k - 1][i1][i2 - 1] +
        t);
22
               x = max(x, f[k - 1][i1][i2] + t);
23
24
      cout << f[n * 2][n][n] << '\n';</pre>
25
26
      return 0;
27 }
```

11.2 Advanced LIS

11.2.1 MSIS

MSIS means Maximum Sum Increasing Subsequence

```
const int N = 1010;
    int n, w[N], f[N];
 3
    int main()
 4
    {
 5
        cin >> n;
 6
        for (int i = 0; i < n; i++) cin >> w[i];
 7
        int res = 0;
        for (int i = 0; i < n; i++)</pre>
8
9
10
            f[i] = w[i];
            for (int j = 0; j < i; j++)
11
12
                 if (w[i] > w[j])
13
                     f[i] = max(f[i], f[j] + w[i]
        ]);
14
            res = max(res, f[i]);
15
```

```
16 cout << res;
17 }
```

11.2.2 LCIS

LCIS means Longest Common Increasing Subsequence

```
const int N = 3010;
    int n, a[N], b[N], f[N][N];
 3
    int main()
 4
 5
         cin >> n;
         for (int i = 1; i <= n; i++)</pre>
 6
             cin >> a[i];
 7
 8
         for (int i = 1; i <= n; i++)
             cin >> b[i];
10
         for (int i = 1; i <= n; i++)</pre>
11
12
             int maxv = 1;
13
             for (int j = 1; j \le n; j++)
14
15
                  f[i][j] = f[i - 1][j];
16
                  if (a[i] == b[j])
17
                      f[i][j] = max(f[i][j], maxv)
18
                  if (a[i] > b[j])
19
                      \max v = \max(\max v, f[i - 1][j]
          + 1);
20
             }
21
         }
|22|
         int res = 0;
23
         for (int i = 1; i <= n; i++)</pre>
24
             res = max(res, f[n][i]);
25
         cout << res;</pre>
26 }
```

11.3 Knapsack Problem

11.3.1 Multiple Knapsack Problem

```
const int N = 20010;
   int n, m, f[N], g[N], q[N];
 3
   int main()
 4
 5
        cin >> n >> m;
 6
        for (int i = 0; i < n; i++)</pre>
 7
 8
            int v, w, s;
9
            cin >> v >> w >> s;
10
            memcpy(g, f, sizeof f);
            for (int j = 0; j < v; j++)
11
12
13
                 int hh = 0, tt = -1;
                 for (int k = j; k \le m; k += v)
14
15
16
                     if (hh <= tt && q[hh] < k -
        s * v)
17
                         hh++:
18
                     while (hh <= tt && g[q[tt]]</pre>
        - (q[tt] - j) / v * w \le g[k] - (k - j)
        / v * w)
19
                          tt--;
```

11.3.2 Two-Dimensional Cost Knapsack Problem

```
const int N = 110;
   int n, V, M, f[N][N];
   int main()
4
        cin >> n >> V >> M;
        for (int i = 0; i < n; i++)</pre>
7
8
            int v, m, w;
9
            cin >> v >> m >> w;
10
            for (int j = V; j >= v; j--)
11
                for (int k = M; k \ge m; k--)
12
                    f[j][k] = max(f[j][k], f[j -
         v][k - m] + w);
13
14
        cout << f[V][M] << '\n';
15 }
```

11.3.3 Finding the Actual Solution Set

```
1
    const int N = 1010;
    int n, m;
   int v[N], w[N], f[N][N];
4
   int main()
5
6
        cin >> n >> m;
7
        for (int i = 1; i <= n; i++)</pre>
8
            cin >> v[i] >> w[i];
9
        for (int i = n; i >= 1; i--)
            for (int j = 0; j <= m; j++)</pre>
10
11
12
                 f[i][j] = f[i + 1][j];
13
                 if (j >= v[i])
14
                     f[i][j] = max(f[i][j], f[i +
          1] [j - v[i]] + w[i];
15
            }
16
        int j = m;
17
        for (int i = 1; i <= n; i++)</pre>
18
            if (j >= v[i] && f[i][j] == f[i +
        1][j - v[i]] + w[i])
19
            {
20
                 cout << i << ' ';
                 j -= v[i];
21
22
23
   }
```

11.3.4 Maximum Linearly Independent Subset

```
const int N = 110, M = 25010;
    int n, v[N];
3
    bool f[M];
4
   int main()
5
 6
        int T; cin >> T;
 7
        while (T--)
 8
 9
             cin >> n;
10
             for (int i = 1; i <= n; ++i)</pre>
11
                 cin >> v[i];
12
             sort(v + 1, v + n + 1);
13
             int m = v[n], res = 0;
14
             memset(f, 0, sizeof f);
15
             f[0] = true; // 状态的初值
16
             for (int i = 1; i <= n; ++i)</pre>
17
18
                 if (f[v[i]]) continue;
19
20
                 for (int j = v[i]; j <= m; ++j)</pre>
21
                     f[j] |= f[j - v[i]];
22
             }
23
             cout << res << '\n';
24
        }
25 }
```

11.3.5 Mixed Knapsack Problem

```
const int N = 1010;
    int n, m, f[N];
 3
    int main()
 4
 5
         cin >> n >> m;
 6
         for (int i = 0; i < n; i++)</pre>
 7
         {
 8
             int v, w, s;
 9
             cin >> v >> w >> s;
10
             if (!s)
11
             {
12
                 for (int j = v; j <= m; j++)</pre>
13
                      f[j] = max(f[j], f[j - v] +
14
             }
15
             else
16
             {
                  if (s == -1)
17
18
                      s = 1;
19
                 for (int k = 1; k <= s; k *= 2)</pre>
20
21
                      for (int j = m; j >= k * v;
         j--)
22
                          f[j] = max(f[j], f[j - k
          * v] + k * w);
23
                      s -= k;
                 }
24
25
                 if (s)
26
27
                      for (int j = m; j >= s * v;
         j--)
28
                          f[j] = max(f[j], f[j - s
          * v] + s * w);
29
                 }
30
             }
```

```
31 }
32 cout << f[m] << '\n';
33 }
```

11.3.6 Dependent Knapsack Problem

```
1 const int N = 110;
 2 int n, m, root;
 3 int h[N], e[N], ne[N], idx;
 4 int v[N], w[N], [N][N];
 5 void add(int a, int b)
 6 {
 7
        e[idx] = b, ne[idx] = h[a], h[a] = idx
 8 }
 9
   void dfs(int u)
10
    {
11
        for (int i = h[u]; ~i; i = ne[i])
12
13
            int son = e[i];
14
            dfs(son);
            for (int j = m - v[u]; j >= 0; --j)
15
                for (int k = 0; k \le j; ++k)
16
                     f[u][j] = max(f[u][j], f[u][
17
        j - k] + f[son][k]);
18
        }
19
        for (int j = m; j >= v[u]; --j)
            f[u][j] = f[u][j - v[u]] + w[u];
20
21
        for (int j = 0; j < v[u]; ++j)
22
            f[u][j] = 0;
23 }
24 int main()
25 {
26
        memset(h, -1, sizeof h);
27
        cin >> n >> m;
28
        for (int i = 1; i <= n; ++i)</pre>
29
        {
30
            int p;
31
            cin >> v[i] >> w[i] >> p;
32
            if (p == -1) root = i;
33
            else add(p, i);
34
35
        dfs(root);
36
        cout << f[root][m] << '\n';</pre>
37 }
```

11.3.7 Number of Solutions

```
const int N = 1010, mod = 1e9 + 7;
    int n, m;
 3 int w[N], v[N], f[N], g[N];
 4 int main()
   {
 5
 6
         cin >> n >> m;
        for (int i = 1; i <= n; ++i)</pre>
 7
            cin >> v[i] >> w[i];
 8
        g[0] = 1;
 9
10
        for (int i = 1; i <= n; ++i)</pre>
11
12
             for (int j = m; j \ge v[i]; --j)
13
             {
```

```
14
                 int temp = max(f[j], f[j - v[i]]
          + w[i]), c = 0;
15
                 if (temp == f[j])
16
                     c = (c + g[j]) \% mod;
17
                 if (temp == f[j - v[i]] + w[i])
18
                     c = (c + g[j - v[i]]) \% mod;
19
                 f[j] = temp, g[j] = c;
20
21
22
        int res = 0;
23
        for (int j = 0; j \le m; ++j)
24
             if (f[j] == f[m])
25
                 res = (res + g[j]) \% mod;
26
        cout << res << '\n';
27 }
```

11.4 FSM

```
const int N = 100010;
    int n, w[N], f[N][2];
3
    int main()
 4
 5
        int T; cin >> T;
6
        while (T--)
 7
        {
 8
            cin >> n;
9
            for (int i = 1; i <= n; i++)</pre>
10
                 cin >> w[i];
11
            for (int i = 1; i <= n; i++)
12
13
                 // YOUR_FSM_RULES
14
                 // f[i][0] =
15
                 // f[i][1] =
            }
16
17
            cout << max(f[n][0], f[n][1]) << '\n
         ١;
18
        }
19 }
```

11.5 Digit DP

```
const int N = 35;
 2 int 1, r, k, b, a[N], al, f[N][N];
 3
   int dp(int pos, int st, int op)
 4
 5
        if (!pos) return st == k;
 6
        if (!op && ~f[pos][st])
 7
            return f[pos][st];
 8
        int res = 0, maxx = op ? min(a[pos], 1)
9
        for (int i = 0; i <= maxx; i++)</pre>
10
            if (st + i > k) continue;
11
            res += dp(pos - 1, st + i, op && i
12
        == a[pos]);
13
14
        return op ? res : f[pos][st] = res;
15
16
   int calc(int x)
17
```

```
18
        al = 0;
19
        memset(f, -1, sizeof f);
20
        while (x) a[++al] = x \% b, x /= b;
21
        return dp(al, 0, 1);
22 }
23 int main()
24 {
25
        cin >> 1 >> r >> k >> b;
26
        cout << calc(r) - calc(l - 1) << '\n';
27
    }
```

11.6 Queue Optimization for DP

```
1 int n, m, s[300010], q[300010];
```

```
2 int main()
3 {
4
        cin >> n >> m;
5
        for (int i = 1; i <= n; i++)</pre>
6
            cin >> s[i], s[i] += s[i - 1];
7
        int res = INT_MIN, hh = 0, tt = 0;
8
        for (int i = 1; i <= n; i++)</pre>
9
        {
10
            if (q[hh] < i - m) hh++;
            res = max(res, s[i] - s[q[hh]]);
11
12
            while (hh <= tt && s[q[tt]] >= s[i])
13
            q[++tt] = i;
14
15 }
```