

Plano de Ensino

Escola/ Câmpus:	Escola F	Politécnica / Cu	ıritiba		
Curso:	CIÊNCIA	A DA COMPUT	TAÇÃO	Ano/Semestre:	2021 / 10
Código/Nome da disciplina:	Modelagem de Fenômenos Físicos				
Carga Horária:	120h	120h			
Requisitos:	Não há				
Créditos:	6	Período: 1º	Turma:	P1-1 / Turma: U	Turno: Noite
Professor Responsável:	Frank Co	ank Coelho de Alcantara			

1. Ementa

Essa disciplina é ofertada aos estudantes ingressantes no curso de Bacharelado em Ciência da Computação. Ao final da disciplina, o estudante será capaz de combinar os temas de Cálculo, Geometria Analítica e Física para modelar e resolver problemas de situações reais, tais como movimento e equilíbrio de partículas e transformações de energia. Para a modelagem, ou seja, a representação simplificada de situações reais, executará métodos de solução e simulação de fenômenos físicos utilizando ferramentas computacionais

2. Relação com disciplinas precedentes e posteriores

As aprendizagens desenvolvidas nesta disciplina serão fundamentais para as disciplinas de matemáticas presentes no decorrer do curso e para a formação do raciocínio analítico envolvendo abstração, observação e compreensão da natureza.

Como é uma disciplina de primeiro período, não há precedentes.

3. Temas de estudo

- 1. Funções reais de uma variável real: Funções polinomiais, funções recíprocas, exponenciais e logarítmicas;
- 2. Trigonometria: Trigonometria do triângulo retângulo, relações e funções trigonométricas;
- 3. Representações matemáticas no espaço bi e tridimensional: sistema cartesiano e polar; vetores e operações;
- 4. Noção intuitiva e cálculo de limites;
- 5. **Derivadas**: definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações;

Plano de Ensino

- 6. Cálculo Integral: definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume;
- 7. **Medidas:** Unidades, Grandezas Físicas.
- 8. Movimento da partícula: funções de posição, velocidade e aceleração;
- 9. **Leis de Newton, Trabalho e Energia:** 1ª, 2ª e 3ª Lei de Newton, Trabalho com força constante e variável;
- 10. Estratégias de simulação computacional.

4. Resultados de Aprendizagem

Resultados de Aprendizagem	Temas de Estudo	Elementos de Competência
RA1: Aplicar conceitos de álgebra e geometria analítica para modelar analiticamente fenômenos físicos da mecânica.	Tema 1: funções reais de uma variável; Tema 2: trigonometria; Tema 3: representações matemáticas no espaço tridimensional; Tema 4: noção intuitiva e cálculo de limites.	Representar fenômenos físicos e matemáticos por meio de modelos computacionais e realizar simulações para validar estes modelos.
RA2: Resolver com precisão problemas conceituais e de contexto real aplicando fundamentos de cálculo e geometria analítica.	Tema 4: noção intuitiva e cálculo de limites Tema 5: derivação; Tema 6: integração; Tema 7: medidas no sistema internacional;	Representar fenômenos físicos relacionados a taxas de variação de forma a criar modelos destes fenômenos e realizar simulações para validar estes modelos.
RA3: Verificar adequação de diferentes soluções de problemas conceituais e reais com auxílio de ferramentas experimentais e computacionais.	Tema 8: movimento de partícula; Tema 9: Leis de Newton, trabalho e energia Tema 10: Estratégias de simulação computacional.	Representar fenômenos físicos relacionados a taxas de variação de forma a criar modelos destes fenômenos e realizar simulações para validar estes modelos.

Plano de Ensino

5. **Mapa Mental**

Plano de Ensino

6. **Metodologia e Avaliação**

	Alinhamento Construtivo							
Resultado de aprendizagem	Indicadores de desempenho	Métodos ou técnicas empregados	Processos de Avaliação					
RA1: Aplicar conceitos de álgebra e geometria analítica para modelar analiticamente fenômenos físicos da mecânica	Interpreta corretamente um problema relacionados a física. Relaciona situações reais aos princípios e leis da física e as funções matemáticas. Representa formalmente situações problema por meio de: equações, funções, gráficos ou tabelas. Usando ferramentas computacionais.	Aulas utilizando técnicas de metodologias ativas: PBL – Aprendizagem baseada em Problemas; Aprendizagem por pares. Simulação computacional. Resolução de exercícios orientados. Usando o Blackboard, Repl.it e o Mentimeter e o Google Colab	Avaliação Formativa: atividades individuais, ou em grupo, resolvidas em aula ou em casa. Avaliação Somativa: atividades de simulação computacional e experimentais. Avaliação Somativa: avaliação individual de modelagem computacional.					
RA2: Resolver com precisão problemas conceituais e de contexto real aplicando computacionalmente fundamentos de cálculo e geometria analítica.	Interpreta o código computacional que representa um modelo matemático. Aplica um código computacional para realizar cálculos de um problema utilizando uma base de dados. Resolve limites, derivadas e integrais de forma coerente e precisa. Usando ferramentas computacionais.	Aulas utilizando técnicas de metodologias ativas: PBL – Aprendizagem baseada em Problemas; Aprendizagem por pares. Simulação computacional. Resolução de exercícios orientados. Usando o Blackboard, Repl.it e o Mentimeter e o Google Colab	Avaliação Formativa: atividades individuais, ou em grupo, resolvidas em aula ou em casa. Avaliação Somativa: atividades de simulação computacional e experimentais. Avaliação Somativa: avaliação individual de modelagem computacional.					

Plano de Ensino

RA3: Verificar adequação de diferentes soluções de problemas conceituais e reais com auxílio de ferramentas experimentais e computacionais.

Analisa o comportamento de variáveis a partir da alteração dos parâmetros do modelo computacional.

Verifica a adequabilidade de um modelo frente um conjunto de dados.

Aulas utilizando técnicas de metodologias ativas: PBL – Aprendizagem baseada em Problemas; Aprendizagem por pares.

Simulação computacional. Resolução de exercícios orientados. Usando o Blackboard, Repl.it e o Mentimeter e o Google Colab Atividades individuais ou em grupo, resolvidas em aula ou em casa.

Atividades de simulação computacional e experimentais.

Avaliação individual de modelagem computacional.

Forma de Trabalho	ltem de Avaliação	RA1	RA2	RA3	Presença
[Grupo] / [Individual]	Exercícios Práticos	3,0	3,0	3,0	
[Individual]	Avaliação Individual	6,0	6,0	6,0	
[Grupo] / [Individual]	Exercícios Formativos				Contam Presença
[Grupo]	TDE	1,0	1,0	1,0	
	Nota da RA	10,0	10,0	10,0	
	Peso da RA na média	33%	33%	44%	
	Média Disciplina	10,0			

ATENÇÃO: para que a nota de uma RA entre no cálculo da média da disciplina esta nota deve ser superior, ou igual a 7,0.

Plano de Ensino

7. **CRONOGRAMA**

Período	RA	Atividades pedagógicas	Tipo	Carga
17/03 Semana 1	RA 1	[Tema 1] Boas-vindas e apresentação da disciplina e do plano de ensino. [Tema 2] Trigonometria do triângulo retângulo, relações e funções trigonométricas.	Em aula	2 h
18/03 Semana 1	RA 1	[Tema 2] Trigonometria do triângulo retângulo, relações e funções trigonométricas; [Prática em Grupo] Estudo das relações trigonométricas.	Em aula	4 h
24/03 Semana 2	RA 1	[Tema 3] representações matemáticas no espaço tridimensional. [Tema 4] Noção intuitiva e cálculo de limites. [Prática em Grupo] Noção intuitiva e cálculo de limites	Em aula	2 h
25/03 Semana 2	RA 1	[Tema 3] representações matemáticas no espaço tridimensional. [Tema 4] Noção intuitiva e cálculo de limites. [Prática em Grupo] Noção intuitiva e cálculo de limites	Em aula	4 h
31/03 Semana 3	RA 1	[Tema 4] Noção intuitiva e cálculo de limites [Prática em Grupo] Plotagem no plano cartesiano computacionalmente.	Em aula	2 h
01/04 Semana 3	RA 2	Feriado ou Recesso	Em aula	4 h
07/04 Semana 4		[Revisão RA 1]	Em aula	2 h
06/04 Semana 4		[TDE 1 - Avaliação RA1]	Em aula	4 h

Plano de Ensino

101.000 000000					
	14/04 Semana 5		[Tema 5] definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações;	Em aula	2 h
	15/04 Semana 5	RA 2	[Tema 5] definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações; [Prática em Grupo] Modelagem de integrais	Em aula	4 h
	21/04 Semana 6	RA 2	Feriado ou Recesso	Em aula	2 h
	22/04 Semana 6	RA 2	[Tema 5] definição e interpretação geométrica e física de derivadas; derivada de funções elementares, propriedades e aplicações; [Prática em Grupo] Modelagem de integrais	Em aula	4 h
	28/04 Semana 7	RA 2	[Tema 6] definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume; [Prática em Grupo] Modelagem de integrais	Em aula	2 h
	29/04 Semana 7	RA 2	[Tema 6] definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume; [Prática em Grupo] Modelagem de integrais	Em aula	4 h
	05/05 Semana 8	RA 2	[Tema 6] definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume; [Prática em Grupo] Modelagem de integrais	Em aula	2 h
	06/05 Semana 8	RA 2	[Tema 6] definição, propriedades, integral definida, soma de Riemann, Teorema Fundamental do Cálculo, Área e Volume; [Prática em Grupo] Modelagem de integrais	Em aula	4 h
	12/05 Semana 9	RA 2	[Tema 7] Unidades, Grandezas Físicas. [Prática em Grupo] Uso de unidades na modelagem de problemas.	Em aula	2 h

Plano de Ensino

13/05 Semana 9	RA 2	[Tema 7] Unidades, Grandezas Físicas. [Prática em Grupo] Uso de unidades na modelagem de problemas.	Em aula	4 h
19/05 Semana 10		[Revisão RA 2]	Em aula	2 h
20/05 Semana 10		[TDE 2 - Avaliação RA2]	Em aula	4 h
26/05 Semana 11	RA 3	[Tema 8] funções de posição, velocidade e aceleração; [Prática em Grupo] Modelagem computacional.	Em aula	2 h
27/05 Semana 11	RA 3	[Tema 8] funções de posição, velocidade e aceleração; [Prática em Grupo] Modelagem computacional.	Em aula	4 h
02/06 Semana 12	RA 3	[Tema 8] funções de posição, velocidade e aceleração; [Prática em Grupo] Modelagem computacional.	Em aula	2 h
03/06 Semana 12	RA 3	Feriado ou Recesso	Em aula	4 h
09/06 Semana 13	RA 3	[Tema 9] 1 ^a , 2 ^a e 3 ^a Lei de Newton, Trabalho com força constante e variável; [Prática em Grupo] Modelagem computacional.	Em aula	2 h

Plano de Ensino

	10/06 Semana 13	RA 3	[Tema 9] 1 ^a , 2 ^a e 3 ^a Lei de Newton, Trabalho com força constante e variável; [Prática em Grupo] Modelagem computacional.	Em aula	4 h
	16/06 Semana 14	RA 3	[Tema 10] Estratégias de simulação computacional; [Aula Expositiva]		2 h
	17/06 Semana 14	RA 3	[Tema 10] Estratégias de simulação computacional; [Aula Expositiva]	Em aula	4 h

	23/06 Semana 15	[Revisão RA 3]	Em aula	2 h
	24/06 Semana 15	[TDE 3 - Avaliação RA3]	Em aula	4 h
	30/06 Semana 16	[Dúvidas e esclarecimentos]	Em aula	2 h
	01/07 Semana 16	[Exame Final]	Em aula	4 h

8. Referências

BIBLIOGRAFIA BÁSICA:

FLEMMING, Diva Marília; GONÇALVES, MírianBuss. **Cálculo A:** funções, limite, derivação e integração. 6. ed., rev. e ampl. São Paulo: Pearson Prentice Hall, 2006.

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl, Fundamentos de Física, Vol.1, 8 ed., Rio de Janeiro: LTC, 2008.

STEINBRUCH, A. & WINTERLE, P. Geometria Analítica. 2a. ed. São Paulo: Makron Books, 1987.

STEWART, James. Cálculo, vol.1. 5a. ou 6a. ou 7a. ed. São Paulo, Cengage Learning.

Plano de Ensino

BIBLIOGRAFIA COMPLEMENTAR:

DEMANA, Franklin D. **Pré-cálculo**.2. ed. São Paulo: Pearson, 2013. xx, 452 p. GUIDORIZZI, H. L.. **Um curso de cálculo. Vol. 1**. Rio de Janeiro: LTC, 2001. HEWITT, Paul G. **Fundamentos de Física Conceitual**, Vol. Único, 9 ed., Porto Alegre: Bookman, 2009. TIPLER, Paul A. e Mosca, G. **Física para Cientistas e Engenheiros**. Vol.1, 6 ed., Rio de Janeiro: LTC, 2009. THOMAS, George Brinton; WEIR, Maurice D.; HASS, Joel. **Cálculo**. São Paulo: Pearson, 2012. 2 v. WINTERLE, P. Vetores e Geometria Analítica. São Paulo: Makron Books, 2000.

9. Acessibilidade

Não houve necessidade de adaptação.