Explorando o Potencial de Algoritmos de Aprendizado com Reforço em Robôs Móveis

Gedson Faria, Roseli Francelin Romero
USP - ICMC - SCE
São Carlos - SP - Brasil
E-mails: gedson, rafrance@icmc.sc.usp.br

Abstract

There are many methods to solving the reinforcement learning problem. In this work, reinforcement learning algorithms are investigated in the context of the small robot navigation. Some methods as Q-learning, R-learning and H-learning are presented. A MDP environment (Markov Decision Process) is proposed by utilizing the fuzzy logic concepts and experiments performed with the Q-learning algorithm are also presented and discussed.

1. Introdução

Aprendizado com reforço é baseado na idéia de que, se uma ação é seguida de estados satisfatórios, ou por uma melhoria no estado, então a tendência para produzir esta ação e aumentada, isto é, reforçada. Estendendo-se esta idéia, ações podem ser selecionadas em função da informação sobre os estados que elas podem produzir, o que introduz aspectos de controle com realimentação.

Este tipo de aprendizado difere do aprendizado supervisionado implementado pelo Perceptron [1] e Adaline [2]. Métodos com aprendizado supervisionado, também chamados de métodos da Correção do Erro, requerem um conjunto de treinamento constituído de pares de vetores de entrada e saída.

Uma diferença importante entre o método da Correção do Erro e o Aprendizado com Reforço, é pelo último não se basear exclusivamente nos seus pesos para determinar suas ações, ele gera ações por um processo aleatório que é polarizado por uma combinação dos valores de seus pesos e de suas entradas. Assim, as ações não são vistas apenas como respostas aos padrões de entrada, mas também dependem dos estados do sistema. Além disso, se a resposta desejada não é conhecida, a avaliação do desempenho do sistema é obtida indiretamente considerando o "efeito" de sua saída no ambiente com o qual o sistema interage. Aprendizado com reforço é aplicado quando este "efeito" é medido através de mudanças em um determinado sinal: *reinforcement* (termo usado na teoria de aprendizado de animais) [3].

O objetivo deste trabalho é investigar o potencial dos algoritmos de aprendizado com reforço existentes, vi-

sando a navegação de robôs móveis em um ambiente qualquer.

Inicialmente, é apresentado um estudo sobre uma estrutura moderna e bastante utilizada no aprendizado com reforço, chamada de Processo de Decisão de Markov ou MDP (*Markov Decision Process*), discutido na seção 2. Em seguida, alguns dos algoritmos utilizados em aprendizado com reforço, que utilizam métodos *model-free* como Q-learning [4, 5], R-learning [6] e o método *model-based* no H-learning [7], são apresentados na seção 3. Os detalhes de implementação propostos de um MDP finito, para o algoritmo Q-learning é apresentado na seção 4. Para finalizar, são apresentadas as sugestões para trabalhos futuros na seção 5.

2. Processo de Decisão de Markov

Uma forma de modelar problemas de aprendizado com reforço é utilizar o Processo de Decisão de Markov.

Figura 1: Modelo padrão de aprendizado com reforço.

Três sinais passam de um lado para outro entre o agente e o ambiente, como é mostrado na Figura 1, caracterizando o problema de aprendizagem: um sinal para representar as escolhas feitas pelo agente, um sinal que indica o estado do ambiente e um sinal para definir as metas do agente, representando respectivamente as ações, estados do ambiente e as recompensas.

O sinal de recompensa é a maneira de se comunicar ao agente como atingir a meta, não devendo, de forma alguma, lhe indicar como realizar esta tarefa. A fonte da recompensa está representada fora do agente, mas isto não impede que o agente defina para si um tipo de recompensa interna ou uma sequência de recompensas internas.

Na estrutura da aprendizagem com reforço, o agente faz suas decisões com base num sinal do ambiente chamado de estado do ambiente. Caso um estado contenha toda a informação relevante, então ele é chamado de Markov ou que tem a propriedade de Markov. Pode-se observar esta propriedade na velocidade e posição atuais de uma bola de canhão, observando que estas informações são suficientes para determinar seu vôo futuro, não importando com que velocidade saiu e de que posição veio; o que for importante será obtido do estado corrente.

Uma tarefa de aprendizagem com reforço que satisfaça a propriedade de Markov é chamada de Processo de Decisão de Markov, ou MDP (*Markov Decision Process*). Se os estados e ações forem finitos, então será chamado de Processo de Decisão de Markov finito ou MDP finito.

A fim de ilustrar um MDP, é apresentado a seguir um exemplo simples, porém não realista, de um robô que tem por objetivo coletar o maior número de latas possíveis, gastando o mínimo de energia.

Supõe-se que sejam consideradas as três seguintes decisões: procurar ativamente por uma lata, permanecer parado esperando que alguém lhe traga a lata e voltar a base para recarregar a bateria. O melhor modo de se encontrar latas é procurando-as ativamente, mas isto descarrega a bateria do robô. Por outro lado, somente esperar não é uma boa maneira de se conseguir as latas. Sempre que o robô está procurando é possível que sua bateria se esgote; neste caso o robô deve desligar e esperar seu resgate o que provoca uma recompensa baixa.

O agente faz suas decisões baseado no nível de energia da bateria, distinguidos por dois níveis (alto e baixo). O agente tem a possibilidade de escolher entre esperar, procurar ou recarregar se o nível da bateria estiver baixo. Com isto, pode-se definir o conjunto de estados S e o conjunto de ações A(s), como:

```
S = \{alto, baixo\}

A(alto) = \{procurar, esperar\}

A(baixo) = \{procurar, esperar, recarregar\}
```

A cada lata coletada é adicionado +1 na recompensa e caso ele fique sem energia uma punição de -3 é administrada. $R^{procurar}$ e $R^{esperar}$ representam o número de latas coletadas enquanto "procurava" e "esperava" respectivamente, tal que $R^{procurar} > R^{esperar}$. Finalmente, para deixar as coisas simples, supõe-se que nenhuma lata pode ser coletada durante a ida à base para recarregar e que nenhuma lata pode ser coletada em um passo no qual a bateria é esvaziada. Por ser este um sistema MDP finito, pode-se escrever as probabilidades de transição e as recompensas esperadas como na Tabela 1 ou como um diagrama de transição de estados visto na Figura 2.

Estando com a bateria no nível alto e executando a ação procurar tem-se duas possibilidades: a bateria continuar alta, $P=\alpha$, ou baixar, $P=1-\alpha$. Caso esteja com o nível baixo e excute a ação procurar tem-se duas possibilidades: continuar no nível baixo com $P=\beta$ ou

Tabela 1: Transição de estados.

$s = s_t$	$s'=s_{t+1}$	$a=a_t$	$P_{ss'}^a$	$R^a_{ss'}$
alto	alto	procurar	α	$R^{procurar}$
alto	baixo	procurar	$1-\alpha$	$R^{procurar}$
baixo	alto	procurar	$1-\beta$	-3
baixo	baixo	procurar	β	$R^{procurar}$
alto	alto	esperar	1	$R^{esperar}$
alto	baixo	esperar	0	$R^{esperar}$
baixo	alto	esperar	0	$R^{esperar}$
baixo	baixo	esperar	1	$R^{esperar}$
baixo	alto	recarregar	1	0
baixo	baixo	recarregar	0	0

descarregar a bateria, $P=1-\beta$, precisando que alguém o leve para recarregar. Pelo objetivo proposto o robô não deve ficar sem energia e por isso ele foi punido com uma recompensa negativa. Quando se escolhe a opção esperar não há gasto de energia, ficando o robô no mesmo estado; desta forma as opções em que há mudança de estado têm probabilidade 0(zero) de ocorrer. No caso da escolha da ação recarregar o próximo estado será de bateria alta, não havendo outra possibilidade.

Figura 2: Diagrama de transição de estados.

A definição de um MDP finito é bem ilustrada no exemplo do robô reciclador, podendo ser generalizada através dos seguintes elementos:

S conjunto de estados do ambiente

A(s) conjunto de ações possíveis no estado s $P^a_{ss'} \text{ probabilidade de transição de } s \text{ para } s' \text{ dado } a$ $R^a_{ss'} \text{ recompensa pela transição de s para } s' \text{ dado } a$ onde: $s,s' \in S \text{ e } a \in A(s)$

Existem boas referências para MDPs, que podem ser encontradas em [8, 9, 10, 11].

Na maioria das vezes, o modelo MDP não está completo, ou seja, não se conhece a função de probabilidade de transição de estado ou a função de recompensas esperadas. Tem-se para isso métodos chamados *model-free* que aprendem um controlador sem aprender um modelo.

3. Métodos de Aprendizado com Reforço

O aprendizado com reforço dispõe de vários métodos de aprendizagem. Foram escolhidos alguns métodos, com características distintas, para que fossem estudados e suas eficiências avaliadas e comparadas entre si. A seguir são apresentados os algoritmos Q-learning e R-learning que utilizam o método model-free e o algoritmo model-based, H-learning.

3.1. Q-learning

O algoritmo Q-learning [4, 5] consiste na atualização de valores descontados de recompensas esperadas, Q(s,a). A cada iteração com o ambiente, os valores de Q são atualizados de acordo com a equação (1).

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha[r + \gamma eQ(s')] \tag{1}$$

 γ é o fator de desconto utilizado para garantir que os valores de Q sejam finitos e α é a constante de aprendizado, sendo que: $0<\alpha\leq 1$ e $0\leq \gamma<1$.

Após executar a ação a, o agente sai do estado s e vai para um estado s', recebendo por esta ação uma recompensa imediata r. No estado s' é feita uma busca, entre as ações disponíveis, para encontrar a ação a' que tenha o maior valor de retorno esperado, representado por $eQ(s') = max_{a'}Q(s',a')$.

Caso a ação a' seja tomada como sendo a próxima a ser executada, tem-se uma probabilidade maior de cair em máximos locais. No algoritmo Q-learning, para cada passo do episódio, deve-se escolher uma ação que não é necessariamente igual a a'. Uma boa escolha, por exemplo, é escolher, em 70% dos casos, a ação que retorne o valor máximo e nos outros 30% faz-se escolhas aleatórias para evitar os máximos locais.

Na Figura 3 apresenta-se uma descrição do algoritmo Q-learning, na qual nota-se uma reestruturação da equação (1). Tal reestruturação eliminou uma multiplicação e adicionou uma subtração, melhorando o custo computacional.

```
Inicialize Q(s,a) arbitrariamente Repita (para cada episódio) Inicialize s Repita para cada passo do episódio Escolha a \in A(s) Execute a ação a Observe os valores s' e r Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma e Q(s') - Q(s,a)] s \leftarrow s' até que s seja terminal
```

Figura 3: Algoritmo Q-learning

Para melhor entendimento, será especificado um modelo MDP para um ambiente bem simples, no exemplo seguinte.

O ambiente é uma matriz 5x5 no qual o aprendiz sai de um ponto qualquer e tem que chegar no estado meta. Para movimentar-se nesse ambiente o aprendiz dispõe de quatro alternativas: subir, descer, direita e esquerda. O objetivo é bem simples: andar numa matriz e alcançar o mais rápido possível o estado meta. Para atingir o objetivo, utiliza-se as recompensas para definir como aprendiz deve agir. Portanto, se o aprendiz atingir o estado meta a recompensa será r=10 e r=-1 nos outros casos.

Figura 4: Esquema de aprendizado numa matriz 5x5. A ordem das matrizes não indica suas atualizações em tempos subsequentes. Elas apenas ilustram uma sequência hipotética do processo de aprendizado.

Na Figura 4 (a), observa-se que inicialmente todas as ações são possíveis. As ações que levam para fora do limite da matriz não podem ser executadas e por isso foram retiradas, e são apresentadas na Figura 4 (b). Partindo-se deste ponto, para qualquer ação realizada em qualquer estado a recompensa será de -1, exceto para as ações que levam ao estado meta, por isso o par estadoação, isto é, Q(s,a), que levou ao estado meta será privilegiado nas próximas escolhas de ações, Figura 4 (c). A atualização dos valores de Q não dependem somente da recompensa r mas também do estado seguinte, como mostra a equação (1). Sendo assim, os estados vizinhos que com alguma ação atiniam os estados anteriormente "privilegiados" serão os próximos a levarem uma parte deste privilégio, como pode ser visto na Figura 4 (d). A propagação dos privilégios segue continuamente, como visto na Figura 4 (e), até chegar ou pelo menos se aproximar de uma política ótima, como mostrado na Figura 4 (f).

3.2. R-learning

A técnica proposta por Schwartz [6], chamada de R-learning, maximiza a recompensa média a cada passo, ou seja, utiliza average-reward model. Q-learning não maximiza a recompensa média, mas descontos acumulado de recompensa, por isso R-learning deve fornecer de fato resultados melhores que o Q-learning.

O algoritmo R-learning possui regra similar ao Q-learning, sendo baseado na dedução de valores R(s,a), e devendo escolher ações a num estado s. A casa situação, o aprendiz escolhe a ação que tem o maior valor R, exceto que algumas vezes ele escolhe uma ação qualquer. Os valores de R são ajustados a cada ação, baseado na seguinte regra de aprendizagem:

$$R(s,a) \leftarrow (1-\alpha)R(s,a) + \alpha[r-\rho + eR(s')], \quad (2)$$

que difere da regra do Q-learning, simplesmente por subtrair a recompensa média ρ do reforço imediato r e por não ter desconto γ para o próximo estado, $eR(s') = \max_{a'} R(s',a')$. A recompensa média é calculada como:

$$\rho \leftarrow (1 - \beta)\rho + \beta[r + eR(s') - eR(s)] \tag{3}$$

O ponto chave é que ρ somente é atualizado quando uma ação não aleatória foi tomada, ou seja, $\max_a R(s,a) = R(s,a)$. A recompensa média ρ não depende de algum estado particular, ela é uma constante para todo o conjunto de estados.

Na Figura 5, é apresentado o algoritmo R-learning, na qual pode-se observar pequenas reestruturações nas equações de atualização de R e ρ , que melhoram o custo computacional.

```
Inicialize \rho e R(s,a) arbitrariamente Repita para sempre s \leftarrow estado atual Escolha a \in A(s) Execute a ação a Observe os valores s' e r R(s,a) \leftarrow R(s,a) + \alpha[r-\rho+eR(s')-R(s,a)] se R(s,a) = max_aR(s,a) então \rho \leftarrow \rho + \beta[r-\rho+eR(s')-eR(s)]
```

Figura 5: Algoritmo R-learning

3.3. H-learning

O algoritmo H-learning [7] foi introduzido para otimizar a recompensa média sem utilizar desconto. Este método é totalmente diferente dos demais vistos até agora, pois utiliza o método *model-base*, tendo de construir o modelo e deste derivar um controlador.

O algoritmo H-learning estima as probabilidades $p_{ik}(a)$ e os reforços r(i,a) por contagem direta e atualiza os valores de h utilizando uma equação que segundo

1. Seja N(i,u) ser o número de vezes que a ação u foi executada no estado i, e seja N(i,u,j) ser o número de vezes que ela resultou no estado j. Inicialize as matrizes $p_{ij}\left(u\right), r(i,u), h(i)$ e o escalar ρ com 0's. $p_{ij}(u)$ é a probabilidade de ir de um estado i para um estado k executando a ação u, r(i,a) é a recompensa estimada por executar a ação a no estado i, h(i) é a recompensa máxima esperada para o estado i e corresponde ao $eQ(s^i)$ no algoritmo Q-learning. A constante ρ representa a média das recompensas, assim como no R-learning. $U_{b\,est}(i)$ é o conjunto de ações ótimas no estado i e é inicializado com U(i). T é o número total de passo que uma ação aparentemente ótima foi executada e é inicializada com 0. Atribua a i uma valor aleatório do estado corrente.

2. Repetir

- (a) Se a estratégia de exploração sugere uma ação aleatória, pegue uma ação aleatória para i, senão execute a ação $a \in U_{best}(i)$. Deixe k ser o estado resultante, e r' a recompensa imediata recebida.
- (b) $N(i, a) \leftarrow N(i, a) + 1$
- (c) $N(i, a, k) \leftarrow N(i, a, k) + 1$
- (d) $p_{ik}(a) \leftarrow N(i, a, k)/N(i, a)$
- (e) $r(i,a) \leftarrow r(i,a) + (r' r(i,a))/N(i,a)$
- (f) Se a ação executada $a \in U_{b \, est}(i)$, então
 - $T \leftarrow T + 1$
 - $\rho \leftarrow \rho + (r' h(i) + h(k) \rho)/T$
- (g) Deixe $H(i,u) = r(i,u) + \sum_{j=1}^{n} p_{ij}(u)h(j)$
 - $U_{best}(i) \leftarrow \{v | H(i, v) = max_{u \in U(i)} H(i, u)\}$
 - $h(i) \leftarrow H(i, a) \rho$, onde $a \in U_{b \, est}(i)$
- (h) $i \leftarrow k$

Até convergir ou MAX-STEPS vezes

Figura 6: Algoritmo H-learning

teorema provado por Bertsekas [11] converge para uma política ótima. O algoritmo H-learning, pode ser observado na Figura 6.

4. Implementação

O algoritmo *Q-learning* foi implementado e testado com o robô Pioneer 1, mostrado na Figura 7, utilizando uma estação PC Windows 95 com Visual C/C++ da Microsoft e o software Saphira.

A decisão inicial de trabalhar com o Q-learning, é pelo fato deste ser um algoritmo mais simples que os outros apresentados na seção 3, e ele certamente fornecerá um bom modelo MDP para os outros algoritmos.

Inicialmente, foi proposta uma única tarefa: andar num ambiente qualquer evitando colisões. Esta tarefa pode parecer simples, mas é a base do problema. Após o robô encontrar uma forma de aprendizado boa o suficiente para esta tarefa, tarefas mais complexas poderão ser analisadas, como por exemplo: andar num ambiente evitando colisões e juntando o maior número de latas possível; ou ainda servir de guia dentro de um prédio, de uma escola, de um museu ou qualquer outro local. Tais tarefas dependem das limitações do robô e do algoritmo de aprendizagem.

4.1. O Robô Pioneer Gripper

O robô está montado sobre um eixo de duas rodas que permite fazer rotações e movimentos para frente ou para trás. Como pode-se observar na Figura 7, este robô tem pequenas dimensões. A garra pode pegar objetos de até 21,5cm de comprimento e possui um sistema de elevação vertical que permite pegar objetos com no mínimo 2cm de altura.

Figura 7: Pioneer 1 Gripper

Também possui cinco sonares frontais, um na lateral direita e um na lateral esquerda. Os sensores de colisão estão localizados nas rodas e nas extremidades da garra. Os sonares emitem raios em projeção cônica. Dependendo do formato do objeto e do ângulo de reflexão, tais raios podem não ser captados, mesmo que o objeto esteja próximo. Os sonares devolvem como valor de retorno a distância, que pode variar de 200mm até 5000mm. Isto causa um problema, pois pode existir um objeto encostado no robô mas o sensor vai indicar que ele está a 200mm de distância.

O software utilizado para manipulação dos movimentos do robô é o Safira da ActivMedia, versão 6.1. Este software vem acompanhado de uma biblioteca de funções em linguagem C, sendo compatível com Microsoft Windows 95 / NT, FreeBSD, Linux e UNIX. Para FreeBSD, Linux ou UNIX é necessário a biblioteca Motif GUI. Para versões Windows95/NT, deve-se usar somente o Microsoft Visual C/C++.

4.2. Definindo o Ambiente MDP

Inicialmente tentou-se montar um conjunto de estados como sendo um mapa do ambiente real. Tal definição foi descartada pois o aprendizado ocorreria apenas para um ambiente específico.

Bagnell [12] propôs para o robô "Charm" um vetor de estados com 128 entradas, sendo 3 bits para cada um de seus dois sensores de infravermelho, localizados na parte dianteira, e 1 bit para indicar colisão. Para cada estado existem seis entradas para cada uma das seguintes ações: "forward, backwark, spin left, spin right, turn left, turn right". Definiu também as recompensas para cada ação.

Seguindo-se esta proposta, definiu-se um conjunto de estados como sendo o conjunto de valores retornados pelo robô, ou seja, as distâncias dos objetos e o sinal de colisão.

Neste trabalho propõe-se a utilização de lógica fuzzy [13] para indicar "quão perto" um objeto está do robô, pois nenhuma informação sobre como representar tais sinais foi encontrada. Propõe-se ainda uma entrada de quatro sinais de estado do ambiente, indicando as distâncias dos objetos à direita, à esquerda e à frente do robô, e um sinal de colisão. Os sinais dos cinco sonares frontais foram convertidos em um único sinal de distância à frente, calculado como sendo o valor mínimo entre eles.

Os seguintes passos foram utilizados para decidir com quantos bits deve-se representar o sinal de entrada do sonar e como classificá-los utilizando lógica fuzzy:

- O sinal recebido pelo sonar foi subdividido em quatro partes iguais, representado por 2 bits. Com 2 bits por sonar e 1 bit para colisão, tem-se um total de 7 bits, ou seja 2⁷ = 128 estados. As decisões tomadas para evitar colisões, ocorrem quando os objetos estão próximos do robô. Para a subdivisão proposta acima, tal estado é muito amplo e força o robô a desviar de objetos em mais de 1,5m de distância.
- Visto que era necessário mais estados para quando o robô estivesse próximo de algum objeto, o sinal do sonar foi dividido em dezesseis partes iguais. Esta representação de 4 bits por sonar e 1 para colisão totaliza 2¹³ = 8192 estados. Um número elevado de estados, não mostrou ser de grande valia, pois o robô teve de treinar vários estados em que os objetos estavam distantes, obtendo em todos um mesmo aprendizado.
- Ao retornar à configuração de 2 bits por sonar, fezse uma melhor divisão entre os valores recebidos do sonar, classificando-os de acordo com a Tabela 2.

Tabela 2: Classificação de distâncias em 4 partes.

Intervalo (mm)	Especificação
$200 \rightarrow 375$	MUITO PERTO
$376 \rightarrow 500$	PERTO
501 → 1000	MEIO
$1001 \to 5000$	LONGE

O processo de aprendizagem progrediu, pois o robô começou a evitar as colisões, mas também começou a evitar os movimentos para frente. Geralmente, as colisões ocorrem quando pelo menos um sensor é classificado como MUITO PERTO e para cada colisão uma recompensa bastante negativa é dada. Por este motivo, o robô começou a evitar as ações que o levaram a colidir, ou seja, os movimentos para frente. As recompensas atrasadas se tornaram visíveis ao observar o robô evitando movimentos para frente cada vez mais distantes dos objetos, chegando

ao ponto de ficar apenas girando sobre seu próprio eixo.

 Nota-se um sucesso parcial para quatro estados, mas percebe-se que ainda são insuficientes. Ao aumentar para 3 bits por sonar, ou seja, 2¹⁰ = 1024 estados, deixou-se um intervalo de distância menor para objetos próximos, como é mostrado na Tabela 3. Bons resultados foram obtidos com essa classificação.

Tabela 3: Classificação das distâncias em 8 partes.

Intervalo (mm)	Especificação
200 → 300	ENCOSTADO
301 → 400	PRÓXIMO
401 → 500	MUITO PERTO
501 → 600	PERTO
601 → 750	MEIO
$751 \rightarrow 900$	LONGE
901 → 1500	MUITO LONGE
$1501 \rightarrow 5000$	DISTANTE

O fato da maioria das colisões ocorrerem quando se escolhe uma ação de deslocamento para frente, não trouxe problemas só para o conjunto de estados, mas também para o conjunto de ações. Primeiramente definiu-se um conjunto de ações como: $A(s)=\{avançar, recuar, avançar girando 90^o, avançar girando -90^o\}$, para dar a impressão de um movimento contínuo. Tal representação teve $\frac{3}{4}$ das ações sendo severamente punidas, o que não trouxe bons resultados.Um melhor conjunto de ações foi definido como: $A(s)=\{avançar, recuar, girar 45^o, girar -90^o\}$.

Para não deixar que o robô pare de andar para frente, incentiva-se esta ação através de recompensa bastante positiva, como é mostrado na Tabela 4.

Na implementação do Q-learning, definiu-se os seguintes valores para as constantes α e γ , sendo o fator de desconto $\gamma=0.99$ e a taxa de aprendizado $\alpha=0.25$.

Tabela 4: Reforço para cada ação.

Ação (a)	Recompensa (r)
Colisão	-700
Avançar	90
Recuar	-50
Giros	50

Na Figura 8 pode-se observar a convergência do aprendizado para dois casos distintos de escolhas de ações para o algoritmo Q-learning. Um utiliza somente o método guloso, escolhendo sempre a ação que lhe rende maior recompensa e o outro faz 30% das escolhas aleatórias. Pode-se perceber que a linha que representa o método 100%-guloso convergiu mais rápido, mas não conseguiu maximizar a recompensa, ou seja, caiu em máximo local.

Figura 8: Comparação de aprendizados

5. Trabalhos Futuros

Todos os testes realizados até então, foram feitos utilizando-se o algoritmo Q-learning. No entanto, este algoritmo é um dos mais simples existentes para aprendizado em tempo real. Assim sendo, outros algoritmos de aprendizado com reforço serão implementados e comparados entre si, com a finalidade de definir uma abordagem que possibilitará a navegação do robô Pioneer em um ambiente qualquer.

Referências

- F. Rosenblatt. Principles of Neurodynamics. Spartan, New York, 1963.
- [2] B. Widrow and M. E. Hoff. Adaptive switching circuits. In 1960 IRE WESCON Convention Record, pages 96–104, New York, 1960.
- [3] C. W. Anderson. Learning to control an inverted pendulum using neural networks. *IEEE Control Systems Mag.*, pages 31–37, Apr. 1989.
- [4] C. J. C. H. Watkins. *Learning from Delayed Rewards*. PhD thesis, University of Cambridge, 1989.
- [5] C. J. C. H. Watkins and P. Dayan. Technical note: Q learning. *Machine Learning*, 8:279–292, 1992.
- [6] A. Schwartz. A reinforcement Learning Method for Maximizing Undiscounted Rewards. In *Machine Learning: Proceedings of the Tenth International Conference*, San Mateo, CA, 1993. Morgan Kaufmann.
- [7] P. Tadepalli and D. Ok. A reinforcement learning method for optimizing undiscounted average reward. Technical Report 94-30-01, Department of Computer Science, Oregon State University, 1994.
- [8] R. Bellman. *Dynamic Programming*. Princeton University Press, Princeton, N.J., 1957.
- [9] M. L. Puterman. Markov Decison Process—Discrete Stochastic Dynamic Programming. Inc. John Wiley & Sons, New York, NY, 1994.
- [10] R. A. Howard. Dynamic Programming and Markov Process. The MIT Press, Cambridge, MA, 1960.
- [11] D. P. Bertsekas. Dynamic Programming: Deterministic and Stochastic Models. Pentice-Hall, Englewood Cliffs, NJ, 1987.
- [12] J. Bagnell, K. Doty, and A. Arroyo. Comparison of Reinforcement Learning Techniques for Automatic Behavior Programming. In *Proceedings of the CONALD*. CMU-USA, 1998.
- [13] S. V. Kartalopoulos. Understanding Neural Networks and Fuzzy Logic. IEEE Press, 1996.