

Name: YADATI KRISHNA \mathbf{As}

$\textbf{Assignment-6} \qquad \qquad \textbf{Roll No.}: \ \texttt{FWC22036}$

Problem Statement:

Find the equations of tangent and normal to the parabola $y^2 = 4ax$ at point (at²,2at).

SOLUTION:

Given:

The given equation of parabola $y^2 = 4ax$ can be written as

$$\mathbf{x}^{\top}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\top}\mathbf{x} + f = 0 \tag{1}$$

where

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},\tag{2}$$

$$\mathbf{u} = \begin{pmatrix} -2a \\ 0 \end{pmatrix},\tag{3}$$

$$f = 0 (4)$$

To Find

Equation of tangent and normal at point $(at^2,2at)$

STEP-1

The equation of tangent is given by

$$(\mathbf{V}\mathbf{q} + \mathbf{u})^{\top}\mathbf{x} + \mathbf{u}^{\top}\mathbf{q} + f = 0$$
 (5)

where

$$\mathbf{q} = \begin{pmatrix} at^2 \\ 2at \end{pmatrix} \tag{6}$$

substituting V, u, q and f in (5) we get the tangent equation as

$$(-(1/t) 1) \mathbf{x} = at \tag{7}$$

STEP-2

The equation of normal is given by

$$\mathbf{m}^{\top}(\mathbf{x} - \mathbf{q}) = 0 \tag{8}$$

where \mathbf{m} is given by:

$$\mathbf{m} = \begin{pmatrix} 1\\1/t \end{pmatrix} \tag{9}$$

substituting \mathbf{m}, \mathbf{q} in (8) we get the normal equation as

$$(t 1) \mathbf{x} = 2at + at^3 \tag{10}$$

Construction

vertex	coordinates
q	$\begin{pmatrix} at^2 \\ 2at \end{pmatrix}$

Download the code

Github link: Assignment-6.