EEOR6616

Convex Optimization

Instructed by **Prof. Tianyi Lin***
Transcribed by **Satvik Saha**†

Table of Contents

1. Basic Definitions	1
1.1. Convex Sets and Functions	1
1.2. The Optimization Problem	3
2. Projections	4
2.1. Normals	5
2.2. Subdifferentials	7
3. Gradient Descent	8
3.1. L-Lipschitz Functions	8
3.2. ℓ -smoothness	9
3.3. $lpha$ -strong Convexity	11
4. Momentum-Based Gradient Descent	13
4.1. Polyak's Heavy Ball Method	13
4.2. Nesterov's Accelerated Gradient Descent	15
Bibliography	16

1. Basic Definitions

1.1. Convex Sets and Functions

Definition 1.1 (Convex Set). We say that $\mathcal{K} \subseteq \mathbb{R}^d$ is convex if

$$\lambda x + (1 - \lambda)y \in \mathcal{K}$$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Example 1.1.1. All linear subspaces of \mathbb{R}^d are convex sets.

^{*}Department of Industrial Engineering and Operations Research (IEOR), Columbia University

[†]Department of Statistics, Columbia University

Example 1.1.2. Consider points $x_1, ..., x_n \in \mathbb{R}^d$. Their *convex hull*, described by

$$\operatorname{conv}(x_1,...,x_n) = \bigg\{\lambda_1 x_1 + ... + \lambda_n x_n : \lambda_1,...,\lambda_n \geq 0, \ \sum_{i=1}^n \lambda_i = 1 \bigg\},$$

is a convex set. In fact, it is the smallest convex set containing $x_1, ..., x_n$.

Definition 1.2 (Convex Function). We say that $f: \mathcal{K} \to \mathbb{R}$ is convex if \mathcal{K} is convex, and

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

for all $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$.

Example 1.2.1. The map $x \mapsto x^2$ is convex.

Example 1.2.2. Indicator functions of convex sets are convex. The indicator function of $\mathcal{X} \subseteq \mathbb{R}^d$ is given by

$$I_{\mathcal{X}}: \mathbb{R}^d \to \overline{\mathbb{R}}, \qquad x \mapsto \begin{cases} 0 & \text{if } x \in \mathcal{X} \\ \infty & \text{if } x \notin \mathcal{X} \end{cases}$$

Proposition 1.3 (Jensen's Inequality). *f is convex if and only if*

$$f(\lambda_1 x_1 + \ldots + \lambda_n x_n) < \lambda_1 f(x_1) + \ldots + \lambda_n f(x_n)$$

for all $x_1,...,x_n \in \mathcal{K}$ and $\lambda_1,...,\lambda_n \geq 0$ such that $\sum_k \lambda_k = 1$,

Definition 1.4 (Epigraph). The epigraph of $f: \mathcal{K} \to \mathbb{R}$ is defined as

$$\operatorname{epi}(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) \le \alpha\}.$$

Remark. The epigraph of f is simply the region above the graph of f,

$$\Gamma(f) = \{(x, \alpha) \in \mathcal{K} \times \mathbb{R} : f(x) = \alpha\}.$$

Proposition 1.5. f is convex if and only if epi(f) is convex.

Proof. (\Longrightarrow) For $(x_1, \alpha_1), (x_2, \alpha_2) \in \operatorname{epi}(f)$ and $\lambda \in [0, 1]$, we have

$$\begin{split} f(\lambda x_1 + (1-\lambda)x_2) & \leq \lambda f(x_1) + (1-\lambda)f(x_2) \\ & \leq \lambda \alpha_1 + (1-\lambda)\alpha_2. \end{split}$$

 $(\Longleftarrow) \text{ For } x_1,x_2 \in \mathcal{K} \text{ and } \lambda \in [0,1] \text{, since } (x_1,f(x_1)), (x_2,f(x_2)) \in \operatorname{epi}(f) \text{, we have } f(x_1,f(x_2)) \in \operatorname{epi}(f) \text{, we have } f(x_1,f(x_2)$

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2). \qquad \qquad \Box$$

From now on, we will always assume that $f: \mathcal{K} \to \mathbb{R}$ is differentiable, unless stated otherwise. Under this setting, we have a simpler characterization of convexity.

Proposition 1.6 (Gradient Inequality). *f is convex if and only if*

$$f(y) \geq f(x) + \nabla f(x)^\top (y - x)$$

for all $x, y \in \mathcal{K}$.

Proof. (\Longrightarrow) Note that for $t \in (0,1)$, we may write

$$f(x) + \frac{f(x+t(y-x)) - f(x)}{t} = \frac{f((1-t)x+ty) - (1-t)f(x)}{t}$$

$$\leq f(y).$$

Taking the limit $t \to 0$ gives the desired result.

 (\Leftarrow) Let $x, y \in \mathcal{K}$ and $\lambda \in [0, 1]$. Setting $z = \lambda x + (1 - \lambda)y$, we have

$$f(x) \geq f(z) + \nabla f(z)^\top (x-z), \qquad f(y) \geq f(z) + \nabla f(z)^\top (y-z).$$

Combining these gives $\lambda f(x) + (1 - \lambda)f(y) \ge f(z)$.

Remark. This is often presented as

$$f(x) - f(y) \le \nabla f(x)^{\top} (x - y).$$

1.2. The Optimization Problem

Definition 1.7 (Global Minimizer). We say that x^* is a global minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{K}$.

Definition 1.8 (Local Minimizer). We say that x^* is a local minimizer of $f: \mathcal{K} \to \mathbb{R}$ if $f(x) \geq f(x^*)$ for all $x \in \mathcal{U}$ for some neighborhood $\mathcal{U} \subseteq \mathcal{K}$ of x^* .

Proposition 1.9. Let $x^* \in \text{int}(\mathcal{K})$ be a local minimizer of f. Then, $\nabla f(x^*) = 0$.

The optimization problem for convex f on a convex set $\mathcal K$ can be described as

$$\min_{x \in \mathcal{K}} f(x). \tag{$\mathcal{M}_{\mathcal{K}}$})$$

In the special case $\mathcal{K} = \mathbb{R}^d$, this is

$$\min_{x \in \mathbb{R}^d} f(x). \tag{$\mathcal{M}_{\mathbb{R}^d}$}$$

The convexity of f allows us to characterize solutions of $(\mathcal{M}_{\mathbb{R}^d})$ via its critical points.

Proposition 1.10. Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex. Then, $x^* \in \mathbb{R}^d$ is a global minimizer of f if and only if $\nabla f(x^*) = 0$.

Proof. Follows directly from Proposition 1.9 and Proposition 1.6.

2. Projections

Definition 2.1. We say that z is a projection of a point y onto a set \mathcal{X} if $z \in \mathcal{X}$ and $||y - z|| \le ||y - x||$ for all $x \in \mathcal{X}$.

In other words, z is a projection of y onto $\mathcal X$ when $z\in\arg\min_{x\in\mathcal X}\|y-x\|$. In general, such projections of points need not exist! For instance, one can argue that a projection of $y\notin\mathcal X$ onto $\mathcal X$ cannot lie in the interior of $\mathcal X$: given $z\in B_\delta(z)\subseteq \operatorname{int}(\mathcal X)$, set $z_t=z+t(y-z)\in\mathcal X$ with $t=\delta/(2\|y-z\|)$, whence $\|y-z_t\|=(1-t)\|y-z\|<\|y-z\|$.

Example 2.1.1. Consider the open unit disk $\mathbb{D}^2 = \{x \in \mathbb{R}^2 : ||x|| < 1\}$ in \mathbb{R}^2 . Projections of points outside \mathbb{D}^2 onto \mathbb{D}^2 do not exist.

In Euclidean spaces \mathbb{R}^d , we may observe that closedness of (nonempty) \mathcal{X} guarantees the existence of a projection of $y \in \mathbb{R}^d$ onto \mathcal{X} . By picking some $x_0 \in \mathcal{X}$, we need only look at the compact set $\mathcal{X} \cap \overline{B_r(y)}$ where $r = \|y - x_0\|$, on which the continuous map $x \mapsto \|y - x\|$ must attain its minimum.

On the other hand, projections of points need not be unique.

Example 2.1.2. Consider the unit circle $S^1 = \{x \in \mathbb{R}^2 : ||x|| = 1\}$ in \mathbb{R}^2 . Then, every point in S^1 is a projection of $0 \in \mathbb{R}^2$ onto S^1 .

The following theorem establishes the existence and uniqueness of projections onto closed convex sets in any Hilbert space; we focus on Euclidean spaces \mathbb{R}^d for simplicity.

Theorem 2.2 (Hilbert Projection). Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. Then, for each $y \in \mathbb{R}^d$, there exists a unique projection of y onto \mathcal{X} .

Proof. Set $\delta = \inf_{x \in \mathcal{K}} \|x - y\|$ and pick a sequence $\{z_n\} \subset \mathcal{K}$ such that $\|z_n - y\| \to \delta$. Note that $(z_n + z_m)/2 \in \mathcal{K}$; the parallelogram law gives

$$\begin{split} \|z_n - z_m\|^2 &= 2\|z_n - y\|^2 + 2\|z_m - y\|^2 - 4\|(z_n + z_m)/2 - y\|^2 \\ &\leq 2\|z_n - y\|^2 + 2\|z_m - y\|^2 - 4\delta^2. \end{split}$$

Since this goes to 0 as $m,n\to\infty$, $\{z_n\}$ is Cauchy and hence has a limit $z\in\mathcal{K}$. Furthermore, if $\delta=\|z'-y\|$ for some other $z'\in\mathcal{K}$, then

$$\|z - z'\|^2 = 4(\delta^2 - \|(z + z')/2 - y\|)^2 \le 0,$$

forcing z = z'.

Definition 2.3. Let $\mathcal{K} \subseteq \mathbb{R}^d$ be closed and convex. The projection operator onto \mathcal{K} is defined by

$$\Pi_{\mathcal{K}}: \mathbb{R}^d \to \mathcal{K}, \qquad y \mapsto \mathop{\arg\min}_{x \in \mathcal{K}} \|x - y\|.$$

Remark. Theorem 2.2 guarantees that $\Pi_{\mathcal{K}}$ is well defined; the minimizer of $x \mapsto \|x - y\|$ on \mathcal{K} exists and is unique.

Proposition 2.4 (Variational Inequality). Let $y \in \mathbb{R}^d$ and $z \in \mathcal{K}$ for closed convex \mathcal{K} . Then, $z = \Pi_{\mathcal{K}}(y)$ if and only if $\langle z - y, z - x \rangle \leq 0$ for all $x \in \mathcal{K}$.

Proof. (\Longrightarrow) Let $t\in(0,1)$, and $z_t=(1-t)\Pi_{\mathcal{K}}(y)+tx\in\mathcal{K}.$ Then,

$$\|z-y\|^2 \leq \|z_t-y\|^2 = \|z-y-t(z-x)\|^2,$$

which simplifies to

$$-2\langle z-y,z-x\rangle+t\|z-x\|^2\geq 0.$$

Taking the limit $t \to 0$ gives the desired inequality.

 (\Leftarrow) For $x \in \mathcal{K}$,

$$||y - x||^2 = ||y - z||^2 + ||z - x||^2 - 2\langle z - y, z - x \rangle \ge ||y - z||^2.$$

Lemma 2.5 (Pythagoras). For all $x \in \mathcal{K}$ and $y \in \mathbb{R}^d$,

$$\left\|\Pi_{\mathcal{K}}(y)-x\right\|^2\leq \|y-x\|^2-\|y-\Pi_{\mathcal{K}}(y)\|^2.$$

Proof. It suffices to show that $\langle \Pi_{\mathcal{K}}(y) - y, \Pi_{\mathcal{K}}(y) - x \rangle \leq 0$ for all $x \in \mathcal{K}$, which holds via Proposition 2.4.

Corollary 2.5.1. For all $x, y \in \mathbb{R}^d$,

$$\|\Pi_{\mathcal{K}}(x) - \Pi_{\mathcal{K}}(y)\| \le \|x - y\|.$$

2.1. Normals

A very useful property of closed convex sets $\mathcal K$ is that given a point $w \notin K$, one can find a hyperplane separating w from $\mathcal K$. In other words, there exists a continuous linear functional g and a constant a such that g(x) < a < g(w) for all $x \in \mathcal K$.

Theorem 2.6 (Strict Separation). Let $w \notin \mathcal{K}$ for closed convex \mathcal{K} . There exists $v \neq 0$ such that

$$\sup_{x \in \mathcal{K}} \langle v, x \rangle < \langle v, w \rangle.$$

Proof. Set $v=w-\Pi_{\mathcal{K}}(w)$. Then, Proposition 2.4 gives

$$\langle v, x - (w - v) \rangle = \langle w - \Pi_{\mathcal{K}}(w), x - \Pi_{\mathcal{K}}(w) \rangle \leq 0,$$

for all $x \in \mathcal{K}$, which rearranges into

$$\langle v, x \rangle + ||v||^2 \le \langle v, w \rangle.$$

Definition 2.7 (Normal). Let $x \in \mathcal{K}$ for closed convex \mathcal{K} . We say that v is normal to \mathcal{K} at x if $\langle v, y \rangle \leq \langle v, x \rangle$ for all $y \in \mathcal{K}$.

Definition 2.8 (Normal Cone). Let $x \in \mathcal{K}$ for closed convex \mathcal{K} . The normal cone $N_{\mathcal{K}}(x)$ at x is the collection of normals to \mathcal{K} at x.

Note that if v is normal to $\mathcal K$ at x, so is αv for $\alpha \geq 0$, hence $N_{\mathcal K}(x)$ is indeed a cone; it is also convex. Furthermore, $N_{\mathcal K}(x)$ is nontrivial only when $x \notin \operatorname{int}(X)$; if $x \in B_\delta(x) \subseteq \mathcal K$, then for any v with $\|v\| = 1$, we have $x \pm \frac{\delta}{2} v \in B_\delta(x) \subseteq \mathcal K$, and

$$\langle v, x - \frac{\delta}{2}v \rangle = \langle v, x \rangle - \frac{\delta}{2} < \langle v, x \rangle < \langle v, x \rangle + \frac{\delta}{2} = \langle v, x + \frac{\delta}{2}v \rangle.$$

Thus, we need only look at normal cones at boundary points $x \in \partial \mathcal{K}$. At these points, nonzero $v \in N_{\mathcal{K}}(x)$ describe supporting hyperplanes to \mathcal{K} at x.

Proposition 2.9. Let $x \in \partial \mathcal{K}$ for closed convex $K \subseteq \mathbb{R}^d$. Then, $N_{\mathcal{K}}(x)$ is nontrivial, i.e. there exists a supporting hyperplane to \mathcal{K} at x.

Proof. Pick a sequences $\{x_n\}\subseteq \mathcal{K}^c$ such that $x_n\to x$, and a corresponding sequence $\{v_n\}\subset S^{d-1}$ of directions via Theorem 2.6, such that $\sup_{y\in\mathcal{K}}\langle v_n,y\rangle<\langle v_n,x_n\rangle$. Using the compactness of S^{d-1} , descend to a subsequence and relabel so that $v_n\to v\in S^{d-1}$. Then, for $y\in K$, we have

$$\langle v,y\rangle = \lim_{n\to\infty} \langle v_n,y\rangle \leq \lim_{n\to\infty} \langle v_n,x_n\rangle = \langle v,x\rangle. \qquad \qquad \Box$$

Proposition 2.10. Let $x \in \mathcal{K}$ for closed convex \mathcal{K} , and let $v \in N_{\mathcal{K}}(x)$. Then, $\Pi_{\mathcal{K}}(x + \alpha v) = x$ for all $\alpha \geq 0$.

Proof. For all $y \in \mathcal{K}$, we have

$$\langle x - (x + \alpha v), x - y \rangle = \alpha \langle v, y - x \rangle \le 0,$$

whence $x = \Pi_{\mathcal{K}}(x + \alpha v)$ by Proposition 2.4.

2.2. Subdifferentials

Definition 2.11 (Subdifferential). Let $f: \mathcal{K} \to \mathbb{R}$ be convex. The subdifferential of f at $x \in \mathcal{K}$ is the collection of all directions v such that

$$f(y) \ge f(x) + v^{\top}(y - x)$$

for all $y \in \mathcal{K}$, and is denoted $\partial f(x)$.

Compare with the gradient inequality (Proposition 1.6) for differentiable convex f.

Example 2.11.1. Consider $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$. Then,

$$\partial f(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x < 0 \\ \{+1\} & \text{if } x > 0 \end{cases}$$

It is clear that the subgradient $\partial f(x)$ is convex. Showing that it is nontrivial requires more work.

Proposition 2.12. Let $f: \mathcal{K} \to \mathbb{R}$ be convex. Then, $\partial f(x)$ is nonempty for all $x \in ri(\mathcal{K})$.

Proof. Note that $\operatorname{epi}(f)$ is convex via Proposition 1.5. Use Proposition 2.9 to find a supporting hyperplane to $\operatorname{epi}(f)$ at $(x^\top f(x))^\top$, i.e. $(v^\top s)^\top \neq 0$ such that for all $(y^\top \alpha)^\top \in \operatorname{epi}(f)$,

$$v^\top (y-x) + s(\alpha - f(x)) \leq 0.$$

By considering y=x and $\alpha>f(x)$, we must have $s\leq 0$. If s=0, we would need $v^{\top}(y-x)\leq 0$ for all $y\in \mathcal{K}$, which would force v=0 since $x\in \mathrm{ri}(\mathcal{K})$. Thus, s<0; putting $\alpha=f(y)$, we have

$$f(y) \ge f(x) - \frac{v^{\top}}{s}(y - x),$$

whence $-v^{\top}/s \in \partial f(x)$.

The next result follows immediately from the definition of the subdifferential; compare this with Proposition 1.10.

Proposition 2.13. Let $f: \mathcal{K} \to \mathbb{R}$ be convex. Then, $x^* \in \mathcal{K}$ is a global minimizer of f if and only if $0 \in \partial f(x^*)$.

When f is differentiable at $x \in \operatorname{int}(\mathcal{X})$, the subgradient reduces to the usual gradient, with $\partial f(x) = \{\nabla f(x)\}$. Indeed, Proposition 1.6 shows that $\nabla f(x) \in \partial f(x)$. To check that there are no other elements, pick $v \in \partial f(x)$, and note that for $\lambda \geq 0$,

$$v^{\top}u \leq \frac{f(x+\lambda u) - f(x)}{\lambda} \to \nabla f(x)^{\top}u \quad \text{as } \lambda \to 0,$$

hence $(\nabla f(x) - v)^{\top}u \ge 0$ for all directions u. This forces $v = \nabla f(x)$.

The converse of the above result also holds, in the following form.

Theorem 2.14. Let $f: \mathcal{K} \to \mathbb{R}$ be convex and $x \in \text{int}(\mathcal{K})$. If f is differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$. Conversely, if $\partial f(x) = \{v\}$, then f is differentiable at x with $\nabla f(x) = v$.

Gradient Descent

Gradient descent algorithms for solving $(\mathcal{M}_{\mathbb{R}^d})$ follow the iterative scheme

$$x_{t+1} = x_t - \eta_t \nabla f(x_t). \tag{\mathcal{GD}} \label{eq:gd}$$

It is possible for (\mathcal{GD}) to take our iterates x_t outside \mathcal{K} ; we can rectify this using projections. Projected gradient descent algorithms for solving $(\mathcal{M}_{\mathcal{K}})$ follow the iterative scheme

$$\begin{split} y_{t+1} &= x_t - \eta_t \nabla f(x_t), \\ x_{t+1} &= \Pi_{\mathcal{K}}(y_{t+1}). \end{split} \tag{\mathcal{PGD}}$$

We can establish rates of convergence of (\mathcal{GD}) and (\mathcal{PGD}) under certain regularity conditions on f.

3.1. L-Lipschitz Functions

Definition 3.1 (*L*-Lipschitz). We say that $f: \mathcal{K} \to \mathbb{R}$ is *L*-Lipschitz for some $L \geq 0$ if

$$|f(x) - f(y)| < L||x - y||$$

for all $x, y \in \mathcal{K}$.

Remark. When f is differentiable, f is L-Lipschitz if and only if $\|\nabla f\| \le L$.

Theorem 3.2. Let f be convex and L-Lipschitz, $x^* \in \mathcal{K}$ be its global minimizer, and $||x_1 - x^*|| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{PGD}) with $\eta = R/L\sqrt{T}$. Then,

$$f\bigg(\frac{1}{T}\sum_{t=1}^T x_t\bigg) - f(x^*) \leq \frac{RL}{\sqrt{T}}.$$

Proof. Compute

$$f\left(\frac{1}{T}\sum_{t=1}^{T}x_{t}\right) - f(x^{*}) \leq \frac{1}{T}\sum_{t=1}^{T}f(x_{t}) - f(x^{*})$$

$$\leq \frac{1}{T}\sum_{t=1}^{T}\nabla f(x_{t})^{\top}(x_{t} - x^{*})$$

$$= \frac{1}{T\eta}\sum_{t=1}^{T}\left(x_{t} - y_{t+1}\right)^{\top}(x_{t} - x^{*})$$
(Proposition 1.3)
$$= \frac{1}{T\eta}\sum_{t=1}^{T}\left(x_{t} - y_{t+1}\right)^{\top}(x_{t} - x^{*})$$

$$\begin{split} &= \frac{1}{2T\eta} \sum_{t=1}^{T} \left[\left\| x_{t} - y_{t+1} \right\|^{2} + \left\| x_{t} - x^{*} \right\|^{2} - \left\| y_{t+1} - x^{*} \right\|^{2} \right] \\ &= \frac{\eta}{2} \|\nabla f(x_{t})\|^{2} + \frac{1}{2T\eta} \sum_{t=1}^{T} \left[\left\| x_{t} - x^{*} \right\|^{2} - \left\| y_{t+1} - x^{*} \right\|^{2} \right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{1}{2T\eta} \sum_{t=1}^{T} \left[\left\| x_{t} - x^{*} \right\|^{2} - \left\| \underbrace{\Pi_{\mathcal{K}}(y_{t+1})}_{x_{t+1}} - x^{*} \right\|^{2} \right] \\ &= \frac{\eta L^{2}}{2} + \frac{1}{2T\eta} \left[\left\| x_{1} - x^{*} \right\|^{2} - \left\| x_{T+1} - x^{*} \right\|^{2} \right] \\ &\leq \frac{\eta L^{2}}{2} + \frac{R^{2}}{2T\eta} \\ &= \frac{RL}{\sqrt{T}}. \end{split}$$

3.2. ℓ -smoothness

Definition 3.3 (ℓ -smoothness). We say that $f: \mathcal{K} \to \mathbb{R}$ is ℓ -smooth for some $\ell \geq 0$ if

$$\|\nabla f(x) - \nabla f(y)\| \leq \ell \|x - y\|$$

for all $x, y \in \mathcal{K}$.

Lemma 3.4. Let $f: \mathcal{K} \to \mathbb{R}$ for convex \mathcal{K} be ℓ -smooth. Then,

$$|f(y)-f(x)-\nabla f(x)^\top (y-x)| \leq \frac{\ell}{2}\|y-x\|^2.$$

Proof. Using the Fundamental Theorem of Calculus,

$$\begin{split} |f(y) - f(x) - \nabla f(x)^\top (y - x)| &= \left| \int_0^1 \left(\nabla f(x + t(y - x)) - \nabla f(x) \right)^\top (y - x) \; dt \right| \\ &\leq \int_0^1 \| \nabla f(x + t(y - x)) - \nabla f(x) \| \cdot \| y - x \| \; dt \\ &\leq \int_0^1 \ell t \| y - x \| \cdot \| y - x \| \; dt \\ &= \frac{\ell}{2} \| y - x \|^2. \end{split}$$

When f is convex, the norm on the left hand side is redundant, giving the estimate

$$0 \leq f(y) - f(x) - \nabla f(x)^\top (y-x) \leq \frac{\ell}{2} \|y-x\|^2.$$

In fact, we can use ℓ -smoothness to improve upon the estimate in Proposition 1.6.

Lemma 3.5. Let f be convex and ℓ -smooth. Then,

$$f(x) - f(y) \leq \nabla f(x)^\top (x-y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. Set $z = y + (\nabla f(x) - \nabla f(y))/\ell$. Using Proposition 1.6, Lemma 3.4,

$$\begin{split} f(x) - f(y) &= (f(x) - f(z)) + (f(z) - f(y)) \\ &\leq \nabla f(x)^\top (x - z) + \nabla f(y)^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \\ &= \nabla f(x)^\top (x - y) + (\nabla f(y) - \nabla f(x))^\top (z - y) + \frac{\ell}{2} \|z - y\|^2 \\ &= \nabla f(x)^\top (x - y) - \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2 + \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2 \\ &= \nabla f(x)^\top (x - y) - \frac{1}{2\ell} \|\nabla f(x) - \nabla f(y)\|^2. \end{split}$$

Corollary 3.5.1. Let f be convex and ℓ -smooth. Then,

$$(\nabla f(x) - \nabla f(y))^\top (x - y) \geq \frac{1}{\ell} \|\nabla f(x) - \nabla f(y)\|^2.$$

Theorem 3.6. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer. Further let $\{x_t\}_{t \in \mathbb{N}}$ be iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$\left\| x_{t+1} - x^* \right\| \leq \|x_t - x^*\|$$

for all $t \in \mathbb{N}$.

Proof. Using $\nabla f(x^*) = 0$ and Corollary 3.5.1,

$$\begin{split} \left\| x_{t+1} - x^* \right\|^2 &= \left\| x_{t+1} - x_t \right\|^2 + 2 (x_{t+1} - x_t)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &= \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell} \nabla f(x_t)^\top (x_t - x^*) + \left\| x_t - x^* \right\|^2 \\ &\leq \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 - \frac{2}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &= -\frac{1}{\ell^2} \| \nabla f(x_t) \|^2 + \left\| x_t - x^* \right\|^2 \\ &\leq \left\| x_t - x^* \right\|^2. \end{split}$$

Theorem 3.7. Let f be convex and ℓ -smooth, $x^* \in \mathbb{R}^d$ be its global minimizer, and $||x_1 - x^*|| \leq R$. Further let $x_1, ..., x_T$ be T iterates of (\mathcal{GD}) with $\eta = 1/\ell$. Then,

$$f(x_T) - f(x^*) \leq \frac{2\ell R^2}{T-1}.$$

Proof. Using Lemma 3.4, note that

$$\begin{split} f(x_{t+1}) - f(x_t) &\leq \nabla f(x_t)^\top \big(x_{t+1} - x_t \big) + \frac{\ell}{2} \big\| x_{t+1} - x_t \big\|^2 \\ &= -\frac{1}{2\ell} \| \nabla f(x_t) \|^2. \end{split}$$

Setting $\delta_t = f(x_t) - f(x^*)$, this reads

$$\delta_{t+1} \le \delta_t - \frac{1}{2\ell} \|\nabla f(x)\|^2.$$

Now,

$$\delta_t \leq \nabla f(x_t)^\top (x_t - x^*) \leq \|\nabla f(x_t)\| \|x_t - x^*\| \leq \|\nabla f(x_t)\| \|x_1 - x^*\|,$$

with the last inequality guaranteed by Theorem 3.6. Setting $w=1/2\ell\|x_1-x^*\|^2$, this is $\|\nabla f(x_t)\|^2/2\ell \geq w\delta_t^2$. Thus, $\delta_{t+1} \leq \delta_t - w\delta_t^2$, which rearranges to

$$\frac{1}{\delta_{t+1}} - \frac{1}{\delta_t} \ge w \frac{\delta_t}{\delta_{t+1}} \ge w.$$

Summing over t gives $1/\delta_T \ge w(T-1)$, which is the desired estimate.

Remark. We have shown that

$$\frac{1}{\ell} \|\nabla f(x_t)\|^2 \leq f(x_t) - f\big(x_{t+1}\big) \leq \frac{1}{2\ell} \|\nabla f(x_t)\|^2.$$

3.3. α -strong Convexity

Definition 3.8 (α -strong Convex Function). We say that convex differentiable f is α -strongly convex for $\alpha \geq 0$ if

$$f(y) \geq f(x) + \nabla f(x)^\top (y-x) + \frac{\alpha}{2} \|y-x\|^2$$

for all $x, y \in \mathcal{K}$.

Remark. This is often presented as

$$f(x) - f(y) \leq \nabla f(x)^\top (x-y) - \frac{\alpha}{2} \|x-y\|^2.$$

Thus, α -strong convexity is a strengthening of the gradient inequality (Proposition 1.10).

Example 3.8.1. All convex functions are '0-strongly convex'.

We can improve upon Theorem 3.2 and Theorem 3.6 dramatically with this added assumption.

Theorem 3.9. Let f be α -strongly convex and L-Lipschitz, and let $x^* \in \mathcal{K}$ be its global minimizer. Further let $x_1,...,x_T$ be T iterates of (\mathcal{PGD}) with $\eta_t = 2/(\alpha(t+1))$. Then,

$$f\!\left(\sum_{t=1}^T \frac{t}{T(T+1)/2}\,x_t\right) - f(x^*) \leq \frac{2L^2}{\alpha(T+1)}.$$

Note that when f is both α -strongly convex and ℓ -smooth, we have

$$\frac{\alpha}{2}\|y-x\|^2 \leq f(y) - f(x) - \nabla f(x)^\top (y-x) \leq \frac{\ell}{2}\|y-x\|^2.$$

This also justifies that $\alpha \leq \ell$.

Lemma 3.10. Let f be α -strongly convex and ℓ -smooth, and let $x^+ = x - \frac{1}{\ell} \nabla f(x)$. Then,

$$f(x^+) - f(y) \leq \nabla f(x)^\top (x - y) - \frac{1}{2\ell} \|\nabla f(x)\|^2 - \frac{\alpha}{2} \|x - y\|^2.$$

Proof. Write

$$\begin{split} f(x^+) - f(y) &= (f(x^+) - f(x)) + (f(x) - f(y)) \\ &\leq \nabla f(x)^\top (x^+ - x) + \frac{\ell}{2} \|x^+ - x\|^2 + \nabla f(x)^\top (x - y) - \frac{\alpha}{2} \|x - y\|^2 \\ &= -\frac{1}{\ell} \|\nabla f(x)\|^2 + \frac{1}{2\ell} \|\nabla f(x)\|^2 + \nabla f(x)^\top (x - y) - \frac{\alpha}{2} \|x - y\|^2 \\ &= -\frac{1}{2\ell} \|\nabla f(x)\|^2 + \nabla f(x)^\top (x - y) - \frac{\alpha}{2} \|x - y\|^2 & \quad \Box \end{split}$$

Theorem 3.11. Let f be α -strongly convex and ℓ -smooth, and let $x^* \in \mathbb{R}^d$ be its global minimizer. Further let $\{x_t\}_{t\in\mathbb{N}}$ be iterates of (\mathcal{GD}) with $\eta=1/\ell$. Then,

$$\left\|x_{t+1}-x^*\right\|^2 \leq e^{-t\alpha/\ell}\left\|x_1-x^*\right\|^2$$

for all $t \in \mathbb{N}$.

Proof. Write

$$\begin{split} \left\| x_{t+1} - x^* \right\|^2 &= \left\| x_{t+1} - x_t \right\|^2 + \left\| x_t - x^* \right\|^2 + 2(x_{t+1} - x_t)^\top (x_t - x^*) \\ &= \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 + \| x_t - x^* \|^2 - \frac{2}{\ell} \nabla f(x_t)^\top (x_t - x^*) \\ &\leq \frac{1}{\ell^2} \| \nabla f(x_t) \|^2 + \| x_t - x^* \|^2 \\ &\qquad - \frac{2}{\ell} \Big[f(x_{t+1}) - f(x^*) + \frac{1}{2\ell} \| \nabla f(x_t) \|^2 + \frac{\alpha}{2} \| x_t - x^* \|^2 \Big] \qquad \text{(Lemma 3.10)} \\ &\leq \left\| x_t - x^* \right\|^2 - \frac{\alpha}{\ell} \| x_t - x^* \|^2 \qquad \qquad (f(x_{t+1}) \geq f(x^*)) \end{split}$$

$$= \left(1 - \frac{\alpha}{\ell}\right) \left\|x_t - x^*\right\|^2.$$

Iterating and using $1 - s \le e^{-s}$, we have

$$\left\|x_{t+1}-x^*\right\|^2 \leq \left(1-\frac{\alpha}{\ell}\right)^t \left\|x_1-x^*\right\|^2 \leq e^{-t\alpha/\ell} \left\|x_1-x^*\right\|^2. \qquad \qquad \square$$

A version of the above still holds with regards to (\mathcal{PGD}) .

The quantity $\kappa = \ell/\alpha \ge 1$, called the *conditional number*, controls the rate of convergence of (\mathcal{GD}) . Convergence is especially slow when κ is very high.

Example 3.11.1. Let $f(x) = \frac{1}{2}x^{T}Ax$ for positive definite A. Then, ℓ and α are the largest and smallest eigenvalues of A respectively.

4. Momentum-Based Gradient Descent

4.1. Polyak's Heavy Ball Method

Polyak's heavy ball method follows the iterative scheme

$$x_{t+1} = x_t - \eta_t \nabla f(x_t) + \beta_t (x_t - x_{t-1}). \tag{HB-}\mathcal{GD})$$

Remark. The (HB- \mathcal{GD}) method can be viewed as a discretized version of the *heavy ball flow*

$$\ddot{x} + \gamma \dot{x} = -\nabla f(x).$$

Lemma 4.1. Given $M \in \mathbb{R}^{d \times d}$ and $\varepsilon > 0$, there exists a norm $\|\cdot\|_{\varepsilon}$ such that $\|M\|_{\varepsilon} \leq \rho(M) + \varepsilon$, where

$$\rho(M) = \max\{|\lambda_1|, .., |\lambda_n|\}$$

is the spectral radius of M, and $\lambda_1, ..., \lambda_n$ are the eigenvalues of M.

Remark. Recall that every norm $\|\cdot\|$ on \mathbb{R}^d naturally induces a matrix norm

$$||M|| = \sup\{||Mx|| : ||x|| = 1\}$$

on $\mathbb{R}^{d\times d}$. The spectral radius satisfies $\rho(A)\leq \|A\|$ for every natural matrix norm $\|\cdot\|$. The above lemma shows that

$$\rho(M) = \inf\{\|M\| : \|\cdot\| \text{ is a matrix norm}\}.$$

Theorem 4.2. Let $f(x) = \frac{1}{2}x^{\top}Ax$ for positive definite $A \in \mathbb{R}^{d \times d}$, and let $\{x_t\}_{t \in \mathbb{N}}$ be iterates of $(HB-\mathcal{GD})$ with

$$\eta = \left(\frac{2}{\sqrt{\ell} + \sqrt{\alpha}}\right)^2, \quad \beta = \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^2, \quad \kappa = \frac{\ell}{\alpha},$$

where ℓ, α are the largest and smallest eigenvalues of A. Then, for every $\varepsilon > 0$, there exists a norm $\|\cdot\|_{\varepsilon}$ such that

$$\left\| \begin{pmatrix} x_{t+1} \\ x_t \end{pmatrix} \right\|_{\varepsilon} \le \left(\sqrt{\beta} + \varepsilon \right)^t \left\| \begin{pmatrix} x_1 \\ x_0 \end{pmatrix} \right\|_{\varepsilon}$$

for all $t \in \mathbb{N}$.

Proof. Note that $\nabla f(x) = Ax$, so the (HB- \mathcal{GD}) updates read

$$x_{t+1} = x_t - \eta A x_t + \beta (x_t - x_{t-1}) = ((1+\beta)I_d - \eta A)x_t - \beta x_{t-1},$$

which can be rewritten as

$$\begin{pmatrix} x_{t+1} \\ x_t \end{pmatrix} = \begin{pmatrix} (1+\beta)I_d - \eta A & -\beta I_d \\ I_d & 0 \end{pmatrix} \begin{pmatrix} x_t \\ x_{t-1} \end{pmatrix}.$$

Notate this as

$$X_{t+1} = BX_t = B^t X_1.$$

Since $\prod_j |\nu_j| = |\det(B)| = \beta^d$ for eigenvalues $\{\nu_j\}_{j=1}^{2d}$ of B, we must have $\rho(B) = \max_j |\nu_j| \ge \sqrt{\beta}$. The eigenvalue equation for B reads

$$B \binom{y}{z} = \binom{(1+\beta)y - \eta Ay - \beta z}{y} = \nu \binom{y}{z} \iff \begin{cases} \eta \nu Az = (\beta + (1+\beta)\nu - \nu^2)z \\ y = \nu z \end{cases}.$$

Thus, the eigenvalues $\{\lambda_i\}_{i=1}^d$ of A and $\{\nu_{2i-1},\nu_{2i}\}_{i=1}^d$ of B are related via $\eta\lambda\nu=\beta+(1+\beta)\nu-\nu^2$, or

$$\nu_{2i-1,2i} = \frac{1}{2} \bigg(1 + \beta - \eta \lambda_i \pm \sqrt{ \left(1 + \beta - \eta \lambda_i \right)^2 - 4\beta} \bigg).$$

Note that when $\Delta_i = (1+\beta-\eta\lambda_i)^2-4\beta \leq 0$, we have $|\nu_{2i-1}|=|\nu_{2i}|=\sqrt{\beta}$. Thus, for $\rho(B)$ to achieve the lower bound $\sqrt{\beta}$, we need $\left(1-\sqrt{\beta}\right)^2 \leq \eta\lambda_i \leq \left(1+\sqrt{\beta}\right)^2$ for all i, which holds when

$$(1 - \sqrt{\beta})^2 \le \eta \alpha \le \eta \ell \le (1 + \sqrt{\beta})^2.$$

Plugging in our choice of η , β , this is indeed true.

We now have $\rho(B) = \sqrt{\beta}$. Pick a norm $\|\cdot\|_{\varepsilon}$ such that $\|B\|_{\varepsilon} \leq \sqrt{\beta} + \varepsilon$ using Lemma 4.1, whence

$$\left\|X_{t+1}\right\|_{\varepsilon} \leq \left\|B^{t}\right\|_{\varepsilon} \left\|X_{1}\right\|_{\varepsilon} \leq \left(\sqrt{\beta} + \varepsilon\right)^{t} \left\|X_{1}\right\|_{\varepsilon}.$$

Remark. Given $f(x) = \frac{1}{2}(x - x^*)^{\top}A(x - x^*)$ for positive definite, symmetric A, set $y = P(x - x^*)$ where $A = P^{\top}\Lambda P$ is the diagonalization of A. Minimizing f is now equivalent to minimizing $g(y) = y^{\top}\Lambda y$.

4.2. Nesterov's Accelerated Gradient Descent

Nesterov's accelerated gradient descent follows the iterative scheme

$$\begin{aligned} y_t &= x_t + \beta_t (x_t - x_{t-1}), \\ x_{t+1} &= y_t - \eta_t \nabla f(y_t). \end{aligned} \tag{N-\mathcal{AGD}}$$

Theorem 4.3. Let f be α -strongly convex and ℓ -smooth, and let x^* be its global minimizer. Further let $\{x_t\}_{t\in\mathbb{N}}$ be iterates of $(\mathbb{N}-\mathcal{AGD})$ with

$$\eta = \frac{1}{\ell}, \quad \beta = \frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}, \quad \kappa = \frac{\ell}{\alpha}.$$

Then,

$$f(x_t) - f(x^*) \leq \left(1 - \frac{1}{\sqrt{\kappa}}\right)^t \left(\frac{l+m}{2}\right) \left\|x_0 - x^*\right\|^2$$

for all $t \in \mathbb{N}$.

Theorem 4.4. Let f be convex and ℓ -smooth, x^* be its global minimizer, and $\|x_0 - x^*\| \leq R$. Further let $x_1,...,x_T$ be T iterates of $(\mathbb{N}-\mathcal{AGD})$ with

$$\eta=\frac{1}{\ell},\quad \lambda_{t+1}=\frac{1+\sqrt{1+4\lambda_t^2}}{2},\quad \beta_{t+1}=\frac{\lambda_t-1}{\lambda_{t+1}},$$

where $\lambda_0 = \beta_0 = 0$. Then,

$$f(x_T) - f(x^*) \leq \frac{2\ell R^2}{T^2}.$$

Bibliography

- [1] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
- [2] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
- [3] Y. Nesterov, Lectures on Convex Optimization. Springer Publishing Company, Incorporated, 2018.