Aufgabe 1 (10 Punkte)

Eine zylinderförmige Kupferstange mit Querschnittsdurchmesser $d_0=2mm$ und Ursprungslänge $l_0=2m$ wird um 0.2m in Längsrichtung gedehnt.

- a) Wie groß ist die Dehnung ϵ ?
- b) Wie groß ist die Normalspannung σ_N ?
- c) Wie groß ist die für die Dehnung nötige Zugkraft F_N ?
- d) Wie groß ist die Durchmesserveränderung Δd ?

Wichtige Angaben zur Rechnung:

Elastizitätsmodul von Kupfer: $E = 12.3 * 10^{10} \frac{N}{m^2}$ Querdehnungszahl von Kupfer: $\mu = 0.34$

Längenausdehnungskoeffizient von Kupfer: $\alpha=16.8*10^{-6}K^{-1}$

Aufgabe 2 (16 Punkte)

Die Temperatur $\partial = 40^{\circ}C$ soll mit folgenden Sensoren gemessen werden:

- Widertandsthermometer Pt100 (mit dem linearen Kennlinienkoeffizienten $A=3,9083*10^{-3}\frac{1}{^{\circ}C}$ und dem quadratischen Kennlinienkoeffizienten $B=-0,5775*10^{-6}\frac{1}{(^{\circ}C)^2}$)
- Heißleiter (mit Kennlinienparameter B=5000K, Bezugstemperatur $T_N=298,15K$, Widerstand bei Bezugstemperatur $R_N=1\Omega$)
 - a) Wie groß ist der Widerstand $R(\partial)$ des Pt100-Widerstandsthermometers?
 - b) Wie groß ist der Widerstand $R(\partial)$ des Heißleiters?
 - c) Wie groß ist die Empfindlichkeit E des Pt100-Widerstandsthermometers?
 - d) Gegeben sei die Ansprechzeit $t_{0,5}=8s$ des Pt100-Sensors an Luft. Nach welcher Zeit $t_{0,9}$ wird bei einem Temperatursprung, 90% dieses Temperatursprungs gemessen?

Aufgabe 3 (7 Punkte)

Der Füllstand in einem Glyzerin (Dielektrizitätskonstante $\epsilon_r=42.5$) gefüllten Behälter soll mit Hilfe von Radarpulslaufzeitmessung durchgeführt werden.

Es wird eine mittlere Radarfrequenz $f_m=10~GHz$ verwendet. Der Abstand d zwischen Radarsender und Flüssigkeitsoberfläche betrage 20m. Zwischen dem Radarsender und der Flüssigkeitsoberfläche befindet sich Luft.

- a) Wie groß ist die Wellenlänge der verwendeten Radarpulse?
- b) Wie groß ist die gesamte Laufzeit der Radarpulse vom Sender bis zur Flüssigkeitsoberfläche und zurück zum Empfänger?
 (Annahme: Sender und Empfänger liegen dicht beieinander.)
- c) Wieviel Prozent der vom Radarsender ausgesandten Leistung P_0 trifft auf die Flüssigkeitsoberfläche auf, wenn der Absorptionskoeffizient α der Dämpfung in Luft $0.02 \frac{dB}{km}$ beträgt.

Aufgabe 4 (11 Punkte)

Ein Abwasserstrom (Dichte $\rho=1\frac{kg}{l}$, Strömungsgeschwindigkeit $v=2\frac{m}{s}$) in einem Rohr mit 15 cm Innendurchmesser wird mit verschiedenen Messsystemen kontrolliert.

- a) Unabhängig von der Messmethode: Wie groß ist der Massenstrom
- b) Magnetisch induktiver Durchflussmesser: (Magnetfeldstärke $B=300\mu T$, keine Magnetfeldverzerrung) Welche Spannung wird gemessen?
- c) Ultraschalllaufzeitmesser: (Einstrahlwinkel $\phi=45^\circ$, Schallgeschwindikeit im ruhenden Wasser $c=1480\frac{m}{s}$): Welche exakte Laufzeitdifferenz Δt wird gemessen?

Aufgabe 5 (6 Punkte)

Ein Objekt mit der Gesamthöhe 12mm soll mit einem Objektiv (Brennweiter f=25mm) komplet scharf auf eine CCD-Fläche (Gesamthöhe: 2,4mm) anbgebildet werden.

- a) Wie groß ist der Abbildungsmaßstab β für eine scharfe Abbildung?
- b) Wie groß ist die Gegenstandsweite g und die Bildweiter b für eine scharfe Abbildung

Aufgabe 6 (5 Punkte)

Mit einem GaAs-Hallsensor wird bei einem anliegenen Magnetfeld der magnetischen Flussdichte $B_0=0.1T$ und dem Strom $I_x=7mA$ senkrecht zum Magnetfeld eine Hallspannung $U_H=156\ mV$ gemessen.

a) Wie groß ist die Plättchendicke bei einem Hallkoeffizienten von

$$A_H = 8,917 * 10^{-5} \frac{m^3}{A*s} ?$$

b) Wie groß ist der Hallwiderstand R_H ?

Aufgabe 7 (5 Punkte)

Ein strahlungsempfindlicher Sensor misst im senkrechten Abstand von 3 m die Beleuchtungsstärke $E_x=2\ lx$ einer Strahlungsquelle.

- a) Wie groß ist die Lichtstärke dieser Strahlungsquelle?
- b) Bereichen Sie den gesamten Lichtstrom, den die Strahlungsquelle ausstrahlt.
- c) Annahme: Die Strahlungsquelle strahlt über den gesamten Raumwinkel (4π) gleichmäßig Licht ab.