BAS – 26 (Optimization Techniques) Sheet 1 (UNIT -1 & 2) B. Tech. IV semester

1. Optimize the following problems by Langragian Method:

(a)
$$f = 1 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$
 subject to $x_1 + 2x_2 + 2x_3 = 5$.

(b)
$$f = 10 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_2x_3 + 2x_1x_3$$
 subject to $x_1 + 2x_2 + 2x_3 = 5$.

(c)
$$f(x_1, x_2, x_3) = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 6x_3 - 100$$
 subject to $x_1 + x_2 + x_3 = 20$

(d)
$$f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3$$
 subject to $x_1 + x_2 + 2x_3 = 3$

(e)
$$f = 9 - 8x_1 - 6x_2 - 4x_3 + 2x_1^2 + 2x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3$$
 subject to the $x_1 + x_2 + 2x_3 = 4$

(f)
$$f(x_1, x_2, x_3) = 3x_1^2 - 2x_2^2 + 6x_3^2 + 6x_1x_2 - 4x_2x_3 - 4x_1 + 12x_2 - 12x_3 + 10$$
, $3x_1 + 2x_2 - 4x_3 = 6$.

(g)
$$f = 2x_1 - 3x_2 + 4x_3 + 4x_1^2 + 5x_2^2 - 6x_3^2 + 2x_1x_3 + 4x_2x_3 - 6x_1x_2$$
, $2x_1 - 3x_2 + 4x_3 = 10$.

(2) Minimize
$$f(X) = (1/2)(x_1^2 + x_2^2 + x_3^2)$$
 subject to the conditions $x_1 - x_2 = 0$ and $x_1 + x_2 + x_3 - 1 = 0$.

- (3) Find the all extreme points of the function $f = 5x_1^3 + 2x_2^3 + 3x_3^3 + 4x_1^2 + 8x_2^2 + 12x_3^2 15$. Show that the function is maximum or minimum for any two extreme points that at least one variable is non-zero.
- (4) Find the all extreme points of the function $(x_1, x_2, x_3) = 3x_1^3 x_2^3 + x_3^3 4x_1 + 12x_2 24x_3$. Discuss the nature of extreme point $(\frac{2}{3}, -2, 2\sqrt{2})$.
- (5) Find the all extreme points of the Optimizing problem: $f(x_1, x_2) = x_1^3 3x_1x_2^2 + x_2^4 + x_2^2$. Also discuss the nature of two non-zero extreme points.
- (6) Discuss the nature of two non zero extreme points of the problem:

$$f = x_1^3 - 3 x_1 x_2^2 + 6x_2^3 + x_2^2 + \left(\frac{1}{3}\right) x_3^3 - x_2 x_3^2$$
.

(7) Find the all extreme points of the function and discuss the nature of two extreme points with $x_3 = \frac{2}{\sqrt{5}}$.

$$f(x_1, x_2, x_3) = \left(\frac{1}{3}\right)x_1^3 - 6x_2^3 + 10x_3^3 - 5x_1 + 12x_2 - 24x_3 + 2x_1^2.$$

- (8) Optimization the following problems by method of Kuhn Tucker conditions. Explain all cases.
- (a) Maximize $f(x_1, x_2) = 4x_1 + 7x_2 x_1^3 2x_2^2$ subject to $2x_1 + 5x_2 \le 6$, $2x_1 15x_2 \le 12$.
- (b) Maximize $f(x_1, x_2) = -x_1^2 x_2^2 + x_1 x_2 + 7x_1 + 4x_2$ with $x_1 5 \le 0$, $2x_1 + 3x_2 70 \le 0$.
- (c) Maximize $f(x_1, x_2) = 32 x_1 + 50 x_2 10 x_2^2 + x_2^3$ subject to $3 x_1 + x_2 \le 11$, $2 x_1 + 5 x_2 \le 16$, $x_1 \ge 0, x_2 \ge 0$.

- (d) Maximize $8x_1 + 4x_2 + x_1x_2 x_1^2 x_2^2$ subject to $2x_1 + 3x_2 \le 24$, $-5x_1 + 12x_2 \le 24$, $x_2 \le 5$
- (e) Minimize $f(X) = x_1^2 + x_2^2 + x_3^2$ subject to $x_1 + x_2 + x_3 \ge 5$ and $x_3 \ge 2$.
- (f) Minimize $z = (x_1 1)^2 + (x_2 2)^2$ subject to $-x_1 + x_2 = 1$ $x_1 + x_2 \le 2$ $x_1 \ge 0$, $x_2 \ge 0$.
- (g) Maximize $z = -x_1^2 x_2^2 + 4x_1 + 6x_2$ subject to $x_1 + x_2 \le 6$ $x_1 \le 3$, $x_2 \le 4$ $x_1 \ge 0$, $x_2 \ge 0$.
- (h) Minimize $z = (x_1 3)^2 + (x_2 5)^2$ subject to $x_1 + x_2 \le 7$ $x_1 \ge 0$, $x_2 \ge 0$.
- (i) Minimize $z = x_1^2 + 2x_2^2 + 3x_3^2$ subject to $x_1 x_2 2x_3 \le 12$, $x_1 + 2x_2 3x_3 \le 8$ $x_1 \ge 0$, $x_2 \ge 0$.
- (9) Find the minimum of the function $f(x) = x^5 5x^3 20x + 5$ by the Golden section method in the interval (0, 5).
- (10) Find the minimum of the function $f(x) = 12x^5 45x^4 + 40x^3 + 5$ by Fibonacci method in the interval (0, 4).
- (11) Find the minimum of the function $f(x) = x^2 \frac{x^3}{5} Sin^{-1}(Sin(x))$ in the range (-1,3) by Fibonacci method with taking n = 6. Also discuss the validity of results.
- (12) Find the minimum of the function $x^3/16-27x/4+(Sinx)^2$ in the range (0, 10) by Fibonacci method with n = 7
- (13) Find the minimum of $0.5 \frac{0.75}{1+x^2} 0.65x$ tan⁻¹($\frac{1}{x^2}$) in the range (-1, 4) by Golden section method with n = 7.
- (14) Find the minimum of the function $f(x) = 10 x^5 40 x^4 + 30 x^3 + 5$ by Fibonacci method in the given interval (1, 3.5) up to 6 iterations. Also test the accuracy.
- (15) Find the minimum of the function $f(x) = x^3 + x^2 x 2$ in the interval -4 to 4 by Fibonacci method.
- (16) Find the minimum of the function $f(x) = -\frac{1.5}{x} + \frac{6 \times 10^{-6}}{x^9}$ in the interval -4 to 4 by Golden section method.
- (17) Find the maximum of the function $f(x) = x^2 \frac{x^3}{5} Sin^{-1}(Sin(x))$ in the range (2, 6) by golden section method.
- (18) Obtain the dual of the following problems. Explain properly.
- (a) Min $z = 2x_1 + 3x_2 + 4x_3$ subject to the condition $2x_1 + 3x_2 + 5x_3 \ge 2$, $3x_1 + x_2 + 7x_3 = 3$, $x_1 + 4x_2 + 6x_3 \le 5$. $x_1, x_2 \ge 0$ and x_3 is unrestricted.
- (b) Min $z = 3x_1 4x_2 + 5x_3$ subject to $3x_1 + 4x_2 + 5x_3 \ge 3$, $4x_1 + 2x_2 + 8x_3 = 3$, $x_1 + 4x_2 + 6x_3 \le 5$. $x_1, x_2, x_3 \ge 0$.
- (c) Min $z = x_1 3x_2 + 7x_3$ subject to the constraints $x_1 3x_2 + 4x_3 = 5$, $x_1 2x_2 \le 3$, $x_1 2x_2 x_3 \ge 4$, $x_1, x_3 \ge 0$ and x_2 is unrestricted.
- (d) Min $z = 3x_1 + x_2 + 2x_3 x_4$ subject to the conditions: $2x_1 x_2 + 3x_3 + x_4 = 1$, $x_1 + x_2 x_3 + 4x_4 = 3$ $x_1, x_2, x_3 \ge 0$ and x_4 is unrestricted.

BAS – 26 (Optimization Techniques) Sheet 2 (UNIT - 2) B. Tech. IV semester

- (1) Solve the following problems by using simplex method:
 - (a) Maximize f = 3x + 2y + 5z subject to subject to

$$x+2y+z \le 430$$
, $3x+2z \le 460$, $x+4y \le 420$, $x \ge 0$, $y \ge 0$, $z \ge 0$.

(b) Maximize z = 5 x + 3 y subject to

$$x + y \le 2$$
, $5x + 2y \le 10$, $3x + 8y \le 12$, $x \ge 0$, $y \ge 0$.

(c) Maximize z = 19 x + 7 y subject

$$7x + 6y \le 42$$
, $5x + 9y \le 45$, $x - y \le 4$, $x \ge 0$, $y \ge 0$.

(d) Maximize z = x + 2y + 2z subject to constraints

$$5x + 2y + 3z \le 15$$
, $x + 4y + 2z \le 12$, $2x + z \le 8$, $x \ge 0, y \ge 0, z \ge 0$.

(e) Minimize z = -10 x - 15 y - 8z subject to

$$x + 2y + 2z \le 200$$
, $2x + y + z \le 220$, $3x + y + 2z \le 180$, $x \ge 0, y \ge 0, z \ge 0$.

(f) Maximize $f = 2x_1 + 4x_2 + 3x_3$ subject to conditions

$$3x_1 + 4x_2 + 3x_3 \le 3600$$
, $2x_1 + x_2 + 3x_3 \le 2400$, $x_1 + 3x_2 + 3x_3 \le 4800$, $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$

(g) Min $z = x_1-3x_2+2x_3$, subject to

$$3x_1 - x_2 + 3x_3 \le 7$$
, $-2x_1 + 4x_2 \le 12$, $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

- (h) $Max z = -x_1 + 2x_2$, subject to, $-x_1 + x_2 \le 1$, $-x_1 + 2x_2 \le 4$, $x_1, x_2 \ge 0$.
- (2) Solve the following Linear Programming Problem by decomposition principle
 - (a) Maximize $f = 8x_1 + 3x_2 + 8x_3 + 6x_4$ subject to

$$4x_1 + 3x_2 + x_3 + 3x_4 \le 16$$
, $4x_1 - x_2 + x_3 \le 12$,

$$x_1 + 2x_2 \le 8$$
, $3x_1 + x_2 \le 10$, $2x_3 + 3x_4 \le 9$,

$$4x_3 + x_4 \le 12.$$
 $x_i \ge 0, i = 1, 2, 3, 4.$

(b) Maximize f = 7x - 9y + 5z + 8w subject to

$$5x + 2y + 5z + 11w \le 20,$$

$$9y + 13z + 15w \le 14$$
,

$$5z + 2w \le 10$$
, $w \ge 1$,

$$3z + 5w \le 15$$
, $6x + 5y \le 30$, $y \ge 5$,

and
$$x, y, w, z \ge 0$$
.

(c) Maximize f = 10 x - 20y + 5z + 30 w subject to

$$4x - 3y + 5z + 10 w \le 20,$$

$$7y + 10z + 5w \le 6, 3z + w \le 70,$$

$$z + w \le 45,$$

$$z \le 20, w \le 40, z \ge 0, w \ge 0,$$

$$x + y \le 300, \quad x - 2y \le 200,$$

$$2x + y \ge 100$$
, $y \le 200$, $x, y \ge 0$.

(d) $\max z = x_1 + x_2 + 8000 x_3 + 7000 x_4 \text{ subject to},$

$$8x_1 + 3x_2 + 500 x_3 + 100 x_4,$$

$$8x_1 + 10x_2 - 200 x_4$$

$$x_1 + 2x_2 \le 2000, x_1 + x_2 \le 1500, x_2 \le 600$$

$$3x_3 + x_4 \le 66$$
, $x_3 + x_4 \le 45$, $x_3 \le 20$, $x_4 \le 40$

- (3) Solve the following L. P. problem by Karmarkar's method. Use the value of $\varepsilon = 0.05$ for (1) testing the convergence of the procedure and $\alpha = 1/4$.
 - (a) Minimize $f = 2x_1 + 11x_2 9x_3$ subject to $3x_1 4x_3 = 0$, $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$, i = 1, 2, 3.
 - (b) Minimize $f = 3 x_1 + 11 x_2 13 x_3$ subject to $3x_1 7 x_3 = 0$, $x_1 + x_2 + x_3 = 1$ $x_i \ge 0$, i = 1, 2, 3.
 - (c) Minimize $f = 2x_1 + 13x_2 11x_3$ with $4x_1 3x_3 = 0$, $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$, i = 1, 2, 3.
 - (d) Minimize $f = 4 x_1 + 15 x_2 13 x_3$ Subject to $3 x_1 4 x_3 = 0$, $x_1 + x_2 + x_3 = 1$, $x_1 \ge 0$, i = 1, 2, 3.
 - (e) Minimize $f = 3x_1 + 5x_2 3x_3$ Subject to $x_1 x_3 = 0$, $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$, i = 1, 2, 3.
- (4)Use dual simplex method to solve following L.P.P.
 - (a) Maximize $z = -2x_1 x_2$ subject to

$$3x_1 + x_2 \ge 3$$
, $x_1 + 3x_2 \ge 6$, $x_1 + 2x_2 \ge 3$ and $x_1, x_2 \ge 0$.

(b) Minimize z = x + y subject to

$$x + 2y \ge 7$$
, $4x + y \ge 6$, $x \ge 0$, $y \ge 0$.

(c) Minimize $z = 4 x_1 + 2x_2$ subject to

$$x_1 + x_2 = 1$$
, $3x_1 - x_2 \ge 2$, $x_1, x_2 \ge 0$.

(d) Minimize $Z = x_1 + 2x_2 + 3x_3$ subject to constraints

$$2x_1 - x_2 + x_3 \ge 4$$
, $x_1 + x_2 + 2x_3 \ge 8$, $x_2 - x_3 \ge 2$, $x_i \ge 0$, $i = 1, 2, 3$.

(e) Minimize $Z = 4x_1 + 2x_2 + 3x_3$ subject to

$$2x_1 + 4x_3 \ge 5$$
, $2x_1 + 3x_2 + x_3 \ge 4$, $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$.

(f) Min $z = 3 x_1 + x_2$ subject to

$$x_1 + x_2 \ge 1$$
 $2x_1 + 3x_2 \ge 2$, $3x_1 + 4x_2 \ge 6$ $x_1, x_2 \ge 0$

(g) Maximum $z = 3x_1 - 2x_2$ subject to the constraints:

$$x_1 + x_2 \le 1$$
, $2x_2 + 2x_2 \ge 4$ And $x_1, x_2 \ge 0$.

(h) Min $z = 5 x_1 + 7 x_2$ subject to

$$x_1 + x_2 \ge 1$$
, $2x_1 + 3x_2 \ge 2$, $4x_1 + x_2 = 4$, $x_1, x_2 \ge 0$.

(5) Solving the following transportation problems and find optimum solution.

A	В	C	Available
50	30	220	1
90	45	170	
250	200	50	3
4	2	2	4
	90	90 45	90 45 170