

LELEC1755

Partie « Lignes de transmission »

CM₆

Lignes de transmission

Applications

Matière traitée dans le 6e module LELEC1755

1. Réflectométrie

2. Types de lignes de transmission

3. Applications aux ondes planes

> ligne ouverte, générateur adapté

charge résistive, générateur non adapté

> charge capacitive, générateur non adapté

1. Réflectométrie

La longueur des câbles a augmenté rapidement durant les 50 dernières années pour arriver à un total cumulé de :

Moyen de transport	Longueur de câble cumulée
Automobile	4 km
Avion de combat	40 km
Ferroviaire	200 km
Avion civil	400 km
Transport maritime	2.500 km

➤ La maintenance est difficile et coûteuse et le nombre de pannes augmente (avec parfois des conséquences dramatiques, notamment en aviation)

Des analyses ont été faites sur le types de défauts les plus courants (Nasa, 2007)

- Frottement des câbles et harnais (37%)
- Courts-circuits (incluant les arcs) (18%)
- Coupure des câbles (11%)
- Problèmes de connecteurs (9%)

K R. Wheeler et al. Aging Aircraft Wiring Fault Detection Survey. Rap. tech. NASA Ames Research Center, 2007.

La détection de défauts « non francs » deviennent un enjeu important

Franchet M., Réflectométrie appliquée à la détection de défauts non francs dans les torons de câbles, PhD Univ Paris Est, 2012

Deux types de réflectométrie

1. Temporelle

- Impulsion
- > Echelon
- Gaussienne

Exemple de réponse impulsionnelle à l'entrée d'un câble ouvert, avec un défaut (mesure du signe réfléchi à l'entrée de la ligne)

2. Fréquentielle

Signal modulé en fréquence (voir radar)

Réflectométrie temporelle pour analyser les connecteurs et les transitions

Time Domain (TDR) Test Data 0.0 Units The TDR data is in real units over time/ .050 distance. It shows the discontinuity at the .040 launch and the impedance of the board. .030 The discontinuity of the launch is a capaci-.020 tive spike circled in red of a little lower than "Questionable" Inductive Point .010 -50 milli-units. The board impedance is the 0 long section in the middle varying from -.010 -20 milli-units to -10 milli-units. -.020-.030 -.040 .050 STOP 500.0 ps TDR of original coplanar test board.

Exemples de lignes de transmission TEM

- Câble coaxial
- Ligne bifilaire (twinlead)
- Lignes planaires

Ligne microruban

substrat planaire

- De manière générale, composé d'un nombre de conducteurs quelconques, avec des diélectriques ou bien un diélectrique seul
- Lignes à plans parallèles

Guides d'ondes métalliques (non-TEM)

Guide rectangulaire

Guide circulaire

Câble coaxial

Ref: Sky-Brookers

Utilisation des guides d'ondes métalliques: émetteurs communications satellites

Guides d'ondes diélectriques, constitués de plusieurs couches de diélectriques de propriétés différentes

Guides intégrés

2. Types de lignes de transmission

Lignes planaires/microruban

- Le champ électrique est perturbé par l'interface air-diélectrique
- Existence d'un effet de bord: les champs s'étendent de part et d'autre du ruban
- Les champs électrique et magnétique sont orthogonaux dans le plan transverse

2. Types de lignes de transmission

Lignes planaires/microruban

Antennes radar 24 GHz

2. Types de lignes de transmission

Lignes planaires/microruban

Circuit microruban « front end » radar 24 GHz

Incidence normale sur une interface CEP

$$\begin{split} \overline{E_i} &= \overline{a_x} E_i e^{-j\beta z} \\ \overline{H_i} &= \sqrt{\frac{\varepsilon}{\mu}} \overline{a_z} \times \overline{E_i} = \overline{a_y} \sqrt{\frac{\varepsilon}{\mu}} E_i e^{-j\beta z} \\ \overline{E_r} &= -\overline{a_x} E_i e^{j\beta z} \\ \overline{H_r} &= \overline{a_y} \sqrt{\frac{\varepsilon}{\mu}} E_i e^{j\beta z} \\ \overline{E} &= \overline{E_r} + \overline{E_i} = -\overline{a_x} E_i e^{j\beta z} + \overline{a_x} E_i e^{-j\beta z} = -2j\overline{a_x} E_i \sin(\beta z) \end{split}$$

$$\overline{E_i} = \overline{E_i} = -1$$

$$\begin{array}{c} \operatorname{Incident wave} \\ \overline{H_i} = \overline{H_i} \\ \operatorname{Reflected wave} \\ \overline{E_i} = \overline{H_i} \\ \overline{H_i} = \overline{H_i} \\ \overline{H_$$

Ligne de transmission équivalente

$$Z_1 = \sqrt{\mu_1/\varepsilon_1}$$
; β_1

Réflexion sur un CEP

Incidence oblique sur un CEP

1. E perpendiculaire au plan d'incidence → TE

 $= \left[-\overline{a_y} \cos \theta \cos(\beta z \cos \theta) + \overline{a_z} j \sin \theta \sin(\beta z \cos \theta) \right] 2Y E_i e^{-j\beta y \sin \theta}$

$$\beta = \omega \sqrt{\varepsilon \mu} \qquad \overline{r} = y \overline{a_y} + z \overline{a_z}$$

$$\overline{\beta_i} = (\overline{a_y} \sin \vartheta_i + \overline{a_z} \cos \vartheta_i) \beta \qquad \overline{\beta_r} = (\overline{a_y} \sin \vartheta_r - \overline{a_z} \cos \vartheta_r) \beta$$

$$\overline{E_i} = \overline{a_x} E_i e^{-j\overline{\beta_i} \cdot \overline{r}} = \overline{a_x} E_i e^{-j\beta y \sin \vartheta_i} e^{-j\beta z \cos \vartheta_i}$$

$$\overline{E_r} = \overline{a_x} E_r e^{-j\overline{\beta_r} \cdot \overline{r}} = \overline{a_x} E_r e^{-j\beta y \sin \vartheta_r} e^{+j\beta z \cos \vartheta_r}$$

$$\overline{H_i} = Y E_i (\overline{a_y} \cos \vartheta_i - \overline{a_z} \sin \vartheta_i) e^{-j\overline{\beta_i} \cdot \overline{r}}$$

$$\overline{H_r} = Y E_r (-\overline{a_y} \cos \vartheta_r - \overline{a_z} \sin \vartheta_r) e^{-j\overline{\beta_r} \cdot \overline{r}}$$

$$\overline{E} = \overline{E_i} + \overline{E_r}$$

$$= -\overline{a_x} 2j E_i e^{-j\beta y \sin \vartheta} \sin(\beta z \cos \vartheta)$$

$$\overline{H} = \overline{H_i} + \overline{H_r}$$

$$Z = \sqrt{\frac{\mu}{\varepsilon}} = \frac{1}{Y}$$

Incidence oblique sur un CEP

1. E perpendiculaire au plan d'incidence → TE

- Le champ total s'annule en z = 0 et en

$$\beta z_m \cos \vartheta = -m\pi$$
$$z_m = -m\lambda_z/2$$

- $-\lambda_z$ = longueur d'onde apparente selon z
- Champs E_x et H_y
 - déphasés de π
 - onde stationnaire selon z
 - onde progressive selon y
 - → onde plane non uniforme → onde TE
- Ligne de transmission équivalente selon z

$$Z = (\sqrt{\mu/\varepsilon})/\cos\vartheta; \beta\cos\vartheta$$

Réflexion sur un CEP

Incidence oblique sur un CEP

2. E parallèle au plan d'incidence → TE

$$\begin{split} & \vartheta_{i} = \vartheta_{r} = \vartheta \\ & E_{r} = E_{i} \\ & \overline{H} = -\overline{a_{x}} 2YE_{i} \cos(\beta z \cos\vartheta) e^{-j\beta y \sin\vartheta} \\ & \overline{E} = -\overline{\left[a_{y}} 2j \cos\vartheta \sin(\beta z \cos\vartheta) + \overline{a_{z}} 2\sin\vartheta \cos(\beta z \cos\vartheta)\right]} E_{i} e^{-j\beta z \sin\vartheta} \end{split}$$

Le champ tangentiel s'annule en

$$z = 0$$

$$z_{m} \beta \cos \vartheta = -m\pi$$

$$z_{m} = -m\pi/\beta \cos \vartheta$$

- → onde plane non uniforme → onde TM
- Ligne de transmission équivalente selon z

 $Z = (\sqrt{\mu/\varepsilon})\cos\vartheta; \beta\cos\vartheta$

Réflexion sur un bon conducteur

Incidence normale sur un bon conducteur (non-parfait)

> Champ transmis

$$\overline{E_{t}} = \overline{a_{x}} E_{t} e^{-\gamma t}$$

$$\overline{H_{t}} = -\left(\frac{1}{j\omega\mu}\right) \nabla \times \overline{E_{t}} = \frac{\gamma}{j\omega\mu} \overline{a_{y}} E_{t} e^{-\gamma t}$$

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}} \quad \text{skin depth}$$

$$\gamma = \sqrt{j\omega\mu\sigma} = \alpha_{t} + j\beta_{t} = \frac{1+j}{\delta} = \sqrt{\frac{\omega\mu\sigma}{2}} (1+j)$$

Impédance de métal

$$Z_m \approx \sqrt{\frac{\omega\mu}{2\sigma}} (1+j)$$

car
$$Z = \sqrt{\frac{j\omega\mu}{\sigma_{eq} + j\omega\varepsilon'}} \qquad \left(\frac{\sigma_{eq}}{\omega\varepsilon'}\right)^2 >> 1$$

$$\Gamma = \frac{E_r}{E_i} \quad ; \quad T = \frac{E_t}{E_i}$$

$$\Gamma = \frac{Z_m - Z_1}{Z_m + Z_1}$$
; $T = 1 + \Gamma = \frac{2Z_m}{Z_m + Z_1}$

Réflexion et transmission sur un diélectrique

Incidence normale

$$\overline{E_i} = \overline{a_x} E_i e^{-j\beta_1 z}$$

$$\overline{H_i} = \sqrt{\frac{\mathcal{E}_1}{\mu_1}} \overline{a_z} \times \overline{E_i} = \overline{a_y} Y_1 E_i e^{-j\beta z}$$

$$\overline{E_r} = \overline{a_x} E_r e^{j\beta_1 z} \qquad \overline{E_t} = \overline{a_x} E_t e^{-j\beta_2 z}$$

$$\overline{H_r} = -\overline{a_y} Y_1 E_r e^{j\beta z} \qquad \overline{H_t} = Y_2 \overline{a_y} E_t e^{j\beta_2 z}$$

$$\Gamma = E_r / E_i = \frac{Z_2 - Z_1}{Z_2 + Z_1}$$

$$T = E_t / E_i = 1 + \Gamma = \frac{2Z_2}{Z_2 + Z_1}$$

$$Z_1 = \sqrt{\mu_1/\varepsilon_1}$$
; β_1 $Z_2 = \sqrt{\mu_2/\varepsilon_2}$; β_2

$$Z_1 = \sqrt{\frac{\mu_1}{\varepsilon_1}} = \frac{1}{Y_1}$$
; $Z_2 = \sqrt{\frac{\mu_2}{\varepsilon_2}} = \frac{1}{Y_2}$

Réflexion et transmission sur un diélectrique

Incidence normale, interfaces multiples

$$\overline{E_{i1}} = \overline{a_x} E_{i1} e^{-j\beta_1 z}; \overline{H_{i1}} = \sqrt{\frac{\mathcal{E}_1}{\mu_1}} \overline{a_z} \times \overline{E_{i1}} = \overline{a_y} Y_1 E_{i1} e^{-j\beta z} \quad Z_1 = \sqrt{\frac{\mu_1}{\mathcal{E}_1}} = \frac{1}{Y_1}; Z_2 = \sqrt{\frac{\mu_2}{\mathcal{E}_2}} = \frac{1}{Y_2}; Z_2 = \sqrt{\frac{\mu_3}{\mathcal{E}_3}} = \frac{1}{Y_3}$$

$$\overline{E_{i2}} = \overline{a_x} E_{i2} e^{-j\beta_2 z}; \overline{H_{i2}} = \sqrt{\frac{\mathcal{E}_2}{\mu_2}} \overline{a_z} \times \overline{E_{i2}} = \overline{a_y} Y_2 E_{i2} e^{-j\beta z} \qquad \Gamma_{23} = \frac{Z_3 - Z_2}{Z_3 + Z_2}$$

$$\overline{E_{r2}} = \Gamma_{23} \overline{E_{i2}}$$

Dans le milieu 2

$$Z(z) = Z_2 \frac{Z_3 \cos \beta_2 z - j Z_2 \sin \beta_2 z}{Z_2 \cos \beta_2 z - j Z_3 \sin \beta_2 z} = \frac{E_2(z)}{H_2(z)}$$

$$Z_{in}(z) = Z_2 \frac{Z_3 \cos \beta_2 l + j Z_2 \sin \beta_2 l}{Z_2 \cos \beta_2 l + j Z_3 \sin \beta_2 l}$$

$$\Gamma_{in} = \frac{Z_{in} - Z_1}{Z_{in} + Z_1}; P_r = |\Gamma|^2 P_{in}$$

$$E_1 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_1 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_1 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_1 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_2 \longrightarrow \overline{\beta_1}$$

$$E_3 \longrightarrow \overline{\beta_1}$$

$$E_4 \longrightarrow \overline{\beta_1}$$

$$E_4 \longrightarrow \overline{\beta_1}$$

$$E_4 \longrightarrow \overline{\beta_1}$$

$$E_5 \longrightarrow \overline{\beta_1}$$

$$E_5 \longrightarrow \overline{\beta_1}$$

$$E_7 \longrightarrow \overline{\beta_1}$$

Réflexion et transmission sur un diélectrique

Incidence oblique: E perpendiculaire au plan d'incidence → TE

 $Z_2/\cos\theta_2$; $\beta_2\cos\theta_2$

$$\overline{E_i} = \overline{a_x} E_i e^{-j\overline{\beta_i} \cdot \overline{r}} \quad ; \quad \overline{\beta_i} = (\overline{a_y} \sin \vartheta_i + \overline{a_z} \cos \vartheta_i) \beta_1
\overline{E_r} = \overline{a_x} E_r e^{-j\overline{\beta_r} \cdot \overline{r}} \quad ; \quad \overline{\beta_r} = (\overline{a_y} \sin \vartheta_r - \overline{a_z} \cos \vartheta_r) \beta_1
\overline{E_t} = \overline{a_x} E_t e^{-j\overline{\beta_t} \cdot \overline{r}} \quad ; \quad \overline{\beta_t} = (\overline{a_y} \sin \vartheta_2 + \overline{a_z} \cos \vartheta_2) \beta_2
\beta_1 = \omega \sqrt{\varepsilon_1 \mu_1}
\beta_2 = \omega \sqrt{\varepsilon_2 \mu_2}
\vartheta_i = \vartheta_r = \vartheta_1
\sin \vartheta_2 = (v_2/v_1) \sin \vartheta_1 = \sqrt{\varepsilon_1 \mu_1/\varepsilon_2 \mu_2} \sin \vartheta_1
E_i + E_r = E_t
H_{yi} + H_{yr} = H_{yt}
(E_i - E_r) \cos \vartheta_i/Z_1 = E_t \cos \vartheta_2/Z_2$$

 $Z_1/\cos\vartheta_1$; $\beta_1\cos\vartheta_1$

Incident wave $\overline{E_i}$ $\overline{H_i}$ $\overline{\beta_i}$ $\overline{\theta_i}$ $\overline{a_x}$ $\overline{a_y}$ $\overline{H_t}$ $\overline{\beta_i}$ $\overline{\beta_r}$ $\overline{\beta_r}$

Reflected wave

$$\Gamma_A = \frac{E_r}{E_i} = \frac{Z_2/\cos\vartheta_2 - Z_1/\cos\vartheta_1}{Z_2/\cos\vartheta_2 + Z_1/\cos\vartheta_1}$$

$$T_A = \frac{E_t}{E_i} = \frac{2Z_2/\cos\vartheta_2}{Z_2/\cos\vartheta_2 + Z_1/\cos\vartheta_1}$$

Réflexion et transmission sur un diélectrique

Incidence oblique: E parallèle au plan d'incidence > TM

$$\begin{split} &\vartheta_i = \vartheta_r = \vartheta_1 \\ &\sin \vartheta_2 = (v_2/v_1)\sin \vartheta_1 = \sqrt{\varepsilon_1 \mu_1/\varepsilon_2 \mu_2} \sin \vartheta_1 \\ &H_i + H_r = H_t \\ &E_{yi} + E_{yr} = E_{yt} \\ &(E_{yi} - E_{yr})/\cos \vartheta_1 Z_1 = E_{yt}/\cos \vartheta_2 Z_2 \end{split}$$

$$\Gamma_B = \frac{E_{yr}}{E_{yi}} = \frac{Z_2 \cos \vartheta_2 - Z_1 \cos \vartheta_1}{Z_2 \cos \vartheta_2 + Z_1 \cos \vartheta_1}$$

$$T_B = \frac{E_{yt}}{E_{yi}} = \frac{2Z_2 \cos \vartheta_2}{Z_2 \cos \vartheta_2 + Z_1 \cos \vartheta_1}$$

 $Z_1 \cos \theta_1$; $\beta_1 \cos \theta_2$ $Z_2 \cos \theta_2$; $\beta_2 \cos \theta_2$

Reflected wave

Réflexion et transmission sur un diélectrique

Incidence oblique – bilan de puissance

> Vecteur de Poynting selon z

$$E_{i}H_{yi}^{*}/2 = |E_{i}|^{2}/(2Z_{1}/\cos\vartheta_{1})$$

$$-E_{r}H_{yr}^{*}/2 = -|E_{r}|^{2}/(2Z_{1}/\cos\vartheta_{1})$$

$$E_{t}H_{yt}^{*}/2 = |E_{t}|^{2}/(2Z_{2}/\cos\vartheta_{2})$$

$$-E_{i}H_{i}^{*}/2 = |E_{yi}|^{2}/(2Z_{1}\cos\vartheta_{1})$$

$$E_{yr}H_{r}^{*}/2 = -|E_{yr}|^{2}/(2Z_{1}\cos\vartheta_{1})$$

$$-E_{yt}H_{t}^{*}/2 = |E_{yt}|^{2}/(2Z_{2}\cos\vartheta_{2})$$

E // interface

E ⊥ interface (dans le plan d'incidence)

Réflexion et transmission sur un diélectrique

Incidence oblique – bilan de puissance

E // interface
$$|E_i|^2 - |E_r|^2 = \frac{Z_1/\cos \vartheta_1}{Z_2/\cos \vartheta_2} |E_t|^2$$

$$1 - \left| \Gamma_A \right|^2 = \frac{Z_1 / \cos \vartheta_1}{Z_2 / \cos \vartheta_2} \left| T_A \right|^2$$

$$1 - \left| \Gamma_B \right|^2 = \frac{Z_1 \cos \vartheta_1}{Z_2 \cos \vartheta_2} \left| T_B \right|^2$$

Puissance réfélchie nulle = transmission totale

→ angle de Brewster

 E_i perpendiculaire au plan d'incidence, TE

$$\Gamma_A = \frac{E_r}{E_i} = \frac{Z_2/\cos\vartheta_2 - Z_1/\cos\vartheta_1}{Z_2/\cos\vartheta_2 + Z_1/\cos\vartheta_1}$$

$$\Gamma_A = 0$$
 if $Z_2/\cos\theta_2 = Z_1/\cos\theta_1$

$$\sin^2 \vartheta_1 = \frac{\mu_1 \varepsilon_2 / \mu_2 \varepsilon_1 - 1}{(\mu_1 / \mu_2)^2 - 1}$$
 avec $\sin \vartheta_2 = \sqrt{\frac{\varepsilon_1 \mu_1}{\varepsilon_2 \mu_2}} \sin \vartheta_1$

E_i parallèle au plan d'incidence, TM

$$\Gamma_B = \frac{E_{yr}}{E_{yi}} = \frac{Z_2 \cos \vartheta_2 - Z_1 \cos \vartheta_1}{Z_2 \cos \vartheta_2 + Z_1 \cos \vartheta_1}$$

$$\Gamma_B = 0$$
 if $Z_2 \cos \theta_2 = Z_1 \cos \theta_1$

avec
$$\sin \vartheta_2 = \sqrt{\frac{\varepsilon_1 \mu_1}{\varepsilon_2 \mu_2}} \sin \vartheta_1$$

$$\sin^2 \vartheta_1 = \frac{\mu_2 \varepsilon_1 / \mu_1 \varepsilon_2 - 1}{(\varepsilon_1 / \varepsilon_2)^2 - 1}$$

Matériau diélectrique parfait

E // interface → pas de transmission totale

E
$$\perp$$
 interface $\sin \vartheta_1 = (\varepsilon_1/\varepsilon_2 + 1)^{-1/2}$

Pure magnetic material

 $E \perp$ interface \rightarrow pas de transmission totale

E // interface
$$\sin \vartheta_1 = (\mu_1/\mu_2 + 1)^{-1/2}$$

Réflexion totale (transmission nulle)

Angle de transmission

$$\sin \vartheta_2 = \sqrt{\varepsilon_1 \mu_1 / \varepsilon_2 \mu_2} \sin \vartheta_1 = n_1 / n_2 \sin \vartheta_1$$

... complexe si $n_1 > n_2$

$$\vartheta_{1c} = \arcsin(n_2/n_1) = \arcsin(v_2/v_1)$$

- → Réflexion totale pour tous les angles supérieurs à l'angle critique
- ➢ Il existe un champ dans le milieu 2 mais aucune propagation selon z
- \succ Onde non-uniforme: propagation (β) selon y mais attenuation (α) selon z