

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Визуализация сцен трехмерных объектов

Студент: Могилин Никита Сергеевич ИУ7-51Б

Руководитель: Мальцева Д. Ю.

Цели и задачи курсовой работы

Цель — разработка программного обеспечения для визуализации сцен трехмерных объектов с изменяемыми параметрами.

Задачи:

- формализовать задачу в виде IDEF0 диаграммы;
- проанализировать существующие модели представления объектов;
- проанализировать существующие алгоритмы компьютерной графики: удаления невидимых линий и поверхностей, построения теней, закраски и освещения;
- спроектировать программное обеспечение для визуализации трехмерных сцен;
- выбрать средства реализации спроектированного программного обеспечения и разработать его;
- исследовать характеристики разработанного программного обеспечения.

Формализация задачи

Модели описания объектов

Обозначения:

А – Аналитическая;

П – Полигональная;

В – Воксельная;

РС – с помощью равномерной сетки;

НС – с помощью неравномерной сетки.

N – число граней поверхности;

V – число вокселей;

К – общее число ячеек.

Критерии	А	П	В	PC	НС
Временная сложность поиска нормали	0(1)	O(N)	O(V)	0(1)	O(K)
Временная сложность поиска пересечения	0(1)	O(N)	O(V)	O(K)	O(K)
Пространственная сложность хранения	0(1)	O(N)	O(V)	O(K)	O(K)
Возможность описания произвольных объектов	-	+	+	-	+
Отсутствие погрешности при задании сферы	+	-	-	-	-

Объекты сцены (часть 1)

Аналитически заданные объекты

Сфера задается центром и радиусом, куб задается центром и размером стороны

Объекты, заданные с помощью полигональной сетки

Шахматные фигуры задаются множеством вершин и треугольных полигонов

Объекты сцены (часть 2)

Камера

задается положением в пространстве (тремя координатами) и вектором направления.

Источник света

задается положением в пространстве (тремя координатами) и интенсивностью

Алгоритмы удаления невидимых линий и поверхностей

Обозначения алгоритмов: М – требует модификации;

Р – Робертса; О – объектное пространство;

ZБ – с использованием Z-буфера; И – пространство изображений;

В – Варнака; N – число аналитических поверхностей и полигонов;

OT – обратная трассировка лучей. W, H – ширина и высота экрана в пикселях соответственно.

Критерии	Р	ΖБ	В	OT
Возможность построения отражений	-	-	-	+
Возможность отрисовки объектов, заданных аналитически	-	+	-	+
Возможность отрисовки объектов, заданных полигональной сеткой	+	+	+	+
Возможность симуляции эффекта глубины поля	-	М	-	+
Пространство	0	И	И	И
Временная сложность	$O(N^2)$	O(WHN)	O(WHN)	O(WHN)

Функциональная модель программного обеспечения, уровень А0

Функциональная модель программного обеспечения, уровень А1

Алгоритм трассировки лучей

Средства реализации

- Язык: С#;
- Среда разработки: Microsoft Visual Studio;
- Фреймворк для модульного тестирования: XUnit.

Диаграмма классов

Пример интерфейса

Пример визуализации сцены с двумя сферами и сглаживанием

Модульное тестирование

В качестве метрики, используемой для оценки полноты тестирования программного обеспечения, было выбрано покрытие строк кода. Реализованный набор модульных тестов имеет покрытие, равное 23%.

Пример модульного теста

```
[Fact]
public void AdditionOperatorTest()
{
   var v1 = new Vector3(1, 2, 3);
   var v2 = new Vector3(4, 5, 6);
   var result = v1 + v2;

   Assert.True(result.X == 5 && result.Y == 7
&& result.Z == 9);
}
```

Вывод результата тестирования

```
[xUnit.net 00:00:00.00] xUnit.net VSTest Adapter v2.5.3.1+6b60a9e56a (64-bit .NET 8.0.11)
[xUnit.net 00:00:00.04] Discovering: TestProject1
[xUnit.net 00:00:00.06] Discovered: TestProject1
[xUnit.net 00:00:00.06] Starting: TestProject1
[xUnit.net 00:00:00.11] Finished: TestProject1
[xUnit.net 00:00:00.00] xUnit.net VSTest Adapter v2.5.3.1+6b60a9e56a (64-bit .NET 8.0.11)
TestProject1 (тест) успешно выполнено (0.6 с)

Сводка теста: всего: 26, сбой: 0, успешно: 26, пропущено: 0, длительность: 0.6 с
```

Функциональное тестирование, часть 1

Функциональное тестирование проводится по следующему алгоритму:

- 1) разработать тестовые случаи для программы;
- 2) составить входные данные для каждого случая;
- 3) получить картинку для этих входных данных;
- 4) визуально оценить результат.

Минимальная интенсивность источника света

Функциональное тестирование, часть 2

Максимальная интенсивность источника света

Эффект глубины поля, симулируемый 32 дополнительными лучами на пиксель

Функциональное тестирование, часть 3

Изменение цветов отдельных фигур

Зеркальные стены, взаимное отражение при глубине рекурсии 4

Анализ времени генерации кадра

При увеличении числа сфер с 1 до 2 время генерации увеличилось на 8%. Наибольшая эффективность достигается при числе потоков, совпадающих с числом потоков процессора.

Заключение

В результате выполнения курсовой работы, было разработано программное обеспечение для визуализации сцен трехмерных объектов с изменяемыми параметрами.

В ходе выполнения проекта были выполнены все поставленные задачи:

- задача была формализована в виде IDEF0 диаграммы;
- проанализированы модели представления объекта;
- проанализированы существующие алгоритмы компьютерной графики: удаления невидимых линий и поверхностей, учета теней и освещения;
- спроектировано программное обеспечение;
- выбраны средства реализации и реализовано спроектированное программное обеспечение;
- исследована зависимость времени работы программы от числа потоков.