2 Quarks and Leptons

2.1 The Particle Zoo

Cosmic rays are high-energy particles from space. When they enter the Earth's atmosphere, they create new short-lived particles and antiparticles as well as photons. Including

- The **muon** μ negatively charged, 200 times the rest mass of the electron.
- The **pion** π can be charged or neutral, greater rest mass than the muon but less than proton.
- The **kaon** *K* can be charged or neutral, greater rest mass than the pion but less than proton.

Strange Particles

Kaon are created in two through the **strong interaction**. However, their decay through the weak interaction took longer and included **pions** as the product. Kaons are called **strange particles** due to this property.

Exotic particles can be created using **accelerators** where protons collide headon. Their properties can then be measured.

- A kaon decay into **pions**, or $\mu + \bar{\nu}$, or $\bar{\mu} + \nu$.
- Charged pions can decay into $\mu + \bar{\nu}$ or $\bar{\mu} + \nu$.
- π^0 meson decays into high-energy **photons**.

Decays always obey conservation rules.

2.2 Particle Sorting

Particles can be divided into two groups according to whether they interact through the **strong interaction**.

- Hadrons can interact through <u>all four fundamental interactions</u>, including the **strong interaction**.
 - The proton is the only stable hadron.
 - Hadrons tend to decay through the weak interaction.
- **Leptons** interact only through the **weak**, gravitational and electromagnetic interaction.

The hadrons can be divided into two groups

- Baryons are protons and all other hadrons that decay into protons.
- Mesons are hadrons that do not include protons in their decay products.

Baryons and mesons are composed of smaller quarks and antiquarks.

2.3 Leptons at Work

Leptons and antileptons can interact to product hadrons, an **electron-positron annihilation event** can produce a quark and antiquark.

Neutrinos

- Travels near the speed of light.
- Billions passing through the Earth each second with almost no interaction.
- Produced in beta and muon decays.

Neutrinos and antineutrinos produced in beta decays are different from that in muon decays. ν_{μ} and ν_{e} are two types of neutrinos.

Lepton Rules

- Change into other leptons through the **weak interaction**.
- Produced or annihilated in particle-antiparticle interactions.
- They appear to be **fundamental** don't break down into non-leptons.

Interaction between a lepton (neutrino or antineutrino) and a hadron changes it into or from a corresponding charged lepton.

The **lepton number** is +1 for any lepton, -1 for antilepton, 0 for non-lepton. Lepton number is conserved.

$$\nu_e + n \rightarrow p + e^-$$

In muon decay, the muon changes into a muon neutrino.

$$\mu^- \rightarrow e^- + \bar{\nu_e} + \nu_\mu$$

2.4 Quarks and Antiquarks

Strange particles all decay through the weak interaction.

- **Kaon** *K* decays into pions only.
- Sigma Σ
 - Have different rest masses greater than the proton's rest mass.
 - Decays into **protons and pions**.
- Strange particles are created in twos.

Strangeness is conserved in strong interaction, and changes by 0, +1 or -1 in weak interactions.

The Quark Model

	u	d	s
charge Q	+2/3	-1/3	-1/3
strangeness S	0	0	-1
baryon number B	1/3	1/3	1/3

Mesons is a quark-antiquark combination.

- π^0 is any quark-corresponding antiquark combination.
- There are two uncharged kaons, K^0 and $\bar{K^0}$.
- The antiparticle of any meson is another meson.

Baryons and antibaryons are hadrons made of three quarks or antiquarks.

• Proton: uud• Neutron: udd• Antiproton: $\bar{u}\bar{u}\bar{d}$

• A Σ particle is a baryon containing a strange quark.

In β^- decay, a neutron in a neutron-rich nucleus changes into a proton - a down quark changes into an up quark.

$$d \rightarrow u + e^- + \bar{\nu_e}$$

2.5 Conservation Rules

- Energy and charge are conserved in all changes in science.
- Lepton number is conserved in any change.
- Strangeness is conserved in any strong interaction.
- Baryon number is conserved in any change.

The **baryon number** is +1 for any baryon, -1 for antibaryon, 0 for mesons and leptons.