- 1. Suppose that $f(n) = \Theta(g(n))$. Assume that both functions increase without limit.
 - (a) Must it be true that $\log f(n) = \Theta(\log g(n))$? Prove or disprove.
 - (b) Must it be true that $2^{f(n)} = \Theta(2^{g(n)})$? Prove or disprove.

Answer:

(a) Since $f(n) = \Theta(g(n))$, there exists constant c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n), \forall n \geq n_0$, then $log(c_1 \cdot g(n)) \leq log(f(n)) \leq log(c_2 \cdot g(n))$, $log(c_1) + log(g(n)) \leq log(f(n)) \leq log(c_2) + log(g(n))$, since $log(c_1)$ and $log(c_2)$ are constants, $log f(n) = \Theta(log g(n))$.

(b)

- 2. (a) Suppose you have a function of two variables, n and k; for instance h(n, k). If you are told that h(n, k) = O(n + k), what should that mean mathematically?
 - (b) Let f(n) = O(n) and g(n) = O(n). Let c be a positive constant. Prove or disprove that $f(n) + c \cdot g(k) = O(n+k)$.

Answer:

- (a)
- (b)

3. Let $f(n) = \sum_{y=1}^{n} (n^6 \cdot y^{23})$.

Find a simple g(n) such that $f(n) = \Theta(g(n))$, by proving that f(n) = O(g(n)), and that $f(n) = \Omega(g(n))$.

Don't use induction / substitution, or calculus, or any fancy formulas. Just exaggerate and simplify for big-O, then underestimate and simplify for Ω .

Answer: