

Imperial College London

Combining Deep Generative Models and Multi-lingual Pretraining for Semi-supervised Document Classification

Yi Zhu[♥], Ehsan Shareghi[♥], Yingzhen Li[♦], Roi Reichart[♣], Anna Korhonen [♥]

☐ Language Technology Lab, University of Cambridge, ♥ Department of Data Science & AI, Monash University

Operatment of Computing, Imperial College London, & Faculty of Industrial Engineering and Management, Technion, IIT

Code: https://github.com/cambridgeltl/mling_sdgms

- Deep generative models (**DGMs**)
 - capable of capturing complex data distributions at scale with rich latent representations
- Semi-supervised deep generative models (SDGMs)
 - leverage both *labelled* and *unlabelled* data by modelling input and output (label) together

- Deep generative models (**DGMs**)
 - capable of capturing complex data distributions at scale with rich latent representations
- Semi-supervised deep generative models (SDGMs)
 - leverage both *labelled* and *unlabelled* data by modelling input and output (label) together

- Effectively use *unlabelled* data through learning shared representations across languages that can be transferred to downstream tasks
- The lack of *labelled* data still leads to inferior performance of the same model compared to those trained in languages with more labelled data such as English

- We bridge the gap to form a **pipeline framework** by combining both for *multi-lingual document classification*
 - The multi-lingual pretrained model serves as multi-lingual encoder
 - SDGMs can operate on top of it independently of encoding architecture

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right]}_{\text{Reconstruction}} - \underbrace{\text{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}) \right)}_{\text{KL}}$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right] - \underbrace{\mathrm{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) || p(\mathbf{z}) \right)}_{\mathrm{KL}}$$

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\left(\boldsymbol{\mu}_{\phi}(\mathbf{h}), \operatorname{diag}\left(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{h})\right)\right)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x}, \mathbf{z})}{q_{\phi}(\mathbf{z}|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \right]}_{\text{Reconstruction}} - \underbrace{\text{KL} \left(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p(\mathbf{z}) \right)}_{\text{KL}}$$

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}\left(\boldsymbol{\mu}_{\phi}(\mathbf{h}), \operatorname{diag}\left(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{h})\right)\right)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)}\left[\log\frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)}\right] \leq \log p(\mathbf{x},y)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \right] \leq \log p(\mathbf{x},y)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \right] \leq \log p(\mathbf{x},y)$$

$$\mathcal{L}(\mathbf{x}, y) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1})]}_{\text{Reconstruction}} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}[\log \frac{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}{p(\mathbf{z}_{2})} + \log \frac{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}{p_{\theta}(\mathbf{z}_{1}|\mathbf{z}_{2}, y)}]}_{\text{Constant}} + \underbrace{\log p(y)}_{\text{Constant}}$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \right] \leq \log p(\mathbf{x},y)$$

$$\mathcal{L}(\mathbf{x}, y) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1})]}_{\text{Reconstruction}} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}[\log \frac{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}{p(\mathbf{z}_{2})} + \log \frac{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}{p_{\theta}(\mathbf{z}_{1}|\mathbf{z}_{2}, y)}]} + \underbrace{\log p(y)}_{\text{Constant}}$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$\mathcal{U}(\mathbf{x}) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1})]}_{\text{Reconstruction}} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})q_{\phi}(y|\mathbf{z}_{1})q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}[\log \frac{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}{p(\mathbf{z}_{2})} + \log \frac{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}{p_{\theta}(\mathbf{z}_{1}|\mathbf{z}_{2},y)} + \log \frac{q_{\phi}(y|\mathbf{z}_{1})}{p(y)}]}_{\text{KL}}$$

$$\mathbf{z}_1$$

$$\mathcal{J}_{cls}(\mathbf{x}, y) = \mathbb{E}_{q_{\phi}(\mathbf{z}_1|\mathbf{x})}[q_{\phi}(y|\mathbf{z}_1)]$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2}|\mathbf{x},y)} \right] \leq \log p(\mathbf{x},y)$$

$$\mathcal{L}(\mathbf{x}, y) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1})]}_{\text{Reconstruction}} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}[\log \frac{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1}, y)}{p(\mathbf{z}_{2})} + \log \frac{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}{p_{\theta}(\mathbf{z}_{1}|\mathbf{z}_{2}, y)}]} + \underbrace{\log p(y)}_{\text{Constant}}$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

$$y$$
 z_1
 z_1
 z_1
 z_2
 z_3
 z_4
 z_5
 z_5

$$\mathcal{U}(\mathbf{x}) = \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z}_{1})]}_{\text{Reconstruction}} - \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})q_{\phi}(y|\mathbf{z}_{1})q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}[\log \frac{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}{p(\mathbf{z}_{2})} + \log \frac{q_{\phi}(\mathbf{z}_{1}|\mathbf{x})}{p_{\theta}(\mathbf{z}_{1}|\mathbf{z}_{2},y)} + \log \frac{q_{\phi}(y|\mathbf{z}_{1})}{p(y)}]}_{\text{KL}}$$

$$\mathcal{J}_{cls}(\mathbf{x}, y) = \mathbb{E}_{q_{\phi}(\mathbf{z}_1|\mathbf{x})}[q_{\phi}(y|\mathbf{z}_1)]$$

$$\mathcal{J} = \sum_{(\mathbf{x}, y) \in \mathcal{S}_l} (\mathcal{L}(\mathbf{x}, y) + \alpha \mathcal{J}_{cls}(\mathbf{x}, y)) + \sum_{\mathbf{x} \in \mathcal{S}_u} \mathcal{U}(\mathbf{x})$$

Difference between our SDGM and M1+M2 [Kingma et al. 2014]

Our SDGM M1+M2

Difference between our SDGM and M1+M2 [Kingma et al. 2014]

Our SDGM

$$\mathbb{E}_{q_{\phi}(\mathbf{z_1}, \mathbf{z_2} | \mathbf{x}, y)} \left[\log \frac{p_{\theta}(\mathbf{x}, y, \mathbf{z_1}, \mathbf{z_2})}{q_{\phi}(\mathbf{z_1}, \mathbf{z_2} | \mathbf{x}, y)} \right] \leq \log p(\mathbf{x}, y)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{Z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \left[\log \frac{p_{\theta}(\mathbf{x},y,\mathbf{Z}_{1},\mathbf{z}_{2})}{q_{\phi}(\mathbf{Z}_{1},\mathbf{z}_{2},y|\mathbf{x})} \right] \leq \log p(\mathbf{x})$$

M1+M2

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}\left[\log\frac{p_{\theta}(\mathbf{z}_{1},y,\mathbf{z}_{2})}{q_{\phi}(\mathbf{z}_{2}|\mathbf{z}_{1},y)}\right] \leq \log p(\mathbf{z}_{1},y)$$

$$\mathbb{E}_{q_{\phi}(\mathbf{z}_2, y \mid \mathbf{z}_1)} \left[\log \frac{p_{\theta}(\mathbf{z}_1, y, \mathbf{z}_2)}{q_{\phi}(\mathbf{z}_2, y \mid \mathbf{z}_1)} \right] \leq \log p(\mathbf{z}_1)$$

Difference between our SDGM and M1+M2 [Kingma et al. 2014]

Our SDGM M1+M2

- M₁ + M₂
 - Layer-wise training
 - The parameters between x and z1 are fixed during semi-supervised learning
- Our SDGM
 - End-to-end training
 - Mathematical reformulation of ELBOs into reconstruction and KL terms, more stable optimisation schedule

SDGMs can operate on top of the multi-lingual encoder *independently* of encoding architecture

Experiments

Document classification in multiple languages

• Multilingual document classification corpus (MLDoc; Schwenk and Li [2018])

Experiments

Document classification in multiple languages

- Multilingual document classification corpus (MLDoc; Schwenk and Li [2018])
- Five languages in total: English (EN), German (DE), French (FR), Russian (RU), Chinese (ZH)

Experiments

Document classification in multiple languages

- Multilingual document classification corpus (MLDoc; Schwenk and Li [2018])
- Five languages in total: English (EN), German (DE), French (FR), Russian (RU), Chinese (ZH)
- For 1k training corpus, vary labelled data size, use the rest as unlabelled data

Non-parallel cross-lingual VAE (NXVAE)

Qualitative results

EN-DE

Word pair	Lang	kNNs ($k=3$)
president (EN)	EN DE	mr, madam, gentlemen präsident, herr, kommissar
präsident (DE)	EN DE	president, mr, madam herr, kommissar, herren
great (EN)	EN DE	deal, with, a große, eine, gute
groß (DE)	EN DE	striking, gets, lucrative gering, heikel, hoch
said (EN)	EN DE	already, as, been gesagt, mit, dem
sagte (DE)	EN DE	he, rightly, said vorhin, kollege, kommissar

Our SDGM-NXVAE

- Our SDGM with bag-of-word (BOW) decoder (M1 + M2 + BOW)
- Our SDGM with GRU decoder (M1 + M2 + GRU)

Baselines - NXVAE

Supervised models

NXVAE-Z1

Baselines - NXVAE

Supervised models

NXVAE-Z1

NXVAE-h

Baselines-NXVAE

Supervised models

NXVAE-Z1 NXVAE-h BERTW

Baselines - NXVAE

Semi-supervised models

• M₁ + M₂

Baselines - NXVAE

Semi-supervised models

- M₁ + M₂
- BERTW with self-training (BERTW + ST)

EN (EN-DE)

EN (EN-DE)

DE (EN-DE)

NXVAE for EN-FR and DE-FR

NXVAE for EN-FR and DE-FR

Multi-lingual BERT (mBERT)

Multi-lingual BERT (mBERT)

mBERT

SUP-h with full training data (1k)

Conclusion

• We bridged between multi-lingual pretraining and deep generative models to form a semi-supervised learning framework for multi-lingual document classification

Conclusion

- We bridged between multi-lingual pretraining and deep generative models to form a semi-supervised learning framework for multi-lingual document classification
- Our framework outperformed competitive baseline models, including supervised mBERT
- The benefits of SDGMs are orthogonal to the encoding architecture, opening up a new avenue for SDGMs in low-resource NLP

Thank you! Questions?

Contact: yz568@cam.ac.uk