Exercises in Marine Ecological Genetics

10. Metabarcoding: microbiome analysis

- Infer ASVs (Amplicon Sequence Variants)
- Compare microbial community composition
- Assess alpha and beta diversity

Martin Helmkampf

https://github.com/mhelmkampf/meg25

Marker gene-based microbiome analysis

- Uses conserved marker gene for bacteria / archaea: 16S
- Enables profiling of whole microbial communities (including non-cultivable / unknown taxa)

Applications

- Characterization of environments (e.g. sediment, ocean water)
- · Host-associated microbiomes (e.g. human gut, animal-microbe symbioses)
- Bioindicators for ecosystem health, food safety, and public health monitoring
- More cost-effective and less complex than shotgun metagenomics

Image: Nadezhda Buravleva / vecteezy.com

Example project

Do sea cucumbers of the species Actinopyga crassa in the Red Sea

- feed selectively? Sabrin Abdelghany
- change the microbial community of the sediment?

Sample	N
Seawater	3
Seagrass	4
Sediment	4
Foregut	5
Midgut	5
Hindgut	5

Approach: Amplicon sequencing of **16S** region V3-V4 (~ 460 bp) on **Illumina MiSeq** Microbiome analysis with **QIIME 2**

Amplicon sequencing

Next-gen sequencing of specific genomic region (e.g. 16S)

Many samples in parallel by **multiplexing** (using unique molecular index for each sample)

Dual-PCR library preparation

Illumina MiSeq bench top sequencer 7–25 million reads, up to 2 × 300 bp

Illumina Inc.

General metabarcoding steps

- Sample collection and DNA extraction
- PCR amplification (e.g. 16S, COI)
- Sequencing (e.g. Illumina, ONT)
- Demultiplexing, trimming and quality filtering (data preprocessing)
- Amplicon Sequence Variant inference (denoising) | alternative: OTU clustering
- Taxonomic assignment
- Downstream analyses (community composition, diversity metrics)

QIIME 2 microbiome analysis workflow

qiime2.org

Data preprocessing

Exercise 1

• Import of raw reads (e.g. Fastq files) and metadata

qiime tools import

Demultiplexing, primer removal

qiime demux-paired

Joining forward and reverse reads

qiime vsearch join-pairs

Quality check

qiime demux summarize

output.qza (data)

output.qzv (visualization)

View at https://view.qiime2.org

Denoising Exercise 2

Quality filter
 Filter out low-quality sequences, trim reads

qiime deblur denoise-16S

- Dereplicate
 - Collapse identical reads into unique sequences with counts
- Deblur

Statistically infer error-free sequences, remove chimeras and singletons

Amplicon Sequence Variants

ASV sequences

ASV table (frequencies)

Error modeling

- Error rates are estimated directly from data
- Model accounts for each base and its quality score
- Sequences are statistically tested against the error model
- If probability of being an error is low, sequence is kept as true variant

Taxonomic assignment

- Similarity / alignment-based (e.g BLAST)
- Phylogenetic placement
- Probabilistic classifiers (e.g. QIIME2)

qiime feature-classifier

Castelle & Banfield 2018, Cell

Matching sequences to database with BLAST

Algorithm overview

- Split query into very short segments (k-mers or words)
- Find exact matches between words and sequences in database (seeds)
- Extend matches to **local alignments** (HSP; stop once too many mismatches occur)
- Evaluate statistical significance of each HSP (e-value)

	Description	Scientific Name	Max Score		Query Cover			Acc. Len	Accession
~	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M08F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094471.1
✓	Oncorhynchus keta mitochondrial COX1 gene for cytochrome c oxidase subunit 1, partial cds, isolate: OK_M01F	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	772	LC094464.1
~	Oncorhynchus keta isolate 10_Narva cytochrome oxidase subunit 1 (COI) gene, partial cds; mitochondrial	Oncorhynchus keta	1029	1029	100%	0.0	99.64%	655	KR778851.1

. . .

Diversity metrics

Exercise 4

How diverse is the community?

How similar / dissimilar are the communities?

qiime diversity

Alpha diversity

Within-community diversity, e.g. species richness, Shannon's index — $H' = -\sum_{i=1}^{n} p_i \ln p_i$ (richness + evenness)

Beta diversity

Dissimilarity between communities, e.g. Jaccard distance (presence / absence only),

Bray-Curtis index (relative abundances)

$$igspace BC_{ij} = 1 - rac{2C_{ij}}{S_i + S_j}$$
 0 (same community) on -1 (no similarity)

Metabarcoding Summary

```
qiime deblur denoise-16S  # filter, dereplicate and denoise reads (infer ASVs)

qiime feature-classifier  # classify ASVs taxonomically

qiime diversity  # calculate diversity metrics
```

- Metabarcoding uses marker genes (e.g. 16S, COI) to identify and compare organisms in complex communities
- Reads can be "denoised" into high resolution Amplicon Sequence Variants or more simply clustered into OTUs
- Downstream analyses like community composition, diversity metrics, and comparisons across samples or environments enable powerful ecological insights

Options for next week

- Lecture: Introduction to phylogenetics
- Exercises: wedgefish phylogeny based on COI barcodes

- Lecture: none
- Exercises: Do hamlet species differ in their diet? A gut content metabarcoding analysis using R (~ eDNA)

Photos: Jake Wilton | Kosmas Hench

OR

Course evaluation — please participate!

https://elearning.uni-oldenburg.de/plugins.php/unizensusplugin/show?cid=3660d16e8eb3daf479389cf8233c12fb