Limbaje Formale, Automate și Compilatoare

Curs 1

2016-17

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- 4 lerarhia lui Chomsky
- Limbaje şi gramatici de tip 3 (regulate)
- 6 Proprietăți de închidere pentru familia de limbaje regulate

Limbaje Formale, Automate și Compilatoare

Titulari curs:

O. Captarencu: otto@info.uaic.iasi.ro

```
http://profs.info.uaic.ro/~otto/lfac.html
```

A. Moruz:mmoruz@info.uaic.ro

Sistem evaluare

- 7 seminarii, 6 laboratoare;
- AS = activitatea la seminar (max 10 puncte);
- AL = activitatea la laborator (max 10 puncte);
- T1,T2 teste scrise în săptămânile 8, respectiv în sesiune;
 Punctajul final se obţine astfel:

$$P = 3 * AS + 3 * AL + 2 * T1 + 2 * T2$$

- Condiţii miminale de promovare: $AS \ge 5$, $AL \ge 5$, $T1 \ge 4$, $T2 \ge 4$;
- Punctaj minim pentru promovare: P ≥ 50;
- Nota finală se va stabili conform criteriilor ECTS;

Sistem evaluare

- AS = activitatea la seminar (max 10 puncte):
 - două teste scrise
 - până la 2 puncte bonus pentru activitatea din timpul seminarului
- AL = activitatea la laborator (max 10 puncte):
 - 1 test laborator, 1 proiect (note de la 0 la 10)
 - AL = media celor 2 note

Tematica cursului (partea I)

- Limbaje şi gramatici
- Limbaje regulate; gramatici, automate, expresii regulate
- Limbaje independente de context; gramatici, automate pushdown

Tematica cursului (partea II)

- Limbaje de programare: proiectare şi implementare
- Analiza lexicală
- Analiza sintactică
- Traducere în cod intermediar

Tematica seminarului

- Exemple de limbaje şi gramatici
- Automate finite deterministe, nedeterministe, cu epsilon-tranziţii -Exemple
- Expresii regulate
- Gramatici independente de context, arbori de derivare, eliminarea simbolurilor inutile, eliminarea regulilor de ştergere, a redenumirilor
- Forma normală Chomsky, algoritmul CYK
- Automate pushdown exemple

Tematica laboratorului

- Analiza lexicală folosind instrumente de tip LEX
- Analiza sintactică folosind instrumente de tip YACC
- Interpretor construit cu LEX şi YACC

Bibliografie (selecţii)

- A. V. Aho, M. S. Lam, R. Sethi, J. D. Ullman: Compilers:
 Principles, Techniques, and Tools. Boston: Addison-Wesley, 2007
- Gh. Grigoras. Constructia compilatoarelor Algoritmi fundamentali, Ed. Universitatii Al. I. "Cuza Iasi", ISBN 973-703-084-2, 274 pg., 2005
- Mopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D. (2006). Introduction to Automata Theory, Languages, and Computation (3rd ed.). Addison-Wesley
- J. Toader Limbaje formale şi automate, Editura Matrix Rom, Bucuresti, 1999.
- J. Toader, S. Andrei Limbaje formale şi teoria automatelor. Teorie şi practică, Editura Universitatii "Al. I. Cuza", Iasi, 2002.

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- 5 Limbaje și gramatici de tip 3 (regulate)
- 6 Proprietăți de închidere pentru familia de limbaje regulate

• Alfabet: V o multime finită (elementele lui V = simboluri)

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ε sau λ.

- Alfabet: V o multime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ε sau λ.
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notaţie: |u|.

$$|\epsilon| = 0$$

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ε sau λ.
- Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u|.

$$|\epsilon| = 0$$

• V^* - multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ .

$$\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$$

- Alfabet: V o mulţime finită (elementele lui V = simboluri)
- Cuvânt: şir finit de simboluri
 - cuvântul nul este notat cu ϵ sau λ .
- ullet Lungimea unui cuvânt u: numarul simbolurilor sale. Notație: |u|.

$$|\epsilon| = 0$$

ullet V* - multimea tuturor cuvintelor peste alfabetul V, inclusiv ϵ .

$$\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,001,\ldots\}$$

V⁺ - multimea tuturor cuvintelor nenule peste alfabetul V

$$\{0,1\}^+ = \{0,1,00,01,10,11,000,001,\ldots\}$$

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

Concatenarea a doua cuvinte x, y: cuvântul x · y obţinut din simbolurile lui x, în ordinea în care apar, urmate de cele ale lui y de asemenea în ordinea în care apar:

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

Concatenarea este asociativă

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.
- Cuvântul v este un prefix al cuvântului u dacă ∃w ∈ V* : u = vw;
 dacă w ∈ V⁺ , atunci v este un prefix propriu al lui u.

$$x = 0100, y = 100, x \cdot y = 0100100$$

 $x = 000, y = \epsilon, x \cdot y = 000$

- Concatenarea este asociativă
- (V^*, \cdot) este monoid (ϵ este element neutru), se numeşte monoidul liber generat de V.
- Cuvântul v este un prefix al cuvântului u dacă $\exists w \in V^* : u = vw$; dacă $w \in V^+$, atunci v este un prefix propriu al lui u.
- Cuvântul v este un sufix al cuvântului u dacă $\exists w \in V^* : u = wv$; dacă $w \in V^+$, atunci v este un sufix propriu al lui u.

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - multimea cuvintelor peste alfabetul {0, 1} care contin un numar par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\bullet \ \{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termina in } 00\}.$

- Fie V un alfabet. O submulţime L ⊆ V* este un limbaj (formal) peste alfabetul V (sau V-limbaj) dacă L are o descriere (matematică) finită.
- O descriere poate fi:
 - neformală (în limbaj natural):
 - multimea cuvintelor peste alfabetul {0,1} care contin un numar par de 0.
 - $L = \{x \in V^+ : |x| \text{ este par}\}.$
 - $\{a^nb^n|n\in N\}.$
 - $\{w \in \{0,1\}^* | w \text{ se termina in } 00\}.$
 - formală (descriere matematică):
 - o descriere inductivă a cuvintelor
 - o descriere generativă a cuvintelor (gramatică generativă)
 - o descriere a unei metode de recunoaştere a cuvintelor din limbaj (automat finit, automat pushdown, etc.)

Operații cu limbaje

- Operatiile cu multimi (reuniune, intersectie etc)
- Produs de limbaje: $L_1 \cdot L_2 = \{u \cdot v | u \in L_1, v \in L_2\}$
- Iteraţia (produsul Kleene): $L^* = \bigcup_{n>0} L^n$, unde:
 - $L^0 = \{\epsilon\}$
 - $\bullet L^{n+1} = L^n \cdot L$
- $L^R = \{w^R | w \in L\}$; dacă $w = a_1 a_2 \dots a_n$, atunci $w^R = a_n \dots a_2 a_1$

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- 4 lerarhia lui Chomsky
- 5 Limbaje şi gramatici de tip 3 (regulate)
- 6 Proprietăți de închidere pentru familia de limbaje regulate

Gramatici

Definiție 1

O gramatica este un sistem G = (N, T, S, P), unde:

- N şi T sunt două alfabete disjuncte:
 - N este multimea neterminalilor
 - T este multimea terminalilor
- S ∈ N este simbolul de start (neterminalul iniţial)
- P este o multime finita de reguli (producţii) de forma $x \to y$, unde $x, y \in (N \cup T)^*$ şi x conţine cel puţin un neterminal.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq și v = pyq.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq şi v = pyq.

• Daca $u_1 \Rightarrow u_2 \dots \Rightarrow u_n, n > 1$, spunem ca u_n este derivat din u_1 în G si notam $u_1 \Rightarrow^+ u_n$.

Derivare

Definiție 2

Fie G = (N, T, S, P) o gramatica şi $u, v \in (N \cup T)^*$. Spunem că v este derivat direct (într-un pas) de la u prin aplicarea regulii $x \to y$, şi notăm $u \Rightarrow v$, dacă $\exists p, q \in (N \cup T)^*$ astfel încât u = pxq şi v = pyq.

- Daca $u_1 \Rightarrow u_2 \ldots \Rightarrow u_n, n > 1$, spunem ca u_n este derivat din u_1 în G şi notam $u_1 \Rightarrow^+ u_n$.
- Scriem $u \Rightarrow^* v$ dacă $u \Rightarrow^+ v$ sau u = v.

Limbaj generat

Definiție 3

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Limbaj generat

Definiție 3

Limbajul generat de gramatica G este:

$$L(G) = \{ w \in T^* | S \Rightarrow^+ w \}$$

Definiție 4

Două gramatici G_1 și G_2 sunt echivalente dacă $L(G_1) = L(G_2)$.

Exemplu

- $L = \{a^n b^{2n} | n \ge 1\}$
- Definiţia inductivă:
 - abb ∈ L
 - Daca $X \in L$, atunci $aXbb \in L$
 - Nici un alt cuvânt nu face parte din L

Exemplu

- $L = \{a^n b^{2n} | n \ge 1\}$
- Definiţia inductivă:
 - abb ∈ L
 - Daca $X \in L$, atunci $aXbb \in L$
 - Nici un alt cuvânt nu face parte din L
- Definiţia generativă:
 - $G = (\{X\}, \{a, b\}, X, P)$, unde $P = \{X \rightarrow aXbb, X \rightarrow abb\}$
 - Derivarea cuvântului a³b⁶:

$$X \Rightarrow aXbb \Rightarrow a(aXbb)bb \Rightarrow aa(abb)bbbb$$

Exemplu

- $L = \{a^n b^n c^n | n \ge 1\}$
- $\bullet = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P \text{ constă din:}$
 - \bigcirc S \rightarrow abc
 - $\circled{S} \rightarrow aSXc$

 - \bigcirc bX \rightarrow bb
- Derivarea cuvântului a³b³c³:
 - $S \Rightarrow^{(2)} a\underline{S}Xc \Rightarrow^{(2)} aa\underline{S}XcXc \Rightarrow^{(1)} aaab\underline{c}XcXc \Rightarrow^{(3)}$ $aaa\underline{b}XccXc \Rightarrow^{(4)} aaabbc\underline{c}Xc \Rightarrow^{(3)} aaabb\underline{c}Xcc \Rightarrow^{(3)}$ $aaabbXccc \Rightarrow^{(4)} aaabbbccc = a^3b^3c^3$

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- Limbaje şi gramatici de tip 3 (regulate)
- 6 Proprietăți de închidere pentru familia de limbaje regulate

Gramatici de tip 0 (generale)

Nu exista restrictii asupra regulilor

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- ② Gramatici de tip 1 (dependente de context) reguli de forma $pxq \rightarrow pyq$ unde $x \in N$, $y \neq \epsilon$, $p, q \in (N \cup T)^*$, $S \rightarrow \epsilon$, caz în care S nu apare în dreapta regulilor

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- Gramatici de tip 1 (dependente de context) reguli de forma pxq → pyq unde x ∈ N, y ≠ ε, p, q ∈ (N ∪ T)*, S → ε, caz în care S nu apare în dreapta regulilor
- **3** Gramatici de tip 2 (independente de context) reguli de forma $A \rightarrow y$ unde $A \in N$ şi $y \in (N \cup T)^*$

- Gramatici de tip 0 (generale)
 Nu exista restrictii asupra regulilor
- Gramatici de tip 1 (dependente de context) reguli de forma pxq → pyq unde x ∈ N, y ≠ ε, p, q ∈ (N ∪ T)*, S → ε, caz în care S nu apare în dreapta regulilor
- **3** Gramatici de tip 2 (independente de context) reguli de forma $A \rightarrow y$ unde $A \in N$ şi $y \in (N \cup T)^*$
- **3** Gramatici de tip 3 (regulate) reguli $A \rightarrow u$ sau $A \rightarrow uB$ unde $A, B \in N$ si $u \in T^*$.

Ce tip au urmatoarele gramatici?

•
$$G = (N, T, S, P), N = \{S, A, B\}, T = \{a, b, c\}, P$$
:

(1)
$$S \rightarrow aaAc$$

$$(3)bB \rightarrow bBc$$

$$(4)Bc \rightarrow Abc$$

$$(5)A \rightarrow a$$

•
$$G = (N, T, S, P), N = \{S, X\}, T = \{a, b, c\}, P$$
:

(1)S
$$\rightarrow$$
 abc

$$(2)S \rightarrow aSXc$$

$$(3)cX \rightarrow Xc$$

$$(4)bX \rightarrow bb$$

Fie

$$G = (\{E\}, \{a, +, -, (,)\}, E, \{E \rightarrow a, E \rightarrow (E + E), E \rightarrow (E - E)\}).$$

- Ce tip are gramatica G?
- Construiti derivari din E pentru cuvintele (a + a) si ((a + a) a)
- Cuvantul (a + a a) poate fi derivat din E?
- Descrieti limbajul L(G)
- Fie $G = (\{A, B\}, \{a, b\}, A, \{A \rightarrow aA, A \rightarrow B, B \rightarrow bB, B \rightarrow \epsilon\})$
 - Ce tip are gramatica G?
 - Descrieti limbajul L(G)

Clasificarea limbajelor

- Un limbaj L este de tipul j daca exista o gramatica G de tipul j astfel incat L(G) = L, unde j ∈ {0, 1, 2, 3}.
- Vom nota cu \mathcal{L}_j clasa limbajelor de tipul j, unde $j \in \{0, 1, 2, 3\}$.
- Din ierarhia lui Chomsky: $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$
- Incluziunile sunt stricte:
 - orice limbaj de tip j + 1 este si de tip $j \in \{0, 1, 2\}$
 - exista limbaje de tip j care nu sunt de tip j + 1, $j \in \{0, 1, 2\}$

Proprietăți

- Fiecare din familiile \mathcal{L}_j cu $0 \le j \le 3$ contine toate limbajele finite
- Fiecare din familiile \mathcal{L}_j cu $0 \le j \le 3$ este inchisa la operatia de reuniune:

$$L_1, L_2 \in \mathcal{L}_j \Longrightarrow L_1 \cup L_2 \in \mathcal{L}_j,$$

$$\forall j : 0 \le j \le 3$$

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- 4 lerarhia lui Chomsky
- Limbaje şi gramatici de tip 3 (regulate)
- Proprietăți de închidere pentru familia de limbaje regulate

Gramatici de tip 3

- O gramatică G = (N, T, S, P) este de tip 3 dacă regulile sale au forma: A → u sau A → uB unde A, B ∈ N şi u ∈ T*.
- Exemplu: $G = (\{D\}, \{0, 1, ..., 9\}, D, P)$

$$D \to 0D|1D|2D|\dots|9D$$

$$D \to 0|1|\dots|9$$

Unde P este:

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I = \text{litera}$, $d = \text{cifra}$)

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB$$
, $B \rightarrow IB|dB|\epsilon$ ($I =$ litera, $d =$ cifra) $L(G)$: multimea identificatorilor

• Fie gramatica $G = (\{A, B\}, \{+, -, d\}, A, P)$ unde P este:

$$A \rightarrow +dB|-dB|dB$$
, $B \rightarrow dB|\epsilon$ ($d = cifra$)

• Fie gramatica $G = (\{A, B\}, \{I, d\}, A, P)$ unde P este:

$$A \rightarrow IB, B \rightarrow IB|dB|\epsilon$$
 (I = litera, d = cifra)

L(G): multimea identificatorilor

• Fie gramatica $G = (\{A, B\}, \{+, -, d\}, A, P)$ unde P este:

$$A \rightarrow +dB|-dB|dB$$
, $B \rightarrow dB|\epsilon$ ($d = cifra$)

L(*G*): multimea constantelor intregi

Forma normală

 O gramatică de tip 3 este in formă normală daca regulile sale sunt de forma A → a sau A → aB, unde a ∈ T, si, eventual S → ε (caz in care S nu apare in dreapta regulilor).

 Pentru orice gramatica de tip 3 exista o gramatica echivalenta in forma normala.

Forma normală

- Obtinerea gramaticii in forma normala echivalenta cu o gramatica de tip 3:
 - Se poate arata ca pot fi eliminate regulile de forma A → B
 (redenumiri) si cele de forma A → ε (reguli de stergere), cu
 exceptia, eventual a regulii S → ε.
 - Orice regula de forma $A \to a_1 a_2 \dots a_n$ se inlocuieste cu $A \to a_1 B_1, B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n, n > 1, B_1, \dots, B_{n-1}$ fiind neterminali noi.
 - Orice regula de forma $A \to a_1 a_2 \dots a_n B$ se inlocuieste cu $A \to a_1 B_1$, $B_1 \to a_2 B_2, \dots, B_{n-2} \to a_{n-1} B_{n-1}, B_{n-1} \to a_n B, n > 1, B_1, \dots, B_{n-1}$ fiind neterminali noi
 - Transformarile care se fac nu modifica limbajul generat de gramatica

Limbaje Formale, Automate și Compilatoare - Curs 1

- Prezentare curs
- 2 Limbaje formale
- Mecanisme de generare a limbajelor: gramatici
- Ierarhia lui Chomsky
- 5 Limbaje şi gramatici de tip 3 (regulate)
- Proprietăţi de închidere pentru familia de limbaje regulate

Fie L, L_1, L_2 limbaje de tip 3 (regulate).

Atunci, urmatoarele limbaje sunt de asemenea de tip 3:

- \bullet $L_1 \cup L_2$
- \bullet $L_1 \cdot L_2$
- L*
- L^R
- \bullet $L_1 \cap L_2$
- \bullet $L_1 \setminus L_2$

Închiderea la reununiune

Fie L, L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$ si gramaticile in forma normala.

Închiderea la reuniune: se arata ca $L_1 \cup L_2 \in \mathcal{L}_3$:

Gramatica
$$G = (N_1 \cup N_2 \cup \{S\}, T_1 \cup T_2, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$$
 este de tip 3 si genereaza limbajul $L_1 \cup L_2$

LFAC (2016-17) Curs 1 35/37

Închiderea la operația de produs

Fie L_1, L_2 limbaje de tip 3 (regulate).

Fie
$$G_1 = (N_1, T_1, S_1, P_1)$$
 si $G_2 = (N_2, T_2, S_2, P_2)$ gramatici de tip 3 cu $L_1 = L(G_1)$, $L_2 = L(G_2)$.

Presupunem $N_1 \cap N2 = \emptyset$ si gramaticile in forma normala.

Gramatica $G = (N_1 \cup N_2, T_1 \cup T_2, S_1, P)$ unde P consta din:

- regulile de forma A → aB din P₁
- reguli A → aS₂ pentru orice regula de forma A → a din P₁
- toate regulile din P₂

este de tip 3 si genereaza limbajul L_1L_2 .