TD: Cinétique chimique

I | Pour s'échauffer

A Énergie d'activation et constante de vitesse

1) Calculer l'énergie d'activation de la conversion du cyclopropane en propène à partir des données suivantes :

T(K)	750	800	850	900
$k(s^{-1})$	1.8×10^{-4}	2.7×10^{-3}	3.0×10^{-2}	0,26

2) Quelle est la valeur de la constante de vitesse à 500 °C?

B Utilisation du temps de demi-réaction

Soit la réaction

$$A \rightarrow B + C$$

Déterminer son ordre sachant que lorsqu'on multiplie par 10 la concentration initiale de A, on divise le temps de demi-réaction par 10.

Utilisation de la méthode intégrale

À température élevée et en phase gazeuse, le buta-1,3-diène se dimérise en 4-vinylcyclohexène suivant la réaction totale d'équation

$$2 C_4 H_{6(g)} = C_8 H_{12(g)}$$

Afin d'étudier cette réaction, une certaine quantité de buta-1,3-diène est introduite dans un récipient de volume V constant, maintenu à température constante $T=326\,\mathrm{K}$. On mesure alors la pression partielle en butadiène p_B dans le récipient en fonction du temps :

$t(\min)$	0	3,25	8,02	12,18	17,3	24,55	33,0	43,0	55,08	68,05	90,1	119
$p_B(\text{bar})$	0,843	0,807	0,756	0,715	0,670	0,615	0,565	0,520	0,465	0,423	0,366	0,311

- 1) Montrer, en utilisant la loi des gaz parfaits, que la connaissance de la pression initiale p_B et de la température T suffit pour calculer la concentration initiale c_B en buta-1,3-diène.
- 2) Montrer que les résultats sont compatibles avec une cinétique d'ordre 2.
- 3) Déterminer la valeur de la constante de vitesse à cette température.
- 4) Déterminer le temps de demi-réaction du système précédent.
- 5) On admet souvent qu'une réaction est pratiquement terminée lorsque au moins 99% du réactif limitant a été consommé. Déterminer la durée d'évolution du système précédent; exprimer cette durée en fonction du temps de demi-réaction.

III Utilisation de la méthode différentielle

La réaction étudiée est l'oxydation des ions iodure par les ions ferriques Fe(III). Les couples d'oxydoréduction mis en jeu sont les couples I_2/I^- et Fe^{3+}/Fe^{2+} , toutes les espèces étant dissoutes dans l'eau.

- 1) Écrire l'équation-bilan de l'oxydation des ions iodure par les ions fer (III), en affectant les espèces du fer du nombre stœchiométrique 1. Si la concentration d'ions iodure passe de c_0 à $c_0 x$ entre 0 et t, comment définit-on par rapport à x la vitesse volumique de la réaction?
- 2) On suppose une cinétique avec ordre, de constante de vitesse k; on note a l'ordre partiel par rapport aux ions fer (III) et b l'ordre partiel par rapport aux ions iodure. Comment s'écrit la vitesse v? Quelle est alors l'unité usuelle de k (au besoin en fonction de a et de b)?
- 3) À la date t après le mélange d'une solution d'iodure de potassium avec une solution ferrique, on prélève à la pipette $5\,\mathrm{mL}$ de solution et on dilue 10 fois avant de procéder à un dosage de la quantité d'iode formée. Justifier l'intérêt cinétique de cette dilution.
- 4) Les résultats d'une série de mesures sont présentés ci-dessous, x se rapportant à la quantité d'ions iodure qui ont été oxydés dans le milieu réactionnel à la date du prélèvement.

t(s)	60	120	180	240	300
$x(\mu \text{mol } L^{-1})$	13	25	36	46	55

Que représente la grandeur x(t)/t? Pour quoi diminue-t-elle en cours de réaction? Représenter graphiquement cette grandeur en fonction de t à partir du tableau ci-dessus, avec en abscisse $t \in [0-300]$ s; en déduire une estimation de la valeur initiale $\frac{\mathrm{d}x}{\mathrm{d}t}\big|_0$.

5) Grâce à la méthode précédente, on détermine les valeurs initiales de $\frac{dx}{dt}$ pour différentes concentrations initiales des deux réactifs. Quelques résultats sont présentés ci-dessous :

$c_0 = [\mathbf{I}^-]_0$	$(\mu \mathrm{mol} L^{-1})$	2	2	2	6	6	8
$[Fe^{3+}]_0$	$(\mu molL^{-1})$	2	4	8	2	4	8
$\frac{\mathrm{d}x}{\mathrm{d}t}\Big _{0}$	$(\mu\mathrm{mol}L^{-1}\mathrm{s}^{-1})$	5,7	11,1	22,5	52	99	354

En déduire les valeurs de a et b, supposées entières.

- 6) Déterminer la constante de vitesse k définie à la question 2); on précisera la méthode suivie pour utiliser au mieux les données.
- 7) Dans l'hypothèse d'un état initial ne contenant que les deux réactifs à la même concentration c_0 , établier la relation littérale donnant x(t) sous la forme :

« expression en
$$(x,c_0)$$
 = expression en (k,t) »

En déduire la dépendance entre le temps de demi-réaction τ et la concentration c_0 .

Étude d'un mélange stœchiométrique

On étudie à $25\,^{\circ}$ C l'action d'une solution de soude diluée sur le bromoéthane ; la réaction totale a pour équation :

$$CH_3CH_2Br + HO^- \iff CH_3CH_2OH + Br^-$$

On utilise des mélanges stœchiométriques en bromoéthane et en ion hydroxyde. Soit c_0 la concentration initiale commune des deux réactifs. Le tableau ci-dessous donne les temps de demi-réaction pour différentes valeurs de c_0 .

$c_0(\operatorname{mmol} \mathbf{L}^{-1})$	10	25	50	75	100
$ au_{1/2}(\min)$	1100	445	220	150	110

- 1) Démontrer que ces données sont compatibles avec une réaction d'ordre partiel 1 par rapport à chacun des réactifs.
- 2) Déterminer la constante de vitesse de la réaction.

Méthode des vitesses initiales

Le chlorure d'hydrogène (B) réagit sur le cyclohexène (A) avec formation de chlorocyclohexane (C), selon la réaction :

$$C_6H_{10} + HCl \longrightarrow C_6H_{11}Cl$$
 schématisée par $A + B \longrightarrow C$

On réalise une série d'expériences à $25\,^{\circ}$ C, où l'on mesure la vitesse initiale v_0 de la réaction en fonction des concentrations molaires initiales $[A]_0$ en cyclohexène et $[B]_0$ en chlorure d'hydrogène dans le milieu réactionnel. Le volume du mélange est constant et égal à 1 L. Les résultats sont rassemblés dans le tableau ci-dessous :

Expérience	1	2	3	4
[A] ₀ (mol L ⁻¹) [B] ₀ (mol L ⁻¹) v_0 (10 ⁻⁹ mol s ⁻¹)	,	0,470 $0,328$ $30,6$		

- 1) On désigne par p et q les ordres partiels initiaux de la réaction par rapport au cyclohexène (A) et au chlorure d'hydrogène (B). Exprimer la loi de vitesse initiale de cette réaction en fonction de p et q.
- 2) Déterminer p.
- 3) Détermine q; en déduire l'ordre global de la réaction.
- 4) Calculer la constante cinétique de la réaction.
- 5) Dans le cas d'un mélange stœchiométrique en A et B, déterminer la loi de vitesse de la réaction en fonction de [A]. En déduire l'équation différentielle satisfaite par [A](t).

VI Intérêt de la dégénérescence de l'ordre

On considère la réaction suivante :

$$2 \operatorname{Hg}^{2+} + 2 \operatorname{Fe}^{2+} \longrightarrow \operatorname{Hg}_{2}^{2+} + 2 \operatorname{Fe}^{3+}$$

On suit deux expériences à 80 °C par spectrophotométrie. On définit $\alpha = \frac{[Hg^{2+}]}{[Hg^{2+}]_0}$.

Expérience 1 : $[Fe^{2+}]_0 = 0.100 \, \mathrm{mol} \, L^{-1}$ et $[Hg^{2+}]_0 = 0.100 \, \mathrm{mol} \, L^{-1}$

$t(10^5 {\rm s})$	0,0	1,0	2,0	3,0	∞
$\alpha(t)$	1,000	0,500	0,333	0,250	0,000

Expérience 2 : $[Fe^{2+}]_0 = 0.100 \,\mathrm{mol}\,L^{-1}$ et $[Hg^{2+}]_0 = 0.001 \,\mathrm{mol}\,L^{-1}$

$t(10^5 {\rm s})$	0,0	0,5	1,0	1,5	2,0	∞
$\alpha(t)$	1,000	0,585	0,348	0,205	0,122	0,000

- 1) On considère que la réaction est d'ordre partiel p par rapport à Fe^{2+} et q par rapport à Hg^{2+} . Écrire l'expression de la vitesse de réaction.
- 2) Déterminer l'ordre global de la réaction à l'aide de l'expérience 1.
- 3) Déterminer q à l'aide de l'expérience 2. En déduire p.
- 4) Déterminer la constante de vitesse de la réaction.