### Math and LaTeX

### Viktor Dmitriyev

Adapted from Mini Course on LaTeX by David Diez

#### Outline

• Using LaTeX for creating good looking and easy to maintain mathematical equations.

## Math in LaTeX

We will cover several aspects of the mathematics environments offered in LaTeX.

- Basic mathematics in text
- Different equation environments
- Mathematical symbols
- Mathematical expressions
- Accenting and modifying text
- Automatic sizing of bracket symbols
- Text in mathematical equations
- Arrays and matrices

# Inserting math into text

LaTeX makes it easy to add Greek letters like  $\alpha$ ,  $\zeta$ ,  $\mu$ , etc. into text. In the same way, equations can be added easily as well:  $y=x^3$ ,  $\sum z^j$ ,  $x_1+\cdots+x_n$ .

LaTeX makes it easy to add Greek letters like  $\alpha, \$  nu\$, etc. into text. In the same way, equations can be added easily as well:  $y=x^3$ ,  $\sum z^j$ ,  $x_1+\cdots x^s$ .

The \$ signs tell LaTeX when to switch into or out of math model. For instance, to create  $\alpha$  above, type  $\alpha$ .

How can we create  $\beta$ ?

## Equation array

Some equations are long and should be on their on lines. In such a case, use the eqnarray or eqnarray\* environment:

The result in LaTeX for eqnarray\*:

$$\sum_{k=0}^{\infty} 0.5^k = \frac{1}{1 - 0.5} = 2$$

# Equation referencing

Just like tables and figures, equations can be referenced. Use eqnarray (no asterisk) to add an equation number:

$$\sum_{k=0}^{\infty} 0.5^k = \frac{1}{1 - 0.5} = 2 \tag{1}$$

\label{powerSeries} can be put inside the equation array and then be referenced via \ref{powerSeries}.

```
\label{powerSeries} $$ \sum_{k=0}^{\infty} 0.5^k = \frac{1}{1-0.5} = 2 \\ \left[ powerSeries \right] \\ end{eqnarray}
```

## Aligned equations

Another environment, align (and align\*) are handy for aligning multiline equations.

```
\begin{align}
(a+b)^3 &= (a+b) (a^2 + 2ab + b^2) \notag \\
&= a^3 + 3a^2b + 3ab^2 + b^3 \end{align}
```

Result:

$$(a+b)^3 = (a+b)(a^2 + 2ab + b^2)$$
  
=  $a^3 + 3a^2b + 3ab^2 + b^3$  (2)

The \\ command creates a line break. The command \notag was used to suppress the equation number of the first line, which requires the amsmath package. (Q: We have an equation number. What should I have included in the code?)

# Multiple alignments

The align environment permits several alignments:

#### outputs

$$(a+b)^0 = 1$$
  $(a+b)^1 = a+b$   
 $(a+b)^2 = a^2 + 2ab + b^2$   $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$ 

# Mathematics and symbols

It is a little difficult to learn all the math syntax and a good help source is the LaTeX and Matrix Panels:



The Matrix Panel is especially useful since matrices can require a lot of writing. The LaTeX panel is handy as a quick reference.

## Some symbols

Here is a very small subset of the symbols available in LaTeX.

```
$\leftarrow$
                           \Leftarrow
                                $\Leftarrow$
                                                            $\leftrightarrow
                                                       \leftrightarrow
     $\geq$
                                                            $\not\in$
                                $\neq$
 \partial \alpha \
                                $\oint$
                                                            $\nabla$
   $\bigcap$
                                $\bigcup$
                                                            $\cap$
                           ⊇ $\supseteq$⊗ $\bigotimes$

ot \supseteq
$\not\supseteq
\odot
     $\bigodot$
                                                       \oplus
                                                            $\oplus$
     $\clubsuit$
                                $\perp$
                                                            \vdash\
```

For a searchable PDF with thousands of symbols, see

```
www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf\\
```

Also see the LaTeX Panel (under the menu item Window).

## Character modifications

Text and symbols in math mode can also be modified.

| Regular |                  | Modified               |              | Accents         |                 |
|---------|------------------|------------------------|--------------|-----------------|-----------------|
| \$R\$   | R                | $\mathrm{mathbb}\{R\}$ | $\mathbb{R}$ | $\tilde{R}$     | $\tilde{R}$     |
| \$A\$   | A                | $\mathrm{\Delta}_{A}$  | $\mathcal A$ | $\widetilde{A}$ | $\widetilde{A}$ |
| \$x\$   | $\boldsymbol{x}$ | $\mathrm{mathbf}\{x\}$ | $\mathbf{x}$ | $\alpha $       | $\bar{x}$       |
| \$p\$   | p                | $\mathrm{mathit}\{p\}$ | p            | $\hat{p}$       | $\hat{p}$       |
| \$X\$   | X                | $\mathrm{mathrm}\{X\}$ | X            | $\widetilde{X}$ | $\widehat{X}$   |

Two other accents:  $\dot{x}$  and  $\ddot{x}$  via  $\det\{x\}$  and  $\det\{x\}$ .

# Subscripts and exponents

We can create subscripts (e.g.  $x_1$ ) and superscripts (e.g.  $3^2$ ):

We can create subscripts (e.g.  $x_{1}$ ) and superscripts (e.g.  $3^{2}$ ):

When the subscript is a single character, then it is acceptable to omit the curly braces. That is, the following is equally acceptable for the text above:

We can create subscripts (e.g. \$x\_1\$) and superscripts (e.g. \$3^2\$):

If more than one character is in the sub/superscript, braces are necessary to avoid problems:  $2_10$  outputs  $2_10$ . Sub and superscripts can be used simultaneously:  $x_{ij}^2$ .

#### Fractions and roots

We can easily create fractions such as  $\frac{2+3}{4+5}=\frac{5}{9}$  or roots such as  $\sqrt{81}=9$  and  $\sqrt[4]{81}=3.$ 

We can easily create fractions such as  $\frac{2+3}{4+5} = \frac{5}{9}$  or roots such as  $\frac{3}{9}$  and  $\frac{1}{81} = 3$ .

And we can combine them as well:  $\frac{\sqrt{4}+3}{\sqrt{16}+5} = \frac{5}{9}$ .

And we can combine them as well:  $\frac{\sqrt{4} + 3}{\sqrt{16} + 5} = \frac{5}{9}$ .

## Sums and integrals

We can also create sums and integrals:

```
\label{light} $$ \left( \frac{1}{1-p} & \int_{1}^{2}3x^2dx & = 7 \times \int_{i=0}^{i=0}^{i+1} g^2 & \int_{1}^{2}3x^2dx & = 7 \times \int_{1}^{2}3x^2dx & = 0 \times \int_{1}^{2} g^2 & \int_{1}^{2}3x^2dx & = 0 \times \int_
```

which results in

$$\sum_{i=0}^{\infty} p^{i} = \frac{1}{1-p} \qquad \qquad \int_{1}^{2} 3x^{2} dx = 7$$

$$\sum_{i=0}^{\infty} 0.5^{i} = 2 \qquad \qquad \int_{1}^{3} 3x^{2} dx = 0$$

The commands \nolimits and \limits can be used to override the default displays of limits in LaTeX.

## Practice

Produce the following result using the eqnarray\* environment:

$$\sum_{i=0}^{n} p^{i} = \frac{1 - p^{n-1}}{1 - p}$$

Some examples may be utilized in latexTemp.tex.

# Sizing of Brackets

A small problem with bracket sizes is shown in the left equation, and this problem is fixed on the right.

$$\left(\frac{2+3}{4+5}\right) \qquad \left(\frac{2+3}{4+5}\right)$$

The coding for the expressions above

```
\begin{align*}
    (\frac{2+3}{4+5}) &&& \\eft(\frac{2+3}{4+5}\\right)
\end{align*}
```

Generally we can use  $\left| \text{left}(, \left| \text{left} \right|, \text{and } \left| \text{left} \right|) \right|$  and their corresponding right brackets to create automatically sized brackets. These commands *must* be inside one of the equations environments and the left and right brackets must always be balanced.

### Matrices

Matrices also can be made in LaTeX:

$$\left(\begin{array}{ccc} 4 & 1 & 19 \\ 3 & 8 & 8 \end{array}\right)$$

The code:

```
\begin{eqnarray*}
\left(\begin{array}{ccc} 4 & 1 & 19 \\
    3 & 8 & 8 \lend{array}\right)
\end{eqnarray*}
```

The syntax for an array is the same as for tabular (a table).

# Space and stacking

Space can be added in equations using \quad, and expressions can be stacked via \stackrel:

```
\label{eq:continuous} $$ E(X+Y) \operatorname{lend}_{indep.}_{=} E(X) + E(Y) $$ \operatorname{quad}_{quad} $$ Var(X+Y) \operatorname{lend}_{indep.}_{=} Var(X) + Var(Y) $$ end_{eqnarray}^* $$
```

produces

$$E(X+Y) \stackrel{indep.}{=} E(X) + E(Y) \qquad Var(X+Y) \stackrel{indep.}{=} Var(X) + Var(X)$$

# Summary

After this class, you should have a general idea of

using the math modes in LaTeX

Any questions?