Решения на задачите по алгебра

Този материал е изготвен със съдействието на школа Sicademy

А1. Нека $f(x) = x^2 + ax + 1$, $f_1(x) = f(x)$, $f_{n+1}(x) = f(f_n(x))$, $n \ge 1$. Да се намерят всички естествени числа a, за които уравнението $f_a(x) = 0$ има поне един реален корен.

Pешение. Лесно се вижда, че при a=1 и a=2 уравнението няма реални корени. Да отбележим, че уравнението f(x)=b има реално решение при $b\geq 1-\frac{a^2}{4}$ и в този случай $x_1=\frac{-a+\sqrt{a^2+4b-4}}{2}\geq -\frac{a}{2}$. Нека a=3. Тогава уравнението f(x)=0 има корен $x_1=\frac{-3+\sqrt{5}}{2}$, уравнението $f(x)=x_1$ има реален корен $x_2=\frac{-3+\sqrt{5+4x_1}}{2}\geq 1-\frac{9}{4}$ и следователно уравнението $f(x)=x_2$ има реален корен x_3 . Тогава

$$f_3(x_3) = f_2(f(x_3)) = f_2(x_2) = f(f(x_2)) = f(x_1) = 0.$$

Нека сега $a \ge 4$. Тогава уравнението f(x) = 0 има реален корен

$$x_1 = \frac{-a + \sqrt{a^2 - 4}}{2} \ge -\frac{a}{2} > 1 - \frac{a^2}{4}$$

и както по-горе следва, че съществува редица от реални числа x_1, x_2, \ldots, x_a , за която уравнението $f(x) = x_k$ има решение x_{k+1} при $k = 1, 2, \ldots, a-1$. Тогава

$$f_a(x_a) = f_{a-1}(f(x_a)) = f_{a-1}(x_{a-1}) = \dots = f(x_1) = 0.$$

Следователно търсените стойности на a са всички $a \ge 3$.

А2. Дадена е редицата $\{a_k\}$, за която $a_1 = 1$ и $a_k = a_{k-1} + a_{\lfloor k/2 \rfloor}$ при k > 1. Възможно ли е някой член на тази редица да се дели на 4?

Решение. Първи начин. Ако n е нечетно, то a_n също е нечетно. Действително, $a_{2k+1} = a_{2k} + a_k = a_{2k-1} + 2a_k$ показва, че a_{2k-1} и a_{2k+1} имат еднаква четност и е достатъчно да отбележим, че a_1 е нечетно.

Ще докажем по индукция, че $a_{4k} \equiv a_k \pmod 4$. Базата се проверява лесно, а за индукционната стъпка последователно пресмятаме

$$a_{4k+4} = a_{4k+3} + a_{2k+2} = a_{4k+2} + 2a_{2k+1} + a_{k+1} = a_{4k+1} + 3a_{2k+1} + a_{k+1} = a_{4k} + 3a_{2k+1} + a_{2k} + a_{k+1} = a_{4k} + 4a_{2k+1} + a_{k+1} - a_k,$$

откъдето $a_{4(k+1)} - a_{k+1} \equiv a_{4k} - a_k \pmod{4}$.

Сега ще докажем, че ако $n \equiv 2 \pmod 4$, то $a_n \equiv 2 \pmod 4$. Имаме последователно

$$a_{4k+2} = a_{4k+1} + a_{2k+1} = a_{4k} + a_{2k} + a_{2k+1} =$$

= $a_{4k} - a_k + 2a_{2k+1} \equiv 2a_{2k+1} \pmod{4}$

и исканото следва от нечетността на a_{2k+1} .

Да допуснем, че има членове на редицата, които се делят на 4 и нека a_n е този от тях с най-малък индекс. Тогава от горното следва, че n се дели на 4. Но сега $a_{n/4}$ също се дели на 4, противоречие с избора на n.

Втори начин. Нека $n=2^km$, където m е нечетно число. Тогава с индукция по n се доказва, че:

- 1. ако k е нечетно, то $a_n \equiv 2 \pmod{4}$;
- 2. ако k е четно и двоичният запис на n съдържа s(n) цифри, то $a_n \equiv 2s(n) 1 \pmod{4}$.

А3. Нека M е медицентърът на $\triangle ABC$. Да се докаже, че

$$\sin \angle MBC + \sin \angle MCA + \sin \angle MAB \le \frac{3}{2}$$

.

Peшение. Нека D е петата на перпендикуляра от M към BC. Тъй като $S_{AMB}=S_{BMC}=S_{CMA}$, то $MD=\frac{h_a}{3}$, където h_a е височината през A. Понеже $BM=\frac{2m_b}{3}$, където m_b е медианата на медианата през B, то

$$\sin \angle MBC = \frac{h_a}{2m_b}.$$

Събирайки това равенство с другите две подобни, даденото неравенство добива вида

$$\frac{h_a}{m_b} + \frac{h_b}{m_c} + \frac{h_c}{m_a} \le 3.$$

От неравенството на Коши-Буняковски-Шварц следва, че

$$\left(\frac{h_a}{m_b} + \frac{h_b}{m_c} + \frac{h_c}{m_a}\right)^2 \le \left(h_a^2 + h_b^2 + h_c^2\right) \left(\frac{1}{m_a^2} + \frac{1}{m_b^2} + \frac{1}{m_c^2}\right) =: X.$$

Значи е достатъчно да докажем, че $X \leq 9$.

Нека $(x,y,z)=(a^2,b^2,c^2)$. Да отбележим, че

$$\begin{split} h_a^2 + h_b^2 + h_c^2 &= 4S_{ABC}^2 \cdot \frac{xy + yz + zx}{xyz} \\ &= \frac{(2(xy + yz + zx) - x^2 - y^2 - z^2)(xy + yz + zx)}{4xyz}, \\ \frac{1}{m_a^2} + \frac{1}{m_b^2} + \frac{1}{m_c^2} &= \frac{36(xy + yz + zx)}{(2x + 2y - z)(2y + 2z - x)(2z + 2x - y)}. \end{split}$$

Тогава $X \leq 9$ е еквивалентно на

$$xyz(2x + 2y - z)(2y + 2z - x)(2z + 2x - y) + (x^{2} + y^{2} + z^{2})(xy + yz + zx)^{2}$$

$$\geq 2(xy + yz + zx)^{3}.$$

Разкривайки скобите, достигаме до $(x-y)^2(y-z)^2(z-x)^2 \ge 0$, което е очевидно.