TP4

bosio@lirmm.fr

Flash Memory

- Flash memory is a non-volatile computer storage chip that can be electrically erased and reprogrammed
- · Flash memory is non-volatile, meaning no power is needed to maintain the information stored in the chip
- Flash memory offers fast read access times (although not as fast as volatile DRAM memory used for main memory in PCs) and better kinetic shock resistance than hard disks
- Limitations: although it can be read or programmed a byte or a word at a time in a random access fashion, it can only be erased a "block" at a time (once a bit has been set to 0, only by erasing the entire block can it be changed back to 1)

Flash Memory

- Flash is Memory Mapped: can be accesses trough its address
- Your code is written from address
 - -0x08000000
- Your Board has 256Kbyte of FLASH, how many blocks are available?

Flash Organization

Flash area	Flash memory addresses	Size (bytes)	Name
Main memory	0x0800 0000 - 0x0800 07FF	2 K	Page 0
	0x0800 0800 - 0x0800 0FFF	2 K	Page 1
	0x0800 1000 - 0x0800 17FF	2 K	Page 2
	0x0800 1800 - 0x0800 1FFF	2 K	Page 3
	n d		:
	a ·		
	0x0807 F800 - 0x0807 FFFF	2 K	Page 255
Information block	0x1FFF D800 - 0x1FFF F7FF	8 K	System memory
	0x1FFF F800 - 0x1FFF F80F	16	Option bytes
Flash memory interface registers	0x4002 2000 - 0x4002 2003	4	FLASH_ACR
	0x4002 2004 - 0x4002 2007	4	FLASH_KEYR
	0x4002 2008 - 0x4002 200B	4	FLASH_OPTKEYR
	0x4002 200C - 0x4002 200F	4	FLASH_SR
	0x4002 2010 - 0x4002 2013	4	FLASH_CR
	0x4002 2014 - 0x4002 2017	4	FLASH_AR
	0x4002 2018 - 0x4002 201B	4	Reserved
	0x4002 201C - 0x4002 201F	4	FLASH_OBR
	0x4002 2020 - 0x4002 2023	4	FLASH_WRPR

- The memory organization is based on 128 pages of 2 Kbytes
 - STM32F303xB/C and
 STM32F358xC devices,
- · 256 pages of 2 Kbytes
 - STM32F303xD/E
- · An information block
- · Internal Registers

How to...

I want to store data in flash. How can I store data in flash memory?

- 1. Unlock the Flash
- 2. Clear All pending flags
- Erase the FLASH page
- 4. Program Flash Bank1 (write)
- 5. Lock the Flash

Now you can read stored data...

Exercice 1

- · Télécharger le programme
 - http://www.lirmm.fr/~bosio/L3/Flash.c
- Utiliser le debugger pour vérifier le fonctionnement du programme
 - Option "Memory Browser" pour visualiser le contenu de la memoire FLASH

Exercice 2

- Ecrire un programme pour compter le nombre de "double-click" sur le bouton dans un intervalle de 30 seconds.
 - Pendant le 30 seconds, le LED4 doit rester allumé
- · Apres 30 seconds (le LED4 s'eteign) et le programme écrit dans la flash le nombre de doubleclick.
- Enfin, dès qu'il y a un double-click sur le bouton, le programme va lire la valeur sauvegardée dans la flash et :
 - Allume le LED3 si la valeur est inférieur à 5
 - Allume le LED7 si la valeur est supérieur ou égale à 5

Exercice 3

- Ecrire un programme pour compter le nombre de "doubleclick" sur le bouton dans un intervalle de 30 seconds.
 - Pendant le 30 seconds, le LED4 doit rester allumé
- · Apres 30 seconds (le LED4 s'eteign) et le programme écrit dans la flash le nombre de doubleclick.
- Debrancher la carte
- Rebrancher la carte (sans reprogrammer la carte avec le debugger) :
 - Le programme doit lire dans la flash la valeur sauvegardée et :
 - Allume le LED3 si la valeur est inférieur à 5
 - Allume le LED7 si la valeur est supérieur ou égale à 5

Exercice 4 (optionel)

- Modifier l'exercice 3 pour permettre de reinitaliser le programme
 - Pouvoir sauvegarder une nouvelle valuer de doubleclick