

Year 11 Mathematics Specialist Test 6 2020

Proof and Complex Numbers

STUDENT'S NA	ME	Solutions - J.C	<u>·</u>
DATE: Wednesday 9th September		TIME: 50 minutes	MARKS: 52
INSTRUCTIONS Standard Items: Special Items:	Pens, pencils, drawing	only, notes on one side of a single A4 page	(these notes to be handed in
Questions or parts of	questions worth more than	n 2 marks require working to be shown to rec	eive full marks.
1. (2 marks)			

Express the following recurring decimal as a fraction. It is not necessary to simplify the fraction.

$$0.0\overline{13} \qquad 0.0\overline{13}...$$

$$1000 = 0.1\overline{3}...$$

$$1000 = 13.\overline{13}\overline{13}...$$

$$990 = 13.$$

$$0.0\overline{13}...$$

$$990 = 13.$$

$$0.0\overline{13}...$$

2. (4 marks)

Prove by contradiction $\sqrt{3}$ is irrational.

assume
$$\sqrt{3} = \frac{a}{b}$$
 where a nd b are in Simplified form

 $3 = \frac{a^2}{b^2}$
 $b^2 = \frac{a^2}{3}$
 a^2 is divisible by 3.

A is divisible by 3.

A = 3m. (multiple of 3)

 $a^2 = 3b^2$
 $9m^2 = 3b^2$
 $3m^2 = b^2$
 $3m^2 = b^2$
 $3b^2$

is a multiple of 3.

A and b are both multiples of 3.

A and b are both multiples of 3.

A contradiction

 $\sqrt{3}$ is irrational.

3. (4 marks)

Prove the sum of five consecutive odd numbers is a multiple of five.

2n is even

$$2n+1$$
 is odd.

$$(2n-3) + (2n-1) + (2n+1) + (2n+3) + (2n+5)$$

$$= 10n + 5$$

$$= 5(2n+1)$$

i. is a factor of 5/multiple of 5.

4. (12 marks)

Given z = 4 + 3i and w = 2 - 5i determine:

(a)
$$w^2 = (2-5i)(2-5i)$$

= $4-20i+25i^2$
= $-21-20i$

(b)
$$z\overline{w} = (4+3i)(2+5i)v$$

$$= 8+64+20i+15i^{2}$$

$$= -7+26i$$

(c)
$$\frac{w}{z} = \frac{2-5i}{4+3i} \times \frac{4-3i}{4-3i} = \frac{8-20i-6i+15i^2}{16-9i^2}$$

$$= \frac{-7}{25} - \frac{26i}{25}$$

(d)
$$3z - 4w \quad 3(4+3i) - 4(2-5i)$$

$$= 12 + 9i - 8 + 20i$$

$$= 4 + 29i$$

(e)
$$Im\left(\frac{1}{z}\right) \frac{1}{z} = \frac{1}{4+3i} \times \frac{4-3i}{4-3i}$$

$$\frac{1}{z} = \frac{4-3i}{16-9i^2}$$

$$\frac{1}{z} = \frac{4-3i}{25}$$

$$Im\left(\frac{1}{z}\right) = \frac{-3}{25}$$

5. (4 marks)

A quadratic equation in the form $x^2 + bx + c = 0$ has one of its roots 7 - 3i. Determine b and c.

$$x = 7-3i$$

$$x = 7+3i$$

$$((x-7)-3i)((x-7)+3i)$$

$$(x-7)^{2}-(3i)^{2}$$

$$x^{2}-14x+49+9$$

$$x^{2}-14x+58$$

$$b=-14$$

$$c=58$$

6. (6 marks)

Prove

(a)
$$n^3 - n$$
 is a multiple of 6, for $n \ge 2$

$$n(n^2 - 1)$$

$$n(n - 1)(n + 1)$$

$$n(n$$

(b)
$$\overline{wz} = \overline{w} \overline{z}$$
 given w and z are complex numbers [3]

let
$$w = a + bi$$

let $z = c + di$

$$w2 = ac + adi + bci + bdi^{2}$$

$$= [ac - bd] + [ad + bc]i$$

$$2HS \quad \overline{w2} = [ac - bd] - [ad + bc]i$$

$$RHS \quad \overline{w2} = (a - bi)(c - di)$$

$$= ac - bci - adi + bdi^{2}$$

$$= [ac - bd] - [ad + bc]i$$

$$= LHS$$

- 7. (8 marks)
 - Solve $x^2 10x + 29 = 0$ (a)

$$(x-5)^2 + 4 = 0$$

$$(x-5)^2 = -4$$

$$x-5 = \sqrt{4 \cdot (1)}$$

$$x = 5 = \pm 2i$$

$$x = 5 - 2i$$

Determine the complex number z given $z - 2\overline{z} = 5 + 6i$

$$(a+bi)-2(a-bi) = 5+6i$$

$$-a+3bi = 5+6i$$

[4]

[4]

Prove the following conjecture using mathematical induction,

for all
$$n \ge 1$$
, $\frac{x^{n+1} - 1}{x - 1} = 1 + x + x^2 + ... + x^n$ where $x \ne 1$

LHS =
$$\frac{x^2-1}{x-1}$$

= $\frac{b(x+1)^2(x-1)}{x-1}$

= $\frac{b(x+1)^2(x-1)}{x-1}$

: true for $n=1$

$$\frac{\chi^{K+1}-1}{\chi^{K+1}} = 1 + \chi + \chi^{2} + \dots \chi^{K}$$

$$\frac{2c}{2c-1} = 1 + x + x^2 + \dots + x^{k+1}$$

RHS =
$$1 + x + x^{2} + ... + x^{k+1}$$

$$= \frac{x^{k+1} - 1}{x^{k-1}} + \frac{x^{k+1}}{x^{k+1}}$$

$$= \frac{x^{k+1} - 1}{x^{k-1}} + \frac{x^{k+1}}{x^{k-1}}$$

$$= \frac{x^{k+1} - 1}{x^{k-1}} + \frac{x^{k+1}}{x^{k-1}}$$

$$= \frac{x^{k+1} - 1}{x^{k-1}} + \frac{x^{k+1}}{x^{k-1}}$$

$$= \frac{x^{k+2} - 1}{x^{k-1}}$$

· given true for n=1C+1 when assumed true for n=1c and true for n=1, therefore true for n=2, and then true for n=3

therefore by induction.

$$\frac{x^{n+1}-1}{x-1} = 1 + x + x^2 + \dots + x^n \quad \text{where } x \neq 1$$
and $n \geq 1$

Page 7 of 8

9. (6 marks)

Use mathematical induction to prove the following conjecture.

 $2^{n+1}\sin x \cos x \cos(2x)\cos(4x)...\cos(2^n x) = \sin(2^{n+1}x)$ for $n \ge 0$, $n \in \mathbb{Z}$

- let
$$n=0$$
. LHS = 2'sin xccosx

$$RHS = Sin 2'x$$

assume n=K

true

$$\therefore \quad \mathcal{I}^{k+1} \text{ sin se cos } \propto \cos(2x)\cos(4x) \dots \cos(2x) = \sin(2^{k+1}x)$$

let n= K+1

to prove
$$2^{k+l+l}$$
 $\sin x \cos x \cos(2x)\cos(4x)...\cos(2^kx),\cos(2^kx)=\sin(2^{k+l+l}x)$

$$RHS = Sin(2^{K+l+1}x)$$

$$= \sin\left(2\cdot\left(2^{\kappa+1}\right)\right)$$

=
$$2 \sin(2^{\kappa+1}x) \cos(2^{\kappa+1}x)$$

: true for n=K+1 when assumed true for n=K,
given true for n=0, therefore true for n=1, n=2, ctc.

: 2^{n+1} sinx cosx cos(2x)cos(4x)...cos(2"x) = sin(2"x) fr n > 0 n $\in \mathbb{Z}$