Kapitel 1

Untermannigfaltigkeiten und Flächen

Zentral für das Verständnisses dieser Vorlesung sind Untermannigfaltigkeiten (UMF). Der Prototyp einer Untermannigfaltigkeit hat immer die Form

$$\mathbb{R}^k \times \{0\} \subset \mathbb{R}^n$$
 wobei $k < n$

Eine UMF sollte bis auf lokale Diffeomorphismen "so aussehen"

$$\mathbb{R}^2 \times \{0\}$$

Prototyp einer UMF in \mathbb{R}^3

Definition. Seien $U, V \subset \mathbb{R}^n$ offen. Eine Abbildung $\varphi : U \to V$ heisst Diffeomorphismus falls φ bijektiv, und sowohl φ und φ^{-1} unendlich oft differenzierbar. Schreibe auch $\varphi \in (C^{\infty})$ bzw. φ glatt.

Bemerkung. In der Literatur wird manchmal auch nur C^1 , also stetig differenzierbar gefordert.

Beispiele.

- 1. $\varphi \colon \mathbb{R} \to \mathbb{R}_{>0}$ ist ein Diffeomorphismus mit Umkehrung log: $\mathbb{R}_{>0} \to \mathbb{R}$ $x \mapsto e^x$
- 2. $\varphi \colon \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$ ist ein Diffeomorphismus mit $\varphi^{-1} = \arctan x \mapsto \tan(x)$
- 3. $\varphi \colon \mathbb{R} \to \mathbb{R}$ ist kein Diffeomorphismus, $\varphi^{-1}(x) = \sqrt[3]{x}$ bei x = 0 nicht diff'bar $x \mapsto x^3$

Erinnerung (Umkehrsatz). Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ in C^1 (also stetig diff'bar) und $p \in \mathbb{R}^n$ mit $\det(Df)_p \neq 0$. Dann existieren $U, V \in \mathbb{R}^n$ offen mit $p \in U$ und V = f(U), so dass die Einschränkung $f|_U: U \to V$ ein Diffeomorphismus (im C^1 -Sinn ist). "f hat bei p eine lokale Umkehrung in C^1 ."

1.1 Untermannigfaltigkeit

Definition. Eine abgeschlossene Teilmenge $M \subset \mathbb{R}^n$ heisst Untermannigfaltigkeit der Dimension k falls $\forall p \in M$ zwei offene Mengen $U, V \subset \mathbb{R}^n$ mit $p \in U$ und $0 \in V$ existieren, sowie ein C^1 -Diffeomorphismus $\varphi \colon U \to V$ mit $\varphi (U \cap M) = (\mathbb{R}^k \times \{0\}) \cap V$ und $\varphi(p) = 0$

Beispiel. Die (x-Achse \cup y-Achse) \setminus {0} = M ist zwar lokal diffeomorph zu $\mathbb{R} \times \{0\} \subset \mathbb{R}^2$, ist aber nicht abgeschlossen. Also <u>keine</u> UMF in \mathbb{R}^2 !

Frage. Wie konstruieren wir nicht triviale Beispiele von Untermannigfaltigkeiten?

Definition. Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ C^1 mit m < n. Ein Punkt p heisst <u>regulär</u> (für f), falls das Differential $(Df)_p: \mathbb{R}^n \to \mathbb{R}^m$ surjektiv ist. Ein Wert $w \in \mathbb{R}^m$ heisst <u>regulär</u>, falls alle $p \in f^{-1}(w)$ regulär sind. Nicht reguläre Punkte/Werte heissen <u>kritisch</u>.

Bemerkung. Falls $w \notin Bild(f)$, dann ist w auch regulär.

Im Spezialfall
$$k=2$$
 und $n=3$ heisst $M\subset\mathbb{R}^3$ eine reguläre Fläche.

Theorem 1. Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ C^1 mit $m \leq n$ und $w \in \mathbb{R}^m$ ein regulärer Wert. Dann ist das Urbild $f^{-1}(w) = \{p \in \mathbb{R}^n \mid f(p) = w\} \subset \mathbb{R}^n$ eine Untermannigfaltigkeit der Dimension n - m.

Beispiele.

1.
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 Berechne $\forall p \in \mathbb{R}^3$ das Differential $(Df)_p: \mathbb{R}^3 \to \mathbb{R}$ $h \mapsto \langle h, e_3 \rangle$

Erinnerung (Dreigliedentwicklung).

$$f(p+h) = f(p) + (Df)_p(h) + (Rf)_p(h)$$
$$\langle p+h, e_3 \rangle = \langle p, e_3 \rangle + \langle h, e_3 \rangle + 0$$

Insbesondere ist $\forall p \in \mathbb{R}^3 \, (Df)_p : \mathbb{R}^3 \to \mathbb{R}$ surjektiv, da der Gradient $(\nabla f)_p = e_3 \neq 0$ Gradient: Für $f : \mathbb{R}^n \to \mathbb{R}$ gilt $(Df)_p \, (h) = \langle (\nabla f)_p \, , h \rangle$. Wir folgern, dass für alle $w \in \mathbb{R}$ die Menge $f^{-1}(w) = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ eine Untermannigfaltigkeit der Dimension 3-1=2

2.
$$f: \mathbb{R}^3 \to \mathbb{R}$$
 (In Koordinaten $f(x, y, z) = x^2 + y^2 + z^2$)
 $p \mapsto \langle p, p \rangle = ||p||_2^2$

Berechne $\forall p \in \mathbb{R}^3$

$$(Df)_p: \mathbb{R}^3 \to \mathbb{R}$$

 $h \mapsto 2\langle p, h \rangle$

$$f(p+h) = \langle p+h, p+h \rangle = \underbrace{\langle p, p \rangle}_{f(p)} + \underbrace{2\langle p, h \rangle}_{(Df)_p(h)} + \underbrace{\langle h, h \rangle}_{(Rf)_p(h)}$$

 $\Longrightarrow (\nabla f)_p = 2p$ Also ist $(Df)_p \colon \mathbb{R}^3 \to \mathbb{R}$ surjektiv $\iff p \neq 0$ Wir folgern, dass für alle $w \neq 0$ die Menge $f^{-1}(w) = \{p \in \mathbb{R}^3 \mid ||p||_2^2 = w\}$ eine Untermannigfaltigkeit der Dimension 3 - 1 = 2 ist.

$$\frac{w < 0}{\emptyset} \qquad \frac{w = 0}{0} \qquad \frac{w > 0}{\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{$$

3. $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^2 + y^2 - z^2$. Berechne $(\nabla f)_p = (2x,2y,-2z), p = (x,y,z)$ Also $(Df)_p: \mathbb{R}^3 \to \mathbb{R}$ surjektiv $\iff p \neq 0$. Folgerung $w \neq 0 \implies f^{-1} \subset \mathbb{R}^3$ UMF der Dimension 2.

zweischaliges

Hyperboloid

einschaliges

Beweis von Theorem 1. Sei $p \in \mathbb{R}^n$ mit f(p) = w. Dann ist $(Df)_p : \mathbb{R}^n \to \mathbb{R}^m$ surjektiv. Nach dem Satz über implizite Funktionen existieren offene Mengen:

- $A \subset K = \ker ((Df)_p)$
- $B \subset \mathbb{R}^m$
- $Y \subset \mathbb{R}^n$

mit $0 \in A, w \in B$ und $p \in V$ sowie ein C^1 -Diffeomorphismus $g: A \times B \to V$ mit

i)
$$f(g(k,y)) = y \ \forall k \in A, \ y \in B$$

ii)
$$g(k,y) - (p+k) \in K^{\perp}$$

Die Niveaumenge f^{-1} ist lokal gleich dem Graphen einer Funktion der Form $k \mapsto g(k, y)$. Insbesondere gilt: $f^{-1} \cap V = g(A \times \{w\})$. Wir folgern, dass $f^{-1}(w)$ eine UMF (via $\varphi = g^{-1}$) der Dimension k = n - m ist. Da dim $K = \dim(\mathbb{R}^n) - \dim(\operatorname{Bild}(Df)_p)$.

Bild:

1.2 Lokale Parametrisierung von Untermannigfaltigkeiten

Definition. Eine C^1 -Abilldung $f: \mathbb{R}^k \to \mathbb{R}^n$ heisst <u>lokale Einbettung</u> beim Punkt $p \in \mathbb{R}^k$ falls $(Df)_p: \mathbb{R}^k \to \mathbb{R}^n$ injektiv ist. $(k \le n)$

Theorem 2. Sei $f: \mathbb{R}^k \to \mathbb{R}^n$ eine lokale Einbettung bei $p \in \mathbb{R}^k$. Dann existiert eine offene Menge $W \subset \mathbb{R}^k$ mit $p \in W$, sodass $f(W) \subset \mathbb{R}^n$ eine offene Teilmenge einer Untermannigfaltigkeit $M \subset \mathbb{R}^n$ ist.

In diesem Kontext heisst f eine lokale Parametrisierung von M bei $f(p) \in M$.

Beispiele.

1. $M = \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$. Dann ist

$$\varphi: \mathbb{R}^2 \to \mathbb{R}^3$$
 $(u, v) \mapsto (u, v, 0)$

eine (globale) Parametrisierung von M. Tatsächlich ist φ linear, mit Abbildungsmatrix $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. Die Jakobimatrix $(J\varphi)_p$ stimmt in jedem Punkt mit A überein $\Longrightarrow (D\varphi)_p : \mathbb{R}^2 \to \mathbb{R}^3$ injektiv.

2. $M=S^2=\{p\in\mathbb{R}^3|\ ||p||_2=1\}\subset\mathbb{R}^3$ (reguläre Fläche, siehe oben). Definiere

$$\varphi \colon D^2 \to S^2$$

 $(u, v) \mapsto (u, v, \sqrt{1 - u^2 - v^2})$

Bereche $(J\varphi)_{(0,0,0)}=\begin{pmatrix} 1&0\\0&1\\0&0 \end{pmatrix}$ Also ist φ eine lokale Parametrisierung von S^2 beim Nordpol $N=(0,0,1)=\varphi(0,0).$

3. Seien $a, b \in \mathbb{R}$ mit 0 < a < b. Definiere den Rotationstorus

$$\varphi \colon \mathbb{R}^2 \to T \subset \mathbb{R}^3$$
$$(u, v) \mapsto \begin{pmatrix} (b + a \cos u) \cos v \\ (b + a \cos u) \sin \\ a \sin u \end{pmatrix}$$

In jedem Punkt $(u,v)\in\mathbb{R}^2$ ist φ eine lokale Parametrisierung von T. Berechne dazu

Berechne dazu
$$(J\varphi)_{u,v} = \begin{pmatrix} -a\sin u\cos v & -(b+a\cos u)\sin v \\ -a\sin u\sin v & (b+a\cos u)\cos v \\ a\cos u & 0 \end{pmatrix}.$$
 Es gilt $\forall (u,v) \in \mathbb{R}^2 \colon \operatorname{Rang}(J\varphi)_{(0,0)} = 2 \implies (D\varphi)_{(u,v)} \colon \mathbb{R}^2 \to \mathbb{R}^3$ injektiv.

Frage. Besitzt jede Untermannigfaltigkeit $M \subset \mathbb{R}^n$ bei jedem Punkt eine lokale Parametrisierung?

Proposition 1. Jede Untermannigfaltigkeit $M \subset \mathbb{R}^n$ besitzt bei allen Punkten $p \in M$ eine lokale Parametrisierung.

Beweis. Da $M \subset \mathbb{R}^n$ eine UMF ist, existieren für alle $p \in M$ offene Mengen $U, V \subset \mathbb{R}^n$ mit $p \in U$, $0 \in V$ sowie $g: U \to V$ ein Diffeomorphismus mit g(p) = 0 und $g(U \cap M) = (\mathbb{R}^k \times \{0\}) \cap V$. Definiere nun

$$\varphi: g^{-1}|_{(\mathbb{R}^k \times \{0\}) \cap V} \colon (\mathbb{R}^k \times \{0\}) \cap V \to M \cap U$$
$$q \mapsto g^{-1}(q)$$

Es gilt: $\varphi(0) = p$ und $(D\varphi)_0 = (Dg^{-1})_0 |_{\mathbb{R}^k \times \{0\}} = (Dg)_p^{-1}|_{\mathbb{R}^k \times \{0\}}$. Nach Konstruktion (g ist ein Diffeomorphismus) ist $(Dg)_p : \mathbb{R}^n \to \mathbb{R}^n$ ist ein Isomorphismus, ebenso $(Dg)_p^{-1} : \mathbb{R}^n \to \mathbb{R}^n \implies (Dg)_p^{-1}|_{\mathbb{R}^k \times \{0\}}$ ist injektiv $\implies (D\varphi)_0 : \mathbb{R}^k \times \{0\} \to \mathbb{R}^n$ injektiv. Also ist φ eine lokale Parametrisierung bei $p \in M$.

Beweis von Theorem 2. Zur Vereinfachung nehmen wir p=0 und f(p)=0 an. Setze $B=\mathrm{Bild}(Df)_p<\mathbb{R}^n$, ein Untervektorraum der Dimension k (da $(Df)_p$ injektiv. Weiterhin $S=B^\perp<\mathbb{R}^n$, sodass gilt $\mathbb{R}^n=B\oplus S$, $\dim(S)=n-k$. Definiere

$$F: \mathbb{R}^k \times S \to \mathbb{R}^n$$

 $(q, s) \mapsto f(q) + s$

F ist stetig differenzierbar. Dreigliedentwicklung im Punkt $(p,0) = \mathbb{R}^k \times S$: Sei $h_1 \in \mathbb{R}^k, h_2 \in S$. Berechne:

$$F(p+h_1, 0+h_2) = f(p+h_1) + h_2 = f(p) + (Df)_p(h_1) + (Rf)_p(h_1) + h_2$$

$$\implies (DF)_{(p,0)} ((h_1, h_2)) = (Df)_p(h_1) + h_2$$

Behauptung. $(DF)_{(p,0)}: \mathbb{R}^k \times S \to \mathbb{R}^n$ ist ein Isomorphismus

Beweis. Es reicht zu zeigen: $(DF)_{(p,0)}$ ist injektiv (da k+(n-k)=n). Sei $(h_1,h_2)\in\ker(DF)_{(p,0)}$

$$\underbrace{(Df)_p(h_1)}_{\in B} + \underbrace{h_2}_{\in S} = 0 \underset{B \cap S = \{0\}}{\Longrightarrow} (Df)_p(h_1) = 0 \text{ und } h_2 = 0 \underset{(Df)_p \text{ injektiv}}{\Longrightarrow} h_1 = 0$$

Da also $\ker(DF)_{(p,0)} = 0$, ist $(DF)_{(p,0)}$ injektiv

Nach Umkehrsatz existieren $U \subset \mathbb{R}^k \times S$, $V \subset \mathbb{R}^n$ offen mit $(p,0) \in U$ und $f(p) = F(p,0) \in V$, sodass $F|_U : U \to V$ ein Diffeomorphismus ist. Nach Definition von F gilt $F(U \cap \mathbb{R}^k \times \{0\}) = \underbrace{f(\mathbb{R}^k)}_{} \cap V$.

 $\operatorname{Bild}(f)$

Wir schliessen, dass $Bild(f) \subset \mathbb{R}^n$ lokal um den Punkt f(p) die Bedingungen einer Untermannigfaltigkeit erfüllt.

Bemerkung. Sei $f: \mathbb{R}^k \to \mathbb{R}^n$ eine C^1 -Abbildung, welche in jedem Punkt eine lokale Einbettung ist. Dann braucht f nicht injektiv zu sein. Weiterhin ist $f(\mathbb{R}^k) \subset \mathbb{R}^n$ im Allgemeinen keine Untermannigfaltigkeit.

Beispiel. Betrachte die Funktion

$$f: \mathbb{R} \to \mathbb{R}^2$$

 $t \mapsto (t^2, t^3 - t)$

Berechne $(Jf)_t = \binom{2t}{3t^2 - 1} \neq 0 \ \forall t \in \mathbb{R} \implies (Df)_t : \mathbb{R} \to \mathbb{R}^2$ ist injektiv für alle $t \in \mathbb{R}$

Wir sehen, dass f nicht injektiv ist. Also ist Bild(f) keine Untermannigfaltigkeit (lokal um den Punkt (1,0)).

1.3 Der Tangentialraum einer Untermannigfaltigkeit

Ziel. Beschreibung der Menge aller Tangentialvektoren in einem Punkt einer Untermannigfaltigkeit.

Definition. Sei $M \subset \mathbb{R}^n$ eine C^1 -UMF der Dimension k und $p \in M$. Wähle eine lokale C^1 -Parametrisierung $\varphi: U \to M$ um p, d.h. $U \subset \mathbb{R}^k$ offen, $\varphi: U \to \mathbb{R}^n$ stetig differenzierbar mit $\varphi(U) \subset M, \varphi(0) = p \ (0 \in U), \varphi$ injektiv und für alle $p \in U$ ist $(D\varphi)_q: \mathbb{R}^k \to \mathbb{R}^n$ injektiv. Setze

$$T_p M = \text{Bild}\left((D\varphi)_0\right) < \mathbb{R}^n$$

der Tangentialraum von M bei p.

Bemerkung. Die Dimension von $T_pM < \mathbb{R}^n$ ist k, da $(D\varphi)_0 : \mathbb{R}^k \to \mathbb{R}^n$ injektiv ist. Im Falle k = 2 (d.h. M ist eine Fläche) nennen wir T_pM Tangentialebene

Beispiel. Sei $h: \mathbb{R}^k \to \mathbb{R}$ in C^1 . Betrachte den Graphen $\Gamma = \{(x, y, z) \in \mathbb{R}^3 | z = h(x, y)\} \subset \mathbb{R}^3$ und die (globale) Parametrisierung

$$\varphi: \mathbb{R}^2 \to \Gamma \subset \mathbb{R}^3$$

 $(u, v) \mapsto (u, v, h(u, v))$

Bereche die Jakobimatrix im Punkt q = (u, v)

$$(J\varphi)_{(u,v)} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial h}{\partial u}(u,v) & \frac{\partial h}{\partial v}(u,v) \end{pmatrix} \operatorname{Rang} 2 \implies (D\varphi)_q : \mathbb{R}^2 \to \mathbb{R}^3 \text{ injektiv}$$

$$T_{\varphi(q)}\Gamma = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ \frac{\partial h}{\partial v}(u,v) \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \frac{\partial h}{\partial v}(u,v) \end{pmatrix} \right\}$$

Im Spezialfall h = 0: $T_{\varphi(q)}\Gamma = \text{span}\{e_1, e_2\}$

Lemma 1. T_pM hängt nicht von der lokalen Parametrisierung $\varphi: U \to M$ ab.

Beweis. Seien $\varphi_1: U_1 \to M$ $\varphi_2: U_2 \to M$ lokale C^1 -Parametrisierungen mit $\varphi_1(0) = \varphi_2(0) = p \in M$. Setze $V = \varphi_1(U_1) \cap \varphi_2(U_2) \subset M$ offen und $V_1 = \varphi_1^{-1} \subset U_1$ und $V_2 = \varphi_2^{-1} \subset U_2$.

Wir erhalten ein kommutatives Diagramm von Abbildungen

Nach der Kettenregel für $\varphi_2^{-1} \circ \varphi_1$ im Punkt 0 gilt:

$$A = (D\varphi_2^{-1} \circ \varphi_1)_0 = (D\varphi_2^{-1})_{\varphi_1(0)} \circ (D\varphi_1)_0 = (D\varphi_2)_0^{-1} \circ (D\varphi_1)_0 \implies (D\varphi_1)_0 = (D\varphi_2)_0 \circ A$$

Damit formen wir um:

$$\implies T_p M = \operatorname{Bild}(D\varphi_1)_0 = \operatorname{Bild}((D\varphi_2)_0 \circ A)$$

$$\stackrel{(1)}{=} (D\varphi_2)_0 \circ A \left(\mathbb{R}^k\right)$$

$$= (D\varphi_2)_0 \left(\mathbb{R}^k\right)$$

$$= \operatorname{Bild}(D\varphi_2)_0$$

In (1) wird benutzt, dass A invertierbar ist, mit $A^{-1} = (D\varphi_1)_0^{-1} \circ (D\varphi_2)_0$ und damit ist $A(\mathbb{R}^k) = \mathbb{R}^k$.

Interpretation des Tangentialraums via Geschwindigkeitsvektoren

Proposition 2. Sei $p \in M$. Der Tangentialraum T_pM besteht aus allen Geschwindigkeitsvektoren der Form $\gamma'(0)$ für C^1 -Wege $\gamma: (-\varepsilon, \varepsilon) \to M$ mit $\gamma(0) = p$.

Beweis. (i) Sei $\gamma: (-\varepsilon, \varepsilon) \to M$ stetig differenzierbar mit $\gamma(0) = p$. Betrachte eine lokale C^1 -Parametrisierung $\varphi: U \to M$ mit $\varphi(0) = p$.

Wähle $\delta > 0$, sodass $\gamma((-\delta, \delta)) \subset \varphi(U)$. Definiere $\bar{\gamma} : (-\varepsilon, \varepsilon) \to \mathbb{R}^k$

$$t \mapsto \varphi^{-1} \circ \gamma(t)$$

Dann gilt $\gamma|_{(-\delta,\delta)} = \varphi \circ \bar{\gamma}$

$$\implies \gamma'(0) = \frac{d}{dt} \left(\varphi \circ \bar{\gamma} \right)(0) = (D\varphi)_{\bar{\gamma}(0)} \left(\bar{\gamma}'(0) \right) = (D\varphi)_0 \left(\bar{\gamma}'(0) \right) \in \text{Bild}(D\varphi)_0 = T_p M$$

(ii) Sei $v \in T_pM = \text{Bild}\left((D\varphi)_0\right)$ für eine lokale C^1 -Parametrisierung $\varphi: U \to M$ mit $\varphi(0) = p$. Es existiert also $w \in \mathbb{R}^k$ mit $(D\varphi)_0(w) = v$. Konstruktion eines Weges $\gamma: (-\delta, \delta) \to M$. Wähle $\delta > 0$, sodass für alle $t \in (-\delta, \delta)$ gilt: $tw \in U$ (geht, da U offen). Definiere nun:

$$\gamma: (-\delta, \delta) \to M$$

$$t \mapsto \varphi(tw)$$

Dann gilt: $\gamma(0) = \varphi(0) = p$

$$\implies \gamma'(0) = \frac{d}{dt} (\varphi(tw)) (0) = (D\varphi)_0(w) = v$$

Differenzierbare Abbildung zwischen UMF

Sei $M \subset \mathbb{R}^n$ eine C^1 -UMF. Eine Abbildung $f: M \to \mathbb{R}^m$ heisst <u>differenzierbar</u> im Punkt $p \in M$, falls ein $U \subset \mathbb{R}^n$ offen existiert mit $p \in U$, sowie $F: U \to \mathbb{R}^m$ differenzierbar mit $F|_{U \cap M} = f|_{U \cap M}$. Insbesondere sind Einschränkungen von differenzierbaren Abb. $f: \mathbb{R}^n \to \mathbb{R}^m$ auf UMF $M \subset \mathbb{R}^n$ differenzierbar (in allen Punkten).

Definition. Seien $M \subset \mathbb{R}^n, N \subset \mathbb{R}^m C^1$ -UMF und $f: M \to N$ stetig differenzierbar, $p \in M$ (d.h. $f: M \to \mathbb{R}^n$ ist stetig differenzierbar mit $f(M) \subset N$). Definiere

$$(Df)_p: T_pM \to T_{f(p)}N$$

 $v \mapsto (DF)_p(v)$

wobei $F:U\to\mathbb{R}^m$ eine beliebige C^1 -Einschränkung von f um den Punkt p ist, d.h. $U\subset\mathbb{R}^n$ offen mit $p\in U$ und $F|_{U\cap M}=f|_{U\cap M}$. Die Abbildung $(Df)_p$ heisst Differential von f an der Stelle $p\in M$.

Lemma 2. i.) Für alle $v \in T_pM$ gilt $(DF)_p(v) \in T_{f(p)}N$

ii.) $(DF)_p(v)$ hängt nicht von der Erweiterung F ab.

Beweis. i.) Sei $v \in T_pM$ Wähle $\gamma: (-\varepsilon, \varepsilon) \to M$ mit $\gamma(0) = p$ und $\gamma'(0) = v$, sowie Bild $(\gamma) \subset U$. Betrachte nun den C^1 -Weg $\delta = F \circ \gamma: (-\varepsilon, \varepsilon) \to \mathbb{R}^m$. Es gilt für alle $t \in (-\varepsilon, \varepsilon): \delta(t) = F(\gamma(t)) = f(\gamma(t)) \in N$, da $F|_M = f$ und $\gamma(t) \in M$. Berechne:

$$\delta(0) = f(\gamma(0)) = f(p) \implies \delta'(0) = \frac{d}{dt}(F \circ \gamma)(0) = (DF)_{\gamma(0)}(\gamma'(0)) = (DF)_p(v)$$

Nach Proposition gilt $\delta'(0) \in T_{f(p)}N$, also $(DF)_p(v) \in T_{f(p)}N$.

ii.) Seien $F: U \to \mathbb{R}^m$ und $\bar{F}: \bar{U} \to \mathbb{R}^m$ zwei Erweiterungen von f (differenzierbar bei p). Für $v \in T_pM$, wähle $\gamma: (-\varepsilon, \varepsilon) \to M$ wie oben, mit $\operatorname{Bild}(\gamma) \subset U \cap \bar{U}$. Definiere wie unter i) zwei Wege $\delta = F \circ \gamma$ und $\bar{\delta} = \bar{F} \circ \gamma$. Es gilt $\delta'(0) = (DF)_p(v)$ und $\bar{\delta}'(0) = (D\bar{F})_p(v)$. Beachte: δ und $\bar{\delta}$ stimmen überein mit $f \circ \gamma(t) \Longrightarrow \delta'(0) = \bar{\delta}'(0)$

Bemerkung. Es gilt die <u>Kettenregel</u>. Seien $M \subset \mathbb{R}^m, N \subset \mathbb{R}^n, L \subset \mathbb{R}^l$ C^1 -UMF und $f: M \to N, g: N \to L$ in <u>den Punkten</u> $p \in M$ bzw. $f(p) \in N$ differenzierbar. Dann ist $g \circ f$ im Punkt $p \in M$ differenzierbar, es gilt

$$(D(g \circ f))_p = (Dg)_{f(p)} \circ (Df)_p : T_pM \to T_{g \circ f(p)}L$$

Grund: Kettenregel gilt für alle Erweiterungen F, G.

Beispiel einer differenzierbaren Abbildung zwischen UMF

Sei $\Sigma \subset \mathbb{R}^3$ der Rotationstorus parametrisiert durch (0 < a < b)

$$\varphi : \mathbb{R}^2 \to \mathbb{R}^3$$
$$(u, v) \mapsto \begin{pmatrix} (b + a \cos u) \cos v \\ (b + a \cos u) \sin v \\ a \sin u \end{pmatrix}$$

Betrachte die Abbildung

$$f: \Sigma \to S^2 \subset \mathbb{R}^3$$
$$q \mapsto \frac{q}{||q||_2}.$$

f lässt sich zu $F: \mathbb{R}^3 \setminus \{0\} \to S^2$ erweitern. In Koordinaten: $F(x,y,z) = \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r}\right)$ mit $r = \sqrt{x^2 + y^2 + z^2}$. F ist differenzierbar (sogar C^{∞}) deshalb auch $f: \Sigma \to S^2$. Für $q = (x, y, z) \neq 0$, berechne die Jakobimatrix

$$(JF)_{(x,y,z)} = \begin{pmatrix} \frac{1}{r} - \frac{x^2}{r^3} & \frac{-xy}{r^3} & \frac{-xz}{r^3} \\ \frac{-xy}{r^3} & \frac{1}{r} - \frac{y^2}{r^3} & \frac{-yz}{r^3} \\ \frac{-xz}{r^3} & \frac{-yz}{r^3} & \frac{1}{r} - \frac{z^2}{r^3} \end{pmatrix}$$

Betrachte den Punkt $p = \varphi(0,0) = (a+b,0,0) \in \Sigma$. $(Jf)_p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{1}{a+b} & 0 \\ 0 & 0 & \frac{1}{a+b} \end{pmatrix}$. Bestimme $T_p\Sigma = \text{span}\{e_2,e_3\}$ und $T_{f(p)}S^2 = T_{(1,0,0)}S^2 = \text{span}\{e_2,e_3\}$. Wir erhalten also $(Df)_p : T_p\Sigma \to T_{f(p)}S^2$. Es gilt $(Df)_p(e_2) = \frac{1}{a+b}e_2$, bzw. $(Df)_p(e_3) = \frac{1}{a+b}e_3$

1.4 Die erste Fundamentalform

Erinnerung. Ein Skalarprodukt auf einem reellen Vektorraum V ist eine Abbildung $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, welche bilinear, symmetrisch und positiv ist.

• Positivität: $\langle v, v \rangle \ge 0$ für alle $v \in V$ und $\langle v, v \rangle = 0 \iff v = 0$.

Jedes Skalarprodukt definiert eine positiv definite quadratische Form q d.h.

- (i) $\forall v \in V, \lambda \in \mathbb{R} : q(\lambda v) = \lambda^2 q(v)$
- (ii) B(v, w) = q(v + w) q(v) q(w) ist bilinear in v, w.

$$q: V \to \mathbb{R}$$
$$v \mapsto \langle v, v \rangle$$

Sei nun $\Sigma\subset\mathbb{R}^3$ eine reguläre Fläche. Wir erhalten in jedem Punkt $p\in\Sigma$ ein Skalarprodukt

$$\langle \cdot, \cdot \rangle_p = T_p \Sigma \times T_p \Sigma \to \mathbb{R}$$

 $\langle v, w \rangle \mapsto \langle v, w \rangle_{\mathbb{R}^3}$

Das Feld von Skalarprodukten $p\mapsto \langle\cdot,\cdot\rangle_p$ heisst <u>Riemannsche Metrik</u> auf Σ . Die zugehörige quadratische Form $I_p:T_p\Sigma\to\mathbb{R}$ heisst <u>erste Fundamentalform</u> von Σ an der Stelle p.

Beschreibung durch Koeffizienten

