

Implementation of D* Lite With Human Assistance

By Hrishikesh Tawade, Niket Shah, Siddhesh Rane Group 16

Project Goal

- 1. Use D* Lite Algorithm to navigate the robot from start to goal
- 2. Replan trajectory by identifying static obstacles in real-time
- 3. Inform human to remove the obstacle if replanned path is too large or goal is impossible to reach
- 4. Benchmark the results with reference research papers.

Why D* Lite?

- 1. Unlike traditional path finding algorithms, D* Lite holds on to its search data.
- 2. If connections between path nodes are modified or removed, only changed nodes are used to recalculate the path.
- 3. No need to start searching from scratch
- 4. Ideal for poorly traversable and partially unknown search spaces.
- 5. Extensively used in real robots. Eg. Household Robots, Warehouse Robots, Mars Rovers.

D* Lite Algorithm

- 1. Similar to D*, But based on Lifelong planning A*
- 2. Each node X has two cost parameters:
 - a. g(X) objective function value
 - b. rhs(X) cost to the parent node g(S) plus the cost to travel to that node c(X,S)
- 3. The algorithm starts from the given goal node, and backtracks to the start node by minimizing the rhs value. [3]

Node States

A node is added to the open list if it has local inconsistency and active nodes (node under consideration) is made consistent.

Inconsistency

- 1. When node is found to be underconsistent (g(x) < rhs(x)), it signifies that the path to that node was made more costly.
- 2. This can happen if a node which was previously in free space and now obstructed by an obstacle making it unreachable.
- 3. When node is found to be overconsistent (g(x) > rhs(x)), it signifies that the path to that node was made less costly.
- 4. This can happen if a node which was previously occupied by the obstacle is now cleared making it reachable now.

Key

- 1. A key is the value used by the algorithm to sort the priority queue.
- 2. The key/priority of a node X on the open list is the minimum of g(X) and rhs(X) plus a focusing heuristic h

$$Key = [\min(g(X); rhs(X)) + h(X); \min(g(X), rhs(X))]$$

3. h(X) is the distance of the current node X from the start node. [4]

Exploration using D*Lite

Static Obstacle avoidance in Simulation

Call for Human Assistance

Human assistance not required

Human assistance required

Human Assistance Demonstration

Setup

Mapping the setup using SLAM

Localization Using AMCL

Static Obstacle Avoidance in Setup

Image courtesy[4]

Relaxed A* vs D*Lite

Image courtesy[4]

Relaxed A* vs D*Lite

Image courtesy[4]

Relaxed A* vs D*Lite

References:

- [1] N. J. N. P. E. Hart and B. Raphael, "A formal basis for the heuristic determination of minimum cost paths," IEEE Transactions on Systems, Science, and Cybernetics, vol. SSC-4, no. 2, pp. 100–107, 1968.
- [2] E. W. Dijkstra, "A note on two problems in connexion with graphs, "NUMERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.
- [3] Raulcezar Alves, Josu'e Silva de Morais, Carlos Roberto Lopes, "Indoor Navigation with Human Assistance for Service Robots using D*Lite", 2018 IEEE International Conference on Systems, Man, and Cybernetics, 10.1109/SMC.2018.00696.
- [4] S. Koenig and M. Likhachev, "D*lite," in Eighteenth National Conference on Artificial Intelligence. Menlo Park, CA, USA: American Association for Artificial Intelligence, 2002, pp. 476–483. [Online]. Available: http://dl.acm.org/citation.cfm?id=777092.777167
- [5] Tugcem Oral and Faruk Polat, "MOD* Lite: An Incremental Path Planning Algorithm Taking Care of Multiple Objectives", IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 1, January 2016.
- [6] J. Kauko, and V.-V Mattila, Mobile Games Pathfinding, Proceedings of the 12th Finnish Artificial Intelligence Conference STeP 2006, Pp 176 182, Helsinki, Finland
- [7] E. Uslu, F. akmak, M. Balclar, A. Aknc, M. F. Amasyal and S. Yavuz, "Implementation of frontier-based exploration algorithm for an autonomous robot," 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), Madrid, 2015, pp.1-7

Thank You