ISCTE-IUL Licenciatura em Ciência de Dados

Trabalho Individual I

Exercício realizado no âmbito da Unidade Curricular de Optimização Heurística do 2º ano da Licenciatura em Ciência de Dados

André Plancha, 105289

Andre_Plancha@iscte-iul.pt

Índice

a)																							2
b)																							2

a)

Sendo D_i o nível de produção do doce i em milhares de kg, d_i^+ o desvio que significa o valor em excesso para atingir a meta i, d_i^- o desvio que significa o valor em falta para atinger a meta i, e p_i^\pm o peso associado ao desvio d_i^\pm , meu modelo será o seguinte:

Em outros termos, o nosso objetivo vai ser minimizar uma combinação dos desvios pesados apropriada, com o objetivo de não derivar muito das 3 metas, cumprindo também as restrições de produções mínimas e máximas dos vários doces. As 3 primeiras restrições representam as metas do modelo, sendo a primeira uma meta de lucro mínimo, a segunda de uma meta de manter o atual número de empregados, e a terceira de uma meta de investimento máximo; estas estão representadas de acordo com a produção de cada doce que cada meta contribui para. Ou seja, por exemplo, o lucro vai ser:

lucro =
$$12D_1 + 9D_2 + 5D_3 + d_1^-$$

, sendo D_i a produção do doce i em milhares de kg e d_1^- o desvio negativo da meta de lucro. Se d_1^- for 0, então a meta de lucro é cumprida.

As seguintes 3 metas representam o máximo de produção do doce D_1 , e os mínimos de produção dos doces D_2 e D_3 , em milhares de kg. A penúltima restriçã indica a não negatividade da produção e dos desvios, e a última restrição indica que o desvio da meta de manter o atual número de empregados tem de ser um número inteiro, sendo que o número de empregados é um número inteiro. Esta última restrição indica também que $5D_1 + 2D_2 + 4D_3$ vai ser inteiro também.

Antes de apresentar um exemplo de função objetivo (a que vai ser aplicada em); o enunciado refere os pesos de penalização de cada desvio. Enquanto que $p_1^-=5$, e p3+=5 são pesos explícitos e diretos, os pesos dados pelo agente de decisão para a segunda meta são para cada 5 trabalhadores. Como este é um problema linear, os pesos vão ser transformados para 1 trabalhador invés. Ou seja:

$$p_2^- = \frac{4}{5} = 0.8 \land p_2^+ = \frac{10}{5} = 2$$

Um exemplo de função objetivo que pode ser aplicada neste modelo é a soma dos desvios pesados, ou seja: