速通 TATE THESIS 笔记

Ridongen

2025 中科院北大代数与数论暑期学校提高班 2025.8.4-2025.8.22 CONTENTS 2

Contents

1	前言	3
2	2025.8.4 2.1 Adeles 和 Ideles 上的不变测度	
3	2025.8.6 3.1 计算基本区域 \mathbb{A}_F/F 和 $\mathbb{A}_F^{\times,1}/F^{\times}$ 的体积	
4	2025.8.8 1 4.1 $S(F)$ 上的 Fourier 变换 1 4.2 A_F 上的 Fourier 变换 1	
5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
6	2025.8.13 1 6.1 Hecke 特征 1 6.2 Hecke 函数 1 6.3 局部理论前言 1	18
7	2025.8.15 2 7.1 局部理论	20 20
8	2025.8.18 2 8.1 整体理论 2 8.2 回到 $L^S(s,\chi)$ 2	
9	2025.8.20 2 9.1 Dirichlet 特征诱导 Hecke 特征	

1 前言

这份 Latex 笔记是笔者为了巩固日常上课内容而产生的副产物,比较适合复习回顾使用。对于未上过暑期学校且不了解相关内容的读者,首先需要一些前置知识,然后这个 Lecture Note 可以作为一个对 Tate Thesis 的快速参考。

这里会预留一些 proof 的空白,代表课上讲过相关证明,为了减少编辑笔记的时间就略过了。同时,即使附上了证明也只是大致思路,细节并不是这短短六个星期能够完全理解的。

参考资料是一份内部资料,无法外传,请多多包涵。

$2 \quad 2025.8.4$

2.1 Adeles 和 Ideles 上的不变测度

在上一阶段的暑校课程中已经学过 Adeles 和 Ideles, 简单回顾: 对于数域 F/\mathbb{Q} ,

$$\mathbb{A}_F := \left\{ (x_v) \in F_v \middle| \text{对几乎所有} v \middle| \infty, \text{有} x_v \in \mathcal{O}_{F_v} \right\}$$
$$\mathbb{A}_F^\times := \left\{ (x_v) \in F_v^\times \middle| \text{对几乎所有} v \middle| \infty, \text{有} x_v \in \mathcal{O}_{F_v}^\times \right\}$$

定义 2.1. $(X, d\mu)$ 为测度空间,U 为可测集,记 $\operatorname{vol}(U, d\mu) := \int 1_U d\mu$ 。进一步,若 X 为拓扑群,称 $d\mu$ 是左 (resp. 右) 不变的:若 $\forall g \in X$ 和可测集 U,有 $\operatorname{vol}(gU, d\mu) = \operatorname{vol}(U, d\mu)$ (resp. $\operatorname{vol}(Ug, d\mu) = \operatorname{vol}(U, d\mu)$)。

例 2.1. 以下均为测度空间的左 (右) 不变测度:

- (1) (\mathbb{R}, dx) .
- (2) $(\mathbb{C}, dxdy = \frac{i}{2}dzd\overline{z}).$
- (3) $(\mathbb{R}^{\times}, \frac{dx}{|x|}).$
- (4) $(\mathbb{C}^{\times}, \frac{idzd\overline{z}}{|z||\overline{z}|} = \frac{2dxdy}{|z|^2}) = \frac{2drd\theta}{r}.$

定义 2.2. 若称 F/\mathbb{Q}_p 有限,则蕴含:

- (1) \mathcal{O}_F 是完备的 DVR。
- (2) $\mathcal{O}_F/(\pi)$ 是 \mathbb{F}_p 的有限扩张。

记 $\mathcal{O}_F/(\pi)$ 是 \mathbb{F}_q ,则对 $x = u\pi^n \in F, u \in \mathcal{O}_F^{\times}$,有 $|x|_F := q^{-n}$.

定理 2.1. Up to a scalar, 在 F 上存在唯一的测度 $d\mu$, 使得对于任何 F 中开集 U, 有

$$vol(U, d\mu) = vol(a + U, d\mu) \quad \forall a \in F$$

定理 2.2 (Haar). G 是一个局部紧的拓扑群,那么 up to a scalar,存在唯一的左不变测度 $d_L\mu$ 。

事实上, 当 G 为紧李群或者 reductive group 时, $d_L\mu = d_R\mu$ 。

例 2.2. $F = \mathbb{Q}_p$,有一组拓扑基 $\{U_{a,n} := a + p^n \mathbb{Z}_p\}_{a \in \mathbb{Q}_p, n \in \mathbb{Z}}$,取 $\operatorname{vol}(U_{a,n}, d\mu) = p^{-n}$,可以验证 $d\mu$ 可形成一个不变测度,同时特别地 $\operatorname{vol}(\mathbb{Z}_p, d\mu) = 1$.

性质 2.1. 若 $d\mu$ 为 F 上的不变测度,那么对于 F 中任何一个可测集 U,任何 $a \in F^{\times}$,

$$\operatorname{vol}(aU, d\mu) = |a|_F \operatorname{vol}(U, d\mu)$$

Proof.

例 2.3. 在 $\operatorname{vol}(\mathcal{O}_F, d\mu) = 1$ 时可以推出 $\operatorname{vol}(\mathcal{O}_F^{\times}, d\mu) = \frac{q-1}{q}$.

推论 2.1. 若 $d\mu$ 是 F 上的不变测度,那么 $\frac{d\mu}{|x|}$ 是 F^{\times} 上的不变测度。

Proof. \Box

定理 2.3 (**Tate**). 存在 $\mathbb{A}_F(\text{resp.}\mathbb{A}_F^{\times})$ 上的不变测度。更精确地:

(1) 对于 Adeles A_F , 它的邻域基都具有形式:

$$U = \prod_{v} U_v$$
 其中 $U_v \subseteq F_v$ 都是紧开集,且对于几乎所有 $v \nmid \infty$ 都有 $U_v = \mathcal{O}_{F_v}$

有:

$$\operatorname{vol}(U, d\mu) = \prod_{v} \operatorname{vol}(U_v, d\mu_v)$$

其中对 $v \nmid \infty$, $d\mu_v$ 是 F_v 上的不变测度, 并且使得 $vol(\mathcal{O}_{F_v}, d\mu_v) = 1$.

(2) 对于 Ideles \mathbb{A}_F^{\times} , 它的邻域基都具有形式:

$$U = \prod_v U_v$$
 其中 $U_v \subseteq F_v^{\times}$ 都是紧开集,且对于几乎所有 $v \nmid \infty$ 都有 $U_v = \mathcal{O}_{F_v}^{\times}$

有:

$$\operatorname{vol}(U, d\mu^{\times}) = \prod_{v} \operatorname{vol}(U_{v}, d\mu_{v}^{\times})$$

其中对 $v \nmid \infty$, $d\mu_v$ 是 F_v^{\times} 上的不变测度,并且使得 $\operatorname{vol}(\mathcal{O}_{F_v}^{\times}, d\mu_v^{\times}) = 1$ 。

2.2 积分

定义 2.3. 定义 \mathbb{R}^n 上的速降函数全体如下:

$$\mathcal{S}(\mathbb{R}^n) := \left\{ f \in C^\infty(\mathbb{R}^n) \middle| \forall \alpha \in \mathbb{N}^n, \forall n$$
 五多项式 $p, \lim_{|x| \to \infty} \partial^\alpha f \cdot p = 0 \right\}$

例 2.4. (1) $e^{-\pi x^2} \in \mathcal{S}(\mathbb{R})$.

(2) 对 \mathbb{R}^n 中任何一个紧集 K, U 是包含 K 的有界开集,熟知存在 $f \in C^{\infty}(\mathbb{R}^n)$ 使得 $f|_K \equiv 1$, $f|_{U^c} \equiv 0$, 那么 $f \in \mathcal{S}(\mathbb{R}^n)$.

性质 2.2. F/\mathbb{Q}_p 有限,记 LC(F) 是 F 上局部常值函数全体(F 是完全不连通的),有:

$$\mathcal{S}(F) = LC(F)$$
且由紧支撑集 = $\left\{ f = \sum_{i=1}^{n} c_i \cdot 1_{U_i} | U_i \subseteq F$ 紧开集, $c_i \in F \right\}$

例 2.5. 对于非分歧特征 $\chi: F^{\times} \to \mathbb{C}^{\times}$,即使得 $\mathcal{O}_F^{\times} \subseteq \ker \chi$ 的特征 χ ,我们当然能发现 uniformizer π , χ 完全由 $\chi(\pi)$ 决定。 对 $s \in \mathbb{C}$ 有如下等式:

$$\int_{F^{\times}} 1_{\mathcal{O}_F}(x) \chi(x) |x|^s d\mu^{\times} = (1 - \chi(\pi) q^{-s})^{-1}$$

Proof.

$$\begin{split} \int_{F^{\times}} 1_{\mathcal{O}_F}(x) \chi(x) |x|^s d\mu^{\times} &= \sum_{n \in \mathbb{N}} \int_{\pi^n \mathcal{O}_F^{\times}} \chi(x) |x|^s d\mu^{\times} \\ &= \sum_{n \in \mathbb{N}} \chi(\pi)^n |\pi|^{ns} \mathrm{vol}(\pi^n \mathcal{O}_F^{\times}, d\mu^{\times}) \\ &= \sum_{n \in \mathbb{N}} \chi(\pi)^n q^{-ns} \cdot 1 \\ &= (1 - \chi(\pi) q^{-s})^{-1} \end{split}$$

如果我们代入 F 是数域 K 在素数 p 上素理想 $\mathfrak p$ 的完备化,那么对应 $q=N\mathfrak p$,上述得到的就是 Dirichlet-L 函数 $L(s,\chi)$ 的乘积表示中对应 $\mathfrak p$ 的那一项。

3 2025.8.6

性质 3.1.

$$\mathcal{S}(\mathbb{A}_F) = \{ f = (f_v)_v | f_v \in \mathcal{S}(F_v),$$
且对几乎所有 $v \nmid \infty,$ 有 $f_v = 1_{\mathcal{O}_{F_v}} \}$

其中 $\forall x = (x_v)_v \in \mathbb{A}_F, \ f(x) := \prod_v f_v(x_v),$

$$\int_{\mathbb{A}_F} f(x)dx := \prod_v \int_{F_v} f_v(x_v) dx_v$$
$$\int_{\mathbb{A}_F^{\times}} f(x) d^{\times}x := \prod_v \int_{F_v^{\times}} f_v(x_v) d^{\times}x_v$$

 $\dot{\mathbf{L}}$: 之后取测度 $\operatorname{vol}(\mathcal{O}_{F_v}, dx_v) = (N\mathfrak{D}_v)^{-1/2}$, 其中 \mathfrak{D} 是由有限扩张 F/\mathbb{Q}_p 所定义的差分理想。

3.1 计算基本区域 \mathbb{A}_F/F 和 $\mathbb{A}_F^{\times,1}/F^{\times}$ 的体积

定理 3.1. $vol(\mathbb{A}_F/F, dx) = 1$.

Proof. $\prod_{v|\infty} F_v \simeq F \otimes_{\mathbb{Q}} \mathbb{R} \simeq \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$, $\Lambda_F := F \otimes_{\mathbb{Q}} \mathbb{R}/\mathcal{O}_F$ 的基本区域, $\Omega_F := \mathbb{A}_F/F$ 的基本区域,利用:

$$\Omega_F \simeq \prod_{v
mathred} \mathcal{O}_{F_v} imes \Lambda_F$$

以及:

$$N\mathfrak{D} = \prod_{v \nmid \infty} N\mathfrak{D}_v$$

有:

$$\operatorname{vol}(\mathbb{A}_F/F, dx) = \operatorname{vol}(\Omega_F, dx)$$

$$= \prod_{v \nmid \infty} \operatorname{vol}(\mathcal{O}_{F_v}, dx_v) \cdot \operatorname{vol}(\Lambda_F, \prod_{v \mid \infty} dx_v)$$

$$= \prod_{v \nmid \infty} (N\mathfrak{D}_v)^{-1/2} \cdot \sqrt{|\operatorname{disc} F|}$$

$$= 1$$

 $oldsymbol{\dot{z}}$: 涉及到基本区域之间的同构的时候,是需要注意测度的兼容性的。 我们注意到一个想法: 如果已经知道了 \mathbb{R}^{d+1} 和 \mathbb{R} 上的 Lebesgue 测度,那么可以诱导出 \mathbb{R}^d 上的

Lebesgue 测度如下:

$$vol(U, dx_1 \cdots dx_d) := vol(U \times [0, 1], dx_1 \cdots dx_d dx_{d+1})$$

那么对于 $\mathbb{A}_{F}^{\times,1}$ 上的测度构造,我们注意到

$$\mathbb{A}_F^{\times} \simeq \mathbb{A}_F^{\times,1} \times \mathbb{R}^+$$

其中 \mathbb{R}^+ 上取不变测度 $\frac{dx}{x}$,则对于 $\mathbb{A}_F^{\times,1}$ 上可测集 U,考虑:

$$\overline{U} := \{ (y_v)_v \in \mathbb{A}_F^{\times} | y_v = x_v \ (v \neq u); \ y_u = tx_u \ t \in [1, e] \}$$

这可以简单粗暴地理解成 $U \times I$,那么

$$\operatorname{vol}(U) := \operatorname{vol}(\overline{U})$$

其中左边是 $\mathbb{A}_F^{\times,1}$ 上的测度, 右边是 \mathbb{A}_F^{\times} 上的测度。

练习: 求 $U := \prod_{p} \mathbb{Z}_{p}^{\times} \subseteq \mathbb{A}_{\mathbb{Q}}^{\times,1}$ 的体积。

定理 3.2.

$$\Sigma_F := \mathbb{A}_F^{\times,1}/F^{\times}$$
的基本区域

$$\operatorname{vol}(\Sigma_F) = \frac{2^{r_1} (2\pi)^{r_2} h_F R_F}{\omega_F}$$

Proof. 利用:

$$\eta: \mathbb{A}_F^{\times,1}/F^{\times} \longrightarrow \operatorname{Cl}(F)$$
$$(x_v)_v \mapsto \prod_{v \nmid \infty} \mathfrak{p}_v^{v_{\mathfrak{p}_v}(x_v)}$$

将 $\mathbb{A}_F^{\times,1}/F^{\times}$ 分成 h_F 块, 每一块体积为 vol(kernel), 其中:

$$\ker \eta = \left(\prod_{v \nmid \infty} \mathcal{O}_{F_v}^{\times} \times \left(\prod_{v \mid \infty} F_v^{\times}\right)^{1}\right) / \mathcal{O}_F^{\times}$$

其中:

$$\left(\prod_{v\mid\infty}F_v^{\times}\right)^1:=\left\{(x_v)\in\prod_{v\mid\infty}F_v^{\times}\bigg|\prod_{v\mid\infty}|x_v|_v=1\right\}$$

记

$$\Omega_F := \left(\prod_{v \mid \infty} F_v^{ imes}\right)^1 / \mathcal{O}_F^{ imes}$$
的基本区域

记:

$$\Omega_F^1 := \left(\prod_{v \mid \infty} F_v^{\times}\right)^1 / U_F$$
的基本区域

利用 Dirichlet 单位定理 $\mathcal{O}_F^{\times} \simeq W_F \times U_F$, Ω_F^1 可以拆成 ω_F 块,每一块的体积为 $\mathrm{vol}(\Omega_F)$ 。 再利用:

$$\left(\prod_{v\mid\infty}F_v^{\times}\right)^1\simeq \left((\mathbb{R}^{\times})^{r_1}\times(\mathbb{C}^{\times})^{r_2}\right)^1\simeq \{\pm 1\}^{r_1}\times (S^1)^{r_2}\times ((\mathbb{R}^+)^{r_1+r_2})^1$$

并且熟知:

$$U_F \longrightarrow ((\mathbb{R}^+)^{r_1+r_2})^1$$
$$x \mapsto (|\sigma_i(x)|)_{i=1}^{r_1+r_2}$$

并且它所代表的基本区域 $\overline{\Omega^1_F} := ((\mathbb{R}^+)^{r_1+r_2})^1/U_F$ 满足:

$$\operatorname{vol}(\overline{\Omega^1_F}) = R_F$$

综上:

$$\operatorname{vol}(\Sigma_F) = h_F \cdot \operatorname{vol}(\ker \eta)$$

$$= h_F \cdot \prod_{v \nmid \infty} \operatorname{vol}(\mathcal{O}_{F_v}^{\times}, dx_v^{\times}) \cdot \operatorname{vol}(\Omega_F)$$

$$= h_F \cdot \omega_F^{-1} \cdot \operatorname{vol}(\Omega_F^1)$$

$$= h_F \cdot \omega_F^{-1} \cdot 2^{r_1} \cdot (2\pi)^{r_2} \cdot \operatorname{vol}(\overline{\Omega_F^1})$$

$$= \frac{2^{r_1}(2\pi)^{r_2} h_F R_F}{\omega_F}$$

3.2 加法特征

定义 3.1. 对 $F = \mathbb{R}$,定义加法特征:

$$\psi: \mathbb{R} \to \mathbb{C}^{\times}: x \mapsto e^{-2\pi\sqrt{-1}x}$$

对 $F = \mathbb{Q}_p$, 定义加法特征:

$$\psi: \mathbb{Q}_p \to \mathbb{C}^\times : x \mapsto e^{2\pi\sqrt{-1}\{x\}}$$

其中对 $x = a_{-n}p^{-n} + \ldots \in \mathbb{Q}_p$, $a_i \in [0, p-1]$:

$${x} := a_{-1}p^{-1} + a_{-2}p^{-2} + \ldots + a_{-n}p^{-n}$$

定义 3.2. 对 K/F 有限扩张, 定义 ψ_K :

$$\psi_K(x) = \psi_F(\operatorname{Tr}_{K/F}(x))$$

显然 ψ_K 是 K 上的加法特征。

定义 3.3. $\psi': F \to \mathbb{C}^{\times}$,称为 F 上的加法特征: 如果 ψ' 是一个连续群同态,并且 Im $\psi' \subseteq S^1$.

性质 3.2. F/\mathbb{Q}_p 是有限扩张,则对一般的加法特征 ψ' ,存在 $N \in \mathbb{Z}$ 使得 $\psi'|_{\pi^N\mathcal{O}_F} \equiv 1$,这个最小的 N,以及对应的 $\pi^N\mathcal{O}_F$ 我们都称为 ψ' 的导子 (conductor).

Proof. 由 ψ' 的连续性,对任何 $\varepsilon > 0$,存在 $N \in \mathbb{N}^*$ 使得:

$$\psi'(\pi^N \mathcal{O}_F) \subseteq \{z \in S^1 | |z - 1| < \varepsilon\}$$

取 ε 足够小,假设存在 $y \in \pi^N \mathcal{O}_F$ 使得 $\psi'(y) \neq 1$,那么存在 $n \in \mathbb{N}^*$ 使得 $\psi'(ny) \notin \{z \in S^1 | |z-1| < \varepsilon\}$,矛盾。

性质 3.3. ψ_F 的导子为 \mathfrak{D}_F^{-1} .

Proof. $\pi^d \mathcal{O}_F := \mathfrak{D}_F^{-1} \subseteq \pi^N \mathcal{O}_F$ 是容易的,因为 $\psi|_{\mathfrak{D}_F^{-1}} \equiv 1$ 。假设 $\pi^{d-1} \mathcal{O}_F \subseteq \pi^N \mathcal{O}_F$,一方面存在 $u \in \mathcal{O}_F^{\times}, y \in \mathcal{O}_F$ 使得 $\mathrm{Tr}(\pi^{d-1}uy) \notin \mathbb{Z}_p$,从而 $\psi(\pi^{d-1}uy) \neq 1$,另一方面由导子性质 $\psi(\pi^{d-1}uy) = 1$,矛盾。故 d = N。

4 2025.8.8

4.1 S(F) 上的 Fourier 变换

定义 4.1. F 是局部域, $\forall f \in \mathcal{S}(F)$,

$$\mathcal{F}_{\psi}(f) = \widehat{f} : y \mapsto \int_{F} f(x)\psi(xy)dx$$

称 \hat{f} 是 f 的 Fourier 变换。

例 4.1. (1) $F = \mathbb{R}, f(x) = e^{\pi x^2}, \widehat{f} = f.$

(2) $F = \mathbb{C}$, $f(z) = e^{-2\pi z\overline{z}}$, $\widehat{f} = f$.

推论 4.1. $\psi': F \to \mathbb{C}^{\times}$ 且 $\psi' \neq 1$, $N = \text{Cond}(\psi')$, 那么对任何 $r \in \mathbb{N}^*$,

$$\int_{\pi^{-r+N}\mathcal{O}_F} \psi'(x) dx = 0$$

Proof.

推论 4.2. $\forall r \in \mathbb{N}^*$,

$$\int_{\pi^{-r}\mathfrak{D}_F^{-1}} \psi_F(x) dx = 0$$

定理 4.1.

$$\widehat{\mathbf{1}_{a+\pi^n\mathcal{O}_F}}(y) = |\pi|^n \cdot N\mathfrak{D}_F^{-1/2} \cdot \psi(ay) \cdot \mathbf{1}_{\pi^{-n}\mathfrak{D}_F^{-1}}(y)$$

Proof.

结合 S(F) = LC(F) with compact support, 我们可以得到:

推论 4.3. $\forall f \in \mathcal{S}(F), \ \widehat{f} \in \mathcal{S}(F).$ 当然,这个结论对 $F = \mathbb{R}, \mathbb{C}$ 也成立。

定理 **4.2.** $\forall f \in \mathcal{S}(F)$,

$$\widehat{\widehat{f}}(y) = f(-y)$$

Proof.

推论 4.4.

$$\widehat{1_{\mathcal{O}_F}} = N\mathfrak{D}_F^{-1/2} \cdot 1_{\mathfrak{D}_F^{-1}}$$

特别地: 对 K_v/\mathcal{Q}_p , 且 $v\mid p$ 非分歧, 即 $\mathfrak{D}_v=\mathcal{O}_{K_v}$, 有:

$$\widehat{1_{\mathcal{O}_{K_v}}} = 1_{\mathcal{O}_{K_v}}$$

4.2 \mathbb{A}_F 上的 Fourier 变换

性质 4.1. 定义:

$$\psi = \otimes_v \psi_v : \mathbb{A}_F \to \mathbb{C}^\times : (x_v) \mapsto \prod_v \psi_v(x_v)$$

那么 ψ 是良定义的,即对于任意 $(x_v)\in \mathbb{A}_F$,对几乎所有 v, $\psi_v(x_v)=1$ 。从而上述 ψ 成为 \mathbb{A}_F 上的加法特征。

定义 4.2. 对于 $f = \bigotimes_v f_v \in \mathcal{S}(\mathbb{A}_F)$, 定义 Fourier 变换:

$$\mathcal{F}_{\psi}(f) = \widehat{f} := \bigotimes_{v} \widehat{f}_{v} : (x_{v}) \mapsto \prod_{v} \widehat{f}_{v}(x_{v})$$

性质 4.2. $\widehat{f} \in \mathcal{S}(\mathbb{A}_F)$ 。

Proof. \Box

定理 **4.3.** $\forall x \in F$, $\psi(x) = 1$.

Proof.

$5 \quad 2025.8.11$

5.1 Poisson Summation Formula

定理 5.1 (Poisson Summation Formula). 对于 $f \in \mathcal{S}(F)$, 有:

$$\sum_{x \in F} f(x) = \sum_{y \in F} \widehat{f}(y)$$

例 5.1. $F = \mathbb{Q}$,考虑:

$$f:=igotimes_p 1_{\mathbb{Z}_p}\otimes f_\infty\in \mathcal{S}(\mathbb{A}_\mathbb{Q})$$

其中 $f_{\infty} \in \mathcal{S}(\mathbb{R})$. 注意到 $a \in \mathbb{Z}_p$ 对任意 p 成立当且仅当 $a \in \mathbb{Z}$,因此可以算出 PSF 在此时就是 Classical PSF。

例 5.2. $F = \mathbb{Q}$, 取 $N = p_1^{e_1} \dots p_s^{e_s} \in \mathbb{N}^*$, 考虑:

$$f:=\bigotimes_p f_p\otimes f_\infty$$

其中:

$$f_{\infty}(x) := e^{-\pi x^2}$$

$$f_p := \begin{cases} 1_{p_i^{e_i} \mathbb{Z}_{p_i}} & p_i \mid N \\ 1_{\mathbb{Z}_p} & p \nmid N \end{cases}$$

对应:

$$\widehat{f}_p = \begin{cases} p_i^{-e_i} \cdot 1_{p_i^{-e_i} \mathbb{Z}_{p_i}} & p_i \mid N \\ 1_{\mathbb{Z}_p} & p \nmid N \end{cases}$$

代入 PSF 中可以得到等式:

$$\sum_{k\in\mathbb{Z}}e^{-\pi N^2k^2}=\sum_{k\in\mathbb{Z}}\frac{1}{N}e^{-\pi k^2/N^2}$$

补充一下 Classical Poisson Summation Formula: 对于 $f \in \mathcal{S}(\mathbb{R})$, $\widehat{f}(y) = \int_{\mathbb{R}} f(x) e^{2\pi \sqrt{-1}xy} dx$, 有:

$$\sum_{x \in \mathbb{Z}} f(x) = \sum_{y \in \mathbb{Z}} \widehat{f}(y)$$

PSF 的证明思路和 Classical PSF 的类似。

Proof. 考虑

$$\varphi(x) := \sum_{a \in F} f(x+a)$$

Fourier 分析告诉我们:

$$\varphi(x) = \sum_{a \in F} c_a \psi(-ax)$$

其中记 Ω_F 是 \mathbb{A}_F/F 对应的基本区域,可以计算出:

$$c_{a} = \int_{\Omega_{F}} \varphi(x)\psi(ax)dx$$

$$= \int_{\Omega_{F}} \sum_{b \in F} f(x+b)\psi(ax) \cdot 1dx$$

$$= \sum_{b \in F} \int_{\Omega_{F}} f(x+b)\psi(ax)\psi(ab)dx$$

$$= \sum_{b \in F} \int_{b+\Omega_{F}} f(x)\psi(ax)dx$$

$$= \hat{f}(a)$$

最后代入 x=0 即得结果。

推论 5.1. $f \in \mathcal{S}(\mathbb{A}_F)$, $\alpha \in \mathbb{A}_F^{\times}$, 那么有:

$$||\alpha|| \cdot \sum_{x \in F} f(\alpha x) = \sum_{x \in F} \widehat{f}(\alpha^{-1}x)$$

Proof.

练习: 定义 theta 级数:

$$\theta(t) = \sum_{n \in \mathbb{Z}} e^{-2\pi n^2 t}$$

求证:

$$\theta(\frac{1}{t}) = \sqrt{t}\theta(t)$$

5.2 \widehat{G}

G 是局部紧的 Abel 群,

 $\hat{G} := G$ 的全体连续特征

可以对 \hat{G} 赋予一个拓扑: 开集由:

$$W(U, K) := \{ \chi \in \widehat{G} | \chi(K) \subseteq U, K \subseteq G \S, U \subseteq S^1 \mathcal{F} \}$$

生成。

性质 5.1. \hat{G} 是局部紧的 Abel 群,并且:

- (1) G 紧当且仅当 \hat{G} 离散。
- (2) G 离散当且仅当 \hat{G} 紧。

性质 5.2. 有典范同构:

$$G \longrightarrow \widehat{\widehat{G}}$$
$$g \mapsto (\chi \to \chi(g))$$

性质 5.3. dg 是 G 上的 Haar 测度,那么在 \hat{G} 上存在唯一的 Haar 测度 $d\chi$,使得对于任何比较好的 G 上的函数 f,如果 \hat{G} 上的函数 \hat{f} 记为:

$$\widehat{f}(\chi) := \int_G f(g)\chi(g)dg$$

那么有:

$$f(g^{-1}) = \int_{\widehat{G}} \widehat{f}(\chi) \chi(g) d\chi$$

例 5.3. $G = \mathbb{R}$ 时,有:

$$\widehat{G} = \{ \chi_a : \mathbb{R} \to \mathbb{C}^\times : x \mapsto e^{2\pi\sqrt{-1}ax}, a \in \mathbb{R} \} \simeq \mathbb{R}$$

并且 $(\widehat{G}, d\chi) \simeq (\mathbb{R}, dx)$.

Proof. 这个命题等价于 $\widehat{\widehat{f}}(x) = f(-x)$.

例 5.4. $G = S^1 = \mathbb{R}/\mathbb{Z}$ 时,有:

$$\widehat{G} = \{ \chi_a : \mathbb{R} \to \mathbb{C}^\times : x \mapsto e^{2\pi\sqrt{-1}ax}, a \in \mathbb{Z} \} \simeq \mathbb{Z}$$

并且 $(G, dg) \simeq (e^{2\pi\sqrt{-1}\theta}, d\theta)$ 对应 $(\widehat{G}, d\chi) \simeq (\mathbb{Z}, dx)$.

Proof. 这个命题等价于 Fourier 级数。

例 5.5. G 是有限 Abel 群时,考虑 $(G, |G|^{-1/2}dg)$,dg 为离散测度,事实上有:

$$\widehat{G} \simeq G$$

特别地, $G = \mathbb{Z}/p^n\mathbb{Z}$ 时, 有:

$$\widehat{G} = \{\chi_a: G \to \mathbb{C}^\times: x \mapsto e^{2\pi\sqrt{-1}ax/p^n}, a \in \mathbb{Z}/p^n\mathbb{Z}\}$$

并且

$$(G, |G|^{-1/2}dg) \Longrightarrow (\widehat{G}, |\widehat{G}|^{-1/2}d\chi)$$

 $d\chi$ 为离散测度。

练习:

- (1) 证明 $\widehat{\mathbb{Z}_p} \simeq \mathbb{Q}_p/\mathbb{Z}_p$.
- (2) 证明 $\widehat{\mathbb{Q}_p} \simeq \mathbb{Q}_p$.

性质 5.4.

$$(\widehat{F_v}, d\chi) \simeq (F_v, dx_v)$$

其中 $\operatorname{vol}(\mathcal{O}_{F_v}, dx_v) = N\mathfrak{D}_v^{-1/2}$.

性质 5.5.

$$\widehat{\mathbb{A}_F} = \{ \psi(ax) | a \in \mathbb{A}_F \}$$

且

$$(\widehat{\mathbb{A}_F}, d\chi) \simeq (\mathbb{A}_F, dx)$$

$6 \quad 2025.8.13$

17

6.1 Hecke 特征

注: 对局部域 F, 连续同态 $\chi: F^{\times} \to \mathbb{C}^{\times}$ 如果不要求 Im $\chi \subseteq S^1$ 则称为拟特征 (quasi-character)。 否则称为特征 (character)。同时,对 $F = \mathbb{R}$ 或 \mathbb{C} 时,拟特征只能如下:

• $F = \mathbb{R}$,

$$\chi(x) = \left(\frac{x}{|x|}\right)^{\varepsilon} \cdot |x|^{s} \quad \varepsilon \in \mathbb{Z}, s \in \mathbb{C}$$

• $F = \mathbb{C}$,

$$\chi(x) = \left(\frac{z}{|z|}\right)^{\varepsilon} \cdot |z|^{s} \quad \varepsilon \in \mathbb{Z}, s \in \mathbb{C}$$

对 F/\mathbb{Q}_p , $F^{\times} \simeq \pi^{\mathbb{Z}} \times \mathcal{O}_F^{\times}$, 拟特征 χ 由 $\chi(\pi)$ 和 $\chi|_{\mathcal{O}_F}$ 唯一决定:

$$\chi(z) = |z|_F^s \cdot \chi_0(z)$$

其中 χ_0 可以看成 $\chi_0: F^{\times} \to \mathbb{C}^{\times}$ 连续同态,满足 $\chi_0(\pi) = 1$ 。对于这样的 χ_0 ,类似也有:

$$\exists N \quad \text{s.t.} \quad \chi_0|_{1+\pi^N\mathcal{O}_F} \equiv 1$$

特别地, χ 是特征当且仅当 $s \in \sqrt{-1}\mathbb{R}$ 且 χ_0 是乘法特征.

定义 6.1. 一个 Hecke 特征是特征:

$$\chi: \mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$$

且满足:

$$\bullet \quad \chi|_{F^\times} \equiv 1$$

首先:

$$\chi_v(x_v) := \chi(1, \dots, 1, x_v, 1 \dots)$$
$$\chi((x_v)_v) = \prod_v \chi_v(x_v)$$

性质 6.1. $\chi: \mathbb{A}_F^{\times} \to \mathbb{C}^{\times}$ 是一个特征,那么 $\chi = \otimes \chi_v$ 并且对几乎所有 $v \nmid \infty$, χ_v 是非分歧特征,即 $\chi_v|_{\mathcal{O}_{F_v}^{\times}} \equiv 1$.

性质 6.2. $\chi = \otimes \chi_v$, $\chi' = \otimes \chi'_v$ 都是 Hecke 特征, 如果 $\chi_v = \chi'_v$ 对几乎所有 $v \nmid \infty$ 成立, 那么 $\chi = \chi'$ 。

Proof.

18

6.2 Hecke 函数

记 χ 是一个 Hecke 特征,S 是一个有限位集,它包含全部 $v \mid \infty$ 以及分歧的 v,那对于 $v \notin S$,根据**例 2.5**,可以定义:

$$L(s, \chi_v) := \int_{F_v^{\times}} 1_{\mathcal{O}_{F_v}}(x_v) \cdot \chi_v(x_v) \cdot |x_v|_v^s dx_v^{\times}$$
$$= (1 - \chi_v(\mathfrak{p}_v) \cdot N\mathfrak{p}_v^{-s})^{-1}$$

定义 6.2.

$$L^{S}(s,\chi) := \prod_{v \notin S} L(s,\chi_{v})$$

称为 Hecke L-function for χ associated to S.

引理 6.1. $L^S(s,\chi) := \prod_{v \notin S} L(s,\chi_v)$ 在 Re s > 0 上绝对收敛。

Proof.

定理 6.1 (Baby Version). (1) $L^S(s,\chi)$ 可以延拓到 $\mathbb C$ 上的一个亚纯函数。

(2) 存在常数 $C_{\chi,S}$ 使得

$$L^{S}(s,\chi) = C_{\chi,S} \cdot L^{S}(1-s,\chi^{-1})$$

这个定理大致想法是: 取一个 $f = \otimes f_v \in \mathcal{S}(\mathbb{A}_F)$, 使得 $\forall v \notin S$, $f_v = 1_{\mathcal{O}_{F_v}}$, 考虑:

$$Z(s, f, \chi) := \int_{\mathbb{A}_F^{\times}} f(x) \cdot \chi(x) \cdot ||x||^s dx^{\times}$$

$$Z_v(s, f_v, \chi_v) := \int_{F_v^{\times}} f_v(x_v) \cdot \chi_v(x_v) \cdot |x_v|_v^s dx_v^{\times}$$

可以证明:

$$Z(s, f, \chi) = \left(\prod_{v \in S} Z_v(s, f_v, \chi_v)\right) \cdot L^S(s, \chi)$$

研究 Z 和 Z_v 两个积分需要 Fourier 变换,下面的局部理论就是为了研究 Z_v 的。

6.3 局部理论前言

性质 6.3. $f_v \in \mathcal{S}(F_v)$,

$$Z_v(s) := \int_{F_v^{\times}} f_v(x_v) \cdot \chi_v(x_v) \cdot |x_v|_v^s dx_v^{\times}$$

 Z_v 在 Re s > 0 上收敛。

Proof.

7 2025.8.15

7.1 局部理论

定理 7.1. (1) $Z_v(s, f_v, \chi_v)$ 可以延拓到 \mathbb{C} 上的一个亚纯函数。

(2) 存在亚纯函数 $\gamma(s,\chi_v,\psi_v)$ 和 f_v 无关 (回顾 ψ_v 是 F_v 上的标准加法特征), 使得:

$$Z_v(1-s,\widehat{f_v},\chi_v^{-1}) = \gamma(s,\chi_v,\psi_v) \cdot Z_v(s,f_v,\chi_v)$$

Proof. (2) \Rightarrow (1)is simple. We only prove (2).

We first prove the equivalence: for all $f_v, g_v \in \mathcal{S}(F_v)$, we have:

$$Z_v(1-s,\widehat{f_v},\chi_v^{-1})\cdot Z_v(s,g_v,\chi_v) = Z_v(1-s,\widehat{g_v},\chi_v^{-1})\cdot Z_v(s,f_v,\chi_v)$$

This is because:

LHS =
$$\int_{F_v^{\times}} \int_{F_v^{\times}} \widehat{f}_v(y) g_v(x) \chi_v^{-1}(y) \chi_v(x) |y|_v^{1-s} |x|_v^s dx^{\times} dy^{\times}$$

= $A \int_{F_v^{\times}} \int_{F_v^{\times}} \left(\int_{F_v^{\times}} f_v(z) \psi_v(yz) |z|_v dz^{\times} \right) g_v(x) \chi_v^{-1}(y) \chi_v(x) |y|_v^{1-s} |x|_v^s dx^{\times} dy^{\times}$
= $A \int_{F_v^{\times} \times F_v^{\times} \times F_v^{\times}} f_v(z) g_v(x) |w|_v \psi_v(w) \chi_v(w^{-1}zx) |w^{-1}zx|_v^s dw^{\times} dx^{\times} dz^{\times}$
= RHS

In the third step we use the change of variable $w \to yz$ and in the last step we use symmetry of z,x. Now we will choose suitable f_v to compute $\gamma(s,\chi_v,\psi_v)$.

(1)
$$F_v = \mathbb{R}$$
, when $\chi_v(x) = \left(\frac{x}{|x|}\right)^{\varepsilon} \cdot |x|^{\lambda}$. We note that:

$$Z_v(s, f_v, \chi_v \cdot |\cdot|^{\lambda}) = Z_v(s + \lambda, f_v, \chi_v)$$

the same for $Z_v(1-s, \widehat{f_v}, (\chi \cdot |\cdot|^{\lambda})^{-1})$, so we only need to consider the case $\lambda = 0$.

(i) $\varepsilon = 0$, take $f_v(x) = e^{-\pi x^2}$, then $\hat{f}_v = f_v$ and after calculation we have:

$$\gamma(s, 1, \psi_v) = \pi^{s-1/2} \cdot \frac{\Gamma(\frac{1-s}{2})}{\Gamma(\frac{s}{2})}$$

(ii) $\varepsilon = 1$, take $f_v(x) = xe^{-\pi x^2}$, then $\hat{f}_v = -\sqrt{-1}f_v$ and after calculation we have:

$$\gamma(s, \operatorname{sgn}, \psi_v) = \sqrt{-1}\pi^{s-1/2} \cdot \frac{\Gamma(\frac{1+1-s}{2})}{\Gamma(\frac{s+1}{2})}$$

(2) $F_v = \mathbb{C}$, when $\chi_v(z) = \left(\frac{z}{|z|}\right)^n \cdot |z|^{\lambda}$. Similarly we only need to consider the case $\lambda = 0$.

(i)
$$n \in \mathbb{N}$$
, take $f_v(z) = \overline{z}^n e^{-2\pi z\overline{z}}$

(ii)
$$n \in -\mathbb{N}^*$$
, take $f_v(z) = z^{-n}e^{-2\pi z\overline{z}}$

The calculation is left for exercise.

(3) F_v/\mathbb{Q}_p is a finite extension, choose N >> 0 such that $\chi_v|_{-1+\pi^N\mathcal{O}_{F_v}} \equiv 1$.

We choose $f_v = \widehat{1_{-1+\pi^N\mathcal{O}_{F_v}}}$, when $\widehat{f_v} = \widehat{1_{1+\pi^n\mathcal{O}_{F_v}}}$ and $Z_v(1-s,\widehat{f_v},\chi_v^{-1}) = [\mathcal{O}_{F_v}^{\times}: 1+\pi^N\mathcal{O}_{F_v}]$ is a constant. Because $Z_v(s,f_v,\chi_v)$ is holomorphic in Res > 0, we have $\gamma(s,\chi_v,\psi_v)$ is meromorphic in Res > 0.

Similarly we choose $f_v = 1_{1+\pi^N \mathcal{O}_{F_v}}$. We can calculate $Z_v(s, f_v, \chi_v)$ and get a constant. Then we will know γ is holomorphic in Res < 1.

Finally we get $\gamma(s, \chi_v, \psi_v)$ is meromorphic in \mathbb{C} in all these cases.

我们一般称上述 γ 为伽马因子 (gamma factor).

练习: $F=\mathbb{Q}_p,\ p\geqslant 3$ 素数, χ_p 是非分歧特征, 即 $\chi_p|_{\mathbb{Z}_p^\times}\equiv 1$ 。记 $\chi_p(p)=a$,计算 $\gamma_p(s,\chi_p,\psi_p)$.

8 2025.8.18 22

8 2025.8.18

8.1 整体理论

定理 8.1. (1) $Z(s, f, \chi)$ 可以延拓到 \mathbb{C} 上的一个亚纯函数,使得:

$$Z(s, f, \chi) = Z(1 - s, \hat{f}, \chi^{-1})$$

- (2) 如果 $\chi \neq ||\cdot||^{\lambda}$,则 $Z(s, f, \chi)$ 是整函数。
- (3) 如果 $\chi = ||\cdot||^{\lambda}$,则 $Z(s, f, \chi)$ 唯二的奇点是 $s = -\lambda$ 和 $s = 1 \lambda$,并且都是单奇点,留数分别为 $\widehat{f}(0) \operatorname{vol}(\mathbb{A}_F^{\times,1}/F^{\times})$ 和 $-f(0) \operatorname{vol}(\mathbb{A}_F^{\times,1}/F^{\times})$ 。

证明需要用到如下引理。

引理 8.1. \mathbb{A}_F^{\times} 上的 Hecke 特征 $\chi|_{\mathbb{A}_F^{\times,1}} \neq 1$ 时,记 Ω 是 $\mathbb{A}_F^{\times,1}/F^{\times}$ 的基本区域,

$$\int_{\Omega} \chi(x) dx^{\times} = 0$$

Proof. 记 $\prod_{v \nmid \infty} \mathcal{O}_{F_v}^{\times} \times \prod_{v \mid \infty} F_v^{\times,1}/\mathcal{O}_F^{\times}$ 的基本区域是 Ω^1 ,同时熟知有短正合列:

$$1 \to \prod_{v \nmid \infty} \mathcal{O}_{F_v}^\times \times \prod_{v \mid \infty} F_v^{\times,1}/\mathcal{O}_F^\times \to \mathbb{A}_F^{\times,1}/F^\times \to \operatorname{Cl}(F) \to 1$$

相当于 Ω 可以分拆成 h_F 个和 Ω^1 同胚的部分, 分类讨论:

(1) $\chi|_{\Omega^1} \equiv 1$ 时,记 $\Omega = \bigsqcup_{i=1}^h \alpha_i \Omega^1$,则有:

$$\int_{\Omega} \chi(x)dx^{\times} = \sum_{i=1}^{h} \int_{\alpha_{i}\Omega^{1}} \chi(x)dx^{\times}$$
$$= \sum_{i=1}^{h} \chi(\alpha_{i}) \cdot \text{vol}(\Omega^{1}) = 0$$

最后一步是因为 χ 可以看成 $\mathrm{Cl}(F)$ 的特征且由条件知一定非平凡。

(2) $\chi|_{\Omega^1} \neq 1$ 时,断言: $\int_{\Omega^1} \chi(x) dx^{\times} = 0$ 。记 $\chi = \bigotimes_{v \nmid \infty} \chi_v \otimes \chi_{\infty}$,则有:

$$\int_{\Omega^1} \chi(x) dx^{\times} = \prod_{v \nmid \infty} \int_{\mathcal{O}_{F_v}^{\times}} \chi_v(x_v) dx_v^{\times} \cdot \int_{\Omega^2} \chi_{\infty}(x_{\infty}) dx_{\infty}^{\times}$$

其中 Ω^2 是 $\prod_{v \mid \infty} F_v^{\times,1}/\mathcal{O}_F^{\times}$ 的基本区域。

此时还有:要么存在 $v \nmid \infty$ 使得 $\chi_v|_{\mathcal{O}_{F_n}^{\times}} \neq 1$ 要么 $\chi_{\infty}|_{\Omega^2} \neq 1$,

若为前者,则对这个 v 有 $\int_{\mathcal{O}_{F_v}^{\times}} \chi_v dx_v^{\times} = 0$,这是因为 $\chi_v|_{1+\pi^n\mathcal{O}_{F_v}} \equiv 1$,考虑 $\mathcal{O}_{F_v}^{\times}/1+\pi^n\mathcal{O}_{F_v}$ 即可。

若为后者,利用 Dirichlet 单位定理:

$$\Omega^{2} \simeq \{\pm 1\} \times (S^{1})^{r_{2}} \times ((\mathbb{R}_{>0})^{r_{1}+r_{2}})^{1}/U_{F} \times W_{F}$$
$$\simeq \{\pm 1\} \times (S^{1})^{r_{2}} \times (S^{1})^{r_{1}+r_{2}-1}/W_{F}$$

所以可以看成:

$$\int_{\Omega^2} \chi_{\infty}(x_{\infty}) dx_{\infty}^{\times} = \frac{1}{\omega_F} \prod_{i=1}^{r_1} \int_{\{\pm 1\}} \chi_i(x) dx \cdot \prod_{j=1}^{r_1 + 2r_2 - 1} \int_{(S^1)} \chi_j(x) dx$$

只要说明对于 $\{\pm 1\}$ 和 S^1 上的非平凡特征,对应 $\int \chi dx = 0$ 即可。这个时候特征是可以显式写出来的,代入计算即可。

回到定理 8.1 的证明:

Proof. 记:

$$\begin{split} Z(s,f,\chi) &:= Z^{>1}(s,f,\chi) + Z^{<1}(s,f,\chi) \\ &:= \int_{\mathbb{A}_F^{\times,>1}} f(x) \cdot \chi(x) \cdot ||x||^s dx^\times + \int_{\mathbb{A}_F^{\times,<1}} f(x) \cdot \chi(x) \cdot ||x||^s dx^\times \end{split}$$

 $Z^{>1}(s,f,\chi)$ 是整函数,对于 $Z^{<1}(s,f,\chi)$,可以利用 PSF 计算得到:

$$\begin{split} Z^{<1}(s,f,\chi) &= \sum_{\alpha \in F^{\times}} \int_{\Omega^{<1}} f(\alpha x) \cdot \chi(x) \cdot ||x||^s dx^{\times} \\ &= \int_{\Omega^{<1}} \sum_{\alpha \in F} f(\alpha x) \cdot \chi(x) \cdot ||x||^s dx^{\times} - \int_{\Omega^{<1}} f(0) \cdot \chi(x) \cdot ||x||^s dx^{\times} \\ &= \int_{\Omega^{<1}} \sum_{\alpha \in F} \widehat{f}(\alpha x^{-1}) \cdot \chi(x^{-1}) \cdot ||x||^{s-1} dx^{\times} - f(0) \int_{\Omega^{<1}} \chi(x) \cdot ||x||^s dx^{\times} \\ &= Z^{>1} (1 - s, \widehat{f}, \chi^{-1}) - f(0) \int_{\Omega^{<1}} \chi(x) \cdot ||x||^s dx^{\times} + \widehat{f}(0) \int_{\Omega^{<1}} \chi(x) \cdot ||x||^{s-1} dx^{\times} \end{split}$$

其中 $\Omega^{<1}$ 是 $\mathbb{A}_F^{\times,<1}/F^{\times}$ 的基本区域,中间有换元 $y\to x^{-1}$ 。

注意到引理中的条件和定理中的条件有如下等价关系:

$$\chi|_{\mathbb{A}_F^{\times,1}} \equiv 1 \Longleftrightarrow \mathbb{R}_{>0} \simeq \mathbb{A}_F^{\times}/\mathbb{A}_F^{\times,1} \to \mathbb{C}^{\times} : x \mapsto ||x||^{\lambda} \text{ for some } \lambda \in \sqrt{-1}\mathbb{R}$$
$$\iff \chi = ||\cdot||^{\lambda} \text{ for some } \lambda \in \sqrt{-1}\mathbb{R}$$

(2) 当 $\chi \neq ||\cdot||^{\lambda}$ 时,结合引理可知此时: $Z^{<1}(s,f,\chi) = Z^{>1}(s,\widehat{f},\chi^{-1})$,从而 $Z(s,f,\chi)$ 是整函数。

8 2025.8.18 24

(3) 当 $\chi = ||\cdot||^{\lambda}$ 时,对 t = s, s - 1,结合 $\Omega^{<1} \simeq \Omega \times (0, 1)$

$$\begin{split} \int_{\Omega^{<1}} \chi(x) \cdot ||x||^t dx^\times &= \int_{\Omega^{<1}} ||x||^{t+\lambda} dx^\times \\ &= \int_0^1 r^{t+\lambda} \frac{dr}{r} \cdot \operatorname{vol}(\mathbb{A}_F^{\times,1}/F^\times) \\ &= \frac{\operatorname{vol}(\mathbb{A}_F^{\times,1}/F^\times)}{t+\lambda} \end{split}$$

于是此时 $Z(s,f,\chi)$ 唯二的奇点是 $s=-\lambda$ 和 $s=1-\lambda$,并且都是单奇点,留数分别为 $\widehat{f}(0)\mathrm{vol}(\mathbb{A}_F^{\times,1}/F^{\times})$ 和 $-f(0)\mathrm{vol}(\mathbb{A}_F^{\times,1}/F^{\times})$ 。

(1) 将 $Z^{<1}$ 全写成 $Z^{>1} + ...$ 形式可计算得:

$$\begin{split} Z(s,f,\chi) - Z(1-s,\widehat{f},\chi^{-1}) &= Z^{>1}(s,f,\chi) + Z^{<1}(s,f,\chi) - Z^{>1}(1-s,\widehat{f},\chi^{-1}) - Z^{<1}(1-s,\widehat{f},\chi^{-1}) \\ &= Z^{>1}(s,f,\chi) - Z^{>1}(s,\widehat{\widehat{f}},\chi) = 0 \end{split}$$

最后一步因为 $\hat{\hat{f}}(x) = f(-x)$ 。

8.2 回到 $L^{S}(s,\chi)$

定理 8.2. $S \in F$ 上的一个有限位集,且包含全体 $v \mid \infty$ 以及全体分歧的 v。回顾

$$L^S(s,\chi) := \prod_{v \notin S} \int_{F_v^\times} 1_{\mathcal{O}_{F_v}^\times}(x) \cdot \chi(x) \cdot |x|_v^s dx^\times$$

- (1) $L^{S}(s,\chi)$ 可以被延拓成 \mathbb{C} 上的一个亚纯函数。
- (2) 当 $\chi \neq ||\cdot||^{\lambda}$ 时, $L^{S}(s,\chi)$ 是整函数。
- (3) 当 $\chi = \|\cdot\|^{\lambda}$ 时, $L^{S}(s,\chi)$ 唯二的奇点是 $s = -\lambda$ 和 $s = 1 \lambda$,并且都是单奇点。

(4)

$$L^{S}(x,\chi) = \left(\prod_{v \in S} \gamma_{v}(s,\chi_{v},\psi_{v})\right) \cdot L^{S}(1-s,\chi^{-1})$$

Proof. (1) 和 (4) 是显然的推论, (2) 和 (3) 可以一起证: 对于等式:

$$Z(s, f, \chi) = \left(\prod_{v \in S} Z_v(s, f_v, \chi_v)\right) \cdot L^S(s, \chi)$$

对任意 s_0 ,只要对 $v \in S$ 且 $v \nmid \infty$,取 $f_v = 1_{1+\pi^N \mathcal{O}_{F_v}}$,其中 N 足够大使得 $\chi_v|_{1+\pi^N \mathcal{O}_{F_v}} \equiv 1$;对 $v \mid \infty$,取 f_v 使得紧支集是 1 的一个足够小的邻域就行。此时 $\prod_{v \in S} Z_v(s, f_v, \chi_v)$ 全纯且在 s_0 处不等于 0,特

8 2025.8.18 25

别地,此时对于 $v \nmid \infty$,可以计算出 Z_v 是非零常数。若 s_0 是 $L^S(s,\chi)$ 的一个奇点,则也是 $Z(s,f,\chi)$ 的一个奇点,于是由**定理 8.1** 可得 (2)(3) 成立。

9 2025.8.20 26

9 2025.8.20

9.1 Dirichlet 特征诱导 Hecke 特征

定义 9.1. 对于特征 $\chi: (\mathbb{Z}/p^e\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$, l 是素数, 定义 $\chi_l: \mathbb{Q}_l^{\times} \to \mathbb{C}^{\times}$ 为:

$$\chi_{l}|_{\mathbb{Z}_{l}^{\times}} = \begin{cases} 1 & l \neq p \\ \chi^{-1}|_{\mathbb{Z}_{p}^{\times}} & l = p \end{cases}$$

其中 $\chi^{-1}|_{\mathbb{Z}_p^{\times}}$ 由 $\mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}/(1+p^e\mathbb{Z}_p) \simeq (\mathbb{Z}/p^e\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ 而来。

$$\chi_l(l) = \begin{cases} \chi(l) & l \neq p \\ 1 & l = p \end{cases}$$

 $l = \infty$ 时定义:

$$\chi_{\infty}(x) = \begin{cases} 1 & \chi(-1) = 1 \text{ if } \\ \frac{x}{|x|} & \chi(-1) = -1 \text{ if } \end{cases}$$

性质 9.1. 再定义

$$\widetilde{\chi} := \bigotimes_{l \not\equiv \psi} \chi_l \otimes \chi_\infty$$

 $\tilde{\chi}$ 是 $\mathbb{A}_{\mathbb{Q}}^{\times}$ 上的一个 Hecke 特征.

Proof.

推论 9.1. $N=p_1^{e_1}\dots p_r^{e_r}\in\mathbb{N}^*$,对于特征 $\chi:(\mathbb{Z}/N\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$,记 $\chi_i:(\mathbb{Z}/p_i^{e_i}\mathbb{Z})^{\times}\to\mathbb{C}^{\times}$ 由 χ 诱导出来的,可以由上得到 $\chi_{i,l}:\mathbb{Q}_l^{\times}\to\mathbb{C}^{\times}$,进而得到 $\widetilde{\chi_i}:\mathbb{A}_\mathbb{Q}^{\times}\to\mathbb{C}^{\times}$,定义:

$$\widetilde{\chi} := \widetilde{\chi_1} \dots \widetilde{\chi_r}$$

则 $\widetilde{\chi}$ 是 $\mathbb{A}_{\mathbb{Q}}^{\times}$ 上的一个 Hecke 特征,并且对任何 $p \nmid N$,有 $\chi(p) = \widetilde{\chi}(p)$.

Proof. exercise. \Box

同时可以注意到:

$$\chi$$
在素数 p 处分歧 $\iff (\chi_{1,p} \dots \chi_{r,p})|_{\mathbb{Z}_p^{\times}} \equiv 1$ $\iff p \nmid N$

9 2025.8.20 27

如果 p|N, 不妨设 $p=p_1$, 那么对于 $x \in \mathbb{Z}_p^{\times}$, 有:

$$(\chi_{1,p} \dots \chi_{r,p})(x) = \chi_1^{-1}(x) \cdot 1 \cdot \dots \cdot 1 = \chi_1^{-1}(x)$$

9.2 Dirichlet L-函数是特殊的 Hecke L-函数

同时可以得到: 若取 $S = \{\infty\} \cup \{p|N\}$, 则有:

$$L^{S}(s,\widetilde{\chi}) = L(s,\chi)$$

代表可以把 Dirichlet L-函数看成一个 Hecke L-函数。

定理 9.1. $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ 是一个 Dirichlet 特征,由上得到 $\tilde{\chi}$ 是一个 Hecke 特征,

- (1) $L(s,\chi)$ 可以延拓到 $\mathbb C$ 上的一个亚纯函数,并且当 χ 非平凡时不是全纯函数。
- (2) 记

$$L_{\infty}(s,\chi) := \begin{cases} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) & \chi(-1) = 1$$
 时
$$\pi^{-(s+1)/2} \Gamma\left(\frac{s+1}{2}\right) & \chi(-1) = -1$$
 时
$$\Lambda(s,\chi) := L(s,\chi) \cdot L_{\infty}(s,\chi)$$

则有:

$$\Lambda(s,\chi) = c_{\chi} \cdot N^{-s + \frac{1}{2}} \cdot \Lambda(1 - s, \chi^{-1})$$

最后一个等式等价于:

$$L(s,\chi) = c_{\chi} \cdot N^{-s + \frac{1}{2}} \cdot \frac{L_{\infty}(1 - s, \chi^{-1})}{L_{\infty}(s, \chi)} \cdot L(1 - s, \chi^{-1})$$

Proof.

$$\begin{split} L(s,\chi) &= \prod_{p|N} \gamma_p(s,(\widetilde{\chi})_p,\psi_p) \cdot \gamma_\infty(s,(\widetilde{\chi})_\infty,\psi_\infty) \cdot L(1-s,\chi^{-1}) \\ &= \left(\prod_{p_i|N} p_i^{-e_i s + \frac{e_i}{2}} G(\chi_i)\right) \cdot \left((-\sqrt{-1})^\varepsilon \frac{L_\infty(1-s,\chi^{-1})}{L_\infty(s,\chi)}\right) \cdot L(1-s,\chi^{-1}) \end{split}$$

其中 $(\widetilde{\chi})_v$ 指 $\widetilde{\chi}$ 在位 v 处的"限制", $\chi_i: (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$ 是由 χ 诱导出来的特征。

$$G(\chi_i) := p_i^{-e_i/2} \sum_{a \in (\mathbb{Z}/p_i^{e_i}\mathbb{Z})^{\times}} e^{2\pi\sqrt{-1}a/p_i^{e_i}} \chi_i(a)$$

9 2025.8.20 28

$$\varepsilon$$
 满足 $\chi(-1) = (-1)^{\varepsilon}$.
其中用 $\frac{Z_p(1-s,\widehat{f},\chi^{-1})}{Z_p(s,f,\chi)}$ 计算 γ_p 时带入的是 $f = 1_{1+p^{\varepsilon}\mathbb{Z}_p}$.