## RACE # 2

Number of protons, neutrons & electrons in the element  ${}_{80}X^{231}$  is (6) 89, 142, 89 (A) 89, 231, 89 (B) 89, 89, 242

(A) 89, 231, 89 (B) 89, 89, 242 (C) 89, 142, 89 (D) 89, 71, 89

$$A = 231$$
 $C = 89$ 
 $C = 89$ 

 $n = A^{-2} = 231 - 84 = 142$ 

The charge on the atom containing 17 protons, 18 neutrons and 18 electrons is

of electron will be more then -ve charge if poroton will be greater then the charge.

3. In an atom  $_{13}Al^{27}$ , number of protons is (a) electron is (b) and neutron is (c). Hence ratio will be [in order c : b : a]



4. A and B are two elements which have same atomic weight and are having atomic number 27 and 30 respectively. If the atomic weight of A is 57 then number of neutron in B is

(C) 30

(D) 40

A
B
$$37$$
 $30$ 
 $\rightarrow$  newher =  $57-30$ 
 $= 27$ 

(B) 33



The atomic mass 25 had 13 neutron's in its nucleus. What its ion can be

**5.** 

Choose the false statement about deuterium

(A) It is an isotope of hydrogen

(B) It contains 
$$[(1 e^-) + (1 P^+) + (1 (n))]$$

(C) It contains only  $[(1 (P^+) + (1 (n))]$ 

(D) D<sub>2</sub>O is called the heavy water

- "It also contains I electron"

|   | Symbol        | No. of protons in nucleus | No. of neutrons in nucleus | No. of electrons | Netcharge |
|---|---------------|---------------------------|----------------------------|------------------|-----------|
| 1 | $Y_{39}^{89}$ | 39                        | 50                         | 39               | 0         |
| 2 | 20 Ca 40      | 20                        | 20                         | 18               | +2        |
| 3 | 2 × 51        | 23                        | 28                         | 20               | 4         |
| 4 | 15-131        | 15                        | 16                         | 18               | -3        |

9. No. of atoms in 
$$4.25$$
 g of  $NH_3$  is approx

(A) 
$$1 \times 10^{23}$$

**10.** 

(B) 
$$1.5 \times 10^{23}$$

(C) 
$$2 \times 10^{23}$$

 $(D)6 \times 10^{23}$ 

moles of NH3 = 
$$\frac{4.25}{17} = 0.25$$

Nog atoms = moles of NH3 x NA xatomiaty  
= 
$$0.25 \times 6.02 \times 10^{23} \times 4 = 6 \times 10^{23}$$

The volume occupied by 4.4 g of 
$$CO_2$$
 at 273 K and  $(P = 1 \text{ atm})$  is (A) 22.4 L (C) 0.224 L

(D) 0.1 L $moles = \frac{4.4}{41} = 0.1$ 

$$V = 0.1 \times 0.0821 \times 272 = 2.24 L$$

The number of neutrons present in 9 mg of 
$$O^{18}$$
 is

(A) 10

(B)  $5N_A$ 

(C)  $0.005 N_A$ 

11.

**12.** 

moles of 
$$0^{18} = \frac{9 \times 10^{3} \text{ g}}{18} = 5 \times 10^{4} \text{ mol}$$

No of newton = 
$$5\times10^4\times NA\times10 = 0.005NA$$

12-8-10

(D)  $0.0005 \, \text{N}_{\text{A}}$ 

Rearrange the following (I to IV) in the order of increasing masses.

(I) 0.5 mole of O<sub>2</sub>

(II) 0.5 gm molecule of Nitrogen

(II) 0.5 mole of 
$$O_3$$
 (II) 0.5 gm molecule of Nitrogen (III) 3.011 × 10<sup>23</sup> molecule of  $O_2$  (IV) 11.35 L of  $CO_2$  at STP

= 
$$\frac{169}{6.02\times16^{23}}$$
 × 32 = 169

mass = 0.5 x28 = 14g

(IV) moles of 
$$co_2 = \frac{11.35}{22-7} = 0.5$$

$$mass = 0.5 \times 44 = 22g.$$

$$I > IV > II > II$$

13. Total number of protons, neutrons and electrons present in 14 mg of  $_6C^{14}$  is (Take N<sub>A</sub> = 6 × 10<sup>23</sup>)

(A)  $1.2 \times 10^{22}$  (B)  $1.2 \times 10^{25}$  (C)  $7.2 \times 10^{21}$  (D)  $1.08 \times 10^{22}$ (B)  $1.2 \times 10^{25}$  (C)  $7.2 \times 10^{21}$  (D)  $1.08 \times 10^{22}$ 

6c14 
$$\rightarrow$$
 P=6, e=6,  $m=8$  totals = 20  
moles of c 14 =  $\frac{14\times10^3}{14} = 15^3$   
Noaf P, m, and  $e = (15^3) \times NA \times 20 = 15^3 \times 6\times10^3 \times 20$   
= 1.2×10<sup>22</sup>

4. Complete the following table :  $(N_A = 6 \times 10^{22})$ 

|   | Mass of sample                     | Moles of sample                                      | Molecules in sample                | Total atoms in sample                          |
|---|------------------------------------|------------------------------------------------------|------------------------------------|------------------------------------------------|
| 1 | 3.9g C <sub>6</sub> H <sub>6</sub> | 39/78=0.05                                           | 0.05 NA                            | (0.05NA) X12 = 0.6NA                           |
| 2 | 3.6 g rom                          | $0.2 \text{ mole H}_2\text{O}$                       | 0.2NA                              | (0.2 NA) X3 = 0.6 NA                           |
| 3 | 1.76 gram                          | 2.4 × 1022 = 4 × 102                                 | $2.4 \times 10^{22}$ molecules CO2 | $(2.4\times10^{22})\times3 = 7.2\times10^{22}$ |
| 4 | 32x102=0.329                       | $\frac{6 \times 10^{21}}{6 \times 10^{23}} = 10^{2}$ | 3.6×1022 = 6×1022                  | $3.6 \times 10^{22}$ Total atoms in CH3OH samp |

12+3 +16+1

15. Number of electrons in 36mg of 
$${}_{8}^{18}O^{-2}$$
 ions are (Take  $N_A = 6 \times 10^{23}$ )

(A)  $1.2 \times 10^{21}$ 

(B)  $9.6 \times 10^{21}$ 

(C)  $1.2 \times 10^{22}$ 

(D)  $1.9 \times 10^{22}$ 

Modes of 
$$6^2 = \frac{36 \times 16^3}{18} = 2 \times 16^3$$
  
No of electrons =  $(2 \times 16^3) \times 6 \times 16^3 \times 16^3$ 

No of electrons = 
$$(2 \times 10^{2}) \times 6 \times 18^{3} \times 10$$
  
=  $12 \times 10^{21} = 1.2 \times 10^{22}$ 

$$= 12 \times 10^{21} = 1.2 \times 15^{22}$$
16. Molar mass of electron is nearly  $(N_A = 6 \times 10^{23})$ 

(A) 
$$9.1 \times 10^{-31} \text{ kg mol}^{-1}$$
(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 
(C)  $54.6 \times 10^{-8} \text{ gm mol}^{-1}$ 

(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

(C)  $54.6 \times 10^{-8} \text{ kg mol}^{-1}$ 

(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

(B)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

(C)  $54.6 \times 10^{-8} \text{ kg mol}^{-1}$ 

(D)  $54.6 \times 10^{-8} \text{ kg mol}^{-1}$ 

(E)  $9.1 \times 10^{-31} \text{ gm mol}^{-1}$ 

Molar mars = 9.1 × 10 76× 18 = 54.6×10 / 10

No of moleculus = mole × NA.

(a) mole = 
$$\frac{2.8}{28} = 0.1$$
 (B) mole =  $\frac{3.2}{16} = 0.2$ ,

(c) 
$$mole = \frac{1.7}{17} = 0.1$$
 (d)  $mole = \frac{3.2}{64} = 0.05$ 

(D) 1/8 mole

(A) 1 mole
$$P V = NPT$$

$$N = \frac{1 \times 5 \cdot 6}{0.0821 \times 273} = \frac{5 \cdot 6}{22 \cdot 4} = \frac{1}{4}$$

5.6 L of oxygen at 273 K and 1 atm is equivalent to

**18.** 

19. Which has maximum number of molecules of O<sub>2</sub> (A) 32 gm of  $O_2$ (B) 1 mole of O<sub>2</sub> All have same (C) 1 gram molecule of O<sub>2</sub> (A) moles of  $02 = \frac{32}{32} = 1$  mole (B) = 1 mole 02 (e) 1 gm molecule 02 or 1 mole 02 means all have same no of molecule 1 gm - atom of nitrogen does not represents (A) 6.02 × 10<sup>23</sup> N, molecules (P) 22.4 lit. of N<sub>2</sub> at N.T.P. (C) 11.2 lit. of N<sub>2</sub> at N.T.P. 28 g of nitrogen 1 gram atom = 1 mole silver utom

moles of molecule = 
$$\frac{6.02 \times 10^{23}}{6.02 \times 10^{23}} = 1$$
  
moles of N atom =  $1 \times 2 = 2$   
(B) moles of N<sub>2</sub> =  $\frac{22.4}{2} = 1$ , moles of N atom =  $1 \times 2$   
= 2  
(C) moles of N<sub>2</sub> =  $\frac{11.2}{22.4} = 0.5$ , Moles of  $= 0.5 \times 2$   
N atom = 1

(A) 6.022×10<sup>23</sup> molecule

D moles of 
$$N_2 = \frac{2k9}{28} = 1$$
 mole of  $N_2$   
mole of  $N = 1 \times 2 = 2$ 

(P) (A) 
$$6.023 \times 10^{23}$$
 molecules of CO<sub>2</sub> (P) 1 mol  
P (B)  $6.023 \times 10^{23}$  molecules of water (Q) 22.4 L  
S (C) 96 g of O<sub>2</sub> gas (R) 2 mol  
R (D) 88 g of CO<sub>2</sub> gas (S) 3 mol  
(A)  $\frac{6.022 \times 10^{23}}{6.022 \times 10^{23}} = 1$  mole of H20le)  
(B)  $\frac{6.022 \times 10^{23}}{6.012 \times 10^{23}} = 1$  mole of H20le)  
(C)  $\frac{969}{100} = 3$  mole of H20le)

Column-II

Column-I