合 肥 工 业 大 学 试 卷 (A)

共_1_ 页第_1_ 页

2021~2022 学年第_二_ 学期 课程代码__034Y01__ 课程名称 数学(下) 学分__5_ 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑

专业班级(教学班)_____少数民族预科班_____考试日期__2022 年 6 月 18 日 8:00-10:00__ 命题教师 集体 系(所或教研室)主任审批签名_______

一、填空题(每题3分. 共18分)

- 1. 如果 f(x) > 0 且 $\lim_{x \to \infty} f(x) = 0$,则 $\lim_{x \to \infty} [1 + f(x)]^{1/f(x)} =$ _______.
- **2.** 设 $y = \sin(x^2 + 1)$, 则 dy =______.
- 3. 极限 $\lim_{n\to\infty} \left(\frac{1}{n^2-1} + \frac{2}{n^2-2} + \dots + \frac{n}{n^2-n} \right) = \underline{\hspace{1cm}}$
- **4.** 曲线 $y = 2\ln(x+1)$ 在点 $(1, 2\ln 2)$ 处的切线方程为_____.
- 5. 若 $e^{y-1} = 1 + xy$, 则 $\frac{dy}{dx}\Big|_{x=0} =$ _______.
- **6.** 如果函数 f(x) 的定义域是 $(0,+\infty)$, 且 x=0 是曲线 y=f(x) 的垂直渐近线, 那么 $\lim_{x\to 0^+} \frac{1}{f(x)} =$ ______.

二、选择题(每题3分,共18分)

- 1. 当 $x \to +\infty$ 时, $\frac{1}{x}$ 和 () 是等价无穷小.
 - A. $\sin \frac{1}{x}$
- B. $\sin x$
- C. e^{-x}

- D. $e^{1/x}$
- **2.** 若当 $x \to 0$ 时, $\arctan(e^x 1) \cdot (\cos x 1)$ 和 x^n 是同阶无穷小, 则 n = ()
 - A. 0
- B. 1

C. 2

D. 3

- 3. 设 $f(x) = \arctan \frac{1}{x(x-1)^2}$, 则 x = 0 是 f(x) 的 ().
 - A. 可去间断点

B. 跳跃间断点

C. 第二类间断点

- D. 连续点
- 4. 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的连续函数, 且 f'(x) 的图像如下图所示, 则 f(x) 有 ().
 - A. 一个极大值点,没有极小值点
 - B. 没有极大值点, 一个极小值点
 - C. 一个极大值点和一个极小值点
 - D. 一个极大值点和两个极小值点

- 5. 设函数 f(x) 在点 x=0 处可导, 且 f(0)=0, 则 $\lim_{x\to 0} \frac{f(x^{2022})+x^{2021}f(x)}{x^{2022}}=($).
 - A. 0

- B. f'(0)
- C. 2f'(0)
- D. 2022f'(0)
- **6.** 如果点 (x_0, y_0) 是曲线 y = f(x) 的拐点, 则 $f''(x_0) = ($).
 - A. 0

- B. ∞
- C. 不存在
- D. 0 或不存在

三、解答题(每题8分,共64分)

- **1.** 求极限 $\lim_{x \to -1} \frac{x^2 1}{x^2 + 3x + 2}$.
- 2. 求极限 $\lim_{x\to 0} \frac{e^x 1 x}{\arcsin x^2}$.
- 3. 设 $\begin{cases} x = t^2 + t \\ y = t^3 + t \end{cases}$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- 4. 设 $f(x) = \begin{cases} x \arctan \frac{1}{x}, & x < 0, \\ x^2 + ax + b, & x \ge 0. \end{cases}$ 求常数 a, b 使得函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 并求出此时曲线 y = f(x) 的渐近线.
- **5.** 求函数 $f(x) = x^3 x^2 x$ 在区间 [-2, 2] 上的最大值和最小值.
- **6.** 证明: 当 $-\frac{\pi}{2} < x_1 < x_2 < \frac{\pi}{2}$ 时, $\tan x_2 \tan x_1 \geqslant x_2 x_1$.
- 7. 设函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 且 f(1) = 0. 证明: 存在 $\xi \in (0,1)$ 使得 $\xi f'(\xi) + 2022 f(\xi) = 0$.
- 8. 设函数 $f(x) = \ln x + \frac{2}{x^2}, x \in (0, +\infty)$. 求
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 曲线 y = f(x) 的凹凸区间及拐点.