Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний

інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 6 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження рекурсивних алгоритмів»

Варіант 26

Виконав студент: ІП-15 Поліщук Валерій Олександрович (шифр, прізвище, ім'я, по батькові)

Перевірила: Вєчерковська Анастасія Сергіївна

(прізвище, ім'я, по батькові)

Київ 2021

Лабораторна робота №6

Дослідження рекурсивних алгоритмів Варіант 26

Мета — дослідити особливості роботи рекурсивних алгоритмів та набути практичних навичок їх використання під час складання програмних специфікацій підпрограм.

Постановка задачі

Задано натуральне m та n. Обчислити

$$\sum_{k=m}^{n} \frac{\left(-1\right)^{k}}{k!} \left(\frac{a_{k}+2}{3}\right)^{k} \quad a_{0} = 1, \ a_{k} = \sqrt{\left|4a_{k-1}+2\right|}$$

Математична модель

Змінна	Тип	Ім'я	Призначення
Значення т	Натуральне	m	Вхідні дані
Значення п	Натуральне, >= m	n	Вхідні дані
Значення і	Ціле	i	Проміжні дані
Значення sum	Дійсне	sum	Вихідні дані
Функція, що рахує факторіал числа	Функція	Factorial	Рахує факторіал числа
Функція, що рахує значення a(k)	Функція	A	Paxye a(k)

^ - піднесення до степеню

Sqrt() – корінь з числа

Abs() – модуль числа

Ми знаходимо суму в циклі основної програми, а факторіали та значення a(k) рахуються у функціях підпрограми

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо процес обчислення результату sum

Псевдокод

Основна програма

Крок 1

```
початок
```

```
введення n,m
```

обчислення результату sum за допомогою функцій A та Factorial

виведення sum

кінець

Крок 2

початок

```
введення п,т
```

sum = 0

повторити

для і від m до n

```
sum = sum + ((-1)^i / Factorial(i)) * ((A(i) + 2) / 3)^i
```

все повторити

виведення sum

кінець

Підпрограма

```
Factorial(i)
                                          A(i)
початок
                                          початок
  якщо і = 0
                                             якщо і = 0
     то
                                               TO
        повернути 1
                                                  повернути 1
  все якщо
                                             все якщо
  повернути (i * (Factorial(i - 1)))
                                             повернути Sqrt(Abs(4 * A(i-1) + 2))
кінець
                                          кінець
```

Блок-схема

Код програми

```
class Program
   Ссылок: 2
   private static double A (int i)
       if (i == 0) { return (1); }
       return (Math.Sqrt(Math.Abs(4 * A(1-1) + 2)));
   private static double Factorial(int i)
       if (i == 0) return (1);
       return (i * (Factorial(i - 1)));
   Ссылок: 0
    static void Main(string[] args)
        int n, m;
       double sum;
       Console.WriteLine("Enter n");
       n = Convert.ToInt32(Console.ReadLine());
       Console.WriteLine("Enter m");
       m = Convert.ToInt32(Console.ReadLine());
        sum = 0;
        for (int i=m; i<=n; i++)
        €.
            sum = sum + (Math.Pow(-1, i) / Factorial(i)) * (Math.Pow(((A(i)
        Console.WriteLine(Convert.ToString(sum));
```

Випробування алгоритму

Блок	Дія основна програма (цикл 1)		Дія основна програма (цикл 2)	Підпрограма
	Початок		(HIIIII 2)	
1	n = 0 m = 1			
2	sum = 0			
3	i = 0	Factorial(i) = 1	i = 1	Factorial(i) = 1
4		A(i) = 1		A(i) = 2,449
5	sum = 1		sum = -0.4832	
6			виведення(-0,4832)	
7			кінець	

Висновки

Я дослідив особливості роботи рекурсивних алгоритмів та набув практичних навичок їх використання під час складання програмних специфікацій підпрограм.