CS/IT 3003

b. State and prove Grinberg's theorem. 7M

(or)

- 8. a. What is $\chi(Kn)$? Which graphs have chromatic number 1, 2, 3 & 4? 8M
 - b. With an example, explain sum of degrees theorem. 7M

* * *

VR10

II/IV B. Tech. DEGREE EXAMINATION, JUNE, 2014

Third Semester

DISCRETE MATHEMATICAL STRUCTURES

Time: 3hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each unit of Part-B

PART-A

 $10 \times 1 = 10M$

- a. Show that the propositions $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent.
- b. Translate this statement into English, where C(x) is 'x is a comedian' and F(x) is 'x is funny' and domain consists of all people $\exists x (C(x) \rightarrow F(x))$
- c. Find the value of each of these quantities i) P (7, 3) ii) C (9, 5)
- d. Write the generating function for the sequence $1, a, a^2, a^3, a^4, \dots$
- e. A person deposits \$1000 in an account that yields 9% interest compounded annually. Set up a recurrence relation for the amount in account at the end of 'n' years.
- f. Define composite of relations with an example.
- g. What is a POSET? Give an example?
- h. Let G = (V, E) be an undirected graph. With 'e' edges, show that $2e = \sum deg(v)$
- i. Define graph coloring and chromatic number. What is the chromatic number of a wheel?
- j. Define transitive closure with an example.

CS/IT 3003

PART-B

 $4 \times 15 = 60M$

8M

UNIT-I

- a. Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧ ¬q are logically equivalent by developing a series of logical equivalences.
 7M
 - b. Let L(x, y) be the statement "x likes y". Domain for x is students and domain for y is subjects in engineering. Use quantifiers to express each of the following statements.
 - i) Everybody likes maths
 - ii) There is a course which everybody likes
 - iii) There are courses which few students like 8M

(or)

- 2. a. Obtain the PDNF of the formula $p \rightarrow (p \land (q \rightarrow p))$. 7M
 - b. Use De Morgan's laws to find the negation of each of the following statements.
 - i) Rita is rich and happy
 - ii) Jane will bicycle or run tomorrow

UNIT-II

- 3. a. Find the coefficient of $x^5 y^8$ in $(x + y)^{13}$. 7M
 - b. Solve the recurrence relation using generating functions $a_n 5a_{n-1} + 6a_{n-2} = 2^n + n$ for $n \ge 2$, given $a_0 = 1$ and $a_1 = 1$ 8M

(or)

4. a. What is the solution of the recurrence relation $a_n = -a_{n-1} + 4a_{n-2} + 4a_{n-3}$ with $a_0 = 8$, $a_1 = 6$ and $a_2 = 26$?

CS/IT 3003

VR10

b. How many integral solutions are there for

$$x_1 + x_2 + x_3 + x_4 + x_5 = 30$$

Where $x_1 > = 2$, $x_2 > = 3$, $x_3 > = 4$, $x_4 > = 2$, $x_5 > = 0$?

UNIT-III

- a. Consider the set A = {2, 7, 14, 28, 56, 84} and the relation a ≤ b if and only if a divides b. Give the Hasse diagram for the poset (A, ≤).
 8M
 - Explain the need of Warshall's algorithm.
 Let A = {1, 2, 3, 4} and let R = {(1, 2), (2, 3), (3, 4), (2, 1)}. Find the transitive closure of R using Warshall's algorithm.

(or)

6. a. What is a Lattice? Which of the following are lattices and why?

8M

Explain concepts of Digraphs and Binary relations with examples in detail.

7M

UNIT-IV

7. a. Define whether the following graphs are isomorphic or not. Justify your answer. **8M**