A) number of objectives = 2, number of variables = 10, pareto front = degenerate, algorithm = RVEA In []: **from** desdeo_problem.testproblems.TestProblems **import** test_problem_builder from desdeo_emo.EAs.RVEA import RVEA from desdeo_emo.EAs.NSGAIII import NSGAIII import matplotlib.pyplot as plt import desdeo_tools.utilities.quality_indicator as indicator from scipy.stats import qmc In []: dtlz5 = test_problem_builder("DTLZ5", n_of_objectives= 2, n_of_variables=10) evolver = RVEA(dtlz5, n_gen_per_iter=100, n_iterations=10) while evolver.continue_evolution(): evolver.iterate() objs= evolver.population.objectives I'dont understand what this "objs[:,0], objs[:,1]" means In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 0.8 0.6 0.4 0.2 0.0 0.2 0.8 0.0 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1]) print(hv) 0.4138241756850294 B) number of objectives = 2, number of variables = 10, pareto front = degenerate, algorithm = NSGAdtlz5 = test_problem_builder("DTLZ5", n_of_objectives= 2, n_of_variables=10) evolver = NSGAIII(dtlz5, n gen per iter=100, n iterations=10) while evolver.continue_evolution(): evolver.iterate() objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1]) print(hv) 0.4155356319092264 C) number of objectives = 5, number of variables = 10, pareto front = degenerate, algorithm = RVEAIn []: dtlz5 = test_problem_builder("DTLZ5", n_of_objectives= 5, n_of_variables=10) evolver = RVEA(dtlz5, n_gen_per_iter=100, n_iterations=10) while evolver.continue_evolution(): evolver.iterate() objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 1.2 1.0 0.8 0.6 0.4 0.0 1.0 1.2 0.8 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1, 1.1, 1.1]) 0.2985849759100363 D) number of objectives = 5, number of variables = 10, pareto front = degenerate, algorithm = **NSGA-III** In []: dtlz5 = test_problem_builder("DTLZ5", n_of_objectives= 5, n_of_variables=10) evolver = NSGAIII(dtlz5, n gen per iter=100, n iterations=10) while evolver.continue_evolution(): evolver.iterate() /Users/eerolantto/Documents/JYU/venvironment/lib/python3.8/site-packages/desdeo_emo/selection/NSGAIII_select.py:166: RuntimeWarning: divide by zero encountered in true_divide /Users/eerolantto/Documents/JYU/venvironment/lib/python3.8/site-packages/desdeo emo/selection/NSGAIII select.py:166: RuntimeWarning: divide by zero encountered in true_divide objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 0.5 0.3 0.2 0.1 0.0 0.3 0.7 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1, 1.1, 1.1]) print(hv) 0.37729953784920706 E) number of objectives = 2, number of variables = 10, pareto front = disconnected, algorithm = **NSGA-III** In []: dtlz7 = test_problem_builder("DTLZ7", n_of_objectives= 2, n_of_variables=10) evolver = NSGAIII(dtlz7, n_gen_per_iter=100, n_iterations=10) while evolver.continue_evolution(): evolver.iterate() In []: objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 4.00 3.75 3.50 3.25 3.00 2.75 2.50 2.25 0.0 0.2 0.4 0.6 0.8 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1]) print(hv) 0.0 F) number of objectives = 2, number of variables = 10, pareto front = disconnected, algorithm = **RVEA** In []: dtlz7 = test problem builder("DTLZ7", n of objectives= 2, n of variables=10) evolver = RVEA(dtlz7, n_gen_per_iter=100, n_iterations=10) while evolver.continue_evolution(): evolver.iterate() In []: objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 3.9 3.8 3.7 3.6 0.00 0.05 0.10 0.15 0.25 0.20 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1]) 0.0 G) number of objectives = 5, number of variables = 10, pareto front = disconnected, algorithm = **NSGA-III** In []: dtlz7 = test_problem_builder("DTLZ7", n_of_objectives= 5, n_of_variables=10) evolver = NSGAIII(dtlz7, n_gen_per_iter=100, n_iterations=10) while evolver.continue evolution(): evolver.iterate() /Users/eerolantto/Documents/JYU/venvironment/lib/python3.8/site-packages/desdeo_emo/selection/NSGAIII_select.py:166: RuntimeWarning: divide by zero encountered in true_divide objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 0.8 0.6 0.2 0.0 0.8 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1, 1.1, 1.1]) 0.0 H) number of objectives = 5, number of variables = 10, pareto front = disconnected, algorithm = **RVEA** In []: dtlz7 = test_problem_builder("DTLZ7", n_of_objectives= 5, n_of_variables=10) evolver = RVEA(dtlz7, n_gen_per_iter=100, n_iterations=10) while evolver.continue_evolution(): evolver.iterate() objs= evolver.population.objectives In []: plt.scatter(objs[:,0], objs[:,1]) plt.show() 1.0 0.8 0.6 0.2 0.0 0.4 In []: hv = indicator.hypervolume_indicator(objs, [1.1, 1.1, 1.1, 1.1]) print(hv) 0.0

			Hypervolume	
Pareto front type	Objectives (K)	Decision variables (n)	RVEA	NSGA-III
Degenerate	2	10	0.4151825793	0.4155356319
Degenerate	5	10	0.2985849759	0.3772995378
Disconnected	2	10	0	0
Disconnected	5	10	0	0