Brownian Motion and Stochastic Calculus[1] 読書記録

最終更新: 2022年11月13日

<u>注意</u>: 原著(英語版)を読んでいきます. 記述の正確性は保証しません. ややこしいことになりたくないので,本文の引用は最小限にしています. ? マークは不明/自信なし/要復習を意味しています. たとえば 1.3+ は項目 1.3 と 1.4 の間の部分を指します.

誤植と思われるもの

頁	行	誤	正
13	19	$t \in F; X_t(\omega) \le \alpha$	
29	14	$\xi_{T_n(\epsilon)^{(n)}}+$	$\xi_{T_n(\epsilon)+}^{(n)}$
36	1	$t \ge 0: M_t = n$	$t \ge 0; \ M_t = n$

1 Martingales, Stopping Times, and Filtrations

- ■1.3+ (def. $1.3 \implies$ def. $1.1 \implies$ def.1.2 がなりたつこと)
 - $1.3 \implies 1.1$: 任意の $s \in [0,\infty)$ に対し明らかに $\mathsf{P}[X_t = Y_t; \ \forall t \in [0,\infty)] \le \mathsf{P}[X_s = Y_s]$ がなりたつから, $\mathsf{P}[X_t = Y_t; \ \forall t \in [0,\infty)] = 1 \implies \forall t \in [0,\infty), \mathsf{P}[X_t = Y_t] = 1.$

$$\begin{split} \left| \mathsf{P}[X^{(n)} \in A] - \mathsf{P}[Y^{(n)} \in A] \right| &= \left| \int_{\Omega} \left(\mathbf{1}_{X^{(n)}(\omega) \in A} - \mathbf{1}_{Y^{(n)}(\omega) \in A} \right) \mathsf{P}(d\omega) \right| \\ &\leq \int_{\Omega} \left| \mathbf{1}_{X^{(n)}(\omega) \in A} - \mathbf{1}_{Y^{(n)}(\omega) \in A} \right| \mathsf{P}(d\omega) \\ &\leq \int_{\Omega} \mathbf{1}_{X^{(n)}(\omega) \neq Y^{(n)}(\omega)} \mathsf{P}(d\omega) \\ &= \mathsf{P}[X^{(n)} \neq Y^{(n)}] \\ &\leq \sum_{k=1}^{n} \mathsf{P}[X_{k} \neq Y_{k}] = 0 \end{split}$$

より示された. 最後の等号は 1.1 による.

- ■1.6+ (Fubini の定理を使えと書いてあるところ) X が可測のとき,
 - 1. 各 $\omega \in \Omega$ に対し $t \mapsto X_t(\omega)$ が Borel 可測であること: Rudin[2] Theorem 8.5 そのまま. X_t は可積分とは限らない.
 - 2. $t\mapsto \mathsf{E}[X_t]$ が(定義されるなら) Borel 可測であること: $\mathsf{E}[X_t]$ が定義されるから, $\int X_t^+(\omega)d\omega$ と $\int X_t^-(\omega)d\omega$ はどちらも有限で, Rudin[2] Theorem 8.8(a) より Borel 可測. ゆえにその差 $\mathsf{E}[X_t] = \int X_t^+(\omega)d\omega \int X_t^-(\omega)d\omega$ も Borel 可測.

- 3. X_t の値域が $\mathbb R$ で, $\mathbb R$ 内の区間 I が $\int_I \mathsf E|X_t|dt < \infty$ をみたすなら積分の交換などができること: $\int_I \mathsf E|X_t|dt < \infty$ ゆえ Tonelli の定理(Rudin[2] Theorem 8.8(b))より $X_t(\omega)$ が積空間について可積分であることがいえ, 同定理 (c) が使える.
- ■1.9+(Y も { \mathscr{F}_t } に適合していること) X_t は \mathscr{F}_t -可測だから { $X_t \in A$ } $\in \mathscr{F}_t$, $A \in \mathscr{S}$. いっぽう, $\forall t$, $\mathsf{P}[X_t \neq Y_t] = 0$ だから { $X_t \neq Y_t$ } $\in \mathscr{F}_t$. { $X_t \notin A$ } \cap { $Y_t \in A$ } \subset { $X_t \neq Y_t$ } であるが, 左辺が \mathscr{F} -可測であることと $\mathsf{P}[X_t \neq Y_t] = 0$ から単調性より左辺も測度 0. ゆえに仮定より左辺 $\in \mathscr{F}_0 \subset \mathscr{F}_t$. 結局 { $Y_t \in A$ } $\in \mathscr{F}_t$ でもある.
- ■1.9+ (This requirement is not same as saying \mathscr{F}_0 is complete **について**) たとえば, $\mathscr{F}_0 = \{\varnothing, \Omega\}$ は 完備だが、空でない測度 0 集合を 1 つももたない [3].

■1.13

$$\{(s,\omega);\ X_s^{(n)}(\omega)\in A\} = \bigcup_{k=0}^{2^n-1} \left(\left(\frac{k}{2^n}t, \frac{(k+1)}{2^n}t\right] \times X_{\frac{(k+1)}{2^n}t}^{-1}(A)\right) \bigcup \left(\{0\} \times X_0^{-1}(A)\right) \tag{1}$$

に注意 [4].

- **■2.3** The first statement: $T \equiv t_0 \geq 0$ を定数とすると, 任意の $t \geq 0$ に対し $\{t_0 \leq t\}$ は Ø もしくは Ω でありいずれも \mathcal{F}_t に属する.
- **■2.6** $X_r(\omega) \in \Gamma$ とすると, Γ : open と X: RC より時刻 r の直後も少しの時間 path は Γ に入っている. その時間の中から有理数時刻を取ってくればよい.

2.9

- The first two assertions: $\{T \land S \le t\} = \{T \le t\} \cup \{S \le t\} \implies \{T \lor S \le t\} = \{T \le t\} \cap \{S \le t\} \implies \emptyset.$
- $\{0 < T < t, T+S > t\} = \bigcup_{r \in \mathbb{Q} \cap (0,t)} \{t > T > r, S > t-r\}$ がなりたつこと: $0 < T < t, T+S > t \iff 0 < T < t, S > t-T \iff$ ある $r \in \mathbb{Q} \cap (0,t)$ があって $\{t > T > r, S > t-r\}$ をいえばよい. 2 つ目の \iff について、実際
 - $\iff : 0 < r < T < t, S > t r > t T.$
 - ⇒: t > T > t S だが、有理数の稠密性より t > T > r > t S なる $r \in \mathbb{Q}$ がとれる. このとき S > t r, r < T < t.

である.

- ■4.10 (Doob-Meyer Decomposition) **書きかけ** すべての文章に行間がある地獄である. 定理のステートメントは本で見てください.
- **■一意性** X が 2 通りの分解 $X_t = M'_t + A'_t = M''_t + A''_t$ を許すと仮定する. ここで M', M'' は MG, A', A'' は natural increasing である. このとき

$$\{B_t \stackrel{\text{def}}{=} A_t' - A_t'' = M_t'' - M_t', \mathscr{F}_t; 0 \le t < \infty\}$$

$$(2)$$

は MG で, 任意の RC MG $\{\xi_t, \mathscr{F}_t\}$ に対し

$$\mathsf{E}[\xi_t(A_t' - A_t'')] = \mathsf{E} \int_{(0,t]} \xi_{s-} dB_s = \lim_{n \to \infty} \mathsf{E} \sum_{j=1}^{m_n} \xi_{t_{j-1}^{(n)}} \Big[B_{t_j^{(n)}} - B_{t_{j-1}(n)} \Big] \tag{3}$$

である. ここで $\Pi_n=\{t_0^{(n)},\dots,t_{m_n}^{(n)}\},\ n\geq 1$ は [0,t] の分割であって, $n\to\infty$ 極限で $||\Pi_n||:=\max_{1\leq j\leq m_n}(t_j^{(n)}-t_{j-1}^{(n)})\to 0$ となるものとする.

$$E\left[\xi_{t_{j-1}^{(n)}}\left(B_{t_{j}^{(n)}} - B_{t_{j-1}^{(n)}}\right)\right] = 0, \text{ and thus } E\left[\xi_{t}\left(A_{t}' - A_{t}''\right)\right] = 0.$$
(4)

参考文献

- [1] Ioannis Karatzas, Ioannis Karatzas, Steven Shreve, and Steven E Shreve. Brownian motion and stochastic calculus, volume 113. Springer Science & Business Media, 1991.
- [2] W. Rudin. Real and Complex Analysis. Mathematics series. McGraw-Hill, 1987.
- [3] https://math.stackexchange.com/questions/2159241/complete-filtration.
- [4] https://www.stat.purdue.edu/~chen418/studynotesmath.html.