Lesson 13: Boolean Algebra

1. Introduction

Set identities are very similar to the laws for manipulating logical expressions. Consider for example

$$P V F = P$$

$$P \Lambda F = F$$

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$P V T = T$$

$$P \Lambda T = P$$

$$A \cup U = U$$

$$A \cap U = A$$

$$A \cap A = A$$

$$A \cap A = A$$

$$A \cap A = \emptyset$$

We can see the correspondence

Logic	Sets
statement	set
F	empty set Ø
T	universal set U
disjunction V	union ∪
conjunction Λ	intersection \cap
Negation ~	Set complement

The correspondence reflects the fact that both propositional calculus and sets with the operations union, intersection and complementation are special cases of **Boolean algebra**

2. Definition of Boolean algebra

Boolean algebra: A set of objects S with two operations "+" and "." such that

- a. for all \mathbf{a} and \mathbf{b} in \mathbf{S} , $\mathbf{a} + \mathbf{b}$ and $\mathbf{a} \cdot \mathbf{b}$ are also in \mathbf{S} .
- b. the following axioms hold:
- 1. For all **a** and **b** in S,

$$a + b = b + a$$

 $a \cdot b = b \cdot a$

Commutative laws

2. For all **a**, **b**, and **c** in S,

$$(a + b) + c = a + (b + c)$$

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Associative laws

3. For all \mathbf{a} , \mathbf{b} , and \mathbf{c} in \mathbf{S} ,

$$a + (b \cdot c) = (a + b) \cdot (a + c)$$

 $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Distributive laws

4. There are two distinct elements in S: 0 and 1, such that for all a in S,

$$a + 0 = a$$
 0 is the identity element for "+" $a \cdot 1 = a$ 1 is the identity element for "."

5. For each \mathbf{a} in S there exists an element $\sim \mathbf{a}$ such that

$$a + \sim a = 1$$

 $a \cdot \sim a = 0$

Complement laws

Using the above axioms we can prove that x = x + x, and $x = x \cdot x$

a. $x = x \cdot x$

x = x . 1	By axiom 4
$= x (x + \sim x)$	By axiom $5 (1 = a + ~a)$
$= x \cdot x + x \cdot \sim x$	By axiom 3 (distributive law)
$= x \cdot x + 0$	By axiom $5 (0 = a \cdot a)$
$= x \cdot x$	By axiom 4 ($a + 0 = a$)

b. x = x + x

x = x + 0	By axiom 4
$= X + (X \cdot \sim X)$	By axiom 5 $(0 = a \cdot a)$
$= (x + x) \cdot (x + \sim x)$	By axiom 3 (distributive law)
$=(x+x) \cdot 1$	By axiom $5 (1 = a + \sim a)$
= x + x	By axiom 4 (a $.1 = a$)

George Boole,

1815-1864, English mathematician and logician. He became professor at Queen's College, Cork, in 1849. Boole wrote *An Investigation of the Laws of Thought* (1854) and works on calculus and differential equations. He developed a form of symbolic logic, called Boolean algebra, that is of fundamental importance in the study of the foundations of pure mathematics and is also at the basis of computer technology.

A quote from http://www.encyclopedia.com/articles/01674.html

Application: in abstract algebra and in computer science - circuit design.

More about George Boole can be found at

http://www-groups.dcs.st-andrews.ac.uk/ ~history/Mathematicians/Boole.html

The article *The Calculus of Logic*,

(http://www.maths.tcd.ie/pub/HistMath/People/Boole/CalcLogic/CalcLogic.html)

describing the new algebra, is available online so that everybody can enjoy the crystal clear line of thought of an extremely clever person.

The article was first published in *Cambridge and Dublin Mathematical Journal*, vol. 3 (1848), pp. 183-98.

Problems

1. Rewrite the following logical expressions as set expressions and as Boolean expressions:

$$\begin{split} &P \wedge Q \\ &(P \wedge Q) \vee (\sim P \wedge R) \\ &P \wedge Q \wedge R \\ &(P \vee Q) \wedge R \\ &\sim P \vee Q \\ &\sim (P \wedge Q) \vee \sim (P \wedge R) \end{split}$$

2. Rewrite the following set expressions as logical expressions and as Boolean expressions

$$A \cap B$$

$$(A \cap B) \cup (\sim A \cap C)$$

$$A \cap B \cap C$$

$$(A \cup B) \cap C$$

$$\sim A \cup B$$

$$\sim (A \cap B) \cup \sim (A \cap C)$$

3. Rewrite the following Boolean expressions as logical expressions and as expressions involving sets

$$xy xy + \sim xz xyz (x + y)z \sim x + y \sim (xy) + \sim (xz)$$

Solution

Logic	Sets	Boolean expressions
РΛQ	$A \cap B$	xy
$(P \land Q) \lor (\sim P \land R)$	$(A \cap B) \cup (\sim A \cap C)$	$xy + \sim xz$
ΡΛQΛR	$A \cap B \cap C$	xyz
(P V Q) Λ R	$(A \cup B) \cap C$	(x + y)z
~P V Q	\sim A \cup B	$\sim x + y$
\sim (P Λ Q) V \sim (P Λ R)	\sim (A \cap B) \cup \sim (A \cap C)	\sim (xy) + \sim (xz)

Correspondence

Set identities	Logical expressions	Boolean algebra	
A ∪ ~ A = U	P V ~P = T	$x + (\sim x) = 1$	Complementation Law
$A \cap \sim A = \emptyset$	P Λ ~P = F	$x \cdot (\sim x) = 0$	Exclusion Law
$A \cap U = A$	$P \wedge T = P$	x . 1 = x	Identity Laws
$A \cup \emptyset = A$	PVF = P	x + 0 = x	
$A \cup U = U$	PVT=T	x + 1 = 1	Domination Laws
$A \cap \emptyset = \emptyset$	$P \Lambda F = F$	$\mathbf{x} \cdot 0 = 0$	
$A \cup A = A$	P V P = P	x + x = x	Idempotent Laws
$A \cap A = A$	$P \wedge P = P$	$\mathbf{x} \cdot \mathbf{x} = \mathbf{x}$	
~(~A) = A	~(~P) = P	~(~x) = x	Double Complementation Law
$A \cup B = B \cup A$	P V Q = Q V P	x + y = y + x	Commutative Laws
$A \cap B = B \cap A$	$P \wedge Q = Q \wedge P$	$x \cdot y = y \cdot x$	
$(A \cup B) \cup C =$ $A \cup (B \cup C)$	(P V Q) V R = P V (Q V R)	(x + y) + z = x + (y + z) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$	Associative Laws
$(A \cap B) \cap C =$	$(P \Lambda Q) \Lambda R =$		
$A \cap (B \cap C)$	$P \Lambda (Q \Lambda R)$		
$A \cup (B \cap C) =$	P V (Q Λ R) =	$x + (y \cdot z) =$	Distributive Laws
$(A \cup B) \cap (A \cup C)$	$(P V Q) \Lambda (P \Lambda R)$	$(x + y) \cdot (x + z)$	
$A \cap (B \cup C) =$	$P \Lambda (Q V R) =$	v (v + z) = v · v + v · z	
$(A \cap B) \cup (A \cap C)$	$(P \land Q) \lor (P \land R)$	$x \cdot (y+z) = x \cdot y + x \cdot z$	
\sim (A \cap B) = \sim A $\cup \sim$ B	\sim (P Λ Q) = \sim P V \sim Q	$\sim (x \cdot y) = \sim x + \sim y$	De Morgan's Laws
\sim (A \cup B) = \sim A \cap \sim B	\sim (P V Q) = \sim P $\Lambda \sim$ Q	$\sim (x + y) = \sim x \cdot \sim y$	