Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki

Projektowanie przemysłowych systemów komputerowych

Projekt-Sprawozdanie

Gas Analyzer

Autorzy: Damian Karbowiak, Grzegorz Powała Informatyka, SSM3, grupa ISP1 Prowadzący: dr inż. Jacek Stój Konsultant: mgr inż. Tomasz Kress

4 lipca 2013

Spis treści

1	Wstęp						
	1.1 Geneza	2					
	1.2 Temat	2					
	1.3 Stanowisko	2					
	1.3.1 Stanowisko prototypowe	2					
	1.3.2 Stanowisko docelowe	2					
	1.4 Analiza tematu	3					
	1.5 Założenia	3					
	1.6 Plan pracy	4					
2	Specyfikacja wewnętrzna						
	2.1 Specyfikacja zewnętrzna	6					
	2.2 Baza danych	6					
3	Instrukcja użytkownika						
	3.0.1 Ekran powitalny	7					
4	Podsumowanie	11					
	4.1 Perspektywy rozwoju	11					
	4.2 Wnioski	11					
5	Bibliografia 1						
6	Spis rysunków, tablic i kodów źródłowych	13					
	6.1 Spis rysunków	13					
	6.2 Spis tablic	13					
	6.3 Spis kodów źródłowych	13					
7	Załączniki	14					

1 Wstęp

1.1 Geneza

Tematem projektu, którego dotyczy to sprawozdanie jest: Gas Analyzer". Pomysł na projekt pojawił się

1.2 Temat

Głównymi celami pracy było napisanie oprogramowania

1.3 Stanowisko

1.3.1 Stanowisko prototypowe

Rysunek 1: Schemat stanowiska prototypowego

Na potrzeby realizacji projektu stworzono stanowisko laboratoryjne, którego schemat przedstawia Rysunek 1. Składa się ono z:

- Komputera,
- Konwertera ATC-850,
- ULTRAMAT 23.

Komputery na, których powstała wersja rozwojowa projekty pracowały na systemach operacyjnych Linux Ubuntu w wersji 32 oraz 64 bitowej. Do połączenia komputera z urządzeniem ULTRAMAT 23 zastosowano izolowany konwerter USB do RS-232/422/485, moduł ATC-850 jest automatycznie wykrywany i instalowany jako standardowy port COM. Stosowane w tej fazie projektu urządzenie pomiarowe potrafiło mierzyć zawartość CO_2 , CO, O_2 oraz NO_2 ??

1.3.2 Stanowisko docelowe

Docelowo zrealizowany projekt ma być uruchamiany na stanowisku, którego schemat przedstawia Rysunek 2. Składa się ono z:

- Komputera,
- Konwertera ATC-850,
- 3x ULTRAMAT 23,

Rysunek 2: Schemat stanowiska docelowego

• ULTRAMAT 6.

Stanowisko docelowe różni się od stanowiska prototypowego po pierwsze systemem operacyjnym, który pracuje na komputerze i jest to Windows XP. Po drugie stanowisko docelowe posiada więcej urządzeń pomiarowych, a jest ich dokładnie cztery i mierzą wartości przedstawione w Tabeli 1.

Urządzenie	Wielkości mierzone
ULTRAMAT 6	$NH_3[vpm]$
ULTRAMAT 23	$CH_4[\%], CO[\%], CO_2[\%], O_2[\%]$
ULTRAMAT 23	
ULTRAMAT 23	

Tablica 1: Urządzenia docelowe wraz z wartościami mierzonymi

1.4 Analiza tematu

Analiza tematu polegała przede wszystkim na zapoznaniu się z narzędziami programistycznymi do tworzenia oprogramowania sterownika oraz wizualizacji. Poznanie tych podstaw pozwoliło dobrać język odpowiedni do realizacji poszczególnych zadań.

1.5 Założenia

Oprogramowanie do zbierania danych pomiarowych powinno zostać stworzone przy użyciu technologii pozwalającej działać na różnych systemach operacyjnych bez skomplikowanych zabiegów. Funkcjonalności wchodzące w skład projektu, to:

• sterowanie ręczne z pilota podłączonego bezpośrednio do sterownika,

- sterowanie ręczne z wizualizacji,
- sterowanie automatyczne,
- wizualizacja bieżących pomiarów,
- generowanie raportu z pomiaru jako plik arkusza kalkulacyjnego,
- generowanie raportu z pomiaru jako plik do wydruku z wynikami np. format PDF,

• .

Powyżej zostały wymienione założenia podstawowe, jednak autorzy nie wykluczają zrealizowania dodatkowych zadań, które nie zostały zamieszczone w pierwotnej koncepcji realizacji projektu.

1.6 Plan pracy

Realizacja projektu została podzielona na następujące etapy:

- Przygotowanie stanowiska, zebranie odpowiednich materiałów i literatury,
- Analiza wymagań funkcjonalnych aplikacji,
- Projektowanie struktury oprogramowania i interfejsów wymiany danych,
- Implementacja,
- Testowanie i uruchamianie,
- Przedstawienie projektu i ewentualne korekty.

Powyższy plan pracy stanowił dla autorów wyznacznik kolejnych działań. Jednak powszechnie wiadomo, że w praktyce poszczególne punkty są wymienne i wpływają na siebie wzajemnie.

Termin	Osoba	Zadanie
11.03 - 17.03	Wszyscy	Wybór tematu.
18.03 - 20.03	Wszyscy	Określenie celu i zakresu, przygotowanie harmonogramu, po-
		dział zadań.
21.03	Wszyscy	Analiza sprzętu oraz dokumentacji.
22.03 - 23.03	Wszyscy	Analiza oraz porównanie dopuszczalnych rozwiązań z wyko-
		rzystaniem protokołu ELAN lub Profibus.
24.03 - 25.03	Wszyscy	Analiza wybranego protokołu oraz potrzebnego sprzętu do po-
		łączenia z komputerem (np. konwerter RS-485 $\Leftrightarrow\Leftrightarrow$ USB).
25.03 - 02.04	Wszyscy	Implementacja wybranych fragmentów protokołu.
29.03 - 17.04	Damian	Przygotowanie podstawowej wersji interfejsu użytkownika,
		umożliwiającej przetestowanie implementacji protokołu.
03.04 - 18.04	Grzegorz	Rozwinięcie podstawowej wersji protokołu – interpretacja
		i przetwarzanie odbieranych danych.
20.04 - 01.05	Grzegorz	Stworzenie modelu bazy danych i połączenia ORM.
19.04 - 05.05	Damian	Wykrycie i wizualizacja struktury sieci oraz odbieranych da-
		nych.
03.05 - 06.05	Damian	Generowanie PDF.
04.05 - 10.05	Grzegorz	Generowanie XLS.
13.05 - 22.05	Grzegorz	Zarządzanie ustawieniami urządzeń.
27.05 - 05.06	Damian	Poprawki w GUI.
01.06 - 08.06	Wszyscy	Instrukcja użytkownika oraz dokumentacja.

Tablica 2: Szczegółowy plan pracy wraz z harmonogramem i osobami odpowiedzialnymi

2 Specyfikacja wewnętrzna

2.1 Specyfikacja zewnętrzna

2.2 Baza danych

Rysunek 3: Schemat bazy danych

3 Instrukcja użytkownika

Rysunek 4: Okno ładowania

3.0.1 Ekran powitalny

Bezpośrednio po uruchomieniu wizualizacji użytkownik zobaczy ekran powitalny taki jak na Rysunku 12 zawierający informacje o

Rysunek 5: Okno główne

Rysunek 6: Dodawanie nowego pomiaru

Rysunek 7: Okno wyboru daty

Rysunek 8: Dodawanie nowego miejsca

Rysunek 9: Błąd przy dodawaniu nowego miejsca

Rysunek 10: Edytowanie istniejącego miejsca

Rysunek 11: Otwieranie istniejącego pomiaru

Rysunek 12: Wysyłanie sugestii

4 Podsumowanie

4.1 Perspektywy rozwoju

Projekt jest bardzo perspektywiczny głównie dlatego, że w bieżącej części została zaimplementowana tylko znikoma część protokołu ELAN, a co za tym idzie można cały proces pomiarowy uskutecznić, uprościć oraz zautomatyzować w jeszcze większym stopniu.

4.2 Wnioski

Głównymi celami pracy było napisanie oprogramowania gromadzącego dane z urządzeń pomiarowych.

5 Bibliografia

Literatura, która została wykorzystana przez autorów w czasie powstawania projektu, którą opisuje niniejsza dokumentacja.

- [1] Jerzy Kasprzyk: "Programowanie sterowników przemysłowych", Wydawnictwa Naukowo-Techniczne WNT, Warszawa, 2007
- [2] Dokumentacja producenta: "ELAN Interface Description", sierpień 2006
- [3] Materiały szkoleniowe: "SIMATIC S7 Kurs podstawowy"

6 Spis rysunków, tablic i kodów źródłowych

6.1 Spis rysunków

Rysunek I:	Schemat stanowiska prototypowego	2				
Rysunek 2:	Schemat stanowiska docelowego	3				
Rysunek 3:	Schemat bazy danych	6				
Rysunek 4:	Okno ładowania	7				
Rysunek 5:	Okno główne	7				
Rysunek 6:	Dodawanie nowego pomiaru	8				
Rysunek 7:	Okno wyboru daty	8				
Rysunek 8:	Dodawanie nowego miejsca	8				
Rysunek 9:	Błąd przy dodawaniu nowego miejsca	9				
Rysunek 10:	Edytowanie istniejącego miejsca	9				
Rysunek 11:	Otwieranie istniejącego pomiaru	9				
Rysunek 12:	Wysyłanie sugestii	10				
6.2 Spis ta	ablic					
Tablica 1:	Urządzenia docelowe wraz z wartościami mierzonymi					
Tablica 2:	Szczegółowy plan pracy wraz z harmonogramem i osobami odpo-					
wiedzia	dnymi	5				

6.3 Spis kodów źródłowych

7 Załączniki

- Oświadczenie o autorstwie,
- $\bullet\,$ Płyta CD, na której znajdują się:
 - Kod oprogramowania wewnętrznego oraz pliki projektu Step7,
 - Kod wizualizacji oraz pliki projektu WinCC flexible,
 - Plik wykonywalny wizualizacji typu WinCC flexible RT document,
 - Projekt magazynu wykonany w programie Blender,
 - LaTeXowe pliki pracy inżynierskiej,
 - Zdjęcia magazynu oraz robota,
 - Filmy prezentujące działanie projektu.