Problem Set 7

Daryl Larsen

March 14, 2022

1 Lecture note

(\Longrightarrow) Suppose not, so $Z=g(X_i,\theta_0)-g(X_i,\theta)=0$. Then $Z^2=0$ and $EZ^2=0$, which is a contradiction. (\Longleftrightarrow) Suppose that $P(Z\neq 0)=P(Z^2>0)$. Then $\exists n\in\mathbb{N}$ s.t. $P(Z^2\geq n^{-1})>0$ so that

$$EZ^2 \ge EZ^2 \mathbb{1}\{Z^2 \ge n^{-1}\} \ge n^{-1}P(Z^2 \ge n^{-1}) > 0$$

2 Lemma 11.1

Lemma 11.1 is that Θ compact, $Q(\theta)$ continuous, and θ_0 uniquely minimizes $Q(\theta)$ over $\theta \in \Theta$ implies $\forall \epsilon < 0$, $\inf_{\theta \notin B(\theta_0, \epsilon)} Q(\theta) > Q(\theta_0)$. Suppose not, so $\exists \epsilon > 0$ s.t. $\inf_{\theta \notin B(\theta_0, \epsilon)} Q(\theta) \leq Q(\theta_0)$. Since Θ is compact, $\Theta \backslash B(\theta_0, \epsilon)$ is also compact. Since $Q(\theta)$ is continuous, by the extreme value theorem $\exists \theta^* \in \Theta \backslash B(\theta_0, \epsilon)$ s.t. $Q(\theta^*) = \inf_{\theta \notin B(\theta_0, \epsilon)} Q(\theta)$. Then $Q(\theta^*) \leq Q(\theta_0)$ which violates the final assumption that θ_0 be the unique minimizer of $Q(\theta)$ on Θ .