

PRE-MEDICINE ASSOCIATION

2021/2022 Kurungay

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2022 සහ්ඛා්ධ Gurraj த் தராதரப்பத்திர (உயர் தரப்பரீட்சை, 2022 General Certificate of Education (Adv. Level) Examination, 2022

භෞතික විදහාව II

	02	
Ш		Ιl

පැය තුනයි

උපදෙස්

- ❖ A කොටස වාූූහගත රචනා
- 💠 පුශ්න හතරටම පිළිතුරු සපයන්න.
- 💠 ඒ සඳහා දී ඇති අවකාශය පමණක් භාවිත කරන්න.
- lacktriangle තෝරාගත් පුශ්න හතරකට පමණක් පිළිතුරු සපයන්න. නියමිත කාලය අවසානයේ A කොටස හා B කොටස පරීක්ෂවරයාට භාර දෙන්න.
- 01. බල සමාන්තරාසු උපකරණ ඇටවුම උපයෝගී කරගෙන අසමාකාර හැඩයක් ඇති ජලයේ අමිශු වස්තුවක සාපේක්ෂ ඝනත්වය සෙවීමට පහසුවෙන් සැකසූ පරීක්ෂණයක් රූපයේ දක්වා ඇත. මෙම පරීක්ෂණයේදී තන්තුව පිහිටීම ලකුණු කර ගැනීම වෙනුවට සිසුවා විසින් තන්තු අතර කෝණය මැනීම සිදු කර අසමාකාර හැඩැති වස්තුවක ස්කන්ධය සොයා සාපේක්ෂ ඝනත්වය සෙවීමට අදහස් කරයි.

(I) රූපයේ පරිදි තන්තු කැබලි හරහා ස්කන්ධ එල්ලා සමතුලිත පිහිටුමක නතර වූ විට O හිදී තන්තු කොටස් දෙක අතර කෝණය θ ලෙස පිහිටනු ලැබූ අවස්ථාවක දී හා m ස්කන්ධය සඳහා පුකාශනයක් ලියන්න.

(II) ගණනය කරගත් m හි අගය කෙරෙහි තන්තු හා කප්පි අතර හටගන්නා ඝර්ෂණය බලපෑමක් ඇති කරයි ද නැද්ද යන්න පැහැදිලි කරන්න.

	$\mathbf{m}_1,\mathbf{m}_2$ හා $ heta$ හි අගය යොදා ගණනය කර ලබාගන්නා අගයට නිවැරදිතාවය තහවුරු කර ගන්නෙ කෙසේද?
(IV)	තන්තුවල පිහිටීම ලකුණු කර බලසමාන්තරාසුය අදින විට m ස්කන්ධයට ගැටගසා ඇති මැද තන්තුවේ පිහිටීම ලකුණු කර ගැනීමෙන් අපේඤා කරන්නේ කුමක් ද? එම අපේඤා තහවුරු කරන්නේ කෙසේ ද?
(V)	මැද තන්තුවට ගැට ගසා ඇති m ස්කන්ධය වාතයේ පවතින විට තන්තු දෙක අතර කෝණය $ heta=60^\circ$ ද තන්තුවලට ගැටගසා ඇති ස්කන්ධයන් පිළිවෙළින් $100 \mathrm{g}$ හා $200 \mathrm{g}$ වූයේ නම් m හි අගසොයන්න.
(VI)	මැද තන්තුවට ගැට ගැසූ m ස්කන්ධය ජලයේ ගිලී ඇති විට අනෙක් තන්තු කොටස් අතර කෝණ 90^0 විය. m ස්කන්ධයේ දෘෂා අගය කොපමණ ද?
(VII)	m ස්කන්ධය මත උඩුකුරු තෙරපුම කොපමණ ද?
(VIII)	තන්තුවේ ඝනත්වය කොපමණ ද? (ජලයේ ඝනත්වය $1000 { m kgm}^{-3}$)
(IX)	විෂමාකාර m ස්කන්ධයේ පරිමාව කොපමණ ද?

02.	නිව්	ටන්ෙ	ග් සිසිලන නියමය භාවිතා කර නොදත්තා දුවයක විශිෂ්ඨතාප ධාරිතාවය සෙවීමට අවශා
	උප	තරණ	ඇටවුමක් පහත දැක්වේ.
	a)	(i)	නිව්ටන්ගේ සිසිලන නියමය සඳහන් කරන්න.
		(ii)	නිව්ටන්ගේ සිසිලන නියමය යෙදිය හැක්කේ කවර අවශාතා යටතේ ද?
		(iii)	මෙම උපකරණ ඇටවුමේ A සහ B නම් කරන්න.
		(iv)	ඉහත උපකරණ ඇටවුමේ දක්වා නොමැති මෙම පරීකෂණයට අතහාවශා තවත් මිනුම් උපකරණ දෙකක් සඳහන් කරන්න.
	b)	(i)	මෙහිදී ජලය සහ නොදන්නා දුවා සඳහා සිසිලන වකු දෙකක් නිර්මාණය කළ යුතු ය. එහිදී දුවය ලෙස ඇනිලීන් භාවිතා කලේ නම් එම සිසිලන වකු දෙකෙහි දළ හැඩය පුස්තාරගත කර එම වකු නම් කරන්න.
			θ 4
			→ t
		(ii)	මෙහිදී ජල පරිමාවට සමාන දුව පරිමාවක් භාවිතා කිරීමට හේතුව සඳහන් කරන්න.
		(iii)	කැලරි මීටරය බඳුනේ පතුල සමග ස්පර්ශ වන ලෙස නොතබා එය වාතයේ එල්ලා තබා ඇත්තේ ඇයි?
3 Page			

	(iv)	මෙම පරීකෳණය සඳහා කැලරි මීටරය වෙනුවට වීදුරු බඳුනක් භාවිතා කල හැකි ද? හේතුව පැහැදිලි කරන්න.
	(v)	කැලරි මීටරයේ පියන සඳහා සුදුසු දුවාঃයක් ලියා දක්වන්න.
c)	ස්කෘ	ැරි මීටරයේ ස්කන්ධය M ද (මන්ථය සමග) යෙදූ ජල පරිමාවේ ස්කන්ධය m_w ද යෙදූ දුව පරිමාවේ න්ධය m_1 ද කැලරි මීටර දුවායේ විශිෂ්ඨ තාප ධාරිතාවය C ද ජලයේ විශිෂ්ට තාප ධාරිතාවය C_w ද
		ශ් විශිෂ්ට තාප ධාරිතාවය \mathbf{C}_1 ද උෂ්ණත්වය $ heta_1$ සිට $ heta_2$ දක්වා සිසිල් වීමට ජලය හා දුවය භාවිතා
		කාලයන් පිලිවෙලින් \mathbf{t}_{w} හා \mathbf{t}_{l} වේ. (මන්ථය ද කැලරි මීටරය සාදා ඇති දුවායෙන් සාදා ඇති බව බන්න.)
	(i)	ජලය සහිත කැලරි මීටරය තාපය හානිවීමේ මධායක සීඝුතාව සඳහා පුකාශනයක් ලියා දක්වන්න.
	(ii)	දුවය සහිත කැලරි මීටරයෙන් තාප හානිවීමේ මධාෘයක සීඝුතාව සඳහා පුකාශනයක් ලියා දක්වන්න.
	(iii)	එමගින් දුවයේ විශිෂ්ට තාප ධාරිතාවය සඳහා පුකාශනයක් ලියා දක්වන්න.
	(1)	
03.	(i)	නලයක් තුල හටගන්නා තරංගයක වේගය සඳහා සමීකරණය ලියා දක්වන්න.
	(ii)	සරසුලක් එක් කෙළවරක් වසන ලද නලයක් සමග අනුනාද වන විට නිපදවන තරංගයේ වර්ගය කුමක් ද?
	(iii)	පැත්තක් වැසූ නලයක් තුල ඇති වායු ක \mathfrak{e} I වන උපරිතානයෙන් කම්පනය වන අවස්ථාව ඇ \mathfrak{e} පෙන්වන්න.

(iv) පුස්ථාරික කුමයක් භාවිතයෙන් වාතය තුල ධ්වනි චේගය (V) නිර්ණය කිරීම සඳහා සංඛාහතයන් 288Hz, 320Hz, 362 Hz සහ 480 Hz වූ සරසුල් කිහිපයක්, වීදුරු නලයක්, වීදුරු සරාවක් හා
අනෙකුත් අවශාය අයිතම ඔබට සපයා ඇත.
a) නලය ජලය තුල ගිල්වීමේ අවශාතාව කුමක් ද?
b) දත්ත ලබාගැනීම සඳහා නලය තුළ ඇති කරන කම්පනයේ තරංග රටාව ඇඳ දක්වන්න.
[" -
c) දත්ත ලබාගැනීමට ඔබ පළමුවෙන්ම තෝරන්නේ කුමන සරසුලද?
d) ඉහත තෝරා ගැනීීමට හේතුව කුමක් ද?
e) දී ඇති සරසුල් කට්ටලය භාවිතයෙන් දත්ත ලබා ගැනීමට අවශාය වන වීදුරු නලයේ අවම දිග කීයද? වාතය තුල ධ්වනි වේගය 345.6ms ⁻¹ වේ.
f) පුස්තාරයක් ඇඳීමෙන් V හා e නිර්ණය කිරීම සඳහා අවශා සමීකරණය සංඛාාතය (f) හා අනුනාද දිග (l) ඇසුරින් ලබාගන්න.
g) සුදුසු විචලා අතර පුස්තාරය ඇන්ද විට ලැබෙන දළ හැඩය අඳින්න. •
-
Page

_		
11	1	
١,	4	

(i)	වියළි කෝෂයක වි.ගා.බ $1.1V$ ලෙස දී ඇත. මෙමගින් ඉහත විභව මානය කුමාංකනය කළ යුතුයි. මේ සඳහා අවශා පරිපථය සංකේත යොදා අඳින්න.
(ii)	විභවමානය කුමාංකනය කිරීම සඳහා පරීකුෂණය කරන අයුරු පැහැදිලි කර ලබා ගන්නා මිනුම මගින් කුමාංකනය කරන අයුරු පහදා දෙන්න.
(iii)	ඉහත පුතිඵලය නිවැරදි වීමට සංතුලන දිග කුමක් විය යුතු ද?
(iv)	මේ සඳහා විභවමාන පරිපථයට කුමක් කළ යුතු ද?
f)	(i) ඉහත විභවමානය වියළි කෝෂයක වි.ගා.බ. (E) සෙවීමට භාවිතා කරන්නේ කෙසේදැයි පැහැදිලි කරන්න.
(ii)	ගන්නා පාඨාංක දක්වා එමගින් E සොයන අයුරු පෙන්වන්න.
g)	(i) විභවමානය පරිපථයට කිසිම විටෙක ධාරා නියාමකයක් සම්බන්ධ නොකළ යුතුයි. මෙයට හේතුව පැහැදිලි කරන්න.
ii)	සංතුලනය සොයන විට සංතුලන දිග වැඩිවනු දුටුවහොත් ඉන් අදහස් වන්නේ කුමක් ද? එය නිවැරදි
 ,	කර ගන්නේ කෙසේද?
е	

b) දී ඇති මල්ටිමීටරය මගින් ඉහත දියෝඩ සකිය ද, අකිය ද දැයි සෙවීමට අවශාව ඇත. i) ඩයෝඩයක් සකිය ද? අකිය දැයි පරිකෂා කරන්නේ කෙසේද? සංකේත යොදා රූප සටහන් පැහැදිලි කරන්න. ii) විභවමානය කුමාංකනය කිරීම සඳහා පරීකෂණය කරන අයුරු පැහැදිලි කර ලබා ගන්නා මගින් කුමාංකනය කරන අයුරු පහදා දෙන්න. c) (i) මල්ටිමීටරයක් භාවිතා කර ඩයෝඩයක කැතෝඩය හා ඇනෝඩය හඳුනාගන්නේ කෙසේ ද? (ii) මෙහිදී මල්ටිමීටරය ගැන කුමක් කිව හැකි ද? (d) ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සාජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය	•••		
ii) විහවමානය කුමාංකනය කිරීම සඳහා පරීකෘණය කරන අයුරු පැහැදිලි කර ලබා ගන්නා මගින් කුමාංකනය කරන අයුරු පහදා දෙන්න. (i) මල්ටිමීවරයක් භාවිතා කර ඩයෝඩයක කැතෝඩය හා ඇනෝඩය හඳුනාගන්නේ කෙසේ ද? (ii) මෙහිදී මල්ටිමීවරය ගැන කුමක් කිව හැකි ද? (iii) මෙහිදී මල්ටිමීවරය ගැන කුමක් කිව හැකි ද? 1. සෘජුකාරක දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සෘජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය) දී	දී ඇති මල්ටිමීටරය මගින් ඉහත දියෝඩ සකිුය ද, අකිුය ද දැයි සෙවීමට අනි	වශාව ඇත.
මගින් කුමාංකනය කරන අයුරු පහදා දෙන්න. (i) මල්ටීමීටරයක් භාවිතා කර ඩයෝඩයක කැතෝඩය හා ඇනෝඩය හඳුනාගන්නේ කෙසේ ද? (ii) මෙහිදී මල්ටීමීටරය ගැන කුමක් කිව හැකි ද? d) ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සෘජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය	i)		්ත යොදා රූප සටහන්
(ii) මෙහිදී මල්ටිමීටරය ගැන කුමක් කිව හැකි ද? d) ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සෘජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය	ii		දිලි කර ලබා ගන්නා මී
(ii) මෙහිදී මල්ටිමීටරය ගැන කුමක් කිව හැකි ද? dl) ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සෘජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය			
d) ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහරණ දෙන්න. 1. සෘජුකාරක දියෝඩය 2. ආලෝක විමෝචක දියෝඩය	c) (i	(i) මල්ටිමීටරයක් භාවිතා කර ඩයෝඩයක කැතෝඩය හා ඇනෝඩය හඳු2	තාගන්නේ කෙලස් ද?
1. සෘජුකාරක දියෝඩය	(i	(ii) මෙහිදී මල්ටිමීටරය ගැන කමන් කිව හැකි ද?	
2. ආලෝක විමෝචක දියෝඩය			
•	 d) ඉ		ණ දෙන්න.
3. සෙනර් දියෝඩය		ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර	ණ ඉදන්න.
	1.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	
	1. 2.	ඉහත එක් එක් දියෝඩය පුායෝගිකව භාවිතා කරන අවස්ථා සඳහා උදාහර 1. සෘජුකාරක දියෝඩය	