

# 1.5 AMP POSITIVE ADJUSTABLE VOLTAGE REGULATOR APPROVED TO DESC DRAWING 7703401



Please see mechanical outlines herein

**Three Terminal, Precision Adjustable Positive Voltage Regulator In Hermetic Style Packages (LM117)**

## FEATURES

- Similar To Industry Standard LM117
- Approved To DESC Standardized Military Drawing Number 7703401
- Built In Thermal Overload Protection
- Short Circuit Current Limiting
- Available In Six Package Styles

## DESCRIPTION

These three terminal positive regulators are supplied in hermetically sealed packages. All protective features are designed into the circuit, including thermal shutdown, current-limiting, and safe-area control. With heat sinking, these devices can deliver up to 1.5 amps of output current. The LCC-20 device is limited to .5 amps. The unit also features output voltages that can be fixed from 1.2 volts to 37 volts using external resistors.

## ABSOLUTE MAXIMUM RATINGS $T_c$ @ 25°C

### Power Dissipation

|                                               |                   |
|-----------------------------------------------|-------------------|
| Case 2 .....                                  | 1.1 W             |
| Case-All Others.....                          | 20 W              |
| Input - Output Voltage Differential .....     | 40 V              |
| Operating Junction Temperature Range .....    | - 55°C to + 150°C |
| Storage Temperature Range .....               | - 65°C to + 150°C |
| Lead Temperature (Soldering 10 seconds) ..... | 300°C             |
| <b>Thermal Resistance, Junction to Case:</b>  |                   |
| Case 2, LCC-20 .....                          | 17°C/W            |
| Case U & M, TO-257 (Isol) and SMD-3 .....     | 4.2°C/W           |
| Case T&N, TO-257 (Non-Isol) and SMD-1 .....   | 3.5°C/W           |
| Case Y, TO-3 .....                            | 3.0°C/W           |

3.5

### Maximum Output Current:

|                      |       |
|----------------------|-------|
| Case 2 .....         | .5 A  |
| Case-All Others..... | 1.5 A |

### Recommended Operating Conditions:

|                                                    |                   |
|----------------------------------------------------|-------------------|
| Output Voltage Range .....                         | 1.2 to 37 VDC     |
| Ambient Operating Temperature Range ( $T_A$ )..... | - 55°C to + 125°C |
| Input Voltage Range .....                          | 4.25 to 41.25 VDC |

# OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM, OM1320N2M

**ELECTRICAL CHARACTERISTICS** -55°C  $T_A$  125°C,  $I_L = 8\text{mA}$  (unless otherwise specified)

OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM

| Parameter                        | Symbol            | Test Conditions                                                                                                                                                                | Min.            | Max.       | Unit          |
|----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------|
| Reference Voltage                | $V_{\text{REF}}$  | $V_{\text{DIFF}} = 3.0\text{V}, T_A = 25^\circ\text{C}$                                                                                                                        | 1.20            | 1.30       | V             |
|                                  |                   | $V_{\text{DIFF}} = 3.3\text{V}$                                                                                                                                                | • 1.20          | 1.30       |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}$                                                                                                                                                 | • 1.20          | 1.30       |               |
| Line Regulation<br>(Note 1)      | $R_{\text{LINE}}$ | $3.0\text{V} V_{\text{DIFF}} 40\text{V}, V_{\text{out}} = V_{\text{ref}}, T_A = 25^\circ\text{C}$<br>$3.3\text{V} V_{\text{DIFF}} 40\text{V}, V_{\text{out}} = V_{\text{ref}}$ | • -9<br>• -23   | 9<br>23    | mV            |
| Load Regulation<br>(Note 1)      | $R_{\text{LOAD}}$ | $V_{\text{DIFF}} = 3.0\text{V}, 10\text{mA} I_L 1.5\text{A}, T_A = 25^\circ\text{C}$                                                                                           | -15             | 15         | mV            |
|                                  |                   | $V_{\text{DIFF}} = 3.3\text{V}, 10\text{mA} I_L 1.5\text{A}$                                                                                                                   | • -15           | 15         |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}, 10\text{mA} I_L 300\text{mA}, T_A = 25^\circ\text{C}$<br>$V_{\text{DIFF}} = 40\text{V}, 10\text{mA} I_L 195\text{mA}$                           | • -15           | 15         |               |
| Thermal Regulation               | $V_{\text{RTH}}$  | $V_{\text{in}} = 14.6\text{V}, I_L = 1.5\text{A}$<br>$P_d = 20 \text{ Watts}, t = 20 \text{ ms}, T_A = 25^\circ\text{C}$                                                       | -16             | 16         | mV            |
| Ripple Rejection<br>(Note 2)     | $R_N$             | $f = 120 \text{ Hz}, V_{\text{out}} = V_{\text{ref}}$<br>$C_{\text{Adj}} = 10 \mu\text{F}$                                                                                     | • 66            |            | dB            |
| Adjustment Pin Current           | $I_{\text{Adj}}$  | $V_{\text{DIFF}} = 3.0\text{V}, T_A = 25^\circ\text{C}$                                                                                                                        |                 | 100        | $\mu\text{A}$ |
|                                  |                   | $V_{\text{DIFF}} = 3.3\text{V}$                                                                                                                                                | •               | 100        |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}$                                                                                                                                                 | •               | 100        |               |
| Adjustment Pin<br>Current Change | $I_{\text{Adj}}$  | $V_{\text{DIFF}} = 3.0\text{V}, 10\text{mA} I_L 1.5\text{A}, T_A = 25^\circ\text{C}$                                                                                           | -5              | 5          | $\mu\text{A}$ |
|                                  |                   | $V_{\text{DIFF}} = 3.3\text{V}, 10\text{mA} I_L 1.5\text{A}$                                                                                                                   | • -5            | 5          |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}, 10\text{mA} I_L 300\text{mA}, T_A = 25^\circ\text{C}$                                                                                           | • -5            | 5          |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}, 10\text{mA} I_L 195\text{mA}$                                                                                                                   | • -5            | 5          |               |
|                                  |                   | $3.0\text{V} V_{\text{DIFF}} 40\text{V}, T_A = 25^\circ\text{C}$                                                                                                               | -5              | 5          |               |
|                                  |                   | $3.3\text{V} V_{\text{DIFF}} 40\text{V}$                                                                                                                                       | • -5            | 5          |               |
| Minimum Load Current             | $I_{\text{Lmin}}$ | $V_{\text{DIFF}} = 3.0\text{V}, V_{\text{OUT}} = 1.4\text{V}$ (forced)                                                                                                         |                 | 5.0        | mA            |
|                                  |                   | $V_{\text{DIFF}} = 3.3\text{V}, V_{\text{OUT}} = 1.4\text{V}$ (forced)                                                                                                         | •               | 5.0        |               |
|                                  |                   | $V_{\text{DIFF}} = 40\text{V}, V_{\text{OUT}} = 1.4\text{V}$ (forced)                                                                                                          | •               | 5.0        |               |
| Current Limit<br>(Note 2)        | $I_{\text{CL}}$   | $V_{\text{DIFF}} = 15\text{V}$<br>$V_{\text{DIFF}} = 40\text{V}, T_A = 25^\circ\text{C}$                                                                                       | • 1.5<br>• 0.18 | 3.5<br>1.5 | A             |

**Notes:**

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- If not tested, shall be guaranteed to the specified limits.
- The • denotes the specifications which apply over the full operating temperature range.

3.5

| PART NUMBER DESIGNATOR                                               |                                                                             |                                                                                |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Standard Military Drawing Number                                     | Omnirel Part Number                                                         | Omnirel Package Designation                                                    |
| 7703401M<br>7703401U<br>7703401T<br>7703401Y<br>7703401N<br>77034012 | OM1320SMM<br>OM1320STM<br>OM1320NTM<br>OM1320 NKM<br>OM1320NMM<br>OM1320N2M | SMD-3<br>TO-257 (Isolated)<br>TO-257 (non-Isolated)<br>TO-3<br>SMD-1<br>LCC-20 |

**ELECTRICAL CHARACTERISTICS** -55°C  $T_A$  125°C,  $I_L = 8\text{mA}$  (unless otherwise specified)**OM1320N2M**

| Parameter                        | Symbol     | Test Conditions                                                                  | Min.   | Max. | Unit          |
|----------------------------------|------------|----------------------------------------------------------------------------------|--------|------|---------------|
| Reference Voltage                | $V_{REF}$  | $V_{DIFF} = 3.0\text{V}, T_A = 25^\circ\text{C}$                                 | 1.20   | 1.30 | V             |
|                                  |            | $V_{DIFF} = 3.3\text{V}$                                                         | • 1.20 | 1.30 |               |
|                                  |            | $V_{DIFF} = 40\text{V}$                                                          | • 1.20 | 1.30 |               |
| Line Regulation<br>(Note 1)      | $R_{LINE}$ | $3.0\text{V } V_{DIFF} 40\text{V}, V_{out} = V_{ref}, T_A = 25^\circ\text{C}$    | -9     | 9    | mV            |
|                                  |            | $3.3\text{V } V_{DIFF} 40\text{V}, V_{out} = V_{ref}$                            | • -23  | 23   |               |
| Load Regulation<br>(Note 1)      | $R_{LOAD}$ | $V_{DIFF} = 3.0\text{V}, 10\text{mA } I_L .5\text{A}, T_A = 25^\circ\text{C}$    | -15    | 15   | mV            |
|                                  |            | $V_{DIFF} = 3.3\text{V}, 10\text{mA } I_L .5\text{A}$                            | • -15  | 15   |               |
|                                  |            | $V_{DIFF} = 40\text{V}, 10\text{mA } I_L 150\text{mA}, T_A = 25^\circ\text{C}$   | -15    | 15   |               |
| Thermal Regulation               | $V_{RTH}$  | $V_{in} = 14.6\text{V}, I_L = 300\text{mA}$                                      | -16    | 16   | mV            |
|                                  |            | $P_d = 4 \text{ Watts, } t = 20 \text{ ms, } T_A = 25^\circ\text{C}$             |        |      |               |
|                                  |            | $f = 120 \text{ Hz, } V_{out} = V_{ref}$                                         | • 66   |      |               |
| Ripple Rejection<br>(Note 2)     | $R_N$      | $C_{Adj} = 10 \mu\text{F}$                                                       |        |      | dB            |
|                                  |            |                                                                                  |        |      |               |
| Adjustment Pin Current           | $I_{Adj}$  | $V_{DIFF} = 3.0\text{V, } T_A = 25^\circ\text{C}$                                |        | 100  | $\mu\text{A}$ |
|                                  |            | $V_{DIFF} = 3.3\text{V}$                                                         | •      | 100  |               |
|                                  |            | $V_{DIFF} = 40\text{V}$                                                          | •      | 100  |               |
| Adjustment Pin<br>Current Change | $I_{Adj}$  | $V_{DIFF} = 3.0\text{V, } 10\text{mA } I_L .5\text{A, } T_A = 25^\circ\text{C}$  | -5     | 5    | $\mu\text{A}$ |
|                                  |            | $V_{DIFF} = 3.3\text{V, } 10\text{mA } I_L .5\text{A}$                           | • -5   | 5    |               |
|                                  |            | $V_{DIFF} = 40\text{V, } 10\text{mA } I_L 150\text{mA, } T_A = 25^\circ\text{C}$ | • -5   | 5    |               |
|                                  |            | $V_{DIFF} = 40\text{V, } 10\text{mA } I_L 100\text{mA}$                          | • -5   | 5    |               |
|                                  |            | $3.0\text{V } V_{DIFF} 40\text{V, } T_A = 25^\circ\text{C}$                      | -5     | 5    |               |
|                                  |            | $3.3\text{V } V_{DIFF} 40\text{V}$                                               | • -5   | 5    |               |
| Minimum Load Current             | $I_{Lmin}$ | $V_{DIFF} = 3.0\text{V, } V_{OUT} = 1.4\text{V (forced)}$                        |        | 5.0  | mA            |
|                                  |            | $V_{DIFF} = 3.3\text{V, } V_{OUT} = 1.4\text{V (forced)}$                        | •      | 5.0  |               |
|                                  |            | $V_{DIFF} = 40\text{V, } V_{OUT} = 1.4\text{V (forced)}$                         | •      | 5.0  |               |
| Current Limit<br>(Note 2)        | $I_{CL}$   | $V_{DIFF} = 15\text{V}$                                                          | • .5   | 1.65 | A             |
|                                  |            | $V_{DIFF} = 40\text{V, } T_A = 25^\circ\text{C}$                                 | 0.15   | .065 |               |

**Notes:**

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- If not tested, shall be guaranteed to the specified limits.
- The • denotes the specifications which apply over the full operating temperature range.

**STANDARD APPLICATION**

\*  $C_{in}$  is required if regulator is located an appreciable distance from power supply filter.

\*\*  $C_o$  is not needed for stability, however it does improve transient response.

$$V_{out} = 1.25 \text{ V} \left(1 + \frac{R_2}{R_1}\right) + I_{Adj} R_2$$

Since  $I_{Adj}$  is controlled to less than 100  $\mu\text{A}$ , the error associated with this term is negligible in most applications.



3.5

# OM1320NTM, OM1320STM, OM1320NKM, OM1320SMM, OM1320NMM, OM1320N2M

## MECHANICAL OUTLINE



### OM1320STM Isolated

Front View

- Pin 1 - Adjust
- Pin 2 - Output
- Pin 3 - Input
- Tab - Isolated

### OM1320NTM Non-Isolated

Front View

- Pin 1 - Adjust
- Pin 2 - Output
- Pin 3 - Input
- Tab - Output



### OM1320SMM

- Front View
- Pin 1 - Adjust
- Pin 2 - Input
- Pin 3 - Output
- Case - Isolated



### OM1320NMM

- Pin 1 - Adjust
- Pin 2 - Input
- Pin 3 - Output



### OM1320NKM

- Pin 1 - Adjust
- Pin 2 - Input
- Case - Output



### OM1320N2M

|        |                          |        |                  |
|--------|--------------------------|--------|------------------|
| Pin 1  | V <sub>OUT</sub> (Sense) | Pin 11 | NC               |
| Pin 2  | NC                       | Pin 12 | NC               |
| Pin 3  | NC                       | Pin 13 | NC               |
| Pin 4  | NC                       | Pin 14 | NC               |
| Pin 5  | V <sub>IN</sub>          | Pin 15 | NC               |
| Pin 6  | NC                       | Pin 16 | NC               |
| Pin 7  | NC                       | Pin 17 | NC               |
| Pin 8  | NC                       | Pin 18 | NC               |
| Pin 9  | NC                       | Pin 19 | NC               |
| Pin 10 | ADJUST                   | Pin 20 | V <sub>OUT</sub> |

For additional information please see the mechanical outline section.