HKDSE MATH M2 2022

1. HKDSE Math M2 2022 Q1

Let $g(x) = \frac{1}{\sqrt{5x+4}}$, where x > 0. Prove that $g(1+h) - g(1) = \frac{-5h}{3\sqrt{5h+9}(3+\sqrt{5h+9})}$. Hence, find g'(1) from first principles. (4 marks)

2. HKDSE Math M2 2022 Q2

Let $\frac{\pi}{4} < \theta < \frac{\pi}{2}$.

(a) Prove that
$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \csc \theta$$
.

(b) Solve the equation
$$\frac{\tan \theta}{1 - \cot \theta} + \frac{\cot \theta}{1 - \tan \theta} = 5$$
.

(5 marks)

3. HKDSE Math M2 2022 Q3

- (a) Using mathematical induction, prove that $\sum_{k=1}^{2n} (-1)^k k^2 = n(2n+1)$ for all positive integers n.
- (b) Using (a), evaluate $\sum_{k=11}^{100} (-1)^k k^2$.

(7 marks)

4. HKDSE Math M2 2022 Q4

Let $y = (7x - 2x^2)e^{-x}$.

(a) Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

(b) Someone claims that there are two points of inflexion of the graph of $y = (7x - 2x^2)e^{-x}$. Do you agree? Explain your answer.

(6 marks)

5. HKDSE Math M2 2022 Q5

Let n be an integer greater than 1. Define $(a+x)^n = \sum_{k=0}^n \mu_k x^k$, where a is a constant. It is given that $\mu_2 = -10$.

- (a) Explain why a is a negative number and n is an odd number.
- (b) Let $(bx-1)^n = \sum_{k=0}^n \lambda_k x^k$, where b is a constant. If $\lambda_0 = \mu_0$ and $\lambda_1 = 2\mu_1$, find a, b and n.

(6 marks)

6. HKDSE Math M2 2022 Q6

- (a) Using integration by substitution, prove that $\int \frac{1}{x^2 + 2x + 5} dx = \frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right) + \text{constant.}$
- (b) At any point (x, y) on the curve G, the slope of the tangent to G is $\frac{2x+1}{x^2+2x+5}$. Given that G passes through the point $\left(-3, \ln 2\right)$, does G pass through the point $\left(-1, \frac{-\pi}{8}\right)$? Explain your answer.

(7 marks)

7. HKDSE Math M2 2022 Q7

Consider the curve $\Gamma : y = \ln(x+2)$, where x > 0. Let P be a moving point on Γ with h as its x-coordinate. Denote the tangent to Γ at P by L and the area of the region bounded by Γ , L and the y-axis by A square units.

- (a) Prove that $A = \frac{h^2 + 4h}{2h + 4} 2\ln(h + 2) + 2\ln 2$.
- (b) If $h = 3^{-t}$, where t is the time measured in seconds, find the rate of change of A when t = 1. (8 marks)

8. HKDSE Math M2 2022 Q8

Consider the system of linear equations in real variables x, y and z

(E):
$$\begin{cases} ax + 2y - z = 4k \\ -x + ay + 2z = 4 \\ 2x - y + az = k^2 \end{cases}$$
, where $a, k \in \mathbb{R}$

- (a) Assume that (E) has a unique solution. Express y in terms of a and k.
- (b) Assume that (E) has infinitely many solutions. Solve (E).

(7 marks)

9. HKDSE Math M2 2022 Q9

Let $f(x) = \frac{x^2 + 3x}{x - 1}$, where $x \neq 1$. Denote the graph of y = f(x) by H.

- (a) Find the asymptote(s) of H. (3 marks)
- (b) Find the maximum point(s) and minimum point(s) of H. (4 marks)
- (c) Sketch H. (3 marks)
- (d) Let R be the region bounded by H and the straight line y=10. Find the volume of the solid of revolution generated by revolving R about the straight line y=10.

 (3 marks)

10. HKDSE Math M2 2022 Q10

Let $g(x) = \cos^2 x \cos 2x$.

(a) Prove that
$$\int g(x) dx = \frac{\sin 2x \cos^2 x}{2} + \frac{1}{2} \int \sin^2 2x dx.$$
 (2 marks)

(b) Evaluate
$$\int_0^{\pi} g(x) dx$$
. (2 marks)

(c) Using integration by substitution, evaluate
$$\int_0^{\pi} xg(x) dx$$
.

(4 marks)

(d) Evaluate
$$\int_{-\pi}^{2\pi} xg(x) dx.$$
 (4 marks)

11. HKDSE Math M2 2022 Q11

(a) Let n be a positive integer. Denote the
$$2 \times 2$$
 identify matrix by I.

(i) Let A be a
$$2 \times 2$$
 matrix. Simplify $(I - A)(I + A + A^2 + \cdots + A^n)$.

(ii) Let
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
, where θ is not a multiple of 2π .

It is given that
$$A^n = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}$$
.

(1) Prove that
$$(I - A)^{-1} = \frac{1}{2\sin\frac{\theta}{2}} \begin{pmatrix} \sin\frac{\theta}{2} & -\cos\frac{\theta}{2} \\ \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \end{pmatrix}$$

prove that
$$I + A + A^2 + \dots + A^n = \frac{\sin\frac{(n+1)\theta}{2}}{\sin\frac{\theta}{2}} \begin{pmatrix} \cos\frac{n\theta}{2} & -\sin\frac{n\theta}{2} \\ \sin\frac{n\theta}{2} & \cos\frac{n\theta}{2} \end{pmatrix}$$
.

(7 marks)

(i)
$$\cos \frac{5\pi}{18} + \cos \frac{5\pi}{9} + \cos \frac{5\pi}{6} + \dots + \cos 25\pi$$
;

(ii)
$$\cos^2 \frac{\pi}{7} + \cos^2 \frac{2\pi}{7} + \cos^2 \frac{3\pi}{7} + \dots + \cos^2 7\pi$$
.

(6 marks)

12. HKDSE Math M2 2022 Q12

Consider $\triangle ABC$. Denote the origin by O.

(a) Let
$$D$$
 be a point lying on BC such that AD is the angle bisector of $\angle BAC$. Define $BC = a$, $AC = b$ and $AB = c$.

3

(i) Using the fact that
$$BD:DC=c:b$$
, prove that $\overrightarrow{AD}=-\overrightarrow{OA}+\frac{b}{b+c}\overrightarrow{OB}+\frac{c}{b+c}\overrightarrow{OC}$.

(ii) Let E be a point lying on AC such that BE is the angle bisector of $\angle ABC$.

Define
$$\overrightarrow{OJ} = \frac{a}{a+b+c}\overrightarrow{OA} + \frac{b}{a+b+c}\overrightarrow{OB} + \frac{c}{a+b+c}\overrightarrow{OC}$$
.
Prove that J lies on AD . Hence, deduce that AD and BE intersect at J .

(7 marks)

- (b) Suppose that $\overrightarrow{OA} = 35\mathbf{i} + 9\mathbf{j} + \mathbf{k}$, $\overrightarrow{OB} = 40\mathbf{i} 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{OC} = -3\mathbf{j} + \mathbf{k}$. Let I be the incentre of $\triangle ABC$.
 - (i) Find \overrightarrow{OI} .
 - (ii) By considering $\overrightarrow{AI} \times \overrightarrow{AB}$, find the radius of the inscribed circle of $\triangle ABC$.
 - (5 marks)