Automated Verification of Safety Properties of Declarative Networking Programs

Chen Chen¹, **Lay Kuan Loh²**, Limin Jia², Wenchao Zhou³, Boon Thau Loo¹ University of Pennsylvania, ²Carnegie Mellon University, ³Georgetown University

Networks are complex and error-prone

Home > Networking

United Airline's woes show what's hard about networking

SDN and cloud technology may cut down on big glitches like the router failure that grounded United planes, analysts say

MORE LIKE THIS

Pure Storage CEC huge savings with

Review: Portnox, lead NAC pack

Our solution

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Network Datalog (NDLog) [CACM'09]

- A distributed variant of Datalog
- Recursive query language over network states

Traditional Networks

- Network state
- Network Protocol

Declarative Networks

- Distributed Database
- Datalog Program

Rule format of NDLog

- Rule Head :- Body₁, Body₂, ..., Body_n, Constraint
- @: Location specifier

Twohops

```
R1 onehop(@z,x,c2) :- link(@z,x,c2)
```

R2 twohops(@x,y,c):- link(@z,y,c1), onehop(@z,x,c2), c=c1+c2

Running an example NDLog program

Twohops

R1 onehop(@z,x,c2) :- link(@z,x,c2)

R2 twohops($\boldsymbol{\omega}$ x,y,c):- link($\boldsymbol{\omega}$ z,y,c1), onehop($\boldsymbol{\omega}$ z,x,c2), c=c1+c2

link

@Src	Dst	Cost
@z	у	c1
@z	X	c2

Running an example NDLog program

Twohops

R1 onehop(@z,x,c2) :- link(@z,x,c2)

R2 twohops($\boldsymbol{\omega}$ x,y,c):- link($\boldsymbol{\omega}$ z,y,c1), onehop($\boldsymbol{\omega}$ z,x,c2), c=c1+c2

link

oneho

@Src	Dst	Cost
@z	y	c1
@z	X	c2

@Src	o _{Dst}	Cost
@z	X	c2

Running an example NDLog program

Twohops

R1 onehop(@z,x,c2) :- link(@z,x,c2)

R2 twohops($\boldsymbol{\omega}$ x,y,c):- link($\boldsymbol{\omega}$ z,y,c1), onehop($\boldsymbol{\omega}$ z,x,c2), c=c1+c2

link

oneho

@Src	Dst	Cost
@x	y	c

@Src	Dst	Cost
@z	y	c1
@z	X	c2

@Src	o _{Dst}	Cost
@z	X	c2

Overview of framework

10

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constrains
 - Recursive Programs
- Case study
- Conclusion

NDLog program ⇒ Dependency graph

Dependency Graph G:

Vertex:

- V1: Tuple nodes
- V2: Rule nodes

Edge:

- (rule node \rightarrow head node)
- (body node → rule node)

Twohops

R1 onehop(@z,x,c2) :- link(@z,x,c2)

R2 twohops(@x,y,c) :- link(@z,y,c1), onehop(@z,x,c2),

c=c1+c2

Dependency graph ⇒ Derivation pool

R1 onehop($\boldsymbol{\varrho}$ z,x,c2) :- link($\boldsymbol{\varrho}$ z,x,c2)

R2 twohops(@x,y,c):- link(@z,y,c1), onehop(@z,x,c2), c=c1+c2

R1 onehop($\boldsymbol{\varrho} x_1, x_2, x_3$) :- link($\boldsymbol{\varrho} x_4, x_5, x_6$), $x_1 = x_4 \wedge x_2 = x_5 \wedge x_3 = x_6$ R2 twohops($\boldsymbol{\varrho} x_7, x_8, x_9$) :- link($\boldsymbol{\varrho} x_{10}, x_{11}, x_{12}$), onehop($\boldsymbol{\varrho} x_{13}, x_{14}, x_{15}$), $x_7 = x_{14} \wedge x_8 = x_{11} \wedge x_{10} = x_{13} \wedge x_9 = x_{12} + x_{15}$

	Link	Onehop
Derivations	(BaseTuple, link $(z_{\lambda 1}, z_{\lambda 2}, z_{\lambda 3})$)	(R1, onehop(z ₀₁ ,z ₀₂ ,z ₀₃), (BaseTuple, link(z ₀₄ ,z ₀₅ ,z ₀₆))::nil)
onstraints	True	$z_{o1} = z_{o4} \wedge z_{o2} = z_{o5} \wedge z_{o3} = z_{o6}$

Twohops
(R2,
$twohops(z_{t7}, z_{t8}, z_{t9}),$
(BaseTuple, link(z_{t10} , z_{t11} , z_{t12}))
$::(R1,onehop(z_{t13},z_{t14},z_{t15}), (BT,link(z_{t3},z_{t4},z_{t5}))::$
nil)
::nil)
$ \begin{array}{ c c c }\hline (\mathbf{z_{t3}} = & \mathbf{z_{t13}} \land \mathbf{z_{t4}} = & \mathbf{z_{t14}} \land \mathbf{z_{t5}} = & \mathbf{z_{t15}}) \\ \land (\mathbf{x_{t7}} = & \mathbf{x_{t14}} \land \mathbf{x_{t8}} = & \mathbf{x_{t11}} \land \mathbf{x_{t10}} = & \mathbf{x_{t13}} \land \mathbf{x_{t9}} = & \mathbf{x_{t12}} + & \mathbf{x_{t15}}) \end{array} $

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Property specification

- Safety property
 - Something bad never happens
- Restricted property format:
 - Indicates the temporal operation "past"

$$\forall \mathbf{x_1}.\mathbf{p_1}(\mathbf{x_1}) \land \forall \mathbf{x_2}.\mathbf{p_2}(\mathbf{x_2}) \land \dots \land \forall \mathbf{x_n}.\mathbf{p_n}(\mathbf{x_n}) \land \mathbf{c_q}(\mathbf{x_1}, ..., \mathbf{x_n}) \supset \\ \exists \mathbf{y_1}. \spadesuit \mathbf{q_1}(\mathbf{y_1}) \land \exists \mathbf{y_2}. \spadesuit \mathbf{q_2}(\mathbf{y_2}) \land \dots \land \exists \mathbf{y_m}. \spadesuit \mathbf{q_m}(\mathbf{y_m}) \land \mathbf{c_q}(\mathbf{x_1}, ..., \mathbf{x_n}, \mathbf{y_1}, ..., \mathbf{y_m})$$

- Example:
 - $\forall x_1, x_2, x_3$.onehop $(x_1, x_2, x_3) \land x_3 > 0 \supset \exists y_1, y_2, y_3. \spadesuit link(y_1, y_2, y_3) \land y_3 < 0$

onehop

- Verify the property holds for all possible derivations
 - Enumerate all derivations for the tuples in the antecedent

- Verify existence of tuples in the conclusion
 - Look for instances of tuples in the given derivation

- Verify validity of constraints
 - SMT solver

• Find a satisfying substitution for the negation of the constraints to generate a concrete counterexample

$$\phi = \forall x_1, x_2, x_3$$
. onehop $(x_1, x_2, x_3) \land x_3 > 0 \supset \exists y_1, y_2, y_3$. $\spadesuit link(y_1, y_2, y_3) \land y_3 < 0$

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Network constraint examples

 $\phi_{\text{net}} = \forall u_1, u_2, u_3. \text{ link}(u_1, u_2, u_3) \supset u_1 \neq u_2$

No self-loops

$$\phi_{\text{net}} = \forall u_1, u_2, u_3. \ \text{link}(u_1, u_2, u_3) \land \forall u_4, u_5, u_6. \ \text{link}(u_4, u_5, u_6) \supset (u_1 = u_4 \rightarrow u_2 \neq u_5)$$

Every node in the network has only one outgoing link

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Recursive programs

- Dependency graph has cycles
- Break the cycle using user-provided annotations on tuples on the cycle
 - Equivalent to disjunction of constraints over the list of possible derivations for tuples on the cycle

Reachability

R1 reachable(\boldsymbol{o} x,y) :- link(\boldsymbol{o} x,y)

R2 reachable($\mathbf{o}_{x,y}$) :- link($\mathbf{o}_{x,z}$), reachable($\mathbf{o}_{z,y}$)

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Introduction to load balancers

- A way to distribute client requests to an application onto multiple servers
 - Allows application to process a higher work load
 - Provides redundancy in an application

- Flow affinity
 - Packets received on different servers cannot share the same source address

Flow affinity

Packets received on different servers cannot share the same

```
∀ Server1, Client1, LoadBalancer1. ∀ Server2, Client2,
LoadBalancer2.
recvPacket(Server1, Client1, LoadBalancer1)

Λ recvPacket(Server2, Client2, LoadBalancer2)

Λ Server1≠ Server2 □
Client1 ≠ Client2
```


A naïve load balancer

- Our load balancer balances traffic towards a specific destination address
 - Determines the path of a packet based on the hash value of its source address

Server3

Counterexample produced by our tool

Case studies

Test Case	# rules	# properties	# counterexamples	Max eval time (ms)
Ethernet source learning	11	5	2	60
Firewall	5	3	0	40
Load balancer	4	1	1	80
Address resolution	9	2	0	210

Roadmap

- Introduction of NDLog (Network Datalog)
- Algorithm analysis
 - Derivation pool construction
 - Property query
 - Network constraints
 - Recursive programs
- Case study
- Conclusion

Related work

Network verification

- Model network behavior using trace semantics. Relies on manual proofs
- Examples: FORTE'14, TPHOLs'09
- Our solution: Enables automated static analysis of safety properties, generates counterexamples for debugging purposes

Software defined networking (SDN) verification

- Specific to analyzing SDN controllers and data places
- Examples: PLDI'14, SIGCOMM'11
- Our solution: Does the above, can also analyze other distributed systems expressible in NDLog

Verification of declarative programs

- Proves correctness properties of networking protocols using theorem provers. User experience with theorem provers required.
- Example: PADL'09
- Our solution: Validate protocol correctness using an SMT solver. User experience with SMT solvers unnecessary.

Future work

- Analyze liveness properties
 - Something good eventually happens
- Provenance related topics

Questions?

Time complexity (non-recursive)

Notation

- $P = p_1,...,p_n$ • |P|=n
- $Q = q_1, ..., q_m$
 - |Q|=m

$$\forall \mathbf{x}_{1}.\mathsf{p}_{1}(\mathbf{x}_{1}) \land \forall \mathbf{x}_{2}.\mathsf{p}_{2}(\mathbf{x}_{2}) \land \dots \land \forall \mathbf{x}_{n}.\mathsf{p}_{n}(\mathbf{x}_{n}) \land \mathsf{c}_{q}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) \supset \exists \mathbf{y}_{1}. \spadesuit \mathsf{q}_{1}(\mathbf{y}_{1}) \land \exists \mathbf{y}_{2}. \spadesuit \mathsf{q}_{2}(\mathbf{y}_{2}) \land \dots \land \exists \mathbf{y}_{m}. \spadesuit \mathsf{q}_{m} (\mathbf{y}_{m}) \land \mathsf{c}_{q}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}, \mathbf{y}_{1}, \dots, \mathbf{y}_{m})$$

- Given an NDLog program with R rules
 - Each rule has at most W body tuples
- Time complexity: O((R^{nW^R})n^mW^{Rn})
- In practice, R and W are small
 - Can be treated as constants

Possible ways to fix the network counterexample

- Add network assumptions
 - Servers are connected to at most one load balancer
- Change property specification
 - Load balanced packets that are forwarded out of different load balancers were not sent out by the same client