Lecture 16: Matching Wrap-Up and Logic

Harvard SEAS - Fall 2025

2025-10-28

1 Announcements

- Midterm grades released. Median is $42/64 \rightarrow 2.875$ on 4.0 scale (low B), lower than last year, despite being curved more generously.
- Conjecture: too much reliance on collaborators on psets (whether human or AI). There's no substitute for doing the hard work of problem-solving yourself for developing your own understanding.
- Deadline for us to approve pass/fail postponed to next Monday 11/3.

Recommended Reading:

- Hesterberg-Vadhan 17
- Lewis–Zax 9–10
- Roughgarden IV, Sec. 21.5, Ch. 24

2 Loose Ends: Modelling the Prioritarian Objectives

- Assign each patient v to have two weights $w_0(v)$ and $w_1(v)$, with $w_0(v)$ giving what v's expected welfare (e.g. as measured by QALYs) would be if they do not receive a kidney donation and $w_1(v)$ giving what v's expected welfare would be if they do receive a kidney donation.
- Maximin objective: Applied to kidney exchange, we can mathematically model
 the maximin principle by seeking a matching M that first attempts to maximize:

```
\min (\{w_0(v) : v \text{ unmatched by } M\} \cup \{w_1(v) : v \text{ matched by } M\}).
```

If two matchings M and M' have the same value of the above objective function, i.e. the worst-off patients v in each of the matchings have the same expected welfare, then we turn to comparing the second-worst-off patients in the two matchings, and if that turns out to be a tie, we proceed to the third-worst-off patients and so on.

• Prioritarian objective: For some concave, non-decreasing function f (e.g. $f(x) = \sqrt{x}$ or $f(x) = \log x$, maximizes

$$\sum_{v:v \text{ unmatched by } M} f(w_0(v)) + \sum_{v:v \text{ matched by } M} f(w_1(v)).$$

This is equivalent to solving the MAXIMUM VERTEX-WEIGHTED MATCHING problem with vertex weights $w(v) = f(w_1(v)) - f(w_0(v))$.

3 Loose Ends: Maximum Matching Algorithm

```
MaxMatchingAugPaths (G):

Input
: A bipartite graph G = (V, E)
Output
: A maximum-size matching M \subseteq E

o Remove isolated vertices from G;

1 Let V_0, V_1 be the bipartition (i.e. 2-coloring) of V;

2 M = \emptyset;

3 repeat

4 Let U be the vertices unmatched by M, U_0 = V_0 \cap U, U_1 = V_1 \cap U;

5 Use BFS to find a shortest alternating walk P that starts in U_0 and ends in U_1;

6 if P \neq \bot then augment M using P via Lemma 3.3;

7 until P = \bot;

8 return M
```

Algorithm 3.1: MaxMatchingAugPaths()

Lemma 3.1 ("Certain shortest alternating walks are augmenting paths"). Let G be bipartite, with bipartition (V_0, V_1) , 1 and let M be a matching in G that is not of maximum size. Let U be the vertices that are not matched by M, and $U_0 = V_0 \cap U$ and $U_1 = V_1 \cap U$. Then:

- 1. G has an alternating walk with respect to M that starts in U_0 and ends in U_1 .
- 2. Every shortest alternating walk from U_0 to U_1 is an augmenting path.

Lemma 3.2 ("Shortest alternating walks are easy to find"). Finding shortest alternating walks in bipartite graphs reduces to finding shortest paths in directed graphs in time O(n+m), where n = |V| and m = |E|.

Lemma 3.3 ("Augmenting paths can be used to efficiently grow matchings"). Given a graph G = (V, E), a matching M, and an augmenting path P with respect to M, we can construct a matching M' with |M'| = |M| + 1 in time O(n).

¹Recall that a *bipartite* graph is a graph that is 2-colorable, and a *bipartition* of a bipartite graph is a partition of the vertex set $V = V_0 \cup V_1$ into the 2 color classes given by a 2-coloring. Thus all of the edges in the graph have one endpoint in V_0 and one endpoint in V_1 .

Using these lemmas we will prove:

Theorem 3.4. MAXIMUM MATCHING can be solved in time O(mn) on bipartite graphs with m edges and n vertices.

We defer the proof of Lemmas 3.1 to the textbook.

Proof sketch of Lemma 3.2.

Proof of Lemma 3.3.

4 Propositional Logic

Motivation: Logic is a fundamental building block for computation (e.g. digital circuits) and a very expressive language for encoding computational problems we want to solve.

Definition 4.1 (boolean formulas, informal). A boolean formula φ is a formula built up from a finite set of variables, say x_0, \ldots, x_{n-1} , using the logical operators \land (AND), \lor (OR), and \neg (NOT) and parentheses.

Every boolean formula φ on n variables defines a boolean function, which we'll also denote by $\varphi : \{0,1\}^n \to \{0,1\}$, where we interpret 0 as false and 1 as true, and give \wedge, \vee, \neg their usual semantics (meaning).

The Lewis–Zax text (textbook for CS 20) contains formal, inductive definitions of boolean formulas and the corresponding boolean functions.

Example 4.2.

$$\varphi_{maj}(x_0, x_1, x_2) = (x_0 \land x_1) \lor (x_1 \land x_2) \lor (x_2 \land x_0)$$

is a boolean formula. It evaluates to 1 if

$$\varphi_{pal}(x_0, x_1, x_2, x_3) = ((x_0 \wedge x_3) \vee (\neg x_0 \wedge \neg x_3)) \wedge ((x_1 \wedge x_2) \vee (\neg x_1 \wedge \neg x_2))$$
 is a boolean formula. It evaluates to 1 if

We now turn to two important special cases of boolean formulas.

Definition 4.3 (DNF and CNF formulas).

- A literal is a variable (e.g. x_i) or its negation $(\neg x_i)$.
- A term is an AND of a sequence of literals.
- A *clause* is an OR of a sequence of literals.
- A boolean formula is in *disjunctive normal form (DNF)* if it is the OR of a sequence of terms.
- A boolean formula is in *conjunctive normal form (CNF)* if it is the AND of a sequence of clauses.

Q: For each of the examples φ_{maj} and φ_{pal} above, is it in DNF, CNF, both, or neither?

One reason that DNF and CNF are commonly used is that they can express all boolean functions:

Lemma 4.4. For every boolean function $f : \{0,1\}^n \to \{0,1\}$, there are boolean formulas φ and ψ in DNF and CNF, respectively, such that $f \equiv \varphi$ and $f \equiv \psi$, where we use \equiv to indicate equivalence as functions, i.e. $f \equiv g$ iff $\forall x : f(x) = g(x)$.