-R¹⁵ *

QН

ОН

0

R⁸

R¹³

R⁹

R¹⁰

A compound of formula I: 1.

HO

H₃C

N H NH

R16 N

5

10

20

15

I

wherein

★ R⁵

25 R² is hydrogen or a saccharide group optionally substituted with

OR7

O R6

$$-R^{a}-Y-R^{b}-(Z)_{x};$$

 R^{3} is $-OR^{c}$, $-NR^{c}R^{c}$, $-O-R^{a}-Y-R^{b}-(Z)_{x}$, $-NR + R^{a}-Y-R^{b}-(Z)_{x}$, $-NR^{c}R^{e}$, or -O-R^e;

 R^4 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-R^a-Y-R^b-(Z)_x$;

 R^5 is selected from the group consisting of hydrogen, halo, $-CH(R^c)-NR^cR^c$, $-CH(R^c)-NR^cR^c$ and $-CH(R^c)-NR^c-R^a-Y-R^b-(Z)_x$;

 R^6 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, $-C(O)R^d$ and a saccharide group optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$, or R^5 and R^6 can be joined, together with the atoms to which they are attached, form a heterocyclic ring optionally substituted with $-NR^c-R^a-Y-R^b-(Z)_x$;

 R^7 is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, $-R^a-Y-R^b-(Z)_x$, and $-C(O)R^d$;

R⁸ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R⁹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

 R^{10} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; or R^8 and R^{10} are joined to form $-Ar^1-O-Ar^2-$, where Ar^1 and Ar^2 are independently arylene or heteroarylene;

R¹¹ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic, or R¹⁰ and R¹¹ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

10

5

20

15

 R^{12} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{11} and R^{-12} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

 R^{13} is selected from the group consisting of hydrogen or $-OR^{14}$;

R¹⁴ is selected from hydrogen, -C(O)R^d and a saccharide group;

 R^{15} is hydrogen or $-R^a - Y - R^b - (Z)_x$;

R¹⁶ is hydrogen or methyl;

R¹⁷ is hydrogen, alkyl or substituted alkyl;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is a saccharide group;

 $W \text{ is selected from the group consisting of } -OR^c, -SR^c, -S-S-R^d, -NR^cR^c, \\ -S(O)R^d, -SO_2R^d, -NR^cC(O)R^d, -OSO_2R^d, -OC(O)R^d, -NR^cSO_2R^d, -C(O)NR^cR^c, \\ -C(O)OR^c, -C(NR^c)OR^c, -SO_2NR^cR^c, -SO_2OR^c, -P(O)(OR^c)_2, -P(O)(OR^c)NR^cR^c, \\ -OP(O)(OR^c)_2, -OP(O)(OR^c)NR^cR^c, -OC(O)OR^d, -NR^cC(O)OR^d, \\ \end{array}$

10

5

15

20

25

15

20

25

30

 $-NR^{c}C(O)NR^{c}R^{c}, -OC(O)NR^{c}R^{c}, -NR^{c}SO_{2}NR^{c}R^{c}; -N^{+}(R^{c})=CR^{c}R^{c}, -N=P(R^{d})_{3}, -N^{+}(R^{d})_{3}, -P^{+}(R^{d})_{3}, -C(S)OR^{d}, \text{ and } -C(S)SR^{d};$

X¹, X² and X³ are independently selected from hydrogen or chloro; each Y is independently selected from the group consisting of oxygen, sulfur,

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{15} , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 or R^{12} has a substitutent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
 - 2. The compound of Claim 1, wherein R^2 is hydrogen and R^{13} is -OH.
 - 3. The compound of Claim 2, wherein R^4 , R^6 and R^7 are each hydrogen.
 - 4. The compound of Claim 3, wherein R^8 is $-CH_2C(O)NH_2$.

- 5. The compound of Claim 4, wherein R^9 is hydrogen; R^{10} is isobutyl; R^{11} is methyl; and R^{12} is hydrogen.
- 6. The compound of Claim 5, wherein R⁵ is hydrogen, -CH₂-NHR^c,

 -CH₂-NR^cR^e and -CH₂-NH-R^a-Y-R^b-(Z)_x.
 - 7. The compound of Claim 6, wherein R³ is -OR^c or -NR^cR^c.
 - 8. The compound of Claim 7, wherein R³ is -OH and R⁵ is hydrogen.
 - 9. The compound of Claim 8, wherein R^{15} is $-R^a-Y-R^b-(Z)_x$.

15

10

substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

R²⁶ is selected from the group consisting of hydrogen and lower alkyl; or R²⁵ and R²⁶ are joined, together with the carbon and nitrogen atoms to which they are attached, to form a heterocyclic ring;

 R^{27} is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl, heterocyclic, $-C(O)R^d$, $-C(NH)R^d$, $-C(O)NR^cR^c$, $-C(O)OR^d$, $-C(NH)NR^cR^c$ and $-R^a-Y-R^b-(Z)_x$, or R^{26} and R^{27} are joined, together with the nitrogen atom to which they are attached, to form a heterocyclic ring;

each R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

each R^b is independently selected from the group consisting of a covalent bond, alkylene, substituted alkylene, alkenylene, substituted alkynylene, alkynylene and substituted alkynylene, provided R^b is not a covalent bond when Z is hydrogen;

each R^c is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkynyl, substituted alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heterocyclic and -C(O)R^d;

each R^d is independently selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, cycloalkenyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic;

Re is an aminosaccharide group;

 $W \text{ is selected from the group consisting of } -OR^c, -SR^c, -S-S-R^d, -NR^cR^c, \\ -S(O)R^d, -SO_2R^d, -NR^cC(O)R^d, -OSO_2R^d, -OC(O)R^d, -NR^cSO_2R^d, -C(O)NR^cR^c, \\ -C(O)OR^c, -C(NR^c)OR^c, -SO_2NR^cR^c, -SO_2OR^c, -P(O)(OR^c)_2, -P(O)(OR^c)NR^cR^c, \\ -OP(O)(OR^c)_2, -OP(O)(OR^c)NR^cR^c, -OC(O)OR^d, -NR^cC(O)OR^d, \\ \end{array}$

10

5

15

20

25

10

15

20

30

 $-NR^cC(O)NR^cR^c, -OC(O)NR^cR^c, -NR^cSO_2NR^cR^c; -N^+(R^c)=CR^cR^c, -N=P(R^d)_3, -N^+(R^d)_3, -P^+(R^d)_3, -C(S)OR^d, and -C(S)SR^d;$

each Y is independently selected from the group consisting of oxygen, sulfur,

$$-S-S-,-NR^{c}-,-S(O)-,-SO_{2}-,-NR^{c}C(O)-,-OSO_{2}-,-OC(O)-,-NR^{c}SO_{2}-,$$

$$-C(O)NR^{c}-$$
, $-C(O)O-$, $-SO_{2}NR^{c}-$, $-SO_{2}O-$, $-P(O)(OR^{c})O-$, $-P(O)(OR^{c})NR^{c}-$,

$$-OP(O)(OR^c)O-, -OP(O)(OR^c)NR^c-, -OC(O)O-, -NR^cC(O)O-, -NR^cC(O)NR^c-,$$

-OC(O)NR°- and -NR°SO₂NR°-;

each Z is independently selected from hydrogen, aryl, cycloalkyl, cycloalkenyl, heteroaryl and heterocyclic;

n is 0, 1 or 2;

x is 1 or 2;

and pharmaceutically acceptable salts, stereoisomers and prodrugs thereof; provided that at least one of R^{15} , R^{22} , R^{23} or R^{27} has a substitutent of the formula $-R^a-Y-R^b-(Z)_x$;

and further provided that:

- (i) when Y is -NR^c-, R^c is alkyl of 1 to 4 carbon atoms, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (ii) when Y is -C(O)NR^c-, Z is hydrogen and R^b is alkylene, then R^b contains at least 5 carbon atoms;
- (iii) when Y is sulfur, Z is hydrogen and R^b is alkylene, then R^b contains at least 7 carbon atoms; and
- (iv) when Y is oxygen, Z is hydrogen and R^b is alkylene, then R^b contains at least 11 carbon atoms.
- 25 11. The compound of Claim 10, wherein R^{24} is hydrogen; R^{25} is isobutyl; R^{26} is methyl; and R^{27} is hydrogen.
 - 12. The compound of Claim 11, wherein R^{22} is -OH.
 - 13. The compound of Claim 12, wherein R²³ is hydrogen.

- 14. The compound of Claim 13, wherein R^{15} is $-R^a-Y-R^b-(Z)_x$.
- 15. The compound of Glaim 9 or 14, wherein W is $-NH_2$.
- 5 16. The compound of Claim 15, wherein the $-R^a-Y-R^b-(Z)_x$ group is selected from the group consisting of:
 - -CH₂CH₂-NH-(CH₂)₉CH₃;
 - $-CH_2CH_2CH_2-NH-(CH_2)_8CH_3;$
 - -CH₂CH₂CH₂CH₂-NH-(CH₂)₇CH₃;
- $-CH_{2}CH_{2}-NHSO_{2}-(CH_{2})_{9}CH_{3};$
 - -CH₂CH₂-NHSO₂-(CH₂)₁₁CH₃;
 - $-CH_2CH_2-S-(CH_2)_8CH_3;$
 - $-CH_2CH_2-S-(CH_2)_9CH_3;$
 - $-CH_2CH_2-S-(CH_2)_{10}CH_3;$
- $-CH_2CH_2CH_2-S-(CH_2)_8CH_3;$
 - $-CH_2CH_2CH_2-S-(CH_2)_9CH_3$;
 - $-CH_2CH_2CH_2-S-(CH_2)_3-CH=CH-(CH_2)_4CH_3$ (trans);
 - -CH₂CH₂CH₂CH₂-S-(CH₂)₇CH₃;
 - $-CH_2CH_2-S(O)-(CH_2)_9CH_3;$
- $-CH_2CH_2-S-(CH_2)_6Ph;$
 - -CH₂CH₂-S-(CH₂)₈Ph;
 - $-CH_2CH_2CH_2-S-(CH_2)_8$ Ph;
 - -CH₂CH₂-NH-CH₂-4-(4-Cl-Ph)-Ph;
 - -CH₂CH₂-NH-CH₂-4-[4-CH₃)₂CHCH₂-]-Ph;
- $-CH_2CH_2-NH-CH_2-4-(4-CF_3-Ph)-Ph;$
 - -CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
 - $-CH_2CH_2-S(O)-CH_2-4-(4-Cl-Ph)-Ph;$
 - -CH₂CH₂CH₂-S-CH₂-4-(4-Cl-Ph)-Ph;
 - -CH₂CH₂CH₂-S(O)-CH₂-4-(4-Cl-Ph)-Ph;
- 30 -CH₂CH₂CH₂-S-CH₂-4-[3,4-di-Cl-PhCH₂O-)-Ph;

- -CH₂CH₂-NHSO₂-CH₂-4-[4-(4-Ph)-Ph]-Ph;
- -CH₂CH₂CH₂-NHSO₂-CH₂-4-(4-Cl-Ph)-Ph;
- $-CH_2CH_2CH_2-NHSO_2-CH_2-4-(Ph-C=C-)-Ph;$
- -CH2CH2CH2-NHSO2-4-(4-Cl-Ph)-Ph; and
- -CH₂CH₂CH₂-NHSO₂-4-(naphth-2-yl)-Ph.
- 17. A pharmaceutical composition comprising a pharmaceuticallyacceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.
- 18. The pharmaceutical composition of Claim 17, wherein the composition further comprises a cyclodextrin.
- A method of treating a mammal having a bacterial disease, the 19. method comprising administering to the martmal a pharrmaceutical composition comprising a pharmaceutically-acceptable carrier and a therapeutically effective amount of a compound of Claim 1 or 10.
- A compound as shown in any of Tables I, II, III or IV, or a 20. pharmaceutically-acceptable salts thereof.

5

15

5

10

R^a is independently selected from the group consisting of alkylene, substituted alkylene, alkenylene, substituted alkynylene and substituted alkynylene;

W is selected from the group consisting of FOR°, -SR°, -S-S-R^d, -NR°R°, -S(O)R^d, -SO₂R^d, -NR°C(O)R^d, -OSO₂R^d, -OC(O)R^d, -NR°SO₂R^d, -C(O)NR°R°, -C(O)OR°, -C(NR°)OR°, -SO₂NR°R°, -SO₂OR°, -P(O)(OR°)₂, -P(O)(OR°)NR°R°, -OP(O)(OR°)₂, -OP(O)(OR°)NR°R°, -OC(O)OR^d, -NR°C(O)OR^d, -NR°C(O)NR°R°, -OC(O)NR°R°, -NR°SO₂NR°R°; -N⁺(R°)=CR°R°, -N=P(R^d)₃, -N⁺(R^d)₃, -P⁺(R^d)₃, -C(S)OR^d, and -C(S)SR^d;

P is hydrogen or a protecting group;

30

and salts thereof.