Consistency of the PMF

- ▶ PMF: $p_X(x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$ for $x \in \Omega'$.
- ightharpoonup How do you check if p_X is legitimate PMF?
- $ightharpoonup \sum_{x \in \Omega'} p_X(x) = 1$. Can you prove this?

$$\sum_{x \in \Omega'} p_X(x) = \sum_{x \in \Omega'} \mathbb{P}(\{\omega \in \Omega : X(\omega) = x\})$$

$$= \mathbb{P}(\bigcup_{x \in \Omega'} \{\omega \in \Omega : X(\omega) = x\})$$

$$= \mathbb{P}(\Omega) \square$$

Linearity of Expectation

- ▶ Recall that $E[X] = \sum_{x \in \Omega'} x p_X(x)$.
- Functions of random variables are random variables.
- ► Furtermore, $E[g(X)] := \sum_{x \in \Omega'} g(x) p_X(x)$
- For Y = aX + b, what is E[Y]?

$$E[Y] = \sum_{x \in \Omega'} (ax + b)p_X(x)$$
$$= a \sum_{x \in \Omega'} xp_X(x) + b$$
$$= aE[X] + b.$$

► What is the PMF of *Y*?

PMF of Y where Y = aX + b.

- Suppose the range of X is $\Omega' = \{x_1, x_2, \dots, x_n\}$. Then what is the range Ω'' of Y?
- $\Omega'' = \{y_1, \dots, y_n\}$ where $y_i = ax_i + b$ for $i \in \{1, 2, \dots, n\}$.
- ▶ It is easy to see that, $p_Y(y_i) = p_X(x_i)$ for $i \in \{1, 2, ..., n\}$.

$$E[Y] = \sum_{y \in \Omega''} y p_Y(y)$$

$$= \sum_{x \in \Omega'} (ax + b) p_y(ax + b)$$

$$= \sum_{x \in \Omega'} (ax + b) p_x(x)$$

$$= aE[X] + b.$$

What if Y = g(X) where the function g(.) is many to one? What is the PMF of Y then ?

Function of random variables

- Consider Y = |X| where X is the outcome of an experiment where an integer is chosen uniformly from -4 to 4.
- $p_X(x) = \frac{1}{9} \text{ for } x \in \{-4, -3, \dots, 3, 4\}.$
- ▶ What is the range Ω' for Y? $\Omega' = \{0, ..., 4\}$.
- \blacktriangleright What is $p_Y(2)$?
- $p_Y(2) = \sum_{\{x:|x|=2\}} p_X(x) = p_X(-2) + p_X(2) = \frac{2}{9}.$

Function of random variables

$$p_Y(2) = \sum_{\{x:|x|=2\}} p_X(x) = p_X(-2) + p_X(2) = \frac{2}{9}.$$

Suppose Y = g(X) and X is discrete with pmf $p_X(\cdot)$. Then $p_Y(y) = \sum_{\{x:g(x)=y\}} p_X(x)$. (Proof is HW)

E[g(X)]

Theorem: Suppose Y = g(X) and X is discrete with pmf $p_X(\cdot)$. Then, $E[Y] = \sum_x g(x)p_X(x)$

Proof

$$E[Y] = \sum_{y} y p_{Y}(y)$$

$$= \sum_{y} \sum_{\{x:g(x)=y\}} g(x) p_{X}(x)$$

$$= \sum_{x} g(x) p_{X}(x).$$

https://en.wikipedia.org/wiki/Law_of_the_unconscious_ statistician

Towards Variance ...

- ► Recall $E[X] = \sum_{x \in \Omega'} x p_X(x)$.
- ▶ Furthermore, $E[X^n] = \sum_{x \in \Omega'} x^n p_X(x)$.
- ▶ In general, $E[g(X)] := \sum_{x \in \Omega'} g(x) p_X(x)$
- Now consider $g(X) = (X E[X])^2$. g(X) quantifies the square of the deviation of X from the mean.
- ightharpoonup Note g(X) cannot track if the deviation is positive or negative!
- ightharpoonup E[g(X)] would then tell us the mean of the square of the deviation.
- ▶ In fact, $\sqrt{E(g(X))}$ quantifies the deviation.

Variance

- $ightharpoonup E[g(X)] = E[(X E[X])^2]$ is called as the variance of random variable X.
- $ightharpoonup Var(X) := E[(X E[X])^2]$
- ► HW: Prove that $E[(X E[X])^2] = E[X^2] E[X]^2$
- $\sigma_X = \sqrt{Var(X)}$ is called as the standard deviation of X.
- For a fair coin toss, instead of $\Omega' = \{1, -1\}$, what if we use $\{+100, -100\}$? The latter has more variance!
- ▶ HW: What is Var(Y) where Y = aX + b?

Examples of discrete random variables

Indicator random variable

- Indicator random variable $1_A(\omega) = \begin{cases} 1, & \text{if } \omega \in A \subseteq \Omega \\ 0, & \text{otherwise.} \end{cases}$
- Its PMF is $p_{1_A}(x) = \begin{cases} \mathbb{P}(A), & \text{when } x = 1 \\ 1 \mathbb{P}(A), & \text{when } x = 0. \end{cases}$
- ightharpoonup This is a discrete random variable even though Ω could be continuous.
- ► For example, Event A could be that the number picked uniformly on the real line is positive.
- \blacktriangleright What is its CDF and mean denoted by $E[1_A]$?
- ► What about its mean variance and moments?

Bernoulli random variable

- ▶ Bernoulli random variable $X = \begin{cases} 1, & \text{with probability } p \\ 0, & \text{otherwise.} \end{cases}$
- ► This is same as an indicator variable but here we do not specify A.
- ightharpoonup As a matter of convenience, we will start ignoring Ω from now on.
- These random variables are used in Binary classification in ML. X=1 if image has a cat.
- Basic models of Multi-arm bandit problem assume Bernoulli Bandits.
- $ightharpoonup E[X] = p, E[X^n] = p.$

Binomial B(n, p) random variable.

- Consider a biased coin (head with probability p) and toss it n times.
- Denote head by 1 and tail by 0.
- Let random variable *N* denote the number of heads in *n* tosses.
- ► PMF of N?. $p_N(k) = \binom{n}{k} p^k (1-p)^{n-k}$.
- ightharpoonup HW: What is $E[N], E[N^2], Var(X)$?