Programming in the Untyped λ -Calculus

Church & Scott Encodings, Y Combinator

Ernest Ng

CIS 6700, Feb 6th 2023

Motivation

The λ -calculus provides simple semantics for understanding functional abstraction.

Motivation

The λ -calculus provides simple semantics for understanding functional abstraction.

We can encode data purely within the untyped λ -calculus!

Remarks & notational conventions

• Function application is left-associative:

Write
$$t_1$$
 t_2 t_3 to denote $(t_1$ $t_2)$ t_3

Remarks & notational conventions

• Function application is left-associative:

Write
$$t_1$$
 t_2 t_3 to denote $(t_1$ $t_2)$ t_3

• Bodies of lambda abstractions extend as far right as possible:

Write
$$\lambda x$$
. λy . x y x to denote λx . $(\lambda y$. $((x y) x))$

Remarks & notational conventions

• Function application is left-associative:

Write
$$t_1$$
 t_2 t_3 to denote $(t_1$ $t_2)$ t_3

• Bodies of lambda abstractions extend as far right as possible:

Write
$$\lambda x$$
. λy . x y x to denote λx . $(\lambda y$. $((x y) x))$

- A term with no free variables is closed
- Closed terms are called combinators
 - Simplest combinator: the identity function id

$$id = \lambda x. x$$

Agenda

1. Encoding simple datatypes

Church Booleans

Pairs

2. Church numerals

Arithmetic operations

Predecessor

Testing equality

3. Y-combinator & recursion

Factorial

4. Scott encodings

Church vs Scott numerals

Chruch vs Scott lists

Encoding simple datatypes

Church Booleans

Definition

Let *True* and *False* be represented by:

$$tru = \lambda t. \lambda f. t$$

 $fls = \lambda t. \lambda f. f$

Note: tru & fls are normal forms!

Church Booleans

Definition

Let *True* and *False* be represented by:

$$tru = \lambda t. \lambda f. t$$

 $fls = \lambda t. \lambda f. f$

Note: tru & fls are normal forms!

Definition

The test combinator tests the truth value of a Boolean:

$$test = \lambda l. \ \lambda m. \ \lambda n. \ lm \ n$$

$$test \ truv \ w \rightarrow v$$

$$test \ flsv \ w \rightarrow w$$

The test combinator

Observe:

 $testbvw \longrightarrow bvw$

The test combinator

Observe:

$$testbvw \longrightarrow bvw$$

Example: (β -redexes underlined)

test truv
$$w \to (\lambda l. \lambda m. \lambda n. lmn)$$
 tru $v w \to (\lambda m. \lambda n. trumn) v w \to (\lambda n. truvn) w \to truv w$

The test combinator (cont.)

Observe:

$$test tru v w \longrightarrow v$$
 "if true then v else w" $\longrightarrow v$

Example: (β -redexes are underlined)

test tru
$$v w \rightarrow ...$$

$$\rightarrow tru v w$$

$$\rightarrow (\lambda t. \lambda f. t) v w$$

$$\rightarrow (\lambda f. v) w$$

$$\rightarrow v$$

Similarly, test fls $v w \longrightarrow w$. ("if false then v else $w" \longrightarrow w$)

Conjunction

Intuition: and $b c \approx$ "if b then c else false"

Definition

and =
$$\lambda b$$
. λc . b c fls

Conjunction

Intuition: and $b c \approx$ "if b then c else false"

Definition

and =
$$\lambda b$$
. λc . b c fls

For Boolean values b, c, we have that:

and
$$b c = \begin{cases} c & \text{if } b = tru \\ b & \text{if } b = fls \end{cases}$$

7

Conjunction

Intuition: and $b c \approx$ "if b then c else false"

Definition

and =
$$\lambda b$$
. λc . b c fls

For Boolean values b, c, we have that:

and
$$b c = \begin{cases} c & \text{if } b = tru \\ b & \text{if } b = fls \end{cases}$$

Examples:

and tru
$$b \to tru \ b$$
 fls $\to b$ and fls $b \to fls \ b$ fls $\to fls$

7

Disjunction

Intuition: $or b c \approx$ "if b then true else c"

Definition

$$or = \lambda b. \, \lambda c. \, b \, \, tru \, c$$

Disjunction

Intuition: or b c ≈ "if b then true else c"

Definition

$$or = \lambda b. \lambda c. b truc$$

Examples:

or tru
$$b \to tru$$
 tru $b \to tru$

or fls
$$b \to fls$$
 tru $b \to b$

Negation

Intuition: $not b \approx$ "if b then false else true"

Definition

$$not = \lambda b. b fls tru$$

Negation

Intuition: not $b \approx$ "if b then false else true"

Definition

not tru → (
$$\lambda$$
b. b fls tru) tru
→ tru fls tru
→ fls
not fls → (λ b. b fls tru) fls
→ fls fls tru
→ tru

9

Pairs

Intuition: $(v, w) \approx \text{``}\lambda b$. if b then v else w'' $pair = \lambda v. \ \lambda w. \ \lambda b. \ b \ v \ w$ $\implies pair \ v \ w = \lambda b. \ b \ v \ w$

Pairs

Intuition: $(v, w) \approx "\lambda b$. if b then v else w"

$$pair = \lambda v. \lambda w. \lambda b. b v w$$

$$\implies pair v w = \lambda b. b v w$$

When applied to a Boolean b, pair v w applies b to v and w:

Pairs

Intuition: $(v, w) \approx \text{``}\lambda b$. if b then v else w"

$$pair = \lambda v. \lambda w. \lambda b. b v w$$

$$\implies pair v w = \lambda b. b v w$$

When applied to a Boolean b, pair v w applies b to v and w:

This motivates the projection functions *fst* & *snd*:

$$fst = \lambda p. p tru$$

 $snd = \lambda p. p fls$

Pairs (cont.)

Example: (β -redexes underlined)

$$fst (pair v w) \rightarrow fst (\lambda b. b v w)$$

$$\rightarrow (\lambda p. p tru) (\lambda b. b v w) \text{ (by definition of } fst)$$

$$\rightarrow (\lambda b. b v w) tru$$

$$\rightarrow tru v w$$

$$\rightarrow v$$

Intuition: "A number n is a function that does something n times"

<u>Intuition</u>: "A number *n* is a function that does something *n* times"

Definition

Define the **Church numerals** $c_0, c_1, c_2, ...$ as follows:

$$c_0 = \lambda s. \ \lambda z. \ z$$

 $c_1 = \lambda s. \ \lambda z. \ s \ z$
 $c_2 = \lambda s. \ \lambda z. \ s \ (s \ z)$
...

<u>Intuition</u>: "A number *n* is a function that does something *n* times"

Definition

Define the **Church numerals** $c_0, c_1, c_2, ...$ as follows:

$$c_0 = \lambda s. \lambda z. z$$

 $c_1 = \lambda s. \lambda z. s z$
 $c_2 = \lambda s. \lambda z. s (s z)$
...

Each $n \in \mathbb{N}$ is represented by a combinator c_n that takes arguments s and z ("successor" and "zero") and applies s to z for n times.

$$c_n = \lambda s. \lambda z. \langle apply s to z for n times \rangle$$

Successor function

Definition

The **successor function** scc on Church numerals is defined as:

$$scc = \lambda n. \, \lambda s. \, \lambda z. \, s \, (n \, s \, z)$$

Successor function

Definition

The **successor function** scc on Church numerals is defined as:

$$scc = \lambda n. \lambda s. \lambda z. s (n s z)$$

Intuition: $n + 1 \approx$ "apply s to z for n times, then apply s once more"

scc takes a Church numeral n and returns another Church numeral

function that takes s, z & applies s repeatedly to z

Successor function (cont.)

Example: showing that "scc 0 = 1":

$$scc \ c_0 \rightarrow \underbrace{(\lambda n. \, \lambda s. \, \lambda z. \, s \, (n \, s \, z))}_{scc} \ \underbrace{(\lambda s. \, \lambda z. \, z)}_{c_0}$$

$$\rightarrow \lambda s. \, \lambda z. \, s \, \underbrace{((\lambda s. \, \lambda z. \, z)}_{c_0} \, s \, z)$$

$$\rightarrow \lambda s. \, \lambda z. \, s \, \underbrace{((\lambda z. \, z)}_{id} \, z)$$

$$\rightarrow \lambda s. \, \lambda z. \, s \, z$$

$$= c_1 \qquad \text{(by definition of } c_1\text{)}$$

Successor function (cont.)

Another way* to define the successor function:

$$scc_2 = \lambda n. \, \lambda s. \, \lambda z. \, n \, s \, (s \, z)$$

Intuition: "apply s to $(s \ z)$ for n times"

(as opposed to "applying s to z for (n + 1) times")

^{*}TAPL Exercise 5.2.2

Addition of Church numerals

$$plus = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z)$$

$$\implies \underbrace{plus m n}_{m+n} = \lambda s. \lambda z. m s (n s z)$$

Addition of Church numerals

$$plus = \lambda m. \, \lambda n. \, \lambda s. \, \lambda z. \, m \, s \, (n \, s \, z)$$

$$\implies \underbrace{plus \, m \, n}_{m+n} = \lambda s. \, \lambda z. \, m \, s \, (n \, s \, z)$$

Intuition: To compute m + n,

- 1. Apply s iterated n times to z ...
- 2. ... then apply s to the result for m more times m s (n s z)

Addition (cont.)

Recall:
$$c_1 = \lambda s. \lambda z. s z$$

Example: Proving 1 + 1 = 2

plus
$$c_1 c_1 \rightarrow \lambda s. \lambda z. c_1 s (c_1 s z)$$

 $\rightarrow \lambda s. \lambda z. c_1 s (s z)$
 $\rightarrow \lambda s. \lambda z. s (s z)$
 $= c_2$ (by definition of c_2)

Multiplication of Church numerals

Definition

times =
$$\lambda m. \lambda n. m (plus n) c_0$$

$$m (plus \ n) c_0 \approx \text{``apply } plus \ n \text{ iterated } m \text{ times to } c_0 \text{ (zero)''}$$

 $\approx \text{``add together } m \text{ copies of } n''$

Multiplication (cont.)

Can we define multiplication without using plus? Recall that:

times m $n \approx$ "add together m copies of n"

^{*}TAPL Exercise 5.2.3

^{*}Here, *n s* is akin to *plus n*

Multiplication (cont.)

Can we define multiplication without using plus? Recall that:

times m $n \approx$ "add together m copies of n"

This motivates an alternate definition*:

times =
$$\lambda m. \lambda n. \lambda s. \lambda z. m (n s) z$$

Intuition: $m(n s) z \approx \text{``apply } (n s) \text{ to } z \text{ for } m \text{ times''}^*$

^{*}TAPL Exercise 5.2.3

^{*}Here, n s is akin to plus n

Multiplication example

$$times = \lambda x. \lambda y. \lambda a. x (y a)$$

Compute 3 × 3:

times
$$c_3$$
 c_3 = $(\lambda x. \lambda y. \lambda a. x (y a)) c_3 c_3$
 $\rightarrow (\lambda a. c_3 (c_3 a))$

Multiplication example (cont.)

Consider the term $(c_3 a)$:

$$c_3 = \lambda s. \lambda z. s (s (s z))$$

Applying c_3 to a produces a function that applies a three times (Rojas)

Multiplication example (cont.)

Let **3a** denote $(c_3 a)$. Now, consider c_3 (**3a**):

$$\lambda a. \ c_3 \ (\mathbf{3a}) = \left(\lambda a. \ \underbrace{(\lambda s. \lambda b. \ s \ (s \ (s \ b)))}_{c_3} \ (\mathbf{3a})\right)$$

$$\rightarrow \lambda a. \ \lambda b. \ \mathbf{3a} \ (\mathbf{3a} \ (\mathbf{3a} \ b))$$

Applying c_3 to **3a** returns a function that applies **3a** three times = applies a for (3×3) times

Multiplication example (cont.)

 c_3 applied to **3a**, visualized

Strategy: Create a pair (n-1, n), then pick the 1st element of the pair

Strategy: Create a pair (n - 1, n), then pick the 1st element of the pair

We define two auxiliary functions:

$$zz = pair c_0 c_0$$

 $ss = \lambda p. pair (snd p)(plus c_1 (snd p))$

When applied to a pair (i,j), ss returns a pair (j,j+1):

$$ss(pairc_ic_j) = pairc_jc_{j+1}$$

Strategy: Create a pair (n - 1, n), then pick the 1st element of the pair

We define two auxiliary functions:

$$zz = pair c_0 c_0$$

 $ss = \lambda p. pair (snd p)(plus c_1 (snd p))$

When applied to a pair (i,j), ss returns a pair (j,j+1):

$$ss(pair c_i c_j) = pair c_j c_{j+1}$$

The predecessor function prd involves applying ss to $pair\ c_0c_0$ for m times, then projecting the 1st component:

$$prd = \lambda m. fst (m ss zz)$$

 $prd \approx$ "apply ss to $pair c_0 c_0$ for m times" $\approx \begin{cases} pair c_0 c_0 & \text{when } m = 0 \\ pair c_{m-1} c_m & \text{otherwise} \end{cases}$

Evaluating $prd c_n$ requires O(n) steps!

(diagram from TAPL)

Roadmap for the next few slides

<u>Aim</u>: To represent factorial in the untyped λ-calculus

To do this, we need to discuss the following:

- 1. Testing if a Church numeral $\stackrel{?}{=}$ 0
- 2. Equality of Church numerals
- 3. Y-comabintor & recursion

Testing if a Church numeral $\stackrel{?}{=}$ 0

Definition

$$isZero = \lambda m. m (\lambda x. fls) tru$$

Example (β -redexes underlined):

$$isZero c_0 = (\lambda m. m (\lambda x. fls) tru) c_0$$

$$= (\lambda m. m (\lambda x. fls) tru) (\lambda s. \lambda z. z) \text{ (by definition of } c_0)$$

$$\rightarrow (\lambda s. \lambda z. z) (\lambda x. fls) tru$$

$$\rightarrow (\lambda z. z) tru$$

$$\rightarrow tru$$

Equality of Church numerals

Intuition:
$$m == n \iff (m - n) == 0 \land (n - m) == 0$$

Definition

The *equal* function tests two Church numerals for equality, returning a Church Boolean:

```
equal = λm. λn.

and (isZero (m prd n))

(isZero (n prd m))
```

m prd n ≈ "applying the predecessor function for m times on n"
≈ "m minus n"

Y-combinator & recursion

How do we represent recursion?

Ω -combinator

Definition

The divergent combinator Ω is:

$$\Omega = (\lambda x. \ x \ x) \ (\lambda x. \ x \ x)$$

Definition

The **divergent combinator** Ω is:

$$\Omega = (\lambda x. \ x \ x) \ (\lambda x. \ x \ x)$$

Let's try to β -reduce Ω :

$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \rightarrow \ (x \ x) \left[\ x \ \coloneqq \ (\lambda x. \ x \ x) \ \right]$$
$$\rightarrow (\lambda x. \ x \ x) \ (\lambda x. \ x \ x)$$

We get what we started with!

A λ -term is **divergent** if it has no β -normal form.

Definition

The **fixpoint combinator** is the term

$$\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

Definition

The fixpoint combinator is the term

$$\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

$$\mathbf{Y} F = \left(\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))\right) F$$

$$\rightarrow (\lambda x. F(x x)) (\lambda x. F(x x))$$

$$\rightarrow F\left(\underbrace{(\lambda x. F(x x)) (\lambda x. F(x x))}_{\mathbf{Y} F}\right)$$

$$\rightarrow F(\mathbf{Y} F)$$

Definition

The **fixpoint combinator** is the term

$$\mathbf{Y} = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

$$\mathbf{Y} F = \left(\lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))\right) F$$

$$\rightarrow (\lambda x. F(x x)) (\lambda x. F(x x))$$

$$\rightarrow F\left(\underbrace{(\lambda x. F(x x)) (\lambda x. F(x x))}_{\mathbf{Y} F}\right)$$

$$\rightarrow F(\mathbf{Y} F)$$

Say that **Y** *F* is a **fixed point** of the function *F*:

$$\mathbf{Y} F = F (\mathbf{Y} F)$$

We can use **Y** to achieve recursive calls to *F*:

$$\mathbf{Y} F = F (\mathbf{Y} F)$$

$$= F (F (\mathbf{Y} F))$$

$$= \dots$$

Factorial

Definition

Using Church numerals, we define the factorial function as:

fact =
$$\lambda f$$
. λn . if isZero n then c_1 else times $n \left(f \left(prd \ n \right) \right)$

where $n \in \mathbb{N} \& f$ is the function to call in the body

Factorial (cont.)

Use **Y** to achieve recursive calls to fact:

$$(\textbf{Y} \ fact) \ c_1 = (fact \ (\textbf{Y} \ fact)) \ c_1 \\ \rightarrow \ if \ equal \ c_1 \ c_0 \ then \ c_1 \ else \ times \ c_1 \ \Big((\textbf{Y} \ fact) \ c_0 \Big) \\ \rightarrow \ times \ c_1 \ \Big(fact \ (\textbf{Y} \ fact) \ c_0 \Big) \\ \rightarrow \ times \ c_1 \ \Big(if \ equal \ c_0 \ c_0 \ then \ c_1 \\ \qquad else \ times \ c_0 \ \Big((\textbf{Y} \ fact) \ (prd \ c_0) \Big) \Big) \\ \rightarrow \ times \ c_1 \ c_1 \\ \rightarrow \ c_1$$

Factorial (cont.)

Instead of using the Y-combinator, we can also define factorial using the U-combinator. (*) (See appendix)

Scott encodings

Scott encodings

Consider the following algebraic data types in Haskell:

```
data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)
```

Scott encodings

Consider the following algebraic data types in Haskell:

```
data Nat = Zero | Succ Nat
data List a = Nil | Cons a (List a)
```

Scott encodings allow us to encode ADTs as λ -terms.

Scott numerals

Definition

$$zero = \lambda z. \lambda s. z$$

 $scc = \lambda n. \lambda z. \lambda s. s n$

Intuition: Arguments distinguish between different cases

How do the Church & Scott encodings differ?

How do the Church & Scott encodings differ?

Church	Scott
zero = λs. λz. z	zero = λz. λs. z
scc = λn. λs. λz. s (n s z)	scc = λn. λz. λs. s n

Church	Scott	
scc = λn. λs. λz. s (n s z)	scc = λn. λz. λs. s n	
folds continuation threaded throughout structure	case analysis continuation unwraps one layer only	

Church	Scott
λs. λz. z λs. λz. s z λs. λz. s (s z) λs. λz. s (s (s z))	λz. λs. z λz. λs. s (λs. λz. z) λz. λs. s (λs. λz. s (λs. λz. z)) λz. λs. s (λs. λz. s (λs. λz. s (λs. λz.z)))
"apply <i>s</i> , iterated <i>n</i> times"	"apply s on the preceding Scott numeral"

Church vs Scott encodings: Predecessor

Church: O(n)	Scott : <i>O</i> (1)
$prd = \lambda m. fst (m ss zz)$ where $zz = pair c_0 c_0$ $ss = \lambda p. pair (snd p)$ $(plus c_1 (snd p))$	prd = λn. n zero(λp. p)

Predecessor can be expressed more succintly using Scott encodings!

Church encoding for lists

Definition

$$nil = \lambda n. \lambda c. n$$

 $cons = \lambda x. \lambda l. \lambda n. \lambda c. c x (l n c)$
(akin to foldr)

Church encoding for lists

Definition

$$nil = \lambda n. \lambda c. n$$

 $cons = \lambda x. \lambda l. \lambda n. \lambda c. c x (l n c)$
(akin to foldr)

```
x ≈ "head"
l ≈ "tail"
n ≈ case for nil
c ≈ case for cons
```

Church encoding for lists (cont.)

Definition

$$nil = \lambda n. \lambda c. n$$

 $cons = \lambda x. \lambda l. \lambda n. \lambda c. c x (l n c)$
(akin to foldr)

Example:

$$x:y:z:[] \approx \lambda c. \lambda n. (c x (c y (c z n)))$$

Scott encoding for lists

Definition

$$nil = \lambda n. \lambda c. n$$

 $cons = \lambda x. \lambda l. \lambda n. \lambda c. c x l$

Church vs Scott lists

Church	Scott
cons = λx. λl. λn. λ c. c x (l n c)	$cons = \lambda x. \lambda l. \lambda n. \lambda c. c \times l$ (much simpler!)

• Encodings only differ for recursive datatypes

- Encodings only differ for recursive datatypes
- **Church**: defines how functions should be folded over an element of the type

- Encodings only differ for recursive datatypes
- **Church**: defines how functions should be folded over an element of the type
- Scott: uses "case analysis", recursion not immediately visible

- Encodings only differ for recursive datatypes
- Church: defines how functions should be folded over an element of the type
- Scott: uses "case analysis", recursion not immediately visible
 - · Simpler representation (for certain functions)
 - · Y-combinator needed for other operations

Further reading:

Jansen (2013), Programming in the λ -Calculus: From Church to Scott and Back

References i

- Foster, Jeff (Nov. 2017). Lambda Calculus Encodings.

 https://www.cs.umd.edu/class/fall2017/cmsc330/
 lectures/02-lambda-calc-encodings.pdf.
- Geuvers, Herman (2014). "The Church-Scott representation of inductive and coinductive data". In.
- Jansen, Jan Martin (Jan. 2013). "Programming in the λ-Calculus: From Church to Scott and Back". In: DOI: 10.1007/978-3-642-40355-2_12.
- Pierce, Benjamin C. (2002). Types and Programming Languages. 1st. The MIT Press. ISBN: 0262162091.
- Rojas, Raúl (2015). "A Tutorial Introduction to the Lambda Calculus". In: CoRR abs/1503.09060. arXiv: 1503.09060. URL: http://arxiv.org/abs/1503.09060.

References ii

- Sampson, Adrian (Jan. 2018). λ-Calculus Encodings. https://www.cs.cornell.edu/courses/cs6110/2019sp/lectures/lec03.pdf.
- Selinger, Peter (2008). "Lecture notes on the lambda calculus". In: CoRR abs/0804.3434. arXiv: 0804.3434. URL: http://arxiv.org/abs/0804.3434.

Appendix

Appendix: Defining factorial using the U-combinator

Instead of using the **Y**-combinator, we can also define *factorial* using the **U**-combinator.

Definition

The **U**-combinator applies its argument *f* to itself:

$$\mathbf{U} = \lambda f. f f$$

Appendix: Defining factorial using the U-combinator

Recall the definition of factorial:

fact =
$$\lambda f. \lambda n.$$
 if equal $n c_0$ then c_1 else times $n \left(f \left(prd \ n \right) \right)$

Appendix: Defining factorial using the U-combinator

Recall the definition of factorial:

fact =
$$\lambda f. \lambda n.$$
 if equal $n c_0$ then c_1 else times $n \left(f \left(prd \ n \right) \right)$

We can define factorial using ${f U}$ as follows:

fact =
$$\mathbf{U}\left(\lambda f. \lambda n. \text{ if isZero } n \text{ then } c_1\right)$$

else times $n\left(\mathbf{U} f\left(prd\ n\right)\right)$

Appendix: More on the U-combinator

It turns out that we can define **Y** using **U**:

$$\mathbf{U} = \lambda f. \ f \ f$$

$$\mathbf{Y} = \lambda g. \ \mathbf{U} \left(\lambda f. \ g \ (\underline{\mathbf{U} \ f}) \right)$$

$$\rightarrow \lambda g. \ \underline{\mathbf{U}} \left(\lambda f. \ g \ (f \ f) \right)$$

$$\rightarrow \lambda g. \left(\lambda f. \ g \ (f \ f) \right) \left(\lambda f. \ g \ (f \ f) \right)$$

$$definition of \mathbf{Y} \text{ we saw on } \underline{\text{slide } 32}$$

$$(\text{up to } \alpha\text{-equivalence})$$

■ Back to main presentation