Book of Proof

Third Edition

RICHARD HAMMACK

8 de agosto de 2021

Conteúdo

1	1.1 Introdução	1
2	Lógica	3
3	Contagem	5
4	Prova Direta	7
5	Prova Contra-positiva	9
6	Prova por Contradição	11
7	Prova de Afirmações Não-Condicionais	13
8	Provas Envolvendo Conjuntos	15
9	Contraprova	17
10	Indução Matemática	19
11	Relações	21
12	Funções	23
13	Provas com Calculus	25
14	Cardinalidade de Conjuntos	27

iv *CONTEÚDO*

Conjuntos

"The theory of sets is a language that is perfectly suited to describing and explaning all types of mathematical structures."

página 3

1.1 Introdução

Um **conjunto** (set) é uma lista de **elementos**. Normalmente denotados por uma letra maiúscula. Por exemplo:

$$A = \{1, 2, 3, 4, ...\}$$

Dois sets A e B são **iguais** se possuírem exatamente os mesmos elementos. Não importando a ordem desses elementos dentro de cada set.

Vamos definir um token para sinalizar se um determinado elemento x pertence ou não a um determinado set qualquer A. Para tal relação usaremos o símbolo " \in "se x for um elemento de A ou, caso contrário, usaremos " \notin "se x não for um elemento de A.

É provável que, em algum momento, seja necessário contar a quantidade de elementos em um dado set qualquer A. Chamaremos essa relação de **cardinalidade** ou **tamanho** do set A. O token usado será duas barras em volta do set do seguinte modo: "|A|".

A partir dessas duas relações já podemos definir um tipo especial de set. Vamos definir como **conjunto vazio** ou **empty set** um conjunto que possua o cardinal igual a zero. Usaremos o token "Ø"para definir a relação abaixo:

$$|\emptyset| = 0$$

2 1. CONJUNTOS

Às vezes, não raramente, usamos sets que a escrita como uma lista de elementos não é tão intuitiva para uso. Para essas situações usamos a **notação** de formação de conjuntos (set builder notation). Como no exemplo abaixo:

$$E = \{ 2n : n \in \mathbb{Z} \}$$

Eu colori cada significado da expressão acima com a cor correspondente para facilitar o entendimento. A leitura da expressão acima é: "O conjunto 'E' é igual ao conjunto dos elementos da forma 2n tal que n é um elemento de \mathbb{Z} ".

Podemos resumir essa notação de formação de conjuntos como " $Conjunto = \{Expressão : Regra\}$ ". É bem comum vermos notações onde os dois pontos são trocados por uma barra: " $Conjunto = \{Expressão \mid Regra\}$ ".

Existem alguns conjuntos que são famosos e a essa altura você já deve ter visto algumas vezes.

$$\emptyset = \{\}$$

$$\mathbb{N} = \{1, 2, 3, 4, ...\}, \text{ perceba que } 0 \notin \mathbb{N}$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

$$\mathbb{Q} = \{x : x = m/n, \text{ onde } m, n \in \mathbb{Z} \text{ } e \text{ } n \neq 0\}$$

$$\mathbb{R} \xrightarrow{\frac{\sqrt{2}}{-3} - \frac{e^{-\pi}}{2} - 1} 0 \xrightarrow{1 - 2} \frac{e^{-\pi}}{3}$$

Lógica

4 2. LÓGICA

Contagem

6 3. CONTAGEM

Prova Direta

Prova Contra-positiva

Prova por Contradição

Prova de Afirmações Não-Condicionais

Provas Envolvendo Conjuntos

Contraprova

Indução Matemática

Relações

22 11. RELAÇÕES

Funções

24 12. FUNÇÕES

Provas com Calculus

Cardinalidade de Conjuntos