Задача А. Различные подстроки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Дана строка S. Назовем ее подстрокой строку с i-го по j-й символ ($i\leqslant j$). Ваша задача — посчитать количество различных подстрок данной строки.

Формат входных данных

Во входном файле находится одна строка S, состоящая не более, чем из $200\,000$ символов. Все символы в строке — маленькие латинские буквы.

Формат выходных данных

В выходной файл выведите единственное число — количество различных подстрок заданной строки.

стандартный ввод	стандартный вывод
aaba	8

Задача В. Помогите, спасите!

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N ($1 \le N \le 2 \cdot 10^5$) маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

stdin	stdout
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача С. Рефрен

Имя входного файла: refrain.in Имя выходного файла: refrain.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 150\,000, 1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

refrain.in	refrain.out
9 3	9
1 2 1 2 1 3 1 2 1	9
	1 2 1 2 1 3 1 2 1

Задача D. Ненокку

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записана одна из двух записей.

- 1. ? **<слово>** (**<**слово> это набор не более 50 латинских символов): запрос проверки существования подстроки **<**слово> в произведении;
- 2. А **<текст>** (<текст> это набор не более 10^5 латинских символов): добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

stdin	stdout
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	

Задача Е. Суффиксный автомат

Имя входного файла: suffix.in
Имя выходного файла: suffix.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Суффиксным автоматом для строки w называется детерминированный конечный автомат A, который допускает язык $\underline{\operatorname{Suff}}(w)$ — множество суффиксов слова w. Например, суффиксный автомат для слова abbab должен допускать в точности следующие слова: $\{abbab, bab, bab, ab, b, \varepsilon\}$. Мы также потребуем, чтобы суффиксный автомат не имел недостижимых состояний, и не было состояний, из которых не достижимы допускающие. Других ограничений, например, минимальности, накладывать не будем.

На рисунке показан суффиксный автомат для слова *abbab*.

По заданному <u>скелету</u> суффиксного автомата некоторого слова требуется восстановить суффиксный автомат. \overline{A} именно — вам даны состояния, переходы, начальное состояние и допускающие состояния. Но пометки на ребрах удалены.

Вам следует расставить пометки на ребрах заданного суффиксного автомата, так чтобы он стал суффиксным автоматом некоторого слова w, а также найти это слово. Для простоты будем считать, что размер алфавита ничем не ограничен, вы можете использовать в качестве символов числа от 1 до k (k вы можете выбрать сами).

Формат входных данных

Первая строка входного файла содержит три целых числа: n, m и t — количество состояний, количество переходов, и количество допускающих состояний, соответственно ($2 \le n \le 200, 1 \le m \le 1000, 1 \le t \le n$). Вторая строка содержит t целых чисел — номера допускающих состояний (состояния пронумерованы с 1, начальное состояние имеет номер 1).

Следующие m строк описывают переходы: каждая строка содержит два целых числа s_i и t_i и описывает переходы из s_i в t_i .

Формат выходных данных

На первой строке выходного файла выведите два целых числа: l и k — длину слова w и размер алфавита. Используйте числа $\{1,\ldots,k\}$ как элементы алфавита. k не должно превышать m.

Вторая строка должна содержать l целых чисел — слово w.

Наконец, третья строка должна содержать m целых чисел — метки на переходах скелета автомата, в том порядке, в котором они описаны во входном файле.

Гарантируется, что ответ всегда существует.

suffix.in	suffix.out
7 8 4	5 2
1 3 4 7	1 2 2 1 2
1 2	1 2 2 2 1 2 1 2
1 3	
2 4	
3 5	
3 6	
4 5	
5 6	
6 7	

Замечание

Задача F. Две строки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2.5 секунд Ограничение по памяти: 768 мегабайт

Даны две строки $S=S_0S_1\cdots S_{|S|-1}$ и $T=T_0T_1\cdots T_{|T|-1}$, каждая из которых состоит из маленьких латинских букв. Определим функцию F(S,l,r) для строки S и подотрезка [l,r] как

$$F(S, l, r) = r - l - \max(l, |S| - r - 1) + 1.$$

Другими словами, F обозначает длину подстроки, минус максимальное расстояние от подстроки до одной из границ строки S.

Ваша задача состоит в том, чтобы найти такую подстроку S[l,r], что она встречается в T как подстрока, и значение F(S,l,r) является максимально возможным.

Формат входных данных

Во входных данных содержатся строки S и T $(1 \leqslant |S|, |T| \leqslant 10^6)$. Обе строки состоят из маленьких латинских букв.

Формат выходных данных

Выходные данные должны содержать два числа l и r такие, что F(S,l,r) является максимально возможным $(0 \le l \le r < |S|)$. В случае, если решений несколько, необходимо выбрать лексикографически минимальную пару (l,r). Если ни одна из подстрок S не встречается в T, то оба числа должны быть равны -1.

стандартный ввод	стандартный вывод
riveragesmalir	4 5
toaxernaturaln	
aaaaa	0 4
aaaaa	
amkar	-1 -1
zenit	

Задача G. Свобода выбора

Имя входного файла: freedom.in Имя выходного файла: freedom.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Даны две строки, состоящих из заглавных латинских букв. Нужно найти их наибольшую общую подстроку.

Формат входных данных

На первой строке число $n \ (1 \le n \le 10^5)$.

На второй и третьей строках находятся по n заглавных английских букв.

Формат выходных данных

Максимальную по длине общую подстроку. Если оптимальных ответов несколько, выведите любой.

freedom.in	freedom.out
28	THEGREATALBANIA
VOTEFORTHEGREATALBANIAFORYOU	
CHOOSETHEGREATALBANIANFUTURE	