Factorization in Deep Neural Networks

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Data Augmentation and Self Supervised Learning,
- Quantization,
- Pruning,
- 5 Factorization,
- 6 Distillation,
- Embedded Software and Hardware for DL.
- Presentations for challenge.

Course organisation

Sessions

- Deep Learning and Transfer Learning,
- Data Augmentation and Self Supervised Learning,
- Quantization,
- Pruning,
- 5 Factorization,
- 6 Distillation,
- Embedded Software and Hardware for DL.
- Presentations for challenge.

Factorization of Convolutional Networks

Why?

- Reduce memory footprint
- Reduce number of operations

How?

Modifying (decomposing, simplifying) convolutional filters structure

General principle

Complexity of 2D Convolutions

 $N_{ops} = H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot D_{out}$ with kernel size (h, w), D_{in} the number of input feature maps, D_{out} the number of output feature maps of height H_{out} and width W_{out} .

To reduce the number of parameters, we can

- Reduce the size of kernels
 - Reduce the number of feature maps

Different strategies

- Decompose kernels (Spatial separable convolutions)
- Depthwise Separable Convolutions
- Grouped Convolutions

General principle

Complexity of 2D Convolutions

 $N_{ops} = H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot D_{out}$ with kernel size (h, w), D_{in} the number of input feature maps, D_{out} the number of output feature maps of height H_{out} and width W_{out} .

To reduce the number of parameters, we can:

- Reduce the size of kernels
 - Reduce the number of feature maps

Different strategies

- Decompose kernels (Spatial separable convolutions)
- Depthwise Separable Convolutions
- Grouped Convolutions

General principle

Complexity of 2D Convolutions

 $N_{ops} = H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot D_{out}$ with kernel size (h, w), D_{in} the number of input feature maps, D_{out} the number of output feature maps of height H_{out} and width W_{out} .

To reduce the number of parameters, we can:

- Reduce the size of kernels
 - Reduce the number of feature maps

Different strategies:

- Decompose kernels (Spatial separable convolutions)
- Depthwise Separable Convolutions
- Grouped Convolutions

Decompose Kernels

Spatially separable convolutions

To simplify, assuming $D_{in} = D_{out}$, decompose (h, w) kernel by (h, 1) and (1, w):

 $N_{ops} = h \cdot 1 \cdot D_{in} + 1 \cdot w \cdot D_{in} = (h + w) \cdot D_{in}$ with kernel size (h, w), D_{in} input and out number of feature maps.

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times [-1 & 0 & 1]$$

Example: SqueezeNet

Introducing the Fire Module

landola et al. 2016, https://arxiv.org/abs/1602.07360

Depthwise separable convolutions

Instead of learning parameters that recombine all input feature maps to compute each output feature map:

$$N_{mul}^{N} = H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot D_{out} = 5 \cdot 5 \cdot 3 \cdot 3 \cdot 3 \cdot 128 = 86400$$

One can separate the operations into two steps:

$$\begin{split} N_{mul}^D &= H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot 1 + H_{out} \cdot W_{out} \cdot 1 \cdot 1 \cdot D_{in} \cdot D_{out} \\ N_{mul}^D &= 5 \cdot 5 \cdot 3 \cdot 3 \cdot 3 \cdot 1 + 5 \cdot 5 \cdot 1 \cdot 1 \cdot 3 \cdot 128 = 10275 \\ N_{mul}^D &= \left(\frac{1}{D_{out}} + \frac{1}{h^2}\right) \cdot N_{mul}^N, h = w \end{split}$$

https://towardsdatascience.com/

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215 🕟 🚊 🕒 🥠 🔾

Example: MobileNet

MobileNetV1 (2017)

MobileNetV2 (2017)

https://arxiv.org/abs/1704.04861, https://arxiv.org/abs/1801.04381

Example: MobileNet

Table 9. Smaller MobileNet Comparison to Popular Models

Model	ImageNet	Million	Million
	Accuracy	Mult-Adds	Parameters
0.50 MobileNet-160	60.2%	76	1.32
Squeezenet	57.5%	1700	1.25
AlexNet	57.2%	720	60

Table 10. MobileNet for Stanford Dogs

Model	Top-1	Million	Million
	Accuracy	Mult-Adds	Parameters
Inception V3 [18]	84%	5000	23.2
1.0 MobileNet-224	83.3%	569	3.3
0.75 MobileNet-224	81.9%	325	1.9
1.0 MobileNet-192	81.9%	418	3.3
0.75 MobileNet-192	80.5%	239	1.9

https://arxiv.org/abs/1704.04861,https://arxiv.org/abs/1801.04381

More recent examples: MobileVit (2022) and VMamba (2024)

- MobileVit, a Light weight Vision Transformer https://arxiv.org/pdf/2110.02178.pdf
- VMamba, another efficient alternative to Vision Transformer https://arxiv.org/pdf/2401.10166.pdf

Grouped Convolutions

Instead of learning parameters that recombine all input feature maps to compute each output

feature map:

$$N_{mul}^{N} = H_{out} \cdot W_{out} \cdot h \cdot w \cdot D_{in} \cdot D_{out}$$

One can divide the kernels into multiple groups:

$$\begin{aligned} N_{mul}^G &= H_{out} \cdot W_{out} \cdot h \cdot w \cdot \frac{D_{in}}{2} \cdot \frac{D_{out}}{2} + H_{out} \cdot W_{out} \cdot h \cdot w \cdot \frac{D_{in}}{2} \cdot \frac{D_{out}}{2} \\ N_{mul}^G &= \frac{N_{mul}^N}{2} \end{aligned}$$

https://towardsdatascience.com/

a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215 / 🚊 🔊 🤦 🔾

Examples

AlexNet filters

ResNeXt block

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

 $\verb|https://arxiv.org/abs/1704.04861|, \verb|https://arxiv.org/abs/1801.04381|, \verb|https://arxiv.org/abs/1611.05431|, \verb|https:/$

Combining Factorization with other Techniques: Attention based Pruning

Introducing Shift Attention Layer

Figure 1: Overview of the proposed method: we depict here the computation for a single output feature map d, considering a 1d convolution and its associated shift version. Panel (1) represents a standard convolutional operation: the weight filter $W_{d,\cdot\cdot}$ containing SC weights is moved along the spatial dimension (L) of the input to produce each output in \mathbf{Y}_d . In panel (2), we depict the attention tensor \mathbf{A} on top of the weight filter: the darker the cell, the most important the corresponding weight has been identified to be. At the end of the training process, \mathbf{A} should contain only binary values with a single 1 per slice $\mathbf{A}_{d,c,\cdot}$. In panel (3), we depict the corresponding obtained shift layer: for each slice along the input feature maps (C), the cell with the highest attention is kept and the others are disregarded. As a consequence, the initial convolution with a kernel size S has been replaced by a convolution with a kernel size S has been replaced by a convolution with a kernel size S has been trained on the shift bayer introduced in Wu et al. [2017], but here the shifts have been trained instead of being arbitrarily predetermined.

Combining Factorization with other Techniques: Attention based Pruning

Figure 7: Evolution of accuracy when applying compression methods on different DNN architectures trained on CIFAR10.

Hacene et al. 2019, https://arxiv.org/abs/1905.12300

Combining Factorization with other Techniques: using clustering to share kernel weights

from https://arxiv.org/abs/1510.00149

Lab Session

Factorizing a CNNs using Pytorch

- Read carefully the documentation of conv2d (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#conv2d) and play with the parameters in channels, out channels and groups to implement factorised convolutions
- Have a look at the MobileNet implementation for CIFAR10 (https://github.com/kuangliu/pytorch-cifar/blob/master/models/mobilenet.py)

Work for your Long Project

- If you haven't done it yet, familiarise yourself with the micronet-resources folder (profile.py and challenge rules)
- Combine/test different strategies to improve your MicroNet score!

- Overview of unsupervised learning
 - Clustering
 - Decomposition using Sparse Dictionary Learning

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets.
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization....

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets.
 - Decomposition using K vectors.
- Applications :
 - Quantization
 - Visualization

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications:
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications:
 - Quantization
 - Visualization...

Goal

Discover patterns/structure in X,

- Unsupervised = no expert, no labels,
- Two main approaches:
 - Clustering = find a partition of X in K subsets,
 - Decomposition using K vectors.
- Applications:
 - Quantization,
 - Visualization...

Example: clustering using L_2 norm

An example to perform clustering is to rely on distances to centroids. We define K cluster centroids $\Omega_k, \forall k \in [1..K]$

Definitions

We denote $q: \mathbb{R}^d \to [1..K]$ a function that associates a vector **x** with the index of (one of) its closest centroid $q(\mathbf{x})$. Formally:

- $\forall k \in [1..K], \Omega_k \in \mathbb{R}^d$
- $\forall \mathbf{x} \in X, \forall j \in [1..K], \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2 \le \|\mathbf{x} \Omega_j\|_2$
- Error $E(q) \triangleq \sum_{\mathbf{x} \in X} \|\mathbf{x} \Omega_{q(\mathbf{x})}\|_2$

cluster k

Example: clustering using L_2 norm

Example: clustering using L_2 norm

Clustering using L_2 norm

Quantizing MNIST

- Replace **x** by $\Omega_{k(\mathbf{x})}$
- Compression factor $\kappa = 1 K/N$

Clustering using L_2 norm

Choosing K

- Finding a compromise between error and compression,
- Simple practical method : "elbow".

Sparse Dictionary Learning

Definitions

Dictionary learning solves the following matrix factorization problem:

- The set X is considered as a matrix $X \in \mathcal{M}_{N \times d}(\mathbb{R})$,
- We consider decompositions using a dictionary $V \in \mathcal{M}_{K \times d}(\mathbb{R})$ and a code $U \in \mathcal{M}_{N \times k}(\mathbb{R})$, with the lines of V being with norm 1,
- Error $E(U, V) \triangleq ||X UV||_2 + \alpha ||U||_1$
- Training: find U^* , V^* that minimizes $E(U^*, V^*)$
- lpha is a sparsity control parameter that enforces codes with soft (ℓ_1) sparsity

