Kurs:Mathematik für Anwender/Teil I/13/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \sum

Punkte 3312536373 3 5 3 4 9 4 64

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Die *Vereinigung* der Mengen $m{L}$ und $m{M}$.
- 2. Eine *rationale Funktion* (in einer Variablen über \mathbb{R}).
- 3. Die reelle Exponentialfunktion zu einer Basis b > 0.
- 4. Eine obere Treppenfunktion zu einer Funktion

$$f:I\longrightarrow \mathbb{R}$$

auf einem beschränkten Intervall $I \subseteq \mathbb{R}$.

- 5. Eine *Basis* eines K-Vektorraums V.
- 6. Ähnliche Matrizen $M,N\in \mathrm{Mat}_n(K)$.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Die Regel für die inverse Folge einer reellen Folge.
- 2. Das Cauchykriterium für Reihen.
- 3. Die Ableitung des Sinus und des Kosinus.

Aufgabe * (1 Punkt)

Negiere die Aussage "Martina findet alle Jungs im Kurs außer Markus zuckersüß" durch eine Aussage, in der eine Existenzaussage und eine Oder-Verknüpfung vorkommen.

Aufgabe * (2 Punkte)

- 1. Wie viele Minuten sind ein Fünftel einer Stunde?
- 2. Wie viel Prozent von einer Stunde sind 45 Minuten?
- 3. Wie viele Minuten sind 90% einer Stunde?
- 4. Wie viel Prozent von einer Stunde ist ein Tag?

Aufgabe * (5 (1+3+1) Punkte)

Zu je zwei Punkten in der Produktmenge \mathbb{Q}^2 gibt es eine Verbindungsgerade und einen Mittelpunkt, der die Verbindungsstrecke halbiert.

- 1. Man gebe zu zwei Punkten (a_1,a_2) und (b_1,b_2) die Koordinaten des Mittelpunktes an.
- 2. Es seien in der Produktmenge \mathbb{Z}^2 fünf Punkte gegeben (jeder Punkt habe also ganzzahlige Koordinaten). Zeige, dass mindestens einer der Mittelpunkte ganzzahlige Koordinaten haben muss.
- 3. Gilt die Eigenschaft aus (2) auch bei vier Punkten?

Aufgabe * (3 Punkte)

Man finde ein Polynom

$$f = a + bX + cX^2$$

mit $a,b,c\in\mathbb{R}$ derart, dass die folgenden Bedingungen erfüllt werden.

$$f(-1) = 2$$
, $f(1) = 0$, $f(3) = 5$.

Aufgabe * (6 Punkte)

Beweise die folgende Aussage: Jede beschränkte Folge von reellen Zahlen besitzt eine konvergente Teilfolge (Satz von Bolzano-Weierstraß).

Aufgabe * (3 Punkte)

Bestimme, ob die Reihe

$$\sum_{n=0}^{\infty} \frac{n^2}{e^n}$$

konvergiert.

Aufgabe * (7 Punkte)

Es sei

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

eine stetige Funktion $\neq 0$, die die Gleichung

$$f(x+y) = f(x) \cdot f(y)$$

für alle $x,y\in\mathbb{R}$ erfüllt. Zeige, dass f eine Exponentialfunktion ist, d.h. dass es ein b>0 mit $f(x)=b^x$ gibt.

Aufgabe * (3 Punkte)

Vergleiche die beiden Zahlen

$$\sqrt{3}^{-\frac{9}{4}}$$
 und $\sqrt{3}^{-\sqrt{5}}$.

Aufgabe (3 Punkte)

Man erläutere die Begriffe *hinreichende* und *notwendige Bedingung* anhand typischer Beispiele.

Aufgabe * (5 (1+1+3) Punkte)

Wir betrachten die Standardparabel, also den Graphen zur Funktion

$$f(x)=x^2.$$

- 1. Bestimme die Ableitung und die Tangente t_a von f in einem Punkt $a \in \mathbb{R}$.
- 2. Bestimme den Schnittpunkt einer jeden Tangenten t_a mit der x-Achse in Abhängigkeit von a. Skizziere die Situation.
- 3. Die Parabel, die Tangente t_a und die x-Achse begrenzen eine Fläche. Berechne deren Flächeninhalt in Abhängigkeit von a.

Aufgabe * (3 Punkte)

Löse das lineare Gleichungssystem

$$egin{aligned} 4x-5y+7z&=-3\,,\ -2x+4y+3z&=9\,,\ x&=-2\,. \end{aligned}$$

Aufgabe * (4 Punkte)

Man gebe ein Beispiel für einen Körper K, eine kommutative Gruppe (V,+,0) und eine Abbildung

$$K imes V \longrightarrow V, \, (s,v) \longmapsto sv,$$

derart, dass diese Struktur alle Vektorraumaxiome außer

$$(6) \ r(su) = (rs)u$$

erfüllt.

Aufgabe * (9 (1+1+7) Punkte)

Aus den Rohstoffen R_1, R_2 und R_3 werden verschiedene Produkte P_1, P_2, P_3, P_4 hergestellt. Die folgende Tabelle gibt an, wie viel von den Rohstoffen jeweils nötig ist, um die verschiedenen Produkte herzustellen (jeweils in geeigneten Einheiten).

$R_1 R_2 R_3$

P₁ 6 2 3

 P_2 4 1 2

P₃ 0 5 2

 P_4 2 1 5

- a) Erstelle eine Matrix, die aus einem Vierertupel von Produkten die benötigten Rohstoffe berechnet.
- b) Die folgende Tabelle zeigt, wie viel von welchem Produkt in einem Monat produziert werden soll.

$$P_1\,P_2\,P_3\,P_4$$

6 4 7 5

Welche Rohstoffmengen werden dafür benötigt?

c) Die folgende Tabelle zeigt, wie viel von welchem Rohstoff an einem Tag angeliefert wird.

$$R_1 R_2 R_3$$

12 9 13

Welche Produkttupel kann man daraus ohne Abfall produzieren?

Aufgabe * (4 Punkte)

Es sei $m{K}$ ein Körper und es sei $m{V}$ ein $m{n}$ -dimensionaler $m{K}$ -Vektorraum. Es sei

$$\varphi{:}\,V\longrightarrow V$$

eine lineare Abbildung. Zeige, dass $\lambda \in K$ genau dann ein Eigenwert von φ ist, wenn λ eine Nullstelle des charakteristischen Polynoms χ_{φ} ist.