- 1. Consider the genome-scale metabolic model of a pathogenic organisms in the OptFlux repository or in the BiGG database (http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms). You can download the models in SBML, JSON format or import directly from the repository if available. Look for the associated publication and download it. Answer the following questions
- a) Study the organism and discuss the diseases it can cause and known drugs and virulence factors.

Yersinia pestis é uma bactéria gram-negativa, encapsulada, anaeróbia facultativa com forma de bastonete (1) da família Enterobacteriaceae que tal como outras duas espécies pertencentes ao mesmo género (Yersinia pseudotuberculosis e Yersinia enterocolitica) conseguem causar doenças em humanos (2, 3). Descoberta em 1894 por Alexandre Yersin (4, 5) (durante um surto em Hong Kong), esta bactéria é de grande relevância histórica tendo causado, até aos nossos dias, três grandes pandemias (8) cada uma delas com uma biovariante associada (6) respetivamente.

Esta espécie parasítica sobrevive mantendo-se num ciclo envolvendo roedores e as suas pulgas (7) podendo infetar pequenos roedores e alguns mamíferos (2, 8) (Error! Reference source not found.)

Figura 1 - Ciclo de vida e transmissão de Yersinia pestis. Setas vermelhas são indicativas de cidos zoonóticos².

através de mordidas de pulgas ou do contacto com fluidos, tecidos ou aerossóis de animais infetados (10). Contudo acredita-se que consiga sobreviver fora de um hospedeiro, por tempo limitado, num solo com um nicho específico (9).

GENES E DOENÇAS

Encontram-se fatores de virulência codificados tanto nos cromossomas do organismo como em grandes plasmídeos (11). A sua toxicidade deve-se à existência de endotoxinas, presentes na parede celular, e toxinas murinas, que são libertadas após lise celular (12). A bactéria possui mecanismos antifagocíticos, citotóxicos e anti-inflamatórios que auxiliam na sua propagação no corpo do hospedeiro, tais como os antigénios F1, V e W (11) e o Sistema de secreção Tipo III (T3SS) (11, 12).

Graças à proteína codificada no gene *pla*, esta bactéria consegue dissolver os coágulos sanguíneos, conseguindo movimentar-se até atingir os gânglios linfáticos e aí reproduzir-se (13). Clinicamente, pode assumir diferentes formas dependendo da via de exposição: peste bubónica (geralmente após exposição cutânea - por ex. através de mordida de pulga - cursando com exuberante linfadenite supurativa regional), peste septicémica (rapidamente progressiva, com sépsis e falência multiorgânica) ou peste pneumónica (com envolvimento pulmonar, podendo ser primária - por inoculação direta de aerossóis (transmissão inter-humanos) ou secundária - por disseminação da peste bubónica ou septicémica (2, 14).

TERAPÊUTICA E GENES

Os principais fármacos conhecidos no tratamento da infeção por *Yersinia pestis* incluem aminoglicosídeos (estreptomicina e gentamicina), cloranfenicol, tetraciclinas, sulfonamidas e fluoroquinolonas (2). Os seus mecanismos de ação incluem a inibição de síntese proteica, inibição do crescimento / multiplicação bacteriana e replicação de DNA (15).

A resistência a alguns destes fármacos está geralmente associada a incorporação de genes codificadores de enzimas que interferem com o metabolismo desses medicamentos (2, 15).

Atualmente não há nenhuma vacina aprovada na União Europeia, mas algumas estratégias de imunização com proteínas recombinantes da cápsula, vacinas de DNA ou vacinas com *Y. pseudotuberculosis* atenuada parecem promissoras (2).

b) Compute the specific growth rate under adequate conditions for your organism? What are the main products excreted under each of those circumstances?

Os principais produtos excretados sob os 37ºC são H₂O, CO₂, fumarato, piruvato, sulfureto de hidrogénio, formato, acetato e glicogénio.

c) List all genes/reactions that can be potential drug targets.

Utilizando as funcionalidades do package mewpy, é possível determinar as reações e genes essenciais para o crescimento do organismo. Estas são potenciais alvos terapêuticos, uma vez que através do "knockout" de genes ou do impedimento da sua função, podemos pôr em causa a viabilidade do agente patogénico. Foram contabilizadas um total de 216 reações essenciais como também 146 genes.

d) Discuss two of these genes/reactions and the corresponding drug. Select one present in the host and one absent. Include in the discussion facts regarding potential side effects of the drug on other reactions.

folP

O gene identificado no modelo como YPO3501 tem o nome de *foIP* e é responsável pela proteína dihidropteroate sintase. Esta proteína é o elo de ligação entre duas importantes vias de síntese no organismo, nomeadamente a de produção de acido fólico e pABA. Esta enzima está ausente no ser humano e, como tal, é um bom alvo terapêutico de fármacos como as sulfonamidas, classe de antibióticos inibidores competitivos do pABA (16). Utilizando a base de dados DrugBank (17) foi possível verificar que a Sulfadiazina, um medicamento desta classe, está aprovado para uso em monoterapia ou terapia combinada (com estreptomicina) em casos de infeção por *Y. pestis* (18). Mesmo tendo um alvo ausente nos seres humanos, há registos de efeitos adversos a esses fármacos como a existência de reações alérgicas, hepatite ou toxicidade hematopoiética (19).

purH

O gene identificado no modelo como YPO3728 tem o nome de *purH*. Este gene codifica uma proteína bifuncional que catalisa as duas últimas etapas da via biossintética *de novo* das purinas (20, 21). Este gene faz parte do genoma da bactéria *Y. pestis* mas também do genoma do ser humano, pelo que não seria um alvo terapêutico ideal.

Um medicamento que atua a este nível é o fármaco metotrexato que inibe várias enzimas responsáveis pela síntese de nucleotídeos (22-24). Essa inibição leva à supressão da inflamação e também à repressão da divisão celular, pelo que é utilizado em contextos restritos, quase exclusivamente no tratamento de doenças autoimunes e neoplásicas, respetivamente (25).

BIBLIOGRAFIA:

- 1. Murray P., Rosenthal K., Pfaller M. Enterobacteriaceae. Medical Microbiology. Elsevier, Inc. 2021. 25. 257-270
- 2. Mead P. Plague (Yersinia pestis). Bennet J., Dollin R., Blaser M. Principles and Practice of Infectious Diseases. Elsevier, Inc. 2020. 229A. 2799-2787. e2
- 3. Charusanti P, Chauhan S, McAteer K, Lerman J, Hyduke D, Motin V, Ansong C, Adkins J, Palsson B. An experimentally-supported genome-scale metabolic network reconstruction for Yersinia pestis CO92. BMC systems biology. 2011. 5.
- 4. Yersin A. La peste bubonique a Hong-Kong. Ann Inst Pasteur (Paris). 1894; 8:662–7.
- 5. Gross L. How the plague bacillus and its transmission through fleas were discovered: reminiscences from my years at the Pasteur Institute in Paris. Proc Natl Acad Sci U S A. 1995; 92:7609-7611.
- 6. Devignat R: Variétés de l'espèce Pasteurella pestis. Bulletin of the World Health Organization. 1951. 4:247-263.
- 7. CDC. Plague: Ecology and Transmission. Centers for Disease Control and Prevention. 2019 https://www.cdc.gov/plague/transmission/index.html
- 8. Smego RA, Frean J, Koornhof HJ. Yersiniosis I: microbiological and clinicoepidemiological aspects of plague and non-plague Yersinia infections. Eur J Clin Microbiol Infect Dis. 1999; 18:1-15.
- 9. Crook LD. Tempest B. Plague: a clinical review of 27 cases. Arch Intern Med. 1992: 152:1253-1256.
- 10. Valtueña AA, Mittnik A, Key FM, Haak W, Allmäe R, Belinskij A, et al. The stone age plague and its persistence in Eurasia. Curr Biol. 2017; 27:3683. e8
- 11. Online Biology Notes. Yersinia pestis characteristics, habitat and virulence factors. May 17, 2020. G. Karki. https://www.onlinebiologynotes.com/yersinia-pestis-characteristics-habitat-and-virulence-factors/
- 12. Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res. 2013. 57(1-3):237-45.
- 13. Quanta Magazine. The Biology of the Plague. Quanta Magazine. Carrie Arnold. October 6, 2015. https://www.quantamagazine.org/the-biology-of-the-plague-20151006#comments
- CDC. Symptoms of plague. Centers for Disease Control and Prevention. Page last reviewed: November 27, 2018. https://www.cdc.gov/plague/symptoms/index.html
- 15. Katzung B. Basic & Clinical Pharmacology. McGraw-Hill Education. 2018. E14
- 16. Vinnicombe HG, Derrick JP. Dihydropteroate synthase: an old drug target revisited. Biochem Soc Trans. 1999 Feb;27(2):53-8.
- 17. Godfred-Cato S, Cooley KM, Fleck-Derderian S, Becksted HA, Russell Z, Meaney-Delman D, et al. Treatment of Human Plague: A Systematic Review of Published Aggregate Data on Antimicrobial Efficacy, 1939–2019, Clinical Infectious Diseases, Volume 70, Issue Supplement 1, 1 May 2020, Pages S11–S19.
- 18. Khan DA, Knowles SR, Shear NH. Sulfonamide Hypersensitivity: Fact and Fiction. J Allergy Clin Immunol Pract, 7 (2019), pp. 2116-2123
- 19. Inoue K, Yuasa H: Molecular basis for pharmacokinetics and pharmacodynamics of methotrexate in rheumatoid arthritis therapy. Drug Metab Pharmacokinet. 2014;29(1):12-9. Epub 2013 Nov 26. [PubMed:24284432]
- 20. NCBI. ATIC 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase [*Homo sapiens* (human)]. https://www.ncbi.nlm.nih.gov/gene/471
- 21. PubChem. Bifunctional purine biosynthesis protein PURH. https://pubchem.ncbi.nlm.nih.gov/protein/P31939
- 22. Przekop PR Jr, Tulgan H, Przekop AA, Glantz M: Adverse drug reaction to methotrexate: pharmacogenetic origin. J Am Osteopath Assoc. 2006 Dec;106(12):706-7. [PubMed:17242415]
- 23. Muhrez K, Benz-de Bretagne I, Nadal-Desbarats L, Blasco H, Gyan E, Choquet S, Montigny F, Emond P, Barin-Le Guellec C: Endogenous metabolites that are substrates of organic anion transporter's (OATs) predict methotrexate clearance. Pharmacol Res. 2017 Apr;118:121-132. doi: 10.1016/j.phrs.2016.05.021. Epub 2016 May 19. [PubMed:27210722]
- 24. FDA Approved Drug Products: Methotrexate Injection. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/011719s125lbl.pdf
- 25. DrugBank. Methotrexate. Updated on January 07, 2021. https://go.drugbank.com/drugs/DB00563