

Player 2 Player 1 $p_C = 0.8$ $p_D = 0.5$ $m_{CC} = 0.1$ $m_{CD} = 0.6$ $m_{DC} = 0.2$ $m_{DD} = 0.3$

Realized Repeated Game

Player 1 DDCDD...Player 2 $C C D D \dots$

Outcome distribution

<i>C C</i> 15.3%	<i>C D</i> 10.6%
D C	DD
42.5%	31.7%

reactive-1 vs equivalent self-reactive-1

Player 1

Player 2 $\tilde{p}_C = 0.304$ $\tilde{p}_D = 0.242$ $p_C = 0.8$ $p_D = 0.5$

Realized Repeated Game

Player 1 DDCDD...Player 2 $C C D D \dots$

Outcome distribution

<i>C C</i> 15.3%	<i>C D</i> 10.6%
D C	DD
42.5%	31.7%

Partners among the reactive-2 strategies

Donation Game (b/c = 2)

Axelrod's Prisoner's Dilemma

Baseline Sequence

 $D \mid C$

 $C \mid C \mid D$

B **Repeated Sequence**

Partner Conditions

$$p_{DD} \le 1 - \frac{c}{b}$$

$$p_{CD} + p_{DC} \le 2 - \frac{c}{b}$$

$$p_{DDD} \le 1 - \frac{c}{b}$$

$$p_{CDC} + p_{DCD} \le 2 - \frac{c}{b}$$

$$p_{CCD} + p_{CDC} + p_{DCC} \le 3 - \frac{c}{b}$$

$$p_{CDD} + p_{DCD} + p_{DDC} \le 3 - 2 \cdot \frac{c}{b}$$

$$p_{CCD} + p_{CDD} + p_{DCC} + p_{DDC} \le 4 - 2 \cdot \frac{c}{b}$$

D **Example of deriving condition**

Sequence:

Sequence Round Payoff:

 $p_{DC} \cdot b \quad p_{CD} \cdot b - c$

Total Payoff:

 $(p_{CD} + p_{DC}) \cdot b - c$

Partner condition:

 $(p_{CD} + p_{DC}) \cdot b - c \le 2 \cdot (b - c)$

Sequence:

Sequence Round Payoff:

 $p_{DDC} \cdot b$ $p_{DCD} \cdot b$ $p_{CDD} \cdot b - c$

Total Payoff:

 $(p_{DDC} + p_{DCD} + p_{CDD}) \cdot b - c$

Partner condition:

 $(p_{DDC} + p_{DCD} + p_{CDD}) \cdot b - c \le 3 \cdot (b - c)$