Óptica geométrica

Óptica geométrica

• La luz se modeliza como un rayo, que indica la dirección y sentido de propagación.

- Leyes
 - Propagación rectilínea de la luz: en un medio isótropo y homogéneo.
 - Reflexión: si hay una dioptra (cambio del medio de propagación) el ángulo del rayo incidente (α i) es igual al ángulo del rayo reflejado (α r)
 - Refracción (Snell): si hay una dioptra la relación entre el ángulo del rayo incidente (α i) y el ángulo del rayo que se transmite (α t) es: $n_1 \cdot sen(\alpha_i) = n_2 \cdot sen(\alpha_t)$

n es el índice de refracción de un medio (
$$n_i = rac{v_{prop\;en\,vac\'io}}{v_{prop\;en\,medio\;i}}$$
)

Situaciones particulares

- Reflexión total
- Láminas de caras paralelas
- Prisma
- Formación de imagen en espejos planos y esféricos
- Formación de imagen en dioptras planas y esféricas

Reflexión total

- Si n1>n2 (por ejemplo 1 es vidrio n1=1,4 y 2 es aire n2=1)
- Llega un punto crítico donde α t=90°
- Entonces

$$n_1 \cdot sen(\alpha_i) = n_2 \cdot sen(90^\circ)$$

$$sen(\alpha_i) = \frac{n_2}{n_1}$$

• En este caso, hay reflexión total a partir de

$$sen(\alpha_i) = \frac{5}{7} \rightarrow \alpha_i \cong 46^{\circ}$$

Lámina de caras paralelas

• Video óptica geométrica. Parte 1. Dra M T Garea

7. Una placa de vidrio (n = 1,6) con lados paralelos tiene 8 cm de grueso.

a) Calcular el desplazamiento lateral de un rayo de luz cuyo ángulo de incidencia es de 45°.

b) Dibujar la trayectoria del rayo.

El rayo incidente y el refractado en aire son paralelos

- Snell en la primer dioptra $n_A \cdot sen(i) = n_V \cdot sen(r)$
- Snell en la segunda dioptra $n_V \cdot sen(i') = n_A \cdot sen(r')$
- Por geometría: r = i'

• Entonces $n_A \cdot sen(i) = n_V \cdot sen(r) = n_A \cdot sen(r') \leftrightarrow i = r'$

Calcular d

Snell en la primer dioptra

$$1 \cdot sen(45) = 1.6 \cdot sen(r) \rightarrow r = 26.23^{\circ}$$

• Analizando triángulo amarillo
$$cos(r) = \frac{e}{H} \rightarrow H = \frac{e}{cos(r)} = 8,92cm$$

- Por geometría $i = r + \alpha \rightarrow 18,77^{\circ}$
- Analizando triángulo naranja

$$sen(\alpha) = \frac{d}{H}$$
 \rightarrow $d = H \cdot sen(18,77^{\circ}) = 2,87cm$