Semin W4- 914

the extend operation (the scale month policy)

 \underline{Dd} : (V, +) abelian group, $(K, +, \cdot)$ field, $(k, u) \mapsto ku$

We say that v is a k-vertor space (denote V) i/:

· YX,BEK, YOEV: (X+B)·O = Xx+pu

· YXEK, YO1, & EV: X (U1+O2) = X.01+ X.02

· & x, p ek, y o e V : (xp) · e = x. (su)

· V O E V : 1. 0 = 0

Ex. K", KEXJ, Myn (K), KA={(:A -> K) with A a set, G([0,5]), 6"([a,5])

Del/th: V K-vedon your, 5 EV

 $S \leq_{|K} V \qquad (=) \qquad (i) \qquad 5 \neq \emptyset \qquad (ii) \qquad \forall \omega_1, \omega_2 \in S$ $("S is a K-subspace of V) \qquad (ii) \qquad (S,+) \leq (V,+) : \qquad \qquad \forall \omega_1, \omega_2 \in S : \qquad (\omega_1-\omega_2 \in S)$

(m) · is Well defined on 5:

YXEK, YUES: X.UES

> Y x, B E K, Y On, Uz ES: X On + BUZES

4. Let $V = \{x \in \mathbb{R} \mid x > 0\}$ and define the operations: $x \perp y = xy$ and $k \uparrow x = x^k$, $\forall k \in \mathbb{R}$ and $\forall x, y \in V$. Prove that V is a vector space over \mathbb{R} .

We will now prove the axioms:

- It
$$k \in \mathbb{R}$$
, $\omega_1, \omega_2 \in V$: $k \top (\omega_1 \perp \omega_2) = (k \top \omega_1) \perp (k \top \omega_2)$

$$(kTe,)+(kTe)=e,k+e,k=(e,e)^k=(e,e)^k=(e,e)^k=$$

- Let
$$k_{1}, k_{2} \in (|2), \quad Q \in V : \quad (k_{1} + k_{2}) + Q = (k_$$

8. Which ones of the following sets are subspaces:

(i) [-1,1] of the real vector space \mathbb{R} ;

(ii) $\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ of the real vector space \mathbb{R}^2 ;

(iii) $\left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Q} \right\}$ of $\mathbb{Q}M_2(\mathbb{Q})$ or of $\mathbb{R}M_2(\mathbb{R})$;

(iv) $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ continuous}\}\$ of the real vector space $\mathbb{R}^{\mathbb{R}}$?

Sol: (i)
$$1,-1 \in [-1,1]$$
, $1-(-1)=2 \notin (-1,1) \ni [-7,1] \notin \mathbb{R}$
(ii) $(\frac{1}{2},\frac{1}{2}) \in S_2$, $(-\frac{1}{2},\frac{1}{2}) \in S_2$
 $(\frac{1}{2},\frac{1}{2}) - (-\frac{1}{2},-\frac{1}{2}) = (1,1) \notin S_2 = S_2 \notin \mathbb{R}$

Let
$$A_1 = \begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} a_2 & b_2 \\ 0 & c_1 + c_2 \end{pmatrix}$ $\in S_3$

$$A_1 + A_2 = \begin{pmatrix} a_1 & b_2 \\ 0 & c_2 \end{pmatrix} \in S_3$$
, $\alpha \in \mathbb{Q}$

$$A_3 = \begin{pmatrix} \alpha a_2 & \langle b_2 \\ 0 & \langle c_2 \rangle \end{pmatrix} \in S_3$$

$$= \begin{pmatrix} a_1 & b_2 \\ 0 & \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & s_2 \\ 0 & \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle c_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \\ \langle s_2 \rangle \end{pmatrix} = \begin{pmatrix} s_2 & \langle s_2 \rangle$$

```
7. Which ones of the following sets are subspaces of the real vector space \mathbb{R}^3:
```

(i)
$$A = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0\};$$

(ii)
$$B = \{(x, y, z) \in \mathbb{R}^3 \mid x = 0 \text{ or } z = 0\};$$

(iii)
$$C = \{(x, y, z) \in \mathbb{R}^3 \mid x \in \mathbb{Z}\};$$

(iv)
$$D = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\};$$

(v)
$$E = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 1\};$$

(vi)
$$F = \{(x, y, z) \in \mathbb{R}^3 \mid x = y = z\}$$
?

$$Sof: (ii) (0,10,20) \in B, (15,7,0) \in B$$

$$(0, 70, 20) + (15, 7, 0) = (15, 12, 20) \notin B$$

$$=$$
) $B \neq_{\mathbb{R}} (\mathbb{R}^3)$

$$(iu)$$
 $(o,o,o) \in b \Rightarrow D \neq \emptyset$

Let
$$(a,b,c)$$
, $(d,e,f) \in D$

Yet <∈ R:

$$\angle (a_1b_1c) = (\angle a_1 \times b_1 \times c)$$

$$=$$
) $) \leq_{\mathbb{A}} \mathbb{R}^3$