

### DIGITAL DESIGN AND COMPUTER ORGANIZATION

Multi-Cycle Processor - 4

Reetinder Sidhu

Department of Computer Science and Engineering



### DIGITAL DESIGN AND COMPUTER ORGANIZATION

#### Multi-Cycle Processor - 4

#### Reetinder Sidhu

Department of Computer Science and Engineering



#### **Course Outline**



- Digital Design
  - Combinational logic design
  - Sequential logic design
- Computer Organization
  - Architecture (microprocessor instruction set)
  - Microarchitecure (microprocessor operation)
    - \* Multi-Cycle Processor 4

#### Concepts covered

- Datapath and Control Operation
  - lw instruction
  - sw instruction
  - R-type instructions
  - beq instruction

# **MULTI-CYCLE PROCESSOR - 4 MIPS Multi-Cycle Datapath**





### MULTI-CYCLE PROCESSOR - 4 Load Word Instruction



- lw instruction steps
  - Fetch
  - Read register
  - Read and sign-extend immediate
  - Compute memory address
  - Read data from memory
  - Write data back to register file
  - Increment PC



- lw instruction steps
  - Fetch
  - Read register
  - Read and sign-extend immediate
  - Compute memory address
  - Read data from memory
  - Write data back to register file
  - Increment PC

- Execute 1w in five clock cycles
  - Fetch and increment PC
  - Read register and read/sign-extend immediate
  - Compute memory address
  - Read data from memory
  - Write data back to register file









































































S0: Fetch





S0: Fetch





















Think About It



- How can the addi (add immmediate) instruction be supported?
  - What changes, if any, are required to the datapath?
  - What states, if any, need to be added to the control logic?