$Formels \underset{\text{http://www.fersch.de}}{\text{mmlung}} \ Physik$

©Klemens Fersch

1. Juli 2020

Inhaltsverzeichnis

1	Med	chanik		4
	1.1	Grundl	lagen Mechanik	4
		1.1.1	Gewichtskraft	4
		1.1.2	Kräfte	4
		1.1.3	Dichte	L
		1.1.4	Wichte	
		1.1.5	Reibung	Į.
		1.1.6	Schiefe Ebene	6
		1.1.7	Hookesches Gesetz	6
		1.1.8	Drehmoment	7
			Hebelgesetz	7
		1.1.10	Druck	7
		1.1.11	Auftrieb in Flüssigkeiten	7
		1.1.12	Schweredruck	7
	1.2	Kinema	atik	8
		1.2.1	Geradlinige Bewegung v=konst	8
		1.2.2	Beschleunigte Bewegung	8
		1.2.3	Beschleunigte Bewegung mit Anfangsgeschwindigkeit	8
		1.2.4	Durchschnittsgeschwindigkeit	ć
		1.2.5	Durchschnittsbeschleunigung	Ĉ
		1.2.6	Freier Fall	ć
		1.2.7	Senkrechter Wurf nach oben	ć
		1.2.8	Waagrechter Wurf	.(
		1.2.9	Schiefer Wurf	.(
		1.2.10	Frequenz-Periodendauer	. 1
			Winkelgeschwindigkeit	. 1
		1.2.12	Bahngeschwindigkeit	. 1
		1.2.13	Zentralbeschleunigung	2
	1.3	Dynam	nik	3
		1.3.1	Kraft	3
		1.3.2	Schiefe Ebene	3
		1.3.3	Zentralkraft	4
		1.3.4	Gravitationsgesetz	4
		1.3.5	Impuls	.4
		1.3.6	Elastischer Stoß	4
		1.3.7	Unelastischer Stoß	ŀ
		1.3.8	Mechanische Arbeit	ŀ
		1.3.9	Hubarbeit - Potentielle Energie	
		1.3.10	Spannarbeit-Spannenergie	
		1.3.11	Beschleunigungsarbeit - kinetische Energie	.6
		1.3.12	Mechanische Leistung	6

		1.3.13 Wirkungsgrad	16
	1.4		17
			17
			17
			17
2			18
	2.1		18
			18
			18
			18
		\circ	19
		O I	19
		<u>.</u>	20
		±	20
			20
	2.2		20
	2.2		21
			21
			21
		•	21 22
			$\frac{22}{22}$
			$\frac{22}{23}$
	2.3	9	$\frac{23}{24}$
	2.3		$\frac{24}{24}$
			$\frac{24}{24}$
		•	$\frac{24}{24}$
			$\frac{24}{24}$
			$\frac{24}{24}$
			$\frac{24}{25}$
			$\frac{25}{25}$
	2.4		$\frac{25}{27}$
	2.1		27
		1 0	 27
			$\frac{-1}{27}$
			$\frac{-1}{27}$
		•	27
	2.5		28
			28
		9 - (9 -	28
	2.6	· · · · · · · · · · · · · · · · · · ·	29
		2.6.1 Spannungsteiler	29
3			30
	3.1	•	30
			30
	2.0	•	30
	3.2		31
			31
			31
	9.9	ě	31
	3.3		$\frac{32}{32}$
		9	$\frac{32}{32}$
			$\frac{32}{32}$
			$\frac{32}{32}$
		O.O. T VOLUGINIPIEN UNG MONGENSIEIEN	υZ

	3.4	Zustan 3.4.1 3.4.2	Adsänderungen der Gase
4	Opt	ik	34
	4.1		ion und Brechung
		4.1.1	Reflexion
		4.1.2	Brechung
	4.2	Linsen	35
		4.2.1	Brennweite
		4.2.2	Bildgröße - Gegenstandsgröße
5	Δsti	ronomi	ie 36
•			ation
	0.1	5.1.1	Gravitationsgesetz
		5.1.2	Gravitationsfeldstärke
		0.1.2	GIWINGHOLDICIASUM CO
6	Ato	mphys	ik 37
		Atomb	
		6.1.1	Kernbausteine(Protonen, Neutronen, Massenzahl)
		6.1.2	Atommasse
		6.1.3	Masse des Atomkerns
		6.1.4	Stoffmenge und Anzahl der Teilchen
		6.1.5	Molare Masse
		6.1.6	Masse - Energie
	6.2		mwandlungen
		6.2.1	Zerfallsgesetz
		6.2.2	Halbwertszeit
		6.2.3	Aktivität
		6.2.4	Photon
7	Phy	sikalis	che Konstanten 40
8		ellen	$_{-}$
	8.1		hnungen
		8.1.1	Längen
		8.1.2	Flächen
		8.1.3	Volumen
		8.1.4	Zeit
		8.1.5	Vorsilben
		8.1.6	Masse
		8.1.7	Kraft
		8.1.8	Energie-Arbeit
		8.1.9	Leistung
			Geschwindigkeit
		8.1.11	Druck
		8.1.12	Frequenz
			Spannung
			Strom
		8.1.15	Widerstand

1 Mechanik

1.1 Grundlagen Mechanik

1.1.1 Gewichtskraft

$$F_G = m \cdot g$$

m Masse kg g Fallbeschleunigung $\frac{m}{s^2}$ 9,81 $\frac{m}{s^2}$ F_G Gewichtskraft N $\frac{kgm}{s^2}$ $m = \frac{F_G}{g}$ $g = \frac{F_G}{m}$

Interaktive Inhalte:

$$\boxed{F_G = m \cdot g} \boxed{m = \frac{F_G}{g}} \boxed{g = \frac{F_G}{m}}$$

1.1.2 Kräfte

$$\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$$

 $\begin{array}{cccc} F_2 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_1 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_{res} & \text{Resultierende Kraft} & N & \frac{kgm}{s^2} \end{array}$

$$\vec{F}_{res} = \vec{F}_1 + \vec{F}_2$$

1.1.3 Dichte

$$\rho = \frac{m}{V}$$

Interaktive Inhalte:

$$ho = rac{m}{V}$$

$$m = \rho \cdot V$$

$$V = \frac{m}{\rho}$$

1.1.4 Wichte

$$\gamma = \frac{F_G}{V}$$

 $\begin{array}{lll} V & \text{Volumen} & m^3 \\ F_G & \text{Gewichtskraft} & N \\ \gamma & \text{Wichte} & \frac{N}{m^3} \end{array}$ $F_G = V \cdot \gamma \quad V = \frac{F_G}{\gamma}$

Interaktive Inhalte:

$$\gamma = \frac{F_G}{V}$$

$$F_G = V \cdot \gamma$$

$$V = \frac{F_G}{\gamma}$$

1.1.5 Reibung

$$F_R = \mu \cdot F_N$$

 $\begin{array}{lll} \mu & \text{Reibungszahl} \\ F_N & \text{Normalkraft} & N & \frac{kgm}{s^2} \\ F_R & \text{Reibungkraft} & N & \frac{kgm}{s^2} \\ F_N = \frac{F_R}{\mu} & \mu = \frac{F_R}{F_N} \end{array}$

5

$$F_R = \mu \cdot F_N$$

$$F_N = \frac{F_R}{\mu}$$

$$\mu = \frac{F_R}{F_N}$$

Mechanik Grundlagen Mechanik

1.1.6 Schiefe Ebene

 $F_H = \frac{F_G \cdot h}{l}$

Höhe Länge

Gewichtskraft

 F_H Hangabtriebskraft N $F_G = \frac{F_H \cdot l}{h} \quad h = \frac{F_H \cdot l}{F_G} \quad l = \frac{F_G \cdot h}{F_H}$

 $F_N = \frac{F_G \cdot b}{l}$

 $\begin{array}{ccc} \text{Länge} & & m \\ \text{Breite} & & m \end{array}$

 $\begin{array}{cccc} F_G & \text{Gewichtskraft} & N & \frac{kgm}{s^2} \\ F_N & \text{Normalkraft} & N & \frac{kgm}{s^2} \\ \end{array}$

 $F_G = \frac{F_N \cdot l}{b}$ $b = \frac{F_N \cdot l}{F_G}$ $l = \frac{F_G \cdot b}{F_N}$

Interaktive Inhalte:

 $F_H = \frac{F_G \cdot h}{l}$

1.1.7 Hookesches Gesetz

 $F = D \cdot s$

Weg, Auslenkung $D \quad {\it Federkonstante,} Richtgr\"{o}{\it Se}$

 $D = \frac{F}{s} \qquad s = \frac{F}{D}$

6

1.1.8 Drehmoment

$M = F \cdot l$

Interaktive Inhalte:

$$\boxed{M = F \cdot l} \qquad \boxed{F = \frac{M}{l}} \qquad \boxed{l = \frac{M}{F}}$$

1.1.9 Hebelgesetz

$$F_1 \cdot l_1 = F_2 \cdot l_2$$

 $\begin{array}{llll} l2 & \text{Hebelarm} & m \\ l1 & \text{Hebelarm} & m \\ F_2 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_1 & \text{Einzelkraft} & N & \frac{kgm}{s^2} \\ F_1 = \frac{F_2 \cdot l_2}{l_1} & l_1 = \frac{F_2 \cdot l_2}{F_1} \end{array}$

Interaktive Inhalte:

$$F_1 \cdot l_1 = F_2 \cdot l_2$$
 $F_1 = \frac{F_2 \cdot l_2}{l_1}$ $l_1 = \frac{F_2 \cdot l_2}{F_1}$

1.1.10 Druck

$$p = \frac{F}{A}$$

 $\begin{array}{cccc} A & \text{Fläche} & m^2 \\ F & \text{Kraft} & N & \frac{kgn}{2} \\ p & \text{Druck} & Pa & \frac{\tilde{N}}{m^2} \\ F = p \cdot A & A = \frac{F}{p} \end{array}$

Interaktive Inhalte:

$$p = \frac{F}{A}$$

$$F = p \cdot A$$

$$A = \frac{F}{p}$$

1.1.11 Auftrieb in Flüssigkeiten

$$F_A = \rho \cdot g \cdot V$$

 $\begin{array}{cccc} V & \text{Volumen} & m^3 \\ g & \text{Fallbeschleunigung} & \frac{m}{s^2} & 9,81\frac{m}{s^2} \\ \rho & \text{Dichte} & \frac{kg}{m^3} \\ F_A & \text{Auftriebskraft} & N & \frac{kgm}{s^2} \\ \rho = \frac{F_A}{g_V} & V = \frac{F_A}{g_\rho} \end{array}$

Interaktive Inhalte:

$$F_A = \rho \cdot g \cdot V$$
 $\rho = \frac{F_A}{g \cdot V}$ $V = \frac{F_A}{g \rho}$

1.1.12 Schweredruck

$$p = \rho \cdot g \cdot h$$

 $\begin{array}{lll} h & \text{H\"ohe der Fl\"ussigkeitss\"aule} & m & \\ g & \text{Fallbeschleunigung} & \frac{m}{s^2} & 9,81\frac{m}{s^2} \\ \rho & \text{Dichte} & \frac{kg}{m^3} \\ p & \text{Druck} & Pa & \frac{N}{m^2} \\ \end{array}$ $\rho = \frac{p}{g \cdot h} \quad h = \frac{p}{g \rho}$

7

$$\boxed{p = \rho \cdot g \cdot h} \qquad \boxed{\rho = \frac{p}{g \cdot h}} \qquad \boxed{h = \frac{p}{g\rho}}$$

Mechanik Kinematik

1.2 Kinematik

1.2.1 Geradlinige Bewegung v=konst.

 $s = v \cdot t$ $t \quad \text{Zeit} \quad s$ $v \quad \text{Geschwindigkeit} \quad \frac{m}{s}$ $s \quad \text{Weg,Auslenkung} \quad m$ $v = \frac{s}{t} \quad t = \frac{s}{v}$

Interaktive Inhalte:

$$\boxed{s = v \cdot t} \boxed{v = \frac{s}{t}} \boxed{t = \frac{s}{v}}$$

1.2.2 Beschleunigte Bewegung

 $v = a \cdot t$ $t \quad \text{Zeit} \quad s$ $a \quad \text{Beschleunigung} \quad \frac{m}{s^2}$ $v \quad \text{Geschwindigkeit} \quad \frac{m}{s}$ $a = \frac{v}{t} \quad t = \frac{v}{a}$ $t \quad \text{Zeit} \quad s$ $a \quad \text{Beschleunigung} \quad \frac{m}{s^2}$ $s \quad \text{Weg,Auslenkung} \quad m$ $a = \frac{2 \cdot s}{t^2} \quad t = \sqrt{\frac{2 \cdot s}{a}}$

Interaktive Inhalte:

$$\boxed{v = a \cdot t} \boxed{a = \frac{v}{t}} \boxed{t = \frac{v}{a}} \boxed{s = \frac{1}{2} \cdot a \cdot t^2} \boxed{a = \frac{2 \cdot s}{t^2}} \boxed{t = \sqrt{\frac{2 \cdot s}{a}}}$$

1.2.3 Beschleunigte Bewegung mit Anfangsgeschwindigkeit

 $v = v_0 + a \cdot t$ Anfangsgeschwindigkeit tZeit Beschleunigung Geschwindigkeit $v_0 = v - a \cdot t \qquad t = \frac{v - v_0}{a}$ $s = s_0 + v_0 \cdot t + \frac{1}{2} \cdot a \cdot t^2$ Anfangsweg Anfangsgeschwindigkeit v_0 Zeit Beschleunigung Weg, Auslenkung $a = \frac{2 \cdot (s - s_0 - v_0 \cdot t)}{t^2}$ $s_0 = s - v_0 \cdot t - \frac{1}{2} \cdot a \cdot t^2$ $v_0 = \frac{s - s_0 - 0.5 \cdot a \cdot t^2}{t}$ $v^2 - v_0^2 = 2 \cdot a \cdot s$ Geschwindigkeit vAnfangsgeschwindigkeit v_0 Beschleunigung Weg, Auslenkung $v = \sqrt{2 \cdot a \cdot s + v_0^2}$ $v_0 = \sqrt{v^2 - 2 \cdot a \cdot s}$

1.2.4 Durchschnittsgeschwindigkeit

aufeinanderfolgende Zeitpunkte t_2 t_1 aufeinanderfolgende Zeitpunkte zurückgelegter Weg x_2 mzurückgelegter Weg x_1 m \underline{m} vBahngeschwindigkeit

Interaktive Inhalte:

$$v = \frac{x_1 - x_2}{t_1 - t_2}$$

1.2.5 Durchschnittsbeschleunigung

 $a = \frac{v_1 - v_2}{t_1 - t_2}$

aufeinanderfolgende Zeitpunkte t_1 aufeinanderfolgende Zeitpunkte v_2 Geschwindigkeit \underline{m} $\tfrac{s}{\underline{m}}$ Geschwindigkeit v_1 Durchschnittsbeschleunigung a

Interaktive Inhalte:

$$a = \frac{v_1 - v_2}{t_1 - t_2}$$

1.2.6 Freier Fall

 $h = \frac{1}{2} \cdot g \cdot t^2$

Zeit Fallbeschleunigung $9,81\frac{m}{s^2}$ Fallhöhe

 $g = \frac{2 \cdot h}{t^2}$ $t = \sqrt{\frac{2 \cdot h}{g}}$

 $v = \sqrt{2 \cdot h \cdot g}$

Höhe m $9,81\frac{m}{s^2}$ Fallbeschleunigung Geschwindigkeit

 $h = \frac{v^2}{2 \cdot g}$

Interaktive Inhalte:

 $h = \frac{1}{2} \cdot g \cdot t^2$

 $v = \sqrt{2 \cdot h \cdot g}$

Senkrechter Wurf nach oben

 $h = h_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$

 h_0 Abwurfhöhe v_0 Anfangsgeschwindigkeit t

Zeit

Fallbeschleunigung g $9,81\frac{m}{s^2}$ Höhe h

 $g = -\frac{2 \cdot (h - h_0 - v_0 \cdot t)}{t^2}$ $h_0 = h - v_0 \cdot t + \frac{1}{2} \cdot g \cdot t^2$

 $v = v_0 - g \cdot t$

Anfangsgeschwindigkeit t

Fallbeschleunigung $9,81\frac{m}{s^2}$ gGeschwindigkeit v

 $v_0 = v + g \cdot t \qquad t = \frac{v_0 - v}{g}$

Interaktive Inhalte:

 $g = -\frac{2 \cdot (h - h_0 - v_0 \cdot t)}{t^2}$ $h = h_0 + v_0 \cdot t - \frac{1}{2} \cdot g \cdot t^2$

 $-v_0 \pm \sqrt{v_0^2 + 4 \cdot 0.5 \cdot g \cdot (h_0 - h)}$

 $h_0 = h - v_0 \cdot t + \frac{1}{2} \cdot g \cdot t^2$

 $v = v_0 - g \cdot t$

Mechanik Kinematik

$$v_0 = v + g \cdot t$$
 $t = \frac{v_0 - v}{g}$ $g = \frac{v_0 - v}{t}$

1.2.8 Waagrechter Wurf

Bewegung in x-Richtung:

 $x = v_x \cdot t$

Bewegung in y-Richtung:

 $y = -\tfrac{1}{2} \cdot g \cdot t^2$

 $v_y = g \cdot t$

Zeitfreie Darstellung:

 $y = -\frac{1}{2} \cdot g \cdot (\frac{x}{v_x})^2 = -\frac{g}{2 \cdot v_x^2} \cdot x^2$

Gesamtgeschwindigkeit:

 $v_{ges} = \sqrt{v_x^2 + v_y^2}$

 ${\bf Wurfzeit:}$

 $t = \sqrt{\frac{2 \cdot h_0}{g}}$

Wurfweite:

 $x = v_x \cdot \sqrt{\frac{2 \cdot h_0}{g}}$

Auftreffwinkel:

 $\tan \alpha = \frac{v_y}{v_x}$

x	x-Richtung	m	Meter
y	y-Richtung	m	Meter
h_0	Anfangshöhe	m	Meter
$v_0 = v_x$	Anfangsgeschwindigkeit	$\frac{m}{a}$	
v_y	Geschwindigkeit in y-Richtung	$\frac{\frac{m}{s}}{\frac{m}{s}}$	
x_w	Wurfweite	$\overset{\circ}{m}$	Meter
v_{qes}	Gesamtgeschwindigkeit	$\frac{m}{2}$	
g	Fallbeschleunigung	$9^{s}, 81\frac{m}{2}$	

Interaktive Inhalte:

$$y = \frac{1}{2} \cdot g \cdot t^2 \qquad \boxed{t = \sqrt{\frac{2 \cdot y}{g}}} \qquad \boxed{s = v \cdot t} \qquad \boxed{v = \frac{s}{t}}$$

1.2.9 Schiefer Wurf

r	=	$v_0^2 \cdot sin(2 \cdot \alpha)$
xw		g

 $v_y = v \cdot \sin\alpha - g \cdot t$

 $v_x = v \cdot cos\alpha$

 $v = \sqrt{v_x^2 + v_y^2}$

Fallbeschleunigung $9,81\frac{m}{s^2}$ gAbwurfwinkel α Anfangsgeschwindigkeit v_0 Wurfweite x_w $t = \frac{v_0 \cdot sin\alpha}{}$

gt. Winkel Geschwindigkeitsvektor v - x-Achse α Betrag der Geschwindigkeit

Geschwindigkeit in y-Richtung

 $v_y + g \cdot t$

Winkel Geschwindigkeitsvektor v - x-Achse α Betrag der Geschwindigkeit v

Geschwindigkeit in x-Richtung

Fallbeschleunigung

Geschwindigkeit in x-Richtung Geschwindigkeit in y-Richtung

Betrag der Geschwindigkeit

 $v_x = \sqrt{v^2 - v_y^2}$

 $9,81\frac{m}{s^2}$

 $\frac{s}{\underline{m}}$

Kinematik Mechanik

$$v_y = \sqrt{v^2 - v_x^2}$$

Betrag der Geschwindigkeit Geschwindigkeit in x-Richtung v_x

Geschwindigkeit in y-Richtung

$$v_y = tan\alpha \cdot v_x \quad tan\alpha = \frac{v_y}{v_x} \quad v_x = \frac{v_y}{tan\alpha}$$

$$y = x \cdot tan\alpha - \frac{g \cdot x^2}{2 \cdot v_0^2 \cdot cos^2 \alpha}$$

Anfangsgeschwindigkeit

Fallbeschleunigung g

 $\frac{\frac{m}{s}}{\frac{m}{s^2}}$ $9,81\frac{m}{s^2}$

Abwurfwinkel

in x-Richtung (Bahnkurve)

in y-Richtung (Bahnkurve) y

$$t = \frac{2 \cdot v_0 \cdot sin\alpha}{a}$$

Interaktive Inhalte:

$$x_w = \frac{v_0^2 \cdot \sin(2 \cdot \alpha)}{g}$$

 $v_y = v \cdot sin\alpha - g \cdot t$

 $v_x = v \cdot cos\alpha$

$$v_x = \sqrt{v^2 - v_y^2}$$

 $v_y = tan\alpha \cdot v_x$

 $t = \frac{2 \cdot v_0 \cdot sin\alpha}{}$

1.2.10 Frequenz-Periodendauer

$$f = \frac{1}{T}$$

Periodendauer

 $hz = \frac{1}{\epsilon}$ Frequenz

Zeit

Perioden-Umdrehungen

Frequenz

 $hz = \frac{1}{s}$

 $n = f \cdot t$

Interaktive Inhalte:

$$f = \frac{1}{T}$$

 $T = \frac{1}{f}$

 $n = f \cdot t$

1.2.11 Winkelgeschwindigkeit

$$\omega = 2 \cdot \pi \cdot f$$

Kreiszahl

3,1415927

Frequenz

Winkelgeschwindigkeit

Interaktive Inhalte:

$$\omega = 2 \cdot \pi \cdot f$$

 $f = \frac{\omega}{2 \cdot \pi}$

1.2.12 Bahngeschwindigkeit

$$v = \omega \cdot r$$

Radius

Winkelgeschwindigkeit

Bahngeschwindigkeit

 $\omega = \frac{v}{r}$ $r = \frac{v}{\omega}$

$$v = \omega \cdot r$$
 $\omega = \frac{v}{r}$

$$\omega = \frac{v}{\pi}$$

$$r = \frac{v}{\omega}$$

1.2.13 Zentralbeschleunigung

$$a_z = \omega^2 \cdot r$$

r Radius

Winkelgeschwindigkeit

 a_z Zentralbeschleunigung

$$\omega = \sqrt{\frac{a_z}{r}} \quad r = \frac{a_z}{\omega}$$

$$a_z = \omega^2 \cdot r$$

$$\omega = \sqrt{\frac{a_z}{r}}$$

$$r = \frac{a_z}{\omega}$$

1.3 Dynamik

1.3.1 Kraft

$$F=m\cdot a$$

 $\begin{array}{ll} m & \text{Masse} & kg \\ a & \text{Beschleunigung} & \frac{m}{s^2} \\ F & \text{Kraft} & N & \frac{kgm}{s^2} \\ m = \frac{F}{a} & a = \frac{F}{m} \end{array}$

Interaktive Inhalte:

$$F = m \cdot a$$

$$m = \frac{F}{a}$$

$$a = \frac{F}{m}$$

1.3.2 Schiefe Ebene

 $F_H = F_G \cdot sin\alpha$

 $\begin{array}{cccc} \alpha & {
m Neigungswinkel} & ^{\circ} & \\ F_G & {
m Gewichtskraft} & N & \frac{kgn}{s^2} \\ F_H & {
m Hangabtriebskraft} & N & \end{array}$

 $F_G = \frac{F_H}{\sin \alpha}$ $\sin \alpha = \frac{F_H}{F_G}$

 $F_N = F_G \cdot cos\alpha$

 α Neigungswinkel

 F_G Gewichtskraft $N = \frac{kgm}{s^2}$ F_N Normalkraft $N = \frac{kgm}{s^2}$

 $F_G = \frac{F_N}{\cos \alpha}$ $\cos \alpha = \frac{F_N}{F_G}$

$$F_H = F_G \cdot sin\alpha$$

$$F_G = \frac{F_H}{\sin \alpha}$$

$$sin\alpha = \frac{F_H}{F_G}$$

$$F_N = F_G \cdot cos\alpha$$

$$F_G = \frac{F_N}{\cos \alpha}$$

$$cos\alpha = \frac{F_N}{F_G}$$

1.3.3 Zentralkraft

$$F_z = m \cdot \omega^2 \cdot r$$

Radius ω Winkelgeschwindigkeit Masse Zentralkraft m $mm = \frac{F_z}{\omega^2 \cdot r}$ $\omega = \sqrt{\frac{F_z}{m \cdot r}}$ $r = \frac{F_z}{m \cdot \omega^2}$

Interaktive Inhalte:

$$\boxed{F_z = m \cdot \omega^2 \cdot r} \boxed{m = \frac{F_z}{\omega^2 \cdot r}} \boxed{\omega = \sqrt{\frac{F_z}{m \cdot r}}} \boxed{r = \frac{F_z}{m \cdot \omega^2}}$$

1.3.4 Gravitationsgesetz

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

G6,672041E-11Gravitationskonstante rAbstand der Massen Massen m_2 Massen m_1 Kraft

Interaktive Inhalte:

$$\boxed{F = G \cdot \frac{m_1 \cdot m_2}{r^2}} \quad r = \sqrt{\frac{G \cdot m_1}{F}}$$

$$m_1 = \frac{F \cdot r^2}{G \cdot m_2}$$

$$m_2 = \frac{F \cdot r^2}{G \cdot m_1}$$

1.3.5 Impuls

$$p = m \cdot v$$

Geschwindigkeit $\overset{s}{kg}$ Masse Ns $kg^{\frac{m}{s}}$ Impuls p $m = \frac{p}{v}$ $v = \frac{p}{m}$

Interaktive Inhalte:

$$\boxed{p = m \cdot v} \boxed{m = \frac{p}{v}} \boxed{v = \frac{p}{m}}$$

1.3.6 Elastischer Stoß

Elastischer Stoß

Geschwindigkeit nach dem Stoß:

$$v_1' = \frac{v_1(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}$$
 $v_2' = \frac{v_2(m_2 - m_1) + 2m_1v_1}{m_1 + m_2}$
Impulserhaltungssatz:

$$p_1 + p_2 = p'_1 + p'_2$$

$$m_1 v_1 + m_2 v_2 = m_1 v'_1 + m_2 v'_2$$

Energieerhaltungssatz:

$$\begin{split} E_{kin} &= E'_{kin} \\ E_1 + E_2 &= E'_1 + E'_2 \\ \frac{1}{2} m_1 v_1^2 + \frac{1}{2} m_2 v_2^2 &= \frac{1}{2} m_1 v_1'^2 + \frac{1}{2} m_2 v_2'^2 \end{split}$$

m_1	Masse 1	kg
m_2	Masse 2	kg
v_1	Geschwindigkeit von m_1 vorher	$\frac{m}{s}$
v_2	Geschwindigkeit von m_2 vorher	$\frac{m}{n}$
E_1	Kinetische Energie von m_1 vorher	$\overline{\overset{s}{J}}$
E_2	Kinetische Energie von m_2 vorher	J
v_1'	Geschwindigkeit von m_1 nachher	$\frac{m}{s}$
v_2'	Geschwindigkeit von m_2 nachher	$\frac{\overset{\circ}{m}}{s}$
$\bar{E'_1}$	Kinetische Energie von m_1 nachher	\mathring{J}
E_2^{\prime}	Kinetische Energie von m_2 nachher	J
	-	

Unelastischer Stoß

Unelastischer Stoß

Geschwindigkeit nach dem Stoß:
$$v_1'=v_2'=v'=\dfrac{m_1v_1+m_2v_2}{m_1+m_2}$$

Impulserhaltungssatz:

$$p_1 + p_2 = p_1' + p_2'$$

$$m_1 v_1 + m_2 v_2 = m_1 v_1' + m_2 v_2'$$

Energie:

$$E_{kin} > E'_{kin}$$

$$\Delta E = E_1 + E_2 - (E_1' + E_2')$$

$$\Delta E = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - (\frac{1}{2}m_1v'^2 + \frac{1}{2}m_2v'^2)$$

$$\begin{array}{cccc} m_1 & \text{Masse 1} & kg \\ m_2 & \text{Masse 2} & kg \\ v_1 & \text{Geschwindigkeit von } m_1 \text{ vorher} & \frac{m}{s} \\ v_2 & \text{Geschwindigkeit von } m_2 \text{ vorher} & \frac{m}{s} \\ E_1 & \text{Kinetische Energie von } m_1 \text{ vorher} & J \end{array}$$

$$E_2$$
 Kinetische Energie von m_2 vorher J
 v'_1 Geschwindigkeit von m_1 nachher $\frac{m}{s}$
 v'_2 Geschwindigkeit von m_2 nachher $\frac{m}{s}$

$$v'_1$$
 Geschwindigkeit von m_1 nachher v'_2 Geschwindigkeit von m_2 nachher

$$E'_1$$
 Kinetische Energie von m_1 nachher E'_2 Kinetische Energie von m_2 nachher

Kinetische Energie von
$$m_1$$
 nachher
Kinetische Energie von m_2 nachher

Mechanische Arbeit

$$W = F \cdot s$$

$$s$$
 Weg, Auslenkung m

$$F$$
 Kraft

$$\begin{array}{ccc}
N & \frac{kgm}{s^2} \\
I & Nm - W
\end{array}$$

$$W$$
 Arbeit $F = \frac{W}{s}$ $s = \frac{W}{F}$

Interaktive Inhalte:

$$W = F \cdot s$$
 $F = \frac{W}{s}$

$$F = \frac{W}{s}$$

$$s = \frac{W}{F}$$

1.3.9 Hubarbeit - Potentielle Energie

$$W = F_G \cdot h$$

$$h$$
 Hubhöhe m

$$F$$
 Kraft N $\frac{kgm}{s^2}$ W Arbeit J $Nm = Ws$

$$F_G = \frac{W}{h}$$
 $h = \frac{W}{F_G}$

Interaktive Inhalte:

$$W = F_G \cdot h$$

$$F_G = \frac{W}{h}$$

$$h = \frac{W}{F_G}$$

1.3.10 Spannarbeit-Spannenergie

$$W = \frac{1}{2} \cdot D \cdot s^2$$

$$egin{array}{ll} s & {
m Weg,Auslenkung} \ D & {
m Federkonstante,Richtgr\"{o}{
m Se}} \end{array}$$

 $s = \sqrt{\frac{2 \cdot W}{D}}$ $D = \frac{2 \cdot W}{s^2}$

$$\frac{M}{m}$$
 $\frac{kg}{a^2}$

$$W = \frac{1}{2} \cdot D \cdot S^2$$

$$W$$
 Arbeit

$$\begin{array}{ll}
\frac{N}{m} & \frac{kg}{s^2} \\
J & Nm = Ws
\end{array}$$

$$W = \frac{1}{2} \cdot D \cdot s^2$$

$$s = \sqrt{\frac{2 \cdot W}{D}}$$

$$D = \frac{2 \cdot W}{s^2}$$

1.3.11 Beschleunigungsarbeit - kinetische Energie

$$W = \frac{1}{2} \cdot m \cdot v^2$$

 $\begin{array}{lll} v & \text{Geschwindigkeit} & \frac{m}{s} \\ m & \text{Masse} & kg \\ W & \text{Arbeit} & J & Nm = Ws \\ m = \frac{2 \cdot W}{v^2} & v = \sqrt{\frac{2 \cdot W}{m}} \end{array}$

Interaktive Inhalte:

$$\boxed{W = \frac{1}{2} \cdot m \cdot v^2 \qquad \boxed{m = \frac{2 \cdot W}{v^2}} \qquad v = \sqrt{\frac{2 \cdot W}{m}}$$

1.3.12 Mechanische Leistung

$$P = \frac{W}{t}$$

 $\begin{array}{lll} W & \text{Arbeit} & J & Nm = Ws \\ t & \text{Zeit} & s \\ P & \text{Leistung} & \frac{J}{s} & \frac{Nm}{s} = W \\ W = P \cdot t & t = \frac{W}{P} \end{array}$

<u>Interaktive Inhalte</u>:

$$P = \frac{W}{t} \qquad W = P \cdot t \qquad t = \frac{W}{P}$$

1.3.13 Wirkungsgrad

$$\eta = \frac{P_2}{P_1}$$

 $\begin{array}{lll} P_2 & \text{abgegebene Leistung} & W & VA = \frac{J}{\tilde{s}} \\ P_1 & \text{zugef\"{u}hrte Leistung} & W & VA = \frac{\tilde{s}}{s} \\ \eta & \text{Wirkungsgrad} \\ P_1 = \frac{p_2}{\eta} & P_2 = \eta \cdot P_1 \end{array}$

$$\eta = \frac{P_2}{P_1} \qquad \boxed{P_1 = \frac{p_2}{\eta}} \qquad \boxed{P_2 = \eta \cdot P_1}$$

Mechanik Schwingungen/Wellen

Schwingungen/Wellen

1.4.1 Lineares Kraftgesetz

$$F = -D \cdot y$$

Auslenkung, Elongation DFederkonstante, Richtgröße

 $\frac{\frac{kg}{s^2}}{\frac{kgm}{s^2}}$

Kraft

 $D = \frac{-F}{y}$ $y = \frac{-F}{D}$

Interaktive Inhalte:

$$F = -D \cdot y$$

$$D = \frac{-F}{y}$$

1.4.2 Periodendauer (harmonische Schwingung)

$$T = 2 \cdot \pi \cdot \sqrt{\frac{m}{D}}$$

Kreiszahl

3, 1415927

D $Federkonstante, Richtgr\"{o}\pounds$

Masse

kg

Periodendauer

$$D = m \cdot \frac{(2 \cdot \pi)^2}{T^2}$$
 $m = D \cdot \frac{T^2}{(2 \cdot \pi)^2}$

Interaktive Inhalte:

$$T = 2 \cdot \pi \cdot \sqrt{\frac{m}{D}}$$

$$D = m \cdot \frac{(2 \cdot \pi)^2}{T^2}$$

$$m = D \cdot \frac{T^2}{(2 \cdot \pi)^2}$$

Bewegungsgleichung (harmonische Schwingung)

$$y = y_s \cdot \sin(\omega \cdot t + \phi_0)$$

Zeit

Phase für t=0 ϕ_0

rad

Winkelgeschwindigkeit ω

max. Auslenkung, Scheitelwert Auslenkung, Elongation

$$y_s = \frac{y}{\sin(\omega \cdot t + \phi_0)}$$
 $t = \frac{\arcsin(y/y_s) - \phi_0}{\omega}$

$$y = y_s \cdot \sin(\omega \cdot t + \phi_0)$$

$$y_s = \frac{y}{sin(\omega \cdot t + \phi_0)}$$

$$t = \frac{\arcsin(y/y_s) - \phi_0}{\omega}$$

2 Elektrotechnik

2.1 Elektrizitätslehre

2.1.1 Stromstärke

$$I = \frac{\Delta Q}{\Delta t}$$

 $\begin{array}{lll} \Delta t & \text{Zeit"anderung} & s \\ \Delta Q & \text{Ladungs"anderung} & C & As \\ I & \text{Stromst"arke} & A \\ \Delta Q = I \cdot \Delta t & \Delta t = \frac{\Delta Q}{I} \end{array}$

<u>Interaktive Inhalte</u>:

$$I = rac{\Delta Q}{\Delta t}$$
 $\Delta Q = I \cdot \Delta t$ $\Delta t = rac{\Delta Q}{I}$

2.1.2 Ohmsches Gesetz

$$R = \frac{U}{I}$$

 $\begin{array}{cccc} I & \text{Stromstärke} & A \\ U & \text{Spannung} & V \\ R & \text{Widerstand} & \Omega & \frac{V}{A} \\ U = R \cdot I & I = \frac{U}{R} \\ \end{array}$

Interaktive Inhalte:

$$R = \frac{U}{I}$$
 $U = R \cdot I$ $I = \frac{U}{R}$

2.1.3 Reihenschaltung von Widerständen

$$R_g = R_1 + R_2 \dots + R_n$$
$$I = \text{konstant}$$

 $\begin{array}{lll} R_2 & \text{Einzelwiderstand} & \Omega & \frac{V}{4} \\ R_1 & \text{Einzelwiderstand} & \Omega & \frac{V}{4} \\ R_g & \text{Gesamtwiderstand} & \Omega & \frac{V}{4} \\ R_g = R_1 + R_2 & R_1 = R_g - R_2 & R_2 = R_g - R_1 \end{array}$

Elektrizetätslehre Elektrizitätslehre

$$U_g = U_1 + U_2 ... + U_n$$

 U_2 Einzelspannung V_2

 U_1 Einzelspannung V U_g Gesamtspannung V

 $U_g = U_1 + U_2$ $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

Interaktive Inhalte:

2.1.4 Parallelschaltung von Widerständen

$$\frac{1}{R_g} = \frac{1}{R_1} + \frac{1}{R_2} ... + \frac{1}{R_n}$$

$$U = \text{konstant}$$

 $\begin{array}{cccc} R_2 & \text{Einzelwiderstand} & \Omega & \frac{V}{\sqrt{4}} \\ R_1 & \text{Einzelwiderstand} & \Omega & \frac{V}{\sqrt{4}} \\ R_g & \text{Gesamtwiderstand} & \Omega & \frac{V}{A} \end{array}$

 $R_g = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad R_1 = \frac{R_2 \cdot R_g}{R_2 - R_g} \qquad R_2 = \frac{R_1 \cdot R_g}{R_1 - R_g}$

$$I_g = I_1 + I_2 ... + I_n$$

 I_2 Einzelstrom A

 I_1 Einzelstrom A I_g Gesamtstrom A

 $I_g = I_1 + I_2$ $I_1 = I_g - I_2$ $I_2 = I_g - I_1$

Interaktive Inhalte:

2.1.5 Widerstandsänderung - Temperatur

$$\Delta R = R \cdot \alpha \cdot \Delta T$$

 α Temperaturbeiwert $\frac{1}{F}$ ΔT Temperaturänderung F

 $\Delta R = R \cdot \alpha \cdot \Delta T$ $\alpha = \frac{R}{\Delta R \cdot \Delta T}$ $\Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T}$

$$\Delta R = R \cdot \alpha \cdot \Delta T \qquad \Delta R = R \cdot \alpha \cdot \Delta T \qquad \alpha = \frac{R}{\Delta R \cdot \Delta T} \qquad \Delta T = \frac{R}{\Delta R \cdot \alpha \cdot \Delta T}$$

2.1.6 Spezifischer Widerstand

$$R = \frac{\rho \cdot l}{A}$$

Fläche Länge

 $\begin{array}{ll} \text{Spezifischer Widerstand} & \frac{\Omega m m^2}{m} \\ \text{Widerstand} & \Omega \end{array}$ R Widerstand

 $l = \frac{R \cdot A}{\rho}$ $\rho = \frac{R \cdot A}{l}$ $A = \frac{R \cdot \rho}{R}$

Interaktive Inhalte:

$$R = \frac{\rho \cdot l}{A}$$

$$l = \frac{R \cdot A}{\rho}$$

$$\rho = \frac{R \cdot A}{l}$$

$$A = \frac{R \cdot \rho}{R}$$

2.1.7 Spezifischer Leitwert

$$R = \frac{l}{\kappa \cdot A}$$

Fläche Länge

 $\begin{array}{ll} \kappa & \text{Spezifischer Leitwert} & \frac{m}{\Omega mm^2} \\ R & \text{Widerstand} & \Omega \end{array}$

 $l = R \cdot \kappa \cdot A$ $A = \frac{l}{\kappa \cdot R}$ $\kappa = \frac{l}{R \cdot A}$

<u>Interaktive Inhalte</u>:

$$R = \frac{l}{\kappa \cdot A}$$

$$l = R \cdot \kappa \cdot A$$

$$A = \frac{l}{\kappa \cdot R}$$

$$\kappa = \frac{l}{R \cdot A}$$

2.1.8 Elektrische Leistung

$$P = U \cdot I$$

Stromstärke A

U Spanning $P \quad \text{Leistung} \qquad \begin{array}{c} V \\ W \quad VA = \frac{J}{s} \end{array}$

 $U = \frac{P}{I}$ $I = \frac{P}{U}$

Interaktive Inhalte:

$$P = U \cdot I$$
 $U = \frac{P}{I}$

$$I =$$

$$I = \frac{P}{U}$$

2.1.9 Elektrische Arbeit

$$W = U \cdot I \cdot t$$

Stromstärke A

 $\begin{array}{ccc} U & \text{Spannung} & V \\ W & \text{Arbeit} & Ws & VAs = J \end{array}$

 $U = \frac{W}{I \cdot t}$ $I = \frac{W}{U \cdot t}$ $t = \frac{P}{U \cdot I}$

$$W = U \cdot I \cdot t$$

$$U = \frac{W}{I_{t}t}$$

$$I = \frac{W}{U \cdot t}$$

$$t = \frac{P}{U.I}$$

Elektrisches Feld

2.2 Elektrisches Feld

2.2.1 Elektrische Feldstärke

$$E = \frac{F}{Q}$$

F Kraft $N = \frac{kgn}{s^2}$ C Ladung C = As

E Elektrische Feldstärke $\frac{N}{C}$

$$F = E \cdot Q$$
 $Q = \frac{F}{E}$

$$E = \frac{U}{d}$$

 $\begin{array}{ccc} \text{Spannung} & V \\ \text{Plattenabstand} & m \\ \end{array}$

E Elektrische Feldstärke $\frac{N}{C}$

$$U = E \cdot d$$
 $d = \frac{U}{E}$

Interaktive Inhalte:

$$E = \frac{F}{Q}$$

$$F = E \cdot Q$$

$$Q = \frac{F}{E}$$
 $E = \frac{U}{d}$

$$U = E \cdot d$$

$$d = \frac{U}{E}$$

2.2.2 Gesetz von Coulomb

$$F = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

 Q_2 Ladung 2

 $egin{array}{ccc} C & As \ C & As \end{array}$

 Q_1 Ladung 1 r Entfernung

1

 π Kreiszahl

3, 1415927

 ϵ_0 Elekt. Feldkonstante F Kraft

 $\stackrel{Vm}{N} = \frac{kgm}{s^2}$

 $r = \sqrt{\frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{F}}$ $Q_1 = 4\pi\epsilon_0 \cdot \frac{F \cdot r^2}{Q_2}$

Interaktive Inhalte:

$$F = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r^2}$$

$$r = \sqrt{\frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{F}}$$

$$Q_1 = 4\pi\epsilon_0 \cdot \frac{F \cdot r^2}{Q_2}$$

2.2.3 Kapazität eines Kondensators

$$C = \frac{Q}{U}$$

U Spannung V

Q Ladung C As C Kapazität C C Kapazität C C

 $Q = C \cdot U$ $U = \frac{Q}{C}$

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

d Plattenabstand

Fläche m

 ϵ_0 Elekt. Feldkonstante $\frac{A}{Vi}$

 ϵ_r Dielektrizitätszahl C Kapazität

 $F \frac{As}{V}$

$$A = \frac{C \cdot d}{\epsilon_0 \epsilon_r}$$
 $d = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{C}$

$$C = \frac{Q}{U}$$

$$Q = C \cdot U$$

$$U = \frac{Q}{C}$$

$$C = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{d}$$

$$A = \frac{C \cdot d}{\epsilon_0 \epsilon_r}$$

$$d = \epsilon_0 \cdot \epsilon_r \cdot \frac{A}{C}$$

Elektrotechnik Elektrisches Feld

2.2.4 Reihenschaltung von Kondensatoren

$$\frac{1}{C_q} = \frac{1}{C_1} + \frac{1}{C_2} ... + \frac{1}{C_n}$$

 $\begin{array}{ccccc} C_2 & \text{Kapazit"at 1} & F & \frac{As}{Y} \\ C_1 & \text{Kapazit"at 1} & F & \frac{As}{Y} \\ C_g & \text{Gesamtkapazit"at} & F & \frac{As}{Y} \\ C_g = \frac{C_1 \cdot C_2}{C_1 + C_2} & C_1 = \frac{C_2 \cdot C_g}{C_2 - C_g} & C_2 = \frac{C_1 \cdot C_g}{C_1 - C_g} \end{array}$

$$C_g = \frac{C_1 \cdot C_2}{C_1 + C_2}$$
 $C_1 = \frac{C_2 \cdot C_g}{C_2 - C_g}$ $C_2 = \frac{C_1 \cdot C_g}{C_1 - C_g}$

$$U_g = U_1 + U_2 ... + U_n$$

 U_2 Einzelspannung U_1 Einzelspannung

 U_g Gesamtspannung V

$$U_g = U_1 + U_2$$
 $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

Interaktive Inhalte:

$$\boxed{ \frac{1}{C_g} = \frac{1}{C_1} + \frac{1}{C_2}.. + \frac{1}{C_n} } \boxed{ C_g = \frac{C_1 \cdot C_2}{C_1 + C_2} } \boxed{ C_1 = \frac{C_2 \cdot C_g}{C_2 - C_g} } \boxed{ C_2 = \frac{C_1 \cdot C_g}{C_1 - C_g} } \boxed{ U_g = U_1 + U_2... + U_n } \boxed{ U_g = U_1 + U_2 ... + U$$

2.2.5 Parallelschaltung von Kondensatoren

$$C_g = C_1 + C_2 \dots + C_n$$

 $\begin{array}{ccccc} C_2 & \text{Kapazit"at 1} & F & \frac{As}{V} \\ C_1 & \text{Kapazit"at 1} & F & \frac{As}{V} \\ C_g & \text{Gesamtkapazit"at} & F & \frac{As}{V} \end{array}$

$$C_g = C_1 + C_2$$
 $C_1 = C_g - C_2$ $C_2 = C_g - C_1$

$$Q_g = Q_1 + Q_2 ... + Q_n$$

 $\begin{array}{cccc} Q_2 & \text{Ladung 2} & & C & As \\ Q_1 & \text{Ladung 1} & & C & As \end{array}$

 Q_g Gesamtladung C As

 $Q_g = Q_1 + Q_2$ $Q_1 = Q_g - Q_2$ $Q_2 = Q_g - Q_1$

$$\boxed{ C_g = C_1 + C_2 + C_n } \boxed{ C_g = C_1 + C_2 } \boxed{ C_1 = C_g - C_2 } \boxed{ C_2 = C_g - C_1 } \boxed{ Q_g = Q_1 + Q_2 ... + Q_n } \boxed{ Q_g = Q_1 + Q_2 ... + Q$$

Elektrisches Feld

$$Q_1 = Q_g - Q_2 \qquad Q_2 = Q_g - Q_1$$

2.2.6 Elektrische Energie des Kondensators

$$W = \frac{1}{2} \cdot C \cdot U^2$$

$$C \quad \text{Kapazität} \quad F \quad \frac{As}{V}$$

$$U \quad \text{Spannung} \quad V$$

$$W \quad \text{Arbeit} \quad Ws \quad VAs = J$$

$$U = \sqrt{\frac{2 \cdot W}{C}} \quad C = \frac{2 \cdot W}{U^2}$$

$$W = \frac{1}{2} \cdot C \cdot U^2 \qquad U = \sqrt{\frac{2 \cdot W}{C}} \qquad C = \frac{2 \cdot W}{U^2}$$

Elektrotechnik Magnetisches Feld

Magnetisches Feld

2.3.1 Flußdichte

$$B = \frac{F}{I \cdot l}$$

 $Stromst\"{a}rke$

Länge

$$F = B \cdot I \cdot l$$
 $I = \frac{F}{B \cdot l}$ $l = \frac{F}{I \cdot B}$

<u>Interaktive Inhalte</u>:

$$B = \frac{F}{I \cdot l} \quad \boxed{F = B \cdot I \cdot l} \quad I = \frac{F}{B \cdot l} \quad \boxed{l = \frac{F}{I \cdot B}}$$

$$I = \frac{F}{B \cdot l}$$
 $l =$

2.3.2 Feldstärke einer langgestreckten Spule

$$H = \frac{I \cdot N}{l}$$

Länge der Spule

Anzahl der Windungen Stromstärke

 ${\cal H}$ Magnetische Feldstärke

$$I = \frac{H \cdot l}{N}$$
 $N = \frac{H \cdot l}{I}$ $l = \frac{I \cdot N}{H}$

$$\frac{H \cdot l}{N}$$

$$V = \frac{H \cdot l}{I}$$
 $l = \frac{I \cdot l}{I}$

2.3.3 Flußdichte - Feldstärke

$$B = \mu_r \cdot \mu_0 \cdot H$$

Permeabilitätszahl

$$\mu_0$$
 Magn. Feldkonstante $\frac{Vs}{Am}$
 H Magnetische Feldstärke $\frac{A}{m}$
 H Magnetische Flußdichte $\frac{B}{H}$
 $H = \frac{B}{\mu_r \cdot \mu_0}$ $\mu_r = \frac{B}{\mu_0 \cdot H}$ $\mu_0 = \frac{B}{\mu_r \cdot H}$

Interaktive Inhalte:

$$B = \mu_r \cdot \mu_0 \cdot H$$

$$H = \frac{B}{\mu_r;\mu_0}$$
 μ_r

$$\mu_r = \frac{B}{\mu_0 \cdot H}$$

$$\mu_0 = \frac{B}{\mu_r \cdot H}$$

2.3.4 Magnetischer Fluß

$$\Phi = B \cdot A \cdot cos(\delta)$$

Winkel Flächennormale-Flußdichte

B Magnetische Flußdichte

Φ Magnetischer Fluß

$$A = \frac{\Phi}{B \cdot cos(\delta)} \qquad B = \frac{\Phi}{A \cdot cos(\delta)} \qquad \delta = arccos(\frac{\Phi}{B \cdot A})$$

Interaktive Inhalte:

$$\Phi = B \cdot A \cdot \cos(\delta)$$

$$A = \frac{\Phi}{R_{\text{cos}}(\delta)}$$

$$B = \frac{\Phi}{4 \cdot \cos(\delta)}$$

$$\delta = \arccos(\frac{\Phi}{B \cdot A})$$

2.3.5 Induktivität einer langgestreckten Spule

$$L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{lSP}$$

AFläche

 μ_0

 m^2

lSPLänge der Spule

NAnzahl der Windungen

Permeabilitätszahl μ_r

 ${\bf Magn.} \ {\bf Feldkonstante}$

 $L \quad \text{Induktivität} \quad \begin{array}{c} A\overline{m} \\ H \end{array} \quad \begin{array}{c} Vs \\ A \end{array}$ $l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L} \quad A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2} \quad N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r}}.$

Elektrotechnik Magnetisches Feld

$$L = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{lSP}$$

$$l_{SP} = \mu_0 \cdot \mu_r \cdot \frac{A \cdot N^2}{L}$$

$$A = \frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot N^2}$$

$$N = \sqrt{\frac{L \cdot l}{\mu_0 \cdot \mu_r \cdot A}}$$

2.3.6 Reihenschaltung (Induktivität)

$$L_g = L_1 + L_2 + L_n$$

 L_2 Induktivität 2

$$L_g = L_1 + L_2$$
 $L_1 = L_g - L_2$ $L_2 = L_g - L_1$

$$U_g = U_1 + U_2 ... + U_n$$

 U_2 Einzelspannung

 U_1 Einzelspannung

 U_g Gesamtspannung V $U_g = U_1 + U_2$ $U_1 = U_g - U_2$ $U_2 = U_g - U_1$

Interaktive Inhalte:

2.3.7 Parallelschaltung (Induktivität)

$$\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2} .. + \frac{1}{L_n}$$

 L_2 induktivität 2 H L_1 Induktivität 1 H L_g Gesamtinduktivität H $L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g}$ $L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$

Elektrotechnik Magnetisches Feld

$$I_g = I_1 + I_2 ... + I_n$$

 I_2 Einzelstrom

 I_1 Einzelstrom

 I_g Gesamtstrom A

 $I_g = I_1 + I_2$ $I_1 = I_g - I_2$ $I_2 = I_g - I_1$

Interaktive Inhalte:

$$\frac{1}{L_g} = \frac{1}{L_1} + \frac{1}{L_2} ... + \frac{1}{L_n}$$

$$I_2 = I_g - I_1$$

hier klicken

$$L_1 = \frac{L_2 \cdot L_g}{L_2 - L_g} \qquad \boxed{ L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}} \qquad \boxed{ I_g = I_1 + I_2 ... + I_n } \qquad \boxed{ I_g = I_1 + I_2 } \qquad \boxed{ I_1 = I_g - I_2 }$$

$$L_2 = \frac{L_1 \cdot L_g}{L_1 - L_g}$$

$$I_g = I_1 + I_2 ... + I_n$$

$$I_g = I_1 + I_2$$

$$I_1 = I_q - I_2$$

$$I_2 = I_g - I_1$$

Elektrotechnik Wechselstrom

Wechselstrom 2.4

2.4.1 Wechselspannung - Wechselstrom

 $U_t = U_{max} \cdot sin(\omega \cdot t)$

Zeit VScheitel-, Spitzenspannung U_{max} Kreisfrequenz

Momentanspannung zum Zeitpunkt t U_t

 $I_t = I_{max} \cdot sin(\omega \cdot t)$

Interaktive Inhalte:

$$U_t = U_{max} \cdot sin(\omega \cdot t)$$

$$I_t = I_{max} \cdot sin(\omega \cdot t)$$

2.4.2 Scheitel - Effektiv

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

Scheitel-, Spitzenspannung U_{eff} Effektivspannung

 $I_{max} = \sqrt{2} \cdot I_{eff}$ $I_{eff} = \frac{I_{max}}{\sqrt{2}}$

Interaktive Inhalte:

hier klicken

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$

$$U_{eff} = \frac{U_{max}}{\sqrt{2}}$$
 $I_{max} = \sqrt{2} \cdot I_{eff}$ $I_{eff} = \frac{I_{max}}{\sqrt{2}}$

$$I_{eff} = \frac{I_{max}}{\sqrt{2}}$$

2.4.3 Induktiver Widerstand

 $X_L = \omega \cdot L$

Induktivität ω Eigenkreisfrequenz $\frac{1}{s}$ X_L Induktiver Widerstand Ω $L = \frac{X_L}{\omega}$ $\omega = \frac{X_L}{L}$

Interaktive Inhalte:

$$X_L = \omega \cdot L$$

$$L = \frac{X_L}{\omega}$$

$$\omega = \frac{X_L}{L}$$

2.4.4 Kapazitiver Widerstand

 $X_C = \frac{1}{\omega \cdot C}$

Kapazität Eigenkreisfrequenz X_C Kapazitiver Widerstand $\mathring{\Omega}$ $C = \frac{1}{X_C \cdot \omega}$ $\omega = \frac{1}{X_C \cdot C}$

Interaktive Inhalte:

$$X_C = \frac{1}{\omega \cdot C}$$

$$C = \frac{1}{X_C \cdot \omega}$$

$$\omega = \frac{1}{X_C \cdot C}$$

2.4.5 Wirkleistung

 $P = U_{eff} \cdot I_{eff} \cdot cos(\phi)$

Winkel phi I_{eff} Effektivstromstärke A U_{eff} Effektivspannung $VA = \frac{J}{s}$ Wirkleistung

$$P = U_{eff} \cdot I_{eff} \cdot cos(\phi)$$

Elektrischer Schwingkreis 2.5

Eigenfrequenz (Ungedämpfte elektrische Schwingung) 2.5.1

$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$$

 $\begin{array}{lll} C & {\rm Kapazit\"{a}t} & F \\ L & {\rm Induktivit\"{a}t} & H \\ f & {\rm Eigenfrequenz} & hz = \frac{1}{s} \end{array}$

$$L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} \qquad C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot L}$$

Interaktive Inhalte:

$$f = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} \qquad L = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C} \qquad C = \frac{1}{(2 \cdot \pi \cdot f)^2 \cdot C}$$

2.5.2 Eigenkreisfrequenz

$$\omega = \frac{1}{\sqrt{L \cdot C}}$$

C Kapazität Induktivität Eigenkreisfrequenz $L = \frac{1}{\omega^2 \cdot C}$ $C = \frac{1}{\omega^2 \cdot L}$

28

2.6 Allgemeine Elektrotechnik

2.6.1 Spannungsteiler

$$U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$$

 $\begin{array}{cccc} R_2 & \text{Teilwiderstand} & \Omega & \frac{V}{A} \\ R_1 & \text{Teilwiderstand} & \Omega & \frac{V}{A} \\ U_g & \text{Gesamtspannung} & V \\ U_1 & \text{Teilspannung} & V \end{array}$

$$U_1 = U_g \cdot \frac{R_1}{R_1 + R_2}$$

3 Wärmelehre

3.1 Temperatur

3.1.1 Termperatur - Umrechnungen

$T = 273, 15 + \tau$	$ \begin{array}{ll} \tau & \text{Temperatur} & ^{\circ}C & = GadCelsius \\ T & \text{absolute Temperatur} & K \\ \\ \tau = T - 273, 15 \end{array} $
$T_F = \frac{9}{5} \cdot \tau + 32$	$ au$ Temperatur ° $C = GadCelsius$ $ au = rac{5}{9} \cdot (T_F - 32)$
$T_R = \frac{9}{5} \cdot \tau + 491,67$	$ au$ Temperatur °C = $GadCelsius$ T_R Temperatur °R $Rankine$ $ au = \frac{5}{9} \cdot (T_R - 491, 67)$
Interaktive Inhalte:	

$T = 273, 15 + \tau$	$\tau = T - 273, 15$	$T_F = \frac{9}{5} \cdot \tau + 32$	$\tau = \frac{5}{9} \cdot (T_F - 32)$	$T_R = \frac{9}{5} \cdot \tau + 491,67$	$\tau = \frac{5}{9} \cdot (T_R - 491, 67)$
----------------------	----------------------	-------------------------------------	---------------------------------------	---	--

3.1.2 Temperaturdifferenz

$$\Delta T = T_2 - T_1$$

$$T_2 \quad \text{absolute Temperatur} \quad K$$

$$T_1 \quad \text{absolute Temperatur} \quad K$$

$$\Delta T \quad \text{Temperatur differenz} \quad K$$

$$T_1 = T_2 - \Delta T \quad T_2 = \Delta T + T_1$$

<u>Interaktive Inhalte</u>:

$$\Delta T = T_2 - T_1$$
 $T_1 = T_2 - \Delta T$ $T_2 = \Delta T + T_1$

https://fersch.de

3.2 Ausdehnung der Körper

3.2.1 Längenausdehnung

$\Delta l = l_0 \cdot \alpha \cdot \Delta T$	α	Längenausdehnungskoeffizient	$\frac{1}{K}$
	ΔT	Temperaturdifferenz	K
	1	A rafa ra mala ra ma	200

$$\begin{array}{ll} l_0 & \text{Anfangslänge} & m \\ \Delta l & \text{Längenänderung} & m \end{array}$$

$$l_0 = \frac{\Delta l}{\alpha \cdot \Delta T}$$
 α Längenausdehnungskoeffizient $\frac{1}{K}$ ΔT Temperaturdifferenz K

$$\Delta l$$
 Längenänderung m l_0 Anfangslänge m m $\alpha = \frac{\Delta l}{l_0 \cdot \Delta T}$ $\Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$

Interaktive Inhalte:

$$\Delta l = l_0 \cdot \alpha \cdot \Delta T \qquad \qquad l_0 = \frac{\Delta l}{\alpha \cdot \Delta T} \qquad \qquad \alpha = \frac{\Delta l}{l_0 \cdot \Delta T} \qquad \qquad \Delta T = \frac{\Delta l}{l_0 \cdot \alpha}$$

3.2.2 Flächenausdehnung

Interaktive Inhalte:

3.2.3 Volumenausdehnung

$$\Delta V = V_0 \cdot 3 \cdot \alpha \cdot \Delta T \qquad V_0 = \frac{\Delta V}{3 \cdot \alpha \cdot \Delta T} \qquad \alpha = \frac{\Delta V}{V_0 \cdot \Delta T \cdot 3} \qquad \Delta T = \frac{\Delta V}{V_0 \cdot 3 \cdot \alpha}$$

3.3 Energie

3.3.1 Wärmeenergie

 $\Delta Q = c \cdot m \cdot \Delta T$

 $\begin{array}{ccc} \Delta T & \text{Temperatur$ $differenz} & K \\ c & \text{Spezifische Wärmekapazit} \\ \text{if} & \frac{J}{kgK} \end{array}$

m Masse

 $Q \qquad {\rm W\ddot{a}rmeenergie}$

 $m = \frac{\Delta Q}{c \cdot \Delta T}$ $c = \frac{\Delta Q}{m \cdot \Delta T}$ $\Delta T = \frac{\Delta Q}{c \cdot T}$

Interaktive Inhalte:

$$\Delta Q = c \cdot m \cdot \Delta T$$

$$m = \frac{\Delta Q}{c \cdot \Delta T}$$

$$c = \frac{\Delta Q}{m \cdot \Delta T}$$

$$\Delta T = \frac{\Delta Q}{c \cdot m}$$

3.3.2 Verbrennungsenergie

$$Q = H_u \cdot m$$

m Masse kg H_u Heizwert $\frac{J}{kg}$

Q Verbrennungsenergie J Nm = Ws

$$H_u = \frac{Q}{m}$$
 $m = \frac{Q}{H_u}$

Interaktive Inhalte:

$$Q = H_u \cdot m$$

$$H_u = \frac{Q}{m}$$

$$m = \frac{Q}{H_u}$$

3.3.3 Schmelzen und Erstarren

$$Q = q_s \cdot m$$

m Masse

kg

Nm = Ws

 $Q - q_s \cdot m$

 q_s Spezifische Schmelz-/Erstarrungswärme Q Energie zum Schmelzen/Erstarren

 $m = \frac{Q}{q_s}$ $q_s = \frac{Q}{m}$

Interaktive Inhalte:

$$Q = q_s \cdot m$$

$$=rac{Q}{q_s}$$
 $q_s=rac{Q}{r_s}$

3.3.4 Verdampfen und Kondensieren

$$Q = q_v \cdot m$$

m Masse

 $\frac{kg}{\frac{J}{kg}}$

 q_v Spezifische Verdampfungs-/Kondensationswärme

Nm = Ws

Q Energie zum Verdampfen/Kondensieren

 $m = \frac{1}{q_v}$

 $m = \frac{Q}{q_v}$ $q_v = \frac{Q}{q_v}$

$$Q = q_v \cdot m$$

$$m = \frac{Q}{q_v}$$

$$q_v = \frac{Q}{m}$$

3.4 Zustandsänderungen der Gase

3.4.1 Allgemeine Gasgleichung

$$\frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2}$$

 $\begin{array}{llll} p_1 & \text{Druck 1} & Pa & \frac{N}{m^2} \\ T_1 & \text{absolute Temperatur} & K \\ T_2 & \text{absolute Temperatur} & K \end{array}$

 p_2 Druck 2 $Pa = rac{N}{m^2}$

 $\begin{array}{cccc} p_2 & \text{Druck 2} & Pa & \overline{m^2} \\ V_2 & \text{Volumen 2} & m^3 & \end{array}$

 V_1 Volumen 1 m^3

 $V_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot p_1}$ $p_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot V_1}$ $T_1 = \frac{V_1 \cdot p_1 \cdot T_2}{V_2 \cdot p_2}$

Interaktive Inhalte:

$$\frac{V_1 \cdot p_1}{T_1} = \frac{V_2 \cdot p_2}{T_2}$$

$$V_1 = \frac{V_2 \cdot p \cdot T_1}{T_2 \cdot p_1}$$

$$p_1 = \frac{V_2 \cdot p_2 \cdot T_1}{T_2 \cdot V_1}$$

$$T_1 = \frac{V_1 \cdot p_1 \cdot T_2}{V_2 \cdot p_2}$$

3.4.2 Thermische Zustandsgleichung

$$p \cdot V = \nu \cdot R_m \cdot T$$

 $\begin{array}{ccc}
\nu & \text{Stoffmenge} & mol \\
p & \text{Druck} & Pa & \frac{1}{n} \\
T & \text{Temperatur} & K
\end{array}$

 $\begin{array}{lll} V & \text{Volumen} & m^3 \\ R_m & \text{Allgemeine Gaskonstante} & 8,314 \frac{Ws}{mol \cdot K} \end{array}$

 $p = \frac{\nu \cdot R_m \cdot T}{V}$ $V = \frac{\nu \cdot R_m \cdot T}{p}$ $T = \frac{p \cdot V}{\nu \cdot R_m}$

$$p \cdot V = \nu \cdot R_m \cdot T$$
 $p = \frac{\nu \cdot R_m \cdot T}{V}$

$$V = \frac{\nu \cdot R_m \cdot T}{p}$$

$$T = \frac{p \cdot V}{\nu \cdot R_m}$$

4 Optik

4.1 Reflexion und Brechung

4.1.1 Reflexion

```
lpha_1=lpha_2 lpha_2 Reflexionswinkel lpha_1 Einfallswinkel lpha_2
```

Interaktive Inhalte:

$$\alpha_1 = \alpha_2$$

4.1.2 Brechung

```
n = \frac{\sin\alpha_1}{\sin\alpha_2}
\alpha_2 \quad \text{Brechungswinkel} \quad \circ
\alpha_1 \quad \text{Einfallswinkel} \quad \circ
n \quad \text{Brechzahlen}
\sin\alpha_1 = n \cdot \sin\alpha_2 \quad \sin\alpha_2 = \frac{\sin\alpha_1}{n}
```

<u>Interaktive Inhalte</u>:

```
n = \frac{\sin\alpha_1}{\sin\alpha_2} \quad \boxed{\sin\alpha_1 = n \cdot \sin\alpha_2} \quad \sin\alpha_2 = \frac{\sin\alpha_1}{n}
```

Optik Linsen

Linsen 4.2

4.2.1 Brennweite

$$f = \frac{g \cdot b}{g + b}$$

Bildweite Gegen stands we ite

Brennweite

$$b = \frac{f \cdot g}{g - f}$$
 $g = \frac{f \cdot b}{b - f}$

Interaktive Inhalte:

$$f = \frac{g \cdot b}{g + b}$$

$$b = \frac{f \cdot g}{g - f}$$

$$g = \frac{f \cdot b}{b - f}$$

4.2.2 Bildgröße - Gegenstandsgröße

$$\frac{G}{B} = \frac{g}{b}$$

Bildgröße B

mG $Gegenstandsgr\"{o}\pounds g$

Bildweite

 ${\it Gegenstandsweite} \quad m$

 $B = \frac{G \cdot b}{g}$ $g = \frac{G \cdot b}{B}$ $b = \frac{B \cdot g}{G}$

$$\frac{G}{B} = \frac{g}{h}$$

$$G = \frac{g \cdot B}{b}$$

$$B = \frac{G \cdot b}{g}$$
 g

$$g = \frac{G \cdot b}{R}$$

$$b = \frac{B \cdot g}{G}$$

5 Astronomie

5.1 Gravitation

5.1.1 Gravitationsgesetz

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

 $\begin{array}{ll} G & \quad \text{Gravitationskonstante} & \frac{Nm^2}{kg^2} & 6,672041E-11 \\ r & \quad \text{Abstand der Massen} & m \end{array}$

 m_2 Massen kg

 m_1 Massen kgF Kraft N

 $r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}}$ $m_1 = \frac{F \cdot r^2}{G \cdot m_2}$ $m_2 = \frac{F \cdot r^2}{G \cdot m_2}$

Interaktive Inhalte:

$$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$$

$$r = \sqrt{\frac{G \cdot m_1 \cdot m_2}{F}}$$

$$m_1 = \frac{F \cdot r^2}{G \cdot m_2}$$

$$m_2 = \frac{F \cdot r^2}{G \cdot m_1}$$

5.1.2 Gravitationsfeldstärke

$$gr = \frac{G \cdot m}{r^2}$$

G Gravitationskonstante $\frac{Nm^2}{kg^2}$ 6,672041E-11

 $egin{array}{ll} r & {
m Abstand \ der \ Massen} \\ m & {
m Masse} \end{array}$

r Gravitationsfeldstärke

 $rac{kg}{rac{N}{kg}}$

gr Gravitationsfeldstan

$$gr = \frac{G \cdot m}{r^2}$$

$$m = \frac{gr \cdot r^2}{G}$$

$$r = \sqrt{\frac{G \cdot m}{gr}}$$

6 Atomphysik

6.1 Atombau

6.1.1 Kernbausteine(Protonen, Neutronen, Massenzahl)

$$Z = A - N$$

N Neutronenzahl

A Nukleonen-, Massenzahl

Z Ordnung-,Protonenzahl

$$A = Z + N$$
 $N = A - Z$

Interaktive Inhalte:

$$Z = A - N$$
 $A = Z$

$$A = Z + N$$
 $N = A - Z$

6.1.2 Atommasse

$$m_a = A_r \cdot u$$

atomare Masseneinheit kg

 A_r relative Atommasse

 n_a Atommasse kg

 $m_a = A_r \cdot u \qquad m_a = A_r \cdot u$

Interaktive Inhalte:

$$m_a = A_r \cdot u$$

$$m_a = A_r \cdot u$$

$$m_a = A_r \cdot u$$

6.1.3 Masse des Atomkerns

$$m_k = m_a - Z \cdot m_e$$

 m_e Masse des Elektrons k

Z Ordnung-,Protonenzahl

 m_a Atommasse kg

 m_k Masse des Atomkerns k

 $m_a = m_k + Z \cdot m_e$ $Z = \frac{m_a - m_k}{m_e}$ $m_e = \frac{m_a - m_k}{Z}$

Interaktive Inhalte:

$$m_k = m_a - Z \cdot m_e$$

$$m_a = m_k + Z \cdot m_e$$

$$Z = \frac{m_a - m_k}{m}$$

$$m_e = \frac{m_a - m_k}{Z}$$

6.1.4 Stoffmenge und Anzahl der Teilchen

$$\nu = \frac{N}{N_a}$$

NA Avogadro-Konstante

 $6,022045E23\frac{1}{mol}$

N Anzahl der Teilchen

Stoffmenge mol

 $N = N_a \cdot \nu$

<u>Interaktive</u> <u>Inhalte</u>:

$$\nu = \frac{N}{N_a}$$

$$N = N_a \cdot \nu$$

6.1.5 Molare Masse

$$M = \frac{m}{\nu}$$

 ν Stoffmenge mo

m Masse kg M Molaro Masso kg

M Molare Masse $\frac{\bar{k}g}{mo}$

 $\nu = \frac{m}{M}$ $m = M \cdot \nu$

$$M = \frac{m}{\nu}$$

$$\nu = \frac{m}{M}$$

$$m = M \cdot \nu$$

Atomphysik Atombau

6.1.6 Masse - Energie

$$E = m \cdot c^2$$

 $\begin{array}{ll} c & \text{Lichtgeschwindigkeit} \\ m & \text{Masse} \end{array}$

Masse Energie

 $\begin{array}{ll} \frac{m}{s} \\ kg \\ J & Nm = Ws \end{array}$

 $m = \frac{E}{c^2}$

E

$$E = m \cdot c^2 \qquad m = \frac{E}{c^2}$$

6.2 Kernumwandlungen

6.2.1 Zerfallsgesetz

 $N(t) = N_0 \cdot e^{-\lambda t}$

t Zeit

Zerfallskonstante

 $\frac{s}{\frac{1}{s}}$

 $N_0 \,\,$ zerfallfähige Atome vor der Zeit t

N(t) zerfallfähige Atome nach der Zeit t

$$N_0 = rac{N(t)}{e^{-\lambda t}} \qquad \lambda = -lnrac{Nt}{N_0} \cdot rac{1}{t} \qquad t = -lnrac{Nt}{N_0} \cdot rac{1}{\lambda}$$

Interaktive Inhalte:

$$N(t) = N_0 \cdot e^{-\lambda t}$$

$$N_0 = \frac{N(t)}{e^{-\lambda t}}$$

$$\lambda = -ln\frac{Nt}{N_0} \cdot \frac{1}{t}$$

$$t = -ln\frac{Nt}{N_0} \cdot \frac{1}{\lambda}$$

6.2.2 Halbwertszeit

 $T = \frac{\ln 2}{\lambda}$

 λ Zerfallskonstante

T Halbwertszeit

 $\lambda = \frac{ln2}{T}$

<u>Interaktive Inhalte:</u>

$$T = \frac{\ln 2}{\lambda}$$

$$\lambda = \frac{\ln 2}{T}$$

6.2.3 Aktivität

 $A = \lambda \cdot N(t)$

N(t) zerfallfähige Atome nach der Zeit t

 λ Zerfallskonstante

 $\overset{-}{B}q \quad Bq = \frac{1}{s}$

A Aktivität

 $N(t) = \frac{A}{\lambda}$

Interaktive Inhalte:

 $A = \lambda \cdot N(t)$

 $V(t) = \frac{A}{\lambda}$

hier klicken

6.2.4 Photon

 $E = f \cdot h$

h Planksches Wirkungsquantum

f Eigenfrequenz

 $Js \\ hz = \frac{1}{s}$

E Energie

J Nm = Ws

 $f = \frac{E}{h}$

$$E = f \cdot h$$

$$=\frac{E}{h}$$

7 Physikalische Konstanten

Name	Symbol	Zahlenwert	Einheit
Kreiszahl	π	3.14159265358979323846	
Eulersche zahl	e	2.71828182845904523536	
Elektronenladung Gravitationskonstante	$egin{array}{c} e \ G, \kappa \end{array}$	$1.60217733 \cdot 10^{-19} \\ 6.67259 \cdot 10^{-11}$	$_{ m m^3kg^{-1}s^{-2}}^{ m C}$
Lichtgeschwindigkeit	c	$2.99792458 \cdot 10^{8}$	m/s (def)
Dielektrizitätskonstante	ε_0	$8.854187 \cdot 10^{-12}$	F/m
Permeabilitätskonstante	μ_0	$4\pi \cdot 10^{-7}$	H/m
$(4\pi\varepsilon_0)^{-1}$			
Planksches Wirkungsquantum	h	$6.6260755 \cdot 10^{-34}$	$_{ m Js}$
Molare Gaskonstante	R	8.31441	$J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$
Avogadro-Konstante	$N_{ m A}$	$6.0221367 \cdot 10^{23}$	mol^{-1}
Boltzmann-Konstante	$k = R/N_{\rm A}$	$1.380658 \cdot 10^{-23}$	$\mathrm{J/K}$
Ruhemasse des Elektrons	$m_{ m e}$	$9.1093897 \cdot 10^{-31}$	kg
Ruhemasse des Protons	$m_{ m p}$	$1.6726231 \cdot 10^{-27}$	kg
Ruhemasse des Neutrons	$m_{ m n}$	$1.674954 \cdot 10^{-27}$	kg
Ruhemasse α -Teilchens	$m_{ m n}$	$6,6447 \cdot 10^{-27}$	kg
Atomare Masseneinheit	$m_{\rm u} = \frac{1}{12} m \binom{12}{6} {\rm C}$	$1.6605656 \cdot 10^{-27}$	kg
Masse der Sonne	M_{\odot}	$1.989 \cdot 10^{30}$	kg
Radius der Erde	$R_{ m A}$	$6.378 \cdot 10^6$	m
Masse der Erde	$M_{ m A}$	$5.976 \cdot 10^{24}$	kg
Umlaufdauer Erde-Sonne	Tropical year	365.24219879	Tage
Astronomische Einheit	AU	$1.4959787066 \cdot 10^{11}$	m
Lichtjahr	lj	$9.4605 \cdot 10^{15}$	m
Parsec	pc	$3.0857 \cdot 10^{16}$	m
Hubble Konstante	H	$\approx (75 \pm 25)$	$\mathrm{km}\cdot\mathrm{s}^{-1}\cdot\mathrm{Mpc}^{-1}$

Basiseinheiten

Name	Einheit	Symbol
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{s}
Temperatur	Kelvin	\mathbf{K}
Stromstärke	Ampere	\mathbf{A}
Lichtstärke	Candela	cd
Stoffmenge	mol	mol

Abgeleitete Einheiten

Abgeleitete Einneiten		
Kraft F	Newton $N = \frac{mkg}{s^2} = \frac{VAs}{m}$	
Energie E	Joule $J = \frac{m^2 kg}{s^2} = VAs$	
Leistung P	$\mathbf{Watt} \; \mathbf{W} = \frac{\mathbf{m}^2 \mathbf{kg}}{\mathbf{s}^3} = \mathbf{VA}$	
Ladung Q	$\mathbf{Coulomb} \ \mathbf{C} = \mathbf{As}$	
Spannung V	$ ext{Volt } ext{V} = rac{ ext{m}^2 ext{kg}}{ ext{s}^3 ext{A}} = rac{ ext{W}}{ ext{A}}$	
Widerstand R	Ohm $\Omega = \frac{m^2 kg}{s^3 A^2} = \frac{V}{A}$	
Leitwert Y	Siemens $S = \frac{s^3 A^2}{m^2 kg} = \frac{A}{V}$	
Kapazität C	$\mathbf{Farad} \; \mathbf{F} = rac{\mathbf{s}^4 \mathbf{A}^2}{\mathbf{m}^2 \mathbf{k} \mathbf{g}} = rac{\mathbf{C}}{\mathbf{V}}$	
Induktivität L	$Henry H = \frac{m^2 kg}{s^2 A^2} = \frac{Vs}{A}$	
magn. Fluß Φ	Weber $Wb = \frac{m^2 kg}{s^2 A} = Vs$	
Induktion B	Tesla $T = \frac{kg}{s^2A} = \frac{Vs}{m^2}$	
Magnetfeld H	$\frac{A}{m}$	

8 Tabellen

8.1 Umrechnungen

8.1.1 Längen

	m	dm	cm	mm	μm	nm	pm	km
\overline{m}	1	10	100	1000	10^{6}	10^{9}	10^{12}	0,001
dm	0, 1	1	10	100	10^{5}	10^{8}	10^{11}	0,0001
cm	0,01	0, 1	1	10	10^{4}	10^{7}	10^{10}	10^{-5}
mm	0,001	0,01	0, 1	1	1000	10^{6}	10^{9}	10^{-6}
μm	10^{-6}	10^{-5}	0,0001	0,001	1	1000	10^{6}	10^{-9}
nm	10^{-9}	10^{-8}	10^{-7}	10^{-6}	0,001	1	1000	10^{-12}
pm	10^{-12}	10^{-11}	10^{-10}	10^{-9}	10^{-6}	0,001	1	10^{-15}
km	1000	10^{4}	10^{5}	10^{6}	10^{9}	10^{12}	10^{15}	1

m	Meter
dm	Dezimeter
cm	Zentimeter
mm	Millimeter
μm	Mikrometer
nm	Nanometer
pm	Pikometer
km	Kilometer

8.1.2 Flächen

	m^2	dm^2	cm^2	mm^2	a	ha	km^2
m^2	1	100	10^{4}	10^{6}	0,01	0,0001	10^{-6}
dm^2	0,01	1	100	10^{4}	0,0001	10^{-6}	10^{-8}
cm^2	0,0001	0,01	1	100	10^{-6}	10^{-8}	10^{-10}
mm^2	10^{-6}	0,0001	0,01	1	10^{-8}	10^{-10}	10^{-12}
a	100	10^{4}	10^{6}	10^{8}	1	0,01	0,0001
ha	10^{4}	10^{6}	10^{8}	10^{10}	100	1	0,01
km^2	10^{6}	10^{8}	10^{10}	10^{12}	10^{4}	100	1

m^2	Quadratmeter
dm^2	Quadratdezimeter
cm^2	Quadratzentimeter
mm^2	Quadratmillimeter
a	Ar
ha	Hektar
km^2	Quadratkilometer

8.1.3 Volumen

$\mid m^3 \mid dm^3 \mid cm^3 \mid mm^3 \mid l \mid$		ml
m^3 1 1000 10 ⁶ 10 ⁹ 1000	10	10^{6}
$ dm^3 0,001 $	0,01	1000
cm^3 10^{-6} $0,001$ 1 1000 $0,001$	10^{-5}	1
$mm^3 \mid 10^{-9} \mid 10^{-6} \mid 0,001 \mid 1 \mid 10^{-6}$	10^{-8}	0,001
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,01	1000
hl 0,1 100 10 ⁵ 10 ⁸ 100	1	10^{5}
$ml \mid 10^{-6} \mid 0,001 \mid 1 \mid 1000 \mid 0,001$	10^{-5}	1

m°	Kubikmeter
dm^3	Kubikdezimeter
cm^3	Kubikzentimeter
mm^3	Kubikmillimeter
l	Liter
hl	Hektoliter
ml	Milliliter

8.1.4 Zeit

	s	min	h	ms	μs	ns	ps
s	1	0,01667	0,0002778	1000	10^{6}	10 ⁹	10^{12}
min	60	1	0,01667	$6 \cdot 10^4$	$6 \cdot 10^7$	$6 \cdot 10^{10}$	$6 \cdot 10^{13}$
h	3600	60	1	$3, 6 \cdot 10^6$	$3,6\cdot 10^9$	$3, 6 \cdot 10^{12}$	$3,6 \cdot 10^{15}$
ms	0,001	$1,667 \cdot 10^{-5}$	$2,778 \cdot 10^{-7}$	1	1000	10^{6}	10^{9}
μs	10^{-6}	$1,667 \cdot 10^{-8}$	$2,778 \cdot 10^{-10}$	0,001	1	1000	10^{6}
ns	10^{-9}	$1,667 \cdot 10^{-11}$	$2,778 \cdot 10^{-13}$	10^{-6}	0,001	1	1000
ps	10^{-12}	$1,667 \cdot 10^{-14}$	$2,778 \cdot 10^{-16}$	10^{-9}	10^{-6}	0,001	1

s	Sekunden
min	Minuten
h	Stunden
ms	Millisekunden
μs	Mikrosekunden
ns	Nanosekunden
ps	Pikosekunden

8.1.5 Vorsilben

		d	c	m	μ	n	p	f	a	da	h	k	M	G	T	P	E
	1	10	100	1000	106	109	1012	10^{15}	10 ¹⁸	0, 1	0,01	0,001	$_{10}^{-6}$	10-9	10^{-12}		10-18
d	0, 1	1	10	100	10 ⁵	108	10 ¹¹	10^{14}	1017	0,01	0,001	0,0001	10-7	10-10	10^{-13}	10-16	10-19
c	0,01	0, 1	1	10	10^{4}	107	10^{10}	10^{13}	10 ¹⁶	0,001	0,0001	10-5	10-8	10-11	10^{-14}	10-17	10-20
m	0,001	0,01	0, 1	1	1000	10^{6}	109	10^{12}	10 ¹⁵	0,0001	10^{-5}	10-6				10^{-18}	10^{-21}
μ	$^{10}^{-6}$	$^{10}^{-5}$	0,0001	0,001	1	1000	10^{6}	109	10 ¹²	$^{10}^{-7}$	$^{10}^{-8}$		10^{-12}			10^{-21}	10^{-24}
n	10-9	$^{10}^{-8}$	$^{10}^{-7}$	$^{10}^{-6}$	0,001	1	1000	10^{6}	109	10^{-10}	10-11	10^{-12}				10^{-24}	10^{-27}
p	10^{-12}	10^{-11}	$_{10}^{-10}$	10-9	10^{-6}	0,001	1	1000	106	$^{10}^{-13}$	10^{-14}	10^{-15}		10^{-21}	10^{-24}	10^{-27}	10-30
f		10^{-14}	$^{10}^{-13}$	$^{10}^{-12}$	10-9	10^{-6}	0,001	1	1000	10^{-16}	$_{10}^{-17}$	10^{-18}		10^{-24}	10^{-27}	10-30	10-33
a	10^{-18}	10^{-17}	10^{-16}	10^{-15}	10^{-12}	10-9	10^{-6}	0,001		10^{-19}	10^{-20}	10^{-21}	10^{-24}	10^{-27}		10^{-33}	10-36
da	10	100	1000	10^{4}	107	10 ¹⁰	10^{13}	10^{16}	1019	1	0, 1	0,01	$_{10}^{-5}$	10-8	10-11	10^{-14}	10-17
h	100	1000	10^{4}	10 ⁵	108	10 ¹¹	10^{14}	10^{17}	1020	10	1	0, 1	0,0001	10-7			10-16
k	1000	10^{4}	10^{5}	10 ⁶	109	10^{12}	10^{15}	10^{18}	1021	100	10	1	0,001	10-6	10-9		
M	10^{6}	107	108	109	10^{12}	10^{15}	10 ¹⁸	10^{21}	10^{24}	10 ⁵	10^{4}	1000	1	0,001	10-6	10-9	10-12
G	109	10 ¹⁰	10^{11}	10^{12}	10^{15}	10 ¹⁸	1021	10^{24}	1027	108	107	106	1000	1	0,001	10-6	10-9
T	10^{12}	10^{13}	10^{14}	10^{15}	10^{18}	1021	10^{24}	10^{27}	1030	10^{11}	10^{10}	109	10^{6}	1000	1	0,001	10^{-6}
P	10^{15}	10^{16}	10^{17}	10^{18}	10^{21}	10^{24}	10^{27}	10^{30}	1033	10^{14}	10^{13}	10^{12}	109	10^{6}	1000	1	0,001
E	10 ¹⁸	10^{19}	10^{20}	10^{21}	10^{24}	10^{27}	10 ³⁰	1033	10 ³⁶	10 ¹⁷	10 ¹⁶	10 ¹⁵	10^{12}	109	10^{6}	1000	1

	Bezugsgröße
d	Dezi
c	Zenti
m	Milli
μ	Mikro
n	Nano
p	Pico
f	Femto
a	Atto
da	Deka
h	Hekto
k	Kilo
M	Mega
G	Giga
T	Tera
P	Peta
E	Exa

8.1.6 Masse

	ka	a	ma	+	oz	lb	+
	kg	g	mg	t	02	10	ı
kg	1	1000	106	0,001	35, 28	2,205	0,0009843
g	0,001	1	1000	10^{-6}	0,03528	0,002205	$9,843 \cdot 10^{-7}$
mg	10^{-6}	0,001	1	10^{-9}	$3,528 \cdot 10^{-5}$	$2,205 \cdot 10^{-6}$	$9,843 \cdot 10^{-10}$
t	1000	10^{6}	109	1	$3,528 \cdot 10^4$	2205	0,9843
oz	0,02835	28, 35	$2,835 \cdot 10^4$	$2,835 \cdot 10^{-5}$	1	0,06249	$2,79 \cdot 10^{-5}$
lb	0,4536	453, 6	$4,536 \cdot 10^5$	0,0004536	16	1	0,0004464
t	1016	$1,016 \cdot 10^6$	$1,016 \cdot 10^9$	1,016	$3,584 \cdot 10^4$	2240	1

kg	Kilogramm
g	Gramm
mg	Milligramm
t	Tonne
oz	ounce
lb	pound
t	ton(UK)

8.1.7 Kraft

	N	cN	mN	kN	MN	kp	p	dyn	pdl	lbf
N	1	100	1000	0,001	10^{-6}	0,102	102	10^{5}	7,231	0,2248
cN	0,01	1	10	10^{-5}	10^{-8}	0,00102	1,02	1000	0,07231	0,002248
mN	0,001	0, 1	1	10^{-6}	10^{-9}	0,000102	0,102	100	0,007231	0,0002248
kN	1000	10^{5}	10^{6}	1	0,001	102	$1,02 \cdot 10^5$	10^{8}	7231	224,8
MN	10^{6}	10^{8}	10^{9}	1000	1	$1,02 \cdot 10^5$	$1,02 \cdot 10^8$	10^{11}	$7,231 \cdot 10^6$	$2,248 \cdot 10^5$
kp	9,807	980, 7	9807	0,009807	$9,807 \cdot 10^{-6}$	1	1000	$9,807 \cdot 10^5$	70,91	2,205
p	0,009807	0,9807	9,807	$9,807 \cdot 10^{-6}$	$9,807 \cdot 10^{-9}$	0,001	1	980, 7	0,07091	0,002205
dyn	10^{-5}	0,001	0,01	10^{-8}	10^{-11}	$1,02 \cdot 10^{-6}$	0,00102	1	$7,231 \cdot 10^{-5}$	$2,248 \cdot 10^{-6}$
pdl	0,1383	13,83	138, 3	0,0001383	$1,383 \cdot 10^{-7}$	0,0141	14, 1	$1,383 \cdot 10^4$	1	0,03109
lbf	4,448	444, 8	4448	0,004448	$4,448 \cdot 10^{-6}$	0,4536	453, 6	$4,448 \cdot 10^5$	32, 16	1

N	Newton
cN	Zentinewton
mN	Millinewton
kN	Kilonewton
MN	Meganewton
kp	Kilopond
p	Pond
dyn	Dyn
pdl	poundal
lbf	pound-force

8.1.8 Energie-Arbeit

	J	Nm	Ws	kWh	cal	Kcal	eV	BTU
J	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Nm	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
Ws	1	1	1	$2,778 \cdot 10^{-7}$	0,2388	0,0002388	$6,242 \cdot 10^{18}$	0,0009478
kWh	$3, 6 \cdot 10^6$	$3, 6 \cdot 10^6$	$3,6 \cdot 10^{6}$	1	$8,598 \cdot 10^5$	859,8	$2,247 \cdot 10^{25}$	3412
cal	4, 187	4,187	4, 187	$1,163 \cdot 10^{-6}$	1	0,001	$2,613 \cdot 10^{19}$	
Kcal	4187	4187	4187	0,001163	1000	1	$2,613 \cdot 10^{22}$	
eV	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$1,602 \cdot 10^{-19}$	$4,45 \cdot 10^{-26}$	$3,827 \cdot 10^{-20}$	$3,827 \cdot 10^{-23}$	1	$1,518 \cdot 10^{-22}$
BTU	1055	1055	1055	0,0002931	252	0,252	$6,585 \cdot 10^{21}$	1

J	Joule
Nm	Newtonmeter
Ws	Wattsekunde
kWh	Kilowattstunde
cal	Kalorie
Kcal	Kilokalorie
eV	Elektronenvolt
BTU	British thermal unit

8.1.9 Leistung

	W	$\frac{J}{s}$	$\frac{Nm}{s}$	PS	KW	hp	BTU/s	BTU/h
W	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{J}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
$\frac{Nm}{s}$	1	1	1	0,00136	0,001	0,001341	0,0009478	3,412
PS	735, 5	735, 5	735, 5	1	0,7355	0,9863	0,6971	2510
KW	1000	1000	1000	1,36	1	1,341	0,9478	3412
hp	745, 7	745, 7	745, 7	1,014	0,7457	1	0,7068	2544
BTU/s	1055	1055	1055	1,434	1,055	1,415	1	3600
BTU/h	0,2931	0,2931	0,2931	0,0003985	0,0002931	0,000393	0,0002778	1

$\mid W$	Watt
$\frac{J}{s}$	Joule pro Sekunde
$\frac{\frac{s}{Nm}}{s}$	Newtonmeter/Sekunde
PS	Pferdestärke
KW	Kilowatt
hp	horsepower
BTU/s	BTU/Sekunde
BTU/h	BTU/Stunde

8.1.10 Geschwindigkeit

	$\frac{m}{s}$	$\frac{km}{h}$	$\frac{ft}{s}$	$\frac{mi}{hr}$	$kn = \frac{sm}{h}$
$\frac{m}{s}$	1	3, 6	3,281	2,237	1,944
$\frac{km}{h}$	0,2778	1	0,9113	0,6214	0,54
$\frac{ft}{s}$	0,3048	1,097	1	0,6818	0,5925
$\frac{mi}{hr}$	0,447	1,609	1,467	1	0,869
$kn = \frac{sm}{h}$	0,5144	1,852	1,688	1,151	1

$\frac{m}{s}$	Meter/Sekunde
$\frac{\bar{k}m}{h}$	Kilometer/Stunde
$\frac{ft}{s}$	Feet per sec
$\frac{mi}{hr}$	Miles per hour
$kn = \frac{sm}{h}$	Knoten

8.1.11 Druck

	Pa	$\frac{N}{m^2}$	bar	at	atm	Torr	mmHg	psf	psi	mbar
Pa	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
$\frac{N}{m^2}$	1	1	10^{-5}	$1,02 \cdot 10^{-5}$	$9,869 \cdot 10^{-6}$	0,007501	0,007501	0,02089	0,000145	0,01
bar	10^{5}	10^{5}	1	1,02	0,9869	750, 1	750, 1	2089	14, 5	1000
at	$9,807 \cdot 10^4$	$9,807 \cdot 10^4$	0,9807	1	0,9678	735, 6	735, 6	2048	14, 22	980, 7
atm	$1,013 \cdot 10^5$	$1,013 \cdot 10^5$	1,013	1,033	1	760	760	2116	14, 7	1013
Torr	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
mmHg	133, 3	133, 3	0,001333	0,00136	0,001316	1	1	2,785	0,01934	1,333
psf	47,88	47,88	0,0004788	0,0004882	0,0004725	0,3591	0,3591	1	0,006944	0,4788
psi	6895	6895	0,06895	0,07031	0,06805	51,72	51,72	144	1	68,95
mbar	100	100	0,001	0,00102	0,0009869	0,7501	0,7501	2,089	0,0145	1

Pa	Pascal
$\frac{N}{m^2}$	Newton/Quadratmeter
bar	Bar
at	Tech. Atmosphäre
atm	Physikalische. Atmosphäre
Torr	Torr
mmHg	Millimeter Quecksilber
psf	pound per square foot
psi	pound per square inch
mbar	Millibar

8.1.12 Frequenz

	$Hz = \frac{1}{s}$	kHz	MHz	GHz
$Hz = \frac{1}{s}$	1	0,001	10^{-6}	10^{-12}
kHz	1000	1	0,001	10^{-9}
MHz	10^{6}	1000	1	10^{-6}
GHz	10^{12}	10^{9}	10^{6}	1

$Hz = \frac{1}{s}$	\mathbf{Hertz}
kHz	Kilohertz
MHz	Megahertz
GHz	Gigahertz

8.1.13 Spannung

	V	mV	μV	kV	MV
V	1	1000	10^{6}	0,001	10^{-6}
mV	0,001	1	1000	10^{-6}	10^{-9}
μV	10^{-6}	0,001	1	10^{-9}	10^{-12}
kV	1000	10^{6}	10^{9}	1	0,001
MV	10^{6}	10^{9}	10^{12}	1000	1

V	Volt
mV	Millivolt
μV	Mikrovolt
kV	Kilovolt
MV	Megavolt

8.1.14 Strom

	A	mA	μA	kA	MA
A	1	1000	10^{6}	0,001	10^{-6}
mA	0,001	1	1000	10^{-6}	10^{-9}
μA	10^{-6}	0,001	1	10^{-9}	10^{-12}
kA	1000	10^{6}	10^{9}	1	0,001
MA	10^{6}	10^{9}	10^{12}	1000	1

A	Ampere
mA	Milliampere
μA	Mikroampere
kA	Kiloampere
MA	Megaampere

8.1.15 Widerstand

	Ω	$m\Omega$	$\mu\Omega$	$k\Omega$	M
Omega					
Ω	1	1000	10^{6}	0,001	10^{-6}
$m\Omega$	0,001	1	1000	10^{-6}	10^{-9}
$\mu\Omega$	10^{-6}	0,001	1	10^{-9}	10^{-12}
$k\Omega$	1000	10^{6}	10^{9}	1	0,001
$M\Omega$	10^{6}	10^{9}	10^{12}	1000	1

Ω	Ohm
$m\Omega$	Milliohm
$\mu\Omega$	Mikroohm
$k\Omega$	Kiloohm
$M\Omega$	Megaohm

	H	mH	μH	nH	kH
H	1	1000	10^{6}	10^{9}	0,001
mH	0,001	1	1000	10^{6}	10^{-6}
μH	10^{-6}	0,001	1	1000	10^{-9}
nH	10^{-9}	10^{-6}	0,001	1	10^{-12}
kH	1000	10^{6}	10^{9}	10^{12}	1

H	Henry
mH	Millihenry
μH	Mikrohenry
nH	Nanohenry
kH	Kilohenry

	F	mF	μF	nF	pF	kF
F	1	1000	10^{6}	10^{9}	10^{12}	0,001
mF	0,001	1	1000	10^{6}	10^{9}	10^{-6}
μF	10^{-6}	0,001	1	1000	10^{6}	10^{-9}
nF	10^{-9}	10^{-6}	0,001	1	1000	10^{-12}
pF	10^{-12}	10^{-9}	10^{-6}	0,001	1	10^{-15}
kF	1000	10^{6}	10^{9}	10^{12}	10^{15}	1

F'	Farad
mF	Millifarad
μF	Mikrofarad
nF	Nanofarad
pF	Pikofarad
kF	Kilofarad