

CS6316 Machine Learning Practical Project Key Results and Improvements

Keshara Weerasinghe, Jiho Lee, Rishabh Jain

Logistic Regression

Results and Analysis

- * Weak regularization leads to overfitting
- * Strong regularization leads to underfitting

K Nearest Neighbor

Results & Analysis

- 1 neighbor leads to overfitting perfect accuracy on training
- Large number of neighbors leads to underfitting

Decision Tree

Results & Analysis

SVM – Support Vector Machines

Results & Analysis

Accuracy Metrics

Dataset 1 Hyperparameter Tuning Results

Dataset 2 Hyperparameter Tuning Results

- Large value of C leads to overfitting
- Small value of C leads to underfitting

Image Credits: Scikit learn RBF SVM Parameter Tuning

Random Forest

Results & Analysis

Accuracy Metrics

- Large value of C leads to overfitting
- Small value of C leads to underfitting

Image Credits: TIBCO Random Forest Glossary

Boosting (AdaBoost)

Results & Analysis

Accuracy Metrics

Dataset 1 Hyperparameter Tuning Results

Dataset 2 Hyperparameter Tuning Results

- Large value of C leads to overfitting
- Small value of C leads to underfitting

Image Credits: <u>Akash Desarda – Towards Data</u>
<u>Science</u>

# of hidden layers	Hidden units	Weight initialization	Bias initialization	Learning rate
2	(25, 25)	Xavier uniform	zeros	0.001

Final train accuracy: 97.5 Final test accuracy: 96.0

Different number of hidden units

# of hidden layers	Hidden units	Weight initialization	Bias initializatio n	Learning rate	Train Accuracy	Test Accuracy
2	(25, 25)	Xavier uniform	zeros	0.001	97.5	96.0
2	(50, 50)	Xavier uniform	zeros	0.001	99.0	96.9
2	(100, 100)	Xavier uniform	zeros	0.001	99.7	97.7
2	(256, 256)	Xavier uniform	zeros	0.001	99.7	97.5
2	(512, 512)	Xavier uniform	zeros	0.001	99.7	98.1

Different number of hidden units

--> As the number of hidden units increases, the accuracy of the model tends to increase.

Different weight initialization

# of hidden layers	Hidden units	Weight initialization	Bias initialization	Learning rate	Train Accuracy	Test Accuracy
2	(25, 25)	Xavier uniform	zeros	0.001	97.5	96.0
2	(25, 25)	Random normal	zeros	0.001	94.6	93.4
2	(25, 25)	Random uniform	zeros	0.001	55.3	55.7
2	(25, 25)	Truncated normal	zeros	0.001	97.1	95.6
2	(25, 25)	zeros	zeros	0.001	52.9	51.9
2	(25, 25)	ones	zeros	0.001	10.8	10.1
2	(25, 25)	Xavier normal	zeros	0.001	97.6	95.8
2	(25, 25)	He normal	zeros	0.001	97.6	96.0
2	(25, 25)	Identity	zeros	0.001	96.0	94.8
2	(25, 25)	Orthogonal	zeros	0.001	97.3	95.8

Different weight initialization

--> The experiment shows that the weight initialization method has a great impact on learning the model.

Most effective: Xavier normal, Orthogonal

Least effective: Ones, Zeros

Different bias initialization

# of hidden layers	Hidden units	Weight initialization	Bias initialization	Learning rate	Train Accuracy	Test Accuracy
2	(25, 25)	Xavier uniform	zeros	0.001	97.5	96.0
2	(25, 25)	Xavier uniform	ones	0.001	97.5	95.9
2	(25, 25)	Xavier uniform	Random normal	0.001	97.5	95.9
2	(25, 25)	Xavier uniform	Truncated normal	0.001	97.3	95.8
2	(25, 25)	Xavier uniform	Random uniform	0.001	97.4	96.0

Different bias initialization

--> It shows that the bias initialization method has little effect on learning accuracy compared to weight initialization

Different learning rate

# of hidden layers	Hidden units	Weight initialization	Bias initialization	Learning rate	Train Accuracy	Test Accuracy
2	(25, 25)	Xavier uniform	zeros	0.001	97.5	96.0
2	(25, 25)	Xavier uniform	zeros	0.01	96.6	95.1
2	(25, 25)	Xavier uniform	zeros	0.1	52.9	83.0
2	(25, 25)	Xavier uniform	zeros	1	10.0	10.3
2	(25, 25)	Xavier uniform	zeros	0.0001	91.3	91.8

Different learning rate

--> The accuracy of the learning model slowly increases compared to the default learning rate

In contrast, the model has problems with learning to converge the accuracy when the learning rate is too high.

Choosing appropriate learning rate is important.