Complexité et Calculabilité : TD3

NP et réductions, exemple de ensemble dominant.

3.1 Réductions

Exercice 3.1

Dans un graphe, on dit d'un sommet qu'il se domine lui même et l'ensemble de ses voisins. Pour un sous-ensemble de sommets $S \subseteq V(G)$, un ensemble dominant S est un ensemble de sommets (pas nécessairement dans S) qui domine chacun des sommets de S.

Le problème ensemble dominant S dans un graphe est le suivant :

ENSEMBLE DOMINANT S

Entrée : Un graphe G, un ensemble $S \subseteq V(G)$, et un entier k.

Sortie : Existe-t-il un ensemble dominant S de taille au plus k?

1. Décrivez un vérificateur polynomial du problème ensemble dominant S.

- 2. Proposez une réduction vers SAT de ce problème. On utilisera des variables $x_{v,i}$ pour signifier que le sommet v est le *i*ème sommet de l'ensemble dominant.
- 3. Expliquez pourquoi il n'est pas nécessaire de coder la contrainte :

"L'un des sommets de G est le ième sommet du dominant."

- 4. Combien de littéraux comporte votre formule?
- 5. Que déduit-on sur le problème ENSEMBLE DOMINANT S?

Nous allons maintenant définir une réduction de SAT vers ensemble DOMINANT S. L'idée est la suivante : pour chaque variable x_i , on utilise le gadget ci-contre, comportant deux sommets marqués avec les littéraux x_i et $\neg x_i$. Les sommets y_i et z_i ne sont reliés à aucun autre sommet. Puis, on ajoute un sommet correspondant à chaque clause, qui sera relié exclusivement aux sommets des littéraux qui la composent. L'ensemble S est l'ensemble de tous les sommets du graphe.

Soit n_{ϕ} le nombre de variables d'une formule SAT ϕ et m_{ϕ} son nombre de clauses. Soit G_{ϕ} le graphe construit comme indiqué ci-dessus pour la formule ϕ .

6. Dessinez le graphe G_{ϕ} correspondant à la formule

$$\phi = (\neg x_1 \lor x_2) \land (x_1 \lor x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3)$$

- 7. Justifiez qu'un dominant de G_{ϕ} comporte nécessairement au moins n_{ϕ} sommets.
- 8. Expliquez comment on construit un dominant de taille n_{ϕ} de G_{ϕ} à partir d'une solution de la formule ϕ .
- 9. Expliquez comment on trouve une solution de la formule ϕ à partir d'un dominant de taille n_{ϕ} du graphe G_{ϕ} . En particulier, il faut justifier que les sommets choisis dans le dominant sont des sommets correspondants à des littéraux.

10. Que déduit-on sur le problème ENSEMBLE DOMINANT S?

Voici une version optimisation du problème ensemble dominant S

ENSEMBLE DOMINANT S (OPTIMISATION)

Entrée : Un graphe G et un ensemble de sommet S

Sortie : Le plus petit entier k tel qu'il existe un ensemble dominant S de taille k.

- 11. Proposez une réduction (facile) de ENSEMBLE DOMINANT S à ENSEMBLE DOMINANT S (OPTIMISATION).
- 12. Proposez un algorithme (un peu plus compliqué) qui résout ENSEMBLE DOMINANT S (OPTIMISATION) à l'aide d'autant d'appels que souhaité à un algorithme résolvant ENSEMBLE DOMINANT S. En supposant que l'algorithme résolvant ENSEMBLE DOMINANT S est de complexité f(n) pour un graphe à n sommets, estimez la complexité dans le pire cas de votre algorithme (en fonction de n et de f(n)).

Voici enfin une version avec calcul de solution du problème ENSEMBLE DOMINANT S:

ENSEMBLE DOMINANT S (CALCUL DE SOLUTION)

Entrée : Un graphe G, un ensemble de sommets S et un entier k.

Sortie : Un ensemble d'au plus k sommets formant un ensemble dominant S s'il en existe, le message failed sinon.

- 13. Proposez une réduction (facile) de Ensemble dominant S à Ensemble dominant S(CALCUL DE SOLUTION).
- 14. Proposez un algorithme (un peu plus compliqué) qui résout ENSEMBLE DOMINANT S (CALCUL DE SOLUTION) à l'aide d'autant d'appels que souhaité à un algorithme résolvant ENSEMBLE DOMINANT S. En supposant que l'algorithme résolvant ENSEMBLE DOMINANT S est de complexité f(n) pour un graphe à n sommets, estimez la complexité dans le pire cas de votre algorithme (en fonction de n et de f(n)).