AMENDMENTS TO THE CLAIMS

1-8. (Canceled)

- 9. (Currently amended) A method according to claim 8 A method of surveying a buried pipeline, which pipeline comprises a tubular member with a protective wrapping, comprising the step of selecting a plurality of spaced locations above and along the length of the pipeline, and sequentially from each spaced location applying a signal to the pipeline and measuring the signal at each of the other spaced locations, wherein the difference in measured signal strength between a pair of adjacent spaced locations along a length of the pipeline in the direction of signal transmission is a measure of the attenuation of the signal over that length of pipeline and the measurement of the signals applied to the pipeline from the plurality of spaced locations generates a plurality of measured signal strengths, the method comprising the step of calculating a plurality of attenuations for each of the plurality of lengths of pipeline located between respective pairs of spaced locations and the method further comprising the step of averaging the calculated attenuations for each length of pipeline.
- (Original) A method according to claim 9 wherein the attenuation is calculated in units which are independent of the applied signal strength.
- 11. (Original) A method according to claim 9 wherein each measured attenuation across each length of pipeline is expressed as a ratio of a predetermined expected attenuation to provide a plurality of attenuation ratios and the attenuation ratios associated with each length of pipeline are multiplied together to produce an attenuation

product for each length of pipeline, the method further comprising the step of comparing

the attenuation products to provide an indication of deterioration in each length of the

pipeline.

12. (Currently amended) A method according to claim [[8]] $\underline{9}$ wherein the distance

between each pair of adjacent spaced locations is between 10 and 100 meters.

13. (Currently amended) A method according to claim [[8]] 9 wherein the frequency

of the signal applied to the pipeline is between 5 kHz and 35 kHz.

14. (Currently amended) A method according to claim [[8]] 9 wheren wherein the

frequency of the signal applied to the pipeline is between 10 kHz and 32 kHz.

15. (Currently amended) A pipeline survey apparatus for use in a method according

to claim [[8]] 2, the apparatus comprising a plurality of sensor units, each sensor unit

being spaceable from each other sensor unit above and along a length of the pipeline at a

respective one of a plurality of spaced locations, at least one sensor unit comprising a

non-contact coupling means for applying a signal to a pipeline and at least two sensor

units each comprising a receiver for measuring signals emitted by a pipeline.

16. (Original) An apparatus according to claim 15 wherein each sensor unit

comprises non-contact coupling means for applying a signal to a pipeline and a receiver

for measuring signals emitted by a pipeline.

Amendment Response Serial No. 10/589,061 Attv. Docket No. 8346-2 17 (Original) An apparatus according to claim 15 comprising a control unit, which

control unit is arranged to receive data from each sensor unit and to perform calculations

as referred to in claim 8 in order to measure deterioration in a pipeline.

18 (Original) An apparatus according to claim 17 wherein a sensor unit is a master

sensor unit, the master sensor unit comprising the control unit and further comprising a

long range communication device.

19. (Original) An apparatus according to claim 18 wherein the long range

communication device is a GSM radio device.

20. (Original) An apparatus according to claim 15 wherein each sensor unit

comprises a short range radio device for communication with at least one other sensor

unit.

21. (Original) An apparatus according to claim 15 wherein the non-contact coupling

means is arranged to transmit a signal of between 5 kHz and 35 kHz.

22. (Original) An apparatus according to claim 15 wherein the non-contact coupling

means is arranged to transmit a signal of between 10 kHz and 32 kHz.

Group Art Unit 2862

23. (Original) An apparatus according to claims 15 wherein each sensor unit is

powered by a power unit, the power unit comprising a battery and a solar panel.

24. (Original) A pipeline survey system comprising a pipeline survey apparatus

according to claim 15 and a buried pipeline, which pipeline comprises a tubular member

with a protective wrapping, wherein each sensor unit is spaced from each other sensor

unit above and along the length of pipeline at a respective one of a plurality of spaced

locations.

25 (Original) An system according to claim 24 wherein the plurality of sensor units

are regularly spaced along the pipeline with a spacing of between 10 and 100 meters.

(Original) An system according to claim 24 wherein each sensor unit, which is 26.

provided at a respective location, is calibrated to take into account the distance between

the sensor unit and the pipeline at that respective location.

27. (Original) An apparatus according to claim 24 wherein each receiver has a sensor

axis and each receiver is arranged with its sensor axis orthogonal to the axis of the length

of pipeline that passes under the respective location of each receiver.

28 (Original) An apparatus according to claim 24 wherein the pipeline comprises a

cathodic protection system and each sensor unit is arranged to monitor the voltage of the

cathodic protection system.

(Canceled) 29.

30. (Currently amended A method according to claim [[8]] 9 wherein the step of

applying a signal to the pipeline comprises the step of inducing an electric current in the

pipeline by electromagnetic induction.

Amendment Response Serial No. 10/589,061 Atty. Docket No. 8346-2