Доказательство оптимальности главных компонент (PCA)

Авторы:

Емельков М.Е.

ИСУ: 471918

Смирнов А.В.

ИСУ: 467504

Доказательство оптимальности главных компонент (РСА)

Пусть имеется матрица наблюдений X размера $n \times m$, где n — число наблюдений, m — число признаков. Ковариационная матрица признаков определяется как:

$$X_{\text{cov}} = \frac{1}{n-1} X_{\text{centered}}^T X_{\text{centered}},$$

это симметричная матрица размера $m \times m$, элементами которой являются ковариации признаков. Важное свойство: $X_{\rm cov}$ положительно полуопределена, а её диагональные элементы равны дисперсиям отдельных признаков. Рассмотрим произвольное направление в пространстве признаков, заданное единичным вектором $\mathbf{w} \in \mathbb{R}^m$ ($|\mathbf{w}|=1$). Проекция центрированных данных на это направление даётся линейной комбинацией признаков $\mathbf{y}=X_{\rm centered}\mathbf{w}$ (здесь $\mathbf{y}-$ вектор длины n, содержащий координаты всех наблюдений вдоль \mathbf{w}). Дисперсия проекций данных на направление \mathbf{w} вычисляется как средний квадрат отклонения \mathbf{y} от нуля (среднее ноль из-за центрирования):

$$\operatorname{Var}(y) = \frac{1}{n-1} \|X_{\text{centered}} \mathbf{w}\|^2 = \frac{1}{n-1} \mathbf{w}^T (X_{\text{centered}}^T X_{\text{centered}}) \mathbf{w} = \mathbf{w}^T X_{\text{cov}} \mathbf{w}.$$

Таким образом, дисперсию проекции на \mathbf{w} можно выразить квадратичной формой $\mathbf{w}^T X_{\text{cov}} \mathbf{w}$. Задача нахождения направления максимальной дисперсии сводится к максимизации этой квадратичной формы при ограничении $|\mathbf{w}| = 1$.

Одномерный случай

Нужно решить задачу нахождения максимума:

$$\max_{\|\mathbf{w}\|=1} \mathbf{w}^T X_{\text{cov}} \mathbf{w}.$$

Поскольку X_{cov} — симметрическая матрица, то существует ортонормированный базис из собственных векторов $e_1, e_2, \ldots, e_m \in \mathbb{R}^m$, в котором X_{cov} диагонализуема. Обозначим соответствующие собственные значения и упорядочим их: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$. Тогда

$$X_{\text{cov}}e_i = \lambda_i e_i, \quad i = 1, \dots, m$$

Вектор **w** можно разложить по базису $\{e_i\}$:

$$\mathbf{w} = a_1 e_1 + a_2 e_2 + \dots + a_m e_m,$$

где $e_i^T \mathbf{w} = a_1 e_i^T e_1 + \dots + a_i e_i^T e_i + \dots + a_m e_i^T e_m = a_i$ и $|\mathbf{w}| = \sum_{i=1}^m a_i^2 = 1$. Тогда:

$$\mathbf{w}^T X_{\text{cov}} \mathbf{w} = \sum_{i=1}^m \lambda_i a_i^2.$$

Поскольку λ_1 — наибольшее собственное значение, максимум достигается при $a_1^2=1$, а $a_2^2=\cdots=a_m^2=0$, то есть при $\mathbf{w}=e_1$. Таким образом, оптимальное направление — это e_1 .

Обобщение на k измерений: первые k главных компонент

Пусть теперь требуется выбрать не одно направление, а подпространство размерности k (где $1 \le k \le m$), на которое данные будут проецироваться. Мы хотим, чтобы суммарная дисперсия проекций на это k-мерное подпространство была максимальной. Иными словами, нужно выбрать k ортонормированных направлений $\mathbf{w}_1, \ldots, \mathbf{w}_k$ (где $\mathbf{w}_i^T \mathbf{w}_j = 0$ при $i \ne j$ и $|\mathbf{w}_i| = 1$), которые максимизируют сумму дисперсий:

$$\sum_{i=1}^{k} \operatorname{Var}(X_{\text{centered}} \mathbf{w}_i) = \sum_{i=1}^{k} \mathbf{w}_i^T X_{\text{cov}} \mathbf{w}_i.$$

Разложим каждый из векторов \mathbf{w}_i по базису собственных векторов e_1, \dots, e_m ковариационной матрицы. Тогда:

$$\mathbf{w}_i = \sum_{j=1}^m a_{ij} \, \mathbf{e}_j, \quad$$
и $\mathbf{w}_i^{\top} X_{\text{cov}} \mathbf{w}_i = \sum_{j=1}^m \lambda_j a_{ij}^2.$

Суммарная дисперсия по всем k направлениям:

$$\sum_{i=1}^{k} \mathbf{w}_{i}^{\top} X_{\text{cov}} \mathbf{w}_{i} = \sum_{i=1}^{k} \sum_{j=1}^{m} \lambda_{j} a_{ij}^{2} = \sum_{j=1}^{m} \lambda_{j} \left(\sum_{i=1}^{k} a_{ij}^{2} \right).$$

Здесь величина $w_j := \sum_{i=1}^k a_{ij}^2$ показывает, какая часть вектора \mathbf{w}_j лежит в нашем k-мерном подпространстве. Из ортонормированности \mathbf{w}_i следует, что для каждого j выполняется $0 \le w_j \le 1$, а суммарно $\sum_{j=1}^m w_j = k$. Теперь видно, как максимизировать сумму $\sum_{j=1}^m \lambda_j w_j$ при данных ограничениях на w_j . Поскольку $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_m$, наибольшую отдачу дают веса, помещённые при первых собственных значениях. Чтобы сумма была максимальной, нужно выбрать $w_1 = w_2 = \cdots = w_k = 1$ (т.е. полностью включить первые k собственных векторов в подпространство), а остальные $w_{k+1}, \ldots, w_m = 0$. В этом случае выполняется ограничение $\sum w_j = k$, и сумма равна $\lambda_1 + \lambda_2 + \cdots + \lambda_k$. Таким образом, направления главных компонент PCA — это собственные векторы ковариационной матрицы данных. Ортогональность собственных векторов гарантирует, что главные компоненты независимы и образуют ортонормированный базис в выбранном подпространстве.