K-Nearest Neighbors (KNN)

The "hello world" Algorithm

2019年6月26日 李文哲

• 最容易理解的算法:理解核心不超过5分钟

• 最容易实现的算法:从零实现不超过5行代码

K最近邻 (KNN) 算法 (K=1)

K最近邻 (KNN) 算法 (K=3)

K最近邻 (KNN) 算法 (K=5)

2分类

问题:在使用KNN算法的时候,我们一般会选择奇数(odd)

number)的K,为什么?

因为偶数会出现两类数量相同的情况

防止平手

3分类 更多分类会更复杂

参数有两大类

- 1、模型参数 model parameter
- 2、超参数 hyper parameter 开关 用人工的方式去控制 KNN 里是K 模型外指导模型

Coding Time-1

有几个需要考虑的问题

1. 把一个物体表示成向量

- (2.8, 12.5)
- 2. 标记号每个物体的标签(i.e., offer/no offer)
- Offer No Offer (2.4, 12.8) (2.8, 12.5)

- 3. 计算两个物体之间的距离/相似度
- 4. 选择合适的K K=1, 3, 5, 7, 9

1. 把一个物体表示成向量

- 这也叫做"特征工程"英文叫Feature Engineering
- 模型的**输入一定是数量化的信息**,我们需要把现实生活中的物体表示成 **向量/矩阵/张量**形式。

人
$$=$$
 ($=$ ($=$ ($=$ ($=$ ($=$ ($=$ ($=$ ($=$ ($=$))

2. 标记号每个物体的标签

好人/坏人识别

水果种类识别

3. 计算两个物体之间的距离/相似度

Coding Time-2

4. 选择合适的K

为了选择合理的K,首先需要去理解K对算法的影响

为了理解K对算法的影响,需要先理解什么叫算法的决策边界

决策边界

例1: 大学里60分以上作为及格,60分以下作为不及格

例2: 今年某高校要计划引入35岁以下, 具有海外研究经验3年以上的学者。

决策边界决定"线性分类器"或者"非线性分类器"

KNN的决策边界: 怎么寻找 (i.e., K=1) ?

KNN的决策边界: 怎么寻找 (i.e., K=1) ?

被分类为绿色

把每个点做标记之后呈现决策边界

KNN的决策边界: K值的影响

问题:随着K的增加,会怎么变化?

Coding Time-3

怎么去选择合适的K?

答案是交叉验证(Cross Validation)

通常,我们也把它归类为"调参"

但什么是交叉验证? What? How?

交叉验证

Intuition

把训练数据进一步分成训练数据(Training Data)和验证集(Validation Data)。 选择在验证数据里最好的超参数组合。

训练数据

测试数据

训练数据

验证数据

测试数据

5折交叉验证(5-fold Cross Validation)

K=1 时:

测试数据

5折交叉验证(5-fold Cross Validation)

K=3 时:

测试数据

交叉验证中需要注意的点

- 1. 千万不能用测试数据来调参
- 2. 千万不能用测试数据来调参
- 3. 千万不能用测试数据来调参
- 4. 数据量越少,可以适当增加折数, why?

KNN中需要考虑的点 - 回顾之前的例子

特征的缩放

- 1. 线性归一化 (Min-max Normalization)
- 2. 标准差标准化(Z-score Normalization)

特征缩放一线性归一化(Min-max Normalization)

	特征
	0
	0.2
	0.6
	1.0
→	0
	0.4
	0.2
	0.33
	0.6
	0

数值范围 = [1.5, 4]

数值范围 = [0, 1]

特征缩放 — 标准差标准化(Z-score Normalization)

特征		特征
1.5		0
2		0.2
3		0.6
4		1.0
1.5	→	0
2.5		0.4
2		0.2
2.3		0.33
3		0.6
1.5		0

Coding Time-4

KNN 的延伸内容(1) - 如何处理大数据量?

对新样本的分类

- 预测阶段:需要**计算被预测样本和每** 一个训练样本之间的距离
- 时间复杂度:O(N), N是样本总数
- 当N很大的时候,这个复杂度显然不能 作为实时预测

需要怎么办?

KNN 的延伸内容(1) - 如何处理大数据量?

- 对于样本个数N来说O(logN)
- 对于数据维度d来说,指数 级复杂度。

KNN 的延伸内容(1) - 如何处理大数据量?

近似算法:不再寻求完全准确的解,可以适当损失精确率

利用类似**哈希**算法 – Locality Sensitivity Hashing (LSH)

核心思想:把样本分在不同的bucket,使得距离比较近的样本较大概率在同一个bucket里

LSH 函数h对于给定的相似度量函数d,满足:

- d(x1, x2) <=r 时 p(h(x1)==h(x2))的概率高
- d(x1,x2)>αr时, p(h(x1)==h(x2))的概率低

KNN 的延伸内容(2) - 如何处理特征之间的相关性?

参考: Kilian et al. 2009

KNN 的延伸内容(3) - 怎么处理样本的重要性?

Weighted KNN

权重计算

$$w(\mathbf{x}, \mathbf{x}_i) = \exp\left(-\lambda |\mathbf{x} - \mathbf{x}_i|_2^2\right)$$

预测

$$\Pr(y|\mathbf{x}) = \frac{\sum_{i=1}^{n} w(\mathbf{x}, \mathbf{x}_i) \delta(y, y_i)}{\sum_{i=1}^{n} w(\mathbf{x}, \mathbf{x}_i)}$$

$$\delta(y, y_i) = \begin{cases} 1 & y = y_i \\ 0 & y \neq y_i \end{cases}$$

KNN 的延伸内容(4) — 能不能利用Kernel Trick?

Kernelized KNN

Epanechnikov quadraţic kernel

$$K_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{\lambda}\right) \quad D(t) = \begin{cases} \frac{3}{4}(1-t^2) & \text{if } |t| \le 1; \\ 0 & \text{otherwise.} \end{cases} \quad \lambda = \text{bandwidth}$$

tri-cube kernel

$$K_{\lambda}(x_0,x) = D\left(\frac{|x-x_0|}{\lambda}\right) \quad D(t) = \begin{cases} (1-|t|^3)^3 & \text{if } |t| \le 1; \\ 0 & \text{otherw} \end{cases}$$

Gaussian kernel

$$K_{\lambda}(x_0, x) = \frac{1}{\sqrt{2\pi}\lambda} \exp(-\frac{(x - x_0)^2}{2\lambda^2})$$

总结

- 1. KNN是一个非常简单的算法
- 2. 比较适合应用在低维空间
- 3. 预测时候的复杂度高,对于大数据需要一定的处理