Лекція 12

Випадкові величини загального типу

Визначення випадкової величини. Її функція розподілу

Нехай (Ω, U, P) — довільний ймовірносний простір. Числову функцію $\xi = \xi(\omega)$ від елементарної події $\omega \in \Omega$ будемо називати випадковою величиною, якщо для довільного числа x

$$\{\xi \leq x\} = \{\omega : \xi(\omega) \leq x\} \in U.$$

Функцію $F(x) = F_{\xi}(x) = P\{\xi \le x\}$, визначену при усіх $x \in R$, будемо називати функцією розподілу випадкової величини ξ .

Лема 1. Функція розподілу F(x) випадкової величини ξ задовольняє властивостям:

а) для
$$x_1 < x_2$$
 $P\{x_1 < \xi \le x_2\} = F(x_2) - F(x_1);$

b)
$$P\{\xi < x\} = F(x-0)$$
.

Доведення. 3 подання $\{\xi \le x_2\} = \{\xi \le x_1\} \cup \{x_1 < \xi \le x_2\}$ випливає $P\{\xi \le x_2\} = P\{\xi \le x_1\} + P\{x_1 < \xi \le x_2\}$, що доводить властивість а).

Розглянемо тепер властивість b). Подамо подію $\{\xi < x\}$ у вигляді $\{\xi < x\} = \sum_{n=1}^{\infty} \left\{ x - \frac{1}{n-1} < \xi \le x - \frac{1}{n} \right\}$. Звідси на основі пункту а) маємо

$$P\{\xi < x\} = \sum_{n=1}^{\infty} P\left\{x - \frac{1}{n-1} < \xi \le x - \frac{1}{n}\right\} = F(x-1) + \lim_{N \to \infty} \sum_{n=2}^{N} \left\{F(x - \frac{1}{n}) - F(x - \frac{1}{n-1})\right\} = \lim_{N \to \infty} F(x - \frac{1}{N}) = F(x-0).$$

Лему доведено.

Наслідок 1. Якщо F(x) функція розподілу випадкової величини ξ , то

- 1) $P\{\xi = x\} = F(x) F(x-0);$
- 2) $P\{x_1 \le \xi \le x_2\} = F(x_2) F(x_1 0);$
- 3) $P\{x_1 < \xi < x_2\} = F(x_2 0) F(x_1);$
- 4) $P\{x_1 \le \xi < x_2\} = F(x_2 0) F(x_1 0)$.

Характеристичні властивості функції розподілу містить наступна теорема.

Теорема 1. Функція розподілу F(x) має слідуючі властивості:

- 1) F(x) неспадна;
- 2) F(x) неперервна справа;
- 3) $F(+\infty)=1$;

4) $F(-\infty)=0$.

Доведення. 1), очевидно, випливає з а).

Для доведення 2) розглянемо $B_n = \left\{ x < \xi \le x + \frac{1}{n} \right\} \downarrow \varnothing$. Тоді

 $P(B_n) = F(x + \frac{1}{n}) - F(x) \to 0$. Таким чином F(x) = F(x+0).

Нарешті перейдемо до 3) - 4). Подамо $\Omega = \sum_{n=-\infty}^{\infty} A_n$, де

 $A_n = \{\omega : n-1 < \xi(\omega) \le n\}$. Звідси маємо

$$1 = P(\Omega) = \sum_{n=-\infty}^{\infty} P(A_n) = \lim_{N \to \infty} \sum_{n=-N+1}^{N} P(A_n) = \lim_{N \to \infty} \left[F(N) - F(-N) \right].$$

Отже, $F(\infty) = \lim_{N \to \infty} F(N) = 1$; $F(-\infty) = \lim_{N \to \infty} F(-N) = 0$.

Теорему доведено.

Розглянемо приклад функції розподілу. Нехай μ_n — число успіхів в схемі випробувань Бернуллі з ймовірністю успіху 0 . Тоді

$$P\{\mu_n = m\} = P_n(m) = C_n^m p^m q^{n-m}, \quad m \in \{0,1,...,n\} = N_n.$$

Функцію розподілу $\mu_{\scriptscriptstyle n}$ можна подати у вигляді

$$F_{\mu_n}(x) = \sum_{\substack{m \in N_n \cap \\ \cap (-\infty, x]}} P_n(m) = \sum_{\substack{m \in N_n \cap \\ \cap (-\infty, x]}} C_n^m p^m q^{n-m}.$$

$$F_{\mu_n}(x) = \sum_{\substack{m \in N_n \cap \\ \cap (-\infty, x]}} P_n(m) = \sum_{\substack{m \in N_n \cap \\ \cap (-\infty, x]}} C_n^m p^m q^{n-m}.$$

Тепер нехай ξ — випадкова величина, яка має розподіл Пуассона з параметром $\lambda \ge 0$,

$$P\{\xi=m\} = \frac{\lambda^m}{m!}e^{-\lambda} = P(m), \quad m \in \{0,1,...\} = N.$$

Тоді $F_{\xi}(x) = \sum_{m \in N \cap \atop \cap (-\infty, x]} P(m)$ представляє собою функцію розподілу ξ .

. Розподіл ймовірностей випадкової величини. Вибірковий ймовірносний простір

Далі через B_R будемо позначати σ -алгебру борелівських множин R, тобто мінімальну σ -алгебру, яка містить множини виду $(-\infty, x]$, для будьякого $x \in R$.

Лема 2. Нехай A_0 – деякий клас підмножин R, $\sigma\{A_0\}$ – мінімальна σ - алгебра, яка містить A_0 , а $f(\omega)$ – дійсна функція, яка визначена на просторі елементарних подій Ω . Якщо для будь-якого $A \in A_0$

$$f^{-1}(A) \stackrel{\text{def}}{=} \{\omega : f(\omega) \in A\} \in U$$
, то для будь-якого $A' \in \sigma\{A_0\}$ $f^{-1}(A') \in U$.

Доведення. Нехай В — клас таких підмножин R, що для будь-якого $B \in \mathbb{B}$, $f^{-1}(B) \in U$. За умовою $A_0 \subset \mathbb{B}$. З іншого боку для функції $f(\omega)$ справедливі співвідношення

$$f^{-1}\left(\bigcup_{i} B_{i}\right) = \bigcup_{i} f^{-1}(B_{i}); \quad f^{-1}\left(\bigcap_{i} B_{i}\right) = \bigcap_{i} f^{-1}(B_{i}); \quad f^{-1}(\overline{B}) = \overline{f^{-1}(B)}.$$

Звідси випливає, що $B-\ \sigma$ -алгебра, а значить $\sigma\{A_0\}\subset B$. Лему доведено.

Наслідок 2. Якщо ξ — випадкова величина, то для кожної множини $B \in \mathbf{B}_{\mathbf{R}}, \ \xi^{-1}(B) \in U$ і визначена ймовірність

$$P\{\omega:\xi(\omega)\in B\}=P\{\xi\in B\}=P_{\xi}(B).$$

Для доведення достатньо замість A_0 узяти клас множин виду $(-\infty, x]$, для будь-якого $x \in R$.

Тепер можна дати "симетричне" визначення випадкової величини. Випадкова величина — це довільне вимірне відображення вимірного простору (Ω, U) у вимірний простір (R, B_R) .

Функція $P_{\xi}(B)$, визначена для усіх $B \in \mathbf{B}_{\mathbf{R}}$, називається розподілом ймовірностей випадкової величини ξ .

Проаналізуємо зв'язок між розподілом ймовірностей і функцією розподілу. У теорії міри доводиться наступний результат.

Теорема 2 (теорема Каратеодорі). Якщо на алгебрі A_1 підмножин Ω визначена ймовірність P, яка задовольняє аксіомам:

- 1) невід'ємності;
- 2) нормованості;
- 3) σ -адитивності (для будь-якої послідовності $\{A_n\}_{n=1}^{\infty}$ такої, що $A_i \cap A_j = \emptyset$, $i \neq j$, $A_n \in A_1$, $A = \bigcup_{n=1}^{\infty} A_n \in A_1$, $P(A) = \sum_{n=1}^{\infty} P(A_n)$;

то цю ймовірність можна однозначно продовжити на всі множини з σ -алгебри σ { A_1 }.

Візьмемо за A_1 алгебру числових підмножин виду $\bigcup_{i=1}^n \left(x_1^i, x_2^i\right]$, де $\left(x_1^i, x_2^i\right] \cap \left(x_1^j, x_2^j\right] = \emptyset$ для $i \neq j$. Нехай ξ — деяка випадкова величина з функцією розподілу $F_{\xi}(x)$. Тоді для будь-якої множини $A \in A_1$ виду $A = \bigcup_{i=1}^n \left(x_1^i, x_2^i\right]$

$$P_{\xi}\left(A\right) = \sum_{i=1}^{n} \left[F_{\xi}\left(x_{2}^{i}\right) - F_{\xi}\left(x_{1}^{i}\right) \right]. \tag{1}$$

Неважко перевірити, що функція $P_{\xi}(\cdot)$, яка визначається рівністю (1) для будь-якої множини $A \in A_1$, задовольняє усім трьом аксіомам ймовірності. Як наслідок теореми Каратеодорі маємо, що функція розподілу $F_{\xi}(x)$ однозначно визначає розподіл ймовірностей $P_{\xi}(\cdot)$, тобто ймовірність події $\{\xi \in B\}$ для будь-якої борелівської множини $B \in B_R$.

Зробимо також наступне зауваження. Кожна випадкова величина ξ дає таке відображення $\xi = \xi(\omega)$ множини Ω у числову пряму R, яке породжує новий ймовірносний простір (R, B_R, P_{ξ}) . Простір (R, B_R, P_{ξ}) називається вибірковим ймовірносним простором для випадкової величини ξ .

Конструкція вибіркового ймовірносного простору дає відповідь на таке питання: як за функцією F(x), яка задовольняє умовам 1)-4), побудувати випадкову величину ξ , функція розподілу якої співпадала б з F(x), тобто $F_{\varepsilon}(x) = F(x)$.