

15-826: Multimedia Databases and Data Mining

Lecture #4: Multi-key and Spatial Access Methods - I

C. Faloutsos

Must-Read Material

- MM-Textbook, Chapter 4
- [Bentley75] J.L. Bentley: *Multidimensional Binary Search Trees Used for Associative Searching*, CACM, 18,9, Sept. 1975.
- Ramakrinshan+Gehrke, Chapter 28.1-3

15-826

Copyright: C. Faloutsos (2017)

2

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Data Mining

15-826

Copyright: C. Faloutsos (2017)

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- text
- •

15-826

Copyright: C. Faloutsos (2017)

Sec. key indexing

easily solved in commercial DBMS:
 create index sal-index on
 EMPLOYEE (salary);
 select * from EMPLOYEE
 where salary > 50 and
 job-code = 'ADMIN'

15-826

Copyright: C. Faloutsos (2017)

13

15

CMU SCS

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
 - main memory: quad-trees
 - main memory: k-d-trees
- spatial access methods
- text
- •

15-826

Copyright: C. Faloutsos (2017)

CMU SCS

Quad-trees

- problem: find cities within 100mi from Pittsburgh
- assumption: all fit in main memory
- Q: how to answer such queries quickly?

15-826

Copyright: C. Faloutsos (2017)

4

16

k-d trees - discussion

• great for main memory & low 'd' (~<10)

- Q: what about high-d?
- A: most attributes don't ever become discriminators
- Q: what about disk?
- A: Pagination problems, after ins./del. (solutions: next!)

15-826

Copyright: C. Faloutsos (2017)

45

Conclusions

- sec. keys: B-tree indices (+ postings lists)
- multi-key, main memory methods:
 - quad-trees
 - k-d-trees

15-826

Copyright: C. Faloutsos (2017)

X

CMU SCS

References

- [Bentley75] J.L. Bentley: *Multidimensional Binary Search Trees Used for Associative Searching*, CACM, 18,9, Sept. 1975.
- [Finkel74] R.A. Finkel, J.L. Bentley: *Quadtrees: A data structure for retrieval on composite keys*, ACTA Informatica,4,1, 1974
- Applet: eg., http://donar.umiacs.umd.edu/quadtree/points/kdtree.html

15-826

Copyright: C. Faloutsos (2017)

47