

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SYSTEMS

VIZUALIZACE SÍŤOVÝCH BEZPEČNOSTNÍCH UDÁ-LOSTÍ

VISUALIZATION OF NETWORK SECURITY EVENTS

BAKALÁŘSKÁ PRÁCE

BACHELOR'S THESIS

AUTOR PRÁCE

PETR STEHLÍK

AUTHOR

VEDOUCÍ PRÁCE

Ing. PAVEL KROBOT

SUPERVISOR

BRNO 2016

Abstrakt Do tohoto odstavce bude zapsán výtah (abstrakt) práce v českém jazyce.	

Abstract

Do tohoto odstavce bude zapsán výtah (abstrakt) práce v anglickém jazyce.

Klíčová slova

Sem budou zapsána jednotlivá klíčová slova v českém jazyce, oddělená čárkami.

Keywords

Sem budou zapsána jednotlivá klíčová slova v anglickém jazyce, oddělená čárkami.

Citace

Petr Stehlík: Vizualizace síťových bezpečnostních událostí, bakalářská práce, Brno, FIT VUT v Brně, 2016

Vizualizace síťových bezpečnostních událostí

Prohlášení

Prohlašuji, že jsem tuto bakalářskou práci vypracoval samostatně pod vedením pana Ing. Pavla Krobota. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

Petr Stehlík 31. března 2016

Poděkování

V této sekci je možno uvést poděkování vedoucímu práce a těm, kteří poskytli odbornou pomoc (externí zadavatel, konzultant, apod.).

© Petr Stehlík, 2016.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Obsah

1	Úvo	od	2		
2	Mo	nitoring síťových dat	3		
	2.1	Nemea	3		
		2.1.1 Hlavní komponenty	3		
	2.2	IDEA	3		
	2.3	Další monitorovací systémy	3		
3	Tec	hnologie	4		
	3.1	Dostupné technologie	4		
	3.2	Výběr technologií	4		
	3.3	Zvolené technologie	4		
4	Arc	chitektura aplikace	5		
	4.1	REST API	5		
	4.2	Databáze událostí	5		
	4.3	GUI	5		
5	Implementace 6				
	5.1	Backend	6		
	5.2	Frontend	6		
	5.3	Zabezpečení	6		
	5.4	Distribuce	6		
6					
	6.1	Názory uživatelů	7		
	6.2	Nasazení v praxi	7		
7	Záv	ěr	8		
Li	terat	tura	9		
Ρì	P řílohy				
Soznam příloh					

$\mathbf{\acute{U}vod}$

Počítačové sítě, zejména Internet, v dnešním světě zaujímají jednu z nejvýznamnějších rolí. Počínaje výzkumem a vědeckými experimenty, konče běžným životem většiny lidí. Jen za posledních deset let se počet uživatelů Internetu více než ztrojnásobil z cca jedné miliardy lidí na tři miliardy. Počítačové sítě propujují celý svět a jsou neustále rozšiřovány, vylepšovány a modernizovány. To vede k větším nárokům na použité technologie a zdroje.

Avšak se zvyšujícím počtem uživatelů roste i počet útoků na různé počítačové sítě, kterými se útočníci snaží získat informace či poškodit oběť. Síťový útok[1] je definován jako záměrný akt, kde se entita snaží překonat bezpečnostní služby a porušit bezpečnost systému. Vznikají tím pádem systémy na detekci takovýchto útoků, aby správcí sítí dokázali reagovat na vzniklou situaci.

Jeden z těchto systémů vznikl ve sdružení CESNET s názvem Nemea. Tento framework analyzuje sítový provoz a zaznamenává podezřelé toky jako agregované události do databáze. Na větší síti (stovky až tisíce připojených zařízení) je takovýchto událostí vytvořeno až několik tisíc denně. S tím nastává problém jak dané události jednoduše analyzovat a rozpoznat na jaké události se zaměřit a na které nebrát zřetel.

Cílem této bakalářské práce je vytvořit aplikaci pro vizuální analýzu bezpečnostních událostí na síti monitorované s pomocí frameworku Nemea, tak aby správce sítě dokázal rychle a jednoduše rozpoznat významný útok na sít. Důležitým aspektem vytvořené aplikace je důraz na použití moderních knihoven podporující tvorbu dynamických webových aplikací, které jsou dostupné na různých typech zařízeních. Společně s tím je kladen důraz na uživatelskou přívětivost a jednoduchost prostředí, ve kterém bude probíhat vizuální analýza událostí.

Aplikace bude pracovat s konkrétním formátem dat nazvaný IDEA. Tento formát dat je specifikován sdružením CESNET a slouží jako prostředek pro sdílení dat bezpečnostních událostí mezi různými systémy. Díky tomu lze systém kdykoliv přenést na jiný zdroj databáze než je systém Nemea, např. v rámci sdružení CESNET na systém Warden.

Celou aplikaci navíc bude možno libovolně přizpůsobit tak, aby vyhovovala potřebám daného správce sítě. V aplikaci bude zavedena i technika zvaná drill-down, která napomáhá rychlé a přehledné analýze velkého množství dat bez ztráty informací o analyzované události.

Aplikace bude integrována do současného Nemea frameworku pod názvem Nemea Dashboard a bude s ním společně distribuována jako front end celého systému.

Monitoring síťových dat

- 2.1 Nemea
- 2.1.1 Hlavní komponenty

libtrap

UniRec

- 2.2 IDEA
- 2.3 Další monitorovací systémy

Technologie

- 3.1 Dostupné technologie
- 3.2 Výběr technologií
- 3.3 Zvolené technologie

Architektura aplikace

- 4.1 REST API
- 4.2 Databáze událostí
- 4.3 GUI

Implementace

- 5.1 Backend
- 5.2 Frontend
- 5.3 Zabezpečení
- 5.4 Distribuce

Dosažené výsledky

- 6.1 Názory uživatelů
- 6.2 Nasazení v praxi

Závěr

Závěrečná kapitola obsahuje zhodnocení dosažených výsledků se zvlášť vyznačeným vlastním přínosem studenta. Povinně se zde objeví i zhodnocení z pohledu dalšího vývoje projektu, student uvede náměty vycházející ze zkušeností s řešeným projektem a uvede rovněž návaznosti na právě dokončené projekty.

Literatura

[1] Shirey, R.: Internet Security Glossary, Version 2. RFC 4949, RFC Editor, Srpen 2007. URL https://tools.ietf.org/html/rfc4949

Přílohy

Seznam příloh