Reproducing Kernel Hilbert Spaces

John Duchi

Motivation

Can always break down risk in terms of

$$L(\widehat{h}) - \inf_{h} L(h) = \underbrace{L(\widehat{h}) - \inf_{h \in \mathcal{H}} L(h)}_{\text{estimation error}} + \underbrace{\inf_{h \in \mathcal{H}} L(h) - \inf_{h} L(h)}_{\text{approximation error}}$$

- Generalization and other convergence guarantees get at estimation error (via complexity bounds on \mathcal{H} , characteristics of risk L and loss ℓ , etc.)
- Approximation error requires understanding how expressive function class is

Motivation: nonlinear features

Instead of using

$$\langle \theta, x \rangle$$

use

$$\langle \theta, \phi(x) \rangle$$

Example (Polynomials)

For
$$x \in \mathbb{R}$$
, use $\phi(x) = \begin{bmatrix} 1 & x & x^2 & \cdots & x^d \end{bmatrix}^T \in \mathbb{R}^{d+1}$

Example (Strings)

For x a string, let

$$\phi(x) = [\text{count of } a \in x]_{a \in \mathcal{S}}$$

Can we cut down on computation and control complexities?

Data representations

Theorem (Representer theorem)

Let

$$\widehat{L}_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(\langle \theta, \phi(x_i) \rangle, y_i) + \varphi(\|\theta\|_2)$$

for any loss ℓ , non-decreasing regularizer $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$. Then w.l.o.g. any minimizer of \widehat{L}_n can be taken of the form

$$\widehat{\theta} = \sum_{i=1}^{n} \alpha_i \phi(x_i)$$

- lacktriangle Extends to populatin $(n=\infty)$ case too
- Key takeaway: future predictions are

$$\langle \theta, \phi(x) \rangle = \sum_{i=1}^{n} \alpha_i \langle \phi(x_i), \phi(x) \rangle$$

Polynomial features

For $x \in \mathbb{R}^k$, let

$$\phi(x) = \begin{bmatrix} 1\\ \sqrt{2}x_1\\ \vdots\\ \sqrt{2}x_k\\ [x_ix_j]_{i,j=1}^k \end{bmatrix} \in \mathbb{R}^{1+k+k^2}$$

Then

$$\phi(x)^T \phi(z) = (1 + x^T z)^2$$

More generally: for degree d,

$$\langle \phi(x), \phi(z) \rangle = (1 + x^T z)^d$$

Kernels: definitions

Definition (Positive definite function)

A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is *positive definite* if it is symmetric and for all $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in \mathcal{X}$, the Gram matrix

$$K = \begin{bmatrix} \mathsf{k}(x_1, x_1) & \cdots & \mathsf{k}(x_1, x_n) \\ \vdots & \ddots & \vdots \\ \mathsf{k}(x_n, x_1) & \cdots & \mathsf{k}(x_n, x_n) \end{bmatrix}$$

is positive semidefinite, i.e. $\alpha^T K \alpha \geq 0$ for all $\alpha \in \mathbb{R}^n$.

A function k is a *kernel* if and only if it is a positive semidefinite function

Examples

- ▶ Inner products: $k(x,z) = x^T z = \sum_{j=1}^d x_j z_j$
- Polynomials: $k(x,z) = (1+x^Tz)^k$
- ▶ Min-kernel: $k(x, z) = \min\{x, z\}$
- ▶ Sequence mis-match kernel: $\mathcal{X} = \Sigma^*$ is alphabet of all sequences over Σ
 - ▶ String $u \sqsubset x$ (u is a subsequence of x) if len(u) = k and there are i_1, \ldots, i_k

$$u = x_{i_1} x_{i_2} \cdots x_{i_k} = x(\mathbf{i}) \text{ for } \mathbf{i} = (i_1, \dots, i_k)$$

Kernel:

$$k(x, z) = \sum_{u \in \Sigma^*} \sum_{\mathbf{i}, \mathbf{j} : x(\mathbf{i}) = z(\mathbf{j}) = u} \lambda^{\operatorname{card}(\mathbf{i}) + \operatorname{card}(\mathbf{j})}$$

Construction of kernels

▶ Any product k(x,z) = f(x)f(z) is a kernel

$$K = uu^T$$
 for $u = [f(x_1) \cdots f(x_n)]$

Any sum: $k(x,z) = k_1(x,z) + k_2(x,z)$ because $K = K_1 + K_2 \succeq 0$

Product kernels

For $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{m \times m}$ symmetric with $A = \sum_{i=1}^n \lambda_i u_i u_i^T$ and $B = \sum_{i=1}^m \nu_i v_i v_i^T$, Kronecker product

$$A \otimes B = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{n1}B & \cdots & a_{nn}B \end{bmatrix}$$

has spectral decomposition

$$A \otimes B = \sum_{i=1}^{n} \sum_{j=1}^{m} \nu_i \lambda_j (u_i \otimes v_j) (u_i \otimes v_j)^T$$

Product kernel $k(x,z) = k_1(x,z) \cdot k_2(x,z)$, $K = K_1 \odot K_2$ (Hadamard/elementwise product) is sub-matrix of Kronecker

Examples

- ▶ Inner products: $k(x,z) = x^T z = \sum_{j=1}^d x_j z_j$
- Polynomials: $k(x,z) = (1 + x^T z)^k$
- Gaussian-like kernel:

$$\mathsf{k}(x,z) = \exp(\langle x,z \rangle) = \sum_{k=0}^{\infty} \frac{\langle x,z \rangle^k}{k!}$$

The three views of kernel methods

Hilbert spaces

Note: we are lazy and usually work with *real* Hilbert spaces

Definition (Hilbert space)

A vector space \mathcal{H} is a *Hilbert space* if it is a complete inner product space.

Definition (Inner product)

A bi-linear mapping $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an *inner product* if it satisfies

- Symmetry: $\langle f, g \rangle = \langle g, f \rangle$
- ▶ Linearity: $\langle \alpha f_1 + \beta f_2, g \rangle = \alpha \langle f_1, g \rangle + \beta \langle f_2, g \rangle$
- Positive definiteness: $\langle f,f\rangle \geq 0$ and $\langle f,f\rangle = 0$ if and only if f=0

This gives Euclidean norm

$$||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle}.$$

Examples

- 1. Euclidean space \mathbb{R}^d , $\langle u, v \rangle = \sum_{j=1}^d u_j v_j$
- 2. Square-summable sequences:

$$\ell_2 := \left\{ u \in \mathbb{R}^{\mathbb{N}} \mid \sum_{j=1}^{\infty} u_j^2 < \infty \right\}$$

with
$$\langle u, v \rangle = \sum_{j=1}^{\infty} u_j v_j$$

3. Square integrable functions against any probability distribution p:

$$\langle f, g \rangle := \int f(x)g(x)p(x)dx$$

or, more generally,

$$\langle f, g \rangle := \mathbb{E}_P[f(X)g(X)]$$

Fun example

Let

$$k(x,z) = \exp\left(-\frac{\|x - z\|_2^2}{2\sigma^2}\right)$$

Feature maps and kernels

Definition (Feature mapping)

Given a Hilbert space \mathcal{H} , a feature mapping $\phi: \mathcal{X} \to \mathcal{H}$, $\phi(x) \in \mathcal{H}$

Theorem

Any feature mapping defines a valid kernel.

Reproducing kernel Hilbert spaces

We want to be sure we can *evaluate* or prediction function f(x), where $f \in \mathcal{H}$ for some \mathcal{H}

Example

Hilbert space $L^2([0,1]) = \{f: [0,1] \to \mathbb{R} \mid \|f\|_2 < \infty\}$. If f(x) = g(x) almost everywhere, then $\|f - g\|_2 = 0$

Definition

For Hilbert space \mathcal{H} a linear functional $L:\mathcal{H}\to\mathbb{R}$ is bounded if

$$|L(f)| \leq M \|f\|_{\mathcal{H}}$$
 for all $f \in \mathcal{H}$

Evaluation functionals

For Hilbert space \mathcal{H} of $f: \mathcal{X} \to \mathbb{R}$, the evaluation functional

$$L_x(f) := f(x).$$

Example

For $\mathcal{X} = \mathbb{R}^d$, $\mathcal{H} = \{f_c \mid c \in \mathbb{R}^d\}$ where $f_c(x) = \langle c, x \rangle$, then $L_x(f_c) = \langle c, x \rangle$

Example (Unbounded evaluation)

Let $\mathcal{H} = L^2([0,1])$, then $L_x(f) = f(x)$ is unbounded.

Reproducing Kernel Hilbert Spaces

Definition (RKHS)

A reproducing kernel Hilbert space is any Hilbert space \mathcal{H} for which the evaluation functional L_x is bounded for each $x \in \mathcal{X}$

RKHSs define kernels

Theorem

Let \mathcal{H} be an RKHS of $f: \mathcal{X} \to \mathbb{R}$. Then there is a unique $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ associated to \mathcal{H} with

$$k(x,\cdot) \in \mathcal{H}$$

where the k is reproducing for \mathcal{H} : for all $f \in \mathcal{H}$

$$\langle f, \mathsf{k}(x, \cdot) \rangle = f(x)$$

Proof (continued)

Kernels define RKHSs

Theorem (Moore-Aronszajn)

Let $k: \mathcal{X} \to \mathcal{X} \to \mathbb{R}$. Then there is a unique RKHS \mathcal{H} with reproducing kernel k

Proof: Let \mathcal{H}_0 be all linear combinations $f(x) = \sum_{i=1}^n \alpha_i \mathsf{k}(x, x_i)$

Kernels define RKHSs: inner products

Kernels define RKHSs: completeness

Reading and bibliography

- 1. N. Aronszajn. Theory of reproducing kernels.

 Transactions of the American Mathematical Society, 68(3): 337–404, May 1950
- 2. A. Berlinet and C. Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*.

 Kluwer Academic Publishers, 2004
- 3. G. Wahba. Spline Models for Observational Data.
 Society for Industrial and Applied Mathematics, Philadelphia, 1990
- 4. N. Cristianini and J. Shawe-Taylor. *Kernel Methods for Pattern Analysis*.
 - Cambridge University Press, 2004