2012 G6

Ezra Guerrero Alvarez

January 16, 2022

2012 G6

2012 G6

Let ABC be a triangle with circumcenter O and incenter I. The points D, E and F on the sides BC, CA and AB respectively are such that BD + BF = CA and CD + CE = AB. The circumcircles of the triangles BFD and CDE intersect at $P \neq D$. Prove that OP = OI.

We use directed angles mod 180°. Let V be the reflection of I over O and T_A, T_B, T_C be the extouch points. Furthermore, let $X = (BT_CT_A) \cap (BFD)$ and $Y = (CT_BT_A) \cap (CED)$. First, note that by the incenter-excenter lemma and homothety, V is the circumcenter of the ex-triangle, also known as the *Bevan point*. It follows by this homothety that $\overline{VT_A} \perp \overline{BC}$ and analogously for the others. Thus, V is the Miquel point of $\triangle T_AT_BT_C$ with respect to $\triangle ABC$. Now, note that

$$\angle VYP = \angle VYC + \angle CYP = 90^{\circ} + \angle CDP = 90^{\circ} + \angle BDP = \angle VXB + \angle BXP = \angle VXP$$

so XVYP is cyclic. By spiral similarity construction, we see X is the center of a spiral similarity taking $\overline{\mathrm{DT_A}}$ to $\overline{\mathrm{FT_C}}$. However, since $BT_A + BT_C = AC = BD + DF$, it follows

$$DT_A = FT_C$$
.

Hence, $\triangle XDT_A \cong \triangle XFT_C$. Thus, XD = XF, and X is the midpoint of arc \widehat{DF} . Hence, B - I - X. Since $\overline{BX} \perp \overline{XV}$, it follows X lies on the circle with diameter \overline{IV} . Analogously, Y lies on this circle. Therefore, P lies on this circle and because O is its center, OP = OI.