#### **Probability and Random Process (SWE3026)**

#### **Statistical Inference**

JinYeong Bak
jy.bak@skku.edu
College of Computing, SKKU

H. Pishro-Nik, "Introduction to probability, statistics, and random processes", available at <a href="https://www.probabilitycourse.com">https://www.probabilitycourse.com</a>, Kappa Research LLC, 2014.

# **Objectives**

Test whether a hypothesis is true or false

#### **Hypothesis**

#### **Definition**

 $H_0$ : null hypothesis, initially assumed to be true

 $H_1$ : alternative hypothesis, contradictory to  $H_0$ 

#### **Example**

Let's consider a radar system that uses radio waves to detect aircraft.

 $H_0$ : No aircraft is present

 $H_1$ : An aircraft is present

You have a coin and you would like to check whether it is fair or not.

let  $\theta$  be the probability of heads,  $\theta = P(Head)$ . You have two hypotheses:

 $H_0$ : The coin is fair,  $\theta = \frac{1}{2}$ 

 $H_1$ : The coin is not fair,  $\theta \neq \frac{1}{2}$ 

Which hypothesis is true?

**Experiment)** 

We toss the coin 100 times and record the number of heads

X: the number of heads that we observe

 $X \sim Binomial(100, \theta)$ 

#### **Experiment)**

We toss the coin 100 times and record the number of heads

X: the number of heads that we observe

$$X \sim Binomial(100, \theta)$$

#### With a threshold *t*:

if 
$$|X-50| \leq t$$
, accept  $H_0$  & reject  $H_1$ 

if 
$$|X-50|>t$$
, accept  $H_1$  & reject  $H_0$ 

#### **Experiment)**

We toss the coin 100 times and record the number of heads

X: the number of heads that we observe

$$X \sim Binomial(100, \theta)$$

#### With a threshold *t*:

if 
$$|X-50| \leq t$$
, accept  $H_0$  & reject  $H_1$ 

if 
$$|X-50|>t$$
, accept  $H_1$  & reject  $H_0$ 

How do we choose *t*?

$$P(type\ 1\ error) = P(|X - 50| > t\ when\ H_0\ is\ true)$$
  
 $P(type\ 1\ error) \le \alpha$ 

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$

if 
$$|X-50| \le t$$
, accept  $H_0$  & reject  $H_1$   $P(type\ 1\ error) = P(|X-50| > t\ when\ H_0\ is\ true) \le \alpha = 0.05$ 

By the central limit theorem:

$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$

if  $|X-50| \leq t$ , accept  $H_0$  & reject  $H_1$  $P(type\ 1\ error) = P(|X - 50| > t\ when\ H_0\ is\ true) \le \alpha = 0.05$ 

By the central limit theorem:

$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

$$P(type\ 1\ error) = P(|X - 50| > t\ |\ H_0) = P\left(\left|\frac{X - 50}{5}\right| > \frac{t}{5}\ |\ H_0\right) = P(|Y| > \frac{t}{5}\ |\ H_0)$$

With a threshold  $c = \frac{t}{r}$ :

if  $|Y| \leq c$ , accept  $H_0$  & reject  $H_1$ 

if |Y| > c, accept  $H_1$  & reject  $H_0$ 

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$
 if  $|X - 50| \leq t$ , accept  $H_0$  & reject  $H_1$  
$$P(type\ 1\ error) = P(|X - 50| > t\ when\ H_0\ is\ true) = P(|Y| > c|H_0) \leq \alpha = 0.05$$
 
$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

With a threshold  $c = \frac{t}{5}$ :

if  $|Y| \leq c$ , accept  $H_0$  & reject  $H_1$ 

$$P(|Y| > c) = 1 - P(-c \le Y \le c) \cong 2 - 2\Phi(c) = \alpha = 0.05$$
  
 $c = \Phi^{-1}(0.975) = 1.96$ 

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$
 if  $|X - 50| \leq t$ , accept  $H_0$  & reject  $H_1$  
$$P(type\ 1\ error) = P(|X - 50| > t\ when\ H_0\ is\ true) = P(|Y| > c|H_0) \leq \alpha = 0.05$$
 
$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

$$P(|Y| > c) = 1 - P(-c \le Y \le c) \cong 2 - 2\Phi(c) = \alpha = 0.05$$
  
 $c = \Phi^{-1}(0.975) = 1.96$ 

if  $|Y| \leq 1.96$ , accept  $H_0$  & reject  $H_1$ 

if |Y| > 1.96, accept  $H_1$  & reject  $H_0$ 

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$

if 
$$|X - 50| \le t$$
, accept  $H_0$  & reject  $H_1$ 

$$P(type \ 1 \ error) = P(|X - 50| > t \ when \ H_0 \ is \ true) \le \alpha = 0.05$$

$$Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$$

if  $|Y| \leq 1.96$ , accept  $H_0$  & reject  $H_1$ 

if |Y| > 1.96, accept  $H_1$  & reject  $H_0$ 



A = Acceptance Region

 $R = R_1 \cup R_2 = \text{Rejection Region}$ 

 $\alpha = P(\text{type I error}) = \text{area}_1 + \text{area}_2 = 0.05$ 

$$X \sim Binomial(100, \theta_0 = \frac{1}{2})$$

if 
$$|X - 50| \le t$$
, accept  $H_0$  & reject  $H_1$   $P(type\ 1\ error) = P(|X - 50| > t\ when\ H_0\ is\ true) \le \alpha = 0.05$   $Y = \frac{X - n\theta_0}{\sqrt{n\theta_0(1 - \theta_0)}} = \frac{X - 50}{5} \sim N(0, 1)$ 

if  $|Y| \leq 1.96$ , accept  $H_0$  & reject  $H_1$ 

if |Y| > 1.96, accept  $H_1$  & reject  $H_0$ 

if 
$$|X - 50| \le 9.8$$
, accept  $H_0$  & reject  $H_1$ 

if |X - 50| > 9.8, accept  $H_1$  & reject  $H_0$ 



A = Acceptance Region

$$R = R_1 \cup R_2 = \text{Rejection Region}$$

$$\alpha = P(\text{type I error}) = \text{area}_1 + \text{area}_2 = 0.05$$

### **Hypothesis Testing for the Mean**

#### **Definition**

 $H_0$ : null hypothesis, initially assumed to be true

 $H_1$ : alternative hypothesis, contradictory to  $H_0$ 

#### **Example**

We have n random samples from a distribution and let's make inference about the mean of the distribution  $\mu$ 

 $H_0: \mu = \mu_0$ 

 $H_1$ :  $\mu \neq \mu_0$ 

### **Example – Known Variance**

Let  $X_1, X_2, ..., X_n$  be a random sample from a  $N(\mu, \sigma^2)$  distribution, where  $\mu$  is unknown but  $\sigma^2$  is known. Design a level  $\alpha$  test to choose between

$$H_0$$
:  $\mu = \mu_0$ ,  $H_1$ :  $\mu \neq \mu_0$ 

### **Example – Unknown Variance**

Let  $X_1, X_2, ..., X_n$  be a random sample from a  $N(\mu, \sigma^2)$  distribution, where  $\mu$  and  $\sigma^2$  are unknown. Design a level  $\alpha$  test to choose between

$$H_0$$
:  $\mu = \mu_0$ ,  $H_1$ :  $\mu \neq \mu_0$ 

The average adult male height in a certain country is 170 cm. We suspect that the men in a certain city in that country might have a different average height due to some environmental factors. We pick a random sample of size 9 from the adult males in the city and obtain the following values for their heights (in cm):

176.2 157.9 160.1 180.9 165.1 167.2 162.9 155.7 166.2

Assume that the height distribution in this population is normally distributed. Here, we need to decide between  $H_0$ :  $\mu=170$ ,  $H_1$ :  $\mu\neq170$ .

Based on the observed data, is there enough evidence to reject  $H_0$  at significance level lpha=0.05?

The average adult male height in a certain country is 170 cm. We suspect that the men in a certain city in that country might have a different average height due to some environmental factors. We pick a random sample of size 9 from the adult males in the city and obtain the following values for their heights (in cm):

176.2 157.9 160.1 180.9 165.1 167.2 162.9 155.7 166.2

Assume that the height distribution in this population is normally distributed. Here, we need to decide between  $H_0$ :  $\mu = 170$ ,  $H_1$ :  $\mu \neq 170$ .

Based on the observed data, is there enough evidence to reject  $H_0$  at significance level  $\alpha = 0.05$ ?

### **Hypothesis Testing for the Mean**

We have n random samples from a distribution and let's make inference about the mean of the distribution  $\mu$ 

#### **Two-sided test**

$$H_0: \mu = \mu_0$$

$$H_1$$
:  $\mu \neq \mu_0$ 

#### **One-sided test**

$$H_0: \mu \leq \mu_0$$

$$H_1: \mu > \mu_0$$

or

$$H_0$$
:  $\mu \geq \mu_0$ 

$$H_1: \mu < \mu_0$$

#### P-value

#### **Definition**

The lowest significance level  $\alpha$  that results in rejecting the null hypothesis Intuitively)

If the P-value is small, it means that the observed data is very unlikely to have occurred under  $\boldsymbol{H}_0$ ,

so we are more confident in rejecting the null hypothesis.

You have a coin and you would like to check whether it is fair or not.

let  $\theta$  be the probability of heads,  $\theta = P(Head)$ . You have two hypotheses:

 $H_0$ : The coin is fair,  $\theta = \frac{1}{2}$ 

 $H_1$ : The coin is not fair,  $\theta \neq \frac{1}{2}$ 

We toss the coin 100 times and observe 60 heads.

Can we reject  $H_0$  at significance level  $\alpha = 0.05$ ?

- You have a coin and you would like to check whether it is fair or not.
- let  $\theta$  be the probability of heads,  $\theta = P(Head)$ . You have two hypotheses:
- $H_0$ : The coin is fair,  $\theta = \frac{1}{2}$
- $H_1$ : The coin is not fair,  $\theta \neq \frac{1}{2}$
- We toss the coin 100 times and observe 60 heads.
- Can we reject  $H_0$  at significance level  $\alpha = 0.05$ ?

- You have a coin and you would like to check whether it is fair or not.
- let  $\theta$  be the probability of heads,  $\theta = P(Head)$ . You have two hypotheses:
- $H_0$ : The coin is fair,  $\theta = \frac{1}{2}$
- $H_1$ : The coin is not fair,  $\theta \neq \frac{1}{2}$
- We toss the coin 100 times and observe 60 heads.
- Can we reject  $H_0$  at significance level  $\alpha = 0.01$ ?

- You have a coin and you would like to check whether it is fair or not.
- let  $\theta$  be the probability of heads,  $\theta = P(Head)$ . You have two hypotheses:
- $H_0$ : The coin is fair,  $\theta = \frac{1}{2}$
- $H_1$ : The coin is not fair,  $\theta \neq \frac{1}{2}$
- We toss the coin 100 times and observe 60 heads.
- What is the P-value?