ANÁLISE DE DADOS MULTIVARIADOS I - REGRESSÃO (AULA 04)

Novembro e dezembro de 2018

Reinaldo Soares de Camargo

```
> mod1 <- lm(renda_per_capita ~ esperanca_vida_ao_nascer + IDHM_educacao
               , data = dados)
> summary(mod1)
call:
lm(formula = renda_per_capita ~ esperanca_vida_ao_nascer + IDHM_educacao,
   data = dados)
Residuals:
   Min 10 Median 30 Max
-358.85 -82.99 -11.48 63.59 1113.90
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
(Intercept)
                       -3182.2559
                                     56.1557 -56.67 <2e-16
esperanca vida ao nascer 40.8346 0.8935 45.70 <2e-16
IDHM_educacao
                        1236, 5080
                                     25.6647
                                              48.18 <2e-16
Residual standard error: 126.8 on 5561 degrees of freedom
Multiple R-squared: 0.7283, Adjusted R-squared: 0.7282
```

Interpretação: O aumento de uma unidade no idhm_educação aumenta a renda per capita da localidade em R\$ 1.236,50 , mantedo constante a esperança de vida ao nascer.

F-statistic: 7454 on 2 and 5561 DF, p-value: < 2.2e-16

• O que representa a elevação de uma unidade no Idmh educação, vai de quanto para quanto dado que o indicador vai de 0 a 1!?

```
> summary(dados$IDHM_educacao)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   0.2070   0.4900   0.5600   0.5591   0.6310   0.8250
```

• Para responder vamos calcular o y_hat para os valores médios das variáveis explicativas; depois calcular qual seria a variação da unidade resolvendo a equação de regressão para o X2 (idmh educação), a partir dos dados da aula 3.

```
X1 <- mean(dados$esperanca_vida_ao_nascer)
X2 <- mean(dados$IDHM_educacao)

y_hat <- mod1$coefficients[1] + mod1$coefficients[2]*X1 + mod1$coefficients[3]*X2
y_hat2 <- y_hat + mod1$coefficients[3]

x2_hat <- (y_hat2 - mod1$coefficients[1] - mod1$coefficients[2]*X1)/ mod1$coefficients[3]

var_x2 <- x2_hat - X2</pre>
```

Global Environment •	
Data	
O dados	5564 obs. of 238 variables
○ mod1	Large lm (12 elements, 1.5 Mb)
Values	
var_x2	Named num 1
X1	73.0892307692308
X2	0.559102444284687
x2_hat	Named num 1.56
y_hat	Named num 494
y_hat2	Named num 1730

A unidade é 1. Porém essa alteração extrapola o range do indicador que é menor do que 1.

 Exemplo numérico da interpretação do coeficiente de regressão linear múltipla.

aumentando esperança de vida em uma unidade, renda percapita aumenta em 40,835

Renda Percapita	В0	B1	Esperança de vida ao nascer	B2	IdHm Educação
493,64	-3182,256	40,835	73,0892	1236,508	0,5591
534,48	-3182,256	40,835	74,0892	1236,508	0,5591
575,31	-3182,256	40,835	75,0892	1236,508	0,5591
616,15	-3182,256	40,835	76,0892	1236,508	0,5591
656,98	-3182,256	40,835	77,0892	1236,508	0,5591
697,82	-3182,256	40,835	78,0892	1236,508	0,5591

aumentando idhm educação em uma unidade, renda percapita aumenta em 1.236,508

Renda Percapita	В0	B1	Esperança de vida ao nascer	B2	IdHm Educação
493,64	-3182,256	40,835	73,0892	1236,508	0,5591
1.730,15	-3182,256	40,835	73,0892	1236,508	1,5591
2.966,66	-3182,256	40,835	73,0892	1236,508	2,5591
4.203,17	-3182,256	40,835	73,0892	1236,508	3,5591
5.439,68	-3182,256	40,835	73,0892	1236,508	4,5591
6.676,18	-3182,256	40,835	73,0892	1236,508	5,5591

- Inclusão de variáveis qualitativas como variáveis preditoras
- Exemplo, queremos ver como a renda per capita dos municípios é afetada pela região na qual o município se localiza
- Temos cinco regiões: NO, SU, SE, NE, CO
- Precisamos transformar a informação qualitativa em informações quantitativas
- Maneira comumente utilizada:

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \dots + \beta_{k}x_{ki}$$
$$+\delta_{1}D_{SU} + \delta_{2}D_{NO} + \delta_{3}D_{SE} + \delta_{4}D_{NE} + \delta_{5}D_{CO} + \epsilon_{i}$$

- Na equação acima, novos parâmetros a serem estimados: δ_1 , δ_2 , δ_3 , δ_4 , δ_5
- As variáveis D_{SU} , D_{SE} , D_{NO} , D_{NE} , D_{CO} são chamadas variáveis dummy

- As variáveis dummy D_{SU} , D_{SE} , D_{NO} , D_{NE} , D_{CO} são definidas como:
 - Caso o município da observação i esteja contido na região Sul, então o valor de D_{SU} =1, e os valores das demais variáveis dummy será zero
 - Caso o município da observação i esteja contido na região Nordeste, então o valor de D_{NE} =1, e os valores das demais variáveis dummy será zero
 - E assim por diante ...
- Problema: não podemos incluir todas as variáveis dummy na regressão ao mesmo tempo, adicionalmente ao intercepto eta_0
 - (1) Se mantivermos o intercepto, temos que retirar uma das variáveis dummy
 - (2) Se mantivermos todas as variáveis dummy, precisamos retirar o intercepto
- Observação:
 - Essas exclusões alternativas são feitas para evitarmos problemas de multicolinearidade (perfeita)
 - Dependendo da alternativa (1) ou (2) acima, a interpretação dos parâmetros muda

Especificações alternativas:

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \dots + \beta_{k}x_{ki}$$
$$+\delta_{1}D_{SU} + \delta_{2}D_{NO} + \delta_{3}D_{SE} + \delta_{4}D_{NE} + \epsilon_{i}$$

Ou:

$$y_{i} = \beta_{1}x_{1i} + \beta_{2}x_{2i} + \dots + \beta_{k}x_{ki}$$
$$+\delta_{1}D_{SU} + \delta_{2}D_{NO} + \delta_{3}D_{SE} + \delta_{4}D_{NE} + \delta_{5}D_{CO} + \epsilon_{i}$$

- Para fins de previsão, as duas especificações retornam resultados idênticos
- É possível incluir mais de uma variável qualitativa na regressão, sempre atentando para problemas de multicolinearidade
- A primeira especificação é mais utilizada

• Exemplo:

$$[Sal\acute{a}rio]_i = \beta_0 + \beta_1 [Experi\hat{e}ncia]_i + \delta_1 [DummyMulher]_i + \epsilon_i$$

Grupo Base: Masculino

Para um indivíduo do sexo masculino, a equação se torna:

$$[Sal\acute{a}rio]_i = \beta_0 + \beta_1 [Experi\hat{e}ncia]_i + \epsilon_i$$

Para um indivíduo do sexo feminino, a equação se torna:

$$[Sal\acute{a}rio]_i = (\beta_0 + \delta_1) + \beta_1 [Experi\hat{e}ncia]_i + \epsilon_i$$

• Note que a diferença está no **intercepto**: β_0 para os homens e $(\beta_0 + \delta_1)$ para as mulheres

State expenditure on public schools (per pupil)

TEACHER'S SALARY

- Variáveis dummys de intercepto.
- Para captar o reflexo da variação do intercepto de acordo com a presença de dada característica. Por exemplo: Para captar o diferencial de preço de uma residência numa vizinhança desejável, incluiríamos a vizinhança como uma dummy.

Preço =
$$\beta_0$$
 + δ_1 Vizinhança + β_1 Tamanho + outros fatores.

- Se a vizinhança for desejável (Vizinhança =1) o intercepto (ou preço padrão) será (β_0 + δ_1).
- Caso contrário o intercepto será $\beta_{0.}$ O parâmetro δ_{1} reflete o diferencial de preço entre as vizinhanças.
- Na realidade ao incluir dummys estaremos estimando vários modelos de regressão, um para cada categoria.

Preço =
$$\beta_0 + \delta_1$$
Vizinhança + β_1 Tamanho + outros fatores. (Vizinhança = 1)
Preço = β_0 + β_1 Tamanho + outros fatores. (Vizinhança = 0)

Aplicação em R

Consideremos o modelo:

Salarioh =
$$\beta_0 + \delta_0$$
Feminino + β_1 Educação + β_2 Experiência + β_3 Permanencia + ϵ

- Importe os dados da planilha: wage1.csv;
- Estime o modelo.
- •Qual o grupo de referência (ou grupo base) neste modelo?
- Os coeficientes estimados são estatisticamente significantes com 1% e 5%?
- De acordo com o modelo estimado é possível suspeitar de algum tipo de discriminação salarial?
- Em conjunto os coeficientes estimados são significantes com 5%?

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
   data = dados)
Residuals:
   Min 10 Median 30
                                  Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.56794
                       0.72455 -2.164 0.0309 *
femini o -1.81085
                       0 26483 -6.838 2.26e-11 ***
educacko 0.57150
                       0 04934 11.584 < 2e-16 ***
experiencia 0.02540
                       7.01157 2.195
                                        0.0286 *
                       0.02116 6.663 6.83e-11 ***
permanencia 0.14101
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Os sinais dos coeficientes estão de acordo com o esperado?

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
    data = dados)
Residuals:
    Min 1Q Median 3Q
                                  Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
 (Intercept) -1.56794 0.72455 -2.164 0.0309 *
feminino -1.81085 0.26483 -6.838 2.26e-11 ***
educação 0.57150 0.04934 11.584 < 2e-16 ***
experiencia 0.02540 0.01157 2.195
                                       0.0286
permanencia 0.14101 0.02116 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Grupo de referência ou grupo base: Masculino.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
   data = dados)
Residuals:
   Min
          1Q Median
                       3Q
                                 Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.56794 0.72455 -2.164
feminino -1.81085 0.26483 -6.838 2.26e-11
educacao 0.57150 0.04934 11.584 < 2e-16
experiencia 0.02540 0.01157 2.195 0.0286 *
permanencia 0.14101 0.02116 6.6 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Coeficientes estimados estatisticamente significantes com 1% (feminimo, educação, permanência); com 5% todos.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
    data = dados)
Residuals:
   Min 10 Median 30
                                 Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Encercept) -1.56794 0.72455 -2.164 0.0309 *
feminino -1.81085 🔰 0.26483 -6.838 2.26e-11 ***
           0.57130 0.04934 11.584 < 2e-16 ***
equences
experiencia 0.02540 0.01157 2.195 0.0286
permanencia 0.14101 0.02116 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Salário pago para o gênero feminino inferior ao pago ao masculino em média R\$ 1,81 por hora, pode indicar discriminação!!??

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
    data = dados)
Residuals:
   Min 1Q Median 3Q
                                  Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Encercept) -1.56794 0.72455 -2.164 0.0309 *
feminino -1.81085 🕽 0.26483 -6.838 2.26e-11 ***
educación
           0.57130 0.04934 11.584 < 2e-16 ***
experiencia 0.02540 0.01157 2.195 0.0286 *
permanencia 0.14101 0.02116 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Interpretação dos coeficientes: Genero femino recebe em média – R\$ 1,81 por h, ceteris paribus.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
   data = dados)
Residuals:
   Min 1Q Median 3Q
                                 Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.56794
                   0.72455 -2.164 0.0309 *
feminino -1.81885 0.26483 -6.838 2.26e-11 ***
         0.57150 ) 0.04934 11.584 < 2e-16 ***
educacao
experiencia 0.02540 0.01157 2.195 0.0286 *
permanencia 0.14101 0.02116 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Interpretação dos coeficientes: Aumento de um ano na educação aumenta o salario horário em R\$ 0,57, ceteris paribus.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
   data = dados)
Residuals:
   Min 10 Median 30
                                 Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.56794 0.72455 -2.164 0.0309 *
feminino -1.81085
                   0.26483 -6.838 2.26e-11 ***
                    0.04934 11.584 < 2e-16 ***
gucacao 0.57150
                    0.01157 2.195 0.0286 *
experiencia 0.02540
permanencia 0.14101 0.02116 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Interpretação dos coeficientes: Aumento de um ano na experiencia aumenta o salario horário em R\$ 0,52, ceteris paribus.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + permanencia,
   data = dados)
Residuals:
   Min 10 Median 30
                                 Max
-7.7675 -1.8080 -0.4229 1.0467 14.0075
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.56794 0.72455 -2.164 0.0309 *
feminino -1.81085 0.26483 -6.838 2.26e-11 ***
educacao 0.57150 0.04934 11.584 < 2e-16 ***
experiencia 0.02546 0.01157 2.195
                                       0.0286 *
permanencia 0.14101 🔰 0.02116 - 6.663 6.83e-11 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 2.958 on 521 degrees of freedom
Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

Interpretação dos coeficientes: cada ano de permanência no emprego aumenta o salario horário em R\$ 0,14, ceteris paribus.

E se quisermos que o coeficiente dos anos de experiência variem entre homens e mulheres?

Alteração no modelo com dummy para mulheres:

$$[Salário]_i = \beta_0 + \beta_1 [Experiência]_i + \delta_1 [DummyMulher]_i + \gamma_1 [DummyMulher]_i \times [Experiência]_i + \epsilon_i$$

• Para um indivíduo do sexo masculino, a equação se torna:

$$[Sal\'{a}rio]_i = \beta_0 + \beta_1 [Experi\`{e}ncia]_i + \epsilon_i$$

• Para um indivíduo do sexo feminino, a equação se torna:

$$[Sal\acute{a}rio]_i = (\beta_0 + \delta_1) + (\beta_1 + \gamma_1) [Experi\hat{e}ncia]_i + \epsilon_i$$

- Diferença no **intercepto**: β_0 para os homens e $(\beta_0 + \delta_1)$ para as mulheres
- Diferença no **coeficiente** da variável anos de experiência: β_1 versus $(\beta_1 + \gamma_1)$

Aplicação em R

Consideremos o modelo:

```
Salarioh = \beta_0 + \delta_0Feminino + \beta_1Educação + \beta_2Experiência + \beta_3Permanencia + \gamma_1 (Experiência*Feminino) + \epsilon
```

- •Estime o modelo.
- •Os coeficientes estimados são estatisticamente significantes com 1% e 5%?
- Em conjunto os coeficientes estimados são significantes com 5%?
- Com base nos resultados dessa nova equação, como o efeito da experiência, sobre salario, se altera de acordo com o gênero?
- Houve melhora do R² ajustado em relação ao modelo anterior?

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + experiencia *
   feminino + permanencia, data = dados)
Residuals:
   Min
           10 Median 30
                               Max
-8.3215 -1.6447 -0.4678 1.0431 13.8889
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
                  -2.27347 0.75952 -2.993 0.002891 **
(Intercept)
                  -0.87766 0.41570 -1.111 0.035223
feminino
educacao
                 0.58954 0.04938 11.938 < 2e-16
                  0.05720 0.01589 8.601 0.000348
experiencia
                   0.12810 0.02148 964 4.56e-09 ***
permanencia
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '. 0.1 ' ' 1
Residual standard error: 2.937 on 520 degrees of freedom
Multiple R-squared: 0.3737, Adjusted R-squared: 0.3676
F-statistic: 62.04 on 5 and 520 DF, p-value: < 2.2e-16
```

Os coeficientes estimados são estatisticamente significantes a 5%.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + experiencia *
   feminino + permanencia, data = dados)
Residuals:
   Min
            10 Median
                            30
                                  Max
-8.3215 -1.6447 -0.4678 1.0431 13.8889
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -2.27347
                               0.75952 -2.993 0.002891
feminino
                    -0.87766 0.41570 -2.111 0.035223
educacao
                    0.58954 0.04938 11.938 < 2e-16
                     0.05720 0.01589 3.601 0.000348
experiencia
                     0.12810 0.02148 5.964 4.56e-09
permanencia
                               0.01944 -2.008 0.003908 **
feminino:experiencia -0.05635
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
Residual standard error: 2.937 on 570 degrees of freedom
                              Adjusted R-squared: 0.3676
Multiple R-squared: 0.3737,
F-statistic: 62.04 on 5 and 520 DF, p-value: < 2.2e-16
```

Em conjunto os coeficientes estimados são estatisticamente significantes a 5%.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + experiencia *
   feminino + permanencia, data = dados)
Residuals:
                           3Q
   Min
            10 Median
                                  Max
-8.3215 -1.6447 -0.4678 1.0431 13.8889
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                   -2.27347 0.75952 -2.993 0.002891 **
(Intercept)
feminino
                   -0.87766 0.41570 -2.111 0.035223
educacao
                   0.58954 0.04938 11.938 < 2e-16
experiencia
                    0.05720 0.01589 3.601 0.000348
                    0.12810 0.02148 5.964 4.56e-09 ***
permanencia
feminino:experiencia -0.05635 0.01944 -2.898 0.003908 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.937 on 520 degrees of freedom
Multiple R-squared: 0.3737, Adjusted R-squared: 0.3676
F-statistic: 62.04 on 5 and 520 DF, p-value: < 2.2e-16
```

O salário horário de indivíduos do sexo feminino de mesma experiência é menor em R\$ -0,05, ceteris paribus.

```
call:
lm(formula = salarioh ~ feminino + educacao + experiencia + experiencia *
   feminino + permanencia, data = dados)
Residuals:
   Min 10 Median 30
                             Max
-8.3215 -1.6447 -0.4678 1.0431 13.8889
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                -2.27347 0.75952 -2.993 0.002891 **
(Intercept)
feminino
               -0.87766 0.41570 -2.111 0.035223
educacao
                0.58954 0.04938 11.938 < 2e-16
               0.05720 0.01589 3.601 0.000348
experiencia
                  permanencia
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.937 or 520 degrees of freedom
Multiple R-squared: 0.3737, Adjusted R-squared: 0.3676
F-statistic: 62.04 on 5 and 520 DF, p-value. < 2.2e-16
```

O R² ajustado passou de 35,7% para 36,76%. Este modelo nos parece melhor do que o anterior..

Obrigado.