Week 2 Review

Week 2 review

- Using logic gates
 - Combinational circuits
 - Circuit reduction
 - Karnaugh maps

- How can you express a two-input XOR gate as a combination of NAND and NOT gates?
 - Draw the circuit using only these two logic gates.

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Remember De Morgan's!

$$(W' + Z') = (W Z)'$$

How can you implement a NOT gate from a 2-input NAND gate?

How can you implement a NOT gate from a 2-input NAND gate?

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

A	В	С	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

• Given the minterms below, can you fill in the truth table on the right?

$$Y = m_2 + m_3 + m_7 + m_9 + m_{12} + m_{14}$$

A	В	С	D	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

Helpful Hint

Problem Set 02

1. Minimize the K-Map in POS terms:

	C'D'	C'D	CD	CD'
A'B'	0	0	1	1
A'B	1	1	0	0
AB	1	1	0	0
AB′	0	0	0	0

$$F = (A'+C') \cdot (B+C) \cdot (B'+C')$$

2. Reduce $F(A,B,C) = \sum (1,4,5,6,7)$ to the most minimum Boolean expression

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC'$$

Simplifying:

$$F = A'B'C + A(B'C' + B'C + BC' + BC)$$

$$F = A'B'C + A(B'(C'+C) + B(C'=C))$$

$$F = A'B'C + A(B'+B)$$

$$F = A'B'C + A$$

$$F = B'C + A$$

3. Draw the K-map for the following Boolean expression:

$$F = AB'C'D' + A'BC' + A'D + BD$$

	<u>C</u> · <u>D</u>	<u>C</u> ·D	C ·D	C · <u>D</u>
Ā·B	0	1	1	0
Ā·B	1	1	1	0
A·B	0	1	1	0
A·B	1	0	0	0

4. What is the Boolean expression for G as given in the K-Map below:

	В∙С	в∙с	в∙с	в∙с
A	X	0	0	1
A	X	0	1	1

$$F = C' + AB$$

Problem Set 03

What gate is created by the following?

Question 2 - Minterms

Write Y in SOM (Sum Of Minterms) form.

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

What is the most reduced form, in sum of products form, of the function from the truth table on the right?

$$Y = m_0 + m_1 + m_2 + m_5$$

+ $m_7 + m_8 + m_9$
+ $m_{10} + m_{13} + m_{15}$

A	В	С	D	Y
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	