Identyfikacja procesów przemysłowych				
Dominik Wróbel	16 X 2018	Wt. 13:45, s. 111		
Laboratorium 1				

1 Przebieg ćwiczenia

1.1. Zadanie 1 - błąd oszacowania średniej

W pierwszej kolejności zbadano czy dane z zadania mają rozkład normalny. W tym celu najpierw obliczono średnie napięcie w każdej chwili czasu poprzez obliczenie wartości średniej każdego wiersza otrzymanych pomiarów. Tak otrzymane średnie wartości napięć poddano dwóm testom - Kołmogorowa - Smirnowa oraz Lillieforsa. Dla testów otrzymano następujące wyniki:

- Kołmogorowa Smirnowa : 1, hipoteza o rozkładzie normalnym danych została odrzucona
- Lillieforsa: 0, hipoteza o rozkładzie normalnym danych została potwierdzona

Aby sprawdzić rozkład danych narysowano także histogram wraz z dopasowaną krzywą rozkładu normalnego:

Rysunek 1: Histogram dla danych z eksperymentu wraz z dopasowaną krzywą rozkładu normalnego

Na podstawie wyników otrzymanych testów oraz Rysunku 1 można stwierdzić, że dane mają rozkład normalny.

Kolejną czynnością było wyznaczenie średniej wartości prądu płynącego przez rezystor oraz oszacowanie błędu tej średniej (odchylenie standardowe). Otrzymaną średnią uzyskano dzieląc średnie napięcie ze wszystkich chwil czasu przez wartość rezystora $120~\Omega$.

$$I_{sr} = 8,2805mA$$
$$\sigma = 10,5451mA$$

Następnie obliczono przedział ufności dla oszacowania średniej przy użyciu funkcji matlaba *paramci* na poziomie $\frac{1}{100}$. Otrzymane wartości przedziału to $I_1=8,0088mA,\quad I_2=8.5521mA.$

Dla obliczonej średniej oraz odchylenia standardowego narysowano rozkład Gaussa wraz z przedziałami ufności.

Rysunek 2: Rozkład Gaussa dla wartości prądu w mA, przedział ufności na poziomie istotności 0,01 to <8,0088; 8.5521 >

Kod programu prezentuje listing poniżej.

```
clear all;
sredniaWektorNapiecie = 0;
load('data_01.mat');
```

```
6
 8
   for j = 1:10000
9
       sredniaWektorNapiecie(j) = mean(u(j,:));
10
   end
11
12
   histfit (sredniaWektorNapiecie);
13
14
1.5
   kstestResult = kstest(sredniaWektorNapiecie);
16
   liltestResult = lillietest(sredniaWektorNapiecie);
17
   kstestResult
18
   liltestResult
20
21
   sredniaSrednichNapiecie = mean(sredniaWektorNapiecie);
22
   sredniaWektorPrad = sredniaWektorNapiecie / 120;
23
   sredniPrad = sredniaSrednichNapiecie / 120;
24
2.5
   sredniPradMa = sredniPrad * 1000;
2.6
27
   sredniaWektorPradMa = 1000 * sredniaWektorPrad;
28
   odchylenieSrednichMa = std(sredniaWektorPradMa);
29
30
   pd = fitdist(sredniaWektorPradMa', 'Normal')
   ci = paramci(pd,'Alpha',.01)
32
33
34
   x = [-15:.1:30];
35
   norm = normpdf(x, sredniPradMa, odchylenieSrednichMa);
36
37
   figure;
38 plot(x, norm)
39 hold on;
40 line([8.0088 8.0088], [0 0.04]);
   line([ 8.5521
                       8.5521 ], [0 0.04]);
```

Listing 1: Zadanie 1

1.2. Zadanie 2 - aproksymacja wielomianami

Zadanie polega na zastosowaniu metody najmniejszych kwadratów do zbioru danych z czujnika ciśnieniowego. Współczynniki są wyznaczane dla różnego stopnia wielomianów n=1,2,3,4,5 korzystając z równania:

$$\Phi^T \Phi a = \Phi^T Y$$
$$a = (\Phi^T \Phi)^{-1} \Phi^T Y$$

Jakość dopasowania została zbadana przy pomocy testu chi2 na poziomie ufności $\frac{1}{100}$, badając odchyłki wartości zmierzonych od aproksymowanych. Wektor podlegający testowi opisuje równanie:

$$e = Y - \Phi a$$

IDENTYFIKACJA PROCESÓW PRZEMYSŁOWYCH

Tablica 1: Współczynniki wielomianu oraz wyniki testu ch2 dla różnych stopni wielomianu

n	współczynniki wielomianu	Test chi2
1	0.4361 -1.7532	1
2	0.0096 0.1007 0.1830	0
3	0.0001 0.0064 0.1451 0.0571	0
4	-0.0000 0.0004 -0.0008 0.2002 -0.0351	0
5	-0.0000 0.0001 -0.0014 0.0225 0.0861 0.0887	0

Hipoteza testu chi2 została odrzucono tylko w przypadku n=1. Najmniejsze n dla którego testchi2 pozwala przyjąć hipotezę, że reszty modelu pochodzą z rozkładu normalnego wynosi 2.

Odchylenie standardowe dla pomiarów obliczono na podstawie wariancji korzystając ze wzoru:

$$\sigma^2 = \frac{e^T e}{N - n - 1}$$

Natomiast odchylenia standardowe parametrów na podstawie wariancji parametrów, które są elementami diagonalnymi macierzy:

$$cova = \sigma^2 (\Phi^T \Phi)^{-1}$$

Tablica 2: Odchylenia standardowe dla poziomu cieczy oraz parametrów

n	σ^2	σ	diag(cova)	σ_p
1	0.8507	0.9223	0.0335, 0.0001	0.1831 0.0090
2	0.0387	0.1967	0.0033, 0.0001, 0.0000	0.0579 0.0076 0.0002
3	0.0364	0.1909	0.0054, 0.0003, 0.0000, 0.0000	0.0736 0.0183 0.0012 0.0000
4	0.0356	0.1887	0.0079, 0.0013, 0.0000, 0.0000, 0.0000	0.0890 0.0356 0.0042 0.0002 0.0000
5	0.0340	0.1844	0.0103, 0.0036, 0.0001, 0.0000, 0.0000, 0.0000	0.1016, 0.0597, 0.0107, 0.0008, 0.0000, 0.0000

Dane oraz aproksymacje wraz z krzywymi odchylonymi od charakterystyki o 3 wartości odchylenia przedstawiają wykresy poniżej:

Rysunek 7: n = 5

Kod programu prezentuje listing poniżej.

```
clear all;
1
   load('data_02.mat')
2
3
4
5
   % n = 1, 2, 3, 4, 5
6
   n = 1;
7
   for i = 1:n
8
       matrixPhi(:,1) = ones(length(u),1);
9
10
       for j = 1:i
11
          matrixPhi(:,j+1) = u.^(j);
12
       end
13
14
15
       %matrixPhiT = matrixPhi';
16
       a = ( matrixPhi' * matrixPhi ) \ matrixPhi' * y(:,5);
17
18
   end
19
20
21
   for i = 0:length(a)-1
22
       p(i+1) = a(length(a)-i);
23
   end
24
25
   p;
26
27
   val = polyval(p,u);
28
29 plot (u, y(:,5),'*');
30 hold on;
   plot (u, val, 'r');
31
32
   e = y(:,5) - matrixPhi * a;
33
34
   estWar = (e' * e) / (length(u) - n - 1)
35
36 | odchStan = sqrt(estWar)
```

```
37
    val1 = val + 3*odchStan;
38
   val2 = val - 3*odchStan;
39
40
41
   hold on;
   plot (u, val1, 'r');
42
   hold on;
43
   plot (u, val2, 'r');
44
45
   [h,p] = chi2gof(e,'Alpha',0.01);
46
47
   estWar = (e' * e) / (length(u) - n - 1)
48
   odchStan = sqrt(estWar)
49
50
   ma1 = inv( matrixPhi' * matrixPhi );
51
   macKow = estWar * ma1
52
   for i = 1:length(macKow(:,1))
53
       odch(i) = sqrt(macKow(i,i));
54
   end
55
   odch
56
```

Listing 2: Zadanie 2

2 Zadanie 3 - oscylator z tłumieniem

Zadnie polega na zastosowaniu metody najmniejszych kwadratów w celu doboru parametrów systemu dynamicznego przy minimalizacji odchyłek od rzeczywistych pomiarów. Rozważanym w zadaniu układem jest oscylator z tłumieniem dla którego pomiary są wykonywane w dyskretnych chwilach czasu. Model taki może być opisany równaniem różnicowym:

$$y_k = \theta_1 y_{k-1} + \theta_2 y_{k-2} + e_k$$

Parametry zostały oszacowane na podstawie minimalizacji funkcji:

$$\begin{split} V(\theta) &= \frac{1}{2} (\Phi \theta - Y)^T (\Phi \theta - Y) \rightarrow min \\ \theta^* &= (\Phi^T \Phi)^{-1} \Phi^T Y \\ \theta^* &= \begin{bmatrix} 1,9081 \\ -0,9973 \end{bmatrix} \end{split}$$

Oszacowanie błędów dla wyznaczonych parametrów obliczono na podstawie macierzy kowariancji, której elementy diagonalnej są wariancjami parametrów.

$$cov\theta^* = \frac{(\Phi\theta^* - Y)^T (\Phi\theta^* - Y)}{N - 2}$$

$$\sigma_{\theta_1} = 0,0005967$$

$$\sigma_{\theta_2} = 0,0005953$$

Zakłócenie e obliczono ze wzoru:

$$e = Y - \Phi\theta^*$$

Wariancja tego zakłócenia wynosi 0,0000057.

Porównanie modelu oraz danych pomiarowych przedstawia Rysunek poniżej.

Rysunek 8: Porównanie wyników danych pomiarowych (kolor niebieski) oraz modelu (kolor zielony)

Z Rysunku 8 wynika, że parametry udało się wyznaczyć z dużą dokładnością. Kod programu:

```
clear all;
   load('data_03.mat')
2
3
4
   phiMatrix(:,1) = y(2:end-1);
5
   phiMatrix(:,2) = y(1:end-2);
   Y = y(3:length(y));
6
 7
8
   theta = ( phiMatrix' * phiMatrix ) \ phiMatrix' * Y;
9
10
   figure();
11
   plot(t,y);
12
   yApr(1:2) = y(1:2);
13
   for i = 3:length(y)
14
        yApr(i) = theta(1) * yApr(i-1) + theta(2) * yApr(i-2);
15
   end
16
17
  hold on;
18
```

IDENTYFIKACJA PROCESÓW PRZEMYSŁOWYCH

```
plot(t,yApr,'g');
19
20
   vTheta = 0.5* (phiMatrix * theta - Y)' * (phiMatrix * theta - Y );
21
   estWar = 2*vTheta / ( length(y) - 2 );
22
   mul = inv ( phiMatrix' * phiMatrix );
23
   macKow = estWar * mul;
24
   odchTheta(1) = sqrt(macKow(1,1));
25
   odchTheta(2) = sqrt(macKow(2,2));
26
27
2.8
   e = Y - phiMatrix * theta;
   mean(e)
29
   wariancja = var(e)
```

Listing 3: Zadanie 3

3 Wnioski końcowe

Przeprowadzone aproksymacje prezentują sposoby wyznaczania parametrów dla różnych zagadnień. Z eksperymentów wynika, że do dokładnego wyznaczenia parametrów modelu konieczna jest duża liczba próbek z rzeczywistego eksperymentu. Duże znaczenie ma również implementacja metody użytej do aproksymacji, stopień wielomianu aproksymującego ma duży wpływa na dopasowanie do danych pomiarowych co uwidacznia się w zadaniu 2. Przy wyznaczaniu parametrów należy też pamiętać o oszacowaniu błędów.