

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS APUCARANA ENGENHARIA DE COMPUTAÇÃO

DANIEL SILVA GONÇALVES DA COSTA MARIA EDUARDA PEDROSO RUAN MATEUS TRIZOTTI

PROJETO ARDUINO DE IRRIGAÇÃO AUTOMÁTICA

APUCARANA OUTUBRO, 2022

DANIEL SILVA GONÇALVES DA COSTA MARIA EDUARDA PEDROSO RUAN MATEUS TRIZOTTI

PROJETO ARDUINO DE IRRIGAÇÃO AUTOMÁTICA

Relatório elaborado como requisito parcial à obtenção de nota na disciplina de Sistemas Digitais do curso superior de Engenharia de Computação, do Campus Apucarana da Universidade Tecnológica Federal do Paraná.

Orientador: Prof. Layhon Santos.

APUCARANA

OUTUBRO, 2022

1

RESUMO

Este trabalho visa desenvolver um mecanismo para que agricultores e donos de plantas caseiras possam monitorar a plantação nos parâmetros de quantidade de água no solo, com a finalidade de uma melhor safra com menor desperdício de água, tornando a plantação mais sustentável ou no caso caseiro priorizar sempre o bem-estar para pessoas inexperientes. Para realizar esse monitoramento foi utilizado um sensor e um arduino, no qual foi conectado o sensor de umidade. Como a visualização desses dados deve ser de fácil entendimento, a priori utilizamos de leds para o repasse visual da leitura do sensor. Esses dados devem ser manipulados e publicados de forma que sua leitura seja simples. Esse monitoramento será diário e síncrono, condições do solo para ocorrer uma otimização baseada na condição de umidade daquela área no decorrer do dia.

Palavras chaves: Arduino, Sistema de irrigação, uso de sensores e irrigação automatizada.

SUMÁRIO

1 Introdução	3
2 Objetivos Gerais e Específicos	4
3 Materiais e Métodos	4
4 Cronograma	5
5 Estabelecimento Do Problema	5
6 Conclusão	6

1 Introdução

Hoje em dia é praticamente impossível imaginar uma área em que não seja necessário um apoio tecnológico, seja em âmbito profissional ou pessoal. Quem não investe em tecnologia, pode não evoluir e ficar estacionado no tempo, o que para as instituições comerciais, produtivas ou de prestação de serviços, pode incorrer em prejuízos ou perda de competitividade. No setor agrícola não poderia ser diferente. Para evoluir e obter bons resultados os agricultores começaram investir e implantar novas tecnologias a fim de melhorar suas lavouras, a qualidade e a produtividade, além de almejarem consequentemente maior produtividade em suas culturas. O termo atualmente utilizado para denominar o fenômeno da implementação tecnológica no campo é "agricultura de precisão", uma área ainda recente no Brasil, mas que tem ganhado espaço e volume de negócios bastante significativos nos últimos anos. A agricultura de precisão requer o uso de diversas tecnologias e visam a maximizar a produtividade e reduzir os custos dos processos de produção agrícola. Percebe-se na atualidade a inserção da tecnologia em diferentes segmentos agrícolas, como por exemplo, na produção de hortaliças, frutas e verduras, que nesse estudo será o ambiente utilizado como objeto de estudo, ou seja, em que se pretende desenvolver um processo automatizado de irrigação. Conforme salienta Santos (1998, p. 3) "Para melhorar a qualidade e a produtividade das plantações em estufa, é necessário monitorar e controlar várias grandezas físicas que interagem entre si". Guimarães (2011, p.11) por sua vez afirma que: entre os sistemas de grande importância, se destaca a irrigação, capaz de fornecer um elemento imprescindível para a planta. Porém, esta tarefa não é tão simples, pois é necessário definir quando irrigar e a quantidade de água que se deve aplicar. A utilização de um sistema de irrigação automatizado reduz não só falhas humanas como também o consumo de insumos e o custo de produção. 15 Nesse sentido, Jacob (2009, p.1) complementa que: "Hoje as estufas agrícolas possuem equipamentos microprocessados de alta tecnologia e sensores de precisão para monitorar e controlar diversas variáveis ambientais e garantir um clima perfeito ao desenvolvimento dos vegetais produzidos.". Dentre as tecnologias disponíveis que podem ser utilizadas para automatização de estufas, foi selecionado para este estudo o Arduino, um dispositivo de plataforma embarcada. Com este dispositivo é possível desenvolver equipamentos eletrônicos de baixo custo capazes de realizar as mesmas funções que equipamentos de alta tecnologia. Segundo MCROBERTS (2011), o Arduino foi projetado como uma forma simples e barata de envolver os indivíduos com a eletrônica de microcontroladores. Com Arduino, um designer ou artista pode facilmente conhecer as noções básicas de eletrônica e sensores de forma muito rápida e pode começar a construir protótipos com muito pouco investimento (RODRIGUES; SARTORI; GOUVEIA, 2012).

Neste projeto utilizaremos o arduino para criar um um sistema de irrigação caseiro para um vaso planta, o sistema consiste de um reservatório de água conectado a uma bomba de água que é ativada quando o arduino recebe uma leitura de baixa umidade do solo do sensor de umidade.

2 OBJETIVOS GERAIS E ESPECÍFICOS

Desenvolver um sistema de irrigação automatizado que possa monitorar e controlar a umidade baseado na tecnologia Arduino, podendo assim oferecer ao usuário dados de monitoramento e automatizar as tarefas. Além disso, espera-se obter o entendimento da estrutura, modos de aplicação, benefícios, funcionamento e uso desta tecnologia com sistemas de irrigações e sensores.

3 MATERIAIS E MÉTODOS

Materiais os quais serão utilizados:

- 1 arduino uno;
- 1 sensor de umidade de solo;
- 1 bomba de água RS-385;
- 1 módulo Relé 5V 10A;
- 1 fonte de alimentação para arduino;
- 0,5 metro de mangueira;
- Jumpers.

O circuito é montado conectando o sensor de umidade do solo a uma porta analógica, uma porta digital e ao GND do arduino, e para conecta a bomba da água, primeiro conectamos ao arduino ao relé de 5V sendo conectado ao GND, uma porta digital do arduino e alimentado pelo próprio 5V do arduino, então o negativo do relé é conectado a fonte de alimentação e o positivo do relé é conectado a bomba de, o positivo dessa fonte é conectado à bomba de água.

Com tudo isso montado basta colocar o sensor de umidade dentro do vaso de modo que as duas sondas fiquem sob a terra e conectar a mangueira de irrigação do reservatório até a terra do vaso.

4 Cronograma

	Agosto	Setembro	Outubro	Novembro	Dezembro
Conhecimento do	Х	Х	X	Х	X
Análise do projeto		X	X	Х	X
Escolha do tema			X	X	X
Escrita da parte 1 do projeto			X	X	X
Relatório final				Х	X
Implementação prática				Х	X
Preparação para apresentação final				X	Х

5 ESTABELECIMENTO DO PROBLEMA

Para entendimento do problema traremos um exemplo. Algumas regiões do Brasil costumam enfrentar uma crise hídrica intensa, reduzindo drasticamente o nível dos reservatórios que abastecem as regiões mais necessitadas, o produtor

rural precisa criar formas de ofertar quantidade suficiente de água para as culturas e, nesses casos, os sistemas de irrigação podem parecer bastante eficientes.

No entanto, é importante que os projetos de irrigação priorizem o uso racional da água, evitando a falta ou excesso, pois ambos podem causar impactos.

O estresse causado por deficiência de água é determinante em situações de plantas pouco desenvolvidas, que geralmente apresentam desidratação e estatura reduzida.

Segundo Uri Goldstein, diretor comercial da Agrosmart e especialista em irrigação, a falta de água reduz a atividade metabólica da planta, diminuindo a fotossíntese. Isso porque alguns processos relacionados ao processo são totalmente dependentes da água, como é o caso da abertura e fechamento dos estômatos e muitos outros.

O excesso de água, por sua vez, traz muitos problemas para as plantas. O especialista em irrigação diz que ele diminui a aeração na zona de radicelas, conhecidas como as pequenas raízes que alimentam a planta.

Além disso, o excesso de umidade no solo pode ser muito prejudicial do ponto de vista de saúde da planta, visto que os fungos são microrganismos que preferem ambientes mais úmidos e certamente irão se aproveitar dessa alta umidade.

6 Conclusão

Esse projeto traz muitos benefícios tanto para plantas no qual possuímos em casa e principalmente para grandes plantações que necessitam de uma produtividade alta, com alguns poucos sensores, arduinos e cabos elétricos podemos melhorar muito o rendimento, alguns tópicos futuros irão aperfeiçoar nosso projeto, juntamente com pontuações do professor para talvez adicionar um display no lugar dos leds ou também, uma rega automática juntamente com o sensor.

Dentre as alterações possíveis, podemos destacar a troca da mini bomba d'água por uma válvula solenóide, a inclusão de mais sensores de umidade e um módulo relé com mais canais para controle. Cada melhoria será desenvolvida tendo

em vista o tamanho do projeto que almeja realizar ou o nível do projeto que deseja alcançar.

Referências Bibliográficas

ALMEIDA, Orlan. Tecnologia LoRa: O que é, distância e teste prático. easyIOT, 2019. Disponível em: < https://www.easyiot.com.br/tecnologia-lora/ >. Acesso em: 30 de outubro 2020.

EOS. A situação do consumo e desperdício de água no Brasil. EOS organização e sistemas, 2017. Disponível em:

https://www.eosconsultores.com.br/consumo-e-desperdicio-de-agua/>.Acesso em: 30 de outubro 2020.

IMT. Documentação de Aplicação. Smart Campus Maua, 2019.

MADEIRA, Daniel. Primeiros passos com o Node-RED e Arduino UNO. Filipeflop, 2019.

MIRKAI, Beatriz. Aplicações de Automação Voltadas para o Rastreamento de Animais Domésticos. Instituto Mauá de Tecnologia, 2018.

ANTUNES, Thalis. Programando Arduino + Sensor de Umidade (Moisture).

ARDUINO. Arduino. Disponível em: . Acesso em: Maio de 2013. BANZI, Massimo. Primeiros passos com o Arduino. 1. Ed. São Paulo: Novatec, 2012. BOLTON, David. Definition of IDE. Disponível em:

http://cplus.about.com/od/glossar1/g/idedefinition.htm. Acesso em: 30 de outubro 2020.

BRAGANTIA. Boletim Cientifico do Instituto Agronômico do Estado de São Paulo. Desenvolvimento do sistema radicular de tomateiro. Campinas, 1970. 9 p.

CARVALHO, Everton Silva; ARAUJO, Luis Antônio O. IRRIGAÇÃO INTELIGENTE. In: CONGRESSO DE INICIAÇÃO CIENTIFICA INSTITUTO SUSTENTAR, 17. 2010, Valinhos - SP. Anuário de Iniciação científica Discente. Valinhos— SP: Anhanguera Educacional Ltda., 2010. p. 323 - 336.

CARVALHO, Professor Daniel Fonseca de. ENGENHARIA DE ÁGUA E SOLO. 2010. 66 f. Dissertação - Departamento de Engenharia, Universidade Federal Rural Do Rio De Janeiro, Seropédica-RJ, 2010.

CORRADI JUNIOR, Romeu. Sensores industriais

DFROBOT. Drive The Future. Sensor de umidade de solo.

EBAH (Brasil). TIPOS DE IRRIGAÇÃO: Irrigação.

EMBRAPA (Brasil). Cultivo do Milho: Irrigação.

FONSECA, Erika Guimarães Pereira da; BEPPU, Mathyan Motta. Apostila Arduino. Niterói-RJ: Universidade Federal Fluminense Centro Tecnológico, 2010. 23 p.

FUENTES, Prof. Rodrigo C. Apostila de Automação Industrial. 2005. 31 f. - Curso de Eletrotécnica, Universidade Federal De Santa Maria Colégio Técnico Industrial De Santa Maria, Santa Maria - RS, 2005. GARDENA (Brasil)