Příjmení: Jméno:

V každém z následujících kvízových příkladů je právě jedna odpověď správně. Odpovědi vyznačte do tabulky křížky. Nechcete-li na nějaký příklad odpovědět, sloupec v tabulce ponechte prázdný. Pokud již vyznačený křížek chcete odstranit, políčko s křížkem zcela zaplňte modrou barvou.

ODPOVĚDI NEVYZNAČENÉ V TABULCE NEBUDOU ZAPOČÍTÁNY!

(Za správnou odpověď jsou 2 body, za chybnou odpověď mínus půl bodu, za chybějící odpověď 0 bodů.)

	1	2	3	4	5	6
a						
b						
c						
d						
e						

1. Máme lineární program, ve kterém **maximalizujeme** výraz $x_1 + x_2$ za podmínek

$$-1 \le x_1 - x_2 \le 1$$
, $x_1 + 2x_2 + 2 \ge 0$, $x_1, x_2 \ge 0$.

Duální lineární program k této úloze

- (a) je nepřípustný
- (b) je neomezený
- (c) má nekonečně mnoho optimálních řešení
- (d) má právě jedno optimální řešení
- (e) žádná z uvedených možností
- 2. Které tvrzení platí pro soustavu lineárních rovnic $\mathbf{A}\mathbf{x} = \mathbf{b}$?
 - (a) Jestliže soustava má právě jedno řešení, pak null $\mathbf{A} = \{\mathbf{0}\}$.
 - (b) Jestliže soustava má právě jedno řešení, pak A je regulární.
 - (c) Jestliže null $\mathbf{A} \neq \{\mathbf{0}\}$, pak soustava má nekonečný počet řešení.
 - (d) Jestliže soustava nemá řešení, pak null $\mathbf{A} = \emptyset$.
 - (e) žádná z uvedených možností
- 3. Ortogonální projektor
 - (a) je vždy pozitivně semidefinitní matice
 - (b) je vždy ortogonální matice
 - (c) nikdy není ortogonální matice
 - (d) je vždy regulární matice
 - (e) žádná z uvedených možností
- 4. Chceme uložit matici rozměru $m \times n$ hodnosti k do paměti tak, aby data v paměti zabrala co nejméně místa. Je dovoleno matici uložit ve formě součtu nebo součinu vhodných matic. Nejmenší počet čísel (až na aditivní konstantu), které celkově potřebujeme uložit do paměti, je
 - (a) $\min\{mk + nk, mn\}$
 - (b) mk + nk
 - (c) mn
 - (d) $k \max\{m, n\}$
 - (e) žádná z uvedených možností
- 5. Máme n bodů $(a_{i1}, a_{i2}) \in \mathbb{R}^2$, $i = 1, \dots, n$, které tvoří řádky matice $\mathbf{A} \in \mathbb{R}^{n \times 2}$. Vektor $(x_1, x_2) \in \mathbb{R}^2$ minimalizující číslo $\sum_{i=1}^{n} (a_{i1}x_1 + x_2 + a_{i2})^2$ je
 - (a) vlastní vektor odpovídající nejmenšímu vlastnímu číslu matice A
 - (b) vlastní vektor odpovídající nejmenšímu vlastnímu číslu matice $\mathbf{A}^T \mathbf{A}$
 - (c) vlastní vektor odpovídající největšímu vlastnímu číslu matice $\mathbf{A}^T \mathbf{A}$
 - (d) pravý singulární vektor odpovídající nejmenšímu singulárnímu číslu matice A
 - (e) neplatí žádné z uvedených tvrzení