L7: Building Embeddings: Metric Embeddings

For a data $X \subset \mathbb{R}^d$ we know $d_E(x,p) = \|x-p\|_2 = \|x-p\|$ is a metric.

Recall a **metric** $D: \Omega \times \Omega \to \mathbb{R}_{\geq 0}$ satisfies for any $a, b, c \in \Omega$: - $D(a, b) \geq 0$ (non-negativity, by definition of $\mathbb{R}_{\geq 0}$) - D(a, b) = 0 if and only if a = b (identity) - D(a, b) = D(b, a) (symmetry) - $D(a, b) \leq D(a, c) + D(c, b)$ (triangle inequality)

$$\ell_p$$
 distance $\ell_p(a,b) = \left(\sum_{j=1}^d |a_j - b_j|^p\right)^{1/p}$

is a metric for $p \in [1, \infty)$.

- not technically defined for $p = \infty$, but in limit

 $\ell_{\infty}(a,b) = \max_{j=1}^{d} |a_j - b_j|$ is a metric - ℓ_1 is the "smallest" normed metric - perhaps surprisingly, ℓ_2 may be only the second most common distance in high-dimensions!

... because of ...

Cosine Distance

$$D_{\cos}(a,b) = 1 - \frac{\langle a,b \rangle}{\|a\| \|b\|} = 1 - \frac{\sum_{j=1}^d a_j b_j}{\|a\| \|b\|}$$

If $\theta_{a,b}$ is the angle between a and b (wrt origin) then $\cos(\theta_{a,b}) = \frac{\langle a,b \rangle}{\|a\| \|b\|}$. So $D_{\cos}(a,b) = 1\cos(\theta_{a,b})$.

 $D_{\cos}(a,b) \in [0,2]$ and does not depend on magnitude of a or b.

Useful for when origin matters, but norm may not (scale of word embeddings may depend on frequency more so that meaning)

But not invariant to origin (like D_E is)

Is D_{\cos} a metric?

No. - Does not satisfy identity.

But is it a pseudo-metric? No

Consider $\Omega = \mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \mid ||x|| = 1\}.$

• Does not satisfy triangle inequality

Consider: $a=(0,1), b=(1,0), c=(1/\sqrt{2},1/\sqrt{2}).$ Now $D_{\cos}(a,b)=1$ and $D_{\cos}(a,c)=D_{\cos}(c,a)=(1-1/\sqrt{2})\approx 0.29$

So $D_{\cos}(a,c) + D_{\cos}(c,b) \approx 0.58 < 1 = D_{\cos}(a,b)$

Angular Distance:

$$D_{\mathsf{ang}}(a,b) = \arccos(\langle a,b \rangle) = \mathsf{radians}(\theta_{a,b})$$

Angular distance is a metric on \mathbb{S}^{d-1} . Arclength along \mathbb{S}^{d-1}

Minimizing Cosine Distance

A common ML/AI task is to maximize a sum of dot-products == minimize sum of cosine distances For pairs $(x_1, x_1'), (x_2, x_2'), \dots$ - minimize $\sum_i D_{\cos}(x_i, x_i')$ or maximize $\sum_i \langle x_i, x_i' \rangle$ where some parameter space α controls the location of $x_1, x_1', x_2, x_2' \dots$

If we assume $x, x' \in \mathbb{S}^{d-1}$ then

$$D_{\cos}(x,x') = 1 - \langle x,x' \rangle = \frac{1}{2}(\|x\|^2 + \|x'\|^2 - 2\langle x,x' \rangle) = \frac{1}{2}\|x - x'\|^2$$

So if we assume data is normalized (or scale irrelevant wrt 0), then minimizing $\sum_i D_{\cos}(x_i, x_i')$ is same as minimizing sum of square errors!

Distortion-Bounded Metric Embeddings

Start with **metric space** (X,D) where - X is a domain, or sometimes a finite data set, and - D is a metric distance defined on X.

An **embedding** $(X,D) \hookrightarrow^{\rho} (Y,D')$ is both a - mapping $\phi: X \to Y$ from one domain / point set to another if |X| = n finite, then each each $x_i \in X$ then $y_i = \phi(X) \in Y$.

- new metric D' so for all $x_1, x_2 \in X$ has **distortion** ρ

$$\frac{1}{\rho} \leq \frac{D(x_1,x_2)}{D'(\phi(x_1),\phi(x_2))} \leq \rho$$

If $\rho > 0$, for $x_1 \neq x_2 \in X$, can we have $\phi(x_1) = \phi(x_i)$? No, then divide by 0, and the $\leq \rho$ is not bounded.

Embeddings in ℓ_{∞}

Recall $\ell_{\infty}(a,b) = \max_{i=1}^{d} \|a_i - b_i\|$

Theorem: Every metric space $(X, D) \hookrightarrow^1 \ell_{\infty}^n$ (no distortion!)

$$\begin{split} \phi: X &\to \mathbb{R}^d \\ \phi(x_i) &= (D(x_1, x_i), D(x_2, x_i), \dots, D(x_d, x_i)) \end{split}$$

Since D is a metric, satisfies triangle inequality.

 $D(x_k, x_i) - D(x_k, x_i) \leq D(x_i, x_i)$. So

$$\begin{aligned} \max_{k} |D(x_k, x_i) - D(x_k, x_j)| &\leq D(x_i, x_j) \\ \|\phi(x_i) - \phi(x_i)\|_{\infty} &\leq D(x_i, x_j) \end{aligned}$$

But also, jth coordinate of $\phi(x_i) - \phi(x_i) = D(x_i, x_i) - D(x_i, x_i) = D(x_i, x_i)$

$$\|\phi(x_i) - \phi(x_j)\|_\infty \geq D(x_i, x_j)$$

Hence $\|\phi(x_i) - \phi(x_i)\|_{\infty} = D(x_i, x_i)$

Embeddings in ℓ_n

We consider (X, D), summarized as ℓ_p^d , where $-X \subset \mathbb{R}^d$ of size n, and $-D = \ell_p$

Bourgain [1985] has the following famous result:

For any metric space (X, D), for $p \in [0, \infty)$ assumed a constant, we have

$$(X,D) \hookrightarrow^{O(\log n)} \ell_p^{O(\log^2 n)}$$

- tight for p=2, original target dimension was exponential in n - Matousek [1996]: $(X,D) \hookrightarrow^{O(\log^2 n)} \ell_p^{O(\log^2 n)}$ Some special cases can do better!

- $\begin{array}{l} \bullet \ \ \ell_2 \hookrightarrow^1 \ell_1^{\binom{n}{2}} \ \text{on} \ n \ \text{points} \\ \bullet \ \ \ell_1 \hookrightarrow^{O(\sqrt{\log n} \log \log n)} \ell_2 \ \text{on} \ n \ \text{points} \end{array}$ (distortion lower bound is $\Omega(\sqrt{\log n})$)

Edit Distance

Edit distance measures between two strings how many substitutions are needed to get from one to the other. Is a metric

Closely associated with dynamic programming.

It is a "counting" measure, so most naturally associated with ℓ_1 . Requires $\Omega(\log n)$ distortion to embed into ℓ_1 .