A Book of Abstract Algebra (2nd Edition)

Chapter 24, Problem 2EA

1 Bookmark

Show all steps: (

ON

Problem

REMARK ON NOTATION: In some of the problems which follow, we consider polynomials with coefficients in \mathbb{Z}_n for various n. To simplify notation, we denote the elements of \mathbb{Z}_n by 1, 2, ..., n-1 rather than the more correct $[1, 2, \ldots, n-1]$

Find the quotient and remainder when $x^3 + x^2 + x + 1$ is divided by $x^2 + 3x + 2$ in $\mathbb{Z}[x]$ and in $\mathbb{Z}_5[x]$.

Step-by-step solution

Step 1 of 2

Consider the polynomial $p(x) = x^3 + x^2 + x + 1$ and $q(x) = x^2 + 3x + 2$.

Objective of this question is to find quotient and remainder when $p(x) = x^3 + x^2 + x + 1$ divided by $q(x) = x^2 + 3x + 2$ in $\mathbb{Z}[x]$ and $\mathbb{Z}_5[x]$.

First consider the ring $\mathbb{Z}[x]$.

Given polynomials p(x) and q(x) are the elements of $\mathbb{Z}[x]$.

Now do long division.

$$\begin{array}{r}
 x-2 \\
 \hline
 x^3 + x^2 + x + 1 \\
 \underline{x^3 + 3x^2 + 2x} \\
 -2x^2 - x + 1 \\
 \underline{-2x^2 - 6x - 4} \\
 5x + 5
 \end{array}$$

Then, quotient and remainder when $p(x) = x^3 + x^2 + x + 1$ divided by $q(x) = x^2 + 3x + 2$ in

$$\mathbb{Z}[x]$$
 are $x-2$ and $5x+5$ respectively.

Comment

Step 2 of 2

Consider the ring $\mathbb{Z}_5[x]$.

Change polynomials p(x) and q(x) as the element of $\mathbb{Z}_5[x]$.

$$p(x) = 1 \pmod{5} x^3 + 1 \pmod{5} x^2 + 1 \pmod{5} x + 1 \pmod{5}$$

$$= x^3 + x^2 + x + 1$$

$$q(x) = 1 \pmod{5} x^2 + 3 \pmod{5} x + 2 \pmod{5}$$

$$= x^2 + 3x + 2$$

Now do long division. Here the operations multiplication and addition are multiplication modulo 5 and addition modulo 5.

$$\begin{array}{r}
 x - 2 \\
 \hline
 x^3 + x^2 + x + 1 \\
 \underline{x^3 + 3x^2 + 2x} \\
 -2x^2 - x + 1 \\
 \underline{-2x^2 - x - 4} \\
 0
 \end{array}$$

Then, quotient and remainder when $p(x) = x^3 + x^2 + x + 1$ divided by $q(x) = x^2 + 3x + 2$ in $\mathbb{Z}_5[x]$ are x-2 and x=3 respectively.

Comment