Relatório de Data Mining

Trabalho de conclusão da disciplina

Professora Manoela Kohler

Horse Colic Data Set

Rodrigo Vidigal 15/01/2019

Análise exploratória, missing values e atributos desnecessários

Uma primeira analisada nos dados para entender quais atributos manter no modelo

Após uma primeira olhada nos dados, o que me chamou a atenção foi a quantidade de atributos com um número expressivo de missing values, como o atributo *nasogastric_reflux_ph*, com 246 exemplos com valores faltantes dentro de um total de 299(inicialmente eles estavam como NA, mas com o operador

Declare Missing Values eu corrigi isso para que o RapidMiner os entendesse corretamente como Missing Values). Um atributo com tantos valores faltantes assim certamente não ajudaria muito o meu modelo, por isso exclui este atributo (nasogastric_reflux_ph).

Atributo nasogastric_reflux_ph: 246 missing values

Excluí também os atributos com muitos exemplos com o mesmo valor, como o *lesion 2* que continha apenas 7 exemplos diferentes de 0 e o *lesion 3* com apenas 1 exemplo diferente de 0.

O atributo *cp_data* foi excluído pois no próprio dicionário do *dataset* consta que ele não tem importância.

^{28:} cp_data
- is pathology data present for this case?

^{1 = 1}es

⁻ this variable is of no significance since pathology data is not included or collected for these cases

Balanceamento dos Dados e processo para gerar as duas bases tratadas

Seguindo com o trabalho, fiz um processo no RapidMiner para gerar as duas bases, a de treino e a de teste, e salvar num repositório com o operador *Store*. Dentro deste processo eu normalizei os dados para o modelo não privilegiar nenhum atributo específico. Outra coisa que fiz nesta etapa do trabalho, foi substituir a classe *Euthanized* por *Died* com o operador *Replace*, pois caso eu fosse utilizar algum modelo de aprendizado que suportasse apenas um rótulo com duas classes(o SVM, por exemplo), eu não teria problemas quanto a isso. E os exemplos com o valor *NA* foram declarados como Missing Values e substituídos pela média do atributo em questão.

Abaixo, o subprocesso de Missing Vlaues.

Reavaliação dos atributos pelo peso por Qui Quadrado e ganho de informação

Já com as duas bases tratadas, a de treino e a de teste, eu resolvi utilizar dois métodos para entender a relevância de cada atributo em relação ao rótulo a ser classificado, e posteriormente após uma análise desses resultados, decidir quais atributos eliminar para finalmente aplicar os algoritmos de aprendizado.

Ganho info teste

Qui Quadrado teste Qui Quadrado treino attribute weight attribute attribute weight weight nasogastric_tube 0.002 1.497 nasogastric tube nasogastric_tube 0.788 hospital_number 0.002 surgery 1.690 0.984 nasogastric tube 0.012 hospital_number 1.788 hospital number 1.080 surgery 0.021 abdomo appearance 2.620 0.014 0.022 2.933 13.104 abdomo_appearance nasogastric_reflux 3.169 rectal_exam_feces total protein 0.026 rectal temp 15.185 0.023 total protein 16.315 abdomen 5.918 peristalsis 5.981 total_protein 0.031 nasogastric reflux rectal exam feces 16.814 0.026 rectal exam feces respiratory_rate respiratory rate 6.922 rectal_exam_feces 0.042 18.205 abdomen 0.044 abdomo appearance 20.125 rectal temp 0.032 8.177 nasogastric reflux abdomo_appearance 20.258 0.060 capillary_refill_time 9.386 26.707 surgical_lesion 0.068 surgical_lesion 0.066 nasogastric reflux rectal_temp 9.760 capillary_refill_time 0.073 peristalsis 29.129 abdomo protein 12.675 capillary_refill_time 30.360 abdominal distention 0.075 capillary refill time 0.076 13.789 abdominal distention 31.032 13.969 mucous membrane peripheral_pulse 0.084 0.126 peripheral pulse temp_of_extremities 14.810 temp of extremities 37.484 temp_of_extremities 0.097 0.134 temp_of_extremities hospital number 15.254 abdomo_protein 41.728 mucous_membrane 0.109 abdomo protein 0.140

Avaliando os resultados, decidi excluir os atributos: nasogastric_tube, hospital_number e age.

Ganho info treino

Testando diferentes modelos

Testei diferentes modelos utilizando os seguintes algoritmos de classificação: Decision Tree, KNN, Naive Bayes, SVM e Random Forest. Abaixo, seguem as imagens dos processos no RapidMiner e suas respectivas acurácias:

Decision Tree:

accuracy: 76.40%

	true died	true lived	class precision
pred. died	15	0	100.00%
pred. lived	21	53	71.62%
class recall	pred. lived	100.00%	

accuracy: 95.51%

	true died	true lived	class precision
pred. died	33 true died	1	97.06%
pred. lived	3	52	94.55%
class recall	91.67%	98.11%	

Naive Bayes:

accuracy: 86.52%

	true died	true lived	class precision
pred. died	30	6	83.33%
pred. lived	6	47	88.68%
class recall	83.33%	88.68%	

SVM:

No SVM eu tive de transformar os atributos nominais para numéricos com o operador *Nominal to Numerical*.

accuracy: 87.64%

	true died	true lived	class precision
pred. died	29	4	87.88%
pred. lived	7	49	87.50%
class recall	80.56%	92.45%	

Random Forest:

accuracy: 100.00%

	true died	true lived	class precision
pred. died	36	0	100.00%
pred. lived	0	53	100.00%
class recall	100.00%	100.00%	

Kappa: 1.000

Conclusão

O modelo com a melhor acurácia foi o Random Forest com 100% de precisão e Kappa de 1.000. O KNN, quando coloquei o número de K igual a 2 ele obteve o mesmo resultado, mas mantive K=3 pois o resultado já estava bastante satisfatório. O que obteve o pior rendimento foi o Decision Tree com acurácia de 76,40 % e Kappa de 0.460.

Considerações finais

O trabalho foi uma jornada de muito aprendizado. Primeiro pois revi o material de todas as aulas e li um livro sobre o tema, o "Data Science para Negócios", livro que me ajudou muito a entender um pouco mais dos modelos e como eles funcionam. Confesso que queria muito ter feito o trabalho em Python(tenho estudado Python pois começo agora no dia 16 um curso na Udacity de Data Science que tem como pré requisito esta linguagem e algumas de suas bibliotecas como NumPy, Pandas, MatplotLib e SciKitLearn), mas deixei para começar o trabalho apenas no final de dezembro, então utilizei o RapidMiner para me poupar tempo, visto que demoraria mais para realizá-lo em Python. Mas ainda assim, Data Mining é uma disciplina que muito me instiga a aprender mais, por uma curiosidade minha nata, e pelas infindáveis aplicabilidades que vislumbro neste nosso mundo contemporâneo que se produz cada vez mais e mais dados. Sou muito grato por tudo que venho aprendendo neste curso. Muito obrigado por tudo Manoela.