24/08/08

Structural Analysis-II.1

(a) Sign Convention

(1) Reaction

 $\sum V=0$

1+ve

J-ve.

ZH=0;

---> +v

-ve

ZM=0,

(2) Shear Force

+ve)

From "Left" to "Right"

1+vc V-ve

(3) Bending Moment

R +K

Sagging

-ve Hogging

Clockwise Moment -> + ve Anti-clockwise 1 -> -ve

$$M_{FAB} = -\frac{\omega J^2}{12}$$
, $M_{FBA} = +\frac{\omega J^2}{12}$

$$MFAB = -\frac{Wab^2}{J^2}$$
, $MFBA = +\frac{Wa^2b}{J^2}$

$$MFAB = MFBA = -\frac{M}{4}$$

$$MFAB = -\frac{\omega J^2}{30}, MFBA = +\frac{\omega J^2}{20}$$

$$MFAB = -\frac{\omega J^2}{20}, MFBA = +\frac{\omega J^2}{30}$$

$$M_{FAB} = \frac{5\omega J^2}{96} \qquad M_{FBA} = +\frac{5\omega J^2}{96}$$

(I) Slope Deflection Method:

(5)

Basic Equation

$$M_{AB} = \frac{2EI}{J} \left[2\theta_A + \theta_B - \frac{36}{J} \right] + M_{FAB}$$

$$M_{BA} = \frac{2EI}{J} \left[2\theta_{B} + \theta_{A} - \frac{3\sigma}{J} \right] + M_{FBA}$$

Eg:-1) Analyse the continuous beam 6 Shown by S.D. method and draw BMD, SFD and EC. A 2 2m 2m 5m 2m 4m D

(EI) -> Constant

(a)
$$FEM$$

$$MFAB = -\frac{W1}{8} = \frac{-50 \times 4}{8} = -25 \text{kn-m}$$

$$MFBA = + \frac{WJ}{8} = +25 kn-m$$

$$M_{FBC} = -\frac{\omega J^2}{12} = -\frac{15x5^2}{12} = -31.25$$

$$MFCB = +\frac{\omega J^2}{12} = +3!25$$

$$MFCD = -\frac{Wab^{2}}{J^{2}} = -\frac{80\times2\times4^{2}}{6^{2}} = -71.11 \text{ kn-m}$$

$$MFDC = + \frac{Wab}{J^2} = \frac{80 \times 2^2 \times 4}{6^2} = + 35.56 \text{kn-m}$$

(b) S.D. Equation:
$$\Theta_{A} = \Theta_{D} = O \text{ (i. Fixed Support)}$$

$$\delta = O(\text{i. No Sinking})$$

$$M_{AB} = \frac{2EI}{J} \left[2\theta_{A} + \theta_{B} - \frac{36}{J} \right] + M_{FAB}$$

$$M_{AB} = \frac{2EI}{4} \left[0 + \theta_{B} - 0 \right] - 2S = 0.5EI\theta_{B} - 2S - (i)$$

$$M_{BA} = \frac{2EI}{4} \left[2\theta_{B} + 0 - 0 \right] + 2S = EI\theta_{B} + 2S - (ii)$$

$$M_{BC} = \frac{2EI}{5} \left[2\theta_{B} + \theta_{C} - 0 \right] - 3I_{1}2S$$

$$= 0.8EI\theta_{B} + 0.4EI\theta_{C} - 3I_{1}2S - (iii)$$

$$MBC = \frac{2EI}{5}[2\theta B + \theta C - 0] - 31.25$$

$$M_{CB} = \frac{2EI}{5} \left[2\theta c + \theta B - O \right] + 31.25$$

= 0.8 EI \text{0.4 EI \theta B} + 31.25 \to (1v)

$$M_{(D)} = \frac{2EI}{6} [20c+0-0] - 71.11 = 0.667 EIOc - 71.11 + (v)$$

$$MDC = \frac{2EI}{6}[0+\theta c-0] + 35.56 = 0.333EI\theta c + 35.56$$

Solving
$$\Theta_B = -2.73/EI$$

$$\Theta_C = +27.91/EI$$

$$\frac{d=0 \text{ (No Sinking)}}{\text{MAB}} = \frac{2EI}{J} \left[2\theta A + \theta B - \frac{3d}{J} \right] + \text{MFAB}$$

$$MAB = \frac{2(ixEI)[2\theta A + \theta B - \theta] - 60}{6}$$

$$= (0.667EI)\theta A + (0.333EI)\theta B + 60$$
(i)

$$MBA = 2(1 \times EI) [20B + 0A - 0] + 60$$

$$= (0.667 EI) \theta B + (0.333 EI) \theta A + 60 - (11)$$

$$MBC = \frac{2(2EI)[20B+0C-0]-86.25}{8}$$
= EIOB +0.5 EIOC - 86.25 - (111)

$$M_{CB} = \frac{2(2EI)}{8} \left[20(+0B-0) + 108.75 \right]$$

$$= 5.50(+0.5EI) + 108.75 = -0.000$$

$$[SO] + [O.667EI \Theta A + O.333EI \Theta B - 60] = 0$$

$$(O.667EI)\Theta A + (O.333EI)\Theta B = 10 \rightarrow I$$

(ii) At B"
$$M8A + MBC = O$$
 (iii) At B" $M8A + MBC = O$ (iv) $M6A + MBC = O$ (iv) $M6A + (0.667 EI) \Theta B + (0.561) \Theta C = 26.25 - (II)$

(iii) At C" $MCB = O$ (iv) $MCB = O$

(3)

VAX6-40X7-20X7X7/2+50-50+95.27=0

Fom(i) 112.45+ VB+60.59=310

Reaction
$$R_{c} = 72.5 \text{ kN}$$

$$R_{B} = 57.5 \text{ kN}$$

$$M_{D} = R_{B} \times 2 = 115 \text{ kN-m}$$

$$M_{E} = R_{C} \times 2 = 145 \text{ kn-m}$$

Shown by SiDimethod Draw SFD,

Solt (a) FEM

$$MFBC = -\frac{NJ}{8} = -\frac{100\times6}{8} = -75 \text{ kn-m}$$
 $MFCB = +\frac{NJ}{8} = +75 \text{ kn-m}$

- Ve sign for Anticlockwise Resisting Moment

$$\frac{1}{4m} \frac{20dx}{2m} = \frac{1}{6}$$

$$W = \omega \cdot dx = 20 dx$$

$$\alpha = \infty$$

$$b = (6-\alpha)$$

MFAB =
$$-\frac{Wab^2}{J^2} = -\int_0^4 \frac{(20dx)(x)(6-x)^2}{6^2} = -53.33 \text{ KN-m}$$

MFBA =
$$+\frac{Wa^2b}{J^2} = +\int \frac{(20dx)(x)^2(6-x)}{6^2} = +35.56 \text{ kN-m}$$

For overhang there is No SD equation

$$M_{AB} = \frac{2(2EI)}{6}[0 + \theta_B + 0] - 53.33$$

$$MBA = \frac{2(2EI)}{6} \left[20B + 0 - 0 \right] + 35.56$$

$$= 1.333EI0B + 35.56 - (1)$$

$$M_{BC} = \frac{2(3EI)}{6} \left[20B + 6C - 0 \right] - 75$$

$$= 2EI \theta B + EI \theta C - 75 - (111)$$

$$M_{CB} = \frac{2(3EI)}{6} \left[20C + 6B - 0 \right] + 75$$

$$= 2EI \theta C + EI \theta B + 75 = \rightarrow (1V)$$

$$EI\theta_B + 2EI\theta_C = -30 \rightarrow I$$

Solving
$$O_B = \frac{19.21/EI}{O_C = -24.61/EI}$$

Eg:-4] Analyse the beam shown by SD method and draw BMD, SFD & EC. The support B' Sinks by 5mm Take E = 2106Pa, I = 0.16mm4 30KN 10KN/m $\frac{B}{2m}$ $\frac{2m}{2m}$ $\frac{C}{2m}$

$$E = 21061 \text{ Ra} = 210 \times 10^{9} \times 10^{6} = 210 \times 10^{3} \text{ N/mm}^{2}$$

$$I = 0.16 \text{ mm}^{4} = 0.1 \times 10^{9} \text{ mm}^{4}$$

$$EI = (210 \times 10^{3})(0.1 \times 10^{9}) = 2.1 \times 10^{13} \text{ N-mm}^{2}$$

$$\frac{N}{\text{mm}^{2}} \frac{\text{mm}^{4}}{\text{mm}^{4}}$$

$$EI = \frac{2.1 \times 10^{13}}{(1000)(1000)^{2}} = (2.1 \times 10^{4} \text{ kN-m}^{2})$$

 $MFAB = -\frac{\omega l^2}{12} - \frac{Wab^2}{1^2} = \frac{-10x6^2}{12} = \frac{30x2x4^2}{6^2} = -56.67$ MFBA = $+\omega J^2 + \frac{Wa^2b}{12} = +\frac{10\times6^2}{12} + \frac{30\times2^2\times4}{12} = +43.33$ $M_{FBC} = M_{FCB} = + \frac{M}{4} = + 12.5 \text{ kN-m}$

(b) SD Equation .

$$\theta_{A} = 0$$
 ,

 $d = +5 \text{mm}$
 $= +0.005 \text{m}$
 $= -0.005 \text{m}$
 $d = -5 \text{mm}$
 $= -0.005 \text{m}$
 $= -0.005 \text{m}$

MAB = $\frac{2EI}{6} \left[0 + \theta_{B} - \frac{3 \times 0.005}{6} \right] - 56.67$.

 $d = \frac{2(2.1 \times 10^{4})}{6} \left[0 + \theta_{B} - \frac{3 \times 0.005}{6} \right] - 56.67$.

 $d = \frac{2(2.1 \times 10^{4})}{6} \left[0 + \theta_{B} - \frac{3 \times 0.005}{6} \right] - 56.67$.

 $d = \frac{2(2.1 \times 10^{4})}{6} \left[2\theta_{B} + 0 - 2.5 \times 10^{3} \right] + 43.33$.

 $d = \frac{140000}{4} + 25.83 \rightarrow \text{(ii)}$
 $d = \frac{2(2.1 \times 10^{4})}{4} \left[2\theta_{B} + \theta_{C} - \frac{3(-0.005)}{4} \right] + 12.5$.

 $d = \frac{2(2.1 \times 10^{4})}{4} \left[2\theta_{C} + \theta_{B} - 3(-0.005) \right] + 12.5$.

 $d = \frac{2(2.1 \times 10^{4})}{4} \left[2\theta_{C} + \theta_{B} - 3(-0.005) \right] + 12.5$.

$$M_{CB} = \frac{2(2.1 \times 10^4)}{4} \left[2\theta_{C} + \theta_{B} - 3(-0.005) \right] + 12.5$$

$$= 21000\theta_{C} + 10500\theta_{B} + 51.87 \longrightarrow (1V)$$

(QI) (C) Equillibrium Condition (1) At B' MBA+ MBC=0 3500008 + 1050000 = - 77.7 → (I) (2) At C [MCB=0] 10500 OB + 21000 Oc = -51.87 → I Solving (OB = - 1.74 X 10 $\Theta c = -1.6 \times 10^3$ Final Moment: MAB=-86.35 KN-m C) MBC = -1.47 KN-m C MBA = 2000 KN-m 2 SMCB = 0. Free BMD for AB 30KN 10 KN/m RA = 50 KN RB = 40KN 80kn-m RA= $\therefore M_D = R_{BX4} - 10 \times 4 \times 4$ = 80kN-m

$$\frac{\partial D}{\partial D} = 0 \\
M_{AB} = \frac{2(2 \times 10^{4})}{6} \left[2\theta_{A} + \theta_{B} - \frac{3(0.008)}{6} \right] + 0 \\
= 13333.33 \theta_{A} + 6666.67 \theta_{B} - 26.67 \rightarrow (i)$$

$$M_{BH} = \frac{2(2x_{10}4)}{6} \left[2\theta_{B} + \theta_{A} - \frac{3(0.008)}{6} \right] + 0$$

$$= 13333.33.08 + 6666.670_{A} - 26.67 - (11)$$

$$M_{BC} = \frac{2(1.5 \times 2 \times 10^{4})}{8} \left[2\theta_{B} + \theta_{C} - \frac{3(-0.005)}{8} \right] - 53.33$$

$$= 150000_{B} + 75000_{C} - 39.26 - (111)$$

$$M_{CB} = 7500 \left[2\theta_{C} + \theta_{B} - 3(-0.005) \right] + 53.33$$

$$= 150000_{C} + 750000_{B} + 67.39 - (111)$$

$$M_{CD} = 2(2 \times 2 \times 10^{4}) \left[2\theta_{C} + 0 - \frac{3(-0.003)}{6} \right]$$

$$= 26666.670_{C} + 20 \rightarrow (1)$$

$$M_{DC} = 13333.33 \left(0 + \theta_{C} - \frac{3(-0.003)}{6} \right)$$

$$M_{DC} = 13333\cdot33 \left(0 + \theta_{C} - 3\left(-0.003\right)\right)$$

$$= 13333\cdot33 \theta_{C} + 20 \rightarrow (VI)$$

(i)
$$M_{AB} = 0$$

 $13333.33 \Theta_{A} + 6666.67 \Theta_{B} = 26.67 \longrightarrow I$

(25)

Solving,
$$\Theta_A = +5.56 \times 10^4$$
 $\Theta_C = -2.617 \times 10^3$
 $\Theta_B = 2.889 \times 10^3$

(d) Final Values

MAB = 0

MBA = 15.55 kN-m 2

MBC = -15.55 kN-m (>

MCB = 49.80 kn-m2)

MICD =-49.80 KN-M (5

NIDC = - 14.89 kn-mG

(a) FEM;

MFAB = MFBA = 0

$$MFB(=-\frac{\omega J^2}{12}=-\frac{15(6)^2}{12}=-45kN-m$$

MF(B= +45.

1 lokn B

 $MBB' = +10 \times 2 = (+20 \text{kn-m})$

the sign for clockwise resisting moment.

$$d = 0$$
 (: Non-Sway)

There is no equation for overhang BB'

$$M_{AB} = \frac{2(EI)[\Theta_B]}{4} = 0.5EI(\Theta_B) - (i)$$

$$M_{BA} = \frac{2EI}{4} \left[2\theta_{B} \right] = EI(\theta_{B}) - (11)$$

$$M_{BC} = 2(2EI)[20B] - 45 = 1.33EI(0B) - 45 - (111)$$

$$M_{CB} = 2(2EI) \left[\Theta_{B} \right] + 45 = 0.666 EI (\Theta_{B}) + 45 + (14)$$

HBX4+10.73+5.36=0

HB = -4.02 |

X

Eg: - 21 Analyse the Hame shown by

S.D. method, Doaw BMD, SFD, EC

Solv (a) FEM
MIFAB =
$$-\frac{(\omega)J^2}{12} = -26.67$$
, MFBA = $+26.67$
MIFBC = $-\frac{Wab^2}{12} = -28.8$, MFCB = $+\frac{Wab}{J^2} = +19.2$
20kN MFDQ = $-\frac{WJ}{J^2} = -10$

$$D = \frac{12}{8} = -10$$

$$M = -10$$

$$M = -10$$

$$M = -10$$

(b) S.D. Equation:

$$\theta_A = \theta_D = 0 \quad (Fixed)$$

$$\delta = 0 \quad (Non-Sway)$$

$$MAB = \frac{2EI}{4} \left[\theta_B \right] - 26.67 = 0.5EI\theta_B - 26.67 - (i)$$

$$Man \quad 2EI[2\theta_B] + 26.67 = EI\theta_B + 26.67 - (ii)$$

Johning
$$\Theta_B = \frac{0.67}{EI}$$

$$\Theta_C = \frac{24.33}{EI}$$

Dole (II) Moment Distribution Method (35

Relative stiffner =
$$(K = \frac{I}{I})$$

The radio of M.I to the span of beam is called relative stiffners."

$$\left(\mathbf{k} = \frac{\mathbf{I}}{\mathbf{J}}\right)$$

$$k = \frac{3}{4} I$$

(c) For "Overhang"
$$\rightarrow (k = 0)$$

Continuous support:

A B C D.

(i) Wisito B" \rightarrow A is Not continuous $K = \frac{3}{4} \frac{1}{1}$ C'is Not Continuous $K = \frac{3}{4} \frac{1}{1}$

(ii) winto $C' \rightarrow B'$ is continuou $K = I_{\mathcal{A}}$ D' is overhang K = 0

Carry over of Moments:

(i) If the far end is fixed or Continuous take or carry 50% of moment with Same sign.

(ii) If far end is Not continuous, then there is no Transfer of moment.

Eg:-1] Analyse the continuous beam shown (3+) by MD method, Deaco SFD, BMD&EC. A 150KN B 15KN M C 180KN D.

2m 2m 5m 2m 3m SOFT (CI) FEM MFAB = - WJ = -25 KN-m, MFBA = +25 KN-m $M_{FBC} = -\frac{\omega J^2}{12} = -31.25$, $M_{FCB} = +\frac{\omega J^2}{12} = 31.25$ $MFCD = -\frac{Wab^2}{12} = -57.6$, $MFES = +\frac{Wab}{12} = 38.4$ (b) Distribution Factor (For Intermediate Support) $Sum DF = \frac{K}{\Sigma K}$ Joint Mauber Relative Stiffners = K $\frac{0.25}{0.45} = 0.56$ BA (4) = 1/4 = 0.25I 0.451 (F) = I/S = 0:20I $\frac{0.2}{0.45} = 0.44$ $CB \left(\frac{T}{J} \right) = \frac{T}{5} = 0.20 T$ 0.5 0.41 $CD \left(\frac{T}{N} \right) = \frac{T}{5} = 0.2I$ 0.5

(c) Moment Distribution Table (Fixed) (38)						
A (Fixed).	BV		c		: D	HXCC
AB	BA	BC	CB	CD	DC	Mouber
-	0.56	0.44	0.5	0.5		DF
-25	25	-31.25	31.25	-57.6	38.4	FEM
	3.5	2.75	13.18	13.18	,	Balance
175	-	6.59	1:37	•. • •	6.59	Corry over
	-3.69	-2.90	-0.68	-0:68		Bal
-1.84		-0.34	>-1.45		>> -a•34	C+0
	0.19	0.15	v 0.73	0.73	· >>	Bal
0.09.		0.36	> 0.075		0.36	(.0
.,	-0.20	-0.16	-01037	-0:037	>>>	Bal
-0.10		-0.018	>-0108		-0:018	C.O .
	0.01	0.008	0.04	0104		Bal 1
25·10	24.81.	-24.81	44.40	-44.40	44.992	Final- Moments,
<u></u>	2	5	2	5	√	

Doaw SFD, BMD and EC.

(a) FEM
MFARD =
$$-\omega J^2 = -60 \text{ kN-m}$$
, MFBA = $+60 \text{ kN-m}$
MFOR $-\text{NB}h^2$ $\Gamma = -86.25 \text{ kN}$

$$MFBC = -\frac{Wab^{2}}{J^{2}} = -\left[\frac{50\times2\times6^{2}}{8^{2}} + \frac{80\times6\times2^{2}}{8^{2}}\right] = -86.25 \text{ km/m}$$

MFCB =
$$+\frac{Wa^2b}{J^2}$$
 = $+\left[\frac{50\times2^2\times6}{82} + \frac{80\times6^2\times2}{82}\right]$ = $+\frac{108\cdot75\text{km/m}}{82}$

$$40kh$$
 $20kh/m$
 A'
 1_m
 $MAA' = +40x1 + 20x1x1/2$
 $= +50$
 $kh-m$

(b) D.F. (For Intermediate)

	Meuber	K	ΣK	$DF = \frac{k}{\sum k}$
	AA!	O(:: Overhang)		0
H	AB	$\left(\frac{1}{1}\right) = \frac{1}{6} = 0.167 \text{ I}$	0.167I	1
B	BA	$\left(\frac{3}{4}\left(\frac{1}{5}\right)\right) = \frac{3}{4}\left(\frac{1}{6}\right) = 0.125 I$,	0.40
	BC	$\left(\frac{3(\pm)}{4(\pm)}\right) = \frac{3(2\pm)}{4(8)} = 0.1875 \pm $	0·3125I	0.60

M.I).T	able	;		A (.	imple (4)
			3	C	Roller'
· AA!	AB	BA	BC	CB	Meubes
0	.1	0.4	0.6	•	DF
50	-60	60	-86.25	. 108:75	FEM
		em.		-108.75	245
· · · · · · · · · · · · · · · · · · ·			-54.37	:	
50	-60	60	-140.62	0	Initial Valley
0	10	7 32.25	48.37		Bal
	0	> 5		→ 0	$C \cdot O$
		2	-3		Bal
	0 4			» O	C+O
50	-50	95.25	-95.25	0	Final Values
2	(>)	2	<u></u>		;
O 1.				RMD	

Refer S.D. Notes for SFD, BMD.

$$\frac{50\%}{M_{FAB}} = \frac{M_{b}(2a-b)}{\sqrt{2a-b}} = \frac{-50\times4(2\times2-4)}{6^{2}} = 0$$

MFBA =
$$\frac{Ma^{2}(2b-a)}{1^{2}} = \frac{-50x^{2}(2x^{4}-2)}{6^{2}} = \frac{-16.67}{6x^{2}}$$

$$MFBC = -\frac{\omega J^2}{12} - \frac{Wab^2}{J^2} = -43.33 \text{ kn-m}$$

$$MFCB = +\frac{\omega J^2}{12} + \frac{Wa^2b}{J^2} = 56.67 \text{ kn-m}.$$

		K	Σk	$DF = \frac{K}{\Sigma K}$
В	BA	$\frac{3(\pm)}{4(\pm)} = \frac{3(\pm)}{4(6)} = 0.125 \pm 0.12$		0.43
	BC	$\left(\frac{I}{J}\right) = \frac{I}{6} = 0.167I$	0.292I	0157

M.D. Table C (Fixed) (Hinge) Meuber CB BA BC AB 0.43 0.57 DF -16.67 56.67 FEM Q -43.33 Release C.O. Initial -43:33 56.67 4 O -16.67 Values, 25.80 Bal 34.20 17.10 $C \circ O$ Final 9.13 -9.13 73.开 Value

Doaw BMD, SFD.

Sinking and Rotation of Support

Additional Moment due to Rotation

Eg: - 5] Analyse the continuous beam Shown by M.D. method and draw SFD, BMD. Support B' and c' settles by 8mm and 3mm respt. EI-2x16/kn/m²

A 6m B
$$|0kN|m$$
 $|0kN|m$ $|0k$

$$MFBB = 0 - \frac{6EIO}{12} = 0 - \frac{6(1\times2\times10^4)(0.008)}{6^2} = -26.67$$

$$MFBB = 0 - \frac{6EIO}{12} = 0 - \frac{6(1\times2\times10^4)(0.008)}{6^2} = -26.67$$

$$MFBC = -\frac{12}{12} = \frac{-10\times8^2}{12} = \frac{-10\times8^2}{12} = \frac{6(1.5\times2\times10^4)(-0.005)}{8^2}$$

$$M_{FCB} = + \frac{\omega J^2}{12} \left(\frac{6EIO^7}{12} \right) = \frac{10 \times 8^2}{12} - 6 \left(\frac{1.5 \times 2 \times 10^4}{8^2} \right) (-0.005)$$

$$MF(D = 0 - \frac{6EIO}{12} = 0 - \frac{6(2X)(0)(-0.003)}{6^2} = +20 \text{ kmm}$$

$$MFDC = 6 - \frac{6EIS}{12} = +20 \text{ km/m}$$

(b) <u>D.F</u>

				1
		K	Σk	DF= K EK.
В.	BA	$\frac{3}{4}(\frac{\pi}{5}) = \frac{3}{4}x \frac{\pi}{6} = 0.125I$ $\frac{\pi}{4} = \frac{1.5T}{8} = 0.1875I$	1021751	0.4
D.	BC		0.31251	0.6
С.	CB	I/1 = 1.57 = 0.1875I	0.5 90 5	0.36
	CD	$I_1 = \frac{2I}{6} = 0.333I$	ال فواهد وال	0.64.

		•							
	- (C)	M.D Ta	ble			· ·		Fi	χ <i>e</i> d
-	AB	BA	BC		CB	CD		DC	Meuber
		0:4	0.6		0.36	0164			DF
	-26.6	7 -26167	-39.27		67.40	20		20	FEM
	+26.6	57			····				Release
_		13.33			.			,	C.0
-	0	-13:33	-39.27		67,40	20		20	Initial
1		21.04	31.56	,	-31.46	-55.94	,		Bal
_	0		-15.88	>>>	15.76		<i>>></i>	-27197	C10
		6.35	9.53	~/·	-5.67	~10:08	\rightarrow		Bal
_	O_	K	-2.83	*	4.76		\rightarrow	-5104	C0 0
		1113	1170	~ ~\	-1171	-3.04			Bal
	O	* * * * * * * * * * * * * * * * * * * *	-0.85	< >>	0.85			-1.52	C.O
	_	0.34	0.51	>	-0.30	-0.54	~>	- 4.03	Baj
_	<u> </u>	~	-0115	^ <i>></i>	0.25	· · · · · · · · · · · · · · · · · · ·		-0.27	Cio
_	0	+0.06	0.09		-0.09	0.16			Baf
	•	15059	-15.59	12	49179	-4954	9	-14.80	Final

Eg:-6/fig Shows a continuous beam ABCD. Analyse the beam by M.D method. If the End "A" votates by 0.002 molians en the clockwise order l. Support B' spoks by 5 mm & C by 2 mm. Take EJ = 18000 LN-M2 J=+0.005m f=-0:003m $= 0 + \frac{4(2 \times 1800)(0.002)}{4} - \frac{6(2 \times 1800)(0.005)}{4^2} = 4.5$ MFBA = 0 + 2 EIO GETO $= 0 + 2(2 \times 1800)(0.002) 6(2 \times 1800)(0.005) = -31.5$ $MFBC = 0 - \frac{6EIO}{12} = 0 - 6\frac{(4x1800)(-0.003)}{8^2} = 20.25$ $M_{FCB} = 0 - \frac{6EIO}{12} = 20.25$

MF(D= 0 -
$$\frac{6EId}{J^2} = -\frac{6(J \times J 800)(-0.002)}{3^2} = \frac{24 \text{ kn/m}}{J^2}$$

MFD(= 0 - $\frac{6EId}{J^2} = \frac{24 \text{ kn/m}}{J^2}$

(b)

Egi-1] Analyse the rigid bame by M.D. method. Draw SFD, BMD & EC.

4m(I)

(a) FEM:

MFAB = MFBA = 0

 $MFBC = -\frac{\omega l^2}{12} = -45$, MFCB = +45 kN-m

110KN

MIBB'= + 10x2= +20kn-m (clothwise resisting moment)

(b) D.F (For Intermediate)

		• K	ΣΚ	DF= K
	BA	I/1 = I/4 = 0.25I		0.43
B	BC.	$T_{ij} = \frac{2I}{6} = 0.33I$	0.58I	0.57
	BB'	0		0 ,

 $\frac{2m}{2m}$ $\frac{2m}{2m}$ $\frac{2m}{2m}$ $\frac{2m}{2m}$ $\frac{2m}{2m}$

(a)
$$FEM$$
:

 $MFAB = -\frac{3J^2}{J^2} = -26.67$, $MFBA = +26.67$.

 $MFBC = -\frac{Wab^2}{J^2} = -28.8$, $MFCB = +\frac{Wa^2b}{J^2} = +19.2$
 $MFDB = -\frac{WJ}{8} = -10$, $MFBD = +10$

(b) D.F: (For Intermediate)

-			K	ΣK	DF-K
		BA	I/1 = I/4 = 0.25I		0.38
	В	BC	$\frac{3}{4}(\frac{1}{1}) = \frac{3}{4}(\frac{1}{5}) = 0.15$	0.651	0.24
		BD	T/1 = T/4 = 0.25I		0.38
			· -		"c"Roller

(C)AB: BA BD BB BC Mouber CB 0.38 0.38 0.24 DF -26.67 26.67 -28,8 +10 -10 19.2 FEM Release =19.2 -9:60 Initial Valuer -26.67 26.67 10 -38:40 -10. O0.66 0.66 0.41 Bay 0.33 0.33 O CIO Final -26.33 -9.67 | -37.99 10.66 27.33 Values. 5 5 $\langle \rangle$ \geq 2

Refer S.D. Notes For BMD.

At'B" MAA + MBX + MBD = 0

$$(a)$$
 FEM
 $MFBB = -\frac{\omega J^2}{12} = -40$, $MFBA = +40$
 $MFBD = -35.16$, $MFDB = +21.10$ km-m

		_	_	
		K	Σķ	$DF = \frac{K}{\Sigma K}$
	BA	3(T/4)=01187I		0.30
B	Bc	3 (J4) = 0:187I	0.6251	0.30
()) · · ·	BD	$\frac{T}{4} = 0.25I$		0.40
_	DB	I/4 = 0.25 I	-	0.57
D	DE	3(I) = 0:187I	0.437I	O.43.

M.D. Table:

84	1	000	8 BD	DB	DE		ED Mauber
0130	0.30		0,40	6,57	0.43		业 (a)
40	0	0	-35.16	21.10	0	0	平臣区
							Release
	0	0	-35.16	21.10	0	0	Indial
	-7.45	1	- 4,94 ×	12.03	+0.b-		Bal
1	1	0	10.9-	-4197	A	O	CO
08-1	08:1	1	2.40	2.83	2.14	a 6	(Bal
	-0.43		45.0-	-0.28	-0.52	0	Bali
01.0	0110	1	41.0		0.12		Gal
		0	₹ 80,0	40.0		0	010
-0.02	-6102		40.0-	\$0.0	-0.03		Bal
 	9	0	-48.02	7,36	- 736	0	Final
	&		می	3	A		
MBA+ 1	MBC+ MBD=0	BD=0 Ht	<u>-</u> A	MDB+ MDE -	0:		
							ソ

Part-B Kani's Method

(i) Rotation Factor = $U = (-\frac{1}{2})\frac{k}{k}$

(ii) Rotation Moment:

MAB = U[ZMF+Z Farend Robotion Moment

(111) Final Moment

Eg:-1] Analyse the beam shown by (60)
Kanils method, Draw BMD.

(b) Rotation Factor (For Intermediate)

	<u> </u>			
		K	ΣK	U=(-1/2) K/ EK
A	BA	I/4 = 0.25I		-0.28
B	BC	I/5 = 0.20I	0.45I	-0.22
	CB	I/S = 0120I		-0.25
C	CD	J/5 = 0.20I	0.41	-0.25

Trial (1)

$$M'BA = -0.28(-6.25 + 0) = 1.75$$

 $M'BC = -0.22(-6.25 + 0) = 1.37$
 $M'CB = -0.25(-26.35 + 1.37) = 6.24$
 $M'CD = -0.25(-26.35 + 1.37) = 6.24$

Trial 2

$$m'BA = -0.28(-6.25 + 6.24) = 0.003$$

 $m'CC = -0.22(-6.25 + 6.25) = 0.002$
 $m'CB = -0.25(-26.35 + 0.002) = 6.59$
 $m'CD = -0.25(-26.35 + 0.002) = 6.59$

Trial 3
$$= -0.28 (-6.25 + 6.59) = -0.09$$

 $= -0.28 (-6.25 + 6.59) = -0.07$
 $= -0.22 (-6.25 + 6.59) = -0.07$
 $= -0.25 (-26.35 - 0.07) = 6.60$
 $= -0.25 (-26.35 - 0.07) = 6.60$

Final Moment

$$M_{BB} = -25 + 2(0) - 6.09 = -25.09 \text{ kn-m G}$$

$$M_{BB} = +25 + 2(-0.09) + 0 = 24.82 \text{ kn-m} \text{ kn-m G}$$

$$M_{BC} = -31.25 + 2(-0.07) + 6.60 = -24.79 \text{ kn-m G}$$

$$M_{CB} = +31.25 + 2(6.60) - 0.07 = 44.38 \text{ m} \text{ 2}$$

$$M_{CD} = -57.6 + 2(6.60) - 0 = -44.40 \text{ m} \text{ G}$$

$$M_{CD} = 38.4 + 2(0) + 6.60 = 45 \text{ kn-m } \text{ 2}$$

Draw SFD, BMD & EC. Refer SID. Notes.

Eg: - Analyse the continuous becam shown by kain's method. 75km/m $M_{FAB} = \frac{-\omega J^2}{12} = -75$, $M_{FBA} = +75$ $MFBC = -\frac{Wab^2}{12} = -66.67 \text{ kn-m}, MFCB = +66.67 \text{ kn-m}$ $MFCD = -WJ^2 = -40$, $MFDC = +\omega J^2 = +60$ (b) Rotation Factor (For Intermediate) U= (=) k BA 1/9 = 1/6 = 0.167 I BC 7/3 = 1/6 = 0:167 I 0.3341 CB | 1/2 = 1/6 = 0.167 I - 0.20 $CD \cdot 7 = \frac{1}{4} = 0.25I$ 0.4171 -0.30

Rotation Moment

Trial (1)

$$MBA = -0.25 (8.33 + 0) = -2.08$$

 $MBC = -0.25 (8.33 + 0) = -2.08$
 $MCB = -0.20 (26.62 - 2.08) = -4.92$
 $MCD = -8.30 (26.62 - 2.08) = -7.38$

Trial®

$$MBB = -0.25(8.33 - 4.92) = -0.85$$

$$MBC = -0.25(8.33 - 4.92) = -0.85$$

$$MCB = -0.20(26.67 - 0.85) = -5.16$$

$$MCD = -0.30(26.67 - 0.85) = -7.75$$

MBA = -0.25 (8.33 - 5.16) = -0.79 MBC = -0.25 (8.33 - 5.16) = -0.79 MCB = -0.20 (26.67 - 0.79) = -5.17MCD = -0.30 (26.67 - 0.79) = -7.76

Trial (9)

MBA = -0.79 km-h MBC = -0.79

Final Moment:
[M = FEM + 2[Ro. Moment] + [Ro. moment]

MAB = -75 + 2(0) - 0.79 = -75.79 kn-m (\$

MBA = +75 + 2(-0.79) + 0 = 73.42 kn-m ?

MBC = -66.67 + 2(-0.79) - 5.17 = -73.42 kn-m (\$

MCB = +66.67 + 2(-5.17) - 0.79 = 55.54 kn-m ?

MCD = -40 + 2(-7.76) + 0 = -55.52 kn-m (\$

MDC = +60 + 2(0) - 7.76 = 52.24 kn-m ?

Refer M.D. Notes for SFD & BMD.

$$Sol2 (a) FEM$$

$$MFAB = -\frac{Mb(2a-b)}{J^2} = \frac{-50\times4(2\times2-4)}{6^2} = 0$$

$$MFBA = -\frac{Ma(2b-a)}{J^2} = \frac{-50\times2(2\times4-2)}{6^2} = -16.67$$

$$MFBC = -\frac{WJ^2}{J^2} - \frac{Wab^2}{J^2} = -43.33 \text{ kn-m}$$

$$MFCB = +\frac{WJ^2}{J^2} + \frac{Wa^2b}{J^2} = +56.67 \text{ m}$$

$$MFCB = +\frac{WJ^2}{J^2} + \frac{Wa^2b}{J^2} = +56.67 \text{ m}$$

$$MFCB = +\frac{WJ^2}{J^2} + \frac{Wa^2b}{J^2} = +56.67 \text{ m}$$

$$MFCB = +\frac{WJ^2}{J^2} + \frac{Wa^2b}{J^2} = +56.67 \text{ m}$$

$$MFCB = +\frac{WJ^2}{J^2} + \frac{Wa^2b}{J^2} = +56.67 \text{ m}$$

		1	-	
		k	ΣK	$U = \left(\frac{-1}{2}\right) \frac{K}{\sum K}$
	BA	$\frac{3(I)}{4(J)} = \frac{3(I)}{4(G)} = 0.125I$		-0.21
\mathcal{B}_{\parallel}		_	0.292I	
,	BC	$\frac{I}{I} = \frac{I}{6} = 0.167I$		-0.29
(

$$MBA = -0.21 (-60+0) = 12.60$$

 $MBC = -0.29 (-60+0) = 17.40$

MAB =
$$0 \star If last support is simple or thingx or Roller the above eq. h is not MBA = $-16.67 + 2(12.60) + 0 = 8.53$ applicable.

MBC = $-43.33 + 2(17.40) + 0 = -8.53 \times 10^{-10} \text{ M}$

M(B) = $56.67 + 2(0) + 17.40 = 74.07 \times 10^{-2}$$$

Doaco BMD & SFD.

68

Eg: -4] Analyse the beam shown by kaniis method

$$Soll$$
 (a) FEM
 $MFBA = 72$
 $MFBA = -48$, $MFBA = 72$
 $MFCB = -60$, $MFCB = +60$
 $MFCD = -25$, $MFDC = 25$.

(b) Rotation Factor: -

 	·		1	
		K	ΣK	$V = \left(-\frac{1}{2}\right) \frac{K}{\Sigma K}$
Ø	BA	$\frac{3}{4}\left(\frac{\pm}{5}\right) = 0.15T$		-0.156
 B	BC	$\frac{2I}{6} = 0.33I$	0.48I	-0.344
	ĊB	$\frac{2I}{6} = 0.33I$		-0.284
\mathbb{C}	CD	$\frac{I}{A} = 0.25I$	0.58I	-0.216

$$\frac{\text{Tmid}-0}{\text{mBH}=-0.156} (36+0) = -5.62$$

$$\text{mBC} = -0.344 (36+0) = -12.38$$

$$\text{mCB} = -0.284 (35-12.38) = -6.42$$

$$\text{mCD} = -0.216 (35-12.38) = -4.89$$

Final Moment:
$$M = FEM + 2(Near) + (Far)$$
 $MAB = O * The above eqh is not applicable * MBA = 96 + 2(-4.51) + 0 = 86.98 kn-m

 $MBA = -60 + 2(-9.94) - 7.12 = -87.00 kn-m$$

$$MCB = +60 + 2(-7.12) - 9.94 = 35.82 kn-h$$

McD = -35.82 kn-m, MDC= 19.59 kn-m

Ratation moment

$$MBC = -0.333(-21.25+0) = 7.08 \text{ kw-m}$$

MAA! = 50 KN-m) * For there too the eqh is MAB = -50 KN-m) not applicable. They are final moment:

$$M_{BA} = 65 + 2(3.55) + 0 = 72.1 \text{ kn-h}$$

$$MBC = -86.25 + 2(7.08) + 0 = -72.10 \text{ kn-m G}$$

$$M(B = 108.75 + 2(0) + 7.08 = 115.83 \text{ KN-m})$$

Eg:-6] Ahalyse the beam shown by Kani's method

$$S_{0}^{1/2}$$
 (a) $M_{FAB} = -53.33$, $M_{FBA} = +35.56$
 $M_{FBC} = -75$, $M_{FCB} = +75$

McD = -30x105 = -45 KN-m.

·	1		- ,	·
		K	ΣK	U
B	BA	I/1 = 2 I/6 = 0.333 I		-0.235
	BC	$\frac{3(I)}{4(I)} = \frac{3(3I)}{4(6)} = 0.375$ I	0.708I	-0.265

A Any overhanging moments are final:

 $M_{CD} = -45 \text{ kN-m}$

i. Bom equillibrium point of Vices

"Mics" should be + 45km

79

Rotation Moment
$$m = U[\Sigma FEM + \Sigma Farend Ro. Moment]$$
 $MBA = -0.235(-54.44+0) = 12.79$
 $MBC = -0.265(-54.44+0) = 14.43$

$$M_{AB} = -53.33 + 2(0) + 12.79 = -40.54 \text{ kn-m}$$
 (5)
 $M_{BA} = 35.56 + 2(12.79) + 0 = 61.14 \text{ kn-m}$ (7)
 $M_{BC} = -90 + 2(14.43) + 0 = -61.14 \text{ kn-m}$ (5)
 $M_{CB} = +45 \text{ A}$ (7)
 $M_{CD} = -45 \text{ A}$ (9)

Sinking of Support Eg:- Analyse the beam shown by kanis method. The support to solutes by 0.002 rad. anti-clockwise. The Pupport B' sinks by 8mm. Take E = 210GPa, T = 0.1Gmm4.
30kW/m 100kW 100 kn 8mm f=+0.008 E = 210×109×10 = 210×103 N/mm2 I = 0.1 × 109 mm4 $EI = (210 \times 10^3)(0.1)10^9 \text{ N-mm}^2$ = 21000 KN-m² (10^3) $(10^3)^2$ (a) <u>FEM</u>: Additional moment = -6EIS (Sinhing)

redditional moment = -6EIO (Sinking) = 4EIO -> Near and Robotion

$$M_{FAB} = -\frac{\omega J^2}{12} \left(\frac{6EIO}{J^2} \right) = -\frac{30X4^2}{12} \frac{6(21000)(0.008)}{4^2}$$

$$MFBA = + \frac{12}{12} \left(\frac{6EIO}{12} \right) = -23 \text{ kN-m}.$$

$$MFBC = \frac{-5\omega J^2}{96} - \frac{6EIO}{J^2} = \frac{-5(50)5^2}{96} \frac{6(21000)(-0.008)}{5^2}$$

$$MFCB = \frac{45 \omega l^2 + 6EIO}{96} = \frac{-24.78}{12} = \frac{105.42 \text{ kn-m}}{12}$$

$$MFCD = -\frac{WJ}{8} + \frac{2ETO}{1} = -\frac{100 \times 4}{8} + \frac{2(21000)(-0.002)}{4}$$

$$=-71 \text{ kN-m}$$

$$MDC = + WJ + EIO = \frac{100X4}{8} + \frac{4(21000)(-0.002)}{4}$$

$$= +8$$

1			•	 	(76)
			K	ΣK	U
	B	BA	$\frac{3}{4}(\frac{1}{4}) = 0.1875I$ $\frac{1}{5} = 0.2I$,	-0:24
		BC	T/s= 0.2I	0.3875 <u>T</u>	-0:26
	C	CB.	I/5 = 0.2I	ALICT	-0.22
		сD	I/4 = 0.25J	0.45I	-O•28

Trial (1)

$$MBA = -0.24$$
 (3.72 + 0) = -0.89
 $MBC = -0.26$ (3.72 + 0) = -0.96
 $MCB = -0.22$ (34.42-0.96) = -7.36
 $MCD = -0.28$ (34.42-0.96) = -9.36

Final Moment

MAB = 0 *

MBA = 28.5+2(0.98)+0 = 30.46 KN-m 2

MBC=

=-30:46 KN-m G

M(B=

= 90.88 KN-m 2

McD=

= -90.86 kN-m 5

MDC=

= -1.93 KN-m 5

Non Sway Frames Egi- Analyse the Barne by Kani's method. Doaco BMD. 140KN 20 KN/m B 2m2m 20km Sol2 (a) FEM MFBA = +26.67 MFAB=-26.67) MFBC = -28.8, MFCB = +19.20 MFDB=-10, MFBD=+10

b R.F

		K	ΣK	U
	BA	I/4 = 0.25 I		-0.19
\mathcal{B}	BC	$\frac{3}{4}(\frac{T}{5}) = 0.15I$	0.65I	-0.12
	BD	I/4 = 0.25I		-0.19

$$MBA = -0.19(-1.73+0) = 0.33$$

 $MBC = -0.12(-1.73+0) = 0.21$
 $MBD = -0.19(-1.73+0) = 0.33$

$$MBC = -38.4 + 2(0.21) + 0 = -37.98 \%$$

$$MBD = 10 + 2(0.33) + 0 = 10.66 \text{ m}$$

$$MDB = -10 + 2(0) + 0.33 = -9.67 | (5)$$

$$SOP^2$$
 (a) FEM
 $MFBB = -26.67$, $MFBB = +26.66 **M$
 $MFBC = -60$, $MFCB = +60$
 $MFCE = -40$, $MFEC = +40$

(b) Rotation Factor (For B" 4 "c")

		K	ΣK	$V=\left(\frac{1}{2}\right)\frac{k}{2k}$
. 0	BA	I/4 = 0.25I		-0.3
B 	BC	I/6 = 0.167I	0.416I	-0.2
	CB	I/6 = 0.167I		-0:15
C	CD	$\frac{3}{4}(\frac{1}{4}) = 0.1875$ T	0.542T	-0.17 5 0
	CE	$\frac{3}{4}(\frac{T}{4}) = 0.1875T$		-01175 -618 0

BA
$$K = \frac{T}{1} = \frac{1}{4} = 0.25I$$

BBC $K = \frac{T}{3} = \frac{1}{4} = 0.25I$

CB $K = \frac{T}{1} = \frac{1}{2} \left(\frac{2T}{6}\right) = 0.167I$

CD $K = \frac{T}{2} = \frac{1}{2} \left(\frac{2T}{1}\right) = \frac{1}{2} \left(\frac{2T}{6}\right) = 0.167I$

D.417I

O.417I

O.20

CD

Soll (a) FEM

MFGE = -40kn-m, MFCF =
$$\frac{12}{12}$$
 = -56.25 kn-m

(b) R.F (Only at B4 c) MFFC = $\frac{wa^2b}{12}$ = 18.75

		K	ΣK	U
	BA	K = 1/4 = 0.25 I		-0.125
B	BE	K = 21/4 = 0:57	140 I	-0.25
	BC	K = I/4 = 0125I		-0:1:25
	CB	K = I/4 = 0.25 I	-	-0.167
	CF	$K = \frac{2I}{4} = 0.5I$	0.75I	-0.333

グナリ

: Influence Line Diagram.

Rolling Loads

A curve or graph that represents a function. like a reaction at a support, the shear force & kending moment at a section of a structure for various position of a unit load on the span is called ILD.

b) ILD for SF at a section

(i) when load is in between AC, then 3F)c=(-RB) Draw ILD for VB & consider part of ILD from

/ A to C

c b = (1-a)when load is in between C&B, then SF) = (+B) · Draw ILD for VA & consider part of the ILD from C to B $\frac{1}{J} = \frac{9}{5}$ $\therefore y = \frac{5}{7}$ $\frac{1-\frac{y}{\alpha}}{1} : y = \frac{\alpha}{1}$ c) ILD for BM at a section: -(i) When the unit load in beth A4C

$$A \wedge a = \frac{1}{1}$$

$$RA \wedge A = \frac{1}{1}$$

$$RB = \frac{1}{1}$$

ZMA=0, 1XX- RBXJ=0 :. RB=X

$$R_{C} = R_{B} \times (1-a) = \underbrace{x}_{J} (1-a)$$

When point load is at A'

When point load is at c'': x = a : $M_c = \frac{a(1-a)}{a}$

 $+ \text{Ve SF}_{C} = 15 \left[\frac{1}{2} \times 12 \times 0.6 \right] = 54 \text{ km}$

(c) BM, at a Section C

$$a(1-a) = 8 \times 12 = 4.8$$

$$A = 8m c \qquad (1-a) = 12m$$

$$M_{max} = 15 \left[\frac{1}{2} \times 20 \times 4.8 \right] = 720 \text{ km-m}$$

= 88 = (local intensity)(shacted contex) $= 50 \left[\left(\frac{1+91}{2} \right) 6 \right] = 50 \left[\left(\frac{1+0.76}{2} \right) 6 \right] = 264 \text{ km}$ Ascord Tsupezoidal.

(b) MaxisF at a Section of mmm sokulm $\sqrt{(9)} = \frac{10}{25} = 0.4$ $\frac{0.4}{10} = \frac{y_1}{4} \quad \therefore \boxed{y_1 = 0.16} \quad \frac{0.6}{15} = \frac{y_2}{9} \quad \boxed{y_2 = 0.36}$: Max-vest = $50 \left(\frac{0.4 + 0.16}{2} \right) 6 = 84 \text{ km}$ $Max. + VCSF = 50 \left(\frac{0.6 + 0.36}{2} \right) = (144 \text{ kN})$ (c) Max. Bending Moment at a Section -x-x-(6-2)-x A = 10m C (1-a)=15m The load position for max. BM is, 11 The ratio of span and the ratio of bad should be same.

.

$$\frac{10}{15} = \frac{x}{(6-x)}$$

$$\therefore \boxed{\chi = 2.4 \text{m}}$$

98

& Remaining = 3.6m

$$A = 10m$$
 $A = 10m$
 $A = 10m$

$$\frac{6}{10} = \frac{91}{7.6} \quad \boxed{9_1 = 4.56} \quad \frac{6}{15} = \frac{92}{11.4} \quad \boxed{9_2 = 4.56}$$

: Max. BM) = (Load) (shaded asca)
$$= 50 \left[\left(\frac{6+4.56}{2} \right) 2.4 + \left(\frac{6+4.56}{2} \right) 3.6 \right] = 1584$$

KN-m

(d) Absolute max. BM:-

Maximum of maximum Value, along the beam is called absolute max. BM.

and this occurs at mid Span

:. Absolute max: BM
$$= 50 \left[\frac{6.25 + 4.75}{2} + \frac{6.25 + 4.75}{2} \right]^{3}$$

$$= (6.50 \text{ kn/m})^{-7}$$

Multiple Concentrated Loads (100) The maltiple point loads 100 km, 120 km, 80km and Isokn with a spacing 2m crosses a girder of span 28m bom left to right with 100km load leading. Calculate (1) Reactions (2) Max, SF at a section 12m from left (3) Max. BM at a section 12m 2m 2m 2m 12m c 16m AB(a) Reaction 1150 80 120 1100 $\frac{1}{28} = \frac{91}{26}$ [91 = 0.928] = 94Y3 = 0,786 = 46 $\frac{1}{28} = \frac{92}{24}$ $\boxed{92 = 0.857 = 95}$

$$R_{A} = 100 \times 9_{3} + 120 \times 9_{2} + 80 \times 9_{3} + 150 \times 9_{4}$$

$$= (405.68 \text{ km})$$

$$R_{B} = 100 \times 1 + 120 \times 9_{4} + 80 \times 9_{5} + 150 \times 9_{6}$$

$$= (374.82) \text{ km}.$$
(b) Max, SF at a section
$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 80 & 120 \\ 120 & 100 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 120 \end{vmatrix} = 100$$

$$\begin{vmatrix} 150 & 120 & 120 \\ 120 & 1$$

Cross one by one point load across the Section and calculate average load on each side.

Load cooring the	Average load in (AC)	Auscege load in (CB)	Remark,
100 KN	120+80+150	$\frac{100}{16} = 6.25$	AC>CB
120 KN	80+150 _ 19.17	100+120= 13.75	Ac>CB
80 km	$\frac{12}{12} = 12.5$	100+120+80=18.75	AC < CB

The load (80 km) which causes change in Sign is kept exactly above the section is and arrange remaining loads.

$$y_1 = 5.716$$
 $y_3 = 5.14$
 $y_2 = 6.00$

C

:. $(Max, BM)_{c} = 100xy_{3} + 120xy_{2}$ + $80x6.86 + 150xy_{1}$ = (2640.2) kn-m

Eg: The multiple points 120km, 150km, 150km, 150km, 100km and 80km with spacing 2m, 2.5m, 1.8m and 1.5m crosses a gider of 25m from left to right with 80km leading! Calculate

(i) Reaction

(11) Max, SFL Max, BM at a section 15 m from left.

 $\frac{50^{2}}{\sqrt{2m}} = \frac{150}{\sqrt{150}} = \frac{150}{\sqrt{150}} = \frac{80 \text{kN}}{\sqrt{150}} = \frac{150}{\sqrt{150}} = \frac{150}{\sqrt{150}}$

_____ 25m---->

c 10m /B

(a)	Mox, BM, ata	section d'	(104)			
locad coossing Section	Average load on "Ac"	Avescage load in	Remask			
80kn	$\frac{100+150+150+120}{15} = 34.67$	80 = 8	AC>CB			
100 kN	$\frac{150 + (50 + 120)}{15} = 28$	$\frac{10}{80+100} = 18$	AC>CB			
[ISOKN	$\frac{150 + 120}{15} = 18$	$\frac{80+100+150}{10}=33$	Ac < CB			
The	e load (150km) w	hich courer cho	ange			
in si	ign is kept exact	thy above the sea	short			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\frac{a(d-a)}{d} = 6$						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 6 y ₃ y ₄ .5 1.8 1.5 6.7				
$y_1 = 5$ $y_2 = 4$	$y_3 = 4.92$ $y_4 = 4.02$	(4-01)=10	·			
Mmax)	$r = 120 \times 4.2 + 150$	$x5 + 150 \times 6 + 100 \times 4$ x4.02 = (2967.6)				

Eg:-1 The multiple point loads 100KN, 120KN, 80KN & 150KN WITH a spacing em crosses a girde of span 28m from left to right with 100 KN load leading. Calculate "Absolute BM" and "Ab. max. S.F 28m (a) Absolute Max. BM: - (Any where in the beam). (1) Resultant R = 100+120+80+150 = 450km (2) Location of R 100 $\overline{\chi} = \frac{W_1 \chi_1 + W_2 \chi_2 + ---}{W_1 + W_2 + ---}$ $\overline{\chi} = \frac{100\times6+120\times4+80\times2+150\times0}{20\times6+120\times4+80\times2+150\times0} = 2.76$ 450 80km 0.76 1.24m 120km

,

X = (0.78.2 KN/m)

((b) Ab. max. Shear: -

The maximum reaction RA or RB is called ab. max. Shlar force

___X ___

BOKN, 150 KN, 150 KN & 90 KN Spaced at 2-1m, 2-4m, 2-1m & 1-8m in ordu crosses a girdu of 24 m Span from left to sight with BOKN load is leading. calculate (i) Ab . Maxm B.M. 24m Resultants R = 80+80+150+150+90=[550 (2) Location of R $\overline{X} = 80\times8.4 + 80\times6.3 + 150\times3.9 + 150\times1.8 + 90\times0$ 550 $\overline{x} = 3.69 \text{m}$ (3) Selection of Load: Observing only adjacent loads. Select Neaver Load" (" Both magnitudes asc Same)

(110)

(4) Dorangement

The selected local and resultant are equidistance from mid span.

$$y_1 = 4.07$$
, $y_2 = 4.96$, $y_3 = 4.79$, $y_4 = 3.73$

.. Ab. max. BM

$$= 90 \times 4.07 + 150 \times 4.96 + 150 \times 6$$

$$+ 80 \times 4.79 + 80 \times 3.73$$

Or By Rolling Load Mothod

For the above arrangement of load calculate reactions and take moment at "sected load"

1. \(\sum_{A} = 0 \).

- RBX24 + 90 X 8.205 + 150 (1.8+8.205)

+ 150 (2.1+1.8+8.205) + 80 (2.4+2.1+1.8+8.205)

+80(2.1+2.4+2.1+1.8+8.205)=0

RB = 272.66 km

° Ah. max. BM = M) = 272.66 × 11.895

 $-80\times4.5-80\times2.4=(2691.9 \text{ kN-m})$

___X___

HW

(119)

Jour loads of 100kN, 150kN, 175kN & 200KN spaud @ 1.0m, 1.5m and 2.0m in order move on a beam of span 20m. The load 200KN is to leading. Calculate (i) Ab. S.F.

(ii) Ab. Mazm B.M.

a girdu of span 15m from Lto R. Calculati (i) Reation.

(ii) S.F & B.M @ BM from left.

Jetermine manim B.M @ a section lom from left for a span 25m, when a societ of Point Loads bokn, 200kn, 200kn, 200kn, 200kn with spacing 4m, 2.5m, 2.5m & 2.5m Olosoeo the girdu from each direction (either side). lookn Load is leading in each case!

Flexibility Motorx:

$$[p] = [F]^{-1} \left\{ [\Delta] - [\Delta L] \right\}$$

P -> Redundants. (excess unknowns)

F -> Flexibility motin'x

 $\Delta \rightarrow \text{Displacements or sinking of supports.}$

Displacement due to loads.

Eg:-1) Analyse the beam shownby

Flexibility method and Isaw BMD.

No. of unknowns = 4 (VA, VB, VC, MA)

.. The above beam is Two degree Redundant

(1) Apply unit moment at A":

$$G_{II} = \frac{1}{10} \left[\left(\frac{1}{2} \times 10 \times \frac{1}{2EI} \right) \frac{2}{3} \times 10 \right] = \frac{1.67}{EI}$$

$$\mathcal{O}_{21} = \frac{1}{10} \left[\left(\frac{1}{2} \times 10 \times \frac{1}{2EI} \right) \frac{1}{3} \times 10 \right] = \frac{0.833}{EI}$$

 $F = \frac{EI}{1.67 \times 4.33 - 0.833 \times 0.833} \begin{bmatrix} 4.33 & -0.833 \\ -0.833 & 1.67 \end{bmatrix}$

$$\Delta_{1L} = \frac{1}{2} \left[\frac{1}{2} \times 4 \times \frac{50}{EI} \right] + \frac{1}{2} \left[\frac{2}{3} \times 5 \times \frac{46.87}{EI} \right] = \frac{128.11}{EI}$$

$$\Delta_{2L} = \frac{1}{2} \left[\frac{2}{3} \times 5 \times \frac{46.87}{EI} \right] + \frac{1}{6} \left[\left(\frac{1}{2} \times 4 \times \frac{106.67}{EI} \right) \frac{2}{3} \times 4 + \left(\frac{1}{2} \times 2 \times \frac{106.67}{EI} \right) \left(\frac{1}{3} \times 2 + 4 \right) \right]$$

$$\mathcal{O}_{11} = \frac{1}{4} \left(\frac{1}{2} \times 4 \times \frac{1}{EI} \right) \frac{2}{3} \times 4 + \frac{1}{5} \left(\frac{1}{2} \times 5 \times \frac{1}{EI} \right) \frac{2}{3} \times 5 = \frac{3}{EI}$$

$$\delta_{21} = \frac{1}{5} \left[\left(\frac{1}{2} \times 5 \times \frac{1}{EI} \right) \frac{1}{3} \times 5 \right] = \frac{0.833}{EI}$$

$$\begin{bmatrix}
E T \\
3 \times 3 \cdot 60 - 0.833^{2} \\
-0.833 & 3
\end{bmatrix}$$

$$= \underbrace{ET}_{|0.32|} \begin{bmatrix}
3.67 - 0.833 \\
-0.833
\end{bmatrix}$$

:.
$$MB = -24.90 \text{ kN-m}$$
 (+log)
 $MC = -64.05 \text{ kN-m}$ (+log)

$$\left\{ \mathcal{D}_{Q} \right\} = \left\{ \mathcal{D}_{QL} \right\} + \left[\mathsf{F} \right] \left\{ \mathsf{Q} \right\} \longrightarrow \mathbb{I}$$

Where $\{D_{\varphi}\} \rightarrow Actual displacement existing in the Str.$ $\{D_{\varphi L}\} \rightarrow Displacement due to loads in the released Structure.$ $[F] \rightarrow Flexibility matrix for the released Str.$ $\{\varphi\} \rightarrow Redundants.$

If displacement at the redundants points are Jeso then $\{D\phi\} = \{0\}$

then
$$\{D\varphi\} = \{0\}$$

$$\{\varphi\} = -[F]^{-1}\{D\varphi_L\} \rightarrow \mathbb{I}$$

$$[p] = [F]^{-1}[(\Delta) - (\Delta_L)]$$
Redunctiont

Eg:-1] Analyse the continuous beam Shown by F.M. method and draw BMD & SFD. What will be the change in the forces if Supposts "B" & "C" settle down by 200 and 100 EI.

Degree of static Indeterminacy = 4-2 = 2

.. Vertical recutions at B and d will be chosen as the redundant reaction

Released or Basic Determinate Str: -

Deflection du to external louds DQLI & DQLI & DQLI Cambre Calculated by Conjugate beam method

Conjugate Beam

Deflection at 142 = B.M. at 142 in C.Beam.

$$DQL1 = -\left[\left(\frac{1}{3}\times100\times\frac{600}{EI}\right)\frac{3}{4}\times10 + \left(\frac{1}{2}\times10\times\frac{400}{EI}\right)\frac{2}{3}\times10 + \left(\frac{120}{EI}\times10\times5\right)\right]$$
8) $\Delta_{IL} = -\frac{34333\cdot33}{EI}$ (\downarrow)

$$DQL2 = -\left[\left(\frac{1}{3} \times 10 \times \frac{600}{EI} \right) \left(\frac{3}{4} \times 10 + 6 \right) + \left(\frac{1}{2} \times 3 \times \frac{240}{EI} \right) \left(\frac{2}{3} \times 3 + 3 \right) + \left(\frac{1}{2} \times 10 \times \frac{400}{EI} \right) \left(\frac{2}{3} \times 10 + 6 \right) + \left(\frac{10 \times 120}{EI} \right) 11 \right]$$

$$\Delta_{\mathbf{L}} = - \frac{67333.33}{\text{E.T.}} \tag{1}$$

$$F_{11} = \left(\frac{1}{2} \times 10 \times \frac{5}{EL}\right) \frac{2}{3} \times 10 = \frac{166.67}{EL}$$

$$\frac{10}{2EI} = \frac{5}{EI}$$

$$+ \frac{10}{10} = \frac{5}{EI}$$

$$+ \frac{10}{10} = \frac{5}{EI}$$

$$+ \frac{10}{10} = \frac{5}{EI}$$

$$+ \frac{10}{10} = \frac{5}{EI}$$

$$\begin{cases} F_{21} = \left(\frac{1}{2} \times 10 \times \frac{5}{EI}\right) \left(\frac{2}{3} \times 10 + 6\right) = \frac{316 \cdot 67}{EI} \end{cases}$$

Without Sinking of Supports.
$$\begin{cases}
\varphi \} = \begin{bmatrix} F \end{bmatrix}^{-1} \begin{bmatrix} D\varphi \} - \{ D\varphi L \} \\
\varphi_2 \end{bmatrix} = \frac{EI}{19500.84} \begin{bmatrix} 718.67 - 316.67 \\ -316.67 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{EI} \begin{bmatrix} -34333.33 \\ -67333.33 \end{bmatrix} \\
= \frac{1}{19500.84} \begin{bmatrix} -11 \\ -11 \end{bmatrix} \begin{bmatrix} 3.4333.33 \\ 67.333.33 \end{bmatrix} \\
= \frac{1}{19500.84} \begin{bmatrix} 3351888.66 \\ -19500.84 \end{bmatrix} \begin{bmatrix} \varphi_1 \\ -19500.84 \end{bmatrix} = \begin{cases} 171.88 \\ 17.95 \end{cases}$$

Docus BMD &SFD.

Dixer BMD & SFD.

_____X ____

Eg: -2] Analyre the beam Shown by Flexibility modist. Draw BMD.

of Degree of Static Indeterminacy = 4-2 = 2.

Select (MA) of (MB) as redundant forces.

Displacement due to Loads

$$\Delta_{1L} = \frac{1}{2} \left[\frac{2}{3} \times 5 \times \frac{62.5}{EI} \right] = \frac{104.17}{EI}$$

$$\Delta_{2L} = \frac{1}{2} \left[\frac{2}{3} \times 5 \times \frac{62.5}{EI} \right] + \frac{1}{2} \left[\frac{1}{2} \times 6 \times \frac{90}{EI} \right] - \frac{1}{6} \left[\frac{1}{2} \times 6 \times \frac{20}{EI} \right] \frac{1}{3} \times 6$$

$$A = \frac{1}{6m}$$
 A_{2L}

Flexibility Matrix:

Unit force or moment is applied at "A" & B."

(i) Unit moment is applied at "A"

$$\begin{array}{c|c} A & C & C & D \end{array}$$

$$\frac{1}{EI}$$
 $\frac{1}{6m}$
 $\frac{1}{6m}$
 $\frac{1}{6m}$
 $\frac{1}{6m}$

$$\delta_{12} = \frac{1}{5} \left[\frac{1}{2} \times 5 \times \frac{1}{EI} \right] \frac{2}{3} \times 5 = \frac{5}{3EI}$$

$$d_{2i} = \frac{1}{5} \left[\frac{1}{2} \times 5 \times \frac{1}{EI} \right] \frac{1}{3} \times 5 = \frac{5}{6EI}$$

11) Unit moment is applied at B"

$$S_{12} = \frac{1}{5} \left[\frac{1}{2} \times 5 \times \frac{1}{EI} \right] \frac{1}{3} \times 5 = \frac{5}{6EI}$$

$$\int_{22} = \frac{1}{5} \left[\frac{1}{2} \times 5 \times \frac{1}{EI} \right] \frac{2}{3} \times 5 + \frac{1}{6} \left[\frac{1}{2} \times 6 \times \frac{1}{EI} \right] \frac{2}{3} \times 6 = \frac{11}{3EI}$$

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} \delta_{11} & \delta_{12} \\ \delta_{21} & \delta_{22} \end{bmatrix} = \begin{bmatrix} \frac{S}{3EI} & \frac{S}{6EI} \\ \frac{S}{6EI} & \frac{I_1}{3EI} \end{bmatrix}$$

$$=\frac{1}{3EI}\begin{bmatrix} 5 & 2.5 \\ 2.5 & 11 \end{bmatrix}$$

· Redundants
$$[p] = [F]^{-1}[(\Delta) - (\Delta L)]$$

$$\Delta = 0$$
 (: There is No Sinking)

$$\begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = \frac{4EX}{65} \begin{bmatrix} 11 & -2.5 \\ -2.5 & 5 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 104.17/EX \\ 219.17/EX \end{bmatrix}$$

$$= \frac{4 \left[11 - 2.5 \right] \left[-104.17 \right]}{65 \left[-2.5 \right] \left[-249.17 \right]}$$

$$M_{A}$$
, p_{1} = $\begin{bmatrix} -36.79 \\ -51.41 \end{bmatrix}$

..
$$M_A = -36.79 \text{ kn-m (Hog)}$$

 $M_B = -51.41 \text{ kn-m (n)}$
 $M_C = -20 \text{ kn-m (n)}$

Draw BMD 4 SFD.

6

