Introduction in Al

Domeinen

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Kunstmatige/Artificiële Intelligentie

- Kunstmatige intelligentie (AI) is een breed gebied van informatica dat zich bezighoudt met de ontwikkeling van **intelligente machines** die taken kunnen uitvoeren waarvoor doorgaans menselijke intelligentie nodig is.
- Het doel van AI is om intelligente machines te creëren die kunnen redeneren, leren, waarnemen en handelen op een manier die vergelijkbaar is met menselijke intelligentie.

Machine Learning

- Machine learning is het deelgebied van AI dat "computers het vermogen geeft om te leren zonder expliciet geprogrammeerd te zijn".
- Machine learning is de studie en constructie van algoritmen die kunnen leren van en voorspellingen kunnen doen over data

Deep Learning

- Deep Learning is een subset van machine learning waarin meerlagige neurale netwerken leren van enorme hoeveelheden data.
- De ontwikkeling van neurale netwerken is de sleutel om machines de wereld te laten begrijpen zoals wij dat doen.
- Een neuraal netwerk is een type machine learning-model dat is ontworpen om de functie van het menselijk brein bij het verwerken en analyseren van informatie te simuleren.

Neurale Netwerken

- Een neuraal netwerk is een machine learning-model **geïnspireerd op het menselijk brein**, bestaande uit verbonden knooppunten of neuronen die informatie verwerken en verzenden met behulp van gewogen verbindingen.
- Het is in staat **complexe patronen en relaties in gegevens te leren** en kan voor verschillende taken worden gebruikt.
- Een neuraal netwerk is in staat beslissingen te nemen, uitspraken te doen of voorspellingen te doen op basis van de gegevens die het heeft verstrekt.
- Door hier een **feedbacklus** aan toe te voegen, wordt **"leren"** mogelijk gemaakt en verandert zo de aanpak om een probleem in de toekomst op te lossen.

Een neuraal netwerk = basis wiskunde

- Input lagen
- Verborgen lagen
- Output lagen
- Nodes per laag
 - Gewicht
 - Bias / Offset
 - Activatiefunctie

- 1. **Data voorbereiding:** Dit omvat het verzamelen, opkuisen en voorbereiden van de data voor gebruik in het model.
 - Dit kan taken omvatten zoals data cleaning, data augmentatie (vergroting), feature extractie en normalisatie.

Onthoud: shit in = shit out

- Typisch gaan we onze data ook opdelen in 3 sets:
 - i. Training: het grootste aantal gebruiken we om het model te trainen
 - ii. Validatie: wordt gebruikt tijdens het trainen om model bij te sturen
 - iii. **Testen:** wordt gebruikt na het trainen om te kijken hoe goed het model werkt

- 2. **Model ontwerp:** Dit omvat het kiezen van een geschikte neurale netwerk architectuur op basis van het probleemdomein en de beschikbare data.
 - Er zijn verschillende soorten neurale netwerken, waaronder feedforward, convolutional, recurrent en generatieve modellen.

- 3. **Het model trainen:** Dit gebeurt op de voorbereide data
 - Het doel is om het verschil tussen de voorspelde output en de werkelijke output te minimaliseren.
 - Het proces van training omvat voorwaartse en achterwaartse propagatie van informatie door het netwerk, waarbij de gewichten van de verbindingen worden bijgewerkt om de nauwkeurigheid van de voorspellingen te verbeteren.

- 4. **Evaluatie:** Dit omvat het evalueren van de prestaties van het getrainde model op een aparte validatie dataset of met behulp van cross-validation technieken.
 - De prestaties van het model worden gemeten met verschillende evaluatie metrics

