

Algorithms and Data Structures 2 CS 1501

Spring 2023

Sherif Khattab

ksm73@pitt.edu

(Slides are adapted from Dr. Ramirez's and Dr. Farnan's CS1501 slides.)

Announcements

- Upcoming Deadlines
 - Lab 10: Tuesday 4/11 May 1 @ 11:59 pm
 - Lab 11: Tuesday 4/18 May 1 @ 11:59 pm
 - Lab 12: May 1 @ 11:59 pm
 - Homework 11: Friday 4/14 May 1 @ 11:59 pm
 - Homework 12: May 1 @ 11:59 pm
 - Assignment 4: Friday 4/14 May 1 @ 11:59 pm
 - Support video and slides on Canvas + Solutions for Labs 8 and 9
 - Assignment 5: May 1 @ 11:59 pm
 - to be posted tonight

Final Exam

- Friday 4/28 12:00-13:50
 - 169 Crawford Hall
- Same format as midterm
- Non-cumulative
- Study guide and practice test on Canvas
- Review Session during Finals' Week
 - Date and time TBD
 - recorded

Bonus Opportunities

Bonus Lab

- worth up to 1%
- lowest two labs still dropped

Bonus Homework

- worth up to 1%
- lowest two homework assignments still dropped
- bonus point for class when

OMETs response rate >= 80%

- Currently at 12%
- Deadline is Sunday 4/23

Previous Lecture

Dynamic Programming examples:

- Longest Common Subsequence
- Reinforcement Learning
- Maximum Flow Problem
 - Ford Fulkerson Framework

This Lecture

- Maximum Flow Problem: useful for general problem solving
 - Edmonds Karp
 - Push Relabel
 - An application of Maximum Flow
- Graph compression
- Local Search

Problem of the Day: Finding Bottlenecks

- send a large file from S to T over a computer network
 - as fast as possible
 - over multiple network paths if needed
- Input:
 - computer network
 - nodes and links
 - links labeled by link speed in Mbps
 - nodes A and B
- Output:
 - The maximum network speed possible

Worst-case Runtime for Ford-Fulkerson

Worst-case Runtime of Ford-Fulkerson

- O(f * (e+v))
 - f: value of maximum flow
 - e+v: time to find an augmenting path
- is that **polynomial** in the **input size**?
- No! f is exponential in bit length of f
- Runtime is O(2|f| * (e+v))

Edmonds Karp

- How the augmenting path is chosen affects the performance of the search for max flow
- Edmonds and Karp proposed a **shortest path**
 - **heuristic** for Ford Fulkerson
 - Use BFS to find augmenting paths

Edmonds Karp using BFS to find augmenting paths

Edmonds Karp

- Running time is O(e² v)
 - Proof: Proposition G in Chapter 6

But our flow graph is weighted...

Edmonds-Karp only uses BFS

- BFS finds spanning trees and shortest paths for unweighted graphs
- some weight-based measure of priority to find augmenting paths?

Maximum Capacity Path

- Proposed by Edmonds and Karp
- implemented by modifying Dijkstra's shortest paths algorithm
- Define flow[v] as the maximum amount of flow from s → v along a
 single path
- Each iteration, set curr as an unmarked vertex with the largest flow
- For each neighbor w of curr:
 - if min(flow[curr], residual capacity of edge (curr, w)) > flow[w]
 - update flow[w] and parent[w] to be curr

Flow edge implementation (Bonus Lab)

- For each **edge**, we need to store:
 - from vertex
 - o to vertex
 - edge capacity
 - edge flow
 - residual capacities
 - For **forwards** and **backwards** edges

FlowEdge.java

```
public class FlowEdge {
   private final int v;
                                    // from
   private final int w;
                                    // to
   private final double capacity; // capacity
   private double flow;
                                    // flow
      public double residualCapacityTo(int vertex) {
              (vertex == v) return flow;
      else if (vertex == w) return capacity - flow;
      else throw new
       IllegalArgumentException("Illegal endpoint");
```

BFS search for an augmenting path (pseudocode)

```
edgeTo = [v]
                                  Each FlowEdge object is stored
marked = [v]
                                  in the adjacency list twice:
Queue q
                                  Once for its forward edge
q.enqueue(s)
                                  Once for its backward edge
marked[s] = true
while !q.isEmpty():
   v = q.dequeue()
   for each edge in AdjList[v]:
       if residualCapacity(other end-point) > 0:
           if !marked[w]:
              edgeTo[w] = v;
              marked[w] = true;
              q.enqueue(w);
```

Push-Relabel Algorithm for Max Flow

- More efficient than Edmonds-Karp that uses BFS
 - Running time: Theta(v³) vs. Theta(e²v)
- Local per vertex operations instead of global updates
- Each vertex has a height and excess flow value

Push-Relabel Algorithm for Max Flow

push operation:

- Flow pushed from higher vertex to lower neighbor
 - height difference of 1 or more
 - over an edge with residual capacity > 0

relabel operation:

- If a vertex's excess flow > 0 and has no lower neighbor
 - relabel vertex's height to
 - 1 + min height of neighbors able to receive flow

Push-Relabel Algorithm for Max Flow

- push operation:
- relabel operation:
- Repeat relabel and push operations until
 - all vertices except source and sink have 0 excess flow

Push-Relabel Algorithm

- height = 0 and excess = 0 for all vertices
- excess[s] = sum of edge capacities out of s
- height[s] = v
- insert s into Q
- while Q not empty
 - v = pop head of queue
 - relabel v if needed
 - for each neighbor w of v:
 - push as much of v's excess flow to w
 - increase w's excess flow by the pushed amount
 - add w to Q if not already there

Push Relabel Example

Problem of the Day: Finding Bottlenecks

- send a large file from S to T over a computer network
 - as fast as possible
 - over multiple network paths if needed
- Input:
 - computer network
 - nodes and links
 - links labeled by link speed in Mbps
 - nodes A and B
- Output:
 - The maximum network speed possible

Follow-up Problem

- So, now we found the bottleneck value, but which edges define the found bottleneck?
 - Why would you want to know bottleneck edges?

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- An **st-cut** on G is a set of edges in G that, if removed, will partition the vertices of G into two disjoint sets
 - One contains s

- May be many st-cuts for a given graph
- Let's focus on finding a minimum st-cut
 - an st-cut with the smallest edge capacities
 - O May not be unique

How do we find a min st-cut?

- We could examine residual graphs
 - Specifically, try and allocate flow in the graph until we get to a residual graph with no augmenting paths
- The last iteration of Ford-Fulkerson visits every vertex reachable from s
 - Edges with only one endpoint reachable from S comprise a minimum st-cut

Determining the min cut

Max flow == Min cut

This is a special case of duality

- I.e., look at optimization problem from two angles
 - o e.g., find the maximum flow or minimum cut
 - The difference between solution values referred to as duality gap
 - If the duality gap = 0, **strong duality** holds
 - Max flow/min cut uphold strong duality
 - If the duality gap > 0, weak duality holds

Bipartite Graph: vertices decomposed into **two disjoint sets** such that no two vertices within the same set have an edge between them

Example: computing tasks and machines

- certain tasks can only run on certain machines
- Run as many tasks as possible

Bipartite matching: a set of edges such

that no two edges share an endpoint

Bipartite matching: a set of edges such

that no two edges share an endpoint

Maximum matching: the largest possible matching

Let's **reduce** the problem to Maximum Flow!

Solving Maximum Bipartite Matching using Maximum Flow

- Real-life graphs are huge
 - 100's if not 1000's of GBs
 - Facebook graph, Google graph, maps, ...
- Let's see one (partial) idea for reducing the size of large graphs

- Step 1: Construct a Compressed Sparse Row (CSR) representation of the graph
- CSR
 - O Edges array concatenates **sorted** neighbor lists of all vertices
 - O Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of vertex v

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates sorted neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates sorted neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates *sorted* neighbor lists of all vertices
- Offsets array:

0	2	5	7	10	13

- Let's start with one more graph representation
- Compressed Sparse Row (CSR)
- Edges array concatenates sorted neighbor lists of all vertices
- Offsets array:

offsets[v] is the starting index (in the Edges array) for the neighbors of

vertex v 11 13 **Edges** 3

0 2 5 7 10 13	0	2	5	7	10	13
---------------	---	---	---	---	----	----

- Can we compute the degree of a vertex using the offsets array?
 - O Running time?
- What is the required space of this representation?
 - \bigcirc Theta(v + e)
 - O Assume 4 bytes per vertex and per edge
 - \bigcirc Total size: 4*v + 8*e bytes

Edges

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	4	0	2	4	1	3	2	4	5	0	1	3	3

0	2	5	7	10	13

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

0 2 5 7 10 13

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

				4									
1	1	0	2	4	1	3	2	4	5	0	1	3	3
		U	_	_		J	_	_	.	U		J	J
1-0	4-1												

0 2 5 7 10 13	
---------------	--

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	4	0	2	4	1	3	2	4	5	0	1	3	3
1	3												

0 2 5 7 10 13	0	2	5	7	10	13
---------------	---	---	---	---	----	----

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

		0			 	 	 	 	
1	3	-1	2	2					

0 2 5 7 10 13	0	2	5	7	10	13
---------------	---	---	---	---	----	----

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

_			_		_	_	_	_	_	3	_	
1	3	-1	2	2	-1	2						

0 2 5 7 10 13

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

	0						
	-1						

0 2 5 7 10 13

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

												3	
1	3	-1	2	2	-1	2	-1	2	1	-4	1	2	

0 2 5 7 10 13	0	2	5	7	10	13
---------------	---	---	---	---	----	----

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

1													
1	3	-1	2	2	-1	2	-1	2	1	-4	1	2	-2

0 2 5 7 10 13	0	2	5	7	10	13
---------------	---	---	---	---	----	----

• Step 2: Difference coding

- \bigcirc For each vertex v_1 , with a neighbor list v_1 , v_2 , v_3 , ...
- O Store the differences between each two consecutive numbers

$$(v_1 - v), (v_2 - v_1), (v_3 - v_2), ...$$

Edges

		2											
1	3	-1	2	2	-1	2	-1	2	1	-4	1	2	-2

0	2	5	7	10	13

- Goal: make the differences small
 - between vertex labels in each neighbor list small
- For Web Graphs
 - O Each vertex is a web page
 - O Sort the pages based on **reverse URL** (e.g., edu.pitt.cs.www)
 - O Use sorted array indexes as vertex labels
 - Most links are local (within the same domain)
 - neighbors will be close to each other in the sorted list
 - Goal achieved!
- Other graphs can be relabeled to achieve that goal
 - https://www.cs.cmu.edu/~guyb/papers/BBK03.pdf

• Step 3: Use Gamma code to compress the differences

0 2 5 7 10 13

Gamma Code

- Gamma Code: compress data when
 - small values much more **frequent** than large values
- To encode an integer *x*,
 - T =largest power of 2 < x
 - Encode T as (log T) zeros followed by 1
 - Append the remaining (log T) bits of x T
- need 2*floor(log x) + 1 bits << 32 for small x

Gamma Code

• Example: Gamma encode 17: 10001

$$\circ$$
 T = 16 = 2⁴

o 1st part of Gamma code: 0000 1

$$\circ$$
 x - T = 17 - 16 = 0001

Gamma code: 00001 0001

Clustering Problem

- Input: a set of n data points and a target number of clusters, K
- Output: K clusters
 - K cluster centroids (central points)
 - A **label** from the set {1, .., K} for each of the n data points
 - Sum of squared distances from each point to centroid is minimum

Clustering Problem

- minimize **distance** defined as:
- for(int i=0; i<n; i++)
 distance += (data[i] centroid[cluster[i]]) ²

Useful but hard problem!

- unsupervised machine learning algorithms
- dimensionality reduction problems
- NP-hard!
 - no efficient solution has been known yet
 - we don't know yet if an efficient algorithm exists

Lloyd's Local Search Algorithm

Initialization:

- Start with an initial cluster assignment
- Compute initial cluster centroids

Repeat until no change in centroids and cluster assignments

- Assign each data point to the closest cluster centroid
- Recompute cluster centroids based on new assignment

Limitation of Lloyd's Algorithm

- Sensitive to initial clustering
- Fix: select initial centroids as far from each other as possible

K-Means ++ Algorithm for initial centroids

- Select first centroid with uniform probability over all data
- Repeat for each of the remaining K-1 initial centroids
 - For each data point
 - · Compute distance to nearest centroid
 - Select next centroid with probability that favors data points with larger distances