MAC 300 - Métodos numéricos de álgebra linear

Nome: Vítor Kei Taira Tamada

Nº USP: 8516250

Exercício Programa 1 – Resolução de sistemas de equações lineares

Parte 1 – sistemas definidos positivos

	DECOMPOSIÇÃO DE CHOLESKY						
Problema	ORIENTADA À LINHA			ORIENTADA À COLUNA			
	A = GG^T	Gy = b	$(G^T)x = y$	A = GG^T	Gy = b	$(G^T)x = y$	
1	0.000465	0.000023	0.00002	0.000534	0.000016	0.000034	
2	0.003592	0.000055	0.000097	0.003955	0.00006	0.00012	
3	0.008726	0.000082	0.000149	0.01323	0.000111	0.000307	
4	0.019551	0.000116	0.000249	0.021825	0.000137	0.000525	
5	0.026779	0.000167	0.00038	0.035383	0.000315	0.000827	
6	0.043995	0.000241	0.000536	0.061869	0.000514	0.001338	
7	0.063022	0.000322	0.000768	0.115575	0.000979	0.002524	

Apesar de a diferença não ser muito grande em alguns casos, é possível ver que a resolução do sistema Ax = b pela decomposição de Cholesky, quando orientada à coluna, é sempre maior do que quando orientada à linha. Isso ocorre pelo fato de o programa ter sido feito em C, linguagem que armazena as matrizes em linha. Ou seja, quando uma matriz é criada, digamos A, sendo A uma matriz 3x3 de números reais, essa matriz é armazenada na memória da seguinte forma pela linguagem:

[a00][a01][a02][a10][a11][a12][a20][a21][a22]

Se a matriz for percorrida por linhas, basta olhar para o espaço ao lado. Entretanto, se for percorrida por colunas, ou seja, vendo a00, a10 e então a20, o computador precisará pular vários espaços antes de encontrar o certo, o que consome mais tempo e memória.

Parte 2 – sistemas gerais

	DECOMPOSIÇÃO LU						
PROBLEMA	ORIENTAD)A À LINHA	ORIENTADA À COLUNA				
	PA = LU	LUx = Pb	PA = LU	LUx = Pb			
1	0.001011	0.00003	0.00119	0.000031			
2	0.007524	0.000111	0.009241	0.000121			
3	0.017501	0.000148	0.024715	0.000139			
4	0.031535	0.000204	0.065907	0.000308			
5	0.04837	0.000302	0.124678	0.00062			
6	0.08376	0.000454	0.421796	0.001322			
7	0.133926	0.000606	1.008825	0.002403			

Diferentemente da decomposição de Cholesky, a diferença do tempo levado para resolver o sistema entre a resolução quando orientada à linha e quando orientada à coluna é consideravelmente grande.

Além disso, percebe-se que a resolução por decomposição LU demora mais do que a de Cholesky. Isso ocorre porque a resolução por Cholesky é, aproximadamente, da ordem de $(n^3)/3$, enquanto a por LU é, aproximadamente, da ordem de $(2/3)*(n^3)$ quando desconsiderando o número de comparações para realizar o pivoteamente parcial (aproximadamente $(n^2)/2$, número pequeno o suficiente quando comparado ao da resolução sem pivoteamento).