Combinatorial Circuits

CS 350: Computer Organization & Assembler Language Programming

A. Why?

• Combinatorial logic circuits correspond to pure (state-free) calculations on booleans.

B. Outcomes

After this lecture, you should know

- Know what characterizes combinatorial logic circuits.
- Know some standard combinatorial logic circuits such as decoders and multiplexers (muxes), half- and full-adders, and programmable logic arrays.

C. Combinatorial Logic Circuits

- Combinatorial Logic Circuits correspond to pure calculations on boolean values (computations without an internal state).
 - Any circuit that corresponds to a propositional formula.
 - Built up from boolean inputs using boolean connectives (AND, OR, etc).
- Sequential Logic Circuits do have an internal state/memory that can affect the output and can change over time. (We'll see these later.)
- Examples of combinatorial circuits
 - Standard bitstring operations (AND, OR, etc).
 - Shift bitstring (e.g., 01101 to 11010 by left-shifting).
 - Add or subtract constant from bitstring.
 - Take 2's-complement negative of bitstring.
 - Add/subtract/multiply/divide/etc. two unsigned binary integers.
 - Convert 2's complement integer to/from floating-point.
 - Do arithmetic on floating-point values.

D. Four-Operation Calculator

- Let's look at designing a 4-operation calculator.
 - We'll have two data inputs X and Y and one operation selector S, a 2-bit string.
- To make things easier, let X and Y be one bit each.
 - The output Z is the AND, OR, XOR, or XNOR of X and Y.
- Which operation we do depends on S (S = 00 for AND, 01 for OR, 10 for XOR, and 11 for XNOR).
- For this example, let's write \land for AND, \lor for OR, \oplus for XOR, and \leftrightarrow for XNOR. Then

	S =	$00 \rightarrow$	Z =	$X \wedge$	Y
•	\cup	00 /	$_{L}$	∠1 /\	1

•
$$S = 01 \rightarrow Z = X \lor Y$$

•
$$S = 10 \rightarrow Z = X \oplus Y$$
, and

•
$$S = 11 \rightarrow Z = X \leftrightarrow Y$$
.

S	Z
00	$X \wedge Y$
01	$X \vee Y$
10	$X \oplus Y$
11	$X \leftrightarrow Y$

- Since $S = S_1 S_0$ (where juxtapositioning indicates a bitstring), we get
 - $Z = (\neg S_1 \land \neg S_0 \to X \land Y) \land (\neg S_1 \land S_0 \to X \lor Y) \land (S_1 \land \neg S_0 \to X \oplus Y) \land (S_1 \land S_0 \to (X \leftrightarrow Y))$
 - To implement this circuit, we can treat Z as a function of 4 variables, build up a 4-variable truth table, a 4-variable Karnaugh map, simplify the map, and get a minimal expression that calculates Z.
- Another way to calculate Z is to do all four calculations on X and Y in parallel but only select the one result we want. In the following circuit,
 - Each of the 4 "enable" lines E_0 , E_1 , E_2 , and E_3 correspond to a different value of S. The line "selected" by S will be 1; the other 3 will be 0.
 - $E_0 = \neg S_1 \land \neg S_0$; $E_1 = \neg S_1 \land S_0$; $E_2 = S_1 \land \neg S_0$; $E_3 = S_1 \land S_0$.
 - The values of the four calculations $X \wedge Y$, etc. are given the names C_0 , ..., C_3 .
 - $C_0 = X \wedge Y$; $C_1 = X \vee Y$; $C_2 = X \oplus Y$; $C_3 = X \leftrightarrow Y$.

- So $Z = (E_0 \wedge C_0) \vee ... \vee (E_3 \wedge C_3)$
 - If you want the expansion, it's $Z = ((\neg S_1 \land \neg S_0) \land (X \land Y)) \lor ((\neg S_1 \land S_0) \land (X \lor Y)) \lor ((S_1 \land \neg S_0) \land (X \oplus Y)) \lor ((S_1 \land S_0) \land (X \leftrightarrow Y)).$
 - Each disjunct has the form "Do we want calculation number S?"

 ANDed with the value of calculation number S. (Think of S as 0, 1, 2, or 3.)
- \bullet This organization for Z uses two standard kinds of combinatorial circuits.
 - The circuit that takes S and calculates E_0 , ..., E_3 is a **decoder**.
 - The circuit that takes S and C_0 , ..., C_3 and calculates Z is a multiplexer.

Four-op calculator: Inputs X and Y and operation selector $S = S_1 S_0$

E. A 2ⁿ-to-1 Multiplexer

- A **2**ⁿ-to-1 multiplexer (or "mux") is a standard combinatorial circuit that has two kinds of input (data and selector) and one (data) output line. Exactly one input line gets connected to the output; which line that is depends on the selector.
- Let $N = 2^n$, then we have N data inputs (call them $X_0, ..., X_{N-1}$) and an n-bit selector input string S. The output $Y = X_S$ if we view S as an n-bit unsigned integer ≥ 0 and < N. The values of the other X_i are ignored.

Circuit for 4-to-1 Multiplexer

Symbol for 4-to-1 Multiplexer

F. n-bit Decoder

• An n-bit decoder (also known as a demultiplexer or "demux") is a standard combinatorial circuit that takes an n-bit input (the selector) and has 2^n outputs, exactly one of which will be 1; the others will be 0.

A 2-bit decoder

• If the input is S and the outputs are E_0 , ..., E_{N-1} where $N = 2^n$, then the output $E_S = 1$ (where S is viewed as an unsigned n-bit integer ≥ 0 and < N)

and the other $E_i = 0$. E.g., for the 4-operator calculator example, we used a 2-bit decoder; the output line that was 1 specified the calculation we wanted.

G. Half Adders and Full Adders

- If we try to solve the general case of adding two *n*-bit unsigned integers without approaching the problem modularly, it's very complicated.
 - For each k, bit k of the result depends on the k-1 bits to its right. (Recall that bits are numbered right to left.)
- The modular approach mimics how we add numbers on paper: For each column, we add the two bits in that column plus a possible carry-in bit from the previous column. The result is the bit for this column plus a carry-out bit from this column.
- A full adder does the addition for one column:
 For column i, the 2-bit sequence C_{i+1} S_i = A_i + B_i + C_i where A_i and B_i are the two bits being added, S_i is the sum bit, and C_i and C_{i+1} are the carry-in and carry-out bits

Addition of one column

- A half-adder doesn't have a carry-in bit but produces a sum and carry-out. (It acts like a full-adder with a carry-in of zero.)
- To add n bits, we use n-1 full adders and one half adder (for the rightmost column) and connect the carry out of each column to be the carry in of the next column.

Fig 3.15: Full Adder

Combinatorial Circuits

CS 350: Computer Organization & Assembler Language Programming

A. Why?

• Combinatorial logic circuits correspond to pure (state-free) calculations on booleans.

B. Outcomes

After this activity, you should be able to:

• Implement some standard combinatorial logic circuits

C. Questions

- 1. A half subtractor implements one column of a subtraction, assuming there was no borrow out to the column to its right. We have inputs X_i and Y_i and outputs D_i and B_{i+1} ; the borrow-in bit B_{i+1} and difference D_i is the result of subtracting $X_i Y_i$. (Hint: we only borrow to calculate 0 1.) Create a truth table for this operation with and give a full DNF representation for both D_i and B_{i+1} .
- 2. A 4-to-2 multiplexer takes 4 bits of data input X[0:3] and uses 1 bit of selector input S to produce 2 bits of output Y[0:1]. If S = 0, then $Y_0 = X_{00}$ and $Y_1 = X_{01}$; if S = 1, then $Y_0 = X_{10}$ and $Y_1 = X_{11}$. Implement a 4-to-2 multiplexer using two 2-to-1 multiplexers.
- 3. Let X[0:2] be a 3-bit unsigned number and let Y[0:2] be the 3-bit result you get by incrementing X by 1, with variable W=1 if overflow has occurred. (E.g. if X=011 then W=0 and Y=100.) Write equations for outputs Y_2 , Y_1 , Y_0 , and W from inputs X_2 , X_1 , and X_0 ; use logic gates to design a circuit for W, Y_2 , Y_1 , and Y_0 .

Solution

1. (Half subtractor $X_i - Y_i = D_i$ with borrow-in B_{i+1}). We get $D_i = \overline{X}_i \ Y_i + X_i \ \overline{Y}_i$ and $B_{i+1} = \overline{X}_i \ Y_i$.

X_{i}	Y_{i}	$oldsymbol{D}_{i}$	B_{i+1}	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

- 2. (Implement a 4-to-2 multiplexer with two 2-to-1 multiplexers): With one multiplexer, use S to select between X_{00} and X_{10} with output Y_0 ; with the other, use use S to select between X_{01} and X_{11} with output Y_1 .
- 3. (Increment a 3-bit unsigned number X[0:2] to get Y[0:2] and overflow W.) $W = X_2 X_1 X_0$, $Y_0 = \overline{X}_0$, $Y_1 = X_1 \overline{X}_0 + \overline{X}_1 X_0$, and $Y_2 = X_2 \overline{X}_1 + X_2 \overline{X}_0 + \overline{X}_2 X_1 X_0$.

X_2	X_1	X_0	$oldsymbol{W}$	Y_2	Y_1	Y_0
0	0	0	0	0	0	1
0	0	1	0	0	1	0
0	1	0	0	0	1	1
0	1	1	0	1	0	0
1	0	0	0	1	0	1
1	0	1	0	1	1	0
1	1	0	0	1	1	1
1	1	1	1	0	0	0