

PES UNIVERSITY

100 feet Ring Road, BSK 3rd Stage

Bengaluru 560085

Department of Computer Science and Engineering

Department of Computer Science and Engineering

B. Tech. CSE - 6th Semester

Jan - May 2025

UE22CS342BA5 BLOCKCHAIN

PROJECT REPORT

on

Blockchain based social media Dapp

PATHIPATI KRISHNA REVANTH - PES1UG22CS409

PAVAN CHANDU C S - PES1UG22CS410

PRAGNAN M U - PES1UG22CS421

K R ADITHYA - PES2UG22CS244

Blockchain-Based Social Media DApp

Abstract

In the fast-changing world of decentralized technologies, this project introduces a censorship-free decentralized social media platform built as a Decentralized Application (DApp). The project uses blockchain to establish a secure, transparent, and tamper-proof system where users can share content, like, and comment without centralized authority. Smart contracts in Solidity and MetaMask integration offer a trustless and user-managed environment.

1. Introduction

Decentralized social media platforms tend to be criticized on the basis of censorship, data leaks, and control over content. Decentralized applications (DApps) provide a better alternative by utilizing blockchain to decentralize control. This project plans to create a social media DApp that maintains transparency, user control, and censorship resistance through storing interactions onchain.

2. Existing System

Existing platforms like Facebook, Twitter, and Instagram are governed by central authorities, which exposes them to moderation bias, algorithmic manipulation, and single-point failures. While there are some Web3 social media initiatives, they tend to be limited in features or hard to use for non-technical users

3. Proposed System

This DApp provides a decentralized platform where users can:

- Create posts with text and media
- Like posts without duplicate likes
- Add comments on posts
- View posts and associated comments
- Interact directly with the Ethereum testnet (sepolia) blockchain via MetaMask

This is achieved through the use of smart contracts that maintain state immutably and verifiably on the blockchain.

4. System Architecture

The architecture consists of:-

- Frontend: Developed with React.js and styled with Tailwind CSS.
- Blockchain: Smart contracts on the Ethereum testnet.
- Wallet Integration: MetaMask is employed for signing and authentication of transactions.
- Deployment : Remix IDE

5. Implementation Details

The core logic resides in the Solidity smart contract SocialMedia.sol:

- **Post Creation:** Users invoke createPost() to publish content.
- Like Mechanism: likePost() ensures one like per user per post.
- Commenting System: addComment() stores comments per post, tracked by a mapping.
- **Events:** Emitted for post creation, liking, and commenting to notify the frontend.

The frontend interacts with the smart contract using ethers.js, and MetaMask handles wallet connections and transaction confirmations.

6. Technologies Used

Solidity: For writing the smart contract

• React.js: For building the user interface

Tailwind CSS: For responsive design

• **Ethers.js:** Blockchain interaction

- MetaMask: Wallet integration
- · Remix IDE: For deploying

7. Screenshots

Posting comments

Liking the post made by user

Posting images

8. Results

The application successfully demonstrates the viability of decentralized social networking:

- Effortless post and comment posting
- On-chain verification of likes
- Wallet integration controlled by the user
- Frontend updates in real-time through contract events

9. Advantages and Limitations

Advantages:

- Censorship-resistant
- User ownership and privacy
- Transparent and verifiable interactions

Limitations:

- Scalability concerns on public blockchains
- Gas fees may hinder frequent interactions
- UI may need enhancements for wider adoption

10. Conclusion and Future Scope

This project demonstrates the viability of a decentralized social media platform based on Ethereum and smart contracts. Future improvements may involve decentralized storage (e.g., IPFS), NFT-based content, and cross-chain compatibility

References

- 1. Ethereum Documentation: https://ethereum.org/en/developers/
- 2. MetaMask Documentation: https://docs.metamask.io/
- 3. Solidity Language Docs: https://docs.soliditylang.org/
- 4. Ethers.js: https://docs.ethers.org/
- 5. https://cloud.google.com/application/web3/faucet/ethereum/sepolia