Neural Network Comparison Report: From-Scratch vs PyTorch

Performance Metrics

METRIC	NumPy Only	PyTorch
Accuracy	0.2007	0.2112
F1 Score	0.33432543420110766	0.3311
PR_AUC	0.2193	0.2453

Confusion Metrics

NumPy Only

PyTorch Only

Convergence Time

Metric	NumPy Only	PyTorch
Training Time	457.66857647895813	91.46415042877197
Convergence Epoch	400	300

- The PyTorch model converged faster due to backend optimizations like GPU acceleration, efficient memory allocation, and automatic differentiation.
- The from-scratch model has manual forward/backward implementations, which lack hardware and computation optimizations, leading to slower convergence.

Performance Metrics

As shown in the metrics table above:

- **PyTorch typically outperformed** the from-scratch model slightly due to:
 - Better initialization

- Stable gradient calculations
- Use of highly-optimized loss functions (e.g., CrossEntropyLoss)

From-scratch performance depends on correct gradient calculations and numerical stability, which are easier to mess up.

Memory Usage

- In NumPy Model the memory usage is large due to every thing being stored in arrays
- PyTorch uses more memory than NumPy but it provides better performance

Analysis and Discussion

Due to the unoptimized dataset the model performs poorly.