# TEAM: NIPER

# Project 1 - DSP48A1

Nouran Hamdy Mohamed Abdelrahman Mostafa Shawky Mady Nardeen Hishmat Ageeb



### RTL code

```
module buffer(clk, D, Q);
    parameter WIDTH = 1;
    input clk;
    input [WIDTH-1:0] D;
    output reg [WIDTH-1:0] Q;

always @(posedge clk) begin
    Q <= D;
    end
endmodule</pre>
```

```
module reg_Sync(clk, rst, CE, D, Q);
  parameter WIDTH = 1;
  input clk, rst, CE;
  input [WIDTH-1:0] D;
  output reg [WIDTH-1:0] Q;

always @(posedge clk) begin
    if(rst) Q <= 0;
    else if(CE) Q <= D;
  end
endmodule</pre>
```

```
module reg_Async(clk, rst, CE, D, Q);
    parameter WIDTH = 1;
    input clk, rst, CE;
    input [WIDTH-1:0] D;
    output reg [WIDTH-1:0] Q;

always @(posedge clk or posedge rst) begin
        if(rst) Q <= 0;
        else if(CE) Q <= D;
    end
endmodule</pre>
```

```
module DSP48A1(CLK, CARRYIN, RSTA, RSTB, RSTM, RSTP, RSTC, RSTD, RSTCARRYIN, RSTOPMODE
                , CEA, CEB, CEM, CEP, CEC, CED, CECARRYIN, CEOPMODE
                , A, B, BCIN, D, C, PCIN, OPMODE, BCOUT, PCOUT, P, M, CARRYOUT, CARRYOUTF);
    parameter AOREG = 0;
   parameter A1REG = 1;
    parameter BOREG = 0;
    parameter B1REG = 1;
    parameter CREG = 1;
   parameter DREG = 1;
   parameter MREG = 1;
   parameter PREG = 1;
   parameter CARRYINREG = 1;
    parameter CARRYOUTREG = 1;
    parameter OPMODEREG = 1;
   parameter CARRYINSEL = "OPMODE5";
   parameter B_INPUT = "DIRECT";
    parameter RSTTYPE = "SYNC";
    input CLK, CARRYIN;
    input RSTA, RSTB, RSTM, RSTP, RSTC, RSTD, RSTCARRYIN, RSTOPMODE;
    input CEA, CEB, CEM, CEP, CEC, CED, CECARRYIN, CEOPMODE;
    input [17:0] A, B, BCIN, D;
    input [47:0] C, PCIN;
    input [7:0] OPMODE;
    output [17:0] BCOUT;
   output [47:0] PCOUT;
    output [47:0] P;
    output [35:0] M;
    output CARRYOUT;
   output CARRYOUTF;
   reg [17:0] B0reg_in, pre_out, B1reg_in;
   wire [17:0] Dreg_out, B0reg_out, A0reg_out, B1reg_out, A1reg_out, Dmux_out, B0mux_out, A0mux_out, B1mux_out, A1mux_out;
   wire [35:0] mult_out, Mreg_out, Mmux_out;
   reg [47:0] X_out, Z_out, post_out;
   wire [47:0] Creg_out, Cmux_out, Preg_out;
   wire [7:0] OPMODEreg_out, OPMODE_out;
   reg carrycsc_out, post_carryout;
   wire CYI_out, CIN, CYO_out;
   wire [47:0] D_A_B;
    generate
        if(RSTTYPE == "SYNC") begin
            reg_Sync #(8) OPMODEreg_sync(CLK, RSTOPMODE, CEOPMODE, OPMODE, OPMODEreg_out);
            reg_Sync #(18) Dreg_sync(CLK, RSTD, CED, D, Dreg_out);
            reg_Sync #(18) B0reg_sync(CLK, RSTB, CEB, B0reg_in, B0reg_out);
            reg_Sync #(18) A0reg_sync(CLK, RSTA, CEA, A, A0reg_out);
            reg_Sync #(48) Creg_sync(CLK, RSTC, CEC, C, Creg_out);
            reg_Sync #(18) B1reg_sync(CLK, RSTB, CEB, B1reg_in, B1reg_out);
            reg_Sync #(18) A1reg_sync(CLK, RSTA, CEA, A0mux_out, A1reg_out);
            reg Sync #(36) Mreg sync(CLK, RSTM, CEM, mult out, Mreg out);
            reg_Sync #(1) CARRYINreg_sync(CLK, RSTCARRYIN, CECARRYIN, carrycsc_out, CYI_out);
            reg_Sync #(1) CARRYOUTreg_sync(CLK, RSTCARRYIN, CECARRYIN, post_carryout, CYO_out);
            reg_Sync #(48) Preg_sync(CLK, RSTP, CEP, post_out, Preg_out);
        end
        else if(RSTTYPE == "ASYNC") begin
            reg_Async #(8) OPMODEreg_async(CLK, RSTOPMODE, CEOPMODE, OPMODE, OPMODEreg_out);
            reg_Async #(18) Dreg_async(CLK, RSTD, CED, D, Dreg_out);
            reg_Async #(18) B0reg_async(CLK, RSTB, CEB, B0reg_in, B0reg_out);
            reg_Async #(18) A0reg_async(CLK, RSTA, CEA, A, A0reg_out);
            reg_Async #(48) Creg_async(CLK, RSTC, CEC, C, Creg_out);
            reg_Async #(18) B1reg_async(CLK, RSTB, CEB, B1reg_in, B1reg_out);
            reg_Async #(18) A1reg_async(CLK, RSTA, CEA, A0mux_out, A1reg_out);
            reg_Async #(36) Mreg_async(CLK, RSTM, CEM, mult_out, Mreg_out);
            reg_Async #(1) CARRYINreg_async(CLK, RSTCARRYIN, CECARRYIN, carrycsc_out, CYI_out);
            reg_Async #(1) CARRYOUTreg_async(CLK, RSTCARRYIN, CECARRYIN, post_carryout, CYO_out);
            reg_Async #(48) Preg_async(CLK, RSTP, CEP, post_out, Preg_out);
        end
    endgenerate
    //Internal Signals
    assign OPMODE_out = (OPMODEREG) ? OPMODEreg_out : OPMODE;
```

```
assign Dmux_out = (DREG) ? Dreg_out : D;
assign B0mux_out = (B0REG) ? B0reg_out : B0reg_in;
assign A0mux_out = (A0REG) ? A0reg_out : A;
assign Cmux_out = (CREG) ? Creg_out : C;
assign B1mux_out = (B1REG) ? B1reg_out : B1reg_in;
assign A1mux_out = (A1REG) ? A1reg_out : A0mux_out;
assign Mmux out = (MREG) ? Mreg out : mult out;
assign CIN = (CARRYINREG) ? CYI_out : carrycsc_out;
assign D_A_B = \{Dmux_out[11:0], Almux_out[17:0], Blmux_out[17:0]\};
assign mult_out = B1mux_out * A1mux_out;
//Outputs
assign BCOUT = B1mux_out;
buffer #(36) M_out(CLK, Mmux_out, M);
assign CARRYOUT = (CARRYINREG) ? CYO_out : post_carryout;
assign CARRYOUTF = CARRYOUT;
assign P = (PREG) ? Preg_out : post_out;
assign PCOUT = P;
always @(*) begin
    //B_input
    if(B_INPUT == "DIRECT") B0reg_in = B;
    else if(B_INPUT == "CASCADE") B0reg_in = BCIN;
   else B0reg_in = 0;
   //Pre-Adder/Subtracter
   if(OPMODE_out[6]) pre_out = Dmux_out - B0mux_out;
   else pre_out = Dmux_out + B0mux_out;
   //B1_REG_input
   if(OPMODE_out[4]) B1reg_in = pre_out;
   else B1reg_in = B0mux_out;
    //Carry_Cascade
    if(CARRYINSEL == "OPMODE5") carrycsc_out = OPMODE_out[5];
   else if(CARRYINSEL == "CARRYIN") carrycsc_out = CARRYIN;
   else carrycsc_out = 0;
   //X_Multiplexer
   case(OPMODE_out[1:0])
    2'b00: X_out = 0;
   2'b01: X_out = {{12{Mmux_out[35]}}}, Mmux_out};
   2'b10: X out = P;
   2'b11: X_out = D_A_B;
   endcase
   //Z_Multiplexer
   case(OPMODE_out[3:2])
   2'b00: Z_out = 0;
   2'b01: Z_out = PCIN;
   2'b10: Z_out = P;
   2'b11: Z_out = Cmux_out;
   endcase
   //Post-Adder/Subtracter
   if(OPMODE_out[7]) {post_carryout, post_out} = Z_out - (X_out + CIN);
   else {post_carryout, post_out} = Z_out + X_out + CIN;
end
```

endmodule

#### **TestBench**

```
// dsp test bench ,
module dsp_tb (); // default parameters
    parameter AOREG = 0;
  parameter A1REG = 1;
  parameter B0REG = 0;
  parameter B1REG = 1;
  parameter CREG = 1;
  parameter DREG = 1;
  parameter MREG = 1;
  parameter PREG = 1;
  parameter CARRYINREG = 1;
  parameter CARRYOUTREG = 1;
  parameter OPMODEREG = 1;
  parameter CARRYINSEL = "OPMODE5";
  parameter B_INPUT = "DIRECT";
  parameter RSTTYPE = "SYNC";
  reg CLK, CARRYIN;
  reg RSTA, RSTB, RSTM, RSTP, RSTC, RSTD, RSTCARRYIN, RSTOPMODE;
  reg CEA, CEB, CEM, CEP, CEC, CED, CECARRYIN, CEOPMODE;
  reg [17:0] A, B, BCIN, D;
  reg [47:0] C, PCIN;
  reg [7:0] OPMODE;
  wire[17:0] BCOUT;
  wire [47:0] PCOUT;
  wire [47:0] P;
  wire [35:0] M;
  wire CARRYOUT;
  wire CARRYOUTF;
  reg [17:0] ex BCOUT;
  reg [47:0] ex_P;
  reg [35:0] ex_M;
  reg ex_CARRYOUT;
  // temporary wires
  reg [17:0] t_pre;
  reg [47:0] t_post;
  reg [35:0] t_multi;
  reg [47:0] t multi ext;
DSP48A1 dut (CLK, CARRYIN, RSTA, RSTB, RSTM, RSTP, RSTC, RSTD, RSTCARRYIN, RSTOPMODE
        , CEA, CEB, CEM, CEP, CEC, CED, CECARRYIN, CEOPMODE
        , A, B, BCIN, D, C, PCIN, OPMODE, BCOUT, PCOUT, P, M, CARRYOUT, CARRYOUTF);
initial begin
CLK=0;
forever
#1 CLK=~CLK;
end
integer i;
```

```
initial begin
// reset inputs
 RSTA=1;
 RSTB=1;
  RSTM=1;
  RSTP=1;
  RSTC=1;
  RSTD=1;
  RSTCARRYIN=1;
  RSTOPMODE=1;
// control enable inputs
 CEA=1;
  CEB=1;
  CEM=1;
  CEP=1;
  CEC=1;
  CED=1;
  CECARRYIN=1;
  CEOPMODE=1;
// data inputs
 CARRYIN=1'b0;
  A=18'b0;
  B=18'b0;
 D=18'b0;
  C=48'b0;
  BCIN=18'b0;
  PCIN=48'b0;
// opmode
  OPMODE=8'b0000 00 00;
  #30;
  // unreset inputs
  RSTA=0;
  RSTB=0;
  RSTM=0;
  RSTP=0;
  RSTC=0;
  RSTD=0;
  RSTCARRYIN=0;
  RSTOPMODE=0;
  #10;
//8'b post-add_pre-add_carry-cascade_B1-REG-input_Z-Multiplexer_X-Multiplexer;
/////// first mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b0001 11 01; // post-addition,per-addition,zero-carry,use-pre-add,use-c,use-multi
// data inputs
CARRYIN=1'b1;
  A=$random;
  B=$random;
  D=$random;
  C=$random;
  BCIN=$random;
 PCIN=$random;
// getting expected output
t_pre = D+B;
t_multi = t_pre*A;
t_multi_ext={{12{t_multi[35]}},t_multi};
{ex_CARRYOUT,t_post} = C+(OPMODE[5]+t_multi_ext);
ex P=t post;
ex_M=t_multi_ext;
```

```
ex BCOUT=t pre;
#20;
// Comparison
if(BCOUT!=ex_BCOUT)begin
$display("error BCOUT");
$stop;
end
if(P!=ex_P)begin
$display("error P");
$stop;
end
if(M!=ex M)begin
$display("error M");
$stop;
end
if(CARRYOUT!=ex_CARRYOUT)begin
$display("error CARRYOUT");
$stop;
end
end
/////// second mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b1111_11_01; // post-subtraction,per-subtraction,zero-carry,use-pre-add,use-c,use-multi
// data inputs
CARRYIN=1'b1;
  A=$random;
  B=$random;
  D=$random;
  C=$random;
  BCIN=$random;
  PCIN=$random;
// getting expected output
t_pre = D-B;
t_multi = t_pre*A;
t_multi_ext={{12{t_multi[35]}}},t_multi};
{ex CARRYOUT, t post} = C-(OPMODE[5]+t multi ext);
ex_P=t_post;
ex M=t multi ext;
ex_BCOUT=t_pre;
#20:
// Comparison
if(BCOUT!=ex BCOUT)begin
$display("error BCOUT");
$stop;
end
if(P!=ex P)begin
$display("error P");
$stop;
end
if(M!=ex_M)begin
$display("error M");
$stop;
end
if(CARRYOUT!=ex_CARRYOUT)begin
$display("error CARRYOUT");
$stop;
end
```

```
/////// third mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b0001_01_00;
// data inputs
CARRYIN=1'b1;
 A=$random;
 B=$random;
 D=$random;
  C=$random;
  BCIN=$random;
  PCIN=$random;
// getting expected output
t_pre = D+B;
t_multi = t_pre*A;
t_multi_ext={{12{t_multi[35]}},t_multi};
{ex CARRYOUT, t post} = PCIN+0;
ex P=PCIN;
ex_M=t_multi_ext;
ex_BCOUT=t_pre;
#20;
// Comparison
if(BCOUT!=ex_BCOUT)begin
$display("error BCOUT");
$stop;
end
if(P!=ex_P)begin
$display("error P");
$stop;
end
if(M!=ex M)begin
$display("error M");
$stop;
end
if(CARRYOUT!=ex_CARRYOUT)begin
$display("error CARRYOUT");
$stop;
end
end
/////// fourth mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b0000_00_01;
// data inputs
CARRYIN=1'b1;
 A=$random;
  B=$random;
  D=$random;
  C=$random;
  BCIN=$random;
 PCIN=$random;
// getting expected output
t_multi = B*A;
t_multi_ext={{12{t_multi[35]}}},t_multi};
{ex_CARRYOUT,t_post} = t_multi_ext+0;
```

```
ex_P=t_post;
ex M=t multi ext;
ex BCOUT=B;
#20;
// Comparison
if(BCOUT!=ex_BCOUT)begin
$display("error BCOUT");
$stop;
end
if(P!=ex P)begin
$display("error P");
$stop;
end
if(M!=ex_M)begin
$display("error M");
$stop;
end
if(CARRYOUT!=ex_CARRYOUT)begin
$display("error CARRYOUT");
$stop;
end
end
/////// fifth mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b0000_10_11;
// data inputs
CARRYIN=1'b1;
 A=$random;
 B=$random;
 D=$random;
  C=$random;
 BCIN=$random;
  PCIN=$random;
#20;
end
/////// sixth mode
for(i=0;i<10;i=i+1)begin
OPMODE = 8'b0001_11_10;
CARRYIN=1'b1;
  A=$random;
  B=$random;
 D=$random;
 C=$random;
 BCIN=$random;
  PCIN=$random;
#20;
end
```

#2 \$stop;
end
endmodule

### Do file

```
do - Notepad
                                                  X
File Edit Format View Help
vlib work
vlog buffer.v dsp_tb.v DSP48A1.v reg_Async.v
vsim -voptargs=+acc work.dsp tb
add wave *
run -all
```

## **Questa Sim snippets**



The correct output is after 4 clk cycles. (depending on parameters and op mode )

| Wave - Default =====   | (ασρί            | ending on parar | 11101010     |        | יייי קל |              |
|------------------------|------------------|-----------------|--------------|--------|---------|--------------|
| ©i+                    | Msgs             |                 |              |        |         |              |
| ◆ CLK                  | 1'h1             |                 |              |        |         |              |
| <b>□</b> ♦ inputs      |                  | (inputs)        |              |        |         |              |
| <b>±</b> - <b>∜</b> A  | 18'h13524        | 00000           | 13524        |        |         |              |
| <b>∓</b> -♦ B          | 18'h15e81        | 00000           | 15e81        |        |         |              |
|                        | 18'h17b0d        | 00000           | 17b0d        |        |         |              |
| <b>±-</b> ❖ D          | 18'h0d609        | 00000           | 0d609        |        |         |              |
| <b>±-</b> - <b>∜</b> C | 48'hffffb1f05663 | 00000000000     | ffffb1f05    | 5663   |         |              |
| ±-∜ PCIN               | 48'h000046df998d | 00000000000     | 0000460      | df998d |         |              |
| <b>±</b> → OPMODE      | 8'h1d            | 00              | 1d           |        |         |              |
| <b>≔</b> → ouputs      |                  | (ouputs)        |              |        |         |              |
| <b>₽</b> -∜ PCOUT      | 48'h00025baa4bcb | 00000000000     |              | fff    | 0       | 00025baa4bcb |
| <b>E</b> -❖ P          | 48'h00025baa4bcb | 00000000000     |              | ∦fff   | \0      | 00025baa4bcb |
| ±- <b>∜</b> ex_P       | 48'h00025baa4bcb |                 | 00025baa4bcb |        |         |              |
| ±- <b>∜</b> M          | 36'h2a9b9f568    | 000000000       |              |        | 1       | 2a9b9f568    |
| <b>±-</b> - ex_M       | 36'h2a9b9f568    |                 | 2a9b9f5      | 568    |         |              |
| ı <b>÷-∜</b> BCOUT     | 18'h2348a        | 00000           | X1           | 2348   | a       |              |
| ±-∜ ex_BCOUT           | 18'h2348a        |                 | 2348a        |        |         |              |
| - <b>∜</b> CARRYOUT    | 1'h1             |                 |              |        |         |              |
| └                      | 1'h1             |                 |              |        |         |              |
| CARRYOUTF              | 1'h1             |                 |              |        |         |              |



OPMODE  $1 = 8'b0001_11_01$ ;

OPMODE[1:0] >> X input: multiplier

OPMODE[3:2] >> Z input: C port

OPMODE[4] >> use pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder



OPMODE 2 = 8'b1111 11 01;

OPMODE[1:0] >> X input: multiplier

OPMODE[3:2] >> Z input: C port

OPMODE[4] >> use pre-adder or pre-subtracter

OPMODE[5] >> force carry = 1

OPMODE[6] >> specifies pre-subtractor

OPMODE[7] >> specifies post-subtractor

| Wave - Default =====  |                  |                            |                                         |                |                                   |         |
|-----------------------|------------------|----------------------------|-----------------------------------------|----------------|-----------------------------------|---------|
| <b>€</b> 1-           | Msgs             |                            |                                         |                |                                   |         |
| ♦ CLK                 | 1'h0             | Telephotological plate     | التوالولاولاولاولاوالوا                 |                | ولاولا ولاولا والملام لأمام المام | ARTINET |
| □                     |                  | (inputs)                   |                                         |                |                                   |         |
| <b>⊕</b> - <b>∜</b> A | 18'h3c129        | (3c129                     | 11979                                   | 1addc          | 17667                             | 0.      |
|                       | 18'h2e2ed        | 2e2ed                      | 1ff44                                   | 2bc9a          | 1340a                             | 2       |
| ₽-∜ BCIN              | 18'h2e2b5        | 2e2b5                      | , 2adab                                 | 2ed56          | 18779                             | 3.      |
| <b>#</b> -∜ D         | 18'h36cda        | 36cda                      | 00cd0                                   | 372fd          | 3b9b6                             | 3.      |
| <b>±</b> - <b>∜</b> C | 48'hffffb29fb665 | ffffb29fb665               | 000015090b2a                            | ffffe1f102c3   | ffff9c0e8a38                      | \fff    |
|                       | 48'hffffefbe94df | ffffefbe94df               | 0000076fcf0e                            | 00002779e94e   | ffffdc2bc4b8                      | ļfff    |
| ±-∜ OPMODE            | 8'h14            | 14                         |                                         |                |                                   |         |
| □                     |                  | ( ouputs )                 |                                         |                |                                   |         |
| → PCOUT               | 48'hffffefbe94df | fffe9 \ fff \ ffffefbe94df | (0000076fcf0e                           | 00002779e94e   | ∬ffffdc2bc4b8                     |         |
| <b>⊕</b> ❖ P          | 48'hffffefbe94df | fffe9 \ fff \ ffffefbe94df | ∬0000076fcf0e                           | √00002779e94e  | √ffffdc2bc4b8                     |         |
| ⊕ → ex_P              | 48'hffffefbe94df | ffffefbe94df               | 0000076fcf0e                            | 00002779e94e   | ffffdc2bc4b8                      | ff      |
| <b>⊕</b> ❖ M          | 36'h8add8cddf    | 15452746d 7 8add8cddf      | 1 \24039a974                            | 4 \ 3aba0f0c4  | (0f ) 15bb62840                   |         |
| → ex_M                | 36'h8add8cddf    | 8add8cddf                  | 24039a974                               | 3aba0f0c4      | 15bb62840                         |         |
| ⊕ ◆ BCOUT             | 18'h24fc7        | \(\)2\(\)24fc7             | \(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\ | \\\\2\\\\22f97 | \(\(\)(0\(\)(0edc0                |         |
| ⊕ ♦ ex_BCOUT          | 18'h24fc7        | 24fc7                      | 20c14                                   | 22f97          | 0edc0                             |         |
| → CARRYOUT            | 1'h0             |                            |                                         |                |                                   |         |
| → ex_CARRYOUT         | 1'h0             |                            |                                         |                |                                   |         |
| CARRYOUTF             | 1'h0             |                            |                                         |                |                                   |         |

OPMODE  $3 = 8'b0001_01_00;$ 

OPMODE[1:0] >> X input: Zeros

OPMODE[3:2] >> Z input: use PCIN

OPMODE[4] >> use pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder

| Wave - Default ===== | Msgs             | i i i i i i i i i i i i i i i i i i i |              |              |              |              |              |              | _      |
|----------------------|------------------|---------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------|
| <b>♦</b> CLK         | 1'h0             |                                       |              |              |              |              |              |              |        |
| inputs               |                  | (inputs)                              |              |              |              |              |              | 2            |        |
| * A                  |                  | (205d5                                | 19f26        |              | 29b7e        |              | 00917        |              | 2.     |
| <b>⊕</b> → B         |                  | (0f61a                                | 21ab6        |              | 180db        |              | 178a1        |              | 1      |
| ₱- <b>分</b> BCIN     | 18'h33796        | (33796                                | 15786        |              | 0e4fa        |              | 059f5        |              | 2      |
|                      | 18'h000b9        | (000b9                                | 1837d        |              | 3b6cf        |              | 39186        |              | 1      |
| <b>∳-∜</b> C         | 48'h00001b876137 | (00001b876137                         | 00006e5f0fdc |              | 00003ced2b79 | '9           | ffffa8639650 |              | , fff. |
| ₱- <b>分</b> PCIN     | 48'h0000603921c0 | (0000603921c0                         | 00003c03ff78 |              | ffffb0bcee61 |              | ffff9ab48835 |              | , fff. |
| ■- <b>*</b> OPMODE   | 8'h01            | (01                                   |              |              |              |              |              |              |        |
|                      |                  | ( ouputs )                            |              |              |              |              |              |              |        |
| → PCOUT              | 48'h0001f1cf45a2 |                                       |              | 0003699d0104 |              | 0003eb7804ca |              | 00000d5f7f77 |        |
| <b>⊕</b> ♦ P         | 48'h0001f1cf45a2 | (0 (0 (0 (0001f1cf45a2                |              | 0003699d0104 |              | 0003eb7804ca |              | 00000d5f7f77 |        |
|                      | 48'h0001f1cf45a2 | (0001f1cf45a2                         | 0003699d0104 |              | 0003eb7804ca | ia .         | 00000d5f7f77 |              | 0      |
| <b>⊕</b> ❖ M         | 36'h1f1cf45a2    | 763ee1f72                             |              | 3699d0104    |              | 3eb7804ca    |              | 00d5f7f77    |        |
|                      | 36'h1f1cf45a2    | 1f1cf45a2                             | 3699d0104    |              | 3eb7804ca    |              | 00d5f7f77    |              | 3      |
| ⊕ ◆ BCOUT            | 18'h0f61a        | (1f (0f61a                            | 21ab6        |              | \180db       |              | 178a1        |              | ),     |
| ⊕ ◆ ex_BCOUT         | 18'h0f61a        | (0f61a                                | 21ab6        |              | 180db        |              | 178a1        |              | 1      |
| ◆ CARRYOUT           | 1'h0             |                                       |              |              |              |              |              |              |        |
| ex_CARRYOUT          | 1'h0             |                                       |              |              |              |              |              |              |        |
| CARRYOUTF            | 1'h0             |                                       |              |              |              |              |              |              |        |

OPMODE  $4 = 8'b0000_00_01$ ;

OPMODE[1:0] >> X input: multiplier

OPMODE[3:2] >> Z input: Zeros

OPMODE[4] >> Bypass pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder



```
OPMODE 5 = 8'b0000_10_11;
```

OPMODE[1:0] >> X input: use D\_A\_B

OPMODE[3:2] >> Z input: accumulator P

OPMODE[4] >> Bypass pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder



```
OPMODE 5 = 8'b0000_10_11;
```

OPMODE[1:0] >> X input: use D\_A\_B

OPMODE[3:2] >> Z input: accumulator P

OPMODE[4] >> Bypass pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder



```
OPMODE 6 = 8'b0001_11_10;
```

OPMODE[1:0] >> X input: accumulator P

OPMODE[3:2] >> Z input: C port

OPMODE[4] >> use pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder



OPMODE  $6 = 8'b0001_11_10;$ 

OPMODE[1:0] >> X input: accumulator P

OPMODE[3:2] >> Z input: C port

OPMODE[4] >> use pre-adder or pre-subtracter

OPMODE[5] >> force carry = 0

OPMODE[6] >> specifies pre-adder

## no error messages (expected == actual)

```
-end
              299
              300
                    #2 Sstop;
              301
              302
                    - end
                     endmodule
              303
              304
              305
            Wave × Dataflow × 6 dsp_tb.v ×
Transcript :
  ** Warning: (vsim-WLF-5001) Could not open WLF file: vsim.wlf
# #
            Using alternate file: ./wlft8t81c6
##
  ** Note: $stop : dsp tb.v(301)
    Time: 1242 ns Iteration: 0 Instance: /dsp tb
# Break in Module dsp tb at dsp tb.v line 301
```

### Elaboration snippets



# Elaboration snippets



## Synthesis snippets



# Synthesis snippets











