Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions

NeurIPS 2022

Nikolaos Karalias *

EPFL

nikolaos.karalias@epfl.ch

Joshua Robinson*

MIT CSAIL joshrob@mit.edu

Andreas Loukas

Prescient Design, Genentech, Roche andreas.loukas@roche.com

Stefanie Jegelka MIT CSAIL

stefje@csail.mit.edu

[A lot of] Machine learning these days

Supervised learning: couples of inputs/responses (X_i, y_i) , a model g_w

Goal: Optimize parameters $w \in \mathbf{R}^d$ of a function g_w such that $g_w(X_i) \approx y_i$

$$\min_{w} \sum_{i} L(g_w(X_i), y_i) .$$

Workhorse: first-order methods, based on $\nabla_w L(g_w(X_i), y_i)$, backpropagation

Problem: What if these models contain **nondifferentiable*** operations?

Discrete decisions in Machine learning

Examples: discrete operations (e.g. max, rankings), break autodifferentiation

- $\theta = \text{scores for } k \text{ products, } y^* = \text{vector of ranks e.g. } [5, 2, 4, 3, 1]$
- $\theta = \text{edge costs}$, $y^* = \text{shortest path between two points}$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

$$F(\theta) = \max_{y \in \mathcal{C}} \langle y, \theta \rangle \,, \quad \text{and} \quad y^*(\theta) = \operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta \rangle = \nabla_{\theta} F(\theta) \,.$$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

$$F(\theta) = \max_{y \in \mathcal{C}} \langle y, \theta \rangle \,, \quad \text{and} \quad y^*(\theta) = \operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta \rangle = \nabla_{\theta} F(\theta) \,.$$

Perturbed maximizer

Discrete decisions: optimizers of linear program over \mathcal{C} , convex hull of $\mathcal{Y} \subseteq \mathbf{R}^d$

$$F(\theta) = \max_{y \in \mathcal{C}} \langle y, \theta \rangle \,, \quad \text{and} \quad y^*(\theta) = \operatorname*{argmax}_{y \in \mathcal{C}} \langle y, \theta \rangle = \nabla_{\theta} F(\theta) \,.$$

Berthet, Quentin, et al. "Learning with differentiable pertubed optimizers." NIPS(2020)

Problem Setup

```
a ground set [n] = \{1, \dots, n\}
an arbitrary function f: 2^{[n]} \to \mathbb{R} \cup \{\infty\}
```

The discrete function breaks the backpropagation process.

an injective map
$$e:2^{[n]}\to\mathcal{X}$$
 $\mathfrak{F}:\mathcal{X}\to\mathbb{R}$

$$NN_2 \circ \mathfrak{F} \circ NN_1$$

automatic differentiation neural network framework

1.
$$\mathfrak{F}(e(S)) = f(S)$$
 for all $S \subseteq [n]$ with $f(S) < \infty$

$$\widetilde{\mathfrak{F}}(\mathbf{x}) = \max_{\mathbf{z}, b \in \mathbb{R}^n \times \mathbb{R}} \{ \mathbf{x}^\top \mathbf{z} + b \}$$
 subject to $\mathbf{1}_S^\top \mathbf{z} + b \le f(S)$ for all $S \subseteq [n]$. (primal LP)

$$\widetilde{\mathfrak{F}}(\mathbf{x}) = \min_{\{y_S \geq 0\}_{S \subseteq [n]}} \sum_{S \subseteq [n]} y_S f(S) \text{ subject to } \sum_{S \subseteq [n]} y_S \mathbf{1}_S = \mathbf{x}, \sum_{S \subseteq [n]} y_S = 1, \text{ for all } S \subseteq [n], \qquad \text{(dual LP)}$$

Definition (Scalar SFE). A scalar SFE \mathfrak{F} of f is defined at a point $\mathbf{x} \in [0,1]^n$ by coefficients $p_{\mathbf{x}}(S)$ such that $y_S = p_{\mathbf{x}}(S)$ is a feasible solution to the dual LP. The extension value is given by

$$\mathfrak{F}(\mathbf{x}) \triangleq \sum_{S \subseteq [n]} p_{\mathbf{x}}(S) f(S)$$

Definition (Scalar SFE). A scalar SFE \mathfrak{F} of f is defined at a point $\mathbf{x} \in [0,1]^n$ by coefficients $p_{\mathbf{x}}(S)$ such that $y_S = p_{\mathbf{x}}(S)$ is a feasible solution to the dual LP. The extension value is given by

$$\mathfrak{F}(\mathbf{x}) \triangleq \sum_{S \subseteq [n]} p_{\mathbf{x}}(S) f(S)$$

Proposition 1 (Scalar SFEs have no bad minima). If \mathfrak{F} is a scalar SFE of f then:

- 1. $\min_{\mathbf{x} \in \mathcal{X}} \mathfrak{F}(\mathbf{x}) = \min_{S \subseteq [n]} f(S)$
- 2. $\operatorname{arg\,min}_{\mathbf{x} \in \mathcal{X}} \mathfrak{F}(\mathbf{x}) \subseteq \operatorname{Hull} \left(\operatorname{arg\,min}_{\mathbf{1}_S : S \subset [n]} f(S) \right)$

$$\mathfrak{F}(\mathbf{x}) \triangleq \sum_{S \subseteq [n]} p_{\mathbf{x}}(S) f(S) \longrightarrow p_{\mathbf{x}}(S)$$
 \longrightarrow 1) $p_{\mathbf{x}}(S)$ is a continuous function of \mathbf{x} 2) $\mathfrak{F}(\mathbf{1}_S) = f(S)$ for all $S \subseteq [n]$

$$\widetilde{\mathfrak{F}}(\mathbf{x}) = \min_{\{y_S \ge 0\}_{S \subseteq [n]}} \sum_{S \subseteq [n]} y_S f(S) \text{ subject to } \sum_{S \subseteq [n]} y_S \mathbf{1}_S = \mathbf{x}, \ \sum_{S \subseteq [n]} y_S = 1, \ \text{ for all } S \subseteq [n],$$

Lovász extension. Re-indexing the coordinates of x so that $x_1 \ge x_2 ... \ge x_n$, we define p_x to be supported on the sets $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_n$ with $S_i = \{1, 2, ..., i\}$ for i = 1, 2, ..., n. The coefficient are defined as $y_{S_i} = p_x(S_i) := x_i - x_{i+1}$ and $p_x(S) = 0$ for all other sets.

Satisfy:

1.
$$\mathfrak{F}(\mathbf{1}_S) = f(S)$$

$$2. \sum_{i=1} p_{\mathbf{x}}(S_i) \cdot \mathbf{1}_{S_i} = \mathbf{x}.$$

3.
$$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (x_i - x_{i+1}) = x_1 \le 1$$

Multilinear extension.

$$p_{\mathbf{x}}(S) = \prod_{i=1}^{n} x_i^{y_i} (1 - x_i)^{1 - y_i}$$

Satisfy:

1.
$$\mathfrak{F}(\mathbf{1}_S) = f(S)$$

$$2. \sum_{S\subseteq[n]} p_{\mathbf{x}}(S) = 1$$

3.
$$\sum_{S\subseteq[n]} p_{\mathbf{x}}(S) \cdot \mathbf{1}_S = \mathbf{x}$$

Neural Set Function Extensions-semi-definite programming

$$\max_{\mathbf{Z} \succeq 0, b \in \mathbb{R}} \{ \operatorname{Tr}(\mathbf{X}^{\top} \mathbf{Z}) + b \} \text{ subject to } \operatorname{Tr}((\mathbf{1}_{S} \mathbf{1}_{T}^{\top} + \mathbf{1}_{T} \mathbf{1}_{S}^{\top}) \mathbf{Z}) + 2b \leq 2f(S \cap T) \text{ for } S, T \subseteq [n]. \quad \text{(primal SDP)}$$

$$\min_{\{y_{S,T}\}} \sum_{S,T \subseteq [n]} y_{S,T} f(S \cap T) \text{ subject to } \mathbf{X} \preceq \sum_{S,T \subseteq [n]} y_{S,T} (\mathbf{1}_S \mathbf{1}_T^\top + \mathbf{1}_T \mathbf{1}_S^\top) \text{ and } \sum_{S,T \subseteq [n]} y_{S,T} = 1 \tag{dual SDP}$$

Definition (Neural SFE). A neural set function extension of f at a point $\mathbf{X} \in \mathbb{S}^n_+$ is defined as

$$\mathfrak{F}(\mathbf{X}) \triangleq \sum_{S,T \subseteq [n]} p_{\mathbf{X}}(S,T) f(S \cap T),$$

where $y_{S,T} = p_{\mathbf{X}}(S,T)$ is a feasible solution to the dual SDP and for all $S,T \subseteq [n]$: 1) $p_{\mathbf{X}}(S,T)$ is continuous at \mathbf{X} and 2) it is valid, i.e., $\mathfrak{F}(\mathbf{1}_S\mathbf{1}_S^\top) = f(S)$ for all $S \subseteq [n]$.

Neural Set Function Extensions-semi-definite programming

Proposition 3. Let $p_{\mathbf{x}}$ induce a scalar SFE of f. For $\mathbf{X} \in \mathbb{S}^n_+$ with distinct eigenvalues, consider the eigendecomposition $\mathbf{X} = \sum_{i=1}^n \lambda_i \mathbf{x}_i \mathbf{x}_i^{\top}$ and fix

$$p_{\mathbf{X}}(S,T) = \sum_{i=1}^{n} \lambda_i \, p_{\mathbf{x}_i}(S) p_{\mathbf{x}_i}(T) \text{ for all } S,T \subseteq [n].$$

Then, $p_{\mathbf{X}}$ defines a neural SFE \mathfrak{F} at \mathbf{X} .

Algorithms

Algorithm 1: Scalar set function extension

```
def ScalarSFE(setFunction, x):

# x: n x 1 tensor of embeddings, the output of a neural network

# n: number of items in ground set (e.g. number of nodes in graph)

setsScalar = getSupportSetsScalar(x) # n x n, i-th column is S_i.

coeffsScalar = getCoeffsScalar(x) # 1 x n: coefficients y_{S_i}.

extension = (coeffsScalar*setFunction(setsScalar)).sum()

return extension
```

Algorithm 2: Neural set function extension

```
def NeuralSFE(setFunction, X):
  # X: n x d tensor of embeddings, the output of a neural network
  # n: number of items in ground set (e.g. number of nodes in graph)
  # d: embedding dimension
  X = normalize(X, dim=1)
  Gram = X @ X.T # n x n
  eigenvalues, eigenvectors = powerMethod(Gram)
  extension = 0 # initialize variable
  for (eigval, eigvec) in zip(eigenvalues, eigenvectors):
     # Compute scalar extension data.
     setsScalar = getSupportSetsScalar(eigvec)
     coeffsScalar = getCoeffsScalar(eigvec)
     # Compute neural extension data from scalar extension data.
     setsNeural = getSupportSetsNeural(setsScalar)
     coeffsNeural = getCoeffsNeural(coeffsScalar)
     extension += eigval*((coeffsNeural*setFunction(setsNeural)).sum())
  return extension
```

Experiments-Unsupervised Neural Combinatorial Optimization

	ENZYMES	Max PROTEINS	imum Clique IMDB-Binary	MUTAG	COLLAB
Straight-through (Bengio et al., 2013) Erdős (Karalias & Loukas, 2020) REINFORCE (Williams, 1992)	$\begin{array}{c} 0.725_{\pm 0.268} \\ 0.883_{\pm 0.156} \\ 0.751_{\pm 0.301} \end{array}$	$\begin{array}{c} 0.722_{\pm 0.26} \\ 0.905_{\pm 0.133} \\ 0.725_{\pm 0.285} \end{array}$	$\begin{array}{c} 0.917_{\pm 0.253} \\ 0.936_{\pm 0.175} \\ 0.881_{\pm 0.240} \end{array}$	$\begin{array}{c} 0.965_{\pm 0.162} \\ 1.000_{\pm 0.000} \\ 1.000_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.856_{\pm 0.221} \\ 0.852_{\pm 0.212} \\ 0.781_{\pm 0.316} \end{array}$
Lovász scalar SFE Lovász neural SFE	$\begin{array}{c} 0.723_{\pm 0.272} \\ 0.933_{\pm 0.148} \end{array}$	$\begin{array}{c} 0.778_{\pm 0.270} \\ 0.926_{\pm 0.165} \end{array}$	$0.975_{\pm 0.125} \ 0.961_{\pm 0.143}$	$0.977_{\pm 0.125} \\ 1.000_{\pm 0.000}$	$0.855_{\pm 0.225} \\ 0.864_{\pm 0.205}$
	Maximum Independent Set ENZYMES PROTEINS IMDB-Binary MUTAG COLLAB				
Straight-through (Bengio et al., 2013) Erdős (Karalias & Loukas, 2020) REINFORCE (Williams, 1992)	$\begin{array}{c} 0.505_{\pm 0.244} \\ 0.821_{\pm 0.124} \\ 0.617_{\pm 0.214} \end{array}$	$\begin{array}{c} 0.430_{\pm 0.252} \\ 0.903_{\pm 0.114} \\ 0.579_{\pm 0.340} \end{array}$	$\begin{array}{c} 0.701_{\pm 0.252} \\ 0.515_{\pm 0.310} \\ 0.899_{\pm 0.275} \end{array}$	$\begin{array}{c} 0.721_{\pm 0.257} \\ 0.939_{\pm 0.069} \\ 0.744_{\pm 0.121} \end{array}$	$\begin{array}{c} 0.331_{\pm 0.260} \\ 0.886_{\pm 0.198} \\ 0.053_{\pm 0.164} \end{array}$
Lovász scalar SFE Lovász neural SFE	$\begin{array}{c} 0.311_{\pm 0.289} \\ 0.775_{\pm 0.155} \end{array}$	$0.462_{\pm 0.260} \\ 0.729_{\pm 0.205}$	$0.716_{\pm 0.269} \\ 0.679_{\pm 0.287}$	$0.737_{\pm 0.154} \\ 0.854_{\pm 0.132}$	$\begin{array}{c} 0.302_{\pm 0.238} \\ 0.392_{\pm 0.253} \end{array}$

Table 1: **Unsupervised neural combinatorial optimization**: Approximation ratios for combinatorial problems. Values closer to 1 are better (†). Neural SFEs are competitive with other methods, and consistently improve over vector SFEs.

Experiments-Constraint Satisfaction Problems

Figure 5: Top: CIFAR10. Bottom: SVHN. The singleton extension loss (left) is the only loss that approximates the true non-differentiable training error at the same numerical scale.

training error

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1} \{ y_i \neq h(x_i) \}.$$
 $\hat{y} \mapsto \mathbf{1} \{ y_i \neq \hat{y} \}$

Experiments-Ablations

Figure 3: **Left:** Runtime and performance of neural SFEs on MaxClique using different numbers of eigenvectors. **Right:** Histogram of spectrum of matrix **X**, outputted by a GNN trained on MaxClique.

Conclusion

- 1. This paper proposes a framework for extending functions on discrete sets to continuous domains.
- 2. The limit of n.