População

$$\mu = E(x) = \frac{\sum x_i}{N}$$

$$\mu = E(X) = \frac{\sum X_i}{N}$$
 $\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}}$ $\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$

$$\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$$

- μ = Média populacional
- 6 = Desvio populacional
- σ² = Variância populacional

Distribuição Amostral da Média

$$\bar{x} \sim N\left(\mu; \frac{\sigma^2}{n}\right)$$

- Valor Esperado: E(x̄) = µ
- → Média pop
- Variância:
- $Var(\bar{x}) = \frac{\sigma^2}{\pi} \rightarrow Var. pop.$

Distribuição Amostral da Proporção

$$\hat{p} \sim N\left(p : \frac{p \cdot (4-p)}{n}\right)$$

- Média: μβ= p
- ήρ = ηριορ. amostra
- Valor Esperado: $\sigma_{\hat{p}}^2 = \frac{p \cdot (1-p)}{n}$ p = prop. popula. n = tam. amosha

Erro Amostral

Emo Padrão: $\epsilon_p = \frac{\sigma}{\sqrt{m}}$

GRAU DE CONFIANÇA	«	Z
0,90 (90%)	0,10	1,645
0,95 (95%)	0,05	1,96
0,99 (99%)	0,01	2,575

Determinar Tamanho da Amostra
$$P(|\bar{x}-\mu| \le \epsilon) = \forall : \pi = \frac{Z^2 \cdot \forall^2}{\epsilon^2}$$

•
$$(\bar{\chi} - \mu) \sim N(\theta; \frac{\sigma^2}{\pi})$$
 • População : $X \sim N(\mu; \underline{g^2})$

Z → tabela graw conf.

Estimador / Estimativa

Estimador (T) → função, v.a. com dist. própria

- Não Viciado:
- $B(T) = \emptyset / E(T) = \emptyset ; [E(\bar{x}) = \mu]$

$$vicio = B(T) = E(T) - \Theta$$

- $E(\tau)$ = valor esp. (média) do estimador;
 - θ = panâmetro (valor).
- $E(S^2) = \sigma^2 \rightarrow \text{val. esp. var. amostral } (S^2) = \text{van. pop. } (\sigma^2);$
- Consistente: $\lim_{n\to\infty} E(T_n) = \Theta$
 - lim n+ ∞ Var (Tn) = 0
- Suficiente:
- T = T(Y) suf. p/ 0 -> resume a amostra Y.
- Dist. condicional Y é indep. de 0.

Família Exponencial

Supra =
$$f(x; \theta) = h(x) \cdot e^{\eta(\theta) \cdot [t(x) - b(\theta)]}$$

$$bn(a) = log_e(a)$$

→
$$lne = 1$$
; $ln 1 = 0$; $ln (e^n) = n$

$$\rightarrow$$
 loga (m·n) = loga(m) + loga(n)

$$\neg \log_a(m/n) = \log_a(n) - \log_a(n)$$

$$\rightarrow \Theta_x \rightarrow \Theta_{V(\Theta_x)} \rightarrow \Theta_{x \cdot V(\Theta)}$$

$$\neg \quad (1-\theta)^{m-x} \rightarrow e^{(m-x)\cdot \ln(1-\theta)}$$

Mét. Máxima Verossimilhança

Obtenção de Estimadores

MAXIMIZAÇÃO :
$$L(\Theta|x) = \prod_{i=1}^{n} f(x_1,...,x_n|\Theta)$$

4 aplica logaritmos

→ 1ª Derivada

→ 2ª Derivada = ponto máximo.

Normalização

X~N (0; 1)

Pana X~N (0;1), com µ e o conhecidos ::

P(X >
$$\alpha$$
) $\rightarrow P\left(\frac{x-\mu}{\sigma} > \frac{\alpha-\mu_c}{\sigma_c}\right) \rightarrow P(Z > 6)$

P(X > α) $\rightarrow P\left(\frac{x-\mu}{\sigma} > \frac{\alpha-\mu_c}{\sigma_c}\right)$

P(Z > res. tabela)

- → esquerda (valor neq.);
 → direita (valor pos.)
- Para $P(-a \le x \le a)$: tabela pos. $a \rightarrow 1-(2 \cdot valor de a)$.
- Se o² é dado → √o

Normalização para $\bar{\chi}$:

Regra Empírica da Normal:

10-1 < Z < 1) = 0,68 on 68%

Extras de última hara =)