IN2090-h21: Obligatorisk innlevering 3

Martin Mihle Nygaard (martimn)

Oppgave 1 — Lage databaser

```
Jeg vedlegger SQL koden som egen fil, men inkluderer her og:
DROP TABLE IF EXISTS Tog;
DROP TABLE IF EXISTS TogTabell;
DROP TABLE IF EXISTS Plass;
CREATE TABLE Tog (
 togNr int PRIMARY KEY,
 startStasjon text NOT NULL,
  endeStasjon text NOT NULL,
  ankomstTid timestamp NOT NULL,
);
CREATE TABLE TogTabell (
  togNr int REFERENCES Tog(togNr),
  adgangsTid timestamp
  stasjon text NOT NULL,
 PRIMARY KEY (togNr, adgangsTid)
);
CREATE TABLE Plass (
 dato date
 togNr int REFERENCES Tog(togNr),
 vognNr int
 plassNr int
 vindu boolean NOT NULL,
 ledig boolean NOT NULL,
  PRIMARY KEY (dato, togNr, vognNr, plassNr)
);
-- Eneste skranker jeg putter er å ikke tillate nullverdier.
-- Datatypene bør være ganske selvforklarende: heltall på alt som
-- har et «nummer», `timestamp` på alle «tider» (klokkeslett og
-- dato), `date` det ene stedet oppgaven spør om bare dato, og
```

-- boolske verdier på vindusplass og ledighet.

Oppgave 2 — FDer og Normalformer

Kandidatnøklene til \mathcal{R}

Nøklene $\{C,F\}$ forekommer kun på venstre side av de funksjonelle avhengighettene, jeg vet da derfor at de nødvendigvis må være en del av alle kandidatnøkler. $\{G\}$, derimot forekommer kun på høyre side, og kan derfor ikke være inkludert i noen kandidatnøkler. Jeg finner tillukningen til $\{C,F\}$, og utvider den alfabetisk og rekursivt for å finne alle kandidatnøkler; jeg stryker hvis utvidelsen inneholder en annen kandidatnøkkel, mengden nøkler allerede er vurdert, eller det utvides med en allerede inkludert nøkkel.

```
• \{C, F\}^+ = \{C, F\}

- \{C, F, A\}^+ = \{C, F, A, B, D, E, G\} \rightarrow \text{kandidatnøkkel}

- \{C, F, B\}^+ = \{C, F, A, B, D, E, G\} \rightarrow \text{kandidatnøkkel}

- \{C, F, C\}^+

- \{C, F, D\}^+ = \{C, F, D, G\}

* \{C, F, D, B\}^+

* \{C, F, D, B\}^+

* \{C, F, D, C\}^+

* \{C, F, D, E\}^+ = \{C, F, D, G, E, B, A\} \rightarrow \text{kandidatnøkkel}

* \{C, F, D, E\}^+

* \{C, F, D, C\}^+

* \{C, F, C, E\}^+

* \{C, F, E, A\}^+

* \{C, F, E, B\}^+

* \{C, F, E, C\}^+

* \{C, F, E, C\}^+
```

Sorry, litt mye som skjer her, men oppsummert: kandidatnøklene blir $\{C, F, A\}$, $\{C, F, B\}$ og $\{C, F, D, E\}$.

Høyeste normalform til \mathcal{R}

Jeg følger algoritmen fra forelesning. Jeg har allerede funnet kandidatnøklene: $\{C,F,A\},\ \{C,F,B\}$ og $\{C,F,D,E\}$. Jeg vurderer de funksjonelle avhengighe-

tene etter tur:

- $CDE \rightarrow B$: brudd på BCNF, siden CDE ikke er en supernøkkel. $-CDE \rightarrow B$: på 3NF, siden B er et nøkkelattributt.
- $AF \rightarrow B$: brudd på BCNF, siden AF ikke er en supernøkkel.
 - $-AF \rightarrow B$: på 3NF, siden B er er et nøkkelattributt.
- $B \to A$: brudd på BCNF, siden B ikke er en supernøkkel.
 - $-B \rightarrow A$: på 3NF, siden A er et nøkkelattributt.
- $BCF \rightarrow DE$: på BCNF, siden BCF er en supernøkkel.
- $D \to G$ brudd på BCNF, siden Dikke er en supernøkkel.
 - $D \rightarrow G$: brudd på 3NF, siden Gikke er et nøkkelattributt.
 - * $D \to G$: på 2NF, siden D er en del av en kandidatnøkkel.

Høyeste normalformen som \mathcal{R} tilfredsstiller er 2NF.

(c) — Tapsfri dekomponering¹

Bruker algoritmen fra forelesning:

Tapsfri dekomponering av R(X) med funksjonelle avhengigheter F:

- 1. Beregn nøklene til R
- 2. For hver funksjonell avhengighet $Y \to A \in F$, hvis den funksjonelle avhengigheten er et brudd på BCNF:
 - i. beregn Y^+ ,
 - ii. og dekomponer R til $S_1(Y^+)$ og $S_2(Y, X/Y^+)$.
- 3. Fortsett rekursivt (over S_1 og S_2) til ingen brudd på BCNF

Jeg navngir de forskjellige funksjonelle avhengighetene i tabellen under. Deretter utfører jeg algoritmen på dem etter tur.

$$\begin{array}{ccc} & CDE \rightarrow B \\ \text{II} & AF \rightarrow B \\ \text{III} & B \rightarrow A \\ \text{IV} & BCF \rightarrow DE \\ \text{V} & D \rightarrow G \\ \end{array}$$

 $CDE \to B$ Bryter BCNF, siden CDEikke er en supernøkkel. Jeg dekomponerer til $S_1(CDE^+) = S_1(ABCDEG)$ og $S_2(CDE,ABCDEFG/CDE^+) = S_2(CDEF).$ S_2 har ingen funksjonelle avhengigheter, men S_1 har III og V som bryter med BCNF.

Jeg dekomponerer først S_1 til $S_{11}(B^+)=S_{11}(AB)$ og $S_{12}(B,ABCDEG/B^+)=S_{12}(CDEG)$.

• $S_{11}(AB)$ har kun III, men denne er på BCNF.

 $^{^1{\}rm Jeg}$ er usikker på om jeg har tenkt riktig i denne oppgaven. Den ble veldig innviklet. Håper det som følger en noenlunde forståelig.

• S_{12} har V, som bryter med BCNF. Jeg dekomponerer S_{12} til $S_{121}(D^+) = S_{121}(DG)$ og $S_{122}(D,CDEG/D^+) = S_{122}(CDE)$. Verken S_{121} eller S_{122} har funksjonelle avhengigheter som bryter BCNF.

Jeg dekomponerer også S_1 til $T_{11}(D^+)=T_{11}(DG)=S_{121}$ og $T_{12}(D,ABCDEG/D^+)=T_{12}(ABCDE).$

- $T_{11}(DG)$ er lik S_{121} og kan ignoreres.
- $T_{12}(ABCDE)$ har I, som ikke bryter, og III, som bryter med BCNF. Jeg dekomponerer T_{12} til $T_{121}(B^+)=T_{121}(AB)=S_{11}$ og $T_{122}(B,ABCDE/B^+)=T_{122}(BCDE)$. Jeg kan ignorere $T_{121}=S_{11}$, mens T_{122} har ingen funksjonelle avhengigheter som bryter BCNF.

 $AF \to B$ Bryter BCNF, siden AF ikke er en supernøkkel. Jeg dekomponerer \mathcal{R} til $U_1(AF^+) = U_1(ABF)$ og $U_2(AF, ABCDEFG/AF^+) = U_2(CDEG) = S_{12}$.

- $U_1(ABF)$: har funksjonelle avhengigheter II og III. Siden III bryter BCNF, dekomponerer jeg U_1 til $U_{11}(B^+)=U_{11}(AB)=S_{11}$ og $U_{12}(B,ABF/B^+)=U_{12}(BF)$. Begge er på BCNF.
- $U_2 = S_{12}$ så denne er allerede tatt hånd om.

 ${\pmb B}\to {\pmb A}$ Bryter BCNF. Jeg dekomponerer ${\mathcal R}$ til $V_1(B^+)=V_1(AB)=S_{11}$ og $V_2(B,ABCDEFG/B^+)=V_2(BCDEFG).$

- $V_1(AB) = S_{11}$ er allerede vurdert.
- $V_2(BCDEFG)$: har FDer I og V som bryter BCNF (og IV som ikke bryter). Jeg dekomponerer V_2 til $V_{21}(CDE^+) = V_{21}(BCDEG)$ og $V_{22}(CDE, BCDEFG/CDE^+) = V_{22}(CDEF) = S_2$.
 - V_{21} har kun V som bryter med BCNF. Jeg dekomponerer derfor til V_{21} til $V_{211}(D^+)=V_{211}(DG)=S_{121}$ og $V_{212}(D,BCDEG/D^+)=V_{212}(BCDE)=T_{122}$, som begge alt er vurdert.
 - $-V_{22}=S_2$ og er alt rekursert over.

 ${m D} o {m G}$ Bryter BCNF. Jeg dekomponerer derfor til $W_1(D^+) = W_1(DG) = S_{121}$ og $W_2(D,ABCDEFG/D^+) = W_2(ABCDEF)$.

- $W_1 = S_{121}$ er alt vurdert.
- W_2 har FDer I, II, III og IV som alle bryter med BCNF.
 - Jeg dekomponerer W_2 til $W_{211}(CDE^+)=W_{211}(ABCDE)=T_{12}$ og $W_{212}(CDE,ABCDEF/CDE^+)=W_{212}(CDEF)=S_2$. Begge relasjonene er allerede vurdert.
 - Jeg dekomponerer W_2 til $W_{221}(AF^+)=W_{221}(ABF)=U_1$ og $W_{222}(AF,ABCDEF/AF^+)=W_{221}(ACDEF)$. Hvor $W_{221}=U_1$ allerede er vurdert, W_{221} har ingen funksjonelle avhengigheter.

Oppsummering Dette ble veldig rotete, men over dekomponerer jeg $\mathcal{R}(ABCDEFG)$ til følgende relasjoner (med litt vilkårlige navn):

- $S_{11}(AB)$
- $S_{122}(CDE)$
- $S_{121}(DG)$
- $T_{122}(BCDE)$
- $\bullet \ \ U_{12}(BF)$
- $\bullet \ \ W_{221}(ACDEF)$