Suites réelles

Applications directes du cours

Exercice 1 (Des suites explicites)

Déterminer le sens de variation des suites :

1.
$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^n \frac{1}{2k^2}$$

2.
$$\forall n \in \mathbb{N}, \ u_n = \ln(n^2 + 1)$$

$$3. \ \forall n \geqslant 5, \ u_n = \frac{5^{n+1}}{n!}$$

4.
$$\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^{2n} \frac{(-1)^k}{k}$$

5.
$$\forall n \in \mathbb{N}^*, \ u_n = \prod_{k=1}^n \frac{2k-1}{2k}$$

Exercice 2 (Des suites récurrentes)

- 1. On définit $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n e^{u_n}$.
- (a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est positive.
- (b) En déduire directement son sens de variation.

2. On définit
$$u_0 = 3$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{4u_n - 2}{u_n + 1}$.

- (a) Montrer que $\forall n \in \mathbb{N}, u_n > 1$.
- (b) Étudier la fonction $f: x \mapsto \frac{4x-2}{x+1}$ sur $[1, +\infty[$.
- (c) Déterminer le sens de variation de $(u_n)_{n\in\mathbb{N}}$.

3. On définit
$$u_0 = \frac{2}{3}$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{2 - u_n}$.

- (a) Montrer que pour tout $n \in \mathbb{N}$, u_n est bien défini et appartient à]0,1[.
- (b) Déduire directement le sens de variation de u.
- (c) On pose $\forall n \in \mathbb{N}, \ v_n = 1 \frac{1}{u_n}$.

Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique.

Exercice 3 (Récurrences basiques)

Déterminer l'expression de u_n en fonction de n:

- a) $u_0 = 0$ et: $\forall n \in \mathbb{N}, \ 3u_{n+1} 2u_n = 1$
- b) $u_1 = 2$ et: $\forall n \in \mathbb{N}^*, u_{n+1} + 2u_n = 5$

Exercice 4 (Récurrence linéaire double)

Déterminer l'expression de u_n en fonction de n:

a)
$$u_0 = 0, u_1 = 1$$
 et $\forall n \in \mathbb{N}^*, u_{n+1} = u_n + u_{n-1}$

b)
$$u_0 = 1, u_1 = 0$$
 et $\forall n \in \mathbb{N}, \frac{1}{4}u_{n+2} = u_{n+1} - u_n$

Pour approfondir

Exercice 5 (Autre approche pour les suites arithmético-géométriques)

Soient $q, r \in \mathbb{R}$ avec $q \neq 0$ et $u = (u_n)_{n \in \mathbb{N}}$ satisfaisant

$$\forall n \in \mathbb{N}, \ u_{n+1} = qu_n + r.$$

On pose $\forall n \in \mathbb{N}, \ v_n = \frac{u_n}{q^n}$

- 1. Pour tout $n \in \mathbb{N}$, exprimer "simplement" $v_{n+1} v_n$.
- 2. Calculer $\sum_{k=0}^{n-1} (v_{k+1} v_k)$ de deux manières.

Déduire l'expression de v_n en fonction de n, q, r, u_0 .

3. Déduire l'expression de u_n en fonction de n, q, r, u_0 .

Exercice 6 (Oral ESCP 2008)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite à termes positifs ou nuls définie par $u_0=0$ et $\forall n\in\mathbb{N}, u_{n+1}^2=u_n^2+8n+5$.

Exprimer u_n^2 puis u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 7 (Récurrence couplée)

Soient u et v les suites définies par :

$$\begin{cases} u_0 = 1 \\ v_0 = -2 \end{cases} \text{ et } \begin{cases} \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n - v_n \\ \forall n \in \mathbb{N}, \ v_{n+1} = u_n + 4v_n \end{cases}$$

- 1. a) Pour tout $n \in \mathbb{N}$, on pose $w_n = u_n + v_n$. Montrer que la suite w est géométrique.
- b) En déduire que pour tout $n \in \mathbb{N}, v_{n+1} = 3v_n 3^n$.
- c) Pour tout $n \in \mathbb{N}$, on pose $z_n = \frac{v_n}{3^n}$.

Montrer que la suite z est arithmétique.

- d) En déduire l'expression de v_n puis de u_n en fonction de n, pour tout $n \in \mathbb{N}$.
- 2. Montrer que la suite u suit une récurrence linéaire d'ordre 2. Retrouver ainsi les expressions de u_n et v_n obtenues dans la question 1.

Exercice 8 (Suite satisfaisant une inégalité)

On considère une suite $u \in \mathbb{R}^{\mathbb{N}}$ satisfaisant, pour tout $n \in \mathbb{N} : 0 \leq u_n \leq 1$ et $u_{n+1}(1-u_n) > \frac{1}{4}$. (On admet qu'une telle suite existe bien)

- 1. Montrer que $\forall n \geq 1, \ 0 < u_n < 1.$
- 2. Montrer que $\forall n \geqslant 1$, $\frac{u_{n+1}}{u_n} > \frac{1}{4u_n(1-u_n)}$.
- 3. Étudier la fonction $f: x \mapsto \frac{1}{4x(1-x)}$ sur]0,1[. En déduire le sens de variation de $(u_n)_{n\geqslant 1}$.