Combination Type II

,	Combination 19pe III
	La selection (& identical objects in n
	we often deal with problems on
	Counting, where one has to make
₃	2 selections from n-type of Objects
	with repetition freely allowed.
	This Problem can also be described
	in the following way using analogy
	of identical Objects 4 distinct boxes.
	It is possible to distribute & identical
	Objects in n distinct boxes, with no
	restriction put up the no of Objects a
	box Contain is
	(n+t-1) C n=1
	i.e. C Cn+2-1, n-1).
	De Alle
<u>Ex</u> (Ten balls are picked from a pile of red
	blue 4 white balls. Find how many such
	selections contain less than 5 red balls.
<u>→</u>	The no. of ways to select 10 balls
	from a pile of led, blue 4 white balls
	is equivalent to distributing 10 identical
	Objects into 3 distinct boxes. { n=103
	objects into 3 distinct boxes { n=103} - No of ways of
	5election = (n+2-1) Cn-1
	$= (3 + 10 - 1) C_{3-1}$ $= 12C_2 = \frac{12!}{2! \cdot 10!} = 66 \omega_{975}$
	$= 12C_2 = \frac{12!}{2! \cdot 10!} = 66 \omega_{97}$

NMIET, TALEGAON DABHADE, PUNE

(ii) the no. of ways to select 5 led $\begin{cases} \frac{2-3}{5} \\ \frac{1}{5} \\ \frac{1}{2!5!} \\ \frac{1}{5!} \\ \frac$

Hence the no. of ways to select 10 balls from a pile of red, blue 4 whike balls, so that each selection contains less than 5 red balls is 66-21 = 45 ways

ex 10 how many ways can one distribute 10 apples among 4 children.

The consider apple as identical objects 4.

the children corresponds to distinct boxes.

in No. of ways to distribute 10 applied among 4 children is, $\begin{cases} h=4 & 1.2=10 \end{cases}$. $= (n+2-1) C_{(n-1)} = (4+10-1) C_{(4-1)}$ $= 13C_3 = \frac{13 \times 72 \times 11 \times 101}{3 \times 2 \times 1 \times 101}$

= 22×13 = 286 ways

£X	How many non negative integer son
1	Ose these sections in the sections
	are there in the equation
\rightarrow	2C+Y+Z+U+V=10,000 ?
,	The Problem is that of distributing
	10,000 identical objects in 5 distinct boxes
	cohere there is no restriction on the
	no of objects the box may contain.
~	n=5, 2=10,000.
	:. No-of 301) = (5+10,000-1) C 5-1
	= 10,004 Cy Ways.
	= 4.1708 × 1014 ways
فاد	
	selected from 8 identical red balls 4
	8 identical white balls.
\rightarrow	The Problem is that of distributing 5
	identical objects in two distinct boxes
	corresposding to their colours.
	725 725. 6=5 h=2.
	:_ NO- of ways to make - (5+1-1)(.
	required selection = $(5+2-1)$ C(2-1)
	= 6C,
	= 6 ways

NMIET, TALEGAON DABHADE, PUNE

	Combinations of objects not all different
- 11	The total no. of combinations which can be
11	made of n different objects taken some
	<u>Or all</u> at a time is,
	nc, +nc, + nc, + +ncn = 2n-1.
1)	In order to pass MCA first semester
1	examination minimum marks have to be
	secured in each of the 7 subject.
	In how many eases can ag student fail.
→	The possibility of fail or pass
	in each subject can be considered
	in 2 ways.
	: Possibility of pass or tail 10
	all the 7 subject can be 27 ways.
	But this include the case in which
	student passes in all & 7. Subjects.
	Hence,
	required no. of combinations in
	which the student can fail are,
	27-1 = 127 ways.
2/	There are 15 teur 02 faise
	questions in an exam. In how many
	ways can a student answer the
	exam if he or she can also
	them.
	11 , 13 (10).

then he of she can do so in 215 ways.

But since he oe she can choose

not to answer some of them,

'the Correct solution is 215-1 = 32768-1

ex A man has 10 triends. In how many ways can be go to dinner with 1 or more of them.

of his 10 triends.

the no. of ways is 210-1 ways = 1024-1 = 1023 ways

Ex A bit is either 0 02 1. A bytc is a sequence of 8 bits. Then find no. Of byths.

JOFAI DO. 07 bytes = 28 = 256 ways.