# Introduction to Machine Learning

Lecture 6

Albert Orriols i Puig aorriols@salle.url.edu

Artificial Intelligence – Machine Learning Enginyeria i Arquitectura La Salle Universitat Ramon Llull

## Recap of Lecture 4

#### □ ID3 is a strong system that

- Uses hill-climbing search based on the information gain measure to search through the space of decision trees
- Outputs a single hypothesis.
- Never backtracks. It converges to locally optimal solutions.
- Uses all training examples at each step, contrary to methods that make decisions incrementally.
- Uses statistical properties of all examples: the search is less sensitive to errors in individual training examples.
- Can handle noisy data by modifying its termination criterion to accept hypotheses that imperfectly fit the data.

## Recap of Lecture 4

#### □ However, ID3 has some drawbacks

- It can only deal with nominal data
- It is not able to deal with noisy data sets
- It may be not robust in presence of noise

## Today's Agenda

- □ Going from ID3 to C4.5
- How C4.5 enhances C4.5 to
  - Be robust in the presence of noise. Avoid overfitting
  - Deal with continuous attributes
  - Deal with missing data
  - Convert trees to rules

# What's Overfitting?

- Overfitting = Given a hypothesis space H, a hypothesis heH is said to overfit the training data if there exists some alternative hypothesis h'eH, such that
  - 1. h has smaller error than h' over the training examples, but
  - 2. h' has a smaller error than h over the entire distribution of instances.



## Why May my System Overfit?

#### In domains with noise or uncertainty

the system may try to decrease the training error by completely fitting all the training examples



## **How to Avoid Overfitting?**

- Ok, my system may overfit... Can I avoid it?
  - Sure! Do not include branches that fit data too specifically
- □ How?
  - 1. Pre-prune: Stop growing a branch when information becomes unreliable
  - Post-prune: Take a fully-grown decision tree and discard unreliable parts



# **Pre-pruning**

- Based on statistical significance test
  - Stop growing the tree when there is no statistically significant association between any attribute and the class at a particular node
  - Use all available data for training and apply the statistical test to estimate whether expanding/pruning a node is to produce an improvement beyond the training set
- □ Most popular test: chi-squared test
- □ ID3 used chi-squared test in addition to information gain
  - Only statistically significant attributes were allowed to be selected by information gain procedure

# **Pre-pruning**

- □ Early stopping: Pre-pruning may stop the growth process prematurely
- □ Classic example: XOR/Parity-problem
  - No individual attribute exhibits any significant association to the class
  - Structure is only visible in fully expanded tree
  - Pre-pruning won't expand the root node
- □ **But:** XOR-type problems rare in practice
- And: pre-pruning faster than post-pruning

|   | <b>x1</b> | <b>x2</b> | Class |
|---|-----------|-----------|-------|
| 1 | 0         | 0         | 0     |
| 2 | 0         | 1         | 1     |
| 3 | 1         | 0         | 1     |
| 4 | 1         | 1         | 0     |



# **Post-pruning**

- □ First, build the full tree
- □ Then, prune it
  - Fully-grown tree shows all attribute interactions
- □ **Problem:** some subtrees might be due to chance effects
- □ Two pruning operations:
  - 1. Subtree replacement
  - 2. Subtree raising
- **□** Possible strategies:
  - error estimation
  - significance testing
  - MDL principle

# Subtree Replacement

- Bottom up approach
- Consider replacing a tree after considering all its subtrees
- Ex: labor negotiations



# Subtree Replacement



# **Subtree Raising**



- Delete node
- Redistribute instances
- Slower than subtree replacement (Worthwhile?)



## **Estimating Error Rates**

- □ Ok we can prune. But when?
  - Prune only if it reduces the estimated error
  - Error on the training data is NOT a useful estimator
    Q: Why it would result in very little pruning?
  - Use hold-out set for pruning
    - Separate a validation set
    - Use this validation set to test the improvement



- C4.5's method
  - Derive confidence interval from training data
  - Use a heuristic limit, derived from this, for pruning
  - Standard Bernoulli-process-based method
  - Shaky statistical assumptions (based on training data)

- When dealing with nominal data
  - We evaluated the grain for each possible value
- In continuous data, we have infinite values.
- What should we do?
  - Continuous-valued attributes may take infinite values, but we have a limited number of values in our instances (at most N if we have N instances)
  - Therefore, simulate that you have N nominal values
    - Evaluate information gain for every possible split point of the attribute
    - Choose the best split point
    - The information gain of the attribute is the information gain of the best split



Split on temperature attribute:

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No Yes Yes No Yes Yes No
```

- E.g.: temperature < 71.5: yes/4, no/2 temperature ≥ 71.5: yes/5, no/3
- Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3]) = 0.939 bits

- Place split points halfway between values
- Can evaluate all split points in one pass!

#### □ To speed up

 Entropy only needs to be evaluated between points of different classes



Potential optimal breakpoints

Breakpoints between values of the same class cannot be optimal

## Deal with Missing Data

#### □ Treat missing values as a separate value

- Missing value denoted "?" in C4.X
- Simple idea: treat missing as a separate value
- Q: When this is not appropriate?
- A: When values are missing due to different reasons
  - Example 1: gene expression could be missing when it is very high or very low
  - Example 2: field IsPregnant=missing for a male patient should be treated differently (no) than for a female patient of age 25 (unknown)

## **Deal with Missing Data**

- Split instances with missing values into pieces
  - A piece going down a branch receives a weight proportional to the popularity of the branch
  - weights sum to 1
- Info gain works with fractional instances
  - Use sums of weights instead of counts
- During classification, split the instance into pieces in the same way
  - Merge probability distribution using weights

## From Trees to Rules

- I finally got a tree from domains with
  - Noisy instances
  - Missing values
  - Continuous attributes
- □ But I prefer rules...
  - No context dependent
- □ Procedure
  - Generate a rule for each tree
  - Get context-independent rules

## From Trees to Rules

#### □ A procedure a little more sophisticated: C4.5Rules

- C4.5rules: greedily prune conditions from each rule if this reduces its estimated error
  - Can produce duplicate rules
  - Check for this at the end
- Then
  - look at each class in turn
  - consider the rules for that class
  - find a "good" subset (guided by MDL)
- Then rank the subsets to avoid conflicts
- Finally, remove rules (greedily) if this decreases error on the training data

## **Next Class**

□ Instance-based Classifiers

# Introduction to Machine Learning

#### Lecture 6

Albert Orriols i Puig aorriols@salle.url.edu

Artificial Intelligence – Machine Learning Enginyeria i Arquitectura La Salle Universitat Ramon Llull