Aula 05: Técnicas de Demonstração - Parte 1

Karla Lima

Álgebra Elementar: 09/11/23

FACET/UFGD

Prova Direta

Considerações Finais

Prova Direta

Definição [1]

Definição 1

Diz-se que uma proposição q é <u>formalmente dedutível</u> (consequência) de certas proposições dadas (premissas) quando e somente quando for possível formar uma sequência de proposições p_1, p_2, \ldots, p_n de tal modo que

- a) p_n é exatamente q;
- b) para qualquer valor de i (i = 1, 2, ..., n), p_i ou é uma premissa ou constitui a conclusão de um argumento válido formado a partir das proposições que a precedem na sequência.

Prova Direta

Na definição acima, no caso em que q é formalmente dedutível, chamamos a proposição q de <u>teorema</u> e a sequência formada chama-se **prova** ou **demonstração** do teorema.

Exemplo 1

A soma de dois números ímpares resulta em um número par.

Exemplo 2

A soma de um número par e um número ímpar resulta em um número ímpar.

Obs: As soluções dos exemplos ímpares estão descritas no seguinte arquivo: "Aula _05 _Ex.pdf"

Regras de Demonstração [2]

- Escreva o teorema a ser provado.
- Marque o ínicio da prova com a palavra PROVA ou a palavra DEMONSTRAÇÃO.
- Escreva a prova de tal forma que ela seja auto-contida.
 - Identifique cada variável usada na prova juntamente com o seu tipo.
 - Exemplos: Seja x um número real maior que 2. Suponha que m e n são inteiros.
- Escreva provas em linguagem natural, usando sentenças completas.

Erros Comuns [2]

- Argumentar a partir de exemplos:
 - Se m=14 e n=3 então m+n=17, que é impar.
- Usar a mesma letra para representar duas coisas diferentes.
- Pular para uma conclusão, alegando a verdade de alguma coisa sem dar uma razão adequada.
- Assumir como verdadeiro o que deve ser provado.

Exemplo 3

O produto de quaisquer dois inteiros consecutivos é par.

Exemplo 4

Prove que o produto de três números consecutivos quaisquer é divisível por 3.

Exemplo 5

Resolva a equação 2x + 6 = 0.

Exemplo 6

Mostre que x = -3 é solução da equação $x^2 - 9 = 0$.

Há diferenças entre os dois exemplos?

Observação sobre equações [3]

Costuma-se dar a seguinte explicação para resolver equações como 2x + 6 = 0: 2x = -6 (passamos o 6 para o segundo membro, mudando o seu sinal)

$$x = \frac{-6}{2} = -3$$
 (passamos o 2 para baixo)

Observação sobre equações [3]

Costuma-se dar a seguinte explicação para resolver equações como 2x+6=0: 2x=-6 (passamos o 6 para o segundo membro, mudando o seu sinal)

$$x = \frac{-6}{2} = -3$$
 (passamos o 2 para baixo)

"Explicações" desse tipo são causa de erros frenquentes como os descritos a seguir:

- a) Se 3x = 6, então x = 6 3.
- b) Se x + 5 = 10, então $x = \frac{10}{5}$.

É sempre melhor dizer explicitamente, a cada passagem, o que realmente está sendo feito, como vimos no exemplo 5.

Exemplo 7

O lado AC de um triângulo ABC tem comprimento 3.8 e o lado AB tem comprimento 0.6. Se o comprimento do lado BC é um inteiro, qual o seu comprimento?

Exemplo 8

Se b e c são os catetos de um triângulo retângulo de hipotenusa a e altura h, mostre que b+c < a+h.

Considerações Finais

O que aprendemos

 A demonstração direta é a forma mais simples de demonstração, e a mais óbvia: para demonstrar que p ⇒ q assuma que p é verdadeiro, e através de uma série de etapas, cada uma seguinte das anteriores, conclui-se q.

Referências

Lógica e Álgebra de Boole.

Editora Atlas S.A., 2009.

Antonio Alfredo Ferreira Loureiro.

Métodos de prova.

Technical report, UFMG.

Elon Lages Lima.

Temas e problemas elementares.

Sociedade Brasileira de Matematica, 2006.