Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения большего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 1

1. Найдите спектр оператора $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$, действующего по формуле

$$(Tx)_n = x_n + x_{n+2} \quad (x \in \ell^2(\mathbb{Z}), \ n \in \mathbb{Z}).$$

2. Компактен ли оператор

$$T: C[0,1] \to C[0,1], \quad (Tf)(x) = \int_0^x \frac{f(y)}{\sqrt{x-y}} \, dy?$$

Определение. Пусть T — ограниченный линейный оператор в банаховом пространстве X. Его спектром сюр σ ективности называется множество

$$\sigma_{\mathrm{su}}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \mathbf{1}_X \text{ не сюръективен} \}.$$

- 3. Вычислите $\sigma_{\mathrm{su}}(T_\ell)$, где T_ℓ левый сдвиг в ℓ^2 .
- **4.** Докажите, что $\sigma(T) \setminus \sigma_{\text{su}}(T) \subseteq \text{Int } \sigma(T)$ для любого T.
- **5.** Пусть X,Y банаховы пространства. Докажите, что ограниченный линейный оператор $T\colon X\to Y$ компактен тогда и только тогда, когда для каждого $\varepsilon>0$ в X существует векторное подпространство X_ε конечной коразмерности, такое, что $\|T|_{X_\varepsilon}\|<\varepsilon$.
- **6.** Пусть H_1, H_2 гильбертовы пространства. Ограниченный линейный оператор $T: H_1 \to H_2$ называется *полуфредгольмовым слева*, если его ядро конечномерно и образ замкнут. Докажите, что T полуфредгольмов слева тогда и только тогда, когда в H_1 не существует такой ортонормированной последовательности (e_n) , что $Te_n \to 0$ при $n \to \infty$.

Для получения максимальной оценки в 10 баллов достаточно полностью решить любые 5 задач. В случае решения бо́льшего количества задач дополнительные баллы также будут учтены.

На экзамене разрешается пользоваться любыми своими записями. Не разрешается общаться и пользоваться книгами, интернетом и т.п.

В решениях можно ссылаться на утверждения, доказанные в лекциях, и на сданные Вами задачи из листков.

Вариант 2

1. Найдите спектр оператора $T: \ell^2(\mathbb{Z}) \to \ell^2(\mathbb{Z})$, действующего по формуле

$$(Tx)_n = x_{n-2} + x_n + x_{n+2} \quad (x \in \ell^2(\mathbb{Z}), \ n \in \mathbb{Z}).$$

2. Компактен ли оператор

$$T \colon C[0,1] \to C[0,1], \quad (Tf)(x) = \begin{cases} \frac{1}{\sqrt{x}} \int\limits_0^x f(y) \, dy & \text{при } x > 0, \\ 0 & \text{при } x = 0. \end{cases}$$

Определение. Пусть T — ограниченный линейный оператор в банаховом пространстве X. Его аппроксимативным точечным спектром называется множество

$$\sigma_{\rm ap}(T) = \{ \lambda \in \mathbb{C} : T - \lambda \mathbf{1}_X \text{ не топологически инъективен} \}.$$

- **3.** Вычислите $\sigma_{ap}(T_r)$, где T_r правый сдвиг в ℓ^2 .
- **4.** Докажите, что $\sigma_{\rm ap}(T)\supseteq\partial\sigma(T)$ для любого T.
- **5.** Пусть X,Y банаховы пространства, $S,T\in \mathcal{B}(X,Y)$, причем T компактен. Предположим, что $\operatorname{Im} S\subseteq \operatorname{Im} T$. Докажите, что и S компактен.

Указание. Не забывайте про теорему о замкнутом графике.

6. Пусть H_1, H_2 — гильбертовы пространства. Ограниченный линейный оператор $T \colon H_1 \to H_2$ называется $nony \phi ped ron ь мовым слева, если его ядро конечномерно и образ замкнут. Докажите, что <math>T$ полуфредгольмов слева тогда и только тогда, когда существует такое c>0, что множество $\{x\in H_1: \|Tx\|\leqslant c\|x\|\}$ не содержит бесконечномерных векторных подпространств.