Final Project -Motion Analysis

Claire Langfoss, Ranit Karmakar, and Jaisil Rose Dennison

Background

A.Confined Motion

B. Free Motion

C. Drift Motion

Background

Goal:

- Write a software package which can determine the trajectory motion type of the particles
- Apply our motion classifier to supplied trajectory data set
 - Compare output against ground truth provided
- Apply motion classifier to real trajectories and find motion type

Background

Approaches:

Mean Square Displacement Analysis

Anisotropic/Isotropic Analysis

Moment Scaling Displacement

Mean Square Displacement

Features:

Calculate the MSD for different time lags:

Ensemble average:

$$\mu_{p}(\tau) = \frac{1}{N} \sum_{i=1}^{N} (|\vec{x}_{i}(\tau) - \vec{x}_{i}(0)|)^{2}$$

Assuming ergodicity ...

Time average:

$$\mu_{p}\left(\tau\right) = \frac{1}{T-\tau} \sum_{i=1}^{T-\tau} \left(\left| \vec{x} \left(i + \tau \right) - \vec{x} \left(i \right) \right| \right)^{2}$$

Used: simMultiMotionTypeTrajCVMI

Focus: durationRange

Calculating MSD: Mean displacement for particle at each time step ~ 20 of each

Mean of MSD (input into ClassificiationLearner)

Mean Square Displacement
Using: Linear Discriminant Predictions: model 1.1

Mean Square Displacement

Linear Discriminant: 85% accuracy

Quadratic Discriminant: 85% accuracy

True class Types Clarified:

1=confinded

2=free

3=drift

Isotropy Analysis

Features:

$$V_{pos} = (V_x + V_y + V_z)/N$$
 $R = \sqrt{V_{pos} \times (N+2)}$

- Mean of R
- Standard Deviation of R

Isotropy Analysis (Cont.)

Isotropy Analysis (Clustering)

Isotropy Analysis (Confusion Matrix)

- SVM: **98.1%** Accuracy

KNN: **98.1%** Accuracy

MOMENT SCALING DISPLACEMENT

1.) Calculate the 0th to 6th moment for different time lags:

$$\mu_{p}(\tau) = \frac{1}{T - \tau} \sum_{i=1}^{T - \tau} (|\vec{x}(i + \tau) - \vec{x}(i)|)^{p}, \quad p = 0, \dots, 6$$

2.) Determine how each moment scales with time lag:

MOMENT SCALING DISPLACEMENT (SVM)

MOMENT SCALING DISPLACEMENT (SVM)

SVM-86.7% ACCURACY

Quadratic Discriminant: 86.7% ACCURACY

Cross Validation Motion Classifier

Mean Square Displacement: 36% accurate using challenge data

Ideally use isotropy analysis due to high training accuracy and ability to detect switching motion

Classifying Real Trajectories

Cells Undergoing Sheet Migration

Using Mean Squared Displacement

Motion Classified as DRIFT

Limitation:

MSD cannot find switching motions

Drift vs free motion are difficult to distinguish against