ROK	Nr zespołu	Lp.	Nazwisko	Imię	Sporządził
2021	4	1	Ryś	Przemysław	
Grupa dziekanatów a		2	Penkala	Roch	X
1		3			
	Data: 03.06.2021	4			

Ćwiczenie nr 3 Typy reakcji chemicznych

1 Cel ćwiczenia

Poznanie typów reakcji chemicznych i prawa zachowania masy.

2 Opis wykonanych eksperymentów

2.1 Reakcja synezy

Wiórki miedzi umieszczono w tyglu i ogrzano nad palnikiem do ok. 400°C, po upływie 20 minut tygiel zdjęto z palnika. Następnie do jednej probówki dodano czystą (nieogrzaną) miedź, a do drugiej ogrzaną miedź. Do probówek dolano kilka cm³ rozcieńczonego H₂SO₄ i ogrzano. Potem probówki ochłodzono, zawartość przelano do czystych probówek i dodano do nich kilka kropli wodnego roztworu amoniaku.

2.2 Reakcja wymiany pojedynczej

Do dwóch probówek dolano po 2 cm³ rozcieńczonego roztworu siarczanu(VI) miedzi(II) CuSO₄. Do jednej z probówek wrzucono mały kawałek blaszki żelaznej. Przelano niewielkie ilości roztworów do czystych probówek i zadano kilkoma kroplami roztworu wodorotlenku sodu NaOH.

2.3 Reakcja wymiany podwójnej

Do pierwszej probówki zawierającej 1 cm³ roztworu kwasu siarkowego $\rm H_2SO_4$ dodano taką samą ilość roztworu chlorku baru BaCl₂. Drugą probówkę zawierającą 1 cm³ kwasu solnego HCl potraktowano roztworem węglanu sodowego $\rm Na_2CO_3$.

2.4 Reakcja egzotermiczna

Do probówki nalano około 3 cm³ wody destylowanej. Przy pomocy termometru zmierzono temperaturę wody. Następnie wprowadzono do probówki kilka pastylek NaOH. Temperaturę zmierzono ponownie.

2.5 Reakcja endotermiczna

Do probówki wprowadzono kilka kostek lodu. Przy pomocy termometru zmierzono temperaturę. Następnie wprowadzono do probówki niewielką ilość NaCl. Temperaturę zmierzono ponownie.

2.6 Reakcja odwracalna

Do czterech probówek wprowadzono po 7 kropli 0.0025 n roztworu FeCl₃ i 0.0025 n roztworu KSCN. Jedną probówkę z roztworem zachowano jako próbkę wzorcową do porównania wyników doświadczenia. Resztę roztworu rozlano do trzech probówek. Dodano do nich następujące odczynniki: do pierwszej - 1 kroplę nasyconego roztworu FeCl₃, do drugiej - 1 kroplę nasyconego roztworu KSCN, do trzeciej - kilka kryształków chlorku potasu KCl.

2.7 Reakcja hydrolizy

Do trzech probówek wsypano niewielką ilość: chlorku amonu (NH_4Cl), octanu sodu (CH_3COONa) i octanu amonu (CH_3COONH_4), a następnie dodano po 5 cm³ wody destylowanej. Później dodano błękit bromotymolowy.

3 Wyniki

3.1 Reakcja syntezy

3.1.1 Obserwacje

- 1. ogrzana miedź zmieniła barwę z rdzawozłotej na ciemnoszarą
- 2. po ogrzaniu w probówcę z czystą miedzią nie widać zmian, w probówce z ogrzaną miedzią widać zmianę barwy na niebieską
- po dodaniu wodnego NH₃ w probówce z czystą miedzią nie zaobserwowano zmian, w probówce z miedzią z początku powstaje osad, który po pewnym czasie rozpuszcza się a roztwór przybiera ciemnoniebieską barwę

3.1.2 Wnioski

- podczas ogrzewania miedź połączyła się z tlenem z powietrza
- $2 \text{Cu} + \text{O}_2 \longrightarrow 2 \text{CuO(tlenek miedzi (II)) (synteza)}$
- $CuO + H_2SO_4 \longrightarrow CuSO_4(siarczan (VI) miedzi) + H_2O (wymiana podwójna)$
- $Cu^{2+} + 6 H_2O \longrightarrow [Cu(H_2O)_6]^{2+}$ (kation heksawodomiedziowy (II)) (synteza)
- $[Cu(H_2O)_6]^{2+} + 2NH_3 \longleftrightarrow [Cu(OH)_2(H_2O)_4] + 2NH_4^+$ (dihydroksytetrawodo miedź (II) i anion amonowy) (wymiana podwójna)
- $[Cu(OH)_2(H_2O)_4] + 4NH_3 \longleftrightarrow [Cu(H_2O)_2(NH_3)_4]^{2+} + 2OH^-$ (kation diwodotetraamonomiedziowy (II)) (wymiana podwójna)

Inne syntezy:

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

 $4 Fe + 3 O_2 \longrightarrow 2 Fe_2O_3$
 $N_2 + 3 H_2 \longleftrightarrow 2 NH_3$

3.2 Reakcja wymiany pojedynczej

3.2.1 Obserwacje

- 1. roztwór CuSO₄ ma niebieską barwę
- 2. po 15 minutach w probówce z dodanym żelazem roztwór zmienił barwę na zieloną i wydzieliła się czarna stała substancja, w drugiej probówce nie zaobserwowano zmian
- 3. po dodaniu NaOH w probówce z żelazem wytworzył się rdzawy osad, w drugiej probówce wytworzył się niebieski osad

3.2.2 Wnioski

- Fe reaguje z CuSO₄
- Fe + CuSO₄ \longrightarrow FeSO₄ + Cu(wymiana pojedyncza)
- probówka z żelazem: $FeSO_4 + 2 NaOH \longrightarrow Na_2SO_4 + Fe(OH)_2 \downarrow$ (wymiana podwójna)
- druga probówka: $CuSO_4 + 2NaOH \longrightarrow Na_2SO_4 + Cu(OH)_2 \downarrow$ (wymiana podwójna)

Inne wymiany pojedyncze: $Fe + H_2SO_4 \longrightarrow FeSO_4 + H_2 \uparrow$ $2 \text{ Na} + 2 \text{ H}_2O \longrightarrow 2 \text{ NaOH} + H_2 \uparrow$ $Zn + 2 \text{ HCl} \longrightarrow ZnCl_2 + H_2 \uparrow$

3.3 Reakcja wymiany podwójnej

3.3.1 Obserwacje

- 1. w probówce z H₂SO₄ wytwarza się osad
- 2. w probówce z HCl wydziela się gaz

3.3.2 Wnioski

- pierwsza probówka: $H_2SO_4 + BaCl_2 \longrightarrow BaSO_4 \downarrow + 2HCl$
- $Ba^{2+} + SO_4^{2-} \longrightarrow BaSO_4$
- $2 \text{HCl} + \text{Na}_2 \text{CO}_3 \longrightarrow 2 \text{NaCl} + \text{H}_2 \text{O} + \text{CO}_2 \uparrow$
- $2 H^+ + CO_3^{2-} \longrightarrow H_2O + CO_2$

Inne wymiany podwójne: $Na_2O + 2 HCl \longrightarrow 2 NaCl + H_2O$ $KOH + H_2SO_4 \longrightarrow K_2SO_4 + H_2O$

3.4 Reakcja egzotermiczna

Podczas reakcji endotermicznej energia potrzebna do stworzenia lub rozerwania wiązań związków jest pobierana z otoczenia. W reakcji egzotermicznej energia powstaje w wyniku rozdzielania lub tworzenia wiązań chemicznych. Rozpuszaczanie NaOH w wodzie to reakcja egzotermiczna, więc probówka zwiększyła swoją temperaturę.

3.5 Reakcja endotermiczna

Po dodaniu NaCl lód zaczął się rozpuszczać, temperatura zmalała, więc jest to reakcja endotermiczna.

3.6 Reakcja odwracalna

- $FeCl_3 + 6 KSCN \longrightarrow K_3[Fe(SCN)_6] + 3 KCl$
- po zmieszaniu roztwór ma pomarańczową barwę
- $K = \frac{[K_3[Fe(SCN)_6][KCl]^3}{[FeCl_3][KSCN]^6}$
- roztwór w pierwszej probówce nabiera czerwonej barwy (równowaga przesuneła się w stronę produktów)
- w drugiej nabiera bardziej czerwonej barwy (równowaga przesuneła się w stronę produktów)
- w trzeciej pomarańczowa barwa zaczyna przechodzić w blado żółty (równowaga przesuneła się w stronę substratów)
- odwrotna reakcja: $K_3[Fe(SCN)_6] + 3 KCl \longrightarrow FeCl_3 + 6 KSCN$

Inne reakcje odwracalne:

$$\begin{array}{l} 2\operatorname{NaCl} + \operatorname{CaCO}_3 \longleftrightarrow \operatorname{Na_2CO}_3 + \operatorname{CaCl}_2 \downarrow \\ \operatorname{H}_2 + \operatorname{I}_2 \longleftrightarrow 2\operatorname{HI} \end{array}$$

3.7 Reakcja hydrolizy

3.7.1 Obserwacje

- 1. roztwory są bezbarwne
- 2. po dodaniu do probówek błekitu bromometylowego:
 - probówka z NH₄Cl zmieniła barwę na żółtą
 - probówka z CH₃COONa zmieniła barwę na granatową
 - probówka z CH₃COONH₄ ma zieloną barwę

3.7.2 Wnioski

- $\bullet\,$ probówka z NH₄Cl przez NH₄ $^+$ ma pH<7.6
- probówka z CH_3COONa przez CH_3COO^- ma pH > 7.6
- probówka z CH₃COONH₄ ma jony słabego kwasu i zasady więc $pH \approx 7.6$
- reakcja tych soli z wodą daje te jony

- $NH_4Cl + H_2O \longleftrightarrow NH_3 + H_3O^+ + Cl^-$
- $NH_4^+ + H_2O \longleftrightarrow NH_3 + H_3O^+$
- $CH_3COONa + H_2O \longleftrightarrow CH_3COOH + Na^+ + OH^-$
- $CH_3COO^- + H_2O \longleftrightarrow CH_3COOH + OH^-$

4 Zagadnienia do przygotowania

4.1 Zdefiniuj pojęcie reakcji chemicznej

Reakcja chemiczna to procesy w których powstają lub rozrywają się wiązania chemiczne. Udział w reakcjach chemicznych biorą atomy, jony lub cząsteczki związków chemicznych.

4.2 Jakie znasz typy reakcji chemicznych

- 1. reakcja syntezy $A + B \longrightarrow AB$
- 2. reakcja wymiany pojedynczej $AB + C \longrightarrow AC + B$
- 3. reakcja wymiany podwójnej $AB + CD \longrightarrow AC + BD$
- 4. reakcja analizy AB \longrightarrow A + B

4.3 Na czym polega reakcja endo- i egzotermiczna

Podczas reakcji endotermicznej energia potrzebna do stworzenia lub rozerwania wiązań chemicznych jest pobierana z otoczenia. W reakcji egzotermicznej energia powstaje do otoczenia w wyniku rozdzielania lub tworzenia wiązań chemicznych.

4.4 Co to jest stała równowagi chemicznej

Stała ta mówi o stosunku stężeń substratów i produktów środowiska reakcyjnego w którym reakcja przestaje zachodzić.

$$AB + CD \longrightarrow AC + BD$$

$$K = \frac{[AC][BD]}{[AB][CD]}$$