DQ - REAL ANALYSIS

JAEMIN.OH

Date: December 29, 2020.

JAEMIN.OH

2012.1

Problem 1. Consider

$$\mathcal{F} = \left\{ A \subset \mathbb{R}^n : f^{-1}(A) \in \mathcal{B}(\mathbb{R}^m) \right\}.$$

Then \mathcal{F} is a σ -algebra containing every open set of \mathbb{R}^n . Thus \mathcal{F} contains Borel σ -algebra of \mathbb{R}^n .

Problem 2. omitted.

Problem 3. Clearly, 1/q < 1/r < 1/p. Let $\theta \in (0,1)$ such that

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

Also,

2

$$|f|^r = |f|^{r\theta} |f|^{r(1-\theta)}$$

Apply Holder's inequality.

Problem 4. First, consider $f_n = |f| \wedge n$. Let $\varepsilon > 0$ be given. By using MCT, we can find $\delta > 0$ such that

$$m(E) < \delta \Rightarrow \int_{E} |f| dm < \varepsilon$$

But, the above implies the absolute continuity of F.

Problem 5. Let

$$M = \{ f \in \mathcal{H} : L(f) = 0 \}$$

Since L is bounded linear functional, it is continuous, hence M is a closed subspace of \mathcal{H} .

If $M = \mathcal{H}$, then put g = 0. If $M \neq \mathcal{H}$, then there is nonzero $h \in M^{\perp}$. Consider

$$w = hL(f) - fL(h)$$

Then L(w) = 0, so $w \in M$, thus $w \perp h$. So,

$$0 = (w|h) = L(f)(h|h) - L(h)(f|h)$$

By taking $g = \overline{L(h)}h/(h|h)$, we have proved the existence of such element.

Let g_1, g_2 be such elements. Then $L(f) = (f|g_1) = (f|g_2)$ for all $f \in \mathcal{H}$. Put $f = g_1 - g_2$. Then

$$(g_1 - g_2|g_1) = (g_1 - g_2|g_2)$$

which leads $||g_1 - g_2|| = 0$. Therefore the uniqueness follows.

Problem 6.

(a) Let E be a set of exterior measure zero. Let A be any set. Then

$$m_*(A) \ge m_*(A \cap E^c) = m_*(A \cap E^c) + m_*(A \cap E)$$

where the last term is zero by monotonicity of exterior measure.

(b) omitted.