Анализ влияния воздействия окружающей среды на модель сосуществования двух популяций

Докладчик: Абрамова Екатерина Павловна студентка 1 курса магистратуры

Научный руководитель: Рязанова Татьяна Владимировна К.ф.-м.н., доцент КТиМФ ИЕНиМ

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2, \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2, \end{cases}$$

где $\gamma = 1$, $\epsilon = 0.01$, $\alpha = 0.4$, $\delta > 0$

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2, \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2, \end{cases}$$

где $\gamma = 1$, $\epsilon = 0.01$, $\alpha = 0.4$, $\delta > 0$

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2, \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2, \end{cases}$$

где $\gamma = 1$, $\epsilon = 0.01$, $\alpha = 0.4$, $\delta > 0$

Аттракторы: устойчивость и бифуркации

- $M_0(0, 0)$,
- M₁(100, 0),

- M_2 , M_3 и M_4 из кубического уравнения,
- $M_5\left(0, -\frac{1}{\delta}\right)$

Аттракторы: устойчивость и бифуркации

- $M_0(0, 0)$,
- M₁(100, 0),

- M₂, M₃ и M₄ из кубического уравнения,
- $M_5\left(0, -\frac{1}{\delta}\right)$

- устойчивое равновесие,
- неустойчивое равновесие,
- предельный цикл

Сосуществование устойчивых аттракторов

$$\delta = 0.2$$

Сосуществование устойчивых аттракторов

 $\delta = 0.23$

Моделирование случайного внешнего воздействия

1 подход:

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 + \sigma \dot{w}_1 \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2 + \sigma \dot{w}_2 \end{cases}$$

Моделирование случайного внешнего воздействия

1 подход:

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 + \sigma \dot{w}_1 \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2 + \sigma \dot{w}_2 \end{cases}$$

2 подход:

$$\begin{cases} \dot{x} = (1 + \sigma \dot{w}_1)x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 \\ \dot{y} = -(\gamma + \sigma \dot{w}_2)y + \frac{xy}{1 + \alpha x} - \delta y^2 \end{cases}$$

Моделирование случайного внешнего воздействия

1 подход:

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 + \sigma \dot{w}_1 \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - \delta y^2 + \sigma \dot{w}_2 \end{cases}$$

2 подход:

$$\begin{cases} \dot{x} = (1 + \sigma \dot{w}_1)x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 \\ \dot{y} = -(\gamma + \sigma \dot{w}_2)y + \frac{xy}{1 + \alpha x} - \delta y^2 \end{cases}$$

Или

$$\begin{cases} \dot{x} = x - \frac{xy}{1 + \alpha x} - \varepsilon x^2 \\ \dot{y} = -\gamma y + \frac{xy}{1 + \alpha x} - (\delta + \sigma \dot{w}) y^2 \end{cases}$$

Стохастическая модель, чувствительность

Стохастическая модель, чувствительность

Стохастическая модель, чувствительность

Переход «равновесие-равновесие» ($\delta = 0.235$)

$$\sigma = 0.01$$

$$\sigma = 0.05$$

- случайные траектории,эллипс рассеивания,
- сепаратриса

Переход «равновесие-равновесие» ($\delta = 0.235$)

случайные траектории,эллипс рассеивания,сепаратриса

аддитивный шум,
параметрический шум в рождаемости жертв и смертности хищников,
параметрический шум

в конкуренции

хищников

Переход «цикл-равновесие» ($\delta = 0.21$)

$$\sigma = 0.01$$

$$\sigma = 0.05$$

- случайные траектории,
- предельный цикл,
- сепаратриса,
- внешняя полоса рассеивания

Переход «цикл-равновесие» ($\delta = 0.21$)

$$\sigma = 0.01$$

$$\sigma = 0.05$$

- случайные траектории,предельный цикл,
- сепаратриса,
- внешняя полоса рассеивания
- аддитивный шум,
- параметрический шум в рождаемости жертв и смертности хищников,
- параметрический шум в конкуренции хищников

Критическая интенсивность

- аддитивный шум,
- параметрический шум в рождаемости жертв и смертности хищников,
- параметрический шум в конкуренции хищников

Генерация большеамплитудных колебаний

 $(\delta = 0.1309, \sigma = 0.01 \text{ и } \sigma = 0.05)$

$$\sigma = 0.01$$
:

- случайные траектории,
- эллипс рассеивания,

$$\sigma = 0.05$$
:

- случайные траектории,
- эллипс рассеивания,
- сепаратриса

Генерация большеамплитудных колебаний

 $(\delta = 0.1309, \sigma = 0.01 \text{ и } \sigma = 0.05)$

 $\sigma = 0.01$:

- случайные траектории,
- эллипс рассеивания,

$$\sigma = 0.05$$
:

- случайные траектории,
- эллипс рассеивания,
- сепаратриса

Генерация большеамплитудных колебаний

 $(\delta = 0.1309, \sigma = 0.01 \text{ и } \sigma = 0.05)$

 $\sigma = 0.01$:

- случайные траектории,
- эллипс рассеивания,

$$\sigma = 0.05$$
:

- случайные траектории,
- эллипс рассеивания,

— сепаратриса

Спасибо за внимание

