GSC Big data boot camp 김현수 조현민 이화정 송재원 이동민

2nd semi project

Vehicle Loan repayment prediction

CONTENTS

01. Project Intro

- 구성원 및 역할
- 프로젝트 소개
- 데이터 구성

02. EDA & Processing

전처리

- 적용 기법 소개
- 모델링 및 성능평가

03. Modeling 04. Result & Evaluation

- 모델링 결과
- 향후 과제

조현민

이화정

• PPT

송재원

이동민

- EDA
 - DL Modeling
- ML/DL Modeling
 - ML ModelingPPT
- EDA
- ML Modeling

프로젝트 소개

Vehicle Loan repayment prediction

Problem: 비은행 금융회사(NBFC) 는 투자, 리스크 풀링, 계약 저축, 시장 중개 등 은행과 유사한 금융 서비스를 제공하는 데, 한 NBFC는 현재 차량 대출 부문의 채무 불이행 증가로 인해 수익성 문제에 직면

Goal: 고객의 대출 상환 능력에 기여하는 요소들을 살펴봄으로써 고객이 차량 대출 상환을 불이행할 가능성이 있는 지 여부를 예측

데이터 구성 - Feature

Гуре	Feature names	Description
dentifier	ID	고객 ID
	Child_Count	고객 자녀 수
	Own_House_Age	고객 소유 주택의 나이(년)
	Credit_Amount	대출 금액(\$)
	Loan_Annuity	대출 연금(\$)
	Population_Region_Relative	고객이 거주하고 있는 지역의 성 대적 인구수
	Age_Days	신청서 제출 시점의 고객 나이
	Employed_Days	대출 신청일 전 고객이 고용되어 일한 일수
	Registration_Days	대출 신청일 전 고객이 등록을 변 경한 일수
Numerical	ID_Days	대출 신청일 전 고객이 대출을 신 청한 신분증 변경 일수
	Client_Family_Members	고객 가족 구성원 수
	Score_Source_1	다른 출처에서 얻은 정규화된 점 수
	Score_Source_2	다른 출처에서 얻은 정규화된 점 수
	Score_Source_3	다른 출처에서 얻은 정규화된 점 수
	Phone_Change	대출 신청 며칠 전에 고객이 휴대 폰을 변경했는 지
	Credit_Bureau	작년 총 문의 건수
	Client_Income	고객 소득(\$)
	Social_Circle_Default	지난 60일 동안 대출 상환을 불이 행한 고객의 친구/가족 수
	Application_Process_Hour	고객이 대출을 신청한 날의 시간

Туре	Feature names	Description
	Car_Owned	다른 차량에 대한 대출을 신청하 기 전에 고객이 소유한 모든 차량
	Bike_Owned	고객이 소유한 모든 자전거
	Active_Loan	대출 신청 당시 진행 중인 다른 대출이 있는지 여부
Catagorical	House_Own	고객이 소유한 주택 수
(0 or 1 & Yes or No)	Homephone_Tag	고객이 제공한 집전화 번호
	Workphone_Working	직장 전화 번호로 연락 가능했는 지
	Client_Permanent_Match_Tag	고객 연락처 주소가 영구 주소와 일치 여부
	Client_Contact_Work_Tag	고객 직장 주소가 연락처 주소와 일치 여부
	Client_Education	고객이 달성한 최고 수준의 교육 수준
	Client_Marital_Status	고객의 결혼 상태
	Client_Gender	고객 성별
	Cleint_City_Rating	고객 도시 등급
	Loan_Contract_Type	대출 유형
Catagorical	Client_Housing_Type	고객 집 상태
(the rest)	Client_Occupation	고객 직업 유형
	Type_Organization	고객이 근무하는 조직 유형
	Application_Process_Day	고객이 대출을 신청한 요일
	Accompany_Client	고객이 대출을 신청할 때 고객과 동행한 사람
	Client_Income_Type	고객 소득 유형
etc	Mobile_Tag	고객이 제공한 휴대폰 번호(1의 값만 가짐)
		Data Source: Kaggle

데이터 구성 - Target

Туре	Target name	Description
Categorical	Default	대출 상환 불이행 여부 (이행: 0, 불이행: 1)

식별자(ID)를 제외한 38개의 컬럼을 활용하여 대출 상환 불이행 여부 예측

EDA

" 채무 불이행한 고객의 비율은 몇 % 일까? "

약 12만 건의 데이터 중 채무를 상환한 고객이 91.9%, 채무 상환을 불이행한 고객이 8.1%로

예측 라벨 값의 분포가 불균등하게 나타남을 확인 할 수 있다.

그렇다면 상환 여부에 따라 고객 간에 어떠한 차이가 존재할까?

EDA - Numerical columns

Violin Plot 결과 채무 상환 이행 여부에 따라 분포 차이가 크게 나타나지 않음을 확인

EDA - Numerical columns

Violin Plot 결과, 분포가 극단적으로 나타나는 column만 추출해서 세부적으로 시각화 했을 때 채무 상환 불이행 여부에 따라 분포 차이가 나지 않으며 상대적으로 소득이 낮고 일한 일수 또한 작은 방향으로 빈도수가 높게 나 타남

EDA - Categorical columns

Categorical columns는 Histogram Plot 결과 Numerical columns와 마찬가지로 채무 상환 이행 여부에 따라 분포 차이가 뚜렷 하게 나타나지 않음

> Y data의 라벨 값 불균형으로 인해 빈도 수 차이는 존재하나 전체적인 분포는 비슷함을 파악 가능

EDA - Missing Values

Missing Values가 10% 이상인 Columns: Credit_Bureau(15.2%) < Score_Source_3(22.1%) < Client_Occupation(34.0%) < Social_Cirecle_Default(50.8%) < Score_Source_1(56.5%) < Own_House_Age(65.7%)

EDA - Outliers

1. Type Organization

'XNA': 21085 건

Police, Trade, Hotel 등 조직 유형이 들어가 있어야 하므로 이상치 2. Client Gender

'XNA': 3 건

성별이므로 여성 혹은 남성만 들어갈 수 있으므로 이상치 3. Accompany Client

'##': 3 건

Alone, Partner, Kids등 대출 당시 고객과 동행한 이들의 유형이 들어가 있어야 하므로 이상 치

Categorical columns들을 Value_Counts()를 통해 고유값 별 개수를 센 결과 위와 같은 이상치 파악

Processing

- Drop Columns
 - ID: 식별자
 - Own_House_Age, Score_Source_1 & Score_Source_3, Social_Circle_Default: 결측치 비중이 높으므로 제거
 - Type_Organization : Client_Occupation과 중복되는 부분이라 판단하여 제거
 - Mobile_Tag: 데이터가 전부 1인 관계로 제거
 - Application_Process_Hour & Accompany_Client & Client_Income_Type: EDA결과를 통해 필요없는 컬럼이라 판단하여 제거
- Missing values & Outliers
- 이상치 값을 na_values = ['\$', '#VALUE!', '##', 'XNA', '@', '#', 'x', '&']로 묶어서 결측치로 처리 후 아래와 같이 처리
- Client_Occupation : 결측치가 다수였으나, 고객 직업 유형에 따라 소득 및 상환 이행 여부에 영향을 미칠 것이라 판단하여 Nojob으로 대체
- Categorical Columns: 0 초과 10000미만인 결측치를 대상으로 각 컬럼 별 고유값 중 랜덤하게 대체
- 나머지 Categorical Columns: One-hot encoding 적용
- Numerical Columns: 평균값으로 대체
- Oversampling(SMOTE)
- Y data의 라벨 값 분포가 불균등하게 나타나는 관계로 Oversampling을 통해서 데이터 불균형 해소

Processing - Pipeline Scaler

Type	Feature names	Description	Type	Feature names	Description
	Child_Count Credit_Amount			Car_Owned	
	Loan_Annuity			Bike_Owned	
	Population_Region_Relative				
	Age_Days		Catagorical	Active_Loan	
	Frankriad Davis		(0 or 1 & Yes or No)'' H W	House_Own	
	Employed_Days			Homephone_Tag	
Numerical	Registration_Days	StandaradScaler		Workphone_Working	Onallatingading
	ID_Days			Client_Permanent_Match_Tag	OneHotEncoding
	Client_Family_Members			Client_Contact_Work_Tag	
	Score_Source_2			Client_Education	
	Phone_Change			Client_Marital_Status Client_Gender	
	Credit_Bureau		Catagorical	Cleint_City_Rating	
	Client_Income		(the rest)	Loan_Contract_Type	
	SHORE MOOTHS			Client_Housing_Type	
				Client_Occupation	
				Application_Process_Day	

Processing - EDA

RandomForest Feature importance 하위 50개의 Feature names

Importance 하위 10개의 Feature names

Processing - EDA

RandomForest Feature importance 상위 20개의 Feature names

Model Types

^{*} Random Forest 외 ML Model에 Grid search 기법 적용하여 HPO 도출 후 모델 링

HPO(Hyper-Parameter Optimization) Stacking and XG-Boost

(ExtraTrees, RandomForest, DecisionTree)

```
params = {
    'learning_rate' : [1, 0.1, 0.01, 0.001],
    'n_estimators' : [100, 1000],
    'max_depth' : [3, 4, 5],
    'eval_metric' : ['mlogloss'],
    'n_jobs' : [-1],
    'seed' : [0],
}

grid = GridSearchCV(
    XGBClassifier(),
    params,
    refit=True, verbose=1
)
y_pred = grid.fit(S_train, y_train_over)
y_pred.best_params_
```



```
xgboost_best_params = {
    'eval_metric': 'mlogloss',
    'learning_rate': 1,
    'max_depth': 3,
    'n_estimators': 100,
    'n_jobs': -1,
    'seed': 0
}
```

Model(ML) 1. Stacking

(ExtraTrees, RandomForest, DecisionTree)

	precision	recall	f1-score	support
0 1	0,92 0,23	0,98 0,08	0,95 0,12	33619 2938
accuracy	0,58	0,53	0,90 0,54	36557 36557
macro avg weighted avg	0,30	0,90	0,34	36557

Accuracy on Training set: 0,883 Accuracy on Test set: 0,904

Model(ML) 2. XG-Boost

	precision	recall	f1-score	support
0	0,92	0,99	0,95	33619
1	0,26	0,04	0,07	2938
ассигасу			0,91	36557
macro avg	0,59	0,52	0,51	36557
weighted avg	0,87	0,91	0,88	36557

Accuracy on Training set: 0,950 Accuracy on Test set: 0,913

HPO(Hyper-Parameter Optimization) SVM

```
grid = GridSearchCV(
    svm.SVC(),
    params,
    refit=True, verbose=1
)
```


Model(ML) 3. SVM

support	f1-score	recall	precision	
33619	0,71	0,58	0,93	0
2938	0,16	0,52	0,10	1
36557	0,57			ассигасу
36557	0,44	0,55	0,51	macro avg
36557	0,67	0,57	0,87	weighted avg

Accuracy on Training set: 0,608 Accuracy on Test set: 0,574

HPO(Hyper-Parameter Optimization) RandomForest

```
params = {
        'n_estimators' : [10, 100],
        'max_depth' : [6, 8, 10, 12],
        'min_samples_leaf' : [8, 12, 18],
        'min_samples_split' : [8, 16, 20]
}
```

```
grid = GridSearchCV(
          RandomForestClassifier(),
          params,
          refit=True, verbose=1
)
y_pred = grid.fit(S_train, y_train_over)
y_pred.best_params_
```



```
randomforest_best_params = {
    'max_depth': 6,
    'min_samples_leaf': 8,
    'min_samples_split': 8,
    'n_estimators': 10
}
```

Model(ML) 4. Random Forest

	precision	recall	f1-score	support
0	0,94	0,74	0,83	33619
1	0,13	0,46	0,21	2938
ассигасу			0,72	36557
macro avg	0,54	0,60	0,52	36557
weighted avg	0,87	0,72	0,78	36557

Accuracy on Training set: 0,775 Accuracy on Test set: 0,717

HPO(Hyper-Parameter Optimization) Gradient Boosting

```
params = {
    'n_estimators' : [10, 100, 1000],
    'max_depth' : [3, 4, 5],
    'learning_rate' : [1, 0.1, 0.01, 0.001],
    'min_samples_split' : [3, 4, 5],
}

grid = GridSearchCV(
    GradientBoostingClassifier(),
    params,
    refit=True, verbose=1
)
y_pred = grid.fit(S_train, y_train_over)
y_pred.best_params_
```

```
gradientboosting_best_params = {
    'n_estimators' : 100,
    'max_depth' : 5,
    'learning_rate' : 0.01,
    'min_samples_split' : 5
}
```

Model(ML) 5. Gradient Boosting

	precision	recall	f1-score	support
0	0,94	0,79	0,85	33619
1	0,14	0,39	0,20	2938
ассигасу			0,75	36557
macro avg	0,54	0,59	0,53	36557
weighted avg	0,87	0,75	0,80	36557

Accuracy on Training set: 0,789 Accuracy on Test set: 0,753

HPO(Hyper-Parameter Optimization) Logistic Regression

```
params = {
    'penalty' : ['I1', 'I2', 'elasticnet', 'none'],
    'C' : [0.5, 1.0, 1.5],
}

grid = GridSearchCV(
    LogisticRegression(),
    params,
    refit=True, verbose=1
)
y_pred = grid.fit(S_train, y_train_over)
y_pred.best_params_
```

```
logistic_best_params = {
    'C': 0.5,
    'penalty': 'I2'
}
```

Model(ML) 6. Logistic Regression

	precision	recall	f1-score	support
0	0,95	0,65	0,77	33619
1	0,13	0,60	0,21	2938
ассигасу			0,65	36557
macro avg	0,54	0,62	0,49	36557
weighted avg	0,88	0,65	0,73	36557

Accuracy on Training set: 0,660 Accuracy on Test set: 0,647

Model(ML) 7. Pycaret (Auto ML library)

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	TT (Sec)
qda	Quadratic Discriminant Analysis	0.0803	0.5000	1.0000	0.0803	0.1487	0.0000	0.0000	9.951
nb	Naive Bayes	0.4817	0.5746	0.6157	0.0921	0.1602	0.0238	0.0467	8.197
ridge	Ridge Classifier	0.6500	0.0000	0.6017	0.1319	0.2164	0.0975	0.1444	8.169
lda	Linear Discriminant Analysis	0.6500	0.6763	0.6017	0.1319	0.2164	0.0975	0.1444	12.161
lr	Logistic Regression	0.6522	0.6766	0.5996	0.1324	0.2169	0.0982	0.1449	14.620
svm	SVM - Linear Kernel	0.6483	0.0000	0.5872	0.1307	0.2127	0.0939	0.1375	10.769
dt	Decision Tree Classifier	0.8555	0.5718	0.2338	0.1845	0.2062	0.1280	0.1291	13.377
ada	Ada Boost Classifier	0.8931	0.6499	0.1099	0.1990	0.1404	0.0890	0.0938	32.502
gbc	Gradient Boosting Classifier	0.9178	0.6647	0.0168	0.3010	0.0317	0.0234	0.0541	127.509
lightgbm	Light Gradient Boosting Machine	0.9194	0.6952	0.0072	0.4052	0.0140	0.0112	0.0446	16.242
dummy	Dummy Classifier	0.9197	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	7.972

Model(DL) 8. ANN

Model: "predict"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 140)	11760
dense_1 (Dense)	(None, 140)	19740
dense_2 (Dense)	(None, 40)	5640
dropout (Dropout)	(None, 40)	0
dense_3 (Dense)	(None, 1)	41

Total params: 37,181 Trainable params: 37,181 Non-trainable params: 0

Loss Score (0.2792655825614929)로 가장 낮은 29 번째 가중치를 사용

Model(DL) 7. ANN

		precision	recall	f1-score	support
	0	0.93	0.90	0.92	33619
	1	0.15	0.20	0.17	2938
accuracy				0.85	36557
macro	avg	0.54	0.55	0.54	36557
weighted	avg	0.87	0.85	0.86	36557

Accuracy on Training set :0.923 Accuracy on Test set :0.846

Result

Accuracy & Recall

- Recall(재현율) 지표는 모델이 양성인 것 중 양성으로 잘 맞춘 것에 대한 비율이므로 해당 지표가 가장 중요 (Recall: Test data기준 Class 1 중에 Class 1으로 잘 맞춘 비율 높을 수록 좋은 모델)
- Accuracy의 경우 Random Forest가 0.927로 가장 높게 측정되었으나 Recall값은 Logistic Regression이 0.6으로 가장 높게 측정됨
- Logistic Regression 의외의 모델들은 정확도는 높았으나 실제로는 대출상환을 하지 못한 사람들인 class 1을 잘 예측하지 못했다.

Evaluation

- EDA를 통해 살펴 봤듯이 대출 상환 이행 여부에 따라 각 속성의 특징이 뚜렷한 것이 아니라 전체적인 양상이 비슷하게 나타나 분류를 잘 해내지 못 하는 것으로 해석 가능
- 따라서 정확한 예측 모델을 만들기 위해서는 현재 변수 외 다른 변수들이 추가되어야 할 것으로 보이며, 그 외다양한 방식으로 변수 선택·파생 변수 생성 및 데이터 전처리를 통해 성능을 향상 시켜야 할 것으로 보임
- 상대적으로 Precision이 많이 떨어지는 한계가 있으므로 Class 1을 더 많이 포착해내는 것이 무척 중요할 때 활용할 수 있을 것이라 판단됨

Future Challenges

변수 간 상관계수 시각화

Bayesian Search 기법 적용을 통해 HPO 구하기

Random Forest에도 Grid Search 적용 후 비교

컬럼들 drop하지 않고 모델링 하는 등 다양한 시 도 Tree 모델의 Feature importance 확인

Under Sampling 후 결과 비교

THANK YOU