

Data-Driven Prediction of Embryo Implantation Probability Using IVF Time-lapse Imaging

David H. Silver¹, Martin Feder¹, Yael Gold-Zamir¹, Avital L. Polsky¹, Shahar Rosentraub¹, Efrat Shachor¹, Adi Weinberger¹, Pavlo Mazur², Valery D. Zukin², Alex M. Bronstein¹

² Clinic of Reproductive Medicine 'Nadiya', Kyiv, Ukraine.

³ Department of Computer Science, Technion - Israel Institute of Technology, Haifa, Israel.

Introduction

Standard of care grading: high grade Ubar prediction: failure Actual: no implantation

Standard of care grading: low grade Ubar prediction: success Actual: live birth

Methods

Data:

8000 time-lapse videos

4000 videos graded embryologist

300 videos with known implantation data

Results

Ubar version 0.717 outperforms embryologists in any classification metric

Average Embryologists Score (threshold = 3) False 13 43 False true Predicted Class

Generating 1000 shuffles of the ground-truth vector, results in classifiers with distribution the same as the data.

Conclusion & future work

Ubar significantly outperforms a panel of expert embryologists

Future work:

- More data
- More balanced data
- Patient and embryo genetic data
- Statistically meaningful prediction confidence
- Pixel-level interpretability of the prediction

THANK YOU!

info@embryonics.me

