

Metaheuristics for Vehicle Routing Problems

Fei Liu (柳斐)

Department of Computer Science City University of Hong Kong

January 19, 2021

Outline

- 1. Vehicle Routing Problem (VRP)
- 2. Metaheuristics for VRP
- 3. Conclusion

The vehicle routing problem (VRP) is a <u>combinatorial optimization</u> and <u>integer</u> <u>programming</u> problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?".

Paolo Toth

A generic verbal definition of the family of vehicle routing problems can be the following:

Given: A set of transportation requests and a fleet of vehicles.

The problem is then to find a plan for the following:

Task: Determine a set of *vehicle routes* to *perform* all (or some) transportation requests with the given vehicle fleet *at minimum cost*; in particular, decide which *vehicle handles which requests in which sequence* so that all *vehicle routes* can be *feasibly* executed.

[•] Toth, Paolo, and Daniele Vigo, eds. Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics, 2014.

• https://www.youtube.com/watch?v=OKMssWdC0I0

Vehicle Routing Problem (VRP)

Four components

- > Network
- Sites to be visited (customers to serve, tasks to process, etc.)
- > Fleet of vehicles
- > Depot(s)

Objectives: Cost & Efficiency

Constraints: Limited capacities

Many depots

Customer demand

Time windows

Precedence and synchronization

•••

Typical VRPs: Capacitated Vehicle Routing Problem (CVRP)

Vehicle Routing Problem with Backhauls (VRPB)

Vehicle Routing Problem with Split Deliveries (VRPSD)

Vehicle Routing Problem with Multiple Depot (VRPMD)

Vehicle Routing Problem with Time Windows (VRPTW)

•••

 $\bullet \quad https://www.youtube.com/watch?v=OKMssWdC0I0\\$

Dantzig and Ramser (1959) the first to introduce "Truck Dispatching Problem"

Clarke and Wright (1964) generalized this problem to a linear optimization problem "Vehicle Routing Problem"

Lenstra and Rinnooy Kan (1981) proved VRP is an NP-hard problem, exact algorithms are only efficient for small problems

1950

1960

1970

1980

2000

1. Constructive Heuristics:

Savings heuristic

sweep algorithm

2. Improvement Heuristics:

K-opt

λ-interchange

3. Exact algorithms:

Branch and Bound

Cutting Plane

Network-flows

Dynamic Programming

4. Metaheuristics:

Tabu search Genetic Algorithm

Simulated Annealing Ant Colony Algorithm

Local search methods Partical Swarm Optimization

GRASP Reinforcement Learning

Perhaps the most famous heuristic of this category is the Clarke and Wright (1964) savings heuristic

The development of exact algorithms for the VRP took off in **1981** with the publication of two papers by Christofides The development of modern heuristics for the VRP really started in the **1990s** with the advent of metaheuristics.

Overview of **applied methods**

Applied Method	Number of articles (total = 144)	Relative presence	
Metaheuristic	104	72.22%	
Classical Heuristic	26	18.06%	
Exact Method	20	13.89%	
Simulation	7	4.86%	
Real-time solution methods	6	4.17%	

Overview of **VRP variants**

Variant	Number of articles (total = 144)	Relative presence
CVRP (Capacitated)	128	88.89%
VRPTW (Time Window)	57	39.58%
HVRP (Heterogeneous)	27	18.75%
MDVRP (Multi Depot)	18	12.50%
VRPPB (Backhauls)	17	11.81%
SDVRP (Split Deliveries)	16	11.11%
DVRP (Dynamic)	15	10.42%
PVRP (Periodic)	14	9.72%
VRPSD (Stochastic Demands)	13	9.03%
VRRSPD (Simultaneous Pickup and	12	8.33%
Delivery)		
OVRP (Open)	9	6.25%
TDVRP (Time Dependent)	7	4.86%
MCVRP (Multi-Compartment)	5	3.47%
CCVRP (Cumulative)	3	2.08%

[■] Braekers, Kris, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. "The vehicle routing problem: State of the art classification and review." Computers & Industrial Engineering 99 (2016): 300-313.

NO. of Publications on "Heuristic"

Search Topic "Heuristic" on Web of Science Core Collection

• http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=C2 BORLnb5dsieTRqkbq&preferencesSaved=

NO. of Publications on "Metaheuristic"

Search Topic "Metaheuristic" on Web of Science Core Collection

• http://apps.webofknowledge.com/WOS_GeneralSearch_input.do?product=WOS&search_mode=GeneralSearch&SID=C2 BORLnb5dsieTRqkbq&preferencesSaved=

Countries

[•] Sorensen, Kenneth, Marc Sevaux, and Fred Glover. "A history of metaheuristics." arXiv preprint arXiv:1704.00853 (2017).

First Edition 2003

Second Edition 2010

Third Edition 2019

Prof. Fred W. Glover

Prof. MICHEL GENDREAU

First Edition 2003

HANDBOOK OF METAHEURISTICS

edited by
Fred Glover
Gary A. Kochenberge

CONTENTS

			viii	Contents	
			10	The Theory and Practice of Simulated Annealing	287
	List of Contributors Preface	ix		Darrall Henderson, Sheldon H. Jacobson and Alan W. Johnson	
	Pretace	xi		T	221
1	Scatter Search and Path Relinking: Advances and Applications	1	11	Iterated Local Search	321
	Fred Glover, Manuel Laguna and Rafael Marti			Helena R. Lourenço, Olivier C. Martin and Thomas Stützle	
	A To Life of The College	27	12	Multi-Start Methods	355
2	An Introduction to Tabu Search	37		Rafael Martí	
	Michel Gendreau				
3	Genetic Algorithms	55	13	Local Search and Constraint Programming	369
	Colin Reeves			Filippo Focacci, François Laburthe and Andrea Lodi	
	Conn Reeves		14	Constraint Satisfaction	405
4	Genetic Programming: Automatic Synthesis of Topologies and Numerical Parameters	83		Eugene C. Freuder and Mark Wallace	
	John R. Koza		15	Artificial Neural Networks for Combinatorial Optimization	429
				Jean-Yves Potvin and Kate A. Smith	
5	A Gentle Introduction to Memetic Algorithms	105			
	Pablo Moscato and Carlos Cotta		16	Hyper-heuristics: an Emerging Direction in Modern Search Technology	457
6	Variable Neighborhood Search	145		Edmund Burke, Graham Kendall, Jim Newall, Emma Hart,	
	Pierre Hansen and Nenad Mladenović			Peter Ross and Sonia Schulenburg	
			17	Parallel Strategies for Meta-heuristics	475
7	Guided Local Search	185		Teodor Gabriel Crainic and Michel Toulouse	
	Christos Voudouris and Edward P.K. Tsang		40		
8	Greedy Randomized Adaptive Search Procedures	219	18	Metaheuristic Class Libraries	515
0	•	219		Andreas Fink, Stefan Voß and David L. Woodruff	
	Mauricio G.C. Resende and Celso C. Ribeiro		19	Asynchronous Teams	537
9	The Ant Colony Optimization Metaheuristic: Algorithms,			Sarosh Talukdar, Sesh Murthy and Rama Akkiraju	
	Applications, and Advances	251		,	
	Marco Dorigo and Thomas Stützle			Index	557

The pre-theoretical period (until 1940) not formally studied.

The early period (1940-1980) the formal studies appear.

The method-centric period (1980-2000) truly takes on

The framework-centric period (2000-now) insight grows

The scientific period (the future)

First Edition:

- Tabu search
- Genetic algorithm
- Grasp
- Local Search methods
- **Ant Colony Optimization**

Second & Third Editions:

- A Classification of **Hyper-heuristic** Approaches: Revisit
- Reactive Search Optimization: Learning While Optimization
- **Automated Design** of Metaheuristic Algorithms

Classification # 1

Whether it evolves one or multiple solutions

Population-based

Genetic algorithm
Ant colony optimization
Differential evolution

. . .

Trajectory

Tabu search Simulated annealing Iterated local search

. . .

• https://en.wikipedia.org/wiki/Metaheuristic#cite_note-nojhan07-8

Classification # 2

Whether it **remembers the search history**

Using memory

Tabu search
Ant colony optimization

• • •

Memory-less

Simulated annealing Grasp Most local search

. .

• https://en.wikipedia.org/wiki/Metaheuristic#cite_note-nojhan07-8

• https://en.wikipedia.org/wiki/Metaheuristic#cite_note-nojhan07-8

Classification #3

Whether it is **based on inspiration**

Nature

Genetic algorithm
Ant colony optimization

• • •

Non-nature

Grasp
Most local search

. . .

Other classifications:

- Global / Local
- One neighbourhood / Multiple neighborhoods
- Static objective / Dynamic objective

•

Prof. Edmund Kieran Burke

- 2003 Hyper-heuristics: **An emerging direction** in modern search technology
- 2010 **A classification** of hyper-heuristic approaches
- 2013 Hyper-heuristics: A survey of the state of the art
- 2019 A classification of hyper-heuristic approaches: revisited
- 2020 **Recent advances** in selection hyper-heuristics

A hyper-heuristic is an automated methodology for selecting or generating heuristics to solve computational search problems.

• https://le.ac.uk/about/governance-and-management/vc-office/academic-leadership-team/deputy-vc

Prof.
Roberto Battiti

- 1996 Reactive search: Toward self-tuning heuristics
- 2008 Reactive search and intelligent optimization
- 2010 Reactive search optimization: learning while optimizing
- 2019 Reactive search optimization: learning while optimizing

Reactive Search Optimization has to do with *learning for* optimizing

Reactive Neighborhood Reactive Annealing

Reactive Objective Reactive Population

Examples:

- Variable neighborhood descent
- Non-monotonic cooling schedules

- https://webapps.unitn.it/du/en/Persona/PER0004438/Didattica
- https://intelligent-optimization.org/

Prof.
Thomas Stützle

- 2009 ParamILS: an automatic algorithm configuration framework
- 2015 Automated algorithm configuration: advances and prospects
- 2018 Automated design of metaheuristic
- 2020 Automated algorithm configuration and design

Example:

Automatic algorithm configuration

Best configuration to be used

- https://www.ulb.be/fr/thomas-stutzle
- https://iridia.ulb.ac.be/~stuetzle/

Conclusion

- 1. Time line A: Algorithms for VRP
- 2. Time line B: Metaheuristics
- 3. Time line C: Handbook of Metaheuristics

Conclusion

Time line A: Algorithms for VRP

1. Constructive Heuristics:

Savings heuristic sweep algorithm

2. Improvement Heuristics:

K-opt

 λ -interchange

3. Exact algorithms:

Branch and Bound

Cutting Plane

Network-flows

Dynamic Programming

4. Metaheuristics:

Tabu search Genetic Algorithm

Simulated Annealing Ant Colony Algorithm

Local search methods Partical Swarm Optimization

GRASP Reinforcement Learning

Conclusion

Time line B: Metaheuristics

- Pattern Search
- ...

- Evolutionary Programming
- Simplex method
- Evolution strategies
- Random search
- ...

- Differential evolution
- CMA-ES & EAD
- No free lunch
- Partical swarm optimization
- Ant colony optimization
- ...

Metaheuristic

Conclusion

Time line C: Handbook of Metaheuristics

Reference

- > Toth, Paolo, and Daniele Vigo, eds. <u>Vehicle routing: problems, methods, and applications</u>. Society for Industrial and Applied Mathematics, 2014.
- Laporte, Gilbert, Paolo Toth, and Daniele Vigo. "Vehicle routing: historical perspective and recent contributions." (2013): 1-4.
- Labadie, Nacima, et al. **Metaheuristics for vehicle routing problems**. ISTE Limited, 2016.
- Sorensen, Kenneth, Marc Sevaux, and Fred Glover. "A history of metaheuristics." arXiv preprint arXiv:1704.00853 (2017).
- Glover, Fred W., and Gary A. Kochenberger, eds. <u>Handbook of metaheuristics</u>. Springer Science & Business Media, 2006.
- ➤ Gendreau, Michel, and Jean-Yves Potvin, eds. <u>Handbook of metaheuristics</u>. New York: Springer, 2010.
- ➤ Gendreau, Michel, and Jean-Yves Potvin, eds. <u>Handbook of metaheuristics</u>. New York: Springer, 2019.

Thanks!

Metaheuristics for Vehicle Routing Problems

Name: Fei Liu

Date: January 19, 2021