

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - t-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- 4. Irrtumswahrscheinlichkeit und p-Wert
- 5. Multiples Testen

Mathe III

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - *t*-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- 4. Irrtumswahrscheinlichkeit und p-Wert
- 5. Multiples Testen

Mathe III

Motivation: Hypothesentests für Modelle

- Beispiel (Filmbewertungen). Wenn wir alle Science-Fiction Filme in Betracht ziehen, kommen die Ratings aus 2021 aus der gleichen Verteilung wie die Ratings aus 2022?
- **Ansatz**: Wir folgen dem Konstruktionsprinzip von Hypothesentests
 - 1. Festlegen eines parametrischen Modells $(\Omega, \mathcal{F}, \{P_{\theta} \mid \theta \in \Theta\})$

$$\left([1,10]^{291+266},\mathcal{B}([1,10]^{291+266}),\left\{(X_1,\ldots,X_{291},Y_1,\ldots,Y_{266})\to \prod\nolimits_{i=1}^{291}P_X(X_i)\cdot \prod\nolimits_{j=1}^{266}P_Y\!\left(Y_j\right)\right\}$$

- $H_0: P_X = P_Y$
- H_1 : $P_X \neq P_Y$

3. Wahl eines Irrtumsniveaus α

- $\alpha = 0.05 = 5\%$
- 4. Festlegen einer Entscheidungsregel
 - Welche Teststatistik kann man benutzen, deren Verteilung man unter der Nullhypothese $P_X = P_Y$ kennt?

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - t-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- **4.** Irrtumswahrscheinlichkeit und *p*-Wert
- 5. Multiples Testen

Mathe III

Nicht-parametrischer *Mann-Whitney-Wilcoxon* Test

- **Idee**: Wenn die beiden Stichproben $X_1, ..., X_n$ und $Y_1, ..., Y_m$ aus der gleichen Verteilung kommen, dann muss es gleichwahrscheinlich sein, dass $X_i > Y_j$ oder $Y_j > X_i$!
 - **Mann-Whitney-***U* **Statistik**: Führe alle $n \cdot m$ paarweisen Vergleiche von X_i und Y_j durch und zähle, wie häufig $X_i > Y_j$ (bei Gleichheit zählen wir $^1/_2$).

$$U = \sum_{i=1}^{n} \sum_{j=1}^{m} \begin{cases} 1 & \text{wenn } X_i > Y_j \\ \frac{1}{2} & \text{wenn } X_i = Y_j \\ 0 & \text{wenn } X_i < Y_j \end{cases}$$

□ **Wilcoxon-Rangsummenstatistik** W: Sortiere alle $X_1, ..., X_n$ und $Y_1, ..., Y_m$ gemeinsam und summiere die Ränge $R_1, ..., R_n$ der $X_1, ..., X_n$ nach dem Sortieren.

$$W = \sum_{i=1}^{n} R_i$$

■ **Satz** (*Mann-Whitney-Wilcoxon*). Die Teststatistiken *U* und *W* unterscheiden sich nur durch eine additive Konstante:

$$U = W - \frac{n \cdot (n+1)}{2}$$

Henry Berthold Mann (1905 – 2000)

Donald Ransom Whitney (1915 – 2007)

rank Wilcoxon (1892 – 1965)

Verteilung der Wilcoxon-Rangsummenstatistik W

■ Sei F(n, m, k) die Wahrscheinlichkeit, dass die Summe der Ränge in $X_1, ..., X_n$ kleiner oder gleich $k \in \mathbb{R}$ sind (die zweite Stichprobe ist $Y_1, ..., Y_m$).

 $F(n, m, k) = \frac{n}{n+m} \cdot F(n-1, m, k-n-m) + \frac{m}{n+m} \cdot F(n, m-1, k)$

- Die Verteilungsfunktion der W-Statistik unter der Nullhypothese kann rekursiv hergeleitet werden!
 - 1. F(n, m, k) = 0 wenn n < 0 oder m < 0 oder k < 0.
 - 2. F(1,0,k) = 0 wenn k = 0 aber F(1,0,k) = 1 wenn k > 0.
 - 3. $F(0,1,k) = 1 \text{ wenn } k \ge 0.$

Wahrscheinlichkeit, dass das größte Element $X_1, ..., X_n$ und $Y_1, ..., Y_m$ aus $X_1, ..., X_n$

kommt

Wahrscheinlichkeit, dass die Summe der Ränge in $X_1, ..., X_{n-1}$ und $Y_1, ..., Y_m$ kleiner gleich k - (n + m) ist

Wahrscheinlichkeit, dass das größte Element $X_1, ..., X_n$ und $Y_1, ..., Y_m$ aus $Y_1, ..., Y_m$ kommt

Nur ein Element Y_1 und keine Stichprobe X

Wahrscheinlichkeit, dass

die Summe der Ränge in

 $X_1, ..., X_n$ und $Y_1, ..., Y_{m-1}$

kleiner gleich k ist

Mathe III

Nur ein Element X_1 und keine Stichprobe Y

Verteilung der Wilcoxon-Rangsummenstatistik W

Beispiele der Verteilung von W

$$n = 2, m = 1$$

0.5

0.4

0.1

$$n = 3, m = 2$$

$$n = 4, m = 4$$

$$n = 8, m = 8$$

Satz (Approximative Verteilung der W-Statistik). Die Teststatistik W ist approximativ normalverteilt mit
Mathe III

$$W \sim^d \mathcal{N}\left(\frac{n\cdot(n+m+1)}{2}, \frac{n\cdot m\cdot(n+m+1)}{12}\right)$$

viaciic iii

- Bemerkung (Approximative Verteilung der W-Statistik)
 - \square Der Beweis ist kompliziert, da die $n \cdot m$ Zufallsvariablen der paarweisen Vergleiche abhängig sind.

*Mann-Whitney-Wilcoxon-*Tests

- **Daten**: Zwei Stichproben von identisch und unabhängig verteilten Zufallsvariablen $X_1, ..., X_n$ und $Y_1, ..., Y_m$.
- Nullhypothese H_0 : $P_X = P_Y$
- **Teststatistik**: Wir betrachten die W Statistik, weil unter H_0

$$W \sim^{d} \mathcal{N}\left(\frac{n \cdot (n+m+1)}{2}, \frac{n \cdot m \cdot (n+m+1)}{12}\right) \Leftrightarrow \sqrt{3} \cdot \frac{2W - n \cdot (n+m+1)}{\sqrt{n \cdot m \cdot (n+m+1)}} \stackrel{W_{n,m}}{\longrightarrow} \mathcal{M}(0,1)$$

Annahmeregion (rotes Intervall):

- $|W_{n,m}| \le z_{1-\frac{\alpha}{2}}$
- 2. $W_{n,m} \geq z_{\alpha}$
- $W_{n,m} \leq z_{1-\alpha}$

Bemerkung (Mann-Whitney-Wilcoxon-Tests)

Die Wahl der Annahmeregion hängt davon ab, was wir für eine Verschiebung des Mittelwertes erwarten.

Beispiel: Mann-Whitney-Wilcoxon-Tests

- Beispiel (Filmbewertungen). Wenn wir alle Science-Fiction Filme in Betracht ziehen, kommen die Ratings aus 2021 aus der gleichen Verteilung wie die Ratings aus 2022?
 - Ansatz: Wir berechnen die W-Statistik für diesen Datensatz

$$W = 74542.5$$

Damit ergibt sich

$$W_{n,m} \approx -4.7$$

Egal welche Annahmeregion wir benutzen, bei $\alpha = 0.05$ führt das zur Ablehnung der Nullhypothese.

- Bemerkungen (*Mann-Whitney-Wilcoxon-*Test in R)
 - Für diesen Test gibt es eine spezielle R Funktion: wilcox.test(x,y)

$$W = 31178$$
, p-value = 1.74e-06

alternative hypothesis: true location shift is not equal to 0

Beachte, dass R hier den Wert der U-Statistik als W ausgibt!

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - t-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- 4. Irrtumswahrscheinlichkeit und p-Wert
- 5. Multiples Testen

Mathe III

Motivation: *Likelihood-Ratio-*Test

- **Beispiel (Filmbewertungen)**. Wenn wir alle Science-Fiction Filme in Betracht ziehen, kommen die Ratings aus 2021 aus der gleichen Normalverteilung wie die Ratings aus 2022 bei angenommener Varianz von 3?
- Ansatz: Wir folgen dem Konstruktionsprinzip von Hypothesentests aber nehmen an, wir haben zwei Mengen von Modellen (nicht nur zwei Modelle!)
 - 1. Festlegen eines parametrischen Modells $(\Omega, \mathcal{F}, \{P_{\theta} \mid \theta \in \Theta_0 \cup \Theta_1\})$

$$\left([1,\!10]^{291+266},\mathcal{B}([1,\!10]^{291+266}),\left\{(X_1,\ldots,X_{291},Y_1,\ldots,Y_{266})\to \prod\nolimits_{i=1}^{291}\mathcal{N}(X_i;\mu_X,3)\cdot \prod\nolimits_{j=1}^{266}\mathcal{N}\big(Y_j;\mu_Y,3\big)\right\}\right)$$

$$\begin{array}{ll} \Theta_0 = \{(\mu_X, \mu_Y) \in \mathbb{R}^2 \mid \mu_X = \mu_Y\} & \longleftarrow & \text{Ein-Parameter Modell} \\ \Theta_1 = \{(\mu_X, \mu_Y) \in \mathbb{R}^2 \mid \mu_X \neq \mu_Y\} & \longleftarrow & \text{Zwei-Parameter Modell} \end{array}$$

- 2. Formulierung von Hypothesen
 - $H_0: \theta \in \Theta_0$
 - $H_1: \theta \in \Theta_1$

2022 (266 Filme)

Likelihood-Ratio-Test

- Wir vergleichen ganze Mengen von parametrischen Modellen, welche den Daten unterliegen sollen.
- Frage: Welcher der Verteilungen in den parametrischen Modellen Θ_0 und Θ_1 benutzen wir, wenn wir einen Datensatz gegeben haben?
 - Antwort: Die wahrscheinlichste Verteilung der Daten auch bekannt als die Maximum-Likelihood Schätzung in den beiden parametrischen Modellen!
- **Definition** (*Likelihood*). Ist $(\Omega, \mathcal{F}, \{P_{\theta} \mid \theta \in \Theta\})$ ein parametrisches Modell und sei $x \in \Omega$ eine Stichprobe, so heißt die Funktion $\mathcal{L}: \Theta \times \Omega \to [0, +\infty)$ mit $\mathcal{L}(\theta, x) = p_{\theta}(x)$ die zugehörige *Likelihood*, wobei p_{θ} die (Zähl)dichte von P_{θ} ist.
- **Teststatistik des Likelihood-Ratio-Tests** für einen Datensatz *x*

Samuel Stanley Wilks (1906 – 1964)

Mathe III

- Bemerkung (Likelihood-Ratio-Test)
 - Unter der Nullhypothese konvergiert λ_{LR} gegen Null mit steigender Stichprobengröße!

Likelihood-Ratio-Test

■ Satz (von Wilks). Für ein parametrisches Modell $(\mathcal{F}^n, \mathcal{B}(\mathcal{F}^n), \{P_\theta \mid \theta \in \Theta_0 \cup \Theta_1\}), \mathcal{F} \subseteq \mathbb{R}$ und $n \to \infty$ folgt unter der Nullhypothese, dass

$$\lambda_{LR} \sim^d \chi^2(r)$$

wobei r der Unterschied der frei wählbaren Parameter in $\Theta_0 \cup \Theta_1$ und Θ_0 ist.

■ Annahmeregion (rotes Intervall): Da unter H_0 die wahrscheinlichen Werte von λ_{LR} nahe Null sind, wählen wir

$$\lambda_{LR} \le c_{1-\alpha}$$

- **Beispiel (Filmbewertungen)**. Wenn wir alle Science-Fiction Filme in Betracht ziehen, kommen die Ratings aus 2021 aus der gleichen Verteilung wie die Ratings aus 2022?
 - Im Modell Θ_0 ist $\hat{\mu}_X = \hat{\mu}_Y = 5.39$ und $\log \left(\mathcal{L} \left((\hat{\mu}_X, \hat{\mu}_Y), x \right) \right) = -1137.07$
 - Im Modell $\Theta_0 \cup \Theta_1$ ist $\hat{\mu}_X = 5.05$ und $\hat{\mu}_Y = 5.74$ und $\log \left(\mathcal{L} \left((\hat{\mu}_X, \hat{\mu}_Y), x \right) \right) = -1125.76$
 - Daraus folgt, dass $\lambda_{LR} = 22.62 > 3.84 = c_{0.95}$ für r = 2 1 = 1

daher Ablehnung der Nullhypothese.

Mathe III

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - t-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- 4. Irrtumswahrscheinlichkeit und p-Wert
- 5. Multiples Testen

Mathe III

Irrtumswahrscheinlichkeit und *p*-Wert

Wiederholung: Konstruktion eines Hypothesentests in 4 Schritten

- 1. Festlegen eines parametrischen Modells $(\Omega, \mathcal{F}, \{P_{\theta} \mid \theta \in \Theta\})$
- 2. Formulierung von Null- und Alternativhypothese
- 3. Wahl eines Irrtumsniveaus α
- 4. Konstruktion einer Ablehnungsregion (rejection region) unter Nullhypothese
- Es ist **garantiert**, dass der Fehler 1. Art (d.h., $P(\text{Entscheidung für } H_1 \mid H_0))$ maximal so hoch ist, wie das Irrtumsniveau über die wiederholte Anwendung des Hypothesentests!
 - Diese Garantie gibt es, da die Konstruktion **nicht** von der Stichprobe abhängt und damit auch nicht die Entscheidung!
- **Alternative** p-**Wert**: Wir berechnen aus der Stichprobe, für welches Irrtumsniveau $\alpha(X)$ die Stichprobe in der Ablehnungsregion gewesen wäre!
- Bemerkungen (p-Wert)
 - $\ \square$ Das stichprobenabhängige Irrtumsniveau wird auch p-Wert genannt.
 - Intuitiv: bei welchem Irrtumsniveau lehnt der Test die Nullhypothese ab.

Verteilung von *p*-Werten

- Da der p-Wert von der Stichprobe abhängt, hat er auch eine Verteilung!
- Satz (Verteilung von p-Werten). Für ein parametrisches Modell $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{P_\theta \mid \theta \in \mathbb{R}\})$ und Nullhypothesen H_0 der Form $\theta = \theta_0$ gilt, dass der p-Wert $\alpha(X)$ gleichverteilt auf dem Intervall [0,1] ist, d.h.

$$\alpha(X) \sim \mathcal{U}([0,1])$$

■ **Beispiel (Verteilung von** *p***-Werten)**. Wir simulieren $X \sim \mathcal{N}(0,1)$

Bemerkungen (p-Wert)

- p-Werte ist **keine** Wahrscheinlichkeit, dass die Nullhypothese wahr ist!

Mathe III

Testtheorie

- 1. Konzept der Hypothesentests
- 2. Hypothesentests für den Erwartungswert
 - Gauss-Test
 - t-Test
- 3. Hypothesentests für Modelle
 - Mann-Whitney-Wilcoxon-Test
 - Likelihood Ratio-Test
- 4. Irrtumswahrscheinlichkeit und p-Wert
- 5. Multiples Testen

Mathe III

Multiple Hypothesentests

- Bis jetzt haben wir nur Hypothesentests betrachtet, die eine logische Aussage als Nullhypothese repräsentieren (Elementarhypothesen).
 - Beispiele (Filmbewertungen). Basierend auf IMDb:
 - 1. H_1 : Das durchschnittliche Rating von Science-Fiction Filmen ist größer als 5.6.
 - 2. H_2 : Das durchschnittliche Rating von Science-Fiction Filmen ist kleiner als 6.5.
- Bei einem **multiplen Test** konstruieren wir eine (globale) Nullhypothese H_0 durch Konjunktion von m Elementarhypothesen: $H_0 = H_1 \cap \cdots \cap H_m$.
 - Beispiele (Filmbewertungen). Basierend auf IMDb:
 - 1. H_0 : Das durchschnittliche Rating von Science-Fiction Filmen ist zwischen 5.6 und 6.5.
- **Frage**: Wenn wir die Hypothesentests H_i auf einem Irrtumsniveau von α ausführen, wie hoch ist die Wahrscheinlichkeit eines Typ I Fehlers von H_0 ?
- Antwort:

Mathe III

Bonferroni-Korrektur

- **Satz (Bonferroni-Korrektur)**. Für eine Familie von m Nullhypothesen $\{H_1, \dots, H_m\}$ lehnt man jede der Nullhypothesen auf einem Irrtumsniveau von α/m ab. Dann ist garantiert, dass die globale Nullhypothese $H_0 = H_1 \cap \cdots \cap H_m$ das Irrtumsniveau von α einhält.
- **Beweis**: Folgt direkt aus $P(A \cup B) \le P(A) + P(B)$
- **Beispiel (Gauss-Tests)**. Wir betrachten die folgenden zwei Elementarhypothesen

1.
$$H_1: E[X] \ge \mu_0$$

2.
$$H_2: E[X] \le \mu_0$$

Dann ist die globale Hypothese $H_0 = H_1 \cap H_2$: $E[X] = \mu_0$. Damit sind die Ablehnungsregionen:

1.
$$\left(-\infty, \mu_0 + z_{\frac{\alpha}{2}} \cdot \frac{\sigma_X}{\sqrt{n}}\right]$$

2.
$$\left[\mu_0 + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma_X}{\sqrt{n}}, +\infty\right)$$

Daher entspricht die Annahmeregion des multiplen Tests:

$$\left[\mu_0 + z_{\frac{\alpha}{2}} \cdot \frac{\sigma_X}{\sqrt{n}}, \mu_0 + z_{1-\frac{\alpha}{2}} \cdot \frac{\sigma_X}{\sqrt{n}}\right] \blacktriangleleft$$

Entspricht genau der Annahmeregion des zweiseitigen Gauss-Tests!

Carlo Emilio Bonferroni (1892 – 1960)

20/21

Viel Spaß bis zur nächsten Vorlesung!