Fundamentos de Análise de Complexidade

Unidade I: Análise de Algoritmos

Agenda

- Conceitos básicos da Matemática
- Noções de complexidade
- Aspectos da análise de algoritmos
- Notações Θ , O e Ω
- Exercícios

Conceitos Básicos da Matemática

Exercício Resolvido (1): Resolva as Equações

a)
$$2^{10} =$$

b)
$$lg(1024) =$$

c)
$$lg(17) =$$

d)
$$\lg(17) =$$

Exercício Resolvido (1): Resolva as Equações

a)
$$2^{10} = 1024$$

b)
$$\lg(1024) = 10$$

c)
$$\lg(17) = 4,08746284125034$$

d)
$$\lg(17) = 5$$

e)
$$||g(17)|| = 4$$

a)
$$f(n) = n^3$$

b)
$$f(n) = n^2$$

c)
$$f(n) = n \times lg(n)$$

$$d) f(n) = n$$

e)
$$f(n) = sqrt(n)$$

$$f) f(n) = lg(n)$$

Noções de Complexidade

Contagem de Operações

- Trivial em estruturas sequenciais
- Nas estruturas condicionais, consideramos o custo da condição mais ou a lista verdadeira ou a lista falsa
- Nas estruturas de repetição, consideramos o número de repetições que podem ser simples, duplas ou com custo logarítmico
- Podem ter pior, melhor e caso médio

Funções de Complexidade

- Mensuram a quantidade de recursos (como tempo e espaço) que um algoritmo requer à medida que o tamanho da entrada aumenta
- Um exemplo do Algoritmo de ordenação por Seleção:

$$c(n)=rac{n^2}{2}-rac{n}{2}$$
 $m(n)=3n-3$

Supondo que n = 100, temos:

$$c(100) = \frac{100^2}{2} - \frac{100}{2} = 4950$$
 $m(100) = 3 \times 100 - 3 = 997$

Notação Θ

- Indica a tendência de crescimento de uma função de complexidade
- Ignora as constantes e os termos com menor crescimento das funções de complexidade
- Por exemplo:
 - $\circ f(n) = 3n + 2n^2 \text{ operações } \in \Theta(n^2)$
 - $f(n) = 5n + 4n^3$ operações é $\Theta(n^3)$
 - f(n) = lg(n) + n operações é $\Theta(n)$

Exercício Resolvido (3)

Calcule o número de subtrações que o código abaixo realiza:

```
if (a - 5 < b - 3){
    i--;
    --b;
    a -= 3;
} else {
    j--;
}</pre>
```

Exercício Resolvido (3)

• Calcule o número de subtrações que o código abaixo realiza:

Exercício Resolvido (4)

• Calcule o número de subtrações que o código abaixo realiza:

Exercício Resolvido (4)

Calcule o número de subtrações que o código abaixo realiza:

```
/
```

Todos os casos

$$f(n) = 2n, \Theta(n)$$

Exercício Resolvido (5)

• Calcule o número de subtrações que o código abaixo realiza:

```
for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++){
        a--;
        b--;
        c--;
}</pre>
```

Exercício Resolvido (5)

• Calcule o número de subtrações que o código abaixo realiza:

```
/
```

```
for (int i = 0; i < n; i++){
    for (int j = 0; j < n; j++){
        a--;
        b--;
        c--;
    }
}</pre>
```

Todos os casos

$$f(n) = 3n^2$$
, $\Theta(n^2)$

Exercício Resolvido (6)

Calcule o número de multiplicações que o código abaixo realiza:

```
...
for (int i = n; i > 0; i /= 2){
    a *= 2;
}
```

Exercício Resolvido (6)

Calcule o número de multiplicações que o código abaixo realiza:

```
/
```

```
...
for (int i = n; i > 0; i /= 2){
    a *= 2;
}
```

Todos os casos

$$f(n) = \lfloor \lg(n) \rfloor + 1, \Theta(\lg n)$$

Aspectos da Análise de Algoritmos

Restrição dos Algoritmos

- Nossos algoritmos devem ser implementados em um computador
- Restrições do computador: capacidade computacional e armazenamento
- Logo, devemos analisar a complexidade de se implementar algoritmos

Um algoritmo que leva séculos para terminar é uma opção inadequada

Problema do Caixeiro Viajante

Problema do Caixeiro Viajante

Número de combinações:

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Número de cidades	Tempo de execução
5	5 s
6	5 x (5s) = 25 s
7	6 x (25s) = 150 s = 2,5 min
8	7 x (2,5 min) = 17,5 min
9	8 x (17,5 min) = 140 min = 2,34 h
10	9 x (2,34 h) = 21 h
11	10 x (21 h) = 210 = 8,75 dias
12	11 x (8,75 dias) = 96,25 dias
13	12 x (96,25 dias) = 1155 = 3,15 anos
14	13 x (3,15 anos) = 41,02 anos
15	14 x (41,02 anos) = 5,74 séculos
16	15 x (5,74 séculos) = 8,6 milênios

Rascunho do algoritmo força bruta para encontrar a solução ótima do PCV

Observação (1): Na verdade, a solução ótima para o PCV é 2x mais rápida que a apresentada, contudo, isso é "indiferente" na tendência de crescimento

Observação (2): Se tivermos um computador 100 vezes mais rápido, isso também será "indiferente" na tendência de crescimento

Métricas para a Análise de Complexidade

• Tempo de execução

Espaço de memória ocupado

Energia

Outros...

Tipos de Análise de Complexidade

 Análise de um algoritmo particular: analisamos o custo de um algoritmo específico para um problema específico

- Análise de uma classe (ou família) de algoritmos: analisamos o menor custo possível para resolver um problema específico
 - Todo problema tem um nível mínimo de dificuldade para ser resolvido

Como Medir o Custo de um Algoritmo

PUC Minas Virtual

Restrições no Modelo do Cronômetro

- Hardware
- Arquitetura
- Sistema Operacional
- Linguagem
- Compilador

Exemplo de Otimização do Compilador

```
for (int i = 0; i < 20; i++){
      array[i] = i;
}</pre>
```


Qual é a vantagem de cada um dos códigos?

```
array [0] = 0;
array [1] = 1;
...
array [19] = 19;
```

Ainda sobre Otimização de Compiladores ...

- Frequentemente, alunos fazem otimizações desnecessárias em termos de eficiência
- Por exemplo, frequentemente, o compilador gera o mesmo código objeto para if-else-if e switch-case; for e while; entre outros...

Como Medir o Custo de um Algoritmo

PUC Minas Virtual

Como Medir o Custo de um Algoritmo

Modelo

Matemático

Modelo Matemático para Contar Operações

- Determinamos e contamos as operações relevantes
- O custo total de um algoritmo é igual a soma do custo de suas operações
- Desconsideramos sobrecargas de gerenciamento de memória ou E/S
- A menos que dito o contrário, consideramos o pior caso
- Precisamos definir a função de complexidade

Algoritmo Ótimo

Algoritmo cujo custo é igual ao menor custo possível

 Apresente a função de complexidade de tempo (número de comparações entre elementos do array) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

Este algoritmo é ótimo?

• Apresente a função de complexidade de tempo (número de comparações entre elementos do *array*) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

Este algoritmo é ótimo?

PUC Minas Virtual

 Apresente a função de complexidade de tempo (número de <u>comparações</u> entre elementos do <u>array</u>) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

```
Melhor caso: elemento desejado na primeira posição t(n) = 1
Pior caso: elemento desejado não está no array ou está na última posição
```

t(n) = n

 Apresente a função de complexidade de tempo (número de <u>comparações</u> <u>entre elementos do array</u>) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

```
Melhor caso: elemento desejado na primeira posição t(n) = 1
```

<u>Pior caso</u>: elemento desejado não está no array ou está na última posição

$$t(n) = n$$

Este algoritmo é ótimo?

 Apresente a função de complexidade de tempo (número de <u>comparações</u> <u>entre elementos do array</u>) da pesquisa sequencial no melhor e no pior caso

```
boolean resp = false;

for (int i = 0; i < n; i++){
    if (array[i] == x){
        resp = true;
        i = n;
    }
}</pre>
```

Melhor caso: elemento desejado na primeira posição

$$t(n) = 1$$

<u>Pior caso</u>: elemento desejado não está no array ou está na última posição

$$t(n) = n$$

Este algoritmo é ótimo? Sim porque temos que testar todos os elementos para garantir nossa resposta

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

• Um aluno deve procurar um valor em um *array* de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o *array* e, em seguida, aplicar uma pesquisa binária. O que fazer?

PUC Minas Virtual

 Um aluno deve procurar um valor em um array de números reais. Ele tem duas alternativas. Primeiro, executar uma pesquisa sequencial. Segundo, ordenar o array e, em seguida, aplicar uma pesquisa binária. O que fazer?

O aluno deve escolher a primeira opção, pois a pesquisa sequencial tem custo $\Theta(n)$. A segunda opção tem custo $\Theta(n \times \lg n)$ para ordenar mais $\Theta(\lg n)$ para a pesquisa binária

Notações Θ , $O \in \Omega$

Notações Θ , $O \in \Omega$

Regras gerais

Operações

Definições

Regras Gerais para das Notações Θ , O e Ω

- Indica a tendência de crescimento de uma função de complexidade
- Ignora as constantes e os termos com menor crescimento das funções de complexidade
- Por exemplo:
 - $\circ f(n) = 3n + 2n^2 \text{ operações } \in \Theta(n^2), O(n^2) \in \Omega(n^2)$
 - o $f(n) = 5n + 4n^3$ operações é $\Theta(n^3)$, $O(n^3)$ e $\Omega(n^3)$
 - f(n) = lg(n) + n operações é $\Theta(n)$, O(n) e $\Omega(n)$

Diferença entre as Notações Θ , O e Ω

• • • o limite justo

• O é o limite superior

• Ω é o limite inferior

Diferença entre as Notações Θ , O e Ω

 O é o limite superior, logo, se um algoritmo é O(f(n)), ele também será O(g(n)) para toda função g(n) tal que "g(n) é maior que f(n)"

Ω é o limite inferior, logo, se um algoritmo é Ω(f(n)), ele também será
 Ω(g(n)) para toda função g(n) tal que "g(n) é menor que f(n)"

é o limite justo, logo, g(n) é O(f(n)) and Ω(f(n)) se e somente se g(n) é Θ(f(n))

- a) $3n^2 + 5n + 1 \notin O(n)$:
- b) $3n^2 + 5n + 1 \notin O(n^2)$:
- c) $3n^2 + 5n + 1 \notin O(n^3)$:
- d) $3n^2 + 5n + 1 \in \Omega(n)$:
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$:
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
- g) $3n^2 + 5n + 1 \in \Theta(n)$:
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$:
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- a) $3n^2 + 5n + 1 \notin O(n)$:
- b) $3n^2 + 5n + 1 \notin O(n^2)$:
- c) $3n^2 + 5n + 1 \notin O(n^3)$:
- d) $3n^2 + 5n + 1 \in \Omega(n)$:
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$:
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
- g) $3n^2 + 5n + 1 \in \Theta(n)$:
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$:
- i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- a) $3n^2 + 5n + 1 \notin O(n)$:
- b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
- c) $3n^2 + 5n + 1 \notin O(n^3)$:
- d) $3n^2 + 5n + 1 \in \Omega(n)$:
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
- g) $3n^2 + 5n + 1 \in \Theta(n)$:
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- a) $3n^2 + 5n + 1 \notin O(n)$:
- b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
- c) $3n^2 + 5n + 1 \in O(n^3)$: verdadeira
- d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$:
- g) $3n^2 + 5n + 1 \in \Theta(n)$:
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- a) $3n^2 + 5n + 1 \in O(n)$: falsa
- b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
- c) $3n^2 + 5n + 1 \in O(n^3)$: verdadeira
- d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
- g) $3n^2 + 5n + 1 \in \Theta(n)$:
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$:

- a) $3n^2 + 5n + 1 \in O(n)$: falsa
- b) $3n^2 + 5n + 1 \in O(n^2)$: verdadeira
- c) $3n^2 + 5n + 1 \in O(n^3)$: verdadeira
- d) $3n^2 + 5n + 1 \in \Omega(n)$: verdadeira
- e) $3n^2 + 5n + 1 \in \Omega(n^2)$: verdadeira
- f) $3n^2 + 5n + 1 \in \Omega(n^3)$: falsa
- g) $3n^2 + 5n + 1 \in \Theta(n)$: falsa
- h) $3n^2 + 5n + 1 \in \Theta(n^2)$: verdadeira
 - i) $3n^2 + 5n + 1 \in \Theta(n^3)$: falsa

Operações com as Notações Θ , O e Ω

- 1) $f(n) = \Theta(f(n))$
- 2) $c \times \Theta(f(n)) = \Theta(f(n))$
- 3) $\Theta(f(n)) + \Theta(f(n)) = \Theta(f(n))$
- 4) $\Theta(\Theta(f(n))) = \Theta(f(n))$
- 5) $\Theta(f(n)) + \Theta(g(n)) = \Theta(máximo(f(n),g(n)))$
- 6) $\Theta(f(n)) \times \Theta(g(n)) = \Theta(f(n) \times g(n))$
- 7) $f(n) \times \Theta(g(n)) = \Theta(f(n) \times g(n))$
- *) As mesmas propriedades são aplicadas para Ω e O

• Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
     seleção();
}</pre>
```

• Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
     seleção();
}</pre>
```


PUC Minas Virtual

• Sabendo que o Algoritmo de Seleção faz $\Theta(n^2)$ comparações entre registros, quantas dessas comparações temos no código abaixo? Justifique

```
for (int i = 0; i < n; i++){
     seleção();
}</pre>
```


RESPOSTA: Neste caso, executamos o Seleção n vezes: $n \times \Theta(n^2) = \Theta(n^3)$

• Dado $f(n) = 3n^2 - 5n - 9$, $g(n) = n \cdot lg(n)$, $l(n) = n \cdot lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo (use a notação Θ):

- a) h(n) + g(n) f(n)
- b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n))$
- c) f(n) x g(n)
- d) g(n) x l(n) + h(n)
- e) f(n) x g(n) x I(n)
- f) $\Theta(\Theta(\Theta(\Theta(f(n))))$

- Dado $f(n) = 3n^2 5n 9$, g(n) = n.lg(n), $l(n) = n.lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo (use a notação Θ):
 - a) h(n) + g(n) f(n)
 - b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n))$
 - c) f(n) x g(n)
 - d) g(n) x l(n) + h(n)
 - e) f(n) x g(n) x I(n)
 - f) $\Theta(\Theta(\Theta(\Theta(f(n))))$

- Dado $f(n) = 3n^2 5n 9$, g(n) = n.lg(n), $l(n) = n.lg^2(n)$ e $h(n) = 99n^8$, qual é a ordem de complexidade das operações abaixo (use a notação Θ):
 - a) $h(n) + g(n) f(n) \Rightarrow [99n^8] + [n.lg(n)] [3n^2-5n-9] \Rightarrow \Theta(n^8)$
 - b) $\Theta(h(n)) + \Theta(g(n)) \Theta(f(n)) \Rightarrow \Theta(n^8) + \Theta(n \cdot \lg(n)) \Theta(n^2) \Rightarrow \Theta(n^8)$
 - c) $f(n) \times g(n) \Rightarrow \Theta(n^2) \times \Theta(n.lg(n)) \Rightarrow \Theta(n^3.lg(n))$
 - d) $g(n) \times I(n) + h(n) \Rightarrow \Theta(n.lg(n)) \times \Theta(n.lg^2(n)) + \Theta(n^8) \Rightarrow \Theta(n^8)$
 - e) $f(n) x g(n) x l(n) \Rightarrow \Theta(n^2) x \Theta(n.lg(n)) x \Theta(n.lg^2(n)) \Rightarrow \Theta(n^4.lg^3(n))$
 - f) $\Theta(\Theta(\Theta(\Theta(f(n))))) \Rightarrow \Theta(n^2)$

• $g(n) \in O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

PUC Minas Virtual

• $g(n) \in O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

f(n) é um limite assintótico superior para g(n)

• $g(n) \in O(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

 $g(n) \in O(f(n))$, se existirem as constantes positivas c e m tais que, para $n \ge m$, temos que $|g(n)| \le c \times |f(n)|$

O comportamento assintótico das funções representa o limite quando n cresce

PUC Minas Virtual

Dada a definição da notação O:

- a) Mostre os valores de c e m tal que, para n ≥ m, |3n² + 5n +1| ≤ c x |n²|, provando que 3n² + 5n + 1 é O(n²)
- b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1 \notin O(n^3)$
- c) Prove que $3n^2 + 5n + 1$ <u>não é</u> O(n)

- Dada a definição da notação O:
 - a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1 \in O(n^2)$
 - b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1 \in O(n^3)$
 - c) Prove que $3n^2 + 5n + 1 \underline{\text{não } \acute{e}} O(n)$

Dada a definição da notação O:

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1 \in O(n^2)$

Para que tal inequação seja verdadeira, c tem que ser maior do que três (e.g., quatro)

- Dada a definição da notação O:
 - a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1 \in O(n^2)$

Dada a definição da notação O:

a) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^2|$, provando que $3n^2 + 5n + 1$ é $O(n^2)$

- Dada a definição da notação O:
 - b) Mostre os valores de c e m tal que, para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n^3|$, provando que $3n^2 + 5n + 1 \notin O(n^3)$

RESPOSTA: Novamente, (c = 4 e m = 5,7) e (c = 5 e m = 2,7)

Dada a definição da notação O:

c) Prove que
$$3n^2 + 5n + 1 \text{ } \frac{\text{não } \acute{e}}{\text{O(n)}}$$

RESPOSTA: Não existe par (c, m) tal que para $n \ge m$, $|3n^2 + 5n + 1| \le c \times |n|$ seja verdadeira. Aumentando o valor de c, apenas retardamos o momento em que a curva quadrática supera a linear

Dada a definição da notação O:

c) Prove que $3n^2 + 5n + 1$ <u>não é</u> O(n)

	Fazendo C = 100			
n	$g(n) = 3n^2 + 5n + 1$	C x f(n) = 100 x n		
0	1	0		
5	101	500		
10	351	1000		
15	751	1500		
20	1301	2000		
25	2001	2500		
30	2851	3000		
35	3851	3500		
40	5001	4000		
45	6301	4500		
50	7751	5000		

	Fazendo C = 1000				
n	$g(n) = 3n^2 + 5n + 1$	C x f(n) = 1000 x n			
0	1	0			
50	7751	50000			
100	30501	100000			
150	68251	150000			
200	121001	200000			
250	188751	250000			
300	271501	300000			
350	369251	350000			
400	482001	400000			
450	50 609751 450000				
500	752501	500000			

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

• $g(n) \in \Omega(f(n))$, se existirem as constantes positivas $c \in m$ tais que, para $n \ge m$, temos que $|g(n)| \ge c \times |f(n)|$

• $g(n) \in \Theta(f(n))$, se existirem constantes positivas c_1 , c_2 e m tais que, para $n \ge m$, temos que $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$

• $g(n) \in \Theta(f(n))$, se existirem constantes positivas c_1 , c_2 e m tais que, para $n \ge m$, temos que $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$

f(n) é um limite assintótico justo para g(n)

g(n) é ⊕(f(n)), se existirem constantes positivas c₁, c₂ e m tais que, para n ≥ m, temos que c₁ x |f(n)| ≤ |g(n)| ≤ c₂ x |f(n)|

Se g(n) é O(f(n)) e Ω (f(n)), então, g(n) é Θ (f(n))

• $g(n) \in \Theta(f(n))$, se existirem constantes positivas c_1 , c_2 e m tais que, para $n \ge m$, temos que $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$

Classes de Algoritmos

- Constante: $\Theta(1)$
- Logarítmico: $\Theta(\lg n)$
- Linear: $\Theta(n)$
- Linear-logarítmico: $\Theta(n \times \lg n)$
- Quadrático: $\Theta(n^2)$
- Cúbico: $\Theta(n^3)$
- Exponencial: $\Theta(c^n)$
- Fatorial: $\Theta(n!)$

Algoritmos Polinomiais

- Um algoritmo é polinomial se é $\Theta(n^p)$ para algum inteiro p
- Problemas com algoritmos polinomiais são considerados tratáveis
- Problemas para os quais não há algoritmos polinomiais são considerados intratáveis
- Classes de problemas e o problema $P \stackrel{?}{=} NP$

 Apresente a função e a ordem de complexidade para o número de comparações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```

 Apresente a função e a ordem de complexidade para o número de comparações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```


Apresente a função e a ordem de complexidade para o número de comparações

de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```


 Apresente a função e a ordem de complexidade para o número de movimentações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```

 Apresente a função e a ordem de complexidade para o número de movimentações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```


 Apresente a função e a ordem de complexidade para o número de movimentações de registros no pior e melhor caso

```
void imprimirMaxMin(int [] array, int n){
      int max, min;
      if (array[0] > array[1]){
             max = array[0];
             min = array[1];
      } else {
             max = array[1];
             min = array[0];
      for (int i = 2; i < n; i++){
             if (array[i] > max){
                   max = array[i];
             } else if (array[i] < min){</pre>
                   min = array[i];
```

Função de Complexidade para Movimentações			
Pior	f(n) = 2 + (n - 2)		
Melhor	f(n) = 2 + (n - 2) x 0		

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
i = 0;
while (i < n) {
        i++;     a--;
}
if (b > c) {
        i--;
} else {
        i--;
        a--;
}
```

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
i = 0;
while (i < n) {
      j++;
                a--;
if (b > c) {
      i--;
} else {
      a--;
```


Apresente a função e a ordem de complexidade para o número de

subtrações para o pior e melhor caso

Função de Complexidade			
Pior	f(n) = n + 2		
Melhor	f(n) = n +1		

Ordem de Complexidade				
Pior	0(-) 0(-) - 0(-)			
Melhor	$O(n)$, $\Omega(n)$ e $\Theta(n)$			

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso


```
for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
        a--;
        b--;
    }
    c--;
}</pre>
```

Função de Complexidade

Todos os casos f(n

$$f(n) = (2n + 1)n$$

Ordem de Complexidade

Todos os casos

$$O(n^2)$$
, $\Omega(n^2)$ e $\Theta(n^2)$

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```

 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso

```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
        b--;
    }
}</pre>
```


 Apresente a função e a ordem de complexidade para o número de subtrações para o pior e melhor caso


```
for (i = 0; i < n; i++) {
    for (j = 1; j <= n; j *= 2) {
         b--;
    }
}</pre>
```

Todos os casos $f(n) = (\lfloor \lg(n) \rfloor + 1) x n = n x \lfloor \lg(n) \rfloor + n$

Ordem de Complexidade				
Todos os casos	O(n x lg(n)), Ω (n x lg(n)) e Θ (n x lg(n))			

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n			747	
1				
(3/2)n				
2n ³			(5/2/	
2 ⁿ			107	
3n ²			milli	
1000			Alltan	
(3/2) ⁿ				

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n			747	
1				
(3/2)n				
2n³				
2 ⁿ				
3n ²				
1000				se!
(3/2) ⁿ				

 Apresente o tipo de crescimento que melhor caracteriza as funções abaixo (Khan Academy, adaptado)

	Constante	Linear	Polinomial	Exponencial
3n		\checkmark	747	
1	/			
(3/2)n	-	V		
2n ³				
2 ⁿ			1/1/7	V
3n ²) /) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1000	/		llllan	
(3/2) ⁿ				

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

• Classifique as funções $f_1(n) = n^2$, $f_2(n) = n$, $f_3(n) = 2^n$, $f_4(n) = (3/2)^n$, $f_5(n) = n^3$ e $f_6(n) = 1$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

RESPOSTA:

$$f_6(n) = 1 < f_2(n) = n < f_1(n) = n^2 < f_5(n) = n^3 < f_4(n) = (3/2)^n < f_3(n) = 2^n$$

• Classifique as funções $f_1(n) = n.\log_6(n)$, $f_2(n) = \lg(n)$, $f_3(n) = \log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.\lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Exercício Resolvido (20)

• Classifique as funções $f_1(n) = n.\log_6(n)$, $f_2(n) = \lg(n)$, $f_3(n) = \log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.\lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

Exercício Resolvido (20)

• Classifique as funções $f_1(n) = n.\log_6(n)$, $f_2(n) = \lg(n)$, $f_3(n) = \log_8(n)$, $f_4(n) = 8n^2$, $f_5(n) = n.\lg(n)$, $f_6(n) = 64$, $f_7(n) = 6n^3$, $f_8(n) = 8^{2n}$ e $f_9(n) = 4n$ de acordo com o crescimento, do mais lento para o mais rápido (Khan Academy, adaptado)

RESPOSTA:

$$f_6(n) = 64 < f_3(n) = log_8(n) < f_2(n) = lg(n) < f_9(n) = 4n < f_1(n) = n.log_6(n) < f_5(n) = n.lg(n) < f_4(n) = 8n^2 < f_7(n) = 6n^3 < f_8(n) = 8^{2n}$$

Exercício Resolvido (21)

 Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de O. Essa correspondência acontece quando f(n) = O(g(n)) (Khan Academy, adaptado)

f(n)	g(n)
n + 30	n ⁴
n² + 2n - 10	3n - 1
n³ <i>x</i> 3n	lg(2n)
lg(n)	n² + 3n

Exercício Resolvido (21)

 Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de O. Essa correspondência acontece quando f(n) = O(g(n)) (Khan Academy, adaptado)

f(n)	Pau	use!	g(n)	
n + 30			n ⁴	
n² + 2n - 10			3n - 1	
n ³ <i>x</i> 3n			lg(2n)	
lg(n)			n² + 3n	

Exercício Resolvido (21)

 Faça a correspondência entre cada função f(n) com sua g(n) equivalente, em termos de O. Essa correspondência acontece quando f(n) = O(g(n)) (Khan Academy, adaptado)

Exercícios

PUC Minas Virtual

Exercício (1)

• Encontre o maior e menor valores em um *array* de inteiros e, em seguida, encontre a função de complexidade de tempo para sua solução

Exercício (2)

• Considerando o problema de encontrar o maior e menor valores em um array, veja os quatro códigos propostos e analisados no livro do Ziviani

Exercício (3)

• Preencha verdadeiro ou falso na tabela abaixo:

	Θ(1)	Θ (lg n)	Θ (n)	⊕ (n.lg(n))	Θ (n²)	⊕ (n³)	⊖ (n ⁵)	⊙ (n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (4)

• Preencha verdadeiro ou falso na tabela abaixo:

	O(1)	O(lg n)	O(n)	O(n.lg(n))	O(n²)	O(n³)	O(n ⁵)	O(n ²⁰)
f(n) = lg(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (5)

Preencha verdadeiro ou falso na tabela abaixo:

	Ω(1)	Ω(lg n)	Ω(n)	Ω(n.lg(n))	$\Omega(n^2)$	$\Omega(n^3)$	$\Omega(n^5)$	$\Omega(n^{20})$
f(n) = Ig(n)								
$f(n) = n \cdot lg(n)$								
f(n) = 5n + 1								
$f(n) = 7n^5 - 3n^2$								
$f(n) = 99n^3 - 1000n^2$								
$f(n) = n^5 - 99999n^4$								

Exercício (6)

• Dada a definição da notação Ω :

- a) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n^2)$
- b) Mostre os valores de c e m tal que, para $n \ge m$, $|g(n)| \ge c \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Omega(n)$
- c) Prove que $3n^2 + 5n + 1 \underline{não \acute{e}} \Omega(n^3)$

Exercício (7)

Dada a definição da notação Θ:

- a) Mostre um valor para c_1 , c_2 e m tal que, para $n \ge m$, $c_1 \times |f(n)| \le |g(n)| \le c_2 \times |f(n)|$, provando que $3n^2 + 5n + 1 \in \Theta(n^2)$
- b) Prove que $3n^2 + 5n + 1$ não é $\Theta(n)$
- c) Prove que $3n^2 + 5n + 1$ não é $\Theta(n^3)$

Exercício (8)

 Suponha um sistema de monitoramento contendo os métodos telefone, luz, alarme, sensor e câmera, apresente a função e ordem de complexidade para o pior e melhor caso: (a) método alarme; (b) outros métodos.

```
void sistemaMonitoramento() {
    alarme(((telefone() == true && luz() == true)) ? 0 : 1);
    for (int i = 2; i < n; i++){
        if (sensor(i- 2) == true){
            alarme (i - 2);
        } else if (camera(i- 2) == true){
            alarme (i - 2 + n);
        }
    }
}</pre>
```

Exercício (9)

 Apresente um código, defina duas operações relevantes e apresente a função e a ordem de complexidade para as operações escolhidas no pior e melhor caso

Exercício (10)

• Anteriormente, verificamos que quando desejamos pesquisar a existência de um elemento em um array de números reais é adequado executar uma pesquisa sequencial cujo custo é $\Theta(n)$. Nesse caso, o custo de ordenar o array e, em seguida, aplicar uma pesquisa binária é mais elevado, $\Theta(n x | g(n)) + \Theta(lg(n)) = \Theta(n x | g(n))$. Agora, supondo que desejamos efetuar n pesquisas, responda qual das duas soluções é mais eficiente