EPC2001C – Enhancement Mode Power Transistor

 V_{DS} , 100 V $R_{DS(on)}$, 7 m Ω I_{D} , 36 A

Gallium Nitride's exceptionally high electron mobility and low temperature coefficient allows very low $R_{DS(on)}$, while its lateral device structure and majority carrier diode provide exceptionally low Q_G and zero Q_{RR} . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Application Notes:

- Easy-to-use and reliable gate, Gate Drive ON = 5–5.25 V typical, OFF = 0 V (negative voltage not needed)
- Top of FET is electrically connected to source

	Maximum Ratings					
	PARAMETER VALUE					
	Drain-to-Source Voltage (Continuous)	100	V			
V _{DS}	Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C)	120				
I _D	Continuous ($T_A = 25$ °C, $R_{\theta JA} = 7.3$)	36	Α			
	Pulsed (25°C, $T_{PULSE} = 300 \mu s$)	150	A			
V _{GS}	Gate-to-Source Voltage	6	V			
	Gate-to-Source Voltage	-4	V			
TJ	Operating Temperature	-40 to 150	°C			
T _{STG}	Storage Temperature -40 to 150		C			

Thermal Characteristics				
	PARAMETER	ТҮР	UNIT	
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	1		
$R_{\theta JB}$	R _{0JB} Thermal Resistance, Junction-to-Board		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1)	54		

Note 1: $R_{\theta JA}$ is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

Die size: 4.1 x 1.6 mm

EPC2001C eGaN® FETs are supplied only in passivated die form with solder bars

Applications

- High-Frequency DC-DC Conversion
- Industrial Automation
- Synchronous Rectification
- Class-D Audio
- Low Inductance Motor Drives

Benefits

- Ultra High Efficiency
- Ultra Low Switching and Conduction Losses
- Zero Q_{RR}
- Ultra Small Footprint

Static Characteristics ($T_j = 25^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
BV_DSS	Drain-to-Source Voltage	$V_{GS} = 0 \text{ V, I}_{D} = 300 \mu\text{A}$	100			V
I _{DSS}	Drain-Source Leakage	$V_{GS} = 0 \text{ V}, V_{DS} = 80 \text{ V}$		100	250	μΑ
	Gate-to-Source Forward Leakage	$V_{GS} = 5 V$		1	5	mA
I _{GSS}	Gate-to-Source Reverse Leakage#	$V_{GS} = -4 V$		0.1	0.25	
$V_{GS(TH)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 5 \text{ mA}$	0.8	1.4	2.5	V
R _{DS(on)}	Drain-Source On Resistance	$V_{GS} = 5 \text{ V, } I_D = 25 \text{ A}$		5.6	7	mΩ
V_{SD}	Source-Drain Forward Voltage#	$I_S = 0.5 \text{ A}, V_{GS} = 0 \text{ V}$		1.7		V

[#] Defined by design. Not subject to production test.

Dynamic Characteristics $^{\#}$ (T _J = 25 $^{\circ}$ C unless otherwise stated)						
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C _{ISS}	Input Capacitance			770	900	
C_{OSS}	Output Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		430	650	pF
C_{RSS}	Reverse Transfer Capacitance			10	15	
R_G	Gate Resistance			0.3		Ω
Q_{G}	Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 5 \text{ V}, I_{D} = 25 \text{ A}$		7.5	9	
Q_{GS}	Gate-to-Source Charge			2.4		
Q_{GD}	Gate-to-Drain Charge	$V_{DS} = 50 \text{ V}, I_{D} = 25 \text{ A}$		1.2	2	nC
$Q_{G(TH)}$	Gate Charge at Threshold			1.6		nC nC
Q _{oss}	Output Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}$		31	45	
Q _{RR}	Source-Drain Recovery Charge			0		

All measurements were done with substrate connected to source.

Note 2: C_{OSS(ER)} is a fixed capacitance that gives the same stored energy as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Note 3: C_{OSS(TR)} is a fixed capacitance that gives the same charging time as C_{OSS} while V_{DS} is rising from 0 to 50% BV_{DSS}.

Figure 1: Typical Output Characteristics at 25°C

Figure 2: Typical Transfer Characteristics

Figure 3: R_{DS(on)} vs. V_{GS} for Various Currents

Figure 4: R_{DS(on)} vs. V_{GS} for Various Temperatures

[#] Defined by design. Not subject to production test.

Figure 5a: Typical Capacitance (Linear Scale)

Figure 5b: Typical Capacitance (Log Scale)

Figure 6: Typical Gate Charge

Figure 7: Typical Reverse Drain-Source Characteristics

Figure 8: Normalized On Resistance vs. Temperature

Figure 9: Normalized Threshold Voltage vs. Temperature

Note: Negative gate drive voltage increases the reverse drain-source voltage. EPC recommends 0 V for OFF.

Figure 11: Transient Thermal Response Curves

Figure 12: Safe Operating Area

TAPE AND REEL CONFIGURATION

4 mm pitch, 12 mm wide tape on 7" reel

	Dillicitatori (IIIIII)		
EPC2001C (Note 1)	Target	MIN	MAX
a	12.00	11.90	12.30
b	1.75	1.65	1.85
c (Note 2)	5.50	5.45	5.55
d	4.00	3.90	4.10
е	4.00	3.90	4.10
f (Note 2)	2.00	1.95	2.05
g	1.50	1.50	1.60

Note 1: MSL 1 (moisture sensitivity level 1) classified according to IPC/ JEDEC industry standard.

Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

DIE MARKINGS

Dove				
Part Number	Part # Marking Line 1	Lot_Date Code Marking Line 2	Lot_Date Code Marking Line 3	
EPC2001C	2001	YYYY	ZZZZ	

EPC2001C eGaN® FET DATASHEET

DIE OUTLINE Solder Bar View

Side View

DIM	MICROMETERS			
DIM	MIN	Nominal	MAX	
A	4075	4105	4135	
В	1602	1635	1662	
c	1379	1382	1385	
d	577	580	583	
е	235	250	265	
f	195	200	205	
g	400	400	400	

Pad no. 1 is Gate;

Pads no. 3, 5, 7, 9, 11 are Drain;

Pads no. 4, 6, 8, 10 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

RECOMMENDED 4105 **LAND PATTERN** 180 **≺→** 180 (measurements in μ m) x9 560 ž 1362 400 400

x8

The land pattern is solder mask defined.

Pad no. 1 is Gate;

Pads no. 3, 5, 7, 9, 11 are Drain;

Pads no. 4, 6, 8, 10 are Source;

Pad no. 2 is Substrate.*

*Substrate pin should be connected to Source

Solder mask

(for solder mask defined pads)

Recommended stencil should be 4 mil (100 μm) thick, must be laser cut, opening per drawing. The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder, reference 88.5% metals content.

EPC2001C eGaN® FET DATASHEET

TYPICAL THERMAL CONCEPT

The EPC2001C can take advantage of dual sided cooling to maximize its heat dissipation capabilities in high power density designs.

Recommended best practice thermal solutions are covered in detail in How2AppNote012 - How to Get More Power Out of an eGaN Converter.pdf.

Figure 12: Exploded view of heatsink assembly using screws

Figure 13: A cross-section image of dual sided thermal solution

Note: Connecting the heatsink to ground is recommended and can significantly improve radiated EMI

The thermal design can be optimized by using the **GaN FET Thermal Calculator** on EPC's website.

Solder mask defined pads are recommended for best reliability.

Figure 14: Solder mask defined versus non-solder mask defined pad

Figure 15: Effect of solder mask design on the solder ball symmetry

- Assembly resources https://epc-co.com/epc/Portals/0/epc/documents/product-training/Appnote_GaNassembly.pdf
- Library of Altium footprints for production FETs and ICs https://epc-co.com/epc/documents/altium-files/EPC%20Altium%20Library.zip (for preliminary device Altium footprints, contact EPC)

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

eGaN $^{\circ}$ is a registered trademark of Efficient Power Conversion Corporation. EPC Patent Listing https://epc-co.com/epc/about-epc/patents_

Information subject to change without notice.
Revised Dec 2023