Decision Tree Random Forest

Training	examples:	9 yes / 5 no		
Day	Outlook	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No
New dat	ta:			
D15	Rain	High	Weak	?

3

ID3 Algorithm

```
node = Root
examples = Training Set
Split (node, {examples} ):
```

- 1. Find A, the **best attribute** for splitting the {examples}
- Create decision nodes for attribute A (i.e., child nodes of node)
- 3. Split training {examples} to child nodes
- If examples perfectly classified (subset is pure): STOP else: iterate over new child nodes
 Split (child_node, {subset of examples})

Find The Best Attribute

- Want to measure "purity" of the split
 - more certain about Yes/No after the split
 - pure set (4 yes / 0 no) => completely certain (100%)
 - impure (3 yes / 3 no) => completely uncertain (50%)
 - can't use P("yes" | set):
 - must be symmetric: 4 yes / 0 no as pure as 0 yes / 4 no

Entropy

- Entropy: $H(S) = -p_{(+)} \log_2 p_{(+)} p_{(-)} \log_2 p_{(-)}$ bits
 - S ... subset of training examples
 - $-p_{(+)}/p_{(-)}...$ % of positive / negative examples in S
- Interpretation: assume item X belongs to S
 - how many bits need to tell if X positive or negative
- impure (3 yes / 3 no):

$$H(S) = -\frac{3}{6}\log_2\frac{3}{6} - \frac{3}{6}\log_2\frac{3}{6} = 1$$
 bits

pure set (4 yes / 0 no):

$$H(S) = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4} = 0$$
 bits

Information Gain

- Want many items in pure sets
- Expected drop in entropy after split:

$$Gain(S,A) = H(S) - \sum_{V \in Values(A)} \frac{\left|S_{V}\right|}{\left|S\right|} H(S_{V}) \qquad \begin{array}{c} \mathsf{V} & \dots \text{ possible values of A} \\ \mathsf{S} & \dots \text{ set of examples } \{\mathsf{X}\} \\ \mathsf{S}_{\mathsf{V}} & \dots \text{ subset where } \mathsf{X}_{\mathsf{A}} = \mathsf{V} \end{array}$$

- Mutual Information
 - between attribute A and class labels of S

```
Gain (S, Wind)

= H(S) - {}^{8}/_{14} H(S_{weak}) - {}^{6}/_{14} H(S_{Strong})

= 0.94 - {}^{8}/_{14} * 0.81 - {}^{6}/_{14} * 1.0

= 0.049
```


Overfitting in Decision Tree

- Can always classify training examples perfectly
 - keep splitting until each node contains 1 example
 - singleton = pure
- Doesn't work on new data

Avoid Overfitting

How can we avoid overfitting?

- Stop growing when data split is not statistically significant.
- · Acquire more training data.
- Remove irrelevant attributes (manual process not always possible)
- Grow full tree, then post-prune.

How to select "best" tree:

- Measure performance over training data
- Measure performance over separate validation data set
- Add complexity penalty to performance measure

Pre-pruning that stop growing the tree earlier, before it perfectly classifies the training set.

Post-pruning that allows the tree to perfectly classify the training set, and then post prune the tree.

General Structure

Task: classification, discriminative

- Model structure: decision tree
- Score function
 - Information gain at each node
 - Preference for short trees
 - o Preference for high-gain attributes near the root
- Optimization / search method
 - Greedy search from simple to complex
 - Guided by information gain

Problem With Information Gain

- Biased towards attributes with many values
- 0/1 1/0 1/0 1/0 0/1 Won't work all subsets perfectly pure => optimal split for new data: D15 Rain High Weak

D₁

D2

D3

Use GainRatio:

$$SplitEntropy(S,A) = -\sum_{V \in Values(A)} \frac{\left|S_{V}\right|}{\left|S\right|} \log \frac{\left|S_{V}\right|}{\left|S\right|} \quad \begin{array}{l} A \ \dots \ \text{candidate attribute} \\ \forall \ \dots \ \text{possible values of A} \\ S \ \dots \ \text{set of examples } \{X\} \\ \end{array}$$

$$GainRatio(S,A) = \frac{Gain(S,A)}{SplitEntropy(S,A)}$$

D5

 $S_v \dots$ subset where $X_{\Delta} = V$

penalizes attributes

with many values

9 yes / 5 no

D4

D14

Problem With Information Gain

$$SplitEntropy(S, Day)$$

$$= -14\left(\frac{1}{14}\log\frac{1}{14}\right) = 3.80$$

$$SplitEntropy(S, Outlook) = -\frac{5}{14}log\frac{5}{14} - \frac{4}{14}log\frac{4}{14} - \frac{5}{14}log\frac{5}{14} = 1.57$$

Interpretation of Trees


```
(Outlook = Overcast) V
Rule: (Outlook = Rain ∧ Wind = Weak) V
(Outlook = Sunny ∧ Humidity = Normal)
```

Continuous Variables

Predicting credit risk

years at current job	# missed payments	defaulted?							
7	0	Ν							
0.75	0	Y							
3	0	N							
9	0	N							
4	2	Y							
0.25	0	N							
5	i	N							
8	4	Y							
1.0	0	N							
1.75	0	N							

Continuous Variables

Outlook	Temp	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	78	False	Yes
Rainy	70	96	False	Yes
Rainy	68	80	False	Yes
Rainy	65	70	True	No
Overcast	64	65	True	Yes
Sunny	72	95	False	No
Sunny	69	70	False	Yes
Rainy	75	80	False	Yes
Sunny	75	70	True	Yes
Overcast	72	90	True	Yes
Overcast	81	75	False	Yes
Rainy	71	80	True	No

Continuous Temperature Attribute

- First, sort the temperature values, including the class labels
- Then, check all the cut points and choose the one with the best information gain.

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No
```

- Temp < 71.5: yes = 4, no = 2
- Temp ≥ 71.5: yes = 5, no = 3

How to compute:

- H(Temp < 71.5) = ?
- $H(Temp \ge 71.5) = ?$
- H(S) = ?
- Gain(S, Temp) = ?

Continuous Temperature Attribute

Temp < 71.5: yes = 4, no = 2
Temp
$$\geq$$
 71.5: yes = 5, no = 3
 $H(Temp < 71.5) = -\frac{4}{6} \log \frac{4}{6} - \frac{2}{6} \log \frac{2}{6} = 0.918$
 $H(Temp \geq 71.5) = -\frac{8}{8} \log \frac{5}{8} - \frac{3}{8} \log \frac{3}{8} = 0.954$
 $H(S) = -\frac{9}{14} \log \frac{9}{14} - \frac{5}{14} \log \frac{5}{14} = 0.940$
 $Gain(S, Temp) = H(S) - \frac{6}{14} H(Temp < 71.5) - \frac{8}{14} H(Temp \geq 71.5)$
 $= 0.940 - \frac{6}{14} * 0.918 - \frac{8}{14} * 0.954 = 0.001$

Continuous Temperature Attribute

- First, sort the temperature values, including the class labels
- Then, check all the cut points and choose the one with the best information gain.

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No
```

- Temp < 71.5: yes = 4, no = 2
- Temp ≥ 71.5: yes = 5, no = 3
- Place split points halfway between values.
- Able to evaluate all split points in one pass.

Information Gain for Humidity

Humidity	Play
65	Yes
70	No
70	Yes
70	Yes
75	Yes
78	Yes
80	Yes
80	Yes
80	No
85	No
90	No
90	Yes
95	No
96	Yes

sort the attribute values

Humidity	Play
65	Yes
70	No
70	Yes
70	Yes
75	Yes
78	Yes
80	Yes
80	Yes
80	No
85	No
90	No
90	Yes
95	No
96	Yes

compute the gain for every possible split

what is the information gain if we split here?

Information Gain for Humidity

Humidity	Play	# of Yes	% of Yes	# of No	% of No	Weight	Entropy Left	# of Yes	% of Yes	# of No	% of No	Weight	Entropy Right	Information Gain
65	Yes	- 1	100.00%	0	0.00%	7.14%	0.00	8.00	0.62	5.00	0.38	92.86%	0.96	0.0477
70	No		50.00%		50.00%	14.29%	1.00	8.00	0.67	4.00	0.33	85.71%	0.92	0.0103
70	Yes	2	66.67%	_	33.33%	21.43%	0.92	7.00	0.64	4.00	0.36	78.57%	0.95	0.0005
70	Yes	3	75.00%		25.00%	28.57%	0.81	6.00	0.60	4.00	0.40	71.43%	0.97	0.0150
75	Yes	4	80.00%		20.00%	35.71%	0.72	5.00	0.56	4.00	0.44	64.29%	0.99	0.0453
78	Yes	5	83.33%		16.67%	42.86%	0.65	4.00	0.50	4.00	0.50	57.14%	1.00	0.0903
80	Yes	6	85.71%		14.29%	50.00%	0.59	3.00	0.43	4.00	0.57	50.00%	0.99	0.1518
80	Yes	7	87.50%		12.50%	57.14%	0.54	2.00	0.33	4.00	0.67	42.86%	0.92	0.2361
80	No	7	77.78%	2	22.22%	64.29%	0.76	2.00	0.40	3.00	0.60	35.71%	0.97	0.1022
85	No	7	70.00%	3	30.00%	71.43%	0.88	2.00	0.50	2.00	0.50	28.57%	1.00	0.0251
90	No	7	63.64%	4	36.36%	78.57%	0.95	2.00	0.67	1.00	0.33	21.43%	0.92	0.0005
90	Yes	8	66.67%	4	33.33%	85.71%	0.92	1.00	0.50	1.00	0.50	14.29%	1.00	0.0103
95	No	8	61.54%	5	38.46%	92.86%	0.96	1.00	1.00	0.00	0.00	7.14%	0.00	0.0477
96	Yes	9	64.29%	5	35.71%	100.00%	0.94	0.00	0.00	0.00	0.00	0.00%	0.00	0.0000

Left branch, e.g., < 67.5

Right branch, e.g., ≥ 67.5

Multi-class Classification

Multiclass classification:

- Predict the **best attribute** to split on.
- Entropy:

$$H(S) = -\sum_{c} p_{c} \log_{2}(p_{c}).$$

• p_c: % of examples of class **c** in S.

Random (Decision) Forest

Training: grow **K** different decision trees:

- Pick a random subset S_{random} of training examples.
- Grow a full decision tree (no pruning), compute information gain based on S_{random} instead of full set.
- Repeat for K decision trees.

Inference: given a new data point X:

- Classify X using each of the K trees.
- Use majority vote: class predicted most often.

Fast, scalable, state-of-the-art performance.

Random (Decision) Forest

Random forest with majority voting

Gini impurity – An alternative of Entropy

Gini impurity (or **Gini index**) of a dataset D indicates the likelihood of new, random data sample being misclassified if the sample is given a random class label according to the class distribution in the dataset.

$$Gini(D) = \sum_{i=1}^{k} p_i (1 - p_i) = 1 - \sum_{i=1}^{k} p_i^2$$

Probability of the sample belonging to class *i*

Probability of the sample **not** being classified to class *i* (i.e., misclassified).

Gini impurity of a dataset

Gini impurity (or **Gini index**) of a dataset D indicates the likelihood of new, random data sample being misclassified if the sample is given a random class label according to the class distribution in the dataset.

$$Gini(D) = \sum_{i=1}^{k} p_i (1 - p_i) = 1 - \sum_{i=1}^{k} p_i^2$$

Probability of the sample belonging to any class is given by $\sum_{i=1}^{k} p_i = 1$

Gini impurity of a dataset

$$Gini(Sunny) = \frac{2}{5} \left(1 - \frac{2}{5} \right) + \frac{3}{5} \left(1 - \frac{3}{5} \right) = 1 - \left(\frac{2}{5} \right)^2 - \left(\frac{3}{5} \right)^2 = 0.48$$

$$Gini(Weak) = \frac{6}{8} \left(1 - \frac{6}{8} \right) + \frac{2}{8} \left(1 - \frac{2}{8} \right) = 1 - \left(\frac{6}{8} \right)^2 - \left(\frac{2}{8} \right)^2 = 0.375$$

Gini impurity of a dataset

In multi-class classification problem, Gini impurity varies between values 0 and 1 (take an example of 10 data samples and 5 classes):

- Gini = 0: pure dataset (e.g., 0/10/0/0/0).
- Gini = 0.5: **equal** distribution over *some* classes (e.g., 5/0/5/0/0).
- Gini = 1: random distribution across all classes (e.g., 1/2/3/2/2).

Gini impurity of an attribute

If a dataset D is split on an attribute A into m subsets $\{D_1, ..., D_m\}$, the Gini impurity can be defined as:

$$Gini_A(D) = \sum_{s=1}^{m} \frac{|D_s|}{|D|} Gini(D_s)$$

Attribute minimizing the Gini impurity is chosen to split the node.

Gini impurity of an attribute

$$Gini_{Outlook}(D) = \frac{5}{14}0.48 + \frac{4}{14}0 + \frac{5}{14}0.48 = 0.343$$

$$Gini_{Wind}(D) = \frac{8}{14}0.375 + \frac{6}{14}0.5 = 0.429$$

Outlook is chosen!

Gini information gain

$$Gini(D) = \frac{9}{14} \left(1 - \frac{9}{14} \right) + \frac{5}{14} \left(1 - \frac{5}{14} \right) = 0.459$$

Gini information gain for an attribute (A) is the weighted impurities of the branches is subtracted from the original impurity.

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

Attribute maximizing the Gini information gain is chosen to split.

$$\Delta Gini(Outlook) = 0.459 - 0.343 = 0.116$$
 Outlook is chosen!

 $\Delta Gini(Wind) = 0.459 - 0.429 = 0.03$

Gini impurity exercise

Gini Impurity for Student is

Gini Impurity for Credit Rating is

What is the best attribute to split?

Gini impurity exercise

What if the label is not categorial but numeric?

There are two types of decision tree:

 Classification tree: is used when the label is categorical (discrete values).

Regression tree: is used when the label is numeric

(continuous values)

Χ	Υ
1.0	1.0
5.0	1.0
2.0	1.2
6.0	5.5
3.0	1.4
7.0	6.1
4.0	1.1

XY		Х	Υ		Х	Υ	
1.0 1.0		1.0	1.0		1.0	1.0	1 st split
5.0 1.0		2.0	1.2		2.0	1.2	
2.0 1.2	Sort feature X	3.0	1.4	Calculate the split	3.0	1.4	
6.0 5.5		4.0	1.1		4.0	1.1	
3.0 1.4		5.0	1.0		5.0	1.0	
7.0 6.1		6.0	5.5		6.0	5.5	
4.0 1.1		7.0	6.1		7.0	6.1	

Idea: find the best point to split the dataset into 2 parts so that the Mean Squared Error (MSE) is minimized at that point.

- Steps:
- Sort the data according to its features (n data samples in total).
- Brute-force all possible split points, calculate corresponding MSE values.
- After have n-1 MSE calculated, choose the split/threshold of minimum MSE.

Х	Υ		Х	Υ		Х	Υ	
1.0	1.0		1.0	1.0		1.0	1.0	1st split
5.0	1.0		2.0	1.2		2.0	1.2	
2.0	1.2	Sort feature X	3.0	1.4	Calculate the split	3.0	1.4	
6.0	5.5		4.0	1.1		4.0	1.1	
3.0	1.4		5.0	1.0		5.0	1.0	
7.0	6.1		6.0	5.5		6.0	5.5	
4.0	1.1		7.0	6.1		7.0	6.1	

 1^{st} split at value (1+2)/2 = 1.5. There are two groups:

- Group 1 (X < 1.5): $\{(1.0,1.0)\}$. Average Y value is 1.0 (\hat{y}_{left}).
- Group 2 (X ≥ 1.5): all other points. Average Y value is 2.72 (ŷ_{right}).

Calculate the MSE of the 1st split by (given $n=n_{left}+n_{right}$):

$$MSE(1^{st} \text{ split}) = MSE(1^{st} \text{ left}) + MSE(1^{st} \text{ right}) = \frac{1}{n} \left(\sum_{i=1}^{n_{left}} (y_i - \hat{y}_{left})^2 + \sum_{j=1}^{n_{right}} (y_j - \hat{y}_{right})^2 \right)$$

XY		Х	Υ		Х	Υ	
1.0 1.0		1.0	1.0		1.0	1.0	1st split
5.0 1.0		2.0	1.2		2.0	1.2	2 nd split
2.0 1.2	Sort feature X	3.0	1.4	Calculate the split	3.0	1.4	3 rd split
6.0 5.5		4.0	1.1		4.0	1.1	4 th split
3.0 1.4		5.0	1.0		5.0	1.0	5 th split
7.0 6.1		6.0	5.5		6.0	5.5	6 th split
4.0 1.1		7.0	6.1		7.0	6.1	

Similarly calculate MSE of all other possible splits. The chosen split/threshold is the one **having minimum MSE**.

Feature importance - A single decision tree

Idea: calculate a score representing the "importance" of each data feature. The **higher the score**, the **larger the effect** of that feature on the model prediction.

Feature importance – Example with Entropy

Assume that this is the tree after training

satisfaction_level = 18282/18282*1.0-7831/18282*0.649-10451/18282*0.811 = 0.2584

time_spend_company

- = (7831/18282*0.649-7129/18282*0.508-702/18282*0.866)
- $+ \left(10451/18282*0.811-7242/18282*0.221-3209/18282*0.835\right)$
- = 0.0466 + 0.2295 = 0.2761

Then normalize the sum value to 1, we have: satisfaction_level = 0.2584/(0.2584+0.2761) = **0.4834** time spend company = 0.2761/(0.2584+0.2761) = **0.5166** satisfaction level 0.482504 last evaluation 0.000000 number project 0.000000 average montly hours 0.000000 time spend company 0.517496 Work_accident 0.000000 promotion last 5years 0.000000 0.000000 Department IT Department RandD 0.000000 0.000000 Department accounting 0.000000 Department hr Department management 0.000000 Department_marketing 0.000000 Department product mng 0.000000 Department sales 0.000000 Department support 0.000000 Department_technical 0.000000 salary high 0.000000 salary low 0.000000 salarv medium 0.000000

Feature importance – Example with Gini

Assume that this is the tree after training

What is the feature importance score of

- satisfaction_level = ?
- time_spend_company = ?

Feature importance – Example with Gini

Assume that this is the tree after training

satisfaction_level = 18282/18282*0.5-7831/18282*0.277-10451/18282*0.375 = 0.1670

time spend company

- = (7831/18282*0.277-7129/18282*0.2-702/18282*0.41)
- + (10451/18282*0.375-7242/18282*0.068-3209/18282*0.39)
- = 0.0250 + 0.1190 = 0.1440

Then normalize the sum value to 1, we have: satisfaction_level = 0.1670/(0.1670+0.1440) = 0.5369 time spend company = 0.1440/(0.1670+0.1440) = 0.4631

0.536586 satisfaction_level last evaluation 0.000000 0.000000 number project average montly hours 0.000000 time spend company 0.463414 0.000000 Work accident promotion last 5vears 0.000000 Department IT 0.000000 0.000000 Department RandD Department accounting 0.000000 Department hr 0.000000 Department management 0.000000 Department marketing 0.000000 Department_product_mng 0.000000 Department sales 0.000000 Department support 0.000000 Department technical 0.000000 salary_high 0.000000 salary low 0.000000 salary medium 0.000000

Feature importance – Random forest

Idea: importance of a feature in a random forest is the sum of importance scores of that feature in all trees in the random forest.

Summary

- Decision tree.
- Entropy, information gain, gain ratio.
- Continuous variable in decision tree.
- Random forest.
- Gini impurity of a dataset/attribute, Gini information gain.
- Regression tree.
- Feature importance.

Q&A

Thank you