Lecture 4

Math 178

Nonlinear Data Analytics

Prof. Weiqing Gu

Recall: Regular Surface (2-dimensional Manifold)

Definition

A subset $S \subset \mathbb{R}^3$ is a *regular surface* if, for each $p \in S$, there exists a neighborhood V in \mathbb{R}^3 and a map $\mathbf{x}: U \to V \cap S$ of an open set $U \subset \mathbb{R}^2$ onto $V \cap S \subset \mathbb{R}^3$ such that

1. x is differentiable (so we can use calculus).

- 2. \mathbf{x} is a homeomorphism (so we can use analysis)
- 3. x is regular (so we can use linear algebra)

Remark

In contrast to our treatment of curves, we have defined a surface as a subset S of \mathbb{R}^3 , and not as a map. This is achieved by covering S with the traces of parametrizations which satisfy conditions 1, 2, and 3.

Exact meanings:

x is differentiable

This means that if we write

$$\mathbf{x}(u, v) = (x(u, v), y(u, v), z(u, v)), \quad (u, v) \in U,$$

the functions x(u, v), y(u, v), and z(u, v) have continuous partial derivatives of all orders.

x is a homeomorphism

Since \mathbf{x} is continuous by condition 1, this means that \mathbf{x} has an inverse $\mathbf{x}^{-1}:V\cap S\to U$ which is continuous; that is, \mathbf{x}^{-1} is the restriction of a continuous map $F:W\subset\mathbb{R}^3\to\mathbb{R}^2$ defined on an open set W containing $V\cap S$.

x is regular

For each $q \in U$, the differential $d\mathbf{x}_q : \mathbb{R}^2 \to \mathbb{R}^3$ is one-to-one.

A Parametrization and a coordinate neighborhood

Definition

The mapping x is called a *parametrization* or a *system of (local)* coordinates in (a neighborhood of) p. The neighborhood $V \cap S$ of p in S is called a *coordinate neighborhood*.

The Regularity Condition

An Illustrative Example

To give condition 3 a more familiar form, let us compute the matrix of the linear map $d\mathbf{x}_q$ in the canonical bases $e_1=(1,0),\ e_2=(0,1)$ of \mathbb{R}^2 with coordinates u,v and $f_1=(1,0,0),\ f_2=(0,1,0),\ f_3=(0,0,1)$ of \mathbb{R}^3 , with coordinates (x,y,z).

The Regularity Condition

An Illustrative Example (cont'd)

Thus, the matrix of the linear map $d\mathbf{x}_q$ in the referred (standard) basis is

$$d\mathbf{x}_{q} = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}.$$

Condition 3 may now be expressed by requiring the two column vectors of this matrix to be linearly independent; or, equivalently, that the vector product $\partial \mathbf{x}/\partial u \wedge \partial \mathbf{x}/\partial v \neq 0$; or, in still another way, that one of the minors of order 2 of the matrix $d\mathbf{x}_q$, that is, one of the Jacobian determinants

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}, \quad \frac{\partial(y,z)}{\partial(u,v)}, \quad \frac{\partial(x,z)}{\partial(u,v)},$$

be nonzero at q.

The Three Conditions

- Condition 1 is very natural if we expect to do some differential geometry on S.
- The one-to-oneness in condition 2 has the purpose of preventing self-intersections in regular surfaces. This is clearly necessary if we are to speak about, say, the tangent plane at a point $p \in S$. The continuity of the inverse in condition 2 has a more subtle purpose. For the time being, we shall mention that this condition is essential to proving that certain objects defined in terms of a parametrization do not depend on this parametrization but only on the set S itself.
- ► Finally, condition 3 will guarantee the existence of a "tangent plane" at all points of S.

Example

Let us show that the unit sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

is a regular surface.

Method 1: Using Cartesian Coordinates

We first verify that the map $\mathbf{x}_1:U\in\mathbb{R}^2\to\mathbb{R}^3$ given by

$$\mathbf{x}_1(x,y) = (x, y, +\sqrt{1-(x^2+y^2)}), \quad (x,y) \in U,$$

where $\mathbb{R}^2 = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$ and $U = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ is a parametrization of S^2 .

We shall now cover the whole sphere with similar parametrizations as follows. we define $\mathbf{x}_2: U \subset \mathbb{R}^2 \to \mathbb{R}^3$ by

$$\mathbf{x}_2(x,y) = (x, y, -\sqrt{1 - (x^2 + y^2)}),$$

check that \mathbf{x}_2 is a parametrization, and observe that $\mathbf{x}_1(U) \cup \mathbf{x}_2(U)$ covers S^2 minus the equator $\{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2=1, z=0\}$. Then, using the xz and zy planes, we define the parametrization

$$\mathbf{x}_{3}(x,z) = (x, +\sqrt{1-(x^{2}+z^{2})}, z),$$
 $\mathbf{x}_{4}(x,z) = (x, -\sqrt{1-(x^{2}+z^{2})}, z),$
 $\mathbf{x}_{5}(y,z) = (+\sqrt{1-(y^{2}+z^{2})}), y, z),$
 $\mathbf{x}_{6}(y,z) = (-\sqrt{1-(y^{2}+z^{2})}), y, z),$

which, together with \mathbf{x}_1 and \mathbf{x}_2 , cover S^2 completely and shows that S^2 is a regular surface.

Method 2: Using Spherical Coordinates

For most applications, it is convenient to relate parametrizations to the geographical coordinates on S^2 . Let

$$V=\{(\theta,\varphi)\mid 0<\theta<\pi, 0<\varphi<2\pi\}$$
 and let $\mathbf{x}:V o\mathbb{R}^3$ be given by

$$\mathbf{x}(\theta,\varphi) = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta).$$

Clearly, $\mathbf{x}(V) \subset S^2$.

We shall prove that \mathbf{x} is a parametrization of S^2 .

Next, we observe that given $(x,y,z) \in S^2 \setminus C$, where C is the semicircle $C = \{(x,y,z) \in S^2 \mid y=0, x \geq 0\}$, θ is uniquely determined by $\theta = \cos^{-1}z$, since $0 < \theta < \pi$. By knowing θ , we find $\sin \varphi$ and $\cos \varphi$ from $x = \sin \theta \cos \varphi$, $y = \sin \theta \sin \varphi$, and this determines φ uniquely $(0 < \varphi < 2\pi)$. It follows that \mathbf{x} has an inverse \mathbf{x}^{-1} . To complete the verification of condition 2, we should prove that \mathbf{x}^{-1} is continuous. However, since we shall soon prove that this verification is not necessary provided we already know that the set S is a regular surface, we shall not do that here.

We remark that $\mathbf{x}(V)$ only omits a semicircle of S^2 (including the two poles) and that S^2 can be covered with the coordinate neighborhoods of two parametrizations of this type.

HW1: Show that a sphere is a regular surface using spherical coordinates.

 Reference: Differential geometry of curves and surfaces, by do Carmo.

Two Shortcuts

The last example in the previous lecture shows that deciding whether a given subset of \mathbb{R}^3 is a regular surface directly from the definition may be quite tiresome.

Shortcut 1

If $f: U \to \mathbb{R}$ is a differentiable function in an open set U of \mathbb{R}^2 , then the graph of f, that is, the subset of \mathbb{R}^3 given by (x, y, f(x, y)) for $(x, y) \in U$, is a regular surface

Critical Points and Values

Definition

Given a differentiable map $F: U \subset \mathbb{R}^n \to \mathbb{R}^m$ defined in an open set U of \mathbb{R}^n we say that $p \in U$ is a *critical point* of F if the differential $dF_p: \mathbb{R}^n \to \mathbb{R}^m$ is not a surjective (or onto) mapping. The image $F(p) \in \mathbb{R}^m$ of a critical point is called a *critical value* of F. A point of \mathbb{R}^m which is not a critical value is called a *regular value* of F.

The terminology is evidently motivated by the particular case in which $f:U\subset\mathbb{R}\to\mathbb{R}$ is a real-valued function of a real variable. A point $x_0\in U$ is critical if $f'(x_0)=0$, that is, if the differential df_{x_0} carries all the vectors in \mathbb{R} to the zero vector. Notice that any point $a\notin f(U)$ is trivially a regular value of f.

Critical Points and Values

Remark

If $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function, then

$$df_p = (f_x, f_y, f_z).$$

Note, in this case, that to say that df_p is not surjective is equivalent to saying that $f_x = f_y = f_z = 0$ at p. Hence, $a \in f(U)$ is a regular value of $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ if and only if f_x , f_y , and f_z do not vanish simultaneously at any point in the inverse image

$$f^{-1}(a) = \{(x, y, z) \in U \mid f(x, y, z) = a\}.$$

Two Shortcuts

Shortcut 2

If $f: U \subset \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function and $a \in f(U)$ is a regular value of f, then $f^{-1}(a)$ is a regular surface in \mathbb{R}^3 .

Examples

Example

The ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

is a regular surface.

The examples of regular surfaces presented so far have been connected subsets of \mathbb{R}^3 . A surface $S \subset \mathbb{R}^3$ if said to be *connected* if any two of its points can be joined by a continuous curve in S. In the definition of a regular surface we made no restrictions on the connectedness of the surfaces, and the following example shows that the regular surfaces given by Shortcut 2 may not be connected.

$$\frac{x^2 + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0}{f(x^1)^{12}} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$

$$(x,y,z) \mapsto f(x,y,z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$$

=)
$$\alpha = 0$$
 =) The critical pt is $(0,0,0)$

=) Critical value is $f(0,0,0) = \frac{0^2}{4^2} + \frac{0^2}{6^2} + \frac{0^2}{6^2} = \frac{0}{2}$ > so all the values à s.t a =0 are reguler values. => 1 is an regular value. $f^{+}(1) = \{(x,y,z)\in\mathbb{R}^3 | f(x,y,z) = | x^2/(2+t)^2/2 + t^2/2 \}$ Surface.

Show S^3 is a manifold.

• Work out details with the students on the iPad.

Now we can show S' is a manifold in IR* $S^{3} = \left\{ (\chi_{1} Y, z, w) \middle| \chi^{2} + y^{2} + z^{2} + w^{2} = 1 \right\}$ Let f: IR4 -> IR (x,y,z,w) -> x2+y2+ z2+w $\nabla f = (2x, 2y, 2z, 2w) = (0, 0, 0, 0)$ => (x,y,z,w)=(0,0,00) is the only critial

=) The only critial value is flo,0,0,0)=0

=) The only critial value is f(0,0,0,0)=0=) (1) is a regular value
=) $f^{-1}(1) = \{ (x,y,z,w) | f(x,y,z,w) = 1 \} = 5^3$ is a regular 3-D manifold. $x^2 + b^2 + 2^2 + w^2$

Q: Why there are 3 variables x, y, and z, but S² is two dimensional?

Next Lecture starts with What is SO(3)?

• The set of rotation matrices in R³ is denoted by SO(3).