MEMORANDUM RM-5201-ARPA MARCH 1967

4D850470

BASIC ENERGY-LEVEL AND EQUILIBRIUM DATA FOR ATMOSPHERIC ATOMS AND MOLECULES

Forrest R. Gilmore

PREPARED FOR:

ADVANCED RESEARCH PROJECTS AGENCY

7he RAND Corporation

ARCHIVE GUPY

BEST AVAILABLE COPY

MEMORANDUM RM-5201-ARPA MARCH 1967

BASIC ENERGY-LEVEL AND EQUILIBRIUM DATA FOR ATMOSPHERIC ATOMS AND MOLECULES

Forrest R. Gilmore

This research is supported by the Advanced Research Projects Agency under Contract No. SD-79. Any views or conclusions contained in this Memorandum should not be interpreted as representing the official opinion or policy of ARPA.

DISTRIBUTION STATEMENT
Distribution of this document is unlimited.

SUMMARY

This memorandum presents tables of the formation energies, dissociation energies, ionization energies, electronic energy levels, and vibrational level spacings for most atomic, diatomic, and triatomic molecules involving hydrogen, carbon, nitrogen, oxygen, and argon. Many positively and negatively charged ions are included. Tables of equilibrium fractional electronic-state populations, and graphs of the equilibrium constants for dissociation, ionization, and detachment for most of the atomic and diatomic species are appended. A brief discussion of the significance of such data precedes the tables and graphs.

CONTENTS

SUMMARY	iii
Section I. INTRODUCTION	1
II. REACTION ENERGIES	2
III. ENERGY LEVELS	4
IV. EQUILIBRIUM CONSTANTS	6
Table 1. Molecular Weights and Energies of Formation, Dissociation, and Ionization	8
Tables 2-11. Energy Levels and Equilibrium Fractional Electronic Populations of Atomic Species	12
Tables 12-18. Energy Levels and Equilibrium Fractional Electronic Populations of Several Diatomic Molecules	30
Table 19. Lower Electronic and Vibrational Energy Levels of Selected Diatomic Molecules	37
Table 20. Vibrational Spacing of Triatomic Molecules	38
Figures 1-4. Equilibrium Constants for Dissociation and Ionization	39
DEFEDENCES	/, 2

BLANK PAGE

I. INTRODUCTION

An important property of any reaction is its reaction energy, i.e., the amount of energy taken up or given off when unit amounts of the reactants are converted to the products. Heats of formation, dissociation energies, ionization energies, etc., represent specific types of reaction energies. When a reaction is exothermic, the reaction energy represents the energy available for excitation or heating of the products of the reaction. When a reaction is endothermic, the reaction energy must be supplied by the thermal or excitational energy of the reactants. Consequently, endothermic reactions will be very slow when the mean thermal energy is much less than the reaction energy, units the reactants have above-thermal excitational energy. (The converse, however, is not true; reactions are not necessarily fast just because sufficient energy is available.)

An understanding of reactiors involving excited states also requires a knowledge of the excited energy levels of the reacting or product species. Moreover, for the case of thermal equilibrium (i.e., for a Boltzmann distribution of excited-state populations), such energy levels can be used to calculate "equilibrium constants" which relate the forward to the backward rates of reactions (see Section 4). Finally, since most reaction energies and energy levels can be determined (by spectroscopic, calorimetric, or other measurements) with an accuracy far surpassing that attainable in reaction-rate measurements, such data form a firm foundation on which to build the often crude and speculative edifices of reaction mechanisms and rates. The present memorandum presents such data for atoms and simple molecules involving hydrogen, carbon, nitrogen, oxygen, and argon. These data have been obtained by a critical study of the recent literature, combined with new thermodynamic calculations for some of the species.

II. REACTION ENERGIES

The energy of a reaction may be defined as the a count of energy taken up when one molecule or one mole of reactants reached to form products. Unless otherwise stated, all reactants and products are assumed to be in their ground rotational, vibrational, and electronic levels (i.e., no excitation). Such a reaction energy is equivalent to what chemists call "the heat of reaction at 0° K", since at absolute zero (in thermal equilibrium) all particles are in their lowest levels. Moreover, for gases at absolute zero no distinction needs to be made between the reaction enthalpy (or heat) and the reaction energy, since $\Delta T_0^{\circ} = \Delta E_0^{\circ} = \Delta (pV)_{T=0} = 0$, where by international convention the subscript "0" designates 0° Y and the superscript "o" the ideal gas state. (A similar relation holds for the free energy: $\Delta F_0^{\circ} = \Delta A_0^{\circ} = \Delta E_0^{\circ}$.)

Chemists usually consider the reaction energy to vary with temperature, because of the varying thermal energy of the reactants and products. However, only the zero-temperature reaction energy will be tabulated here, for two reasons. In the first place, the variation with temperature is usually relatively small except at high temperatures, and can be readily estimated if necessary. Secondly, and more important in the present context, it is highly unlikely that the reaction products will be formed with an initial energy distribution corresponding to the ambient gas temperature. Hence, the temperature-dependent reaction energy is not really pertinent to the reaction-rate problem, but only to the question of the net heating after the products are thermalized by subsequent collisions.

The sign of the reaction energy depends upon whether it is defined as the energy absorbed or the energy released on reaction. For the cases considered here it is conventional to define it as the energy absorbed during formation, dissociation, or ionization, or equivalently the excess of the internal energy of the products over that of the reactants.

Before standard heats of formation can be determined, it is also necessary to establish "reference states" which are the standard substances from which all the other species are formed. For the species of present interest the conventional reference states are H_2 , N_2 , O_2 , and Ar in the ideal-gas (or isolated-molecule) state, and C in the form of graphite.

Table 1 gives the molecular weight, energy of formation, dissociation energy, and ionization energy for the (gaseous) atoms and small molecules of present interest, together with the relevant references. All energies are given in three different units: physical (electron volts per particle), spectroscopic (reciprocal of the wavelength of photons with that energy, in 10 cm⁻¹, also known as kilokaysers), and thermochemical (kilocalories per mole). Conversion factors are taken from the recent NAS-NRC list. The accuracy of each value is indicated roughly by the number of decimal places shown. The energy of any other reaction involving these species may be readily calculated by adding the formation energies of the products and subtracting those of the reactants.

III. ENERGY LEVELS

The energy levels of atoms and atomic ions depend upon the arrangement of their orbital electrons. The lower energy levels of the atoms and ions of present interest are listed in Tables 2 to 11, together with their electronic state designation and statistical weight. (For an explanation of the latter terms see Herzberg (2) or Moore (3).) The ions H, H, and C have only one bound state, so they are not tabulated. All of the listed species except 0 actually have an infinite number of highly-excited states. The present tables, however, list only those states where all the bound electrons have principal quantum numbers less than 4. In most physical situations higher states will not play an important role, but if needed they can be obtained from the more extensive tabulations of Moore, (3) or they may be calculated from the Rydberg formula. (2)

Also included in Tables 2 to 11 are the equilibrium fractional populations of the different electronic states, for various temperatures up to 10,000°K. These results are often useful in problems concerning equilibrium gases. The reader is cautioned, however, that in many situations involving low-density gases, or transient processes even at high densities, equilibrium will not obtain and these tabulated populations will not be applicable.

Molecules, because of their additional rotational and vibrational degrees of freedom, have so many individual energy levels that it is rather impractical to tabulate them. Fortunately, however, for each degree of electronic excitation the rotational and vibrational levels are usually quite regular and can be represented by simple formulas, only the coefficients of which need to be tabulated (see Herzberg $^{(4)}$). For present purposes it is probably sufficient to note that the vibrational levels of each electronic state are fairly evenly spaced, only slowly converging near the dissociation limit. The rotational levels are not evenly spaced, but vary approximately quadratically with the rotational quantum number; however, the spacing is generally so close $(10^{-3}$ to 10^{-2} eV) that for most reaction-rate purposes the rotational energy levels can be treated as if they formed a continuum.

Tables 12 to 18 present the electronic energy, lowest vibrational interval, and fractional population for the lower electronic states of several diatomic molecules of present interest. Similar values for other diatomic molecules, but without the fractional population numbers, are given in Table 19. (Again, the reader is cautioned against use of the equilibrium population values in monequilibrium situations.)

For triatomic molecules, existing knowledge of the lower excited electronic states is quite incomplete. Consequently, only the ground state and its lowest vibrational intervals, for the three normal vibrational modes, are listed in Table 20.

IV. EQUILIBRIUM CONSTANTS

In any ideal-gas mixture in complete thermal and chemical equilibrium that contains three or more species which can be related by a possible reaction, such as $XY \neq X + Y$ or $W + X \neq Y + Z$, the concentration ratios (X)(Y)/(XY), (Y)(Z)/(W)(X), etc., can be shown to depend only on the temperature. (5) Since these ratios are independent of the individual species concentrations, they are called equilibrium constants.

A reacting gas mixture that is initially out of chemical equilibrium will tend to approach equilibrium, and the ratios defined above will tend to approach their equilibrium values. As equilibrium is approached the various reaction rates do not actually become small, but instead each reaction becomes balanced by its reverse reaction. Consequently, it can be shown that in equilibrium the ratio of the forward to backward rate coefficients for each reaction is equal to its equilibrium constant. Unfortunately, a rate coefficient is measureable and has practical significance only in nonequilibrium situations. Among each reactant species there will always be particles with a range of velocities, and usually with a range of rotational, vibrational, or electronic levels. Generally some of these levels or velocities will be more reactive than others. In nonequilibrium situations the more reactive ones will be removed (by reaction) more rapidly than the others, resulting in an internal distribution of levels or velocities in each reacting species which makes it less reactive than if it had an equilibrium distribution. (6)

Molecular dissociation calculations based on a simple model show that when the mean thermal energy is much less than the dissociation energy the dissociation and association coefficients are only slightly smaller than their equilibrium values. Moreover, both coefficients are decreased by the same fraction, so that their ratio still equals the equilibrium constant. (7) However, other types of reactions may not have such a convenient behavior.

In the present work, equilibrium constants have been calculated for several pertinent dissociation and ionization reactions. Results up to $10,000^{\circ}$ K are presented graphically in Figs. 1 to 4.

Table 1. MOLECULAR WEIGHTS AND ENERGIES OF FORMATION, DISSOCIATION, AND IONIZATION FOR SELECTED ATOMS AND MOLECULES

Species	Molec. Weight*	Energy (or Heat) af Formation**	Dissociation Energy##	Ionization Energy**	Reference ***
Н-	1.00852	1.~85 ev	_	0.754	8
		11.974×10 ³ cm ⁻¹	,	6.083	
		34.235 kcal/mole		17.392	
Н	1.00797	2.239	-	13.598	3
		18.057	•	109.679	
		51.627		313.585	
H ⁺	1.00742	15.837	-	-	-
		127. <i>7</i> 36			
	}	365.213	i		
C ⁻	12.01170	6.24	_	1.13	9,10
		50.4		9.1	
		144.0		26.0	
С	12.01115	7.371	_	11.259	3
		59.452		90.814	
		169.979		259.648	
C ⁺	12.01060	18.630	_	24.382	3
		150.265		196.659	
		429.627		562.272	
N	14.0067	4.880	_	14.532	3
		39.359		117.214	
		112.532		335.129	
N ⁺	14.0062	19.412	_	29.601	3
		156.573		238.751	
		447.661		682.618	
0	15.9999	1.079	_	1.478	11
		8.705		11.925	
		24.89		34.10	
0	15.9994	2.558	_	13 18	3
		20.630		109.837	
		58.984		314.037	

Table 1 (Cont.)

Species	Molec. Weight*	Energy (or Heat) of Formation**	Dissociation Energy**	lonization Energy**	References ***
0+	15.9989	16.175 ev	-	35.117	3
		130.467 x103cm ⁻¹		283.244	
	<u> </u>	373.021 kcol/mole		809.829	
Ar	39.948	0	-	15.759	3
		0		127.110	
		0		363.423	
Ar ⁺	39.947	15.759	-	27.629	3
		127.110		222.848	
		363.423	:	637.149	
H ₂	2.01594	0	4.477	15.425	13,14
-		0	36.114	124.414	
		0	103.254	355.715	
H_2^+	2.01539	15.425	2.651	-	14
•		124.414	21.379		
		355 <i>.7</i> 15	61.125		
CO	28.0106	-1.179	11,108	14.013	15 to 18
		-9.513	85 595	113.029	
		-27.200	256.163	323.163	
co ⁺	28.0100	12.834	8.354	27.8	19
		103.516	67 .380	224	
		295.963	192.648	640	
N ₂	28.0134	0	9.759	15.580	17,20,21
_		0	78.717	125.667	
		0	225.061	359.297	
N ₂ +	28.0129	15.580	8.711	27.1	22
-		125.667	70.264	219	
		359.297	200.893	626	
NO ⁻	30.0066	0.6	5.3	0.3	†
		5	43	2	
		14	123	7	

-10-Table 1 (Cont.)

Species	Molec. Weight*	Energy (or Heat) of Formation**	Dissociation Energy##	lonization Energy**	References***
NO	30.0061	0.931 ev	6.507	9.267	15 23, 24
		7.506·10 ³ cm ⁻¹	52.483	74.747	
		21.46 kcal/mole	150.055	213.711	:
NO ⁺	30.0056	10.198	10.857 (N - 0 ⁺)	30.5	19
		82.253	87.573	246	
		235.17	250.382	703	
o_2^-	31. 799 3	-0.43	4.08	0.43	25
_		-3.5	32.9	3.5	
		-10.0	94.0	10.0	
02	31.9988	0	5.115	12.063	26,27
_		0	41.260	97.295	
		0	117.967	278.178	
o ₂ +	31.9983	12.063	6.670	24.2	22
_		97.295	53.802	195	
		278.178	153.826	558	
OH_	17.0079	-1.43	4.75 (O - H)	1.83	28
		-11.51	38.27	14.75	
		-32.9	109.4	42.2	
ОН	17.0074	0.401	4.395	13.34	29 through
		3.24	35.45	107.6	31
		9.26	101.33	307.6	1
OH [↑]	17.0068	13.74	4.65 (O - H ⁺)	-	_
		110.8	37.5		
		316.8	107.2		
H ₂ O	18.0153	-2.476	5.116 (H - OH)	12.619	15,32
•		-19.972	41.27	101.78	
		-57.103	117.98	291.0	
H ₂ O ⁺	18.0148	10.143	5.84 (H - OH ⁺)	-	-
•		81.81	47.1		
		233.9	134.7		
co,	44.0100	-4.075	5.453 (CO - O)	13.769	15,32
2		-32.865	43.982	111.06	
		-93.965	125.750	317.5	
					l

Table 1 (Cont.)

Species	Molec . Weight*	Energy (or Heat) af Formanian**	Dissociatian Energy**	lanization Energy**	References***
co, ⁺	44.0094	9.694 ev	5.179 (CO - O [†])	22.6	19
•		78.19 ×10 ³ cm ⁻¹	41.77	182	
		223.5 l:cal/mole	119.4	521	
אט,	46.0060	-3.6	5.6 (NO - O)	4.0	33
•		-29	45	32	
		-83	128	92	
1102	46.0055	0.372	3.116 (NO - O)	9.78	15,34
2		3.00	25.13	78.9	
		8.59	71.86	225.6	
NO ₂ +	46.0050	10.15	2.60 (NO ⁺ - O)	-	-
_		81.9	21.0		
		234.2	60.0		
N ₂ O	44.0128	0.881	1.677 (N ₂ - O)	12.894	15,32
•		7.107	13.523	104.00	
i		20.32	38.66	297.35	
N ₂ O [†]	44.0123	13.775	1.302 (N - NO [†])	-	-
•		111.11	10.50		
		317.67	30.02		
03	47 .9987	-0.4	1.5 (O ₂ - O¯)	1.9	35
		-3	12	15	
		-9	34	44	
03	47.9982	1.506	1.051 (O ₂ - O)	12.80	15,36
		12.15	8.48	103.2	
		34.74	24.25	295.2	
0 ₃ +	47.9977	14.31	0.32 (O ₂ + - O)	-	-
J		115.4	2.5	į	
		329.9	7.3		

^{*} Molecular weights are for the normal isotopic mixture, based an C¹² = 12.00000.

** All reaction energies are for isolated particles in their lowest rotational, vibrational, and electronic state (microscopic description), or for ideal gases of 0°K (equivalent macroscopic description). All energies are given in three units: physical (electron volts), spec' copic (10³ cm⁻¹ or kilokaysers), and the mochemical (kilocalories per mole).

***la avaid unnecessary duplication, references are indicated only where they give directly o formation, dissociation, or ionization energy. Where a dissociation energy is calculated from the formation energies of the molecule and its dissociation products, references to the latter are given only opposite the products. Similarly, no direct references are given for formation energies colculated from measured dissociation or ionization energies.

t Electron affinity estimated, since observation of negative charge transfer (37) to 0₂ shows that the magnetron measurement (33) is inaccurate.

11. 14. –

Table 2. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF H

1 500	1.00E 00 5.41E-35 1.62E-34 0.	00000
1000	1.COE 00 0. 0. C.	
000	1.COF CO 0. 0. 0.	
009	1. COF CO C. O. C.	
URE (DEG K) 500	1. CCE CC C. 0. 0.	
TEMPERATI	1.00E CO 0. 0. C.	
300	1.COE CC 0. 0.	00000
250	1.0CE CO C. 0.	
200	1.00f CO C. 0. 0.	;
STAT.	WW & W W	10 2 10 14
LEWEL (EV)	C.CCCC 10.1986 10.1986 12.C872	12.0872 12.7482 12.7482 12.7482 12.7482
LE (C#-1)	C R 2 2 5 9 8 2 5 5 9 9 1 4 9 2 9 1 4 9 2	97492 1C2824 1C2824 102324 102824
STATE	-ಇನಿಕ್ಕಾಕಿ	X443×

ENERGY LEVELS FUCE MODRE (3). NCTE: STATES INVOLVING ELECTRONS WITH PRINCIPAL QUANTUM NUMBERS ABOVE N = 4 ARE NOT INCLLDED.

LEVEL					TEMPE	RATURE ICE	G K)					
(Ck-1)	2000	7500	3000	3500	4000	4000 4500	2000	9009	7000	8000	9000	10000
S	i.cce cc	1.COE CO	1.006 00	1.00E CO	1.00E 00	1.COE 00	1.COE CO	1.CCE CC	1.CCE 00	1.00E CO	1.00E 00	1.00E 00
£2259	1.99E-26	2. "5E-21	7.36E-18	2.06E-15	1.41E-13	3.78E-12	5.25E-11	2.71E-09	4.545-08	3.76E-07	1.946-06	7.24E-06
62259	5.98E-26	8.26E-21	2.21E-17	4.18E-15	4.24E-13	1.136-11	1.576-10	8.14E-09	1.36E-07	1.136-06	5.838-06	2-176-05
97492	3.47E-31	4.29E-25	4.94E-21	3.93E-18	5.89E-16	2.9CE-14	6.558-13	7.03E-11	1.98E-09	2.43E-08	1.706-07	8-09E-07
26425	1.04E-30	1.296-24	1.48E-2C	1.186-17	1.776-15	8.7CE-14	1.18E-17 1.77E-15 8.7CE-14 1.97E-12 2.11E-10 5.95E-09 7.28E-08 5.11E-07 2.43E-06	2-116-10	5.95E-09	7.286-08	5.11E-07	2.436-06
97492	1.74E-3C	2.15E-24	2.47E-20		2.95E-15	1.456-13	1.97E-17 2.95E-15 1.45E-13 3.28E-12 3.51E-10 9.92E-09 1.21E-07 8.52E-07 4.05E-06	3.51E-10	9.92E-09	1.216-07	8.52E-07	4.05E-06
102824	7.5CE-33	1.995-26	3.83E-22		8.66E-17	5.27E-15	1.416-13	1.96E-11	6.63E-10	9.30E-09	7.26E-08	3.76E-07
102824	2.25E-32	5.98E-26	1.156-21		2.6CE-16	1.586-14	4.24E-13	5.87E-11	1.596-09	2.79E-08	2.18E-07	1.13E-06
102824	3.75E-32	9.97E-26	1.916-21		4.33E-16	2.64E-14	7.C6E-13	9.78E-11	3.316-09	4.65E-08	3.63E-07	1.88E-06
102824	5.25E-32	1.40E-25	2.68E-21		6.06E-16	3.69E-14	9.896-13	1.37E-10	4.64E-09	6.51E-08	5.08E-07	2-63E-36

Table 3. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF C

	22223	15 27 32		24 34 34 35	35			
1500	1.146-01 3.386-01 5.486-01 3.246-05 1.106-10	5.06E-1 3.43E-2 4.60E-3 0.	0. 0. 0. 6.	3.726-2 1.476-3 3.706-3 8.476-3	9.78E-3	•••••		
2221	1.16E-01 3.40E-01 5.44E-01 2.47E-07 3.45E-15	4.83E-22 0. C. C.	C. 0. 0. C. 1.47E-38			• • • • • •		
3 3 8	1.176-C1 3.416-O1 5.426-C1 6.396-O9 1.456-18	2.62E-27 0. C. C.		•••••	00000	• • • • • •		
600	1.196-01 3.446-01 5.376-01 1.446-11 3.406-24	4.39E-36 0. C. C.	់ ប៉ប់ ប៉ប់ ប៉		00000			3000
RE (CEG K) SCC	1.216-01 3.466-01 5.336-01 1.106-13 1.076-28		00000	00000			00000	0000
TEPPERATURE 400	.23E-01 .49E-01 .28E-01 .34E-17			00000		00000		0000
300	.28E-01 3 .54E-01 3 .18E-01 5				•••••	00000		
250	.31E-01 3 .58E-01 3 .11E-01 5							••••
200	37E-C1 94E-C1 99E-C1 67E-33 2		00000	0000				0000
.		00000	0000	00000	00000	00000	00000	0000
STAT.	W & W	2 T 2 E 2	3 2 1	96 912 96 60	84 27 27 27 24	26 100 320 108	197 36 64 72 128	18C 32C 1Cs
LEVEL (EV)	0.000 0.0020 0.0024 1.26*3	4.1625 7.9461 9.3303 13.1173 12.1350	14.8626 18.5972 19.5890 22.4406 7.5351	8.6442 9.7233 9.6933 10.0258 10.3458	10.4144)4.3818 15.4976 16.3655 16.8824	17.1044 17.9772 15.0931 19.5890 22.8125	24.C523 21.0768 22.1926 26.7799 27.8957	27.7717 28.8876 30.1274 31.2432
LE)	0 16 43 10194 21648	33735 64091 75256 105801 97878*	119878* 155000* 158000* 181000* 60776	69722 78426 78184 80866 83850**	84CCC+ 1160CO+ 125CCO+ 132CCO+	134800000 1548000000 1548000000 1549000000000000000000000000000000000000	194000+ 170000+ 179000+ 214000+ 225000+	224000+ 233000+ 243000+ 252000+
STATE	2, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	2, 20, 55, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	2p* 'p* 2p* 'p 'D 'S 2s* 2p (*p*) 3s	¥ <u>¥</u> 44	2s 2p ² (P) 3s 3p 3p 3d 3d	2s 2p ² (² D) 3s 3p 3d 3d (² P) 3	(*S) 3 2p ³ (*S°) 3	(² D°) 3 (² P°) 3 4

*ESTIMATED.
**INCLUES ESTIMATED SUBLEVELS.
ACNSTARREC ENERGY LEVELS FROM MCCRE (3) AND MINNMAGEN (38).
ACNSTARREC ENERGY LEVELS FROM MCCRE (3) AND MINNMAGEN (38).
ACTE: STATES INVOLVING ELECTRONS WITH PRINCIPAL CUANTUM NUMBERS ABOVE N * 4 ARE NOT INCLUDED.
ALL LEVELS ARGYF 90814. CM-1 ARE SUBJECT TO AUTOCONIZATION.

Table 3 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF C

蘚

LEVEL (CM-1)	2000	2500	30.00	3560	16#PEP	NATURE ICE 4500	G K) 5000	9000	7000	90C O	0006	10000
0 16 43 10194 21648	1.13E-01 3.36E-01 5.50E-01 3.71E-04 1.96E-08	1.13t-01 3.35E-01 5.50E-01 1.60E-03	1.12E-01 3.34E-01 5.50E-01 4.22E-03 3.48E-06	1.12E-01 3.32E-01 5.48E-01 8.44E-03	1.11E-01 3.3CF-01 5.45E-01 1.41E-02 4.60E-05	1.1CE-01 3.28E-01 5.41E-01 2.11E-02	1.09E-01 3.25E-01 5.37E-01 2.89E-02 2.14E-04	1.C7E-C1 3.19E-01 5.28E-01 4.63E-02 5.94E-04	1.C4E-C1 3.12E-01 5.17E-01 6.42E-C2 1.22E-03	1.026-01 3.066-01 5.076-01 8.176-02 2.086-03	1.00E-01 2.59E-01 4.97E-01 9.81E-02	9.40E-02 2.93E-01 4.87E-01 1.13E-01
33735 64091 75256 105801 97878	1.64E-11 1.61E-20 3.14E-24 3.00E-34 1.49E-31	7	5.28E-08 7.53E-14 2.14E-16 3.09E-23 2.30E-21	4.29E-07 6.04E-12 3.68c-14 4.32E-2 1.87E-	2.97E-06 1.62E-10 1.75E-12 9.85E-18	1.14E-05 2.C8E-09 3.51E-11 6.71E-16	3.31E-05 1.60E-08 3.85E-10 1.96E-14 3.19E-13	1.64E-04 3.38E-07 1.40E-08 3.07E-12	5.09E-04 2.98E-06 1.80E-07 1.13E-10 9.56E-10	1.186-03 1.516-05 1.226-06 1.676-09	2.28E-03 5.33E-05 5.37E-06 1.35E-08	3.826-03 1.456-04 1.756-05 7.206-08
119878 150000 158000 181000	1.20E-38 0. 0. 1.4CE-19	3.69t-31 3.27f-38 0. 0.	3.62E-26 5.77E-32 6.92E-34 2.24E-39 2.95E-13	1.336-22 1.676-27 3.456-29 5.416-34 1.896-11	6.23E-20 3.68E-24 1.15E-25 5.88E-30	7.446-18 1.476-21 6.316-23 8.C86-27 4.796-09	3.416-16 1.766-19 9.776-21 2.616-24 3.326-08	1.05E-13 2.29E-16 1.87E-17 1.51E-20 5.55E-C7	6.246-12 3.836-14 4.116-15 7.276-18	1.336-10 1.776-12 2.336-13 7.456-16 2.206-05	1.43E-09 3.47E-11 5.36E-12 2.71E-14 7.24E-05	9.506-09 3.746-10 6.576-11 4.806-13 1.876-04
69722 78426 78184 80866 83850	6.73E-22 2.14E-24 5.09E-25 2.22E-25 4.32E-26	1.526-17 1.696-19 3.896-20 2.496-20 7.466-21	1.21E-14 3.11E-16 6.99E-17 5.80E-17 2.31E-17	1.43E-12 6.67E-14 1.47E-14 1.47E-14 7.17E-15	5.12E-11 3.72E-12 8.13E-13 9.29E-13 5.29E-13	8.23E-1C 8.49E-11 1.83E-11 2.33E-11	7.586-09 1.036-09 2.216-10 3.076-10	2.1CE-07 4.35E-08 9.22E-09 1.45E-08	2.256-06 6.256-07 1.316-07 2.276-07 2.056-07	1.32E-05 4.59E-06 9.59E-07 1.78E-C6 1.73E-06	5.2CE-05 2.15E-05 4.48E-06 8.75E-06	1.556-04 7.396-05 1.536-05 3.396-05
84CCC 1160CC 125000 1320C0	5.43E-26 1.56E-36 0.	9.586-21 2.756-29 4.646-31 1.386-32 2.506-34	3.01E-17 1.86E-24 7.44E-26 4.32E-27 1.17E-28	9.44E-15 5.22E-21 3.88E-22 3.63E-23	7.026-13 2.016-18 2.376-19 3.186-20 1.426-21	2.C0E-11 2.C6E-16 3.47E-17 6.17E-18	2.91E-10 8.32E-15 1.87E-15 4.16E-16 2.51E-17	1.60E-08 2.13E-12 7.37E-13 2.29E-13 1.69£-14	2.786-07 1.116-10 5.226-11 2.C66-11 1.756-12	2.36E-06 2.13E-09 1.27E-C9 6.C0E-10 5.67E-11	1.246-05 2.126-08 1.516-08 8.226-09 8.446-10	4.64E-05 1.33E-07 1.09E-07 6.64E-08
1380CC 1450C0 154000 1580CC		7.276-35 3.88E-36 3.64E-38 0.	4.05f-29 4.23f-30 9.42f-32 4.43f-32 5.74f-38	5.14E-25 8.68E-26 3.58E-27 2.21E-27 1.70E-32	6.13E-22 1.48E-22 9.71E-24 7.37E-24 2.16E-28	1.516-19 4.836-20 4.536-21 4.646-21	1.23E-17 4.94E-18 6.18E-19 6.25E-19 1.19E-22	9.06E-15 5.07E-15 9.77E-16 1.2CE-15 7.93E-19	1.006-12 7.146-13 1.976-13 2.636-13	3.40E-11 2.90E-11 9.57E-12 1.49E-11	5.25E-10 5.14E-10 2.03E-10 3.43E-10 1.81E-12	4.67E-09 5.12E-09 2.34E-09 4.20E-09 3.37E-11
154000 170000 175000 216000 225000		30000	0. 1.58E-35 3.74E-37 C.	4.96E-34 1.79E-30 7.88E-32 2.20E-38	1.056-29 1.116-26 7.736-28 1.446-33 1.016-34	2.43E-26 9.80E-24 9.8CE-25 8.03E-30	1.196-23 2.236-21 2.976-22 7.946-27 1.066-27	1.28E-19 7.58E-18 1.56E-18 2.46E-22 5.05E-23	5.65E-17 2.51E-15 7.C2E-16 3.93E-19 1.1CE-19	1.38E-14 1.94E-13 6.83E-14 5.9CE-17 3.49C-17	6.52t-13 5.67t-12 2.39t-12 7.26t-15	1.42E-11 8.41E-11 4.10E-11 2.25E-13 1.09E-13
2240C0 23300C 2430CC 252000	0000				2.03E-34 1.42E-35 1.31E-37 0.	1.56E-30 1.56E-31 2.15E-33 2.15E-34	1.99£-27 2.65£-28 5.03£-30 6.71£-31	9.02E-23 1.85E-23 5.68E-25 1.17E-25	1.90E-19 5.31E-20 2.29E-21 6.41E-22	5.87E-17 2.07E-17 1.16E-18 4.07E-19	5.05E-15 2.13E-15 1.45E-16 6.13E-17	1.786-13 8.656-14 6.936-15 3.376-15

ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF C Table 4.

STATE	LEVEL (CM-1)	/EL (EV)	STAT.	3CC	250	300	TEMPERATI 4CC	TEMPERATURE IDEG K)	009	800	1000	1,000
28 29 "9". 25 29" "0". 5 29" "0".	64 64 74933 96694	0.000 0.0079 5.3353 9.2901	2 5 1 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	4.42E-01 5.58E-01 0.	4.2CE-01 5.8CE-01 0.	4.05E-01 5.95E-01 0.	3.86E-01 6.14F-01 0.	3.75E-01 6.25E-01 0.	3.68E-C1 6.32E-O1 C. 0.	3.59E-01 6.41E-01 5.27E-34 0.	3.54E-01 6.46E-01 2.74E-27 0.	3.47E-01 6.53E-01 2.47E-18 1.C6E-31 C.
26, 26 28, 26 29, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28	110653 142024 150465 166744	13.7189 17.6083 18.6548 20.9210	4459%				03000					
	131725 145550 157235 162523 168125	16.3314 18.0454 19.4942 20.1498 20.8443	901 801 901		•••••	••••		••••				: · · · · ·
2s 2p (*P*) 3s 3p 3d 3d 4s	168979 170643 184786 197742 21CCCC0**	20.9502 21.1565 22.9100 24.5163 26.0360	4 & 4 O B							66666	00000	
(ੈ) \$3448	215730** 220465 221458 219000* 234000*	26.7464 27.3335 27.4566 27.1518 29.0116	54 90 126 18	::::::	•••••	•••••		• • • • • •	់ : ំ ំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ		00000	ú
¥4 4 4±	246000* 260000* 270500* 271400*	30.4993 32.2351 32.8550 33.5369	00 00 00 00 00 00 00 00 00 00 00 00 00							00000	00000	
유 (호) 유 (호) 유 (O')	257050* 271550* 283050* 304500*	31.8631 33.5989 35.0866 37.7522	2 9 5 4 E			00000						::::::
8, 3, 3, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	2010000 2920000 3130000 3150000 3490000	34.8387 36.2025 38.8061 39.5499 43.2694	3C 16C 32					00000				

ESTIMATED.
**INCLUCES ESTIMATED SUBLEVELS.*
**INCLUCES ESTIMATED SUBLEVELS.*
**INCNSTARRED ENERGY LEVELS FROM POCRE (3) AND GLAD (39).*
NOTE: STATES INVOLVING ELECTRONS #ITH PRINCIPAL QUANTUM NUMBERS ABOVE N = 4 ARE NOT INCLUDED.*
ALL LEVELS AROVE 196659 CM-1 ARE SUBJECT TO AUTOICHIZATION.*

Table 4 (Cont.), ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF C

	Table	+ (will:)), ENERG	i LEVELS	מאס	EQUILIBALUM	FRACTIONAL	-	ELECTRONIC FOR	roru la lions	ာ ဦ	
EVEL	2000	2500	3000	3560	TEMPE!	RATURE IDEG 45CO	5 K)	0909	7000	0008	9996	10000
6, 43033 74932 96494	3.44E-01 6.56E-01 7.40E-14 6.67E-24 2.45E-31	3.42E-01 6.58E-01 3.60E-11 3.19E-19 2.6CF-25	3.4CE-01 6.60E-01 2.22E-09 4.2CE-16 2.71E-21	3.396-C1 6.616-C1 4.236-C8 7.116-14	3.386-01 6.626:01 3.856-07 3.336-12 2.866-16	3.386-01 6.426-01 2.156-04 6.656-11	3.376-01 6.636-01 8.486-06 7.296-10 2.956-13	3.37E-01 6.63E-01 6.67E-05 2.65E-08 3.01E-11	3.36E-01 6.66E-01 2.91E-04 3.4E-C7 8.18E 10	3.36E-C1 6.64E-O1 8.77E-O4 2.36E-O6 9.75E-C9	3.35E-01 6.63E-01 2.07E-03 1.05E-05 6.69E-08	3.34E-01 6.62E-01 4.10E-03 3.47E-05
10653 42024 50465 68744 16538	2.776-35 0. 0. 0. 1.346-37	2.266-28 2.176-36 4.216-38 0. 2.546-30	9.156-24 1.786-30 7.276-36	1.796-20 2.996-26 2.336-27 7.616-31 5.316-22	5.26E-18 4.41E-23 5.29E-24 4.43E-27 2.11E-19	4.376-16 1.286-20 2.166-21 3.756-24 2.226-17	1.50E-14 1.2CE-18 2.65E-19 8.26E-22	3.026-12 1.096-15 3.606-16 2.706-18 2.466-13	1.346-10 1.416-13 6.236-14 8.726-16 1.336-11	2.29E-09 5.42E-12 2.97E-12 6.65E-14 2.65E-1C	2.09E-C8 9.23E-11 5.93E-11 1.93E-12 2.72E-C5	1.22E-07 8.92E-10 6.62E-10 2.86E-11 1.74E-08
31725 45550 57235 62523 68125		1.226-33 7.136-37 0. 0.	3.74f-28 8.22f-31 6.05f-34 1.44f-34 1.63f-35	3.09E-24 1.75E-26 2.88E-29 9.82E-30	2.656-21 3.106-23 3.276-26 4.356-26	5.19E-19 1.04E-20 4.96E-23 2.74E-23 7.63E-24	3.49E-17 1.09E-18 7.56F-21 4.95E-21 1.65E-21	1.93E-14 1.17E-15 1.42E-17 1.20E-17 5.21E-18	1.766-12 1.716-13 3.106-15 7.136-15 1.656-15	5.18E-11 7.18E-12 1.76E-13 2.04E-13 1.24E-13	7.196-10 1.316-10 4.066-12 2.236-12 3.566~12	5.89E-09 1.34E-09 5.C0E-11 7.C1E-11 5.22E-11
66979 170643 84786 57742		66666	1.526-35 H.786-36 2.986-38 C.	1.61E-30 1.05E-3C 9.37E-33 7.60E-35	9.5CE-27 6.71E-27 1.24E-28 1.94E-3C	8-13E-24 6-14E-24 2-CCE-25 5-30E-27 2-1CE-29	1.806-21 1.446-21 7.356-23 2.956-24 1.736-26	5.956-18 5.136-18 5.186-19 3.866-20	1.94E-15 1.77E-15 2.9CE-16 3.37E-17 5.43E-19	1.42E-13 1.42E-13 3.34E-14 5.42E~15 1.20E-16	4.35E-12 4.28E-12 1.34E-12 2.81E-13 7.93E-15	6.45E-11 6.53E-17 2.56E-11 6.62E-12 2.27E-13
15/30 226465 21458 119000 34000				2.80E-38 C. C. 0.	1.82E-33 5.53E-34 5.42E-34 6.25E-35 8.5CE-37	1.C1E-29 3.70E-3C 3.78E-30 3.55E-31 9.78E-33	9.59E-27 4.26E-27 4.33E-28 1.73E-29	3.106-22 1.666-22 1.836-22 1.576-23 1.295-24	5.026-19 3.166-19 3.616-19 2.856-20 3.916-21	1.28E-16 9.10E-17 1.07E-16 7.90E-18 1.60E-18	9.52E-15 7.44E-15 8.89E-15 6.27E-16 1.71E-16	2.99E-13 2.52E-13 3.C6E-13 2.C7E-14 7.18E-15
46000 46000 465000 70500			60000		1.896-38 0. 0. 0.	3.52E-34 8.CCE-37 4.85E-37 1.39E-37	9.156-31 3.266-33 2.326-33 7.936-34 8.576-34	1.216-25 8.466-28 7.656-28 3.416-28	5.54E-22 6.23E-24 6.69E-24 3.6CE-24	3.C7E-19 4.95E-21 6.05E-21 3.75E-21 4.46E-21	4.165-17 8.926-19 1.206-18 8.336-19 1.016-18	2.13E-15 5.68E-17 8.30E-17 6.27E-17
1710C0 1710C0 183CCC 1045C0						6.26E-36 2.14E-37 0. 0.	2.32E-32 1.24E-33 6.52E-35 4.29E-37 7.24E-34	5.21E-27 5.44E-28 5.11E-29 9.42E-31 2.63E-28	3.4%E-23 1.85E-24 8.27E-25 3.19E-26 2.46E-24	2.556-20 6.176-21 1.136-21 7.956-23 2.346-21	4.33E-18 1.38E-18 3.39E-19 3.49E-20	2.62E-10 1.05E-16 3.11E-17 4.52E-18 3.46E-17
113000 113000 115000	00000	30000	00000		00000		3.87E-35 2.72E-36 0. 0.	2.75E-29 3.28E-30 6.82E-32 3.82E-33 2.43E-36	4.16E-25 7.23E-26 3.C9E-27 1.C1E-28 3.78E-31	5.67E-22 1.31E-22 9.58E-24 3.66E-25 2.95E-27	1.55E-19 4.46E-20 4.98E-21 2.14E-22 3.15E-24	1.38E-17 4.74E-18 7.39E-19 3.51E-20 8.32E-22

ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF N Table 5.

STATE	ā	LEVEL	STAT.				TEMPERATE	TEMPERATURE (DEG K)				
	(CH-1)	(EV)	-	5 C0	250	300	400	205	909	8C0	0001	1500
2. 4. 2.	ပ	0.000	•	1.COE CO	1.00E CO	1.COE 00	1.00E 00		1.00E 00	1.606 00	1.CCE 00	1. LUE 00
۵	19228	2.3839	21		•	•	2.30E-30	34E-24	2.366-20	2.40E-15		2.44E-08
	28839	3.5755	٥	•	•	•	•		1.39E-30	4.47E-23		1.456-12
2s 2p P	88132	10.9267	12	•	•	•	•	•	•	•		5.80E-37
	121000	15.0017	2	ះ	•	•	•	•	វ	ំ		•0
2,	142116	17.6189	~	•	ن د	•0	•	•	٠ ن	•	•	•
a-	\$ 582CO*	19.6138	•	•	•	ن.	•	•	•	•	•	•
20° * P*	232900	28.8752	•	3	•	•	•	•	វ	•		ن.
_	84268	10.4501	81	•	•	•	•	•	•	•	•	3.48E-35
ર્સ	95780	11.8749	54	•	•	•0	ះ	•	•	•		٥.
8	104861	13.0008	ۍ	•	•	•	•	•	٠,	•	•0	:
\$	103861	12.8768	1.6	ខ	•	•	•	•	•	•	ن	•
4	107420	13.3180	54	•	•	•	.	•	.	•	ن	•
.2	110315	13.6770	0 5	•	•	•	•	•	•	•	•	ن
*	110441	13.6926	921	•	••	•	•	•	.	•	•	ះ
£ (a,)	99466	12.1564	_	ć	Ċ	ć	č	ć	,	Ü	Ç.	ن د
i A	110973	13,7585) <u>(</u>				•	•		•	•	•
· R	12100000	15.0017	2 0		•	•	•	•	:	•	•	.3
	12460000	15.4480	160	់	ن	•	ះ	•	•		•	٠.
% (S,)	116279	14.4164	7	•	•	ن	•	••	វ	•	.	វ
જ	128400	2016.51	•	:	•	•	•	•	•	•	٥.	°.
· R	137500	17.0474	21		•	•	វ	•	ះ			•
₹	142000	17.6053	32	•	•	:	ن	ن.	វ	. .	•	ئ.
2s 2p (\$5) 3	1530004	18.9641	9 0	•	•	•	•	•	•	•	•:0	ن.
•	156000	19.3410	160	•	°.	•	ò	• 0	វ	:	• •	ن
(*D*) 3	192000	23.8044	27.5	•	•	3	•	.	:	٠,	•	ئ
	\$050C2	25.0442	4.80	•	•	ះ	ن	•	•	•	•	•
(Pp.) 3-4	*000512	26.6559	450	•	•	.	.;	•	ن	ះ	ن	ះ
(5°,0°,0°) 3-4	*2006 5 2	32.1111	550	.	•	• 0	•	•	. ن	، ن	ပံ (.
2p*(*P, 'D, 'S) 3-4	331666	41.0377	75.	•	•0	•	.	ن	ن.	•	•	•

FSTIMATED.
**INCLUES FSTIMATED SUNLEVELS.*
**INCLUES FSTIMATED SUNLEVELS.*
**INCLUES FSTIMATED FREM MCCRE (3) ERIKSSON (40) AND ERIKSSON AND JOHANSSON (41).*
**INCLE: STATES INVOLVING ELECTRENS WITH PRINCIPAL GUANTUM NUMBERS ABOVE N * 4 ARE NOT INCLUDED.*
**ALL LEVELS ABOVE 117214 OM-1 ARE SLEJECT TO AUTOIGNIZATION.*

Table 5 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF N

	00001	N-47E-01	1.356-01	2.COE -02	7.90E-06	5.8.E-UB	5.5AF-10		1.656-10	3.566-15	2.C6E-05	1.186-05	5.34E-06	1.236-06	2,22E-06	2.44E-06	3.356-06		1.256-06	7.35E-07	2.91E-07	5.556-07	2.3CE-08	1.20E-08	5.42E-09	9.08E-09	5.24E-09	6.C5E-09	5.756-11	2.436-11	3.50£-12	7.636-15	3.306-19
	9006		1.025-01			8.796-09	A.016-11						1.C4E-06			4.36E-07					4.396-08		3.746-09								1.186-13		1.734-21
	8000		1.245-02				1.656-12	7.000				4.10E-07	1.346 37			5.016-03			3. dE-08	1.486-08			3.816-10	1.296-10							1.676-15		2.42E-24
	1000	5.51E-01	4.57E-02	3.806-03	3.876-08	3.766.11	Alegan o	7000	1.086-14	2.316-21	1-286-67	3.626-08	5.33E-09	2.29F-09	3.316-09	3.046-09	4-156-09		3.026-09	E. 35E-10	1.886-10	2.87E-10	1.986-11	4.92E-12	1.266-12	1.606-12	4.706-13	4.51E-13	4.66E-16	1.C6E-16	6.876-18	9.926-22	5.C6E-28
	0009	9.746-01	2.42E-02	1.456-03	1.946-09	6.10E-14	7 736-14	01-361-3	4.696-17	8.136-25	7.316-09	1.396-09	2.635-10	A. A9F-11	A.55F-11	7.12E-11	9-676-11	3.0	:.026-10	2.436-11	3.058-12	4.126-12	3.786-13	6.216-14	1.176-14	1.276-14	2.55E-15	2.216-15	6.65E-19	1.C7E-19	4.468-21	1.436-25	6.176-33
Ç S	000 \$	10-306-6	9.786-03	3.698-114	2.886-11	1.876-15	01777	61031000	2.52E-20	1.166-29	1.3CE-1C	1.436-11	1.756-12	4. A.76-13	5-036-13	3-6-13	4.926-13	(1-376.1			9.35E-15	1.06E-14	1.466-15	1.336-16	1.626-17			1.266-18	6.77E-23	6.77E-24	1.516-25	5.84E-31	ပံ
TEMPERATLRE 10EG	4500	9.55E-01	5.32E-03	1.486-04	1.736-12	3.92E-17					8.856-12	6.736-13	6-156-19	1.406-14	1.636-14	1.086-14	1.456-14	11-364-1		2.91F-15		1.598-16	3.556-17					8.676-21				1.496-34	•
TEMPE	4000	9.97E-01	2.47E-C3	4.686-05	5.116-14	3.136-19					3.086-13	1-478-14	9-346-16						6.735-16	3.456-17	1.56E-18	1.376-18	3.426-19			5.246-22						•	•
	3500	9.99E-C1	9.22E-C4	1.C6E-C5	5.536-16	6.24E-22	,,,,,,	37-36107	8.556-29	•	4.03E-15	1.07E-16	4-276-18	1 206-18		61-246-19			4.02E-18	1.156-19			8.696-22	1,:96-23	7.07E-25	3.56E-25	1.096-26	5.636-27	3.566-33	1.046-34	4.646-37	•	•
	3000	1.COF 00	2.47E-04	1.486-06	1.326-18	1.57E-25		1.202-30	1.686-33	•	1,256-17	1.526-19	3-24F-21	1 666-21	5.70E-22	2.176-22	3 136.22	77.361.6	4.366-21	5.176-23	7.846-25	4.46E-25	3.026-25	2.10E-27	5.736-29	2.126-29	3.05E-31	1.296-31	•	ះ	•	•	•
	2500	1.COE 00	3.916-05	9.296-08	2.816-22	1.436-30	;	1.316-36	•	•	3.85E-21	1.556-23	1-196-25	40 340 4	1.916-26	A. 026-27	7 945-27	17-340-1	3.07F-25	1.376-27	7.14E-30	2.88E-30	4.326-30	1.216 -32	1.076-34	2.586-35	1.296-37	•	•	•	•	ċ	•
	2000	1.CCF CO	2.46E-06	1.47E-09	8.756-28	3.936-38	,	;	•	•	2.095-26	1.616-29	1. 4CF - 32	1 406-33	1.6005-32	7. 706. 34	0 856 34		1.826-31	1.606-34	1.966-37	•	2.346-37	•	•	•	•	•	•	•	•	ċ	•
16781	17-5	U	19228	26839	28132	121000		142110	158200	232900	84288	5578C	104841	1 7 3 6 7 1	1034301	21121	144011		59664	110973	121000	124600	116279	128400	137500	142000	153000	220551	152000	202020	215000	2550CC	331000

Table 6. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF N

LEVEL	VEL	(EV)	STAT.	2CC	7		TEMPER 4CO	10EG 500	200	0 1	10C	_
0 0.0000 1 1.7 48.7 0.0000 3 4.1 130.8 0.0162 5 3.8 15316 1.8985 5 0. 32.89 4.05.28 1 0.	- M	- + r o u	0	76-01 76-01 56-01	1.785.C1 4.036-01 4.156-01 4.656-39 C.	1.65E-01 3.93E-01 4.42E-01 1.64E-32	1.516-01 3.796-01 4.706-01 8.936-25 0.	1.42E-01 3.70E-01 4.87E-01 5.14E-2C 0.	3.656-01 4.596-01 7.656-17 1.76-35	3.57E-01 5.13E-01 7.07E-13 3.81E-27	3.52E-01 5.22E-01 1.69E-10	3.46E-01 5.33E-01 2.52E-07 2.92E-15
46785 5.0005 5 0. 92245 11.4366 15 0. 109218 13.5410 9 0. 155127 19.2328 3 0. 144188 17.8766 5 0.	กพื้นคน	សេស៤២២			•••••	•••••		•••••	់ ប៉ប់ប៉ប់ប៉	1.86E-37 0. 0. 0.	3.67£-30 C. 0. C.	1.56E-20 6.79E-39 0. 0.
166766 20.6758 3 C. 218CC0• 27.0279 9 0. 2290CC• 28.3916 5 C. 264CC0• 32.7310 1 0. 149056 18.4801 12 0.	6 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00000									00000	
169022 20.9555 36 0. 187693 23.2704 °C 0. 196555 24.4187 12 0. 2C3384 25.2158 36 0. 210284 26.0712 6C .	36 36 36 50		•••••		•••••	•••••	•••••	•••••			30005	3 0 330
211271 26-1936 84 C. 207974 25-7848 24 3- 226455 28-0761 72 0- 24450 30-3134 120 0- 26610 32-5913 384 C.	24 724 384		ပ္က် ဂ်ဝပ်		••••	••••						
252CC0 31.2432 2C C. 27CCC 33.4749 55 C. 27BCCC 35.7065 1CC C. 3098C0 38.4697 32C C. 3231C0 40.C583 1C8 C.	20 50 100 320 108		00000					•••••			00000	••••°•
3548C0 43.98N5 192 C. 3081C0 38.1985 34 C. 3358C0 42.1287 64 C. 364CCC 45.1291 72 G. 396CCC 49.0965 128 G.	192 36 64 72 72 0	244					:::::		30330			00000
3ACCCC 47.1128 18C C. 4120C0 51.5892 32C 9. 4C8CCU 50.5842 1CB 0. 439CCO 54.4277 192 0.	0 761 106 0 106 0 0	0 00 0						0000	5000	- · · · ·	,	3000

*ESTÍMATEC. Enfigy Levels from podre (3) and eriksson (42). Note: States involving electrons with principal quantly numbers above n = 4 are noy included. All Levels arove 230751 CP-1 are suffject to altotonization.

Table 6 (Cont.). FNERG: LEVELS AND EQUILIBRIUM FRACTIONAL ELECTROMIC POPULATIONS OF N

00001	1.06E-01 3.15E-01 5.19E-01 5.84E-02	6.31E-04 2.73E-04 1.43E-07 6.43E-11 5.17E-10	1.21E-11 2.27E-15 2.60E-15 3.37E-18 6.16E-10	1.052-10 1.19E-11 6.26E-13 7.45E-13	5.59E-13 2.57E-13 5.39E-14 6.70E-15 9.58E-16	3.79E-16 A.54E-17 1.07E-17 1.48E-18 7.39E-20	1.376-21 2.136-19 3.966-21 1.37k 22 2.446- 4	3.43E-23 6.10E-25 3.66E-25
0006	1.07E-01 3.20E-01 5.26E-01 4.64E-02	3.03F-94 6.35E-07 2.52E-08 5.47E-12	8.50E-13 7.07E-16 6.77E-17 5.03E-20 5.77E-11	7.126-12 5.996-13 2.736-14 2.936-14 1.626-14	1.946-14 9.376-15 1.466-15 1.366-16 1.386-16	6.85F-18 1.16E-18 1.08E-19 1.06E-20	4.80E-24 1.57E-21 1.76E-23 4.13E-25	8.COE-26 8.54E-28 5.46E-28
9000	1.09E-01 3.24E-01 5.32E-01 3.47E-02 3.05E-04	1.216-04 1.026-07 2.896-09 2.506-13 2.986-12	3.08E-14 9.29E-18 7.07E-19 2.61E-22 2.98E-12	2.46E-13 1.43E-14 5.40E-16 5.10E-16 2.46E-16	2.88E-16 1.49E-16 1.61E-17 1.04E-18 6.87E-20	4.525-20 5.336-21 3.496-22 2.216-23 6.836-25	4.06E-27 3.38E-24 2.01E-26 2.91E-28 1.64E-30	4.096-29 2.306-31 1.606-31
1000	1.10E-01 3.28E-01 5.38E-01 2.37E-02 1.33E-C4	3.68E-05 9.66E-09 1.77E-10 4.71E-15 7.43E-14	4.306-16 3.456-20 2.CC6-21 3.COE-25 6.56E:14	3.256-15 1.176-16 3.486-18 2.786-18 1.126-18	1.28E-18 7.22E-19 4.85E-20 1.98E-21 7.48E-23	7.C7E-23 5.24E-24 2.16E-25 7.83E-27 1.72E-28	4.52E-31 1.25E-27 3.25E-30 2.56E-32 6.33E-35	2.35E-33 5.90E-36 4.53E-36
0009	1.12E-01 3.32E-01 5.42E-01 1.42E-02 4.41E-05	7.51E-66 4.15E-10 4.25E-12 2.35E-17 5.39E-16	1.446-18 1.996-23 7.926-25 3.596-29	1.016-17 1.916-19 4.136-21 2.656-21 8.466-22	9.356-22 5.596-22 2.106-23 4.626-25	1.286-26 5.116-28 1.146-29 1.956-31 2.716-33	2.41E-36 3.30E-32 2.93E-35 9.95E-38	••••
G K) 5C00	1.13E-01 3.55E-01 5.45E-01 6.90E-03	8.05E-07 5.03E-12 2.29E-14 1.39E-20 5.41E-19	4.906-22 5.816-28 1.366-29 1.156-34	3.C7E-21 2.37E-23 3.31E-25 1.56E-25 3.57E-26	3.76E-26 2.77E-26 4.08E-28 3.78E-3C	7.28E-32 1.23E-33 1.15E-35 6.96E-38	0. 1.286-38 C. 0.	
TEMPERATURE (DEG CCO 45CO	1.14E-01 3.36E-01 5.46E-01 4.25E-03 3.29E-06	1.81E-07 2.65E-13 6.59E-16 9.84E-23 5.41E-21	2.38E-24 5.49E-31 9.05E-33 2.5CE-38	1.39E-23 5.91E-26 6.12E-28 2.35E-28	4.4CE-29 3.61E-29 2.94E-31 1.53E-33	2.326-35 2.206-37 0. 0.	02000	••••
4000	1.14E-01 3.37E-01 5.46E-01 2.32E-03 8.96E-07	2.81E-08 6.68E-15 8.94E-18 2.01E-25 1.71E-23	3.05E-27 9.08E-35 9.65E-37 0.	1.63E-26 3.28E-29 2.35E-31 6.97E-32 9.71E-33	9.53E-33 8.92E-33 3.47E-35 8.78E-38	00000	00000	••••
3386	1.15E-01 3.38E-01 5.45E-01 1.06E-03 1.68E-07	2.56E-09 5.87E-17 3.2PC-2C 6.97E-29 1.04E-26	5.83E-31 0. 0. 0. 3.3RE-27	2.77E-30 2.14E-33 9.50E-36 2.03E-36 1.98E-37	1.85E-37 2.05E-37 0.			, · · · ·
3000	3.40E-01 5.44E-01 3.74E-01	1.066-19 1.066-19 1.866-23 1.706-33	6.40E-36 0. 0. 0. 1.25E-31	2.60£-35 0. 0. 0.				0000
2500	1.176-01 3.416-01 5.426-01 8.686-05 7.906-10	1.18E-12 1.54E-23 5.29E-28 0.	0. 0. 0. 7.79€·38			•••••	•••••	
2000	1.185-01 3.436-01 5.396-01 9.716-06	1.43E-15 2.69F-29 8.C3E-35 0.		••••				
(CP-1)	0 48 130 15316 32689	46785 92245 1C4218 155127 144188	166766 218000 225000 264000 149056	165022 187693 196955 203384 210284	211271 2C7974 226455 2445CC 2645CC	2520CC 27C0CC 24BCCC 3058C0 3231CC	3548CC 3CB1CC 3358CC 364CCC	38CCCC 412CCC 4C8OCC

Table 7. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF 0

1500	7.24E-01 2.76E-01	
1000	.51E-01 .49E-01	
800	8.87E-01 8.48E-01 8.20E-01 7.98E-01 7.70E-01 7 1.13E-01 1.52E-01 1.80E-01 2.02E-01 2.30E-01 2	
009	7.98E-01 2.02E-01	
TEPPERATURE (DEG K) 400 500	8.20E-01 1.80E-01	
TEPPERAT 4CO	8.48E-01 1.52E-01	
300	8.87E-01 1.13E-01	
250	9.40E-01 9.12E-01 6.05E-C2 8.84E-02	
500	9.40E-01 6.05E-C2	
STAT.	4 ~	(43).
LEVEL (EV)	0.0353	ENERGY LEVELS FROM BERRY ET AL. (43).
LEVEL (EV)	285	VELS FRCM B
STATE	2, 2p° p., 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	ENERGY LE

	00001	6.76E-01 3.25E-01
,	0006	6.77E-01 3.23E-01
	9000	6.78E-01 3.22E-01
	700c	6.80E-01
	0009	6.82E-01 3.18E-01
Ω 2	2000	6.85E-01 3.15E-01
TEMPERATURE (CEG	4000 4500	6.87E-01 3.13E-C1
TEMPE	0004	6.89E-01
	3500	6.92E-C1
	3000	6.96E-01
	2500	7.02E-01
	2002	7.11E-01 2.89E-01
	CP-1)	2 G S

0 Table 8. ENERGY LEVELS AND EQUILIBRIUM PRACTIONAL ELECTRONIC POPULATIONS OF

The state of the s

STATE	I FVF.	ű	STATE				TEMPERATI	TEMPERATURE (CEG KI	_			
•	(1-40)	(EV)	3	200	250	300	00	900	900	800	1000	1 \$00
25. 20° 89. 99. 99. 99. 99. 99. 99. 99. 99. 99.	0 158.4 226.5 15868 13792	C.CCCC C.C196 0.0281 1.9673	v m = v =	9.12E-01 1.56E-C1 3.18E-02 C.	7.72E-01 1.86E-01 4.19E-02 0.	7.42E-01 2.08E-01 5.01E-02 6.6CE-34	7.00E-01 2.38E-01 6.2CE-02 1.14E-25 C.	5.74E-01 2.56E-01 7.C2E-02 9.95E-21	6.55E-01 2.69E-01 7.61E-C2 1.95E-17 8.42E-37	6.31E-C1 2.85E-01 8.40E-02 2.55E-13 5.1CE-28	6.16E-01 7.95E-01 8.90E-02 7.49E-11	5.97E-01 3.07E-01 9.60E-02 1.46E-07 1.00E-15
3. 20° 19° 20° 15 38° 20° 15 39° 38° 38° 39° 39° 39° 39° 39° 39° 39° 39° 39° 39	1263C4 189837 277CCO* 74903 87379	15.6593 23.5362 34.3427 9.2665 10.8333	9 8 1 8 4						:::::			0. C. 0. 5.94E-32 1.14E-36
(°0°)	97443 95757 99314 f 10290000	12.0811 11.8720 12.3130 12.7576 12.5869	4C 24 116 20		•••••	•••••	•••••		j i iiii			
⁽ કું કું	1136CS** 12394C** 1287CO** 114416	14.0842 15.3662 15.9564 14.1854 15.8572	60 1CC 320 12		00000	•••••	•••••				•••••	
34 26 (*) 3 (*	138CC0+ 1421CC+ 212CC0+ 222CC0+ 258COC+	17.1094 17.6177 25.2840 27.5238 31.9871	6C 192 216 384 18C			•••••	••••					ပံစံပံပံစဲ
(°) (°) (°) (°) (°)	268CCC+ 287CCC+ 298CCO+ 304CCO+ 314CCO+	33.269 35.5825 36.5463 37.6902	320 36 64 108 192	•••••		•••••						
2p³ (²p•) 3	•033604	5C.7082 51.9480	108 192	•••	••	•••	••	•••	•••		•••	::

**INCLUDES ESTIMATED SUBLEVELS.
**INCLUDES ESTIMATED SUBLEVELS.
**INCNSTARRED ENERGY LEVELS FROM MCGRE (3) AND ROWEN (44).
**INTE: STATES INVOLVING ELECTRONS WITH PRINCIPAL GUANTUM NUMBERS ABOVE N = 4 ARE NOT INCLUDED.
ALL LEVELS ARCVE 109837 CM-1 ARE SUBJECT TO ALTOIONIZATION.

Table 8 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF 0

00001	5.31E-01 3.11E-03 1.03E-01 5.41E-02 8.21E-04	1.226-08 4.386-13 5.226-19 1.776-05 8.846-06	3.46E-05 8.82E-0/ 1.54E-06 4.58E-06 9.62E-07	5.08E-07 1.91E-07 3.08E-07 9.03E-08	7.526-08 2.696-08 1.306-12 5.486-13 1.456-15	6.C9t-16 4.46£-18 1.63£-18 1.16£-18	3.18E-25 1.34E-25
0006	7.38E-01 3.15E-01 1.04E-01 4.26E-02	1.65E-09 2.13E-14 6.31E-21 5.43E-06 2.22E-06	7.396-07 1.546-07 3.296-07 8.966-07	8.38E-08 2.67E-08 4.00E-08 1.47E-08 5.11E-09	1.69E-09 2.82E-09 4.4.E-14 1.60E-14	8.52E-18 4.59E-20 1.41E-20 9.10E-21	4.67E-28
3008	5.45E-01 3.18E-01 1.05E-01 3.14E-02 2.5CE-04	1.346-10 4.876-16 2.526-23 1.236-06 3.926-C7	1.U7E-07 2.89E-C8 4.58E-08 1.16E-07 2.57E-08	8.77E-09 2.28E-09 3.C9E-C9 1.51E-C9	1.C9E-10 1.67E-1C 6.51E-16 1.92E-16 1.38E-19	4.C8E-2C 1.50F-22 3.7CE-23 2.12E-23 6.24E-24	1.332-31 3.938-32
2006	5.52E-01 3.21E-01 1.C5E-C1 2.12E-02 1.C6E-04	5.28E-12 3.75E-18 2.C7E-26 1.82E-07	8.85E-09 2.5CE-09 3.62E-09 6.36E-C9 1.91E-09	4.8CF-1C 9.54E-11 1.15E-10 E.11E-11	3.18F-12 4.35E-12 2.46E-18 6.47E-19 1.85E-22	4.22E-73 9.56E-26 1.77E-26 E.71E-27 1.98F-27	3.69E-36 8.4CE-3/
0009	5.59E-01 3.23E-01 1.C6E-C1 1.24E-02 3.38E-05	7.06E-14 5.69E-21 1.55E-30 1.42E-08 2.13E-09	3.18E-1C 9.53E-1 1.22E-10 2.45E-1C 5.98E-11	9.9CE-12 1.38E-12 1.41E-12 1.63E-12	2.85E-14 3.41E-14 2.C2E-21 3.26E-22 2.72E-26	4.4CE-27 5.19E-30 6.6CE-31 2.64E-31	::
G K J 5000	5.65E-01 3.24E-01 1.C6E-01 5.87E-03 6.76E-06	1.67E-16 6.39E-25 2.73F-36 3.94E-10 3.26E-11	3.COE-12 9.75E-13 1.05E-12 1.81E-12 4.64E-13	4.31E-14 3.66E-15 2.98E-15 6.81E-15	3.84E-17 3.78E-17 7.82E-26 7.82E-27 1.16F-31	1.16E-32 5.52E-36 4.14E-37 1.24E-37 0.	::
TEMPERATURE (CEG K 000 45C0	5.67E-01 3.24E-01 1.C6E-01 3.55E-03 2.30E-06	2.96E-18 1.48E-27 0. 3.61E-11 2.C3E-12	1.34E-13 4.59E-14 4.41E-14 6.77E-14 1.81E-14	1.14E-15 7.C0E-17 4.89E-17 1.76E-16	4.68E-19 4.C4E-19 8.94E-29 6.5CE-3C	2.22E-36 0. 0. 0.	
16#PE	5.7CE-C1 3.23E-O1 1.05E-O1 1.89E-O3 6.00E-O7	1.916-20 7.566-31 0. 1.826-12 6.136-14	2.73E-15 1.00E-15 8.37E-16 1.11E-15	1.23E-17 4.96E-19 2.87E-19 1.83E-18 4.3CE-2C	1.89E-21 1.39E-21 1.88E-32 9.15E-34 0.	•••••	••
3560	5.73E-C1 3.22E-C1 1.54E-C1 8.42E-C4 1.06E-O7	2.91E-23 4.41E-35 0. 3.89E-14 6.91E-16	1.84E-17 7.35E-18 5.11E-18 5.66E-18 1.72E-18	3.60E-20 8.55E-22 3.87E-22 5.15E-21 6.04E-23	1.58E-24 9.4GE-25 3.51E-37 0.	•••••	់ំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំំ
3000	5.766-01 3.206-01 1.036-01 2.856-04 1.056-08	5.11E-27 C. 0. 2.31E-16 1.75E-18	2.33E-20 1.05E-2C 5.70E-21 4.93E-21 1.65E-21	1.51E-23 1.765-25 5.76E-26 2.04E-24 9.51E-27	1.25E-28 5.59E-29 0. 0.	•••••	ះ÷
25cc	5.80E-01 3.18E-01 1.02E-01 6.27E-05	2.82E-32 0. 0. 1.76E-19 4.03E-22	2.05E-24 1.08E-24 4.19E-25 2.57E-25 9.79E-26	2.81E-78 1.22E-30 2.52E-31 3.52E-79 4.50E-32	2.24E-34 6.78E-35 0. 0.	•••••	::
2000	5.86E-01 3.14E-C1 9.96E-C2 6.46E-06 3.25E-12	0. 0. 3.72E-24 1.41E-27	1.69E-30 1.14E-30 2.64E-31 9.65E-32	2.22E-38 0.2.52E-38 0.2.52E-36 C.			
(CP-1)	158 226 15868 33772	126304 189937 277000 74903 87379	97443 95757 99314 102900 101523	113600 12394C 1287CC 114416 1279C0	1380CC 14210C 212CCC 222000 2580C0	2680CC 2870CC 2580CC 3C4000	409000

ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTROMIC POPULATIONS OF 0 Table 9.

The second secon

STATE	(C#-1)	LEVEL (EV)	STAT.	200	25C	300	TEMPERATI 4CO	TEMPERATURE (CEG K) 4C0 SCC	009	300	2221	1\$00
2, 2p °S° 20° 20°	C 26819	0.cccc 3.3250 5.c171	4014	1.00 0C C.	1.00£ 00 0.	00 300	1.cce cc 0.	1.CCE CC 7.62E-34 0.	1.CCE CO 2.94E-28 C.	1.CCE CC 2.82E-21 3.7CE-32	1.CCF CO 4.36E-17 7.76E-26	1.COE CO 1.EUE-11 2.08E-17
2s 2p° °p'	166611	14.8644	12 10		•••	••• •••	•••	•••	ះ	•••		• •
*. *	195710	24.2643	~ •	្វៈ		•••		••		 	្វ ្	•••
25° 26° (20) 33.	317400* 186604 209208	39.3516 23.1354 25.0378	4 B 7	000	000	500		.	::::		333	000
} 84 4 44	232563 239348 246860** 255CC6	28.8334 23.6746 30.6659 31.6159	90 90 90									
(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	206772 229898 252571 27293C**	25.6606 28.5630 31.3140 33.8391 28.1252	10 30 50 160	00000			20003		្រំ ជំជុំ ជុំ ជុំ ជុំ		. ಪರಿಪತ್ತಿಪ	
35 34 2, 2p ³ (5°) 3	256251* 275951* 296666* 281666* 313666*	31.0264 34.2127 36.6984 34.8387	6 32 32 90 160	00000		•••••					30030	
(*D°)3 4 (*P°) 3-4 20(*P°, 'D°, 'P°) 3-4 20(*P°, 'D°, 'S°) 3-4	34CCC0* 373CCC* 383CCC* 437CCC*	42.1535 46.245 47.4847 54.1797 66.2059	27C 48C 45C 55C	00000			::::::	•••••			:::::	
PESTINATED	-											

*ESTIMATED.
**INCLUTES ESTIMATEC SCHLEVELS.
ACASTARREC ENERGY LEVELS FROM MCRE (3) AND ERIKSSON 145).
ACASTARREC ENERGY LEVELS FROM MCRE (3) AND ERIKSSON 145).
ACTE: STATES INVOLVING ELECTRONS WITH PRINCIPAL GUANTUM NUMBERS ABOVE N = 4 ARE NOT INCLUDED.
ALL LEVELS ABOVE 283244 CM-1 ARE SCHJECT TO AUTOIGNIZATION.

Table 9 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF 0+

10000	9.46E-01 4.99E-02 4.20E-03 5.1CE-08 1.CCE-10	2.796-13 7.326-14 2.086-20 9.316-12 1.086-12	6.25E-14 4.71E-15 4.80E-15 2.48E-15 3.03E-15	2.766-13 3.C66-14 1.956-15 3.346-16	3.276-16 1.356-17 2.426-18 5.886-17 1.056-18	3.63E-2C 5.6CE-22 1.24E-22 6.42E-26
0005	9.65E-01 3.31E-02 2.24E-03 1.36E-06 7.21E-12	1.256-14 2.496-15 1.336-22 4.816-13 3.896-14	1.55E-15 1.C5E-16 9.45F-17 4.28F-17 5.17E-17	1.C3t-14 7.9CE-16 3.51E-17 4.34E-17 8.58t-11	6.11C-18 1.67E-19 2.17E-2C 6.72E-19 7.17E-21	1.616-22 1.476-24 2.786-25 6.066-29 1.526-35
9000	9.796-01 1.976-02 1.016-03 1.266-09 2.656-13	2.536-16 3.616-17 2.385-25 1.176-14 6.036-16	1.51E-17 E.9CE-19 E.91E-19 2.66E-19 3.16E-19	1.67E-16 8.11E-18 2.29E-19 1.84E-20 9.36E-19	4.176-7C 6.846-22 5.456-23 2.486-21 1.4C6-23	1.846-25 8.636-28 1.346-28 9.926-33 C.
1000	5.506-01 5.596-03 3.626-04 5.846-11	1.686-18 1.556-19 6.506-29 9.806-17 2.826-18	3.876-20 1.526-21 3.846-22 4.456-22	H-286-19 2-236-20 3-526-22 1-726-23	6.8CE-23 5.76E-25 2.99E-26 1.846-24 4.546-27	2.986-29 6.CiE-32 7.2)6-33 C.
J) J) 9	9.36E-01 4.C1E-03 9.12E-05 9.66E-13 1.29E-17	2.676-21 1.676-22 1.326-33 1.656-19 2.196-21	1.35E-23 5.31E-25 2.63E-25 6.21E-26	6.946-22 8.536-24 6.196-26 1.506-27	1.306-26 4.556-25 1.136-30 1.226-28	7.62E-34 0. 0. 0.
5 K) 5C00	9.596-C1 1.116-C3 1.316-O5 3.C86-15	1.746-25 3.986-27 C. 2.156-23 9.666-26	1.446-28 5.516-30 1.966-30 3.646-31	3.406-26 1.396-28 3.416-31 3.116-33 2.236-29	7.976-32 6.156-35 8.156-37 1.726-34 C.	
TEMPERATURE 10EG 4000 4500	1.CCE CC 4.72E-14 3.60E-16 6.26E-17 2.23E-23	3.336-28 4.446-3C C. 5.526-26 1.2C6-28	1-156-31 2-626-33 7-116-34 8-766-35	4.55E-29 9.55E-32 1.06E-34 5.05E-37	7.676-35 1.206-38 0. 0.	
TEMPE 4000	1.62E-04 1.62E-04 7.15E-67 5.52E-19	1.346-31 9.066-34 0. 3.186-29 2.816-32	1.056-35 1.836-37 3.658-38 0.	1.166-32 9.156-36 C. 0.		
3560	1.CCE CC 4.07E-C5 8.94E-C8 1.16E-21 5.80E-30	5.746-36 1.636-38 0. 2.186-33 6.036-37		2.80E-37 6. C. C.		:: ::: :::::::::::::::::::::::::::::::
3006	1.CCE GC 6.49t-06 5.59t-09 3.14E-25 6.47E-35	00000	30003		:::::	: : : : :
2500	1.CCE CO 4.95E-C7 1.15E-1C 3.17E-3C	60000	 	00000		* • • • • • • • • • • • • • • • • • • •
2002	1.CCE CC 1.C4E-CA 3.41E-13 1.C2E-37 C.	3 3 856	::::::::::::::::::::::::::::::::::::::	33333	ပ်င်လို့ ဝင်	::::::::::::::::::::::::::::::::::::::
LEVFL ICP-1)	26815 46467 119933	145710 212650 317400 186604 209208	232563 239348 246860 255006 255932	206972 229898 252571 272930 226851	750251 275951 276000 781000 313000	340000 373000 353000 477000 576000

Table 10. ENERGY LEVELS AND EQUILIBRIUM PRACTIONAL ELECTRONIC POPULATIONS OF AR

A Company of the Comp

week hard to stoke the control of th

STATE	1	LEVEL	STATA				Te AT	URE (DEG K)				
	(CF-1)	(EV)		3CC	25C	300	•	005	009	000	1000	1500
3, 30° 'S	U	00000	-	1.COF CC	1.9CF CC	1,005 00	1.CCF 00	1.COF 00	1.CCE CC	1.03E 0C	1.CCE 00	1.006 00
3. 30 (P.) 3d	114854	14.2397	>c 2		:	•			•	0.		٠
4	95188	11.8015	•	•	ئ.	٠,	•	•	•	•	0.	٠,
\$	107421	13,3182	12	:	ئ.	:	:	٠,	•	ڻ.	:	ئ
3	12071	14.9671	5 2	•	••	•	٥.	•	:	វ	• •	ن
46	121654	15.0828	28	•	0	0	0	•	0.	ç	ō	•
3. 3. (P.) 34	112948	14.0034	Ų.	່ວ	•		ئ	•		ئ	ن.	ះ
4	93371	11.5762	œ	ن.	9		•	•	ڻ.	ن	ن.	ပံ
♣	105631	13.0962	54	٠,				:	ڻ:		•	ن.
3	112511	14.7799	,	•	••	•	0.	•	.Ü.	· .	••	•
**	120222	14.9052	56	ن ،	.	:	•	•	•	• °	٠	
3 3 (S) 38	2220C0*	27.5238	5 C	ູ				•	ئ	ن.	٠,	ئ
	203CCC*	25.1681	4	٠,		:		•		•	•	0
4	215CCC+	26.6559	12	٥.	•	•	ئ		ئ	ئ	ن.	ن
.9	227500*	28.2553	3 2	•	្វ	.:	ပံ	.0		ະ		ئ
¥ 7	228900	28.3793	9 .	ن.	••	•	•	ះ	:	•	•	•

*ESTIMATEC. ENERGY LEVELS FRCE "CORE (3) BURNS AND ADAMS (46) AND HUMPFREYS AND PAUL(47). NOTE: STATES INVOLVING ELECTRONS WITH PRINCIPAL QUANTUM NUMBERS ABOVE N * 4 ARE NOT INCLUDED. ALL LEVELS ARGVE 127110 GM-1 ARE SUBJECT TO AUTOIONIZATION.

٠.

Table 10 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF Ar

30201	1.00 1.38 4.51 2.38 5.30 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.7	7.C1E-u7 3.5Ct-u6 1.175-u5 6.C2E-u6	1.726-65 2.636-13 9.276-13 4.416-13	1. 454-13
3375	7.82F-07 5.83F-07 5.85F-07 4.18e-07	1.CCE07 5.7EC07 2.63t06 1.11E06	2.52E-C7 7.72E-15 3.22E-14 1.42E-14	3.59F-15
၁၁၁၃	1.000 00 2.146-09 1.476-07 4.846-07	6.816-09 6.036-09 4.086-07 1.356-07	2.26E-C8 3.15E-L7 5.58E-L0 1.43E-L0	1.7CE-17
7000	1.CCE CC 1.12E-04 1.27E-C8 3.CSE-C9	3.876-10 3.316-09 3.705-08 8.536-09 5.136-10	1.046-05 3.056-19 3.036-18 7.716-19	4.85E-35 4.60E-31 6.94E-28 4.06E-23 1.03E-19 3.70E-17 3.59E-15 1.35E-13
9009	1.CE CC 2.19E-11 4.89E-10 7.80E-11	5.99E-12 6.91E-11 1.51E-09 7.4CE-17 1.54E-11	1.696-11 1.526-22 2.856-21 4.886-22 3.696-23	4.06E-23
C K J	1.00E CC 8.86F-14 5.08E-12 4.51F-13 1.64F-14	1.75F-14 3.67F-13 1.72E-11 1.51F-12 5.66C-14	5.29E-14 3.61E-27 1.71E-25 1.62F-26	6.94E-28
TEMPERATURE (DEG K)	1CE CC 2.256-15 2.426-13 1.466-14 3.456-16	3.59E-16 8.29E-15 8.67E-13 5.16E-14 1.12E-15	1.13E-15 2.98E-3C 2.59E-2P 1.68E-29	4.6CE-31
TERPES ACCT	1.006 00 2.756-17 5.406-15 1.996-16 2.776-18	2.176-18 9.086-17 7.086-14 7.576-16	9.206-18 4.106-34 7.776-35 3.116-33	4.85E-35
3560	1.COF CO 6.25E-2C 4.C6E-17 7.97E-19 5.61E-21	5.356-21 2.746-19 1.716-16 3.336-18	1.93E-2C C. 2.29E-36 6.95E-38	°.
3000	1.0GE 00 2.39E-23 5.97L-20 5.07E-22	1.28E-24 1.19E-22 2.85E-19 7.39E-21 5.92E-24	5.10t-24 C. C. C. C.	. 3
25cc	1.COE CO 3.936-24 6.466-24 1.706-26	1.10E-29 2.35E-27 3.69E-23 9.52E-26	5 016-29 0. 0. C.	٥.
2000	1. CGE CC 2.615-35 7.29E-30 3.29E-33	2.75E-37 2.06E-34 5.39E-29 2.39E-32	1.54E-36 C. 0. 0.	ن
LEVEL (CW-1)	C 114854 95188 107421 120721	121654 112948 93371 1056* 119211	12C222 2220CC 2C30CC 2150CC	228966

Table 11. ENERGY LEVELS AND EQUILIBRIUM PRACTIONAL ELECTRONIC POPULATIONS OF Ar

2 2 2 20	ויניאנו (באני	[]		200	250	300	4C0	200 200	909	800	1000	1500
}		99930	•	1.00E CO	1.00F 00	9-596-01	9.976-01	9.926-01	9.84E-C1	9.635-01	9.406-01	8.88E-01
	143	0.1775	~	1.6AE-CS		5.20F-C4	2.85E-03	8.CSE-03	1.596-02	3.67E-02	~	1.126-01
2. 30° S	О	13.4796	~	•	•	•	••	ះ	٠,		ن.	ះ
3, 30° (4°) 34° D	132476	16.4245	20	•	•	:		•	:	.		:
3d other 1	r 146319	18.1408	20		:		••	٠.	.	.	.	វ
*	136028	16.8649	20	•	•	•	0.	•	•	;	:	ះ
4	158023	19.5918	54		٠ .	:	:	្វ	:	•	ះ	
3	186693	23.1464	90	•	ះ	3	.	ះ		•	វ	ن
7	195561	24.2466	1 26	•	•	•	•	•	;	•	•	•
₽E(d ,)	164042	16.3431	3 C		•	••	••	••	°.	·.	:	:
\$	148754	18.4427	2	•	•	ះ	ះ	ះ	;	ះ	:	ះ
₹	171631	21.3038	30	•	ن.	•	•	•	•	•	٥.	ن
-₹	199657	24.7537	\$	់	•	•	••	•	٥.	ះ		ះ
7	50632	:5.9156	Ş		•	•	·.	•	:	ن:	.;	
PE (S,)	179728	22.2829	2	•0	•	••	٠ .	•		•	ះ	:
4	167309	20,7431	~	•	•0	•	•	•	٠,	٥.	•	•
₹	192095	23.8161	v	ن	•	•	•		٠.	:	វ	
. \$	•00002 •00002	27.2758	21	•	•	•	٠,	•	٠.	:	•	•
4	228CCC*	28.2677	5 1		:	•	:	•	ះ		•	٠.
PE ("d") ge PE	•000692	33.3509	96	٠ <u>.</u>	:	•0	.	٥.	••		••	•
4	•0005*2	30.8713	16	0.	•	•	•	•	ះ	٠. د	ن.	:
4	\$730CO*	33.8468	54	٠.		•	٥.	•	:	•	:	•
-3	301000	37.3183	90	٥.	•	•	•	•		•	•	•
7	309000	38.3101	126		•	•	•		ું	ះ	ن.	٠.

*ESTIMATED. ENLAGY LEVELS FACM MCCRE (3) AND MINNHACEN (48). NCTE: STATES INVOLVING ELECTRONS MITH PAINCIPAL CUANTUM NUMBERS ABOVE N = 4 ARE NOT INCLUCED. ALL LEVELS ARCVE 222848 CM-1 ARE SUMJECT TO ALTOTOMIZATION.

Table 11 (Cont.). ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF Ar

LEVEL CP-13	2000	2500	3000	3266	TEMPES 4000	TEMPERATURE (DEG K) CCC 45CO	5 K) 5CC0	၁၁၁မှ	7.00	3008	0005	10000
0	8-496-01	8.20E-01	7.59E-01	7.83E-C1	7.7CE-01	7. ¢CE-01	7.51E-01	7.386-01	7.29E-01	7.21E-01	7.15E-01	7.11E-C1
14.5% 108723	4.56F-35	2.74E-28	9.04E-24	1.52E-2C	2.3CE-01	3.C4E-16	2.49E-01 9.72E-15	2.62E-01 1.76E-12	7BE-11	2.79E-01	2.85E-01	2.89E-01
132476	٠. د	3.176-33	1.02E-27	8.74E-24	7.786-21	1.536-18	1.046-16	5.9CE-14	5.44E-12	1.62E-10	2.27E-09	1.87E-08
146319	•	3.85E-36	4.67E-30	1.03E-25	1.876-22	6.40E-20	6.81E-18	7.476-15	1.116-12	4.706-11	8.69E-10	8.95E-09
136028	ះ	3.70E-34	1.67E-28	1.036-24	1.95E-21	4.42E-19	3.386-17	2.26E-14	2.36E-12	7.70E-11	1.166-09	1.C1E-08
158023	•	•	1.316-32	6.496-28	7.14E-24	1.176-21	1.81E-19	3.486-16	7.716-14	4.42E-12	1.036-10	1.286-09
185693	•	•	•	8.23E-33	1.196-28	2.C4E-25	7.086-23	5.996-19	3.54E-16	4.256-14	1.766-12	3.456-11
155567	ះ	.	•	3.COE-34	6.836-30	1.67F-26	8.59E-24	9.996-20	8.C1E-17	1.216-14	5.96E-13	1.356-11
164082	ċ	•	6.66E-34	4.98E-29	2.256-25	1.566-22	2.936-20	7.53E-:7	2.CSE-14	1.366-12	3.636-11	4.96E~10
148754	:	1.356-37	2.08E-31	5.42E-27	1.116-23	4.2CE-21	4.838-19	5.55E-16	5.59E-14	4.346-12	8.416-11	9.C1E-10
171831	•	•	9.726-36	1.236~30	8.3CE-27	7.86E-24	1.89E-21	7.05E-18	2.516-15	2.CSE-13	6.3CE-12	9.77E-11
1 5 9 6 5 1	•	•	•	2.22E-35	6.22E-31	1.796-27	1.056-24	1.496-20	1.376-17	2.29E-15	1.236-13	2.97E-12
209029	•	·\$	•	4.5RE-37	2.996-32	1.256-28	9.51E-26	2.2CE-21	2.8CE-18	5.95E-13	3.856-14	1.08E-12
179728	•	ò	7.346-38	1.60E-32	1.626-28	2-106-25	6.5CE-23	3.546-19	1.656-16	1.656-14	5.956-13	1-05E-11
1 7309	•	•	5.67E-36	5.286-31	2.81E-27	2.236-24	4.63E-22	1.398-18	4.236-16	3.086-14	8.66E-13	1.256 - 11
192095	•	•	٠,	5.95E-35	1.136-30	2.416-27	1.116-24	1.CSE-2C	7.78E-18	1.076-15	4.94E-14	1.C6E-12
22COCC	•	•	•	•	8.76E-35	5.37E-3	6.02E-28	2.26E-23	4 . 19E-20	1.186-17	9.51E-16	3.186-14
228CCC	:	•	•	•	6.51E-36	5.82E-32	8-44E-29	4.65E-24	1.136-20	3.92E-18	3.71E-16	1.416-14
200697	•	•	••	••	•	7.596-37	4.08E-33	1.616-27	1.59E-23	1.58E-20	3.396-18	2.48E-16
249000		•	٠ د	•	•	9.096-35	2.58E-31	3.84E-26	1, :E-22	1.156-19	1.66E-17	8-83E-16
2730CC	•	•	•	•	•	1.27E-37	7.74E-34	3.69E-28	4.20E-24	4.636-21	1.C7E-18	8.38E-17
30106	•	•	វ	•	•	•	4.C9E-37	7.4?E-31	2.226-26	5.01E-23	2.04E-20	2.49E- 18
30900	•	•	•	•	•	•	5.736-38	1.546-31	5.59E-27	1.66E-23	7.936-21	1.1CE-18

Table 12. ENERGY LEVELS AND 'QUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF CO

STATE

Management of the control of the con

						1			
		\times $^{1}\Sigma^{+}$		а ³ П	a' 3 ⁺	d ³ ∆	32° a	1 12-	A In
ENERGY (C	(CM-1)	0.0000	_ ဝ	6600°9	55354 6.8628	60647 7.5191	63709 7.8987	64547 6.0026	64747
VIB. (C INT. (E	CM-1) EV)	2143		1715 G_2126	1209 0.1439	1138 0.1410	1094 0.1357	1671 0.1328	1481 0.1836
TEMP.	.0			A.	FRACTIONAL P	POPULATION			
200 250 300 400 500		1.00E 1.00E 1.00E 1.00E	00000		•••••		••••		••••
600 800 1000 1500 2000		1.00E 1.00E 1.00E 1.00E	00000	0. 0. 3_68E-30 4.77E-20 5.49E-15	0. 0. 1.30E-34 4.85E-23 3.03E-17	0. 0. 6.43E-25 1.44E-18	0. 0. 1.78E-26 8.34E-20	0. n. 2.73E-27 1.57E-20	0. 0. 2.98E-27 1.73E-20
2500 3000 350 4000 4500		1.00E 1.00E 1.00E 1.00E	00000	5.99E-12 6.37ē-10 1.79E-08 2.19E-07 1.53E-06	9.17E-14 1.33E-11 8.85E:10 1.562-08 1.46E-07	9.35E-15 3.28E-12 2.17E-10 5.04E-09 5.84E-08	8.48E-16 4.01E-13 3.28E-11 8.96E-10 1.18E-08	1.80E-16 9.20E-14 7.94E-12 2.25E-10 3.03E-09	1.99E-16 1.02E-13 8.83E-12 2.51E-10 3.40E-09
\$000 \$000 \$000 \$000		1.00E (9.99E-(9.94E-(000	7.29E-06 7.58E-05 4.05E-05 1.42E-03 3.77E-03	8.77E-07 1.29E-05 8.87E-05 3.74E-04 1.14E-33	4.15E-07 7.91E-06 6.48E-05 3.12E-04 1.05E-03	9.26E-08 2.04E-06 1.86E-05 9.60E-05	2.42E-08 5.45E-07 4.97E-06 2.57E-05 9.08E-05	2.73E-08 6.21E-07 5.73E-06 2.99E-05 1.07E-04
10000		9.85E-0	0.1	8.15E-03	2.75E-03	2.11E-03	9.17E-04	2.45E-04	2.89E-04

Based on energy-level data from references 49 and 57.

4.09E-18 4.09E-15 5.59E-13

1.75E-17 1.34E-14 1.54E-12 5.40E-11

2.05E-17 1.40E-14 1.49E-12

1.84E-16 1.05E-13 9.83E-12 2.96E-10

1.31E-14 3.97E-12 2.35E-10

3.46ë-14 9.33E-12 5.1CE-10

2.03E-12 2.49E-10 7.75F-09 1.02E-07

1.00E 1.00E 1.00E

2500

3500

300°!

4.94E-11

2.31E-11

4.22E-30 1.30E-22

5.27E-29 8.33E-22

9.62E-29

1.15E-21

1.78E-27 1.36E-20

1.60E-24 2.51E-18

6.77E-24 7.87E-18

3.72E-31 9.34E-21 1.51E-15

000

1.00E 1.00E 1.00E

1000 1500 2000

..

••

..

..

00

. . .

••

000

600 800

N2 ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF Table 13.

	v 1	71698 8.88c2	1535		00000
	$a^{-1}\Pi_{\mathbf{g}}$	68951 8.5486	1666		00000
	a' $^1\Sigma_{\mathbf{u}}^{-}$	67739	1506		00000
	B' 35"	65852 8.1644	1493		
U	в ^{Эп} в	59310 7.3533	1705 C.2114	PGPUL ATTON	
SIAIC	$^3_{\Delta_{\mathbf{u}}}$	~58CCC ~7.19C9	~ 1464 ~0•1815	FRACTIONAL P	
	A 32+	49756 6.1688	1433	ű.	00000
	$x \frac{1}{\Sigma_g^+}$	0000.0	2330 0.2888		1.006 00 1.006 00 1.006 00 1.006 00
		(CM~1) (EV)	(C×-1) (EV)	. X	02000
		ENERGY (CM~1)	VIB.	TEMP.	200 250 300 400 500

4.15E-C9 1.33E-07 4.13E-1C 1.59E-06 4.34E-05 .02E-03 1.38E-04 7.92E-09 2.21E-07 2.39E-06 1.43E-05 R.62E-10 5.76E-05 1.75E-04 6.68E-09 1.77E-07 7.54E-10 1.84E-06 .07E-05 4.19E-05 1.25E-04 3.50E-08 8.48E-07 8.29E-06 4.59E-05 4.19E-09 5.00E-04 1.74E-04 5.04E-09 5.47E-08 3.69E-07 5.02E-05 1.96E-03 2.33E-04 7.64E-04 6.91E-07 1.15E-05 1.03E-08 8.56E-05 3.13E-03 1.24E-03 3.86F-04 3.82E-06 4.28E-05 7.64E-07 2.33E-03 5.08E-03 2.40E-04 8.67E-04 ၀ ၀ ၀ 00 9.98E-01 9.89E-01 9.95E-01 1.00E 1.00E 1.00E 1.00E 10000 4600 2000 0009 7000 8000 9CC0

are based on energy-level data from reference 50 13 to 18 Tables

Table 14. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF N2

$c \sum_{u}^{2}$	64542 8.0020	2051 0.2543		00000	0. 0. 1.67E-27 8.84E-21	9.49E-17 4.56E-14 3.70E-12 9.88E-11 1.25E-09	9.46E-09 i.90E-07 1.57E-06 7.40E-06 2.41E-05 6.05E-05
ν Σ	~60328 ~7. 4795	~1472 ~0.1825		00000	0. 0. 2.37E-25 4.76E-19	2.87E-15 9.45E-13 5.87E-11 1.28E-09 1.40E-08	9.34E-08 1.58E-06 1.15E-05 4.99E-05 1.53E-04
D 2 _{II}	51203 6.3482	889 0.1102		••••	0. 0. 4.75E-32 2.58E-21 6.18E-16	1.05E-12 1.50E-10 5.16E-09 7.24E-08 5.58E-07	2.82E-06 3.10E-05 1.65E-04 5.56E-04 1.39E-03 2.80E-03
4 ^	~ 51328 ~ 6.3637	~1572 ~0.1949			0. 0. 4.37E-32 2.26E-21 5.21E-16	8.57E-13 1.18E-10 3.96E-09 5.43E-08 4.11E-07	2.06E-06 2.25E-05 1.21E-04 4.20E-04 1.09E-03
ε 4 2,	~ 44328 ~5.4958	~ 1668 ~0.2068	POPULATION	•••••	0. 5.92E-35 5.08E-28 9.09E-19 3.88E-14	2.32E-11 1.63E-09 3.34E-08 3.18E-07 1.81E-06	7.17E-06 5.49E-05 2.27E-04 6.37E-04 1.39E-03
$\begin{array}{c} \text{STATE} \\ \text{B} & 2\Sigma^{+} \\ \text{u} \end{array}$	25566 3.1697	2371 0.2940	FRACTIONAL P	0. 0. 0. 1.04E-32	2.19E-27 9.87E-21 9.68E-17 2.02E-11 9.16E-09	3.57E-07 4.05E-06 2.26E-05 8.13E-05 2.17F-04	4.73E-04 1.49E-03 3.32E-03 6.01E-03 9.46E-03
A 2 _n	9016	1873	er er	1.50E-28 6.44E-23 3.67E-19 1.82E-14 1.19E-11	9.05E-10 2.03E-07 5.26E-06 4.07E-04 3.59E-03	1.32E-02 3.11E-02 5.67E-02 8.79E-02 1.22E-01	1.57E-01 2.25E-01 2.84E-01 3.33E-01 3.74E-01
× 2 _Σ +	000000	2175		1.006 00 1.006 00 1.006 00 1.006 00	1.00F 00 1.00E 00 1.00E 00 1.00E 00	9.876-0: 9.696-01 9.436-01 9.126-01 8.786-01	8.42E-01 7.74E-01 7.12E-01 6.59E-01 6.13F-01 5.73E-01
	ENERGY (CM-1) (EV)	VIB. (CM-1) INT. (EV)	TEMP. (DEG K)	200 250 300 400 500	600 800 1000 1500 2000	2500 3000 3500 4000	5000 6000 7000 8000 9000

Table 15. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF NO

		1 7 1	9 26			-34 -23 -18	-14 -12 -09 -08	-08 -07 -05 -05	-05
	₂ 2 0	53291 6.6071	227 0.28		00000	0. 0. 2.26E 2.68E 9.07E	1.85E 2.93E 1.06E 1.54E 1.21E	6.20E 6.39E 3.68E 1.24E 3.11E	6.29E
c	c ² n	52380** 6.4941**	2365** 0.2932**		00000	0. C. 1.67E-33 1.27E-22 3.48E-17	6.30E-14 9.31E-12 3.26E-10 4.65E-09 3.63E-08	1.86E-07 2.09E-06 1.13E-05 3.88E-05 9.85E-05	2.02E-04
•	-3 ₇ q	~47092 ~5.8385	$^{\sim}_{\sim}1203$			0. 0. 5.89E-30 3.99E-20 3.34E-15	3.04E-12 2.87E-10 7.43E-09 8.56E-08 5.74E-07	2.63E-06 2.57E-05 1.29E-04 4.22E-04 1.04E-03	2-11F-03
	в 2п	45505 5.6418	1023 0.1268	POPULATION		0. 0. 7.45E-29 2.41E-19 1.40E-14	1.01E-11 8.24E-10 1.91E-08 2.02E-07 1.27E-06	5.51E-06 4.98E-05 2.37E-04 7.56E-04 1.83E-03	2.45F-03
STATE	A 22+	44199	2342	FRACTIONAL P	•••••	0. 1.4CE-35 1.08E-28 1.63E-19 6.26E-15	3.49E-12 2.34E-10 4.65E-09 4.32E-08 2.41E-07	9.40E-07 7.00E-06 2.82E-05 7.75E-05 1.65E-04	70-370 6
•	а 4п	~37965 ~4.7069	995	A.	•••••	0. 8.47E-30 7.49E-24 6.58E-16 6.31E-12	1.56E-C9 6.20E-08 8.61E-07 6.17E-06 2.83E-35	9.52E-05 5.73E-04 2.00E-03 4.94E-03 9.73E-03	1 635-02
ć	x ² ¹¹	*29 0.0077*	1876 0.2326		1.00E CO 1.00E CO 1.00E CO 1.00E CO	1.00E 00 1.00E 00 1.00E 00 1.00E 00	1.006 00 1.006 00 1.006 00 1.006 00	1.00E 00 9.99E-01 9.98E-01 9.94E-01	0 775.01
		(CM-1)	(CM-1)	. ž	00000	00000	00000	00000	c
		ENERGY	VIB.	TEM (DEG	2 2 2 3 3 4 C C C C C C C C C C C C C C C C C	80 100 1100 200	2500 3000 3500 4500	\$000 \$000 \$000 \$000	

Average energy of the two spin components, above that of the lower component $\binom{2}{1}$, **"Deperturbed" values.

Table 16. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF NO

		\mathbf{x} $^{1}\Sigma^{+}$	32+	STATE	TE $^3_\Pi$	II A	3r -
ENERGY	(CM-1)	0.000	~39934	~58864	~63764 ~7.9055	73084	~ 73334 ~9.0920
	(CM-1)	2344	~1572 ~0.349	~1972 ~0.2445	~ 1672	1562	~1176 ~0.1458
TEMP DEG 1	. ∑		ï	RACTICNAL	POPULATION		
200 250 300 400 500	200	1.00E 00 1.00E 00 1.00E 00 1.00E 00	00000	00000	•••••	00000	•••••
600 800 000 500		1.00E 00 1.00E 00 1.00E 00 1.00E 00	0. 2.46E-31 4.39E-25 9.76E-17 1.48E-12	0. 0. 2.70E-24 3.67E-18	0. 0. 2.01E-26	0. 0. 0. 1.06E-30	0. 0. 1.87E-30
500 500 500 500 500		1.00E 00 1.00E 00 1.00E 00 1.00E 00	4.80E-10 2.28E-08 3.60E-07 2.86E-06 1.43E-05		15E-1 25E-1 43E-1 27E-1 21E-0	756-1 016-1 366-1 596-1	546-1 136-1 336-1 726-1
00000	v. v. v.	1.00E 00 1.00E 00 9.98F-01 9.96E-01 9.90E-01	5.22E-05 3.63E-04 1.45E-03 4.10E-03 9.14E-03	4.19E-07 7.22E-06 5.57E-05 2.58E-04 8.48E-04	9.45E-08 2.08E-06 1.90E-05 9.93E-05 3.56E-04	73E-0 30E-0 14E-0 39E-0	04E-0 57E-0 75E-0 04E-0
10000	σ	9.796-01	1.726-02	2.18E-03	9.78E-04	9.52E-05	1.15E-04

Table 17. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF $^{
m 0}_2$

	B 3 ₂ -	49358	688		0000	•	• •	~	8.26E-21 1.25E-15	1	7	0-	6.08E-08		1.83E-06	1.64E-05	7.39E-05	2-19E-04	4-93E-04	9.21E-04
	د ا ²	36213	616		••••	• 0	0.	2.24E-23	9.18E-16 5.68E-12				1.92E-06 7.26E-06		2.05E-05	9-1/E-05	2.51E-04	5.10E-04	0.36E-04	TOCOLOG
	Α 3 ^Σ +	35004	0.0960			•0	0. 9.21F-28	2-90E-22				-	2.45E-05	ا)		0 (1 1		1 2
TE	c 3	~34329	~820 ~0.1017	POPULATION	0000	•0	0. 5.78E-27	43E-2	29E-1	.32E-0	.47E-0	P P F L O	6.82E-05	1-86F-04	Ċ	9	2	6-94F-03	0	1
STATE	$b 1_{\Sigma}^{+}$	13121	1405	FRACTIONAL	0. 5.53E-34 1.62E-28 1.10E-21	9E-	E-1	25	91E-0	1.94E-04	0.82E-04	_	_	16E-0	\$8E-0	74F-1	0.5	3.72E-02	16E-0	
	a log	7882 0.9773	1483	ū	1.60E-25 1.34E-20 2.58E-17 3.29E-13	•	4.20E-09 4.76E-07	8.14E-06 3.60E-04	39E-	44E-	• 20E-0	.98E-0	.37E-0	•	9.60E-02	•	•	1.61E-01	1.75E-01	
	χ 3 _Σ *	0.0000	1556		1.00E 00 1.00E 00 1.00E 00		1.00E 00 1.00E 00	.00E 0	.98E-0	- 1 1	72F-0	57E-0	11E-0	23E-0	8.88E-01	53E-0	21E-0	91E-	7.65E-01	
		ENERGY (CM-1)	VIB. (CM-1) INT. (EV)	TEMP.	200 250 300 400		009 800 800 1	1500	ပ္ပ	2500 3000	20	8	00	2000	\circ	\circ	\mathbf{c}	()	10000	

Table 18. ENERGY LEVELS AND EQUILIBRIUM FRACTIONAL ELECTRONIC POPULATIONS OF 0_2^+

	b 4Σ-8	49238 6.1046	1163 C.1441		• •	•	• •	°.	•	2.96E-31	5.54E-21	7.71E-16	9.51E-13	1.10E-10	3.31E-09	4.25E-08	3.1CE-07	1.52E-06	1.63E-05	8.73E-05	2.99E-04	7.58E-04	1.56E-03
TE	A ² n _u	38303	872 0.1081	POPULATION	• • •	•	• •	•0	2.81E-30	2.81E-24	2.92E-16	3.06E-12	8.02E-10	3.31E-08	4.72E-07	3.46E-06	1.67E-05	5.54E-05	3.41E-04	1.21E-03	3.01E-03	5.94E-03	9.93E-03
STATE	a 4 _{II}	32571 4.0382	1015	FRACTIONAL	•••	•	• •	5.00E-34	1.52E-25	1.896-20	1.22E-13	3.16E-10	3.56E-08	8.38E-07	8.03E-06	4.39E-05	1.65E-04	4.74E-04	2.29E-03	6.92E-03	1.55E-02	2.82E-02	4.44E-02
	x 2 _{II}	98* 0.0122*	1843 C.2286	u.	1.COE 00 1.COF 00					1.00F 00			1.CUE 00	1.00E 00				9.99E-U1	9.97E-01	9.92E-01	9.81E-01	9.65E-01	9.44E-01
		(CM-1)	(CM-1)	. X	2C0 250	ဝ္ င	00	90	00	0	200	9	00	O.	00	0	0	20	00	00	00	0	00
		ENERGY	V 18.	TEND.	2 2	,,	2(9	8	1000	15(20(2500	3C(35(4C(4 5(500	909	707	9C(0006	10000

* Average energy of the two spin components, above that of the lower component $(2\pi_{\frac{1}{2}})$.

Table 19. LOWER ELECTRONIC AND VIBRATIONAL ENERGY LEVELS OF SELECTED DIATOMIC MOLECULES. UNITS: cm⁻¹ and ev

Molecule	State	Electronic Energy	Lowest Vibrational Interval	References
Н ₂	$x^1\Sigma_g^+$	0 cm 0 ev	4161 0.516	51
H ₂ ⁺	$x^2 \Sigma_g^+$	0 0	2191 0.272	14
co⁺	$x^2\Sigma^+$	ე 0	2184 0.271	52
	A ² Π	20408 2.530	1535 0.190	
	$B^2\Sigma^+$	45633 5.658	1679 0.208	
NO ⁻	x ³ Σ-	0 0	(~1600) (~0.20)	*
02	x ² II _g	0 0	(C.143)	53
OH_	x ¹ Σ+	0 0	(3600) (0.446)	28
ОН	x ² s	0	3570 0.443	52
	$A^2\Sigma^+$	32402 4.017	2989 0.371	
OH ⁺	x ³ Σ-	0	2967 0.368	52
	A ³ Π	27952 3.466	1986 0.246	

*Vibrational interval estimated from O2.

Table 20. VIBRATIONAL SPACING OF TRIATOMIC MULECULES

	Ground Vibrational Intervals (cm ⁻¹ ; ev)									
Molecule	State	v 1	v ₂	v 3	References					
H ₂ O	1 _A 1	3657 0.453	1595 0.198	3756 0.466	32					
H ₂ O ⁺	(² B ₁)	(~3200) (~0.40)	(~1500) (~0.19)	(~3300) (~0.41)	*					
co ₂	1 _Σ +	1388 0.172	667 0.083	2349 0.291	32					
co ₂ ⁺	2 П g	1280 0.159	(~400) (~0.05)	(1469) (0.182)	32					
NO ₂	¹ A ₁	(1325) (0.164)	(829) (0.103)	(1270) (0.157)	54					
NO ₂	² A ₁	(1320) (0.164)	750 0.093	1618 0.201	32					
NO ₂ +	(¹ Σ _g +)	(1400) (0.174)	(538) (0.067)	(2360) (0.293)	55					
N ₂ O	1 _Σ +	2224 0.276	589 0.073	1285 0.159	32					
N ₂ O ⁺	2 _Π	1737 0.215	461 0.057	1126 0.140	32					
03	(² B ₁)	(1260) (0.156)	(800) (0.099)	(114C) (9.141)	56					
03	¹ A ₁	1110 0.138	705 0.087	1042 0.129	32					
03+	(² A ₁)	(~1300) (~0.16)	(~700) (~0.09)	(~1600) (~0.20)	†					

^{*}Vibrational intervals estimated from Rydberg states of H₂O. tVibrational intervals estimated from NO₂.

Fig. 1--Equilibrium constants for dissociation

Fig. 2--Equilibrium constants for ionization (detachment) of negative ions

Fig. 3--Equilibrium constants for ionization of atoms

REFERENCES

- 1. NAS-NRC Committee on Fundamental Constants, Phys. Today 17, 48 (1964).
- 2. G. Herzberg, Atomic Spectra and Atomic Structure, Dover Publications, New York, 1944.
- 3. C. E. Moore, Atomic Energy Levels, Vol. 1, National Bureau of Standards, Circular 467, June 15, 1949 (see also the additions and corrections in the back of Vols. II and III).
- 4. G. Herzberg, Spectra of Piatomic Molecules, 2nd edition, Van Nostrand Company, New York, 1950.
- 5. J. E. Mayer and M. G. Mayer, Statistical Mechanics, J. Wiley and Sons, New York, 1940.
- 6. B. Widom, Adv. Chem. Phys. <u>5</u>, 353 (1963).
- 7. J. Keck and G. Carrier, J. Chem. Phys. 43, 2284 (1965).
- 8. C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
- 9. C. R. Lagergren, Ph.D. Thesis, University of Minnesota, 1955.
- 10. L. M. Branscomb, Adv. Electronics and Electron Phys. 9, 43 (1957).
- R. S. Berry, J. C. Mackie, R. L. Taylor, and R. Lynch, J. Chem. Phys. 43, 3067 (1965).
- 12. L. Minnhagen, Ark. Fys. 18, 97 (1960).
- 13. G. Herzberg and A. Monfils, J. Mol. Spectry. 5, 482 (1960).
- 14. H. Wind, J. Chem. Phys. 43, 2956 (1965).
- 15. Joint Army-Navy-Air Force Thermochemical Panel, <u>JANAF Thermochemical</u>
 <u>Tables</u>, Dow Chemical Company, December 1960 (with later revisions).
- 16. A. E. Douglas and C. K. Mo'ller, Can. J. Phys. 33, 125 (1955).
- 17. L. Brewer and A. W. Searcy, Ann. Rev. Phys. Chem. 1, 259 (1956).
- 18. T. Takamine, Y. Tanaka, and M. Iwata, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo) 40, 371 (1943).
- 19. F. H. Dorman and J. D. Morrison, J. Chem. Phys. 35, 575 (1961).
- 20. S. G. Tilford and P. G. Wilkinson, J. Mol. Spectry. 12, 347 (1964).
- 21. M. Ogawa and Y. Tanaka, Can. J. Phys. 40, 1593 (1962).
- 22. F. H. Dorman and J. D. Morrison, J. Chem. Phys. 39, 1906 (1963).
- 23. K. P. Huber, Helv. Phys. Acta 34, 929 (1961).
- 24. K. Dressl. r and E. Miescher, Astrophys. J. 141, 1266 (1965).
- 25. J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
- 26. T. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).

- 27. A.R. Samson and R. B. Jairns, J. Opt. Soc. Amer. 56, 769 (1966).
- 28. L. M. Branscomb, Phys. Rev. <u>148</u>, 11 (1966).
- 29. R. F. Barrow, Ark. Fys. 11, 281 (1956).

- 30. S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 602 (1956).
- 31. L. P. Lindeman and J. C. Guffy, J. Chem. Phys. <u>29</u>, 247 (1958); <u>30</u>, 322 (1959).
- 32. G. Herzberg, Electronic Spectra and Electronic Structure of
 Polyatomic Molecules, Van Nostrand Company, Princeton, New Jersey,
 1966.
- 33. A. L. Farragher, F. M. Page, and R. C. Wheeler, Disc. Faraday Soc., No. 37, 203 (1964).
- T. Nakayama, M. Y. Kitamura, and K. Watanabe, J. Chem. Phys. 30, 1180 (1959).
- 35. R. H. Wood and L. A. D'Orazio, J. Phys. Chem. 69, 2562 (1965).
- 36. J. T. Herron and H. I. Schiff, J. Chem. Phys. 4, 1266 (1956).
- 37. F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeitekopf, J. Chem. Phys. 45, 1844 (1966).
- 38. L. Minnhagen, Ark. Fys. 7, 413 (1954); 14, 481 (1959).
- 39. S. Glad, Ark. Fys. 7, 7 (1954).
- 40. K.B.S. Eriksson, Ark. Fys. 13, 429 (1958).
- 41. K.B.S. Eriksson a.d I. Johansson, Ark. Fys. 19, 235 (1961).
- 42. K.B.S. Eriksson, Ark. Fys. 13, 303 (1958).
- 43. R. S. Berry, J. C. Mackie, R. L. Taylor, and R. Lynch, J. Chem. Phys. <u>43</u>, 3067 (1965).
- 44. I. S. Bowen, Astrophys. J. 121, 306 (1955).
- 45. K.B.S. Eriksson, Ark. Fjs. 19, 229 (1961).
- 46. K. Eurns and K. B. Adams, J. Opt. Soc. Am. 43, 1020 (1953).
- 47. C. J. Humphreys and E. Paul, Jr., J. Opt. Soc. Am. 49, 1186 (1959).
- 48. L. Minnhagen, Ark. Fys. <u>14</u>, 123 (1958); <u>18</u>, 97 (1960).
- 49. P. H. Krupenie, The Band Spectrum of Carbon Monoxide, U.S. National Bureau of Standards, Report NSRDS-NBS 5, July 1966.
- 50. F. R. Gilmore, Potential Energy Curves for N₂, NO, O₂, and Corresponding Ions, The RAND Corporation, Research Memorandum RM-4034-1-PF, April 1966; J. Quant. Spectry. Rad. Transfer 5, 369 (1965).
- 51. B. P. Stoicheff, Can. J. Phys. <u>25</u>, 730 (1957).
- 52. L. Wallace, Astrophys. J. Suppl. 7, 165 (1962).

- 53. J. Rolfe, J. Chem. Phys. 40, 1664 (1964).
- 54. J. W. Sidman, J. Am. Chem. Soc. 79, 2675 (1957).
- 55. D. Cook, S. J. Kuhn, and G. A. Olah, J. Chem. Phys. 33, 1669 (1960).
- 56. K. Herman and P. A. Giguere, Can. J. Chem. 43, 1746 (1965).
- 57. G. Herzberg ec al., Can. J. Phys. 44, 3039 (1966).

ORIGINATING ACTIVITY		2a. REP	PORT SECURITY CLASSIFICATION
THE RAND CORPORATION		2b, GR0	UNCLASSIFIED
3. REPORT TITLE			
BASIC ENERGY-LEVEL AND EQUILIBR	IUM DATA FOR	ATMOSPHERIC	ATOMS AND MOLECULES
4. AUTHOR(S) (Last name, first name, initial)			
Gilmore, Forrest R.			
5. REPORT DATE	6a. TOTAL No		6b. No. OF REFS.
March 1967		52	56
7. CONTRACT OR GRANT No.	8. ORIGINATO	R'S REPORT N	0.
SD-79		RM-5201-ARP	Α
90 AVAILABILITY / LIMITATION NOTICES		9 b. SPONSORIN	G AGENCY
DDC-1		Advanced	Research Projects Agency
J. ABSTRACT		II. KEY WORDS	3
Tables of the formation energies, ciation energies, ionization energies, ionization energies electronic energy levels, and vibrievel spacings for most atomic, diand triatomic molecules involving gen, carbon, nitrogen, oxygen, and are presented. Many positively annegatively charged ions are includingles of the equilibrium fraction electronic-state populations, and of the equilibrium constants for disociation, ionization, and detachments of the atomic and diatomic speare appended. A brief discussion significance of such data precedes tables and graphs.	ies, ational atomic, hydro- argon d ed. al graphs is- ent for ecies of the	Physics Reentry Atmosphe Radiation Ionization	re n