The Evolution of Stress-Induced Mutagenesis

Yoav Ram

Tel-Aviv University

University of Haifa-Oranim 22 May 2016

Variability in mutation rates

Between species

Average number of measurable mutations per genome per generation

Bacteria: 0.0004 Wielgoss et al. G3 2011

Flies: 0.455
Keightley et al. Gen Res 2009

Humans: 41 Lynch, PNAS 2010

Evolution in a constant environment

- Directional selection without change
- A balance between mutation and selection

Mutation-selection balance

- $\overline{\omega} = e^{-U}$
- High mutation rates reduce adaptedness of populations
- Selection will reduce the mutation rate to it's lowest attainable level - the reduction principle

Liberman & Feldman 1986

- What sets this level?
 - Physical or physiological constraints
 Kimura 1967
 - Cost of DNA replication fidelity
 Dawson 1999
 - Drift barrier hypothesis Lynch 2010

Evolution in a changing environment

- In changing environments rapid adaptation can be favored by natural selection (adaptability)
- The mutation rate must balance between adaptability and adaptedness

Leigh 1973

Variability in mutation rates

Within species

Mutation rate in 69 natural populations of *E. coli*

Matic et al. 1997

Variability in mutation rates

Within individuals

DNA polymerase error rate

Lynch 2011

Stress-induced mutagenesis

In E. coli:

- Error prone polymerase induced by stress responses:
 - SOS response
 - DNA damage
 - Starvation
- Mismatch repair system
- Other mechanisms:
 - Galhardo et al. 2007
 - Al Mamun, Science 2012

Evidence

Evolution of stress-induced mutagenesis

Null hypothesis

Mutagenesis is the by-product of stress

Alternative non-adaptive hypotheses

Cost of replication fidelity

Adaptive hypothesis

2nd order selection

Constant environment

Selection against generation of deleterious mutations

x - number of harmful alleles

 f_{χ} - frequency

 ω_{x} - fitness

 m_x - mutation probability

&- deleterious mutation

β - beneficial mutation

Ram & Hadany, Evolution 2012

Constant environment

General solution

$$sign\frac{\partial \overline{\omega}}{\partial m_{x}} = sign\left(\overline{\omega} - \omega_{x}\right)$$

Increasing the mutation rate of individuals with below average fitness increases the population mean fitness

Selection doesn't always reduce the mutation rate!

Rapidly changing environments

The Red Queen hypothesis (van Valen, 1973):

It takes all the running you can do, to keep in the same place.

- Lewis Carrol, Through the Looking Glass

What happens when the environment changes frequently?

Changing environments

Simulations

- Moran process
- Individual-based simulations
- 100,000 individuals
- 1,000 loci
- Asexual, Haploid
- Overlapping generations
- No recombination
- No segregation
- No mutations at mutator locus
- Environmental changes

Populations with SIM are fitter

SIM wins competitions

SIM wins competitions

Conclusions

- Stress-induced mutators evolve:
 - In constant & changing environments

- 2nd order selection can lead to the evolution of stress-induced mutagenesis in asexual populations
 - Selection for evolvability

In the presence of rare recombination

Recombination can:

- Separate mutator from beneficial mutations
- Increase non-mutator adaptation rate
- Save constitutive mutators from deleterious mutations

In the presence of rare recombination

Results suggest:

- SIM > CM
- SIM >= NM
- As long as recombination is as not much stronger than mutations

Sexual populations??

Stress-induced mutagenesis under uncertainty

- Uncertainty
 - should you mutate?
- SIM decreases mean fitness
- Communication
 - Increase in mutation rate depends on population mean fitness
 - Robustness to uncertainty

Consequences of Stress-Induced Mutagenesis

How does stress-induced mutagenesis affect adaptation?

http://nautil.us/issue/34/adaptation/does-stress-speed-up-evolution

Adaptive peak shifts

Sewall Wright, 1931:

If a new adaptation requires several, separately deleterious mutations, how can it evolve?

SIM & rugged landscapes

Increasing the mutation rate in individuals below both peaks

Adaptation rate

$$v_{CM} \approx \tau^2 \cdot v_{NM}$$
 $v_{SIM} \approx \tau \cdot v_{NM}$

SIM Breaks the *adaptability-adaptedness* trade-off

Conclusions

Effects of stress-induced mutagenesis:

- SIM increases the adaptation rate without reducing the population mean fitness
- Breaks the trade-off between adaptability and adaptedness

Ram & Hadany, PRSB 2014

Predicting microbial growth in a mixed culture

Competition experiments

Strains must have a genotypic or phenotypic marker.

Problem: Laborious and costly, more so for non-model organisms.

Our Solution: Computational framework that predicts growth in mixed culture:

- 1. Fit growth models to growth curves
- 2. Predict competition results
- 3. Infer fitness

Growth curve data

Data from two experiments with *E. coli* strains: $(DH5\alpha \text{ vs. }TG1)$ fitted a growth model

Baranyi & Roberts, 1994

Mixed culture prediction

Summary

- 1. Fit growth models to growth curves
- 2. Predict competition results
- 3. Infer fitness

Preprint:

Ram et al. (2015) *Predicting competition results from growth curves*. bioRxiv, doi: 10.1101/022640

Software website: curveball.yoavram.com

Future directions

- Complex growth curves:
 - Bi-phasic growth:
 - Deep stationary phase
 - Cell death
- Null model for detection of frequency-dependent interactions:
 - Cooperation
 - Interference
- Compete hypothetical strains
- Predict adaptive evolution
- Interpret fitness differences

Summary

Stress-induced mutagenesis

- Can evolve due to 2nd order selection
- In constant & changing environments
- In asexual populations

Ram & Hadany, Evolution 2012

In the presence of rare recombination

Ram & Hadany, in preparation

- Increases the rate of complex adaptation rate
- Without reducing the population mean fitness
- Breaks the trade-off between adaptability and adaptedness

Ram & Hadany, PRSB 2014

<u>Predicting microbial growth in a mixed culture</u>

Ram et al., bioRxiv preprint

Acknowledgments

Lilach Hadany*

Uri Obolski*
Eynat Dellus-Gur*
Ariel Gueijman
Eyal Zinger
Itzhak Khait
Ohad Lewin-Epstein
Marine Veits
Michael Fishman

Judith Berman*

Maayan Bibi*
Ella Shtifman Segal
Noa Wertheimer
Alex Rosenberg
Adi Zisman
Feng Yang

Yitzhak Pilpel

Orna Dahan Dorit Hizi Itamar Françoise Idan Frumkin Avihu Yona

Avigdor Eldar

Ishay Ben-Zion Eran Even-Tov

Israeli
Ministry
of Science &
Technology

CONTACT

github.com/yoavram

The Anat Karuskopf Fund

