Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION

using the coalescent and maximum likelihood or Bayesian inference

Migrate-n version 3.7.2 [April-12-18]

Program started at Mon May 31 15:26:50 2021 Program finished at Tue Jun 1 04:37:19 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 2835016145

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$ \begin{array}{ccc} M & [m] \\ M & [m] \end{array} $	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

41	M _{8->3} =	M _{2->1} [m]
42	M _{9->3} =	$M_{2\rightarrow 1} \text{ [m]}$
43	$M_{10->3} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $
44	10-25	
45	11-/3	$M_{2\rightarrow 1}$ [m]
46	12-/3	
	1-/4	M 2->1 [m]
47	$M_{2->4} =$	$M = \sum_{2\rightarrow 1} [m]$
48	$M_{3->4} =$	$M_{2->1}$ [m]
49	$M_{5->4} =$	$M_{2\rightarrow 1} [m]$
50	M _{6->4} =	$M_{2\rightarrow 1} \text{ [m]}$
51	M _{7->4} =	$M_{2\rightarrow 1}$ [m]
52	$M_{8->4} =$	$M_{2\rightarrow 1}$ [m]
53	$M_{9->4} =$	$M_{2\rightarrow 1}$ [m]
54	$M_{10->4} =$	$M_{2\rightarrow 1}$ [m]
55	$M_{11->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
56	$M_{12->4} =$	$M_{2->1}$ [m]
57	$M_{1->5}^{12->4} =$	$M_{2->1}$ [m]
58	1-/3	
59	2 /3	$M_{2\rightarrow 1}$ [m]
60	3-23	$M_{2->1}$ [m]
61	4-/3	$M_{2->1}$ [m]
62	0-/3	M [m]
63	1-25	M _{2->1} [m]
64	0-/3	$ \begin{array}{ccc} M & 2 & & \\ 2 & & & \\ M & $
65	<i>j-></i> 5	$M_{2\rightarrow 1}^{2\rightarrow 1}$ [m] $M_{2\rightarrow 1}^{2\rightarrow 1}$ [m]
	10->3	
66	11->3	M 2->1 [m]
67	$M_{12->5} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
68	$M_{1->6} =$	M _{2->1} [m]
69	$M_{2->6} =$	$M_{2\rightarrow 1}$ [m]
70	$M_{3->6} =$	$M_{2\rightarrow 1}$ [m]
71	IVI _{4->6} =	$M_{2\rightarrow 1} \text{ [m]}$
72	IVI _{5->6} =	$M_{2\rightarrow 1} \text{ [m]}$
73	IVI _{7->6} =	$M_{2\rightarrow 1} [m]$
74	IVI _{8->6} =	$M_{2\rightarrow1}$ [m]
75	M _{9->6} =	$M_{2\rightarrow 1} \text{ [m]}$
76	IVI _{10->6} =	$M_{2\rightarrow 1}$ [m]
77	$ VI _{11->6} =$	$M_{2\rightarrow 1}$ [m]
78	M _{12->6} =	$M_{2\rightarrow 1}$ [m]
79	IVI _{1->7} =	$M_{2\rightarrow 1}$ [m]
80	IVI _{2->7} =	M_{2-1} [m]
81	IVI _{3->7} =	$M_{2\rightarrow 1} [m]$
82	IVI _{4->7} =	$M_{2\rightarrow 1}$ [m]
83	M _{5->7} =	$M_{2->1}$ [m]
84	$M_{6->7}^{3->7} =$	$ M \underset{2->1}{\overset{2->1}{\longrightarrow}} [m] $
85	$M_{8->7}^{6->7} =$	$M = \sum_{2->1}^{2->1} [m]$
	δ−>/	Z->1 · ·

```
\overline{\mathsf{M}}_{9->7} =
                                     _{2\rightarrow 1} [m]
86
                 M _{10->7} =
87
                                 M_{2->1} [m]
                                 M_{2->1} [m]
88
                     11->7 =
                                 M _{2->1} [m]
89
                 M
                     12->7 =
                                 M_{2->1} [m]
90
                 M
                     1->8 =
91
                 M
                                 M_{2->1} [m]
                     2->8 =
92
                 M
                                 M_{2->1} [m]
                     3->8 =
                                 M _{2->1} [m]
93
                     4->8 =
94
                 M
                                  M_{2->1} [m]
                     5->8 =
95
                 M
                                 M_{2->1} [m]
                     6->8 =
                 M _{7->8} =
96
                                 M_{2->1} [m]
97
                 M_{9->8} =
                                 M_{2->1} [m]
                 M _{10->8} =
98
                                 M _{2->1} [m]
                 M _{11->8} =
99
                                 M_{2->1} [m]
100
                                  M_{2->1} [m]
                     12->8 =
                 M_{1->9} =
101
                                  M_{2->1} [m]
102
                 M
                                 M_{2->1} [m]
                     2->9 =
103
                 M
                     3->9 =
                                 M_{2->1} [m]
104
                                 M_{2->1} [m]
                 M
                     4->9 =
105
                 M
                                 M _{2->1} [m]
                     5->9 =
106
                 M
                                 M_{2->1} [m]
                     6->9 =
107
                                  M_{2->1} [m]
                     7->9 =
108
                                 M _{2->1} [m]
                 M
                     8->9 =
109
                 M
                                 M_{2->1} [m]
                     _{10->9} =
110
                 M
                     <sub>11->9</sub> =
                                 M_{2->1} [m]
111
                 M
                                  M_{2->1} [m]
                     12->9 =
                                 M _{2->1} [m]
112
                     1->10
                 M _{2->10} =
113
                                 M_{2->1} [m]
114
                 M
                                 M_{2->1} [m]
                     _{3->10} =
                                 M _{2->1} [m]
115
                 M
                     4->10
116
                                  M _{2->1} [m]
                     5->10 =
117
                 M
                     6->10
                                 M_{2->1} [m]
                                 M _{2->1} [m]
118
                     7->10
                                 M _{2->1} [m]
119
                     8->10 =
120
                 M
                                 M _{2->1} [m]
                    9->10
                                 M _{2->1} [m]
121
                 M
                     11->10
122
                 M
                     12->10
                                 M_{2->1} [m]
                 M _{1->11}
123
                                                    <displayed>
                 M _{2\rightarrow11}
124
                                                    <displayed>
                 M _{3->11}
125
                                                    <displayed>
                 M _{4->11}
126
                                                    <displayed>
                 M _{5->11}
127
                                                    <displayed>
128
                 Μ
                                                    <displayed>
                     6->11
129
                 M
                                                    <displayed>
                     7->11
130
                 M
                                                    <displayed>
                     8->11
```

Swapping interval is 1

		1 101111	illiary migrate and	aryolo or ivi. camon	narias oo i napiot	/pes ioi Evolution 2 5
131	M ₉₋	->11	<	displayed>		
132	N A)->11	<	displayed>		
133	N/I	2->11	<	displayed>		
134	N/I	->12	<	displayed>		
135	N /	->12	<	displayed>		
136	R A	->12	<	displayed>		
137	R A	->12	<	displayed>		
138	N /	->12	<	displayed>		
139	R A	->12	<	displayed>		
140	N/I	->12	<	displayed>		
141	R A	->12	<	displayed>		
142	R A	->12	<	displayed>		
143	N/I)->12	<	displayed>		
144	N/I	1–>12	<	displayed>		
		. 712				
Mutation	rate among loc	i:			Mu	tation rate is constant
Analysis	strategy:					Bayesian inference
Droposal	diatributions fo	r naramatar				
Proposal	distributions for	r parameter	Drangasi			
	ы	Ma	Proposal			
Theta M		IVIE	tropolis sampling			
IVI			Slice sampling			
Prior dist	ribution for para	ameter				
Paramete	er Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	500
Markov o	chain settings:					Long chain
Number	_					1
	ded steps [a]					1000
	ent (record eve	ry x step [b]				100
	er of concurrent		cates) [c]			3
	l (sampled) para	, ,	,			300000
	er of discard tree					1000
			,			
Multiple I	Markov chains:					
Static I	heating scheme	:			4 cha	ins with temperatures
				1000	3.00	1.50 1.00
ı						

Print options:

	outfile bayesf
Print data:	
Print genealogies [only some for some data type]:	
	No

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	s (Gene copies
1 ElfinCo	1	19	
2 Bamfiel	1	23	
3 PortRen	1	15	
4 WalkOnB	1	16	
5 BodegaH	1	7	
6 Davenpo	1	17	
7 VistaDe	1	19	
8 HazardR	1	23	
9 Refugio	1	16	
10 Carpint	1	19	
11 WhitePo	1	11	
12 LaJolla	1	8	
Total of all populations	1	193	
1			

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_2	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00064
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01009
1	Θ_{12}^{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00953
1	M _{2->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{3->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{6->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{7->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{8->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{9->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{10->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->1}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{3->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{6->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{7->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{8->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{9->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{10->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->2}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->3}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{2->3}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5

1	rameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1 M _{6->3} 1 M _{7->3} 1 M _{8->3} 1 M _{9->3} 1 M _{10->3} 1 M _{10->3} 1 M _{11->3} 1 M _{11->3} 1 M _{1->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->5} 1 M _{10->5} 1 M _{1->5} 1 M _{1->6}	->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{7->3} 1 M _{8->3} 1 M _{8->3} 1 M _{9->3} 1 M _{10->3} 1 M _{10->3} 1 M _{11->3} 1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->5} 1 M _{10->5} 1 M _{1->5} 1 M _{6->5} 1 M _{1->5} 1 M _{1->6}	->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{8->3} 1 M _{9->3} 1 M _{10->3} 1 M _{10->3} 1 M _{11->3} 1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{2->4} 1 M _{3->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->5} 1 M _{10->5} 1 M _{1->5} 1 M _{1->6}	->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{8->3} 1 M _{9->3} 1 M _{10->3} 1 M _{10->3} 1 M _{11->3} 1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{2->4} 1 M _{3->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->4} 1 M _{10->5} 1 M _{10->5} 1 M _{1->5} 1 M _{1->6}	->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{9->3} 1 M _{10->3} 1 M _{10->3} 1 M _{11->3} 1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{11->4} 1 M _{1->5} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{10->3} 1 M _{11->3} 1 M _{11->3} 1 M _{1->4} 1 M _{2->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{11->4} 1 M _{11->5} 1 M _{1->5} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{10->5} 1 M _{10->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{11->3} 1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{10->4} 1 M _{10->4} 1 M _{11->4} 1 M _{1->5} 1 M _{1->5} 1 M _{1->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{10->5} 1 M _{10->6} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{5->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{12->3} 1 M _{1->4} 1 M _{2->4} 1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{5->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{10->4} 1 M _{1->5} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{1->5} 1 M _{1->6} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6}	1->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{1->4} 1 M _{2->4} 1 M _{3->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{1->5} 1 M _{1->5} 1 M _{1->5} 1 M _{4->5} 1 M _{6->5} 1 M _{10->5} 1 M _{1->5} 1 M _{1->5} 1 M _{1->6} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}	2->3	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{2->4} 1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{9->5} 1 M _{10->5} 1 M _{10->5} 1 M _{11->5} 1 M _{10->5} 1 M _{10->6} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{3->4} 1 M _{5->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{1->5} 1 M _{1->6} 1 M _{1->6} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{5->4} 1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{10->6} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{6->4} 1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{10->5} 1 M _{10->6} 1 M _{1->6} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{7->4} 1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{10->4} 1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{10->5} 1 M _{10->5} 1 M _{10->5} 1 M _{11->5} 1 M _{1->5} 1 M _{1->6} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{8->4} 1 M _{9->4} 1 M _{10->4} 1 M _{11->4} 1 M _{11->4} 1 M _{12->4} 1 M _{2->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{10->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{9->4} 1 M _{10->4} 1 M _{10->4} 1 M _{11->4} 1 M _{12->4} 1 M _{2->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{10->4} 1 M _{11->4} 1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{11->4} 1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{11->5} 1 M _{11->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{3->6} 1 M _{8->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{12->4} 1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{5->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{1->5} 1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{10->5} 1 M _{10->5} 1 M _{11->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{2->5} 1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{5->6} 1 M _{8->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{3->5} 1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{5->6} 1 M _{5->6} 1 M _{8->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{4->5} 1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{6->5} 1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{7->5} 1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{8->5} 1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	->0 <i>E</i>	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{9->5} 1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	->0	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{10->5} 1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	->5	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{11->5} 1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	->5	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{12->5} 1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	0->5	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{1->6} 1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	1->5	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{2->6} 1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}	2->5	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{3->6} 1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{4->6} 1 M _{5->6} 1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{5->6} 1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{7->6} 1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{8->6}		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
8->6		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
$1 M_{\alpha s}$	->6	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
9->0		34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1 M _{10->6} 1 M _{11->6}	0->6	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{2->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{3->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{6->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{8->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{9->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{10->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->7}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{2->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{3->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{6->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{7->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{9->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{10->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->8}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{2->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{3->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	5->9 M _{6->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	6->9 M _{7->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{8->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{10->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->9}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	12->9 M _{1->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{2->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	2->10 M _{3->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{4->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{5->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{6->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{7->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{9->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{11->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{12->10}	34000.0	46000.0	55000.0	64000.0	76000.0	57000.0	55657.5
1	M _{1->11}	38000.0	52000.0	79000.0	108000.0	140000.0	103000.0	139513.0
1	M _{2->11}	16000.0	24000.0	47000.0	72000.0	178000.0	125000.0	169232.9
1	M _{3->11}	0.0	0.0	1000.0	28000.0	94000.0	29000.0	35920.7
1	M _{4->11}	48000.0	70000.0	117000.0	142000.0	244000.0	129000.0	136589.9
1	M _{5->11}	64000.0	98000.0	127000.0	152000.0	202000.0	131000.0	132253.9
1	M _{6->11}	42000.0	62000.0	85000.0	108000.0	196000.0	111000.0	112551.0
1	M _{7->11}	12000.0	26000.0	53000.0	74000.0	160000.0	67000.0	76338.0
1	M _{8->11}	8000.0	20000.0	35000.0	74000.0	156000.0	67000.0	72508.2
1	M _{9->11}	12000.0	76000.0	93000.0	114000.0	146000.0	89000.0	82165.3
1	M _{10->11}	26000.0	38000.0	55000.0	68000.0	90000.0	143000.0	134189.6
1	M _{12->11}	34000.0	82000.0	101000.0	138000.0	190000.0	113000.0	113243.8
1	M _{1->12}	58000.0	76000.0	91000.0	108000.0	136000.0	203000.0	185853.7
1	M _{2->12}	32000.0	46000.0	75000.0	102000.0	214000.0	93000.0	106659.2
1	M _{3->12}	68000.0	98000.0	117000.0	136000.0	172000.0	105000.0	92390.6
1	M _{4->12}	16000.0	34000.0	81000.0	100000.0	148000.0	91000.0	117076.0
1	M _{5->12}	18000.0	34000.0	51000.0	66000.0	0.00008	191000.0	161847.0
1	M _{6->12}	144000.0	178000.0	207000.0	252000.0	304000.0	197000.0	178939.8
1	M _{7->12}	0.0	6000.0	23000.0	56000.0	76000.0	53000.0	89360.2
1	M _{8->12}	106000.0	132000.0	165000.0	186000.0	226000.0	143000.0	131565.2
1	M _{9->12}	24000.0	38000.0	53000.0	64000.0	0.00008	179000.0	153099.5
1	M _{10->12}	28000.0	50000.0	99000.0	120000.0	208000.0	105000.0	112376.1
1	M _{11->12}	14000.0	26000.0	47000.0	100000.0	236000.0	95000.0	112846.0

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2379.545694	(1a)
	-2263.614189	(1b)
Harmonic mean	-1956.471494	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	14/1038	0.01349
Θ_2^{-}	14/1038	0.01349
Θ_3^2	14/1038	0.01349
Θ_4°	14/1038	0.01349
Θ_5^{T}	14/1038	0.01349
Θ_6°	14/1038	0.01349
Θ_7°	14/1038	0.01349
$\Theta_8^{'}$	14/1038	0.01349
Θ_{α}	14/1038	0.01349
Θ_{10}	14/1038	0.01349
\mathbf{P}_{11}^{10}	627/1048	0.59828
12	679/1030	0.65922
M ¹² _{2->1}	1072/1072	1.00000
$M_{3->1}^{2->1}$	1072/1072	1.00000
A 4->1	1072/1072	1.00000
A 5->1	1072/1072	1.00000
A 6->1	1072/1072	1.00000
7->1	1072/1072	1.00000
1 _{8->1}	1072/1072	1.00000
9->1	1072/1072	1.00000
10->1	1072/1072	1.00000
10->1 11->1	1072/1072	1.00000
11->1	1072/1072	1.00000
1->2	1072/1072	1.00000
Λ	1072/1072	1.00000
7 3->2 1 4 2	1072/1072	1.00000
1 4->2 1 _{5->2}	1072/1072	1.0000
J->2 1	1072/1072	1.0000
0->2 1	1072/1072	1.0000
/->Z A	1072/1072	1.0000
¹¹ 8->2 11 _{9->2}	1072/1072	1.0000
9->2 1	1072/1072	1.0000
10->2 / I	1072/1072	1.00000
11->2 /	1072/1072	1.00000
// 12->2 //	1072/1072	1.00000
1->3 /	1072/1072	1.00000
vi _{2−>3}	1072/1072	1.00000

		1 71
M _{5->3}	1072/1072	1.00000
M _{6->3}	1072/1072	1.00000
M _{7->3}	1072/1072	1.00000
M _{8->3}	1072/1072	1.00000
M _{9->3}	1072/1072	1.00000
M 10->3	1072/1072	1.00000
M 11->3	1072/1072	1.00000
$M_{12->3}$	1072/1072	1.00000
M 1->4	1072/1072	1.00000
$M_{2\rightarrow4}$	1072/1072	1.00000
$M_{3->4}$	1072/1072	1.00000
M _{5->4}	1072/1072	1.00000
M _{6->4}	1072/1072	1.00000
M 7->4	1072/1072	1.00000
M _{8->4}	1072/1072	1.00000
$M_{9->4}$	1072/1072	1.00000
M 10->4	1072/1072	1.00000
M 11->4	1072/1072	1.00000
$M_{12->4}$	1072/1072	1.00000
$M_{1->5}$	1072/1072	1.00000
$M_{2->5}$	1072/1072	1.00000
$M_{3->5}$	1072/1072	1.00000
$M_{4->5}$	1072/1072	1.00000
M _{6->5}	1072/1072	1.00000
M 7->5	1072/1072	1.00000
M _{8->5}	1072/1072	1.00000
M _{9->5}	1072/1072	1.00000
M _{10->5}	1072/1072	1.00000
M _{11->5}	1072/1072	1.00000
M _{12->5}	1072/1072	1.00000
M _{1->6}	1072/1072	1.00000
M _{2->6}	1072/1072	1.00000
M _{3->6}	1072/1072	1.00000
M _{4->6}	1072/1072	1.00000
M _{5->6}	1072/1072	1.00000
M _{7->6}	1072/1072	1.00000
M _{8->6}	1072/1072	1.00000
M _{9->6}	1072/1072	1.00000
M _{10->6}	1072/1072	1.00000
M 11->6	1072/1072	1.00000
M 12->6	1072/1072	1.00000
M 1->7	1072/1072	1.00000
M 2->7	1072/1072	1.00000
M 3->7	1072/1072	1.00000
M _{4->7}	1072/1072	1.00000

M _{5->7}	1072/1072	1.00000
M _{6->7}	1072/1072	1.00000
M _{8->7}	1072/1072	1.00000
M _{9->7}	1072/1072	1.00000
M 10->7	1072/1072	1.00000
M 11->7	1072/1072	1.00000
M _{12->7}	1072/1072	1.00000
M _{1->8}	1072/1072	1.00000
M _{2->8}	1072/1072	1.00000
$M_{3->8}$	1072/1072	1.00000
$M_{4\rightarrow 8}$	1072/1072	1.00000
M _{5->8}	1072/1072	1.00000
M _{6->8}	1072/1072	1.00000
M _{7->8}	1072/1072	1.00000
$M_{9->8}$	1072/1072	1.00000
M 10->8	1072/1072	1.00000
M 11->8	1072/1072	1.00000
M _{12->8}	1072/1072	1.00000
M _{1->9}	1072/1072	1.00000
M _{2->9}	1072/1072	1.00000
M _{3->9}	1072/1072	1.00000
M _{4->9}	1072/1072	1.00000
M _{5->9}	1072/1072	1.00000
M _{6->9}	1072/1072	1.00000
M _{7->9}	1072/1072	1.00000
M _{8->9}	1072/1072	1.00000
M _{10->9}	1072/1072	1.00000
M _{11->9}	1072/1072	1.00000
M _{12->9}	1072/1072	1.00000
M _{1->10}	1072/1072	1.00000
M _{2->10}	1072/1072	1.00000
M _{3->10}	1072/1072	1.00000
M _{4->10}	1072/1072	1.00000
M _{5->10}	1072/1072	1.00000
M _{6->10}	1072/1072	1.00000
M _{7->10}	1072/1072	1.00000
M _{8->10}	1072/1072	1.00000
M _{9->10}	1072/1072	1.00000
M 11->10	1072/1072	1.00000
M 12->10	1072/1072	1.00000
M 1->11	1040/1040	1.00000
M 2->11	1063/1063	1.00000
M 3->11	1058/1058	1.00000
M 4->11	1082/1082	1.00000
M _{5->11}	1034/1034	1.00000
<u> </u>		

M _{6->11}	1072/1072	1.00000
M _{7->11}	986/986	1.00000
M _{8->11}	1060/1060	1.00000
M _{9->11}	1092/1092	1.00000
M 10->11	1073/1073	1.00000
M _{12->11}	1012/1012	1.00000
$M_{1->12}$	1026/1026	1.00000
$M_{2->12}$	1038/1038	1.00000
$M_{3->12}$	1030/1030	1.00000
$M_{4->12}$	987/987	1.00000
$M_{5->12}$	1069/1069	1.00000
M _{6->12}	1053/1053	1.00000
M _{7->12}	986/986	1.00000
M _{8->12}	1066/1066	1.00000
$M_{9->12}$	1052/1052	1.00000
$M_{10->12}$	1033/1033	1.00000
M 11->12	1050/1050	1.00000
Genealogies	22926/149780	0.15306

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99103	13.51
$\Theta_2^{'}$	0.99103	13.51
Θ_3^{2}	0.99103	13.51
$\Theta_4^{'}$	0.99103	13.51
Θ_5^{7}	0.99103	13.51
Θ_6	0.99103	13.51
Θ_7°	0.99103	13.51
$\Theta_8^{'}$	0.99103	13.51
\mathbf{p}_{9}°	0.99103	13.51
910	0.99103	13.51
) 11	0.85499	234.51
12	0.84116	260.50
M ¹² _{2->1}	0.98950	15.82
1 3->1	0.98950	15.82
A 4->1	0.98950	15.82
1 5->1	0.98950	15.82
1 6->1	0.98950	15.82
1	0.98950	15.82
8->1	0.98950	15.82
1 _{9->1}	0.98950	15.82
10->1	0.98950	15.82
11->1	0.98950	15.82
11->1	0.98950	15.82
12->1 1	0.98950	15.82
1 1->2 1 3->2	0.98950	15.82
1 3->2 4->2	0.98950	15.82
4->2 1	0.98950	15.82
J->2 1	0.98950	15.82
¹¹ 6−>2 11 7 2	0.98950	15.82
/->Z 1	0.98950	15.82
8->2 1	0.98950	15.82
9->∠ 1	0.98950	15.82
10->2 1	0.98950	15.82
11->2 1	0.98950	15.82
12->2 1	0.98950	15.82
1->3 1	0.98950	15.82
1 2->3 1 4 2 2	0.98950	15.82

		1 71
M _{5->3}	0.98950	15.82
M _{6->3}	0.98950	15.82
M 7->3	0.98950	15.82
$M_{8->3}$	0.98950	15.82
$M_{9->3}^{6->3}$	0.98950	15.82
I NA	0.98950	15.82
M 10->3 M 11 > 2	0.98950	15.82
N/ 11->3	0.98950	15.82
M 12->3	0.98950	15.82
1->4 NA	0.98950	15.82
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98950	15.82
3->4 NA	0.98950	15.82
3->4 NA	0.98950	15.82
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98950	15.82
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98950	15.82
NA 0->4	0.98950	15.82
NA 9->4	0.98950	15.82
10->4	0.98950	15.82
11->4 NA	0.98950	15.62
12->4 NA		
1->5	0.98950	15.82
M 2->5	0.98950	15.82
M 3->5	0.98950	15.82
M 4->5	0.98950	15.82
M 6->5	0.98950	15.82
M 7->5	0.98950	15.82
M 8->5	0.98950	15.82
M _{9->5}	0.98950	15.82
M 10->5	0.98950	15.82
M 11->5	0.98950	15.82
M 12->5	0.98950	15.82
M 1->6	0.98950	15.82
M 2->6	0.98950	15.82
M 3->6	0.98950	15.82
M _{4->6}	0.98950	15.82
M _{5->6}	0.98950	15.82
M _{7->6}	0.98950	15.82
M _{8->6}	0.98950	15.82
M _{9->6}	0.98950	15.82
M _{10->6}	0.98950	15.82
M _{11->6}	0.98950	15.82
M _{12->6}	0.98950	15.82
M 1->7	0.98950	15.82
M _{2->7}	0.98950	15.82
M 3->7	0.98950	15.82
M _{4->7}	0.98950	15.82
T-//		

		1 71
M _{5->7}	0.98950	15.82
M _{6->7}	0.98950	15.82
M _{8->7}	0.98950	15.82
M _{9->7}	0.98950	15.82
M 10->7	0.98950	15.82
M 11->7	0.98950	15.82
M 11->7	0.98950	15.82
$M_{1->8}^{12->7}$	0.98950	15.82
$M_{2->8}^{1->6}$	0.98950	15.82
$M_{3->8}^{2->8}$	0.98950	15.82
I NA	0.98950	15.82
1 A 4->8	0.98950	15.82
NA 3->8	0.98950	15.82
NA 0->0	0.98950	15.82
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98950	15.82
M 9->0	0.98950	15.82
10->8 NA	0.98950	15.82
11->8 NA	0.98950	15.82
M 12->6	0.98950	15.82
NA 1->9	0.98950	15.82
1 1 2->9	0.98950	15.82
NA 3->9	0.98950	15.82
1 NA 4->9	0.98950	15.82
NA 3->9	0.98950	15.82
0->9	0.98950	15.82
M _{8->9}	0.98950	15.82
M 10->9	0.98950	15.82
M 11->9	0.98950	15.82
M 12->9	0.98950	15.82
M 1->10	0.98950	15.82
$M_{2\rightarrow 10}$	0.98950	15.82
M 3->10	0.98950	15.82
M _{4->10}	0.98950	15.82
M 5->10	0.98950	15.82
M _{6->10}	0.98950	15.82
M 7->10	0.98950	15.82
M _{8->10}	0.98950	15.82
M _{9->10}	0.98950	15.82
M 11->10	0.98950	15.82
M _{12->10}	0.98950	15.82
M _{1->11}	0.87474	203.43
M _{2->11}	0.93119	107.51
M 3->11	0.90262	155.06
M _{4->11}	0.94353	87.16
M 5->11	0.93874	95.53

M 7->11 0.91914 126.40 M 8->11 0.90562 150.18 M 9->11 0.87473 201.67 M 10->11 0.85330 238.73 M 12->11 0.9427 85.96 M 1->12 0.90282 153.12 M 2->12 0.92593 115.90 M 3->12 0.88792 178.40 M 4->12 0.92607 116.41 M 5->12 0.89095 175.74 M 6->12 0.92346 120.38 M 7->12 0.86493 217.14 M 8->12 0.90577 148.23 M 9->12 0.85586 235.60	7->11 0.91914 126.40 3->11 0.90562 150.18 3->11 0.87473 201.67 10->11 0.85330 238.73 12->11 0.94427 85.96 1->12 0.90282 153.12 2->12 0.92593 115.90 3->12 0.88792 178.40 4->12 0.92607 116.41 5->12 0.89095 175.74 5->12 0.92346 120.38 7->12 0.86493 217.14 3->12 0.90577 148.23 0->12 0.85586 235.60 10->12 0.89373 168.96 11->12 0.90321 152.42	M _{6->11}	0.95874	63.15
M s→11 0.90562 150.18 M g→11 0.87473 201.67 M 10→11 0.85330 238.73 M 12→11 0.94427 85.96 M 1→12 0.90282 153.12 M 2→12 0.92593 115.90 M 3→12 0.88792 178.40 M 4→12 0.92607 116.41 M 5→12 0.89095 175.74 M 6→12 0.92346 120.38 M 7→12 0.86493 217.14 M 8→12 0.90577 148.23 M 9→12 0.85586 235.60 M 9→12 0.80373 168.06	3->11 0.90562 150.18 0->11 0.87473 201.67 10->11 0.85330 238.73 12->11 0.94427 85.96 1->12 0.90282 153.12 2->12 0.92593 115.90 3->12 0.88792 178.40 4->12 0.92607 116.41 5->12 0.89095 175.74 5->12 0.92346 120.38 7->12 0.86493 217.14 3->12 0.90577 148.23 3->12 0.85586 235.60 0->12 0.89373 168.96 11->12 0.90321 152.42	\ A	0.91914	126.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0->11 0.87473 201.67 10->11 0.85330 238.73 12->11 0.94427 85.96 1->12 0.90282 153.12 2->12 0.92593 115.90 3->12 0.88792 178.40 4->12 0.92607 116.41 5->12 0.89095 175.74 5->12 0.92346 120.38 7->12 0.86493 217.14 3->12 0.90577 148.23 0->12 0.85586 235.60 10->12 0.89373 168.96 11->12 0.90321 152.42	\ л	0.90562	150.18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ <i>I</i>	0.87473	201.67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.85330	238.73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.94427	85.96
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.90282	153.12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.92593	115.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ /	0.88792	178.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\ <i>1</i>	0.92607	116.41
$M_{6\rightarrow 12}$ 0.92346 120.38 $M_{7\rightarrow 12}$ 0.86493 217.14 $M_{8\rightarrow 12}$ 0.90577 148.23 $M_{9\rightarrow 12}$ 0.85586 235.60 $M_{9\rightarrow 12}$ 0.80373	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. /	0.89095	175.74
$M_{7\rightarrow 12}$ 0.86493 217.14 $M_{8\rightarrow 12}$ 0.90577 148.23 $M_{9\rightarrow 12}$ 0.85586 235.60 $M_{9\rightarrow 12}$ 0.80373	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.92346	120.38
$M_{8->12}$ 0.90577 148.23 $M_{9->12}$ 0.85586 235.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.86493	217.14
$M_{9->12}$ 0.85586 235.60	0.85586 235.60 10->12 0.89373 168.96 11->12 0.90321 152.42	Λ	0.90577	148.23
A 0.0070 460.06	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.85586	235.60
	11->12 0.90321 152.42	Λ	0.89373	168.96
A 0.00204		. /	0.90321	152.42
			0.97800	33.38

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- _____
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!
Param 13: Effective sample size of run seems too short!