Module: INT102

Assignment 2

1. Assessment

The tasks contribute 10% to the overall assessment of INT102

2. Submission

Please complete the assessment tasks using Microsoft Word and submit it in PDF via Learning. Please including **your name and student ID** on the cover page and name your file as **name_student ID**.

3. Deadline

26-May- 2021, Wednesday, 24:00. Time zone in Beijing, China (GMT+8)

Question 7 is compulsory.

Name: Lincheng Shi (施林呈)

Student_ID: 1927978

Question 1

1. A: 5-1-3=1

G: 5-1-2=2

C: 5

T: 5-1-1=3

A	G	C	T	-
1	2	5	3	5

2.

A	G	С	A	A	Т	G	A	A
A	T	G	A	A				
	A	T	G	A	A			
				A	T	G	A	A

So the number of comparisons is 9.

Question 2

<u>a</u>	b	c	d	e	
0	∞	∞	∞	∞	a
0	4	∞	∞	∞	b
0	4	5	∞	∞	c
0	4	5	12	∞	d
0	4	5	12	6	
0	4	5	12	-2	Э
0	0	5	12	-21)
0	0	5	8	-2 0	d

So the shortest path length from a to a is 0, the shortest path length from a to b is 0, the shortest path length from a to c is 5, the shortest path length from a to d is 8, the shortest path length from a to e is -2.

Question 3

1.

2.0					
	٠,٠٠	G	A	G	T
"	0	0	0	0	0
A	0	† 0	∖ 1	←1	←1
G	0	∖ 1	† 1	∖ 2	←2
С	0	↑1	† 1	†2	↑2
С	0	↑1	† 1	↑2	↑2
С	0	↑1	<u>†</u> 1	↑2	↑2
T	0	<u>†</u> 1	<u>†</u> 1	↑2	√ 3

So the length of the Longest Common Subsequence between sequences of GAGT and AGCCCT is 3.

2.

	٠,٠,٠	G	A A	G	T

٠,٠,٠	0	0	0	0	0
A	0	† 0	∖ 1	←1	← 1
<mark>G</mark>	0	∖ 1	† 1	∖ 2	←2
С	0	† 1	† 1	†2	↑2
С	0	† 1	† 1	↑2	↑2
С	0	† 1	† 1	↑2	↑2
T	0	† 1	† 1	↑2	₹ 3

So one of the longest common subsquences of GAGT and AGCCCT is AGT.

Question 4

1.a.

Complete the following table using the formula

 $F(i,j)=max(F(i-1,j-1)+s(x_i,y_j), F(i-1,j)+d, F(i,j+1)+d)$

and set F(0,0)=0,F(i,0)=i*d,F(0,j)=j*d

		G	A	G	T
	0	←-1	←-2	←-3	←-4
A	↑-1	\ ↑←-2	∖ 0	←-1	←-2
G	↑-2	∇ 0	↑ ←-1	\ 1	←0
A	↑-3	↑-1	₹ 1	↑← 0	↑ ←-1
C	↑-4	↑-2	† 0	↑ ←-1	\ ↑←-2
C	↑-5	↑-1	↑-1	↑ ←-2	\ ↑←-3
T	↑-6	↑-2	↑-2	↑ ←-3	₹-1

b.

An optimal global alignment of GAGT and AGACCT:

- GA - - GT

AGACC -T

2.a.

Complete the following table using the formula

 $F(i,j)=max(F(i-1,j-1)+s(x_i,y_j), F(i-1,j)-d, F(i,j+1)-d,0)$

and set F(0,0)=0

		G	A	G	T
	0	0	0	0	0
A	0	0	\ 1	0	0
G	0	\ 1	0	₹ 2	← 1
A	0	0	\ 2	† 1	0
С	0	0	0	0	0
С	0	0	0	0	0
T	0	0	0	0	₹ 1

b.

An optimal local alignment of GAGT and AGACCT are found:

A G

A G

Question 5

abcde

a0 4 5 2 1

b4 0 4 3 1

c5 4 0 1 8

d2 3 1 0 6

e1 1 8 6 0

To reduce the complexity, we can assume that, d is before e in the tour. The lower bound for each node can be computed by

Node 0:
$$1b = \lceil [(1+2)+(1+3)+(1+4)+(1+2)+(1+1)]/2 \rceil_{=9}$$

Node 1:
$$lb = [[(4+1)+(4+1)+(4+1)+(2+1)+(1+1)]/2]_{=10}$$

Node 2:
$$1b = \lceil [(5+1)+(3+1)+(5+1)+(2+1)+(1+1)]/2 \rceil_{=11}$$

Node 3:
$$1b = \lceil [(2+1)+(3+1)+(4+1)+(2+1)+(1+1)]/2 \rceil_{=9}$$

Node 4: ignored as d is not before e.

Node 5:
$$lb = \lceil [(2+1)+(3+1)+(4+1)+(2+3)+(1+1)]/2 \rceil = 10$$

Node 6:
$$1b = [(2+1)+(3+1)+(4+1)+(2+1)+(1+1)]/2]_{=9}$$

Node 7:
$$1b = \lceil [(2+1) + (3+1) + (4+1) + (6+2) + (6+1)]/2 \rceil = 14$$

Node 8:
$$1b = [(2+1)+(4+1)+(4+1)+(2+1)+(1+1)]/2]_{=9}$$

Node 9:
$$1b = \lceil [(4+2)+(4+1)+(1+8)+(2+1)+(1+8)]/2 \rceil = 16$$

Solutions: a,d,c,b,e,a

Question 6

P problem is all decision problems that can be solved in worst-case polynomial time. NP problem is all problems that can be verified in polynomial time. All P problem can be verified in polynomial time, so P=NP or $P \subset NP(P \neq NP)$.

Problem A is NP-complete if

- Problem A is in NP
- For any Problem A' in NP, A' is reducible to A in polynomial time So NPC⊂NP, P problem is not NPC problem.

As a result, we can get the diagram as shown below:

1. contradict

NP=NPC is wrong.

- 2. not contradict
- 3. contradict

 $NP=P \cup NPC$ is wrong.

- 4. contradict
- $P \cap NPC \neq \{\}$ is wrong
- 5. not contradict

Question 7

Yes, I do.