Regular Expression

$$O+1$$
$O+1$
$O+$

A Construct Regular Expressions that generades the following languages.

(i)
$$L = \begin{cases} \omega \in \{0,1\}^{\frac{4}{3}}, \ \omega \text{ contains "101" as a substring} \end{cases}$$

$$(0+1)^{\frac{4}{3}} 101 (0+1)^{\frac{4}{3}}$$

2) L = & WE FOI 13 " , W starts with "101" } 101 (0+1)*

- (3) $L = \{ \omega \in \{0,1\}^{\#} : \omega \text{ ends with "101"} \}$ $(0+1)^{\#}101$
- $\frac{4}{9}L = \begin{cases} \omega \in \{0,13^{*}: \omega \text{ contains "00" on "11"}\} \\ (0+1)^{**}00 (0+1)^{*} + (0+1)^{**}11 (0+1)^{**} \\ 0\pi/(0+1)^{*} (00+11) (0+1)^{*}
 \end{cases}$
- $(5)L = \{\omega \in \{0,1\}^{*}: \omega \text{ contains "00" and "11"}\}$ $(0+1)^{*} 00 (0+1)^{*} 11 (0+1)^{*}$ -+ $(0+1)^{*} 11 (0+1)^{*} 00 (0+1)^{*}$
- 6) $L = \int \omega \in \{0,1\}^{*}$ ω contains at least two l'e β $(0+1)^{*} \perp (0+1)^{*} \perp (0+1)^{*}$
- $7 L = \sum \omega \in So.17^*$ ω contains exactly two 16 δ 0*10*10*
- (8) L= Swefoil? * a contains at most two 16 }

$$0^{*} + 0^{*}10^{*} + 0^{*}10^{*}10^{*}$$

$$0^{*} / 0^{*} (e^{-1})^{0}$$

(10)
$$L = \{\omega \in \{0,1\}^{2}: length of \omega \text{ is odd } \}$$

 $(0+1)((0+1)(0+1))$
 $(0+1)(0+1)$
 $(0+1)(0+1)$
 $(0+1)(0+1)(0+1)$
 $(0+1)(0+1)(0+1)$

(12)
$$L = \{\omega \in \{0,1\}^{*}: length of \omega \text{ is not multiple of } 3\}$$

$$= ((O+1)(O+1)(O+1))^{*}(O+1) \{e + O+1\}$$

$$= ((O+1)(O+1)(O+1))^{*}(O+1 + OO + OI + IO + II)$$

or, $0*(0^{\dagger} 0*10*10*)^{\circ}$ $19 L = \{ \text{set } \{0,1\}^{\ast}: \text{ w starts and ends with different symbol} \}$ $0(0+1)^{\ast} L + 1(0+1)^{\ast} 0$

(15)
$$L = \{ \omega \in \{0, 1\}^{*}: \omega \text{ starts and ends } \omega \text{ ith same symbol} \}$$

$$O(0+1)^{*}O + 1(0+1)^{*}1 + 0 + 1$$

(i6)
$$L = \{ w \in \{0,1\}^* : w \text{ doesn't end with of } \}$$

 $(0+1)^* (00+11+10) + 0+1+E$

(18) L = {WE {0,1}}*. W doesn't contain 10}

- (19) L= {WE {0,1}}*. W doesn't contain 01 }
- (20) L = SWESOIP*: W contains 0 in every 3rd position?

$$\sqrt{((0+1)(0+1)0)^{*}(0+1)(0+1)} + \frac{1}{((0+1)(0+1)0)^{*}} + \frac{1}{((0+1)(0+1)0)^{*}(0+1)}$$

$$\sqrt{((0+1)(0+1)0)^{*}(0+1)}$$

 $((0+1)(0+1)0)*(0+1)+ \in + (0+1)$

 $\Rightarrow ((o+1)(o+1)0)^{*} ((o+1)(o+1+e)$ $\Rightarrow ((o+1)(o+1)0)^{*} (o+1+e) (o+1+e)$