Final Project Submission

Please fill out:

- · Student name: David Schenck
- · Student pace: Flex
- · Scheduled project review date/time: June 2, 2023, 12:30 pm Mountain Time
- · Instructor name: Morgan Jones
- Blog post URL: <a href="https://wordpress.com/home/daviddata24.wordpress.com/hom

Phase 1 Project

In this hypothetical scenario, Microsoft wants to start a movie studio and has asked me to look at historical movie data to try to determine what works and what does not.

The two metrics I will use to measure success are profit and viewer ratings. Microsoft is going to want their new studio to be profitable, so my recommendations will be based on what has made movies profitable in the past. In addition to making money, I want to make sure that the new studio's movies are well-received, particularly the first few releases, because a positive first impression will make people more likely to want to see future movies. That is why I am also looking at trends for movies with both high and low ratings.

The three main factors I will look at are budget, genre, and star-power. Budget: Microsoft will want to know how much capital to invest into the new studio in order to realistically make a large profit.

Genre: I will look through movies released in the US market to determine which genres tend to make the most money and receive the highest praise.

Star-power: I want to determine if having recognizable actors/directors involved in a movie affects profit or ratings. This is the most challenging factor to tease out of the data because I need to come up with a metric for how much "star-power" a person has as a function of time throughout their career.

```
In [109]: #Import necessary packages
    import pandas as pd
    import sqlite3
    import matplotlib.pyplot as plt
    %matplotlib inline
    import numpy as np
    plt.rcParams['figure.figsize'] = (10, 10)
    plt.style.use('ggplot')
```

Data Exploration

I am going to start by just reading in the data and seeing what info is included.

```
In [110]: #Define a path to where all the data is kept
dir_path = 'C:/Users/david/Documents/Flatiron/phase_1/Phase1-Microsoft-Movie-Studio/'
```

Box Office Mojo

The Box Office Mojo data includes title, studio, domestic and foreign gross, and the year. There are 3387 movies included.

```
₩ #Box Office Mojo
In [111]:
               df = pd.read_csv(dir_path+'Data/bom.movie_gross.csv')
In [112]:
              #Look at what is in the data
               df.info()
               <class 'pandas.core.frame.DataFrame'>
               RangeIndex: 3387 entries, 0 to 3386
               Data columns (total 5 columns):
                    Column
                                     Non-Null Count Dtype
                0
                    title
                                     3387 non-null
                                                      object
                1
                    studio
                                     3382 non-null
                                                      object
                    domestic_gross 3359 non-null
                                                      float64
                                     2037 non-null
                                                      object
                    foreign_gross
                                     3387 non-null
                                                      int64
               dtypes: float64(1), int64(1), object(3)
               memory usage: 132.4+ KB
In [113]:
           df.head(10)
    Out[113]:
                                               title studio
                                                          domestic_gross foreign_gross year
               0
                                          Toy Story 3
                                                       BV
                                                              415000000.0
                                                                            652000000 2010
                1
                                                              334200000.0
                              Alice in Wonderland (2010)
                                                       BV
                                                                            691300000 2010
                  Harry Potter and the Deathly Hallows Part 1
                                                              296000000.0
                                                      WB
                                                                            664300000 2010
               3
                                           Inception
                                                      WB
                                                              292600000.0
                                                                            535700000 2010
                                                              238700000.0
                                    Shrek Forever After
                                                     P/DW
                                                                            513900000 2010
                               The Twilight Saga: Eclipse
                                                              300500000.0
                                                                            398000000 2010
                                                     Sum.
                                          Iron Man 2
                                                      Par.
                                                              312400000.0
                                                                            311500000 2010
                                            Tangled
                                                       ΒV
                                                              200800000.0
                                                                            391000000 2010
                                       Despicable Me
                                                              251500000.0
                                                                            291600000 2010
                8
                                                      Uni.
                               How to Train Your Dragon
                                                    P/DW
                                                              217600000.0
                                                                            277300000 2010
In [114]:
            df.year.min()
```

Rotten Tomatoes Information

This dataset includes information about genre, rating, director, writer, release date, box office, runtime, and studio. Strangely, it doesn't actually include the title of the movie. I will look to see if that is in a different dataset.

Out[114]: 2010

```
In [116]:
```

#See what is in the dataset
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1560 entries, 0 to 1559
Data columns (total 12 columns):

Ducu	COTAMITS (COCA.	i iz coiumns).	
#	Column	Non-Null Count	Dtype
0	id	1560 non-null	int64
1	synopsis	1498 non-null	object
2	rating	1557 non-null	object
3	genre	1552 non-null	object
4	director	1361 non-null	object
5	writer	1111 non-null	object
6	theater_date	1201 non-null	object
7	dvd_date	1201 non-null	object
8	currency	340 non-null	object
9	box_office	340 non-null	object
10	runtime	1530 non-null	object
11	studio	494 non-null	object

dtypes: int64(1), object(11)
memory usage: 146.4+ KB

```
In [117]: ► #Look at first 10 entries
df.head(10)
```

Out[117]:

	id	synopsis	rating	genre	director	writer	theater_date	dvd_date	currency	box_office
0	1	This gritty, fast-paced, and innovative police	R	Action and Adventure Classics Drama	William Friedkin	Ernest Tidyman	Oct 9, 1971	Sep 25, 2001	NaN	NaN
1	3	New York City, not- too-distant- future: Eric Pa	R	Drama Science Fiction and Fantasy	David Cronenberg	David Cronenberg Don DeLillo	Aug 17, 2012	Jan 1, 2013	\$	600,000
2	5	Illeana Douglas delivers a superb performance 	R	Drama Musical and Performing Arts	Allison Anders	Allison Anders	Sep 13, 1996	Apr 18, 2000	NaN	NaN
3	6	Michael Douglas runs afoul of a treacherous su	R	Drama Mystery and Suspense	Barry Levinson	Paul Attanasio Michael Crichton	Dec 9, 1994	Aug 27, 1997	NaN	NaN
4	7	NaN	NR	Drama Romance	Rodney Bennett	Giles Cooper	NaN	NaN	NaN	NaN
5	8	The year is 1942. As the Allies unite overseas	PG	Drama Kids and Family	Jay Russell	Gail Gilchriest	Mar 3, 2000	Jul 11, 2000	NaN	NaN
6	10	Some cast and crew from NBC's highly acclaimed	PG- 13	Comedy	Jake Kasdan	Mike White	Jan 11, 2002	Jun 18, 2002	\$	41,032,915
7	13	Stewart Kane, an Irishman living in the Austra	R	Drama	Ray Lawrence	Raymond Carver Beatrix Christian	Apr 27, 2006	Oct 2, 2007	\$	224,114
8	14	"Love Ranch" is a bittersweet love story that	R	Drama	Taylor Hackford	Mark Jacobson	Jun 30, 2010	Nov 9, 2010	\$	134,904
9	15	When a diamond expedition in the Congo is lost	PG- 13	Action and Adventure Mystery and Suspense Scie	Frank Marshall	John Patrick Shanley	Jun 9, 1995	Jul 27, 1999	NaN	NaN
										•

Rotten Tomatoes Reviews

This dataset includes reviews of each movie. Again, the movie title is not included. The ID allows for this dataset to be joined with the previous Rotten Tomatoes dataset which also does not contain movie titles. Based on my current plans, I do not expect to use this dataset.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 54432 entries, 0 to 54431 Data columns (total 8 columns): # Column Non-Null Count Dtype -----0 id 54432 non-null int64 48869 non-null object 1 review 40915 non-null object 2 rating 3 fresh 54432 non-null object 51710 non-null object 4 critic top_critic 54432 non-null int64 54123 non-null object 6 publisher date 54432 non-null object dtypes: int64(2), object(6) memory usage: 3.3+ MB

In [120]:

#Look at first 10 entries df.head(10)

Out[120]:

	id	review	rating	fresh	critic	top_critic	publisher	date
0	3	A distinctly gallows take on contemporary fina	3/5	fresh	PJ Nabarro	0	Patrick Nabarro	November 10, 2018
1	3	It's an allegory in search of a meaning that n	NaN	rotten	Annalee Newitz	0	io9.com	May 23, 2018
2	3	life lived in a bubble in financial dealin	NaN	fresh	Sean Axmaker	0	Stream on Demand	January 4, 2018
3	3	Continuing along a line introduced in last yea	NaN	fresh	Daniel Kasman	0	MUBI	November 16, 2017
4	3	a perverse twist on neorealism	NaN	fresh	NaN	0	Cinema Scope	October 12, 2017
5	3	Cronenberg's Cosmopolis expresses somethin	NaN	fresh	Michelle Orange	0	Capital New York	September 11, 2017
6	3	Quickly grows repetitive and tiresome, meander	С	rotten	Eric D. Snider	0	EricDSnider.com	July 17, 2013
7	3	Cronenberg is not a director to be daunted by	2/5	rotten	Matt Kelemen	0	Las Vegas CityLife	April 21, 2013
8	3	Cronenberg's cold, exacting precision and emot	NaN	fresh	Sean Axmaker	0	Parallax View	March 24, 2013
9	3	Over and above its topical urgency or the bit	NaN	fresh	Kong Rithdee	0	Bangkok Post	March 4, 2013

TheMovieDB

This dataset contains genre, title, popularity, release date, vote average, and vote count. I will need to do a little research to figure out how some of these columns are calculated. What is popularity? Does more votes automatically mean the movie was well received?

After looking into the data more closely, some movies show up multiple times with identical information. I am not sure why, but if I use this dataset, I should try to remove the duplicates. There are a little over 1000 duplicates.

Popularity: I looked this up and it seems like popularity is just a measure of how much people are engaging with the movie on the website. It also looks like something that changes day-to-day, so chances are the popularity score in the table is just from the day the data was pulled. I do not actually think popularity is a useful metric for my analysis.

I tried merging this dataset with the dataset from TheNumbers because I wanted to see how hard it would be. What I found is that a little fewer than 100 movies couldn't be crosslisted by title, and when I checked the titles to see why, it actually turns out TheMovieDB data just doesn't have many of them (including big releases). I think this is just because of when the data was pulled. For example, Captain Marvel is not in this dataset, but there is currently a webpage for it on TheMovieDB. This does make me less likely to utilize this dataset. That is okay. The main thing I wanted from it was user ratings, but IMDB has that, too.

```
In [121]:
           #TheMovieDB
             df = pd.read_csv(dir_path+'Data/tmdb.movies.csv')
In [122]:
          ▶ #See what is in the dataset
             df.info()
              <class 'pandas.core.frame.DataFrame'>
              RangeIndex: 26517 entries, 0 to 26516
             Data columns (total 10 columns):
                  Column
                                     Non-Null Count Dtype
                  Unnamed: 0
                                     26517 non-null int64
              0
                                     26517 non-null object
              1
                  genre_ids
              2
                                     26517 non-null int64
                  original_language 26517 non-null object
                                     26517 non-null object
                  original_title
              5
                  popularity
                                     26517 non-null float64
              6
                  release_date
                                     26517 non-null object
                  title
                                     26517 non-null object
                  vote_average
                                     26517 non-null
                                                     float64
                  vote_count
                                     26517 non-null
                                                     int64
              dtypes: float64(2), int64(3), object(5)
             memory usage: 2.0+ MB
In [123]:
           ▶ #Drop duplicates and see how many remain
             df.drop_duplicates(subset='id').info()
              <class 'pandas.core.frame.DataFrame'>
              Int64Index: 25497 entries, 0 to 26516
             Data columns (total 10 columns):
                                     Non-Null Count Dtype
              #
                  Column
                                     -----
                  Unnamed: 0
                                     25497 non-null int64
              0
              1
                  genre_ids
                                     25497 non-null object
               2
                                     25497 non-null
              3
                  original_language 25497 non-null object
                                     25497 non-null object
              4
                  original_title
              5
                                     25497 non-null float64
                  popularity
              6
                  release_date
                                     25497 non-null object
                                     25497 non-null object
              7
                  title
              8
                  vote_average
                                     25497 non-null float64
                  vote_count
                                     25497 non-null int64
              dtypes: float64(2), int64(3), object(5)
             memory usage: 2.1+ MB
```

TheNumbers

This dataset includes release date, title, budget, and both domestic and worldwide gross. Production budget is one of the things I want to use in my analysis, so I will use this dataset.

```
In [124]:
           #TheNumbers
             df = pd.read_csv(dir_path+'Data/tn.movie_budgets.csv')
           ▶ #See what is in the dataset
In [125]:
             df.info()
              <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 5782 entries, 0 to 5781
             Data columns (total 6 columns):
                  Column
                                    Non-Null Count Dtype
              0
                  id
                                     5782 non-null
                                                   int64
                  release_date 5782 non-null
              1
                                                    object
              2
                  movie
                                     5782 non-null
                                                    object
              3
                  production_budget 5782 non-null
                                                    object
                  domestic_gross
                                     5782 non-null
                                                    object
                  worldwide_gross
                                     5782 non-null
                                                    object
             dtypes: int64(1), object(5)
             memory usage: 271.2+ KB
In [126]:
           ▶ #Look at first 10 entries
             df.head(10)
```

Out[126]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross
0	1	Dec 18, 2009	Avatar	\$425,000,000	\$760,507,625	\$2,776,345,279
1	2	May 20, 2011	Pirates of the Caribbean: On Stranger Tides	\$410,600,000	\$241,063,875	\$1,045,663,875
2	3	Jun 7, 2019	Dark Phoenix	\$350,000,000	\$42,762,350	\$149,762,350
3	4	May 1, 2015	Avengers: Age of Ultron	\$330,600,000	\$459,005,868	\$1,403,013,963
4	5	Dec 15, 2017	Star Wars Ep. VIII: The Last Jedi	\$317,000,000	\$620,181,382	\$1,316,721,747
5	6	Dec 18, 2015	Star Wars Ep. VII: The Force Awakens	\$306,000,000	\$936,662,225	\$2,053,311,220
6	7	Apr 27, 2018	Avengers: Infinity War	\$300,000,000	\$678,815,482	\$2,048,134,200
7	8	May 24, 2007	Pirates of the Caribbean: At Worldâ□□s End	\$300,000,000	\$309,420,425	\$963,420,425
8	9	Nov 17, 2017	Justice League	\$300,000,000	\$229,024,295	\$655,945,209
9	10	Nov 6, 2015	Spectre	\$300,000,000	\$200,074,175	\$879,620,923

IMDB

There are 8 tables in this database:

- 1. persons: This includes 606,648 people, but many are from the distant past or they are not known to the American movie audience. I will want to only keep those who are featured in major movies released in the US.
- 2. principals: This lists the principal actors and directors of each movie.
- 3. known_for: I looked up what this means specifically, and it only includes 4 movies per person. This is not particularly helpful for what I want to do.
- 4. directors: Lists the movies directed by each person.
- 5. writers: Lists the movies written by each person.
- 6. movie_basics: For each movie, it lists the title, year, and genres. I will want to filter the 146,144 movies down to just major movies released in the US.

- 7. movie_ratings: Lists average rating of each movie and the number of votes. I do not know where the ratings are coming from (are they professional critics or just user ratings). My guess is that it has to just be user ratings because some movies have hundreds of thousands of votes.
- 8. movie_akas: Is the only table that includes the regions in which the movies were released. This will be needed to find movies released in the US.

Out[128]:

	person_id	primary_name	birth_year	death_year	primary_profession
0	nm0061671	Mary Ellen Bauder	NaN	NaN	miscellaneous,production_manager,producer
1	nm0061865	Joseph Bauer	NaN	NaN	composer,music_department,sound_department
2	nm0062070	Bruce Baum	NaN	NaN	miscellaneous,actor,writer
3	nm0062195	Axel Baumann	NaN	NaN	camera_department,cinematographer,art_department
4	nm0062798	Pete Baxter	NaN	NaN	production_designer,art_department,set_decorator
				•••	
606643	nm9990381	Susan Grobes	NaN	NaN	actress
606644	nm9990690	Joo Yeon So	NaN	NaN	actress
606645	nm9991320	Madeline Smith	NaN	NaN	actress
606646	nm9991786	Michelle Modigliani	NaN	NaN	producer
606647	nm9993380	Pegasus Envoyé	NaN	NaN	director,actor,writer

606648 rows × 5 columns

```
In [129]:
           ₦ #movie_basics
             pd.read_sql("""
             SELECT *
               FROM movie_basics;
              """, conn)
```

Out[129]:

	movie_id	primary_title	original_title	start_year	runtime_minutes	genres
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,Drama
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,Drama
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	Drama
3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,Drama
4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fantasy
146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	Drama
146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Documentary
146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	Comedy
146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	None
146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	Documentary

146144 rows × 6 columns

```
In [130]: #movie_ratings
             pd.read_sql("""
             SELECT *
               FROM movie_ratings;
             """, conn)
```

Out[130]:

	movie_id	averagerating	numvotes
0	tt10356526	8.3	31
1	tt10384606	8.9	559
2	tt1042974	6.4	20
3	tt1043726	4.2	50352
4	tt1060240	6.5	21
73851	tt9805820	8.1	25
73852	tt9844256	7.5	24
73853	tt9851050	4.7	14
73854	tt9886934	7.0	5
73855	tt9894098	6.3	128

73856 rows × 3 columns

Cleaning

I am going to use two sources of data:

- 1. TheNumbers: Includes budget and domestic/worldwide gross information
- 2. IMDb: Includes information about rating, actors, and directors.

The IMDB dataset, which has the most information, has unique IDs for each movie. Unfortunately, those IDs can only be used to merge tables within the dataset, not with other non-IMDB datasets. I can try using movie titles to combine, but that leads to issues because some movies were released under multiple different titles. There are three other issues when trying to merge

- 1. The merge method is case sensitive. This is the easiest to fix because I can just make all the titles lower case.
- 2. In the TheNumbers data, the original csv document with the data has some strange artifacts in place of special characters. Characters like apostrophes, dashes, ellipses, and accented letters do not show up correctly. There are a small enough number of these (less than 100) that they can be fixed manually.
- 3. The hardest problem to fix is just that some titles differ slightly. For example, a movie can have a colon in it in one table, but

I read in a cleaned version of TheNumbers data. All of the strange artifacts have been removed from the titles and other edits have been made to make sure it matches up with the titles in IMDb.

```
In [132]:
           #Change date to datetime format
              df.release date = pd.to datetime(df.release date, format = '%b %d, %Y')
              #Change money from string to float
              df.production_budget = df.production_budget.replace('[\$,]', '', regex=True).astype(float)/1000000
              df.domestic_gross = df.domestic_gross.replace('[\$,]', '', regex=True).astype(float)/1000000
df.worldwide_gross = df.worldwide_gross.replace('[\$,]', '', regex=True).astype(float)/1000000
              #Create new column for profit
              df['profit'] = df.worldwide_gross - df.production_budget
              #Only keep data since 2010
              df_10_hasgross = df[df.release_date >= '2010-01-01'][df.domestic_gross > 0]
              <ipython-input-132-d2249b7c05f7>:11: UserWarning: Boolean Series key will be reindexed to match DataF
              rame index.
                df 10 hasgross = df[df.release date >= '2010-01-01'][df.domestic_gross > 0]
In [133]:
           H #Change the titles so it is all lower case. This will help when merging.
              df_basics['primary_title'] = df_basics['primary_title'].str.lower()
              df_10_hasgross['movie'] = df_10_hasgross['movie'].str.lower()
In [134]:
           ▶ #Merge the data from TheNumbers with the IMDB basics table
```

Below is a list of all the movies in TheNumbers that I couldn't match with something in IMDb. It mostly includes foreign movies and low budget movies. I had to manually change quite a few movie titles so they would match, but it was at least reasonable to do by hand.

df_merge = df_10_hasgross.merge(df_basics, left_on = 'movie', right_on = 'primary_title', how = 'left'

The total number of rows in the merged table is 2439. However, when I use drop_duplicates on the movie title, there are only 1785 rows. This means there are a lot of duplicates. This happens because multiple different movies in the IMDb dataset have the same title. I need to remove the duplicates and determine which movies should actually be matched.

```
In [136]: #Drop duplicates
df_merge.drop_duplicates(subset = 'movie')
```

Out[136]:

	id	release_date	movie	production_budget	domestic_gross	worldwide_gross	profit	movie_id	primary_title
0	2	2011-05-20	pirates of the caribbean: on stranger tides	410.600	241.063875	1045.663875	635.063875	tt1298650	pirates of the caribbean: on stranger tides
1	3	2019-06-07	dark phoenix	350.000	42.762350	149.762350	-200.237650	tt6565702	dark phoenix
2	4	2015-05-01	avengers: age of ultron	330.600	459.005868	1403.013963	1072.413963	tt2395427	avengers: age of ultron
3	5	2017-12-15	star wars: the last jedi	317.000	620.181382	1316.721747	999.721747	tt2527336	star wars: the last jedi
4	6	2015-12-18	star wars: episode vii - the force awakens	306.000	936.662225	2053.311220	1747.311220	tt2488496	star wars: episode vii - the force awakens
		***					***		•••
2432	38	2016-03-18	krisha	0.030	0.144822	0.144822	0.114822	tt4266638	krisha
2433	41	2010-10-15	down terrace	0.030	0.009812	0.009812	-0.020188	NaN	NaN
2434	45	2017-01-27	emily	0.027	0.003547	0.003547	-0.023453	tt1863224	emily
2437	61	2010-04-02	breaking upwards	0.015	0.115592	0.115592	0.100592	NaN	NaN
2438	73	2012-01-13	newlyweds	0.009	0.004584	0.004584	-0.004416	tt1880418	newlyweds
1785 ı	ows	× 13 columns	5						

```
▶ #Get value counts of the movie titles to see what titles are being duplicated
In [137]:
              df_merge.movie.value_counts()
   Out[137]: home
                                       24
              the gift
                                       13
              brothers
                                       13
              the wall
                                       10
              silence
                                       10
              death wish
                                        1
              lovely, still
                                        1
              identity thief
                                        1
              deliver us from evil
                                        1
              the magnificent seven
                                        1
              Name: movie, Length: 1785, dtype: int64
```

I can fix the duplicates by just going through the list and seeing which movies actually match. I made the matches by looking at the release date and start year as well as looking at the budget and gross. I used the actual IMDb pages for each movie to double check the matches.

elease_date	movie	production_budget	domestic_gross	worldwide_gross	profit	movie_id	primary_title	original_title	start_year	runtime_	
2010-05-14	robin hood	210.0	105.487148	322.459006	112.459006	tt0955308	robin hood	Robin Hood	2010.0		
2010-05-14	robin hood	210.0	105.487148	322.459006	112.459006	tt2363363	robin hood	Robin Hood	2013.0		
2010-05-14	robin hood	210.0	105.487148	322.459006	112.459006	tt4532826	robin hood	Robin Hood	2018.0		
2010-05-14	robin hood	210.0	105.487148	322.459006	112.459006	tt6858500	robin hood	Robin Hood	2018.0		
2010-05-14	robin hood	210.0	105.487148	322.459006	112.459006	tt8558276	robin hood	Robin Hood	2017.0		
2018-11-21	robin hood	99.0	30.824628	84.747441	-14.252559	tt0955308	robin hood	Robin Hood	2010.0		_
4										•	

Below is a new CSV file I made that stores the movie_id that matches each movie that has duplicates

```
In [140]:
                 #Look at data
                 df_dup_remover
    Out[140]:
                                     movie_id
                             movie
                    0
                                     tt2224026
                              home
                    1
                            brothers tt3802576
                    2
                             the gift tt4178092
                         the promise tt4776998
                    3
                    4
                             silence
                                     tt0490215
                  289
                           burlesque tt1126591
                               flight tt1907668
                  290
                  291
                            elysium tt1535108
                  292
                        don't breathe tt4160708
                  293 the last stand tt1549920
```

I am going to loop over each movie in df_dup_remover an drop rows that don't have the right movie_id

```
In [141]: #Remove duplicates
for movie, movie_id in zip(df_dup_remover.movie, df_dup_remover.movie_id):
    if movie_id == 'remove': #Some movies did not actually match up with anything, so we remove them
        df_merge.drop(df_merge.index[df_merge.movie == movie], inplace = True)
    if movie != 'robin hood': #There are two robin hood movies, so I will handle them separately
        df_merge.drop(df_merge.index[(df_merge.movie == movie) & (df_merge.movie_id != movie_id)], input
```

There are two movies called robin hood that match a movie from the IMDb database. There are two movies called the square, but only one matches up with something in IMDb. I need to treat these cases separately because the code above would just get rid of everything and make no match.

```
In [142]:
           #Robin Hood
              df_merge.drop(df_merge.index[(df_merge.movie == 'robin hood') & (df_merge.movie_id != 'tt0955308') & (
              df_merge.drop(df_merge.index[(df_merge.movie == 'robin hood') & (df_merge.movie_id != 'tt4532826') & (
              #The Square
              df_merge.drop(df_merge.index[(df_merge.movie == 'the square') & (df_merge.id == 10)], inplace = True)
In [143]:
           ▶ #Now, the combined data should not include any duplicates
              df_merge.movie.value_counts()
   Out[143]: robin hood
              the founder
                                  1
              sinister 2
                                  1
              alien: covenant
                                  1
              queen of katwe
                                  1
              locke
                                  1
              remember me
                                  1
              barfi
                                  1
              standing ovation
                                  1
              Name: movie, Length: 1783, dtype: int64
```

There are two robin hood movies, but that it because there are actually two different movies with that title in the dataset.

Now there are no repeats in the dataset. Just so I don't have to rerun the cells above every time I restart the kernel, I am going to save this DataFrame as a CSV file.

Budget

In this section, I look at how the budget of movies are related to the profit the movies make.

```
In [147]:
          df_merge = pd.read_csv(dir_path+'Data/TheNumbers_IMDB_Merge.csv')
In [148]:
          #Change release date to datetime
             df_merge.release date = pd.to_datetime(df_merge.release date, format = '%Y-%m-%d')
In [149]: ► df_merge.info()
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 1657 entries, 0 to 1656
             Data columns (total 10 columns):
                                   Non-Null Count Dtype
                 Column
                 -----
                                    -----
              0
                 Unnamed: 0
                                  1657 non-null int64
                                                  datetime64[ns]
              1
                 release_date
                                  1657 non-null
              2
                                    1657 non-null
                                                  object
                 movie
                  production_budget 1657 non-null
                                                   float64
                                    1657 non-null
                                                   float64
                  domestic_gross
              5
                 worldwide_gross
                                    1657 non-null
                                                   float64
              6
                  profit
                                    1657 non-null
                                                   float64
                                    1657 non-null
                                                   object
              7
                 movie_id
                 runtime_minutes
                                  1656 non-null
                                                   float64
                  genres
                                    1657 non-null
                                                   object
             dtypes: datetime64[ns](1), float64(5), int64(1), object(3)
             memory usage: 129.6+ KB
```

Some movies have a domestic and/or worldwide gross that is equal to 0 dollars. I looked into one example (Bright) and the webpage for Bright on TheNumbers.com does not show a gross of 0, but instead just a dash. I think this means 0 is just a placeholder from an unknown amount.

In [150]:

▶ #Remove movies with no recorded worldwide gross

df_merge[df_merge.worldwide_gross > 0].sort_values(by = 'profit', ascending = False)

Out[150]:

	Unnamed: 0	release_date	movie	production_budget	domestic_gross	worldwide_gross	profit	movie_id	runtin
5	5	2018-04-27	avengers: infinity war	300.0	678.815482	2048.134200	1748.134200	tt4154756	
4	4	2015-12-18	star wars: episode vii - the force awakens	306.0	936.662225	2053.311220	1747.311220	tt2488496	
25	25	2015-06-12	jurassic world	215.0	652.270625	1648.854864	1433.854864	tt0369610	
50	56	2015-04-03	furious 7	190.0	353.007020	1518.722794	1328.722794	tt2820852	
20	20	2012-05-04	the avengers	225.0	623.279547	1517.935897	1292.935897	tt0848228	
	***		***	•••					
196	254	2010-12-17	how do you know	120.0	30.212620	49.628177	-70.371823	tt1341188	
273	359	2017-04-21	the promise	90.0	8.224288	10.551417	-79.448583	tt4776998	
218	277	2019-06-14	men in black: international	110.0	3.100000	3.100000	-106.900000	tt2283336	
134	161	2011-03-11	mars needs moms	150.0	21.392758	39.549758	-110.450242	tt1305591	
1	1	2019-06-07	dark phoenix	350.0	42.762350	149.762350	-200.237650	tt6565702	

1657 rows × 10 columns


```
In [151]:  #Histogram of profit
ax = df_merge.profit.plot(kind = 'hist', bins=25, color = (0.0 , 0.3 , 1, 0.5))
ax.set_ylabel('Number of Movies', fontsize = 20)
ax.set_xlabel('Profit (Millions of $)', fontsize = 20)
```

Out[151]: Text(0.5, 0, 'Profit (Millions of \$)')

Below, I divide the movies into 10 groups based on their production budget. Each range will have the same number of movies. This is being added as a column called budget_range

Out[154]:

	Unnamed: 0	production_budget	domestic_gross	worldwide_gross	profit	runtime_minutes	Profitable?
budget_range							
(0.008, 2.0]	2316.082840	1.040856	3.965380	6.551042	5.510186	95.272189	0.532544
(2.0, 6.0]	2038.418079	4.269209	13.886619	25.020444	20.751235	100.028249	0.627119
(6.0, 10.0]	1764.154839	8.926903	17.156576	33.986115	25.059212	106.374194	0.600000
(10.0, 17.2]	1524.154321	13.783333	27.961909	54.812598	41.029265	108.030864	0.722222
(17.2, 25.0]	1239.793103	21.416256	33.690163	60.335609	38.919353	107.995074	0.699507
(25.0, 34.48]	998.453125	29.796094	41.208962	78.272913	48.476819	109.472441	0.773438
(34.48, 45.6]	785.554217	38.830120	51.263461	107.222186	68.392065	110.728916	0.783133
(45.6, 70.0]	543.441176	57.887647	69.815044	161.245666	103.358019	112.494118	0.817647
(70.0, 130.0]	312.532164	100.315789	116.564516	328.262315	227.946525	111.713450	0.918129
(130.0, 410.6]	91.634615	185.562821	216.007556	625.407280	439.844460	122.839744	0.948718

Boxplot grouped by budget_range


```
In [156]: # This plot shows the percentage of movies that are profitable within each budget range
ax = df_group.plot(y = 'Profitable?', kind='barh', color=(0.0,0.3,1,0.5), title = 'Percentage of Movies
ax.set_xlim((0,1))
ax.set_xlabel('Percentage of Profitable Movies', fontsize = 20)
ax.set_ylabel('Budget Range (Millions of $)', fontsize = 20)
ax.set_yticklabels(['0.008 - 2', '2 - 5', '5 - 10', '10 - 15', '15 - 21', '21 - 30', '30 - 42', '42 - 0'
66.6 - 125', '125 - 411'], fontsize = 12)
ax.set_xticklabels([])
for i,perc in enumerate(df_group['Profitable?']):
    ax.text(perc, i, f"{round(100*perc,1)}%", fontsize = 12)
```


Conclusions about budget

The plot shows that the higher the budget, the higher the profit tends to be. Importantly, as the budget increases, the probability of making a profit increases. Movies with budgets exceeding 125 million made money about 95% of the time while movies with budgets between 42 and 66.6 million only made money about 81% of the time.

Spending lots of money does not guarantee a big payday. Just look at Dark Phoenix. That movie had a budget of 350 million and it lost 200 million. We need to make sure that we spend the money wisely. That is what the other recommendations will help us do.

Genres

Using the movies that are listed in both TheNumbers and the IMDB datasets, I will look at how the genre is related to both the profit and the rating.

Below, I look at rating vs. budget. It seems that very high budget movies have a higher floor than low budget movies in terms of ratings. High budget movies don't get completely panned by critics and viewers.

The IMDb data lists multiple genres per movie as a single string separated by commas. I want to get a list of unique genres so I can look at each genre separately. I found a nice snippet of code from https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5">https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (https://medium.com/analytics-vidhya/exploratory-data-analysis-imdb-dataset-cff0c3991ad5 (<a href="https://medium.com/analytics-

```
In [161]:
           ▶ from sklearn.feature_extraction.text import CountVectorizer
              temp = df_merge.genres.dropna()
              vec = CountVectorizer(token_pattern='(?u)\\b[\\w-]+\\b', analyzer='word').fit(temp)
              unique_genres = vec.get_feature_names()
               unique_genres
   Out[161]: ['action',
                'adventure',
                'animation',
                'biography',
                'comedy',
                'crime',
                'documentary',
                'drama',
'family',
                'fantasy',
                'history',
                'horror',
                'music',
                'musical',
                'mystery',
                'romance',
                'sci-fi',
                'sport',
                'thriller',
                'war',
                'western']
           ▶ #Find the median rating of each genre and sort the genres by that median
In [162]:
              med = []
               for genre in unique_genres:
                   genre_med = df_merge[df_merge.genres.str.contains(genre)].averagerating.median()
                   med.append(genre_med)
               med
   Out[162]: [6.4,
                6.6,
                6.7,
                7.1,
                6.3,
                6.5,
                6.95,
                6.7,
                6.3,
               6.2,
               7.0,
                5.9,
                6.4,
                6.15,
               6.3,
                6.4,
                6.5,
                7.0,
                6.3,
                6.3,
                6.6]
```

```
▶ #Sort genres by median rating
In [163]:
              med_and_genres = sorted(list(zip(med,unique_genres)))
              sorted_genres = [med_and_genres[i][1] for i in range(len(med_and_genres))]
              sorted_genres
   'comedy',
               'family',
'mystery',
               'thriller',
               'war',
               'action',
               'music',
               'romance',
               'crime',
'sci-fi',
               'adventure',
               'western',
               'animation',
               'drama',
               'documentary',
               'history',
                'sport',
               'biography']
```

Out[164]: Text(0, 0.5, 'Genre')

In terms of rating, it seems like people enjoy true stories because the highest rated genres are biography, history, and documentary. Sports movies are also quite high. Some of these movies are also based on true stories. The worst rated are horror, musical, fantasy, and comedy.

The truth is that the movies have a wide range of ratings and you can have a highly rated horror movie or a low-rated biography.

Now to see how the genres compare financially.

```
In [165]:
           Harmonian #Find the median profit of each genre and sort the genres by that median
              med = []
               for genre in unique_genres:
                   genre_med = df_merge[df_merge.genres.str.contains(genre)].profit.median()
                   med.append(genre_med)
              med
   Out[165]: [69.59089,
               132.981261000000002,
                166.562312000000002,
                16.0067175,
                31.887901500000005,
                13.844132,
                0.386368000000000004,
                12.141616999999998,
                55.4624445000000004,
                53.461527,
                8.099931,
                30.74923,
                9.1696265,
                16.878986499999996,
                36.824065999999995,
                16.649645000000003,
                110.0982585,
                7.3621764999999995,
                33.866088000000005,
                -1.315295,
                -1.185188]
In [166]:
           ▶ #Sort genres by median profit
              med_and_genres = sorted(list(zip(med,unique_genres)))
               sorted_genres = [med_and_genres[i][1] for i in range(len(med_and_genres))]
               sorted_genres
   Out[166]: ['war',
                'western',
                'documentary',
                'sport',
                'history',
                'music',
                'drama',
                'crime',
                'biography',
                'romance',
                'musical',
                'horror',
                'comedy',
                'thriller',
                'mystery',
                'fantasy',
                'family',
                'action',
                'sci-fi',
                'adventure'
                'animation']
```

Out[167]: Text(0, 0.5, 'Genre')

People love their documentaries, but that doesn't mean those movies make money. Documentaries, biographies, and history movies are near the bottom in profits. The most profitable movies are animated movies, adventure movies, and sci-fi. The average is higher due to a small number of very successful movies. Inception, Interstellar, and Avengers: Infinity War all fall in the adventure and sci-fi genres. They are the bigger outliers to the right. However, the adventure and sci-fi genres do still have some of the highest MEDIAN profits, showing that it is not just a matter of the box office hits skewing the data.

This does not necessarily mean I recommend making only animated sci-fi, adventure movies. Most of the genres include multiple highly profitable movies (the only genres that do not include at least one movie with a profit of 500 million dollars are horror, western, history, romance, sport, war, and documentary). These genres are probably not what we should aim for if we want to make a major profit.

```
#Percentage of movies that are profitable within each genre
In [168]:
               fig, ax = plt.subplots(figsize = (10,10))
               n=0
               for genre in sorted genres:
                   df_sub = df_merge[df_merge.genres.str.contains(genre)]
                   perc = 100 * len(df_sub[df_sub.profit > 0.0]) / len(df_sub)
                   ax.barh(width = perc, height = 0.8, y = n, color = (0.0, 0.3, 1, 0.5))
                   ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'left', verticalalignment
                   perc = 100 * len(df_sub[df_sub.profit > 50.0]) / len(df_sub)
                   ax.barh(width = perc, height = 0.8, y = n, color = (0.0, 1, 0, 0.5))
ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'right', verticalalignment
                   n = n + 1
               ax.barh(width = 100, height = 0.8, y = n, color = (0.0, 0.3, 1, 0.5))
               ax.barh(width = 50, height = 0.8, y = n, color = (0.0, 1, 0.0, 0.5))
               ax.text(25, n, "Made over $50 million", fontsize = 12, horizontalalignment = 'center', verticalalignment
               ax.text(75, n, "Made a Profit", fontsize = 12, horizontalalignment = 'center', verticalalignment = 'ce
               ax.set_yticklabels(sorted_genres)
               ax.set_yticks(range(len(sorted_genres)))
               ax.set_title('Percentage of Movies that are Profitable')
               ax.set_xlabel('Percentage', fontsize = 18)
               ax.set_ylabel('Genre', fontsize = 18)
```

<ipython-input-168-33097a5fd156>:22: UserWarning: FixedFormatter should only be used together with Fi
xedLocator

ax.set_yticklabels(sorted_genres)

Out[168]: Text(0, 0.5, 'Genre')

Genre Conclusion:

While a wide variety of genres are capable of earning large profits and high ratings, the most successful genres are animation, adventure, sci-fi, and action. Movies in the war, western, and sports genres are not as successful. Documentaries are very popular (high ratings), but don't typically make much money.

Star Power

Next, I will look at how the profit and ratings of movies are affected by the people who make those movies. This will be the hardest to code. Plan: For each movie, create a "star power" rating. I will look at the principal people involved in each movie, then I will count how many movies those people have previously done. I can also require that those movies had a certain level of success (profit above 50 million). To do this, I will need to loop through each movie and find the people associated with that movie (using the principals table). Then, I will sum up all of the movies those people have PREVIOUSLY done to get the star power rating.

PROBLEM: If the movies in my main dataset start in 2010, then this limits what I can do with this star power metric. This means movies released prior to 2010 will not contribute to the star power rating.

How to fix it: I can specifically look at movies from the last 6 years and use star power since 2010. This should still work pretty well because more recent starring roles are probably more influential than ones from decades ago.

```
In [169]:
           ▶ # Read in the principals table from IMDB
              # I want to do this separately for actors/actresses and directors
              df_actors = pd.read_sql("""
              SELECT movie_id, person_id, category
                FROM principals
                WHERE category IN ('actor', 'actress')
              ;
""", conn)
              # Directors
              df_directors = pd.read_sql("""
              SELECT movie_id, person_id, category
                FROM principals
                WHERE category IN ('director')
              """, conn)
In [170]:
           #Create a new column for actor/actress star power
```

Below, I loop over every movie and do the following:

df_merge['act_star_power'] = 0.0
df_merge['dir_star_power'] = 0.0

- 1. Find the principal actors in the movie.
- 2. Count the previous movies those actors have starred in that made at least \$100 million.
- Sum those movies and add it to the act_star_power column

```
In [171]:
             star_power_list = []
             for mov_id in df_merge.movie_id:
                 release_date = df_merge[df_merge.movie_id == mov_id].release_date
                 person_ids = list(df_actors[df_actors.movie_id == mov_id].person_id)
                 df_mov_with_same_people = df_actors[df_actors.person_id.isin(person_ids)].merge(df_merge, left_on
                                                                                               right_on = 'movie_
                 star_power_list.append(len(df_mov_with_same_people[(df_mov_with_same_people.release_date < release
                                                                   (df_mov_with_same_people.profit > 50)]))
             df_merge['act_star_power'] = star_power_list
In [172]: ▶ # This is for directors only
             star_power_list = []
             for mov_id in df_merge.movie_id:
                 release_date = df_merge[df_merge.movie_id == mov_id].release_date
                 person_ids = list(df_directors[df_directors.movie_id == mov_id].person_id)
                 df mov with same people = df directors[df directors.person id.isin(person ids)].merge(df merge, le
                                                                                               right_on = 'movie_
                 star_power_list.append(len(df_mov_with_same_people[(df_mov_with_same_people.release_date < release]
                                                                   (df_mov_with_same_people.profit > 50)]))
             df_merge['dir_star_power'] = star_power_list
```

Below, I make a new DataFrame that includes movies since 2016. The reason for doing this is because movies prior to that won't have very accurate star power ratings

```
Hercentage of movies that are profitable based on actor/actress star power
In [174]:
              fig, ax = plt.subplots(figsize = (10,6))
              star_power_bins = [0,5,10,25]
              for n in range(len(star_power_bins)-1):
                  perc = 100 * len(df_cut[(df_cut.act_star_power >= star_power_bins[n]) & (df_cut.act_star_power < s</pre>
                                       & (df_cut.profit > 0.0)]) / \
                      len(df cut[(df cut.act star power >= star power bins[n]) & (df cut.act star power < star power</pre>
                  ax.barh(width = perc, height = 0.7, y = n, color = (0.0, 0.3, 1.0, 0.5))
                  ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'left', verticalalignment
                  perc = 100 * len(df_cut[(df_cut.act_star_power >= star_power_bins[n]) & (df_cut.act_star_power < star_power)</pre>
                                       & (df_cut.profit > 50.0)]) / \
                      len(df_cut[(df_cut.act_star_power >= star_power_bins[n]) & (df_cut.act_star_power < star_power)</pre>
                  ax.barh(width = perc, height = 0.7, y = n, color = (0.0, 1, 0.0, 0.5))
                  ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'right', verticalalignment
              n = n + 1
              ax.barh(width = 100, height = 0.7, y = n, color = (0.0, 0.3, 1, 0.5))
              ax.barh(width = 50, height = 0.7, y = n, color = (0.0, 1, 0.0, 0.5))
              ax.text(25, n, "Made over $50 million", fontsize = 12, horizontalalignment = 'center', verticalalignment
              ax.text(75, n, "Made a Profit", fontsize = 12, horizontalalignment = 'center', verticalalignment = 'ce
              ax.set yticklabels([f"{star power bins[n]} - {star power bins[n+1]}" for n in range(len(star power bin
              ax.set_xticklabels(np.arange(0,120,20),fontsize = 18)
              ax.set_yticks(range(len(star_power_bins)-1))
              ax.set_title('Percentage of Movies that are Profitable Based on Actor Star Power')
              ax.set_xlabel('Percentage', fontsize = 18)
              ax.set_ylabel('Actor Star Power', fontsize = 18)
              <ipython-input-174-f1533af1a80b>:27: UserWarning: FixedFormatter should only be used together wi
              th FixedLocator
                ax.set_yticklabels([f"{star_power_bins[n]} - {star_power_bins[n+1]}" for n in range(len(star_p
              ower_bins)-1)], fontsize = 18)
              <ipython-input-174-f1533af1a80b>:28: UserWarning: FixedFormatter should only be used together wi
              th FixedLocator
                ax.set_xticklabels(np.arange(0,120,20),fontsize = 18)
   Out[174]: Text(0, 0.5, 'Actor Star Power')
                                Percentage of Movies that are Profitable Based on Actor Star Power
                                    Made over $50 million
                                                                            Made a Profit
               0 10 - 25
                                                                57.7%
                                                                                        84 6%
```

```
Hercentage of movies that are profitable based on director star power
In [175]:
              fig, ax = plt.subplots(figsize = (10,10))
              star_power_bins = [0,1,2,3,4,5,6]
              for n in range(5):
                  perc = 100 * len(df_cut[(df_cut.dir_star_power >= star_power_bins[n]) & (df_cut.dir_star_power < star_power_bins[n])</pre>
                                       & (df_cut.profit > 0.0)]) / \
                      len(df cut[(df cut.dir star power >= star power bins[n]) & (df cut.dir star power < star power</pre>
                  ax.barh(width = perc, height = 0.7, y = n, color = (0.0, 0.3, 1.0, 0.5))
                  ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'left', verticalalignment
                  perc = 100 * len(df_cut[(df_cut.dir_star_power >= star_power_bins[n]) & (df_cut.dir_star_power < s</pre>
                                       & (df_cut.profit > 50.0)]) / \
                      len(df_cut[(df_cut.dir_star_power >= star_power_bins[n]) & (df_cut.dir_star_power < star_power)</pre>
                  ax.barh(width = perc, height = 0.7, y = n, color = (0.0, 1, 0.0, 0.5))
                  ax.text(perc, n, f"{round(perc,1)}%", fontsize = 12, horizontalalignment = 'right', verticalalignment
              n = n + 1
              ax.barh(width = 100, height = 0.7, y = n, color = (0.0, 0.3, 1, 0.5))
              ax.barh(width = 50, height = 0.7, y = n, color = (0.0, 1, 0.0, 0.5))
              ax.text(25, n, "Made over $50 million", fontsize = 12, horizontalalignment = 'center', verticalalignment
              ax.text(75, n, "Made a Profit", fontsize = 12, horizontalalignment = 'center', verticalalignment = 'center'
              ax.set_yticklabels(range(5), fontsize = 18)
              ax.set_xticklabels(np.arange(0,120,20),fontsize = 18)
              ax.set_yticks(range(5))
              ax.set_title('Percentage of Movies that are Profitable Based on Director Star Power')
              ax.set_xlabel('Percentage', fontsize = 18)
              ax.set_ylabel('Director Star Power', fontsize = 18)
              <ipython-input-175-b9d7c6393af7>:27: UserWarning: FixedFormatter should only be used together with Fi
              xedLocator
                ax.set_yticklabels(range(5), fontsize = 18)
              <ipython-input-175-b9d7c6393af7>:28: UserWarning: FixedFormatter should only be used together with Fi
              xedLocator
                ax.set_xticklabels(np.arange(0,120,20),fontsize = 18)
   Out[175]: Text(0, 0.5, 'Director Star Power')
```


Casting/Directing Conclusions

Hiring actors/actresses and directors who have previously been involved in successful, profitable movies does seem to be correlated with future success. This could be because those people are talented and are therefore more likely to help create a good movie. It could also be because having big, recognizable names attached to a movie helps get more attention on that movie so that people will go see it, regardless of its actual quality. It is easier to sell a movie starring Tom Hanks then a movie starring John Whoever, even if Mr. Whoever is very talented.