HW4

Степурин Алексей М3134

1 Найти в S_4 элементы, которые невозможно представить ≤ 2 транспозициями.

 ${f Lm1}$. Цикл длины n невозвможно представить < n-1 транспозициями.

 ∇ Предположим, что некоторый цикл длины n представим менее чем n-1 транспозициями. Представим цикл в виде графа, так что элементы цикла - это вершины графа, а транспозиции - ребра, соединяющие соответственные вершины-элементы. Ясно, что в цикле из любого элемента можно прийти в любой другой. Тогда из любой вершины графа существует путь по ребрам в любую другую вершину, следовательно, этот граф состоит из единственной компоненты связности, но в графе с n вершинами и $\leq n-2$ ребрами хотя бы две компоненты связности |||| \triangle .

 ${f Lm2}.$ Цикл длины n представим n-1 транспозициями.

 ∇ Пусть транспозиция (i,j) - перестановка элементов, стоящих на позициях i и j. Тогда цикл $(k_1,k_2,...,k_n)$ раскладывается в n-1 транспозиций следующим образом: $(k_1,k_2,...,k_n)=(k_n,k_{n-1})\circ(k_{n-1},k_{n-2})\circ...\circ(k_2,k_1)$. Например, для n=4 представим цикл (1,4,2,3) таким образом: $(1,4,2,3)=(3,2)\circ(2,4)\circ(4,1)$, тогда

1	2	3	4
↓	↓	\downarrow	\downarrow
4	2	3	1
↓	\downarrow	\downarrow	\downarrow
4	1	3	2
↓	↓	\downarrow	\downarrow
4	3	1	2

таким образом мы построили верную перестановку данного цикла \triangle .

Из леммы 1 следует, что в S_4 перестановки представимы минимум тремя транспозициями, только если эти перестановки раскладываются в единственный цикл длины 4. Таких перестановок (4-1)! = 6 и они представляются следующими циклами: (1,2,3,4); (1,2,4,3); (1,3,2,4); (1,3,4,2); (1,4,2,3); (1,4,3,2).

2 Доказать, что множества перестановок знаков 1 и -1 равномощны.

```
Пусть n — число элементов множества, на котором действуют перестановки. Докажем по индукции: \nabla База: n=2. Перестановки: (1)(2);(1,2). sign((1)(2))=1, sign((1,2))=-1. Пусть для некоторого n верно, что countOf(\sigma:sign(\sigma)=1)=countOf(\sigma:sign(\sigma)=-1), тогда
```

Пусть для некоторого n верно, что $countOf(\sigma: sign(\sigma) = 1) = countOf(\sigma: sign(\sigma))$ $countOf(\sigma: sign(\sigma) = 1) = countOf(\sigma: sign(\sigma) = -1) = c_+^n = c_-^n = \frac{n!}{2}$.

Добавим один элемент в множество элементов. Тогда всего перестановок для нового множества (n+1)!. Ясно, что если новый элемент добавился как свободный цикл, то знак этих перестановок не изменится, таких перестановок n! (среди них знака 1 и знака -1 поровну). Вставить новый элемент в имеющиеся циклы первоначальной перестановки можно n способами. Тогда такой вставкой получаем как раз $n \cdot n!$ оставшихся перестановок. Если первоначальная перестановка была знака s, то после вставки она будет знака -s, т.к. изменится знак лишь одного цикла в перестановке (это ясно из леммы 2). Тогда в полученных перестановках будет поровну перестановок знаков 1 и -1, а следовательно для группы перестановок элементов полученного множества мощности (n+1) перестановок знака 1 и знака -1 будет поровну Δ .

3 Доказать, что любую перестановку можно представить композицией транспозиций из множества: (1,2),(1,3),...,(1,n).

 ∇ Покажем, что любую транспозицию (i,j) можно представить используя данное множество транспозиций: $(i,j) = (1,j) \circ (1,i) \circ (1,j)$. Действительно:

1	 i	 j	
↓	↓	\downarrow	
j	 i	 1	
↓	↓	\downarrow	
j j	 1	 i	
↓	\downarrow	\downarrow	
1	 j	 i	

Таким образом выражаем любую транспозицию, а следовательно, - и любую перестановку \triangle .