Vorkurs Mathematik 2019 | Lösungen zum Thema

Schulmathematik I

Aufgabe 1: Verkürzende Operatoren

a) Berechne für die Zahlen in der Tabelle

die folgenden Ausdrücke:

$$\sum_{k=1}^{6} a_k, \qquad \prod_{k=1}^{6} (a_k + b_k), \qquad \sum_{k=1}^{6} a_k \cdot b_k, \qquad \left(\sum_{k=1}^{6} a_k\right) \cdot \left(\sum_{k=1}^{6} b_k\right)$$

b) Sei $n \in \mathbb{N}$. Berechne folgende Summe:

$$\sum_{m=-1}^{8} (n+1)^3.$$

c) Verschiebe die Indizes der folgenden Summe so, dass sie mit nur einem Summenzeichen geschrieben werden kann. Vereinfache diese dann so weit wie möglich.

$$\sum_{k=2}^{23} (k-1)^2 + \sum_{l=-2}^{19} 2(l+3) + \sum_{m=10}^{31} 1$$

Lösung:

a)

14, 45360, 53, 364

b)

 $10 \cdot (n+1)^3$

$$= \sum_{k=1}^{22} k^2 + \sum_{l=1}^{22} 2l + \sum_{m=1}^{22} 1$$

$$= \sum_{k=1}^{22} k^2 + 2k + 1 \qquad (binomische Formel)$$

$$= \sum_{k=1}^{22} (k+1)^2$$

$$= \sum_{k=2}^{23} k^2$$

$$= (=4323)$$

× Aufgabe 2: Quadratische Ergänzung

Berechne die rellen Lösungen der Gleichung mithilfe der quadratischen Ergänzung.

i)
$$x^2 + x - 2 = 0$$

 $L\ddot{o}sung: x_1 = 1, x_2 = -2$

ii)
$$2x^2 + 8x - 10 = 0$$

 $L\ddot{o}sunq: x_1 = -5$, $x_2 = 1$.

iii)
$$x^2 + 35x - 3 = 11x - 147$$

 $L\ddot{o}sunq: x = -12$

× Aufgabe 3: Polynomgleichungen höherer Ordnung

Bestimme die rellen Lösungen der folgenden Gleichungen.

i)
$$x^3 + 4x^2 - 7x - 10 = 0$$

Lösung: Man führt eine Polynomdivision durch. $x^3 + 4x^2 - 7x - 10 = (x+1)(x-2)(x+5)$, also sind $-1, 2, -5$ alle Lösungen.

ii)
$$x^4 - 3x^2 + 2 = 0$$

Lösung: Anstelle einer Polynomdivision, die auch möglich ist, bietet sich hier eine
Substitution an. Wir substituieren $x^2 = z$ und erhalten die neue Gleichung $z^2 - 3z + 2 = 0$. Mithilfe der pq-Formel erhalten wir die Lösungen $z_1 = 1$ und $z_2 = 2$.
Rücksubstitution liefert die Lösungen $z_1 = 1$ und $z_2 = 2$.

iii)
$$-3x^3 - 33x^2 - 117x = 135$$

Lösung: Man führt eine Polynomdivision durch. $-3x^3 - 33x^2 - 117x - 135 = -3(x + 5)(x + 3)^2$, damit sind -5 und -3 alle Lösungen.

Aufgabe 4: Quadratische Gleichungen

Neben der quadratischen Ergänzung steht uns zum Lösen quadratischer Gleichungen auch die pq-Formel zur Verfügung. Diese soll hier zunächst erklärt werden.

Satz I (pq-Formel)

Gegeben sei die Gleichung $x^2 + px + q = 0$ mit reellen Zahlen p und q. Dann löst

$$x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

die Gleichung.

(Genauer: Man erhält sogar alle Lösungen. Falls $\left(\frac{p}{2}\right)^2 - q$ negativ ist, gibt es keine reelle Lösung. Falls $\left(\frac{p}{2}\right)^2 = q$ gilt, ist die Lösung eindeutig.)

Bestimme alle reellen Lösungen der folgenden Gleichungen mit der pq-Formel.

a)
$$18x^2 - 9x + 1 = 0$$

 $L\ddot{o}sung: x_1 = \frac{1}{3}, x_2 = \frac{1}{6}.$

b)
$$x^2 + 35x - 3 = 11x - 147$$

 $L\ddot{o}sung: x = -12$

! Aufgabe 5: Herleitung der pq-Formel

Leite die pq-Formel her, indem du auf die Gleichung $x^2 + px + q = 0$ die quadratische Ergänzung anwendest.

Lösung:

$$x^{2} + px + q = 0$$

$$\Leftrightarrow x^{2} + px + q + \left(\frac{p}{2}\right)^{2} - \left(\frac{p}{2}\right)^{2} = 0$$

$$\Leftrightarrow \left(x + \frac{p}{2}\right)^{2} = \left(\frac{p}{2}\right)^{2} - q$$

$$\Leftrightarrow x + \frac{p}{2} = \pm\sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

$$\Leftrightarrow x = -\frac{p}{2} \pm\sqrt{\left(\frac{p}{2}\right)^{2} - q}$$

Aufgabe 6: Lineare Gleichungssysteme

a) Löse die folgenden Gleichungssysteme.

i)

$$3x + 2y = 20$$
$$9x - 3y = -3$$

ii)

$$2x + 3y - z = 1$$
$$x + 3y + z = 2$$
$$-2x - 2y + 4z = 4$$

Lösung:

$$i)x = 2, y = 7$$

 $ii)x = 3, y = -1, z = 2$

- b) Ergänze die Gleichung 3x-2y=5 zu je einem Gleichungssystem aus zwei Gleichungen, das
 - i) unlösbar ist. Lösung: Nutze 3x - 2y = 6 als zweite Gleichung. Die Aussagen stehen im Widerspruch zueinander. Andere Beispiele denkbar!
 - ii) genau eine relle Lösung hat. Lösung: Nutze y = 1 als zweite Gleichung. Eingesetzt in die erste Gleichung erhalten wir eine eindeutige Lösung für x. Andere Beispiele denkbar!
 - iii) unendlich viele Lösungen hat. Lösung: Nutze die Gleichung 3x - 2y = 5 auch als zweite Gleichung. Es gibt nun unendlich viele Lösungspaare z.B. x = 2 und y = 0 oder x = 0 und y = -3. Andere Beispiele denkbar!

! Aufgabe 7: Satz von Vieta

Satz II (Satz von Vieta)

Hat die quadratische Gleichung $x^2 + px + q = 0$ mit reellen Zahlen p, q die Lösungen $x_1 = a$ und $x_2 = b$ mit ebenfalls reellen Zahlen a, b, dann ist -p = a + b und q = ab.

a) Bestimme mit dem Satz von Vieta Kandidaten für Lösungen der folgenden Gleichungen. Überprüfe diese dann durch Einsetzen in die Gleichungen.

i)
$$x^2 + 8x - 20 = 0$$

Lösung: Betrachte zunächst das Produkt der Lösungen. Es soll gelten, dass $a \cdot b = 20$. Dabei ergeben sich als mögliche Kandidaten für die Lösungen der Gleichung zunächst zum Beispiel:

$$a = -4$$
 und $b = 5$, $a = 4$ und $b = -5$, $a = -2$ und $b = 10$, $a = 2$ und $b = -10$, $a = -1$ und $b = 20$, $a = 1$ und $b = -20$, ...

Zusätzlich sollen die Lösungen a+b=-8 erfüllen. Dies gilt für a=2 und b=-10.

Einsetzen ergibt nun, dass a=2 und b=-10 tatsächlich die Gleichung lösen. Da eine quadratische Gleichung nicht mehr als zwei Lösungen haben kann, haben wir damit alle Lösungen gefunden.

ii)
$$x^2 - 6x - 16 = 0$$

Lösung: Analog zu a): Das Produkt a \cdot b = -16 ergibt als mögliche Kandidaten zunächst:

$$a = -4$$
 und $b = 4$, $a = -2$ und $b = 8$, $a = 2$ und $b = -8$, $a = -1$ und $b = 16$, $a = 1$ und $b = -16$, ...

Außerdem soll für die Summe gelten, dass a + b = -(-6) = 6. Damit bleiben a = -2 und b = 8 als mögliche Lösungen.

Einsetzen ergibt dann, dass diese die Gleichung wirklich erfüllen. Da eine quadratische Gleichung nicht mehr als zwei Lösungen haben kann, haben wir damit alle Lösungen gefunden.

b) Leite den Satz von Vieta her.

Lösung: Erster Teil. Die Lösungen einer quadratischen Gleichung sind $x_1 = -\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 - q}$ und $x_2 = -\frac{p}{2} - \sqrt{\left(\frac{p}{2}\right)^2 - q}$. Addieren wir beide Gleichungen, bleibt $x_1 + x_2 = -p$.

Zweiter Teil. Multiplizieren wir die beiden obigen Gleichungen miteinander erhalten wir $x_1 \cdot x_2 = \left(-\frac{p}{2} + \sqrt{\left(\frac{p}{2}\right)^2 - q}\right) \cdot \left(-\frac{p}{2} - \sqrt{\left(\frac{p}{2}\right)^2 - q}\right)$. Auf der rechten Seite nutzen wir die dritte binomische Formel und erhalten $x_1 \cdot x_2 = q$

