У Лекция 5 Линейные модели классификации. Часть 2.

Кантонистова Е.О.

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Логистическая регрессия — линейный классификатор, корректно предсказывающий вероятности классов.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

Предположение: В каждой точке x пространства объектов задана вероятность p(y=+1|x)

Объекты с одинаковым признаковым описанием могут иметь разные значения целевой переменной.

Цель: построить алгоритм b(x), в каждой точке x предсказывающий p(y=+1|x).

ВЕРОЯТНОСТНАЯ ПОСТАНОВКА ЗАДАЧИ

• Пусть объект x встречается в выборке n раз с ответами $\{y_1, \dots, y_n\}$. Хотим, чтобы алгоритм выдавал вероятность классов:

$$b_* = \underset{b \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n L(y_i, b) \approx p(y = +1|x)$$

По 3БЧ при $n o \infty$ получаем

$$b_* = \underset{b \in \mathbb{R}}{\operatorname{argmin}} E[L(y, b)|x] = p(y = +1|x)$$

ФУНКЦИИ ПОТЕРЬ

Подходят:

Квадратичная

$$L(y,z) = (y-z)^2$$

• Логистическая

$$L(y,z) = [y = +1] \cdot \log(b(x,w)) + [y = -1] \cdot \log(1 - b(x,w))$$

Не подходят:

• Модуль

$$L(y, z) = |y - z|$$

ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

™ ПРАВДОПОДОБИЕ И LOG-LOSS

- Вероятности, которые выдает алгоритм b(x), должны согласовываться с выборкой
- Вероятность того, что в выборке встретится объект x с классом y:

$$b(x)^{[y=+1]} \cdot (1-b(x))^{[y=-1]}$$

Правдоподобие выборки:

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]}$$

ФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

• Можно максимизировать правдоподобие

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Или, что эквивалентно (логарифмическая, log-loss):

$$-\sum_{i=1}^{t} ([y_i = +1] \log b(x_i) + [y_i = -1] \log (1 - b(x_i))) \to \min_{b}$$

рФУНКЦИЯ ПОТЕРЬ ДЛЯ ОБУЧЕНИЯ

• Можно максимизировать правдоподобие

$$(b,X) = \prod_{i=1}^{l} b(x_i)^{[y_i=+1]} \cdot (1 - b(x_i))^{[y_i=-1]} \to \max_b$$

• Или, что эквивалентно (логарифмическая, log-loss):

$$-\sum_{i=1}^{l} ([y_i = +1] \log b(x_i) + [y_i = -1] \log(1 - b(x_i))) \to \min_{b}$$

Увтерждение. Логарифмическая функция потерь корректно предсказывает вероятности.

> ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].

> ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].

> ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

- ullet Хотим, чтобы алгоритм b(x) возвращал числа из отрезка [0,1].
- Можно взять $b(x) = \sigma(w^T x)$, где σ любая монотонно неубывающая функция с областью значений [0,1].
- Возьмем *сигмоиду*: $\sigma(z) = \frac{1}{1 + e^{-z}}$

ь ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

$$b \cdot p(y = +1|x) = \frac{1}{1 + e^{-w^T x}}$$
, следовательно,

•
$$(w,x) = w^T x = \log \frac{p(y=+1|x)}{p(y=-1|x)}$$
 - логарифм отношения вероятностей классов.

Утверждение. Логарифмическая функция потерь может быть записана в виде

$$L(b, X) = \sum_{i=1}^{l} \log(1 + e^{-y_i(w, x)})$$

> ЛИНЕЙНЫЙ КЛАССИФИКАТОР

•
$$a(x) = sign((w, x) + w_0)$$

Ошибка линейного классификатора:

•
$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] =$$

$$=\frac{1}{l}\sum_{i=1}^{l}\left[sign((w,x_i)+w_0)\neq y_i\right]=$$

$$= \frac{1}{l} \sum_{i=1}^{l} [y_i \cdot ((w, x_i) + w_0) < 0] \to \min_{w, w_0}$$

$$M_i = y_i((w, x_i) + w_0)$$
 – отступ на объекте

> ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров w^* , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

Цель метода опорных векторов (Support Vector Machine) –
 максимизировать ширину разделяющей полосы.

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

- $a(x) = sign((w, x) + w_0)$
- ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: РАЗДЕЛИМЫЙ СЛУЧАЙ

ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта $x \in X$:

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

разделяющая полоса

ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

Утверждение. Данная оптимизационная задача имеет единственное решение.

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

ullet Существует хотя бы один объект $x \in X$, что $y_i ig((w, x_i) + w_0 ig) < 1$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

ullet Существует хотя бы один объект $x \in X$, что $y_i ig((w, x_i) + w_0 ig) < 1$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что $y_i \big((w, x_i) + w_0 \big) < 1$

Смягчим ограничения, введя штрафы $\xi_i \ge 0$:

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

О Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- ullet Максимизировать отступ $\frac{1}{||w||}$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ $\frac{1}{||w||}$

Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: НЕРАЗДЕЛИМЫЙ СЛУЧАЙ

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) = 1 - M_i \\ \xi_i \ge 0 \end{cases}$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

Получаем безусловную задачу оптимизации:

$$\frac{1}{2}||w||^2 + C\sum_{i=1}^{\infty} \max(0, 1 - y_i((w, x_i) + w_0)) \to \min_{w, w_0}$$

» МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь $L(M) = max(0,1-M) = (1-M)_+$ с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.

ЗНАЧЕНИЕ КОНСТАНТЫ С

ЗНАЧЕНИЕ КОНСТАНТЫ С

УСЛОВИЯ КАРУША-КУНА-ТАККЕРА (ККТ) «

Задача математического программирования:

$$f(x) \to \min_{x}$$

$$g_i(x) \le 0, i = 1, ..., m$$

$$h_j(x) = 0, j = 1, ..., k$$

Необходимые условия. Если x — точка локального минимума, то существуют множители μ_i , $i=1,\ldots,m,\lambda_j$, $j=1,\ldots,k$:

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial x} = 0, & \mathcal{L}(x; \mu; \lambda) = f(x) + \sum_{i=1}^{m} \mu_{i} g_{i}(x) + \sum_{j=1}^{k} \lambda_{j} h_{j}(x) \\ g_{i}(x) \leq 0; h_{j}(x) = 0 \text{ (исходные ограничения)} \\ \mu_{i} \geq 0 \text{ (двойственные ограничения)} \\ \mu_{i} g_{i}(x) = 0 \text{ (условие дополняющей нежесткости)} \end{cases}$$

ПРИМЕНЕНИЕ УСЛОВИЙ ККТ К ЗАДАЧЕ SVM

b Функция Лагранжа: $\mathcal{L}(w; w_0; \xi; \lambda; \eta) = 0$

$$= \frac{1}{2} ||w||^2 - \sum_{i=1}^{l} \lambda_i (M_i(w, w_0) - 1) - \sum_{i=1}^{l} \xi_i (\lambda_i + \eta_i - C)$$

 λ_i - переменные, двойственные к ограничениям $M_i \geq 1 - \xi_i$ η_i - переменные, двойственные к ограничениям $\xi_i \geq 0$

$$\begin{cases} \frac{\partial \mathcal{L}}{\partial w} = 0, \frac{\partial \mathcal{L}}{\partial w_0} = 0, \frac{\partial \mathcal{L}}{\partial \xi} = 0 \\ \xi_i \geq 0, \lambda_i \geq 0, \eta_i \geq 0 \\ \lambda_i = 0 \text{ или } M_i(w, w_0) = 1 - \xi_i \\ \eta_i = 0 \text{ или } \xi_i = 0, \end{cases}$$

НЕОБХОДИМЫЕ УСЛОВИЯ СЕДЛОВОЙ ТОЧКИ

 $\left\{igcap_{0}
ight.$ Функция Лагранжа: $\mathcal{L}(w;w_{0};\xi;\lambda;\eta)=$ $=rac{1}{2}ig||w|ig|^{2}-\sum_{i=1}^{l}\lambda_{i}(M_{i}(w,w_{0})-1)-\sum_{i=1}^{l}\xi_{i}(\lambda_{i}+\eta_{i}-C)$

Необходимые условия седловой точки функции Лагранжа:

$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{i=1}^{l} \lambda_i y_i x_i = 0 \quad \Rightarrow w = \sum_{i=1}^{l} \lambda_i y_i x_i ,$$

$$\frac{\partial \mathcal{L}}{\partial w_0} = -\sum_{i=1}^l \lambda_i y_i = 0 \implies \sum_{i=1}^l \lambda_i y_i = 0 ,$$

$$\frac{\partial \mathcal{L}}{\partial \xi_i} = -\lambda_i - \eta_i + C = 0 \Rightarrow \eta_i + \lambda_i = C, i = 1, \dots l.$$

ОПОРНЫЕ ВЕКТОРЫ

- $\lambda_i = 0; \eta_i = C; \xi_i = 0; M_i \ge 1$
- периферийные (неинформативные) объекты
- $0 < \lambda_i < C$; $0 < \eta_i < C$; $\xi_i = 0$; $M_i = 1$
- опорные граничные объекты
- $\lambda_i = C$; $\eta_i = 0$; $\xi_i > 0$; $M_i < 1$
- опорные-нарушители

ь ТИПЫ ОБЪЕКТОВ В SVM

ДВОЙСТВЕННАЯ ЗАДАЧА

• $\mathcal{L}(x,\lambda,\mu)$ – лагранжиан

$$g(\lambda,\mu) = \min_{\mathbf{x}} \mathcal{L}(\mathbf{x},\lambda,\mu) -$$
 двойственная функция

Двойственная задача к задаче (*):

$$g(\lambda, \mu) \rightarrow \max_{\lambda, \mu}$$

 $\lambda_i \geq 0, i = 1, ..., m$

ДВОЙСТВЕННАЯ ЗАДАЧА

• $\mathcal{L}(x,\lambda,\mu)$ – лагранжиан

$$g(\lambda,\mu) = \min_{x} \mathcal{L}(x,\lambda,\mu) -$$
 двойственная функция

Двойственная задача к задаче (*):

$$g(\lambda, \mu) \rightarrow \max_{\lambda, \mu}$$

 $\lambda_i \geq 0, i = 1, ..., m$

• Пусть (λ_*, μ_*) – решение двойственной задачи.

Утверждение. Если все функции в прямой задаче выпуклые, то оптимальное значение функционала в прямой и двойственной задаче совпадают

$$g(\lambda,\mu) = f(x_*)$$

ДВОЙСТВЕННАЯ ЗАДАЧА

Двойственная задача является выпуклой (даже если прямая задача выпуклой не является).

ДВОЙСТВЕННАЯ ЗАДАЧА SVM

$$\begin{cases} -\mathcal{L}(\lambda) = -\sum_{i=1}^{l} \lambda_i + \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \lambda_i \lambda_j y_i y_j (x_i, x_j) \to \min_{\lambda} \\ 0 \le \lambda_i \le C, i = 1, ..., l \\ \sum_{i=1}^{l} \lambda_i y_i = 0 \end{cases}$$

Решение прямой задачи выражается через решение двойственной:

$$\left\{egin{aligned} w = \sum_{i=1}^l \lambda_i y_i x_i \ w_0 = (w,x_i) - y_i$$
, для любого i : $\lambda_i > 0$, $M_i = 1$

Линейный классификатор:

$$a(x) = sign(\sum_{i=1}^{l} \lambda_i y_i(x_i, x) - w_0)$$

КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

Калибровка вероятностей - приведение ответов алгоритма к значениям, близким к вероятностям объектов принадлежать конкретному классу.

Зачем это нужно?

- Вероятности гораздо проще интерпретировать
- Вероятности могут дать дополнительную информацию о результатах работы алгоритма

КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

КАЛИБРОВКА ПЛАТТА

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

ПРИМЕР ИЗ SKLEARN

КАЛИБРОВКА ПЛАТТА

ullet Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1) или -1, сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

•
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot a(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

• Находим α и β , минимизируя логистическую функцию потерь:

$$-\sum_{v_i=-1} \log(1-\pi(x;\alpha;\beta)) - \sum_{v_i=+1} \log(\pi(x;\alpha;\beta)) \to \min_{\alpha,\beta}$$