MATHEMATICA

ECUACIONES DIFERENCIALES

EJERCICIO. Generación de segundo armónico

Resolver numéricamente las ecuaciones paramétricas acopladas para la generación de segundo armónico con ondas planas monocromáticas:

$$\frac{d}{dz} E_{\omega}(z) = i \frac{\omega}{n_{\omega} c} \chi^{(2)} E_{2\omega}(z) (E_{\omega}(z))^{*} Exp[i (k_{2\omega} - 2 k_{\omega}) z]$$

$$\frac{d}{dz} E_{2\omega}(z) = i \frac{\omega}{n_{2\omega} c} \chi^{(2)} E_{\omega}(z) E_{\omega}(z) Exp[-i (k_{2\omega} - 2 k_{\omega}) z]$$

Donde E_{ω} y $E_{2\omega}$ son los campos fundamental (incidente) y segundo armónico generado respectivamente, $\chi^{(2)}$ la susceptibilidad no lineal de segundo orden del material, y n_{ω} y $n_{2\omega}$ los índices de refracción para ambas frecuencias.

Toma los parámetros: λ =0.8 μ m, c=0.3 μ m/fs, n_{ω} =1.5, $n_{2\omega}$ =1.502, $\chi^{(2)}$ =0.002, E_{ω} (0)=1, $E_{2\omega}$ (0)=0, y una longitud del cristal de 2mm

- a) Asigna las soluciones E_{ω} y $E_{2\omega}$ a funciones. Representa en el mismo gráfico la **intensidad** de la onda fundamental (en rojo) y del segundo armónico (en azul), en el primer milímetro del cristal. Representa en otro gráfico la eficiencia de conversión ($I_{2\omega}(z) / I_{\omega}(z=0)$). Compara los resultados con una situación en la que haya ajuste de fase perfecto (n_{ω} = $n_{2\omega}$).
- b) Estudia el efecto de las condiciones iniciales del campo de segundo armónico $E_{2\omega}(0)$ en el proceso de generación de segundo armónico con ajuste de fase perfecto. Para ello, genera una lista con ternas de valores $\{z, I_{2\omega}(0), I_{2\omega}(z)\}$, donde z es la distancia de propagación (de 0 a 1 mm) y $I_{2\omega}(0)$ es la intensidad inicial del haz de segundo armónico. Deja fijo $E_{\omega}(0)=1$ y cambia las condiciones iniciales del segundo armónico desde $E_{2\omega}(0)=0$ hasta $E_{2\omega}(0)=1$ (elige tú el incremento). Represéntalo en un gráfico de densidad
- c) Modifica las ecuaciones de a) para introducir absorción lineal del campo de segundo armónico (término $-\gamma_{2\omega}$ $E_{2\omega}(z)$) pero que siga habiendo transparencia para el campo fundamental. Toma por ejemplo γ_{2w} =0.001. Representalo gráficamente.

Comenta brevemente los resultados

=