```
CS/ECE 374 Spring 2025
Homework 6 Problem 1
```

Heng An Cheng (hacheng2@illinois.edu)

Solution:

(a) We use the function $Merge_Sort_and_Count(1, n, A)$ to count the number of inversions in an array A.

The algorithm maintains the following properties:

- The left subarray (indices i to mid) is sorted in increasing order in A.
- The right subarray (indices mid + 1 to j) is sorted in increasing order in A.

To count significant inversions efficiently, we iterate over each A[k] in the left subarray and maintain a pointer r in the right subarray such that:

$$A[k] > 10 * A[r].$$

Since both subarrays are sorted, once we find a position r where the condition fails $(A[k] \le 10 * A[r])$, all subsequent elements in A will also be greater than 10 * A[r], leading to an efficient counting process.

Thus, for each A[k], the number of valid r values is r - (mid + 1), contributing to the count of significant inversions.

Algorithm 1 Merge Sort and Count Significant Inversions

```
1: function Merge Sort And Count(i, j, A)
        if i \geq j then
           return o
 3:
        end if
 4:
       mid \leftarrow |(i+j)/2|
 5:
        cnt \leftarrow 0
 6:
        cnt \leftarrow cnt + \text{Merge Sort And Count}(i, mid, A)
 7:
        cnt \leftarrow cnt + \texttt{Merge Sort And Count}(mid + 1, j, A)
        cnt \leftarrow cnt + \text{Merge And Count}(i, j, A)
 9:
        Merge(i, j, A)
10:
        return cnt
12: end function
```

Algorithm 2 Merge and Count Significant Inversions

```
1: function Merge And Count(i, j, A)
          mid \leftarrow \lfloor (i+j)/2 \rfloor
          l \leftarrow i, r \leftarrow mid + 1
 3:
          cnt \leftarrow 0
 4:
          \textbf{for } k \leftarrow i \textbf{ to } mid \textbf{ do}
 5:
              while r \leq j and A[k] > 10 \times A[r] do
 6:
                   r \leftarrow r + 1
 7:
              end while
 8:
              cnt \leftarrow cnt + (r - (mid + 1))
 9:
          end for
10:
          return cnt
11:
12: end function
```

Algorithm 3 Merge Two Sorted Halves

```
1: function Merge(i, j, A)
         mid \leftarrow \lfloor (i+j)/2 \rfloor
         l \leftarrow i, r \leftarrow mid + 1, id \leftarrow i
 3:
         while l \leq mid and r \leq j do
 4:
              if A[l] > A[r] then
 5:
                  temp[id] \leftarrow A[r]
 6:
                  r \leftarrow r + 1
 7:
              else
 8:
                  temp[id] \leftarrow A[l]
 9:
                  l \leftarrow l + 1
10:
              end if
11:
              id \leftarrow id + 1
12:
         end while
13:
         while l \leq mid do
14:
              temp[id] \leftarrow A[l]
15:
              l \leftarrow l + 1
16:
              id \leftarrow id + 1
17:
         end while
18:
         while r \leq j do
19:
              temp[id] \leftarrow A[r]
20:
              r \leftarrow r + 1
21:
              id \leftarrow id + 1
22:
         end while
23:
         for k \leftarrow i to j do
24:
              A[k] \leftarrow temp[k]
25:
         end for
26:
27: end function
```

Time Complexity Analysis

Recursive Structure

The algorithm follows a standard merge sort recursion:

$$T(n) = 2T(n/2) + O(n).$$

Thus, we get:

$$T(n) = O(n \log n).$$

Counting Step Complexity

Each element in the left subarray is compared with at most O(n) elements in the right subarray. Since we use a two-pointer technique, we traverse the right subarray at most once per left element, leading to O(n) comparisons in total per merge step.

Merging Step Complexity

Merging two sorted halves takes O(n), as we iterate through both subarrays once.

Overall Complexity

Since the counting and merging steps take O(n) time at each level of recursion, and there are $O(\log n)$ levels, the total complexity remains:

$$O(n \log n)$$
.

(b) We use a similar approach as in part (a), but introduce a new array B, where:

$$B[i] = W[i] \times A[i].$$

To count the number of significant inversions, we use the function:

The algorithm maintains the following properties:

- The left subarray (indices i to mid) is sorted in increasing order in A.
- The right subarray (indices mid + 1 to j) is sorted in increasing order in B.

To count significant inversions efficiently, we iterate over each A[k] in the left subarray and maintain a pointer r in the right subarray such that:

Since both subarrays are sorted, once we find a position r where the condition fails $(A[k] \leq B[r])$, all subsequent elements in A will also be greater than B[r], leading to an efficient counting process.

Thus, for each A[k], the number of valid r values is r - (mid + 1), contributing to the count of significant inversions.

Algorithm 4 New Merge Sort And Count(i, j, A, B)

```
1: function New Merge Sort And Count(i, j, A, B)
       if i \geq j then
 2:
           return o
 3:
       end if
 4:
       mid \leftarrow \lfloor (i+j)/2 \rfloor
 5:
       cnt \leftarrow 0
 6:
       cnt \leftarrow cnt + \text{New Merge Sort And Count}(i, mid, A, B)
       cnt \leftarrow cnt + \text{New Merge Sort And Count}(\text{mid}+1, j, A, B)
 8:
       cnt \leftarrow cnt + \text{New Merge And Count}(i, j, A, B)
 9:
                                                                       10:
       Merge(i, j, A)
       Merge(i, j, B)
                                                                       11:
       \mathbf{return}\ cnt
12:
13: end function
```

Algorithm 5 New_Merge_And_Count(i, j, A, B)

```
1: function New Merge And Count(i, j, A, B)
        mid \leftarrow \lfloor (i+j)/2 \rfloor
        cnt \leftarrow 0
 3:
        for k \leftarrow i to mid do
 4:
             r \leftarrow mid + 1
 5:
             while r \leq j and A[k] > B[r] do
 6:
                 r \leftarrow r + 1
 7:
             end while
 8:
             cnt \leftarrow cnt + (r - (mid + 1))
 9:
        end for
10:
        return cnt
11:
12: end function
```

Time Complexity Analysis

The time complexity of most of the functions remains the same as in part (a). The only slight difference is that we perform the Merge operation twice—once for array A and once for array B. However, this additional merge operation still maintains the same overall time complexity.

At each level of recursion:

• The counting step efficiently tracks significant inversions using a two-pointer technique, which takes O(n).

• The merging step, performed separately for both A and B, also takes O(n).

Since there are $O(\log n)$ levels of recursion (as the problem follows the divide-and-conquer paradigm), the total time complexity remains:

 $O(n \log n)$.

5

Homework 6 Problem 2

Solution:

(a) Define dp[k] as the maximum score achievable before dancing to the k-th song.

Base Case

- dp[0] = 0 because no dances have been performed yet.
- dp[1] = 0 since we haven't chosen a dance before the first song.

Transition

At each song k, we have two choices:

(a) **Skip song** *k*: The best score remains the same as the previous song:

$$dp[k] = \max(dp[k-1], dp[k])$$

(b) Dance to song k: If we choose to dance, we gain Score[k], but we must rest for Wait[k] songs. The next song available for dancing is k + Wait[k] + 1. We update dp[k + Wait[k] + 1] to store the maximum score achieved up to this new available song:

$$dp[k + \mathsf{Wait}[k] + 1] = \max(dp[k] + \mathsf{Score}[k], dp[k + \mathsf{Wait}[k] + 1])$$

If dancing to k means we reach beyond n, we update a separate variable max_score to track the best possible score obtained.

Final Computation

Since some values may be stored in max_score, we take the maximum of max_score and dp[n] before returning the result.

Time Complexity Analysis

The algorithm processes each song exactly once, iterating through k = 1 to n. Within each iteration, we perform only constant-time operations (comparison and update of dp).

Algorithm 6 Compute Maximum Dance Score

```
1: Input: Arrays Score[1..n] and Wait[1..n]
 2: Output: Maximum achievable dance score
 3: dp[0] \leftarrow 0
 4: dp[1] \leftarrow 0
 \mathbf{5:\ max\_score} \leftarrow 0
 6: for k \leftarrow 1 to n do
       dp[k] \leftarrow max(dp[k-1], dp[k])
       if k + \mathsf{Wait}[k] + 1 \le n then
           dp[k + Wait[k] + 1] \leftarrow max(dp[k] + Score[k], dp[k + Wait[k] + 1])
 9:
       else
10:
           max\_score \leftarrow max(dp[k] + Score[k], max\_score)
11:
       end if
12:
_{13}: end for
14: max\_score \leftarrow max(max\_score, dp[n])
15: return max_score
```