浙江大学 2025 暑期多智能体强化学习实训

课程简介

本课程讲述强化学习、智能体的理论与应用,涉及人工智能强化学习基本理论、深度 强化学习算法、多智能体强化学习以及前沿应用。课程分为讲授和实训两个部分。

- 课程共 12 天,形式为授课 + 练习作业 + 大作业。课程内容涵盖了动态规划理论、基于表格的基础强化学习算法、Eligibility Trace 应用、基于神经网络的深度强化学习算法、基于价值/基于策略的算法、基于有/无模型的算法、多智能体强化学习算法、以及在 Gym、SMAC 和具身智能物理仿真环境中的实践应用。
- 优先推荐表现优秀的同学到国家人工智能学院实习。

课程目标

通过实训,学生将学习和实践一系列强化学习理论与算法。从最基础的基于表格的 Q-learning 出发,到人形机器人运控、多智能体 AI 的开发,最终大作业是完成多智能体 博弈算法开发。

时间安排

6月25日至7月8日,12天全天课程,每天上午知识讲授,下午实训。

时间:全天课程 9:30-12:00 14:00-17:00 || 每天上午知识讲授,下午实训。大作业提交截止时间:8月 18号。

助教:1-2个

课程大纲

课程的设计采用讲授与实训结合的方式,每日上午知识讲授结束后,下午安排对应的 实训,让学生完成相应的练习。

时间	上午	下午
│ 6月25日	第一讲 动态规划理论,Bellman 公式, 策略评估与策略优化理论	配置强化学习环境,安装 Gym,完成案例 CartPole 环境的运行、开始 Issac Gym 环境配置
│ 6月26日		基于 Gym , 测试 Q-learning 和 SARSA 算法的表现与区别

6月27日	第三讲 深度学习基础,包含损失函数、 梯度回传等知识	安装 PyTorch,并完成基础的回归、分类 任务的网络训练
6月28日	第四讲 强化学习与具身智能	人形机器人平地行走实验
6月29日	休息	休息
6月30日	第五讲 深度强化学习 I:基于价值的 DQN 与基于 DQN 的算法	基于 Gym , 完成 DQN 算法实现 , 并在 Freeway 等环境测试
7月1日	第六讲 深度强化学习 Ⅱ:基于策略的 Reinforce 算法、AC 算法的讲解、以及 A2C、A3C 等算法	在 Gym 环境中实现基础 AC 算法
7月2日	第七讲 深度强化学习 Ⅲ:先进算法 TRPO、PPO、DDPG、SAC 等算法原理 与实现	人形机器人复杂地形行走实验(一)
7月3日	第八讲 基于模型的强化学习方法与基于监督学习的行为克隆方法	人形机器人复杂地形行走实验(二)
7月4日	休息	休息
7月5日	第九讲 多智能体强化学习 I:基于价值的 QMIX 算法以及改进算法	在 SMAC-Hard 环境中实现 QMIX 算法
7月6日		在 SMAC-Hard 环境中实现 MAPPO 算法
7月7日	第十一讲 多智能体系统研究展望	大作业布置
7月8日	人形机器人行走技术方案汇报	大作业答疑