Modelado y simulación del Robot Mitsubishi RV-2JA controlado mediante señales electromiográficas

Busso, Francisco Ignacio Gautero, Francisco Gregoret, Guillermo

Universidad Tecnológica Nacional Facultad Regional Santa Fe

30 de septiembre de 2021

Valores de Referencia

Para generar valores de cada señal EMG se optó por una distribución uniforme con variación del 5 % sobre las señales de referencia.

Figura: Valores de Referencia para cada sensor

Etiquetado del Set de Datos

Se define un valor umbral para determinar si el valor de la lectura de un sensor pertenece a los valores admitidos.

Si las lecturas de todos los sensores se encuentran dentro del rango admitido, la entrada se etiqueta como 1; si no, se etiqueta como 0.

```
def tag(row):
    return 1.00 if all(in_range(row[i], i) for i in range(0, row.shape[0])) else 0.00
```

Obtención del Set de Entrenamiento

Se lee un set de datos, se lo etiqueta y se lo separa entre un set de entrenamiento y un set de pruebas.

Implementación con scikit-learn

La clase MLPClassifier implementa un algoritmo de entrenamiento de perceptrón multicapa (MLP) utilizando propagación hacia atrás (Backpropagation).

```
>>> from sklearn.neural_network import MLPClassifier

>>> clf = MLPClassifier(solver='lbfgs', alpha=1e-5,

hidden_layer_sizes=(20, 10),

random_state=1)
```

El Algoritmo MLP

El algoritmo toma como entrada dos arreglos: X, de dimensiones (n-muestras, n-caracteristicas), que representa las muestras de entrenamiento como vectores de punto flotante; e Y de tamaño (n-muestras), que almacena los valores de las etiquetas de clase para las muestras de entrenamiento.

Predicciones

Luego del ajuste (entrenamiento), el modelo puede predecir las etiquetas para nuevas muestras

```
>>> \  \, \text{clf.predict} \, \big( \, Y_- \text{test} \, \big) \\ \text{array} \, \big( \big[ \, 1.0 \, , \  \, 0.0 \, , \  \, 1.0 \, , \  \, 0.0 \, , \  \, 0.0 \, , \  \, 1.0 \, , \  \, 1.0 \big] \, \big)
```

Similitud Coseno

Es una medida de la similitud existente entre dos vectores en un espacio multidimensional (más precisamente un espacio *pre-hilbertiano*) con el que se evalúa el valor del coseno del ángulo comprendido entre ellos.

Proporciona un valor igual a 1 si el ángulo comprendido es cero. Cualquier ángulo existente entre los vectores, el coseno arrojaría un valor inferior a uno.

La similitud coseno no debe ser considerada como una métrica debido a que no cumple la desigualdad triangular.

Complejidad de la Solución

Suponiendo n muestras de entrenamiento, m características, k capas ocultas cada una conteniendo h neuronas y, para simplificar, o neuronas en la capa de salida. La complejidad temporal de la propagación hacia atrás es $O(n*m*h^k*o*i)$, donde i es el número de iteraciones.

Dado que el método de Backpropagation tiene alta complejidad temporal, es recomendable comenzar con un número bajo de neuronas en la capa oculta para el entrenamiento.

Escalabilidad de la Solución

Esta implementación no está pensada para aplicaciones de gran escala. En particular, scikit-learn no ofrece soporte para GPU.