Prova di Comunicazioni Numeriche

19 Luglio 2012

- Es. 1 Siano i segnali in ingresso al sistema in Figura 1 definiti come $x_1(t) = 2Bsinc(2Bt)$ e $x_2(t) = Bsinc^2(Bt)$. Il segnale y(t) è campionato con passo di campionamento $T = 1/f_0$, p(t) è un interpolatore cardinale, quindi p(t) = sinc(BT). Si determini:
 - 1) l'espressione di Y(f) e se ne disegni lo spettro di ampiezza e di fase
 - 2) l'espressione di z(t)
 - 3) energia, E_z , e potenza P_z , di z(t).

Fig. 1

- Es. 2 In un sistema di comunicazione numerico il segnale trasmesso è $s(t) = \sum_k x [k] p(t kT)$, dove i simboli x[k] appartengono all'alfabeto $A = \{-2, +3\}$ e p(t) = 2Bsinc(2Bt). La risposta impulsiva del canale è $c(t) = Bsinc^2(Bt)$. Il canale introduce anche rumore Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_N(f) = \frac{N_0}{2}$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 2. La risposta impulsiva del filtro in ricezione è $h_R(t) = 2Bsinc(2Bt)$. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento $T = \frac{1}{B}$ e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a $\lambda = 0$. Determinare:
 - 1) L'energia media per intervallo di segnalazione del segnale trasmesso
 - 2) Calcolare la potenza di rumore in uscita al filtro in ricezione P_{nu}
 - 3) Calcolare la probabilità di errore sul bit, $P_E(b)$

Fig. 2