## Tutorat 7

Implikanten und Primimplikanten, ON-Menge und Literale, Quine-McCluskey-Algorithmus, Hypercubes und Kosten eines Polynoms

Gruppe 9

Präsentator:
Jürgen Mattheis
(juergmatth@gmail.com)

Vorlesung von: Prof. Dr. Scholl

Übungsgruppenbetreuung: Tobias Seufert

22. Juni 2023

Universität Freiburg, Lehrstuhl für Rechnerarchitektur

# Gliederung

Aufgabe 1

Aufgabe 2

Aufgabe 3

Appendix



# Aufgabe 1



Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

# Aufgabe 1 I

Implikanten und Primimplikanten



Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

# Aufgabe 1 II

Implikanten und Primimplikanten



## Aufgabe 1 III

Implikanten und Primimplikanten



/

6/25

Die konstante 1-Funktion ist kein Implikant, es gibt Belegungen  $a \in \mathbb{B}^3$  für die f(a) = 0



## Aufgabe 1 IV

## Implikanten und Primimplikanten

## Lösung 1.2



7/25

**a** ist kein Implikant, also auch kein Primimplikant. Es gilt nicht, dass  $\psi(a) \le f$ , denn  $\psi(a)(1,0,1) = 1 \ne f(1,0,1)$ 



# Aufgabe 1 V

## Implikanten und Primimplikanten

## Lösung 1.3

Z

8/25

▶  $a \cdot \overline{b} \cdot \overline{c}$  ist ein Implikant von f, denn  $\psi(a \cdot \overline{b} \cdot \overline{c}) \leq f$   $a \cdot \overline{b} \cdot \overline{c}$  ist aber kein Primimplikant, denn es existiert ein "größerer" Implikant  $a \cdot \overline{c}$  ( $\psi(a \cdot \overline{b} \cdot \overline{c}) < \psi(a \cdot \overline{c})$ )



## Aufgabe 1 VI

## Implikanten und Primimplikanten

## Lösung 1.4

9/25

b c ist ein Primimplikant (und damit natürlich auch ein Implikant). b c ist maximal, denn es kann kein Literal gestrichen werden, so dass wieder ein Implikant entsteht (weder b noch c sind Implikanten von f)



# Aufgabe 2



Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

# Aufgabe 2 I

## ON-Menge und Literale

- ▶ Behauptung:  $m \le m' \Rightarrow L(m') \subseteq L(m)$ ▶ sei  $L : BE(X_n) \rightarrow \mathcal{P}(\{\overline{s} \mid s \in X_n\} \cup X_n)$
- ► Beweis durch Kontraposition:

  - es gilt:  $L(m) \subset L(m')$ , wobei m ein Monom ist und  $m' = mx_i^{\omega_i}$
  - ightharpoonup man betrachte  $(\omega_1,\ldots,\omega_i,\ldots\omega_n)\in ON(m)$
  - da  $x_i^{\omega_i}$  nicht in m vorkommt, gilt auch  $(\omega_1, \dots, \overline{\omega_i}, \dots, \omega_n) \in ON(m)$
  - ▶ aber  $(\omega_1, \ldots, \overline{\omega_i}, \ldots, \omega_n) \notin ON(m')$
  - ▶ daraus folgt:  $ON(m) \not\subseteq ON(m')$
  - daher gilt die Behauptung



Abbildung 1: Veranschaulichung anhand eines Beispiels

- ► Beweis durch Widerspruch:
  - Annahme:  $ON(m) \subseteq ON(m') \Rightarrow L(m') \subseteq L(m)$  gilt nicht, also  $ON(m) \subseteq ON(m') \land L(m) \subset L(m')$
  - es gilt:  $L(m) \subset L(m')$ , wobei m ein Monom ist und  $m' = mx_i^{\omega_i}$
  - man betrachte  $(\omega_1, \ldots, \omega_i, \ldots, \omega_n) \in ON(m)$
  - da  $x_i^{\omega_i}$  nicht in m vorkommt, gilt auch  $(\omega_1, \ldots, \overline{\omega_i}, \ldots, \omega_n) \in ON(m)$
  - ▶ aber  $(\omega_1, \ldots, \overline{\omega_i}, \ldots, \omega_n) \notin ON(m')$
  - ▶ daraus folgt:  $ON(m') \subset ON(m)$
  - ▶ Widerspruch, denn  $ON(m) \subset ON(m')!$
  - die Annahme gilt nicht, also gilt die Behauptung 🗆

# Aufgabe 3



Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

# Aufgabe 3 I

Quine-McCluskey-Algorithmus, Hypercubes und Kosten eines Polynoms

## Voraussetzungen 3.1

 $f = \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 \bar{x}_2 \bar{x}_3 x_4 + \bar{x}_1 x_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 x_4 + \bar{x}_1 x_2 x_3 \bar{x}_4 + \bar{x}_1 x_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1$ 

Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

/

# Aufgabe 3 II

Quine-McCluskev-Algorithmus, Hypercubes und Kosten eines Polynoms

## Lösung 3.1

1

## 1. Schleifeniteration:

```
 \begin{array}{c} L_0^{\{x_1,x_2,x_3,x_4\}} \\ 0000 \\ \hline 0001 \\ 0100 \\ 1000 \\ \hline \\ 0101 \\ 0110 \\ 1010 \\ 1010 \\ \hline \\ 0111 \\ 1110 \\ \hline \\ 1111 \\ \end{array}
```

 $Prim = \emptyset$ 

Jürgen Mattheis Tutorat 7, Gruppe 9

# Aufgabe 3 III

# Quine-McCluskev-Algorithmus. Hypercubes und Kosten eines Polynoms. Lösung 3.1

## 2. Schleifeniteration:

| $L_1^{\{x_1, x_2, x_3\}}$ 000-                                                                   |
|--------------------------------------------------------------------------------------------------|
| 010-                                                                                             |
| 011-                                                                                             |
| 111-                                                                                             |
| $\begin{array}{c} L_1^{\{x_1, x_2, x_4\}} \\ 01-0 \\ 10-0 \\ \hline 01-1 \\ 11-0 \\ \end{array}$ |
| $Prim = \emptyset$                                                                               |

$$\begin{array}{c}
\hline
0.01 \\
1.00 \\
\hline
1.10
\end{array}$$

$$\begin{array}{c}
L_{1}^{\{x_{2},x_{3},x_{4}\}} \\
-000 \\
\hline
-100 \\
\hline
-110
\end{array}$$

 ${L_{0-000}^{\{x_{1},x_{3},x_{4}\}}}$ 

# Aufgabe 3 IV

Quine-McCluskey-Algorithmus, Hypercubes und Kosten eines Polynoms

| Lösung 3.1                                               |                                                  |  |
|----------------------------------------------------------|--------------------------------------------------|--|
| 3. Schleifeniteration                                    |                                                  |  |
|                                                          | $L_{2}^{\{x_{2},x_{3}\}}$                        |  |
| L <sub>2</sub> {x <sub>1</sub> ,x <sub>3</sub> }<br>0-0- | $L_{-\tilde{1}-0}^{\{\varkappa_2,\varkappa_4\}}$ |  |
| $L_{1-0}^{\{\times_1,\times_4\}}$                        | $L_{-00}^{\{\times_3,\times_4\}}$                |  |
| $Prim = \emptyset$                                       |                                                  |  |

# Aufgabe 3 V

Quine-McCluskey-Algorithmus, Hypercubes und Kosten eines Polynoms

# Lösung 3.1 4. Schleifeniteration $L_{3}^{\{x_{1}\}} = \emptyset$ $L_{3}^{\{x_{2}\}} = \emptyset$ $L_{3}^{\{x_{3}\}} = \emptyset$ $L_{3}^{\{x_{4}\}} = \emptyset$ $Prim = \{01\text{-, }0\text{-}0\text{-, }1\text{-}0\text{, }-1\text{-}0\text{, }-0\text{-}0\}$ $\bigcup_{M} L_{3}^{M}(f) = \emptyset \Rightarrow Schleifenabbruch, Prim wird zurückgegeben$

# Aufgabe 3 VI

Quine-McCluskey-Algorithmus, Hypercubes und Kosten eines Polynoms



# Aufgabe 3 VII

## Quine-McCluskey-Algorithmus Hypercubes und Kosten eines Polynoms

## Lösung 3.3



- primäre Kosten: # PLA-Zeilen, d.h. #Monome
- ▶ sekundäre Kosten: #PLA-Transistoren, d.h. #Literale + #Monome

## Lösung 3.3



 $f = \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 \bar{x}_2 \bar{x}_3 x_4 + \bar{x}_1 x_2 \bar{x}_3 \bar{x}_4 + \bar{x}_1 x_2 \bar{x}_3 x_4 + \bar{x}_1 x_2 x_3 \bar{x}_4 + \bar{x}_1 x_2 x_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_2 x_3 \bar{x}_4 + x_1 x_2 \bar{x}_3 \bar{x}_4 + x_1 \bar{x}_2 \bar{x}_3$ 

- $\triangleright$   $cost_1 = \#Monome = 11$
- $ightharpoonup cost_2 = \#Literale + \#Monome = 44 + 11 = 55$

## Lösung 3.3



 $f_{red} = \bar{x}_1 x_2 + \bar{x}_1 \bar{x}_3 + x_1 \bar{x}_4 + x_2 x_3 + x_2 \bar{x}_4 + \bar{x}_3 \bar{x}_4$ 

- $\triangleright$   $cost_1 = \#Monome = 6$
- $ightharpoonup cost_2 = \#Literale + \#Monome = 12 + 6 = 18$

# **Appendix**



Jürgen Mattheis Tutorat 7, Gruppe 9 Universität Freiburg

# Appendix I

## Verschiedene Interpretationen von Implikation

- 1. Implikation als If-Statement
  - ▶  $a \to b \Leftrightarrow \neg a \lor b \Leftrightarrow \text{if}(a)\{b\}$ , d.h. Lazy Evaluation, b wird nur ausgewertet, wenn  $\psi(a)(\omega) = 1$  bzw.  $\psi(\neg a)(\omega) = 0$ , da 0 der Non-Controlling Value der ODER-Operation ist und daher das Ergebnis erst feststeht, sobald der zweite Operand ausgewertet ist
- 2. Teilmenge ⊆

| а | Ь | f | g | h | f 	o h      | $	extbf{g}  ightarrow 	extbf{h}$ |
|---|---|---|---|---|-------------|----------------------------------|
| 0 | 0 | 1 | 1 | 1 | 1           | 1                                |
| 0 | 1 |   | 1 |   | 1           | 0                                |
| 1 | 0 | 1 | 1 | 1 | 1<br>1<br>1 | 1                                |
| 1 | 1 |   |   | 1 | 1           | 1                                |

## 3. Implikant

# Appendix II

## Verschiedene Interpretationen von Implikation

- ein Implikant von f ist ein Monom q mit  $q \le f$ . Ein Primimplikant von f ist ein maximaler Implikant q von f, d.h. es gibt keinen Implikanten s ( $s \ne q$ ) von f mit  $q \le s$
- $\triangleright$   $ON(f) = \{000, 100, 010, 011, 110, 111\}$
- $f = \neg a \neg b \neg c \lor a \neg b \neg c \lor \neg ab \neg c \lor \neg abc \lor ab \neg c \lor abc$
- $f_{red} = b \vee \neg c$
- Warum nicht  $f_{red} = bc \vee \neg c$ ?

| а | Ь | С | Ь | bc | $\neg c$ | $bc \lor \neg c$ | $b \lor \neg c$ |
|---|---|---|---|----|----------|------------------|-----------------|
| 0 | 0 | 0 | 0 | 0  | 1        | 1                | 1               |
| 0 | 0 | 1 | 0 | 0  | 0        | 0                | 0               |
| 0 | 1 | 0 | 1 | 0  | 1        | 1                | 1               |
| 0 | 1 | 1 | 1 | 1  | 0        | 1                | 1               |
| 1 | 0 | 0 | 0 | 0  | 1        | 1                | 1               |
| 1 | 0 | 1 | 0 | 0  | 0        | 0                | 0               |
| 1 | 1 | 0 | 1 | 0  | 1        | 1                | 1               |
| 1 | 1 | 1 | 1 | 1  | 0        | 1                | 1               |



# Appendix I

## Beweis durch Kontraposition

- $\blacktriangleright \quad \mathcal{F} \to \mathcal{G} \Leftrightarrow \neg \mathcal{F} \vee \mathcal{G} \Leftrightarrow \neg \neg \mathcal{G} \vee \mathcal{F} \Leftrightarrow \neg \mathcal{G} \to \neg \mathcal{F}$
- Konstraposition der Behauptung, die eine Implikation ist wird bewiesen. Immer mit Beweismuster für Implikation kombiniert, da Kontraposition der Behauptung auch eine Implikation ist

Behauptung:  $\mathcal{F} \Rightarrow \mathcal{G}$ 

**Beweis:** Beweis durch Kontraposition, zu zeigen:  $\neg \mathcal{G} \Rightarrow \neg \mathcal{F}$ 

Es gelte  $\neg \mathcal{G}$ .

Teilbeweis, dass dann  $\neg \mathcal{F}$  qilt.

# Appendix II

## Beweis durch Kontraposition

Wir zeigen: Eine natürliche Zahl mit geradem Quadrat ist selbst gerade.

### Voraussetzung:

(\*) 
$$\forall n \in \mathbb{N} (\neg gerade(n) \Leftrightarrow \exists k \in \mathbb{N} \text{ mit } n = 2k + 1)$$
 (Eigenschaft von  $gerade(n)$ )

**Behauptung:**  $\forall n \in \mathbb{N} (gerade(n^2) \Rightarrow gerade(n))$ 

**Beweis:** Sei  $n \in \mathbb{N}$  beliebig.

Beweis durch Kontraposition, zu zeigen:  $\neg gerade(n) \Rightarrow \neg gerade(n^2)$ 

Es gelte 
$$\neg gerade(n)$$

Da  $n \in \mathbb{N}$  beliebig gewählt war, gilt die Behauptung.

# Appendix I

Links

- https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
- https://we.tl/t-xUFDLiFCyO
- https://we.tl/t-tnBjVtcgZH