Долгосрочное домашнее задание Вариант № 15

Выполнил Прокошев Тимур СКБ223

Условие:

Дискретное распределние №4:

Дискретное равномерное II:

$$P(x) = \frac{1}{\Theta}$$
 $x \in \{a, a+1, a+2...a+\Theta-1\}, a = 180, \Theta = 200,$ неизвестный параметр - Θ

Непрерывное распределение №2:

Нормальное II:

$$f(x) = \frac{1}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\}, \quad x,\mu \in \mathbb{R}, \Theta > 0, \quad \mu = 4.5, \Theta = 4.5, \quad \text{неизвестный параметр - }\Theta$$

Домашнее задание 1

Характеристики вероятностных распределений

1. Описание основных характеристик распределения

Требуется найти: функцию распределения, математическое ожидание, дисперсию и квантиль уровня γ .

Функцией распределения $F_{\xi}(x)$ называют вероятноть того, что случайная величина ξ не превысит значение x, т.е. $P(\xi \leq x)$

Математическое ожидание $E\xi$ мы будем вычислять по формуле $E\xi = \sum_{i \in S} iP(\xi = i)$ для дискретного и по формуле $E\xi = \int\limits_{S} x f_{\xi}(x) dx$ для непрерывного распределения. Здесь S - это область значений, которое может принимать случайная величина.

Дисперсию $D\xi = E(\xi - E\xi)^2$ мы будем вычислять по формуле $D\xi = E\xi^2 - (E\xi)^2$. Значение математического ожидания мы уже будем знать, а второй момент вычислим аналогично матожиданию (в формулах заменим i и x на вторые степени).

Дискретное распределение

Функция распредления

$$F_{\xi}(x) = P(\xi \le x) = \sum_{i=a}^{\lfloor x \rfloor} P(\xi = i) = \sum_{i=a}^{\lfloor x \rfloor} \frac{1}{\Theta} = \begin{cases} 0, & x < a \\ \frac{\lfloor x-a \rfloor + 1}{\Theta}, & x \in [a, a + \Theta - 1] \\ 1, & x > a + \Theta - 1 \end{cases}$$

Математическое ожидание

$$E\xi = \sum_{i=a}^{a+\Theta-1} i \frac{1}{\Theta} = \frac{1}{\Theta} \sum_{i=a}^{a+\Theta-1} i = \frac{1}{\Theta} \frac{a+a+\Theta-1}{2} \Theta = \frac{2a+\Theta-1}{2}$$

Дисперсия

$$\begin{split} E\xi^2 &= \sum_{i=a}^{a+\Theta-1} i^2 \frac{1}{\Theta} = \frac{1}{\Theta} \sum_{i=a}^{a+\Theta-1} i^2 = \frac{1}{\Theta} \sum_{i=0}^{\Theta-1} (i+a)^2 = \frac{1}{\Theta} \sum_{i=0}^{\Theta-1} (i^2 + 2ia + a^2) = \frac{1}{\Theta} (\sum_{i=0}^{\Theta-1} i^2 + 2a \sum_{i=0}^{\Theta-1} i + \sum_{i=0}^{\Theta-1} a^2) = \\ &= \frac{1}{\Theta} (\frac{\Theta(\Theta-1)(2\Theta-1)}{6} + 2a \frac{\Theta-1}{2} \Theta + a^2 \Theta) = \frac{(\Theta-1)(2\Theta-1)}{6} + 2a \frac{\Theta-1}{2} + a^2 \\ D\xi &= \frac{(\Theta-1)(2\Theta-1)}{6} + 2a \frac{\Theta-1}{2} + a^2 - \frac{(2a+\Theta-1)^2}{4} = \frac{\Theta^2-1}{12} \end{split}$$

Квантиль уровня γ

$$F_{\xi}(x)=\gamma \longrightarrow \frac{\lfloor x-a\rfloor+1}{\Theta}=\gamma$$

$$\lfloor x-a\rfloor=\Theta\gamma-1\longrightarrow\Theta\gamma-1\leq x-a<\Theta\gamma \qquad \text{если }\Theta\gamma-1\text{ - это целое число}$$

$$\begin{cases} (-\infty; a), & \gamma = 0 \\ [\Theta \gamma - 1 + a; \Theta \gamma + a), & \gamma \in (0; 1) \text{ и } \Theta \gamma \in \mathbb{N} \end{cases}$$
 нет решений $\gamma \in (0; 1)$ и $\Theta \gamma \notin \mathbb{N}$
$$(a + \Theta - 1; +\infty), \quad \gamma = 1$$

Функция распредления

Функция распределения нормального распределения не может быть выражена в элементарных функциях, поэтому ее запись:

$$F_{\xi}(x) = P(\xi \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\Theta} exp\{\frac{(x-\mu)^2}{2\Theta^2}\} dx$$

Математическое ожидание

$$\begin{split} E\xi &= \int\limits_{-\infty}^{+\infty} \frac{x}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} dx = \int\limits_{-\infty}^{+\infty} \frac{x-\mu}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} + \frac{\mu}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} dx = \\ &= \int\limits_{-\infty}^{+\infty} \frac{x-\mu}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} dx + \mu \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} dx = \frac{2\Theta^2}{2} \frac{1}{\sqrt{2\pi}\Theta} \int\limits_{-\infty}^{+\infty} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} d(\frac{(x-\mu)^2}{2\Theta^2}) + \mu = \\ &= -\frac{\Theta}{\sqrt{2\pi}} exp\{-\frac{(x-\mu)^2}{2\Theta^2}\} \bigg|_{-\infty}^{+\infty} + \mu = 0 + \mu = \mu \end{split}$$

Дисперсия

$$D\xi = E(\xi^{2}) - (E\xi)^{2}$$

$$E(\xi^{2}) = \int_{-\infty}^{+\infty} \frac{x^{2}}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^{2}}{2\Theta^{2}}\} dx =$$

$$= \int_{-\infty}^{+\infty} \frac{(x-\mu)^{2}}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^{2}}{2\Theta^{2}}\} dx + \int_{-\infty}^{+\infty} \frac{-\mu^{2}}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^{2}}{2\Theta^{2}}\} dx + \int_{-\infty}^{+\infty} \frac{-\mu^{2}}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^{2}}{2\Theta^{2}}\} dx =$$

$$= 2\mu E\xi - \mu^{2} + \int_{-\infty}^{+\infty} \frac{(x-\mu)^{2}}{\sqrt{2\pi}\Theta} exp\{-\frac{(x-\mu)^{2}}{2\Theta^{2}}\} dx = \begin{vmatrix} t = \frac{(x-\mu)^{2}}{2\Theta^{2}} \\ 2t\Theta^{2} = (x-\mu)^{2} \\ x = \sqrt{2t}\Theta + \mu \\ dx = \frac{\Theta}{\sqrt{2t}} dt \end{vmatrix} = \mu^{2} + 2\int_{0}^{+\infty} \frac{2t\Theta^{2}}{\sqrt{2\pi}\Theta} \frac{\Theta}{\sqrt{2t}} e^{-t} dt =$$

$$= \mu^{2} + 2\frac{\Theta^{2}}{\sqrt{\pi}} \int_{0}^{+\infty} t^{1.5-1} e^{-t} dt = \mu^{2} + 2\frac{\Theta^{2}}{\sqrt{\pi}} \Gamma(1.5) = \mu^{2} + 2\frac{\Theta^{2}}{2} = \mu^{2} + \Theta^{2}$$

$$D\xi = \Theta^{2}$$

Квантиль уровня у

В общем виде, выраженном в элементарных функциях, найти квантиль уровня γ нельзя. Поэтому это просто решение уравнения:

$$\int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}\Theta} exp\{-\frac{(t-\mu)^2}{2\Theta^2}\}dt = \gamma$$

Поиск примеров событий, которые могут быть описаны выбранными случайными величинами

Дискретное распределение

Интерпретация

Примером интепретации является обычный бросок кости, которая имеет форму куба и где выпадение каждого числа равновероятно. Тогда $a=1,~\Theta=6$ Также можно привести в пример бросок монетки, где может выпасть 0 или 1. Тогда $a=0,~\Theta=2$.

Связь с другими распределениями

Равномерное распределние связано со многими другими распределениями. Во-первых, частный случай биномиального распределения $Bi(1,\frac{1}{2})$ - это равномерное дискретное распределение с параметрами $a=0,\ \Theta=2.$ Из этого же истекает, что сумма нескольких таких равномерных распределений - это биномиальное распределение $Bi(n,\frac{1}{2}).$ Также дискретное равномерное распределение очень схоже и непрерывным равномерным распределением: и там, и там исходы равновероятны.

Непрерывное распределение

Интерпретация

Примером интепретации нормального распределения является отклонение при стрельбе. Влияние на результат стрельбы оказывают различные факторы, такие как ветер, точность прицеливания, физическое состояние стрелка, колебания оружия и т. д. Эти факторы можно считать независимыми друг от друга. Центральная предельная теорема гласит, что если суммировать множество независимых случайных факторов, их распределение будет стремиться к нормальному, даже если исходные распределения этих факторов не нормальны. При суммировании всех факторов мы получим $N(\sum_{i\in\mathbb{N}}\mu_i,\sum_{i\in\mathbb{N}}\sigma_i^2)$

Связь с другими распределениями

Нормальное распределение связано с большим количеством других распределений, приведем примеры:

1) Нормальное распределение (сумма нескольких нормальных величин также является нормальной

(при этом параметры суммируются)).

$$\begin{split} f_{\xi_1+\xi_2}(x) &= \int\limits_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\Theta_1} exp\{-\frac{(t-\mu_1)^2}{2\Theta_1^2}\} \frac{1}{\sqrt{2\pi}\Theta_2} exp\{-\frac{(x-t-\mu_2)^2}{2\Theta_2^2}\} dt = \frac{1}{2\pi\Theta_1\Theta_2} \int\limits_{-\infty}^{+\infty} exp\{-\frac{\Theta_2^2(...) + \Theta_1^2(...)}{2\Theta_1^2\Theta_2^2}\} dt = \\ &= \frac{1}{2\pi\Theta_1\Theta_2} \int\limits_{-\infty}^{+\infty} exp\{-\frac{\Theta_2^2t^2 - \Theta_2^22t\mu_1 + \Theta_2^2\mu_1^2 + \Theta_1^2x^2 + \Theta_1^2t^2 + \Theta_1^2\mu_2^2 - \Theta_1^22tx - \Theta_1^22\mu_2x + \Theta_1^22t\mu_2}{2\Theta_1^2\Theta_2^2}\} dt = \\ &= \frac{1}{2\pi\Theta_1\Theta_2} \int\limits_{-\infty}^{+\infty} exp\{-\frac{(\Theta_1^2 + \Theta_2^2)t^2 - 2t(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2}{2\Theta_1^2\Theta_2^2}\} dt = \Big|\Theta_3 = \sqrt{\Theta_1^2 + \Theta_2^2}\Big| = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} \frac{\Theta_3}{\sqrt{2\pi}\Theta_1\Theta_2} \int\limits_{-\infty}^{+\infty} exp\{-\frac{t^2 - \frac{2t(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2}{\Theta_3^2} + \frac{\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2}{\Theta_3^2}}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} \frac{\Theta_3}{\sqrt{2\pi}\Theta_1\Theta_2} \int\limits_{-\infty}^{+\infty} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_2^2\mu_1^2 + \Theta_2^2\mu_1) + \Theta_2^2(\mu_1^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2}{\Theta_3^2}}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1)^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2) + \Theta_2^2\mu_1^2 + \Theta_2^2(\Theta_1^2\Theta_2^2) + \frac{\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2}{\Theta_3^2}}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1)^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2) + \Theta_2^2\mu_1^2}{\Theta_3^2}}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1)^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2) + \Theta_2^2\mu_1^2}{\Theta_3^2}}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_2^2\mu_1^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2) + \Theta_2^2\mu_1^2}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_2^2\mu_1^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2) + \Theta_2^2\mu_1^2}\} dt = \\ &= \frac{1}{\sqrt{2\pi}\Theta_3} exp\{-\frac{(t - \frac{(\Theta_1^2(x-\mu_2) + \Theta_2^2\mu_1) + \Theta_2^2\mu_1^2 + \Theta_3^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x) + \Theta_2^2\mu_1^2 + \Theta_2^2(\Theta_1^2(x^2 + \mu_2^2 - 2\mu_2x)$$

2) Логнормальное распределение

Формула плотности логнормального распределения:
$$f(x) = \frac{1}{\sqrt{2\pi}\Theta x} exp\{\frac{(\ln x - \mu)^2}{2\Theta^2}\}$$

Нормальное и логнормальное распределения связаны формулой $\xi_{lognorm} = e^{\eta_{norm}}$. Докажем:

$$F_{\xi}(x) = P(e^{\eta} \le x) = P(\eta \le \ln x) = F_{\eta}(\ln x) \longrightarrow f_{\xi}(x) = F'_{\eta}(x) \ln x = \frac{1}{\sqrt{2\pi}\Theta} exp\{\frac{(\ln x - \mu)^2}{2\Theta^2}\}\frac{1}{x}$$

Описание способа моделирования выбранных случайных величин

Дискретное распределение

У нас имеется источник непрерывных случайных величин на отрезке [0;1].

- 1) Для начала смоделируем источник случайных величин на отрезке $[0; \Theta]$. Это делается просто: умножением изначальной случайной величины на Θ .
- 2) Теперь перейдем к дискретному значению. Будем брать просто целую часть от полученного значения случайной величины (в случае Θ будем брать $\Theta 1$). Проще говоря, мы будем разделять

отрезок $[0; \Theta]$ на Θ равных частей, нумеровать их значениями начала отрезков, смотреть, в какой отрезок попало значение случайной величины и возвращать ее "номер".

3) Чтобы получить требуемую случайную величину, добавим а.

Тогда полученные дискретные значения будут равновероятны, так как вероятность того, что непрерывная случайная величина окажется в каком-то из отрезков отрезка $[a;a+\Theta]$ равна отношению длин отрезка и $[a;a+\Theta]$. А так как отрезки равны, то и значения будут равновероятны. Рабочий код для получения представлен в ноутбуке на GitHub. Код для отчета представлен здесь:

```
def find_R_discrete(a=0, Theta=2):
    uniform = random.uniform(0, 1) * Theta
    if uniform == Theta:
      return a + Theta - 1
    return math.floor(uniform) + a
```

Непрерывное распределение

Смоделировать нормальное распределение можно преобразования Бокса-Мюллера. Если у нас есть две независимые случайные величины u_1 и u_2 , распределенные равномерно на (0;1], то мы можем получить две независимые стандартные нормальные величины следующим преобразованием:

$$Z_0 = \cos 2\pi u_1 \sqrt{-2\ln u_2}$$

$$Z_1 = \sin 2\pi u_1 \sqrt{-2\ln u_2}$$

Рабочий код для моделирования одной из этих двух случайных величин можно найти на GitHub. Код для отчета:

```
def find_normal(mu=0, Theta=1):
    u1 = random.uniform(0, 1)
    while not u1:
        u1 = random.uniform(0, 1)
    u2 = random.uniform(0, 1)
    return mu + Theta * math.sqrt(-2 * math.log(u1)) * math.cos(2 * math.pi * u2)
```

Домашнее задание 2

Генерация выборок выбранных случайных величин

Генерация производилась кодом, реализацию можно найти на GitHub.

Построение эмпирической функции распределения

Дискретное распределение

Построение графиков можно найти на GitHubb.

Построение графиков можно найти на GitHub.

Значения $D_{n,m}$ для дискретного и непрерывного распределений

	5	10	100	200	400	600	800	1000
5	1.581139	1.825742	1.527525	1.667516	1.538889	1.588457	1.526942	1.518970
10	1.825742	1.341641	1.537708	1.651046	1.499268	1.442675	1.516351	1.507214
100	1.527525	1.537708	0.848528	1.510519	1.252198	1.311578	1.107801	0.972532
200	1.667516	1.651046	1.510519	1.650000	1.443376	1.449281	1.486271	1.471734
400	1.538889	1.499268	1.252198	1.443376	1.272792	1.226445	1.265570	1.225474
600	1.588457	1.442675	1.311578	1.449281	1.226445	1.039230	1.365585	1.361999
800	1.526942	1.516351	1.107801	1.486271	1.265570	1.365585	1.175000	1.069904
1000	1.518970	1.507214	0.972532	1.471734	1.225474	1.361999	1.069904	1.006231
	5	10	100	200	400	600	800	1000
5	5 0.948683	10 0.912871	100 0.894693	200	400 0.850000	6 00 0.831342	800 0.860995	1000 0.818593
5 10								
_	0.948683	0.912871	0.894693	0.850323	0.850000	0.831342	0.860995	0.818593
10	0.948683 0.912871	0.912871 0.894427	0.894693 0.874383	0.850323 0.864099	0.850000 0.804295	0.831342 0.815425	0.860995 0.856385	0.818593 0.786646
10 100	0.948683 0.912871 0.894693	0.912871 0.894427 0.874383	0.894693 0.874383 0.919239	0.850323 0.864099 1.306395	0.850000 0.804295 1.028591	0.831342 0.815425 0.987541	0.860995 0.856385 1.001735	0.818593 0.786646 0.886720
10 100 200	0.948683 0.912871 0.894693 0.850323	0.912871 0.894427 0.874383 0.864099	0.894693 0.874383 0.919239 1.306395	0.850323 0.864099 1.306395 1.300000	0.850000 0.804295 1.028591 1.529978	0.831342 0.815425 0.987541 1.388044	0.860995 0.856385 1.001735 1.691819	0.818593 0.786646 0.886720 1.445914
10 100 200 400	0.948683 0.912871 0.894693 0.850323 0.850000	0.912871 0.894427 0.874383 0.864099 0.804295	0.894693 0.874383 0.919239 1.306395 1.028591	0.850323 0.864099 1.306395 1.300000 1.529978	0.850000 0.804295 1.028591 1.529978 1.308148	0.831342 0.815425 0.987541 1.388044 1.265175	0.860995 0.856385 1.001735 1.691819 1.224745	0.818593 0.786646 0.886720 1.445914 1.149410

Построение гистограммы и полигона частот

Дискретное распределение

Построение полигонов можно найти на GitHub.

Построение полигонов можно найти на GitHub.

Как мы видим, при увеличении размера выборки, гистограмма частот приближается к функции вероятностей у дискретного распределения и к плотности распределения у непрерывного распределения. Это иллюстрирует теорему Гливненко-Кантелли. По ней, если у нас есть $X_1, X_2...X_n...$ - бесконечная выборка из распределения, функция распределения которого F(x), то для $\hat{F}(x)$ - эмперической функции распределения выполняется следующее:

$$\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|\hat{F}(x)-F(x)|=0$$
 почти наверное.

Другая запись:

$$P\{\lim_{n\to\infty}\sup_{x\in\mathbb{R}}|\hat{F}(x)-F(x)|=0\}=1$$

Вычисление выборочных моментов

Дискретное распределение

Построение таблиц можно найти на GitHub.

	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	312.800	255.600	346.800	299.000	230.200
Выборка размера 10	272.300	291.300	315.400	281.100	257.800
Выборка размера 100	283.730	277.420	282.680	278.500	288.570
Выборка размера 200	272.475	270.850	275.915	285.065	278.885
Выборка размера 400	280.840	277.282	278.345	283.218	281.852
Выборка размера 600	279.813	278.203	280.743	276.262	274.753
Выборка размера 800	279.096	279.670	280.028	279.810	283.230
Выборка размера 1000	281.991	281.351	281.836	279.718	281.046
	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	Выборка 1 33.300	Выборка 2 -23.900	Выборка 3 67.300	Выборка 4 19.500	Выборка 5 -49.300
Выборка размера 5 Выборка размера 10	· ·	•			
	33.300	-23.900	67.300	19.500	-49.300
Выборка размера 10	33.300 -7.200	-23.900 11.800	67.300 35.900	19.500 1.600	-49.300 -21.700
Выборка размера 10 Выборка размера 100	33.300 -7.200 4.230	-23.900 11.800 -2.080	67.300 35.900 3.180	19.500 1.600 -1.000	-49.300 -21.700 9.070
Выборка размера 10 Выборка размера 100 Выборка размера 200	33.300 -7.200 4.230 -7.025	-23.900 11.800 -2.080 -8.650	67.300 35.900 3.180 -3.585	19.500 1.600 -1.000 5.565	-49.300 -21.700 9.070 -0.615
Выборка размера 10 Выборка размера 100 Выборка размера 200 Выборка размера 400	33.300 -7.200 4.230 -7.025 1.340	-23.900 11.800 -2.080 -8.650 -2.218	67.300 35.900 3.180 -3.585 -1.155	19.500 1.600 -1.000 5.565 3.718	-49.300 -21.700 9.070 -0.615 2.352

Выборочное среднее и разница между ним и матожиданием

	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	3981.360	2399.040	522.160	803.600	1742.960
Выборка размера 10	4296.010	888.810	2936.240	2909.090	485.160
Выборка размера 100	3608.297	3756.364	3115.778	2902.910	3318.685
Выборка размера 200	2967.649	3499.918	3114.348	3472.611	3388.502
Выборка размера 400	3041.169	3493.848	3392.656	3079.730	3540.571
Выборка размера 600	3522.785	3185.059	3345.674	3346.517	3237.649
Выборка размера 800	3496.344	3434.899	3519.087	3382.259	3206.977
Выборка размера 1000	3279.769	3357.182	3256.117	3279.788	3307.254
	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	Выборка 1 648.110	Выборка 2 -934.210	Выборка 3 -2811.090	Выборка 4 -2529.650	Выборка 5 -1590.290
Выборка размера 5 Выборка размера 10	•	•	•	•	· ·
	648.110	-934.210	-2811.090	-2529.650	-1590.290
Выборка размера 10	648.110 962.760	-934.210 -2444.440	-2811.090 -397.010	-2529.650 -424.160	-1590.290 -2848.090
Выборка размера 10	648.110 962.760 275.047	-934.210 -2444.440 423.114	-2811.090 -397.010 -217.472	-2529.650 -424.160 -430.340	-1590.290 -2848.090 -14.565
Выборка размера 10 Выборка размера 100 Выборка размера 200	648.110 962.760 275.047 -365.601	-934.210 -2444.440 423.114 166.668	-2811.090 -397.010 -217.472 -218.902	-2529.650 -424.160 -430.340 139.361	-1590.290 -2848.090 -14.565 55.252
Выборка размера 10 Выборка размера 100 Выборка размера 200 Выборка размера 400	648.110 962.760 275.047 -365.601 -292.081	-934.210 -2444.440 423.114 166.668 160.598	-2811.090 -397.010 -217.472 -218.902 59.406	-2529.650 -424.160 -430.340 139.361 -253.520	-1590.290 -2848.090 -14.565 55.252 207.321

Выборочная дисперсия и разница между ним и дисперсией

Построение таблиц можно найти на GitHub.

	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	3.184	2.653	5.187	4.368	3.885
Выборка размера 10	5.196	6.254	5.406	3.264	2.975
Выборка размера 100	4.645	4.446	4.069	4.416	4.874
Выборка размера 200	4.935	4.083	4.554	4.424	4.247
Выборка размера 400	4.346	4.626	4.292	4.195	4.661
Выборка размера 600	4.555	4.281	4.636	4.673	4.226
Выборка размера 800	4.432	4.540	4.620	4.611	4.811
Выборка размера 1000	4.501	4.497	4.573	4.638	4.583
	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	Выборка 1 -1.316	Выборка 2 -1.847	Выборка 3 0.687	Выборка 4 -0.132	Выборка 5 -0.615
Выборка размера 5 Выборка размера 10					· ·
	-1.316	-1.847	0.687	-0.132	-0.615
Выборка размера 10	-1.316 0.696	-1.847 1.754	0.687 0.906	-0.132 -1.236	-0.615 -1.525
Выборка размера 10 Выборка размера 100	-1.316 0.696 0.145	-1.847 1.754 -0.054	0.687 0.906 -0.431	-0.132 -1.236 -0.084	-0.615 -1.525 0.374
Выборка размера 10 Выборка размера 100 Выборка размера 200	-1.316 0.696 0.145 0.435	-1.847 1.754 -0.054 -0.417	0.687 0.906 -0.431 0.054	-0.132 -1.236 -0.084 -0.076	-0.615 -1.525 0.374 -0.253
Выборка размера 10 Выборка размера 100 Выборка размера 200 Выборка размера 400	-1.316 0.696 0.145 0.435 -0.154	-1.847 1.754 -0.054 -0.417 0.126	0.687 0.906 -0.431 0.054 -0.208	-0.132 -1.236 -0.084 -0.076 -0.305	-0.615 -1.525 0.374 -0.253 0.161

Выборочное среднее и разница между ним и матожиданием

	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	6.149	12.655	17.590	25.525	8.016
Выборка размера 10	8.238	19.953	23.867	20.846	17.146
Выборка размера 100	22.764	25.440	17.117	13.007	19.572
Выборка размера 200	18.821	20.257	20.033	17.637	18.274
Выборка размера 400	20.694	20.246	18.538	18.356	18.993
Выборка размера 600	21.002	19.398	19.892	21.866	17.505
Выборка размера 800	17.409	20.949	19.000	19.238	20.028
Выборка размера 1000	18.786	19.783	19.328	20.399	20.798
	Выборка 1	Выборка 2	Выборка 3	Выборка 4	Выборка 5
Выборка размера 5	Выборка 1 -14.101	Выборка 2 -7.595	Выборка 3 -2.660	Выборка 4 5.275	Выборка 5 -12.234
Выборка размера 5 Выборка размера 10			· ·		· · ·
	-14.101	-7.595	-2.660	5.275	-12.234
Выборка размера 10	-14.101 -12.012	-7.595 -0.297	-2.660 3.617	5.275 0.596	-12.234 -3.104
Выборка размера 10 Выборка размера 100	-14.101 -12.012 2.514	-7.595 -0.297 5.190	-2.660 3.617 -3.133	5.275 0.596 -7.243	-12.234 -3.104 -0.678
Выборка размера 10 Выборка размера 100 Выборка размера 200	-14.101 -12.012 2.514 -1.429	-7.595 -0.297 5.190 0.007	-2.660 3.617 -3.133 -0.217	5.275 0.596 -7.243 -2.613	-12.234 -3.104 -0.678 -1.976
Выборка размера 10 Выборка размера 100 Выборка размера 200 Выборка размера 400	-14.101 -12.012 2.514 -1.429 0.444	-7.595 -0.297 5.190 0.007 -0.004	-2.660 3.617 -3.133 -0.217 -1.712	5.275 0.596 -7.243 -2.613 -1.894	-12.234 -3.104 -0.678 -1.976 -1.257

Выборочная дисперсия и разница между ним и дисперсией

Выборочное среднее является:

1) Несмещенной оценкой (т.е. матожидание оценки равно оцениваемому параметру).

$$E\overline{X} = E(\frac{1}{n}\sum_{i=1}^{n}Xi) = \frac{1}{n}\sum_{i=1}^{n}EX_i = EX_i$$

2) Состоятельной оценкой (по ЗБЧ)

Выборочная дисперсия является:

1) Смещенной оценкой (т.е. матожидание оценки не равно оцениваемому параметру). Давайте докажем это. Введем $Y_i = X_i - M\xi$, где ξ - распределение. Тогда:

$$\hat{\mu_2} = \frac{1}{n} \sum_{i=1}^n (X_i - M\xi + M\xi - \overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2 = \frac{1}{n} \sum_{i=1}^n Y_i^2 - \overline{Y}^2$$

$$M\overline{Y} = \frac{1}{n} \sum_{i=1}^{n^2} MY_i^2 = \frac{\mu_2}{n}$$

в сумме только квадраты т.к.матожидания произведений нулевые.

$$\hat{\mu_2} = \frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \overline{Y}^2 = \mu_2 - \frac{\mu_2}{n} = \frac{(n-1)\mu_2}{n} \neq \mu_2$$

2) Состоятельной оценкой (по ЗБЧ)