

THE IMPACT OF NONRECIPROCAL HIGHER-ORDER INTERACTIONS ON SYNCHRONIZATION

Luca Gallo

Vito Latora

Timoteo Carletti

Riccardo Muolo

Mattia Frasca

Lucia Valentina Gambuzza

ASYMMETRICAL MANY-BODY PROCESSES

ASYMMETRICAL MANY-BODY PROCESSES

Kelsic, E.D., Zhao, J., Vetsigian, K., Kishony, R., Nature, 521, 7553 (2017)

ASYMMETRICAL MANY-BODY PROCESSES

HOW CAN WE MODEL DYNAMICAL PROCESSES IN PRESENCE OF NONRECIPROCAL MANY-BODY INTERACTIONS?

$$A_{\pi(ijk)}^{(2)} = 1$$

$$A_{i\pi(jk)}^{(2)} = 1$$

$$A_{j\pi(ik)}^{(2)} = 1$$

$$A_{k\pi(ij)}^{(2)} = 1$$

SYNCHRONIZATION:
AN EMERGENT
AND UBIQUITOUS
PHENOMENON

$$\begin{cases} \dot{x}_i = -y_i - z_i + \sigma_1 \sum_{j=1}^N A_{ij}^{(1)}(x_j^3 - x_i^3) + \sigma_2 \sum_{j,k=1}^N A_{ijk}^{(2)}(x_j^2 x_k - x_i^3) \\ \dot{y}_i = x_i + ay_i \\ \dot{z}_i = b + z_i(x_i - c), \end{cases}$$

$$\begin{cases} \dot{x}_{i} = -y_{i} - z_{i} + \sigma_{1} \sum_{j=1}^{N} A_{ij}^{(1)}(x_{j}^{3} - x_{i}^{3}) + \sigma_{2} \sum_{j,k=1}^{N} A_{ijk}^{(2)}(x_{j}^{2}x_{k} - x_{i}^{3}) \\ \dot{y}_{i} = x_{i} + ay_{i} \\ \dot{z}_{i} = b + z_{i}(x_{i} - c), \end{cases}$$

Local dynamics $\mathbf{f}(\mathbf{x}_i)$

$$\begin{cases} \dot{x}_i = -y_i - z_i + \sigma_1 \sum_{j=1}^N A_{ij}^{(1)}(x_j^3 - x_i^3) + \sigma_2 \sum_{j,k=1}^N A_{ijk}^{(2)}(x_j^2 x_k - x_i^3) \\ \dot{y}_i = x_i + ay_i \\ \dot{z}_i = b + z_i(x_i - c), \end{cases}$$

Local dynamics $\mathbf{f}(\mathbf{x}_i)$

Two-body interactions

$$\mathbf{h}^{(1)}(\mathbf{x}) = x^3$$

$$\begin{cases} \dot{x}_{i} = -y_{i} - z_{i} + \sigma_{1} \sum_{j=1}^{N} A_{ij}^{(1)}(x_{j}^{3} - x_{i}^{3}) + \sigma_{2} \sum_{j,k=1}^{N} A_{ijk}^{(2)}(x_{j}^{2}x_{k} - x_{i}^{3}) \\ \dot{y}_{i} = x_{i} + ay_{i} \\ \dot{z}_{i} = b + z_{i}(x_{i} - c), \end{cases}$$

Local dynamics $\mathbf{f}(\mathbf{x}_i)$

Two-body interactions

$$\mathbf{h}^{(1)}(\mathbf{x}) = x^3$$

Three-body interactions

$$\mathbf{h}^{(2)}(\mathbf{x}_1, \mathbf{x}_2) = x_1^2 x_2$$

THE MASTER STABILITY FUNCTION APPROACH:

Nonlinear dynamics

THE MASTER STABILITY FUNCTION APPROACH:

Nonlinear dynamics

Linearized dynamics

Linearization around the synchronous state

THE MASTER STABILITY FUNCTION APPROACH:

Nonlinear dynamics

Linearized dynamics

Decoupled dynamics

Linearization around the synchronous state

Projection onto the eigenvectors of a Laplacian matrix

THE MASTER STABILITY FUNCTION APPROACH IN DIRECTED HYPERGRAPHS

$$\dot{\eta}_i = [\mathbf{JF}(\mathbf{x}^s) - \sigma_1 \mu_i \mathbf{JH}^{(1)}(\mathbf{x}^s)] \eta_i$$

THE MASTER STABILITY FUNCTION APPROACH IN DIRECTED HYPERGRAPHS

$$\dot{\eta}_i = [\mathbf{JF}(\mathbf{x}^s) - \sigma_1 \mu_i \mathbf{JH}^{(1)}(\mathbf{x}^s)] \eta_i$$

Nontrivial eigenvalues of
$$\mathcal{M} = L^{(1)} + \frac{\sigma_2}{\sigma_1} L^{(2)}$$

THE MASTER STABILITY FUNCTION APPROACH IN DIRECTED HYPERGRAPHS

$$\dot{\eta}_i = [\mathbf{JF}(\mathbf{x}^s) - \sigma_1 \mu_i \mathbf{JH}^{(1)}(\mathbf{x}^s)] \eta_i$$

$$\dot{\zeta} = [\mathbf{JF}(\mathbf{x}^s) - (\alpha + i\beta)\mathbf{JH}^{(1)}]\zeta$$

SYMMETRIZATION

SYMMETRIZATION

NONRECIPROCAL INTERACTIONS CAN CHANGE STABILITY BEHAVIOR

NONRECIPROCAL INTERACTIONS CAN CHANGE STABILITY BEHAVIOR

NONRECIPROCAL INTERACTIONS CAN FAVOR SYNCHRONIZATION

NONRECIPROCAL INTERACTIONS CAN CHANGE STABILITY BEHAVIOR

NONRECIPROCAL INTERACTIONS CAN HAMPER SYNCHRONIZATION

CONCLUSION

- We have introduced a hypergraph representation to encode nonreciprocal group interactions
- Such formalism allowed us to extend the Master Stability Function approach to study synchronization of chaotic oscillators in presence of directed higher-order interactions
- We found that the stability of the synchronized state can be lost or gained as directionality in the higher-order structure is varied

