Une brève introduction aux mécanismes pour la Qualité de Service Chaput Emmanuel 2015-2016 Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 1/47

Notes:

1	Introduction
2	Schéma général
3	Exemples de classifieurs
4	Exemples d'AQM
5	Exemples de shaper
6	Algorithmes d'ordonnancement
7	Références bibliographiques

Notes :			

Introduction

Introduction

Schéma général

Exemples de classifieurs

Exemples d'AOM

Exemples de shaper

Algorithmes d'ordonnancement

Références bibliographiques

Introduction

Notes :			

Le problème Réseaux à commutation de paquets Multiplexage temporel asynchrone Pas de circuit virtuel Pas d'identification des flux Altération du profil temporel des flots de paquets Inéquité lors de contention entre les taux de perte des flots Pas de traitement spécifique en fonction de besoins différents Comportement best effort Le réseau fait ce qu'il peut Sans garantir quoi que ce soit

Introduction

Objectifs

Fournir des mécanismes permettant d'assurer de la "Qualité de service" dans les réseaux de paquets.

- Distribuer "équitablement" le débit des liens
 - Quelle granularité?
 - Quelle équité ?
 - Quelle métrique?
- Isoler les trafics entre eux
 - Éviter que le comportement d'un dégrade le service des autres
- Accroître les performances du service fourni

Délai de bout en bout Gigue sur un flux Débit sur le chemin Perte de paquets

Chaput Emmanue

Une brève introduction auxmécanismes pour l

015-2016

-		

Notes:

		_

Introduction
Mécanismes =/= architecture

Mise en œuvre de la qualité de service

- Une architecture (IntServ, DiffServ, ...)
- Des protocoles (RSVP, DSCP, ...)
- Des mécanismes (ordonnancement, lissage, ...)

Les mécanismes sont la "cheville ouvrière" de la QoS

- Mécanismes non liés à une architecture bien que
- Souvent implantés pour assurer des services définis dans le cadre d'une architecture

Notes :		

Schéma général
Les fonctions
Présence et localisation dépendantes • De l'architecture • IntServ [3], DiffServ [1], • De l'entité dans l'architecture • Routeur de frontière, de cœur,
Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 8 / 47

Notes :			

Classifier	
Objectif: réaliser une ségrégation of Ségrégation par flot (à la <i>IntSe</i> Ségrégation par classe (à la <i>D</i> Fondée sur Des informations contenues Une fonction de hachage Nécessaire du fait de l'absence	erv) iffServ) dans les paquets
	Classification

Notes :			

Schéma général		
Meter		
Objectif : mesurer les caractéristiques	s (temporelles) d'un ensemble d	le
 Caractéristiques selon critères de Vérification de conformité À un profil de trafic négocié Comparaison à des seuils Éventuellement négociés Éventuellement dynamiques 	ségrégation	
Chaput Emmanuel Une brève introduction au	rmécanismes pour l 2015-2016 1	0 / 47

Schéma général
Marker
Objectif: ajouter des informations pertinentes au paquet
 Emplacement prévu dans les entêtes
• Champ Tos d'IPv4,
 Encapsulation supplémentaire
• Label MPLS,
 Structure de données associée
 Traitement local
 Pemet un traitement plus rapide en aval

Notes:		
Notes :		
Notes :		

Chaput Emmanuel	Une brève introduction auxmécanismes pour l

2015-2016 12 / 47

• Le rendre conforme à un profil temporel

• Introduction de "délai" entre paquets

Objectif: Lisser le trafic

• Évite les bursts en aval

• Implanté dans le scheduler

	Schéma général		
Policer			
Objectif: contraindre le Le rendre conform Destruction/remare Pas de lissage Isolation des trafic	ne à un contrat quage de paquets		
Chaput Emmanuel	Une brève introduction auxmécanismes pour l	2015-2016 1	3 / 47

-		

Notes:

Active Queue Management Objectif: diminuer les risques de congestion Gestion active des files d'attente [2] Éviter les files d'attente pleines Capacité à accueillir les bursts Minimiser le temps de traversée Prévenir la congestion plutôt que la subir Définition de taux de remplissage seuils Actions curatives (anticipées) ou préventives Actions plus équitables

Notes :			

	Schéma général			
Scheduler				
Objectif: réaliser le m Utiliser "équitable Appliquer les cho Implantation intèq Éventuellement r	ement" le débi pix faits lors de gre les fonctio non work cons	t disponible es étapes précédent ns de shaper/police	r	15/47
Chaput Emmanuei	One breve introduction	auxinecanismes pour i	2015-2016	13/4/

Notes :		

Ordonnancement Work Conserving

- Ordonnancement Work Conserving
 - Un paquet en attente est émis dès que le support est disponible
 - Utiliser au mieux la bande passante
- Ordonnancement Non Work Conserving
 - Un paquet en attente doit de plus être éligible pour être émis
 - Attendre un paquet plus prioritaire
 Mettre en place du lissage

Chaput Emm	

Une brève introduction auxmécanismes pour l 2015-2016 16 / 47

Notes:

Connexion Admission Control

Objectif : Vérifier qu'un contrat peut être assuré

- Négociation de paramètres de QoS
- Associé à de la réservation de ressource
- Nécessite un protocole orienté connexion ou un équivalent
- Peut permettre l'isolation des trafics

Notion de SLA

- Service Level Agreement
- Accord entre le client et l'opérateur
- Description des paramètres de QoS

Notes :			

Schéma général
Un exemple : IntServ
CAC
Classifier Policer Scheduler Scheduler
Ressources réservées par RSVP
Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 18 / 47

Notes :			

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 19 / 47

Schéma général Un exemple : DiffServ (core router) • Ségrégation simple • Comportement conforme à un PHB

Notes :		

Exemples de classifieurs
Exemples de classifieurs
3 Exemples de classifieurs • Deep packet inspection • Le champ DSCP • Positionnement • First Come First Served • Round Robin • Deficit Round Robin • Fair Queuing • Stochastic Fair Queuing • Generalized Processor Sharing • Packet Generalized Processor Sharing • Virtual Clock • Priority Queuing

Notes :			

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 25 / 47

Notes:

Exemples d'AQM

1 Introduction
2 Schéma général
3 Exemples de classifieurs
4 Exemples d'AQM
5 Exemples de shaper
6 Algorithmes d'ordonnancement
7 Références bibliographiques

Une brève introduction auxmécanismes pour l 2015-2016 26 / 47

Random Early Detection

Observation de l'état de la file
Définition d'une probabilité en fonction de l'état
Marquage/destruction de paquets choisis aléatoirement
Désynchronisation des TCPs
Première proposition en 1993 [6]

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 27 / 47

Notes:			
-			

Prints, out Print

Chaput Emmanuel Une brève introduction auxmécanismes pour 2015-2016 28 / 47

Notes:			

Exemples de shaper 1 Introduction 2 Schéma général 3 Exemples de classifieurs 4 Exemples d'AQM 5 Exemples de shaper 6 Algorithmes d'ordonnancement 7 Références bibliographiques

Notes:			

 Les paquets entrent dans le "seau" Sortie du seau à débit borné (r) lci, le leaky bucket est utilisé pour faire du shaping Si capacité (b) finie : policing 	

Notes :			

 First Come First Served 	
Round Robin	
Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-20	016 32 / 47
Fair Queuing	
Stochastic Fair Queuing	
Generalized Processor Sharing	
 Packet Generalized Processor Sharing 	
 Virtual Clock 	
Priority Queuing	
, , ,	
Références hibliographiques	
Algorithmes d'ordonnancement Positionnement	
Positionnement	
 Sur un routeur Après la phase de routage Après une éventuelle classification Juste avant l'émission sur l'interface de sortie Indépendance entre les interfaces 	
Classification Ordonnancement Interface	1
Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-20	016 33 / 47

Algorithmes d'ordonnancementPositionnement

Notes :			
Notes :			

Notes :			

Deficit Round Robin

Constat: packet round robin non équitable
Lorsque la taille des paquets est variable
Service pondéré (comme WFQ):
Qi bits max par tour pour la file i
Prise en compte du déficit (Qi - service) au tour suivant
Profiter du retard pris sur les tours précédents
Initialement défini par [12]

Notes :		

Algorithmes d'ordonnancement Deficit Round Robin

Deficit Round Robin: algorithme

Q_i nombre max de bits du flux i transmis par cycle

DC_i déficit du flux i

 L_i^k nombre de bits du paquet k du flux i

Algorithme

- $DC_i = 0$
- À chaque cycle, pour chaque flux i actif

 - $DC_i \leftarrow DC_i + Q_i$ tant qu'il existe un paquet k en attente tel que $L_i^k \leq DC_i$
 - émettre le paquet
 - $DC_i \leftarrow DC_i L_i^k$

Une brève introduction auxmécanismes pour l 2015-2016 37 / 47

Notes:

Algorithmes d'ordonnancement Fair Queuing

Fair Queuing

- Simulation d'un round-robin fluide
 - Algorithme théorique bit à bit
- À la réception d'un paquet
 - Calcul de sa date de départ théorique
- Émission ordonnée selon les dates théoriques
 - Mais à des dates différentes . . .
- [9] [10] [5]

Une brève introduction auxmécanismes pour l 2015-2016 38 / 47

Notes:

Algorithmes d'ordonnancement Fair Queuing

Fair Queuing: principe

Notation

R(t) nombre de cycles du round robin à t

 $N_a(t)$ nombre de flux actifs à t

 a_i^k date d'arrivée du paquet i du flux k

 L_i^k nombre de bits du paquet i du flux k

 S_i^k et F_i^k dates de début et fin de service du paquet i du flux k en nombre de cycles

Propriétés

 $N_a(t) = card(\{k, F_{max(i,a_i^k < t)}^k \ge t\})$

$$F_i^k = S_i^k + L_i^k$$

 $S_i^k = max(F_{i-1}^k, R(a_i^k))$ (respect de l'ordre!)

 $\frac{\partial R(t)}{\partial t} = \frac{1}{N_a(t)}$ si 1 bit par unité de temps

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 39 / 47

Notes :			

Fair Queuing : algorithme

• Réception d'un paquet : calcul de sa date de fin de service par un round-robin bit à bit
• Support libre : émission du paquet de plus faible F_i^k • On ne s'intéresse pas aux dates réelles puisque r(t) est strictement croissante
• Durée de cycle variable (arrivée d'un paquet sur un flux inactif)
• Dates (réelles) de départ théorique à recalculer
• Dates en R(t) inchangées!

Algorithmes d'ordonnancement	Stochastic Fair Queuing
Stochastic Fair Queuing	
 Constat du Fair Queuing : lourd des files) 	d à implanter à haut débit (gestions
 Flots répartis selon une méthod 	de de hachage
 Hachage modifiée régulièreme 	nt
• [8] [7]	

• Service fluide pondéré (débit de sortie ϕ_i pour flux i)

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 42 / 47

• Chacun obtient $\frac{\phi_l}{\sum \phi_l}$ • Extrèmement équitable • Impossible à implanter

Algorithmes d'ordonnancement Generalized Processor Sharing

Packet GPS

- Weighted Fair Queuing (pondéré par ϕ_i , où $\sum \phi_i = 1$)
- Pour chaque paquet : estimation de sa date de sortie sur un GPS
- Paquets émis dans l'ordre de ces dates
- [5] [11]

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 43 / 47

Algorithmes d'ordonnancement Packet Generalized Processor Sharing

Packet GPS: principes

Notations du Fair Queuing plus

V(t) temps virtuel évoluant proportionnellement à $\frac{1}{\sum_{i \in \{\textit{actifs}\}} \phi_i}$ si 1 bit par unité de temps

Propriétés

$$F_i^k = S_i^k + \frac{L_i^k}{\phi_i}$$

$$S_i^k = \max(F_{i-1}^k, V(a_i^k))$$

$$\frac{\partial V(t)}{\partial t} = \frac{1}{\sum_{i \in \{actifs\}} \phi_i}$$
 si 1 bit par unité de temps

Chaput Emmanuel Une brève introduction auxmécanismes pour l 2015-2016 44 / 47

Notes:

Notes:

Algorithmes d'ordonnancement Virtual Clock

Virtual Clock

- Inspiré du TDM
- Calcul d'une date de départ théorique
- Date calculée en supposant un débit constant
- Émission ordonnée selon les dates théoriques
- Isolation des flux
- [13]

Notes:

Algorithmes d'ordonnanceme

Virtual Clock

Virtual Clock: principes

Notations

 r_i débit moyen associé au flot i ($i \in [1 ... n]$)

 S_i^k et VC_i^k dates de début et fin de service du paquet i du flux k

 a_i^k date d'arrivée du paquet i du flux k

 L_i^k nombre de bits du paquet i du flux k

Propriétés

$$VC_i^k = S_i^k + \frac{L_i^k}{r_i}$$

 $S_i^k = max(F_{i-1}^k, a_i^k)$ (respect de l'ordre !)

Chaput Emmanue

Une brève introduction auxmécanismes pour l

15-2016 46

Notes:

Priority Queuing Priority Queuing Chaque file est dotée d'une priorité File de plus faible priorité servie si prioritaire vide Généralement pas de préemption Risque de famine Chaput Emmanuel Une brève introduction auxmécanismes pour 2015-2016 47/47

Références bibliographiques

- S. Blake, D. Black, M. Carlson, E. Davies, and Z. Wang January. RFC 2475 - an architecture for differentiated service. Informational, IETF, December 1998.
- [2] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. RFC 2309: Recommendations on queue management and congestion avoidance in the internet. Technical report, IETF, April 1998. Category: Informational.
- [3] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architecture: an overview. Technical report, Internet Engineering Task Force, United States, 1994.
- [4] David D. Clark and Wenjia Fang.Explicit allocation of best-effort packet delivery service.

IEEE/ACM Trans. Netw., 6(4):362-373, 1998. Notes: [5] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing algorithm. In SIGCOMM '89: Symposium proceedings on Communications architectures & protocols, pages 1-12, New York, NY, USA, 1989. ACM Press. [6] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993. Paul E. McKenney. High-speed event counting and classification using a dictionary hash technique. Proceedings of the International Conference on Parallel Processing, 3:71-75, 1989. P.E. McKenney. Stochastic fairness queuing. Chaput Emmanuel Une brève introduction auxmécanismes pour l In IEEE, editor, INFOCOM'90 proceedings, volume 2, pages 733-740, June 1990. Notes: J. Nagle. On packet switches with infinite storage. Technical report, IETF, United States, 1985. [10] J. B. Nagle. On packet switches with infinite storage. Innovations in Internetworking, pages 136-139, 1988. [11] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach to flow control in integrated services networks : the single-node case. IEEE/ACM Trans. Netw., 1(3):344-357, 1993. [12] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round-robin. IEEE/ACM Trans. Netw., 4(3):375-385, 1996. [13] L. Zhang. Une brève introduction auxmécanismes pour l Virtual clock: a new traffic control algorithm for packet switching Notes: In SIGCOMM '90 : Proceedings of the ACM symposium on Communications architectures & protocols, pages 19-29, New York, NY, USA, 1990. ACM Press.