NATURAL DISASTER INTENSITY ANALYSIS AND CLASSIFICATION USING ARTIFICIAL INTELLIGENCE

P

r

0

j

e

 \mathbf{c}

t

 \mathbf{R}

e

p

0

r

t

S

u

 \boldsymbol{b}

m

i

t

t

 \boldsymbol{e}

d

 \boldsymbol{b}

y

 \boldsymbol{T}

 \boldsymbol{E}

 \boldsymbol{A}

M

 \boldsymbol{L}

 \boldsymbol{E}

 \boldsymbol{A}

D E R

M

. U S H A

T E A M

M E M

B E R S

1

 \boldsymbol{G}

. **A**

B I N

A Y A

2

K

. S A N G E T H A

3

R

M

A D H A V

A N

T E

A M

I D

P N T 2 0 2 T M

I D

F A C U L T

TABLE OF CONTENTS

CHAPT	T
ER NO	I
	T
	${f L}$
	${f E}$
1.	INTRODUCTION

	PROJECT OVERVIEW PURPOSE
2.	LITERATURE SURVEY
2.	
	EXISTING PROBLEM
	REFERENCES
	PROBLEM
	STATEMENT
	DEFINITION
3.	IDEATION & PROPOSED SOLUTION
	EMPATHY MAP
	CANVAS IDEATION &
	BRAINSTORMINGPROPOSED
	SOLUTION
	PROBLEM SOLUTION FIT
4.	REQUIREMENT ANALYSIS
	FUNCTIONAL REQUIREMENT
	NON-FUNCTIONAL REQUIREMENTS
5.	PROJECT DESIGN
	DATA FLOW DIAGRAMS SOLUTION & TECHNICAL
	ARCHITECTUREUSER STORIES
6.	PROJECT PLANNING & SCHEDULING
	SPRINT PLANNING &
	ESTIMATIONSPRINT
	DELIVERY SCHEDULE
<u>_</u>	REPORTS FROM JIRA
7.	CODING & SOLUTIONING
	FEATURE 1
	FEATURE 2

8.	TESTING

	TEST CASES
	ACCEPTANCE TESTING
9.	RESULTS
	9.1 PERFORMANCE METRICS

10.	
10.	
	ADVANTAGES & DISADVANTAGES
11.	
	CONCLUSION
12.	
	FUTURE SCOPE
13.	APPENDIX
	13.1 SOURCE CODE

C

H

A

P

T

 \mathbf{E}

R

I

 \mathbf{N}

 \mathbf{T}

R

 \mathbf{O}

D

U

 \mathbf{C}

T

I

 $\mathbf{0}$

 \mathbf{N}

Project Overview

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to

permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. To tackle this problem, we developed a multilayered deep convolutional neural network model that classifies the natural disaster and tells the intensity of disaster of natural The model uses an integrated webcam to capture the video frame and the video frame is

compared with the Pre- trained model and the type of disaster is identified and showcased on the OpenCV window.

Purpose

The purpose of this project to detect the natural disaster and reduce, or avoid, the potential losses from hazards, assure prompt and appropriate assistance to victims of disaster, and achieve rapid and effective recovery

 \mathbf{C}

H

A

P

 \mathbf{T}

 \mathbf{E}

R

2

L

I

T

E

R

A

T

U

R

E

S

U

R

 \mathbf{E}

Y

TITLE: A Deep Learning Approach of Recognizing Natural Disasters on Images.

PROPOSED WORK

First, this work introduces to the research community a new dataset for thejoint classification of natural disaster types and intensity. Moreover, this study primarilyaims to explore natural disasters recognition using a convolutional neural network and transfer learning. An open source tool is used for finding and removing the repeated images for analysis. Wildfire, Earthquake, Flood and Volcanic eruption are taken. In particular, this study attempts to build and train a lightweight convolutional neural network that can jointly recognize natural disaster types and intensity. Based on the intensity, it classifies as Severe, Moderate, Insignificant Lastly, this study attempts to measure the model performance using four performance measures; accuracy, precision, recall, and F1-Score.

TOOLS USED/ALGORITHM

- Image Processing
- Slope NDVI
- Location API
- Cloud Architecture
- Google Earth Engine

- K-Means and Classification Algorithm
- RGB Scale

TECHNOLOGY: Artificial Intelligence

TITLE

Disaster Intensity-Based Selection of Training Samples for Remote Sensing Building Damage Classification.

PROPOSED WORK

In this proposed work, two fully automatic procedures for the detection of severely damaged buildings are introduced. The fundamental assumption is that samples that are located in areas with low disaster intensity mainly represent non-damaged buildings. Furthermore, areas with moderate to strong disaster intensities likely contain damaged and nondamaged buildings. Under this assumption, a procedure that is based on the automatic selection of training samples for learning and calibrating the standard support vector machine classifier is utilized. The second procedure is

based on the use of two regularization parameters to define the support vectors. Theseframeworks avoid the collection of labeled building samples via field surveys and/or visual inspection of optical images, which requires a significant amount of time. The performance of the proposed method is evaluated via application to three real cases. The resulted accuracy ranges between 0.85 and 0.89, and thus, it shows that the resultcan be used for the rapid allocation of affected buildings.

TOOLS USED/ALGORITHM

- Automatic labelling
- Building damage
- Multi regularization parameters

- Demand Parameter
- Support Vector Machine (SVM)

TECHNOLOGY: Machine Learning

TITLE

Hurricane Damage Detection using Machine Learning and Deep Learning Techniques

PROPOSED WORK

In this proposed work, Disaster detection can be done through social mediaand satellites. Images obtained from satellites are widely used since capturing and processing of these images can be done in a shorter span of time. Satellite images helpto recognize damage pattern caused by the disasters. The images from social media are also useful since they provide information on an immediate basis. Since manual methods are errorprone, deep learning and machine learning are used which used for detecting the damage caused by disasters effectively.

TOOLS USED/ALGORITHM

- Social-media
- Satellite imagery
- Deep learning techniques
- CNN,VGG-16, ResNet
- Machine learning tecniques
- Support Vector Machine, Decision trees, random forest.

TECHNOLOGY: Machine Learning, Deep Learning

Existing Problem

Earlier we focus on post disaster relief and rehabilitation measures. Now the focus is shifted. As per sec.2(e) of DM Act 2005, Disaster Management means a coordination and integrated process of planning, organizing, coordinating, and implementing measures which are necessary or expedient for-

- Prevention of danger or threat of any disaster
- Preparedness to deal with any disaster
- Prompt response to any threatening disaster situation or disaster
- Assessing the severity or magnitude of effects of any disaster
- Evacuation, rescue, and relief
- Rehabilitation and reconstruction

References

- Mignan, A.; Broccardo, M. Neural network applications in earthquake prediction(1994–2019): Meta-analytic and statistical insights on their limitations. Seism. Res.Lett. 2020, 91, 2330–2342. [CrossRef]
- Tonini, M.; D'Andrea, M.; Biondi, G.; Degli Esposti, S.; Trucchia, A.; Fiorucci, P. A

Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Studyof the Liguria Region in Italy. Geosciences 2020, 10, 105. [CrossRef]

- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12, 101075. [CrossRef]
- Schlemper, J.; Caballero, J.; Hajnal, V.; Price, A.N.; Rueckert, D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med.Imaging 2017, 37, 491–503. [CrossRef] [PubMed]
- Tang, C.; Zhu, Q.; Wu, W.; Huang, W.; Hong, C.; Niu, X. PLANET: Improved convolutional neural networks with image enhancement for image classification. Math. Probl. Eng. 2020, 2020. [CrossRef]

Problem Statement Definition

People needs a way to classify and analyse the natural disaster so that they can prevent themselves from losses due to the disaster and millions of lives.

People and animals are facing so many issues like loss of life, property, resources and deterioration of the air quality due to the natural disaster. So we need to analyse and detect natural disaster andd protect them from such disaster.

C H A P

T

E

R

3

IDEATION & PROPOSED SOLUTION

Empathy Map Canvas

Ideation & Brainstorming

Proposed solution

S. No.	Parameter	Description
1.	Problem Statement	People needs a way to classify
	(Problem to besolved)	and analyse the Disaster priorly
		so that they can protect
		themselves from losses due
		to the Disaster and Millions of
		Lives.,
2.	Idea/Solution description	This project uses Multi-layered
		DeepConvolutional Neural
		Network
		(pretrained) model to
		classify NaturalDisaster and
		calculate the intensity of
		the Disaster
3.	Novelty/Uniqueness	To reduce the issues due to
		imbalance structure of images,
		the model uses anintegrated
		webcam to capture the video
		frame and test data is
		compared with
		pretrained data.
4.	Social impact/Customer	By the Application,
	Satisfaction	economic damagecaused by
		Disaster can be reduced.
		Detection of Natural Disaster
		will
		become easier while using
		videos inDeep CNN
		instead of images.
5.	Business Model (Revenue Model)	Multi-layered Deep

		Convolutional Neural
		Network Model.
6.	Scalability of the Solution	Highly expandible, dependable,
		reliable,
		scalable and has robustnes

Problem Solution Fit

C H A P T E R

Functional Requirement

REQUIREMENT ANALYSIS

FR No.	Functional Requirement(Epic)	Functional
		Requirement(Epic)
FR-1	Request Permission	
		Access permission from
		web camera.
FR-2	Disaster Detection	Based on the webcam
		image, natural disaster is
		classified.
FR-3	Accuracy	Since the training and
		testing images are huge,
		The accuracy is higher.
FR-4	Speed	The generation of results
		from the input Images are
		faster.
FR-5	Resolution	The resolution of the
		integrated web camera
		should be high enough to
		capturethe video frames
FR-6	User Interface	Maximizing the
		interaction in Web
		Designing Service.

Non-Functional Requirement

NFR. No.	NonFunctional Requirement	Description
NFR-1	Usability	User friendly and classify
		thedisaster easily.

NFR-2	Security	The model is secure due to
		the cloud deployment models
		and also there is no login
		issue.
NFR-3	Reliability	Accurate prediction of the
		natural disaster and the website
		can alsobe fault tolerant.
NFR-4	Performance	It is shown that the model gives
		almost 95 Percent accuracy after
		continuous training.
NFR-5	Availability	The website will be
		madeavailable for 24
		hours.
NFR-6	Scalability	The website can run on
		web browsers like
		Googlechrome,
		Microsoft edge and also it
		canbeextended to the
		NDRFand customers.

Data Flow Diagrams

CHAPTER 5 PROJECT DESIGN

A Data Flow Diagram (DFD) is a traditional visual representation of theinformation flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data to be enter and leaves the system, what changes the information, and where data is stored.

Flow Diagram

Solutio

n &

Techni

cal

Archite

cture	
Solutio	
n	
Archite	
cture	
	Solution architecture is a complex process – with many sub- processes

- Find the best tech solution to solve existing business problems.
- Describe the structure, characteristics, behavior, and other aspects of the software toproject stakeholders.

- that bridges the gap between business problems and

technology solutions. Its goalsare to:

- Define features, development phases, and solution requirements.
- Provide specifications according to which the solution is defined, managed, anddelivered.

Solution Architecture Diagram

Flow Diagram

Project Design Phase-II Technology Stack (Architecture & Stack)

Date	19 October 2022
Team ID	PNT2022TMID38512
Project Name	Natural Disasters Intensity Analysis And Classification Using Artificial Intelligence
Marks	4

Technical Architecture:

Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	User interacts with application for the detection of any Natural disaster's intensity	HTML, CSS, JavaScript, Django, Python.

		andclassify which	
		happened just	
		before.	
2.	Disaster Detection	This function is used to	Decision trees,
		detect,	Regression,
		Decision Outcomes, the	Convolutional
		newtrained data to	Neural networks
		perform tasksand solve	
		new problems.	
3.	Evaluation system	It monitors that how	Chi-Square,
		Algorithmperforms on	Confusion Matrix,
		data as well as during	etc.
		training.	
4.	Input data	To interact with our	Application
		model and give it	programming interface,
		problems to solve.	etc
		Usually this takes the	
		form of an API, auser	
		interface, or a command	
_	Б.	line interface.	IDM CL. 1
5.	Data	Data is only useful if	IBM Cloud,
	collectionunit	it's accessible, so	SQLServer.
		itneeds to be stored	
		ideally in a consistent	
		structure and conveniently inone	
		place.	
6.	Database	An organized	MySQL, DynamoDB
0.	management	collection of data	etc.
	system	stored in database, so	
	System	that it can be easily	
		accessedand	
		managed.	
		managou.	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	An open source	Keras,
	Frameworks	framework is atemplate	Tensorflow.
		for software	
		development that is	
		designed by a social	
		network of software	
		developers. These	
		frameworks are free for	
		public use and	
		provide the foundation for	
		building a software	
		application.	
2.	Authentication	This keep sour models	Encryption and
		secure and makes sure	Decryption
		only those who	(OTP)
		havepermission can use	
		them	
3.	Application interface	User uses mobile	Web Develop
		application andweb	ment
		application to interact with	(HTML,C
		model	SS)
4.	Availability (both	Its include both online and	Caching,
	Online and Offline	offlinework. As good	backend server.
	work)	internet connection is need	
		for online work to explore	
		the software	
		perfectly. Offline work	
		includes the saved data	
		to explore for	
		later time	
5.	Regular Updates	The truly excellent	Waterfall
		softwareproduct	Approach,
		needs a continuous	Incremental
		process of improvements	Approach, Spiral
		and updates. Maintain	Approach
		your server and make sure	
		that your contentis always	

		up-todate. Regularly	
		update an app and enrich	
		it with	
		new features.	
6.	Personalization	Software has features	CSS
		like flexible fonts,	
		backgrounds,	
		settings, colour	
		themes, etc.	
		which make a software	
		interface	
		looks good and functional.	

User Stories

Functional	User	User Story / Task	Acceptance
Requirement	Story		criteria
(Epic)	Number		
Collection of	USN-1	As a user, I can collect the	Enough data
dataset		datasetfor monitoring and	collected for
		analyzing	training
			Model.
Home Page	USN-2	As a user, I can collect the	I can get the
		datasetfor monitoring and	ideaabout the
		analyzing	Application.
Intro page	USN-3	As a user, I want to	I can get idea
		about theintroduction	aboutthe disaster
		of Disaster in	and
		particular areas.	where it occurs.
Open webcam	USN-4	As a user, I adapt with the	I can capture a
		webcamto analyze and	videoor image of
		classify the	particular disaster to
		Disaster from video capturing	analyze and classify
Analysis of	USN-5	As a user, I can regulate	Model should
required		certain	beeasy to use
phenomenon		factors influencing the	&
		action andreport on past	working fine from
		event analysis.	the

			web app
Algorithm	USN-6	As a user, I can choose the	Selection must
selection		required algorithm for	givethe better
		specificanalysis.	accuracy
			and better output
Training and	USN-7	As a user, I can train and	Training the model
Testing		test themodel using the	toclassify and
		algorithm.	analyze
			the intensity
Detection and	USN-8	As a user, I can detect	I can capture a
analysis of		and visualize the data	videoor image of
data		effectively.	particular disaster to
			analyze and detect.
Model building	USN-9	As a user I can build with	Model should
		the webapplication.	be predicting
			occurrence of
			the
			disaster and
			intensity
			level of disaster

Integrate the	USN-10	As a user, I can use Flask app to	Model should
web app		usemodel easily through web	be easy to use
with the AI		app.	and working
Model			fine from
			the web app.
Model	USN-11	As an administrator, I can	Model's
deployment		deploythe AI model in IBM	prediction should
		Cloud.	be available for
			users to make
			decision.

C H A P T E

PROJECT PLANNING & SCHEDULING

Sprint planning & Estimation

Sprint	Functional	User	User Story / Task	Story
	Requirement	Story		Points
	(Epic)	Number		
Sprint-1	Collection of	USN-1	As a user, I can	5
	Dataset		collectthe dataset	
			for monitoring	
			and	
			analysing.	
Sprint-1		USN-2	As a user, I want to	5
	Home page		knowto about the	
			basics of	
			frequently occurring	
			Disasters.	
Sprint-1	Intro page	USN-3	As a user, I want to	5
			aboutthe	
			introduction of	
			Disaster in particular	
			areas.	
Sprint-1	Open webcam	USN-4	As a user, I adapt	5
			with the webcam	
			to analyse	
			and classify the	
			Disaster	
			from video capturing.	
Sprint-2	Analysis of	USN-5	As a user, I can	5
	required		regulatecertain	
	phenomenon		factors influencing	
			the action and	
			report on past event	
			analysis.	

Sprint-2	Algorithm	USN-6	As a user, I can	5
	selection		choosethe	
			required	
			Algorithm	
			for specific analysis.	
Sprint-2	Training and	USN-7	As a user, I can train	10
	Testing		andtest the model	
			using the	
			algorithm.	
Sprint-3	Detection and	USN-8	As a user, I can	10
	analysis of data		detectand	
			visualise the data	
			effectively.	

Sprint-3	Model building	USN-9	As a user, I can build	10
			with	
			the web application	
Sprint-4	Integrate the	USN-10	As a user, I can use	10
	webapp with		Flaskapp to use model	
	the AI		easily	
	model		through web app.	
Sprint-4	Model deployment	USN-11	As an administrator, I	10
			can deploy the AI	
			model	
			in IBM Cloud.	

Sprint Delivery schedule

Sprint	Total Story Points	Duration	Sprint Start Date	Story Points Completed (as onPlanned End	Sprint ReleaseDate (Actual)
				Date)	
Sprint-1	20	6 days	24 Oct	20	29 Oct 2022
			2022		
Sprint-2	20	6 days	31 Oct	20	05 Nov 2022
			2022		

Sprint-3	20	6 days	07 Nov	20	12 Nov 2022
			2022		
Sprint-4	20	6 days	14 Nov	20	19 Nov 2022
			2022		

Reports from Jira

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is

20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit(story points per day)

Average velocity = Sprint duration / velocity

=20/6

=3

Burndown Chart

A burn down chart is a graphical representation of work left to doversus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

C H A P T E R

CODING & SOLUTIONING

Feature 1

The project focuses on the analysis of intensity of Disaster for giving precautionary measures for the people living in the Danger zone.

It focuses on classifying the type of Disaster which oftenly occurs in that particular zone.

Feature 2

The accuracy of the project is improved more better than the previously submitted models. The accuracy is improved by training and testing more images in the dataset.

> C H A P T E R

T E S T I N G

Test cases

Test	Component	Test Scenario	Expected Result	Actual	Status
Case ID				Result	
TC_001	Home Page	Verify user is able	Home page	Working	Pass
		to seethe Home	shouldDisplay	as	
		page		expected	
	Home Page	Verify the UI	Application should	Working	Pass
TC_002		elementsinHome	show below UI	as	
		page	elements:	expected	
			Home page		
			button Intro		
			page		
			buttonOpen		
			webcam button		

TC_003	Home Page	Verify user is able to	Application should	Working	Pass
		seethe cards about show the cards		as	
		Disaster	about Disaster.	expected	
TC_004	Home Page	Verify user is able	Application	Working	Pass
		to navigate to the	should navigate to	as	
		required	the Intro	expected	
		page	page		
TC_005	Intro Page	Verify user is able	Intro page	Working	Pass
		to seethe Intro page	shoulddisplay	as	
				expected	
TC_006	Intro Page	Verify the UI	Application should	Working	Pass
		Elements in	show below UI	as	
		Intropage	elements:	expected	
			Homepage		
			Intro page		
			Open webcam		
			button		
TC_007	Intro Page	Verify the user is	Application	Working	Pass
		able tosee the	should show the	as	
		introduction of	sentences	expected	
		the Disaster	about the Disaster		

TC_008	Intro Page	Verify user is able	Application	Working	pass
		to navigate to the	should navigate to	as	
		required	the Open	expected	
		page	webcam page		
TC_009	Webcam	Verify user is able	Webcam page	Working	pass
	page	to see the webcam	isdisplayed	as	
		page		expected	
TC_010	Webcam	Verify the	Application	Working	pass
	page	Emergencypull	shouldshow below	as	-
		button is visible	UI	expected	
		while the	elements: a.		
		webcam is	Emergency pull button		
		not connected	0 71		
TC_011	Webcam	Verify user is able	Application	Working	pass
	page	to see the output	shoulddetect the	as	-
		window	type of	expected	

	Disaster from the real	
	time video	

User Acceptance Testing

It is to briefly explain the test coverage and open issues ofthe natural disasters intensity analysis and classification using artificial intelligence project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis:

This report shows the number of resolved or closed bugsat each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	1	0	0	2	3
Duplicate	1	0	0	0	1
External	0	0	0	0	0
Fixed	1	0	0	2	3
Not	0	0	0	3	0
Reproduce					

Skipped	0	0	0	1	1
Won't Fix	0	0	0	0	0
Totals	3	0	0	5	8

Test Case Analysis:

This report shows the number of test cases that have passed, failed, and

untested.

Section	Test Cases	Not Tested	Fail	Pass
Home Page	4	0	0	4
Intro Page	4	0	0	4
Open Webcam		0	0	3
	3			

C H A P T E R

9

Performance Metrics

RESULTS

The nature disaster intensity analysis and classification with test data and train data has been executed successfully. The model has been trained over 1000+ images and the model have an accuracy of nearly 99% and the model has been testedwiththe data which is separate from the trained data and has predicted the data well.

Output of application

HOME PAGE

China, India and the United States are among the countries of the world most affected by natural disasters.

Natural disasters have the potential to wreck and even end the lives of those people, who stand in their way. However, whether or not you are likely to be affected by a natural disaster greatly depends on where in the world you live, The objective of the project is to human build a web application to detect the type of disaster. The input is taken from the in built web cam, which in turn is given to the pre trained model.

The model predicts the type of disaster and displayed on UI.

WEB CAM
DETECTION OF NATURE DISASTER

 \mathbf{C}

HAPTER

ADVANTA

GES &

DISADVAN

TAGES

ADVANTAGES

- The proposed model will be used as a real time natural disaster detection model and provide some upcoming predictions for future disasters.
- The model is to detect and classify the type of disaster and The model have a high accuracy rate (99.33).
- The model was used to prevent natural disasters in the future and model canbe used to predict future disasters and take some action against heavy loss of human ecological systems and property.
- The proposed system helps to reduce the impact of hazards occur duringnatural disaster. This provides an efficient way to warn and educate people about disaster prone areas.
 - It will help us be prepared in times of disaster.

DISADVANTAGES

• The resultant model unable to validate the model performance underuncontrolled conditions.

• The model cannot be used for various natural disaster

C H A P T E R

C O N C L U S I

O N

It focused how image from given dataset (trained dataset) infield and past data set used predict the pattern of different nature disaster using CNNmodel. In the system had applied different type of CNN compared the accuracy. The natural disaster in Indonesia frequently happened, due to the geographical position of the country. Thus, natural disasters mostly occurred as an impact of the natural condition. However, the weather and climate condition has also influenced and triggered the disasters

 \mathbf{C}

A

P

T

E

R

1

2

F

U

T

U

R

 \mathbf{E}

 \mathbf{C}

0

P

 \mathbf{E}

In the future, the research will be continued to obtain the data from all over the country, not only west java province, and with the use of more complete analysis, so that the government or related institution could make a better anticipation work as a mitigation effort.

C

H

A

P

T E

 \mathbf{R}

1

3

Inserting necessary libraries

APPENDIX

import numpy as np #used for numerical analysis

import tensorflow #open source used for both ML and DL for computation

```
from tensorflow.keras.models import Sequential #it is a
plain stack of layers from tensorflow.keras import
layers #A layer consists of a tensor-in tensor-
outcomputation function
#Dense layer is the regular deeply connected neural network layer
from tensorflow.keras.layers import Dense,Flatten
#Faltten-used fot flattening the input or change the dimension
from tensorflow.keras.layers import
Conv2D, MaxPooling2D #Convolutionallayer
#MaxPooling2D-for downsampling the image
from keras.preprocessing.image
import ImageDataGenerator
tensorflow.___version _____
tensorflow.keras.____version____
Image Data Augumentation
#setting parameter for Image Data agumentation to the training data
train_datagen =
ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_rang
e=0.2,horizontal_flip=True)
```

```
#Image Data agumentation to the testing data
test_datagen=ImageDataGenerator(rescale=1./255)
```

Loading our data and

performing Data

Augumentation#performing

data agumentation to train

data

```
x\_train=train\_datagen.flow\_from\_directory(r'C:\Users\rajeshwari\Desktop\IBM Project\dataset\train\_set',target\_size=(64, 64),batch\_size=5,
```

 $color_mode='rgb', class_mode='categorical')$

#performing data agumentation to test data

 $x_test=test_datagen.flow_from_directory(r'C:\Users\rajeshwari\Desktop\IBM)$ $Project\dataset\test_set',target_size=(64, 64),batch_size=5,$

color_mode='rgb',class_mode='categorical')

 $print(x_train.class_indices) \textit{\#checking the number of classes}$

print(x_test.class_indices)#checking the number of classes

from

collectio

ns

```
import
Counter
asc
c(x_train
.labels)
Creating the Model
# Initializing the CNN
classifier = Sequential()
# First convolution layer and poolingo
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
classifier.add(MaxPooling2D(pool_size=(2, 2))) classifier.add(Conv2D(32, (3, 3),
input_shape=(64, 64, 3), act
# Second convolution layer and pooling
classifier.add(Conv2D(32, (3, 3), activation='relu'))
# input_shape is going to be the pooled feature maps from
the previous convolutionlayer
classifier.add(MaxPooling2D(pool_size=(2, 2)))
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
# Flattening the layers
classifier.add(Flatten())
```

```
# Adding a fully connected layer
classifier.add(Dense(units=128, activation='relu'))
classifier.add(Dense(units=4, activation='softmax'))# softmax for more than 2
classifier.summary()
#summary of our
model# Compiling
the Model
# Compiling the CNN
# categorical_crossentropy for more than 2
classifier.compile(optimizer='adam',
loss='categorical crossentropy',metrics=['accuracy'])
# Fitting the Model
classifier.fit_generator(
generator=x_train,steps_per_epoch = len(x_train),
epochs=10, validation_data=x_test, validation_steps = len(x_test))#
No of images in testset
# Saving the Model
classifi
er.sav
```

```
e('dis
aster.
h5')
model
_json
classi
fier.to
_json(
)
with open("model-bw.json", "w") as
json_file:json_file.write(model_json)
# Predicting Results
from
tensorflow.keras.models
import load_modelfrom
keras.preprocessing
import image
```

```
model = load_model("disaster.h5") #loading the model for testing
img=image.load_img(r"C:\Users\vasanth\Desktop\IBMProject\dataset\test_set\Cy
c lone\921.ipg",grayscale=False,target_size= (64,64)) #loading of the image\n
x = image.img\_to\_array(img)#image to array\n'',
x = np.expand\_dims(x,axis = 0)#changing the shape\n'',
pred = model.predict_classes(x)#predicting the classes\n'',
pred
index=['Cyclone','Earthquake','Flood','Wildfire']
res
ult
=s
tr(i
nd
ex
[pr
ed
[0]
])
res
ult
```

Links to find files, documents and result related to this project,

GitHub: https://github.com/IBM-EPBL/IBM-Project-47730-1660801833