ÁLGEBRA LINEAL

CUERPOS

Estructura

Cuerpo. Sea \mathbb{K} un conjunto dotado de dos operaciones, adición (+) y multiplicación (\cdot) . Diremos que \mathbb{K} es un cuerpo si para todo $a,b\in\mathbb{K}$ se cumplen las condiciones siguientes:

- ▶ (+) y (\cdot) son operaciones internas sobre \mathbb{K} : $a+b\in\mathbb{K}$ y $a\cdot b\in\mathbb{K}$
- (+) y (\cdot) son operaciones conmutativas: a+b=b+a, $a\cdot b=b\cdot a$
- (+) y (·) son operaciones asociativas: $(a+b)+c=a+(b+c), (a\cdot b)\cdot c=a\cdot (b\cdot c)$
- Existe un elemento neutro para la adición: $a+0=0+a=a \quad \forall a \in \mathbb{K}$
- Existe un elemento neutro para la multiplicación: $a \cdot 1 = 1 \cdot a = a \quad \forall a \in \mathbb{K}$

Estructura

- ▶ Elemento opuesto: $\forall a \in \mathbb{K}$ existe otro elemento $-a \in \mathbb{K}$ tal que a + (-a) = (-a) + a = 0
- ▶ Elemento inverso: $\forall a \in \mathbb{K}, \ a \neq 0$ existe elemento $a^{-1} \in \mathbb{K}$ tal que $a \cdot a^{-1} = a^{-1} \cdot a = 1$
- La operación (·) es distributiva respecto (+): $a \cdot (b+c) = a \cdot b + a \cdot c$

Ejemplos

Cuerpos conocidos

- O: Los números racionales

 - ▶ suma: $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ $a, b, c, d \in \mathbb{Z}$ ▶ producto: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ $a, b, c, d \in \mathbb{Z}$
- R: Los números reales
- C: Los números complejos
 - ightharpoonup suma: (a + bi) + (c + di) = (a + c) + (b + d)i $a, b, c, d \in \mathbb{R}$
 - ▶ producto: $(a + bi) \cdot (c + di) = (ac bd) + (ad + bc)i$ $a, b, c, d \in \mathbb{R}$

Números complejos

Definición. Los números complejos, designados con la notación \mathbb{C} , son una extensión de los números reales \mathbb{R} y forman un cuerpo algebraicamente cerrado. Entre ambos conjuntos de números se cumple que $\mathbb{R} \subset \mathbb{C}$. Todo número complejo, z, puede representarse como la suma de un número real (a), y un múltiplo real (b) de la unidad imaginaria (i):

$$z = a + bi$$

Historia. Los números complejos aparecieron en el siglo XVI como producto derivado de la solución de ecuaciones polinomiales del tipo:

$$\begin{cases} x^2 + 1 &= 0 \end{cases}$$

Clasificación de los números complejos

Números complejos

Conjunto. $\mathbb{C} = \{(a, b) : a, b \in \mathbb{R}\}$

Operaciones:

- ▶ suma: (a, b) + (c, d) = (a + c, b + d) $a, b, c, d \in \mathbb{R}$
- ▶ producto: $(a, b) \cdot (c, d) = (ac bd, ad + bc)$ $a, b, c, d \in \mathbb{R}$

Forma de Tupla. z = (a, b)

Forma Binómica. z=a+bi donde $i=\sqrt{-1}$ es la unidad imaginaria

Forma polar. $z = re^{i\varphi}$ donde r = |z| y $\varphi = \arg(z)$

Números complejos

Parte Real: Re(z) = a donde z = a + bi

Parte Imaginaria: Im(z) = b donde z = a + bi

Módulo: $|z| = \sqrt{a^2 + b^2}$

Argumento (en radianes): $Arg(z) = arctan(\frac{b}{a})$ donde z = a + bi

Argumento principal. $Arg(z) \in (-\pi, \pi]$

Conjugado de z. Si z = a + bi, $\bar{z} = a - bi$

Plano Complejo

El plano complejo es una forma de visualizar y ordenar el conjunto de los números complejos. Puede entenderse como un plano cartesiano modificado, en el que la parte real está representada en el eje horizontal y la parte imaginaria en el eje vertical.

Plano Complejo

