Intro

Dirty

Last Cal

MultiMode

Exponential Random Graph Models in **Statnet**

Lorien Jasny¹

1 Q-Step Centre, Exeter University
1. jasny@exeter.ac.uk

EXETER

ERGM Workshop, Heriot-Watt University, 11/05/2022 materials at https://github.com/ljasny/HeriotWattWorkshop

Social Network Analysis

LJasny

Intro

Dirty Details

Last Ca

MultiModes

Exponential Random Graph Models!

Social Network Analysis

LJasny

Intro

Details

Last Cal

MultiMode

Conceptual Introduction

 Many key questions regarding social systems are relational

Intro

Details

Last Cal.

MultiMode

- Many key questions regarding social systems are relational
- All ties are not equal

Intro

Dirty Details

Last Cal

MultiMode

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j

Intro

Dirty Details

Last Cal

MultiMode

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j
 - Can also depend on other (i, j) relationships

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j
 - Can also depend on other (i, j) relationships
- The statistical approach

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j
 - Can also depend on other (i, j) relationships
- The statistical approach
 - Assume that what we see reflects processes with many potential outcomes

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j
 - Can also depend on other (i, j) relationships
- The statistical approach
 - Assume that what we see reflects processes with many potential outcomes
 - Posit models that reflect our uncertainty about unknowns

- Many key questions regarding social systems are relational
- All ties are not equal
 - Chance of an (i, j) edge may depend on the properties of i and j
 - Can also depend on other (i, j) relationships
- The statistical approach
 - Assume that what we see reflects processes with many potential outcomes
 - Posit models that reflect our uncertainty about unknowns
 - Reason from observations and prior knowledge to unknown quantities

Intro

Details

Last Cal

MultiModes

- Social systems are complex
 - Many parts that affect each other
 - Substantial heterogeneity

Intro

Details

Last Cal

MultiMode

- Social systems are complex
 - Many parts that affect each other
 - Substantial heterogeneity
- Many mechanisms involved

Intro

Details

Last Cal

MultiMode

- Social systems are complex
 - Many parts that affect each other
 - Substantial heterogeneity
- Many mechanisms involved
- We're not good at measuring them
 - Usually only see small chunks
 - Error prone observations

Intro

Details

Last Cal

MultiMode

Conceptual Introduction

- Social systems are complex
 - Many parts that affect each other
 - Substantial heterogeneity
- Many mechanisms involved
- We're not good at measuring them
 - Usually only see small chunks
 - Error prone observations

The network we see may result from many mechanisms AND noise AND unobserved factors

Intro

Dotail

Last Cal

MultiMode

• Consider a hypothetical community with two groups

Intro

Detail

Last Cal

MultiMode

Example: the Reds and Blues

- Consider a hypothetical community with two groups
- We are concerned with cooperation and trust during a period of upheaval

Intro

Detail

Last Cal

MultiMode

Example: the Reds and Blues

- Consider a hypothetical community with two groups
- We are concerned with cooperation and trust during a period of upheaval
- Our information is limited, but presume that we can observe networks of friendship within representative subgroups...

Social Network Analysis

LJasny

A Polarization Puzzle

Intro

Detail

Last Cal

MultiMode

Time

Descriptives

• Without statistical approach, we are limited to description

Dirty

Last Cal

MultiMode

Descriptives

- Without statistical approach, we are limited to description
- Density seems to fall slightly, all this masks an in/out group difference

Dirty

Last Cal

MultiMode

Descriptives

- Without statistical approach, we are limited to description
- Density seems to fall slightly, all this masks an in/out group difference
- Moderately reciprocal, transitive networks with little change

Descriptives

- Without statistical approach, we are limited to description
- Density seems to fall slightly, all this masks an in/out group difference
- Moderately reciprocal, transitive networks with little change
- But, are these changes significant?

Intro

Dirty Details

Last Cal

MultiMode

Baseline Models

Intro

Dirty Details

Last Cal

MultiMode

Baseline Models

Intro

Dirty Details

Last Call

MultiMode

Baseline Models

Social Network Analysis

LJasny

Baseline Models

Baseline models only take us so far

Intro

Dirty Details

Last Ca

MultiMod

Intro

Dirty Details

Last Ca

MultiMode

Baseline Models

Baseline models only take us so far

• Few statistics lend themselves to conditioning

Intro

Details

Last Cal

MultiMode

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once

Intro

Dirty Details

Last Call

MultiMode

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

Intro

Dirty Detail:

Last Cal.

MultiMode

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

Solution: Parametric models

• Identify candidate structural mechanisms

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

- Identify candidate structural mechanisms
- Parameterize using graph statistics

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

- Identify candidate structural mechanisms
- Parameterize using graph statistics
- Fit models to data
 - Compare alternatives
 - Interpret parameter estimates
 - Assess adequacy

Intro

Dirty Detail

Last Cal

MultiMode

Baseline Models

Baseline models only take us so far

- Few statistics lend themselves to conditioning
- Difficult to look at multiple biases at once
- Hard to account for sampling, error, etc.
- given "rejection" of the null hypothesis, no clear path forward

- Identify candidate structural mechanisms
- Parameterize using graph statistics
- Fit models to data
 - Compare alternatives
 - Interpret parameter estimates
 - Assess adequacy
- Can apply/extend for prediction, etc.

Intro

Dirty Details

Last Ca

MultiMode

Sample Mechanisms

Heterogeneous Mixing

Mutuality Bias

Shared Partner Effects

Local Triangulation

Evaluating Competing Explanations

Intro

Dirty

Last Cal

MultiMod

Edges	Mixing	Mutuals	GWESP	LocalTri	AIC	Rank
1	0	0	0	0	1777.684	15
1	1	0	0	0	1565.073	14
1	0	1	0	0	1516.578	13
1	0	0	1	0	1227.656	2
1	0	0	0	1	1478.532	12
1	1	1	0	0	1428.158	11
1	1	0	1	0	1279.456	6
1	1	0	0	1	1416.441	10
1	0	1	1	0	1234.932	3
1	0	1	0	1	1348.794	9
1	0	0	1	1	1290.241	7
1	1	1	1	0	1216.762	1
1	1	1	0	1	1339.640	8
1	1	0	1	1	1238.285	5
1	0	1	1	1	1236.924	4

Intro

Dirty

Last Cal

MultiMode

Interpreting Mechanisms

	Time 1	MLE (SE)	Time 2	MLE (SE)	Time 3	MLE (SE)
Red⊸Red	-1.853	(0.291)	0.557	(0.226)	-1.069	(0.363)
Red→Blue	-1.421	(0.277)	-2.521	(0.428)	-4.317	(0.752)
Blue⊸Red	-1.501	(0.286)	-1.705	(0.354)	-2.809	(0.417)
Blue→Blue	-1.527	(0.198)	0.364	(0.226)	-0.948	(0.269)
Mutuals	2.484	(0.328)	1.992	(0.335)	1.489	(0.399)
GWESP	-0.030	(0.019)	-0.427	(0.031)	-0.018	(0.104)
GWESP (α)	1.218	(1.248)	0.744	(0.111)	0.598	(6.572)

MultiMode

Interpreting the Mechanisms

 Sharp decline in out-group nomination propensity with growing numbers of in-group nominations

Intro

Dirty

Last Ca

MultiMode

Interpreting the Mechanisms

- Sharp decline in out-group nomination propensity with growing numbers of in-group nominations
- Decline in mutuality initially both groups willing to reciprocate, by time 3, neither is!

Intro

Dotail

Last Cal

MultiMode

Interpreting the Mechanisms

- Sharp decline in out-group nomination propensity with growing numbers of in-group nominations
- Decline in mutuality initially both groups willing to reciprocate, by time 3, neither is!
- our network was actually 3rd, 4th, and 5th grade public school students (Parker and Asher 1993)

Intro

Dirty Details

Last Ca

MultiMode

Logistic Network Regression

• A classic starting point:

Intro

Dirty Details

Last Can

MultiModes

Logistic Network Regression

- A classic starting point:
 - why not treat edges as independent, with log-odds as a linear function of covariates?

MultiMode

Logistic Network Regression

- A classic starting point:
 - why not treat edges as independent, with log-odds as a linear function of covariates?
 - Special case of standard logistic regression

Logistic Network Regression

- A classic starting point:
 - why not treat edges as independent, with log-odds as a linear function of covariates?
 - Special case of standard logistic regression
 - Dependent variable is a network adjacency matrix
- Model form:

$$log(\frac{P(Y_{ij}=1)}{P(Y_{ij}=0)} = \theta_1 X_{ij1} + \theta_2 X_{ij2} + \dots + \theta_m X_{ijm} = \theta^T X_{ij})$$

• Where Y_{ij} is the value of the edge from i to j on the dependent relation, X_{ijk} is the value of the kth predictor for the (i,j) ordered pair, and $\theta_1...\theta_m$ are coefficients

Intro

Dirty Details

Last Call

MultiMode

Beyond the Logistic Case

• The logistic model can be quite powerful, but still very limiting

MultiMode

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)

Intro

Dirty Details

Last Call

MultiMode

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)
 - Cannot handle exotic support constraints

MultiMode

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)
 - Cannot handle exotic support constraints
- A more general framework: discrete exponential families

MultiMode

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)
 - Cannot handle exotic support constraints
- A more general framework: discrete exponential families
 - Very general way of representing discrete distributions

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)
 - Cannot handle exotic support constraints
- A more general framework: discrete exponential families
 - Very general way of representing discrete distributions
 - Turns up frequently in statistics, physics, etc.

- The logistic model can be quite powerful, but still very limiting
 - No way to model conditional dependence among edges (clustering, reciprocity)
 - Cannot handle exotic support constraints
- A more general framework: discrete exponential families
 - Very general way of representing discrete distributions
 - Turns up frequently in statistics, physics, etc.
 - ERGM is more like a language of models than a specific book

_ .

Dirty Details

Last Ca

MultiMode

$$P(Y = y | t, \theta, Y, X) = \frac{exp(\theta^T t(y, X))}{\sum y' \in Y exp(\theta^T t(y', X))} I_Y(y)$$

т /

Dirty Details

Loot Co.

MultiModes

Exponential Random Graph Models

$$P(Y = y | t, \theta, Y, X) = \frac{\exp(\theta^T t(y, X))}{\sum y' \in Y \exp(\theta^T t(y', X))} I_Y(y)$$

Probability that a random graph drawn from Y is the realized graph y

Intro

Dirty Details

Last Cal

MultiMode

Exponential Random Graph Models

Given sufficient statistics t, the parameters θ , the countable support Y, and the covariates X

$$P(Y = y | t, \theta, Y, X) = \frac{exp(\theta^T t(y, X))}{\sum y' \in Y exp(\theta^T t(y', X))} I_Y(y)$$

Probability that a random graph drawn from Y is the realized graph y

Intro

Dirty Details

Last Cal

MultiMode

Exponential Random Graph Models

The empirical real-

ization of covariates,

Given sufficient statistics t, the parameters θ , the countable support Y, and the covariates X

Probability that a random graph drawn from Y is the realized graph y

Dirty Details

Exponential Random Graph Models

Given sufficient statistics t, the parameters θ , the countable support Y, and the covariates X

$$P(Y = y | t, \theta, Y, X) =$$

Probability that a random graph drawn from Y is the realized graph y

The empirical realization of covariates. statistics, and parameters

$$P(Y = y | t, \theta, Y, X) = \frac{exp(\theta^T t(y, X))}{\sum y' \in Y exp(\theta^T t(y', X))} I_Y(y)$$

Normalizing factor counting over every other graph in the support

Dirty Details

Exponential Random Graph Models

support

Given sufficient statistics t, the parameters θ , the countable support Y, and the covariates X

Probability that a random graph drawn from Y is the realized graph y

The empirical realization of covariates. statistics, and parameters

$$P(Y = y | t, \theta, Y, X) = \frac{exp(\theta^T t(y, X))}{\sum y' \in Y exp(\theta^T t(y', X))} I_Y(y)$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Normalizing factor counting over every other graph in the

An indicator that Y is in the support

4 0 7 4 6 7 4 5 7 4 5 7 5

Social Network Analysis

LJasny

Conditional Log-Odds of an Edge

Intro

 $\begin{array}{c} {\rm Dirty} \\ {\rm Details} \end{array}$

Last Cal

MultiMode

$$\frac{P(Y=y_{ij}^+|t,\theta,Y,X)}{P(Y=y_{ij}^-|t,\theta,Y,X)}$$

MultiModes

Conditional Log-Odds of an Edge

$$\frac{P(Y = y_{ij}^+ | t, \theta, Y, X)}{P(Y = y_{ij}^- | t, \theta, Y, X)} = \frac{exp(\theta^T t(y_{ij}^+, X))}{\sum y' \in Y exp(\theta^T t(y', X))} * \frac{\sum y' \in Y exp(\theta^T t(y', X))}{exp(\theta^T t(y_{ij}^-, X))}$$

MultiModes

Conditional Log-Odds of an Edge

$$\begin{split} \frac{P(Y = y_{ij}^+ | t, \theta, Y, X)}{P(Y = y_{ij}^- | t, \theta, Y, X)} &= \frac{exp(\theta^T t(y_{ij}^+, X))}{\sum y' \in Y exp(\theta^T t(y', X))} * \frac{\sum y' \in Y exp(\theta^T t(y', X))}{exp(\theta^T t(y_{ij}^-, X))} \\ &\frac{exp(\theta^T t(y_{ij}^+, X))}{exp(\theta^T t(y_{ij}^-, X))} &= exp(\theta^T (t(y_{ij}^+, X) - t(y_{ij}^-, X))) \end{split}$$

Conditional Log-Odds of an Edge

$$\frac{P(Y = y_{ij}^+ | t, \theta, Y, X)}{P(Y = y_{ij}^- | t, \theta, Y, X)} = \frac{exp(\theta^T t(y_{ij}^+, X))}{\sum y' \in Y exp(\theta^T t(y', X))} * \frac{\sum y' \in Y exp(\theta^T t(y', X))}{exp(\theta^T t(y_{ij}^-, X))}$$

$$\frac{exp(\theta^T t(y_{ij}^+, X))}{exp(\theta^T t(y_{ij}^-, X))} = exp(\theta^T (t(y_{ij}^+, X) - t(y_{ij}^-, X)))$$

 $= \frac{P \bullet - \bullet \text{|the rest of the graph}}{P \bullet - \bullet \text{|the rest of the graph}} = exp(\theta^T * \Delta \text{change score})$

Intro

Dirty Details

Last Can

MultiMode

ERG Fitting using ergm

• Dedicated statuet package for fitting, simulating models in ERG form

ERG Fitting using ergm

- Dedicated statnet package for fitting, simulating models in ERG form
- Basic call structure: ergm(y~term1(arg)+term2(arg))
 - y is a network
 - term1, term2, etc are the "sufficient statistics", or terms written in the ergm package
 - see "ergm-terms"

MultiMode

ERG Fitting using ergm

- Dedicated statnet package for fitting, simulating models in ERG form
- Basic call structure: ergm(y~term1(arg)+term2(arg))
 - y is a network
 - term1, term2, etc are the "sufficient statistics", or terms written in the ergm package
 - see "ergm-terms"
- Output: ergm object
 - Summary, print and other methods can be used to examine it
 - Simulate command can also be used to take draws from the fitted model

Social Network Analysis

LJasny

Dirty

Details

Dyadic independent terms

Edge – the baseline probability of a tie

Outdegree (Sender) for an attribute

Indegree (Receiver) for an attribute

Outdegree (Sender) for a valued parameter

Outdegree (Sender) for a valued parameter

Mixing terms

т ,

Dirty Details

Last Ca

MultiMode

Dyadic dependent terms

Reciprocity

Out 2-star (popularity)

Out 3-star (more popularity)

Transitive Triad

Intro

Dirty Details

Last Cal

MultiModes

Higher Order Terms

Geometrically Weighted Stars (altkstar or gwdegree)

three-star has 3 two-stars)

• Diminishing returns

makes sense (every

Geometrically Weighted Edgewise Shared Partners (gwesp) Last Cal

MultiMode

Higher Order Terms

Geometrically Weighted Stars (altkstar or gwdegree)

Geometrically Weighted Edgewise Shared Partners (gwesp)

- Diminishing returns makes sense (every three-star has 3 two-stars)
- Makes fitting the MCMC much easier we'll see why next...

Intro

Dirty Details

Last Ca

MultiMode

Formula:

AIC: 271.9

```
Interpreting Coefficients
```

(Smaller is better.)

samplk3 ~ edges + mutual

BIC: 279.3

• The log-odds of an unreciprocated edge is -2.15 Formula:

AIC: 271.9

Interpreting Coefficients

```
Iterations: 2 out of 20
Monte Carlo MLE Results:
      Estimate Std. Error MCMC % p-value
                  0.2181
mutual 2,2879
                  0.4782
                             0 <1e-04 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' • The probability of an
    Null Deviance: 424.2 on 306 degrees of freedom
Residual Deviance: 267.9 on 304 degrees of freedom
```

(Smaller is better.)

samp1k3 ~ edges + mutual

BIC: 279.3

• The log-odds of an unreciprocated edge is -2.15

unreciprocated edge is $\frac{exp(-2.15)}{1+exp(-2.15)} = 0.10$

Interpreting Coefficients

LJasny

Intro

Dirty Details

Last Cal

MultiMode

AIC: 271.9

BIC: 279.3

(Smaller is better.)

• The log-odds of an reciprocated edge is -2.15+2.29=.14

Interpreting Coefficients

LJasny

Dirty Details

Formula:

AIC: 271.9

```
Iterations: 2 out of 20
Monte Carlo MLE Results:
      Estimate Std. Error MCMC % p-value
                  0.2181
mutual 2,2879
                  0.4782
                             0 <1e-04 ***
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' • The probability of an
    Null Deviance: 424.2 on 306 degrees of freedom
 Residual Deviance: 267.9 on 304 degrees of freedom
```

(Smaller is better.)

samp1k3 ~ edges + mutual

BIC: 279.3

• The log-odds of an reciprocated edge is -2.15+2.29=.14

reciprocated edge is $\frac{exp(.14)}{1+exp(.14)} = 0.53$

Intro

Dirty Details

Last Call

MultiMode

Model Fit and Model Assessment

- We've seen how to construct and fit nontrivial ERGs
 - Started with dyadic independent terms
 - Added basic dependence terms
 - Fit the whole thing via MLE
- Now we turn to degeneracy checking and model assessment
 - Looking under the hood to make sure that the engine is still running - and occasionally, getting out to turn the crank
 - Checking the results to make sure that the model makes sense

The role of Simulation in ERG
Research

- Simulation is central to ERG modeling
 - Even simple models too complex to get analytical solutions - need to use simulation to study model behaviour, make predictions
 - ERG computations too difficult to perform directly (that support term in the denominator) simulation used purely for computational purposes
- Implication: we need to know something about ERG simulation to use tools effectively

Intro

 $\begin{array}{c} \text{Dirty} \\ \text{Details} \end{array}$

Last Ca

MultiModes

- Markov chain
 - Stochastic process such that $P(X_i|X_{i-1},X_{i-2},...) = P(X_i|X_{i-1})$

MultiModes

- Markov chain
 - Stochastic process such that $P(X_i|X_{i-1},X_{i-2},\ldots) = P(X_i|X_{i-1})$
 - meaning that only the previous state (i-1) matters in predicting the current state (i)

- Markov chain
 - Stochastic process such that $P(X_i|X_{i-1},X_{i-2},...) = P(X_i|X_{i-1})$
 - meaning that only the previous state (i-1) matters in predicting the current state (i)
- Monte Carlo procedure
 - Any procedure which uses randomization to perform computation, having a fixed execution time and uncertain output

- Markov chain
 - Stochastic process such that $P(X_i|X_{i-1},X_{i-2},...) = P(X_i|X_{i-1})$
 - meaning that only the previous state (i-1) matters in predicting the current state (i)
- Monte Carlo procedure
 - Any procedure which uses randomization to perform computation, having a fixed execution time and uncertain output
- Markov chain Monte Carlo (MCMC)
 - Family of procedures using Markov chains to perform computations and/or simulate target distributions

ERG MCMC

- When we need to simulate ERGs, we turn to MCMC
 - Every 'step' in the Markov chain is changing one edge from on (1) to off (0) or vice versa
 - Then, the probability of the next step given the current state of the chain is the change score we saw before
 - General procedure: start with a 'seed' graph (random or data)
 - Early "burn-in" draws contaminated by an initial state
 discard
 - need to ensure that sample is large enough to have good properties
 - both aspects sloppily called "convergence" the chain has "converged" when approximation is adequate
 - mostly automated, but important to use diagnostics to verify behavior

Social Network Analysis

LJasny

Intro

Dirty Details

Last Cal

MultiMode

Intro

Dirty Details

Last Call

MultiMode

What happens when you run ergm

• Little gnomes make an initial guess at θ using the MPLE

Intro

Dirty Details

Last Can

MultiMode

- Little gnomes make an initial guess at θ using the MPLE
- More gnomes simulate $y_1, ... y_n$ based on initial guess

Intro

Dirty Details

Last Call

MultiMode

- Little gnomes make an initial guess at θ using the MPLE
- More gnomes simulate $y_1, ... y_n$ based on initial guess
- This simulated sample is used to find θ using MLE

- Little gnomes make an initial guess at θ using the MPLE
- More gnomes simulate $y_1, ... y_n$ based on initial guess
- This simulated sample is used to find θ using MLE
- Possibly, the previous two steps are iterated a few times for good measure (since initial estimate may be off)

A Puzzle

LJasny

Intro

Dirty

Last Call

MultiMode

Lots of interest early on in a very (at first glance) simple model:

ergm(net~edges+triangle)

But some puzzling results when we simulated from the model

Last Call

MultiMode

A Puzzle

- The simulated networks look nothing like the observed data
- Even when the correct coefficients are not simulated (was done on an example with 7 nodes) the networks simulated from that model show the same result (Ke Li, 2015)

Intro

Detail

Last Call

MultiMode

Model Degeneracy

- Almost all the graphs are the same (usually complete/empty)
- The probability of a given statistic pushes the MCMC to always/never add edges

MultiModes

More Broadly

- Simulation can fail in several (essentially four) ways
 - Insufficient burn-in starting point still affects results
 - Insufficient post-burn samples sample hasn't converged
 - degeneracy
 - Sample does not cover observed graph you couldn't generate your given graph from any combination of sufficient statistics

Social Network Analysis

LJasny

Intro

Detail

Last Call

MultiMode

Assessing Simulation Quality

- No foolproof method, but several heuristics
- in ergm, primary tool is mcmc.diagnostics
- calculates various diagnostics on MCMC output
- Can also directly plot statistics (from the MCMC) vs observed values

Intro

Dirty

Last Call

MultiMode

What if things go wrong?

- Different MCMC controls are set using the sequence control=control.ergm(terms)
- For burn-in issues, increase MCMC.burnin parameter
- For post-burn convergence, increase MCMC.samplesize
- If none of these work, may need to change the model

Intro

Dirty Detail

Last Call

MultiMode

Diagnostics

Intro

Dirty

Last Call

MultiMode

Diagnostics

MultiMode

Assessing Adequacy

- How does one assess model adequacy? Simulation!
 - Simulate draws from fitted model
 - Compare observed graph to simulated graphs on measures of interest
 - Verify that observed properties are well-covered by simulated ones (e.g. not in 5% tails)
- What properties should be considered?
 - This is application-specific no single uniform answer
 - Start with "in-model" statistics ERG must get means right, but should still verify non-pathological distributions (remember the triangles)
 - "out-of-model" statistics can be common low-level properties (e.g. degree, triad census) or theoretically motivated quantiles

Intro

Dirty

Last Call

MultiMode

Example - a model only with edges

Intro

Dirty

Last Call

MultiMode

What if model is inadequate?

- Option 1: add terms
 - Which features are poorly captured? Is there a term which would add in such effects?

Intro

Dirty

Last Call

MultiMode

What if model is inadequate?

- Option 1: add terms
 - Which features are poorly captured? Is there a term which would add in such effects?
- Option 2: switch terms

MultiMode

What if model is inadequate?

- Option 1: add terms
 - Which features are poorly captured? Is there a term which would add in such effects?
- Option 2: switch terms
- Option 3: do nothing
 - Is the type of inadequacy a problem for your specific question? Can it be tolerated in this case? How good is the overall fit?

Social Network Analysis

LJasny

. .

Dirty

Last Cal

MultiModes

Bipartite Data

 ${\bf MultiModes}$

Bipartite Data

- Many terms already written
- look for B1 or B2 in the term description (1 is first mode, 2 is 2nd mode)
- Simulated networks will not have within-mode ties

Social Network Analysis

LJasny

Intr

Detai

Last Ca

MultiModes

Multi-level Data

Bodin, Örjan, and Maria Tengö. "Disentangling intangible social—ecological systems." Global Environmental Change 22.2 (2012): 430-439.

Intro

Deta

Last Cal

MultiModes

Multi-level Data

Barnes, Michele L., et al. "Social determinants of adaptive and transformative responses to climate change." Nature Climate Change 10.9 (2020): 823-828.

Multi-level Data

LJasny

Intro

Dirty Details

Last Call

MultiModes

• Tons of confusion over the term 'multi-level'

Multi-level Data

LJasny

ППГО

Details

Last Call

MultiModes

- Tons of confusion over the term 'multi-level'
- New functionality in Statnet to write these terms

Intro

Details

Last Ca.

MultiModes

- Tons of confusion over the term 'multi-level'
- New functionality in Statnet to write these terms
- Essentially, treats social and ecological parts as an attribute and runs a normal ERGM

Intro

Dirty

Last Call

MultiModes

- Tons of confusion over the term 'multi-level'
- New functionality in Statnet to write these terms
- Essentially, treats social and ecological parts as an attribute and runs a normal ERGM
- ullet We'll see an example using ${f F}$ and ${f Sum}$

Intro

Dirty

 ${\bf MultiModes}$

- Tons of confusion over the term 'multi-level'
- New functionality in Statnet to write these terms
- Essentially, treats social and ecological parts as an attribute and runs a normal ERGM
- ullet We'll see an example using ${f F}$ and ${f Sum}$
- ...but it's complicated

Intro

Details

Last Cal

MultiModes

One last trick

• Say a term is theoretically very important

Last Cal

MultiModes

One last trick

- Say a term is theoretically very important
- But the term hasn't been written

MultiModes

One last trick

- Say a term is theoretically very important
- But the term hasn't been written
 - One solution write your own term (ergm-terms package)

Intro

Detail

Last Cal

MultiModes

- Say a term is theoretically very important
- But the term hasn't been written
 - One solution write your own term (ergm-terms package)
- There is a term, but you can't get it to fit

One last trick

- Say a term is theoretically very important
- But the term hasn't been written
 - One solution write your own term (ergm-terms package)
- There is a term, but you can't get it to fit
 - Simulate a model with lower order parameters (and not your term of interest)

MultiModes

One last trick

- Say a term is theoretically very important
- But the term hasn't been written
 - One solution write your own term (ergm-terms package)
- There is a term, but you can't get it to fit
 - Simulate a model with lower order parameters (and not your term of interest)
 - Use the goodness-of-fit method to see how extreme your parameter of interest is in your empirical data compared to a sample/simulation from this model

Code Time!

LJasny

Intro

Dirty

Last Cal

MultiModes

• The rest! Whew!