Equations

Fourier

Periodic $x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jk\omega_0 t} \qquad x[n] = \sum_{k=< N>} a_k e^{jk\left(\frac{2\pi}{N}\right)n} \\ a_k = \frac{1}{T} \int_T x(t) e^{-jk\omega_0 t} dt \qquad a_k = \frac{1}{N} \sum_{n=< N>} x[n] e^{-jk\left(\frac{2\pi}{N}\right)n}$ $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega \qquad x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$ Aperiodic $x(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n}$

Trigonometric Fourier Series

$$x(t) = a_0 + \sum_{k=1}^{\infty} a_k \cos(k\omega_0 t) + \sum_{k=1}^{\infty} b_k \sin(k\omega_0 t).$$

$$a_0 = \frac{1}{T} \int_T x(t) dt.$$

$$a_k = \frac{2}{T} \int_T x(t) \cos(k\omega_0 t) dt.$$

$$b_k = \frac{2}{T} \int_T x(t) \sin(k\omega_0 t) dt.$$

Table 1: Properties of Continuous Time Fourier Series

Property	Periodic signal	Fourier series coefficients
	$x(t)$ periodic with period T and fundamental $y(t)$ frequency $\omega_0 = 2\pi/T$	$egin{aligned} a_k \ b_k \end{aligned}$
Linearity	Ax(t) + By(t)	$Aa_k + Bb_k$
Time shifting	$x(t-t_0)$	$a_k e^{-jk\omega_0 t_0} = a_k e^{-jk(2\pi/T)t_0}$
Frequency shifting	$e^{jM\omega_0t}x(t) = e^{jM(2\pi/T)t}x(t)$	a_{k-M}
Conjugation	$x^*(t)$	a_{-k}^*
Time reversal	x(-t)	a_{-k}
Time scaling	$x(\alpha t), \alpha > 0$ (periodic with period) $\int_{T} x(\tau) y(t - \tau) d\tau$	a_k
Periodic convolution	$\int_T x(\tau)y(t-\tau)d\tau$	Ta_kb_k
Multiplication	x(t)y(t)	$\sum_{l=-\infty}^{\infty} a_l b_{k-l}$
Differentiation	$\frac{d}{dt}x(t)$	$jk\omega_0 a_k$
Integration	$\int_{-\infty}^{t} x(\tau)d\tau$ finite valued and periodic only if $a_0 = 0$	$\frac{1}{jk\omega_0}a_k$ $\begin{cases} a_k = a_{-k}^* \end{cases}$
Conjugate symmetry for real signals	x(t) real	$\begin{cases} \Re e\{a_k\} = \Re e\{a_{-k}\} \\ \Im m\{a_k\} = -\Im m\{a_{-k}\} \\ a_k = a_{-k} \\ \lessdot a_k = - \lessdot a_{-k} \end{cases}$
Real and even signals	x(t) real and even	a_k real and even
Real and odd signals	x(t) real and odd	a_k purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{a_k\}$ $j\mathfrak{Im}\{a_k\}$

Parseval's relation for aperiodic signals

$$\frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Table 2: Properties of the Fourier Transform

Property	Aperiodic signal	Fourier transform
	x(t)	$X(j\omega)$
	y(t)	$Y(j\omega)$
Linearity	ax(t) + by(t)	$aX(j\omega) + bY(j\omega)$
Time shifting	$x(t-t_0)$	$e^{-j\omega t_0}X(j\omega)$
Frequency shifting	$e^{j\omega_0t}x(t)$	$X(j(\omega-\omega_0)$
Conjugation	$x^*(t)$	$X^*(-j\omega)$
Time reversal	x(-t)	$X(-j\omega)$
Time and frequency scaling	x(at)	$\frac{1}{ a }X\left(\frac{j\omega}{a}\right)$
Convolution	x(t) * y(t)	$X(j\omega)Y(j\omega)$
Multiplication	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$
Differentiation in time	$\frac{d}{dt}x(t)$	$j\omega X(j\omega)$
Integration	$\int_{-\infty}^{t} x(\tau) d\tau$	$\frac{1}{j\omega}X(j\omega) + \pi X(0)\delta(\omega)$
Differentiation in frequency	tx(t)	$j\frac{d}{d\omega}X(j\omega)$ $\begin{cases} X(j\omega) = X^*(-j\omega) \end{cases}$
Conjugate symmetry for real signals	x(t) real	$\begin{cases} \Re \mathfrak{e}\{X(j\omega)\} = \Re \mathfrak{e}\{X(-j\omega)\} \\ \Im \mathfrak{m}\{X(j\omega)\} = -\Im \mathfrak{m}\{X(-j\omega)\} \\ X(j\omega) = X(-j\omega) \\ \triangleleft X(j\omega) = -\triangleleft X(-j\omega) \end{cases}$
Symmetry for real and even signals	x(t) real and even	$X(j\omega)$ real and even
Symmetry for real and odd signals	x(t) real and odd	$X(j\omega)$ purely imaginary and odd
Even-odd decomposition for real signals	$x_e(t) = \mathfrak{Ev}\{x(t)\}, [x(t) \text{ real}]$ $x_o(t) = \mathfrak{Dd}\{x(t)\}, [x(t) \text{ real}]$	$\mathfrak{Re}\{X(j\omega)\}$ $j\mathfrak{Im}\{X(j\omega)\}$

Parseval's relation for aperiodic signals

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$$

Table 3: Basic Fourier Transform Pairs

$\frac{\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}}{\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)} = \frac{a_k}{a_k}$ $\frac{\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}}{\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)} = \frac{a_k}{a_k} = 0, \text{ otherwise}$ $\frac{a_1=1}{a_k=0, \text{ otherwise}}$ $\frac{a_1=a_{-1}=\frac{1}{2}}{\sum_{k=0}^{\infty}a_k=0, \text{ otherwise}}$ $\frac{a_1=a_{-1}=\frac{1}{2}}{\sum_{k=0}^{\infty}a_k=0, \text{ otherwise}}$ $\frac{a_1=-a_{-1}=\frac{1}{2}}{a_k=0, \text{ otherwise}}$ $\frac{a_1=-a_{-1}=\frac{1}{2}}{a_k=0, \text{ otherwise}}$ $\frac{a_0=1, a_k=0, k\neq 0}{\sum_{k=0}^{\infty}a_k=0, \text{ otherwise}}$ $\frac{a_0=1, a_k=0, k\neq 0}{\sum_{k=0}^{\infty}a_k=0, \text{ otherwise}}$ Periodic square wave $x(t)=\begin{cases} 1, & t < T_1\\ 0, & T_1< t \leq \frac{T}{2} \end{cases}$ $\sum_{k=-\infty}^{\infty}\frac{2\sin k\omega_0T_1}{k}\delta(\omega-k\omega_0) = \frac{\omega_0T_1}{\pi}\operatorname{sinc}\left(\frac{k\omega_0T_1}{\pi}\right)=\frac{\sin k\omega_0T_1}{k\pi}$)
$\frac{k=-\infty}{e^{j\omega_0 t}}$ $2\pi\delta(\omega-\omega_0)$ $a_1=1$ $a_k=0, \text{ otherwise}$ $cos \omega_0 t$ $\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$ $a_1=a_{-1}=\frac{1}{2}$ $a_k=0, \text{ otherwise}$ $a_1=-a_{-1}=\frac{1}{2}$ $a_k=0, \text{ otherwise}$ $a_1=-a_{-1}=\frac{1}{2j}$ $a_k=0, \text{ otherwise}$ $x(t)=1$ $2\pi\delta(\omega)$ $This is the Fourier series regarding for any choice of T>0 x(t)=\begin{cases} 1, & t < T_1\\ 0, & T_1< t \leq \frac{T}{2} \end{cases} \sum_{k=-\infty}^{\infty}\frac{2\sin k\omega_0 T_1}{k}\delta(\omega-k\omega_0) \frac{\omega_0 T_1}{\pi}\mathrm{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)=\frac{\sin k\omega_0 T_1}{k\pi}$)
$e^{j\omega_0 t} \qquad 2\pi\delta(\omega-\omega_0) \qquad a_1=1 \\ a_k=0, \text{ otherwise}$ $\cos\omega_0 t \qquad \pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)] \qquad a_1=a_{-1}=\frac{1}{2} \\ a_k=0, \text{ otherwise}$ $\sin\omega_0 t \qquad \frac{\pi}{j}[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)] \qquad a_1=-a_{-1}=\frac{1}{2j} \\ a_k=0, \text{ otherwise}$ $x(t)=1 \qquad 2\pi\delta(\omega) \qquad \qquad \begin{cases} a_1=-a_{-1}=\frac{1}{2j} \\ a_k=0, \text{ otherwise} \end{cases}$ $x(t)=1 \qquad 2\pi\delta(\omega) \qquad \qquad \begin{cases} a_1=-a_{-1}=\frac{1}{2j} \\ a_k=0, \text{ otherwise} \end{cases}$ Periodic square wave $x(t)=\begin{cases} 1, & t < T_1 \\ 0, & T_1< t \leq \frac{T}{2} \end{cases} \qquad \sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k}\delta(\omega-k\omega_0) \qquad \frac{\omega_0 T_1}{\pi}\mathrm{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right)=\frac{\sin k\omega_0 T_1}{k\pi}$)
$\sin \omega_0 t \qquad \frac{\pi}{j} [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] \qquad a_k = 0, \text{ otherwise}$ $\sin \omega_0 t \qquad \frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] \qquad a_1 = -a_{-1} = \frac{1}{2j}$ $a_k = 0, \text{ otherwise}$ $a_0 = 1, a_k = 0, k \neq 0$ $This is the Fourier series regarding for any choice of T > 0 \text{Periodic square wave} x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \leq \frac{T}{2} \end{cases} \qquad \sum_{k = -\infty}^{\infty} \frac{2 \sin k \omega_0 T_1}{k} \delta(\omega - k \omega_0) \qquad \frac{\omega_0 T_1}{\pi} \operatorname{sinc} \left(\frac{k \omega_0 T_1}{\pi}\right) = \frac{\sin k \omega_0 T_1}{k \pi}$)
$a_k = 0, \text{ otherwise}$ $a_0 = 1, a_k = 0, k \neq 0$ $x(t) = 1$ $2\pi\delta(\omega)$ $This is the Fourier series reption for any choice of T > 0 x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \leq \frac{T}{2} \end{cases} \sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0) \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$)
$x(t) = 1$ $2\pi\delta(\omega)$ (This is the Fourier series reprised tion for any choice of $T > 0$) Periodic square wave $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases}$ $\sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0) \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$)
$x(t) = \begin{cases} 1, & t < T_1 \\ 0, & T_1 < t \le \frac{T}{2} \end{cases} \qquad \sum_{k=-\infty}^{\infty} \frac{2\sin k\omega_0 T_1}{k} \delta(\omega - k\omega_0) \qquad \frac{\omega_0 T_1}{\pi} \operatorname{sinc}\left(\frac{k\omega_0 T_1}{\pi}\right) = \frac{\sin k\omega_0 T_1}{k\pi}$	7
	7
-	1
and $x(t+T) = x(t)$	
$\sum_{n=-\infty}^{\infty} \delta(t - nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right) \qquad a_k = \frac{1}{T} \text{for all } k$	
$\sum_{n=-\infty}^{\infty} \delta(t - nT) \qquad \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{2\pi k}{T}\right) \qquad a_k = \frac{1}{T} \text{for all } k$ $x(t) = \begin{cases} 1, & t < T_1 \\ 0, & t > T_1 \end{cases} \qquad \frac{2\sin\omega T_1}{\omega} \qquad -$	
$\frac{\sin Wt}{\pi t} \qquad X(j\omega) = \begin{cases} 1, & \omega < W \\ 0, & \omega > W \end{cases}$	
$\delta(t)$ 1 –	
$\frac{1}{j\omega} + \pi\delta(\omega) \qquad -$	
$\delta(t-t_0) \qquad \qquad e^{-j\omega t_0} \qquad \qquad -$	
$e^{-at}u(t), \Re e\{a\} > 0 \qquad \qquad \frac{1}{a+j\omega} \qquad -$	
$te^{-at}u(t), \Re e\{a\} > 0 \qquad \qquad \frac{1}{(a+j\omega)^2} \qquad \qquad -$	
$\frac{t^{n-1}}{(n-1)!}e^{-at}u(t), \Re \mathfrak{e}\{a\} > 0 \frac{1}{(a+j\omega)^n} $	