

Lecture Notes by R. Wang 1

- The following two variants of HC are also NP-complete.
 - **Hamiltonian Path (HP)**
- **Instance**: A graph G=(V, E).
- **Ouestion**: Does G contain a Hamiltonian path?
- **Hamiltonian Path Between Two Points**
- **Instance**: A graph G=(V, E), and two specified vertices $a,b \in V$.
- **Question**: Does G contain a Hamiltonian path between a and b?

- The next famous problem is NP-complete.
 - **Traveling Salesman (TS)**
 - **Instance**: A complete graph G=(V,E) with a weight function $d: E \rightarrow Z^+$ that assigns each edge a positive integer (size), and positive integer K.
- **Question**: Does *G* contain a Hamiltonian circuit of size *K* or less? Here the size of a Hamiltonian circuit is defined to be the sum of the sizes of the edges in the circuit.

2007/11/4 CS,OUC 6

3DM∈NPC (II) Comments on the truth-setting component T_i : None of the internal elements $\{a_i[j], b_i[j] | 1 \le j \le m\}$ will appear in any triples outside of T_i . Thus, in order to form a matching $M' \subseteq M$, either all the sets of T_i (the shaded sets) or all the sets of T_i (the unshaded sets) must be chosen, leaving uncovered all the $u_i[j]$ or all the $\bar{u}_i[j]$, respectively Hence, we can think of the component T_i as forcing a matching $M'\subseteq M$ to make a choice between setting u_i true and setting u_i false. So, in general, a matching $M'\subseteq M$ specifies a truth assignment for U, with the variable u_i being set true if and only if $M' \cap T_i = T_i^t$. 2007/11/4 CS.OUC 8

Lecture Notes by R. Wang

and

2007/11/4

 $T_i^t = \{(\bar{u}_i[j], a_i[j], b_i[j]) | 1 \le j \le m\}$

 $T_i^f = \{(u_i[j], a_i[j+1], b_i[j]) | 1 \le j \le m\}$

The figure illustrates the truth-setting component T_i

 $\cup \{(u_i[m], a_i[1], b_i[m])\}$

___3DM∈ NPC (III)

Second: for each variable $c_j \in C$, create a satisfaction-testing component S_j . The component involves two "internal" elements, $s_I[j] \in X$ and $s_2[j] \in Y$, and external elements from $\{u_i[j], \bar{u}_j[j] \mid 1 \le i \le n\}$, determined by which literals occur in c_j . The set of triples making up this component is defined as $S_j = \{(u_i[j], s_I[j], s_2[j]) \mid u_i \in c_j\}$ $\cup \{(\bar{u}_i[j], s_I[j], s_J[j], s_J[j]) \mid \bar{u}_i \in c_j\}$

The figure illustrates the satisfactiontesting component S_i when $c = \{u_i, \bar{u}_2, u_3\}$.

Comments on S_i : Since $S_i[j]$ and $S_2[j]$ are "internal",

- Any matching M'⊆M will have to contain exactly one triple from C_i.
- This can only be done if some u_i[j] (or ū_i[j]) for a literal u_i∈ c_j (or ū_i∈ c_j) does not occur in the triples in M'∩T_i.
- Which will be the case if and only if the truth setting determined by M' satisfies clause c_j

2007/11/4 CS,OUC 9

3DM∈NPC (IV)

Third: construct a garbage-collection component G, involving "internal" elements $g_1[k] \in X$ and $g_2[k] \in Y$, $1 \not = x \not= x m(n-1)$, and external elements of the form $u_i[j]$ and $u_i[j]$ from W. It consists of the following set of triples: $G = \{(u_i[i], g_i[k], g_i[k]), (\overline{u_i}[i], g_i[k], g_i[k])\}$

 $G = \left\{ (u_i[j], g_1[k], g_2[k]), (\bar{u}_i[j], g_1[k], g_2[k]) \mid 1 \leq i \leq n, 1 \leq j \leq m, 1 \leq k \leq m(n-1) \right\}.$

Comments on *G*:

- Each pair s_i[k], g₂[k] must be matched with a unique u_i[j] or ū_i[j] that does not occur in any triples of M'-G.
- There are exactly m(n-1) such uncovered elements $u_i[j]$ and $\bar{u}_i[j]$, and
- G is structured to insure that they can always be covered by choosing M'∩G appropriately.

Thus, whenever a subset of *M-G* satisfies all the constraints imposed by the truth-setting and satisfaction-testing components, the subset can be extended to a matching of *M*.

Summarization:

 $W=\{u_{i}[j], \ \bar{u}_{i}[j] \ | \ 1 \le n, \ 1 \le m\};$ $X=A \cup S_{1} \cup G_{1}, \text{ where}$ $A=\{a_{i}[j] \ | \ 1 \le n, \ 1 \le m\}$ $S_{1}=\{s_{i}[j] \ | \ 1 \le m\}$ $G_{1}=\{g_{1}[k] \ | \ 1 \le m(n-1)\};$ $Y=B \cup S_{2} \cup G_{2}, \text{ where}$ $B=\{b_{i}[j] \ | \ 1 \le n, \ 1 \le m\}$

 $S_2 = \{s_2[j] \mid 1 \leq \leq m\}$

 $G_2 = \{g_2[k] \mid 1 \le k \le m(n-1)\};$ $M = (\bigcup_{1 \le i \le n} T_i) \cup (\bigcup_{1 \le j \le m} S_j) \cup G.$

2007/11/4 CS,OUC 10

$3DM \in NPC (V) = \begin{cases} s_{i(1)} & s_$

The Proof of that there is a $t:U \rightarrow \{T,F\}$ that satisfies $C \Leftrightarrow$ there is a matching M' for M.

- ⇒ If $t:U \rightarrow \{T,F\}$ satisfies C, we can construct a matching $M' \subseteq M$ as follows:
 - For each clause $c_j \in C$, let $z_j \in \{u_i[j], \bar{u}_i[j] | 1 \le s_t, 1 \le s_t\} \cap c_j$ be a literal that is set true by t. We then set

$$M' = \left(\bigcup_{t(u_j)=T} T_i' \right) \cup \left(\bigcup_{t(u_j)=F} T_i' \right) \\ \cup \left\{ (z_j[j], s_1[j], s_2[j]) \mid 1 \leq \leq m \right\} \\ \cup G'.$$

where G' is an appropriately chosen subset of G that includes all the $g_1[k]$, $g_2[k]$, and remaining $u_1[j]$ and $\bar{u}_1[j]$.

It is easy to verify that such a G' can always be chosen and that the resulting set M' is a matching.
2007/11/4 CS.OUC

← From the comments made during the description of M, it follows immediately that M cannot contain a matching unless C is satisfiable.

11

Next problem is NP-complete.

Exact Cover by 3-Sets (X3C)

- **Instance**: A finite set X with |X|=3q and a collection C of 3-element subsets of X.
- Question: Does C contain a an exact cover for X, that is, a sub-collection C'⊆C such that every element of X occurs in exactly one member of C'?

Note that:

- Every instance is 3DM can be viewed as an instance of X3C.
- Thus 3DM is a restricted version of X3C.
- The NP-completeness of X3C follows by a trivial transformation from 3DM.

2007/11/4 CS,OUC

12

CS,OUC

14

Lecture Notes by R. Wang 4

2007/11/4