Homework 2

Corey Mostero

Student ID: 256652

Force Statics

1	Boo	k																									
	1.1	5.2 .																									
	1.2	5.6 .																									
	1.3	5.62																									
	1.4	5.64																									
	1.5	5.79		•			•										•						•		•		
2	Lab	Man	แล	1																							
	2.1	270 .																									
	2.2	273 .																									
	2.3	274 .																									
	2.4	287.																									
	2.5	290 .																									
1	\mathbf{B}	ook																									
1.	1 5	5.2																									
(8	a)																										
														•	>	F	\overline{u}	=	0								
											,	т															
											-	L _W	all		_												
														1	wa	11,	b	=	u	b							
													T_{τ}	val	1, l	, =	=	w_l	5								
												_							_								
(ł	0)																										
												\sum	<u> </u>	$F_y^{(}$	b_1) =	= (0									
										7	Γ_{b}	.b ₁	_	- ı	v_{b_1}	=	= (0									
	$T_{b_2,b_1} - w_{b_1} = 0$ $T_{b_2,b_1} = w_{b_1}$																										
												7	٦.	$F_{a}^{(}$	b_2) =	= (0									
										7			_		v_{b_2}												
											01	,02			b_2				10								
									7	b_2	.b	, +			,					+	w_l	2					
	wł	nere								_	,				, -				-			_					
									T_{ℓ}	, 1	b_2	=	7	b_2	b_1	8	Z	w	b_1	=	= <i>u</i>	b_2					
												T	, +	- 7	¬ =	= 7	w	+	w								

2 2 3

5

. . 9 . . 11

. . 11 . . 11

2T = 2wT = w

$$T = w$$

(c)

$$\sum_{} F_y^{(b_1)} = 0$$

$$T_{b_2,b_1} - w = 0$$

$$T_{b_2,b_1} = w$$

$$\sum_{} F_y^{(b_2)} = 0$$

$$T_{b_1,b_2} - w = 0$$

$$T_{b_1,b_2} = w$$

where

$$T_{b_1,b_2} = T_{b_2,b_1}$$

$$T + T = w + w$$

$$2T = 2w$$

$$T = w$$

$$T = w$$

1.2 5.6

$$b = \mathrm{ball}$$

$$m = 3620\,\mathrm{kg}$$

$$\theta_{T_B,\hat{y}} = 40^\circ$$

(a)

$$T_B = ?$$

$$\cos(\theta) = \frac{m_b g}{T_B}$$

$$T_B = \frac{m_b g}{\cos(\theta)}$$

$$= \frac{3620 \text{ kg} \cdot 10 \text{ m s}^{-2}}{\cos(40^\circ)}$$

$$T_B = 47.255.7 \text{ N}$$

$$T_B = 47.3 \times 10^3 \text{ N}$$

$$T_{A} = ?$$

$$\theta_{T_{B},\hat{x}} = ?$$

$$\theta_{T_{B},\hat{x}} = 90^{\circ} - \theta_{T_{B},\hat{y}}$$

$$= 90^{\circ} - 40^{\circ}$$

$$\theta_{T_{B},\hat{x}} = 50^{\circ}$$

$$\cos(\theta_{T_{B},\hat{x}}) = \frac{T_{B_{x}}}{T_{B}}$$

$$T_{B_{x}} = (T_{B})\cos(\theta_{T_{B},\hat{x}})$$

$$= (47.3 \times 10^{3} \text{ N})\cos(50^{\circ})$$

$$T_{B_{x}} = 30403.9 \text{ N}$$

$$\sum F_{x}^{(b)} = 0$$

$$T_{B_{x}} - T_{A} = 0$$

$$T_{A} = T_{B_{x}}$$

$$T_{A} = 30403.9 \text{ N}$$

$$T_{A} = 30403.9 \text{ N}$$

$1.3 \quad 5.62$

$$T_{r,p_1} = ?$$
 $T_{w,p_1} = ?$
 $w = m_w g$
 $T_{p_2,p_1} = ?$
 $T_{r,p_2} = ?$
 $\vec{F} = ?$

Based on the free body diagrams, it can be concluded that

$$T_{r,p_1} = T_{p_2,p_1} = \vec{F} \tag{1}$$

as they share a common rope.

Therefore the forces of p_1 in the \hat{y} direction can be found as

$$\sum_{t} F_y^{(p_1)} = 0$$

$$T_{r,p_1} + T_{p_2,p_1} - T_{w,p_1} = 0$$

$$T_{w,p_1} = 2T$$

Finding $T_{p_1,w}$ from the free body diagram of the weight

$$\sum F_y^{\text{(weight)}} = 0$$
$$T_{p_1,w} - w = 0$$
$$T_{p_1,w} = w$$

In order to withhold Newton's third law, the combined tension of T_{r,p_1} and T_{p_2,p_1} must equal T_{w,p_1} (as shown in Equation 1)

$$2T = T_{w,p_1}$$
$$= w$$
$$T = \frac{w}{2}$$

It can therefore be concluded that (according to (1)) \vec{F} must equal T, finding the magnitude in terms of w

$$\vec{F} = T = \frac{w}{2}$$

- 1.4 5.64
- (a)
- (b)

$$m_{\rm ball} = ?$$

 $\theta_{\hat{x}, \rm ramp} = 35.0^{\circ}$
 $T_{\rm ramp, ball} = ?$

Determine the normal force

$$\begin{split} \cos(\theta) &= \frac{N_{\text{ball}y}}{N_{\text{ball}}} \\ N_{\text{ball}} &= \frac{N_{\text{ball}y}}{\cos(\theta)} \\ \text{as well as: } N_{\text{ball}y} &= N_{\text{ball}}\cos(\theta) \end{split}$$

To find $N_{\text{ball}y}$, utilize the forces in the \hat{y} direction

$$\begin{split} \sum F_y^{\text{(ball)}} &= 0 \\ N_{\text{ball}y} - m_{\text{ball}g} &= 0 \\ N_{\text{ball}y} &= m_{\text{ball}g} \\ N_{\text{ball}} \cos(\theta) &= m_{\text{ball}g} \\ N_{\text{ball}} &= \frac{m_{\text{ball}}g}{\cos(\theta)} \\ &= \frac{m_{\text{ball}}10\,\text{m}\,\text{s}^{-2}}{\cos(35.0^\circ)} \\ N_{\text{ball}} &= (m_{\text{ball}})(12.2\,\text{m}\,\text{s}^{-2}) \\ \hline N_{\text{ball}} &= (m_{\text{ball}})(12.2\,\text{m}\,\text{s}^{-2}) \end{split}$$

(c) Finding the tension in the wire requires finding the forces in \hat{x} direction

$$\sum F_x^{(\text{ball})} = 0$$

$$T_{\text{ramp,ball}} - N_{\text{ball}x} = 0$$

Finding $N_{\text{ball}x}$

$$\sin(\theta) = \frac{N_{\text{ball}x}}{N_{\text{ball}}}$$

$$N_{\text{ball}x} = N_{\text{ball}} \sin(\theta)$$

And using the value in the force equation above

$$T_{\text{ramp,ball}} = N_{\text{ball}} \sin(\theta)$$

$$= (m_{\text{ball}})(12.2 \,\text{m s}^{-2}) \sin(35.0^{\circ})$$

$$T_{\text{ramp,ball}} = (m_{\text{ball}})(7.00 \,\text{m s}^{-2})$$

$$T_{\text{ramp,ball}} = (m_{\text{ball}})(7.00 \,\text{m s}^{-2})$$

$1.5 \quad 5.79$

(a)

$$N_A=$$
?
$$N_B=$$
?
$$N_A=N_B, \mbox{ Newton's Third Law } N=$$
?
$$m_Ag=1.20 \mbox{ N} \\ m_Bg=3.60 \mbox{ N} \\ \mu_k=0.300 \\ f=\mu_k N \\ \vec{F}=$$
?

In order to find \vec{F} , the normal force is needed which can be found by observing the forces in the \hat{y} direction

$$\sum_{} \vec{F}_{\hat{y}}^{(\mathrm{A})} = 0$$

$$N_A - m_A g = 0$$

$$N_A = m_A g$$

$$\sum \vec{F}_{\hat{y}}^{(\mathrm{B})} = 0$$

$$N - m_B g - N_B = ?$$

$$N = m_B g + N_B$$

$$= m_B g + m_A g$$

$$= 1.20 \,\mathrm{N} + 3.60 \,\mathrm{N}$$

$$N = 4.80 \,\mathrm{N}$$

$$f = \mu_k N = (0.300)(4.80 \,\mathrm{N}) = 1.44 \,\mathrm{N}$$

Now finding \vec{F}

$$\sum \vec{F}_{\hat{x}}^{(B)} = 0$$

$$-\vec{F} + f = 0$$

$$\vec{F} = f$$

$$= 1.44 \text{ N}$$

$$\vec{F} = 1.44 \text{ N}$$

$$\vec{F} = 1.44\,\mathrm{N}$$

$$N_A=?$$
 $N_B=?$
 $N_A=N_B$
 $f_A=?$
 $f_B=?$
 $f_A=f_B$, Newton's Third Law
 $T_{\mathrm{wall},A}=?$
 $m_Ag=1.20\,\mathrm{N}$
 $N=?$
 $m_Bg=3.60\,\mathrm{N}$
 $\vec{F}=?$

First determine the forces in the \hat{x} direction of block A to find tension

$$\sum_{i} \vec{F}_{\hat{x}}^{(A)} = 0$$

$$T_{\text{wall},A} - f_A = 0$$

$$f_A = T_{\text{wall},A}$$

Similarly to part (a), find N_A using the \hat{y} forces of block A

$$\begin{split} \sum_{} \vec{F}_{\hat{y}}^{(A)} &= 0 \\ N_A - m_A g &= 0 \\ N_A &= m_A g \\ N_A &= 1.20 \, \mathrm{N} \end{split}$$

The friction of block A upon block B can now be calculated, and further utilized through f_B due to Newton's Third Law

$$f_A = \mu_k N_A = (0.300)(1.20 \,\mathrm{N}) = 0.360 \,\mathrm{N}$$

Find N to aid in finding the friction between the ground and block B

$$\sum_{\hat{y}} \vec{F}_{\hat{y}}^{(B)} = 0$$

$$N - m_B g - N_B = 0$$

$$N = m_B g + N_B$$

$$= 3.60 \,\text{N} + 1.20 \,\text{N}$$

$$N = 4.80 \,\text{N}$$

Solve for the forces in the \hat{x} direction of block B to finally compute the

pulling force

$$\begin{split} \sum \vec{F}_{\hat{x}}^{(B)} &= 0 \\ f + f_B - \vec{F} &= 0 \\ \vec{F} &= f + f_B \\ &= \mu_k N + 0.360 \, \mathrm{N} \\ &= (0.300)(4.80 \, \mathrm{N}) + 0.360 \, \mathrm{N} \\ \vec{F} &= 1.80 \, \mathrm{N} \end{split}$$

2 Lab Manual

2.1 270

(a)

$$r_{A} = ?$$
 $r_{B} = ?$
 $r_{C} = ?$
 $r_{A} = r_{B} = r_{C}$
 $R = ?$
 $\theta = ?$

The center of mass of all three identical cylinders created 60° angles at each corner. This makes the angle of the top corner of A, $\frac{60^{\circ}}{2}=30^{\circ}$ when focusing on only one half of the illustration.

$$\cos(30^\circ) = \frac{m_A g}{2r_A}$$

$$r_A = \frac{m_A g}{2\cos(30^\circ)}$$

$$r_A = \frac{m_A g}{\sqrt{3}}$$

$$m_A g = \sqrt{3}r_A$$

It can be observed that the opposite side of both θ and the angle between

 $m_A g$ and $2r_A$ are the same

$$\sin(\theta) = \frac{\frac{r_B}{2}}{R}$$

$$\sin(30^\circ) = \frac{\frac{r_B}{2}}{r_A}$$

$$r_A \sin(30^\circ) = R \sin(\theta)$$

$$\frac{m_A g}{\sqrt{3}} \sin(30^\circ) = R \sin(\theta)$$

$$R \sin(\theta) = \frac{m_A g}{2\sqrt{3}}$$

Half of the opposite side of θ has been found, now the adjacent is required. The adjacent can be observed as the combined forces in the \hat{y} direction of the illustration

$$\sum F_y = \cos(30^\circ)(N_{B,A} - N_{A,B} + N_{C,A} - N_{A,C}) - m_A g - m_B g - m_C g$$

$$\sum F_y = 3mg, \text{ divide by 2 to get the half's weight}$$

$$\sum F_y = \frac{3mg}{2}$$

$$\cos(\theta) = \frac{F_y}{R}$$
$$= \frac{\frac{3mg}{2}}{R}$$
$$R\cos(\theta) = \frac{3mg}{2}$$

Therefore solving for $tan(\theta)$

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

$$= \frac{\frac{mg}{2R\sqrt{3}}}{\frac{3mg}{2R}}$$

$$= \frac{(mg)(2R)}{(2R\sqrt{3})(3mg)}$$

$$\tan(\theta) = \frac{1}{3\sqrt{3}}$$

$$\tan(\theta) = \frac{1}{3\sqrt{3}}$$

(b)

- 2.2 273
- 2.3 274
- 2.4 287
- 2.5 290