PHYSICS

Chapter N° 24

Cuanización de la Energía

LA PARADOJA DEL GATO DE SCHRÖDINGER

ONDAS ELECTROMAGNÉTICAS

ESPECTRO ELECTROMAGNETICO

Luz visible			
Color	Frecuencia	Longitud de onda	
Violeta	668–789 THz	380-450 nm	
Azul	631–668 THz	450–475 nm	
Ciano	606–630 THz	476–495 nm	
Verde	526–606 THz	495–570 nm	
Amarillo	508–526 THz	570–590 nm	
Naranja	484–508 THz	590–620 nm	
Rojo	400–484 THz	620-750 nm	

Mayor frecuencia, mayor energía

Mayor longitud de onda , menor energía

TEORIA CLÁSICA

Los físicos tenían problemas para explicar la forma en que los cuerpos calientes irradian energía.

El cuerpo emite radiación De manera continua

Esta teoría no puede explicar Algunos fenómenos

RADIACIÓN CONTINUA

TEORIA DE MAX PLANCK

Max Planck, "la energía de la radiación electromagnética está cuantizada", es decir, la radiación electromagnética está constituida por corpúsculos que llevan la energía de la radiación. A estos corpúsculos se les denominó cuantos y posteriormente se les llamó fotones. De ahí el nombre de Física cuántica.

RADIACIÓN DISCRETA

El cuerpo emite radiación
De manera discreta
Llamada "cuantos"
Establece la cuantización
de la energía

E = nhf

E: energía

n: numero de fotones

h: constante de Planck

f: frecuencia

ALBERT EINSTEIN

Establece que la radiación electromagnética esta constituido por paquetes , la llamo fotones , equivalentes a los cuantos de Planck

E = hf

CUANTIZACIÓN DE LA ENERGÍA

Para un fotón

$$E_{\text{fot\'on}} = h \cdot f$$

$$c = \lambda \cdot f$$

$$E_{\text{fot\'on}} = h \frac{c}{\lambda}$$

h : Constante universal de Max Planck

$$h = 6.63 \cdot 10^{-34} Js$$

$$h = 4.14 \cdot 10^{-15} \text{ eVs}$$

$$C = 3.10^8 \text{ m/s}.$$

Para n fotones

$$\mathbf{E}_f = \mathbf{n}\mathbf{h} \cdot f$$

$$c = \lambda \cdot f$$

$$\left[\mathbf{E}_f = \mathbf{nh} \; \frac{\mathbf{c}}{\lambda} \right]$$

Un foco emite luz de longitud onda Determine la energía 663 nm. asociada a cada fotón de dicha radiación. (h=6,63×10⁻³⁴ J · s; 1 nm = 10^{-34} ⁹ m) RESOLUCIÓN:

Sabemos:

$$E_{\text{fot\'{o}n}} = h \frac{C}{\lambda}$$

 $\lambda = 6.63 \cdot 10^{-9} \,\mathrm{m}$

Aplicando:

$$E_{\text{fotón}} = (6.63 \cdot 10^{-34} \text{ Js}) \left(\frac{3 \cdot 10^8 \text{ m/s}}{663 \cdot 10^{-9} \text{ m}} \right)$$

∴
$$E_{\text{fotón}} = 3.10^{-19} \text{ J}$$

Problema 2

Determine la energía de un fotón de luz emitida por un foco. Se sabe que el foco emite una luz de 6×10^{14} Hz de frecuencia. (h = 6,6×10-34 Js) ESOLUCIÓN:

Sabemos:

$$E_{\text{fotón}} = h f_{\text{radiación}}$$

Aplicando:

$$E_{\text{fot\'on}} = (6.6 \cdot 10^{-34} \text{ Js}) (6 \cdot 10^{14} \text{ Hz})$$

:
$$E_{\text{fot\'o}n} = 39, 6.10^{-20} \text{ J}$$

Problema 3

Determine la frecuencia de una radiación luminosa si los fotones emitidos tienen una energía de 2,07 eV. $(h = 4,14 \times 10^{-15} \text{ eV} \cdot \text{s})$

RESOLUCIÓN:

Recordando:

$$E_{\text{fot\'on}} = h \cdot f$$

Aplicando:

$$2,07 \text{ eV} = (4,14.10^{-15} \text{ eVs}) \text{ f}$$

$$f = \frac{2,07 \text{ eV}}{4,14.10^{-15} \text{ eVs}}$$

:
$$f = 5 \cdot 10^{14} \text{ Hz}$$

Problema 4

Determine la energía total de 10^{10} fotones emitidos por una fuente luminosa de $450\cdot10^{12}$ Hz de frecuencia. (h = $6,6\cdot10^{-34}$ J s)

RESOLUCIÓN:

Sabemos:

n : Numero de fotones emitidos

$$E_{\text{fotones}} = n h \cdot f$$

Aplicando:

$$E_{\text{fotones}} = (10^{10})(6.6 \cdot 10^{-34} \text{ Js})(450 \cdot 10^{12} \text{ Hz})$$

$$E_{\text{fotones}} = 2970 \cdot 10^{10-34+12} J$$

Problema 5

Determine la energía total, en eV, de 10^{20} fotones de luz de 500 nm de longitud de onda (c=3·10⁸ m/s; h=4,14·10⁻¹⁵ eV·s) RESOLUCIÓN:

RECORDANDO

$$E_{\text{fotones}} = \text{nh } \frac{c}{\lambda}$$
 Aplicando:

$$E_{\text{fotón}} = 10^{20} \cdot 4,14 \cdot 10^{-15} \cdot \frac{3 \cdot 10^8}{500 \cdot 10^{-9}} \,\text{eV}$$

$$E_{\text{fot\'on}} = 12,42 \cdot 10^5 \cdot \frac{10^8}{5 \cdot 10^{-7}} \, \text{eV}$$

$$E_{\text{fot\'on}} = 2.5 \cdot 10^{20} \text{eV}$$

Problema 6

Ordene de menor a mayor la energía de un fotón de luz verde, rojo y azul.

Luz visible			
Color	Frecuencia	Longitud de onda	
Violeta	668–789 THz	380–450 nm	
Azul	631–668 THz	450–475 nm	
Ciano	606–630 THz	476–495 nm	
Verde	526–606 THz	495–570 nm	
Amarillo	508–526 THz	570–590 nm	
Naranja	484–508 THz	590-620 nm	
Rojo	400–484 THz	620-750 nm	

rojo < verde < azul

Problema 7

Escriba verdadero (V) o falso (F) según corresponda.

- b. La luz verde tiene mayor frecuencia que la luz roja...... ()

Luz visible			
Color	Frecuencia	Longitud de onda	
Violeta	668–789 THz	380–450 nm	
Azul	631–668 THz	450–475 nm	
Ciano	606–630 THz	476–495 nm	
Verde	526–606 THz	495–570 nm	
Amarillo	508–526 THz	570–590 nm	
Naranja	484–508 THz	590-620 nm	
Rojo	400–484 THz	620-750 nm	

Problema 8

En 1905 Albert Einstein desarrolló el análisis correcto del efecto fotoeléctrico. Al basarse en una hipótesis de Max Planck, sugerido cinco años antes, Einstein postuló que un rayo de luz consiste en pequeños paquetes de energía llamados fotones o cuantos cuya energía es según la siguiente ecuación:

$$\mathbf{E} = \frac{hc}{\lambda}$$

Donde: $h = 6.62 \times 10^{-34} \text{ J} \cdot \text{s}$

 $c = 3 \times 10^8 \text{ m/s}$

 λ : longitud de onda

Se tiene un átomo de kriptón que emite luz naranja cuya longitud de onda es 606 nm. ¿Qué energía emite según la ecuación?

Recordando:

$$\left[E_{\text{fot\'on}} = h \frac{C}{\lambda} \right]$$

Aplicando:

$$E_{\text{fot\'on}} = (6,62.10^{-34} \text{ Js}) \left(\frac{3.10^8 \text{ m/s}}{606.10^{-9} \text{ m}} \right)$$

$$E_{\text{fot\'on}} = 0.033 \cdot 10^{-34+8+9} J$$

$$E_{\text{fot\'on}} = 33 \cdot 10^{-3} \cdot 10^{-34+8+9} \text{ J}$$

∴
$$E_{\text{fot\'on}} = 33.10^{-20} \text{ J}$$