general-purpose algorithms

refs: Recht 2019 "A tour of ..."

Nesterov & Spoking 2017 "Random gradient-free..."

Williams 1992 "Simple statistical ..."

· consider the unconstrained nonlinear program

(NLP) min c(U) s.t. UERM

Loxal minimum

want u* s.t. c(u*) < c(u) frall u + u* (||u-u*|| < E)

idea: iteratively choose ut such that $c(u^+) < c(u)$ and hope that $u \mapsto u^+ \mapsto u^+ \mapsto ... \mapsto u^*$

* how to choose u+?

-> two main strategies:

1°. randomize a° . descend $a^{\dagger} \sim p(u)$ $a^{\dagger} = 2$

 a^{*} . descend $u^{\dagger} = u - v \cdot Dc(u)$

eg « simulated annualing eg « gradient descent « genetic / swarm algo « Newton - Raphson

+ easy implementation	+ easy-ish] implementatio
+ approximate global u*	- approximate local ret
- sample -inefficient	+ sample-efficient
+ need continuous c	- need differentiable c
· let's consider a specific class that leverage gradient-like	
-> instead of min c(u)	_
s.t. uelRM	s.t. unp,
* how does minimum/minimize	P is a probability distribution
* how does minhum/minimize	of relate to>?
-> if "S" distributions or	e allaned, then
mini-ma/-mizers of 1A	are minima/mizers of 2nd
	and con't have lower cost)
but there are (uncountably)) infinite "8"-distributions
\rightarrow instead of min $E[c(u)]$	consider $min E[c(u)]$

s.t. unp where po is a distribution parameterized by $\Theta \in \Theta$ *richness of parameterization trades off tractability with suboptimality

idea: "log-likelihood trick"

 $D_{\Theta} = [c(u)] = D_{\Theta} (c(u)) p_{\Theta}(u) du - def. of expectation$

= $\int c(u) D_6 P_6(u) du - assuming D & f commute$

 $= \begin{cases} c(u) D_{\theta} P_{\theta}(u) & \frac{P_{\theta}(u)}{P_{\theta}(u)} du - assuming P_{\theta}(u) \neq 0 \end{cases}$

= $\int (c(u) D_{\theta} \log P_{\theta}(u)) P_{\theta}(u) du - D_{x} \log f(x) = \frac{D_{x}f(x)}{f(x)}$ = $\int c(u) D_{\theta} \log P_{\theta}(u) - def$ of expectation

* why is this a useful result?

-> if we sample if $n = p_{\Theta}(u)$, evaluate c(u), and average, we can compute the derivative $D_{\Theta} = [c(u)]$

without derivative Duc ?

algo (REINFORCE) [Williams 1992]

1°. sample $\{u_n\}_{n=1}^N \sim P_{\theta}$ 2°. uplate $\theta^{\dagger} = \theta - \gamma \cdot \frac{1}{N} \sum_{n=1}^{\infty} c(u_n), D_{\theta} \log P_{\theta}(u_n)$ L) $E[c(u)] D_{\theta} \log P_{\theta}(u)] = \lim_{N \to \infty} \log C_{\theta} \operatorname{dial} Limit Thin}$

[Nesteron & Spokoiny 2017]

· frey facts: when variance of Po is small: E[c] ~ C

\$\frac{1}{2} D_6 \text{E[c]} ~ D_u c\$

> REINFORCE is (stochastic) goodient descent

on a smoothed cost function

[Recht 2019]

ex: "simple / pure random search" note: specific parameterization of consider $p_{\mu}(u) = P(u-\mu)$ where P is -vormal / Gaussian or -uniform on a sphere of their REINFORCE simplifies to

μ+=μ-γ. ½ (c(μ+Δυ)-c(μ))· u where u ~ β

white set of directional derivative DuE(c(μ))· u

* many "state-of-the-art" algorithms (eg policy gradient)

| are elaborations on the preceding
| and the elaborations may not actually

outperform the simple variants

[Maria et al 2018 "Simple random search..."]