FES-ISL Collection

Bhabanishankar Rath

A collection of some functional equation problems.

August 25, 2022

Problem 1 (IMO 1998). Determine the least possible value of f(1998), where $f: \mathbb{N} \to \mathbb{N}$ for all $m, n \in \mathbb{N}$ such that

$$f(n^2 f(m)) = m(f(n))^2.$$

Problem 2 (IMO 1999). Find all functions $f: \mathbb{R} \to \mathbb{R}$ for all $x, y \in \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1.$$

Problem 3 (IMO 2000). Find all pairs of functions $f: \mathbb{R} \to \mathbb{R}$; $g: \mathbb{R} \to \mathbb{R}$ such that

$$f(x+g(y)) = xf(y) - yf(x) + g(x)$$
 for all $x, y \in \mathbb{R}$.

Problem 4 (IMO 2001). Find all functions $f : \mathbb{R} \to \mathbb{R}$, satisfying

$$f(xy)(f(x) - f(y)) = (x - y)f(x)f(y)$$

for all x, y.

Problem 5 (IMO 2002). Find all functions f from the reals to the reals such that

$$f(f(x) + y) = 2x + f(f(y) - x)$$

for all real x, y.

Problem 6 (IMO 2002). Find all functions f from the reals to the reals such that

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

Problem 7 (IMO 2003). Let \mathbb{R}^+ be the set of all positive real numbers. Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ that satisfy the following conditions:

- $f(xyz) + f(x) + f(y) + f(z) = f(\sqrt{xy})f(\sqrt{yz})f(\sqrt{zx})$ for all $x, y, z \in \mathbb{R}^+$;
- f(x) < f(y) for all $1 \le x < y$.

Problem 8 (IMO 2004). Find all polynomials f with real coefficients such that for all reals a, b, c such that ab + bc + ca = 0 we have the following relations

$$f(a-b) + f(b-c) + f(c-a) = 2f(a+b+c).$$

Problem 9 (IMO 2004). Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the equation

$$f(x^2 + y^2 + 2f(xy)) = (f(x + y))^2$$
.

for all $x, y \in \mathbb{R}$.

Problem 10 (IMO 2005). We denote by \mathbb{R}^+ the set of all positive real numbers.

Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ which have the property:

$$f(x)f(y) = 2f(x + yf(x))$$

for all positive real numbers x and y.

Problem 11 (IMO 2005). Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that f(x+y) + f(x)f(y) = f(xy) + 2xy + 1 for all real numbers x and y.

Problem 12 (IMO 2007). Consider those functions $f: \mathbb{N} \to \mathbb{N}$ which satisfy the condition

$$f(m+n) \ge f(m) + f(f(n)) - 1$$

for all $m, n \in \mathbb{N}$. Find all possible values of f(2007).

ISLS 3

Problem 13 (IMO 2007). Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying f(x + f(y)) = f(x + y) + f(y) for all pairs of positive reals x and y. Here, \mathbb{R}^+ denotes the set of all positive reals.

Problem 14 (IMO 2007). Find all surjective functions $f: \mathbb{N} \to \mathbb{N}$ such that for every $m, n \in \mathbb{N}$ and every prime p, the number f(m+n) is divisible by p if and only if f(m) + f(n) is divisible by p.

Problem 15 (IMO 2008). Find all functions $f:(0,\infty)\mapsto(0,\infty)$ (so f is a function from the positive real numbers) such that

$$\frac{(f(w))^2 + (f(x))^2}{f(y^2) + f(z^2)} = \frac{w^2 + x^2}{y^2 + z^2}$$

for all positive real numbers w, x, y, z, satisfying wx = yz.

Problem 16 (IMO 2008). Let $f: \mathbb{R} \to \mathbb{N}$ be a function which satisfies $f\left(x + \frac{1}{f(y)}\right) = f\left(y + \frac{1}{f(x)}\right)$ for all $x, y \in \mathbb{R}$. Prove that there is a positive integer which is not a value of f.

Problem 17 (IMO 2009). Determine all functions f from the set of positive integers to the set of positive integers such that, for all positive integers a and b, there exists a non-degenerate triangle with sides of lengths

$$a, f(b)$$
 and $f(b + f(a) - 1)$.

(A triangle is non-degenerate if its vertices are not collinear.)

Problem 18 (IMO 2009). Let f be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers x and y such that

$$f(x-f(y)) > yf(x) + x$$

Problem 19 (IMO 2009). Find all functions f from the set of real numbers into the set of real numbers which satisfy for all x, y the identity

$$f(xf(x+y)) = f(yf(x)) + x^2$$

Problem 20 (IMO 2009). Let f be a non-constant function from the set of positive integers into the set of positive integer, such that a - b divides f(a) - f(b) for all distinct positive integers a, b. Prove that there exist infinitely many primes p such that p divides f(c) for some positive integer c.

Problem 21 (IMO 2010). Find all function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$ the following equality holds

$$f(\lfloor x \rfloor y) = f(x) \lfloor f(y) \rfloor$$

where $\lfloor a \rfloor$ is greatest integer not greater than a.

Problem 22 (IMO 2010). Denote by \mathbb{Q}^+ the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+$:

$$f(f(x)^2y) = x^3 f(xy).$$

Problem 23 (IMO 2010). Suppose that f and g are two functions defined on the set of positive integers and taking positive integer values. Suppose also that the equations f(g(n)) = f(n) + 1 and g(f(n)) = g(n) + 1 hold for all positive integers. Prove that f(n) = g(n) for all positive integer n.

Problem 24 (IMO 2010). Find all functions $g: \mathbb{N} \to \mathbb{N}$ such that

$$(g(m)+n)(g(n)+m)$$

is a perfect square for all $m, n \in \mathbb{N}$.

Problem 25 (IMO 2011). Find all functions f from the reals to the reals such that

$$f(f(x) + y) = 2x + f(f(y) - x)$$

for all real x, y.

Problem 26 (IMO 2011). Find all functions f from the reals to the reals such that

$$(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)$$

for all real x, y, z, t.

Problem 27 (IMO 2012). Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that, for all integers a, b, c that satisfy a + b + c = 0, the following equality holds:

$$f(a)^{2} + f(b)^{2} + f(c)^{2} = 2f(a)f(b) + 2f(b)f(c) + 2f(c)f(a).$$

ISLS 5

Problem 28 (IMO 2012). Find all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the conditions

$$f(1+xy) - f(x+y) = f(x)f(y)$$
 for all $x, y \in \mathbb{R}$,

and $f(-1) \neq 0$.

Problem 29 (IMO 2012). Let $f: \mathbb{N} \to \mathbb{N}$ be a function, and let f^m be f applied m times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n) = n + k$, and let k_n be the smallest such k. Prove that the sequence k_1, k_2, \ldots is unbounded.

Problem 30 (IMO 2013). Let $\mathbb{Q}_{>0}$ be the set of all positive rational numbers. Let $f:\mathbb{Q}_{>0}\to\mathbb{R}$ be a function satisfying the following three conditions:

(i) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x)f(y) \ge f(xy)$; (ii) for all $x, y \in \mathbb{Q}_{>0}$, we have $f(x+y) \ge f(x) + f(y)$; (iii) there exists a rational number a > 1 such that f(a) = a.

Prove that f(x) = x for all $x \in \mathbb{Q}_{>0}$.

Problem 31 (IMO 2013). Let $\mathbb{Z}_{\geq 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\geq 0} \to \mathbb{Z}_{\geq 0}$ satisfying the relation

$$f(f(f(n))) = f(n+1) + 1$$

for all $n \in \mathbb{Z}_{\geq 0}$.

Problem 32 (IMO 2013). Let $\mathbb{Z}_{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that

$$m^2 + f(n) \mid mf(m) + n$$

for all positive integers m and n.

Problem 33 (IMO 2013). Determine all functions $f: \mathbb{Q} \to \mathbb{Z}$ satisfying

$$f\left(\frac{f(x)+a}{b}\right) = f\left(\frac{x+a}{b}\right)$$

for all $x \in \mathbb{Q}$, $a \in \mathbb{Z}$, and $b \in \mathbb{Z}_{>0}$.

Problem 34 (IMO 2014). Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(f(m) + n) + f(m) = f(n) + f(3m) + 2014$$

for all integers m and n.

Problem 35 (IMO 2014). Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$n^2 + 4f(n) = f(f(n))^2$$

for all $n \in \mathbb{Z}$.

Problem 36 (IMO 2015). Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ with the property that

$$f(x - f(y)) = f(f(x)) - f(y) - 1$$

holds for all $x, y \in \mathbb{Z}$.

Problem 37 (IMO 2015). Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \to \mathbb{R}$ that satisfy the equation

$$f(x + f(x + y)) + f(xy) = x + f(x + y) + yf(x)$$

for all real numbers x and y.

Problem 38 (IMO 2015). Let $2\mathbb{Z} + 1$ denote the set of odd integers. Find all functions $f : \mathbb{Z} \mapsto 2\mathbb{Z} + 1$ satisfying

$$f(x + f(x) + y) + f(x - f(x) - y) = f(x + y) + f(x - y)$$

for every $x, y \in \mathbb{Z}$.

Problem 39 (IMO 2015). Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$. For any $m, n \in \mathbb{Z}_{>0}$ we write $f^n(m) = \underbrace{f(f(\ldots f(m)\ldots))}_n$. Suppose that f has the following two properties:

(i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^n(m)-m}{n} \in \mathbb{Z}_{>0}$; (ii) The set $\mathbb{Z}_{>0} \setminus \{f(n) \mid n \in \mathbb{Z}_{>0}\}$ is finite.

Prove that the sequence f(1) - 1, f(2) - 2, f(3) - 3, ... is periodic.

Problem 40 (IMO 2015). Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called k-good if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \ne n$. Find all k such that there exists a k-good function.

Problem 41 (IMO 2016). Find all functions $f:(0,\infty)\to(0,\infty)$ such that for any $x,y\in(0,\infty)$,

$$xf(x^2)f(f(y)) + f(yf(x)) = f(xy)(f(f(x^2)) + f(f(y^2))).$$

ISLS 7

Problem 42 (IMO 2016). Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(0) \neq 0$ and for all $x, y \in \mathbb{R}$,

$$f(x+y)^2 = 2f(x)f(y) + \max\{f(x^2+y^2), f(x^2) + f(y^2)\}.$$

Problem 43 (IMO 2016). Denote by \mathbb{N} the set of all positive integers. Find all functions $f: \mathbb{N} \to \mathbb{N}$ such that for all positive integers m and n, the integer f(m) + f(n) - mn is nonzero and divides mf(m) + nf(n).

Problem 44 (IMO 2017). Let S be a finite set, and let \mathcal{A} be the set of all functions from S to S. Let f be an element of \mathcal{A} , and let T = f(S) be the image of S under f. Suppose that $f \circ g \circ f \neq g \circ f \circ g$ for every g in \mathcal{A} with $g \neq f$. Show that f(T) = T.

Problem 45 (IMO 2017). Let \mathbb{R} be the set of real numbers. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that, for any real numbers x and y,

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

Problem 46 (IMO 2017). A function $f: \mathbb{R} \to \mathbb{R}$ has the following property:

For every $x, y \in \mathbb{R}$ such that (f(x) + y)(f(y) + x) > 0, we have f(x) + y = f(y) + x.

Prove that $f(x) + y \le f(y) + x$ whenever x > y.

Problem 47 (IMO 2018). Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f: \mathbb{Q}_{>0} \to \mathbb{Q}_{>0}$ satisfying

$$f(x^2f(y)^2) = f(x)^2f(y)$$

for all $x, y \in \mathbb{Q}_{>0}$

Problem 48 (IMO 2018). Let $f: \{1, 2, 3, ...\} \rightarrow \{2, 3, ...\}$ be a function such that f(m+n)|f(m)+f(n) for all pairs m, n of positive integers. Prove that there exists a positive integer c > 1 which divides all values of f.

Problem 49 (IMO 2019). Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that, for all integers a and b,

$$f(2a) + 2f(b) = f(f(a+b)).$$

Problem 50 (IMO 2019). Let \mathbb{Z} be the set of integers. We consider functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f(f(x+y)+y) = f(f(x)+y)$$

for all integers x and y. For such a function, we say that an integer v is f-rare if the set

$$X_v = \{x \in \mathbb{Z} : f(x) = v\}$$

is finite and nonempty. (a) Prove that there exists such a function f for which there is an f-rare integer. (b) Prove that no such function f can have more than one f-rare integer.

Problem 51 (IMO 2019). Find all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that a + f(b) divides $a^2 + bf(a)$ for all positive integers a and b with a + b > 2019.

Problem 52 (IMO 2020). Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ satisfying

$$f^{a^2+b^2}(a+b) = af(a) + bf(b)$$

for all integers a and b

Problem 53 (IMO 2020). Let R^+ be the set of positive real numbers. Determine all functions $f: R^+ \to R^+$ such that for all positive real numbers x and y:

$$f(x + f(xy)) + y = f(x)f(y) + 1$$

Ukraine cause why not.

Problem 54 (IMO 2020). Determine all functions f defined on the set of all positive integers and taking non-negative integer values, satisfying the three conditions:

(i) $f(n) \neq 0$ for at least one n; (ii) f(xy) = f(x) + f(y) for every positive integers x and y; (iii) there are infinitely many positive integers n such that f(k) = f(n-k) for all k < n.

Problem 55 (IMO 2021). Determine all functions $f : \mathbb{R} \to \mathbb{R}$ that satisfy

$$(f(a) - f(b))(f(b) - f(c))(f(c) - f(a)) = f(ab^{2} + bc^{2} + ca^{2}) - f(a^{2}b + b^{2}c + c^{2}a)$$

for all real numbers a, b, c.