III.2. Simulasi

Langkah selanjutnya setelah menentukan parameter-parameter antena mikrostip, merancang, dan selesai melakukan proses perhitungan dimensi antena baik panjang maupun lebar *patch* juga dimensi bahan dielektrik (Substrat) dan *groundplane*. Maka dilakukan proses simulasi antena mikrostrip persegi panjang (*rectangular*) dengan material elektromagnetik konvensional dan antena mikrostrip persegi panjang (*rectangular*) dengan material elektromagnetik artifisial. Untuk bahan elektromagnetik digunakan *floral foam* (Gabus Padat) dengan ketebalan 10 mm. Untuk bagian radiator dan *groundplane* digunakan plat tembaga dengan ketebalan 0,5 mm. Software Simulasi yang digunakan yaitu Hfss v15.0.

III.2.1. Simulasi Perangkat Antena Mikrostrip

Setelah dilakukan proses perancangan maka berikut ini merupakan tahap realisasi simulasi perangkat antena mikrostrip. Berikut ini merupakan Tabel III.6 merupakan data hasil perhitungan dimensi seluruh antena yang direalisasikan:

Tabel III.6. Dimensi Perangkat Antena Mikrostrip yang Disimulasikan

Komponen	Antena Berbahan Dasar Floral Foam Konvensional				
	Perhitungan	Optimasi simulasi (1)	Optimasi simulasi (2)		
w patch	32.89 mm	30.55 mm	59.89 mm		
ℓ patch	23.42 mm	33.66 mm	64.42 mm		
W substrat	92.89 mm	62.55 mm	100.89 mm		
L substrat	83.42 mm	65.66 mm	112.42 mm		

	Antena Berbahan Dasar Floral Foam Artifisial					
Komponen	Perhitungan	Optimasi simulasi (1)	Optimasi simulasi (2)	Optimasi simulasi (3)	Optimasi simulasi (4)	Optimasi simulasi (5)
w patch	29.66.mm	33.66 mm	33.66 mm	33 mm	37.5 mm	49 mm
ℓ patch	23.36 mm	21.36 mm	21.36 mm	35 mm	52 mm	63 mm
W substrat	89.66 mm	65.66 mm	65.66 mm	92.89 mm	92.89 mm	92.89 mm
L substrat	83.36 mm	53.36 mm	53.36 mm	80.63 mm	80.63 mm	83.63 mm
Jumlah kawat	-	38 buah	38 buah	12 buah	12 buah	12 buah
Radius kawat	-	1 mm	0.5 mm	1 mm	1 mm	1 mm

III.2.1.1. Simulasi Antena Mikrostrip Konvensional Berbahan Dasar *Floral Foam*

• Simulasi Antena Mikrostrip Konvensional Floral Foam

Berikut merupakan gambar rancangan antena yang disimulasikan di hfss

Gambar III.13. Prototipe Antena Mikrostrip Konvensional Floral Foam

Gambar III.14. Prototipe Antena Mikrostrip Konvensional Floral Foam Tampak Samping

III.2.1.2.Hasil simulasi Antena Mikrostrip Konvensional Berbahan Dasar *Floral Foam* pada HFSS

Berikut merupakan tabel hasil simulasi antena mikrostrip yang telah dilakukan:

Tabel III.7. Hasil simulasi antena mikrostrip konvensional pada hfss

Komponen	Antena Berbahan Dasar Floral Foam Konvensional			
	Perhitungan	Optimasi simulasi (1)	Optimasi simulasi (2)	
w patch	32.89 mm	30.55 mm	59.89 mm	
ℓ patch	23.42 mm	33.66 mm	64.42 mm	
W substrat	92.89 mm	62.55 mm	100.89 mm	
L substrat	83.42 mm	65.66 mm	112.42 mm	
Jenis pencatuan	Coaxial Probe	Coaxial Probe	Coaxial Probe	
Frekuensi tengah	4300 MHz	3600 MHz	4300 MHz	
Return loss	>= 10 dB	13.10 dB	5.1 dB	
Bandwidth	>= 100 MHz	109 MHz	Belum bisa dihitung	
VSWR	< 2	3.9	10.89	

Dibawah ini merupakan grafik hasil simulasi dari Hfss antena mikrostrip konvensional

- 1. Optimasi simulasi ke-1
 - a. Grafik Return loss terhadap frekuensi

Gambar III.15. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-1 antena mikrostrip konvensional

b. Grafik VSWR terhadap frekuensi

Gambar III.16. VSWR terhadap frekuensi pada optimasi simulasi ke-1 antena mikrostrip konvensional

2. Optimasi simulasi ke-2

a. Grafik Return loss terhadap frekuensi

Gambar III.17. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-2 antena mikrostrip konvensional

b. Grafik VSWR terhadap frekuensi

Gambar III.18. VSWR terhadap frekuensi pada optimasi simulasi ke-2 antena mikrostrip konvensional

III.2.2.1. Simulasi Antena Mikrostrip artifisial Berbahan Dasar *Floral Foam*

•Simulasi Antena Mikrostrip Artifisial Floral Foam

Gambar III.19. Prototipe Antena Mikrostrip Artifisial Floral Foam Tampak Depan

Gambar III.20. Prototipe Antena Mikrostrip Artifisial *Floral Foam* Tampak samping dan Belakang

Gambar III.21. Prototipe Antena Mikrostrip Artifisial Floral Foam, TM21 12 Kawat

Gambar III.19 - III.21 merupakan prototipe dari antena mikrostrip yang menggunakan material elektromagnetik *floral foam* baik untuk antena mikrostrip konvensional maupun artifisial. Antena mikrostrip yang direalisasikan menggunakan material elektromagnetik *floral foam* ada dua jenis yaitu antena mikrostrip konvensional dan antena mikrostrip artifisial. Antena mikrostrip artifisial yang direalisasikan menggunakan dua mode gelombang yaitu mode gelombang *TM*₂₁, Antena mikrostrip persegi panjang yang telah direalisasikan mengalami modifikasi pada dimensi *patch* yang digunakan oleh masing-masing antena, modifikasi ini tidak mengubah konfigurasi kawat konduktor yang disisipkan pada substrat antena berbahan *floral foam*.

III.2.2.2. Hasil Simulasi Antena Mikrostrip artifisial Berbahan Dasar *Floral Foam* pada HFSS

Berikut merupakan hasil pengukuran antena mikrostrip artififsial menggunakan simulasi Hfss 15.0

Tabel III.8. Hasil simulasi antena mikrostrip artifisial pada hfss

	Antena Berbahan Dasar Floral Foam Artifisial					
Komponen	Perhitungan	Optimasi simulasi (1)	Optimasi simulasi (2)	Optimasi simulasi (3)	Optimasi simulasi (4)	Optimasi simulasi (5)
w patch	29.66.mm	33.66 mm	33.66 mm	33 mm	37.6 mm	49 mm
ℓ patch	23.36 mm	21.36 mm	21.36 mm	35 mm	52 mm	63 mm
W substrat	89.66 mm	65.66 mm	65.66 mm	92.89 mm	80.89 mm	92.89 mm
L substrat	83.36 mm	53.36 mm	53.36 mm	80.63 mm	72.63 mm	83.63 mm
Jumlah kawat	-	38 buah	38 buah	12 buah	12 buah	12 buah
Radius kawat	-	1 mm	0.5 mm	1 mm	1 mm	1 mm
Jenis	Coaxial	Coaxial	Coaxial	Coaxial	Coaxial	Coaxial
pencatuan	Probe	Probe	Probe	Probe	Probe	Probe
Frekuensi tengah	4300 MHz	4800 MHz	5000 MHz	4300 MHz	4300 MHz	4300 MHz
Frekuensi atas	-	Tidak bisa diukur	Tidak bisa diukur	4850 MHz	4400 MHz	4630 MHz
Frekuensi bawah	-	Tidak bisa diukur	Tidak bisa diukur	4250 MHz	4200 MHz	3780 MHz
Return loss	>= 10 dB	4.85 dB	4.41 dB	31.395 dB	11.68 dB	25.19 dB
Bandwidth	>= 100 MHz	Tidak bisa diukur	Tidak bisa diukur	600 MHz (12.77%)	200 MHz (4.65%)	850 MHz (19.77%)
VSWR	< 2	-	-	0.47	4.63	0.95

Dibawah ini merupakan grafik hasil simulasi dari Hfss antena mikrostrip Artifisial

- 1. Optimasi simulasi ke-1
 - a. Grafik Return loss terhadap frekuensi

Gambar III.22. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-1 antena mikrostrip artifisial

2. Optimasi simulasi ke-2

a. Grafik Return loss terhadap frekuensi

Gambar III.23. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-2 antena mikrostrip artifisial

3. Optimasi simulasi ke-3

a. Grafik Return loss terhadap frekuensi

Gambar III.24. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-3 antena mikrostrip artifisial

Gambar III.25. VSWR terhadap frekuensi pada pada optimasi simulasi ke-3 antena mikrostrip artifisial

4. Optimasi simulasi ke-4

a. Grafik Return loss terhadap frekuensi

Gambar III.26. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-4 antena mikrostrip artifisial

b. Grafik VSWR terhadap frekuensi

Gambar III.27. VSWR terhadap frekuensi pada optimasi simulasi ke-4 antena mikrostrip artifisial

5. Optimasi simulasi ke-5

a. Grafik Return loss terhadap frekuensi

Gambar III.28. Kurva *Return loss* terhadap frekuensi pada optimasi simulasi ke-5 antena mikrostrip artifisial

b. Grafik VSWR terhadap frekuensi

Gambar III.29. VSWR terhadap frekuensi pada optimasi simulasi ke-5 antena mikrostrip artifisial