LISTING OF CLAIMS

This listing of claims replaces all prior versions, and listings, of claims in the captioned application.

1-16. (Cancelled).

17. (New) A compound of formula (I),

$$\mathbb{R}^{4} \xrightarrow{\mathbb{R}^{2}} \mathbb{R}^{3} \xrightarrow{(CH_{2})_{n}} \mathbb{R}^{1} \xrightarrow{N} \mathbb{Q}$$
(I)

the *N*-oxide forms, the addition salts and the stereo-chemically isomeric forms thereof, wherein n is 0, 1 or 2;

X is N or CR⁷, wherein R⁷ is hydrogen or taken together with R¹ may form a bivalent radical of formula -CH=CH-CH=CH-;

R¹ is C₁₋₆alkyl or thiophenyl;

 R^2 is hydrogen, hydroxy, C_{1-6} alkyl, C_{3-6} alkynyl or taken together with R^3 may form =O; except that when X is N, R^2 together with R^3 cannot form =O;

R³ is a radical selected from

$$-(CH_2)_{S^-} NR^8R^9$$
 (a-1),
 $-O-H$ (a-2),
 $-O-R^{10}$ (a-3),
 $-S-R^{11}$ (a-4), or
 $-C\equiv N$ (a-5),

wherein

s is 0, 1, 2 or 3;

 R^8 , R^{10} and R^{11} are each independently selected from –CHO, $C_{1\text{-}6}$ alkyl, hydroxy $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylcarbonyl, amino, $C_{1\text{-}6}$ alkylamino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxycarbonyl, $C_{1\text{-}6}$ alkylcarbonylamino $C_{1\text{-}6}$ alkyl, piperidinyl $C_{1\text{-}6}$ alkylaminocarbonyl, piperidinyl, piperidinyl $C_{1\text{-}6}$ alkyl,

piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl,

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl,

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl, and

R⁹ is hydrogen or C₁₋₆alkyl;

or R³ is a group of formula

$$-(CH_2)_{t}-Z$$
 (b-1),

wherein

t is 0, 1, 2 or 3;

-Z is a heterocyclic ring system selected from

$$R^{12}$$
 R^{13} R^{12} R^{12} R^{12} R^{12}

$$R^{12}$$
 R^{12} R^{12}

$$R^{13}$$
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}
 R^{12}

wherein R^{12} is hydrogen, halo, $C_{1\text{--}6}$ alkyl, aminocarbonyl, amino, hydroxy, aryl,

$$-C_{1-6}$$
alkanediyl $-N$
 $-C_{1-6}$ alkanediyl N
 $-C_{1-6}$ alkanediyl N

 $C_{1\text{-}6}$ alkylamino $C_{1\text{-}6}$ alkyloxy, $C_{1\text{-}6}$ alkyloxy $C_{1\text{-}6}$ alkyl, di(phenyl $C_{2\text{-}6}$ alkenyl), piperidinyl, piperidinyl $C_{1\text{-}6}$ alkyl,

 C_{3-10} cycloalkyl, C_{3-10} cycloalkyl C_{1-6} alkyl, aryloxy(hydroxy) C_{1-6} alkyl, haloindazolyl, aryl C_{1-6} alkyl, aryl C_{2-6} alkenyl, aryl C_{1-6} alkylamino, morpholino, C_{1-6} alkylimidazolyl, pyridinyl C_{1-6} alkylamino; and

R¹³ is hydrogen, piperidinyl or aryl;

 R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkyloxy, amino, amino $C_{1\text{-}6}$ alkyl, di($C_{1\text{-}6}$ alkyl)amino, di($C_{1\text{-}6}$ alkyl)amino $C_{1\text{-}6}$ alkyloxy or $C_{1\text{-}6}$ alkyloxycarbonyl, or $C_{1\text{-}6}$ alkyl substituted with 1, 2 or 3 substituents independently selected from hydroxy, $C_{1\text{-}6}$ alkyloxy, or amino $C_{1\text{-}6}$ alkyloxy; or when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula

-O-CH₂-O (d-1), -O-(CH₂)₂-O- (d-2), -CH=CH-CH=CH- (d-3), or -NH-C(O)-NR¹⁴=CH- (d-4).

wherein R^{14} is C_{1-6} alkyl;

and aryl is phenyl, phenyl substituted with halo, C₁₋₆alkyl or C₁₋₆alkyloxy.

18. (New) A compound as claimed in claim 17 wherein

R¹ is C₁₋₆alkyl; R³ is a radical selected from (a-1), (a-2), (a-3) or (a-5) or is a group of formula (b-1); s is 0, 1 or 2; R⁸ and R¹⁰ are each independently selected from –CHO, C₁₋₆alkyl, hydroxyC₁₋₆alkyl, di(C₁₋₆alkyl)aminoC₁₋₆alkyl,

 C_{1-6} alkylcarbonylamino C_{1-6} alkyl, piperidinyl C_{1-6} alkyl,

piperidinylC₁₋₆alkylaminocarbonyl, C₁₋₆alkyloxy, thiophenylC₁₋₆alkyl,

pyrrolyl C_{1-6} alkyl, aryl C_{1-6} alkylpiperidinyl, arylcarbonyl C_{1-6} alkyl, arylcarbonylpiperidinyl C_{1-6} alkyl, haloindozolylpiperidinyl C_{1-6} alkyl, or

arylC₁₋₆alkyl(C₁₋₆alkyl)aminoC₁₋₆alkyl; t is 0 or 2; -Z is a heterocyclic ring system selected from (c-1), (c-2), (c-4), (c-6), (c-8), (c-9), or (c-11); R^{12} is hydrogen,

 $\begin{array}{c} --C_{1\text{-}6} \text{alkanediyl} - N \\ , \\ \end{array}, C_{1\text{-}6} \text{alkyloxy} C_{1\text{-}6} \text{alkylamino}, \end{array}$

C₁₋₆alkyl, aminocarbonyl,

 $\label{eq:conditional} di(phenylC_{2\text{--}6}alkenyl)\text{, piperidinyl} C_{1\text{--}6}alkyl\text{, }C_{3\text{--}10}cycloalkyl\text{,}$

 C_{3-10} cycloalkyl C_{1-6} alkyl, haloindazolyl, or aryl C_{2-6} alkenyl; R^4 , R^5 and R^6 are each independently selected from hydrogen, halo, trihalomethyl, trihalomethoxy,

 $C_{1\text{--}6}alkyl,\,C_{1\text{--}6}alkyloxy,\,di(C_{1\text{--}6}alkyl)amino,\,di(C_{1\text{--}6}alkyl)aminoC_{1\text{--}6}alkyloxy\,or$

 C_{1-6} alkyloxycarbonyl; and when R^5 and R^6 are on adjacent positions they may taken together form a bivalent radical of formula (d-1) or (d-2).

- 19. (New) A compound according to claim 17 wherein n is 0; X is CH; R¹ is C₁₋₆alkyl; R² is hydrogen; R³ is a group of formula (b-1); t is 2; -Z is a heterocyclic ring system selected from (c-1); R¹² is hydrogen; R¹³ is hydrogen; and R⁵ and R⁶ are on adjacent positions and taken together form a bivalent radical of formula (d-2).
- 20. (New) A compound selected from compounds No 16, compound No 144, and compound No. 145:

- 21. (New) A pharmaceutical composition comprising pharmaceutically acceptable carriers and as an active ingredient a therapeutically effective amount of a compound as claimed in claim 17.
- 22. (New) A combination of a compound as claimed in Claim 17 with a chemotherapeutic agent.