

United States Department of Agriculture

Digital Soil Mapping Focus Team May 17, 2018

Natural Resources Conservation Service

nrcs.usda.gov/

SSD Focus Teams

General charges

- Act as liaisons across Division and the National Cooperative Soil Survey (NCSS)
- Provide leadership, guidance, and coordination with their specified area of activity
- Serve as a repository of information in specified area of activity
- Provide a national perspective to regions and teams

Natural

Team charges

- Coordinate DSM activities across the Division
- Identify training needs
- Identify needs to update standards and propose solutions
- Initiate annual field weeks to investigate soillandscape relationships in selected DSM project areas
- Assemble existing data
- Identify gaps
- Produce raster-based soil data and information

Team leads

Tom D'Avello

(NRCS Soil Scientist/GIS Specialist - NSSC)

Suzann Kienast-Brown

(NRCS Soil Scientist/GIS Specialist - Region 4)

Jim Thompson

(Professor of Soils and Land Use, WVU)

History

- DSM in SSD
 - Since 2002
 - Roughly 25 soil survey projects
 - » Update and initial
 - » Employed DSM methods to some extent
 - » Various methods
 - » Various products
 - North American Node of GlobalSoilMap
 - Roughly 15 soil scientists
 - » Plus NCSS cooperators

Formation

- Raster Workshops initiated March 2015
- February 2016
 - DSM team initiated
- March 2016
 - 3 day brainstorming session
 - Soils information for entire US
 - Think big
 - No sideboards
 - Resulted in vision for Soils2026 and beyond
- January 2017
 - SSD Focus Teams formalized

Unique challenge

- DSM and creation of raster soil products not operational in soil survey activities
 - Build a framework in SSD where one does not currently exist
 - » Standards
 - » Training
 - » Delivery
 - Proven methodology and technology

Unique opportunity

Current activities

- Raster standards
 - Focused on product, not process
 - NSSH Part 648 to be published soon
- Training
 - Teaching the process
 - Curriculum identified from existing courses
 - New Introduction to DSM course developed and delivered (April 2018)

DSM training curriculum

Foundational Prerequisites Taken in the Following Order:

- 1. Spatial Analyst Workshop (NRCS-NEDC-000271)
- 2. Statistics for Soil Survey Part 1 (NRCS-NEDC-000400)
- 3. Intro to Digital Soil Mapping (NRCS-NEDC-000272)

Digital Soil Mapping with ArcSIE

(NRCS-NEDC-000273)

- Prerequisites
 - All 3 foundational prerequisites

Statistics For Soil Survey Part 2

(NRCS-NEDC-000332)

- Prerequisites
 - Statistics for Soil Survey Part 1

Remote Sensing for Soil Survey Applications (NRCS-NEDC-000244)

- Prerequisites
 - All 3 foundational prerequisites
- Intro to Digital Remote Sensing (available on-line from Michigan State University)

Current activities

- Raster product delivery
 - gNATSGO for raster class products
 - Database team producing gridded SSURGO/STATSGO
 - Eventually incorporate initial and update raster products
 - Best available class-based data

Current activities

- Raster product delivery
 - Future development of online delivery as part of WSS or other interface
 - -SSD GIS architecture being evaluated
 - -Soil class products and interpretations
 - Continuous soil property products and interpretations

Current activities

- Projects initiated
 - 1. Cascades region, WA and OR (USFS, NMSU, USGS)
 - 2. Bob Marshall Wilderness, MT (USFS, NMSU)
 - 3. White Mountain NF, NH and ME (USFS)
 - 4. Alaska (2 potential areas/partners identified; UMinn, ABR)
 - 5. MLRA 90 and MLRA 102 update projects (NRCS SSR 10)
 - 6. Nationwide continuous soil properties (USFS, USGS, Universities)

Current activities

- Volunteers/members for sub-teams from NCSS
- Organize sub-teams; set regular meetings and activities
 - 1. Initial mapping projects
 - MLRA update projects
 - National coverage continuous soil properties

DSM Focus Team - Vision 0 0 0 0 0

Focus

- Fundamental pedology
 - Knowledge of the soil resource as a natural body
 - Existing and newly acquired
 - Field component
- Latest technological resources
 - Applied adaptively throughout process and in combination with soil knowledge

DSM Focus Team - Vision O O O O O

Foundation

 Same tools and approaches are scalable and cross-informative

DSM Focus Team - Vision O O O O

Support

- Sub-teams for local focus
 - Points of contact, discussion, coordination
 - 1. Initial mapping
 - 2. MLRA updates
- Sub-team for national focus
 - Development of methods and products
 - 3. National coverage continuous soil properties

Natural Resources Conservation

DSM Focus Team - Vision O O O

Deliverables

- Continuous raster soil properties
- Key soil property layers at depth intervals
 - 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm and 100-200cm
 - Target soil properties
 - Total profile depth (cm) 1.
 - Plant exploitable (effective) soil depth (cm)
 - Organic carbon (g/kg)
 - pH (x10)
 - Sand (g/kg)
 - Silt (g/kg) 6.
 - Clay (g/kg)
 - Gravel (m³ m⁻³)
 - ECEC (cmolc/kg)
 - 10. Bulk density of fine earth (<2mm) fraction (excluding gravel) (Mg/m3)
 - 11. Bulk density of whole soil (includes gravel) (Mg/m3)
 - Available water holding capacity (mm)

Concept soil property

*standard depths, properties, and uncertainty requirements based on GlobalSoilMap.net standard 2.4

> Natural Resources Conservation Service

Prediction uncertainty

DSM Focus Team - Vision O O O O

Future deliverables

- Interpretations for management and use
 - The data stack becomes the database
 - Add slope, climate, etc. layers needed for calculating interpretations
- Class data taxonomic or technical

Iterative process

- Improved annually
 - Additional properties
 - Lower uncertainty

Continuous investigation and improvement

Natural Conservation

DSM Focus Team - Vision O O O O O O

Proof of concept

- GlobalSoilMap
 - STATSGO
- Soil Grids (1km, 250m, 100m)
 - Point data
- Intermediate Scale SSURGO/STATSGO2 Raster Soil Property and Interpretations Map (ISSR)(800m)
 - SSURGO/STATSGO blend
 - In review

Improved methods and knowledge base

Resources Conservation

DSM Focus Team - Vision 0 0 0 0

DSM Focus Team - Vision 0 0 0 0

DSM Focus Team - Vision O O O

DSM Focus Team - Vision O O O O

Benefit

- A complete, consistent, correct, comprehensive, and current inventory of the soil resources of the **United States**
- Flexible and relevant
- Addresses
 - Growing environmental challenges
 - Expanding user needs
 - Multiple scales
- Delivery in a timely manner

Natural Resources Conservation

Provide the Best Available Data About Soil Science to support decision making

Q Q M Scale (not to scale)

Natural Resources Conservation Service

nrcs.usda.gov/

