Piotr Bury 2025/26

Zadania dodatkowe

Termin: wrzesień

Zadanie 1. Rozwiąż podane równanie: $4x^3 - 3x = \sqrt{1 - x^2}$.

Wskazówka: można użyć sprytnego podstawienia... trygonometrycznego.

Zadanie 2. Rozważmy szachownicę o wymiarach 2025×2025 . W każde jej pole wpisujemy dodatnią liczbę naturalną. Następnie obliczamy kolejno sumy liczb znajdujących się w każdym wierszu oraz w każdej kolumnie. Rozstrzygnij, czy obliczone 4050 sum może być kolejnymi liczbami naturalnymi.

Zadanie 3. Pewna funkcja kwadratowa ma dwa różne miejsca zerowe x_1, x_2 , a jej najmniejsza wartość jest równa sumie współczynników. Oblicz sumę $x_1 + x_2$.

Zadanie 4. Do pewnego turnieju przystąpiło 32 zespoły, wśród nich drużyny A i B. W turnieju drużyny łączone są w pary, rozgrywają mecz i przegrany odpada. Jakie jest prawdopodobieństwo, że drużyny A i B zagrają ze sobą?

Zadanie 5. Rozważmy poniższy algorytm:

- I. Wybieramy liczbę trzycyfrową, która ma różne cyfry setek i jedności.
- II. Zapisujemy liczbę trzycyfrową, która powstaje przez zamianę miejscami cyfr setek i jedności w liczbie z kroku I.
- III. Od większej z liczb odejmujemy mniejszą.
- IV. Rozważamy liczbę postaci $\left|\frac{\pi^2}{4}\cdot\left\lceil\frac{1}{2}t\right\rceil\right|$, gdzie t jest liczbą z kroku III.
- V. Do liczby z kroku IV dodajemy liczbę, która powstaje przez zamianę miejscami cyfry setek i jedności w liczbie z kroku III.

Udowodnić, że otrzymana liczba jest większa od różnicy iloczynu cyfr oraz sumy cyfr liczby wyjściowej. Uwaga: Gdy w pewnym momencie otrzymamy liczbę dwucyfrową to traktujemy ją jako trzycyfrową dopisując na początku 0.

Termin: październik

Zadanie 6. Ile jest liczb naturalnych większych od 1000, w których wszystkie cyfry są większe od 1 oraz iloraz pierwszej i ostatniej cyfry jest równy sumie pozostałych cyfr?

Zadanie 7. Wyznacz wszystkie niepuste podzbiory zbioru liczb rzeczywistych dodatnich takie, że dla każdej liczby x należącej do tego podzbioru, potęga liczby x o dowolnym wykładniku dodatnim również należy do tego podzbioru.

Zadanie 8. Rozważmy wycinek koła o promieniu R, w który wpisujemy mniejszy okrąg o promieniu r. Cięciwa, która łączy końce promieni stycznych do mniejszego okręgu ma długość 2x. Wykaż, że zachodzi wzór $\frac{1}{r} - \frac{1}{R} = \frac{1}{x}$.

Zadanie 9. Wprowadźmy nowe pojęcie. Niech dany będzie zbiór X, którego elementami są zbiory. **Selektorem** zbioru X nazywamy taki zbiór składający się z pewnych elementów zbiorów należących do zbioru X, który ma z każdym z tych zbiorów dokładnie jeden element wspólny. Wyznasz selektory następujących zbiorów: $A = \emptyset$, $B = \{\{1,10\}, \{100,1000\}\}$, $C = \{\{1,2\}, \{2,3\}, \{1,3\}\}$, $D = \{\{1\}, \{2\}, \{3\}\}\}$. Co można powiedzieć o selektorze zbioru X, gdy należy do niego zbiór pusty?

Zadanie 10. Wyznacz wszystkie trójki liczb naturalnych dodatnich a, b, c takie, że (2a + b)(2b + a) = 133...36, gdzie po prawej stronie jest dokładnie c trójek pomiędzy jedynką i szóstką. Wskazówka: Spróbuj znaleźć najpierw jakąkolwiek taką trójkę liczb.

Rozwiązanie 1. Dziedziną równania jest zbiór D = [-1, 1]. Podniesienie do kwadratu prowadzi do równania wielomianowego stopnia szóstego, więc zastosujemy inną metodę. Zróbmy nietypowe podstawienie $\cos \alpha = x$ dla $\alpha \in [0, \pi]$. Otrzymujemy wtedy:

$$4\cos^3\alpha - 3\cos\alpha = \sqrt{1 - \cos^2x}.$$

Po lewej stronie dostrzegamy wzór na $\cos 3\alpha$, a po prawej jedynkę trygonometryczną pod pierwiastkiem. Zatem:

$$\cos 3\alpha = |\sin \alpha|.$$

W rozpatrywanym przedziale sinus jest nieujemny więc:

$$\cos 3\alpha = \sin \alpha$$
.

Dalej to standardowe rozwiązanie równania trygonometrycznego:

$$\cos 3\alpha = \cos \left(\frac{\pi}{2} - \alpha\right)$$

$$3\alpha = \frac{\pi}{2} - \alpha + 2k\pi \quad \lor \quad 3\alpha = -\frac{\pi}{2} + \alpha + 2k\pi, \quad k \in \mathbb{Z}$$

$$4\alpha = \frac{\pi}{2} + 2k\pi \quad \lor \quad 2\alpha = -\frac{\pi}{2} + 2k\pi, \quad k \in \mathbb{Z}$$

$$\alpha = \frac{\pi}{8} + \frac{k\pi}{2} \quad \lor \quad \alpha = -\frac{\pi}{4} + k\pi, \quad k \in \mathbb{Z}$$

Uwzględniając przedział $[0,\pi]$ otrzymujemy $\alpha \in \left\{\frac{\pi}{8}, \frac{5\pi}{8}, \frac{3\pi}{4}\right\}$.

Wracając do podstawienia:

$$x = \cos\frac{\pi}{8}$$
 \vee $x = \cos\frac{5\pi}{8}$ \vee $x = \cos\frac{3\pi}{4}$.

Wyniki te możemy uprościć stosując wzór na cosinus podwojonego kąta¹ i wzór redukcyjny otrzymując ostatecznie:

$$x \in \left\{ \frac{\sqrt{2+\sqrt{2}}}{2}, \frac{\sqrt{2-\sqrt{2}}}{2}, -\frac{\sqrt{2}}{2} \right\}.$$

Rozwiązanie 2. Niech $f(x)=ax^2+bx+c$ oraz $a\neq 0$. Najmniejsza wartość jest przyjmowana w wierzchołku i wynosi $y_w=\frac{-\Delta}{4a}$. Otrzymujemy równość

$$\frac{-\Delta}{4a} = a + b + c$$

$$\frac{-b^2 + 4ac}{4a} = a + b + c$$

$$\frac{-b^2}{4a} + c = a + b + c$$

$$\frac{-b^2}{4a} = a + b + c$$

$$\frac{-b^2}{4a} = a + b + c$$

$$-b^2 = 4a^2 + 4ab$$

$$4a^2 + 4ab + b^2 = 0$$

$$(2a + b)^2 = 0$$

$$2a + b = 0$$

$$2a = -b$$

Zatem ze wzorów Viete'a $x_1 + x_2 = \frac{-b}{a} = \frac{2a}{a} = 2.$

Rozwiązanie 3. Zliczone 4050 sum dodane do siebie tworzy liczbę parzystą, ponieważ każde pole szachownicy zostało zliczone dwukrotnie – raz jako kolumna a raz jako wiersz (czyli ta suma to dwukrotność sumy wszystkich liczb na tablicy). Jednak wśród 4050 kolejnych liczb naturalnych dokładnie połowa (czyli 2025) liczb jest nieparzysta, a suma nieparzystej liczby liczb nieparzystych jest nieparzysta. Dodanie pozostałych liczb parzystych zachowuje nieparzystą sumę. Ta sprzeczność oznacza, że obliczone 4050 sum nie może być kolejnymi liczbami naturalnymi.

 $[\]frac{1}{1} \text{A dokładniej we wzorze} \cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha \text{ podstawiamy z jedynki trygonometrycznej za sinusa, a następnie wyznaczamy} \cos \alpha = \sqrt{\frac{\cos 2\alpha + 1}{2}} \text{ i podstawiamy za } \alpha \text{ odpowiednio } \cos \frac{\pi}{8} \text{ oraz } \cos \frac{5\pi}{8}.$

Rozwiązanie 4. Aby wyłonić zwycięzcę należy rozegrać 31 meczów. Wynika to z faktu, że w każdym meczu odpada jedna drużyna, więc zaczynając od 32 drużyn, jedna pozostanie po dokładnie 31 meczach. Wszystkich możliwych różnych meczy (sparowań) jest $\binom{32}{2} = \frac{32\cdot31}{2} = 512$, bo wybieramy dwa zespoły do gry z puli 32 drużyn. Aby drużyny się spotkały, musi to nastąpić w jednym z 31 meczów, a więc szukane prawdopodobieństwo to $\frac{31}{16\cdot31} = \frac{1}{16} = 6,25\%$.

Rozwiązanie 5. Zauważamy, że jedyna sytuacja wspomniana w UWADZE zachodzi dla liczby 99. (gdy cyfra setek i jedności różni się o więcej niż 1 to różnica jest większa niż 100. Gdy cyfra setek i jedności różni się o 1 to różnica wynosi dokładnie 99, bo cyfra dziesiątek pozostaje bez zmian).

Niech naszą liczbą będzie 100x + 10y + z. Wtedy liczbą po zamianie cyfr będzie 100z + 10y + x. Bez straty ogólności x > z. Odejmując mniejszą od większej otrzymamy 99x - 99z = 99(x - z) = 100(x - z) - (x - z) =:A. Zauważmy, że powstała liczba ma cyfrę dziesiątek równą 9. Zatem liczba czytana od tyłu też. Cyfrą setek odwróconej liczby jest 10 - (x - z) (bo jest to cyfra jedności liczby A). Cyfrą jedności odwróconej liczby jest cyfra (x - z) - 1 (odejmujemy jedynkę, bo liczba A jest postaci 100(x - z)-B, gdzie B:= $(x - z) \in \{1, 2, 3, ..., 9\}$. Zatem liczba setek zmniejsza się o 1).

Zauważmy, że $\left| \frac{\pi^2}{4} \cdot \left\lceil \frac{1}{2} t \right\rceil \right|$ jest większe od t bo:

Gdy otrzymamy t parzyste to funkcja sufit nie zmienia, a dla nieparzystej dostajemy liczbę jeszcze większą. Liczba $\frac{\pi^2}{8}$ wynosi w przybliżeniu 1,2337 > 1. Najmniejszą różnicę między t, a $\frac{\pi^2}{4} \cdot \left\lceil \frac{1}{2} t \right\rceil$ otrzymujemy dla najmniejszej możliwej wartości t czyli 99 (bo różnica ta wynosi ok. 1,2337t-t=0,2337t). Dla 99 wynosi więc ona co najmniej 0,2337 \cdot 99 = 23,1363. Biorąc więc ostatecznie podłogę, otrzymujemy i tak liczbę co najmniej o 23 większą od liczby z kroku III.

Zauważmy też, że iloczyn cyfr wyjściowej liczby jest mniejszy od $9 \cdot 9 \cdot 8 = 648$. Gdy od niego odejmiemy sumę cyfr liczby wyjściowej (minimalnie 1 od liczby 100) to otrzymamy liczbę na pewno mniejszą od 648.

W ostatnim kroku dodajemy do siebie dwie liczby. Jeśli pokażemy, że mniejsza suma jest większa od 647 to tym bardziej szukana suma. Rozważmy zatem liczbę z kroku III zamiast liczby z kroku IV.

Otrzymujemy zatem: 100(x-z) - (x-z) + 100(10 - (x-z)) + 90 + (x-z) - 1 = 100(x-z) - (x-z) + 1000 - 100(x-z) + 89 + (x-z) = 1089.

Otrzymana suma jest mniejsza od potrzebnej nam sumy, a i tak jest większa od maksymalnej wartości różnicy iloczynu cyfr oraz sumy cyfr liczby wyjściowej.

Ciekawostka: Zadanie to wymyśliłem specjalnie na potrzeby zajęć z Dydaktyki Matematyki podczas moich studiów na WMiI UJ. Wtedy każdy uczestnik zajęć musiał dać do rozwiązania każdemu innemu uczestnikowi dwa ciekawe według siebie zadania, których rozwiązania później oceniał. Poza tymi zajęciami zadanie to nie było nigdzie pokazywane, ani publikowane.