Severity Distributions

Fall 2017

Outline

- Severity Distributions Foundation
- 2 Creating Distributions Using Transformations
- 3 Creating Distributions by Mixing
 - Motivation
 - Finite Mixture Distributions
 - Continuous Mixtures
 - Splicing
- A Risk Retention Deductibles and Limits
 - Expectations of Retained Risks
 - Loss Elimination Ratio (LER)

Important Severity Distributions

Three important loss severity distributions:

Gamma

- Fits medium tail lines like physical damage auto and homeowners well
- Member of the "exponential family of distributions". This means that it is easy to incorporate rating variables into the distribution via generalized linear modeling (GLMs)

Pareto

- Fits longer tail lines like injury liability in auto and workers' compensation well
- Simple to work with analytically (hence can provide intuition as we develop theory and explain the theory to others)

GB2 - Generalized Beta of the Second Kind

- A four parameter distribution family, complex
- Yet, many severity distributions can be expressed as a special case of this distribution (good for programming)
- Some applications have been fit well by the GB2 where others do not seem to work

Gamma Distribution

- ullet The gamma distribution has two parameters, α and θ
- The probability density function is 0 for $x \le 0$ and for x > 0

$$f(x) = \frac{\left(\frac{x}{\theta}\right)^{\alpha} e^{-x/\theta}}{x\Gamma(\alpha)} = \frac{1}{\theta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\theta}$$

- If $\alpha = 1$, the gamma reduces to the familiar *exponential* distribution
- ullet The function $\Gamma(\cdot)$ is known as the *gamma function*, defined as

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

- Some important facts about the gamma function:
 - For a positive integer n, $\Gamma(n) = (n-1)!$
 - For more general arguments, one needs to rely on numerical integration to evaluate $\Gamma(\cdot)$. The two main exceptions are:
 - For any $\alpha > 0$, $\Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$
 - $\Gamma(0.5) = \sqrt{\pi}$

Thus, for example, $\Gamma(2.5) = 1.5\Gamma(1.5) = 1.5(0.5)\Gamma(0.5) = \frac{3}{4}\sqrt{\pi}$

Exercise

Determine $Pr(X \le 60)$

Example. Suppose that $X \sim gamma(\alpha=2, \theta=100)$, that is, the random variable X has a gamma distribution with parameters $\alpha=2$ and $\theta=100$

Gamma Moments

Use the gamma function to calculate moments of a gamma distribution

Define the kth raw moment to be

$$\mu'_k = \operatorname{E} X^k = \int_0^\infty x^k f(x) dx$$

• Using a change of variable, $t = x/\theta$, we have

$$\begin{array}{lcl} \mu_k' & = & \displaystyle \frac{1}{\theta^\alpha \Gamma(\alpha)} \int_0^\infty x^{\alpha+k-1} \exp(-x/\theta) \; dx \\ \\ & = & \displaystyle \frac{\theta^{\alpha+k}}{\theta^\alpha \Gamma(\alpha)} \int_0^\infty t^{\alpha+k-1} \exp(-t) dt \\ \\ & = & \displaystyle \frac{\theta^k}{\Gamma(\alpha)} \Gamma(\alpha+k). \end{array}$$

- With k=1, we have $\mu=\mu'_1=\theta\frac{\Gamma(\alpha+1)}{\Gamma(\alpha)}=\alpha\theta$
- Check that:

$$\bullet \ \mu_2' = \theta^2 \alpha (\alpha + 1), \qquad \operatorname{Var}(X) = \theta^2 \alpha, \qquad \mu_k' = \theta^k (\alpha + k - 1) \cdots \alpha$$

Gamma Moment Generating Function

The gamma moment generating function (mgf) is

$$\begin{split} M(t) &= \mathbf{E} \; e^{tX} &= \; \frac{1}{\theta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha - 1} e^{tx} e^{-x/\theta} dx \\ &= \; \frac{1}{\theta^{\alpha} \Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha - 1} \exp\left\{-x \left(\frac{1 - \theta t}{\theta}\right)\right\} dx \\ &= \; \frac{1}{\theta^{\alpha} \Gamma(\alpha)} \left(\frac{\theta}{1 - \theta t}\right)^{\alpha} \Gamma(\alpha) \\ &= \; (1 - \theta t)^{-\alpha}. \end{split}$$

• To check this result, first note that $M(0) = (1 - \theta 0)^{-\alpha} = 1$, as anticipated. Next, taking derivatives, we have

$$M'(t) = \frac{\partial}{\partial t} M(t) = -\alpha (1 - \theta t)^{-\alpha - 1} (-\theta) = \alpha \theta (1 - \theta t)^{-\alpha - 1}$$

• Evaluating this at 0 yields $M'(0) = \alpha \theta = \mu$, as anticipated

Pareto Distribution

• The Pareto with parameters α and θ has probability density function:

$$f(x) = \frac{\alpha \theta^{\alpha}}{(x+\theta)^{\alpha+1}}$$

and moments

$$\mu'_k = \frac{\theta^k k!}{(\alpha - 1) \cdots (\alpha - k)}$$

- Because moments are not finite when $k \ge \alpha$, the moment generating function is not well-defined
- Unlike the gamma, there is a simple expression for the distribution function

$$F(x) = \int_0^x f(y)dy = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}$$

- This means that it is easy to compute quantiles
 - For example, find x so that 0.95 = F(x) (the 95th percentile)
 - Easy calculations show that this is $\theta \left[(0.05)^{-1/\alpha} 1 \right]$
 - In general, the pth percentile/quantile is $\theta \left\lceil (1-p)^{-1/\alpha} 1 \right\rceil$

GB2 - Generalized Beta of the Second Kind

- In KPW, the GB2 is known as a transformed beta distribution
- The pdf (KPW, Appendix A2.1.1) is

$$f(x) = \frac{\Gamma(\alpha + \tau)}{\Gamma(\alpha)\Gamma(\tau)} \frac{\gamma(x/\theta)^{\gamma\tau}}{x \left[1 + (x/\theta)^{\gamma}\right]^{\alpha + \tau}}$$

with moments

$$E X^{k} = \theta^{k} \frac{\Gamma(\tau + \frac{k}{\gamma})\Gamma(\alpha - \frac{k}{\gamma})}{\Gamma(\alpha)\Gamma(\tau)}.$$

• In the text by Frees on Regression, the GB2 distribution is cited but with the parameters $\alpha_1=\alpha,\,\alpha_2=\tau,\,\gamma=1/\sigma,\,\theta=e^\mu$

GB2 Special Cases

The GB2 a four parameter family of distributions that captures many other distributions, either as special cases or as limiting results:

- Special Case: Burr Distribution. Use the GB2 distribution with $\tau=1$
- Special Case: Pareto Distribution. Use the GB2 distribution with $\gamma=\tau=1$
- Limiting Case: Generalized Gamma Distribution Replace θ by $\theta au^{1/\gamma}$

Then, one can show that

$$\lim_{\tau \to \infty} f_{GB2}(x; \theta \tau^{1/\gamma}, \alpha, \tau, \gamma) = f(x),$$

the pdf of a *generalized gamma*. In KPW, Appendix A.3.1, p.673, the generalized gamma is called a *transformed gamma*

Creating Distributions Using Transformations

There are many distributions available to the analyst

- In this section, we consider distributions that are created by transforming the random variable of a distribution. Specifically:
 - Multiplication by a constant (Y = cX)
 - Raising to a power $(Y = X^{\tau})$
 - Exponentiation $(Y = e^X)$
- In the next section, we consider ways of combining distributions to form a distribution of interest. Specifically:
 - Mixing
 - Splicing

Multiplication by a Constant

- Multiplying a random variable by a positive constant is a simple type of transformation
- It is also easy to interpret:
 - Think of X as this year's losses and assume that we have an 8% inflation rate. Then, we can model next year's losses as Y = 1.08X
 - We also want to readily go from dollars to thousands of dollars (c=1/1000) or from dollars to Euros (or swapping any set of currencies)
- More generally, let Y = cX and use

$$\begin{split} F_Y(y) &= & \Pr(Y \leq y) = \Pr\left(X \leq \frac{y}{c}\right) = F_X\left(\frac{y}{c}\right) \\ f_Y(y) &= & \frac{1}{c} f_X\left(\frac{y}{c}\right) \end{split}$$

Scale Distributions

- In a location-scale distribution, the transformed variable Y = c(X a) has a distribution from the same family as the random variable X
 - Here, a and c > 0 are constants
 - The normal distribution is the usual example
- In a scale distribution, the transformed variable Y = cX has a distribution from the same family as the random variable X
 - Many loss distributions are scale distributions
 - Typically, one uses θ as the scale parameter. If X comes from a distribution with parameter θ , then Y=cX has the same distribution with scale parameter $\theta^*=c\theta$
- Example: Special Case Gamma Distribution. Suppose that X has a gamma distribution with $\alpha=4$ and $\theta=10,000$
 - The mean is $\alpha\theta=40,000$ and the standard deviation is $\theta\sqrt{\alpha}=20,000$
 - Suppose that Y = X/1000
 - This has mean 40 and standard deviation 20
 - Further Y has a gamma distribution with parameters $\alpha=4$ and $\theta^*=\theta/1000=10$

Raising to a Power

- Another type of transformation involves raising the random variable to a power, say, τ
- Consider the transformed random variable $Y = X^{\tau}$. We examine three cases:

$$\begin{split} \tau > 0 & \text{transformed} \\ \tau = -1 & \text{inverse} \\ \tau < 0 & \text{inverse transformed} \end{split}$$

- Special Case: Exponential Distribution. Suppose that X has an exponential distribution with parameter θ^* and consider Y = 1/X
 - The distribution function of Y is

$$\Pr(Y \le y) = \Pr(\frac{1}{X} \le y) = \Pr(\frac{1}{y} \le X) = \exp\left(-\frac{1}{y\theta^*}\right).$$

• Now, define a new parameter $\theta = \frac{1}{A^*}$. With this notation,

$$\Pr(Y \le y) = \exp\left(-\frac{\theta}{y}\right).$$

• This distribution is known as an *inverse exponential distribution* with parameter θ . See the appendix of KPW

Exponential to get a Weibull

Example: Transforming an Exponential to get a Weibull.

 Start with X ∼ exponential distribution with parameter 1. Define the transformed random variable:

$$Y = \theta X^{1/\tau}$$

This has distribution

$$\begin{aligned} F_Y(y) &= & \Pr(Y \le y) \\ &= & \Pr(X^{1/\tau} \le \frac{y}{\theta}) = \Pr(X \le (\frac{y}{\theta})^{\tau}) \\ &= & 1 - \exp\left(-(\frac{y}{\theta})^{\tau}\right), \end{aligned}$$

known as a Weibull distribution

 This result will be handy if you want to simulate outcomes from a Weibull distribution in Excel (exponential simulation is easy, Weibull is not available)

Transforming the Pareto Distribution

This is from KPW Exercise 5.3. We assume that $X \sim \text{Pareto}$ with parameters (α, θ) and consider the transformed variable $Y = X^{1/\tau}$. We wish to determine the df of Y when τ is positive, equal to -1, and negative

Solution. Begin by recalling the df of the Pareto

$$F_X(x) = 1 - \left(\frac{\theta}{x+\theta}\right)^{\alpha}.$$

Case (1). Assume $\tau > 0$. Then,

$$\begin{split} F_Y(y) &=& \Pr(X^{1/\tau} \leq y) = \Pr(X \leq y^\tau) \\ &=& F_X(y^\tau) \\ &=& 1 - \left(\frac{\theta}{y^\tau + \theta}\right)^\alpha. \end{split}$$

Now, define the new parameter $\theta^* = \theta^{1/\tau}$ so that $\theta^{*\tau} = \theta$. With this notation, we have

$$F_Y(y) = 1 - \left(\frac{\theta^{*\tau}}{y^{\tau} + \theta^{*\tau}}\right)^{\alpha}.$$

This is known as a *Burr distribution* with parameters $(\alpha, \theta^*, \tau = \gamma)$

Exponentiation

- Another type of transformation involves exponentiating a random variable so that $Y = \exp(X)$
- The main example of this is the normal distribution. If $X \sim$ normal, then $Y = e^X \sim$ a *lognormal distribution*
- We can develop the distribution of the new random variable through the relation with the df

$$F_Y(y) = \Pr(\exp(X) \le y) = \Pr(X \le \ln y) = F_X(\ln y)$$

and the pdf

$$f_Y(y) = \frac{1}{y} f_X(\ln y).$$

 Remark. This provides a way to simulate a Pareto distribution, by first simulating an exponential random variable and then transforming it

Motivation for Mixing

- In a mixture distribution, the outcome (random variable) can be thought of as a random draw from a population of outcomes
- Example: Pareto Distribution. Consider the Pareto distribution with survival function

$$S(x) = \left(\frac{\theta}{x+\theta}\right)^{\alpha},$$

and mean E $X = \frac{\theta}{\alpha - 1}$. Let us think about two types of populations:

$$X_1 \sim \mathsf{Pareto}(\alpha_1, \theta_1)$$
 "Good Driver" $X_2 \sim \mathsf{Pareto}(\alpha_2, \theta_2)$ "Bad Driver"

• Suppose that with probability a we draw the loss from a good driver, X_1 , and with probability 1 - a we draw the loss from a bad driver, X_2 :

$$Y = \begin{cases} X_1 & \text{with probability } a \\ X_2 & \text{with probability } 1 - a \end{cases}$$

Our interest is in the distribution of Y

Mixing Moments

• To begin, focus on the mean. Using the law of total expectations:

E
$$Y = a$$
E $X_1 + (1 - a)$ E $X_2 = a \frac{\theta_1}{\alpha_1 - 1} + (1 - a) \frac{\theta_2}{\alpha_2 - 1}$.

We can also write

$$Y^2 = \begin{cases} X_1^2 & \text{with probability } a \\ X_2^2 & \text{with probability } 1 - a \end{cases}$$

Thus, we have

$$E Y^2 = aE X_1^2 + (1 - a)E X_2^2.$$

The same argument holds for any moment

Mixing Distribution Function

For the distribution function, we have

$$\begin{array}{lcl} \Pr(Y \leq y) & = & \Pr(Y \leq y, \mathsf{Good\ Driver}) + \Pr(Y \leq y, \mathsf{Bad\ Driver}) \\ & = & \Pr(X_1 \leq y, \mathsf{Good\ Driver}) + \Pr(X_2 \leq y, \mathsf{Bad\ Driver}) \\ & = & \Pr(X_1 \leq y) \Pr(\mathsf{Good\ Driver}) + \Pr(X_2 \leq y) \Pr(\mathsf{Bad\ Drive}) \\ & = & aF_{X_1}(y) + (1-a)F_{X_2}(y) \end{array}$$

Example from Exam M Spring 05 #34. Suppose that a = 0.8, and $X_1 \sim \text{Pareto}(\alpha = 2, \theta = 100), X_2 \sim \text{Pareto}(\alpha = 4, \theta = 3000)$ Determine $\Pr(Y \le 200)$

Finite Mixture Distributions

• *Definition.* Let X_1, \ldots, X_k be random variables and define

$$Y = \begin{cases} X_1 & \text{with probability } a_1 \\ \vdots & \vdots \\ X_k & \text{with probability } a_k \end{cases}$$

Here, $a_j > 0$ and $a_1 + \cdots + a_k = 1$. Then, Y is a k-point mixture random variable. The df is

$$F_Y(y) = a_1 F_{X_1}(y) + \cdots + a_k F_{X_k}(y)$$

with mean

$$E Y = a_1 E X_1 + \cdots + a_k E X_k.$$

- If k is unknown (but not random), then this a variable component mixture distribution
- We can always select one or more of the underlying X_j variables to be degenerate (that is, equal to a number with probability one). In this way, we can use the finite mixture framework to create discrete and mixed distributions

Exponential Example

Example. Suppose, for a fixed parameter θ , that $X|\theta \sim$ exponential with parameter θ . Thus,

$$\Pr(X \le x | \theta) = 1 - e^{-x/\theta}.$$

Now, think of two populations, each having an exponential distribution, but with different parameter values. For concreteness, assume

$$\Theta = \begin{cases} 10 & \text{with prob } \alpha \\ 200 & \text{with prob } (1 - \alpha) \end{cases}$$

As with the x's, we use an upper case Θ for a random variable and a lower case θ for a realization of the random variable

Exponential Example II

Using the discrete mixing framework, we may write the df of X as

$$\Pr(X \le x) = \alpha (1 - e^{-x/10}) + (1 - \alpha)(1 - e^{-x/200}).$$

• More generally, we can consider k populations, each with the same form of the distribution function $F(\cdot|\theta)$ and allow θ to vary as

$$\Theta = \left\{ egin{array}{ll} heta_1 & \mathsf{prob} \ lpha_1 \ heta_2 & \mathsf{prob} \ lpha_2 \ dots & dots \ heta_K & \mathsf{prob} \ lpha_K \end{array}
ight.$$

This is our *finite mixture* distribution

Continuous Mixtures

- Extend this idea by thinking about an infinite number of populations, each with a conditional distribution function that has the same structure $F(\cdot|\theta)$ (e.g., exponential) but with a parameter θ that accounts for population differences
- Assume that the random variable Θ has pdf $f_{\Theta}(\theta)$
- Then, the df is:

$$\begin{split} \mathrm{F}_X(x) &= \mathrm{Pr}(X \leq x) &= E_{\Theta} \, \mathrm{Pr}(X \leq x | \Theta) \\ &= \int \mathrm{Pr}(X \leq x | \theta) f_{\Theta}(\theta) d\theta = \int \mathrm{F}(x | \theta) f_{\Theta}(\theta) d\theta \end{split}$$

• The pdf is:

$$f_X(x) = \int f_{x|\theta}(x) f_{\Theta}(\theta) d\theta$$

Special Case: Gamma Mixtures of Exponentials

• Special case: Gamma Mixtures of Exponentials. Suppose that each population has an exponential distribution with parameter $1/\theta$, that is, $X|\theta \sim \text{exponential}(\frac{1}{\theta})$:

$$f_{X|\theta}(x) = \theta e^{-\theta x}$$

• Suppose that the distribution of population parameters is governed by a gamma distribution such that $\Theta \sim \operatorname{gamma}(\alpha,\beta)$

$$f_{\theta}(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

The pdf of X is

$$f_X(x) = \int f_{x|\theta}(x) f_{\Theta}(\theta) d\theta$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \int_0^{\infty} \theta^{\alpha} e^{-\theta(x+1/\beta)} d\theta = \frac{\alpha\beta}{(1+x\beta)^{\alpha+1}}$$

ullet We recognize this as a Pareto distribution with parameters lpha and heta=1/eta

Mixture Expectations

- For some mixtures such as the above example, we can compute the mixture distribution in closed-form
- However, it is often helpful to just consider the moments. For the mean function, using the law of iterated expectations, we have

$$E X = E_{\Theta}[E(X|\Theta)]$$

This is easily extended to the kth moment

$$E X^k = E_{\Theta}[E(X^k|\Theta)]$$

Mixture Expectations Example

Example. Gamma Mixtures of Exponentials.

- Assume that $X|\theta \sim$ exponential with parameter $(\frac{1}{\theta})$. Thus, the mean is $\mathrm{E}(X|\theta) = 1/\theta$, the second raw moment is $\mathrm{E}(X^2|\theta) = 2/\theta^2$, and the variance is $\mathrm{Var}(X|\theta) = 1/\theta^2$
- For the parameter distribution, we have $\theta \sim \text{gamma}(\alpha, \beta)$
- One can check that

$$E X = \frac{1}{\beta(\alpha - 1)}$$

and

$$Var X = \frac{\alpha}{\beta^2(\alpha - 1)^2(\alpha - 2)}$$

• This is consistent with a Pareto distribution with parameters α and $\theta = 1/\beta$ (good practice to check)

Splicing

 Join (splice) together different probability density functions to form a pdf over the support of a random variable

$$f_X(x) = \begin{cases} \alpha_1 f_1(x) & c_0 < x < c_1 \\ \alpha_2 f_2(x) & c_1 < x < c_2 \\ \vdots & \vdots \\ \alpha_k f_k(x) & c_{k-1} < x < c_k \end{cases}$$

$$\alpha_1 + \alpha_2 \cdots + \alpha_k = 1$$

Each f_j is a pdf, so that $\int_{c_{i-1}}^{c_j} f_j(x) dx = 1$

- c_i 's are typically known
- Example: Life Contingencies.
 - It is common to use an exponential distribution in the early ages, e.g., from x = 5 to x = 40. The exponential has a constant hazard rate and is well suited to model mortality from accidents
 - Beginning at age x = 40, one use another mortality law, e.g.,
 Gompertz, that reflects mortality that increases with age x

Risk Retention Framework

- Now consider the following framework:
 - The policyholder or insured suffers a loss in the amount X
 - Under the insurance contract, the insurer is obligated to covered a portion of this amount
 - The insurer may have entered into a separate contract with a reinsurer that relieves the insurer of a portion of its obligations
- This section introduces standard mechanisms that insurers use to reduce, or mitigate, their risk, including deductibles and policy limits
- Further, we examine how the distribution of the insurers obligations depends on these mechanisms

Risk Retention Function

- Recall that X represents the amount of an insurable loss and use Y to represent the insurer's obligation
- There is a known function $g(\cdot)$ that maps the amount insured to the amount retained by the insurer, that is, Y = g(X)
- Special Case 1. Deductible (d)

$$g(x) = (x - d)_{+} = \begin{cases} 0 & x \le d \\ x - d & x > d. \end{cases}$$

The notation " $(\cdot)_+$ " means "take the positive part of." Y = g(X) as the loss in excess of the deductible d

Special Case 2. Limit (u)

$$g(x) = x \wedge u = \begin{cases} x & x \le u \\ u & x > u. \end{cases}$$

The notation " \wedge " means "take the minimum of." In this case, the insurance only pays up to a specified limit u. The random variable $Y = X \wedge u = \min(X, u)$ is the claim paid

• Special Case 3. Coinsurance. Define Y = cX. Typically, 0 < c < 1, and so represents the proportion of claims retained by the insurer

Risk Retention Function II

 One handy way of combining the three special cases is through the expression

$$g(x) = \begin{cases} 0 & x \le d \\ c(x-d) & d \le x < u \\ c(u-d) & x \ge u. \end{cases}$$

- Think about these as parameters in a contract between a policyholder and an insurer and so represent "modifications" of the underlying contract
- Also interpret the risk retention function as the result from a reinsurance contract
 - For example, it is common in such a contract for an insurer to retain 50% of each risk and "cede" 50% to the reinsurer

Information Set for Deductibles

- Specify what type of information, sometimes known as the "information set," that is available to the insurer
- Special Case 4. Policyholder Deductible. Define:

$$g_P(x) = \begin{cases} \text{undefined/not observed} & x \le d \\ x - d & x > d \end{cases}$$

- The insurance only pays amounts in excess of the deductible d. If the loss is less than the deductible, then the insurer does not observe the loss. The random variable $Y^P = g(X)$ is the claim that an insurer observes
- We have placed a "P" subscript to remind ourselves that the retained loss is on what is sometimes known as a "per payment" basis
- In statistical terms, this retained loss is truncated in the sense that values
 of X below d are not observed
- To distinguish this from the other case where a zero is observed for losses X < d, the terminology **per loss** is used. Some sources use the notation $Y^L = (X d)_+$ for the loss amount on a **per loss** basis

Distributions of Retained Risks - Deductible

- Consider two types of ordinary deductible:
 - Cost (amount of payment) per loss event

$$Y^L = (X-d)_+ = \left\{ egin{array}{ll} 0 & X < d \ X-d & X \geq d \end{array}
ight.$$
 (a censored rv)

Cost (amount of payment) per payment event

$$Y^P = \begin{cases} undefined & X < d \\ X - d & x \ge d \end{cases}$$
 (a truncated rv)

Example. Exponential Distribution. Suppose that the loss X has distribution function $F(x) = 1 - \exp{(-x/1000)}$. Compute the distribution function and pdf for Y^L and Y^P with d=250

Pareto Per Payment Deductible

Assume a deductible d = 1,000
 Then, the claim amount on a per payment basis is

$$Y^P = egin{cases} \mbox{undefined/not observed} & X < 1000 \ 1000 & X \geq 1000 \ \end{cases}$$

• Identify the distribution of Y^P

Limited Expected Value

• Use a generic "u" for the upper limit. To compute the expected value of the limited loss variable $\min(X, u)$, we have

E min
$$(X, u) = \int_0^u (1 - F(x)) dx = \int_0^u S(x) dx.$$

Pareto Policy Limit. Recall

$$1 - F(x) = S(x) = \Pr(X > x) = \left(\frac{\theta}{x + \theta}\right)^{\alpha}$$

with mean $E(X) = \frac{\theta}{\alpha - 1}$. Thus, the limited expected value is

$$E \min(X, u) = \theta^{\alpha} \int_{0}^{u} (x + \theta)^{-\alpha} dx = \theta^{\alpha} \frac{(x + \theta)^{-\alpha + 1}}{-\alpha + 1} \Big|_{0}^{u}$$
$$= \theta^{\alpha} \left(\frac{\theta^{-\alpha + 1} - (u + \theta)^{-\alpha + 1}}{\alpha - 1} \right)$$
$$= \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{u + \theta} \right)^{\alpha - 1} \right\}.$$

Pareto Deductible

- \bullet The claim amount on a "per loss" basis is ${\it Y}^L=({\it X}-{\it d})_+$ for a deductible ${\it d}$
- To calculate E $(X-d)_+$, we can use the relation, $X \wedge d + (X-d)_+ = X$
- For the Pareto distribution, recall $\mathrm{E}\,X = \frac{\theta}{\alpha 1}$ and

$$E \min(X, d) = \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{d + \theta} \right)^{\alpha - 1} \right\}.$$

Thus,

$$E(X-d)_{+} = EX - E \min(X,d) = \frac{\theta}{\alpha - 1} - \frac{\theta}{\alpha - 1} \left\{ 1 - \left(\frac{\theta}{d + \theta}\right)^{\alpha - 1} \right\}$$
$$= \frac{\theta}{\alpha - 1} \left\{ \left(\frac{\theta}{d + \theta}\right)^{\alpha - 1} \right\}.$$

Mean Residual Life

 For the "per payment" random variable associated with the policyholder deductible case,

$$g_P(x) = \begin{cases} \text{undefined/not observed} & x \le d \\ x - d & x > d \end{cases}$$

we can calculate the expectation as

$$e_X(d) = e(d) = \operatorname{E}(X - d|X > d)$$

- Here, $e_X(d)$ is known as the *mean residual life*
- We can write this as

$$\begin{array}{ll} e(d) & = & \operatorname{E}\left(X-d|X>d\right) \\ & = & \frac{\int_{d}^{\infty}(x-d)f(x)dx}{S(d)} = \frac{\operatorname{E}\left(X-d\right)_{+}}{S(d)} \end{array}$$

Thus,

$$e(d) = \frac{\int_{d}^{\infty} S(x) dx}{S(d)}$$

Example

Example. Exam M Fall 2005, Exercise 26. For an insurance:

Losses have density function

$$f_X(x) = \begin{cases} 0.02x & 0 < x < 10 \\ 0 & \text{elsewhere} \end{cases}$$

- The insurance has an ordinary deductible of 4 per loss

Calculate $E[Y^P]$

Summary of Limited Loss Variables

Random Variable	Expectation
Excess loss random variable	$e_X(d) = E Y = E(X - d X > d)$
Y = X - d if $X > d$	mean excess loss function
left truncated	mean residual life function
	complete expectation of life
	$e_X^k(d) = \mathbb{E}\left[(X - d)^k X > d \right]$
$ (X - d)_{+} = \left\{ \begin{array}{ll} 0 & X < d \\ X - d & X \ge d \end{array} \right. $	$E(X-d)_{+} = e(d)S(d)$
left-censored and shifted variable	$ (X-d)_+^k = e^k(d)S(d) $
$\min(X, d) = X \land d = \begin{cases} X & X < d \\ d & X \ge d \end{cases}$	$\mathrm{E}\left(X\wedge d\right)-$ limited expected value
limited loss variable - right censored	

Note that $(X-d)_+ + (X \wedge d) = X$. Thus, E $(X-d)_+ + E(X \wedge d) = EX$ For nonnegative, continuous random variables,

$$\mathrm{E}\left(X\wedge d\right)=\int_{0}^{d}S\left(x\right)dx \ \ \mathrm{and} \ \ \mathrm{E}(X-d)_{+}=\int_{d}^{\infty}S\left(x\right)dx$$

Loss Elimination Ratio (LER)

Determine the loss elimination ratio

 Consider an ordinary deductible, cost (amount of payment) per loss event

$$\begin{array}{rcl} \textit{LER} & = & \frac{\operatorname{E} X - (\operatorname{E} X - \operatorname{E} (X \wedge d))}{\operatorname{E} X} = \frac{\operatorname{E} (X \wedge d)}{\operatorname{E} X} \\ & = & \frac{\operatorname{limited exp value}}{\operatorname{exp value}} \end{array}$$

What fraction of losses have been eliminated by introducing the deductible?

Example. Losses have a lognormal distribution with $\mu=6$ and $\sigma=2$. There is a deductible of 2,000, and 10 losses are expected each year