Analysis of Massive Data Sets

Stream Data Model and Processing (II)

Klemo Vladimir

Faculty of Electrical Engineering and Computing
Consumer Computing Laboratory

- Problem
 - Given a stream of zeroes (0's) and ones (1's),
 - Count a number of ones in the last k bits
 - k <= N
- Obvious solution
 - Store all N bits

- When new bit arrives, remove oldest bit
- Performance
 - Query takes O(k) time
 - Space-inefficient since N can be large (or many streams)

Challenge

- Cannot afford to store all of the (N) bits

Problem

Exact count is not possible without all of the bits

Proof

- Representation uses fewer than N bits
- There must be two different bit strings w and x that have the same representation

- Proof
 - Since w is different from x:
 - They must differ in at least one bit
 - Let the last k-1 bits of w and x agree
 - Example

Real values

Representation

- Query: how many 1's in the last k bits?
 - Answer: same for both w and x
 - Algorithm can se only representations
- Thus, must use at least N bits

Challenge

- Count number of 1's with much less space/time requirements
- Cannot afford to store all of the bits
- Exact solution
 - Exact count is not possible without all of the bits
- Approximation method
 - 1. Exponentially increasing blocks
 - 2. Datar-Gionis-Indyk-Motwani (DGIM) algorithm

- Exponentially increasing blocks
 - Summarize exponentially increasing blocks of the stream, looking backward
 - 1, 2, 4, 8, 16, ...
 - Summary is the number of ones in the block
 - Keep never more than two blocks of any size

- Exponentially increasing blocks
 - two blocks of any size

Copyright © 2016 CCL : Analysis of massive data sets

- Exponentially increasing blocks
 - Query: count 1's in the last **k=31** bits

Answer: 1 + 1 + 2 + 5 + 9 = 18

- Exponentially increasing blocks
 - Query: count 1's in the last k=36 bits

Answer: 1 + 1 + 2 + 5 + 9 + 3 = 21

Estimate: 1 + 1 + 2 + 5 + 9 + x = ? x = 8/2=4 (half estimate), or x = 8/16*5=2.5 (prop. guess)

- Exponentially increasing blocks
 - Store 2 * $log_2 N$ * $log_2 N$ bits = $O(log_2N)$
 - First log₂N for blocks (2 of each size)
 - Second log₂N for the counter
 - Error
 - No greater than the number of zeroes in the last bits that are not covered by complete block
 - Depends on the distribution of 1's

- Exponentially increasing blocks
 - Error
 - All the 1's are in the last bits that are not covered by complete block

Estimate: 0 + x = ? x = 12/2 = 6 (Right answer: **1** ones) Error: **600%**

- Datar-Gionis-Indyk-Motwani (DGIM) algorithm
 - Similar to the previous algorithm
 - Avoids the problem of uneven distribution of 1's
 - Instead of fixed-length blocks, keep blocks with specific number of 1's
 - Exponential block sizes (size = num of 1's)
 - Stores O(log²N) bits per stream
 - Approximate answer
 - Error max 50% true count

- DGIM algorithm
 - Timestamps
 - Each bit has timestamp (position): 1, 2, 3, ...
 - Timestamp is modulo N (window size)
 - need log₂N bits
 - Buckes
 - Segment of the window defined by
 - Timestamp of it's end (log₂N bits)
 - (Power of 2) number of 1's in the bucket
 - $X = 1, 2, 4, 8, \dots \rightarrow 2^{0}, 2^{1}, 2^{2}, 2^{3}, \dots \rightarrow 2^{y}$
 - $max(y) = log_2 N$
 - Bucket memory representation → log₂log₂N bits
 - Total: **O(logN) bits** for the bucket

- DGIM algorithm
 - Total storage requirements
 - Window length → N
 - Largest bucket size → 2^y

$$-y < log_2 N$$

- Bucket sizes: 1 ... log₂N
- Number of bits needed
 - O(logN) buckets * O(logN) bits per bucket
 - O(log²N)

- DGIM algorithm
 - Basic idea
 - Size of the bucket is power of 2 number of 1's in the bucket

DGIM algorithm

- Rules
 - Right end of a bucket is always a position with 1
 - Every position with a 1 is in some bucket (no more than one)
 - One or two buckets with the same size
 - Sizes are power of 2
 - Buckets are sorted by size and do not overlap

- DGIM algorithm
 - Query answering
 - How many 1's there are in the last k bits $(k \le N)$
 - Procedure (O(logN))
 - Sum sizes of all buckets but the last
 - Last bucket → bucket with the earliest timestamp that includes at least some of the k most recent bits
 - Add half the size of the last bucket
 - Optimization (O(1))
 - Two counters:
 - TOTAL → sum of all buckets
 - LAST → size of the last bucket
 - Estimate → TOTAL + LAST/2

- DGIM algorithm
 - Query answering
 - k=24

Answer: 1 + 1 + 2 + 2 + 4 + 4/2 = 12 (True count: 14)

DGIM algorithm

- Maintaining buckets
 - When a new bit comes in
 - delete the oldest bucket if its end-time is prior to N time units before the current time (update LAST/TOTAL)
 - If the new bit is $0 \rightarrow \text{no other changes}$
 - If the new is is 1
 - Create new bucket with size 1 (for the new bit) and current timestamp (TOTAL++)
 - Count number of buckets with size 1
 - If there are 3 buckets of size 1 → merge oldest two into single bucket of size 2
 - If there are 3 buckets of size 2 → merge oldest two into single bucket of size 4
 - ... (update LAST)

- DGIM algorithm
 - Maintaining buckets

- DGIM algorithm
 - Maintaining buckets

- DGIM algorithm Error analysis
 - Last bucket (2y) approximation is $x/2 \rightarrow 2^{y-1}$
 - Existing bucket sizes → 1 ... 2^{y-1}
 - True count → c

 - a) Estimate is greater than c ...0100101010101010101010100001111110101000
 - min(c) = 1 + 2 + 4 + ... + 2y-1 = 2y 1
 - Add 1 from the single 1 in the last bucket
 - min(c) = 2y 1 + 1 = 2y
 - Estimate is at least 50% of c
 - b) Estimate is less than c
 - Largest bucket size → x = 2y
 - All of the 1's are in the range
 - Estimate misses 2y-1 bits
 - min(c) = 2y 1
 - Estimate is no more than 50% greater than c

1...100101010010101010110<mark>0100111111010100</mark>

min(c)

min(c)

Generalization

- Allow more than two buckets of any size
- More buckets of smaller sizes → stronger bound on the error
- $k = ceil(1/\epsilon)$, k/2 is an integer
- Memory requirements: O(1/ε * log²N)
- Algorithm update:
 - Merge if there are k/2 + 2 buckets of the same size
- Error
 - Estimate is within factor 1 + ε
 - Simplest case: k=2 → error 50%

Literature

- J. Leskovec, A. Rajaraman, and J. D. Ullman, "Mining of Massive Datasets", 2014, Chapter 4. Mining Data Streams
- Datar, Mayur, et al. "Maintaining stream statistics over sliding windows." SIAM Journal on Computing 31.6 (2002): 1794-1813.