Számításelmélet kidolgozás

Turing gépek

http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/07/EA07SZ2.pdf http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/08/EA08SZ2.pdf

Tétel (Church, 1936)

Két λ -kalkulusbeli kifejezés ekvivalenciája algoritmikusan eldönthetetlen.

Tétel (Turing, 1936)

A Turing-gépek megállási problémája algoritmikusan eldönthetetlen.

Turing gép

A **Turing gép** (továbbiakban röviden TG) egy $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendezett hetes, ahol

- Q az állapotok véges, nemüres halmaza,
- ▶ $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- ▶ Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy $\Sigma \subseteq \Gamma$ és $\sqcup \in \Gamma \setminus \Sigma$.
- ▶ $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to Q \times \Gamma \times \{L, S, R\}$ az átmenet függvény. δ az egész $(Q \setminus \{q_i, q_n\}) \times \Gamma$ -n értelmezett függvény.

Konfiguráció

A TG konfigurációja egy uqv szó, ahol $q \in Q$ és $u, v \in \Gamma^*, v \neq \varepsilon$.

Az uqv konfiguráció egy tömör leírás a TG aktuális helyzetéről, mely a gép további működése szempontjából minden releváns információt tartalmaz: a szalag tartalma uv (uv előtt és után a szalagon már csak \sqcup van), a gép a q állapotban van és az író-olvasó fej a v szó első betűjén áll. Két konfigurációt azonosnak tekintünk, ha csak balra/jobbra hozzáírt \sqcup -ekben térnek el egymástól.

A gép egy $u \in \Sigma^*$ -beli szóhoz tartozó **kezdőkonfigurációja** a $q_0u \sqcup$ szó. (Vagyis q_0u , ha $u \neq \varepsilon$ és $q_0 \sqcup$, ha $u = \varepsilon$).

Elfogadó konfigurációi azon konfigurációk, melyre $q = q_i$.

Elutasító konfigurációi azon konfigurációk, melyre $q = q_n$.

Az elfogadó és elutasító konfigurációk közös elnevezése **megállási konfiguráció**.

Jelölje C_M egy M TG-hez tartozó lehetséges konfigurációk halmazát. $M \vdash \subseteq C_M \times C_M$ konfigurációátmenet-relációját az alábbiak szerint definiáljuk.

$\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- ► Ha $\delta(q, a) = (r, b, R)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha $\delta(q, a) = (r, b, S)$, akkor $uqav \vdash urbv$,
- ▶ ha $\delta(q, a) = (r, b, L)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

Többlépéses konfigurációátmenet: ⊢ reflexív, tranzitív lezártja, azaz:

$\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet

 $C \vdash^* C' \Leftrightarrow$

- ▶ ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \le i \le n 1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

Az M TG által felismert nyelv

 $L(M) = \{ u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \}.$

Figyeljük meg, hogy L(M) csak Σ feletti szavakat tartalmaz.

Egy $L \subseteq \Sigma^*$ nyelv **Turing-felismerhető**, ha L = L(M) valamely M TG-re.

Egy $L \subseteq \Sigma^*$ nyelv **eldönthető**, ha létezik olyan M TG, mely minden bemeneten megállási konfigurációba jut és L(M) = L.

A Turing-felismerhető nyelveket szokás **rekurzívan felsorolható**nak (vagy *parciálisan rekurzívnak*, vagy *félig eldönthetőnek*) az eldönthető nyelveket pedig **rekurzív**nak is nevezni.

A rekurzívan felsorolható nyelvek osztályát *RE* -vel, a rekurzív nyelvek osztályát pedig *R*-rel jelöljük.

Nyilván $R \subseteq RE$. Igaz-e hogy $R \subset RE$?

Egy M TG **futási ideje** (időigénye) az u szóra n ($n \ge 0$), ha M az u-hoz tartozó kezdőkonfigurációból n lépésben (konfigurációátmenettel) jut el megállási konfigurációba. Ha nincs ilyen szám, akkor M futási ideje az u szóra végtelen.

Legyen $f : \mathbb{N} \to \mathbb{N}$ egy függvény. Azt mondjuk, hogy M egy f(n) időkorlátos gép (vagy M f(n) időigényű), ha minden $u \in \Sigma^*$ input szóra M futási ideje az u szón legfeljebb f(|u|).

Gyakran megelégszünk azzal, hogy a pontos időkorlát helyett jó aszimptotikus felső korlátot adunk az időigényre.

Legyenek $f, g : \mathbb{N} \to \mathbb{R}_0^+$ függvények, ahol \mathbb{N} a természetes számok, \mathbb{R}_0^+ pedig a nemnegatív valós számok halmaza.

- ▶ f-nek g aszimptotikus felső korlátja (jelölése: f(n) = O(g(n)); ejtsd: f(n) = nagyordó g(n)) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \le c \cdot g(n)$ minden $n \ge N$ -re.
- ► f-nek g aszimptotikus alsó korlátja (jelölése: $f(n) = \Omega(g(n))$) ha létezik olyan c > 0 konstans és $N \in \mathbb{N}$ küszöbindex, hogy $f(n) \ge c \cdot g(n)$ minden $n \ge N$ -re.
- ▶ f-nek g aszimptotikus éles korlátja (jelölése: $f(n) = \Theta(g(n))$) ha léteznek olyan $c_1, c_2 > 0$ konstansok és $N \in \mathbb{N}$ küszöbindex, hogy $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ minden $n \ge N$ -re.

 O, Ω, Θ 2-aritású relációnak is felfogható az $\mathbb{N} \to \mathbb{R}_0^+$ függvények univerzumán, ekkor

- O, Ω, Θ tranzitív (pl. $f = O(g), g = O(h) \Rightarrow f = O(h)$)
- \bullet O, Ω , Θ reflexiv
- Θ szimmetrikus
- O, Ω fordítottan szimmetrikus $(f = O(g) \Leftrightarrow g = \Omega(f))$
- (köv.) Θ ekvivalenciareláció, az N → R₀⁺ függvények egy osztályozását adja. Az egyes függvényosztályokat általában "legegyszerűbb" tagjukkal reprezentáljuk. Pl. 1 (korlátos függvények), n (lineáris függvények), n² (négyzetes függvények), stb.
- $f, g = O(h) \Rightarrow f + g = O(h)$, hasonlóan Ω-ra, Θ-ra. (Összeadásra való zártság)
- Legyen c > 0 konstans $f = O(g) \Rightarrow c \cdot f = O(g)$, hasonlóan Ω-ra, Θ -ra. (Pozitív konstanssal szorzásra való zártság)
- $f + g = \Theta(\max\{f, g\})$ (szekvencia tétele). A domináns tag határozza meg egy összeg aszimptotikus nagyságrendjét.
- Ha létezik az f/g határérték ha $f(n)/g(n) \to +\infty \Rightarrow f(n) = \Omega(g(n))$ és $f(n) \neq O(g(n))$ ha $f(n)/g(n) \to c$ $(c > 0) \Rightarrow f(n) = \Theta(g(n))$ ha $f(n)/g(n) \to 0$ $\Rightarrow f(n) = O(g(n))$ és $f(n) \neq \Omega(g(n))$

k-szalagos Turing-gép

A *k*-szalagos Turing-gép egy olyan $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol

- Q az állapotok véges, nemüres halmaza,
- ▶ $q_0, q_i, q_n \in Q$, q_0 a kezdő- q_i az elfogadó- és q_n az elutasító állapot,
- Σ és Γ ábécék, a bemenő jelek illetve a szalagszimbólumok ábécéje úgy, hogy Σ ⊆ Γ és ⊔ ∈ Γ \ Σ,
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma^k \to Q \times \Gamma^k \times \{L, S, R\}^k$ az átmenet függvény.

Konfiguráció

k-szalagos TG **konfigurációja** egy $(q, u_1, v_1, \dots, u_k, v_k)$ szó, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$.

Ez azt reprezentálja, hogy az aktuális állapot q, az i. szalag tartalma $u_i v_i$ és az i. fej v_i első betűjén áll $(1 \le i \le k)$.

Kezdőkonfiguráció

Az u szóhoz tartozó **kezdőkonfiguráció:** $u_i = \varepsilon$ $(1 \le i \le k)$, $v_1 = u \sqcup$, és $v_i = \sqcup (2 \le i \le k)$.

Elfogadó/elutasító/megállási konfiguráció

A $(q, u_1, v_1, \dots, u_k, v_k)$ konfiguráció, ahol $q \in Q$ és $u_i, v_i \in \Gamma^*, v_i \neq \varepsilon$ $(1 \le i \le k)$, **elfogadó konfiguráció**, ha $q = q_i$, **elutasító konfiguráció**, ha $q = q_n$, **megállási konfiguráció**, ha $q = q_i$ vagy $q = q_n$.

Legyen k=2 és $\delta(q, a_1, a_2) = (r, b_1, b_2, R, S)$ a TG egy átmenete. Ekkor $(q, u_1, a_1v_1, u_2, a_2v_2) \vdash (r, u_1b_1, v_1', u_2, b_2v_2)$, ahol $v_1' = v_1$, ha $v_1 \neq \varepsilon$, különben $v_1' = \sqcup$.

Vegyük észre, hogy a fejek nem kell hogy szikronban lépjenek, egymástól függetlenül mozoghatnak.

Ezek után a **többlépéses konfigurációátmenet** definíciója megegyezik az egyszalagos esetnél tárgyalttal. Jelölés: +*.

k-szalagos Turing-gép által felismert nyelv

$$L(M) = \{ u \in \Sigma^* \mid (q_0, \varepsilon, u \sqcup, \varepsilon, \sqcup, \ldots, \varepsilon, \sqcup) \vdash^* (q_i, x_1, y_1, \ldots, x_k, y_k), x_1, y_1, \ldots, x_k, y_k \in \Gamma^*, y_1, \ldots, y_k \neq \varepsilon \}.$$

A k-szalagos TG-ek által **felismerhető** illetve **eldönthető** nyelv fogalma szintén analóg az egyszalagos esettel.

k-szalagos Turing-gép futási ideje adott szóra

Egy *k*-szalagos Turing-gép **futási ideje** egy *u* szóra a hozzá tartozó kezdőkonfigurációból egy megállási konfigurációba megtett lépések száma.

Ezek után az **időigény** definíciója megegyezik az egyszalagos esetnél tárgyalttal.

Ekvivalens TG-ek

Két TG ekvivalens, ha ugyanazt a nyelvet ismerik fel.

Tétel

Minden M k-szalagos Turing-géphez megadható egy vele ekvivalens M' egyszalagos Turing-gép. Továbbá, ha M legalább lineáris időigényű f(n) időkorlátos gép (azaz $f(n) \ge n$), akkor M' $O(f(n)^2)$ időkorlátos.

Tétel

Minden egyszalagos *M* Turing-géphez van vele ekvivalens egyirányban végtelen szalagos *M''* Turing-gép.

Nemdeterminisztikus Turing-gép (NTG)

A nemdeterminisztikus Turing-gép (NTG) olyan

 $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle$ rendszer, ahol

- \triangleright Q, Σ, Γ, q_0 , q_i , q_n ugyanaz, mint eddig
- $\delta: (Q \setminus \{q_i, q_n\}) \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, S, R\})$

Konfigurációk C_M halmazának fogalma azonos.

$\vdash \subseteq C_M \times C_M$ egylépéses konfigurációátmenet

Legyen uqav egy konfiguráció, ahol $a \in \Gamma$, $u, v \in \Gamma^*$.

- ► Ha $(r, b, R) \in \delta(q, a)$, akkor $uqav \vdash ubrv'$, ahol v' = v, ha $v \neq \varepsilon$, különben $v' = \sqcup$,
- ▶ ha $(r, b, S) \in \delta(q, a)$, akkor $uqav \vdash urbv$,
- ▶ ha $(r, b, L) \in \delta(q, a)$, akkor $uqav \vdash u'rcbv$, ahol $c \in \Gamma$ és u'c = u, ha $u \neq \varepsilon$, különben u' = u és $c = \sqcup$.

$\vdash^* \subseteq C_M \times C_M$ többlépéses konfigurációátmenet

 $C \vdash^* C' \Leftrightarrow$

- ▶ ha C = C' vagy
- ▶ ha $\exists n > 0 \land C_1, C_2, \dots C_n \in C_M$, hogy $\forall 1 \le i \le n 1$ -re $C_i \vdash C_{i+1}$ valamint $C_1 = C$ és $C_n = C'$.

NTG által felismert nyelv

 $L(M) = \{ u \in \Sigma^* \mid q_0 u \sqcup \vdash^* x q_i y \text{ valamely } x, y \in \Gamma^*, y \neq \varepsilon \}.$

Egy NTG-re úgy gondolhatunk, hogy több számítása is lehet ugyanarra a szóra. Akkor fogad el egy szót, ha legalább egy számítása q_i -ben ér véget.

$u \in \Sigma^*$ nemdeterminisztikus számítási fája

Irányított fa, melynek csúcsai konfigurációkkal címkézettek. $q_0u \sqcup a$ gyökér címkéje. Ha C egy csúcs címkéje, akkor $|\{C' \mid C \vdash C'\}|$ gyereke van és ezek címkéi éppen $\{C' \mid C \vdash C'\}$ elemei.

M eldönti az $L \subseteq \Sigma^*$ nyelvet, ha felismeri és minden $u \in \Sigma^*$ szóra az M számítási fája véges és minden levele elfogadó vagy elutasító konfiguráció.

M f(n) **időkorlátos** (időigényű), ha minden $u \in \Sigma^*$ n hosszú szóra u számítási fája legfeljebb f(n) magas.

Tétel

Minden $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, q_n \rangle f(n)$ idejű NTG-hez megadható egy ekvivalens, $2^{O(f(n))}$ idejű M' determinisztikus TG.

Számosság / Nyelvek

http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/09/EA09SZ2.pdf http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/10/EA10SZ2.pdf

Halmazok számossága

- A és B halmazoknak megegyezik a számossága, ha létezik bijekció köztük. Jelölése: |A| = |B|.
- A számossága legalább annyi, mint B számossága, ha van B-ből injekció A-ba. Jelölése: |A| ≥ |B|.
- A számossága nagyobb, mint B számossága, ha van B-ből injekció A-ba, de bijeckió nincs. Jelölése: |A| > |B|.

Cantor-Bernstein tétel

Ha A-ból B-be van injekció és B-ből A-ba is van, akkor A és B között bijekció is van, azaz ha $|A| \le |B|$ és $|A| \ge |B|$, akkor |A| = |B|.

Megszámlálhatóan végtelen számosság

N számosságát **megszámlálhatóan végtelennek** nevezzük. Egy halmaz **megszámlálható**, ha véges vagy megszámlálhatóan végtelen.

Tétel

Megszámlálható sok megszámlálható halmaz uniója megszámlálható.

Continuum számosság

R számosságát continuumnak nevezzük.

1. Következmény

A continuum számosság nagyobb, mint a megszámlálhatóan végtelen számosság.

2. Következmény

Több {0, 1} feletti nyelv van mint {0, 1} feletti szó. (Számosság értelemben.)

Megjegyzés $\{L \mid L \subseteq \{0, 1\}^*\} = \mathcal{P}(\{0, 1\}^*)$. Igaz-e általában, hogy $|\mathcal{P}(H)| > |H|$?

Tétel

Minden *H* halmazra $|\mathcal{P}(H)| > |H|$.

Szófüggvényt kiszámító TG

Azt mondjuk, hogy az $M = \langle Q, \Sigma, \Gamma, \delta, q_0, q_i, (q_n) \rangle$ TG kiszámítja az $f : \Sigma^* \to \Delta^*$ szófüggvényt, ha minden $u \in \Sigma^*$ -beli szóra megáll, és ekkor $f(u) \in \Delta^*$ olvasható az utolsó szalagján.

Megjegyzés: Nincs szükség q_i és q_n megkülönböztetésére, elég lenne egyetlen megállási állapot. [Ezért van q_n ()-ben.]

Ha I egy bemenet, jelölje $\langle I \rangle$ az I kódját.

Eldöntési probléma:

 $L = \{\langle I \rangle \mid I \text{ a probléma igen példánya} \}$ eldönthető-e Turing géppel.

Kiszámítási probléma:

Van-e olyan TG, ami f-t illetve $\langle I \rangle \mapsto \langle f(I) \rangle$ -t számítja ki.

Tegyük fel, hogy $\Sigma = \{0, 1\}$. A fentiek szerint minden input hatékonyan kódolható Σ felett.

Egy M Turing-gép **kódja** (jelölése $\langle M \rangle$) a következő:

Legyen $M = (Q, \{0, 1\}, \Gamma, \delta, q_0, q_i, q_n)$, ahol

- $Q = \{p_1, \ldots, p_k\}, \Gamma = \{X_1, \ldots, X_m\}, D_1 = R, D_2 = S, D_3 = L$
- $k \ge 3$, $p_1 = q_0$, $p_{k-1} = q_i$, $p_k = q_n$,
- ▶ $m \ge 3$, $X_1 = 0$, $X_2 = 1$, $X_3 = \sqcup$.
- Egy $\delta(p_i, X_i) = (p_r, X_s, D_t)$ átmenet kódja $0^i 10^j 10^r 10^s 10^t$.
- \(\langle M \rangle \) az átmenetek kódjainak felsorolása 11-el elválasztva.

Észrevétel: $\langle M \rangle$ 0-val kezdődik és végződik, nem tartalmaz 3 darab 1-t egymás után.

Tétel

Létezik nem Turing-felismerhető nyelv.

$$L_{\text{átló}} = \{ \langle M \rangle \, | \, \langle M \rangle \notin L(M) \}$$

Tétel

Látló ∉ RE.

Univerzális nyelv: $L_u = \{\langle M, w \rangle \mid w \in L(M)\}.$

Tétel

 $L_u \in RE$

Tétel

 $L_u \notin R$.

Jelölés: Ha $L \subseteq \Sigma^*$, akkor jelölje $\bar{L} = \{u \in \Sigma^* \mid u \notin L\}$.

Tétel

Ha L és $\bar{L} \in RE$, akkor $L \in R$.

Következmény

RE nem zárt a komplementer-képzésre.

Tétel

R zárt a komplementer-képzésre

Kiszámítható szófüggvény

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **kiszámítható**, ha van olyan Turing-gép, ami kiszámítja. [lásd szófüggvényt kiszámító TG]

Visszavezetés

 $L_1 \subseteq \Sigma^*$ visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq L_2$

[Emil Posttól származik, angolul many-one reducibility]

Tétel

- ► Ha $L_1 \le L_2$ és $L_1 \notin RE$, akkor $L_2 \notin RE$.
- ► Ha $L_1 \le L_2$ és $L_1 \notin R$, akkor $L_2 \notin R$.

Következmény

- ▶ Ha $L_1 \le L_2$ és $L_2 \in RE$, akkor $L_1 \in RE$.
- ▶ Ha $L_1 \le L_2$ és $L_2 \in R$, akkor $L_1 \in R$.

Megállási probléma:

 $L_h = \{\langle M, w \rangle \mid M \text{ megáll a } w \text{ bemeneten} \}.$

$$L_u \subseteq L_h$$

Tétel

 $L_h \notin R$.

Tétel

 $L_h \in RE$.

Rekurzíve felsorolható nyelvek tulajdonságai

Tetszőleges $\mathcal{P} \subseteq RE$ halmazt a rekurzívan felsorolható nyelvek egy **tulajdonságának** nevezzük. \mathcal{P} **triviális**, ha $\mathcal{P} = \emptyset$ vagy $\mathcal{P} = RE$.

$$L_{\mathcal{P}} = \{ \langle M \rangle \mid L(M) \in \mathcal{P} \}.$$

Rice tétele

Ha $\mathcal{P} \subseteq RE$ egy nem triviális tulajdonság, akkor $L_{\mathcal{P}} \notin R$.

Legyenek $u_1, \ldots, u_n, v_1 \ldots, v_n \in \Sigma^+ (n \ge 1)$.

A $D = \{d_1, \dots, d_n\}$ halmazt **dominókészletnek** nevezzük ha $d_i = \frac{u_i}{v_i}$ $(1 \le i \le n)$.

A $d_{i_1} \cdots d_{i_m}$ sorozat $(m \ge 1)$ a D egy **megoldása**, ha $d_{i_j} \in D$ $(1 \le j \le m)$ és $u_{i_1} \cdots u_{i_m} = v_{i_1} \cdots v_{i_m}$.

Post Megfelelkezési Probléma (PMP): $L_{PMP} = \{\langle D \rangle \mid D\text{-nek van megoldása}\}.$

Tétel

 $L_{\text{PMP}} \in RE$.

Tétel

 $L_{\text{PMP}} \notin R$.

Egy G környezetfüggetlen (CF, 2-es típusú) nyelvtan **egyértelmű**, ha minden L(G)-beli szónak pontosan egy baloldali levezetése van G-ben. (Baloldali levezetés: mindig a legbaloldalibb nemterminálist írjuk át a mondatformában.)

 $L_{\text{ECF}} = \{\langle G \rangle \mid G \text{ egy egyértelmű CF nyelvtan}\}.$

Tétel

 $L_{\text{ECF}} \notin R$

Tétel

Eldönthetetlenek az alábbi CF nyelvtanokkal kapcsolatos kérdések. Legyen G_1 és G_2 két CF nyelvtan.

- $L(G_1) \cap L(G_2) \neq \emptyset$
- $ightharpoonup L(G_1) = Γ^*$ valamely Γ-ra
- $L(G_1) = L(G_2)$
- $L(G_1) \subseteq L(G_2)$

Tétel

Eldönthetetlen, hogy A elsőrendű logikai formulára

(1) *⊨ A* teljesül-e (logikailag igaz-e).

Következmény

Legyen $\mathcal F$ egy elsőrendű formulahalmaz és A egy elsőrendű formula. Eldönthetetlen, hogy

- (2) A kielégíthetetlen-e
- (3) A kielégíthető-e
- (4) $\mathcal{F} \models A$ teljesül-e

Mi a helyzet nulladrendű logika esetén?

A fenti kérdések mindegyike eldönthető. (ítélettábla). Véges sok interpretáció van, elsőrendben végtelen.

Nulladrendű logikában, az a kérdés van-e hatékony megoldás.

Bonyolultságelmélet

http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/10/EA10SZ2.pdf http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/11/EA11SZ2.pdf http://web.cs.elte.hu/~tichlerk/logikaesszamitaselmelet/12/EA12SZ2.pdf

- ► TIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű determinisztikus TG-pel}\}$
- ▶ NTIME $(f(n)) = \{L \mid L \text{ eldönthető } O(f(n)) \text{ időigényű NTG-pel}\}$
- ightharpoonup P= $\bigcup_{k>1}$ TIME (n^k) .
- ▶ NP= $\bigcup_{k>1}$ NTIME (n^k) .
- Észrevétel: P⊆NP.
- Sejtés: P ≠ NP (sejtjük, hogy igaz, de bizonyítani nem tudjuk).

Polinom időben kiszámítható szófüggvény

Az $f: \Sigma^* \to \Delta^*$ szófüggvény **polinom időben kiszámítható**, ha van olyan Turing-gép, ami polinom időben kiszámítja.

Visszavezetés polinom időben

 $L_1 \subseteq \Sigma^*$ polinom időben visszavezethető $L_2 \subseteq \Delta^*$ -ra, ha van olyan $f: \Sigma^* \to \Delta^*$ polinom időben kiszámítható szófüggvény, hogy $w \in L_1 \Leftrightarrow f(w) \in L_2$. Jelölés: $L_1 \leq_p L_2$.

A polinom idejű visszavezetést Richard Karpról elnevezve Karp-redukciónak is nevezik.

Tétel

- ► Ha $L_1 \leq_p L_2$ és $L_2 \in P$, akkor $L_1 \in P$.
- ► Ha $L_1 \leq_p L_2$ és $L_2 \in NP$, akkor $L_1 \in NP$.

Adott problémaosztályra nézve nehéz nyelv

Legyen $\mathfrak C$ egy problémaosztály. egy L probléma $\mathfrak C$ -nehéz (a polinom idejű visszavezetésre nézve), ha minden $L' \in \mathfrak C$ esetén $L' \leq_p L$.

Adott problémaosztályban teljes nyelv

Egy \mathbb{C} -nehéz L probléma \mathbb{C} -teljes, ha $L \in \mathbb{C}$.

Tétel

Legyen L egy NP-teljes probléma. Ha $L \in P$, akkor P = NP.

NP-teljes nyelv

Egy L probléma **NP-teljes** (a polinom idejű visszavezetésre nézve), ha

- $L \in NP$
- ▶ L NP-nehéz, azaz minden $L' \in NP$ esetén $L' \leq_p L$.

SAT= $\{\langle \varphi \rangle \mid \varphi \text{ kielégíthatő nulladrendű KNF} \}$

Tétel (Cook)

SAT NP-teljes.

Tétel

Ha L NP-teljes, $L \leq_p L'$ és $L' \in$ NP, akkor L' NP-teljes.

 $kSAT = \{\langle \varphi \rangle \mid \varphi \text{ kielégíthető KNF és minden tagban pontosan } k különböző literál van \}.$

Tétel

3SAT NP-teljes.

Egy gráf *k*-színezhető, ha csúcsai *k* színnel színezhetők úgy, hogy a szomszédos csúcsok színei különbözőek.

3Színezés= $\{\langle G \rangle \mid G \text{ 3-színezhető}\}$

Tétel

3Színezés NP-teljes.

Az alábbi nyelvek esetén G egyszerű, irányítatlan gráf k pedig egy nemnegatív egész. G egy teljes részgráfját klikknek, egy üres részgráfját független ponthalmaznak mondjuk.

KLIKK= $\{\langle G, k \rangle \mid G$ -nek van k méretű klikkje $\}$

FÜGGETLEN PONTHALMAZ=

 $\{\langle G, k \rangle | G$ -nek van k méretű független ponthalmaza $\}$

Legyen $S \subseteq V(G)$ és $E \in E(G)$. Ha $S \cap E \neq \emptyset$, akkor a csúcshalmaz **lefogja** E-t. Ha S minden $E \in E(G)$ élt lefog, akkor S egy **lefogó ponthalmaz**.

Lefogó ponthalmaza $\{\langle G, k \rangle | G$ -nek van k méretű lefogó ponthalmaza $\}$

Ha G-nek van k méretű klikkje/független ponthalmaza, akkor bármely kisebb k-ra is van. Ha van k méretű lefogó ponthalmaz, akkor bármely nagyobb k-ra is van $(k \le |V(G)|)$.

Tétel

KLIKK, FÜGGETLEN PONTHALMAZ, LEFOGÓ PONTHALMAZ NP-teljes.

S egy **hipergráf** (vagy halmazrendszer), ha $S = \{A_1, \ldots, A_n\}$, ahol $A_i \subseteq U$, $(1 \le i \le n)$ valamely U alaphalmazra. $H \subseteq U$ egy **lefogó ponthalmaz**, ha $\forall 1 \le i \le n : H \cap A_i \ne \emptyset$.

HIPERGRÁF LEFOGÓ PONTHALMAZ= $\{\langle \mathcal{S}, k \rangle \mid \mathcal{S} \text{ egy hipergráf}$ és \mathcal{S} -hez van k elemű lefogó ponthalmaz $\}$.

Tétel

HIPERGRÁF LEFOGÓ PONTHALMAZ NP-teljes.

Hamilton út/kör

Adott egy G = (V, E) irányítatlan / irányított gráf (|V| = n). Egy $P = v_{i_1}, \ldots, v_{i_n}$ felsorolása a csúcsoknak **Hamilton út** G-ben, ha $\{v_{i_1}, \ldots, v_{i_n}\} = V$ és minden $1 \le k \le n - 1$ -re $\{v_{i_k}, v_{i_{k+1}}\} \in E$ (illetve irányított esetben $(v_{i_k}, v_{i_{k+1}}) \in E$). Ha $\{v_{i_n}, v_{i_1}\} \in E$ (illetve irányított esetben $(v_{i_n}, v_{i_1}) \in E$) is teljesül, akkor P **Hamilton kör**.

Jelölés: H-út/ H-kör Hamilton út/ Hamilton kör helyett.

 $H\acute{\mathbf{U}} = \{\langle G, s, t \rangle \mid \text{van a } G \text{ irányított gráfban } s\text{-ből } t\text{-be H-út}\}.$

 $IH\acute{U}=\{\langle G, s, t \rangle \mid \text{van a } G \text{ irányítatlan gráfban } s\text{-ből } t\text{-be H-út}\}.$

IHK= $\{\langle G \rangle \mid \text{van a } G \text{ irányítatlan gráfban H-kör}\}.$

Tétel

HÚ NP-teljes

Tétel

IHÚ NP-teljes

Tétel

IHK NP-teljes

 $TSP = \{ \langle G, K \rangle \mid G \text{-ben van} \leq K \text{ súlyú H-kör} \}.$

Tétel

TSP NP-teljes

NP-köztes nyelv

L NP-köztes, ha $L \in$ NP, $L \notin$ P és L nem NP-teljes.

Ladner tétele

Ha P ≠ NP, akkor létezik NP-köztes nyelv.

co© bonyolultsági osztály

Ha \mathfrak{C} egy bonyolultsági osztály $\operatorname{co}\mathfrak{C} = \{L \mid \overline{L} \in \mathfrak{C}\}.$

Bonyolultsági osztály polinom idejű visszavezetésre való zártsága

 \mathbb{C} zárt a polinomidejű visszavezetésre nézve, ha minden esetben ha $L_2 \in \mathbb{C}$ és $L_1 \leq_p L_2$ teljesül következik, hogy $L_1 \in \mathbb{C}$.

Tétel

Ha C zárt a polinomidejű visszavezetésre nézve, akkor coC is.

Következmény

coNP zárt a polinom idejű visszavezetésre nézve.

Tétel

L \mathfrak{C} -teljes $\iff \overline{L}$ co \mathfrak{C} -teljes.

UNSAT := $\{\langle \varphi \rangle \mid \varphi \text{ kielégíthetetlen nulladrendű formula}\}.$

TAUT := $\{\langle \varphi \rangle \mid a \varphi \text{ nulladrendű formula tautológia}\}.$

Tétel

UNSAT és TAUT coNP-teljesek.

Off-line Turing-gép

Az **off-line Turing-gép** egy legalább 3 szalagos gép, amelynek az első szalagja csak olvasható, az utolsó szalagja csak írható. További szalagjait munkaszalagoknak nevezzük.

Off-line TG-ek tárigénye

Az off-line TG **tárigénye** egy adott inputra a munkaszalagjain felhasznált cellák száma. Egy TG f(n) **tárkorlátos**, ha bármely u inputra legfeljebb f(|u|) tárat használ.

Így az off-line TG-pel **szublineáris** (lineáris alatti) tárbonyolultságot is mérhetünk.

- ► SPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos}$ determinisztikus off-line TG-pel $\}$
- NSPACE $(f(n)) := \{L \mid L \text{ eldönthető } O(f(n)) \text{ tárkorlátos}$ nemdeterminisztikus off-line TG-pel $\}$
- ▶ PSPACE:= $\bigcup_{k>1}$ SPACE (n^k) .
- ▶ NPSPACE:= $\bigcup_{k>1}$ NSPACE (n^k) .
- L:=SPACE $(\log n)$.
- ► NL:=NSPACE (log n).

ELÉR= $\{\langle G, s, t \rangle \mid A \ G \text{ irányított gráfban van } s\text{-ből } t\text{-be út}\}.$ ELÉR \in P (valójában $O(n^2)$, lásd Algoritmusok és adatszerk. II., szélességi/mélységi bejárás)

Tétel

ELÉR \in SPACE($\log^2 n$).

Az ÚT(s, t, $\lceil \log n \rceil$) algoritmus a munkaszalagján $O(\log n)$ darab tagból álló egyenként $O(\log n)$ hosszú (x, y, i) hármast tárol, így ELÉR \in SPACE($\log^2 n$).

Konfigurációs gráf

Egy M TG G_M konfigurációs gráfjának csúcsai M konfigurációi és $(C, C') \in E(G_M) \Leftrightarrow C \vdash_M C'$.

Elérhetőségi módszer: bonyolultsági osztályok közötti összefüggéseket lehet bizonyítani az ELÉR \in P vagy ELÉR \in SPACE($\log^2 n$) tételeket alkalmazva a konfigurációs gráfra, vagy annak egy részgráfjára.

Savitch tétele

Ha $f(n) \ge \log n$, akkor NSPACE $(f(n)) \subseteq SPACE(f^2(n))$.

Következmény

PSPACE = NPSPACE

Tétel

NL⊆ P

Tétel

ELÉR ∈ NL

Log. táras visszavezetés

Egy $L_1 \subseteq \Sigma^*$ nyelv **logaritmikus tárral visszavezethető** egy $L_2 \subseteq \Delta^*$ nyelvre $L_1 \leq_\ell L_2$, ha $L_1 \leq L_2$ és a visszavezetéshez használt függvény kiszámítható logaritmikus táras determinisztikus (off-line) Turing-géppel

NL-nehéz, NL-teljes nyelv

Egy L nyelv **NL-nehéz** (a log. táras visszavezetésre nézve), ha minden $L' \in NL$ nyelvre, $L' \leq_{\ell} L$; ha ráadásul $L \in NL$ is teljesül, akkor L **NL-teljes** (a log. táras visszavezetésre nézve)

Tétel

L zárt a logaritmikus tárral való visszavezetésre nézve

Következmény

Ha L NL-teljes és $L \in L$, akkor L = NL.

Tétel

ELÉR NL-teljes a logaritmikus tárral történő visszavezetésre nézve.

Immerman-Szelepcsényi tétel

NL = coNL

EXPTIME:= $\bigcup_{k\in\mathbb{N}}$ TIME (2^{n^k}) .

Tétel

 $NL \subset PSPACE$ és $P \subset EXPTIME$.

Tétel

 $L \subseteq NL = coNL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$

R szerkezete

R szerkezete P≠NP esetén [ábra: Gazdag Zs. jegyzet]