Reaction Wheel Inverted Pendulum

Ashwin Krishna and Nao (Nancy) Ouyang

Concept / Goals

- Single-link pendulum with a torque-controlled reaction wheel
- Build from scratch
- Use PID / LQR to:
 - Achieve stability at $\Theta_1 = 0$ quickly
 - Achieve stability at Θ_1 = 180 quickly
 - Achieve swingup quickly

Design iteration

- Better hardware (better motor, better flywheel) -- torque over speed
- Motor velocity important (new motor without encoder, could not stabilize upright) -- address by estimating motor speed with PWM (brushed = high motor resistance)
- Flywheel shape (more radius, same mass)
- Fatter wires -- less smoke

Iteration 2

Iteration 3

Final Design -- WIP

- Single shaft encoder (press-fit into shaft adapter)
 (1250 ticks/per)
- Stick pinned to shaft
- Final motor -- torque, but no encoder
- Run at 14V (on power supply), ~3 A max
- Commercial motor controller + Arduino
- Yes there are bearings
- Wood for easy prototyping adjustments
 - Avoided overconstraining

Demo 1: Three Iterations of Swingup

Final Swingup

Demo 2: Stabilize around downward fixed point

Results

(using PD control)

	Natural Downward Convergence (starting at 90 deg)	Controlled Downward Stability (starting at 90 deg)	Controlled Swingup (starting at 0 deg)
Small Flywheel	45 secs	11 secs	23 secs
Larger Flywheel	46 secs	3 secs	3 secs

Work in Progress

- Upright stabilization with LQR stabilization (is it torque-y enough?)
- Est. theta2
- Faster... everything
- Modeling -- same thing on wheels?
 - Learned to do lagrangian and linearize with sympy
 - Or apply... policy gradients!

Conclusions

Successes:

Swingup control

Downward stabilization

Thanks:

- Dane Kouttron flywheel #2
- Mason Massie new motor
- MITERS

Design tidbits

Flywheel in slow mo https://photos.app.goo.gl/faavWzmBYzNp4w5p6

Old motor: https://photos.app.goo.gl/2

