UDAY SHANKAR GATTU

(617) 971-7892 | udaygattu9949@gmail.com | linkedin.com/in/udayshankargattu/ | github.com/UdayGattu | Google Scholar

EDUCATION

Northeastern University, Boston, MA

April 2025

Master of Science in Software Engineering Systems

GPA: 3.6

- Courses: Advanced Techniques with LLMs, Generative AI, NLP, Cloud Computing, Responsible AI, Algorithms.
- Graduate Teaching Assistant: Generative AI, Natural Language Processing for Fall2024, Prompt Engineering for spring 2025.

Harvard University, Boston, MA

October 2022

CS50 Introduction to Computer Science.

Goka Raju Ranga Raju Institute of Engineering and Technology, Hyderabad, India

June 2022

Bachelor of Technology in Mechanical Engineering.

SKILLS

Programming Skills: Python (PyTorch, TensorFlow, Scikit-learn), MySQL, Fast API, Django, C++, Java.

AI Concepts: Large Language Models (LLMs), Fine-tuning, Transformers, BERT, GPT, Generative Adversarial Networks (GANs), Reinforcement Learning, Encodings, Retrieval-Augmented Generation (RAG), LLM Agents, Prompt Engineering, LangChain.

Machine Learning Frameworks: CNN, LSTM, Hugging Face, Stable Diffusion, Deep Learning, Data Science, OpenCV, Flask.

Cloud Computing Skills: AWS, GCP, Vertex AI, Azure, Amazon Sage Maker, Git, Azure DevOps.

Certification: AWS Academy Cloud Practitioner, Microsoft Azure Fundamentals & Developer, EDX CS50.

WORK EXPERIENCE

Northeastern University | Boston, MA

January 2025 - Present

Graduate Teaching Assistant – Prompt Engineering for Generative AI

- Deployed predictive models on Azure using Spark for real-time predictions across large datasets, reducing response times by 30% and improving operational efficiency by 20%.
- Designed and implemented Databricks-integrated scalable ML pipelines for fault-tolerant storage and queries, reducing latency by 30% and storage costs by 15%.
- Built and deployed SaaS-oriented machine learning applications using Python and Flask, achieving a 25% improvement in deployment efficiency and reducing latency by 15% in production systems.
- Collaborated with cross-functional teams to implement robust MLOps workflows, increasing deployment speed by 30% and ensuring 99.9% system uptime for enterprise-grade solutions.

Graduate Teaching Assistant – Generative AI, Natural Language Processing

September 2024 – December 2024

 Deployed predictive models on Azure using Spark for real-time predictions across large datasets, reducing response times by 30% and improving operational efficiency by 20%.

Designed and implemented Databricks-integrated scalable ML pipelines for fault-tolerant storage and queries, reducing latency by 30% and storage costs by 15%.

Tata Consultancy Services | India

June 2022 – August 2023

Machine Learning Engineer - Cloud Exponence Microsoft Azure

- Deployed predictive models on Azure using Spark for real-time predictions across large datasets, reducing response times by 30% and improving operational efficiency by 20%.
- Designed and implemented Databricks-integrated scalable ML pipelines for fault-tolerant storage and queries, reducing latency by 30% and storage costs by 15%.
- Built and deployed SaaS-oriented machine learning applications using Python and Flask, achieving a 25% improvement in deployment efficiency and reducing latency by 15% in production systems.
- Collaborated with cross-functional teams to implement robust MLOps workflows, increasing deployment speed by 30% and ensuring 99.9% system uptime for enterprise-grade solutions.

Python Developer Intern - Cloud Exponence Microsoft Azure

June 2021 – June 2022

- Developed backend services with Python & Flask, implementing RESTful APIs and databases, boosting data retrieval by 25% and scalability.
- Optimized SQL/NoSQL databases, reducing query latency by 30% and improving system reliability for high-load applications.
- Earned Azure Fundamentals certification, enhancing cloud deployment, authentication, and monitoring, improving performance by 20%.

Edu Skills | India

June 2020 – September 2020

AI-ML Engineer Intern

- Trained in advanced machine learning technologies through AWS Academy, mastering Amazon SageMaker to develop and optimize machine learning models, led to a 30% improvement in their accuracy and performance.
- Gained extensive hands-on experience with AWS cloud technologies, focusing on the scalable deployment of AI solutions that improved operational efficiency by 25% across various projects.

• Spearheaded the deployment of machine learning and deep learning models in the cloud, achieving a 20% increase in project efficiency and a 15% reduction in system downtime.

The Sparks Foundation | India

Data Science and Business Analytics intern

- **June 2020 September 2020**
- Demonstrated proficiency in the application of Supervised Machine Learning techniques, notably Linear Regression, for predictive modeling.
- Employed Unsupervised Machine Learning methods, specifically Iris Clustering, for exploratory analysis. Utilized Decision Tree algorithms to inform decision-making processes.
- Conducted Stock Market Prediction through a comprehensive approach involving both numerical and textual analysis.
- Performed in in-depth Business Analytics for strategic insights

Xane.ai | India

June 2020 – September 2020

Artificial Intelligence Engineer

- Developed TensorFlow models for mask detection in retail, achieving 85% accuracy and 87% faster detection speeds.
- Implemented preprocessing techniques like resizing and normalization, increasing recognition accuracy by 25%.
- Deployed AI solutions on edge devices, enhancing real-time performance and usability in customer-facing systems.

APPLIED PROJECTS

Innovative Text-to-Video System for Multi-Modal Content Creation | Northeastern University | Link

January 2025

Tech Stack: Fast API, Lang Chain, Transformers, RAG, OpenAI API, Model Scope, TensorFlow, PyTorch, Runway AI

- Built a text-to-video system using RAG and fine-tuned models, increasing video generation accuracy by 30%.
- Evaluated DALL-E and Model Scope for multi-modal applications, optimizing system capabilities for creative content.
- Developed APIs for seamless SaaS integration, reducing content delivery time by 20%.

Interactive AI-based Tutor for Physics Education | Northeastern University | Link

November 2024

Tech Stack: Fast API, Lang Chain, Transformers, RAG, OpenAI API, PyTorch, MySQL

- Developed an AI-driven Physics Tutor Bot designed to enhance learning experiences for students by providing interactive and adaptive problem-solving support. This project focuses on bridging theoretical concepts with real-world applications to foster a deeper understanding of physics.
- Evaluated DALL-E and Model Scope for multi-modal applications, optimizing system capabilities for creative content.
- Developed APIs for seamless SaaS integration, reducing content delivery time by 20%.

AutoMate: AI-Powered Car Assistant | Northeastern University | Link

January 2025

Tech Stack: Voiceflow, AI Chatbot, NLP, FastAPI, JSON, Dialog Management

- Developed an AI-driven virtual assistant for car companies, automating appointment bookings, test drive scheduling, and agent interactions, reducing manual scheduling efforts by 60%.
- Implemented intelligent error handling and adaptive fallback workflows, reducing user drop-off rates by 35% and improving conversation success rates by 50%.
- Optimized dialogue workflows and structured user interactions, cutting response time by 40% and enhancing customer satisfaction scores by 30%.

Cloud-Native Application (Cloud Computing Google Cloud Platform) | Northeastern University | Link

May 2024

Tech Stack: JavaScript, GCP, Postman, GitHub, Terraform, Packer, MySQL

- Automated GCP infrastructure using Terraform, reducing VM setup times by 50% and improving deployment efficiency.
- Secured cloud resources with VPC peering and encryption keys, cutting deployment errors by 40%.
- Integrated CI/CD pipelines, enabling seamless updates and enhancing operational efficiency by 25%.

Dermatological Image Generation Using Latent Diffusion Models | Northeastern University

May 2024

Tech Stack: Stable Diffusion, Hugging Face, Clip, GCP, Transformers, Unet, PyTorch

- Developed text-to-image models using CLIP and Stable Diffusion, enhancing healthcare datasets by 20%.
- Built scalable pipelines on GCP, transforming text inputs into photorealistic images for diagnostic use.
- Added predictive titling for streamlined diagnostics, improving accuracy in AI-generated medical reports.

Travel Agent Chatbot | Northeastern University

May 2024

Tech Stack: Python, LangChain, Fast API, MySQL, Transformers, NLP SQL, PyTorch

- Designed and implemented an advanced chatbot for a travel agency utilizing Fast API, Large Language Models (LLMs), and ChatGPT, focusing on real-time travel inquiries and personalized package recommendations.
- Developed both front-end and back-end systems, incorporating AI technologies to streamline user interactions and improve service delivery.
- Engineered a custom Natural Language Processing (NLP) Query-SQL engine to enable dynamic database interactions, enhancing the flexibility and responsiveness of the chatbot, supporting market research and increasing customer engagement.
- Achieved a 30% increase in customer engagement by integrating personalized travel options and real-time assistance, resulting in a more interactive user experience.
- Boosted booking conversions by 25% using targeted AI-driven recommendations and efficient handling of customer inquiries.

RESEARCH EXPERIENCE

•	Johnson Cook Material Model, Materials Today: Proceedings, 2022. Citations: 118* <u>Link</u>