- Caraduação

SISTEMAS DA INFORMAÇÃO

Al Engineering, Cognitive And Semantic Computation & IoT PROF. Arnaldo Viana

Al Engineering, Cognitive and Semantics Computing & IoT

O que esperar do nosso curso

Objetivos:

- Conhecer as técnicas básicas para manipulação de imagens;
- Construir sistemas baseados nos conceitos de Internet das Coisas e Inteligência Artificial com o desenvolvendo sistemas de hardware e software;
- Entender e discutir as arquiteturas de diferentes aplicações de IoT e sua interação com sistemas de IA

Organização do Curso

- 1ª Parte: Processamento de Imagem
 - Conceitos fundamentais (imagem)
 - Etapas do processamento de imagens
 - Melhoria de imagens
 - Detecção de atributos (retas, circunferências)
 - Pontos característicos
- 2ª Parte: Internet das coisas (IoT)
 - Conceitos fundamentais e perspectivas
 - Introdução ao uso do Arduino
 - Sensores e atuadores com Arduíno
 - Serialização de dados no formato JSON
 - Comunicação em redes sem fio
 - Plataformas de IoT: conectando dispositivos e aplicações
- 3^a. Parte: Machine Learning
 - Fundamento do Reconhecimento de Padrões
 - Conceito de Aprendizagem
 - Redes Neurais Artificiais
 - Reconhecimento e detecção de objetos

1^a Semestre

2^a Semestre

$\lceil - \rceil / \backslash \rceil$

Projetos passados

O que esperar do nosso curso

Dinâmica das aulas:

As aulas terão conteúdos teóricos e práticos.

Instruções para a instalação da infraestrutura

Importante!

Windows:

- Fazer o download do python no site oficial:
 - https://www.python.org/downloads/
 (selecionar a opção de adicionar o Python ao PATH)
- Abrir o cmd e executar os comandos:
 - pip install matplotlib
 - pip install opency-python
 - pip install notebook
- Alternativa: Não é necessário, masssss... quem preferir, pode usar o anaconda e criar uma virtual env para instalar a infra

Linux/mac:

Só precisa executar "pip3 install pacote" no terminal.

VM - Virtual box:

- Tem uma VM pronta para usar, basta instalar o VirtualBox e os extension pack:
 - https://www.virtualbox.org/wiki/Downloads (são 2 arquivos para fazer o download)
- Fazer o download do arquivo iot.ova que está no google drive
 https://drive.google.com/drive/folders/1HrtLCNFSyUQ0nkCwthz7dv5RqcHx7h4t?us
 - https://drive.google.com/drive/folders/1HrtLCNFSyUQ0nkCwthz7dv5RqcHx7h4t?us p=sharing
- Senha: iot
- sugestão: rodar com pelo menos 2 CPU's e 4G de Ram

OK, mas por que vou estudar isso???

- Andrew Ng: a nova eletricidade
- Gartner Hype Cycle (2018)

1. Processamento de lmagem

Exemplo de visão computacional

Exemplo de visão computacional - Tesla

Exemplo de visão computacional

Cognitive and Semantic Computation

Exemplo de visão computacional - Rover

O que é visão computacional?

Algumas aplicações

https://storage.googleapis.com/tfjs-examples/webcam-transfer-learning/dist/index.html

https://experiments.withgoogle.com/collection/ai/move-mirror/view/mirror

https://docs.opencv.org/3.4/df/d6c/tutorial_js_face_detection_camera.html

https://teachablemachine.withgoogle.com/

Vamos tentar entender o que é uma imagem digital.

Nosso primeiro laboratório: Realizar a instalação da infra e validar se está tudo correto.

Vamos utilizar o notebook **IntroPID.ipynb** (podemos rodar tanto local como em nuvem, utilizando o google colab).