THE UNIVERSITY OF THE STATE OF NEW YORK THE STATE EDUCATION DEPARTMENT BUREAU OF SECONDARY CURRICULUM DEVELOPMENT ALBANY

Reference Tables for Chemistry

A

DENSITY AND SOLUBILITY OF SOME COMMON GASES					
Name	Density grams/liter 0°C 760 mm.	Solubility*			
air ammonia carbon dioxide carbon monoxide chlorine nitrogen monoxide hydrogen hydrogen chloride hydrogen sulfide nitrogen oxygen sulfur dioxide	1.29 0.77 1.98 1.25 3.21 1.34 0.09 1.64 1.54 1.25 1.43 2.93	89.5 0.3346 0.0044 0.9972† 0.0098 0.0002 82.3 0.7066 0.0029 0.0069 22.83			

*weight of gas in grams dissolved in 100 grams of water at 0°C and 760 mm. † at 10°C

"Temperature, °C

Charge on Some Radicals						
CH3COO_	C104-	H_PO	NO -			
CO ₃ =	Cr ₂ O ₇ =	H ₃ 0 ⁺	OH_			
C204=	HCO3	Hg ₂ ++	PO3 =			
C10-	HPO ₄ =	Mn0	PO ₄ ≡			
ClO ₂	HSO ₃	NH ₄ ⁺	SO3=			
C10 ₃	HSO ₄	NO ₂	SO ₄ =			

E

SYMBOLS OF SOME PARTICLES				
electron	-ı e°	deuteron	1 H2	
neutron	•n¹	triton	1 H ³	
proton	1 H ¹	alpha particle	e ^{He4}	

D

TABLE OF SOLUBILITIES IN WATER											
i-nearly insoluble ss-slightly soluble s-soluble d-decomposes n-not isolated	acetate	bromide	carbonate	chloride	hydroxide	iodide	nitrate	oxide	phosphate	sulfate	sulfide
aluminum	s	S	n	s	i	S	S.	i	i	S	d
ammonium	S	S	S	S	S	s	S	n	8	S	S
barium	s	S	i	S	S	S	S	S	i	í	d
calcium	S	S	i	S	SS	S	S	SS	i	SS	đ
copper II	S	S	i	S	i	đ	s	i	i	S	i
iron II	S	S	i	S	i	S	S	i	i	S	i
iron III	S	S	n	s	i	S	s	i	i	SS	d
lead	S	SS	i	SS	i	SS	S	i	i.	i	i
magnesium	S	S	i	S	i	S	S	i	i	S	d.
mercury I	SS	i	i	i	n	i	S	i	i	SS	i
mercury II	S	SS	i	S	i	i	S	i	i	d	i
potassium	S	S	S	S	S	S	S	S	Ś	S	S
silver	SS	i	i	i	n	i	s	i	i	SS	i
sodium	S	S	S	S	S	s	S	d	S	S	S
zinc	S	S	i	S	i	S	S	i	i	S	i

	HEAT AND FREE ENERGY OF	FORMATION OF CO	MPOUNDS AT 25°C
	Compound	Heat of Formation kcal/mole(\(\Delta \text{H} \)*	Free Energy of Formation kcal/mole(Δ 6)*
	Aluminum oxide (s) Ammonia (g) Barium sulfate (s) Calcium hydroxide (s) Carbon dioxide (g) Copper (II) sulfate (s) Dinitrogen monoxide (g) Ethyne (acetylene) (g) Hydrogen fluoride (g) Hydrogen iodide (g) Hydrogen oxide (£) Iron (II, III) oxide(s) Lead monoxide (s) Magnesium oxide (s) Mercury (II) oxide (s) Nitrogen monoxide (g) Potassium chloride (s) Sodium chloride (s) Sulfur dioxide (g) Zinc oxide (s)	-399.09 -11.04 -350.2 -235.80 -94.39 -184.00 19.49 54.19 -63.99 5.93 -68.32 -267.0 -52.40 -143.84 -21.68 21.60 -104.18 -98.23 -70.96 -83.17	-376.77 -3.98 -323.4 -214.33 -94.26 -158.2 24.76 50.00 -56.69 -242.4 -45.25 -136.13 -13.99 20.72 -97.59 -91.79 -71.79 -76.05
		(L) = liquid	(g) = gas
- 1			

HALF-LIVES OF SOME RADIOISOTOPES				
	5,700 yrs.			
⁴⁵ Ca	152 days			
3 6Cl	$4 \times 10^5 \text{ yrs.}$			
60 Co	5.3 yrs.			
137Cs	33 yrs.			
131 I	8 days			
42 _K	12.4 hrs.			
32 _P	14.3 days			
⁹⁰ Sr	20 yrs.			

H

	ACID-BASE CHART					
acid strength decreases	Conjugate acid HCl HNO ₃ H ₂ SO ₄ H ₃ O ⁺ HSO ₄ Al(H ₂ O) ₆ NH ₄ H ₂ O NH ₃	Conjugate base Cl- NO ₃ - HSO ₄ - H ₂ O SO ₄ = Al(H ₂ O) ₅ (OH) ⁺⁺ NH ₃ OH- NH ₂ -	base strength decreases			

(1)

HEATS OF REACTION	
t = 25°C p = 1 atm.	kcal/mole*
$H_2(g) + \frac{1}{2} O_2(g) = H_2O(g)$	-57.8
$H_2(g) + \frac{1}{2} O_2(g) = H_2O(\ell)$	-68.3
$S(s) + O_2(g) = SO_2(g)$	-71.0
$H_2(g) + S(s) + 20_2(g) = H_2S0_4(\ell)$	-194.0
$\frac{1}{2} N_2(g) + \frac{1}{2} O_2(g) = NO(g)$	21.6
$\frac{1}{2} N_2(g) + O_2(g) = NO_2(g)$	8.1
$\frac{1}{2}$ N ₂ (g) + $\frac{3}{2}$ H ₂ (g) = NH ₃ (g)	-11.0
$C(s) + \frac{1}{2} O_2(g) = CO(g)$	-26.4
$C(s) + O_2(g) = CO_2(g)$	-94.0
$2C(s) + 3H_2(g) = C_2H_6(g)$	-20,2
I .	l .

*of the product formed (Minus sign indicates an exothermic reation.)

1

"REPRESENTATIVE" ELEMENTS

	IA										
F .	3.5	⊢Ioni2	ation	En	ergy#	דימו		250	gati		**
H											
	2.1	IIA	IIIA		IVA	_	/A		VIA		VIIA
П	5.4	9.3	8.3		11.2		14.5		13.6		17.3
Li		Ве	В	C		N	1	0		F	.
	1.0	1.5	2.0		2.5		3.0		3.5		4.0
	5.1	7.6	6.0		8.1	:	10.9		10.3		13.0
Ne		Mg	Al	Si		P		S		Cl	1
	0.9	1.2	1.5		1.8		2.1		2.5		3.0
	4.3	6.1	6.0		8.1		10.5		9.7		11.8
K		Ca	Ga	Ge		As		Se		Br	
	0.8	1.0	1.6		1.8	L	2.0		2.4	<u> </u>	2.8
Г	4.2	5.7	5.8		7.3		8.5		9.0		10.6
Ri)	Sr	In	Sn		Sb	- 1	Te		I	
	0.8	1.0	1.7		1.8		1.9	<u> </u>	2.1	L	2.5
	3.9	5.2	6.1	П	7.4		8.0				
Cs		Ba	Tl	Pb)	Bi		Po		At	
	0.7	0.9	1.8		1.8	L	1.9		2.0		2.2
Г		5.3	*1st. ionization energy in e.V.						V		
Fı	r.	Ra	1								
	0.7		**Arbitrary scale								

pH VALUES FOR EQUIVALENT (0.1N.) SOLUTIONS

hydrochloric acid	1.1	alum	3.2
sulfuric acid	1.2	boric acid	5.2
	1.5	pure water	7.0
	2.2	sodium bicarbonate	8.4
acetic acid	2.9	borax	9.2

ammonium hydroxide	11.1
	11.6
trisodium phosphate	12.0
sodium hydroxide	13.0
potassium hydroxide	13.0

IONIZATION CONSTANTS OF ACIDS AND BASES AT 25°C

Acetic acid	1.8×10^{-5}
Boric acid	5.8 x 10 ⁻¹⁰
Carbonic acid	4.3×10^{-7}
Hypochlorous acid	3.5×10^{-8}
Phosphoric acid	7.5×10^{-3}
Ammonium hydroxide	1.8×10^{-5}
Lead hydroxide	9.6×10^{-4}

Some acids and bases which are completely or nearly completely ionized in dilute solutions at 25°C

Acids

Bases

hydrochloric nitric sulfuric

potassium hydroxide

sodium hydroxide

SOME EQUILIBRIUM CONSTANTS AT 25°C

 $Cu(s) + 2 Ag^{+} (aq) = Cu^{+2} (aq) + 2 Ag(s) 2 \times 10^{15}$

 $CH_3COOH (aq) = H^+(aq) + CH_3COO^-(aq) 1.8 \times 10^{-5}$

 $AgCl (s) = Ag^{+} (aq) + Cl^{-}(aq)$

 1.7×10^{-10}

P

STANDARD OXIDATION POTENTIALS

Ionic Concentrations 1 molal in water at 25°C

Half cell Reaction	E° (volts)
Li = Li ⁺ + e ⁻ Rb = Rb + e ⁻ K = K + e ⁻ Cs = Cs + e ⁻ Ba = Ba ⁺⁺ + 2e ⁻ Sr = Sr ⁺⁺ + 2e ⁻ Ca = Ca ⁺⁺ + 2e ⁻ Na = Na ⁺ + e ⁻ Mg = Mg ⁺⁺ + 2e ⁻ Be = Be ⁺⁺ + 2e ⁻ Be = Be ⁺⁺ + 2e ⁻ Al = Al + de ⁺⁺ + de ⁻ Zn = Zn + de ⁺⁺ + de ⁻ Cr = Cr + de ⁺⁺ + de ⁻ Cd = Cd + de ⁺⁺ + de ⁻ Sn = Sn + de ⁺⁺ + de ⁻ Sn = Sn + de ⁺⁺ + de ⁻ Cu = Cu + de ⁺⁺ + de ⁻ Cu = Cu + de ⁺⁺ + de ⁻ Cu = Cu + de ⁺⁺ + de ⁻ Cu = Cu + de ⁺⁺ + de ⁻ Cu = Cu + de ⁺⁺ + de ⁻ Che = Hg ₂ + de ⁺⁺ + de ⁻ Che = Br ₂ (L) + de ⁻ NO + de de ⁺⁺ + de ⁻ Che = Cl ₂ + de ⁺⁺ + de ⁻ Che = Cl ₂ + de ⁻ Che = Cl ₂ + de ⁻ Au = Au ⁺⁺⁺ + de ⁻ Cu = Cl ₂ + de ⁻ Au = Au ⁺⁺ + de ⁻ Cu = Cl ₂ + de ⁻ Au = Au ⁺⁺ + de ⁻ Cu = Cl ₂ + de ⁻ Au = Au ⁺⁺ + de ⁻ Cu = Cl ₂ + de ⁻ Au = Au ⁺ + de ⁻ Cu = Cl ₂ + de ⁻ Au = Au ⁺ + de	3.05 2.93 2.93 2.92 2.90 2.89 2.87 2.71 2.37 1.85 1.66 1.18 0.76 0.74 0.44 0.40 0.28 0.25 0.14 0.13 0.00 -0.15 -0.15 -0.34 -0.53 -0.77 -0.79 -0.80 -0.92 -0.96 -1.07 -1.23 -1.33 -1.36 -1.50 -1.51
$2F = F_2 + 2e^-$	-2.87

PRESSURE OF WATER VAPOR IN MILLIMETERS OF MERCURY								
°C	mm.	°C	mm.	°C	mm.	°C	mm.	
0.0	4.6	17.0	14.5	21.0	18.7	25.0	23.8	
5.0	6.5	18.0	15.5	22.0	19.8	26.0	25.2	
10.0	9.2	19.0	16.5	23.0	21.1	27.0	26.7	
15.0	12.8	20.0	17.5	24.0	22.4	28.0	28.3	

PHYSICAL CONSTANTS					
Name	Symbol	Value			
Speed of light Avogadro's number Universal gas constant Planck's constant Charge of electron Mass of an electron Mass of a proton Mass of a neutron	c No R h e me mp mn	3.00 x 10 ¹⁰ cm/sec. 6.02 x 10 ²³ 0.0821 liter_atm/mole_°I 6.63 x 10 ⁻³⁴ joule_sec. 1.60 x 10 ⁻¹⁹ coulomb 9.11 x 10 ⁻²⁸ gm. 1.67 x 10 ⁻²⁴ gm. 1.67 x 10 ⁻²⁴ gm.			

Elements Periodic Table of the

Atomic weights conform to the 1961 values of the Commission on Atomic Weights.

2 % 3, **E S S** 58 1.82

Actinide Series

+5 238.03 232.038 +4 (231) % 1.80

103

E .

S

5.

Y

Numbers in parentheses are mass numbers of most stable or most common isotope.