

SNR-Invariant PLDA Modeling for Robust Speaker Verification

Na Li and Man-Wai Mak

Interspeech 2015 Dresden, Germany

Department of Electronic and Information Engineering
The Hong Kong Polytechnic University, Hong Kong SAR, China

Contents

- 1. Background and Motivation of Work
- 2. SNR-invariant PLDA modeling for Robust Speaker Verification
- 3. Experiments on SRE12
- 4. Conclusions

Background

I-vector/PLDA Framework

$$\mathbf{x}_{ij} = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{\varepsilon}_{ij}$$

m: Global mean of all i-vectors

V: Bases of speaker subspace

 \mathbf{h}_i : Latent speaker factor with a standard normal distributio $\mathcal{N}(\mathbf{0}, \mathbf{I})$

 $\mathbf{\epsilon}_{ij}$: Residual term follows a Gaussian distribution with zero mean and full covariance $\mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$

 \mathbf{x}_{ii} : Length-normalized i-vector of speaker i

Background

• In conventional multi-condition training, we pool i-vectors from various background noise levels to train m, V and Σ .

Motivation

 We argue that the variation caused by SNR can be modeled by an SNR subspace and utterances falling within a narrow SNR range should share the same set of SNR factors.

Motivation

Method of modeling SNR information

Distribution of SNR in SRE12

Contents

- 1. Background
- 2. Motivation of Work
- 3. SNR-invariant PLDA modeling for Robust Speaker Verification
- 4. Experiments on SRE12
- 5. Conclusions

SNR-invariant PLDA

PLDA: $\mathbf{x}_{ii} = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{\varepsilon}_{ii}$

i: Speaker index

j: Session index

By adding an SNR factor to the conventional PLDA, we have **SNR-invariant PLDA**:

$$\mathbf{x}_{ij}^{k} = \mathbf{m} + \mathbf{V}\mathbf{h}_{i} + \mathbf{U}\mathbf{w}_{k} + \mathbf{\varepsilon}_{ij}^{k}$$
 k: SNR index

where \mathbf{U} denotes the SNR subspace, \mathbf{W}_k is an SNR factor, and \mathbf{h}_i is the speaker (identity) factor for speaker i.

Note that it is not the same as PLDA with channel subspace:

$$\mathbf{x}_{ij} = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{R}\mathbf{r}_{ij} + \mathbf{\varepsilon}_{ij}$$

SNR-invariant PLDA

 We separate I-vectors into different groups according to the SNR of their utterances

$$\mathbf{x}_{ij}^{k} = \mathbf{m} + \mathbf{V}\mathbf{h}_{i} + \mathbf{U}\mathbf{w}_{k} + \mathbf{\varepsilon}_{ij}^{k}$$

Compared with Conventional PLDA

PLDA vs SNR-invariant PLDA

Generative Model

PLDA	SNR-invariant PLDA		
$\mathbf{x}_{ij} = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{\varepsilon}_{ij}$	$\mathbf{x}_{ij}^k = \mathbf{m} + \mathbf{V}\mathbf{h}_i + \mathbf{U}\mathbf{w}_k + \mathbf{\epsilon}_{ij}^k$		
$p(\mathbf{x}) = N(\mathbf{x} \mid \mathbf{m}, \mathbf{V}\mathbf{V}^T + \mathbf{\Sigma})$	$p(\mathbf{x}) = N(\mathbf{x} \mid \mathbf{m}, \mathbf{V}\mathbf{V}^T + \mathbf{U}\mathbf{U}^T + \mathbf{\Sigma})$		
$oldsymbol{ heta} = \{\mathbf{m}, \mathbf{V}, oldsymbol{\Sigma}\}$	$oldsymbol{ heta} = \{m, V, U, \Sigma\}$		

PLDA vs SNR-invariant PLDA

E-Step

L Otop					
PLDA	SNR-invariant PLDA				
$\langle \mathbf{h}_{i} X \rangle = \mathbf{L}_{i}^{-1} \mathbf{V}^{T} \mathbf{\Sigma}^{-1} \sum_{j=1}^{H_{i}} (\mathbf{x}_{ij} - \mathbf{m})$ $\langle \mathbf{h}_{i} \mathbf{h}_{i}^{T} X \rangle = \mathbf{L}_{i}^{-1} + \langle \mathbf{h}_{i} X \rangle \langle \mathbf{h}_{i} X \rangle^{T}$ $\mathbf{L}_{i} = \mathbf{I} + H_{i} \mathbf{V}^{T} \mathbf{\Sigma}^{-1} \mathbf{V}$	$ \langle \mathbf{h}_{i} \mathcal{X} \rangle = (\mathbf{L}_{i}^{1})^{-1} \mathbf{V}^{\top} \mathbf{\Phi}_{1}^{-1} \sum_{k=1}^{K} \sum_{j=1}^{H_{i}(k)} (\mathbf{x}_{ij}^{k} - \mathbf{m}) $ $ \langle \mathbf{w}_{k} \mathcal{X} \rangle = (\mathbf{L}_{k}^{2})^{-1} \mathbf{U}^{\top} \mathbf{\Phi}_{2}^{-1} \sum_{i=1}^{S} \sum_{j=1}^{H_{i}(k)} (\mathbf{x}_{ij}^{k} - \mathbf{m}) $ $ \langle \mathbf{h}_{i} \mathbf{h}_{i}^{T} \mathcal{X} \rangle = (\mathbf{L}_{i}^{1})^{-1} + \langle \mathbf{h}_{i} \mathcal{X} \rangle \langle \mathbf{h}_{i} \mathcal{X} \rangle^{T} $ $ \langle \mathbf{w}_{k} \mathbf{w}_{k}^{T} \mathcal{X} \rangle = (\mathbf{L}_{k}^{2})^{-1} + \langle \mathbf{w}_{k} \mathcal{X} \rangle \langle \mathbf{w}_{k} \mathcal{X} \rangle^{T} $ $ \langle \mathbf{w}_{k} \mathbf{h}_{i}^{T} \mathcal{X} \rangle = \langle \mathbf{w}_{k} \mathcal{X} \rangle \langle \mathbf{h}_{i} \mathcal{X} \rangle^{T} $ $ \langle \mathbf{h}_{i} \mathbf{w}_{k}^{T} \mathcal{X} \rangle = \langle \mathbf{h}_{i} \mathcal{X} \rangle \langle \mathbf{w}_{k} \mathcal{X} \rangle^{T} $ $ \mathbf{L}_{i}^{1} = \mathbf{I} + N_{i} \mathbf{V}^{T} \mathbf{\Phi}_{1}^{-1} \mathbf{V} \mathbf{L}_{k}^{2} = \mathbf{I} + M_{k} \mathbf{U}^{T} \mathbf{\Phi}_{2}^{-1} \mathbf{U} $ $ \mathbf{\Phi}_{1} = \mathbf{U} \mathbf{U}^{T} + \mathbf{\Sigma} \qquad \mathbf{\Phi}_{2} = \mathbf{V} \mathbf{V}^{T} + \mathbf{\Sigma} $				

PLDA versus SNR-invariant PLDA

M-Step

PLDA	SNR-invariant PLDA
$\mathbf{V} = \left[\sum_{ij} (\mathbf{x}_{ij} - \mathbf{m}) \langle \mathbf{h}_i X \rangle^T \right] \left[\sum_{ij} \langle \mathbf{h}_i \mathbf{h}_i^T X \rangle \right]^{-1}$	$\mathbf{V} = \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_i(k)} \left[(\mathbf{x}_{ij}^k - \mathbf{m}) \langle \mathbf{h}_i \mathcal{X} \rangle - \mathbf{U} \langle \mathbf{w}_k \mathbf{h}_i^T \mathcal{X} \rangle \right] \right\}$
$\Sigma = \frac{\sum_{ij} \left[(\mathbf{x}_{ij} - \mathbf{m})(\mathbf{x}_{ij} - \mathbf{m})^T - \mathbf{V} \left\langle \mathbf{h}_i \mid X \right\rangle (\mathbf{x}_{ij} - \mathbf{m})^T \right]}{\sum_{i} H_i}$	$\times \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_i(k)} \langle \mathbf{h}_i \mathbf{h}_i^T \mathcal{X} \rangle \right\}^{-1}$
$\mathbf{m}' = rac{\sum_{ij} \mathbf{x}_{ij}}{\sum_{i} H_i}$	$\mathbf{U} = \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_i(k)} \left[(\mathbf{x}_{ij}^k - \mathbf{m}) \langle \mathbf{w}_k \mathcal{X} \rangle - \mathbf{V} \langle \mathbf{h}_i \mathbf{w}_k^T \mathcal{X} \rangle \right] \right\}$
	$\times \left\{ \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_{i}(k)} \langle \mathbf{w}_{k} \mathbf{w}_{k}^{T} \mathcal{X} \rangle \right\}^{-1}$ $= 1 \sum_{i=1}^{S} \sum_{k=1}^{K} \prod_{j=1}^{H_{i}(k)} \left[\langle \mathbf{w}_{k} \mathbf{w}_{k}^{T} \mathcal{X} \rangle \right]^{-1}$
	$\Sigma = \frac{1}{N} \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_i(k)} \left[(\mathbf{x}_{ij}^k - \mathbf{m}) (\mathbf{x}_{ij}^k - \mathbf{m})^\top - \mathbf{V} \langle \mathbf{h}_i \mathcal{X} \rangle (\mathbf{x}_{ij}^k - \mathbf{m})^\top - \mathbf{U} \langle \mathbf{w}_k \mathcal{X} \rangle (\mathbf{x}_{ij}^k - \mathbf{m})^\top \right]$
	$\mathbf{m} = \frac{1}{N} \sum_{i=1}^{S} \sum_{k=1}^{K} \sum_{j=1}^{H_i(k)} \mathbf{x}_{ij}^k$ 14

SNR-invariant PLDA Score

Likelihood Ratio Scores

Given a test i-vector \mathbf{x}_t and a target-speaker i-vector \mathbf{x}_s , the likelihood ratio score can be computed as follows:

$$L(\mathbf{x}_{s}, \mathbf{x}_{t}) = \ln \frac{P(\mathbf{x}_{s}, \mathbf{x}_{t} | \text{same-speaker})}{P(\mathbf{x}_{s}, \mathbf{x}_{t} | \text{different-speakers})}$$
$$= \text{const} + \frac{1}{2} \mathbf{x}_{s}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{s} + \frac{1}{2} \mathbf{x}_{t}^{\mathsf{T}} \mathbf{Q} \mathbf{x}_{t} + \mathbf{x}_{s}^{\mathsf{T}} \mathbf{P} \mathbf{x}_{t}$$

where

$$egin{aligned} \mathbf{P} &= \mathbf{\Sigma}_{tot}^{-1} \mathbf{\Sigma}_{ac} (\mathbf{\Sigma}_{tot} - \mathbf{\Sigma}_{ac} \mathbf{\Sigma}_{tot}^{-1} \mathbf{\Sigma}_{ac})^{-1}, \ \mathbf{Q} &= \mathbf{\Sigma}_{tot}^{-1} - (\mathbf{\Sigma}_{tot} - \mathbf{\Sigma}_{ac} \mathbf{\Sigma}_{tot}^{-1} \mathbf{\Sigma}_{ac})^{-1}, \ \mathbf{\Sigma}_{ac} &= \mathbf{V} \mathbf{V}^{\mathsf{T}}, \ \ ext{and} \ \ \mathbf{\Sigma}_{tot} &= \mathbf{V} \mathbf{V}^{\mathsf{T}} + \mathbf{U} \mathbf{U}^{\mathsf{T}} + \mathbf{\Sigma}. \end{aligned}$$

Contents

- 1. Motivation of Work
- 2. Conventional PLDA
- 3. Mixture of PLDA for Noise Robust Speaker Verification
- 4. Experiments on SRE12
- 5. Conclusions

Data and Features

- Evaluation dataset: Common evaluation condition 1 and 4 of NIST SRE 2012 core set.
- Parameterization: 19 MFCCs together with energy plus their 1st and 2nd derivatives → 60-Dim
- **UBM**: gender-dependent, 1024 mixtures
- Total Variability Matrix: gender-dependent, 500 total factors
- I-Vector Preprocessing:
 - Whitening by WCCN then length normalization
 - \triangleright Followed by NFA (500-dim \rightarrow 200-dim)

Finding SNR Groups

SNR Distributions

SNR Distribution of training and test utterances in CC4

Performance on SRE12

Mixture of PLDA (*Mak, Interspeech14*)

CC1

Method	Parameters		Male		Female	
	K	Q	EER(%)	minDCF	EER(%)	minDCF
PLDA	-	-	5.42	0.371	7.53	0.531
mPLDA	-	-	5.28	0.415	7.70	0.539
SNR- Invariant PLDA	3	40	5.42	0.382	6.93	0.528
	5	40	5.28	0.381	6.89	0.522
	6	40	5.29	0.388	6.90	0.536
	8	30	5.56	0.384	7.05	0.545

No. of SNR Groups No. of SNR factors (dim of \mathbf{W}_{k})

Performance on SRE12

CC4

Method	Parameters		Male		Female	
	K	Q	EER(%)	minDCF	EER(%)	minDCF
PLDA	-	-	3.13	0.312	2.82	0.341
mPLDA	-	-	2.88	0.329	2.71	0.332
SNR- Invariant PLDA	3	40	2.72	0.289	2.36	0.314
	5	40	2.67	0.291	2.38	0.322
	6	40	2.63	0.287	2.43	0.319
	8	30	2.70	0.292	2.29	0.313

No. of SNR Groups No. of SNR factors (dim of \mathbf{W}_k)

Performance on SRE12

CC4,

Female

Conclusions

- We show that while I-vectors of different SNR fall on different regions of the I-vector space, they vary within a single cluster in an SNR-subspace.
- Therefore, it is possible to model the SNR variability by adding an SNR loading matrix and SNR factors to the conventional PLDA model.