

Structured Data and Inference

Fritjof Wolf

11. Januar 2013

Überblick

- Motivation
- Quellen für strukturierte Daten
- Anwendungen strukturierter Daten
- Zukünftige Verbesserungen

Motivation

- Strukturierte Daten vs. unstrukturierte Daten
- Überprüfung von Nebenbedingungen
 => zusätzliche Bewertung der Antwortkandidaten
- Beispiel:

THE HOLE TRUTH (1200): Asian location where a notoriously horrible event took place on the night of June 20, 1756. (Answer: "Black Hole of Calcutta")

Quellen strukturierter Daten

- Standard Online-Datenbanken
- Automatisch extrahierte Daten
- Manuell extrahierte Daten

Standard Online-Datenbanken

- Unterschied zu WolframAlpha und CYC
- Standard-Datenbanken, z.B. für Filme, Bücher etc.
- DBpedia und Freebase
 - → Vereinheitlichung der Datenformate
- Verbindung zu Ontologien, wie z.B. YAGO

Automatisch extrahierte Daten

- Wissensdatenbank aus Tupeln (Entität, Datum, Anzahl)
 - → Anzahl des gemeinsamen Auftretens
- PRISMATIC

Manuell extrahierte Daten

- Typen-Unverträglichkeit von Oberklassen in YAGO
- Frames für wichtige Themen und Kategorien, wie z.B. U.S.
 Präsidenten, Länder und Hauptstädte, Preise etc.
- Frames repräsentieren zusammenhängende Gruppe von Begriffen (drücken Erwartung aus)
- Gut zur Überprüfung von Nebenbedingungen geeignet

Frames für Bücher und Filme

Kalyanpur.A, u.a.: "Structured Data and Inference in DeepQA", S. 4

Anwendungen strukturierter Daten

- Zeitliche und geografische Nebenbedingungen
- Taxonomisches Schlussfolgern
- Semantische Frames
- Verschiedenes

Zeitliche Nebenbedingungen

- Extraktion in Analysephase
- TLinks: Tupel aus Entität und Zeitangabe
- Überprüfen der Kompatibilität der Daten
- Abgleich mit einer Liste mit den wichtigen Daten einer Entität

Geografische Nebenbedingungen

- Mögliche Kriterien: Himmelsrichtung, Grenzen, nah und fern
- Suche geografische Informationen in Dbpedia und Freebase
- Direkte Suche in Freebase
- "Nah und fern"-Einordnung mithilfe maschinellen Lernens
- Implizites "Nah", Beispiel:

"River that connects Lake Powell in Utah with the Gulf of California"

Evaluation

Table 1 Temporal questions scored; 662 temporal questions out of 3,508-question test set.

	Baseline	Plus temporal
Accuracy	66.62%	67.37% (+0.75%)
Precision@70	80.82%	81.9% (+1.08%)

Table 2 Spatial questions scored; 374 spatial questions out of the 3,508-question test set.

	Baseline	Plus spatial
Accuracy	65.78%	67.65% (+1.87%)
Precision @ 70	78.63%	80.15% (+1.52%)

Kalyanpur.A, u.a.: "Structured Data and Inference in DeepQA," S. 6

Taxonomisches Schlussfolgern

- Verschiedene TyCor-Algorithmen, Beispiel YAGO TyCor
- Bestimme Typen der möglichen Antworten und der Frage
 - → Verbesserung durch Heuristiken
- Typenabgleich in YAGO WordNet
- Verschiedene Regeln, zum Beispiel Synonyme, Unterklassen, Disjunkte Mengen
 - => Zahl, die die Ähnlichkeit der beiden Typen angibt

Evaluation

Table 3 Evaluation of accuracy and precision.

Baseline	Baseline accuracy (Precision@70)	Plus YAGO (An)TyCor	Plus all TyCors except YAGO (An)TyCor	Plus all TyCors including YAGO (An)TyCor
. DeepQA system with no answer scorers	50.03%	54.28%	58.55%	58.64%
	(Precision@70:	(Precision@70:	(Precision@70:	(Precision@70:
	63.44%)	67.63%)	75.37%)	75.24%)
DeepQA system with all	65.48%	68.39%	69.38%	70.35%
answer scorers except	(Precision@70:	(Precision@70:	(Precision@70:	(Precision@70:
TyCors	81.43%)	83.84%)	86.93%)	87.42%)

Kalyanpur.A, u.a.: "Structured Data and Inference in DeepQA", S. 6

Semantische Frames I

- Sonderstellung: Unabhängige Pipeline
- Frame-Erkennungsalgorithmen
- Implizite Annahmen über Beziehungen zwischen Entitäten
- Beispiel:

LANGUAGE: The lead singer of the band Dengue Fever is from this country & often sings in Khmer. (Answer: "Cambodia")

Semantische Frames II

- Besonders geeignet, wenn Fokus der Frage ein Frame ist
- Erleichtert die Suche nach mehreren Antworten
- Beispiel:

TRICKY QUESTIONS: Of current U.N. member countries with 4-letter names, the one that is first alphabetically. (Answer: "Chad")

Evaluation

- Kleiner Anwendungsbereich, aber hohe Trefferquote darin
- 90.771 Fragen, bei 223 genau ein Treffer, dabei 87 % richtig
- Gute Ergänzung zur Hauptpipeline
- Bevorzugung bei speziellen Fragen

Andere Anwendungen

- Viele verschiedene Einsatzgebiete
- Answer-in-clue Komponente
- Inferenz
- Beispiel:

(\$200) WHO SENT ME TO THE SC: Ruth Bader Ginsberg. (Answer: "Bill Clinton") (\$400) WHO SENT ME TO THE SC: Clarence Thomas. (Answer: "George H W Bush") (\$600) WHO SENT ME TO THE SC: Thurgood Marshall. (Answer: "Lyndon Johnson")

Zukünftige Entwicklungen

- Mehr Ontologien aus der Linked Open Data Cloud
- Künstliche Intelligenz zur Interpretation der Frames
- Iterative Verfahren zur Lösung einer Frage
 - Starte mit den Anfangs bekannten Daten
 - Formuliere Teilfragen und löse diese
 - Löse eigentliche Frage
- Automatische Suche nach typischen Relationen in einem Frame mithilfe von Data Mining

Beispiel

WAR MOVIES: A 1902 Joseph Conrad work set in Africa inspired this director to create a controversial 1979 war film.

Kalyanpur.A, u.a.: "Structured Data and Inference in DeepQA", S. 11

WAR MOVIES: A 1902 Joseph Conrad work set in Africa inspired this director to create a controversial 1979 war film.

- 1. Solve for the Book by calling DeepQA with the generated question: "This 1902 book by Joseph Conrad is about Africa." (Answer: "Heart of Darkness").
- 2. Use our structured data to verify that the publication date of the book is 1902.

WAR MOVIES: A 1902 Joseph Conrad work set in Africa inspired this director to create a controversial 1979 war film.

- 3. Invoke DeepQA to solve for the Movie given the Book, using the question "Heart of Darkness inspired this controversial 1979 war film." (Answer: "Apocalypse Now").
- 4. Use our structured data to verify that the release date of the movie is 1979.
- 5. Use our structured data to look up the director of the movie (answer: "Francis Ford Coppola").

Fragen

Quellenverzeichnis

 Kalyanpur. A, u.a.: "Structured Data and Inference in DeepQA",