Amendments to the Claims:

Please enter the following claim amendments:

1. (Currently Amended) A compound of formula (I)

$$\begin{array}{c} \operatorname{Ar^1--CHCH_2NHCR^4R^5(CH_2)_m} - \operatorname{O--(CH_2)_n} \end{array} \begin{array}{c} \mathbb{R}^2 \\ \operatorname{CHCH_2NHCR^4R^5(CH_2)_m} \end{array} \begin{array}{c} \operatorname{CHCH_2NHCR^5(CH_2)_m} \end{array} \begin{array}{c} \operatorname{CHCHCH_2NHCR^5(CH_2)_m} \end{array} \begin{array}{c} \operatorname{CH$$

or a salt, solvate, or physiologically functional derivative thereof, wherein:

m is an integer of from 2 to 8; n is an integer of from 3 to 11, preferably from 3 to 7; with the proviso that m + n is 5 to 19, preferably from 5 to 12;

R¹ is -XNR⁶C(O)NR⁷R⁸; wherein

X is selected from $-(CH_2)_p$ - and C_{2-6} alkenylene;

 R^6 and R^8 are independently selected from hydrogen, C_{1-6} alkyl and C_{3-7} cycloalkyl; wherein said C_{1-6} alkyl and C_{3-7} cycloalkyl moieties may optionally be substituted by $-CO_2H$ or $-CO_2(C_{1-4})$ alkyl;

 R^7 is selected from hydrogen, C_{1-6} alkyl, C_{3-7} cycloalkyl, $-C(O)R^9$, phenyl, naphthyl, hetaryl, and phenyl(C_{1-4} alkyl)- and R^7 is optionally substituted by 1 or 2 groups independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, $-NHC(O)(C_{1-6}$ alkyl), $-SO_2(C_{1-6}$ alkyl), $-SO_2(phenyl)$, $-CO_2H$, and $-CO_2(C_{1-4}$ alkyl) and $CONR^{10}R^{11}$;

 R^9 is selected from C_{1-6} alkyl, C_{3-7} cycloalkyl, $-CO_2H$, $CO_2(C_{1-4}$ alkyl), phenyl, naphthyl, hetaryl, and phenyl(C_{1-4} alkyl)- and R^9 is optionally substituted by 1

or 2 groups independently selected from halo, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy, -NHC(O)(C_{1-6} alkyl), -SO₂(C_{1-6} alkyl), -SO₂(phenyl), -CO₂H, and - CO₂(C_{1-4} alkyl);

 R^{10} and R^{11} each independently represent hydrogen, C_{1-4} alkyl or C_{3-7} cycloalkyl, and

p is an integer from 0 to 6, preferably from 0 to 4;

or R¹ is cyclised such that R⁸ forms a bond with the phenyl ring to which R¹ is attached, via the ring carbon atom adjacent to R¹, so as to form a moiety of the formula:

 R^2 is selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, phenyl, halo, and C_{1-6} haloalkyl;

 R^3 is selected from hydrogen, hydroxy, C_{1-6} alkyl, halo, C_{1-6} alkoxy, phenyl, C_{1-6} haloalkyl, and $-SO_2NR^{12}R^{13}$;

wherein R^{12} and R^{13} are independently selected from hydrogen, C_{1-6} alkyl, C_{3-6} cycloalkyl, phenyl, and phenyl (C_{1-4} alkyl), or R^{12} and R^{13} , together with the nitrogen to which they are bonded, form a 5-, 6-, or 7- membered nitrogen containing ring;

and R¹² and R¹³ are each optionally substituted by one or two groups selected from halo, C₁₋₆alkyl, and C₁₋₆haloalkyl;

R⁴ and R⁵ are independently selected from hydrogen and C₁₋₄alkyl with the proviso that the total number of carbon atoms in R⁴ and R⁵ is not more than 4;

and Ar1 is a group selected from

$$R^{14}$$
 R^{16}
 R^{16}
 R^{16}
 R^{17}
 R^{16}
 R^{17}
 R^{17}
 R^{17}
 R^{18}
 R^{19}
 R

wherein R¹⁴ represents hydrogen, halogen, -(CH₂)_qOR¹⁸, -NR¹⁸C(O)R¹⁹, -NR¹⁸SO₂R¹⁹, -SO₂NR¹⁸R¹⁹, -NR¹⁸R¹⁹, -OC(O)R²⁰ or OC(O)NR¹⁸R¹⁹, and R¹⁵ represents hydrogen, halogen or C₁₋₄ alkyl;

or R¹⁴ represents –NHR²¹ and R¹⁵ and –NHR²¹ together form a 5- or 6-membered heterocyclic ring;

R¹⁶ represents hydrogen, halogen, –OR¹⁸ or –NR¹⁸R¹⁹;

 R^{17} represents hydrogen, halo C_{1-4} alkyl, -OR¹⁸, -NR¹⁸R¹⁹, -OC(O)R²⁰ or OC(O)NR¹⁸R¹⁹;

 R^{18} and R^{19} each independently represents hydrogen or $\mathsf{C}_{1\text{--}4}$ alkyl, or in the groups

–NR¹⁸R¹⁹, -SO₂NR¹⁸R¹⁹ and –OC(O)NR¹⁸R¹⁹, R¹⁸ and R¹⁹ independently represent hydrogen or C₁₋₄ alkyl or together with the nitrogen atom to which they are attached form a 5-, 6- or 7- membered nitrogen-containing ring,

 R^{20} represents an aryl (eg phenyl or naphthyl) group which may be unsubstituted or substituted by one or more substituents selected from halogen, C_{1-4} alkyl,

hydroxy, C₁₋₄ alkoxy or halo C₁₋₄ alkyl; and

q is zero or an integer from 1 to 4;

provided that in the group (a) when R^{14} represents $-(CH_2)_qOR^{18}$ and q is 1, R^{16} is not OH.

2. (Currently Amended) A compound of formula (I) as defined in claim 1 wherein R^6 and R^8 are independently selected from hydrogen, C_{1-6} alkyl and C_{3-7} cycloalkyl;

 R^7 is selected from hydrogen, C_{1-6} alkyl, C_{3-7} cycloalkyl, -C(O) R^9 , phenyl, naphthyl, hetaryl, and phenyl(C_{1-4} alkyl)- and R^7 is optionally substituted by 1 or 2 groups independently selected from halo, hydroxy, C_{1-6} alkyl,

 C_{1-6} haloalkyl, C_{1-6} alkoxy, -NHC(O)(C_{1-6} alkyl), -SO₂(C_{1-6} alkyl), -SO₂(phenyl),

-CO₂H, and -CO₂(C₁₋₄alkyl);

R14 is selected from the group consisting of halogen, -(CH₂)_qOR¹⁸,

 $-\mathsf{NR}^{18}\mathsf{C}(\mathsf{O})\mathsf{R}^{19},\,-\mathsf{NR}^{18}\mathsf{SO}_2\mathsf{R}^{19},\,-\mathsf{SO}_2\mathsf{NR}^{18}\mathsf{R}^{19},\,-\mathsf{NR}^{18}\mathsf{R}^{19},\,-\mathsf{OC}(\mathsf{O})\mathsf{R}^{20},$

-OC(O)NR¹⁸R¹⁹, alkyl, –NHR²¹, and R¹⁵ and –NHR²¹ together form a 5- or 6-membered heterocyclic ring;

R¹⁴-is as defined above except that R¹⁴ does not represent hydrogen; and all other substituents are as defined for formula (I).

or a salt, solvate or physiologically functional derivative thereof.

- 3. (Currently Amended) A compound according to claim 1 or claim 2 wherein R¹⁴ represents hydrogen, halogen, -NR¹⁸C(O)R¹⁹, -NR¹⁸SO₂R¹⁹, -SO₂NR¹⁸R¹⁹, -NR¹⁸R¹⁹, -OC(O)R²⁰ or OC(O)NR¹⁸R¹⁹; and R¹⁶ represents hydrogen, halogen, -OR¹⁸ or -NR¹⁸R¹⁹.
- 4. (Currently Amended) A compound according to claim 1 or claim 2 wherein R¹⁴ represents hydrogen, halogen, -(CH₂)_qOR¹⁸, -NR¹⁸C(O)R¹⁹, -NR¹⁸SO₂R¹⁹, -SO₂NR¹⁸R¹⁹, -NR¹⁸R¹⁹, -OC(O)R²⁰ or OC(O)NR¹⁸R¹⁹; and R¹⁶ represents hydrogen, halogen, or –NR¹⁸R¹⁹.
- 5. (Currently Amended) A compound of formula (I) according to <u>claim 1</u> any of claims 1 to 4 wherein R¹ represents –(CH₂)₀NHC(O)NHR³.
- 6. (Currently Amended) A compound according to <u>claim 1</u> any of claims 1 to 5 wherein p is 0, 1 or 2.
- 7. (Currently Amended) A compound of formula (I) which is selected from:

N-[3-(4-{[6-({(2R)-2-[3-(Formylamino)-4-hydroxyphenyl]-2-hydroxyethyl}amino)hexyl]oxy}butyl)phenyl]urea;
N-[3-(4-{[6-({(2R)-2-[3-(Formylamino)-4-hydroxyphenyl]-2-hydroxyethyl}amino)hexyl]oxy}butyl)phenyl]-N'-phenylurea;
N-[3-(4-{[6-({(2R)-2-[3-(Formylamino)-4-hydroxyphenyl]-2-hydroxyethyl}amino)hexyl]oxy}butyl)phenyl]-N'-pyridin-3-ylurea;
N-[3-(4-{[6-({2-hydroxy-2-[5-hydroxy-6-(hydroxymethyl)pyridin-2-yl]ethyl}amino)hexyl]oxy}butyl)-5-methylphenyl]urea.

and salts, solvates, and physiologically functional derivatives thereof.

8. (Currently Amended) A method for the prophylaxis or treatment of a clinical condition in a mammal, such as a human, for which a selective β_2 -adrenoreceptor agonist is indicated, which comprises <u>administrating</u> administration of a therapeutically effective amount of a compound of formula (I), (Ia) or (Ib) according to <u>claim 1</u> any of claims 1 to 7, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

9. (Canceled)

- 10. (Currently Amended) A pharmaceutical formulation comprising a compound of formula (I) according to <u>claim 1</u> any of claims 1 to 7 or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier or excipient, and optionally one or more other therapeutic ingredients.
- 11. (Currently Amended) A combination comprising a compound of formula (I) according to <u>claim 1</u> any of claims 1 to 7 or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and one or more other therapeutic ingredients.
- 12. (Original) A combination according to claim 11 wherein the other therapeutic ingredient is a corticosteroid, an anticholinergic or a PDE4 inhibitor.

13. (Canceled)

14. (Currently Amended) A process for the preparation of a compound of formula (I) according to <u>claim 1</u> any of claims 1 to 7, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

(a) deprotection of deprotecting a protected intermediate, for example of formula (II):

$$Ar^{1a} - CHCH_2NP^2CR^4R^5(CH_2)_m - O - (CH_2)_n$$

$$OP^1$$
(II)

or a salt or solvate thereof, wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I), Ar^{1a} represents an optionally protected form of Ar¹; and P¹ and P² are each independently either hydrogen or a protecting group, provided that the compound of formula (II) contains at least one protecting group.

(b) alkylation of an amine of formula (IX)

wherein Ar^{1a} is an optionally protected form of Ar¹ and P² is either hydrogen or a protecting group,

with a compound of formula (X):

$$L^{1}CR^{4}R^{5}(CH_{2})_{ni} = O = (CH_{2})_{ni}$$
 R^{2}
 R^{1}
 R^{3}
 R^{3}

wherein R¹, R², R³, R⁴, R⁵, m, and n are as defined for the compound of formula (I) or (Ia) and L¹ is a leaving group;

(c) reduction of a compound of formula (XII):

wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I), Ar^{1a} is an optionally protected form of Ar¹, and P¹ and P² are each independently hydrogen or a protecting group as defined above;

(d) reacting a compound of formula (XVI):

wherein Ar^{1a} is an optionally protected form of Ar¹, and P¹ is hydrogen or a protecting group and L⁴ is a leaving group as defined above for groups L-L³ or a compound of formula (XVII):

wherein Ar^{1a} is as hereinbefore defined with an amine of formula (XVIII):

wherein R¹, R², R³, R⁴, R⁵, P², m and n are as defined for formula (II); or

(e) removal of a chiral auxiliary from a compound of formula (IIa):

wherein R¹—R⁵, m and n are as defined for formula (I), Ar^{1a} and P¹ are as defined for formula (II) each independently represent hydrogen or a protecting group and R²⁸ represents a chiral auxiliary.

<u>optionally</u> followed by <u>one or more of</u> the following steps in any order <u>selected</u> <u>from the group consisting of</u>:

- (i) optional removal of removing any protecting groups;
- (ii) optional separation of separating an enantiomer from a mixture of enantiomers; and
- (iii) optional conversion of converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 15. (New) A compound of formula (I) according to claim 1, wherein n ranges from 3 to 7.

- 16. (New) A compound of formula (I) according to claim 1, wherein m + n ranges from 5 to 12.
- 17. (New) A compound of formula (I) according to claim 1, wherein p ranges from 0 to 6.
- 18. (New) A compound of formula (I) according to claim 1, wherein R²⁰ represents a phenyl group.
- 19. (New) A compound of formula (I) according to claim 1, wherein R²⁰ is a naphthyl group.
- 20. (New) A method according to claim 8, wherein the mammal is a human.
- 21. (New) A method according to claim 8, wherein the clinical condition is asthma.
- 22. (New) A method according to claim 8, wherein the clinical condition is COPD.
- 23. (New) A process for the preparation of a compound of formula (I) according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

alkylating an amine of formula (IX)

wherein Ar^{1a} is an optionally protected form of Ar¹ and P² is either hydrogen or a protecting group,

with a compound of formula (X):

$$L^{1}CR^{4}R^{5}(CH_{2})_{m} -O -(CH_{2})_{n}$$
 R^{2}
 R^{1}
 R^{3}
 R^{3}

wherein R^1 , R^2 , R^3 , R^4 , R^5 , m, and n are as defined for the compound of formula (I) and L^1 is a leaving group;

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers; and
- (iii) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 24. (New) A process for the preparation of a compound of formula (I) according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

reducing a compound of formula (XII):

wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I), Ar^{1a} is an optionally protected form of Ar¹, and P¹ and P² are each independently hydrogen or a protecting group;

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers; and
- (iii) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 25. (New) A process for the preparation of a compound of formula (I) according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

reacting a compound of formula (XVI):

wherein Ar^{1a} is an optionally protected form of Ar¹, and P¹ is hydrogen or a protecting group, and L⁴ is a leaving group or a compound of formula (XVII):

wherein Ar^{1a} is as hereinbefore defined with an amine of formula (XVIII):

$$P^{2}HNCR^{4}R^{5}(CH_{2})_{m} -O -(CH_{2})_{n}$$
 (XVIII)

wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I) and P² is hydrogen or a protecting group; or

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers; and
- (iii) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.
- 26. (New) A process for the preparation of a compound of formula (I) according to claim 1, or a salt, solvate, or physiologically functional derivative thereof, which comprises:

removal of a chiral auxiliary from a compound of formula (IIa):

$$Ar^{1a} - CHCH_2NR^{28}CR^4R^5(CH_2)_m - O - (CH_2)_n$$

$$OP^1 :$$
(IIa)

wherein R¹, R², R³, R⁴, R⁵, m and n are as defined for formula (I), Ar^{1a} and P¹ each independently represent hydrogen or a protecting group and R²⁸ represents a chiral auxiliary

optionally followed by one or more of the following steps in any order selected from the group consisting of:

- (i) removing any protecting groups;
- (ii) separating an enantiomer from a mixture of enantiomers; and
- (iii) converting the product to a corresponding salt, solvate, or physiologically functional derivative thereof.