

Figure 25.1: Embedding an affine space (E, \overrightarrow{E}) into a vector space \widehat{E} .

Figure 25.1 illustrates the embedding of the affine space E into the vector space \widehat{E} , when E is an affine plane.

Note that \widehat{E} is isomorphic to $\overrightarrow{E} \cup (E \times \mathbb{R}^*)$. Intuitively, we can think of \widehat{E} as a stack of parallel hyperplanes, one for each λ , a little bit like an infinite stack of very thin pancakes! There are two privileged pancakes: one corresponding to E, for $\lambda = 1$, and one corresponding to E, for $\lambda = 0$.

From now on, we will identify j(E) and E, and $i(\overline{E})$ and \overline{E} . We will also write λa instead of $\langle a, \lambda \rangle$, which we will call a weighted point, and write 1a just as a. When we want to be more precise, we may also write $\langle a, 1 \rangle$ as \overline{a} . In particular, when we consider the homogenized version $\widehat{\mathbb{A}}$ of the affine space \mathbb{A} associated with the field \mathbb{R} considered as an affine space, we write $\overline{\lambda}$ for $\langle \lambda, 1 \rangle$, when viewing λ as a point in both \mathbb{A} and $\widehat{\mathbb{A}}$, and simply λ , when viewing λ as a vector in \mathbb{R} and in $\widehat{\mathbb{A}}$. As an example, the expression 2+3 denotes the real number 5, in \mathbb{A} , $(\overline{2}+\overline{3})/2$ denotes the midpoint of the segment $[\overline{2},\overline{3}]$, which can be denoted by $\overline{2.5}$, and $\overline{2}+\overline{3}$ does not make sense in \mathbb{A} , since it is not a barycentric combination. However, in $\widehat{\mathbb{A}}$, the expression $\overline{2}+\overline{3}$ makes sense: It is the weighted point $\langle \overline{2.5}, 2 \rangle$.

Then, in view of the fact that

$$\langle a + u, 1 \rangle = \langle a, 1 \rangle + u,$$

and since we are identifying a + u with $\langle a + u, 1 \rangle$ (under the injection j), in the simplified notation the above reads as a + u = a + u. Thus, we go one step further, and denote a + u