Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

Strategies: none selected

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

5 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 2250164.14

Figure 1: Outline of path 1

2.1.1 Condensation of methyl ketones with esters

Substrates:

1. a-bromo-4-nitro-trans-cinnamic acid methyl ester

2. Methyl p-tolyl ketone - available at Sigma-Aldrich

Products:

1. Cc1ccc(C(=O)CC(=O)/C(Br)=C/c2ccc([N+](=O)[O-])cc2)cc1

Typical conditions: NaOMe.MeOH

Protections: none

Reference: 10.1016/j.tetlet.2007.10.010 and 10.1016/j.tetlet.2013.09.025 and

10.1016/j.ejmech.2013.10.072 and 10.1002/ange.19921040631

Retrosynthesis ID: 4792

2.1.2 Suzuki coupling of alkyl-9-BBNs with vinyl bromides

Substrates:

1. 9-allyl-9-bora-bicyclo[3.3.1]nonane

2. Cc1ccc(C(=O)CC(=O)/C(Br)=C/c2ccc([N+](=O)[O-])cc2)cc1

Products:

 $1. \ C=CC/C(=C \setminus c1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1$

 ${\bf Typical\ conditions:}\ {\bf Pd\ catalyst.base.solvent}$

Protections: none

Reference: 10.1021/ja00183a048 and 10.1039/b707338k and 10.1016/j.tet.2015.05.039 and 10.1021/jo991064z and 10.1021/ol060290+ and 10.1246/bcsj.65.2863

2.1.3 Addition of silanes to Michael acceptors followed by oxidation

Substrates:

- 1. DMPSCl available at Sigma-Aldrich
- $2. \ C=CC/C(=C \setminus c1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1$

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: 1.nBuLi.2.CuCN.3.electrophile.4.H2O2

Protections: none

Reference: 10.1021/ja058370g AND (Oxidation) 10.1021/jo9905672 or 10.1021/ol300832f

Retrosynthesis ID: 20295

2.1.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.1.5 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.2 Path 2

Score: 2250164.14

Figure 2: Outline of path 2

2.2.1 Aldol Condensation

Substrates:

1. 1-diazo-hex-5-en-2-one

2. 4-Nitrobenzaldehyde - available at Sigma-Aldrich

Products:

1. C=CCC(=Cc1ccc([N+](=O)[O-])cc1)C(=O)C=[N+]=[N-]

Typical conditions: NaOEt.base

Protections: none

Reference: 10.1080/00397911.2016.1206938

2.2.2 Homologation of aldehydes to ketones with diazoalkanes

Substrates:

1. p-Tolualdehyde - available at Sigma-Aldrich

2. C = CCC(=Cc1ccc([N+](=O)[O-])cc1)C(=O)C = [N+] = [N-]

Products:

 $1. \ C=CCC(=Cc1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1$

Typical conditions: Lewis.acid

Protections: none

Reference: 10.1021/jo00275a006 AND 10.1016/j.tet.2014.05.107 AND 10.1016/j.tet.2014.11.059 AND 10.1021/ol9010932

Retrosynthesis ID: 15017

2.2.3 Addition of silanes to Michael acceptors followed by oxidation

Substrates:

1. C=CCC(=Cc1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1

2. DMPSCl - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: 1.nBuLi.2.CuCN.3.electrophile.4.H2O2

Protections: none

Reference: 10.1021/ja058370g AND (Oxidation) 10.1021/jo9905672 or 10.1021/ol300832f

Retrosynthesis ID: 20301

2.2.4 Keto-enol Tautomerism

Substrates:

1. C=CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

2.2.5 Thionation of Carbonyl Compounds using PSCl3

Substrates:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

2. Phosphorus thiochloride - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: NEt3.H2O.microwave.70-100C

Protections: none

Reference: DOI: 10.1021/jo7022069

Retrosynthesis ID: 11555

2.3 Path 3

Score: 2250164.14

Figure 3: Outline of path 3

2.3.1 Acid catalyzed transesterification

Substrates:

1. 3-hydroxy-2-methylene-3-(4-nitrophenyl)propanoic acid methyl ester

Products:

1. C=C1C(=O)OC1c1ccc([N+](=O)[O-])cc1

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.3.2 Conjugate addition of organocuprate

Substrates:

1. Vinylmagnesium bromide solution - available at Sigma-Aldrich

 $2. \ C=C1C(=O)OC1c1ccc([N+](=O)[O-])cc1$

Products:

1. C=CCC1C(=O)OC1c1ccc([N+](=O)[O-])cc1

Typical conditions: 1.CuCN.LiCl.2.Eletrophile.3.NH4Cl

Protections: none

Reference: 10.1021/ol036071v AND 10.1016/j.tet.2011.12.046 AND 10.1002/anie.201007644 AND 10.1002/anie.201007644 AND 10.1002/anie.201007644 AND 10.1055/s-1997-1371

Retrosynthesis ID: 10003577

2.3.3 Ring opening of lactones with enolates

Substrates:

1. C=CCC1C(=O)OC1c1ccc([N+](=O)[O-])cc1

2. Methyl p-tolyl ketone - available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: LiHMDS.THF

Protections: none

Reference: 10.1021/ol801493w and 10.1021/ol403423r and 10.1021/ja061938g

and 10.1021/ja036521e

Retrosynthesis ID: 24105

2.3.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.3.5 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$
- $2. \ \ 4\text{-methoxyphenyl-dithiophosphonsaeureanhydrid}$

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

 ${\bf Typical\ conditions:}\ {\bf Lawesson's\ Reagent.neat.microwave}$

Protections: none

Reference: DOI: 10.1021/ol990629a

Retrosynthesis ID: 10798

2.4 Path 4

Score: 2250164.14

Figure 4: Outline of path 4

2.4.1 Acid catalyzed transesterification

Substrates:

1. 3-hydroxy-2-methylene-3-(4-nitrophenyl)propanoic acid methyl ester

Products:

 $1. \ C{=}C1C(=O)OC1c1ccc([N+](=O)[O-])cc1$

Typical conditions: H+

Protections: none

Reference: 10.1021/cr00020a004

Retrosynthesis ID: 50438

2.4.2 Conjugate addition of organocuprate

Substrates:

1. Vinylmagnesium bromide solution - available at Sigma-Aldrich

 $2. \ C{=}C1C(=O)OC1c1ccc([N+](=O)[O-])cc1$

Products:

1. C=CCC1C(=O)OC1c1ccc([N+](=O)[O-])cc1

Typical conditions: 1.CuCN.LiCl.2.Eletrophile.3.NH4Cl

Protections: none

Reference: 10.1021/ol036071v AND 10.1016/j.tet.2011.12.046 AND 10.1002/anie.201007644 AND 10.1002/anie.201007644 AND 10.1055/s-1997-1371

Retrosynthesis ID: 10003577

2.4.3 Ring opening of lactones with enolates

Substrates:

- 1. C=CCC1C(=O)OC1c1ccc([N+](=O)[O-])cc1
- 2. Methyl p-tolyl ketone available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: LiHMDS.THF

Protections: none

Reference: 10.1021/ol801493w and 10.1021/ol403423r and 10.1021/ja061938g

and 10.1021/ja036521e

2.4.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.4.5 Thionation of Carbonyl Compounds using PSCl3

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$
- 2. Phosphorus thiochloride available at Sigma-Aldrich

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

 $\textbf{Typical conditions:} \ \ \text{NEt3.H2O.microwave.70-100C}$

Protections: none

Reference: DOI: 10.1021/jo7022069

Retrosynthesis ID: 11555

2.5 Path 5

Score: 2250164.14

Figure 5: Outline of path 5

2.5.1 Alkylation of vinyl esters

Substrates:

1. Allyl iodide - available at Sigma-Aldrich

2. methyl (E)-3-(4-nitrophenyl)acrylate - available at Sigma-Aldrich

Products:

1. $C=CC/C(=C \cdot c1ccc([N+](=O)[O-])cc1)C(=O)OC$

Typical conditions: LDA.THF

Protections: none

Reference: DOI: 10.1039/C39870001410

Retrosynthesis ID: 886

2.5.2 Condensation of methyl ketones with esters

Substrates:

1. $C=CC/C(=C \cdot c1ccc([N+](=O)[O-])cc1)C(=O)OC$

2. Methyl p-tolyl ketone - available at Sigma-Aldrich

Products:

1. $C=CC/C(=C \cdot c1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1$

 ${\bf Typical\ conditions:\ NaOMe.MeOH}$

Protections: none

 $\textbf{Reference:} \quad 10.1016/j.tetlet.2007.10.010 \ \ \, \text{and} \quad 10.1016/j.tetlet.2013.09.025 \quad \text{and} \quad 10.1016/j.tetlet.2013.09.000 \quad \text{and} \quad 10.1016/j.tetlet.2013.09.000 \quad \text{and} \quad 10.1016/j.tetlet.2013.$

10.1016/j.ejmech.2013.10.072 and 10.1002/ange.19921040631

2.5.3 Addition of silanes to Michael acceptors followed by oxidation

Substrates:

- 1. DMPSCl available at Sigma-Aldrich
- $2. \ C=CC/C(=C \setminus c1ccc([N+](=O)[O-])cc1)C(=O)CC(=O)c1ccc(C)cc1$

Products:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: 1.nBuLi.2.CuCN.3.electrophile.4.H2O2

Protections: none

Reference: 10.1021/ja058370g AND (Oxidation) 10.1021/jo9905672 or 10.1021/ol300832f

Retrosynthesis ID: 20295

2.5.4 Keto-enol Tautomerism

Substrates:

 $1. \ C = CCC(C(=O)CC(=O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Products:

 $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: solvent

Protections: none

Reference: 10.1021/ja01065a003 AND 10.1021/jo8012385

Retrosynthesis ID: 7781

2.5.5 Synthesis of Thioketones using Lawesson's Reagent

Substrates:

- $1. \ C = CCC(C(=O)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$
- 2. 4-methoxyphenyl-dithiophosphonsaeureanhydrid

Products:

 $1. \ C = CCC(C(=S)/C = C(\setminus O)c1ccc(C)cc1)C(O)c1ccc([N+](=O)[O-])cc1$

Typical conditions: Lawesson's Reagent.neat.microwave

Protections: none

Reference: DOI: 10.1021/ol990629a