

33; 36: 'b'Rta vlec'f g'Eltewlsqu'Grgvt/plequ'3

Experimento 03: Análise de Circuitos Resistivos

1) Objetivos

Demonstração prática do Princípio da superposição de sinais e do Teorema de Thévenin, com montagem em *protoboard* e realização de medidas de tensão e o cálculo da corrente em circuitos resistivos lineares. Comparação dos resultados teóricos com simulações de circuitos.

2) Estudo pré-laboratorial

2.1) Princípio da Superposição e Conversores D/A

Os sinais elétricos podem ser descritos genericamente como estando nas formas analógica ou digital. Um sinal analógico é contínuo tanto no tempo quanto na amplitude. Como exemplo, pode-se citar um sinal de uma gravação de música na saída de um amplificador de áudio que alimenta um alto-falante. Por outro lado, um sinal digital, tipicamente representado por números binários, corresponde a uma representação por amostras do sinal analógico original. As amostras do sinal digital podem assumir valores discretos (isto é, um número finito de valores) e representam o sinal em instantes de tempo discretos (em instantes de tempo definidos). Assim, um número binário pode corresponder a um determinado valor de tensão em um determinado instante de tempo.

A Fig. 2.1 ilustra o processo de digitalização de um sinal de áudio. Primeiramente, os valores de tensão do sinal analógico (Fig. 2.1a) são tomados a intervalos regulares de tempo, resultando no sinal amostrado (Fig. 2.1b). Depois, o sinal amostrado é quantizado (Fig. 2.1c), ou seja, cada valor de tensão do sinal amostrado será substituído por um dos 2n valores de tensão possíveis, onde n é o número de bits que irão representar cada amostra. Por fim, o sinal quantizado é convertido em uma sequência de bits, onde cada grupo de bits corresponde a um dos valores possíveis no processo de quantização (Fig. 2.1d).

Um problema importante em engenharia eletrônica é o uso de um circuito para a conversão de um sinal da forma digital para a forma analógica. O circuito poderia ser usado, por exemplo, em um aparelho de CD. Um número binário (formado por zeros e uns) — correspondente a uma amostra do sinal original, gravado no CD — deve ser convertido para um valor de tensão, que vai representar uma aproximação do sinal analógico durante um intervalo de tempo definido. Um circuito para converter de digital para analógico é apresentado na Fig. 2.2. Cada um dos bits do número binário está associado a um conjunto formado por uma bateria e uma chave. Quando o valor do bit é igual a 1, a chave correspondente é conectada à bateria; quando o valor é igual a 0, a chave é conectada ao terra do circuito. A posição da chave é controlada pelo valor do bit. Desta forma, um número binário 000 faz aparecer uma tensão $V_o = {}^7/12V_{bat}$.

No circuito, cada número binário entre 000 e 111 corresponde a um valor de tensão que vai representar uma amostra do sinal durante um intervalo de tempo determinado. Por exemplo, para obter uma forma de onda do tipo rampa na saída V_o , bastaria escrever em sequência as palavras binárias que vão de 000 a 111, em incrementos de 1. Um conversor D/A com mais bits pode ser obtido simplesmente acrescentando novos pares de resistores R-2R e novas chaves ao circuito.

Figura 2.1: Conversão analógico-digital (A/D): (a) sinal analógico; (b) discretização no tempo (amostragem); (c) discretização em amplitude (quantização); e (d) representação do sinal digital na forma de bits.

Figura 2.2: Conversor digital-analógico (D/A) tipo rede R-2R de 3 bits.

a) Por meio de análise teórica do circuito da Fig. 2.2, encontre o valor da saída V_o para cada uma das 8 palavras binárias de 3 bits possíveis (000 a 111). Para tal, considere $V_{bat}=5\,\mathrm{V}$.

Dica: ao invés de resolver o circuito oito vezes, resolva apenas para as palavras binárias 000, 001, 010 e 100. A seguir, aplique o teorema da superposição para encontrar o resultado para as demais palavras binárias

b) Verifique os resultados teóricos encontrados, simulando o circuito em uma ferramenta computacional de sua escolha. Obtenha os valores da saída V_o correspondentes a cada uma das entradas possíveis (000 a 111).

Entrada	Saída $V_o(V)$ (teórico)	Saída $V_o(V)$ (simulação)		
000				
001				
010				
011				
100				
101				
110				
111				

2.2) Teoremas de Norton e Thévenin

Figura 2.3: (a) Circuito original, (b) Equivalente de Thévenin, (c) Equivalente de Norton.

Para os circuitos da Fig. 2.3, assuma $R_1=100\,\Omega,\,R_2=4,7\,\mathrm{k}\Omega,\,R_3=R_4=1\,\mathrm{k}\Omega,\,V_1=3\,\mathrm{V}$ e $V_2=2\,\mathrm{V}$ e responda:

- a) Quais os valores de tensão V_{AB} e corrente i_{AB} sobre o resistor de carga para o circuito da Fig. 2.3a? Calcule também a corrente sobre o resistor R_3 . Dica: use o teorema da superposição novamente.
- b) Obtenha as expressões de V_{Th} e R_{Th} para o circuito equivalente mostrado na Fig. 2.3b.
- c) Obtenha as expressão de I_{No} e de R_{No} para o circuito equivalente mostrado na Fig. 2.3.c
- d) Descreva como é possível obter experimentalmente os valores de V_{Th} e R_{Th} para um circuito. E para I_{No} e R_{No} ?
- e) Simule os três circuitos da Fig. 2.3 e obtenha os valores de tensão V_{AB} e corrente i_{AB} sobre o resistor de carga.

	Circuito		$V_{AB}({ m V})$ (teórico)	$i_{AB}({ m mA})$ (teórico)	$V_{AB}({ m V})$ (simulado)	$i_{AB}({ m mA})$ (simulado)
Original						
Thévenin	V_{Th} =[V]	R_{Th} =[Ω]				
Norton	I_{No} =[mA]	R_{No} =[Ω]				

3) Procedimento Experimental

3.1) Superposição de Sinais

- a) Monte o circuito da Fig. 2.3, com $R_1=100\,\Omega$, $R_2=4,7\,\mathrm{k}\Omega$, $R_3=R_4=1\,\mathrm{k}\Omega$, $R_L=2,2\,\mathrm{k}\Omega$, $V_1=3\,\mathrm{V}$ e $V_2=2\,\mathrm{V}$. Com as duas fontes de tensão ligadas, use o multímetro para medir a tensão no resistor R_L e a corrente no resistor R_3 .
- b) Coloque V_1 em repouso e, mantendo V_2 ligada, meça a tensão no resistor R_L e a corrente no resistor R_3 .
- c) Agora, coloque V_2 em repouso e, mantendo V_1 ligada, meça a tensão no resistor R_L e a corrente no resistor R_3 .

A partir dos resultados obtidos, discuta: o princípio da superposição foi verificado na tensão do resistor R_L ? E na corrente do resistor R_3 ? Explique.

3.2) Circuitos Equivalentes de Thévenin e Norton

- a) Monte o circuito da Fig. 2.3, usando $R_1=100\,\Omega,\,R_2=4,7\,\mathrm{k}\Omega,\,R_3=R_4=1\,\mathrm{k}\Omega,\,V_1=3\,\mathrm{V}$ e $V_2=2\,\mathrm{V}$. Use um resistor de carga $R_L=2,2\,\mathrm{k}\Omega.$ Com um multímetro, meça a tensão entre os terminais A e B, bem como a corrente na carga R_L .
- b) Encontre a tensão de circuito aberto V_{oc} para o circuito. Para isso remova a carga e meça a tensão entre os pontos A e B com o multímetro. A seguir, meça a corrente de curto-circuito i_{sc} . O que estes valores de tensão e de corrente representam?
- c) Com ambas as fontes em repouso, meça a resistência equivalente de Thévenin R_{eq} entre os terminais A e B (em aberto e sem carga). Calcule a corrente de curto-circuito esperada a partir de V_{oc} e R_{eq} . O que este valor de resistência e de corrente representam?
- d) Monte o circuito equivalente de Thévenin utilizando uma fonte de tensão em série com um potenciômetro e o resistor de carga. Ajuste a fonte de acordo com a tensão de Thévenin medida e o potenciômetro de acordo com a resistência equivalente medida. Observe e registre a tensão e a corrente na carga R_L no novo circuito montado. Os resultados foram os esperados? Explique.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data:/
Aluno:	Matrícula:

Experimento 03: Análise de Circuitos Resistivos

Procedimento 3.1 a): Tensão no resistor ${\cal R}_L$ e corrente no resistor ${\cal R}_3$

	$V_1=3\mathrm{V}$ e $V_2=2\mathrm{V}$			$V_1 = 0 { m V} { m e} V_2 = 2 { m V}$	$V_1 = 3 { m V} { m e} V_2 = 0 { m V}$
	(teórico) (simulação) (experimental)		(experimental)	(experimental)	
V_{R_L}					
i_{R_3}					

Procedimento 3.2 a): Tensão e corrente de carga com circuito original

$$V_{AB} =$$
 [V] $i_{AB} =$ [mA]

$$i_{AB} = [mA]$$

Procedimento 3.2 b): Tensão com circuito aberto (V_{oc}) e corrente de curto-circuito (i_{sc})

$$V_{oc} (experimental) = ____[V]$$

$$i_{sc} (experimental) = \underline{\hspace{1cm}} [mA]$$

Procedimento 3.2 c): Resistência equivalente de Thévenin

$$R_{eq} \left(experimental \right) = _{\underline{\hspace{1cm}}} [k\Omega]$$

Corrente de curto-circuito esperada $\frac{V_{oc}}{R_{eq}} =$ _____[k Ω]

Tabela 3.1: Tabela de resumo

						V_{oc}	R_{eq}	i_{sc}	$\frac{V_{oc}}{R_{eq}}$
V_{Th}	R_{Th}	V_{Th}	R_{Th}	i_{No}	R_{No}	Tensão c.a. medida	Resistência equi- valente medida	Corrente c.c. medida	Corrente c.c. esperada
(teórico)	(teórico)	(simulação)	(simulação)	(simulação)	(simulação)	(experimental)	(experimental)	(experimental)	(experimental)

Procedimento 3.2 d): Tensão e corrente de carga com circuito equivalente de Thévenin

$$V_{AB} =$$
___[V]

$$i_{AB} = \underline{\hspace{1cm}} [mA]$$