2^a Prova - SEDO

Nome/RA:

1. (3.5 Pontos) Sequências

(0.25) a) Defina sequência de números reais e diga quando este tipo de sequência é ou não convergente. Diga as condições para que a sequência $\left\{\frac{1}{n^r}\right\}_{n=0}^{\infty}$ seja convergente.

(0.25) b) Explique o porquê da sequência $\left\{(-1)^n\right\}_{n=0}^{\infty},$ ser ou não convergente.

(0.5) c) Explique o porquê da sequência $\left\{\frac{\ln n}{n}\right\}_{n=0}^{\infty}$ ser ou não convergente.

(0.25)d) Demonstre ou apresente um contra exemplo para a proposição: $Toda\ sequência\ limitada\ e\ convergente\ \'e\ mon\'otona.$

(1.25) e) Seja a_n a sequência de números reais que associa a cada número natural n o número real correspondente recorde mundial da prova de natação 50m nado livre, feminino, no ano 2000+n. Mostre que esta sequência é convergente e diga se é possível estivar o valor do limite.

2. (3.5 Pontos) Séries

(0.5) a) Defina série de números reais e diga quando este tipo de série é ou não convergente.

(0.75) b) Demonstre ou apresente um contra exemplo para a proposição: Toda série $\sum_{n=0}^{\infty} a_n$ convergente é tal que $\lim_{n\to\infty} a_n = 0$.

(0.5) c) Demonstre ou apresente um contra exemplo para a proposição: Toda série $\sum_{n=0}^{\infty} a_n$ tal que $\lim_{n\to\infty} a_n = 0$ é convergente.

(1.75) d) Determine se as séries a seguir são ou não convergentes, dizendo o teorema (teste) que utilizou para chegar a tal conclusão e o eventual intervalo de convergência:

$$i)\sum_{n=0}^{\infty}\frac{(-1)^nn^3}{3^n} \qquad ii)\sum_{n=1}^{\infty}\frac{(-2)^n}{n^n} \qquad iii)\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}.$$

3. (3 Pontos)

a) Sendo $f(x) = \sum_{n=1}^{\infty} \frac{(x-8)^n}{n^2}$, determine o intervalo de convergência de f(x), f'(x) e f''(x)

b) Determine a representação em série de potências de $f(x) = \frac{1}{(1-x)^4}$.

c) Utilize a série de Taylor para representar a função $g(x) = \operatorname{sen} x$ em série de potências e calcule o limite fundamental $\lim_{x\to 0} \frac{x}{\operatorname{sen} x}$.