

Multinomial Processing Tree (MPT) Modeling: Basics

Daniel W. Heck Philipps-Universität Marburg

(slides adapted from Edgar Erdfelder)

1) Basics

- 1.1) Introduction to MPT models
- 1.2) Examples
- 1.3) Model development
- 1.4) Formal model structure
- 1.5) Identifiability
- 1.6) Parameter estimation
- 1.7) Model assessment

1.1) Introduction to MPT Models

Required type of data:

- Multinomial models are tailored to discrete (i.e., categorical) data.
 - yes/no responses, correct/incorrect judgments, ratings, choices, ...
- Psychological data are typically discrete in nature
 - If not, they can be transformed into discrete data
 - Response time bins, rankings of numerical judgments, ...
- Hence, many psychological paradigms generate frequency data that are appropriate for MPT modeling.

Measurement of Cognitive Processes

MPT models...

- ... provide **explanations** of observed frequency data in terms of basic parameters with clear-cut psychological interpretations;
- ... these **parameters** represent probabilities of latent psychological processes (or latent psychological states) underlying human behavior;
- ... in other words, these models disentangle and measure the contributions of different psychological processes to frequencies of observable behaviors.

1.1) Introduction to MPT models

"Multinomial"

- MPT models assume that observations are sampled independently from one or more multinomial distributions
- The frequency data structure can be univariate or multivariate

• "Processing"

- Assumption that a finite number of latent processes generate the observed responses
- Goal: Drawing inferences about these processes
 (e.g., via parameter estimation or hypothesis testing)

• "Tree"

Models can be depicted as probability trees

1.2) Examples

A very simple example:

- Paradigm:
 - Yes-No recognition test
- Two Conditions:
 - Old Items
 - New Items
- Categorical (dichotomous) dependent variable:
 - "old" vs. "new" Judgment

A) One-High Threshold Model (Blackwell, 1963)

Model equations:

$$p(,,old" | old item) = r + (1-r) \cdot g$$

 $p(,,old" | new item) = g$

B) Two-High Threshold Model

Model equations:

$$p(,,old" | old item) = d_o + (1-d_o) \cdot g$$

 $p(,,old" | new item) = d_n + (1-d_n) \cdot (1-g)$

C) Source-Monitoring Model

- Paradigm: Recognition test with the two Sources A and B
- Conditions: Test items from Source A or B, and New items
- Categorical dependent variable: Participants' responses whether a presented item is from Source "A", "B", or "New"

1.3) Model Development: Part I

• Necessary steps:

- 1. Select a paradigm (e.g., a task)
- 2. Define the conditions of the paradigm
- 3. Define the category system for each condition
- 4. List relevant processes/parameters
- 5. Construct theoretically reasonable processing branches (,,trees") for each condition
- 6. Derive corresponding model equations.

• General rules:

- As simple as possible!!
- Ignore unlikely events

1.3) Model Development: Part II

• Technical issues:

- Identifiability: Is it possible to obtain unique parameter estimates?
- Statistical power: How many observations are required?
- Substantive issue: Construct validity
 - Empirical validation of MPT model parameters via selective influence:
 - Experimental manipulation should selectively influence one specific parameter but no other parameters

1.4) Formal Model Structure

Simple multinomial model:

- One variable with J categories
- Observed frequencies: $n_1, n_2, ..., n_J$
- Vector of category probabilities: $\mathbf{p} = (p_1, p_2, ..., p_J)$
- Given independent sampling, the frequencies follow a multinomial distribution:

$$p_{N,\pi}(n_1,n_2,...,n_J) = \frac{N}{n_1! n_2! ... n_J!} p_1^{n_1} p_2^{n_2} ... p_J^{n_J}$$

1.4) Parameterized Multinomial Models

- The category probabilities p_1, p_2 etc. are rewritten as functions of "latent parameters" $\theta_1, \theta_2, ..., \theta_S$
- Based on the simple multinomial model, we define a set of "model equations":

$$- p_1 = f_1(\theta_1, \theta_2, ..., \theta_S)$$

$$- p_2 = f_2(\theta_1, \theta_2, ..., \theta_S)$$

$$-$$

$$- p_J = f_J(\theta_1, \theta_2, ..., \theta_S)$$

• The set of possible values of S latent parameters is called "parameter space" Ω of the model.

1.4) Parameterized Multinomial Models

• Example: Model equations of the 1HTM

target:
$$p(\text{hit}) = r + (1-r)g$$
target: $p(\text{miss}) = (1-r)(1-g)$

lure: $p(\text{false alarm}) = g$
lure: $p(\text{correct rejection}) = (1-g)$

$$P(n_{hit}, n_{miss} | r, g) = \frac{N}{n_{hit}! n_{miss}!} [r + (1-r)g]^{n_{hit}} [(1-r)(1-g)]^{n_{miss}}$$

MPT models assume a *specific form* of the model equations (i.e., a binary probability tree)

1.4) Formal Definition of MPT Models

• Formally, any MPT model can be represented as:

$$p_{j} = \sum_{i=1}^{I(j)} c_{ij} \prod_{s=1}^{S} \theta_{s}^{a_{ijs}} \cdot (1 - \theta_{s})^{b_{ijs}}, \qquad \sum_{j=1}^{J} p_{j} = 1, \qquad \theta_{s} \in [0, 1]$$

where s: Parameter index

j : Category index

i: Branch index

 c_{ii} : positive real number

 a_{ijs} , b_{ijs} : nonnegative integer number (often 0 or 1)

Uniqueness of the "Tree"

• A binary probabilistic event tree uniquely determines a system of MPT model equations.

• However: it is not true that any system of MPT model equations uniquely determines a specific processing tree diagram.

• Counter Example 1: Level switching in independence models

Counter Example 2

$$p_{1}(\theta) = \theta^{3}$$

$$p_{2}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{3}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{4}(\theta) = \theta \cdot (1 - \theta)$$

$$p_{5}(\theta) = (1 - \theta)^{3}$$

1.5) Identifiability

• MPT models define a mapping $f: \Omega \to P$

 Ω is called "Parameter Space":

= Set of all possible parameter vectors

P is called "Data Space" (more precisely: space of category probabilities)

= Set of all possible category probability vectors

1.5) Identifiability

Definition (global identifiability):

A MPT model is globally identified if *f* is one-to-one.

Definition (local identifiability):

A MPT model is locally identified if f is one-to-one in the neighborhood of θ_0 in Ω .

One-High-Threshold Recognition Model (Blackwell, 1953)

r. probability of recognition

g: probability of guessing "old" given no recognition

Example 1: Nonidentifiability

- One-High-Threshold-Modell limited to old items: $p(\text{``old''} | \text{old item}) = r + (1-r) \cdot g$
- Model is *not* identified.

Example 2: Identifiability

- One-high-Threshold-Model (old and new items)
 - $p(\text{``alt''} | \text{old item}) = r + (1-r) \cdot g$
 - $p(,,alt" \mid new item) = g$
- Model is globally identified.

Identifiability: Two Important Theorems

• "Observable branches":

A model is always globally identified if each of its branches terminates in a new empirical category (Hu & Batchelder, 1994).

• "No more parameters than degrees of freedom in the data":

A necessary but not sufficient condition of identifiability for the number of parameters *S* is:

$$S \le \sum_{k=1}^{K} (J_k - 1)$$

25.02.2020

Identifiability: Jacobian Matrix

- Jacobian: Matrix of the first partial derivatives of all model equations with respect to all parameters θ_s (s = 1, ... S)
- r: maximum rank of the Jacobian across Ω
- If r < S, then the model is neither locally nor globally identified.
- If r = S, then the model is locally identified (but not necessarily globally).

Remedies for Nonidentifiable Models

- Less parameters → Parameter constraints
 - Parameter fixations ($\theta_s = c$, with c = constant)
 - Equality constraints ($\theta_s = \theta_t$)

- Increase the number of empirical categories
 - Additional conditions with no (or few) additional parameters
 - Selective manipulations of parameters

1.5) Identifiability: Example

- 2-High Threshold Model
 - Parameters: S = 3
 - Free categories: df = 2
 - → not identifiable!

- Solutions
 - Assume $d_o = d_n$
 - Base rate manipulation of response bias g

Increasing the number of empirical categories

(A) Base rate: 30% targets

(B) Base rate: 70% targets

- \rightarrow Two additional degrees of freedom (df = 4)
- \rightarrow But only one more free parameter (S = 4)

1.6) Parameter Estimation

- Given the data $n_1, ..., n_J$, what is the "best" vector of parameter values $\boldsymbol{\theta} = (\theta_1, ..., \theta_s, ..., \theta_s)$?
 - \rightarrow Find θ that mimimizes the distance between observed and expected category frequencies!
- Distance measure: The likelihood ratio statistic G^2

$$G^{2}(\mathbf{\theta}) = 2\sum_{j=1}^{J} n_{j} \ln \left(\frac{n_{j}}{N \cdot p_{j}(\mathbf{\theta})} \right)$$

• Note: Minimizing G^2 is equivalent to maximizing the likelihood of the data given the parameters.

25.02.2020

1.6) Parameter Estimation

• Minimization of the distance G^2 for an MPT model with S = 1 parameter:

25.02.2020

30

1.6) Parameter Estimation

• Parameter estimation for an MPT model with S = 2 parameters:

Parameter Estimation: Local Minima

- Solution to cope with local minima:
- Fit model multiple times with random starting values

1.7) Model Assessment

1.7) Model Assessment

- How to test whether a model fits the data?
 - Hypothesis: the data are generated by the model
 - $-H_0$: $\pi \in f(\Omega)$

• In this case, G^2 is χ^2 -distributed with degrees of freedom:

$$df = \sum_{k=1}^{K} (J_k - 1) - S$$

1.7) Model Comparisons: Nested Models

Hierarchical model families:

- Model M_A is a special case (a nested model) of M_B
- e.g., M_A is obtained from M_B via parameter restrictions

Model comparisons in hierarchical model families

- If model M_A is nested in M_B then
 - $-G_A^2$ is χ^2 -distributed with df_A
 - $-G_B^2$ is χ^2 -distributed with df_B
 - $\Delta G^2_{A-B} = G^2_A G^2_B$ is χ^2 -distributed $df_{A-B} = df_A df_B$
- Hence, we can use ΔG^2_{A-B} to compare nested models using χ^2 -tests
- To compare non-nested models, we can use information-theoretic measures (AIC, BIC)