Peize Sun 孙培泽

Email: sunpeize@foxmail.com Telephone: +86 18392888870

Education

Xi'an Jiaotong University, Xi'an, Shaanxi, China
M.E. in Electrical Engneering

Xi'an Jiaotong University, Xi'an, Shaanxi, China
B.E. in Electrical Engneering (Summa Cum Laude)

Ranking: 1/64 (5/350)

Research Experience

UnifiedNet: Beyond Anchor-based and Anchor-free Detector Detection team, Megvii Co. Ltd. (Face++)	05/2019-now
Effective Positive Learning for Single-Stage Pedestrian Detection Detection team, Megvii Co. Ltd. (Face++)	12/2018-03/2019
Amodal Instance Segmentation via Implicit Maximum Likelihood Estimation <i>BAIR</i> , <i>UC Berkeley</i>	08/2018-11/2019

Project Experience

Intelligence Video Surveillance System of Power Transmission Lines Power Equipment Lab, XJTU	04/2017 - 08/2017
Cloud Platform for Assisting Switchgears Status diagnosis Power Equipment Lab, XJTU	10/2016 - 04/2017

Awards

Chiang Chen Enterprise Scholarship	2018&2017
1st Prize (Meritorious Winner), Interdisciplinary Contest in Modeling of America	2016
2 nd Prize, National Contest on Energy Saving & Emission Reduction	2016
2 nd Prize, Shaanxi "TI Cup" Electronic Design Contest2016	2016
National Scholarship	2016
National Endeavor Scholarship	2015&2014

Technical Skills

Programming Language: Python, Matlab, C++, HTML, SQL, PHP

Tools/Library/Software: Caffe, Caffe2, PyTorch, Altium Design, COMSOL

Environment: Linux, Windows

Topic: Amodal Instance Segmentation via Conditional Implicit Maximum Likelihood Estimation

Affiliation: UC Berkeley

Collaborator: Ke Li, Jitendra Malik

Method:

(a) Illustration of Implicit Maximum Likelihood Estimation³

(b) Illustration of Amodal Mask R-CNN

Demo:

Future Direction: More realistic and Bigger dataset

Status: Detached

Reference:

- [1] Yan Zhu, Yuandong Tian, Dimitris Mexatas, and Piotr Dollár. Semantic Amodal Segmentation. CVPR, 2017.
- [2] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. ICCV, 2017.
- [3] Ke Li and Jitendra Malik. Implicit Maximum Likelihood Estimation. arXiv:1809.09087, 2018.

Topic: Effective Positive Learning for Single-Stage Pedestrian Detection

Affiliation: Megvii(Face++)

Collaborator: Li Hu, Hongkai Zhang, Feng Xiong, Boxun Li, Gang Yu

Method:

Experiment:

(a) Weight of positive examples at different training stages

(b) Weight of positive example from a converged model²

Status: Submitted to ICCV 2019

Reference:

- [1] Shanshan Zhang and Rodrigo Benenson and Bernt Schiele. CityPersons: A Diverse Dataset for Pedestrian Detection. CVPR, 2017
- [2] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár. Focal Loss for Dense Object Detection. ICCV, 2017.

Topic: UnifiedNet: Beyond Anchor-based¹ and Anchor-free² Detector

Affiliation: Megvii(Face++)

Collaborator: Zeming Li, Boxun Li, Gang Yu

Method:

(a) Illustration of network architecture

(b) Illustration of regression branch

Experiment:

Method	Clas	sificatio	n	Regression			Location		AP	AP_{50}	AP_{75}
	anchor	point	box	anchor	point	axis	point	box			
RetinaNet	✓			✓					34.0	52.5	36.5
ConRetinaNet			✓	✓							
Foveabox		✓			✓				33.7	52.8	35.7
FCOS		✓			✓		✓		34.7	53.2	37.0
UnifiedNet		✓			√			√	35.1	53.3	37.7
		✓				✓		✓	35.5	53.0	37.9
		✓		✓				✓			

Status: Continuing

Reference:

- [1] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár. Focal Loss for Dense Object Detection. ICCV, 2017.
- [2] Zhi Tian, Chunhua Shen, Hao Chen and Tong He. FCOS: Fully Convolutional One-Stage Object Detection. arXiv:1904.01355, 2019.