Lecture Note 1 - MATH 726

Harry Huang (using ChatGPT)

Oct.2025

1 Generic Optimization Problem

A general problem is

$$\min_{x \in X} f(x),$$

with variable $x \in \mathbb{R}^d$, feasible set $X \subseteq \mathbb{R}^d$, and objective $f : \mathbb{R}^d \to \mathbb{R}$.

2 Norms and Dual Norms

Definition 2.1 $(L_p \text{ norm})$. For $x = (x_1, \dots, x_d)^{\top} \in \mathbb{R}^d$,

$$||x||_p = \Big(\sum_{i=1}^d |x_i|^p\Big)^{1/p}.$$

Examples:

$$||x||_1 = \sum_{i=1}^d |x_i|, \quad ||x||_2 = \left(\sum_{i=1}^d x_i^2\right)^{1/2}, \quad ||x||_\infty = \max_i |x_i|.$$

Definition 2.2 (Equivalent norms). Two norms $\|\cdot\|_{(1)}$, $\|\cdot\|_{(2)}$ are equivalent if

$$\exists \lambda_1, \lambda_2 > 0 \quad s.t. \quad \lambda_2 ||x||_{(2)} \le ||x||_{(1)} \le \lambda_1 ||x||_{(2)}, \ \forall x.$$

Examples:

$$||x||_1 \le \sqrt{d} ||x||_2, \quad ||x||_1 \ge ||x||_2,$$

 $||x||_{\infty} \le ||x||_2, \quad ||x||_{\infty} \ge \frac{1}{\sqrt{d}} ||x||_2.$

Definition 2.3 (Dual norm). For $z \in \mathbb{R}^d$,

$$||z||_* := \sup_{||x||=1} \langle z, x \rangle.$$

Proposition 2.1 (Hölder inequality). For all $x, z \in \mathbb{R}^d$,

$$|\langle z, x \rangle| \le ||z||_* ||x||.$$

Proof. If x=0 or z=0, trivial. Else, let $\hat{x}=x/\|x\|$, then $\|\hat{x}\|=1$ and

$$||z||_* = \sup_{\|u\|=1} \langle z, u \rangle \ge \langle z, \hat{x} \rangle = \frac{\langle z, x \rangle}{\|x\|}.$$

So $\langle z, x \rangle \leq \|z\|_* \|x\|$. The same with $-\hat{x}$ gives the other direction.

Example 2.1 (Dual pairs). • $(\|\cdot\|_2)^* = \|\cdot\|_2$,

- $(\|\cdot\|_1)^* = \|\cdot\|_{\infty}$,
- $(\|\cdot\|_p)^* = \|\cdot\|_q \text{ if } 1/p + 1/q = 1.$

3 Feasible Sets and Constraints

- Unconstrained: $X = \mathbb{R}^d$.
- Constrained: $X = \{x : f_i(x) \le 0, h_j(x) = 0\}.$
- Example: ball $X = \{x : ||x|| \le 1\}.$
- Example: linear subspace $\{x : Ax = 0\}$.

4 Existence of Minimizers

Theorem 4.1 (Weierstrass). If X is compact and f continuous on X, then

$$\exists x^* \in X : f(x^*) = \min_{x \in X} f(x).$$

Proof. Let $\alpha = \inf_{x \in X} f(x)$. Choose sequence $x_k \in X$ with $f(x_k) \downarrow \alpha$. Compactness \Rightarrow subsequence $x_{k_j} \to x^* \in X$. Continuity $\Rightarrow f(x^*) = \alpha$.

Definition 4.1 (Coercivity). f is coercive if $||x|| \to \infty \Rightarrow f(x) \to +\infty$.

Theorem 4.2. If f is coercive, then $\min_{x \in \mathbb{R}^d} f(x)$ exists.

Proof. For c large, the sublevel set $X_c = \{x : f(x) \le c\}$ is bounded and closed, hence compact. Then $\min f = \min_{x \in X_c} f(x)$, apply Weierstrass.

Example 4.1 (Quadratic coercive). If $f(x) = \frac{1}{2}x^{T}Qx + r^{T}x$ with Q > 0, then f is coercive.

5 Lower Semicontinuity (LSC) and Indicators

Definition 5.1 (Indicator).

$$\iota_X(x) = \begin{cases} 0, & x \in X, \\ \infty, & x \notin X. \end{cases}$$

$$\min_{x \in X} f(x) = \min_{x \in \mathbb{R}^d} (f(x) + \iota_X(x)).$$

Definition 5.2 (Lower semicontinuous function). f is LSC at \bar{x} if

$$\liminf_{x \to \bar{x}} f(x) \ge f(\bar{x}).$$

Theorem 5.1. If f is proper, LSC, and coercive, then f attains a minimizer.

Proof. Let $t > \min f$ and $X_t = \{x : f(x) \le t\}$.

Lemma 1. X_t is compact: nonempty (proper), bounded (coercive), closed (LSC). **Lemma 2.** $\alpha = \inf_{x \in X_t} f(x) > -\infty$ (proper).

Then pick $x_k \in X_t$ with $f(x_k) \to \alpha$. By compactness $x_k \to \bar{x} \in X_t$. LSC gives $f(\bar{x}) \le \alpha$, so $f(\bar{x}) = \alpha$.

6 Taylor Expansions

Theorem 6.1 (First-order Taylor). If $f \in C^1$, then

$$f(y) - f(x) = \int_0^1 \langle \nabla f(x + t(y - x)), y - x \rangle dt.$$

Also $\exists t \in [0,1]$ such that

$$f(y) - f(x) = \langle \nabla f(x + t(y - x)), y - x \rangle.$$

Proof. Let $\phi(t) = f(x + t(y - x))$. Then $\phi'(t) = \langle \nabla f(x + t(y - x)), y - x \rangle$. So $f(y) - f(x) = \phi(1) - \phi(0) = \int_0^1 \phi'(t) dt$. By mean value theorem, $\phi(1) - \phi(0) = \phi'(t)$ for some t.

Theorem 6.2 (Second-order Taylor with remainder). If $f \in C^2$, then

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2} (y - x)^{\top} \nabla^2 f(x + t(y - x))(y - x),$$

for some $t \in (0,1)$.

$$\nabla f(y) - \nabla f(x) = \int_0^1 \nabla^2 f(x + t(y - x))(y - x) dt.$$

7 Lipschitz Continuity and Smoothness

Definition 7.1 (Lipschitz continuity). f is M-Lipschitz if

$$|f(y) - f(x)| \le M||y - x||, \quad \forall x, y.$$

Theorem 7.1. If $f \in C^1$, then f is M-Lipschitz $\iff \|\nabla f(x)\| \leq M$, $\forall x$.

Proof. (\Rightarrow) Choose $u = \nabla f(x) / ||\nabla f(x)||$. For h > 0,

$$f(x+hu) - f(x) = \nabla f(x+thu)^{\top}(hu), \quad t \in [0,1].$$

Divide by h and let $h \to 0$. (\Leftarrow) Use the integral Taylor expansion.

Definition 7.2 (L-smoothness). f is L-smooth if

$$\|\nabla f(y) - \nabla f(x)\| \le L\|y - x\|, \ \forall x, y.$$

Lemma 7.1 (Quadratic bounds). If f is L-smooth,

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2,$$

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle - \frac{L}{2} ||y - x||^2.$$

Proof. Apply the integral Taylor formula and bound the integral using Lipschitz condition on ∇f .

Lemma 7.2 (Hessian characterization). If $f \in C^2$, then f is L-smooth (Euclidean) $\iff -LI \preceq \nabla^2 f(x) \preceq LI$ for all x.

8 Convexity

Definition 8.1 (Convex function). *f is convex if*

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y).$$

Lemma 8.1 (First-order characterization). f convex \iff $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$ for all x, y.

Theorem 8.1 (Second-order characterization). If $f \in \mathbb{C}^2$, then

$$f \ convex \iff \nabla^2 f(x) \succeq 0.$$

Definition 8.2 (Strong convexity). f is μ -strongly convex if

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.$$

Theorem 8.2. f μ -strongly convex $\iff f(x) - \frac{\mu}{2} ||x||^2$ is convex.

Definition 8.3 (Weak convexity). f is ρ -weakly convex if

$$f((1-\alpha)x + \alpha y) \le (1-\alpha)f(x) + \alpha f(y) + \rho \alpha (1-\alpha)||y-x||^2$$
.

9 Optimality Conditions

Definition 9.1 (Stationary point). $x \in X$ stationary if

$$\langle \nabla f(x), y - x \rangle \ge 0, \quad \forall y \in X.$$

Theorem 9.1 (First-order necessary condition). If $f \in C^1$, X closed convex, and x^* is a local minimizer, then

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0, \quad \forall y \in X.$$

Theorem 9.2 (Second-order conditions, unconstrained). If $f \in C^2$:

- If x^* local min, then $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$.
- If $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$, then x^* is strict local min.

Theorem 9.3 (Convex problems). If f convex, X closed convex:

- 1. Any local minimizer is global.
- 2. Solution set is convex.
- 3. If f differentiable: x^* optimal \iff stationary.

Theorem 9.4 (Strong convexity). If f is μ -strongly convex and continuous on X, then minimizer exists and is unique.

10 Error Bounds and Sensitivity

Theorem 10.1 (Error bound under strong convexity). If f is μ -strongly convex and C^1 ,

$$||x - x^*|| \le \frac{1}{\mu} ||\nabla f(x)||.$$

Definition 10.1 (Polyak–Łojasiewicz condition). f satisfies PL if

$$f(x) - f^* \le \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

Definition 10.2 (Sharpness). f has μ -sharpness if

$$f(x) - f^* \ge \frac{\mu}{2} ||x - x^*||^2.$$

Theorem 10.2 (Sensitivity under sharpness). If $|f(x) - \bar{f}(x)| \le \varepsilon$ and $\bar{x}^* \in \arg\min \bar{f}$, then

$$\|\bar{x}^* - x^*\| \le \sqrt{\frac{2\varepsilon}{\mu}}.$$