Analysis and Identification of a Thingy using GC-MS CHEM 4303 Analytical Separations

Robby RENZ

December 9, 2018

Date Performed: November 13, 2018
Date Completed: November 27, 2018
Partner: Jaya Roe
Lab Instructor: Kevin Stroski

Abstract

Gas chromatography with a mass spectrometer was utilized for analysis.

1 Introduction

Gas chromatography (GC) is a separation technique that analyzes volatile compounds [1]. Consequently, this analysis can lead a lot of useful situations such as the determination of the purity of a compound or even detecting explosives [1]. In GC, the analyte is volatilized and carried through the column by the mobile phase, often called the carrier gas [2]. This carrier gas can either be He or H_2 [2]. These gases are often chosen as the carrier gas as they are chemically inert and would therefore not react with the analytes [1].

Polybrominated diphenyl ethers (PBDEs) are a class of halogenated compounds that are commonly used as flame retardants [3]. These compounds are an environmental health hazard as they have the potential to accumulate in the food chain [4]. In addition, BDE-47, a PBDE congener, has been found to cause neurotoxic effects in adults [4]. Commonly used detection techniques for PBDEs are high-resolution mass spectrometry and low-resolution mass spectrometry (LRMS) [3]. LRMS is commonly done with selected ion monitoring (SIM) [3]. SIM increases the selectivity of mass spectrometry for analytes and reduces its response to everything else [2].

The main objective of this experiment is to make a method that uses a SIM for quantitative analysis of PBDEs by GC-EI-LRMS.

2 Chemicals, Methods and Instrumentation

2.1 Chemicals

In the first week, BDE-47, PBB-77 and '2-HCH, all of each were at a concentration of $50~\mu \rm g/mL$ in isooctane, were used as standard solutions. In the second week, fish oil (Exact Norwegian Cod Liver Oil), dichloromethane (emd, Lot 5Q160, CAS: 75-09-2) and PBB-77, at a concentration of $10~\mu \rm g/mL$ in isooctane, were used as chemicals. Finally, in the last week, BDE-47, PBB-77 and '2-HCH, each at a concentration of $10~\mu \rm g/mL$ in isooctane, were used. Throughout the entirety of the experiment, hexane (Caledon Laboratory Chemicals, CAS no. 110-54-3, LOT: 89001) and isooctane (OmniSolv, CAS: 540-84-1, LOT: 52054) were used.

2.2 Instrumentation

The separation and analysis of the entire experiment was performed on an Agilent 7890A GC, coupled with a 5975C inert XL EI/CI MSD with a triple axis detector. The dimensions of the column used was $30m \times 0.250mm \times 0.25\mu m$, by Agilent Technologies. The stationary phase was (5%-Phenyl)-methylpolysiloxane. Each analysis was performed with the injection mode at splitless, with He as the carrier gas, and the flow rate was set at $1\,\mathrm{mL/min}$. Do I need to state the pressure and volume and splitless?

2.3 Methods

3 Results and Discussion

3.1 Results

Table 1 shows some cool stuff, and table 2 shows the molecular weight of BDE-47, PBB-77 and '2-HCH. Table 3 shows the mass of fish oil that was weighed out for the experiment.

Table 1: Selected Ion Monitoring Parameters

Compound	Ions monitored (m/z)	Time window (min)
'2-HCH	181, 219	0.5 - 19
BDE-47	326, 486	19 - 22.5
PBB-77	470, 310	22.5 - 24

Table 2: Molecular weight of BDE-47, PBB-77 and '2-HCH

Compound	Molecular weight (u)	
BDE-47	486	
PBB-77	470	
'2-HCH	291	

Table 3: Mass of fish oil weighed out

Sample number	Mass (g)
1	1.1234
2	0.9062

3.2 Discussion

4 References

References

- (1) Vitha, M. F., *Chromatography: Principles and Instrumentation*; Wiley: Hoboken, New Jersey, 2017.
- (2) Harris, D. C., *Quantitative chemical analysis*, 8th ed; W.H. Freeman and Co: New York, 2010.
- (3) Björklund, J.; Tollbäck, P.; Östman, C. Journal of Mass Spectrometry 2003, 38, 394–400.
- (4) Thomsen, C.; Småstuen Haug, L.; Leknes, H.; Lundanes, E.; Becher, G.; Lindström, G. *Chemosphere* **2002**, *46*, 641–648.

5 Appendix

5.1 Calculations

Calculating the capacity factor of chlorobenzene for figure 2 of the chromatogram

$$K = \frac{t_r - t_m}{t_m}$$

$$K = \frac{2.343 - 1.438}{1.438}$$

$$K = \frac{0.905}{1.438}$$

$$K = 0.629346 \approx 0.629$$
(1)

Equation 1 was taken from [2].

5.2 Chromatograms

There are ? sheets of GC-MS chromatograms.