


```
英文文法

"a cat runs" 的推导
\langle sentence \rangle \Rightarrow \langle noun\_phrase \rangle \langle predicate \rangle
\Rightarrow \langle noun\_phrase \rangle \langle verb \rangle
\Rightarrow \langle article \rangle \langle noun \rangle \langle verb \rangle
\Rightarrow a \langle noun \rangle \langle verb \rangle
\Rightarrow a cat \langle verb \rangle
\Rightarrow a cat runs
```


1. Construct a DFA that accepts the language generated by the

 $S\rightarrow aaA,\ A\rightarrow baB,\ B\rightarrow aA|bb$ For this language construct a left-linear grammar, too.

- 2. Find a regular grammar that generates the language $L(aa^*(ab+a)^*)$
- 3. Construct a right- and left-linear grammar for the language:
 \[L=\{a^{2u}b^m | n \geq 0, m \geq 3\} \]
 4. \[L_1 \text{ and } L_2 \text{ are regular languages. Using regular grammar to prove } \]
- that:
 - (1) $L_1 \cup L_2$ is also a regular language.
 - (2) L_1L_2 is also a regular language.

