TESIS CARRERA DE DOCTORADO EN CIENCIAS DE LA INGENIERÍA

SIMULACIÓN NUMÉRICA DEL FENÓMENO DE EBULLICIÓN EMPLEANDO EL MÉTODO DE LATTICE BOLTZMANN

Ezequiel O. Fogliatto Doctorando

Dr. Federico E. Teruel

Dr. Alejandro Clausse

Director

Co-director

Miembros del Jurado

Dr. J. J. Jurado (Instituto Balseiro)
Dr. Segundo Jurado (Universidad Nacional de Cuyo)
Dr. J. Otro Jurado (Univ. Nac. de LaCalle)
Dr. J. López Jurado (Univ. Nac. de Mar del Plata)

Dr. U. Amigo (Instituto Balseiro, Centro Atómico Bariloche)

11 de Agosto de 2020

Departamento de Mecánica Computacional – Centro Atómico Bariloche

Instituto Balseiro
Universidad Nacional de Cuyo
Comisión Nacional de Energía Atómica
Argentina

A mi familia

Índice de símbolos

Índice de contenidos

ndice de símbolos	\mathbf{V}
ndice de contenidos	vii
ndice de figuras	ix
ndice de tablas	xi
. Introducción	1
. Fundamentos de lattice Boltzmann	3
2.1. Naturaleza cinética del método	3
2.1.1. Función de distribución de equilibrio	4
2.1.2. La ecuación de Boltzmann	4
2.1.3. Ecuaciones de conservación macroscópicas	5
Bibliografía	9

Índice de figuras

Índice de tablas

Capítulo 1

Introducción

Prueba de citas: [1]

Capítulo 2

Fundamentos de lattice Boltzmann

En este capítulo se describirán los fundamentos necesarios y la sarasa obligatoria para más o menos entender el detalle de un modelo de lattice Boltzmann. Poner acá la idea de mostrar este camino para llegar a lo que nos interesa de LB

2.1. Naturaleza cinética del método

La descripción matemática de la dinámica de fluidos se basa en la hipótesis de un medio continuo, con escalas temporales y espaciales suficientemente mayores que las asociadas a la naturaleza atomística subyacente. En este contexto, suelen encontrarse referencias a descripciones microscópicas, mesoscópicas o macroscópicas. La descripción microscópica, por un lado, hace referencia a una descripción molecular, mientras que la macroscópica involucra una visión continua completa, con cantidades tangibles como densidad o velocidad del fluido. Por otro lado, entre ambas aproximaciones se encuentra la teoría cinética mesoscópica, la cuál no describe el movimiento de partículas individuales, sino de distribuciones o colecciones representativas de dichas partículas.

La variable fundamental de la teoría cinética se conoce como función de distribución de partículas (particle distribution function, o pdf por sus siglas en inglés), que puede verse como una generalización de la densidad ρ y que a su vez tiene en cuenta la velocidad microscópica de las partículas $\boldsymbol{\xi}$. Por lo tanto, mientras que $\rho(\boldsymbol{x},t)$ representa la densidad de masa en el espacio físico, la función de distribución $f(\boldsymbol{x},\boldsymbol{\xi},t)$ corresponde a la densidad de masa tanto en el espacio físico como en el espacio de velocidades.

La función de distribución f se relaciona con variables macroscópicas como densidad ρ y velocidad \boldsymbol{u} a través de momentos, es decir, integrales de f con funciones de peso dependientes de $\boldsymbol{\xi}$ sobre todo el espacio de velocidades. En particular, la densidad de masa macroscópica puede obtenerse como el momento

$$\rho(\boldsymbol{x},t) = \int f(\boldsymbol{x},\boldsymbol{\xi},t) d^3\xi, \qquad (2.1)$$

en el cual se considera la contribución de partículas con todas las velocidades posibles en la posición x a tiempo t. Por otro lado, puede determinarse la densidad de impulso mediante

$$\rho(\boldsymbol{x},t)\boldsymbol{u}(\boldsymbol{x},t) = \int \boldsymbol{\xi} f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.2)

De forma similar, la densidad de energía total corresponde al momento

$$\rho(\boldsymbol{x},t)E(\boldsymbol{x},t) = \frac{1}{2} \int |\boldsymbol{\xi}|^2 f(\boldsymbol{x},\boldsymbol{\xi},t) d^3 \xi.$$
 (2.3)

2.1.1. Función de distribución de equilibrio

En el análisis original realizado para gases iluidos y monoatómicos, Maxwell menciona que cuando un gas permanece sin perturbaciones por un período de tiempo suficientemente largo, la función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ alcanza una distribución de equilibrio $f^{eq}(\boldsymbol{x}, \boldsymbol{\xi}, t)$ que es isotrópica en el espacio de velocidades en torno a $\boldsymbol{\xi} = \boldsymbol{u}$. De esta manera, si te toma un marco de referencia que se desplaza con velocidad \boldsymbol{u} , entonces dicha distribución de equilibrio puede expresarse como $f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t)$. Por otro lado, si se supone que la distribución de equilibrio puede expresarse de forma separable, es decir

$$f^{eq}(|\boldsymbol{v}|^2) = f^{eq}(v_x^2 + v_y^2 + v_z^2) = f_{1D}^{eq}(v_x^2) f_{1D}^{eq}(v_y^2) f_{1D}^{eq}(v_z^2), \tag{2.4}$$

entonces puede demostrarse que dicha distribución queda definida como

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|^2, t) = e^{3a} e^{b|\boldsymbol{v}|^2}.$$
 (2.5)

Por otro lado, considerando que las colisiones monoaómicas conservan masa, momento y energía, y usando además la relación de gases ideales:

$$\rho e = \frac{3}{2}RT = \frac{3}{2}p,\tag{2.6}$$

finalmente puede encontrarse una expresión explícita para la distribución de equilibrio

$$f^{eq}(\boldsymbol{x}, |\boldsymbol{v}|, t) = \rho \left(\frac{3}{4\pi e}\right)^{3/2} e^{-3|\boldsymbol{v}|^2/(4e)} = \rho \left(\frac{1}{2\pi RT}\right)^{3/2} e^{-|\boldsymbol{v}|^2/(2RT)}$$
(2.7)

2.1.2. La ecuación de Boltzmann

La función de distribución $f(\boldsymbol{x}, \boldsymbol{\xi}, t)$ establece propiedades tangibles de un fluido a través de sus diferentes momentos. Asimismo, es posible determinar una ecuación que permita modelar su evolución en el espacio físico, de velocidades, y el tiempo. En el análisis siguiente, se omitirá la dependencia de f con $(\boldsymbol{x}, \boldsymbol{\xi}, t)$ por claridad.

Como f es una función de la posición \boldsymbol{x} , de la velocidad de las partículas $\boldsymbol{\xi}$, y del tiempo t, la derivada total respecto al tiempo resulta

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right) \frac{dt}{dt} + \left(\frac{\partial f}{\partial x_{\beta}}\right) \frac{dx_{\beta}}{dt} + \left(\frac{\partial f}{\partial \xi_{\beta}}\right) \frac{d\xi_{\beta}}{dt}.$$
 (2.8)

En este caso dt/dt = 1, la velocidad de las partículas se obtiene como $dx_{\beta}/dt = \xi_{\beta}$, y la fuerza volumétrica F queda determinada por la segunda ley de Newton $d\xi_{\beta}/dt =$ F_{β}/ρ . Utilizando la notación tradicional $\Omega(f) = df/dt$ para el diferencial total respecto al tiempo, se obtiene la ecuación de Boltzmann para describir la evolución de f:

$$\frac{\partial f}{\partial t} + \xi_{\beta} \frac{\partial f}{\partial x_{\beta}} + \frac{F_{\beta}}{\rho} \frac{\partial f}{\partial \xi_{\beta}} = \Omega(f). \tag{2.9}$$

La Ec. (2.9) puede verse como una ecuación de advección para f, donde los dos primeros términos del miembro izquierdo corresponden a la advección de f con la velocidad de partículas ξ , mientras que el tercero representa el efecto de las fuerzas externas. Por otro lado, el miembro derecho contiene un término de fuente conocido como operador de colisión, que representa la redistribución local de f debido a colisiones entre las propias partículas. Estas colisiones conservan masa, momento y energía, lo que se traduce en restricciones para los momentos de Ω :

$$\int \Omega(f) d^3 \xi = 0 \tag{2.10a}$$

$$\int \boldsymbol{\xi} \,\Omega(f) \,d^3 \boldsymbol{\xi} = \mathbf{0}$$

$$\int |\boldsymbol{\xi}|^2 \,\Omega(f) \,d^3 \boldsymbol{\xi} = 0$$
(2.10b)
$$(2.10c)$$

$$\int |\boldsymbol{\xi}|^2 \Omega(f) d^3 \xi = 0 \tag{2.10c}$$

2.1.3. Ecuaciones de conservación macroscópicas

Las ecuaciones de conservación macroscópicas pueden obtenerse como momentos de la ecuación de Boltzmann, es decir, multiplicando la Ec. (2.9) por funciones de ξ e integrando sobre todo el espacio de velocidades. Para ello, es necesario introducir una notación general para los momentos de f

$$\Pi_0 = \int f \, d^3 \xi = \rho \tag{2.11a}$$

$$\Pi_{\alpha} = \int \xi_{\alpha} f \, d^3 \xi = \rho u_{\alpha} \tag{2.11b}$$

$$\Pi_{\alpha\beta} = \int \xi_{\alpha} \xi_{\beta} f \, d^3 \xi \tag{2.11c}$$

$$\Pi_{\alpha\beta\gamma} = \int \xi_{\alpha}\xi_{\beta}\xi_{\gamma}f \,d^{3}\xi \tag{2.11d}$$

La ecuación más simple de obtener corresponde a la de conservación de masa. Integrando la Ec. (2.9) en el espacio de velocidades, y usando las Ecs. (2.10) y (2.11), se obtiene:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_{\beta})}{\partial x_{\beta}} = 0. \tag{2.12}$$

De manera similar, multiplicando la Ec. (2.9) por ξ_{α} e integrando en el espacio de velocidades se obtiene la ecuación de conservación de momento:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial \Pi_{\alpha\beta}}{\partial x_{\beta}} = F_{\alpha}. \tag{2.13}$$

donde $\Pi_{\alpha\beta}$ se define como el tensor de flujo de impulso. Si se descompone la velocidad de las partículas como xi = u + v, entonces la Ec. (2.13) puede reescribirse como

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = \frac{\partial \sigma_{\alpha\beta}}{\partial x_{\beta}} + F_{\alpha}. \tag{2.14}$$

con $\sigma_{\alpha\beta}$ representando el tensor de tensiones:

$$\sigma_{\alpha\beta} = -\int v_{\alpha}v_{\beta}f \,d^3\xi \tag{2.15}$$

Finalmente, puede seguirse un procedimiento similar para encontrar una ecuación macroscópica de conservación de energía. Multiplicando la Ec. (2.9) por $\xi_{\alpha}\xi_{\beta}$ e integrando en el espacio de velocidades se obtiene:

$$\frac{\partial \rho E}{\partial t} + \frac{1}{2} \frac{\Pi_{\alpha \alpha \beta}}{\partial x_{\beta}} = F_{\beta} u_{\beta}. \tag{2.16}$$

Descomponiendo el momento como en la ecuación de conservación de impulso y usando la Ec. (2.14) multiplicada por u_{α} , la Ec. (2.16) puede reescribirse como:

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = \sigma_{\alpha\beta} \frac{\partial u_{\alpha}}{\partial x_{\beta}} - \frac{\partial q_{\beta}}{\partial x_{\beta}}, \tag{2.17}$$

donde el flujo de calor q está definido por el momento

$$q_{\beta} = \frac{1}{2} \int v_{\alpha} v_{\alpha} v_{\beta} f \, d^3 \xi \tag{2.18}$$

En este punto es interesante destacar que si bien la convervación de masa queda definida exactamente, las ecuaciones de impulso y energía dependen de la forma de f, que todavía no es conocida. En el caso particular en que $f \simeq f^{eq}$, se obtienen las ecuaciones de Euler para impulso y energía:

$$\frac{\partial \rho u_{\alpha}}{\partial t} + \frac{\partial (\rho u_{\alpha} u_{\beta})}{\partial x_{\beta}} = -\frac{\partial p}{\partial x_{\alpha}} + F_{\alpha}$$
 (2.19a)

$$\frac{\partial \rho e}{\partial t} + \frac{(\rho u_{\beta} e)}{\partial x_{\beta}} = -p \frac{\partial u_{\beta}}{\partial x_{\beta}}$$
 (2.19b)

Este hecho muestra que los procesos macroscópicos de disipación viscosa y difusión de calor se encuentran directamente vinculados a la desviación de f respecto de su valor de equilibrio.

2.2. Discretización del espacio de velocidades

Bibliografía

[1] Fogliatto, E. O., Clausse, A., Teruel, F. E. Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method. International Journal of Numerical Methods for Heat & Fluid Flow, 29 (9), 3095–3109, 2019. URL https://www.emerald.com/insight/content/doi/10.1108/HFF-11-2018-0682/full/html. 1