

LOGIKA DLA INFORMATYKÓW

Wnioskowanie w logice rozmytej

dr hab. Ewa Michalska

Reguły wnioskowania w logice rozmytej

Wartość logiczna zdania warunkowego "**Jeżeli** X jest A **to** Y jest B" (lub $\mathbf{P} \to \mathbf{Q}$), jest zależna od wartości prawdy w zdaniach przesłanki i konkluzji czyli od wartości funkcji przynależności $\mu_A(x)$, $\mu_B(y)$ zbiorów rozmytych określonych odpowiednio w przestrzeniach X, Y.

Dla różnych wartości $x \in X$, $y \in Y$ wartość logiczna zdania warunkowego wyraża się poprzez wartość funkcji przynależności $\mu_R(x,y)$, relacji rozmytej $R \subset X \times Y$, która reprezentuje znaczeniowo zdanie warunkowe.

Istnieje wiele możliwości definiowania relacji R (np. za pomocą t-norm), w ten sposób powstają różne reguły wnioskowania. Reguły wnioskowania spełniające warunki (1°-5° - kolejny slajd) są implikacjami w sensie logicznym.

Implikacje rozmyte

Implikacją rozmytą jest funkcja

$$I: [0,1] \times [0,1] \to [0,1]$$

spełniająca następujące warunki:

- 1° jeżeli a≤c to I(a,b)≥I(c,b) dla wszystkich a,b,c∈[0,1](nierosnąca funkcja względem pierwszego argumentu)
- 2° jeżeli b≤c to I(a,b)≤I(a,c) dla wszystkich a,b,c∈[0,1] (niemalejąca funkcja względem drugiego argumentu)
- 3° I(0,b)=1 dla wszystkich b∈[0,1](z fałszu może wynikać dowolna wartość b)
- 4° I(a,1)=1 dla wszystkich a∈[0,1](dowolna wartość a może prowadzić do prawdy)
- 5° I(1,0)=0
 (z prawdy nigdy nie wynika fałsz)

Implikacje rozmyte:

Kleene'a-Dienesa (binarna)	$\mu_{I_{K-D}}(x, y) = \max\{1 - \mu_A(x); \mu_B(y)\}$	
Łukasiewicza	$\mu_{I_{\mathbb{E}}}(x, y) = \min\{1; 1 - \mu_{A}(x) + \mu_{B}(y)\}$	
Zadeha	$\mu_{I_Z}(x, y) = \max\{\min\{\mu_A(x); \mu_B(y)\}; 1 - \mu_A(x)\}$	
Reichenbacha	$\mu_{I_R}(x, y) = 1 - \mu_A(x) + \mu_A(x) \cdot \mu_B(y)$	
Dubois-Prade	$\mu_{I_{D-P}}(x,y) = \begin{cases} 1 - \mu_{A}(x), & \mu_{B}(y) = 0 \\ \mu_{B}(y), & \mu_{A}(x) = 1 \\ 1, & \mu_{A}(x) \neq 1, \mu_{B}(y) \neq 0 \end{cases}$	
Goedla	$\mu_{I_G}(x,y) = \begin{cases} 1, & \mu_A(x) \le \mu_B(y) \\ \mu_B(y), & \mu_A(x) > \mu_B(y) \end{cases}$	
Goguena	$\mu_{I_{Gg}}(x,y) = \begin{cases} \min \left\{ 1; \frac{\mu_{B}(y)}{\mu_{A}(x)} \right\}, & \mu_{A}(x) > 0 \\ 1, & \mu_{A}(x) = 0 \end{cases}$	
Yagera	$\mu_{I_{Gg}}(x,y) = \begin{cases} \left(\mu_{B}(y)\right)^{\mu_{A}(x)}, & \mu_{A}(x) > 0\\ 1, & \mu_{A}(x) = 0 \end{cases}$	

Reguly rozmyte:

Mamdaniego	$\mu_{R_M}(x, y) = \min\{\mu_A(x); \mu_B(y)\}$
Larsena	$\mu_{R_L}(x,y) = \mu_A(x) \cdot \mu_B(y)$

Implikacje logiczne

$\mu_A(x)$	$\mu_B(y)$	Implikacja Kleene'a-Dienesa $\mu_{I_{K-D}}(x,y) = \max\{1 - \mu_A(x); \mu_B(y)\}$	Implikacja Łukasiewicza $\mu_{I_{\mathbb{L}}}(x,y) = \min\{1; 1 - \mu_A(x) + \mu_B(y)\}$	$\mu_{A\to B}(x,y)$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	1	1	1

Reguly

$\mu_A(x)$	$\mu_B(y)$	Reguła Mamdaniego $\mu_{R_M}(x,y) = \min\{\mu_A(x); \mu_B(y)\}$	Regula Larsena $\mu_{R_L}(x, y) = \mu_A(x) \cdot \mu_B(y)$	$\mu_{A\to B}(x,y)$
0	0	0	0	1
0	1	0	0	1
1	0	0	0	0
1	1	1	1	1

Podstawowe reguły wnioskowania w logice dwuwartościowej

<u>Modus ponens</u> – wnioskowanie stwierdzające przez stwierdzenie, reguła odrywania

Przesłanka 1	Р
Przesłanka 2 (implikacja)	$P\toQ$
Wniosek	Q

Modus tollens – wnioskowanie zaprzeczające przez zaprzeczenie

Przesłanka 1 (implikacja) Przesłanka 2	$\begin{array}{c} P \to Q \\ \neg \; Q \end{array}$
Wniosek	¬ P

Uogólniona rozmyta reguła wnioskowania modus ponens

Przesłanka 1 Przesłanka 2 (implikacja)	P2 P1 → Q1	x jest A2 JEŻELI x jest A1 TO y jest B1
Wniosek	$Q2 \!=\! P2 \circ (P1 \to Q1)$	y jest B2

gdzie symbol "°" oznacza operację złożenia, A1,A2_CX oraz B1,B2_CY są zbiorami rozmytymi, a zmienne x i y są tzw. zmiennymi lingwistycznymi (słowa, zdania języka naturalnego, liczby)

Uwaga:

Jeśli P1=P2 oraz Q1=Q2 to uogólniona rozmyta reguła wnioskowania modus ponens sprowadza się do zwykłej reguły modus ponens

Uogólniona rozmyta reguła wnioskowania modus tollens

Przesłanka 1 (implikacja) Przesłanka 2	$P1 \rightarrow Q1$ $Q2$	JEŻELI x jest A1 TO y jest B1 y jest B2
Wniosek	$P2=(P1 \rightarrow Q1) \circ Q2$	x jest A2

gdzie symbol "·" oznacza operację złożenia, A1,A2_CX oraz B1,B2_CY są zbiorami rozmytymi, a zmienne x i y są tzw. zmiennymi lingwistycznymi (słowa, zdania języka naturalnego, liczby)

Uwaga:

Jeśli P1=P2 oraz Q1=Q2 to uogólniona rozmyta reguła wnioskowania modus tollens sprowadza się do zwykłej reguły modus tollens

Przykład: reguła wnioskowania **modus ponens**

Przesłanka 1 Przesłanka 2 (implikacja)	Prędkość samochodu jest duża. Jeżeli prędkość samochodu jest bardzo duża to poziom hałasu jest wysoki.
Wniosek	Poziom hałasu w samochodzie jest średnio-wysoki.

Zmienne lingwistyczne: x-prędkość samochodu, y-poziom hałasu

X={"mała", "średnia", "duża", "bardzo duża"}

Y={"mały", "średni", "średnio-wysoki", "wysoki"}

A1="bardzo duża prędkość samochodu", A2="duża prędkość samochodu"

B1="wysoki poziom hałasu", B2="średnio-wysoki poziom hałasu"

Przykład: reguła wnioskowania **modus tollens**

Przesłanka 1 Przesłanka 2 (implikacja)	Poziom hałasu w samochodzie jest średnio-wysoki. Jeżeli prędkość samochodu jest bardzo duża to poziom hałasu jest wysoki.
Wniosek	Prędkość samochodu jest duża.

Zmienne lingwistyczne: x-prędkość samochodu, y-poziom hałasu

X={"mała", "średnia", "duża", "bardzo duża"}

Y={"mały", "średni", "średnio-wysoki", "wysoki"}

A1=",bardzo duża prędkość samochodu", A2=",duża prędkość samochodu"

B1="wysoki poziom hałasu", B2="średnio-wysoki poziom hałasu"

Przykład:

Dane są zbiory rozmyte:

A1={
$$(x_1; 0,3),(x_2;0,4),(x_3;0,1)$$
}, A2={ $(x_1; 0,2),(x_2;0,8),(x_3;0,4)$ }
B1={ $(y_1; 0,3),(y_2;0,1)$ }, B2={ $(y_1; 0,5),(y_2;0,9)$ }

Reguła wnioskowania modus ponens: $Q2=P2 \circ (P1 \rightarrow Q1)$

Przyjmując implikację Łukasiewicza oraz operację złożenia max-min otrzymujemy

	(y ₁ ;0,3)	(y ₂ ;0,1)
(x ₁ ;0,3)	1	0,8
(x ₂ ;0,4)	0,9	0,7
(x ₃ ;0,1)	1	1

Złożenie typu max-min daje konkluzję - zbiór rozmyty B2 postaci:

B2 =
$$\frac{\mu_{B2}(y_1)}{y_1} + \frac{\mu_{B2}(y_2)}{y_2} = \{(y_1; 0.8), (y_2; 0.7)\}$$

$$\mu_{B2}(y_1) = \max\{\min\{0,2;1\}; \min\{0,8;0,9\}; \min\{0,4;1\}\} = 0,8$$

$$\mu_{B2}(y_2) = \max\{\min\{0,2;0,8\}; \min\{0,8;0,7\}; \min\{0,4;1\}\} = 0,7$$

Przykład:

Dane są zbiory rozmyte:

A1={
$$(x_1; 0,3),(x_2;0,4),(x_3;0,1)$$
}, A2={ $(x_1; 0,2),(x_2;0,8),(x_3;0,4)$ }
B1={ $(y_1; 0,3),(y_2;0,1)$ }, B2={ $(y_1; 0,5),(y_2;0,9)$ }

Reguła wnioskowania modus tollens: $P2=(P1 \rightarrow Q1) \circ Q2$

Przyjmując implikację Łukasiewicza oraz operację złożenia max-min otrzymujemy

	(y ₁ ;0,3)	(y ₂ ;0,1)
(x ₁ ;0,3)	1	0,8
(x ₂ ;0,4)	0,9	0,7
(x ₃ ;0,1)	1	1

Złożenie typu max-min daje konkluzję - zbiór rozmyty A2 postaci:

A2 =
$$\frac{\mu_{A2}(x_1)}{x_1} + \frac{\mu_{A2}(x_2)}{x_2} + \frac{\mu_{A2}(x_3)}{x_3} = \{(x_1; 0.8), (x_2; 0.7); (x_3; 0.9)\}$$

 $\mu_{A2}(x_1) = \max\{\min\{1; 0,5\}; \min\{0,8; 0,9\}\} = 0,8$

 $\mu_{A2}(x_2) = \max\{\min\{0.9; 0.5\}; \min\{0.7; 0.9\}\} = 0.7$

 $\mu_{A2}(x_2) = \max\{\min\{1; 0,5\}; \min\{1; 0,9\}\} = 0,9$

