Section 14.3 Partial Derivatives Goal: Develop a notion of the derivative of a function f(x,y) Notation Fixed point on the xy plane { (xo, yo) = Text Consider Z = f(x,y) { Example $f(x,y) = \chi^2 \sqrt{y}$ Let a & b be constants. $\{f(x,b) = \chi^2 \sqrt{b}\}$ com
differentiate $Z = f(x, b) \leftarrow function of x$ f(a,y) = asy I these Z = f(a,y) - function of y Derivative of f(xb): $\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h,b) - f(x,b)}{h}$ $\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x+h, y) - f(x, y)}{h}$ $m = f_{x}(x, y)$ $\frac{\partial f}{\partial x} = f_x(x,y)$ is the derivative of f(x,y) when y is held const, called the partial derivative of f(x,y) with respect to x. Derivative of f(a,y) $\frac{2f}{2y} = \lim_{h \to 0} f(\alpha, y+h) - f(\alpha, y)$ $\frac{\partial f}{\partial y} = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$ $\frac{\partial f}{\partial y} = f_y(x,y)$ is derivative of f(x,y) with a held constant. Called the partial derivative of f(x,y) with respect to y

Example
$$f(xy) = x^2y^3 + x$$

$$\frac{\partial f}{\partial x} = f_x(x,y) = zxy^3 + 1$$

$$\frac{\partial f}{\partial y} = x^2y^2 + 6$$

Example
$$g(x,y) = \chi^2 \sin(xy)$$

 $\frac{\partial f}{\partial x} = f_x(x,y) = 2\chi \sin(xy) + \chi^2 \cos(xy) y$
 $\frac{\partial f}{\partial y} = f_y(x,y) = \chi^2 \cos(xy) \chi = \chi^3 \cos(xy)$

Notation
$$\frac{\partial f}{\partial x} = f_{x}(x,y) = \frac{\partial f}{\partial x}(x,y) = f_{x} = Z_{x} = \frac{\partial Z}{\partial x} = \frac{\partial}{\partial x} [f]$$

$$\frac{\partial f}{\partial y} = f_{y}(x,y) = \frac{\partial f}{\partial y}(x,y) = f_{y} = Z_{y} = \frac{\partial Z}{\partial y} = \frac{\partial}{\partial y} [f]$$

Higher Partial Derivatives

$$f_{xx} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial x^2} \qquad f_{yy} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial y^2}$$

$$f_{xy} = \frac{\partial}{\partial y} \left[\frac{\partial f}{\partial x} \right] = \frac{\partial^2 f}{\partial y \partial x} \qquad f_{yx} = \frac{\partial}{\partial x} \left[\frac{\partial f}{\partial y} \right] = \frac{\partial^2 f}{\partial x \partial y}$$

$$Example \qquad f(x,y) = \chi^3 e^{2y} \qquad \begin{cases} f_x(x,y) = 3\chi^2 e^{2y} \\ f_y(x,y) = 2\chi^3 e^{2y} \end{cases}$$

$$f_{xx}(x,y) = 6xe^{2y}$$

$$f_{yy}(x,y) = 4x^{3}e^{2y}$$

$$f_{xy}(x,y) = \frac{\partial}{\partial y} f_{x}(x,y) = 6 \chi^{2}e^{2y}$$
 There are the same $f_{xy}(x,y) = \frac{\partial}{\partial y} f_{x}(x,y) = 6 \chi^{2}e^{2y}$ There are the same $f_{yx}(x,y) = \frac{\partial}{\partial x} f_{y}(x,y) = 6 \chi^{2}e^{2y}$ Coincidence,

Differentiability

Recall that y=f(x) differentiable at x=a means y=f(x) has tangent (non-vertical) at a.

Similarly, y = f(x,y) being differentiable at (a,b) means that the graph has a tungent plane at (a,b), as shown \rightarrow

But this concept is somewhat subtle.

For example, here is a Surface that seems to have two tangent planes at the point P. We would not want to

say that this function is differentiable at

that point.

The text gives a somewhat technical detraction of what it means for f(x,y) to be differentiable at a point (a,b). The upshot of this definition is that f(x,y) is differentiable if its quaph has a unique tangent plane at (a,b). In other words, close up, the graph looks like a plane we will have more to say about this later, but for now, one consequence,

Theorem (fx and fy are continuous) \Longrightarrow (f(x,y) is differentiall 6) on the region R) Theorem (f(x,y) is differentiable) => (f(x,y) is continuous)