第二单元学习笔记

yinxuhao [xuhao_yin@163.com]

December 28, 2022

Contents

引言		2
信息	以存储	2
2.1	十六进制表示法	2
2.2		3
2.3		3
2.4		5
2.5	移位运算	5
整数	2表示	6
3.1	无符号数的编码	6
3.2	补码编码	7
3.3		8
3.4		9
3.5		10
3.6		11
整数	拉运算 1	11
4.1	无符号加法	11
4.2		12
4.3		14
		15
4.4		15
4.5		 15
		16
	信息 2.1 2.2 2.3 2.4 2.5 整3.1 3.2 3.3 3.4 3.5 3.6 整4.1 4.2 4.3	2.2 字数据大小 2.3 寻址和字节顺序 2.4 布尔代数 2.5 移位运算 整数表示 3.1 无符号数的编码 3.2 补码编码 3.2 补码编码 3.3 有符号和无符号数之间的转换 3.4 扩展一个数字的位表示 3.5 截断数字 3.6 关于有符号数和无符号数的建议 整数运算 4.1 无符号加法 4.2 补码加法 4.2 补码加法 4.3 补码的非 4.3.1 补码非的两种快速求法 4.4 无符号乘法 4.5 补码乘法

信息的表示和处理

1 引言

孤立地讲,**单个的位不是非常有用,将位组合在一起,再加上某种解释** (interpretation),即赋予不同的可能位模式以含意。我们就能表示任何有限 集合的元素。

- 三种重要的数字表示:
- 1. 无符号unsigned编码给予传统的二进制表示法
- 2. 补码two's-complement编码是表示有符号整数的最常见的方式。
- 3. **浮点数**floating-point编码是表示实数的科学计数法的以 2 为基数的版本。

数据**溢出**overflow是产生 bug 的一大原因。负数下溢产生极大的正数;正数上溢产生极小的负数。

浮点运算有完全不同的数学属性。

1. 由于表示的精度有限, 浮点运算是不可结合的。例如

$$(3.14 + 1e_{20}) - 1e_{20} = 0.0$$

but

$$(3.14 + 1e_{20} - 1e_{20}) = 3.14$$

2. 该属性不同的原因,是处理数字表示有限性的方式不同——整数虽只能编码一个相对较小的数值范围,然该表示法是精确的; 浮点数虽可以编码相对较大的数值范围,但这种表示只是近似的。 书中建议的本章学习方式:

深入学习数学语言

学习编写公式和方程式

以及重要属性的推导

2 信息存储

大多数计算机**使用 8 位的块或者字节作为最小的可寻址内存单位**,而不是内存中单独的比特。

机器级程序将内存视为一个非常大的字节数组,称为**虚拟内存**,所有可能的 地址的集合称为**虚拟地址空间**virtual address space.

每个程序对象可以简单地视为一个字节块,而程序本身就是一个字节序列。

2.1 十六进制表示法

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	Α	В	C	D	E	F
Hex digit Decimal value	8 8	9 9	A 10	В 11	C 12	D 13	E 14	F 15

Figure 1: 十六进制表示法。每个十六进制数字都对 16 个值中的一个进行了编码

十六进制转二进制:将十六进制的每一位转换为二进制格式,然后拼接。例如:

十六进制 1 7 3 A 4 C 二进制 0001 0111 0011 1010 0100 1100

所以 $binary_{0x173a4c_{16}} = 000101110011101001001100_2$ 。

二进制转十六进制:将二进制从右到左做4个一组的划分,如最左侧不足4位则以0补之。然后将每个4位转换为对应的十六进制数字拼接即可。例如:

二进制 11 1100 1010 1101 1011 0011 十六进制 3 C A D B 3

所以, $hex_{111100101011011011011_2} = 3cadb3_{16}$

2.2 字数据大小

每台计算机都有一个字长,指明指针数据的标称大小。

C 数据类型的典型大小见下图:

C dec	Bytes			
Signed	Unsigned	32-bit	64-bit	
[signed] char	unsigned char	1	1	
short	unsigned short	2	2	
int	unsigned	4	4	
long	unsigned long	4	8	
int32_t	uint32_t	4	4	
int64_t	uint64_t	8	8	
char *		4	8	
float		4	4	
double		8	8	

Figure 2: 基本 C 数据类型的典型大小 (以字节为单位)

2.3 寻址和字节顺序

小端法little endian: 最低有效字节在最前面放着。 大端法big endian: 最高有效字节在最前面放着。 具体示例见下图:

Big endian					
	0x100	0x101	0x102	0x103	
	01	23	45	67	
Little endian					
	0x100	0x101	0x102	0x103	
	67	45	23	01	

Figure 3: 大端法与小端法

```
#include <stdio.h>
typedef unsigned char *byte_pointer;
void show_bytes(byte_pointer start, size_t len) {
    size_t i;
    for(i = 0; i < len; i++) {</pre>
        printf(" %.2x", start[i]);
    printf("\n");
 }
 void show_int(int x) {
    show_bytes((byte_pointer) &x, sizeof(int));
void show_float(float x);
void show_pointer(void *x);
void test_show_bytes(int val) {
    int ival = val;
    float fval = (float) val;
    int *pval = &ival;
    show_int(ival);
    show_float(fval);
    show_pointer(pval);
}
```

通过以上代码,可以打印出数据的两位十六进制格式输出。对比结果可以发现,int和float的结果一样,只是排列的大小端不同,而指针值不同,与机器相关。

二进制代码是不兼容的。

2.4 布尔代数

~		&	0	1	1	0	1	^	0	1
0	1	0	0	0	0	0	1	0	0	1
1	0	1	0	1	1	1	1	1	1	0

Figure 4: 布尔代数的运算。二进制 0 和 1 代表逻辑值 TRUE 和 FALSE. 以上四张图依次是逻辑运算符 NOT AND OR EXCLUSIVE-OR

位向量一个很有用的应用就是**表示有限集合**。利用位向量 $[a_{w-1}, \ldots, a_1, a_0]$ 可以编码任何子集 $A \in \{0, 1, \ldots, w-1\}$ 。

例如, 定义规则 $a_i = 1 \iff i \in A$ 。

位向量 $a \doteq [01101001]$ 表示集合 A = 0, 3, 5, 6,而位向量 $b \doteq [01010101]$ 表示集合 B = 0, 2, 4, 6。

编码集合的使用方法是使用布尔运算。

例如: $a\&b \rightarrow [010000001]$, 对应于 $A \cap B = 0, 6$ 。

它的实际应用,还有使用位向量作为掩码有选择地使用或屏蔽一些信号,该掩码就是设置为有效信号的集合。

C 语言中的位级运算, 其实是按照各个位对应的位运算来的。

而 C 语言中的逻辑运算 (||、&&、!) 则是把所有的非零参数都表示 TRUE, 参数 0 表示为 FALSE。它们只返回 1 或 0. 而位级运算只在参数特殊时才与之有相同的结果。

2.5 移位运算

x<<k: 左移 k 位, 即丢弃最高 k 位, 右端补充 k 个 0.

x>>k: 右移 k 位,支持逻辑右移和算术右移。逻辑右移在左端补充 k 个 0,算术右移则在左端补充 k 个最高有效位 (符号位)。

对无符号数,右移必须是逻辑的。

移位运算符是从左至右可结合的。

3 整数表示

0 1 1	TD.	
Symbol	Type	Meaning
$B2T_w$	Function	Binary to two's complement
$B2U_w$	Function	Binary to unsigned
$U2B_w$	Function	Unsigned to binary
$U2T_w$	Function	Unsigned to two's complement
$T2B_w$	Function	Two's complement to binary
$T2U_w$	Function	Two's complement to unsigned
$TMin_w$	Constant	Minimum two's-complement value
$TMax_w$	Constant	Maximum two's-complement value
$UMax_w$	Constant	Maximum unsigned value
$+_{w}^{t}$	Operation	Two's-complement addition
$+_{w}^{\mathrm{u}}$	Operation	Unsigned addition
$*_w^t$	Operation	Two's-complement multiplication
$*_w^{\mathrm{u}}$	Operation	Unsigned multiplication
$-\frac{t}{w}$	Operation	Two's-complement negation
$-{}^{\mathrm{u}}_{w}$	Operation	Unsigned negation

Figure 5: 整数的数据与算术操作术语。下标 w 表示数据中表示中的位数

3.1 无符号数的编码

原理 1 无符号数编码的定义 对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2U_w(\vec{x}) = \sum_{i=0}^{w-1} x_i 2^i \tag{1}$$

形象的展示如下图:

Figure 6: w=4 的无符号数示例。当二进制表示中位 i 为 1,数值就会相应加上 2^i

原理 2 无符号数编码的唯一性 函数 $B2U_w$ 是一个双射

3.2 补码编码

原理 3 补码编码的定义 对向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$:

$$B2T_w(\vec{x}) = -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$
 (2)

形象地展示如下图:

Figure 7: w=4 的补码示例。把位 3 作为符号位,因此当它为 1 时,对数值的 影响是 $-2^3 = -8$ 。这个权重在图中用带向左箭头的条表示

原理 4 补码编码的唯一性

函数 $B2T_w$ 是一个双射。

- 1. 补码的范围是不对称的: |TMin| = |TMax| + 1, 即 TMin 没有与之对应的正数。这是因为 0 是非负数。
- 2. 最大的无符号数值刚好比补码的最大值的两倍大一点: $UMax_w = 2TMax_w + 1$

3.3 有符号和无符号数之间的转换

原理 5 补码转换为无符号数

对满足 $TMin_w \le x \le TMax_w$ 的 x 有:

$$T2U_w(x) = \begin{cases} x + 2^w, & x < 0 \\ x, & x \ge 0 \end{cases}$$
 (3)

推导 1 补码转换为无符号数

比较式1和2, 我们发现对于位模式 \vec{x} , 如果我们计算 $B2U_w(\vec{x}) - B2T_w(\vec{x})$ 之差, 得到:

$$B2U_w(\vec{x}) - B2T_w(\vec{x}) = x_{w-1}2^w$$

由此得到一个关系:

$$B2U_w(\vec{x}) = x_{w-1}2^w + B2T_w(\vec{x}) \tag{4}$$

由此可得:

$$B2U_w(T2B_w(x)) = T2U_w(x) = x + x_{w-1}2^w$$
(5)

式5的计算:将 $T2B_w(x)$ 当作 x 代入4后得到。由于运算 $T2B_w$ 与 $B2T_w$ 是对 \vec{x} 的逆运算,故

 $\therefore B2U_w(T2B_w(x)) = x_{w-1}2^w + B2T_w(T2B_w(x)) \therefore T2U_w(x) = x + x_{w-1}2^w$

根据3的两种情况,在x的补码中,位 x_{w-1} 决定了x是否为负。

Figure 8: 比较当 w=4 时无符号数表示和补码表示 (对补码和无符号数来说,最高有效位的权重分别是-8 和 +8,因此产生一个差为 16)

原理 6 无符号数转换为补码

对满足 $0 \le x \le UMax_w$ 的 u 有:

$$U2T_w(u) = \begin{cases} u, & u \le TMax_w \\ u - 2^w, & u > TMax \end{cases}$$
 (6)

推导 2 设 $\vec{x} = U2B_w(u)$, 则这个位向量也是 $U2T_w(u)$ 的补码表示。式1和式2结合起来有

$$U2T_w(u) = -u_{w-1}2^w + u (7)$$

在 u 的无符号表示中,对式6的两种情况来说,位 u_{w-1} 决定了 u 是否大于 $TMax_w=2^{w-1}-1$ 。

以下图说明了函数 U2T 的行为。对于小的数,从无符号到有符号保留原值;一旦大于 $TMax_w$,数字将被转换为一个负数值。

Figure 9: 无符号数和补码的转换

3.4 扩展一个数字的位表示

用于将数据类型转换为一个更大的数据类型,例如32位→64位。

原理7 无符号数的零扩展

定义宽度为 w 的位向量 $\vec{u} = [u_{w-1}, u_{w-2}, \ldots, u_0]$ 和宽度为 w' 的位向量 $\vec{u}' = [0, \ldots, 0, u_{w-1}, u_{w-1}, \ldots, u_0]$, 其中, w' > w。则 $B2U_w(\vec{u}) = B2U_{w'}(\vec{u}')$ 。

原理 8 补码数的符号扩展

定义宽度为 w 的位向量 $\vec{x} = [x_{w-1}, x_{w-2}, \dots, x_0]$ 和宽度为 w 的位向量 $\vec{x}' = [x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]$, 其中 w' > w。则 $B2T_w(\vec{x}) = B2T_{w'}(\vec{x}')$ 。

推导 3 补码数值的符号扩展

令 w' = w + k, 证明

$$B2T_{w+k}(\underbrace{[x_{w-1},\ldots,x_{w-1},x_{w-1},x_{w-2},\ldots,x_0]}) = B2T_w([x_{w-1},x_{w-2},\ldots,x_0])$$
k times

下面的证明是对 k 进行归纳。即: 如果我们能够证明符号扩展一位保持了数值不变,那么符号扩展任意位都能保持这种属性。即:

$$B2T_{w+1}([x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]) = B2T_w([x_{w-1}, x_{w-2}, \dots, x_0])$$

用式2展开左边的表达式, 得:

$$B2T_{w+1}([x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_0]) = -x_{w-1}2^w + \sum_{i=0}^{w-1} x_i 2^i$$

$$= -x_{w-1}2^w + x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

$$= -x_{w-1}(2^w - 2^{w-1}) + \sum_{i=0}^{w-2} x_i 2^i$$

$$= -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

$$= B2T_w([x_{w-1}, x_{w-2}, \dots, x_0]).$$

其中使用的关键属性是 $2^w - 2^{w-1} = 2^{w-1}$ 。

3.5 截断数字

原理 9 截断无符号数

令 \vec{x} 等于位向量 $[x_{w-1}, x_{w-2}, \dots, x_0]$, 而 \vec{x}' 是将其截断为 k 位的结果: $\vec{x}' = [x_{k-1}, x_{k-2}, \dots, x_0]$ 。令 $x = B2U_w(\vec{x}')$ 。则 $\vec{x}' = x \mod 2^k$ 。

推导 4 截断补码数值

使用无符号数截断相同参数,则有

$$B2U_w([x_{w-1}, x_{w-2}, \dots, x_0]) \mod 2^k = B2U_k[x_{k-1}, x_{k-2}, \dots, x_0]$$

即, $x \mod 2^k$ 能够被一个位级表示为 $[x_{k-1}, x_{k-2}, \ldots, x_0]$ 的无符号数表示。将其转换为补码数则有 $x' = U2T_k(x \mod 2^k)$ 。

总结:

无符号数的截断结果:

$$B2U_k[x_{k-1}, x_{k-2}, \dots, x_0] = B2U_w([x_{w-1}, x_{w-2}, \dots, x_0]) \mod 2^k$$

补码数字的截断结果:

$$B2T_{l}[x_{k-1}, x_{k-2}, \dots, x_{0}] = U2T_{k}(B2U_{w}([x_{w-1}, x_{w-2}, \dots, x_{0}]) \mod 2^{k})$$

3.6 关于有符号数和无符号数的建议

有符号数到无符号数的隐式转换,会导致错误或者漏洞。避免这类错误的一种方法是绝不使用无符号数。(例如除 C 语言外,少有语言支持无符号整数。)

但是当我们想要把字仅仅看做是位的集合而没有任何数字意义时,无符号数值是非常有用的。

所以, 见机行事。

4 整数运算

4.1 无符号加法

原理 10 无符号数加法

对满足 $0 \le x, y \le 2^w$ 的 x 和 y 有:

$$x +_w^u y = \left\{ \begin{array}{ll} x+y, & x+y < 2^w & Normal \\ x+y-2^w, & 2^w \leq x+y < 2^{w+1} & Overflow \end{array} \right.$$

推导 5 无符号数加法

一般而言,我们可以看到,如果 $x+y<2^w$, 和的 w+1 位表示中最高位会等于 0, 因此丢弃它不会改变这个数值。

另一方面,如果 $2^w \le x + y < 2^{w+1}$,和的 w+1 位表示中的最高位会等于 1,因此丢弃它就相当于从和中减去了 2^w 。

形象表示见下图:

Figure 10: 无符号加法 (4 位字长,加法是模 16 的)

整数加法和无符号加法着急拿的关系见下图:

原理 11 检测无符号数加法中的溢出

对在范围 $0 \le x, y \le UMax_w$ 中的 x 和 y, 令 $s = x + u^w y$ 。则对计算 s,当且 仅当 s < x(或者等价的 s < y) 时,发生了溢出。

Figure 11: 整数加法和无符号加法间的关系。当 x+y 大于 2^w-1 时,其和溢出

推导 6 检测无符号数加法中的溢出

通过观察发现 $x+y \ge x$,因此如果 s 没有溢出,我们能够肯定 $s \ge x$ 。 另一方面,如果 s 确实溢出了,我们就有 $s=x+y-2^w$ 。假设 $y<2^w$,我们就有 $y-2^w<0$,因此 $s=x+(y-2^w)< x$ 。

模数加法形成了一种数学结构,称为阿贝尔群 (Abelian goup),它是<u>可交换的和可结合的</u>。它有一个单位元 0,并且每个元素有一个加法逆元。

原理 12 无符号数求反

对满足 $0 \le x < 2^w$ 的任意 x, 其 w 位的无符号逆元 $-\frac{u}{w}x$ 由下式给出:

$$-\frac{u}{w}x = \begin{cases} x, & x = 0\\ 2^w - x, & x > 0 \end{cases}$$

推导 7 无符号数求反

当 x = 0 时, 加法逆元显然是 0。对于 x > 0,考虑值 $2^w - x$ 。我们观察到这个数字在 $0 < 2^w - x < 2^w$ 范围之内,并且 $(x + 2^w - x) \mod 2^w = 2^w \mod 2^w = 0$ 。因此,它就是 x 在 $+^u_w$ 下的逆元。

4.2 补码加法

定义 $x +_w^t y$ 为整数和 x + y 被截断为 w 位的结果,并将这个结果看做是**补码数**。

原理 13 补码加法

对满足 $-2^{w-1} \le x, y \le 2^{w-1} - 1$ 的整数 x 和 y, 有:

$$x + _w^t y = \left\{ \begin{array}{ll} x + y - 2^w, & 2^{w-1} \leq x + y & Positive \ overflow \\ x + y, & -2^{w-1} \leq x + y < 2^{w-1} & Normal \\ x + y + 2^w, & x + y < -2^{w-1} & Negative \ overflow \end{array} \right.$$

推导 8 补码加法

由于补码加法和无符号数加法有相同的位级表示,故可以按照如下步骤表示运算 $+_w^t$:

- 1. 将参数转换为无符号数
- 2. 执行无符号数加法
- 3. 将结果转换为补码

$$x +_{w}^{t} y \doteq U2T_{w}(T2U_{w}(x) +_{w}^{u} T2U_{w}(y))$$

由式 $5,T2U_w(x) \iff x_{w-1}2^w + x, T2U_w(y) \iff y_{w-1}2^w + y$ 。使用属性 \mathbb{L}_w^u 是模 2^w 的加法,以及模数加法的属性,我们得到:

$$x +_{w}^{t} y = U2T_{w}(T2U_{w}(x) +_{w}^{u} T2U_{w}(y)$$

$$= U2T_{w}[(x_{w-1}2^{w} + x + y_{w-1}2^{w} + y) \ mod \ 2^{w}]$$

$$= U2T_{w}[(x + y) \ mod \ 2^{w}]$$

定义 $z\doteq x+y$, $z'\doteq z \mod 2^w$, $z''\doteq U2T_w(z')$, $z''=x+^t_wy$ 。下面分 4 种情况讨论:

 $1. -2^w \le z < -2^{w-1}$,则 $z' = z + 2^w$ 。于是得出 $0 \le z' < -2^{w-1} + 2^w = 2^{w-1}$ 。检查式6可以看到 z' 在满足 z'' = z' 的范围之内。这种情况称作**负溢出** (negative overflow)。将两个负数 x 和 y 相加 (这是得到 $z < -2^{w-1}$ 的唯一方式),得到一个非负的结果 $z'' = x + y + 2^w$ 。

 $2. -2^{w-1} \le z < 0$,则 $z' = z + 2^w$ 。于是得出 $-2^{w-1} + 2^w = 2^{w-1} \le z' < 2^w$ 。 检查式6可以看到 z' 在满足 $z'' = z' - 2^w$ 的范围之内。因此 $z'' = z' - 2^w = z + 2^w - 2^w = z$ 。即,补码和 z'' 等于整数和 x + y。

 $z+2^w-2^w=z$ 。即,补码和 z'' 等于整数和 x+y。 3. $0 \le z < 2^{w-1}$,则 z'=z。于是得出 $0 \le z' < 2^{w-1}$,因此 z''=z'=z。于是补码和 z'' 又等于整数和 x+y。

4. $2^{w-1} \le z < 2^w$,则 z' = z。于是得出 $2^{w-1} \le z' < 2^w$ 。在这个范围内, $z'' = z' - 2^w$ 。因此得到 $z'' = x + y - 2^w$ 。这种情况称作**正溢出 (positive overflow)**。将整数 x 和 y 相加 (这是得到 $z \ge 2^{w-1}$ 的唯一方式),得出一个负数结果 $z'' = x + y - 2^w$ 。

补码加法的形象表示见下图:

Figure 12: 补码加法 (字长为 4 位的情况下,当 x + y < -8 时,产生负溢出; $x + y \ge 8$ 时,产生正溢出)

原理 14 检测补码加法中的溢出

对满足 $TMin_w \le x, y \le TMax_w$ 的 x 和 y, 令 $s = x +_w^t y$ 。当且仅当 x > 0, y > 0,但 $s \le 0$ 时,计算 s 发生了正溢出。当且仅当 x < 0, y < 0,但 $s \ge 0$ 时,计算 s 发生了负溢出。

推导 9 检测补码加法中的溢出

1. 分析正溢出: 若 x > 0, y > 0, 而 $s \le 0$, 那么显然发生了正溢出。反过来,正溢出的条件为 1) x > 0, y > 0(或者 $x + y < TMax_w$), 2) $s \le 0$ 。

2. 分析负溢出: 若 x < 0, y < 0, 而 $s \ge 0$, 那么显然发生了负溢出。反过来,负溢出的条件为 1) x < 0, y < 0(或者 $x + y > TMin_w$), 2) $s \ge 0$ 。

4.3 补码的非

原理 15 补码的非

对满足 $TMin_w \le x \le TMax_w$ 的 x, 其补码的非 $-\frac{t}{w}$ 由下式给出:

$$-_{w}^{t}x = \begin{cases} TMin_{w}, & x = TMin_{w} \\ -x, & x > TMin_{w} \end{cases}$$

即,对 w 位的补码加法来说, $TMin_w$ 是自己的加法的逆,其他任何数值 x 都有-x 作为其加法的逆。

推导 10 补码的非

观察发现 $TMin_w + TMin_w = -2^{w-1} + (-2^{w-1}) = -2^w$ 。这将导致负溢出,因此 $TMin_w +_w^t TMin_w = -2^w + 2^w = 0$ 。对满足 $x > TMin_w$ 的 x,数值-x 可以表示为一个 w 位的补码,它们的和 -x + x = 0。

4.3.1 补码非的两种快速求法

- 1. 执行位级补码非可以对每一位求补,再对结果加 1. 即, $-x = \sim x + 1$.
- 2. 将位向量分为两部分: 假设 k 是最右边的 1 的位置, 故 x 可表示为 $[x_{w-1}, x_{w-2}, \dots, x_{k+1}, 1, 0, \dots, 0]$ 。这个值的非写成二进制格式就是 $[\sim x_{w-1}, \sim x_{w-2}, \dots, \sim x_{k+1}, 1, 0, \dots, 0]$ 。即, 对 k 左边的所有位取反。

4.4 无符号乘法

原理 16 无符号数乘法

对满足 $0 \le x, y \le UMax_w$ 的 x 和 y 有:

$$x *_w^u y = (x \cdot y) \mod 2^w \tag{8}$$

4.5 补码乘法

原理 17 补码乘法

对满足 $TMin_w \le x, y \le TMax_w$ 的 x 和 y 有:

$$x *_w^t y = U2T_w((x \cdot y) \bmod 2^w) \tag{9}$$

原理 18 无符号数和补码乘法的位级等价性

给定长度为 w 的位向量 \vec{x} 和 \vec{y} ,用补码形式的位向量表示来定义整数 x 和 y: $x=B2T_w(\vec{x}), y=B2T_w(\vec{y})$ 。用无符号数形式的位向量表示来定义非负整数 x' 和 y': $x'=B2U_w(\vec{x}), \ y'=B2U_w(\vec{y})$ 。则

$$T2B_w(x *_w^t y) = U2B_w(x' *_w^u y')$$

推导 11 无符号和补码乘法的位级等价性

据式6, 我们有 $x' = x + x_{w-1}2^w$ 和 $y' = y + y_{w-1}2^w$ 。这些值的乘积模 2^w 可得:

$$(x' \cdot y') mod \ 2^{w} = [(x + x_{w-1}2^{w}) \cdot (y + y_{w-1}2^{w})] mod \ 2^{w}$$

$$= [x \cdot y + (x_{w-1}y + y_{w-1}x)2^{w} + x_{w-1}y_{w-1}2^{2w}] mod \ 2^{w}$$

$$= (x \cdot y) \ mod \ 2^{w}$$

$$(10)$$

由于模运算符,所有带有权重 2^w 和 2^{2w} 的项都丢掉了。根据等式9,我们有 $x*_w^ty=U2T_w((x\cdot y)\ mod\ 2^w)$ 。对等式两边应用操作 $T2U_w$ 有:

$$T2U_w(x *_w^t y) = T2U_w(U2T_w((x \cdot y) \mod 2^w)) = (x \cdot y) \mod 2^w$$

由该结果与式8和式10结合得到 $T2U_w(x*_w^t y) = (x'\cdot y') \ mod \ 2^w = x'*_w^t y'$ 。对该式两边应用 $U2B_w$,得:

$$U2B_w(T2U_w(x *_w^t y)) = T2B_w(x *_w^t y) = U2B_w(x' *_w^u y')$$

4.6 乘以常数

编译器使用移位和加法运算组合来代替乘以常数因子的乘法。

原理 19 乘以 2 的幂

设 x 为位模式 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 表示的无符号整数。那么,对于任何 $k \geq 0$,我们都认为 $[x_{w-1}, x_{w-2}, \ldots, x_0, 0, \ldots, 0]$ 给出了 $x2^k$ 的 w+k 位的无符号表示,这里右边增加了 $k \wedge 0$.

推导 12 乘以 2 的幂

$$B2U_{w+k}([x_{w-1}, x_{w-2}, \dots, x_0, 0, \dots, 0]) = \sum_{i=0}^{w-1} x_i 2^{i+k}$$
$$= \left[\sum_{i=0}^{w-1} x_i 2^i\right] \cdot 2^k$$
$$= x2^k$$

原理 20 与 2 的幂相乘的无符号乘法

C 变量 x 和 k 有无符号数值 x 和 k, 且 $0 \le k < w$, 则 C 表达式 $x \ll k$ 产生数值 $x *_w^u 2^k$ 。

原理 21 与 2 的幂相乘的补码乘法

C 变量 x 和 k 有补码值 x 和无符号数值 k, 且 $0 \le k < w$, 则 C 表达式 $x \ll k$ 产生数值 $x *_{t_n}^k 2^k$ 。

4.7 除以 2 的幂

原理 22 除以 2 的幂的无符号除法

C变量 x 和 k 有无符号数值 x 和 k, 且 $0 \le k < w$, 则 C 表达式 $x \gg k$ 产生数值 $|x/2^k|$

推导 13 除以 2 的幂的无符号除法

设 x 为位模式 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 表示的无符号整数,而 k 的取值范围为 $0 \le k < w$ 。设 x' 为 w-k 位位表示 $[x_{w-1}, x_{w-2}, \ldots, x_k]$ 的无符号数,而 x'' 为 k 位位表示 $[x_{k-1}, \ldots, x_0]$ 的无符号数。由此, $x = 2^k x' + x''$,而 $0 \le x'' < 2^k$ 。因此可得 $[x/2^k] = x'$ 。

对位向量 $[x_{w-1}, x_{w-2}, \ldots, x_0]$ 逻辑右移 k 位会得到向量

$$[0,\ldots,0,x_{w-1},x_{w-2},\ldots,x_k]$$

这个位向量有数值 x', 该值可以通过计算 $x \gg k$ 得到。