Leern 21 12/2/19

New Morend

let X be a r.v. with non-reg support is supplied = 0 and finite expression. Let a 20, a cossono, Cossider;

X2 9x de restoran which will be moon

Is $1/2x \ge q \le X$?

If XZ9 > 9(1) = X > 9 = X > X > 9 is son as greeken If X<9 = 9(0) = X = 0 = X = X = 0

the by permise

Now let's tobe exporum of book sides

Markon's Tregoding 11

 $E[a 1 \times 2q] \leq E[X] \Rightarrow q E[1 \times 2q] \leq m \Rightarrow P(X \geq q) \leq \frac{m}{q}$

2 Dound

this boul is "crude" rears seldon

Tons of Corollaries

or let
$$b=an$$
 $P(X \ge b) \le \frac{a}{b} \Rightarrow P(X \ge an) \le \frac{1}{9}$

$$P(h(X) \ge h(G)) \le \frac{E(h(G))}{h(G)}$$

$$\Rightarrow P(X \geq a) \leq \frac{E(G(X))}{G(a)}$$
 χ_{io}

eg P= = 1

Med (x) = 24 Iches exp. to quale!

 $P(|X-M| \ge q) = P(X-M \ge q) - (X-M) \ge q) = P(X-M \ge q) + P(X-M \le -q)$ $= P(X \ge M+q) + P(X \le M-q) \implies P(X \ge M+q) \le \frac{\sigma^2}{q^2} \implies P(X \ge G) \le \frac{\sigma^2}{(G-m)^2}$

CF

C-g. $X \sim \text{Eap}(1)$ Markor $P(X \ge 1) \le \frac{1}{9}$ Chabashar $P(X \ge b) \le \frac{1}{(b-1)^2}$ if $b \ge 2$

Another $Y = e^{tX}$ which is points

Another $Y = e^{tX}$ which is $Y = e^{tX}$ Precipitalist let $Y = e^{tX} = e^{tX}$ Recipitalist let $Y = e^{tX} = e^{tX}$ $Y = e^{tX} = e^{tX}$ $Y = e^{tX}$

Chernoff's Irequiting For who have $e^{\frac{1}{2}}$ $\int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}$