Perapitulare - Sub. 111

- 1) Fit simul $(a_u)_{u \ge 1}$ is $a_u = \frac{2n + 1}{n^2}$. a) Studiation monotonia is an extraction of $\sqrt{3u^2 + v + 1}$.

 b) Calculation line $(n a_u)$ $u \to \infty$
- 2) Fig. $f:(o_{i}^{\prime}\infty) \rightarrow \mathbb{R}$; $f(x)=\ln\frac{x+i}{x}$ s; $(a_{u})_{u\geq i}$ $a_{u}=f(i)+f(z)+\cdots+f(u)$ a) Animphotele lo 6g b) line $(2n+i)(a_{u}-\ln n)$
- 3) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ a) throughtly lo 6pb) $f: (R \rightarrow R) f(R) = \sqrt{R+1} x$ and $f: (R \rightarrow R) f(R) = x$ and f: (
- 4) Fix MEN+; In= [xu.exdx a) Calculoff Ia.
 b) who to (In) up, est convergent.
- 5) a) A. $c\bar{o}$ lu $(x+1) \leq x$, $\# x \in (-1,\infty)$ b) A. $c\bar{o}$ lu $(x+1) \leq x$, $\# x \in (-1,\infty)$ b) A. $c\bar{o}$ (Iu) $u \geq 1$ extra convergent.
- 6) Fig $f: R \rightarrow R'$; $f(x) = \frac{x}{x^2+1}$ a) Calculof; $\int \frac{f(x) + x^2 f(x)}{x^4+1} dx$ b) Calc. $\lim_{x \to 1} \frac{1}{x^2-1} \cdot \int_{1}^{x} f(t) dt$
- I) Fix $f: R \setminus \{-1,0\} \to R$; $f(x) = \frac{1}{\chi(x+1)}$. Deferminosis exordonateles

 punctului situat pe f f, in none fangenda ilo f f esti parolito cu ano f f8) Fix $f: (0; \infty) \to R$ $f(x) = \frac{\int f(x)}{x} dx = 1 \frac{2}{e}$ b) $f f \cdot (0; \infty) = \frac{\int f(x)}{x} dx = 0$

a) A.
$$\infty$$
 $\int f(tgx)dx = \frac{1}{2}$ b) Calo. $\int \frac{f(x)}{x^2+1} dx$

a)
$$\sqrt{h \cdot a} \int_{0}^{\infty} f(tgx) dx = \frac{1}{2}$$
c) $\sqrt{h \cdot a} \int_{0}^{\infty} f(tgx) dx = \frac{1}{2}$
 $\sqrt{h \cdot a} \int_{0}^{\infty} f(tgx) dx = \frac{1}{2}$

II) For
$$f_1(t', \infty) \rightarrow \mathbb{R}'_1$$
 $f(x)=x \ln(x+1)$. Calc. $\lim_{t\to 0} \frac{1}{t^3} \cdot \int_0^t f(x) dx$

a) A. to orice primitive less orice
$$uI_{n} = \sqrt{5} - 4(u-1)I_{u-2}$$

b) Fig Iu= $\int_{0}^{1} x^{u} f(x) dx$; $u \in \mathbb{N}^{+}$. At . to $uI_{n} = \sqrt{5} - 4(u-1)I_{u-2}$

(8) The
$$f: R \to R'$$
 $f(x) = 1 - \frac{1}{e^{x} + 1}$ $f(x) = 0$

13) Fix
$$f:(0,\infty) \longrightarrow \mathbb{R}$$
; $f(x) = \frac{e^x}{x+a^x}$. $(x) = \frac{e^x}{e^{+a}}$, $\forall x \in (0,\infty)$

19) Fix
$$J_{n} = \int_{0}^{1} x \cdot e^{-nx^{2}} dx$$
 a) thus $J_{n+1} = J_{n}$; thus $J_{n+1} = J_{n}$; thus $J_{n+1} = J_{n}$ and $J_{n} = J_{n} =$

do) Fit
$$f: R \rightarrow R$$
; $f(x) = x - \sqrt{x^2 + 1}$. Verification docident are potable with Polynoises.

influxiume

a) Fix
$$f:(0;\infty) \longrightarrow P'$$
; $f(x)=\ln x$. Aflox $n \in \mathbb{N}^*$ doco

 $\int \frac{1}{x} \cdot (f(x))^n dx = \frac{1}{2021}$

2021

2021

2021

The
$$f: (1/\infty) \longrightarrow \mathbb{P}'_{j} \quad f(x) = \lim_{x \to 1} \frac{x+1}{x-1} \quad a \not \text{ th. co} \quad f \text{ extr convexar fre}(i,\infty)$$

By th. co line $(f'(x) + f'(3) + f'(4) + \dots + f'(u)) = -\frac{3}{2}$

23) Fit
$$f: (0, \infty) \rightarrow \mathbb{R}$$
; $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$
a) $h \cdot c\bar{o} \int_{0}^{2} (f(x) - \sqrt{x}) \ln x \, dx = 4$ b) Afloof, $a > 1 \, doc\bar{o}$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^{2} f(x) \, dx = \ln a + \frac{1}{2}$$

$$\int_{0}^$$

26) Fix
$$f: R \rightarrow R$$
; $f(x) = \frac{x^2 - 3}{e^x}$

of The a function of per for the following as to 6g that parabolis as do. 6x+2y-1500

b) $(h \cdot co - 2e) \leq f(x) \leq \frac{6}{e^3}$, $f(x) = 2x^3 - 3x^2 + 6x - 6 \ln(x+1)$

2H) Fix $f: (-1; \infty) \rightarrow R$; $f(x) = (x^2 + x + 1) \cdot e^x$

28) Fix $f: R \rightarrow R$; $f(x) = (x^2 + x + 1) \cdot e^x$

28) Fix $f: R \rightarrow R$; $f(x) = (x^2 + x + 1) \cdot e^x$

29) Fix $f: (e; \infty) \rightarrow R$; $f(x) = e^x + \ln x + 1$. Show $co e = conf = f(x) = 0$

29) Fix $f: (e; \infty) \rightarrow R$; $f(x) = e^x + \ln x + 1$. Show $co e = conf = f(x) = 0$

30) Fix $f: (-2; \infty) \rightarrow R$; $f(x) = e^x + \ln x + 1$. Show $e = f(x) = a$ are $f(x) = x^2 + \ln x + 1$. That is all Folks! $f(x) = x^2 + \ln x + 1$.

20) Fix $f: (-1; \infty) \rightarrow R$; $f(x) = x^2 + \ln x + 1$. Show $e = f(x) = a$ are $f(x) = x^2 + \ln x + 1$. That is all Folks! $f(x) = x^2 + \ln x + 1$. Show $f(x) = a$ and $f(x) = a$.

That is all Folks! $f(x) = a + a$. $f(x) = a + a$.

Fix $f(x) = a + a$. $f(x) = a + a$. $f(x) = a$.

Fix $f(x) = a + a$. $f(x) = a$.

Fix $f(x) = a + a$. $f(x) = a$.

Fix $f(x) = a + a$. $f(x) = a$.

Fix $f(x) = a$. $f(x) = a$.

Fix $f(x) = a$. $f(x) = a$.

Fix $f(x) =$