CS 346 Class Notes

Mark Lindberg

Mar 23, 2016

This Time:

Chapter 8.1. Preliminaries and basic group theory.

Proposition 8.2. If $a, b \in \mathbb{N}$, $\exists X, Y \in \mathbb{Z}$ s.t. $X \cdot a + Y \cdot b = \gcd(a, b)$, and $\gcd(a, b)$ is the least positive integer that can be written in this way.

Proof: Let $I = \{x \in \mathbb{Z} | \exists X^*, Y^* \in \mathbb{Z} \ x = aX^* + bY^*\}$. Note that $a, b \in I$. Let d denote the minimum positive integer in I. Let X', Y' be integers such that d = aX' + bY'. Note: $\forall c \in I$, $d \mid c$. (And therefore, $d \mid a$ and $d \mid b$.) Note that there are $X'', Y'' \in \mathbb{Z}$ such that c = aX'' + bY''. Then we can write c = qd + r, where $0 \le r < d$, and $q, r \in \mathbb{Z}$. Therefore, r = aX'' + bY'' - q(aX' + bY') = a(X'' - qX') + b(Y'' - qY'). Therefore, $r \in I$. We noted that d was the minimum positive integer in I, and since $0 \le r < d$, this means that r = 0, and therefore, c = qd, and $d \mid c$.

Also $\neg \exists d' > d$ such that $d' \mid a$ and $d' \mid b$. Suppose that there was such a d' > d such that $d' \mid a$ and $d' \mid b$. But then, $d' \mid a \cdot X'$ and $d' \mid b \cdot Y'$. Then $d' \mid (aX' + bY')$, but aX' + bY' = d, and this contradicts the fact that d' > d. Therefore, $d = \gcd(a, b)$.

Extended Euclidean Algorithm! A polynomial time algorithm to compute the gcd(a, b) as above.

Proposition 8.74. $b, N \in \mathbb{N}, b \ge 1, N > 1$. b is "invertible" modulo N iff gcd(b, N) = 1. Invertible: $\exists c$ such that $bc \equiv 1 \pmod{N}$.

- (\Leftarrow): Assume $\exists c$. Then $bc = 1 + \gamma N$, for some integer γ . Then $bc \gamma N = 1$, so by proposition 8.2, $\gcd(b, N) = 1$.
- (⇒): Assume gcd(b, N) = 1. Then $\exists X, Y$ such that bX + NY = 1 by proposition 8.2. Then bX = 1 NY, and so $bX \equiv 1 \pmod{N}$. Therefore, X is a multiplicative inverse of b modulo N.

Groups: A set of elements G and a binary operator $\circ: G \times G \to G$ such that

- 1. Identity: $\exists e \in G$ such that $\forall e \in G$, $x \circ g = g \circ e = g$. This element must be unique.
- 2. Inverse: $\forall g \in G, \exists h \in G \text{ such that } g \circ h = e.$
- 3. Associative: $(g \circ g') \circ g'' = g \circ (g' \circ g'')$.

The order of a finite group G, written |G|, is the number of elements in G. In an abelian group, we have commutativity.

There are a bunch of examples. I kind spaced out because I've taken a few group theory math classes.

Theorem 8.14. If G is a finite abelian group, and $g \in G$, then $g^{|G|} = 1$.

Corollary 8.15. $g^x = g^{(x \mod m)}$, where m = |G|.

Corollary 8.17. Define $f_i: G \to G$ as $f_i(g) = g^i$.

Let e be such that gcd(e, m) = '.

Led d be $e^{-1} \mod m$, so that $de \equiv 1 \pmod m$.

Then f_e , f_d are permutations and f_d is the inverse permutation of f_e .

 \mathbb{Z}_N is \mathbb{Z}_N^+ , the set of all $\{0, 1, \dots, N-1\}$ with addition. \mathbb{Z}_N^* is $\{i | 1 \leq i < N \land \gcd(i, N) = 1\}$. All the invertible numbers mod N. Then $\mathbb{Z}_1 5^* = 1$ $\{1, 2, 4, 7, 8, 11, 13, 14\}.$