

An Institute of National Importance under MoE

Saloh, Una - 177 209

Website: www.iiitu.ac.in

AY 2023-24 School of Electronics End Semester Examination 29, Dec.'23 Curriculum – HITUGCSE22

Degree	B. Tech.	Branch	CSE	Semester	I
Subject Code & Name	EEC103: B	Basic Electric	al and Ele	ectronics Engineer	ing
Time: 180 Minutes	Answer A	Il Questions		Maximum: 10	0 Marks

Sr. No.	Question	Marks
(1. a)	Define the following terms: (i) Phasor (ii) Sinusoid (iii) Self-inductance (iv) Mutual inductance (v) Transient response	(5×1)
1. b	Transform the network shown in Figure 1 from Δ to Y. $ \begin{array}{c} 60 \Omega \\ 0 \Omega \end{array} $ $ \begin{array}{c} 30 \Omega^{\frac{7}{2}} \\ \end{array} $ Figure 1: Circuit for question 1b	(5)
1. c	If the switch opens at $t=0$ in the circuit shown in Figure 2, find voltage across the capacitor $v(t)$ for $t \ge 0$. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	(5)

ŧ	6	ora.	in.	M	1

4. a	Define the following terms: (i) Bipolar and unipolar (ii) Current-controlled and voltage- controlled device (iii) Forward active mode of a BJT (iv) Cutoff mode of a BJT (v) Saturation mode a BJT	(5×1)
4) b	Explain the working of a PNP transistor with suitable diagrams.	(5)
4. /0	Draw the input and output characteristics of an NPN transistor in common emitter configuration with suitable biasing diagrams.	(5)
4. d	Explain the working of a BJT as a switch.	(5)
(5.) a	List at least five differences between BJT and FET.	(5)
(5.) b	Explain the working of an n-channel JFET with suitable diagrams.	(5)
5. c	Sketch the transfer characteristics of a JFET defined by $I_{DSS} = 20 \text{ mA}$ and $Vp = -10 \text{ V}$.	(5)
5. d	A JFET has a drain current of 5 mA. If $I_{DSS} = 10$ mA and V_{GS} (off) = -6 V, find the value of (i) V_{GS} and (ii) V_{P} .	(5)

An Institute of National Importance under MoE Saloh, Una – 177 209

Website: www.iiitu.ac.in

AY 2023-24

School of Basic Sciences

CURRICULUM: IIITUGCSE22

End Semester Examination

28, Dec.'23

Degree	B. Tech.	Branch	CSE
Semester	I		
Subject Code & Name		oduction to Biotechno	ology
Time: 180 Minutes	Answe	er All Questions	Maximum: 100 Marks
S.	Quest	ion	Marks

Question	Marks
cell is viewed using the 10X objective lens and 100X objective lens,	(2+2+1=5)
(ii) Calculate the chlorophyll content of two plant leaves showing the absorbance values of A ₆₅₀ are 0.4 and 0.5, respectively. (iii) Calculate the number of peptide bonds present in myoglobin protein	
(i) Human DNA contains 30% guanine on a molar basis. What are the mole percentages of adenine, cytosine, and thymine?	(2+2+1=5)
(ii) Identify the bacterial cell from a mixture of three types of cells namely plant, animal, and bacteria based on structural differences.	
ATGGTGCAC-3'. What is the sequence of the complementary strand	
(i) Determine the amino acid sequence pattern of the peptide after the treatments of trypsin and cyanogen bromide to the given peptide Metl-Gly-Ser-Metl-Ala-Lys-Ala-Leu-Ser-Ala-Metl-Ser-Ala-Pro.	(2.5+2.5=5)
5'-AUGGAGAGCUAUCAUCCACCACCAGUGAUCCUGUAA-3' What would happen to the peptide sequence when the twelfth nucleotide of the mRNA, an uracil residue, is mutated by replacing it with an	
Model the block diagram for DNA replication and associated protein role in the semi-conservative replication.	(5)
Outline the working of Next Generation Sequencing technology employed for generating the massive biological data with a suitable example.	(5)
Model the block diagram of the amplification process of a target gene using	g (5)
Construct the process of DNA libraries and screen to identify cloned genes o interest.	f (5)
	 (i) Calculate the magnification power of a light microscope when the plant cell is viewed using the 10X objective lens and 100X objective lens, respectively. (ii) Calculate the chlorophyll content of two plant leaves showing the absorbance values of A650 are 0.4 and 0.5, respectively. (iii) Calculate the number of peptide bonds present in myoglobin protein comprised of 153 amino acids. (i) Human DNA contains 30% guanine on a molar basis. What are the mole percentages of adenine, cytosine, and thymine? (ii) Identify the bacterial cell from a mixture of three types of cells namely plant, animal, and bacteria based on structural differences. (iii) The start of the coding region for the human globin gene reads 5'-ATGGTGCAC-3'. What is the sequence of the complementary strand for this segment of DNA? (i) Determine the amino acid sequence pattern of the peptide after the treatments of trypsin and cyanogen bromide to the given peptide MettGly-Ser-MettAla-Lys-Ala-Leu-Ser-Ala-MettSer-Ala-Pro. (ii) Solve the code of mRNA sequence for amino acids pattern as follows: 5'-AUGGAGAGCUAUCAUCACCACCAGUGAUCCUGUAA-3' What would happen to the peptide sequence when the twelfth nucleotide of the mRNA, an uracil residue, is mutated by replacing it with an adenine residue? Model the block diagram for DNA replication and associated protein role in the semi-conservative replication. Outline the working of Next Generation Sequencing technology employed for generating the massive biological data with a suitable example. Model the block diagram of the amplification process of a target gene using polymerase chain reaction. Construct the process of DNA libraries and screen to identify cloned genes of the plant of the plant of the plant of the plant of the process.

2.d	and 300 by (ii) Find out th	o using agarose ge ne protein separati	of three DNA fra el electrophoresis. on pattern of three he size exclusion	e different sizes o	of 25 kDa,	(2.5+2.5=5
3.a	Demonstrate the v	working mechanis	m of four differer	nt of vaccines wit	h suitable	(5)
3.b	examples. Outline the protor	olast fusion techno	ology and regenera	ation of a hybrid	plant with	(5)
	a commercial exa (i) Calculate of pK ₁ , pl the signifi (ii) Calculate	imple. the isoelectric points K ₂ , and pK _R are 2 icance of the obtaint the specific activities.	int (pI) of an amir 2.17, 9.04, and 12 ined pI data pertai ity, and yield (%) ition data as follow	no acid arginine is 2.48 respectively, ning to protein st of a target protein	if the data Interpret tructure.	(3+2=5)
	Purification step	Total Protein (mg)	Total Activity (U)	Specific Activity	Yield %	
	A	5000	15000			
	В	1000	7500			
3.d	Examine the pro-	the state of the s	otein design and	its application to	isolate a	(5)
4.a	Illustrate the pro induced pluripote		eprogramming of	somatic cells to	produce	(5)
4.b/	Draw the DNA fir recombinant DNA		of the identical tw	vins, non-identical	twins and	(5)
4.c			sses employed in			(5)
4.d			oic mechanism o man-made polluta		of waste	(5)
5.a	What types of bi	ological database rmats and their vi	s can be used in	bioinformatics?	Enlist the	(5)
5.b	(i) Explain h	ow do patents pro ze the two lead	tect drugs and ded		suitable	(2+3=5)
5.c	Apply the bioethi develops a vaccin years of drug disc	cs approaches on ne for a deadly di covery regulatory y about 60% of p cine to market w	check but early stratients, should the hile they work to	complete valida udies show that the biopharma com o improve its eff	tion of 12 he vaccine apany wait ficacy and	(5)
5.d	Make use of the F of the biopharma	ood Drug and Ad products, particul	ministration regul	atory body in qua chase testing.	ality check	(5)

An institute of National Importance under MoE Saloh, Una - 177 209 Website: www.iiitu.ac.in

AY 2023-24
School of Computing
Curriculum: IIITUGCSE22
End Semester Exam
December 26, 2023

Degree	B.Tech.
Branch	CSE
Semester	I
Subject code/name	MAC111/ Engineering Mathematics
Time	180 minutes
Maximum Marks	100

Answer all the questions.

Q. No.	Questions	Marks
1(a)	Solve the following system of equations using Gauss Elimination method: $y-\ z=3$	5
1 200	-2x + 4y - z = 1	
	-2x + 5y - 4z = -2	
1(b)	Examine if the system below is consistent:	5
	$x_1 + x_2 + 2x_3 + 2x_4 + x_5 = 1$	
	$2x_1 + 2x_2 + 4x_3 + 4x_4 + 3x_5 = 1$	
	$2x_1 + 2x_2 + 4x_3 + 4x_4 + 2x_5 = 2$	
	$3x_1 + 5x_2 + 8x_3 + 6x_4 + 5x_5 = 3$	
10)	Determine the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} -3-\lambda & 1 & -3 \\ 20 & 3-\lambda & 10 \end{bmatrix}$. Is the matrix A diagonalisable?	5
1 (1)		
1(d)	Reduce the quadratic form $Q = 2x^2 + y^2 - 3z^2 - 8yz - 4zx + 12xy$ into canonical form and find its nature, rank, index and signature.	5
2(a)	Determine the radius and the interval of convergence of the power series $\sum_{n=0}^{\infty} 2^n (x-3)^n.$	5

		_
2(b)	Examine if the series $\sum_{n=1}^{\infty} \left(\frac{1}{\ln(n+2)} - \frac{1}{\ln(n+1)} \right)$ is convergent.	5
2(c)	Show that the series $\sum_{n=0}^{\infty} \frac{(-1)^n(n+2)}{2^n+5}$ is absolutely convergent.	5
	If $\sum u_n$ is a positive terms convergent series, then show that the series $\sum u_n^2$ is also convergent. Is the converse true?	5
300	Examine the function $f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$ for continuity at	5
	origin. Given that $x = e^u + e^{-v}$, $y = e^{-u} - e^v$. Consider z is a function of x and y , prove that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}.$	5
300	Sketch the region of integration and evaluate the integral: $\int\limits_0^\pi \int\limits_0^{\sin x} ydydx$	5
3	Investigate the function $f(x,y) = 6x^2 - 2x^3 + 3y^2 + 6xy$ for all the local maxima, local minima and saddle points.	5
4(a) 4(b)	Determine if $W = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 + x_3^2 \le 1; x_1, x_2, x_3 \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .	5
4(b)	Define spanning set for a vector space V . Determine if $(x, y, z) \in \mathbb{R}^3$, belongs to the span of $u_1 = (1, 1, 1), u_2 = (1, 2, 3), u_3 = (1, 5, 8)$.	5
4607	Examine whether the given set of vectors are linearly independent or dependent in \mathbb{R}^4 : $\{(1,1,1,1),(1,2,3,2),(2,5,6,4),(2,6,8,5)\}.$	5
4(d)	Find the dimension and a basis of the solution space W of the homogeneous $x+y+2z=0$ system: $2x+3y+3z=0$ $x+3y=0$	5
5(a)	Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x, y, z) = (x + z, x + y, x + y + z)$. Determine the matrix representation of T w.r.t. standard basis in \mathbb{R}^3 .	5
5(b)	Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x,y) = (x+2y,3x-y)$ is a linear transformation.	5
X(0)	Define range space of a linear transformation. Find the null space, rank and nullity of the linear transformation T defined in question $5(b)$.	5

5(d)

Consider the following two bases of $\mathbb{M}_{2\times 2}$

 $B_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$

5

and

$$B_2 = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \right\}.$$

Find the transition matrices P and Q from basis B_1 to B_2 and B_2 to B_1 , respectively. State the relation between P and Q.

* * * All the best * * * *

An Institute of National Importance under Moß
Saloh, Una – 177 209

Website: www.iiitu.ac.in

AY 2023-24

SCHOOL OF BASIC SCIENCES CURRICULUM: HITUGCSE22

End Semester Examination 27, Dec.'23 (09:00 AM – 12:00 PM)

Degree	B. Tech.	Branch	CSE
Semester	First		
Subject Code & Name	CYC102: En	gineering Chemist	trv
Time: 180 Minutes	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	All Questions	Maximum: 100 Marks

SI. No.	Questions	Marks
1.a	What are the problems associated with hardness of water in boilers? Explain the utility of ion-exchange resins in overcoming these problems.	(5)
1.6	The analysis of water sample gives the following data: $Ca(HCO_3)_2 = 35 \text{ ppm}$; $Mg(HCO_3)_2 = 20 \text{ ppm}$; $MgSO_4 = 10 \text{ ppm}$; $H_2SO_4 = 24 \text{ ppm}$; $CaCl_2 = 5 \text{ ppm}$; and $CaCl_2 = 5 \text{ ppm}$. Calculate the amount of lime (95% pure) and soda (82% pure) needed for treating 1 million litres of water. If the cost of lime and soda are Rs. 150 and 250 per 1 Kg each respectively, determine the cost of chemicals used for treatment of 50 Kg water treatment.	(5)
1.0	water. with the help of a well-labelled diagram, explain the use of electrodialysis for desalination of	(5)
1.d	the same water was boiled and precipitate was removed by filtration. The filtrate required 10 ml of 0.025 M EDTA for titration. Calculate the carbonate and non-carbonate hardness of water.	(5)
2.a	responsible for plastic deformation?	(5)
2.6	determine the Polydispersity Index (PDI) of the polymer with the following composition: $ \begin{bmatrix} H & H & CH_3 \\ C & C & C \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ C & C & C \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ C & C & C \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ H & H & CH_3 \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ C & C & C \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ H & H & CH_3 \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ C & C & C \end{bmatrix} $ $ \begin{bmatrix} H & H & CH_3 \\ H & H & CH_3 \end{bmatrix} $	(5)
2.c	Write down the monomers used in the fabrication of the following: (i) Bakelite (ii) Kevlar (iii) Acrilan (iv) Teflon (v) Plexiglas	(5)
2.d	What are polymer composite materials? Discuss two important types of fibre-reinforced composites.	(5)
3. b	A coal sample was found to contain: C = 66.2%; H = 4.2%; O = 6.1%; N= 1.4%; S = 2.9%, Moisture = 9.7% and Ash = 2% by weight. Calculate the quantity of dry products of combustion, if 1 Kg of coal is burnt with 25% excess air.	(5)
3.c	Fixed-bed and fluidized-bed catalytic cracking process	(5)
3.0	A sample of the Gondwana coal of Jharia was analyzed as follows: Exactly 2.620 g was weighed into a silica crucible. After heating for 1 hour at 115°C, the residue weighed 2.325	(5)

cost

1 5	g. The crucible was covered with a vented lid and strongly heated for exactly 7 minutes at	
9	045 ± 20°C. The residue weighed 1.627 g. The crucible was then heated without cover, until	
1 8	constant weight was obtained. The last residue was found to weigh 0.485 g. Calculate the	
1	percentage results of the above analysis. Also, determine to which type of analysis does the	
	above description belong to?	
3.d 1	Discuss extreme pressure lubrication. How the incorporation of additives improve the	(5)
3.0	ubricant properties?	
4.a	Following the Woodward-Fieser rules, calculate λ _{max} for each of the following compounds	(5)
		,
	(Fig. 1 i-v):	
	ÇH ₃	
	H ₃ C 0	
	H ₃ C CH ₃	
	HO OCH ₃	
	(i) (ii) (iii)	
	CI	
	OCOCH3	
	(iv) (v)	
	Fig. 1 (i-v): Structure of compounds for question 4 (a)	
11		(E)
	What is Thermal Analysis of material? Discuss the effect of temperature on the composition	(5)
	of Copper Sulphate Pentahydrate Crystals using thermal techniques of TGA, DTA and DSC.	
4.c	Calculate the number of chemically equivalent ¹ H signals and determine their spin	(5)
	multiplicity in ¹ H NMR spectra of the following compounds:	
	(i) CH ₃ -CH ₂ -CO-CH ₃	
	(ii) CH ₂ Cl-CH ₃	
	(iii) CH ₃ -CH ₂ -CH ₃	
	(iv) CH ₃ -CH ₂ -CH ₂ -Cl	
	$(v) \qquad C_6H_5-CH_3$	
(4.d)		(5)
(4.d)	Calculate the approximate wavelength of absorption associated with C-H bond in stretching	(5)
	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5 x 10 ⁵ dynes/cm. The mass	(5)
	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5 x 10 ⁵ dynes/cm. The mass of carbon and hydrogen are 2 x 10 ⁻²³ g and 0.167 x 10 ⁻²³ g respectively.	
	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5 x 10 ⁵ dynes/cm. The mass of carbon and hydrogen are 2 x 10 ⁻²³ g and 0.167 x 10 ⁻²³ g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles.	(5)
	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of	
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value after passing through 50 mm length of the solution. Calculate the molar extinction coefficient	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value after passing through 50 mm length of the solution. Calculate the molar extinction coefficient of the substance.	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value after passing through 50 mm length of the solution. Calculate the molar extinction coefficient of the substance. What is Chromatography? Elucidate the differences between TLC and Column	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value after passing through 50 mm length of the solution. Calculate the molar extinction coefficient of the substance. What is Chromatography? Elucidate the differences between TLC and Column chromatography with a well labelled diagram.	(5)
5.a	Calculate the approximate wavelength of absorption associated with C-H bond in stretching vibration of methyl group. The force constant for single bond is 5×10^5 dynes/cm. The mass of carbon and hydrogen are 2×10^{-23} g and 0.167×10^{-23} g respectively. Elucidate the differences between top-down and bottom-up approaches for nanomaterial fabrication. Explain in detail the sol-gel method of fabrication of nanoparticles. A monochromatic radiation of λ =450 nm is incident on a solution of 0.04 M concentration of an absorbing substance. The intensity of the radiation is reduced to one-half of the initial value after passing through 50 mm length of the solution. Calculate the molar extinction coefficient of the substance. What is Chromatography? Elucidate the differences between TLC and Column	(5)

*** Good Luck ***