

Leveraging the RISC-V Efficient Trace (E-Trace) Standard

Yifan Li, Account Technology Manager, Tessent Embedded Analytics & DFT

Agenda

- Why Trace?
- Trace Basics
- E-Trace standard
- E-Trace IP by Siemens
- Summary

Why Trace?

complex designs

complex software

real-time events

CPU-CPU interactions

How is trace commonly implemented?

A debugging technique where executed instructions are compressed and transmitted to enable reconstruction of the exact program execution sequence

Forensic debugging Code profiling Code coverage Heisenbugs Infrequent bugs

How is trace commonly implemented?

A debugging technique where executed instructions are compressed and transmitted to enable reconstruction of the exact program execution sequence

Forensic debugging Code profiling Code coverage Heisenbugs Infrequent bugs

How is trace commonly implemented?

A debugging technique where executed instructions are compressed and transmitted to enable reconstruction of the exact program execution sequence

Host Software

Forensic debugging Code profiling Code coverage Heisenbugs Infrequent bugs

Processor Branch Trace

- Only branches are reported: jump, call, return, interrupt, exception
- Sequential Instructions are not reported
- Achieves very high compression → Trace more & avoid trace loss
 - Trace begins by reporting the start address
 - Indirect jumps, interrupts and exceptions
 - or "Un-inferable program counter discontinuities"
 - The destination address must be reported.
 - Interrupts must also report PC at time of interrupt
- E-Trace defines additional optional instruction trace modes
 - even higher compression
 - debugging aids for software decoder developers
- Data Trace
 - Where data (and address) of load and store operations are reported

Branch Trace Log

- 1. start address
- branch not taken
- 3. branch taken
- 4. branch not taken

How does the RISC-V Efficient Trace standard compare?

- Higher compression enables
 - Trace longer
 - Trace faster
 - Trace more
 - Less bandwidth

*data taken from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4291979

RISC-V E-Trace Standard

- A successful debug and trace ecosystem requires partners working together on a common set of standards
- The Efficient Trace for RISC-V standard covers encoding of instruction and data trace, as well as a standard CPU core to trace encoder hardware interface
- Originally donated by Siemens, the specification was refined by the community and ratified by RISC-V International
- https://github.com/riscv-non-isa/riscv-tracespec

Efficient Trace for RISC-V Version 2.0 47786b8c8787c2cab1ee1702e0b384254f4122f2

Gajinder Panesar, Iain Robertson <gajinder.panesar@siemens.com>, <iain.robertson@siemens.com> Siemens

May 5, 2022

E-Trace Features – Standard and Beyond

RISC-V Trace mandatory features

Instruction trace

Hart (CPU) to encoder interface

'Delta Address' trace mode

Efficient packet format

E-Trace Features – Standard and Beyond

RISC-V Trace mandatory features

Instruction trace

Hart (CPU) to encoder interface

'Delta Address' trace mode

Efficient packet format

RISC-V Trace optional features

Multiple instruction retirement

Data Trace

Implicit exception mode

Sequentially inferable jump mode

Implicit return mode

Branch Prediction mode

Jump Target Cache mode

Full Address mode

Sign-based compression

XOR data trace compression

Differential data trace compression

Filtering

Timestamps

E-Trace Features – Standard and Beyond

RISC-V Trace mandatory features

Instruction trace

Hart (CPU) to encoder interface

'Delta Address' trace mode

Efficient packet format

Siemens extra capability

Cycle accurate trace

RISC-V Trace optional features

Multiple instruction retirement

Data Trace

Implicit exception mode

Sequentially inferable jump mode

Implicit return mode

Branch Prediction mode

Jump Target Cache mode

Full Address mode

Sign-based compression

XOR data trace compression

Differential data trace compression

Filtering

Timestamps

Summary

- Understanding program behavior in complex systems is challenging
- Non-intrusive, full-speed observation of program behavior is required
 - Efficient Trace for RISC-V addresses the problem
 - Optional encoding modes offer significant benefit
- Siemens offers a Trace Encoder fully compliant with RISC-V standard
- Tessent Embedded Analytics is a complete platform for system level visibility
 - Optimize system software
 - Slash design validation costs
 - Accelerate in-lab system bring-up
 - Extend in-field diagnostics after system deployment

Thank you

Published by Siemens DISW

Yifan Li

Account Technology Manager Tessent™ Silicon Lifecycle Solutions

E-mail Li. Yifan@siemens.com

Phone +86 138 1825 6611