Rank-65759 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_3 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 65759

General information

Number of lines	3
Number of points	9
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	3
Number of points off lines	3
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$2^3, 1^3, 0^3$

Singular Points

The surface has 1 singular points:

$$0: P_4 = \mathbf{P}(1,1,1,1) = \mathbf{P}(1,1,1,1)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_3 = \mathbf{Pl}(1, 0, 1, 0, 1, 0)_{13}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{29} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{25}$$

$$\ell_2 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{12} = \mathbf{Pl}(0, 0, 1, 1, 1, 1)_{32}$$

Rank of lines: (3, 29, 12)

Rank of points on Klein quadric: (13, 25, 32)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points:

The double points on the surface are:

$$P_{14} = (0, 1, 1, 1) = \ell_0 \cap \ell_1$$

 $P_4 = (1, 1, 1, 1) = \ell_0 \cap \ell_2$

$$P_{12} = (0, 0, 1, 1) = \ell_1 \cap \ell_2$$

Single Points

The surface has 3 single points:

The single points on the surface are:

0:
$$P_0 = (1, 0, 0, 0)$$
 lies on line ℓ_0
1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1

2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 3 points not on any line:

The points on the surface but not on lines are:

$$0: P_8 = (1, 1, 1, 0) 1: P_9 = (1, 0, 0, 1)$$

$$2: P_{11} = (1, 1, 0, 1)$$

Line Intersection Graph

$$\begin{array}{c|c} 012 \\ \hline 0 & 011 \\ 1 & 101 \\ 2 & 110 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{14}	P_4

 ${\bf Line~1~intersects}$

Line	ℓ_0	ℓ_2
in point	P_{14}	P_{12}

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_4	P_{12}

The surface has 9 points: $\frac{1}{2}$

The points on the surface are:

 $\begin{aligned} 4: \ P_8 &= (1,1,1,0) \\ 5: \ P_9 &= (1,0,0,1) \\ 6: \ P_{11} &= (1,1,0,1) \\ 7: \ P_{12} &= (0,0,1,1) \end{aligned}$ $0: P_0 = (1,0,0,0)$ $1: P_1 = (0,1,0,0)$ $2: P_4 = (1,1,1,1)$ $3: P_5 = (1,1,0,0)$ $8: P_{14} = (0, 1, 1, 1)$