Density Estimation for Likelihood-free Inference

George Papamakarios

Density estimation

Training data $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

Goal: estimate density function $p(\mathbf{x})$

Neural density estimation

Training data $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

 $q_{\phi}(\mathbf{x})$ must be a density function:

$$\int q_{\phi}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = 1 \qquad q_{\phi}(\mathbf{x}) \ge 0$$

Neural density estimation: Training

Average log likelihood:

$$L(\phi) = \frac{1}{N} \sum_{n=1}^{N} \log q_{\phi}(\mathbf{x}_n)$$

Maximize $L(\phi)$ w.r.t. ϕ

Calculate gradients with backpropagation

Use favourite type of stochastic-gradient ascent (e.g. Adam)

Use favourite machine-learning framework (e.g. TensorFlow, PyTorch)

Training data $\{\mathbf{x}_1,\ldots,\mathbf{x}_N\}$

Training as KL-divergence minimization

For $N \to \infty$:

$$L(\phi) = \frac{1}{N} \sum_{n=1}^{N} \log q_{\phi}(\mathbf{x}_n) \to \mathbb{E}_{\mathbf{x} \sim p}(\log q_{\phi}(\mathbf{x}))$$

Maximizing average log likelihood is asymptotically equivalent to minimizing KL divergence from the true data density, since:

$$D_{\mathrm{KL}}(p \parallel q_{\phi}) = -\mathbb{E}_{\mathbf{x} \sim p}(\log q_{\phi}(\mathbf{x})) + \mathrm{const}$$

How to design flexible neural density models?

 $q_{\phi}(\mathbf{x})$ must be a density function:

$$\int q_{\phi}(\mathbf{x}) \, \mathrm{d}\mathbf{x} = 1 \qquad q_{\phi}(\mathbf{x}) \ge 0$$

Parameters ϕ should be unconstrained

 $q_{\phi}(\mathbf{x})$ must be differentiable w.r.t. ϕ

Mixture models

Model is a weighted average of simple density models

e.g. Gaussian mixture model:

$$q_{\phi}(\mathbf{x}) = \sum_{k=1}^{K} \alpha_k \mathcal{N}(\mathbf{x}; \mu_k, \Sigma_k)$$

Reparameterize so that parameters are unconstrained

$$(\alpha_1, \dots, \alpha_K) = \operatorname{softmax}(\alpha'_1, \dots, \alpha'_K)$$

 $\Sigma_k = L_k L_k^T$

Optimize with respect to:

$$\phi = \{\alpha_k', \mu_k, L_k\}_{k=1:K}$$

Autoregressive models

Chain rule of probability:

$$\mathbf{x} = (x_1, \dots, x_I)$$

$$p(\mathbf{x}) = \prod_{i} p(x_i \mid x_1, \dots, x_{i-1})$$

Normalizing flows

Design $f_{\phi}: \mathbf{u} \mapsto \mathbf{x}$ so that:

- It's differentiable and 1-to-1
- f_{ϕ}^{-1} is tractable
- $\det \nabla f_{\phi}$ is tractable

Calculate model density by:

$$\mathbf{u} = f_{\phi}^{-1}(\mathbf{x})$$
$$q_{\phi}(\mathbf{x}) = \pi(\mathbf{u}) \left| \det \nabla f_{\phi}(\mathbf{u}) \right|^{-1}$$

Normalizing flows are composable

$$\mathbf{u}_k = f_{\phi_k}^{-1}(\mathbf{u}_{k+1})$$
$$q_{\phi}(\mathbf{x}) = \pi(\mathbf{u}_1) \prod_{k=1}^{n} |\det \nabla f_{\phi_k}(\mathbf{u}_k)|^{-1}$$

Masked Autoregressive Flow

$$\alpha_i = \alpha_i(x_1, \dots, x_{i-1})$$

$$\beta_i = \beta_i(x_1, \dots, x_{i-1})$$

$$\mathbf{x} = f_{\phi}(\mathbf{u}) \Rightarrow$$
$$x_i = \alpha_i u_i + \beta_i \quad \forall i$$

$$\det \nabla f_{\phi}(\mathbf{u}) = \prod_{i} \alpha_{i}$$

Real NVP

$$\alpha = \alpha(\mathbf{x}_{< t}) = \alpha(\mathbf{u}_{< t})$$

$$\beta = \beta(\mathbf{x}_{< t}) = \beta(\mathbf{u}_{< t})$$

$$\mathbf{x} = f_{\phi}(\mathbf{u}) \Rightarrow$$

$$\begin{cases} \mathbf{x}_{< t} = \mathbf{u}_{< t} \\ \mathbf{x}_{\geq t} = \alpha \odot \mathbf{u}_{\geq t} + \beta \end{cases}$$

$$\det \nabla f_{\phi}(\mathbf{u}) = \prod_{i} \alpha_{i}$$

Comparison: AR, MAF, Real NVP

Convolutional Real NVP for images

Neural density estimation: Summary

Goal: estimate density function from data

Neural density estimation:

- Represent density function with a neural network
- Maximize average log likelihood on data
- Train with backprop

Types of neural density models:

- Mixture models
- Autoregressive models
- Normalizing flows

Masked Autoregressive Flow & Real NVP

Implemented in TensorFlow Probability

Bayesian inference

Observe data \mathbf{x}_o

Infer parameters $\, heta$

$$p(\theta \mid \mathbf{x} = \mathbf{x}_o) \propto p(\mathbf{x} = \mathbf{x}_o \mid \theta) p(\theta)$$
posterior likelihood prior

Likelihood-free inference

Observe data \mathbf{x}_o

Infer parameters $\, heta$

Likelihood $p(\mathbf{x} = \mathbf{x}_o \mid \theta)$ is not available

Can simulate $\mathbf{x}_n \sim p(\mathbf{x} \mid \theta)$ for any θ

A toy example from ecology: Lotka-Volterra model

Parameters:

$$\theta = (\theta_1, \theta_2, \theta_3, \theta_4)$$

Model is a Markov Jump Process:

$$\underline{\underline{A}} = \underline{\underline{P}}$$
redators

$$B = \text{Prey}$$

$$\frac{\partial A}{\partial t} = \theta_1 A B - \theta_2 A$$
$$\frac{\partial B}{\partial t} = \theta_3 B - \theta_4 A B$$

$$\frac{\partial B}{\partial t} = \theta_3 B - \theta_4 A B$$

Many important applications

Neuroscience

Astrophysics & cosmology

High-energy physics

Computer vision as inverse graphics

```
for i in people.data.users:
    response = client.api.statuses.user_ti
    print 'Got', len(response.data), 'twee
    if len(response.data) != 0:
        ltdate = response.data[0]['created
        ltdate2 = datetime.strptime(ltdate
        today = datetime.now()
        howlong = (today-ltdate2).days
        if howlong < daywindow:
            print i.screen_name, 'has twee
            totaltweets += len(response.da</pre>
```

Probabilistic programming

Simulate
$$\theta_n \sim p(\theta)$$
 $\mathbf{x}_n \sim p(\mathbf{x} \mid \theta_n)$

If
$$\mathbf{x}_n = \mathbf{x}_o$$
 then $\, heta_n$ is a sample from $\,p(heta \,|\, \mathbf{x} = \mathbf{x}_o)$

In practice:

- Reduce data to summary statistics
- Accept whenever $\|\mathbf{x}_n \mathbf{x}_o\| < \epsilon$
- Propose new parameters by 'perturbing' accepted parameters
 - o MCMC-ABC, SMC-ABC, many others ...

Neural Likelihood

Step 1

Simulate $\theta_n \sim p(\theta) \mathbf{x}_n \sim p(\mathbf{x} \mid \theta_n)$

Collect training data $\{(\theta_1, \mathbf{x}_1), \dots, (\theta_N, \mathbf{x}_N)\}$

Step 2

Train a **conditional** neural density estimator $q_{\phi}(\mathbf{x} \mid \theta)$ on data

With enough data & capacity: $q_{\phi}(\mathbf{x} \mid \theta) \approx p(\mathbf{x} \mid \theta)$

Step 3

Sample from $\hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o) \propto q_{\phi}(\mathbf{x} = \mathbf{x}_o \mid \theta) \, p(\theta)$ (e.g. with MCMC)

Neural Likelihood with proposal

Neural Likelihood can be inefficient

Wastes computation in irrelevant regions

Can use a proposal to control where likelihood approximation should be accurate

- Sample $\theta_n \sim \tilde{p}(\theta)$ instead of $p(\theta)$
- $q_{\phi}(\mathbf{x} \mid \theta)$ will be most accurate where $\tilde{p}(\theta)$ large

Empirically: Posterior $p(\theta \,|\, \mathbf{x} = \mathbf{x}_o)$ is a good proposal

Initialize
$$\hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o) = p(\theta)$$

Step 1

Sample $\theta_n \sim \hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o)$ e.g. with MCMC

Simulate $\mathbf{x}_n \sim p(\mathbf{x} \mid \theta_n)$

Append new data $\{(\theta_1, \mathbf{x}_1), \dots, (\theta_N, \mathbf{x}_N)\}$ to all data

Step 2

Re-train a **conditional** neural density estimator $q_{\phi}(\mathbf{x} \,|\, \theta)$ on all data

Set
$$\hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o) \propto q_{\phi}(\mathbf{x} = \mathbf{x}_o \mid \theta) p(\theta)$$

Go to step 1

Lotka-Volterra model

Round 1 (simulating from prior)

Lotka-Volterra model

Lotka-Volterra model

Lotka-Volterra model

Lotka-Volterra model

Lotka-Volterra model

Lotka-Volterra model

Neural Posterior Estimation

Instead of estimating the likelihood, we can train $q_{\phi}(\theta \mid \mathbf{x})$ on simulated data $\{(\theta_1, \mathbf{x}_1), \dots, (\theta_N, \mathbf{x}_N)\}$ and estimate the posterior directly

Then inference is as simple as $\hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o) = q_{\phi}(\theta \mid \mathbf{x} = \mathbf{x}_o)$ \rightarrow no MCMC needed

However:

If we propose parameters from proposal $\tilde{p}(\theta)$ instead of prior $p(\theta)$ then $q_{\phi}(\theta \mid \mathbf{x}) \propto p(\mathbf{x} \mid \theta) \, \tilde{p}(\theta)$ i.e. estimated posterior will be biased

Sequential Neural Posterior Estimation

To enable sequential estimation of posterior, we need to correct for sampling from the "wrong" prior

Two methods for Sequential Neural Posterior Estimation

SNPE-A: Estimate posterior by analytically adjusting $q_{\phi}(\theta \mid \mathbf{x})$

$$\hat{p}(\theta \mid \mathbf{x} = \mathbf{x}_o) \propto \frac{p(\theta)}{\tilde{p}(\theta)} q_{\phi}(\theta \mid \mathbf{x} = \mathbf{x}_o)$$

- Neural density estimator is restricted to a conditional Gaussian mixture model
- Fails if division by $\tilde{p}(\theta)$ yields improper posterior

Sequential Neural Posterior Estimation

To enable sequential estimation of posterior, we need to correct for sampling from the "wrong" prior

Two methods for Sequential Neural Posterior Estimation

SNPE-B: Importance re-weight samples when training $\,q_{\phi}(\theta \,|\, {f x})$

$$L(\phi) = \frac{1}{N} \sum_{n=1}^{N} \frac{p(\theta_n)}{\tilde{p}(\theta_n)} \log q_{\phi}(\theta_n \mid \mathbf{x}_n)$$

- $q_{\phi}(\theta \mid \mathbf{x})$ estimates the posterior correctly
- Training may become less stable → high-variance gradients

Results: Accuracy vs simulation cost

Lotka-Volterra population model

Results: Accuracy vs simulation cost

Hodgkin-Huxley neuron model

Diagnostics: Simulation-based calibration

Draw "true parameters" from prior

Run inference, obtain posterior

Draw K i.i.d. samples from posterior and calculate the rank statistic $\{0, 1, ..., K\}$ of true parameters

Repeat many times, plot histogram of all rank statistics

If inference calibrated → histogram is uniform

Diagnostics: Distance to observed data

In each round, calculate the median distance of simulated data to observed data \mathbf{x}_o

Can be used to assess convergence

Shows that posterior zones in relevant parameter region

Diagnostics: Likelihood goodness-of-fit

For e.g. true parameters θ^* :

Simulate data from $p(\mathbf{x} \mid \theta = \theta^*)$

Sample data from $q_{\phi}(\mathbf{x} \,|\, \theta = \theta^*)$

Compare two datasets using e.g. Maximum Mean Discrepancy

Summary

Two ideas for likelihood-free inference

Neural density estimation:

- Estimate likelihood / posterior from simulated data
- Use state-of-the-art neural density estimators

Sequential inference:

- Guide simulations by using so-far posterior as proposal
- Can lead to orders-of-magnitude savings in simulation cost