LIMITES NOTÁVEIS

$\lim_{x \to 0} \frac{\operatorname{sen}(x)}{x} = 1$
$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$
$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$
$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$
$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty, p \in \mathbb{R}$

FÓRMULAS TRIGONOMÉTRICAS

$\operatorname{sen}^2(x) + \cos^2(x) = 1$	
$tg^2(x) + 1 = \sec^2(x)$	
$\operatorname{sen}(x \pm y) = \operatorname{sen}(x) \cos(y) \pm \cos(x) \operatorname{sen}(y)$	
$\cos(x \pm y) = \cos(x)\cos(y) \mp \sin(x)\sin(y)$	
$\operatorname{sen}(2x) = 2\operatorname{sen}(x)\cos(x)$	
$\cos(2x) = \cos^2(x) - \sin^2(x)$	

FÓRMULAS HIPERBÓLICAS

$\cosh^2(x) - \sinh^2(x) = 1$
$tgh^2(x) = 1 - \operatorname{sech}^2(x)$
$\operatorname{senh}(x \pm y) = \operatorname{senh}(x) \cosh(y) \pm \cosh(x) \operatorname{senh}(y)$
$\cosh(x \pm y) = \cosh(x)\cosh(y) \pm \sinh(x) \sinh(y)$
senh(2x) = 2 senh(x) cosh(x)
$\cosh(2x) = \sinh^2(x) + \cosh^2(x)$

Regras Básicas de Derivação

Função	Derivada
Cu(x)	$Cu'(x), C \in \mathbb{R}$
u(x) + v(x)	u'(x) + v'(x)
u(x)v(x)	u'(x)v(x) + u(x)v'(x)
$\frac{u(x)}{v(x)}$	$\frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$

REGRAS DE PRIMITIVAÇÃO

Função	Primitiva
$u'(x) (u(x))^{\alpha}$	$\frac{(u(x))^{\alpha+1}}{\alpha+1}, \ \alpha \in \mathbb{R} \setminus \{-1\}$
$u'(x)\cos\left(u(x)\right)$	$\operatorname{sen}\left(u(x)\right)$
$-u'(x)\operatorname{sen}\left(u(x)\right)$	$\cos(u(x))$
$u'(x)\sec^2(u(x))$	$\operatorname{tg}\left(u(x)\right)$
$-u'(x)\csc^2(u(x))$	$\cot (u(x))$
$u'(x) \sec(u(x)) \operatorname{tg}(u(x))$	$\sec(u(x))$
$-u'(x)\operatorname{cosec}(u(x))\operatorname{cotg}(u(x))$	$\operatorname{cosec}\left(u(x)\right)$
$\frac{u'(x)}{\sqrt{1 - (u(x))^2}}$	arcsen(u(x))
$-\frac{u'(x)}{\sqrt{1-(u(x))^2}}$	$\arccos(u(x))$
$\frac{u'(x)}{1 + (u(x))^2}$	arctg(u(x))
$-\frac{u'(x)}{1+(u(x))^2}$	$\operatorname{arccotg}(u(x))$
$\ln(a)u'(x)a^{u(x)}$	$a^{u(x)}, a \in \mathbb{R}^+ \setminus \{1\}$
$u'(x)e^{u(x)}$	$e^{u(x)}$
$\frac{u'(x)}{\ln(a)u(x)}$	$\log_a u(x) , \ a \in \mathbb{R}^+ \setminus \{1\}$
$\frac{u'(x)}{u(x)}$	$\ln u(x) $
$-u'(x) \operatorname{tg}(u(x))$	$\ln \left \cos \left(u(x)\right)\right $
$u'(x)\cot g(u(x))$	$\ln \mathrm{sen}\left(u(x)\right) $
$u'(x)\sec(u(x))$	$\ln \mathrm{sec}(u(x)) + \mathrm{tg}(u(x)) $
$-u'(x)\operatorname{cosec}\left(u(x)\right)$	$\ln \left \operatorname{cosec} \left(u(x) \right) + \operatorname{cotg} \left(u(x) \right) \right $
$u'(x)\cosh\left(u(x)\right)$	$\operatorname{senh}\left(u(x)\right)$
$u'(x) \operatorname{senh}(u(x))$	$\cosh(u(x))$