

Topologically controlled lossy compression

Maxime Soler, Sorbonne University

Agenda

- Context
- Compression algorithm
- Topological compression: 2D image
- Topological compression: medical data

Context

- Data compression
- Problems
 - Lossless: low compression factors
 - Lossy: topological error

Rayleigh-Taylor instability compressed with ZFP [1]. Compression factor from 1 (left) to 64 (right)

Context

- Data compression
- Topological lossy compression
 - Based on *persistence diagrams*
 - Control of the topological loss

Compression algorithm

Compression

- Threshold ε

4. Lossless compression

of topological identifiers

Decompression

1. Lossless decompression of identifiers

- 2. Value assignment
- 3. Topological (ε-)correction (for extensions)

Extensions

Topological compression

Original

Compression

Compressed

Comparison: LDistance

Comparison: BottleneckDistance

Compression preview: TopologicalCompression

- Segmentation pipeline
 - Persistence diagram
 - Threshold (p > 187, diagonal)
 - Topological simplification
 - FTM Tree

- foot.vti (22MB)
- footc.ttk (692KB, 32x smaller, 10% persistence threshold)
- footcc.ttk (81KB, 270x smaller, 68% persistence threshold)

Bonus: persistence-driven tracking

Persistence tracking

