UNIVERSITY OF TORONTO

Faculty of Arts and Science

DECEMBER 2012 EXAMINATIONS

MAT335H1F

Chaos, Fractals and Dynamics Examiner: D. Burbulla

Duration - 3 hours
Examination Aids: A Scientific Hand Calculator

Name:	Student Number:
INSTRUCTIONS: All six questions have	equal weight. Attempt only five of them. Presen
your solutions in the exam booklets provide	ed. Do not tear any pages from this exam. Hand
in this exam with your booklet(s).	The marks for each question are indicated in
parentheses beside the question number.	MAXIMUM MARKS: 100

1. [20 marks] Let A_i for i=0,1,2,3 be linear contractions with contraction factor $\beta=1/3$ and fixed points

$$p_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, p_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, p_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, p_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix},$$

respectively. Let A be the attractor generated by the iterated function system A_0, A_1, A_2, A_3 .

- (a) [10 marks] Show that $A = K \times K$, where K is the Cantor middle-thirds set.
- (b) [5 marks] What is the fractal dimension of A?
- (c) [5 marks] Describe in your own words how the chaos game can be played to generate the fractal A.
- 2. [20 marks] This question has four parts.
 - (a) [4 marks] Define the Mandelbrot Set.
 - (b) [6 marks] Define the Sierpinski triangle. What is its fractal dimension?
 - (c) [5 marks] Define what it means, according to Devaney, for $F: X \longrightarrow X$ to be chaotic.
 - (d) [5 marks] Prove that if $s \in \Sigma$ then there is a sequence $t \in \Sigma$ arbitrarily close to s for which $d[\sigma^n(s), \sigma^n(t)] = 2$, for all sufficiently large n.

5. [20 marks] Determine the fate of the orbits of the following seeds z_0 under the following functions F. If the orbit is periodic, or eventually periodic, determine if the periodic cycle is attracting, repelling or neutral.

(a) [4 marks]
$$z_0 = \frac{3}{10}$$
 and $F(x) = \begin{cases} 2x & \text{if } 0 \le x < \frac{1}{2} \\ 2x - 1 & \text{if } \frac{1}{2} \le x < 1. \end{cases}$

- (b) [4 marks] $z_0 = 1$ and $F(z) = \frac{iz}{2}$.
- (c) [4 marks] $z_0 = 0$ and $F(z) = z^2 + i$.
- (d) [4 marks] $z_0 = 0$ and $F(z) = z^2 + 2i 1$.
- (e) [4 marks] $z_0 = 0$ and $F(z) = z^2 + \frac{i}{8} 1$.
- 6. [20 marks] Let $Q_c: \mathbb{C} \longrightarrow \mathbb{C}$ by $Q_c(z) = z^2 + c$. Let K_c be the filled Julia set of Q_c ; let J_c be the Julia set of Q_c .
 - (a) [5 marks] Plot K_0 and J_0 in the complex plane.
 - (b) [10 marks] Let $R=\{z\in\mathbb{C}\mid |z|>1\};$ let $H:R\longrightarrow\mathbb{C}-[-2,2]$ by

$$H(z) = z + \frac{1}{z}.$$

Show that H is a conjugacy between Q_0 on R and Q_{-2} on $\mathbb{C} - [-2, 2]$.

(c) [5 marks] Plot K_{-2} and J_{-2} in the complex plane.