Fundamentals of Digital Logic and Microcomputer Design

Fundamentals of Digital Logic and Microcomputer Design

Fifth Edition

M. RAFIQUZZAMAN, Ph.D.

Professor
California State Polytechnic University
Pomona, California
and
President
Rafi Systems, Inc.

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2005 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Rafiquzzaman, Mohamed.

Fundamentals of digital logic and microcomputer design / M. Rafiquzzaman.—5th ed.

Includes bibliographical references and index.

ISBN 0-471-72784-9 (cloth)

1. Logic circuits. 2. Microcomputers—Design and construction. 3. Electronic digital computers—Circuits. I. Title.

TK7888.4.R34 2005 621.39'5—dc22

2004065974

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

In memory of my beloved parents, who gave me tremendous support, encouragement, and guidance in achieving my career goals.

I will always miss them.

To my wife, Kusum, and brother, Elan

Contents

PREFA	CE	xv
1. INT	TRODUCTION TO DIGITAL SYSTEMS	1
1.1	Explanation of Terms	2
1.2	Design Levels	4
1.3	Combinational vs. Sequential Systems	4
1.4	Digital Integrated Circuits	5
	1.4.1 Diodes	5
	1.4.2 Transistors	6
	1.4.3 MOS Transistors	13
1.5	Integrated Circuits (ICs)	15
1.6	Evolution of Computers	17
1.7	A Typical Microcomputer-Based Application	19
1.8	Trends and Perspectives in Digital Technology	19
2. NU	MBER SYSTEMS AND CODES	23
2.1	Number Systems	23
	2.1.1 General Number Representation	23
	2.1.2 Converting Numbers from One Base to Another	26
2.2	Unsigned and Signed Binary Numbers	28
2.3	Codes	32
	2.3.1 Binary-Coded-Decimal Code (8421 Code)	32
	2.3.2 Alphanumeric Codes	32
	2.3.3 Excess-3 Code	34
	2.3.4 Gray Code	35
	2.3.5 Unicode	36
2.4	Fixed-Point and Floating-Point Representations	37
2.5	Arithmetic Operations	37
	2.5.1 Binary Arithmetic	38
	2.5.2 BCD Arithmetic	47
	2.5.3 Multiword Binary Addition and Subtraction	48
2.6	Error Correction and Detection	49
0114	actions and Problems	50

viii Contents

3.	BOC	LEAN	ALGEBRA AND DIGITAL LOGIC GATES	53
	3.1	Basic I	Logic Operations	53
		3.1.1	NOT Operation	53
		3.1.2	OR Operation	54
			AND Operation	55
	3.2		Logic Operations	58
			NOR Operation	58
			NAND Operation	58
			Exclusive-OR Operation (XOR)	60
			Exclusive-NOR Operation (XNOR)	61
	3.3		Symbols for Logic Gates	62
	3.4		e and Negative Logic	63
	3.5		an Algebra	64
	5.0		Boolean Identities	65
			Simplification Using Boolean Identities	67
			Consensus Theorem	68
			Complement of a Boolean Function	70
	3.6		ard Representations	71
	3.7		ugh Maps	75
	5.1		Two-Variable K-Map	76
			Three-Variable K-Map	76
			Four-Variable K-Map	79
			Prime Implicants	81
			Expressing a Function in Product-of-Sums Form Using a K-Map	83
			Don't Care Conditions	83
			Five-Variable K-Map	85
	3.8		-McCluskey Method	86
	3.9		nentation of Digital Circuits with NAND, NOR, and Exclusive-	00
	5.7		sclusive-NOR Gates	88
			NAND Gate Implementation	88
			NOR Gate Implementation	91
		3.9.3	XOR / XNOR Implementations	91
	One		nd Problems	95
	Que	stions a	nu i rooicins	,,
4.	CO	MRINA	TIONAL LOGIC DESIGN	99
			Concepts	99
	4.2		sis of a Combinational Logic Circuit	100
	4.3		n of a Combinational Circuit	101
	4.4		ole-Output Combinational Circuits	102
	4.5	-	al Combinational Circuits	106
		4.5.1	Binary / BCD Adders and Binary Subtractors	106
		4.5.2	Comparators	110
		4.5.3	Decoders	112
		4.5.4	Encoders	115
		4.5.5	Multiplexers	116
		4.5.6	•	118
	4.6		Standard Symbols	118
			Only Memories (ROMs)	121

Contents	1 Y
Contents	1/1

4.8	Programmable Logic Devices (PLDs)	123
4.9	Commercially Available Field Programmable Devices (FPDs)	126
4.10	Hardware Description Language (HDL)	127
Que	stions and Problems	129
5. SEQ	QUENTIAL LOGIC DESIGN	135
5.1	Basic Concepts	135
5.2	Flip-Flops	136
	5.2.1 SR Latch	136
	5.2.2 RS Flip-Flop	138
	5.2.3 D Flip-Flop	139
	5.2.4 JK Flip-Flop	139
	5.2.5 T Flip-Flop	140
5.3	Master-Slave Flip-Flop	140
	Preset and Clear Inputs	141
5.5	Summary of Flip-Flops	143
	Analysis of Synchronous Sequential Circuits	145
	Types of Synchronous Sequential Circuits	148
	Minimization of States	148
	Design of Synchronous Sequential Circuits	150
	Design of Counters	156 161
5.11	Examples of Synchronous Sequential Circuits	162
	5.11.1 Registers 5.11.2 Modulo- <i>n</i> Counters	164
		166
5.12	5.11.3 Random-Access Memory (RAM)	168
5.12	8	176
	estions and Problems	178
6. MIC	CROCOMPUTER ARCHITECTURE, PROGRAMMING,	
	D SYSTEM DESIGN CONCEPTS	185
6.1	Basic Blocks of a Microcomputer	185
6.2	Typical Microcomputer Architecture	186
	6.2.1 The Microcomputer Bus	186
	6.2.2 Clock Signals	187
6.3	The Single-Chip Microprocessor	188
	6.3.1 Register Section	188
	6.3.2 Control Unit	198
	6.3.3 Arithmetic and Logic Unit (ALU)	199
	6.3.4 Functional Representations of a Simple and a	
	Typical Microprocessor	199
	6.3.5 Microprogramming the Control Unit (A Simplified Explanation)	
6.4	The Memory	204
	6.4.1 Random-Access Memory (RAM)	205
	6.4.2 Read-Only Memory (ROM)	206
	6.4.3 READ and WRITE Operations	207
	6.4.4 Memory Organization	209
6.5	Input/Output	209

		3.61	no Post and provide a Company	210
	6.6		omputer Programming Concepts	210
			Microcomputer Programming Languages	210
			Machine Language	212
			Assembly Language	212
			High-Level Languages	
	6.7	Monito		227
		Flowch		228
			Features of Microcomputer Development Systems	228
			Development Flowchart	232
	Ques	tions ar	nd Problems	233
7.	DES	IGN O	F COMPUTER INSTRUCTION SET AND THE CPU	237
	7.1	Design	of the Computer Instructions	237
	7.2		ed Instruction Set Computer (RISC)	239
	7.3		of the CPU	242
			Register Design	242
			Adders	244
			Addition, Subtraction, Multiplication and Division of	
			Unsigned and Signed Numbers	250
		7.3.4	ALU Design	254
			Design of the Control Unit	257
	7.4		n of a Microprogrammed CPU	277
		_	nd Problems	286
				•00
8.			I/O, AND PARALLEL PROCESSING	299
	8.1		ry Organization	299
			Introduction	299
			Main Memory Array Design	300
			Virtual Memory and Memory Management Concepts	304
			Cache Memory Organization	326
	8.2	Input/		335
			Programmed I/O	336
		8.2.2	Interrupt I/O	340
		8.2.3	Direct Memory Access (DMA)	345
	8.3		ary of I/O	347
	8.4	Funda	mentals of Parallel Processing	347
		8.4.1	General Classifications of Computer Architectures	348
		8.4.2	Pipeline Processing	351
	Que	stions a	nd Problems	359
9.	INT	EL 808	36	367
	9.1	Introd	uction	367
	9.2		Main Memory	369
	9.3		Registers	370
	9.4		Addressing Modes	373
		9.4.1	Register and Immediate Modes	374
			_	
		9.4.2	Memory Addressing Modes	374

Contents xi

		9.4.4	Relative Addressing Mode	376
			Implied Addressing Mode	376
			nstruction Set	376
			Data Transfer Instructions	377
			Arithmetic Instructions	379
			Bit Manipulation Instructions	384
			String Instructions	386
			Unconditional Transfer Instructions	388
			Conditional Branch Instructions	391
			Iteration Control Instructions	393
			Interrupt Instructions	394
			Processor Control Instructions	395
	9.6		ssembler-Dependent Instructions	395
	9.7		1 8086 Assembler Pseudo-Instructions or Directives	397
			SEGMENT and ENDS Directives	397
			ASSUME Directive	397
			DUP, LABEL, and Other Directives	398
			8086 Stack	399
	9.8		Delay Routine	399
	9.9		n Design Using the 8086	414
	<i></i>		8086 Pins and Signals	414
			Basic 8086 System Concepts	421
			Interfacing with Memories	425
			8086 I/O Ports	428
		9.9.5	Important Points To Be Considered for 8086 Interface	
		,,,,,	to Memory and I/O	430
	9 10	8086-F	Based Microcomputer	434
			nterrupts	436
	,		Predefined Interrupts	436
			Internal Interrupts	437
			External Maskable Interrupts	437
			Interrupt Procedures	438
			Interrupt Priorities	438
			Interrupt Pointer Table	439
	9.12	8086 I		439
			ucing an 8086-Based Microcomputer to a Hexadecimal	
	,,,,		ard and Seven-Segment Displays	445
		9.13.1	Basics of Keyboard and Display Interface to a Microcomputer	445
		9.13.2	· · · · · · · · · · · · · · · · · · ·	447
	Que		nd Problems	45
10.	MO	TORO	LA MC68000	45'
	10.1		duction	45'
	10.2	6800	0 Registers	460
	10.3	6800	0 Memory Addressing	46
	10.4		0 Addressing Modes	46
		10.4.		46
		10.4	2 Address Register Indirect Addressing	46

xii Contents

		10.4.3 Absolute Addressing	465
		10.4.4 Program Counter Relative Addressing	465
		10.4.5 Immediate Data Addressing	465
		10.4.6 Implied Addressing	466
	10.5	Functional Categories of 68000 Addressing Modes	466
	10.6	68000 Instruction Set	467
		10.6.1 Data Movement Instructions	469
		10.6.2 Arithmetic Instructions	472
		10.6.3 Logical Instructions	477
		10.6.4 Shift and Rotate Instructions	479
		10.6.5 Bit Manipulation Instructions	482
		10.6.6 Binary-Coded-Decimal Instructions	482
		10.6.7 Program Control Instructions	483
		10.6.8 System Control Instructions	486
		10.6.9 68000 Stack	487
	10.7	68000 Delay Routine	489
	10.8	68000 Pins And Signals	498
		10.8.1 Synchronous and Asynchronous Control Lines	500
		10.8.2 System Control Lines	502
		10.8.3 Interrupt Control Lines	503
		10.8.4 DMA Control Lines	503
	10.0	10.8.5 Status Lines	503
	10.9	68000 Clock and Reset Signals	503 503
		10.9.1 68000 Clock Signals	503
	10.10	10.9.2 68000 Reset Circuit 68000 Read and Write Cycle Timing Diagrams	509
		68000 Memory Interface	511
		68000 I/O	514
	10.12	10.12.1 68000 Programmed I/O	514
		10.12.2 68000 Interrupt System	521
		10.12.3 68000 DMA	526
	10.13	68000 Exception Handling	526
		68000/2732/6116/6821-Based Microcomputer	529
		Multiprocessing with the 68000 Using the TAS Instruction	
		and the AS Signal	532
	Quest	ions and Problems	535
11.	INTE	L AND MOTOROLA 32- & 64-BIT MICROPROCESSORS	543
	11.1	Typical Features of 32-Bit and 64-Bit Microprocessors	543
	11.2	Intel 32-Bit and 64-Bit Microprocessors	545
	11.3	Intel 80386	546
		11.3.1 Internal 80386 Architecture	547
		11.3.2 Processing Modes	547
		11.3.3 Basic 80386 Programming Model	548
		11.3.4 80386 Addressing Modes	550
		11.3.5 80386 Instruction Set	551
		11.3.6 80386 Pins and Signals	560
		11.3.7 80386 Modes	561

Contents		xiii
	11.3.8 80386 System Design	562
	11.3.9 80386 I/O	564
11.4	Intel 80486 Microprocessor	565
	11.4.1 Intel 80486/80386 Comparison	565
	11.4.2 Special Features of the 80486	565
	11.4.3 80486 New Instructions Beyond Those of the 80386	567
11.5	Intel Pentium Microprocessor	568
	11.5.1 Pentium Registers	570
	11.5.2 Pentium Addressing Modes and Instructions	570
	11.5.3 Pentium versus 80486: Basic Differences in Registers,	
	Paging, Stack Operations, and Exceptions	571
	11.5.4 Pentium Input/Output	571
	11.5.5 Applications with the Pentium	572
	11.5.6 Pentium versus Pentium Pro	572
	11.5.7 Pentium II / Celeron / Pentium II Xeon TM /	
	Pentium III / Pentium 4	573
	Merced/IA-64	575
11.7	Overview of Motorola 32- and 64-Bit Microprocessors	576
	11.7.1 Motorola MC68020	576
	11.7.2 Motorola MC68030	610
	11.7.3 Motorola MC68040 / MC68060	610
	11.7.4 PowerPC Microprocessor	611
	11.7.5 Motorola's State-of-the-Art Microprocessors	619
Ques	tions and Problems	620
APPENI	DIX A—ANSWERS TO SELECTED PROBLEMS	627
APPENI	DIX B—GLOSSARY	633
APPENI	DIX C—MOTOROLA 68000 and SUPPORT CHIPS	649
APPENI	DIX D—68000 EXECUTION TIMES	661
APPENI	DIX E—INTEL 8086 AND SUPPORT CHIPS	671
APPENI	DIX F—8086 INSTRUCTION SET REFERENCE DATA	677
APPENI	DIX G—68000 INSTRUCTION SET	695
APPENI	DIX H—8086 INSTRUCTION SET	701
APPENI	DIX I—VERILOG	713
I.1	Introduction to Verilog	713
	I.1.1 Structural Modeling	717
	I.1.2 Dataflow Modeling	719
	I.1.3 Behavioral Modeling	719
1.2	Verilog Descriptions of Typical Combinational Logic Circuits I.3 Verilog Descriptions of Typical Synchronous Sequential Circuits	721 728

xiv		Contents
I.4	Status Register Design Using Verilog	741
I.5	CPU Design Using Verilog	743
Que	stions and Problems	753
APPEN	DIX J—VHDL	757
J. 1	Introduction to VHDL	757
	J.1.1 Structural Modeling	759
	J.1.2 Behavioral Modeling	761
	J.1.3 Dataflow Modeling	763
	J.1.4 Mixed Modeling	765
J.2	VHDL Descriptions of Typical Combinational Logic Circuits	766
J.3	VHDL Descriptions of Typical Synchronous Sequential Circuits	769
J.4	Status Register Design Using VHDL	777
J.5	CPU Design Using VHDL	778
Que	estions and Problems	805
BIBLIC	OGRAPHY	807
CREDI	TS	811
INDEX		813

Preface

In this book we cover all basic concepts of computer engineering and science, from digital logic circuits to the design of a complete microcomputer system in a systematic and simplified manner. We have endeavored to present a clear understanding of the principles and basic tools required to design typical digital systems such as microcomputers.

To accomplish this goal, the computer is first defined as consisting of three blocks: central processing unit (CPU), memory, and I/O. We point out that the CPU is analogous to the brain of a human being. Computer memory is similar to human memory. A question asked of a human being is analogous to entering a program into a computer using an input device such as a keyboard, and answering the question by the human is similar in concept to outputting the result required by the program to a computer output device such as a printer. The main difference is that human beings can think independently whereas computers can only answer questions for which they are programmed. Due to advances in semiconductor technology, it is possible to fabricate the CPU on a single chip. The result is the microprocessor. Intel's Pentium and Motorola's Power PC are typical examples of microprocessors. Memory and I/O chips must be connected to the microprocessor chip to implement a microcomputer so that these microprocessors will be able to perform meaningful operations.

We clearly point out that computers understand only 0's and 1's. It is therefore important that students be familiar with binary numbers. Furthermore, we focus on the fact that computers can normally only add. Hence, all other operations such as subtraction are performed via addition. This can be accomplished via two's-complement arithmetic for binary numbers. This topic is therefore also included, along with a clear explanation of signed and unsigned binary numbers.

As far as computer programming is concerned, assembly language programming is covered in this book for typical Intel and Motorola microprocessors. An overview of C, C++, and Java high-level languages is also included. These are the only high-level languages that can perform I/O operations. We point out the advantages and disadvantages of programming typical microprocessors in C and assembly languages.

Three design levels are covered in this book: device level, logic level, and system level. Device-level design, which designs logic gates such as AND, OR, and NOT using transistors, is included from a basic point of view. Logic-level design is the design technique in which logic gates are used to design a digital component such as an adder. Finally, system-level design is covered for typical Intel and Motorola microprocessors. Micro-

computers have been designed by interfacing memory and I/O chips to these micro-processors.

Digital systems at the logic level are classified into two types of circuits, combinational and sequential. Combinational circuits have no memory whereas sequential circuits contain memory. Microprocessors are designed using both combinational and sequential circuits. Therefore, these topics are covered in detail. The fifth edition of this book contains an introduction to synthesizing digital logic circuits using popular hardware description languages such as Verilog and VHDL. These two languages are included in Appendices I and J, independently of each other in such a way that either Verilog or VHDL can be covered in a course without confusion.

The material included in this book is divided into three sections. The first section contains Chapters 1 through 5. In these chapters we describe digital circuits at the gate and flip-flop levels and describe the analysis and design of combinational and sequential circuits. The second section contains Chapters 6 through 8. Here we describe microcomputer organization/architecture, programming, design of computer instruction sets, CPU, memory, and I/O. The third section contains Chapters 9 through 11. These chapters contain typical 16-, 32-, and 64-bit microprocessors manufactured by Intel and Motorola. Future plans of Intel and Motorola are also included. Details of the topics covered in the 11 chapters of this book follow.

- Chapter 1 presents an explanation of basic terminologies, fundamental concepts of digital integrated circuits using transistors; a comparison of LSTTL, HC, and HCT IC characteristics, the evolution of computers, and technological forecasts.
- Chapter 2 provides various number systems and codes suitable for representing information in microprocessors.
- Chapter 3 covers Boolean algebra along with map simplification of Boolean functions. The basic characteristics of digital logic gates are also presented.
- Chapter 4 presents the analysis and design of combinational circuits. Typical combinational circuits such as adders, decoders, encoders, multiplexers, demultiplexers and, ROMs/PLDs are included.
- Chapter 5 covers various types of flip-flops. Analysis and design of sequential circuits such as counters are provided.
- Chapter 6 presents typical microcomputer architecture, internal microprocessor organization, memory, I/O, and programming concepts.
- Chapter 7 covers the fundamentals of instruction set design. The design of registers and ALU is presented. Furthermore, control unit design using both hardwired control and microprogrammed approaches is included. Nanomemory concepts are covered.
- Chapter 8 explains the basics of memory, I/O, and parallel processing. Topics such as main memory array design, memory management concepts, cache memory organization, and pipelining are included.
- Chapters 9 and 10 contain detailed descriptions of the architectures, addressing modes, instruction sets, I/O, and system design concepts associated with the Intel 8086 and Motorola MC68000.
- Chapter 11 provides a summary of the basic features of Intel and Motorola 32- and 64-bit microprocessors. Overviews of the Intel 80486/Pentium/Pentium Pro/Pentium II/Celeron/Pentium III, Pentium 4, and the Motorola 68030/68040/68060/PowerPC

Preface xvii

(32- and 64-bit) microprocessors are included. Finally, future plans by both Intel and Motorola are discussed

The book can be used in a number of ways. Because the materials presented are basic and do not require an advanced mathematical background, the book can easily be adopted as a text for three quarter or two semester courses. These courses can be taught at the undergraduate level in engineering and computer science. The recommended course sequence can be digital logic design in the first course, with topics that include selected portions from Chapters 1 through 5; followed by a second course on computer architecture/organization (Chapters 6 through 8). The third course may include selected topics from Chapters 9 through 11, covering Intel and/or Motorola microprocessors.

The audience for this book can also be graduate students or practicing micro-processor system designers in the industry. Portions of Chapters 9 through 11 can be used as an introductory graduate text in electrical/computer engineering or computer science. Practitioners of microprocessor system design in the industry will find more simplified explanations, together with examples and comparison considerations, than are found in manufacturers' manuals.

Because of increased costs of college textbooks, this book covers several topics including digital logic, computer architecture, assembly language programming, and microprocessor-based system design in a single book. Adequate details are provided. Coverage of certain topics listed below makes the book very unique:

- A clear explanation of signed and unsigned numbers using computation of (X²/255) as an example (Section 2.2). The same concepts are illustrated using assembly language programming with Intel 8086 microprocessor (Example 9.2), and Motorola 68000 microprocessor (Example 10.2).
- ii) Clarification of packed vs. unpacked BCD (Section 2.3.2). Also, clear explanation of ASCII vs. EBCDIC using an ASCII keyboard and an EBCDIC printer interfaced to a computer as an example (Section 2.3.2); illustration of the same concepts via Intel 8086 assembly language programming using the XLAT instruction (Section 9.5.1).
- iii) Simplified explanation of Digital Logic Design along with numerous examples (Chapters 2 through 5). A clear explanation of the BCD adder (Section 4.5.1). An introduction to basic features of Verilog (Appendix I) and VHDL (Appendix J) along with descriptions of several examples of Chapters 3 through 5. Verilog and VHDL descriptions and syntheses of an ALU and a typical CPU. Coverage of Verilog and VHDL independent of each other in separate appendices without any confusion.
- iv) CD containing a step by step procedure for installing and using Altera Quartus II software for synthesizing Verilog and VHDL descriptions of several combinational and sequential logic design. Screen shots included in CD providing the waveforms and tabular forms illustrating the simulation results.
- v) Application of C language vs. assembly language along with advantages and disadvantages of each (Section 6.6.4).
- vi) Numerous examples of assembly language programming for both Intel 8086 (Chapter 9) and Motorola 68000 (Chapter 10).
- vii) A CD containing a step by step procedure for installing and using MASM 6.11

xviii Preface

(8086) and 68asmsim (68000). Screen shots are provided on CD verifying the correct operation of several assembly language programs (both 8086 and 68000) via simulations using test data. The screen shots are obtained by simulating the assembly language programs using DEBUG (8086) and SIM (68000).

- viii) A concise and simplified explanation of system design concepts including programmed I/O and interrupts with the Intel 8086 (Chapter 9) and Motorola 68000 (Chapter 10). Hardware aspects including design of reset circuitry and a simple microcomputer with these microprocessors from the chip level.
 - ix) A simplified comparison of RISC vs. CISC relating to Pentium architecture which is comprised of both RISC and CISC (Section 7.3.5). Unique feature of the Power-PC (Section 11.7.4).

The author wishes to express his sincere appreciation to his students, Rami Yassine, Teren Abear, Vireak Ly, Henry Zhong, Roel Delos Reyes, Vu Tran, Henry Ongkoputro, Rega Setiawan, Xibin Wu, Ryan DeGuzman, Angelo Terracina, Javier Ruiz, Yi Ting Huang, Eric Fang, Cindy Yeh, King Lam, Luis Galdamez, Elias Younes, Beniamin Petreaca, and to all others for making constructive suggestions. The author is indebted to his colleagues Dr. R. Chandra, Dr. M. Davarpanah, Dr. T. Sacco, Dr. S. Monemi, and Dr. H. El Naga of California State Poly University, Pomona for their valuable comments. The author is also grateful to Dr. W. C. Miller of University of Windsor, Canada and to his good friends U.S. Congressman Duke Cunningham (TOPGUN, Vietnam) and U.S. Congressman Jerry Weller for their inspiration during the writing effort. Finally, the author would like to thank CJ Media of California for preparing the final version of the manuscript.

M. Rafiquzzaman

Pomona, California