## Exercices d'applications et de réflexions sur les nombres complexes (Partie 2)

**PROF: ATMANI NAJIB** 

2ème BAC Sciences Physiques et Sciences de la Vie et de la Terre (2BAC PC et SVT)

## TD :NOMBRES COMPLEXES(Partie 2)

**Exercice1**: Donner la forme exponentielle des complexes suivants:

1) 
$$z_1 = 2 + 2i$$

1) 
$$z_1 = 2 + 2i$$
 2)  $z_2 = 1 - i\sqrt{3}$  3)  $z_1 \times z_2$ 

3) 
$$z_1 \times z_2$$

4) 
$$\frac{z_1}{z_2}$$

5) 
$$(z_2)^{12}$$

Exercice2: en utilisant la Formule de Moivre

1)montrer que :  $\sin 2\theta = 2\sin \theta \cos \theta$ 

Et que :  $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$   $\forall \theta \in \mathbb{R}$ 

2)montrer que :  $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$ 

Et que :  $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta \quad \forall \theta \in \mathbb{R}$ 

3)montrer que :  $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$ 

Et que :  $\sin 4\theta = 4\cos^3 \theta \sin \theta - 4\cos \theta \sin^3 \theta$ 

**Exercice3**: Linéariser :  $\cos^4 \theta$ 

**Exercice4**:1) Montrer que  $(\forall (\alpha, \beta) \in \mathbb{R}^2)$ 

$$e^{i\alpha} + e^{i\beta} = e^{i\left(\frac{\alpha}{2} + \frac{\beta}{2}\right)} \left( e^{i\left(\frac{\alpha}{2} - \frac{\beta}{2}\right)} + e^{-i\left(\frac{\alpha}{2} - \frac{\beta}{2}\right)} \right)$$

(Cette égalité nous permet de déterminer la forme trigonométrique de la somme de deux complexes de même module)

2)on pose : 
$$u = 3e^{i\frac{\pi}{5}}$$
 et  $v = 3e^{i\frac{\pi}{7}}$  et  $u_1 = 1 + e^{i\frac{\pi}{3}}$ 

Et 
$$u_2 = 1 - e^{i\frac{\pi}{3}}$$

Déterminer le module et l'argument du nombre

complexes: u+v;  $u_1$  et  $u_2$ 

Exercice5:1) en utilisant la formule d'Euler

Montrer que :  $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$   $\theta \in \mathbb{R}$ 

2) Montrer que :  $\cos^3 \theta = \frac{1}{4} \cos 3\theta + \frac{3}{4} \cos \theta$ 

3) Montrer que :  $\sin^3 \theta = -\frac{1}{4} \sin 3\theta + \frac{3}{4} \sin \theta$ 

4) Montrer que :  $\sin^4 \theta = \frac{1}{8} \cos 4\theta - \frac{1}{2} \cos 2\theta + \frac{3}{8}$ 

5) Linéariser : a)  $\sin^5 \theta$ 

b)  $\cos^2\theta\sin^3\theta$ 

Exercice6: Résoudre dans C les équations

suivantes: 1)  $(E): z^2 - z + 2 = 0$ 

2)  $(E): z^2 - z - 2 = 0$ 

3)  $(E): z^2 - 2z + 1 = 0$ 

**Exercice7**: soit  $z \in \mathbb{C}$  on pose :  $P(z) = z^2 - 2z + 2$ 

1)calculer : P(1-i)

2)en déduire dans C la résolution de l'équations P(z)=0

Exercice8 : Résoudre dans C les équations

suivantes: 1)  $(z^2+9)(z^2-4)=0$ 

2)  $z^2 - 6z + 13 = 0$ 

3)  $(4\cos\theta)z^2 - 2(\cos 2\theta)z + i\sin\theta = 0$  avec:  $\theta \in \left[0, \frac{\pi}{2}\right]$ 

Exercice9:1) Résoudre dans C l'équation:

$$z^2 - 8z + 17 = 0$$

2) Soit  $P(z)=z^3+(-8+i)z^2+(17-8i)z+17i$ 

a) Montrer que l'équation P(z) = 0 admet un imaginaire pur unique comme solution.

b)déterminer les réels a;b;c tels que :

$$P(z) = (z+i)(az^2 + bz + c)$$

c) Résoudre dans  $\mathbb{C}$  l'équation : P(z) = 0

**Exercice10 :** Résoudre dans  $\mathbb C$  les équations suivantes :

1) 
$$2Z^2-2Z+5=0$$
 2)  $3Z^3-3Z^2+2Z-2=0$ 

**Exercice11:** soit : 
$$z = -\frac{1 + i\sqrt{3}}{\sqrt{2} + i\sqrt{2}}$$

1)Donner la forme exponentielle et la forme algébrique du nombre complexes z

2)en déduire : 
$$\cos \frac{11\pi}{12}$$
 et  $\sin \frac{11\pi}{12}$ 

**Exercice12**: Dans le plan complexe  $(o; \vec{i}, \vec{j})$ , on considère les points : A ;B ;C d'affixe respectivement  $z_A = 3+5i$  ;  $z_B = 3-5i$  ;  $z_C = 7+3i$ 

Et soit z' l'affixe de M' l'image de M (z) par la translation  $t_{\vec{u}}$  tel que  $aff(\vec{u}) = 4-2i$ 

1)montrer que : z' = z + 4 - 2i ( l'écriture complexe de la translation de vecteur  $\vec{u}$  )

- 2) verifier que le Point C est l'image de A par  $\,t_{ec{u}}$
- 3) déterminer  $z_{{\it B}'}$  l'affixe de B' l'image de B par  $\,$  la translation  $\,t_{\vec{u}}$

**Exercice13**: Dans le plan complexe  $(o; \vec{i}, \vec{j})$ , on considère le points : A d'affixe  $z_A = 3+5i$  et soit z' l'affixe de M' l'image de M (z) par l'homothétie de centre  $\Omega(3;-2)$ ) et de Rapport k=4

1)montrer que : z' = 4z - 9 + 6i ( l'écriture complexe de l'homothétie  $h(\Omega,k)$ )

2) déterminer  $\mathcal{Z}_{A'}$  l'affixe de A' l'image de A par l'homothétie  $h(\Omega,k)$ 

**Exercice14**: Dans le plan complexe direct  $(\mathbf{0}; \vec{i}, \vec{j})$ , on considère les points : A ;B d'affixe respectivement  $z_A = 7 + 2i$  ;  $z_B = 4 + 8i$ 

Et soit z' l'affixe de M' l'image de M (z) par la rotation r de centre B et d'angle  $\frac{\pi}{2}$ 

1)montrer que : z' = iz + 4i + 12 ( l'écriture complexe de la rotation r )

2) montrer que l'affixe du point C l'image de A par la rotation r est  $z_c = 10 + 11i$ 

**Exercice15**: Déterminer l'écriture complexe de la rotation r de centre  $\Omega$  (1+i) et d'angle  $\frac{3\pi}{4}$ 

**Exercice16:** Soit la rotation r de centre  $\Omega$  (i) et transforme O en  $O'\left(\frac{\sqrt{3}+i}{2}\right)$ 

Déterminer L'angle de cette rotation **Exercice 17:** Soit f une transformation plane qui transforme M(z) en M'(z') tel que

$$z' = -2z + 3 - 3i$$

Déterminer la nature de la transformation f et ses éléments caractéristiques

**Exercice 18:** Dans le plan complexe direct  $(o; \vec{i}, \vec{j})$ , on considère le point : A (i) et la rotation

 $R_{\scriptscriptstyle 0}$  de centre O (0) et d'angle  $\frac{\pi}{6}$  et soit  $R_{\scriptscriptstyle 1}$  la

rotation de centre A (i) et d'angle  $\frac{\pi}{3}$ 

Déterminer la nature de la transformation  $R_1 \circ R_0$  et ses éléments caractéristiques

Exercice 19: soit ABC un triangle isocèle et

rectangle on A tel que :  $(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{AC}}) = \frac{\pi}{2} [2\pi]$ 

et soit R la rotation de centre A et qui transforme

B en C et soit la translation  $T=t_{\overline{AB}}$ 

Déterminer :  $F_1 = R \circ T$  et  $F_2 = T \circ R$ 

**Exercice 20:**soit z un nombre complexe non nul

Montrer que :  $|z-1| \le ||z|-1| + |z|| \arg z|$ 

Exercice21: soit a et b et c des nombres

complexes tels que:

$$|a| = |b| = |c| = 1$$
 et  $a \neq c$  et  $b \neq c$ 

1)Montrer que : 
$$\left(\frac{c-b}{c-a}\right)^2 \times \frac{a}{b} \in \mathbb{R}$$

2)en déduire que : 
$$\arg\left(\frac{c-b}{c-a}\right) \equiv \frac{1}{2}\arg\left(\frac{b}{a}\right)\left[\frac{\pi}{2}\right]$$

**Exercice22**: soit le nombre complexe  $z = e^{i\frac{2\pi}{7}}$ 

On pose : 
$$S = z + z^2 + z^4$$
 et  $T = z^3 + z^5 + z^6$ 

1)Montrer que les nombres S et T sont conjugués

2) Montrer que : Im(S) > 0

3)calculer S+T et  $S\times T$ 

4)en déduire les nombres S et T

« C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

