15.09.2003

UNIVERSITÄT KARLSRUHE Institut für Industrielle Informationstechnik

- Prof. Dr.-Ing. habil. K. Dostert -

Vordiplomprüfung im Fach

Mikrorechnertechnik

Aufgabe 1: A/D- und D/A-Wandlung

a)

u_i in Volt		0,1			0,45	5		0,85	,
Inhalt des SAR:	MSB		LSB	MSB		LSB	MSB		LSB
nach 1. Schritt	0	0	0	0	0	0	1	0	0
nach 2. Schritt	0	0	0	0	1	0	1	1	0
nach 3. Schritt	0	0	0	0	1	1	1	1	0

- b) $f = 10 \cdot 500 \text{ kHz} = 5 \text{ MHz}$
- c) $f = 2^{10} \cdot 500 \text{ kHz} = 512 \text{ MHz}$
- d) Registerwert: $\frac{3.3 \text{ V}}{5 \text{ V}} \cdot 256 = 168,96 \approx 169$

Aufgabe 2: Zahlendarstellung in Mikrorechnerprogrammen

a)

Dogiston	Inhalt (dagimal)	Inhalt (binär)					
Register	Inhalt (dezimal)	MSB LSB					
A	-100	10011100					
R0	123	01111011					
R1	107	01101011					

b)

	Akku (binär)	C	N	OV
	MSB LSB		IN .	OV
nach Befehl 1	00010111	1	0	0
nach Befehl 2	10000010	0	1	1

Erklärung: N wird gesetzt, wenn Ergebnis negativ ist (MSB = 1)

C wird gesetzt, wenn bei Addition Übertrag auftritt

OV wird gesetzt, wenn Ergebnis Zahlenbereich überschreitet und damit falsch ist

c) Dezimalwert des Ergebnisses: -100 + 123 = 23

in Gleitkommadarstellung: $23 = 10111_2 = 1,0111_2 \cdot 2^4 = (-1)^0 \cdot 1,0111_2 \cdot 2^{131-127}$

 \Rightarrow Vorzeichenbit: 0

Exponent: $131_{10} = 10000011_2$

Mantisse: 01110...0

Bit-Nr.	31	l					2	24	23	3					1	6	15	5						8	7							0
Inhalt	0	1	0	0	0	0	0	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Aufgabe 3: Verlustleistung von CMOS-Schaltungen

a)
$$\overline{I} = N_{inv} \cdot \frac{1}{T_{takt}} \int_{0}^{T_{takt}} i_d(t) dt \stackrel{t_r = t_f}{=} N_{inv} \cdot f \cdot 2 \cdot \int_{0}^{t_r} i_d(t) dt = N_{inv} \cdot f \cdot 2 \cdot \frac{1}{2} \cdot t_r \cdot I_{DP} = N_{inv} \cdot f \cdot t_r \cdot I_{DP}$$

$$\Rightarrow I_{DP} = \frac{\overline{I}}{N_{inv} \cdot f \cdot t_r} = \frac{40 \text{ mA}}{25000 \cdot 10 \text{ MHz} \cdot 1,5 \text{ ns}} = 106,7 \text{ } \mu\text{A}$$

b)
$$I_{\text{max}} = i_{ges}(t_p) = N_{inv} \cdot I_{DP} = 25000 \cdot 106,7 \, \mu \text{A} = 2,67 \, \text{A}$$

 $P_{\text{max}} = p_S(t_p) = U \cdot I_{\text{max}} = U \cdot N_{inv} \cdot I_{DP} = 8,8 \, \text{W}$

c)
$$P_L = f^* \cdot C^* \cdot U^2 = 10 \text{ MHz} \cdot 6 \text{ nF} \cdot (3.3 \text{ V})^2 = 653.4 \text{ mW}$$

d)
$$P'_L = f^* \cdot C^* \cdot U'^2 = P_L \cdot \left(\frac{2.5 \text{ V}}{3.3 \text{ V}}\right)^2 = 0.57 \cdot P_L$$

⇒ Die Umladeverluste verringern sich um 43 %.

Aufgabe 4: **CMOS-Transfergates**

a) Eine Möglichkeit:

Aufgabe 5: Addierer

a) Eine Möglichkeit:

b)

c)

d) Vorteil: schnellere Berechnung

Nachteil: höhere Anzahl von Gattern notwendig

Aufgabe 6: Entwurf eines Steuerwerks

b)

	Null	TR_IN	TR_X	ADD	INC	S_INC	S_DEC	TR_Y	RD	WR
Schritt 1	0	0	0	0	1	0	0	0	0	0
Schritt 2	0	1	0	0	0	0	0	0	0	1
Schritt 3	0	0	0	0	0	1	0	0	0	0
Schritt 4	0	0	0	0	0	0	0	1	0	0

Aufgabe 7: Analyse eines Mikrocontrollerprogramms

a)

b) Das Programm berechnet das Ergebnis der Ganzzahldivision von R0/R1 und den Divisionsrest. Das Divisionsergebnis wird nach R2, der Rest nach R3 geschrieben.

c)

Register	R0	R1	R2	R3
Registerinhalt	35	10	3	5

Aufgabe 8: Programmierung der seriellen Schnittstelle im 8051

a) Reloadwert von Timer 1: $TH1 = 10011000_2 = 152_{10}$

Überlaufrate von Timer 1 im Autoreload-Modus: $\frac{f_{osc}}{12} \cdot \frac{1}{256 - \text{TH1}}$

Wegen SMOD = 1 werden die Timer 1-Überläufe durch 16 dividiert

⇒ Baudrate:
$$\frac{f_{osc}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256 - \text{TH}1} = \frac{12 \text{ MHz}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256 - 152} = 600,96 \text{ Baud}$$

b) niedrigste Baudrate: Timer 1 läuft alle 256 Schritte über \Rightarrow TH1 = 0

minimale Baudrate: $\frac{f_{osc}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256 - 0} = \frac{12 \text{ MHz}}{12} \cdot \frac{1}{16} \cdot \frac{1}{256} = 244,14 \text{ Baud}$

c) Reloadwert: TH1 = $256 - \frac{f_{osc}}{12 \cdot 16 \cdot \text{Baudrate}}$

Quarz	f_{osc}	TH1 (berechnet)	TH1 (gerundet)	Baudrate	Fehler
1	11 MHz	250,03	250	9549	0,5 %
2	11,0592 MHz	250	250	9600	0
3	12 MHz	249,49	249	8929	7,0 %

 $[\]Rightarrow$ Quarz 2 ist am besten geeignet

Aufgabe 9: Digitale Signalprozessoren

a) Der Programmabschnitt führt folgende Berechnung durch (in Dezimaldarstellung):

$$\frac{1}{2} \cdot \frac{1}{32} + \frac{1}{4} \cdot \frac{1}{16} + \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{16} \cdot \frac{1}{4} + \frac{1}{32} \cdot \frac{1}{2} = \frac{5}{64}$$

Umrechnung in Binärdarstellung: $\frac{5}{64} = \frac{1}{16} + \frac{1}{64} = 0,000101_2$

Darstellung als 24 bit-Zahl in Fraktaldarstellung: $A1 = 0000 \ 1010 \ 0000 \dots \ 0000_2 = 0A0000_{16}$ A2 = 0 (keine Überläufe), A0 ebenfalls

A2	A1	A0
\$00	\$0A0000	\$00000

- b) M5 = 4
- c) Der Ausgabewert des A/D-Wandlers steht immer an Speicheradresse \$1000 im X-Speicher, deshalb darf der Zeiger R1 auf diese Adresse nicht verändert werden.

Aufgabe 10: Schaltungsbeschreibung mit VHDL

```
a)
         ELSIF (clock'event AND clock = '1') THEN
    oder
         ELSIF RISING_EDGE (clock) THEN
    . . .
                INTERN <= EIN_X * EIN_Y + INTERN;</pre>
                INTERN <= EIN_X * EIN_Y;</pre>
    ERGEBNIS <= INTERN;</pre>
    . . .
                           2^{8} - 1
b) maximaler Eingang:
                           2^{19} - 1
    maximaler Ausgang:
                                 \frac{2^{19}-1}{\left(2^8-1\right)^2} = 8,06
    mögliche MAC-Operationen:
    ⇒ maximal 8 MAC-Operationen ohne Überlauf möglich
```

c) ...
WHEN "00" => folg_zust <= st0;
WHEN "01" => folg_zust <= st1;
WHEN "10" => folg_zust <= st0;
WHEN "11" => folg_zust <= st1;
...
WHEN "00" => folg_zust <= st0;
WHEN "01" => folg_zust <= st0;
WHEN OTHERS => folg_zust <= st1;
...
WHEN st0 => aus <= "1000";
WHEN st1 => aus <= "1111";</pre>