Planteamiento General para Polinomios Ortogonales

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

24 de agosto de 2021

Agenda Planteamiento General para Polinomios Ortogonales

- Ortogonalidad y norma genérica
- Pórmula de Rodrígues
- 3 Relaciones de recurrencia genéricas
- 4 Función generatriz generalizada
- 5 Ecuación diferencial para los Polinomios Ortogonales
- Recapitulando

Ortogonalidad y norma genérica

Propiedades genéricas de los Polinomios Ortogonales, N_n indica la norma del polinomio de grado n.

$$\int_{a}^{b} w(x)p_{m}(x)p_{n}(x)dx = h_{n}\delta_{nm}$$

Polinomio	Nombre	а	Ь	w(x)	hn	h_0
$P_n(x)$	Legendre	-1	1	1	$\frac{2}{2n+1}$	
$T_n(x)$	Tchebychev1E	-1	1	$\frac{1}{\sqrt{1-x^2}}$	$\frac{\pi}{2}$	π
$U_n(x)$	Tchebychev2E	-1	1	$\sqrt{1-x^2}$	$\frac{\pi}{2}$	
$H_n(x)$	Hermite	$-\infty$	∞	e-x2	$2^n n! \sqrt{\pi}$	
$L_n(x)$	Laguerre	0	∞	e ^{-x}	1	
$L_n^{\alpha}(x)$	LaguerreG	0	∞	$x^{\alpha}e^{-x}$; $\alpha > -1$	$\frac{\Gamma(n+\alpha+1)}{n!}$	
$P_n^{\alpha\beta}(x)$	Jacobi	-1	1	$(1-x)^{\alpha}(1+x)^{\beta}$	†	

En el caso de los polinomios de Jacobi, la norma es
$$h_n = \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{n!\Gamma(n+\alpha+\beta+1)} \quad \text{con} \quad \alpha > -1 \quad \text{y} \quad \beta > -1 \ .$$

Fórmula de Rodrígues

Los polinomios ortogonales $\{p_n(x)\}$ vienen definidos por la fórmula de Rodrigues generalizada

$$p_n(x) = \frac{1}{w(x)\mu_n} \frac{\mathrm{d}^n}{\mathrm{d}x^n} (w(x)q(x)^n)$$

donde w(x), q(x) y μ_n .

Polinomio	μ_n	w(x)	q(x)
P_n	2 ⁿ n!	1	$1 - x^2$
Tn	$\frac{(-1)^n}{\sqrt{\pi}}2^{n+1}\Gamma\left(n+\frac{1}{2}\right)$	$\frac{1}{\sqrt{1-x^2}}$	$1 - x^2$
Un	$\frac{(-1)^n}{(n+1)\sqrt{\pi}}2^{n+1}\Gamma\left(n+\frac{3}{2}\right)$	$\sqrt{1-x^2}$	$1 - x^2$
Hn	(-1) ⁿ	e-x2	1
Ln	n!	e ^{-x}	x
L_n^{α}	n!	$x^{\alpha}e^{-x}$	X

Cuadro: Funciones para determinar la Fórmula de Rodrigues generalizada

Relaciones de recurrencia genéricas

También se pueden formular, de manera genérica las relaciones de recurrencia.

$$p_{n+1}(x) = (a_n + xb_n)p_n(x) - c_np_{n-1}(x)$$

Polinomio	a _n	b _n	Cn
P_n	0	$\frac{2n+1}{n+1}$	$\frac{n}{n+1}$
T_n	0	2	1
U_n	0	2	1
H_n	0	2	2 <i>n</i>
Ln	$\frac{2n+1}{n+1}$	$-\frac{1}{n+1}$	$\frac{n}{n+1}$
L_n^{α}	$\frac{2n+1+\alpha}{n+1}$	$-\frac{1}{n+1}$	$\frac{n+\alpha}{n+1}$

Función generatriz generalizada

La función generatriz generalizada viene expresada por la serie

$$G(x,t) = \sum_{n=0}^{\infty} C_n p_n(x) t^n$$
 con a_n constante

Polinomio	C _n	$\mathcal{G}(x,t)$
Pn	1	$ \frac{1}{\sqrt{1-2xt+t^2}} $ $ 1-t^2 $
T _n	2	$\frac{1 - t^2}{1 - 2xt + t^2} + 1$
Un	1	$ \frac{1}{1 - 2xt + t^2} $ $ e^{2xt - x^2} $
H _n	1/n!	e ^{2xt-x²}
H_{2n}	$1^{n}/(2n)!$	cos(2xt)e ^{t²}
H_{2n+1}	$1^n/(2n+1)!$	sen(2xt)e ^{t2}
Ln	1	$\frac{1}{1-t}e^{-\frac{xt}{1-t}}$
L_n^{α}	1	$\frac{1}{(1-t)^{\alpha}}e^{-\frac{xt}{1-t}}$

Ecuación diferencial para los Polinomios Ortogona

Cada uno de los polinomios ortogonales habrá de ser solución de una ecuación diferencial ordinaria de la forma

$$g_2(x)\frac{\mathrm{d}^2p_n(x)}{\mathrm{d}x^2}+g_1(x)\frac{\mathrm{d}p_n(x)}{\mathrm{d}x}+\alpha_np_n(x)=0$$

Polinomio	g ₂ (x)	g ₁ (x)	α_n	
Pn	$1 - x^2$	-2x	n(n + 1)	
Tn	$1 - x^2$	-x	n ²	
Un	$1 - x^2$	-2x	n(n + 1)	
H _n	1	-2x	2n	
Ln	x	1-x	n	
L_n^{α}	X	$1 - x + \alpha$	n	
$P_n^{\alpha\beta}$	$1 - x^2$	$\beta - \alpha - x(2 + \alpha + \beta)$	$n(n+\alpha+\beta+1)$	

Recapitulando

En presentación consideramos

