R3

⑩ 日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A) 平

平4-156083

®Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成4年(1992)5月28日

H 04 N

3/223 5/262 8943-5C 7037-5C 8942-5C

審査請求 未請求 請求項の数 1 (全5頁)

❷発明の名称

テレビ電話機

②特 願 平2-281228

20出 **9** 平 2 (1990)10月18日

⑫発 明 者

ウイリアム・シュップ

京都府京都市伏見区竹田向代町136番地 村田機械株式会

社本社工場内

勿出 願 人 村田

村田機械株式会社

京都府京都市南区吉祥院南落合町3番地

個代 理 人 弁理士 中島 司朗

明細書

1. 発明の名称

テレビ電話機

- 2. 特許請求の範囲
 - (1) 撮像手段を備え、通信回線を介して画像の伝送 を行うテレビ電話機において、

伝送画像における主走査方向の長さと副走査方向の長さとの比率を変更する可変手段を備えたことを特徴とするテレビ電話機。

3. 発明の詳細な説明

産業上の利用分野

本発明は、例えば電話回線を介して、相手の顔 を見ながら通話を行うことなどができるテレビ電 話機に関する。

従来の技術

従来より、撮像手段とディスプレイとを備え、 電話回線を介して音声と伴に画像を送受すること により、互いに相手の顔を見なから通話を行うこ となどができるテレビ電話機が用いられている。

この種のテレビ電話機では、通常、表示される

画像の明るさは受信側で調節することができるようになっているが、その他の画像の状態は、摄像されたものが忠実に再現されるようになっている。

発明が解決しようとする課題

テレビ電話で通話者の餌などの画像を相手に送る場合、通話者は必ずしも撮像された画像が相手 先のディスプレイに忠実に表示されることを望ん ではいないことがある。例えば、場合によっては 実際に撮像された画像よりも多少痩せて見える画 像を相手先のディスプレイに表示させるように演 出したいことなどがある。

しかしながら、従来のテレビ電話機では、摄像された画像が相手先のディスプレイで忠実に再現されるようになっているため、例えば上記のような演出を施した画像を表示させることなどはできないという問題点を有していた。

本発明は、上記の点に鑑み、相手先のディスプレイに実際よりも痩せて見えたり、太って見えたりするように表示させることなどができるテレビ 電話機の提供を目的としている。

課題を解決するための手段

本発明は、上記の課題を解決するために、摄像 手段を備え、通信回線を介して画像の伝送を行う テレビ電話機において、伝送画像における主走査 方向の長さと副走査方向の長さとの比率を変更す る可変手段を備えたことを特徴としている。

作 用

上記の構成によれば、可変手段は、伝送画像に おける主走査方向の長さと副走査方向の長さとの 比率を変更する。

第1実施例

本発明の第1実施例を第1図ないし第3図に基づいて説明すれば、以下の通りである。

第1図はテレビ電話機の要部の構成を示すプロック図、第2図(a)(b)は、それぞれ撮像管の水平走査用のこぎり波、および垂直走査用のこぎり波の波形を示す波形図、第3図は撮像管の撮像領域の例を示す説明図である。

第1図において、11は撮像部、12は撮像レンズ、13は撮像管、13aは撮像面、14は同

行うようになっている。

回線制御回路18は、例えばISDNや公衆電話回線等の通信回線に接続され、発呼制御や着呼制御などを行うようになっている。

また、テレビ電話機には、さらに、図示しない 画像信号の受信処理部や音声信号の送受信処理部 等が備えられている。

上記の構成において、水平走査用のこぎり被発生回路 1 5、または垂直走査用のこぎり被発生回路 1 6 の可変抵抗器 1 5 a・1 6 aを操作すると、水平走査用のこぎり波または垂直走査用のこぎり波の振幅が変化する。

例えば可変抵抗器16aを操作して、垂直走査 用のこぎり波の波形を、第2図(a)に実線で示す波形から2点鎖線で示す波形に変化させたたすると、攝像面13aにおける撮像領域の縦方向の長さは、第3図に示すようにVからV゚に変化する。そこで、V'×Hの領域の画像信号が、撮像管13から画像信号処理回路17および回線制御回路18を介して通話相手先に送られる。 期信号発生回路、15は水平走査用のこぎり放発 生回路、15aは可変抵抗器、16は垂直走査用 のこぎり波発生回路、16aは可変抵抗器、17 は画像信号処理回路、18は回線制御回路である。

上記水平走査用のこぎり波発生回路 1 5 、および垂直走査用のこぎり波発生回路 1 6 は、それぞれ同期信号発生回路 1 4 から出力される同期信号に同期して、所定の周波数ののこぎり波を発生するようになっている。また、のこぎり波の振幅は、可変抵抗器 1 5 a · 1 6 a によって調節し得るようになっている。

援像レンズ12は摄像管13の撮像面13aに画像を結像し、撮像管13は、上記のこぎり波に応じて、画像信号処理回路17に画像信号を出力するようになっている。摄像管13は、具体的には、例えばイメージオルシコンやビジコンなどが用いられる。

画像信号処理回路17は、撮像管13からの画像信号のA/D(アナログ/ディジタル)変換や、 所定の伝送手順に基づいた伝送信号への変換等を

ところが、通話相手先のディスプレイでは、通常通りV×Hの領域に対応するように表示されるので、縦方向に若干延びた画像として表示される。 すなわち、人の顔が写っている場合には、実際よりも痩せて見えるようになる。

同様に、可変抵抗器15aを操作して、水平走 査用のこぎり波の波形が第2図(b)に実線で示す波形から破線で示す波形に変化させると、 撮像 領域はV×H' になり、相手先のディスプレイでは、若干ふくよかに見えるようになる。

なお、上記の例では水平走査用のこぎり波の振幅と垂直走査用のこぎり波の振幅とを独立して変化させ得るように構成された例を示したが、例えば可変抵抗器 1 5 a・1 6 aを連動させて、一方の振幅が小さくなるときに他方の振幅は大きくなるようにしてもよい。

第2実施例

本発明の第2実施例として、提像部から出力された画像信号に対して、主走査方向の長さと剔走 査方向の長さとの比率を変更する処理を行うよう に構成された例を説明する。

第4図はテレビ電話機の要部の構成を示すプロック図、第5図は読み出しアドレス発生回路の詳細な構成を示すプロック図である。

第4図において、21は撮像部、22は撮像レンズ、23はCCDイメージセンサ、24は画像信号処理回路、25は回線制御回路、31はクロック信号発生回路、32はA/D変換器、33はRAM、34は書き込みアドレス発生回路、35は読み出しアドレス発生回路、36は伝送制御回路である。

上記CCDイメージセンサ23は、クロック信号発生回路31から出力されるクロック信号に応じてアナログの画像信号を出力し、A/D変換器32は画素ごとにディジクル信号に変換するようになっている。

RAM33は、A/D変換器32からの画案ごとの画像データを書き込みアドレスに応じた領域に記憶する一方、読み出しアドレスに応じた領域から画像データを読み出すようになっている。

すなわち、読み出しアドレス発生回路35のクロック信号制御回路41は、クロック信号発生回路31からのクロック信号をそのまま出力する。そこで、読み出しアドレス発生回路35からは、書き込みアドレスに対応した読み出しアドレスが出力され、RAM33からは、A/D変換器32から出力される画像データと等しい画像データが読み出される。それゆえ、相手先のディスプレイには、通常通りの画像が表示される。

一方、例えば人の顔が実際よりも痩せて見える ようにする場合には、以下のような動作が行われ ス

読み出しアドレス発生回路35のクロック信号 制御回路41は、クロック信号発生回路31からのクロック信号が例えば4クロック入力されるごとに、余分に1クロック出力する。すなわち、余分に出力されたクロックに対しては、カウンクはインクリメントされるが、RAM33からの読み出しは行われないので、第6図に示すように、5 画素ごとに1画素が間引かれた画像デークがRA 書き込みアドレス発生回路34は、クロック信号発生回路31から出力されるクロック信号に応じてインクリメントされる書き込みアドレしまっている。また、統み出ばは、別えば第5は、分配では、別にはは、例えば第5はは、別に示すように、クロック信号を制御するクロック信号を制御回路41から号に応じてインクリメンら構成されるアドレスを発生するカウンタ42とから構成されている。

伝送制御回路36は、RAM33から読み出された画像データを所定の伝送手順に基づいた伝送信号に変換するようになっている。回線制御回路25は、前記第1実施例と同様に、発呼制御や着呼制御等を行うようになっている。

上記の構成において、伝送画像における主走査 方向の長さと副走査方向の長さとの比率を通常の 比率で相手先のディスプレイに表示させる場合に は、以下のような動作が行われる。

M33から読み出され、伝送される。それゆえ、 相手先のディスプレイには、痩せて見えるような 表示がなされる。

ここで、上記のように画素を間引くと全画素数が少なくなるが、その差分だけ例えば黒レベルの画像データを合成するか、またはカウンタ42の値に係わらず、RAM33における黒レベルの画像データが記憶されているアドレスを指定するようにすればよい。

また、逆に実際よりも横に幅広く見えるように する場合には、以下のような動作が行われる。

競み出しアドレス発生回路35のクロック信号制御回路41は、クロック信号発生回路31からのクロック信号が例えば4クロック入力されるごとに、次の1クロックをカウンタ42に出力しないように抑制する。すなわち、クロックが出力されない場合には、カウンタはインクリメントされずに直前のアドレスを保持したままでRAM33からの読み出しが行われるので、第7図に示すように、4画素ごとに1画素が余分に繰り返された

画像データがRAM33から読み出され、伝送される。それゆえ、相手先のディスプレイには、横に幅広くなって見えるような表示がなされる。

ここで、上記のように部分的に同一の画素を繰り返すと、一部の画素の画像データを無視することになるが、走査線上の最初の画素の画像データを無視する場合には、カウンタ 4 2 に、無視する画素数に応じたアドレスをプリセットするようにすればよい。

なお、上記第2実施例においては、画素を間引いたり繰り返したりする例を説明したが、これに限らず、走査線を間引いたり繰り返したりしてもよい。

また、RAM33の読み出しクロック信号を制御する例を説明したが、これに限らず、例えば書き込みクロック信号を制御するようにしてもよいし、さらに、CCDイメージセンサ23やA/D変換器32に供給するクロック信号を制御するようにしてもよい。

発明の効果

11…撮像部、13…摄像管、15…水平走査用のこぎり波発生回路、15a…可変抵抗器、16…垂直走査用のこぎり波発生回路、16a…可変抵抗器、21…撮像部、23…CCDイメージセンサ、35…読み出しアドレス発生回路、41…クロック信号制御回路、42…カウンタ

特許出願人 村田機械株式会社

以上説明したように、本発明によれば、伝送画像における主走査方向の長さと副走査方向の長さとの比率を変更する可変手段を備えていることにより、相手先のディスプレイに、実際よりも痩せて見えたり、太って見えたりするように演出して表示させることなどができるという効果を奏する。

4. 図面の簡単な説明

