MINI PROJECT 1

TADIPATRI UDAY KIRAN REDDY EE19BTECH11038

April 2, 2022

Calculations

We need a step-down matching network to match 250 Ω to 50 Ω .

$$Q = \sqrt{\frac{250}{50} - 1} \implies Q = 2$$

$$Q = \frac{\omega L}{50} \implies L = 15.9nH$$

$$Q = \omega C 250 \implies C = 1.2pF$$

On chip inductor design

Inductor design is done on ASITIC CAD tool. Using **Square Symmetric Spiral** with the below specifications.

```
solomon@solomon: ~/ICWC/ASITIC Q ≡ solomon@solomon: ~/ICWC/ASITIC Q ≡ solomon@solomon: ~/ICWC/ASITIC$ ./asitic_linux -t tek/cmos130.tek

ASITIC DEBUG version Grackle (Linux_Intel) (Jacob)
Analysis & Simulation of Inductors and Transformers for ICs
Reading technology file <tek/cmos130.tek>...
Reading .asitic init file...
ASITIC> SYMSQ NAME=A:LEN=180:N=3.9:S=0.5:N=8:METAL=2:XORG=0:YORG=0

ASITIC> pix A 1

maxL = 7500.00, maxT = 1.68, maxW = 1.68 (lambda = 150000.00, delta = 2.11)
Performing Analysis at 1 GHz
Generating capacitance matrix (128x128)...
Generating inductance matrix (242x242)....
Pi Model at f=1 GHz: Q = 11.67 , 11.69 , 13.25
L = 15.99 nH R = 6.602
CS1 = 79.55 fF Rs1 = 726.2
CS2 = 76.75 fF Rs2 = 789.9 Est. Resonance = 4.462 GHz
ASITIC> ■
```

The Pi Model parameters are , $\mathbf{L=15.99nF,R=6.602} \Omega, \mathbf{Cs1=79.55fF}, \mathbf{Rs1=726.2} \Omega, \mathbf{Cs2=76.75fF}, \mathbf{Rs2=789.9} \Omega.$

Schematic

Both ideal and non-ideal networks are simulated and compared.

MATCHING NETWORK

S-parameters

S11, S22 Return Loss

Port 1 side is $\bf -23.15dB$ and Port 2 side is $\bf -23.12dB$ which also satisfies given constraints.

Insertion Loss

Insertion loss here is $-20\log|\mathbf{S}_{21}|$ and the same is plotted. After many iterations of inductor design, insertion loss of 757.4 mdB is obtained.

S12

IDEAL vs NON IDEAL

S-parameters	IDEAL	NON IDEAL	Metric
S11	$-24.79 \mathrm{dB}$	-23.157dB	Lower is better.
S12	-14.52mdB	-757.4mdB	Lower is better.
S21	-14.52mdB	-757.4mdB	Higher is better.
S22	$-24.79 \mathrm{dB}$	-23.12dB	Lower is better.