Завдання експериментального туру 10 клас

Задача 1 (5 балів)

Обладнання

Групове:

- туалетний папір;

Індивідуальне:

- пластикова трубка (довжиною приблизно 25 см);
- лінійка;
- ділянка парти, вкрита пакувальною плівкою;
- пластиковий стаканчик із мильним розчином (близько 20 мл).

Завдання

Визначте середню товщину стінки мильної бульбашки максимально можливого розміру, яку вдається видути на покритій плівкою поверхні парти.

Проаналізуйте похибки, що вносяться різними факторами, та оцініть величини цих похибок.

Задача 2 (10 балів)

Обладнання

Групове

- Годинник з великою секундною стрілкою (2-3 на групу);
- мікрометр (2-3 на групу).

Індивідуальне

- Штатив з горизонтально закріпленим стержнем;
- пляшка пластикова об'ємом 0,5 л з двома отворами у кришці;
- нитки:
- лінійка;
- відрізок мідного дроту (товщина лакової ізоляції 25 мкм);
- важок масою 100 г.

Завдання

- 1. Підвісивши пляшку на зробленому з ниток біфілярному (двонитковому) підвісі, визначте момент інерції I порожньої пляшки відносно її осі симетрії.
- 2. Визначте модуль пружності міді для деформації зсуву G.

У звіті наведіть:

- теоретичне обґрунтування запропонованої Вами експериментальної методики;
- план проведення вимірів;
- заходи, які Ви запровадили для забезпечення якнайменшої похибки вимірювань;
- таблицю з вихідними даними, проміжними та кінцевими результатами;
- оцінку похибки вимірювань.

Теоретична довідка

Момент інерції тіла I характеризує його інертність при обертальному русі. Відносно деякої осі сумарний момент сил M, що діють на тіло, викликає кутове прискорення ε :

$$M = I \cdot \varepsilon$$

Це рівняння виражає другий закон Ньютона для обертального руху.

З теорії пружності відомо, що при $\partial e \phi o p m a u i i закручування момент сили, який необхідний для закручування циліндричного стержня радіусом <math>r$ та довжиною l на невеликий кут φ , може бути обчислений за формулою:

$$M = G \cdot \frac{\pi r^4}{21} \cdot \varphi$$

де G – модуль пружності матеріалу стержня для деформації зсуву.

Задания экспериментального тура 10 класс

Задача 1 (5 балов)

Оборудование

Групповое:

- туалетная бумага;

Индивидуальное:

- пластиковая трубка (длиной приблизительно 25 см);
- линейка;
- участок парты, покрытый упаковочной плёнкой;
- пластиковый стаканчик с мыльным раствором (приблизительно 20 мл).

Задание

Определите среднюю толщину стенки мыльного пузырька максимально возможного размера, который удаётся выдуть на покрытой плёнкой поверхности парты.

Проанализируйте ошибки, которые вносятся разными факторами, та оцените величины этих ошибок.

Задача 2 (10 балов)

Оборудование

Групповое

- Часы с большой секундной стрелкой (2-3 на группу);
- микрометр (2-3 на группу).

Индивидуальное

- Штатив с горизонтально закрепленным стержнем;
- бутылка пластиковая объёмом 0,5 л с двумя отверстиями в крышке;
- нитки:
- линейка;
- кусок медного провода (толщина лаковой изоляции 25 мкм);
- грузик массой 100 г.

Задание

- 1. Подвесив бутылку на сделанном из ниток бифилярном (двухниточном) подвесе, определите момент инерции I пустой бутылки относительно её оси симметрии.
- 2. Определите модуль упругости меди для деформации сдвига G.

Отчёт должен содержать:

- теоретическое обоснование предложенной Вами экспериментальной методики;
- план проведения измерений;
- методику минимизации ошибки измерений;
- таблицу с данными измерений, промежуточными и конечными результатами;
- оценку ошибки измерений.

Теоретична справка

Момент инерции тела I характеризует его инертность при вращательном движении. Относительно некоторой оси суммарный момент сил M, действующих на тело, вызывает угловое ускорение ε :

$$M = I \cdot \varepsilon$$

Это уравнение выражает второй закон Ньютона для вращательного движения.

С теории упругости известно, что при $\partial e \phi$ ормации кручения момент силы, необходимый для закручивания цилиндрического стержня радиусом r и длиной l на небольшой угол φ , может быть вычислен по формуле:

$$M = G \cdot \frac{\pi r^4}{2l} \cdot \varphi$$

где G – модуль упругости материала стержня для деформации сдвига.