

Automotive Security

STUDIENARBEIT

für die Prüfung zum

Bachelor of Science

des Studienganges Informatik / Angewandte Informatik

an der

Dualen Hochschule Baden-Württemberg Karlsruhe

von

Jonas Kölblin

Abgabedatum 22. Mai 2023

Bearbeitungszeitraum 24 Wochen
Matrikelnummer 7150881
Kurs TINF20B5
Ausbildungsfirma SICK AG
Waldkirch
Gutachter der Studienakademie Ralf Brune

T 1 1		
Hirk	lärung	\mathbf{o}
	iai aiiş	_

Ich versichere hiermit, dass ich meine Studienarbeit mit dem Thema: »Automotive
Security« selbstständig verfasst und keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe. Ich versichere zudem, dass die eingereichte elektronische
Fassung mit der gedruckten Fassung übereinstimmt.

Ort Datum Unterschrift

Abstract

abstract

Inhaltsverzeichnis

1	Ein	führun	$_{ m eg}$	1
	1.1	Motiva	ation	1
	1.2	Zielset	zung	2
2	Gru	ındlage	en	3
	2.1	Auton	notive Networking	
		2.1.1	Controller Area Network	4
		2.1.2	Local Interconnect Network	7
		2.1.3	FlexRay	8
		2.1.4	Media Oriented System Transport	Ć
		2.1.5	Automotive Ethernet	11
	2.2	Schnit	tstellen	12
	2.3		Security	13
		2.3.1	Security Lifecycle	13
		2.3.2	ISMS	13
3	Ang	griffsflä	ichen	1 4
		3.0.1	Bootvorgang	14
4	Sch	utzmai	ßnahmen	15
		4.0.1	SecureBoot	15
T;	torat	11237027	rojehnis	16

Abbildungsverzeichnis

2.1	Verschiedene Kommunikationsprotokolle in Automobil-Netzwerken	3
2.2	Beispiel des CAN-Netzwerks eines 2010 Ford Escape	5
2.3	Format einer CAN-Botschaft	6
2.4	Aufbau einer FlexRay-Botschaft	9
2.5	Ringtopologie eines MOST-Bus	10
2.6	Aufbau eines MOST25-Pakets	11
2.7	Aufbau eines Ethernet-Pakets	12

Abkürzungsverzeichnis

ECU	Electronic Control Unit	3
CAN	Controller Area Network	4
DLC	Data Link Connector	4
LIN	Local Interconnect Network	7
MOST	Media Oriented Systems Transport	9
OBD	On-Board-Diagnose	13
IP	Internet Protocol	11
TCP	Transmission Control Protocol	11
UDP	User Datagram Protocol	11

Kapitel 1

Einführung

Autos stellen einen sehr großen Anteil der Infrastruktur heutzutage dar. In einer Umfrage im Jahr 2022 gaben über 70 Prozent der Befragten an, ein eigenes Auto zu besitzen [vgl. Statista 2022]. Unzählige Autos sind täglich auf den Straßen unterwegs. Im Zuge der Digitalisierung werden moderne Autos zunehmend mit neuen Features und Technologien ausgestattet, mit dem Ziel, die Bedienung des Fahrzeugs möglichst komfortabel zu gestalten. Das Auto nimmt der fahrenden Person immer mehr Aufgaben ab, wie zum Beispiel das Abblenden, Einparken oder im Fall von selbst-fahrenden Autos sogar das Steuern des Fahrzeugs an sich. Zudem steigt die Anzahl der Entertainmentfeatures, wie zum Beispiel das Verbinden eines Mobiltelefons mit dem Fahrzeug. Ein Effekt dieser Entwicklung ist, dass zum einen die einzelnen Fahrzeugteile intern zunehmend miteinander vernetzt werden. Zum anderen steigt aber auch die Relevanz der Kommunikation des Fahrzeugs mit externen Systemen. Insgesamt sind die elektronischen Systeme in heutigen Fahrzeugen deutlich komplexer und bieten mehr Schnittstellen als noch vor 20 Jahren. Diese zunehmende Komplexität schafft neue Angriffsflächen für Cyberangriffe. Experimente in der Vergangenheit wie zum Beispiel von Charlie Miller und Chris Valasek [vgl. Greenberg 2015] haben jedoch bereits gezeigt, dass die Sicherheitsmaßnahmen der Automobilhersteller oft nicht ausreichen, um die Fahrzeuge zuverlässig gegen solche Angriffe zu schützen.

1.1 Motivation

Eines der schockierendsten Ereignisse der letzten Jahre im Bereich der Automotive Cyber Security war die oben erwähnte Aktion von Miller und Valasek im Jahr 2015 [vgl. Greenberg 2015]. Den beiden Hackern gelang es, einen Jeep Cherokee über das Internet zu

1.2. ZIELSETZUNG

kompromittieren. Dabei verschafften sie sich nicht nur Zugriff zur grundlegenden Board-Elektronik wie dem Radio oder den Scheibenwischern, sondern es gelang ihnen auch, die Bremsen und den Motor zu deaktivieren. Sie konnten das Fahrzeug fernsteuern und der eingeweihte Fahrer war ihnen hilflos ausgeliefert. Dieses Experiment fand natürlich nur zu Forschungs- und Demonstrationszwecken statt. Aktionen wie diese zeigen jedoch anschaulich, wozu eine Person mit böswilligen Absichten theoretisch in der Lage wäre. Sicherheitslücken wie diese können schlimmstenfalls zum Verlust von Menschenleben führen. Aus diesem Grund ist es wichtig, das dem Thema der Automotive Security noch mehr Aufmerksamkeit gewidmet wird. Hersteller müssen sich intensiver mit den durch die zunehmende Vernetzung der Autos entstandenen Angriffsmöglichkeiten beschäftigen und Sicherheitslücken bestenfalls präventiv, ansonsten so schnell wie möglich, schließen. Daher widmet sich diese Arbeit diesen besagten Angriffsmöglichkeiten.

1.2 Zielsetzung

Diese Arbeit soll einen Überblick über die Angriffsflächen eines Automobils sowie über einige Lösungsansätze für diese Schwachstellen schaffen. Hierzu erfolgt zunächst eine Erläuterung der notwendigen theoretischen Grundlagen wie dem Aufbau des internen Netzwerks eines Automobils sowie notwendigen Grundlagen der Cyber Security. Anschließend sollen die verschiedenen Angriffsmöglichkeiten eines Autos aufgezeigt werden. Darauf folgt die Sammlung und Evaluierung von Schutzmaßnahmen gegen diese Angriffsmöglichkeiten mit Blick auf die Frage, wo die Hersteller ansetzen können oder müssen, um ihre Autos sicherer zu gestalten.

Kapitel 2

Grundlagen

In diesem Kapitel sollen die für das weitere Verständnis notwendigen theoretischen Grundlagen erläutert werden. Dazu gehört zunächst der Aufbau des Netzwerks in einem Fahrzeug. Des Weiteren werden relevante Grundlagen der Cyber Security erklärt.

2.1 Automotive Networking

Im Inneren von Autos befinden sich heutzutage eine Vielzahl elektronischer Systeme, von denen jedes mit benachbarten Komponenten kommunizieren kann. Die einzelnen elektronischen Systeme werden als Electronic Control Units (ECUs) bezeichnet. Moderne Autos enthalten in der Regel über 50 verschiedene ECUs [vgl. MILLER und VALASEK 2013, S. 6]. Da diese Kontrolleinheiten zum Teil lebensentscheidende Aufgaben übernehmen, muss die Kommunikation zwischen den Einheiten möglichst in Echtzeit erfolgen.

Data-rates supported by the low-latency in-vehicle communication protocols.

In-vehicle Communication Protocol	Maximum Data-rate
Local Interconnect Network (LIN)	20 kbit/s
Controller Area Network (CAN)	1 Mbit/s
CAN-FD (Flexible Data)	5 Mbit/s (data),
	1 Mbit/s (arbitration, ack)
CAN XL	10 Mbit/s (data)a, 1 Mbit/s (arbitration, ack)
FlexRAY	10 Mbit/s
Ethernet with Time-Sensitive Networking	100 Mbit/s to 10 Gbit/s

Abbildung 2.1: Verschiedene Kommunikationsprotokolle in Automobil-Netzwerken Quelle: [Mohammad Ashjaei u. a. 2021, S. 2]

Für die Venetzung der ECUs kommen verschiedene Technologien zum Einsatz (siehe Abbildung 2.1). Die relevantesten davon werden im Folgenden genauer erläutert. Die wichtigste davon ist im Automotive-Bereich der sogenannte CAN-Standard.

2.1.1 Controller Area Network

Die elektronischen Kontrolleinheiten eines Autos sind typischerweise über einen oder mehrere Busse, die auf dem Controller Area Network (CAN)-Standard basieren, miteinander verbunden. Hierbei kommunizieren die ECUs über CAN-Pakete. Diese werden an alle Komponenten gesendet, welche dann jeweils basierend auf dem Inhalt entscheiden, ob das Paket für sie bestimmt ist oder nicht. Eine Identifikation der Quelle oder Authentisierung gibt es in diesem Standard nicht. [vgl. MILLER und VALASEK 2013, S. 7] Generell wird meistens zwischen High Speed CAN und Low Speed CAN unterschieden. High Speed CAN wird eingesetzt, wenn bei der Übertragung hohe Geschwindigkeit benötigt wird, beispielsweise bei sicherheitskritischen Anwendungsfällen. Außerdem wird bietet sich die Verwendung von High Speed CAN bei der Übertragung von großen Datenmengen an. In Abbildung 2.1.1 ist das CAN-Netzwerk eines 2010 Ford Escape dargestellt. Das abgebildete Netzwerk verfügt über zwei Busse, einen medium speed (MS) und einen high speed (HS) CAN-Bus. Beide Busse enden hier im Data Link Connector (DLC) (siehe Kapitel 2.2). In Automotive Netzwerken lassen sich zwei Arten von CAN-Paketen finden: normale CAN-Pakete und diagnostische CAN-Pakete.

Abbildung 2.2: Beispiel des CAN-Netzwerks eines 2010 Ford Escape Quelle: [MILLER und VALASEK 2013, S. 19]

Normale CAN-Pakete

Normale Pakete werden von ECUs gesendet und können entweder Informationen oder Befehle enthalten. Typischerweise werden sie alle Millisekunden gesendet. Auf Anwendungsebene enthalten die CAN-Pakete einen Identifier, die zu übertragenden Daten und manchmal noch eine Prüfsumme, um sicherzustellen, dass das Paket korrekt übertragen wurde. Der Identifier gibt sowohl an, für welche ECUs das Paket bestimmt ist, als auch, welche Priorität das Paket hat. [vgl. MILLER und VALASEK 2013, S. 9]

Das Format einer CAN-Botschaft ist in Abbildung 2.1.1 dargestellt. Es besteht aus folgenden Bestandteilen:

Header CAN ist ein Broadcast-System, bei dem jeder Sender seine Botschaften mit einem eindeutigen Message Identifier markiert.

Message Identifier Der Message Identifier kennzeichnet eine Botschaft und dient zur eindeutigen Identifizierung. Er kann entweder 11 Bit (CAN 2.0A) oder 29 Bit (CAN 2.0B) lang sein und enthält zusätzlich 1 bis 3 Steuerbits.

Control Bits Die Steuerbits im Control-Feld umfassen den Data Length Code (DLC), der die Anzahl der übertragenen Nutzdatenbytes angibt, sowie eine 15-Bit-Prüfsumme, auch genannt Cyclic Redundancy Check (CRC) zur Fehlererkennung.

Payload Die Nutzdaten (Payload) einer Botschaft können zwischen 0 und 8 Datenbytes umfassen.

Acknowledge und End of Frame Die CAN-Controller der Empfänger senden eine positive Empfangsbestätigung oder eine Fehlermeldung (Error Frame) innerhalb des Acknowledge und End of Frame Felds.

Stuffing Bits Stuffing Bits werden verwendet, um den Bittaktgenerator von Empfängern zu synchronisieren. Sie werden eingefügt, um sicherzustellen, dass nicht mehr als fünf aufeinanderfolgende Bits denselben Wert haben. [ZIMMERMANN und SCHMIDGALL 2014, S. 61 ff.]

Abbildung 2.3: Format einer CAN-Botschaft Quelle: [ZIMMERMANN und SCHMIDGALL 2014, S. 61]

Diagnostische CAN-Pakete

Diagnostische Pakete tauchen während des normalen Betriebs des Autos im Normalfall nicht auf. Sie werden von Diagnose-Werkzeugen gesendet, die beispielsweise von Mechanikern genutzt werden um mit den ECUs im Auto zu kommunizieren. So können Mängel und Fehlfunktionen entdeckt oder andere Informationen gewonnen werden. Das Format von diagnostischen CAN-Paketen ähnelt dem von normalen Paketen, erfolgt jedoch meist nach strengeren Konventionen. Standards hierfür sind zum Beispiel ISO-TP, ISO 14229 und ISO 14230. [vgl. MILLER und VALASEK 2013, S. 10]

2.1.2 Local Interconnect Network

Ein weiteres relevantes Protokoll im Automotive Bereich ist das Local Interconnect Network (LIN) Protokoll. Es wurde 1998 in Zusammenarbeit von Audi, BMW, Daimler-Chrysler, Volvo, Volkswagen, VCT und Motorola entwickelt mit dem Ziel, ein möglichst kosteneffizientes Kommunikationsprotokoll zu schaffen [Fijalkowski 2011, S. 57]. Das LIN-Protokoll basiert auf dem Serial Connections Interface Datenformat und ist in einer Single Master/Multiple Slaves Architektur aufgebaut. Das bedeutet, dass eine elektronische Kontrolleinheit als Masterknoten fungiert und andere elektronische Slave-Einheiten miteinander verbindet.

Aufbau

Nachrichtenpakete bestehen im LIN-Standard aus einem Header und einem Data Frame. Der Header enthält einen Synchronisation Break, ein Synchronisation Byte und einen Message Identifier. Die ersten beiden Bestandteile sind für die Nachrichtensynchronisierung notwendig. Der Identifier wird benötigt, damit Knoten erkennen können, ob eine Nachricht für sie bestimmt ist. Der Data Frame ist nach dem 8N1-Schema aufgebaut. Das bedeutet, dass jedes Paket ein Startbit, acht Datenbits, kein Paritätsbit und ein Stopbit besitzt. [FIJALKOWSKI 2011, S. 58]

Im LIN-Standard sind drei Arten von Kommunikation erlaubt.

- 1. Master to Slave, beziehungsweise Master to Multiple Slaves
- 2. Slave to Master
- 3. Slave to Slave

Die Slaves können somit auch untereinander ohne Beiteiligung des Masters kommunizieren. [FIJALKOWSKI 2011, S. 59]

Anwendung

LIN zeichnet sich wie oben erwähnt vor allem durch seine Kosteneffizienz aus. Allerdings bietet das Protokoll deutlich weniger Bandbreite als CAN. Somit wird es vor allem an Stellen im Fahrzeug eingesetzt, wo nicht viel Bandbreite notwendig ist. Beispielsweise wird LIN häufig für die Steuerung von Türen, Dach, Sitzen und dem Lenkrad verwendet. [FIJALKOWSKI 2011, S. 59]

Für den Aufbau eines Netzwerks mit den zwei Protokollen gibt es zwei gängige Ansätze:

- 1. Mehrere ECUs werden über LIN mit einer zentralen ECU verbunden. Die Verbindung dieser zentralen ECUs erfolgt mit dem CAN-Standard.
- 2. Alle ECUs werden über LIN mit einer zentralen ECU verbunden.

Der zweite Ansatz ist skalierbarer, da ohne großen Aufwand neue Knoten hinzugefügt werden können. Der erste Ansatz ermöglicht jedoch eine deutlich höhere Bandbreite bei der Kommunikation zwischen den Einheiten. [FIJALKOWSKI 2011, S. 58]

2.1.3 FlexRay

Der CAN Standard weist neben seinen Stärken auch einige Schwächen auf. Beispielsweise ist die realistisch erreichbare Datenrate beschränkt, zudem lassen sich sehr hohe Datenraten nur mit kurzen Stichverbindungen erreichen. Außerdem verfügt das System nur über einen Kanal und versagt somit bei Ausfall der Busverbindung. Aus diesen Gründen hielten viele Fachleute eine Neuentwicklung für notwendig und sinnvoll [ZIMMERMANN und SCHMIDGALL 2014, S. 96]. Daher wurde FlexRay als Ersatz für CAN entwickelt. In der Praxis wird es allerdings größtenteils mehr als Ergänzung als als vollständiger Ersatz eingesetzt [ZIMMERMANN und SCHMIDGALL 2014, S. 97]. Dies könnte an den höheren Kosten aufgrund größerer Komplexität von FlexRay liegen.s FlexRay ermöglicht Aufbauten in Linien- und Sterntopologien. Diese können einkanalig oder zweikanalig sein. Der Aufbau einer FlexRay-Botschaft ist in Abbildung 2.1.3 veranschaulicht. Zu Beginn einer FlexRay-Botschaft stehen 5 Steuerbits, in denen Sonderinformationen über die Nachricht angezeigt werden können. Anschließend folgen die Frame ID mit dem Zeitslot der Botschaft, die Nutzdatenlänge, eine Cyclic-Redundancy-Check-Prüfsumme und ein Zykluszähler.

Abbildung 2.4: Aufbau einer FlexRay-Botschaft Quelle: [ZIMMERMANN und SCHMIDGALL 2014, S. 101]

2.1.4 Media Oriented System Transport

Das Media Oriented Systems Transport (MOST) Protokoll wird vor allem in Infotainment-Systemen von Autos eingesetzt. Anstelle von Kabeln werden hier Lichtwellenleiter verwendet. Somit ist das Signal unempfänglich gegenüber elektromagnetischer Einstrahlung. Es wird unterschieden zwischen MOST25, MOST50 und MOST150, welche sich in Paketgröße und Bandbreite unterscheiden. Ein MOST-Netzwerk ist meist als Ringtopologie aufgebaut (vergleiche Abbildung 2.1.4). Auch im MOST-Protokoll gibt es Master- und Slave-Knoten. Der Master-Knoten ist häufig ein Gateway zu einem CAN-Bus.

Abbildung 2.5: Ringtopologie eines MOST-Bus Quelle: [Grzemba 2007, S. 40]

Paketaufbau

Der Aufbau eines MOST25-Pakets ist in Abbildung 2.1.4 dargestellt. Es folgt eine kurze Erklärung der Einzelnen Bestandteile.

Anfangsfeld (Preamble) Das Anfangsfeld wird vom TimingMaster generiert und dient der Synchronisation der Slaves.

Abgrenzungsfeld (Boundary Descriptor) Das Abgrenzungsfeld definiert die in Vier-Byte-Schritten verschiebbare Grenze zwischen Stream- und Paketdaten.

Datenfeld (stream data, packet data) Das Datenfeld besteht aus 60 Bytes die nach Bedarf zwischen Streamdaten und Paketdaten aufgeteilt werden können.

Kontrollbytes (Frame Control) Die Kontrollbytes am Ende dienen der Kontrolle des Frames.

Paritätsfeld (Parity Bit) Das Paritätsfeld ermöglicht das Erkennen von Bit-Fehlern im Frame.

Abbildung 2.6: Aufbau eines MOST25-Pakets Quelle: [Grzemba 2007, S. 88]

2.1.5 Automotive Ethernet

Die Vielzahl inkompatibler und nur in der Automobilindustrie verwendeter Lösungen resultierte in hohen Kosten und kontinuierlichem Weiterentwicklungsaufwand. Zudem steigt der Bandbreitenbedarf. Daher wird das im Bürobereich etablierte Konzept Ethernet/IP relevanter für den Automobilbereich. [ZIMMERMANN und SCHMIDGALL 2014, S. 138] Die in diesem Standard verwendeten Protokolle Internet Protocol (IP), Transmission Control Protocol (TCP) und User Datagram Protocol (UDP) werden außerdem bereits von den meisten computerähnlichen Geräten unterstützt. Das ermöglicht eine transparente Kommunikation und vereinfacht die Integration von Consumergeräten erheblich [ZIMMERMANN und SCHMIDGALL 2014]. Ethernet war ursprünglich ein Linienbussystem, wird

heutzutage aber meistens als Sterntopologie mit Switches an Kopplungspunkten umgesetzt.

In Abbildung 2.1.5 ist der Aufbau eines Ethernet-Pakets dargestellt. Die Präambel und der Start Frame Delimiter spielen eine Rolle bei der Taktsynchronisation bei manchen Physical Layern. Die Ziel- und Quell-MAC-Adresse dienen der Geräteadressierung. Das VLAN-Tag erlaubt die Bildung von Unternetzen. Das Typfeld kennzeichnet den Typ des Inhalts des darauf folgenden Datenfelds. Das Datenfeld enthält den eigentlichen Nachrichteninhalt. Am Ende jedes Pakets befindet sich noch die Frame Check Sequence zur Detektion von Übertragungsfehlern. Beim Eintritt eines Übertragungsfehlers wird die Botschaft automatisch vom Empfänger verworfen. [ZIMMERMANN und SCHMIDGALL 2014, S. 140]

Abbildung 2.7: Aufbau eines Ethernet-Pakets Quelle: [ZIMMERMANN und SCHMIDGALL 2014, S. 140]

2.2 Schnittstellen

Moderne Autos verfügen über eine Vielzahl von Schnittstellen, um eine Verbindung mit dem Fahrzeug herzustellen, sei es, um ein Multimediagerät zu verbinden oder zu Diagnosezwecken. Diese Schnittstellen können aber auch eventuell einem potentiellen Angreifer den Zugriff auf das Fahrzeugnetzwerk ermöglichen. Diese möglichen Angriffsvektoren können nach Checkoway et al [Checkoway u. a. 2011, S. 1] in drei Kategorien eingeteilt werden. Diese drei Kategorien sind "indirect physical access", "short-range physical access" und "long-range physical access". Es folgt eine Beschreibung der Kategorien mit einer Übersicht der typischsten Schnittstellen eines modernen Autos.

13

2.2.1 Indirect Physical Access

Zu dieser Kategorie zählen sämtliche physische Schnittstellen, die direkt oder indirekt auf die internen Netzwerke des Autos zugreifen. Bei diesen Schnittstellen müsste ein Angreifer, um darauf zuzugreifen, mindestens einmalig physischen Zugang zum Fahrzeug haben oder über einen Vermittler arbeiten.

OBD-II Port

Der On-Board-Diagnose (OBD)-II Port ist eine für Fachleute gedachte Schnittstelle auf den CAN-Bus zu Diagnosezwecken. Er befindet sich meist im Fußraum auf der Fahrerseite. Der Port umfasst 16 Pins, obwohl durch den Standard nur die Belegung von neun Pins vorgeschrieben ist. Die zusätzlichen Pins werden je nach Anbieter teilweise für den Zugriff auf zusätzliche Bussysteme verwendet. [Klinedinst und King 2016, S. 2] Üblicherweise wird an diesen Port ein Diagnosegerät des Herstellers oder einer Werkstatt angeschlossen. Das Diagnosegerät wird entweder von meist Windows-basierten Personal Computern programmiert oder fungieren als Mittler, um direkt mittels Laptop auf Port zuzugreifen [Checkoway u. a. 2011, S. 3]. In beiden Fällen hat ein Windows-basierter PC direkt oder indirekt Zugriff auf das Netzwerk des Fahrzeugs. Der Hauptzweck dieses Gerätes ist es, Daten aus den ECUs des Fahrzeugs zu sammeln. Das erfolgt über das Senden von diagnostischen CAN-Paketen. Die betroffenen ECUs senden anschließend die angefragten Daten. Diese Daten können dann beispielsweise zur Behandlung von Problemen verwendet werden.

Verbrauchermarktanbieter konnten allerdings die Kommunikationsarchitektur durch Reverse-Engineering verstehen und für andere Zwecke nutzen, zum Beispiel Pay-By-Mile-Versicherungen, Fahrzeuggebrauchstracking und kommerzielles Flottenmanagement [KLINEDINST und KING 2016, S. 3].

Ladeanschluss eines Elektro-Autos

Elektronische Fahrzeuge tanken nicht an Tankstellen wie ihre kraftstoffbetriebenen Pendants, sondern können an einer Steckdose oder speziellen, teilweise öffentlichen Ladestationen aufgeladen werden. Beim Ladevorgang an Ladestationen werden allerdings nicht nur elektrischer Strom sondern auch Daten ausgetauscht. Beispiele dafür können die Steuerung des Ladevorgangs, Authentifizierung und Autorisierung und Informationen über Ladezeit, Ladeleistung, Energieverbrauch und Batteriezustand sein. Dieser Daten-

14

austausch ermöglicht einen effizienten und sicheren Ladevorgang, eine Abrechnung des bereitgestellten Stroms und eine Überwachung der Ladeinfrastruktur. Zudem können eine unautorisierte Nutzung der Ladestation oder eine Überlastung des Stromnetzes verhindert werden.

Entertainment

Bluetooth

Um Features wie eine Freisprecheinrichtung oder das Hören eigener Musik vom Smartphone zu realisieren, bietet das Infotainment-System der meisten modernen Autos eine Bluetooth-Schnittstelle.

2.3 Cyber Security

2.3.1 Security Lifecycle

[Wurm 2022]

2.3.2 ISMS

Kapitel 3

Angriffsflächen

3.0.1 Bootvorgang

[Wurm 2022]

Kapitel 4

Schutzmaßnahmen

4.0.1 SecureBoot

[Wurm 2022][84]

Literatur

- CHECKOWAY, Stephen u.a. [2011]. »Comprehensive Experimental Analyses of Automotive Attack Surfaces«. In: 20th USENIX Security Symposium (USENIX Security 11). San Francisco, CA: USENIX Association. URL: https://www.usenix.org/conference/usenix-security-11/comprehensive-experimental-analyses-automotive-attack-surfaces [siehe S. 12].
- FIJALKOWSKI, B. T. [2011]. »Local Interconnect Networking«. In: Automotive Mechatronics: Operational and Practical Issues: Volume I. Dordrecht: Springer Netherlands, S. 57–59. ISBN: 978-94-007-0409-1. DOI: 10.1007/978-94-007-0409-1{\textunderscore} 5 [siehe S. 7, 8].
- GREENBERG, Andy [2015]. Hackers Remotely Kill a Jeep on the Highway With Me in It. URL: https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/ [besucht am 04.01.2023] [siehe S. 1].
- Grzemba, Andreas, Hrsg. [2007]. MOST: das Multimedia-Bussystem für den Einsatz im Automobil. Bd. Bd. 2. Elektronik- & Elektrotechnik-Bibliothek. Poing: Franzis. ISBN: 978-3772341496 [siehe S. 10, 11].
- KLINEDINST, Dan und Christopher KING [2016]. »On Board Diagnostics: Risks and Vulnerabilities of the Connected Vehicle«. Diss. Carnegie Mellon University [siehe S. 13].
- MILLER, Charlie und Chris Valasek [2013]. »Adventures in automotive networks and control units«. In: *Def Con* 21.260-264, S. 15–31 [siehe S. 3–6].
- MOHAMMAD ASHJAEI u. a. [2021]. »Time-Sensitive Networking in automotive embedded systems: State of the art and research opportunities«. In: *Journal of Systems Architecture* 117, S. 102137. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2021.102137. URL: https://www.sciencedirect.com/science/article/pii/S1383762121001028 [siehe S. 3].

LITERATUR 18

STATISTA [2022]. Besitz eines Pkw in Deutschland im Jahr 2022. URL: https://de.statista.com/prognosen/999770/deutschland-besitz-eines-pkw [besucht am 04.01.2023] [siehe S. 1].

- Wurm, Manuel [2022]. Automotive Cybersecurity. Springer Berlin Heidelberg. ISBN: 978-3-662-64227-6 [siehe S. 13–15].
- ZIMMERMANN, Werner und Ralf SCHMIDGALL [2014]. Bussysteme in der Fahrzeugtechnik: Protokolle, Standards und Softwarearchitektur; mit 103 Tabellen. 5., aktualisierte und erw. Aufl. ATZ/MTZ-Fachbuch. Wiesbaden: Springer Vieweg. ISBN: 978-3-658-02418-5. DOI: 10.1007/978-3-658-02419-2 [siehe S. 6, 8, 9, 11, 12].