

Physics-Informed Calibration of Aeromagnetic Compensation in Magnetic Navigation Systems using Liquid Time-Constant Networks

Favour Nerrise^{1,2}, Sosa Sosanya¹, Patrick Neary¹ ¹Department of Electrical Engineering, Stanford University ²SandboxAQ fnerrise@stanford.edu

Magnetic Anomaly Navigation (MagNav)

- MagNav is a proven, viable fallback to GPS^[1,2]
- Airborne MagNav estimates positioning by correlating aircraft magnetometer readings to anomaly maps of the Earths crustal magnetic field.
- Airborne MagNav is highly resistant to:
 - jamming/spoofing attacks
 - atmospheric weather conditions
- Stochastic and deterministic effects from external magnetic fields hinder classical **calibration** attempts^[3].

Fig 1. Magnetic Anomaly Map

Motivation

 Inertial navigation position measurements drift over time due to accumulated estimated errors.

Fig 2. Example Flight Trajectory vs. INS Trajectory with Drift

- MagNav measurements exhibit nonlinear, spatiotemporal dynamics that are difficult to model due to noisy, corrupted magnetic fields.
- How can we capture complex, nonlinear, spatiotemporal dynamics of airborne MagNav from a weak, noisy signal?

Closed-Form Continuous Liquid Time-Constant Networks (LTC-CfC)

- LTCs, a type of RNN, use ODE-solvers for high-dim, sequential tasks.
- LTCs uncover **nonlinear dynamics** using **neural circuit policies**^[4] to solve the system:

$$\frac{d\mathbf{x}}{dt} = w_{\tau} + f(\mathbf{x}, \mathbf{I}, \theta) \mathbf{x}(t) + Af(\mathbf{x}, \mathbf{I}, \theta)$$

• A CfC delivers higher efficiency and achieves faster, adaptive, causal, & continuous-time solutions without an ODE-solver [5].

Fig 3. Liquid Time-Constant Network Architecture

Dataset & Setup

Dataset: United States Air Force-MIT Signal **Enhancement for Magnetic Navigation** Challenge Dataset [open-source][3].

Aim: remove aircraft magnetic field from total magnetic field (i.e., aeromagnetic compensation) to derive a clean signal for MagNav.

Features: compensated magnetometer measurements, aircraft positional+INS measurements, & electrical measurements.

Fig 4. MagNav Challenge magnetometer locations

Results

- LTC demonstrates ~58% deduction in compensation error [RMSE].
- LTC-CfC shows ~64% reduction compensation error vs. classical model.

Model	Flt1003 [RMSE nT]	Flt1007 [RMSE nT]
Tolles-Lawson (baseline)	58.85	45.13
LSTM	41.79	42.18
MLP	30.47	26.23
CNN	26.05	30.56
LTC	20.31	22.89
LTC-CfC (ours)	18.20	19.14

Tab 1. Model comparison of aerocompensation calibration error (RMSE nT) for flights 1003 and 1007.

Our method successfully detects weak anomaly fields with significant accuracy.

Fig 5. Truth vs. predicted signal [nT] for flight 1007

Conclusion & Broader Impact

- Novel, physics-informed model that models higher-order, nonlinear dynamics in aeromagnetic compensation.
- Offers magnetic effects corrections, LTCs with ODE-solvers/closedform & additive compensation correction for MagNav signals.
- Separates weak magnetic anomaly fields from noisy magnetic interference for accurate positional estimation in airborne MagNav.

References

[1] Aaron J. Canciani. Magnetic navigation on an f-16 aircraft using online calibration. IEEE Transactions on Aerospace and Electronic Systems, 58(1):420–434, 2022.

[2] Aaron Canciani and John Raquet. Airborne magnetic anomaly navigation. IEEE Transactions on

aerospace and electronic systems, 53(1):67–80, 2017

[3] Paul Leliak. Identification and evaluation of magnetic-field sources of magnetic airborne detector equipped aircraft. IRE Transactions on Aerospace and Navigational Electronics, (3):

95–105, 1961. [4] Mathias Lechner, Ramin Hasani, Alexander Amini, Thomas A Henzinger, Daniela Rus, and Radu Grosu. Neural circuit policies enabling auditable autonomy. Nature Machine Intelligence,

[5] Ramin Hasani, Mathias Lechner, Alexander Amini, Lucas Liebenwein, Aaron Ray, Max Tschaikowski, Gerald Teschl, and Daniela Rus. Closed-form continuous-time neural networks.

Nature Machine Intelligence, 4(11):992-1003, 2022.

2(10):642-652, 202.

Acknowledgement

This work is supported by SandboxAQ where F.N. is participating in a Ph.D. Residency program.

sandboxaq.com/careers

careers@sandboxaq.com

sandboxaq.com/company/residencies

Join Us

