Analysis of a frame using python

Siddharth Chauhan

B21CI041

Aim:

Analysis of a frame

Objective:

To develop a generic Python/MATLAB code that takes geometry and loading details as input and performs elastic structural analysis using the direct stiffness method.

Methodology:

Details about the structure:

\sqcup	Cross section-200	mm	x 200	mm
	E 000000 MB			

$$\Box E = 200000 MPa$$

Inputs:

Ser	ial No.	\mathbf{X}	\mathbf{Y}	Fx	$\mathbf{F}\mathbf{y}$	Mz	$\mathbf{u}_{\mathbf{x}}$	$\mathbf{v}_{\mathbf{y}}$	theta_z
1	0	0	0	0	0	0	0^{-}	0	
2	0	5	100	000	0	0	1	1	1
3	5	5	0	0	0	0	0	0	

Code Link: Frame_Analysis.ipynb

Procedure:

Code:

- DataAcquisition and Preprocessing: The data is imported from an Excel file named "input2.xlsx", which contains two sheets "Member" and "Node" containing data of members and node respectively
- Initialization: set matrices to zero
- For every member, distributed loads and point loads are computed, as well as the matching bending moments and shear forces.
- Basedonthe member attributes, transformation matrices and local stiffness matrices are created and calculated.
- At themember ends, shear forces and moments resulting from distributed and point loads are calculated.
- The stiffness matrices of the various components are transformed and added together to create the global stiffness matrix.

- Matrix inversion and displacement compatibility are used to solve unknown displacements at limited nodes.
- Reactions and internal forces are calculated using the solved displacements and global stiffness matrix.

STAAD Pro Version:

- Step 1: Go to nodes in the right, Assign Nodes Position
- Step 2: Go to add beam, Click from one node to other node.
- Step 3: Go to "Properties" click on Define in the right hand $side \rightarrow Rectangle \rightarrow Yd = 0.2 \text{ m}$ and $Zd = 0.2m \rightarrow Select$ property assign to view assign click on beam
- Step 4: Go to "materials" → Create → Give Title: "CUSTOM", E
 = 2 x 10⁸ KN/m² →
 Ok → Select "Custom" → assign to view assign click on beam.
- Step 5: Go to Support → Create Fixed Add
 - *Press Shift* + *K Nodes are visible*
 - Select support 1 Use cursor to assign click assign-touch on node 1,3
- Step 6: Go to loading Load case details Add Live Load Add Close Select the Live Load Add Member Load
 Select Load case 1 Add → Go to concentrated force → 100KN,
 Direction GX, d1 = 0
 - Select concentrated load Select cursor to assign assign
- Step 7: Go to Analysis → Click on Analysis command → click onPerform Analysis → Click on No print → Add → Close, then Post Analysis commands → Define commands
- Step 8: Analysis results → Add → Close → Run Analysis →
 Save. An Output window will be popped → click on View
 output file → select Done.
 Close the new window → select the Post processing option →
 Select 1 live load → Ok

Verification:

Reactions Diagram:

Shear Force Diagram:

Axial Force Diagram:

Bending Moment Diagram:

Deflection:

Force Vector from Code:

Force from Nodes:

Beam	L/C	Node	Fx kN	Fy kN	Fz kN	Mx kN-m	My kN-m	Mz kN-m
1	1 LIVE LOAD	1	-0.005	0.023	0.000	0.000	0.000	0.080
		2	0.005	-0.023	0.000	0.000	0.000	0.035
2	1 LIVE LOAD	2	-0.023	-0.005	0.000	0.000	0.000	-0.035
		3	-99.977	0.005	0.000	0.000	0.000	0.011

Reactions:

		Horizontal	Vertical	Horizontal		Moment	
Node	L/C	Fx kN	Fy kN	Fz kN	Mx kN-m	My kN-m	Mz kN-m
1	1 LIVE LOAD	-0.023	-0.005	0.000	0.000	0.000	0.080
3	1 LIVE LOAD	-99.977	0.005	0.000	0.000	0.000	0.011

Displacement:

Result:

The staad pro and code calculation matches.