GESP C++ 四级模拟试题 1

一、选择题

- 1. (2023年6月) 高级语言编写的程序需要经过以下()操作,可以生成在计算机上运行的可执行代码。
 - A. 编辑
 - B. 保存
 - C. 调试
 - D. 编译
- 2. (2023年12月)某公司新出了一款无人驾驶的小汽车,通过声控智能驾驶系统,乘客只要告诉汽车目的地,车子就能自动选择一条优化路线,告诉乘客后驶达那里。请问下面哪项**不是**驾驶系统完成选路所必须的()。
 - A. 麦克风
 - B. 扬声器
 - C. 油量表
 - D. 传感器
- 3. (2023年12月) 下列C++语句执行以后结果是true的是()。
 - A. 3&&false
 - B. 5&&2
 - C. 101&&000
 - D. 4&true
- 4. (2023年6月) 下列关于 C++语言中指针的叙述, **不正确**的是()。
 - A. 指针变量中存储的是内存地址。
 - B. 定义指针变量时必须指定其指向的类型。
 - C. 指针变量只能指向基本类型变量,不能指向指针变量。
 - D. 指针变量指向的内存地址不一定能够合法访问。
- 5. (2023年6月) 下列关于 C++语言中数组的叙述, **不正确**的是()。
 - A. 一维数组在内存中一定是连续存放的。
 - B. 二维数组是一维数组的一维数组。
 - C. 二维数组中的每个一维数组在内存中都是连续存放的。
 - D. 二维数组在内存中可以不是连续存放的。
- 6. (2023年9月) 下列关于C++语言中函数的叙述,正确的是()。
 - A. 函数调用前必须定义。
 - B. 函数调用时必须提供足够的实际参数。
 - C. 函数定义前必须声明。
 - D. 函数声明只能写在函数调用前。
- 7. (2023年6月) 下列关于 C++语言中变量的叙述,正确的是()。

- A. 变量定义后可以一直使用。
- B. 两个变量的变量名不能是相同的。
- C. 两个变量的变量名可以相同,但它们的类型必须是不同的。
- D. 两个变量的变量名可以相同,但它们的作用域必须是不同的。
- 8. (2023年9月) 如果n为int类型的变量,一个指针变量定义为int *p=&n; ,则下列说法正确的是(__)。
 - A. 指针变量p的值与变量n是相同。
 - B. 指针变量p的值与变量n的地址是相同的。
 - C. 指针变量p指向的值为 'n'。
 - D. 指针变量p指向的值与变量n的地址是相同的。
- 9. (2023年6月) 一个二维数组定义为 int array[5][3];,则 array[1][2]和 array[2][1] 在内存中的位置相差多少字节?()
 - A. 2字节
 - B. 4字节
 - C. 8字节
 - D. 无法确定
- 10. (2023年9月) 如果 a 为 int 类型的变量,且 a 的值为6,则执行a = ~a;之后,a 的值会是()。
 - A. -6
 - B. 6
 - C. -7
 - D. 7
- 11. (2023年6月) 一个数组定义为 int a[5] = {1, 2, 3, 4, 5};, 一个指针定义为 int * p = &a[2];, 则 执行 a[1] = *p;后, 数组 a 中的值会变为()。
 - A. {1, 3, 3, 4, 5}
 - B. {2, 2, 3, 4, 5}
 - C. {1, 2, 2, 4, 5}
 - D. {1, 2, 3, 4, 5}
- 12. (2023年9月) 下列关于C++语言中异常处理的叙述,正确的是()。
 - A. 一个try子句可以有多个catch子句与之对应。
 - B. 如果try子句在执行时发生异常 ,就一定会进入某一个catch子句执行。
 - C. 如果try子句中没有可能发生异常的语句, 会产生编译错误。
 - D. catch子句处理异常后, 会重新执行与之对应的try子句。
- 13. (2023年6月) 在下列代码的横线处填写(),可以使得输出是 "20 10"。 #include <iostream>

using namespace std;

void xchg(______){//在此处填入代码 int t=*x;

```
*x=*y;
     *y=t;
   int main(){
     int a=10, b=20;
     xchg(&a,&b);
     cout < < a < < " " < < b < < endl;
     return 0;
   }
    A. int x, int y
    B. int * x, int * y
    C. int a, int b
    D. int & a, int & b
14. (2023年12月) 下列C++代码输入1, 2, 3, 4, 执行后, 将输出的是()。
     string str="";
     cin>>str;
     int strlen=str.length();
     for(int i=0; i < strlen; i++){
        if(str[i] <= '9'&&str[i] >= '0'){
          cout < < str[i];
       }else{
          cout < < "#";
       }
     }
    A. 1#4#
    B. 1#3#
    C. 1#2#3#4#
    D. 1#2#3#4
15. (2023年6月) 在下列代码的横线处填写( ), 完成对有 n 个 int 类型元素的数组
   array 由小到大排序。
   void SelectionSort(int array[], int n){
     int i,j,min,temp;
     for(int i=0; i< n-1; i++){
        min=i;
       for(int j=i+1; j< n; j++)
          if( ______)//在此处填写代码
            min=j;
        temp=array[min];
```

```
array[min]=array[i];
array[i]=temp;
}
```

- A. array[min] > array[j]
- B. array[min] > array[i]
- C. min > array[j]
- D. min > array[i]

二、判断题

- 1. (2023年12月) C++的内置函数 sort() 支持数组的局部排序。例如 int a={10,9,8,7,6,5,4,3,2,1},可以用 sort(a,a+5),排序成 {6,7,8,9,10,5,4,3,2,1}。
- 2. (2023年6月)数列 1, 1, 2, 3, 5, 8 ... 是以意大利数学家列昂纳多·斐波那契命名的数列,从第三个数开始,每个数是前面两项之和。如果计算该数列的第 n 项 (其中 n>3) fib(n),我们采用如下方法:① 令 fib(1)=fib(2)=1②用循环 for i=3 to n 分别计算 f(i)③输出 fib(n)。这体现了递推的编程思想。
- 3. (2023年9月) 在C++语言中,每个变量都有其作用域。
- 4. (2023年6月)在 C++语言中,函数的参数默认以引用传递方式进行传递。
- 5. (2023年9月)在C++语言中,可以通过定义结构体,定义一个新的数据类型。
- 6. (2023年6月) 如果希望记录 10 个最长为 99 字节的字符串,可以将字符串数组 定义为 char s[100][10];。
- 7. (2023年12月) 小杨最近在准备考GESP, 他用的Dev C++来练习和运行程序, 所以Dev C++也是一个小型操作系统。
- 8. (2023年6月) 字符常量'0'和'\0'是等价的。
- 9. (2023年12月) 执行C++代码 cout<<(5||2)的结果为1。
- 10. (2023年6月) 由于文件重定向操作,程序员在使用 C++语言编写程序时无法确定通过 cout 输出的内容是否会被输出到屏幕上。

三、编程题

1. 进制转换 (2023年9月)

【问题描述】

进制数指的是逢 N 进一的计数制。例如,人们日常生活中大多使用十进制计数,而计算机底层则一般使用二进制。除此之外,八进制和十六进制在一些场合也是常用的计数制(十六进制中,一般使用字母 A 至 F 表示十至十五;本题中,十一进制到十五进制也是类似的)。

在本题中, 我们将给出 N 个不同进制的数。你需要分别把它们转换成十进制数。

【提示】

对于任意一个 L 位 K 进制数,假设其最右边的数位为第 0 位,最左边的数位为第 L-1 位,我们只需要将其第 i 位的数码乘以权值 K^i ,再将每位的结果相加,即可得到原 K 进制数对应的十进制数。下面是两个例子:

- 1. 八进制数 1362 对应的十进制数为 $1x8^3 + 3x8^2 + 6x8^1 + 2x8^0 = 754$
- 2. 十六进制数 3F0 对应的十进制为 $3x16^2+15x16^1+0x16^0=1008$

【输入描述】

输入的第一行为一个十进制表示的整数 N。接下来 N 行,每行一个整数 K,随后是一个空格,紧接着是一个 K 进制数,表示需要转换的数。保证所有 K 进制数均由数字和大写字母组成,且不以 0 开头。保证 K 进制数合法。

保证 N≤1000, 保证 2≤K≤16。

保证所有 K 进制数的位数不超过 9。

【输出描述】

输出 N 行,每一个十进制数,表示对应 K 进制数的十进制数值。

【样例输入1】

2

8 1362

16 3F0

【样例输出1】

754

1008

【样例输入2】

2

2 11011

10 123456789

【样例输出2】

27

123456789

2. 图像压缩 (2023年6月)

【问题描述】

图像是由很多的像素点组成的。如果用 0 表示黑, 255 表示白, 0 和 255 之间的值代表不同程度的灰色,则可以用一个字节表达一个像素(取值范围为十进制 0-255、十六进制 00-FF)。这样的像素组成的图像,称为 **256 级灰阶**的灰度图像。

0 255

现在希望将 256 级灰阶的灰度图像压缩为 16 级灰阶,即每个像素的取值范围为十进制 0-15、十六进制 0-F。**压缩规则为**:

- ① 统计出每种灰阶的数量,取数量**最多的前 16 种灰阶**(如某种灰阶的数量与另外一种灰阶的数量相同,则以灰阶值**从小到大**为序),分别编号 **0-F**(最多的编号为 0,以此类推)。
- ② 其他灰阶转换到最近的 16 种灰阶之一,将某个点灰阶数与 16 种灰阶中的一种相

减,绝对值**最小**即为最近,如果绝对值相等,则编号较小的灰阶更近。

【输入描述】

输入第 1 行为一个正整数 N,表示接下来有 N 行数据组成一副 256 级灰阶的灰度图像。约定 $10 \le N \le 20$ 。

第2行开始的行,每行为长度相等且为**偶数的字符串**,每**两个字符**用十六进制表示一个像素。约定输入的灰度图像**至少**有16种灰阶。约定每行**最多**20个像素。

【输出描述】

第一行输出压缩选定的 16 种灰阶的十六进制编码, 共计 32 个字符。

第二行开始的行,输出压缩后的图像,每个像素一位十六进制数表示压缩后的灰阶值。 【样例输入】

10

00FFCFAB00FFAC09071B5CCFAB76

00AFCBAB11FFAB09981D34CFAF56

01BFCEAB00FFAC0907F25FCFBA65

10FBCBAB11FFAB09981DF4CFCA67

00FFCBFB00FFAC0907A25CCFFC76

00FFCBAB1CFFCB09FC1AC4CFCF67

01FCCBAB00FFAC0F071A54CFBA65

10EFCBAB11FFAB09981B34CFCF67

01FFCBAB00FFAC0F071054CFAC76

1000CBAB11FFAB0A981B84CFCF66

【样例输出】

ABCFFF00CB09AC07101198011B6776FC

321032657CD10E

36409205ACC16D

B41032657FD16D

8F409205ACF14D

324F326570D1FE

3240C245FC411D

BF4032687CD16D

8F409205ACC11D

B240326878D16E

83409205ACE11D

【样例解释】

灰阶'AB'、'CF'和'FF'出现 14 次, '00'出现 10 次, 'CB'出现 9 次, '09'出现 7 次, 'AC'出现 6 次, '07'出现 5 次, '10'、'11'和'98'出现 4 次, '01'、'1B'、'67'、'76'和 'FC'出现 3 次。