EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

02116735

PUBLICATION DATE

01-05-90

APPLICATION DATE

27-10-88

APPLICATION NUMBER

63271579

APPLICANT: SUZUKI MOTOR CO LTD;

INVENTOR: YOKOMORI YASUHIKO;

INT.CL.

G01N 21/17 G01N 33/543

TITLE

IMMUNOLOGICAL AGGLUTINATION

REACTION DETECTOR

ABSTRACT: PURPOSE: To achieve a higher detection speed without reducing reliability for the results of detection by arranging a plurality of solid image sensors so that images of agglutination formed in a plurality of reaction containers can be detected at a time.

> CONSTITUTION: Images of agglutination formed on a bottom surface of four reaction containers 1a on a microplate 1 by irradiation light from a light emitting diode 2A are formed on a CCD sensor 3A through a condenser lens 4, and hence, images of four agglutination patterns are detected by the sensor 3A at a time. Light receiving units 10 thus formed are connected with a connecting member 10A so as to be overlapped at a part along the length thereof. The units are arranged in a vertical row (or in a horizontal row) of the plate 1. Thus, eight images of the agglutination patterns can be detected simultaneously at a time.

COPYRIGHT: (C)1990,JPO&Japio

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 平2-116735

௵Int. Cl. ⁵

識別記号

庁内整理番号

❸公開 平成2年(1990)5月1日

G 01 N 21/17 33/543 A 7458-2G G 7906-2G

審査請求 未請求 請求項の数 1 (全8頁)

公発明の名称 免疫学的凝集反応検出装置

②特 願 昭63-271579

20出 顧 昭63(1988)10月27日

@発明者 原田

幸 典

静岡県浜松市蜆塚4-6-4

⑩発 明 者 横 森

保 彦

静岡県浜松市佐鳴台2丁目17-20

勿出 願 人 鈴木自動車工業株式会

静岡県浜名郡可美村高塚300番地

社

仰代 理 人 弁理士 髙 橋 勇

明 細 書

1. 発明の名称

免疫学的凝集反応検出装置

- 2. 特許請求の範囲
- (1).底面の少なくとも一部を傾斜面とした多数の反応容器を基板にマトリックス状に配列形成した凝集反応検査用プレートと、この凝集反応検査用プレートを介して一方の側に配設された発光手段と、他方の側に配設された受光手段とを備え、

前記発光手段からの照射光により前記多数の反応容器の底面に形成される凝集パターンの各々の像をレンズを介して前記受光手段上に結像せしめて電気的手法により前記凝集パターンを検出する免疫学的凝集反応検出装置において、

前記受光手段を、少なくとも二つの前記反応容 器の底面に形成される凝集パターンの像を一度に 検出可能な固体撮像センサを複数用いて構成する とともに、

これらの固体振像センサを、隣接する固体振像 センサの長手方向の一部が相互に重複する状態で 前記マトリックス状に配設された凝集反応検査用 プレートの縦方向若しくは横方向に沿って配置し たことを特徴とする免疫学的凝集反応検出装置。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は免疫学的凝集反応検出装置に係り、とくに、血球粒子の凝集反応パターンからの各種の 血液型の判定や、抗原・抗体の検出用として好適 な免疫学的凝集反応検出装置に関する。

〔従来の技術〕

従来より、医療分野においては、血球粒子、ラテックス粒子および炭素粒子の凝集パターンを判別して、血液中の種々の成分(例えば、血液型、各種抗体、各種蛋白等)やビールス等を検出分析することは広く行われている。

この種の粒子凝集パターンを検出する免疫学的 凝集反応検出装置は、従来より多く研究開発され、 実用に供されている。この免疫学的凝集反応検出 装置としては、例えば特開昭57-79454号公報,特開昭60-135748公報,および実公昭61-45479号公報等に示されるものがある。

(発明が解決しようとする課題)

体が大型化してしまうという不都合をも有してい る

上記従来例の特開昭60-135748号公報記載のものにあっては、反応容器が形成されたマイクロプレートの方を間欠的に移送する手法が採用されているので、凝集結合力の強い反応に対しては適するが、凝集結合力の弱い反応に対しては不向きなものとなっている。

〔発明の目的〕

本発明の目的は、かかる従来例の有する不都合 を改善し、とくに、検出結果に対する信頼性を被 ずることなく検出速度の向上を図ることが出来る とともに、コストを低減せしめることが可能な免 疫学的凝集反応検出装置を提供することにある。

(課題を解決するための手段)

本発明では、底面の少なくとも一部を傾斜面と した多数の反応容器を基板にマトリックス状に配 列形成した凝集反応検査用プレートと、この凝集 ての免疫学的凝集反応の強弱度合いにより反応後に生成される凝集体の大きさが変化するため、その間口面積,形状等を調整しなければならず、手間が掛かるという不都合があった。

また、上記従来例の特開昭57-79454号 公報記載のものにあっては、複数の反応容器に照 射された光束をひとつのレンズ (共通の光学系) により同時にひとつの受光部へ集束させる手法が 採られている。このため、例えば、第11図に示 すように凝集反応検査用プレートとしてマイクロ プレート26の反応容器25の面積よりも大きい 二次元受光累子100上に一つのレンズ101に より複数の反応容器25の底面に形成される凝集 パターンの像を投影し結像し、これにより凝集パ ターンを判別する場合、周辺部に投影された像が 歪んで惚けてしまうので正確な判別が出来ないと いう不都合を有している。また、相互に隣接する 反応容器に照射される光束は器の形状等による乱 反射によって互いに影響され易く、更に、この場 合、レンズの焦点距離が長くなり必然的に装置全

反応検査用プレートを介して一方の側に配設され た発光手段と、他方の側に配設された受光手段と を備え、発光手段からの照射光により前記多数の 反応容器の底面に形成される凝集パターンの各々 の像を、レンズを介して受光手段上に結像せしめ て電気的手法により前記凝集パターンを検出する ようになっている。そして、受光手段を、少なく とも二つの前記反応容器の底面に形成される凝集 パターンの像を一度に検出可能な固体攝像センサ を複数用いて構成するとともに、これらの固体撮 像センサを、隣接する固体撮像センサの長手方向 の一部が相互に重複する状態で前記マトリックス 状に配設された凝集反応検査用プレートの縦方向。 若しくは横方向に沿って配置するという構成を採 っている。これによって、前述した目的を達成し ようとするものである。

(発明の第1実施例)

本実施例では、免疫学的凝集反応の一例として ヒトのABO式血液型の判定検査を例に採る。

一般に、ABO式の血液型でヒトを分類すると、

すべてのヒトはA型、B型、AB型、O型の4つ に分類できる。

この血液型判定検査で各血液型を判別するためには、通常最初に、被検者から採取した血液を遠心分離して赤血球と血液とに分離する。

そして、上記4つの血液型の各々の赤血球と血 消とを混合すると、下記の表1に示すように赤血 球と血清とが互いにくっつきあう凝集現象が一部 でおこる。これにより上記各血液型の判別をしよ うとするものである。

(表1・赤血球と血清との混合による凝集反応)

		赤血球			
		O型	A 型	B型	AB型
Ú I	O型	× .	0	0	0
	A型	×	×	0	0
ጎ	B型	×	0	×	0
	AB型	×	×	×	· ×

ここで、上記表1における×は非凝集、〇は凝集の反応があったことを示す。

成された多数の反応容器 laをマトリックス状に配列形成した(第3、4図参照)透光性の基板 lbから成る凝集反応検査用プレートとしてのマイクロブレート 1 を介して一方の側(第1図の上方)に配設された発光手段としての発光ダイオード 2 A、2 A、……と、他方の側(第1図の下方)に配設された受光手段を構成する固体機像センサとしての一次元 C C Dセンサ3 A とを備えている。

前記発光ダイオード2A、2A、……とマイクロプレート1との間には、散光板31A、31Bが当該マイクロプレート1に平行に且つ一定の間隔で配設されている。このため、本実施例では、マイクロプレート1にほぼ均一な平行光が照射されるようになっている。一方、マイクロプレート1と一次元CCDセンサ3Aとの間には、前記各反応容器1aに対応して集光レンズ4が各一つ配設されている。

これを更に詳述すると、前記集光レンズ 4. 4. ……は、実際には第 2 図に示す外観を有するレン

上記表1からわかるように、O型の赤血球はA型、B型、AB型の赤血球の性質とは異なり、AB型の赤血球の性質とは異なり、AB型の赤血球はA型、B型それぞれの赤血球の性質を併せ待っているといえる。

本実施例では、各血液型の各々の赤血球に希釈液を注入した二つのサンプル液を作り、それぞれに判定液としての抗A血液(B型血液)及び抗B血液(A型血液)を滴下する手法によって被検査体の血液型を判別するものである。

この場合、被検者の血液型がA型で抗A血液を加えて凝集したが抗B血液では凝集しなかった試料血液はA型であり、抗A血液では凝集しなかったが抗B血液で凝集したものはB型である。抗A. 抗B血液の双方で凝集したものは、AB型であり、抗A. 抗B血液の双方で凝集しなかったものはO型であると判定できる。

以下、本発明の第1実施例を第1図ないし第1 0図に基づいて説明する。

この第1図に示す実施例は、底面が円錐状に形

ズホルダー5の内部に保持されている。具体的に は、このレンズホルダー5には、その長手方向に 沿って隣接する前記反応容器1a.1a相互間の 距離に等しい間隔に複数の孔(本実施例では4 つ)5a,5a,……が穿設されており、この各 孔5aの周壁部に、各集光レンズ4が固定されて いる。このレンズホルダー5の底部には、前述し た一次元CCDセンサ3Aが、集光レンズ4から 下方に一定の距離即ち当該集光レンズ4の焦点距 **離とほぼ同じ距離だけ隔てて且つ前記マイクロブ** レート1に平行に保持されている。このため、木 実施例では、発光ダイオード2A、2A、……か らの照射光により前記マイクロプレート1にマト リックス状に配設され形成された四つの反応容器 1a.1a……の底面に形成される凝集パクーン の各々の像が、集光レンズ4を介して一次元CC Dセンサ3A上に結像するようになっており、4 つの反応容器 l a . l a … … の底面に形成される **凝集パターンの像が、一次元CCDセンサ3Aに** より一度に検出可能な構造となっている。また、

この場合、レンズホルダー5に形成された各孔5 a内に集光レンズ4が各一つ保持された構造となっているので、隣接する反応容器1aを透過した 光の影響を殆ど受けないようになっている。

本実施例では、上述した一次元CCDセンサ3 A. 4つの集光レンズ4, 4, ……及びレンズホルダー5とによって受光ユニット10が構成されている。

前記マイクロプレート1には、第4図に示すように8行12列のマトリックス状に反応容器1a. 1a. ……が配列形成され、実際には第5図に示す免疫学的凝集反応検出装置20の一部を成す透光性部材から成る水平板11の上に載置されて用いられる。

免疫学的凝集反応検出装置 2 0 は、水平板 1 1 と、この水平板 1 1 を下方から支持する一方の支 持部材 1 2 A と、他方の支持部材 1 2 B とを備え ている。この内、支持部材 1 2 A 、 1 2 B 間には、 これら両者を連結し固定する補強板 1 2 C が、架 設されている。また、支持部材 1 2 A 、 1 2 B 間

この可動板15の上面には、前述した発光ダイオード2A、2A、……がその下面に固定された上板16を両端で支持する支持板18A、18Bが、当該可動板16に直交して固定されている。前記上板17の下面には、前述した散光板31A、31Bが一体的に保持されている。また、上板17の下面には、1C等で構成される前述した発光ダイオード2A、2A、……駆動用のLEDドライバ回路8が設けられている。

また、可動板16の上面には、当該可動板16と平行に配設された基板19が固定されている。

この基板19には、1C等で構成される一次元 CCDセンサ3A駆動用のCCDドライバ回路9 が搭載されている。

更に、可動板 1 6 の上面には、前述した構成の 受光ユニット 1 0 が二つ、それぞれの長手方向の 一部が相互に重複する状態で且つ前記マイクロプ レート 1 にマトリックス状に配設された反応容器 1 a. 1 a. ……の縦列に沿って配置されている。 これらの受光ユニット 1 0. 1 0 は、実際には、 には、第6図に示すように前記水平板11の長手方向に沿ってガイドシャフト13が架設されている。更に、支持部材12A、12B間には、ボールネジの雄ネジがその全長に亘って形成された別のシャフト14が、ガイドシャフト13に平行に配設され、回転自在に装備されている。

一方、これらの両シャフト13、14には、第5図ないし第6図に示すボックス15が当該備シャフト13、14に沿って往復移動可能に装備されている。具体的には、ボックス15には、シャフト13の直径とほぼ同程度の直径を有する孔15bが設けられている。まなシャフト14の直径とほぼ同程度のでは、前述した雄ネジの内部には、前述した雄ネジに図示しないボールを介して対向する図示しないでのである。

前記ポックス15の上面には、前述した受光ユニット10を搭載するための可動板16が、前記水平板11に平行に配設され、固定されている。

第2図ないし第3図に示す連結部材10Aにて連結されている。この場合、各受光ユニット10は第3図に示すように配置され、それぞれの長手方向にに沿って隣接する反応容器1a.1a相互間の距離に等しい間隔で穿設された4つの孔5a.5a.……が、反応容器1a.1aと一致するようになっている。

前記支持部材12Aの外方には前述したシャフト14に図示しないギャ機構を介して回転力を付勢するモータ21が装備されている。このため、本実施例では、モータ21が駆動されると、可動板16、上板17が、水平板11およびマイクロプレート1を上下から挟んだ状態で一体的にマトリックス状に配設された反応容器1a、1a、…の横列に沿って往復移動するようになっている。

前記一次元CCDセンサ3人は、本実施例では第7図に示す一次元汎用CCDセンサが使用されている。当該一次元CCDセンサ3人は、その受光面に複数の光センサとしての光電変換案子が一

列に配置されており、これにより、反応容器 1 a. 1 a. ……の底面に形成される凝集パターンの像が複数の光電変換素子によって細分化され、光の強弱度合いに応じてぞれぞれの光電変換素子により電気信号に変換される。本実施例では、この電気信号が図示しない A / D 変換器を介して図示しない C P U に送られ、該 C P U がその凝集パターンを判定するようになっている。

次に、上述のように構成された免疫学的凝集反応検出装置 5 0 の動作について説明する。

モータ21が駆動されると可動板16が移動を 始め、図示しない位置次め手段が図示しないCP リに制御され、第2図に示す受光ユニット10, 10が、マイクロプレート1に形成された反応容 器1a,1a,……の任意縦列下方(第3図に示す相互に一行隔でた状態)に移動設定されると、 発光ダイオード2A,2A,……からの光が散光 板31A,31Bを介してマイクロプレート1に 照射され、発光ダイオード2A,2A,……から の照射光により受光ユニット10の上方に位置す

傾斜部分の深さを1.5 ミリ、傾斜角度が30°で あって、円錐状の底面に粒子が凝集して一様に堆 積した状態を示している。このような一様堆積パ ターンは、例えばABO式の血液型判定検査にお いてはA型の検体(赤血球浮遊液)に抗A血消 ·(B型血消)を加えて自然沈降させたときに得ら れる。すなわち、この場合には赤血球同士が血滑 によって互いに結合するので傾斜面を転がり落ち ることが少なく底面にほぼ一様に堆積されるもの である。この一様堆積パターンを詳細に観察する と中央の最下部A点には相当厚く堆積しているの に対し、周辺部C点ではそれに比べてややうすく 堆積しており、それらの間の中間部B点ではほぼ 連続的に厚さが変化している。この場合、光の透 過量はA点で最小値をとり、A点から周辺部に向 かって徐々に増加して点付近で最大となる。この ため、一次元CCDセンサ3Aの出力もこれに対 応して変化するので、CPUでは一様堆積パター ンである(ここでは、検体の血液がA型である) と判定する。

る合計八つの反応容器 1 a . 1 a ……の底面に形成される疑集パターンの各々の像が、各集光レンズ4を介して一次元CCDセンサ 3 A . 3 A 上に結像する。この一次元CCDセンサ 3 A . 3 A からの出力信号が図示しない A / D 変換器を介しているが図示しない C P U に送られ、該C P U では、可動板 1 6 の移動量をモータの送り量(回転量)から求めてどの列の反応容器を検査中かを算出し、それぞれの反応容器内の被検体の凝集パターンを自動的に判定するようになっている。

以下、この場合の判定の一例を説明する。

上述したABO式血液型の判定方法では、凝集 反応が起こると互いに血液を介して結合した血球 粒子の塊は反応容器1aの円錐形底面に雪のよう に一様に堆積する。凝集反応が起こらない場合は 血球粒子は互いに血液を介さずに離散したまま沈 降し円錐形底面に達するとその斜面を転がり落ち 底面中央部に集合して堆積する。

第10図は反応容器1aの底面の拡大図である。 これは、反応容器1aの底面の半径が6ミリ。

以上説明したように本第1実施例によると、第 2 図ないし第3図に示すように受光ユニット10 を二つそれぞれの長手方向の一部が相互に重複す る状態で連結部材10Aにて連結し、所謂クラン ク状に形成し、各受光ユニット10の底部に装備 された一次元CCDセンサ3Aをマイクロプレー トーにマトリックス状に配設された反応容器la. 1a.……の縦列に沿って配置したことから、汎 用CCDセンサを用いた場合にあっても、第8図 に示す汎用CCDセンサを直列に配置した場合に 隣接する汎用CCDセンサ相互間の端縁に検出不 能部 P. Qが発生するという問題点を解決するこ とが出来るとともに、マイクロプレート1にマト リックス状に配設された反応容器 1 a . l a . … …の底面に形成される凝集パターンの像を、一度 に8個同時に検出する即ち疑似的に一列同時に検 出することが出来る。これがため、一方向の走査 のみでマイクロブレート1の全ての反応容器1a 内の検体の凝集反応を検出することが出来、位置 決め精度を向上せしめることが出来、縦横二方向

×

走査の場合と比較して検査時間を著しく短縮することが出来るという利点がある。 更に、発光ダイオード2A、2A……と一次元CCDセンサ3A、3Aとが一体的に移動する構造となっているので、これら両者の位置関係が固定化して検査精度を向上せしめることが出来るという利点なっている。 ないない 反応結果を安定に 数等で拡散されることがなく、反応結果を安定に 保持できるという利点をも有している。

尚、本実施例では固体撮像センサとして一次元 CCDセンサを用いたが、本発明は必ずしもこれ に限定されず二次元CCDセンサ等を使用しても よい。更に、本実施例では、一次元CCDセンサ が4つの凝集像を一括して投影する場合を例示し たが、使用するCCDセンサの大きさに応じて任 窓に投影する凝集像の数を設定してもよい。

(発明の第2実施例)

本発明の第2実施例を第9図を参照して説明す

を、一度に一列分検出することが出来、一方向の移動のみでプレート上のすべての被検査体を検査することが出来、これにより検出結果に対する信頼性を減ずることなく検出速度の向上を図ることが出来、コストを著しく低減せしめることが出来るという従来にない優れた免疫学的凝集反応検出・装置を提供することができる。

4. 図面の簡単な説明

第1図は本発明の第1実施例の構成を示す概念 図、第2図は第1図の受光ユニットを示す外観科 視図、第3図は第1図の受光ユニットの実際の配 置の一例を示す説明図、第4図は第1図のマイク ロプレートを示す斜視図、第5図は第1図の実施 例に係る免疫学的凝集反応検出装置の全体を見た くのに係るのは第5図のVIーVI線に沿って見た 状態を示す図、第7図は第1図の実施例で使用するCCDセンサの一例を示す斜視図、第8図は第7 図のCCDセンサを直列に接続した状態を示す 図、第9図は本発明の第2実施例を示す説明図、 る。

この第2実施例は、前記受光ユニット10を四つ設け、これらを第10図のように隣接する受光ユニット10,10がその長手方向を一部重複させた状態で且つマイクロプレート1の反応容器1aの縦列に沿って配置し、前述した第1実施例と同様になっている。 前述した第1実施例と同様になっている。

このように構成しても、前述した第1実施例と 同様の作用効果を得られる他、可動板16の移動 量を小さくすることが出来、これがため一つのマ イクロプレートに対する検査時間を一層短縮でき るという利点がある。

(発明の効果)

本発明は以上のように構成され、機能するのでこれによると、固体損像素子として汎用の一次元 CCDセンサを用いた場合であっても、マトリックス状に配設された反応容器内の検体の凝集反応

第10図は第1図の動作説明のための図、第11· 図は従来例を示す説明図である。

1……凝集反応検査用プレートとしてのマイクロプレート、1a……反応容器、2A……発光手段としての発光ダイオード、3A……固体撮像センサとしての一次元CCDセンサ。

特許出願人 鈴木自動車工業株式会社

一代理人 弁理士 高 橋 勇

特開平2-116735(7)

第 1 図

第 2 図

特閒平2-116735(8)

第9区 102 102

