Lesson 8: Math Class

One of the most useful methods of the *Math* class is sqrt() ...which means square root. For example, if we want to take the square root of 17 and store the result in p, do the following:

```
double p = Math.sqrt(17);
```

Notice that we must store the result in a *double*.... *p* in this case. We must store in a *double* since square roots usually don't come out even.

Signature of a method:

Below we will give the description of some methods of the *Math* class... along with the signatures of the method. First, however, let's explain the meaning of **signature** (also called a **method declaration**). Consider the signature of the *sqrt()* method:

Method	Signature	Description
abs	int abs(int x)	Returns the absolute value of x
abs	double abs(double x)	Returns the absolute value of x
pow	double pow(double b, double e)	Returns b raised to the e power
sqrt	double sqrt(double x)	Returns the square root of x
ceil	double ceil(double x)	Returns next highest whole number from x
floor	double floor(double x)	Returns next lowest whole number from x
min	double min(double a, double b)	Returns the smaller of a and b
max	double max(double a, double b)	Returns the larger of a and b
min	int min(int a, int b)	Returns the smaller of a and b
max	int max(int a, int b)	Returns the larger of a and b
random	double random()	Returns a random double (range $0 \le r < 1$)
round	long round(double x)	Returns x rounded to nearest whole number
PI	double PI	Returns 3.14159625

(For both *min* and *max* there are also versions that both accept and return types *float*, *short*, and *long*.

Now, we offer examples of each (most of these you can do on a calculator for verification):

```
    double d = -379.22;
System.out.println( Math.abs(d) ); //379.22
    double b = 42.01;
double e = 3.728;
System.out.println ( Math.pow(b, e) ); //1126831.027
    double d = 2034.56;
```

System.out.println(Math.sqrt(d)); //45.10609715

- 4. double d = 1.4; System.out.println(Math.ceil(d)); //2.0
- 5. double d = -1.6; System.out.println(Math.ceil(d)); //-1.0
- 6. double d = 1.4; System.out.println(Math.floor(d)); //1.0
- 7. double d = -1.6; System.out.println(Math.floor(d)); //-2.0

The last four examples illustrating *floor* and *ceil*ing are best understood with the following drawing:

- 8. double d = 7.89; System.out.println(Math.log(d)); //**2.065596135** ...log is base e.
- 9. double x = 2038.5; double y = -8999.0; System.out.println(Math.min(x,y)); //-**8999.0**
- 10. double x = 2038.5; double y = -8999.0; System.out.println(Math.max(x,y)); //2038.5
- 11. double x = 148.2; System.out.println(Math.round(x)); //148 double x = 148.7; System.out.println(Math.round(x)); //149 double x = -148.2; System.out.println(Math.round(x)); //-148 double x = -148.7; System.out.println(Math.round(x)); //-149

12. System.out.println(Math.PI); //3.14159265...

Advanced *Math* methods:

Below are some additional *Math* methods that advanced math students will find useful:

Method	Signature	Description
log	double log(double x)	Returns log base e of x
sin	double sin(double a)	Returns the sine of angle a a is in rad
cos	double cos(double a)	Returns the cosine of angle a a is in rad
tan	double tan(double a)	Returns the tangent of angle a a is in rad
asin	double asin(double x)	Returns arcsine of xin range -PI/2 to PI/2
acos	double acos(double x)	Returns arccosine of xin range 0 to PI
atan	double atan(double x)	Returns arctan of x. in range -PI/2 to PI/2
toDegrees	double toDegrees(double an	gRad) Converts radians into degrees
toRadians	double toRadians(double an	gDeg) Converts degrees into radians