UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i	MAT-INF 1100 — Modellering og beregninger.
Eksamensdag:	Fredag 7. desember 2007.
Tid for eksamen:	9:00 – 12:00.
Oppgavesettet er på 4	sider.
Vedlegg:	Formelark.
Tillatte hjelpemidler:	Godkjent kalkulator.
Kontroller at du begyn	oppgavesettet er komplett før ner å besvare spørsmålene.
Husk å fylle	e inn kandidatnummer under.
	Kandidatnr:
Det er bare ett riktig svar du svarer feil eller lar være Du blir altså ikke "straffet tradisjonelle oppgaver. I de poeng. Den totale poengsu av eksamen må du begrun	år av 7 flervalgsoppgaver som teller 4 poeng hver alternativ på hver av disse oppgavene. Dersom e å krysse av på en oppgave, får du null poeng." for å gjette. Andre del av eksamen består av enne delen teller hvert av de 6 delspørsmålene 12 mmen er altså maksimalt 100 poeng. I andre del ne hvordan du har kommet fram til resultatene runnet får 0 poeng selv om de er riktige!
Del	1: Flervalgsoppgaver
Oppgave 1. Koeffisiente 1) til fuksjonen $x \cos x$ er	n foran x^2 i Taylor polynomet (av grad større enn
\square 1 \square 1/2 \square 2 \square	$\bigcirc 0 \qquad \bigcirc -1/2$
Oppgave 2. Uttrykket ($Ce^x - 1$, med vilkårlig C , er en løsning av
y' - y = 0, y(0) = 1	
$ y'' + y' = 2e^x $	
$ y' + 1 - y^2 = 0 $ $ y' = e^x $	

Oppgave 3. En av likningene under er separabel. Hvilken?
$ y' + \sin x y = x $
$ y' + y^2 + x = x^2 $
$ xy' + e^x y^{1/2} = 0 $
$ y' + y = \sin x $
y' + 1/y = 2x
Oppgave 4. Vi interpolerer funksjonen $f(x) = (1+x)^{-1}$ med polynomer av andre grad i intervallet $[0,1]$ ved å kreve likhet i punktene $x=0,\frac{1}{2},1$. Det interpolerende polynomet kan da skrives
$ 1-x+x^2 $
$ 1 - \frac{5}{6}x + \frac{1}{3}x^2 $
Oppgave 5. I standard prosedyre for løsning av den lineære differensial- likningen
$y' + \tan x y = x^2, 0 < x < \frac{\pi}{2}$
finner vi den integrerende faktoren
Oppgave 6. I en tekstfil forekommer det tre forskjellige tegn, kodet med en av metodene for representasjon av tekst som vi har i dette kurset. Det viser seg at det ene tegnet blir representert med en byte, det andre med to bytes, det tredje med tre bytes. Hvilket av følgende punkter er riktig?
☐ Tegnene kan ha vært kodet med ASCII
☐ Tegnene kan ha vært kodet med UTF-8
\square Tegnene kan ha vært kodet med UTF-16
\square Tegnene kan ha vært kodet med UTF-32
☐ Tegnene kan ha vært kodet med ISO-latin1

Oppgave 7. Vi tilnærmer den andrederiverte til funksjonen f(x), i punktet 0, med uttrykket

$$D_2 f(0) = \frac{f(h) - 2f(0) + f(-h)}{h^2}.$$

Vi antar at f er uendelig mange ganger deriverbar. Da er feilen

$$\Big|f''(0) - D_2 f(0)\Big|,$$

begrenset	av
Degrenset	αv

- $\frac{h^2}{12} \max_{x \in [-h,h]} |f''(x)|$ $\frac{h^2}{48} \max_{x \in [-h,h]} |f^{(4)}(x)|$

- $\frac{h}{4} \max_{x \in [-h,h]} |f''(x)|$ $\frac{h^2}{12} \max_{x \in [-h,h]} |f^{(4)}(x)|$ $\frac{h^4}{8} \max_{x \in [-h,h]} |f''(x)|$

Del 2

Husk at i denne delen må alle svar begrunnes!

Oppgave 1. Løs initialverdiproblemet

$$y'' - 3y' + 2y = e^x$$
, $y(0) = 0$, $y'(0) = 1$.

Oppgave 2. I denne oppgaven skal vi foreta Huffman koding av teksten $\{AACABABABCABADA\}$

Regn ut frekvensene for de fire symbolene i teksten, og sett opp et Huffmantre for symbolene. Skriv til slutt opp Huffmankoden for teksten.

Oppgave 3. Vis ved induksjon

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \quad \text{for} \quad n \ge 1$$

Oppgave 4. Vi har gitt en differensialligning av andre orden med initialbetingelser

$$y'' - f(x)y' - g(x)y = 0, x \ge 0, y(0) = 0, y'(0) = 1,$$

der f og g er gitte funksjoner. Gjør om denne likningen til et sett av to førsteordenslikninger. Vi skal benytte Eulers midtpunktmetode for dette settet. Beskriv hvordan vi går ett steg fram, for eksempel fra x=0 til x=h.

Oppgave 5. Vi er gitt funksjonen $f(x) = \cos(x^2)$.

a) Vis at (x > 0)

$$f(x) = T_7 f(x) + R_7 f(x) = 1 - \frac{1}{2} x^4 + \frac{\cos(d)}{24} x^8,$$

der vi har utviklet om punktet a = 0 og der $0 \le d \le x^2$.

Hint: Du kan bruke Taylorpolynomet til cos(t).

b) Vi tilnærmer nå integralet $\int_0^h f(x)dx$ der h > 0. Vis at feilen ved å erstatte $f \mod T_7 f$ i integralet er begrenset av

$$\left| \int_0^h f(x) dx - \int_0^h T_7 f(x) dx \right| \le \frac{h^9}{216}.$$

Vis også at når $h \le 1$ er feilen minst $\frac{h^9}{432}$.