

Expressions algébriques

Maths Seconde

Somme et produit

Sommes (ou différence)	
de termes	Produits de facteurs
x-3	$(6x+1) \times (x-1)$ $2 \times (1+6x)$
(2x + 4) + 3x	$2 \times (1 + 6x)$
(5-x)-(9+9x)	$(8-x) \times (2+x)$ $(3+8x) \times (x-8)^2$
3 + (2 + 3x)(x - 2)	$(3+8x) \times (x-8)^2$

Développement

Développer = produit \Rightarrow somme

Formule de distributivité:

$$a(b+c) = ab + ac$$

Double-distributivité:

$$(a+b)(c+d) = ac + ad + bc + bd$$

Factorisation

Factoriser = somme \Rightarrow produit

Trouver un facteur commun:

$$4x + 4y + 8 = 4(x + y + 2)$$

$$x^2 + 3x - 5x^2 = x(x+3-5x)$$

Identités remarquables

DÉVELOPPER

$$\Longrightarrow (a+b)^2 = a^2 + 2ab + b^2$$
$$(a-b)^2 = a^2 - 2ab + b^2$$
$$(a+b)(a-b) = a^2 - b^2$$
$$\Longleftrightarrow$$

FACTORISER

Équations du 1er degré

But : Isoler l'inconnue dans léquation pour arriver à x =nombre

$$ax + b = 1$$
$$ax = 1 - b$$
$$x = \frac{1 - b}{a}$$

Équation-quotient

Équation du type : $\frac{P(x)}{Q(x)}=0$ où P(x) et Q(x) sont des expressions littérales $(Q(x)\neq 0)$.

$$\frac{a}{b} = 0 \iff a = 0 \text{ et } b \neq 0$$

Équation-produit

Équation du type : $P(x) \times Q(x) = 0$, où P(x) et Q(x) sont des expressions littérales.

$$a \times b = 0 \iff a = 0 \text{ ou } b = 0$$

Souvent deux solutions,

$$S = \{x_1; x_2\}$$

Équation $x^2 = a$

Les solutions dans $\mathbb R$ de léquation $x^2=a$ dépendent du signe de a.

- a < 0: pas de solution.
- Si a = 0, alors léquation possède une unique solution qui est 0.
- Si a > 0, alors léquation possède deux solutions qui sont $-\sqrt{a}$ et \sqrt{a} .

Inéquations du 1er degré

Une inéquation est une inégalité qui contient un nombre inconnu noté x. Résoudre une inéquation, cest trouver toutes les valeurs de x qui vérifient cette inégalité.

$$2x + 3 < 4 - 5x$$
$$2x + 5x < 4 - 3$$
$$7x < 1$$
$$x < \frac{1}{7}$$

$In \'equations \Longrightarrow Tableau \ de \ signes$

Comme pour les équations mais on utilise les tableaux de signes.

Pour les produit et les quotiens on applique la règle des signes.

x	-∞	1 2		3	+ ∞
3x - 9	_		_	Ф	+
1 - 2x = -2x + 1	+	Ф	_		_
(3x-9)(1-2x)	_	Ф	+	Ф	_

Fractions

$$\frac{a}{D} + \frac{b}{D} = \frac{a+b}{D}$$

$$\frac{a}{D} - \frac{b}{D} = \frac{a - b}{D}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

Réduire au même dénominateur

$$\frac{a}{b} + \frac{c}{d} = \frac{ad}{bd} + \frac{cb}{db}$$

Racines carrées

 $\sqrt{a} \text{ est le nombre positif dont le carr\'e}$ est $a: (\sqrt{a})^2 = a$ et $\sqrt{a^2} = a$ $\sqrt{a} \times \sqrt{b} = \sqrt{ab} \qquad \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ $\sqrt{a} + \sqrt{b} \neq \sqrt{a+b} \quad \sqrt{a} - \sqrt{b} \neq \sqrt{a-b}$

Puissances

$$a^n = \underbrace{a \times a \times a \times a \times ... \times a}_{n \text{ fois}}$$

Puissances

$$a^{1} = a$$

$$a^{0} = 1$$

$$0^{n} = 0$$

$$1^{n} = 1$$

Puissances

$$a^n \times a^p = a^{n+p}$$
 $\frac{a^n}{a^p} = a^{n-p}$ $(a^n)^p = a^{np}$
 $(a \times b)^n = a^n \times b^n$ $a^{-1} = \frac{1}{a}$ $a^{-n} = \frac{1}{a^n}$