Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 Работа с IATEX Вариант 42

> Выполнил: Студент группы Р3116 Брагин Роман Андреевич Проверил: доцент факультета ПИиКТ Авксентьева Елена Юрьевна

12	13	14	15	23
24	25	34	35	45
123	124	125	134	135
145	234	235	245	345

Таблица 1:

этому

$$-\frac{1}{3}\sum M_{i,j,k,l} + \frac{2}{3}M_{1,2,3,4,5} \le 0.$$

Теперь уже легко получить требуемый ответ. Из (7)следует, что

$$\sum_{i=1}^{n} M_{i,j} \ge 2 \sum_{i=1}^{n} M_i - 3M2 \ge 2$$

Но так как общее число число «попарных пересечений заплат» M_{ij}

равно 10, то хоть одно из них не меньше чем

$$2:10=\frac{1}{5}$$

что и требовалось доказать!

Нетрудно видеть, что равенство здесь будет иметь место лишь тогда, когда S=M, то есть когда кафтан весь покрыт заплатами, когда все $M_i=^1/_2$, все M_{ij} одинаковы (и равны $^1/_5$) и когда все $M_{i,j,k,l}=0$. На рисунке 1 приведена схема покрытия кафтана заплатами, где прямоугольник это кафтан и цифры на отдельных квадратиках указывают, какими заплатками покрыты соответствующие участки кафтана. Это схема показывает, что - $^1/_5$ - точная оценка. То, что на ней заплаты

состоят из отдельных кусков, не должно вас смущать - в задаче M185 важна только площадь заплаты, а не ее форма.

Теперь мы можем сформулировать общую задачу, частным случаем которой является задача M185:

Формулировка общей задачи; случай двух зарплат

На кафтане M площади 1 имеется n заплат $M_1, M_2, ..., M_n$, площадь каждой из которой не меньше известного нам числа α ; требуется оценить площадь наибольшего из пересечений M_{ij} заплат.

Другими словами, для каждой конфигурации из n заплат на кафтане мы находим максимальное по площади пересечения M_{ij} , а потом отыскиваем минимум этого максимума M_{ij} по всем возможным конфигурациям этих заплат *). Такого рода «минимаксные» (то есть связанные с нахожнением минимума некоторых максимумов) задачи играют в современной математике очень большую роль.

Искомое число min max M_{ij} зависит, разумеется, от заданного числа α , то есть является функци-

и от числа n заплат, то мы обозначим эту функцию через $f_n(\alpha)$ (где очевидно, $0 \le \alpha \le 1$, а , $n \geq 2$).Решение задачи М185 сводится к доказательству равенства

$$f_n(\frac{1}{2}) = \frac{1}{5}$$

 $f_n(\frac{1}{2}) = \frac{1}{5}$ общая задача требует доказать формулу, выражающую $f_n(\alpha)$ через α и n.

Для того чтобы понять, какого ответа можно ожидать в этой общей задаче, мы начинаем с (совсем

ей от α , так как оно зависит также простого!) случая n=2. Итак, мы считаем, что на кафтане M площади 1 имеются две заплаты M_1 и M_2 площадь каждой из которых не меньше α ; нам надо указать наименьшую возможную площадь $f_2(\alpha)$ пересечения M_{12} этих двух заплат.

> Ясно, что если $\alpha \leq^1 /_2$,то заплаты могут вовсе не пересечься (рис. $2,\alpha$); если же $\alpha \geq^1 /_2$, то наименьшая возможная площадь $f_2(\alpha)$ пересечения M_{12} заплат равна 2α -1 (рис. $2,\delta$).

Pис. 1: Enter Caption

Ссылка на статью