जीव विज्ञान (BIOLOGY)

जीवधारियों के लक्षण (Characteristics of Living Organisms)

- प्रकृतिप्रदत्त तमाम जीवों में कुछ ऐसे विशिष्ट गुण परिलक्षित होते हैं, जो निर्जीवों में नहीं पाए जाते हैं।
- किसी भी वस्तु को, जिसमें कुछ विशिष्ट जैविक क्रियाएँ (जैसे– श्वसन, प्रचलन, वृद्धि, पोषण, प्रजनन आदि) होती हैं, सजीव या जीव (Living Organism) कहा जाता है।
- जीवधारी प्राय: दो प्रकार के होते हैं; पौधे तथा प्राणी ।
- उच्च वर्ग के पौधों तथा प्राणियों में अंतर तो स्पष्ट हो जाता है, लेकिन निम्न वर्ग के पौधों तथा प्राणियों में अंतर करना कठिन होता है।
- जीवन को एक निश्चित परिभाषा देना बहुत कठिन है, परन्तु जीवधारियों के कुछ विशेष लक्षण होते हैं जिनके आधार पर उन्हें निर्जीव से पृथक किया जा सकता है।
- उपर्युक्त विशेष-लक्षण निम्न प्रकार हैं—
 - आकृति एवं आकार (Shape and Size)—सभी जीवों की अलग-अलग एक विशिष्ट आकृतियाँ हैं। उन्हीं के आधार पर इनकी पहचान की जाती है। जैसे- मेदक, मछली, चिडिया, मनुष्य आदि की एक विशिष्ट आकृति होती है।
 - 2. श्वसन (Respiration)—श्वसन, जीवधारियों का एक प्रमुख लक्षण है। इस क्रिया में जीव वायुमंडल से ऑक्सीजन लेते हैं तथा कार्बन डाइऑक्साइड (CO₂) छोड़ते हैं। श्वसन के दौरान वसा, कार्बोहाइड्रेट और प्रोटीन का विघटन होता है और ऊर्जा निर्गत होती है। यह ऊर्जा ए०टी०पी० (ATP = Adenosine Tri-phosphate) के रूप में निकलती है, जिससे सम्पूर्ण जैविक क्रियाएँ चलती हैं।

ग्लुकोज के एक अणु के श्वसन से कुल 38 ATP अणु प्राप्त होते हैं।

 वृद्धि (Growth)—िकसी जीवधारी की आकृति, आयतन एवं शुष्क दर में बढ़ोत्तरी वृद्धि कहलाती है। यह सफल उपापचय का ऑतम परिणाम है।

 उपापचय (Metabolism)—उपापचय की क्रिया दो क्रियाओं से मिलकर पूर्ण होती है— उपचयी (Anabolic) तथा अपचयी (Catabolic)।

 गति (Movement) — जीवधारियों में गति करने का विद्यमान रहता है। जन्तु एक स्थान से दूसरे स्थान तक जाते हैं, जबिक एक ही स्थान पर स्थिर रहकर अपने अंगों में गति करने की क्षमता पौधों में होती है।

 प्रजनन (Reproduction) प्रत्येक जीव में प्रजनन-क्रिया के माध्यम से अपने ही जैसे जीव उत्पन्न करने की क्षमता होती है। इस तरीके से वह अपने वंश को बनाये रखते हैं।

7. पोषण (Nutrition)—प्रत्येक जीव अपने क्रिया-कलापों के लिए आवश्यक कर्जा पोषण से प्राप्त करते हैं। पौधे अपना भोजन प्रकाश-संश्लेषण की क्रिया से बनाते हैं, जबिक जन्तु पौघों पर ही आश्रित रहते हैं। निर्जीव वस्तुओं में इस प्रकार से भोजन बनाने का गुण नहीं होता है।

 अनुकूलन (Adaptation)— जीवों में यह क्षमता होती है कि जीवन-संघर्ष में सफल होने के लिए उनकी संख्वनाओं एवं कार्यों में अपने-आप जरूरी परिवर्तन हो जाते हैं।

- संवेदनशीलता (Sensitivity)—जीयों में संवदेनशीलता होती है। ये वतावरण में होनेवाले परिवर्तनों का अनुभव करते हैं तथा उनके अनुसार अपने को सुरक्षित रखने के लिए आवश्यक परिवर्तन कर लेते हैं।
- जीवद्रय (Protoplasm)—यह सभी जीवचारियों में पाया जानेवाला ऐसा पदार्थ है जो जीवन का भौतिक आधार है। यह सभी जीवों की भौतिक आधारिशला है। इसे जैविक क्रियाओं का केंद्र कहते हैं।
- उत्सर्जन (Excretion)—सभी जीवघारियों द्वारा शरीर में उपस्थित हानिकारक पदार्थ— CO₂ यूरिक अम्ल आदि— बाहर निकाले जाते हैं। सजीवों द्वारा सम्पन्न हुई इस क्रिया को उत्सर्जन कहा जाता है।
- 12. जीवन-ज्युक्त (Life-Cycle)—सभी जीवधारी अत्यन्त सूक्ष्म भूण के रूप में जीवन प्रारंभ करते हैं तथा पांपण, वृद्धि तथा सन्तानोत्पत्ति के बाद नष्ट हो जाते हैं। सन्तान-वृद्धि कर पुनः इस जीवन-मरण के चक्र को पूरा करते हैं।
- पीधे तथा प्राणियों में अन्तर (Differences between plants and animals) : उच्च वर्ग के पौधों तथा प्राणियों में तो अन्तर आसानी से किया जा सकता है, लेकिन एक-कोशीय जीवों में मिन्तता करना बहुत कठिन है।

कुछ लक्षणों के आधार पर प्राणियों (जन्तुओं) तथा पौधों में अन्तर

तथा पौधा में अन्तर			
कारक (Factors)	पौद्या (Plants)	प्राणी(जन्तु) (Animals)	
वृद्धि (Growth) कोशिकाभिति (Cell wall) क्लोरोफिल	पौघाँ में वृद्धि विशेष स्थानों पर विभाज्योतक (apical meristem) तथा अन्तर्वेशी विभाज्योतक (intercalary meristem) से लंबाई में वृद्धि होती है जबकि पारवीय विभाज्योतक (Lateral meristem) से मुटाई में वृद्धि होती है। पौघों में सुविकसित तथा निजीव कोशिकाभिति मिलती है जो सेलुलोज (cellulose) की बनी होती है। अधिकांश पौघों में (कवकों,	है । प्राणियों में कोशिकामिवि अनुपस्थित होती हैं ।	
(Chlorophy II)	पूर्ण परजीवियों तथा कुछ जीवाणुओं को छोड़कर) क्लोग्रेफिल मिलता है जिससे प्रकाश संश्लेषण की क्रिया होती है तथा भोज्य पदार्थों का निर्माण होता है, अत: पौषे स्वपोष (autotrophs) प्रवृत्ति के होते हैं।	फिल नहीं मिलता है तथा वे भोजन के लिए पौधों पर निर्भर करते हैं। अत: प्राणी परपोषी (heterot- rophs) प्रकृति के होते हैं।	
गति (Movements)	पौधों में आंतरिक गति जैसे- तना, जड़ आदि में मिलते हैं। ये भाग प्रकाश या गुरुत्वाकर्षण के कारण इघर- उघर मुड़ जाते हैं।	आंतरिक दोनों गति होती है। जंतु भोजन प्राप्ति	

	कारक	पौधा	प्राणी(जन्तु)
_	(Factors)	(Plants)	(Animals)
•	खनिज सवणों का अवशोषण (Absorption of Minerals and Salts)	पौधे पृथ्वी से खनिज लवणों को जल में घोल के रूप में अवशोषित करते हैं और उपापचय करते हैं।	प्राणी अथवा भोजन ठोस रूप से ग्रहण करते हैं।
•	उत्सर्जन तंत्र (Excretory System)	पौधों में उत्सर्जन उनकी छाल (bark) या पत्तियों के गिरने से होता है।	लेकिन प्राणियों में हानि- कारक तथा उत्सर्जी पदायों को निकालने के लिए विशेष उत्सर्जन तंत्र होता है।
•	सेण्ट्रोजोम (Centrosome)	पौधों में सेण्ट्रोजोम अनुपस्थित होता है ।	* *
•	रसघानी (Vacuole)	पादप कोशा में रसधानी मिलती है।	लेकिन प्राणी कोशा में इसका अभाव होता है।
•	कोशा विमाजन (Cell Division)	पौघों में कोशिका विभाजन के समय कोशिका प्लेट (cell plate) बनती है।	लेकिन जंतओं में कोशा

सजीव तथा निर्जीव में अंतर

राजान राजा गंजाच न अंतर			
_	सजीव		निर्जीव
1.	सजीवों में श्वसन की क्रिया होती है।	1.	निर्जीवों में श्वसन की क्रिया नहीं होती है।
2.		2.	निर्जीवों में वृद्धि नहीं होती है।
3.	सजीवों में आंतरिक एवं स्वत: गति होती है।	3.	निर्जीवों में बाह्य एवं प्रेरित गति होती है।
4.	सजीवों में प्रजनन की क्रिया होती है जिसके द्वारा अपने सदृश जीवों को जन्म देती है।	4.	लेकिन निर्जीवों में यह गुण नहीं पाया जाता है।
5.	सजीवों में बाह्य उद्दोपनों के प्रति अनुक्रिया करने की स्वामाविक	5.	लेकिन निर्जीवों में उत्तेजनशीलता का गुण नहीं पाया जाता है।
24	क्षमता होती है जिसे उत्तेजन-		eren dik

कोशिका विज्ञान (Cytology)

- जीव विज्ञान की वह शाखा, जिसमें कोशिका की संरचना एवं उसके कार्यों का अध्ययन किया जाता है, कोशिका विज्ञान (Cytology) कहलाती है।
 कोशिका विज्ञान (Cytology)—
- संसार के समस्त जीव छोटी-छोटी कोशिकाओं से मिलकर बने हैं।
- यह जीवधारियों की रचनात्मक एवं कार्यात्मक इकाई है।
- यह अर्द्धपारगम्य झिल्ली (Semi permeable membrane) से देंकी रहती है और इसमें स्वत: जनन की क्षमता होती है। जीवधारियों में कोशिकाओं की संख्या—
- एक कोशिकीय जीवधारी एक ही कोशिका से बने होते हैं, लेकिन जटिल जीवधारियों में कोशिकाओं की संख्या समय-समय पर बदलती रहती है।
- कोशिकाओं की संख्या विभिन्न जीवों में भिन्न-भिन्न होती है।

- हाथी के शरीर में कोशिकाओं की संख्या चूहे की अपेक्षा बहुत-बहुत अधिक होती है।
- ये कोशिकाएँ इतनी सृक्ष्म होती हैं कि इन्हें आँखों से देखने के बजाय सृक्ष्मदर्शी में देखा जाता है।

कोशिकाओं की मंख्या के आचार पर जीववारियों (जंतुओं) का वर्गीकरण (Classification)—

- जीव मुख्यत: दो प्रकार के होते है-
 - एककोशिकीय (Unicellular)—प्रोटोजोआ संय के सभी प्राणी एककोशिकीय होते हैं, जैसे-अभीया आदि ।
 - (ii) यहुकोशिकीय (Multicellular)—एक कोशिकीय जन्तु के अतिरिक्त सभी जन्तु यहुकोशिकीय होते हैं, जैसे-मेढ़क, बिल्ली आदि।
- राबर्ट हुक ने 1665 ई॰ में कॉर्क को काटकर मुक्ष्मदर्शी (Microscope) से इसमें अनेक chamber देखा जिसे उसने कोशिका कहा।
- Quarcus subber (Oak) नामक वृक्ष सं 'कॉर्क' प्राप्त किया जाता है।
- रॉबर्ट हुक का अध्ययन निर्जीव कोशिका पर था।
- 1676 ई॰ में सर्वप्रथम एंटनी वॉन ल्यूवेनहॉक द्वारा सजीव कोशिका का अध्ययन किया गया।
- ल्यूवेनहॉक को father of Bacteriology कहा जाता है।
- संसार की सबसे छोटी कोशिका माइकोप्लाज्या गैलेप्सिटिकम (माप-0.1 माइकोमीटर) नामक जीवाण है।
- संसार की सबसे बड़ी कोशिका शुनुरमुर्ग का अण्डा (170 mm ×
- मानव शरीर की सबसे लम्बी कोशिका तंत्रिका कोशिका (Neuron) होती है।
- दो जर्मन वैज्ञानिक श्वान (1838) एवं श्लाइडेन (1839) ने कोशिका सिद्धांत (cell theory) प्रस्तुत किया।
- श्वान (प्राणिशास्त्री) एवं श्लाइडेन (वनस्पतिशास्त्री) द्वारा कोशिका सिद्धांत (cell theory) निम्न प्रकार से दिया गया–
 - (i) सभी प्राणियों का शरीर कोशिकाओं का समूह है।
 - (ii) यह जैविक क्रियाओं या मेटाबोलिक क्रियाओं को इकाई को प्रदर्शित करती है।
 - (iii) कोशिकाएँ आनुवांशिक इकाई (Hereditary unit) हैं तथा इनमें आनुवांशिक गुण भी उपस्थित रहते हैं।
 - (iv) नवीन कोशिकाएँ पूर्ववर्ती कोशिकाओं से ही बन सकती हैं।
 - (v) किसी भी जीव में होने वाली सभी क्रियाएँ उसको घटक कौशिकाओं में होने वाली विभिन्न जैव-क्रियाओं के कारण हो होती है।

विभिन्न प्रकार की कोशिकाओं का आकार

कोशिका	आकार
मुर्गी का अंडा	(60 × 45) mm
ऑस्ट्रिच का अंडा	(170 × 135) mm
टायफायड बैसीलस	$(2.4 \times 0.5) \mu$
अमीबा	100 μ
लाल रुधिरकण	7μ
T ₃ वैक्टेरियोफेज	45 m
टोमैटो मोजैक वायरस (TMV)	(300 × 15) mμ

होते हैं।

में होता है।

गॉल्जीकाय अनुपस्थित होता है ।

डी-एन-ए- एकल सुत्र के रूप

पादप-कोशिकाओं की आकृति एवं आकार (Shape and Size of Plant Cells)

- अधिकतर कोशिकाओं का व्यास 0.1 Micron (1μ=1/100mm)
 तथा 1 mm होता है।
- कोशिका-अंगक तथा कोशिकाद्रव्य के घटक बहुत छोटे होने के कारण इन्हें मिलोमाइक्रोन (mμ), नैनोमाइक्रोन (nμ) या ऐंग्स्ट्रम (Angstrom, A) में मापा जाता है।
- 0.1μ से छोटी वस्तुओं को मनुष्य द्वारा नहीं देखा जा सकता।
- अत: इन्हें देखने के लिए इलेक्ट्रॉन सूक्ष्मदर्शी (Electron Microscope) का प्रयोग किया जा सकता है।

आकृति (Structure)-

- कोशिकाओं की आकृतियाँ लम्बी, गोलाकार, चपटी, आयताकार, बहुभुजी आदि सभी प्रकार की होती हैं।
- साधारणतः इनकी लंबाई, चौड़ाई और मोटाई $10\mu-200\mu$ के बीच होती है। $(1\mu=10^{-6}\,\text{मीटर})$ ।

आकार (Size)—

- कोशिका का आकार 1μ से लेकर 1.5 मीटर तक होता है।
- जीवाणु (Bacteria) = 0.2μ से 20μ तक ।
- मनुष्य का अंडा (Human Egg) = 200μ व्यास ।
- कपास के तन्तु = 55.6 cm (लंबाई) ।
- त्रिका कोशिकाएँ (Nerve Cells) = 1-1.5 मीटर लंबे।
- प्लुरोनिमोनिया = 0.25μ ।

कोशिका के प्रकार (Type of Cell)—

- रचना के आधार पर कोशिकाएँ दो प्रकार की होती हैं-
- 1. प्रोकॅरियोटिक कोशिका (Procaryotic Cells)—
- इसका शाब्दिक अर्घ है, Pro = प्राचीन, Karyon = केंद्रक, इन कोशिकाओं के क्रिस्टॉन प्रोटीन नहीं होती जिसके कारण कोमैटिन नहीं बन पाती।
- केवल DNA का सूत्र ही गुणसूत्र के रूप में पड़ा रहता है।
- अन्य कोई दूसरा आवरण इसे घेरे नहीं रहता।
- अतः केंद्रक नाम का कोई विकसित कोशिकांग इसमें नहीं होता ।
- जीवाणुओं (Bacteria) व नील-हरित शैवालों (blue-gree algae) में ऐसी ही कोशिकाएँ मिलती हैं।
- 2. यूकैरियोटिक कोशिका (Eucaryotic Cell)
- इसका शाब्दिक अर्थ है-Eu=वास्तविक, Karyon = केन्द्रक ।
- इन कोशिकाओं में दोहरी जिल्ली के आवरण, केन्द्रक आवरण (Nuclear envelope) से घिरा सुस्पष्ट केंद्रक पाया जाता है, जिसमें DNA व हिस्टोन प्रोटीन के संयुक्त होने से बनी क्रोमैटिन तथा इसके अलावा केंद्रक (Nucleus) होते हैं।

प्रोकैरियोटिक तथा यूकैरियोटिक कोशिका में अंतर

प्रोकैरियोटिक कोशिका	यूर्करियोटिक कोशिका
 ऐसी कोशिकाएँ जीवाणु एवं	 यूकैरियोटिक कोशिकाएँ सभी
नीलहरित शैवालों में मौजूद	जन्तुओं एवं पौघों में पायी जाती
रहती हैं। इनमें वास्तविक केंद्रक नहीं	हैं। इनमें वास्तविक केंद्रक पाया
पाया जाता है। ये कोशिकाएँ अर्द्धविकसित	जाता है। यूकैरियोटिक कोशिकाएँ पूर्णरूपेण
होती हैं।	विकसित होती हैं।

प्रोकैरियोटिक कोशिका	युकेरियोटिक कोशिका
 इनमें कोशिका-विभाजन नहीं हो पाता है। ऐसी कोशिकाओं में श्वसन-तंत्र झिल्ली में होता है। 	 इनमें कोशिका-विभाजन सम्भव है। इन कोशिकाओं में श्वसन-तंत्र माइटोकॉण्ड्या में होता है।
 इन कोशिकाओं में माइयेकॉॅंग्ड्या, लवक तथा न्यूक्लियोलस विकसित नहीं होते हैं। 	 इन कोशिकाओं में श्वसन-तंत्र माइटोकॉण्ड्रिया (Mitochon- dria), लवक (Plastids) तथा न्यूक्लियोलस (Neucleolus) विकसित होते हैं।
 प्रोकैरियोटिक कोशिकाओं में ग्रहबोजोम 70s अवसाद गुणांक 	 यूकैरियोटिक कोशिका में ग्रइबोसोंम 80s अवसाद गुणांक होते हैं।

कोशिका की संरचना (Structure of Cell)

गॉल्जीकाय उपस्थित होते है।

होता है।

पूर्ण विकसित और दोहरे सूत्र में

- जेतुओं में जंतु कोशिका तथा पौघों में पायी जाने वाली कोशिका पादप कोशिका (Plant Cell) कहलाती है।
- 'नॉल (Knoll) एवं रस्का (Ruska)' नामक वैज्ञानिकों ने वस्तु को 1
 लाख गुना बड़ा करके दिखाने वाली इलेक्ट्रॉन माइक्रोस्कोप की खोज की ।
- कोशिकाओं की संरचना का विस्तृत अध्ययन इलेक्ट्रॉन माइक्रोस्कोप द्वारा ही किया जाता है।
- इलेक्ट्रॉन माइक्रोस्कोप से पादप एवं जन्तु कोशिका की निम्न तस्वीरें प्राप्त होती हैं—

जंतु तथा पादप कोशिकाओं में अंतर (Difference between animal and plant cell)

्राम जंतु कोशिका	पादप कोशिका
(Animal Cell)	(Plant Cell)
(i) जंतु कोशिका में लवक (Plastids) वाका नहीं पाए जाते हैं। (ii) अधिकाश जन्तुओं की कोशिकाओं में सेण्ट्रोजोम (Centrosome) पाए जाते हैं। (iii) इनमें लाइसोजोम पाए जाते हैं।	जाते हैं। (ii) निर्जीवों में स्वसन की क्रिया

GENERAL SCIENCE 163

जंत कोशिका पादप कोशिका (Animal Cell) (Plant Cell) (iv) रसघानियाँ (vacuoles) या तो (iv) इसमें बड़ी-बड़ी रसघानियाँ होती इसमें होती ही नहीं, यदि होती हैं जो कि कोशिका का काफी बड़ा भी है, तो बहुत छोटी । अत: भाग घेरे रहती है। कोशिका-द्रव्य कोशिका में समान रूप से वितरित रहतां है। इसका आकार लगभग वृत्ताकार (v) इसका आकार लगभग आयताकार होता है । होता है। (vi) इसमें कोशिका कला (Plasma (vi) कोशिका कला चारों ओर से एक membrane) के बाहर कोई-भित्ति द्वारा थिरी रहती हैं जिसे कोशिका-पिति (cell wall) कहते भिति (wall) नहीं होती । कोशिका े कला ही कोशिका की सीमा है। हैं जो प्राय: सेललोज (cellulose) For the six all sections नामक पदार्थ की बनी होती है।

जीव-द्रव (Protoplasm)—

- हक्सले (Huxley) के अनुसार जीवद्रव्य जीवन का भौतिक आधार (Physical Basis of Life) है।
- सन् 1839 में पुरिकान ने सर्वप्रथम 'प्रोटोप्लाज्म' (Protoplasm) शब्द का प्रयोग किया है।
- रासायनिक दृष्टि से जीवद्रव कार्बनिक एवं अकार्बनिक पदार्थों का एक जटिल मिश्रण है।
- जीवद्रव में जल सबसे अधिक मात्रा में उपस्थित रहता है।
- जलीय पौघों में 95 प्रतिरात तक जल रहता है। बीज तथा स्पोर में जला 10–15% तक होता है।
- जीवद्रव्य का लगभग 80% भाग जल होता है।
- कार्बोहाइड्रेट जीवद्रव का आवश्यक भाग है।
- जीवद्रव को दो भागों में बाँटा गया है-1. कोशिकाद्रव (Cytoplasm) तथा 2. केन्द्रक-द्रव (Nucleoplasml)
- कोशिका द्रव केन्द्रक एवं कोशिका झिल्लो के बीच का जीव-द्रव होता,
 जबिक केंद्रक-द्रव केंद्र के अंदर का जीवद्रव होता है।

कोशिका भित्ति (Cell wall)-

- कोशिकामिति केवल पादप कोशिकाओं (plant cell) में पायी जाती है।
- यह, जन्तु कोशिका में अनुपस्थित रहती है।
- यह पादप कोशिका की सबसे बाहरी परत है, इसका निर्माण सेल्युलोज नामक पदार्थ से होता है।
- यह निर्जीव (non-living) रचना है, यह काफी दुढ़ होती है।
- कोशिका-भित्ति के निम्न प्रमुख कार्य है—
 - (i) यह कोशिका को निश्चित आकृति प्रदान करती है।
 - (ii) यह कोशिकाओं को सुरक्षा देती है।

प्लाज्या झिल्ली (Plasma Membrane)—

- प्लाज्मा झिल्ली पादप कोशिका (Plant cell) एवं जंतु कोशिका (Animal cell) दोनों में पायी जाती है।
- पादप कोशिका में कोशिका भित्ति के नीचे तथा जंतु कोशिका में सबसे बाहरी भाग है।
- यह एक सजीव झिल्ली है, इसकी मोटाई 75Å है। यह अर्द्धपारगम्य झिल्ली (semi permeable membrane) है।
- इसका निर्माण मुख्यत: प्रोटीन एवं फॉस्फोलिपिड से होता है, किन्तु कुछ मात्रा में कार्बोहाइड्रेड भी उपस्थित होता है।
- प्लाज्मा झिल्ली के निर्माण संबंधी अनेक मत दिए गए हैं। किन्तु
 1972 ई॰ में 'सिंगर एवं निकाल्सन' ने fluid mosaic model
 प्रतिपादित किया, जो कि सर्वाधिक मान्य है।

- प्लाज्मा झिल्ली कोशिका को निश्चित आकार प्रदान करती है।
- प्लाज्मा झिल्ली कोशिकांगों को सुरक्षा प्रदान करती है।
- प्लाज्मा झिल्ली के द्वारा चयनात्मक पदार्थों का परिवहन होता है।
 माइटोकॉण्डिया (Mitochondria)—
- माइटोकॉण्ड्या की खोज सर्यप्रथम कोलिकर नामक वैज्ञानिक ने 1880 ई॰ में किया। उन्होंने इसे कीटों के मांस-पेशियों में देखा था।
- इसकी औसत लंबाई 3.5 mμ (milli micron) तथा व्यास 0.2 से 2
- यह कोशिका द्रव्य में पाई जाने वाली गोलाकार, स्वाकार या छड़ जैसी रचना है।
- यह पादप कोशिका एवं जन्तु कोशिका दोनों में पायी जाती है,
 प्रोकैरियोट्स में अनुपस्थित होती है।
- इसकी संख्या 50 से 50,000 तक होती है (chaos-chaos में 50,000)।

Mitochondria; Power House of the Cell and t-

- माइटोकॉण्ड्या कोशिकाद्रव्य में पाया जाने वाला गोलाकार या सूत्राकार रचना है।
- इसमें बहुत-से श्वसनीय एन्जाइम हैं, जिनकी सहायता से इलेक्ट्रॉन के इंट्रान्सफर के द्वारा ATP बनते हैं, जिनमें कर्जा रासायनिक कर्जा के रूप में सचित रहती है।
- यह ऑक्सी-श्वसन से भी सम्बन्धित होता है तथा एडीनोसिन ट्राइफॉस्फेट (ATP) के अणुओं के रूप में कर्जा का उत्पादन करता है।
- अतः कर्जा उत्पन्न करने के कारण इसे कर्जा का बिजलीघर अथवा
 कोशिका का कर्जाघर (Power House of the Cell) कहा जाता है।

(माइटोकॉण्ड्या की रचना)

लवक (Plastid)—

- अधिकांश पादप कोशिकाओं में एक प्रकार की रचना पाई जाती है,
 जिसे लवक (Plastid) कहते हैं। यह चपटी या वृत्ताकार हो सकती है।
- लवक मुख्यत: तीन प्रकार के होते हैं-1. अवर्णीलवक (Leucoplast),
 2. वर्णीलवक (Chromoplast) तथा 3. हरितलवक (Chloroplast)।
- अवर्णीलवक (Leucoplast) –
- ये रंगहीन तथा अनियमित आकार के होते हैं।
- इसमें कोई वर्णंक नहीं होता है।
- ये पौधों की जड़ों में एवं भूमिगत तनों में पाये जाते हैं।
- इनमें खाद्य-पदार्थ संप्रहित रहते हैं।
- ल्युकोप्लास्ट तीन प्रकार के होते हैं-
 - (a) एमाइलोप्लास्ट (Amyloplast) यह मण्ड (starch) को संचित करता है।
 - (b) एलोइयोप्लास्ट (Elasioplast) यह बीज में पाया जाता है तथा यह वसा को सींचत करता है।
 - (c) प्रोटीनोप्लास्ड (Proteinoplast) यह बीज में पाया जाता है तथा प्रोटीन को सर्वित करता है।

- वर्णीलवक (Chromoplast)—
- इसमें रंगीन वर्णक द्रव्य होता है।
- ये नीले, लाल एवं नारंगी रंगों के लवक हैं।
- इन वर्णकों के आपसी मिश्रण से क्रोमोप्लास्ट और भी रंग बनाते हैं। ये पुष्प के दलों तथा फलों के छिलकों में अधिक मात्रा में मिलते हैं।
- लाल नारंगी रंग के वर्णक कैरोटीन, पीले रंग के वर्णक जैन्योफिल आदि में होते हैं।
- टमाटर में लाइकोपिन तथा गाजर में कैरोटीन पाया जाता है।
- चुकन्दर में बिटानिन पाया जाता है।
- हरितलवक (Chloroplast)-

- हरितलवक हरे रंग के लवक हैं, जिनमें हरे रंग का पर्णहरित या क्लोरोफिल (Chlorophy II) उपस्थित होता है, जिसके कारण पौधे के कुछ भाग अर्थात् पतियाँ हरी दिखाई देती हैं।
- क्लोरोफिल के द्वारा ही प्रकाश संश्लेषण की क्रिया होती है।
- क्लोरोफिल के केन्द्र में मैग्नीशियम का एक परमाणु होता है।
- क्लोरोफिल प्रकाश में बैंगनी, नीला तथा लाल रंग की ग्रहण करता है।
- अतः हरितलवक प्रकाश-संश्लेषण की क्रिया द्वारा भोजन का निर्माण करता है, इसलिए इसे पादप कोशिका का रसोईघर (Kitchen of cell) भी कहते हैं।
- यह दोहरी झिल्ली की बनी रचना होती है। इसमें द्रव्य होता है, जिसे stroma कहते हैं ।
- स्ट्रोमा में sac-like रचना पाई जाती है, जिसे श्रेलेक्वॉयड कहा जाता है।
- थैलेक्वॉयड के समूह को ग्रैना (Grana) कहा जाता है।
- प्रत्येक क्लोगेप्लास्ट में 'ग्रैना' की संख्या 40-60 तक होती है।
- ग्रैना को जोड़ने वाली रचना को स्टोमा लैमेली कहते है।
- थैलेकॉयड की झिल्ली पर क्लोग्रेफिल के अणु लगे होते हैं।
- क्लोरोफिल के सिर (Head) में Mg पाया जाता है।
- क्लोरोफिल प्रकाश-संश्लेषण में सहायक होता है।

केंद्रक (Nucleus)—

- केंद्रक की खोज 1831 हैं। में रॉबर्ट ब्राउन ने की।
- केंद्रक को कोशिका का दिमाग (brain of cells) अथवा कोशिका का नियंत्रण-केंद्र (controll centre) कहते हैं।
- केंद्रक अंडाकार, गोलाकार, चपटे आदि विभिन्न आकृतियों के होते हैं।
- केंद्रक के निम्नलिखित चार भाग होते हैं-
- केंद्रक फिल्ली (Nuclear Membrane)-
- इसकी खोज ओ॰ हटविंग ने की थी।
- केंद्रक के चारों ओर एक महीन कला होती है, जिसे केंद्रक कला कहते हैं ।
- यह दो परतों या झिल्लियों से निर्मित है।
- प्रत्येक झिल्ली एक युनिट मेंम्ब्रेन को प्रदर्शित करती है और 75 Å मोटी +++++

- केंद्रकद्रव (Nucleoplasm)-
- केंद्रक कला के अंदर केंद्रक में एक पारदर्शी अर्द्ध-तरल एवं कणिकीय मैट्रिक्स होता है, जिसे कॅंद्रकद्रव या कॅंद्रक-रस (Nuclear sap)
- इसमें RNA, DNA, प्रोटीन, एंजाइम, खनिज लवण आदि पाए जाते हैं।
- क्रोपैटिन (Chromatin) -
- यह केंद्रक का सबसे महत्वपूर्ण भाग है।
- यह धागे के रूप में एक-दूसरे के ऊपर फैलकर एक जाल-सा बनाता है।
- इसे क्रोमैटिन रेटिकुलम (Chromatin Reticulum) कहते हैं ।
- कोशिका-विभाजन के समय ये धार्ग सिकुड़कर छोटे एवं मोटे हो जाते हैं।
- अब इन्हें गुणसूत्र (Chromosomes) कहते हैं।
- केंद्रिका (Nucleolus) -
- इसकी खोज फॉण्टेना ने की थीं।
- क्रोमैटिन के अलावा केंद्रक में एक (या अधिक) सघन गोल रचनाएँ दिखाई पहती हैं. इसे केंद्रिका कहते हैं।
- इसमें ग्रइबोजोम (Ribosome) के लिए RNA का संश्लेषण होता है।

गॉल्जीकाय (Golgibody)—

- इसकी खोज कैमिलो गॉल्जी द्वारा 1898 ई॰ में किया गया।
- बेकर द्वारा इसे 'लाइपोकाँडिया' नाम दिया गया।
- पादप कोशिका में इसे डिक्ट्योजोम्स (Dictyosomes) कहा जाता है। इसका निर्माण लिपिड एवं प्रोटीन से होता है।
- प्रत्येक गॉल्जीकाय में 4-10 चपटी, धैली रचना मिलती है, जिसका सिरा फुला हुआ होता है । इसे सिस्टर्नी (cisternae) कहते हैं ।
- Cisternae के निकट छोटी-छोटी एवं गोलाकार रचना पायी जाती है, जिसे vesicle कहते हैं तथा बड़ी गोल रचना को vacuole कहते हैं।
- सभी रचनाओं को मिलाकर golgicomplexकहते हैं।
- यह कार्बोहाइड्रेट के संश्लेषण में सहायक होता है।
- गॉल्जीकाय, प्रोटीन का secretion (स्रावण) करता है।
- गॉल्जीकाय, लाइसोजोम के निर्माण में सहायक होता है।
- गॉल्जीकाय, एक्रोजोम के निर्माण में सहायक होता है।
- ्गॉल्जीकाय, कोशिका प्लेट के निर्माण में सहायक होता है। इसे अणुओं का यातायात प्रबंधक भी कहते है।

लाइसोसोम (Lysosome)—

- इसकी खोज डी-ड्वे (De-duve) द्वारा 1958 ई॰ में किया।
- लाइसोजोम एक धैलीनमा रचना है, जो कि membrane द्वारा थिरी 'होती है ।

आत्महत्या की थैली (Suicidal Bag)—

- इसका व्यास 0.21μ 0.8μ तक होता है, इसका मुख्य कार्य अंत: कोशिकीय पाचन है।
- यह कोशा-विभाजन में भी सहायता करता है।

- इसमें बहुत-से अम्लीय अपघट्य ए-जाइम भी पाए जाते हैं, जो कभी-कभी भोजन की कभी के कारण कोशिकाओं का विघटन कर देते हैं अर्थात् विनष्ट कर देते हैं।
- अतः इसे 'आत्महत्या की थैली' भी कहते हैं।

अंतःद्रव्यीय जलिका (Endoplasmic Reticulum-ER)-

- इसकी खोज पोर्टर द्वारा 1945 ई॰ में की गई थी।
- यह कोशिकाभिति तथा केंद्रक में भरे कोशिकाद्रव्य में जालनुमा ढंग से फैला हुआ होता है।
- यह जाल परस्पर समांतर ढंग से लगी चपटी निलकाओं से बना होता है।
- निलकाओं के अंदर तरलद्रव्य और इनके बाहर जीवद्रव्य होते हैं।
- इन निलकाओं द्वारा प्रोटीन, खनिज लवण, एन्जाइम, शर्करा एवं जल का परिवहन होता है।
- यह एक कोशिका से दूसरी कोशिका में पदार्थों के परिवहन में सहायक होता है।
- केंद्रक से कोशिकाद्रव्य में पदार्थों का परिवहन इसी के द्वारा होता है।
- यह प्रोटीन संश्लेषण में सहायता करता है।
- यह कोशिका को यांत्रिक सहारा प्रदान करता है, इसलिए इसे कोशिका का कंकाल (endoskeleton of cell) कहते हैं।
- अंत:द्रव्यीय जलिका के कुछ भागों पर किनारे-किनारे छोटी-छोटी कणिकाएँ लगो होती हैं जिन्हें राइबोजोम कहा जाता है।
- इस प्रकार दो तरह की अंतर्द्रव्यीय जलिकाएँ (Endoplasmic Reticulum, ER) पाई जाती हैं-
 - (i) खुरदरी अंतर्द्रव्यीय जालिका (Rough Endoplasmic Reticulum-RER)—जिनकी बाहरी सतह पर राइबोजोम लगे रहते हैं। वे कोशिकाएँ जिनमें प्रोटीन संश्लेषण, आदि होता है, उनमें RER की मात्रा काफी अधिक होती है।
 - (ii) चिकनी अंतर्द्रव्यीय जालिका (Smooth endoplasmic reticulum-SER)— जिन पर राइबोसोम नहीं होता है।

राइबोसोम (Ribosome)—

- यह पादप एवं जन्तु कोशिका दोनों में उपस्थित रहता है।
- यह अंत: द्रवीय जालिका से जुड़ा होता है या कोशिका द्रव में बिखरा होता है या समृह में रहता है।
- जब साइटोप्लाज्म में ग्रइबोजोम समूह में पाया जाता है, तब उसे पॉलीजोम (Polysome) कहा जाता है।
- कोशिका में सबसे छोटा कोशिकांग ग्रइबोसोम है
- साइबोसोम झिल्लीविहीन रचना है। इसका आकार 150 Å 200Å होता है।
- यइबोसोम को प्रोटीन का फैक्ट्री भी कहा जाता है।
- गइबोसोम का निर्माण RNA एवं प्रोटीन से होता है।
- यइबोसोम दो प्रकार के होते हैं
 - (i) 70s राइबोजोम—यह रो उप-इकाई 50s एवं 30s बना होता है। यह प्रोकेरियोटिक कोशिकाओं में पाया जाता है।
 - (ii) 80s राड्योजोम—यह दो उप-इकाई 60s एवं 40s का बना होता है। यह युकैरियोटिक कोशिकाओं में पाया जाता है।

प्रोटीन फैक्टरी (Protein Factory)

- ग्रहबोसोम (Ribosome) की खोज पैलाडे (G.E. Palade) द्वारा सन् 1955 ई॰ में इलेक्ट्रॉन सुक्ष्मदर्शी की सहायता से की गई।
- यह ग्रइबोन्यूक्लिक अम्ल (Ribonucleic Acid RNA) नामक अम्ल एवं प्रोटीन की बनी होती है।
- इसका मुख्य कार्य प्रोटीन का संश्लेषण करना है अर्थात् यह प्रोटीन का उत्पादन-स्थल है, इसलिए इसे प्रोटीन की फैक्टरी भी कहते हैं।

माइक्रोबॉडीज (Microbodies)—

- इसकी उत्पति संभवत: अंत:द्रव्यी जालिका (Endo-plasmic Reticulum) से होती है।
- यह एक-स्तरीय होता है।
- माइक्रोबॉडीज मुख्यतः दो प्रकार के होते हैं—
 - 1. परऑक्सीसोम (Peroxisome), जो प्रकारा-श्वसन (Photo-respiration) में सहायक होता है तथा
 - 2. ग्लाइऑक्सीसोम (Glyoxisome), जो ग्लाइऑक्जेलेट चक्र में भाग लेता है।

तारककाय (Centrosome)—

- सेण्ट्रोसोम अथवा तारककाय की खोज 1888 ई॰ में T. Boveri हारा की गई थी।
- प्रत्येक सेण्ट्रोजोम दो सेण्ट्रिओल्स (Centrioles) का बना होता है।
- इसी कारण इसे डिप्लोमा (Diplosome) भी कहा जाता है।
- यह केंद्रक के समीप पाया जाता है तथा कोशिका-विमाजन से सम्बद्ध होता है।
- सेण्ट्रोजीम जन्तु-कोशिकाओं तथा शैवाल, कवक एवं फर्न आदि पौर्यों में तारककाय केंद्रक के नजदीक रहता है।

रसयानी (Vacuole)-

- यह पादप कोशिका में पाया जाता है, परन्तु जन्तु कोशिका में नहीं रहता है।
- यह एक झिल्ली के द्वारा घिरा होता है, जिसे टोनोप्लास्ट कहा जाता है।

कोशिका का भंडार (Store-house of cell)—

- रसंघानियाँ या रिक्तिकाएँ कोशिकाद्रव्य में द्रव से मरे हुए वे स्थान हैं, जिनके चारों ओर प्लाज्मा झिल्ली के समान झिल्ली (Vacuolar System) होती है।
- रसधानियों में द्रव के रूप में एक प्रकार का तरल पदार्थ भग रहता है,
 जिसे कोशिका रस (Cell Sap) कहते हैं।
- इनमें क्लोराइड, सल्फेट, फॉस्फेट, शर्कराएँ, कार्बनिक अम्ल, ऑक्सोजन, कार्बन डाइऑक्साइड, विभिन्न रंग तथा अपशिष्ट पदार्थ (Waste products) आदि मुले रहते हैं, इसलिए रसधानियों को कोशिका का भंडार भी कहते हैं।

गुणसूत्र (Chromosomes)—

- क्रोमोजोम का नामकरण वाल्डेयर ने 1888 ई॰ में किया।
- प्रत्येक जाति के जीवधारियों की कोशिका के केंद्रक में गुणसूत्रों (chromosomes) की संख्या निश्चत होती है।
- उदाहरण के लिए मनुष्य में 46 तथा ड्रोसोफिला में 8 गुणसूत्र पाए जाते हैं।
- मनुष्य में पाए जाने वाले 46 गुणसूत्रों में 44 गुणसूत्रों को ऑदोजोम्स एवं 2 गुणसूत्रों को sex chromosomes कहा जाता है।
- नर में sex-chromosome 'XY' एवं मादा में sex chromosome 'XX' रहता है।
- ऑटोजोम्स द्वारा शरीर के कायिक लक्षण निर्धारित होते हैं।
- पुरुष के शुक्राणु में गुणसूत्र की संख्या 23 होती है, जो कि अगुणित (haploid) हैं। अगुणित (haploid) क्रोमोजोम को जीनोम (genome) भी कहते हैं।
- मादा के अंडाणु में क्रोमोजोम की संख्या 23 होती है, ये भी अगुणित हैं।
- जोडे में उपस्थित क्रोमोजोम को द्विगणित (Diploid) कहते हैं।
- गुणसूत्रों का size प्राय: मेटाफेज (metaphase) अवस्था में पाया जाता है।
- दिलियम (Trillium) नामक पौधे में सबसे लम्बा (30μ) गुणसूत्र होता है।
- मनुष्य में क्रोमोजोम 5μ लम्बे होते हैं।

- DNA, RNA हिस्टोन प्रोटीन तथा हिस्टोनरहित प्रोटीन गुणस्त्रों के मुख्य अवयव हैं।
- प्रत्येक गुणसूत्र में बाहरी झिल्ली (outer membrane) होती है, जिसे pellicle कहते हैं। क्रोमोजीम में कुण्डलित धागा जैसी रचना पायी जाती है, जिसे क्रोमोनिया कहा जाता है।
- सामान्यत: एक गुणस्त्र में दो भुजाएँ होती हैं। दोनों भुजाएँ एक कण जैसी रचना से जुड़ी होती हैं, जिन्हें सेन्द्रोमेयर (Centromere) कहते हैं। यहाँ एक संकुचन पाया जाता है, जिसे प्राथमिक संकुचन कहा जाता है।
- कोशिका विभाजन के समय centromere तर्कु थागा से जुड़ता है।
- प्राथमिक संकुचन के अलावा एक अन्य संकुचन भी पाया जाता है, जो द्वितीय संकुचन कहलाता है।
- द्वितीय संकुचन को न्युक्लियोलर ऑर्गेनाइज कहा जाता है।
- यह कोंद्रिका के निर्माण में सहायता करता है।
- द्वितीय संकुचन के बाद जो गोलाकार रचना होती है, उसे satelite कहते हैं । ऐसे गुणसूत्र को SAT chromosome कहते हैं ।
- गुणस्त्र के अतिम सिरे को टेलोमेयर (Telomere) कहा जाता है।
- गुणसूत्र आनुवारिक गुणों का वाहक होता है।
- गुणसूत्रों के प्रतिकृतिकरण से संतित गुणसूत्र बनते हैं, जो कि संतित कोशिकाओं में पहुँचकर नये जीवों का निर्माण करते हैं।

नाभिकीय अम्ल (Nucleic Acid)—

- 1869 ई॰ में सर्वप्रथम केंद्रक से 'नाभिकीय अप्ल' प्राप्त किया, इसे nuclein नाम दिया है, यह सभी जीवधारियों में पाया जाता है।
- न्युक्लिक एसिड दो प्रकार के होते हैं-
 - (i) ত্রী০ एন০ ए০ (Deoxy Ribose Nucleic acid DNA)
 - (ii) आर॰ एन॰ ए॰ (Ribonucleic acid RNA)
- डी॰ एन॰ ए॰ (DNA-Deoxy Ribonucleic Acid)—
- यह एक प्रकार का नाभिकीय अम्ल है।
- इसकी अधिकाश मात्रा केंद्रक में होती है।
- इसकी कुछ मात्रा माइटोकॉण्ड्या तथा हरितलवक में भी मिलती है।
- अत: DNA पॉलिन्युक्लियोटाइड होते हैं।
- 1953 ई॰ में वाटसन एवं क्रिक ने इसका डबल हैलिक्स मॉडल (Double Helix Model) दिया ।
- इस कार्य के लिए उन्हें 1962 ई॰ में नोबेल प्रस्कार मिला।
- इस डबल हेलिक्स के दोनों स्टैण्ड एक-दूसरे के विपरीत समांतर क्रम में होते हैं।
- हेलिक्स का व्यास 20Å होता है।

पॉलि-न्यूक्लियोटाइड शृंखला (DNA)

(Poly-Nucleotide Chain) ATTE OF Grand - 1 न्युक्लियोटाइड (Nucleotide) फॉरफेट (Phosphate) न्युक्लियोसाइड (Nucleoside) आधार(Base) शर्करा (Sugar) पिरीमोडीन (Pyrimidine) प्यरिन (Purine) जैसे-धायमिन, साइटोसिन जैसे-एडेनिन, ग्वानिन

- DNA का मॉडल वाटसन (Watson) एवं क्रीक (Crick) हारा 1953 ई॰ में प्रतिपादित किया गया। इस कार्य के लिए इन्हें 1962 ई॰ में नोबेल पुरस्कार दिया गया।
- डी॰एन॰ए॰ द्विकुण्डलित रचना है, जिसमें न्युक्तियोग्रइड के दो धागे रहते हैं।
- प्रत्येक थागे का निर्माण डिऑक्सीसइयोज शर्करा एवं फॉस्फेट से होता है।
- शकरा के साथ नाइट्रोजनी क्षार जुड़े रहते हैं।
- एडिनीन (A), धाइमिन (T) के साथ double hydrogen boad एवं साइटोसिन (c), गुआनिन (G) के साथ Triple hydrogen bond द्वारा जुड़ा रहता है। [A = T, C = G]
- DNA के एक क्डली की लम्बाई 34 Å होती है।
- एक कुंडली में 10 न्यूक्लियोग्रइड होते हैं, दो nucleotides के यीच की दरी 3.4 Å होती है।
- पॉलीमा वायरस में double stranded DNA होता है।
- बेक्टियोफेज $\phi \times 174$ में single stranded DNA पाया जाता है।
- DNA आनुवारिक क्रियाओं का संचालक है।
- यह प्रोटीन संश्लेषण को नियंत्रित करता है।
- आरं एनं एनं (RNA-Ribo Nucleic Acid)-
- DNA से ही RNA का संश्लेषण होता है अर्थात् इसकी रचना DNA जैसी होती है।
- इसमें अंतर सिर्फ बेस का होता है।
- RNA में थायमिन के स्थान पर युगसिल नामक बेस पाया जाता है।
- यह कोशिश के अंदर केंद्रक (Nucleus) तथा साइटोप्लाज्य दोनों में
 - RNA में थायमिन के स्थान पर यूरासिल नामक बेस पाया जाता है।
- यह कोशिका के अंदर केंद्रक (Nucleus) तथा साइटांप्लाज्य दोनों में पाया जाता है।
- RNA एक-सूत्री (Single Stranded) होता है, लेकिन कुछ विषाणुओं (वाइरसों) में यह द्विसूत्री या डबल हेलिकल (Double helical) भी होती है: जैसे-रिवो वायरस ।
- 1831 ई॰ में रॉबर्ट खाउन ने केंद्रक की खोज की।
- 1883 ई॰ में स्विम्पर ने पर्णाहरित (Chlorophyll) नाम दिया ।
- 1888 में बाल्टेयर ने क्रोमोसोम नाम दिया।
- बेडवर्ण ने 'अल्ट्रा सेण्ट्रीपयूज' का आविष्कार किया, इस खोज के लिए उन्हें नोबेल पुरस्कार मिला।
- ATP को कर्जा-दलाल (Energy broker) या कर्जा-सिक्का (Energy currency) कहा जाता है ।
- केंद्रक को कोशिका का दिमाग (Brain of the Cell) भी कहते हैं।
- RNA का मख्य कार्य प्रोटोन-संश्लेषण (Protein Synthesis) में सहायता करना है।
- लेकिन, कुल पारप-विषाणुओं में यह आनुवाशिक पदार्थ के वाहक का कार्य करता है।
- सामान्यत: विषाणुओं में आनुवारिक पदार्थ DNA होता है अथवा फिर DNA जैसे-TMV (Tobacco Mosaic Virus), जीवाणुभोजी आदि ।
- RNA मुख्यत: तीन प्रकार के होते हैं।
- राइबोसोमल आर०एन०ए० (r-RNA-Ribosomal RNA)-
- कोशिका में उपस्थित कुल RNA का 80% भाग r-RNA का होता है।
- ये राइबोसोम पर लगे रहते हैं तथा प्रोटीन के संश्लेषण में सहायता करते हैं ।
- स्यानान्तरण आर०एन०ए० (r-RNA=Transfer RNA)-
- कोशिका में उपस्थित कुल RNA का 10 से 15% माग t-RNA
- यह प्रोटीन के संश्लेषण में विभिन्न प्रकार के अमीनो-अम्लों को राइबोसोम पर लाते हैं, जहाँ प्रोटीन का संश्लेषण होता है।

Join online test series : www.platformonlinetest.com

GENERAL SCIENCE # 167

- इसकी द्विविमीय संरचना (Two-dimentional Structure) क्लोव लीफ (Clove leaf) के समान प्रतीत होती है।
- सदेशवाहक आर० एन० ए० (m-RNA=Messenger RNA)—
- जैकब तथा मोनाड (Jacob and Monad) ने 1961 ई॰ में संदेशवाहक RNA का नामकरण किया।
- कोशिका में उपस्थित कुल RNA का 3-5% भाग होता है। ये DNA से बनता है और अमीनो-अम्लों को चुनते हैं।

DNA एवं RNA में अंतर

1	डी॰एन॰ए॰ (DNA)	आर० एन० ए० (RNA)
1.	DNA में डी-ऑक्सीरिबोज (De-oxyribose) शर्कर होती है।	1. RNA में रिबोज (Ribose) शर्करा होती है।
2.	DNA केंद्रक में पाया जाता है।	RNA में धायमिन की जगह यूरेसिल (Uracil) नामक बेस पाया जाता है।
3.	DNA में बेस, एडिनीन, ग्वानिन, धायमिन और साइटोसीन आदि होते हैं।	3. यह मुख्य रूप से Cytoplasm में पाया जाता है।

कोशिका विज्ञान : महत्वपूर्ण तथ्य एक नजर में

- प्रत्येक जीवधारी के शरीर की सबसे छोटी इकाई कहलाती है
- कोशिका (Cell) कोशिका के मुख्य घटक हैं —जीवद्रव एवं केंद्रक
- जीवन का भौतिक आधार है —जीवहूच्य (Protoplasm) कोशिका सिद्धांत सर्वप्रथम प्रतिपादित किया गया —श्लाइडेन एवं
- रतान द्वारा कोशिका है —जीव को संरचनात्मक एवं कार्यात्मक इकाई मानव शरीर में सबसे लम्बों कोशिका है —न्यूरॉन (ताँत्रका कोशिका;
- 90 सेमी॰) हरगाविन्द खुराना' प्रसिद्ध हुए —प्रयोगशाला में जीन संश्लेपण की
- खोज के लिए पादम कोशिका जन्तु कोशिका से भिन्न होती है <u>सेल्यूलीज</u> की बनी
- कोशिका-भिति होने के कारण पणहरित (Chlorophyll) पाया जाता है __हरित्स्थक के ग्रैना में माइटोकॉण्ड्या की अंतःकला के वलन कहलाते हैं __क्काटी यूकेरियोटिक कोशिका की कोशिका भित्ति बनी होती है __सेल
- की प्रोकेरियोटिक कोशिकाओं में कोशिका विमाजन पाया जाता है —असूत्री कोशिका विभाजन की खोज सर्वप्रथम की __प्रेतिग

- समसूत्री विभाजन होता है __सिर्फ देहिस कायिक कोशिकाओं में अर्द्धसूत्री कोशिका विभाजन पाया जाता है __जनन कोशिका में 'क्रॉसिंग ओवर' नामक घटना कोशिका विभाजन की एक विशिष्टता
- है —अर्द्धसूती जीन्स बने होते हैं —डी॰प्न॰ए॰ से जीवाण पारप माने जाते हैं —उनमें दुब कोशिका भित्ति होने के कारण जब हरे टमाटर लाल हो जाते हैं, तब होता है —हरितलवक अपघटित
- होकर वर्णीलवकों में बदल जाते हैं जीवाणु के आनुविशक्त पदार्थ, जो क्रोमोसोम्स से बाहर होते हैं __
- प्लास्पिड़ अर्द्धसूत्री विभाजन के दो विभाजन हैं —न्यूनकारी विभाजन एवं सूत्री
- विभाजन कोशिका विभाजन में संट्रोमियर का विभाजन होता है —समसूत्री कोशिका विभाजन जैव उद्विकास में सहायक होता है —अद्धसूत्री
- पेन्टाइड बंधक होते हैं —एमीनो अम्ल के बीच

- कोशिकांग, जिसका असुत्री विमाजन में सबसे पहले विमाजन होता है -केन्द्रक
- युरेसिल पाया जाता है -आर०एन०ए० में
- जना कोशिका में नहीं पाया जाता है —सेन्ट्रियोल्स (तारक केन्द्रो) की
- एक न्यक्लियोटाइड बना होता है —नाइटोजनी बेस, पेंटोज शर्करा तथा
- इलेक्ट्रॉन माइक्रोस्कोप में प्रकाश का स्रोत होता है —इलेक्ट्रॉन किरण
- डी॰एन॰ए॰ कुण्डल रचना का प्रतिपादन किया —याटसन एवं क्रिक ने 'एक जीन, एक एन्जाइम' को घारणा प्रतिपादित करने के लिए कौन
- प्रसिद्ध है <u>चीडल एवं टेटम</u> इलेक्ट्रान सूक्ष्मदर्शी का आविष्कारक है <u>न</u>नॉल और रस्का
- लाइसोसोम्स के 'आत्महत्या की धैलियाँ' कहते हैं जलीय अपघटन
- आर०एन०ए० में उपस्थित रहता है परंतु डी॰एन०ए० में नहीं _यासल
- ये अंगक, जो कोशिका के 'कर्जा गृह' कहलाते हैं और जिनमें ऑक्सीजन अभिक्रियाएँ होती हैं, कहलाते हैं -माइटोकॉण्ड्या
- वल्कट की कुछ कोशिकाओं मे अभाव होता है -पूर्णहरित का
- प्रोटीन्स का निर्माण होता है —एमीनो अम्लों से जीवद्रव्य में होने वाले असंख्य ग्रसायनिक परिवर्तन होते हैं —एंजाइम द्वारा

कोशिका विभाजन एवं आनुवांशिकी (Cell Division & Genetics)

- जीवधारियों में ये कोशिकाएँ हर समय नष्ट होती रहती हैं और निरन्तर नई कोशिकाओं का निर्माण होते रहता है।
 - अतः किसी एक कोशिका से दो कोशिकाओं का बनना ही 'कोशिका-विभाजन (cell Division)' कहलाता है।
- कोशिका-विभाजन के सिद्धान्त के अनुसार पुरानी कोशिकाओं के विभाजन से नई कोशिकाएँ बनती हैं।
- एक-कोशिकीय जीवधारियों में तो कोशिका-विभाजन ही प्रजनन का साधन है।
- केंद्रक में क्रोमैटीन नामक पदार्थ पाया जात है, जो कि उलझे हुए सूत्र की तरह केंद्रक में बिखरा होता है।
- इन्हीं धागों पर जीन (Gene) स्थित होते हैं, जिनमें जीवधारियों के लक्षण की सूचना निहित होती है।
- जिस कोशिका में विभाजन होता है, उसे मातु-कोशिका (Mother Cell) या जनक-कोशिका (Parent Cell) कहते हैं। कोशिका-विभाजन तीन प्रकार के होते हैं—
- - 1. असूत्री-विभाजन (Amitosis),
 - 2. समसूत्री-विभाजन (Mitosis), तथा
 - 3. अर्द्धसूत्री-विभाजन (Meiosis)
- असूत्री-विभाजन (Amitosis)— यह विभाजन अविकसित एक-कोशिकीय जीवों में पाया जाता है;
 - जैसे-कवक, जीवाणु, नीलहरित शैवाल, अमीबा, प्रोटोजोआ, कुछ अस्थि कोशिकाएँ तथा WBC आदि ।
- इस विधि में केंद्रक में संक्चन होता है, जिसके फलस्वरूप दो पुत्री-कोशिका (daughter cell) का निर्माण होता है।
- इसके साथ-साथ कोशिका द्रव में भी विभाजन होता है।
- इस प्रकार एक मात्-कोशिका से दो पुत्री-कोशिका निर्मित होती है।
- समसूत्री-विभाजन (Mitosis)— यह विभाजन कायिक कोशिकाओं में होता है। 2.
- माइटोसिस (Mitosis) का प्रयोग सर्वप्रथम फ्लेमिंग (Flemming) ने .1882 ई० में किया था।
- इस प्रकार के विभाजन से मात्-कोशिका विभाजित होकर दो समान नई संतति-कोशिकाएँ बनाती है।

- समस्त्री कोशिका-विमाजन एक निरंतर प्रक्रिया है।
- इसको इन घरणों में बौंटा जा सकता है— विभाज्यान्तराल अवस्था (Interphase), पूर्वावस्था (Prophase), मध्यावस्था (Metaphase), परचावस्था (Anaphase), अंतरावस्था (Telophase), तथा कोशिकाद्रव्य विभाजन (Cytokinesis)।
- (a) विभाज्यानाराल अवस्था (Interphase)—
- विभाजन के पूर्व की यह अवस्था एक अत्यधिक क्रियाशील अवस्था है।
- इस अवस्था को निम्न भागों में बाँटा गया है—
 - (i) G1-phase (Post mitotic gap phase)-इस अवस्या में RNA एवं प्रोटीन निर्मित होते हैं।
 - (II) S-phase (synthetic phase)-इस अवस्था में DNA का संश्लेषण होता है, जिसके परिणामस्वरूप यह मात्रा में दोगुना हो जाता है।
 - (III) G2-phase (Pre-mitotic gap phase)-इस अवस्था में DNA का संश्लेषण रूक जाता है, किन्तु RNA एवं प्रोटीन का संश्लेषण होता है। विभाज्यसन्तराल अवस्था में क्रोमैटिन जाल अकुंडलित एवं पतला होता है। सेन्ट्रोजोम विभाजित हो जाता है।

(b) पूर्वावस्था (Prophase)—

- कोशिका के वास्तविक विभाजन की शुरूआत प्रोफेज से होती है।
- इसमें क्रोमैटिन जाल छोटे एवं मोटे होकर गुणसूत्र बनाते हैं।
- क्रोमोजोम दो अर्द्ध भागों में बँट जाता है, दोनों भाग एक बिन्दु से जुड़े होते हैं, इस बिन्दु को सेन्द्रोमेयर कहते हैं।
- पूरी रचना chromatid कहलाती है।
- इस अवस्था के अंत में केंद्रक झिल्ली, केंद्रिका गायब हो जाती है।
- तर्कुघागे का निर्माण शुरू हो जाता है।
- (c) मध्यावस्था (Metaphase)—
- इस अवस्था में तुर्क-घागे (spindle fibres) का निर्माण हो जाता है।
- इस पर क्रोमोसोम अपने सेन्ट्रोमेयर द्वारा धागे के बीच में आकर जुड़ जाता है।
- इस प्रकार के विभाजन में 2-10, minute का समय लगता है।

- (d) पश्चावस्था (Anaphase)—
- यह अवस्था सबसे छोटी अवस्था है, इसमें विभाजन 2-3 मिनटों में समाप्त हो जाता है।
- इस अवस्था में सेन्ट्रोमेयर दो भागों में विभाजित हो जाता है।
- प्रत्येक गुणसूत्र में दोनों क्रोमैटिड सेन्ट्रोसोम के विभाजन के कारण अलग हो जाते हैं।
- गुणसूत्र अब दोनों भ्रुवों की ओर चला जाता है।
- (e) अंतरावस्था (Telophase)—
- यह अवस्था प्रोफेज का उल्टा है। इसमें केंद्रक एवं केंद्रिका स्पन्द हो जाते हैं।
- क्रोमोजोम (chromosome) पतले हो जाते हैं।
- इस प्रकार एक केंद्रक से दो केंद्रक का निर्माण हो जाता है। spindle fibre नष्ट हो जाते हैं।
- एक मात्कॅद्रक से दो पुत्रीकॅद्रक का निर्माण होता है।
- (f) कोशिकाद्रव विभाजन (Cytokinesis)—
- केंद्रक के विभाजन के बाद संकुचन द्वारा कोशिका का विभाजन हो जाता है।
- इस प्रकार एक मात्कोशिका से दो पुत्रीकोशिका का निर्माण होता है।

समसूत्री विभाजन के महत्व (Significance of Mitosis)-

- समसूत्री अथवा सूत्री विभाजन पीदी गुणसूत्रों की संख्या व प्रकार की संख्या को आश्वस्त करता है अर्थात् सूत्री विभाजन द्वारा कॅद्रकीय पदार्थ का समरूप गुणात्मक (qualitative) व मात्रात्मक (Quantitative) विभाजन होता है।
- सूत्री विभाजन किसी विशेष जाति में समानता अनुरक्षण में सहायक है।
- सूत्री विभाजन जीव की युद्धि का कारण है।
- अन्तत: इस प्रक्रिया द्वारा कोशिका का उपयुक्त आमाप अनुरक्षित होता है।
- सूत्री विभाजन पुरानी कोशिकाओं के नवीन कोशिकाओं द्वारा विस्थापन में सहायक है।
- 3. अद्धंसूत्री-विभाजन (Melosis) या न्यूनकारी विभाजन (Reduction Division)—
- यह विभाजन जनन कोशिकाओं में होता है।
- इस विभाजन से कोशिका में गुण सूणसूत्रों की संख्या संपूर्ण की आधी होती है।
- चूँिक इस विभाजन में अनुजात कोशिकाओं में गुणसूत्रों की संख्या मातृ कोशिका की आधी होती है, इसिलए इस विभाजन को न्यूनकरणीय विभाजन भी कहा जाता है।
- इसके कारण किसी जीव में आनुवारिक पदार्थ की विनिमय हेतु तैयार करती है, तथा यह 'इंटरफेज' कहलाता है जिसमें कोशिका अत्यधिक क्रियाशील हो जाती है।
- प्रत्येक कोशिका-विभाजन के दो चरण होते हैं—
 - (i) अर्द्ध-सूत्री विभाजन (Meiosis-I) केंद्र का विभाजन तथा
 - (ii) अर्ज्य-सूत्री विभाजन (Meiosis-II) इसे कोशिका द्रव्य का विभाजन भी कहते हैं। कोशिका विभाजन के क्रम में कोशिका के क्रोमैटिन पदार्थ गुण सूत्रों में एकत्रित हो जाते हैं।

अर्द्धसूत्री विभाजन-।

- पूर्वांवस्था (Prophase) को निम्न उप-अवस्थाओं में बाँटा जाता है—
- (i) लिप्टोटीन (Leptotene)—इस अवस्था में क्रोमैटिन जाल कुण्डलित एवं लम्बे हो जाते हैं।
- (ii) जाइगोटिन (Zygotene)—इस अवस्था में समजात गुणसूत्रों (Homologous chromosomes) के जोड़े बनते हैं, जिन्हें Bivalent कहा जाता है।

(iii) पैकीटीन-इस अवस्था में गुणसूत्रों के आकार छोटे और मोटे हो जाते हैं। प्रत्येक समजात गुणसूत्र के कोमैटिड अलग-अलग दिखायी देते हैं, उन्हें चतुप्टक कहा जाता है।

(iv) डिप्लोटिन-समजात गुणसूत्रों के बीच विकर्षण उत्पन्न होता है, जिसके फलस्वरूप ये पृथक् होने लगते हैं, किंतु कुछ बिन्दुओं पर आपस में जुड़े रहते हैं। इस बिन्दु को काइन्या कहा जाता है। इस बिन्दु पर क्रोमैटिड के खंडों के बीच अदला-बदली होती है। इस प्रक्रिया को क्रॉसिंग ओवर (Crossig Over) कहा जाता है। क्रॉसिंग आवर के कारण ही संतान माता-पिता से कुछ अलग होते हैं।

(vl) डायकाइनेसिस-इस अवस्या में समजात गुणसूत्रों के पृथक्करण की क्रिया होती है। केंद्रक तथा केंद्रिका गायब हो जाते हैं। तर्कुघागों

(spindle fibres) का निर्माण आरंभ हो जाता है।

मेटाफेज-!—तर्कु धागा का निर्माण पूर्ण हो जाता है तथा मध्य में

सेन्ट्रोमेयर द्वारा जुड़ जाता है।

एनाफेज-!-- प्रत्येक तर्कु घागे में एक गुणसूत्र एक घुव की ओर तथा दूसरा गुणसूत्र एक घुव की ओर तथा दूसरा गुणसूत्र दूसरे घुव की और खिंच जाता है। इसमें सेन्ट्रोमेयर का विमाजन नहीं हो पाता है। इस प्रकार कुल गुणसूत्र में आये गुणसूत्र एक घुव की ओर तथा आधे दूसरे घुव की ओर चले जाते हैं।

टेलोफेज-! दोनों घुवों की ओर केंद्रक झिल्ली निर्मित हो जाती है। इस

अर्द्धसत्री विभाजन-॥

- केंद्रक के विभाजन के साथ-साथ कोशिका द्रव्य का भी विभाजन एक खाँच द्वारा हो जाता है।
- इस प्रकार दो पुत्री कोशिकाओं का निर्माण हो जाता है।
- इसके बाद इन दोनों कोशिकाओं में पुन: विभाजन शुरू हो जाता है।
- इस विमाजन को मियोसिस-॥ कहते हैं यह विभाजन माइटोसिस जैसा होता है ।

माइटोसिस तथा मिओसिस में अंतर

	(Difference between Mitosis and Meiosis)		
	माइटोसिस (Mitosis)		मिओसिस (Melosis)
1.	एक जनक से दो संतित कोशिकाएँ निर्मित होती है ।	1.	एक जनक से चार संतित कोशिकाएँ निर्मित होती है ।
2.	यह प्रक्रिया पाँच अवस्थाओं में पूर्ण होती है।	2.	यह विभाजन दो उप-विभाजनों में पूर्ण होता है, जिनमें पहला न्यूनकारी होता है। प्रत्येक उप- विभाजन में 4-5 अवस्थाओं में संपन्न होता है।
3.	कोशिका में गुणसूत्रों की संख्या अपरिवर्तित रहती है।	3.	इसमें संतित कोशिकाओं में गुण- सूत्रों की संख्या आधी हो जाती है।
4.	माइटोसिस शरीर की कायिक कोशिका में होता है।	4.	लेकिन मिओसिस केवल लैंगिक कोशिकाओं में होता है।
5.	गुणसूत्रों के आनुवाशिक पदार्थ में आदान-प्रदान नहीं होता । अतः संतित कोशिका में भी उसी प्रकार के गुणसूत्र होते हैं-जैसे जनक कोशिका में ।	5.	गुणसूत्रों के बीच आनुवाशिक पदार्थ का आदान प्रदान होता है। अतः संतति कोशिका के गुणसूत्र जनकों के गुणसूत्र से भिन्न होता है।

जुड़वाँ बच्चे (Fraternal Twins)

जुड़वाँ बच्चे एक निषेचित अंडे से उत्पन्न होते हैं।

इनको लक्षणों में भिन्नता नहीं होती, परन्तु जुड़वाँ बच्चे (Fraternal Twins) असमान तब होते हैं, जब दो अलग-अलग अंडों का निषेचन दो अलग-अलग शुक्राणुओं से होता है।

इस प्रकार निर्मित दोनों युग्मनजों के गुण भी अलग-अलग प्रकार के

होते हैं तथा उनमें आनुवाशिक भिन्नता होती है।

कोशिका-चक्र (Cell Cycle)—

कोशिका के निर्माण से लेकर विभाजन द्वारा संतति कोशिका के निर्माण तक होने वाली सारी प्रक्रियाओं को कोशिका-चक्र (Cell Cycle) कहा जाता है।

हावर्ड और पेल्क ने कोशिका-चक्र को चार भागों में वर्गीकृत किया है-1. G, अवस्था, 2.S-अवस्था, 3. G₂-अवस्था तथा 4. M-अवस्था ।

1. G₁ अवस्था – DNA के संश्लेषण में पहले की अवस्था। 2. S- अवस्था – DNA के संश्लेषण की अवस्था।

G₂-अवस्था – DNA के संश्लेषण के बाद की अवस्था ।

4.M. अवस्था (माइटोसेटीन अवस्था)—कोशिका के विभाजन की अवस्था ।

आनुवांशिकी (Genetics)

- ऑस्ट्रिया के निवासी ग्रेगर जॉन मेंडल (1822-84) द्वारा आनुवारिक-विज्ञान की नींव डाली गई।
- इसी कारण मेंडल को आनुवांशिकी का जनक (Father of Genetics) कहा जाता है।
- डब्ल्यू वाटसन ने 1905 ई॰ में सर्वप्रथम जेनेटिक्स (Genetics) शब्द का प्रयोग किया।
- जोहान्सेन द्वारा सर्वप्रथम 1909 ई॰ में जीन शब्द का प्रयोग किया

आनुवांशिक लक्षण (Hereditary Characters)—

प्रत्येक जीवधारी में अपने ही समान संरचना एवं गुण वाली संतानों को जन्म देने की क्षमता रहती है।