ALU Design

CSE 306

Group – 5 Section – B1

Rolls: 1505076 1505079

1505080 1505081

1505086 1505089

1305065

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

Problem Specification:

	Functions.			
cs2	cs1	Cs0	Functions	
0	0	0	Transfer A	
0	1	0	Increment A	
0	X	1	OR	
1	0	0	Subtract with	
			borrow	
1	1	0	Subtract	
1	X	1	AND	

Arithmetic Part:

When cs0 = 0,

(a) Transfer A

(b) Increment A

(c) Subtract with borrow

(d) Subtract

Table:

cs2	cs1	Υ
0	0	0
0	1	0
1	0	B'
1	1	В'

$$Yi = cs2.Bi' + cs2.cs1.Bi'$$
$$= cs2.Bi'$$

Logical Part:

When cs0 = 1 logical part is activated and cs1 is don't-care. We can force it to 0 by making Cin = cs0'.cs1. We also make every carry to next adder 0 in the same way.

Now,

cs2	cs1	cs0	Xi	Yi	Cin	Operation	Required Operation
0	Х	1	Ai	0	0	Fi = Ai	OR
1	Χ	1	Ai	Bi'	0	Fi = Ai ⊕ Bi'	AND

So when cs0 = 1 and cs2 = 0, we can OR Bi with Ai and the result will be A+B.

$$\therefore$$
 Xi = Ai + cs2'.cs0.Bi

Again when cs2 = 1 and cs0 = 1, we have to get AND operation where the output is equivalence.

$$Fi = Ai \oplus Bi' = Ai.Bi + Ai'.Bi'$$

Let us investigate the possibility of ORing each input Ai with some Boolean function Ki when cs2 = 1 and cs0 = 1.

Taking Ki = Bi', we get, Fi = Ai.Bi + Bi'.Bi+ Ai'.Bi.Bi' = Ai.Bi, which is the required operation.

So, finally
$$Xi = Ai + cs2'.cs0.Bi + cs2.cs0.Bi'$$

 $= Ai + cs0.(cs2'.Bi + cs2.Bi')$
 $= Ai + cs0.(cs2 \oplus Bi)$
 $Yi = cs2.Bi'$
 $Cin = cs0'.cs1$

Fig: Design of 4-bit ALU