Error quantifiers

Liioi	qualitilicis
name	formula
relative	$RE_{i} = \sum_{j=1}^{n_{i}} \frac{w_{ij}}{w_{i+}} \frac{ d_{ij} - p_{ij} }{ d_{i} }$
mean relative	$MRE = \sum_{i=1}^{n} \frac{w_{i+}}{w_{++}} RE_{i}$
symm squared	$SSE_i = 2\sum_{j=1}^{n_i} \frac{w_{ij}}{w_{i+}} \frac{(d_{ij} - p_{ij})^2}{d_i^2 + p_i^2}$
symm mean squared	$SMSE = \sum_{i=1}^{n} \frac{w_{i+}}{w_{i+}} SSE_{i}$
symm absolute	$SAE_i = 2\sum_{j=1}^{n_i} \frac{w_{ij}}{w_{i+}} \frac{ d_{ij} - p_{ij} }{ d_{ij} + p_{ij} }$
symm mean absolute	$SMAE = \sum_{i=1}^{n} \frac{w_{i+}}{w_{++}} SAE_{i}$

mean data
$$d_i = \frac{1}{n_i} \sum_{j=1}^{n_i} d_{ij}$$
; mean prediction $p_i = \frac{1}{n_i} \sum_{j=1}^{n_i} p_{ij}$

$$w_{i+} = \sum_{j=1}^{n_i} w_{ij}; \quad w_{++} = \sum_{i=1}^{n} w_{i+} \text{ with } w_{ij} \ge 0 \text{ for all } i, j$$
If $n_i = 1$ and $w_{i+} = 0$, then $w_{ij}/w_{i+} = 1$; Default: $w_{ij} = 1$