HCPC新欽 D問題二乗

解説:titan23

問題概要

B - 二乗

解説

実行時間制限: 2 sec / メモリ制限: 1024 MB

配点:200点

問題文

正整数 N が与えられます。 A^2 が N を超えないような最大の整数 A を出力してください。

制約

• $1 \le N \le 10^9$

https://atcoder.jp/contests/nikkei2019-ex/tasks/nikkei2019ex_b

N = 10

A	1	2	3	4	5	6	7	8	•••
A^2									
$A^2 \le 10 ?$									

サンプル

N = 10

A	1	2	3	4	5	6	7	8	
A^2	1	4	9	16	25	36	49	64	
$A^2 \le 10 ?$									

N = 10

A	1	2	3	4	5	6	7	8	
A^2	1	4	9	16	25	36	49	64	
$A^2 \le 10 ?$	Yes	Yes	Yes	No	No	No	No	No	

サンプル

$$N = 10$$

A	1	2	3	4	5	6	7	8	
A^2	1	4	9	16	25	36	49	64	
$A^2 \le 10 ?$	Yes	Yes	Yes	No	No	No	No	No	

答えは、1から順に整数 A を見ていき、

初めて A^2 が N より大きくなったときの A-1

答えは、1 から順に整数 A を見ていき、 初めて A^2 が N より大きくなったときの A-1

正当性

この手順で求められる答え A' について、

- ∘ A'² は N を超えない
- ・条件 $A^2 \leq N$ を満たす A のうち、 A' は最大

よって、正しい

- アルゴリズムが正しくても…
 - コンピュータの計算速度を考える必要がある
 - ・計算回数が多すぎると実行制限時間を超えてしまい、 不正解(TLE)となる
- コンピュータは **1 秒間に 10⁸ 回**程度の(簡単な) 計算ができる
 - 。 簡単な計算:四則演算など

このアルゴリズムの計算回数は…?

答えは、1 から順に整数 A を見ていき、 初めて A^2 が N より大きくなったときの A-1

- 答えを A' とすると、試す必要のある A の値は 1 から A'+1 までの A'+1 個
- $A'^2 \leq N$ なので、 $A' \leq \sqrt{N} \rightarrow A' + 1 \leq \sqrt{N} + 1$
- つまり、 $\sqrt{N} + 1 \bigcirc A$ の値を試せばよい

- コンピュータは 1 秒間に10⁸回程度の(簡単な) 計算ができる
- \rightarrow この問題の実行制限時間は 2 秒なので、 計算回数がおよそ 2×10^8 回以下であればよい
- 最大ケースは $N = 10^9$
- このとき $\sqrt{N} + 1 \approx 3 \times 10^4 \rightarrow$ 間に合う!

- コンピュータは 1 秒間に10⁸回程度の(簡単な) 計算ができる
- \rightarrow この問題の実行制限時間は 2 秒なので、 計算回数がおよそ 2×10^8 回以下であればよい
- 最大ケースは $N = 10^9$
- このとき $\sqrt{N} + 1 \approx 3 \times 10^4 \rightarrow$ 間に合う!

アルゴリズムと計算量が正しくて初めて AC できる

実装例

```
N = int(input())
 3
   a = 1
 5
  # a が条件を満たさなくなるまでループを回す
   while True:
       if a * a > N:
 9
           break
    a += 1
10
11
12 # 出力
   print(a - 1)
13
14
```

(python) https://atcoder.jp/contests/nikkei2019-ex/submissions/52812892

余談

- 先ほど紹介した解法は \sqrt{N} 回程度の計算が必要だが、計算回数が $\log_2 N$ 回程度で済む解法もある
 - (ヒント:単調性)

https://atcoder.jp/contests/nikkei2019-ex/submissions/33787991