Lecture 12

Read 3.1,3.3,3.4 3.5.1, 3.5.2

EoL 11

Today's topics:

Examples 3.9,3.10, 3.13,3.14
3.17, 3.18, 3.20

· Limits of sequences (ct.)

Exercises 2.3.1,3.4.1, 3.5.2,

· Instantaneous velocity

3.5.4.

· Limits of functions

Example using limit rules.

Let
$$a_n = \frac{4n+5}{2n-3}$$
, $b_n = \frac{3n^2-2}{4n+9n^2}$.

First
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{4+5}{2-3n}$$
 (divide by highest power)
$$= \frac{4}{2} = 2$$

$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{3-\frac{2}{n}}{\frac{2}{n+q}} = \frac{3}{q} = \frac{3}{3}$$

(2)
$$\lim_{n \to \infty} \left(\frac{7a_n}{b_n} \right) = 7 \lim_{n \to \infty} a_n = 7 \cdot \frac{2}{\frac{1}{3}} = 7(6) = 42$$

(8)
$$\lim_{n\to\infty} a_n^3 = \left(\lim_{n\to\infty} a_n\right)^3 = 2^3 = 8$$
. (saves time = a_n^3 messy)

Instantaneous velocity

Ball dropped from height ho

Easier related problem.

Consider
$$g(\alpha) = \frac{2\pi}{2}$$
. Le Not defined at $\alpha = 0$. (D=(-040), $U(0_{10})$)

For
$$x\neq 0$$
, $g(x)=2$.

So
$$\lim_{\alpha \to 0} g(\alpha) = 2$$
.

Apply to aelocity

Find inst. velocity at t=1.

$$V_{avg} = \frac{\Delta h}{\Delta t} = \frac{h(h_2) - h(1)}{t_2 - 1}$$

$$= -\frac{\pm g(t_2^2 - 1)}{t_2}$$

$$Varg = \frac{1}{2}g(t_2+1)(t_2-1)$$

For
$$t_2 \neq 1$$
, $V_{avg} = -\frac{1}{2}g(t_2 + 1)$

$$t_{2} \rightarrow 1 \text{ Vary} = -\frac{1}{2}g(1+1) = g = Vinst.$$

Definition: Limit of a function at a point

The limit of f(x) at a point a is equal to L if as x approaches a, the output values, f(x), approach L. (see the

Lim f(x) = L or as $x \to a$, $f(x) \to L$

- · does not indicate that f(x) ever takes the value L (though it may)
- o is unaffected by fls behavious at x=a.
- · is shorthard for x approaching a "from both sides" (more later).

Ecample 1.

a) Determine $\lim_{x\to 1} f(x)$.

For
$$x\neq 2$$
, $f(x)=\frac{(x+2)(x-2)}{x-2}=x+2$.

$$\lim_{x\to 1} (x+2) = 3$$
 $|x+2|$ approaches 3 as x approaches 1

Lex never actually reaches 2 f(2) being is not a problem.

X

$$\lim_{\alpha \to 2} \frac{(\alpha+2)(\alpha-2)}{(\alpha+2)} = \lim_{\alpha \to 2} (\alpha+2) = 4.$$

Example 2.

Let $f(x) = \begin{cases} 2x+1 & 0170 \\ 2 & 01=0 \end{cases}$

What is lim fa)?

Note f(0) = 2. So is $\lim_{x \to 0} f(x) = 2$? No!

or gets infinitesimally close to zero, but Never attains O.

f(x) looks like x + 1 either side of limit - fill the gap. $\lim_{x \to \infty} f(x) = 1$.