ACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGA CCCACGCGTCCGGGCCGGAGCACGCCCGCAGGACCTGGAGCTCCGGCTGCGTCTTCCCG CTGCTGCCGCCGCGCGGAGGCCGCCAAGAAGCCGACGCCCTGCCACCGGTGCCGGGGGCT GGTGGACAAGTTTAACCAGGGGATGGTGGACACCGCAAAGAAGAACTTTGGCGGCGGGAACA CGGCTTGGGAGAAAAGACGCTGTCCAAGTACGAGTCCAGCGAGATTCGCCTGCTGGAGATC CTGGAGGGGCTGTGCGAGAGCAGCGACTTCGAATGCAATCAGATGCTAGAGGCGCAGGAGGA GCACCTGGAGGCCTGGTGGCTGCAGCTGAAGAGCGAATATCCTGACTTATTCGAGTGGTTTT GTGTGAAGACACTGAAAGTGTGCTGCTCTCCAGGAACCTACGGTCCCGACTGTCTCGCATGC CAGGGCGGATCCCAGAGGCCCTGCAGCGGGAATGGCCACTGCAGCGGAGATGGGAGCAGACA ACGGCTACTTCAGCTCGCTCCGGAACGAGACCCACAGCATCTGCACAGCCTGTGACGAGTCC TGCAAGACGTGCTCGGGCCTGACCAACAGAGACTGCGGCGAGTGTGAAGTGGGCTGGGTGCT GGACGAGGGCCCTGTGTGGATGTGGACGAGTGTGCGGCCGAGCCGCCTCCCTGCAGCGCTG CGCAGTTCTGTAAGAACGCCAACGGCTCCTACACGTGCGAAGAGTGTGACTCCAGCTGTGTG GGCTGCACAGGGAAGGCCCAGGAAACTGTAAAGAGTGTATCTCTGGCTACGCGAGGGAGCA LL CGGACAGTGTGCAGATGTGGACGAGTGCTCACTAGCAGAAAAAACCTGTGTGAGGAAAAACG GAAGATGCCTGTGTGCCGCCGGCAGAGGCTGAAGCCACAGAAGGAGAAAGCCCGACACAGCT GCCCTCCCGCGAAGACCTGTAATGTGCCGGACTTACCCTTTAAATTATTCAGAAGGATGTCC CGTGGAAAATGTGGCCCTGAGGATGCCGTCTCCTGCAGTGGACAGCGGCGGGGAGAGGCTGC CTGCTCTCTAACGGTTGATTCTCATTTGTCCCTTAAACAGCTGCATTTCTTGGTTGTTCTTA AACAGACTTGTATATTTTGATACAGTTCTTTGTAATAAAATTGACCATTGTAGGTAATCAGG AGGAAAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGC TTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAATAAAGCAATAGCA TCACAAATTCACAAATAAAGCATTTTTTTCACTGCATTCTAGTTGTGGTTTGTCCAAACTC ATCAATGTATCTTATCATGTCTGGATCGGGAATTAATTCGGCGCAGCACCATGGCCTGAAAT AACCTCTGAAAGAGGAACTTGGTTAGGTACCTTCTGAGGCGGAAAGAACCAGCTGTGGAATG TGTGTCAGTTAGGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGCAGAAGTATGCAAGCATGC ATCTCAATTAGTCAGCAACCCAGTTTT

><subunit 1 of 1, 353 aa, 0 stop ><MW: 38192, pI: 4.53, NX(S/T): 2 MRLPRRAALGLLPLLLLLPPAPEAAKKPTPCHRCRGLVDKFNQGMVDTAKKNFGGGNTAWEEKTLSKYESSEIRL LEILEGLCESSDFECNOMLEAQEEHLEAWWLQLKSEYPDLFEWFCVKTLKVCCSPGTYGPDCLACQGGSQRPCSG NGHCSGDGSRQGDGSCRCHMGYQGPLCTDCMDGYFSSLRNETHSICTACDESCKTCSGLTNRDCGECEVGWVLDE GACVDVDECAAEPPPCSAAQFCKNANGSYTCEECDSSCVGCTGEGPGNCKECISGYAREHGQCADVDECSLAEKT ${\tt CVRKNENCYNTPGSYVCVCPDGFEETEDACVPPAEAEATEGESPTQLPSREDL}$ Signal peptide: amino acids 1-24 N-glycosylation sites. amino acids 190-194 and 251-255 Glycosaminoglycan attachment sites. amino acids 149-153 and 155-159 CAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 26-30 Casein kinase II phosphorylation sites. amino acids 58-62, 66-70, 86-90, 197-201, 210-214, 255-259, 295-299, 339-343 and 349-353 Tyrosine kinase phosphorylation site. amino acids 303-310 N-myristoylation sites. amino acids 44-50, 54-60, 55-61, 81-87, 150-156, 158-164, 164-170, 252-258 and 313-319 Aspartic acid and asparagine hydroxylation site. amino acids 308-320 EGF-like domain cysteine pattern signature. amino acids 166-178

Leucine zipper pattern.

amino acids 94-116

CAGGTCCAACTGCACCTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTC GACCTCGACCCACGCGTCCGCCAGGCCGGGAGGCGACGCCCCAGCCGTCTAAACGGGAACA GCCCTGGCTGAGGGAGCTGCAGCGCAGCAGAGTATCTGACGGCGCCAGGTTGCGTAGGTGCG $\tt GCACGAGGAGTTTTCCCGGCAGCGAGGAGGTCCTGAGCAGC\underline{ATG}GCCCGGAGGAGCGCCTTC$ CGGGCCGCCGCAGGAGAGCCTGTACCTATGGATCGATGCTCACCAGGCAAGAGTACTCA TAGGATTTGAAGAAGATATCCTGATTGTTTCAGAGGGGAAAATGGCACCTTTTACACATGAT TTCAGAAAAGCGCAACAGAGAATGCCAGCTATTCCTGTCAATATCCATTCCATGAATTTTAC $\tt CTGGCAAGCTGCAGGCAGAATACTTCTATGAATTCCTGTCCTTGCGCTCCCTGGATA$ AAGGCATCATGGCAGATCCAACCGTCAATGTCCCTCTGCTGGGAACAGTGCCTCACAAGGCA TCAGTTGTTCAAGTTGGTTTCCCATGTCTTGGAAAACAGGATGGGGTGGCAGCATTTGAAGT GGATGTGATTGTTATGAATTCTGAAGGCAACACCATTCTCCAAAACACCTCAAAATGCTATCT TCTTTAAAACATGTCAACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTGTAAT GAAAGACGCATCTGCGAGTGTCCTGATGGGTTCCACGGACCTCACTGTGAGAAAGCCCTTTG TACCCCACGATGTATGAATGGTGGACTTTGTGTGACTCCTGGTTTCTGCATCTGCCCACCTG GATTCTATGGAGTGAACTGTGACAAAGCAAACTGCTCAACCACCTGCTTTAATGGAGGGACC TGTTTCTACCCTGGAAAATGTATTTGCCCTCCAGGACTAGAGGGAGAGCAGTGTGAAATCAG CAAATGCCCACAACCCTGTCGAAATGGAGGTAAATGCATTGGTAAAAGCAAATGTAAGTGTT $\mathbb{R}^{\mathsf{CCAAAGGTTACCAGGGAGACCTCTGTTCAAAGCCTGTCTGCGAGCCTGGCTGTGGTGCACAT}$ GGAACCTGCCATGAACCCAACAAATGCCAATGTCAAGAAGGTTGGCATGGAAGACACTGCAA TAAAAGGTACGAAGCCAGCCTCATACATGCCCTGAGGCCAGCAGGCGCCCCAGCTCAGGCAGC #ACACGCCTTCACTTAAAAAGGCCGAGGAGCGGCGGGATCCACCTGAATCCAATTACATCTGG TGAACTCCGACATCTGAAACGTTTTAAGTTACACCAAGTTCATAGCCTTTGTTAACCTTTCA TGTGTTGAATGTTCAAATAATGTTCATTACACTTAAGAATACTGGCCTGAATTTTATTAGCT TCATTATAAATCACTGAGCTGATATTTACTCTTCCTTTTAAGTTTTCTAAGTACGTCTGTAG CATGATGGTATAGATTTTCTTGTTTCAGTGCTTTGGGACAGATTTTATATTATGTCAATTGA TCAGGTTAAAATTTTCAGTGTGTAGTTGGCAGATATTTTCAAAATTACAATGCATTTATGGT GTCTGGGGGCAGGGGAACATCAGAAAGGTTAAATTGGGCAAAAATGCGTAAGTCACAAGAAT TTGGATGGTGCAGTTAATGTTGAAGTTACAGCATTTCAGATTTTATTGTCAGATATTTAGAT **GTTTGTTACATTTTTAAAAATTGCTCTTAATTTTTAAACTCTCAATACAATATATTTTGACC AAACAATATAATATTCTAAACACAATGAAATAGGGAATATAATGTATGAACTTTTTGCAT** TGGCTTGAAGCAATATAATATATTGTAAACAAAACACAGCTCTTACCTAATAAACATTTTAT AAAAAAAAAAAAAAAAAAAAAGGGCGGCCGCGACTCTAGAGTCGACCTGCAGAAGCTTGGC CGCCATGGCCCAACTTGTTTATTGCAGCTTATAATG

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33094 ><subunit 1 of 1, 379 aa, 0 stop ><MW: 41528, pI: 7.97, NX(S/T): 2 MARRSAFPAAALWLWSILLCLLALRAEAGPPQEESLYLWIDAHQARVLIGFEEDILIVSEGK MAPFTHDFRKAQQRMPAIPVNIHSMNFTWQAAGQAEYFYEFLSLRSLDKGIMADPTVNVPLL GTVPHKASVVQVGFPCLGKQDGVAAFEVDVIVMNSEGNTILOTPONAIFFKTCOOAECPGGC RNGGFCNERRICECPDGFHGPHCEKALCTPRCMNGGLCVTPGFCICPPGFYGVNCDKANCST TCFNGGTCFYPGKCICPPGLEGEQCEISKCPQPCRNGGKCIGKSKCKCSKGYQGDLCSKPVC EPGCGAHGTCHEPNKCQCQEGWHGRHCNKRYEASLIHALRPAGAOLROHTPSLKKAEERRDP PESNYIW Signal peptide: amino acids 1-28 N-glycosylation site. amino acids 88-92, 245-249 Casein kinase II phosphorylation site. amino acids 319-323 Tyrosine kinase phosphorylation site. amino acids 370-378 N-myristoylation sites. amino acids 184-190, 185-191, 189-195, 315-321 ATP/GTP-binding site motif A (P-loop). amino acids 285-293 EGF-like domain cysteine pattern signature.

amino acids 198-210, 230-242, 262-274, 294-306, 326-338

CCCCAGCCCACACCTTCACCAGGGCCCAGGAGCCACC<u>ATG</u>TGGCGATGTCCACTGGGGCTAC TGCTGTTGCTGCCGCTGGCCACTTGGCTCTGGGTGCCCAGCAGGGTCGTGGGCGCCGG GAGCTAGCACCGGGTCTGCACCTGCGGGGCATCCGGGACGCGGGAGGCCGGTACTGCCAGGA GCAGGACCTGTGCCGCGGCCGTGCCGACGACTGTGCCCTGCCCTACCTGGGCGCCATCT GTTACTGTGACCTCTTCTGCAACCGCACGGTCTCCGACTGCTGCCCTGACTTCTGGGACTTC TGCCTCGGCGTGCCACCCCCTTTTCCCCCGATCCAAGGATGTATGCATGGAGGTCGTATCTA TCCAGTCTTGGGAACGTACTGGGACAACTGTAACCGTTGCACCTGCCAGGAGAACAGGCAGT GAACCACAGCGCCTTCTGGGGCATGACCCTGGATGAGGGCATTCGCTACCGCCTGGGCACCA TCCGCCCATCTTCCTCGGTCATGAACATGCATGAAATTTATACAGTGCTGAACCCAGGGGAG GTGCTTCCCACAGCCTTCGAGGCCTCTGAGAAGTGGCCCAACCTGATTCATGAGCCTCTTGA CCAAGGCAACTGTGCAGGCTCCTGGGCCTTCTCCACAGCAGCTGTGGCATCCGATCGTGTCT CAATCCATTCTCTGGGACACATGACGCCTGTCCTGTCGCCCCAGAACCTGCTGTCTTGTGAC ACCCACCAGCAGCAGGGCTGCCGCGGTGGGCGTCTCGATGGTGCCTGGTGGTTCCTGCGTCG CCGAGGGGTGTCTGACCACTGCTACCCCTTCTCGGGCCGTGAACGAGACGAGGCTGGCC CTGCGCCCCCTGTATGATGCACAGCCGAGCCATGGGTCGGGGCAAGCGCCAGGCCACTGCC CACTGCCCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCT CGGCTCCAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCA TGGAGGTGCATGAGGACTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGC CTTGGGAGGCCAGAGAGATACCGCCGGCATGGGACCCACTCAGTCAAGATCACAGGATGGGG AGAGGAGACGCTGCCAGATGGAAGGACGCTCAAATACTGGACTGCGGCCAACTCCTGGGGCC CAGCCTGGGGCGAGAGGGGCCACTTCCGCATCGTGCGCGCGTCAATGAGTGCGACATCGAG AGCTTCGTGCTGGGCGTCTGGGGCCGCGTGGGCATGGACATGGGTCATCACTGAGGCTG CGGGCACCACGCGGGTCCGGCCTGGGATCCAGGCTAAGGGCCGGCGGAAGAGGCCCCAATG GGGCGGTGACCCCAGCCTCGCCCGACAGAGCCCGGGGCGCAGGCGGCGCCCAGGGCGCCTAAT ₫ CCCGGCGCGGGTTCCGCTGACGCAGCGCCCCGCCTGGGAGCCGCGGGCAGGCGAGACTGGCG agagececcagaceteccagtggggacggggcaggecetggectgggaagagcacagetgcag TTGCCCAGGTTGGAGTGCAGTGGCCCATCAGGGCTCACTGTAACCTCCGACTCCTGGGTTCA AGTGACCCTCCCACCTCAGCCTCTCAAGTAGCTGGGACTACAGGTGCACCACCACCACCTGGC TAATTTTTGTATTTTTGTAAAGAGGGGGGTCTCACTGTGTTGCCCAGGCTGGTTTCGAACT CCTGGGCTCAAGCGGTCCACCTGCCTCCCCAAAGTGCTGGGATTGCAGGCATGAGCC TAAAACCAAAGTATTGATAAAAAAAA

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA33223
 ><subunit 1 of 1, 164 aa, 1 stop
 ><MW: 18359, pI: 7.45, NX(S/T): 1
 {\tt MWRCPLGLLLLPLAGHLALGAQQGRGRRELAPGLHLRGIRDAGGRYCQEQDLCCRGRADDC}
 \verb|ALPYLGAICYCDLFCNRTVSDCCPDFWDFCLGVPPPFPPIQGCMHGGRIYPVLGTYWDNCNR|
 CTCQENRQWHGGSRHDQSHQPGQLWLAGWEPQRLLGHDPG
 N-glycosylation site.
 amino acids 78-82, 161-165
 Casein kinase II phosphorylation site.
 amino acids 80-84, 117-121, 126-130, 169-173, 205-209, 296-300,
411-415
N-myristoylation site.
amino acids 21-27, 39-45, 44-50, 104-110, 160-164, 224-230,
269-275, 378-384, 442-448
Amidation site.
amino acids 26-30, 318-322
Eukaryotic thiol (cysteine) proteases histidine active site.
 amino acids 398-409
```

AGGCTCCTTGGCCCTTTTTCCACAGCAAGCTTNTGCNATCCCGATTCGTTGTCTCAAATCCA
ATTCTCTTGGGACACATNACGCCTGTCCTTTNGCCCCAGAACCTGCTGTCTTTGTACACCCAC
CAGCAGCAGGGCTGCCGCGNTGGGCGTCTCGATGGTGCCTGGTGGTTCCTGCGTCGCCGAGG
GNTGGTGTCTGACCACTGCTACCCCTTCTCGGGCCGTGAACGAGACGAGGCTGGCCCTGCGC
CCCCCTGTATGATGCACAGCCGAGCCATGGGTCGGGGCAAGCGCCAGGCCACTGCCCACTGC
CCCAACAGCTATGTTAATAACAATGACATCTACCAGGTCACTCCTGTCTACCGCCTCGGCTC
CAACGACAAGGAGATCATGAAGGAGCTGATGGAGAATGGCCCTGTCCAAGCCCTCATGGAGG
TGCATGAGGACTTCTTCCTATACAAGGGAGGCATCTACAGCCACACGCCAGTGAGCCTTGGG
AGGCCAGAGAGAGATACCGCCGGCATGGGACCCACTCAG

GCTGCTTGCCCTGTTGATGGCAGGCTTGGCCCTGCAGCCAGGCACTGCCCTGCTGCTACT CCTGCAAAGCCCAGGTGAGCAACGAGGACTGCCTGCAGGTGGAGAACTGCACCCAGCTGGGG GAGCAGTGCTGGACCGCGCGCATCCGCGCAGTTGGCCTCCTGACCGTCATCAGCAAAGGCTG CAGCTTGAACTGCGTGGATGACTCACAGGACTACTACGTGGGCAAGAAGAACATCACGTGCT GTGACACCGACTTGTGCAACGCCAGCGGGGCCCATGCCCTGCAGCCGGCTGCCGCCATCCTT GCGCTGCTCCCTGCACTCGGCCTGCTCTGGGGGACCCGGCCAGCTATAGGCTCTGGGGGG CCCCGCTGCAGCCCACACTGGGTGTGGTGCCCCAGGCCTCTGTGCCACTCCTCACAGACCTG CTGCACCCCTGTCCCCACCCTGACCCTCCCATGGCCCTCTCCAGGACTCCCACCCGGCAGA TCAGCTCTAGTGACACAGATCCGCCTGCAGATGGCCCCTCCAACCCTCTCTGCTGCTGTTTC CATGGCCCAGCATTCTCCACCCTTAACCCTGTGCTCAGGCACCTCTTCCCCCCAGGAAGCCTT CCCTGCCCACCCCATCTATGACTTGAGCCAGGTCTGGTCCGTGGTGTCCCCCGCACCCAGCA GGGGACAGGCACTCAGGAGGGCCCAG<u>TAA</u>AGGCTGAGATGAAGTGGACTGAGTAGAACTGGA GGACAAGAGTCGACGTGAGTTCCTGGGAGTCTCCAGAGATGGGGCCTGGAGGCCTGGAGGAA #GGGGCCAGGCCTCACATTCGTGGGGCTCCCTGAATGGCAGCCTGAGCACAGCGTAGGCCCTT AATAAACACCTGTTGGATAAGCCAAAAAAA

MTHRTTTWARRTSRAVTPTCATPAGPMPCSRLPPSLRCSLHSACCSGDPASYRLWGAPLQPT LGVVPQASVPLLTDLAQWEPVLVPEAHPNASLTMYVCTPVPHPDPPMALSRTPTRQISSSDT DPPADGPSNPLCCCFHGPAFSTLNPVLRHLFPQEAFPAHPIYDLSQVWSVVSPAPSRGQALRRAQ

```
Signal peptide:
amino acids 1-47

N-glycosylation site.
amino acids 31-35, 74-78, 84-88

Casein kinase II phosphorylation site.
amino acids 22-26, 76-80

N-myristoylation site.
amino acids 56-60

Amidation site.
amino acids 70-74
```

GCTTACAGCTGCTGATTCTCTGCTGTCAAACTCAGTACGTGAGGGACCAGGGCGCCATGACC GACCAGCTGAGCAGGCGGCAGATCCGCGAGTACCAACTCTACAGCAGGACCAGTGGCAAGCA CGTGCAGGTCACCGGGCGTCGCATCTCCGCCACCGCCGAGGACGGCAACAAGTTTGCCAAGC TCATAGTGGAGACGGACACGTTTGGCAGCCGGGTTCGCATCAAAGGGGCTGAGAGTGAGAAG TACATCTGTATGAACAAGAGGGGCAAGCTCATCGGGAAGCCCAGCGGGAAGAGCCAAAGACTG CGTGTTCACGGAGATCGTGCTGGAGAACAACTATACGGCCTTCCAGAACGCCCGGCACGAGG GCTGGTTCATGGCCTTCACGCGGCAGGGGCGCCCCGCCAGGCTTCCCGCAGCCGCCAGAAC CAGCGCGAGGCCCACTTCATCAAGCGCCTCTACCAAGGCCAGCTGCCCTTCCCCAACCACGC CGAGAAGCAGATTCGAGTTTGTGGGCTCCGCCCCACCGGCGGACCAAGCGCACAC GGCGGCCCCAGCCCTCACGTAGTCTGGGAGGCAGGGGGCAGCAGCCCCTGGGCCGCCTCCC GAGGGAGGACCCTGAGGGCCGCGAAGCATCCGAGCCCCCAGCTGGGAAGGGCCAGGCCGGTG CCCCAGGGGCGCTGGCACAGTGCCCCCTTCCCGGACGGTGGCAGGCCCTGGAGAGGAACT GAGTGTCACCCTGATCTCAGGCCACCAGCCTCTGCCGGCCTCCCAGCCGGGCTCCTGAAGCC CGCTGAAAGGTCAGCGACTGAAGGCCTTGCAGACAACCGTCTGGAGGTGGCTGTCCTCAAAA TCTGCTTCTCGGATCTCCCTCAGTCTGCCCCCAGCCCCCAAACTCCTCCTGGCTAGACTGTA AGGGTTGTCCACTCCTCACATTCCACGACCCAGGCCTGCACCCCACCCCCAACTCCCAGCCC CGGAATAAAACCATTTTCCTGC

MGAARLLPNLTLCLQLLILCCQTQYVRDQGAMTDQLSRRQIREYQLYSRTSGKHVQVTGRRI SATAEDGNKFAKLIVETDTFGSRVRIKGAESEKYICMNKRGKLIGKPSGKSKDCVFTEIVLE NNYTAFQNARHEGWFMAFTRQGRPRQASRSRQNQREAHFIKRLYQGQLPFPNHAEKQKQFEF VGSAPTRTKRTRRPQPLT

```
Signal peptide:
amino acids 1-22

N-glycosylation site.
amino acids 9-13, 126-130

CAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 60-64

Casein kinase II phosphorylation site.
amino acids 65-69

Tyrosine kinase phosphorylation site.
amino acids 39-48, 89-97

N-myristoylation site.
amino acids 69-75, 188-194

Amidation site.
amino acids 58-62
```

HBGF/FGF family signature.

amino acids 103-128

ACTTGCCATCACCTGTTGCCAGTGTGGAAAAATTCTCCCCTGTTGAATTTTTTTGCACATGGAG GACAGCAGCAAAGAGGGCAACACAGGCTGATAAGACCAGAGACAGCAGGGAGATTATTTTAC CATACGCCCTCAGGACGTTCCCTCTAGCTGGAGTTCTGGACTTCAACAGAACCCCATCCAGT ${\tt TTCCGTACTTCAGAA} {\tt ATG} {\tt GGCCTACAGACCACAAAGTGGCCCAGCCATGGGGCTTTTTTCCT}$ GAAGTCTTGGCTTATCATTTCCCTGGGGCTCTACTCACAGGTGTCCAAACTCCTGGCCTGCC ${\tt CTAGTGTGTGCCGCTGCGACAGGAACTTTGTCTACTGTAATGAGCGAAGCTTGACCTCAGTG}$ CCTCTTGGGATCCCGGAGGGCGTAACCGTACTCTACCTCCACAACAACCAAATTAATAATGC TGGATTTCCTGCAGAACTGCACAATGTACAGTCGGTGCACACGGTCTACCTGTATGGCAACC AACTGGACGAATTCCCCATGAACCTTCCCAAGAATGTCAGAGTTCTCCATTTGCAGGAAAAC AATATTCAGACCATTTCACGGGCTGCTCTTGCCCAGCTCTTGAAGCTTGAAGAGCTGCACCT GGATGACAACTCCATATCCACAGTGGGGGTGGAAGACGGGGCCTTCCGGGAGGCTATTAGCC TCAAATTGTTGTTTTTGTCTAAGAATCACCTGAGCAGTGTGCCTGTTGGGCTTCCTGTGGAC TTGCAAGAGCTGAGAGTGGATGAAAATCGAATTGCTGTCATATCCGACATGGCCTTCCAGAA TCTCACGAGCTTGGAGCGTCTTATTGTGGACGGGAACCTCCTGACCAACAAGGGTATCGCCG AGGGCACCTTCAGCCATCTCACCAAGCTCAAGGAATTTTCAATTGTACGTAATTCGCTGTCC CACCCTCCTCCCGATCTCCCAGGTACGCATCTGATCAGGCTCTATTTGCAGGACAACCAGAT PACAACCAACTGCGGATGCTGACTCAAGGGGTTTTTGATAATCTCTCCAACCTGAAGCAGCTC ACTGCTCGGAATAACCCTTGGTTTTGTGACTGCAGTATTAAATGGGTCACAGAATGGCTCAA **ATATATCCCTTCATCTCTCAACGTGCGGGGTTTCATGTGCCAAGGTCCTGAACAAGTCCGGG** INGGATGGCCGTCAGGGAATTAAATATGAATCTTTTGTCCTGTCCCACCACGACCCCCGGCCTG CCTCTCTTCACCCCAGCCCCAAGTACAGCTTCTCCGACCACTCAGCCTCCCCACCCTCTCTAT TCCAAACCCTAGCAGAAGCTACACGCCTCCAACTCCTACCACATCGAAACTTCCCACGATTC CTGACTGGGATGGCAGAGAAGAGTGACCCCACCTATTTCTGAACGGATCCAGCTCTCTATC **CAAACTCACATGGGTGAAAATGGGCCACAGTTTAGTAGGGGGCATCGTTCAGGAGCGCATAG** *ICAGCGGTGAGAAGCAACACCTGAGCCTGGTTAACTTAGAGCCCCGATCCACCTATCGGATT ---TGTTTAGTGCCACTGGATGCTTTTAACTACCGCGCGGTAGAAGACACCATTTGTTCAGAGGC CACCACCCATGCCTCCTATCTGAACAACGGCAGCAACACAGCGTCCAGCCATGAGCAGACGA CGTCCCACAGCATGGGCTCCCCCTTTCTGCTGGCGGGCTTGATCGGGGGCGCGCGTGATATTT GTGCTGGTGGTCTTGCTCAGCGTCTTTTGCTGGCATATGCACAAAAAGGGGCGCTACACCTC CCAGAAGTGGAAATACAACCGGGGCCGGCGGAAAGATGATTATTGCGAGGCAGCCAAGA AGGACAACTCCATCCTGGAGATGACAGAAACCAGTTTTCAGATCGTCTCCTTAAATAACGAT CACAGACTGCCATATCCCCAACAACATGCGATACTGCAACAGCAGCGTGCCAGACCTGGAGC ACTGCCATACG**TGA**CAGCCAGAGGCCCAGCGTTATCAAGGCGGACAATTAGACTCTTGAGAA CACACTCGTGTGCACATAAAGACACGCAGATTACATTTGATAAATGTTACACAGATGCAT TTGTGCATTTGAATACTCTGTAATTTATACGGTGTACTATATAATGGGATTTAAAAAAAGTG CTATCTTTTCTATTTCAAGTTAATTACAAACAGTTTTGTAACTCTTTTGCTTTTTAAATCTT

MGLQTTKWPSHGAFFLKSWLIISLGLYSQVSKLLACPSVCRCDRNFVYCNERSLTSVPLGIP EGVTVLYLHNNQINNAGFPAELHNVQSVHTVYLYGNQLDEFPMNLPKNVRVLHLQENNIQTI SRAALAQLLKLEELHLDDNSISTVGVEDGAFREAISLKLLFLSKNHLSSVPVGLPVDLQELR VDENRIAVISDMAFQNLTSLERLIVDGNLLTNKGIAEGTFSHLTKLKEFSIVRNSLSHPPPD LPGTHLIRLYLQDNQINHIPLTAFSNLRKLERLDISNNQLRMLTQGVFDNLSNLKQLTARNN PWFCDCSIKWVTEWLKYIPSSLNVRGFMCQGPEQVRGMAVRELNMNLLSCPTTTPGLPLFTP APSTASPTTQPPTLSIPNPSRSYTPPTPTTSKLPTIPDWDGRERVTPPISERIQLSIHFVND TSIQVSWLSLFTVMAYKLTWVKMGHSLVGGIVQERIVSGEKQHLSLVNLEPRSTYRICLVPL DAFNYRAVEDTICSEATTHASYLNNGSNTASSHEQTTSHSMGSPFLLAGLIGGAVIFVLVVL LSVFCWHMHKKGRYTSQKWKYNRGRRKDDYCEAGTKKDNSILEMTETSFQIVSLNNDQLLKG DFRLQPIYTPNGGINYTDCHIPNNMRYCNSSVPDLEHCHT

Signal peptide:

amino acids 1-42

Transmembrane domain:

amino acids 542-561

N-glycosylation site.

amino acids 202-206, 298-302, 433-437, 521-525, 635-639, 649-653 Casein kinase II phosphorylation site.

amino acids 204-208, 407-411, 527-531, 593-597, 598-602, 651-655
Tyrosine kinase phosphorylation site.

amino acids 319-328

N-myristoylation site.

amino acids 2-8, 60-66, 149-155, 213-219, 220-226, 294-300,

Amidation site.

amino acids 581-585

Leucine zipper pattern.

amino acids 164-186

Phospholipase A2 aspartic acid active site.

amino acids 39-50

ACTTGGAGCAAGCGGCGGCGGGGGAGACAGAGGCAGAGGCAGAAGCTGGGGCTCCGTCCTCGCCTCCCACGAGCG ATCCCCGAGGAGAGCCGCGGCCCTCGGCGAGGCGAAGAGGCCGACGAGGAAGACCCGGGTGGCTGCCCCTGCC ${\tt TCGCTTCCCAGGCGCCGGCGGCTGCAGCCTTGCCCCTCTTGCTCGCCTTGAAA} {\tt ATG} {\tt GAAAAGATGCTCGCAGGCT}$ ${ t GCTTTCTGCTGATCCTCGGACAGATCGTCCTCCTCCCTGCCGAGGCCAGGGAGCGGTCACGTGGGAGGTCCATCT}$ TGGTTTTCATCATTGACAGCTCTCGCAGTGTCAACACCCATGACTATGCAAAGGTCAAGGAGTTCATCGTGGACA TCTTGCAATTCTTGGACATTGGTCCTGATGTCACCCGAGTGGGCCTGCTCCAATATGGCAGCACTGTCAAGAATG ${\tt AGTTCTCCCTCAAGACCTTCAAGAGGAAGTCCGAGGTGGAGCGTGCTGTCAAGAGGATGCGGCATCTGTCCACGG}$ GCACCATGACTGGGCTGGCCATCCAGTATGCCCTGAACATCGCATTCTCAGAAGCAGAGGGGGCCCGGCCCCTGA ${\tt GGGAGAATGTGCCACGGGTCATAATGATCGTGACAGATGGGAGACCTCAGGACTCCGTGGCCGAGGTGGCTGCTA}$ ${\tt AGGCACGGGACACGGGCATCCTAATCTTTGCCATTGGTGTGGGCCAGGTAGACTTCAACACCTTGAAGTCCATTG}$ ${\tt GGAGTGAGCCCCATGAGGACCATGTCTTCCTTGTGGCCAATTTCAGCCAGATTGAGACGCTGACCTCCGTGTTCC}$ AGAAGAAGTTGTGCACGGCCCACATGTGCAGCACCCTGGAGCATAACTGTGCCCACTTCTGCATCAACATCCCTG ${\tt GCTCATACGTCTGCAGGTGCAAACAAGGCTACATTCTCAACTCGGATCAGACGACTTGCAGAATCCAGGATCTGT}$ GTGCCATGGAGGACCACAACTGTGAGCAGCTCTGTGTGAATGTGCCGGGCTCCTTCGTCTGCCAGTGCTACAGTG GCTACGCCCTGGCTGAGGATGGGAAGAGGTGTGTGGCTGTGGACTACTGTGCCTCAGAAAACCACGGATGTGAAC ATGAGTGTGTAAATGCTGATGGCTCCTACCTTTGCCAGTGCCATGAAGGATTTGCTCTTAACCCAGATGAAAAAA CGTGCACAAGGATCAACTACTGTGCACTGAACAAACCGGGCTGTGAGCATGAGTGCGTCAACATGGAGGAGAGCT ${f AGCAGGACCATGGCTGTGAGCAGCTGTGTCTGAACACGGAGGATTCCTTCGTCTGCCAGTGCTCAGAAGGCTTCC}$ GTGTCAACATGGACAGATCCTTTGCCTGTCAGTGTCCTGAGGGACACGTGCTCCGCAGCGATGGGAAGACGTGTG ${\tt CAAAATTGGACTCTTGTGGGGGGACCACGGTTGTGAACATTCGTGTAAGCAGTGAAGATTCGTTTGTGT}$ ${\tt GCCAGTGCTTTGAAGGTTATATACTCCGTGAAGATGGAAAAACCTGCAGAAGGAAAGATGTCTGCCAAGCTATAG}$ ACCATGGCTGTGAACACATTTGTGTGAACAGTGACGACTCATACACGTGCGAGTGCTTGGAGGGATTCCGGCTCG CTGAGGATGGGAAACGCTGCCGAAGGAAGGATGTCTGCAAATCAACCCACCATGGCTGCGAACACATTTGTGTTA ATAATGGGAATTCCTACATCTGCAAATGCTCAGAGGGATTTGTTCTAGCTGAGGACGGAAGACGGTGCAAGAAAT \square GCACTGAAGGCCCAATTGACCTGGTCTTTGTGATCGATGGATCCAAGAGTCTTGGAGAAGAGAATTTTGAGGTCG TGAAGCAGTTTGTCACTGGAATTATAGATTCCTTGACAATTTCCCCCCAAAGCCGCTCGAGTGGGGCTGCTCCAGT ATTCCACACAGGTCCACACAGAGTTCACTCTGAGAAACTTCAACTCAGCCAAAGACATGAAAAAAGCCGTGGCCC ACATGAAATACATGGGAAAGGGCTCTATGACTGGGCTGGCCCTGAAACACATGTTTGAGAGAAGTTTTACCCAAG ATGAGATAAGTGAAAAACTCAAGAAAGGCATCTGTGAAGCTCTAGAAGACTCCGATGGAAGACAGGACTCTCCAG CAGGGGAACTGCCAAAAACGGTCCAACAGCCAACAGAATCTGAGCCAGTCACCATAAATATCCAAGACCTACTTT ${\tt CCTGTTCTAATTTTGCAGTGCAACACAGATATCTGTTTGAAGAAGACAATCTTTTACGGTCTACACAAAAGCTTT}$ CCCATTCAACAAAACCTTCAGGAAGCCCTTTGGAAGAAAACACGATCAATGCAAATGTGAAAACCTTATAATGT TCCAGAACCTTGCAAACGAAGAAGTAAGAAAATTAACACAGCGCTTAGAAGAAATGACACAGAGAATGGAAGCCCC TGGAAAATCGCCTGAGATACAGA<u>TGA</u>AGATTAGAAATCGCGACACATTTGTAGTCATTGTATCACGGATTACAAT $\hbox{\tt GAACGCAGTGCAGAGCCCCAAAGCTCAGGCTATTGTTAAATCAATAATGTTGTGAAGTAAAACAATCAGTACTGA}$ ${\tt GAAACCTGGTTTGCCACAGAACAAAGACAAGAAGTATACACTAACTTGTATAAATTTATCTAGGAAAAAATCCT}$ AACTTGCTTCTGCCTCATCCTGCCTTAGTGTGCAATCTCATTTGACTATACGATAAAGTTTGCACAGTCTTACTT $\tt CTGTAGAACACTGGCCATAGGAAATGCTGTTTTTTTGTACTGGACTTTACCTTGATATATGTATATGGATGTATG$

MEKMLAGCFLLILGQIVLLPAEARERSRGRSISRGRHARTHPQTALLESSCENKRADLVFII DSSRSVNTHDYAKVKEFIVDILQFLDIGPDVTRVGLLQYGSTVKNEFSLKTFKRKSEVERAV KRMRHLSTGTMTGLAIQYALNIAFSEAEGARPLRENVPRVIMIVTDGRPQDSVAEVAAKARD TGILIFAIGVGQVDFNTLKSIGSEPHEDHVFLVANFSQIETLTSVFQKKLCTAHMCSTLEHN CAHFCINIPGSYVCRCKQGYILNSDQTTCRIQDLCAMEDHNCEQLCVNVPGSFVCQCYSGYA LAEDGKRCVAVDYCASENHGCEHECVNADGSYLCQCHEGFALNPDEKTCTRINYCALNKPGC EHECVNMEESYYCRCHRGYTLDPNGKTCSRVDHCAQQDHGCEQLCLNTEDSFVCQCSEGFLI NEDLKTCSRVDYCLLSDHGCEYSCVNMDRSFACQCPEGHVLRSDGKTCAKLDSCALGDHGCE HSCVSSEDSFVCQCFEGYILREDGKTCRKDVCQAIDHGCEHICVNSDDSYTCECLEGFRLA EDGKRCRRKDVCKSTHHGCEHICVNNGNSYICKCSEGFVLAEDGRRCKKCTEGPIDLVFVID GSKSLGEENFEVVKQFVTGIIDSLTISPKAARVGLLQYSTQVHTEFTLRNFNSAKDMKKAVA HMKYMGKGSMTGLALKHMFERSFTQGEGARPLSTRVPRAAIVFTDGRAQDDVSEWASKAKAN GITMYAVGVGKAIEEELQEIASEPTNKHLFYAEDFSTMDEISEKLKKGICEALEDSDGRQDS PAGELPKTVQQPTESEPVTINIQDLLSCSNFAVQHRYLFEEDNLLRSTQKLSHSTKPSGSPLEKHDQCKCENLIMFQNLANEEVRKLTQRLEEMTQRMEALENRLRYR

Signal peptide:

amino acids 1-23

N-glycosylation site.

amino acids 221-225

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 115-119, 606-610, 892-896

Casein kinase II phosphorylation site.

amino acids 49-53, 118-122, 149-153, 176-180, 223-227, 243-247,

401-405, 442-446, 501-505, 624-628, 673-677, 706-710, 780-784,

781-785, 819-823, 866-870

N-myristoylation site.

amino acids 133-139, 258-264, 299-305, 340-346, 453-459, 494-500, 639-645, 690-696, 752-758, 792-798

Amidation site.

amino acids 314-318, 560-564, 601-605

Aspartic acid and asparagine hydroxylation site.

amino acids 253-265, 294-306, 335-347, 376-388, 417-423, 458-464, 540-546, 581-587

GGAGCCGCCCTGGGTGTCAGCGGCTCGGCTCCCGCGCACGCTCCGGCCGTCGCGCAGCCTCG GTGCCCTCGCGCCCCCTCGCGGGCCCAGCTGCAACTGCACTTGCCCGCCAACCGGTTGCAG GCGGTGGAGGGGGGGAGTGGTGCTTCCAGCGTGGTACACCTTGCACGGGGAGGTGTCTTC AGGTGTTGTCCTACATCAATGGGGTCACAACAAGCAAACCTGGAGTATCCTTGGTCTACTCC ATGCCCTCCCGGAACCTGTCCCTGCGGCTGGAGGGTCTCCAGGAGAAAGACTCTGGCCCCTA CAGCTGCTCCGTGAATGTGCAAGACAACAAGGCAAATCTAGGGGCCCACAGCATCAAAACCT TAGAACTCAATGTACTGGTTCCTCCAGCTCCTCCATCCTGCCGTCTCCAGGGTGTGCCCCAT GTGGGGCAAACGTGACCTGAGCTGCCAGTCTCCAAGGAGTAAGCCCGCTGTCCAATACCA GTGGGATCGCCAGCTTCCATCCTTCCAGACTTTCTTTGCACCAGCATTAGATGTCATCCGTG \square GGTCTTTAAGCCTCACCAACCTTTCGTCTTCCATGGCTGGAGTCTATGTCTGCAAGGCCCAC __AATGAGGTGGGCACTGCCCAATGTAATGTGACGCTGGAAGTGAGCACAGGGCCTGGAGCTGC \square ATTGCTCCCGGACCCTGCCCTGGCCCAAGAGCTCAGACAATCTCCAAGAATGGGACCCT TTCCTCTGTCACCTCCGCACGAGCCCTCCGGCCACCCCATGGCCCTCCCAGGCCTGGTGCAT ■ GGGGCCCACCCTCAACCAATATCCCCCATCCCTGGTGGGGTTTCTTCCTCTGGCTTGAGCCG CATGGGTGCTGTGCCTGTGATGGTGCCTGCCCAGAGTCAAGCTGGCTCTCTGGTA<u>TGA</u>TGAC AGAGGCCTGAGTCATGGGAAAGAGTCACACTCCTGACCCTTAGTACTCTGCCCCCCACCTCTC TTTACTGTGGGAAAACCATCTCAGTAAGACCTAAGTGTCCAGGAGACAGAAGGAGAAGAGGA AGTGGATCTGGAATTGGGAGGAGCCTCCACCCACCCCTGACTCCTTATGAAGCCAGCTG CTGAAATTAGCTACTCACCAAGAGTGAGGGGCAGAGACTTCCAGTCACTGAGTCTCCCAGGC CCCCTTGATCTGTACCCCACCCCTATCTAACACCACCCTTGGCTCCCACTCCAGCTCCCTGT ATTGATATAACCTGTCAGGCTGGCTTGGTTAGGTTTTACTGGGGCAGAGGATAGGGAATCTC TGTTTGTATGAAAAA

MISLPGPLVTNLLRFLFLGLSALAPPSRAQLQLHLPANRLQAVEGGEVVLPAWYTLHGEVSS SQPWEVPFVMWFFKQKEKEDQVLSYINGVTTSKPGVSLVYSMPSRNLSLRLEGLQEKDSGPY SCSVNVQDKQGKSRGHSIKTLELNVLVPPAPPSCRLQGVPHVGANVTLSCQSPRSKPAVQYQ WDRQLPSFQTFFAPALDVIRGSLSLTNLSSSMAGVYVCKAHNEVGTAQCNVTLEVSTGPGAA VVAGAVVGTLVGLGLLAGLVLLYHRRGKALEEPANDIKEDAIAPRTLPWPKSSDTISKNGTL SSVTSARALRPPHGPPRPGALTPTPSLSSQALPSPRLPTTDGAHPQPISPIPGGVSSSGLSR MGAVPVMVPAQSQAGSLV

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 245-267

N-glycosylation site.

amino acids 108-112, 169-173, 213-217, 236-240, 307-311

N-myristoylation site.

amino acids 90-96, 167-173, 220-226, 231-237, 252-258, 256-262, 262-268, 308-314, 363-369, 364-370

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 164-175

 $\texttt{CGCCACCACTGCGGCCACCGCCA} \underline{\textbf{ATG}} \texttt{AAACGCCTCCCGCTCCTAGTGGTTTTTTCCACTTTG}$ TTGAATTGTTCCTATACTCAAAATTGCACCAAGACACCTTGTCTCCCAAATGCAAAATGTGA AATACGCAATGGAATTGAAGCCTGCTATTGCAACATGGGATTTTCAGGAAATGGTGTCACAA TTTGTGAAGATGATAATGAATGTGGAAATTTAACTCAGTCCTGTGGCGAAAATGCTAATTGC ACTAACACAGAAGGAAGTTATTATTGTATGTGTGTACCTGGCTTCAGATCCAGCAGTAACCA ${\tt AGACAGGTTTATCACTAATGATGGAACCGTCTGTATAGAAAATGTGAATGCAAACTGCCATT}$ TAGATAATGTCTGTATAGCTGCAAATATTAATAAAACTTTAACAAAAATCAGATCCATAAAA GAACCTGTGGCTTTGCTACAAGAAGTCTATAGAAATTCTGTGACAGATCTTTCACCAACAGA ${\tt TATAATTACATATATAGAAATATTAGCTGAATCATCTTCATTACTAGGTTACAAGAACAACA}$ AATTTTGTTCAAAGGGATACATTTGTAGTTTGGGACAAGTTATCTGTGAATCATAGGAGAAC ACATCTTACAAAACTCATGCACACTGTTGAACAAGCTACTTTAAGGATATCCCAGAGCTTCC AAAAGACCACAGAGTTTGATACAAATTCAACGGATATAGCTCTCAAAGTTTTCTTTTTTGAT TCCAAAGAGAAAAGCTGCATATGATTCAAATGGCAATGTTGCAGTTGCATTTTTATATTATA AGAGTATTGGTCCTTTGCTTTCATCATCTGACAACTTCTTATTGAAACCTCAAAATTATGAT AATTCTGAAGAGGGAAAGAGTCATATCTTCAGTAATTTCAGTCTCAATGAGCTCAAACCC ACCCACATTATATGAACTTGAAAAAATAACATTTACATTAAGTCATCGAAAGGTCACAGATA \Box GGTATAGGAGTCTATGTGCATTTTGGAATTACTCACCTGATACCATGAATGGCAGCTGGTCT TCAGAGGGCTGTGAGCTGACATACTCAAATGAGACCCACACCTCATGCCGCTGTAATCACCT GACACATTTTGCAATTTTGATGTCCTCTGGTCCTTCCATTGGTATTAAAGATTATAATATTC TTACAAGGATCACTCAACTAGGAATAATTATTTCACTGATTTGTCTTGCCATATGCATTTTT ACCTTCTGGTTCTCAGTGAAATTCAAAGCACCAGGACAACAATTCACAAAAATCTTTGCTG TAGCCTATTTCTTGCTGAACTTGTTTTTCTTGGTTGGGATCAATACAAATACTAATAAGCTCT TCTGTTCAATCATTGCCGGACTGCTACACTACTTCTTTTAGCTGCTTTTGCATGGATGTGC ${}^{[\downarrow]}$ ATTGAAGGCATACATCTCTATCTCATTGTTGTGGGTGTCATCTACAACAAGGGATTTTTGCA ${\tt CAAGAATTTTATATCTTTGGCTATCTAAGCCCAGCCGTGGTAGTTGGATTTTCGGCAGCAC}$ TAGGATACAGATATTATGGCACAACCAAAGTATGTTGGCTTAGCACCGAAAACAACTTTATT TGGAGTTTTATAGGACCAGCATGCCTAATCATTCTTGTTAATCTCTTGGCTTTTGGAGTCAT TAAGGTCTTGTGCAAGAGGAGCCCTCGCTCTTCTGTTCCTTCTCGGCACCACCTGGATCTTT GGGGTTCTCCATGTTGTGCACGCATCAGTGGTTACAGCTTACCTCTTCACAGTCAGCAATGC TTTCCAGGGGATGTTCATTTTTTATTCCTGTGTGTTTTATCTAGAAAGATTCAAGAAGAAT ATTACAGATTGTTCAAAAATGTCCCCTGTTGTTTTGGATGTTTAAGG ${f TAA}$ ACATAGAGAATG $\overline{\mathtt{GTGGATAATTACAACTGCACAAAAATAAAAATTCCAAGCTGTGGATGACCAATGTATAAAAA}$ TGACTCATCAAATTATCCAATTATTAACTACTAGACAAAAAGTATTTTAAATCAGTTTTTCT GTTTATGCTATAGGAACTGTAGATAATAAGGTAAAATTATGTATCATATAGATATACTATGT TTTTCTATGTGAAATAGTTCTGTCAAAAATAGTATTGCAGATATTTGGAAAGTAATTGGTTT TGTCCTGAAGGAAACCACTGGCTTGATATTTCTGTGACTCGTGTTGCCTTTGAAACTAGTCC CCTACCACCTCGGTAATGAGCTCCATTACAGAAAGTGGAACATAAGAGAATGAAGGGGCAGA ${\tt TTGTTCTGAACTTAAATGTCCACTAAAACAACTTAGACTTCTGTTTGCTAAATCTGTTTCTT}$

MKRLPLLVVFSTLLNCSYTQNCTKTPCLPNAKCEIRNGIEACYCNMGFSGNGVTICEDDNEC GNLTQSCGENANCTNTEGSYYCMCVPGFRSSSNQDRFITNDGTVCIENVNANCHLDNVCIAA NINKTLTKIRSIKEPVALLQEVYRNSVTDLSPTDIITYIEILAESSSLLGYKNNTISAKDTL SNSTLTEFVKTVNNFVQRDTFVVWDKLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDT NSTDIALKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAVAFLYYKSIGPLLS SSDNFLLKPQNYDNSEEEERVISSVISVSMSSNPPTLYELEKITFTLSHRKVTDRYRSLCAF WNYSPDTMNGSWSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNILTRITQLG IIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCSLFLAELVFLVGINTNTNKLFCSIIAGL LHYFFLAAFAWMCIEGIHLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAALGYRYYGT TKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFRHTAGLKPEVSCFENIRSCARGA LALLFLLGTTWIFGVLHVVHASVVTAYLFTVSNAFQGMFIFLFLCVLSRKIQEEYYRLFKNV PCCFGCLR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 430-450, 465-486, 499-513, 535-549, 573-593, 619-636,

N-glycosylation site.

amino acids 15-19, 21-25, 64-68, 74-78, 127-131, 177-181, 188-192, 249-253, 381-385, 395-399

Glycosaminoglycan attachment site.

amino acids 49-53

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 360-364

Casein kinase II phosphorylation site.

manino acids 54-58, 68-72, 76-80, 94-98, 135-139, 150-154, 155-159, 161-165, 181-185, 190-194, 244-248, 310-314, 325-329, 346-350, 608-612

Tyrosine kinase phosphorylation site.

amino acids 36-44, 669-677, 670-678

N-myristoylation site.

amino acids 38-44, 50-56, 52-58, 80-86, 382-388, 388-394, 434-440, 480-486, 521-527

Aspartic acid and asparagine hydroxylation site.

amino acids 75-87

GCTCCCAGCCAAGAACCTCGGGGCCGCTGCGCGGTGGGGAGGAGTTCCCCGAAACCCGGCCG CTAAGCGAGGCCTCCTCCCCGCAGATCCGAACGGCCTGGGCGGGGTCACCCCGGCTGGGA GGTGTGAGTGGGTGTGTGCGGGGGGGGGGGGTTGATGCAATCCCGATAAGAAATGCTCGGG TGTCTTGGGCACCTACCCGTGGGGCCCGTAAGGCGCTACTATATAAGGCTGCCGGCCCGGAG CCGCCGCGCCGTCAGAGCAGGAGCGCTGCGTCCAGGATCTAGGGCCACGACCATCCCAACCC GGCACTCACAGCCCCGCAGCGCATCCCGGTCGCCGCCCAGCCTCCCGCACCCCCATCGCCGG AGCTGCGCCGAGAGCCCCAGGGAGGTGCCATGCGGAGCGGGTGTGTGGTGGTCCACGTATGG ATCCTGGCCGGCCTCTGGCTGGCCGTGGCCGGCCCCCTCGCCTTCTCGGACGCGGGCC CCACGTGCACTACGGCTGGGGCGACCCCATCCGCCTGCGGCACCTGTACACCTCCGGCCCCC ACGGGCTCTCCAGCTGCTTCCTGCGCATCCGTGCCGACGGCGTCGTGGACTGCGCGCGGGGC CAGAGCGCGCACAGTTTGCTGGAGATCAAGGCAGTCGCTCTGCGGACCGTGGCCATCAAGGG CGTGCACAGCGTGCGGTACCTCTGCATGGGCGCCGACGGCAAGATGCAGGGGCTGCTTCAGT ACTCGGAGGAGACTGTGCTTTCGAGGAGGAGATCCGCCCAGATGGCTACAATGTGTACCGA TCCGAGAGCACCGCCTCCCGGTCTCCCTGAGCAGTGCCAAACAGCGGCAGCTGTACAAGAA CAGAGGCTTTCTTCCACTCTCATTTCCTGCCCATGCTGCCCATGGTCCCAGAGGAGCCTG AGGACCTCAGGGGCCACTTGGAATCTGACATGTTCTCTTCGCCCCTGGAGACCGACAGCATG GACCCATTTGGGCTTGTCACCGGACTGGAGGCCGTGAGGAGTCCCAGCTTTGAGAAGTAACT GAGACCATGCCCGGGCCTCTTCACTGCTGCCAGGGGCTGTGGTACCTGCAGCGTGGGGGACG TGCTTCTACAAGAACAGTCCTGAGTCCACGTTCTGTTTAGCTTTAGGAAGAACATCTAGAA GTTGTACATATTCAGAGTTTTCCATTGGCAGTGCCAGTTTCTAGCCAATAGACTTGTCTGAT CATAACATTGTAAGCCTGTAGCTTGCCCAGCTGCTGCCTGGGCCCCCATTCTGCTCCCTCGA GGTTGCTGGACAAGCTGCTGCACTGTCTCAGTTCTGCTTGAATACCTCCATCGATGGGGAAC TCACTTCCTTTGGAAAAATTCTTATGTCAAGCTGAAATTCTCTAATTTTTTCTCATCACTTC CCCAGGAGCAGCAGAAGACAGCAGTAGTTTTAATTTCAGGAACAGGTGATCCACTCTGTA AAACAGCAGGTAAATTTCACTCAACCCCATGTGGGAATTGATCTATATCTCTACTTCCAGGG GCTTCAGGAGTAGGGGAAGCCTGGAGCCCCACTCCAGCCCTGGGACAACTTGAGAATTCCCC CTGAGGCCAGTTCTGTCATGGATGCTGTCCTGAGAATAACTTGCTGTCCCGGTGTCACCTGC TTCCATCTCCCAGCCCACCAGCCCTCTGCCCACCTCACATGCCTCCCCATGGATTGGGGCCT TTGAAGACCCCAAGTCTTGTCAATAACTTGCTGTGTGGAAGCAGCGGGGGAAGACCTAGAAC TTTTGTATATTAAAATGGAGTTTGTTTGT

MRSGCVVVHVWILAGLWLAVAGRPLAFSDAGPHVHYGWGDPIRLRHLYTSGPHGLSSCFLRI RADGVVDCARGQSAHSLLEIKAVALRTVAIKGVHSVRYLCMGADGKMQGLLQYSEEDCAFEE EIRPDGYNVYRSEKHRLPVSLSSAKQRQLYKNRGFLPLSHFLPMLPMVPEEPEDLRGHLESD MFSSPLETDSMDPFGLVTGLEAVRSPSFEK

Signal peptide:

amino acids 1-22

Casein kinase II phosphorylation site.

amino acids 78-82, 116-120, 190-194, 204-208

N-myristoylation site.

amino acids 15-21, 54-60, 66-72, 201-207

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 48-59

CCCAGAAGTTCAAGGGCCCCGGCCTCCTGCGCTCCTGCCGCGGGACCCTCGACCTCCTCA GAGCAGCCGGCTGCCGCCCCGGGAAGATGGCGAGGAGGAGCCGCCACCGCCTCCTCCTGCTG CTGCTGCGCTACCTGGTGGTCGCCCTGGGCTATCATAAGGCCTATGGGTTTTCTGCCCCAAA AGACCAACAAGTAGTCACAGCAGTAGAGTACCAAGAGGCTATTTTAGCCTGCAAAACCCCAA AGAAGACTGTTTCCTCCAGATTAGAGTGGAAGAAACTGGGTCGGAGTGTCTCCTTTGTCTAC TATCAACAGACTCTTCAAGGTGATTTTAAAAATCGAGCTGAGATGATAGATTTCAATATCCG GATCAAAAATGTGACAAGAAGTGATGCGGGGAAATATCGTTGTGAAGTTAGTGCCCCATCTG AGCAAGGCCAAAACCTGGAAGAGGATACAGTCACTCTGGAAGTATTAGTGGCTCCAGCAGTT CCATCATGTGAAGTACCCTCTTCTGCTCTGAGTGGAACTGTGGTAGAGCTACGATGTCAAGA CAAAGAAGGGAATCCAGCTCCTGAATACACATGGTTTAAGGATGGCATCCGTTTGCTAGAAA ATCCCAGACTTGGCTCCCAAAGCACCAACAGCTCATACACAATGAATACAAAAACTGGAACT CTGCAATTTAATACTGTTTCCAAACTGGACACTGGAGAATATTCCTGTGAAGCCCGCAATTC TGTTGGATATCGCAGGTGTCCTGGGAAACGAATGCAAGTAGATGATCTCAACATAAGTGGCA TCATAGCAGCCGTAGTAGTTGTGGCCTTAGTGATTTCCGTTTGTGGCCTTTGTGTATGCTAT GCTCAGAGGAAAGGCTACTTTTCAAAAGAAACCTCCTTCCAGAAGAGTAATTCTTCATCTAA AGCCACGACAATGAGTGAAAATGTGCAGTGGCTCACGCCTGTAATCCCAGCACTTTGGAAGG CCGCGGCGGCGGATCACGAGGTCAGGAGTTCTAGACCAGTCTGGCCAATATGGTGAAACCC CATCTCTACTAAAATACAAAAATTAGCTGGGCATGGTGGCATGTGCCTGCAGTTCCAGCTGC TTGGGAGACAGGAGAATCACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCACGC

MARRSRHRLLLLLLRYLVVALGYHKAYGFSAPKDQQVVTAVEYQEAILACKTPKKTVSSRLE
WKKLGRSVSFVYYQQTLQGDFKNRAEMIDFNIRIKNVTRSDAGKYRCEVSAPSEQGQNLEED
TVTLEVLVAPAVPSCEVPSSALSGTVVELRCQDKEGNPAPEYTWFKDGIRLLENPRLGSQST
NSSYTMNTKTGTLQFNTVSKLDTGEYSCEARNSVGYRRCPGKRMQVDDLNISGIIAAVVVVA
LVISVCGLGVCYAQRKGYFSKETSFQKSNSSSKATTMSENVQWLTPVIPALWKAAAGGSRGQEF

Signal peptide:

amino acids 1-20

Transmembrane domain:

amino acids 130-144, 238-258

N-glycosylation site.

amino acids 98-102, 187-191, 236-240, 277-281

Casein kinase II phosphorylation site.

amino acids 39-43, 59-63, 100-104, 149-153, 205-209, 284-288

N-myristoylation site.

amino acids 182-188, 239-245, 255-261, 257-263, 305-311

Amidation site.

amino acids 226-230

GACATCGGAGGTGGGCTAGCACTGAAACTGCTTTTCAAGACGAGGAAGAGGAGGAGAAAGAG AAAGAAGAGGAAGATGTTGGGCAACATTTATTTAACATGCTCCACAGCCCGGACCCTGGCAT CATGCTGCTATTCCTGCAAATACTGAAGAAGCATGGGATTTAAATATTTTACTTCTAAATAA ATGAATTACTCAATCTCCTATGACCATCTATACATACTCCACCTTCAAAAAGTACATCAATA TTATATCATTAAGGAAATAGTAACCTTCTCTCTCTCCCAATATGCATGACATTTTTGGACAATG CAATTGTGGCACTGGCACTTATTTCAGTGAAGAAAAACTTTGTGGTTCTATGGCATTCATCA TGGAATCCTTAAGGGCCCATTACATTTCTGAAGAAGAAGCTAAG<u>ATG</u>AAGGACATGCCACT CCGAATTCATGTGCTACTTGGCCTAGCTATCACTACACTAGTACAAGCTGTAGATAAAAAAG TGGATTGTCCACGGTTATGTACGTGTGAAATCAGGCCTTGGTTTACACCCAGATCCATTTAT AGCTAACACACAGATTCTTCTCCTACAGACTAACAATATTGCAAAAATTGAATACTCCACAG ACTTTCCAGTAAACCTTACTGGCCTGGATTTATCTCAAAACAATTTATCTTCAGTCACCAAT ACTGCCTGAAAAATGTCTGTCCGAACTGAGCAACTTACAAGAACTCTATATTAATCACAACT TGCTTTCTACAATTTCACCTGGAGCCTTTATTGGCCTACATAATCTTCTTCGACTTCATCTC AATTCAAATAGATTGCAGATGATCAACAGTAAGTGGTTTGATGCTCTTCCAAATCTAGAGAT TCTGATGATTGGGGAAAATCCAATTATCAGAATCAAAGACATGAACTTTAAGCCTCTTATCA ATCTTCGCAGCCTGGTTATAGCTGGTATAAACCTCACAGAAATACCAGATAACGCCTTGGTT GGACTGGAAAACTTAGAAAGCATCTCTTTTTACGATAACAGGCTTATTAAAGTACCCCATGT GAGCTGATTTCCATCGATAGTCTTGCTGTGGATAACCTGCCAGATTTAAGAAAAATAGAAGC TACTAACAACCCTAGATTGTCTTACATTCACCCCAATGCATTTTTCAGACTCCCCAAGCTGG AATCACTCATGCTGAACAGCAATGCTCTCAGTGCCCTGTACCATGGTACCATTGAGTCTCTG CCAAACCTCAAGGAAATCAGCATACACAGTAACCCCATCAGGTGTGACTGTGTCATCCGTTG GATGAACATGAACAAAACCAACATTCGATTCATGGAGCCAGATTCACTGTTTTGCGTGGACC CACCTGAATTCCAAGGTCAGAATGTTCGGCAAGTGCATTTCAGGGACATGATGGAAATTTGT CTCCCTCTTATAGCTCCTGAGAGCTTTCCTTCTAATCTAAATGTAGAAGCTGGGAGCTATGT TTCCTTTCACTGTAGAGCTACTGCAGAACCACAGCCTGAAATCTACTGGATAACACCTTCTG GTCAAAAACTCTTGCCTAATACCCTGACAGACAAGTTCTATGTCCATTCTGAGGGAACACTA GATATAAATGGCGTAACTCCCAAAGAAGGGGGTTTATATACTTGTATAGCAACTAACCTAGT GCTCTTTGAATATTAAAATAAGAGATATTCAGGCCAATTCAGTTTTTGGTGTCCTGGAAAGCA AGTTCTAAAATTCTCAAATCTAGTGTTAAATGGACAGCCTTTGTCAAGACTGAAAATTCTCA TGCTGCGCAAAGTGCTCGAATACCATCTGATGTCAAGGTATATAATCTTACTCATCTGAATC CATCAACTGAGTATAAAATTTGTATTGATATTCCCACCATCTATCAGAAAAAACAGAAAAAAA TGTGTAAATGTCACCACCAAAGGTTTGCACCCTGATCAAAAAGAGTATGAAAAGAATAATAC CACAACACTTATGGCCTGTCTTGGAGGCCTTCTGGGGGATTATTGGTGTGATATGTCTTATCA AAACCAACCTTTGCATTAGGTGAGCTTTATCCTCCTCTGATAAATCTCTGGGAAGCAGGAAA ${\tt AGAAAAAGTACATCACTGAAAGTAAAAGCAACTGTTATAGGTTTACCAACAAATATGTCC{\bf T}}$ **AA**AAACCACCAAGGAAACCTACTCCAAAAATGAAC

MKDMPLRIHVLLGLAITTLVQAVDKKVDCPRLCTCEIRPWFTPRSIYMEASTVDCNDLGLLT FPARLPANTQILLLQTNNIAKIEYSTDFPVNLTGLDLSQNNLSSVTNINVKKMPQLLSVYLE ENKLTELPEKCLSELSNLQELYINHNLLSTISPGAFIGLHNLLRLHLNSNRLQMINSKWFDA LPNLEILMIGENPIIRIKDMNFKPLINLRSLVIAGINLTEIPDNALVGLENLESISFYDNRL IKVPHVALQKVVNLKFLDLNKNPINRIRRGDFSNMLHLKELGINNMPELISIDSLAVDNLPD LRKIEATNNPRLSYIHPNAFFRLPKLESLMLNSNALSALYHGTIESLPNLKEISIHSNPIRC DCVIRWMNMNKTNIRFMEPDSLFCVDPPEFQGQNVRQVHFRDMMEICLPLIAPESFPSNLNV EAGSYVSFHCRATAEPQPEIYWITPSGQKLLPNTLTDKFYVHSEGTLDINGVTPKEGGLYTC IATNLVGADLKSVMIKVDGSFPQDNNGSLNIKIRDIQANSVLVSWKASSKILKSSVKWTAFV KTENSHAAQSARIPSDVKVYNLTHLNPSTEYKICIDIPTIYQKNRKKCVNVTTKGLHPDQKE YEKNNTTTLMACLGGLLGIIGVICLISCLSPEMNCDGGHSYVRNYLQKPTFALGELYPPLIN LWEAGKEKSTSLKVKATVIGLPTNMS

Signal sequence:

amino acids 1-22

Transmembrane domain:

amino acids 633-650

N-glycosylation site.

amino acids 93-97, 103-107, 223-227, 382-386, 522-526, 579-583, 608-612, 624-628, 625-629

Casein kinase II phosphorylation site.

amino acids 51-55, 95-99, 242-246, 468-472, 487-491

Tyrosine kinase phosphorylation site.

amino acids 570-579

N-myristoylation site.

amino acids 13-19, 96-102, 158-164, 221-227, 352-358, 437-443, 491-497, 492-498, 634-640, 702-708

Cell attachment sequence.

amino acids 277-280

GCCCGGGACTGGCGCAAGGTGCCCAAGCAAGGAAAGAAATAATGAAGAGACACATGTGTTAG CTGCAGCCTTTTGAAACACGCAAGAAGGAAATCAATAGTGTGGACAGGGCTGGAACCTTTAC ${\tt CACGCTTGTTGGAGTAGATGAGGAATGGGCTCGTGATTATGCTGACATTCCAGC} \underline{{\tt ATG}} {\tt AATCT}$ GGTAGACCTGTGGTTAACCCGTTCCCTCTCCATGTGTCTCCTCCTACAAAGTTTTGTTCTTA GGTTTAAATGTCACCTGTAGCAATGCAAATCTCAAGGAAATACCTAGAGATCTTCCTCCTGA AACAGTCTTACTGTATCTGGACTCCAATCAGATCACATCTATTCCCAATGAAATTTTTAAGG ACCTCCATCAACTGAGAGTTCTCAACCTGTCCAAAAATGGCATTGAGTTTATCGATGAGCAT GCCTTCAAAGGAGTAGCTGAAACCTTGCAGACTCTGGACTTGTCCGACAATCGGATTCAAAG TGTGCACAAAATGCCTTCAATAACCTGAAGGCCAGGGCCAGAATTGCCAACAACCCCTGGC ACTGCGACTGTACTCTACAGCAAGTTCTGAGGAGCATGGCGTCCAATCATGAGACAGCCCAC AACGTGATCTGTAAAACGTCCGTGTTGGATGAACATGCTGGCAGACCATTCCTCAATGCTGC CAACGACGCTGACCTTTGTAACCTCCCTAAAAAAACTACCGATTATGCCATGCTGGTCACCA TGTTTGGCTGGTTCACTATGGTGATCTCATATGTGGTATATTATGTGAGGCAAAATCAGGAG ACCTGATGATATTAGCACTGTGGTA<u>TAG</u>TGTCCAAACTGACTGTCATTGAGAAAGAAAGAAA TAAATAATTTGAGTTTAGGTGATCCACCCCTTAATTGTACCCCCGATGGTATATTTCTGAGT

MNLVDLWLTRSLSMCLLLQSFVLMILCFHSASMCPKGCLCSSSGGLNVTCSNANLKEIPRDL
PPETVLLYLDSNQITSIPNEIFKDLHQLRVLNLSKNGIEFIDEHAFKGVAETLQTLDLSDNR
IQSVHKNAFNNLKARARIANNPWHCDCTLQQVLRSMASNHETAHNVICKTSVLDEHAGRPFL
NAANDADLCNLPKKTTDYAMLVTMFGWFTMVISYVVYYVRQNQEDARRHLEYLKSLPSRQKK
ADEPDDISTVV

Signal sequence:

amino acids 1-33

Transmembrane domain:

amino acids 205-220

N-glycosylation site.

amino acids 47-51, 94-98

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 199-203

Casein kinase II phosphorylation site.

amino acids 162-166, 175-179

N-myristoylation site.

amino acids 37-43, 45-51, 110-116

ACCGAGCCGAGCGGACCGAAGGCGCGCCCGAG<u>ATG</u>CAGGTGAGCAAGAGGATGCTGGCGGGG GGCGTGAGGAGCATGCCCAGCCCCCTCCTGGCCTGCTGCAGCCCATCCTCCTGCTGGTGCT ACCGCGCTGTGCTGTGCCACCGCAAGTGCTTTGTGGCAGTCCCCGAGGGCATCCCCACCGAG ACGCGCCTGCTGGACCTAGGCAAGAACCGCATCAAAACGCTCAACCAGGACGAGTTCGCCAG CTTCCCGCACCTGGAGGAGCTGGAGCTCAACGAGAACATCGTGAGCGCCGTGGAGCCCGGCG CCTTCAACAACCTCTTCAACCTCCGGACGCTGGGTCTCCGCAGCAACCGCCTGAAGCTCATC CCGCTAGGCGTCTTCACTGGCCTCAGCAACCTGACCAAGCAGGACATCAGCGAGAACAAGAT CGTTATCCTACTGGACTACATGTTTCAGGACCTGTACAACCTCAAGTCACTGGAGGTTGGCG ACAATGACCTCGTCTACATCTCTCACCGCGCCTTCAGCGGCCTCAACAGCCTGGAGCAGCTG ACGCTGGAGAAATGCAACCTGACCTCCATCCCCACCGAGGCGCTGTCCCACCTGCACGGCCT CATCGTCCTGAGGCTCCGGCACCTCAACATCAATGCCATCCGGGACTACTCCTTCAAGAGGC TGTACCGACTCAAGGTCTTGGAGATCTCCCACTGGCCCTACTTGGACACCATGACACCCAAC TGCCTCTACGGCCTCAACCTGACGTCCCTGTCCATCACACACTGCAATCTGACCGCTGTGCC CTACCTGGCCGTCCGCCACCTAGTCTATCTCCGCTTCCTCAACCTCTCCTACAACCCCATCA GCACCATTGAGGGCTCCATGTTGCATGAGCTGCTCCGGCTGCAGGAGATCCAGCTGGTGGGC GGGCAGCTGGCCGTGGTGGAGCCCTATGCCTTCCGCGGCCTCAACTACCTGCGCGTGCTCAA TGTCTCTGGCAACCAGCTGACCACTGGAGGAATCAGTCTTCCACTCGGTGGGCAACCTGG AGACACTCATCCTGGACTCCAACCCGCTGGCCTGCGACTGTCGGCTCCTGTGGGTGTTCCGG CGCCGCTGGCGGCTCAACTTCAACCGGCAGCAGCCCACGTGCGCCACGCCCGAGTTTGTCCA GGGCAAGGAGTTCAAGGACTTCCCTGATGTGCTACTGCCCAACTACTTCACCTGCCGCCGCG CCCGCATCCGGGACCGCAAGGCCCAGCAGGTGTTTTGTGGACGAGGGCCACACGGTGCAGTTT GTGTGCCGGGCCGATGGCGACCCGCCGCCGCCATCCTCTGGCTCTCACCCCGAAAGCACCT GGTCTCAGCCAAGAGCAATGGGCGGCTCACAGTCTTCCCTGATGGCACGCTGGAGGTGCGCT ACGCCCAGGTACAGGACAACGGCACGTACCTGTGCATCGCGGCCAACGCGGCGGCCAACGAC TCCATGCCCGCCCACCTGCATGTGCGCAGCTACTCGCCCGACTGGCCCCATCAGCCCAACAA GACCTTCGCTTTCATCTCCAACCAGCCGGGCGAGGGAGAGGCCCAACAGCACCCGCGCCACTG TGCCTTTCCCCTTCGACATCAAGACCCTCATCATCGCCACCACCATGGGCTTCATCTCTTTC $\tt CTGGGCGTCGTCTTCTGCCTGGTGCTGCTGTTTCTCTGGAGCCGGGGCAAGGGCAACAC$ AAAGCACAACATCGAGATCGAGTATGTGCCCCGAAAGTCGGACGCAGGCATCAGCTCCGCCG ACGCGCCCCGCAAGTTCAACATGAAGATGATA**TGA**GGCCGGGGGCGGGGGCAGGGACCCCCG GGCGGCCGGGCAGGGGAAGGGGCCTGGTCGCCACCTGCTCACTCTCCAGTCCTTCCCACCTC CCAGCCCTCACCACCTGCCCTCCTTCTACCAGGACCTCAGAAGCCCAGACCTGGGGACCCCA ATAATTCAATAAAAAGTTACGAACTTTCTCTGTAACTTGGGTTTCAATAATTATGGATTTT

MQVSKRMLAGGVRSMPSPLLACWQPILLLVLGSVLSGSATGCPPRCECSAQDRAVLCHRKCF VAVPEGIPTETRLLDLGKNRIKTLNQDEFASFPHLEELELNENIVSAVEPGAFNNLFNLRTL GLRSNRLKLIPLGVFTGLSNLTKQDISENKIVILLDYMFQDLYNLKSLEVGDNDLVYISHRA FSGLNSLEQLTLEKCNLTSIPTEALSHLHGLIVLRLRHLNINAIRDYSFKRLYRLKVLEISH WPYLDTMTPNCLYGLNLTSLSITHCNLTAVPYLAVRHLVYLRFLNLSYNPISTIEGSMLHEL LRLQEIQLVGGQLAVVEPYAFRGLNYLRVLNVSGNQLTTLEESVFHSVGNLETLILDSNPLA CDCRLLWVFRRRWRLNFNRQQPTCATPEFVQGKEFKDFPDVLLPNYFTCRRARIRDRKAQQV FVDEGHTVQFVCRADGDPPPAILWLSPRKHLVSAKSNGRLTVFPDGTLEVRYAQVQDNGTYL CIAANAGGNDSMPAHLHVRSYSPDWPHQPNKTFAFISNQPGEGEANSTRATVPFPFDIKTLI IATTMGFISFLGVVLFCLVLLFLWSRGKGNTKHNIEIEYVPRKSDAGISSADAPRKFNMKMI

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 556-578

N-glycosylation site.

amino acids 144-148, 202-206, 264-268, 274-278, 293-297, 341-345, 492-496, 505-509, 526-530, 542-546

Casein kinase II phosphorylation site.

amino acids 49-53, 108-112, 146-150, 300-304, 348-352, 349-353, 607-611

Tyrosine kinase phosphorylation site.

amino acids 590-598

N-myristoylation site.

amino acids 10-16, 32-38, 37-43, 113-119, 125-131, 137-143, 262-268, 320-326, 344-350, 359-365, 493-499, 503-509, 605-611

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 32-43

CCCACGCGTCCGCACCTCGGCCCCGGGCTCCGAAGCGGCTCGGGGGCGCCCTTTCGGTCAAC ATCGTAGTCCACCCCTCCCCATCCCCAGCCCCCGGGGATTCAGGCTCGCCAGCGCCCAGCC ACATCTGATGAAACAGTGGTGGCTGGTGGCACCGTGGTGCTCAAGTGCCAAGTGAAAGATCA CGAGGACTCATCCCTGCAATGGTCTAACCCTGCTCAGCAGACTCTCTACTTTGGGGAGAAGA GAGCCCTTCGAGATAATCGAATTCAGCTGGTTACCTCTACGCCCCACGAGCTCAGCATCAGC ATCAGCAATGTGGCCCTGGCAGACGAGGGCGAGTACACCTGCTCAATCTTCACTATGCCTGT GCGAACTGCCAAGTCCCTCGTCACTGTGCTAGGAATTCCACAGAAGCCCATCATCACTGGTT ATAAATCTTCATTACGGGAAAAAGACACAGCCACCCTAAACTGTCAGTCTTCTGGGAGCAAG ACAGGAAGATCCCAATGGTAAAACCTTCACTGTCAGCAGCTCGGTGACATTCCAGGTTACCC GGGAGGATGATGGGGCGAGCATCGTGTGCTCTGTGAACCATGAATCTCTAAAGGGAGCTGAC AGATCCACCTCTCAACGCATTGAAGTTTTATACACACCAACTGCGATGATTAGGCCAGACCC TCCCCATCCTCGTGAGGGCCAGAAGCTGTTGCTACACTGTGAGGGTCGCGGCAATCCAGTCC CCCAGCAGTACCTATGGGAGAGGGGGGGGGGTGTGCCACCCCTGAAGATGACCCAGGAGAGT GCCCTGATCTTCCCTTTCCTCAACAAGAGTGACAGTGGCACCTACGGCTGCACAGCCACCAG CAACATGGGCAGCTACAAGGCCTACTACACCCTCAATGTTAATGACCCCAGTCCGGTGCCCT CCTCCTCCAGCACCTACCACGCCATCATCGGTGGGATCGTGGCTTTCATTGTCTTCCTGCTG TGAGGCAAAAGGCTCCGACGATGCTCCAGACGCGGACACGGCCATCATCAATGCAGAAGGCG GGCAGTCAGGAGGGGACGACAAGAAGGAATATTTCATCTAGAGGCGCCTGCCCACTTCCTGC GCCCCCAGGGGCCCTGTGGGGACTGCTGGGGCCGTCACCAACCCGGACTTGTACAGAGCAA CCGCAGGGCCGCCCCCCGCTTGCTCCCCAGCCCACCCCCCCTGTACAGAATGTCTGC TTGCCCTCAGCCCTTTCCGTGGCTTCTCTGCATTTGGGTTATTATTATTTTTTGTAACAATCC CAAATCAAATCTGTCTCCAGGCTGGAGAGGCAGGAGCCCTGGGGTGAGAAAAAGCAAAAAACA AACAAAAAACA

MGAPAASLLLLLLLFACCWAPGGANLSQDDSQPWTSDETVVAGGTVVLKCQVKDHEDSSLQW SNPAQQTLYFGEKRALRDNRIQLVTSTPHELSISISNVALADEGEYTCSIFTMPVRTAKSLV TVLGIPQKPIITGYKSSLREKDTATLNCQSSGSKPAARLTWRKGDQELHGEPTRIQEDPNGK TFTVSSSVTFQVTREDDGASIVCSVNHESLKGADRSTSQRIEVLYTPTAMIRPDPPHPREGQ KLLLHCEGRGNPVPQQYLWEKEGSVPPLKMTQESALIFPFLNKSDSGTYGCTATSNMGSYKA YYTLNVNDPSPVPSSSSTYHAIIGGIVAFIVFLLLIMLIFLGHYLIRHKGTYLTHEAKGSDD APDADTAIINAEGGQSGGDDKKEYFI

Signal sequence:

amino acids 1-20

Transmembrane domain:

amino acids 331-352

N-glycosylation site.

amino acids 25-29, 290-294

Casein kinase II phosphorylation site.

amino acids 27-31, 35-39, 89-93, 141-145, 199-203, 388-392

N-myristoylation site.

amino acids 2-8, 23-29, 156-162, 218-224, 295-301, 298-304, 306-310, 334-340, 360-364, 385-389, 386-390

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

GGGGGTTAGGGAGGAATCCACCCCCACCCCCAAACCCTTTTCTTCTTCCTGG CTTCGGACATTGGAGCACTAAATGAACTTGAATTGTGTCTGTGGCGAGCAGGATGGTCGCTG ${ t TTACTTTGTGATGAGATCGGGGATGAATTGCTCGCTTTAAAA} { t ATG} { t CTGCTTTGGATTCTGTT}$ GCTGGAGACGTCTCTTTGTTTTGCCGCTGGAAACGTTACAGGGGACGTTTGCAAAGAGAAGA TCTGTTCCTGCAATGAGATAGAAGGGGACCTACACGTAGACTGTGAAAAAAAGGGCTTCACA CCTCACTCGACTTTTCCCTAATGAGTTCGCTAACTTTTATAATGCGGTTAGTTTGCACATGG AAAACAATGGCTTGCATGAAATCGTTCCGGGGGCTTTTTCTGGGGCTGCAGCTGGTGAAAAGG CTGCACATCAACAACAACAAGATCAAGTCTTTTCGAAAGCAGACTTTTCTGGGGCTGGACGA TCTGGAATATCTCCAGGCTGATTTTAATTTATTACGAGATATAGACCCGGGGGCCTTCCAGG ACTTGAACAAGCTGGAGGTGCTCATTTTAAATGACAATCTCATCAGCACCCTACCTGCCAAC GTGTTCCAGTATGTGCCCATCACCCACCTCGACCTCCGGGGTAACAGGCTGAAAACGCTGCC CTATGAGGAGGTCTTGGAGCAAATCCCTGGTATTGCGGAGATCCTGCTAGAGGATAACCCTT GGGACTGCACCTGTGATCTGCTCTCCCTGAAAGAATGGCTGGAAAACATTCCCAAGAATGCC CTGATCGGCCGAGTGGTCTGCGAAGCCCCCACCAGACTGCAGGGTAAAGACCTCAATGAAAC CACCGAACAGGACTTGTGTCCTTTGAAAAACCGAGTGGATTCTAGTCTCCCGGCGCCCCCTG CCCAAGAAGAGACCTTTGCTCCTGGACCCCTGCCAACTCCTTTCAAGACAAATGGGCAAGAG GATCATGCCACACCAGGGTCTGCTCCAAACGGAGGTACAAAGATCCCAGGCAACTGGCAGAT CAAAATCAGACCCACAGCAGCGATAGCGACGGGTAGCTCCAGGAACAAACCCTTAGCTAACA GTTTACCCTGCCCTGGGGGCTGCAGCTGCGACCACATCCCAGGGTCGGGTTTAAAGATGAAC TGCAACAACAGGAACGTGAGCAGCTTGGCTGATTTGAAGCCCAAGCTCTCTAACGTGCAGGA GCTTTTCCTACGAGATAACAAGATCCACAGCATCCGAAAATCGCACTTTGTGGATTACAAGA ACCTCATTCTGTTGGATCTGGGCAACAATAACATCGCTACTGTAGAGAACAACACTTTCAAG AACCTTTTGGACCTCAGGTGGCTATACATGGATAGCAATTACCTGGACACGCTGTCCCGGGA GAAATTCGCGGGGCTGCAAAACCTAGAGTACCTGAACGTGGAGTACAACGCTATCCAGCTCA TCCTCCCGGGCACTTTCAATGCCATGCCCAAACTGAGGATCCTCATTCTCAACAACCAGCTG $\tt CTGAGGTCCCTGCCTGTGGACGTGTTCGCTGGGGTCTCGCTCTAAACTCAGCCTGCACAA$ CAATTACTTCATGTACCTCCCGGTGGCAGGGGTGCTGGACCAGTTAACCTCCATCATCCAGA TAGACCTCCACGGAAACCCCTGGGAGTGCTCCTGCACAATTGTGCCTTTCAAGCAGTGGGCA GAACGCTTGGGTTCCGAAGTGCTGATGAGCGACCTCAAGTGTGAGACGCCGGTGAACTTCTT TAGAAAGGATTTCATGCTCCTCTCCAATGACGAGATCTGCCCTCAGCTGTACGCTAGGATCT CGCCCACGTTAACTTCGCACAGTAAAAACAGCACTGGGTTGGCGGAGACCGGGACGCACTCC AACTCCTACCTAGACACCAGCAGGGTGTCCATCTCGGTGTTGGTCCCGGGACTGCTGCTGGT GTTTGTCACCTCCGCCTTCACCGTGGTGGGCATGCTCGTGTTTATCCTGAGGAACCGAAAGC GACTCTTCCTACTGGCACAATGGGCCTTACAACGCAGATGGGGCCCACAGAGTGTATGACTG ${\tt TGGCTCTCACTCGCTCTCAGAC}{{\tt TAA}}{\tt GACCCCAACCCCAATAGGGGAGGGCAGAGGGGAAGGCG}$ ATACATCCTTCCCCACCGCAGGCACCCCGGGGGGCTGGAGGGGGGGTGTACCCAAATCCCCGCG CCATCAGCCTGGATGGGCATAAGTAGATAAATAACTGTGAGCTCGCACAACCGAAAGGGCCT GACCCCTTACTTAGCTCCCTCCTTGAAACAAAGAGCAGACTGTGGAGAGCTGGGAGAGCGCA GCCAGCTCGCTCTTTGCTGAGAGCCCCTTTTGACAGAAAGCCCAGCACGACCCTGCTGGAAG AACTGACAGTGCCCTCGCCCTCGGCCCCGGGGCCTGTGGGGTTGGATGCCGCGGTTCTATAC ATATATACATATATCCACATCTATATAGAGAGATAGATATCTATTTTTCCCCTGTGGATTAG $\tt CCCCGTGATGGCTCCCTGTTGGCTACGCAGGGATGGGCAGTTGCACGAAGGCATGAATGTAT$ TGTAAATAAGTAACTTTGACTTCTGAC

MLLWILLETSLCFAAGNVTGDVCKEKICSCNEIEGDLHVDCEKKGFTSLQRFTAPTSQFYH
LFLHGNSLTRLFPNEFANFYNAVSLHMENNGLHEIVPGAFLGLQLVKRLHINNNKIKSFRKQ
TFLGLDDLEYLQADFNLLRDIDPGAFQDLNKLEVLILNDNLISTLPANVFQYVPITHLDLRG
NRLKTLPYEEVLEQIPGIAEILLEDNPWDCTCDLLSLKEWLENIPKNALIGRVVCEAPTRLQ
GKDLNETTEQDLCPLKNRVDSSLPAPPAQEETFAPGPLPTPFKTNGQEDHATPGSAPNGGTK
IPGNWQIKIRPTAAIATGSSRNKPLANSLPCPGGCSCDHIPGSGLKMNCNNRNVSSLADLKP
KLSNVQELFLRDNKIHSIRKSHFVDYKNLILLDLGNNNIATVENNTFKNLLDLRWLYMDSNY
LDTLSREKFAGLQNLEYLNVEYNAIQLILPGTFNAMPKLRILILNNNLLRSLPVDVFAGVSL
SKLSLHNNYFMYLPVAGVLDQLTSIIQIDLHGNPWECSCTIVPFKQWAERLGSEVLMSDLKC
ETPVNFFRKDFMLLSNDEICPQLYARISPTLTSHSKNSTGLAETGTHSNSYLDTSRVSISVL
VPGLLLVFVTSAFTVVGMLVFILRNRKRSKRRDANSSASEINSLQTVCDSSYWHNGPYNADG
AHRVYDCGSHSLSD

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 618-638

N-glycosylation site.

amino acids 18-22, 253-257, 363-367, 416-420, 595-599, 655-659

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 122-126, 646-650

Casein kinase II phosphorylation site.

amino acids 30-34, 180-184, 222-226, 256-260, 366-370, 573-577, 608-612, 657-661, 666-670, 693-697

N-myristoylation site.

amino acids 17-23, 67-73, 100-106, 302-308, 328-334, 343-349, 354-360, 465-471, 493-499, 598-604, 603-609

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 337-348

AGTCGACTGCGTCCCCTGTACCCGGCGCCAGCTGTGTTCCTGACCCCAGAATAACTCAGGGC ${\tt TGCACCGGGCCTGGCAGCGCTCCGCACACATTTCCTGTCGCGGCCTAAGGGAAACTGTTGGC}$ CGCTGGGCCCGCGGGGGATTCTTGGCAGTTGGGGGGGTCCGTCGGGAGCGAGGGCGAGGGG AAGGGAGGGGAACCGGGTTGGGGAAGCCAGCTGTAGAGGGCGGTGACCGCGCTCCAGACAC CGGCGAACACCCCACTGCCGACCGTGCTGGCTGCTCGGGCCTCGGGGGCCTGCTACAGCCTGC ACCACGCTACCATGAAGCGGCAGGCGGCCGAGGAGGCCTGCATCCTGCGAGGTGGGGCGCTC AGCACCGTGCGTGCGGCGCCGAGCTGCGCGCTCTCCTGCGGGCAGGCCCAGG GCCCGGAGGGGCTCCAAAGACCTGCTGTTCTGGGTCGCACTGGAGCGCAGGCGTTCCCACT GCACCCTGGAGAACGAGCCTTTGCGGGGGTTTCTCCTGGCTGTCCTCCGACCCCGGCGGTCTC GGTACTCCAGGCCACCGGTGGGGTCGAGCCCGCAGGCTGGAAGGAGATGCGATGCCACCTGC GCGCCAACGGCTACCTGTGCAAGTACCAGTTTGAGGTCTTGTGTCCTGCGCCCCCGGG GCCGCCTCTAACTTGAGCTATCGCGCGCCCCTTCCAGCTGCACAGCGCCGCTCTGGACTTCAG TCCACCTGGGACCGAGGTGAGTGCGCTCTGCCGGGGACAGCTCCCGATCTCAGTTACTTGCA TCGCGGACGAAATCGGCGCTCGCTGGGACAAACTCTCGGGCGATGTGTTGTGTCCCTGCCCC GGGAGGTACCTCCGTGCTGGCAAATGCGCAGAGCTCCCTAACTGCCTAGACGACTTGGGAGG CTTTGCCTGCGAATGTGCTACGGGCTTCGAGCTGGGGAAGGACGGCCGCTCTTGTGTGACCA GCAACCAGCCCCGTGCCGCAGAGAACATGGCCAATCAGGGTCGACGAGAAGCTGGGAGAGAC ACCACTTGTCCCTGAACAAGACAATTCAGTAACATCTATTCCTGAGATTCCTCGATGGGGAT CACAGAGCACGATGTCTACCCTTCAAATGTCCCTTCAAGCCGAGTCAAAGGCCACTATCACC CCATCAGGGAGCGTGATTTCCAAGTTTAATTCTACGACTTCCTCTGCCACTCCTCAGGCTTT CGACTCCTCCTCTGCCGTGGTCTTCATATTTGTGAGCACAGCAGTAGTAGTGTTGGTGATCT TGACCATGACAGTACTGGGGCTTGTCAAGCTCTGCTTTCACGAAAGCCCCTCTTCCCAGCCA AGGAAGGAGTCTATGGGCCCGCCGGGCCTGGAGAGTGATCCTGAGCCCGCTGCTTTGGGCTC CAGTTCTGCACATTGCACAAACAATGGGGTGAAAGTCGGGGACTGTGATCTGCGGGACAGAG ${\tt CAGAGGGTGCCTTGCTGGCGGAGTCCCCTCTTGGCTCTAGTGATGCA} {\bf TAG}{\tt GGAAACAGGGGA}$ CATGGGCACTCCTGTGAACAGTTTTTCACTTTTGATGAAACGGGGAACCAAGAGGAACTTAC TTGTGTAACTGACAATTTCTGCAGAAATCCCCCTTCCTCTAAATTCCCTTTACTCCACTGAG GAGCTAAATCAGAACTGCACACTCCTTCCCTGATGATAGAGGAAGTGGAAGTGCCTTTAGGA ${f TGGTGATACTGGGGGACCGGGTAGTGCTGGGGAGAGATATTTTCTTATGTTTATTCGGAGAA}$ TTTGGAGAAGTGATTGAACTTTTCAAGACATTGGAAACAAATAGAACACAATATAATTTACA TTAAAAAATAATTTCTACCAAAATGGAAAGGAAATGTTCTATGTTGTTCAGGCTAGGAGTAT ATTGGTTCGAAATCCCAGGGAAAAAAATAAAAATAAAAATTAAAGGATTGTTGAT

MRPAFALCLLWQALWPGPGGGEHPTADRAGCSASGACYSLHHATMKRQAAEEACILRGGALS TVRAGAELRAVLALLRAGPGPGGGSKDLLFWVALERRRSHCTLENEPLRGFSWLSSDPGGLE SDTLQWVEEPQRSCTARRCAVLQATGGVEPAGWKEMRCHLRANGYLCKYQFEVLCPAPRPGA ASNLSYRAPFQLHSAALDFSPPGTEVSALCRGQLPISVTCIADEIGARWDKLSGDVLCPCPG RYLRAGKCAELPNCLDDLGGFACECATGFELGKDGRSCVTSGEGQPTLGGTGVPTRRPPATA TSPVPQRTWPIRVDEKLGETPLVPEQDNSVTSIPEIPRWGSQSTMSTLQMSLQAESKATITP SGSVISKFNSTTSSATPQAFDSSSAVVFIFVSTAVVVLVILTMTVLGLVKLCFHESPSSQPR KESMGPPGLESDPEPAALGSSSAHCTNNGVKVGDCDLRDRAEGALLAESPLGSSDA

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 399-418

N-glycosylation site.

amino acids 189-193, 381-385

Glycosaminoglycan attachment site.

amino acids 289-293

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 98-102, 434-438

Casein kinase II phosphorylation site.

amino acids 275-279, 288-292, 342-346, 445-449

N-myristoylation site.

amino acids 30-36, 35-41, 58-64, 59-65, 121-127, 151-157, 185-191, 209-215, 267-273, 350-356, 374-380, 453-459, 463-469, 477-483

Aspartic acid and asparagine hydroxylation site.

amino acids 262-274

CGGACGCGTGGGATTCAGCAGTGGCCTGTGGCTGCCAGAGCAGCTCCTCAGGGGAAACTAAG GCGCCGGTGTGAGCCAGCGCTGCTGCCAGTGTGAGCGGCGGTGTGAGCGCGGTGCGGA GGGGCGTGTGTGCCGGCGCGCGCGCGCGTGGGGTGCAAACCCCGAGCGTCTACGCTGCC**ATG**A CAGCAGTCCCCAGAGAGACCTGTTTTCACATGTGGTGGCATTCTTACTGGAGAGTCTGGATT TATTGGCAGTGAAGGTTTTCCTGGAGTGTACCCTCCAAATAGCAAATGTACTTGGAAAATCA CAGTTCCCGAAGGAAAAGTAGTCGTTCTCAATTTCCGATTCATAGACCTCGAGAGTGACAAC CTGTGCCGCTATGACTTTGTGGATGTGTACAATGGCCATGCCAATGGCCAGCGCATTGGCCG CTTCTGTGGCACTTTCCGGCCTGGAGCCCTTGTGTCCAGTGGCAACAAGATGATGGTGCAGA TGATTTCTGATGCCAACACAGCTGGCAATGGCTTCATGGCCATGTTCTCCGCTGCTGAACCA AACGAAAGAGGGGATCAGTATTGTGGAGGACTCCTTGACAGACCTTCCGGCTCTTTTAAAAC CAAAGAATCAGCTTATAGAATTAAAGTTTGAGAAGTTTGATGTGGAGCGAGATAACTACTGC CGATATGATTATGTGGCTGTTTTAATGGCGGGGAAGTCAACGATGCTAGAAGAATTGGAAA GTATTGTGGTGATAGTCCACCTGCGCCAATTGTGTCTGAGAGAAATGAACTTCTTATTCAGT TTTTATCAGACTTAAGTTTAACTGCAGATGGGTTTATTGGTCACTACATATTCAGGCCAAAA AAACTGCCTACAACTACAGAACAGCCTGTCACCACCACATTCCCTGTAACCACGGGTTTAAA GTTCAAGTGACTTTGTATTAGCCGGCACTGTTATCACAACCATCACTCGCGATGGGAGTTTG CACGCCACAGTCTCGATCATCAACATCTACAAAGAGGGGAAATTTGGCGATTCAGCAGGCGGG CAAGAACATGAGTGCCAGGCTGACTGTCGTCTGCAAGCAGTGCCCTCTCCTCAGAAGAGGTC TAAATTACATTATTATGGGCCAAGTAGGTGAAGATGGGCGAGGCAAAATCATGCCAAACAGC TTTATCATGATGTTCAAGACCAAGAATCAGAAGCTCCTGGATGCCTTAAAAAATAAGCAATG ${f T}{f TAA}{f CAGTGAACTGTGTCCATTTAAGCTGTATTCTGCCATTGCCTTTGAAAGATCTATGTTC}$ TCTCAGTAGAAAAAAAATACTTATAAAATTACATATTCTGAAAGAGGATTCCGAAAGATGG GACTGGTTGACTCTTCACATGATGGAGGTATGAGGCCTCCGAGATAGCTGAGGGAAGTTCTT TGCCTGCTGTCAGAGGAGCAGCTATCTGATTGGAAACCTGCCGACTTAGTGCGGTGATAGGA ATTTTAGAATTGAGTTGTGAAGATGTCAAAAAAAGATTTTAGAAGTGCAATATTTATAGT GTTATTTGTTTCACCTTCAAGCCTTTGCCCTGAGGTGTTACAATCTTGTCTTGCGTTTTCTA

MRGANAWAPLCLLLAAATQLSRQQSPERPVFTCGGILTGESGFIGSEGFPGVYPPNSKCTWK
ITVPEGKVVVLNFRFIDLESDNLCRYDFVDVYNGHANGQRIGRFCGTFRPGALVSSGNKMMV
QMISDANTAGNGFMAMFSAAEPNERGDQYCGGLLDRPSGSFKTPNWPDRDYPAGVTCVWHIV
APKNQLIELKFEKFDVERDNYCRYDYVAVFNGGEVNDARRIGKYCGDSPPAPIVSERNELLI
QFLSDLSLTADGFIGHYIFRPKKLPTTTEQPVTTTFPVTTGLKPTVALCQQKCRRTGTLEGN
YCSSDFVLAGTVITTITRDGSLHATVSIINIYKEGNLAIQQAGKNMSARLTVVCKQCPLLRR
GLNYIIMGQVGEDGRGKIMPNSFIMMFKTKNQKLLDALKNKQC

Signal sequence:

amino acids 1-23

N-glycosylation site.

amino acids 355-359

Casein kinase II phosphorylation site.

amino acids 64-68, 142-146, 274-278

Tyrosine kinase phosphorylation site.

amino acids 199-208

N-myristoylation site.

amino acids 34-40, 35-41, 100-106, 113-119, 218-224, 289-295, 305-311, 309-315, 320-326, 330-336

Cell attachment sequence.

amino acids 149-152

 $\tt CGGACGCGTGGGCGGCCCCACGGCGCCCCGCGGGCTGGGGCGTCGCTTCTT$ GCCTAGTCCCAGCTGTGCTCTGGGGCCTCAGCCTCTTCCTCAACCTCCCAGGACCTATCTGG CTCCAGCCCTCTCCACCTCCCCAGTCTTCTCCCCCGCCTCAGCCCCATCCGTGTCATACCTG CCGGGGACTGGTTGACAGCTTTAACAAGGGCCTGGAGAGAACCATCCGGGACAACTTTGGAG GTGGAAACACTGCCTGGGAGGAAGAGAATTTGTCCAAATACAAAGACAGTGAGACCCGCCTG GTAGAGGTGCTGGAGGGTGTGTGCAGCAAGTCAGACTTCGAGTGCCACCGCCTGCTGGAGCT GAGTGAGGAGCTGGTGGAGAGCTGGTGGTTTCACAAGCAGCAGGAGGCCCCGGACCTCTTCC AGTGGCTGTGCTCAGATTCCCTGAAGCTCTGCTGCCCCGCAGGCACCTTCGGGCCCCTCCTGC CTTCCCTGTCCTGGGGGAACAGAGGGCCCTGCGGTGGCTACGGGCAGTGTGAAGGAGAAGG GACACGAGGGGCAGCGGCACTGTGACTGCCAAGCCGGCTACGGGGGTGAGGCCTGTGGCC TTTGGCCCCTGTGCCCGATGCTCAGGACCTGAGGAATCAAACTGTTTGCAATGCAAGAAGGG CTGGGCCCTGCATCACCTCAAGTGTGTAGACATTGATGAGTGTGGCACAGAGGGAGCCAACT GTGGAGCTGACCAATTCTGCGTGAACACTGAGGGCTCCTATGAGTGCCGAGACTGTGCCAAG GCCTGCCTAGGCTGCATGGGGGCAGGGCCAGGTCGCTGTAAGAAGTGTAGCCCTGGCTATCA GCAGGTGGGCTCCAAGTGTCTCGATGTGGATGAGTGTGAGACAGAGGTGTGTCCGGGAGAGA ACAAGCAGTGTGAAAACACCGAGGGCGGTTATCGCTGCATCTGTGCCGAGGGCTACAAGCAG ATGGAAGGCATCTGTGTGAAGGAGCAGATCCCAGAGTCAGCAGGCTTCTTCTCAGAGATGAC AGAAGACGAGTTGGTGGTGCTGCAGCAGATGTTCTTTGGCATCATCATCTGTGCACTGGCCA $\tt CGCTGGCTAAGGGCGACTTGGTGTTCACCGCCATCTTCATTGGGGCTGTGGCGGCCATG$ ACTGGCTACTGGTTGTCAGAGCGCAGTGACCGTGTGCTGGAGGGCTTCATCAAGGGCAGA<u>TA</u> **A**TCGCGGCCACCACCTGTAGGACCTCCTCCCACCCACGCTGCCCCAGAGCTTGGGCTGCCC TCCTGCTGGACACTCAGGACAGCTTGGTTTATTTTTGAGAGTGGGGTAAGCACCCCTACCTG CCTTACAGAGCAGCCCAGGTACCCAGGCCCGGGCAGACAAGGCCCCTGGGGTAAAAAGTAGC CCTGAAGGTGGATACCATGAGCTCTTCACCTGGCGGGGACTGGCAGGCTTCACAATGTGTGA ATTTCAAAAGTTTTTCCTTAATGGTGGCTGCTAGAGCTTTGGCCCCTGCTTAGGATTAGGTG GTCCTCACAGGGGTGGGGCCATCACAGCTCCCTCCTGCCAGCTGCATGCTGCCAGTTCCTGT

MAPWPPKGLVPAVLWGLSLFLNLPGPIWLQPSPPPQSSPPPQPHPCHTCRGLVDSFNKGLER TIRDNFGGGNTAWEEENLSKYKDSETRLVEVLEGVCSKSDFECHRLLELSEELVESWWFHKQ QEAPDLFQWLCSDSLKLCCPAGTFGPSCLPCPGGTERPCGGYGQCEGEGTRGGSGHCDCQAG YGGEACGQCGLGYFEAERNASHLVCSACFGPCARCSGPEESNCLQCKKGWALHHLKCVDIDE CGTEGANCGADQFCVNTEGSYECRDCAKACLGCMGAGPGRCKKCSPGYQQVGSKCLDVDECE TEVCPGENKQCENTEGGYRCICAEGYKQMEGICVKEQIPESAGFFSEMTEDELVVLQQMFFGIIICALATLAAKGDLVFTAIFIGAVAAMTGYWLSERSDRVLEGFIKGR

Signal sequence:

amino acids 1-29

Transmembrane domain:

amino acids 372-395

N-glycosylation site.

amino acids 79-83, 205-209

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 290-294

Casein kinase II phosphorylation site.

amino acids 63-67, 73-77, 99-103, 101-105, 222-226, 359-263

N-myristoylation site.

amino acids 8-14, 51-57, 59-65, 69-75, 70-76, 167-173, 173-179, 177-183, 188-194, 250-256, 253-259, 267-273, 280-286, 283-289, 326-332, 372-378, 395-401

Aspartic acid and asparagine hydroxylation site.

amino acids 321-333

EGF-like domain cysteine pattern signature.

amino acids 181-193

TGAGACCCTCCTGCAGCCTTCTCAAGGGACAGCCCCACTCTGCCTCTTGCTCCTCCAGGGCA $\texttt{GCACC} \underline{\textbf{ATG}} \texttt{CAGCCCCTGTGGCTCTGCTGGGCACTCTGGGTGTTGCCCCTGGCCAGCCCCGGG}$ GCCGCCTGACCGGGGAGCAGCTCCTGGGCAGCCTGCTGCGGCAGCTGCAGCTCAAAGAGGT ACGTGGCCCTGCTGCAGCGCAGCCACGGGGACCGCTCCCGCGGAAAGAGGGTTCAGCCAGAGC TTCCGAGAGGTGGCCGGCAGGTTCCTGGCGTTGGAGGCCAGCACACACCTGCTGGTGTTCGG CATGGAGCAGCGGCTGCCGCCCAACAGCGAGCTGGTGCAGGCCGTGCTGCGGCTCTTCCAGG AGCCGGTCCCCAAGGCCGCGCTGCACAGGCACGGGCGCTGTCCCCGCGCAGCGCCCGGGCC CTCCAGGCTGGTGTCCGTCCACGAGAGCGGCTGGAAGGCCTTCGACGTGACCGAGGCCGTGA ACTTCTGGCAGCAGCTGAGCCGGCCCGGCAGCCGCTGCTACAGGTGTCGGTGCAGAGG GAGCATCTGGGCCCGCTGGCGTCCGGCGCCCACAAGCTGGTCCGCTTTGCCTCGCAGGGGGC GCCAGCCGGGCTTGGGGAGCCCCAGCTGGAGCTGCACACCCTGGACCTTGGGGACTATGGAG CTCAGGGCGACTGTGACCCTGAAGCACCAATGACCGAGGGCACCCGCTGCTGCCGCCAGGAG ATGTACATTGACCTGCAGGGGATGAAGTGGGCCGAGAACTGGGTGCTGGAGCCCCCGGGCTT CCTGGCTTATGAGTGTGTGGGCACCTGCCGGCAGCCCCCGGAGGCCCTGGCCTTCAAGTGGC ATCAAGGAGGGAGGCAGGACCAGGCCCCAGGTGGTCAGCCTGCCCAACATGAGGGTGCAGAA $\tt GTGCAGCTGTGCCTCGGATGGTGCGCTCGTGCCAAGGAGGCTCCAGCCA{\color{blue}{\textbf{TAG}}} GCGCCTAGTG$ TAGCCATCGAGGGACTTGACTTGTGTGTTTTCTGAAGTGTTCGAGGGTACCAGGAGAGCTG GCGATGACTGAACTGCTGATGGACAAATGCTCTGTGCTCTAGTGAGCCCTGAATTTGCTT CCTCTGACAAGTTACCTCACCTAATTTTTGCTTCTCAGGAATGAGAATCTTTGGCCACTGGA GAGCCCTTGCTCAGTTTTCTCTATTCTTATTATTCACTGCACTATATTCTAAGCACTTACAT GTGGAGATACTGTAACCTGAGGGCAGAAAGCCCANTGTGTCATTGTTTACTTGTCCTGTCAC TGGATCTGGGCTAAAGTCCTCCACCACCACTCTGGACCTAAGACCTGGGGTTAAGTGTGGGT TGTGCATCCCCAATCCAGATAATAAAGACTTTGTAAAACATGAATAAAACACATTTTATTCT AAAA

MQPLWLCWALWVLPLASPGAALTGEQLLGSLLRQLQLKEVPTLDRADMEELVIPTHVRAQYV ALLQRSHGDRSRGKRFSQSFREVAGRFLALEASTHLLVFGMEQRLPPNSELVQAVLRLFQEP VPKAALHRHGRLSPRSARARVTVEWLRVRDDGSNRTSLIDSRLVSVHESGWKAFDVTEAVNF WQQLSRPRQPLLLQVSVQREHLGPLASGAHKLVRFASQGAPAGLGEPQLELHTLDLGDYGAQ GDCDPEAPMTEGTRCCRQEMYIDLQGMKWAENWVLEPPGFLAYECVGTCRQPPEALAFKWPF LGPRQCIASETDSLPMIVSIKEGGRTRPQVVSLPNMRVQKCSCASDGALVPRRLQP

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 158-162

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 76-80

Casein kinase II phosphorylation site.

amino acids 68-72, 81-85, 161-165, 169-173, 319-323, 329-333

N-myristoylation site.

amino acids 19-25, 156-162, 225-231, 260-266, 274-280

Amidation site.

amino acids 74-78

TGF-beta family signature.

amino acids 282-298

 $\tt GTCTGTTCCCAGGAGTCCTTCGGCGGCTGTTGTGTCAGTGGCCTGATCGCG{\color{red} \underline{ATG}} GGGACAAA$ GGCGCAAGTCGAGAGGAAACTGTTGTGCCTCTTCATATTGGCGATCCTGTTGTGCTCCCTGG CATTGGGCAGTGTTACAGTGCACTCTTCTGAACCTGAAGTCAGAATTCCTGAGAATAATCCT GTGAAGTTGTCCTGTGCCTACTCGGGCTTTTCTTCTCCCCGTGTGGAGTGGAAGTTTGACCA AGGAGACACCACCAGACTCGTTTGCTATAATAACAAGATCACAGCTTCCTATGAGGACCGGG TGACCTTCTTGCCAACTGGTATCACCTTCAAGTCCGTGACACGGGAAGACACTGGGACATAC ACTTGTATGGTCTCTGAGGAAGGCGGCAACAGCTATGGGGAGGTCAAGGTCAAGCTCATCGT GCTTGTGCCTCCATCCAAGCCTACAGTTAACATCCCCTCCTCTGCCACCATTGGGAACCGGG CAGTGCTGACATGCTCAGAACAAGATGGTTCCCCACCTTCTGAATACACCTGGTTCAAAGAT GGGATAGTGATGCCTACGAATCCCAAAAGCACCCGTGCCTTCAGCAACTCTTCCTATGTCCT GAATCCCACAACAGGAGAGCTGGTCTTTGATCCCCTGTCAGCCTCTGATACTGGAGAATACA GCTGTGAGGCACGGAATGGGTATGGGACACCCATGACTTCAAATGCTGTGCGCATGGAAGCT GTGGAGCGGAATGTGGGGGTCATCGTGGCAGCCGTCCTTGTAACCCTGATTCTCCTGGGAAT CTTCGAGTAAGAAGGTGATTTACAGCCAGCCTAGTGCCCGAAGTGAAGGAGAATTCAAACAG $\mathtt{ACCTCGTCATTCCTGGTG}$ CAGGTGCTACCGGACTCTGGCCCCTGATGTCTGTAGTTTCACAGGATGCCTTATTTGTCTTC TACACCCCACAGGGCCCCCTACTTCTTCGGATGTGTTTTTAATAATGTCAGCTATGTGCCCC ATCCTCCTTCATGCCCTCCCTCCCTTTCCTACCACTGCTGAGTGGCCTGGAACTTGTTTAAA GTGTTTATTCCCCATTTCTTTGAGGGATCAGGAAGGAATCCTGGGTATGCCATTGACTTCCC TTCTAAGTAGACAGCAAAAATGGCGGGGGTCGCAGGAATCTGCACTCAACTGCCCACCTGGC TGGCAGGGATCTTTGAATAGGTATCTTGAGCTTGGTTCTGGGCTCTTTCCTTGTGTACTGAC GACCAGGCCAGCTGTTCTAGAGCGGGAATTAGAGGCTAGAGCGGCTGAAATGGTTGTTTGG TGATGACACTGGGGTCCTTCCATCTCTGGGGCCCACTCTCTTCTGTCTTCCCATGGGAAGTG GGAAAATGGGAGCTCTTGTTGTGGAGAGCATAGTAAATTTTCAGAGAACTTGAAGCCAAAAG GATTTAAAACCGCTGCTCTAAAGAAAAGAAAACTGGAGGCTGGGCGCAGTGGCTCACGCCTG TAATCCCAGAGGCTGAGGCAGGCGGATCACCTGAGGTCGGGAGTTCGGGATCAGCCTGACCA ACATGGAGAAACCCTACTGGAAATACAAAGTTAGCCAGGCATGGTGGTGCATGCCTGTAGTC

MGTKAQVERKLLCLFILAILLCSLALGSVTVHSSEPEVRIPENNPVKLSCAYSGFSSPRVEW
KFDQGDTTRLVCYNNKITASYEDRVTFLPTGITFKSVTREDTGTYTCMVSEEGGNSYGEVKV
KLIVLVPPSKPTVNIPSSATIGNRAVLTCSEQDGSPPSEYTWFKDGIVMPTNPKSTRAFSNS
SYVLNPTTGELVFDPLSASDTGEYSCEARNGYGTPMTSNAVRMEAVERNVGVIVAAVLVTLI
LLGILVFGIWFAYSRGHFDRTKKGTSSKKVIYSQPSARSEGEFKQTSSFLV

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 238-255

N-glycosylation site.

amino acids 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 270-274

Casein kinase II phosphorylation site.

amino acids 34-38, 82-86, 100-104, 118-122, 152-156, 154-158, 193-197, 203-207, 287-291

N-myristoylation site.

amino acids 105-111, 116-122, 158-164, 219-225, 237-243, 256-262

CAGCGCGTGGCCGCCCCTGTGGGGACAGCATGAGCGGCGGTTGGATGGCGCAGGTTGGA GCGTGGCGAACAGGGGCTCTGGGCCTGGCGCTGCTGCTGCTCGGCCTCGGACTAGGCCT GGAGGCCGCGCGAGCCCGCTTTCCACCCCGACCTCTGCCCAGGCCGCAGGCCCCAGCTCAG GCTCGTGCCCACCACCAGTTCCAGTGCCGCACCAGTGGCTTATGCGTGCCCCTCACCTGG CGCTGCGACAGGGACTTGGACTGCAGCGATGGCAGCGATGAGGAGGAGTGCAGGATTGAGCC ATGTACCCAGAAAGGGCAATGCCCACCGCCCCTGGCCTCCCCTGCCCCTGCACCGGCGTCA GTGACTGCTCTGGGGGAACTGACAAGAAACTGCGCAACTGCAGCCGCCTGGCCTAGCA GGCGAGCTCCGTTGCACGCTGAGCGATGACTGCATTCCACTCACGTGGCGCTGCGACGGCCA CCCAGACTGTCCCGACTCCAGCGACGAGCTCGGCTGTGGAACCAATGAGATCCTCCCGGAAG GGGATGCCACAACCATGGGGCCCCCTGTGACCCTGGAGAGTGTCACCTCTCTCAGGAATGCC ACAACCATGGGGCCCCTGTGACCCTGGAGAGTGTCCCCTCTGTCGGGAATGCCACATCCTC $\mathtt{CTCTGCCGGAGACCAGTCTGGAAGCCCAACTGCCTATGGGGTTATTGCAGCTGCTGCGGTGC}$ TCAGTGCAAGCCTGGTCACCGCCACCCTCCTTTTGTCCTGGCTCCGAGCCCAGGAGCGC CTCCGCCCACTGGGGTTACTGGTGGCCATGAAGGAGTCCCTGCTGCTGTCAGAACAGAAGAC CTCGCTGCCCTGAGGACAAGCACTTGCCACCACCGTCACTCAGCCCTGGGCGTAGCCGGACA GGAGGAGAGCAGTGATGCGGATGGGTACCCGGGCACACCAGCCCTCAGAGACCTGAGTTCTT CTGGCCACGTGGAACCTCGAACCCGAGCTCCTGCAGAAGTGGCCCTGGAGATTGAGGGTCCC TGGACACTCCCTATGGAGATCCGGGGAGCTAGGATGGGGAACCTGCCACAGCCAGAACTGAG GGGCTGGCCCAGGCAGCTCCCAGGGGGTAGAACGGCCCTGTGCTTAAGACACTCCCTGCTG CCCCGTCTGAGGGTGGCGATTAAAGTTGCTTC

MSGGWMAQVGAWRTGALGLALLLLLGLGLGLEAAASPLSTPTSAQAAGPSSGSCPPTKFQCR TSGLCVPLTWRCDRDLDCSDGSDEEECRIEPCTQKGQCPPPPGLPCPCTGVSDCSGGTDKKL RNCSRLACLAGELRCTLSDDCIPLTWRCDGHPDCPDSSDELGCGTNEILPEGDATTMGPPVT LESVTSLRNATTMGPPVTLESVPSVGNATSSSAGDQSGSPTAYGVIAAAAVLSASLVTATLL LLSWLRAQERLRPLGLLVAMKESLLLSEQKTSLP

Signal sequence:

amino acids 1-30

Transmembrane domain:

amino acids 230-246

N-glycosylation site.

amino acids 126-130, 195-199, 213-217

Casein kinase II phosphorylation site.

amino acids 84-88, 140-144, 161-165, 218-222

N-myristoylation site.

amino acids 3-9, 10-16, 26-32, 30-36, 112-118, 166-172, 212-218, 224-230, 230-236, 263-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 44-55

Leucine zipper pattern.

amino acids 17-39

CCCACGCGTCCGGTCTCGCTCGCGCAGCGCGCGCAGCAGAGGTCGCGCACAGATGCGG CTCTTGCAAGCTGGATGCCCTCTGTGGATGAAAGATGTATCATGGAATGAACCCGAGCAATG GAGATGGATTTCTAGAGCAGCAGCAGCAGCAGCAACCTCAGTCCCCCAGAGACTCTTG CGATGACCTTCAAGTGTGTGCTGACCCCGGCATTCCCGAGAATGGCTTCAGGACCCCCAGCG GAGGGGTTTTCTTTGAAGGCTCTGTAGCCCGATTTCACTGCCAAGACGGATTCAAGCTGAAG GGCGCTACAAAGAGACTGTGTTTGAAGCATTTTAATGGAACCCTAGGCTGGATCCCAAGTGA TAATTCCATCTGTGTGCAAGAAGATTGCCGTATCCCTCAAATCGAAGATGCTGAGATTCATA ACAAGACATATAGACATGGAGAGAAGCTAATCATCACTTGTCATGAAGGATTCAAGATCCGG TACCCCGACCTACACAATATGGTTTCATTATGTCGCGATGATGGAACGTGGAATAATCTGCC CATCTGTCAAGGCTGCCTGAGACCTCTAGCCTCTTCTAATGGCTATGTAAACATCTCTGAGC TCCAGACCTCCTTCCCGGTGGGGACTGTGATCTCCTATCGCTGCTTTCCCCGGATTTAAACTT GATGGGTCTGCGTATCTTGAGTGCTTACAAAACCTTATCTGGTCGTCCAGCCCACCCCGGTG ${\tt CCTTGCTCTGGAAGCCCAAGTCTGTCCACTACCTCCAATGGTGAGTCACGGAGATTTCGTCT}$ GCCACCCGCGGCCTTGTGAGCGCTACAACCACGGAACTGTGGTGGAGTTTTACTGCGATCCT GGCTACAGCCTCACCAGCGACTACAAGTACATCACCTGCCAGTATGGAGAGTGGTTTCCTTC TTATCAAGTCTACTGCATCAAATCAGAGCAAACGTGGCCCAGCACCCATGAGACCCTCCTGA CCACGTGGAAGATTGTGGCGTTCACGGCAACCAGTGTGCTGCTGGTGCTGCTCGTCATC CTGGCCAGGATGTTCCAGACCAAGTTCAAGGCCCACTTTCCCCCCAGGGGGCCTCCCCGGAG TTCCAGCAGTGACCCTGACTTTGTGGTGGTAGACGGCGTGCCCGTCATGCTCCCGTCCTATG ACGAAGCTGTGAGTGGCGGCTTGAGTGCCTTAGGCCCCGGGTACATGGCCTCTGTGGGCCAG GGCTGCCCCTTACCCGTGGACGACCAGAGCCCCCCAGCATACCCCGGCTCAGGGGACACGGA CACAGGCCCAGGGGAGTCAGAAACCTGTGACAGCGTCTCAGGCTCTTCTGAGCTGCTCCAAA ${\tt GTTGTTCCTAAGAAACTGA}{\tt TTGATTAAAAAATTTCCCAAAGTGTCCTGAAGTGTCTCTTCAA}$ ATACATGTTGATCTGTGGAGTTGATTCCTTTCCTTCTCTTGGTTTTAGACAAATGTAAACAA AGCTCTGATCCTTAAAATTGCTATGCTGATAGAGTGGTGAGGGCTGGAAGCTTGATCAAGTC CTGTTTCTTCTTGACACAGACTGATTAAAAATTAAAAGNAAAAAA

MYHGMNPSNGDGFLEQQQQQQQQPQSPQRLLAVILWFQLALCFGPAQLTGGFDDLQVCADPGI
PENGFRTPSGGVFFEGSVARFHCQDGFKLKGATKRLCLKHFNGTLGWIPSDNSICVQEDCRI
PQIEDAEIHNKTYRHGEKLIITCHEGFKIRYPDLHNMVSLCRDDGTWNNLPICQGCLRPLAS
SNGYVNISELQTSFPVGTVISYRCFPGFKLDGSAYLECLQNLIWSSSPPRCLALEAQVCPLP
PMVSHGDFVCHPRPCERYNHGTVVEFYCDPGYSLTSDYKYITCQYGEWFPSYQVYCIKSEQT
WPSTHETLLTTWKIVAFTATSVLLVLLLVILARMFQTKFKAHFPPRGPPRSSSSDPDFVVVD
GVPVMLPSYDEAVSGGLSALGPGYMASVGQGCPLPVDDQSPPAYPGSGDTDTGPGESETCDS
VSGSSELLQSLYSPPRCQESTHPASDNPDIIASTAEEVASTSPGIHHAHWVLFLRN

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 325-344

N-glycosylation site.

amino acids 104-108, 134-138, 192-196

Casein kinase II phosphorylation site.

amino acids 8-12, 146-150, 252-256, 270-274, 313-317, 362-366, 364-368, 380-384, 467-471, 468-472

N-myristoylation site.

amino acids 4-10, 61-67, 169-175, 203-209, 387-393, 418-424, 478-484

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 394-405

CCCACGCGTCCGCCCCCCCCCCCCCCCCCCGTGCGGTCCGTCGGTGGCCTAGAGA TGCTGCTGCCGCGGTTGCAGTTGTCGCGCACGCCTCTGCCCGCCAGCCCGCTCCACCGCCGT ${\tt AGCGCCCGAGTGTCGGGGGGGGCGCACCCGAGTCGGGCC}$ TAAAGTCATTTACTTCCATGATACTTCTCGAAGACTGAACTTTGAGGAAGCCAAAGAAGCCT GCAGGAGGGATGGAGGCCAGCTAGTCAGCATCGAGTCTGAAGATGAACAGAAACTGATAGAA AAGTTCATTGAAAACCTCTTGCCATCTGATGGTGACTTCTGGATTGGGCTCAGGAGGCGTGA GGAGAAACAAAGCAATAGCACAGCCTGCCAGGACCTTTATGCTTGGACTGATGGCAGCATAT CACAATTTAGGAACTGGTATGTGGATGAGCCGTCCTGCGGCAGCGAGGTCTGCGTGGTCATG TACCATCAGCCATCGGCACCCGCTGGCATCGGAGGCCCCTACATGTTCCAGTGGAATGATGA CCGGTGCAACATGAAGAACAATTTCATTTGCAAATATTCTGATGAGAAACCAGCAGTTCCTT CTAGAGAAGCTGAAGGTGAGGAAACAGAGCTGACAACACCTGTACTTCCAGAAGAAACACAG GAAGAAGATGCCAAAAAAACATTTAAAGAAAGTAGAGAAGCTGCCTTGAATCTGGCCTACAT CCTAATCCCCAGCATTCCCCTTCTCCTCCTCCTTGTGGTCACCACAGTTGTATGTTGGGTTT GGATCTGTAGAAAAAGAAAACGGGAGCAGCCAGACCCTAGCACAAAGAAGCAACACACCATC TGGCCCTCTCCTCACCAGGGAAACAGCCCGGACCTAGAGGTCTACAATGTCATAAGAAAACA AAGCGAAGCTGACTTAGCTGAGACCCGGCCAGACCTGAAGAATATTTCATTCCGAGTGTGTT CGGGAGAAGCCACTCCCGATGACATGTCTTGTGACTATGACAACATGGCTGTGAACCCATCA GAAAGTGGGTTTGTGACTCTGGTGAGCGTGGAGAGTGGATTTGTGACCAATGACATTTATGA GTTCTCCCCAGACCAAATGGGGAGGAGTAAGGAGTCTGGATGGGTGGAAAATGAAATATATG GTTAT<u>TAG</u>GACATATAAAAAACTGAAACTGACAACAATGGAAAAGAAATGATAAGCAAAAATC CTCTTATTTTCTATAAGGAAAATACACAGAAGGTCTATGAACAAGCTTAGATCAGGTCCTGT GGATGAGCATGTGGTCCCCACGACCTCCTGTTGGACCCCCACGTTTTGGCTGTATCCTTTAT CCCAGCCAGTCATCCAGCTCGACCTTATGAGAAGGTACCTTGCCCAGGTCTGGCACATAGTA GAGTCTCAATAAATGTCACTTGGTTGGTTGTATCTAACTTTTAAGGGACAGAGCTTTACCTG GCAGTGATAAAGATGGGCTGTGGAGCTTGGAAAACCACCTCTGTTTTCCTTGCTCTATACAG CAGCACATATTATCATACAGACAGAAAATCCAGAATCTTTTCAAAGCCCACATATGGTAGCACAG GTTGGCCTGTGCATCGGCAATTCTCATATCTGTTTTTTTCAAAGAATAAAATCAAATAAAGA GCAGGAAAAAAAA

MRPGTALQAVLLAVLLVGLRAATGRLLSASDLDLRGGQPVCRGGTQRPCYKVIYFHDTSRRL
NFEEAKEACRRDGGQLVSIESEDEQKLIEKFIENLLPSDGDFWIGLRREEKQSNSTACQDL
YAWTDGSISQFRNWYVDEPSCGSEVCVVMYHQPSAPAGIGGPYMFQWNDDRCNMKNNFICKY
SDEKPAVPSREAEGEETELTTPVLPEETQEEDAKKTFKESREAALNLAYILIPSIPLLLLLV
VTTVVCWVWICRKRKREQPDPSTKKQHTIWPSPHQGNSPDLEVYNVIRKQSEADLAETRPDL
KNISFRVCSGEATPDDMSCDYDNMAVNPSESGFVTLVSVESGFVTNDIYEFSPDQMGRSKES
GWVENEIYGY

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 117-121, 312-316

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 296-300

Casein kinase II phosphorylation site.

amino acids 28-32, 30-34, 83-87, 100-104, 214-218, 222-226, 299-303, 306-310, 323-327

N-myristoylation site.

amino acids 18-24, 37-43, 76-82, 146-152

ATCCGCAGGTTCCCGCGGACTTGGGGGCGCCCGCTGAGCCCCGGCGCCCCAGAAGACTTGT GTTTGCCTCCTGCAGCCTCAACCCGGAGGGCAGCGAGGGCCTACCACCATGATCACTGGTGT AGCGGCGGGTGGCCCTGGCCGAGCTGCAGGAGGCCGATGGCCAGTGTCCGGTCGACCGCAGC CTGCTGAAGTTGAAAATGGTGCAGGTCGTGTTTCGACACGGGGCTCGGAGTCCTCTCAAGCC GCTCCCGCTGGAGGAGCAGGTAGAGTGGAACCCCCAGCTATTAGAGGTCCCACCCCAAACTC AGTTTGATTACACAGTCACCAATCTAGCTGGTGGTCCGAAACCATATTCTCCTTACGACTCT CAATACCATGAGACCACCCTGAAGGGGGGCATGTTTGCTGGGCAGCTGACCAAGGTGGGCAT GCAGCAAATGTTTGCCTTGGGAGAGAGACTGAGGAAGAACTATGTGGAAGACATTCCCTTTC TTTCACCAACCTTCAACCCACAGGAGGTCTTTATTCGTTCCACTAACATTTTTCGGAATCTG CCACACTGATGAAGCAGATTCAGAAGTCTTGTATCCCAACTACCAAAGCTGCTGGAGCCTGA GGCAGAGACCAGAGGCCGGAGGCAGACTGCCTCTTTACAGCCAGGAATCTCAGAGGATTTG AAAAAGGTGAAGGACAGGATGGGCATTGACAGTAGTGATAAAGTGGACTTCTTCATCCTCCT GGACAACGTGGCTGCCGAGCAGGCACACACCTCCCAAGCTGCCCCATGCTGAAGAGATTTG CACGGATGATCGAACAGAGAGCTGTGGACACATCCTTGTACATACTGCCCAAGGAAGACAGG GAAAGTCTTCAGATGGCAGTAGGCCCATTCCTCCACATCCTAGAGAGCAACCTGCTGAAAGC CATGGACTCTGCCACTGCCCCGACAAGATCAGAAAGCTGTATCTCTATGCGGCTCATGATG TGACCTTCATACCGCTCTTAATGACCCTGGGGATTTTTGACCACAAATGGCCACCGTTTGCT GTTGACCTGACCATGGAACTTTACCAGCACCTGGAATCTAAGGAGTGGTTTGTGCAGCTCTA TTACCACGGGAAGGAGCAGGTGCCGAGAGGTTGCCCTGATGGGCTCTGCCCGCTGGACATGT TCTTGAATGCCATGTCAGTTTATACCTTAAGCCCAGAAAAATACCATGCACTCTGCTCTCAA ACTCAGGTGATGGAAGTTGGAAATGAAGAG<mark>TAA</mark>CTGATTTATAAAAGCAGGATGTGTTGATT TTAAAATAAAGTGCCTTTATACAATG

MITGVFSMRLWTPVGVLTSLAYCLHQRRVALAELQEADGQCPVDRSLLKLKMVQVVFRHGAR SPLKPLPLEEQVEWNPQLLEVPPQTQFDYTVTNLAGGPKPYSPYDSQYHETTLKGGMFAGQL TKVGMQQMFALGERLRKNYVEDIPFLSPTFNPQEVFIRSTNIFRNLESTRCLLAGLFQCQKE GPIIIHTDEADSEVLYPNYQSCWSLRQRTRGRRQTASLQPGISEDLKKVKDRMGIDSSDKVD FFILLDNVAAEQAHNLPSCPMLKRFARMIEQRAVDTSLYILPKEDRESLQMAVGPFLHILES NLLKAMDSATAPDKIRKLYLYAAHDVTFIPLLMTLGIFDHKWPPFAVDLTMELYQHLESKEW FVQLYYHGKEQVPRGCPDGLCPLDMFLNAMSVYTLSPEKYHALCSQTQVMEVGNEE

Signal sequence:

amino acids 1-23

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 218-222

Casein kinase II phosphorylation site.

amino acids 87-91, 104-108, 320-324

Tyrosine kinase phosphorylation site.

amino acids 280-288

N-myristoylation site.

amino acids 15-21, 117-123, 118-124, 179-185, 240-246, 387-393

Amidation site.

amino acids 216-220

Leucine zipper pattern.

amino acids 10-32

Histidine acid phosphatases phosphohistidine signature.

amino acids 50-65

CTCCTCTTAACATACTTGCAGCTAAAACTAAATATTGCTGCTTGGGGACCTCCTTCTAGCCT TAAATTTCAGCTCATCACCTTCACCTGCCTTGGTCATGCTCTGCTATTCTCCTTGATCCTT GCCATTTGCACCAGACCTGGATTCCTAGCGTCTCCATCTGGAGTGCGGCTGGTGGGGGGCCT CCACCGCTGTGAAGGCCGGGTGGAGGTGGAACAGAAAGGCCAGTGGGGCACCGTGTGTGATG ACGGCTGGGACATTAAGGACGTGGCTGTGTTGTGCCGGGAGCTGGGCTGTGGAGCTGCCAGC GGAACCCCTAGTGGTATTTTGTATGAGCCACCAGCAGAAAAGAGCAAAAGGTCCTCATCCA ATCAGTCAGTTGCACAGGAACAGAAGATACATTGGCTCAGTGTGAGCAAGAAGAAGTTTATG ATTGTTCACATGATGAAGATGCTGGGGCATCGTGTGAGAACCCAGAGAGCTCTTTCTCCCCA GTCCCAGAGGGTGTCAGGCTGGCTGACGGCCTGGGCATTGCAAGGGACGCGTGGAAGTGAA GCACCAGAACCAGTGGTATACCGTGTGCCAGACAGGCTGGAGCCTCCGGGCCGCAAAGGTGG TGTGCCGGCAGCTGGGATGTGGGAGGGCTGTACTGACTCAAAAACGCTGCAACAAGCATGCC TATGGCCGAAAACCCATCTGGCTGAGCCAGATGTCATGCTCAGGACGAGAAGCAACCCTTCA GGATTGCCCTTCTGGGCCTTGGGGGAAGAACACCTGCAACCATGATGAAGACACGTGGGTCG AATGTGAAGATCCCTTTGACTTGAGACTAGTAGGAGGAGACAACCTCTGCTCTGGGCGACTG GAGGTGCTGCACAAGGGCGTATGGGGCTCTGTCTGTGATGACAACTGGGGAGAAAAGGAGGA AATGCTATGGCCCTGGGGTTGGCCGCATCTGGCTGGATAATGTTCGTTGCTCAGGGGAGGAG CAGTCCCTGGAGCAGTGCCAGCAGATTTTGGGGGTTTCACGACTGCACCACCAGGAAGA TGTGGCTGTCATCTGCTCAGTG**TAG**GTGGGCATCATCTAATCTGTTGAGTGCCTGAATAGAA GAAAAACACAGAAGAAGGGAGCATTTACTGTCTACATGACTGCATGGGATGAACACTGATCT TCTTCTGCCCTTGGACTGGGACTTATACTTGGTGCCCCTGATTCTCAGGCCTTCAGAGTTGG ATCAGAACTTACAACATCAGGTCTAGTTCTCAGGCCATCAGACATAGTTTGGAACTACATCA CCACCTTTCCTATGTCTCCACATTGCACACAGCAGATTCCCAGCCTCCATAATTGTGTGTAT CACCATTTGTCCTGTTTCTCTGAAGAACTCTGACAAAATACAGATTTTGGTACTGAAAGAGA TTCTAGAGGAACGGAATTTTAAGGATAAATTTTCTGAATTGGTTATGGGGTTTCTGAAATTG TATGTGTTCAAA

MALLFSLILAICTRPGFLASPSGVRLVGGLHRCEGRVEVEQKGQWGTVCDDGWDIKDVAVLC RELGCGAASGTPSGILYEPPAEKEQKVLIQSVSCTGTEDTLAQCEQEEVYDCSHDEDAGASC ENPESSFSPVPEGVRLADGPGHCKGRVEVKHQNQWYTVCQTGWSLRAAKVVCRQLGCGRAVL TQKRCNKHAYGRKPIWLSQMSCSGREATLQDCPSGPWGKNTCNHDEDTWVECEDPFDLRLVG GDNLCSGRLEVLHKGVWGSVCDDNWGEKEDQVVCKQLGCGKSLSPSFRDRKCYGPGVGRIWL DNVRCSGEEQSLEQCQHRFWGFHDCTHQEDVAVICSV

Signal sequence:

amino acids 1-15

Casein kinase II phosphorylation site.

amino acids 47-51, 97-101, 115-119, 209-213, 214-218, 234-238, 267-271, 294-298, 316-320, 336-340

N-myristoylation site.

amino acids 29-35, 43-49, 66-72, 68-74, 72-78, 98-104, 137-143, 180-186, 263-269, 286-292

Amidation site.

amino acids 196-200

Speract receptor repeated domain signature.

amino acids 29-67, 249-287

ACTGCACTCGGTTCTATCGATTGAATTCCCCGGGGATCCTCTAGAGATCCCTCGACCTCGAC CCACGCGTCCGCGGACGCGTGGGCGGACGCGTGGGCCGGCTACCAGGAAGAGTCTGCCGAAG GTGAAGGCCATGGACTTCATCACCTCCACAGCCATCCTGCCCTGCTGTTCGGCTGCCTGGG CGTCTTCGGCCTCTTCCGGCTGCAGTGGGTGCGCGGGAAGGCCTACCTGCGGAATGCTG TGGTGGTGATCACAGGCGCCACCTCAGGGCTGGGCAAAGAATGTGCAAAAGTCTTCTATGCT GCGGGTGCTAAACTGGTGCTCTGTGGCCGGAATGGTGGGGCCCTAGAAGAGCTCATCAGAGA ACTTACCGCTTCTCATGCCACCAAGGTGCAGACACACAAGCCTTACTTGGTGACCTTCGACC ${\tt TCACAGACTCTGGGGCCATAGTTGCAGCAGCAGCTGAGATCCTGCAGTGCTTTGGCTATGTC}$ GACATACTTGTCAACAATGCTGGGATCAGCTACCGTGGTACCATCATGGACACCACAGTGGA TGTGGACAAGAGGGTCATGGAGACAAACTACTTTGGCCCCAGTTGCTCTAACGAAAGCACTCC TGCCCTCCATGATCAAGAGGGGCAAGGCCACATTGTCGCCATCAGCAGCATCCAGGGCAAG CTGTCTGCGTGCCGAGATGGAACAGTATGAAATTGAGGTGACCGTCATCAGCCCCGGCTACA CTCTGGCTCCTGGGCTCTTCTTCAGCCTCATGGCCTCCAGGGCCAGAAAAGAGCGGAAATCC $\mathtt{AAGAACTCC}$ TACTCTGACCAGCCAGGGCCAGGGCAGAGAAGCAGCACTCTTAGGCTTGC TTACTCTACAAGGGACAGTTGCATTTGTTGAGACTTTAATGGAGATTTGTCTCACAAGTGGG AAAGACTGAAGAACACATCTCGTGCAGATCTGCTGGCAGAGGACAATCAAAAACGACAACA AGTCGACCTGCAGAAGCTTGGCCGCCATGGCCCAACTTGTTTATTGCAGCTTATAATGGTTAC

MDFITSTAILPLLFGCLGVFGLFRLLQWVRGKAYLRNAVVVITGATSGLGKECAKVFYAAGA
KLVLCGRNGGALEELIRELTASHATKVQTHKPYLVTFDLTDSGAIVAAAAEILQCFGYVDIL
VNNAGISYRGTIMDTTVDVDKRVMETNYFGPVALTKALLPSMIKRRQGHIVAISSIQGKMSI
PFRSAYAASKHATQAFFDCLRAEMEQYEIEVTVISPGYIHTNLSVNAITADGSRYGVMDTTT
AQGRSPVEVAQDVLAAVGKKKKDVILADLLPSLAVYLRTLAPGLFFSLMASRARKERKSKNS

Signal sequence:

amino acids 1-21

Transmembrane domain:

amino acids 104-120, 278-292

N-glycosylation site.

amino acids 228-232

Glycosaminoglycan attachment site.

amino acids 47-51

Casein kinase II phosphorylation site.

amino acids 135-139, 139-143, 253-257

Tyrosine kinase phosphorylation site.

amino acids 145-153, 146-153

N-myristoylation site.

amino acids 44-50, 105-111, 238-244, 242-248, 291-297

Amidation site.

amino acids 265-269

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 6-17

CCCACGCGTCCGCTGGTGTTAGATCGAGCAACCCTCTAAAAGCAGTTTAGAGTGGTAAAAA AAAAAAAAACACCAAACGCTCGCAGCCACAAAAGGGATGAAATTTCTTCTGGACATCCTC CTGCTTCTCCCGTTACTGATCGTCTCCCTAGAGTCCTTCGTGAAGCTTTTTATTCCTAA GAGGAGAAATCAGTCACCGGCGAAATCGTGCTGATTACAGGAGCTGGGCATGGAATTGGGA CATGGACTGGAGGAAACAGCTGCCAAATGCAAGGGACTGGGTGCCAAGGTTCATACCTTTGT GGTAGACTGCAGCAACCGAGAAGATATTTACAGCTCTGCAAAGAAGGTGAAGGCAGAAATTG CAAGATCCTCAGATTGAAAAGACTTTTGAAGTTAATGTACTTGCACATTTCTGGACTACAAA GGCATTTCTTCCTGCAATGACGAAGAATAACCATGGCCATATTGTCACTGTGGCTTCGGCAG TTTCATAAAACTTTGACAGATGAACTGGCTGCCTTACAAATAACTGGAGTCAAAACAACATG TCTGTGTCCTAATTTCGTAAACACTGGCTTCATCAAAAATCCAAGTACAAGTTTGGGACCCA CCTGGCAGTTTTAAAACGAAAAATCAGTGTTAAGTTTGATGCAGTTATTGGATATAAAATGA AAGCGCAA**TAA**GCACCTAGTTTTCTGAAAACTGATTTACCAGGTTTAGGTTGATGTCATCTA ATAGTGCCAGAATTTTAATGTTTGAACTTCTGTTTTTTCTAATTATCCCCATTTCTTCAATA TCATTTTTGAGGCTTTGGCAGTCTTCATTTACTACCACTTGTTCTTTAGCCAAAAGCTGATT CCAAAATGACTTTATTAAAATAATTTCCAAGATTATTTGTGGCTCACCTGAAGGCTTTGCAA AATTTGTACCATAACCGTTTATTTAACATATATTTTTATTTTTGATTGCACTTAAATTTTGT TGAAGGACTATATCTAGTGGTATTTCACAATGAATATCATGAACTCTCAATGGGTAGGTTTC ATCCTACCCATTGCCACTCTGTTTCCTGAGAGATACCTCACATTCCAATGCCAAACATTTCT GCACAGGGAAGCTAGAGGTGGATACACGTGTTGCAAGTATAAAAGCATCACTGGGATTTAAG GAGAATTGAGAGAATGTACCCACAAATGGCAGCAATAATAAATGGATCACACTTAAAAAAA

FIGURE 58

MKFLLDILLLIPLLIVCSLESFVKLFIPKRRKSVTGEIVLITGAGHGIGRLTAYEFAKLKSK LVLWDINKHGLEETAAKCKGLGAKVHTFVVDCSNREDIYSSAKKVKAEIGDVSILVNNAGVV YTSDLFATQDPQIEKTFEVNVLAHFWTTKAFLPAMTKNNHGHIVTVASAAGHVSVPFLLAYC SSKFAAVGFHKTLTDELAALQITGVKTTCLCPNFVNTGFIKNPSTSLGPTLEPEEVVNRLMH GILTEQKMIFIPSSIAFLTTLERILPERFLAVLKRKISVKFDAVIGYKMKAQ

Signal sequence:

amino acids 1-19

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 30-34, 283-287

Casein kinase II phosphorylation site.

amino acids 52-56, 95-99, 198-202, 267-271

N-myristoylation site.

amino acids 43-49, 72-78, 122-128, 210-216

CCCACGCGTCCGCGGACGCGTGGGTCGACTAGTTCTAGATCGCGAGCGGCCGCCGCGGGCTC ${\tt AGGGAGGAGCACCGACTGCGCACCCTGAGAG}$ ${ t TTTCGCTGGTCCTGTTGATGCCTGGCCCCTGTGATGGGCTGTTTCGCTCCCTATACAGAAGT$ GTTTCCATGCCACCTAAGGGAGACTCAGGACAGCCATTATTTCTCACCCCTTACATTGAAGC TGGGAAGATCCAAAAAGGAAGAGAATTGAGTTTGGTCGGCCCTTTCCCAGGACTGAACATGA AGAGTTATGCCGGCTTCCTCACCGTGAATAAGACTTACAACAGCAACCTCTTCTTCTGGTTC TTCCCAGCTCAGATACAGCCAGAAGATGCCCCAGTAGTTCTCTGGCTACAGGGTGGGCCGGG AGGTTCATCCATGTTTGGACTCTTTGTGGAACATGGGCCTTATGTTGTCACAAGTAACATGA CCTTGCGTGACAGAGACTTCCCCTGGACCACACGCTCTCCATGCTTTACATTGACAATCCA GTGGGCACAGGCTTCAGTTTTACTGATGATACCCACGGATATGCAGTCAATGAGGACGATGT AGCACGGGATTTATACAGTGCACTAATTCAGTTTTTCCAGATATTTCCTGAATATAAAAATA ATCCATTCCCTCAACCCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGA TGGATATTCTGATCCCGAATCAATTATAGGGGGCTATGCAGAATTCCTGTACCAAATTGGCT TGTTGGATGAGAAGCAAAAAAGTACTTCCAGAAGCAGTGCCATGAATGCATAGAACACATC AGGAAGCAGAACTGGTTTGAGGCCCTTTGAAATACTGGATAAACTACTAGATGGCGACTTAAC AAGTGATCCTTCTTACTTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTTTGCGGT GCACGGAACCTGAGGATCAGCTTTACTATGTGAAATTTTTTGTCACTCCCAGAGGTGAGACAA GCCATCCACGTGGGGAATCAGACTTTTAATGATGGAACTATAGTTGAAAAGTACTTGCGAGA AGATACAGTACAGTCAGTTAAGCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGA TCTACAATGGCCAACTGGACATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTTGATGGGC ATCTGACAGTGAAGTGGCTGGTTACATCCGGCAAGCGGGTGACTTCCATCAGGTAATTATTC GAGGTGGAGGACATATTTTACCCTATGACCAGCCTCTGAGAGCTTTTGACATGATTAATCGA ${ t TTCATTTATGGAAAAGGATGGGATCCTTATGTTGGA}{ t TAAA} { t ACTACCTTCCCAAAAGAGAACAT$ CAGAGGTTTTCATTGCTGAAAAGAAAATCGTAAAAACAGAAAATGTCATAGGAATAAAAAA TTATCTTTCATATCTGCAAGATTTTTTTCATCAATAAAAATTATCCTTGAAACAAGTGAGC TTTTGTTTTTGGGGGGGAGATGTTTACTACAAAATTAACATGAGTACATGAGTAAGAATTACA TTATTTAACTTAAAGGATGAAAGGTATGGATGATGTGACACTGAGACAAGATGTATAAATGA AATTTTAGGGTCTTGAATAGGAAGTTTTAATTTCTTCTAAGAGTAAGTGAAAAGTGCAGTTG TAACAAACAAAGCTGTAACATCTTTTTCTGCCAATAACAGAAGTTTGGCATGCCGTGAAGGT TAGTTTTGGGGAAAAGATTCTCAAATGTATAAAGTCTTAGAACAAAAGAATTCTTTGAAATA AAAATATTATATATAAAAGTAAAAAAAAA

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGQPLFLTPYIEAGKIQKGRELSL VGPFPGLNMKSYAGFLTVNKTYNSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEH GPYVVTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQF FQIFPEYKNNDFYVTGESYAGKYVPAIAHLIHSLNPVREVKINLNGIAIGDGYSDPESIIGG YAEFLYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFEILDKLLDGDLTSDPSYFQNVTG CSNYYNFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNQTFNDGTIVEKYLREDTVQSVKPWLT EIMNNYKVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKKVWKIFKSDSEVAGYIRQ AGDFHQVIIRGGGHILPYDQPLRAFDMINRFIYGKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.

amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352, 353-357, 424-428

Tyrosine kinase phosphorylation site.

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

 ${\tt CGAGGGCTTTTCCGGCTCCGGAATGGCACATGTGGGGAATCCCAGTCTTGTTGGCTACAACAT}$ ${\tt TTTTCCCTTAACAAGTTCTAACAGCTGTTCTAACAGCTAGTGATCAGGGGGTTCTTCTT}$ CCTCTCTGTGGATAACAGAGCATGAGAAAGTGAAGAGATGCAGCGGAGTGAGGTGATGGAAG TCTAAAATAGGAAGGAATTTTGTGTGCAATATCAGACTCTGGGAGCAGTTGACCTGGAGAGC $\tt CTGGGGGAGGGCCTGCCTAACAAGCTTTCAAAAAACAGGAGCGACTTCCACTGGGCTGGGAT$ TGAACTTCAACAGCCTTTTAACCTCTCTGGGAGATGAAAACGATGGCTTAAGGGGCCAGAAA TAGAGATGCTTTGTAAAATAAAATTTTAAAAAAAGCAAGTATTTTATAGCATAAAGGCTAGA GACCAAAATAGATAACAGGATTCCCTGAACATTCCTAAGAGGGAGAAAGTATGTTAAAAATA GAAAAACCAAAATGCAGAAGGAGGAGACTCACAGAGCTAAACCAGG<u>ATG</u>GGGACCCTGGGTC ${f AGGCCAGCCTCTTTGCTCCTCCCGGAAATTATTTTTGGTCTGACCACTCTGCCTTGTGTTTT}$ CCTCACCGCCCCCCTCTCAGCATGGAACAGAGGCAGCCCTGGCCCCGGGCCCTGGAGGTGG ATGCCTCAGTTCAGCACCTTCCACTCTGAGAATCGTGACTGGACCTTCAACCACTTGACCGT CCACCAAGGGACGGGGCCGTCTATGTGGGGGCCCATCAACCGGGTCTATAAGCTGACAGGCA ACCTGACCATCCAGGTGGCTCATAAGACAGGGCCAGAAGAGGACAACAAGTCTCGTTACCCG CCCCTCATCGTGCAGCCTGCAGCGAAGTGCTCACCCTCACCAACAATGTCAACAAGCTGCT CATCATTGACTACTCTGAGAACCGCCTGCTGGCCTGTGGGAGCCTCTACCAGGGGGTCTGCA AGCTGCTGCGGCTGGATGACCTCTTCATCCTGGTGGAGCCATCCCACAAGAAGGAGCACTAC CTGTCCAGTGTCAACAAGACGGGCACCATGTACGGGGTGATTGTGCGCTCTGAGGGTGAGGA TGGCAAGCTCTTCATCGGCACGCTGTGGATGGGAAGCAGGATTACTTCCCGACCCTGTCCA GCCGGAAGCTGCCCCGAGACCCTGAGTCCTCAGCCATGCTCGACTATGAGCTACACAGCGAT TTTGTCTCCTCTCATCAAGATCCCTTCAGACACCCTGGCCCTGGTCTCCCACTTTGACAT CTTCTACATCTACGGCTTTGCTAGTGGGGGCTTTGTCTACTTTCTCACTGTCCAGCCCGAGA CTCTGCAAGGATGACCCCAAGTTCCACTCATACGTGTCCCTGCCCTTCGGCTGCACCCGGGC AGGCCTTCAATATCACCAGCCAGGACGATGTACTCTTTGCCATCTTCTCCAAAGGGCAGAAG CAGTATCACCACCCGCCCGATGACTCTGCCCTGTGTGCCTTTCCCTATCCGGGCCATCAACTT GCAGATCAAGGAGCGCCTGCAGTCCTGCTACCAGGGCGAGGGCAACCTGGAGCTCAACTGGC TGCTGGGGAAGGACGTCCAGTGCACGAAGGCGCCTGTCCCCATCGATGATAACTTCTGTGGA $\tt CTGGACATCAACCAGCCCCTGGGAGGCTCAACTCCAGTGGAGGGCCTGACCCTGTACACCAC$ CAGCAGGGACCGCATGACCTCTGTGGCCTCCTACGTTTACAACGGCTACAGCGTGGTTTTTG TGGGGACTAAGAGTGGCAAGCTGAAAAAGGTAAGAGTCTATGAGTTCAGATGCTCCAATGCC ${ t ATTCACCTCCTCAGCAAAGAGTCCCTCTTGGAAGGTAGCTATTGGTGGAGATTTAACTATAG$ ${\tt GCAACTTTATTTTCTTGGGGAACAAAGG}{\tt TGA}{\tt AATGGGGGAGGTAAGAAGGGGTTAATTTTGTG}$ ACTTAGCTTCTAGCTACTTCCTCCAGCCATCAGTCATTGGGTATGTAAGGAATGCAAGCGTA TTTCAATATTTCCCAAACTTTAAGAAAAACTTTAAGAAGGTACATCTGCAAAAGCAAA

MGTLGQASLFAPPGNYFWSDHSALCFAESCEGQPGKVEQMSTHRSRLLTAAPLSMEQRQPWP
RALEVDSRSVVLLSVVWVLLAPPAAGMPQFSTFHSENRDWTFNHLTVHQGTGAVYVGAINRV
YKLTGNLTIQVAHKTGPEEDNKSRYPPLIVQPCSEVLTLTNNVNKLLIIDYSENRLLACGSL
YQGVCKLLRLDDLFILVEPSHKKEHYLSSVNKTGTMYGVIVRSEGEDGKLFIGTAVDGKQDY
FPTLSSRKLPRDPESSAMLDYELHSDFVSSLIKIPSDTLALVSHFDIFYIYGFASGGFVYFL
TVQPETPEGVAINSAGDLFYTSRIVRLCKDDPKFHSYVSLPFGCTRAGVEYRLLQAAYLAKP
GDSLAQAFNITSQDDVLFAIFSKGQKQYHHPPDDSALCAFPIRAINLQIKERLQSCYQGEGN
LELNWLLGKDVQCTKAPVPIDDNFCGLDINQPLGGSTPVEGLTLYTTSRDRMTSVASYVYNG
YSVVFVGTKSGKLKKVRVYEFRCSNAIHLLSKESLLEGSYWWRFNYROLYFLGEOR

Signal sequence:

amino acids 1-32

Transmembrane domain:

amino acids 71-87

N-glycosylation site.

amino acids 130-134, 145-149, 217-221, 381-385

Casein kinase II phosphorylation site.

amino acids 139-143, 229-233, 240-244, 291-295, 324-328, 383-387, 384-388, 471-475, 481-485, 530-534

N-myristoylation site.

amino acids 220-226, 319-325, 353-359, 460-466, 503-509

AGGCTCCCGCGCGCGCGCTGAGTGCGGACTGGAGTGGGAACCCGGGTCCCCGCGCTTAGAGAACACGCGATGACCA CGTGGAGCCTCCGGCGGAGGCCGGCCCGCACGCTGGGACTCCTGCTGCTGGTCGTCTTGGGCTTCCTGGTGCTCC GGAGGGACCGCCTGCTGAAGATGAAGGCCTGTGGCTTGAACACCCTCACCACCTATGTTCCGTGGAACCTGCATG AGCCAGAAAGAGGCAAATTTGACTTCTCTGGGAACCTGGACCTGGAGGCCTTCGTCCTGATGGCCGCAGAGATCG GGCTGTGGGTGATTCTGCGTCCAGGCCCCTACATCTGCAGTGAGATGGACCTCGGGGGGCTTGCCCAGCTGGCTAC GTTCCTATAATAAAGACCCCGCATACATGCCCTACGTCAAGAAGGCACTGGAGGACCGTGGCATTGTGGAACTGC TCCTGACTTCAGACAACAAGGATGGGCTGAGCAAGGGGGATTGTCCAGGGAGTCTTGGCCACCATCAACTTGCAGT CAACACGGGGTGCAGCTACTGACCACCTTTCTCTTCAACGTCCAGGGGACTCAGCCCAAGATGGTGATGGAGT ACTGGACGGGTTGTTGACTCGTGGGGAGGCCCTCACAATATCTTGGATTCTTCTGAGGTTTTTGAAAACCGTGT CTGCCATTGTGGACGCCGGCTCCTCCATCAACCTCTACATGTTCCACGGAGGCACCAACTTTGGCTTCATGAATG GAGCCATGCACTTCCATGACTACAAGTCAGATGTCACCAGCTATGACTATGATGCTGTGCTGACAGAAGCCGGCG TGGGGGAGCCAATCAAGTCTGAAAAGCCCATCAACATGGAGAACCTGCCAGTCAATGGGGGAAATGGACAGTCCT TCGGGTACATTCTCTATGAGACCAGCATCACCTCGTCTGGCATCCTCAGTGGCCACGTGCATGATCGGGGGCAGG TGTTTGTGAACACAGTATCCATAGGATTCTTGGACTACAAGACAACGAAGATTGCTGTCCCCCTGATCCAGGGTT ACACCGTGCTGAGGATCTTGGTGGAGAATCGTGGGCGAGTCAACTATGGGGAGAATATTGATGACCAGCGCAAAG GCTTAATTGGAAATCTCTATCTGAATGATTCACCCCTGAAAAACTTCAGAATCTATAGCCTGGATATGAAGAAGA GCTTCTTTCAGAGGTTCGGCCTGGACAAATGGNGTTCCCTCCCAGAAACACCCACATTACCTGCTTTCTTCGG GTAGCTTGTCCATCAGCTCCACGCCTTGTGACACCTTTCTGAAGCTGGAGGGGCTGGGAGAAGGGGGTTGTATTCA TCAATGGCCAGAACCTTGGACGTTACTGGAACATTGGACCCCAGAAGACGCTTTACCTCCCAGGTCCCTGGTTGA ACCTGGGCAGGAACCAGTACATTAAGTGAGCGGTGGCACCCCCTCCTGCTGGTGCCAGTGGGAGACTGCCGCCTC CTCTTGACCTGAAGCCTGGTGGCTGCTCCCCACCCCTCACTGCAAAAGCATCTCCTTAAGTAGCAACCTCAGGG ACTGGGGGCTACAGTCTGCCCCTGTCTCAGCTCAAAACCCTAAGCCTGCAGGGAAAGGTGGGATGGCTCTGGGCC TGGCTTTGTTGATGATGGCTTTCCTACAGCCCTGCTCTTGTGCCGAGGCTGTCGGGGCTGTCTCTAGGGTGGGAGC AGCTAATCAGATCGCCCAGCCTTTGGCCCTCAGAAAAAGTGCTGAAACGTGCCCTTGCACCGGACGTCACAGCCC TGCGAGCATCTGCTGGACTCAGGCGTGCTCTTTGCTGGTTCCTGGGAGGCTTGGCCACATCCCTCATGGCCCCAT ${\tt TTTATCCCCGAAATCCTGGGTGTGTCACCAGTGTAGAGGGGTGGGGAAGGGGTGTCTCACCTGAGCTGACTTTGTT}$ ${\tt TCCCTTCCCACTGCTTCCCACAGGGTGACAGGCTGGGCTGGAGAAACAGAAATCCTCACCCTGCGTCTTCC}$ AGGGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGA GGAGGACAGAAGGCCCAGCTCACATGTGAGTCCTGGCAGAAGCCATGGCCCATGTCTGCACATCCAGGGAGGAGG GTTGCAGTAAAGCTATAACCTTGAATCACAA

MTTWSLRRPARTLGLLLLVVLGFLVLRRLDWSTLVPLRLRHRQLGLQAKGWNFMLEDSTFW
IFGGSIHYFRVPREYWRDRLLKMKACGLNTLTTYVPWNLHEPERGKFDFSGNLDLEAFVLMA
AEIGLWVILRPGPYICSEMDLGGLPSWLLQDPGMRLRTTYKGFTEAVDLYFDHLMSRVVPLQ
YKRGGPIIAVQVENEYGSYNKDPAYMPYVKKALEDRGIVELLLTSDNKDGLSKGIVQGVLAT
INLQSTHELQLLTTFLFNVQGTQPKMVMEYWTGWFDSWGGPHNILDSSEVLKTVSAIVDAGS
SINLYMFHGGTNFGFMNGAMHFHDYKSDVTSYDYDAVLTEAGDYTAKYMKLRDFFGSISGIP
LPPPPDLLPKMPYEPLTPVLYLSLWDALKYLGEPIKSEKPINMENLPVNGGNGQSFGYILYE
TSITSSGILSGHVHDRGQVFVNTVSIGFLDYKTTKIAVPLIQGYTVLRILVENRGRVNYGEN
IDDQRKGLIGNLYLNDSPLKNFRIYSLDMKKSFFQRFGLDKWXSLPETPTLPAFFLGSLSIS
STPCDTFLKLEGWEKGVVFINGQNLGRYWNIGPQKTLYLPGPWLSSGINQVIVFEETMAGPA
LQFTETPHLGRNQYIK

Signal sequence:

amino acids 1-27

Casein kinase II phosphorylation site.

amino acids 141-118, 253-257, 340-344, 395-399, 540-544, 560-564

N-myristoylation site.

amino acids 146-152, 236-242, 240-246, 244-250, 287-293, 309-315, 320-326, 366-372, 423-429, 425-431, 441-447, 503-509, 580-586

GGGGACGCGGAGCTGAGAGGCTCCGGGCTAGCTAGGTGTAGGGGTGGACGGGTCCCAGGACC CTGGTGAGGGTTCTCTACTTGGCCTTCGGTGGGGGTCAAGACGCAGGCACCTACGCCAAAGG GGAGCAAAGCCGGGCTCGGCCCGAGGCCCCCAGGACCTCCATCTCCCAATGTTGGAGGAATC AAGAAGCTGTCCTGCCTTCCTTCCTGCTGCTGCCGCTCAGCCTGACGCTACTGCTGCCCCA GGCAGACACTCGGTCGTTCGTAGTGGATAGGGGTCATGACCGGTTTCTCCTAGACGGGGCCC ${\tt CGGCTTTTGAAGATGCGATGGAGCGCCTCAACGCCATACAGTTTTATGTGCCCTGGAACTA}$ CCACGAGCCACAGCCTGGGGTCTATAACTTTAATGGCAGCCGGGACCTCATTGCCTTTCTGA ATGAGGCAGCTCTAGCGAACCTGTTGGTCATACTGAGACCAGGACCTTACATCTGTGCAGAG TGGGAGATGGGGGGTCTCCCATCCTGGTTGCTTCGAAAACCTGAAATTCATCTAAGAACCTC ${f A}{f G}{f A}{f T}{f C}{f A}{f G}{f A}{f T}{f A}{f T}{f C}{f C}{f$ TACAGAGCCTGTGACTTCAGCTACATGAGGCACTTGGCTGGGCTCTTCCGTGCACTGCTAGG GACTCTATACCACTGTAGATTTTGGCCCAGCTGACAACATGACCAAAATCTTTACCCTGCTT CTGGGGCCAGAATCACTCCACACGGTCTGTGTCAGCTGTAACCAAAGGACTAGAGAACATGC TCAAGTTGGGAGCCAGTGTGAACATGTACATGTTCCATGGAGGTACCAACTTTGGATATTGG AATGGTGCCGATAAGAAGGGACGCTTCCTTCCGATTACTACCAGCTATGACTATGATGCACC TATATCTGAAGCAGGGGACCCCACACCTAAGCTTTTTGCTCTTCGAGATGTCATCAGCAAGT TCCAGGAAGTTCCTTTGGGACCTTTACCTCCCCGAGCCCCAAGATGATGCTTGGACCTGTG ${ t ACTCTGCACCTGGTTGGGCATTTACTGGCTTTCCTAGACTTGCTTTGCCCCCGTGGGCCCAT}$ TCATTCAATCTTGCCAATGACCTTTGAGGCTGTCAAGCAGGACCATGGCTTCATGTTGTACC GAACCTATATGACCCATACCATTTTTGAGCCAACACCCATTCTGGGTGCCAAATAATGGAGTC CATGACCGTGCCTATGTGATGGTGGATGGGGTGTTCCAGGGTGTTGTGGAGCGAAATATGAG AGACAAACTATTTTTGACGGGGAAACTGGGGTCCAAACTGGATATCTTGGTGGAGAACATGG GGAGGCTCAGCTTTGGGTCTAACAGCAGTGACTTCAAGGGCCTGTTGAAGCCACCAATTCTG GGGCAAACAATCCTTACCCAGTGGATGATGTTCCCTCTGAAAATTGATAACCTTGTGAAGTG GTGGTTTCCCCTCCAGTTGCCAAAATGGCCATATCCTCAAGCTCCTTCTGGCCCCACATTCT ACTCCAAAACATTTCCAATTTTAGGCTCAGTTGGGGACACATTTCTATATCTACCTGGATGG ${ t ACCAAGGCCAAGTCTGGATCAATGGGTTTAACTTGGGCCGGTACTGGACAAGCAGGGGCCC}$ ACAACAGACCCTCTACGTGCCAAGATTCCTGCTGTTTCCTAGGGGAGCCCTCAACAAAATTA CATTGCTGGAACTAGAAGATGTACCTCTCCAGCCCCAAGTCCAATTTTTGGATAAGCCTATC CTCAATAGCACTAGTACTTTGCACAGGACACATATCAATTCCCTTTCAGCTGATACACTGAG ${ t TGCCTCTGAACCAATGGAGTTAAGTGGGCAC}{{ t TGA}}$ AAGGTAGGCCGGGCATGGTGGCTCATGC CTGTAATCCCAGCACTTTGGGAGGCTGAGACGGGTGGATTACCTGAGGTCAGGACTTCAAGA CCAGCCTGGCCAACATGGTGAAACCCCGTCTCCACTAAAAATACAAAAATTAGCCGGGCGTG ATGGTGGGCACCTCTAATCCCAGCTACTTGGGAGGCTGAGGGCAGGAGAATTGCTTGAATCC AGGAGGCAGAGGTTGCAGTGAGTGGAGGTTGTACCACTGCACTCCAGCCTGGCTGACAGTGA GACACTCCATCTCAAAAAAAAAAA

MAPKKLSCLRSLLLPLSLTLLLPQADTRSFVVDRGHDRFLLDGAPFRYVSGSLHYFRVPRVL
WADRLLKMRWSGLNAIQFYVPWNYHEPQPGVYNFNGSRDLIAFLNEAALANLLVILRPGPYI
CAEWEMGGLPSWLLRKPEIHLRTSDPDFLAAVDSWFKVLLPKIYPWLYHNGGNIISIQVENE
YGSYRACDFSYMRHLAGLFRALLGEKILLFTTDGPEGLKCGSLRGLYTTVDFGPADNMTKIF
TLLRKYEPHGPLVNSEYYTGWLDYWGQNHSTRSVSAVTKGLENMLKLGASVNMYMFHGGTNF
GYWNGADKKGRFLPITTSYDYDAPISEAGDPTPKLFALRDVISKFQEVPLGPLPPPSPKMML
GPVTLHLVGHLLAFLDLLCPRGPIHSILPMTFEAVKQDHGFMLYRTYMTHTIFEPTPFWVPN
NGVHDRAYVMVDGVFQGVVERNMRDKLFLTGKLGSKLDILVENMGRLSFGSNSSDFKGLLKP
PILGQTILTQWMMFPLKIDNLVKWWFPLQLPKWPYPQAPSGPTFYSKTFPILGSVGDTFLYL
PGWTKGQVWINGFNLGRYWTKQGPQQTLYVPRFLLFPRGALNKITLLELEDVPLQPQVQFLD
KPILNSTSTLHRTHINSLSADTLSASEPMELSGH

Signal sequence:

amino acids 1-27

N-glycosylation site.

amino acids 97-101, 243-247, 276-280, 486-490, 625-629

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 4-8

Casein kinase II phosphorylation site.

amino acids 148-152, 234-238, 327-331, 423-427, 469-473, 550-554, 603-607, 644-648

Tyrosine kinase phosphorylation site.

amino acids 191-198

N-myristoylation site.

amino acids 131-137, 176-182, 188-194, 203-209, 223-229, 227-233, 231-237, 274-280, 296-300, 307-313, 447-453, 484-490

GCTTTGAACACGTCTGCAAGCCCAAAGTTGAGCATCTGATTGGTTATGAGGTATTTGAGTGC ACCCACAATATGCTTACATGTTGAAAAAGCTTCTCATCAGTTACATATCCATTATTTGTGT TTATGGCTTTATCTGCCTCTACACTCTCTTCTGGTTATTCAGGATACCTTTGAAGGAATATT CTTTCGAAAAAGTCAGAGAAGAGAGCAGTTTTAGTGACATTCCAGATGTCAAAAACGATTTT GCGTTCCTTCACATGGTAGACCAGTATGACCAGCTATATTCCAAGCGTTTTGGTGTGTT CTTGTCAGAAGTTAGTGAAAATAAACTTAGGGAAATTAGTTTGAACCATGAGTGGACATTTG AAAAACTCAGGCAGCACATTTCACGCAACGCCCAGGACAAGCAGGAGTTGCATCTGTTCATG $\tt CTGTCGGGGGTGCCCGATGCTGTCTTTGACCTCACAGACCTGGATGTGCTAAAGCTTGAACT$ AATTCCAGAAGCTAAAATTCCTGCTAAGATTTCTCAAATGACTAACCTCCAAGAGCTCCACC TCTGCCACTGCCCTGCAAAAGTTGAACAGACTGCTTTTAGCTTTCTTCGCGATCACTTGAGA CCTTCGAGAGTTGTACTTAATAGGCAATTTGAACTCTGAAAACAATAAGATGATAGGACTTG AATCTCTCCGAGAGTTGCGGCACCTTAAGATTCTCCACGTGAAGAGCAATTTGACCAAAGTT TAAACTCTTGGTACTGAACAGCCTTAAGAAAATGATGATGTCGCTGAGCTGGAACTCCAGA ACTGTGAGCTAGAGAGAATCCCACATGCTATTTTCAGCCTCTCTAATTTACAGGAACTGGAT TTAAAGTCCAATAACATTCGCACAATTGAGGAAATCATCAGTTTCCAGCATTTAAAACGACT AAAACTTGGAGTCACTTTATTTCTCTAACAACAAGCTCGAATCCTTACCAGTGGCAGTATTT AGTTTACAGAAACTCAGATGCTTAGATGTGAGCTACAACAACATTTCAATGATTCCAATAGA AATAGGATTGCTTCAGAACCTGCAGCATTTGCATATCACTGGGAACAAGTGGACATTCTGC CAAAACAATTGTTTAAATGCATAAAGTTGAGGACTTTGAATCTGGGACAGAACTGCATCACC TCACTCCCAGAGAAAGTTGGTCAGCTCTCCCAGCTCAGCTGGAGCTGAAGGGGAACTG CTTGGACCGCCTGCCAGCCCAGCTGGGCCAGTGTCGGATGCTCAAGAAAAGCGGGCTTGTTG TGGAAGATCACCTTTTTGATACCCTGCCACTCGAAGTCAAAGAGGCATTGAATCAAGACATA AATATTCCCTTTGCAAATGGGATT<u>TAA</u>ACTAAGATAATATATGCACAGTGATGTGCAGGAAC AACTTCCTAGATTGCAAGTGCTCACGTACAAGTTATTACAAGATAATGCATTTTAGGAGTAG ATACATCTTTTAAAATAAAACAGAGAGGATGCATAGAAGGCTGATAGAAGACATAACTGAAT GCTGCCGCTACTGAATGTTTACAAATTGCTTGCCTGCTAAAGTAAATGATTAAATTGACATT TTCTTACTAAAAAAAAAAAAAAAA

FIGURE 68

MAYMLKKLLISYISIICVYGFICLYTLFWLFRIPLKEYSFEKVREESSFSDIPDVKNDFAFL
LHMVDQYDQLYSKRFGVFLSEVSENKLREISLNHEWTFEKLRQHISRNAQDKQELHLFMLSG
VPDAVFDLTDLDVLKLELIPEAKIPAKISQMTNLQELHLCHCPAKVEQTAFSFLRDHLRCLH
VKFTDVAEIPAWVYLLKNLRELYLIGNLNSENNKMIGLESLRELRHLKILHVKSNLTKVPSN
ITDVAPHLTKLVIHNDGTKLLVLNSLKKMMNVAELELQNCELERIPHAIFSLSNLQELDLKS
NNIRTIEEIISFQHLKRLTCLKLWHNKIVTIPPSITHVKNLESLYFSNNKLESLPVAVFSLQ
KLRCLDVSYNNISMIPIEIGLLQNLQHLHITGNKVDILPKQLFKCIKLRTLNLGQNCITSLP
EKVGQLSQLTQLELKGNCLDRLPAQLGQCRMLKKSGLVVEDHLFDTLPLEVKEALNQDINIP
FANGI

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 241-245, 248-252, 383-387

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 326-330

Casein kinase II phosphorylation site.

amino acids 48-52, 133-137, 226-230, 315-319, 432-436, 444-448

Tyrosine kinase phosphorylation site.

amino acids 349-355, 375-381

N-myristoylation site.

amino acids 78-84, 124-130, 212-218, 392-398

FIGURE 69

TTTTTCCATCTCTGGGCCAGCTTGGGATCCTAGGCCGCCCTGGGAAGACATTTGTGTTTTTACACACATAAGGAT GCTCAGTGCTTGCCTTATCTGCCTAGGTACATCGAAGTCTTTTGACCTCCATACAGTGATTATGCCTGTC ${\tt ATCGCTGGTGGTATCCTGGCGGCCTTGCTCCTGCTGATAGTTGTCGTGCTCTGTCTTTACTTCAAAATACACAAC}$ GCGCTAAAAGCTGCAAAGGAACCTGAAGCTGTGGCTGTAAAAAATCACAACCCAGACAAGGTGTGGTGGGCCAAG AACAGCCAGGCCAAAACCATTGCCACGGAGTCTTGTCCTGCCCTGCAGTGCTGTGAAGGATATAGAATGTGTGCC ${\tt AGTTTTGATTCCCTGCCACCTTGCTGTTGCGACATAAATGAGGGCCTCTGAGTTAGGAAAGGCTCCCTTCTCAAA}$ GCAGAGCCCTGAAGACTTCAATGATGTCAATGAGGCCACCTGTTTGTGATGTGCAGGCACAGAAGAAAGGCACAG $\tt CTCCCCATCAGTTTCATGGAAAATAACTCAGTGCCTGCTGGGAAACCAGCTGCTGGAGATCCCTACAGAGAGCTTC$ CACAGCTGCTCTATTCTCACACAAATCTACCCCTTGCGTGGCTGGAACTGACGTTTCCCTGGAGGTGTCCAGAAA AGAAGGCTCATGCCATTGACCCTCTTAATTCTCTCCTGTTTGGCGGAGGCTGACAATGGCGGAGGCTGAAGGCAAT GCAAGCTGCACAGTCAGTCTAGGGGGTGCCAATATGGCAGAGACCCACAAAGCCATGATCCTGCAACTCAATCCC AGTGAGAACTGCACCTGGACAATAGAAAGACCAGAAAACAAAAGCATCAGAATTATCTTTTCCTATGTCCAGCTT CAAGTCTGCAGTAAAAACGACTATGTTCCTGTATTTGAATCATCCAGTACATTGACGTTTCAAATAGTTACT GACTCAGCAAGAATTCAAAGAACTGTCTTTGTCTTCTACTACTTCTTCTCTCCTAACATCTCTATTCCAAACTGT GGCGGTTACCTGGATACCTTGGAAGGATCCTTCACCAGCCCCAATTACCCAAAGCCGCATCCTGAGCTGGCTTAT TGTGTGTGGCACATACAAGTGGAGAAAGATTACAAGATAAAACTAAACTTCAAAGAGATTTTCCTAGAAATAGAC ${\tt AAACAGTGCAAATTTGATTTTCTTGCCATCTATGATGGCCCCTCCACCAACTCTGGCCTGATTGGACAAGTCTGT}$ GGCCGTGTGACTCCCACCTTCGAATCGTCATCAAACTCTCTGACTGTCGTGTTGTCTACAGATTATGCCAATTCT TACCGGGGATTTTCTGCTTCCTACACCTCAATTTATGCAGAAAACATCAACACTACATCTTTAACTTGCTCTTCT GACAGGATGAGAGTTATTATAAGCAAATCCTACCTAGAGGCTTTTAACTCTAATGGGAATAACTTGCAACTAAAA GACCCAACTTGCAGACCAAAATTATCAAATGTTGTGGAATTTTCTGTCCCTCTTAATGGATGTGGTACAATCAGA AAGGTAGAAGATCAGTCAATTACATCACCAATATAATCACCTTTTTCTGCATCCTCAACTTCTGAAGTGATCACC CGTCAGAAACAACTCCAGATTATTGTGAAGTGTGAAATGGGACATAATTCTACAGTGGAGATAATATACATAACA GAAGATGATATACAAAGTCAAAATGCACTGGGCAAATATAACACCAGCATGGCTCTTTTTTGAATCCAATTCA ${\tt TTTGAAAAGACTATACTTGAATCACCATATTATGTGGATTTGAACCAAACTCTTTTTGTTCAAGTTAGTCTGCAC$ ACCTCAGATCCAAATTTGGTGGTGTTTCTTGATACCTGTAGAGCCTCTCCCACCTCTGACTTTGCATCTCCAACC TACGACCTAATCAAGAGTGGATGTAGTCGAGATGAAACTTGTAAGGTGTATCCCTTATTTGGACACTATGGGAGA ${\tt TTCCAGTTTAATGCCTTTAAATTCTTGAGAAGTATGAGCTCTGTGTATCTGCAGTGTAAAGTTTTGATATGTGAT}$ AGCAGTGACCACCAGTCTCGCTGCAATCAAGGTTGTGTCTCCAGAAGCAAACGAGACATTTCTTCATATAAATGG AAAACAGATTCCATCATAGGACCCATTCGTCTGAAAAAGGGATCGAAGTGCAAGTGGCAATTCAGGATTTCAGCAT GAAACACATGCGGAAGAAACTCCAAACCAGCCTTTCAACAGTGTGCATCTGTTTTCCTTCATGGTTCTAGCTCTG AATGTGGTGACTGTAGCGACAATCACAGTGAGGCATTTTGTAAATCAACGGGCAGACTACAAATACCAGAAGCTG ${\tt CAGAACTAT} \underline{{\tt TAA}} {\tt CTAACAGGTCCAACCCTAAGTGAGACATGTTTCTCCAGGATGCCAAAGGAAATGCTACCTCGT}$ GGCTACACATATTATGAATAAATGAGGAAGGGCCTGAAAGTGACACACAGGCCTGCATGTAAAAAAA

MELVRRLMPLTLLILSCLAELTMAEAEGNASCTVSLGGANMAETHKAMILQLNPSENCTWTI ERPENKSIRIIFSYVQLDPDGSCESENIKVFDGTSSNGPLLGQVCSKNDYVPVFESSSSTLT FQIVTDSARIQRTVFVFYYFFSPNISIPNCGGYLDTLEGSFTSPNYPKPHPELAYCVWHIQV EKDYKIKLNFKEIFLEIDKQCKFDFLAIYDGPSTNSGLIGQVCGRVTPTFESSSNSLTVVLS TDYANSYRGFSASYTSIYAENINTTSLTCSSDRMRVIISKSYLEAFNSNGNNLQLKDPTCRP KLSNVVEFSVPLNGCGTIRKVEDQSITYTNIITFSASSTSEVITRQKQLQIIVKCEMGHNST VEIIYITEDDVIQSQNALGKYNTSMALFESNSFEKTILESPYYVDLNQTLFVQVSLHTSDPN LVVFLDTCRASPTSDFASPTYDLIKSGCSRDETCKVYPLFGHYGRFQFNAFKFLRSMSSVYL QCKVLICDSSDHQSRCNQGCVSRSKRDISSYKWKTDSIIGPIRLKRDRSASGNSGFQHETHA EETPNQPFNSVHLFSFMVLALNVVTVATITVRHFVNQRADYKYQKLQNY

Signal sequence:

amino acids 1-24

Transmembrane domain:

amino acids 571-586

N-glycosylation site.

amino acids 29-33, 57-61, 67-71, 148-152, 271-275, 370-374, 394-398, 419-423

Casein kinase II phosphorylation site.

amino acids 22-26, 108-112, 289-293, 348-352, 371-375, 379-383, 408-412, 463-467, 520-524, 556-560

Tyrosine kinase phosphorylation site.

amino acids 172-180, 407-415, 407-416, 519-528

N-myristoylation site.

amino acids 28-34, 38-44, 83-89, 95-101, 104-110, 226-232

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

GGAC<u>ATG</u>CGGCCCCAGGAGCTCCCCAGGCTCGCGTTCCCGTTGCTGTTGCTGT TGCTGCCGCCGCCGTGCCCTGCCCACAGCGCCACGCGCTTCGACCCCACCTGGGAGTCC CTGGACGCCCGCCAGCTGCCCGCGTGGTTTGACCAGGCCAAGTTCGGCATCTTCATCCACTG GGGAGTGTTTTCCGTGCCCAGCTTCGGTAGCGAGTGGTTCTGGTGGTATTGGCAAAAGGAAA AGATACCGAAGTATGTGGAATTTATGAAAGATAATTACCCTCCTAGTTTCAAATATGAAGAT TTTGGACCACTATTTACAGCAAAATTTTTTAATGCCAACCAGTGGGCAGATATTTTTCAGGC CTCTGGTGCCAAATACATTGTCTTAACTTCCAAACATCATGAAGGCTTTACCTTGTGGGGGT CAGAATATTCGTGGAACTGGAATGCCATAGATGAGGGGCCCAAGAGGGACATTGTCAAGGAA CTTGAGGTAGCCATTAGGAACAGAACTGACCTGCGTTTTTGGACTGTACTATTCCCTTTTTGA ATGGTTTCATCCGCTCTTCCTTGAGGATGAATCCAGTTCATTCCATAAGCGGCAATTTCCAG TTTCTAAGACATTGCCAGAGCTCTATGAGTTAGTGAACAACTATCAGCCTGAGGTTCTGTGG TCGGATGGTGACGGAGGACCCCGGATCAATACTGGAACAGCACAGGCTTCTTGGCCTGGTT ATATAATGAAAGCCCAGTTCGGGGCACAGTAGTCACCAATGATCGTTGGGGAGCTGGTAGCA TCTGTAAGCATGGTGGCTTCTATACCTGCAGTGATCGTTATAACCCAGGACATCTTTTGCCA CATAAATGGGAAAACTGCATGACAATAGACAAACTGTCCTGGGGCTATAGGAGGGAAGCTGG AATCTCTGACTATCTTACAATTGAAGAATTGGTGAAGCAACTTGTAGAGACAGTTTCATGTG GAGGAAATCTTTTGATGAATATTGGGCCCACACTAGATGGCACCATTTCTGTAGTTTTTGAG GAGCGACTGAGGCAAGTGGGGTCCTGGCTAAAAGTCAATGGAGAAGCTATTTATGAAACCTA TACCTGGCGATCCCAGAATGACACTGTCACCCCAGATGTGTGGTACACATCCAAGCCTAAAG AAAAATTAGTCTATGCCATTTTTCTTAAATGGCCCACATCAGGACAGCTGTTCCTTGGCCAT CCCAAAGCTATTCTGGGGGCAACAGAGGTGAAACTACTGGGCCATGGACAGCCACTTAACTG GATTTCTTTGGAGCAAAATGGCATTATGGTAGAACTGCCACAGCTAACCATTCATCAGATGC CGTGTAAATGGGGCTGGGCTCTAGCCCTAACTAATGTGATCTAAAGTGCAGCAGAGTGGCTG ATGCTGCAAGTTATGTCTAAGGCTAGGAACTATCAGGTGTCTATAATTGTAGCACATGGAGA AAGCAATGTAAACTGGATAAGAAAATTATTTGGCAGTTCAGCCCTTTTCCCTTTTTCCCACTA AATTTTTCTTAAATTACCCATGTAACCATTTTAACTCTCCAGTGCACTTTGCCATTAAAGTC TCTTCACATTGATTTCCATGTGTGACTCAGAGGTGAGAATTTTTTCACATTATAGTAG CAAGGAATTGGTGGTATTATGGACCGAACTGAAAATTTTATGTTGAAGCCATATCCCCCATG ATTATATAGTTATGCATCACTTAATATGGGGATATTTTCTGGGAAATGCATTGCTAGTCAAT TTTTTTTTTGTGCCAACATCATAGAGTGTATTTACAAAATCCTAGATGGCATAGCCTACTACA CACCTAATGTGTATGGTATAGACTGTTGCTCCTAGGCTACAGACATATACAGCATGTTACTG AATACTGTAGGCAATAGTAACAGTGGTATTTGTATATCGAAACATATGGAAACATAGAGAAG GTACAGTAAAAATACTGTAAAATAAATGGTGCACCTGTATAGGGCACTTACCACGAATGGAG CTTACAGGACTGGAAGTTGCTCTGGGTGAGTCAGTGAATGTGAAGGCCTAGGACATTA GTTTTTCTTTCAATTATAAATTAACATAAGTGTACTGTAACTTTACAAACGTTTTAAATT TTTAAAACCTTTTTGGCTCTTTTGTAATAACACTTAGCTTAAAACATAAACTCATTGTGCAA ATGTAA

MRPQELPRLAFPLLLLLLLLPPPPCPAHSATRFDPTWESLDARQLPAWFDQAKFGIFIHWG
VFSVPSFGSEWFWWYWQKEKIPKYVEFMKDNYPPSFKYEDFGPLFTAKFFNANQWADIFQAS
GAKYIVLTSKHHEGFTLWGSEYSWNWNAIDEGPKRDIVKELEVAIRNRTDLRFGLYYSLFEW
FHPLFLEDESSSFHKRQFPVSKTLPELYELVNNYQPEVLWSDGDGGAPDQYWNSTGFLAWLY
NESPVRGTVVTNDRWGAGSICKHGGFYTCSDRYNPGHLLPHKWENCMTIDKLSWGYRREAGI
SDYLTIEELVKQLVETVSCGGNLLMNIGPTLDGTISVVFEERLRQVGSWLKVNGEAIYETYT
WRSQNDTVTPDVWYTSKPKEKLVYAIFLKWPTSGQLFLGHPKAILGATEVKLLGHGQPLNWI
SLEQNGIMVELPQLTIHQMPCKWGWALALTNVI

Signal sequence:

amino acids 1-28

N-glycosylation site.

amino acids 171-175, 239-243, 377-381

Casein kinase II phosphorylation site.

amino acids 32-36, 182-186, 209-213, 227-231, 276-280, 315-319, 375-375

Tyrosine kinase phosphorylation site.

amino acids 361-369, 389-397

N-myristoylation site.

amino acids 143-149, 178-184, 255-261, 272-278, 428-434

Leucine zipper pattern.

amino acids 410-432

Alpha-L-fucosidase putative active site.

amino acids 283-295

TCCAGAACTCTCCATCCGGACTAGTTATTGAGCATCTGCCTCTCATATCACCAGTGGCCATC TGAGGTGTTTCCCTGGCTCTGAAGGGGTAGGCACGATGCCAGGTGCTTCAGCCTGGTGTTG CTTCTCACTTCCATCTGGACCACGAGGCTCCTGGTCCAAGGCTCTTTGCGTGCAGAAGAGCT TTCCATCCAGGTGTCATGCAGAATTATGGGGATCACCCTTGTGAGCAAAAAGGCGAACCAGC AGCTGAATTTCACAGAAGCTAAGGAGGCCTGTAGGCTGCTGGGACTAAGTTTGGCCGGCAAG GACCAAGTTGAAACAGCCTTGAAAGCTAGCTTTGAAACTTGCAGCTATGGCTGGGTTGGAGA TCCTGATTTGGAAGGTTCCAGTGAGCCGACAGTTTGCAGCCTATTGTTACAACTCATCTGAT ACTTGGACTAACTCGTGCATTCCAGAAATTATCACCACCAAAGATCCCATATTCAACACTCA AACTGCAACAAACAACAGAATTTATTGTCAGTGACAGTACCTACTCGGTGGCATCCCCTT ACTCTACAATACCTGCCCCTACTACTACTCCTCCTGCTCCAGCTTCCACTTCTATTCCACGG AGAAAAAATTGATTTGTGTCACAGAAGTTTTTATGGAAACTAGCACCATGTCTACAGAAAC TGAACCATTTGTTGAAAATAAAGCAGCATTCAAGAATGAAGCTGCTGGGTTTTGGAGGTGTCC CCACGGCTCTGCTAGTGCTTGCTCTCTTTTTTGGTGCTGCAGCTGGTCTTGGATTTTGC CGAAACCAAAGTAGTAAAGGAGGAGAAGGCCAATGATAGCAACCCTAATGAGGAATCAAAGA AAACTGATAAAAACCCAGAAGAGTCCAAGAGTCCAAGCAAAACTACCGTGCGATGCCTGGAA TTACCCTGCCCCAGCTGGGGAAATCAAAAGGGCCCAAAGAACCAAAGAAGAAAGTCCACCCTT GGTTCCTAACTGGAATCAGCTCAGGACTGCCATTGGACTATGGAGTGCACCAAAGAGAATGC CCTTCTCCTTATTGTAACCCTGTCTGGATCCTATCCTCCTACCTCCAAAGCTTCCCACGGCC TTTCTAGCCTGGCTATGTCCTAATAATATCCCACTGGGAGAAAGGAGTTTTGCAAAGTGCAA GGACCTAAAACATCTCATCAGTATCCAGTGGTAAAAAGGCCTCCTGGCTGTCTGAGGCTAGG TGGGTTGAAAGCCAAGGAGTCACTGAGACCAAGGCTTTCTCTACTGATTCCGCAGCTCAGAC CCTTTCTTCAGCTCTGAAAGAGAAACACGTATCCCACCTGACATGTCCTTCTGAGCCCGGTA AGAGCAAAAGAATGGCAGAAAAGTTTAGCCCCTGAAAGCCATGGAGATTCTCATAACTTGAG ACCTAATCTCTGTAAAGCTAAAATAAAGAAATAGAACAAGGCTGAGGATACGACAGTACACT GTCAGCAGGACTGTAAACACAGACAGGGTCAAAGTGTTTTCTCTGAACACATTGAGTTGGA ATCACTGTTTAGAACACACACTTACTTTTTCTGGTCTCTACCACTGCTGATATTTTCTCT AGGAAATATACTTTTACAAGTAACAAAAATAAAAACTCTTATAAATTTCTATTTTATCTGA GTTACAGAAATGATTACTAAGGAAGATTACTCAGTAATTTGTTTAAAAAGTAATAAAATTCA ACAAACATTTGCTGAATAGCTACTATATGTCAAGTGCTGTGCAAGGTATTACACTCTGTAAT TGAATATTATTCCTCAAAAAATTGCACATAGTAGAACGCTATCTGGGAAGCTATTTTTTCA GTTTTGATATTTCTAGCTTATCTACTTCCAAACTAATTTTTATTTTTTGCTGAGACTAATCTT ATTCATTTTCTCTAATATGGCAACCATTATAACCTTAATTTATTATTAACATACCTAAGAAG TACATTGTTACCTCTATATACCAAAGCACATTTTAAAAAGTGCCATTAACAAATGTATCACTA GCCCTCCTTTTTCCAACAAGAAGGGACTGAGAGATGCAGAAATATTTGTGACAAAAAATTAA AGCATTTAGAAAACTT

FIGURE 74

MARCFSLVLLLTSIWTTRLLVQGSLRAEELSIQVSCRIMGITLVSKKANQQLNFTEAKEACR LLGLSLAGKDQVETALKASFETCSYGWVGDGFVVISRISPNPKCGKNGVGVLIWKVPVSRQF AAYCYNSSDTWTNSCIPEIITTKDPIFNTQTATQTTEFIVSDSTYSVASPYSTIPAPTTTPP APASTSIPRRKKLICVTEVFMETSTMSTETEPFVENKAAFKNEAAGFGGVPTALLVLALLFF GAAAGLGFCYVKRYVKAFPFTNKNQQKEMIETKVVKEEKANDSNPNEESKKTDKNPEESKSP SKTTVRCLEAEV

Signal sequence:

amino acids 1-16

Transmembrane domain:

amino acids 235-254

N-glycosylation site.

amino acids 53-57, 130-134, 289-293

Casein kinase II phosphorylation site.

amino acids 145-149, 214-218

Tyrosine kinase phosphorylation site.

amino acids 79-88

N-myristoylation site.

amino acids 23-29, 65-71, 234-240, 235-239, 249-255, 253-259

AGATGGCGGTCTTGGCACCTCTAATTGCTCTCGTGTATTCGGTGCCGCGACTTTCACGATGG CTCGCCCAACCTTACTACCTTCTGTCGGCCCTGCTCTCTGCTGCCTTCCTACTCGTGAGGAA ACTGCCGCCGCTCTGCCACGGTCTGCCCACCCAACGCGAAGACGGTAACCCGTGTGACTTTG ACTGGAGAGAGTGGAGATCCTGATGTTTCTCAGTGCCATTGTGATGATGAAGAACCGCAGA TCCATCACTGTGGAGCAACATATAGGCAACATTTTCATGTTTAGTAAAGTGGCCAACACAAT TCTTTCTTCCGCTTGGATATTCGCATGGGCCTACTTTACATCACACTCTGCATAGTGTTCC TGATGACGTGCAAACCCCCCCTATATATGGGCCCTGAGTATATCAAGTACTTCAATGATAAA ACCATTGATGAGGAACTAGAACGGGACAAGAGGGTCACTTGGATTGTGGAGTTCTTTGCCAA TTGGTCTAATGACTGCCAATCATTTGCCCCTATCTATGCTGACCTCTCCCTTAAATACAACT GTACAGGGCTAAATTTTGGGAAGGTGGATGTTGGACGCTATACTGATGTTAGTACGCGGTAC AAAGTGAGCACATCACCCTCACCAAGCAACTCCCTACCCTGATCCTGTTCCAAGGTGGCAA GGAGGCAATGCGGCGGCCACAGATTGACAAGAAAGGACGGGCTGTCTCATGGACCTTCTCTG AGGAGAATGTGATCCGAGAATTTAACTTAAATGAGCTATACCAGCGGGCCAAGAAACTATCA AAGGCTGGAGACAATATCCCTGAGGAGCAGCCTGTGGCTTCAACCCCCACCACGAGTGTCAGA TGGGGAAAACAAGAAGGATAAATAAGATCCTCACTTTGGCAGTGCTTCCTCTCCTGTCAATT CCAGGCTCTTTCCATAACCACAAGCCTGAGGCTGCAGCCTTTNATTNATGTTTTCCCTTTGG CTGNGACTGGNTGGGGCAGCATGCAGCTTCTGATTTTAAAGAGGCATCTAGGGAATTGTCAG TCATAGGACGGAGGGGAAATGGTTTCCCTCCAAGCTTGGGTCAGTGTGTTAACTGCTTATC AGCTATTCAGACATCTCCATGGTTTCTCCATGAAACTCTGTGGTTTCATCATTCCTTCTTAG TTGACCTGCACAGCTTGGTTAGACCTAGATTTAACCCTAAGGTAAGATGCTGGGGTATAGAA CGCTAAGAATTTTCCCCCAAGGACTCTTGCTTCCTTAAGCCCTTCTGGCTTCGTTTATGGTC TTCATTAAAAGTATAAGCCTAACTTTGTCGCTAGTCCTAAGGAGAAACCTTTAACCACAAAG TTTTTATCATTGAAGACAATATTGAACAACCCCCTATTTTGTGGGGATTGAGAAGGGGTGAA TAGAGGCTTGAGACTTTCCTTTGTGTGGTAGGACTTGGAGGAGAAATCCCCTGGACTTTCAC TAACCCTCTGACATACTCCCCACACCCAGTTGATGGCTTTCCGTAATAAAAAGATTGGGATT TCCTTTTG

MAVLAPLIALVYSVPRLSRWLAQPYYLLSALLSAAFLLVRKLPPLCHGLPTQREDGNPCDFD WREVEILMFLSAIVMMKNRRSITVEQHIGNIFMFSKVANTILFFRLDIRMGLLYITLCIVFL MTCKPPLYMGPEYIKYFNDKTIDEELERDKRVTWIVEFFANWSNDCQSFAPIYADLSLKYNC TGLNFGKVDVGRYTDVSTRYKVSTSPLTKQLPTLILFQGGKEAMRRPQIDKKGRAVSWTFSE ENVIREFNLNELYQRAKKLSKAGDNIPEEQPVASTPTTVSDGENKKDK

Signal sequence:

amino acids 1-48

Transmembrane domain:

amino acids 111-125

N-glycosylation site.

amino acids 165-169, 185-189

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 154-158, 265-269

Casein kinase II phosphorylation site.

amino acids 51-55, 145-149, 245-249, 286-290, 288-292

N-myristoylation site.

amino acids 188-194, 225-231

Myb DNA-binding domain repeat signature 1.

amino acids 244-253

GGACAGCTCGCGGCCCCCGAGAGCTCTAGCCGTCGAGGAGCTGCCTGGGGACGTTTGCCCTG GGGCCCCAGCCTGGCCCGGGTCACCCTGGCATGAGGAGATGGGCCTGTTGCTCCTGGTCCCA TTGCTCCTGCTGCCCGGCTCCTACGGACTGCCCTTCTACAACGGCTTCTACTACTACTCCAACAG CGCCAACGACCAGAACCTAGGCAACGGTCATGGCAAAGACCTCCTTAATGGAGTGAAGCTGG TGGTGGAGACACCGAGGAGACCCTGTTCACCTACCAAGGGGCCAGTGTGATCCTGCCCTGC CGCTACCGCTACGAGCCGGCCCTGGTCTCCCCGCGCGCGTGTGCGTGTCAAATGGTGGAAGCT GTCGGAGAACGGGCCCCAGAGAAGGACGTGCTGGTGGCCATCGGGCTGAGGCACCGCTCCT TTGGGGACTACCAAGGCCGCGTGCACCTGCGGCAGGACAAAGAGCATGACGTCTCGCTGGAG ATCCAGGATCTGCGGCTGGAGGACTATGGGCGTTACCGCTGTGAGGTCATTGACGGGCTGGA GGATGAAAGCGGTCTGGTGGAGCTGGAGCTGCGGGGTGTGGTCTTTCCTTACCAGTCCCCCA ACGGGCGCTACCAGTTCAACTTCCACGAGGGCCAGCAGGTCTGTGCAGAGCAGGCTGCGGTG GTGGCCTCCTTTGAGCAGCTCTTCCGGGCCTGGGAGGGGCCTGGACTGGTGCAACGCGGG CTGGCTGCAGGATGCTACGGTGCAGTACCCCATCATGTTGCCCCGGCAGCCCTGCGGTGGCC GTATTCTGCTTCGCTACTGCCCTCAAGGGGGGGGTGTACTACCTGGAGCACCCTGAGAAGCT GACGCTGACAGAGGCAAGGGAGGCCTGCCAGGAAGATGATGCCACGATCGCCAAGGTGGGAC GGCAGCGTCCGCTACCCTGTGGTTCACCCGCATCCTAACTGTGGGCCCCCAGAGCCTGGGGT CCGAAGCTTTGGCTTCCCCGACCCGCAGAGCCGCTTGTACGGTGTTTACTGCTACCGCCAGC CGTTTTCCCTTGTGGGTTGGAGCCATTTTAACTGTTTTTATACTTCTCAATTTAAATTTTCT TTAAACATTTTTTACTATTTTTTGTAAAGCAAACAGAACCCAATGCCTCCCTTTGCTCCTG GATGCCCCACTCCAGGAATCATGCTTGCTCCCCTGGGCCATTTGCGGTTTTGTGGGCCTTCTG GAGGGTTCCCCGCCATCCAGGCTGGTCTCCCTTAAGGAGGTTGGTGCCCAGAGTGGGC GGTGGCCTGTCTAGAATGCCGCCGGGAGTCCGGGCATGGTGGCACAGTTCTCCCTGCCCCT ${\sf CAGCCTGGGGGAAGAAGAGGGCCTCGGGGGCCTCCGGAGCTGGGCCTTTGGGCCTCTCCTGCC}$ CACCTCTACTTCTGTGAAGCCGCTGACCCCAGTCTGCCCACTGAGGGGCTAGGGCTGGAA TCCCCTCTCGGTTCCAAAGAATCTGTTTTGTTGTCATTTGTTTCTCCTGTTTTCCCTGTGTGG GGAGGGCCCTCAGGTGTGTGTACTTTGGACAATAAATGGTGCTATGACTGCCTTCCGCCAA

MGLLLLVPLLLLPGSYGLPFYNGFYYSNSANDQNLGNGHGKDLLNGVKLVVETPEETLFTYQ GASVILPCRYRYEPALVSPRRVRVKWWKLSENGAPEKDVLVAIGLRHRSFGDYQGRVHLRQD KEHDVSLEIQDLRLEDYGRYRCEVIDGLEDESGLVELELRGVVFPYQSPNGRYQFNFHEGQQ VCAEQAAVVASFEQLFRAWEEGLDWCNAGWLQDATVQYPIMLPRQPCGGPGLAPGVRSYGPR HRRLHRYDVFCFATALKGRVYYLEHPEKLTLTEAREACQEDDATIAKVGQLFAAWKFHGLDR CDAGWLADGSVRYPVVHPHPNCGPPEPGVRSFGFPDPQSRLYGVYCYRQH

Signal sequence:

amino acids 1-17

Casein kinase II phosphorylation site.

amino acids 29-33, 53-57, 111-115, 278-282

Tyrosine kinase phosphorylation site.

amino acids 137-145

N-myristoylation site.

amino acids 36-42, 184-190, 208-214, 237-243, 297-303, 307-313

 ${\tt GGAGAGCGAAGCTGGATAACAGGGGACCG} {\tt ATG} {\tt ATGTGGCGACCATCAGTTCTGCTGC}$ ${\tt TTCTGTTGCTACTGAGGCACGGGGCCCAGGGGCAAGCCATCCCCAGACGCAGGCCCTCATGGC}$ CAGGGGAGGTGCACCAGGCGCCCCCTGAGCGACGCTCCCCATGATGACGCCCACGGGAA CTTCCAGTACGACCATGAGGCTTTCCTGGGACGGGAAGTGGCCAAGGAATTCGACCAACTCA GGCGACGGCTGGCTGGCCGAGCTTCGCGCGTGGATCGCGCACACGCAGCAGCGGCA CATACGGGACTCGGTGAGCGCGCCTGGGACACGTACGACACGGACCGCGACGGCCTGTGG GTTGGGAGGAGCTGCGCAACGCCACCTATGGCCACTACGCGCCCGGTGAAGAATTTCATGAC GTGGAGGATGCAGAGACCTACAAAAAGATGCTGGCTCGGGACGAGCGGCGTTTCCGGGTGGC CGACCAGGATGGGGACTCGATGGCCACTCGAGAGGAGCTGACAGCCTTCCTGCACCCCGAGG AGTTCCCTCACATGCGGGACATCGTGATTGCTGAAACCCTGGAGGACCTGGACAGAAACAAA GATGGCTATGTCCAGGTGGAGGAGTACATCGCGGATCTGTACTCAGCCGAGCCTGGGGAGGA GGAGCCGGCGTGGGTGCAGACGGAGAGGCAGCAGTTCCGGGACTTCCGGGATCTGAACAAGG ATGGGCACCTGGATGGGAGTGAGGTGGGCCACTGGGTGCTGCCCCAGGACCAGCCC CTGGTGGAAGCCAACCACCTGCTGCACGAGAGCGACACGGACAAGGATGGGCGGCTGAGCAA AGCGGAAATCCTGGGTAATTGGAACATGTTTGTGGGCAGTCAGGCCACCAACTATGGCGAGG ${\tt ACCTGACCCGGCACCACGATGAGCTG}{\color{blue}{\textbf{TGA}}}{\tt GCACCGCGCACCTGCCACAGCCTCAGAGGCCCG}$ GCAGATGCAGTCCCAGGCATCCTCCTGCCCCTGGGCTCTCAGGGACCCCCTGGGTCGGCTTC TGTCCCTGTCACACCCCCAACCCCAGGGAGGGCTGTCATAGTCCCAGAGGATAAGCAATAC CTATTTCTGACTGAGTCTCCCAGCCCAGACCCAGGGACCCTTGGCCCCAAGCTCAA GAACCGCCCCAACCCCTCCAGCTCCAAATCTGAGCCTCCACCACATAGACTGAAACTCCCCT GGCCCCAGCCCTCTCCTGCCTGGCCTGGCCTGGGACACCTCCTCTCTGCCAGGAGGCAATAA AAAAAAAAAAAA

MMWRPSVLLLLLLRHGAQGKPSPDAGPHGQGRVHQAAPLSDAPHDDAHGNFQYDHEAFLGR EVAKEFDQLTPEESQARLGRIVDRMDRAGDGDGWVSLAELRAWIAHTQQRHIRDSVSAAWDT YDTDRDGRVGWEELRNATYGHYAPGEEFHDVEDAETYKKMLARDERRFRVADQDGDSMATRE ELTAFLHPEEFPHMRDIVIAETLEDLDRNKDGYVQVEEYIADLYSAEPGEEEPAWVQTERQQ FRDFRDLNKDGHLDGSEVGHWVLPPAQDQPLVEANHLLHESDTDKDGRLSKAEILGNWNMFV GSQATNYGEDLTRHHDEL

Signal sequence:

amino acids 1-20

N-glycosylation site.

amino acids 140-144

Casein kinase II phosphorylation site.

amino acids 72-76, 98-102, 127-131, 184-188, 208-212, 289-293, 291-295, 298-302

N-myristoylation site.

amino acids 263-269, 311-317

Endoplasmic reticulum targeting sequence.

amino acids 325-330

GGGGCCTTGCCTTCCGCACTCGGGCGCAGCCGGGTGGATCTCGAGCAGGTGCGGAGCCCCGG CCTGTCTGTCGTCGTTTTGGCGCCCCCCCCCCCCCGCGGTGCGGGGTTGCACACCGATCCTG GGCTTCGCTCGATTTGCCGCCGAGGCGCCTCCCAGACCTAGAGGGGCGCTGGCCTGGAGCAG CGGGTCGTCTGTCTCTCTCTCTGCGCCGCGCCCGGGGATCCGAAGGGTGCGGGGCTCT GAGGAGGTGACGCGGGGCCTCCCGCACCCTGGCCTTGCCCGCATTCTCCCTCTCTCCCAG ${\tt GTGTGAGCAGCCTATCAGTCACC}$ TGTCTGCTGCTGCCGGGGCCCGCGGGCAGCGAGGGAGCCGCTCCCATTGCTATCACATG ${ t TTTTACCAGAGGCTTGGACATCAGGAAAGAGAAAGCAGATGTCCTCTGCCCAGGGGGCTGCC}$ ${ t CTCTTGAGGAATTCTCTGTGTATGGGAACATAGTATATGCTTCTGTATCGAGCATATGTGGG}$ GCTGCTGTCCACAGGGGAGTAATCAGCAACTCAGGGGGACCTGTACGAGTCTATAGCCTACC ${ t TGGTCGAGAAACTATTCCTCAGTAGATGCCAATGGCATCCAGTCTCAAATGCTTTCTAGAT$ GGTCTGCTTCTTTCACAGTAACTAAAGGCAAAAGTAGTACACAGGAGGCCACAGGACAAGCA GTGTCCACAGCACATCCACCAACAGGTAAACGACTAAAGAAAACACCCGAGAAGAAAACTGG GCCGATTTAATTTACAGAAGAATTTTGTTGGAAAAGTGGCTCTAATGTTGGGAATTGGAACA GAAGGACCACATGTGGGCCTTGTTCAAGCCAGTGAACATCCCAAAATAGAATTTTACTTGAA AAACTTTACATCAGCCAAAGATGTTTTGTTTGCCATAAAGGAAGTAGGTTTCAGAGGGGGTA ATTCCAATACAGGAAAAGCCTTGAAGCATACTGCTCAGAAATTCTTCACGGTAGATGCTGGA GTAAGAAAAGGGATCCCCAAAGTGGTGGTGGTATTTATTGATGGTTGGCCTTCTGATGACAT CGAGGAAGCAGCATTGTGGCCAGAGAGTTTGGTGTCAATGTATTTATAGTTTCTGTGGCCA CGGAATAATGGCTTCTTCTCTTACCACATGCCCAACTGGTTTGGCACCACAAAATACGTAAA GCCTCTGGTACAGAAGCTGTGCACTCATGAACAAATGATGTGCAGCAAGACCTGTTATAACT CAGTGAACATTGCCTTTCTAATTGATGGCTCCAGCAGTGTTGGAGATAGCAATTTCCGCCTC ATGCTTGAATTTGTTTCCAACATAGCCAAGACTTTTGAAATCTCGGACATTGGTGCCAAGAT AGCTGCTGTACAGTTTACTTATGATCAGCGCACGGAGTTCAGTTTCACTGACTATAGCACCA AAGAGAATGTCCTAGCTGTCATCAGAAACATCCGCTATATGAGTGGTGGAACAGCTACTGGT GATGCCATTTCCTTCACTGTTAGAAATGTGTTTTGGCCCTATAAGGGAGAGCCCCAACAAGAA CTTCCTAGTAATTGTCACAGATGGGCAGTCCTATGATGATGTCCAAGGCCCTGCAGCTGCTG CACATGATGCAGGAATCACTATCTTCTCTGTTGGTGTGGCCTTGGGCACCTCTGGATGACCTG ${ t AAAGATATGGCTTCTAAACCGAAGGAGTCTCACGCTTTCTTCACAAGAGAGTTCACAGGATT}$ ${ t A}{ t G}{ t A}{ t G}{ t C}{ t T}{ t C}{ t T}{ t G}{ t C}{ t C}{ t A}{ t G}{ t C}{ t C}{ t A}{ t G}{ t C}{ t C}{ t A}{ t G}{ t C}{ t A}{ t C}{ t C}{ t A}{ t G}{ t C}{ t A}{ t C}{ t C}{ t C}{ t A}{ t C}{ t C}{ t A}{ t C}{ t C}{ t C}{ t A}{ t C}{ t$ **AA**TGGTAACATTTTGACAACTGAAAGAAAAAGTACAAGGGGATCCAGTGTGTAAATTGTATT CTCATAATACTGAAATGCTTTAGCATACTAGAATCAGATACAAAACTATTAAGTATGTCAAC AGCCATTTAGGCAAATAAGCACTCCTTTAAAGCCGCTGCCTTCTGGTTACAATTTACAGTGT ACTTTGTTAAAAACACTGCTGAGGCTTCATAATCATGGCTCTTAGAAACTCAGGAAAGAGGA GATAATGTGGATTAAAACCTTAAGAGTTCTAACCATGCCTACTAAATGTACAGATATGCAAA

FIGURE 82

MSAAWIPALGLGVCLLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVY
GNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVT
KGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRRFNLQKN
FVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGGNSNTGKAL
KHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELG
MVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLI
DGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVI
RNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAAHDAGITI
FSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ

Signal sequence:

amino acids 1-24

N-glycosylation site.

amino acids 100-104, 221-225

Casein kinase II phosphorylation site.

amino acids 102-106, 129-133, 224-228, 316-320, 377-381, 420-424, 425-429, 478-482, 528-532

N-myristoylation site.

amino acids 10-16, 23-29, 81-87, 135-141, 158-164, 205-211, 239-245, 240-246, 261-267, 403-409, 442-448, 443-449

Amidation site.

amino acids 145-149

GGCGGCCTCCCGGCGGGAGCGAGCAGATCCAGTCCGGCCCGCAGCGCAACTCGGTCCAGTCG $\tt GGGCGGCGGCGGGGCGCAGAGCGGAGATGCAGCGGCTTGGGGGCCACCCTGCTGTGCCTGC$ TGCTGGCGGCGGCGCCCCACGGCCCCCGCGCCCGACGGCGACCTCGGCTCCAGTC AAGCCCGGCCCGGCTCTCAGCTACCCGCAGGAGGAGGCCACCCTCAATGAGATGTTCCGCGA GGTTGAGGAACTGATGGAGGACACGCAGCACAAATTGCGCAGCGCGGTGGAAGAGATGGAGG CAGAAGAAGCTGCTGCTAAAGCATCATCAGAAGTGAACCTGGCAAACTTACCTCCCAGCTAT TCACAAGATAACCAACAACCAGACTGGACAAATGGTCTTTTCAGAGACAGTTATCACATCTG TGGGAGACGAAGAAGGCAGAAGGAGCCACGAGTGCATCATCGACGAGGACTGTGGGCCCAGC CTGCACCCGGGACAGTGAGTGCTGTGGAGACCAGCTGTGTGTCTGGGGGTCACTGCACCAAAA TGGCCACCAGGGGCAGCAATGGGACCATCTGTGACAACCAGAGGGACTGCCAGCCGGGGCTG ${ t TGCTGTGCCTTCCAGAGAGGCCTGCTGTTCCCTGTGTGCACACCCCTGCCCGTGGAGGGCGA}$ GCTTTGCCATGACCCCGCCAGCCGGCTTCTGGACCTCATCACCTGGGAGCTAGAGCCTGATG GAGCCTTGGACCGATGCCCTTGTGCCAGTGGCCTCCTCTGCCAGCCCACAGCCACAGCCTG GTGTATGTGTGCAAGCCGACCTTCGTGGGGAGCCGTGACCAAGATGGGGAGATCCTGCTGCC ${\tt CAGAGAGGTCCCCGATGAGTATGAAGTTGGCAGCTTCATGGAGGAGGTGCGCCAGGAGCTGG}$ AGGACCTGGAGAGGCCTGACTGAAGAGATGGCGCTGGGGGAGCCTGCGGCTGCCGCCT GCACTGCTGGGAGGGGAAGAGATT**TAG**ATCTGGACCAGGCTGTGGGTAGATGTGCAATAGAA ATAGCTAATTTATTTCCCCAGGTGTGTGCTTTAGGCGTGGGCTGACCAGGCTTCTTCCTACA TCTTCTTCCCAGTAAGTTTCCCCTCTGGCTTGACAGCATGAGGTGTTGTGCATTTGTTCAGC ${\tt TGCAGGAGCAGTTTGCCACCCCTGTCCAGATTATTGGCTGCTTTGCCTCTACCAGTTGGCAG}$ ACAGCCGTTTGTTCTACATGGCTTTGATAATTGTTTGAGGGGAGGAGATGGAAACAATGTGG AGTCTCCCTCTGATTGGTTTTGGGGAAATGTGGAGAAGAGTGCCCTGCTTTGCAAACATCAA CCTGGCAAAAATGCAACAAATGAATTTTCCACGCAGTTCTTTCCATGGGCATAGGTAAGCTG TGCCTTCAGCTGTTGCAGATGAAATGTTCTGTTCACCCTGCATTACATGTGTTTATTCATCC ${ t AGCAGTGTTGCTCAGCTCCTACCTCTGTGCCAGGGCAGCATTTTCATATCCAAGATCAATTC}$ CCTCTCTCAGCACAGCCTGGGGAGGGGGTCATTGTTCTCCTCGTCCATCAGGGATCTCAGAG GCTCAGAGACTGCAAGCTGCTTGCCCAAGTCACACAGCTAGTGAAGACCAGAGCAGTTTCAT CTGGTTGTGACTCTAAGCTCAGTGCTCTCTCCACTACCCCACACCAGCCTTGGTGCCACCAA ${ t AAGTGCTCCCAAAAGGAAGGAGAATGGGATTTTTCTTGAGGCATGCACATCTGGAATTAAG}$ GTCAAACTAATTCTCACATCCCTCTAAAAGTAAACTACTGTTAGGAACAGCAGTGTTCTCAC AGTGTGGGGCAGCCGTCCTTCTAATGAAGACAATGATATTGACACTGTCCCTCTTTGGCAGT TGCATTAGTAACTTTGAAAGGTATATGACTGAGCGTAGCATACAGGTTAACCTGCAGAAACA GTACTTAGGTAATTGTAGGGCGAGGATTATAAATGAAATTTGCAAAATCACTTAGCAGCAAC TGAAGACAATTATCAACCACGTGGAGAAAATCAAACCGAGCAGGGCTGTGTGAAACATGGTT GTAATATGCGACTGCGAACACTGAACTCTACGCCACTCCACAAATGATGTTTTCAGGTGTCA TGGACTGTTGCCACCATGTATTCATCCAGAGTTCTTAAAGTTTAAAGTTGCACATGATTGTA TAAGCATGCTTTCTTTGAGTTTTAAATTATGTATAAACATAAGTTGCATTTAGAAATCAAGC

MQRLGAŢLLCLLLAAAVPTAPAPAPTATSAPVKPGPALSYPQEEATLNEMFREVEELMEDTQ
HKLRSAVEEMEAEEAAAKASSEVNLANLPPSYHNETNTDTKVGNNTIHVHREIHKITNNQTG
QMVFSETVITSVGDEEGRRSHECIIDEDCGPSMYCQFASFQYTCQPCRGQRMLCTRDSECCG
DQLCVWGHCTKMATRGSNGTICDNQRDCQPGLCCAFQRGLLFPVCTPLPVEGELCHDPASRL
LDLITWELEPDGALDRCPCASGLLCQPHSHSLVYVCKPTFVGSRDQDGEILLPREVPDEYEV
GSFMEEVRQELEDLERSLTEEMALGEPAAAAAALLGGEEI

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 96-100, 106-110, 121-125, 204-208

Casein kinase II phosphorylation site.

amino acids 46-50, 67-71, 98-102, 135-139, 206-210, 312-316, 327-331

N-myristoylation site.

amino acids 202-208, 217-223

Amidation site.

amino acids 140-144

TAAAGCCTTAAGGACAGGCCTGGCCATTACCTCTGCAGCTCCTTTGGCTTGTTGAGTCAAAAAACATGGGAGGG CCAGGCACGTGACTCACACCTGTAATCCCAGCATTTTGGGAGACCGAGGTGAGCAGATCACTTGAGGTCAGGAG TTCGAGACCAGCCTGGCCAACATGGAGAAACCCCCATCTCTACTAAAAATACAAAAATTAGCCAGGAGTGGTGGC AGGTGCCTGTAATCCCAGCTACTCAGGTGGCTGAGCCAGGAGAATCGCTTGAATCCAGGAGGCGGAGGATGCAGT GGGGTAGATACTGCTTCTCTGCAACCTCCTTAACTCTGCATCCTCTTCTTCCAGGGCTGCCCCTGATGGGGCCTG GTGTAGAATGACTGCCCTGGGAGGGTGGTTCCTTGGGCCCTGGCAGGGTTGCTGACCCTTACCCTGCAAAACACA $\textbf{AAGAGCAGGACTCCAGACTCTCTTGTGAATGGTCCCCTGCCCTGCAGCTCCACC} \underline{\textbf{ATG}} \underline{\textbf{AGGCTTCTCGTGGCCCC}}$ ACTCTTGCTAGCTTGGGTGGCTGCCACTGCCACTGTGCCCGTGGTACCCTGGCATGTTCCCTGCCCCCCTCA GTGTGCCTGCCAGATCCGGCCCTGGTATACGCCCCGCTCGTCCTACCGCGAGGCTACCACTGTGGACTGCAATGA ${\tt CCTATTCCTGACGGCAGTCCCCCGGGCACTCCCCGCAGGCACAGACCCTGCTGCAGAGCAACAGCATTGT}$ CCGTGTGGACCAGAGTGAGCTGGGCTACCTGGCCAATCTCACAGAGCTGGACCTGTCCCAGAACAGCTTTTCGGA TGCCCGAGACTGTGATTTCCATGCCCTGCCCCAGCTGCTGAGCCTGCACCTAGAGGAGAACCAGCTGACCCGGCT GGAGGACCACAGCTTTGCAGGGCTGGCCAGCCTACAGGAACTCTATCTCAACCACAACCAGCTCTACCGCATCGC ${\tt CCCCAGGGCCTTTTCTGGCCTCAGCAACTTGCTGCGGCTGCACCTCAACTCCAACCTCCTGAGGGCCATTGACAG}$ ${\tt CCGCTGGTTTGAAATGCTGCCCAACTTGGAGATACTCATGATTGGCGGCAACAAGGTAGATGCCATCCTGGACAT}$ GAACTTCCGGCCCTGGCCAACCTGCGTAGCCTGGTGCTAGCAGGCATGAACCTGCGGGAGATCTCCGACTATGC $\tt CCTGGAGGGGCTGCAAAGCCTGGAGAGCCTCTCTTTTATGACAACCAGCTGGCCCGGGTGCCCAGGCGGGCACT$ GGAACAGGTGCCCGGGCTCAAGTTCCTAGACCTCAACAAGAACCCGCTCCAGCGGGTAGGGCCGGGGGACTTTGC ${\tt CAACATGCTGCACCTTAAGGAGCTGGGACTGAACAACATGGAGGAGCTGGTCTCCATCGACAAGTTTGCCCTGGT}$ GAACCTCCCCGAGCTGACCAAGCTGGACATCACCAATAACCCACGGCTGTCCTTCATCCACCCCCGCGCCTTCCA CCTGCCCAACCTGCAGGAGGTAGGTCTCCACGGCAACCCCATCCGCTGTGACTGTGTCATCCGCTGGGCCAATGC GGTCCGTGAGGTGCCCTTCCGGGAGATGACGGACCACTGTTTGCCCCTCATCTCCCCACGAAGCTTCCCCCAAG CCTCCAGGTAGCCAGTGGAGAGCATGGTGCTGCATTGCCGGGCCACTGGCCGAACCCGAACCCGAGATCTACTG GGTCACTCCAGCTGGGCTTCGACTGACACCTGCCCATGCAGGGGAGGTACCGGGTGTACCCCGAGGGGACCCT GGAGCTGCGGAGGGTGACAGCAGAAGAGGCCAGGGCTATACACCTGTGTGGCCCCAGAACCTGGTGGGGGCTGACAC ${\tt GTTGGCTTGTGTATGGGCCAGGACCAAAGAGGCCACTTCTTGCCACAGAGCCTTAGGGGATCGTCCTGGGCTCAT}$ ${\tt TGCCATCCTGGCTGTCCTTCTCCTGGCAGCTGGGCTAGCGGCCCACCTTGGCACAGGCCAACCCAGGAA}$ GGGTGTGGGTGGGAGGCGGCCTCTCCCTCCAGCCTGGGCTTTCTGGGGGCTGGAGTGCCCCTTCTGTCCGGGTTGT GTCTGCTCCCCTCGTCCTGCCCTGGAATCCAGGGAGGAAGCTGCCCAGATCCTCAGAAGGGGAGACACTGTTGCC $ACCATTGTCTCAAAATTCT\underline{TGA}AGCTCAGCCTGTTCTCAGCAGTAGAGAAATCACTAGGACTACTTTTTACCAAA$ AGAGAAGCAGTCTGGGCCAGATGCCCTGCCAGGAAAGGGACATGGACCCACGTGCTTGAGGCCTGGCAGCTGGGC CAAGACAGATGGGGCTTTGTGGCCCTGGGGGTGCTTCTGCAGCCTTGAAAAAGTTGCCCTTACCTCCTAGGGTCA ${\tt CCTCTGCTGCCATCTTCCCAAGGAACAGGAGGGACTTTGGCTAGAGCCTCCTGCCTCCCCATCTT}$ CTCTCTGCCCAGAGGCTCCTGGGCCTGGCTTGGCTGTCCCCTACCTGTGTCCCCGGGCTGCACCCCTTCCTCTTC ${ t TCTTTCTCTGTACAGTCTCAGTTGCTTTGTTGCTCTCTGGGCAAGGGCTGAAGGAGGCCACTCCATCTCAC$ CGCCTCATCTCAGCAGCCTGGGCTCGGCATTCCGAAGCTGACTTTCTATAGGCAATTTTGTACCTTTGTGGAGAA AAAA

MRLLVAPLLLAWVAGATATVPVVPWHVPCPPQCACQIRPWYTPRSSYREATTVDCNDLFLTA VPPALPAGTQTLLLQSNSIVRVDQSELGYLANLTELDLSQNSFSDARDCDFHALPQLLSLHL EENQLTRLEDHSFAGLASLQELYLNHNQLYRIAPRAFSGLSNLLRLHLNSNLLRAIDSRWFE MLPNLEILMIGGNKVDAILDMNFRPLANLRSLVLAGMNLREISDYALEGLQSLESLSFYDNQ LARVPRALEQVPGLKFLDLNKNPLQRVGPGDFANMLHLKELGLNNMEELVSIDKFALVNLP ELTKLDITNNPRLSFIHPRAFHHLPQMETLMLNNNALSALHQQTVESLPNLQEVGLHGNPIR CDCVIRWANATGTRVRFIEPQSTLCAEPPDLQRLPVREVPFREMTDHCLPLISPRSFPPSLQ VASGESMVLHCRALAEPEPEIYWVTPAGLRLTPAHAGRRYRVYPEGTLELRRVTAEEAGLYT CVAQNLVGADTKTVSVVVGRALLQPGRDEGQGLELRVQETHPYHILLSWVTPPNTVSTNLTW SSASSLRGQGATALARLPRGTHSYNITRLLQATEYWACLQVAFADAHTQLACVWARTKEATS CHRALGDRPGLIAILALAVLLLAAGLAAHLGTGQPRKGVGGRRPLPPAWAFWGWSAPSVRVV SAPLVLPWNPGRKLPRSSEGETLLPPLSQNS

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 629-648

N-glycosylation site.

amino acids 94-98, 381-385, 555-559, 583-587

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 485-489

Casein kinase II phosphorylation site.

amino acids 46-50, 51-55, 96-100, 104-108, 130-134, 142-146, 243-247, 313-317, 488-492, 700-704

Tyrosine kinase phosphorylation site.

amino acids 532-540

N-myristoylation site.

amino acids 15-21, 493-499, 566-572

Amidation site.

amino acids 470-474, 660-664, 692-696

 ${\tt GCAAGCCAAGGCGCTGTTTGAGAAGGTGAAGAAGTTCCGGACCCATGTGGAGGAGGGGGACATTGTGTACCGCCT}$ $\tt CCTGGCCACACTCTTCAAGATCCTGGCGTCCTTCTACATCAGCCTAGTCATCTTCTACGGCCTCATCTGCATGTA$ ${\tt CACACTGTGGTGGATGCTACGGCGCTCCCTCAAGAAGTACTCGTTTGAGTCGATCCGTGAGGAGGAGCAGCTACAG}$ $\tt CGACATCCCCGACGTCAAGAACGACTTCGCCTTCATGCTGCACCTCATTGACCAATACGACCCGCTCTACTCCAA$ GCGCTTCGCCGTCTTCCTGTCGGAGGTGAGTGAGAACAAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCT GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAGTGGCAT $\tt CCCTGACACTGTGTTTGACCTGGTGGAGCTGGAGGTCCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCCGCC$ ${\tt CAGCATTGCCCAGCTCACGGGCCTCAAGGAGCTGTGGCTCTACCACACAGCGGCCAAGATTGAAGCGCCTGCGCT}$ GGCCTTCCTGCGCGAGAACCTGCGGGCGCTGCACATCAAGTTCACCGACATCAAGGAGATCCCGCTGTGGATCTA TAGCCTGAAGACACTGGAGGAGCTGCACCTGACGGGCAACCTGAGCGCGGAGAACAACCGCTACATCGTCATCGA AGATGTGGGCGTGCACCTGCAGAAGCTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTCAACAGCCTCAA GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCCACTCCATCTTCAGCCT ${\tt CCACAACCTGCAGGAGATTGACCTCAAGGACAACCATCGAGGAGATGATCATCAGCTTCCAGCACCT}$ GCACCGCCTCACCTGCCTTAAGCTGTGGTACAACCACATCGCCTACATCCCCATCCAGATCGGCAACCTCACCAA ${ t CTACCTGGACCTCAGCCACAACAACCTGACCTTCCTCCCTGCCGACATCGGCCTCCTGCAGAACCTCCAGAACCT}$ AGCCATCACGGCCAACCGGATCGAGACGCTCCCTCCGGAGCTCTTCCAGTGCCGGAAGCTGCGGGCCCTGCACCT GGGCAACAACGTGCTGCAGTCACTGCCCTCCAGGGTGGGCGAGCTGACCAACCTGACGCAGATCGAGCTGCGGGG GCCGGCCCAGCACAGCAGCAGCAGGACCGCTGCCCAGTCCTCAGGCCCGGAGGGGCAGGCCTAGCTTCTCCCAG AACTCCCGGACAGCCAGGACAGCCTCGCGGCTGGGCAGGAGCCTGGGGCCGCTTGTGAGTCAGGCCAGAGCGAGA GGACAGTATCTGTGGGGCTGGCCCCTTTTCTCCCTCTGAGACTCACGTCCCCAGGGCAAGTGCTTGTGGAGGAG ${\tt AGATAACTTATACATTCCCAAGAAAGTTCAGCCCAGATGGAAGGTGTTCAGGGAAAGGTGGGCTGCCTTTTCCCCC}$ ${ t TTGTCCTTATTTAGCGATGCCGCCGGGCATTTAACACCCCACCTGGACTTCAGCAGAGTGGTCCGGGGCGAACCAG$ $\tt CCATGGGACGGTCACCCAGCAGTGCCGGGCTGGGCTCTGCGGTGCGGTCCACGGGAGAGCAGGCCTCCAGCTGGA$ AAAAGACACTAACGGCCAGTGAGTTGGAGTCTCAGGGCAGGGTGGCAGTTTCCCTTGAGCAAAGCAGCCAGACGT ${\tt TGAACTGTGTTTCCTTGGGCGCAGGGTGCAGGGTGTCTTCCGGATCTGGTGACCTTGGTCCAGGAGTT}$ ${\tt CCAGTGCCACCGCTGGCTCCGCTGCTTCCATCAGCCCTGTCGCCACCTGGTCCTTCATGAAGAGCAGACACTTA}$ ${\tt CTGGAGTGCACAGCCCAGTCGGCACCTGGTGGCTGGAAGCCAACCTGCTTTAGATCACTCGGGTCCCCACCTT}$ ${f AGAAGGGTCCCCGCCTTAGATCAATCACGTGGACACTAAGGCACGTTTTAGAGTCTCTTGTCTTAATGATTATGT}$ ${\tt CCATCCGTCTGTCCATTTGTGTTTTTCTGCGTCGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG}$ CCTCTGACAACCATGAAGCAAAAATCCGTTACATGTGGGTCTGAACTTGTAGACTCGGTCACAGTATCAAATAAA ATCTATAACAGAAAAAAAAAAAAAA

FIGURE 88

MRQTIIKVIKFILIICYTVYYVHNIKFDVDCTVDIESLTGYRTYRCAHPLATLFKILASFYI SLVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSK RFAVFLSEVSENKLRQLNLNNEWTLDKLRQRLTKNAQDKLELHLFMLSGIPDTVFDLVELEV LKLELIPDVTIPPSIAQLTGLKELWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWI YSLKTLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSI NNEGTKLIVLNSLKKMANLTELELIRCDLERIPHSIFSLHNLQEIDLKDNNLKTIEEIISFQ HLHRLTCLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLT FLPADIGLLQNLQNLAITANRIETLPPELFQCRKLRALHLGNNVLQSLPSRVGELTNLTQIE LRGNRLECLPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 85-89

Casein kinase II phosphorylation site.

amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368, 398-402, 493-497

N-myristoylation site.

amino acids 173-179, 261-267, 395-401, 441-447

 ${\tt GCCTGTTGCTGATGCTGCGGTGCGGTACTTGTC} \underline{{\tt ATG}} {\tt GAGCTGGCACTGCGGGCGCTCTCCCGT}$ CCCGCGGTGGTTGCTGCTGCCGCTGCTGGGGCCTGAACGCAGGAGCTGTCATTGACT GGCCCACAGAGGAGGCAAGGAAGTATGGGATTATGTGACGGTCCGCAAGGATGCCTACATG TTCTGGTGGCTCTATTATGCCACCAACTCCTGCAAGAACTTCTCAGAACTGCCCCTGGTCAT GTGGCTTCAGGGCGGTCCAGGCGGTTCTAGCACTGGATTTGGAAACTTTGAGGAAATTGGGC CCCTTGACAGTGATCTCAAACCACGGAAAACCACCTGGCTCCAGGCTGCCAGTCTCCTATTT GTGGATAATCCCGTGGGCACTGGGTTCAGTTATGTGAATGGTAGTGGTGCCTATGCCAAGGA CCTGGCTATGGTGGCTTCAGACATGATGGTTCTCCTGAAGACCTTCTTCAGTTGCCACAAAG AATTCCAGACAGTTCCATTCTACATTTTCTCAGAGTCCTATGGAGGAAAAATGGCAGCTGGC ATTGGTCTAGAGCCTTTATAAGGCCATTCAGCGAGGGACCATCAAGTGCAACTTTGCGGGGGT TGCCTTGGGTGATTCCTGGATCTCCCCTGTTGATTCGGTGCTCTCCTGGGGGACCTTACCTGT ACAGCATGTCTCTCTCGAAGACAAAGGTCTGGCAGAGGTGTCTAAGGTTGCAGAGCAAGTA CTGAATGCCGTAAATAAGGGGCTCTACAGAGAGGCCCACAGAGCTGTGGGGGAAAGCAGAAAT GATCATTGAACAGAACACAGATGGGGTGAACTTCTATAACATCTTAACTAAAAGCACTCCCA ${\tt CGTCTACAATGGAGTCGAGTCTAGAATTCACACAGAGCCACCTAGTTTGTCTTTGTCAGCGC}$ GCTCAAAATTATTCCTGAGGATCAATCCTGGGGAGGCCAGGCTACCAACGTCTTTGTGAACA TGGAGGAGGACTTCATGAAGCCAGTCATTAGCATTGTGGACGAGTTGCTGGAGGCAGGGATC AACGTGACGGTGTATAATGGACAGCTGGATCTCATCGTAGATACCATGGGTCAGGAGGCCTG ACAGTGACCCTAAATCTTTGGAAACATCTGCTTTTGTCAAGTCCTACAAGAACCTTGCTTTC TACTGGATTCTGAAAGCTGGTCATATGGTTCCTTCTGACCAAGGGGACATGGCTCTGAAGAT GATGAGACTGGTGACTCAGCAAGAA**TAG**GATGGATGGGCTGGAGATGAGCTGGTTTGGCCT TGGGGCACAGAGCTGAGGCGGCGCTGAAGCTGTAGGAAGCGCCATTCTTCCCTGTATCT AACTGGGGCTGTGATCAAGAAGGTTCTGACCAGCTTCTGCAGAGGATAAAATCATTGTCTCT GGAGGCAATTTGGAAATTATTTCTGCTTCTTAAAAAAACCTAAGATTTTTTAAAAAATTGAT TTGTTTTGATCAAAATAAAGGATGATAATAGATATTAA

MELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKEVWDYVTVRKDAYMFWWLYYATNSC KNFSELPLVMWLQGGPGGSSTGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY VNGSGAYAKDLAMVASDMMVLLKTFFSCHKEFQTVPFYIFSESYGGKMAAGIGLELYKAIQR GTIKCNFAGVALGDSWISPVDSVLSWGPYLYSMSLLEDKGLAEVSKVAEQVLNAVNKGLYRE ATELWGKAEMIIEQNTDGVNFYNILTKSTPTSTMESSLEFTQSHLVCLCQRHVRHLQRDALS QLMNGPIRKKLKIIPEDQSWGGQATNVFVNMEEDFMKPVISIVDELLEAGINVTVYNGQLDL IVDTMGQEAWVRKLKWPELPKFSQLKWKALYSDPKSLETSAFVKSYKNLAFYWILKAGHMVP SDQGDMALKMMRLVTQQE

Signal sequence:

amino acids 1-25

N-glycosylation site.

amino acids 64-68, 126-130, 362-366

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 101-105

Casein kinase II phosphorylation site.

amino acids 204-208, 220-224, 280-284, 284-288, 351-355, 449-453

N-myristoylation site.

amino acids 22-28, 76-82, 79-85, 80-86, 119-125, 169-175, 187-193, 195-201, 331-337, 332-338, 360-366

 $\tt GGCCGCGGGAGAGGGCC\underline{ATG} GGCGCGCGCGGGGCGCTGCTGCTGCTGCTGCTGCTC$ ${\tt GGGCTGGACTCAGGAAGCCGGAGTCGCAGGAGGCGGCGGCCGTTATCAGGACCATGCGGCCGA}$ $\tt CGGGTCATCACGTCGCGCATCGTGGGTGGAGAGGACGCCGAACTCGGGCGTTGGCCGTGGCA$ GGGGAGCCTGCGCGTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGG CACTCACGGCGCGCACTGCTTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATG ${\tt GTCCAGTTTGGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCG}$ TTACTTCGTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTG ${\tt CCTTGGTGAAGCTGTCTGCACCTACACTAAACACATCCAGCCCATCTGTCTCCAG}$ ${\tt GCCTCCACATTTGAGTTTGAGAACCGGACAGACTGCTGGGTGACTGGGGGGGTACATCAA}$ AGAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAACA ACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGACATG ${\tt GTTTGTGCTGGCAACGCCCAAGGCGGAAGGATGCCTGCTTCGGTGACTCAGGTGGACCCTT}$ GGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTGGGCTGTG GTCGGCCCAATCGGCCCGGTGTCTACACCAATATCAGCCACCACTTTGAGTGGATCCAGAAG $\tt CTGATGGCCCAGAGTGGCATGTCCCAGCCAGACCCCTCCTGGCCACTACTCTTTTCCCTCT$ ${ t TCTCTGGGCTCTCCCACTCCTGGGGCCGGTC}{ t TGA}{ t GCCTACCTGAGCCCATGCAGCCTGGGGC}$ ${\tt CACTGCCAAGTCAGGCCCTGGTTCTCTTCTGTTTTGGTAATAAACACATTCCAGTTGA}$

FIGURE 92

MGARGALLLALLLARAGLRKPESQEAAPLSGPCGRRVITSRIVGGEDAELGRWPWQGSLRLW DSHVCGVSLLSHRWALTAAHCFETYSDLSDPSGWMVQFGQLTSMPSFWSLQAYYTRYFVSNI YLSPRYLGNSPYDIALVKLSAPVTYTKHIQPICLQASTFEFENRTDCWVTGWGYIKEDEALP SPHTLQEVQVAIINNSMCNHLFLKYSFRKDIFGDMVCAGNAQGGKDACFGDSGGPLACNKNG LWYQIGVVSWGVGCGRPNRPGVYTNISHHFEWIQKLMAQSGMSQPDPSWPLLFFPLLWALPL LGPV

Signal sequence:

amino acids 1-18

N-glycosylation site.

amino acids 167-171, 200-204, 273-277

Casein kinase II phosphorylation site.

amino acids 86-90, 134-138, 161-165, 190-194, 291-295

N-myristoylation site.

amino acids 2-8, 44-50, 101-107, 225-231, 229-235, 239-245, 259-265, 269-275

Amidation site.

amino acids 33-37

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 252-263,

Serine proteases, trypsin family, histidine active site.

amino acids 78-84

 $\tt CCCACGCGTCCGCGGACGCGTGGGAAGGGCAGA{\color{blue}A}{\color{blue}A}{\color{blue}A}{\color{blue}G}{\color{blue}G}{\color{blue}G}{\color{blue}A}{\color{blue}C$ TGCCCCCAGGCTGGGTGTCCCTGGGCCGTGCGGACCCTGAGGAAGAGCTGAGTCTCACCTTT GCCCTGAGACAGCAGAATGTGGAAAGACTCTCGGAGCTGGTGCAGGCTGTGTCGGATCCCAG CACTGACCCTCCACACGGTGCAAAAATGGCTCTTGGCAGCCGGAGCCCAGAAGTGCCATTCT GTGATCACACAGGACTTTCTGACTTGCTGGCTGAGCATCCGACAAGCAGAGCTGCTCCC ${ t ATCCCTACCAGCCTTCCACAGGCCTTGGCCCCCCATGTGGACTTTGTGGGGGGGACTGCACCGT}$ ${ t TTTCCCCCAACATCATCCCTGAGGCAACGTCCTGAGCCGCAGGTGACAGGGACTGTAGGCCT}$ GCATCTGGGGGTAACCCCCTCTGTGATCCGTAAGCGATACAACTTGACCTCACAAGACGTGG GCTCTGGCACCAGCAATAACAGCCAAGCCTGTGCCCAGTTCCTGGAGCAGTATTTCCATGAC TCAGACCTGGCTCAGTTCATGCGCCTCTTCGGTGGCAACTTTGCACATCAGGCATCAGTAGC $\tt CCGTGTGGTTGGACAACAGGGCCGGGGCCGGGCCGGGATTGAGGCCAGTCTAGATGTGCAGT$ ACCTGATGAGTGCTGGTGCCAACATCTCCACCTGGGTCTACAGTAGCCCTGGCCGGCATGAG GGACAGGAGCCCTTCCTGCAGTGGCTCATGCTGCTCAGTAATGAGTCAGCCCTGCCACATGT GCATACTGTGAGCTATGGAGATGATGAGGACTCCCTCAGCGCGCCTACATCCAGCGGGTCA ACACTGAGCTCATGAAGGCTGCCGCTCGGGGTCTCACCCTGCTCTTCGCCTCAGGTGACAGT $\tt GGGGCCGGGTGTTGGTCTCTGGAAGACACCAGTTCCGCCCTACCTTCCCTGCCTCCAG$ CCCCTATGTCACCACAGTGGGAGGCACATCCTTCCAGGAACCTTTCCTCATCACAAATGAAA ${ t TTGTTGACTATATCAGTGGTGGCTTCAGCAATGTGTTCCCACGGCCTTCATACCAGGAG$ GAAGCTGTAACGAAGTTCCTGAGCTCTAGCCCCCACCTGCCACCATCCAGTTACTTCAATGC CAGTGGCCGTGCCTACCCAGATGTGGCTGCACTTTCTGATGGCTACTGGGTGGTCAGCAACA GAGTGCCCATTCCATGGGTGTCCGGAACCTCGGCCTCTACTCCAGTGTTTGGGGGGATCCTA TCCTTGATCAATGAGCACAGGATCCTTAGTGGCCGCCCCCCTCTTGGCTTTCTCAACCCAAG ${ t GCTCTACCAGCAGCATGGGGCAGGTCTCTTTGATGTAACCCGTGGCTGCCATGAGTCCTGTC}$ ${\tt TGGGGAACACCCAACTTCCCAGCTTTGC}$ ${\tt AGACTCTACTCAACCCCTGACCCTTTCCTATC}$ AGGAGAGATGGCTTGTCCCCTGCCCTGAAGCTGGCAGTTCAGTCCCTTATTCTGCCCTGTTG GAAGCCCTGCAACCCTCAACTATTGACTGCTGCAGACAGCTTATCTCCCCTAACCCTGAAA TGCTGTGAGCTTGACTCCCAACCCTACCATGCTCCATCATACTCAGGTCTCCCTACT ATCTCATCTTTCTCTTTTCAATCAGGCTTTTCCAAAGGGTTGTATACAGACTCTGTGCACTA ${\tt TTTCACTGATATTCACTCCCCAATTCACTGCAAGGAGACCTCTACTGTCACCGTTTACTCT}$ TTCCTACCCTGACATCCAGAAACAATGGCCTCCAGTGCATACTTCTCAATCTTTGCTTTATG GCCTTTCCATCATAGTTGCCCACTCCCTCTCCTTACTTAGCTTCCAGGTCTTAACTTCTCTG ACTACTCTTGTCTTCCTCTCATCAATTTCTGCTTCTTCATGGAATGCTGACCTTCATTGC ${ t TCCATTTGTAGATTTTTGCTCTTCTCAGTTTACTCATTGTCCCCTGGAACAAATCACTGACA$ TGTAAAAAA

MGLQACLLGLFALILSGKCSYSPEPDQRRTLPPGWVSLGRADPEEELSLTFALRQQNVERLS
ELVQAVSDPSSPQYGKYLTLENVADLVRPSPLTLHTVQKWLLAAGAQKCHSVITQDFLTCWL
SIRQAELLLPGAEFHHYVGGPTETHVVRSPHPYQLPQALAPHVDFVGGLHRFPPTSSLRQRP
EPQVTGTVGLHLGVTPSVIRKRYNLTSQDVGSGTSNNSQACAQFLEQYFHDSDLAQFMRLFG
GNFAHQASVARVVGQQGRGRAGIEASLDVQYLMSAGANISTWVYSSPGRHEGQEPFLQWLML
LSNESALPHVHTVSYGDDEDSLSSAYIQRVNTELMKAAARGLTLLFASGDSGAGCWSVSGRH
QFRPTFPASSPYVTTVGGTSFQEPFLITNEIVDYISGGGFSNVFPRPSYQEEAVTKFLSSSP
HLPPSSYFNASGRAYPDVAALSDGYWVVSNRVPIPWVSGTSASTPVFGGILSLINEHRILSG
RPPLGFLNPRLYQQHGAGLFDVTRGCHESCLDEEVEGQGFCSGPGWDPVTGWGTPTSQLC

Signal sequence:

amino acids 1-16

N-glycosylation site.

amino acids 210-214, 222-226, 286-290, 313-317, 443-447

Glycosaminoglycan attachment site.

amino acids 361-365, 408-412, 538-542

Casein kinase II phosphorylation site.

amino acids 212-216, 324-328, 392-396, 420-424, 525-529

N-myristoylation site.

amino acids 2-8, 107-113, 195-201, 199-205, 217-223, 219-225, 248-254, 270-276, 284-290, 409-415, 410-416, 473-479, 482-488, 521-527, 533-539, 549-555

GCCGCGCGCTCTCTCCCGGCGCCCACACCTGTCTGAGCGGCGCAGCGAGCCGCGGCCCGGGC GGGCTGCTCGGCGGAACAGTGCTCGGC**ATG**GCAGGGATTCCAGGGCTCCTCTTCCTC TTCTTTCTGCTCTGTGCTGTTGGGCAAGTGAGCCCTTACAGTGCCCCCTGGAAACCCACTTG GCCTGCATACCGCCTCCCTGTCGTCTTGCCCCAGTCTACCCTCAATTTAGCCAAGCCAGACT TTGGAGCCGAAGCCAAATTAGAAGTATCTTCTTCATGTGGACCCCAGTGTCATAAGGGAACT CCACTGCCCACTTACGAAGAGGCCAAGCAATATCTGTCTTATGAAACGCTCTATGCCAATGG CAGCCGCACAGAGACGCAGGTGGGCATCTACATCCTCAGCAGTAGTGGAGATGGGGCCCAAC ACCGAGACTCAGGGTCTTCAGGAAAGTCTCGAAGGAAGCGGCAGATTTATGGCTATGACAGC AGGTTCAGCATTTTTGGGAAGGACTTCCTGCTCAACTACCCTTTCTCAACATCAGTGAAGTT ATCCACGGGCTGCACCGGCACCCTGGTGGCAGAGAAGCATGTCCTCACAGCTGCCACTGCA TACACGATGGAAAAACCTATGTGAAAGGAACCCAGAAGCTTCGAGTGGGCTTCCTAAAGCCC AAGTTTAAAGATGGTGGTCGAGGGGCCAACGACTCCACTTCAGCCATGCCCGAGCAGATGAA ATTTCAGTGGATCCGGGTGAAACGCACCCATGTGCCCAAGGGTTGGATCAAGGGCAATGCCA ATGACATCGGCATGGATTATGATTATGCCCTCCTGGAACTCAAAAAGCCCCCACAAGAGAAAA TTTATGAAGATTGGGGTGAGCCCTCCTGCTAAGCAGCTGCCAGGGGGCAGAATTCACTTCTC TGGTTATGACAATGACCGACCAGGCAATTTGGTGTATCGCTTCTGTGACGTCAAAGACGAGA CCTATGACTTGCTCTACCAGCAATGCGATGCCCAGCCAGGGGCCAGCGGGTCTGGGGTCTAT GTGAGGATGTGGAAGAGACAGCAGCAGAAGTGGGAGCGAAAAATTATTGGCATTTTTTCAGG GCACCAGTGGGTGGACATGAATGGTTCCCCACAGGATTTCAACGTGGCTGTCAGAATCACTC TGACACAGTGTTCCCTCCTGGCAGCAATTAAGGGTCTTCATGTTCTTATTTTAGGAGAGGCC CTTATAATCTTTTACCTATTTCTTACAATTGCAAGATGACTGGCTTTACTATTTGAAAACTG GTTTGTGTATCATATCATATCATTTAAGCAGTTTGAAGGCATACTTTTGCATAGAAATAA AAAAAATACTGATTTGGGGCAATGAGGAATATTTGACAATTAAGTTAATCTTCACGTTTTTG CAAACTTTGATTTTATTTCATCTGAACTTGTTTCAAAGATTTATATTAAATATTTGGCATA CAAGAGATATGAAAAAAAAAAAAAA

MAGIPGLLFLLFFLLCAVGQVSPYSAPWKPTWPAYRLPVVLPQSTLNLAKPDFGAEAKLEVS

SSCGPQCHKGTPLPTYEEAKQYLSYETLYANGSRTETQVGIYILSSSGDGAQHRDSGSSGKS

RRKRQIYGYDSRFSIFGKDFLLNYPFSTSVKLSTGCTGTLVAEKHVLTAAHCIHDGKTYVKG

TQKLRVGFLKPKFKDGGRGANDSTSAMPEQMKFQWIRVKRTHVPKGWIKGNANDIGMDYDYA

LLELKKPHKRKFMKIGVSPPAKQLPGGRIHFSGYDNDRPGNLVYRFCDVKDETYDLLYQQCD

AQPGASGSGVYVRMWKRQQQKWERKIIGIFSGHQWVDMNGSPQDFNVAVRITPLKYAQICYW
IKGNYLDCREG

Signal sequence:

amino acids 1-19

N-glycosylation site.

amino acids 93-97, 207-211

Glycosaminoglycan attachment site.

amino acids 109-113, 316-320

Casein kinase II phosphorylation site.

amino acids 77-81, 95-99, 108-112, 280-284, 351-355

N-myristoylation site.

amino acids 159-165, 162-168, 202-208, 205-211, 314-320, 338-344

Serine proteases, trypsin family, histidine active site.

amino acids 171-177

 $\texttt{GCATCGCCCTGGGTCTCTCGAGCCTGCTGCTCCCCCGCCCCACCAGCC} \underline{\textbf{ATG}} \underline{\textbf{GTGGTTT}}$ CTGGAGCGCCCCAGCCCTGGGTGGGGGCTGTCTCGGCACCTTCACCTCCCTGCTGCTG GCGTCGACAGCCATCCTCAATGCGGCCAGGATACCTGTTCCCCCAGCCTGTGGGAAGCCCCA GCAGCTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGA GCATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGTGCTGCTGGG CCCACCTGTGTATTCCTGGAAGGAAGGTGCCTGTGCAGACATTGCCCTGGTGCGTCTCGAG $\tt CGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCTATCCACCT$ CCCTCCAAACACCCACTGCTGGATCTCAGGCTGGGGGAGCATCCAAGATGGAGTTCCCTTGC CCCACCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGAAGTCTGCAGCCAT CTGTACTGGCGGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTGTGTGCCGGCTACTT GGAGGGGGAGCGGGATGCTTGTCTGGGCGACTCCGGGGGCCCCCTCATGTGCCAGGTGGACG GCGCCTGGCTGGCCGGCATCATCAGCTGGGGCGAGGGCTGTGCCGAGCGCAACAGGCCC GGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAGAAGATCGTGCAAGGGGTGCA GCTCCGCGGGCGCTCAGGGGGGTGGGGCCCTCAGGGCACCGAGCCAGGGCTCTGGGGCCG $\tt CCGCGCGCTCC\underline{TAG} \tt GGCGCAGCGGGGACGCGGGGCTCGGATCTGAAAGGCGGCCAGATCCACA$ TCTGGATCTGCGGCGGCCTCGGGCGGTTTCCCCCGCCGTAAATAGGCTCATCTACC GGCCTCAGGCCCCCTCCAAGGCATCAGGCCCCGCCCAACGGCCTCATGTCCCCGCCCCCAC GACTTCCGGCCCCGCGCCCCGGGCCCCAGCGCTTTTGTGTATAAATGTTAATGATTTTTAT CTCCAAAAAAAAAA

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA43318

><subunit 1 of 1, 317 aa, 1 stop

><MW: 33732, pI: 7.90, NX(S/T): 1

MVVSGAPPALGGGCLGTFTSLLLLASTAILNAARIPVPPACGKPQQLNRVVGGEDSTDSEWP WIVSIQKNGTHHCAGSLLTSRWVITAAHCFKDNLNKPYLFSVLLGAWQLGNPGSRSQKVGVA WVEPHPVYSWKEGACADIALVRLERSIQFSERVLPICLPDASIHLPPNTHCWISGWGSIQDG VPLPHPQTLQKLKVPIIDSEVCSHLYWRGAGQGPITEDMLCAGYLEGERDACLGDSGGPLMC QVDGAWLLAGIISWGEGCAERNRPGVYISLSAHRSWVEKIVQGVQLRGRAQGGGALRAPSQG SGAAARS

Signal sequence:

amino acids 1-32

N-glycosylation site.

amino acids 62-66, 96-100, 214-218, 382-386, 409-413, 455-459, 628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268, 314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653, 671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962, 1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879

GACGGCTGGCCACCATGCACGGCTCCTGCAGTTTCCTGATGCTTCTGCTGCCGCTACTGCTA CTGCTGGTGGCCACCACAGGCCCCGTTGGAGCCCTCACAGATGAGGAGAAACGTTTGATGGT GGAGCTGCACAACCTCTACCGGGCCCAGGTATCCCCGACGGCCTCAGACATGCTGCACATGA GATGGGACGAGGAGCTGGCCGCCTTCGCCAAGGCCTACGCACGGCAGTGCGTGTGGGGCCAC AACAAGGAGCGCGGCGCGGCGAGAATCTGTTCGCCATCACAGACGAGGGCATGGACGT GCCGCTGGCCATGGAGGAGTGGCACCACGAGCGTGAGCACTACAACCTCAGCGCCGCCACCT GCAGCCCAGGCCAGATGTGCGGCCACTACACGCAGGTGGTATGGGCCAAGACAGAGAGGATC GGCTGTGGTTCCCACTTCTGTGAGAAGCTCCAGGGTGTTGAGGAGACCAACATCGAATTACT GGTGTGCAACTATGAGCCTCCGGGGAACGTGAAGGGGGAAACGGCCCTACCAGGAGGGGACTC CGTGCTCCCAATGTCCCTCTGGCTACCACTGCAAGAACTCCCTCTGTGAACCCATCGGAAGC CCGGAAGATGCTCAGGATTTGCCTTACCTGGTAACTGAGGCCCCATCCTTCCGGGCGACTGA AGCATCAGACTCTAGGAAAATGGGTACTCCTTCTTCCCTAGCAACGGGGATTCCGGCTTTCT TGGTAACAGAGGTCTCAGGCTCCCTGGCAACCAAGGCTCTGCCTGTGGAAACCCAGGCC CCAACTTCCTTAGCAACGAAAGACCCGCCCTCCATGGCAACAGAGGCTCCACCTTGCGTAAC AACTGAGGTCCCTTCCATTTTGGCAGCTCACAGCCTGCCCTCCTTGGATGAGGAGCCAGTTA AAAGTGCCCTCTAGGAGCCCAGAGAACTCTCTGGACCCCAAGATGTCCCTGACAGGGGCAAG GGAACTCCTACCCCATGCCCAGGAGGAGGCTGAGGCTGAGGTTGCCTCCTTCCAGTG AGGTCTTGGCCTCAGTTTTTCCAGCCCAGGACAAGCCAGGTGAGCTGCAGGCCACACTGGAC CACACGGGGCACACCTCCTCCAAGTCCCTGCCCAATTCCCCCAATACCTCTGCCACCGCTAA TGCCACGGGTGGCCTGGCTCTGCAGTCGTCCTTGCCAGGTGCAGAGGGCCCTGACA AGCCTAGCGTTGTGTCAGGGCTGAACTCGGGCCCTGGTCATGTGTGGGGCCCTCTCCTGGGA CTACTGCTCCTGCCTCTGGTGTTGGCTGGAATCTTCTGAATGGGATACCACTCAAAGGG TGAAGAGGTCAGCTGTCCTCCTGTCATCTTCCCCACCCTGTCCCCAGCCCCTAAACAAGATA CTTCTTGGTTAAGGCCCTCCGGAAGGGAAAGGCTACGGGGCATGTGCCTCATCACACCATCC ${\tt ATCCTGGAGGCACAAGGCCTGGCTGGCTGCGAGGCTCAGGAGGCCGCCTGAGGACTGCACACCC}$ GGGCCCACACCTCTCCTGCCCTCCTCAGTCCTGGGGGTGGGAGGATTTGAGGGAGCT CACTGCCTACCTGGGCTGTCTGCCCACACAGCATGTGCGCTCTCCCTGAGTGCCTG TGTAGCTGGGGATGGGGATTCCTAGGGGCAGATGAAGGACAAGCCCCACTGGAGTGGGGTTC TTTGAGTGGGGAGGCAGGGACGGAGGAAGGAAGTAACTCCTGACTCTCCAATAAAAACCT GTCCAACCTGTGAAA

MHGSCSFLMLLLPLLLLLVATTGPVGALTDEEKRLMVELHNLYRAQVSPTASDMLHMRWDEE LAAFAKAYARQCVWGHNKERGRGENLFAITDEGMDVPLAMEEWHHEREHYNLSAATCSPGQ MCGHYTQVVWAKTERIGCGSHFCEKLQGVEETNIELLVCNYEPPGNVKGKRPYQEGTPCSQC PSGYHCKNSLCEPIGSPEDAQDLPYLVTEAPSFRATEASDSRKMGTPSSLATGIPAFLVTEV SGSLATKALPAVETQAPTSLATKDPPSMATEAPPCVTTEVPSILAAHSLPSLDEEPVTFPKS THVPIPKSADKVTDKTKVPSRSPENSLDPKMSLTGARELLPHAQEEAEAEAELPPSSEVLAS VFPAQDKPGELQATLDHTGHTSSKSLPNFPNTSATANATGGRALALQSSLPGAEGPDKPSVV SGLNSGPGHVWGPLLGLLLLPPLVLAGIF

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 114-118, 403-407, 409-413

Glycosaminoglycan attachment site.

amino acids 439-443

Casein kinase II phosphorylation site.

amino acids 29-33, 50-54, 156-160, 195-199, 202-206, 299-303

N-myristoylation site.

amino acids 123-129, 143-149, 152-158, 169-175, 180-186, 231-237, 250-256

Amidation site.

amino acids 82-86, 172-176

Peroxidases proximal heme-ligand signature.

amino acids 287-298

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 1.

amino acids 127-138

Extracellular proteins SCP/Tpx-1/Ag5/PR-1/Sc7 signature 2.

amino acids 160-172

GTAACTGAAGTCAGGCTTTTCATTTGGGAAGCCCCCTCAACAGAATTCGGTCATTCTCCAAGTTATGGTGGACGT ACTTCTGTTGTTCTCCCTCTGCTTGCTTTTCACATTAGCAGACCGGACTTAAGTCACAACAGATTATCTTTCAT CAAGGCAAGTTCCATGAGCCACCTTCAAAGCCTTCGAGAAGTGAAACTGAACAACAATGAATTGGAGACCATTCC AAATCTGGGACCAGTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGA ACATCTGAAAGAGTTTCAGTCCCTTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATT TCCAGCCCTACAGCTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTTGACAA GCCCCAACTGCAACATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGG GCAGGAACTTCATCTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAG TGAGCTGGACCTAACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATAC ACTGCACATTGGGAACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGGCTTTCCAGTTTAAAGACTTT GGATCTGAAGAACAATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAG ${\tt GCGACTGATACTCCAAGGAAATCGGATCCGTTCTATTACTAAAAAAGCCTTCACTGGTTTGGATGCATTGGAGCA}$ TCTAGACCTGAGTGACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATT TCAGAGCTTTGTAAATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGA TGGCTTTGTGTGTGATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTC CAATTTGAGTTTCATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAAGACAATGA ACTACTGCATGATGCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCAC ATCCTACTCTGTCAAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCACCAAGACCCCCATGGATCTCACCAT CCGAGCTGGGGCCATGGCACGCTTGGAGTGTGCTGTGGGGCACCCAGCCCCCCAGATAGCCTGGCAGAAGGA GGATGTGAAGATAGAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGC AACTCTGACTGTCCTAGAAACACCATCATTTTTGCGGCCACTGTTGGACCGAACTGTAACCAAGGGAGAAACAGC CGTCCTACAGTGCATTGCTGGAGGAAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGT AACCGAGAGGCACTTTTTTGCAGCAGGCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAA ATACACATGTGAGATGTCTAACACCCTTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCAAC CTGCGACTCCCTCAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGC TTGCAGCATTACCAACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTT AGCTGACAGGCAGGATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGG ATTTTCTTACCACACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGC CACAGATCTGTTCCTTTGTCCGTTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGA TCCTTTTGAAACATATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTA CATAAAGAAAAAGGAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATC GTGGCCTTCACATGTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTG TCTAAACAAGTCCTCTTTAGATTTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGG ${\tt TACCTTTGGAAAAGCTCTCAGGAGACCTCACCTAGATGCCTATTCAAGCTTTGGACAGCCATCAGATTGTCAGCC}$ AGATTTTCAGGAAGAAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTC GAACCAAAATTACAAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTA TTTTTTAACTTTGTTTTATGCAAAAAGTATCTTACGTAAATTAATGATATAAATCATGATTATTTTATGTATTT TTATAATGCCAGATTTCTTTTTATGGAAAATGAGTTACTAAAGCATTTTAAATAATACCTGCCTTGTACCATTTT TTAAATAGAAGTTACTTCATTATATTTTGCACATTATATTTAATAAAATGTGTCAATTTGAA

MVDVLLLFSLCLLFHISRPDLSHNRLSFIKASSMSHLOSLREVKLNNNELETIPNLGPVSAN ITLLSLAGNRIVEILPEHLKEFOSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEP GYFDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKM QRNGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWE FCQKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNE ISWTIEDMNGAFSGLDKLRRLILOGNRIRSITKKAFTGLDALEHLDLSDNAIMSLOGNAFSO MKKLQQLHLNTSSLLCDCQLKWLPQWVAENNFQSFVNASCAHPQLLKGRSIFAVSPDGFVCD DFPKPOITVOPETOSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQG GEVMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGA MARLECAAVGHPAPOIAWOKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQN SAGSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTER HFFAAGNOLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPOMTAPSLDDDG WATVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSQGTLAD RODGYVSSESGSHHOFVTSSGAGFFLPOHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGP MYLKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISW PSHVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDA YSSFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQS YDLDT

Signal sequence:

amino acids 1-19

Transmembrane domain:

amino acids 746-765

N-glycosylation site.

amino acids 62-66, 96-100, 214-220, 382-386, 409-413, 455-459, 628-632, 669-673, 845-849, 927-931, 939-943, 956-960

Glycosaminoglycan attachment site.

amino acids 826-830

Casein kinase II phosphorylation site.

amino acids 17-21, 39-43, 120-124, 203-207, 254-258, 264-268, 314-318, 323-327, 347-351, 464-468, 548-552, 632-636, 649-653, 671-675, 739-743, 783-787, 803-807, 847-851, 943-947, 958-962, 1013-1017, 1019-1023, 1021-1025

Tyrosine kinase phosphorylation site.

amino acids 607-615

N-myristoylation site.

amino acids 179-185, 197-203, 320-326, 367-373, 453-459, 528-534, 612-618, 623-629, 714-720, 873-879

GAAGCTTTTCTTGTGAGCCCTGGATCTTAACACAAATGTGTATATGTGCACACAGGGAGCATTCAAGAATGAAA CCACCCCAAAAAAAGGATGATTGGAAATGAAGAACCGAGGATTCACAAAGAAAAAAGTATGTTCATTTTCTC TATAAAGGAGAAAGTGAGCCAAGGAGATATTTTTGGAATGAAAAGTTTGGGGCTTTTTTTAGTAAAGTAAAGAACT GGTGTGGTGGTGTTTTCCTTTCTTTTTGAATTTCCCACAAGAGGAGGAGAAATTAATAATACATCTGCAAAGAAA TTTGTGCCTATGTTGACTAAAATTGACGGATAATTGCAGTTGGATTTTTTCTTCATCAACCTCCTTTTTTTAAAT TTTTATTCCTTTTGGTATCAAGATCATGCGTTTTCTCTTGTTCTTAACCACCTGGATTTCCATCTGGATGTTGCT GTGATCAGTCTGAAATACAACTGTTTGAATTCCAGAAGGACCAACACCAGATAAATTATGA**ATG**TTGAACAAGAT GACCTTACATCCACAGCAGATAATGATAGGTCCTAGGTTTAACAGGGCCCTATTTGACCCCCTGCTTGTGGTGCT GCTGGCTCTTCAACTTCTTGTGGTGGCTGGTCTGGTGCGGGCTCAGACCTGCCCTTCTGTGTGCTCCTGCAGCAA ${\tt CCAGTTCAGCAAGGTGATTTGTGTTCGGAAAAACCTGCGTGAGGTTCCGGATGGCATCTCCACCAACACGGCT}$ GCTGAACCTCCATGAGAACCAAATCCAGATCATCAAAGTGAACAGCTTCAAGCACTTGAGGCACTTGGAAATCCT ACAGTTGAGTAGGAACCATATCAGAACCATTGAAATTGGGGCTTTCAATGGTCTGGCGAACCTCAACACTCTGGA ACTCTTTGACAATCGTCTTACTACCATCCCGAATGGAGCTTTTGTATACTTGTCTAAACTGAAGGAGCTCTGGTT GCGAAACAACCCCATTGAAAGCATCCCTTCTTATGCTTTTAACAGAATTCCTTCTTTGCGCCGACTAGACTTAGG GGAATTGAAAAGACTTTCATACATCTCAGAAGGTGCCTTTGAAGGTCTGTCCAACTTGAGGTATTTGAACCTTGC CATGTGCAACCTTCGGGAAATCCCTAACCTCACACGCTCATAAAACTAGATGAGCTGGATCTTTCTGGGAATCA TTTATCTGCCATCAGGCCTGGCTCTTTCCAGGGTTTGATGCACCTTCAAAAACTGTGGATGATACAGTCCCAGAT TCAAGTGATTGAACGGAATGCCTTTGACAACCTTCAGTCACTAGTGGAGATCAACCTGGCACAATAATCTAAC ATTACTGCCTCATGACCTCTTCACTCCCTTGCATCATCTAGAGCGGATACATTTACATCACAACCCTTGGAACTG TAACTGTGACATACTGTGGCTCAGCTGGTGGATAAAAGACATGGCCCCCTCGAACACAGCTTGTTGTGCCCGGTG TAACACTCCTCCCAATCTAAAGGGGAGGTACATTGGAGAGCTCGACCAGAATTACTTCACATGCTATGCTCCGGT GATTGTGGAGCCCCCTGCAGACCTCAATGTCACTGAAGGCATGGCAGCTGAACTGTCAGGCCTCCACATC $\tt CCTGACATCTGTATCTTGGATTACTCCAAATGGAACAGTCATGACACATGGGGCGTACAAAGTGCGGATAGCTGT$ GCTCAGTGATGGTACGTTAAATTTCACAAATGTAACTGTGCAAGATACAGGCATGTACACATGTATGGTGAGTAA ${\tt TTCCGTTGGGAATACTACTGCTTCAGCCACCCTGAATGTTACTGCAGCAACCACTACTCCTTTCTCTTACTTTTC}$ AACCGTCACAGTAGAGACTATGGAACCGTCTCAGGATGAGGCACGGACCAGATAACAATGTGGGTCCCACTCC AGTGGTCGACTGGGAGACCACCAATGTGACCACCTCTCTCACACCACAGAGCACAAGGTCGACAGAGAAAAACCTT CACCATCCCAGTGACTGATATAAACAGTGGGATCCCAGGAATTGATGAGGTCATGAAGACTACCAAAATCATCAT TGGGTGTTTTGTGGCCATCACACTCATGGCTGCAGTGATGCTGGTCATTTTCTACAAGATGAGGAAGCAGCACCA TCGGCAAAACCATCACGCCCCAACAAGGACTGTTGAAATTATTAATGTGGATGATGAGATTACGGGAGACACACC CATGGAAAGCCACCTGCCCATGCCTGCTATCGAGCATGAGCACCTAAATCACTATAACTCATACAAATCTCCCTT CAACCACACACACAGTTAACACAATAAATTCAATACACAGTTCAGTGCATGAACCGTTATTGATCCGAATGAA AAAAGAAAGAAATTTATTTATTAAAAATTCTATTGTGATCTAAAGCAGACAAAAA

MLNKMTLHPQQIMIGPRFNRALFDPLLVVLLALQLLVVAGLVRAQTCPSVCSCSNQFSKVIC
VRKNLREVPDGISTNTRLLNLHENQIQIIKVNSFKHLRHLEILQLSRNHIRTIEIGAFNGLA
NLNTLELFDNRLTTIPNGAFVYLSKLKELWLRNNPIESIPSYAFNRIPSLRRLDLGELKRLS
YISEGAFEGLSNLRYLNLAMCNLREIPNLTPLIKLDELDLSGNHLSAIRPGSFQGLMHLQKL
WMIQSQIQVIERNAFDNLQSLVEINLAHNNLTLLPHDLFTPLHHLERIHLHHNPWNCNCDIL
WLSWWIKDMAPSNTACCARCNTPPNLKGRYIGELDQNYFTCYAPVIVEPPADLNVTEGMAAE
LKCRASTSLTSVSWITPNGTVMTHGAYKVRIAVLSDGTLNFTNVTVQDTGMYTCMVSNSVGN
TTASATLNVTAATTTPFSYFSTVTVETMEPSQDEARTTDNNVGPTPVVDWETTNVTTSLTPQ
STRSTEKTFTIPVTDINSGIPGIDEVMKTTKIIIGCFVAITLMAAVMLVIFYKMRKQHHRQN
HHAPTRTVEIINVDDEITGDTPMESHLPMPAIEHEHLNHYNSYKSPFNHTTTVNTINSIHSS
VHEPLLIRMNSKDNVQETQI

Signal sequence:

amino acids 1-44

Transmembrane domain:

amino acids 523-543

N-glycosylation site.

amino acids 278-282, 364-368, 390-394, 412-416, 415-419, 434-438, 442-446, 488-492, 606-610

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 183-187

Casein kinase II phosphorylation site.

amino acids 268-272, 417-421, 465-469, 579-583, 620-624

N-myristoylation site.

amino acids 40-46, 73-79, 118-124, 191-197, 228-234, 237-243, 391-397, 422-428, 433-439, 531-537

AGCCGACGCTGCTCAAGCTGCAACTCTGTTGCAGTTGGCAGTTCTTTTCGGTTTCCCTCCTGCTGTTTTGGGGGCCA GAGGGCGGGCGTGCACCCTCGGCTGGAAGTTTGTGCCGGGCCCCGAGCGCGCCGCCGGCTGGGAGCTTCGGGTAGA GCGGTGCTGGGGGCGCTGGCCGGTCCGACAGCGCGGCGGCAACTCGGGCAGCCCTCTGGGGTAGCCGCC GAGCGCCCATGCCCACTACCTGCCGCTGCCTCGGGGACCTGCTGGACTGCAGTCGTAAGCGGCTAGCGCGTCTT $\tt CCCGAGCCACTCCCGTCCTGGGTCGCTCGGCTGGACTTAAGTCACAACAGATTATCTTTCATCAAGGCAAGTTCC$ ATGAGCCACCTTCAAAGCCTTCGAGAAGTGAAACTGAACAACAATGAATTGGAGACCATTCCAAATCTGGGACCA GTCTCGGCAAATATTACACTTCTCTCTTGGCTGGAAACAGGATTGTTGAAATACTCCCTGAACATCTGAAAGAG TTTCAGTCCCTTGAAACTTTGGACCTTAGCAGCAACAATATTTCAGAGCTCCAAACTGCATTTCCAGCCCTACAG CTCAAATATCTGTATCTCAACAGCAACCGAGTCACATCAATGGAACCTGGGTATTTTGACAATTTGGCCAACACA CATCTCGAATTGAACCGAAACAAGATTAAAAATGTAGATGGACTGACATTCCAAGGCCTTGGTGCTCTGAAGTCT CTCAGCCAAAATGCCATCAACAGGATCAGCCCTGATGCCTGGGAGTTCTGCCAGAAGCTCAGTGAGCTGGACCTA ACTTTCAATCACTTATCAAGGTTAGATGATTCAAGCTTCCTTGGCCTAAGCTTACTAAATACACTGCACATTGGG AACAACAGAGTCAGCTACATTGCTGATTGTGCCTTCCGGGGGCTTTCCAGTTTAAAGACTTTGGATCTGAAGAAC AATGAAATTTCCTGGACTATTGAAGACATGAATGGTGCTTTCTCTGGGCTTGACAAACTGAGGCGACTGATACTC CAAGGAAATCGGATCCGTTCTATTACTAAAAAAGCCTTCACTGGTTTGGATGCATTGGAGCATCTAGACCTGAGT GACAACGCAATCATGTCTTTACAAGGCAATGCATTTTCACAAATGAAGAAACTGCAACAATTGCATTTAAATACA AATGCCAGTTGTGCCCATCCTCAGCTGCTAAAAGGAAGAAGCATTTTTGCTGTTAGCCCAGATGGCTTTGTGTGT GATGATTTTCCCAAACCCCAGATCACGGTTCAGCCAGAAACACAGTCGGCAATAAAAGGTTCCAATTTGAGTTTC ATCTGCTCAGCTGCCAGCAGCAGTGATTCCCCCAATGACTTTTGCTTGGAAAAAAGACAATGAACTACTGCATGAT GCTGAAATGGAAAATTATGCACACCTCCGGGCCCAAGGTGGCGAGGTGATGGAGTATACCACCATCCTTCGGCTG $\tt CGCGAGGTGGAATTTGCCAGTGAGGGGAAATATCAGTGTGTCATCTCCAATCACTTTGGTTCATCCTACTCTGTC$ AAAGCCAAGCTTACAGTAAATATGCTTCCCTCATTCACCAAGACCCCCATGGATCTCACCATCCGAGCTGGGGCC ATGGCACGCTTGGAGTGTGCTGCTGTGGGGCACCCAGCCCCCCAGATAGCCTGGCAGAAGGATGGGGGCACAGAC TTCCCAGCTGCACGGGAGAGACGCATGCATGTGATGCCCGAGGATGACGTGTTCTTTATCGTGGATGTGAAGATA GAGGACATTGGGGTATACAGCTGCACAGCTCAGAACAGTGCAGGAAGTATTTCAGCAAATGCAACTCTGACTGTC ATTGCTGGAGGAGCCCTCCCCCTAAACTGAACTGGACCAAAGATGATAGCCCATTGGTGGTAACCGAGAGGCAC TTTTTTGCAGCAGCCAATCAGCTTCTGATTATTGTGGACTCAGATGTCAGTGATGCTGGGAAATACACATGTGAG ATGTCTAACACCCTTGGCACTGAGAGAGGAAACGTGCGCCTCAGTGTGATCCCCACTCCAACCTGCGACTCCCCT CAGATGACAGCCCCATCGTTAGACGATGACGGATGGGCCACTGTGGGTGTCGTGATCATAGCCGTGGTTTGCTGT GTGGTGGCACGTCACTCGTGTGGGTGGTCATCATATACCACACAGGCGGAGGAATGAAGATTGCAGCATTACC AACACAGATGAGACCAACTTGCCAGCAGATATTCCTAGTTATTTGTCATCTCAGGGAACGTTAGCTGACAGGCAG GATGGGTACGTGTCTTCAGAAAGTGGAAGCCACCACCAGTTTGTCACATCTTCAGGTGCTGGATTTTTCTTACCA CAACATGACAGTAGTGGGACCTGCCATATTGACAATAGCAGTGAAGCTGATGTGGAAGCTGCCACAGATCTGTTC CTTTGTCCGTTTTTGGGATCCACAGGCCCTATGTATTTGAAGGGAAATGTGTATGGCTCAGATCCTTTTGAAACA TATCATACAGGTTGCAGTCCTGACCCAAGAACAGTTTTAATGGACCACTATGAGCCCAGTTACATAAAGAAAAAG GAGTGCTACCCATGTTCTCATCCTTCAGAAGAATCCTGCGAACGGAGCTTCAGTAATATATCGTGGCCTTCACAT GTGAGGAAGCTACTTAACACTAGTTACTCTCACAATGAAGGACCTGGAATGAAAAATCTGTGTCTAAACAAGTCC TCTTTAGATTTTAGTGCAAATCCAGAGCCAGCGTCGGTTGCCTCGAGTAATTCTTTCATGGGTACCTTTGGAAAA GCTCTCAGGAGACCTCACCTAGATGCCTATTCAAGCTTTGGACAGCCATCAGATTGTCAGCCAAGAGCCTTTTAT GAAAATCACATTTGTACCTTTAAACAGACTTTAGAAAACTACAGGACTCCAAATTTTCAGTCTTATGACTTGGAC AAAAAGTTATGAAAATTTTTATACTGGGAATGATGCTCATATAAGAATACCTTTTTAAACTATTTTTTAACTTTG TTTTATGCAAAAAGTATCTTACGTAAATTAATGATATAAATCATGATTATTTTATGTATTTTATAATGCCAGA TTTCTTTTTATGGAAAATGAGTTACTAAAGCATTTTAAATAATACCTGCCTTGTACCATTTTTTAAATAGAAGTT

MSAPSLRARAAGLGLLLCAVLGRAGRSDSGGRGELGOPSGVAAERPCPTTCRCLGDLLDCSR KRLARLPEPLPSWVARLDLSHNRLSFIKASSMSHLOSLREVKLNNNELETIPNLGPVSANIT LLSLAGNRIVEILPEHLKEFQSLETLDLSSNNISELQTAFPALQLKYLYLNSNRVTSMEPGY FDNLANTLLVLKLNRNRISAIPPKMFKLPQLQHLELNRNKIKNVDGLTFQGLGALKSLKMQR NGVTKLMDGAFWGLSNMEILQLDHNNLTEITKGWLYGLLMLQELHLSQNAINRISPDAWEFC QKLSELDLTFNHLSRLDDSSFLGLSLLNTLHIGNNRVSYIADCAFRGLSSLKTLDLKNNEIS WTIEDMNGAFSGLDKLRRLILQGNRIRSITKKAFTGLDALEHLDLSDNAIMSLQGNAFSQMK KLQQLHLNTSSLLCDCQLKWLPOWVAENNFOSFVNASCAHPOLLKGRSIFAVSPDGFVCDDF PKPQITVQPETQSAIKGSNLSFICSAASSSDSPMTFAWKKDNELLHDAEMENYAHLRAQGGE VMEYTTILRLREVEFASEGKYQCVISNHFGSSYSVKAKLTVNMLPSFTKTPMDLTIRAGAMA RLECAAVGHPAPQIAWQKDGGTDFPAARERRMHVMPEDDVFFIVDVKIEDIGVYSCTAQNSA GSISANATLTVLETPSFLRPLLDRTVTKGETAVLQCIAGGSPPPKLNWTKDDSPLVVTERHF FAAGNQLLIIVDSDVSDAGKYTCEMSNTLGTERGNVRLSVIPTPTCDSPOMTAPSLDDDGWA TVGVVIIAVVCCVVGTSLVWVVIIYHTRRRNEDCSITNTDETNLPADIPSYLSSOGTLADRO DGYVSSESGSHHQFVTSSGAGFFLPQHDSSGTCHIDNSSEADVEAATDLFLCPFLGSTGPMY LKGNVYGSDPFETYHTGCSPDPRTVLMDHYEPSYIKKKECYPCSHPSEESCERSFSNISWPS HVRKLLNTSYSHNEGPGMKNLCLNKSSLDFSANPEPASVASSNSFMGTFGKALRRPHLDAYS SFGQPSDCQPRAFYLKAHSSPDLDSGSEEDGKERTDFQEENHICTFKQTLENYRTPNFQSYDLDT

Signal sequence:

amino acids 1-27

Transmembrane domain:

amino acids 808-828

N-glycosylation site.

amino acids 122-126, 156-160, 274-278, 442-446, 469-473, 515-519, 688-692, 729-733, 905-909, 987-991, 999-1003, 1016-1020

Glycosaminoglycan attachment site.

amino acids 886-890

Casein kinase II phosphorylation site.

amino acids 99-103, 180-184, 263-267, 314-318, 324-328, 374-378, 383-387, 407-411, 524-528, 608-612, 692-696, 709-713, 731-735, 799-803, 843-847, 863-867, 907-911, 1003-1007, 1018-1022, 1073-1077, 1079-1083, 1081-1085

Tyrosine kinase phosphorylation site.

amino acids 667-675

N-myristoylation site.

amino acids 14-20, 36-42, 239-245, 257-263, 380-386, 427-433, 513-519, 588-594, 672-678, 683-687, 774-780, 933-939

Leucine zipper pattern.

amino acids 58-80, 65-87

CAAAACTTGCGTCGCGGAGAGCGCCCAGCTTGACTTGAATGGAAGGAGCCCGAGCCCGCGGAGCGCAGCTGAGAC TGGGGGAGCGCTTCGGCCTGTGGGGCGCCGCTCGGCGCGCGGGCGCAGCAGGGAAGCGGAAGCTGTGGTCTGCC CTGCTCCACGAGGCGCCACTGGTGTGAACCGGGAGAGCCCCTGGGTGGTCCCGTCCCCTATCCCTCCTTTATATA GAAACCTTCCACACTGGGAAGGCAGCGGCGAGGAGGAGGGCTCATGGTGAGCAAGGAGGCCGGCTGATCTGCAG ${\tt GCGCACAGCATTCCGAGTTTACAGATTTTTACAGATACCAA} {\tt ATG} {\tt GAAGGCGAGGAGGCAGAACAGCCTGCCTGGT}$ TCCATCAGCCCTGGCGCCCCAGGCGCATCTGACTCGGCACCCCTGCAGGCACCATGGCCCAGAGCCGGGTGCTGC TGCTCCTGCTGCTGCCGCCACAGCTGCACCTGGGACCTGTGCTTGCCGTGAGGGCCCCAGGATTTGGCCGAA GTGGCGGCCACAGCCTGAGCCCCGAAGAGAACGAATTTGCGGAGGAGGAGCCGGTGCTGGTACTGAGCCCTGAGG AGCCCGGCCTGGCCCAGCCGCGGTCAGCTGCCCCCGAGACTGTGCCTGTTCCCAGGAGGGCGTCGTGGACTGTG GCGGTATTGACCTGCGTGAGTTCCCGGGGGACCTGCCTGAGCACCACCACCTATCTCTGCAGAACAACCAGC TGGAAAAGATCTACCCTGAGGAGCTCTCCCGGCTGCACCGGCTGGAGACATGAACCTGCAAAACAACCGCCTGA CTTCCCGAGGGCTCCCAGAGAGGCGTTTGAGCATCTGACCAACCTCAATTACCTGTACTTGGCCAATAACAAGC TGACCTTGGCACCCGGCTTCCTGCCAAACGCCCTGATCAGTGTGGACTTTTGCTGCCAACTATCTCACCAAGATCT ATGGGCTCACCTTTGGCCAGAAGCCAAACTTGAGGTCTGTGTACCTGCACAACAACAAGCTGGCAGACGCCGGGC TGCCGGACAACATGTTCAACGGCTCCAGCAACGTCGAGGTCCTCATCCTGTCCAGCAACTTCCTGCGCCACGTGC CCAAGCACCTGCCGCCTGTACAAGCTGCACCTCAAGAACAAGCTGGAGAAGATCCCCCCGGGGGCCT CCTTCTGGAAGCTCTCCAGCCTGGAGTACCTGGATCTGTCCAGCAACAACCTGTCTCGGGTCCCAGCTGGGCTGC $\tt CGCGCAGCCTGGTGCTGCACTTGGAGAAGAACGCCATCCGGAGCGTGGACGCGAATGTGCTGACCCCCATCC$ GCACCCTCATGATCCTGCACAACCAGATCACAGGCATTGGCCGCGAAGACTTTGCCACCACCTACTTCCTGGAGG AGCTCAACCTCAGCTACAACCGCATCACCAGCCCACAGGTGCACCGCGACGCCTTCCGCAAGCTGCGCCTGCTGC GCTCGCTGGACCTGTCGGGCAACCGGCTGCACACGCTGCCACCTGGGCTGCCTCGAAATGTCCATGTGCTGAAGG TCAAGCGCAATGAGCTGGCTGGCCTTGGCACGAGGGGCGCTGGCGGGCATGGCTCAGCTGCGTGAGCTGTACCTCA $\tt CCAGCAACCGACTGCGCAGCCCTGGGCCCCGTGCCTGGGTGGACCTCGCCCATCTGCAGCTGCTGGACA$ TCGCCGGGAATCAGCTCACAGAGATCCCCGAGGGGCTCCCCGAGTCACTTGAGTACCTGTACCTGCAGAACAACA AGATTAGTGCGGTGCCCGCCAATGCCTTCGACTCCACGCCCAACCTCAAGGGGGATCTTTCTCAGGTTTAACAAGC TGGCTGTGGGCTCCGTGGTGGACAGTGCCTTCCGGAGGCTGAAGCACCTGCAGGTCTTGGACATTGAAGGCAACT AGGAAGAGAAACAAGATAGTGACAAGGTGATGCAGATGTGACCTAGGATGATGGACCGCCGGACTCTTTTCTGC AGCACACGCCTGTGTGCTGTGAGCCCCCCACTCTGCCGTGCTCACACAGACACCCCAGCTGCACACATGAGGCA TCCCACATGACACGGCTGACACAGTCTCATATCCCCACCCCTTCCCACGGCGTGTCCCACGGCCAGACACATGC GGAACTCACAAAAGCTGGCTTTTATTCCTTTCCCATCCTATGGGGACAGGAGCCTTCAGGACTGCTGGCCTGGCC CAGGCACTTTTCCAATGGGCAAGCCCAGTGGAGGCAGGATGGGAGAGCCCCCTGGGTGCTGCTGGGGCCTTGGGG GTTCTTCAGGCCTGTGGGGGAAGTTCCGGGTGCCTTTATTTTTTATTCTTTTCTAAGGAAAAAAATGATAAAAAT

MEGEEAEQPAWFHQPWRPGASDSAPPAGTMAQSRVLLLLLLLPPQLHLGPVLAVRAPGFGRS
GGHSLSPEENEFAEEEPVLVLSPEEPGPGPAAVSCPRDCACSQEGVVDCGGIDLREFPGDLP
EHTNHLSLQNNQLEKIYPEELSRLHRLETLNLQNNRLTSRGLPEKAFEHLTNLNYLYLANNK
LTLAPRFLPNALISVDFAANYLTKIYGLTFGQKPNLRSVYLHNNKLADAGLPDNMFNGSSNV
EVLILSSNFLRHVPKHLPPALYKLHLKNNKLEKIPPGAFSELSSLRELYLQNNYLTDEGLDN
ETFWKLSSLEYLDLSSNNLSRVPAGLPRSLVLLHLEKNAIRSVDANVLTPIRSLEYLLLHSN
QLREQGIHPLAFQGLKRLHTVHLYNNALERVPSGLPRRVRTLMILHNQITGIGREDFATTYF
LEELNLSYNRITSPQVHRDAFRKLRLLRSLDLSGNRLHTLPPGLPRNVHVLKVKRNELAALA
RGALAGMAQLRELYLTSNRLRSRALGPRAWVDLAHLQLLDIAGNQLTEIPEGLPESLEYLYL
QNNKISAVPANAFDSTPNLKGIFLRFNKLAVGSVVDSAFRRLKHLQVLDIEGNLEFGDISKD
RGRLGKEKEEEEEEEEEETR

Signal sequence:

amino acids 1-48

N-glycosylation site.

amino acids 243-247, 310-314, 328-332, 439-443

Casein kinase II phosphorylation site.

amino acids 68-72, 84-88, 246-250, 292-296, 317-321, 591-595

N-myristoylation site.

amino acids 19-25, 107-113, 213-219, 217-223, 236-242, 335-341, 477-483, 498-502, 539-545, 548-554

Leucine zipper pattern.

amino acids 116-138, 251-273, 258-280, 322-344, 464-486, 471-493, 535-557

GGGAGGGGCTCCGGGCGCGCGCAGCAGACCTGCTCCGGCCGCGCGCCTCGCCGCTGTCCTCCGGGAGCGGCAG GCTGGTATCCTCGCTCTACCTGCAGGCGGCCGCCGAGTTCGACGGGAGGTGGCCCAGGCAAATAGTGTCATCGAT $\tt TGGCCTATGTCGTTATGCTGGGAGGATTGACTGCTGCTGGGGCTGGGCTCGCCAGTCTTGGGGACAGTGTCAGCC$ TGTGTGCCAACCACGATGCAAACATGGTGAATGTATCGGGCCAAACAAGTGCAAGTGTCATCCTGGTTATGCTGG AAAAACCTGTAATCAAGATCTAAATGAGTGTGGCCTGAAGCCCCGGCCCTGTAAGCACAGGTGCATGAACACTTA $\tt CTCCATGGCAAACTGTCAGTATGGCTGTGATGTTGAAAGGACAAATACGGTGCCCATGCCCATCCCCTGGCCT$ GCACCTGGCTCCTGATGGGAGGACCTGTGTAGATGTTGATGAATGTGCTACAGGAAGAGCCTCCTGCCCTAGATT TAGGCAATGTGTCAACACTTTTGGGAGCTACATCTGCAAGTGTCATAAAGGCTTCGATCTCATGTATATTGGAGG CAAATATCAATGTCATGACATAGACGAATGCTCACTTGGTCAGTATCAGTGCAGCAGCTTTGCTCGATGTTATAA AGTTATGATTGAACCTTCAGGTCCAATTCATGTACCAAAGGGAAATGGTACCATTTTAAAGGGTGACACAGGAAA TAATAATTGGATTCCTGATGTTGGAAGTACTTGGTGGCCTCCGAAGACACCATATATTCCTCCTATCATTACCAA $\tt CCTGCCAACAGAGCTCAGAACACCTCTACCACCTACAACCCCAGAAAGGCCAACCACCGGACTGACAACTATAGC$ TGACTTGCACTGGGAACCAATCAGGGACCCAGCAGGTGGACAATATCTGACAGTGTCGGCAGCCAAAGCCCCAGG GGGAAAAGCTGCACGCTTGGTGCTACCTCTCGGCCGCCTCATGCATTCAGGGGACCTGTGCCTGTCATTCAGGCA GGGAAGAATGGTGGCCATGGCTGGAGGCAAACACAGATCACCTTGCGAGGGGCTGACATCAAGAGCGAATCACA AAGATGAT TAAAGGGTTGGAAAAAAGATCTATGATGGAAAATTAAAGGAACTGGGATTATTGAGCCTGGAGAAGAGAAGACTGAGGGGCAAACCATTGATGGTTTTCAAGTATATGAAGGGTTGGCACAGAGAGGGGTGGCGACCAGCTG TTCTCCATATGCACTAGAATAGAACAAGAGGAAACTGGCTTAGACTAGAGTATAAGGGAGCATTTCTTGGCAGG TAAAAATTTGTCTATTTAAGATGGTTAAAGATGTTCTTACCCAAGGAAAAGTAACAAATTATAGAATTTCCCAAA AGATGTTTTGATCCTACTAGTAGTATGCAGTGAAAATCTTTAGAACTAAATAATTTGGACAAGGCTTAATTTAGG CATTTCCCTCTTGACCTCCTAATGGAGAGGGATTGAAAGGGGAAGAGCCCACCAAATGCTGAGCTCACTGAAATA AGATATTTTAGTATCTCAGTAATGTCCTAGTGTGGCGGTGGTTTTCAATGTTTCTTCATGGTAAAGGTATAAGCC ATTTCATCGGGTGCATTCTCTCTCTGTGTGTGACAAGTTATCTTGGCTGCTGAGAAAGAGTGCCCTGCCCC AGAACAGTAATATTTTTTGAACAATAGGTACAATAGAAGGTCTTCTGTCATTTAACCTGGTAAAGGCAGGGCTGG AGGGGGAAAATAAATCATTAAGCCTTTGAGTAACGGCAGAATATATGGCTGTAGATCCATTTTTAATGGTTCATT TGATACATTGCACTAAACTGATGGAAGAAGTTATCCAAAGTACTGTATAACATCTTGTTTATTATTTAATGTTTT

MDFLLALVLVSSLYLQAAAEFDGRWPRQIVSSIGLCRYGGRIDCCWGWARQSWGQCQPVCQPRCKHGECIGPNKCKCHPGYAGKTCNQDLNECGLKPRPCKHRCMNTYGSYKCYCLNGYMLMPDGSCSSALTCSMANCQYGCDVVKGQIRCQCPSPGLHLAPDGRTCVDVDECATGRASCPRFRQCVNTFGSYICKCHKGFDLMYIGGKYQCHDIDECSLGQYQCSSFARCYNVRGSYKCKCKEGYQGDGLTCVYIPKVMIEPSGPIHVPKGNGTILKGDTGNNNWIPDVGSTWWPPKTPYIPPIITNRPTSKPTTRPTPKPTPIPTPPPPPPLPTELRTPLPPTTPERPTTGLTTIAPAASTPPGGITVDNRVQTDPQKPRGDVFSVLVHSCNFDHGLCGWIREKDNDLHWEPIRDPAGGQYLTVSAAKAPGGKARLVLPLGRLMHSGDLCLSFRHKVTGLHSGTLQVFVRKHGAHGAALWGRNGGHGWRQTQITLRGADIKSESQR

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 273-277

Casein kinase II phosphorylation site.

amino acids 166-170, 345-349

Tyrosine kinase phosphorylation site.

amino acids 199-206

N-myristoylation site.

amino acids 109-115, 125-131, 147-153, 191-197, 221-227, 236-242, 421-427, 433-439, 462-468, 476-482

Aspartic acid and asparagine hydroxylation site.

amino acids 104-116, 186-198, 231-243

Cell attachment sequence.

amino acids 382-385

EGF-like domain cysteine pattern signature.

amino acids 75-87

CTTCTTTGAAAAGGATTATCACCTGATCAGGTTCTCTCTGCATTTGCCCCCTTTAGATTGTGA CACTATGGCTTCCACACTCCAGCATCAGACATCCAGATCATATGGCTATTTGAGAGACCCCA ${\tt CACAATGCCCAAATACTTACTGGGCTCTGTGAATAAGTCTGTGGTTCCTGACTTGGAATACC}$ AACACAAGTTCACCATGATGCCACCCAATGCATCTCTGCTTATCAACCCACTGCAGTTCCCT GATGAAGGCAATTACATCGTGAAGGTCAACATTCAGGGAAATGGAACTCTATCTGCCAGTCA GAAGATACAAGTCACGGTTGATGATCCTGTCACAAAGCCAGTGGTGCAGATTCATCCTCCCT $\tt CTGGGGCTGTGGAGTATGTGGGGAACATGACCCTGACATGCCATGTGGAAGGGGGCACTCGG$ $\tt CTAGCTTACCAATGGCTAAAAAATGGGAGACCTGTCCACCAGCTCCACCTACTCCTTTTC$ TCCCCAAAACAATACCCTTCATATTGCTCCAGTAACCAAGGAAGACATTGGGAATTACAGCT GCCTGGTGAGGAACCCTGTCAGTGAAATGGAAAGTGATATCATTATGCCCATCATATATTAT GGACCTTATGGACTTCAAGTGAATTCTGATAAAGGGCTAAAAGTAGGGGAAGTGTTTACTGT TGACCTTGGAGAGGCCATCCTATTTGATTGTTCTGCTGATTCTCATCCCCCCAACACCTACT ${\tt CCTGGATTAGGAGGACTGACAATACTACATATATCATTAAGCATGGGCCTCGCTTAGAAGTT}$ GCATCTGAGAAAGTAGCCCAGAAGACAATGGACTATGTGTGCTGTGCTTACAACAACATAAC ${\tt CGGCAGGCAAGATGAAACTCATTTCACAGTTATCATCACTTCCGTAGGACTGGAGAAGCTTG}$ CACAGAAAGGAAAATCATTGTCACCTTTAGCAAGTATAACTGGAATATCACTATTTTTGATT ATATCCATGTGTCTTCTTCCTATGGAAAAAATATCAACCCTACAAAGTTATAAAACAGAA ACTAGAAGGCAGGCCAGAAACAGAATACAGGAAAGCTCAAACATTTTCAGGCCATGAAGATG CTCTGGATGACTTCGGAATATATGAATTTGTTGCTTTTCCAGATGTTTCCTGGTGTTTCCAGG ATTCCAAGCAGGTCTGTTCCAGCCTCTGATTGTGTATCGGGGCAAGATTTGCACAGTACAGT $\tt GTATGAAGTTATTCAGCACATCCCTGCCCAGCAGCAAGACCATCCAGAG{\color{red}{\bf TGA}} ACTTTCATGG$ GCTAAACAGTACATTCGAGTGAAATTCTGAAGAAACATTTTAAGGAAAAACAGTGGAAAAGT ATATTAATCTGGAATCAGTGAAGAAACCAGGACCAACACCTCTTACTCATTATTCCTTTACA TGCAGAATAGAGGCATTTATGCAAATTGAACTGCAGGTTTTTCAGCATATACACAATGTCTT GTGCAACAGAAAAACATGTTGGGGAAATATTCCTCAGTGGAGAGTCGTTCTCATGCTGACGG GGAGAACGAAAGTGACAGGGGTTTCCTCATAAGTTTTGTATGAAATATCTCTACAAACCTCA ATTAGTTCTACTCTACACTTTCACTATCATCAACACTGAGACTATCCTGTCTCACCTACAAA ${ t TGTGGAAACTTTACATTGTTCGATTTTTCAGCAGACTTTGTTTTATTAAATTTTTTATTAGTG}$ TTAAGAATGCTAAATTTATGTTTCAATTTTATTTCCAAATTTCTATCTTGTTATTTGTACAA ${f A}{f G}{f T}{f A}{f G}{f T}{f T}{f T}{f G}{f A}{f C}{f C}{f T}{f T}{f A}{f G}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f G}{f A}{f A}{f T}{f G}{f A}{f A}{f G}{f A}{f A}{f T}{f C}{f T}{f A}{f T}{f T}{f T}{f T}{f T}{f T}{f T}{f T}{f A}{f C}{f T}{f C}{f T}{f A}{f C}{f T}{f C}{f C}{f$

FIGURE 112

MWLKVFTTFLSFATGACSGLKVTVPSHTVHGVRGQALYLPVHYGFHTPASDIQIIWLFERPH
TMPKYLLGSVNKSVVPDLEYQHKFTMMPPNASLLINPLQFPDEGNYIVKVNIQGNGTLSASQ
KIQVTVDDPVTKPVVQIHPPSGAVEYVGNMTLTCHVEGGTRLAYQWLKNGRPVHTSSTYSFS
PQNNTLHIAPVTKEDIGNYSCLVRNPVSEMESDIIMPIIYYGPYGLQVNSDKGLKVGEVFTV
DLGEAILFDCSADSHPPNTYSWIRRTDNTTYIIKHGPRLEVASEKVAQKTMDYVCCAYNNIT
GRQDETHFTVIITSVGLEKLAQKGKSLSPLASITGISLFLIISMCLLFLWKKYQPYKVIKQK
LEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVSGVSRIPSRSVPASDCVSGQDLHSTV
YEVIQHIPAQQQDHPE

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 341-359

N-glycosylation site.

amino acids 73-77, 92-96, 117-121, 153-157, 189-193, 204-208, 276-280, 308-312

Casein kinase II phosphorylation site.

amino acids 129-133, 198-202, 214-218, 388-392, 426-430, 433-437

Tyrosine kinase phosphorylation site.

amino acids 272-280

N-myristoylation site.

amino acids 15-21, 19-25, 118-124, 163-167, 203-209, 231-237, 239-245

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 7-18

 $\tt GCAAGCGGCGAA\underline{\textbf{ATG}} GCGCCCTCCGGGAGTCTTGCAGTTCCCCTGGCAGTCCTGGTGCTGTT$ GCTTTGGGGTGCTCCCTGGACGCACGGGCGGGCGAGCAACGTTCGCGTCATCACGGACGAGA ACTGGAGAACTGCTGGAAGGAGACTGGATGATAGAATTTTATGCCCCGTGGTGCCCTGCT TGTCAAAATCTTCAACCGGAATGGGAAAGTTTTGCTGAATGGGGAGAAGATCTTGAGGTTAA ${\tt TATTGCGAAAGTAGATGTCACAGAGCAGCCAGGACTGAGTGGACGGTTTATCATAACTGCTC}$ TTCCTACTATTTATCATTGTAAAGATGGTGAATTTAGGCGCTATCAGGGTCCAAGGACTAAG AAGGACTTCATAAACTTTATAAGTGATAAAGAGTGGAAGAGTATTGAGCCCGTTTCATCATG ${ t TCAGGACGTGCCATAACTACTTTATTGAAGACCTTGGATTGCCAGTGTGGGGATCATATACT}$ ${\tt GTTTTTGCTTTAGCAACTCTGTTTTCCGGACTGTTATTAGGACTCTGTATGATATTTGTGGC}$ AGATTGCCTTTGTCCTTCAAAAAGGCGCAGACCACAGCCATACCCATACCCTTCAAAAAAAT TATTATCAGAATCTGCACAACCTTTGAAAAAAGTGGAGGAGGAACAAGAGGCGGATGAAGAA ${\tt CATAAGACAACGCTCTCTGGGTCCATCATTGGCCACAGATAAATCC} {\color{red} \underline{\textbf{TAG}}} {\color{blue} \textbf{TTAAATTTTATAG}}$ AACTGTGACTTTTTTGAATATTGCAGGGTTCAGTCTAGATTGTCATTAAATTGAAGAGTCTA CATTCAGAACATAAAAGCACTAGGTATACAAGTTTGAAATATGATTTAAGCACAGTATGATG ${\tt GTTTAAATAGTTCTCTAATTTTTGAAAAATCGTGCCAAGCAATAAGATTTATGTATATTTGT}$ TTAATAATAACCTATTTCAAGTCTGAGTTTTGAAAATTTACATTTCCCAAGTATTGCATTAT TGAGGTATTTAAGAAGATTATTTTAGAGAAAAATATTTCTCATTTGATATAATTTTTCTCTG AAATGTGTATTTCAGTGACAATTTCGTGGTCTTTTTAGAGGTATATTCCAAAATTTCCTTGT ${ t TGGTAATACAGGATATGCTACTGATTTAGGAAGTTTTTAAGTTCATGGTATTCTCTTGATTC}$ ${\tt GTTTCAAACTGAAGTTTACTGAGAGATCCATCAAATTGAACAATCTGTTGTAATTTAAAATT}$ ${\tt TTTCTTTTGGATGTGAAGGTGAACATTCCTGATTTTTGTCTGATGTGAAAAAGCCTTGGTA}$ TTTTACATTTTGAAAATTCAAAGAAGCTTAATATAAAAGTTTGCATTCTACTCAGGAAAAAG CATCTTCTTGTATATGTCTTAAATGTATTTTTGTCCTCATATACAGAAAGTTCTTAATTGAT TTTACAGTCTGTAATGCTTGATGTTTTAAAATAATAACATTTTTTATATTTTTTAAAAGACAA ACTTCATATTATCCTGTGTTCTTTCCTGACTGGTAATATTGTGTGGGATTTCACAGGTAAAA GTCAGTAGGATGGAACATTTTAGTGTATTTTTACTCCTTAAAGAGCTAGAATACATAGTTTT CACCTTAAAAGAAGGGGGAAAATCATAAATACAATGAATCAACTGACCATTACGTAGTAGAC AATTTCTGTAATGTCCCCTTCTTTCTAGGCTCTGTTGCTGTGTGAATCCATTAGATTTACAG TATCGTAATATACAAGTTTTCTTTAAAGCCCTCTCCTTTAGAATTTAAAATATTGTACCATT AAAGAGTTTGGATGTGTAACTTGTGATGCCTTAGAAAATATCCTAAGCACAAAATAACCT

FIGURE 114

MAPSGSLAVPLAVLVLLLWGAPWTHGRRSNVRVITDENWRELLEGDWMIEFYAPWCPACQNL QPEWESFAEWGEDLEVNIAKVDVTEQPGLSGRFIITALPTIYHCKDGEFRRYQGPRTKKDFI NFISDKEWKSIEPVSSWFGPGSVLMSSMSALFQLSMWIRTCHNYFIEDLGLPVWGSYTVFAL ATLFSGLLLGLCMIFVADCLCPSKRRRPQPYPYPSKKLLSESAQPLKKVEEEQEADEEDVSE EEAESKEGTNKDFPQNAIRQRSLGPSLATDKS

Signal sequence:

amino acids 1-26

Transmembrane domain:

amino acids 182-201

Casein kinase II phosphorylation site.

amino acids 68-72, 119-123, 128-132, 247-251, 257-261

Tyrosine kinase phosphorylation site.

amino acids 107-115

N-myristoylation site.

amino acids 20-26, 192-198

Amidation site.

amino acids 25-29

GCGAGTGTCCAGCTGCGGAGACCCGTGATAATTCGTTAACTAATTCAACAAACGGGACCCTT CTGTGTGCCAGAAACCGCAAGCAGTTGCTAACCCAGTGGGACAGGCGGATTGGAAGAGCGGG $\mathtt{AAGGTCCTGGCCCAGAGCAGTGTGACACTTCCCTCTGTGACC}$ $\mathtt{AAACTCTGGGTGTCTGC}$ ATTGCTGATGGCCTGGTTTTGGTGTCCTGAGCTGTGTGCAGGCCGAATTCTTCACCTCTATTG GGCACATGACTGACTGATTTATGCAGAGAAAGAGCTGGTGCAGTCTCTGAAAGAGTACATC CTTGTGGAGGAAGCCAAGCTTTCCAAGATTAAGAGCTGGGCCAACAAAATGGAAGCCTTGAC TAGCAAGTCAGCTGCTGATGCTGAGGGCTACCTGGCTCACCCTGTGAATGCCTACAAACTGG TGAAGCGGCTAAACACAGACTGGCCTGCGCTGGAGGACCTTGTCCTGCAGGACTCAGCTGCA GGTTTTATCGCCAACCTCTCTGTGCAGCGGCAGTTCTTCCCCACTGATGAGGACGAGATAGG AGCTGCCAAAGCCCTGATGAGACTTCAGGACACATACAGGCTGGACCCAGGCACAATTTCCA GAGGGGAACTTCCAGGAACCAAGTACCAGGCAATGCTGAGTGTGGATGACTGCTTTGGGATG AAAGCAGCTTGATGCCGGGGAGGAGGCCACCACAACCAAGTCACAGGTGCTGGACTACCTCA GCTATGCTGTCTTCCAGTTGGGTGATCTGCACCGTGCCCTGGAGCTCACCCGCCGCCTGCTC TCCCTTGACCCAAGCCACGAACGAGCTGGAGGGAATCTGCGGTACTTTGAGCAGTTATTGGA GGAAGAGAGAAAAAACGTTAACAAATCAGACAGAAGCTGAGCTAGCAACCCCAGAAGGCA TCTATGAGAGGCCTGTGGACTACCTGCCTGAGAGGGGATGTTTACGAGAGCCTCTGTCGTGGG GAGGGTGTCAAACTGACACCCCGTAGACAGAAGAGGGCTTTTCTGTAGGTACCACCATGGCAA TCGTCAGGTACTACGATGTCATGTCTGATGAGGAAATCGAGAGGATCAAGGAGATCGCAAAA CCTAAACTTGCACGAGCCACCGTTCGTGATCCCAAGACAGGAGTCCTCACTGTCGCCAGCTA $\tt CCGGGTTTCCAAAAGCTCCTGGCTAGAGGAAGATGATGACCCTGTTGTGGCCCGAGTAAATC$ GTCGGATGCAGCATATCACAGGGTTAACAGTAAAGACTGCAGAATTGTTACAGGTTGCAAAT TATGGAGTGGGAGGACAGTATGAACCGCACTTCGACTTCTCTAGGCGACCTTTTGACAGCGG CCTCAAAACAGAGGGGAATAGGTTAGCGACGTTTCTTAACTACATGAGTGATGTAGAAGCTG GTGGTGCCACCGTCTTCCCTGATCTGGGGGCTGCAATTTGGCCTAAGAAGGGTACAGCTGTG TTCTGGTACAACCTCTTGCGGAGCGGGAAGGTGACTACCGAACAAGACATGCTGCCCC TGTGCTTGTGGGCTGCAAGTGGGTCTCCAATAAGTGGTTCCATGAACGAGGACAGGAGTTCT $\tt CTTCAGCCCATGTCAACGTGACAGACACCTTTGTATGTTCCTTTGTATGTTCCTATCAGGCT$ GATTTTTGGAGAAATGAATGTTTGTCTGGAGCAGAGGGAGACCATACTAGGGCGACTCCTGT GTGACTGAAGTCCCAGCCCTTCCATTCAGCCTGTGCCATCCCTGGCCCCAAGGCTAGGATCA AAGTGGCTGCAGCAGAGTTAGCTGTCTAGCGCCTAGCAAGGTGCCTTTGTACCTCAGGTGTT TTAGGTGTGAGATGTTTCAGTGAACCAAAGTTCTGATACCTTGTTTACATGTTTTGTTTTAT

FIGURE 116

MKLWVSALLMAWFGVLSCVQAEFFTSIGHMTDLIYAEKELVQSLKEYILVEEAKLSKIKSWA NKMEALTSKSAADAEGYLAHPVNAYKLVKRLNTDWPALEDLVLQDSAAGFIANLSVQRQFFP TDEDEIGAAKALMRLQDTYRLDPGTISRGELPGTKYQAMLSVDDCFGMGRSAYNEGDYYHTV LWMEQVLKQLDAGEEATTTKSQVLDYLSYAVFQLGDLHRALELTRRLLSLDPSHERAGGNLR YFEQLLEEEREKTLTNQTEAELATPEGIYERPVDYLPERDVYESLCRGEGVKLTPRRQKRLF CRYHHGNRAPQLLIAPFKEEDEWDSPHIVRYYDVMSDEEIERIKEIAKPKLARATVRDPKTG VLTVASYRVSKSSWLEEDDDPVVARVNRRMQHITGLTVKTAELLQVANYGVGGQYEPHFDFS RRPFDSGLKTEGNRLATFLNYMSDVEAGGATVFPDLGAAIWPKKGTAVFWYNLLRSGEGDYR TRHAACPVLVGCKWVSNKWFHERGQEFLRPCGSTEVD

Signal sequence:

amino acids 1-17

N-glycosylation site.

amino acids 115-119, 264-268

Glycosaminoglycan attachment site.

amino acids 490-494

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 477-481

Casein kinase II phosphorylation site.

amino acids 43-47, 72-76, 125-129, 151-155, 165-169, 266-270, 346-350, 365-369, 385-389, 457-461, 530-534

Tyrosine kinase phosphorylation site.

amino acids 71-80, 489-496

N-myristoylation site.

amino acids 14-20, 131-137, 171-177, 446-452

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 8-19

Leucine zipper pattern.

amino acids 213-235

 ${f AGACAGGACAATCTTCTTGGGGATGCTGGTCCTGGAAGCCAGCGGGCCTTGCTCTTTTGGCCTCATTGACCC}$ $\tt CCTGGGGCACCCACCTGGCAGGGCCTACCACC\underline{ATG}CGACTGAGCTCCCTGTTGGCTCTGCTGCGGCCAGCGCTTC$ ${ t ATCCCTGTGTCGAGGCTGTAGGGGGGCGAGGGGGCCACAGAATCCAGATTCGAGAGCCTCGGCTAGACCAAAGTG}$ ATGAAGACTTCAAACCCCGGATTGTCCCCTACTACAGGGACCCCAACAAGCCCTACAAGAAGGTGCTCAGGACTC GGTACATCCAGACAGAGCTGGGCTCCCGTGAGCGGTTGCTGGTGGCTGTCCTGACCTCCCGAGCTACACTGTCCA ${\tt CCCGGGCTCCAGCAGGATGCAGGTGTCTCATGGGGATGAGCCCGCCTGGCTCATGTCAGAGACCCTGC}$ GCCACCTTCACACACTTTGGGGCCGACTACGACTGGTTCTTCATCATGCAGGATGACACATATGTGCAGGCCC GGCCACATCTGGATGGCTGCCGAGGAGACATTCTCAGTGCCCGTCCTGACGAGTGGCTTGGACGCTGCCTCATTG ACTCTCTGGGCGTCGGCTGTGTCTCACAGCACCAGGGGCAGCAGTATCGCTCATTTGAACTGGCCAAAAATAGGG ACCCTGAGAAGGAAGGGAGCTCGGCTTTCCTGAGTGCCTTCGCCGTGCACCCTGTCTCCGAAGGTACCCTCATGT ${\tt ACCGGCTCCACAAACGCTTCAGCGCTCTGGAGTTGGAGCGGGCTTACAGTGAAATAGAACAACTGCAGGCTCAGA}$ ${\tt GGGGCATGGAGTACACCCTGGACCTGTTTGGAATGTGTGACACAGCGTGGGCACCGGCGGGCCCTGGCTCGCA}$ ${f AGCTGGTGCTGCCACTCCTGGTGGCTGAAGCTGCTGCAGCCCGGCTTTCCTCGAGGCGTTTGCAGCCAATGTCC}$ ${\tt TGGAGCCACGAGAACATGCATTGCTCACCCTGTTGCTGGTCTACGGGCCACGAGAAGGTGGCCGTGGAGCTCCAG}$ ${\tt TCTTCCTTACCACCGTGTGGACAAGGCCTGGGCCCGAAGTCCTCAACCGCTGTCGCATGAATGCCATCTCTGGCT}$ GGCAGGCCTTCTTTCCAGTCCATTTCCAGGAGTTCAATCCTGCCCTGTCACCACAGAGATCACCCCCAGGGCCCC ACCTCTTTCGGGCCGTAGAGCCAGGGCTGGTGCAGAAGTTCTCCCTGCGAGACTGCAGCCCACGGCTCAGTGAAG ${ t AACTCTACCACCGCTGCCGCCTCAGCAACCTGGAGGGGGCTAGGGGGGCCGTGCCCAGCTGGCTATGGCTCTCTTTG}$ ${f AGCAGGAGCAGGCCAATAGCACT}$ CCCGCCTGGGGGCCCTAACCTCATTACCTTTCCTTTGTCTGCCTCAGCC ${\tt CCAGGAAGGCAAGATGGTGGACAGATAGAGAATTGTTGCTGTATTTTTAAATATGAAAATGTTATTAA}$ ACATGTCTTCTGCC

MRLSSLLALLRPALPLILGLSLGCSLSLLRVSWIQGEGEDPCVEAVGERGGPQNPDSRARLD QSDEDFKPRIVPYYRDPNKPYKKVLRTRYIQTELGSRERLLVAVLTSRATLSTLAVAVNRTV AHHFPRLLYFTGQRGARAPAGMQVVSHGDERPAWLMSETLRHLHTHFGADYDWFFIMQDDTY VQAPRLAALAGHLSINQDLYLGRAEEFIGAGEQARYCHGGFGYLLSRSLLLRLRPHLDGCRG DILSÄRPDEWLGRCLIDSLGVGCVSQHQGQQYRSFELAKNRDPEKEGSSAFLSAFAVHPVSE GTLMYRLHKRFSALELERAYSEIEQLQAQIRNLTVLTPEGEAGLSWPVGLPAPFTPHSRFEV LGWDYFTEQHTFSCADGAPKCPLQGASRADVGDALETALEQLNRRYQPRLRFQKQRLLNGYR RFDPARGMEYTLDLLLECVTQRGHRRALARRVSLLRPLSRVEILPMPYVTEATRVQLVLPLL VAEAAAAPAFLEAFAANVLEPREHALLTLLLVYGPREGGRGAPDPFLGVKAAAAELERRYPG TRLAWLAVRAEAPSQVRLMDVVSKKHPVDTLFFLTTVWTRPGPEVLNRCRMNAISGWQAFFP VHFQEFNPALSPQRSPPGPPGAGPDPPSPPGADPSRGAPIGGRFDRQASAEGCFYNADYLAA RARLAGELAGQEEEEALEGLEVMDVFLRFSGLHLFRAVEPGLVQKFSLRDCSPRLSEELYHR CRLSNLEGLGGRAQLAMALFEQEQANST

Signal sequence:

amino acids 1-15

Transmembrane domain:

amino acids 489-507

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-68, 150-154, 322-326, 331-337, 368-372, 385-389, 399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550, 558-564, 651-657, 657-663, 672-678

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

 $\tt GTTCTAGACGCGGGAAAA{\color{red} \underline{ATG}} CTTTCTGAAAGCAGCTCCTTTTTGAAGGGTGTGATGCTTGG$ AAGCATTTTCTGTGCTTTGATCACTATGCTAGGACACATTAGGATTGGTCATGGAAATAGAA TGCACCACCATGAGCATCATCACCTACAAGCTCCTAACAAAGAAGATATCTTGAAAATTTCA GAGGATGAGCGCATGGAGCTCAGTAAGAGCTTTCGAGTATACTGTATTATCCTTGTAAAACC CAAAGATGTGAGTCTTTGGGCTGCAGTAAAGGAGACTTGGACCAAACACTGTGACAAAGCAG AGTTCTTCAGTTCTGAAAATGTTAAAGTGTTTGAGTCAATTAATATGGACACAAATGACATG TGGTTAATGATGAGAAAAGCTTACAAATACGCCTTTGATAAGTATAGAGACCAATACAACTG AAAAGGATCCATCACAGCCTTTCTATCTAGGCCACACTATAAAATCTGGAGACCTTGAATAT GTGGGTATGGAAGGAGGAATTGTCTTAAGTGTAGAATCAATGAAAAGACTTAACAGCCTTCT CAATATCCCAGAAAAGTGTCCTGAACAGGGAGGGATGATTTGGAAGATATCTGAAGATAAAC AGCTAGCAGTTTGCCTGAAATATGCTGGAGTATTTGCAGAAAATGCAGAAGATGCTGATGGA AAAGATGTATTTAATACCAAATCTGTTGGGCTTTCTATTAAAGAGGCAATGACTTATCACCC ${ t ATCAGATGCATGTGATGATGTATGGGGTATACCGCCTTAGGGCATTTTGGGCATATTTTCAAT$ ${ t GATGCATTGGTTTTCTTACCTCCAAATGGTTCTGACAATGAC}{ t GAGAGAGTGGTAGAAAAGCG}$ TGAATATGATCTTTGTATAGGACGTGTGTTGTCATTATTTGTAGTAGTAACTACATATCCAA ${ t TACAGCTGTATGTTTCTTTTTCTTAATTTGGTGGCACTGGTATAACCACACATTAAAG$ GTGATAAATTCTAAATTATGAACATTAGAAATCTGTGGGGCACATATTTTTGCTGATTGGTT ${f AAAAAATTTTAACAGGTCTTTAGCGTTCTAAGATATGCAAATGATATCTCTAGTTGTGAATT}$ ${\tt TGTGATTAAAGTAAAACTTTTAGCTGTGTGTTCCCTTTACTTCTAATACTGATTTATGTTCT}$ AAGCCTCCCCAAGTTCCAATGGATTTGCCTTCTCAAAATGTACAACTAAGCAACTAAAGAAA ATTAAAGTGAAAGTTGAAAAAT

MLSESSSFLKGVMLGSIFCALITMLGHIRIGHGNRMHHHEHHHLQAPNKEDILKISEDERME LSKSFRVYCIILVKPKDVSLWAAVKETWTKHCDKAEFFSSENVKVFESINMDTNDMWLMMRK AYKYAFDKYRDQYNWFFLARPTTFAIIENLKYFLLKKDPSQPFYLGHTIKSGDLEYVGMEGG IVLSVESMKRLNSLLNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGKDVFNT KSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQMHVMMYGVYRLRAFGHIFNDALVFL PPNGSDND

Signal sequence:

amino acids 1-33

N-glycosylation site.

amino acids 121-125, 342-346

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 319-323, 464-468

Casein kinase II phosphorylation site.

amino acids 64-132, 150-154, 322-326, 331-335, 368-372, 385-389, 399-403, 409-413, 473-477, 729-733, 748-752

Tyrosine kinase phosphorylation site.

amino acids 736-743

N-myristoylation site.

amino acids 19-25, 23-29, 136-142, 397-403, 441-447, 544-550, 558-564, 651-657, 657-663, 672-672

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 14-25

Cell attachment sequence.

amino acids 247-250

 $\tt CTGAAACACAATGCACAGAGAGAGGATGCTTCTCTTCCCAAATGTTCTTATGGACTGTTGCT$ ${\tt GGGATCCCCATCCTATTTCTCAGTGCCTGTTTCATCACCAGATGTGTTGTGACATTTCGCAT}$ $\tt CTTTCAAACCTGTGATGAGAAAAGTTTCAGCTACCTGAGAATTTCACAGAGCTCTCCTGCT$ ACAATTATGGATCAGGTTCAGTCAAGAATTGTTGTCCATTGAACTGGGAATATTTTCAATCC ${\tt AGCTGCTACTTCTTTTCTACTGACACCATTTCCTGGGCGTTAAGTTTAAAGAACTGCTCAGC}$ ${\tt CATGGGGGCTCACCTGGTGGTTATCAACTCACAGGAGGAGCAGGAATTCCTTTCCTACAAGA}$ ${\tt AACCTAAAATGAGAGAGTTTTTTATTGGACTGTCAGACCAGGTTGTCGAGGGTCAGTGGCAA}$ ${\tt TGGGTGGACGCCACCCTTTGACAAAGTCTCTGAGCTTCTGGGATGTAGGGGAGCCCAACAA}$ CATAGCTACCCTGGAGGACTGTGCCACCATGAGAGACTCTTCAAACCCAAGGCAAAATTGGA ATGATGTAACCTGTTTCCTCAATTATTTTCGGATTTGTGAAATGGTAGGAATAAATCCTTTG ${\tt AACAAAGGAAAATCTCTT}$ AGAACATGGCCACACCCCCCCCCACACGAGAAATTTGTGCGCTGAACTTCAAAGGACTTC AAAAA

MNSSKSSETQCTERGCFSSQMFLWTVAGIPILFLSACFITRCVVTFRIFQTCDEKKFQLPEN FTELSCYNYGSGSVKNCCPLNWEYFQSSCYFFSTDTISWALSLKNCSAMGAHLVVINSQEEQ EFLSYKKPKMREFFIGLSDQVVEGQWQWVDGTPLTKSLSFWDVGEPNNIATLEDCATMRDSS NPRQNWNDVTCFLNYFRICEMVGINPLNKGKSL

Signal sequence:

amino acids 1-42

N-glycosylation site.

amino acids 2-6, 62-66, 107-111

Casein kinase II phosphorylation site.

amino acids 51-55, 120-124, 163-167, 175-179, 181-185

N-myristoylation site.

amino acids 15-21, 74-80, 155-161

Prokaryotic membrane lipoprotein lipid attachment site.

amino acids 27-38

 ${\tt GGGACTACAAGCCGCGCGCGCGCTGCCGCTGGCCCTCAGCAACCCTCGAC} {\tt ATG} {\tt GGGCGGCGGCCGACCGCGAC}$ ${\tt TCCGGCTCTGCGCTGCTGACTTCTTCCTGCTGCTTTTTCAGGGGCTGCTGATAGGGGCTGTAAATC}$ ${\tt TCAAATCCAGCAATCGAACCCCAGTGGTACAGGAATTTGAAAGTGTGGGAACTGTCTTGCATCATTACGGATTCGC$ AGACAAGTGACCCCAGGATCGAGTGGAAGAAAATTCAAGATGAACAAACCACATATGTGTTTTTTGACAACAAAA ACTCAGCCCTTTATCGCTGTGAGGTCGTTGCTCGAAATGACCGCAAGGAAATTGATGAGATTGTGATCGAGTTAA $\tt CTGTGCAAGTGAAGCCAGTGACCCCTGTCTGTAGAGTGCCGAAGGCTGTACCAGTAGGCAAGATGGCAACACTGC$ ${ t ACTGCCAGGAGAGTGAGGGCCACCCCGGCCTCACTACAGCTGGTATCGCAATGATGTACCACTGCCCACGGATT$ ${\tt CCAGAGCCAATCCCAGATTCGCAATTCTTTCCACTTAAACTCTGAAACAGGCACTTTGGTGTTCACTGCTG}$ ${\tt TTCACAAGGACGACTCTGGGCAGTACTACTGCATTGCTTCCAATGACGCGGCTCAGCCAGGTGTGAGGAGCAGG}$ TCACGTTGGGCATCTGCTGCATACAGACGTGGCTACTTCATCAACAATAAACAGGATGGAGAAAGTTACAAGA ${f T}{f G}{f A}{f T}{f G}{f A}{f C}{f C}{f C}{f G}{f C}{f G}{f C}{f G}{f C}{f A}{f C}{f G}{f C}{f G}{f C}{f A}{f C}{f C}{f C}{f A}{f C}{f C}{f C}{f A}{f C}{f C}{f$ ${\tt GGCAGCGAGAGCTGATGCACTCGGACAGAGCTAGACACTCATTCAGAAGCTTTTCGTTTTTGGCCAAAGTTGACCA}$ $\tt CTACTCTTACTCTAACAAGCCACATGAATAGAAGAATTTTCCTCAAGATGGACCCGGTAAATATAACCACAA$ GGAAGCGAAACTGGGTGCGTTCACTGAGTTGGGTTCCTAATCTGTTTCTGGCCTGATTCCCGCATGAGTATTAGG $\tt GTGATCTTAAAGAGTTTGCTCACGTAAACGCCCGTGCTGGGCCCTGTGAAGCCAGCATGTTCACCACTGGTCGTT$ CAGCAGCCACGACAGCATGTGAGATGGCGAGGTGGCTGGACAGCACCAGCAGCGCATCCCGGCGGGAACCCA ${\tt GAAAAGGCTTCTTACACAGCAGCCTTACTTCATCGGCCCACAGACACCACCGCAGTTTCTTCATAAGGCTCTGC}$ ${\tt TGATCGGTGTTGCAGTGTCCATTGTGGAGAAGCTTTTTGGATCAGCATTTTGTAAAAACAACCAAAATCAGGAAG}$ ${\tt GTAAATTGGTTGCTGGAAGAGGGATCTTGCCTGAGGAACCCTGCTTGTCCAACAGGGTGTCAGGATTTAAGGAAA}$ ${ t ACCTTCGTCTTAGGCTAAGTCTGAAATGGTACTGAAATATGCTTTTCTATGGGTCTTGTTTATTTTATAAAATTTT}$ ${\tt TACATCTAAATTTTTGCTAAGGATGTATTTTGATTATTGAAAAGAAAATTTCTATTTAAACTGTAAATATTTTGT}$ ${\tt TGGAAAATATCAATAATTAAGAGTATTTTACCCAAGGAATCCTCTCATGGAAGTTTACTGTGATGTTCCTTTTCT}$ ${\tt CACACAAGTTTTAGCCTTTTCACAAGGGAACTCATACTGTCTACACATCAGACCATAGTTGCTTAGGAAACCTT}$ TAAAAATTCCAGTTAAGCAATGTTGAAATCAGTTTGCATCTCTTCAAAAGAAACCTCTCAGGTTAGCTTTGAACT ${\tt TCTCAGGTGGGCACTGCAGGGACACTGGTGTCTTCCATGTAGCGTCCCAGCTTTGGGCTCCTGTAACAGACCTCT}$ ${ t AAGATTGTCTAAGGCCAAAGGCAATTGCGAAATCAAGTCTGTCAAGTACAATAACATTTTTAAAAGAAAATGGAT$ ${\tt TGAAACGCCTGAATCAAAAGCAGTTTTCTAATTTTGACTTTAAATTTTTCATCCGCCGGAGACACTGCTCCCATT}$ ${ t TGTGGGGGGACATTAGCAACATCACTCAGAAGCCTGTGTTCTTCAAGAGCAGGTGTTCTCAGCCTCACATGCCCT$ TCTTGGTTGTCATAGTGATAGGGTAGCCTTATTGCCCCCTCTTCTTATACCCTAAAACCTTCTACACTAGTGCCA ${\tt TGGGAACCAGGTCTGAAAAAGTAGAGAAGTGAAAGTAGAGTCTGGGAAGTAGCTGCCTATAACTGAGACTAGA}$ ${\tt CGGAAAAGGAATACTCGTGTATTTTAAGATATGAATGTGACTCAAGACTCGAGGCCGATACGAGGCTGTGATTCT}$ ${\tt GCCTTTGGATGGATGTTGCTGTACACAGATGCTACAGACTTGTACTAACACACCGTAATTTGGCATTTGTTTAAC}$ CTCATTTATAAAAGCTTCAAAAAAACCCA

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77624

><subunit 1 of 1, 310 aa, 1 stop

><MW: 35020, pI: 7.90, NX(S/T): 3

MALRRPPRLRLCARLPDFFLLLLFRGCLIGAVNLKSSNRTPVVQEFESVELSCIITDSQTSD PRIEWKKIQDEQTTYVFFDNKIQGDLAGRAEILGKTSLKIWNVTRRDSALYRCEVVARNDRK EIDEIVIELTVQVKPVTPVCRVPKAVPVGKMATLHCQESEGHPRPHYSWYRNDVPLPTDSRA NPRFRNSSFHLNSETGTLVFTAVHKDDSGQYYCIASNDAGSARCEEQEMEVYDLNIGGIIGG VLVVLAVLALITLGICCAYRRGYFINNKQDGESYKNPGKPDGVNYIRTDEEGDFRHKSSFVI

Important features of the protein:

Signal peptide:

amino acids 1-30

2,2

Transmembrane domain:

amino acids 243-263

N-glycosylation sites.

amino acids 104-107, 192-195

cAMP- and cGMP-dependent protein kinase phosphorylation site. amino acids 107-110

Casein kinase II phosphorylation site.

amino acids 106-109, 296-299

Tyrosine kinase phosphorylation site.

amino acids 69-77

N-myristoylation sites.

amino acids 26-31, 215-220, 226-231, 243-248, 244-249, 262-267