

Pontificia Universidad Javeriana

Facultad de Ingeniería Departamento de Electrónica

Controles

Clase 4: Sintonización de Controladores

Gerardo Becerra, Ph.D.

gbecerra@javeriana.edu.co

Febrero 19, 2020

1

• Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.
 - Experimentales

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.
 - Experimentales
 - Análisis de la función de transferencia

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.
 - Experimentales
 - Análisis de la función de transferencia
 - Técnicas de optimización

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.
 - Experimentales
 - Análisis de la función de transferencia
 - Técnicas de optimización
 - Lugar geométrico de las raíces

2

- Controlador PID \rightarrow Depende de los parámetros K_p , T_i , T_d .
- Sintonización: Selección de valores numéricos para los parámetros, con base en algún criterio.
- Existen muchos criterios para sintonización de controladores.
 - Experimentales
 - Análisis de la función de transferencia
 - Técnicas de optimización
 - Lugar geométrico de las raíces
 - Compensación en frecuencia

2

Criterios Clásicos de Sintonización

• Método experimental.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.
- Produce un sobrepico grande.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.
- Produce un sobrepico grande.
- Los parámetros resultantes no necesariamente son óptimos. Se toman como punto de partida para un ajuste fino.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.
- Produce un sobrepico grande.
- Los parámetros resultantes no necesariamente son óptimos. Se toman como punto de partida para un ajuste fino.
- Dos métodos

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.
- Produce un sobrepico grande.
- Los parámetros resultantes no necesariamente son óptimos. Se toman como punto de partida para un ajuste fino.
- Dos métodos
 - 1. Lazo abierto: Características de la curva de reacción ante entrada paso.

- Método experimental.
- Útil cuando no se conoce un modelo matemático detallado de la planta.
- Está diseñado para proveer un buen rechazo a perturbaciones.
- Produce un sobrepico grande.
- Los parámetros resultantes no necesariamente son óptimos. Se toman como punto de partida para un ajuste fino.
- Dos métodos
 - 1. Lazo abierto: Características de la curva de reacción ante entrada paso.
 - 2. Lazo cerrado: Aumentar la ganancia proporcional hasta un valor crítico.

 Aplicar entrada paso unitaria al sistema y medir la respuesta (experimental o simulación).

- Aplicar entrada paso unitaria al sistema y medir la respuesta (experimental o simulación).
- Si la respuesta tiene forma de *S*, se puede aplicar el método.

- Aplicar entrada paso unitaria al sistema y medir la respuesta (experimental o simulación).
- Si la respuesta tiene forma de S, se puede aplicar el método.
- Caracterizar la curva obtenida usando dos parámetros: tiempo muerto L y constante de tiempo T.

- Aplicar entrada paso unitaria al sistema y medir la respuesta (experimental o simulación).
- Si la respuesta tiene forma de S, se puede aplicar el método.
- Caracterizar la curva obtenida usando dos parámetros: tiempo muerto L y constante de tiempo T.
- Los parámetros se encuentran dibujando una recta tangente al punto de inflexión de la curva en forma de S.

- Aplicar entrada paso unitaria al sistema y medir la respuesta (experimental o simulación).
- Si la respuesta tiene forma de *S*, se puede aplicar el método.
- Caracterizar la curva obtenida usando dos parámetros: tiempo muerto L y constante de tiempo T.
- Los parámetros se encuentran dibujando una recta tangente al punto de inflexión de la curva en forma de S.

 La función de transferencia C(s)/U(s) se puede aproximar a un sistema de primer orden mas tiempo muerto:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

 La función de transferencia C(s)/U(s) se puede aproximar a un sistema de primer orden mas tiempo muerto:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

 Ziegler y Nichols sugirieron asignar los valores para los parámetros de acuerdo con la siguiente tabla:

Controlador	K_p	T_i	T_d
Р	T/L	∞	0
PI	0.9T/L	L/0.3	0
PID	1.2T/L	2L	0.5L

 La función de transferencia C(s)/U(s) se puede aproximar a un sistema de primer orden mas tiempo muerto:

$$\frac{C(s)}{U(s)} = \frac{Ke^{-Ls}}{Ts+1}$$

 Ziegler y Nichols sugirieron asignar los valores para los parámetros de acuerdo con la siguiente tabla:

Controlador	K_p	T_i	T_d
Р	T/L	∞	0
PI	0.9T/L	L/0.3	0
PID	1.2T/L	2L	0.5L

Note que el controlador PID obtenido por éste método tiene la forma:

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 1.2 \frac{T}{L} \left(1 + \frac{1}{2Ls} + 0.5 Ls \right)$$

$$= 0.6 T \frac{\left(s + \frac{1}{L} \right)^2}{s}$$

El controlador PID tiene un polo en el origen y doble cero en s = -1/L.

• Se inicia configurando $T_i = \infty$ y $T_d = 0$.

- Se inicia configurando $T_i = \infty$ y $T_d = 0$.
- Usando sólo acción proporcional, aumentar K_p desde 0 hasta un valor crítico K_{cr} en el cual la salida presenta oscilaciones sostenidas.

- Se inicia configurando $T_i = \infty$ y $T_d = 0$.
- Usando sólo acción proporcional, aumentar K_p desde 0 hasta un valor crítico K_{cr} en el cual la salida presenta oscilaciones sostenidas.
- Si no se obtienen oscilaciones, el método no se puede aplicar.

- Se inicia configurando $T_i = \infty$ y $T_d = 0$.
- Usando sólo acción proporcional, aumentar K_p desde 0 hasta un valor crítico K_{cr} en el cual la salida presenta oscilaciones sostenidas.
- Si no se obtienen oscilaciones, el método no se puede aplicar.
- A partir del experimento se determinan la ganancia crítica K_{cr} y periodo crítico P_{cr}.

- Se inicia configurando $T_i = \infty$ y $T_d = 0$.
- Usando sólo acción proporcional, aumentar K_p desde 0 hasta un valor crítico K_{cr} en el cual la salida presenta oscilaciones sostenidas.
- Si no se obtienen oscilaciones, el método no se puede aplicar.
- A partir del experimento se determinan la ganancia crítica K_{cr} y periodo crítico P_{cr}.

Ziegler y Nichols sugirieron asignar los valores para los parámetros de acuerdo con la siguiente tabla:

Controlador	K_p	T_i	T_d
Р	$0.5K_{cr}$	∞	0
PI	$0.45K_{cr}$	$P_{cr}/1.2$	0
PID	$0.6K_{cr}$	$P_{cr}/2$	0.125 <i>P_{cr}</i>

Ziegler y Nichols sugirieron asignar los valores para los parámetros de acuerdo con la siguiente tabla:

Controlador	K_p	T_i	T_d
Р	$0.5K_{cr}$	∞	0
PI	$0.45K_{cr}$	$P_{cr}/1.2$	0
PID	0.6K _{cr}	P _{cr} /2	$0.125P_{cr}$

Note que el controlador PID obtenido por el segundo método tiene la forma:

$$G_{c}(s) = K_{p} \left(1 + \frac{1}{T_{i}S} + T_{d}S \right)$$

$$= 0.6K_{cr} \left(1 + \frac{1}{0.5P_{cr}S} + 0.125P_{cr}S \right)$$

$$= 0.075K_{cr}P_{cr} \frac{\left(S + \frac{4}{P_{cr}} \right)^{2}}{S}$$

Entonces, el controlador PID tiene un polo en el origen y doble cero en $s = -4/P_{cr}$.

Considere el sistema de control mostrado en la figura. Usando el método de Ziegler-Nichols, determine los parámetros del controlador PID tal que se obtenga un sobrepico máximo de aproximadamente 25%. Si el sobrepico máximo es excesivo, realice un ajuste fino para reducirlo.

• Dado que la planta tiene un integrador, se utiliza el segundo método.

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

9

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

9

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

$$\begin{array}{c|cccc}
s^3 & 1 & 5 \\
s^2 & 6 & K_p \\
s^1 & \frac{30 - K_p}{6} \\
s^0 & K_p
\end{array}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas es $K_{cr} = 30$.

- Dado que la planta tiene un integrador, se utiliza el segundo método.
- Definiendo $T_i = \infty$ y $T_d = 0$, se obtiene la función de transferencia de lazo cerrado:

$$\frac{C(s)}{R(s)} = \frac{K_p}{s(s+1)(s+5) + K_p} = \frac{K_p}{s^3 + 6s^2 + 5s + K_p}$$

• El valor crítico de K_p para obtener oscilaciones sostenidas se puede obtener usando el criterio de estabilidad de Routh-Hurwitz para el polinomio característico $q(s) = s^3 + 6s^2 + 5s + K_p = 0$:

$$\begin{array}{c|cccc}
s^3 & 1 & 5 \\
s^2 & 6 & K_p \\
s^1 & \frac{30 - K_p}{6} \\
s^0 & K_p
\end{array}$$

- El valor crítico de K_p para obtener oscilaciones sostenidas es $K_{cr} = 30$.
- En éste caso, el polinomio característico es $q(s) = s^3 + 6s^2 + 5s + 30 = 0$.

• Para hallar la frecuencia de la oscilación se substituye $s=j\omega$ en el polinomio característico:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$
$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$
$$\Rightarrow \omega = \sqrt{5}$$

• Para hallar la frecuencia de la oscilación se substituye $s=j\omega$ en el polinomio característico:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$
$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$
$$\Rightarrow \omega = \sqrt{5}$$

• El periodo de oscilación sostenida es:

$$P_{cr} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{5}} = 2.8099$$

• Para hallar la frecuencia de la oscilación se substituye $s=j\omega$ en el polinomio característico:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$
$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$
$$\Rightarrow \omega = \sqrt{5}$$

• El periodo de oscilación sostenida es:

$$P_{cr} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{5}} = 2.8099$$

• Para hallar la frecuencia de la oscilación se substituye $s=j\omega$ en el polinomio característico:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$
$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$
$$\Rightarrow \omega = \sqrt{5}$$

• El periodo de oscilación sostenida es:

$$P_{cr} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{5}} = 2.8099$$

 Usando la tabla para el método 2, se obtienen los valores del controlador PID como:

$$K_p = 0.6K_{cr} = 18$$
 $T_i = 0.5P_{cr} = 1.405$
 $T_d = 0.125P_{cr} = 0.35124$

• Para hallar la frecuencia de la oscilación se substituye $s=j\omega$ en el polinomio característico:

$$(j\omega)^3 + 6(j\omega)^2 + 5(j\omega) + 30 = 0$$
$$6(5 - \omega^2) + j\omega(5 - \omega^2) = 0$$
$$\Rightarrow \omega = \sqrt{5}$$

• El periodo de oscilación sostenida es:

$$P_{cr} = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{5}} = 2.8099$$

 Usando la tabla para el método 2, se obtienen los valores del controlador PID como:

$$K_p = 0.6K_{cr} = 18$$

 $T_i = 0.5P_{cr} = 1.405$
 $T_d = 0.125P_{cr} = 0.35124$

 La función de transferencia del controlador PID queda:

$$G_c(s) = 18 \left(1 + \frac{1}{1.405s} + 0.35124s \right)$$
$$= \frac{6.3223(s + 1.4235)^2}{s}$$

La respuesta del sistema en lazo cerrado ante una entrada paso es:

La respuesta del sistema en lazo cerrado ante una entrada paso es:

Sobrepico 60% approximadamente \rightarrow se require ajustar los parámetros para disminuir el sobrepico:

$$K_p = 39.42$$
 $T_i = 3.077$
 $T_d = 0.7692$

Método de Cohen-Coon

• Ziegler-Nichols: sensible a la relación L/T.

Controlador	K_p	T_i	T_d
Р	$\frac{T}{K_0L}\left(1+\frac{L}{3T}\right)$	∞	0
PI	$\frac{T}{K_0L}(0.9 + \frac{L}{12T})$	L_{9T+20L}^{30T+3L}	0
PID	$\frac{T}{K_0L}\left(\frac{4}{3}+\frac{L}{4T}\right)$	$L\frac{32T+6L}{13T+8L}$	4TL 11T+22

$$K_0 = \frac{\Delta c}{\Delta u}$$

Método de Cohen-Coon

- Ziegler-Nichols: sensible a la relación L/T.
- Cohen-Coon: Mejora el desempeño cuando el tiempo muerto es comparable a la constante de tiempo.

Controlador	K_p	T_i	T_d
Р	$\frac{T}{K_0L}\left(1+\frac{L}{3T}\right)$	∞	0
PI	$\frac{T}{K_0 I} (0.9 + \frac{L}{12T})$	$L_{\frac{30T+3L}{9T+20I}}$	0
PID	$\frac{T}{K_0L}\left(\frac{4}{3}+\frac{L}{4T}\right)$	$L\frac{32T+6L}{13T+8L}$	4TL 11T+22

$$K_0 = \frac{\Delta c}{\Delta u}$$

Sintonía Óptima de

Controladores

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

T: Es conveniente seleccionarlo como el tiempo de establecimiento $T_{\rm s}$.

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

T: Es conveniente seleccionarlo como el tiempo de establecimiento $T_{\rm s}$.

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

• Integral del cuadrado del error (ISE):

$$ISE = \int_0^T e^2(t)dt$$

T: Es conveniente seleccionarlo como el tiempo de establecimiento $T_{\rm s}$.

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

• Integral del cuadrado del error (ISE):

$$ISE = \int_0^T e^2(t)dt$$

 Integral del valor absoluto del error (IAE):

$$IAE = \int_0^T |e(t)|dt$$

T: Es conveniente seleccionarlo como el tiempo de establecimiento T_s .

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

• Integral del cuadrado del error (ISE):

$$ISE = \int_0^T e^2(t)dt$$

 Integral del valor absoluto del error (IAE):

$$IAE = \int_0^T |e(t)|dt$$

T: Es conveniente seleccionarlo como el tiempo de establecimiento T_s .

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

• Integral del cuadrado del error (ISE):

$$ISE = \int_0^T e^2(t)dt$$

 Integral del valor absoluto del error (IAE):

$$IAE = \int_0^T |e(t)| dt$$

T: Es conveniente seleccionarlo como el tiempo de establecimiento T_s .

• Integral del valor absoluto del error ponderado en el tiempo (ITAE):

$$ITAE = \int_0^\tau t|e(t)|dt$$

Sistema de control óptimo: los parámetros del sistema se ajustan para minimizar (maximizar) un índice de desempeño.

• Integral del cuadrado del error (ISE):

$$ISE = \int_0^T e^2(t)dt$$

 Integral del valor absoluto del error (IAE):

$$IAE = \int_0^T |e(t)| dt$$

 Integral del valor absoluto del error ponderado en el tiempo (ITAE):

$$ITAE = \int_0^T t|e(t)|dt$$

 Integral del cuadrado del error ponderado en el tiempo (ITSE):

$$ITAE = \int_0^T te^2(t)dt$$

T: Es conveniente seleccionarlo como el tiempo de establecimiento T_s .

• ISE: otorga más peso a errores grandes, lo cual usualmente ocurre al inicio de la respuesta, y menos peso a errores pequeños, lo cual ocurre normalmente hacia el final de la respuesta.

- ISE: otorga más peso a errores grandes, lo cual usualmente ocurre al inicio de la respuesta, y menos peso a errores pequeños, lo cual ocurre normalmente hacia el final de la respuesta.
- ISE: produce ganancias del controlador grandes y respuestas muy oscilatorias.

- ISE: otorga más peso a errores grandes, lo cual usualmente ocurre al inicio de la respuesta, y menos peso a errores pequeños, lo cual ocurre normalmente hacia el final de la respuesta.
- ISE: produce ganancias del controlador grandes y respuestas muy oscilatorias.
- ITAE, ITSE: agrega un término de penalización asociado al tiempo transcurrido.

- ISE: otorga más peso a errores grandes, lo cual usualmente ocurre al inicio de la respuesta, y menos peso a errores pequeños, lo cual ocurre normalmente hacia el final de la respuesta.
- ISE: produce ganancias del controlador grandes y respuestas muy oscilatorias.
- ITAE, ITSE: agrega un término de penalización asociado al tiempo transcurrido.
- Lopez et al [1967] desarrollaron fórmulas empíricas de mínimo error integral.

- ISE: otorga más peso a errores grandes, lo cual usualmente ocurre al inicio de la respuesta, y menos peso a errores pequeños, lo cual ocurre normalmente hacia el final de la respuesta.
- ISE: produce ganancias del controlador grandes y respuestas muy oscilatorias.
- ITAE, ITSE: agrega un término de penalización asociado al tiempo transcurrido.
- Lopez et al [1967] desarrollaron fórmulas empíricas de mínimo error integral.
- Aplicables para el intervalo 0.1 < L/T < 1.

Sintonización Óptima para Regulación - Controlador P

Process Model:	$G(s) = \frac{Ke^{-t_0s}}{\tau s + 1}$		
Proportional (P)	Controller: $G_e(s) = K_c$		
Error Integral	ISE	IAE	ITAE
$K_c = \frac{a}{K} \left(\frac{t_0}{\tau}\right)^b$	a = 1.411 $b = -0.917$	0.902 - 0.985	0.490 - 1.084

Sintonización Óptima para Regulación - Controlador PI

D	N f . 1 . 1 .	C ()	Ke^{-t_0s}	
Process	Model:	G(s) =		
		- (-)	$\tau s + 1$	

Proportional-Integral (PI) Controller:

$$G_c(s) = K_c \left(1 + \frac{1}{\tau_l s} \right)$$

Error Integral	ISE	IAE	ITAE
$K_c = \frac{a_1}{K} \left(\frac{t_0}{\tau}\right)^{b_1}$	a, = 1.305	0.984	0.859
$K \setminus \tau$	b, = -0.959	- 0.986	0.977
$ au_I = rac{ au}{a_2} \left(rac{t_0}{ au} ight)^{b_2}$	$a_2 = 0.492$	0.608	0.674
$a_2 (\tau)$	$b_2 = 0.739$	0.707	0.680

Sintonización Óptima para Regulación - Controlador PID

Process Model: $G(s) = \frac{Ke^{-\tau_0 s}}{\tau s + 1}$	
Proportional-Integral-Derivative (PID) Controller:	
$G_{s}(s) = K_{c} \left(1 + \frac{1}{\tau_{I} s} + \tau_{D} s \right)$	

Error Integral	ISE	IAE	ITAE
$K_c = \frac{a_1}{K} \left(\frac{t_0}{\tau}\right)^{b_1}$	a, = 1.495 b, = 0.945	1.435 0.921	1.357 - 0.947
$\tau_I = \frac{\tau}{a_2} \left(\frac{t_0}{\tau}\right)^{b_2}$	$a_1 = 1.101$ $b_2 = 0.771$	0.878 9.749	0.842 0.738
$\tau_D = (t_0)^{b_3}$	$a_3 = 0.560$	0.482	0.381
$a_3 \tau \left(\frac{t_0}{\tau}\right)^{b_3}$	$b_3 = 1.006$	1.137	0.995

Sintonización Óptima para Servos - Controlador PI

Process Model:
$$G(s) = \frac{Ke^{-t_0s}}{\tau s + 1}$$

Proportional-Integral (PI) Controller:

$$G_{c}(s) = K_{c} \left(1 + \frac{1}{\tau_{I} s} \right)$$

	\ 1/3/	
Error Integral	IAE	ITAE
$K_c = \frac{a_1}{K} \left(\frac{t_0}{\tau}\right)^{b_1}$	$a_{,} = 0.758$ $b_{,} = -0.861$	0.586 - 0.916
$\tau_I = \frac{\tau}{a_2 + b_2(t_0/\tau)}$	$a_2 = 1.02$ $b_2 = -0.323$	1.03 0.165

Sintonización Óptima para Servos - Controlador PID

Process Model:	$G(s) = \frac{Ke^{-t_0 s}}{\tau s + 1}$	
Proportional-Integral-Deri	vative (PID) Controller	r:
$G_c(s) =$	$K_c\left(1+\frac{1}{\tau_I s}+\tau_D s\right)$	
Error Integral	IAE	ITAE
$K_c = \frac{a_1}{K} \left(\frac{t_0}{\tau}\right)^{b_1}$	$a_1 = 1.086$ $b_1 = -0.869$	0.965 - 0.855
$\tau_I = \frac{\tau}{a_2 + b_2(t_0/\tau)}$	$a_2 = 0.740$ $b_2 = -0.130$	0.796 0.147
$\tau_D = a_3 \tau \left(\frac{t_0}{\tau}\right)^{b_3}$	$a_3 = 0.348$ $b_3 = 0.914$	0.308 0.9292

Taller

- 1. Considere el sistema de control mostrado en la figura.
 - Diseñe un controlador PID usando el método de Ziegler-Nichols.
 - Determine la respuesta a entrada unitaria y disturbio unitario.
 - Cuál es el máximo sobrepico y tiempo de establecimiento para la respuesta a entrada unitaria?

Taller

2. La siguiente figura muestra la curva de reacción obtenida al aplicar una entrada paso al sistema $G(s) = \frac{1}{(s+1)^4}$.

- Encuentre una aproximación de primer orden mas tiempo muerto (FOPDT) para el sistema.
- Diseñe un controlador PID usando los métodos de Ziegler-Nichols, Cohen-Coon e ITAE.
- Compare los valores de los parámetros obtenidos en cada caso.
- Evalue el desempeño de cada controlador ante entrada paso unitario y disturbio paso unitario.

21