materia oscura

Astronomia & Cosmologia

overview

- introduzione
 - cos'è la cosmologia?

- o ne abbiamo bisogno?
 - strutture
 - galassie
 - Bullet cluster

- o osservazioni
 - machos
 - wimps
 - ???

- o what if...?
 - teorie della gravità modificata

introduzione

Cosmologia Cos'è?

Cosmologia Modello cosmologico ACDM

Materia "normale"

(5 %)

CDM

(27 %)

\(\begin{array}{c}
\)

(68 %)

ne abbiamo (davvero) bisogno?

#1 strutture ACDM

universo ha strutture
 CDM (27 %)
 [e.g. Liddle & Lyth 93]

#1 strutture

ΛCDM

universo ha strutture

► CDM (27 %)

[e.g. Liddle & Lyth 93]

#1 strutture

#2 Galassie a Spirale

#3 Bullet Cluster

1E 0657-56 0.5 Mpc Chandra 0.5 Msec image

credit: NASA

"osservazioni"

osservazioni cosa

Assioni

$$10^{-21} < p_{DM} < 1 \text{ eV}$$

WIMPS - Weakly Interactive Massive Particle

$$1 < p_{DM} < 10^{28} \, \mathrm{eV}$$

MACHOS - Massive Compact Halos Objects

$$10^{28} \text{ eV} < p_{DM} \lesssim 1 \text{ M}_{\odot}$$

osservazioni come

- Indiretta: osservatori
 - telescopi (x-ray)
 - Super Kamiokande
 - iceCube

- Diretta:
 - LHC
 - Crystal scintillators
 - Axion Dark Matter Experiment

OSSETVAZIONI indirette

- Indiretta: osservatori
 - telescopi (x-ray)
 - Super Kamiokande
 - iceCube

- modi
 - annichilazione
 - decadimento

OSSETVAZIONI indirette

- Indiretta: osservatori
 - telescopi (x-ray)
 - Super Kamiokande
 - iceCube

osservazioni indirette

- Indiretta: osservatori
 - telescopi (x-ray)
 - Super Kamiokande
 - iceCube

OSSETVAZIONI dirette

- Diretta:
 - LHC
 - Crystal scintillators
 - Axion Dark Matter Experiment

- modi
 - "osservazione" interazione
 - interazione DM con osservatori

teorie della gravità modificata

MONDModified Newtonian Dynamics

extras

Galassie senza materia oscura?? https://www.nature.com/articles/d41586-022-01410-x

$$\frac{H^2}{H_0^2} = \Omega_{0,\mathrm{R}} a^{-4} + \Omega_{0,\mathrm{M}} a^{-3} + \Omega_{0,k} a^{-2} + \Omega_{0,\Lambda} - 1 \mathrm{st} \ \mathrm{Friedmann} \ \mathrm{eq}$$

,
$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} (+\Lambda g_{\mu\nu}) = \kappa T_{\mu\nu}$$
 - Einstein field equations