Best Practices for Modeling Time-Varying Selectivity

Steven Martell & Ian Stewart

International Pacific Halibut Commission stevem@iphc.int

April 8, 2013

Parts to this talk

- Motivation
- Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- 5 What I've learned so far

Outline

- Motivation
- 2 Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- 5 What I've learned so far

Motivation

There are many **SUBJECTIVE** elements in stock assessment.

Outline

- Motivation
- Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- 5 What I've learned so far

- Virtual Population Analysis
 - ► Catch reported without error

Statistic Catch Age

- Virtual Population Analysis
 - ► Catch reported without error
 - ▶ Incomplete cohorts

Statistic Catch Age

- Virtual Population Analysis
 - Catch reported without error
 - ► Incomplete cohorts
 - Error propagation

Statistic Catch Age

- Virtual Population Analysis
 - Catch reported without error
 - ► Incomplete cohorts
 - Error propagation

- Statistic Catch Age
 - Confounding between error & structural assumptions

- Virtual Population Analysis
 - Catch reported without error
 - ► Incomplete cohorts
 - Error propagation

- Statistic Catch Age
 - Confounding between error & structural assumptions
 - Seprability (year & age effect)

- Virtual Population Analysis
 - Catch reported without error
 - ▶ Incomplete cohorts
 - Error propagation

- Statistic Catch Age
 - Confounding between error & structural assumptions
 - Seprability (year & age effect)
 - ► Large number of latent variables

Outline

- Motivation
- 2 Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- What I've learned so far

Selectivity Models

How do we go about choosing the appropriate model?

How do we go about choosing the appropriate model?

Fishing epochs

How do we go about choosing the appropriate model? Residual patterns

How do we go about choosing the appropriate model?

Retrospective performance

How do we go about choosing the appropriate model?

Center for Independent Experts!

Outline

- Motivation
- 2 Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- What I've learned so far

Simulation experiment

True states	Assumed selectivity states			
	Fixed (a)	Disc. (b)	Cont. (c)	Bicub (d)
No. parameters	N=156	N=160	N=385	N=239
Estimated No.	N=89	N=93	N = 318	N=172
Fixed (1)	1a	1b	1c	1d
Discrete (2)	2a	2b	2c	2d
Continuous (3)	3a	3b	3c	3d

Model structure

Simulation: based on 2010 Pacific hake assessment

- Age-structured, assume *M* is known.
- Conditioned on historical catch & parameters fixed at MLE values.
- Parameters: B_o , h, initial states, rec-devs, selectivities, F's, q, total variance.
- Concentrated likelihood for age-comps & estimate variance for survey & recruitment deviates.

Data:

- Historical removals.
- Annual abundance index based on stationary q.
- Survey age composition (logistic-time invariant).
- Fishery age composition (selectivity: fixed, blocks, or continous).
- Index observation error: $\sigma = 0.30$
- Age-composition error (multivariate logistic): $\sigma = 0.30$
- Process error: $\tau = 1.12$

Selectivities

Simulated

Estimated (7 knot cubic spline)

Questions

- Or Can DIC be used reliably to choose the correct selectivity model?
- Retrospective performance of selectivity mis-specification?
- Impact of selectivity mis-specification on reference points?

Model selection based on DIC

For each true state (fixed, discrete, continuous), fit 4 alternative assessment models to the data and calculate Deviance Information Criterion (DIC).

Model selection based on DIC

Δ DIC

True states	Assumed selectivity states			
	Fixed (a)	Disc. (b)	Cont. (c)	Bicub (d)
Fixed (1)	10.28	21.92	26.23	0.00
Discrete (2)	195.52	45.45	0.00	2.70
Continuous (3)	1.72	8.45	3.05	0.00

Root Mean Square Error

Root Mean Square Error

RMSE

True states	Assumed selectivity states			
	Fixed (a)	Disc. (b)	Cont. (c)	Bicub (d)
Fixed (1)	1.942	1.937	1.867	1.915
Discrete (2)	1.979	1.949	1.868	1.918
Continuous (3)	2.093	2.087	1.999	2.053

Retrospective performance

Retrospective performance

Retrospective performance

Monte Carlo trials

Retrospective bias statistic Ω

Distance between average and absolute average bias:

$$\begin{aligned} \text{bias} &= \frac{1}{4} \sum_{t=2005}^{2009} \frac{B_t^y - B_t^{2010}}{B_t^{2010}} \\ |\text{bias}| &= \frac{1}{4} \sum_{t=2005}^{2009} \left| \frac{B_t^y - B_t^{2010}}{B_t^{2010}} \right| \\ &\Omega &= \sqrt{\text{bias}^2 + |\text{bias}|^2} \end{aligned}$$

Retrospective bias statistic Ω

$\Omega=0$ implies no bias

True states	Assumed selectivity states			
	Fixed (a)	Disc. (b)	Cont. (c)	Bicub (d)
Fixed (1)	15.75	15.66	16.53	16.40
Discrete (2)	16.62	18.99	16.73	16.55
Continuous (3)	16.62	17.47	17.40	17.48

Bias in reference points

Bias in reference points

F_{MSY} bias

True states	Assumed selectivity states			
	Fixed (a)	Disc. (b)	Cont. (c)	Bicub (d)
Fixed (1)	-0.054	-0.050	-0.009	0.007
Discrete (2)	-0.155	-0.120	0.003	0.013
Continuous (3)	0.142	0.086	0.064	0.100

Rank scores

True states	Assumed selectivity states			
	Fixed (1)	Disc. (2)	Cont. (3)	Rank order
DIC	d,a,b,c	c,d,b,a	d,a,c,b	d ,c,b,a
Ω	b,a,d,c	d,a,c,b	a,c,b,d	a, d ,c,b
$\mathcal{F}_{ ext{MSY}}$	d,c,b,a	c,d,b,a	c,b,d,a	c, d ,b,a

Outline

- Motivation
- 2 Virtual & Synthetic methods
- Selectivity Models
- Simulation Experiment
 - Model overview
 - Simulation results
- 5 What I've learned so far

- Preferable to adopt a penalized random walk versus time blocks.
 - ▶ Less retrospective bias & less bias in $F_{\rm MSY}$.

- Preferable to adopt a penalized random walk versus time blocks.
 - Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.

- Preferable to adopt a penalized random walk versus time blocks.
 - ▶ Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.
- Don't add small constants to age-comp likelihoods.
 - Pool small proportions into adjacent year classes.

- Preferable to adopt a penalized random walk versus time blocks.
 - Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.
- Don't add small constants to age-comp likelihoods.
 - Pool small proportions into adjacent year classes.
- Tagging data could help resolve confounding in integrated models.

- Preferable to adopt a penalized random walk versus time blocks.
 - Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.
- Don't add small constants to age-comp likelihoods.
 - Pool small proportions into adjacent year classes.
- Tagging data could help resolve confounding in integrated models.
- Simulation test model selection criteria.

- Preferable to adopt a penalized random walk versus time blocks.
 - ▶ Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.
- Don't add small constants to age-comp likelihoods.
 - Pool small proportions into adjacent year classes.
- Tagging data could help resolve confounding in integrated models.
- Simulation test model selection criteria.
- Can also use 2 dimensional splines for selectivity.
 - ► Appears to perform much better in nïave situations.
 - Reduces number of estimated selectivity coefficients.
 - More robust to smoothing penalities.

- Preferable to adopt a penalized random walk versus time blocks.
 - ▶ Less retrospective bias & less bias in F_{MSY} .
- Random walk models: loss of scale information (i.e., catch curves).
 - ▶ Informative prior for scaling parameters may be necessary.
- Don't add small constants to age-comp likelihoods.
 - Pool small proportions into adjacent year classes.
- Tagging data could help resolve confounding in integrated models.
- Simulation test model selection criteria.
- Can also use 2 dimensional splines for selectivity.
 - ► Appears to perform much better in nïave situations.
 - Reduces number of estimated selectivity coefficients.
 - ▶ More robust to smoothing penalities.
- Ensure parameterization is continuous and differentiable.
 - Avoid max function (not continous).

2d cubic splines

Top = 231 and bottom = 60 selectivity parameters.

The End

Acknowledgements:

IPHC, ADMB Foundation, CAPAM workshop organizers.

Jim lanelli and Dave Fournier for the vcubicspline_function_array class.