COL751 - Lecture 15

Recall the definition of Gomory Hu trees introduced in the previous lecture.

Definition 1 (Lec 14) A tree $T = (V, E^*, c^*)$ is said to be a Gomory-Hu tree for a graph G = (V, E, c) if it satisfies that for any distinct $x, y \in V$:

- 1. $\lambda_{x,y,G} = \lambda_{x,y,T} = \min_{e \in P_{x,y}} c^*(e)$.
- 2. If $e = \arg\min_{e \in P_{x,y}} c^*(e)$, then T e corresponds to an (x,y)-min-cut in G.

1 Some Fundamental Properties of Cuts

Property 1 (Lec 14) For any sequence of $k \ge 2$ distinct vertices $(x = x_1, x_2, \dots, x_k = y)$, we have

$$\lambda_{x,y,G} \geqslant \min_{i < k} \lambda_{x_i,x_{i+1},G}.$$

As an implication of Lemma 2, we prove the following alternate characterization of Gomory-Hu Trees.

Proposition 1 (Alternate Characterization) A tree $T = (V, E^*, c^*)$ is a Gomory-Hu tree for G = (V, E, c) iff the conditions 1 and 2 stated in Definition 1 hold for (n - 1) vertex pairs that corresponds to endpoints of edges in E^* .

Proof: Let us suppose that conditions 1 and 2 stated in Definition 1 holds for pairs that correspond to endpoints of edges in E^* . Consider any distinct $x, y \in V$ that are not adjacent in T. Let $P_{x,y} = (x = x_1, x_2, ..., x_k = y)$ be unique path from x to y in tree T, and let $e = (x_i, x_{i+1})$ be edge of least weight on $P_{x,y}$.

By Lemma 2, $\lambda_{x,y,G} \ge \lambda_{x_i,x_{i+1},G} = c^*(e)$. Now, observe that T - e is an (x,y)-cut and (x_i, x_{i+1}) -min-cut, due to which it follows that $\lambda_{x,y,G} \le \lambda_{x_i,x_{i+1},G}$.

This proves that $\lambda_{x,y,G} = c^*(e)$, and thus T - e corresponds to an (x,y)-min-cut.

Property 2 (Lec 14) Let $s, t \in V$ be distinct vertices and (A, A^c) be an (s, t)-min-cut in G. Then, for any two distinct vertices $x, y \in A$ there is a (x, y)-min-cut (B, B^c) in G such that either $B \subseteq A$ or $B^c \subseteq A$.

(In other words, the (x,y)-min-cut is unaffected on considering A^c as a supernode.)

Figure 1: Illustration of cuts involved in Property 3.

Property 3 Let $s, t \in V$ be distinct vertices and (A, A^c) be an (s, t)-min-cut in G. Let x, y be two distinct vertices in A and (B, B^c) be an (x, y)-min-cut in G such that $B \subseteq A$. If $s \in B$ then (A, A^c) is also an (y, t)-min-cut in G.

Proof: Let us suppose the conditions stated in claim including the condition $s \in B$ holds true. Observe that we can add an edge of infinite capacity connecting s and x as they are not separated by any min-cut.

So, we have

$$\lambda_{y,t} \geqslant \min(\lambda_{y,x}, \lambda_{x,s}, \lambda_{s,t})$$
 (by chain rule)

$$= \min(\lambda_{x,y}, \lambda_{s,t})$$
 (due to edge of infinite weight)

$$= \lambda_{s,t}$$
 (as s and t are separated by $(x, y) - \min - \cot$)

This along with the fact that y and t are separated by an (s,t)-min-cut implies that $\lambda_{y,t} = \lambda_{s,t}$.

2 Algorithm

Before understanding algorithm we explain notion of partial Gomory Hu Tree.

Definition 2 A tree $T = (V^*, E^*, c^*)$ is said to be a **Partial Gomory-Hu tree** for a graph G = (V, E, c) if V^* forms a partition of V and for any adjacent nodes X, Y in T^* there exists $(x, y) \in X \times Y$ satisfying:

1.
$$\lambda_{x,y,G} = \lambda_{X,Y,T} = c^*(X,Y)$$
.

2. T - (X,Y) corresponds to an (x,y)-min-cut in G.

Description of the algorithm: In our algorithm, we start with trivial solution for a partial Gomory-Hu tree $\mathcal{T} = (\{V\}, \emptyset)$ and recursively split non-singleton nodes until we get a tree with n nodes.

- 1 Take any two vertices s, t in X.
- **2** Let C_1, \ldots, C_k be connected-components in $\mathcal{T} X$.
- **3** Let H be new graph obtained from G by contracting C_1, \ldots, C_k into super-nodes.
- 4 Compute an (s,t)-min-cut, say (S_H,T_H) , in H and let (S,T) be an (s,t)-cut in G obtained from (S_H,T_H) on uncontracting C_1,\ldots,C_k .
- 5 Split node X into two nodes $X_S = S \cap X$ and $X_T = T \cap X$, and for $j \in [1, k]$, connect C_j to X_S if $V(C_j) \subseteq S$ and X_T otherwise.
- 6 Set $c^*(X_S, X_T) = \lambda_{s,t,G}$.
- 7 Return \mathcal{T} .

Algorithm 1: Extend-Partial-Gomory-Hu-tree (G, \mathcal{T}, X)

The splitting process need computation of just one min-cut between an pair of nodes in a non-singleton set $X \in \mathcal{T}$. The pseudocode for the same is presented in Algorithm 1. Also see Figure 2.

Figure 2: Splitting of a node X.

Lemma 1 If \mathcal{T} is a partial-Gomory-Hu-tree, then the cut (S,T) obtained in Step 3 of Algorithm 1 is an (s,t)-min-cut in G.

Proof: Homework. Argue using Property 2 or Submodularity property from Lec 14.

Let $\mathcal{T}_1 = (\{V\}, \emptyset), \mathcal{T}_2, \dots, \mathcal{T}_n$ be a sequence of trees obtained for G by recursively applying Algorithm 1. In order to prove correctness, we present the following lemma.

Lemma 2 For $i \geq 3$, if tree \mathcal{T}_{i-1} is a partial Gomory Hu tree, then so is tree \mathcal{T}_i .

Proof: Let us suppose \mathcal{T}_{i-1} is a partial Gomory Hu tree. Consider any two nodes X, Y that are adjacent in \mathcal{T}_i . We need to prove that there exists $x \in X$ and $y \in Y$ that satisfy

- $c^*(X,Y) = \lambda_{x,y,G}$.
- $\mathcal{T}_i (X, Y)$ corresponds to an (x, y)-min-cut in G.

We have following three cases:

Case 1 X, Y were present in \mathcal{T}_{i-1} . In this case the claim is obviously true.

Case 2 X, Y both appeared for first time in tree \mathcal{T}_i due to splitting of a node in \mathcal{T}_{i-1} . In this case by Algorithm 1, the claim holds true.

Figure 3: Illustration of Case 3(b).

Case 3 One of the nodes, say X, was created in round i by slitting an older node, say $X_{old} \in \mathcal{T}_{i-1}$, into X', X.

Let us suppose split occurred due to a vertex pair $(x, y) \in X' \times X$. At end of round i-1, by induction hypothesis we can assume there were nodes $(s, t) \in X_{old} \times Y$ satisfying the required claim. After splitting of X_{old} , either $s \in X'$ or $s \in X$.

- If $s \in X$, claim holds true.
- If $s \in X'$, then by Property 3, required vertex pair is $(y, t) \in X \times Y$.

This proves our claim.

Theorem 3 For any n vertex undirected weighted graph G = (V, E, c) one can construct a Gomory-Hu Tree in time $O(n \times \text{TIME}_{flow}(n))$, where $\text{TIME}_{flow}(n)$ denotes the time to compute max-flow in an undirected graph on n vertices.