

6 APRILE 2016

G Pinto

Esercizio 1. Sia χ il carattere di una rappresentazione complessa V di un gruppo G e sia $g \in G$. Mostrate le seguenti:

- i) Se g ha ordine 2, allora $\chi(g)$ è un intero, e $\chi(g) \equiv \chi(1) \mod 2$. Se in aggiunta G è semplice (ossia privo di sottogruppi normali non banali), e non
- abeliano, allora $\chi(g) \equiv \chi(1) \mod 4$. Cenno di soluzione: Per la seconda parte, considerate il determinante dell'endomorfismo corrispondente a g.
- \checkmark ii) Se g ha ordine 3 ed è coniugato a g^{-1} , allora χ(g) è ancora un intero, e $χ(g) ≡ χ(1) \mod 3$.

Esercizio 2.

- \sqrt{i}) Fate vedere che U(2) è un quoziente di S¹ × SU(2) per un gruppo ciclico di ordine 2.
 - ii) Considerate la rappresentazione $\rho_m: \mathrm{SU}(2) \longrightarrow \mathrm{GL}(V_m)$, dove V_m è lo spazio vettoriale dei polinomi omogenei di grado m in due variabili. Determinare tutte le rappresentazioni $\widetilde{\rho}_m: \mathrm{U}(2) \longrightarrow \mathrm{GL}(V_m)$ che estendono ρ_m .
- ✓ Esercizio 3. Sia G il sottogruppo di $S_3 \times S_3$ che consiste delle coppie di permutazioni (σ, τ) dello stesso segno. Fate vedere che G ha 6 classi di coniugio, e trovatene la tavola dei caratteri.