Reading Quiz Section 6.3

- 1. Let *I* be a set and $\{A_n : n \in I\}$ a family of sets indexed by *I*. The definition of $\bigcup_{n \in I} A_n$ uses the _____ quantifier and the definition of $\bigcap_{n \in I} A_n$ uses the _____ quantifier.
 - (a) existential; existential
 - (b) existential; universal
 - (c) universal; existential
 - (d) universal; universal
- 2. Let $\{A_n : n \in I\}$ be a nested collection of sets where $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$. What can you conclude? Select all that apply.
 - (a) $\bigcap_{n\in I} A_n \neq \emptyset$.
 - (b) $\bigcup_{n \in I} A_n = A_1$.
 - (c) The collection of sets is pairwise disjoint.
 - (d) Each A_n must be an interval.
- 3. True or False:

$$B \subseteq \bigcup_{n \in I} A_n \iff \forall n \in I, \ B \subseteq A_n$$

Practice Problems Section 6.3

1. For each non-negative real number $r \ge 0$ let

$$A_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}$$

- (a) Describe each of the sets A_r geometrically.
- (b) Prove that $\bigcup_{r \in \mathbb{R}_0^+} A_r = \mathbb{R}^2$.

Video Solution

2. Let $\{A_n : n \in I\}$ be an indexed collection of sets and B a set. Prove:

(a)
$$\left(\bigcup_{n\in I}A_n\right)\cap B=\bigcup_{n\in I}(A_n\cap B)$$

(b)
$$\left(\bigcap_{n\in I}A_n\right)\cup B=\bigcap_{n\in I}(A_n\cup B)$$

Video Solution