17.2: Line Integrals

Definition. (Scalar Line Integral in the Plane)

Suppose the scalar-valued function f is defined on a region containing the smooth curve C given by $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. The **line integral of** f **over** C is

$$\int_{C} f(x(t), y(t)) ds = \lim_{\Delta \to 0} \sum_{k=1}^{n} f(x(t_{k}^{*}), y(t_{k}^{*})) \Delta s_{k},$$

provided this limit exists over all partitions of [a, b]. When the limit exists, f is said to be **integrable** on C.

Theorem 17.1: Evaluating Scalar Line Integrals in \mathbb{R}^2

Let f be continuous on a region containing a smooth curve C: $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_{C} f \, ds = \int_{a}^{b} f(x(t), y(t)) |\mathbf{r}'(t)| \, dt$$
$$= \int_{a}^{b} f(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt.$$

Procedure: Evaluating the Line Integral $\int_C f \, ds$

- 1. Find a parametric description of C in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$.
- 2. Compute $|\mathbf{r}'(t)| = \sqrt{x'(t)^2 + y'(t)^2}$.
- 3. Make substitutions for x and y in the integrand and evaluate an ordinary integral:

$$\int_C f \, ds = \int_a^b f(x(t), y(t)) |\mathbf{r}'(t)| \, dt.$$

Example. Find the length of the quarter-circle from (1,0) to (0,1) with its center at the origin.

Example. The temperature of the circular plate $R = \{(x,y) : x^2 + y^2 \le 1\}$ is $T(x,y) = 100(x^2 + 2y^2)$. Find the average temperature along the edge of the plate.

Theorem 17.2: Evaluating Scalar Line Integrals in \mathbb{R}^3

Let f be continuous on a region containing a smooth curve $C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_C f \, ds = \int_a^b f(x(t), y(t), z(t)) |\mathbf{r}'(t)| \, dt$$

$$= \int_a^b f(x(t), y(t), z(t)) \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} \, dt.$$

Example. Evaluate $\int_C (x - y + 2z) ds$, where C is the circle $\mathbf{r}(t) = \langle 1, 3\cos(t), 3\sin(t) \rangle$, for $0 \le t \le 2\pi$.

Example. Evaluate $\int_C xe^{yz} ds$, where C is $\mathbf{r}(t) = \langle t, 2t, -2t \rangle$, for $0 \le t \le 2$.

Definition. (Line Integral of a Vector Field)

Let **F** be a vector field that is continuous on a region containing a smooth oriented curve C parameterized by arc length. Let **T** be the unit tangent vector at each point of C consistent with the orientation. The line integral of **F** over C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$.

Different Forms of Line Integrals of Vector Fields

The line integral $\int_C \mathbf{F} \cdot \mathbf{T} ds$ may be expressed in the following forms, where $\mathbf{F} = \langle f, g, h \rangle$ and C has a parameterization $\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle$, for $a \leq t \leq b$:

$$\int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_{a}^{b} (f(t)x'(t) + g(t)y'(t) + h(t)z'(t)) dt$$
$$= \int_{C} f dx + g dy + h dz$$
$$= \int_{C} \mathbf{F} \cdot d\mathbf{r}.$$

For line integrals in the plane, we let $\mathbf{F} = \langle f, g \rangle$ and assume C is parameterized in the form $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, for $a \leq t \leq b$. Then

$$\int_a^b \mathbf{F} \cdot \mathbf{r}'(t) dt = \int_a^b (f(t)x'(t) + g(t)y'(t)) dt = \int_C f dx + g dy = \int_C \mathbf{F} \cdot d\mathbf{r}.$$

17.2: Line Integrals 179 Math 2060 Class notes

Example. Evaluate $\int_C \mathbf{F} \cdot \mathbf{T} ds$ with $\mathbf{F} = \langle y - x, x \rangle$ on the following oriented paths in \mathbb{R}^2 .

a) The quarter-circle C_1 from P(0,1) to Q(1,0)

b) The quarter-circle $-C_1$ from Q(1,0) to P(0,1)

c) the path C_2 from P(0,1) to Q(1,0) via two line segments through O(0,0).

Definition. (Work Done in a Force Field)

Let **F** be a continuous force field in a region D of \mathbb{R}^3 . Let

$$C: \mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle, \text{ for } a \le t \le b,$$

be a smooth curve in D with a unit tangent vector \mathbf{T} consistent with the orientation. The work done in moving an object along C in the positive direction is

$$W = \int_C \mathbf{F} \cdot \mathbf{T} \, ds = \int_a^b \mathbf{F} \cdot \mathbf{r}'(t) \, dt.$$

Example. For the force field $\mathbf{F} = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{3/2}}$, calculate the work required to move an object from (1, 1, 1) to (10, 10, 10).

Definition. (Circulation)

Let **F** be a continuous vector field on a region D of \mathbb{R}^3 , and let C be a closed smooth oriented curve in D. The **circulation** of **F** on C is $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where **T** is the unit vector tangent to C consistent with the orientation.

Example. Compute the circulation in the vector field $\mathbf{F} = \frac{\langle y, -2x \rangle}{\sqrt{4x^2 + y^2}}$ along the curve C given by $\mathbf{r}(t) = \langle 2\cos(t), 4\sin(t) \rangle$, for $0 \le t \le 2\pi$.

Flux of the vector field is the total forces orthogonal to each point on the curve C. Let $\mathbf{F} = \langle f, g \rangle$ be a continuous vector field in a region R of \mathbb{R}^2 . Using \mathbf{n} to represent a unit vector normal to C, the component of \mathbf{F} that is normal to C is $\mathbf{F} \cdot \mathbf{n}$.

Since C is in the xy-plane, the unit tangent vector $\mathbf{T} = \langle T_x, T_y, 0 \rangle$ is also in the xy-plane. We let **n** be in the xy-plane as well, but using the cross product of **T** and \mathbf{k} :

$$\mathbf{n} = \mathbf{T} imes oldsymbol{k} = egin{bmatrix} oldsymbol{i} & oldsymbol{j} & oldsymbol{k} \ T_x & T_y & 0 \ 0 & 0 & 1 \end{bmatrix} = T_y oldsymbol{i} - T_x oldsymbol{j}.$$

Since $\mathbf{T} = \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|}$, we have

$$\mathbf{n} = T_y \mathbf{i} - T_x \mathbf{j} = \frac{y'(t)}{|\mathbf{r}'(t)|} \mathbf{i} - \frac{x'(t)}{|\mathbf{r}'(t)|} \mathbf{j} = \frac{\langle y'(t), -x'(t) \rangle}{|\mathbf{r}'(t)|}.$$

Thus, we have the flux integral

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b \mathbf{F} \cdot \frac{\langle y'(t), -x'(t) \rangle}{|\mathbf{r}'(t)|} |\mathbf{r}'(t)| \, dt = \int_a^b \left(f(t)y'(t) - g(t)x'(t) \right) dt = \int_C f \, dy - g \, dx.$$

Definition. (Flux)

Let $\mathbf{F} = \langle f, g \rangle$ be a continuous vector field on a region R of \mathbb{R}^2 . Let $C : \mathbf{r}(t) = \langle x(t), y(t) \rangle$, $a \leq t \leq b$, be a smooth orientated curve in R that does not intersect itself. The flux of the vector field \mathbf{F} across C is

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b \left(f(t) y'(t) - g(t) x'(t) \right) dt,$$

where $\mathbf{n} = \mathbf{T} \times \mathbf{k}$ is the unit normal vector and \mathbf{T} is the unit tangent vector consistent with the orientation. If C is a closed curve with counterclockwise orientation, \mathbf{n} is the outward normal vector, and the flux integral gives the **outward flux** across C.

Example. Compute the flux in the vector field $\mathbf{F} = \frac{\langle y, -2x \rangle}{\sqrt{4x^2 + y^2}}$ along the curve C given by $\mathbf{r}(t) = \langle 2\cos(t), 4\sin(t) \rangle$, for $0 \le t \le 2\pi$.