Fiche de synthèse : Dérivation

Benjamin L'Huillier

1 Rappels

Definition 1.1: Taux d'Accroissement

Le taux d'accroissement de la fonction f entre a et a+h est défini par :

$$\frac{f(a+h) - f(a)}{h}$$

Definition 1.2: Nombre Dérivé

Si la limite du taux d'accroissement existe lorsque h tend vers 0, on dit que f est dérivable en a, et on définit le nombre dérivé de f en a:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Propriété 1.1: Nombre dérivé et équation de la tangente

L'équation de la tangente à la courbe représentative de f au point a est :

$$y = f(a) + f'(a)(x - a)$$

Definition 1.3: Domaine de dérivabilité

Le domaine de dérivabilité de f est l'ensemble des points où f est dérivable (admet un taux d'accroissement fini).

Definition 1.4: Fonction dérivée

La fonction dérivée de f est la fonction qui, à tout point x de son domaine, associe le nombre dérivé f'(x).

2 Les Dérivées

2.1 Dérivées usuelles

La table ?? résume les dérivées des fonctions usuelles, à connaître par cœur!

2.2 Règles de dérivation

f(x)	f'(x)	Domaine de dérivabilité	Remarque		
k (constante)	0	\mathbb{R}	$k \in \mathbb{R}$		
x^n	nx^{n-1}	\mathbb{R}	$n \in \mathbb{Z}$		
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$]0,+\infty[$			
ax + b	a	\mathbb{R}	$a,b\in\mathbb{R}$		

Table 1: Dérivées de fonctions usuelles

Opération	Règle de dérivation	Remarque		
Somme	(u+v)' = u' + v'			
Produit par une constante	(au)' = au'	$a \in \mathbb{R}$		
Produit	(uv)' = u'v + uv'			
Quotient	$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$, pour $v \neq 0$			
Fonction linéaire $af(x) + b$	af'(x)	$a,b \in \mathbb{R}$		

Table 2: Opérations et dérivées. f, u et v représentent des fonctions.

Remarque 2.1: Règles de dérivation

La Table ?? résume les formules à connaître.

3 Dérivation et Étude de Fonction

Remarque 3.1: Lien entre dérivée et variations

L'étude du signe de la dérivée d'une fonction nous informe sur ses variations :

- Si f'(x) > 0 sur un intervalle, alors f est **croissante** sur cet intervalle.
- Si f'(x) < 0 sur un intervalle, alors f est **décroissante** sur cet intervalle.
- Si f'(x) s'annule et change de signe en un point x_0 , alors x_0 est un **extremum** (minimum ou maximum local).

Remarque 3.2: Tableau de variations

Pour étudier les variations d'une fonction f, on suit les étapes suivantes :

- 1. Calculer la dérivée f'(x).
- 2. Résoudre f'(x) = 0 pour trouver les points critiques.
- 3. Étudier le signe de f'(x) sur les intervalles délimités par ces points.
- 4. Construire un tableau de variations synthétisant ces informations.

3.1 Exemple : Étude de fonction

Nous considérons la fonction rationnelle suivante :

$$f(x) = \frac{-2x+3}{x^2+x-2}.$$

1. Déterminons le domaine de définition : Le dénominateur s'annule lorsque :

$$x^{2} + x - 2 = (x - 1)(x + 2) = 0 \Rightarrow x = 1 \text{ ou } x = -2.$$

Ainsi, f(x) est définie sur $\mathbb{R} \setminus \{-2, 1\}$.

2. Calcul de la dérivée :

f est dérivable sur son domaine de définition en tant que quotiens de fonctions dérivables. f est de la forme f=u/v. Nous appliquons la formule de la dérivée d'un quotient : $f'=\frac{u'v-uv'}{v^2}$

$$f'(x) = \frac{(-2)(x^2 + x - 2) - (-2x + 3)(2x + 1)}{(x^2 + x - 2)^2}.$$

En développant le numérateur :

$$-2(x^{2} + x - 2) = -2x^{2} - 2x + 4,$$
$$(-2x + 3)(2x + 1) = -4x^{2} - 2x + 6x + 3 = -4x^{2} + 4x + 3.$$

Ainsi:

$$f'(x) = \frac{(-2x^2 - 2x + 4) - (-4x^2 + 4x + 3)}{(x - 1)^2(x + 2)^2}.$$

$$= \frac{-2x^2 - 2x + 4 + 4x^2 - 4x - 3}{(x - 1)^2(x + 2)^2}.$$

$$= \frac{2x^2 - 6x + 1}{(x - 1)^2(x + 2)^2}.$$

3. Étude du signe de f'(x): Le dénominateur de f' est toujours positif, car c'est un carré. Le signe de f' est donc celui du numérateur. Nous résolvons $2x^2 - 6x + 1 = 0$ pour trouver les points où f' s'annule et change de signe.

$$\Delta = (-6)^2 - 4 \times 2 \times 1 = 36 - 8 = 28.$$

$$x = \frac{6 \pm \sqrt{28}}{4} = \frac{6 \pm 2\sqrt{7}}{4} = \frac{3 \pm \sqrt{7}}{2}.$$

On a 4 < 7 < 9, donc $2 < \sqrt{7} < 3$, et $5/2 < (3 + \sqrt{7})/2 < 2$. On a également $-3 < -\sqrt{7} < -2$, donc $0 < (3 - \sqrt{7})/2 < 1/2$.

Comme a > 0, $2x^2 - 6x + 1$ est négatif à l'intérieur des racines $([x_1, x_2])$ et positif à l'extérieur des racines $(]-\infty, x_1] \cup [x_2, \infty[)$.

x	$-\infty$		-2	$\frac{3-\sqrt{7}}{2}$		1	$\frac{3+\sqrt{7}}{2}$		$+\infty$
f'(x)		+	+	0	_	-	0	+	
Variations de $f(x)$		7			\searrow	\		7	

La fonction f(x) est croissante sur $]-\infty,-2[$ et $]\frac{3+\sqrt{7}}{2},+\infty[$ et décroissante sur $]\frac{3-\sqrt{7}}{2},1[$. Les points x=-2 et x=1 sont des asymptotes verticales.

3