Cognome......Matricola.....Matricola....

Algebra e Geometria - Corso di Laurea in Informatica docente: prof.ssa Marta Morigi 30 agosto 2024

Nota: Le risposte vanno motivate. I calcoli e le motivazioni delle risposte sono parte integrante dello svolgimento dell'esercizio.

Esercizio 1. (9 punti)

Sia $F_k: \mathbb{R}^4 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$F_k(x_1, x_2, x_3, x_4) = (x_1 + kx_3 - 2x_4, 3x_1 + x_2 - 2x_3 - 6x_4, x_1 + kx_2 - 4x_3 - 2x_4).$$

- a) Si stabilisca per quali valori di k si ha che il nucleo di F_k ha dimensione 2 e si scelga un tale valore s. $[s=1,-\frac{4}{3}]$
- b) Si determini una base \mathcal{B} del nucleo di F_s e la si completi ad una base di \mathbb{R}^4 . Se possibile, si trovino 3 vettori di \mathbb{R}^4 linearmente indipendenti che non appartengono al nucleo di F_s .
- c) Si determini il vettore \mathbf{v} di Ker F tale che le coordinate di \mathbf{v} rispetto alla base \mathcal{B} trovata nel punto precedente siano $(\mathbf{v})_{\mathcal{B}} = (-3, 1)$.
- d) Si determinino le equazioni cartesiane dell'immagine di F_s . [$2x_1 x_2 + x_3 = 0$]

Esercizio 2. (8 punti)

Sia $T_k: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da:

$$T_k(\mathbf{e}_1) = 2\mathbf{e}_1$$
 $T(\mathbf{e}_2) = -k\mathbf{e}_1 + k\mathbf{e}_3$ $T(\mathbf{e}_3) = 10\mathbf{e}_1 + 5\mathbf{e}_2 + (5-k)\mathbf{e}_3$

e sia A la matrice associata a T_k rispetto alla base canonica (in dominio e codominio).

a) Si stabilisca per quali valori di k si ha che T_k è diagonalizzabile.

[autovalori 2, 5, -k, diag per $k \neq -5, -2$]

- b) Si stabilisca per quali valori di k si ha che $\mathbf{e}_2 + \mathbf{e}_3$ è autovettore di T_k . [k = 10]
- c) Posto k=2, si determinino le coordinate del vettore (-4,5,13) rispetto alla base ordinata $\mathcal{B} = \{T_2(\mathbf{e}_2), T_2(\mathbf{e}_1), T_2(\mathbf{e}_3)\}$ di \mathbb{R}^3 . [(5,-2,1)]

Esercizio 3. (9 punti)

In \mathbb{R}^3 siano $\mathbf{u}_1 = (1, -1, 0), \mathbf{u}_2 = (1, 0, -1)$ e sia $U = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle$.

- a) Determinare una base ortogonale \mathcal{B} di U e una base $\tilde{\mathcal{B}}$ di U^{\perp} . $[\mathcal{B} = \{(1, -1, 0), (1, 1, -2), \tilde{\mathcal{B}} = \{(1, 1, 1)\}]$
- b) Determinare le proiezioni ortogonali di $\mathbf{e}_1, \mathbf{e}_2$ e \mathbf{e}_3 su U^{\perp} . $\left[\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right]$
- c) Sia $F: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare tale che $F(\mathbf{u}) = 0$ per ogni $\mathbf{u} \in \mathcal{B}$ e $F(\mathbf{v}) = \mathbf{v}$ per ogni $\mathbf{v} \in \mathcal{B}$. Scrivere la matrice associata ad F rispetto alla base canonica in dominio e codominio.

 $\begin{bmatrix} \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{bmatrix}$ d) Determinare, se possibile, una base ortogonale di \mathbb{R}^3 costituita da autovettori di $F.[\mathcal{B} \cup \tilde{\mathcal{B}}]$

Esercizio 4. (4 punti)

a) Si risolva l'equazione $[38]_{87}x = [5]_{87}$ in \mathbb{Z}_{87} . $[x = [7]_{87}$.

b) Si stabilisca se la congruenza $39x \equiv_{63} 18$ ha una, nessuna o infinite soluzioni. [infinite sol.]