Exercise 6 Foundation of Cryptography, Fall 2011

Itay Berman

January 9, 2012

4.a Denote the view as $(r, in, \overline{a}_{1,...,t})$ where r is the random coins of D, in is D's input and $\overline{a}_{1,...,t} \in (\{0,1\}^n)^t$ are the first t oracle answers D received. Note that since both D^B and D^{II} views includes r and in, then it is suffice to prove that $\Pr[\mathsf{B}(\overline{q}_{1,...,t}) = \overline{a}_{1,...,t}] = \Pr[\Pi(\overline{q}_{1,...,t}) = \overline{a}_{1,...,t}],$ for every $t \in \mathbb{N}$, where $\overline{q}_{1,...,t}$ are the first t queries of D. We prove this using induction on t: the base case is clear. Assuming for t-1 we will show that $\Pr[\mathsf{B}(q_t) = a_t \mid \mathsf{B}(\overline{q}_{1,...,t-1}) = \overline{a}_{1,...,t-1}] = \Pr[\Pi(q_t) = a_t \mid \Pi(\overline{q}_{1,...,t-1}) = \overline{a}_{1,...,t-1}]$. Consider two cases:

Case 1: $\exists i \in [t-1]: q_t = q_i$. In this case, from the definition of B we get

$$\Pr[\mathsf{B}(q_t) = a_t \mid \mathsf{B}(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] = \begin{cases} 1 & a_t = a_i \\ 0 & Otherwise \end{cases},$$

and from the definition of Π we get

$$\Pr[\Pi(q_t) = a_t \mid \Pi(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] = \begin{cases} 1 & a_t = a_i \\ 0 & Otherwise \end{cases}.$$

Hence, $\Pr[\mathsf{B}(q_t) = a_t \mid \mathsf{B}(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] = \Pr[\Pi(q_t) = a_t \mid \Pi(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}].$

Case 2: $\forall i \in [t-1]: q_t \neq q_i$. In this case the conditioning above are irrelevant and thus

$$\begin{split} \Pr[\mathsf{B}(q_t) = a_t \mid \mathsf{B}(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] &= \Pr[\mathsf{B}(q_t) = a_t] \\ &= 2^{-n} \\ &= \Pr[\Pi(q_t) = a_t] \\ &= \Pr[\mathsf{B}(q_t) = a_t \mid \Pi(\overline{q}_{1 \quad t-1}) = \overline{a}_{1,\dots,t-1}]. \end{split}$$

The induction assumption yields that

$$\begin{split} \Pr[\mathsf{B}(\overline{q}_{1,\dots,t}) = \overline{a}_{1,\dots,t}] = & \Pr[\mathsf{B}(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] \cdot \Pr[\mathsf{B}(q_t) = a_t \mid \mathsf{B}(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] \\ = & \Pr[\Pi(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] \cdot \Pr[\Pi(q_t) = a_t \mid \Pi(\overline{q}_{1,\dots,t-1}) = \overline{a}_{1,\dots,t-1}] \\ = & \Pr[\Pi(\overline{q}_{1,\dots,t}) = \overline{a}_{1,\dots,t}], \end{split}$$

as required.

4.b: Assume towards a contradiction that $\mathcal{F} \oplus \mathcal{G}$ if not PRF, namely \exists PPT A, and $p \in$ poly such that

$$\left| \Delta_{\mathcal{F}_n \oplus \mathcal{G}_n, \Pi_n}^{\mathsf{A}} \right| = \left| \Pr_{h \leftarrow \mathcal{F}_n \oplus \mathcal{G}_n} [\mathsf{A}^h(1^n)] - \Pr_{\pi \leftarrow \Pi} [\mathsf{A}^\pi(1^n)] \right| \ge \frac{1}{p(n)},$$

for infinitely many n's. Now, consider the following algorithms:

Algorithm 1 $(B_{\mathcal{F}})$.

Input: 1^n .

Oracle: Function $\phi : \{0,1\}^n \mapsto \{0,1\}^n$.

- 1. Sample $g \leftarrow \mathcal{G}_n$.
- 2. Construct $o = \phi \oplus g$.
- 3. Emulate $A^o(1^n)$.

.....

Algorithm 2 $(B_{\mathcal{G}})$.

Input: 1^n .

Oracle: Function $\phi \colon \{0,1\}^n \mapsto \{0,1\}^n$.

- 1. Sample $f \leftarrow \mathcal{F}_n$.
- 2. Construct $o = f \oplus \phi$.
- 3. Emulate $A^o(1^n)$.

......

Note that since A is PPT and \mathcal{F},\mathcal{G} are efficient ensembles, then $B_{\mathcal{F}}, B_{\mathcal{G}}$ are PPT. Considering $B_{\mathcal{F}}$, if $\phi \leftarrow \mathcal{F}_n$ then $o \leftarrow \mathcal{F}_n \oplus \mathcal{G}_n$ and if $\phi \leftarrow \Pi_n$ then $o \leftarrow \Pi_n$ (as xoring with random value gives a random value). Thus,

$$\left| \Delta_{\mathcal{F}_n, \Pi_n}^{\mathsf{B}_{\mathcal{F}}} \right| = \left| \Delta_{\mathcal{F}_n \oplus \mathcal{G}_n, \Pi_n}^{\mathsf{A}} \right| \ge \frac{1}{p(n)}$$

for infinitely many n's. Considering $B_{\mathcal{G}}$, if $\phi \leftarrow \mathcal{G}_n$ then $o \leftarrow \mathcal{F}_n \oplus \mathcal{G}_n$ and if $\phi \leftarrow \Pi_n$ then $o \leftarrow \Pi_n$. Thus,

$$\left|\Delta_{\mathcal{G}_n,\Pi_n}^{\mathsf{B}_{\mathcal{G}}}\right| = \left|\Delta_{\mathcal{F}_n \oplus \mathcal{G}_n,\Pi_n}^{\mathsf{A}}\right| \ge \frac{1}{p(n)}$$

for infinitely many n's.

If \mathcal{F} is PRF then follows $B_{\mathcal{F}}$ we get a contradiction. If \mathcal{G} is PRF then follows $B_{\mathcal{G}}$ we get a contradiction. At any case we get a contradiction, thus $\mathcal{F} \oplus \mathcal{G}$ is PRF.