VENKATA SESH TEJ MATTA: vmm5481@psu.edu CSE584: HOMEWORK-2 REPORT

Title: Deep Q-Learning Solution for Atari Breakout

1. Abstract:

The goal of this notebook is to implement a Deep Q-Learning (DQN) algorithm to train an agent to play the Atari game "Breakout" using OpenAI Gym. DQN, a model-free reinforcement learning approach, uses a Convolutional Neural Network (CNN) as a function approximator to predict Q-values for each possible action in a given state. Key elements in the implementation include:

- → State Processing: The raw game frames are converted to grayscale, cropped, and resized to an 84x84 image for input into the network. This reduces computational requirements and enhances learning efficiency.
- → Q-Value Estimator (Q-Network): This CNN-based model predicts Q-values for each action, helping the agent choose actions based on expected rewards.
- → Target Network: A secondary network, identical to the Q-network, is updated periodically. This stabilizes training by providing a consistent set of Q-values for temporal difference updates.
- → Experience Replay: A buffer stores gameplay experiences, which are later sampled in mini-batches for training. This approach breaks correlations between experiences and improves sample efficiency.
- → **Training Loop**: The agent plays multiple episodes, following an epsilon-greedy policy that balances exploration and exploitation. The Q-network is updated based on rewards received from actions, gradually improving the agent's performance.

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $\left(y_j - Q\left(\phi_j, a_j; \theta\right)\right)^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

$$Q(s_t, a_t) \leftarrow (1 - \alpha) \cdot \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \underbrace{\left(\underbrace{r_t}_{\text{reward}} + \underbrace{\gamma}_{\text{discount factor}} \cdot \underbrace{\max_{a} Q(s_{t+1}, a)}_{\text{estimate of optimal future value}}\right)}_{\text{estimate of optimal future value}}$$

$$L = rac{1}{2} [\underbrace{r + max_{a'}Q(s',a')}_{ ext{target}} - \underbrace{Q(s,a)}_{ ext{prediction}}]^2$$

2. Commented out code sections (core code)

a) State Processor Class

The StateProcessor class preprocesses game frames to reduce computational complexity and facilitate learning. It converts RGB images to grayscale, crops, and resizes them.

```
class StateProcessor():
This processes a raw Atari image to gray scale and resizes it to an 84x84 frame.
def __init__(self):
    # TensorFlow variable scope for encapsulating processing operations
    with tf.variable_scope("state_processor"):
        # Placeholder for the input state, which is an RGB image (210x160x3)
        self.input_state = tf.placeholder(shape=[210, 160, 3], dtype=tf.uint8)
        # Converting RGB to grayscale for simpler processing
        self.output = tf.image.rgb_to_grayscale(self.input_state)
        self.output = tf.image.crop_to_bounding_box(self.output, 34, 0, 160, 160)
        self.output = tf.image.resize_images(self.output, [84, 84], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
        # Removing the single color channel dimension
        self.output = tf.squeeze(self.output)
def process(self, sess, state):
    # Process the input state through the defined operations
    return sess.run(self.output, { self.input_state: state })
```

b) Q-Value Estimator Class: The Estimator class defines a CNN for estimating Q-values. It serves as both the main Q-network and the target network.

```
class Estimator():
A CNN-based Q-value estimator used for both Q-network and target network.
 def __init__(self, scope="estimator", summaries_dir=None):
    self.scope = scope
    # Initializing a summary writer for logging if summaries dir is specified
    if summaries_dir:
        summary_dir = os.path.join(summaries_dir, "summaries_{{}}".format(scope))
        self.summary_writer = tf.summary.FileWriter(summary_dir)
    self._build_model()
def build model(self):
    # Placeholder for state input (84x84 grayscale frames, stacked)
    self.X_pl = tf.placeholder(shape=[None, 84, 84, 4], dtype=tf.uint8, name="X")
    self.y_pl = tf.placeholder(shape=[None], dtype=tf.float32, name="y")
    self.actions_pl = tf.placeholder(shape=[None], dtype=tf.int32, name="actions")
    # Normalize the input images
    X = tf.to_float(self.X_pl) / 255.0
    conv1 = tf.contrib.layers.conv2d(X, 32, 8, 4, activation_fn=tf.nn.relu)
    conv2 = tf.contrib.layers.conv2d(conv1, 64, 4, 2, activation_fn=tf.nn.relu)
    conv3 = tf.contrib.layers.conv2d(conv2, 64, 3, 1, activation_fn=tf.nn.relu)
    flattened = tf.contrib.layers.flatten(conv3)
    fc1 = tf.contrib.layers.fully_connected(flattened, 512)
    self.predictions = tf.contrib.layers.fully_connected(fc1, len(VALID_ACTIONS))
    gather_indices = tf.range(tf.shape(self.X_pl)[0]) * tf.shape(self.predictions)[1] + self.actions_pl
    self.action_predictions = tf.gather(tf.reshape(self.predictions, [-1]), gather_indices)
    self.loss = tf.reduce_mean(tf.squared_difference(self.y_pl, self.action_predictions))
    # RMSProp optimizer as recommended in the DQN paper
    self.optimizer = tf.train.RMSPropOptimizer(0.00025, 0.99, 0.0, 1e-6)
    # Training operation to minimize loss
    self.train_op = self.optimizer.minimize(self.loss, global_step=tf.contrib.framework.get_global_step())
```

c) **Deep Q-Learning Function :** The main training function, deep_q_learning, runs the episodes, updates the Q-values, and manages experience replay.

```
def deep_q_learning(sess, env, q_estimator, target_estimator, state_processor, num_episodes, experiment_dir):
Main training function implementing the Deep Q-Learning algorithm.
Args:
    sess: TensorFlow session
    env: OpenAI Gym environment
    q_estimator: Q-network for estimating action values
    target_estimator: Target Q-network, updated periodically for stability
    state_processor: Object for processing and resizing environment states
    num_episodes: Number of training episodes
    experiment_dir: Directory path for saving logs and model checkpoints
replay_memory = []
# Retrieve the current global step to track progress in training
total_t = sess.run(tf.contrib.framework.get_global_step())
# Create a policy function that selects actions using an epsilon-greedy strategy
policy = make_epsilon_greedy_policy(q_estimator, len(VALID_ACTIONS))
# Populate the replay memory with initial experiences
# Reset the environment to get the initial state
state = env.reset()
# Process the initial state (resize and grayscale conversion) for consistency in the network input
state = state_processor.process(sess, state)
state = np.stack([state] * 4, axis=2)
for i_episode in range(num_episodes):
    # Reset environment at the beginning of each episode to get a new initial state
    state = env.reset()
    state = state_processor.process(sess, state)
    state = np.stack([state] * 4, axis=2)
    # Select an action using epsilon-greedy policy, balancing exploration and exploitation
    action_probs = policy(sess, state, epsilon)
    action = np.random.choice(np.arange(len(action_probs)), p=action_probs)
    # Checking if the replay memory is large enough to begin training
    if len(replay_memory) > batch_size:
    # Randomly sample a mini-batch from replay memory for training the Q-network
        samples = random.sample(replay_memory, batch_size)
        states_batch, action_batch, reward_batch, next_states_batch, done_batch = map(np.array, zip(*samples))
    # Perform a training update on the Q-network with the current mini-batch
        loss = q estimator.update(sess, states batch, action batch, targets batch)
```

REFERENCES:

- 1. https://github.com/dennybritz/reinforcement-learning/blob/master/DQN/Deep%20Q%20Learning%20Solution.ipynb
- 2. https://github.com/SinanGncgl/Deep-Q-Network-AtariBreakoutGame
- 3. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Hassabis, D. (2015). "Human-level control through deep reinforcement learning." *Nature*, 518(7540), 529-533.
- 4. Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing.