Homework 4: Subspace, Linear Combination, Span

Assignments should be stapled and written clearly and legibly. Problem 5 is optional.

- 1. $\S4.2$, #3(b), #5(a)(b), 10(a)(c), 12(a)(b), 14.
 - Note: All answers to textbook problems should be justified.
- 2. Give an example of two nonzero vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^2 such that $\mathbf{u} \neq \mathbf{v}$ and span $\{\mathbf{u}, \mathbf{v}\}$ is not equal to \mathbb{R}^2 .
- 3. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ be vectors in a vector space V. Suppose that \mathbf{x} and \mathbf{y} are in $\mathrm{span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ and \mathbf{c} is a scalar. Prove that:
 - (a) $\mathbf{x} + \mathbf{y}$ is in span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
 - (b) $c\mathbf{x}$ is in span{ $\mathbf{u}, \mathbf{v}, \mathbf{w}$ }.

Note: For this problem, you may not use any theorems. You should use only definitions.

- 4. Let $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$, and \mathbf{z} be vectors in a vector space V. Prove that if \mathbf{z} is in span $\{\mathbf{x}, \mathbf{y}\}$, and \mathbf{x} and \mathbf{y} are in span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$, then \mathbf{z} is in span $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
- 5. (Putnam Competition) Let S be a set and let \circ be a binary operation on S satisfying the two laws

$$x \circ x = x$$
 for all x in S , and $(x \circ y) \circ z = (y \circ z) \circ x$ for all x, y, z in S .

Show that \circ is associative and commutative.