PROBABILIDAD COMPUESTA

HABLEMOS DE LA UNIÓN E INTERSECCIÓN

SUCESOS

Experimento: Lanzar un dado

 $\Omega = \{1, 2, 3, 4, 5, 6\}$ Si A={6, 1}, B={1, 3, 2}, C= {4}, D={4, 6, 5} y sacamos un 1:

	COMPATIBLES	INCOMPATIBLES	COMPLEMENTARIOS
	AyB	AyC	ByD
á	El 1 se encuentra en ambos subconjuntos; es decir, suceden al mismo tiempo.	Ambos sucesos no se pueden dar al mismo tiempo. No comparten algún suceso elemental.	Al unir todos los sucesos elementales en un solo grupo, conforman el espacio muestral.

- Suceso formado por todos los resultados que cumplen A o cumplen B.
- Si A= {2, 4, 6} y B= {4, 5, 6}, la unión de A y B sería igual a:
- AUB= {2, 4, 6} U {4, 5, 6} = {2, 4, 5, 6}
- Para calcular la PROBABILIDAD DE UNA UNIÓN, seguimos la siguiente regla:
- P(AUB) = P(A) + P(B)
- $P(AUB) = P(A) + P(B) P(A \cap B)$

*Se suman ambos conjuntos sin repetir la intersección que hay entre ellos

EJEMPLO 1: Un 15% de los pacientes atendidos en un hospital son hipertensos, un 10% son obesos y un 3% son hipertensos y obesos. ¿Qué probabilidad hay de que elegido un paciente al azar sea obeso o hipertenso?

• SOLUCIÓN:

 $A = \{Hipertenso\} P(A) = 15\% P(A) = 0.15$

 $B = \{Obeso\} P(B) = 10\% P(B) = 0.1$

 $A \cap B = \{Hipertenso y obeso\} \quad P(A \cap B) = 3\% \quad P(A \cap B) = 0.03$

 $P(AUB) = P(A) + P(B) - P(A \cap B)$

AUB= {Hipertenso u obeso} P(AUB)= 0.15+0.1-0.03= 0.22

La probabilidad de que al elegir un paciente al azar y sea obeso o hipertenso es del 22%, de 0.22 o de 22/100.

INTERSECCIÓN A∩B

- Suceso formado por todos los resultados que cumplen A y cumplen B.
- Si A= {2, 4, 6} y B= {4, 5, 6}, la intersección de A y B sería igual a:
- $A \cap B = \{2, 4, 6\} \cap \{4, 5, 6\} = \{4, 6\}$
- Para calcular la PROBABILIDAD DE UNA INTERSECCIÓN, seguimos la siguiente regla:
- $P(A \cap B) = P(A) \cdot P(B)$
- $P(A \cap B) = P(A/B) \cdot P(B)$ donde
- $P(B/A) = \frac{P(A \cap B)}{P(A)} \operatorname{si} P(A) \neq 0$

EJEMPLO 2: Determine el valor de la probabilidad de obtener un 2, sabiendo que ha salido un número par al lanzar un dado al aire.

SOLUCIÓN:

Primero se definen los sucesos:

 $P(A) = P(Al lanzar el dado, el resultado es par) A={2, 4, 6}$

 $P(B) = P(Que salga el número 2) B={2}$

 $P(A \cap B) = P(Que al lanzar un dado, el resultado sea par y sea el 2) <math>A \cap B = \{2\}$

Se calculan las probabilidades clásicas para cada caso: $P(A) = \frac{3}{6} = \frac{1}{2}$ $P(A \cap B) = \frac{1}{6}$ Finalmente, se calcula la probabilidad condicionada:

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{2}{6} = \frac{1}{3}$$