Bayesian Networks

CSE 576: Topics in Natural Language Processing

Dr. Vivek Gupta Spring 2025 02/03/2025

Recap: N-grams

Why Probability in NLP?

• Used! for **predicting next words**, resolving **ambiguity** in text. Example: **"I ate a** is more likely than **"Eye eight uh Jerry"**.

N-Gram Language Models:

- Estimate the probability of each word given its prior context.
- Markov Assumption: Future state depends only on the previous N-1 states.
- Unigram, bigrams, trigrams etc.

📌 Evaluation of Language Models

- Perplexity: Measures how well a model fits test data.
- Lower perplexity = better language model.

Recap: N-grams

Challenges with N-Gram Models

- Data sparsity: MLE assigns zero probability to unseen words.
- **Smoothing techniques**: Laplace, Good-Turing, Backoff, Kneser-Ney.
- Long-distance dependencies: N-grams struggle to model syntactic and semantic dependencies.

📌 Takeaway:

- N-grams work well for local dependencies but fail for longer contexts.
- We need a better way to model probabilities beyond local context!
- Enter Bayesian Networks!

Why Do We Need Bayesian Networks? - Where N-Grams Fall Short

- 📌 Limitations of N-Grams
 - Fixed-size context: Cannot model dependencies across long distances.
 - ignores uncertainty: Doesn't factor in external knowledge.
- **★** Example: Long-Distance Dependencies
 - Sentence: "The computer that crashed yesterday was running an update."
 - N-grams might incorrectly predict "The computer that crashed yesterday were running an update."
 - Why? "Was" depends on "computer," but the word "yesterday" separates them.
 - Bayesian Networks can capture dependencies between distant words!
- Example: Word Sense Disambiguation (external knowledge)
 - Sentence 1: "The bank approved my loan."
 - Sentence 2: "I sat by the river bank."
 - N-grams only predict based on previous words, ignoring meaning.
 - Z Bayesian Networks can infer the correct sense of "bank" using context!

Why Do We Need Bayesian Networks? - Where N-Grams Fall Short

Example: Handling Noisy Input (Speech Recognition & OCR Errors)

- Why N-Grams Struggle with Noisy Data
 - N-grams assume clean input and struggle to handle spelling variations, typos, or speech recognition errors.
 - They only consider local word probabilities without higher-level reasoning.
- Example: Speech Recognition Failure
 - User says: "I need to book a flight to Nice." (city in France)
 - Speech recognition system transcribes: "I need to book a flight to niece."
- X N-gram model: "Niece" is more probable than "Nice" in general, so it chooses the wrong word.
 - **Mayesian Networks:**
 - Uses contextual dependencies (e.g., "flight" → likely a city, not a relative).
 - Adjusts **probabilities dynamically** based on the sentence structure.
 - Predicts "Nice" as the correct word given the travel-related context.

Why Do We Need Bayesian Networks? - Where N-Grams Fall Short

- Example: Optical Character Recognition (OCR) Errors
 - Scanned document says: "He loves reading b00ks."
 - OCR misreads: "He loves reading looks."
 - X N-grams: "Looks" is more common than "books," so it accepts the incorrect word.
 - Mayesian Networks:
 - Uses semantic dependencies to check if the corrected word fits the sentence context.
 - Determines that "books" is more likely than "looks" after "reading."

Why Bayesian Networks Work

Ø Graph-Based Representation:

- Unlike N-grams, which use linear dependencies,
- Bayesian Networks use a Directed Acyclic Graph (DAG) to capture relationships between variables.
- Each **node** represents a **random variable** (e.g., word, symptom, POS tag).
- Each edge represents a probabilistic dependency (e.g., "flu" → "fever").

Models Joint Probability Efficiently:

- Bayesian Networks factorize the full joint probability distribution, reducing computation.
- Instead of storing massive probability tables, they break it down into conditional probability tables (CPTs).

Captures Conditional Dependencies:

- Context-aware predictions → Takes into account multiple factors, unlike N-grams, which rely only on fixed-length history.
- **Example:** The probability of "bank" depends on whether "river" or "loan" is in the sentence.

Why Bayesian Networks Work

Efficient Inference & Probabilistic Reasoning:

- Uses Bayes' Rule to update beliefs dynamically.
- Works well with missing or uncertain data (e.g., speech recognition errors, noisy text).

Applications in NLP & Beyond:

 Word Sense Disambiguation, POS Tagging, Spelling Correction, Speech Recognition, Medical Diagnosis, and Fraud Detection.

Formal Definition

A Bayesian Network (also called belief network or bayesian belief network) is a **Directed Acyclic Graph (DAG)**, where:

- Each node represents a random variable X (can be discrete or continuous).
- Each directed edge represents a probabilistic dependency P(X | Parents(X)).
- The joint probability of all variables factorizes as:

$$P(X_1, X_2, \dots, X_n) = \prod_{i=1}^n P(X_i | Parents(X_i))$$

DAG structure ensures no cycles, making inference tractable.

The Alarm Example

Suppose you hear a house alarm go off. What are the possible causes?

- The alarm could be triggered by a **burglary** or an **earthquake**.
- Your **neighbors** (John & Mary) might call you if they hear the alarm.

How do we quantify the probability of these events?

Instead of assuming everything is equally likely, we model dependencies between variables.

We represent this scenario as a **Bayesian Network DAG**:

Nodes (Random Variables)

- **B** = Burglary occurred (True/False)
- **E** = Earthquake occurred (True/False)
- **A** = Alarm went off (True/False)
- **J** = John called the police (True/False)
- M = Mary called the police (True/False)

Burglary Earthquake Alarm JohnCalls MaryCalls

Edges (Dependencies)

- **B & E** \rightarrow **A** (The alarm depends on burglary or earthquake)
- A → J & M (John and Mary call based on the alarm)
- A Bayesian Network allows us to compute:
 - P(Burglary | Alarm went off?)
 - P(John Calls | No Alarm?)
- Instead of a **flat joint probability table** (which would be huge), the **Bayesian Network factorizes** the relationships, i.e. use **conditional probability** making inference efficient!

Conditional Probability Tables

Each node is assigned a Conditional Probability Table (CPT) that specifies probabilities based on parent nodes.

Roots(sources) of the DAG that have no parents are given prior probabilities.

Conditional Probability Tables

Naïve Bayes as a Bayes Net

Naïve Bayes is a simple Bayes Net

• Priors P(Y) and conditionals $P(X_i|Y)$ for Naïve Bayes provide CPTs for the network.

Conditional Probability Tables

- Without Bayesian Networks, we would need the full joint probability table, which requires storing probabilities for all possible variable combinations.
- When specifying a **Conditional Probability Table (CPT)** for a **Boolean variable**, we only need to provide the probability of one outcome (e.g., True) because the probability of the other outcome (False) is **implicitly determined**.

P(Mary call | Alarm off) = $0.7 \rightarrow P(Marry call \mid \neg Alarm off) = 0.3$

- In the example shown before,
 - Without factoring, we need 2^5 1 = 31 parameters.
 - Using CPTs, we only need 10 parameters, a significant reduction.
- Number of parameters in the CPT for a node is exponential in the number of parents (fan-in problem) → 2^(parents nodes)

Conditional Probability Tables

How to calculate these probabilities?

Estimate using data, using the Maximum Likelihood Estimation (P(Y|X) = ?)

$$P(Y|X) = P(Y \cap X)/P(X) \rightarrow P(Y \cap X) = P(Y|X) \times P(X)$$

$$P(X|Y) = P(Y \cap X)/P(Y) \rightarrow P(Y \cap X) = P(X|Y) \times P(Y)$$

$$P(Y|X) = P(X|Y) \times P(Y) \times P(Y) / P(X)$$

$$P(Y|X) = P(X|Y) \times P(Y) / P(X)$$

$$P(X|Y) = P(X|Y) \times P(Y) / P(X)$$

- What if we don't have Data? (Domain Knowledge Approach)
 - If data is unavailable, experts assign reasonable probability estimates based on experience.
 - Example: If earthquakes are rare and alarms are sensitive, we may manually define probabilities.

$$P(A = True | B, E) = rac{ ext{Count of A=True when B,E occur}}{ ext{Total count of B,E}}$$

Another example - Bayesian Network

P(A|B,C) = P(A|C)I(ToothAche,Catch|Cavity)

- Weather is independent of the other variables,
 - I(Weather, Cavity)
 - or P(Weather) = P(Weather|Cavity) = P(Weather|Catch) =
 P(Weather|Toothache)
- Toothache and Catch are conditionally independent given Cavity
 - I(Toothache,Catch|Cavity) meaning
 - P(Toothache|Catch,Cavity) = P(Toothache|Cavity)

Full Joint Distribution

- We will use the following abbreviations:
 - $P(x_1, ..., x_n)$ for $P(X_1 = x_1 \land ... \land X_n = x_n)$
 - $parents(X_i)$ for the values of the parents of X_i

• From the Bayes net, we can calculate:

$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i \mid parents(X_i))$$

Full Joint Distribution

Full Joint Distribu
$$P(x_1,...,x_n)$$

$$= P(x_n \mid x_{n-1},...,x_1)P(x_{n-1},...,x_1)$$

$$= P(x_n \mid x_{n-1},...,x_1)P(x_{n-1},...,x_1)$$

=
$$P(x_n \mid x_{n-1},...,x_1)P(x_{n-1} \mid x_{n-2},...,x_1)P(x_{n-2},...,x_1)$$

=
$$P(x_n \mid x_{n-1},...,x_1)P(x_{n-1} \mid x_{n-2},...,x_1)...P(x_2 \mid x_1)P(x_1)$$

$$= \prod_{i=1}^{n} P(x_i \mid x_{i-1}, ..., x_1)$$

using Independence

$$= \prod_{i=1}^{n} P(x_i \mid parents(x_i))$$

Conditional Independence

We can look at the actual graph structure and determine conditional independence relationships.

A node (X) is conditionally independent of its nondescendants (Z_{1j}, Z_{nj}) , given its parents (\bar{U}_1, \bar{U}_m) .

Conditional Independence

Equivalently, a node (X) is conditionally independent of all other nodes in the network, given its parents (U_1 , U_m), children (Y_1 , Y_n), and children's parents (Z_{1j} , Z_{nj}) – that is, given its

Markov blanket

Independence \(\neq \) Conditional Independence

B and E are **independent**:

$$P(B|E) = P(B)$$

B and E are **not conditionally independent given A**:

$$P(B|E,A) \neq P(B|A)$$

Conditional Independence ≠ Independence

J and M are **conditionally independent given A:**

$$P(J|A,M) = P(J|A)$$

$$P(M|A,J) = P(M|A)$$

J and M are **not independent!**

$$P(J|M) \neq P(J)$$

Conditional Independence ≠ Independence

- B and E (no common ancestor, common descendant A):
 - Independent
 - Not conditionally independent given A
- J and M (common ancestor A, no common descendant):
 - Not independent
 - · Conditionally independent given A
- B and M (B is the ancestor of M):
 - Not independent
 - Conditionally independent given A

Bayes Net Inference

• Given known values for some evidence variables, determine the posterior probability of some query variables.

Example: Given that John calls, what is the probability that there is a Burglary? **P(B|J)**

Types of Inference

Solve - Diagnostic (evidential, abductive)

From effect to cause

P(B|J)

P(E) .002

B	E	P(A)
T	T	.95
T	F	.94
F	T	.29
F	F	.001

P(B)

.001

A	P(J)	A	P(M)
T	.90	T	.70
F	.05	F	.01

Given, P(B) = P(B|E), P(E) = P(E|B),P(A|B,E)P(J|A) = P(J|MA), P(M|A) = P(M|JA)

$$\rightarrow P(J|B) = \sum_{(A,E)} P(J|A) \times P(A|B,E) \times P(E)$$

$$\rightarrow P(J) = \sum_{(A)} P(J|A) \times P(A)$$

 $P(B|J) = P(J|B) \times P(B) / P(J)$

$$\rightarrow$$
 P(A) = $\sum_{(B,E)}$ P(A|B,E) x P(B) x P(E)

Solve - Causal (predictive)

From cause to effect

P(J|B)

 $P(J|B) = \sum_{(A,E)} P(J|A) \times P(A|B,E) \times P(E)$

P(B)	P(E)
.001	.002

В	E	P(A)
Т	T	.95
Т	F	.94
F	T	.29
F	F	.001

A	P(J)	A	P(M)
T	.90	T	.70
F	.05	F	.01

Solve - Intercausal (explain away)

Between causes of a common effect

P(B|A)

 $P(B|A) = P(A|B) \times P(B) / P(A)$

$$\rightarrow$$
 P(A) = $\sum_{(B,E)}$ P(A|B,E) x P(B) x P(E)

$$\rightarrow P(A|B) = \sum_{(E)} P(A|B,E) \times P(E)$$

1 (1	,	1 (1	4)	
.00	1	.00	2	
В	E	P(A)	1	
Т	Т	.95	1	
T	F	.94	ĺ	
F	T	.29		
			1	

.001

A	P(J)	A	P(M)
T	.90	T	.70
F	.05	F	.01

Solve - Mixed

Two or more combination of Diagnostic, Causal, Intercausal

$P(A|J \land \neg E)$

(Earthquake)

(MaryCalls)

P(E) .002

Alarm

B	E	P(A)
T	T	.95
Т	F	.94
F	T	.29
F	F	.001

(Burglary)

JohnCalls

P(B)

.001

A	P(J)	A	P(M)
T	.90	T	.70
F	.05	F	.01

$$P(A \mid J, \neg E) = P(J \mid \neg E)x P(A \mid \neg E)$$

/ $P(J \mid A)$

$$\rightarrow P(A \mid \neg E) = \sum_{(B)} P(A \mid B, \neg E) \times P(B)$$

$$\rightarrow P(J \mid \neg E) = \sum_{(A)} P(J \mid A) \times P(A \mid \neg E)$$

$$\rightarrow P(A \mid J, \neg E) = P(J \mid \neg E) P(J \mid A) / P(A \mid \neg E)$$

Answers

- P(B|J) = 0.016
- P(J|B) = 0.86
- P(B|A) = 0.376
- $P(A|J \land \neg E) = 0.034$

E	P(A)
T	.95
F	.94
T	.29
F	.001
	T F T

A	P(J)	A	P(M)
T	.90	T	.70
F	.05	F	.01