Vose Adrian Ontiveros Moran Matricula=17332507 Universided autonome de Coahila Ingenieria Sistemas Computaci. onales Probabilidad MoFesora : Yuliana Avila.

1º Concidere un monte de baroja formado por siete cartes marcades 1,2,000 f. tres de estes cartos estan se leccionacher al ajor. Define une voriable x Como "zona de les numeros resultantes", y culcule la distribución de probabilidad. Pespecion la le N 162 Considere los resultados sin orden de menera que (1,3,7) (3,1,7) no sor resultades diferentes. Sit((i,5,k))/i,5,k=/,2,2...73
imports el orden no hoy repeticion m=3 n=7 N(s) = 7(s) = 35El evento con nayor volor de la suna es el de (7,6,5):18 El evento con menor sun a (1,2,3)=6 X es de/ 6 a1 18 (ada probabilided es (0.02857)(35)=1 735=0.03857

2. Dada la siguiente distribución

a) verifique que se trata de una distribución

b) Pecalice la grafica de esta distribución

c) Calcule 11 y 02

d) Construya la fonción acomolada y grafiquela.

a) XI < 1 0.002 + 0.146

0	×	P(x)	x * P(x)	$x P(x) x^2*P(x) $	•
	1	0.002	0.002	1 0.005 0.005 10405-3-1142	820
	2	0.146	0.197	2 0.146 0.584	O
	3	0.588	1-764	30.588 5.292	
	4	6.764	1.055		
		1		+ 4 0.764 1.056	
			3-114	10.102	
		1000	1.2		

	`	1.2-				
d)x/P(x)	F(X)	0.8	1			
170.002	0.005	0.6	1			
7 0.146	0-148	0.4	71	11 1		
3 0.588	0.736	- 01	+11+	11		
+ 0.264	7		4 6	8		
THE PARTY OF THE P	senenentrarrantaria (en en e	Proposition of the Contract Co	TEK autorender enegatabet 1919181	sterosed-tetrosements	Nemental de la constitue de la	MATERIAL PROPERTY OF THE PROPE

3-Un taller de servicios para automoviles sobe que 45% de las afinaciones se exectuan de cootro cilindros, 40% en autonoviles de 6 cilindros y 15% en autonoviles de ocho cilindros.

-a) defina la voriable aleatoria y sus valores b) Calcule la distribución de probabilided por el problemo ded.

denstroya la Foncion de distribución acomoleda y grofiquela

a) X: Numero de cilindres en un auto afivar

)(d	X	P(x)
+	4	0.45
	6	0.4
	00	0.15
		1

	4	0.45	1. 3	
	6	0.4	2.4	
	8	16.15	1.7	
		1	5.4	
	X	P(x)	1 x 2. P(x)	
	4	0-45	7.7	
f	6	6.4	14-4	
	8	0-15	9.6	
			31.2	
1				

	4	0.45	1.00	
	6	0.4	12-4	d
	8	6.15	1.7	
		1	5.4	1 \
1	X	P(x)	1 x 2 P(x)	1) 1
-	4	0-45	7.7	
-	6	6.4	14-4	
- American	8	0-15	9.6	0.5
			31.2	0.9
1				0.3
		31.2-	5.42= 2.0 400	0.2

d X	p(x)	F(x)
4	0.45	0.45
116	0.4	0.85
8	0.15	1

4-En un vecindorio de 95 casas, 35 tienen nascotas. Suponga que en la proxina revision sonitaria se eligen 12 casas completamente al azar

a) Cual es la probabilided de que en 5 casas tengan mascofa, b) calcule el valor esperado del nunero de casas que tienen hascotar.

Y=Numero de casas que tienen mascotes Parametros N=95 N=12 V=35 Rango y=0,1,2...,17

Pistribucion 4-14 (95,35,12)

a) P(475) = 1-10(4=5)

= 1 - P(y=s) - r(y-1) $= 1 - \frac{1 - \frac{1}{3}}{\frac{1}{3}} \frac{(60)}{(60)} - \frac{1}{3} \frac{(60)}{(60)} \frac{(60)$ = 1 - P(y=5) - P(y=4) - P(y=3 - P(y=2) - P(y=1))

C35 (60) - C35 (60)

= 1-0.23 -0.2451 -0.17+0-0.0820-0.0020

= 6-24134 X

(a) b) media
$$M = n\left(\frac{r}{N}\right) = 12\left(\frac{35}{95}\right) = 4.4210$$

Varianza $6^2 = n\left(\frac{r}{N}\right)\left(\frac{1-r}{N}\right)\left(\frac{N-n}{N-1}\right) = 12\left(\frac{35}{95}\right)\left(\frac{35}{95}\right)\left(\frac{35}{95}\right) = 4.4210$
 $6^2 = 2.46$

Desviacion estandar

\[\begin{align*}
\text{62} &= \sqrt{2.46} &= 1.5684 \end{ar}
\end{ar}

M-6=4.4710=1.5684=2.85=3 M+0=4.4710=1.5684=5.98=6Se espera que entro [J. 6] casas tengon moscota 5-On trabajador de una inclustria textil atiende varies cientes de husos, cada una de los cuales envolla su propia bobina. En ese Proceso, el hilo se rompte por distintes causas. Asunicado que el trabajador o cupa 800 husos y la publibilidad de rotra del hilo en cada huso en un intervalo de tiempo declo es de 0.065.

a)-analice y diga que tipo de distribución tiene la variable aleatoria que se observa en el experimento

b) - d wal es la probabilided (aproxinada) de que hay al nevos 3 roteras?

C)-decoul es la probabilided (aproximada) haya a la nur Z roteras en 1260 hilos?

a) Es de distribución Binomial, ya que cuenta exites y Fracusos, tiene una probabilidad y un nuncio de proepos

Y: Numo de roturas del hilo en rada hus Poranctros p=0.005, q=0.995 n=800 Ranjo= Y=0,1,2--.800 Distribución y~B(800,005)

Aphrano critaros de aproxinación N=800>20 y p=0.005 Z 0.05 aproxinanos por la distribución de poisson Y= Nuncro de roturas del hilo en una mæstra de 800

Parametras np=800(0.005)=4

Panyo = Y=0,1,7, - - - 00

Pistribucian X~p(2=4)

$$P(y \ge 3) = 1 - P(y \le 2)$$

$$= 1 - P(y = 2) - P(y = 1) - P(y = 0)$$

$$= 1 - 4^{2} e^{-1} - 4 e^{-1} - 4^{0} e^{-4}$$

$$= 1 - 0.1465 - 0.07326 - 0.01831$$

$$= 0.7619$$

C) X= nuncro de roturas del hilo en cada hoso Paranetro: p=0.005 q=0995 N=1200 Rongo X = 0,1,2,5, ____1200 Pistribulium= X~ B(1200,0.00) Aplicarie criterio de oproximación N= 1200550 > P=0.005 50.0) P(y=z)=P(y:0)+P(y=y)+P(y=z) $= \frac{(1200)(0.005)^{\circ}(0.995)^{1700}}{(0.995)^{1700}} + \frac{(1200)(.995)^{1700}}{(0.005)^{\circ}(.995)^{1198}}$ = 6.002441 + 0.01472 + 6.04431 = 0.06151

Scanned by TapScanner

7= En un banco un cojero atiende a 12 persones en pronectio Cada hora. Pebido que se desca mejorar ol cliente, el gerente del borco esta nonitoriando cada nedia hora los cojeros. a) Coal es la probabilidad de que en la 5, guiente nedia hora un capero elejido al azar atirnele neves de 5 persores b) (val es la probabilided de que en una hera y media se attendon 12 y 15 personus, inclusive? C) Calcule el valor esperado del nunero de persones a tendide, en 45 minutes? 4= noncero de clientes atendidos en media hora Parametros = 1 = 6 Rango y=0,1,2,...00 Distibucion = Y~p(x=6) P(y<5) = P(y=0)+P(y=1)+P(y=2)+P(4=3)+P(y=4) 6° e6 + 6' e6 + 6² e6 + 6³ e6 + 64 e6 2! 3! 4! X = 0.0075 + 0.0149 + 0.0 4461+ 0.08975 + 0.13 38 X-Nomero de clientes atendidos en una hora y media Paranetros= >= 18 Rangus X=6,1,7,3, ... 0 Dirtribucion X~ p(x=18) p(12 < x < 15) = p(4=15) + b(4=13) + b(4=14) + b(4=1 $=18^{17}e^{-18} + 18^{13}e^{-18} + 18^{14}e^{-18} + 18^{15}e^{-18}$ = 0.368+0.5097+0.65977 0.73/8

D C) 7 = Nuevoi de clientes atendidos en 45 minutes X Parametros = 7 = 9 Ranjo = Z = 0,1,2... Pistribucion: Z~ P(2=9) Media = 11 = 7 = 9 Varian Za = 62 = 7 = 9 Desvia cion Estander 6 = V62 - Ja = 3 M-6 = 9-3 = 6 M+6=9+3=12 Se espera que entre [6,12] clientes Jean atendidos en 45 ninutes

8 = la distribución de probabilidad de X/el nunero de vietectos por cado 10 metros de una tela sintetica en rollos continos de ancho uniforme es.

a) Petermire la distribución de probabilidad acunclada de X/P(X)

b) Petermire el nunero esperado de defectos por cada lo metros de tela

c) Determire la pobobilidad de que 10 metros de tela sintetica

se encuentran maximo 2 defectos.

X = noncro de defectes de uva tela sintetica

XZ	x `\	P \	X.P(x)	
0		0-41	0	
-	I	0.37	0.37	0.37
4	7	0-16	0.32	0.60
9	3		0.15	0.45
16	4	0.01	0.04	0.16
			86.88	1 1 1 5

1.62-(0.88)?

$$V[x] = 6.8456$$

 $V[x] = \sqrt{6.8456} = 0.9195$
 $E[x] = 0.89$
 0.8 ± 0.9195

9= calcule la signimentes probabilidades binomiales directorente de la fernala para B(y:n,p) (formula de la distribución binone oi), donde "y" es el valer que vasa colcular
y 'n,p" son las parametras de la distribución a) B(3,8,6.6) Esta quiere decir que debes colodor P(4:32) dande n=8 y p=0. 6 así tambien las siguientes b)B(5,8,0.6) ()P (3 ≤ x ≤ 5) Caudo n=8 y p=0.6 9) Parametros: N=8, P=0.6 4=0.4 Rango = y=0,1,2, -- ,8 Pistribucion: 1~ E(8,0.6) P(y=3)=(8 (0.6)3 (0.4)5 = . 1238 p) P(4=2)=(3 ("0)2("4)3 7845 -= () P(3 = x = 5) = P(y=3) + P(y=4) + P(y=5) =(3(.6)3(.4)5+(8(.6)4(.4)4+ 01238+.7322+.2786 = 0.6348

10: Coundo se proeban tarjetes de circuitos empleados en la montactiva de reproductor de discos computes, a la larga el porcentigal de partes detectrosas es de 510 se se tona una muestro de 30 tayetis ditectosas y "X" representa el nume de hujetis chétectross, ser esa mévestra determine. a) P (x = z) p) b(x>2)() P 1 × × + 1) d) Cual es la probabilidad que ninguna terjeta este défectusse? Y= Nuncro de farjetes defectuosas Paranetros: N=30, P=0.05 q=:95 Rango y = 0,1,2, -- 30 Distribucion Y~ B (30,005) a) P(y= 2) = P(y=0) + P(y=7)+ P(y=2) = C3° (6.05)° (0.95),3° (605)'(.95)°+ C30(0.05)2(0.95)28 =.2146+.339+.2586 = .8127 b) P(y=5)=1-P(y=4) = 1 - p(y=4)-p(y=3)-p(y-1)-p(y=0) = 7-0.451 -179 - 67586-63341-- 6-01568

Mos ponga que solo el 25% de los outonou, listes se eletimen por completo en el crucero donde hay un senotoro con la luz voja internitante, cumbo vo ven otros autonoviles el cuales la probabilidad de que entre 19 autonoviles seleccionados al a) a lo somo 6 se de tængen po- complito b) exactemente 6 se détengen por complete c) al neuros 6 se detengan por complete. y= numero de automovilistes que se detienen por completo parametros: n=19, p=. 25, q=. 75 Rango = y=0,1,2,---19 Distribución : Y ~ B (19,.25) a) $P(y \le 6) = P(y = 0) + P(y = 1) + P(y = 2) + P(y = 3) + P(y = 4)$ + P(y=5) + P(v=6) = 6.004228+ 0.02677+6.08033+.1517+2023 + , 2023 + 1573 = 6.825 b) P(y=6)=(19 (0.25)6(75)13 = .1573 C) P (4=6) = 7 - P(4=5) = 7-P(Y=5)-P(Y=4)-P(Y=3)-P(Y=7) - P(y=7)-P(y=0) = 7-.2023-.2023-.1517-.08033-.0877 = .33234