The Virtual Learning Environment for Computer Programming

Graf dirigit amb matriu d'adjacència. Hi ha camí d'un vèrtex a un altre? X78824_ca

Donada la classe graf que permet gestionar grafs dirigits i no etiquetats amb n vèrtexs (els vèrtexs són enters dins l'interval [0, n-1]), cal implementar amb un algorsime **recursiu** el mètode

```
bool hi_ha_cami(nat ini, nat fi) const;// Pre: ini i fi són vèrtexs del graf (són menors que n)// Post: Retorna un booleà indicant si hi ha camí per anar d'ini a fi
```

Les arestes es guarden en una matriu d'adjacència. Un dels jocs de prova públics és aquest graf que conté 5 vèrtexs (mira el PDF de l'enunciat):

Cal enviar a jutge.org la següent especificació de la classe graf i la implementació del mètode dins del mateix fitxer (la resta de mètodes públics ja estan implementats). Indica dins d'un comentari a la capçalera del mètode el seu cost en funció del nombre de vèrtexs n i el nombre d'arestes m del graf.

```
#include <vector>
using namespace std;
typedef unsigned int nat;

class graf {
    // Graf dirigit i no etiquetat.
    // Les arestes es guarden en una matriu d'adjacència.
    public:
        // Constructora per defecte. Crea un graf buit.
        graf ();

    // Destructora
        graf ();

    // Llegeix les dades del graf del canal d'entrada
    void llegeix ();

    bool hi_ha_cami(nat ini, nat fi) const;
    // Pre: ini i fi són vèrtexs del graf (són menors que n)
```

```
// Post: Retorna un booleà indicant si hi ha camí per anar d'ini a fi

private:

nat n; // Nombre de vèrtexs

nat m; // Nombre d'arestes

vector < vector < bool > > a; // Matriu d'adjacència

// Aquí va l'especificació dels mètodes privats addicionals
```

// Aquí va la implementació del mètode públic hi_ha_cami i privats addicionals

Degut a que jutge.org només permet l'enviament d'un fitxer amb la solució del problema, en el mateix fitxer hi ha d'haver l'especificació de la classe i la implementació del mètode *hi_ha_cami* (el que normalment estarien separats en els fitxers *.hpp* i *.cpp*).

Per testejar la classe disposes d'un programa principal que llegeix un graf i després llegeix vàries parelles de vèrtexs per esbrinar si hi ha camí per anar d'un vèrtex a l'altre.

Entrada

};

L'entrada conté un graf: el nombre de vèrtexs, el nombre d'arestes i una llista d'arestes. Cada aresta s'indica pels dos vèrtexs que relaciona. A continuació hi ha vàries parelles de vèrtexs dels quals haurem d'esbrinar si hi ha camí per anar d'un a l'altre.

Sortida

Per a cada parella de vèrtexs de l'entrada, per exemple v1 i v2, escriu una línia amb el text "SI hi ha camí de v1 a v2" o "NO hi ha camí de v1 a v2".

Observació

Només cal enviar la classe requerida i la implementació del mètode *hi_ha_cami*. Pots ampliar la classe amb mètodes privats. Segueix estrictament la definició de la classe de l'enunciat. La solució a aquest problema ha de ser **recursiva**.

Indica dins d'un comentari a la capçalera del mètode el seu cost en funció del nombre de vèrtexs n i el nombre d'arestes m del graf.

Exemple d'entrada 3

2 1 0 1

0 1 1 0

Exemple d'entrada 4

2 2 0 1 1 0

1 0

3

Exemple d'entrada 5

3 0 2 0 1 1 2 0 1 0 2 1 0 1 2 2 0

2 1

Exemple d'entrada 6

```
7
4 0
0 2
0 1
2 1
2 4
2 3
0 1
0 2
0 3
0 4
1 0
1 2
1 3
1 4
2 0
2 1
2 4
3 0
```

Exemple de sortida 3

```
SI hi ha camí de 0 a 1 NO hi ha camí de 1 a 0
```

Exemple de sortida 4

```
SI hi ha camí de 0 a 1 SI hi ha camí de 1 a 0
```

Exemple de sortida 5

```
SI hi ha camí de 0 a 1
SI hi ha camí de 0 a 2
NO hi ha camí de 1 a 0
SI hi ha camí de 1 a 2
NO hi ha camí de 2 a 0
NO hi ha camí de 2 a 1
```

- 3 4
- 4 0
- 4 1
- 4 2
- 4 3

Exemple de sortida 6

```
SI hi ha camí de 0 a 1
SI hi ha camí de 0 a 2
SI hi ha camí de 0 a 3
SI hi ha camí de 0 a 4
NO hi ha camí de 1 a 0
NO hi ha camí de 1 a 2
SI hi ha camí de 1 a 3
NO hi ha camí de 1 a 4
SI hi ha camí de 2 a 0
```

Exemple d'entrada 7

```
1 5
1 0
3 1
4 0
0.5
5 1
2 3
0 1
0 4
0 5
1 0
1 2
1 3
1 4
1 5
2 0
2 1
3 0
3 1
3 2
3 4
3 5
4 0
4 1
4 2
4 3
4 5
```

SI hi ha camí de 2 a 3 SI hi ha camí de 2 a 4 NO hi ha camí de 3 a 0 NO hi ha camí de 3 a 1 NO hi ha camí de 3 a 2 NO hi ha camí de 3 a 4 SI hi ha camí de 4 a 0 SI hi ha camí de 4 a 1 SI hi ha camí de 4 a 2 SI hi ha camí de 4 a 2 SI hi ha camí de 4 a 3

SI hi ha camí de 2 a 1

Exemple de sortida 7

```
SI hi ha camí de 0 a 1
NO hi ha camí de 0 a 2
NO hi ha camí de 0 a 3
NO hi ha camí de 0 a 4
SI hi ha camí de 0 a 5
SI hi ha camí de 1 a 0
NO hi ha camí de 1 a 2
NO hi ha camí de 1 a 3
NO hi ha camí de 1 a 4
SI hi ha camí de 1 a 5
SI hi ha camí de 2 a 0
SI hi ha camí de 2 a 1
SI hi ha camí de 2 a 3
NO hi ha camí de 2 a 4
SI hi ha camí de 2 a 5
SI hi ha camí de 3 a 0
SI hi ha camí de 3 a 1
NO hi ha camí de 3 a 2
NO hi ha camí de 3 a 4
SI hi ha camí de 3 a 5
SI hi ha camí de 4 a 0
SI hi ha camí de 4 a 1
NO hi ha camí de 4 a 2
NO hi ha camí de 4 a 3
SI hi ha camí de 4 a 5
SI hi ha camí de 5 a 0
SI hi ha camí de 5 a 1
NO hi ha camí de 5 a 2
NO hi ha camí de 5 a 3
```

NO hi ha camí de 5 a 4

Informació del problema

Autor: Jordi Esteve

Generació: 2021-06-02 09:55:07

© *Jutge.org*, 2006–2021. https://jutge.org