Japanese Patent Application Publication (JP-B) No.58-12577

Publication Date: March 9, 1983

Application No.: 49-146673

Application Date: December 20, 1974

TITLE: PHOTOPOLYMERIZABLE COPYING MATERIAL

Applicant: Hoechst Aktiengesellschaft, Germany

Abstract:

The invention relates to a photopolymerizable copying material comprising at least one polymerizable compound, at least one photo-initiator, and at least one copolymer of (A) an unsaturated carboxylic acid, (B) an alkyl methacrylate with at least 4 carbon atoms in the alkyl group, and (C) at least one additional monomer which is capable of copolymerization with monomers (A) and (B), the homopolymer of said additional monomer having a glass transition temperature of at least 80°C.

許 公 **郵** (B2) **(2**) 昭58-12577

(Int.Cl. G 03 C 1/68 C 08 L 33/06 G 03 F

識別配号 **庁内整理番号**

❷❸公告 昭和58年(1983) 3月9日

8205-2H 7308-4J 7/02 7267-2H

発明の数 1

(全10百)

1

60光重合可能な復写材料

②特 顧 昭49-146673

図出 願 昭49(1974)12月20日

69公 開 昭50-96305

49昭50(1975)7月31日

優先権主張 1973年12月21日188西ドイツ(D

E) @P 2363806.4

⑫発 明 者 ライムント・ヨーゼフ・フアウス

ドイツ連邦共和国ヴイースバーデ ン・ピープリツヒ・アードルフス プラツツ5

72発明者 クルト・ヴァルター・クリユップ

ドイツ連邦共和国ヴィースパーデ ン・ゾンネンベルク・ドライスピ ツツ・シユトラーセ2アー

砂出 願 人 ヘキスト・アクチェンゲゼルシャ フト

ドイツ連邦共和国フランクフルト

/マイン80 ②復 代理人 弁理士 矢野敏雄

の特許請求の範囲

1 主成分として重合可能なアクリル酸エステル 又はメタクリル酸エステル少なくとも1種、光学反 応開始剤少なくとも1種及び(A)不飽和カルボン酸、 旧アルキル基中の炭素原子数少なくとも4個を有 するメタクリル酸アルキル及び(C)少なくとももう 30 に、むしろ親水性化する利点を有する。 1種のモノマーからの共重合体少なくとも1種を 含有する光重合可能な複写材料において、前記共 重合体は、もう1種のモノマー成分として、モノ マー(A)及び(B)と共重合可能で、そのホモポリマー が低くとも80℃のガラス化温度を有する、スチ 35 て、カルポン酸ー、無水カルポン酸ー、フェノー ロール、置換されたスチロール、ピニルナフタリ ン、置換されたビニルナフタリン、ビニルヘテロ

環化合物、ピニルシクロアルカン、アクリルアミ ド、メタクリルアミド、Nーアルキルアクリルア ド、アクリロニトリル、メタクリロニトリル、メ タクリル酸アリール又はメタクリル酸アルキルよ 5 り選択された化合物(C)を有していることを特徴と する、光重合可能な複写材料。

2

発明の詳細な説明

本発明は、液状で又は固体層として担体上に存 在し、主成分として少なくとも1種の光重合可能 10 の不飽和化合物、少なくとも1種の光学反応開始 剤及び少なくとも1種の結合剤-共重合体(これ は、少なくとも3種の異なるモノマー構成員から 構成されていて、アルカリ水中で溶けるか又は少 なくとも膨潤しうる)を含有する新規の光重合可 15 能な複写材料に関する。

例えば印刷版を光学的に製造するレプログラフ イで役に立つ光合可能な複写材料又は複写対は、 これが主として水溶液殊にアルカリ水溶液を用い て現像でき、従つて空気も廃水も心配せずに、現 20 像剤としての有機溶剤とは反対に、環境汚染の規 定に合うので有利である。

現像剤水溶液もしくは同アルカリ性水溶液は、 更に、有機溶剤に比べて、更に低価格、非危険性、 生理的無害性及び簡単な後処理の利点を有する。 25 それというのは、使用された現像液から溶けた複 写材料が酸性化及び引続く沪過により分離できる からである。

更に、アルカリ性溶液は、それで湿らされた金 属担持材の表面を浄化するかもしくは大低の場合

アルカリ水溶液で現像されうる複写層は公知で ある。所望の特性は、一般にアルカリ水性媒体中 で可溶であるか又は少なくとも膨潤しうる結合剤 の添加により達成される。このためには、主とし ル性又はアルコール性ヒドロキシル基及び類似の 水/アルカリー媒体中の溶解度を調節する基を有

するホモポリマー又はコポリマーを使用する。・

との種の結合剤を基礎とする複写層は、(西ド イツ特許第1194707号参照)、一定の目的 にとつて、例えばオフセツト印刷版の製造のため に、表面浄化されたアルミニウム担持材上で良好 5 に作用を発揮する。

しかしながら、担持材としての他の金属例えば クロム、真ちゆう及び殊に銅の使用の際には、こ の種の層の付着性は不充分であり、即ち、現像時 に非露光層も露光層も侵され、部分的に溶解除去 10 能であることが認められている。 される。

しかしながら、コポリマーの2成分系中での酸 含分は、水/アルカリ性現像性及び最適現像剤抵 抗に関する要求により決定される。従つて、コポ **備かであり、特に強度、弾性、認容性、粘着性等** に関する層品質の最適化は不可能である。

との理由から、例えばスチロール及びメタクリ ル酸、アクリル酸、マレイン酸又はマレイン酸半 エステルからの共重合体(同じ目的のために西ド 20 イツ特許出願公開公報第2205146号に記載 されているように)は、同時に銅上の良好な付着 性で、任意のフレキシブルな層の形成を許容しな いっ

ト配線及び成形部材エツチング用のエツチングザ ーブカーン (Atzreservagen) の製造時に特に 問題であることが判明した。

例えばエツチング剤はエツチング工程でエツチ ゆるサイドエツチングも起り、この際、担持材で もはや保護されないレジストカーンが生じること に注意すべきである。

このカーンは機械的に特に敏感であり、例えば により、エツチング剤は再び担持材表面の新しい 部分にまで達する。

前記の欠点は、例えばメタクリル酸メチル及び メタク リル酸、スチロール及びマレイン酸又はこ れら誘導体からの共重合体で認められ、これら共 40 アルカリ水性現象可能性、可撓性、エツチングー 重合体が高いガラス化温度(Tg=低くても100 ℃)を有し、これが、露光した層に実際に高すぎ るもろさを与える原因である。との高いTg は、 例えばポリマーハンドブツク(Polymer-

Handbook、I.Brandrup及びE.H. Immergut. Interscience Publishers, New York, London. Sydney 1965年)中で定 義され説明されている。

この欠点をフォトポリマー層に軟化剤を添加す ることにより阻止する試みをしたが、これによつ ては、層の付着性が一般に更に悪化される。更に、 多量の低分子量モノマーを含有するフオトポリマ -層が粘着傾向があり、従つて、加工が劣悪に可

特願昭47-3921号(特開昭48-45227 号公報)の発明の目的物は、少なくとも1種の重 合可能な化合物、少なくとも1種の光学反応開始 剤、及び少なくとも1種のメタクリル酸と少なく リマーの自由な選択から明らかである自由度は、 15 とも 1 種のメタクリル酸アルキル (この際、これ 又はメタクリル酸アルキルの少なくとも1種は、 炭素原子数4~15のアルキル基を有する)とか らの共重合体を含有する光重合可能の複写材料で

> メタクリル酸、メタクリル酸ーメチル又はーエ チル及びアルキル基中に4~15個の炭素原子を 有するメタクリル酸アルキルからのテルポリマー が有利である。

充分に低いガラス化温度(Tg=20℃ 以下)を とれは、特に多メタル版、凸版、凹版、プリン 25 有するモノマー構成単位より成るこの共重合体は、 部分的に、銅及び他の金属上への極めて良好な付 着性を有するが、液体フオトモノマーに関する中 程度の吸収性を有するだけである。例えば、メタ クリル酸とアルキル基中に4個より多い炭素原子 ングリザーブカーンの枠の下にも侵入して、いわ 30 を有するメタクリル酸アルキルとよりなる銅上に 極めて良好に付着する共重合体を用いて、非粘着 性で、充分に高いモノマー濃度で充分に感光性の レジスト層を形成することは成功していない。こ のような処方のもう1つい欠点は、冷間流れによ スプレーエツチングの際にも容易に折られ、とれ 35 る不充分な形状安定性であり、これは、端部例え ば貫通接続回路の製造の際の穿孔縁部で、及び貯 蔵及び加工の際に、印刷個所でのレジスト層の障 害性のにじみ現象をもたらす。

> 本発明の目的は、原発明の複写材料の利点殊に 及び電解抵抗及び露光状態での金属上への良好な 付着性を有し、付加的に、粘着性を有せず、非露 光状態での低下された冷間流れを有する光重合可 能な複写材料を得ることであつた。

本発明による複写材料は、それが結合剤として (A)不飽和カルボン酸、(B)アルキル基中の炭素原子 数最低4のメタクリル酸アルキル及び(Oもう1種 の(A)及び(B)と共重合可能なモノマー(そのホモポ リマーは低くても80℃のガラス化温度を有する)5 より成る共重合体を含有することを特徴とする。

このテルポリマー中の成分(Oとしては次の化合 物が好適である:

スチロール又は置換されたスチロール例えばビ ニルトルオール、 p ークロルスチロール、 α ー ク 10 4 0 重量 % の濃度で、成分(B)を 3 5 ~ 8 3 重量 % ロルスチロール、αーメチルスチロール、ビニル エチルベンゾール、 o ーメトキシスチロール及び mープロムスチロール、ビニルナフタリン又は置 換されたビニルナフタリン、ビニルヘテロ環化合 物例えばN-ビニルカルバゾール、ビニルピリジ 15 た付着性及び液体モノマーに対する優れた吸収性 ン、ビニルオキサゾール、ピニルシクロアルカン 類例えばビニルシクロヘキサン、 3,5一ジメチ ルーピニルシクロヘキサン、アクリルアミド、メ タクリルアミド、Nーアルキルアクリルアミド、 アクリロニトリル、 メタクリロニトリル、メタ 20 を広範に決定するととができる。成分(C)の濃度の クリル酸アリール、メタクリル酸アルアルキル及 び類似物。

有利な実施形式においては、本発明の複写材料 は、中の成分(Oがスチロール、pークロルスチロ ール、ビニルトルオール、ビニルシクロヘキサン、25 て貯蔵し、搬送する際にも、レジスト層の障害性 アクリルアミド、メタクリルアミド、Nーアルキ ルアクリルアミド、メタクリル酸フエニル、アク リロニトリル、メタクリロニトリル又はメタクリ ル酸ベンジルであるテレポリマーを含有する。と れらのうちスチロールが特に有利である。

当該ホモポリマーのガラス化温度は、低くても 80℃、有利には低くても100℃であるべきで ある。

不飽和カルボン酸(A)として、メタクリル酸、ア 酸もしくはイタコン酸又はこれらの半エステルを 使用するのが有利である。

メタクリル酸アルキル(B)は、一般にアルキル基 中に4~20個、特に6~12個の炭素原子を有 する。

当該ホモポリマーは、有利に最高20℃のガラ ス化温度を有すべきである。

更に、この結合剤ー共重合体は、成分(A),(B)及 び(Oと共に更に、これと共重合しうるメタクリル

б

酸アルキル(これは、アルキル基中で4個より少 ない C - 原子数を有してよい)を含有することが できる。もちろんすべての成分(A), (B), (C)のうち、 多数の代表的物質を含有していてもよい。

4個のモノマー構成単位からなる結合剤は例え は、一定の特性例えば複写材料の新しく開発した 金属合金上への付着性の微調整が必要である際に 有利である。

モノマー成分(A)を10~40重量%特に16~ の濃度で、かつ成分(Oを1~35特に3~25重 量%の濃度で使用する。

本発明の複写材料を用いて得られる複写層は、 それが露光後に金属担持材上、殊に銅上への優れ で、高い可撓性を有する点で優れている。この共 重合体のもう1つの重要な利点は、モノマー(B): モノマー(〇の濃度比の選択により、レジスト層の 可撓性を調節することができ、即ち所望層の稠度 選択により、大抵液状のフォトモノマーの高濃度 の際の層の冷間流れを、60℃までの温度ででも、 特に2層の間にサンドウイツチ状に包装されたレ ジスト層をロール状で乾燥レジストフイルムとし のにじみ現象が生じない程度まで減少させること ができる。

モノマー(B及び(Oは、それらの相対的濃度で相 互に共重合体中で変動性であるが、モノマー(A)特 30 にメタクリル酸の濃度は、水/アルカリ媒体中で のできるだけ迅速な現像性及び該現像剤混合物中 のできるだけ大きい現像剤抵抗に関する要求によ り決定される。共重合体中のカルボキシル基の最 も好適な濃度としては、約50~最大250有利 クリル酸、クロトン酸、ソルビン酸又はマレイン 35 に120~210の酸価が判明しており、これは、 例えば約10~40重量%のメタクリル酸含分に 相当する。しかしながら好適な範囲は、種々異な る結合剤にとつていくらか異なり、モノマー(A)の 性質に依るだけでなく、モノマー(B)及び(C)の種類 40 及び濃度割合にも依る。更に、平均分子量及び分 子量の非単一性は、コポリマー中の選択すべき最 適COOH濃度に特定の影響を及ぼす。最適平均 分子量は、20000~200000であり、このコポ リマー結合剤の酸価は、コポリマーの平均分子量

が高い程高く選択される。

比較的高い分子量で酸価を比較的低く保つべき 際には、現像すべき複写層に対する作用を容易に するために、現像剤に水と混じる有機溶剤及び/ 又は湿潤剤を少量添加することが推奨される。

複写材料を、殊に乾燥レジストフイルムの形 (これはエツチング及び電鶴ーリザーブとして使 用する)でのフォトレジスト材料の製造のために 有利に使用する際に、硬化されたエツチングリザ ープのカーンは、優れたエツチング強度及びこの 10 本発明の複写材料は主として、モノマー、光学 ために慣用の担持材上への付着性で優れている。 付着性は、殊に銅表面に対して重要であり、例え はプリント配線、多メタル版及び凹版印刷版の製 造に使用され、ここで、フオトポリマー層の付着 性は、従来特別な問題であり、付着助剤を添加す 15 示薬を含有していてよい。 べきであつた。本発明の複写材料を用いて得られ る層の付着性は、他の金属担持材例えばクロム、 真ちゆう、亜鉛及び鋼に対しても非常に良好であ

ープのアンダーカツトの際に、抵抗性でフレキシ ブルなレジストカーンが生じ、これは、エツチン グ溶液のスプレー時に、高いスプレー圧でも折れ ない。露光したレジスト層のこの可撓性は、新規 結合剤においては、他の公知の結合剤のようには 25 メチルーベンズ(a)フェナジン、 9 ーメチルーベン 非露光状態の層の柔軟性及び冷間流れに直結して おらず、むしろ、特にこの層が非露光状態でも充 分な形状安定性を有することが特に有利に認めら れる。

ングの際のみならず、他の使用目的でも、例えば オフセツトー又は凸版印刷版の製造の際にも有利 である。それというのは、印刷版を撓める際には もろい層中では容易に毛様亀裂が生じうるからで ある。

本発明の複写材料は、公知方法で溶液又は分散 液として使用に供され、これらは、消費者により 殊にエツチング保護層の製造のために使用される。 本発明の複写材料の有利な用途は、乾燥レジスト フイルムであり、これは、中間担持材上にある乾 40 環式アルコールのジグリセリンジアクリレート、 燥した熱可塑性フォトレジスト層からなり、これ は使用者によりエツチングすべき又は、画像に応 じて電鋳されるべきベース上に貼布され、次いで 露光され、中間担持材(これは大抵プラスチツク

8

シートよりなる)の引きはがしの後に現像される。 本発明による複写材料は、この使用形式にとつ て特に好適である。しかしながらこれは、適当な 担持材、例えばアルミニウム又は亜鉛上のプレセ 5 ンシタイズされた複写材料の形でもオフセツト版 は凸版の工業的な光学的製造のために使用できる。 更にこれは、レリーフ像、スクリン印刷ステンシ ル、色テストシート及び類似物の製造に好適であ

反応開始剤及び前記結合剤よりなるが、これはな お一連の他の添加物例えば複写材料の熱的重合を 減少させるための安定剤、水素供与体、感光調節 剤、染料及び顔料、未着色顔料、色形成剤及び指

しかしながら、これら添加物は、特に開始工程 に必要な化学線の過剰量を吸収すべきではない。

光学反応開始剤としては次の多数の物質が好適 である:例えば、ベンゾイン、ベンゾインエーテ 本発明の複写材料から得られるエツチングリザ 20 ル、多核キノン類、例えば 2 - エチルーアントラ キノン、アクリジン誘導体例えば9ーフエニルー アクリジン、9-p-メトキシフエニルアクリジ ン、9ーアセチルアミノアクリジン、ベンズ(a)ア クリジン、フェナジン誘導体例えば9,10-ジ ス(a)ーフェナジン、10一メトキシーベンス(a)フ エナジン、キノキサリン誘導体例えば6,4′,4′ ートリメトキシー2,3ージフエニルーキノキサ リン、 4,4ージメトキシー2,3ージフエニル しかしながら、複写層のこの可撓性は、エツチ 30 -5-アザーキノキサリン、キナゾリン誘導体。 種々のケトンの合成混合物、染料/レドツクス系、 チオピリリウム塩及びその他類似物。

> 本発明による複写材料に好適な光重合可能なモ ノマーは公知であり、例えば米国特許第 2760863 · 35 条及び同第3060023号明細書に記載されて いる。

有利な例は、アクリルー及びメタクリル酸エス テル例えばトリメチロールエタン、トリメチロー ルプロパン及びペンタエリスリツト及び多価の脂 ポリエチレングリコールジメタクリレート、アク リレート及びメタクリレートである。特に、ジイ ソシアネートと多価アルコールの部分エステルと の反応生成物を有利に使用することができる。こ

の種のモノマーは、西ドイツ特許出願公開公報第 2064079号に記載されている。一般に、メ タクリレートはアクリレートに比べて有利である。

水素供与体としては、主として脂肪族ポリエー テルが使用される。場合によつては、この機能は、5 結合剤又は重合可能なモノマー(これらが活性水 素原子を有する場合には) から引受けられうる。

との複写材料は、本発明で使用される共重合体 と共に、少量の他の結合剤例えばアルカリ水中に 不溶のものをも含有していてよい。もちろんここ 10 合の際に使用した量である。 で、この種の添加物によつて、前記共重合体によ り得られる利点をそこなわないように注意すべき である。

本発明の複写材料を用いて製造される複写材料 用の担持材としては、例えばアルミニウム、鋼、 15 亜鉛、銅又はプラスチツク例えばポリエチレンテ レフタレート又は酢酸セルロース製のシート又は スクリンが好適である。担持材表面は、層の付着 性を適正に調節するかもしくは複写層の化学線領 域での担持材の反射能を抑制 (ハレーション防止)20 するために、化学的又は機械的に前処理すること ができる。

本発明の複写材料を用いて感光性材料を製造す ることは公知方法で行なう。例えば、これを溶剤 中に入れ、この溶液もしくは分散液を、注型スプ 25 レー、浸漬、ローラでの塗布等によりフイルムと して準備した担持材上に施とし、 引続き乾燥させ る。厚い層(例えば250μ及びそれ以上)は、 押出し又は圧縮成形により自己保持性シートとし て製造でき、次いでこれを担持材上にラミネート 30

複写層を公知方法で露光しかつ現像させる。現 像剤としては、有利に、アルカリ水溶液例えば燐 酸アルカリ、ホウ酸アルカリ又は珪酸アルカリの 水溶液が好適であり、場合によりこれらに、少量 35 18μである。この層そのものは、フレキシブル の湿潤剤及び/又は水と混ざりうる有機溶剤が加 えられていてよい。アルカリとしては、更に特別 な場合には緩衝されていてよい脂肪族アミンの水 溶液が好適である。

途で使用できる。特に有利に、これは、直接又は 乾燥レジストフイルムの形でリザーブカーン即ち エツチング保護層もしくは電鋳リザーブを金属担 持材例えば銅上に製造するために使用され、これ 10

は、特にプリント配線、凹版及び多メタルオフセ ツト版の製造のために使用される。露光した層部 材の注目すべき優れた付着性及び可撓性は、特に 有利であると判明した。

次に実施例につき本発明の複写材料の個々の実 施形式を説明する。他にことわりのないかぎり、 百分率及び量比は重量単位である。容量部 (Vi.) として1㎡を選択する際に重量部 (Gt)は18であ るとする。共重合体中のモノマーの重量分は、重

メタクリル酸50重量部、2ー エチルヘキシル メタクリレート10重量部及び アクリロニトリル15重量部か らの共重合体

5.6重量部

2,2,4ートリメチルーヘキサメ チレンジイソシアネート1モル とヒドロキシエチルメタクリレ ート2モルとの反応により得た モノマー(西ドイツ特許出願公開 公報第 2064079 号例 1)

5.6重量部

9 - フェニルアクリジン

0.2重量部

トリエチレングリコールジメタクリレート

0.15重量部

ミヒラーのケトン

0.015重量部

及び2,4ージニトロー6ークロル ーグーアセタミドーガーメトキ シー4'-(β-ヒドロキシエチ ル-β-シアノエチル)ーアミ ノーアゾベンゾール

0.06重量部

をメチルエチルケトン

13重量部

及びエチレングリコールモノエ チルエーテル

40重量部

中に溶かした溶液を、25μ厚さの2軸延伸ポリ エチレンテレフタレートシート上に振りとばし途 布し、100℃で2分間乾燥させる。この層厚は であり、室温で粘着性のない表面を有する。

この材料は、この形で乾燥レジストフイルムと して使用されうる。これに、ジェネラル・ピンデ イング・コーポレーション社(General Bind-本発明の複写材料は、前記のように、種々の用 40 ing Corporation USA) 製のラミネーター 9 LD型を用いて、115~130℃で35 uの厚 さの銅シートの貼布されたフェノプラストー層物 質飯上にラミネートし、 クリムシユ・ウント・コ ーポレーション社(Klimsch und Co.Fran-

11

kfurt 在)のキセノン複写機 Z.8 W型を用い て灯ー複写枠間距離80㎝で10~30秒間露光 する。オリジナルとして、ハイデンハイン社 (Firma Heidenhain Traunreut 在)の野巾 4 mm~5μの格子テストプレートを用いる。露光の 5 後にポリエステル担持材を引きはがし、複写層を 次の組成を有するアルカリ水性現像剤で現像する:

水1000重量部、メタ珪酸ナトリウム・9水 和物 1 5.0 重量部、ポリグリコール 6 0 0 0 重量部、レブリン酸 0.6 重量部、水酸化ストロン 10 この層上に次の組成: チウム・8水和物 0.3 重量部。現像は、ワイプ (60~100秒)によるか又はデユ・ポン社 (Firma Du Pont) のスプレー装置プロセソー ルA24型(Typ Processor A24)を用いる スプレーにより行なう。次いで水で洗う。

優れた緑部明瞭性及びオリジナルに忠実な線寸 法を有するレジスト線が得られ、この際、50μ までの幅の線は正確に模写されうる。

このレジストは、塩化鉄(M溶液 (42℃、42° Be)用のエツチングリザープとして使用される。 20 からなる溶液 II を酸素バリア層として振りとばし ヘムカツト社(Firma Chemcut.Solingen 在) のスプレーエツチング装置 412 G型を使用する 際に、スプレーエツチング時間 4 5 秒が必要であ る。

酸、メタクリル酸デシル及び1ービニルナフタリ ン(50:90:15 Gt)からのテルポリマー 又はメタクリル酸、メタクリル酸デシル及び p ークロルスチロール(45:80:25Gt)か らのテルポリマー、メタクリル酸、 n — ヘキシル 30 ている。こうして得た印刷版は直接オフセツト印 メタクリレート及び1-ビニルナフタリン(40: 75:15 Gt)からのテルポリマー又はメタクリ ル酸、n-ヘキシルメタクリレート及びアクリロ ニトリル (95:175:50 Gt)からのテルポ リマー同量を使用することもできる。いずれの場 35 テルポリマー同量を使用することもできる。同じ 合にも、前記の操作工程を保持する際に、露光及 び現像の後に優れた付着性で縁部明瞭なエツチン グー及び電鋳マスクが得られる。

例 2

メタクリル酸、nーヘキシルメ タクリレート及びアクリロニト リル(95:175:50 Gt) からのテルポリマー

5.6重量部

1 , 1 , 1ートリメチロールエタンート リアクリレート

5.6重量部

12

9-フェニルアクリジン

0.085重量部

例1に記載の青色アゾ染料

0.10重量部

及びエチレングリコールモノエチ ルエーテル

40重量部

から被覆溶液」を製造し、電解的に粗面化され、 陽極化により硬化されたアルミニウム担持材(そ の酸化物層は38/㎡である)上に振りとばし途 布し、乾燥させる。層重量は、3.58/㎡である。

K値8及び未鹼化アセチル基12 **%を有する部分鹼化されたポリビ** ニルアルコール

5.6重量部

K値4及び未鹼化アセチル基12 %を有する部分鹼化されたポリビ ニルアルコール

1.9重量部

エトキシ化されたヤシ油アルコー ルからの湿潤化剤

0.75重量部

及び脱イオン化された水

92.4重量部

塗布し、乾燥させる。この第2の層は、層重量 5.08/㎡を有する。次いでこの平版を、21段 のハーフトーンくさび(その密度範囲 0.05~ 3.05で密度増加度 0.15であり、60及び 120 前記のポリマーの結合剤の代りに、メタクリル 25 の線一及び点ーラスタである)よりなる組合せネ ガオリジナルの下で露光し、例1に記載の現像液 を用いて、1分のワイプにより現像する。次いで 色する。前記の段くさびの7段が完全に露光され 刷に使用可能である。

> 前記例で用いた結合剤の代りに、メタクリル酸 45重量部、メタクリル酸デシル80重量部及び N-t-ブチルアクリルアミド25重量部からの 操作段階を保持する際に完全に露光された7段の くさびを有する印刷しうるオフセツト印刷版が得 られる。

例 3

メタクリル酸45重量部、メタク リル酸デシル 8 0 重量部及び p-クロルスチロール25重量部から のテルポリマー

5.6重量部

2,2,4ートリメチルーへキサメチレ ンジイソシアネート1 モルとヒド

ロキシエチルメタクリレート2モ ルとの反応により得たモノマー

5.6重量部

9-フェニルアクリジン

0.085重量部

例1と同じ骨色アゾ染料

0.10重量部

及びエチレングリコールモノエチ ルエーテル

40重量部

から被覆溶液を製造し、電解粗面化された酸化物 38/πを有するアルミニウム担持材上に振りと ばし塗布し、乾燥させる。層重量は3.58/㎡で10 ある。その後、この複写層を例2に記載の溶液 [で被覆する。

この酸素不透過性被覆の重量は乾燥後に 5.0 8

例 2 に記載の操作工程に従がうと、硬化された 15 ロ燐酸銅 - 浴中で、電流密度 4 A / d ㎡、5 0 ℃ 8段のくさびを有するオフセツト印刷版が得られ る。この同じ被覆溶液は、乾燥レジストフィルム の製造のために使用できる。このために、例1と 同じ溶液を25μの厚さのポリエチレンテレフタ レートシート上に128/ π の層重量で施こし、20 pH3.5~4.0で10分間浴中に放置する。 例1の記載と同様に銅電導鈑上に塗布し、露光し、 現像する。露光時間は、約10秒である。少なく とも30本/100の解像力と同時に良好な縁部明瞭 性を有する、良好な付着性でフレキシブルかつ極 めて現像剤抵抗性のエツチングリザーブが得られ 25 かつこれに引続き、シュレツター社のニツケル浴 る。

例 4

メタクリル酸30重量部、nーへ キシルメタクリレート60重量部 及びスチロール10重量部からの 共重合体

2,2,4ートリメチルーヘキサ メチレンジイソシアネート1モル とヒドロキシエチルメタクリレー ト2モルとの反応により得られる モノマー

トリエチレングリコールジメタク リレート

例1と同じ青色アゾ染料

9-フェニルアクリジン 0.2重量部

ミヒラーのケトン 0.015重量部

をメチルエチルケトン 15.0重量部

中に溶かした溶液を例1の記載と同様にして25 μ厚さのポリエステルシート上に振りとばし塗布 14

する。層厚は乾燥後に18μである。貼布もしく は露光(15秒)に関して例1に記載の操作工程 と同様に行ない、引続き0.40重量%の炭酸ナト リウム溶液で(90秒)現像すると、優れた化学 5 的抵抗を有するエツチングー及び電鋳ーマスクが 得られる。ヘムカツト社製の例1に記載の装置を 用いて塩化鉄(皿溶液(42°Be及び42℃)中で エツチングする際に帯状導体は縁部明瞭であり、 スプレー圧に対して抵抗性である。

乾燥レジストフイルムを電鋳マスクとして使用 する場合は、ポジオリジナルの下で露光する点で のみ操作工程が異なる。

その後、差当り、シユレツター社(Firma Schlötter,Geislingen/steige在)のピ 及び pH 8で、電解時間 10分、引続きプラズベ ルグ社(Firma Blasberg, Solingen 在)の金 浴アウトロネツクス N型 (Autronex N)中で電 解し、この際導電鈑を 0.6 A / d π及び 2 0 ℃、

もう1つの他の実施形式では、まず酸性銅浴中 で即ち、シユレツター社の微細粒子ー銅プラスチ ツク浴(Feinkorn-Kupferplastikbad) 中 で、電流密度2A/dπ、浴温20℃で30分間、 ノルマ(Norma)中で、電流密度 4A/dm、50 ℃、 pH3.5~4.5で5 分間、かつ最後に、ブラス ベルグ社の金浴アウトロネツクスN中で電流密度 0.6 A/d ㎡、浴温 2 0 ℃、 pH3.5~4.0で15 6.5重量部 30 分間電気分解する。種々の電解浴に対する乾燥レ ジストの顕著な抵抗が優れている。

前記方法で得た導電鈑の40℃での4%NaOH 溶液での除層の後に、電解により付加された帯状 導体の間になお存在する銅分をエツチング除去す 35 る。とうして得た高価なプリント配線は、特に帯 状導体の縁部明瞭な垂直な構成で優れている。更 に、高い解像力に基づき、非常に高い帯状導体密 度が可能である。それというのは、帯状導体は 50μの線幅以下まで達成可能であるからであ 0.06重量部 40 る。

例.5

メタクリル酸1 0.8 重量部、 n ー ヘキシルメタクリレート 4 6.2 重量部及び Nービニルカルパゾール 23重量部からの共重合体

6.5重量部

5.6重量部

0.15重量部

2,2,4ートリメチルーヘキサ メチレンジイソシアネート1モル とヒドロキシエチルメタクリレー ト2モルとの反応により得られた モノマー

5.6重量部

トリエチレングリコールジメタク リレート

0.15重量部

9-フェニルアクリジン

0.2重量部

ミヒラーのケトン

0.015重量部

例1と同じ骨色アゾ染料

0.06重量部 10 例 7

をメチルエチルケトン

15.0重量部

中に溶かして得た溶液を例1の記載と同様にして 18μの乾燥レジストフイルムに加工し、浄化し た銅一導体板上に130℃で貼布する。

露光:例1と同様にして15秒

現像:スプレー現像装置プロセソールA24 (デユ・ポン社製)中、0.4%炭酸ナトリウ ム溶液で4分。

プリント配線への引続く加工は、例4に記載の条 20 件と同じ。

例 6

メタクリル酸95重量部、n-ヘ キシルメタクリレート175重量 部及びアクリロニトリル50重量 部からの共重合体

6.5重量部 25

2,2,4-トリメチルーヘキサ メチレンジイソシアネート1 モル とヒドロキシエチルメタクリレー ト2モルとの反応により得たモノ

5.6重量部

9-フェニルアクリジン

0.125重量部 30

トリエチレングリコールジメタク リレート

0.15重量部

例1に記載の染料

0.03重量部

をメチルエチルケトン

15容量部 35

中に溶かして得た溶液を、例2に記載の58/㎡ の層重量の溶液』で代えたポリエステルシート上 に振りとばし塗布し、乾燥させる。感光性複写層 の層重量は428/㎡である。

レジスト層を例1と同様に、浄化した銅導体飯 上に130℃で貼布する。ポリエステルシートを 引きはがした後に、薄いポリビニルアルコール中 間層がレジスト上に残り、酸素を透過しないバリ

16

アの機能を満足する。

露光:例1に記載の露光装置を用いて15秒

現像:2分間揺動し、例1に記載の現像剤溶液で

軽くワイプする。

得られたエツチングーもしくは電鋳ーマスクは 化学薬品に対して優れた抵抗を示す。

乾燥レジストフイルムは、この厚さでプリント 配線の製造にも好適であり、この際、直径2㎜ま での穿孔は被覆されうる。

15

a) メタクリル酸50重量部、nー ヘキシルメタクリレート95重 量部及び p ークロルスチロール 11.7重量部からの共重合体

5.6重量部

2,2,4ートリメチルーヘキ サメチレンジイソシアネート1 モルとヒドロキシエチルメタク リレート2モルとの反応で得た モノマー

5.6重量部

9-フェニルアクリジン

0.2重量部

トリエチレングリコールジメタ クリレート

0.15重量部

ミヒラーのケトン

0.015重量部

例1と同じアゾ染料

0.06重量部

をエチレングリコールモノエチル エーテル

20重量部

中に溶かして得た溶液を、2軸延伸した25μ 厚さのポリエチレンテレフタレートシートトに 振りとばし塗布し、100℃で乾燥させる。層 重量は258/πである。 乾燥レジストフィル ムはフレキシブルで、その表面は粘着性がない。 引続く操作は、例1及び例5の記載と同様に行 なう。

露光:例1と同じキセノン複写装置25秒 現像:例1に記載の現像剤溶液中で120秒 揺動しかつ軽くワイプする。

銅上は良好に付着性の現像剤ー、エツチングー及 び電解一抵抗性のリザーブのカーンが得られる。 例7a)で用いた共重合体の代りに、次のも

のも使用できる:

b) メタクリル酸 45 重量部、2 ーエチルヘキシルメタクリレ ート100重量部及びアクリ ロニトリル 7.5 重量部からの 共重合体

5.6重量部

5.6重量部

0.15重量部

17

c) メタクリル酸 50 重量部 、 n -ヘキシルメタクリレート 100 重量部及び1-ビニルナフタ ン10重量部からの共重合体 5.6重量部 これらの共重合体を用いて製造した乾燥レジ ストフィルムは、優れた付着性のエツチングー 5

例 8

a) 2-エチルヘキシルメタクリレ ート175重量部、アクリロニ トリル30重量部、エチルメタ クリレート20重量部及びメタ クリル酸95重量部からの共重 合体

及び電鋳ーリザーブを生じる。

2,2,4ートリメチルヘキサ メチレンジイソシアネート1モ ルとヒドロキシエチルメタクリ レート2モルとの反応により得 られたモノマー

トリエチレングリコールジメタ クリレート

9-フェニルアクリジン 0.2重量部

ミヒラーのケトン

例1と同じ育色アゾ染料 0.06重量部

をエチレングリコールモノエチ ルエーテル

20重量部

及びメチルエチルケトン

中に溶かして得た溶液を例1の記載と同様に、 ポリエステルシート上に振りとばし塗布する。 乾燥後に308/㎡の層重量が得られる。引続 き、例1 に記載と同様に140℃で貼布し、20 秒露光し現像すると、非常に良好な化学品抵抗、30 髙い解像力及び緑部明瞭性のレジスト線を有す るエンチングーもしくは電锅ーマスクが得られる、 a) に記載の共重合体の代りに、同量の

b) エチレンヘキシルメタクリレー ト175重量部、アクリロニト リル30重量部、エチルアクリ レート20重量部及びメタクリ ル酸95重量部からの共重合体

を用いると、フレキシブルで銅上に良好に付着 する乾燥レジストフイルムが得られ、これは、 288/πの層重量で電鋳法(例4参照)での 40 プリント配線の製造に非常に好適である。

n-ヘキシルメタクリレート57.7 重量部、スチロール11.3重量部 メチルメタクリレート10.0 重量部 18

及びメタクリル酸 2 1.0重量部か らのポリマー(酸価130)のメ チルエチルケトン中の30.6 %容

32.7重量部

例1 に記載のモノマー

5.6重量部

トリエチレングリコールジメタク リレート

0.15重量部

9-フエニルアクリジン

0.2重量部

ミヒラーのケトン

0.018重量部1

10

3.6重量部

0.0 3重量部

からの溶液を更にメチルエチルケトン10容量部 5.6重量部 添加の後に、例1の記載と同様にポリエステルシ

ート上に振りとばし途布する。乾燥(100℃で 5分)後に、308/㎡の層重量が得られる。レ

15 ジストフイルムをデイナヘムーラミナトーア25 型(Dynachem-Laminator、Typ 25)を用 いて115~130℃で35 µ厚さの銅シート上

に貼布したフェノプラストー層物質鈑上に施こす。 」次いで、例1の記載と同様に、格子試験オリジナ

0.015重量部 20 ルの下で 2 0 秒間露光する。

重合しなかつた領域を1%メタ珪酸ナトリウム・ 9水和物溶液で約90~100秒間現像させる。

硬化したレジスト橋は、優れた電気抵抗を有し、 従つて、例4の記載と同様に、アルカリ性ピロ燐 12.5重量部 25 酸銅浴もシユレツター社の酸性微細粒子一銅プラ スチツク浴も電鋳法のために使用することができ る。

例 10

メタクリル酸 20.0 重量部、スチ ロール1 1.3 重量部及びnープチ ルメタクリレート 6 8.7 重量部か

例1に記載のモノマー

例1 に記載の染料

らの共重合体 6.4重量部

9-フエニルアクリジン 0.1 3重量部

35 ミヒラーのケトン 0.01 重量部

> トリエチレングリコールジメタク リレート 0.1重量部

及びメチルエチルケトン 15.0重量部

からの溶液を、例1の記載と同様に28μ厚さの 乾燥レジストフイルムに加工し、浄化した銅導体 飯上に130℃で貼布する。

露光:例1と同様にして30秒

. . .

現像:スプレー現像装置プロセソールA24 (デユ・ポン社製)中、1%メタノールアミ ン溶液を用いて90秒

更にプリント配線に加工するのは、例 4 に記載 の条件と同じ。

次に本発明の実施の態様及び関連事項を列記す る:

- (1) モノマー(A)は、メタクリル酸、アクリル酸、 クロトン酸、ソルビン酸又はマレイン酸もしく はイタコン酸又はそれらの半エステルである、 10(7) 成分(A)は、10~40重量%の機度で、成分 特許請求の範囲の複写材料。
- (2) 不飽和カルボン酸(A)は、メタクリル酸である、 前記(1)項記載の複写材料。
- (3) 使用メタクリル酸アルキル(B)は、アルキル基 (8) 複写材料は、固体の感光層として金属担持材 中に4~20個の炭素原子を含有する、特許請 15 上に存在する。特許請求の範囲記載の複写材料。 求の範囲記載の複写材料。
- (4) モノマー成分(C)は、スチロール、pークロル スチロール、ビニルトルオール、ビニルナフタ リン、ビニルカルパゾール、ビニルシクロヘキ サン、アクリルアミド、メタクリルアミド、N 20 特許請求の範囲記載の複写材料。

20

ーアルキルアクリルアミド、フェニルメタクリ レート、アクリロニトリル、メタクリロニトリ ル又はベンジルメタクリレートである。特許請 求の範囲記載の複写材料。

- 5(5) 当該ホモポリマーが低くても100℃のガラ ス化温度を有するモノマー成分Oを選択する、 特許請求の範囲又は前記(4)項記載の複写材料。
 - (6) モノマー成分(ロはスチロールである、前記(5) 項記載の複写材料。
- (Bは35~83重量%の濃度で、かつ成分(Oは 少なくとも1重量多から最高35重量多の濃度 で存在する、特許請求の範囲記載の複写材料。
- (9) 担持材は銅より成つている、前記(8)項記載の
- (10) 複写材料は、固体の転写可能の感光層として プラスチツクシート製の中間層上に存在する、