Transformationen

Jonas Berger

Published: 23. November 2021 Updated: 23. November 2021

Abstract

Dieses Dokument soll alle Transformationen zusammenfassen.

Inhaltsverzeichnis

1	Übersicht	4
2	Fourier-Reihen	5
3	Fourier-Transformation	5
4	Laplace-Transformation	5
5	Diskrete Fourier-Transformation	6
6	Z-Transformation	6

1 Übersicht

In der folgende Abbildung wird ein Übersicht von mathematischen Methoden und deren jeweiligen Einsatz dargestellt:

Abbildung 1: Signale und mathematische Methoden

2 Fourier-Reihen

$$f(t) = c_0 + \sum_{k=1}^{\infty} (a_k \cdot \cos k\omega t + b_k \cdot \sin k\omega t)$$
$$\omega = \frac{2\pi}{T}$$

auch $-\frac{T}{2}$ bis $\frac{T}{2}$ möglich	für gerade Funktionen	für ungerade Funktionen
$c_0 = \frac{1}{T} \int_0^T f(t) \ dt$	$c_0 = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt$	$c_0 = 0$
$a_k = \frac{2}{T} \int_0^T \cos(k\omega t) \cdot f(t) dt$	$a_k = \frac{4}{T} \int_0^{\frac{T}{2}} \cos(k\omega t) \cdot f(t) dt$	$a_k = 0$
$b_k = \frac{2}{T} \int_0^T \sin k\omega t \cdot f(t) \ dt$	$b_k = 0$	$b_k = \frac{4}{T} \int_0^{\frac{T}{2}} \sin k\omega t \cdot f(t) dt$
	$f(t) = c_0 + \sum_{k=1}^{\infty} a_k \cdot \cos k\omega t$	$f(t) = \sum_{k=1}^{\infty} b_k \cdot \sin k\omega t$

3 Fourier-Transformation

FT:

$$F(\omega) = \int_{-\infty}^{\infty} f(t) \cdot e^{-j\omega t} dt$$

IFT:

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \cdot e^{j\omega t} d\omega$$

4 Laplace-Transformation

$$mit \quad s = \sigma + j\omega$$

 \mathcal{L} :

$$F(s) = \mathcal{L}\{f(t)\}(s) = \int_0^\infty f(t) \cdot e^{-st} dt$$

 \mathcal{L}^{-1} :

$$f(t) = \mathcal{L}^{-1}\{F(s)\}(t) = \frac{1}{2\pi j} \int_{\delta - j\infty}^{\delta + j\infty} F(s) \cdot e^{st} ds$$

5 Diskrete Fourier-Transformation

DFT:

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{-jkn\frac{2\pi}{N}}$$

IDFT:

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot e^{jkn\frac{2\pi}{N}}$$

6 Z-Transformation

$$mit \quad z = e^{T_A \cdot s} = \sigma + j\omega$$

Z:

$$X(z) = Z\{x[k]\} = \sum_{k=0}^{\infty} x[k] \cdot z^{-k}$$

 Z^{-1} :

$$x[k] = Z^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_C X(z) \cdot z^{k-1} dz$$