Вариант № 9136762

ЕГЭ по информатике 24.06.2021. Основная волна (вариант Евгения Джобса)

1. Задание 1 № 37136

На рисунке справа схема дорог H-ского района изображена в виде графа, в таблице содержатся сведения о длинах этих дорог (в километрах). Так как таблицу и схему рисовали независимо друг от друга, то нумерация населённых пунктов в таблице никак не связана с буквенными обозначениями на графе. В таблице в левом столбце указаны номера пунктов, откуда совершается движение, в первой строке — куда. Сумму длин дорог из пункта Г в пункт Е и из пункта Д в 3.

	П1	П2	П3	П4	П5	П6	П7
П1						12	7
П2					10	11	9
П3				5	6	3	
П4			5		15		
П5		10	6	15			
П6	12	11	3				
П7	7	9					

2. Задание 2 № 37137

Логическая функция F задаётся выражением (¬a Λ ¬b) V ($b \equiv c$) V d. На рисунке приведён частично заполненный фрагмент таблицы истинности функции F, содержащий неповторяющиеся строки. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.

Переменная 1	Переменная 2	Переменная 3	Переменная 4	Функция
		1		0
1	0		1	0
0	0	1	1	0

В ответе напишите буквы a, b, c, d в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая первому столбцу; затем — буква, соответствующая второму столбцу, и т. д.). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Пример. Пусть задано выражение $x \to y$, зависящее от двух переменных x и y, и фрагмент таблицы истинности:

Переменная 1	Переменная 2	Функция
???	???	F
0	1	0

Тогда первому столбцу соответствует переменная y, а второму столбцу соответствует переменная x. В ответе нужно написать: yx.

3. Задание 3 № 37138

Даны фрагменты двух таблиц из базы данных. Каждая строка таблицы 2 содержит информацию о ребёнке и об одном из его родителей. Информация представлена значением поля ID в соответствующей строке таблицы 1. На основании имеющихся данных определите, сколько людей родилось в том же городе, что и один из их внуков или одна из их внучек?

	Таблица 1			
ID	Фамилия И. О.	Пол	Город	
127	Височко Г. Г.	M	Брянск	
148	Январин З. И.	M	Тула	
182	Феврина М. А.	Ж	Тула	
212	Мартшейн А. В.	M	Курск	
243	Апрелько Е. С.	Ж	Москва	
254	Май Н. А.	M	Курск	
314	Июнина П. Е.	Ж	Тула	
412	Июлон Л. Е.	Ж	Ижевск	
543	Августович Т. О.	Ж	Тула	
544	Сентябин О. С.	M	Курск	
545	Окто Е. Н.	M	Брянск	
750	Нояркина Б. Р.	Ж	Тула	
830	Декабрь З. М.	Ж	Курск	
849	Годин Ф. Ф.	Ж	Тула	

Таблица 2			
ID Родителя	ID Ребенка		
127	182		
212	412		
314	212		
412	543		
314	243		
148	243		
182	412		
148	212		
849	544		
849	545		
243	849		
750	830		
254	314		

4. Задание 4 № 37139

Для кодирования некоторой последовательности используют следующую кодировочную таблицу:

Буква	Кодовое слово	Буква	Кодовое слово
A	00	Е	
Б	1001	Ж	011
В	1010	3	111
Γ	110	И	0100
Д	0101	К	1000

Укажите код минимальной длины для буквы E, такой что будет соблюдаться условие Фано. Если таких кодов несколько, укажите код с минимальным числовым значением.

Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.

5. Задание 5 № 37140

Автомат обрабатывает натуральное число N по следующему алгоритму.

- 1. Строится двоичная запись числа N.
- 2. Если N четное, то в конец полученной записи (справа) дописывается 0, в начало 1; если N— нечётное в конец и начало дописывается по две единицы.
 - 3. Результат переводится в десятичную систему и выводится на экран.

Пример. Дано число N = 13. Алгоритм работает следующим образом:

- 1. Двоичная запись числа *N*: 1101.
- 2. Число нечетное, следовательно по две единицы по краям 11110111.
- 3. На экран выводится число 247.

Укажите наименьшее число, большее 52, которое может является результатом работы автомата.

6. Задание 6 № 37141

Какое максимальное значение переменной *s*, подаваемое на вход программе, для которого в результате работы программы на экран будет выведено значение 64? Для Вашего удобства программа представлена на четырёх языках программирования.

Python	C++
n = 1024 s = int(input()) while s >= 5: s = s - 5 n = n // 2 print(n)	#include <iostream> using namespace std; int main() { int n, s; n = 1024; cin >> s; while(s >= 5) { s = s - 5; n = n / 2; } cout << n; return 0; }</iostream>
Паскаль	Алгоритмический язык
<pre>var n, s: integer; begin n := 1024; readln(s); while s >= 5 do begin s := s - 5; n := n div 2 end; writeln(n) end.</pre>	алг нач цел s, n n := 1024 ввод s нц пока s >= 5 s := s - 5 n := div(n, 2) кц вывод п

7. Задание 7 № 37142

Изображение размером 315×3072 пикселей сохраняется в памяти компьютера. Для его хранения выделяется не более 735 Кбайт без учёта заголовка файла. Все пиксели кодируются одинаковым количеством бит и записываются в файл один за другим. Какое максимальное количество цветов может использоваться для хранения такого изображения? В ответе запишите только число.

8. Задание 8 № 37143

Ученица составляет 5-буквенные слова из букв Γ ЕПАРД. При этом в каждом слове ровно одна буква Γ , слово не может начинаться на букву A и заканчиваться буквой E. Какое количество слов может составить ученица?

9. Задание 9 № 37144

Электронная таблица содержит результаты метеорологических наблюдений. Найдите разницу между максимальной температурой в июле и минимальной температурой в октябре. В ответе запишите только целую часть полученного результата.

Задание 9

10. Задание 10 № 37145

Определите, сколько раз **в тексте** поэмы Н. А. Некрасова «Кому на Руси жить хорошо» встречается слово «Мой» написанное с прописной буквы. Другие формы слова «Мой», такие как «Мои», «Моего» и прочие учитывать не следует.

Задание 10

11. Задание 11 № 37146

При регистрации в компьютерной системе каждому пользователю выдается идентификатор из 101 символа, каждый из которых может быть десятичной цифрой или одним из 4090 символов из специального набора. Каждый символ кодируется с помощью одинакового и минимального количества бит. Идентификатор же записывается в памяти с помощью минимально возможного целого количества байт.

Сколько килобайт потребуется для хранения идентификаторов 2048 пользователей?

12. Задание 12 № 37147

Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и *w* обозначают цепочки цифр.

```
A) заменить (v, w).
```

Эта команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Например, выполнение команды

```
заменить (111, 27)
```

преобразует строку 05111150 в строку 0527150.

Если в строке нет вхождений цепочки v, то выполнение команды заменить (v, w) не меняет эту строку.

```
Б) нашлось (v).
```

Эта команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Строка исполнителя при этом не изменяется.

```
Цикл
  ПОКА условие
    последовательность команд
  КОНЕЦ ПОКА
выполняется, пока условие истинно.
В конструкции
  ЕСЛИ условие
    ТО команда1
  КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно).
В конструкции
  ЕСЛИ условие
    ТО команда1
    ИНАЧЕ команда2
  КОНЕЦ ЕСЛИ
выполняется команда1 (если условие истинно) или команда2 (если условие ложно).
Дана программа для редактора:
НАЧАЛО
  ПОКА нашлось (111) или нашлось (88888)
    ЕСЛИ нашлось (111)
      ТО заменить (111, 88)
      ИНАЧЕ заменить (88888, 8)
    КОНЕЦ ЕСЛИ
  КОНЕЦ ПОКА
```

На вход программе подана строка из 100 единиц. Какая строка будет получена исполнителем после выполнения данного алгоритма?

КОНЕЦ

13. Задание 13 № 37148

На рисунке — схема дорог, связывающих города A, Б, B, Γ , Д, E, \mathbb{X} , 3, И, К, Л, М. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных путей из города A в город M, проходящих через Γ ?

14. Залание 14 № 37149

Значение выражения $4 \cdot 625^9 - 25^{15} + 2 \cdot 5^{11} - 7$ записали в системе счисления с основанием 5. Сколько цифр 4 в получившейся записи?

15. Задание 15 № 37150

Для какого наибольшего целого неотрицательного числа A выражение

$$(2x + y \neq 70) \lor (x < y) \lor (A < x)$$

тождественно истинно, то есть принимает значение 1 при любых целых неотрицательных x и y?

16. Задание 16 № 37151

Алгоритм вычисления значения функции F(n), где n — целое неотрицательное число, задан следующими соотношениями:

$$F(0) = 0$$
, при $n \le 1$;

$$F(n) = F(n-1) + 3 n^2$$
, если $n > 1$ и при этом нечётно;

$$F(n) = n/2 + F(n-1) + 2$$
, если $n > 1$ и при этом чётно.

Чему равно значение функции F(49)? В ответе запишите только целое число.

17. Задание 17 № 37152

Рассматривается множество целых чисел, принадлежащих числовому отрезку [12972; 89322], которые при делении на 13 дают остаток 7, при этом не делятся ни на 7, ни на 11. Найдите наибольшее из таких чисел и их количество. В ответе укажите два числа друг за другом без разделительных знаков — сначала количество найденных чисел, затем наибольшее найденное число.

18. Задание 18 № <u>37153</u>

Квадрат разлинован на $N \times N$ клеток (1 < N < 17). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вниз. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вниз — в соседнюю нижнюю. При попытке выхода за границу квадрата Робот разрушается, при столкновении со стеной робот разрушается. В каждой клетке записано число — количество монет, которое добавляется к счету робота. Определите максимальное и минимальное значения счёта, которые может получить робот после окончания работы в лабиринте. Начальным значением счёта является значение стартовой клетки. Робот движется из левой верхней в правую нижнюю клетки.

Исходные данные записаны в электронной таблице. В ответ запишите два числа друг за другом без разделительных знаков — сначала максимальное значение счёта, затем минимальное.

Задание 18

Пример входных данных (для таблицы размером 4×4):

5	10	7	6
15	4	15	20
2	22	5	3
3	5	7	16

Для указанных входных данных ответом должна быть пара чисел 78 и 53.

19. Задание 19 № 37154

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 39$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя не может выиграть своим первым ходом, однако после любого хода Пети Ваня может выиграть. При каком значении S это возможно?

20. Задание 20 № 37155

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 39$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Петя имеет выигрышную стратегию в два хода, при этом Петя не может выиграть первым ходом. Укажите два значения S, при которых это возможно. Значения укажите в порядке возрастания без разделительных знаков.

21. Задание 21 № 37156

Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит куча камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может добавить в кучу один или четыре камня или увеличить количество камней в куче в два раза. Например, имея кучу из 15 камней, за один ход можно получить кучу из 16, 19 или 30 камней. У каждого игрока, чтобы делать ходы, есть неограниченное количество камней.

Игра завершается в тот момент, когда количество камней в куче становится не менее 40. Победителем считается игрок, сделавший последний ход, то есть первым получивший кучу, в которой будет 40 или больше камней.

В начальный момент в куче было S камней, $1 \le S \le 39$.

Будем говорить, что игрок имеет выигрышную стратегию, если он может выиграть при любых ходах противника. Описать стратегию игрока — значит, описать, какой ход он должен сделать в любой ситуации, которая ему может встретиться при различной игре противника.

Известно, что Ваня имеет выигрышную стратегию за один или два хода, при этом не имеет выигрышной стратегии в один ход. Найдите минимальное значение S, при котором это возможно.

22. Задание 22 № 37157

Ниже записана программа. Получив на вход число x, эта программа печатает два числа a и b. При каком наименьшем значении x после выполнения программы на экран будет выведено два числа 10, а затем 6.

C++	Python
#include <iostream> using namespace std;</iostream>	
int main() { int a = 0, b = 0, x; cin >> x; while (x > 0) { int c = x % 10; a = a + c; if(b < c) b = c; x = x / 10; } cout << a << endl << b; return 0; }	x = int(input()) a, b = 0, 0 while x > 0: c = x % 10 a = a + c if b < c: b = c x = x // 10 print(a) print(b)
Паскаль	Алгоритмический язык
<pre>var x, c, a, b: longint; begin readln(x); a := 0; b := 0; while x > 0 do begin c := x mod 10; a := a + c; if b < c then b := c; x := x div 10; end; writeln(a); write(b); end.</pre>	алг нач цел x, a, b, c a := 0 b := 0 нц пока x > 0 c := mod(c, 10) a := a + c если b < c то b := c конец если x := div(x, 10) кц вывод а вывод b

23. Задание 23 № 37158

Исполнитель преобразует число на экране. У исполнителя есть три команды, которым присвоены номера:

- 1. Прибавить 1
- 2. Прибавить 2
- 3. Умножить на 3

Первая команда увеличивает число на 1, вторая — на 2, третья — втрое. Программа для исполнителя — это последовательность команд. Сколько существует таких программ, которые исходное число 2 преобразуют в число 19 и при этом траектория вычислений программы проходит через 9 и не проходит через 12?

24. Задание 24 № 37159

Текстовый файл состоит не более, чем из 10^7 строчных букв английского алфавита. Найдите максимальную длину подстроки, в которой символы «а» и «d» не стоят рядом.

Для выполнения этого задания следует написать программу. Ниже приведён файл, который необходимо обработать с помощью данного алгоритма.

Задание 24

25. 3	Задание	25.	No	37 1	160

Найдите 5 чисел больших 500000, таких, что среди их делителей есть число, оканчивающееся на 8, при этом этот делитель не равен 8 и самому числу. В качестве ответа приведите 5 наименьших чисел, соответствующих условию.	Ответ:
Формат вывода: для каждого из 5 таких найденных чисел в отдельной строке сначала выводится само число, затем минимальный делитель, оканчивающийся на 8, не равный 8 и самому числу.	

26. Задание 26 № 37161

Организация купила для своих сотрудников все места в нескольких подряд идущих рядах на концертной площадке. Известно, какие места уже распределены между сотрудниками. Найдите ряд с наибольшим номером, в котором есть два соседних места, таких что слева и справа от них в том же ряду места уже распределены (заняты). Гарантируется, что есть хотя бы один ряд, удовлетворяющий условию. В ответе запишите два целых числа: номер рядя и наименьший номер места из найденных в этом ряду подходящих пар.

Входные данные.

Задание 26

В первой строке входного файла находится одно число: N — количество занятых мест (натуральное число, не превышающее 10 000). В следующих N строках находятся пары чисел: ряд и место выкупленного билета (числа не превышают $100\,000$).

В ответе запишите два целых числа: сначала максимальный номер ряда, где нашлись обозначенные в задаче места и минимальный номер места.

Пример входного	файла:
-----------------	--------

	6
	50 12
	50 15
	60 157
	60 160
	60 22
	60 25
	Для данного примера ответом будет являться пара чисел 60 и 23.
твет:	

27. Задание 27 № 37162

На вход программы поступает последовательность из целых положительных чисел. Необходимо выбрать такую подпоследовательность подряд идущих чисел, чтобы их сумма была максимальной и делилась на 89, а также её длину. Если таких подпоследовательностей несколько, выбрать такую, у которой длина меньше.

Входные данные.

Ответ:

<u>Файл А</u> Файл В

Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество чисел N ($2 \le N \le 108$). В каждой из последующих N строк записано одно целое положительное число, не превышающее 10000. Программа должна вывести длину найденной последовательности.

последовательности.
Пример входного файла:
8
2
3
4
93
42
34
5
95
Для делителя 50 при указанных входных данных значением искомой суммы должно быть
число $100 (3 + 4 + 93)$ или $5 + 95$). Следовательно, ответ на задачу — 2. В ответе укажите дв
числа: сначала значение искомой суммы для файла A , затем для файла B .