Blackwell Electronics

Customer Brand preferences

Floriana Trama

Data analysis department

AGENDA

•	GFI	NFR	ΔΙ	OVI	FRV	IFW/
	чь	$\mathbf{v} = \mathbf{v}$	\neg L	\mathbf{v}	_ I \ V	$I \perp V V$

- CUSTOMER BRAND PREFERENCES:
 - Customer brand preferences result
 - Data exploration and pre-processing
 - Model development and selection, parameters and performance
 metrics of the executed classifiers
- CONCLUSION & RECOMMENDATIONS

APPENDIX

GENERAL OVERVIEW

Description of the datasets

Two different datasets are used for the prediction of the favourite brand:

- "Complete Responses" containing 9.898 data points representing the complete answers to a market survey of Blackwell's existing customers
- "Survey Incomplete" containing **5.000 data points** representing the incomplete answers to a market survey of Blackwell's existing customers.

In both datasets, each data point comprises **7 attributes**, namely: **"Salary"** tracks the money earned yearly by the customer who replied to the survey, **"Age"** records the age of the customer, **"Ed. level"** indicates the level of educations reached by the customer, **"Car"** indicates the brand of the primary car owned by the customer, **"Zip Code"** indicates the zip code of the area in which the customer lives, **"Credit"** indicates the amount of credit available to the customer, and **"Brand"** records which is the favorite brand between Acer and Sony.

The "Complete Responses" dataset is complete, hence all data points contain all the values of the 5 attributes. On the contrary, the "Survey Incomplete" dataset is missing the answers related to the brand preferences. A first overview of the main data attributes of the combined datasets can be found below:

SALARY AGE CREDIT

- Min = \$ 20.000
- Max = \$ 150.000
- Average = \$85.102

- Min = 20Max = 80
- Average = 49,8

- Min = \$ 0
- Max = \$ 500.000
- Average = \$ 249.288

Objective of the analysis: predict the customer computer favorite brand between Acer and Sony and decide with which manufacturer pursue a deeper strategic relationship

CUSTOMER BRAND PREFERENCES: Customer brand preferences result

Customer Favourite Brand # - Complete Survey and prediction

In order to predict the customers favourite brand, a classification analysis using R software has been performed by building a model based on the "Complete Responses" data. The model is then applied to the "Incomplete Survey" dataset to make predictions on the missing values. As it can be seen from the bar chart above, the result of the analysis shows a **clear preference for Sony** as the best computer brand for Blackwell customers. For this reason it is the **recommended brand with which pursue a deeper, stronger relationship**.

CUSTOMER BRAND PREFERENCES: Data exploration and pre-processing

As per good practice, the analysis starts with the **exploration** and **pre-processing** of the data: starting with the "Complete Dataset", **several charts** are created in order to understand the distribution of the different variables and get a first insight about the correlation among them. Of particular interest, the above charts:

- The **bar chart** shows a preliminary result on the favourite brand only based on the answers from the complete survey: with **6.154 preferences**, **Sony** results the **preferred computer brand**;
- The scatter plot displays a clear pattern among the dependent variable, "Brand", and other two independent variables, "Age" and "Salary", making evident their importance in the brand's prediction. Despite Sony is generally the most favourite brand, Acer seems to be the preferred one for young customers aged 20-40 earning 60-100K \$ per year, customers aged 40-60 earning 80-120k \$ yearly and finally among older customers aged 60-80 getting a salary in the range of 20-70K \$ each year.

"Brand", "Ed. Level", "Car" and "Zip Code" attributes are transformed to make them ready for the classification analysis.

CUSTOMER BRAND PREFERENCES: Model development and selection, parameters and performance metrics of the executed classifiers

After exploring the data and implementing indispensable pre-processing activities, a **model including all the explanatory variables** is built **by using a Random Forest algorithm with 10-fold cross validation**. The 75% of the dataset is used for the training and the remaining 25% for the testing.

Despite the good metrics (Accuracy and Kappa) obtained with this model (Fig. 1 Appendix), by using the "VarImp" function to ascertain how the model prioritizes each feature, it is possible to see that "Salary" and "Age" are the most important features for making the predictions, confirming the insights gained through the previous scatter plot.

rf variab	ole imp	ortance				
only 20) most	important	variables	shown	(out of	34)
	Overa	111				
salary	100.00					
age	47.99	59				
credit	18.22	61				
elevel1	0.99	17				
elevel2	0.93	89				
elevel3	0.92	30				
elevel4						
zipcode4	0.59	62				
zipcode6		95				
zipcode5						
zipcode1	0.53					
zipcode3						
zipcode2						
zipcode7						
zipcode8	0.31					
car10	0.26					
car15	0.25					
car7	0.17					
car17	0.17					
car8	0.16	0/1				

Given these results, **features selection is performed on** the dataset, leaving only two attributes, "Salary" and "Age" (apart from "Brand" as the dependent variable) for building the classification models.

Two new classification models are built by **training and testing 2 different algorithms**, namely **Random Forest** and **C5.0** in order to **identify the best performing model** in terms of Accuracy, Kappa and Confusion Matrix and make realistic brand predictions.

Random Forest

```
C5.0
```

```
25.0

9898 samples
2 predictor
2 classes: '0', '1'

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 9898, 9898, 9898, 9898, 9898, 9898, ...
Resampling results across tuning parameters:

model winnow trials Accuracy Kappa
rules FALSE 1 0.9053851 0.8019988
rules FALSE 1 0.9053851 0.8019988
rules FALSE 1 0.9053851 0.8019988
rules TRUE 1 0.9053852 0.8223215
trules TRUE 1 0.9053852 0.8223215
tree FALSE 1 0.9053852 0.7958103
tree FALSE 1 0.9053832 0.7958103
tree TRUE 1 0.9055832 0.7958103
tree TRUE 1 0.9056832 0.
```

```
onfusion Matrix and Statistics
                    Accuracy : 0.9123
95% CI : (0.900
                                    (0.9004, 0.9231)
    No Information Rate
P-Value [Acc > NIR]
                                    0.6217
                                    <2e-16
Kappa: 0.8149
Mcnemar's Test P-Value: 0.021
              Sensitivity
Specificity
os Pred Value
                                 : 0.9181
: 0.8702
: 0.9395
           Neg Pred Value
                                    0.3783
                 Prevalence
           Detection Rate
  Detection Prevalence
Balanced Accuracy
                                    0.9104
        'Positive' Class : 0
```

```
Reference
Prediction 0 1
0 814 75
1 122 1463

Accuracy: 0.9204
95% CI: (0.909, 0.9307)
No Information Rate: 0.6217
P-Value [Acc > NIR]: < 2.2e-16

Kappa: 0.829
Mcnemar's Test P-Value: 0.001048

Sensitivity: 0.8697
Specificity: 0.9512
Pos Pred Value: 0.9156
Neg Pred Value: 0.9230
Prevalence: 0.3783
Detection Rate: 0.3290
Detection Prevalence: 0.3593
Balanced Accuracy: 0.9104

'Positive' Class: 0
```

Comparing the two models, there is very little differences in the main metrics: both the models are good for making predictions as their Accuracy, Kappa and Confusion matrix show really high values and low errors. It is decided to use the Random forest model with 1 mtry as it presents the highest Accuracy (0,92) and Kappa (0,83).

Finally, brand predictions are calculated by applying the selected model to the "Incomplete survey" data.

CONCLUSIONS & RECOMMENDATIONS

This classification analysis was conducted with the objective to inform Blackwell' decisions about customers' favourite computer brand and in order to strengthen the relationship with that company. The results show that the consumers' preferred brand is Sony, hence this is the manufacturer with which is recommended to pursue a stronger relationship.

APPENDIX

Fig. 1

```
7424 samples
6 predictor
2 classes: '0', '1'

No pre-processing
Resampling: Cross-validated (10 fold, repeated 1 times)
Summary of sample sizes: 6682, 6681, 6682, 6681, 6682, 6681, ...
Resampling results across tuning parameters:

mtry Accuracy Kappa
1 0.6217673 0.0000000000
2 0.6219019 0.000421814
3 0.7269719 0.3429706969
4 0.8479316 0.6688493287
5 0.8915693 0.7689609978
6 0.9101575 0.8093233713
7 0.9159505 0.8217661138

Accuracy was used to select the optimal model using the largest value. The final value used for the model was mtry = 7.
```

Random Forest codes # Customer brand preferences ------# Floriana Trama ------# Data analysis department ------# Y = Brand ------# Random forest - Manual grid -----# Libraries -----library(readr) library(caret) # Data exploration ------CompleteDataset <- read.csv("C:/Users/T450S/Desktop/Floriana/Ubiqum/Data Analytics II/Task 2/Database/CompleteResponses.csv") summary(CompleteDataset) str(CompleteDataset) hist(CompleteDataset\$salary) hist(CompleteDataset\$age) hist(CompleteDataset\$credit) # Pre-processing data -----CompleteDataset\$brand<-as.factor(CompleteDataset\$brand) plot(CompleteDataset\$brand) CompleteDataset\$elevel<-as.factor(CompleteDataset\$elevel) CompleteDataset\$car<-as.factor(CompleteDataset\$car) CompleteDataset\$zipcode<-as.factor(CompleteDataset\$zipcode) plot(CompleteDataset\$brand,CompleteDataset\$salary) plot(CompleteDataset\$brand,CompleteDataset\$age) ggplot(CompleteDataset, aes(age, salary, color = as.factor(brand)))+ geom jitter(alpha = 0.5) # Features selection -----CompleteDataSubset <- CompleteDataset[c(1,2,7)] # Set seed -----set.seed(123) # Create 75%/25% training and test sets -----inTraining <- createDataPartition(CompleteDataSubset\$brand, p = .75, list = FALSE) training <- CompleteDataSubset[inTraining,]</pre> testing <- CompleteDataSubset[-inTraining,] # 10 fold cross validation ----fitControl <- trainControl(method = "repeatedcy", number = 10, repeats = 1) # Dataframe for manual tuning of mtry -----rfGrid <- expand.grid(mtry=c(1,2,3)) # Train Random Forest Regression model ----system.time(rfFitm1 <- train(brand~., data = training, method = "rf", trControl=fitControl, tuneGrid=rfGrid))

Ttraining results
rfFitm1
varImp(rfFitm1)
Predictions
<pre>prediction <- predict(rfFitm1, testing)</pre>
confusionMatrix(prediction, testing\$brand)
postResample(prediction, testing\$brand)
Specialtable <- cbind(testing, prediction)
Incomplete survey dataset
$Incomplete Dataset <- read_csv("Floriana/Ubiqum/Data\ Analytics\ II/Task\ 2/Database/SurveyIncomplete.csv")$
IncompleteDataSubset <- IncompleteDataset[c(1,2,7)]
Prediction on Incomplete dataset
<pre>prediction <- predict(rfFitm1, IncompleteDataSubset)</pre>
prediction
Specialtable <- cbind(IncompleteDataSubset, prediction)
summary(prediction)
C5.0 codes
10 fold cross validation
fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 1)
C5model_Brand <- train(brand~.,
data = CompleteDataSubset,
method = "C5.0",
trainControl = fitControl,
metric = "Accuracy",
tuneLength = 2)
Training results
C5model_Brand
varImp(C5model_Brand)
prediction <- predict(C5model_Brand, testing)
confusionMatrix(prediction, testing\$brand)