TABELA

N	Original $\phi(t)$	Imagem L[φ](p)
1	$\chi(t) = 1$	<u>1</u>
2	sen α t	p α
	Sen u t	$p^2 + \alpha^2$
3	cosαt	$\frac{p}{p^2 + \alpha^2}$
4	$\cos \alpha (t-t_0)$	$\frac{pe^{-pt_0}}{p^2 + \alpha^2}$
5	e ^{-αt}	$\frac{1}{p+\alpha}$
6	shαt	$\frac{\alpha}{p^2 - \alpha^2}$
7	ch α t	$\frac{p}{p^2 - \alpha^2}$
8	e ^{-αt} sen β t	$\frac{\beta}{(p+\alpha)^2+\beta^2}$
9	e ^{-αt} cos β t	$\frac{p+\alpha}{(p+\alpha)^2+\beta^2}$
10	$t^n, n \in N$	$\frac{n!}{p^{n+1}}$
11	t^{α} , $\alpha \in R$	$\frac{\Gamma(\alpha+1)}{p^{\alpha+1}}$
12	t ⁿ f(t)	$(-1)^n \frac{d^n}{dp^n} L[f](p)$
13	t e ^{-αt}	$\frac{1}{(p+\alpha)^2}$
14	t sen α t	$\frac{2p\alpha}{(p^2 + \alpha^2)^2}$
15	t cos a t	$\frac{p^2 - \alpha^2}{(p^2 + \alpha^2)^2}$
16	$f^{(n)}(t)$	$p^{n} L[f](p) - p^{(n-1)}f(0) - \dots - p f^{(n-2)}(0) - f^{(n-1)}(0)$
17	$\int\limits_0^t f(\tau) d\tau$	$\frac{1}{p}L[f](p)$
18	$\frac{\mathbf{f}(\mathbf{t})}{\mathbf{t}}$	$\int_{0}^{\infty} L[f](q)dq$
19	$f(t-t_0)$	e ^{-pt} ₀ L [f] (p)
20	(f_1*f_2)	$L[f_1](p) \cdot L[f_2](p)$