GEOMETRÍA MODERNA I

2019-1 (23 noviembre 2018)

EXAMEN PARCIAL 05

INSTRUCCIONES: Justificar y argumentar todos los resultados que se realicen. Resolver únicamente cinco ejercicios, de entregar más de cinco ejercicios se anulará el ejercicio de mayor puntaje.

- 1. Sean l y m dos rectas distintas en el plano $A,C,E\subset l$ distintos y $\{B,D,E\}\subset m$ distintos, $\overline{AB}\cap \overline{DE}=\{P\}, \ \overline{BC}\cap \overline{EF}=\{Q\}, \ \overline{CD}\cap \overline{AF}=\{R\}.$ Demostrar que P,Q,R son colineales.
- 2. Demostrar que si $\zeta(O,r)$ es la circunferencia en la que se inscribe el cuadrado $\Box ABCD$ (con los vértices ordenados levógiramente o dextrógiramente) entonces para cualquier $P \in \zeta(O,r) \setminus \{A,B,C,D\}$ se tiene que $P(\overline{PA},\overline{PC};\overline{PB},\overline{PD})$.
- 3. Demostrar que cada unos de los triángulos formados por tres de las cutro rectas de un cuadrilátero completo está en perspectiva con el triángulo diagonal del cuadrilátero.
- 4. Contruir un cuadrángulo completo que tenga un triángulo dado como triángulo diagonal.
- 5. Sea $\square ABCD$ un cuadrángulo. Demostrar que existe una $\zeta(O,r)$ tal que $\{A,B;C;D\}\subset \zeta(O,r)$ si y solo si AD.BC+AB.CD=AC.BD
- 6. Sea $\triangle ABC$ un triángulo, $\zeta(O,r)$ la circunferencia que lo inscribe y $P \in \zeta(O,r) \setminus \{A,B,C\}$. Consideremos l_{XY} la recta ortogonal a \overline{RS} incidente en \underline{P} con $\{R,S\} \subset \{A,B,C\}$ con $R \neq S$. Demostrar que si $l_{AB} \cap \overline{AB} = \{X\}$, $l_{BC} \cap \overline{BC} = \{Y\}$, $l_{AC} \cap \overline{AC} = \{Z\}$ entonces X,Y,Z son colineales.