Departamento de Tecnologías de la Información Área de Ciencias de la Computación e Inteligencia Artificial

Modelos Avanzados de Computación Examen de septiembre

EJERCICIO 1 (1,5 puntos)

- (a) ¿Qué es una Autómata de Pila?
- (b) ¿Qué diferencia hay entre un Automata de Pila Determinista e Indeterminista?
- (c) ¿Tienen la misma capacidad? Razone la respuesta.

EJERCICIO 2 (1,5 puntos)

Considere la siguiente gramática libre de contexto, expresada en Forma Normal de Chomsky.

$S \rightarrow number$
$S \rightarrow id$
$S \rightarrow L N$
$N \rightarrow B R$
$ ext{L} o ext{Iparen}$
R → rparen
$B \rightarrow S B$
$\mathrm{B} o number$
$\mathrm{B} o \mathrm{id}$
$B \to \Gamma N$

Verifique que la cadena "(a (b (2)) (c))" pertenece al lenguaje definido por la gramática por medio del algoritmo de Cocke-Younger-Kasami.

EJERCICIO 3 (2 puntos)

Desarrolle una Máquina de Turing que reconozca el siguiente lenguaje:

$$L = \{a^n b^n c^n; n \ge 0\}$$

EJERCICIO 4 (1,5 puntos)

Sea $E_{\rm TM}$ el lenguaje formado por las cadenas $<\!\!M\!\!>$ tales que M es la codificación de una máquina de Turing que no reconoce ninguna entrada, es decir, cuyo lenguaje es el lenguaje vacío. Demuestre que el lenguaje $E_{\rm TM}$ es indecidible.

NOTA: Considere demostrado que los lenguajes A_{TM} (problema de la aceptación), $HALT_{TM}$ (problema de la parada).

EJERCICIO 5 (2 puntos)

Considere el modelo de computación de las funciones recursivas. Asuma que las siguientes funciones ya han demostrado ser recursivas primitivas: Suma(x,y), Producto(x,y), Potencia(x,y), Decremento(x), RestaAcotada(x,y), Signo(x), SignoNegado(x), Min(x,y), Max(x,y), And(x,y), Or(x,y), Not(x), Igual(x,y), Mayor(x,y), Menor(x,y), MayorOIgual(x,y), MenorOIgual(x,y), If(x,y,z).

Demuestre que la función Log2(x+1), que calcula el logaritmo en base 2 de un número entero, es una función primitiva recursiva.

NOTA: El logaritmo está definido para números mayores o iguales a 1. Al utilizar el argumento (x+1) el caso base de la recursión es x=0.

$$Log2(x+1) = y \mid 2^{y} \le x+1 < 2^{y+1}$$

EJERCICIO 6 (1,5 puntos)

¿Qué es un problema NP-completo? Enuncie el Teorema de Cook y Levin y describa brevemente su demostración.