GATE - 2022 - ST

1

EE1030: Matrix Theory Indian Institute of Technology Hyderabad

Satyanarayana Gajjarapu AI24BTECH11009

1) If the line $y = \alpha x$, $\alpha \ge \sqrt{2}$, divides the area of the region

$$R := \{(x, y) \in \mathbb{R}^2 | 0 \le x \le \sqrt{y}, 0 \le y \le 2\}$$

into two equal parts, then the value of α is equal to

- a) $\frac{3}{\sqrt{2}}$
- b) $2\sqrt{2}$
- c) $\sqrt{2}$ d) $\frac{5}{2\sqrt{2}}$
- 2) Let (X, Y, Z) be a random vector with the joint probability density function

$$f_{X,Y,Z}(x, y, z) = \begin{cases} \frac{1}{3} (2x + 3y + z), & 0 < x < 1, 0 < y < 1, 0 < z < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Then which one of the following points is on the regression surface of X on (Y,Z)?

- a) $\left(\frac{4}{7}, \frac{1}{3}, \frac{1}{3}\right)$ b) $\left(\frac{6}{7}, \frac{2}{3}, \frac{2}{3}\right)$ c) $\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right)$ d) $\left(\frac{1}{2}, \frac{2}{3}, \frac{1}{3}\right)$
- 3) A random sample X of size one is taken from a distribution with the probability density function

$$f(x; \theta) = \begin{cases} \frac{2x}{\theta^2}, & 0 < x < \theta, \\ 0, & \text{elsewhere.} \end{cases}$$

If $\frac{X}{\theta}$ is used as a pivot for obtaining the confidence interval for θ , then which one of the following is an 80% confidence interval (confidence limits rounded off to three decimal places) for θ based on the observed sample value x = 10?

- a) (10.541, 31.623)
- b) (10.987, 31.126)

- c) (11.345, 30.524)
- d) (11.267, 30.542)
- 4) Let X_1, X_2, \dots, X_7 be a random sample from a normal population with mean 0 and variance $\theta > 0$. Let

$$K = \frac{X_1^2 + X_2^2}{X_1^2 + X_2^2 + \dots + X_7^2}.$$

Consider the following statements:

- (I) The statistics K and $X_1^2 + X_2^2 + \cdots + X_7^2$ are independent. (II) $\frac{7K}{2}$ has an F-distribution with 2 and 7 degrees of freedom.
- (III) $E(K^2) = \frac{8}{63}$.

Then which of the above statements is/are true?

- a) (I) and (II) only
- b) (I) and (III) only
- c) (II) and (III) only
- d) (I) only
- 5) Consider the following statements:
 - (I) Let a random variable X have the probability density function

$$f_X(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty.$$

Then there exist i.i.d. random variables X_1 and X_2 such that X and $X_1 - X_2$ have the same distribution.

(II) Let a random variable Y have the probability density function

$$f_Y(y) = \begin{cases} \frac{1}{4}, & -2 < y < 2, \\ 0, & \text{elsewhere.} \end{cases}$$

Then there exist i.i.d. random variables Y_1 and Y_2 such that Y and $Y_1 - Y_2$ have the same distribution.

Then which of the above statements is/are true?

- a) (I) only
- b) (II) only
- c) Both (I) and (II)
- d) Neither (I) nor (II)
- 6) Suppose $X_1, X_2, \dots, X_n, \dots$ are independent exponential random variables with the mean $\frac{1}{2}$. Let the notation *i.o.* denote 'infinitely often'. Then which of the following is/are true?

- a) $P\left(\left\{X_n > \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } 0 < \epsilon \le 1$ b) $P\left(\left\{X_n < \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } 0 < \epsilon \le 1$ c) $P\left(\left\{X_n > \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } \epsilon > 1$ d) $P\left(\left\{X_n < \frac{\epsilon}{2}\log_e n\right\} i.o.\right) = 1 \text{ for } \epsilon > 1$

- 7) Let $\{X_n\}, n \ge 1$, be a sequence of random variables with the probability mass functions

$$p_{X_n}(x) = \begin{cases} \frac{n}{n+1}, & x = 0, \\ \frac{1}{n+1}, & x = n, \\ 0, & \text{elsewhere.} \end{cases}$$

Let X be a random variable with P(X = 0) = 1. Then which of the following statements is/are true?

- a) X_n converges to X in distribution
- b) X_n converges to X in probability
- c) $E(X_n) \to E(X)$
- d) There exists a subsequence $\{X_{n_k}\}$ of $\{X_n\}$ such that X_{n_k} converges to X almost surely
- 8) Let **M** be any 3×3 symmetric matrix with eigenvalues 1, 2 and 3. Let **N** be any 3×3 matrix with real eigenvalues such that $\mathbf{MN} + \mathbf{N}^T \mathbf{M} = 3\mathbf{I}$, where **I** is the 3×3 identity matrix. Then which of the following cannot be eigenvalue(s) of the matrix N ?

 - a) $\frac{1}{4}$ b) $\frac{3}{4}$ c) $\frac{1}{2}$ d) $\frac{7}{4}$
- 9) Let **M** be a 3×2 real matrix having a singular value decomposition as $\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^T$, where the matrix $\mathbf{S} = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^T$, **U** is a 3×3 orthogonal matrix, and **V** is a 2×2 orthogonal matrix. Then which of the following statements is/are true?
 - a) The rank of the matrix **M** is 1
 - b) The trace of the matrix $\mathbf{M}^T \mathbf{M}$ is 4
 - c) The largest singular value of the matrix $(\mathbf{M}^T \mathbf{M}^{-1}) \mathbf{M}^T$ is 1
 - d) The nullity of the matrix **M** is 1
- 10) Let X be a random variable such that

$$P\left(\frac{a}{2\pi}X \in \mathbb{Z}\right) = 1, \ a > 0,$$

where \mathbb{Z} denotes the set of all integers. If $\phi_X(t)$, $t \in \mathbb{R}$, denotes the characteristic function of X, then which of the following is/are true?

- a) $\phi_X(a) = 1$
- b) $\phi_X(\cdot)$ is periodic with period a

c)
$$|\phi_X(t)| < 1$$
 for all $t \neq a$
d) $\int_0^{2\pi} e^{-itn} \phi_X(t) dt = \pi P\left(X = \frac{2\pi n}{a}\right), n \in \mathbb{Z}, i = \sqrt{-1}$

- 11) Which of the following real valued functions is/are uniformly continuous on $[0, \infty)$
 - a) $\sin^2(x)$
 - b) $x \sin(x)$
 - c) $\sin(\sin(x))$
 - d) $\sin(x\sin(x))$
- 12) Two independent random samples, each of size 7, from two populations yield the following values :

Population 1	18	20	16	20	17	18	14
Population 2	17	18	14	20	14	13	16

If Mann-Whitney U test is performed at 5% level of significance to test the null hypothesis H_0 : Distributions of the populations are same, against the alternative hypothesis H_1 : Distributions of the populations are not same, then the value of the test statistic U (**in integer**) for the given data, is

13) Consider the multiple regression model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon,$$

where ϵ is normally distributed with mean 0 and variance $\sigma^2 > 0$, and β_0 , β_1 , β_2 , β_3 are unknown parameters. Suppose 52 observations of (Y, X_1, X_2, X_3) yield sum of squares due to regression as 18.6 and total sum of squares as 79.23. Then, for testing the null hypothesis H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ against the alternative hypothesis H_1 : $\beta_i \neq 0$ for some i = 1, 2, 3, the value of the test statistic (**rounded off to three decimal places**), based on one way analysis of variance, is _____