

Tableau de Bord (CHU 42)

Objectif: Prédiction de la charge de patients en temps réel pour permettre d'anticiper au mieux les pics d'activités au service des urgences du CHU 42

Données mise à jour toutes les 10 minutes:

- Date entrée
- Sortie rapide : distinction passage / admission
- Date de sortie (NA si le patient est toujours présent)
- Secteur : UF (Unité Fonctionnelle) ; UFR (Fonctionnelle Rapide) ; UG (Grave)

Historique de données disponibles: 3 avril 2020 – aujourd'hui

Historique de données utilisables: 1 avril 2022 – aujourd'hui

Daily incoming flow at the ED (mean=156.03)

Study period: 01/04/2020 – 11/07/2023

Daily Incoming Flow

Daily Outgoing Flow

Daily Patient Loads

Hourly Incoming Flow

Incoming Flow O O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Hour of the day Short stay 95% Normal CI

Hourly Outgoing Flow

Hourly Patient Loads

Histogram LoS

LoS vs arrival hour

Fixed effect algorithm (linear)

Model: Dynamic Linear Regression with lags and seasonal features for hour of the day and day of the week.

$$y_{t} = \alpha + \beta_{1} * y_{t-1} + \beta_{2} * y_{t-168} + \sum_{h=0}^{h=22} \gamma_{h} * 1_{\{hour_{t}=h\}} + \sum_{d=Mon}^{d=Sat} \theta_{d} * 1_{\{day_{t}=d\}} + \epsilon_{t}$$

Error statistics (computed on 9h-15h only, in a real time fashion):

	Total		UF		UG		UFR	Short Stay
	MAE	MAPE	MAE	MAPE	MAE	MAPE	MAE	MAE
t + 1 hour	2.90	6.94%	1.56	8.11%	1.29	7.53%	1.08	1.40
t + 4 hours	5.78	12.27%	3.29	15.41%	2.79	14.47%	1.98	1.66
t + 24 hours	7.93	21.86%	4.21	24.63%	4.02	26.62%	1.64	1.43
t + 48 hours	8.64	24.07%	4.54	26.62%	4.35	29.60%	1.64	1.43
t + 72 hours	9.31	25.82%	4.75	27.91%	4.56	31.25%	1.67	1.47
Average hourly flow	44.94		20.84		19.11		3.33	2.19

Automatic detection of outliers

Inter-Quartile Range (IQR) method:

• Value x is an outlier if x < Q1 - 1.5*(Q3-Q1) or x > Q3 + 1.5*(Q3-Q1)

In our case, we can stratify the IQR method by hour of the day and day of the week, to improve the detection of outliers.

- By doing so, we identify **10 outliers** (0.22%)
- Prediction error for outliers : MAPE = 16.32%

Since outliers are only detected **after their occurrence**, we could add a flag indicating that the previous observation was (likely to be) an outlier.

And in these situation discard the accuracy rate

Alternative time series models

ARIMA, ARIMAX, SARIMA, SARIMAX: they all require a stationary process, or at least a transformation of the time series to make it stationary (differencing).

$$y_{t} = c + \sum_{n=1}^{p} \alpha_{n} y_{t-n} + \sum_{n=1}^{q} \theta_{n} \epsilon_{t-n} + \sum_{n=1}^{p} \phi_{n} y_{t-sn} + \sum_{n=1}^{Q} \eta_{n} \epsilon_{t-sn} + \epsilon_{t}$$
ARIMA

Augmented Dickey-Fuller test: The null hypothesis is that the variable contains a unit root, and the alternative is that the variable was generated by a stationary process.

 P-value < 0.001 for all series (Total, UF, UFR, UG, Short Stay), meaning they are all stationary processes.

Alternative time series models

	Fixed effect (linear)	SARIMAX	SARIMAX	ARIMAX	ARIMAX
(p,d,q)(P,D,Q) _s	-	(1,0,1)(1,0,1)24	(1,1,1)(1,0,1)24	(1,0,1)	(1,1,1)
Differencing	No	No	Yes	No	Yes
Fixed effect	Days and hours	Days	Days	Days and hours	Days and hours
MAPE (t+1)	6.94%	7.02%	Fail to converge	6.96%	6.88%
MAPE (t+4)	12.27%	12.54%	· ·	12.27%	12.26%
MAPE (t+24)	21.86%	22.95%		22.15%	22.55%
MAPE (t+48)	24.07%	25.59%		24.47%	26.54%
MAPE (t+72)	25.82%	26.26%		24.98%	28.37%