Semantic-aware Transfer with Instance-adaptive Parsing for Crowded Scenes Pose Estimation

Xuanhan Wang, Lianli Gao, Yan Dai, Yixuan Zhou and Jingkuan Song

Introduction

Multi-Person Pose Estimation

Simultaneously <u>detecting people</u> and <u>localizing their anatomical keypoints</u> under complex scenes.

Bottom-up pipeline

- Instance-agnostic keypoints detection.
- Keypoints grouping.

Top-down pipeline

- Human detection.
- Single-person pose estimation

[1] https://cocodataset.org/#keypoints-2020

Crowded Scenes Pose Estimation

Crowded scenes

Performance decline

Crowded Scenes Pose Estimation → **Missing keypoints**

KEENELND

Missing keypoints

Crowded scenes

Crowded Scenes Pose Estimation → **Ambiguously labeling**

multiple instances in one bounding box

Instance A

Instance B

Pos label for Instance B

Neg label for Instance B
Pos label for Instance A

Crowded Scenes Pose Estimation \rightarrow Ambiguously labeling

Instance A

Instance B

Neg label for Instance A Pos label for Instance B

Pos label for Instance B

Neg label for Instance B Pos label for Instance A

labels for Instance B

Issues that we focus on

- How to design an effective pipeline for pixel-level representation enhancement?
- How to equip this pipeline with the ability to handle the ambiguously labeling?

Two Patterns of Keypoint Embeddings

P-R Curve on CrowdPose Dataset

Issues that we focus on

- How to design an effective pipeline for pixel-level representation enhancement?
- How to equip this pipeline with the ability to handle the ambiguously labeling?

Semantic-aware enhancement

Instance-aware parsing

Method

Semantic-aware Transfer with Instance-adaptive Parsing (STIP)

- Semantic-aware Transfer (SaT)
- Instance-adaptive Parsing (IaP)

Method

Semantic-aware Transfer (SaT)

Method

Instance-adaptive Parsing (IaP)

Dataset: CrowdPose & MS-COCO

The CrowdPose dataset contains 20K images and 80K human annotations in total. It is split into two subsets: 12K images for training, 8K images for testing.

The MS-COCO dataset contains about 250K humans annotations. Moreover, it is split into two subsets: training set and validation set with 57K images and 5k images.

Evaluation Metric: Object Keypoints Similarity (OKS)

$$OKS_{j} = \frac{1}{|P_{j}|} \sum_{p \in P_{j}} exp\left(\frac{-g(i_{p}, \hat{i}_{p})^{2}}{2k^{2}}\right)$$

 P_i : a set of ground truth keypoints annotated on person instance *j*

 i_p : the keypoint estimated by a model at p-th class $\hat{\imath}_p$: the ground truth keypoint at p-th class

k: the variance of gaussian function

g: Euclidean metric

mAP: the mean of AP scores at a number of Object Keypoints Similarity (OKS) ranging from 0.5 to 0.95.

Ablation Study: Module effectiveness

Experiments on CrowdPose

Experiments on Crown osc						
Baseline	SaT	IaP	AP	AP_{E}	AP_{M}	AP_{H}
			71.7%	79.6%	72.7%	61.5%
$\sqrt{}$	$\sqrt{}$		73.5%	81.1%	74.6%	63.6%
$\sqrt{}$		$\sqrt{}$	73.6%	81.1%	74.8%	63.6%
		$\sqrt{}$	74.1%	81.6%	75.1%	64.3%

CrowdPose:

STIP improves the baseline model by 3.4% AP score.

- Baseline + SaT: $71.7\% \rightarrow 73.5\% (+1.8\%)$
- Baseline + **IaP**: $71.7\% \rightarrow 73.6\% (+1.9\%)$

Experiments on MS-COCO

Baseline	SaT					
			74.4%	70.8%	81.0%	79.8%
$\sqrt{}$	$\sqrt{}$		75.6%	71.8%	82.4%	80.8%
$\sqrt{}$		$\sqrt{}$	75.6%	70.8% 71.8% 71.8% 72.1%	82.5%	80.7%
	$\sqrt{}$	V	75.8%	72.1%	82.6%	81.0%

MS-COCO:

STIP improves the baseline model by 1.4% AP score.

- Baseline + SaT: $74.4\% \rightarrow 75.6\% (+1.2\%)$
- Baseline + **IaP**: $74.4\% \rightarrow 75.6\% (+1.2\%)$

Ablation Study: Missing Keypoints Reduction

Method				Thres	shold V	alues			
Method	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
HRNet-W32	99.3	97.4	94.2	89.8	84.0	76.3	64.7	45.7	13.5
+STIP	99.2	97.4	94.5	90.7	85.9	79.9	70.9	54.7	22.2
HRNet-W48	99.3	97.6	95.0	91.6	87.0	81.1	72.1	55.4	19.7
+STIP	99.3	97.7	95.4	92.2	88.0	82.9	75.3	60.2	25.4

The proposed method achieves higher recall score than baseline model at high threshold values.

The Generalizability of proposed method

Experiments on CrowdPose					
Method	Backbone	Input size	mAP		
HRNet	HRNet-W32	256x192	71.7%		
+STIP	HRNet-W32	256x192	74.1% (+2.4)		
HRNet	HRNet-W48	256x192	73.3%		
+STIP	HRNet-W48	256x192	74.8% (+1.5)		
HRNet	HRNet-W32	384x288	73.0%		
+STIP	HRNet-W32	384x288	74.7% (+1.7)		
HRNet	HRNet-W48	384x288	73.9%		
+STIP	HRNet-W48	384x288	75.2% (+1.3)		
SimpleBaseline	ResNet50	256x192	68.4%		
+STIP	ResNet50	256x192	68.9% (+0.5)		

Experiments on MS-COCO					
Method	Backbone	Input size	mAP		
HRNet	HRNet-W32	256x192	74.4%		
+STIP	HRNet-W32	256x192	75.8% (+1.4)		
HRNet	HRNet-W48	256x192	75.1%		
+STIP	HRNet-W48	256x192	76.1% (+1.0)		
HRNet	HRNet-W32	384x288	75.8%		
+STIP	HRNet-W32	384x288	76.5% (+0.7)		
HRNet	HRNet-W48	384x288	76.3%		
+STIP	HRNet-W48	384x288	76.8% (+0.5)		
SimpleBaseline	ResNet50	256x192	70.4%		
+STIP	ResNet50	256x192	71.4% (+1.0)		
SimpleBaseline	ResNet101	256x192	71.4%		
+STIP	ResNet101	256x192	72.1% (+0.7)		

- HRNet series can be improved with the help of STIP, about $\sim 1.3\%$ AP gains.
- ResNet series can be improved with the help of STIP, about $\sim 0.7\%$ AP gains.

Visualization Analysis

global-local p graph

parameter map

global-local graph

parameter map

Summary

Contributions

- 1. We propose an effective keypoints estimation method named **semantic-aware transfer with instance-adaptive parsing (STIP),** which tackles the problem of missing keypoints in crowded scenes and handles the ambiguously labeling during training.
- 2. Semantic-aware Transfer (SaT) that enhances the discriminative power of pixel-level features by transferring keypoint-wise semantic embeddings to pixels.
- 3. Instance-adaptive parsing (IaP) method is proposed to handle the ambiguously labeling by replacing a shared regressor with instance-adaptive regressors.

https://github.com/stoa-xh91/STIP

If you have any questions, please e-mail us at:

wxuanhan@hotmail.com

