随机模拟方法 第二次大作业

李佳 2100010793

1 问题描述

通过随机微分方程的模拟,数值求解下面的边值问题:

$$\begin{cases} b \cdot \nabla u + \frac{1}{2} \Delta u = f(x, y), & (x, y) \in B_1(0), \\ u = \frac{1}{2}, & (x, y) \text{ on } \mathbb{S}_1, \end{cases}$$

其中

$$b = (x, y), f = x^2 + y^2 + 1.$$

上述的模型问题有真解 $u=\frac{x^2+y^2}{2}$. 使用 Euler-Maruyama 格式进行模拟, 并检验随时间 步长的收敛阶.

2 思路及计算步骤

上述模型问题的解有如下概率解释: 对 SDE: $dX_t = b(X_t) dt + dW_t$, 令区域 $D = B_1(0)$, 首次离开时间 (First Exit Time) 为

$$\tau_D = \inf\{t \ge 0 : X_t \notin D\},\$$

则模型问题的解 u(x,y) 满足

$$u(x,y) = \mathbb{E}^{(x,y)} \left(u(X_{\tau_D}) - \int_0^{\tau_D} f(X_s) \, ds \right).$$

因此,要计算模型问题的数值解,只需以需要计算的点 (x,y) 为 SDE 的初值,做多次数值 SDE 模拟进行采样,数值确定 First Exit Time,并在该时间内在路径上对 f 作数值积分. 对多次采样得到的结果取平均以得到数值解.

3 数值方法、分析及遇到的困难

3.1 Euler-Maruyama 格式

Euler-Maruyama 格式是最基本也最易实现的数值 SDE 格式, 对模型问题的具体格式是:

$$X_{n+1} = X_n + b(X_n)\tau + \sqrt{\tau}W_n,$$

李佳 2100010793

其中 τ 为时间步长, $\{W_n\}$ 为独立的2维标准正态随机变量.

由数值 SDE 的理论可知, 对该问题而言 (常值扩散系数), Euler-Maruyama 格式强收敛阶为 1 阶, 弱收敛阶为 1 阶.

3.2 First Exit Time 的确定

一般的想法是: 对数值 SDE 模拟中, 若 $X_n \in D$, 但 $X_{n+1} \notin D$, 则数值确定 $\tau_D = n\tau$. 由此得到算法 1:

Algorithm 1: $X_0 = (x, y), f_0 = 0$. 第 n + 1 步时, 计算 $z = X_n + b(X_n)\tau + \sqrt{\tau}W_n$. 若 $z \in D$, 则 $f_{n+1} = f_n + \tau f(X_n)$ (数值积分), $X_{n+1} = z$, 继续下一步; 若 $z \notin D$, 则终止, 得到本次采样的结果 $u = \frac{1}{2} - f_n$.

这样的选择是不精确的,因为即使 $X_n, X_{n+1} \in D$,其路径依然有可能是先离开了区域但最终回到区域内,因此实际上这一时间被估计地相对较大了. 这里会引入 First Exit Time 的误差,并且可能破坏理论上 Euler-Maruyama 格式的弱收敛阶. 事实上,由后面的结果分析可以看到,这样确定的 τ_D 最终得到的数值解的收敛阶仅约为 $O(\sqrt{\tau})$,达不到弱一阶收敛.

文献 [1] 中, 在一维情形对 First Exit Time 的确定进行了分析, 通过每一步考虑到 X_n 离开又返回区域的概率, 以更精确地确定 First Exit Time. 具体地说, D=(A,B), $X_t=y, X_{t+h}=z, y, z < B$ 的条件下, 有穿过边界 B 的概率为 $\exp(-\frac{2(B-y)(B-z)}{h})$. 因此每一步中, 若 X_{n+1} 仍在区域内, 则以该概率终止. 本报告中, 为在二维情形提高数值解的精度, 不加证明地使用了类似的方法: 我们认为靠近边界处可以近似为 1 维情形, 将 B 换成 1, y, z 换为模长, 则得到下面的算法 2:

Algorithm 2: $X_0 = (x,y), f_0 = 0$. 第 n+1 步时, 计算 $z = X_n + b(X_n)\tau + \sqrt{\tau}W_n$. 若 $z \in D$, 且 $U > \exp(-2(1-|X_n|)(1-|z|)/\tau)$ (U 为 [0,1] 均匀分布随机变量),则 $f_{n+1} = f_n + \tau f(X_n)$ (数值积分), $X_{n+1} = z$,继续下一步; 若不然,则终止,得到本次采样的结果 $u = \frac{1}{2} - f_n$.

4 计算结果及分析

本报告中取了 $B_1(0)$ 中的 12 个点 ($(r\cos(\theta), r\sin(\theta))$), r = 1/4, 2/4, 3/4, $\theta = 0, \pi/2, \pi, 3\pi/2$), 对时间步长 $\tau = 1/2^i, i = 2, 3, 4, ..., 12$ 的情形计算, $\tau = 1/2^i$ 采样 1000i 次, 计算数值解. 时间步长 τ 对应的数值解误差取 L^{∞} 范数, 即 12 个点的误差最大值. 两种算法均进行了计算, 得到的数值解误差结果如表 1,2 和图 1 所示.

$\overline{ au}$	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}
L^{∞} error	1.243 e-1	9.697 e-2	9.167 e-2	6.316 e-2	6.0423 e-2	4.5483 e-2
au	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	
L^{∞} error	2.823 e-2	2.470 e-2	1.7833 e-2	1.3032 e-2	9.366 e-3	

Table 1: 算法 1 数值解误差随时间步长变化表

对两种算法的数值解误差随时间步长的变化进行最小二乘拟合 (取对数后线性拟合) 以得到数值收敛阶, 得到结果如表 3 所示.

李佳 2100010793

au	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}
L^{∞} error	1.541 e-1	9.050 e-2	4.964 e-2	2.832 e-2	1.304 e-2	1.044 e-2
au	2^{-8}	2^{-9}	2^{-10}	2^{-11}	2^{-12}	
L^{∞} error	8.074 e-3	6.732 e-3	4.824 e-3	3.909 e-3	2.208 e-3	

Table 2: 算法 2 数值解误差随时间步长变化表

Figure 1: 算法 1,2 数值解误差随时间步长变化图

	Algorithm 1	Algorithm 2	Algorithm $2(\tau = 2^{-2},, 2^{-6})$
收敛阶 k	0.4517	0.5789	0.8799
r^2	0.9711	0.9615	0.9951

Table 3: 最小二乘拟合得到的收敛阶结果 (第 3 列为算法 2 仅对括号内的点进行拟合的结果)

李佳 2100010793

由图表可知,

• 算法 1 对 First Exit Time 的确定方式较为简单, 因此如之前的分析一样, 这一误差破坏了 Euler-Maruyama 的弱 1 阶收敛. 数值上可以看到, 算法 1 的收敛阶仅约为 $O(\sqrt{\tau})$.

- 算法 2 对 First Exit Time 有更精确的确定方式, 因此整体上收敛速度快于算法 1, 且在 $\tau = 2^{-2}, ..., 2^{-6}$ 的点上拟合, 得到的收敛阶 0.8799 已经很接近 $O(\tau)$ 的收敛速度.
- 算法 2 的确定方式并没有严格证明, 只是经过 [1] 中一维情形的类比. 可能因此不够细致的分析, 导致了时间步长继续减小时收敛速度降低的现象.

5 总结

利用 SDE 模拟以求解 PDE 的数值解中, First Exit Time 的确定是非常重要的, 这里导致的误差可能破坏格式本身的收敛阶. 简单的处理下, 会导致半阶的收敛阶, 低于 Euler-Maruyama 格式的弱收敛阶. 通过类比一维情形 [1] 的处理, 我们得到算法 2 以更精确地确定 First Exit Time, 在 $\tau = 2^{-2}$,..., 2^{-6} 处几乎达到了 1 阶收敛, 但在时间步长继续加细后收敛速度变慢. 可以预想到, 若使用更高精度的数值 SDE 模拟方式, 则需要更加精细地考量 First Exit Time 的数值确定方式, 以避免这一部分误差破坏整体的收敛阶.

References

[1] Buchmann, Fabian M. Computing exit times with the Euler scheme, SAM Research Report 2003 (2003).