Теоретическая информатика.

Лектор — А.С. Охотин, Э.А. Гирш и Д.О. Соколов Создатель конспекта — Глеб Минаев *

TODOs

Κa	артиночки	1 ки и автоматы 6 выражение и равносильность конечным автоматам
C	бодержание	
1	Вычислимость	1
2	Формальные зыки и автоматы 2.1 Регулярные выражение и равносильность конечным автоматам	9
	Литература:	
	Страницы курса:	
	• Часть курса, прочитанная А.С. Охотиным.	

1 Вычислимость

Определение 1. Машина Тьюринга — это реализация понятия вычисления. Она заключается в том, что имеется бесконечная в обе стороны клетчатая лента с записанным на ней конечным словом (по букве на клетку) — входные данные вычисления — и головка — вычисляющий аппарат, которая в каждый момент времени смотрит на какую-то клетку ленты и имеет в себе некоторое внутреннее состояние вычислений. Каждым своим действием она читает символ в клетке, на которую смотрит, и в зависимости от прочитанного символа и внутреннего состояния в данный момент она пишет в клетку, на которую смотрит новый символ, стирая старый, переходит на новую клетку и меняет внутренне состояние.

Формально машина Тьюринга M — это совокупность

- \bullet входного алфавита Σ (конечного) алфавита входных данных,
- рабочего алфавита Γ (конечного) алфавита, над которым мы работаем, что $\Gamma \supseteq \Sigma \sqcup \{ \cup \} \}$,

 $^{^*}$ Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

- конечного множества (внутренних) состояний Q,
- начального состояния $q_0 \in Q$,
- функции переходов $\delta: Q \times \Gamma \to Q \times \Gamma \times \{-1; +1\}$
- и дополнительных объектов и условий в зависимости от предназначения машины.

Входными данными программы является конечная строка $s_1 \dots s_l$, которая превращается в запись $\{a_i\}_{i\in\mathbb{Z}}$ на ленте по правилу

$$a_i = \begin{cases} s_{i+1} & \text{если } 0 \leqslant i \leqslant l-1, \\ _ & \text{иначе.} \end{cases}$$

Состояние каждого момент вычисления — это совокупность

- состояния ленты $\{a_i\}_{i\in\mathbb{Z}}$, где $a_i\in\Sigma$ и все a_i кроме конечного числа элементов являются пробелом \cup ,
- ullet положения головки $n\in\mathbb{Z}$ на ленте и
- состояния головки $q \in Q$.

Состояние начального момента вычислений образуется из

- состояния ленты, полученного из входных данных,
- положения головки по умолчанию n=0
- начального состояния головки q_0 .

Каждым шагом состояние $(\{a_i\}_{i\in\mathbb{Z}},n,q)$ заменяется на состояние $(\{a_i'\}_{i\in\mathbb{Z}},n',q')$, где $a_i'=a_i$ для всех $i\in\mathbb{Z}\setminus\{n\}$ и

$$(q', a'_n, n' - n) := \delta(q, a_n).$$

Далее есть два вида предназначений машины:

- 1. Распознование свойства. В этом случае мы хотим уметь распознавать разные конечные строки, т.е. чтобы машина отвечала "да" или "нет" на вопрос "Лежит ли эта строка в заданном семействе?". В таком случае у машины выделяются принимающее состояние $q_{acc} \in Q$ и отвергающее состояние $q_{rej} \in Q$, и когда машина переходит в одно из этих двух состояний, вычисления прекращаются. В таком случае $\delta(q,a)$ должно быть не определено в случае $q \in \{q_{acc}; q_{rej}\}$.
- 2. Вычисление функции. В этом случае мы хотим вычислять значение некоторой функции $M: \Sigma^* \to \Sigma^*$, т.е. чтобы машаина после некоторого количества действий говорила "Готово." и оставляла на ленте конечное слово в том же формате, в котором производится ввод. В таком случае у машины выделяется состояние останова $q_{halt} \in Q$, и когда машина переходит в это состояние, вычисления прекращаются, а на ленте должно остаться слово в правильном формате. В таком случае $\delta(q,a)$ должно быть не определено в случае $q=q_{halt}$.

Замечание. Фактически множество результатов работы машины состоит из переходов в одно из терминальных состояний (q_{acc}, q_{rej}) и попадание в "вечный цикл".

Теорема 1. В определении машина Тьюринга множество возможных смещений головки $\{+1;-1\}$ можно сменить на некоторое $S \subseteq \mathbb{Z}$.

- 1. Тогда если S конечно и всякое целое число представляется в виде суммы хотя бы одного значения (возможно, с повторами) из S, то определение получается равносильным.
- 2. То же самое верно для всякого S (не обязательно конечного).

Доказательство.

1. Действительно, пусть у нас имеется машина с множеством возможных сдвигов S_1 , а у нас есть множество возможных сдвигов S_2 , что всякое число из S_1 представляется в виде суммы некоторых (хотя бы одного и, возможно, с повторениями) членов из S_2 . Тогда для всякой перехода между состояниями $q_1 \to q_2$ можно создать такие фальшсостояния, что смещение на значение из S_1 будет заменено на несколько смещений на значения из S_2 с тем же итогом. Таким образом мы можем всякую машину на S_1 поменять на машину на S_2 и большим числом состояний.

Таким образом множества смещений S_1 и S_2 реализуют равносильные модели, если всякое значение из S_1 расскладывается в сумму значений S_2 и наоборот. При для $S_1 = \{+1; -1\}$ переход $S_2 \to S_1$ очевиден, а переход $S_1 \to S_2$ означает, что 1 и -1 раскладываются в суммы некоторых чисел из S_2 , что равносильно разложимости всякого целого.

2. Несложно понять, что в каждой конкретной машине Тьюринга множество $Q \times \Sigma$ конечно, а значит S можно заменить на конечное подмножества, что задача для данной машины не изменится.

Следствие 1.1. Вместо $\{+1;-1\}$ для удобства можно также подразумевать $\{+1;0;-1\}$.

Замечание. В данный момент мы будем рассматривать только задачу распознавания свойства.

Определение 2. Язык машины M или язык, распознаваемый машиной M, — это множество $L(M) \subseteq \Sigma^*$ входных строк, которые машина принимает. Т.е. это множество всех конечных строк $w \in \Sigma^*$ таких, что машина M на входе w завершает работу и принимает данный вход.

Язык, распознаваемый какой-нибудь машиной, называется рекурсивно-перечислимым.

Язык, распознаваемый какой-нибудь машиной, которая останавливается на любом входе, называется *рекурсивным*.

 $\Pi p u m e p 1.$ Пусть $\Sigma = \{a; b\}, L = \{a^n b^n\}_{n \geqslant 0}.$ Тогда L распознаётся машиной Тьюринга (которая причём останавливается на всяком входе!).

Действительно, давайте напишем машину, которая будить ездить из одного конца нашей строки в другую и стирать a справа и b слева, и, если получит пустую строку, примет вход, а если поймет, что в какой-то момент получается что-то неправильное, то отвергнет вход. Формально, возьмём $Q = \{q_0; q_1; q_2; q_3; q_{acc}; q_{rej}\}$ и $\Gamma = \{a; b; \lrcorner\}$, а функцию перехода опишем следующей таблицей:

$Q\backslash\Gamma$	a	b	
q_0	$q_1, , +1$	q_{rej}	q_{acc}
q_1	$q_1, a, +1$	$q_1, b, +1$	$q_2, _, -1$
q_2	q_{rej}	$q_3, , -1$	q_{rej}
q_3	$q_3, a, -1$	$q_3, b, -1$	$q_0, -, +1$

Т.е. во с помощью q_0 и q_2 мы стираем a слева и b справа соответственно, а с помощью q_1 и q_2 перемещаемя до конца вправо и влево соответственно.

Теорема 2. Есть язык, нераспознаваемый никакой машиной Тьюринга.

Доказательство. Несложно видеть, что для всякого конечного непустого алфавита Σ количество $|\Sigma^*|$ конечных строк над Σ счётно, а значит языков над Σ континуум. При этом машин Тьюринга с входным алфавитом Σ счётное число. Значит почти все языки не распознаются машинами Тьюринга.

При этом есть довольно простые конкретные примеры нераспознаваемых языков.

Определение 3. $3anuc \circ \sigma(M)$ машины Toopunea M — это конечной битовая строка, созданная по следующему правилу. Пусть у машины $M = (\Sigma, \Gamma, Q, q_0, \delta, q_{acc}, q_{rej})$

- $\Sigma = \{a_1; \ldots; a_l\},\$
- $\Gamma = \Sigma \cup \{a_{l+1}; \dots; a_m\}$, где причём $a_m = \Box$,
- $Q = \{q_0; \dots; q_{n-1}\}$, где причём $q_{acc} = q_{n-2}, q_{rej} = q_{n-1}$.

Тогда запишем всё в унарной системе счисления, т.е. (всякий абстрактный) массив числовых данных будет храниться в виде последовательностей единиц, длины которых будут равняться соответствующим значениям массиве, разделённых нулями. Тогда машина M будет записана строкой

$$\sigma(M) := 1^l \, 0 \, 1^m \, 0 \, 1^n \, 0 \prod_{\delta(q_i, a_j) = q_{i'}, a_{j'}, d} 1^i \, 0 \, 1^j \, 0 \, 1^{i'} \, 0 \, 1^{j'} \, 0 \, 1^{d+1}$$

(где умножение, безусловно, — конкатенация, а \prod — конкатенация нескольких строк).

Определение 4. Языки L_0 и L_1 — это

$$L_0 := \{ \sigma(M) \mid \sigma(M) \notin L(M) \} \qquad \text{и} \qquad L_1 := \{ \sigma(M) \mid \sigma(M) \in L(M) \}.$$

Теорема 3.

- 1. L_0 не рекурсивно-перечислимый.
- $2. \ L_1 \ peкурсивно-перечислимый.$
- $3. \ L_1$ не рекурсивный.

Доказательство.

- 1. Предположим противное, т.е. есть машина M, распознающая L_0 . Тогда если M принимает $\sigma(M)$, то $\sigma(M) \in L(M)$, но тогда $\sigma(M) \notin L$. Если же M не принимает $\sigma(M)$, то $\sigma(M) \notin L(M)$, но тогда $\sigma(M) \in L$. Противоречие наподобие парадокса Рассела. Значит нет никакой машины, распознающей L_0 .
- 2. Неформально опишем машину, которая будет распознавать L_1 . Идея машины заключается в том, что получая на вход $\sigma(M)$, после этого запсанного кода машины M она запишет код начального состояния q_0 машины M, а затем код $\sigma(M)$ как входную строчку для M. После этого она начнёт моделировать работу машины M на входе $\sigma(M)$. Состояние головки будет писаться перед клеткой, на которую головка смотрит. Если места слева будет не хватать, то вся запись будет просто сдвигаться вправо.
- 3. Покажим, что всякая машина, распознающая L_1 зацикливается при некотором входе. Предположим противное, т.е. есть машина \widetilde{M} , которая распознаёт L_1 и всегда остансавливается. Тогда построим \widehat{M} по алгоритму:

- Проверить правда ли, что на было подано некоторое $\sigma(M)$. Если нет, то отвергнуть.
- \bullet Работать как \widetilde{M} на $\sigma(M)$. Если \widetilde{M} принимает, то отвергнуть. Если отвергает принять

Тогда \widehat{M} распознаёт L_0 — противоречие. Значит машины \widetilde{M} не существует.

Теорема 4. Язык

$$L_{\varnothing} := \{ \sigma(M) \mid L(M) = \varnothing \}$$

не рекурсивно-перечислимый.

Доказательство. Предположим противное, т.е. есть машина M_{\varnothing} , которая распознаёт L_{\varnothing} . Тогда построим машину M_0 по следующему алгоритму.

- 1. Проверить правда ли, что на было подано некоторое $\sigma(M)$. Если нет, то отвергнуть.
- 2. Построить $\sigma(M')$, где машина M' работает по следующему алгоритму.
 - Стереть входную строку.
 - Написать $\sigma(M)$.
 - Запустить M.
- 3. Запустить M_{\varnothing} на $\sigma(M')$.

M' принимает любую строку, если M принимает $\sigma(M)$, отвергает любую строку, если M отвергает $\sigma(M)$, и зацикливается, если M зацикливается на $\sigma(M)$. Следовательно M_{\varnothing} примет $\sigma(M')$ тогда и только тогда, когда $\sigma(M) \notin L(M)$. Таким образом M_0 распознаёт L_0 .

Определение 5. Для всякого свойства P языков можно определить язык

$$L_P := \{ \sigma(M) \mid L(M) \text{ обладает свойством } P \}.$$

Можно считать, что свойство есть некоторое множество языков (т.е. подмножество 2^{Σ^*}), а обладание свойством означает содержание в нём как в множестве.

Свойство называется *тривиальным*, если либо ни один рекурсивно-перечислимый язык, либо все рекурсивно-перечислимые языки обладают этим свойством.

Π ример 2.

1. Если P — это "непустота", то

$$L_P := \{ \sigma(M) \mid L(M) \neq \emptyset \}.$$

Такой язык рекурсивно-перечислим.

2. $L_P := \{ \sigma(M) \mid M \text{ отвергает конечное число программ на } \mathrm{C} + + \}.$

3. $L_P := \{ \sigma(M) \mid L(M) = L_0 \}.$

Как мы уже знаем $L_P = \emptyset$, т.е. данное свойство тривиально.

Теорема 5 (Райса). Всякое нетривиальное свойство нерекурсивно.

Доказательство. Пусть дано нетривиальное свойство $P \subseteq 2^{\Sigma^*}$ рекурсивно-перечислимых языков. Предположим противное: есть машина M_P распознаёт L_p (не зацикливается и принимает только язык L_p).

Предположим, что $\emptyset \notin P$. Тогда есть машина \widehat{M} , что $L(\widehat{M}) \notin P$. Тогда построим машину Тьюринга M_1 , принимающую в себя $\sigma(M)$ некоторой машины Тьюринга M, со следующим алгоритмом:

- 1. Построить машину Тьюринга \widetilde{M} по следующему описанию.
 - (a) Сохранить вход w.
 - (b) Запустить M на $\sigma(M)$.
 - (c) Если отвергнет, зациклиться. Если примет, запустить \widehat{M} на w.
- 2. Запустить M_P на $\sigma(\widetilde{M})$.

Заметим, что если $\sigma(M) \notin L(M)$, то машина \widetilde{M} зацикливается на любом входе, т.е. $L(\widetilde{M}) = \varnothing$. Иначе \widetilde{M} совпадает с \widehat{M} , т.е. $L(\widetilde{M}) = L(\widehat{M})$. Таким образом

$$L(\widetilde{M}) \in P \iff \sigma(M) \in L(M).$$

Таким образом ответ M_p на входе $\sigma(\widetilde{M})$ есть ответ на вопрос принадлежности $\sigma(M)$ множеству L(M). Таким образом M_1 не зацикливается и распознаёт язык L_1 , что противоречит ранее доказанным утверждениям.

Теперь предположим $\varnothing \in P$. Тогда есть машина \widehat{M} , что $L(\widehat{M}) \notin P$. По аналогии можно построить машину, которая распознаёт L_0 .

2 Формальные зыки и автоматы

Определение 6. $An\phi asum \ \Sigma$ — фиксированный (контекстом) набор элементов (cumsonos). Мы будем рассматривать только конечные алфавиты.

 $Cmpo\kappa a$ — (если не оговорено обратное, конечная) последовательность символов из алфавита. Строки обозначаются либо просто как переменные, т.е. w, либо в виде

$$a_1 \ldots a_n$$
,

где a_i — символы из алфавита Σ . Строка, где n=0, называется $nycmo\ddot{u}$ строко \ddot{u} и обозначается ε . Значение n называется длиной строки w и обозначается |w|. Количество вхождение некоторого символа a (т.е. количество индексов i, что $a_i=a$) обозначается $|w|_a$. Множество всех строк обозначается Σ^* .

Конкатенация — бинарная операция на строках, определяемая по правилу

$$(a_1 \ldots a_n, b_1 \ldots b_m) \mapsto a_1 \ldots a_n b_1 \ldots b_m.$$

Конкатенация строк u и v обозначается uv или $u \cdot v$. Множество строк с операцией конкатенации и выделенной ε образуют моноид.

Обращение строки — унарная операция на строках, определяемая по правилу

$$a_1 \dots a_n \mapsto a_n \dots a_1$$
.

Обращение строки w обозначается w^R .

 $\mathcal{A}su\kappa$ — множество строк, т.е. подмножество Σ^* .

Определение 7. Детерминированный конечный автомат (также "ДКА" или "DFA") A — это совокупность

- входного алфавита Σ ,
- конечного множества состояний Q,
- начального состояния $q_0 \in Q$,
- множество принимающих состояний $F \subseteq Q$,
- функция перехода $\delta: Q \times \Sigma \to Q$.

Входными данными является конечная строка $w=s_1\dots s_n$. Состояние вычисления после k шагов — это некоторое состояние автомата $q_k\in Q$. Соответственно, начальное состояние вычисления (оно же состояние вычисления после 0 шагов) — начальное состояние автомата q_0 . Каждым шагом состояние q_k заменяется на $q_{k+1}:=\delta(q_k,s_{k+1})$. Т.е. формально вычисление — это последовательность состояний $(q_k)_{k=0}^n$, где

- q_0 начальное состояние автомата,
- $q_{k+1} := \delta(q_k, s_{k+1}).$

Состояние q_n называется *результатом вычисления*. Также говорят, что автомат принимает строку w, если $q_n \in F$, и отвергает в ином случае.

Язык автомата A или язык, pаспознаваемый автоматом A, — это множество L(A) всех строк, распознаваемых (принимаемых) автоматом A. Язык, распознаваемый хоть каким-нибудь автоматом называется perynaphum.

Также в качестве удобства обозначений определим функцию δ^* на $Q \times \Sigma^*$ как

$$\delta^*(q, a_1 \dots a_n) := \delta^*(\dots \delta(q, a_1), \dots, a_n),$$

т.е. δ^* задаётся рекурсивно как

$$\delta^*(q,\varepsilon) = q, \qquad \delta^*(q,aw) = \delta^*(\delta(q,a),w).$$

Иногда мы будем писать δ , подразумевая δ^* .

Замечание. Детерминированные конечные автоматы удобно изображать в виде ориентированного графа. Пусть Q — вершины графа, и из каждой вершины q ведёт по $|\Sigma|$ рёбер: ребро из q с меткой s (для всякого $s \in \Sigma$) ведёт в $\delta(q,s)$. Также небольшой стрелочкой ведущей из ниоткуда в q_0 удобно помечать q_0 как начальную вершину, и удобно обвести каждую вершину из F, чтобы пометить её как принимающую.

Замечание. Несложно видеть, что

$$L(A) = \{ w \in \Sigma^* \mid \delta_A^*(q_{A,0}, w) \in F_A \}.$$

Это также значит, что $w \in L(A)$ тогда и только тогда, когда при проходе в графе A по пути, соответствующему слову w, мы попадаем в принимающее состояние. Говоря иначе, есть некоторая последовательность состояний q_0, \ldots, q_n , что

- n = |w|,
- $q_0 = q_{A,0}$ начальное состояние автомата,

- $\bullet \ q_{k+1} = \delta_A(q_k, a_{k+1}),$
- $q_n \in F_A$.

Теорема 6. Язык $L := \{a^n b^n\}_{n \in \mathbb{N}}$ нерегулярен.

Доказательство. Предположим имеется ДКА A, что L(A) = L. Заметим, что тогда строка $a^{|Q|}b^{|Q|} \in L$. Пусть вычисление этой строки имеет вид $q_0 \dots q_{|Q|} \dots$ (понятно, что $q_{|Q|}$ — состояние вычисления после последней буквы a). По принципу Дирихле есть из состояний $q_0, \dots, q_{|Q|}$ есть два совпадающих; пусть это будут q_i и q_j (i < j). Тогда покажем, что $a^{|Q|-(j-i)}b^{|Q|}$ тоже распознаётся (хотя не должна). Заметим, что процесс вычисления букв a будет иметь вид

$$q_0 \dots q_i = q_j \dots q_{|Q|}.$$

Таким образом состояние после прочтения последней буквы a будет тем же, а значит состояние после прочтения всей строки тоже будет тем же, а значит принимающим. \Box

Определение 8. Недетерминированный конечный автомат (также "HKA" или "NFA") — это совокупность

- входного алфавита Σ ,
- конечного множества состояний Q,
- множества начальных состояния $S \subseteq Q$,
- множество принимающих состояний $F \subseteq Q$,
- функция перехода $\delta: Q \times \Sigma \to 2^Q$.

Входными данными является конечная строка $w = s_1 \dots s_n$. Состояние вычисления после k шагов — это некоторое множество состояний автомата $S_k \in Q$. Соответственно, начальное состояние вычисления (оно же состояние вычисления после 0 шагов) — множество начальных состояние автомата $S_0 = S$. Каждым шагом состояние S_k заменяется на $S_{k+1} := \bigcup_{q \in S_k} \delta(q, s_{k+1})$. Т.е. формально вычисление — это последовательность множеств состояний $(S_k)_{k=0}^n$, где

- $S_0 = S$ начальное состояние автомата,
- $S_{k+1} := \bigcup_{q \in S_k} \delta(q, s_{k+1}).$

Множество состояний S_n называется *результатом вычисления*. Также говорят, что автомат принимает строку w, если $S_n \cap F \neq \emptyset$, и отвергает в ином случае.

Язык автомата A или язык, pаспознаваемый автоматом A, — это множество L(A) всех строк, распознаваемых (принимаемых) автоматом A. Язык, распознаваемый хоть каким-нибудь автоматом называется perynaphum.

Также в качестве удобства обозначений определим функцию δ^* на $2^Q \times \Sigma^*$ рекурсивно как

$$\delta^*(T,w) = \bigcup_{q \in T} \delta^*(q,w), \qquad \delta^*(\{q\},\varepsilon) = \{q\}, \qquad \delta^*(\{q\},aw) = \delta^*(\delta(q,a),w).$$

Иногда мы будем писать δ , подразумевая δ^* .

Замечание. Недетерминированные конечные автоматы удобно изображать в виде ориентированного графа. Пусть Q — вершины графа, и из каждой вершины q ведёт некоторое количество рёбер: по ребру из q с меткой s (для всякого $s \in \Sigma$) ведёт в каждую вершину из $\delta(q,s)$. Также небольшими стрелочками ведущими из ниоткуда в каждую вершину из S удобно помечать S как множество начальных вершин, и удобно обвести каждую вершину из F, чтобы пометить её как принимающую.

Замечание. Несложно видеть, что $w \in L(A)$ тогда и только тогда, когда есть путь в графе A, соответствующий строке w, что конечное состояние является принимающим. Говоря иначе, есть некоторая последовательность состояний q_0, \ldots, q_n , что

- n = |w|,
- $q_0 \in S_A$,
- $\bullet \ q_{k+1} \in \delta_A(q_k, a_{k+1}),$
- $q_n \in F_A$.

С другой стороны это также равносильно тому, что $\delta_A^*(S_A, w) \in F_A$.

Теорема 7. У всякого недетерминированного автомата A есть детерминированный автомат A', что L(A') = L(A).

Доказательство. Пусть дано, что $A = (\Sigma, Q, S, \delta, F)$. Тогда определим

$$A' = (\Sigma, 2^Q, S, \delta', \{T \subseteq Q \mid T \cap F \neq \emptyset\}),$$

где δ' определяется по правилу

$$\delta'(T,s) := \delta(T,s) = \bigcap_{q \in T} \delta(q,s).$$

Проще говоря, A' имитирует A, запоминая в каком множестве состояний мы находимся в каждый момент и эмулируя правильный переход к новому множеству состояний. Формально говоря, несложно показать по индукции по |w|, что множество состояний автомата A после прочтения слова w является состоянием автомата A' после прочтения того же слова w.

Замечание 1. Можно на языках ввести следующие операции.

- $K \cup L$, $K \cap L$, $K \triangle L$, \overline{L} стандартные операции на множествах.
- Конкатенация. $KL = K \cdot L := \{uv \mid u \in K \land v \in L\}.$
- Конкатенация нескольких копий. $L^k := L \cdot \dots \cdot L$. $L^0 = \{\varepsilon\}$.
- ullet Конкатенация любого конечного числа копий или звёздочка Клини. $L^* = \bigcup_{k=0}^\infty L^k$.

В таком случае $(2^{\Sigma^*}, \cup, \cdot, \varnothing, \{\varepsilon\})$ — полукольцо.

2.1 Регулярные выражение и равносильность конечным автоматам

Определение 9. Рекурсивно определим понятие регулярного выражения.

- \varnothing регулярное выражение.
- a, где $a \in \Sigma$, регулярное выражение.
- $(\varphi \psi)$, $(\varphi | \psi)$ и φ^* , где φ и ψ есть регулярные выражения, регулярные выражения.

Множество регулярных выражений над алфавитом Σ обозначается $RE(\Sigma)$.

Теперь рекурсивно определим язык регулярного выражения.

• $L(\varnothing) = \varnothing$.

- $L(a) = \{a\}.$
- $L(\varphi\psi) = L(\varphi)L(\psi)$.
- $L(\varphi|\psi) = L(\varphi) \cup L(\psi)$.
- $L(\varphi^*) = L(\varphi)^*$.

Теорема 8. Язык распознаётся конечным автоматом тогда и только тогда, когда задаётся регулярным выражением.

Определение 10. Недетерминированный конечный автомат с ε -переходами (также " ε -НКА" или " ε -NFA") — это совокупность

- входного алфавита Σ ,
- конечного множества состояний Q,
- множества начальных состояния $S \subseteq Q$,
- множество принимающих состояний $F \subseteq Q$,
- функция перехода $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^Q$.

 ε -замыканием состояния q называется множество состояний

$$E(q) := \{ p \mid \exists k \in \mathbb{N} \colon \exists q_0, \dots, q_k \in Q \colon q_0 = q \land q_k = p \land \forall i = 1, \dots, k \ q_i = \delta(q_{i-1}, \varepsilon) \}.$$

Также по аналогии ε -замыканием множества состояния T называется множество состояний

$$E(T) := \bigcup_{q \in T} E(q),$$

откуда, в частности, получается "рекурсивное определение"

$$E(T) := T \cup \bigcup_{q \in T} E(\delta(q, \varepsilon)).$$

Входными данными является конечная строка $w = s_1 \dots s_n$. Состояние вычисления после k шагов — это некоторое множество состояний автомата $S_k \in Q$. Соответственно, начальное состояние вычисления (оно же состояние вычисления после 0 шагов) — множество начальных состояние автомата $S_0 = E(S)$. Каждым шагом состояние S_k заменяется на $S_{k+1} := \bigcup_{q \in S_k} E(\delta(q, s_{k+1}))$. Т.е. формально вычисление — это последовательность множеств состояний $(S_k)_{k=0}^n$, где

- $S_0 = E(S)$ начальное состояние автомата,
- $S_{k+1} := \bigcup_{q \in S_k} E(\delta(q, s_{k+1})).$

Множество состояний S_n называется результатом вычисления. Также говорят, что автомат принимает строку w, если $S_n \cap F \neq \emptyset$, и отвергает в ином случае.

Язык автомата A или язык, pаспознаваемый автоматом A, — это множество L(A) всех строк, распознаваемых (принимаемых) автоматом A. Язык, распознаваемый хоть каким-нибудь автоматом называется perynaphum.

Также в качестве удобства обозначений определим функцию δ^* на $2^Q \times \Sigma^*$ рекурсивно как

$$\delta^*(T,w) = \bigcup_{q \in T} \delta^*(q,w), \qquad \delta^*(\{q\},\varepsilon) = E(\{q\}), \qquad \delta^*(\{q\},aw) = \delta^*\left(\bigcup_{p \in E(q)} \delta(p,a),w\right).$$

Иногда мы будем писать δ , подразумевая δ^* .

Замечание. Недетерминированные конечные автоматы с ε -переходами удобно изображать точно также как обычные НКА, но на стрелках (ориентированных рёбрах) переходов теперь можно писать и новодобавленный символ ε .

Замечание. Несложно видеть, что $w \in L(A)$ тогда и только тогда, когда есть некоторое представление $w = s_1 \dots s_n$, где $s_i \in \Sigma \cup \{\varepsilon\}$, и некоторая последовательность состояний q_0, \dots, q_n , что

- $q_0 \in S_A$,
- $\bullet \ q_{k+1} \in \delta_A(q_k, s_{k+1}),$
- $q_n \in F_A$.

С другой стороны это также равносильно тому, что $\delta_A^*(S_A, w) \in F_A$.

Лемма 9. Всякое регулярное выражение можно заменить на ε -HKA, порождающий тот же язык.

Доказательство. Давайте построим для каждого регулярного выражения ε -НКА с ровно одним начальным состоянием и ровно одним принимающим состоянием. И будем мы это делать по рекурсивному построению регулярного выражения:

- Автомат для регулярного выражения Ø будет состоять только из одного начального и одного принимающего состояний, не иметь других состояний и не иметь никаких переходов.
- Автомат для регулярного выражения a ($a \in \Sigma$) будет состоять только из одного начального и одного принимающего состояний, не иметь других состояний и иметь единственный переход от начального состояния к принимающему по символу a.
- Автомат для регулярного выражения $\varphi\psi$ будет получаться проведением перехода по ε от принимающего состояния φ к начальному состоянию ψ . Соединённые состояния теряют свои роли (т.е. больше не являются принимающей и начальной соответственно).
- Автомат для регулярного выражения $\varphi|\psi$ будет получаться проведением переходов по ε от начального состояния строимого автомата к начальным состояниям автоматов φ и ψ и переходов по ε от принимающих состояний автоматов φ и ψ к принимающему состоянию строимого автомата. Начальные и принимающие состояния старых автоматов теряют свои роли.
- Автомат для регулярного выражения φ * будет получаться проведением перехода по ε от начального состояния строимого автомата к начальному состоянию автомата φ , перехода по ε от принимающего состояния автомата φ к начальному состоянию строимого автомата и перехода по ε от начального состояния строимого автомата к принимающему состоянию строимого автомата. Начальные и принимающие состояния старого автомата теряют свои роли.

Картиночки.

Несложно видеть по индукции по построению выражения, что строимые автоматы, действительно, строят язык соответствующих регулярных выражений.

Лемма 10. Всякий ε -НКА можно заменить на НКА, порождающий тот же язык.

Доказательство. Неформально говоря, мы хотим во всяком пути $s_1 \dots s_n$ произвести разбиение на несколько блоков вида $\varepsilon^k a$ (для некоторых $k \in \mathbb{N}$ и $a \in \Sigma$) оканчивающееся на дополнительный блок вида ε^k и заменить каждый (не дополнительный) блок на ровно один переход; дополнительный блок можно будет убрать при правильной замене множества принимающих состояний.

Теперь формальное построение. Пусть дан ε -НКА $A=(\Sigma,Q,S,F,\delta)$. Будем строить НКА A'. Σ,Q и S оставим без изменений. Теперь определим новые δ' и F'. δ' определяется по правилу

$$\delta'(q, a) := \bigcup_{p \in E(q)} \delta(p, a),$$

а F' определяется как

$$F' := \{ q \in Q \mid E(q) \cap F \neq \emptyset \}.$$

Определение 11. Недетерминированный конечный автомат с regex-переходами (также "RE-HKA" или "RE-NFA") — это совокупность

- входного алфавита Σ ,
- конечного множества состояний Q,
- множества начальных состояния $S \subseteq Q$,
- множество принимающих состояний $F \subseteq Q$,
- функция перехода $\delta: Q \times \mathrm{RE}(\Sigma) \to 2^Q$, что для всякого $q \in Q$ и всех $r \in RE(\Sigma)$ кроме, быть может, конечного множества $\delta(q,r) = \varnothing$.

Входными данными является конечная строка w. Входная строка принимается автоматом, если есть её разбиение на подстроки $w=u_1\ldots u_n$, последовательность регулярных выражений r_1 , ..., r_n и последовательность состояний q_0,\ldots,q_n , что

- $u_k \in L(r_k)$ для всех k,
- $q_0 \in S$,
- $q_{k+1} \in \delta(q_k, r_{k+1}),$
- $q_n \in F$.

Язык автомата A или язык, pаспознаваемый автоматом <math>A, — это множество L(A) всех строк, распознаваемых (принимаемых) автоматом A. Язык, распознаваемый хоть каким-нибудь автоматом называется pezyлярным.

Замечание. Недетерминированные конечные автоматы с ε -переходами удобно изображать точно также как обычные НКА, но на стрелках (ориентированных рёбрах) переходов теперь можно писать не символы из Σ , а регулярные выражения из $RE(\Sigma)$. Также по аналогии можно описать про существование пути в графе, но проще будет это вывести напрямик из уже данного определения.

Замечание. В этом случае также можно написать рекурсивную формулу δ^* (и через неё определить принимаемые слова). Но в этот раз она будет совсем муторной и бесполезной.

Пемма 11. Всякий RE-HKA можно заменить на регулярное выражение, порождающее тот же язык.

Доказательство. Заметим, что регулярное выражение для пустой строки есть \emptyset^* . Таким образом WLOG рассматриваемый RE-HKA автомат содержит одно начальное и одно принимающее состояние; так как иначе можно создать новые начальное и принимающее состояния, провести ε -переходы из нового начального в старые начальные состояния и из старых принимающих в новое принимающее и забыть роли старых начальных и принимающих состояний.

Будем уменьшать когда можно количество рёбер, а затем когда можно количество вершин. Рёбра будем склеивать кратные, т.е. если есть две вершины p и q два перехода из p в q по регулярным выражениям r_1 и r_2 , то заменим на один переход из p в q по регулярному выражению $r_1|r_2$. Очевидно, что язык автомата не меняется. Таким образом кратных рёбер у нас исчезают.

Теперь пусть имеется состояние q отличное от начального и принимающего. Попытаемся удалить q. Для всяких вершин p_1 и p_2 рассмотрим регулярные выражения r_1 , r_2 и r, соответствующие переходам из p_1 в q, из q в r_2 и из q в q соответственно, и заменим эти переходы (они будут удалены с удалением q) на перход из p_1 в p_2 по регулярному выражению $r_1r * r_2$. Несложно проверить, что это тоже не изменит язык автомата.

Таким образом у нас останутся только два состояния и не более двух переходов между ними. Пусть регулярное выражение перехода от начального состояния к принимающему — r, а от принимающего к начальному — s. Следовательно, язык автомата порождается регулярным выражением $r(sr)^*$.

2.2 Разные действия над автоматами

Определение 12. Пусть даны ДКА $A = (\Sigma, P, p_0, \eta, E)$ и $B = (\Sigma, Q, q_0, \delta, F)$. Прямым произведением автоматов A и B есть автомат $A \times B := C = (\Sigma, P \times Q, (p_0, q_0), \theta, E \times F)$, где

$$\theta((p,q),a) := (\eta(p,a), \delta(q,a)).$$

B таком случае $L(A \times B) = L(A) \cap L(B)$.

Также можно построить автомат $C=(\Sigma, P\times Q, (p_0,q_0), \theta, E\times Q\cup P\times F),$ где

$$\theta((p,q),a) := (\eta(p,a), \delta(q,a)).$$

B таком случае $L(C) = L(A) \cup L(B)$.

Также можно построить автомат $C = (\Sigma, P, p_0, \eta, P \setminus E)$. В таком случае $L(C) = \Sigma^* \setminus L(A)$. Также можно построить автомат $C = (\Sigma, P^P, f_\varepsilon = \operatorname{Id}, \widehat{\varepsilon}, \{f \in P^P \mid f^2(q_0) \in F\})$, где P^P — множество функций $P \to P$, $f_w : P \to P$ — функция, переводящее всякое состояние p в состояние, которое получается из p прохождением по слову w, а

$$\widehat{\delta}(f,a) := f_a \circ f.$$

В таком случае $L(C) = \sqrt{L(A)} := \{ w \in \Sigma^* \mid ww \in L(A) \}.$

Лемма 12 (о накачке, Рабин, Скотт). Пусть $L \subseteq \Sigma^*$ регулярен. Тогда есть константа $p \geqslant 1$, что для всякого слова w длины хотя бы p существует разбиение w = xyz, где $y \neq \varepsilon$ $u |xy| \leqslant p$, что для всех $l \geqslant 0$

$$xy^lz \in L.$$

Пример 3. Язык $L = \{(ab)^n a^n\}_{n \in \mathbb{N}}$ не регулярен, но удовлетворяет лемме о накачке.