ACT-11302: Cálculo Actuarial III -Notas de Clase-

Juan Carlos Martínez-Ovando

ITAM

Primavera 2018

Modelo binomial-beta

Modelo binomial/Bernoulli

Definimos un conjunto de variables aleatorias X_1,\dots,X_n , siendo n el tamaño de la muestra.

Suponemos que las X_i s son intercambiables, con $X_i \sim \text{Ber}(x|\theta)$ con $\theta \in (0,1)$. Así, tenemos que condicional en θ ,

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n | \theta) = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \prod_{i=1}^n \mathbb{I}_{\{0,1\}}(x_i).$$
 (1)

Distribución inicial uniforme

Siendo que $\theta \in (0,1)$, podemos suponer que cualquier intervalo de (0,1) de la misma longitud thenga la misma probabilidad de pertenencia para θ , i.e.

$$\mathbb{P}(a < \theta < b) = \mathbb{P}(c < \theta < d), \tag{2}$$

para todo a < b y c < d en el intervalo unitario, tal que (d - c) = (b - a).

Modelo binomial/Bernoulli

Definimos un conjunto de variables aleatorias X_1,\dots,X_n , siendo n el tamaño de la muestra.

Suponemos que las X_i s son intercambiables, con $X_i \sim \text{Ber}(x|\theta)$ con $\theta \in (0,1)$. Así, tenemos que condicional en θ ,

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n | \theta) = \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \prod_{i=1}^n \mathbb{I}_{\{0,1\}}(x_i).$$
 (1)

Distribución inicial uniforme

Siendo que $\theta \in (0,1)$, podemos suponer que cualquier intervalo de (0,1) de la misma longitud thenga la misma probabilidad de pertenencia para θ , i.e.

$$\mathbb{P}(a < \theta < b) = \mathbb{P}(c < \theta < d), \tag{2}$$

para todo a < b y c < d en el intervalo unitario, tal que (d-c) = (b-a).

Distribución inicial uniforme

La condici" on anterior implica que

$$\pi(\theta) = \mathbb{P}(\theta = z) = 1 \mathbb{I}_{(0,1)}(z). \tag{3}$$

Reflexionen sobre este resultado.

Distribución conjunta observables y parámetros

Considerando la distriución inicial uniforme, tenemos que la distribución conjunta esta dada por

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n | \theta) \times \pi(\theta) \\
= \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \prod_{i=1}^n \mathbb{I}_{\{0,1\}}(x_i) \mathbb{I}_{(0,1)}(\theta).$$

Distribución inicial uniforme

La condici" on anterior implica que

$$\pi(\theta) = \mathbb{P}(\theta = z) = 1 \,\mathbb{I}_{(0,1)}(z). \tag{3}$$

Reflexionen sobre este resultado.

Distribución conjunta observables y parámetros

Considerando la distriución inicial uniforme, tenemos que la distribución conjunta esta dada por

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta) = \mathbb{P}(X_1 = x_1, \dots, X_n = x_n | \theta) \times \pi(\theta) \\
= \theta^{\sum_{i=1}^n x_i} (1 - \theta)^{n - \sum_{i=1}^n x_i} \prod_{i=1}^n \mathbb{I}_{\{0,1\}}(x_i) \mathbb{I}_{(0,1)}(\theta).$$

Aprendizaje

Distribución posterior

Empleando el teorema de Bayes, podemos actualizar $\pi(\theta)$ a la luz de la información contenida en la muestra (datos) $X_1=x_1,\ldots,X_n=x_n$,

$$\mathbb{P}(\theta|X_1 = x_1, \dots, X_n = x_n) = \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta)}{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n)}$$

$$\propto \theta^{n_1} (1 - \theta)^{n_0} \mathbb{I}_{(0,1)}(\theta),$$

donde
$$n_1 = \#\{x_i = 1\}$$
 y $n_0 = \#\{x_i = 0\}$ (con $n = n_1 + n_0$).

Pregunta

- Es $\theta^{n_1} (1-\theta)^{n_0} \mathbb{I}_{(0,1)}(\theta)$ una función de probabilidad?
- Cómo calcular $\mathbb{P}(x_1,\ldots,x_n)$

Distribución posterior

Empleando el teorema de Bayes, podemos actualizar $\pi(\theta)$ a la luz de la información contenida en la muestra (datos) $X_1=x_1,\ldots,X_n=x_n$,

$$\mathbb{P}(\theta|X_1 = x_1, \dots, X_n = x_n) = \frac{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta)}{\mathbb{P}(X_1 = x_1, \dots, X_n = x_n)} \\
\propto \theta^{n_1} (1 - \theta)^{n_0} \mathbb{I}_{(0,1)}(\theta),$$

donde $n_1 = \#\{x_i = 1\}$ y $n_0 = \#\{x_i = 0\}$ (con $n = n_1 + n_0$).

Pregunta

- ► Es $\theta^{n_1} (1-\theta)^{n_0} \mathbb{I}_{(0,1)}(\theta)$ una función de probabilidad?
- ightharpoonup Cómo calcular $\mathbb{P}(x_1,\ldots,x_n)$?

Figura: Distribución final de θ para diferentes valores de n_1 y n_0 con distribución inicial uniforme (a.k.a. función de verosimilitud convecional)

Constante de normalización

La constante de normalización de $\mathbb{P}(\theta|X_1=x_1,\ldots,X_n=x_n)$ no depende de θ . Sin embargo, no es ajena a $\pi(\theta)$, pues se obtiene como el promedio de ésta, i.e.

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \int \mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta) d\theta
= \int_{(0,1)} \theta^{n_1} (1 - \theta)^{n_0} d\theta
= \frac{\Gamma(n_1 + 1)\Gamma(n_0 + 1)}{\Gamma(n_1 + n_0 + 2)}.$$
(4)

Distribución final (revisada)

$$\theta|x_1,\ldots,x_n \sim \mathsf{Be}(\theta|n_1+1,n_0+1).$$
 (5)

Constante de normalización

La constante de normalización de $\mathbb{P}(\theta|X_1=x_1,\ldots,X_n=x_n)$ no depende de θ . Sin embargo, no es ajena a $\pi(\theta)$, pues se obtiene como el promedio de ésta, i.e.

$$\mathbb{P}(X_1 = x_1, \dots, X_n = x_n) = \int \mathbb{P}(X_1 = x_1, \dots, X_n = x_n, \theta) d\theta
= \int_{(0,1)} \theta^{n_1} (1 - \theta)^{n_0} d\theta
= \frac{\Gamma(n_1 + 1)\Gamma(n_0 + 1)}{\Gamma(n_1 + n_0 + 2)}.$$
(4)

Distribución final (revisada)

$$\theta | x_1, \dots, x_n \sim \mathsf{Be}(\theta | n_1 + 1, n_0 + 1).$$
 (5)

Distribución inicial conjugada

Para el modelo Bernouolli (y binomial también), la distribución inicial conjugada es

$$\pi(\theta) = \mathsf{Be}(\theta|a_0, b_0)$$

donde $a_0,b_0>0$ son dos hiperparámetros (parámetros de la distribución inicial, usualmente fijados por nosotros previamente a haber observado los datos).

Distribución final conjugada

Siguiendo el razonamiento anterior, la distribución final conjugada para θ dado un conjunto de datos, x_1,\dots,x_n es

$$\pi(\theta|x_1,\ldots,x_n) = Be(\theta|a_0+n_1,b_0+n_0)$$

con n_1 y n_0 definidos como antes

Distribución inicial conjugada

Para el modelo Bernouolli (y binomial también), la distribución inicial conjugada es

$$\pi(\theta) = \mathsf{Be}(\theta|a_0, b_0)$$

donde $a_0,b_0>0$ son dos hiperparámetros (parámetros de la distribución inicial, usualmente fijados por nosotros previamente a haber observado los datos).

Distribución final conjugada

Siguiendo el razonamiento anterior, la distribución final conjugada para θ dado un conjunto de datos, x_1,\ldots,x_n es

$$\pi(\theta|x_1,\ldots,x_n) = \mathsf{Be}(\theta|a_0+n_1,b_0+n_0)$$

con n_1 y n_0 definidos como antes.

 ${\bf Figura}.$ Distribución inicial conjugada para θ con diferentes hiperparámetros a_0 y b_0

Figura: Distribución final conjugada para θ con diferentes hiperparámetros a_0 y b_0 y datos muestrales $n_1=129$ y $n_0=1$

Figura: Distribución final conjugada para θ con diferentes hiperparámetros a_0 y b_0 y datos muestrales $n_1=100$ y $n_0=30$

Figura: Distribución final conjugada para θ con diferentes hiperparámetros a_0 y b_0 y datos muestrales $n_1=65$ y $n_0=65$

Figura: Distribución final conjugada para θ con diferentes hiperparámetros a_0 y b_0 y datos muestrales $n_1=30$ y $n_0=100$

Figura: Distribución final conjugada para θ con diferentes hiperparámetros a_0 y b_0 y datos muestrales $n_1=1$ y $n_0=129$

Gracias

juan.martinez.ovando@itam.mx