

Machine Learning and Intelligent Systems

A Quick Review on Probability

Maria A. Zuluaga

Pre-lecture material

EURECOM - Data Science Department

Table of contents

Distributions

Some Common Distributions

Joint and Conditional Probabilities

Statistical Properties

Distributions

Probability Density Function and Probability Mass Function

- The probability density function (PDF), or density of a <u>continuous random variable</u>, is a function that describes the relative <u>likelihood</u> for this random variable to take on a given value.
- It is the primary means of defining a probability distribution.

Probability Density Function and Probability Mass Function

- The probability density function (PDF), or density of a <u>continuous random variable</u>, is a function that describes the relative <u>likelihood</u> for this random variable to take on a given value.
- It is the primary means of defining a probability distribution.

- A probability mass function (PMF) is a function that gives the probability that a discrete random variable is exactly equal to some value.
- It is often the primary means of defining a <u>discrete</u> probability distribution.

Some Common Distributions

- The Gaussian is the most widely used distribution for continuous variables.
- For univariate variables z it is governed by two parameters: the mean μ and the variance $\sigma^2>0$.

- The Gaussian is the most widely used distribution for continuous variables.
- For univariate variables z it is governed by two parameters: the mean μ and the variance $\sigma^2 > 0$.
- For D-dimensional vectors, it is governed by μ and a $D \times D$ covariance matrix Σ (symmetric and positive-definite).

- The Gaussian is the most widely used distribution for continuous variables.
- For univariate variables z it is governed by two parameters: the mean μ and the variance $\sigma^2 > 0$.
- For *D*-dimensional vectors, it is governed by μ and a $D \times D$ covariance matrix Σ (symmetric and positive-definite).

Univariate:

$$N(z|\mu,\sigma^2) = rac{1}{\sigma\sqrt{2\pi}} \exp\left\{-rac{(z-\mu)^2}{2\sigma^2}
ight\}$$

$$\mathbb{E}[z] = \mu$$
 $var[z] = \sigma^2$

- The Gaussian is the most widely used distribution for continuous variables.
- For univariate variables z it is governed by two parameters: the mean μ and the variance $\sigma^2 > 0$.
- For D-dimensional vectors, it is governed by μ and a $D \times D$ covariance matrix Σ (symmetric and positive-definite).

Multivariate:

$$\mathcal{N}(oldsymbol{z}|oldsymbol{\mu}, \Sigma) = rac{1}{(2\pi)^{D/2}|\Sigma|^{1/2}} \exp\left\{-rac{1}{2} \left(oldsymbol{z} - oldsymbol{\mu}
ight)^T \Sigma^{-1} \left(oldsymbol{z} - oldsymbol{\mu}
ight)
ight\} \ \mathbb{E}[oldsymbol{z}] = oldsymbol{\mu} \ cov[oldsymbol{z}] = \Sigma$$

 \bullet Distribution for a single binary variable $z \in \{0,1\}$

- Distribution for a single binary variable $z \in \{0, 1\}$
- Used for representing a coin toss

- Distribution for a single binary variable $z \in \{0, 1\}$
- Used for representing a coin toss
- ullet It is governed by a single continuous parameter $p\in [0,1]$ that represents the probability of z=1

- Distribution for a single binary variable $z \in \{0, 1\}$
- Used for representing a coin toss
- ullet It is governed by a single continuous parameter $p\in[0,1]$ that represents the probability of z=1

$$Bern(z|p) = p^z(1-p)^{1-z}$$

$$\mathbb{E}[z] = p$$
 $var[z] = p(1-p)$

Binomial Distribution

• Gives the probability of observing m occurrences of z=1 in a set of N samples from a Bernoulli distribution, where the probability of observing z=1 is $z\in\{0,1\}$

6

Binomial Distribution

- Gives the probability of observing m occurrences of z=1 in a set of N samples from a Bernoulli distribution, where the probability of observing z=1 is $z\in\{0,1\}$
- Last lecture example with 10 coin tosses follows the binomial distribution. One toss follows Bernoulli

Binomial Distribution

- Gives the probability of observing m occurrences of z=1 in a set of N samples from a Bernoulli distribution, where the probability of observing z=1 is $z\in\{0,1\}$
- Last lecture example with 10 coin tosses follows the binomial distribution. One toss follows Bernoulli

$$Bin(m|N,p) = {N \choose m} p^m (1-p)^{1-m}$$
 $\mathbb{E}[m] = Np$ $var[m] = Np(1-p)$

• The multinomial distribution is a generalization of the binomial distribution

Multinomial Distribution

• Multivariate generalization of the binomial that gives the distribution over counts m_k for a K-state discrete variable z to be in state k given a total number of observations N.

$$\mathbf{z} = [z_1, z_2, z_3, \dots, z_k], \quad z_k \in \{0, 1\}$$

Multinomial Distribution

• Multivariate generalization of the binomial that gives the distribution over counts m_k for a K-state discrete variable z to be in state k given a total number of observations N.

$$\mathbf{z} = [z_1, z_2, z_3, \dots, z_k], \quad z_k \in \{0, 1\}$$

• When K=2 and N=1, it is Bernoulli distribution. When K=2 and N>1 it is the binomial distribution.

7

Multinomial Distribution

with $\mu = (p_1, \ldots, p_K)^T$

• Multivariate generalization of the binomial that gives the distribution over counts m_k for a K-state discrete variable z to be in state k given a total number of observations N.

$$\mathbf{z} = [z_1, z_2, z_3, \dots, z_k], \quad z_k \in \{0, 1\}$$

• When K=2 and N=1, it is Bernoulli distribution. When K=2 and N>1 it is the binomial distribution.

$$Mult(m_1, m_2, m_3, \dots, m_K | \mu, N) = \begin{pmatrix} N \\ m_1 m_2 \dots m_M \end{pmatrix} \prod_{k=1}^M p_k^{m_k}$$

$$\mathbb{E}[m_k] = Np_k$$

$$var[m_k] = Np_k(1 - p_k)$$

$$cov[m_j m_k] = -Np_j p_k$$

7

MLE and the Coin Toss Problem (revisited)

Formulation:

- You ask yourself, "What is the probability that this coin comes up heads when I toss it?"
- You toss it n = 10 times and obtain the following sequence of outcomes:

$$\mathcal{D} = \{H, T, T, H, H, H, T, T, T, T\}.$$

• Based on these samples, how would you estimate P(H)?

MLE and the Coin Toss Problem (revisited)

Formulation:

- You ask yourself, "What is the probability that this coin comes up heads when I toss it?"
- You toss it n = 10 times and obtain the following sequence of outcomes:

$$\mathcal{D} = \{H, T, T, H, H, H, T, T, T, T\}.$$

• Based on these samples, how would you estimate P(H)?

Let's try to formalize it:

- We want to find an expression for P(H)
- What is P(H)?
- This problem can be solved, through MLE, in two different ways

- Lets define $z \in \{0,1\}$ a random binary variable representing the outcome of a single coin toss.
- Heads: z = 1, Tails: z = 0

- Lets define $z \in \{0,1\}$ a random binary variable representing the outcome of **a single coin** toss.
- Heads: z = 1, Tails: z = 0
- Thus we can formalize $\mathcal{D} = \{H, T, T, H, H, H, T, T, T, T\}$, as the set $\mathcal{D} = \{z_1, \dots, z_N\}$ of observed values of z.

- Lets define $z \in \{0,1\}$ a random binary variable representing the outcome of a single coin toss.
- Heads: z = 1, Tails: z = 0
- Thus we can formalize $\mathcal{D} = \{H, T, T, H, H, H, T, T, T, T\}$, as the set $\mathcal{D} = \{z_1, \dots, z_N\}$ of observed values of z.
- We just saw that the outcome of a single coin toss follow the Bernoulli distribution
- Parameter:
 - $0 \le p \le 1$ The probability of heads
 - ullet q=1-p the probability of tails (can be obtained through p)

- Lets define $z \in \{0,1\}$ a random binary variable representing the outcome of a single coin toss.
- Heads: z = 1, Tails: z = 0
- Thus we can formalize $\mathcal{D} = \{H, T, T, H, H, H, T, T, T, T\}$, as the set $\mathcal{D} = \{z_1, \dots, z_N\}$ of observed values of z.
- We just saw that the outcome of a single coin toss follow the Bernoulli distribution
- Parameter:
 - $0 \le p \le 1$ The probability of heads
 - ullet q=1-p the probability of tails (can be obtained through p)

Goal: Use MLE to find p

With all these elements we can now construct the likelihood function, under the assumption that the observations (the coin tosses) are independent, so that

$$p(\mathcal{D}| heta) = \prod_{i=1}^N p(z_i| heta)$$

The log-likelihood is given by (see MLE slides):

$$egin{aligned} \log p(\mathcal{D}|p) &= \sum_{i=1}^N \log p(z_i| heta) \ &= \sum_{i=1}^N \log \left(p^{z_i} (1-p)^{1-z_i}
ight) \ &= \sum_{i=1}^N z_i \log p + (1-z_i) \log (1-p) \end{aligned}$$

Using the expression found for $\log p(\mathcal{D}|p)$ we can find p_{MLE} by:

$$p_{MLE} = rg \min_{p} \sum_{i=1}^{N} z_i \log p + (1-z_i) \log(1-p)$$

Using the expression found for $\log p(\mathcal{D}|p)$ we can find p_{MLE} by:

$$p_{MLE} = rg \min_{p} \sum_{i=1}^{N} z_i \log p + (1-z_i) \log(1-p)$$

How?

$$\frac{\partial}{\partial p} \left(\sum_{i=1}^{N} z_i \log p + (1-z_i) \log(1-p) \right) = 0$$

and solving for p.

(quick) Exercise: Your task to complete it and find p.

- We know that the binomial distribution is nothing else than repeated Bernoulli trials
- Parameters:
 - N: The number of trials $\longrightarrow N = n_H + n_T$ in our example
 - ullet p: The probability of heads

- We know that the binomial distribution is nothing else than repeated Bernoulli trials
- Parameters:
 - N: The number of trials $\longrightarrow N = n_H + n_T$ in our example
 - p: The probability of heads
- ullet In this case, we express the observations as $\mathcal{D} \sim \textit{Bin}(\textit{N},\textit{p})$

- We know that the binomial distribution is nothing else than repeated Bernoulli trials
- Parameters:
 - N: The number of trials $\longrightarrow N = n_H + n_T$ in our example
 - p: The probability of heads
- In this case, we express the observations as $\mathcal{D} \sim Bin(N, p)$

Goal: Use MLE to find p

- In this case, we express the observations as $\mathcal{D} \sim Bin(N,p)$
- What does this imply?

$$p(\mathcal{D}|\theta) = \left(egin{array}{c} n_H + n_T \\ n_H \end{array}
ight) heta^{n_H} \left(1 - heta
ight)^{n_T}$$

with $\theta \Rightarrow p$

- In this case, we express the observations as $\mathcal{D} \sim Bin(N,p)$
- What does this imply?

$$p(\mathcal{D}|\theta) = \left(egin{array}{c} n_H + n_T \\ n_H \end{array}
ight) heta^{n_H} \left(1 - heta
ight)^{n_T}$$

with $\theta \Rightarrow p$

- When we plug-in this expression into our likelihood estimator the product (or sum) disappears
- Why?

This leads us to:

$$p_{MLE} = \operatorname*{arg\ min}_{p} \ \log \left(\left(\begin{array}{c} n_{H} + n_{T} \\ n_{H} \end{array} \right) p^{n_{H}} \left(1 - p \right)^{n_{T}} \right)$$

which is solved through:

$$\frac{\partial}{\partial p} \left(n_H \log p + n_T \log (1-p) \right) = 0$$

Approach 2: Binomial distribution

This leads us to:

$$p_{MLE} = \underset{p}{\operatorname{arg min}} \log \left(\left(\begin{array}{c} n_H + n_T \\ n_H \end{array} \right) p^{n_H} (1-p)^{n_T} \right)$$

$$= \underset{p}{\operatorname{arg min}} \log \left(\left(\begin{array}{c} n_H + n_T \\ n_H \end{array} \right) p^{n_H} (1-p)^{n_T} \right)$$

which is solved through:

$$\frac{\partial}{\partial p}\left(n_H\log p + n_T\log(1-p)\right) = 0$$

Exercise: Show that this leads to the same results as with Approach 1.

Approach 2: Binomial distribution

This leads us to:

$$p_{MLE} = \underset{p}{\operatorname{arg min}} \log \left(\left(\begin{array}{c} n_H + n_T \\ n_H \end{array} \right) p^{n_H} (1-p)^{n_T} \right)$$

$$= \underset{p}{\operatorname{arg min}} \log \left(\left(\begin{array}{c} n_H + n_T \\ n_H \end{array} \right) p^{n_H} (1-p)^{n_T} \right)$$

$$= \underset{p}{\operatorname{arg min}} n_H \log p + n_T \log (1-p)$$

which is solved through:

$$\frac{\partial}{\partial p} \left(n_H \log p + n_T \log (1 - p) \right) = 0$$

Exercise: Show that this leads to the same results as with Approach 1.

Joint and Conditional

Probabilities

Joint Probabilities

- The supervised learning problem (regression) has an input X and the corresponding target output vector y with the goal to predict y given a new value x.
- The joint probability distribution p(x, y) provides a view on the uncertainty of these variables.

Joint Probabilities

- The supervised learning problem (regression) has an input X and the corresponding target output vector y with the goal to predict y given a new value x.
- The joint probability distribution p(x, y) provides a view on the uncertainty of these variables.

Joint probability: For two discrete random variables, X and Y, P(X = x, Y = y) is the probability that random variable X has value X and random Y has value Y.

Joint density function: For two continuous random variables, x and y, p(x, y) is the joint density function (pdf).

Source: https://en.wikipedia.org/wiki/Joint_probability_distribution

Conditional Probabilities

- When variables are dependent it is possible to work with conditioning
- Example: Probability of breaking the world marathon record (B=1) given that the temperature will be above 30 (A=1)

$$P(B=1|A=1)$$

• Conditional PDF example

$$p(\mathbf{y}_i|\mathbf{x}_i;\mathbf{w},\boldsymbol{\sigma}^2)$$

Conditional probability example

$$P(9 \le \mathbf{y}_i \le 9.8 | \mathbf{x}_i; \mathbf{w}, \boldsymbol{\sigma}^2)$$

The Rules of Probability

	Discrete variables	Continuous variables
Sum rule	$P(X) = \sum_{Y} P(X, Y)$	$p(x) = \int_{y} p(x, y) dy$
Product rule	P(X,Y) = P(Y X)P(X)	p(x,y) = p(y x)p(x)

- P(X, Y): Joint probability.
- P(Y|X): Conditional probability, e.g. the probability of Y given X.
- P(X): Marginal probability, e.g. the probability of X.

An Illustration

Bayes' Theorem

Using the product rule and the symmetry property P(X, Y) = P(Y, X) we obtain the following relationship among conditional probabilities:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)},\tag{1}$$

which is known as the Bayes'theorem.

Bayes' Theorem

Using the product rule and the symmetry property P(X, Y) = P(Y, X) we obtain the following relationship among conditional probabilities:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)},\tag{1}$$

which is known as the Bayes'theorem.

Using the sum rule, the denominator in Bayes' theorem can be expressed in terms of the quantities appearing in the numerator:

$$P(Y|X) = \frac{P(X|Y)P(Y)}{\sum_{Y} P(X|Y)P(Y)}$$
(2)

The Elements in the Bayes' theorem

Quantity	Name	Interpretation
P(Y)	Prior probability of Y	Probability of a hypothesis Y with-
		out any additional prior information
P(X Y)	Likelihood	Probability of observing the new ev-
		idence, given the initial hypothesis
P(Y X)	Posterior probability	Quantity of interest. Probability of
		Y given the evidence X
P(X)	Evidence or marginal likelihood	Total probability of observing the ev-
		idence

Statistical Properties

Now, let' have a quick recap on some important statistical properties

Now, let' have a quick recap on some important statistical properties

Expectation: The average of a large number of independent realizations of a random variable:

- DISCRETE: $\mathbb{E}[X] = \sum_X XP(X)$
- Continuous: $\mathbb{E}[x] = \int_x xp(x)dx$

In either case, if have a finite number N of points drawn from the probability distribution or probability density, then the expectation can be approximated as:

$$\mathbb{E}[x] \simeq \frac{1}{N} \sum_{i=1}^{N} x_i$$
 (same for discrete case)

Conditional Expectation: Expected value of y given x

$$\mathbb{E}[y|x] = \int_y yp(y|x)dy$$
 (analogous in the discrete case)

Conditional Expectation: Expected value of *y* given *x*

$$\mathbb{E}[y|x] = \int_y yp(y|x)dy$$
 (analogous in the discrete case)

Covariance: A measure of joint variability of two variables:

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[Y])(Y - \mathbb{E}[X])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

During the last lecture, we saw how to predict a new point once the model parameters $(\hat{\mathbf{w}}, \sigma^2)$ were estimated:

$$\hat{\mathbf{y}}_{new} = \mathbb{E}[\mathbf{y}_{new}|\mathbf{x}^*;\mathbf{w},\sigma^2] = \mathbf{x}^*\hat{\mathbf{w}}$$

During the last lecture, we saw how to predict a new point once the model parameters $(\hat{\mathbf{w}}, \sigma^2)$ were estimated:

$$\hat{\mathbf{y}}_{new} = \mathbb{E}[\mathbf{y}_{new}|\mathbf{x}^*;\mathbf{w},\sigma^2] = \mathbf{x}^*\hat{\mathbf{w}}$$

Exercise: Study the statistical properties of the linear regression estimates $\hat{\mathbf{w}}$, σ : $\mathbb{E}[\hat{\mathbf{w}}]$, $\mathbb{E}[\sigma]$, $cov(\hat{\mathbf{w}})$

Further Reading and Useful Material

Source	Notes
Pattern Recognition and Machine Learning	Ch. 2
Bayes' Rule tutorial	Link
Review Notes on Probability	Link