PROYECCION ORTOGONAL Y BASES ORTOGONALES

Proyección ortogonal de un vector sobre una recta

🏿 Sea v ε R[®]. La proyección ortogonal de V sobre la recta (que pasa por el origen) generada por el vector no nulo S εR[®] es el vector:

$$p_{s}(v) = \frac{\vec{s} \cdot \vec{v}}{\vec{s} \cdot \vec{s}} \cdot \vec{s}$$

$$s.(V-P_s(v)) = 0$$

La distancia mínima de V a la recta generada por s esta dada por:

Dmin= (V-P, (v)

Definición:

Los n vectores no nulos $b_1, ..., b_n$ son mutuamente ortogonales si todo par de vectores son ortogonales $\Rightarrow b_i.b_i = 0$ (si son no nulos y ortogonales son L.I).

Una base ortogonal $B = \{b_1, ..., b_n\}$ de un E.V V es una base formada por vectores mutuamente ortogonales.

Una base ortonormal $B = \{b_1, ..., b_n\}$ de un E.V V es una base ortogonal en la que ademas los n vectores b_i tienen longitud l.

$$b_i.b_j = \begin{cases} O_i & i \neq j \\ i, \dots, n \end{cases}$$

MÉTODO DE ORGANIZACIÓN DE GRAM-SCHMIDT

Dado un conjunto M = {v₁, ..., v_m} L.I de m vectores v ∈ V que generan un subespacio S_m ⊂ V de dimensión m:

$$k_{t} = V_{t} - P_{k_{t}}(V_{t}) = V_{t} - \frac{k_{t}V_{t}}{k_{t}k_{t}}$$

$$k_s = V_s - P_{k_s}(V_s) - P_{k_s}(V_s) = V_s - \underline{k_s V_s} k_s - \underline{k_s V_s} k_s$$

$$\{k_{\mbox{\tiny n}}, k_{\mbox{\tiny t}}, ..., k_{\mbox{\tiny n}}\}$$
 forman una base ortogonal de $S_{\mbox{\tiny m}}$

Definición:

Pos subespacios S, y S, de \mathbb{R}^n son ortogonales si todo vector de S, es ortogonal a todo vector de S, es decir, si:

El complemento ortogonal de un subespacio $S \subseteq \mathbb{R}^n$ se define como el conjunto de vectores de \mathbb{R}^n ortogonal a todo vector de S.

La proyección ortogonal de un vector V sobre S es la suma de las proyecciones ortogonales de V sobre los vectores de una base ortogonal S.

base ortogonal

 $B_n = \{k_1, ..., k_n\}$

 $P_{s}(v) = P_{h_{s}}(v) + ... + P_{h_{m}}(v)$

Sera el vector mas cercano de S a V.

$$D_{min} = |V - P_s(v)|$$