Національний технічний університет України «КПІ ім. Ігоря Сікорського» Факультет інформатики та обчислювальної техніки Кафедра інформаційних систем та технологій

Спеціальні розділи математики-2. Чисельні методи

Лабораторна робота № 2

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами. Звичайний метод Гауса та метод квадратних коренів

3міст

1 Теоретичні відомості	2
2 Завдання	
3 Варіанти завдань	
4 Вимоги до звіту	

1 Теоретичні відомості

Будемо розглядати системи вигляду

$$Ax = b, (1)$$

де $A(n \times n)$ — матриця системи, b — вектор правої частини, x — вектор розв'язку.

Метод Гауса

Метод складається з двох етапів:

- 1) прямого хода методу (приведення системи (1) до еквівалентної системи з трикутною матрицею);
- 2) зворотного ходу (визначення невідомого вектору x).

Існує декілька варіантів методу Гауса.

Схема з вибором головного елемента полягає у наступному:

- 1) Прямий хід.
- 1.1) Відшукати $a_{main} = \max_{i,j} \mid a_{i,j} \mid, \ i,j=1..n$. Нехай $a_{main} = a_{pq}$. Рядок p

називається головним.

- 1.2) Обчислити множники $m_i = \frac{a_{iq}}{a_{na}}, \ i \neq p$.
- 1.3) 3 кожного *i*-го неголовного рядка віднімаємо покомпонентно головний рядок, який помножено на m_i :

$$a_{ij} := a_{ij} - m_i a_{pj}, \quad i \neq p, \ j = 1..n,$$

для вектора правої частини:

$$b_i := b_i - m_i b_p$$
.

В результаті отримуємо матрицю, де всі елементи стовпця q, крім a_{pq} , дорівнюють нулю. Відкидаючи стовпець q та головний рядок p, і відповідний елемент b_p , отримуємо систему з матрицею A_1 ($(n-1)\times (n-1)$). Якщо n-1>1, покладаємо n:=n-1, і переходимо до п.1.1, інакше переходимо до п.2.

Примітка: Елементи головного рядка та відповідного елементу b_p потрібно зберігати у окремому масиві, оскільки вони знадобляться в n.2).

- 2) Зворотний хід.
- 2.1) Складаємо систему, еквівалентну вихідній, що складається з головних рядків, які отримувались у п.1. Права частина складається з відповідних елементів b_p . Отримана система має трикутну матрицю. Знаходимо послідовно значення елементів x_i .

Метод квадратного кореня

Метод використовується для розв'язання СЛАР виду (1), у яких матриця A ϵ симетричною, тобто

$$a_{ij} = a_{ji} \ \forall i, j.$$

Метод полягає у наступному:

1) <u>Прямий хід</u>: факторизація A = T'T, де

$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ 0 & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & t_{nn} \end{pmatrix}, T' = \begin{pmatrix} t_{11} & 0 & \dots & 0 \\ t_{12} & t_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ t_{1n} & t_{2n} & \dots & t_{nn} \end{pmatrix}$$

1.1) Знаходимо елементи t_{ii} матриць-множників:

$$t_{11} = \sqrt{a_{11}}, t_{1j} = \frac{a_{1j}}{t_{11}} (j > 1),$$

$$t_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} t_{ki}^2} (1 < i \le n),$$

$$t_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} t_{ki} t_{kj}}{t_{ii}} (i < j),$$

$$t_{ij} = 0 (i > j).$$

1.2) Формуємо замість вихідної системи дві наступні системи:

$$T'y = b$$
, $Tx = y$.

- 2) Зворотний хід.
- 2.1) Послідовно знаходимо:

$$y_{1} = \frac{b_{1}}{t_{11}}, \ y_{i} = \frac{b_{i} - \sum_{k=1}^{i-1} t_{ki} y_{k}}{t_{ii}} \ (i > 1),$$

$$x_{n} = \frac{y_{n}}{t_{nn}}, \ x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} t_{ik} x_{k}}{t_{ii}} \ (i < n).$$

2 Завдання

Розв'язати систему рівнянь з кількістю значущих цифр m = 6.

Якщо матриця системи симетрична, то розв'язання проводити за методом квадратних коренів, якщо матриця системи несиметрична, то використати метод Гауса.

Вивести всі проміжні результати (матриці A, що отримані в ході прямого ходу методу Гауса, матрицю зворотного ходу методу Гауса, або матрицю T та вектор y для методу квадратних коренів) та розв'язок системи.

Навести результат перевірки: вектор нев'язки r = b - Ax, де x — отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m — отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки:

$$\delta = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (x_k - x_{mk})^2} ,$$

де x — отриманий у програмі розв'язок, x_m — отриманий у Mathcad розв'язок.

Зазвичай при використанні для обчислень 4-байтових чисел (тип float y Visual C++) порядок δ :

- у методі Гауса 10^{-4} 10^{-6} ,
- у методі квадратних коренів $10^{-5} 10^{-7}$, бувають і повні співпадіння рішень до 6 знаків після коми.

3 Варіанти завдань

Система має вигляд (1).

1-4 $\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$9,39 + \alpha$ 2,45 3,35 2,28 $10,48 + \beta$	
$\alpha = 0.5k, k = N_2eap - 1,$ $\beta = 0.5k, k = N_2eap - 1$	p-1
$\begin{bmatrix} 5-9 & 8,30 & 2,62+\alpha & 4,10 & 1,90 \end{bmatrix}$ $\begin{bmatrix} -10,65+\beta \end{bmatrix}$	
$\begin{vmatrix} 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{vmatrix}$	
$\begin{vmatrix} 3,77 & 7,21+\alpha & 8,04 & 2,28 \end{vmatrix}$	
$\left[\begin{array}{cccc} 2,21 & 3,65-\alpha & 1,69 & 6,99 \end{array}\right] \left[\begin{array}{cccc} -8,35 \end{array}\right]$	
$\alpha = 0.2k, k = N_{2} \epsilon a p - 5$ $\beta = 0.2k, k = N_{2} \epsilon a p$	<i>o</i> − 5
$\begin{bmatrix} 10 & 1,00 & 0,42 & 0,54 & 0,66 \end{bmatrix}$	
0,42 1,00 0,32 0,44	
0,54 0,32 1,00 0,22	
(0,66 0,44 0,22 1,00) $(0,9)$	
$11-15$ $(5,18+\alpha)$ $(6,19+\beta)$	
$\begin{vmatrix} 0.95 & 2.12 & 6.13 + \alpha & 1.29 & 1.57 & 4.28 - \beta \end{vmatrix}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{pmatrix} 0,83 & 0,91 & 1,57 & 1,25 & 5,21+\alpha \end{pmatrix} \begin{pmatrix} 4,95+\beta \end{pmatrix}$	
$\alpha = 0.25k, k = Nebap - 11$ $\beta = 0.35k, k = Nebap - 11$	ap –11
16 (2,12 0,42 1,34 0,88) (11,172)	
0,42 3,95 1,87 0,43	
1,34 1,87 2,98 0,46 0,009	
$\begin{bmatrix} 0,88 & 0,43 & 0,46 & 4,44 \end{bmatrix}$ $\begin{bmatrix} 9,349 \end{bmatrix}$	
17 (6,92 1,28 0,79 1,15 -0,66) (2,1)	
0,92 3,5 1,3 -1,62 1,02 0,72	
1,15 -2,46 6,1 2,1 1,483 3,87	
1,33 0,16 2,1 5,44 -18 13,8	
$\begin{bmatrix} 1,14 & -1,68 & -1,217 & 9 & -3 \end{bmatrix}$	
18 (7,03 1,22 0,85 1,135 -0,81) (2,1)	
0,98 3,39 1,3 -1,63 0,57 0,84	
1,09 - 2,46 6,21 2,1 1,033 2,58	
1,345 0,16 2,1 5,33 -12 11,96	
$\begin{bmatrix} 1,29 & -1,23 & -0,767 & 6 & 1 \end{bmatrix}$ $\begin{bmatrix} -1,47 \end{bmatrix}$	

19	(5,5 7,0 6,0 5,5)	(23)
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	33
	$\left(5,5 7 9 10,5\right)$	$\left \begin{array}{c} 31 \end{array} \right $
20	(6,59 1,28 0,79 1,195 -0,21)	(2,1)
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 -2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
	$\left(\begin{array}{cccc} 0,69 & -1,68 & -1,217 & 9 & -6 \end{array}\right)$	$\left(-0.27\right)$
21	(3,81 0,25 1,28 1,75)	(4,21)
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
	(10,39 2,45 3,35 2,28)	(12,98)
22-31	$(5,18+\alpha 1,12 0,95 1,32 0,83)$	$(6,19+\beta)$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,21
	$\begin{bmatrix} 0.95 & 2.12 & 6.13 + \alpha & 1.29 & 1.57 \end{bmatrix}$	$ 4,28-\beta $
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,25
	$\begin{bmatrix} 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + \alpha \end{bmatrix}$	$\left(4,95+\beta\right)$
	$\alpha = 0.25k, k = \mathcal{N}_{2}eap - 25 $	$\beta = 0.35k, \ k = \mathcal{N}_{2}eap - 21$

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- проміжні результати та кінцевий результат;
- вектор нев'язки;
- розв'язок задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad;
- лістинг програми.