DILLAN MARROQUIN MATH 440.1001 SCRIBING WEEK 5 DUE. 1 MARCH 2021

Lecture 12

Proposition (12.1). Let X be a set, \mathcal{B} be a basis for a topology on X.

- 1. The collection of subsets $T_B := \{U \subseteq X | \forall x \in U, \exists B \in \mathcal{B} \text{ such that } x \in B \subseteq U\}$ is a topology on X generated by \mathcal{B} .
- 2. A subset $U \subseteq (X, T_B)$ is open if and only if U is a union of elements in B.

I will omit the proof of Prop 12.1 which verifies T_B as a topology on X generated by B.

Proposition (12.2). If (X, \mathcal{T}) is a topological space and $\mathcal{B} \subseteq \mathcal{T}$ such that $\forall U \in \mathcal{T}$ and $\forall x \in U, \exists B \in \mathcal{B}$ such that $x \in B \subseteq U$, then \mathcal{B} is a basis and $\mathcal{T}_{\mathcal{B}} = \mathcal{T}$.

Examples of $\mathcal{T}_{\mathcal{B}}$

Ex (12.3).:

- 1. The Standard/Euclidean Topology on \mathbb{R} . This has a basis $\mathcal{B}_{\text{Euc}} := \{(a, b) | a < b \in \mathbb{R}\}.$
- 2. The Lower Limit Topology $\mathbb{R}_l := \{(\mathbb{R}, \mathcal{T}_l)\}.$ $\mathcal{B}_l := \{[a, b) | a < b \in \mathbb{R}\}.$
- 3. The Upper Limit Topology $\mathbb{R}_u := \{(\mathbb{R}, \mathcal{T}_u)\}.$ $\mathcal{B}_u := \{(a, b) | a < b \in \mathbb{R}\}.$
- 4. The "K-Topology" $\mathbb{R}_K := (\mathbb{R}, \mathcal{T}_K)$, where $K := \{1/n | n \in \mathbb{N}\}$. $\mathcal{B}_K := \mathcal{B}_{\text{Euc}} \cup \{(a,b) K | a < b \in \mathbb{R}\}$.

Lemma (Comparison Lemma 12.4). Let $\mathcal{T}, \mathcal{T}'$ be topologies on X and let $\mathcal{B}, \mathcal{B}'$ be bases for $\mathcal{T}, \mathcal{T}'$ respectively. Then $\mathcal{T} \subseteq \mathcal{T}'$ (i.e. \mathcal{T} is smaller) if and only if $\forall x \in X$ and $\forall B \in \mathcal{B}$ containing $x, \exists B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$.

Proof. (\Longrightarrow) Let $x \in X$ and $B \in \mathcal{B}$ such that $x \in B$. Since every basis element is an open subset, $B \in \mathcal{T} \subseteq \mathcal{T}'$. Therefore B is an open subset of (X, \mathcal{T}') . Since \mathcal{B}' is a basis for \mathcal{T}' , Prop. 12.1 implies that $\exists B' \in \mathcal{B}'$ such that $x \in B \subseteq \mathcal{B}$.

(\Leftarrow) Let $U \in \mathcal{T}$. We want to show $U \in \mathcal{T}'$. It suffices to show that $\forall x \in U, \exists B' \in \mathcal{B}'$ such that $x \in B' \subseteq U$. Prop. 12.2 says that U is the union of elements in \mathcal{B} . This implies that $\exists B \in \mathcal{B}$ such that $x \in B \subseteq U$. By hypothesis, this implies $\exists B' \in \mathcal{B}'$ such that $x \in B' \subseteq U$. Thus $B' \subseteq U$ as desired.

Lecture 13

Back to examples!

- Lower Limit Topology: $\mathbb{R}_l := {\mathbb{R}, \mathcal{T}_l}.$ $\mathcal{B}_l := {[a, b)|a < b \in \mathbb{R}}.$
- Claim: \mathcal{B}_l is a basis for a topology. We define \mathcal{T}_l to be generated by the basis.

Recall the axioms for a basis:

1. $\forall x \in X, \exists B \in \mathcal{B} \text{ such that } x \in B.$

2. $\forall B_1, B_2 \in \mathcal{B}$, if $x \in B_1 \cap B_2$, then $\exists B_3 \in \mathcal{B}$ such that $x \in B_3 \subseteq B_1 \cap B_2$.

Proof. (Axiom 1) Let $x \in \mathbb{R}$. Then $x \in [x, x+1) \in \mathcal{B}_l$. (Axiom 2) Let $B_1 = [a_1, b_1)$, $B_2 = [a_2, b_2) \in \mathcal{B}_l$ and suppose $x \in [a_1, b_1) \cap [a_2, b_2)$. Let $a_3 = \max\{a_1, a_2\}$, $b_3 = \min\{b_1, b_2\}$. Then $x \in [a_3, b_3) \subseteq [a_1, b_1) \cap [a_2, b_2)$. □

Remark. $\mathbb{R} = (\mathbb{R}, \mathcal{T}_{Euc}), \mathcal{B}_{Euc} := \{(a, b) | a < b \in \mathbb{R}\}.$ Compare \mathcal{T}_{Euc} to \mathcal{T}_l on \mathbb{R} . Claim: \mathcal{T}_l is finer than \mathcal{T}_{Euc} , i.e. $\mathcal{T}_{Euc} \subseteq \mathcal{T}_l$.

Proof. Use Lem. 12.4 using $\mathcal{B}_{Euc} = \mathcal{B}$, $\mathcal{B}_l = \mathcal{B}'$. Let $x \in \mathbb{R}$, $B = (a, b) \in \mathcal{B}_{Euc}$. Let $x \in (a, b)$. We want to show $\exists [c, d) \in \mathcal{B}_l$ such that $x \in [c, d) \subseteq (a, b)$. Let c = x, d = b. Then $x \in [a, b) \subseteq (a, b)$. □

Claim: $\mathcal{T}_l \not\subseteq \mathcal{T}_{Euc}$.

Proof. We will prove this by contradiction via Lem. 12.4. Consider $B = [a,b) \in \mathcal{B}_l$. Let x = a. We want to show $\exists (c,d) \in \mathcal{B}_{\text{Euc}}$ such that $a \in (c,d) \subseteq [a,b)$. If $a \in (c,d)$, then $\exists \varepsilon > 0$ such that $(a-\varepsilon,a+\varepsilon) \subseteq (c,d)$. But $(a-\varepsilon,a+\varepsilon) \not\subseteq [a,b)$.

Lecture 14

Big Ideas:

- 2nd Countable Spaces
- Bases for topologies are NOT unique. Sometimes you can find "small" ones.

Ex (On \mathbb{R}). \mathcal{B}_{Euc} is a basis for Euclidean topology on \mathbb{R} .

On the other hand, consider $\widetilde{\mathcal{B}} := \{(q_1, q_2) | q_1 < q_2 \in \mathbb{Q}\} \subset \mathcal{B}_{\text{Euc}}$.

Claim: \mathcal{B} is another basis for \mathcal{T}_{Euc} on \mathbb{R} .

I will omit this proof.

Note: There is an injective function $\widetilde{\mathcal{B}} \to \mathbb{Q} \times \mathbb{Q}$ (i.e. an interval $(q_1, q_2) \mapsto (q_1, q_2)$ ordered pair.) $\Longrightarrow |\widetilde{\mathcal{B}}| \le |\mathbb{Q} \times \mathbb{Q}| \Longrightarrow \widetilde{\mathcal{B}}$ is countable.

Definition (14.1). A topological space (X, \mathcal{T}) is **2nd countable** if and only if there exists a countable basis $\mathcal{B} = \{B_i\}_{i>1}^{\infty}$ for the topology \mathcal{T} .

Theorem (14.2). If (X, T) is 2nd countable, then X contains a countable dense subset, i.e. (X, T) is separable.

Proof. Let $\mathcal{B} = \{B_i\}_{i=1}$ be a countable basis for (X, \mathcal{T}) . Then $\forall i \in \mathbb{N}$, choose $a_i \in B_i$. Let $D := \{a_1, a_2, ...\}$. Clearly $D \subseteq X$ is countable by construction. Claim D is dense in X. Let $U \subseteq X$ be open and $x \in U$. Then by Prop 11.3, \mathcal{B} is a basis which implies $\exists B_i \in \mathcal{B}$ such that $x \in B_i \subseteq U$ which implies $a_i \in U$. This implies $D \cap U \neq \emptyset$. Therefore, D is countable and dense. □

Proposition (14.3). Let \mathbb{R}_l be the Lower Limit Topology. Then

- 1. \mathbb{R}_l is separable
- 2. \mathbb{R}_l is not 2nd countable

Proof. (1.) MATH 310 Analysis shows that \mathbb{Q} is dense in \mathbb{R}_l .

(2.) Let \mathcal{B} be a basis for \mathbb{R}_l . We want to show \mathcal{B} is NOT countable. We build a function $f : \mathbb{R} \to \mathcal{B}$ such that $x \mapsto B_x$. Then $x \in B_x \subseteq [x, x+1) \implies |\mathbb{R}| \le |\mathcal{B}|$. Thus \mathcal{B} is not countable.

Theorem (14.4). Let (X,d) be a metric space and let \mathcal{T}_d be the metric topology on X induced by d. If (X,\mathcal{T}_d) is separable, then it is 2nd countable.