

Nuevos Modelos y Tendencias en la Web

Juan Manuel Cueva Lovelle (cueva@lsi.uniovi.es)
Ana Belén Martínez Prieto (belen@lsi.uniovi.es)
Universidad de Oviedo

Contenidos

- 1. Interacción Hombre-Máquina
- 2. El Factor Humano
- 3. Diseño Gráfico
- 4. Estilos de Interacción
- 5. Metáforas
- 6. Internacionalización
- 7. Soporte al Usuario
- 8. Usabilidad Web
- 9. Guías y Estándares
- 10. Accesibilidad
- 11. Trabajo cooperativo
- 12. Evaluación

Martínez & Cueva

Contenidos

- \bigcirc
- 1. Interacción Hombre-Máquina
- 2. El Factor Humano
- 3. Diseño Gráfico
- 4. Estilos de Interacción
- 5. Metáforas
- 6. Internacionalización
- 7. Soporte al Usuario
- 8. Usabilidad Web
- 9. Guías y Estándares
- 10. Accesibilidad
- 11. Trabajo cooperativo
- 12. Evaluación

Martínez & Cueva

Interacción Hombre-Máquina

1. Interacción Hombre-Máquina

- Introducción. Orígenes de la disciplina
- Definición
- Objetivos
- Conceptos y principios básicos relacionados con la interacción
- Factores que afectan
- Disciplinas que contribuyen

En Inglés HCI (Human Computer Interaction)

Comunicación Hombre-Máquina es una disciplina relacionada con el diseño, evaluación e implementación de sistemas informáticos interactivos para ser usados por personas, y con el estudio de los fenómenos más importantes que están involucrados.

Definición de ACM - SIGCHI (1992, p6)

http://www.acm.org/sigchi/

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Definición (II)

- En resumen, CHM abarca
 - Diseño de interfaces de usuario
- Y además otra serie de factores:
 - Psicológicos (motivación, satisfacción,...)
 - Ergonómicos (diseño del equipamiento,...)
 - Organizativos (entrenamiento, política, cargos,...)

Interacción Hombre-Máquina

Martínez & Cueva

La Interfaz de Usuario

- La interfaz de usuario es el principal punto de contacto entre el usuario y el ordenador
- Una interfaz de usuario pobre produce
 - Reducción de productividad
 - Tiempos de aprendizaje inaceptables
 - Niveles de errores que producen frustración
 - Y como consecuencia: rechazo del sistema

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Objetivos

- El objetivo de la Interacción Hombre-Máquina es desarrollar o mejorar la
 - Seguridad
 - Utilidad
 - Efectividad
 - Eficiencia
 - Y sobre todo la USABILIDAD

de los sistemas interactivos

Objetivos (II)

- Para hacer sistemas interactivos es necesario:
 - Comprender los factores psicológicos, ergonómicos, organizativos y sociales que determinan como la gente trabaja
 - Desarrollar herramientas y técnicas para el desarrollo de sistemas idóneos a sus actividades

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Usabilidad

Sistema Usable = Fácil de Aprender + Fácil de Utilizar

- Por tanto, la usabilidad es mucho más que la selección de colores o tipos de letra. Incluye:
 - Diseño de los diálogos
 - Enlace cognitivo entre usuario y sistema
 - Calidad de la documentación
 - Incorporación de ayuda en línea

Martínez & Cueva Interacción Hombre-Máquina

Usabilidad (II)

- El empleo de unos principios de diseño basados en la usabilidad tienen como consecuencia la:
 - Reducción en los costes de producción
 - Reducción en los costes de mantenimiento y apoyo
 - Reducción en los costes de uso
 - Mejora en la calidad del producto

Martínez & Cueva

Interacción Hombre-Máquina

Usabilidad (III) Principios Generales

- Los principios generales de diseño de interfaces que ayudan a conseguir la usabilidad de un sistema interactivo pueden agruparse en tres categorías:
 - Facilidad de Aprendizaje
 - Flexibilidad
 - Solidez

Facilidad de Aprendizaje

- La facilidad de aprendizaje tiene como objetivo reducir el esfuerzo que tiene que hacer un usuario novel para trabajar con un sistema interactivo y para llegar a convertirse en un usuario experto.
- Algunos de los principios que contribuyen a ello son:
 - Predicción
 - Síntesis
 - Familiaridad
 - Consistencia

Martínez & Cueva

Consistencia

- Împlica que todos los mecanismos tienen que ser usados de la misma manera sea cuando sea que se utilicen.
- Es un principio fundamental en el diseño de interfaces
- Cara a garantizar la consistencia es necesario
 - Emplear guías de estilo (siempre que sea posible)
 - No cambiar aquellas cosas que no es necesario cambiar (Ej. técnicas de interacción)
 - Al añadir nuevas técnicas evitar cambiar las que el usuario ya conoce (ej. F1 para la ayuda)

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Flexibilidad

- Hace referencia a las diferentes formas en las que el usuario y el sistema intercambian información
- Principios que contribuyen
 - Iniciativa en el diálogo
 - Migración de tareas
 - Capacidad de sustitución
 - Capacidad de configuración

Martínez & Cueva

Iniciativa en el Diálogo

- Está relacionado con quien lleva la iniciativa en el diálogo entre el usuario y la aplicación (sistema)
- Lo ideal es que la tenga el usuario
- Ejemplo de interacción guiada por el sistema
 - Cuadro de diálogo modal, ya que impide al usuario utilizar ninguna otra ventana de la aplicación hasta que no se cierre.

Martínez & Cueva

- La solidez de una interacción incluye las características para poder cumplir los objetivos y su evaluación
- Principios que contribuyen
 - Capacidad de observación
 - Capacidad de recuperación
 - Tiempos de respuesta
 - Adecuación de las tareas

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Observabilidad

 Permite al usuario evaluar el estado interno del sistema por medio de su representación percibida en la interfaz

Martínez & Cueva

Tiempos de Respuesta

- Representa el tiempo que necesita el sistema para expresar los cambios de estado al usuario
 - Han de ser lo menores posible
 - En caso de que no lo sean, es necesario notificar al usuario que se ha recibido su petición y que se está trabajando en ella

Martínez & Cueva

Adecuación de las Tareas

 Hace referencia al grado en que el sistema soporta todas las tareas que el usuario quiere hacer y la manera en que el usuario las comprende

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Factores que Afectan

- Factores Organizativos
 - Entrenamiento, diseño del local de trabajo, política, cargos, organización del trabajo
- Factores del Entorno
 - Ruidos, ventilación, calefacción, iluminación, ventilación
- Factores de Salud y Seguridad
 - Stress, dolores de cabeza, desordenes musculares
- Factores de Capacidad y Proceso Cognitivo del Usuario
 - Motivación, satisfacción, personalidad, nivel de experiencia
- Factores de Confort
 - Silla, diseño del equipamiento
- Interfaz de Usuario
 - Dispositivos de entrada, pantallas de salida, estructuras de dialogo, uso del color, iconos, ordenes, gráficos, lenguaje natural, 3-D, materiales de soporte del usuario, multimedia

Martínez & Cueva Interacción Hombre-Máquina

Ingeniería del Software (II)

- Pensar como usuario
 - 90% de cualquier técnica de diseño es forzar al diseñador a recordar que alguien más que él usará el sistema
- Poner a prueba
- Implicar a los usuarios
 - Observando su práctica habitual de trabajo
 - Incluyéndolos en el equipo de diseño
- Hacer el proceso de diseño iterativo
 - Prototipos. Sistemas de prueba que simulan o tienen implementadas partes del sistema final

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Ingeniería del Software (III)

Diseño Iterativo- Prototipo en Maqueta

- El conocimiento adquirido es empleado para construir el producto final
- Valida los requerimientos del usuario y es eliminado posteriormente

Martínez & Cueva

Es el estudio de las características físicas de la interacción : entorno físico del puesto de trabajo, forma y características físicas de la pantalla, etc.

Martínez & Cueva

Ergonomía (II)

- Organización de los controles y las pantallas
- Entorno físico de la interacción
- Colores
- Aspectos de salud

Martínez & Cueva

- Afectan a la calidad de la interacción y a las prestaciones de los usuarios
 - Posición física
 - Temperatura
 - Iluminación
 - Ruido
 - Tiempo

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Martínez & Cueva

Psicología

- Es la ciencia que estudia el comportamiento y los estados de la conciencia de la persona humana, considerada individualmente o bien al mismo tiempo como miembro de un grupo social
 - Psicología cognitiva
 - Trata de comprender el comportamiento humano y los procesos mentales que comporta.
 - Psicología social
 - Trata de estudiar el origen y causas del comportamiento humano en un contexto social.

Psicología (II)

- Contribuye a CHM mediante conocimientos y teorías acerca de cómo los sujetos
 - se comportan
 - procesan la información y
 - actúan en grupos y organizaciones
- También proporciona metodologías y herramientas para evaluar y determinar el grado de satisfacción de los usuarios con nuestros diseños.
- Proporciona, por tanto, una forma de comprobar que nuestros interfaces son tan efectivos como deseamos.

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Sociología

- Es la ciencia que estudia las costumbres y tradiciones de los pueblos.
- Muchas compañías están convencidas que las herramientas de investigación etnográfica(observación detallada, documentación sistemática,...) pueden responder a cuestiones sobre organizaciones y mercados que otros métodos no pueden.

Interacción Hombre-Máquina

Martínez & Cueva

Inteligencia Artificial

- Diseña programas que simulen diferentes aspectos del comportamiento de la inteligencia humana
 - Tutores y Sistemas Expertos
 - Interfaces de Lenguaje Natural empleando la voz

Martínez & Cueva

Interacción Hombre-Máquina

Interacción Hombre-Máquina

Bibliografía

Designing the User Interface: Strategies for Effective Human-Computer Interaction. 3rd edition

B. Shneiderman. Addison-Wesley Pub Co, 1997

Human Computer Interaction (Second Edition)

Alan Dix, et al. Prentice Hall,1998

Human Computer Interaction

Preece, Jenny. Addison-Wesley, 1994.

 Readings in Human-Computer Interaction: towards the year 2000, Second Edition

Baecker, J. Grudin, W. Buxton, S. Greenberg (editors). Morgan Kaufman Published, 1995.

The Elements of User Interface Design

Theo Mandel. John Wiley & Sons, Inc, 1997

About Face: The Essentials of User Interface Design

Martínez & Cueva Cooper. IDG Books, 1995

Introducción a la Interacción Persona-Ordenador

Jesús Lorés y otros. Libro Digital, 2001

- ☐ The User Interface. Concepts & Design
 - L. Bartfield. Addison-Wesley, 1993.
- ☐ Task-Centered User Interface Design. A Practical Introduction.

 Libro Shareware, publicado en ftp.cs.colorado.edu, 1992
- Principles and Guidelines in Software User Interface Design
 D. Mayhew. Prentice-Hall, 1992.
- Interactive System Design

W. Newman, M. Lamming. Addison-Wesley Publishers, 1995.

Martínez & Cueva Interacción Hombre-Máquina