Resumen de Fórmulas Segundo Parcial - Estadística I

Distribución	Tipo de Variable	f.m.p. o f.d.p.	Esperanza	Varianza	Aproximación / Otras
Binomial $X \sim b(n, p)$ (# de exitos en n ensayos independientes)	Discreta	$P(x) = \binom{n}{x} p^x (1-p)^{n-x}$ $p : \text{Probabilidad de éxito}$ $n : \text{\# de ensayos independientes}$	np	np(1-p)	• Si $n \ge 100$, $np \le 20$ y $p < 0.1$ $X \sim^{aprox} p(\lambda)$ $\lambda = np$ • Si $np \ge 10$ y $n(1-p) \ge 10$ $X \sim^{aprox} n(np, np(1-p))$ Factor de Corrección • $P(X \le a) \approx P\left(X \le a + \frac{1}{2}\right)$ • $P(X < a) \approx P\left(X \le a - \frac{1}{2}\right)$ • $P(X \ge a) \approx 1 - P\left(X \le a - \frac{1}{2}\right)$ • $P(X > a) \approx 1 - P\left(X \le a + \frac{1}{2}\right)$ • $P(X > a) \approx 1 - P\left(X \le a + \frac{1}{2}\right)$ • $P(X = a) \approx P\left(X \le a + \frac{1}{2}\right)$ • $P(X = a) \approx P\left(X \le a + \frac{1}{2}\right) - P\left(X \le a - \frac{1}{2}\right)$
Hipergeométrica X~h(n,r,N) (# de éxitos en la muestra de tamaño n)	Discreta	$P(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$ N: Tamaño de la población. n: Tamaño de la muestra. r: # de éxitos en la población.	np $p = \frac{r}{N}$	$np(1-p)\left(\frac{N-n}{N-1}\right)$	Si $\frac{n}{N}$ < 0.1 • $X \sim^{aprox} b(n, p)$ $p = \frac{r}{N}$ $P(a \le x \le b) = P(a - 0.5 \le x \le b + 0.5)$
Poisson $X \sim poi(\lambda)$ (Eventos/Unidad de tiempo, longitud)	Discreta	$P(x) = \frac{e^{-\lambda} \lambda^x}{x!}$	λ	λ	Relación con la exponencial Si X : # de eventos en un intervalo de tiempo $X \sim poi(\alpha t)$ $\alpha t = \lambda_1$ Si y : Tiempo transcurrido entre eventos $y \sim exp(\alpha)$ $\alpha = \frac{\lambda_1}{t}$
Uniforme $X \sim U(a,b)$	Continua	$f(x) = \begin{cases} \frac{1}{b-a}, & x \in (a,b) \\ 0, & e.o.c \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	P(Z > a) = 1 - P(Z < a)

Normal $X \sim N(\mu, \sigma^2)$	Continua	$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$ $\begin{cases} -\infty < x < \infty \\ \mu \in \mathbb{R}, \ \sigma > 0 \end{cases}$	μ	σ^2	Propiedades: • $P(Z < -a) = P(Z > a)$ • $P(Z \ge -a) = P(Z \le a)$ • $P(Z \le a) = 1 - P(Z \le -a)$ • $P(-a < Z < a) = 2P(Z < a) - 1$ • $P(-a_1 < Z < -a_2) = P(a_2 < Z < a_1)$ Estandarización $X \sim N(\mu, \sigma^2) \rightarrow Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$
			$\mu=0$ Normal Estándar	$\sigma=1$ Normal Estándar	
Exponencial $X \sim \text{Exp}(\lambda)$ (Tiempo/Evento)	Continua	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & e.o.c. \end{cases}$ La c.d.f. de X es: $F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0 \\ 0, & e.o.c. \end{cases}$ $P(X \ge x) = e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	Propiedad de Carencia de Memoria $P(X \ge t + t_0 X \ge t_0) = P(X \ge t)$ $P(X \le t + t_0 X \ge t_0) = P(X \le t)$
Lognormal $X \sim \text{Logn}(\mu, \sigma^2)$ $\text{Log}(X) \sim N(\mu, \sigma^2)$	Continua	$f(x) = \begin{cases} \frac{1}{\sqrt{2\pi} \sigma x} e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}}, & x > 0\\ 0, & e.o.c.\\ \sigma > 0 \end{cases}$	$e^{\mu + \frac{\sigma^2}{2}}$	$\left(e^{\sigma^2-1}\right)e^{2\mu+\sigma^2}$	log(x) = ln(x)