# Übungen Grundlagen der Informatik, Blatt 2

Prof. Dr. Sascha Hauke

Wintersemester 2023/24

# 1 Huffman-Kodierung

### 1.1 Erzeugung von Huffman-Bäumen

Nutzen Sie das aus der Vorlesung bekannte Verfahren zur Huffman-Kodierung und erzeugen Sie Huffman-Bäume für folgende Begriffe:

Informatikstudium

Hochschule Landshut

Grundlagen der Informatik

Donaud ampf schiff fahrt sgesellschaft

Sie können mit selbst gewählten Worten weiter üben.

#### 1.2 Dekodieren

Gegeben sei der folgende Huffman-Baum:



Dekodieren Sie folgende Nachricht:

111000001101100010010110101100

# 2 Logik und boole'sche Algebra

### 2.1 Aussagenlogik

Beweisen Sie folgende Aussagen:

a) 
$$A \lor B = \neg(\neg A \land \neg B)$$

b) 
$$A \wedge B = \neg(\neg A \vee \neg B)$$

c) 
$$A \oplus B = \neg(\neg(A \lor B) \lor \neg(\neg A \lor \neg B))$$

d) 
$$A \Rightarrow B = \neg A \lor B$$

e) 
$$A \Leftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A) = \neg(\neg(\neg A \lor B) \lor \neg(\neg B \lor A))$$

Gegeben seien dazu folgende Wahrheitstafeln:

|   | A | B | $\neg A$ | $A \wedge B$ | $A \vee B$ | $A \oplus B$ | $A \Rightarrow B$ | $A \Leftrightarrow B$ |
|---|---|---|----------|--------------|------------|--------------|-------------------|-----------------------|
| ĺ | w | W | f        | W            | W          | f            | W                 | W                     |
| İ | w | f | f        | f            | W          | W            | f                 | f                     |
|   | f | w | w        | $\mathbf{f}$ | W          | W            | W                 | f                     |
|   | f | f | w        | f            | f          | f            | W                 | w                     |

## 2.2 Boole'sche Algebra

Gegeben sind die Mengen A,B und C sowie eine Grundmenge  $\Omega.$  Vereinfachen Sie!

a) 
$$(A \setminus B) \cup \overline{(A \cup B)}$$

b) 
$$\overline{(A \cap B)} \cap \overline{(A \setminus B)}$$

c) 
$$\overline{(\overline{A} \cup \overline{B})} \cup (A \cap \overline{B}) \cup \overline{A}$$

d) 
$$((A \cap B) \cap (A \cap \overline{B})) \cap ((A \cap B) \cup (A \cap \overline{B}))$$

e) 
$$((\overline{A} \cap C) \cup (\overline{C} \cap A)) \cup (C \cup A)$$

f) 
$$(\overline{A} \cup C) \cap (\overline{C} \cup A)$$

Aus: Cramer, Neslehova: Vorkus Mathematik, Springer 2015