Microeconomic Theory: TA Session

Pinda Wang

Johns Hopkins University

August 29, 2025

About this TA Section

Some logistics:

- Fridays, 9:00-9:50am, Krieger 180
- What we'll do: review class material; go over quizzes and/or assignments; answer any questions; do practice problems...
- ► Slides will be made available after each session on Github: https://github.com/pindawang/ElementsMicro_Fall24
- Attendance will be randomly taken for TA sessions

My office hour:

- ▶ In-person: Wednesdays, 4:30-5:30pm, Wyman Park W601A
- Zoom: by appointment
- ► My email: pwang66@jhu.edu

What is the rate of change of the curve $y = x^2$ at x = 2?

An intuitive answer would be $\Delta y/\Delta x$ at x=2...

...But this is imprecise!

To make it more precise, we can decrease Δx ...

...until Δx is close to zero

The (first-order) derivative of a function y = f(x) at the point $x = x_0$ is its rate of change at $x = x_0$.

That is to say, it is $\frac{f(x)-f(x_0)}{x-x_0}$ when x is "very close" to x_0

We often use y', f'(x) or $\frac{dy}{dx}$ to represent the derivative of the function y = f(x)

In math jargon:

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Graphically, the derivative of f(x) at $x=x_0$ is the slope of the tangent line to the function at $x=x_0$

Here, the slope of the tangent line is 4, hence the derivative of $y = x^2$ at x = 2 equals 4

Frequently used derivatives:

Function	Derivative
y = ax + b	y' = a
$y = ax^2 + bx + c$	y'=2ax+b
$y = \sqrt{x}$	$y'=1/2\sqrt{x}$
y = 1/x	$y' = -1/x^2$
$y = x^a$	$y' = ax^{a-1}$
$y=a^{x}$	$y'=a^x \ln a$
$y = \ln x$	y'=1/x

Similarly, we can calculate the derivative of a function of two or more variables

e.g. A utility function $U = 3x_1x_2$

The (partial) derivative with regard to x_1 : $\frac{\partial U}{\partial x_1} = 3x_2$

When calculating the derivative with regard to x_1 , just treat x_2 as if it's a number

(You may also see others using U_{x_1} or just $\frac{dU}{dx_1}$ to represent the derivative with regard to x)

Utility functions and indifference curves

1. Draw the indifference curves that correspond to the utility function U=2x+5y. What is the relationship between the two goods?

They're perfect substitutes.

Utility functions and indifference curves

2. Earbuds and earbud cases are perfect complements: 1 earbud case always comes with 2 earbuds. What is the utility function for those two goods?

Answer: the utility function is $U = \min\{E, 2C\}$. The indifference curves look like this:

Utility functions and indifference curves

- 3. Indifference curves are usually bowed inward. Which of the following utility functions give rise to an indifference curve that is bowed inward?
 - A. $U = x^2 + y^2$
 - ▶ B. U = x + 3y
 - ightharpoonup C. U = 2xy

Utility maximization

4. John has the following utility function for apples and bananas: $U=3a^{0.5}b^{0.5}$. He has 20 dollars. One apple costs \$4, and one banana costs \$2. Solve for John's optimal bundle.

Answer: Don't be scared by the powers in the utility function. Taking the square of both sides, we get $U^2=9ab \Rightarrow b=\frac{U^2}{9a}$. (So, in some sense, you can think of $U=3a^{0.5}b^{0.5}$ as equivalent to U=ab.) The derivative is $\frac{db}{da}=-\frac{U^2}{9a^2}$. The budget constraint is $4a+2b=20 \Rightarrow b=10-2a$. The derivative is $\frac{db}{da}=-2$.

With $MRS = P_a/P_b$, we have $\frac{U^2}{9a^2} = 2$. Plugging in $b = \frac{U^2}{9a}$, we have $\frac{b}{a} = 2 \implies a = \frac{5}{2}, \ b = 5$.

