

ANOVA

Analysis of Variance

- Method to analyze the difference among the means
- Similar to test of means in terms of objective
- Different in two aspects
 - Different method
 - Compares more two groups simultaneously

- Consider monthly sales from n different stores of a super market chain
- All stores are similar in terms of footfall, size of the store etc.
- If each store decides to follow a different floor plan then we can expect to see different sales among the stores

Internshala Trainings

In this case the floor plan is the **treatment** because floor plan is the only different factor among these stores causing difference in sales.

 μ_1 μ_2 ... μ_n •

If we did no change in floor plan, as a status quo we believe that there should be no difference in sales

However, we expect the different floor plans to contribute difference in sales

Internshala Trainings

$$H_o: \mu_1 = \mu_2 = \cdots = \mu_n$$

 \mathcal{H}_a : The means are not all equal

Key Assumptions

Population and Groups are normally distributed

Common variance across groups

Samples are drawn independently of each other

 μ_1 μ_2 ... μ_n Internshala Trainings

 $H_o: \mu_1 = \mu_2 = \cdots = \mu_n$

 \mathcal{H}_a : The means are not all equal

 μ_1 μ_2 ... μ_n

Sum of Squares

- Total Sum of Squares (TSS)
- Sum of Squares between groups and population (TrSS)
- Sum of Squares within each group (ESS)
- $TSS \equiv TrSS + ESS$

Sum of Squares

 $TSS \equiv TrSS + ESS$

If $TrSS \gg ESS$

Then Treatment is causing the most of the observed deviance.

Note: Instead of squares, we will use mean sum of squares by dividing the sum of squares by the degree of freedom in $\ensuremath{\mathsf{ANOVA}}$

Internshala Trainings

F-Distribution

06:36 / 06:38

One Way Vs Two Way ANOVA

- ANOVA with single treatment variable is one way ANOVA
- ANOVA with two treatment variables is two way ANOVA

Margarine Brand

A study tested whether cholesterol reduced after using a certain brand of margarine as part of a low fat, low cholesterol diet.

The subjects consumed on average 2.31g a day.

18 people were studied. For each person, the type of margarine used, cholesterol levels before, after 4 weeks and after 8 weeks were tabulated.

Did one brand perform better than the other in reducing cholesterol levels?

Internshala Trainings

 $H_o: \mu_1 = \mu_2$

 $H_a: \mu_1 \neq \mu_2$

Margarine Brand

A study tested whether cholesterol reduced after using a certain brand of margarine as part of a low fat, low cholesterol diet.

The subjects consumed on average 2.31g a day.

18 people were studied. For each person, the type of margarine used, cholesterol levels before, after 4 weeks and after 8 weeks were tabulated.

Did one brand perform better than the other in reducing cholesterol levels?

Diet Plan

Weight loss due to diet plans were studied in a test in which 76 people participated.

Weight in kg before the study and 10 weeks after the start of the study were recorded.

3 diet plans were studied.

Participants gender are also given.

Does the mean weight loss differ among the groups by diet plan and gender.

Internshala Trainings

 $H_o: \mu_1 = \mu_2 = \dots \mu_n$

 H_a : The group means are different

Multiplication Law of Probability

If A and B are independent $P(A \cap B) = P(A) \times P(B)$

If A and B are <u>not</u> independent $P(A \cap B) = P(A) \cdot P(B \mid A)$

 $P(A \cap B) = P(B). P(A \mid B)$

Titanic: are the events independent?

Observed data

Events are not independent

Gender	Survived	Did Not Survive	Total
Male	161	682	843
Female	339	127	466
Total	500	809	1309

Observed probabilities

Gender	Survived	Did Not Survive	Total
Male	0.12	0.52	0.64
Female	0.26	0.10	0.36
Total	0.38	0.62	1.00

Expected data

If the events are independent

Gender	Survived	Did Not Survive	Total
Male	322	521	843
Female	178	288	466
Total	500	809	1309

Expected probabilities

Gender	Survived	Did Not Survive	Total
Male	0.24	0.40	0.64
Female	0.14	0.22	0.36
Total	0.38	9.62	a1.00 ain

Titanic: are the events independent?

Observed data

Events are not independent

Gender	Survived	Did Not Survive	Total
Male	161	682	843
Female	339	127	466
Total	500	809	1309

Expected data

If the events are independent

Gender	Survived	Did Not Survive	Total
Male	322	521	843
Female	178	288	466
Total	500	809	1309

 H_o : Independent

 H_a : Not Independent

Chi-Square Distribution

Titanic: are the events independent? 04:48 / 04:50

Observed data

Events are not independent

Events are not independent					
Gender	Survived	Did Not Survive	Total	p	
Male	161	682	843	0.64	
Female	339	127	466	0.36	P
Total	500	809	1309	1.00	
р	0.38	0.62	1.00		

Expected data

If the events are independent

Gender	Survived	Did Not Survive	Total
Male	322	521	843
Female	178	288	466
Total	500	809	1309

$$\chi^2 = \sum \frac{(O\ - E)^2}{E}$$

$$dof = (rows - 1) * (columns - 1)$$
 •

Movies Rating

Movie names, rating, duration, and genre for movies released between 2001 and 2018 are given

Does the movie rating depend on the genre and duration?

00:28 / 12:21

 $H_o: \mu_1 = \mu_2 = \dots \mu_n$

 H_a : The group means are different

 H_o : Independent

 H_a : Not Independent

Internshala Trainings

Two Cases

Titanic

Whether 'survived' and 'gender' are associated or not

Whether 'survived' and 'passengerclass' are associated or not

Ice cream

Whether 'gender' and 'flavor' are associated or not

Note: Assume significance = 0.05

Ice Cream

- 200 data points are given
- Each row is an observation about a child's gender and their favorite ice cream flavor