Отчет о выполнении лабораторной работы 3.3.4 Эффект Холла в полупроводниках

Г. А. Багров

ФРКТ МФТИ, 03.11.2022

Цель работы: исследовать зависимость ЭДС Холла от величины магнитного поля при различных токах через образец для определения константы Холла; определить знак носителей заряда и проводимость материала образца.

В работе используются: электромагнит с регулируемым источником питания; вольтметр; амперметр; миллиамперметр; милливеберметр или миллитесламетр; источник питания (1,5 В), образцы легированного германия.

Теоретические сведения:

Эффект Холла - явление возникновения поперечной разности потенциалов при помещении проводника с постоянным током в магнитное поле. Суть эффекта заключается в следующем. Пусть через однородную пластину металла вдоль оси x течёт ток I (рис. 1).

Если эту пластину поместить в магнитное поле, направленное по оси y, то между гранями A и B появится разность потенциалов. B самом деле, на электрон, движущийся со скоростью \mathbf{v} в электромагнитном поле, действует сила Лоренца:

$$F_{\pi} = -e\mathbf{E} - e[\mathbf{v}, \mathbf{B}]$$

где e – абсолютная величина заряда электрона, ${\bf E}$ – напряжённость электрического поля, ${\bf B}$ – индукция магнитного поля. В нашем случае сила, обусловленная вторым слагаемым, направлена вдоль оси z:

$$F_B = e |\langle v_x \rangle| B,$$

Рис. 1. Образец с током в магнитном поле

Здесь $|\langle v_x \rangle|$ — абсолютная величина дрейфовой скорости электронов вдоль оси x, возникающая под действием внешнего электрического поля.

Под действием этой силы электроны отклоняются к грани Б, заряжая её отрицательно (для простоты рассматриваем только один тип носителей). На грани А накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от А к Б, которое действует на электроны с силой $F_E = eE_z$, направленной против силы F_B . В установившемся режиме сила F_E уравновешивает силу F_B , и накопление электрических зарядов на боковых гранях пластины прекращается. Из условия равновесия $F_B = F_E$ найдём

$$E_z = |\langle v_x \rangle| B.$$

Поле E_z даёт вклад в общее поле E, в котором движутся электроны. С полем E_z связана разность потенциалов U_{AB} между гранями A и E:

$$U_{AB} = -E_z l = -|\langle v_x \rangle|Bl.$$

В этом и состоит эффект Холла. Замечая, что сила тока

$$I = ne |\langle v_x \rangle| la.$$

получаем ЭДС Холла:

$$\mathcal{E}_X = U_{\text{AB}} = -\frac{IB}{nea} = -R_X \cdot \frac{IB}{a},\tag{1}$$

Константа R_X называется постоянной Холла. Как видно из (1),

$$R_X = \frac{1}{ne}. (2)$$

Экспериментальная установка

Электрическая схема установки для измерения ЭДС Холла представлена на рис. 2. В зазоре электромагнита (рис. 2a) создаётся постоянное магнитное поле, величину которого можно менять с помощью регулятора R_1 источника питания электромагнита. Ток питания электромагнита измеряется амперметром, встроенным в источник. Разъём K_1 позволяет менять направление тока в обмотках электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе (рис. 26). подключается к источнику питания ($\approx 1.5~\mathrm{B}$).

При замыкании ключа K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R_2 и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Рис. 2. Схема установки для исследования эффекта Холла в полупроводниках.

Иногда контакты 3 и 4 вследствие неточности подпайки не лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец. Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме 9 ДC Холла и омического падения напряжения, а при другом — их разности. В этом случае 9 ДC Холла \mathcal{E}_{X} может быть определена как половина алгебраической разности показаний вольтметра,

Рис. 3. фото установки

полученных для двух противоположных направлений магнитного поля в зазоре. Знак измеряемого напряжения высвечивается на цифровом табло вольтметра.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остаётся неизменным. От него следует (с учётом знака) отсчитывать величину ЭДС Холла:

$$\mathcal{E}_{\mathbf{X}} = U_{34} \pm U_0. \tag{3}$$

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку $\mathcal E$ можно определить характер проводимости – электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},\tag{4}$$

где L_{35} – расстояние между контактами 3 и 5, a – толщина образца, l – его ширина.

Ход работы и обработка результатов

- 1) Подготовим приборы к работе, соберём установку для снятия измерений. Определим предельное значение силы тока через электромагнит: $I_{\rm max}=1{,}63~{\rm A.}~{\rm Учтём}$ это при дальнейших измерениях.
 - 2) Градуировка электромагнита.

С помощью милливеберметра исследуем зависимость индукции B магнитного поля в зазоре электромагнита от тока через обмотки магнита. Для этого вставим в зазор пробную катушку и измерим значение потока магнитной индукции, который пронизывает пробную катушку в зазоре ($\Phi = BSN, SN = 75 \text{ cm}^2 \text{ вит}$).

калибровка электромагнита							
I, A	σ_I, A	Ф0, мВб	Ф1, мВб	Ф, мВб	σ_Φ, мВб	В, мТл	σ_В, мТл
0,20	0,02	3,9	2,8	-1,1	0,1	-147	13
0,40	0,02	4,4	2,2	-2,2		-293	
0,60	0,02	5,7	2,3	-3,4		-453	
0,80	0,02	7,3	3,0	-4,3		-573	
1,00	0,03	8,2	2,9	-5,3		-707	15
1,20	0,03	8,7	2,9	-5,8		-773	
1,40	0,03	9,5	3,2	-6,3		-840	
1,60	0,03	9,9	3,3	-6,6		-880	
-,	-/	-/-	-/-	-/-			

 $Puc.\ 4.\ Зависимость индукции\ B$ магнитного поля в зазоре электромагнита от тока через обмотки магнита

3) Измерение ЭДС Холла.

Вставим держатель с образцом в зазор электромагнита. Установим по миллиамперметру A минимальное значение тока через образец (≈ 0.3 мA). В отсутствие магнитного поля вольтметр показывает небольшое напряжение U_0 (, вызванное несовершенством контактов 3, 4 и наводками. Это значение с учетом знака примем за нулевое.

Снимем зависимость напряжения U_{34} от тока I_M через обмотки магнита при фиксированном (минимальном) токе через образец (включая U_0). Проведем измерения $U_{34}=f(I_M)$ при 8 значениях постоянного тока через образец. При максимально возможном токе через образец (I=1 мA) проведем измерения $U_{34}=f(I_M)$ при другом направлении магнитного поля через образец.

I_0	0,3 MA	I_0	0,4 mA	I_0	0,5 mA
U_0	0,002 MB	U_0	0,002 MB	U_0	0,003 MB
I_M, A	U34, MB	I_M, A	U34, MB	I_M, A	U34, mB
0,20	0,041	0,2	0,056	0,2	0,069
0,40	0,084	0,4	0,115	0,4	0,141
0,60	0,127	0,6	0,17	0,6	0,213
0,80	0,166	0,8	0,221	0,8	0,278
1,00	0,199	1	0,269	1	0,336
1,20	0,223	1,2	0,3	1,2	0,374
1,40	0,239	1,4	0,319	1,4	0,4
1,57	0,25	1,56	0,331	1,56	0,417
1_0	0,6 MA	1_0	0,7 mA	I_0	0,8 mA
U_0	0,004 MB	U_0	0,005 MB	U_0	0,008 MB
I_M, A	U34, mB	I_M, A	U34, mB	I_M, A	U34, mB
0,2	0,085	0,2	0,096	0,2	0,108
0,4	0,171	0,4	0,199	0,4	0,226
0,6	0,25	0,6	0,296	0,6	0,336
0,8	0,332	0,8	0,387	0,8	0,441
1	0,397	1	0,467	1	0,53
1,2	0,447	1,2	0,521	1,2	0,594
1,4	0,478	1,4	0,557	1,4	0,636
1,54	0,496	1,54	0,578	1,53	0,657
				Образец перевернут	
I_0	0,9 mA	I_0	1 MA	I_0	1 mA
U_0	0,010 MB	U_0	0,015 MB	U_0	-0,019 MB
I_M, A	U34, mB	I_M, A	U34, mB	I_M, A	U34, mB
0,2	0,127	0,2	0,139	0,2	-0,15
0,4	0,25	0,4	0,287	0,4	-0,29
0,6	0,383	0,6	0,424	0,6	-0,431
0,8	0,496	0,8	0,551	0,8	-0,558
1	0,596	1	0,658	1	-0,674
1,2	0,668	1,2	0,742	1,2	-0,755
1,4	0,717	1,4	0,795	1,4	-0,807
1,52	0,739	1,52	0,819	1,52	-0,833

Рис. 5. Зависимость напряжения U_{34} от тока I_M через обмотки магнита при фиксированном токе

4) Определение характера проводимости.

Зная, в какую сторону направлено магнитное поле в магните, направление тока в образце, определим, что сила, действующая (предположительно на положительные) частицы, должна быть направлена от 4 клеммы к 3. Судя по экспериментальным данных, получается, что $\varphi_3 < \varphi_4$, а, значит, предположение верно и знак носителей – положительный.

Это и означает, что тип проводимости – дырочный.

Рис. 6. Зарисовка рассматриваемой системы

5) Определение удельной проводимости.

Подключим к вольтметру потенциальные концы образца 3 и 5. Измерим при токе через образец 1 мА падение напряжения $U_{35}=(3,939\pm0,35)$ мВ. Запишем параметры образца: $L_{35}=3,0$ мм, a=2,2 мм, l=2,5 мм.

Обработка результатов

6) Построим график зависимости $B(I_M)$ (градуировочную кривую).

Рис. 7. Зависимость индукции B магнитного поля в зазоре электромагнита от тока через обмотки магнита

7) Рассчитаем ЭДС Холла ($\mathscr{E}_X = U_{34} - U_0$) и построим семейство характеристик $\mathscr{E}_X = f(B)$ при разных значениях тока I через образец. В этом семействе для больших значений тока коэффициент наклона графика имеет больший наклон.

I_0	0,3 MA	1_0	0,4 mA	1_0	0,5 MA
U_0	0,002 MB	U_0	0,002 MB	U_0	0,003 MB
В, мТл	Ex, MB	В, мТл	Ex, MB	В, мТл	Ex, MB
147	0,039	147	0,054	147	0,066
293	0,082	293	0,113	293	0,138
453	0,125	453	0,168	453	0,21
573	0,164	573	0,219	573	0,275
707	0,197	707	0,267	707	0,333
773	0,221	773	0,298	773	0,371
840	0,237	840	0,317	840	0,397
870	0,248	870	0,329	870	0,414
1_0	0,6 MA	1_0	0,7 mA	I_0	0,8 mA
U_0	0,004 MB	U_0	0,005 MB	U_0	0,008 MB
В, мТл	Ex, MB	В, мТл	Ex, MB	В, мТл	Ex, MB
147	0,081	147	0,091	147	0,1
293	0,167	293	0,194	293	0,218
453	0,246	453	0,291	453	0,328
573	0,328	573	0,382	573	0,433
707	0,393	707	0,462	707	0,522
773	0,443	773	0,516	773	0,586
840	0,474	840	0,552	840	0,628
870	0,492	870	0,573	870	0,649
				(образец повернут другой стороно	
1_0	0,9 MA	I_0	1 MA	I_0	1 mA
U_0	0,010 MB	U_0	0,015 MB	U_0	-0,019 mB
В, мТл	Ex, MB	В, мТл	Ex, MB	В, мТл	Ex, MB
147	0,117	147	0,124	147	-0,131
293	0,24	293	0,272	293	-0,271
453	0,373	453	0,409	453	-0,412
573	0,486	573	0,536	573	-0,539
707	0,586	707	0,643	707	-0,655
773	0,658	773	0,727	773	-0,736
840	0,707	840	0,78	840	-0,788
870	0,729	870	0,804	870	-0.814

a)

Рис. 8. Зависимости $\mathscr{E}_X = f(B)$ при разных значениях тока через образец

8) Определим угловые коэффициенты K полученных прямых и построим график зависимости K(I).

Рис. 9. Зависимости $K(\mathscr{E}_X) = f(B)$ при разных значениях тока через образец

9) Определим наклон получившейся прямой: $k_K = (0.936 \pm 0.005) \frac{\text{B}}{\text{Тл-A}}$. Определим величину постоянной Холла R_X из формулы:

$$\mathscr{E}_X = \frac{B}{naa} \cdot I = R_X \cdot \frac{B}{a} \cdot I \Longrightarrow R_X = k_K a.$$

Тогда $R_X=(936\pm5)\cdot 10^{-6}\frac{\text{B·м}}{\text{Тл·A}}$. 10) Теперь рассчитаем концентрацию n носителей заряда в образце: $n=1/(R_Xe)=(671\pm4)\cdot 10^{19}~\text{m}^{-3}$. Рассчитаем удельную проводимость материала образца: $\sigma=\frac{IL_{35}}{U_{35}al}$.

$$\sigma = (313 \pm 27) (O_{\rm M} \cdot {\rm M})^{-1}.$$

11) Используя найденные значения концентрации n и проводимости σ , вычислим подвижность b носителей заряда как

$$b = \frac{\sigma}{ne} = \sigma R_X = (2.94 \pm 0.25) \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}}.$$

Выводы

В данной работе был исследован эффект Холла для образца легированного германия. Были определены такие характеристики, как постоянная Холла, концентрация холловских частиц, удельная электрическая проводимость германия и подвижность электронов-носителей заряда в нём.

Полученные значения с учётом погрешности совпадают с теоретическими значениями для германия, легированного лантановой или празеодимовой примесью.