

งานประชุมวิชาการ และนวัตกรรม กฟภ. ปี 2564

Data Driven Business in Digital Utility Era ขับเคลื่อนธุรกิจด้วยฐานข้อมูลในยุค Digital Utility

ระบบพยากรณ์พื้นที่เสี่ยงเสาไฟฟ้าล้มของ กฟภ.

นายภัทรวุธ กิจวรวุฒิ 1 , นายกฤษฎา กลีบเมฆ 2 1 กองวิศวกรรมและวางแผน การไฟฟ้าส่วนภูมิภาคเขต 1 ภาคใต้ จ.เพชรบุรี micpqc1@gmail.com 2 กองวิศวกรรมและวางแผน การไฟฟ้าส่วนภูมิภาคเขต 1 ภาคใต้ จ.เพชรบุรี kkm005@gmail.com

1. หัวข้อบทความ

ชื่อภาษาไทย : ระบบพยากรณ์พื้นที่เสี่ยงเสาไฟฟ้าล้มของ กฟภ.

ชื่อภาษาอังกฤษ : Forecasting the area of risky pole in PEA system.

ที่มาและความสำคัญ

การไฟฟ้าส่วนภูมิภาค (ถฟก.) มีหน้าที่ในการจัดหาและให้จำหน่ายพลังงานไฟฟ้าให้กับลูกค้าใน 74 จังหวัด คิดเป็นร้อยละ 99 ของพื้นที่ประเทศไทย ระบบไฟฟ้าส่วนใหญ่เป็นแบบเหนือดิน (Overhead) โดยเป็นการปักเสาไฟฟ้าและพาดสายไฟฟ้าไปยังพื้นที่ ต่างๆ เพื่อส่งจ่ายพลังงานไฟฟ้า ดังนั้น "เสาไฟฟ้า" จึงเป็นอุปกรณ์สำคัญที่ใช้สำหรับการส่งจ่ายพลังงานไฟฟ้า หากเสาไฟฟ้าล้มหรือ หักโค่น เกิดสายไฟฟ้าขาด จะส่งผลทำให้ไม่สามารถส่งจ่ายพลังงานไฟฟ้าได้ เกิดปัญหาไฟดับเป็นระยะเวลานาน (Long duration Interruption) และบริเวณกว้าง เนื่องจากต้องใช้ระยะเวลานานในการช่อมแซม (ปักเสา และพาดสายไฟใหม่) เพื่อกู้ระบบไฟฟ้า กลับคืนมาเป็นปกติ (Recovery) ส่งผลกระทบต่อลูกค้าที่ได้รับผลกระทบจากปัญหาไฟดับนาน เกิดปัญหาข้อร้องเรียน ความไม่พึงพอใจจากลูกค้า เกิดผลกระทบต่อภาพลักษณ์ขององค์กร

____ในแต่ละปี ภฟก. ต้องเสียค่าใช้จ่ายในการใช้เงินในการซ่อมแชมระบบไฟฟ้า เพื่อกู้ระบบไฟฟ้าให้กลับคืนมาเป็นปกติ มากกว่า 100 ล้านบาทต่อปี ดังรูปที่ 1 อีกทั้งในช่วงเวลาดังกล่าว กฟก. ยังเสียโอกาสในการขายไฟฟ้า หรือสูญเสียรายได้ ในช่วงไฟดับ (Energy Non Supply) อีกด้วย (ยังไม่ได้คิดรวมในกราฟ)

รูปที่ 1 งบปรับปรุงระบบไฟฟ้าเนื่องจากภัยธรรมชาติ ของ กฟภ. (จากระบบ SAP) ถึง ณ วันที่ 28 ก.ย. 2564

ถึงแม้ว่า กฟภ. มีการออกแบบระบบไฟฟ้าให้รองรับความเร็วลมที่ 60 ไมล์ต่อชั่วโมง (หรือ 26.82 เมตรต่อวินาที) แต่หลาย
เหตุการณ์ที่เกิดปัญหาเสาไฟฟ้าล้ม โดยความเร็วลมยังไม่เกินกว่าที่ได้ออกแบบไว้พบว่า มีปัจจัยด้านอื่นๆ ที่ควรนำมาวิเคราะห์ร่วมกับ
ความเร็วลมสำหรับหาความเสี่ยงที่จะเกิดปัญหาเสาไฟฟ้าล้ม เช่น สภาพอากาศ (ฝนตกหนัก), สภาพเสาไฟ/อายุของเสาไฟ, ต้นไม้-
กิ่งไม้ หรือป้ายโฆษณาล้มทับ และสภาพดินในแต่ละพื้นที่ เป็นต้น นอกจากนั้นแล้ว การก่อสร้างระบบไฟฟ้าไม่เป็นไปตามมาตรฐานที่
กฟภ. กำหนด ก็เป็นปัจจัยหนึ่งที่ทำให้เกิดความเสี่ยงเสาไฟฟ้าล้มเช่นกัน
ข้อมูลต่างๆ ข้างต้นส่วนใหญ่มีการเก็บข้อมูลไว้โดยหน่วยงานที่เกี่ยวข้อง แต่ปัญหาคือข้อมูลจะกระจัดกระจาย บางข้อมูลถูก
จัดเก็บไว้อยู่ในฐานข้อมูล (Database) ของระบบงานต่างๆ ภายใน กฟภ. และบางข้อมูล กฟภ. ก็ไม่มีการจัดเก็บเอาไว้ จึงอาจต้อง
ทำการขอข้อมูลจากหน่วยงานราชการ/หน่วยงานเอกชนภายนอกมาใช้เพื่อประกอบการวิเคราะห์และพยากรณ์พื้นที่เสี่ยงเสาล้ม
ของ กฟภ.
3. เนื้อหา และรายละเอียด
บทความฉบับนี้ได้นำเสนอเทคนิคการวิเคราะห์และพยากรณ์พื้นที่เสี่ยงเสาไฟฟ้าล้มของการไฟฟ้าส่วนภูมิภาค (กฟภ.) ด้วยการใช้
ข้อมูลสารสนเทศระบบไฟฟ้าทางภูมิศาสตร์ (GIS) ของ กฟภ. และข้อมูลสภาพอากาศจาก API ของกรมอูตุนิยมวิทยาที่หน่วยงาน
ราชการ (กรมอุตุนิยมวิทยา) เปิดให้บริการผ่านช่องทาง Application Programming Interface (API) เช่น ข้อมูล ความเร็วลม,
สภาพอากาศ, ปริมาณน้ำฝนสะสม มาวิเคราะห์ร่วมกับกระบวนการ Data Analytic กับข้อมูลของระบบไฟฟ้าซึ่งอยู่ในฐานข้อมูล
สารสนเทศระบบไฟฟ้าทางภูมิศาสตร์ (GIS) ของ กฟก. เพื่อหาพื้นที่ที่มีความเสี่ยงในการเกิดเสาไฟฟ้าล้ม และแจ้งเตือนไปยัง
การไฟฟ้าส่วนภูมิภาค ในแต่ละพื้นที่รับผิดชอนให้ออกสำรวจระบบไฟฟ้าที่มีความเสี่ยง รวมถึงการเตรียมความพร้อมให้รองรับกับ
3.1 วัตถประสงค์
ป้องกัน (Preventive maintenance) และบริหารจัดการทรัพยากรได้อย่างมีประสิทธิภาพ ได้แก่
1) กฟภ. สามารถวางแผนตรวจสอบระบบไฟฟ้าล่วงหน้า เช่น สภาพเสาไฟ, ความแข็งแรงของระบบไฟฟ้า,
สิ่งแปลกปลอม (สิ่งก่อสร้าง ต้นไม้ และป้ายโฆษณา) ที่อยู่ใกล้ระบบไฟฟ้า และปรับปรุงจุดเสี่ยงข้างต้น
2) กฟภ. สามารถวางแผน บริหารจัดการทรัพยากรล่วงหน้าได้อย่างเหมาะสม มีประสิทธิภาพ เช่น เพิ่มจำนวน
พนักงานแก้ไขไฟฟ้าขัดข้อง, ระดมชุดงานก่อสร้างและปรับปรุงระบบไฟฟ้า, เตรียมรถยนต์-เครื่องจักรอุปกรณ์ต่างๆ เพื่อรองรับ
เหตุการณ์สภาพอากาศผิดปกติที่จะเกิดขึ้นได้อย่างเหมาะสม
3) กฟก. สามารถนำข้อมูลแจ้งให้ลูกค้า ผู้ใช้ไฟฟ้า ได้เตรียมตัวเพื่อรองรับกับสภาพอากาศที่ผิดปกติ และความเสี่ยง
ที่อาจเกิดไฟฟ้าขัดข้องได้
3.1.2 เพื่อเพิ่มความมั่นคงเชื่อถือได้ (Reliability) ให้กับระบบไฟฟ้า ลดปัญหาไฟดับ และ/หรือลดระยะเวลาการเกิด
ไฟดับนาน (Long duration Interruption)
3.1.3 ลดปัญหาข้อร้องเรียน สร้างภาพลักษณ์ที่ดีให้กับองค์กร
3.1.4 สนับสนุนนโยบาย Digital Utility ของ กฟภ.
3.1.5 เพื่อเป็นแนวทางตัวอย่าง ในการส่งเสริมการปฏิบัติงานให้เป็นไปตามค่านิยม กฟภ. (Core Values) TRUSTED
หัวข้อ "D : Data Driven" ในการศึกษา เข้าใจ ใช้ประโยชน์จากข้อมูล เพื่อขับเคลื่อนภารกิจขององค์กร
3.2 การประยุกต์ใช้งาน
3.1.1 ข้อมูลที่ใช้ในการวิเคราะห์
1) ข้อมูลสารสนเทศระบบไฟฟ้าทางภูมิศาสตร์ (GIS)
กฟก. มีการสำรวจและจัดเก็บข้อมู [้] ลรายละเอียดของอุปกรณ์ต่างๆ ที่อยู่ในระบบไฟฟ้าในฐานข้อมูลสารสนเทศ
ระบบไฟฟ้าทางภูมิศาสตร์ (GIS) ได้แก่ ขนาดเสาไฟฟ้า, ประเภทหัวเสา, จำนวนชั้นหัวเสา, สายไฟฟ้า, วันที่ใช้งาน และประเภทดิน
เป็นต้น ดังนั้นผู้เขียนจึงนำข้อมูลข้างต้นมาใช้สำหรับเป็นข้อมูลประกอบการวิเคราะห์และพยากรณ์พื้นที่เสี่ยงเสาไฟฟ้าล้ม

ID_ŒNTRE	TEXTURE_TO	OP_VOLT_1	HEIGHT	OVERHEADGR	MVTOPASSEM	MVTOPASS_1
369591	ดินเหนียว	MV	12.00000000	Υ	SP	X
369591	ดินเหนียว	MV	12.00000000	Υ	DP	BA
369591	ดินเหนียว	MV	12.00000000	N	DP	X
369591	ดินเหนียว	MV	12.00000000	N	SP	X
369591	ดินเหนียว	MV	12.00000000	Υ	SP	X
369591	ดินเหนียว	MV	12.00000000	Υ	SP	X
369591	ดินเหนียว	MV	12.00000000	Υ	SP	X
369591	ดินเหนียว	MV	12.00000000	N	DDE	X
369591	ดินเหนียว	MV	12.00000000	N	SP	X
369591	ดินเหนียว	MV	12.00000000	Y	SP	X
369591	ดินเหนียว	MV	12.000000000	Υ	SP	X

รูปที่ 2 ตัวอย่างฐานข้อมูลระบบไฟฟ้าในระบบ GIS

2) ข้อมูล API ของกรมอุตุนิยมวิทยา

กรมอุตุนิยมวิทยาได้ให้บริการข้อมูลและสารสนเทศอุตุนิยมวิทยา โดยมีการรายงานสภาวะอากาศ ปรากฏการณ์ ธรรมชาติ การพยากรณ์อากาศ เตือนภัยและรายงานการเกิดแผ่นดินไหว ผ่านช่องทาง API (TMDAPI) เช่น สภาพอากาศโดยทั่วไป. ความเร็วลมที่ระดับความสูง 10 เมตร, ปริมาณน้ำฝนสะสม 24 ชั่วโมง, อุณหภูมิที่ระดับพื้นผิว เป็นต้น

API ผลการตรวจวัดและพยากรณ์อากาศที่ให้บริการ

No.	API Name	Version	Description	References
1	WeatherWarningNews	1.00	ข่าวเดือนภัยสภาพอากาศ ข่าวสารภูมิอากาศ ข่าวการติดตามสภาพอากาศร้าย	•
2	DailySeismicEvent		รายงานผลการเกิดแผ่นดินไหวในประเทศไทย ภูมิภาคใก้ลเคียง และข้อมูลการเกิด แผ่นดินไหวทั่วโลก	
3	ThailandClimateNormal	1.00	รายงานค่าสถิติภูมิอากาศ ค่าปกติ ประเทศไทย 2524-2553 Thailand Climate Standard Normal value 1981-2010	
4	WeatherToday	2.00	ผลการตรวจวัดลักษณะอากาศรายวัน เวลา 07.00 น. ประกอบด้วยข้อมูล ณ เวลา 07.00 น. และค่าทางสถิติของ 24 ชั่วโมงที่ผ่านมาแสดงข้อมูลทุกวันเวลา 07.00 น.	□

รูปที่ 3 ตัวอย่างข้อมูลที่ให้บริการผ่าน API ของกรมอุตุนิยมวิทยา

3.2.2 ทฤษฎีที่เกี่ยวข้อง
1) ความมั่นคงแข็งแรงของเสาไฟฟ้าคอนกรีตอัดแรง)
ระบบไฟฟ้าของ กฟภ. ส่วนใหญ่เป็นการจ่ายไฟผ่านโครงสร้างเสาแบบเหนือดิน ส่งผลให้ได้รับผลกระทบจาก
แรงลม (Wind Force) ปะทะที่สายไฟฟ้าและเสาไฟฟ้า ส่งผลให้มีเหตุการณ์เสาไฟฟ้าล้มหักโค่นบ่อยครั้ง ส่งผลให้ไฟฟ้าดับในบริเวณ
กว้างส่งผลกระทบต่อผู้ใช้ไฟฟ้า และ กฟภ. ทุกปี โดยความสามารถในการรับแรงดัด (Bending Moment: B.M.) ของเสาไฟฟ้า
เป็นไปตามสมการที่ 1

$$B.M. = F \cdot S \tag{1}$$

โดยที่

B.M. = ค่าแรงดัด [kg-m]

F = แรงที่กระทำต่อวัตถุ [kg]

S = ระยะห่างในแนวตั้งฉากจากจุดที่แรงกระทำไปยังจุดหมุน [m]

รูปที่ 4 แรงที่กระทำต่อเสาไฟฟ้า

2) แรงลมปะทะ (F) แรงลมที่ปะทะเสาและสายไฟฟ้าที่ใช้ในการคำนวณโมเมนต์ตามสมการที่ 1 สามารถคำนวณได้ตามสมการที่ (2)

โดยใช้ข้อมูลความเร็วลมจากช่องทาง API ของกรมอุตุนิยมวิทยา

$$F = 0.00256 \cdot V^2 \cdot k_Z \cdot G_{RF} \cdot I \cdot C_d \cdot A \tag{2}$$

โดยที่

 k_z = Velocity Pressure Exposure Coefficient

V = ความเร็วลมที่ 10 เมตร จากพื้นดิน

GRF = Gust Response Factor

I = Importance Factor

C_d = Shape Factor

A = Projected wind area

สำหรับค่าตัวแปรต่างๆ ข้างต้น กฟก. กำหนดใช้งาน สำหรับการคำนวณเพื่อออกแบบจะใช้ตามมาตรฐาน National Electrica
Safety Code (NESC) ประเทศสหรัฐอเมริกา ตามกฎข้อที่ 250C ได้ว่า kz (structure) = 1.1, GRF =0.93, I = 1.0, Cd = 1.6 และ
สำหรับค่าความเร็วลมจะใช้ข้อมูลที่ได้จาก TMDAPI ของกรมอุตุนิยมวิทยา
3) Moment Ratio (M.R.)
อัตราส่วนแรงคัดเทียบกับความแข็งแรงหรือโมเมนต์ใช้งานของเสาไฟฟ้า (Moment Ratio : M.R.) สามารถคำนวถ
ได้ตามสมการที่ (3)

$$M.R. = \frac{Total \ B.M.}{Strength \ of \ Pole}$$
(3)

โดยที่ M.R. = อัตราส่วนแรงดัดเทียบกับความแข็งแรงหรือโมเมนต์ใช้งานของเสาไฟฟ้า Total B.M. = ผลรวมค่าแรงดัด [kg-m] Strength of Pole = ความแข็งแรงของเสา [kg-m]

4) K-means Clustering
1) การเลือกค่า k ที่เหมาะสมด้วยวิธี Elbow method และกำหนดจุดศูนย์กลางเริ่มต้น k จุด เรียกว่า Cluster centers หรือ centroid โดยค่า k ที่เหมาะสมสามารถหาได้ด้วยวิธี Elbow method
2) นำข้อมูลทั้งหมดจัดเข้ากลุ่ม ด้วยการหาระยะห่างระหว่างข้อมูลกับจุดศูนย์กลาง ซึ่งข้อมูลไหนที่อยู่ใกล้กับจุด ศูนย์กลางที่สุดจะถูกจัดเข้ากลุ่มนั้น ตามสมการที่ (4)

$$D = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
 (4)

โดยที่ D= ระยะห่างระหว่างจุด x_1 และ x_2

[Euclidean Distance]

x₂ = ขนาดจุดที่ 2 ตามแนวแกน X

y₁ = ขนาดจุดที่ 1 ตามแนวแกน Y

y₂ = ขนาดจุดที่ 2 ตามแนวแกน Y

3) คำนวณหาค่าเฉลี่ยของแต่ละกลุ่มให้เป็นค่าจุดศูนย์กลาง ตำแหน่งใหม่ .

4) ดำเนินการทำซ้ำเหมือนข้อที่ 2) จนกระทั่งจุดศูนย์กลาง แต่ละกลุ่มไม่เปลี่ยนแปลง

รูปที่ 5 ตัวอย่างการแบ่งกลุ่ม ด้วยวิธี K-Means Clustering

3.2.3 สถาปัตยกรรม (Architecture)

รูปที่ 6 สถาปัตยกรรม (Architecture)

3.3 ผลการทดลองการใช้งาน

ผลการรับโปรแกรมแจ้งเตือนสภาพอากาศและพื้นที่เสี่ยงเสาไฟฟ้าล้ม เพื่อประเมินความเสี่ยงหาพื้นที่การเกิดเสาไฟฟ้าล้ม ของเสาไฟฟ้าภายในพื้นที่ กฟต.1 (ดังตัวอย่าง) พบว่า มีเสาไฟฟ้าจำนวน 610 ต้น (เสาไฟฟ้าใน กฟต.1 มีจำนวนทั้งสิ้น 158,469 ต้น) ที่มีความเร็วลมมากกว่า 13.41 เมตร/วินาที (50% ของพิกัดการออกแบบเสาไฟฟ้าของ กฟก.) ประกอบด้วยพื้นที่รับผิดชอบของ กฟจ.ประจวบคีรีขันธ์, กฟส.สวนผึ้ง, กฟย.นิคมาอ่าวน้อย, กฟย.น้านคา และ กฟย.หนองหญ้าปล้อง โดยสามารถคำนวณค่า Moment Ratio (MR), ประเภทของดิน (Soil) และปริมาณฝนสะสมรวม 24 ชั่วโมง (Rain) ที่ดึงข้อมูลจาก API กรมอุตุนิยมวิทยา ดังแสดงในรูปที่ 8

	Α	В	С	E	J	R 🗎
1	LON_POLE	LAT_POLE	NAME	MR1	rain1	Soil
2	13.72041798	99.20184185	กฟส.สวนผึ้ง	0.435	8.8	10
3	13.72059267	99.20178817	กฟส.สวนผึ้ง	0.435	8.8	10
4	13.72076016	99.20176139	กฟส.สวนผึ้ง	0.435	8.8	10
5	13.72091805	99.20176642	กฟส.สวนผึ้ง	0.435	8.8	10
6	13.72110224	99.20179839	กฟส.สวนผึ้ง	0.435	8.8	10
7	13.72127205	99.20186705	กฟส.สวนผึ้ง	0.435	8.8	10
8	13.72142989	99.20192837	กฟส.สวนผึ้ง	0.435	8.8	10
9	13.7216021	99.20198235	กฟส.สวนผึ้ง	0.435	8.8	10
10	13.72182471	99.20199661	กฟส.สวนผึ้ง	0.435	8.8	10
4 →	Sheet1 ⊕ : ()					

รูปที่ 8 ตัวอย่างการเก็บข้อมูลเสาไฟฟ้าในพื้นที่ กฟต.1

รูปที่ 9 ข้อมูลของเสาไฟฟ้าที่แสดงในกราฟ 3 แกน

รูปที่ 10 ผลลัพธ์ของการจัดกลุ่มโดยใช้วิธี K-Means Clustering จำแนกข้อมูลออกเป็น 4 Clusters

และเมื่อนำข้อมูลของเสาไฟฟ้าที่ประกอบด้วย 3 ปัจจัยข้างต้น มาผ่านกระบวนการ Data Analytic ด้วยวิธีการ K-means Clustering เพื่อจัดลำดับความเสี่ยงของการเกิดเสาไฟฟ้าล้ม พบว่า ผลลัพธ์ของการจัดกลุ่มข้อมูลเสาไฟฟ้าโดยใช้วิธี K-Means Clustering ออกเป็น 4 กลุ่ม (K=4) โดยกลุ่มสีเหลือง คือ กลุ่มของเสาไฟฟ้าที่มีความเสี่ยงล้มสูงที่สุด เนื่องจากค่าของทั้ง 3 ปัจจัยสูง และพัฒนาโปรแกรมเป็นแบบ GUI (Graphical User Interface) ที่แสดงผลลัพธ์รูปแบบแผนที่เพื่อสะดวกต่อตรวจสอบ และเตรียมความพร้อมล่วงหน้าของสำนักงานการไฟฟ้าส่วนภูมิภาคในแต่ละพื้นที่รับผิดชอบ ดังรูปที่ 11

รูปที่ 11 แสดงพื้นที่เสี่ยงเสาไฟฟ้าล้ม ในรูปแบบแผนที่

4. ผลลัพธ์ / ประโยชน์ที่คาดว่าจะได้รับ

4.1 ผลลัพธ์ด้านการเงิน (Financial)

		Cost			5 6:		
ปีที่	ค่าพัฒนาโปรแกรม	ค่าแรงในการ	ค่าเชื้อเพลิงที่	Total Cost	Benefit (ค่าซ่อมแซมระบบไฟฟ้า)	B/C Ratio	
	และบำรุงรักษาระบบ	Partol ที่เพิ่มขึ้น	เพิ่มขึ้น		(ผ.เดอมแดมวะกฎเพพ.เ)		
1	1,000,000	9,772,875	12,813,964	23,586,839	126,458,480	5.361400102	
2	-	9,772,875	12,813,964	22,586,839	126,458,480	5.598768428	
3	-	9,772,875	12,813,964	22,586,839	126,458,480	5.598768428	
4	-	9,772,875	12,813,964	22,586,839	126,458,480	5.598768428	
5	=	9,772,875	12,813,964	22,586,839	126,458,480	5.598768428	
รวม	1,000,000	48,864,375	64,069,819	113,934,194	632,292,398	5.549628058	

หมายเหตุ :

- 1) จำนวนวันที่ใช้ในการ Patrol เพิ่มขึ้นเฉลี่ย 365/3 วัน และ กฟภ. มี กฟฟ. จำนวนทั้งสิ้น 945 แห่ง
- 2) ค่าแรงในการ Patrol คิดจากพนักงาน วิศวกรระดับ 4 เงินเดือน 17,830 บาท (คิดเป็น 85 บาท/ชั่วโมง)
- 3) ค่าน้ำมันเชื้อเพลิง คิดจากระยะทางเฉลี่ยที่ 100 กิโลเมตร และราคาน้ำมันดีเซลราคาลิตรละ 22.29 บาท
- 4) ค่าซ่อมแซมระบบไฟฟ้า คำนวณจากงบปรับปรุงระบบไฟฟ้า เนื่องจากภัยธรรมชาติ ของ กฟภ. (จากระบบ SAP) เฉลี่ยย้อนหลัง 3 ปี
- 5) ผลประโยชน์ที่ได้รับ ยังไม่ได้คำนวณรายได้ที่ได้กลับคืนมา จากการที่ไม่เกิด Energy Non Supply

4.2 ผลลัพธ์ด้านกระบวนการภายใน (Internal Process)
1) กฟก. มีระบบที่จะสามารถเตือนถึงสภาพอากาศที่ผิดปกติ และพื้นที่ที่มีความเสี่ยงจะเกิดเสาไฟฟ้าล้ม
2) กฟฟ.ในแต่ละพื้นที่ สามารถรู้ได้ล่วงหน้าว่าจะเกิดสภาพอากาศที่ผิดปกติที่อาจส่งผลให้เสาไฟฟ้าล้มและเกิดปัญหาไฟฟ้า
ขัดข้อง
3) กฟฺฟ.ในแต่ละพื้นที่สามารถวางแผน สำรวจ ตรวจสอบระบบไฟฟ้า และปรับปรุงระบบไฟฟ้าให้มีความมั่นคงแข็งแรง
ป้องกันจุดเสี่ยงต่างๆ เช่น ต้นไม้, ป้ายโฆษณา ที่อยู่ใกล้ระบบไฟฟ้า ไม่ให้ล้มทับระบบไฟฟ้าในขณะที่เกิดฝนตก ลมแรงได้อย่างมี
ประสิทธิภาพ
4) กฟฟ ในแต่ละพื้นที่ สามารถวางแผน บริหารจัดการทรัพยากร เช่น จำนวนพนักงานแก้ไขกระแสไฟฟ้าขัดข้อง, ชุดงาน
ก่อสร้าง/ปรับปรุงระบบไฟฟ้า, รถยนต์และเครื่องจักรต่างๆ เพื่อเตรียมพร้อมรองรับกับสภาพอากาศที่ผิดปกติที่อาจส่งผลทำให้เกิด
ไฟฟ้าขัดข้อง และเสาไฟฟ้าล้ม ได้อย่างมีประสิทธิภาพ
5) เพิ่มค่าความเชื่อถือได้ของระบบไฟฟ้า ลดความเสี่ยงในการเกิดไฟฟ้าดับ, ลดระยะเวลาในการกู้ระบบไฟฟ้ากลับคืน
6) ลดโอกาสการสูญเสียรายได้จากการขายไฟฟ้า (Energy Non Supply)
7) ลดข้อร้องเรียน และลดการสูญเสียงบประมาณสำหรับจ่ายค่าชดเชยค่าเสียหายกรณีอุปกรณ์ของผู้ใช้ไฟฟ้าเสียหาย
เนื่องจากเหตุการณ์ไฟดับ ตลอดจนส่งเสริมภาพลักษณ์ที่ดีของ กฟก.
_ 5
5. โอกาสในการขยายผล / การต่อยอด / การนำไปประยุกต์ใช้งาน
ระบบที่ใช้สำหรับการพยากรณ์พื้นที่เสี่ยงเสาไฟฟ้าล้มของ กฟก. สำหรับบทความฉบับนี้จะเป็นการใช้ข้อมูลระบบไฟฟ้าที่มีการ
จัดเก็บข้อมูลในสารสนเทศระบบไฟฟ้าทางภูมิศาสตร์ (GIS) ของ กฟก. และใช้ข้อมูลสภาพอากาศจาก API ของกรมอุตุนิยมวิทยาที่
หน่วยงานราชการ (กรมอุตุนิยมวิทยา) เปิดให้บริการผ่านช่องทาง Application Programming Interface (API) แบบไม่เสีย
ค่าใช้จ่าย อีกทั้งในส่วนของระบบที่ใช้ในการแสดงผลจะใช้ PEA GIS PORTAL ซึ่ง กฟก. มีการใช้งานอยู่แล้ว จึงง่ายต่อการขยายผล
ใช้งานให้กับ กฟฟ. ในพื้นที่ต่างๆ ทั่วประเทศ
เนื่องจากมีการแสดงผลในรูปแบบแผนที่จึงง่ายต่อความเข้าใจของพนักงาน กฟภ. อีกทั้งระบบดังกล่าวยังมีการจัดลำดับโอกาส
เสี่ยงเสาล้มในพื้นที่ต่างๆ และมีการพยากรณ์ล่วงหน้าถึง 7 วัน (รวมวันปัจจุบัน) ส่งผลให้ กฟฟ.หน้างาน สามารถใช้ข้อมูลสำหรับการ
วางแผนลงพื้นที่สำรวจระบบไฟฟ้า, ต้นไม้ และวัสดุที่สามารถปลิว ที่อยู่ใกล้แนวระบบไฟฟ้าของ กฟก. หรือแม้กระทั่งจัดเตรียม
บุคลากรแก้ไฟ/อุปกรณ์ต่างๆ ไว้ล่วงหน้า