Dérivation

1 Dérivabilité en un point

Définition 1.1

Définition 1 (Taux d'accroissement et dérivée en un point)

Soit I un intervalle; $f: I \to \mathbb{R}$ et $x_0 \in I$.

$$I \setminus \{x_0\} \rightarrow \mathbb{R}$$

- $x\mapsto \frac{f(x)-f(x_0)}{x-x_0}$ est appelé taux d'accroissement de f en x_0 . La fonction
- On dit que f est **dérivable en** x_0 lorsque ce taux d'accroissement admet une limite finie en x_0 . On définit alors:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

Cette quantité est appelée **dérivée de** f **en** x_0 .

Dessin:

Remarque 1

Alternativement, f est dérivable en x_0 si et seulement si la limite suivante existe et est finie :

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

(Il suffit de poser le changement $x=x_0+h$ i.e $h=x-x_0$: on a $(x\to x_0)\Longleftrightarrow (h\to 0)$)

Exercice 1

Considérons la fonction racine carrée : $\forall x \in \mathbb{R}_+, f(x) = \sqrt{x}$.

- 1. Montrer que f est dérivable en tout $x_0 > 0$ et que $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.
- 2. Montrer que f n'est pas dérivable en 0.
- 1. Soit $x_0 > 0$. Pour tout $h \neq 0$,

$$\frac{f((x_0+h)-f(x_0)}{h} = \frac{\sqrt{x_0+h}-\sqrt{x_0}}{h} = \frac{\sqrt{x_0(1+\frac{h}{x_0})}-\sqrt{x_0}}{h} = \sqrt{x_0}\frac{\sqrt{1+\frac{h}{x_0}}-1}{h} = \frac{\sqrt{x_0}}{x_0}\frac{\sqrt{1+\frac{h}{x_0}}-1}{\frac{h}{x_0}}$$

En posant $y = \frac{h}{x_0}$, on obtient

$$\lim_{h \to 0} \frac{f((x_0 + h) - f(x_0)}{h} = \frac{\sqrt{x_0}}{x_0} \lim_{h \to 0} \frac{\sqrt{1 + \frac{h}{x_0}} - 1}{\frac{h}{x_0}} = \frac{\sqrt{x_0}}{x_0} \lim_{y \to 0} \frac{\sqrt{1 + y} - 1}{y} = \frac{\sqrt{x_0}}{x_0} \times \frac{1}{2} = \frac{1}{2\sqrt{x_0}}.$$

2. En $x_0 = 0$, on obtient

$$\frac{f(0+h)-f(0)}{h} = \frac{\sqrt{h}}{h} = \frac{1}{\sqrt{h}} \xrightarrow{h\to 0} +\infty$$

donc f n'est pas dérivable en 0.

Remarque 2

En pratique pour vérifier qu'une fonction est dérivable, on préfèrera (cf. plus loin dans ce chapitre) :

- Utiliser la dérivabilité des fonctions usuelles.
- Utiliser le Théorème de prolongement de la dérivée.

En dernier recours, on pourra étudier la limite du taux d'accroissement comme on vient de le faire!

Proposition 1 (Dérivabilité implique continuité)

Si une fonction f est dérivable en x_0 , alors elle est continue en x_0 .

Preuve rapide :
$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0} \times (x - x_0) \xrightarrow[x \to x_0]{} f'(x_0) \times 0 = 0.$$

Ainsi $\lim_{x\to x_0} (f(x)-f(x_0))=0$, c'est à dire $\lim_{x\to x_0} f(x)=f(x_0)$, d'où la continuité en x_0 .

Remarques 3

- Ainsi, la fonction $x \mapsto \lfloor x \rfloor$ n'est pas dérivable en $k \in \mathbb{Z}$ car elle n'est pas continue en ce point! (En revanche, elle est dérivable partout ailleurs, de dérivée nulle).
- Bien-sûr une fonction continue en un point n'y est pas forcément dérivable! La fonction $x \mapsto \sqrt{x}$ est continue mais pas dérivable en 0.

1.2 Dérivée à gauche, dérivée à droite

lacktriangle Définition 2 (Dérivée à gauche / droite en un point)

Soit I un intervalle; $f: I \to \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable à gauche (resp. à droite) en x_0 lorsque son taux d'accroissement y admet une limite finie à gauche (resp. à droite). On note alors :

$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$
 et $f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$

Proposition 2 (Lien dérivée à gauche / à droite / "tout court")

Soit I un intervalle ; $f:I\to\mathbb{R}$ et $x_0\in I$ qui n'est pas une extrémité de I. On a l'équivalence :

$$f$$
 est dérivable à droite et à gauche en $x_0 \iff f$ est dérivable à droite et à gauche en x_0 et $f'_g(x_0) = f'_d(x_0)$

Dans ce cas la dérivée est égale à cette valeur commune : $f'(x_0) = f'_g(x_0) = f'_d(x_0)$.

Preuve de la Proposition 2:

C'est une conséquence immédiate du Théorème 1 du chapitre "Limites de fonctions".

Exercice 2

1. Soit f la fonction valeur absolue : $\forall x \in \mathbb{R}, \ f(x) = |x|$. Montrer que f n'est pas dérivable en 0.

Pour $x \neq 0$, $\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x}$. Ainsi:

$$f'_g(0) = \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} -1 = -1.$$
 et $f'_d(0) = \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} 1 = 1.$

- 1.3 Interprétation graphique : tangente
 - Proposition 3 (Dérivée et tangente)
 - Si f est dérivable en x_0 , la courbe représentative de f admet une tangente au point d'abscisse x_0 L'équation de cette tangente est : $y = f'(x_0)(x - x_0) + f(x_0)$.

 $f'(x_0)$ est appelé le coefficient directeur

de la tangente au point d'abscisse x_0 .

- Si $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$, la courbe représentative de f admet une tangente verticale au point d'abscisse x_0 . L'équation de cette tangente est : $x = x_0$.
- Si f est seulement dérivable à gauche ou à droite en x_0 , on parle de "demi-tangente" (verticale).

Exemples

• Comme $\exp'(0) = \exp(0) = 1$, la courbe représentative de exp admet la tangente d'équation y = x+1 au point d'abscisse 0.

✓ Dessin :

• La limite du taux d'accroissement de $x \mapsto \sqrt{x}$ en 0 vaut $+\infty$. La courbe représentative admet donc une demi-tangente verticale en 0.

✓ Dessin :

2 Fonctions dérivables, calcul de dérivées

2.1 Définitions

Définition 3 (Fonction dérivable sur un intervalle)

Soit I un intervalle et $f: I \to \mathbb{R}$.

On dit que f est dérivable sur I lorsque f est dérivable en tout point $x_0 \in I$.

Dans de cas, on peut introduire la fonction dérivée de f, c'est à dire l'application :

$$f': \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & f'(x). \end{array}$$

L'ensemble des fonctions dérivables sur I est noté D(I,R) ou parfois plus simplement D(I).

Remarques 4

- On étend naturellement cette définition à une fonction définie sur domaine plus général, (souvent une union d'intervalles). Par exemple, on dira que $f: x \mapsto \frac{1}{x}$ est dérivable sur $\mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$.
- Petite subtilité dans la définition :

Si f est définie sur un segment [a,b], dire que f est dérivable sur [a,b] revient à dire :

- f est dérivable en tout $x_0 \in]a, b[$
- f est dérivable à droite en a, dérivable à gauche en b.

On pourrait ainsi affirmer que la fonction valeur absolue est dérivable sur [-1,0] et dérivable sur [0,1]. Pour autant, elle n'est pas dérivable [-1,1] (car pas dérivable en 0)!

- D'après la Proposition 1, une fonction dérivable sur I est automatiquement continue sur I. On a ainsi l'inclusion : $D(I,\mathbb{R}) \subset C(I,\mathbb{R})$. L'inclusion réciproque est bien-sûr fausse.
- La dérivée de f en au point x peut également se noter $\frac{df(x)}{dx}$.

A Attention!

La dérivée de la fonction f au point x se note bien f'(x) et non "f(x)'"!

Pour exprimer la dérivée de l'expression $x^3 + 2e^{x^2}$ par exemple, il faut écrire :

On pose
$$\forall x \in \mathbb{R}$$
, $f(x) = x^3 + 2e^{x^2}$ et on a : $\forall x \in \mathbb{R}$, $f'(x) = 3x^2 + 4xe^{x^2}$.

On évitera à tout prix la notation $(x^3 + 2e^{x^2})'$ qui n'a aucun sens !!

Si l'on veut s'économiser d'introduire une fonction f, on pourra à la rigueur écrire :

$$\frac{d}{dx}\left(x^3 + 2e^{x^2}\right) = 3x^2 + 4xe^{x^2}.$$

lacktriangle Définition 4 (Classe \mathcal{C}^1)

Soit I un intervalle et $f: I \to \mathbb{R}$.

On dit que f est de classe C^1 sur I lorsque f est dérivable sur I et que f' est continue sur I.

On note $\mathcal{C}^1(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^1 sur I. Autrement dit :

$$\mathcal{C}^1(I,\mathbb{R}) = \Big\{ f \in D(I,\mathbb{R}) \mid f' \in C(I,\mathbb{R}) \Big\}.$$

Remarque 5

On ainsi les inclusions : $C^1(I,\mathbb{R}) \subset D(I,\mathbb{R}) \subset C(I,\mathbb{R})$. Les inclusions réciproques sont fausses.

2.2 Dérivées de fonctions usuelles

Proposition 4 (Dérivabilité des fonctions usuelles (admis))

Les fonctions "usuelles" (que l'on s'apprête à lister) sont dérivables sur les domaines appropriés. Plus précisément, elles sont même de classe C^1 sur leur domaine de dérivabilité.

f(x)	Domaine de définition	Domaine de dérivabilité	f'(x)
C (constante)	\mathbb{R}	\mathbb{R}	0
$x^n \ (n \in \mathbb{N}^*)$	\mathbb{R}	\mathbb{R}	nx^{n-1}
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$	R *	R *	$-\frac{n}{x^{n+1}}$
$x^{\alpha} \ (\alpha \in \mathbb{R} \setminus \mathbb{Z})$	\mathbb{R}_+^*	\mathbb{R}_+^*	$\alpha x^{\alpha-1}$
\sqrt{x}	\mathbb{R}_+	\mathbb{R}_+^*	$\frac{1}{2\sqrt{x}}$
e^x	\mathbb{R}	\mathbb{R}	e^x
$\ln(x)$	\mathbb{R}_+^*	\mathbb{R}_+^*	$\frac{1}{x}$
$\sin(x)$	R	R	$\cos(x)$
$\cos(x)$	\mathbb{R}	\mathbb{R}	$-\sin(x)$
$\tan(x)$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$	$\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$
$\arctan(x)$	\mathbb{R}	R	$\frac{1}{1+x^2}$

Remarques 6

• Si l'on retient que $\frac{d}{dx}(x^{\alpha}) = \alpha x^{\alpha-1}$, on peut retrouver l'expression des dérivées de :

$$x \mapsto x^n$$
 (prendre $\alpha = n$), $x \mapsto \frac{1}{x^n}$ (prendre $\alpha = -n$), $x \mapsto \sqrt{x}$ (prendre $\alpha = 1/2$).

Attention cependant au domaine de définition/dérivabilité qui n'est pas le même que pour $x \mapsto x^{\alpha}$!

• Si l'on admet ces différentes expressions, les "limites usuelles en 0" s'obtiennent en fait comme la limite d'un taux d'accroissement en 0!

- Avec
$$f(x)=e^x$$
, l'égalité $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=f'(0)$ donne : $\lim_{x\to 0}\frac{e^x-1}{x}=1$.

- Avec
$$f(x) = \sin(x)$$
, l'égalité $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$ donne : $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$.

De même en choisissant $f(x) = \ln(1+x)$, $\tan(x)$, $(1+x)^{\alpha}$.

2.3 Dérivée et opérations

Proposition 5 (Dérivée de sommes, produits, quotients)

Soient u et v deux fonctions dérivables (resp. de classe \mathcal{C}^1) sur un même intervalle I. Alors :

• La fonction u + v est dérivable (resp. de classe C^1) sur I et

$$\forall x \in I, \ (u+v)'(x) = \frac{u'(x) + v'(x)}{u'(x)}.$$

• Pour tout $\lambda \in \mathbb{R}$, (λu) est dérivable (resp. de classe \mathcal{C}^1) sur I et

$$\forall x \in I, \ (\lambda u)'(x) = \frac{\lambda u'(x)}{\lambda u}.$$

• La fonction uv est dérivable (resp. de classe C^1) sur I et

$$\forall x \in I, (uv)'(x) = u'(x)v(x) + v'(x)u(x).$$

 \bullet Si v ne s'annule pas sur I, alors $\frac{u}{v}$ est dérivable (resp. de classe \mathcal{C}^1) sur I et

$$\forall x \in I, \ \left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v(x)^2}.$$

Remarque 7

En combinant les deux premiers résultats, on obtient, pour u, v dérivables et $a, b \in \mathbb{R}$:

$$(au + bv)' = au' + bv'$$
 (linéarité de la dérivation)

Exemple

Si pour tout $x \in \mathbb{R}$ on définit $f(x) = 3\sin(x) - 2\cos(x) + 4e^x$, alors f est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f'(x) = 3\cos(x) + 2\sin(x) + 4e^x$$

★ Théorème 1 (Dérivée d'une composition ("Chain Rule"))

Soit $u \in D(I, \mathbb{R})$ (resp. $C^1(I, \mathbb{R})$) et $g \in D(J, \mathbb{R})$ (resp $C^1(J, \mathbb{R})$) avec $u(I) \subset J$.

Alors $g \circ u \in D(I, \mathbb{R})$ (resp. $\mathcal{C}^1(I, \mathbb{R})$) et on a l'expression :

$$\forall x \in I, \ (g \circ u)'(x) = u'(x) g'(u(x)).$$

Preuve:

Soit $x \in I$.

On étudie :
$$\lim_{h \to 0} \frac{g(u(x+h)) - g(u(x))}{h} = \lim_{h \to 0} \left(\frac{u(x+h) - u(x)}{h} \times \frac{g(u(x+h)) - g(u(x))}{u(x+h) - u(x)} \right)$$

- Puisque u est dérivable en x : $\lim_{h\to 0} \frac{u(x+h)-u(x)}{h} = u'(x)$.
- Puisque g est dérivable en u(x): $\lim_{h\to 0}\frac{g(u(x+h))-g(u(x))}{u(x+h)-u(x)}=\lim_{y\to u(x)}\frac{g(y)-g(u(x))}{y-u(x)}=g'(u(x)).$

On a utilisé le fait que u est dérivable donc continue en x: ainsi $y = u(x+h) \xrightarrow[h \to 0]{u} (x)$.

Cas particuliers usuels : (à connaître ou savoir retrouver en 5 secondes)

f(x)	f'(x)
$u(x)^{\alpha}$	$\alpha u'(x)u(x)^{\alpha-1}$
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$

f(x)	f'(x)
$e^{u(x)}$	$u'(x) e^{u(x)}$
$\ln(u(x))$	$\frac{u'(x)}{u(x)}$

(On applique la "chain rule" pour dériver l'expression f(x) = g(u(x)) avec $g(x) = x^n$, x^{α} , \sqrt{x} , e^x , $\ln(x)$!)

Remarque 8

Pour dériver une expression de la forme $f(x) = u(x)^{v(x)}$, toujours revenir à l'expression l'exponentielle :

$$f(x) = u(x)^{v(x)} = e^{v(x)\ln(u(x))}$$
 puis utiliser la "chain rule".

₩ Méthode : Dérivabilité d'une fonction "élémentaire"

Après avoir déterminé le domaine de dérivabilité D d'une fonction f (souvent égal au domaine de définition...), on pourra souvent annoncer :

"f est dérivable/de classe \mathcal{C}^1 sur D comme somme/produit/quotient/composée de fonctions usuelles".

♠ Exercice 3

Déterminer le domaine de dérivabilité des fonctions suivantes, puis calculer leur dérivée.

(a)
$$f(x) = \frac{2x}{\sqrt{x^2 + 1}}$$
 (b) $g(x) = \left(\frac{4x - 1}{x + 1}\right)^3$ (c) $h(x) = (1 - x^2)^{\sin(x)}$

(a) f est de classe C^1 sur $\mathbb R$ comme somme, quotient, composée de fonctions usuelles. Pour tout $x \in \mathbb R$:

$$f'(x) = \frac{2\sqrt{x^2 + 1} - 2x \times \frac{2x}{2\sqrt{x^2 + 1}}}{x^2 + 1} = \frac{2(x^2 + 1) - 2x^2}{\sqrt{x^2 + 1}(x^2 + 1)} = \frac{2}{\sqrt{x^2 + 1}(x^2 + 1)} = \frac{2}{(x^2 + 1)^{3/2}}$$

(b) g est de classe C^1 sur $\mathbb{R}\setminus\{1\}$. Pour tout $x\in\mathbb{R}\setminus\{1\}$:

$$g'(x) = 3\left(\frac{4(x+1) - (4x-1)}{(x+1)^2}\right) \times \left(\frac{4x-1}{x+1}\right)^2 = 3\frac{5(4x-1)^2}{(x+1)^4} = \frac{15(4x-1)^2}{(x+1)^4}$$

(c) On ré-écrit $h(x)=(1-x^2)^{\sin(x)}=e^{\sin(x)\ln(1-x^2)}$. h est de classe C^1 sur]-1,1[et pour tout $x\in]-1,1[$:

$$h'(x) = \left(\cos(x)\ln(1-x^2) + \sin(x)\frac{-2x}{1-x^2}\right)e^{\sin(x)\ln(1-x^2)} = \left(\cos(x)\ln(1-x^2) - \frac{2x\sin(x)}{1-x^2}\right)(1-x^2)^{\sin(x)}$$

2.4 Dérivée d'une bijection réciproque

★ Théorème 2 (Dérivée de la réciproque)

Soit f une fonction continue et strictement monotone sur I. On note J = f(I).

(On sait d'après le Théorème de la bijection que f réalise une bijection de I dans J. De plus, la bijection réciproque $f^{-1}:J\to I$ est continue et strictement monotone.

Si f est dérivable sur I et si f' ne s'annule pas sur I, alors f^{-1} est dérivable sur J et

$$\forall x \in J, \ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

Preuve partielle:

Admettons que f^{-1} soit bien dérivable. On sait que pour tout $x \in J$, $f(f^{-1}(x)) = x$.

En dérivant on obtient $\frac{d}{dx}(f(f^{-1}(x))) = 1$, c'est à dire :

$$(f^{-1})'(x) \times f'(f^{-1}(x)) = 1$$
 et donc $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

Exercice 4

Retrouver la formule donnant la dérivée de arctan.

La fonction tan réalise une bijection strictement croissante de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [dans \mathbb{R} . De plus tan est dérivable sur] $-\frac{\pi}{2}, \frac{\pi}{2}$ [et

$$\forall x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, \tan'(x) = 1 + \tan(x)^2 > 0.$$

Ceci montre que la bijection réciproque arctan : $\mathbb{R} \to]-\frac{\pi}{2},\frac{\pi}{2}[$ est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ \arctan'(x) = \frac{1}{\tan'(\arctan(x))} = \frac{1}{1 + \tan(\arctan(x))^2} = \frac{1}{1 + x^2}.$$

Remarque 9

Si jamais f' s'annule en un point $x_0 \in I$, alors dans ce cas f^{-1} n'est pas dérivable en $y_0 = f(x_0)$. Sa courbe représentative y admet une tangente verticale.

ℰ Exercice 5

On considère la fonction cube : $\forall x \in \mathbb{R}, f(x) = x^3$.

- 1. Montrer que f réalise une bijection de \mathbb{R} dans \mathbb{R} .
- 2. Montrer que f^{-1} est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- 3. Dessiner les courbes représentatives de f et f^{-1} .
- 1. f est continue et strictement croissante sur \mathbb{R} , et $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$.

D'après le théorème de la bijection, on en déduit que f est une bijection de \mathbb{R} dans \mathbb{R} .

La bijection réciproque est en fait $f^{-1}: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sqrt[3]{x} \end{array}$.

2. f est dérivable \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2$. Ainsi pour tout $x \in \mathbb{R}^*$, $f'(x) \neq 0$. Ainsi f' ne s'annule pas sur les intervalles $]-\infty,0[$ et $]0,+\infty[$. D'après le théorème précédent, on en déduit que f^{-1} est dérivable sur ces intervalle et que

$$\forall x \in \mathbb{R}^*, \ (f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{3(\sqrt[3]{x})^2}$$

3.

3 Propriétés des fonctions dérivables sur un intervalle

3.1 Théorème de Rolle

Lemme (Extremum et dérivée)

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur [a, b], dérivable sur [a, b].

Si f atteint son maximum/minimum en un point $x_0 \in]a, b[$, alors $f'(x_0) = 0$.

✓ Dessin :

Remarque 10

Ce résultat reste vrai pour un minimum/maximum local, du moment que celui-ci est bien atteint dans l'intérieur de l'intervalle (et pas à une extrémité!)

Preuve:

f étant continue sur le <u>segment</u> [a, b], on sait qu'elle y atteint son minimum et son maximum. On suppose que le minimum est atteint en un point $x_0 \in]a, b[$ (le cas du maximum est similaire). Ainsi, pour tout $x \in [a, b]$, $f(x) \ge f(x_0)$, ce qui donne pour le taux d'accroissement :

• Si
$$x < x_0$$
, $\frac{f(x) - f(x_0)}{x - x_0} \le 0$ • Si $x > x_0$, $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$

Comme f est dérivable en x_0 , f y est dérivable à gauche et à droite et $f'(x_0) = f'_g(x_0) = f'_d(x_0)$.

Or
$$f'_g(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$
 et $f'_d(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$.

Ainsi $f'(x_0) \leq 0$ et $f'(x_0) \geq 0$, c'est donc que $f'(x_0) = 0$.

★ Théorème 3 (Théorème de Rolle)

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur un segment [a, b], dérivable sur [a, b].

On suppose que f(a) = f(b). Alors il existe $c \in]a, b[$ tel que f'(c) = 0.

✓ Dessin :

Remarque 11

Un tel réel c peut ne pas être unique.

Preuve:

f étant continue sur le segment [a, b], on sait qu'elle y atteint son minimum et son maximum.

Notons $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$.

• Si m et M sont tous deux atteints aux bords [a,b] alors on a $\begin{cases} f(a) = m \\ f(b) = M \end{cases}$ ou $\begin{cases} f(a) = M \\ f(b) = m \end{cases}$

Puisque f(a) = f(b), dans tous les cas on a m = M.

Ainsi $\forall x \in [a, b], m \leqslant f(x) \leqslant M = m : f \text{ est constante égale à } m.$

f étant une fonction constante, il en résulte que $\forall x \in]a,b[,f'(x)=0.$

N'importe quel $c \in]a, b[$ satisfait donc f'(c) = 0.

• Sinon, f atteint son minimum/maximum en un point $c \in]a, b[$.

D'après le lemme précédent (Extremum et dérivée), on a f'(c) = 0.

Exercice 6

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction dérivable et p-périodique (p > 0).

Montrer que f' s'annule une infinité de fois.

• f est continue sur [0, p], dérivable sur [0, p] et f(0) = f(p) par périodicité.

D'après le théorème de Rolle, f' s'annule au moins une fois sur]0, p[.

• Plus généralement, pour tout $k \in \mathbb{Z}$,

f est continue sur [kp, kp + p], dérivable sur [kp, kp + p] et f(kp) = f(kp + p) par périodicité.

D'après le théorème de Rolle, f' s'annule au moins une fois sur |kp, kp + p|.

Ces intervalles étant disjoints, ce la montre que f' s'annule une infinité de fois sur \mathbb{R} .

<u>★</u> Théorème 4 (Égalité des accroissements finis (EAF))

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur un segment [a, b], dérivable sur [a, b].

Alors il existe $c \in]a, b[$ tel que $f'(c) = \frac{f(b) - f(a)}{b - a}.$

✓ Dessin :

Remarques 12

- $\frac{f(b) f(a)}{b a}$ est le taux d'accroissement de f entre a et b. Il peut s'interpréter comme la pente de la "corde" tendue entre les points (a, f(a)) et (b, f(b)).
- ullet Comme pour le Théorème de Rolle, un tel réel c peut ne pas être unique.
- En particulier, lorsque f(a) = f(b), on obtient f'(c) = 0 et on retrouve le Théorème de Rolle.

Preuve:

On pose :
$$\forall x \in [a, b], \ g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a).$$

- La fonction g est continue sur [a,b] et dérivable sur]a,b[(car f l'est).
- g(a) = f(a) et g(b) = f(b) (f(b) f(a)) = f(a) donc g(a) = g(b).

D'après le Théorème de Rolle, il existe $c \in]a,b[$ tel que g'(c)=0.

Or
$$\forall x \in]a, b[, g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a},$$
 donc on a

$$g'(c) = 0 \Longleftrightarrow f'(c) - \frac{f(b) - f(a)}{b - a} = 0 \Longleftrightarrow f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Une conséquence importante et souvent utile est l'inégalité des accroissements finis :

★ Théorème 5 (Inégalité des accroissements finis (IAF))

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur un segment [a, b], dérivable sur [a, b].

1 Version "minorant/majorant": S'il existe $m, M \in \mathbb{R}$ tels que $m \leqslant f' \leqslant M$ sur]a, b[, alors

$$m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a).$$

2 Version "valeur absolue" : S'il existe K > 0 tel que $|f'| \leq K$ sur]a, b[, alors

$$|f(b) - f(a)| \leqslant K|b - a| \quad \text{(fonctionne aussi si } a > b)$$

Preuve:

D'après l'égalité des accroissements finis, on peut introduire $c \in]a,b[$ tel que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
, c'est à dire $f(b) - f(a) = f'(c)(b - a)$.

1 Si jamais $m \leq f' \leq M$ sur [a, b], alors en particulier $m \leq f'(c) \leq M$ et on obtient

$$m(b-a) \leqslant f'(c)(b-a) \leqslant M(b-a)$$
 c'est à dire $m(b-a) \leqslant f(b) - f(a) \leqslant M(b-a)$.

2 Si jamais $|f'| \leq K$ sur [a, b], alors en particulier $|f'(c)| \leq K$ et on obtient

$$|f'(c)(b-a)| = |f'(c)|(b-a) \le K(b-a)$$
 c'est à dire $|f(b)-f(a)| \le K(b-a)$.

₹≣ Méthode : Repérer une utilisation de l'IAF

Lorsque l'on demande de montrer une inégalité qui met en jeu un écart entre deux valeurs prises par une fonction (un "accroissement" f(b) - f(a)), c'est bien souvent l'IAF qui permet de conclure!

- $\boxed{1}$ Repérer à quelle fonction f et sur quel segment [a,b] appliquer l'IAF.
- 2 Affirmer que f est continue sur [a, b], dérivable sur [a, b] (ou, bien souvent, carrément dérivable sur [a, b], ce qui implique la continuité).
- $\fbox{3}$ Déterminer des <u>constantes</u> m et M ou bien une <u>constante</u> K telles que

$$\forall t \in]a, b[, m \leqslant f'(t) \leqslant M$$
 ou bien $\forall t \in]a, b[, |f'(t)| \leqslant K.$

4 En déduire l'inégalité voulue avec l'IAF.

Exercice 7

- 1. Montrer: $\forall n \in \mathbb{N}^*, \quad \frac{1}{n+1} \leqslant \ln(n+1) \ln(n) \leqslant \frac{1}{n}.$
- 2. Montrer: $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$
- 1. Soit $n \in \mathbb{N}^*$, on applique l'IAF à la fonction ln dérivable sur [n, n+1]:

$$\forall t \in]n, n+1[, \frac{1}{n+1} \leqslant \ln'(t) = \frac{1}{t} \leqslant \frac{1}{n}$$

On en déduit que
$$\frac{1}{n+1}(n+1-n) \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}(n+1-n),$$
 c'est à dire :
$$\frac{1}{n+1} \leqslant \ln(n+1) - \ln(n) \leqslant \frac{1}{n}.$$

2. Soit $x \in \mathbb{R}$ fixé. L'inégalité voulue peut se ré-écrire : $|\sin(x) - \sin(0)| \le |x - 0|$. On applique l'IAF à la fonction sin dérivable sur [0, x]:

$$\forall t \in [0, x], \ |\sin'(t)| = |\cos(t)| \le 1.$$

On en déduit que $|\sin(x) - \sin(0)| \le 1 \times |x - 0|$ c'est à dire $|\sin(x)| \le |x|$.

L'IAF est un outil très puissant dans de nombreux contextes, notamment l'analyse de suites récurrentes.

ℰ Exercice 8

On considère une suite $(u_n)_{n\geqslant 0}$ définie par : $u_0\geqslant 0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{1+u_n}$.

Notons $f: [-1,+\infty[\to \mathbb{R}] \to \sqrt{x+1}$ la fonction associée à cette récurrence.

- 1. Donner le tableau de variation de f. En déduire que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \ge 0$.
- 2. Montrer que f admet un unique point fixe $\alpha \in \mathbb{R}_+$ que l'on déterminira.
- 3. Établir l'inégalité : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|.$
- 4. En déduire que $\forall n \in \mathbb{N}, |u_n \alpha| \leq \frac{1}{2^n} |u_0 \alpha|$ puis déterminer $\lim_{n \to +\infty} u_n$.
- 5. On choisit $u_0 = 1$ de sorte que $|u_0 \alpha| \le 1$: ainsi on a $\forall n \in \mathbb{N}, |u_n \alpha| \le \frac{1}{2^n}$.

Compléter la fonction approx_alpha pour qu'elle renvoie une valeur approchée de α à eps près.

```
import numpy as np

def approx_alpha(eps) :
    u = .....;    n = .....
while (1/2)**n > eps :
    u = ........
    n = ......
return(u)
```

1. On a le tableau de variations :

En particulier, on voit que \mathbb{R}_+ est un intervalle stable par $f: f(\mathbb{R}_+) \subset \mathbb{R}_+$.

On en déduit par récurrence immédiate que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \in \mathbb{R}_+$.

2. Pour tout $x \in \mathbb{R}_+$,

$$f(x) = x \Longleftrightarrow \sqrt{x+1} = x \Longleftrightarrow x+1 = x^2 \Longleftrightarrow x^2 - x - 1 = 0$$

Après calcul, les deux racines sont $\frac{1\pm\sqrt{5}}{2}$. L'unique racine positive est $\alpha=\frac{1+\sqrt{5}}{2}$.

3. Soit $n \in \mathbb{N}$, l'inégalité voulue $|u_{n+1} - \alpha| \leqslant \frac{1}{2} |u_n - \alpha|$ peut se ré-écrire : $|f(u_n) - f(\alpha)| \leqslant \frac{1}{2} |u_n - \alpha|$.

Appliquons l'IAF à la fonction f dérivable sur le segment $[u_n, \alpha]$ (ou $[\alpha, u_n]$):

$$\forall t \in]u_n, \alpha[, f'(t) = \frac{1}{2\sqrt{t+1}} \text{ donc } |f'(t)| = \frac{1}{2\sqrt{t+1}} \leqslant \frac{1}{2}$$

$$(\operatorname{car} t \geqslant u_n \geqslant 0 \operatorname{donc} \sqrt{t+1} \geqslant 1 \operatorname{donc} \frac{1}{\sqrt{t+1}} \leqslant 1)$$

D'après l'IAF (version "valeur absolue"), on déduit bien l'inégalité voulue.

- 4. C'est une récurrence immédiate avec la question précédente :
- $|u_0 \alpha| \leqslant \frac{1}{2^0} |u_0 \alpha|$
- Si $|u_n \alpha| \le \frac{1}{2^n} |u_0 \alpha|$ alors $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha| \le \frac{1}{2} \frac{1}{2^n} |u_0 \alpha| = \frac{1}{2^{n+1}} |u_0 \alpha|$.

En passant à la limite dans $0 \le |u_n - \alpha| \le \frac{1}{2^n} |u_0 - \alpha|$, on déduit par théorème des gendarmes que $\lim_{n \to +\infty} |u_n - \alpha| = 0$, c'est à dire $\lim_{n \to +\infty} u_n = \alpha$.

3.3 Conséquence importante de l'EAF : Prolongement dérivable

★ Théorème 6 (Prolongement de la dérivée)

Soit I un intervalle de \mathbb{R} , $f: I \to \mathbb{R}$ et $x_0 \in I$. On suppose que :

- f est continue sur I.
- f est de classe C^1 sur $I \setminus \{x_0\}$.
- f' admet une limite finie ℓ en x_0 : $\ell = \lim_{x \to x_0} f'(x) \in \mathbb{R}$.

Alors f est dérivable en x_0 et $f'(x_0) = \ell$. Ainsi f est de classe C^1 sur I tout entier.

Preuve:

Soit $x \in I \setminus \{x_0\}$ fixé. On applique l'égalité des accroissement finis à f sur $[x_0,x]$:

f est continue sur $[x_0, x]$, dérivable sur $[x_0, x]$, donc il existe $c_x \in [x_0, x]$ tel que $f'(c_x) = \frac{f(x) - f(x_0)}{x - x_0}$.

Comme $c_x \in [x_0, x]$, lorsque $x \to x_0$ on a $c_x \to x_0$. Ainsi, par composition de limites :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} f'(c_x) = \lim_{y \to x_0} f'(y) = \ell.$$

Par définition, ceci montre que f est dérivable en x_0 et que $f'(x_0) = \ell$.

f est déjà C^1 sur $I \setminus \{x_0\}$, c'est à dire que f' est continue sur $I \setminus \{x_0\}$.

Pour montrer que f est C^1 sur I, il reste à vérifier que f' est continue en x_0 .

C'est évident car $\lim_{x \to x_0} f'(x) = \ell = f'(x_0)$.

Exercice 9

On considère la fonction $f: \begin{array}{ccc} \mathbb{R}_* & \to & \mathbb{R} \\ x & \mapsto & e^{-\frac{1}{x^2}} \end{array}$

Montrer que f est prolongeable en une fonction C^1 sur \mathbb{R} .

D'abord, f est de classe C^1 sur \mathbb{R}^* comme composée de fonctions usuelles.

• Prolongement par continuité en 0.

On a $\lim_{x\to 0} f(x) = \lim_{x\to 0} e^{-\frac{1}{x^2}} = \lim_{y\to +\infty} e^{-y} = 0$: f est donc prolongeable par continuité en 0.

Par commodité, notons toujours f ce prolongement : posons f(0) = 0.

Cela fait de f une fonction continue sur \mathbb{R} tout entier!

• Dérivée en 0.

On a f continue sur \mathbb{R} , C^1 sur $\mathbb{R} \setminus \{0\}$: montrons que f' a une limite finie en 0.

Pour tout
$$x \neq 0$$
, $f'(x) = \frac{2}{x^3}e^{-\frac{1}{x^2}}$.

En posant $y=\frac{1}{x^2}$ on peut ré-écrire $\frac{2}{x^3}e^{-\frac{1}{x^2}}=2y^{3/2}e^{-y}$ donc

$$\lim_{x \to 0} \frac{2}{x^3} e^{-\frac{1}{x^2}} = \lim_{y \to +\infty} 2y^{3/2} e^{-y} = \lim_{y \to +\infty} \frac{2y^{3/2}}{e^y} = 0 \quad \text{par croissance comparée.}$$

On a montré que $\lim_{x\to 0} f'(x) = 0$.

D'après le théorème de prolongement de la dérivée, on peut conclure que f est dérivable en 0 avec f'(0) = 0, et même que f est de classe C^1 sur \mathbb{R} tout entier.

3.4 Conséquence importante de l'EAF : Dérivée et sens de variation

Terminons par un des intérêts fondamentaux de la dérivée (utilisé depuis le lycée) : le signe de la dérivée nous renseigne sur le sens de variation de f!

★ Théorème 7 (Dérivée et monotonie)

Soit f une fonction dérivable sur un intervalle I. On a les équivalences :

- f est croissante sur $I \iff f' \ge 0$ sur I. f est décroissante sur $I \iff f' \le 0$ sur I.
- f est constante sur $I \iff f' = 0$ sur I.

Preuve:

Montrons l'équivalence du premier point (les autres points sont similaires).

• Si f est croissante sur I, alors on note que pour tout $x_0, x \in I$ avec $x \neq x_0$,

Si $x > x_0$, $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$, si $x < x_0$, $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$, donc dans tous less cas $\frac{f(x) - f(x_0)}{x - x_0} \ge 0$.

En passant à la limite quand $x \to x_0$, on obtient $f'(x_0) \ge 0$. C'est valable pour tout $x_0 \in I$.

• Inversement, supposons $f' \ge 0$ sur I. Soient $a, b \in I$ avec $a \le b$.

Si a = b alors évidemment $f(a) \leq f(b)$.

Si a < b, en appliquant l'EAF sur le segment [a, b], on peut écrire $\frac{f(b) - f(a)}{b - a} = f'(c)$ avec un $c \in]a, b[$.

Comme $f'(c) \ge 0$, on en déduit que $f(b) - f(a) \ge 0$, c'est à dire $f(a) \le f(b)$.

On a bien montré que $a \leq b$ implique $f(a) \leq f(b)$: f est croissante sur I.

Remarque 13

Si l'intervalle est un segment I = [a, b], on peut remplacer l'hypothèse "f dérivable sur [a, b]" par "f continue sur [a, b] et dérivable sur [a, b]" et le résultat reste vrai.

A Attention!

Ce théorème devient faux si l'on ne se place pas sur un intervalle!

Exemple:
$$f: x \mapsto \frac{1}{x}$$
 est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*, \ f'(x) = -\frac{1}{x^2} < 0$.

Pour autant, f n'est pas décroissante sur
$$\mathbb{R}^*$$
! Par exemple, $f(-1) = -1 \leq f(1) = 1$.

En revanche on peut bien dire que
$$f$$
 est décroissante sur les intervalles $]-\infty,0[$ et $]0,+\infty[$.

Exercice 10

Montrer que pour tout
$$x \in \mathbb{R}^*$$
, $\arctan(x) + \arctan\left(\frac{1}{x}\right) = \begin{cases} -\frac{\pi}{2} & \text{si } x < 0 \\ \frac{\pi}{2} & \text{si } x > 0 \end{cases}$.

Posons, pour tout
$$x \in \mathbb{R}^*$$
, $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$.

f est dérivable sur \mathbb{R}^* comme somme et composée de fonctions usuelles. On a :

$$\forall x \in \mathbb{R}^*, \ f'(x) = \frac{1}{1+x^2} + -\frac{1}{x^2} \times \frac{1}{1+(\frac{1}{x})^2} = \frac{1}{1+x^2} - \frac{1}{x^2+1} = 0.$$

Ceci montre que f est constante sur les intervalles $]-\infty,0[$ et $]0,+\infty[$.

Il existe $C, C' \in \mathbb{R}$ telles que :

$$\forall x < 0, \arctan(x) + \arctan\left(\frac{1}{x}\right) = C \quad \text{et} \quad \forall x > 0, \arctan(x) + \arctan\left(\frac{1}{x}\right) = C'$$

En évaluant en x = -1 et x = 1 on obtient

$$-\frac{\pi}{4} + (-\frac{\pi}{4})$$
 et $\frac{\pi}{4} + \frac{\pi}{4} = C'$

d'où
$$C = -\frac{\pi}{2}$$
 et $C' = \frac{\pi}{2}$.

★ Théorème 8 (Dérivée et stricte monotonie)

Soit f une fonction dérivable sur un intervalle I.

- Si f' > 0 sur I, alors f est strictement croissante sur I.
- Si f' < 0 sur I, alors f est strictement décroissante sur I.

On peut être plus précis :

- Si $f' \ge 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement croissante sur I.
- Si $f' \leq 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement décroissante sur I.

Preuve:

Si f' > 0 sur I, il suffit d'adapter la preuve du Théorème 7 (avec l'EAF) pour voir que a < b implique f(a) < f(b).

On admet le point "plus précis" pour le moment, par commodité.

Exemple

Une fonction strictement croissante peut quand même avoir une dérivée qui s'annule ponctuellement!

Par exemple $f: x \mapsto x^3$ est strictement croissante sur \mathbb{R} , pourtant $f': x \mapsto 3x^2$ s'annule en 0.

Évidemment, on utilise depuis bien longtemps ce lien entre signe de la dérivée et sens de variation, dès qu'il s'agit d'établir un tableau de variations!

Exercice 11

Déterminer le domaine de définition et établir le tableau de variation de la fonction définie par :

$$f(x) = \frac{x^2 - 2x - 1}{x(x - 1)}$$

f est définie et dérivable (même de classe $C^1)$ sur $\mathbb{R}\setminus\{0,1\}=]-\infty,0[\cup]0,1[\cup]1,+\infty[.$

Pour tout $x \in \mathbb{R} \setminus \{0, 1\}$,

$$f'(x) = \frac{(2x-2)x(x-1) - (x^2 - 2x - 1)(2x - 1)}{x^2(x-1)^2} = \frac{x^2 + 2x - 1}{x^2(x-1)^2}$$

Ainsi

$$f'(x) \geqslant 0 \Longleftrightarrow x^2 + 2x - 1 \geqslant 0$$

Discriminant : $\Delta=4+1=5>0,$ racines : $\alpha=1-\frac{\sqrt{5}}{2}$ et $\beta=1+\frac{\sqrt{5}}{2},$ d'où :

$$f'(x) \geqslant 0 \iff x \leqslant \alpha \text{ ou } x \geqslant \beta$$

Comme $\alpha < 0 < 1 < \beta$, on a finalement le tableau de variations :

À savoir faire à l'issue de ce chapitre :

- ullet Justifier qu'une fonction est dérivable/de classe C^1 sur un domaine.
- Calculer rapidement une dérivée! (Somme/produit/quotient/composée...)
- Étudier la dérivabilité d'une fonction en un point particulier. (en pensant notamment au Théorème de prolongement de la dérivée)
- Calculer la dérivée d'une bijection réciproque.
- Utiliser l'inégalité des accroissements finis (IAF).

Pour suivre

- Repérer et utiliser le Théorème de Rolle.
- Repérer et utiliser l'égalité des accroissements finis (EAF).

 $\{ \ \bullet \ \mbox{Utiliser}$ spontanément l'IAF pour étudier certaines suites récurrentes.

Pour les ambitieux