Classifying topoi and domain theory

Lingyuan Ye

Contents

Prelir	minaries	5
1.	Internal category theory	5
Chap	ter 1. General quasi-coherence	7
1.	The enriched endo profunctors	7
2.	The internal theory of flat functors	8
3.	Quasi-coherence for left exact categories	9
4.	Quasi-coherent diagrams	11
Chap	ter 2. Modality in classifying topoi	13
1.	Modality from models	13
2.	The Löb's axiom externally	15
3	The Löb's axiom internally	15

Preliminaries

1. Internal category theory

CHAPTER 1

General quasi-coherence

1. The enriched endo profunctors

Let C be a category. We write $\mathbf{Prof}(C, C)$ as the category of endo profunctors on C. We adopt the convention that subscripts will be *covariant*, and superscripts will be *contravariant*. This way, for the profunctor \sharp , \sharp_c will be C(-, c), and \sharp^c will be C(c, -).

One way to view $\operatorname{Prof}(\mathcal{C}, \mathcal{C})$ is the functor category $[\mathcal{C}, \operatorname{Psh}(\mathcal{C})]$, which we also denote as $\operatorname{Diag}_{\mathcal{C}}$. This notation mainly signifies that we are integrating along the covariant variable,

$$\mathbf{Diag}_{\mathcal{C}}(F,G)\cong\int_{c\in\mathcal{C}}\mathbf{Psh}(\mathcal{C})(F_c,G_c).$$

Now a diagram equivalently can be viewed as an internal diagram for the constant internal category ΔC in $\mathbf{Psh}(C)$. We organise this internal perspective into a $\mathbf{Psh}(C)$ -enriched category $\mathbb{D}\mathbf{iag}_{C}$ of internal diagrams over ΔC . Given two diagrams $F, G: C \to \mathbf{Psh}(C)$, we define

$$\mathbb{D}\mathbf{iag}_{\mathcal{C}}(F,G) := \int_{c \in \mathcal{C}} G_c^{F_c}.$$

In other words, for any $d \in C$ we have

$$\operatorname{Diag}_{\mathcal{C}}(F,G)^{d} \cong \operatorname{Psh}(\mathcal{C})(\sharp_{d}, \int_{c \in \mathcal{C}} G_{c}^{F_{c}})$$
$$\cong \int_{c \in \mathcal{C}} \operatorname{Psh}(\mathcal{C})(F_{c}, G_{c}^{\sharp_{d}})$$
$$\cong \operatorname{Diag}_{\mathcal{C}}(F, G^{\sharp_{d}})$$

Here G^{\sharp_d} is the constant power of the diagram G, i.e. $(G^{\sharp_d})_c \cong G_c^{\sharp_d}$. In this case, the underlying category of $\mathbb{D}\mathbf{iag}_C$ is \mathbf{Diag}_C itself,

$$|\mathbb{D}iag_{\mathcal{C}}| \simeq Diag_{\mathcal{C}} \simeq Prof(\mathcal{C}, \mathcal{C}).$$

Proposition 1.1. $\mathbb{D}iag_{\mathcal{C}}$ is both tensored and powered over $Psh(\mathcal{C})$.

PROOF. For any $X \in \mathbf{Psh}(\mathcal{C})$, we define $X \times F$ to be the constant tensor,

$$(X \times F)_c \cong X \times F_c.$$

This way, we have

$$\mathbf{Diag}_{\mathcal{C}}(X \times F, G) \cong \int_{c \in \mathcal{C}} G_{c}^{X \times F_{c}}$$
$$\cong \int_{c \in \mathcal{C}} (G_{c}^{F_{c}})^{X}$$

$$\cong \left(\int_{c \in \mathcal{C}} G_c^{F_c} \right)^X$$
$$\cong \mathbb{D}iag_{\mathcal{C}}(F, G)^X$$

The third equivalence has used the fact that $(-)^X$ is a right adjoint, hence preserves end. Completely similarly, we may define the power G^X to be the constant power,

$$(G^X)_c \cong G_c^X$$
.

This way, again we have

$$\mathbb{D}\mathrm{iag}_{\mathcal{C}}(F,G^X)\cong \int_{c\in\mathcal{C}}(G_c^X)^{F_c}\cong \left(\int_{c\in\mathcal{C}}G_c^{F_c}\right)^X\cong \mathbb{D}\mathrm{iag}_{\mathcal{C}}(F,G)^X.$$

This shows $\mathbb{D}\mathbf{iag}_{\mathcal{C}}$ is both tensored and powered by $\mathbf{Psh}(\mathcal{C})$.

2. The internal theory of flat functors

Let \mathbb{C} denote the theory of flat functors on \mathcal{C} . We know that

$$\mathbb{C}$$
-Mod \simeq Flat(\mathcal{C} , Set) \simeq Ind(\mathcal{C}^{op}).

We know Psh(C) is the classifying topos of \mathbb{C} . There are interesting structures in the category of \mathbb{C} -models in Psh(C),

$$\mathbb{C}\text{-Mod}(Psh(\mathcal{C})) \simeq Flat(\mathcal{C}, Psh(\mathcal{C})) \simeq [\mathcal{C}^{op}, \mathbb{C}\text{-Mod}] \subseteq Prof(\mathcal{C}, \mathcal{C}),$$

which is a full subcategory of the endo profunctors on C. We will write the full subcategory Flat(C, Psh(C)) of $Diag_C$ as $Flat_C$. The flatness condition is a condition on the covariant entry for an endo profunctor.

Example 1.2. There is a generic \mathbb{C} -model in $\operatorname{Flat}_{\mathcal{C}}$, since $\operatorname{Psh}(\mathcal{C})$ is the classifying topos of \mathbb{C} . This is nothing but the Yoneda embedding,

$$\sharp: \mathcal{C} \to \operatorname{Psh}(\mathcal{C}).$$

We have constructed a $\mathbf{Psh}(\mathcal{C})$ -enriched category $\mathbb{D}\mathbf{iag}_{\mathcal{C}}$ with the underlying category $\mathbf{Diag}_{\mathcal{C}}$. With $\mathbf{Flat}_{\mathcal{C}}$ as a full subcategory, it will also be the underlying category of a full enriched subcategory of $\mathbb{D}\mathbf{iag}_{\mathcal{C}}$, which we denote as $\mathbb{F}\mathbf{lat}_{\mathcal{C}}$.

Proposition 1.3. Flat_C inherits the power of Psh(C) over $Diag_C$.

PROOF. Since the power F^X is pointwise on the covariant entry, i.e. $(F^X)_c \cong F_c^X$, and it will be flat if F is, since $(-)^X$ preserves limits.

The more interesting enriched category is the coslice $\sharp / \mathbb{F} \mathbf{lat}_{\mathcal{C}}$, whose objects are flat diagrams F with a map $\sharp \to F$. The enriched hom in $\sharp / \mathbb{F} \mathbf{lat}_{\mathcal{C}}$ for two flat diagrams F, G with $f: \sharp \to F$ and $g: \sharp \to G$ is given by the pullback

$$\sharp/\mathbb{F}lat_{\mathcal{C}}(F,G) \longrightarrow \mathbb{F}lat_{\mathcal{C}}(F,G)
\downarrow \qquad \qquad \downarrow \mathbb{F}lat_{\mathcal{C}}(f,G)
1 \xrightarrow{g} \mathbb{F}lat_{\mathcal{C}}(\sharp,G)$$

In fact, the coslice \sharp /Flat_C is the enriched category of models of an internal theory $\mathbb{U}_{\mathbb{C}}$ of \sharp -algebra, and henceforth we will write it as $\mathbb{U}_{\mathbb{C}}$ -Mod. By construction we have

$$|\mathbb{U}_{\mathbb{C}}\text{-Mod}| \simeq \sharp/\text{Flat}_{\mathcal{C}}$$
.

Proposition 1.4. The enriched forgetful functor $\mathbb{U}_{\mathbb{C}}\text{-Mod} \to \mathbb{F}lat_{\mathcal{C}}$ creates power by $Psh(\mathcal{C})$.

PROOF. Suppose we have two $\mathbb{U}_{\mathbb{C}}$ -models F, G and $X \in \mathbf{Psh}(\mathcal{C})$. From Proposition 1.3 we know G^X is again flat, and admits a canonical \sharp -algebra structure via the constant map $G \to G^X$. This way, since $(-)^X$ preserves limits, we have

$$\begin{split} \mathbb{U}_{\mathbb{C}}\text{-}\mathbf{Mod}(F,G)^X &\cong (1 \times_{\mathbb{F}\mathbf{lat}_{\mathcal{C}}(\pounds,G)} \mathbb{F}\mathbf{lat}_{\mathcal{C}}(F,G))^X \\ &\cong 1 \times_{\mathbb{F}\mathbf{lat}_{\mathcal{C}}(\pounds,G)^X} \mathbb{F}\mathbf{lat}_{\mathcal{C}}(F,G)^X \\ &\cong 1 \times_{\mathbb{F}\mathbf{lat}_{\mathcal{C}}(\pounds,G^X)} \mathbb{F}\mathbf{lat}_{\mathcal{C}}(F,G^X) \\ &\cong \mathbb{U}_{\mathbb{C}}\text{-}\mathbf{Mod}(F,G^X) \end{split}$$

Hence, G^X is again the power in $\mathbb{U}_{\mathbb{C}}$ -Mod.

3. Quasi-coherence for left exact categories

Let us now assume C is a left exact category. Then for any topos \mathcal{E} , we know

$$Flat(C, \mathcal{E}) \simeq Lex(C, \mathcal{E}).$$

In particular, $\mathbb{C}\text{-Mod} \simeq \text{Lex}(\mathcal{C}, \text{Set})$. Furthermore, it is well-known that in this case, $\mathbb{C}\text{-Mod}$ is locally finitely presentable, thus in particular complete and co-complete.

Lemma 1.5. The generic model \sharp as a functor

$$\sharp^-: \mathcal{C}^{\mathrm{op}} \to \mathbb{C}\text{-Mod}$$

takes finite limits in C to finite colimits in \mathbb{C} -Mod.

PROOF. Suppose we have a finite limit $c \cong \varprojlim_{i \in I} c_i$ in C. For any flat functor $F \in \mathbb{C}\text{-}\mathbf{Mod}$, by Yoneda

$$\mathbb{C}\text{-}\mathbf{Mod}(\mathfrak{z}^{c}, F) \cong F(c)$$

$$\cong \varprojlim_{i \in I} F(c_{i})$$

$$\cong \varprojlim_{i \in I} \mathbb{C}\text{-}\mathbf{Mod}(\mathfrak{z}^{c_{i}}, F)$$

$$\cong \mathbb{C}\text{-}\mathbf{Mod}(\varinjlim_{i \in I} \mathfrak{z}^{c_{i}}, F)$$

Hence, $\sharp^c \cong \underline{\lim}_{i \in I} \, \sharp^{c_i} \text{ in } \mathbb{C}\text{-}\mathbf{Mod}.$

Furthermore, we construct a functor

sending each flat functor F to the $\$ -algebra

$$\widetilde{F} := \sharp \sqcup \Lambda F$$
.

Here $\Delta F: \mathcal{C}^{\mathrm{op}} \to \mathbb{C}\text{-}\mathbf{Mod}$ is the constant functor on F, and \sqcup is the coproduct in $[\mathcal{C}^{\mathrm{op}}, \mathbb{C}\text{-}\mathbf{Mod}]$, which is induced by the pointwise coproduct \sqcup in $\mathbb{C}\text{-}\mathbf{Mod}$. In other words, for any $c \in \mathcal{C}$,

$$\widetilde{F}^c \cong \sharp^c \sqcup F.$$

Proposition 1.6. There is a reflective adjunction

$$\simeq \dashv (-)^1 : \mathbb{C}\text{-Mod} \to \sharp/\text{Flat}_{\mathcal{C}}$$

PROOF. For any $F \in \mathbb{C}$ -Mod and $G \in \sharp/\operatorname{Flat}_{\mathcal{C}}$, we have

$$\sharp/\mathsf{Flat}_{\mathcal{C}}(\widetilde{F},G) \cong \sharp/\mathsf{Flat}_{\mathcal{C}}(\sharp \sqcup \Delta F,G)
\cong [\mathcal{C}^{\mathrm{op}},\mathbb{C}\text{-}\mathsf{Mod}](\Delta F,G)
\cong \int_{c\in\mathcal{C}}\mathbb{C}\text{-}\mathsf{Mod}(F,G^{c})
\cong \mathbb{C}\text{-}\mathsf{Mod}(F,G^{1})$$

The adjunction is reflective, since for any $F \in \mathbb{C}$ -Mod, by construction $\widetilde{F}^1 \cong \sharp^1 \sqcup F \cong F$, since by Lemma 1.5 \sharp^1 is initial in \mathbb{C} -Mod.

Definition 1.7. For any $\mathbb{U}_{\mathbb{C}}$ -model G in $\mathbf{Psh}(C)$, we define its *spectrum* as the enriched hom

Spec
$$G := \mathbb{U}_{\mathbb{C}}\text{-Mod}(G, \sharp)$$
.

This gives us an enriched functor

Spec :
$$\mathbb{U}_{\mathbb{C}}$$
-Mod \to Psh(\mathcal{C}).

Lemma 1.8. For any $c \in C$, we have

$$\operatorname{Spec} \widetilde{\sharp^c} \cong \sharp_c.$$

PROOF. For any $d \in C$, we have the following natural isomorphisms,

$$(\operatorname{Spec} \widetilde{\sharp^{c}})^{d} \cong \operatorname{Psh}(C)(\sharp_{d}, \mathbb{U}_{\mathbb{C}}\operatorname{-Mod}(\widetilde{\sharp^{c}}, \sharp))$$

$$\cong \sharp/\operatorname{Flat}_{C}(\widetilde{\sharp^{c}}, \sharp^{\sharp_{d}})$$

$$\cong \mathbb{C}\operatorname{-Mod}(\sharp^{c}, (\sharp^{\sharp_{d}})^{1})$$

$$\cong (\sharp^{\sharp_{d}}_{c})^{1}$$

$$\cong \sharp^{d}$$

It follows that Spec $\widetilde{\sharp^c} \cong \sharp_c$.

Proposition 1.9. There is an enriched adjunction

$$\mathbb{U}_{\mathbb{C}} ext{-Mod}^{\operatorname{op}} \stackrel{\perp}{\qquad} \operatorname{Psh}(\mathcal{C})$$

where \mathcal{O} sends $X \in \mathbf{Psh}(\mathcal{C})$ to the algebra $\mathcal{O} X \cong \mathbb{k}^X$.

PROOF. For any $F \in \mathbb{U}_{\mathbb{C}}$ -Mod and $X \in Psh(\mathcal{C})$, we have

$$\operatorname{Spec} F^X \cong \mathbb{U}_{\mathbb{C}}\text{-}\mathbf{Mod}(F, \sharp)^X \cong \mathbb{U}_{\mathbb{C}}\text{-}\mathbf{Mod}(F, \sharp^X),$$

where the last step holds by Proposition 1.4.

Definition 1.10. We call $F \in \mathbb{U}_{\mathbb{C}}$ -Mod *quasi-coherent*, if the counit $F \to \mathcal{O}$ Spec F is an isomorphism in $\mathbb{U}_{\mathbb{C}}$ -Mod. Similarly, we say $X \in \mathbf{Psh}(\mathcal{C})$ is *affine*, if the unit $X \to \operatorname{Spec} \mathcal{O} X$ is an isomorphism in $\mathbf{Psh}(\mathcal{C})$.

Proposition 1.11. For any $c \in C$, \mathfrak{g}^c is quasi-coherent, i.e. \mathfrak{g}_c is affine.

PROOF. For any $d \in C$, by Lemma 1.5 we have

$$(\widetilde{\sharp^c})^d \cong \sharp^c \sqcup \sharp^d \cong \sharp^{c \times d}.$$

On the other hand, for the power \sharp^{\sharp_c} we have

$$(\sharp^{\sharp_c})^d \cong \operatorname{Psh}(\mathcal{C})(\sharp_d, \sharp^{\sharp_c}) \cong \operatorname{Psh}(\mathcal{C})(\sharp_{c \times d}, \sharp) \cong \sharp^{c \times d}.$$

Hence, we have the above equivalence.

4. Quasi-coherent diagrams

To characterise quasi-coherent algebras in $\mathbb{U}_{\mathbb{C}}$ -Mod, let us look at the concrete description of the counit $F \to \mathcal{O}$ Spec F for some $\mbox{$\sharp$}$ -algebra F. We start by giving a more concrete description of the $\mbox{$\sharp$}$ -algebra structure on a diagram:

Lemma 1.12. For any $F \in \mathbf{Diag}_{\mathcal{C}}$, morphisms from \sharp is given by the end

$$\mathbf{Diag}_{\mathcal{C}}(\mathfrak{z},F)\cong\int_{c\in\mathcal{C}}F_{c}^{c}.$$

PROOF. By construction,

$$\mathbf{Diag}_{\mathcal{C}}(\mathfrak{x},F)\cong\int_{c\in\mathcal{C}}\mathbf{Psh}(\mathcal{C})(\mathfrak{x}_{c},F_{c})\cong\int_{c\in\mathcal{C}}F_{c}^{c}.$$

Hence, an &-algebra structure $t: \& \to F$ is equivalently an element t in the end $\int_{c \in C} F_c^c$, i.e. a family of elements $t(c) \in F_c^c$ such that for any $f: c \to d$ in C,

$$F_f^d(t(c)) = F_c^f(t(d)).$$

Example 1.13. Interestingly, we have the computation that

$$\mathbf{Diag}_{\mathcal{C}}(\mathtt{k},\mathtt{k}) \cong \int_{c \in \mathcal{C}} \mathtt{k}_{c}^{c} \cong \int_{c \in \mathcal{C}} \mathcal{C}(c,c).$$

When C is a one-object category, i.e. a monoid, this is exactly the *centre*, i.e. an element in it is one that commutes with all other elements. More generally for $t \in \int_{c \in C} C(c, c)$, t(c) must lie in the centre of the endomorphism monoid C(c, c).

Lemma 1.14. For any $(F, t) \in \sharp/\operatorname{Flat}_{\mathcal{C}}$ and $c \in \mathcal{C}$, we have

$$(\operatorname{Spec} F)^c \cong$$

PROOF. By construction, we know that

$$(\operatorname{Spec} F)^c \cong \sharp/\operatorname{Flat}_C(F, \sharp^{\sharp_c}).$$

On one hand, we know that

$$\operatorname{Flat}_{\mathcal{C}}(F, \sharp^{\sharp_{c}}) \cong \int_{d \in \mathcal{C}} \operatorname{Psh}(\mathcal{C})(F_{d}, \sharp^{\sharp_{c}}_{d})$$

$$\cong$$

Proof. By definition, we directly compute for $c, d \in C$ that

$$(\sharp^{\operatorname{Spec} F})_{c}^{d} \cong (\sharp_{c}^{\operatorname{Spec} F})^{d}$$

$$\cong \operatorname{Psh}(C)(\sharp_{d} \times \operatorname{Spec} F, \sharp_{c})$$

$$\cong \int_{e \in C} \operatorname{Set}(\sharp_{d}^{e} \times (\operatorname{Spec} F)^{e}, \sharp_{c}^{e})$$

$$\operatorname{Diag}_{\mathcal{C}}(F, \, \sharp)^{c} \cong \operatorname{Psh}(\mathcal{C})(\, \sharp_{\, c}, \, \int_{d \in \mathcal{C}} \, \sharp_{\, d}^{F_{d}})$$

$$\cong \int_{d \in \mathcal{C}} \operatorname{Psh}(\mathcal{C})(F_{d} \times \, \sharp_{\, c}, \, \sharp_{\, d})$$

$$\cong \int_{d, e \in \mathcal{C}} \operatorname{Set}(F_{d}^{e} \times \, \sharp_{\, c}^{e}, \, \sharp_{\, d}^{e})$$

$$\cong \int_{d \in \mathcal{C}} \operatorname{Set}(F_{d}^{c}, \, \sharp_{\, d}^{c})$$

Lemma 1.15. For $(F, t) \in \mathcal{L}/\operatorname{Flat}_{\mathcal{C}}$, we have

 $\operatorname{Spec} F$

PROOF. We first compute \mathbb{F} lat $_{\mathcal{C}}(F, \mathfrak{k})$,

 \mathbb{F} lat $_{\mathcal{C}}(F, \sharp)$

Proposition 1.16. For any $F \in \mathbb{U}_{\mathbb{C}}$ -Mod, F is quasi-coherent iff

PROOF. By construction, for any $c, d \in C$ we have

$$(\sharp^{\operatorname{Spec} F})_{c}^{d} \cong \sharp_{c}^{\operatorname{Spec} F}(d)$$
$$\cong \operatorname{Psh}(C)(\sharp_{d} \times \operatorname{Spec} F, \sharp_{c})$$

On the other hand,

CHAPTER 2

Modality in classifying topoi

1. Modality from models

For any diagram $F \in \mathbf{Diag}_{\mathcal{C}}$, it induces an adjoint pair

$$\mathbf{Psh}(\mathcal{C}) \underbrace{ \stackrel{\langle F \rangle}{-}}_{[F]} \mathbf{Psh}(\mathcal{C})$$

where $\langle F \rangle$ is given by left Kan extension,

$$\langle F \rangle X \cong \int^{c \in \mathcal{C}} X^c \times F_c,$$

and the right adjoint [F] is given by

$$[F]X \cong \mathbf{Psh}(\mathcal{C})(F,X) \cong \int_{d \in \mathcal{C}} \mathbf{Set}(F^d,X^d).$$

In fact, we get an equivalence. Let us use $\mathbf{RAdj}_{\mathcal{C}}$ to denote the category of right adjoints from $\mathbf{Psh}(\mathcal{C})$ to itself, and similarly $\mathbf{LAdj}_{\mathcal{C}}$ for the dual category.

Proposition 2.1. There is an equivalence of categories

$$\langle - \rangle : Diag_{\mathcal{C}} \simeq LAdj_{\mathcal{C}},$$

Equivalently, we have

$$[-]: Diag_{\mathcal{C}} \simeq RAdj_{\mathcal{C}}^{op}.$$

PROOF. We construct the inverse: For a left adjoint $A: \mathbf{Psh}(\mathcal{C}) \to \mathbf{Psh}(\mathcal{C})$ we send it to the diagram

$$A \sharp : \mathcal{C} \to \mathbf{Psh}(\mathcal{C}).$$

This way, for any diagram *F* and any left adjoint *A*, we have

$$LAdj_{\mathcal{C}}(\langle F \rangle, A) \cong Diag_{\mathcal{C}}(F, A \downarrow),$$

because $\langle F \rangle$ is the left Kan extension. Hence, we have an adjunction. Furthermore, since \sharp is fully faithful, for any diagram $F, \langle F \rangle \circ \sharp \cong F$. Also, since $\mathbf{Psh}(\mathcal{C})$ is the free cocompletion of $\mathcal{C}, \langle A \sharp \rangle \cong A$. This shows the above is an equivalence. \square

Example 2.2. For the diagram $\sharp \in \text{Diag}_{\mathcal{C}}$, we have $\langle \sharp \rangle \cong \text{id}$ and $[\sharp] \cong \text{id}$.

Definition 2.3. A *pointer* for a diagram F is a map $\sigma: F \to \sharp$ in $\mathbf{Diag}_{\mathcal{C}}$. Equivalently, this is a natural transformation $\eta: \mathrm{id} \to [F]$.

Using the pointer, we can in fact turn [F] into a $\mathbf{Psh}(\mathcal{C})$ -indexed functor: Let F be a diagram equipped with a pointer, with the corresponding natural transformation $\eta: \mathrm{id} \to [F]$. For any $X \in \mathbf{Psh}(X)$, define

$$[F]_X : Psh(\mathcal{C})/X \to Psh(\mathcal{C})/X$$

sending $f: Y \to X$ to the following pullback,

$$\begin{array}{ccc}
[F]_X Y & \longrightarrow & [F] Y \\
[F]_X f \downarrow & & \downarrow & \downarrow \\
X & \xrightarrow{\eta} & [F] X
\end{array}$$

Proposition 2.4. The family $[F]_-$ provides a well-defined Psh(C)-indexed functor.

PROOF. We need to verify the following diagram commutes up to natural isomorphism for any $f: Y \to X$,

$$\begin{array}{ccc}
\mathbf{Psh}(C)/X & \xrightarrow{f^*} & \mathbf{Psh}(C)/Y \\
 & \downarrow^{[F]_X} & \downarrow^{[F]_Y} \\
\mathbf{Psh}(C)/X & \xrightarrow{f^*} & \mathbf{Psh}(C)/Y
\end{array}$$

Given any $g: Z \to X$, consider the following diagram,

By construction, the front and back squares are pullbacks. The right square is a pullback since [F] preserves limits. This implies the left square must also be a pullback by 2-out-of-3. Hence,

$$f^*[F]_X g \cong [F]_Y f^* g$$
,

which implies $[F]_{-}$ is a well-defined Psh(C)-indexed functor.

The above shows that we can view [F] as a modality in the internal logic of $\mathbf{Psh}(C)$. This way, we can connect the property of the diagram F with the property of the modality [F].

Remark 2.5. In general, the dual functor $\langle F \rangle$ does *not* internalise, unless the corresponding map $\langle F \rangle \rightarrow$ id is *Cartesian*.

Proposition 2.6. *The internal modality* [F] *is left exact.*

PROOF. As an indexed functor, being left exact is equivalent to each $[F]_X$ being left exact for all $X \in \mathbf{Psh}(C)$. This follows directly from construction.

Remark 2.7. In particular, this shows the modality [F] is *normal*, i.e. it satisfies necessitation, i.e. $[F]1 \cong 1$, and the (K) axiom,

$$\forall \varphi, \psi : \Omega. \ [F](\varphi \to \psi) \to ([F]\varphi \to [F]\psi).$$

Furthermore, since we have id \Rightarrow [F], it also satisfies the (C) axiom,

$$\forall \varphi : \Omega. \ \varphi \to [F] \varphi.$$

Remark 2.8. However, [F] cannot preserve all internal limit, since this is equivalent to the existence of a Psh(C)-indexed left adjoint. This holds iff $\langle F \rangle$ can be made into an indexed functor.

2. The Löb's axiom externally

Let us now fix a diagram F on C equipped with a pointer $\sigma: F \to \&$. We also use σ to denote the induced natural transformation $\sigma: \langle F \rangle \to \mathrm{id}$.

Lemma 2.9. For any $X \in Psh(C)$ and $\varphi \in Sub(X)$,

$$X \models [F] \varphi \Leftrightarrow \langle F \rangle X \models \sigma_X^* \varphi,$$

i.e. $\sigma_X : \langle F \rangle X \to X$ factors through φ .

PROOF. By the Kripke-Joyal semantics, $X \models [F]\varphi$ iff $[F]_X\varphi \cong X$, i.e. we have a factorisation

By the adjunction $\langle F \rangle \dashv [F]$, this is equivalent to σ_X factors through φ .

Definition 2.10. We say a diagram F is *inductive*, if for any $c \in C$, there exists a finite number n such that $\langle F \rangle^n \sharp_c \cong \emptyset$.

Proposition 2.11. For any inductive diagram F with a pointer $\sigma: F \to \bot$, the internal modality [F] satisfies $(L\ddot{o}b)$,

$$\forall \varphi : \Omega. ([F]\varphi \to \varphi) \to \varphi,$$

PROOF. Suppose we have $c \in C$ and $\varphi \in \Omega(c)$ that

$$c \models [F]\varphi \rightarrow \varphi$$
.

This way, since [F] satisfies (C), by Lemma 2.9 we have

$$c \models \varphi \Leftrightarrow c \models [F]\varphi \Leftrightarrow \langle F \rangle \downarrow_{c} \models \sigma_{c}^{*}\varphi.$$

Furthermore, since again $\langle F \rangle \downarrow_c \models [F] \sigma_c^* \varphi \to \sigma_c^* \varphi$ by stability, it follows that

$$\langle F \rangle \sharp_c \models \sigma_c^* \varphi \Leftrightarrow \langle F \rangle \sharp_c \models [F] \sigma_c^* \varphi \Leftrightarrow \langle F \rangle^2 \sharp_c \models \sigma_{\langle \sharp \rangle_c}^* \sigma_c^* \varphi.$$

It follows that for any $n \in \mathbb{N}$,

$$c \models \varphi \Leftrightarrow \langle F \rangle^n \sharp_c \models \sigma^*_{\langle F \rangle^{n-1} \sharp_c} \cdots \sigma^*_c \varphi.$$

This way, if F is inductive, then for some n we have $\langle F \rangle^n \sharp_c \cong \emptyset$, which implies $\langle F \rangle^n \sharp_c \models \sigma_{\langle F \rangle^{n-1} \sharp_c}^* \cdots \sigma_c^* \varphi$. Hence $c \models \varphi$. This shows (Löb) holds in $\mathbf{Psh}(\mathcal{C})$.

3. The Löb's axiom internally

For any category C, we can in fact look at the *algebraic theory* of C-diagrams. Quasi-coherence for C-diagrams holds in Psh(C), since the theory of flat diagrams of C is a subcanonical quotient of the theory of C-diagrams:

Proposition 2.12. For a C-diagram