

Türklingelanlage mit Standardkomponenten

Federico Crameri, Geo Bontognali

Bachelorarbeit

Studiengang: Systemtechnik

Profil: Informations- und Kommunikationssysteme

Referent: Prof. Dr. Hauser-Ehninger Ulrich, MSc in Electronic Engineering

Korreferent: Toggenburger Lukas, Master of Science FHO in Engineering

Kurzfassung

In der heutigen Gesellschaft entwickelt sich alles mit erstaunlicher Geschwindigkeit. Die Gebäudetechnik, darunter zählen unterschiedliche Bereiche und Systeme, macht wohl keine Ausnahme. Und auch die **Türklingelanlage**n entwickeln sich mit.

Im Rahmen dieser Bachelorarbeit haben wir einen Türklingelanlage-Prototyp mit Standardkomponenten entwickelt. Wichtig für unsere Arbeit war zu überprüfen, inwiefern die heutigen Standard- und Open Source Komponenten für ein solches System geeignet sind. Während der Entwurfsphase wurden unterschiedliche Anforderungen definiert. Die Kommunikation über die Türklingelanlage muss durch Video und Audio Signale erfolgen, die Gegensprechanlage wurde komplett auf die digitale Ebene realisiert. In einer modernen Welt, wo jeder Mensch ständig mit dem Internet verbunden ist, ist eine digitale Lösung wohl der einzige richtige Weg. Das brachte unterschiedliche Herausforderungen mit sich.

Das Endresultat ist eine digitale, flexible und zeitgemässe Türklingelanlage, welche mehrere Eingangstüren steuern kann und mit herkömmlichen Handys bedient werden kann.

Abstract

In a world where everything is moving forward at the speed of light, home building technology is no exception. There are plenty of systems needed around building a house. One of them is the intercom.

During our bachelor thesis, we developed a prototype for an intercom, based on open source software and hardware components. One of the aims of this project, was to evaluate and proof the ability of such components to handle this kind of application.

During the design phase, many different requirements were defined. The intercom needed to be able to provide an audio and video stream. Nowadays everyone is always connected to the internet, thanks to the power of modern communication systems like Tablets and Smartphones. So, there was no doubt about the need of the intercom to be fully digital. As soon as things like digital real-time Video-and Audio transmissions comes on the table, also a lot of different complications and challenges comes with it too.

As a result, we came up with a prototype, that provides a flexible, up-to-date, and reasonably inexpensive solution for a modern house intercom system.

Inhaltsverzeichnis

1	Einf	ührung	1										
	1.1	Problemstellung	1										
	1.2	Grundidee	1										
2	Pro	jektplanung	2										
	2.1	Prozess	2										
	2.2	Zeitplanung	3										
	2.3	Versionierung	4										
	2.4	Risikoanalyse	4										
		2.4.1 Identifikation Analyse und Bewertung	5										
		2.4.2 Bewertung Projekt Risiken	6										
	2.5	Bewertung Technische Risiken	6										
		2.5.1 Risikosteuerung & Projekt Massnahmen	6										
3	Akt	ueller Stand der Technik	7										
	3.1	Die Herausforderungen der Digitalisierung	8										
	3.2	Marktsituation	8										
4	Anf	nforderungen											
	4.1	Anforderungen	9										
	4.2	Wunschanforderungen	10										
5	Lös	ungskonzept	11										
6	Har	dware	12										
	6.1	Komponenten	12										
	6.2	Stromspeisung	13										
	6.3		14										
	6.4	Aussensprechstelle	14										
		6.4.1 Problemen	16										
7	Soft	cware	18										
	7.1	Programmiersprachen	18										
		7.1.1 Java	18										
		7.1.2 PHP/Javascript	18										
		7.1.3 PHP Framework: Laravel	19										
	7.2	System Übersicht	19										

	7.3	Mühsame Security Policies						
	7.4	WebRTC	1					
		7.4.1 Signaling Process	1					
		7.4.2 STUN Servers & Remote Verbindung	2					
	7.5	Webapplikationen	3					
		7.5.1 Client Webapplikation	3					
		7.5.2 Aussensprechstelle Webapplikation	4					
		7.5.3 Management Tool	б					
		7.5.4 Remote Verbindung	8					
	7.6	OS und Dienste	8					
		7.6.1 Raspbian	8					
		7.6.2 Taster Controller	8					
		7.6.3 Speaker Controller	9					
		7.6.4 Relay Controller	9					
	7.7	Logging	0					
	7.8	Watchdog	D					
8	Prot	totyp Testplan 32	2					
	8.1	Abnahme-Testplan	2					
	8.2	Resultate	3					
		8.2.1 Test 12: Verpasste Besuche sind in der Client-App ersichtlich 33	3					
		8.2.2 Test 8: Die Auflösung des Videosignales wird evaluiert 33	3					
9	Ausl	blick 3!	5					
	9.1	Verbesserungs- und Erweiterungsmöglichkeiten	5					
	9.2	Einsatzmöglehkeiten	5					
10	Schl	lussfolgerung 30	6					
11	Anle	eitung 3	7					
		Aussensprechstelle Konfigurationsanleitung						
		11.1.1 Aktuelle Stand						
		11.1.2 Namen und Passwortkonzept	7					
		11.1.3 Betriebssystem Installation						
		11.1.4 Allgemeine Einstellungen						
		11.1.5 Bidschirm Konfiguration						
		11.1.6 Browser Kiosk-mode						
		11.1.7 Aussensprechstelle Initialisierung						

	11.1.8	Taster Controller	40
	11.1.9	Speaker Controller Service	40
	11.1.10	Watchdog/Watchdog deamon	41
11.2	Server	$Konfigurations an leitung \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	41
	11.2.1	Aktuelle Stand	41
	11.2.2	Namen und Passwortkonzept	42
	11.2.3	Software Installation	42
	11.2.4	Erstellung SSL Zertifikate	42
	11.2.5	Konfiguration von Nginx	44
	11.2.6	Deploy Webapplikationen	46
	11.2.7	Deploy Dienste und Services	46
12 Anh	ang		47
12.1	Messu	ngsresultate	47
Abbildı	ıngsver	zeichnis	49
Tabelle	nverzei	chnis	50
Fidesst	attliche	Frklärung	53

1 Einführung

1.1 Problemstellung

Heutzutage liefern diverse Hersteller verschiedene Lösungen für das Türglockensystem. Diese sind meistens Komplettsysteme, die nicht nur das einfache Klingel ermöglichen, sondern auch Zusatzfunktionen wdeie das Video-Streaming anbieten. Diese Systeme sind aber meistens proprietär und werden, gemäß Abschnitt 3.2, für sehr hohe Preise verkauft.

Die Komponenten, die für solche Systeme notwendig sind, sind aber heutzutage kostengünstig auf dem Markt erhältlich. Das Erarbeiten preiswerter Lösungen müsste somit möglich sein.

Natürlich spielen die Kosten einer **Türklingelanlage** auf die Investitionen eines Neubaus keine so grosse Rolle. Sicher besteht aber in diesem Bereich eine Marktlücke und somit die Möglichkeit neue, bessere und günstigere Lösungen zu entwickeln.

1.2 Grundidee

Die Grundidee dieser Arbeit ist es, durch das Zusammenspiel verschiedener Systemen und Technologien, eine kostengünstige und funktionale **Türklingelanlage** zu entwickeln.

Um den Kostenfaktor zu berücksichtigen, soll die Anlage auf schon vorhandene Technologien und Hardware basieren. Somit fallen die hohen Kosten für die Beschaffung proprietärer Hardware weg.

In einer Zeit, in der die Hausautomation und das «Internet of things» immer mehr Bedeutung gewinnen, soll die **Türklingelanlage** diese Standards in Betracht ziehen. Dieses System soll den Benutzern ermöglichen, Ihre **Türklingelanlage** durch herkömmliche Smartphone oder Tablet zu bedienen.

Klingelt ein Besucher an der Eingangstüre, soll der Wohnungsbesitzer über sein Smartphone darauf aufmerksam gemacht werden. Über eine am Eingang installierte Kamera bekommt er auch die Möglichkeit den Besucher im Streaming zu sehen und die Türe, falls erwünscht, durch einen Handybefehl zu öffnen.

2 Projektplanung

2.1 Prozess

Als Entwicklungsprozess wird ein hybrides Vorgehensmodell eingesetzt, welcher in Abbildung 1 dargestellt wird. Im Rahmen einer Bachelorarbeit, in der die Anforderungen und Analysen schon im voraus im Fachmodul definiert worden sind, eignet sich am bestens ein lineares V-Modell. Ein solcher Prozess ist sehr schlank, übersichtlich und für diese Projektgrösse geeignet.

Was das V-Modell nicht erlaubt, ist eine ständige Iteration mit dem Kunden während der Entwurf/Implementierungsphase. Daraus ergibt sich, wie im Abbild unten gezeigt, ein hybrides Modell welches uns zulässt, trotz der klar definierten Anforderungen, während der Entwurf- und der Implementierungsphase ein agiles Vorgehen mit dem Kunden durchzuführen.

Die im Fachmodul geleistete Arbeit gehört zu den ersten zwei Phasen des Modells. Wie im linearen Vorgehensmodell vorgegeben, beginnt die nächste Phase der Arbeit sobald die vorherige Phase abgeschlossen ist. Die ganze Bachelorarbeit basiert auf Evaluationen und Entscheidungen, die in den ersten Phasen des Projekts getroffen worden sind.

Abbildung 1: Hybrides Vorgehensmodell(Quelle: https://www.eckelmann.de/en/services/developrocess-models/)

2.2 Zeitplanung

Die folgenden Abbildungen stellen die Projektplanung und die Meilensteine zeitlich dar (siehe Abb. 2 & Abb. 3). In die erste Woche werden die Hardwarekomponenten, die mittlerweile schon bestellt wurden, getestet und zusammengebaut. Die nächste zwei Hauptpunkte betreffen die Programmierung der Software, die in zwei Teile geteilt wurde.

Beim Teil 1 geht es um die Skripts die serverseitig kleine Aufgaben übernehmen, beim Teil 2 geht es um die Programmierung der Software. Da werden die Webapplikationen entwickelt, die auf den Aussensprechstellen und auf den mobilen Geräten der Bewohner ausgeführt werden sollen.

Die letzte Phase ist für die Optimierung und als Reserve gedacht.

Abbildung 2: Zeitplanung mit Meilensteine

Abbildung 3: Projektplanung

2.3 Versionierung

Für die Versionierung und die gesamte Entwicklung wird das etablierte Open-Source Version-Control Software GIT verwendet. Das gesamte Quellcode, alle Bilder und Dokuemente werden in einem Repository gespeichert und versioniert.

Während die Entwicklung wird der Quellcode aber nicht Open-Source sein. Das Quellcode und die gesamte Entwicklungsdokumentation für das Projekt wird Vertraulich gehalten und nur für die Entwickler und Projektteilnehmer verfügbar sein. Für die Repository und das Backup wird also den Consumer Dienst Bitbucket verwendet.

Bitbucket (siehe Abb. 4) ist ein webbasierter Filehosting-Dienst für Software-Entwicklungsprojekte, der die Versionsverwaltungssystem e Git und Mercurial unterstüzt. Bitbucket ermöglicht auch die Zusammenarbeit von mehreren Benutzern am gleichen Projekt. Bitbucket ist für ein Projekt dieser grosse kostenfrei.

Abbildung 4: Bitbucket ist ein Filehosting und ein Dienst für die Versionskontrolle von Softwareprojekte

2.4 Risikoanalyse

Inhalt der Risikoanalyse ist die frühzeitige Identifikation, das Bewerten von Problemen und das Definieren von Massnahmen die zu der Risikominimierung führen. Der Risiko-Management Prozess nach ISO 31000:2009 umfasst folgende Hauptpunkte:

• Risikoidentifikation: Liefert eine Liste von möglichen Risiken die während der Implementierungsphase auftreten könnten.

- Aufgrund der Risikoidentifikation werden Zusammenhänge zwischen den Risiken und die Auswirkungen auf dem Projekt beurteilt.
- Risikobewertung: Zu jedem Risiko werden die Eintrittswahrscheinlichkeit sowie die Auswirkung auf das Gesamtprojekt abgeschätzt.
- Risikobewertung: Zu jedem Risiko werden die Eintrittswahrscheinlichkeit sowie die Auswirkung auf das Gesamtprojekt abgeschätzt.
- Risikosteuerung: Maßnahmen planen, um die gemessenen und analysierten Risiken zu steuern.

2.4.1 Identifikation Analyse und Bewertung

Die Identifikation der Risiken erfolgte durch Brainstorming, aber auch durch Probleme die während den Sitzungen und der Projektplanerfassung aufgetaucht sind.

Um die aufgelisteten Risiken zu bewerten, wurde eine Risikomatrix eingesetzt. Diese soll eine visuelle Darstellung von Risikobewertungen geben.

Abbildung 5: Risikomatrix

Die Auswirkungen sowie die Eintrittswahrscheinlichkeit werden mit einem Index (0 bis 5) von gering bis hoch eingestuft. Das Risiko ergibt sich durch die Multiplikation der beiden Achsen. Die Risiken die sich im roten Bereich der Matrix befinden, müssen bei der Risikosteuerung/Maßnahmen sehr intensiv und detailliert behandelt werden, damit einer der beiden Faktoren minimiert werden kann.

2.4.2 Bewertung Projekt Risiken

Die folgende Tabellen stammen aus dem Fachmodul.

ID	Beschreibung	Wahrsche	Auswi	Risiko	Maßna
		inlichkeit	rkung		hmen
PR1	Verspätete Hardware Lieferung	2	2	4	PM1
PR2	Ungenaue Zeiteinschätzung	2	5	10	PM2
PR3	Kostenüberschreitung / Teurer als Konkurrenzprodukten	1	5	5	PM3
PR4	Projekt entspricht nicht den Erwartungen des Kunden	2	3	6	PM4

¹ Farbige Einstufung der Risiken anhand der Risikomatrix

Abbildung 6: Bewertung Projekt Risiken

2.5 Bewertung Technische Risiken

ID	Beschreibung	Wahrsche inlichkeit	Auswi rkung	Risiko	Maßna hmen
TR1	Übertragene Bildqualität entspricht nicht den Erwartungen der Kunde	3	3	9	TM1
TR2	Web Applikation nicht funktionsfähig auf IOS Plattform	5	1	5	TM2
TR3	Ungenügende Hardware-Leistung um den Video-Stream im Betrieb zu nehmen	2	1	2	TM3
TR4	Sicherheitslücken	3	5	15	TM4
TR5	Latenz der Video/Audio Übertragung ist zu hoch	3	3	9	TM5

² Farbige Einstufung der Risiken anhand der Risikomatrix

Abbildung 7: Bewertung Technische Risiken

2.5.1 Risikosteuerung & Projekt Massnahmen

ID	Massnahme Beschreibung
PM1	Nach Verfügbarkeit des Produkts suchen oder Ersatzprodukte bestellen. Hardware
	Komponenten werden so früh wie möglich bestellt.
PM2	Im Zeitplan genügend Reserve-Zeit einplanen. Modulanmeldung so ausstatten, dass
	im zweiten Semester wenige ECTS Punkten zu machen sind.
РМ3	Konkurrenzprodukte nach Preis evaluieren. Eine Kostenschätzung der Hardware
	Komponenten muss im Fachmodul vorhanden sein.
PM4	Durch das Einsetzten eines hybriden Entwicklungsprozesses ist der Kunde immer über
	den aktuellen Stand des Projekts Informiert und kann dementsprechend ihre eigenen
	Konzepte rechtzeitig einbringen.

Abbildung 8: Projekt Massnahmen

3 Aktueller Stand der Technik

Eine **Türklingelanlage** welche Audios und Videos überträgt, ist keine neue Erfindung. Auf dem Markt existieren bereits verschiedene Lösungen und das schon seit mehreren Jahren. Diese sind aber meistens analoge Systeme und verfügen über die Vorteile der Digitalisierung nicht.

Die Steuerung über eine Mobileapplikation ist aus diesem Grund bei solchen Lösungen ausgeschlossen. Weiter ermöglicht das digitale System der Zugriff auf die Videoübertragung von aussen, was mit analoge Technologie bis jetzt kaum realisierbar war. Dem Projekt betreffend ermöglicht uns, die Digitalisierung, alle Komponenten dynamisch zu vernetzen. Auch im Hinblick auf die Sicherheit bringt sich eine digitale Lösung Vorteile mit. Das Mitlauschen von Signale, eine der häufigsten Angriffsarten, kann durch eine Verschlüsselte Verbindung verhindert werden.

Abbildung 9: Analoge Türsprechanlage mit In-House Display (Quelle: https://fr.aliexpress.com/item/1-set-Smart-Home-Door-Intercom-System-One-to-One-Video-Door-Phone-7-inch/32812135796.html?spm=a2g0w.search0304.4.172.SNvC3o)

In den letzten Jahren sind die ersten, digitalen Lösungen mit **IP** Videoübertragung auf dem Markt gekommen. Die Digitalisierung in diesem Bereich ist den gigantischen Schritten im Bereich der Miniaturisierung und den immer schnelleren Internetzugängen (x**DSL**, **LTE**, usw) zu verdanken.

3.1 Die Herausforderungen der Digitalisierung

Die Digitalisierung bringt, besonders bei den Video- und Audioübertragungen, nicht nur Vorteile mit sich. Während eine analoge Videoübertragung ziemlich mühelos erfolgt, muss im Falle einer digitalen Lösung das Video zuerst kodiert und anschliessend wieder dekodiert werden.

Die heutigen Kodierungsalgorithmen ermöglichen eine ziemlich schnelle Dekodierung. Mittlerweile hat jeder Smartphone genug Leistung um ein Full-**DSL** Videostreaming von Youtube oder Netflix in Real Time zu dekodieren. Auf der anderen Seite ist die Kodierung ein sehr rechenintensiver Prozess und benötigt sehr viel Rechenleistung.

Jeder der schon mal mit Video-Editing zu tun hatte, weiss wie viel Zeit das Exportieren eines Videos dauern kann.

Die grösste Herausforderung für die Real Time digitale Video-, Audiokommunikation besteht also darin, die Kodierung und Dekodierung des Audios und Videosignals in vernünftiger Zeit durchzuführen.

Wie im Abschnitt 7.5.2 behandelt, spielen die Hardwareacceleration bzw. die Decoder/Encoder-Chips, in diesem Bereich eine sehr grosse Rolle.

3.2 Marktsituation

Das Hauptziel diese Bachelorarbeit ist die Entwicklung einer kostengünstigen Lösung für eine digitale, flexible und skalierbare **Türklingelanlage**. Tatsächlich ist es so, dass die bestehende Lösungen sehr teuer sind. Viele Produkte basieren auf Lösungen von Drittanbietern, **SIP** Gateways oder andere Elemente die Zusatzkosten verursachen. Das möchten wir alles vermeiden.

Eines der günstigsten Produkte das wir finden konnten ist das "MyIntercom" von Telecom Behnkle (siehe Abb. 10). Diese **Türklingelanlage** ist ziemlich flexibel und bietet die Möglichkeit, mehrere Türen anzuschliessen. Der Preis liegt, beim Basic-Modell, bei ungefähr 1'600.- CHF pro Türe.

Dank der Aufschwung von Open Source Hardware wie das Raspberry PI und Real Time Communication Protokolle wie **WebRTC** muss es möglich sein, kostengünstigere Lösungen zu erarbeiten. In den folgenden Kapiteln geht es nun um die effektive Realisierung eines Prototyps, welcher die oben genannte Problemen adressiert.

Abbildung 10: Telecom Behnkle MyIntercom (Quelle: http://www.myintercom.de/en/tradesmen/products/door-intercom-devices/one/myi0001)

4 Anforderungen

Für den Bachelorarbeit wurden die Anforderungen bereits in dem Fachmodul definiert.

4.1 Anforderungen

- A1. Es soll möglich sein, die Haustüre durch ein Signal zu öffnen.
- A2. Es soll möglich sein, ein Videosignal von der Aussensprechstelle zum Client zu streamen.
- A3. Es soll möglich sein, ein Audiosignal zwischen der Aussensprechstelle und der Client App bidirektional zu streamen.
- A4. Ein digitaler Bildschirm zeigt die Informationen der Bewohner (Name, Vorname, usw) an der Aussensprechstelle an.
- A5. Nach einem Stromunterbruch soll die Anlage automatisch wieder Starten und Funktionsbereit sein.
- A6. Den Datenverkehr zwischen den Endknoten muss Verschlüsselt sein.

- A7. Die Komponenten sollten zwischen -20C und +40C funktionsfähig sein.
- A8. Die Komponenten sollten auch im Fall hoher Feuchtigkeit funktionsfähig sein. (80%)
- A9. Die Kamera für das Videosignal muss eine Auflösung von mind. 1280x720 Pixel aufweisen.
- A10. Die Materialkosten pro Aussensprechstelle sollten 400.- nicht überschreiten.
- A11. Die Aussensprechstelle soll auch mit nasse/bedeckte Hände bedienbar sein.
- A12. Bei der Innenstelle ist es möglich das Mikrofon auszuschalten, um die Übertragung des Audiosignales zu unterdrücken.

4.2 Wunschanforderungen

- W1. Die Komponenten sollten die Speisung durch PoE erhalten.
- W2. Die Kamera für das Videosignal muss eine Auflösung von 1920x1080 Pixel aufweisen.
- W3. Verpasste Besuche sollten aufgezeichnet werden und in der Client App in Form von einem Foto und Notifikation sichtbar sein.

5 Lösungskonzept

Die Abb. 11 zeigt einen Überblick über die verschiedenen Hardwarekomponenten, die für die **Türklingelanlage** benötigt werden.

Es werden nun zwei Begriffe erklärt, die in diesem Dokument von grosse Bedeutung sind. Das erste ist die **Türklingelanlage**. Damit gemeint ist die Gesamtheit der Komponenten die denn Zusammen den Endprodukt darstellen.

Als Aussensprechstelle ist die Gesamtheit aller Komponenten des Endproduktes gemeint, als Aussensprechstelle der an der Eingangstüre installierte Mikrocontroller inklusive dazugehörige Module.

Räumlich von der Aussensprechstelle getrennt befindet sich der Server. Dieser besteht aus einem Mikrocontroller, der als Server im Einsatz steht, aus einem Switch der dazu dient die Aussensprechstelle mit Strom und Datenverbindung zu versorgen und aus einem Relais welches den Türöffner und die Glocke betätigt. Das System besteht aber nicht nur aus Hardware. Das Zusammenarbeiten

Abbildung 11: Hardware Ecosystem

der Hardware wird von viel Softwareelemente geregelt. Als erstes, wie bereits in der Projektplanung definiert, wird die Hardwareseite der Lösung realisiert. Sobald alle Hardwarekomponenten getestet und auf Kompatibilität geprüft worden sind, wird die Programmierung stattfinden.

Anzahl	Komponente	Preis
1	Raspberry Pi 3 Model B	50
1	Raspberry Gehäuse und Netzteil	25
2	8-Kanal Relais Modul	15
1	Kleinmaterial	15
Total		140

Tabelle 1: Server **HW** Komponenten

Anzahl	Komponente	Preis
1	Raspberry Pi 3 Model B	50
1	4"Bildschirm	64
1	Raspberry Kamera	59
1	PoE Adapter	50
3	Schalter	25
1	Mikrophon	12
1	Lautsprecher	9
1	Audio Verstärker	10
1	Kleinmaterial / Gehäuse	50
Total		329

Tabelle 2: Aussensprechstelle **HW** Komponenten

6 Hardware

6.1 Komponenten

Das System wird hardwareseitig grob in zwei Teile unterteilt, den Server und die Aussensprechstelle.

Die Tabelle 1 und die Tabelle 2 zeigen die benötigten Hardwarekomponenten, welchen an den jeweiligen Stellen eingebaut werden.

Um den Überblick über die Kosten aller Hardwarekomponenten zu behalten, sind hier auch die Preisen aufgelistet. Dabei ist es wichtig sicherzustellen, dass die gesamten Hardwarekosten diejenigen der von der Konkurrenz angebotenen Produkte nicht übersteigen (siehe Abschnitt 4.1 Anforderung A10).

Die Einkaufspreise sind nur Richtpreise, da es sich um Standardkomponenten handelt und die Marktpreise sich ständig und schnell ändern können. Die Summen sind als Kostenschätzung zu betrachten. (Stand Fruhjahr 2017).

6.2 Stromspeisung

Ein Ziel unserer Lösung ist die Installationskosten zu senken und die Montage zu vereinfachen. Aus diesem Grund war für unsere Lösung wichtig, **PoE** zu verwenden. In modernen Haushalte werden meistens Ethernet Verkabelungen verlegt und dank PoE ist nur noch ein Kabel, welches Strom und Konnektivität gewährleistet, notwendig.

Zusätzlich benötigt das System noch eine Leitung die den Türöffner steuert. Auch diese Endinstallation kann vereinfacht werden wenn man, anstatt ein dediziertes Kabel zwischen Server und Türöffner einzuziehen, zwei Drähte des bereits installierten Ethernet Kabels verwendet.

Für den Projekt verwendete Cisco Catalyst 3560g, welcher für den PoE Stromversorgung zuständig ist, verwendet die Phantomspeisung oder Mode A [poe]. Das heisst, dass die mit der Datenübertragung belegten Drähte mit der Stromversorgung überlagert werden. Dies ist möglich da die Frequenz der Elektrizität 50 Hz beträgt und die der Datenübertragungen im Bereich von 10-100MHz liegt. Bei einere zukünftige Beschaffung von ein aktuellere Switch muss speziell auf die Stromspeisungstyp (Phantom/Spare Pairs Speisung) geachtet werden.

STANDARD	SOURCE								COMMENTS
	E	thern	et R	J-45 co	nnecto	or pin	numb	er	
	1	2	3	4	5	6	7	8	
IEEE 802.3af using data pairs	RX DC+	RX DC+	TX DC-	spare	spare	TX DC-	spare	spare	Industry Standard for Embedded POE (used by Cisco Catalyst Switches)

Abbildung 12: Catalyst 3560g PoE Pinbelegung

Wie im Abb. 13 dargestellt werden die Adern 7 und 8 dazu verwendet um den Türöffner zu betätigen. Aus den 3 verbliebenden Adernpaaren kann maximal die Ethernetkategorie 100BASE-T erreicht werden. Da aber **WebRTC** eine erhebliche kleinere Bandbreite in Anspruch nimmt, stellt es für die **Aussensprechstelle** kein Hindernis dar.

Durch eine Messung auf die Interface des Switch, an welchem die Aussensprechstelle angeschlossen ist, konnte die exakte Bandbreite festgestellt werden. Die Messung wurde mit ein Leistungsfähiger Prozessor durchgeführt. Somit wird verhindert dass die Auflösung des Videoübertragung von den Raspberry gedrosselt wird. (Problematik wird im Abschnitt 7.5.2 erläutert) Mit eine hochauflösende Videoübertragung, wurde auf den Interface eine Datenübertragungsrate von 551Kbit/s festgestellt. Die detaillierte Resultate der Messungen sind im Anhang Abschnitt 12.1 zu finden.

Abbildung 13: Cat. 7 Ethernet Pinbelegung der Aussensprechstelle

6.3 Server

Der Server wird mit einem Relais-Board verbunden um die Gongs und die Türöffner zu bedienen. An dieser Stelle ist die Hardwarekonfiguration sehr einfach.
Mit der aktuellen Hardwarekonfiguration könnten bis 8 Wohnungen und 8 Aussensprechstellen angeschlossen werden. Die Abb. 14 und die Abb. 15 zeigen die
Pinbelegung auf dem Pi und auf dem Relais-Board. Die Tabelle 3 zeigt wie die
verschiedenen Pins miteinander verbunden werden.

6.4 Aussensprechstelle

Bei der Aussensprechstelle wird auch ein Raspberry Pi eingesetzt. Hier sind mehrere Zusatzkomponenten notwendig. Die Speisung, wie oben schon erwähnt, erfolgt an dieser Stelle über PoE. Aus diesem Grund ist ein PoE-Splitter vorhanden.

Abbildung 14: Pinbelegung der **Aussensprechstelle** (Quelle: http://fablabromagna.org/blog/seminario-iot-presso-corso-di-laurea-ingegneria-e-scienze-informatiche-alma-mater-polo-di-cesena/)

Abbildung 15: Pinbelegung für das Relais-Modul

Für die Audiowiedergabe sind ein kleiner Lautsprecher und ein Verstärker notwendig. Der Chinch Anschluss des Raspberrys Pi hat eine zu niedrige Ausgangs-

Pi GPIO (PIN)	Relais IN (Board Nr)	Funktion
GPIO4 (7)	IN1 (1)	Gong WG.1
GPIO17 (11)	IN2 (1)	Gong WG.2
GPIO27 (13)	IN3 (1)	Gong WG.3
GPIO22 (15)	IN4 (1)	Gong WG.4
GPIO5 (29)	IN5 (1)	Gong WG.5
GPIO6 (31)	IN6 (1)	Gong WG.6
GPIO13 (33)	IN7 (1)	Gong WG.7
GPIO19 (35)	IN8 (1)	Gong WG.8
GPIO18 (12)	IN1 (2)	Türöffner Türe 1
GPIO23 (16)	IN2 (2)	Türöffner Türe 2
GPIO24 (18)	IN3 (2)	Türöffner Türe 3
GPIO25 (22)	IN4 (2)	Türöffner Türe 4
GPIO12 (32)	IN5 (2)	Türöffner Türe 5
GPIO16 (36)	IN6 (2)	Türöffner Türe 6
GPIO20 (38)	IN7 (2)	Türöffner Türe 7
GPIO21 (40)	IN8 (2)	Türöffner Türe 8

Tabelle 3: PIN-Zuweisung zwischen den Server und die Relais Module

Pi GPIO (PIN)	Schalter	Funktion
GPIO16 (36)	Schalter Links	Nach Links Scrollen
GPIO20 (38)	Schalter Mitte	Glocke läuten
GPIO21 (40)	Schalter Rechts	Nach Rechts Scrollen

Tabelle 4: PIN-Zuweisung zwischen den Raspberry PI und die Schalter

leistung um den Lautsprecher direkt anschliessen zu können.

Die drei Schalter, die für die Bedienung der **Aussensprechstelle** notwendig sind, werden an die **GPIO**s des Raspberrys PI angeschlossen. Die Tabelle 4 zeigt die Pinbelegung.

6.4.1 Problemen

Während der Zusammenstellung der Aussensprechstelle sind die erste unvorhergesehene Problemen aufgetaucht. Die Audiowiedergabe und Audioaufnahme stellten eine grössere Herausforderung als geplant dar.

Audiowidergabe

Die grösste Problematik bei der Audiowiedergabe besteht darin, dass die Massen des Raspberrys Pi, des Verstärkers und des Audio-Interface gekoppelt sind. Das führt zu Brummschleifen, die wiederum Störsignale auf dem Audio-Ausgang

erzeugen. Um das zu vermeiden, muss an dieser Stelle ein Massentrennfilter eingesetzt werden.

Die Störsignale sind nun fast komplett verschwunden, nur ein winziges Hintergrundgeräusch ist immer noch vorhanden. Um dieses Problem umzugehen, wird ein zusätzliches Relais installiert, welches den Lautsprecherstromkreis bei Nichtnutzung unterbricht.

Das Mikrophon

Das Problem der Audioaufnahme liegt beim Mikrophon selber. Der Raspberry Pi besitzt kein integriertes Audio-Input. Aus diesem Grund wurde ein **USB**-Audio-Interface verwendet. Es hat sich aber herausgestellt, dass es nicht so einfach ist, kostengünstige und qualitatives **USB** Mikrophone zu finden. Die meisten Produkten sind nicht für den Outdoorbetrieb gedacht. Für unseren Prototyp wird das eingesetzte Mikrophon völlig ausreichen, für ein gut funktionierendes Endprodukt sollte man ein besseres Mikrophon einbauen.

7 Software

Die Hardware ist nun vollständig und dient als Basis für die Entwicklung der Softwarekomponenten die für das System notwendig sind.

7.1 Programmiersprachen

Das System besteht aus mehreren Programmen und Diensten. Für die Entwicklung werden folgende Programmiersprachen eingesetzt:

- Java
- Javascript
- PHP

In Verbindung mit **PHP** kommt natürlich die Markup-Languages **HTML**5/**CSS** zur Anwendung, welche für die graphische Darstellung der Webapplikationen notwendig ist.

7.1.1 Java

Alle Dienste die serverseitig und ohne Interaktion mit dem Enduser ausgeführt werden, werden in Java programmiert. Als stark typisierte und objektorientierte Programmiersprache eignet sich Java für dieses Projekt bestens. Für Java sind auch unzählige Libraries verfügbar, insbesondere für die Hardwaresteuerung des Raspberry Pi. Eine zweite Variante wäre Python gewesen, die auch den Raspberry sehr gut unterstützt. Python ist aber zu wenig typisiert und eher für kleinere Softwarestücke gedacht.

7.1.2 PHP/Javascript

Sowohl die Client Applikation als auch die Applikation an der Aussensprechstelle werden Web-Applikationen sein. Diese ermöglichen eine schnelle und zeitgemässe Softwareentwicklung. Für dieses Projekt ist die Systemeingriffstiefe von Webapplikationen jedenfalls ausreichend. Lediglich der Zugriff auf Mikrophon, Lautsprecher und Kamera muss garantiert werden. Ein weiterer Punkt zugunsten einer Webapplikation ist die Kompatibilität der Cross-Plattform.

Aus diesem Grund haben wir uns für **PHP** (objektorientiert) in Kombination mit Javascript/**HTML**/**CSS** entschieden. Eine zweite Variante wäre Java EE gewesen. Java EE eignet sich aber vor allem für grosse Softwarelösungen und bietet

als gesamten Framework viel mehr als das was dieses Projekt benötigt.

7.1.3 PHP Framework: Laravel

Für die Entwicklung der Webapplikationen wird Laravel als **PHP** Framework eingesetzt. Laravel ist ein Open Source **PHP** Web-Application-Framework, das sich für kleine bis zu mittelgrosse Projekte eignet. Laravel beruht auf dem ModellView-Controller-Muster und ermöglicht eine objektorientierte Programmierung in **PHP**.

7.2 System Übersicht

Das System besteht aus mehreren Softwarekomponenten die zusammenarbeiten müssen (siehe Abb. 16). Die Vertraulichkeit der Kommunikation zwischen den Knoten ist dank **TLS** immer gewährleistet. Die einzelnen Komponenten, sowie das Thema Sicherheit, werden in den nächsten Kapiteln genauer beschrieben.

Abbildung 16: Software Ecosystem

Die Software wird in zwei Gruppen unterteilt. Einerseits gibt es alle Dienste/Daemons (Violett) die Lokal ausgeführt werden und quasi das Backend des Systems darstellen.

Die zweite Gruppe beinhaltet die Webapplikationen (*Grün*), die eine **GUI** besitzen und für die Interaktion mit dem System gedacht sind. Darunter zählen die Client-App für die Bewohner, die Applikation bei der **Aussensprechstelle** wo die Bewohner angezeigt werden und das Management Tool.

Die Audios/Videoskommunikation zwischen der Aussensprechstelle und den Client Applikationen wird mithilfe von WebRTC realisiert.

7.3 Mühsame Security Policies

Die Sicherheit spielt für dieses System eine grosse Rolle. Aus diesem Grund wurde von Anfang an geplant, den ganzen Datenverkehr mit **TLS** zu verschlüsseln. Auch **WebRTC** selber weigert sich zu funktionieren, wenn keine gültige **HTT-PS** Verbindung vorhanden ist.

Unglücklich für die Entwicklung dieses Prototyps sind die immer mühsamere Security-Policies der heutigen Browser. Es ist zum Beispiel nicht mehr möglich, den Browser so einzustellen, dass die Zertifikatfehler ignoriert werden. Das hat als Folge, dass auch während der Entwicklung das Zertifikat gültig und signiert sein muss, ansonsten funktioniert **WebRTC** nicht.

Dies hat uns während der Entwicklung sehr viel Zeit gekostet. Zertifikate sind immer an einem Hostname oder an einer IP Adresse gebunden. Folge dessen mussten wir bei jeder Netzwerkanpassung alle Zertifikate nochmals generieren. Zusätzlich hat Google Chrome während der Entwicklung dieses Projekts mit der Version 58 die Security Policies geändert. Nach dem Update brauchten die SelfSigned-Certificates ein zusätzliches Feld für den Subject-Alternative-Name (SAN). Im Netz war am Anfang sehr wenig Hilfe zu finden und das hat auch nochmals viel Zeit gekostet.

"[...] RFC 2818 describes two methods to match a domain name against a certificate: using the available names within the subjectAlternativeName extension, or, in the absence of a SAN extension, falling back to the commonName. The fallback to the commonName was deprecated in RFC 2818, but support remains in a number of TLS clients, often incorrectly. [...]"

[Deprecations and Removals in Chrome 58, developers.google.com]

7.4 WebRTC

WebRTC ist ein offener Standard, der eine Sammlung von Kommunikationsprotokollen und API beinhaltet. Die Standardisierung wird mehrheitlich betrieben und von Google, Mozilla Foundation und Opera Software unterstützt. WebRTC basiert auf HTML5 und Javascript und die Audio/Video Übertragung erfolgt über eine direkte Verbindung zwischen den Sprechpartnern (Peer-to-Peer).

WebRTC wird hauptsächlich für die Entwicklung von Videokonferenzprogrammen verwendet. Die Natur dieses Projekt ist allerdings nicht dieselbe wie die herkömmliche Real-Time-Communication Applikationen. Glücklicherweise wurde WebRTC so entwickelt, um möglichst viel Flexibilität zu garantieren. Aus diesem Grund beinhaltet der WebRTC-Standard keine Definition für den SignalingProcess, welcher zusammen mit dem ICE (Interactive Connectivity Establishment) für den Verbindungsaufbau zwischen den Sprechpartnern zuständig ist.

"The thinking behind **WebRTC** call setup has been to fully specify and control the media plane, but to leave the signaling plane up to the application as much as possible. The rationale is that different applications may prefer to use different protocols, such as the existing SIP or Jingle call signaling protocols, or something custom to the particular application, perhaps for a novel use case. [...]"

[Sam Dutton, HTML5Rocks.com]

7.4.1 Signaling Process

Ähnlich wie bei **VoIP**-Telefonie (*SIP*), brauchen die Sprechpartner, um die Verbindung zu initialisieren, einen gemeinsam bekannten Knoten (siehe Abb. 17). In den meisten Fällen ist einem Partner die logische Adressierung des anderen Partners nicht bekannt. Es besteht also keine Möglichkeit um eine **P2P** Verbindung auf einmal zu starten.

Im unseren Fall wäre dies theoretisch möglich, da die Position der Aussensprechstelle bzw. des Servers immer dieselbe sind. Allerdings wurde WebRTC nicht so konzipiert. Die Standard WebRTC API beinhaltet kein Konstrukt um eine Verbindung anhand von bekannten IP-Adressen aufbauen zu können.

Im Internet sind es mehrere Signaling-Server-Libraries verfügbar, diese sind allerdings für andere Anwendungen gedacht. Im unseren System wird beispielsweise

Abbildung 17: Der Signaling Prozess (Quelle: http://sangigi-fuchsia.fr/le-webrtc/)

nie ein Anruf von der Aussensprechstelle zur Client Applikation gestartet, sondern lediglich umgekehrt.

Für die Absichten unseres Projekts wurde ein eigener Signaling-Server entwickelt, der auf dem Server ausgeführt wird. Somit bleibt der Datenverkehr zwischen der Client Applikation und der Aussensprechstelle während des ganzen Ablaufes innerhalb des lokalen Netzwerkes. Das aber natürlich nur, solange der Bewohner sich zu Hause befindet.

7.4.2 STUN Servers & Remote Verbindung

Eine Anforderung des Systems ist die Möglichkeit, auch ausserhalb des Heimnetzes mit den **Aussensprechstelle** sich verbinden zu können. Hier stellt das **NAT**-Protokoll (Network Adress Translation) ein Problem dar.

Nach dem Signaling-Prozess wird das ICE-Prozess gestartet. Hier tauschen sich die zwei Partner Informationen über die eigene Adressierung und den best path aus. Falls sich ein Sprechpartner hinter einem NAT-Knoten befindet, wird für den anderen unmöglich sein eine Verbindung aufzubauen. Hier kommen die STUN-Server im Spiel. Ähnlich wie beim Signalisierungsprozess stehen STUN-Server als Hilfe für den Verbindungsaufbau da (siehe Abb. 18).

STUN-Server informieren die Clients über jegliche NAT Konfigurationen die sich dazwischen befinden würden. Die beide Sprechpartner erhalten somit Informationen über welche Ports und öffentliche Adressen die Verbindung initialisiert werden kann. Für die Entwicklung dieses Projektes werden die Google-STUN-

Abbildung 18: STUN Server (Quelle: https://realtimecommunication.wordpress.com/2015/05/29/the-nat/)

Server verwendet, welche kostenfrei zur Verfügung stehen.

Falls sich beide Sprechpartner im gleichen lokales Netzwerk befinden, werden keine **STUN**-Server benötigt und der gesamte Datenverkehr bleibt innerhalb des Heimnetzwerkes.

7.5 Webapplikationen

Während die verschiedene Java Dienste relativ kleine Programme sind, besteht den gesamten Quellcode der Webapplikationen aus mehreren tausende Codezeilen.

Das **PHP**-Backend im Zusammenarbeit mit Javascript auf der Clientseite ist für die meisten Aufgaben der Anlage sowohl auch für einen Teil der Sicherheitsaspekte zuständig.

7.5.1 Client Webapplikation

Der Bewohner muss über eine Applikation verfügen, die auf dem Tablet oder Handy ausführbar sein muss. Mithilfe dieser App muss der Enduser folgendes können: Sich mit allen **Aussensprechstelle**n verbinden können, ein Videosignal von der Kamera aller Eingänge erhalten, alle Türe öffnen und mit der Person bei der Türe über die Anlage kommunizieren können.

Die Abb. 19 zeigt das Design der Webapplikation, hier speziell die Smartphone

Abbildung 19: Design der Client-Webapp

Version. Dank einem Responsive-Design wird die selbe Applikation auch auf andere Geräte wie z.B. Tablets oder Computers passend angezeigt.

Beim Design-Entwurf standen Übersichtlichkeit und Benutzerfreundlichkeit im Vordergrund. Aus diesem Grund werden die Tasten für die Audio-Kommunikation und für die Öffnung der Türe gross Angezeigt. Das Videostream der ausgewählten Türe wird sofort angezeigt und benötigt keine weitere Interaktion.

Notifications

Wenn jemanden bei der Türe klingelt, wird eine Notification angezeigt. Um das zu erfolgen, muss die Webapplikation mindestens einmal gestartet werden. Dank den Notifications können auch Verpasste besuche an einem Späteren Zeitpunkt gesehen werden.

7.5.2 Aussensprechstelle Webapplikation

Die Aussensprechstelle ist mit einem Bildschirm ausgestattet, der die Bewohnerliste anzeigt. Mithilfe von drei Schaltern kann man durchblättern und die Bewohner können angerufen werden (siehe Abb. 20).

Währen der Bewohner die Möglichkeit hat, die Person an der Türe zu sehen,

erhaltet der Besucher an der Türe kein Videosignal, auch wenn dies technisch absolut möglich wäre. Als Bewohner will man aber die Möglichkeit haben die Türe nicht zu öffnen oder dem Besucher die eigene Präsenz gar nicht bekannt zu geben.

Abbildung 20: Design der Aussensprechstelle-Webapp

Probleme bei der Videoübertragung

Nach dem ersten Test der Webapplikationen ist ein weiteres Problem aufgetaucht. Die Qualität der Videoübertragung war nicht immer befriedigend. Das Problem ist aber erst aufgetaucht, nach dem Deploy der Webapplikationen auf die endgültige Hardware installiert wurde.

Nach eine Problemanalyse konnte man folgendes feststellen:

Für das Video-Encoding verwendet **WebRTC** das VP8 Codec [23]. Leider unterstützt den Raspberry Mikrocontroller kein Harware acceleration für den VP8 codec. Unterstützt wird aber das "vector acceleration"welches aber Softwaremässig erfolgt. Die **Aussensprechstelle** muss im Stande sein, die Codierung in Real-Time auszuführen, was den Raspberry Pi an seinen Grenzen bringt. Obwohl eine Kamera mit hoher Auflösung im Einsatz ist, wird **WebRTC** im Folge des niedrigen Framerates die Qualität des Stream verringern. Sobald die Qualität herabgesetzt ist, ist der Raspberry wieder im Stand die Codierung in Echtzeit durchzuführen.

Aufgrund der hohen Überlastung des Prozessors während der Kodierung, tauchen zusätzlich Wärmeabfuhrprobleme auf. Eine verlängerte Videostreaming-Session mit erhöhten Umgebungstemperaturen, könnte den Raspberry zum Absturz brin-

	Raspberry Pi Model 3	Banana Pi M3
CPU Cores	4	8
CPU Design	Cortex A53	Cortex A7
CPU Frequenz	1.2GHz	1.8GHz
Memory	1GB DDR2	2GB DDR3
Memory Frequenz	400MHz	672MHz
H264 Decoding	1080P30	1080P60
H264 Encoding	1080P30	1080P60
Preis	CHF 50.0	CHF 99.00

Tabelle 5: Verwendete Raspberry Pi im Vergleich mit Banana Pi als Alternative

gen.

Der Raspberry Pi 3 war während der Entwicklungsphase des Prototyps die richtige Entscheidung. Hauptgrund waren die hohe Kompatibilität, die Standardisierung eines sehr gut etablierten Produktes und die Stabilität. Dazu kommen noch die unzähligen Infos, Dokumentationen die im Internet über diese Micro Controller zu finden sind.

Alternative

Mit den gesammelten Erfahrungen während der Prototypentwicklung könnte eine bessere Alternative zur Raspberry für eine Weiterentwicklung der Anlage ausgewertet werden.

Der Microcontroller Banana Pi M3 bietet im Gegensatz zum Raspberry erheblich mehr Datenverarbeitungsleistung (siehe Tabelle 5)).

Ein weiterer Vorteil des Banana Pi ist, dass der Raspbian **OS** ebenfalls unterstützt wird. Das mit dem Projekt mitgelieferte Image des Betriebssystems für die **Aussensprechstelle**n könnte somit auf den neuen Microcontroller mit geringerem Aufwand aufgespielt werden. Auch die Verkabelung sollte kein Problem darstellen, da die Pinbelegung eins zu eins die des Raspberrys entspricht.

7.5.3 Management Tool

Um eine schnellere Inbetriebnahme und eine zentrale Verwaltung des Systems zu gewährleisten, wurde das Management Tool entwickelt. Diese Webapplikation, die die Erfassung von Aussensprechstellen und Bewohnern ermöglicht, wurde mit Webtechnologien entwickelt (HTML, PHP, Javascript) und wird zusammen mit den MySQL-Datenbank auf dem lokalen Raspberry-Server gehostet.

Aus Sicherheitsgründen werden alle eingehenden und ausgehenden Verbindungen mittels**TLS** abhörsicher aufgebaut.

Grund für das Einsetzten von Webtechnologien sind die Plattformunabhängigkeit sowie die Einfachheit und die Standardisierung der Sprachen. Beim ersten Prototyp lag der Fokus auf die funktionalen Eigenschaften des Tools. Bei einer zukünftigen Weiterentwicklung des Produkts kann man, dank der Webtechnologien, mit geringerem Aufwand das Tool skalieren bzw. neue Features hinzufügen.

Abbildung 21: Design der Management tool

Das Tool ist mit einem Login versehen und die Vertraulichkeit ist somit garantiert.

Bewohner

Unter der Bewohnerseite werden alle Wohnungen, beziehungsweise alle Bewohner, aufgelistet. Diese verfügen über einen Benutzernamen und ein Passwort, die von der Client Applikation verwendet werden um eine sichere Authentifizierung beim Server zu gewährleisten. In diesem Bereich hat man die Möglichkeit sowohl der Name als auch die Position der Wohnung, welche an der Aussensprechstelle angezeigt werden, abzuändern.

Türen

In diesem Abschnitt sind die Namen der Türen definiert, welche dann auf der Client Applikation angezeigt werden. Der Einbau einer neuen Türe muss im Management Tool definiert werden. Dabei ist zu beachten, dass der ID mit

demjenigen der auf der neu installierten Aussensprechstelle übereinstimmt.

7.5.4 Remote Verbindung

..

7.6 OS und Dienste

Folgend beschrieben wir alle Dienste die auf dem Raspberry laufen werden. Diese werden benötigt um die Webapplikationen mit der Hardware zu verbinden.

7.6.1 Raspbian

Auf allen Raspberry Pi wurde der Betriebssystem Raspbian-Jessie installiert. Dieser wird von der Raspberry-Pi-Foundation mitgeliefert und gilt als besonders hochoptimierte **OS** für die mit niedriger Leistung und geringem Stromverbrauch **ARM** Prozessoren.

Raspbian basiert auf Debian welche unter der DFSG (Debian Free Software Guidelines) Lizenz steht. Diese erlaubt der unbeschränkten Weitergabe der Software sowie abgeleitete und modifizierte Werke weiterzugeben. Raspbian enthält Java SE Plattformprodukte welche unter dem BCL(Oracle Binary Code License) lizensiert sind. Diese Lizenz gewährleistet die obengenannten Freiheiten ebenfalls.

7.6.2 Taster Controller

Die Aussensprechstelle wird durch 3 Schalter bedient. Die Aufgabe der Taster-Controller besteht darin, die GPIOs der Raspberry, welcher mit den Schaltern verbunden sind, abzuhören. Sobald ein Schalter gedrückt wird, wird eine Tastatureingabe simuliert. Durch die Simulation kann der Javascript-Code, der lokal im Browser ausgeführt wird, auf den Schalterdruck reagieren. Somit kann auf der Aussensprechstelle, dank der Webapplikation (siehe Abb. 20), einen Bewohner ausgewählt werden (Schalter Rechts und Links) und diesen dann auch angerufen werden (Schalter Mitte).

Ursprünglich wollten wir den Taster Controller, sowie alle anderen Dienste, als Daemon ausführen. Das hätte den Vorteil gehabt, dass der Daemon mittels eines üblichen Run-, Stop- oder Restart-Befehls gesteuert werden konnten. Per Definition ist ein Daemon benutzerunabhängig und genau dieser Ansatz war proble-

matisch. Eine der eingesetzten Java-Library (Robot, um Keyevent zu simulieren) benötigt den Zugriff auf die **LXDE**-Desktopumgebung. Aus dem Grund, dass **LXDE** ein benutzerspezifischer Prozess ist, konnte der Taster-Controller nicht als Daemon ausgeführt werden.

Um das Problem umzugehen bietet **LXDE** einen Autostart. Im Unix Runlevel 5 wird gewartet bis die Desktopumgebung initialisiert ist und der Taster-Controller wird erst dann ausgeführt. Somit kann jetzt die eingesetzte Robot-Library auf den **LXDE** zugreifen und die Tastatureingabe simulieren.

7.6.3 Speaker Controller

Der Speaker-Controller ist ein kleiner Dienst, welcher den Lautsprecher ein- und ausschalten kann. Trotz einem Massentrennfilter sind immer noch leise Störsignale auf dem Audio-Ausgang vorhanden. Die Aufgabe des Speaker-Controllers besteht darin, die Stromspeisung des Speakers zu trennen, wenn er nicht verwendet wird. Somit ist das System energieeffizienter und unnötige Geräusche können vermieden werden. Der Speaker-Controller wird auf der Aussensprechstelle als Daemon ausgeführt.

Der Dienst besteht lediglich aus einem Socket-Server, der auf einem Signal wartet und durch die **GPIO** der Raspberry ein kleines Relais steuert. Das Signal kommt von der Javascriptseite der **Aussensprechstelle**-Webapplikation (localhost) und kann so bei Bedarf den Lautsprecher ein- bzw. ausschalten.

7.6.4 Relay Controller

Der Relais-Controller ist sehr ähnlich aufgebaut wie der Speaker-Controller. Auch hier handelt sich um einen kleinen Socket-Server, der auf ein Signal wartet und durch die GPIO des Raspberrys ein oder mehrere Relais steuert.

Der Relais-Controller wird auf dem Server ausgeführt und wartet auf die Befehle der Webapplikationen. Das Relais ist am Türöffner und an den Gongs der Wohnungen angeschlossen.

Der Datenaustausch zwischen dem Relais-Controller und den Webapplikationen erfolgt in Form eines **JSON**-Strings.

Während beim Speaker-Controller die Befehle aus der Clientseite stammen, kommen die Daten beim Relais-Controller aus dem **JSON**-Backend vom Server selbst.

Somit bleibt der Datenverkehr auf dem Localhost und werden Man-in-the-Middle oder Injection-Attacke ausgeschlossen. Aus diesem Grund lauscht dieser Server nur auf Verbindungen die vom Localhost stammen.

7.7 Logging

Für die Identifikation und Rückverfolgung von Fehlern sowie für das Monitoring sind Logs-File von grosser Bedeutung. Diese werden bei allen Services und Dienste konsequent durchgeführt.

Das Logrotate wird nicht eingesetzt, stattdessen kümmert sich das Java-Runtime-Environment um die Grösse des generiertes Log-Files. Da es sich noch um einen Prototyp handelt, wurde die Loggingstufe auf 7 eingestellt. Auf dieser Stufe werden alle Emergencynachrichten bis auf die Debugnachrichten in Logddateien gespeichert.

Gemäss dem FHS (Filesystem Hierarchy Standard) werden die Logs unter /var/lo-g/Aussensprechstelle gesichert.

7.8 Watchdog

Die ganze Hardware, die an der Türe installiert wird, ist beim Endkunden schwer zugänglich. Sollte nun ein Problem mit dem System auftreten, müsste man die Anlage vor Ort zurücksetzen. In solchen Fällen hilft der Hardware-Watchdog, der auf dem Raspberry komplett unabhängig vom eigentlichen System läuft.

Der Vorteil eines Hardware-Watchdogs ist, dass wenn das System bzw. der Prozessor blockiert, diese unabhängige Hardware ihre Aufgabe weiterhin ausführt. Der Watchdog wird als standalone Gerät im Unix erkannt. Wird dieses Gerät einmal beschrieben, dann muss diese mit einem Zeitintervall von 15 Sekunden erneut beschrieben werden.

Ist diese Bedingung nicht erfüllt, wird dann einen Hardware-Reset von Watchdogdurchgeführt und das System wird neugestartet. Das Beschreiben vom WatchdogGerät wird von einer Watchdog-Daemon übernommen. Durch die Konfigurationsdatei des Daemons können verschiedene Parameter des Systems wie Temperatur,
Auslastung der Prozessor usw. überwacht werden. Besonders relevant für die Türsprechanlage ist das PID-Monitoring. Diese ermöglicht das ständige Überprüfen
von spezifischen Prozessen und Diensten die das System benötigt, um seinen
Zweck als Aussensprechstelle zu erfüllen.

Sobald einer dieser Prozesse anhält wird das System innerhalb von 15 Sekunden

neugestaltet. Ein solches Mechanismus steigert die Verfügbarkeit des Dienstes und ist für eine Türsprechanlage von grosser Bedeutung.

8 Prototyp Testplan

Überprühfung der Anforderungen.

8.1 Abnahme-Testplan

- T1. Die Türe bei der Aussensprechstelle muss nach betätigen der «Türe öffnen» Taste in der Client-App, geöffnet werden können.
- T2. In der Client-App wird ein Videosignal von der Kamera bei der Aussensprechstelle erhalten.
- T3. Durch Bedienen der Client-App wird ein Audiosignal von der Aussensprechstelle erhalten und umgekehrt.
- T4. An der Aussensprechstelle kann man die Namen den Bewohner lesen und auswählen.
- T5. Die Stromversorgung der Anlage wird aus- und dann wider eingeschaltet. Die Anlage muss ohne externe Eingriff wider Starten.
- T6. Mithilfe von Wireshark wird den Netzwerkverkehr analysiert. Den gesamten Datenverkehr aus der Anlage ist verschlüsselt.
- T7. Feuchtigkeit, Temperatur und Betriebsbedingungen aus dem Datenblatt mit den Anforderungen vergleichen und überprüfen.
- T8. Durch eine Analyse wird die effektive Auflösung des Videosignales evaluiert. Die Auflösung muss mindestens 720p (ev. 1080p) aufweisen.
- T9. Sämtliche Materialkosten zusammenstellen und überprüfen. Die Kosten pro Aussensprechstelle müssen das in den Anforderungen definierten Maximum, nicht überschreiten.
- T10. Mit bedeckte (Skihandschuh) und/oder nasse Hände muss man bei der Aussensprechstelle Klingeln können.

T11. Bei der Aussensprechstelle ist nur der Netzwerkkabel zu finden, keine zusätzliche Speisung.

T12. Bei Klingeln und nicht öffnen der Türe, muss in der Client-App den Verpassten Besuch sichtbar sein.

T13. Durch Bedienen der Client-App ist es möglich frei zu sprechen ohne, dass das Audiosignal an der Aussensprechstelle weitergeleitet wird.

Ergebnisse werden in einer Test-Traceability Matrix visuell festgehalten. Jede Anforderung wird durch einen Test überprüft. Beziehungsweise verifiziert jeder Test nur die betroffene Anforderung. Auf diesen Wege werden Überschneidungen vermeiden.

8.2 Resultate

Alle Tests bis auf zwei, wurden bestanden. (siehe Abb. 22) Es werden nun die Anforderungen und Tests aufgelistet, welche nicht bestanden wurden.

8.2.1 Test 12: Verpasste Besuche sind in der Client-App ersichtlich

Bei Test 12 wird eine Wunschanforderung geprüft: (W13. Verpasste Besuche sollten aufgezeichnet werden und in der Client App in Form von einem Foto und Notifikation sichtbar sein). Diese Funktionalität wurde aus Zeitgründen nicht vollständig implementiert. Die Anforderung wurde daher nur teilweise erfüllt. Wenn jemanden an der Türe klingelt, wird auf den mobilen Gerät eine Benachrichtigung angezeigt. Diese bleibt solange sichtbar bis der Benutzer Diese gelesen hat und löscht. Demzufolge sind verpasste Besuche trotzdem ersichtlich, auch wenn sie im Web-App nicht erscheinen.

Da es sich um eine Webbapplikation handelt, kann diese Funktionalität ohne grosses Know-How von anderen beteiligten Technologien nachträglich implementiert werden.

8.2.2 Test 8: Die Auflösung des Videosignales wird evaluiert

Test 8 prüft zwei Anforderungen. Es handelt sich um die zwei folgenden:

- A9: Die Kamera für das Videosignal muss eine Auflösung von mind. 1280x720 Pixel aufweisen.
- W2: Die Kamera für das Videosignal muss eine Auflösung von 1920x1080 Pixel aufweisen.

Im Nachhinein ist uns klar geworden, dass diese zwei Anforderungen und ihre dazugehörigen Tests besser definiert werden könnten.

Der Test lautet: Durch eine Analyse wird die effektive Auflösung des Videosignales evaluiert. Die Auflösung muss mindestens 720p (oder 1080p) aufweisen. Die Eingesetzte Kamera weist effektiv eine Auflösung von 1920x1080 Pixel. Das Problem hier liegt bei der Digitalisierung des Videosignales. Währen der Fachmodul-Phase wurde die Komplexität der Video-Encoding unterschätzt.

Demzufolge besitzt nun unser System die Hardware um diese Anforderungen zu erfüllen aber nicht die Rechenkapazität.

Wie in der Abschnitt 7.5.2 bereits diskutiert, wäre hier eine bessere CPU eine mögliche Lösung.

	T1	T2	T3	T4	T5	T6	T7	T8	Т9	T10	T11	T12	T13
A1													
A2													
А3													
A4													
A5													
A6													
A7													
A8													
A9													
A10													
A11													
A12													
W1													
W2													
W3													

Abbildung 22: Test Traceability Matrix

9 Ausblick

9.1 Verbesserungs- und Erweiterungsmöglichkeiten

Der aktuelle Stand des Systems bietet die Standardfunktionalitäten die notwendig sind um den Prototyp in einer Testumgebung einsetzen zu können. Skalierbarkeit und Weiterentwicklung waren deshalb zwei wichtige Bedingungen die die ganze Arbeit geprägt haben.

Das Einsetzen von Webtechnologien hat dazu geführt, dass die verschiedenen Benutzerschnittstellen in Zukunft ohne grossen Aufwand und Know-How abgeändert oder erweitert werden können.

In Bereich Hardware könnten ebenso Verbesserungen vorgenommen werden. Die Komponenten wurden so ausgewählt, dass eine schnelle und einfache Implementierung ermöglicht wird. Wie im Bericht schon erwähnt, sollte für die Aussensprechstellen einen leistungsstärkeren Micro-Controller eingesetzt werden. Auch für die Kamera könnten weitere Produkte evaluiert werden, die für den Zweck besser geeinigt wären. Ein Kamerasensor mit integriertem Autofokus könnte zum Beispiel die Qualität des Bildes weiter verbessern.

Die eingesetzten Komponenten wie der **PoE**-Splitter, der Massentrennfilter und der Verstärker sind Open Source Hardware. Mit den vorhandenen Schaltplänen dieser Komponenten, könnte man eine einzelne Platine anfertigen lassen, die alle Funktionalitäten beinhaltet. Diese würde die Montage deutlich vereinfachen und gleichzeitig auch das Ausfallsrisiko senken.

9.2 Einsatzmöglchkeiten

Der entstandene Prototyp ist die richtige Lösung um die Machbarkeit einer solchen Digitalisierung zu demonstrieren. Die Anlage soll weiterentwickelt werden, und dieser Prototyp ist bestens geeignet um mögliche Interessenten und Investoren aufmerksam zu machen. Die kompakte Bauweise der **Türklingelanlage** und die einfachen Verkabelungstechnologien ermöglichen bei Fachmessen oder Präsentationen eine rasche Inbetriebnahme der Anlage.

10 Schlussfolgerung

Das, während der Bachelorarbeit, entstandene Produkt hat gezeigt, dass die Digitalisierung einer **Türklingelanlage** mit der heutigen Technologie möglich ist. Was für einen Laien auf den ersten Blick als relativ einfaches System wahrgenommen wird, hat uns bei der Entwicklung grosse Herausforderung bereitgehalten.

Der grösste Fehler aus unsere Seite war, teilweise viel zu Endprodukt-Orientiert zu arbeiten. Beispielsweise haben wir sehr viel Zeit für das Design der Webapplikationen investiert. Für uns war es wichtig, eine Zeitgemässe und vorallem Benutzerfreundliche Benutzeroberfläche zu entwickeln. Im Nachhinein ist uns klar gewesen, dass wir uns mehr Zeit einplanen sollten, für die Kernfunktionalitäten.

Im Gegensatz zur herkömmlichen, analogen Türklingelanlagen werden bei unserem Prototyp alle Video-Streams digitalisiert, codiert und decodiert. Diesen Schritt führt, im Gegensatz zu analogen Systemen welche in Echtzeit funktionieren, zu kleineren aber spürbaren Delays. So auch die Qualität der Videoübertragung. Beim aktuellen Stand der Technik und mit dem für den Projekt beschaffene Hardware, ist eine bidirektionale in Echtzeit funktionierende HD-Verbindung kaum realisierbar. Die Qualität die erreicht wird, nährt sich denjenigen der Marktführer wie z.B Skype oder Facebook.

In den letzten Jahren wurden enorme Schritte im Bereich der Technologien und der Forschung gemacht und der Trend ist stets positiv. Unserer Meinung nach wird aber in wenigen Jahren in der Welt der Hausautomatisierung den Gap zwischen analoge und digitale Technologie überwunden werden.

Im Verlauf der Arbeit wurde uns klar, dass der Weg zur Digitalisierung die richtige Entscheidung war. Die digitale Welt bring unzählige Vorteile mit sich, die in der zukünftigen Hausautomation nicht mehr wegzudenken sind. So ist zum Beispiel die Interaktion der **Türklingelanlage** über ein Smartphone oder ein Tablet ein erheblicher Vorteil im Gegensatz zu analoge Systeme. Weiter ermöglicht das digitale System der Zugriff auf die Videoübertragung von aussen, was mit analoge Technologie bis jetzt kaum realisierbar war.

11 Anleitung

Diese Anleitungen sind an dem zukünftigen Entwickler dieser Prototyp gerichtet. Mithilfe dieser Dokumentation und des mitgelieferten Images der Aussensprechstelle, soll ein Entwickler im Stand sein eine neu installierte Raspbian **OS** einer Aussensprechstelle/Server zu konfigurieren. Alles was konfiguriert wurde, wurde dokumentiert und in der Anleitung aufgeführt. Diese soll auch das Hinzufügen zukünftiger Funktionalitäten erleichtern.

11.1 Aussensprechstelle Konfigurationsanleitung

11.1.1 Aktuelle Stand

Betriebssystem: Raspbian jessie with pixel

Version: April 2017 Kernel Version: 4.4

11.1.2 Namen und Passwortkonzept

Hostname: DoorPixxx (x= fortlaufende Nummerierung)

User: pi

Password: bachelor (Einfachheitshalber wurde dieses schwache Passwort ausgewählt. Sollte aber bei einer produktiven Inbetriebnahme zwingend geändert werden)

11.1.3 Betriebssystem Installation

- $\bullet \ \ {\rm Das\ Image\ von\ raspberry.com\ herunterladen\ und\ extrahieren\ (https://www.raspberrypi.org/editor)}.$
- Um die Image auf der SD Karte zu bringen benutzt man Etcher. (htt-ps://etcher.io/)
- Mit den Standard-Anmeldedaten Anmelden. User: pi Password: raspberry

11.1.4 Allgemeine Einstellungen

Das System soll auf dem neusten Stand aktualisieren werden

```
apt-get update
sudo apt-get upgrade
```

Mit dem Terminalkommando 'sudo raspi-config' können durch eine grafische Oberfläche folgende allgemeine Einstellungen angepasst werden:

- Unter 'Interfacing Options' muss die SSH Server aktiviert werden.
- Hostname gemäss Namenskonzept anpassen
- Neue Passwort für den Pi Benutzer gemäss Password Konzept setzen.
- Zum Schluss sollen auch die Zeitzone, das Land und das Tastaturlayout angepasst werden.

11.1.5 Bidschirm Konfiguration

Die Displaytreiber von waveshare.com herunterladen und auf die SD Karte in Root Directory speichern. (http://www.waveshare.com/wiki/4inch_HDMI_LCD) Mit folgenden Bash-Kommandos wird der Treiber installiert:

```
tar xzvf /boot/LCD-show-YYMMDD.tar.gz

cd LCD-show/

chmod +x LCD4-800x480-show

./LCD4-800x480-show
```

Nachdem dass der Bildschirmtreiber installiert wurde, müssen die Einstellungen für den Bildschirm angepasst werden. Folgende Code-Zeilen müssen am Ende der 'config.txt' Datei, die sich in der root-directory befindet, hinzugefügt werden [2].

```
hdmi_group=2
hdmi_mode=87
hdmi_cvt 480 800 60 6 0 0 0
dtoverlay=ads7846, cs=1,penirq=25,penirq_pull
=2,
speed=50000,keep_vref_on=0,swapxy=0,pmax=255,
xohms=150,xmin=200,xmax=3900,ymin=200,ymax
=3900
display_rotate=3
```

11.1.6 Browser Kiosk-mode

Als erstes wir das Unclutter-Tool installiert um den Mausepfeil auszublenden.

```
sudo apt-get install unclutter
```

Die Kiosk-Mode-Einstellungen werden in der config Datei (/home/pi/.config/lxsession/LXDE-pi/autostart) wie folgt angepasst

```
# Chromium auto start in kiosk mode

# path: /home/pi/.config/lxsession/LXDE-pi/
autostart

@lxpanel — profile LXDE-pi

@pcmanfm — desktop — profile LXDE-pi

#@xscreensaver -no-splash

@point-rpi
@xset s off
@xset s noblank

@xset -dpms

@chromium-browser — noerrdialogs — kiosk —
incognito https://172.16.111.99/server
```

11.1.7 Aussensprechstelle Initialisierung

Im Homeverzeichnis unter .config/autostart wird die Datei Aussensprechstelle.desktop erstellt.

```
touch /home/pi/Aussensprechstelle/Startup/
AussensprechstelleLauncher.sh
```

Inhalt des Scripst:

```
#!/bin/bash

# This script executes the needed commands on startup to initialize the Aussensprechstelle

# /home/pi/Aussensprechstelle/Startup/
AussensprechstelleLauncher.sh

# Activates the Camera Driver (Safe mode because of the chrome resolution bug)

sudo modprobe bcm2835-v412

gst_v4l2src_is_broken=1

# Clears the old TasterController PID of the process (In case of system shutdown)
```

11.1.8 Taster Controller

Der Tastencontroller, der für den Key Mapping zuständig ist, wird vom oben gezeigten AussensprechstelleLauncher.sh unter /home/pi/Aussensprechstelle/TasterController/TasterController.jar gestartet. Die kompilierte Jar-Artefakt muss also dorthin kopiert werden.

Folgende GPIO Pins werden von den 3 Tasten benötigt um die Aussensprechstelle zu steuern:

- GPIO17(16) simuliert den Tastendruck J «Links navigieren»
- GPIO27(20) simuliert den Tastendruck K «Anrufen»
- GPIO22(21) simuliert den Tastendruck L «Rechts navigieren»

11.1.9 Speaker Controller Service

Als Erstes muss der mitgelieferte Jar Artefakt SpeakerController.jar unter folgenden Pfad kopiert werden:

```
/home/door/Aussensprechstelle/
SpeakerController/SpeakerController.jar
```

Um den Speaker-Controller als Service unter Unix laufen zu lassen, muss unter /etc/init.d/ das Speaker-Controller-Script erzeugt werden. Der Inhalt des Scripts

wird mit dem Projekt mitgeliefert. Um es ausführbar zu machen, muss noch die «execute» Berechtigung gegeben werden.

```
touch /etc/init.d/speakerController
chmod +x /etc/init.d/speakerController
```

Damit der SpeakerController-Service auch automatisch beim Systemstart ausgeführt wird, muss noch folgendes Kommando ausgeführt werden:

```
sudo update-rc.d speakerController defaults
```

Der Speaker Controller kann nun mit folgenden Befehlen gestartet und gestoppt werden

```
sudo service speakerController start
sudo service speakerController stop
sudo service speakerController restart
sudo service speakerController status
```

11.1.10 Watchdog/Watchdog deamon

Um die von der Aussensprechstelle benötigte Dienste zu überwachen, wird ein Watchdog verwendet. Raspberry Pi hat ein «stad-alone» Hardware Watchdog die ein Autostart durchführt sobald eine der Dienste oder den OS still steht. Mit folgenden Kommandos wird der Watchdog installiert:

```
sudo modprobe bcm2835-wdt
sudo apt-get install watchdog chkconfig
sudo chkconfig watchdog on
sudo /etc/init.d/watchdog start
```

Damit die SpeakerController und die TasterController vom Watchdog überwacht werden, muss unter /etc/watchdog.conf die Konfigurationsdatei abgeändert werden. Der Inhalt der Konfigurationsdatei wird mit dem Projekt mitgeliefert.

11.2 Server Konfigurationsanleitung

11.2.1 Aktuelle Stand

Betriebssystem: Raspbian jessie with pixel

Version: April 2017 Kernel Version: 4.4

11.2.2 Namen und Passwortkonzept

Hostname: SrvPixxx (x= fortlaufende Nummerierung)

User: pi

Password: raspberry (Default Password)

11.2.3 Software Installation

Nun werden die benötigten Dienste und Tools installiert, die vom Server benötigt werden.

• Installation der Webserver. (PHP, Nginx, MySQL, Java SDK, Composer, Utils)

```
apt-get install nginx
udo apt-get install mysql-server
apt-get install php5-fpm php5-mysql
sudo apt-get install mysql-server mysql-client
sudo apt-get install oracle-java8-jdk
sudo apt-get install curl php5-cli git
curl -sS https://getcomposer.org/installer |
sudo php -- --install-dir=/usr/local/bin --
filename=composer
```

11.2.4 Erstellung SSL Zertifikate

Bevor die Webapplikationen installiert werden können, müssen die Zertifikate generiert werden (Self-Signed).

• Erstellung SSL Zertifikat für den Client Webapplikation. Als Hostname wird hier als Beispiel intercom.app verwendet. Zuerst muss eine Konfigurationsdatei (v3.ext) mit folgendem Inhalt generiert werden:

```
authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:TRUE
keyUsage = digitalSignature, nonRepudiation,
    keyEncipherment, dataEncipherment
subjectAltName = @alt_names
```

```
[alt_names]
DNS.1 = intercom.app
```

Falls ein IP als hostname verwendet wird, kann man @alt_names mit IP:192.168.0.18 ersetzen.

 Nun müssen folgende Befehle eingegeben werden. Wenn gefragt, muss der Hostname oder IP als Common Name (CN) eingegeben werden. Es kann immer das gleiche Passwort verwendet werden und muss dem Keystore-Password des Signaling-Servers entsprechen.

```
sudo openssl genrsa -des3 -out rootCA.key 2048

sudo openssl req -x509 -new -nodes -key rootCA.
key -sha256 -days 1024 -out rootCA.pem

sudo openssl req -new -sha256 -nodes -out server
.csr -newkey rsa:2048 -keyout server.key

sudo openssl x509 -req -in server.csr -CA rootCA
.pem -CAkey rootCA.key -CAcreateserial -out
server.crt -days 500 -sha256 -extfile v3.ext

sudo openssl pkcs12 -export -in server.crt -
inkey server.key -out cert.p12

sudo keytool -importkeystore -srckeystore cert.
p12 -srcstoretype PKCS12 -destkeystore
keystore.jks -deststoretype JKS

sudo openssl x509 -inform PEM -outform DER -in
server.crt -out phone.der.crt
```

Somit wurden diverse Dateien generiert. Die folgenden werden später gebraucht.

- server.cert und server.key -> SSL Zertifikate für Apache2
- rootCA.pem -> Root CA. Das muss in den Client-Browser importiert werden, damit die Clients den Server als vertraulich erkennen.

- phone.der.crt -> Root CA für Mobilegeräte. Bei Mobilegeräte kann es per E-Mail verschickt werden und dann in die Systemeinstellungen installiert werden.
- keystore.jks -> Das muss später in das selbe Verzeichnis kopiert werden, wo der SignalingServer installiert wird.

11.2.5 Konfiguration von Nginx

Vor dem Deploy der Webapplikationen muss der Webserver noch konfiguriert werden.

• In der Datei /etc/php5/fpm/php.ini muss die folgende Zeile auskommentiert und editiert werden:

```
cgi.fix_pathinfo=0
```

- Nun muss Nginx so konfiguriert werden, dass PHP als compiler verwendet wird. Die Datei /etc/nginx/sites-available/default muss editiert werden.
- Nun müssen die zwei VirtualHosts für die zwei WebApps konfiguriert werden. Diese werden unter verschiedene Ports laufen. Dafür müssen zwei Konfigurationsdateien unter /etc/nginx/sites-available erstellt werden. Bsp: intercom.app und management.app. Der Inhalt muss wie folgt aussehen. Die Stellen, die für die beiden Webapplikationen unterschiedlich sein müssen, sind rot markiert. Der Path zu den SSL-Zertifikate muss auch angepasst werden.

```
# Default server configuration
server {
# SSL configuration
listen 443 ssl; # 444 for the second host
listen [::]:443 ssl;
ssl_certificate /path/to/the/certificate/server.crt;
ssl_certificate_key /path/to/the/certificate/server.key;
```

• Zum abschliessen noch die folgenden Befehle eingeben:

```
sudo ln -s /etc/nginx/sites-available/intercom.app /etc/
    nginx/sites-enabled/
sud ln -s /etc/nginx/sites-available/management.app /etc
    /nginx/sites-enabled/
sudo service nginx reload
sudo service nginx restart
sudo service php5-fpm restart
sudo reboot
```

11.2.6 Deploy Webapplikationen

Vor dem Deploy der Webapplikationen muss der Webserver noch konfiguriert werden.

 Die beide Webapplikationen müssen zuerst auf dem Server in die passenden Verzeichnissen kopiert werden.

```
/var/www/management
/var/www/intercom
```

• Rechte anpassen

```
sudo chmod -R 775 /var/www
sudo chmod -R 777 /var/www/management/storage
sudo chmod -R 775 /var/www/intercom/storage
sudo chgrp -R www-data /var/www/
```

- MySQL Database erstellen, dann Anmeldedaten und Database Name in der Datei: .env eingeben. (Falls .env nicht vorhanden: cp .env.example .env)
- Webapplikation installieren: (Diese Befehle müssen in der Root Dir jeder Webapp eingegeben werden).

```
composer install

php artisan migrate (MNGMT Tool Only)

php artisan key:generate
```

Die zwei Webapps müssten nun unter die ports 443 und 444 aufrufbar sein.

11.2.7 Deploy Dienste und Services

• Zuerst die benötigten Pfade erstellen

```
mkdir /home/pi/server/signalingServer
mkdir /home/pi/server/relayController
```

• Die beide kompilierte JARs in den entsprechenden Verzeichnissen kopieren. Die kompilierten JARs sind im jeweiligen Projektverzeichniss unter /deploy zu finden.

- Nun muss noch für den SignalingServer das vorher erstellte keystore.jks kopiert werden. Der Keystore muss sich im gleichen Verzeichnis wie der Signaling Server befinden.
- Für beide Dienste muss noch der Autostart_Skript unter /etc/init.d/ kopiert werden. Die Skripte sind im Script-Verzeichnis gespeichert. Auch diese Skripte müssen ausführbar sein. Folgende Befehle müssen noch eingegeben werden:

```
sudo chmod +x /etc/init.d/signalingServer
sudo chmod +x /etc/init.d/relayController
sudo update-rc.d signalingServer defaults
sudo update-rc.d relayController defaults
```

12 Anhang

12.1 Messungsresultate

```
Switch#sh interfaces q0/43
GigabitEthernet0/43 is up, line protocol is up (
   connected)
Hardware is Gigabit Ethernet, address is 0023.05e2.c82b
   (bia 0023.05e2.c82b)
MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full-duplex, 100Mb/s, media type is 10/100/1000BaseTX
input flow-control is off, output flow-control is
   unsupported
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output 00:00:00, output hang never
Last clearing of "show_interface" counters never
Input queue: 0/75/0/0 (size/max/drops/flushes); Total
   output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
```

5 minute input rate 507000 bits/sec, 108 packets/sec
5 minute output rate 44000 bits/sec, 70 packets/sec
51357 packets input, 33613725 bytes, 0 no buffer
Received 130 broadcasts (82 multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 82 multicast, 0 pause input
0 input packets with dribble condition detected
32616 packets output, 6365458 bytes, 0 underruns
0 output errors, 0 collisions, 1 interface resets
0 unknown protocol drops
0 babbles, 0 late collision, 0 deferred
O lost carrier, O no carrier, O pause output
0 output buffer failures, 0 output buffers swapped out

Abbildungsverzeichnis

1	Hybrides Vorgehensmodell
2	Projektplanung Meilensteine
3	Projektplanung
4	Bitbucket ist ein Filehosting und ein Dienst für die Versionskon-
	trolle von Softwareprojekte
5	Risikomatrix
6	Bewertung Projekt Risiken
7	Bewertung Technische Risiken
8	Projekt Massnahmen
9	Analoge Türsprechanlage mit In-House Display
10	Telecom Behnkle MyIntercom
11	Hardware Ecosystem
12	Catalyst Pinouts
13	EthernetPinbelegung
14	EthernetPinbelegung
15	EthernetPinbelegung
16	Software Ecosystem
17	Der Signaling Prozess
18	STUN Server
19	Design der Client-Webapp

20	Design der Client-Webapp	25
21	Design der Management tool	27
22	Test-Traceability Matrix	34

Tabellenverzeichnis

1	Server HW Komponenten	12
2	Aussensprechstelle HW Komponenten	12
3	PIN-Zuweisung zwischen den Server und die Relais Module	16
4	PIN-Zuweisung zwischen den Raspberry PI und die Schalter	16
5	Verwendete Raspberry Pi im Vergleich mit Banana Pi als Alternative	26

Glossar

API Application programming interface. 16

Aussensprechstelle Mikrocontroller mit verschiedene Modulen die an den Eingangstüre installiert wird. 6–10, 13, 15–25

Client Applikation Die Web Applikation welches auf dem Smartphone oder Tablet des Bewohner ausgeführt wird. 13, 15–17

CSS Cascading Style Sheets. 13

DSL Digital Subscriber Line. 4

GPIO General purpose input/output. 10

GUI Graphical user interface. 15

H.264 Standard zur Videokompression. 21

HTML Hypertext Markup Language. 13, 16

HTTPS Hypertext Transfer Protocol Secure. 15

HW Hardware. 7, 41

ICE Interactive Connectivity Establishment. 16, 17

IP Internet Protocol. 4, 15, 16

LTE Long Term Evolution. 4

NAT Network address translation. 17

OS Operating system. 21

P2P Peer to Peer. 16

PHP Hypertext Preprocessor. 13, 14, 18

PoE Power over Ethernet. 7, 8, 10

SIP Session Initiation Protocol. 5, 16

STUN Session Traversal Utilities. 17, 18

TLS Transport Layer Security. 14, 15

Türklingelanlage Gesamtheit der Komponenten die denn Zusammen den Endprodukt darstellen. I, 1, 4–6, 40

USB Universal Serial Bus. 12

VoIP Voice over IP. 16

WebRTC Web Real-Time Communication. 5, 8, 15, 16, 20

Eidesstattliche Erklärung

Die Verfasser dieser Bachelorarbeit, Federico Crameri und Geo Bontognali, bestätigen, dass sie die Arbeit selbstständig und nur unter Benützung der angeführten Quellen und Hilfsmittel angefertigt haben. Sämtliche Entlehnungen sind durch Quellenangaben festgehalten.

Geo Bontognali

Ort, Datum

Ort, Datum Federico Crameri

Literatur

- [1] 35+ jQuery 3D Slider & Carousel Plugin with Examples Demo. URL: http://www.jqueryrain.com/demo/3d-slider-carousel/(besucht am 18.04.2017).
- [2] 4inch HDMI LCD Waveshare Wiki. URL: http://www.waveshare.com/wiki/4inch_HDMI_LCD (besucht am 20.02.2017).
- [3] Sam Dutton Published: November 4th, 2013 Updated: November 4th und 2013 Comments: 2 Your browser may not support the functionality in this article. WebRTC in the real world: STUN, TURN and signaling HTML5 Rocks. HTML5 Rocks A resource for open web HTML5 developers. URL: https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/(besucht am 23.02.2017).
- [4] AboutSSL.org. How to Create and Import Self Sign SSL Certificate on Android. AboutSSL.org. URL: https://aboutssl.org/how-to-create-and-import-self-signed-certificate-to-android-device/ (besucht am 19.06.2017).
- [5] Adding Push Notifications to a Web App / Web. Google Developers. URL: https://developers.google.com/web/fundamentals/getting-started/codelabs/push-notifications/ (besucht am 20.06.2017).
- [6] Building a signaling server in Java WebRTC Cookbook. ISBN: 978-1-78328-445-0. URL: https://www.packtpub.com/mapt/book/Application-Development/9781783284450/1/ch01lvl1sec10/Building%20a%20signaling%20server%20in%20Java (besucht am 23.02.2017).
- [7] Change default users on Raspberry Pi Gordon Lesti. URL: https://gordonlesti.com/change-default-users-on-raspberry-pi/ (besucht am 20.02.2017).
- [8] Debian Debian-Gesellschaftsvertrag. URL: https://www.debian.org/social_contract.de.html (besucht am 06.07.2017).
- [9] Embedded Linux JVM Debugger (Raspberry Pi, BeagleBone Black, Intel Galileo II, and several other IoT Devices) for IntelliJ IDEA :: JetBrains Plugin Repository. URL: https://plugins.jetbrains.com/idea/plugin/7738-embedded-linux-jvm-debugger-raspberry-pi-beaglebone-black-intel-galileo-ii-and-several-other-iot-devices- (besucht am 20.02.2017).

- [10] ericlaw. Chrome Deprecates Subject CN Matching. text/plain. 10. März 2017. URL: https://textslashplain.com/2017/03/10/chrome-deprecates-subject-cn-matching/ (besucht am 01.06.2017).
- [11] Fixing Chrome 58+ [missing_subjectAltName] with opensal when using self signed certificates | Alexander Zeitler. URL: https://alexanderzeitler.com/articles/Fixing-Chrome-missing_subjectAltName-selfsigned-cert-opensal/ (besucht am 01.06.2017).
- [12] Wolfram Gieseke. Raspberry Pi: Den eingebauten Hardware-Watchdog zur Überwachung nutzen gieseke-buch.de. URL: http://www.gieseke-buch.de/raspberrypi/eingebauten-hardware-watchdog-zur-ueberwachung-nutzen (besucht am 20.03.2017).
- [13] How To Create a SSL Certificate on Apache for Ubuntu 14.04. DigitalOcean. URL: https://www.digitalocean.com/community/tutorials/how-to-create-a-ssl-certificate-on-apache-for-ubuntu-14-04 (besucht am 10.04.2017).
- [14] Interactive Connectivity Establishment. In: Wikipedia. Page Version ID: 732705039. 2. Aug. 2016. URL: https://en.wikipedia.org/w/index.php?title=Interactive_Connectivity_Establishment&oldid=732705039 (besucht am 23.02.2017).
- [15] java How are SSL certificate server names resolved/Can I add alternative names using keytool? Stack Overflow. URL: https://stackoverflow.com/questions/8443081/how-are-ssl-certificate-server-names-resolved-can-i-add-alternative-names-using/8444863 (besucht am 19.06.2017).
- [16] Java Keytool Essentials: Working with Java Keystores / DigitalOcean. URL: https://www.digitalocean.com/community/tutorials/java-keytool-essentials-working-with-java-keystores (besucht am 28.02.2017).
- [17] Lane 6 Start a fullscreen browser kiosk on the raspberry pi. URL: https://lane6.de/posts/start-a-fullscreen-browser-kiosk-on-the-raspberry-pi (besucht am 20.02.2017).
- [18] Laravel Notification Channels. URL: http://laravel-notification-channels.com/webpush/ (besucht am 21.06.2017).
- [19] Linux Java Service Wrapper Example. URL: http://www.jcgonzalez.com/linux-java-service-wrapper-example (besucht am 23.02.2017).

- [20] Linux Watchdog configuring. URL: http://www.sat.dundee.ac.uk/psc/watchdog/watchdog-configure.html#Process_Monitoring_by_PID_File (besucht am 20.03.2017).
- [21] LSBInitScripts Debian Wiki. URL: https://wiki.debian.org/LSBInitScripts (besucht am 01.03.2017).
- [22] Power over Ethernet. URL: https://www.elektronik-kompendium.de/sites/net/0807021.htm (besucht am 07.08.2017).
- [23] Raspberry Codecs. URL: https://www.raspberrypi.org/blog/libraries-codecs-oss/.
- [24] Raspberry Pi in Kiosk Mode. OSH Lab. 25. Apr. 2016. URL: https://oshlab.com/raspberry-pi-kiosk-mode/ (besucht am 20.02.2017).
- [25] Raspberry Pi in Kiosk Mode OSH Lab. URL: https://oshlab.com/raspberry-pi-kiosk-mode/(besucht am 20.02.2017).
- [26] Raspberry Pi System Logging and Loggly. URL: http://blog.scphillips.com/posts/2015/05/raspberry-pi-system-logging-and-loggly/(besucht am 15.03.2017).
- [27] Raspberry Pi View topic Low resolution on Chromium WebRTC. URL: https://www.raspberrypi.org/forums/viewtopic.php?f=43&t=159941 (besucht am 15.03.2017).
- [28] Raspberry Pi View topic Poor audio quality on analog output. URL: https://www.raspberrypi.org/forums/viewtopic.php?f=38&t=37038 (besucht am 07.06.2017).
- [29] Deven Rathore. send push notifications to mobile devices with laravel. Dunebook.com. 10. Okt. 2015. URL: https://www.dunebook.com/send-push-notifications-to-mobile-devices-with-laravel/ (besucht am 21.06.2017).
- [30] Reliable Projects 2: Using the Internal WatchDog Timer for the Raspberry Pi. SwitchDoc Labs. 20. Nov. 2014. URL: http://www.switchdoc.com/2014/11/reliable-projects-using-internal-watchdog-timer-raspberry-pi/ (besucht am 22.03.2017).
- [31] SSL. URL: https://crsr.net/Notes/SSL.html (besucht am 19.06.2017).
- [32] SSLContext (Java Platform SE 7). URL: http://docs.oracle.com/javase/7/docs/api/javax/net/ssl/SSLContext.html (besucht am 28.02.2017).

- [33] Tutorial: Implement Push Notifications in your PhoneGap Application: Devgirl's Weblog. URL: http://devgirl.org/2013/07/17/tutorial-implement-push-notifications-in-your-phonegap-application/(besucht am 20.06.2017).
- [34] What is PoE Mode A and Mode B? URL: http://duncansonline.ca/FAQs/WhatisPoEModeAModeB.htm (besucht am 07.08.2017).
- [35] x11 How to make /etc/init.d script act like it's launched under X? Unix & Linux Stack Exchange. URL: http://unix.stackexchange.com/questions/98967/how-to-make-etc-init-d-script-act-like-its-launched-under-x (besucht am 01.03.2017).