

Thermal Design of an Antarctic Water Well

Virgil J. Lunardini and John Rand

March 1995

Abstract

The thermal and mechanical aspects of a potable water reservoir, formed at depth in a permanent snowfield in Antarctica, are detailed. The thermal model can be used for preliminary design, to predict reservoir size and depth, water temperature and mass, and energy requirements as a function of time. Predictions are made for the South Pole environment, but the model is valid for other permanent snowfields. The reservoir characteristics are influenced by the rate and timing of potable water removal during the lifetime of the reservoir.

For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380-89a, *Standard Practice for Use of the International System of Units*, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103.

Special Report 95-10

Thermal Design of an Antarctic Water Well

Virgil J. Lunardini and John Rand

March 1995

19950623 046

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

Approved for public release; distribution is unlimited.

DTIS QUALITY INSPECTED 8

PREFACE

This report was prepared by Virgil J. Lunardini, Mechanical Engineer, of the Applied Research Division, and John Rand, Mechanical Engineer, of the Programs and Resources Directorate, U.S. Army Cold Regions Research and Engineering Laboratory (CRREL).

The manuscript was technically reviewed by Paul Richmond and Donald Haynes of USA CRREL.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

CONTENTS

Preface
Nomenclature
Introduction
Physical and mathematical model of Rodriguez water well
Ice melt rate
Water mass balance
Water level
Water, air, and firn temperatures
Heat loss from water to firn/ice
Firn percolation
Ice melt coefficients
Computer program
Modelling results
Thermal design of South Pole Station new water well
Literature cited
Appendix A: Computer program for thermal design of Rodriguez
water well
Appendix B: Old South Pole data
Appendix C: Requirements and numerical predictions for Rodriguez
well at South Pole Station
Appendix D: Requirements and numerical predictions, South Pole
Station water well, constant heat input rates
Abstract
ILLUSTRATIONS
Figure
1. Camp Century water well equipment
Section of the pilot water well at Camp Century after the first
test season
3. Section of the Camp Century water well after two seasons of
operationoperation
4. Second service well at Camp Century after two years of operation.
5. Water-supply ice well, Camp Tuto, Greenland
6. 1972 development well at Old South Pole Station
7. Paraboloid geometry
8 Water well geometry
U. TTULL VYLII ELUIILLI V

TABLES

	Page
Table	
1. Data and predictions of the transient behavior of South Pole	
Station water well	8
2. Performance of South Pole Station water well after 1704 hours	9
3. South Pole water well, base case A5	10
4. South Pole water well, potable water withdrawal 150%;	
base case A1	11
5. Constant heat input cases	12
6. Model predictions for Table 5 cases	13
7. South Pole water well predicted transient performance	14

NOMENCLATURE

= water

= area of water/air interface = Ab= area of air/firn interface $A_{\rm i}$ $A_{\rm L}$ = water percolation parameter = surface area of water reservoir in contact with firn $c_{\rm p}$ = specific heat = upper diameter of water volume Ε h_a, h_i, h_s = convective coefficient for water/air; air/ice; water/ice H, HW = height of water in reservoir= depth from firn surface to bottom of reservoir HWB = thermal conductivity = latent heat of fusion ℓ = effective latent heat of fusion ℓ_{e} = mass flow rate of water from boiler \dot{m}_{f} = mass flow rate of water loss to firn by percolation \dot{m}_ℓ = mass flow rate of meltwater production $\dot{m}_{
m m}$ = mass flow rate of potable water $\dot{m}_{\rm O}$ MV= volume of water in resevoir $\Omega^2 - 1$ p $2 \ln \Omega$ = average heat flux from air to firn ā = conduction heat loss from water to ice/firn = radial distance from center of drill hole = radius of initial drill hole = radius of water cylinder = time T= temperature T_{o} = initial firn temperature = temperature of air/firn interface = temperature of meltwater $T_{\rm wb}$ = temperature of water leaving boiler = temperature distribution of firn/ice $T_{\rm ice}$ = reservoir volume $V_{\rm a}$ = volume of air above reservoir = Cartesian coordinates x,y= thermal diffusivity α = δ/r_0 , dimensionless temperature disturbance β = $\Delta D / \Delta H$, rate of change of reservoir diameter with respect to height γ = temperature penetration radius in firn/ice θ $= T - \overline{T}_{\mathbf{f}}$ $= T_{wb} - T_{f}$ = density ρ = shut-off density of firn ρ_{s} = r/r_0 , dimensionless radius = dimensionless time, $\alpha_i t / r^2$ τ = δ/R , dimensionless penetration Subscripts = air f = freeze value i = ice/firn

Thermal Design of an Antarctic Water Well

VIRGIL J. LUNARDINI AND JOHN RAND

INTRODUCTION

Itinerant travellers, visitors, or permanent inhabitants in areas of permanent snowfields such as Greenland or Antarctica face the same problem as Coleridge's (1798) ancient mariner,

Water, water, everywhere, and all the boards did shrink;

water, water, everywhere, nor any drop to drink.

Rather than the salty sea, for the polar denizen it is fresh water that is very abundant, but is in the wrong phase: it exists as either ice or snow. The ice or snow must first be changed to liquid water before it can be used. There are two broad methods by which this is done: gathering snow/ice in surface tanks with subsequent melting, or melting the snow/ice in place and storing it within the cavity so formed in the permanent ice cap. A summary of these methods has already been published by Mellor (1969). This report examines the preliminary engineering design of an in situ water reservoir for the refurbished research facility at the United States South Pole Station.

In situ water reservoirs were first designed and built by USACRREL in the early 1960s for Camp Tuto, Greenland (Schmitt and Rodriguez 1960; Russell 1965). They are commonly referred to as Rodriguez wells. The concept is simple and involves melting firn/ice at depth, thereby creating a reservoir of liquid water that can be pumped to the surface as needed. The insulating properties of firn/ice help to keep the water unfrozen, and the isolation of the water source tends to reduce contamination of the potable supply. Snow or ice is melted and stored in place at some depth below the surface of the ice cap, eliminating the need for mechanical handling of snow and for fabricated storage tanks. A hole is driven down into the snow and vertical advance is maintained until impermeable strata are intercepted or until refreezing meltwater forms its own impermeable barrier (Fig. 1). The melt then ponds and, after sufficient reserve capacity has been established in the well, pumping can begin to supply potable water to the surface. The development of the size and shape of the ponding cavity depends on the relative rates of melting and water removal by pumping and upon the rate of heat application to the pool: with a large heat supply and small pumping rate the cavity can grow laterally rapidly, but if the pool is overpumped, the cavity tends to develop rapidly downward due to the high temperature of the reservoir water.

On the ice cap in northern Greenland, initial ponding of the meltwater occurs at depths between 36.5 to 48 m (120 to 150 ft) (Mellor 1969). If heat is supplied to a central point at the base of the shaft, the pool forms a radially symmetric cavity. While the cavity is small, heat losses by conduction through the surrounding ice and by convection to the air above are minor. As the pool grows, the heat losses increase, until finally an equilibrium size may be reached, when all of the heat input is lost by conduction and convection and no new water can be produced unless the rate of heat supply or the pumping rate to storage is increased. Schmitt and Rodriguez (1960, 1963) report observations on cavity development in a well supplied with heat at the rate of 219,825 W (750,000 Btu/h). Figures 2 and 3 give an idea of the size and shape of the well after two years of operation at Camp Century, Greenland. The peculiar shape of the well is largely controlled by the rate of water removal and the rate of energy supplied to the well water. The water production efficiency was estimated at 59 lbm water per lbm of fuel. A shaft was steamed down and ponding developed at 42.5 to 49 m (140–160 ft). A special nozzle bubbled steam through the pool and also held a submersible electric pump that delivered water to the surface at a maximum rate of 1.58 L/s (25 gal/min). The

Figure 1. Camp Century water well equipment (from Clark 1965).

Figure 2. Section of the pilot water well at Camp Century after the first test season (Schmitt and Rodriguez 1963).

Figure 3. Section of the Camp Century water well after two seasons of operation (Schmitt and Rodriguez 1963).

delivered water contained no detectable coliform bacteria and was delivered to the surface at an average temperature of 5.6°C (42°F). The steam generator was a coiled water tube, flash-type boiler capable of delivering about 219,825 W (750,000 Btu/h) and burning fuel oil at a maximum rate of 28.5 L (7 gal)/h. It produced 1.138 MPa (165 psig), 189.4°C (373°F) saturated steam at a rate of about 365 kg (800 lb)/h. The submersible pump had a capacity of 6435 L (1700 gal)/h pumping from 60-m (200-ft) depth, and 3860 L (1020 gal)/h from 150-m (500-ft) depth. A second well was also developed at Camp Century, as shown in Figure 4.

Combining observation with analysis of a well in an ice tunnel developed in 1962 at the under-ice camp at Camp Tuto, Greenland, Russell (1965) presented simplified engineering calculations and results for the relatively small heat input rate of approximately 73,275 W (250,000 Btu/h). The transient behavior of the well is shown in Figure 5. During May–June 1962, the well produced 5,315 L (1404 gal)/day of water, with a fuel consumption of 137 kg (302 lbm)/day, while delivering 2006 L (530 gal)/day of potable water. This gives an efficiency of 17.7 (39 lbm) water/lbm fuel.

Figure 4. Second service well at Camp Century after two years of operation (from Mellor 1969).

The most recent example of a water well was developed for Old South Pole Station, Antarctica (Williams 1974). The transient behavior of the well geometry is shown in Figure 6. Complete details on the operation of this well are given in the tables of Appendix B. The significant aspect of this well is the ambient firn temperature of –51°C (–60°F), compared to a firn temperature of –28.9°C (–20°F) at Greenland sites. Despite the low temperature, the water well functioned well without significant adverse freezing problems. Its operation was halted due to a frozen fuel line at the surface boiler; the well was then shut down and abandoned after supplying about 416,400 liters (110,000 gallons) of potable water.

Despite the attractiveness of Rodriguez wells and their use over relatively long times, there has been very limited analysis of their thermal behavior. Tien (1960) presented a simplified analysis for spherical systems used as heat sinks but did not

account for the changing firn and air temperatures around the reservoir, nor did he include the effects of water withdrawal. If Rodriguez wells are to be used routinely it will be necessary to predict their thermal performance for use in the preliminary design of the wells. The following sections of this report deal with the preliminary engineering design of such wells.

PHYSICAL AND MATHEMATICAL MODEL OF RODRIGUEZ WATER WELL

The water well data from Greenland and the South Pole support an assumption that the shape of the water volume at any time can be modelled as parabolic (Williams 1974, Russell 1965). Thus, we assume the following geometric relations. Consider the volume of revolution shown in Figure 7, with a diameter *D* and a height *H*. The equation defining a parabolic volume is

$$y^2 = \frac{D^2}{4H}x. (1)$$

The meaning of the symbols is given in the nomenclature list. It is easy to determine that the volume and surface area (exclusive of the upper horizontal surface) are

$$V = \frac{\pi}{8} D^2 H \text{ and}$$
 (2)

$$A_{\rm S} = \frac{2}{3} \pi DH \,. \tag{3}$$

If the height changes by a small amount, then the diameter will change by a corresponding amount to maintain the geometric relations:

$$\frac{\Delta D}{\Lambda H} = \frac{D}{2H}.\tag{4}$$

Let us say that

$$\frac{\Delta D}{\Delta H} = \gamma \tag{5}$$

where γ is a constant that can be adjusted as required. Actually $\gamma = D/2H$ is close to unity for the present system, and a value of $\gamma = 1$ was used in the calculations. This agrees with the Greenland and South Pole data, which indicate that γ is close to unity.

Ice melt rate

The energy available to melt ice is the difference between the energy convected to the ice/water interface and the energy lost by conduction to the

Figure 5. Water-supply ice well, Camp Tuto, Greenland (from Russell 1965).

surrounding firn or ice:

$$\left[h_{\rm s}(T_w - T_f) - q_{\rm s}\right] A_{\rm s} \Delta t = \rho_{\rm i} \ell_{\rm e} \nabla V. \tag{6}$$

The energy lost to the ice, q_s , can be incorporated into the effective latent heat, ℓ_e , as will be described later (see eq 25). This is a reasonable approximation in view of the moving heat source represented by the sinking water reservoir. Using eq 2 through 6 leads to a relation for the rate of change of the height of the water in the reservoir:

$$\frac{\Delta H}{\Delta t} = \frac{16H[h_{\rm S}(T_{\rm W} - T_{\rm f}) - q_{\rm S}]}{3(2\gamma H + D)\rho_{\rm i}\ell_{\rm e}}.\tag{7}$$

Water mass balance

The amount of water in the reservoir at any time is controlled by the water produced by melt, the water lost to the surrounding firn by percolation, and the water withdrawn for use. The water circulated from the water well to the boiler to increase the water temperature will not affect the reservoir water mass balance. The water mass equation is

$$\frac{\Delta m_{\rm W}}{\Delta t} = \frac{\left[h_{\rm S}(T_{\rm W} - T_{\rm f}) - q_{\rm S}\right]A_{\rm S}}{\ell_{\rm e}} - \dot{m}_{\rm O} - \dot{m}_{\ell} \quad (8)$$

where

 $m_{\rm w}$ = mass of water

Figure 6. 1972 development well at Old South Pole Station (see Appendix A).

 $\dot{m}_{\rm O}$ = rate of withdrawal of usable water \dot{m}_{ℓ} = rate of loss of water due to percolation

Water level

A given volume of firn (or ice), after melt, will produce a different volume of water due to the density difference of firn and water. The new mass of water is calculated from eq 8 and the volume occupied by this water, $V_{\rm w}$, can then be evaluated. With the new dimensions $H_{\rm n}$, $D_{\rm n}$, found by eq 5

Figure 7. Paraboloid geometry.

Figure 8. Water well geometry.

and 7, the final values of the height and diameter of the water reservoir are evaluated from the geometrical constraints of eq 1, 2, and 3:

$$H_{\rm f} = \frac{\sqrt{8V_{\rm w}H_{\rm n}/\pi}}{D_{\rm n}} \tag{9}$$

and

$$D_{\rm f} = D_{\rm n} \sqrt{H_{\rm f} / H_{\rm n}} \,. \tag{10}$$

Water, air, and firn temperatures

The overall geometry of a well is shown in Figure 8. It is assumed that the water and air temperature vary only with time and not with position. Such a lumped approach is crude but reasonable for a preliminary engineering analysis. The conservation of mass and energy are used for the following derivations. The water temperature is governed by

$$-h_{a}A_{b}(T_{w} - T_{a}) - h_{s}A_{s}(T_{w} - T_{f}) =$$

$$\frac{d}{dt} \Big[m_{w}c_{pw}(T_{w} - T_{f}) \Big] + \dot{m}_{f}c_{pw}(T_{w} - T_{wb})$$

$$+ \dot{m}_{o}c_{pw}(T_{w} - T_{f}) - \dot{m}_{m}c_{pw}(T_{melt} - T_{f})$$

$$- \dot{m}_{\ell}c_{pw}(T_{melt} - T_{f})$$
(11)

Since the meltwater is at the freezing temperature, the enthalpy fluxes associated with the mass fluxes $m_{\rm m}$ and m_{ℓ} are zero. Using eq 8, the water temperature is then

$$m_{W} \frac{d\theta_{W}}{dt} = \dot{m}_{f}(\theta_{b} - \theta_{W})$$

$$-h_{s}A_{s}\theta_{W} \left(\frac{1}{c_{pw}} + \frac{\theta_{W}}{\ell_{e}} - \frac{q_{s}}{\ell_{e}h_{s}}\right)$$

$$-\frac{h_{a}A_{b}(\theta_{W} - \theta_{a})}{c_{pw}}$$
(12)

where

 $\theta = T - T_f$

 $T_{\rm wb}$ = boiler water temperature into reservoir

 $A_b = \pi D^2/4$, area of water surface exposed to air

 T_a = air temperature above water

 h_a = convective coefficient between water and air.

The temperature of the air above the water is controlled by the energy flow from the water to the air and from the air to the surrounding firn/ice. The equation is

$$\rho_{a}c_{pa}V_{a}\frac{dT_{a}}{dt} = h_{a}A_{b}(T_{W} - T_{a})$$
$$-h_{i}A_{i}(T_{a} - T_{s})$$
(13)

where

 $V_{\rm a} = {
m volume}$ of air above water

 ρ_a , c_{pa} = density and specific heat of air

 h_i = convection coefficient between air and

 T_s = surface temperature of firm in contact with air.

The air density, in units of lbm/ft³, for air temperature °F, is given by the perfect gas equation:

$$\rho_{a} = \frac{39.685}{(T_a + 460)}. (14)$$

The air volume is continually increasing as the reservoir changes its dimensions. The temperature of the surrounding firn can be approximated by assuming that a uniform heat flux is imposed on the firn/air interface. The approximate solution is given by Lunardini (1986):

$$T = T_{\rm O} + \frac{\overline{q} r_{\rm O} (\beta - \sigma) \ln(\beta / \sigma)}{k_{\rm i} (\beta - 1 + \ln \beta)}$$
 (15)

where

 $\beta = \delta/r_0$, distance penetrated by temperature disturbance

 $\sigma = r/r_0$

 r_0 = initial radius of air region (drill hole)

 k_i , α_i = thermal conductivity and diffusivity

 $\overline{q} = [k_i(T_a - T_s)]_{avg} = \text{temporal average}$ value of heat flow from air to ice

 $T_{\rm o}$ = initial firm temperature.

The thermal penetration and the firn/air interface temperature are

$$\tau = \alpha_{i} \frac{t}{r_{o}^{2}} = \frac{\frac{5}{36} \beta^{3} - \frac{1}{4} \beta + \frac{1}{9} + \left(\frac{1}{3} - \frac{\beta}{2}\right) \ln \beta}{\beta - 1 + \ln \beta}$$
(16)

and

$$T_{\rm s}(t) = T_{\rm o} + \frac{\overline{q} r_{\rm o}(\beta - 1) \ln \beta}{k_{\rm i}(\beta - 1 + \ln \beta)}.$$
 (17)

The overall radius of the air in contact with firn/ice increases with time, but this has been ignored. A correction could be made, altering r_0 after each time step, with

$$r_{\rm O} = \frac{A_{\rm i}}{2\pi (HWB - H)} \tag{18}$$

where *HWB* is the depth to the bottom of the reservoir.

The firn thermal properties were assumed to be those of ice: $k_i = 7.27 \text{ W/m}^2 \,^{\circ}\text{C}$ (1.28 Btu/h-ft- $^{\circ}\text{F}$), $\alpha_i = 41.4 \text{ cm}^2$ (0.0446 ft²)/h.

Heat loss from water to firn/ice

The energy delivered by convection to the ice is used to melt ice and to warm ice from the initial temperature T_0 . The heat loss to warm the ice is quite difficult to calculate, but a simple quasisteady approximation can be found (Lunardini 1991). Consider a cylinder of water of height H that melts the surrounding firn. The quasi-steady temperature in the ice (firn) is

$$T_{\text{ice}} = T_{\text{o}} + (T_{\text{f}} - T_{\text{o}}) \frac{\ln r / \delta}{\ln R / \delta}$$
 (19)

where R is the instantaneous radius of the water cylinder and δ is the radius of the temperature disturbance. At any time the energy added to the ice to raise the firn temperature from T_0 to T_{ice} is

$$E_{\rm T} = \int_{R}^{\delta} 2\pi c_{\rm pi} \rho_{\rm i} Hr(T_{\rm ice} - T_{\rm o}) dr$$
 (20)

or

$$E_{\rm T} = 2\pi\rho_{\rm i}c_{\rm pi}\frac{H(T_{\rm f} - T_{\rm o})}{\ln\Omega} \frac{R^2}{2}p \tag{21}$$

$$p = \frac{\Omega^2 - 1}{2 \ln \Omega} - 1. \tag{22}$$

The ratio of the temperature disturbance to the thaw radius $\Omega = \delta/R$ can be approximated by a constant value of 4.5 (Lunardini 1991). The melt relation is

$$h_{\rm S}(T_{\rm W} - T_{\rm f})A = \rho_{\rm i} \ell \frac{dV}{dt} + A\rho_{\rm i} c_{\rm pi} p (T_{\rm f} - T_{\rm o}) \frac{dR}{dt}$$

$$(23)$$

$$h_{\rm s}(T_{\rm w}-T_{\rm f})=\rho_{\rm i}\ell\dot{R}+\rho_{\rm i}c_{\rm pi}(T_{\rm f}-T_{\rm o})\dot{R}p\,.$$
 (24)

This equation can be written as

$$h_{\rm S}(T_{\rm W} - T_{\rm f}) = \rho_{\rm i} \ell_{\rm e} \frac{dR}{dt} \tag{25}$$

with the effective latent heat given by

$$\ell_{\rm e} = \ell + c_{\rm pi} p (T_{\rm f} - T_{\rm o}).$$
 (26)

Thus, the equivalent latent heat to use in eq 6

incorporates the sensible heat loss to the surrounding firm. When ℓ_e is used, then q_s is zero since it is incorporated into the effective latent heat. Such an analysis is approximate and does not adequately handle the long-term equilibrium relation for the reservoir, but this will have little effect on the well design. The analysis also gives the conduction heat loss to the firm:

$$q_{\rm s} = \rho_{\rm i} c_{\rm pi} (T_{\rm f} - T_{\rm o}) p \frac{dR}{dt} = \frac{(T_{\rm f} - T_{\rm o})}{R \ln \Omega}.$$
 (27)

Firn density

The variation of firn density with depth is based upon the measurements at the South Pole (Langway 1975). Curves were fitted as follows for density in gram/cc and z in meters:

$$\rho_{\rm i} = 0.349 + 7.56 \times 10^{-3}z - 3.08 \times 10^{-5} z^2$$

$$0 < z < 97.5 \text{ m}$$
(28a)

$$\rho_{\rm i} = 2.102 \times 10^{-3} \ z + 0.5885$$

$$97.5 < z < 158.5 \ {\rm m} \eqno(28b)$$

$$\rho_i = 0.922$$
 $z > 158.5 \text{ m}$
(28c)

For density in lbm/ft³ and vertical depth in feet:

$$\rho_{\rm i} = 21.79 + 0.144 z - 0.17894 \times 10^{-4} z^2$$

$$0 < z < 320 \text{ ft}$$
(29a)

$$\rho_{i} = 0.04 z + 36.74$$

$$320 < z < 520 \text{ ft}$$
(29b)

$$\rho_i = 57.54$$
 $z > 520 \text{ ft}$
(29c)

The close-off density starts at about $0.72\,\mathrm{g/cm^3}$ (45 lbm/ft³) and is complete at $0.83\,\mathrm{g/cm^3}$ (Langway 1975). The density of $0.72\,\mathrm{g/cm^3}$ occurs at a depth of about $68\,\mathrm{m}$ (223 ft) and was used for all calculations. Below the shut-off density depth it is assumed that water will not percolate into the surrounding firn or ice. The ice reaches a maximum density of $0.922\,\mathrm{g/cm^3}$ (57.54 lbm/ft³) at a depth of 158.5 m (520 ft).

Firn percolation

It is well known that water will percolate into firn as long as the firn density is less than a shut-off value, noted as ρ_s . The rate of water percolation is assumed to be proportional to the difference between the firn density and the shut-off density, and the area of water in contact with the firn:

$$\dot{m}_{\ell} = A_{\rm S}(\rho_{\rm S} - \rho_{\rm i})A_{\rm L} \tag{30}$$

where A_s is the area of the water volume in contact with the firn and ρ_i is the firn density. The parameter A_L depends upon the permeability of the firn and was deduced from the data available from the South Pole water well recorded in Appendix B.

Ice melt coefficients

Convective heat transfer coefficients between melting ice and water have been measured under certain conditions. Lunardini et al. (1986) found that the minimum coefficient for water flowing over a horizontal ice sheet was $h = 136.2 \,\mathrm{W/m^2 \, ^{\circ} C}$ (24 Btu/h-ft²-°F). This occurred when the mean water velocity was close to zero. Vanier (1967) and Tkachev (1953) measured coefficients for laminar flow near vertical ice surfaces, with bulk water temperatures from 0.5 to 4°C (33 to 39.2°F) and found h values from 125 to 175 W/m 2 °C (22 to 31 Btu/h-ft²-°F). Thus, it can be expected that minimum melt coefficients will be greater than about 136W/m²°C (24Btu/h-ft²-°F). Melt coefficients of 136 to 184.5 W/m² °C (24 to 32.5 Btu/h-ft²-°F) were used for most numerical calculations.

COMPUTER PROGRAM

The equations and concepts described in this section were incorporated into a numerical model to predict the transient behavior of a Rodriguez well. An explicit procedure was used for the time steps, and a 30-s time increment found to be sufficiently accurate. The complete program is listed in Appendix A.

Modelling results

Appendix B includes tables of the performance data actually recorded in 1972–73 at the U.S. South Pole Station. These data are plotted as Figure 6. Using the data of Williams (1974) (Table B2) and taking account of the firn density, volume of firn melted, and the water removed, it was possible to estimate the water lost due to percolation or refreeze during 1704 h of operation, at depths from 45 to 74 m (150–242 ft). The volume of lost water was 188,267 L (49,735 gal).

The numerical model was tested and its parameters adjusted to predict the actual data as nearly as possible (see Table 1). The actual water withdrawal was quite complex, and the model assumed average daily withdrawal rates over various time periods. It was then possible to estimate the percolation coefficient by matching the model output to the transient South Pole data (see numerical output for 1711 h of operation listed in Appendix B). This gave a value of $A_{\rm L}=0.3$ for a predicted percolation loss of 173,600 L (45,859 gal).

The transient behavior of the development well was predicted by withdrawing water in a temporal fashion that reasonably closely matched the actual schedule. The results are compared in Tables 1 and 2. The agreement between the model and the data was excellent but, of course, this was enhanced by adjusting the model parameters, especially leakage coefficient $A_{\rm L}$. The model is not particularly sensitive to the values of the convection coefficients. Since the model was able to predict the actual performance quite well, there is

Table 1. Data and predictions of the transient behavior of South Pole Station water well.

	Hours from start of water		diameter t)		oir depth ft)
Date	withdrawal	Data	Model	Data	Model
26 Dec 1972	264	16.5	18.5	180.0	194.1
08 Jan 1973	576	26.0	24.0	202.8	210.0
20 Jan 1973	864	29.5	28.2	228.3	220.5
28 Jan 1973	1056	36.0	30.8	232.0	226.1
06 Feb 1973	1272	33.3	33.4	235.0	231.3
27 Feb 1973	1704	39.0	38.1	241.5	239.8

Model parameters: $h_{\rm S}$ = 184 W/m² °C (32.5 Btu/h-ft²-°F), TWB = 39.4°C (103°F), $A_{\rm L}$ = 0.3.

See Appendix B for complete numerical results.

Table 2. Performance of South Pole Station water well after 1704 hours.

	South Pole Station water well data1	Numerical model ²
Total energy used × 10 ⁹ Btu	0.73	0.716
Useful water withdrawal, gal	37,836	37,813
Water leakage, gal	49,735	45,859
Final water volume, gal	106,533	106,533
Depth to water bottom, ft	241.5	239.9
Water diameter, ft	39.0	38.1
Water depth, ft	23.9	25.0
Avg. energy input, Btu/hr	428,404	418,374
lbm water/lbm fuel	32.2	32.9
Run time, hr	1704	1712

¹From Williams (1974).

some confidence in using it for the design of the water well at the new South Pole Station.

Thermal design of South Pole Station new water well

The thermal performance of a Rodriguez water well depends strongly upon the volume and timing of the potable water removal. Hence a given installation can vary markedly with regard to water temperature and reservoir depth even if the energy input does not change significantly. The initial specifications for the new water well are given in Appendix C. They were modified as the analysis developed, but the basic requirements remain as follows:

- a) Drill initial well hole to about 45-m (150-ft) depth or until water starts to pool.
- b) Form an initial melt reservoir of approximately 56,781 L (15,000 gal) with no water withdrawal.
- c) Withdraw 2270 L (600 gal)/day of water during the winter (Feb–Sept) and 7570 L (2000 gal)/day during the summer (Oct–Jan).
- d) Maintain well for at least 5 years and preferably 10 years with a reservoir bottom depth not to exceed 152.5 m (500 ft).

The base case was finally chosen as follows:

- a) Start water withdrawal when reservoir reaches 45,525 L (12,000 gal).
- b) Winter withdrawal of water is 2270 L (600 gal)/day; summer withdrawal is 7570 L (2000 gal)/day.
- c) Boiler water temperature and flow rates set at 39.4°C (103°F) and 0.63 L/s (10 gal/min).
 - Constant energy input to water of 58,620–234,480 W (200,000–800,000 Btu/h).

Table 3 shows some of the results for base case A5 for a 10-year period. The complete computer outputs for cases A2 and A5 are in Appendix C. The model predicts that the reservoir depth will be 144 m (473 ft) after 10 years, which is acceptable. No attempt was made to optimize the performance since the energy input was to be obtained from waste heat. The average energy input is 97,309 W (332,000 Btu/h), which is well within the expected available waste heat flux. The effect of various parameters was examined to determine their sensitivity. Varying the convective coefficient from 142–284 W/m² °C (25–50 Btu/h-ft²-°F) caused the final reservoir depth to change from 145.4 to 142.2 m (477-466.5 ft). A coefficient of $184.5 \text{ W/m}^2 \,^{\circ}\text{C} \, (32.5 \, \text{Btu/h-ft}^2-\,^{\circ}\text{F}) \text{ was used for }$ most predictions. This is well within the range to be expected for melting ice, as already noted. Decreasing the program time increment from 30 to 15 seconds changed the final depth by 51.8 cm (1.7 ft) and had little effect on other quantities, hence the runs were made with a 30-s time increment.

Table 4 shows the results for the base case with the water withdrawal increased by 50% (case A2) and the average heat input increased to $142,144\,\mathrm{W}$ (485,000 Btu/h) or 146% of the base case. This is a high heat input but within the range of possible waste heat values. The reservoir drops to $149\,\mathrm{m}$ (489 ft) after 10 years, which is still good performance.

The results just discussed were all obtained for a fixed outlet boiler water temperature and flow rate. This was in accordance with the initial requirements and assumed adequate energy input is available. However, it was recognized that the available energy might be limited, and in a second scenario the heat input rate was held at fixed values and the boiler water outlet temperature was allowed to fluctuate. It was felt that during the first year of formation and operation it might be necessary to rely on fuel oil with access to a minimum of waste heat. This scenario is detailed in

²See Appendix B for complete numerical results.

Table 3. South Pole water well, base case A5. Boiler water temperature = $39.4 \, ^{\circ}\text{C}$ (103°F); boiler flow rate = $2283 \, \text{kg}$ (5033 lbm)/h. Convective coefficient = $184.5 \, \text{W/m}^2 \, ^{\circ}\text{C}$ (32.5 Btu/h-ft²-°F); water percolation parameter $A_L = 0.3$.

Year	Time (hr)	TW (F)	MV (gal)	D (ft)	HW (ft)	HWB (ft)	Water top (ft)	Water use (gal/ day)	Fuel (gal/ season)
Startu		103.0	527	4.2	10.0	167.0	157.0	0	
	235.9	53.5	12,000	17.9	12.8	192.3	179.5	0	507
1	240.0	50.0	12,262	18.0	12.8	192.5	179.7	600	
	6,024.0	33.9	267,300	51.4	34.4	271.9	237.5		13,350
	6,120.0	33.8	266,800	51.4	34.3	272.4	238.1	2000	
	9,000.0	34.3	205,800	49.5	28.6	286.5	257.9		6,712
2	9,144.0	34.3	210,600	49.8	28.8	287.3	258.5	600	
	14,784.0	33.5	417,600	61.3	38.0	309.8	271.8		14,013
	14,856.0	33.4	416,800	61.2	37.9	310.0	272.1	2000	
	17,760.0	33.4	322,300	58.0	32.6	318.4	285.8		6,769
3	17,880.0	33.5	324,800	58.9	32.7	318.8	286.1	600	•
	23,544.0	33.2	483,700	65.4	38.6	334.6	296.0		14,062
	23,592.0	33.1	483,300	65.4	38.6	334.7	296.1	2000	,
	26,520.0	33.5	368,300	61.5	33.3	341.2	307.9		6,778
4	26,616.0	33.6	369,300	61.5	33.3	341.5	308.2	600	
-	32,304.0	33.1	502,000	67.1	38.0	354.9	316.9	000	14,081
	32,328.0	33.1	502,500	67.1	38.0	354.9	316.9	2000	14,001
	35,280.0	33.4	376,100	62.6	32.7	360.7	328.0	2000	6,788
	,		J. 0,200	02.0	02	000.7	020.0		0,700
5	35,352.0	33.5	376,300	62.6	32.7	360.9	328.2	600	
	41,064.0	33.0	494,900	67.5	37.0	373.4	336.4		14,093
	41,232.0	32.9	488,600	67.3	36.8	373.7	336.9	2000	
	44,040.0	33.4	363,700	62.6	31.6	379.0	347.4		6,790
6	44,088.0	33.5	363,200	62.6	31.6	379.1	347.5	600	
	49,824.0	33.1	475,500	67.2	35.9	391.4	355.5		14,091
	49,968.0	32.9	470,100	67.0	35.9	391.6	355.7	2000	•
	52,800.0	33.5	342,100	62.0	30.4	396.9	366.5		6,787
7	52,824.0	33.5	341,100	61.9	30.3	397.0	366.7	600	
	58,584.0	33.1	452,000	66.5	34.8	409.5	374.7	000	14,081
	58,704.0	33.0	447,700	66.4	34.6	409.7	375.1	2000	14,001
	61,560.0	33.6	318,500	60.9	29.2	415.2	386.0	_000	6,781
8	61,728.0	33.7	320,800	61.0	29.3	415.6	386.3	600	
9	67,344.0	33.2	429,400	65.7	34.0	413.6	394.0	600	14,068
	67,440.0	33.0	426,300	65.6	33.8	428.3	394.0 394.5	2000	14,000
	70,320.0	33.4	297,200	59.9	28.3	100.0		2000	6 776
	70,020.0	00.4	277,200	37.7	20.3	433.9	405.6		6,776
9	70,464.0	33.5	299,200	59.9	28.4	434.3	405.9	600	
	76,104.0	33.2	410,200	64.8	33.3	447.3	414.0		14,056
	76,176.0	33.1	408,400	64.7	33.3	447.4	414.1	2000	
	79,080.0	33.4	279,700	58.8	27.6	453.3	425.7		6775
10	79,200.0	33.5	281,200	58.9	27.7	4 53.7	426.0	600	
	84,864.0	33.3	395,600	64.0	32.9	467.0	434.1		14,057
	84,912.0	33.2	394,900	64.0	32.8	467.0	434.2	2000	/
	87,840.0	33.5	266,500	57.9	27.0	473.2	446.2		6775

Total water withdrawn = 3,924,607 gallons Total fuel consumed = 208,196 gallons

Table 4. South Pole water well, potable water withdrawal 150%; base case A2. Boiler water temperature = 39.4 °C (103°F); boiler flow rate = 3425 kg (7550 lbm)/h.

Year	Time (hr)	TW (F)	MV (gal)	D (ft)	HW (ft)	HWB (ft)	Water top (ft)	Water use (gal/ day)	Fuel (gal/ season)
1	240	53.3	12,300	18.0	12.8	192.6	179.8	900	
	6,024	34.2	423,100	59.6	40.5	283.0	242.5		19,500
	6,120	34.0	422,700	59.7	40.6	283.9	243.3	3,000	
	9,000	34.5	330,200	57.6	33.9	299.3	265.4		9,533
2	9,144	34.7	337,700	58.0	34.2	300.0	265.8	900	
	14,784	33.4	680,900	71.7	45.2	326.0	280.8		20,660
	14,856	33.3	680,000	71.1	45.1	326.2	281.1	3,000	
	1 7,7 60	33.5	541,300	68.4	39.4	335.2	295.8		9,645
3	17,880	33.7	545,300	68.6	39.5	335.7	296.2	900	
	23,544	33.1	821,700	77.5	46.7	353.7	307.0		20,817
	23,592	33.0	821,500	77.5	46.6	353.8	307.2	3,000	
	26,520	33.2	652,500	73.6	41.0	360.6	319.6		9,683
4	26,616	33.3	654,300	73.6	41.1	360.9	319.8	900	
_	32,304	32.9	887,000	80.4	46.7	375.7	329.0		20,879
	32,328	32.9	887,900	80.4	46.8	375.7	328.9	3,000	
	35,280	33.1	698,700	76.1 %	41.1	381.5	340.4		9,701
5	35,352	33.2	699,000	76.1	41.2	381.7	340.5	900	
	41,064	32.9	903,700	81.8	46.0	394.9	348.9		20,906
	41,232	32.7	894,400	81.6	45.8	395.3	349.5	3,000	
	44,040	33.0	703,400	77.0	40.4	4002	359.8		9,708
6	44,088	33.1	702,600	77.0	40.4	400.3	359.9	900	
•	49,824	32.8	890,500	82.1	45.0	412.9	367.9		20,915
	49,968	32.7	882,500	82.0	44.8	413.2	368.4	3,000	
	52,800	33.0	683,400	77.0	39.3	418.0	378.7		9,710
7	52,824	33.0	681,800	77.0	39.2	418.0	378.8	900	
•	58,584	32.8	860,800	81.8	43.8	430.4	386.6		20,913
	58,704	32.7	854,400	81.7	43.6	430.5	386.9	3,000	,
	61,560	33.0	650,400	76.4	38.0	435.4	397.4	ŕ	9,708
8	61,728	33.2	653,700	76.5	38.1	435.8	397.7	900	
J	67,344	32.9	824,100	81.2	42.6	447.8	405.2		20,905
	67,440	32.8	819,400	81.1	42.5	448.0	405.5	3,000	
	70,320	33.1	612,900	75.4	36.7	452.9	416.2	-,	9,704
9	70,464	33.3	615,300	75.5	36.8	453.3	416.5	900	
-	76,104	32.9	786,500	80.3	41.5	465.6	424.1	-	20,892
	76,176	32.8	783,760	80.2	41.5	465.8	424.3	3,000	,
	79,080	33.2	576,100	74.3	35.6	470.8	435.2	., -	9,699
10	79,200	33.3	577,800	74.3	35.6	471.2	435.6	900	
	84,864	32.9	752,000	79.3	40.7	483.8	443.1	-	20,877
	84,912	32.9	751,000	79.3	40.7	483.9	443.2	3,000	•
	86,592	33.0	627,800	75.8	37.2	486.7	449.5	•	9,693
	87,840	33.3	543,180	73.1	34.7	488.3	454.6		•

 $Total\ water\ with drawn = 5,886,865\ gallons.$ $Total\ fuel\ consumed = 304,591\ gallons.$

Table 5. Constant heat input cases. Model parameters as in Appendix C. Except as noted, starting water depth is 51 m (167 ft).

				ĺ										in the same		
Case P	Q ¹ (10 ³ Btu/ h)	m (gal/min)	Time (h)	Water out (gal/day)	Q ¹ (10 ³ Btu/ h)	3 in to (gal/min)	Time (h)	Water out (gal/day)	Q ¹ (10 ³ Btu/ h)	m, (gal/min)	Time (h)	Water out (gal/day)	Q^{1} $(10^{3}$ $Btu/$ $h)$	m (gal/min)	Time (h) (Water out (gal/day)
Base case, year 1: 9 40	1: 400	10	0–168	0	400	15	168-384 1000	1000	400	15	384–1488	1000	200	15 1	1488–7272	009
10	Same	as 9 but us	ses 300,00	Same as 9 but uses 300,000 Btu/h in place of 200,000 after first summer.	place of 2	200,000 afte	r first sum	mer.								
	Same	as 9 but 20)0,000 Btu	Same as 9 but 200,000 Btu/h for first winter and 300,000 afterwards.	winter a	nd 300,000	afterwards									
12 4(400	10	0-168	0	800	15	168–384	0	800	15	384-1488	009	200,000	200,000 subsequent years	ıt years	
13 4(400	10	0-168	0	400	15	168–384	1000	400	15	384–1488	1000	200,000 300,000	200,000 W after year 1 300,000 S after year 1	ar 1 r 1	
15 40	400	10	0-168	0	400	15	168-384	1000	400	15	384-1488	1000	250,000 300,000	250,000 W after year 1 300,000 S after year 1	ar 1 r 1	

Table 6. Model predictions for Table 5 cases.

	Reservoir	Start water	Ice depth	Fin	al reserv	voir	Reservoir volume	Water delivered	Total fuel	
Case	diam D (ft)	height HW (ft)	HWB (ft)	D	HW	HWB	(gal)	(gal)	(gal)	Comments
9	4.24	10	167	42.3	25.2	269.2	132,140	199,010	12,113	First year okay. Reservoir collapses at 421 days
10	4.24	10	167	45.2	20.5	516.3	122,637	3.59×10 ⁶	164,608	System runs for 10 years.
11	4.24	10	167	43.9	19.8	555.1	111,652	3.59×10^6	160,592	10 years OK.
12	4.24	10	167	42.6	22.8	300.7	121,479 @	16,032 h		Reservoir dry at $t = 823$ days.
13	4.24	10	167	25.6 38.83	11.3 21.8	815.5 512.0	21,728 96,457	3.59×10^6	128,467	10 yrs OK, but very deep. After 5 years.
	Need	more that	ı 30,000 dı	iring sum	mer					
15				45.5	25.3	664.1		3.73×10 ⁶	154,569	Depth = 493.5 after 6 years.

Appendix D along with complete computer results for cases 9, 10, 12 of Table 5.

Table 5 describes some cases examined, and Tables 6 and 7 denote the intermediate and final results for the reservoir thermal performance. The water well operating under scenario 1 only needed to perform adequately for the first year with a low heat input rate. After the first year it was expected that more waste heat would be available. Case 9, using the minimum energy available, illustrates some important performance characteristics of water wells. The well meets the one-year goal, but the combination of water withdrawal and energy input during the formation stage leads to high reservoir water temperatures and rapid sink rates. This is generally true if the water withdrawal is too rapid. Consequently, the reservoir drops more rapidly than was the case for the Appendix C predictions. For case 9, once a water withdrawal rate of 7570 L (2000 gal)/day was started in the second year, the reservoir sank rapidly and collapsed after 421 days of operation.

For case 10, the energy input was increased to 87,930 W (300,000 Btu/h), and the water well operated for 10 years. The final depth of 157.25 m (516 ft) exceeded the 144-m (473-ft) depth of the earlier case A5, but was still acceptable. Note that extreme depths can be attained if the water withdrawal rate is not matched to a proper energy input rate.

Case 10 is probably a reasonable preliminary design. During the first 62 days, 11,385 L (3008 gal) of fuel oil are consumed (14,233 L [3760 gal] at a boiler efficiency of 80%). After this time the energy is supplied by 87,930 W (300,000 Btu/h) of waste heat from the generators. At the end of 303 days, the reservoir is at 84.4 m (277 ft) and contains 1,018,276 L (269,000 gal) of water, having delivered 757,082 L (200,000 gal) of potable water.

In conclusion, the numerical model, although fairly crude, adequately predicts the performance of an actual antarctic water well and indicates that a Rodriguez water well at South Pole Station can operate for 10 years at a reasonable fuel consumption.

Table 7. South Pole water well predicted transient performance.

Comments	Reservoir collapse	Energy in = 300,000, t > 1488 h	Energy in = 300,000 t > 7272 h	Reservoir collapse	Energy in alternates 200 W, 300 S Note deep reservoir depth	Good case. Note final depth compared with case 13
Total water out (gal)		3.59×10 ⁶	359×106		3.59×106	3.73×106
Water out (gal)	8,000 46,010 145,006	0 8,000 46,000 145,006	0 8,000 46,000 145,006	0 27,000 144,608	8,000 46,010 145,006	0 8,000 46,010 145,006
Fuel (gal)	488 584 3,008 8,033	489 584 3,008 12,049 148,483	489 584 3,008 8,033 148,483	1,234 6,137 8,033	488 584 3,008 8,033 116,357	489 584 3,008 8,033 142,459
HWB (ft)	190.2 202.7 237.5 269.2	190.2 202.7 237.5 276.7 516.3	190.2 202.7 237.5 269.2 555.1	206.6 242.2 259.0	190.2 202.7 237.5 269.2 815.5	190.2 202.7 237.5 269.2 664.1
HW (ft)	13.4 13.3 20.1 25.2	13.4 13.3 20.1 34.0 20.5	13.4 13.3 20.1 25.2 19.8	19.5 32.0 30.5	13.4 13.3 20.1 25.2 11.3	13.4 13.3 20.1 25.2 25.3
Water reservoir Iume Diameter al) (ft)	17.7 21.0 32.6 42.3	17.7 21.0 32.6 52.0 45.2	17.7 21.0 32.6 42.3 43.9	27.2 46.2 48.9	17.7 21.0 32.6 42.3 25.6	17.7 21.0 32.6 42.3 45.5
Water Volume (gal)	12,332 17,244 62,489 132,140 1,442	12,332 17,244 62,489 268,692 122,637	12,332 17,244 62,489 132,140 111,652	42,081 200,208 214,266 5,460	12,332 17,244 62,489 132,140 21,728	12,332 17,244 62,489 132,140 153,099
Temp. $({}^{\circ}F)$	54.5 50.8 39.5 33.6 88.5	54.5 50.8 32.5 33.5 34.7	54.5 50.8 32.5 33.6 34.9	52.3 38.8 33.0 55.9	54.5 50.8 32.5 33.6 44.4	54.5 50.8 32.5 33.6 33.6
Rate water out (gal/day)	0 1000 1000 600 2000	0 1000 1000 600 600/2000	0 1000 1000 600 600/2000	0 0 600 600 600/2000	$0 \\ 1000 \\ 1000 \\ 600 \\ 600/2000$	0 1000 1000 600 600/2000
Duration (h)	0-168 168-384 384-1488 1488-7272 7272-10104	0–168 168–384 384–1488 1488–7272 7272–80328	0-168 168-384 384-1488 1488-7272 7272-80328	0–168 168–384 384–1488 1488–7272 7272–18504	0-168 168-384 384-1488 1488-7272 7272-80328	0-168 168-384 384-1488 1488-7272 7272-86112
Energy flow (gal/min)	10.0 15.0 15.0 15.0 15.0	10.0 15.0 15.0 15.0	10.0 15.0 15.0 15.0	10.0 15.0 15.0 15.0	10.0 15.0 15.0 15.0	10.0 15.0 15.0 15.0
1000 Btu/h	400.0 400.0 400.0 200.0 200.0	400.0 400.0 400.0 300.0 300.0	400.0 400.0 400.0 200.0 300.0	400.0 800.0 800.0 200.0	400.0 400.0 400.0 200.0 200W/300S	400.0 400.0 200.0 250W/300S
Time phase	1.0 2.0 3.0 4.0 5.0	1.0 2.0 3.0 4.0 5.0	1.0 2.0 3.0 4.0 5.0	1.0 2.0 3.0 4.0 5.0	1.0 2.0 3.0 4.0 5.0	1.0 2.0 3.0 4.0 5.0
Case	6	10	11	12	13	15

REFERENCES

Awano, S. and S. Maita (1963) Cold and hot water making equipment utilizing the exhaust gas energy of diesel engines coupled with electric generators. In *Symposium on Antarctic Logistics, Boulder, Colorado, 1962*. National Academy of Sciences, National Research Council, p. 254–280.

Clark, E.F. (1965) Camp Century—Evolution of concept and history of design, construction and performance. USACRREL Technical Report 174. Coleridge, S.T. (1798) The Rime of the Ancient Mariner

Hoffmann, C.R. and C.E. Sherwood (1966) Polar camp improvements—Water system using a hotwater snow melter. U.S. Naval Civil Engineering Laboratory, Technical Report 441.

Langway, C.C. (1975) Antarctic ice core studies. *Antarctic Journal*, July/Aug, pp. 152–153.

Lunardini, V.J. (1991) *Heat Transfer with Freezing and Thawing*. Amsterdam, New York: Elsevier Scientific Publishing Co., p. 247.

Lunardini, V.J. (1986) Condensing steam tunnel heat sinks. USA Cold Regions Research and Engineering Laboratory, Special Report 86-24.

Lunardini, V.J., J.R. Zisson and Y.-C. Yen (1986) Experimental determination of heat transfer coefficients in water flow over a horizontal ice sheet. USA Cold Regions Research and Engineering Laboratory, CRREL Report 86-3.

Mellor, M. (1969) Utilities on permanent snow-fields. USA Cold Regions Research and Engineering Laboratory, Monograph III-A2d.

Russell, F.L. (1965) Water production in a polarice cap by utilization of waste engine heat. USA Cold Regions Research and Engineering Laboratory, Technical Report 168.

Smith, F.A. (1963) An economical snow melting and central heat system. In *Symposium on Antarctic Logistics, Boulder, Colorado, 1962*. National Academy of Sciences, National Research Council, p.

210-214.

Schmitt, R.P. and R. Rodriguez (1960) Glacier water supply system. *Military Engineer*, **52**(349).

Schmitt, R.P. and R. Rodriguez (1963) Glacier water supply and sewage disposal systems. In *Symposium on Antarctic Logistics, Boulder, Colorado,* 1962. National Academy of Sciences, National Research Council, p. 329–338.

Schroeder, J.E. (1951) Performance tests of an Aeroil portable snow melter at the Arctic Test Station, Point Barrow, Alaska. Port Hueneme, California: U.S. Naval Civil Engineering Research and Evaluation Laboratory.

Tien, C. (1960) Analysis of a sub-ice heat sink for cooling power plants. U.S. Army Snow, Ice and Permafrost Research Establishment (SIPRE) Research Report 60. (Available from USA Cold Regions Research and Engineering Laboratory.)

Tinklepaugh, K.N. (1953) Mark III Snow Melter. Port Hueneme, California: U.S. Naval Civil Engineering Research and Evlauation Laboratory.

Tkachev, A.G. (1953) Experimental investigation of heat exchange in melting. Atomic Energy Commission Translation 3405 (translated from a publication of the State Power Press, Moscow).

U.S. Army Corps of Engineers, Eastern Ocean District (1954) Operation and Maintenance Manual for USAF. AC&W Station N-33, New York.

USAPRDC (1959) Design and Construction of an Undersnow Camp on the Greenland Ice Cap. Vol. 3. Greenland Ice Cap Research Progam. Vicksburg, Mississippi: U.S. Army Corps of Engineers.

U.S. Navy (1955) *Arctic Engineering*. Washington, D.C.: Bureau of Yards and Docks,

Vanier, C.R. (1967) Free convection melting of ice. Masters Thesis, Syracuse University.

Williams, J.S. (1974) Experimental development of potable water supply for new South Pole Station. Technical Note N-1328. Port Hueneme, California: Civil Engineering Laboratory, Naval Construction Battalion Center.

APPENDIX A: COMPUTER PROGRAM FOR THERMAL DESIGN OF RODRIGUEZ WATER WELL

```
C
      $DECLARE
C
      $DEBUG
               ***** DEM1
                                    *****
Ccc
      10 REM
      REAL AB, AI, AIP, AL, ALPHAI, AS, ASP, B, BO, BP, BZ
CCC
      REAL CPA, CPI, CPW, D, DELH, DEPTH, DF, DP, DT
CCC
      REAL E, EF, EFI, EI, EIT, EK, EKT, EP, ESR, FB, FBP, FI, GAM
CCC
      REAL H, HA, HB, HBN, HF, HI, HP, HS, HSO, HSN, HW, HWB, HWBP, HWP
CCC
      REAL KI, LE, MF, MF1, MF2, MFA, MFS, MFW, MGO, MGW, MU, MUD, MUG
CCC
      MUG1, MUG2, MUGA, MUGS, MUGW
CCC
CCC
      REAL MUL, MW, MWG, MWGA, MWO, MWP, PI, PL, PLG, PLP, PLT, PM, PMG, PMP, PMT
      REAL PRW, PRWT, Q, QB, QBC, QBC1, QBC2, QBC3, QBC4, QBC5
CCC
CCC
      QI,QIT,QITI,QS,QT,QTT
      REAL RA, RHOA, RHOI, RHOIM, RHOIS, RHOW, RO
CCC
      REAL TA, TAP, TAU, TAUP, TF, TI, TICE, TIS, TP, TPI, TPIW, TPW, TS, TW, TWB
CCC
      REAL TWP, TZ1, TZ2, TZ3, TZ3E, TZ4, TZ5, TZ6, VA, VAP, VW, VWP, ZP, ZPP, ZPS, ZS
CCC
      IMPLICIT DOUBLE PRECISION (A-H,K-M,O-Z)
      character PRNTR*12
      integer i,j,n
C
      PRNTR = 'OUTPUT.DAT'
      OPEN(9, FILE=PRNTR, STATUS='NEW')
CCC
      FORMATION DELT = TZ3
      TZ3 = 168.0
      MGO = 12500.0
CCC
      PHASE 1 1ST SUMMER DELT = TZ4+24
      TZ4 = 192.0
      MF1 = 7549.5
      OBC1 = 400000.0
      MUG1 = 1000.0
      TZ3E = 88000.0
CCC
      PHASE 2 1ST SUMMER DELT = TZ5
      TZ5 = 1104.0
      MF2 = 7549.5
      MUG2 = 1000.0
      QBC2 = 400000.0
CCC
      PHASE 3 1ST WINTER DELT = TZ6
      TZ6 = 5784.0
      QBC3 = 200000.0
CCC
      2ND & SUB SUMMERS
      OBC4 = 300000.0
CCC
      2ND & SUB WINTERS
      QBC5 = 250000.0
      AL = 0.30
      ALPHAI = .0446
      BO = 1.1
      CPA = .24
      CPI = .5
      CPW = 1.0
      DEPTH = 157.0
      DT = 8.333001E-03
      EIT = 0.0
      E = 0.0
      FI = 0.90
      GAM=1.0
      H = 10.0
      HA = 1.0
      HB = 60.0
```

```
HI = 1.0
       HS = 32.5
       HBN = 24.0
      HSN = 32.5
      HSO = 32.5
       J=1
      KI = 1.28
      MF = 5033.0
      MU = 0.0
      MUD = 7549.5
      MWG=0.0
      MFS=7549.5
      MFW=5033.0
      MUGS=2000.0
      MUGW=600.00
      MGW=1106533.0
      N = 1
      OMEGA = 5.399
      PI = 3.141593
      PL = 0.0
      PM = 0.0
      PLT = 0.0
      PMT = 0.0
      PRWT = 0.0
      QBC=400000.0
      QS=0.0
      QT = 0.0
      QTT = 0.0
      QIT = 0.0
      RA = 1.5
      RHOIS = 45.0
      RHOIM = 57.54
      RHOW = 62.6
      RO = RA
CCC
      TIME PARAMETERS
      TAUP=0.0
      TI = 0.0
      TIS = 0.0
      TP = 24.0
      TPI = 24.0
CCC
      TPW = 240.0
      TPIW = 24.0
      TZ1=8760.0
      TZ2=8760.0
CCC
      TEMPERATURES
      TF = 32.0
      TICE = -60.0
      TA = TICE
      TS = TICE
      TWB = 124.0
      TW = TWB
      ZS = (.144 - SQRT((.144) **2 - 4.0 *(RHOIS - 21.79) *.00017894))
     &/(2.0*.00017894)
CCC
```

```
D = 2.82843*RO
      MFA=MF
      MW = PI * RA * RA * H * RHOW
      MM = MW
      HWB=DEPTH+H
      MWGA = MW / (.134 * RHOW)
LE = 144.0 + CPI * (TF - TICE) * OMEGA
      AB = PI * D**2/4.0
      HW = H
      AS = 2.0*PI*D*H/3.0
      VW = PI * D * * 2 * H / 8.0
      AI = 2.0 * PI * RA *DEPTH
CCC
      gam=d/(2.0*h)
      \bar{V}A = P\hat{I} * RA * RA * DEPTH
130
      Write(9,3000)
                            ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION ')
      format(1x,'
3000
      Write(9,3001) TWB
140
                                                               = ', F9.2
      format(1x,' BOILER WATER TEMP DEG F
3001
      Write(9,3002) MF
150
                                                               = ', F9.2)
      format(1x, 'BOILER WATER FLOW RATE 1bm/hr
3002
      Write(9,3003) HS
160
      format(1x,' CONVECTIVE COEFFICIENT BTU/HR-FT2-F
                                                               = ', F9.2
3003
      Write(9,3013) RA
                                                               = ', F9.2)
      format(1x,' INITIAL DRILL RADIUS FT
3013
      Write(9,3014) DEPTH
      format(1x,' DEPTH TO TOP OF WATER AT START FT
                                                               = ', F9.2
3014
      Write(9,3005) D
180
      format(1x,' INITIAL PARABOLIC WATER DIAMETER D
                                                        \mathbf{FT}
                                                               = ',F9.2)
3005
      Write(9,3007) HW
191
      format(1x,' INITIAL PARABOLIC WATER HEIGHT HW FT
                                                               = ',F9.2)
3007
      Write(9,3008) TW
200
      format(1x,' INITIAL WATER TEMP TW DEG F
                                                               = ', F9.2)
3008
      Write(9,3009) TA
201
      format(1x,' INITIAL AIR TEMP TA DEG F
                                                               = ', F9.2)
3009
202
      Write(9,3010) TS
      format(1x,' INITIAL ICE SURFACE TEMP TS DEG F
                                                               = ',F9.2)
3010
      Write(9,3011) TICE
210
                                                               = ', F9.2)
      format(1x,' AMBIENT ICE TEMP DEG F
3011
      Write(9,3012) LE
220
      format(1x,' EFFECTIVE LATENT HEAT BTU/LB
                                                               = ', F9.2)
3012
      Write(9,*) 'TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2,
221
     & AIR VOL VA FT3
      Write(9,*)
222
                                     TA
                                            TS
                                                       MW
      Write(9,*) '
                      TIME
                              TW
252
              HWB
                            AΙ
                                      VA'
          HW
      Write(9,2001) TI, TW, TA, TS, MWGA, D, HW, HWB, AI, VA
253
      format(1x,F8.2, 3F7.2,F9.2,2F6.2,F7.2,2F7.2)
3030
      DO 1070, I=1,112500000
260
      IF (MWG .GT. MGO) GOTO 1220
      IF(TI .GT. TZ3) GOTO 1220
      IF (J .EQ. 1 ) GOTO 280
400
      IF(TI .LT. TAUP) GOTO 430
      MF=MFA
      MUG=0.0
      MU=0.0
      GOTO 280
430
      MF=0.0
      MUG=MUGA
      MU=MUD
```

```
280
       ZP = HWB-H/2.0
       IF(ZP .GT. 520.0) GO TO 289
IF(ZP .GT. 320.0) GO TO 288
      RHOI=21.79 + 0.144*ZP - .00017894*ZP**2
      GO TO 291
288
      RHOI = .04*ZP + 36.74
      GO TO 291
289
      RHOI = RHOIM
      DELH= 16.0*H*(HS*(TW-TF)-QS)*DT/(RHOI*LE*3.0*(2.0*GAM*H+D))
291
      HP = H+DELH
      DP = D+GAM*DELH
      HWBP=HWB+DELH
      ZPS=HWB-ZS
      IF(ZPS .GT. H)GOTO 282
      IF(HWB .GT. ZS)GOTO 281
      ASP=2.0*PI*D*H/3.0
      GO TO 283
281
      ZPP=(ZS+HWB-H)/2.0
      ASP=2.0*PI*D*H*(1.0-(ZPS/H)**1.5)/3.0
      RHOI=21.79 + 0.144*ZPP - .00017894*ZPP**2
      GO TO 283
282
      ASP=0.0
      MUL = AL*ASP*(RHOIS - RHOI)
283
      IF(MF .EQ. 0.0) GOTO 284
      TWB = QBC/(CPW*MF) + TW
284
      TWP=TW+(MF*(TWB-TW)-HS*AS*(TW-TF)*(1.0/CPW+(TW-TF)/LE-QS/(LE*HS))-
     &HA*AB*(TW-TA)/CPW)*DT/MW
      MWP=MW+(((TW-TF)*HS-QS)*AS/LE-MU-MUL)*DT
      MWG = MWP / (.134 * RHOW)
VWP = MWP / RHOW
      HF = SQRT(8.0*VWP*HP/PI)/DP
      DF = DP*SQRT(HF/HP)
      HW = HF
      EP = CPW * (TWB - TWP) * MF * DT
      E = E + EP
      PMP = MU*DT
      PM = PM + PMP
      PLP = MUL*DT
      PL = PL + PLP
      AIP = AI+PI*(DP**2-D**2)/4.0 + PI*DP*(HP-HF)
      VAP = VA + PI*(DP**2*HP-DF**2*HF)/8.0
      H = HF
      D = DF
CCC
      gam=d/(2.0*h)
      TI = DT + TI
      Q = HI * (TA - TS)
      QI = Q * DT * AI
      QT = QT + Q * DT
      QIT = QIT + QI
      QB = QT / TI
      TAU = ALPHAI * TI / (RO ** 2)
      RHOA = 39.685 / (TA + 460.0)
      TAP = TA+(HA*AB*(TW-TA)+HI*AI*(TS-TA))*DT/(RHOA*VA*CPA)
      FB=5.0*BO**3.0/36.0-BO/4.0+1.0/9.0+(1.0/3.0-BO/2.0)*LOG(BO)-
418
     &TAU*(BO-1.0+LOG(BO))
      FBP = 5.0*(BO**2)/12.0 - .25-LOG(BO)/2.0+(1.0/3.0-BO/2.0)/BO-TAU*
     \&(1.0+1.0/B0)
      BP = BO - FB / FBP
      BZ = ABS(BP - BO)
      IF (BZ .lt. .0001) GOTO 425
```

```
BO = BP
      GOTO 418
      B = BP
425
      BO = BP + .1
      TS = TICE+QB*RO*(B-1.0)*LOG(B)/(KI*(B-1.0+LOG(B)))
      IF (J .EQ. 1) GO TO 1031
      IF (TI .gt. TPW) GOTO 1130
      IF (TI .gt. TP) GOTO 1131
1028
      GO TO 560
      IF (TI .gt. TP) GOTO 1128
1031
      IF (TI .gt. 0.0) GOTO 1130
CCC
560
      continue
      HWB = HWBP
      TW = TWP
      TA = TAP
      MW = MWP
      AS = 2.0*PI*D*H/3.0
      AB = PI*D**2/4.0
      AI = AIP
      VA = VAP
      IF (D .GT. 60.0) GOTO 1010
      HS = HSO
      GOTO 1040
1010
      HS = HSN
      HB = HBN
CCC
      IF (TW .LT. 32.0001) GOTO 1075
1040
      IF (TI .GT. TZ2 ) GOTO 1220
1041
      IF (TI .GT. TZ1 ) GOTO 1220
1070
      CONTINUE
      GOTO 1760
1075
      TW = 32.0
      GO TO 1041
      write(9,2001) TI, TWP, TAP, TS, MWG,D,HW,HWBP,AIP,VAP
1128
      TP = TP + TPI
      TPW = TP
      GOTO 560
      write(9,2001) TI, TWP, TAP, TS, MWG,D,HW,HWBP,AIP,VAP
1130
      format(1x, F8.1, 3F7.2, F9.1, 2F6.2, F7.2, 2F9.2)
2001
      TPW = TPW + TPIW
      GOTO 1028
      TP = TP + TPI
1131
      TAUP=TP+MUGA*.134*RHOW/MUD-TPI
      GOTO 560
      Write(9,2001) TI, TWP, TAP, TS, MWG, D, HW, HWBP, AIP, VAP
1220
2000
      format(1x, 6F9.2)
1280
      Write(9,*)
      EI = E - EIT
      ESR = EI/(TI-TIS)
      EIT = E
      PRW = MW-MWO + PM
      PRWT = PRWT+PRW
      PLT = PLT+PL
      PMT = PMT+PM
      EKT = PRWT*19500.0/E
      EK = PRW * 19500.0 / EI
      PMG = PM/(.134*RHOW)
      PM = 0.0
      PLG = PL/(.134*RHOW)
      PL = 0.0
```

```
MWO = MW
       EF = E / 140000.0
       EFI = EI / 140000.0
       QITI = QIT- QTT
       QTT = QIT
1340
       Write(9,3040) E
3040
       format(1x, ' TOTAL ENERGY INPUT BTU
                                                            = ',E15.6)
       Write(9,3041) EI
3041
       format(1x, '
                     SEASONAL ENERGY INPUT BTU
                                                             = ',E15.6)
       Write(9,3051) EFI
3051
       format(1x, '
                      SEASONAL ENERGY INPUT GAL FUEL
                                                             = ',F15.2)
       Write(9,3042) ESR
3042
       format(1x, '
                      SEASONAL ENERGY RATE BTU/HR
                                                             = ',F15.2)
1370
      Write(9,3050) EF
3050
       format(lx, '
                      TOTAL ENERGY INPUT GAL FUEL
                                                             = ',F15.2)
      Write(9,3063) EKT
3063
       format(1x, '
                      AVERAGE LB. WATER PER LB. FUEL
                                                             = ',F15.2)
1400
      Write(9,3060) EK
3060
       format(1x, '
                      SEASONAL LB. WATER PER LB. FUEL
                                                             = ',F15.2)
1401
      Write(9,3070) QIT
3070
      format(1x, '
                      ENERGY FROM AIR TO ICE BTU
                                                             = ',E15.6)
      Write(9,3071) QITI
3071
      format(1x, '
                      SEASONAL ENERGY LOSS, AIR TO ICE BTU = ',E15.6)
      Write(9,3064) PMT/(.134*RHOW)
3064
      format(1x, '
                      TOTAL WATER WITHDRAWN GAL
                                                             = ',F15.2)
      Write(9,3061) PMG
3061
      format(1x, '
                      SEASONAL WATER WITHDRAWN GAL
                                                             = ',F15.2)
      Write(9,3065) PLT/(.134*RHOW)
3065
      format(1x, '
                      TOTAL WATER LOSS GAL
                                                             = ',F15.2)
      Write(9,3062) PLG
3062
      format(1x, '
                      SEASONAL WATER LOSS GAL
                                                             = ',F15.2)
1430 Write(9,*)
      IF (N .eq. 1) GOTO 1490
      IF (N .EQ. 2) GOTO 1204
CCCC
      IF (N .EQ. 2) GOTO 1760
      IF (N .EQ. 3) GOTO 1540
CCC **** END OF YEAR 1 ****
CCC
      IF (N .EQ. 3) GOTO 1760
      IF (N .EQ. 4) GOTO 1520
CCC
      IF (N .EQ. 4) GOTO 1760
      IF (N .EQ. 5) GOTO 1500
      IF (N .EQ. 5) GOTO 1760
CCC
CCC **** END OF YEAR 2 *****
CCC
      IF (N .EQ. 6) GOTO 1760
      IF (N .EQ. 6) GOTO 1520
      IF (N .EQ. 7) GOTO 1760
IF (N .EQ. 7) GOTO 1500
CCC
CCC ***** END OF YEAR 3 *****
      IF (N .EQ. 8) GOTO 1520
      IF (N .EQ. 9) GOTO 1500
CCC **** END OF YEAR 4 ****
```

```
IF (N .EQ. 10) GOTO 1520
      IF (N .EQ. 11) GOTO 1500
CCC **** END OF YEAR 5 ****
      IF (N .EQ. 12) GOTO 1760
CCC
      IF (N .EQ. 12) GOTO 1520
      IF (N .EQ. 13) GOTO 1500
CCC **** END OF YEAR 6 ****
      IF (N .EQ. 14) GOTO 1520
      IF (N .EQ. 15) GOTO 1500
CCC ***** END OF YEAR 7 *****
      IF (N .EQ. 16) GOTO 1520
      IF (N .EQ. 17) GOTO 1500
CCC **** END OF YEAR 8 ****
      IF (N .EQ. 18) GOTO 1520
      IF (N .EQ. 19) GOTO 1500
CCC ***** END OF YEAR 9 *****
      IF (N .EQ. 20) GOTO 1520
      IF (N .EQ. 21) GOTO 1500
CCC **** ÈND OF YEAR 10 ****
      IF (N .EQ. 22) GOTO 1760
1490 \quad MGO = MGW
      MF = MF1
      MUGA = MUG1
      N = N + 1
      J = J+1
      JJ = 1
      MFA=MF
      TIS = TI
      TP = INT(TI/24.0) * 24.0 + TPI
      TZ1=TP+TZ4
      TZ2=TZ1+TZ5
      TZ3=TZ3E
      QBC = QBC1
      GOTO 1210
     MGO=MGW
1500
      MUGA=MUGW
      MFA=MFS
      N=N+1
      MU=MUD
      TZ2=TZ1+2976.0
      TIS = TI
      QBC = QBC5
      GOTO 1553
1520
     MGO=MGW
      MUGA=MUGS
      MFA=MFS
      N=N+1
      MU=MUD
      JJ = JJ+1
      TIS=TI
```

```
TZ1=TZ2+5784.0
      OBC=OBC4
      GOTO 1551
1540
     MGO=MGW
      MUGA=MUGW
      MFA=MFS
      N=N+1
      JJ = 1
      MU=MUD
      TIS=TI
      QBC=QBC3
      TZ2=TZ1+2976.0
      GOTO 1550
1204
      MGO=MGW
      MF=MF2
      MUGA = MUG2
      N=N+1
      JJ = 1
      MFA=MF
      MU=MUD
      TIS = TI
      TZ1=TZ2+TZ6
      QBC = QBC2
      GOTO 1550
1210
      MU=MUD
      TAUP=TP+MUGA*.134*RHOW/MUD-TPI
      TPIW=168.0
1550
      Write(9,8000) JJ
8000
      format(1x,'
                                                YEAR ', 13)
      Write(9,6000)
6000
      format(1x,'
                                       STANDBY OR WATER WITHDRAWAL ')
      GO TO 1555
1551
      Write(9,8000) JJ
      Write(9,6001)
6001
      format(1x,'
                                            SUMMER WATER WITHDRAWAL
                                                                     ')
      GO TO 1555
1553
      Write(9,8000) JJ
      Write(9,6002)
6002
      format(1x,
                                            WINTER WATER WITHDRAWAL ')
1555
      Write(9,*)
1580
      Write(9,4010) MFA
4010
      format(1x,'BOILER WATER FLOW RATE 1bm/hr
                                                               = ', F9.2
      Write(9,4011) TWB
4011
      format(1x,'BOILER WATER TEMPERATURE DEG F
                                                               = ', F9.2)
1610 Write(9,4020) MUGA
4020
      format(1x,'WATER WITHDRAWAL GAL/DAY
                                                                = ', F9.2)
      Write(9,4021) MUD/(8.04*RHOW)
4021
      format(1x, 'WITHDRAWAL FLOW RATE GAL/MIN
                                                               = ', F9.2)
1640
      Write(9,4030) HS
4030
      format(1x, 'CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = ',F9.2)
1672
      WRITE(9,5050) TI
5050
      FORMAT(1X, 'START WITHDRAWAL AT HOUR
                                                                = ', F9.2)
      Write(9,*)
      GO TO 400
1760
      Write(9,*)
     Write(9,4050) E
1790
                                            = ', E15.6)
4050
     format(1x,' TOTAL ENERGY INPUT BTU
1820 Write(9,4060) E / 140000
```

```
4060 format(1x,' TOTAL ENERGY INPUT GAL FUEL = ',F15.2)
1821 Write(9,4070) QIT
4070 format(1x,' TOTAL ENERGY LOSS AIR TO ICE BTU = ',E15.6)
1850 END
```

APPENDIX B: OLD SOUTH POLE DATA. Numerical prediction of Old South Pole Station water well performance.

Table B1. Chronological operating record for South Pole experimental well (Williams 1974).

		Wa	iter to		Calc.	Water	r temp	De		Fuel
			orage	Drawdown	diam	In	Out	To bottom	Top of water	consumption
Date	Time	(gal)	(ft ³)	(in.)	(ft)	(F)	(F)	(ft)	(ft)	(gal/h)
12/24/72	1220	500	67	4	16					
	1845	500	67	4	16	80				
12/25/72	1245	500	67	6	13					
	2136	500	67	3.5	17					
	2218	500	67	4	16					
12/26/72	0001	•						180	171.5	
	1035	500	67	5.5						
	2230	600	80	Trouble measu	ıring					
12/27/72	1635	<i>7</i> 95	106	5.5	1 <i>7</i>	100				
	2200							188.5	180	
12/28/72	0800							189.5		4
	0930	300	40	2	18					
	2010	300	40	1.375	21					
	2200									1.6
12/29/72	1010	500	67	2.25	21.4					2
12/30/72	0930	500	67	3	18.5					
	1300	Shut	down to red	cover pump and	remove ice.					
12/31/72										
01/01/73										
01/02/73	1300			and started circul		=-				
	2000	500	67	1.875	23.3	52				
01/03/73	0930				•••	52	35			
	1040	500	67	2.375	20.7					4.4
	1933	500	67	2.25	21.4					1.1
01/04/73	0830	5 00	(7	0.405	10.0					1.5
	0940	500	67	2.625	19.8	(3				
	1000	- 00	(1 7	2 5		62				
01 (05 (72	2400	500	67 67	3.5 2.275		82				
01/05/73	0045	500	67	2.375		82 82				2
	0830 1130					62		202	191	2
	1300	Pulloc	l numn to i	remove ice on bo	ttom 50 ft			202	191	
01/07/73	1500			and regained circ				202.5	192	
01/0///3	1825	500	67	1.25	28.5			202.0	172	
	2330	200	07	1.20	20.5	116				4.5
01/08/73	0800					117		202.8	192.3	1.0
01/00/73	0920	500	67			11,		202.0	172.0	
	1600	500	0,			82				
	1650	500	67	1.5	26	02				
01/09/73	0000	500	0,	1.0	20			204.8	193.7	2.8
01,00,70	0900					72		205	194.2	2.7
	1018	500	67	1.75	24.2	110				
01/10/73	0000			nelt sides only						3.3
,,	0900		!	,		80				5.0
	1033	500	67	1.5	26					
	1400		42 s.m.^{1}	0.875	27					5.0
01/11/73	0940	750	100	2.625	24			218	196.5	
01/12/73	0100		43					221.6	197.7	
	1214	750	100	Trouble with p	otentiomet	er				
	1715	750	100	Trouble with p						
	2330		40 s.m.	0.75	28.5					
01/13/73	1213		42 s.m.	1.25	22.7					
01/14/73	0130		35 s.m.	0.75	26.6					
	1100									5.0
	1400		37	1.5	19.4			226	199	
	1800	750	100	3.375	21.3	110				
01/15/73	1000	750	100	2.938	23.3	117		225	200	4.0
	1815	<i>7</i> 50	100	2.375	25.2	118	52 ^a	225.5	201	6.0

Table B1 (Cont'd).

		Wat	er to		Calc.	Water	r temp	De	pth	Fuel
		sto	rage	Drawdown	diam.	In	О́иt	To bottom	Top of water	consumption
Date	Time	(gal)	(ft³)	(in.)	(ft)	(°F)	(°F)	(ft)	(ft)	(gal/h)
01/16/73	0800							226.7	201.5	4.3
	1000	500	67	1.5	26.2					
	2300					126	60a	227.3	202.1	
01/17/73	0800							226.1	202.6	4.0
	0930	Raised	pump to	repair broken ho	se					
	1730		n bottom	•		104	40	226.3	202.5	
01/18/73	1030					110	45	227.1	202.9	3.5
	1405	<i>7</i> 50	100	1.75	29.5					
	2300					110	42	228	203.1	
01/19/73	0800					110	42	228	203.2	4.8
	1700							228.1	203.2	2.0
	2400	Added	l water hea	ater		124	41			4.0
01/20/73	1100									5.0
	1350	750	100	1.75	29.5			228.3	203.9	0.0
	2100				27.0	126	43	220.0	200.7	
01/21/73	0900					128	44			5.4
01/21//0	1000					120	44	228.8	204.3	3.4
	1900							220.0	204.3	()
01/22/73	0830	Discon	nected wa	stor bootor						6.3
01/22/73					20.7	0.6	40	220 5	205.2	5.4
	0915	7 50	100	1.625	30.7	86	42	229.5	205.3	
	1300					82				
04 (00 (50	2200					80	38	229.9	205.7	
01/23/73	0830					80	37			2.7
	0935	750	100	1.25	35			230.4	206	
	2200							231.1		2.75
01/24/73	0830					84	36	231.9		3.0
	0930	750	100	1.25	35	60		231.9	206.4	
	2000					62	36	231.8	206.4	2.0
01/25/73	0935	750	100	1.25	35	62	35	231.8	206.6	
	2000					64	35	231.8	206.6	2.0
01/26/73	0940	750	100	1.312	34	64	36	231.8	206.8	
	1100					60	35			
	2100					57	34	231.8	206.8	
01/27/73	0930	<i>7</i> 50	100	1.375	33	54 ^b	34	231.8	206.9	1.3
	0950					105 ^a	35			
	2100					109	39	231.8	206.9	4.3
01/28/73	1030					110	40	231.9	207	
, ,	1325	750	100	1.125	36					
	2230							232	207.2	4.3
01/29/73	1430	750	100	1.25	35	110	40	232.2	207.8	1.0
01/30/73	0830	, ,	200	2120	00	110	10	233.4	208.1	
01,00,70	0900					70	40	200.4	200.1	
02/06/73	1330	1500	200	2.75	33.3	60	36	235	210.7	8 days/
02/07/73	1440	1200	160	2.73	35.3	59	35			o days/
02/07/73	1030	1500	200	2.5	35 35	88	33 d	236.25 236.5	212	535 gal
02/15/73	1810	1500	200	2.5 2.5					212.75	2.8
					35 37	64	34	237	213.5	9 days/
02/20/73	0630	1350	180	2	37	62	34	238	214.5	610 gal
02/24/73	1000	1500	200	2.5	35	72	34	240	216.5	3.1
02/26/73	0900	1500	200	2	39	69 5 0	33	241.25	217.25	6 days/
02/27/73	0930	1500	200	2	39	70	34	241.5	217.6	535 gal
03/03/73										3.7

 $^{{}^{1}\!}W$ ater pumped to snow melter for boiler make-up.

aHigh temperature caused by short circuiting of water due to broken hose near pump intake. b9-psi steam pressure at Aerco Heater. c27-psi steam pressure at Aerco Heater.

^dBroken

eAverage fuel for 2/5/73 to 3/3/73, inclusive = 6360 L (1680 gal)/26 days = 246 L (65 gal)/day.

Table B2. Data from South Pole well (Williams 1974).

n.	Total	Water out	Total	ъ	T ****	T 77 4 7 70	mr m	
Date	(h)	(gal)	water	D	HW	HWB	TWB	TW
16 Dec 1972	24	0	0	4.24	10	153	80	
24 Dec	216	1500	1500	16				
25 Dec	240	1500	3000	13–16				
26 Dec	264	1100	4100		8.5	180		
27 Dec	288	795	4895	17	8.5	188.5	100	
28 Dec	312	600	5495	18-21		189.5		
29 Dec	336	500	5995	21.4				
30 Dec	360	500	6495	18.5				
02 Jan 1973	432	500	6995	23.3			52	
03 Jan	456	1000	<i>7</i> 995	21.4			52	35
04 Jan	480	1000	8995	19.8			62	
05 Jan	504	500	9495		11.0	202	82	
07 Jan	552	500	9995	28.5			116	
08 Jan	576	1000	10995	26.0	10.5	202.8	82-117	
09 Jan	600	500	11495	24.2	10.8	205	110	
10 Jan	624	813	12308	27.0			80	
11 Jan	648	750	13058	24.0	21.5	218		
12 Jan	672	2123	15181	28.5				
13 Jan	696	315	15496	22.7				
14 Jan	720	1290	16786	21.3			110	
15 Jan	744	1500	18286	25.2	24.5	225.5	118	52
16 Jan	768	500	18786	26.2	25.2	227.3	126	60
17 Jan	792	0	18786		23.8	226.3		
18 Jan	816	<i>7</i> 50	19536	29.5	24.9	228.0	110	42
19 Jan	840						124	41
20 Jan	864	<i>7</i> 50	20286	29.5	24.4	228.3	126	43
21 Jan	888				24.5	228.8		
22 Jan	912	7 50	21036	30.7	24.2	229.9	86	42
23 Jan	936	7 50	21786	35.0	24.4	231.1		
24 Jan	960	750	22536	35.0	25.4	231.8	62-84	36
25 Jan	984	750	23286	35.0	25.2	231.8	63	35
26 Jan	1008	750	24036	34.0	25.0	231.8	57-64	35
27 Jan	1032	750	24786	33.0	25.0	231.8	54-109	34-39
28 Jan	1056	<i>7</i> 50	25536	36.0	24.8	232.0		
29 Jan	1080	7 50	26286	35.0	24.4	232.2	160	40
06 Feb	1272	1500	27786	33.3	24.3	235.0	60	36
07 Feb	1296	1200	28986	35.0	24.3	236.3	59	35
13 Feb	1440	1500	30486	35.0	23.75	236.5	88	 .
15 Feb	1488	1500	31986	35.0	23.5	237.0	64	34
20 Feb	1584	1350	33336	37.0	23.5	238.0	62	34
24 Feb	1632	1500	34836	35.0	23.5	240.0	72	34
26 Feb	1680	1500	36336	39.0	24.0	241.3	69	33
27 Feb	1704	1500	37836	39.0	23.9	241.5	70	34

ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION BOILER WATER TEMP DEG F 103.00 BOILER WATER FLOW RATE 15m/hr :::: 7549.50 CONVECTIVE COEFFICIENT BTU/HR-FT2-F 32.50 DEPTH TO TOP OF WATER AT START FT INITIAL PARABOLIC MATER BY AND THE 1.50 :::: 157.00 INITIAL PARABOLIC WATER DIAMETER D FT = INITIAL PARABOLIC WATER HEIGHT HW FT = INITIAL WATER TEMP TH DEG E 4.24 10.00 :::: INITIAL WATER TEMP TW DEG F 108.00 ::: INITIAL AIR TEMP TA DEG F -60.00 INITIAL ICE SURFACE TEMP TS DEG F :=: -60,00 ::: AMBIENT ICE TEMP DEG F --60,00 EFFECTIVE LATENT HEAT BTU/LB :::: 392,35 TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2, AIR VOL VA FT3 TIME TW ΤA TS MM Γ.ι HЫ 日周度 VA 527.5 4.24 10.00 167.00 1479.69 1109.77 0.0 108.00 -60.00 -60.00 24.0 75.12 -55.02 -58.23 1335.7 7.14 8.93 171.63 1621.59 48.0 70.24 -52.20 -56.87 2297.2 9.23 9.19 175.24 1754.02 72.0 66.45 -49.82 -55.58 3370.7 10.90 9.67 178.27 1882.94 1258,54 1430,20 1882.94 1634.18 96.0 63.43 -47.79 -54.38 4523.6 12.31 10.19 180.92 2009.18 1860.43 120.0 60.97 -46.06 -53.27 5734.5 13.53 10.70 183.30 2132.96 2104.97 144.0 58.98 -44.56 -52.25 6989.8 14.61 11.18 185.45 2254.87 2864.66 168.0 57.21 -48.25 -51.81 8278.4 15.58 11.64 187.48 2878.47 2687.02 192.0 55.73 -42.08 -50.45 9595.7 16.47 12.07 189.27 2490.34 2920.02 216.0 54.45 -41.05 -49.65 10937.2 17.29 12.49 190.98 2605.08 3212.10 235.9 53.50 -40.27 -49.03 12066.0 17.93 12.81 192.33 2698.67 3460.21 TOTAL ENERGY INPUT BTU 0.709905E+08 SEASONAL ENERGY INPUT BTU :::: 0.709905E+08 TOTAL ENERGY INPUT GAL FUEL :::: 507.07 SEASONAL ENERGY INPUT GAL FUEL AVERAGE LB. WATER PER LB. FUEL :::: 507,07 :::: 26.59 SEASONAL LB. WATER PER LB. FUEL = ENERGY FROM AIR TO ICE BTU = :::: 26,59 0.889972E+07 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.889972E+07 TOTAL WATER WITHDRAWN GAL == 0.00 SEASONAL WATER WITHDRAWN GAL :::: 0.00 **::::** 7848.48 TOTAL WATER LOSS GAL SEASONAL WATER LOSS GAL 7848.43 YEAR 1 STANDBY OR WATER WITHDRAWAL BOILER WATER FLOW RATE Ibm/hr 7549,50 BOILER WATER TEMPERATURE DEG F === 103,00 WATER WITHDRAWAL GALZDAY :::: 610.00 WITHORAWAL FLOW RATE GAL/MIN :::: 15.00 CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F :::: 82.50 START WITHDRAWAL AT HOUR 240.00 240.0 53.32 -40.11 -48.91 12299.1 18.05 12.88 192.60 2717.68 3511.67 52.83 -39.50 -48.26 13029.9 18.54 12.94 194.12 2843.90 3887.23 264.0 52.35 -38.96 -47.68 13794.9 19.00 13.03 195.58 2967.28 4261.22 288.0 312.0 51.87 -38.46 -47.16 14593.4 19.46 13.15 197.00 3088.01 4633.82 336.0 51.39 -38.00 -46.68 15424.7 19.91 13.28 198.37 3206.26 5005.15 360.0 50.92 -37.58 -46.24 16288.2 20.34 13.43 199.70 3322.17 5875.26 384.0 50.47 -37.19 -45.83 17175.2 20.77 13.59 200.99 3436.02 5745.06 408.0 50.02 -86.82 -45.45 18098.6 21.19 18.76 202.24 8547.74 6118.58 432.0 49.58 -36.48 -45.09 19043.6 21.60 13.93 203.45 3657.44 6480.89

```
49.15 -86.15 -44.76 20032.1 22.00 14.12 204.63 8764.97
                                                                6845.84
456.0
                           21051.0 22.40 14.81 205.77
                                                        3870.59
                                                                7209,41
      48.78 -85.88 -44.44
480.0
                                                                 7571.58
       48.82 -85.58 -44.14
                           22100.2 22.79 14.51 206.89
                                                       8974.87
504.0
                           28179.5 28.18 14.72 207.97
                                                       4076.34
                                                                 7932.11
       47.98 -85.25 -48.86
528.0
                           24288.8 23.57 14.92 209.02
                                                       4176.57
                                                                 8291.04
      47.54 -84.97 -48.59
552.0
                           25428.2 23.95 15.13 210.04
                                                        4275.09
                                                                 8648.22
       47.17 -84.70 -48.82
576.0
                                                        4372.09
                                                                 9004.48
                           26589.3 24.32 15.34 211.04
       46.81 -84.44 -48.07
600.0
                           27780.4 24.69 15.56 212.01
                                                        4467.46
                                                                 9358.74
       46,47 -84,19 -42,88
624.0
                                                                9711.01
                           29002.4 25.05 15.77 212.96
                                                       4561,26
       46.18 -88.95 -42.60
648.0
                           30262.1 25.41 15.99 218.88
                                                       4658,88 10060.08
       45.80 -33.71 -42.38
672.0
                                                       4748.87 10406.90
                            81552.0 25.77 16.21 214.78
       45,49 -88,48 -42,16
696.0
                           32872.1 26.13 16.43 215.66 4832.90 10751.35
       45.18 -88.25 -41.95
720.0
                            34222.4 26.48 16.66 216.52 4920.45 11093.34
       44.88 -88.08 -41.74
744.0
                            35603.3 26.83 16.88 217.35 5006.56 11432.77
       44.59 -82.81 -41.54
768.0
                            37006.2 27.17 17.10 218.17
                                                        5091.87 11770.45
       44.81 -82.59 -41.85
792.0
                            88440.0 27.51 17.88 218.97
                                                        5174.77 12105.35
       44.04 -82.88 -41.16
816.0
                            89905.8 27.85 17.55 219.75 5256.81 12487.46
       48.78 -82.17 -40.97
0.048
       43.53 -31.96 -40.79 41409.4 28.19 17.78 220.51
                                                        5387,85 12765,58
864.0
                            42944.6 28.53 18.01 221.26
                                                        5416.54 13090.66
       48.28 -81.76 -40.61
888.0
                                                        5494,42 13412.60
                            44511.2 28.86 18.24 221.99
       48.04 -81.56 -40.44
912.0
                            46109.2 29.19 18.47 222.70
                                                        5571.00 18781.88
       42.81 -31.86 -40.27
986.0
                                                        5646.37 14047.33
       42.58 -81.16 -40.10
                            47734.6 29.52 18.70 223.40
960.0
                                                        5720.79 14862.21
       42.87 -80.97 -89.98
                            49874.4 29.84 18.92 224.09
984.0
                                                        5794.37 14676.65
                            51021.7 80.16 19.15 224.76
       42.16 -80.78 -89.77
1008.0
                                                        5866.98 14989.45
                            52686.2 30.47 19.37 225.41
       41.96 -80.59 -89.61
1032.0
                                                        5988.64 15800.58
       41,77 -30,41 -39,45
                            54369.7 30.78 19.59 226.06
1056.0
                            56079.2 31.08 19.80 226.69
                                                        6009.22 15608.67
       41.58 -80.28 -89.29
1080.0
                            57807.6 31.39 20.02 227.31
                                                        6078,86 15914,82
       41.40 -80.05 -89.14
1104.0
                            59554.8 31.69 20.24 227.92
                                                       6147.57 16218.92
       41.22 -29.87 -38.99
1128.0
                            61320.8 31.99 20.45 228.51 6215.38 16520.93
1152.0
       41.05 -29.70 -88.84
                            63105.5 32.28 20.67 229.10 6282.29 16820.83
       40.89 -29.52 -38.69
1176.0
       40.73 -29.35 -38.55 64908.5 32.57 20.88 229.67 6348.33 17118.60
1200.0
                           66721.2 32.86 21.09 230.24 6413.63 17415.17
       40.58 -29.18 -38.41
1224.0
                                                        6478,09 17709,61
       40.48 -29.02 -38.26
                            88551.7 88.14 21.80 280.79
1248.0
                            70400.6 88.42 21.50 281.88 6541.75 18001.99
       40.29 -28.85 -88.12
1272.0
                            72274.1 33.70 21.71 231.87
                                                        6604.50 18291.25
       40.15 -28.69 -87.99
1296.0
                            74164.4 33.98 21.92 232.40 6666.47 18578.44
       40.01 -28.58 -87.85
1820.0
                            76070.9 34.26 22.12 232.91 6727.68 18863.59
       39.88 -28.37 -37.71
1344.0
                            77998.1 84.58 22.82 288.42
                                                        6788.16 19146.71
       39,75 -28,21 -37,58
1369.0
                                                        6847.91 19427.84
                            79980.7 84.80 22.52 288.92
       89.68 -28.05 -87.45
1892.0
                            81888.2 35.06 22.78 284.42 6906.96 19707.02
       39.50 -27.90 -37.32
1416.0
                                                        6965.48 19985.22
                            83841.7 35.33 22.92 234.90
       89.89 -27.74 -87.19
1440.0
                                                        7023.25 20261.58
                            85815.0 85.59 28.12 285.88
       89.27 -27.59 -87.06
1464.0
       89.16 -27.44 -86.98 87809.5 85.85 28.82 285.85 7080.80 20585.07
1488.0
                                                        7136.71 20806.75
       39.06 -27.29 -36.81 89817.1 36.11 23.51 236.31
1512.0
                                                        7192.51 21076.65
       38.95 -27.14 -36.68 91837.5 36.36 23.70 236.77
1536.0
                                                        7247.71 21344.81
       38.85 -27.00 -36.56 93870.1 36.61 23.90 237.22
1560.0
                                                        7302.32 21611.27
       38.75 -26.85 -36.44 95914.5 36.86 24.09 237.66
1584.0
       38.65 -26.71 -36.32 97970.3 37.11 24.28 238.10
                                                        7856,86 21876,06
1608.0
       38.56 -26.57 -36.20 100028.7 37.35 24.46 238.53
                                                        7409.94 22140.17
1632.0
                                                        7462.97 22402.67
       38.47 -26.43 -36.08 102097.6 37.59 24.65 238.95
1656.0
        38.38 -26.29 -35.96 104177.6 37.83 24.83 239.37
                                                        7515.49 22668.68
1680.0
        38.29 -26.15 -35.85 106275.0 38.07 25.02 239.78 7567.38 22922.15
1704.0
       38.10 -26.15 -35.81 106533.6 38.11 25.03 239.92 7589.71 23060.00
1711.8
                                           0.716172E+09
 TOTAL ENERGY INPUT BTU
 SEASONAL ENERGY INPUT BTU
                                     ::::
                                           0.645181E+09
 TOTAL ENERGY INPUT GAL FUEL
                                                5115.51
```

::::

#::

4608.44

82.85

SEASONAL ENERGY INPUT GAL FUEL

AVERAGE LB. WATER PER LB. FUEL

SEASONAL LB. WATER PER LB. FUEL = 33.54
ENERGY FROM AIR TO ICE BTU = 0.770895E+08
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.736897E+08
TOTAL WATER WITHDRAWN GAL = 37813.19
SEASONAL WATER WITHDRAWN GAL = 37813.19
TOTAL WATER LOSS GAL = 45858.80
SEASONAL WATER LOSS GAL = 38010.37

TOTAL ENERGY INPUT BTU = 0.716172E+09
TOTAL ENERGY INPUT GAL FUEL = 5115.51
TOTAL ENERGY LOSS AIR TO ICE BTU = 0.770895E+08

APPENDIX C: REQUIREMENTS AND NUMERICAL PREDICTIONS FOR RODRIGUEZ WELL AT SOUTH POLE STATION

Constant Boiler Water Outlet Temperatures

Problem

Need to develop a water supply for South Pole Station.

Given

Water consumption rate

Summer months (Oct–Jan): 75 L (20 gal)/day \times 100 people = 7570 L (2000 gal)/day

Winter months (Feb–Sept): $115 L(30 gal)/day \times 20 people = 2270 L(600 gal)/day$

Total annual consumption = 1,464,954 L (387,000 gal).

Firn-ice transition is at about 115-m (377-ft) depth.

0.72 specific gravity is at about 73-m (240-ft) depth.

The pond should start at this depth or higher (assume 61 m, or 200 ft).

91-m (300-ft) depth temperature = -51°C (-60°F).

Refer to monthly temperature data.

Assume

That the desired initial melting rate is 757 L (200 gal)/h.

That the total volume (about 1 year consumption) of water is developed as soon as possible and then stored at 1.1°C (34°F) until withdrawn.

That no water is taken from the well until the total annual volume is developed.

That the water collecting in the well will be at 34°F. Initially the return water temperature is higher but as soon as the pool gets large enough, the pool water remains close to 34°F.

That the rate of water circulation up the well and through the heat exchanger and back down is limited to 38-57 L (10-15 gal)/min and flows through 2.54-cm (1-in.) ID flexible hose.

That the maximum water temperature cannot exceed 180°F in the water well loop.

Determine

How long will it take to develop the total volume?

What is the energy budget to develop the well?

Once the well is established, what is the energy requirement to maintain that capacity?

Assume that you want to continue on a daily basis to make an equal amount of water that is consumed for that day (i.e., summer months 2000 gal, winter months 600 gal), how much energy would be required to maintain that production rate while maintaining pool temperature at 34°F?

Case A5

```
ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION
BOILER WATER FLOW RATE 1bm/hr = 7549 50
 CONVECTIVE COEFFICIENT BTU/HR-FT2-F
INITIAL DRILL RADIUS FT =
DEPTH TO TOP OF WATER AT START FT =
INITIAL PARABOLIC WATER DIAMETER D FT =
INITIAL PARABOLIC WATER HEIGHT HW FT =
INITIAL WATER TEMP TW DEG F =
INITIAL AIR TEMP TA DEG F =
INITIAL AIR TEMP TA DEG F =
                                                         1.50
                                                       157.00
                                                       4.24
                                                         10.00
                                                       103.00
                                                       -60.00
INITIAL ICE SURFACE TEMP TS DEG F = AMBIENT ICE TEMP DEG F = EFFECTIVE LATENT HEAT BTU/LB =
                                                       -60.00
                                                       --60.00
                                                        392.35
TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2. AIR VOL VA FT3
                  TA TS
                                      MW
                                              D
                                                     HW HWB
           ΤIJ
   TIME
    0.0 103.00 -60.00 -60.00 527.5 4.24 10.00 167.00 1479.69 1109.77 24.0 75.12 -55.02 -58.23 1335.7 7.14 8.93 171.63 1621.59 1253.54
    48.0 70.24 -52.20 -56.87 2297.2 9.23 9.19 175.24 1754.02 1430.20
    72.0 66.45 -49.82 -55.58 3370.7 10.90 9.67 178.27 1882.94 1634.18
    96.0 63.43 -47.79 -54.38 4523.6 12.31 10.19 180.92 2009.18 1860.43
   120.0 60.97 -46.06 -53.27 5734.5 13.53 10.70 183.30 2132.96 2104.97
   144.0 58.93 -44.56 -52.25 6989.3 14.61 11.18 185.45 2254.37 2364.66
   168.0 57.21 -43.25 -51.31 8278.4 15.58 11.64 187.43 2373.47 2637.02
   192.0 55.73 -42.08 -50.45 9595.7 16.47 12.07 189.27 2490.34 2920.02
   216.0 54.45 -41.05 -49.65 10937.2 17.29 12.49 190.98 2605.08 3212.10
   235.9 53.50 -40.27 -49.03 12066.0 17.93 12.81 192.33 2698.67 3460.21
   TOTAL ENERGY INPUT BTU = 0.709905E+08
SEASONAL ENERGY INPUT BTU = 0.709905E+08
TOTAL ENERGY INPUT GAL FUEL = 507.07
SEASONAL ENERGY INPUT GAL FUEL = 507.07
AVERAGE LB. WATER PER LB. FUEL = 26.59
SEASONAL LB. WATER PER LB. FUEL = 26.59
ENERGY FROM AIR TO ICE BTU = 0.339972E+07
   SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.339972E+07
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = 7 SEASONAL WATER LOSS GAL = 7
                                                              0.00
                                                          7848.43
7848.43
                                  YEAR 1
                           STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                         5033.00
WATER WITHDRAWAL GAL/DAY
                                                          600.00
WHITHDRAWAL FLOW RATE GAL/MIN
                                                           15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                           32.50
START WITHDRAWAL AT HOUR
                                                          240.00
   240.0 50.04 -40.41 -48.92 12262.1 18.04 12.86 192.57 2716.49 3509.28
   408.0 47.17 -38.63 -46.13 13728.3 19.50 12.32 200.18 3415.87 5726.77
   576.0 45.89 -37.50 -44.68 16436.7 21.04 12.67 206.95 4035.25 7763.57
   744.0 44.38 -36.57 -43.67 20208.0 22.64 13.45 212.92 4591.90 9679.01
   912.0 42.92 +35.69 -42.84 24978.0 24.29 14.44 218.14 5093.23 11485.42
  1080.0 41.60 -34.81 -42.10 30742.6 25.96 15.56 222.71 5543.89 13178.62
  1248.0 40.47 -33.93 -41.40 37299.2 27.59 16.72 226.72 5952.08 14777.52
  1416.0 39.54 -33.07 -40.73 44452.7 29.15 17.85 230.28 6325.55 16299.62
  1584.0 38.75 -32.23 -40.08 52147.4 30.64 18.95 233.45 6668.54 17745.61
  1752.0 39.11 -31.42 -39.45 60269.9 32.06 20.01 236.31 6985.81 19125.60
```

```
1920.0 37.56 -30.64 -38.84 68705.9 33.39 21.03 238.91 7281.65 20451.15
2088.0 37.10 -29.89 -38.25 77352.9 34.65 21.99 241.29 7559.66 21733.24
2256.0 36.72 -29.19 -37.68 86124.6 35.83 22.90 243.48 7822.88 22981.97
2424.0 36.38 -28.52 -37.13 94944.8 36.94 23.75 245.52 8073.81 24206.41
2592.0 36.10 -27.88 -36.60 103748.2 37.98 24.54 247.41 8314.55 25414.68
2760.0 35.86 -27.29 -36.09 112484.6 38.96 25.29 249.19 8546.81 26613.32
2928.0 35.64 -26.72 -35.61 121142.6 39.88 25.99 250.87 8771.55 27803.95
3096.0 35.45 -26.19 -35.14 129720.8 40.76 26.64 252.45 8989.50 28986.81
3264.0 35.29 -25.69 -34.69 138220.5 41.59 27.27 253.96 9201.26 30162.26
3432.0 35.14 -25.22 -34.27 146641.5 42.38 27.86 255.40 9407.36 31330.54
3600.0 35.00 -24.77 -33.86 154976.3 43.14 28.42 256.77 9608.33 32492.87
3768.0 34.88 -24.34 -33.47 163242.3 43.86 28.95 258.09 9804.39 33647.55
3936.0 34.77 -23.93 -33.09 171431.6 44.56 29.47 259.35 9995.96 34795.77
4104.0 34.67 -23.55 -32.73 179546.7 45.22 29.96 260.56 10183.36 35937.79
4272.0 34.57 -23.18 -32.38 187588.1 45.87 30.43 261.73 10366.85 37073.80
4440.0 34.49 -22.83 -32.05 195556.8 46.48 30.88 262.86 10546.68 38203.98
4608.0 34.41 -22.49 -31.73 203454.1 47.08 31.32 263.95 10723.07 39328.52
4776.0 34.33 -22.17 -31.42 211280.7 47.66 31.74 265.01 10896.20 40447.56
4944.0 34.26 -21.87 -31.13 219038.8 48.22 32.14 266.03 11066.26 41561.33
5112.0 34.20 -21.57 -30.84 226729.0 48.76 32.54 267.02 11233.41 42669.94
5280.0 34.14 -21.29 -30.57 234352.4 49.29 32.92 267.99 11397.81 43773.54
5448.0 34.08 -21.02 -30.30 241910.2 49.80 33.28 268.93 11559.58 44872.26
5616.0 34.03 -20.76 -30.05 249402.8 50.30 33.64 269.84 11718.64 45966.23
5784.0 33.98 -20.51 -29.80 256832.4 50.78 33.99 270.73 11875.72 47055.60
5952.0 33.93 -20.27 -29.56 264199.5 51.25 34.32 271.60 12030.32 48140.47
6024.0 33.91 -20.17 -29.46 267337.6 51.45 34.46 271.96 12095.91 48604.06
TOTAL ENERGY INPUT BTU = 0.193989E+10
SEASCNAL ENERGY INPUT BTU = 0.186890E+10
TOTAL ENERGY INPUT GAL FUEL = 13856.35
SEASCNAL ENERGY INPUT GAL FUEL = 13349.28
AVERAGE LB. WATER PER LB. FUEL = 34.69
SEASONAL LB. WATER PER LB. FUEL = 35.00
ENERGY FROM AIR TO ICE BTU = 0.440438E+09
 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.437038E+09
 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                               144600.58
                                                  144600.58
                                                   39605.91
                                          ==
                                                    31757,48
 SEASONAL WATER LOSS GAL
```

YEAR 1 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr

= . 5033.00

2000.00

WHICH WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN 15.00 CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50 6048.00 START WITHDRAWAL AT HOUR 6120.0 33.82 -20.14 -29.34 266897.5 51.48 34.36 272.42 12222.69 49763.99 6288.0 33.84 -20.15 -29.13 263275.5 51.40 34.00 273.18 12467.08 52106.66 6456.0 33.87 -20.17 -28.96 259669.2 51,32 33.64 273.96 12711.96 54446.72 6624.0 33.89 -20.20 -28.81 256079.9 51.23 33.29 274.74 12957.35 56784.24 6792.0 33.92 -20.25 -28.67 252498.0 51.14 32.94 275.53 13203.35 59120.13 6960.0 33.94 -20.30 -28.56 248914.3 51.05 32.60 276.32 13450.02 61455.33 7128.0 33.97 -20.37 -28.46 245329.0 50.95 32.25 277.13 13697.39 63789.84 7296.0 33.99 -20.45 -28.38 241757.2 50.84 31.91 277.93 13945.33 66121.68 7464.0 34.02 -20.54 -28.31 238200.0 50.74 31.57 278.75 14193.85 68450.89 7632.0 34.05 -20.64 -28.26 234648.4 50.63 31.24 279.57 14443.06 70778.42 7500.0 34.08 -20.74 -28.22 231094.0 50.51 30.91 280.40 14693.05 73105.23

```
7968.0 34.11 -20.85 -28.19 227537.1 50.37 30.58 281.23 14943.83 75431.35 8136.0 34.13 -20.97 -28.17 223993.9 50.26 30.25 282.08 15195.29 77754.81 8304.0 34.16 -21.10 -28.16 220465.3 50.13 29.93 282.93 15447.46 80075.68 8472.0 34.20 -21.23 -28.16 216943.0 50.00 29.61 283.79 15700.43 62394.90 8640.0 34.23 -21.36 -28.16 213427.0 49.86 29.29 284.66 15954.24 84712.50 8808.0 34.26 -21.50 -28.18 209901.4 49.72 28.97 285.53 16209.05 87030.45 8976.0 34.29 -21.64 -28.20 206391.2 49.57 28.66 286.42 16464.69 89345.83 9000.0 34.30 -21.66 -28.20 205888.5 49.55 28.62 286.54 16501.31 89676.77
```

TOTAL ENERGY INFUT BTU 0.287958E+10 SEASONAL ENERGY INPUT BTU 0.939686E+09 TOTAL ENERGY INPUT GAL FUEL 20568.39 SEASONAL ENERGY INPUT GAL FUEL 6712.04 AVERAGE LB. WATER PER LB. FUEL === 33.89 SEASONAL LB. WATER PER LB. FUEL = = 32.23 ENERGY FROM AIR TO ICE BTU 0.767215E+09 SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.326777E+09 TOTAL WATER WITHDRAWN BAL = 391203.79 SEASONAL WATER WITHDRAWN GAL == 246603.21 TOTAL WATER LOSS GAL == 39605.91 SEASONAL WATER LOSS GAL = 0.00

YEAR 2 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr = 5033.00
WATER WITHDRAWAL GAL/DAY = 600.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 9024.00

9144.0 34.36 -21.65 -28.22 210609.4 49.89 28.88 287.36 16651.72 90751.02 9312.0 34.29 -21.61 -28.24 217917.7 50.38 29.30 288.31 16809.50 91792.12 9480.0 34.22 -21.57 -28.25 225145.7 50.86 29.70 289.23 16964.64 92828.47 9548.0 34.15 -21.53 -28.26 232294.6 51.32 30.09 290.13 17117.28 93860.19 9816.0 34.09 -21.49 -28.26 239365.1 51.77 30.47 291.00 17267.52 94887.38 9784.0 34.04 -21.44 -28.26 246359.5 52.21 30.84 291.85 17415.49 95910.18 10152.0 33.99 -21.39 -28.26 253278.6 52.64 31.19 292.67 17561.28 96928.68 10320.0 33.94 -21.34 -28.25 260123.5 53.05 31.53 293.48 17704.97 97942.98 10488.0 33.89 -21.29 -28.23 266895.6 53.46 31.87 294.26 17846.67 98953.18 10656.0 33.84 -21.24 -28.22 273595.4 53.85 32.19 295.03 17986.45 99959.36 10824.0 33.80 -21.19 -28.20 280216.9 54.24 32.50 295.78 18124.45100962.62 10992.0 33.76 -21.14 -28.18 286777.5 54.61 32.81 296.52 18260.62101961.09 11160.0 33.72 -21.09 -28.16 293269.9 54.98 33.10 297.24 18395.08102955.82 11328.0 33.69 -21.03 -28.14 299695.3 55.34 33.39 297.94 18527.90103946.89 11496.0 33.65 -20.98 -28.11 306054.7 55.69 33.67 298.63 18659.14104934.39 11664.0 33.62 -20.92 -28.08 312348.8 56.03 33.95 299.30 18788.85105918.37 11832.0 33.59 -20.87 -28.05 318579.6 56.37 34.21 299.96 18917.09106898.95 12000.0 33.56 -20.81 -28.02 324747.7 56.70 34.47 300.61 19043.90107876.18 12168.0 33.53 -20.76 -27.99 330854.1 57.02 34.72 301.25 19169.34108850.12 12336.0 33.50 -20.70 -27.96 336899.7 57.33 34.97 301.88 19293.44109820.84 12504.0 33.47 -20.65 -27.92 342885.0 57.64 35.21 302.49 19416.25110788.40 12672.0 33.45 -20.59 -27.89 348812.0 57.95 35.45 303.09 19537.82111752.89 12840.0 33.42 -20.54 -27.85 35468).1 58.24 35.68 303.69 19658.17112714.35 13008.0 33.40 -20.48 -27.82 360493.2 58.53 35.90 304.27 19777.34113672.84 13176.0 33.38 -20.43 -27.78 366249.1 58.82 36.12 304.84 19895.38114628.42 13344.0 33.35 -20.37 -27.74 371949.3 59.10 36.34 305.41 20012.30115581.13 13512.0 33.33 -20.32 -27.70 377595.5 59.37 36.55 305.96 20128.15116531.05 13680.0 33.31 -20.27 -27.66 383188.1 59.64 36.76 306.51 20242.95117478.22 13848.0 33.29 -20.21 -27.62 388727.8 59.91 36.96 307.05 20356.73118422.68

```
14016.0 33.62 -20.12 -27.58 393808.5 60.15 37.14 307.56 20466.38119348.58
 14:84.0 33.60 -20.06 -27.54 399106.6 60.40 37.33 308.07 20577.18120282.41
 14352.0 33.58 -20.01 -27.50 404356.2 60.65 37.51 308.58 20687.20121215.06
 14520.0 33.56 -19.96 -27.45 409567.1 60.89 37.69 309.08 20796.28122144.36 14688.0 33.54 -19.91 -27.41 414731.5 61.13 37.87 309.58 20904.50123071.29 14784.0 33.53 -19.88 -27.39 417661.7 61.27 37.97 309.86 20965.96123599.92
   TOTAL ENERGY INPUT BTU
                                                   0.484144E+10
   SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
AVERAGE LB. WATER PER LB. FUEL =
SEASONAL IR WATER PER LB. FUEL =
                                                  0.196186E+10
                                                    34581.72
                                                       14013.32
                                            ==
                                                          32.24
   SEASONAL LB. WATER PER LB. FUEL = 29.83
ENERGY FROM AIR TO ICE BTU = 0.154814E+10
   SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.780929E+09
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                  537206.81
                                                     146003.02
                                                      39405.91
                                            ==
   SEASONAL WATER LOSS GAL
                                                           0.00
                                YEAR 2
                         STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                      5033.00
WATER WITHDRAWAL GAL/DAY
                                                  = 2000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                         15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                         25.00
START WITHDRAWAL AT HOUR
                                                  = 14808.00
 14656.0 33.43 -19.90 -27.37 416826.0 61.25 37.91 310.06 21034.81124363.24
 15024.0 33.43 -19.96 -27.33 411053.1 61.08 37.59 310.49 21220.05126558.36
 15192.0 33.45 -20.02 -27.30 405297.4 60.91 37.28 310.93 21405.89128752.17
 15360.0 33.47 -20.08 -27.27 399569.6 60.73 36.97 311.37 21592.55130946.37
 15528.0 33.50 -20.15 -27.24 393861.6 60.55 36.65 311.82 21780.09133141.92
 15696.0 33.52 -20.22 -27.22 388182.0 60.37 36.34 312.27 21968.48135337.88
 15864.0 33.54 -20.30 -27.21 382530.2 60.19 36.03 312.73 22157.71137534.20
 16032.0 33.40 -20.39 -27.20 377082.5 60.01 35.73 313.20 22349.05139736.33
 16200.0 33.26 -20.48 -27.19 371767.2 59.84 35.43 313.69 22542.02141942.79
 16368.0 33.28 -20.57 -27.19 366324.7 59.65 35.13 314.17 22734.78144144.94
 16536.0 33.30 -20.65 -27.18 360902.5 59.47 34.82 314.66 22928.49146348.44
 16704.0 33.31 -20.74 -27.19 355517.0 59.28 34.52 315.16 23123.04148551.30
 16872.0 33.33 -20.82 -27.19 350168.7 59.09 34.22 315.66 23318.44150753.55
 17040.0 33.36 -20.91 -27.20 344849.2 58.90 33.92 316.16 23514.78152956.15
 17208.0 33.38 -21.01 -27.21 339558.5 58.70 33.62 316.68 23712.05155159.08
17376.0 33.40 -21.10 -27.23 334280.6 58.51 33.32 317.19 23910.42157364.33
17544.0 33.42 -21.20 -27.25 329040.1 58.31 33.03 317.72 24109.70159568.94
17712.0 33.44 -21.30 -27.27 323837.7 58.11 32.73 318.25 24309.91161772.94
 17760.0 33.45 -21.32 -27.27 322349.5 58.05 32.64 318.41 24367.35162403.55
```

TOTAL ENERGY INPUT BTU = 0.578922E+10
SEASONAL ENERGY INPUT BTU = 0.947776E+09
TOTAL ENERGY INPUT GAL FUEL = 41351.54
SEASONAL ENERGY INPUT GAL FUEL = 6769.83
AVERAGE LB. WATER PER LB. FUEL = 31.24
SEASONAL LB. WATER PER LB. FUEL = 26.11
ENERGY FROM AIR TO ICE BTU = 0.199679E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.448646E+09
TOTAL WATER WITHDRAWN GAL = 783802.51
SEASONAL WATER WITHDRAWN GAL = 246595.71
TOTAL WATER LOSS GAL = 39605.91

0.00

YEAR STANDBY OR WATER WITHDRAWAL

```
5033.00
BOILER WATER FLOW RATE 16m/hr
WATER WITHDRAWAL GAL/DAY
                                                  600.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                    15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                   32.50
START WITHDRAWAL AT HOUR
                                             = 17784.00
17880.0 33.53 -21.33 -27.29 324805.3 58.18 32.74 318.82 24463.72163249.27
18048.0 33.50 -21.32 -27.31 330481.9 58.47 32.99 319.42 24582.13164179.96
 18216.0 33.48 -21.31 -27.33 336098.1 58.75 33.23 320.01 24699.35165107.83
 18384.0 33.45 -21.31 -27.34 341653.7 59.02 33.47 320.58 24815.41166032.88
 18552.0 33.43 -21.30 -27.36 347150.4 59.29 33.69 321.15 24930.35166955.20
          33.40 -21.29 -27.37 352588.7 59.56 33.92 321.70 25044.19167874.83
 18720.0
          33.38 -21.28 -27.38 357969.3 59.82 34.14 322.25 25156.97168791.81
 18888.0
19056.0
          33.64 -21.24 -27.39 363015.0 60.06 34.34 322.77 25266.56169695.93
          33.70 -21.22 -27.40 368066.3 60.30 34.54 323.29 25375.67170599.79
 19224.0
          33.68 -21.21 -27.41 373141.5 60.54 34.74 323.81 25484.43171504.06
 19392.0
 19560.0
          33.65 -21.20 -27.42 378165.8 60.77 34.94 324.31 25592.29172406.01
 19728.0 33.63 -21.19 -27.42 383139.4 61.01 35.13 324.81 25699.26173305.64
         33.60 -21.17 -27.43 388062.9 61.23 35.31 325.31 25805.37174203.00
 19896.0
 20054.0
         33.58 -21.16 -27.43 392936.9 61.46 35.50 325.79 25910.62175098.13
 20232.0 33.56 -21.15 -27.43 397761.6 61.68 35.68 326.27 26015.05175991.03
20400.0 33.54 -21.14 -27.43 402538.6 61.89 35.85 326.75 26118.68176881.78
 20568.0 33.52 -21.12 -27.43 407267.9 62.11 36.03 327.21 26221.53177770.39
20736.0 33.50 -21.11 -27.44 411950.2 62.32 36.20 327.68 26323.60178656.90
20904.0 33.48 -21.09 -27.43 416586.0 62.52 36.36 328.13 26424.92179541.34
21072.0 33,46 -21.08 -27.43 421175.5 62.73 36.53 328.58 26525.51180423.71
21240.0 33.44 -21.06 -27.43 425720.2 62.93 36.69 329.02 26625.38181304.09
21408.0 33.42 -21.05 -27.43 430220.1 63.12 36.84 329.46 26724.55182182.49
21576.0 33.41 -21.04 -27.43 434675.9 63.32 37.00 329.90 26823.04183058.94
21744.0 33.39 -21.02 -27.42 439087.9 63.51 37.15 330.32 26920.85183933.46
21912.0 33.37 -21.00 -27.42 443456.5 63.70 37.29 330.75 27018.00184806.06
22080.0 33.36 -20.99 -27.41 447782.8 63.88 37.44 331.17 27114.51185676.81
22248.0 33.34 -20.97 -27.41 452067.1 64.07 37.58 331.58 27210.39186545.72
22416.0 33.33 -20.96 -27.40 456309.8 64.25 37.72 331.99 27305.66187412.81
22584.0 33.31 -20.94 -27.40 460511.4 64.42 37.86 332.39 27400.31188278.11
22752.0 33.30 -20.93 -27.39 464672.0 64.60 38.00 332.79 27494.37189141.63
22920.0 33.28 -20.91 -27.38 468792.9 64.77 38.13 333.19 27587.86190003.41
23088.0 33.27 -20.90 -27.38 472874.1 64.94 38.26 333.58 27680.77190863.48
23256.0 33.26 -20.88 -27.37 476916.2 65.11 38.39 333.97 27773.12191721.85
23424.0 33.24 -20.86 -27.36 480919.6 65.27 38.52 334.35 27864.93192578.55
23544.0 33.23 -20.85 -27.36 483755.4 65.39 38.60 334.62 27930.17193189.46
  TOTAL ENERGY INPUT BTU
                                              0.775790E+10
                                       =
  SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
                                            0.196868E+10
                                                55413.56
                                                 14062.02
  AVERAGE LB. WATER PER LB. FUEL
                                       =
                                                     29.79
  SEASONAL LB. WATER PER LB. FUEL = 25.54
ENERGY FROM AIR TO ICE BTU = 0.295092E+10
  SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.954135E+09
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                              929798.03
                                                145995.52
  TOTAL WATER LOSS GAL
                                                 39605.91
  SEASONAL WATER LOSS GAL
                                       ==
```

YEAR 3 STANDBY OR WATER WITHDRAWAL

```
5033.00
BOILER WATER FLOW RATE 15m/hr
                                                   2000.00
WATER WITHDRAWAL GAL/DAY
                                                    15.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                     25.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                  23548.00
START WITHDRAWAL AT HOUR
          33.17 -20.87 -27.35 483395.8 65.39 38.58 334.72 27967.10193618.43
 23592.0
 23760.0 33.14 -20.93 -27.35 476512.0 65.18 38.28 335.06 28131.61195747.87
          33.16 -21.00 -27.34 469612.3 64.96 37.97 335.39 28296.59197876.38
 23728.0
          33.18 -21.06 -27.34 462745.2 64.75 37.66 335.73 28462.52200006.95
 24096.0
          33.20 -21.13 -27.34 455919.7 64.53 37.36 336.07 28629.35202138.64
 24264.0
          33.22 -21.20 -27.34 449135.3 64.31 37.05 336.42 28797.10204271.41
 24432.0
          33.24 -21.27 -27.35 442400.5 64.10 36.75 336.77 28965.71206404.29
 24600.0
          33.26 -21.34 -27.35 435706.9 63.87 36.44 337.13 29135.26208538.26
 24769.0
          33.29 -21.42 -27.36 429046.4 63.65 36.14 337.50 29305.81210674.28
 24936.0
 25104.0 33.31 -21.49 -27.37 422419.5 63.42 35.83 337.87 29477.39212812.37
 25272.0 33.33 -21.57 -27.38 415842.4 63.20 35.53 338.24 29649.90214950.66
 25440.0 33.36 -21.65 -27.39 409315.5 62.97 35.23 338.63 29823,33217088.91
 25608.0 33.38 -21.73 -27.40 402822.0 62.74 34.92 339.01 29997.80219229.06
 25776.0 33.40 -21.81 -27.42 396378.6 62.50 34.62 339.41 30173.23221369.14
 25944.0 33.43 -21.89 -27.44 389961.3 62.27 34.32 339.81 30349.79223512.11
 26112.0 33.46 -21.97 -27.46 383594.5 62.03 34.02 340.21 30527.33225655.00
 26280.0 33.48 -22.05 -27.48 377278.6 61.79 33.72 340.62 30705.86227797.81
 26448.0 33.51 -22.14 -27.50 371005.3 61.55 33.42 341.04 30885.46229941.52
 26520.0 33.52 -22.17 -27.51 368319.1 61.45 33.29 341.22 30962.84230861.78
   TOTAL ENERGY INPUT BTU
                                              0.870682E+10
                                         ==
                                         ===
   SEASONAL ENERGY INPUT BTU
                                              0.948923E+09
   TOTAL ENERGY INPUT GAL FUEL
                                         ==
                                                  62191.59
   SEASONAL ENERGY INPUT GAL FUEL
                                         =
                                                    6778.02
                                         ==
                                                      29.01
   AVERAGE LB. WATER PER LB. FUEL
  SEASONAL LB. WATER PER LB. FUEL = 22.61
ENERGY FROM AIR TO ICE BTU = 0.346599E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.515067E+09
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                               1176393.73
   SEASONAL WATER WITHDRAWN GAL
                                                 246595.71
                                         =
                                                  39605.91
   TOTAL WATER LOSS GAL
                                                       0.00
   SEASONAL WATER LOSS GAL
                              YEAR
                                    4
                       STANDBY OR WATER WITHDRAWAL
                                                   5033.00
BOILER WATER FLOW RATE 16m/hr
                                                    600.00
WATER WITHDRAWAL GAL/DAY
                                                     15.00
WITHDRAWAL FLOW RATE GAL/MIN
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                     25.00
                                               = 26544.00
START WITHDRAWAL AT HOUR
         33.64 -22.18 -27.52 369317.7 61.50 33.32 341.49 31032.18231537.80
 26616.0
          33.63 -22.18 -27.54 373943.8 61.71 33.51 341.97 31134.97232406.32
 26784 ...
          33.60 -22.19 -27.56 378528.7 61.92 33.69 342.44 31237.00233272.95
 26952.0
          33.58 -22.19 -27.58 383065.8 62.12 33.87 342.91 31338.25234137.48
 27120.0
          33.56 -22.19 -27.60 387555.2 62.32 34.05 343.37 31438.72234999.93
          33.54 -22.20 -27.62 391997.4 62.52 34.22 343.82 31538.44235860.31
 27624.0 33.52 -22.20 -27.64 396393.0 62.71 34.39 344.27 31637.42236718.66
 27792.0 33.50 -22.20 -27.66 400742.6 62.90 34.56 344.71 31735.68237575.02
 27960.0 33.48 -22.21 -27.67 405046.2 63.09 34.72 345.15 31833.23238429.38
```

```
28128.0 33.46 -22.21 -27.69 409305.2 63.28 34.88 345.58 31930.09239281.81
         33.44 -22.21 -27.71 413519.8 63.46 35.04 346.01 32026.28240132.32
28296.0
28464.0 33.42 -22.21 -27.72 417690.3 63.64 35.19 346.43 32121.81240980.93
28632.0 33.41 -22.21 -27.73 421817.4 63.81 35.35 346.85 32216.68241827.67
28800.0 33.39 -22.21 -27.75 425901.1 63.99 35.49 347.26 32310.92242672.56
28968.0 33.37 -22.21 -27.76 429942.7 64.16 35.64 347.67 32404.55243515.64
29136.0 33.36 -22.22 -27.77 433942.4 64.33 35.78 348.07 32497.56244356.93
29304.0 33.34 -22.22 -27.78 437900.6 64.49 35.92 348.47 32589.98245196.44
29472.0 33.33 -22.22 -27.80 441817.7 64.66 36.06 348.86 32681.81246034.20
29640.0 33.31 -22.22 -27.81 445693.8 64.82 36.20 349.25 32773.06246870.23
29808.0 33.30 -22.22 -27.82 449530.3 64.98 36.33 349.64 32863.76247704.57
29976.0 33.28 -22.21 -27.83 453318.8 65.14 36.46 350.02 32953.96248538.21
30144.0 33.27 -22.21 -27.84 457076.4 65.29 36.59 350.39 33043.56249369.21
30312.0 33.26 -22.21 -27.84 460795.3 65.44 36.71 350.77 33132.63250198.57
30480.0 33.24 -22.21 -27.85 464475.5 65.59 36.84 351.14 33221.18251026.31
30648.0 33.23 -22.21 -27.86 468118.2 65.74 36.96 351.50 33309.22251852.46
30816.0 33.22 -22.21 -27.87 471723.5 65.89 37.08 351.86 33396.76252677.04
30984.0 33.21 -22.21 -27.88 475291.7 66.03 37.19 352.22 33483.81253500.06
31152.0 33.19 -22.21 -27.88 478823.3 66.18 37.31 352.58 33570.37254321.55
31320.0 33.18 -22.21 -27.89 482318.3 66.32 37.42 352.93 33656.45255141.50
31488.0 33.17 -22.20 -27.90 485777.8 66.45 37.54 353.28 33742.07255959.98
31656.0 33.16 -22.20 -27.90 489202.0 66.59 37.64 353.62 33827.23256776.97
31824.0 33.15 -22.20 -27.91 492591.1 66.73 37.75 353.96 33911.94257592.50
31992.0 33.14 -22.20 -27.91 495945.6 66.86 37.86 354.30 33996.21258406.60
32160.0 33.13 -22.20 -27.92 499265.4 66.99 37.96 354.64 34080.04259219.25
32304.0 33.12 -22.19 -27.92 502084.4 67.10 38.05 354.92 34151.55259914.70
  TOTAL ENERGY INPUT BTU
                                            0.106783E+11
 SEASONAL ENERGY INPUT BTU
                                       =
                                            0.197147E+10
  TOTAL ENERGY INPUT GAL FUEL
                                                76273.51
 SEASONAL ENERGY INPUT GAL FUEL
                                                14081.92
 AVERAGE LB. WATER PER LB. FUEL
                                                   27.94
  SEASONAL LB. WATER PER LB. FUEL
                                                   23.21
 ENERGY FROM AIR TO ICE BTU
                                      ==
                                          0.451505E+10
 SEASONAL ENERGY LOSS, AIR TO ICE BTU =
                                           0.104906E+10
 TOTAL WATER WITHDRAWN GAL
                                            1322396.75
 SEASONAL WATER WITHDRAWN GAL
                                              146003.02
```

YEAR 4 STANDBY OR WATER WITHDRAWAL

39605.91

0.00

```
BOILER WATER FLOW RATE 1bm/hr = 5033.00
WATER WITHDRAWAL GAL/DAY = 2000.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 25.00
START WITHDRAWAL AT HOUR = 32328.00
```

TOTAL WATER LOSS GAL

SEASONAL WATER LOSS GAL

```
32328.0 33.12 -22.19 -27.92 502551.7 67.12 38.07 354.97 34163.44260030.51
32496.0 33.02 -22.27 -27.93 495063.5 66.88 37.76 355.26 34318.77262121.38
         33.04 -22.33 -27.93 487483.1 66.64 37.45 355.55 34474.19264210.08
32664.0
         33.07 -22.40 -27.94 479946.0 66.40 37.14 355.84 34630.62266301.07
32832.0
         33.09 -22.46 -27.95 472468.8 66.16 36.84 356.14 34787.96268392.40
33000.0
         33.11 -22.53 -27.96 465051.6 65.91 36.53 356.44 34946.22270484.06
33168.0
         33.13 -22.60 -27.97 457686.1 65.66 36.22 356.75 35105.47272577.01
33336.0
         33.15 -22.67 -27.99 450364.1 65.41 35.92 357.07 35265.78274672.23
33504.0
         33.18 -22.74 -28.00 443086.3 65.16 35.61 357.39 35427.16276769.73
33672.0
33840.0 33.20 -22.81 -28.01 435868.9 64.91 35.30 357.71 35589.53278867.53
34008.0 33.22 -22.88 -28.03 428712.1 64.65 35.00 358.05 35752.86280965.62
```

```
      34176.0
      33.25
      -22.95
      -28.05
      421599.5
      64.39
      34.69
      358.38
      35917.34283065.96

      34344.0
      33.27
      -23.03
      -28.07
      414547.3
      64.13
      34.39
      358.73
      36082.82285166.56

      34512.0
      33.30
      -23.10
      -28.09
      407531.9
      63.87
      34.09
      359.08
      36249.52287270.39

      34680.0
      33.33
      -23.18
      -28.11
      400577.5
      63.61
      33.78
      359.43
      36417.26289374.48

      34848.0
      33.35
      -23.25
      -28.13
      393684.5
      63.34
      33.48
      359.90
      36586.06291478.83

      35016.0
      33.36
      -23.33
      -28.15
      3868444.7
      63.08
      33.18
      360.17
      36756.00293584.40

      35184.0
      33.41
      -23.41
      -28.17
      380057.8
      62.81
      32.88
      360.54
      36927.10295691.18

      35280.0
      33.43
      -23.45
      -28.19
      376190.0
      62.65
      32.70
      360.76
      37025.50296897.30
```

SEASONAL ENERGY INPUT BTU =
SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
AVERAGE LB. WATER PER LB. FUEL =
SEASONAL LB. WATER PER LB. FUEL = 0.116286E+11 0.950332E+09 83061.60 6788.08 AVERAGE LB. WATER PER LB. FUEL = SEASONAL LB. WATER PER LB. FUEL = ENERGY FROM AIR TO ICE BTU = 27.35 20.78 0.506604E+10 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.550991E+09 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = 1568999.96 246603.21 39605.91 0.00 SEASONAL WATER LOSS GAL

YEAR 5 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr = 5033.00
WATER WITHDRAWAL GAL/DAY = 600.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 25.00
START WITHDRAWAL AT HOUR = 35304.00

35352.0 33.54 -23.46 -28.20 376320.5 62.66 32.71 360.94 37077.04297433.20 35520.0 33.54 -23.46 -28.22 380449.6 62.84 32.87 361.37 37173.03298262.55 35488.0 33.52 -23.47 -28.24 384555.1 63.02 33.04 361.81 37268.49299090.76 35856.0 33.50 -23.48 -28.27 388616.5 63.20 33.20 362.23 37363.29299917.19 36024.0 33.48 -23.49 -28.29 392634.2 63.37 33.36 362.66 37457.43300741.84 24192.0 33.46 -23.50 -28.31 396608.6 63.54 33.52 363.07 37550.93301564.76 36360.0 33.44 -23.51 -28.33 400540.2 63.71 33.68 363.49 37643.81302385.95 36528.0 33.43 -23.51 -28.35 404429.1 63.87 33.83 363.89 37736.06303205.43 36696.0 33.41 -23.52 -28.37 408276.5 64.03 33.98 364.30 37827.72304023.25 36864.0 33.39 -23.53 -28.39 412082.6 64.19 34.12 364.70 37918.79304839.41 37032.0 33.38 -23.54 -28.41 415839.5 64.35 34.26 365.09 38009.33305654.92 37200.0 33.36 -23.54 -28.43 419563.9 64.51 34.40 365.48 38099.26306467.83 37368.0 33.35 -23.55 -28.44 423248.1 64.66 34.54 365.87 38188.62307279.14 37536.0 33.33 -23.56 -28.46 426893.1 64.81 34.68 366.25 38277.44308088.90 37704.0 33.32 -23.56 -28.48 430498.8 64.96 34.81 366.62 38365.73308897.09 37872.0 33.30 -23.57 -28.50 434065.8 65.11 34.94 367.00 38453.49309703.76 38040.0 33.29 -23.58 -28.51 437594.4 65.25 35.07 367.37 38540.74310508.92 38208.0 33.27 -23.58 -28.53 441084.7 65.40 35.19 367.73 38627.48311312.56 38376.0 33.26 -23.59 -28.54 444537.9 65.54 35.32 368.10 38713.72312114.75 38544.0 33.25 -23.60 -28.56 447954.0 65.67 35.44 368.45 38799.48312915.47 38712.0 33.24 -23.60 -28.57 451333.4 65.81 35.56 368.81 38884.76313714.76 3880.0 33.22 -23.61 -28.59 454676.4 65.95 35.68 369.16 38969.57314512.62 37048.0 33.21 -23.61 -28.60 457983.2 66.08 35.79 369.51 39053.92315309.07 39216.0 33.20 -23.62 -28.61 461254.9 66.21 35.90 369.85 39137.82316104.15 39384.0 33.19 -23.62 -28.63 464491.4 66.34 36.02 370.19 39221.27316897.86 39552.0 33.18 -23.63 -28.64 467693.2 66.47 36.12 370.53 39304.28317690.21 39720.0 33.17 -23.63 -28.65 470860.6 66.59 36.23 370.87 39386.87318481.22 39888.0 33.15 -23.64 -28.67 473993.6 66.72 36.34 371.20 39469.03319270.91 40056.0 33.14 -23.64 -28.68 477093.3 66.84 36.44 371.53 39550.77320059.30

```
40224.0 33.13 -23.65 -28.69 480159.8 66.96 36.54 371.85 39632.11320846.40
 40392.0 33.12 -23.65 -28.70 483193.3 67.08 36.64 372.18 39713.05321632.23
 40560.0 33.11 -23.65 -28.71 486186.3 67.20 36.74 372.50 39793.65322417.80
 40728.0 33.10 -23.66 -28.72 489154.3 67.31 36.84 372.82 39873.80323201.10
 40896.0 33.09 -23.66 -28.74 492091.3 67.43 36.93 373.13 39953.57323983.20
 41064.0 33.09 -23.67 -28.75 494996.7 67.54 37.03 373.44 40032.97324764.09
 41064.0 33.09 -23.67 -28.75 494996.7 67.54 37.03 373.44 40032.97324764.09
   TOTAL ENERGY INPUT BIU
                                                        0.136017E+11
   SEASONAL ENERGY INPUT BTU = 0.13601/E+11
SEASONAL ENERGY INPUT BTU = 0.197310E+10
TOTAL ENERGY INPUT GAL FUEL = 97155.15
SEASONAL ENERGY INPUT GAL FUEL = 14093.55
AVERAGE LB. WATER PER LB. FUEL = 26.57
SEASONAL LB. WATER PER LB. FUEL = 21.95
ENERGY FROM AIR TO ICE BTU = 0.616602E+10
   SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.109998E+10
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = SEASONAL WATER LOSS GAL =
                                                         1715010.47
                                                           146010.52
                                                            39605.91
                                                               0.00
                                   YEAR 5
                            STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                            5033.00
WATER WITHDRAWAL GAL/DAY
                                                        = 2000.00
WITHDRAWAL FLOW RATE GAL/MIN
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 25.00
                                                       = 41088.00
START WITHDRAWAL AT HOUR
 41232.0 32.99 -23.73 -28.76 488677.0 67.33 36.78 373.72 40173.82326644.92
 41400.0 33.01 -23.79 -28.77 480711.0 67.07 36.47 373.99 40324.94328707.09
 41568.0 33.03 -23.86 -28.78 472812.6 66.80 36.15 374.26 40477.04330769.77
 41736.0 33.05 -23.92 -28.79 464983.0 66.53 35.84 374.54 40630.13332832.96
 41904.0 33.08 -23.98 -28.81 457213.9 66.26 35.53 374.83 40784.28334897.65
 42072.0 33.10 -24.05 -28.82 449505.5 65.99 35.22 375.12 40939.51336963.82
 42240.0 33.13 -24.12 -28.84 441841.8 65.72 34.91 375.41 41095.95339033.46
 42408.0 33.15 -24.18 -28.86 434247.3 65.44 34.60 375.72 41253.43341103.58
 42576.0 33.18 -24.25 -28.88 426722.3 65.17 34.29 376.03 41411.98343174.19
 42744.0 33.20 -24.32 -28.89 419250.2 64.89 33.98 376.34 41571.73345247.23
 42912.0 33.23 -24.39 -28.91 411847.4 64.60 33.67 376.66 41732.57347320.73
 43080.0 33.26 -24.46 -28.93 404490.2 64.32 33.36 376.99 41894.71349397.66
 43248.0 33.29 -24.53 -28.95 397202.9 64.03 33.05 377.33 42057.97351475.04
 43416.0 33.32 -24.60 -28.97 389985.7 63.75 32.75 377.67 42222.39353552.86
 43584.0 33.35 -24.67 -29.00 382830.5 63.46 32.44 378.02 42388.03355632.09
 43752.0 33.38 -24.74 -29.02 375737.1 63.16 32.14 378.37 42554.91357712.73
 43920.0 33.41 -24.81 -29.04 368690.1 62.87 31.83 378.74 42723.17359796.74
 44040.0 33.43 -24.87 -29.06 363705.4 62.66 31.61 379.00 42844.07361284.91
  TOTAL ENERGY INPUT BTU = 0.145523E+11
SEASONAL ENERGY INPUT BTU = 0.950602E+09
TOTAL ENERGY INPUT GAL FUEL = 103945.16
SEASONAL ENERGY INPUT GAL FUEL = 6790.01
AVERAGE LB. WATER PER LB. FUEL = 26.13
SEASONAL LB. WATER PER LB. FUEL = 19.84
ENERGY FROM AIR TO ICE BTU = 0.673504E+10
SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.569013E+09
TOTAL MATER MITTHREAWN GAL = 1961606.18
   TOTAL WATER WITHDRAWN GAL = 1961606.18
SEASONAL WATER WITHDRAWN GAL = 246595.71
                                                =
   TOTAL WATER LOSS GAL
```

39605.71

```
5033.00
BOILER WATER FLOW RATE 15m/hr
                                                                                                     600.00
WATER WITHDRAWAL GAL/DAY
                                                                                                       15.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                                                                         25.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                                                        = 44064.00
START WITHDRAWAL AT HOUR
  44088.0 33.52 -24.87 -29.07 363204.0 62.63 31.59 379.11 42881.26361695.84
  44256.0 33.55 -24.88 -29.09 367085.7 62.80 31.76 379.54 42974.37362497.67
  44424.0 33.53 -24.89 -29.12 370973.7 62.97 31.92 379.96 43067.19363299.34
                    33.51 -24.90 -29.14 374819.1 63.14 32.08 380.38 43159.38364099.40
  44592.0
                    33.49 -24.91 -29.16 378622.3 63.30 32.24 380.79 43250.96364897.87
  44760.0
  44925.0 33.48 -24.92 -29.18 382383.7 63.46 32.40 381.20 43341.93365694.78
  45096.0 33.46 -24.93 -29.21 386103.4 63.62 32.55 381.61 43432.30366490.12 45264.0 33.44 -24.94 -29.23 389782.5 63.77 32.70 382.00 43522.09367283.95 45432.0 33.42 -24.95 -29.25 393421.1 63.93 32.85 382.40 43611.32368076.27
  45600.0 33.41 -24.96 -29.27 397019.6 64.08 32.99 382.79 43699.98368867.10
  45768.0 33.39 -24.97 -29.29 400578.5 64.23 33.14 383.18 43788.10369656.46
  45936.0 33.37 -24.98 -29.31 404097.8 64.37 33.27 383.56 43875.68370444.35
  46104.0 33.36 -24.99 -29.33 407578.6 64.52 33.41 383.93 43962.74371230.82
  46272.0 33.34 -25.00 -29.35 411021.0 64.66 33.54 384.31 44049.28372015.87
  46440.0 33.33 -25.01 -29.37 414425.4 64.80 33.68 384.68 44135.31372799.53
  46608.0 33.32 -25.02 -29.39 417792.2 64.94 33.81 385.04 44220.85373581.80
  46776.0 33.30 -25.03 -29.40 421121.5 65.08 33.93 385.41 44305.89374362.69
  46744.0 33.29 -25.03 -29.42 424414.3 65.21 34.06 385.77 44390.46375142.25
  47112.0 33.27 -25.04 -29.44 427670.8 65.34 34.18 386.12 44474.56375920.47
  47280.0 33.26 -25.05 -29.46 430891.2 65.47 34.30 386.47 44558.20376697.38
  47448.0 33.25 -25.06 -29.48 434075.9 65.60 34.42 386.82 44641.38377472.99 47616.0 33.24 -25.07 -29.49 437225.1 65.73 34.53 387.16 44724.12378247.31

      47616.0
      33.24 -25.07 -29.49
      437225.1
      65.73
      34.53
      387.16
      44724.12378247.31

      47784.0
      33.22 -25.08 -29.51
      440339.7
      65.85
      34.65
      387.51
      44806.42379020.36

      47952.0
      33.21 -25.08 -29.52
      443419.8
      65.98
      34.76
      387.84
      44888.29379792.17

      48120.0
      33.20 -25.09 -29.54
      446465.8
      66.10
      34.87
      388.18
      44969.74380562.74

      48288.0
      33.19 -25.10 -29.56
      449478.0
      66.22
      34.98
      388.51
      45050.77381332.08

      48456.0
      33.18 -25.11 -29.57
      452456.5
      66.34
      35.08
      388.84
      45131.40382100.21

      48792.0
      33.16 -25.12 -29.59
      455402.2
      66.45
      35.19
      389.17
      45211.62382867.16

      48792.0
      33.16 -25.12 -29.60
      458315.2
      66.57
      35.29
      389.49
      45291.45383632.92

      48960.0
      33.14 -25.14 -29.63
      464044.5
      66.79
      35.49
      390.13
      45449.95385160.97

      49296.0
      33.13 -25.15 -29.65
      466861.1
      66.71
      35.59
      390.44
      45528.64385923.27

      49464.0
      33.12 -25.15
     TOTAL ENERGY INPUT BTU = 0.165251E+11
SEASONAL ENERGY INPUT BTU = 0.197282E+10
TOTAL ENERGY INPUT GAL FUEL = 118036.71
SEASONAL ENERGY INPUT GAL FUEL = 14091.55
AVERAGE LB. WATER PER LB. FUEL = 25.56
SEASONAL LB. WATER PER LB. FUEL = 21.38
ENERGY FROM AIR TO ICE BTU = 0.785782E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.112278E+10
TOTAL WATER WITHDRAWN GAL = 2107601.69
SEASONAL WATER WITHDRAWN GAL = 39605.91
SEASONAL WATER LOSS GAL = 0.00
```

YEAR 6 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr WATER WITHDRAWAL GAL/DAY	= 5033.00 = 2000.00
	= 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	
ATAMA	= 49848.00
49968.0 32.99 -25.22 -29.70 470170.1 67.06 350136.0 33.02 -25.28 -29.71 462030.5 66.78 350304.0 33.04 -25.34 -29.73 453964.9 66.49 350472.0 33.07 -25.40 -29.75 445967.2 66.20 350640.0 33.09 -25.46 -29.76 438037.5 65.91 350808.0 33.12 -25.53 -29.78 430160.1 65.62 350976.0 33.15 -25.59 -29.80 422359.2 65.32	35.36 391.91 46041.39391923.60 35.04 392.18 46192.11393965.99 34.72 392.45 46343.97396009.97 34.41 392.74 46496.98398055.53 34.09 393.02 46651.27400104.66
51144.0 33.18 -25.65 -29.81 414635.2 65.03	33.46 393.62 46963.25404204.65
51312.0 33.20 -25.72 -29.83 406971.5 64.73 3 51480.0 33.23 -25.78 -29.85 399384.6 64.43 3	33.14
51648.0 33.26 -25.85 -29.87 391850.6 64.13	
51816.0 33.30 -25.91 -29.89 384393.9 63.82	
51984.0 33.33 -25.98 -29.91 377006.4 63.51	
- 52152.0 33.36 -26.05 -29.94 369696.6 63.20 3 52320.0 33.40 -26.11 -29.96 362 455.9 62.89 3	
52488.0 33.43 -26.18 -29.98 355268.9 62.57	
52656.0 33.47 -26.25 -30.00 348160.2 62.26 3	
52800.0 33.50 -26.31 -30.02 342132.7 61.98	
TOTAL ENERGY INPUT BTU = SEASONAL ENERGY INPUT BTU = TOTAL ENERGY INPUT GAL FUEL = SEASONAL ENERGY INPUT GAL FUEL = AVERAGE LB. WATER PER LB. FUEL = SEASONAL LB. WATER PER LB. FUEL = ENERGY FROM AIR TO ICE BTU = SEASONAL ENERGY LOSS, AIR TO ICE BTU = TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = SEASONAL WATER LOSS GAL = SEASONAL WATER LOSS GAL =	0.174754E+11 0.950215E+09 124823.96 6787.25 25.23 19.49 0.843320E+10 0.575382E+09 2354197.40 246595.71 39605.91 0.00
YEAR 7	
STANDBY OR WATER WITHDR	RAWAL
BOILER WATER FLOW RATE 1bm/hr WATER WITHDRAWAL GAL/DAY WITHDRAWAL FLOW RATE GAL/MIN CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F START WITHDRAWAL AT HOUR	= 5033.00 = 600.00 = 15.00 = 25.00 = 52824.00

52824.0 33.50 -26.32 -30.03 341129.0 61.94 30.34 397.01 48599.51424799.14 52992.0 33.63 -26.32 -30.05 344896.5 62.10 30.52 397.44 48691.66425579.03 53160.0 33.60 -26.33 -30.08 348737.2 62.27 30.69 397.87 48783.98426360.57 53328.0 33.58 -26.34 -30.10 352535.4 62.44 30.86 398.30 48875.67427140.62 53496.0 33.56 -26.36 -30.12 356291.1 62.60 31.02 398.72 48966.73427919.18 53664.0 33.54 -26.37 -30.14 360004.4 62.76 31.19 399.13 49057.17428696.26 53832.0 33.52 -26.38 -30.17 363676.5 62.92 31.35 399.54 49147.02429471.90 54000.0 33.50 -26.39 -30.19 367307.5 63.08 31.50 399.95 49236.28430246.12 54168.0 33.48 -26.40 -30.21 370897.8 63.23 31.66 400.35 49324.96431018.

```
54336.0 33.47 -26.41 -30.23 374447.8 63.38 31.81 400.74 49413.08431790.32
54504.0 33.45 -26.42 -30.25 377957.5 63.53 31.96 401.14 49500.65432560.34
54672.0 33.43 -26.43 -30.27 381428.1 63.68 32.10 401.52 49587.67433329.01
54840.0 33.42 -26.44 -30.29 384859.7 63.82 32.24 401.91 49674.17434096.33
55008.0 33.40 -26.45 -30.31 388252.6 63.96 32.38 402.28 49760.14434862.33
55176.0 33.38 -26.46 -30.33 391607.2 64.10 32.52 402.66 49845.60435627.02
55344.0 33.37 -26.47 -30.35 394923.7 64.24 32.65 403.03 49930.56436390.40
55512.0 33.35 -26.48 -30.37 398203.0 64.38 32.79 403.40 50015.03437152.52
        33.34 -26.49 -30.39 401445.3 64.51 32.92 403.76 50099.02437913.37
55680.0
        33.32 -26.50 -30.41 404651.0 64.64 33.04 404.12 50182.53438672.98
55848.0
        33.31 -26.50 -30.43 407820.4 64.77 33.17 404.47 50265.58439431.36
56016.0
        33.30 -26.51 -30.44 410953.5 64.90 33.29 404.83 50348.17440188.51
56184.0
        33.28 -26.52 -30.46 414043.2 65.03 33.41 405.18 50430.38440945.46
56352.0
56520.0 33.27 -26.53 -30.48 417106.1 65.15 33.53 405.52 50512.08441700.23
56688.0 33.26 -26.54 -30.50 420134.2 65.28 33.65 405.86 50593.36442453.84
56856.0 33.24 -26.55 -30.51 423128.0 65.40 33.76 406.20 50674.21443206.29
57024.0 33.23 -26.56 -30.53 426087.4 65.52 33.87 406.54 50754.64443957.58
57192.0 33.22 -26.57 -30.55 429013.5 65.63 33.98 406.87 50834.66444707.75
57360.0 33.21 -26.58 -30.56 431906.2 65.75 34.09 407.20 50914.28445456.81
57528.0 33.20 -26.59 -30.58 434766.1 65.86 34.20 407.53 50993.51446204.77
57696.0 33.19 -26.59 -30.60 437593.3 65.98 34.30 407.85 51072.35446951.63
57864.0 33.18 -26.60 -30.61 440387.9 66.09 34.41 408.17 51150.80447697.41
58032.0 33.16 -26.61 -30.63 443151.0 66.20 34.51 408.49 51228.88448442.14
58200.0 33.15 -26.62 -30.64 445882.4 66.31 34.61 408.80 51306.59449185.82
58368.0 33.14 -26.63 -30.66 448582.7 66.41 34.70 409.12 51383.94449928.46
58536.0 33.13 -26.64 -30.67 451252.1 66.52 34.80 409.43 51460.93450670.07
58584.0 33.13 -26.64 -30.68 452009.0 66.55 34.83 409.51 51482.86450881.77
```

TOTAL ENERGY INPUT BTU	=	0.194468E+11
SEASONAL ENERGY INPUT BTU	=	0.197144E+10
TOTAL ENERGY INPUT GAL FUEL	=	138905.67
SEASONAL ENERGY INPUT GAL FUEL	=	14081.71
AVERAGE LB. WATER PER LB. FUEL	=	24.83
SEASONAL LB. WATER PER LB. FUEL	=	21.23
ENERGY FROM AIR TO ICE BTU	=	0.956088E+10
SEASONAL ENERGY LOSS, AIR TO ICE	BTU =	0.112768E+10
TOTAL WATER WITHDRAWN GAL	=	2500200.42
SEASONAL WATER WITHDRAWN GAL	=	146003.02
TOTAL WATER LOSS GAL	=	39605.91
SEASONAL WATER LOSS GAL	==	0.00

BOILER WATER FLOW RATE 1bm/hr

YEAR 7 STANDBY OR WATER WITHDRAWAL

= 5033.00

WATER WITH WITHDRAWAL CONVECTIVE START WITH	_ FLOW E COEFF	RATE GA	AL/MIN R=30 F	「BTU/HR−F		=	2000.00 15.00 25.00 8608.00	
58704.0	33.03	-26.68	-30.69	447784.7	66.40	34.66	409.71	51579.78452149.44
58872.0	33.05	-26.74	-30.70	439595.8	66.10	34.34	409.98	51729.62454175.32
59040.0	33.08	-26.80	-30.72	431467.8	65.79	34.01	410.25	51880.68456203.67
59208.0	33.11	-26.85	-30.74	423422.1	65.49	33.69	410.52	52032.90458232.64
59376.0	33.13	-26.91	-30.75	415434.8	65.18	33.37	410.81	52186.47460265.19
59544.0	33.16	-26.97	-30.77	407530.1	64.87	33.04	411.10	52341.24462298.34
59712.0	33.19	-27.03	-30.79	399708.4	64.56	32.72	411.40	52497.21464332.09
59880.0	33.23	-27.09	-30.81	391953.0	64.25	32.40	411.70	52654.54466368.39

60048.0 33.26 -27.15 +30.83 384280.4 63.93 32.08 412.01 52813.11468405.25 60216.0 33.29 -27.22 -30.85 376666.7 63.61 31.76 412.33 52973.14470445.64

```
      60384.0
      33.33
      -27.28
      -30.87
      369136.3
      63.27
      31.45
      412.66
      53134.46472486.58
      60552.0
      33.36
      -27.34
      -30.89
      361681.1
      62.97
      31.13
      413.00
      53297.15474529.04
      60720.0
      33.40
      -27.40
      -30.91
      354309.5
      62.64
      30.81
      413.34
      53461.18476572.04
      60888.0
      33.44
      -27.46
      -30.93
      347013.0
      62.31
      30.50
      413.69
      53626.63478616.52
      61056.0
      33.47
      -27.53
      -30.95
      339776.0
      61.98
      30.18
      414.05
      53793.64480664.48
      61224.0
      33.51
      -27.59
      -30.97
      332623.2
      61.65
      29.87
      414.42
      53962.05482712.93
      61392.0
      33.55
      -27.66
      -30.99
      325553.8
      61.31
      29.55
      414.80
      54131.90484761.84
      61560.0
      33.59
      -27.72
      -31.02
      318560.7
      60.97
      29.24
      415.19
      54303.26486812.21
```

SEASONAL ENERGY INPUT BTU =
SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
AVERAGE LB. WATER PER LB. FUEL =
SEASONAL LB. WATER PER LB. FUEL = 0.203963E+11 0.949462E+09 145687.54 6781.87 AVERAGE LB. WATER PER LB. FUEL = 24.58
SEASONAL LB. WATER PER LB. FUEL = 19.49
ENERGY FROM AIR TO ICE BTU = 0.101356E+11 SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.574678E+09 TOTAL WATER WITHDRAWN GAL = 2746803.62 SEASONAL WATER WITHDRAWN GAL 246603.21 = 39605.91 TOTAL WATER LOSS GAL 0.00 SEASONAL WATER LOSS GAL

YEAR 8 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr = 5033.00
WATER WITHDRAWAL GAL/DAY = 600.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 25.00
START WITHDRAWAL AT HOUR = 61584.00

61728.0 33.73 -27.73 -31.04 320824.4 61.07 29.35 415.62 54407.27487759.23 61896.0 33.71 -27.74 -31.06 324717.6 61.24 29.54 416.07 54500.15488523.65 62064.0 33.68 -27.75 -31.09 328567.1 61.42 29.72 416.51 54592.36489286.64 62232.0 33.66 -27.76 -31.11 332372.5 61.59 29.90 416.94 54683.91490048.19 62400.0 33.63 -27.77 -31.13 336135.0 61.75 30.08 417.37 54774.82490808.36 62568.0 33.61 -27.78 -31.15 339854.7 61.92 30.25 417.80 54865.10491567.14 62736.0 33.59 -27.79 -31.17 343532.0 62.08 30.41 418.22 54954.76492324.54 62904.0 33.57 -27.80 -31.20 347167.3 62.24 30.58 418.63 55043.82493080.60 63072.0 33.55 -27.81 -31.22 350760.6 62.40 30.74 419.04 55132.29493835.32 63240.0 33.53 -27.82 -31.24 354313.2 62.55 30.90 419.44 55220.17494588.73 63408.0 33.51 -27.83 -31.26 357816.8 62.70 31.05 419.84 55307.56495341.82 63576.0 33.49 -27.84 -31.28 361288.5 62.85 31.21 420.24 55394.32496092.64 63744.0 33.47 -27.85 -31.30 364720.3 63.00 31.35 420.63 55480.55496842.20 63912.0 33.46 -27.86 -31.32 368112.3 63.15 31.50 421.01 55566.23497590.50 64080.0 33.44 -27.87 -31.34 371465.6 63.29 31.64 421.39 55651.40498337.57 64248.0 33.42 -27.88 -31.35 374780.3 63.43 31.78 421.77 55736.06499083.43 64416.0 33.41 -27.89 -31.37 378056.7 63.57 31.92 422.15 55820.21499828.07 64584.0 33.39 -27.90 -31.39 381295.4 63.71 32.06 422.51 55903.87500571.53 64752.0 33.38 -27.91 -31.41 384496.2 63.84 32.19 422.88 55987.04501313.81 33.36 -27.92 -31.43 387660.4 63.97 32.32 423.24 56069.74502054.93 33.35 -27.93 -31.45 390788.0 64.10 32.45 423.60 56151.98502794.91 64920.0 65088.0 33.33 -27.93 -31.46 393879.4 64.23 32.58 423.95 56233.76503533.76 65256.0 65424.0 33.32 -27.94 -31.48 396934.8 64.36 32.70 424.30 56315.10504271.49 65592.0 33.30 -27.95 -31.50 399954.5 64.49 32.82 424.65 56395.99505008.11 65760.0 33.29 -27.96 -31.52 402939.5 64.61 32.94 425.00 56476.45505743.65 65928.0 33.28 -27.97 -31.53 405889.7 64.73 33.06 425.34 56556.49506478.11 65095.0 33.26 -27.98 -31.55 408805.7 64.85 33.17 425.67 56636.11507211.52 66264.0 33.25 -27.99 -31.57 411687.6 64.97 33.28 426.01 56715.32507943.87

```
66432.0 33.24 -28.00 -31.58 414535.6 65.08 33.39 426.34 56794.13508675.17
 66600.0 33.23 -28.00 -31.60 417350.7 65.20 33.50 426.67 56872.55509405.47
 66768.0 33.22 -28.01 -31.62 420133.0 65.31 33.61 426.99 56950,57510134.75
 66936.0 33.20 -28.02 -31.63 422874.5 65.42 33.71 427.31 57028.28510864.02
 67104.0 33.19 -28.03 -31.65 425592.0 65.53 33.82 427.63 57105.55511591.31
 67272.0 33.18 -28.04 -31.66 428277.5 65.64 33.92 427.95 57182.46512317.62
 67344.0 33.18 -28.04 -31.67 429419.1 65.69 33.96 428.09 57215.31512628.61
                                                 0.223658E+11
   TOTAL ENERGY INPUT BTU
                                          =
                                                0.196953E+10
   SEASONAL ENERGY INPUT BTU
                                                 159755.61
   TOTAL ENERGY INPUT GAL FUEL
                                          =
                                                    14068.07
   SEASONAL ENERGY INPUT GAL FUEL
                                          =
                                          =
   AVERAGE LB. WATER FER LB. FUEL
                                                         24.29
   SEASONAL LB. WATER PER LB. FUEL = 21.33
ENERGY FROM AIR TO ICE BTU = 0.112580E+11
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.112244E+10
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                 2892814.14
                                                   146010.52
                                                    39605.91
   TOTAL WATER LOSS GAL
                                                         0.00
   SEASONAL WATER LOSS GAL
                               YEAR 8
                        STANDBY OR WATER WITHDRAWAL
                                                     5033.00
BOILER WATER FLOW RATE 1bm/hr
                                                     2000.00
WATER WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE SAL/MIN
                                                      15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                        25.00
                                                = 67368.00
START WITHDRAWAL AT HOUR
 67440.0 33.07 -28.07 -31.68 426374.0 65.57 33.84 428.25 57291.26513598.43
 67608.0 33.09 -28.13 -31.69 418189.3 65.26 33.51 428.52 57442.10515612.37
 67776.0 33.12 -28.18 -31.71 410081.2 64.94 33.18 428.79 57594.08517626.62
 67944.0 33.15 -28.24 -31.73 402036.3 64.62 32.85 429.08 57747.46519644.42
 68112.0 33.18 -28.30 -31.74 394078.8 64.30 32.52 429.37 57902.09521662.78
 68280.0 33.22 -28.35 -31.76 386209.0 63.98 32.19 429.66 58057.99523681.68
 68448.0 33.25 -28.41 -31.78 378418.6 63.66 31.87 429.97 58215.23525702.11
 68616.0 33.29 -28.46 -31.80 370707.3 63.33 31.54 430.28 58373.84527724.03
 68784.0 33.32 -28.52 -31.82 363059.7 63.00 31.21 430.60 58533.96529749.44
 68952.0 33.36 -28.58 -31.83 355500.0 62.67 30.89 430.93 58695.43531775.35
 69120.0 33.40 -28.64 -31.85 348020.2 62.33 30.57 431.27 58858 34533802.74
 69288.0 33.44 -28.70 -31.87 340628.7 61.99 30.24 431.62 59022.65535830.60
 69456.0 33.48 -28.76 -31.89 333316.8 61.65 29.92 431.97 59188.44537859.90
 69624.0 33.52 -28.81 -31.91 326069.1 61.31 29.60 432.33 59355.86539892.62
 69792.0 33.56 -28.87 -31.94 318901.8 60.96 29.28 432.71 59524.82541926.76
 69960.0 33.60 -28.93 -31.96 311830.9 60.61 28.96 433.09 59695.22543960.32
 70128.0 33.65 -28.99 -31.98 304840.7 60.26 28.64 433.48 59867.22545995.29
 70296.0 33.37 -29.07 -32.00 298213.3 59.92 28.34 433.90 60042.76548038.03
 70320.0 33.36 -29.08 -32.00 297258.3 59.87 28.30 433.96 60067.92548330.13
                                                0.233145E+11
   TOTAL ENERGY INPUT BTU
   SEASONAL ENERGY INPUT BTU
                                          =
                                                0.948675E+09
   TOTAL ENERGY INPUT GAL FUEL
                                          =
                                                   166531.87
   SEASONAL ENERGY INPUT GAL FUEL
                                                       6776.25
   AVERAGE LB. WATER PER LB. FUEL = 24.11
SEASONAL LB. WATER PER LB. FUEL = 19.73
ENERGY FROM AIR TO ICE BTU = 0.118283E+11
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.570353E+09
TOTAL WATER WITHDRAWN GAL = 3139417.34
SEASONAL WATER WITHDRAWN GAL = 246603.21
```

TOTAL WATER LOSS GAL SEASONAL WATER LOSS GAL = 39605.**91** 0.00

YEAR 9 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 1bm/hr
                                                           5033.00
WATER WITHDRAWAL GAL/DAY
                                                            600.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                              15.00
                                                             32.50
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
START WITHDRAWAL AT HOUR
                                                      = 70344.00
 70464.0 33.45 -29.09 -32.02 299211.7 59.96 28.40 434.36 60160.69549158.15
 70632.0 33.81 -29.08 -32.05 302975.6 60.13 28.59 434.81 60252.85549901.18
 70800.0 33.79 -29.09 -32.07 306915.5 60.31 28.79 435.27 60345.84550647.85
 70968.0 33.76 -29.10 -32.09 310813.4 60.49 28.98 435.72 60438.14551393.24
 71136.0 33.74 -29.11 -32.11 314666.3 60.67 29.17 436.17 60529.76552137.27
 71304.0 33.71 -29.12 -32.13 318474.4 60.85 29.35 436.61 60620.70552879.98
 71472.0 33.69 -29.13 -32.15 322238.2 61.02 29.53 437.05 60710.99553621.36
 71640.0 33.66 -29.13 -32.17 325957.9 61.19 29.71 437.47 60800.64554361.44
 71808.0 33.64 -29.14 -32.19 329634.5 61.35 29.88 437.90 60889.66555100.24
 71976.0 33.62 -29.15 -32.21 333268.3 61.52 30.05 438.32 60978.07555837.78
 72144.0 33.60 -29.16 -32.23 336859.6 61.68 30.22 438.73 61065.87556574.07
 72312.0 33.57 -29.17 -32.25 340408.8 61.83 30.38 439.14 61153.09557309.13
 72480.0 33.55 -29.18 -32.27 343916.0 61.99 30.54 439.54 61239.74558042.96
 72648.0 33.53 -29.19 -32.29 347382.5 62.14 30.70 439.94 61325.82558775.60
 72816.0 33.51 -29.20 -32.31 350808.2 62.29 30.85 440.33 61411.35559507.05
 72984.0 33.50 -29.20 -32.33 354193.7 62.44 31.00 440.72 61496.34560237.34
73152.0 33.48 -29.21 -32.34 357539.2 62.59 31.15 441.11 61580.80560966.47
 73320.0 33.46 -29.22 -32.36 360845.0 62.73 31.29 441.49 61664.74561694.45
 73488.0 33.44 -29.23 -32.38 364112.1 62.87 31.43 441.87 61748.18562421.32
73656.0 33.43 -29.24 -32.40 367340.6 63.01 31.57 442.24 61831.12563147.07
73824.0 33.41 -29.25 -32.42 370531.0 63.15 31.71 442.61 61913.57563871.73
73992.0 33.39 -29.25 -32.43 373683.5 63.28 31.84 442.97 61995.54564595.31
74160.0 33.38 -29.26 -32.45 376798.4 63.41 31.97 443.33 62077.05565317.81
74328.0 33.36 -29.27 -32.47 379876.7 63.54 32.10 443.69 62158.09566039.27
74496.0 33.35 -29.28 -32.48 382918.4 63.67 32.23 444.04 62238.68566759.68
74496.0 33.35 -29.28 -32.48 382918.4 63.67 32.23 444.04 62238.68566759.68 74664.0 33.33 -29.29 -32.50 385924.0 63.80 32.35 444.39 62318.83567479.07 74832.0 33.32 -29.30 -32.52 388893.9 63.93 32.47 444.74 62398.55568197.44 75000.0 33.31 -29.30 -32.53 391828.0 64.05 32.59 445.08 62477.84568914.80 75168.0 33.29 -29.31 -32.55 394727.5 64.17 32.71 445.42 62556 71569631.19
75336.0 33.28 -29.32 -32.57 397592.5 64.29 32.83 445.75 62635.17570346.59
75504.0 33.27 -29.33 -32.58 400423.2 64.41 32.94 446.09 62713.23571061.04
75672.0 33.25 -29.34 -32.60 403220.1 64.52 33.05 446.42 62790.89571774.53
75840.0 33.24 -29.35 -32.61 405983.2 64.64 33.16 446.74 62868.16572487.07
76008.0 33.23 -29.35 -32.63 408713.6 64.75 33.27 447.07 62945.06573198.69
76104.0 33.22 -29.36 -32.64 410259.2 64.81 33.33 447.25 62988.83573604.92
  TOTAL ENERGY INPUT BTU = 0.252824E+11
SEASONAL ENERGY INPUT BTU = 0.196795E+10
TOTAL ENERGY INPUT GAL FUEL = 180588.68
SEASONAL ENERGY INPUT GAL FUEL = 14056.82
AVERAGE LB. WATER PER LB. FUEL = 23.91
SEASONAL LB. WATER PER LB. FUEL = 21.53
ENERGY FROM AIR TO ICE BTU = 0.129413E+11
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.111297E+10
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = SEASONAL WATER LOSS GAL =
                                                     3285412.86
                                                         145995.52
```

39605.91

0.00

YEAR 9 STANDBY OR WATER WITHDRAWAL

WATER WIT WITHDRAWA CONVECTIV	HDRAWAL GAL/ L FLOW RATE G	AL/MIN R=30 FT BTU/H		= = =	5033.00 2000.00 15.00 25.00 6128.00	
76344.0 76512.0 76680.0 76848.0 77016.0 77184.0 77352.0 77520.0 77688.0 77854.0 78024.0 78192.0 78360.0 78528.0 78696.0 78864.0 79032.0	33.13 -29.43 33.17 -29.48 33.20 -29.54 33.27 -29.64 33.31 -29.69 33.34 -29.75 33.38 -29.80 33.42 -29.86 33.46 -29.91 33.51 -29.96 33.55 -30.02 33.60 -30.07 33.42 -30.14 33.35 -30.20 33.38 -30.26 33.42 -30.31	-32.66 400262 -32.67 392174 -32.69 384176 -32.71 376270 -32.72 368447 -32.74 360707 -32.76 353034 -32.78 345453 -32.80 337955 -32.81 330549 -32.83 323226 -32.85 315970 -32.87 308799 -32.87 308799 -32.87 301904 -32.91 295130 -32.93 288361 -32.95 281669	64.42 4 64.09 9 63.77 8 63.44 9 63.11 6 62.77 7 62.43 61.75 1 61.06 7 60.70 3 60.00 6 59.29 8 58.93	2 32.91 32.58 32.24 31.90 31.57 31.24 30.91 30.57 30.24 29.91 29.59 29.26 28.30 27.99 27.67	447.65 447.93 448.22 448.82 449.14 449.46 449.79 450.13 450.47 450.83 451.20 451.57 451.97 452.37 452.79 453.21	63043.53574280.71 63195.38576281.39 63348.52578285.04 63502.95580289.15 63658.67582293.72 63815.78584299.72 63974.29586307.14 64134.35588317.95 64295.81590329.17 64458.74592341.77 64623.11594354.75 64789.01596369.07 64956.59598386.72 65125.75600405.70 65297.58602427.65 65471.24604451.63 65646.03606475.25 65822.58608501.14 65873.31609079.77
TOTAL ! SEASON: TOTAL ! SEASON: AVERAGI SEASON: ENERGY	ENERGY INPUT AL ENERGY INPUT ENERGY INPUT AL ENERGY INPUE E LB. WATER PE AL LB. WATER F FROM AIR TO :	BTU JT BTU GAL FUEL JT GAL FUEL ER LB. FUEL PER LB. FUEL	= = = = = = = BTU =	0.263 0.948 18 0.133	2310E+1: 8581E+09 87364.26 6775.58 23.77 20.02 5061E+1: 4743E+09 32008.57 46595.71 39605.91	
		YEAR STANDBY OR WA	10 TER WITH	DRAWAL		
WATER WITH WITHDRAWAL CONVECTIVE	TER FLOW RATE HDRAWAL GAL/I _ FLOW RATE GA E COEFF AFTER HDRAWAL AT HOL	AY AL/MIN R=30 FT BTU/H	₹-FT2-F	= = =	5033.00 600.00 15.00 32.50 7104.00	
79368.0 79536.0 79704.0 79872.0 80040.0 80208.0	33.51 -30.34 33.48 -30.35 33.46 -30.36 33.44 -30.36 33.41 -30.37 33.71 -30.37	-32.99 285455 -33.02 289651 -33.04 293796 -33.06 297889 -33.08 301932 -33.10 305650	.7 59.10 .9 59.30 .4 59.50 .7 59.69 .5 59.89	27.89 28.11 28.32 28.53 28.73 28.73	454.17 454.65 455.13 455.60 456.06 436.50	65953.15609788.68 66048.54610523.47 66143.12611256.86 66236.91611988.84 66329.92612719.44 66422.18613448.68 66511.90614171.04 66601.53614893.93

```
80544.0 33.72 -30.38 -33.13 313165.0 60.41 29.28 457.38 66690.77615616.40
80712.0 33.69 -30.39 -33.15 316875.0 60.58 29.46 457.81 66779.37616337.68 80880.0 33.67 -30.39 -33.17 320540.8 60.75 29.64 458.24 66867.34617057.76
81048.0 33.64 -30.40 -33.19 324162.3 60.92 29.81 458.66 66954.68617776.66
81216.0 33.62 -30.41 -33.21 327740.8 61.08 29.98 459.07 67041.43618494.41
81384.0 33.60 -30.42 -33.23 331276.4 61.24 30.14 459.48 67127.59619211.02
81552.0 33.58 -30.42 -33.24 334769.5 61.40 30.30 459.88 67213.17619926.50
81720.0 33.56 -30.43 -33.26 338220.7 61.55 30.46 460.28 67298.19620640.87
81888.0 33.54 -30.44 -33.28 341629.9 61.71 30.62 460.68 67382.66621354.14
82056.0 33.52 -30.45 -33.30 344998.4 61.86 30.77 461.06 67466.58622066.33
82224.0 33.50 -30.46 -33.31 348326.3 62.00 30.92 461.45 67549.98622777.46
82392.0 33.48 -30.46 -33.33 351614.0 62.15 31.06 461.83 67632.87623487.53
82560.0 33.46 -30.47 -33.35 354854.0 62.29 31.20 462.21 67715.30624197.57
82728.0 33.45 -30.48 -33.36 358062.0 62.43 31.35 462.58 67797.18624905.56
82896.0 33.43 -30.49 -33.38 361231.8 62.57 31.48 462.95 67878.57625612.56
83064.0 33.41 -30.49 -33.40 364363.3 62.71 31.62 463.31 67959.49626318.57
83232.0 33.40 -30.50 -33.41 367456.8 62.84 31.75 463.67 68039.93627023.59
83400.0 33.38 -30.51 -33.43 370512.6 62.98 31.88 464.03 68119.92627727.63
83568.0 33.37 -30.52 -33.45 373531.0 63.11 32.01 464.38 68199.46628430.72
83736.0 33.35 -30.52 -33.46 376512.9 63.23 32.13 464.73 68278.56629132.86
83904.0 33.34 -30.53 -33.48 379458.6 63.36 32.25 465.07 68357.23629834.07
84072.0 33.32 -30.54 -33.49 382368.3 63.48 32.37 465.42 68435.48630534.35
84240.0 33.31 -30.55 -33.51 385242.5 63.61 32.49 465.76 68513.31631233.73
84408.0 33.29 -30.55 -33.52 388081.3 63.73 32.61 466.09 68590.73631932.20
84576.0 33.28 -30.56 -33.54 390885.7 63.85 32.72 466.42 68667.75632629.80
84744.0 33.27 -30.57 -33.55 393655.8 63.96 32.83 466.75 68744.38633326.52
84864.0 33.26 -30.57 -33.56 395613.7 64.04 32.91 466.98 68798.88633823.65
  TOTAL ENERGY INPUT BTU
                                             0.281990E+11
                                       =
  SEASONAL ENERGY INPUT BTU
                                             0.196799E+10
 TOTAL ENERGY INPUT GAL FUEL
                                                 201421.31
  SEASONAL ENERGY INPUT GAL FUEL
                                                  14057.05
                                        =
  AVERAGE LB. WATER PER LB. FUEL
                                                     23.63
  SEASONAL LB. WATER PER LB. FUEL
                                        ==
                                                     21.76
  SEASONAL LB. WATER PER LB. FUEL = 21.76
ENERGY FROM AIR TO ICE BTU = 0.146097E+11
  SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.110365E+10
 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                              3678011.58
                                                146003.02
                                                  39605.91
  TOTAL WATER LOSS GAL
```

YEAR 10 STANDBY OR WATER WITHDRAWAL

SEASONAL WATER LOSS GAL

0.00

BOILER WATER WITH WITHDRAWAL CONVECTIVE START WITH	HDRAWAL _ FLOW E COEFF	GAL/I RATE GA AFTER	DAY AL/MIN R=30 F	Γ BTU/HR∽F	FT2-F	= 2	5033.00 2000.00 15.00 25.00 4888.00	
84912.0	33.19	-30.58	-33.57	394910.8	64.02	32.88	467.07	68831.80634207.64
65080.0	33.16	-30.64	-33.58	386816.4	63.69	32.54	467.35	68984.57636198.12
85248.0	33.20	-30.68	-33.60	378763.6	63.36	32.20	467.64	69138.33638187.94
85416.0	33.23	-30.73	-33.61	370796.8	63.02	31.85	467.93	69293.46640179.10
85584.0	33.27	-30.78	-33.63	362924.2	62.69	31.51	468.23	69449.94642170.58
85752.0	33.31	-30.83	-33.64	355137.4	62.35	31.17	468.54	69607.84644163.36
85920.0	33.35	-30.88	-33.66	347420.6	62.01	30.83	468.86	69767.30646159.42
86058.0	33.39	-30.93	-33.68	339798.2	61.66	30.49	469.19	69928.18648155.76
86256.0	33.43	-30.98	-33.69	332262.0	61.32	30.16	469.52	70090.55450153.38
85424.0	33,47	-31.03	-33.71	324820.5	60.97	29.82	469.87	70254.38652151.24

```
86892.0 33.52 -31.08 -33.73 317464.8 60.61 29.48 470.22 00419.7505-00-00
86/60.0 33.56 -31.13 -33.75 310179.6 60.26 29.15 470.50 70506.84056%54.64
86928.0 33.30 +31.20 +33.76 303256.4 59.91 28.83 476.97 70757.29658161.28
87096.0 33.32 -31.25 -33.78 296301.0 59.56 28.51 471.36 70928.34660166.58
87264,0 33.36 -31.30 -33.80 289423.2 59.20 28.18 471.77 71100.97662172.84
57432.0 33.40 -31.35 -33.52 282633.2 58.64 27.86 472.18 71275.30664180.30
87800.0 33.44 -31.40 -33.84 275923.6 58.47 27.54 472.60 71451.40666189.90
97769.0 33.48 -31.46 -33.96 269294.3 58.10 27.22 473.04 71629.32668201.64
87840.0 33.50 -31.48 -33.87 266501.1 57.95 27.08 473.23 71705.95669061.60
                                             0.291475E+11
  TOTAL ENERGY INPUT BTU
                                        =
                                             0.948529E+09
  SEASONAL ENERGY INPUT BTU
                                        =
                                                 208196.52
  TOTAL ENERGY INPUT GAL FUEL
  SEASONAL ENERGY INPUT GAL FUEL
                                                   6775.21
  AVERAGE LB. WATER PER LB. FUEL
                                        =
                                                     23.52
  SEASONAL LB. WATER PER LB. FUEL
                                        =
                                                     20.26
  EMERGY FROM AIR TO ICE BTU
                                       = 0.151699E+11
  SCASONAL EMERGY LOSS. AIR TO ICE BTU = 0.560164E+09
                                               3924607.29
  TOTAL WATER WITHDRAWN GAL
                                    ==
  SEASONAL WATER WITHDRAWN GAL
                                        =
                                                246595.71
                                                  39605.91
  TOTAL WATER LOSS GAL
                                        =
                                                     0.00
  SEASONAL WATER LOSS GAL
                                        =
                                   = 0.291475E+11
  TOTAL ENERGY INPUT BTU
  TOTAL ENERGY INPUT BTU = 0.291475E+11
TOTAL ENERGY INPUT GAL FUEL = 208196.52
TOTAL ENERGY LOSS AIR TO ICE BTU = 0.151699E+11
```

Case A2

```
ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION
 BOILER WATER FLOW RATE 15m/hr = 103.00 7549.50
 CONVECTIVE COEFFICIENT BTU/HR-FT2-F =
                                                      32.50
 INITIAL DRILL RADIUS FT
                                               ===
 DEPTH TO TOP OF WATER AT START FT . =

INITIAL PARABOLIC WATER DIAMETER D FT =

INITIAL PARABOLIC WATER HEIGHT HW FT =

INITIAL WATER TEMP THE DEG E
                                                      157.00
                                                     4.24
10.00
 INITIAL WATER TEMP TW DEG F
                                                ===
                                                      103,00
                                                    -60.00
 INITIAL AIR TEMP TA DEG F
 INITIAL ICE SURFACE TEMP TS DEG F
                                                     -60.00
 AMBIENT ICE TEMP DEG F = -60.00
EFFECTIVE LATENT HEAT BTU/LB = 392.35
TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FTZ, AIR VOL VA FT3
                        TS ·
                                             D
   TIME
     IME TW TA TS MW D HW HWB AI VA
0.0 103.00 -60.00 -60.00 527.5 4.24 10.00 167.00 1479.69 1109.77
           TW
    24.0 75.12 -55.02 -58.23 1335.7 7.14 8.93 171.63 1621.59 1253.54
    48.0 70.24 -52.20 -56.87 2297.2 9.23 9.19 175.24 1754.02 1430.20
    72.0 66.45 -49.82 -55.58 3370.7 10.90 9.67 178.27
                                                                 1882.94 1634.18
    96.0 63.43 -47.79 -54.38 4523.6 12.31 10.19 180.92 2009.18 1860.43
   120.0 60.97 -46.06 -53.27 5734.5 13.53 10.70 183.30 2132.96 2104.97
   144.0 58.93 -44.56 -52.25 6989.3 14.61 11.18 185.45 2254.37 2364.66
   168.0 57.21 -43.25 -51.31 8278.4 15.58 11.64 187.43 2373.47 2637.02
   192.0 55.73 -42.08 -50.45 9595.7 16.47 12.07 189.27 2490.34 2920.02
   216.0 54.45 -41.05 -49.65 10937.2 17.29 12.49 190.98 2605.08 3212.10
   235.9 53.50 -40.27 -49.03 12066.0 17.93 12.81 192.33 2698.67 3460.21
   TOTAL ENERGY INPUT BTU
                                             722
                                                  0.709905E+08
   SEASONAL ENERGY INPUT BTU
                                            = 0.709905E+08
   TOTAL ENERGY INPUT GAL FUEL
                                                         507.07
                                           ****
   SEASONAL ENERGY INPUT GAL FUEL
                                                          507.07
   AVERAGE LB. WATER PER LB. FUEL = 26.59
SEASONAL LB. WATER PER LB. FUEL = 26.59
ENERGY FROM AIR TO ICE BTU = 0.339972E+07
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.339972E+07
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                            0.00
                                                            0.00
   TOTAL WATER LOSS GAL
                                             ===
                                                         7848.43
   SEASONAL WATER LOSS GAL
                                                         7848.43
                                YEAR 1
                          STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                      7549.50
WATER WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN
                                                   ===
                                                        ·900.00
                                                   ---
                                                         15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                         32.50
START WITHDRAWAL AT HOUR
                                                  ::::2
                                                         240.00
 · 240.0 53.32 -40.11 -48.91 12299.1 18.05 12.88 192.60 2717.68 3511.67
   408.0 51.23 -37.54 -45.71 16051.7 20.54 12.98 202.45 3576.12 6287.98 576.0 48.66 -35.91 -43.91 21594.1 22.93 14.01 210.71 4365.14 8918.54
   744.0 46.27 -34.55 -42.59 28838.6 25.29 15.39 217.68 5046.47 11425.63
  912.0 44.21 -33.28 -41.48 37782.5 27.60 16.92 223.58 5650.72 13791.21 1090.0 42.56 -32.08 -40.49 48032.1 29.79 18.46 228.63 6193.25 16042.44
  1243.0 41.24 -30.96 -39.57 59243.3 31.85 19.96 233.03 6634.99 18187.73
  1416.0 40.19 -29.90 -33.71 71527.2 33.76 21.39 236.89 7134.45 20235.26
  1884.0 39.34 -28.91 -37.90 84351.0 35.55 22.74 240.34 7849.59 12203.00
  1 152.0 30.64 -27.98 -57.13 97.507.4 37.25 24.00 243.45 7937.04 24109.58
```

```
1920.0 38.07 -27.12 -36.41 111120.1 38.80 25.18 246.28 8302.15 25972.20
       37.60 -26.32 -35.72 124739.9 40.25 26.28 248.87 8649.23 27806.33
2088.0
       37.20 -25.58 -35.08 138349.6 41.59 27.30 251.28 8981.73 29625.15
2256.0
2424.0 36.86 -24.90 -34.47 151904.3 42.84 28.24 253.52 9301.73 31432.72
2592.0 36.57 -24.26 -33.89 165393.8 44.02 29.12 255.62 9610.62 33229.31
2760.0 36.32 -23.67 -33.35 178811.6 45.13 27.95 257.60 9909.52 35015.21
2928.0 36.09 -23.11 -32.84 192152.7 46.19 30.74 259.47 10199.41 36790.74
3096.0 35.89 -22.59 -32.35 205413.0 47.19 31.48 261.24 10481.06 38556.19
3264.0 35.72 -22.10 -31.89 218592.3 48.14 32.19 262.94 10755.21 40311.97
3432.0 35.55 -21.65 -31.45 231688.2 49.05 32.86 264.55 11022.44 42058.35
3600.0 35.41 -21.21 -31.04 244691.0 49.92 33.50 266.10 11283.35 43796.57
3748.0 35.28 -20.81 -30.64 257617.8 50.76 34.12 267.59 11538.25 45525.04
3936.0 35.16 -20.42 -30.27 270459.0 51.57 34.71 269.01 11787.60 47244.93
4104.0 35.05 -20.05 -29.91 283216.5 52.34 35.28 270.39 12031.80 48956.60
4272.0 34.95 -19.70 -29.56 295889.7 53.09 35.82 271.72 12271.14 50660.24
4440.0 34.85 -19.37 -29.24 308479.1 53.81 36.35 273.00 12505.93 52356.11
4608.0 34.76 -19.06 -28.92 320985.3 54.51 36.86 274.25 12736.41 54044.41
4775.0 34.68 -18.76 -28.62 333408.0 55.19 37.35 275.45 12962.82 55725.32
4944.0 34.60 -18.47 -28.33 345749.9 55.85 37.83 276.62 13185.40 57399.14
5112.0 34,53 -18.20 -28.06 358010.8 56.49 38.29 277.75 13404.32 59066.00
5250.0 34,47 -17.94 -27.79 370191.4 57.11 38.74 278.86 13619.77 60726.10
5448.0 34.40 -17.68 -27.53 382292.6 57.71 39.17 279.93 13831.91 62379.60
5616.0 34.34 -17.44 -27.29 394314.3 58.30 39.59 280.98 14040.89 64026.63
5784.0 34,29 -17.21 -27.05 406259.1 58.87 40.00 282.00 14246.87 65667.43
5952.0 34.23 -16.99 -26.82 418127.1 59.42 40.40 283.00 14449.96 67302.12
6024.0 34.21 -16.90 -26.72 423189.6 57.66 40.57 283.42 14536.14 68000.84
TOTAL ENERGY INPUT BTU
                                      ==
                                           0.280489E+10
SEASONAL ENERGY INPUT BTU
                                      ==
                                           0.273390E+10
                                               20034.91
TOTAL ENERGY INPUT GAL FUEL
                                     =
SEASONAL ENERGY INPUT GAL FUEL
                                     =
                                               19527.84
AVERAGE LB. WATER PER LB. FUEL
                                      =
                                                  37.30
                                                  37.58
SEASONAL LB. WATER PER LB. FUEL
                                     =
                                          0.558299E+09
ENERGY FROM AIR TO ICE BTU
                                     =
                                          0.554899E+09
SEASONAL ENERGY LOSS. AIR TO ICE BTU =
TOTAL WATER WITHDRAWN GAL
                                     ==
                                             216897.13
                                             216897.13
SEASONAL WATER WITHDRAWN GAL
                                     =
                                               35992.68
                                     =
TOTAL WATER LOSS GAL
```

YEAR 1 STANDBY OR WATER WITHDRAWAL

=

28144.25

BOILER WATER FLOW RATE 16m/hr	=	7549.50
WATER WITHDRAWAL GAL/DAY	=	3000.00
WITHDRAWAL FLOW RATE GAL/MIN	=	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	=	32.50
START WITHDRAWAL AT HOUR	=	6048.00
7 100 0 74 05 ±14 00 ±04 40 400700 0 50 71	40	44 293 92

SEASONAL WATER LOSS GAL

```
6120.0 34.05 -16.90 -26.60 422728.9 59.71 40.46 283.92 14700.05 69736.30 6286.0 34.07 -16.93 -26.41 417332.1 59.63 40.05 284.77 15012.97 73223.71 6456.0 34.09 -16.97 -26.25 411933.6 59.54 39.65 285.61 15326.43 76708.03 6624.0 34.11 -17.03 -26.11 406538.8 59.45 39.25 286.47 15640.49 80189.52 8792.0 34.14 -17.10 -25.99 401145.8 59.35 38.86 287.33 15955.17 83668.11 6960.0 34.17 -17.19 -25.89 395753.8 59.25 38.46 288.20 16270.48 87143.76 7123.0 34.19 -17.28 -25.81 390353.9 59.15 38.07 289.07 16586.51 90617.49 7296.0 34.22 -17.38 -25.74 384961.1 59.04 37.69 289.95 16903.14 94087.26 7464.0 34.25 -17.49 -25.69 379569.2 58.93 37.30 290.64 17220.47 97554.16 7632.0 34.30 -17.74 -25.62 368775.4 58.68 36.54 292.63 17857.40104480.13
```

```
7968.0 34.03 -17.87 -25.50 363382.2 58.56 34.16 293.54 18176.99107938.39
8136.0 34.36 -18.01 -25.60 357987.8 58.42 35.79 294.45 18497.38111393.70 8304.0 34.39 -18.15 -25.60 352594.2 58.28 35.42 295.37 18818.63114846.21
8472.0 34.42 -18.30 -25.61 347200.9 58.14 35.05 296.30 19140.75118295.91
5540.0 34.46 -18.46 -25.64 341808.4 57.99 34.68 297.24 19463.79121742.84
8808.0 34.49 -18.61 -25.66 336416.9 57.84 34.32 298.18 19787.78125187.02
8976.0 34.52 -18.77 -25.70 331026.2 57.68 33.96 299.14 20112.74128628.47
9000.0 34.53 -18.80 -25.70 330257.2 57.65 33.90 299.27 20159.26129119.92
 TOTAL ENERGY INPUT BTU
                                              0.413961E+10
 SEASONAL ENERGY INPUT BIU
                                              0.133473E+10
 TOTAL ENERGY INPUT GAL FUEL
                                                   29568.66
 SEASONAL ENERGY INPUT GAL FUEL
                                                    9533.75
 AVERAGE LB. WATER PER LB. FUEL
                                                      36.22
                                         =
 SEASONAL LB. WATER PER LB. FUEL
                                                      33.94
                                        ==
 ENERGY FROM AIR TO ICE BTU
                                              0.976039E+09
                                        =
 SEASONAL ENERGY LOSS. AIR TO ICE BTU =
                                              0.417740E+09
 TOTAL WATER WITHDRAWN GAL
                                                  586794.43
 BEASONAL WATER WITHDRAWN GAL
                                                  369897.31
 TOTAL WATER LOSS GAL
                                                   35992.68
 SEASONAL WATER LOSS GAL
                                                      0.00
```

YEAR 2 STANDBY OR WATER WITHDRAWAL

7549.50

=

900.00

15.00

BOILER WATER FLOW RATE 15m/hr

WITHDRAWAL FLOW RATE GAL/MIN

WATER WITHDRAWAL GAL/DAY

CONVECTIV	E COEF	F AFTER	R=30 F	T BTU/HR-i	-T2-F	=	32.50	
START WIT	HDRAWA	L AT HO	UR			= (9024.00	
9144.0	34.68	-18.78	-25.73	337706.8	58.04	34.20	300.19	20353.12130723.34
9312.0	34.60	-18.76	-25.76	349352.3	58.62	34.69	301.26	20558.36132283.80
9480.0	34.53	-18.73	-25.79	360898.8	59.18	35.16	302.30	20740.38133838.07
9648.0	34.46	-18.70	-25.80	372347.0	59.73	35.62	303.31	20959.32135386.29
9816.0								21155.32136928.56
9984.0	34.34	-18.63	-25.82	394952.1	60.77	36.49	305.27	21348.50138465.09
10152.0	34.28	-18.59	-25.83	406112.3	61.28	36.90	306.21	21539.00139995.96
10320.0	34.22	-18.55	-25.83	417178.9	61.77	37.31	307.12	21726.91141521.30
10488.0	34.17	-18.51	-25.83	428153.0	62.25	37.70	308.02	21912.34143041.24
10656.0	34.12	-18.47	-25.82	439035.1	62.72	38.08	308.90	22095.38144555.86
10824.0	34.08	-18.42	-25.81	449819.4	63.18	38.46	309.76	22276.20146066.29
10992.0	34.03	-18.38	-25.80	460523.8	63.63	38.82	310.60	22454.75147570.70
11160.0	33.99	-18.33	-25.78	471140.6	64.06	39.17	311.42	22631.18149070.15
11328.0	33.95	-18.28	-25.77	481671.1	64.49	39.52	312.22	22805.56150564.74
11496.0	33.91	-18.24	-25.75	492116.5	64.91	39.85	313.01	22977.96152054.58
11664.0								23148.44153539.72
11832.0								23317.07155020.32
12000.0								23483.92156496.45
12168.0								23649.04157968.19
12336.0	33.74	-17.99	-25.63	543105.8	66.89	41.42	316.75	23812.48159435.61
12504.0	33.71	-17.94	-25.60	553063.5	67.26	41.71	317.45	23974.29160898.78
12672.0								24134.53162357.84
12840.0	33.65	-17.84	-25.54	572749.7	67.99	42.28	318.83	24293.24163812.83
13008.0								24450.46165263.81
13176.0	33.60	-17.74	-25.47	592134.6	68.69	42.83	320.17	24506.23166710.88
13344.0								24760.59168154.06
13512.0								24913.60169593.48
13580.0								25065.27171029.18
13948.0	33.51	-17.54	-25.33	630031.5	70.02	43.85	322.72	25215.65172461.23

```
14016.0 33.48 -17.49 -25.30 639329.6 70.34 44.10 323.33 25364.77173689.68
 14184.0 33.46 -17.44 -25.26 648558.2 70.65 44.34 323.94 25512.65175314.56 14352.0 33.44 -17.39 -25.22 657711.0 70.96 44.57 324.53 25659.39176736.95
 14520.0 33.42 -17.34 -25.19 666805.5 71.26 44.80 325.12 25804.91178154.96
 14688.0 33.40 -17.29 -25.15 675833.8 71.56 45.03 325.70 25949.30179569.61
 14784.0 33.39 -17.26 -25.13 680963.0 71.73 45.16 326.03 26031.30180376.47
   TOTAL ENERGY INPUT BTU = 0.703207E+10
SEASONAL ENERGY INPUT BTU = 0.289246E+10
TOTAL ENERGY INPUT GAL FUEL = 50229.08
SEASONAL ENERGY INPUT GAL FUEL = 20660.41
AVERAGE LB. WATER PER LB. FUEL = 34.57
SEASONAL LB. WATER PER LB. FUEL = 32.22
ENERGY FROM AIR TO ICE BTU = 0.198911E+10
                                                         0.703207E+10
   SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.101307E+10
   SEASONAL ENERGY LUSS. AIR TO TOL BIO
TOTAL WATER WITHDRAWN GAL =
SEASONAL WATER WITHDRAWN GAL =
                                                         805798.96
                                                            219004.53
                                                             35992.68
                                                                  0.00
   SEASONAL WATER LOSS GAL
                                    YEAR 2
                             STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                              7549.50
WATER WITHDRAWAL GAL/DAY
                                                         = 3000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                                15.00
                                                         ==
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = -
                                                                 32.50
                                                        = 14808.00
START WITHDRAWAL AT HOUR
 14856.0 33.27 -17.29 -25.11 680075.7 71.73 45.10 326.26 26120.82181525.63
 15024.0 33.26 -17.36 -25.08 671850.8 71.56 44.76 326.74 26358.59184813.21 15192.0 33.28 -17.42 -25.05 663621.4 71.39 44.43 327.22 26596.97188099.60
 15360.0 33.30 -17.49 -25.03 655420.1 71.22 44.10 327.71 26836.19191386.02
 15528.0 33.31 -17.56 -25.01 647247.1 71.04 43.76 328.21 27076.24194672.47
 15696.0 33.33 -17.64 -24.99 639102.2 70.86 43.43 328.71 27317.15197958.93
 15864.0 33.34 -17.71 -24.98 630984.6 70.68 43.10 329.21 27558.92201245.37
 16032.0 33.36 -17.79 -24.97 622895.9 70.50 42.76 329.72 27801.58204531.86
 16200.0 33.38 -17.87 -24.97 614835.3 70.31 42.43 330.23 28045.13207818.35
 15368.0 33.40 -17.96 -24.97 606794.2 70.13 42.10 330.75 28289.63211105.82
 16536.0 33.41 -18.04 -24.97 598790.1 69.94 41.77 331.27 28535.00214392.32
 16704.0 33.43 -18.13 -24.97 590813.7 69.75 41.44 331.80 28781.30217678.81
 16872.0 33.45 -18.22 -24.98 582866.7 69.55 41.11 332.34 29028.56220965.34
 17040.0 33.47 -18.31 -24.99 574948.5 69.36 40.79 332.88 29276.78224251.89
 17208.0 33.49 -18.41 -25.01 567059.2 69.16 40.46 333.42 29525.99227538.45
 17376.0 33.51 -18.50 -25.02 559199.1 68.96 40.13 333.97 29776.19230825.04
 17544.0 33.53 -18.60 -25.04 551367.6 68.75 39.80 334.53 30027.40234111.63
 17712.0 33.55 -18.70 -25.07 543566.7 68.54 39.48 335.09 30279.65237398.28
 17760.0 33.56 -18.73 -25.07 541343.1 68.48 39.39 335.25 30351.92238337.33
   TOTAL ENERGY INPUT BTU = 0.838237E+10
SEASONAL ENERGY INPUT BTU = 0.135030E+10
TOTAL ENERGY INPUT GAL FUEL = 59874.10
SEASONAL ENERGY INPUT GAL FUEL = 9645.02
AVERAGE LB. WATER PER LB. FUEL = 33.50
SEASONAL LB. WATER PER LB. FUEL = 27.90
ENERGY FROM AIR TO ICE BTU = 0.257856E+10
SEASONAL ENERGY LOSS AIR TO ICE BTU = 0.5984825109
    SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.587452E+09
    TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                          1175696.27
                                                            369897.31
```

TOTAL WATES LOSS GAL

35992.48

BEASONAL WATER LOSS GAL

0.00

YEAR 3 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 15m/hr
                                                       7549.50
WITHDRAWAL FLOW RATE GAL/MIN
                                                         900.00
                                                        15.00
77
                                                   =
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                          32.50
                                                   = 17784.00
START WITHDRAWAL AT HOUR
 17880.0 33.71 -18.72 -25.09 545385.0 68.64 39.50 335.71 30474.94239603.28
18048.0 33.68 -18.72 -25.11 554727.9 68.98 39.78 336.37 30628.22241005.77
 18216.0
           33.65 -18.71 -25.13 563995.3 69.31 40.06 337.03 30780.10242404.72
 18384.0
           33.63 -18.70 -25.15 573183.7 69.63 40.34 337.67 30930.59243800.02
 18352.0 33.60 -18.70 -25.16 582295.5 69.95 40.61 338.30 31079.74245191.79
18720.0 33.58 -18.69 -25.18 591331.0 70.26 40.87 338.93 31227.58246580.07 18888.0 33.55 -18.68 -25.19 600291.1 70.57 41.13 339.54 31374.14247964.90
19056.0 33.53 -18.67 -25.20 609176.5 70.87 41.38 340.14 31519.46249346.34
19224.0 33.51 -18.66 -25.21 617988.2 71.17 41.63 340.74 31663.57250724.45
19392.0 33.48 -18.65 -25.22 626726.3 71.47 41.87 341.33 31806.51252099.44
17560.0 33.46 -18.64 -25.23 635393.2 71.75 42.11 341.91 31948.28253471.02
19728.0 33.44 -18.62 -25.24 643988.9 72.04 42.34 342.48 32088.91254839.16
19896.0 33.42 -18.61 -25.24 652514.3 72.32 42.57 343.04 32228.42256203.92
20064.0 33.40 -18.60 -25.25 660970.3 72.59 42.80 343.60 32366.84257565.34
20232.0 33.38 -18.59 -25.25 669356.8 72.86 43.02 344.15 32504.19258923.45
20400.0 33.37 -18.57 -25.26 677676.1 73.13 43.24 344.69 32640.51260278.34
20548.0 33.35 -18.56 -25.26 685928.4 73.39 43.45 345.22 32775.80261630.03
20736.0 33.33 -18.54 -25.26 694114.3 73.65 43.66 345.75 32910.10262978.57
20904.0 33.31 -18.53 -25.26 702234.6 73.91 43.87 346.27 33043.42264324.01
21072.0 33.30 -18.51 -25.26 710289.4 74.16 44.07 346.78 33175.79265666.36
21240.0 33.28 -18.50 -25.26 718280.8 74.41 44.27 347.29 33307.22267005.71
21408.0 33.27 -18.48 -25.26 726200.1 74.65 44.46 347.79 33437.80268343.04
21576.0 33.25 -16.47 -25.26 734065.4 74.89 44.66 348.29 33567.43269676.46
21744.0 33.24 -18.45 -25.25 741868.8 75.13 44.85 348.78 33696.19271007.01
21912.0 33.22 -18.44 -25.25 749610.3 75.37 45.03 349.27 33824.08272334.65
22080.0 33.21 -18.42 -25.25 757291.8 75.60 45.21 349.75 33951.14273659.50
22248.0 33.20 -18.40 -25.24 764913.4 75.83 45.39 350.22 34077.37274981.56
22416.0 33.18 -18.39 -25.24 772475.7 76.05 45.57 350.69 34202.80276300.87
22584.0 33.17 -18.37 -25.23 779979.4 76.28 45.75 351.15 34327.43277617.46
22752.0 33.16 -18.35 -25.22 787424.4 76.49 45.92 351.61 34451.28278931.36
22720.0 33.14 -18.34 -25.22 794812.6 76.71 46.09 352.06 34574.38280242.62
23088.0 33.13 -18.32 -25.21 802144.1 76.93 46.25 352.51 34696.72281551.28
23256.0 33.12 -18.30 -25.20 809419.5 77.14 46.42 352.96 34818.34282857.36
23424.0 33.11 -18.28 -25.20 816639.2 77.35 46.58 353.40 34939.23284160.89
23544.0 33.10 -18.27 -25.19 821762.0 77.49 46.69 353.71 35025.14285090.42
  TOTAL ENERGY INPUT BTU = 0.112968E+11
SEASONAL ENERGY INPUT BTU = 0.291442E+10
TOTAL ENERGY INPUT GAL FUEL = 80691.41
SEASONAL ENERGY INPUT GAL FUEL = 20817.31
AVERAGE LB. WATER PER LB. FUEL = 32.09
SEASONAL LB. WATER PER LB. FUEL = 28.03
ENERGY FROM AIR TO ICE BTU = 0.384632E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.126776E+10
TOTAL MATER MITTHDRAMM GAL = 1394700.79
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                 1394700.79
                                                     219004.53
                                                     35992.68
```

YEAR 3 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr WATER WITHDRAWAL GAL/DAY WITHDRAWAL FLOW RATE GAL/MIN CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F START WITHDRAWAL AT HOUR	= 15.00
23592.0 33.02 -18.29 -25.19 821502.2 77.5 23760.0 32.98 -18.35 -25.18 811545.5 77.0 23928.0 32.99 -18.42 -25.18 801522.9 77.0 24096.0 33.01 -18.48 -25.17 791544.4 76.8 24264.0 33.02 -18.55 -25.17 781610.3 76.6 24432.0 33.03 -18.61 -25.18 761874.8 76.2 24768.0 33.05 -18.69 -25.18 752074.3 76.0 24736.0 33.08 -18.82 -25.19 742309.9 75.7 25104.0 33.09 -18.89 -25.20 732599.0 75.3 25272.0 33.11 -18.97 -25.21 722932.5 75.3 25400.0 33.13 -19.04 -25.22 713311.9 75.1 25400.0 33.14 -19.19 -25.24 703736.6 74.8 25776.0 33.16 -19.19 -25.25 694206.9 74.8 25944.0 33.19 -19.35 </td <td>29 46.35 354.19 35281.13288924.27 38 46.03 354.54 35489.69292109.10 37 45.71 354.91 35699.12295294.65 36 45.39 355.27 35909.43298480.92 34 45.07 355.64 36120.62301667.87 32 44.75 356.02 36332.72304855.54 36 43.78 357.17 36974.58314423.63 36 43.46 357.57 37190.38317613.98 43.14 357.97 37407.15320805.02 38 42.22 358.37 37624.89323996.72 35 42.50 358.78 37843.62327189.05 42.18 359.19 38063.33330382.02 39 41.86 359.61 38284.06333575.60 35 41.55 360.03 38505.81336769.83 32 41.23 360.46 38728.59339964.67</td>	29 46.35 354.19 35281.13288924.27 38 46.03 354.54 35489.69292109.10 37 45.71 354.91 35699.12295294.65 36 45.39 355.27 35909.43298480.92 34 45.07 355.64 36120.62301667.87 32 44.75 356.02 36332.72304855.54 36 43.78 357.17 36974.58314423.63 36 43.46 357.57 37190.38317613.98 43.14 357.97 37407.15320805.02 38 42.22 358.37 37624.89323996.72 35 42.50 358.78 37843.62327189.05 42.18 359.19 38063.33330382.02 39 41.86 359.61 38284.06333575.60 35 41.55 360.03 38505.81336769.83 32 41.23 360.46 38728.59339964.67
TOTAL ENERGY INPUT BTU = SEASONAL ENERGY INPUT BTU = TOTAL ENERGY INPUT GAL FUEL = SEASONAL ENERGY INPUT GAL FUEL = AVERAGE LB. WATER PER LB. FUEL = SEASONAL LB. WATER PER LB. FUEL =	0.126525E+11 0.135574E+10 90375.26 9683.84 31.24 24.21 0.453940E+10 0.693080E+09 1764590.60 369889.81 35992.68
YEAR 4 STANDBY OR WATER WIT	'HDRAWAL
BOILER WATER FLOW RATE 1bm/hr WATER WITHDRAWAL GAL/DAY WITHDRAWAL FLOW RATE GAL/MIN CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F START WITHDRAWAL AT HOUR	= 7549.50 = 900.00 = 15.00 = 32.50 = 26544.00
26616.0 33.38 -19.55 -25.35 654385.3 73.6 26784.0 33.37 -19.55 -25.37 662232.8 73.9 26952.0 33.35 -19.55 -25.39 670026.8 74.1 27120.0 33.33 -19.55 -25.41 677755.2 74.4 27288.0 33.32 -19.56 -25.42 685419.2 74.6 27456.0 33.30 -19.56 -25.44 693016.3 74.8 27624.0 33.29 -19.56 -25.46 700550.2 75.1 27792.0 33.27 +19.56 -25.47 708020.6 75.3 27960.0 33.25 -19.56 -25.49 715427.5 73.5	3 41.35 361.44 39042.53343648.07 7 41.56 361.96 39172.72344950.35 1 41.77 362.47 39301.97346249.75 5 41.97 362.97 39430.31347546.28 8 42.17 363.46 39557.75348839.98 1 42.37 363.95 39684.32350130.88 64 42.56 364.44 39810.02351419.03

```
26128.0 33.24 -19.56 -25.50 722772.9 75.78 42.94 765.39 40058.90353987.18
        33.23 -19.56 -25.52 730056.8 76.00 43.13 365.86 40182.12355267.27
28294.0
        33.21 -19.56 -25.53 737279.9 76.22 43.31 366.32 40304.54356544.74
28464.0
28432.0 33.20 -19.56 -25.54 744442.6 76.43 43.49 366.78 40426.19357819.63
        33.19 -19.55 -25.55 751545.1 76.64 43.66 367.23 40547.06359091.94
28800.0
28768.0 33.17 -19.55 -25.57 758589.2 76.84 43.84 367.67 40667.19360361.75
29136.0 33.16 -19.55 -25.58 765574.9 77.05 44.01 368.12 40786.59361629.08
29304.0 33.15 -19.55 -25.59 772502.9 77.25 44.17 368.56 40905.26362893.94
29472.0 33.14 -19.55 -25.60 779373.6 77.45 44.34 368.99 41023.22364156.38
29640.0 33.12 -19.54 -25.61 786187.0 77.64 44.50 369.42 41140.49365416.40
         33.11 -19.54 -25.61 792945.0 77.84 44.66 369.84 41257.07366674.07
29208.0
29976.0 33.10 -19.54 -25.62 799638.9 78.03 44.82 370.26 41373.03367930.36
30144.0 33.09 -19.54 -25.63 806286.5 78.22 44.97 370.68 41488.28369183.38
30312.0 33.08 -19.53 -25.64 812879.8 78.40 45.12 371.09 41602.88370434.11
30480.0 33.07 -19.53 -25.64 819418.6 78.59 45.27 371.50 41716.85371682.56
        33.06 -19.52 -25.65 825904.9 78.77 45.42 371.90 41830.19372928.80
30648.0
30816.0
         33.05 -19.52 -25.66 832338.3 78.95 45.57 372.30 41942.92374172.84
        33.04 -19.52 -25.66 838719.5 79.13 45.71 372.70 42055.04375414.49
30994.0
        33.03 -19.51 -25.67 845049.0 79.30 45.85 373.09 42166.56376654.39
31152.0
31320.0
        33.02 -19.51 -25.67 851326.6 79.48 45.99 373.48 42277.50377891.94
31488.0
        33.01 -19.50 -25.68 857554.2 79.65 46.13 373.87 42387.87379127.40
        33.00 -19.50 -25.68 863731.6 79.82 46.26 374.25 42497.67380360.79
31656.0
31824.0
         32.99 -19.49 -25.68 869859.2 79.98 46.40 374.63 42606.91381592.11
         72,98 -19.49 -25.69 875937.6 80.15 46.53 375.01 42715.60382821.40
31992.0
32160.0
        32.98 -19.48 -25.69 881966.6 80.31 46.66 375.38 42823.75384048.66
32304.0 32.97 -19.48 -25.69 887096.5 80.45 46.77 375.70 42916.03385099.03
```

TOTAL EMERGY INPUT BIU 0.155756E+11 SEASONAL ENERGY INPUT BIU 0.292309E+10 TOTAL ENERGY INPUT GAL FUEL 111254.45 SEASONAL ENERGY INPUT GAL FUEL 20879.19 AVERAGE LB. WATER PER LB. FUEL 30.14 SEASONAL LB. WATER PER LB. FUEL 25.38 EMERGY FROM AIR TO ICE BTU = 0.596731E+10 BEASONAL EMERGY LOBS. AIR TO ICE BTU = 0.142791E+10 TOTAL WATER WITHDRAWN GAL 1983587.63 SEASONAL WATER WITHDRAWN GAL 218997.03 TOTAL WATER LOSS GAL 35992.68 SEASONAL WATER LOSS GAL 0.00

YEAR 4 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr = 7549.50
WATER WITHDRAWAL GAL/DAY = 3000.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 32328.00

```
32328.0 32.97 -19.48 -25.69 887948.0 80.47 46.79 375.75 42931.37385273.94 32496.0 32.85 -19.55 -25.70 876975.5 80.24 46.47 376.05 43125.06388398.46 32832.0 32.87 -19.61 -25.70 865774.3 80.01 46.15 376.35 43318.12391515.31 32832.0 32.87 -19.67 -25.71 854629.3 79.77 45.83 376.65 43512.11394633.30 33000.0 32.89 -19.74 -25.72 843540.8 79.53 45.51 376.96 43707.02397752.44 33168.0 32.90 -19.80 -25.72 832510.1 79.29 45.19 377.27 43902.87400872.76 33336.0 32.91 -19.86 -25.73 821536.7 79.04 44.87 377.58 44099.68403994.23 33504.0 32.93 -19.93 -25.74 810612.1 78.80 44.55 377.90 44297.49407117.81 33672.0 32.94 -19.99 -25.76 799753.7 78.55 44.23 378.22 44496.23410241.55 33840.0 32.96 -20.06 -25.77 788952.6 78.30 43.91 378.55 44695.96413366.41 34008.0 32.97 -20.12 -25.78 778210.1 78.05 43.59 378.88 44896.69416492.40
```

```
34176.0 32.99 -20.19 -25.20 767516.9 77.80 43.27 379.22 45098.47419620.47
34344.0 33.01 -20.26 -25.81 756890.9 77.54 42.95 379.56 45301.23422748.68
34512.0 33.02 -20.33 -25.83 746323.4 77.29 42.63 379.91 45505.03425877.99
34580.0 33.04 -20.40 -25.85 735814.1 77.03 42.31 380.26 45709.87429008.37
34848.0 33.06 -20.47 -25.87 725364.3 76.77 41.99 380.61 45915.78432139.86
35016.0 33.07 -20.54 -25.89 714973.8 76.51 41.68 380.97 46122.77435272.42
35184.0 33.09 -20.62 -25.91 704642.8 76.25 41.36 381.34 46330.84438406.06
35280.0 33.10 -20.66 -25.92 698765.7 76.10 41.18 381.55 46450.24440197.17
                                            0.169338E+11
  TOTAL ENERGY INPUT BTU
                                       =
                                      =
                                            0.135818E+10
  SEASONAL ENERGY INPUT BTU
                                       =
                                              120955.73
  TOTAL ENERGY INPUT GAL FUEL
                                      =
                                                 9701.28
  SEASONAL ENERGY INPUT GAL FUEL
 AVERAGE LB. WATER PER LB. FUEL
                                       =
                                                    29.48
                                      ==
                                                    21.87
  SEASONAL LB. WATER PER LB. FUEL
                                   = 0.672606E+10
  ENERGY FROM AIR TO ICE BTU
  SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.758746E+09
 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL
                                            2353484.93
                                              369897.31
                                               35992.48
  TOTAL WATER LOSS GAL
                                                    0.00
  SEASONAL WATER LOSS GAL
```

YEAR 5 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 16m/hr	=	7549.50
WATER WITHDRAWAL GAL/DAY	=	900.00
WITHDRAWAL FLOW RATE GAL/MIN	=	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	==	32.50
START WITHDRAWAL AT HOUR	=	35304.00
35352.0 33.23 -20.66 -25.93 699068.9 76.11	41.	18 381.73
75500 0 77 04 400 44 405 95 705944 7 76 31		

```
46513.21440992.87
35520.0 33.24 -20.66 -25.95 705944.7 76.31 41.36 382.18 46632.59442230.43 35688.0 33.23 -20.67 -25.97 712802.3 76.52 41.54 382.63 46751.45443466.83
35856.0 33.21 -20.68 -25.99 719600.5 76.72 41.72 383.08 46869.57444700.86
36024.0 33.20 -20.68 -26.01 726339.9 76.91 41.90 383.52 46986.97445932.55
36192.0 33.18 -20.69 -26.03 733021.1 77.11 42.07 383.96 47103.64447161.93
36360.0 33.17 -20.69 -26.05 739644.5 77.30 42.24 384.39 47219.62448389.01
36528.0 33.16 -20.70 -26.06 746210.1 77.49 42.41 384.82 47334.90449613.82
36696.0 33.15 -20.70 -26.08 752719.9 77.68 42.57 385.24 47449.51450836.41
36864.0 33.14 -20.71 -26.10 759173.6 77.86 42.73 385.66 47563.46452056.79
37032.0 33.12 -20.71 -26.12 765563.2 78.04 42.89 386.07 47676.80453275.97
37200.0 33.11 -20.72 -26.13 771906.3 78.22 43.05 386.48 47789.45454492.01
37368.0 33.10 -20.72 -26.15 778194.6 78.40 43.20 386.89 47901.47455705.91
37536.0 33.09 -20.73 -26.16 784429.7 78.57 43.35 387.29 48012.87456917.73
37704.0 33.08 -20.73 -26.18 790611.4 78.75 43.50 387.69 48123.66458127.46
37872.0 33.07 -20.73 -26.19 796740.3 78.92 43.65 388.09 48233.86459335.13
38040.0 33.06 -20.74 -26.20 802816.7 79.09 43.80 388.48 48343.46460540.77
38208.0 33.05 -20.74 -26.22 808840.8 79.25 43.94 388.87 48452.49461744.39
38376.0 33.04 -20.74 -26.23 814814.1 79.42 44.08 389.25 48560.95462946.03
38544.0 33.03 -20.75 -26.24 820736.6 79.58 44.22 389.63 48668.85464145.70
38712.0 33.02 -20.75 -26.26 826608.7 79.74 44.36 390.01 48776.20465343.44
38880.0 33.01 -20.75 -26.27 832430.9 79.90 44.49 390.38 48883.00466539.25
39048.0 33.00 -20.76 -26.28 838203.0 80.06 44.62 390.75 48989.27467733.14
39216.0 32.99 -20.76 -26.29 843926.9 80.21 44.75 391.12 49095.02468925.17
39384.0 32.98 -20.76 -26.30 849602.2 80.37 44.88 391.48 49200.25470115.34
39552.0 32.98 -20.76 -26.31 855229.6 80.52 45.01 391.85 49304.97471303.68
39720.0 32.97 -20.76 -26.32 860809.3 80.67 45.14 392.20 49409.19472490.19
39888.0 32.98 -20.77 -26.33 866341.3 80.82 45.26 392.56 49512.92473674.89
40056.0 32.95 -20.77 -26.34 871827.2 80.96 45.38 392.91 49616.16474557.83
```

```
40224.032.94-20.77-26.35877266.881.1145.50373.2649718.93476039.0140392.032.94-20.77-26.36882660.681.2545.62393.6149821.22477218.4540560.032.93-20.77-26.37888000.881.3945.74393.9549923.10478397.14
 40728.0 32.92 -20.77 -26.38 893303.1 81.53 45.65 394.29 50024.46479573.12
 40896.0 32.91 -20.78 -26.39 898562.0 81.67 45.97 394.63 50125.38480747.45
 41064.0 32.91 -20.78 -26.40 903776.7 81.81 46.08 394.96 50225.86481920.11
 41064.0 32.91 -20.78 -26.40 903776.7 81.81 46.08 394.96 50225.86481920.11
   TOTAL ENERGY INPUT BTU =
SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
AVERAGE LB. WATER PER LB. FUEL =
SEASONAL LB. WATER PER LB. FUEL =
                                                          0.198607E+11
                                                         0.292688E+10
                                                          141862.01
                                                                20906.28
                                                                   28.63
                                                                    23.70
                                                         0.825511E+10
    SEASONAL ENERGY LOSS, AIR TO ICE BTU =
                                                         0.152905E+10
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                          2572489.46
                                                             219004.53
                                                  =
                                                              35992.68
    SEASONAL WATER LOSS GAL
                                                                   0.00
                                     YEAR 5
                             STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
WATER WITHDRAWAL SAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN
                                                          = 3000.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR
                                                         = 41088.00
 41232.0 32.78 -20.84 -26.40 894490.6 81.61 45.82 375.24 50399.30484727.65
 41400.0 32.80 -20.90 -26.41 882525.9 81.35 45.50 395.51 50584.06487798.38
 41568.0 32.81 -20.95 -26.42 870626.8 81.09 45.18 395.78 50769.78490870.48
 41736.0 32.83 -21.01 -26.44 858796.3 80.83 44.85 396.05 50956.49493944.03
 41904.0 32.84 -21.07 -26.45 847033.8 80.57 44.53 396.33 51144.21497019.00
 42072.0 32.85 -21.13 -26.46 835339.6 80.30 44.21 396.62 51332.95500095.38
 42240.0 32.87 -21.20 -26.47 823713.7 80.03 43.88 396.90 51522.70503173.16
 42408.0 32.88 -21.26 -26.49 812155.8 79.76 43.56 397.19 51713.50506252.33
 42576.0 32.90 -21.32 -26.50 800667.4 79.49 43.24 397.49 51905.35509332.90
 42744.0 32.92 -21.38 -26.52 789239.1 79.22 42.92 397.79 52098.30512415.83
 42912.0 32.93 -21.45 -26.54 777888.8 78.94 42.59 398.10 52292.29515499.16
43080.0 32.95 -21.51 -26.55 766607.9 78.66 42.27 398.41 52487.37518583.85
43248.0 32.97 -21.58 -26.57 755396.0 78.39 41.95 398.72 52683.56521669.90
43416.0 32.98 -21.64 -26.59 744254.5 78.11 41.63 399.05 52880.86524757.31
43584.0 33.00 -21.71 -26.61 733183.1 77.82 41.31 399.37 53079.30527846.06
43752.0 33.02 -21.77 -26.63 722181.9 77.54 40.99 399.70 53278.89530936.15
43920.0 33.04 -21.84 -26.65 711251.3 77.25 40.67 400.04 53479.64534027.57
44040.0 33.05 -21.89 -26.67 703486.6 77.05 40.44 400.28 53623.75536236.52
  TOTAL ENERGY INPUT BTU = 0.212197E+11
SEASONAL ENERGY INPUT BTU = 0.135924E+10
TOTAL ENERGY INPUT GAL FUEL = 151570.86
SEASONAL ENERGY INPUT GAL FUEL = 9708.85
AVERAGE LB. WATER PER LB. FUEL = 28.10
SEASONAL LB. WATER PER LB. FUEL = 20.41
ENERGY FROM AIR TO ICE BTU = 0.905437E+10
SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.799251E+09
TOTAL WATER WITHDEAWN GAL = 2942386.77
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                          2942386.77
                                                            369897.31
```

35992.68

YEAR 6 STANDBY OR WATER WITHDRAWAL

```
7549.50
BOILER WATER FLOW RATE 16m/hr
                                                     900.00
WATER WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN
                                                      15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                      32.50
                                               = 44064.00
START WITHDRAWAL AT HOUR
44088.0 33.15 -21.89 -26.67 702692.0 77.03 40.41 400.39 53668.04536844.44
 44256.0 33.20 -21.90 -26.69 708929.4 77.21 40.58 400.81 53781.01538034.05
 44424.0 33.18 -21.91 -26.71 715225.0 77.39 40.75 401.24 53893.86539223.51
 44592.0 33.17 -21.91 -26.73 721465.1 77.57 40.92 401.65 54006.05540410.92
 44760.0 33.16 -21.92 -26.75 727650.0 77.74 41.08 402.07 54117.60541596.31
 44928.0 33.15 -21.93 -26.77 733780.1 77.92 41.24 402.48 54228.51542779.69
 45096.0 33.13 -21.94 -26.79 739855.4 78.09 41.40 402.88 54338.81543961.07
 45264.0 33.12 -21.95 -26.81 745877.6 78.26 41.55 403.28 54446.49545140.51
 45432.0 33.11 -21.95 -26.83 751846.6 78.43 41.71 403.68 54557.58546318.01
 45600.0 33.10 -21.96 -26.85 757762.9 78.59 41.86 404.08 54666.07547493.59
 45768.0 33.09 -21.97 -26.87 763626.9 78.76 42.01 404.47 54773.99548667.28
 45936.0 33.08 -21.98 -26.88 769438.6 78.92 42.15 404.85 54881.33549839.08
 46104.0 33.07 -21.98 -26.90 775199.7 79.08 42.30 405.24 54988.12551009.04
 46272.0 33.06 -21.99 -26.92 780910.0 79.24 42.44 405.62 55094.36552177.18
 46440.0 33.05 -22.00 -26.93 786570.0 79.39 42.58 405.99 55200.05553343.50
 46608.0 33.04 -22.00 -26.95 792180.2 79.55 42.72 406.36 55305.21554508.03
 46776.0 33.03 -22.01 -26.96 797740.4 79.70 42.85 406.73 55409.84555670.77
 46944.0 33.02 -22.02 -26.98 803252.3 79.85 42.99 407.10 55513.95556831.78
 47112.0 33.01 -22.02 -27.00 808715.7 80.00 43.12 407.46 55617.56557991.06
 47280.0 33.00 -22.03 -27.01 814131.1 80.14 43.25 407.82 55720.67559148.62
47448.0 32.99 -22.03 -27.02 819499.0 80.29 43.38 408.18 55823.28560304.49
 47616.0 32.99 -22.04 -27.04 824819.1 80.43 43.50 408.53 55925.41561458.66
47784.0 32.98 -22.05 -27.05 830084.3 80.57 43.63 408.88 56027.10562612.17
47952.0 32.97 -22.05 -27.07 835312.1 80.71 43.75 409.23 56128.28563763.06
48120.0 32.96 -22.06 -27.08 840494.1 80.85 43.87 409.58 56229.00564912.33
48288.0 32.95 -22.06 -27.09 845630.6 80.99 43.99 409.92 56329.26566059.99
 48456.0 32.95 -22.07 -27.11 850721.5 81.12 44.11 410.26 56429.07567206.05
48624.0 32.94 -22.07 -27.12 855768.4 81.26 44.22 410.60 56528.43568350.55
48792.0 32.93 -22.08 -27.13 860771.0 81.39 44.34 410.93 56627.36569493.49
48960.0 32.92 -22.08 -27.14 865729.9 81.52 44.45 411.26 56725.86570634.90
49128.0 32.92 -22.09 -27.16 870645.4 81.65 44.56 411.59 56823.94571774.78
49296.0 32.91 -22.09 -27.17 875517.3 81.78 44.67 411.92 56921.59572913.14
49464.0 32.90 -22.10 -27.18 880347.1 81.90 44.78 412.24 57018.84574050.02
49632.0 32.89 -22.10 -27.19 885134.8 82.03 44.89 412.56 57115.68575185.43
 49800.0 32.89 -22.11 -27.20 889880.5 82.15 44.99 412.88 57212.12576319.37
 49824.0 32.89 -22.11 -27.20 890555.0 82.17 45.01 412.93 57225.86576481.24
  TOTAL ENERGY INPUT BTU =
SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY INPUT GAL FUEL =
AVERAGE LB. WATER FER LB. FUEL =
                                              0.241481E+11
                                              0.292817E+10
                                               172486.33
                                                   20915.47
                                                      27.44
  SEASONAL LB. WATER PER LB. FUEL = 22.68
ENERGY FROM AIR TO ICE BTU = 0.106438E+11
   SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.158946E+10
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = SEASONAL WATER LOSS GAL =
                                               3161391.29
                                                 219004.53
                                                  35992.68
                                                       0.00
```

YEAR 5 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 16m/hr
                                                  7549.50
WATER WITHDRAWAL GAL/DAY
                                                   3000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                    15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                    32.50
                                               = 49848.00
START WITHDRAWAL AT HOUR
 49948.0 32.76 -22.16 -27.21 882589.2 82.00 44.79 413.16 57369.38578819.56
 50136.0 32.77 +22.21 -27.23 870156.9 81.72 44.47 413.41 57549.94581857.42
 50304.0 32.79 -22.27 -27.24 857798.3 81.43 44.14 413.66 57731.54584896.76
 50472.0 32.81 -22.33 -27.25 845517.3 81.15 43.81 413.92 57914.19587937.68
 50640.0 32.82 -22.39 -27.27 833313.9 80.87 43.48 414.18 58097.91590980.17
 50808.0 32.84 -22.44 -27.28 821188.5 80.58 43.16 414.45 58282.72594024.22
 50976.0 32.85 -22.50 -27.30 809140.5 80.29 42.83 414.72 58468.63597069.81
 51144.0 32.87 -22.56 -27.31 797171.4 80.00 42.50 415.00 58655.64600116.96 51312.0 32.89 -22.62 -27.33 785272.1 79.71 42.18 415.28 58843.63603166.61
 51480.0 32.90 -22.68 -27.34 773460.2 79.41 41.85 415.57 59033.12606216.82
 51648.0 32.92 -22.74 -27.36 761727.1 79.12 41.52 415.86 59223.56609268.55
 51816.0 32.94 -22.80 -27.38 750072.6 78.82 41.20 416.16 59415.17612321.77
 51984.0 32.96 -22.86 -27.40 738498.1 78.52 40.87 416.47 59607.97615376.51
 52152.0 32.98 -22.93 -27.42 727003.1 78.22 40.55 416.77 59801.96618432.74
 52320.0 33.00 -22,99 -27.44 715587.9 77.92 40.22 417.09 59997.18621490.46
 52488.0 33.02 -23.05 -27.46 704252.6 77.61 39.90 417.41 60193.82624549.65
 52656.0 33.04 -23.11 -27.48 692997.7 77.30 39.57 417.73 60391.32627610.31
 52800.0 33.05 -23.17 -27.50 683414.3 77.04 39.29 418.02 60561.78630234.88
   TOTAL ENERGY INPUT BTU
                                              0.255076E+11
   SEASONAL ENERGY INPUT BTU
   TOTAL ENERGY INPUT GAL FUEL
SEASONA! ENERGY TOTAL
                                              0.135950E+10
                                                 182197.07
   SEASONAL ENERGY INPUT GAL FUEL
AVERAGE LB. WATER PER LB. FUEL
                                                   9710.74
                                                      27.02
   SEASONAL LB. WATER PER LB. FUEL = 17.58
ENERGY FROM AIR TO ICE BTU = 0.114659E+11
   SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.822049E+09
   TOTAL WATER WITHDRAWN GAL =
                                               3531281.10
   SEASONAL WATER WITHDRAWN GAL
                                                 369889.81
   TOTAL WATER LOSS GAL
                                                  35992.68
   SEASONAL WATER LOSS GAL
                                                      0.00
                              YEAR 7
                       STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 16m/hr
                                                  7549.50
WATER WITHDRAWAL GAL/DAY
                                               =
                                                   900.00
WITHDRAWAL FLOW RATE GAL/MIN
                                               =
                                                     15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                     32.50
START WITHDRAWAL AT HOUR
                                              = 52824.00
 52824.0 33.06 -23.18 -27.50 681822.8 76.99 39.25 418.07 60590.28630672.41
 52992.0 33.20 -23.18 -27.52 687618.2 77.16 39.41 418.47 60699.42631821.60
53160.0 33.19 -23.19 -27.54 693621.1 77.33 39.58 418.89 60809.34632975.54
 53326.0 33.18 -23.20 -27.56 699570.1 77.50 39.74 419.30 60918.64634127.64
53496.0 33.17 -23.21 -27.58 705465.4 77.67 39.90 419.70 61027.33635277.90
53664.0 33.16 -23.21 -27.60 711306.7 77.84 40.06 420.10 61135.41636426.34
53832.0 33.14 -23.22 -27.62 717095.9 78.00 40.22 420.50 61242.91637573.01
54000.0 33.13 -23.23 -27.64 722832.7 78.16 40.37 420.89 61349.83638717.90
```

54168.0 33.12 -23.24 -27.66 728517.7 78.32 40.53 421.28 61456.18639861.05

```
33.11 -23.25 -27.68 734151.3 78.48 40.68 421.67 61561.96641002.46
54336.0
54504.0 33.10 -23.26 -27.70 739733.4 78.63 40.82 422.05 61667.20642142.15
        33.09 -23.27 -27.71 745265.7 78.79 40.97 422.43 61771.89643280.16
54672.0
        33.08 -23.28 -27.73 750748.0 78.94 41.11 422.81 61876.05644416.49
54840.0
         33.07 -23.28 -27.75 756180.8 79.09 41.25 423.18 61979.69645551.17
55008.0
         33.06 -23.29 -27.77 761564.5 79.24 41.39 423.55 62082.80646684.21
55176.0
         33.05 -23.30 -27.78 766899.0 79.38 41.53 423.91 62185.41647815.62
55344.0
         33.04 -23.31 -27.80 772186.0 79.53 41.66 424.27 62287.52648945.45
55512.0
        33.03 -23.32 -27.82 777425.2 79.67 41.79 424.63 62389.14650073.68
55680.0
         33.02 -23.32 -27.83 782617.0 79.81 41.92 424.99 62490.27651200.35
55848.0
        33.01 -23.33 -27.85 787762.0 79.95 42.05 425.34 62590.93652325.47
56016.0
        33.00 -23.34 -27.87 792860.0 80.09 42.18 425.69 62691.12653449.05
56184.0
56352.0 32.99 -23.35 -27.88 797903.8 80.23 42.30 426.04 62790.68654572.09
56520.0 32.99 -23.35 -27.90 802910.8 80.36 42.43 426.39 62890.16655692.66
56688.0 32.98 -23.36 -27.91 807872.6 80.49 42.55 426.73 62988.98656811.75
        32.97 -23.37 -27.93 812789.5 80.62 42.67 427.07 63087.36657929.37
56856.0
        32.96 -23.37 -27.94 817661.6 80.75 42.78 427.40 63185.30659045.52
57024.0
        32.95 -23.38 -27.96 822490.2 80.88 42.90 427.74 63282.81660160.24
57192.0
        32.95 -23.39 -27.97 827275.3 81.01 43.01 428.07 63379.91661273.54
57360.0
        32,94 -23.40 -27.98 832017.2 81.14 43.13 428.39 63476.58662385.44
57528.0
        32.93 -23.40 -28.00 836716.2 81.26 43.24 426.72 63572.85663495.94
57696.0
        32.92 -23.41 -28.01 841372.3.81.38 43.35 429.04 63668.71664605.04
57864.0
        32,92 -23,42 -28.02 845988.9 81.50 43.46 429.36 63764.17665712.80
58032.0
        32.91 -23.42 -28.04 850559.8 81.62 43.56 429.68 63859.24666819.20
58200.0
58366.0 32.90 -23.43 -28.05 855091.5 81.74 43.67 430.00 63953.92667924.27
58536.0 32.90 -23.44 -28.06 859582.2 81.86 43.77 430.31 64048.22669028.01
58534.0 32.89 -23.44 -28.07 860857.7 81.89 43.80 430.40 64075.10669343.12
```

TOTAL ENERGY INPUT BTU SEASONAL ENERGY INPUT BTU	=	0.284355E+11 0.292793E+10
TOTAL ENERGY INPUT GAL FUEL SEASONAL ENERGY INPUT GAL FUEL	=	203110.87 20913.80
AVERAGE LB. WATER PER LB. FUEL	=	26.52
SEASONAL LB. WATER PER LB. FUEL	=	22.15
ENERGY FROM AIR TO ICE BTU	==	0.130868E+1 1
SEASONAL EMERGY LOSS, AIR TO ICE	BTU =	0.162093E+10
TOTAL WATER WITHDRAWN GAL	=	3750278.13
SEASONAL WATER WITHDRAWN GAL	=	218997.03
TOTAL WATER LOSS GAL	==	35992.68
SEASONAL WATER LOSS GAL	=	0.00

7 YEAR STANDBY OR WATER WITHDRAWAL

7549.50

```
BOILER WATER FLOW RATE 15m/hr
                                                  3000.00
WATER WITHDRAWAL GAL/DAY
                                                    15.00
WITHDRAWAL FLOW RATE GAL/MIN
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                    32.50
START WITHDRAWAL AT HOUR
                                                 58408.00
 58704.0 32.77 -23.48 -28.08 854483.9 81.75 43.63 430.59 64191.63671228.36
 58872.0 32.78 -23.53 -28.09 841798.5 81.45 43.30 430.84 64370.55674241.54
 59040.0 32.79 -23.59 -28.10 829189.4 81.15 42.97 431.08 64550.55677256.13
 59208.0 32.81 -23.64 -28.12 816666.3 80.85 42.63 431.34 64731.68680272.36
 59376.0 32.83 -23.70 -28.13 804229.4 80.54 42.30 431.59 64913.95683290.22
 59544.0 32.85 -23.75 -28.15 791878.4 80.24 41.97 431.86 65097.38686309.69
 59712.0 32.86 -23.81 -28.17 779614.6 79.93 41.64 432.12 65281.99689330.79
 59880.0 32.88 -23.87 -28.18 767428.9 79.62 41.31 432.40 65467.83692354.46
```

60048.0 32.90 -23.92 -28.20 755339.0 79.31 40.97 432.68 65654.84695378.75 60216.0 30.92 -23.98 -28.22 743335.4 79.00 40.64 432.96 65843.07698404.63

```
      60364.0
      32.94
      -24.04
      -28.23
      731420.6
      78.68
      40.31
      433.25
      66032.53701432.07

      60552.0
      32.96
      -24.10
      -28.25
      719584.4
      78.37
      39.98
      433.54
      66223.30704462.06

      60720.0
      32.98
      -24.15
      -28.27
      707844.9
      78.05
      39.65
      433.85
      66415,30707492.64

      60888.0
      33.00
      -24.21
      -28.29
      696193.5
      77.73
      39.32
      434.15
      66608.58710524.76

      61056.0
      33.02
      -24.27
      -28.31
      684630.5
      77.40
      38.99
      434.47
      66803.17713558.41

      61224.0
      33.04
      -24.33
      -28.33
      673156.1
      77.08
      38.36
      434.78
      66979.09716593.58

      61392.0
      33.07
      -24.39
      -28.35
      661770.0
      76.75
      38.33
      435.11
      67196.35719430.26

      61560.0
      33.09
      -24.45
      -28.37
      650473.6
      76.42
      38.01
      435.44
      67394.97722668.46

      61560.0
      33.09
      -24.45
      -28.37
      650473.6
      76.42
      38.01
      435.44
      67394.97722668.
```

TOTAL ENERGY INPUT BIU 0.297948E+11 SEASONAL ENERGY INPUT BIU = 0.135924E+10 TOTAL ENERGY INPUT GAL FUEL 212819.75 SEASONAL ENERGY INPUT GAL FUEL = 9708.88 AVERAGE LB. WATER PER LB. FUEL = 26.19 SEASONAL LB. WATER PER LB. FUEL = 19.20
ENERGY FROM AIR TO ICE BTU = 0.139191E+11
SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.832332E+09 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = 4120175.43 369897.31 TOTAL WATER LOSS GAL = 35992.68 SEASONAL WATER LOSS GAL 0.00

YEAR 8 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr = 7549.50
WATER WITHDRAWAL GAL/DAY = 900.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 51584.00

61729.0 33.25 -24.46 -28.35 653711.2 76.51 38.10 435.84 67515.92724062.47 61896.0 33.23 -24.47 -28.41 659611.3 76.69 38,27 436.26 67624.79725187.62 62064.0 33.22 -24.48 -28.43 665458.1 76.85 38.44 436.67 67733.05726311.06 62232.0 33.21 -24.49 -28.45 671250.5 77.02 38.61 437.08 67840.70727432.79 62400.0 33.19 -24.50 -28.47 676990.0 77.19 38.77 437.48 67947.74728552.85 62568.0 33.18 -24.51 -28.49 682676.7 77.35 38.94 437.88 68054.20729671.25 62736.0 33.17 -24.52 -28.51 688310.9 77.51 39.09 438.28 68160.08730788.01 62904.0 33.16 -24.53 -28.53 693893.2 77.67 39.25 438.67 68265.39731903.13 63072.0 33.15 -24.54 -28.55 699423.4 77.83 39.40 439.06 68370.13733016.64 63240.0 33.13 -24.54 -28.57 704903.1 77.98 39.56 439.44 68474.33734128.57 63408.0 33.12 -24.55 -28.59 710323.6 78.13 39.70 439.83 68578.03735239.90 63576.0 33.11 -24.56 -28.60 715702.8 78.28 39.85 440.20 68681.16736348.71 63744.0 33.10 -24.57 -28.62 721032.3 78.43 40.00 440.58 68783.76737455.97 63912.0 33.09 -24.58 -28.64 726312.1 78.58 40.14 440.95 68885.84738561.70 64080.0 33.08 -24.59 -28.66 731543.7 78.72 40.28 441.32 68987.42739665.95 64248.0 33.07 -24.60 -28.67 736727.0 78.87 40.42 441.68 69088.50740768.70 64416.0 33.06 -24.60 -28.69 741862.4 79.01 40.55 442.04 69189.09741869.99 64584.0 33.05 -24.61 -28.71 746950.4 79.15 40.69 442.40 69289.20742969.82 64752.0 33.04 -24.62 -28.72 751990.8 79.29 40.82 442.75 69388.83744068.19 64920.0 33.03 -24.63 -28.74 756985.3 79.42 40.95 443.11 69487.99745165.16 65088.0 33.02 -24.64 -28.76 761933.6 79.56 41.08 443.46 69586.69746260.72 65256.0 33.01 -24.65 -28.77 766836.1 79.69 41.20 443.80 69684.95747354.89 55424.0 33.01 -24.65 -28.79 771693.3 79.82 41.33 444.14 69782.75748447.68 65592.0 33.00 +24.66 -28.80 776505.1 79.95 41.45 444.48 69880.11749539.09 65760.0 32.99 -24.67 -28.82 781272.9 80.08 41.57 444.82 69977.04750629.17 65928.0 32.98 -24.66 -28.83 785996.6 80.21 41.69 445.16 70073.55751717.91 66096.0 32.97 -24.68 -28.85 790676.7 80.33 41.81 445.49 70169.64752805.33 66764.0 32.96 -34.69 -28.86 795313.4 80.46 41.92 445.82 70265.31753891.45

```
86431.0 32.96 -24.70 -28.88 799906.6 80.58 42.04 446.15 70360.57754976.26
65600.0 32.95 -24.71 -28.89 804457.9 80.70 42.15 446.47 70455.43756059.81
66768.0 32.94 -24.71 -28.91 808967.0 80.82 42.26 446.79 70549.90757142.09
66936.0 32.93 -24.72 -28.92 813425.7 80.94 42.37 447.11 70644.02758224.09
67104.0 32.93 -24.73 -28.94 817851.6 81.06 42.48 447.43 70737.71759303.88
67272.0 32.92 -24.74 -28.95 822236.1 81.17 42.58 447.74 70831.02760382.43
67344.0 32.92 -24.74 -28.95 824103.2 81.22 42.63 447.88 70870.90760844.31
 TOTAL ENERGY INPUT BTU
                                           0.327215E+11
 SEASONAL ENERGY INPUT BTU
                                           0.292671E+10
 TOTAL ENERGY INPUT GAL FUEL
                                              233724.85
 SEASONAL ENERGY INPUT GAL FUEL
                                               20905.10
                                                  25.81
 AVERAGE LB. WATER PER LB. FUEL
                                      ==
 SEASONAL LB. WATER PER LB. FUEL
                                                  21.94
                                      =
                                  =
 ENERGY FROM AIR TO ICE BTU
                                        0.155513E+11
 SEASONAL EMERGY LOSS, AIR TO ICE BTU =
                                           0.163220E+10
 TOTAL WATER WITHDRAWN GAL =
                                            4339179.96
 SEASONAL WATER WITHDRAWN GAL
                                      =
                                              219004.53
                                      ==
                                               35992.68
 TOTAL WATER LOSS GAL
 SEASONAL WATER LOSS GAL
                                                   0.00
```

YEAR 8 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	=	7549.50
WATER WITHDRAWAL GAL/DAY	=	3000.00
WITHDRAWAL FLOW RATE GAL/MIN	=	15.00
CONVECTIVE COSFF AFTER R=30 FT BTU/HR-FT2-F	=	32.50
START WITHDRAWAL AT HOUR	==	67368.00

```
67440.0 32.79 -24.77 -28.96 819472.0 81.11 42.50 448.03 70961.71762286.21
67608.0
          32.80 -24.82 -28.98 806676.5 80.80 42.16 448.28 71140.62765280.57
          32.81 -24.88 -28.99 793961.3 80.48 41.83 448.52 71320.56768275.12
67776.0
         32.83 -24.93 -29.01 781339.6 80.16 41.49 448.78 71501.71771271.30
67944.0
68112.0 32.85 -24.98 -29.02 768811.1 79.85 41.15 449.04 71684.08774269.09 68280.0 32.87 -25.04 -29.04 756376.9 79.52 40.81 449.30 71867.68777268.51
68448.0 32.89 -25.09 -29.05 744036.8 79.20 40.47 449.57 72052.54780269.53
68616.0 32.91 -25.14 -29.07 731790.9 78.88 40.14 449.84 72238.66783272.14
68784.0 32.93 -25.20 -29.09 719639.5 78.55 39.80 450.13 72426.08786276.33
68952.0 32.95 -25.25 -29.10 707582.2 78.22 39.46 450.41 72614.79789282.07
69120.0 32.97 -25.31 -29.12 695611.7 77.89 39.13 450.70 72804.87792290.37 69288.0 33.00 -25.36 -29.14 683745.1 77.55 38.79 451.00 72996.25795299.24
69456.0 33.02 ~25.42 -29.16 671973.8 77.22 38.46 451.31 73188.99798309.65
69624.0 33.04 -25.48 -29.18 660298.0 76.88 38.12 451.62 73383.11801321.59
69792.0 33.07 -25.53 -29.20 648718.0 76.54 37.79 451.94 73578.62804335.03
69960.0 33.09 -25.59 -29.22 637233.6 76.19 37.45 452.26 73775.56807349.96
70128.0 33.12 -25.65 -29.24 625846.0 75.85 37.12 452.60 73973.93810366.40
70296.0 33.14 -25.71 -29.26 614554.9 75.50 36.79 452.94 74173.77813384.31
70320.0 33.15 -25.71 -29.26 612949.7 75.45 36.74 452.98 74202.44813815.55
```

TOTAL ENERGY INPUT BTU 0.340801E+11 SEASONAL ENERGY INPUT BTU 0.135866E+10 TOTAL ENERGY INPUT GAL FUEL 243429.56 SEASONAL ENERGY INPUT GAL FUEL 9704.71 AVERAGE LB. WATER PER LB. FUEL 25.54 SEASONAL LB. WATER PER LB. FUEL 19.11 ENERGY FROM AIR TO ICE BTU = 0.163855E+11 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.834133E+09 -TOTAL WATER WITHDRAWN GAL 4709077.27 === SEASCNAL WATER WITHDRAWN GAL 369897.31

35992.58 0.00

YEAR 9 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 1bm/hr = 7549.50
WATER WITHDRAWAL GAL/DAY = 900.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 70344.00
```

70464.0 33.31 -25.72 -29.28 615354.7 75.52 36.82 453.33 74308.07815029.30 70632.0 33.30 -25.73 -29.30 621277.9 75.69 37.00 453.76 74416.99815129.26 70800.0 33.28 -25.74 -29.32 627147.5 75.87 37.18 454.18 74525.27817227.63 70968.0 33.27 -25.75 -29.34 632962.7 76.04 37.36 454.60 74632.93818324.40 71136.0 33.25 -25.76 -29.36 638723.2 76.21 37.53 455.01 74739.96819415.59 71304.0 33.24 -25.75 -29.38 644429.6 76.37 37.70 455.42 74846.38820513.20 71472.0 33.22 -25.77 -29.39 650082.4 76.54 37.87 455.83 74952.21821605.25 71640.0 33.21 -25.78 -29.41 655681.5 76.70 38.03 456.23 75057.45822695.76 71808.0 33.20 -25.79 -29.43 661228.5 76.86 38.19 456.63 75162.11823784.75 71976.0 33.19 -25.80 -29.45 666723.4 77.02 38.35 457.02 75266.20824872.25 72144.0 33,17 -25,81 -29,47 672166.5 77,18 38,51 457,41 75369,74825958.26 72312.0 33.16 -25.82 -29.47 677558.4 77.33 38.66 457.80 75472.73827042.80 72480.0 33.15 -25.83 -29.50 682898.9 77.48 38.82 458.18 75575.18828125.88 72648.0 33.14 -25.83 -29.52 688189.8 77.63 38.96 458.56 75677.10829207.54 72816.0 33.13 -25.84 -29.54 693430.8 77.78 39.11 458.93 75778.50830287.78 72984.0 33.12 -25.85 -29.56 698622.4 77.93 39.26 459.30 75879.39831366.61 73152.0 33.11 -25.86 -29.57 703765.1 78.07 39.40 459.67 75979.77832444.06 73320.0 33.10 -25.87 -29.59 708858.7 76.21 39.54 460.04 76079.66833520.12 73488.0 33.08 -25.88 -29.61 713904.8 78.35 39.68 460.40 76179.06834594.84 73556.0 33.07 -25.88 -29.62 718903.3 78.49 39.81 460.76 76277.99833668.22 73824.0 33.07 -25.89 -29.64 723854.7 78.63 39.95 461.11 76376.44836740.28 73992.0 33.06 -25.90 -29.66 728751.0 78.77 40.08 461.47 76474.48837812.01 74160.0 33.05 -25.91 -29.67 733608.3 78.90 40.21 461.81 76572.01838881.43 74328.0 33.04 -25.92 -29.69 738420.7 79.03 40.34 462.16 76669.09839949.59 74496.0 33.03 -25.92 -29.70 743187.7 79.16 40.47 462.50 76765.73841016.48 74664.0 33.02 -25.93 -29.72 747909.7 79.29 40.59 462.85 76861.94842082.11 74832.0 33.01 -25.94 -29.73 752587.0 79.42 40.71 463.18 76957.72843146.51 75000.0 33.00 -25.95 -29.75 757219.4 79.55 40.83 463.52 77053.07844209.66 75168.0 32.99 -25.95 -29.76 761808.6 79.67 40.95 463.85 77148.01845271.61 75336.0 32.98 -25.96 -29.78 766354.4 79.80 41.07 464.18 77242.54846332.36 75504.0 32.98 -25.97 -29.79 770857.2 79.92 41.19 464.51 77336.66847391.91 75672.0 32.97 -25.98 -29.81 775317.2 80.04 41.30 464.83 77430.39848450.29 75840.0 32.96 -25.98 -29.82 779734.5 80.16 41.41 465.15 77523.72849507.50 76008.0 32.95 -25.99 -29.84 784110.5 80.27 41.52 465.47 77616.67850563.56 76104.0 32.95 -26.00 -29.84 786592.6 80.34 41.58 465.66 77669.62851166.52

```
TOTAL ENERGY INPUT BTU = 0.370051E+11
SEASONAL ENERGY INPUT BTU = 0.292492E+10
TOTAL ENERGY INPUT GAL FUEL = 264321.83
SEASONAL ENERGY INPUT GAL FUEL = 20892.27
AVERAGE LB. WATER PER LB. FUEL = 25.26
SEASONAL LB. WATER PER LB. FUEL = 21.96
ENERGY FROM AIR TO ICE BTU = 0.180158E+11
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.163030E+10
TOTAL WATER WITHDRAWN GAL = 4928081.79
SEASONAL WATER WITHDRAWN GAL = 219004.53
TOTAL WATER LOSS GAL = 35992.68
SEASONAL WATER LOSS GAL = 0.00
```

YEAR 9 STANDBY OR WATER WITHDRAWAL

```
7549.50
BOILER WATER FLOW RATE Ibm/hr
                                              = 3000.00
WATER WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN
                                                   15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                    32.50
                                             = 76128.00
START WITHDRAWAL AT HOUR
76176.0 32.83 -26.02 -29.85 783760.3 80.27 41.51 465.78 77735.00852171.63
76344.0 32.82 -26.07 -29.86 770980.4 79.94 41.16 466.02 77914.72855148.04
76512.0 32.84 -26.12 -29.88 758250.8 79.62 40.82 466.28 78095.47858125.04
76580.0 32.86 -26.17 -29.89 745620.5 79.28 40.47 466.53 78277.48861103.59
 76848.0 32.88 -26.22 -29.91 733090.6 78.95 40.13 466.80 78460.78864083.71
77016.0 32.91 -26.27 -29.93 720660.9 78.62 39.79 467.06 78645.39867065.37
77184.0 32.93 -26.32 -29.94 708331.6 78.28 39.44 467.34 78831.32870048.56
77382.0 32.95 -26.38 -29.96 696102.7 77.94 39.10 467.62 79018.59873033.28
 77820.0 32.97 -26.43 -29.97 683974.1 77.60 38.76 467.90 79207.22876019.50
 77688.0 33.00 -26.48 -29.99 671938.4 77.25 38.42 468.20 79397.28879008.20
 77854.0 33.02 -24.53 -30.01 660012.5 76.91 38.08 468.50 79588.69881997.41
 78024.0 33.04 -26.59 -30.03 648188.1 76.56 37.74 468.80 79781.53884988.09
 78192.0 33.07 -26.64 -30.04 636465.2 76.21 37.40 469.12 79975.81887980.24
 78360.0 33.09 -26.69 -30.06 624844.1 75.85 37.06 469.44 80171.55890973.82
 79528.0 33.12 -26.75 -30.08 613324.6 75.50 36.72 469.76 80368.77893968.83
 78696.0 33.15 -26.80 -30.10 601907.9 75.14 36.38 470.10 80567.50896965.27
 78864.0 33.18 -26.86 -30.12 590593.7 74.78 36.04 470.44 80767.77899963.12
 79032.0 33.20 -26.91 -30.14 579382.3 74.41 35.70 470.79 80969.59902962.35
 79080.0 33.21 -26.93 -30.15 576197.7 74.31 35.61 470.89 81027.54903819.52
  SEASONAL ENERGY INPUT BTU =
TOTAL ENERGY INPUT GAL FUEL =
SEASONAL ENERGY
                                             0.383630E+11
                                             0.135789E+10
                                               274021.08
   SEASONAL ENERGY INPUT GAL FUEL
AVERAGE LB. WATER PER LB. FUEL
                                                  9699.25
                                        =
                                                    25.04
   AVERAGE LB. WATER FER LB. FUEL =
                                                     19.21
                                             0.188465E+11
   ENERGY FROM AIR TO ICE BTU
   SEASONAL ENERGY LOSS. AIR TO ICE BTU =
                                             0.830732E+09
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                              5297971.60
                                                369889.81
                                                 35992.68
   TOTAL WATER LOSS GAL
                                                     0.00
   SEASONAL WATER LOSS GAL
                             YEAR 10
                       STANDBY OR WATER WITHDRAWAL
                                                 7549.50
BOILER WATER FLOW RATE 15m/hr
                                                  900.00
WATER WITHDRAWAL GAL/DAY
                                              =
                                                   15.00
WITHDRAWAL FLOW RATE GAL/MIN
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                    32.50
                                              = 79104.00
START WITHDRAWAL AT HOUR
 79200.0 33.38 -26.93 -30.16 577837.4 74.35 35.66 471.19 81118.18904859.43
 79368.0 33.37 -26.94 -30.18 583856.2 74.54 35.86 471.63 81227.64905935.74
 79536.0 33.35 -26.95 -30.20 589823.6 74.72 36.05 472.07 81336.45907010.62
 79704.0 33.34 -26.96 -30.22 595733.9 74.90 36.24 472,50 81444.60908083.96
 79872.0 33.32 -26.96 -30.24 601587.6 75.08 36.42 472.93 81552.09909155.78
 20040.0 33.30 -26.97,-30.26 607385.2 75.25 36.60 473.35 81658.95910226.11
 80208.0 33.29 -26.98 -30.27 613126.8 75.42 36.78 473.77 81765.17911294.94
```

TT OT LOW DO LTA OO 4:00:77 0 75 50 74 04 474,18 81870 78917347.37

```
80544.0 33.26 -27.00 -30.31 624446.5 75.76 37.13 474.59 81975.78913428.26
80712.0 33.25 -27.00 -30.33 630025.1 75.92 37.30 474.99 82080.19914492.77
80880.0 33.23 -27.01 -30.35 635550.1 76.08 37.46 475.40 82184,02915555.86
81048.0 33.22 -27.02 -30.36 641021.5 76.24 37.43 475.79 82287.27916617.55
81216.0 33.21 -27.03 -30.38 646440.9 76.40 37.79 476.19 82389.96917677.88
81384.0 33.19 -27.04 -30.40 651808.3 76.56 37.95 476.57 82492.10918736.84
81552.0 33.18 -27.04 -30.41 657124.0 76.71 38.10 476.96 82593.70919794.45
81720.0 33.17 -27.05 -30.43 662388.6 76.87 38.26 477.34 82694.76920850.73
81888.0 33.16 -27.06 -30.45 667602.1 77.02 38.41 477.72 82795.30921905.69
82056.0 33.15 -27.07 -30.46 672765.9 77.16 38.56 478.09 82895.32922959.35
82224.0 33.13 -27.08 -30.48 677880.0 77.31 38.70 478.46 82994.84924011.73
82392.0 33.12 -27.08 -30.50 682944.9 77.45 38.85 478.83 83093.85925042.84
82560.0 33.11 -27.09 -30.51 687952.7 77.60 38.99 479.20 83192.43926113.68
82728.0 33.10 -27.10 -30.53 692919.4 77.74 39.13 479.56 83290.47927162.27
82896.0
         33.09 -27.11 -30.55 697839.3 77.88 39.26 479.92 83388.05928209.66
83054.0
         33.08 -27.11 -30.56 702711.8 78.01 39.40 480.27 83485.16929255.83
83232.0 33.07 -27.12 -30.58 707537.3 78.15 37.53 480.62 83581.81930300.79
83400.0 33.06 -27.13 -30.59 712316.2 78.28 39.66 480.97 83678.01931344.57
83568.0 33.05 -27.14 -30.61 717048.4 78.41 39.79 481.32 83773.76932387.17
83736.0 33.04 -27.14 -30.62 721735.5 78.54 39.92 481.66 83869.08933428.62
83904.0 33.03 -27.15 -30.64 726377.2 78.67 40.04 482.00 83963.96934468.91
84072.0 33.02 -27.16 -30.65 730974.2 78.80 40.17 482.33 84058.43935508.08
84240.0 33.02 -27.17 -30.67 735526.6 78.93 40.29 482.67 84152.48936546.12
84408.0 33.01 -27.17 -30.68 740034.5 79.05 40.41 483.00 84246.11937583.04
84576.0 33.00 -27.18 -30.69 744499.3 79.17 40.53 483.33 84339.35938618.87
84744.0 32.99 -27.19 -30.71 748920.9 79.29 40.64 483.65 84432.18939653.61
84864.0 32.98 -27.19 -30.72 752053.0 79.38 40.73 483.89 84498.26940392.06
 TOTAL ENERGY INPUT BTU
                                             0.412858E+11
 SEASONAL ENERGY INPUT BIU
                                             0.292286E+10
 TOTAL ENERGY INPUT GAL FUEL
                                                294898.67
  BEASONAL ENERGY INPUT GAL FUEL
                                      =
                                                 20877.59
 AVERAGE LB. WATER PER LB. FUEL
                                       ==
                                                    24.84
 SEASONAL LB. WATER PER LB. FUEL = 22.10
ENERGY FROM AIR TO ICE BTU = 0.204674E+11
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.162092E+10
 TOTAL WATER WITHDRAWN GAL =
                                             5516968.63
 SEASONAL WATER WITHDRAWN GAL
                                       ==
                                               218997.03
 TOTAL WATER LOSS GAL
                                       =
                                                35992.68
 SEASONAL WATER LOSS GAL
                                                    0.00
```

YEAR 10 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 16m/hr
                                                     7549.50
WATER WITHDRAWAL GAL/DAY
                                                     3000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                       15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                =
                                                       32.50
START WITHDRAWAL AT HOUR
                                                = 84888.00
 84912.0 32.90 -27.21 -30.72 751002.3 79.35 40.70 483.97 84537.90940965.16
85080.0 32.85 -27.26 -30.74 738317.7 79.02 40.35 484.23 84719.01943926.24
85248.0 32.88 -27.31 -30.75 725623.4 78.68 40.00 484.48 84900.89946886.74
85416.0 32.90 -27.35 -30.77 713034.4 78.34 39.65 484.74 85084.10949848.71
85584.0 32.92 -27.40 -30.78 700550.7 77.99 39.30 485.01 85268.65952812.12
85752.0 32.94 -27.45 -30.80 688172.2 77.65 38.95 485.29 85454.58955776.96
85920.0 32.97 -27.50 -30.81 675899.4 77.30 38.60 485.57 85641.89958743.21 86088.0 32.99 -27.55 -30.83 663731.7 76.95 38.25 485.85 85830.60961710.86
86256.0 33.02 -27.60 -30.85 651661.8 76.60 37.90 486.15 86020.79964680.90
94424 0 33 04 -27 45 -30,84 439704,9 74,24 37,55 486,45 84217,38947451,33
```

```
84592.0 33.07 -27.70 -30.88 427858.3 75.88 37.21 484.76 84405.44970423.12
86760.0 33.09 -27.75 -30.90 616107.7 75.52 36.86 487.07 86600.03973597.25
86928.0 33.12 -27.80 -30.91 604472.1 75.16 36.52 487.39 86796.10976571.72
87096.0 33.15 -27.85 -30.93 592943.3 74.79 36.17 487.72 86993.70979547.51
87264.0 33.18 -27.90 -30.95 581522.2 74.42 35.83 488.06 87192.86982524.62
87432.0 33.21 -27.95 -30.97 570208.5 74.05 35.48 488.40 87393.61985503.01
87600.0 33.24 -28.01 -30.99 559002.3 73.67 35.14 488.76 87595.97988482.68
87768.0 33.27 -28.06 -31.00 547903.8 73.30 34.80 489.12 87799.97991463.60
87840.0 33.28 -28.08 -31.01 543180.3 73.13 34.65 489.28 87887.91992741.52
  TOTAL ENERGY INPUT BTU
                                            0.426429E+11
 SEASONAL ENERGY INPUT BTU
                                            0.135706E+10
  TOTAL ENERGY INPUT GAL FUEL
                                               304591.93
                                      =
                                      =
  SEASONAL ENERGY INPUT GAL FUEL
                                                 9693.26
```

= AVERAGE LB. WATER PER LB. FUEL 24.66 SEASONAL LB. WATER PER LB. FUEL == 19.41 ENERGY FROM AIR TO ICE BTU 0.212721E+11 SEASONAL ENERGY LOSS. AIR TO ICE BTU = 0.824695E+09 TOTAL WATER WITHDRAWN GAL 5886865.93 369897.31 SEASONAL WATER WITHDRAWN GAL 35992.68 TOTAL WATER LOSS GAL SEASONAL WATER LOSS GAL 0.00

TOTAL ENERGY INPUT BTU = 0.426429E+11
TOTAL ENERGY INPUT GAL FUEL = 304591.93
TOTAL ENERGY LOSS AIR TO ICE BTU = 0.212921E+11

APPENDIX D: REQUIREMENTS AND NUMERICAL PREDICTIONS, SOUTH POLE STATION WATER WELL, CONSTANT HEAT INPUT RATES.

Scenario No. 1.

Initial startup

Energy rate available: $Q_{\rm bc} = 400,000~{\rm Btu/h}$ Boiler flow rate: $m_{\rm f} = 10~{\rm gal/min}$ Water withdrawal rate: $m_{\rm o} = 0~{\rm gal/day}$

Time: 0-5 days (0-120 h)

Second phase—5–14 days (120–336 h)

Energy rate available: $Q_{bc} = 800,000 \text{ Btu/h}$ Boiler flow rate: $m_f = 10 \text{ gal/min}$

Water withdrawal rate: $\dot{m}_0 = \text{variable } (0-1000 \text{ gal/day})$

Time: 120–336 h

Third phase—15-60 days

Energy rate available: $Q_{bc} = 800,000 \, \text{Btu/h}$ Boiler flow rate: $m_f = 15 \, \text{gal/min}$ Water withdrawal rate: $\dot{m}_o = 600-1000 \, \text{gal/day}$

Time: 336–1440 h

Fourth phase—61–300 days

Energy rate available: $Q_{\rm bc} = 200,000~{\rm Btu/h}$ Boiler flow rate: $m_{\rm f} = 15~{\rm gal/min}$ Water withdrawal rate: $m_{\rm o} = 600~{\rm gal/day}$ Time: $1441-7200~{\rm h}$

Scenario No. 2

Phase 1—Same

Phase 2—Same

Phase 3—Same

Phase 4

Energy rate available: $Q_{bc} = 400,000 \text{ Btu/h}$ Boiler flow rate: $\dot{m}_{f} = 15 \text{ gal/min}$ Water withdrawal rate: $\dot{m}_{o} = 600 \text{ gal/day}$ Time: 61-300 days

Case 9

```
ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION
   BOILER WATER FLOW RATE 1bm/hr = 5038.00
CONVECTIVE COEFFICIENT BTU/HR-FT2-F = 32.50
INITIAL DRILL PARTURET
  INITIAL DRILL RADIUS FT =
DEPTH TO TOP OF WATER AT START FT =
INITIAL PARABOLIC WATER DIAMETER D FT =
INITIAL PARABOLIC WATER HEIGHT HW FT =
                                                                                                  1.50
                                                                                               157.00
                                                                                              4.24
10.00
                                                                                              124.00
   INITIAL AIR TEMP TA DEG F
                                                                                               -60-00
  INITIAL ICE SURFACE TEMP TS DEG F = -60.00
AMBIENT ICE TEMP DEG F = -60.00
EFFECTIVE LATENT HEAT BTU/LB = 392.35
 TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2, AIR VOL VA FT3
      TIME TW TA TS MW D HW HWB AI VA
0.0 124.00 -60.00 -60.00 527.5 4.24 10.00 167.00 1479.69 1109.77
24.0 88.17 -51.53 -56.96 2530.8 9.19 10.24 174.30 1703.72 1362.60
48.0 73.47 -48.01 -54.92 4404.0 11.67 11.03 178.42 1880.60 1649.00
72.0 66.21 -45.53 -53.27 6148.0 13.41 11.67 181.51 2038.04 1952.38
96.0 61.72 -43.63 -51.88 7793.6 14.76 12.20 184.06 2183.60 2266.90
120.0 58.60 -42.10 -50.70 9362.8 15.89 12.65 186.26 2320.67 2589.26
144.0 56.27 -40.84 -49.67 10871.5 16.86 13.06 188.22 2451.14 2917.26
168.0 54.45 -39.76 -48.77 12331.9 17.71 13.42 190.00 2576.21 3249.36
       TIME
                                 TΑ
                                              TS
                                                                 ıтW
                                                                                  ŢΙ
                                                                                            H₩
                                                                                                       H₩Ɓ
      170.8 54.26 -39.65 -48.67 12500.0 17.80 13.46 190.19 2590.54 3288.43
      TOTAL ENERGY INPUT BTU = 0.683267E+08
SEASONAL ENERGY INPUT BTU = 0.683269E+08
SEASONAL ENERGY INPUT GAL FUEL = 488.05
SEASONAL ENERGY RATE BTU/HR = 400017.12
TOTAL ENERGY THEUT GAL FUEL = 488.05
      AVERAGE LB. WATER PER LB. FUEL = 28.66
SEASONAL LB. WATER PER LB. FUEL = 28.66
ENERGY FROM AIR TO ICE BTU = 0.273713E+07
      SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.273713E+07
      TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                                                                          0.00
                                                                                                           0.00
      TOTAL WATER LOSS GAL
                                                                               =
                                                                                                    6779.04
      SEASONAL WATER LOSS GAL
                                                                                                     6779.04
                                                          YEAR 1
                                             STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                                                                 7549.50
BOILER WATER TEMPERATURE DEG F
                                                                                                   133.73
                                                                                          =
WATER WITHDRAWAL GAL/DAY
                                                                                          = 1000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                                                                   15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                                                                     32.50
START WITHDRAWAL AT HOUR
                                                                                                    170.81
     192.0 52.97 -38.84 -47.96 13753.1 18.48 13.75 191.63 2696.70 3584.39 360.0 51.10 -36.66 -44.84 16707.3 20.72 13.28 201.39 3616.64 6595.73 384.0 50.75 -36.47 -44.57 17244.4 21.02 13.32 202.65 3736.64 7004.14
     TOTAL ENERGY INPUT BTU = 0.150049E+09
SEASONAL ENERGY INPUT BTU = 0.817220E+08
SEASONAL ENERGY INPUT GAL FUEL = 583.73
SEASONAL ENERGY RATE BTU/HR = 383326.59
TOTAL ENERGY INPUT GAL FUEL = 1071.78
AVERAGE LB. WATER PER LB. FUEL = 26.94
      TOTAL ENERGY INPUT BTU
                                                                                         0.150049E+09
```

```
SEASONAL LB. WATER PER LB. FUEL =
                                               25.50
                                       0.841014E+07
ENERGY FROM AIR TO ICE BTU
                                   =
SEASONAL ENERGY LOSS, AIR TO ICE BTU =
                                        0.567301E+07
TOTAL WATER WITHDRAWN GAL
                                             7994.62
SEASONAL WATER WITHDRAWN GAL
                                   =
                                             7994.62
                                   =
                                            16184.68
TOTAL WATER LOSS GAL
                                             9405.64
SEASONAL WATER LOSS GAL
```

YEAR 1 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	==	<i>7</i> 549.50
BOILER WATER TEMPERATURE DEG F	=	103.74
WATER WITHDRAWAL GAL/DAY	=	1000.00
WITHDRAWAL FLOW RATE GAL/MIN	=	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	=	32.50
START WITHDRAWAL AT HOUR	=	384.00

528.0	48.55	-35.55	-43.30	21002.5	22.75	13.85	209.56	4406.39	9356.55
696.0	46.16	-34.69	-42.28	26369.9	24.67	14.79	216.39	5094.46	11915.34
864.0	44.13	-33.89	-41.46	32781.4	26.53	15.89	222.16	5697.54	14280.92
1032.0	42.47	-88.11	-40.75	40059.3	28.31	17.05	227.09	6231.3 <i>7</i>	16479.09
1200.0	41.16	-32.36	-40.09	47934.7	29.98	18.19	231.36	6711.53	18547.53
1368.0	40.11	-31.63	-39.48	56301.0	31.55	19.30	235.11	7147.61	20502.00
1488.0	39.49	-81.12	-39.05	62488.9	32.61	20.05	237.53	7437.03	21841.34

·		
TOTAL ENERGY INPUT BTU	==	0.571198E+09
SEASONAL ENERGY INPUT BTU	=	0.421149E+09
SEASONAL ENERGY INPUT GAL FUEL	=	3008.21
SEASONAL ENERGY RATE BTU/HR	=	381473.80
TOTAL ENERGY INPUT GAL FUEL		4079.99
AVERAGE LB. WATER FER LB. FUEL	=	33.21
SEASONAL LB. WATER PER LB. FUEL		35.44
ENERGY FROM AIR TO ICE BTU		0.574433E+08
SEASONAL ENERGY LOSS, AIR TO ICE	BTU =	0.490331E+08
TOTAL WATER WITHDRAWN GAL	=	54004.92
SEASONAL WATER WITHDRAWN GAL	= ,	46010.30
TOTAL WATER LOSS GAL	= -	35634.03
SEASONAL WATER LOSS GAL	===	19449.35

YEAR 2 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	=	7549.50
BOILER WATER TEMPERATURE DEG F	=	92.47
WATER WITHDRAWAL GAL/DAY	=	600.00
WITHDRAWAL FLOW RATE GAL/MIN	=	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	=	32.50
START WITHDRAWAL AT HOUR	=	1488.01

```
      1536.0
      35.22
      -31.43
      -38.92
      63382.7
      32.78
      20.13
      238.06
      7508.93
      22208.93

      1704.0
      35.06
      -31.06
      -38.50
      65824.5
      33.21
      20.36
      239.42
      7697.33
      23178.16

      1872.0
      34.96
      -30.72
      -38.13
      68357.4
      33.65
      20.60
      240.74
      7879.41
      24121.13

      2040.0
      34.86
      -30.40
      -37.79
      70946.2
      34.08
      20.84
      242.01
      8056.22
      25044.42

      2208.0
      34.77
      -30.10
      -37.48
      73548.5
      34.50
      21.08
      243.24
      8228.57
      25953.71

      2376.0
      34.69
      -29.83
      -37.19
      76125.5
      34.91
      21.32
      244.43
      8397.28
      26854.40

      2544.0
      34.61
      -29.58
      -36.91
      78651.4
      35.30
      21.54
      245.58
      8562.93
      27750.28

      2712.0
      34.54
      -29.35
      -36.66
      81124.1
      35.67
      21.75
      246.70
      8725.75
      28641.88

      2880.0
      34.47
      -29.13
      -36.43
      83545.9<
```

```
3216.0 34.35 -28.73 -36.00 88240.9 36.72 22.34 249.86 9198.84 31292.70
3384.0 34.29 -28.56 -35.80 90516.6 37.04 22.51 250.86 9351.85 32168.75
3552.0 34.24 -28.39 -35.61 92745.7 37.35 22.68 251.84 9502.71 33041.21
3720.0 34.19 -28.23 -35.44 94922.1 37.65 22.85 252.79 9651.63 33911.20
3888.0 34.14 -28.09 -35.27 97062.4 37.95 23.00 253.72 9798.52 34776.87
5064.0 33.88 -27.26 -34.31 110891.5 39.75 23.94 259.70 10778.96 40750.45
5282.0 38.85 -27.17 -34.19 112712.9 39.98 24.06 260.49 10913.01 41592.52
5400.0 33.82 -27.08 -34.08 114498.0 40.21 24.17 261.27 11045.73 42431.97
5568.0 33.79 -27.00 -33.98 116248.0 40.42 24.28 262.03 11177.18 43268.90
5736.0 33.76 -26.92 -33.88 117963.2 40.63 24.38 262.79 11307.39 44103.35
5904.0 33.74 -26.84 -33.78 119644.5 40.84 24.48 263.52 11436.41 44935.39
6072.0 33.71 -26.77 -33.69 121292.5 41.04 24.57 264.25 11564.28 45765.06
6240.0 33.69 -26.71 -33.60 122907.4 41.23 24.67 264.97 11691.03 46592.42
6408.0 33.67 -26.64 -33.52 124490.6 41.42 24.76 265.67 11816.71 47417.54
6576.0 33.64 -26.58 -33.44 126042.3 41.61 24.84 266.37 11941.36 48240.46
6744.0 33.62 -26.52 -33.36 127563.2 41.79 24.93 267.05 12065.00 49061.23
6912.0 33.60 -26.47 -33.29 129053.7 41.97 25.01 267.73 12187.67 49879.91 7080.0 33.58 -26.42 -33.21 130514.2 42.14 25.08 268.39 12309.39 50696.51 7248.0 33.56 -26.37 -33.14 131937.9 42.30 25.16 269.05 12430.29 51512.10
7272.0 33.56 -26.36 -33.13 132140.0 42.33 25.17 269.15 12447.48 51628.31
```

TOTAL ENERGY INPUT BTU = 0.169577E+10
SEASONAL ENERGY INPUT BTU = 0.112457E+10
SEASONAL ENERGY INPUT GAL FUEL = 8032.66
SEASONAL ENERGY RATE BTU/HR = 194428.45
TOTAL ENERGY INPUT GAL FUEL = 12112.65
AVERAGE LB. WATER FER LB. FUEL = 31.89
SEASONAL LB. WATER FER LB. FUEL = 31.22
ENERGY FROM AIR TO ICE BTU = 0.472327E+09
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.414884E+09
TOTAL WATER WITHDRAWN GAL = 199010.48
SEASONAL WATER WITHDRAWN GAL = 145005.56
TOTAL WATER LOSS GAL = 36495.45
SEASONAL WATER LOSS GAL = 861.42

YEAR 2 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 1bm/hr = 7549.50
BOILER WATER TEMPERATURE DEG F = 60.05
WATER WITHDRAWAL GAL/DAY = 2000.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 7272.00
```

```
      8928.0
      35.88
      -29.78
      -33.58
      50237.6
      33.35
      15.41
      277.58
      15115.68
      72307.61

      9096.0
      36.51
      -30.27
      -33.73
      42595.9
      31.93
      14.26
      279.00
      15451.05
      74449.48

      9264.0
      37.36
      -30.79
      -33.90
      35139.3
      30.31
      13.05
      280.63
      15807.34
      76598.06

      9432.0
      38.56
      -31.35
      -34.09
      27835.3
      28.43
      11.78
      282.56
      16190.18
      78753.66

      9600.0
      40.39
      -31.96
      -34.30
      20869.9
      26.16
      10.41
      284.92
      16608.24
      80914.56

      9768.0
      43.54
      -32.63
      -34.53
      14117.6
      23.28
      8.89
      287.97
      17077.56
      83080.95

      9936.0
      50.54
      -33.41
      -34.79
      7635.4
      19.19
      7.08
      292.41
      17634.97
      85254.31

      10104.0
      88.54
      -34.52
      -35.08
      1442.1
      10.35
      4.60
      303.44
      18456.83
      87429.22
```

Case 10

```
ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION
  BOILER WATER FLOW RATE | 15m/hr = 124.00
  CONVECTIVE COEFFICIENT BTU/HR-FT2-F
                                                                            = 32.50
 INITIAL DRILL RADIUS FT = 1.50

DEPTH TO TOP OF WATER AT START FT = 157.00

INITIAL PARABOLIC WATER DIAMETER D FT = 4.24

INITIAL PARABOLIC WATER HEIGHT HW FT = 10.00

INITIAL WATER TEMP TW DEG F = 124.00

INITIAL AIR TEMP TA DEG F = -60.00

INITIAL ICE SURFACE TEMP TS DEG F = -60.00

AMBIENT ICE TEMP DEG F = -60.00

EFFECTIVE LATENT HEAT BTU/LB = 892.35
  INITIAL DRILL RADIUS FT
                                                                            :::
                                                                                         1.50
TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2. AIR VOL VA FT3
      TIME
                             TA TS
         IME TW TA TS MW D HW HWB AI VA
0.0 124.00 -60.00 -60.00 527.5 4.24 10.00 167.00 1479.69 1109.77
                                                           MPI
                                                                          D HW HWB
       24.0 88.17 -51.53 -56.96 2530.8 9.19 10.24 174.30 1703.72 1362.60
       48.0 73.47 -48.01 -54.92 4404.0 11.67 11.03 178.42 1880.60 1649.00
       72.0 66.21 -45.53 -53.27 6148.0 13.41 11.67 181.51 2038.04 1952.38
       96.0 61.72 -43.63 -51.88 7793.6 14.76 12.20 184.06 2183.60 2266.90
     120.0 58.60 -42.10 -50.70 9362.8 15.89 12.65 186.26 2320.67 2589.26 144.0 56.27 -40.84 -49.67 10871.5 16.86 13.06 188.22 2451.14 2917.26
     168.0 54.45 -39.76 -48.77 12331.9 17.71 13.42 190.00 2576.21 3249.36 168.0 54.45 -39.76 -48.77 12331.9 17.71 13.42 190.00 2576.21 3249.36
     TOTAL ENERGY INPUT BTU = 0.672036E+08
SEASONAL ENERGY INPUT BTU = 0.672036E+08
SEASONAL ENERGY INPUT GAL FUEL = 480.03
SEASONAL ENERGY RATE BTU/HR = 400017.36
TOTAL ENERGY INPUT GAL FUEL = 480.03
AVERAGE LB. WATER PER LB. FUEL = 28.73
ENERGY FROM AIR TO ICE BTU = 0.267174E+07
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.267174E+07
                                                                               0.672036E+08
0.672036E+08
                                                                    ==
     TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL
                                                                                    0.00
                                                                                                 0.00
                                                                                          6637.45
     SEASONAL WATER LOSS GAL
                                                                                          6637,45
                                                      YEAR 1
                                          STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                                                         7549.50
BOILER WATER TEMPERATURE DEG F
                                                                                   ::::
                                                                                          188.92
WATER WITHDRAWAL GAL/DAY
                                                                                          1000.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                                                         15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                                                             32.50
START WITHDRAWAL AT HOUR

      192.0
      54.19
      -39.23
      -48.05
      12672.2
      18.09
      13.21
      191.62
      2722.79
      3697.48

      360.0
      51.70
      -37.03
      -45.08
      16055.9
      20.52
      13.01
      201.77
      3646.83
      6448.69

      384.0
      51.28
      -36.84
      -44.81
      16638.5
      20.83
      13.08
      203.06
      3766.95
      7050.69

     TOTAL ENERGY INPUT BYU
                                                                       = 0.149602E+09
    TOTAL ENERGY INPUT BTU = 0.149602E+09
SEASONAL ENERGY INPUT BTU = 0.823982E+08
SEASONAL ENERGY INPUT GAL FUEL = 588.56
SEASONAL ENERGY RATE BTU/HR = 381473.79
TOTAL ENERGY INPUT GAL FUEL = 1068.58
AVERAGE LB. WATER PER LB. FUEL = 27.46
```

```
SEASONAL LB. WATER FER LB. FUEL = 26.42
ENERGY FROM AIR TO ICE BTU = 0.881495E+07
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.564821E+07
TOTAL WATER WITHDRAWN GAL = 8999.57
SEASONAL WATER WITHDRAWN GAL = 8999.57
TOTAL WATER LOSS GAL = 15626.98
SEASONAL WATER LOSS GAL = 8989.48
```

YEAR 1 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE lbm/hr BOILER WATER TEMPERATURE DEG F WATER WITHDRAWAL GAL/DAY WITHDRAWAL FLOW RATE GAL/MIN CONVECTIVE COEFF AFTER R=30 FT START WITHDRAWAL AT HOUR	BTU/HR-F	T2-F	::: ::::	7549.50 104.26 1000.00 15.00 32.50		
528.0 48.78 -35.87 -43.55	20626.8	22.65	13.72	210.08	4435.93	9870.40
696.0 46.23 -34.95 -42.51						
864.0 44.11 -84.11 -41.67						
1032.0 42.43 -33.29 -40.93	40234.8	28.34	17.10	227.64	6249.69	16410.52
1200.0 41.11 -32.50 -40.25	48239.2	30.03	18.25	231.89	6725.97	18458.10
1368.0 40.06 -31.74 -39.61	56708.7	31.61	19.37	285.62	7158.62	20894.94
1488.0 39.44 -31.22 -39.17	62952.0	32.67	20.12	238.03	7445.96	21724.09
TOTAL ENERGY INPUT RTU		***	0.57	0751E+09		
SEASONAL ENERGY INPUT BTU		::::		L149E+09		
SEASONAL ENERGY INPUT GAL F	UEL			3008.21		
SEASONAL ENERGY RATE BTU/HR				31473.80		
TOTAL ENERGY INPUT GAL FUEL		***		4076.79		
TOTAL ENERGY INPUT GAL FUEL AVERAGE LB. WATER PER LB. FU	EL	== .		33.66		
SEASONAL LB. WATER PER LB. F				35.86		
ENERGY FROM AIR TO ICE BTU		****	0.57	4624E+08		
SEASONAL ENERGY LOSS, AIR TO	ICE BI	`() ==	0.49	1474E+08		
TOTAL WATER WITHDRAWN GAL		****		55009 .87		
SEASONAL WATER WITHDRAWN GA	L.,	w		46010.30		
TOTAL WATER LOSS GAL		2022	:	33788.43		

YEAR 1 STANDBY OR WATER WITHDRAWAL

= 18861.50

SEASONAL WATER LOSS GAL

BOILER 4	JATER FLO	OW RATE	Thom/hr			***	7549.50		
BOILER W	JATER TEI	MPERATU	RE DEG 1			::::	92.42		
WATER WI	THURAWA	L GALZ	DAY			===	600.00		
WITHERAL	JAL FLOW	RATE G	ALZMIN -			****	15.00		
CONVECTI	VE COEFT	F AFTER	R=80 F	T BTUZHR-I	FT2-F	::::	32,50		
START WI	THDRAWA	L AT HOU	JR			=	1488.01		
1586.0	97 24	-81.25		64900.8	22 00	20 95	220 75	7504 A0	22141.04
1704.0		-30.60							23338.53
1872.0		-29,98							24508.18
2040.0		-29.40		86719.8					25644.25
2208.0	35.85	-28.84	-87,03	93874.4	37,00	23.40	246.63	8496.44	26770.05
2376.0	35.62	-28.82	-36.58	100909.5	37.85	24.04	248.29	8713.00	27885.71
2544.0	35.43	-27.84	-86.15	107828.7	38.65	24.68	249.85	8922.57	28992.24
2712.0	35.25	-27.37	-85.74	114686.8	39.41	25.19	251.88	9125.88	30090.16
2880.0	35.10	-26.94	-85.85	121339.9	40.18	25.72	252.78	9323.37	81180.01
3048.0	34.96	-26.58	-34.98	127941.9	40.81	26.21	254.07	9515.39	32242.19

```
3216.0 34.84 -26.14 -34.62 134446.9 41.46 26.69 255.36 9703.20 33337.10
3384.0 34.73 -25.77 -34.28 140858.5 42.09 27.14 256.59 9886.27 34405.08
3552.0 34.63 -25.42 -33.95 147179.5 42.68 27.56 257.77 10065.21 35466.43
3720.0 34.53 -25.08 -33.64 153406.0 43.26 27.97 258.91 10240.43 36522.45
3888.0 34.45 -24.76 -33.34 159556.8 43.81 28.37 260.01 10411.97 37571.46
4056.0 34.37 -24.46 -33.05 165626.1 44.34 28.74 261.07 10580.17 38614.64
4224.0 34.29 -24.17 -32.77 171616.6 44.86 29.10 262.10 10745.21 39652.24
4392.0 34.22 -23.90 -32.50 177530.4 45.35 29.45 263.09 10907.28 40684.45
4560.0
       34.16 -23.63 -32.25 183369.2 45.83 29.79 264.06 11066.53 41711.44
4728.0 34.10 -23.38 -32.00 189136.0 46.30 30.11 264.99 11223.14 42733.45
4896.0 84.04 -28.14 -81.76 194882.2 46.75 80.42 265.90 11877.22 48750.60
5064.0 33.99 -22.90 -31.53 200459.6 47.19 30.72 266.79 11528.91 44763.07
5232.0 33.94 -22.68 -31.31 206019.9 47.61 31.01 267.65 11678.31 45770.98
5400.0 33.89 -22.47 -31.10 211514.2 48.02 31.30 268.50 11825.54 46774.47
5568.0 88.85 -22.26 -80.89 216944.9 48.42 81.57 269.82 11970.69 47778.70
5786.0 88.81 -22.06 -80.69 222812.9 48.81 81.84 270.12 12118.86 48768.76
5904.0 33.77 -21.87 -30.50 227619.7 49.19 32.09 270.90 12255.12 49759.79
6072.0 33.73 -21.69 -30.31 232866.5 49.57 32.34 271.67 12394.55 50746.87
6240.0 33.70 -21.51 -30.13 238054.1 49.93 32.59 272.42 12532.23 51730.11
6408.0 33.66 -21.34 -29.96 243184.6 50.28 32.82 273.15 12668.23 52709.62
6576.0 33.63 -21.17 -29.79 248258.7 50.62 33.05 273.87 12802.60 53685.50
6744.0 33.60 -21.01 -29.62 253277.4 50.96 33.28 274.58 12935.42 54657.83
6912.0 33.57 -20.86 -29.46 258241.7 51.29 33.50 275.27 13066.72 55626.68
7080.0 33.54 -20.71 -29.31 263152.2 51.61 33.71 275.95 13196.57 56592.13
7248.0 33.51 -20.57 -29.16 268002.5 51.93 33.92 276.61 13325.09 57555.25
7272.0 33.51 -20.54 -29.14 268692.3 51.97 33.95 276.71 13343.33 57692.44
```

##: TOTAL EMERGY IMPUT BIU 0.225761E+10 SEASONAL ENERGY INPUT BTU = 0.168686E+10 = 12049.01 SEASONAL ENERGY INPUT GAL FUEL :::: SEASONAL EMERGY RATE BTU/HR 291642.87 222 TOTAL ENERGY INPUT GAL FUEL 16125.80 AVERAGE LB. WATER PER LB. FUEL 221 93.92 SEASONAL LB. WATER PER LB. FUEL = ENERGY FROM AIR TO ICE BTU = 34.01 0.585515E+09 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.528052E+09 TOTAL WATER WITHDRAWN GAL = 200015.48 SEASONAL WATER WITHDRAWN GAL :::: 145005.56 TOTAL WATER LOSS GAL :::: 84568.42 SEASONAL WATER LOSS GAL 574.98

YEAR 2 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	===	7549.50
BOILER WATER TEMPERATURE DEG F	::::	78.25
WATER WITHDRAWAL GAL/DAY	::::	2000.00
WITHDRAWAL FLOW RATE GAL/MIN	::::	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	::::	82,50
START WITHDRAWAL AT HOUR	::::	7272.00

```
      7416.0
      33.44
      -20.58
      -29.02
      265185.6
      51.86
      33.65
      277.22
      13518.85
      59422.77

      7584.0
      33.47
      -20.65
      -28.90
      259245.9
      51.63
      33.18
      277.82
      13739.72
      61652.21

      7752.0
      33.51
      -20.73
      -28.80
      253337.0
      51.40
      32.72
      278.43
      13962.13
      63883.05

      7920.0
      33.54
      -20.83
      -28.71
      247473.8
      51.17
      32.25
      279.04
      14185.96
      66113.25

      8088.0
      33.58
      -20.93
      -28.64
      241657.3
      50.93
      31.79
      279.67
      14411.26
      68342.85

      8256.0
      33.62
      -21.05
      -28.58
      235878.8
      50.48
      31.33
      280.32
      14638.12
      70572.77

      8424.0
      33.66
      -21.17
      -28.54
      230129.8
      50.48
      30.87
      280.97
      14866.67
      72803.95

      8592.0
      33.74
      -21.31
      -28.51
      224419.3
      50.18
      30.42
      281.64
      15096.88
      75035.45

      8760.0
      33.74
      -21.45
      -28.49
```

```
8928.0 33.79 -21.59 -28.48 213122.0 49.65 29.51 283.01 15562.38 79498.30
         33.84 -21.75 -28.49 207536.4 49.37 29.05 283.72 15797.78 81729.68
9096.0
         33.88 -21.91 -28.50 201982.5 49.09 28.60 284.44 16035.13 83962.31
9264.0
         33.94 -22.08 -28.52 196461.4 48.80 28.15 285.18 16274.49 86196.24
9432.0
9600.0 33.99 -22.25 -28.54 190989.8 48.51 27.70 285.93 16515.76 88429.48
9768.0 34.04 -22.43 -28.58 185569.2 48.20 27.25 286.70 16759.04 90662.09
9936.0 34.10 -22.62 -28.62 180183.7 47.89 26.81 287.49 17004.53 92896.01
10104.0 34.16 -22.81 -28.67 174850.9 47.58 26.36 288.30 17252.18 95129.31
10248.0 34.22 -22.97 -28.72 170295.3 47.29 25.98 289.00 17466.48 97046.39
 TOTAL ENERGY INPUT BTU
                                             0.306821E+10
                                        ::::
                                       ===
                                             0.810598E+09
 SEASONAL ENERGY INPUT BTU
 SEASONAL ENERGY INPUT GAL FUEL
                                                   5789.98
 SEASONAL ENERGY RATE BTU/HR
                                                 272377.63
 TOTAL ENERGY INPUT GAL FUEL
                                                 21915.78
  AVERAGE LB. WATER PER LB. FUEL
                                                     32,86
  SEASONAL LB. WATER PER LB. FUEL
                                        ::::
                                                     29.91
 SEASUMAL EB. WATER FER EB. FUEL == ENERGY FROM AIR TO ICE BTU ==
                                           0.905263E+09
0.319748E+09
  SEASONAL ENERGY LOSS, AIR TO ICE BTU =
 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHTRAWN GAL =
                                               446618.64
  SEASONAL WATER WITHDRAWN GAL
                                                246608.21
                                                 34563.42
 TOTAL WATER LOSS GAL
                                        200
 SEASONAL WATER LOSS GAL
                                                     0.00
```

YEAR 3 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr

= 7549.50

DOTTEL WIN	1 mm t 4 mm t	JW BHIE	FUMING CHE.			,	21.23 2 B 21.00		
BOILER WA	TER TER	TPERATUR	RE DEG F	:		***	73.96		
WATER WIT	HDRAWAL	GALZI	JAY			****	600,00		
WITHDRAWA	L FLOW	RATE GA	AL/MIH			===	15.00		
CONVECTIV				r BTUZHR-F	T2-F	:::	32.50		
START WIT	HDRAWAL	AT HOU	JR			== 1. (0248.01		
10272.0	34.23	-23.00	-28.73	169547.3	47,25	25.92	289.12	17502.28 97	7864.95
10440.0	84.27	-28.00	-28.79	174996.5	47.66	26.28	290.03	17650.98 98	8828.55
10608.0	34.20	-23.00	-28,84	180411.5	48.07	26.64	290.92	17797.71 99	9279.63
10776.0	34.14	-28.01	-28.88	185736.5	48.47	26.98	291.78	17942.16100	0232.25
10944.0								18084.2910	
11112.0	34.02	-28.01	-28.96	196165.1	49.22	27.63	298.44	18224.28103	2122:75
11280.0	33.97	-28.00	-28.99	201268.7	49.58	27.94	294.24	18362.2210	3061.83
11448.0	38.92	-23.00	-29.02	206288.2	49.98	28,23	295.02	18498.2210	3996.98
11616.0								18632.3510	
11784.0	33.83	-22.98	-29.07	216120.2	50.61	28.80	296.52	18764,6910	5855.87
11952.0	33.79	-22.97	-29.09	220980.9	50.98	29.06	297.24	18895.3210	6779.82
12120.0	88.75	-22.96	-29,11	225673.3	51.25	29.32	297.95	19024.3110	7700.21
12288.0	33.71	-22.95	-29,12	230348.6	5155	29.58	298.64	19151,7010	8617.14
12456.0	33.67	-22,93	-29.13	284958.9	51.85	29.82	299.32	19277.58109	9530.72
12624.0	88.64	-22.92	-29.14	239505.2	52.15	30.06	299.99	19402.0011	0441.02
12792.0	33.61	-22,90	-29.15	243988.9	52.43	30.29	300.64	19525.0111	1348.11
12960.0	33.58	-22.88	-29,15	248411.0	52.71	30.51	301.28	19646.65113	2252.08
13128.0	88,55	-22.87	-29.16	252772.5	52.98	30.72	301.91	19766.9811:	3152.97
18296.0	88.52	-22.85	-29.16	257075.5	58.25	30.94	302.53	19886.0411	4050.90
13464.0	33.49	-22.88	-29,16	261320.5	53.51	31.14	303.13	20008.8811	4945.92
13632.0	38,46	-22.81	-29.16	265508.7	53.77	81.84	303.73	20120.5811	5838.08
13800.0	33.44	-22,79	-29,16	269641.2	54.02	31,53	804.81	20286.0811	6727.46
13968.0	88.41	-22.77	-29.15	273718.6	54.26	31.72	804.88	20350.4111	7614.10
14136.0								20463.72110	
14304.0	33,37	-22.73	-29.14	281706.0	54.73	32.09	806.01	20576.0611	9880.48
14472.0								20687.3112	

```
14640.0 33.33 -22.68 -29.13 289494.8 55.19 32.43 307.09 20797.58121135.57
 14808.0 $3.31 -22.66 -29.12 293313.4 55.41 32.60 307.62 20906.89122009.41
 14976.0 33.29 -22.64 -29.11 297083.4 55.63 32.76 308.15 21015.28122880.87
 15144.0 33.27 -22.62 -29.10 300805.3 55.84 32.92 308.66 21122.76123749.98
 15312.0 83.25 -22.59 -29.08 304479.7 56.05 88.07 809.17 21229.86124616.77
 15480.0 33.23 -22.57 -29.07 308107.5 56.25 33.23 309.67 21335.11125481.30
 15648.0 88.22 -22.55 -29.06 811689.1 56.45 88.87 810.16 21440.08126848.59
 15916.0 33.20 -22.53 -29.05 315226.1 56.65 33.52 310.65 21544.13127203.71
 15984.0 33.18 -22.50 -29.08 318718.7 56.84 33.66 311.13 21647.45128061.70
 16032.0 33.18 -22.50 -29.03 319708.5 56.90 33.70 311.27 21676.83128306.45
   TOTAL ENERGY INFUT BTU
                                               ::::
                                                    0.475474E+10
   SEASONAL ENERGY INPUT BTU = SEASONAL ENERGY INPUT GAL FUEL = SEASONAL ENERGY RATE BTU/HR =
   SEASONAL ENERGY INPUT BTU
                                                    0.169653E+10
                                                        12046.68
   SEASONAL ENERGY RATE BTU/HR = 291585.49
TOTAL ENERGY INFUT GAL FUEL = 38962.42
AVERAGE LB. WATER PER LB. FUEL = 28.65
ENERGY FROM AIR TO ICE BTU = 0.161759E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.712331E+09
                                                         291585,49
   TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                       592621.66
                                               ==:
                                                         146003.02
   TOTAL WATER LOSS GAL
                                               ::::
                                                         34568.42
   SEASONAL WATER LOSS GAL
                                               ::::
                                                              0.00
                                  YEAR 3
                           STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 15m/hr
                                                          7549.50
BOILER WATER TEMPERATURE DEG F
```

72,92

2000.00

WITHDRAWAL FLOW RATE GAL/MIN 15.00 CONVECTIVE COEFF AFTER R=80 FT BTU/HR-FT2-F = 32,50 START WITHDRAWAL AT HOUR = 16032,00 16152.0 33.11 -22.56 -29.02 316086.3 56.76 33.48 311.58 21798.94129648.59 16320.0 33.14 -22.66 -29.01 308793.6 56.46 33.05 312.00 21987.41131782.62 16488.0 33.17 -22.76 -29.01 301566.4 56.16 32.63 312.43 22177.39133917.27 16656.0 88.20 -22.87 -29.01 294406.8 55.85 82.20 812.88 22868.94186052.62 16824.0 33.23 -22.98 -29.01 287306.5 55.54 31.78 313.33 22562.16138189.61 16992.0 33.27 -23.09 -29.02 280257.6 55.23 31.36 313.79 22757.15140329.23 17160.0 33.31 -23.20 -29.03 273269.4 54.91 30.93 314.27 22953.89142470.52 17328.0 33.34 -23.32 -29.05 266341.9 54.58 30.51 314.76 23152.42144613.46 17496.0 33.38 -23.44 -29.07 259484.3 54.25 30.08 315.26 23352.73146757.10 17664.0 33.42 -23.57 -29.09 252689.0 53.92 29.66 315.77 28554.93148902.42 17832.0 33.46 -23.70 -29.12 245948.1 53.58 29.24 316.29 23759.14151050.40 18000.0 33.51 -23.83 -29.15 239263.0 53.23 28.81 316.83 23965.42153201.06 18168.0 33.55 -23.96 -29.18 232650.3 52.88 28.39 317.38 24173.69155352.44 18336.0 33.60 -24.09 -29.22 226111.4 52.52 27.97 317.95 24384.00157504.56 18504.0 33.65 -24.23 -29.26 219630.3 52.16 27.55 318.53 24596.57159659.40 18672.0 38.70 -24.37 -29.30 213224.4 51.79 27.13 319.13 24811.32161815.00 18840.0 33.76 -24.51 -29.35 206870.4 51.41 26.71 319.74 25028.53163974.33 19008.0 33.81 -24.66 -29.39 200593.3 51.02 26.29 320.37 25248.06166134.44

19008.0 33.81 -24.66 -29.39 200593.3 51.02 26.29 320.37 25248.06166134.44

TOTAL ENERGY INPUT BTU = 0.556533E+10
SEASONAL ENERGY INPUT BTU = 0.810595E+09
SEASONAL ENERGY INPUT GAL FUEL = 5789.97
SEASONAL ENERGY RATE BTUZHR = 272377.69
TOTAL ENERGY INPUT GAL FUEL = 39752.38

WATER WITHDRAWAL GAL/DAY

```
AVERAGE LB. WATER PER LB. FUEL = 25.73

SEASONAL LB. WATER PER LB. FUEL = 25.73

ENERGY FROM AIR TO ICE BTU = 0.200610E+10

SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.388506E+09

TOTAL WATER WITHDRAWN GAL = 839224.86

SEASONAL WATER WITHDRAWN GAL = 246603.21

TOTAL WATER LOSS GAL = 34563.42

SEASONAL WATER LOSS GAL = 0.00
```

YEAR 4 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 15m/hr = 7549.50
BOILER WATER TEMPERATURE DEG F = 73.55
WATER WITHDRAWAL GAL/DAY = 600.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 19008.00
```

33.90 -24.69 -29.44 203540.7 51.22 26.47 321.08 25387.76167198.58 19176.0 33.85 -24.70 -29.49 208024.2 51.51 26.75 321.78 25513.05168079.12 19844.0 19512.0 33.81 -24.72 -29.53 212441.3 51.80 27.02 322.47 25636.83168956.66 19680.0 33.77 -24.74 -29.57 216793.1 52.08 27.28 323.14 25759.14169831.28 19848.0 33.73 -24.75 -29.61 221080.4 52.35 27.53 323.80 25880.05170703.02 20016.0 88.70 -24.77 -29.65 225805.2 52.61 27.78 824.45 25999.60171571.98 20184.0 88.66 -24.78 -29.69 229468.4 52.87 28.01 825.08 26117.84172488.20 20352.0 33.63 -24.79 -29.73 233570.9 53.12 28.24 325.70 26234.82173301.75 20520.0 33.60 -24.80 -29.76 237613.9 53.37 28.47 326.31 26350.58174162.67 20688.0 33.57 -24.81 -29.79 241598.4 53.61 28.68 326.91 26465.16175021.02 20856.0 33.54 -24.82 -29.82 245525.1 53.85 28.89 327.50 26578.59175876.85 21024.0 88.51 -24.88 -29.85 249895.7 54.08 29.10 828.08 26690.92176780.28 21192.0 33.48 -24.84 -29.88 253210.9 54.30 29.30 328.65 26802.18177581.19 21360.0 33.46 -24.85 -29.91 256971.6 54.53 29.49 329.21 26912.40178429.80 21528.0 33.43 -24.86 -29.93 260678.7 54.74 29.68 329.76 27021.61179276.09 21696.0 33.41 -24.86 -29.96 264332.8 54.95 29.87 330.30 27129.85180120.09 21864.0 33.39 -24.87 -29.98 267935.6 55.16 30.05 330.83 27237.13180961.89 22032.0 33.36 -24.88 -30.01 271487.4 55.37 30.22 331.36 27343.50181801.50 22200.0 33.34 -24.88 -30.03 274989.3 55.57 30.39 331.88 27448.96182638.96 22368.0 33.32 -24.89 -30.05 278441.9 55.76 30.56 332.39 27553.56183474.33 22536.0 33.30 -24.89 -30.07 281845.7 55.95 30.72 332.89 27657.31184307.62 22704.0 33.28 -24.90 -30.09 285202.3 56.14 30.88 333.38 27760.23185138.91 22872.0 33.27 -24.90 -30.10 288512.1 56.33 31.03 333.87 27862.36185968.21 23040.0 33.25 -24.91 -30.12 291775.7 56.51 31.18 334.35 27963.70186795.56 23208.0 33.23 -24.91 -30.14 294994.1 56.68 31.33 334.83 28064.29187620.99 23376.0 33.21 -24.91 -30.15 298167.4 56.86 31.47 335.30 28164.12188444.53 23544.0 33.20 -24.92 -30.17 301297.2 57.03 31.61 335.76 28263.24189266.24 28712.0 88.18 -24.92 -80.18 804888.8 57.20 81.75 886.22 28861.67190086.24 23880.0 33.17 -24.92 -30.20 307427.9 57.36 31.88 336.67 28459.39190904.37 24048.0 33.15 -24.92 -30.21 310430.0 57.52 32.01 337.11 28556.44191720.65 24216.0 33.14 -24.92 -30.22 313390.5 57.68 32.14 337.55 28652.82192535.09 33.13 -24.93 -30.23 316310.8 57.84 32.26 337.99 28748.55193347.76 24384.0 33.11 -24.93 -30.24 319191.1 57.99 32.38 338.42 28843.65194158.66 24552.0 33.10 -24.93 -30.25 322032.0 58.14 32.50 338.84 28938.13194967.83 24720.0 24792.0 33.09 -24.93 -30.26 323237.5 58.21 32.55 339.02 28978.44195314.09

TOTAL ENERGY INPUT BTU = 0.725187E+10
SEASONAL ENERGY INPUT BTU = 0.168653E+10
SEASONAL ENERGY INPUT GAL FUEL = 12046.67
SEASONAL ENERGY RATE BTU/HR = 291585.95
TOTAL ENERGY INPUT GAL FUEL = 51799.05

```
AVERAGE LB. WATER PER LB. FUEL
                                    n::
                                                  29,50
SEASONAL LB. WATER PER LB. FUEL
                                                  26.05
ENERGY FROM AIR TO ICE BTU
                                          0.280688E+10
SEASONAL ENERGY LOSS, AIR TO ICE
                                 BTU =
                                          0.800779E+09
TOTAL WATER WITHDRAWN GAL
                                              985220.38
SEASONAL WATER WITHDRAWN GAL
                                             145995.52
TOTAL WATER LOSS GAL
                                     ....
                                              34563.42
SEASONAL WATER LOSS GAL
                                                  0..00
```

YEAR 4 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	==:	7549,50
BOILER WATER TEMPERATURE DEG F	#22	72.83
WATER WITHDRAWAL GAL/DAY	===	2000,00
WITHDRAWAL FLOW RATE GAL/MIN	=::	15.00
CONVECTIVE COEFF AFTER R=SO FT BTU/HR-FT2-F	==:	82.50
START WITHDRAWAL AT HOUR	***	24792.00

24888.0 88.02 -24.98 -80.26 820277.1 58.09 82.89 889.24 29068.18196826.84 25056.0 33.05 -25.07 -30.28 312349.7 57.74 31.97 339.61 29245.99198414.89 25224.0 88.08 -25.17 -80.29 804504.8 57.89 81.54 889.99 29425.54200504.04 25392.0 33.12 -25.27 -30.31 296734.8 57.04 31.12 340.38 29606.88202595.33 25560.0 33.15 -25.37 -30.33 289033.6 56.68 30.70 340.78 29790.12204689.73 25728.0 83.19 -25.47 -80.85 281401.6 56.82 80.27 841.20 29975.82206787.26 25896.0 88.28 -25.58 -80.87 278855.6 55.95 29.85 841.62 80162.40208885.94 26064.0 33.27 -25.68 -30.40 266396.5 55.58 29.43 342.06 30351.39210985.78 26232.0 38.31 -25.79 -30.42 259016.6 55.20 29.00 342.51 30542.42213087.76 26400.0 33.36 -25.90 -30.45 251716.7 54.82 28.58 342.97 30735.54215191.88 26568.0 33.40 -26.01 -30.48 244481.3 54.43 28.16 343.45 30930.96217300.10 26736.0 33.45 -26.13 -30.52 237335.7 54.03 27.74 343.94 31128.52219409.48 26904.0 33.50 -26.24 -30.55 230281.0 53.63 27.32 344.45 31328.28221520.03 27072.0 33.56 -26.36 -30.59 223301.5 53.23 26.90 344.97 31530.47223633.70 27240.0 33.61 -26.48 -30.63 216414.4 52.81 26.48 345.51 31735.00225748.54 27408.0 88.67 -26.60 -80.67 209596.5 52.89 26.06 846.07 81942.16227867.48 27576.0 33.73 -26.72 -30.71 202873.0 51.96 25.64 346.64 32151.82229987.59 27744.0 88.79 -26.84 -80.75 196245.2 51.58 25.22 847.24 82864.06282108.87 27768.0 33.80 -26.86 -30.76 195302.0 51.46 25.16 347.32 32394.63232412.50

TOTAL ENERGY INPUT BTU	:::	0.806246E+10
SEASONAL ENERGY INPUT BIU	==:	0.810595E+09
SEASONAL ENERGY INPUT GAL FUEL	::::	5789 . 97
SEASONAL ENERGY RATE BTU/HR	===	272377.68
TOTAL ENERGY INPUT GAL FUEL	===	57589.02
AVERAGE LB. WATER PER LB. FUEL	==:	28.94
SEASONAL LB. WATER PER LB. FUEL	:::	23.95
ENERGY FROM AIR TO ICE BTU	::::	0.822444E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU	 :	0.417559E+09
TOTAL WATER WITHDRAWN GAL	==:	1231823.58
SEASONAL WATER WITHDRAWN GAL	****	246609.21
TOTAL WATER LOSS GAL	:::	34563.42
SEASONAL WATER LOSS GAL	===	0.00

YEAR 5 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	***	7549.50
BOILER WATER TEMPERATURE DEG F	::::	78.54
WATER WITHDRAWAL GAL/DAY	***	600,00
WITHDRAWAL FLOW RATE GAL/MIN	***	15.00

STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 1bm/hr	222	7549.50
BOILER WATER TEMPERATURE DEG F	1111	72.84
WATER WITHDRAWAL GAL/DAY	::::	2000.00
WITHDRAWAL FLOW RATE GAL/MIN	1111	15.00

CONVECTIVE COEFF AFTER R=30 FT BTU/HR-F START WITHDRAWAL AT HOUR	T2-F		32.50 3552.00	
COUNTY WAS TRANSPORTED BY THE THEORY		;:·	5 JULE 10 O	
33624.0 33.03 -27.34 -31.75 306033.0	57.88	81.17	365.41	36034.04261036.07
33792.0 33.06 -27.43 -31.77 297861.8	57.51	30.73	865.77	36208.97263093.60
33960.0 33.09 -27.52 -31.79 289773.0	57.12	30,30	366.13	86885.79265158.26
84128.0 88.18 -27.61 -81.81 281765.4	56.73	29.87	366.51	86564.65267216.24
3 4296.0 38.18 -27.71 -31.84 273840.1	56.84	29.44	366.90	36745.62269282.54
34464.0 33.22 -27.80 -31.86 266013.9	55.94	29.01	367.31	86928.62271850.19
34632.0 33.26 -27.90 -31.89 258287.7	55.54	28.58	367.72	37113.70273419.20
34800.0 33.31 -27.99 -31.91 250654.0	55.18	28.14	368.16	37300.99275490.53
34968.0 33.36 -28.09 -31.94 243113.5 35136.0 33.41 -28.19 -31.97 235650.9	54.71	27.71	368.60	37490.54277564.19
	54,27	27.28	369.06	37682.56279642.16
	00,800 60,70	20.00	367.34	3/8/6.92281/21.45
35472.0 33.52 -28.39 -32.04 221036.0 35640.0 33.58 -28.49 -32.07 213869.4	20.44Z 80.00	20.43	37.V x V 3	380/3.68283802.10
35808.0 33.64 -28.60 -32.10 206808.6	94.470 69 69	20.00	370.34 371 A7	382/3.V/283886.04
35976.0 33.71 -28.70 -32.14 199830.6	92.699 89.67	- A. 교육보기 - 설립 - 설립	071 497	204/U#V120/7/1#32 204/U#V120/7/1#32
36144.0 33.78 -28.81 -32.18 192960.3	ロム・ロアー 四十二 ムイー	- Admiral - OA - 70	07 L = 0 A - 0 7 0 - 1 0	00007 0E0004E4 77
36312.0 33.85 -28.92 -32.22 186191.2	91 1 <i>a</i> .	24 20 24 20	ロアル・エア	00007 7000A0AA 67
86480.0 88.98 -29.08 -82.26 179582.4	50.AA	28.87	979 99	-07 077 #70674644 #77 -00011 14004000 40
36528.0 33.95 -29.06 -32.27 177641.6	50.52	28.75	279 54	99970 79904000 17
			and an arrange	
TOTAL ENERGY INPUT BIU	:::	0.105	5596E+11	
SEASONAL ENERGY INPUT BTU	===	0.810)595E+09	
SEASONAL ENERGY INPUT GAL FUEL	***		5789.92	,
SEASONAL ENERGY RATE BTU/HR	:=:	22	72377 . 63	3
TOTAL ENERGY INPUT GAL FUEL		7	7542562	2
TOTAL ENERGY INPUT BTU SEASONAL ENERGY INPUT BTU SEASONAL ENERGY INPUT GAL FUEL SEASONAL ENERGY RATE BTU/HR TOTAL ENERGY INPUT GAL FUEL AVERAGE LB. WATER FER LB. FUEL SEASONAL LB. WATER PER LB. FUEL ENERGY FROM AIR TO ICE BTU	::::		27.91	
SEASONAL LB. WATER PER LB. FUEL	===		23.46	
ENERGY FRUM AIR TO ICE BIU	=:	0.448	3828E+10)
SEASONAL ENERGY LOSS, AIR TO ICE BTO	() ==	0.425	3258E+09	
TOTAL WATER WITHDRAWN GAL SEASONAL WATER WITHDRAWN GAL	5 ::	1.62	24437.30	
TOTAL WATER LOSS GAL	****		16603.21	
SEASONAL WATER LOSS GAL		•2	34568.42	
Charladiffa. Writary L.C.J. Gri.,			0.00	,
YEAR 6				
STANDBY OR WATER	WITHI	TRAWAL		
BOILER WATER FLOW RATE 15m/hr		≕ 7	1549.50	
BOILER WATER TEMPERATURE DEG F			73,69	
WATER WITHDRAWAL GAL/DAY		::::	600.00	
WITHDRAWAL FLOW RATE GAL/MIN		::::	15.00	
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT	12-F	:::	32,50	
START WITHDRAWAL AT HOUR		= 86	528.00	
36648.0 34.05 -29.08 -32.30 179054.9 5	50 . AO	28.84	274 05	29472 AQ2077A2 57
36816.0 34.00 -29.10 -32.33 183220.4 5	50.87	24.16	374.75	89591.61298518.AA
36984.0 33.95 -29.11 -32.37 187320.7 5	51.14	24,44	375.43	39709.67299322.54
- 87152.0 - 88.91 -29.18 -82.41 19 1849.8 5	51.40	24,72	376.10	89826,89800129,96
37320.0 33.86 -29.14 -32.45 195323.2 5	51.65	24.99	376.75	39941.70300933.98
37488.0 33.82 -29.16 -32.48 199235.3 5	51.90	25.24	377.39	40055.70301735.65
37656.0 33.78 -29.17 -32.52 203086.7 5	52.14	25,49	378.02	40168.44802585.02
37824.0 33.75 -29.19 -32.55 206878.3 5	52.87	25.74	378.63	40279.97808882.12
- Strong Collins of the Strong Strong William Will Strong Collins and Collins		.u., 0.7	570 TH	300000 00000 A 3 4 0 7 - 0 0 -

 37992.0
 33.71
 -29.20
 -32.59
 210610.8
 52.60
 25.97
 379.24
 40390.32304126.99

 38160.0
 33.68
 -29.22
 -32.62
 214286.0
 52.83
 26.20
 379.83
 40499.54304919.70

 38328.0
 33.64
 -29.23
 -32.65
 217904.4
 53.05
 26.42
 380.41
 40607.66305710.29

 38496.0
 33.51
 -29.24
 -32.68
 221467.0
 53.26
 26.85
 381.54
 40820.76307285.24

```
38832.0 33.55 -29.27 -32.74 228428.1 53.68 27.05 382.09 40925.80308069.68
39000.0 33.53 -29.28 -32.77 231828.8 53.88 27.25 382.64 41029.88308852.16
39168.0 38.50 -29.30 -32.80 235177.4 54.08 27.44 383.17 41138.02309632.71 39386.0 38.47 -29.31 -32.88 238474.6 54.27 27.68 383.70 41285.25310411.37 39504.0 38.45 -29.32 -32.86 241721.3 54.46 27.81 384.21 41386.60311188.18
39672.0 33.43 -29.34 -32.89 244918.0 54.64 27.99 384.72 41437.09311963.15 39840.0 33.40 -29.35 -32.91 248066.3 54.82 28.16 385.23 41536.75312736.34 40008.0 33.38 -29.36 -32.94 251166.4 55.00 28.33 385.72 41635.60313507.77
40176.0 33.36 -29.37 -32.97 254219.3 55.17 28.50 386.21 41733.67314277.48
40344.0 33.34 -29.38 -32.99 257225.7 55.34 28.66 386.69 41830.97315045.50
40512.0 33.32 -29.40 -33.02 260185.9 55.51 28.81 387.16 41927.52315811.85
40680.0 33.30 -29.41 -33.04 263093.2 55.67 28.96 387.63 42023.42316577.55
40848.0 33.28 -29.42 -33.06 265964.5 55.83 29.11 388.09 42118.54317340.67
41016.0 33.27 -29.43 -33.09 268792.1 55.99 29.26 388.54 42212.98318102.22
41184.0 88.25 -29.44 -88.11 271576.7 56.15 29.40 388.99 42806.75818862.21
41352.0 88.28 -29.45 -88.18 274818.7 56.80 29.58 389.44 42899.86819620.68
41520.0 33.22 -29.46 -33.16 277019.5 56.45 29.67 389.87 42492.33320377.65
41688.0 33.20 -29.47 -33.18 279679.2 56.59 29.80 390.31 42584.18321133.16
41856.0 33.19 -29.49 -33.20 282298.6 56.73 29.93 390.73 42675.43321887.22
42024.0 33.17 -29.50 -33.22 284878.2 56.87 30.05 391.15 42766.08322639.86
42192.0 33.16 -29.51 -33.24 287418.4 57.01 30.17 391.57 42856.15323391.09
42312.0 33.15 -29.51 -33.25 289209.5 57.11 30.26 391.87 42920.14323926.85
  TOTAL ENERGY INPUT BTU
                                                     0.122461E+11
  SEASONAL ENERGY INPUT BTU
                                                    0.168658E+10
  SEASONAL ENERGY INPUT GAL FUEL
                                                      12046.63
  SEASONAL ENERGY RATE BTUZHR
                                                        291585.06
                                                         87472.26
  TOTAL ENERGY INPUT GAL FUEL
  AVERAGE LB. WATER PER LB. FUEL = 27.50
SEASONAL LB. WATER PER LB. FUEL = 24.98
ENERGY FROM AIR TO ICE BTU = 0.532039E+10
  SEASONAL ENERGY LOSS, AIR TO ICE BTU =
                                                    0.837110E+09
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL =
                                                     1770447.82
                                                       146010.52
                                                         34563.42
  TOTAL WATER LOSS GAL
  SEASONAL WATER LOSS GAL
                                                              0.00
```

YEAR 6 STANDBY OR WATER WITHDRAWAL

BOILER WATER WITH WITHDRAWAL	TER TEM HDRAWAL FLOW E COEFF	. GAL/I RATE GA	RE DEG F DAY AL/MIN R=30 FI	r BTU/HR-F	FT2-F	==	7549.50 72.89 2000.00 15.00 32.50 2312.00	
42360.0 42528.0 42696.0	88.10	-29.53 -29.61 -29.70		288423.7 280205.7 272058.0	56.67	29.77	392.34	42958.14324326.25 43133.44326362.38 43310.74328401.25
42864.0 43032.0	33.19 33.23	-29.78 -29.86	-33.33 -33.35	264002.0 256054.5	55.85 55.48	28.88 28.44	393.09 393.49	48490.27880448.48 48671.94882486.95
43200.0 43368.0 43536.0	33.28 33.33 33.39		-88,40	248216.5 240480.4 282846.9	54.57	27.55	393.90 394.33 394.77	43855.82334531.80 44042.03336578.95 44230.65338628.41
43704.0 43872.0 44040.0	88.50	-30.21 -30.30 -30.39	-88.48	225300.8 217867.3 210547.7	58.24	26.28	395.23 395.70 396.20	44421.88340682.14 44615.59342737.18 44811.86344793.52
44208.0 44376.0	38.63	-30.48	-38,54	203326.3	52.32	25.85	396.71	45010.92846858.14 45212.72848914.08

44544.0 33.77 -30.67 -33.61 189206.8 51.36 24.47 397.79 45417.55350979.18 44712.0 33.85 -30.76 -33.64 182310.7 50.87 24.04 398.36 45625.31353045.58 44880.0 33.93 -30.86 -33.67 175525.4 50.37 23.61 398.96 45836.17355114.24 45048.0 34.02 -30.95 -33.71 168860.2 49.86 23.17 399.58 46050.16357184.16 45216.0 34.11 -31.05 -33.74 162307.6 49.35 22.74 400.22 46267.49359256.29 45288.0 34.15 -31.09 -33.76 159523.7 49.12 22.56 400.51 46361.77360146.29

TOTAL ENERGY INPUT BIU 0.180567E+11 SEASONAL ENERGY IMPUT BTU == 0.810595E+09 SEASONAL ENERGY INPUT GAL FUEL :::: 5789.96 5789.96 272377.55 SEASONAL ENERGY RATE BTU/HR :::: === TOTAL ENERGY INPUT GAL FUEL 93262,22 AVERAGE LB. WATER PER LB. FUEL = 27.26
SEASONAL LB. WATER PER LB. FUEL = 23.59
ENERGY FROM AIR TO ICE BTU = 0.574332E+10 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.422932E+09 TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL = TOTAL WATER LOSS GAL = 2017051.08 246603.21 TOTAL WATER LOSS GAL =:: 34563,42 SEASONAL WATER LOSS GAL 0.00

YEAR 7 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr = 7549.50
BOILER WATER TEMPERATURE DEG F = 78.89
WATER WITHDRAWAL GAL/DAY = 600.00
WITHDRAWAL FLOW RATE GAL/MIN = 15.00
CONVECTIVE COEFF AFTER R=SO FT BTU/HR-FT2-F = 32.50
START WITHDRAWAL AT HOUR = 45288.00

45384.0 34.26 -31.11 -33.78 160415.9 49.17 22.64 400.92 46445.38360779.43 45552.0 84.20 -81.12 -88.81 164720.6 49.47 22.97 401.66 46566.67861565.70 45720.0 34.14 -31.13 -33.85 168955.5 49.76 23.29 402.39 46686.33362349.55 45888.0 34.09 -31.14 -33.88 173121.8 50.04 23.59 403.09 46804.43363131.02 46056.0 34.03 -31.15 -33.92 177220.3 50.31 23.89 403.79 46921.03363910.17 46224.0 33.98 -31.17 -33.95 181252.3 50.58 24.18 404.46 47036.19364687.04 46392.0 33.93 -31.18 -33.98 185219.0 50.84 24.45 405.12 47149.96365461.69 46560.0 33.89 -31.19 -34.01 189121.0 51.09 24.72 405.77 47262.40366234.15 46728.0 33.85 -31.20 -34.04 192960.4 51.34 24.98 406.40 47373.55367004.49 46896.0 33.81 -31.21 -34.08 196737.8 51.58 25.23 407.02 47483.47367772.74 47064.0 33.77 -31.23 -34.11 200454.5 51.82 25.48 407.63 47592.20368538.96 47232.0 33.73 -31.24 -34.13 204111.3 52.05 25.71 408.23 47699.78369303.17 47400.0 33.69 -31.25 -34.16 207709.1 52.27 25.94 408.82 47806.24370065.43 47568.0 33.66 -31.26 -34.19 211249.6 52.49 26.16 409.39 47911.63370825.78 47736.0 33.63 -31.27 -34.22 214733.4 52.71 26.38 409.95 48015.98371584.25 47904.0 33.60 -31.28 -34.25 218161.5 52.92 26.59 410.51 48119.33372340.88 48072.0 33.57 -31.29 -34.27 221534.8 53.12 26.79 411.05 48221.70373095.71 48240.0 33.54 -31.30 -34.30 224854.0 53.32 26.99 411.59 48323.13373848.77 48408.0 33.51 -31.32 -34.33 228120.7 53.52 27.18 412.12 48423.65374600.11 48576.0 33.49 -31.33 -34.35 231335.4 53.71 27.36 412.64 48523.29375349.75 48744.0 33.46 -31.34 -34.38 234499.0 53.90 27.55 413.15 48622.06376097.72 48912.0 33.44 -31.35 -34.40 237612.4 54.08 27.72 413.65 48720.00376844.07 49090.0 33.42 -31.36 -34.43 240676.0 54.26 27.89 414.15 48817.13377588.80 49248.0 33.39 -31.37 -34.45 243691.4 54.44 28.06 414.63 48913.47378331.98 49416.0 33.37 -31.38 -34.48 246659.0 54.61 28.22 415.11 49009.05379073.61 49584.0 33.35 -31.39 -34.50 249579.7 54.78 28.38 415.59 49103.89379813.73 49752.0 33.33 -31.40 -34.52 252454.2 54.94 28.54 416.05 49198.00380552.36 49920.0 33.31 -31.41 -34.54 255282.8 55.11 28.69 416.51 49291.41381289.53 50088.0 33.29 -31.42 -34.57 258067.2 55.26 28.83 416.97 49384.13382025.27

```
50256.0 33.28 -31.43 -34.59 260807.5 55.42 28.98 417.42 49476.19382759.61
50424.0 33.26 -31.44 -34.61 263504.6 55.57 29.11 417.86 49567.59383492.57
50592.0 33.24 -31.45 -34.63 266159.0 55.72 29.25 418.30 49658.37384224.18
          33.23 -31.46 -34.65 268771.3 55.87 29.38 418.73 49748.52384954.44 33.21 -31.47 -34.67 271342.7 56.01 29.51 419.15 49838.07385683.41
50760.0
50928.0
51072.0 33.20 -31.48 -34.69 273514.4 56.13 29.62 419.51 49914.37386307.21
  TOTAL EMERGY INPUT BIU
                                                    0.147482E+11
  SEASONAL ENERGY INPUT BTU
                                             #23
                                                    0.168653E+10
  SEASONAL ENERGY INPUT GAL FUEL
                                                        12046.67
  SEASONAL ENERGY RATE BTU/HR
                                                        291585.91
  TOTAL ENERGY INPUT GAL FUEL
                                                       105308.89
  AVERAGE LB. WATER PER LB. FUEL
                                                             27.08
  SEASONAL LB. WATER PER LB. FUEL = 25.22
ENERGY FROM AIR TO ICE BTU = 0.657240E+10
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.829078E+09
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                     2163046.54
                                                       145995.52
                                             :::
  TOTAL WATER LOSS GAL
                                                        34563.42
  SEASONAL WATER LOSS GAL
                                                             0.00
                                 YEAR 7
```

STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	===	7549.50
BOILER WATER TEMPERATURE DEG F	===	72.94
WATER WITHDRAWAL GAL/DAY	***	2000.00
WITHDRAWAL FLOW RATE GAL/MIN	==:	15.00
CONVECTIVE COEFF AFTER R=80 FT BTU/HR-FT2-F	##:	32.50
START WITHDRAWAL AT HOUR	==	51072.00
51096.0 33.20 -31.48 -34.69 273873.5 56.15	296	4 419.57
51264.0 88.14 -81.56 -84.71 265708.4 55.74	29.1	8 419.94

49927,04386411,09 50103.68388429.87 51432.0 33.19 -31.64 -34.73 257566.0 55.31 28.72 420.32 50282.11390450.22 51600.0 33.24 -31.71 -34.76 249543.3 54.89 28.27 420.71 50462.75392471.74 51768.0 33.29 -31.79 -34.78 241636.4 54.45 27.81 421.12 50645.65394494.43 51936.0 33.35 -31.86 -34.80 233829.5 54.01 27.35 421.54 50831.02396520.25 52104.0 33.40 -31.94 -34.83 226139.6 53.56 26.90 421.97 51018.80398547.22 52272.0 33.46 -32.02 -34.85 218543.5 53.10 26.44 422.43 51209.26400578.30 52440.0 33.53 -32.10 -34.88 211066.2 52.64 25.99 422.90 51402.28402610.51 52608.0 33.59 -32.18 -34.90 203709.1 52.17 25.54 423.39 51597.94404643.85 52776.0 88.66 -82.26 -84.98 196464.5 51.70 25.09 428.90 51796.40406679.29 52944.0 33.74 -32.34 -34.96 189333.4 51.21 24.64 424.43 51997.75408716.81 53112.0 33.82 -32.42 -34.98 182300.9 50.72 24.19 424.99 52202.24410758.39 53280.0 33.90 -32.50 -35.01 175392.0 50.21 23.74 425.56 52409.75412801.04 53448.0 33.98 -32.59 -35.04 168600.3 49.70 23.29 426.16 52620.47414845.76 53616.0 34.08 -32.67 -35.07 161934.9 49.18 22.85 426.78 52834.45416891.52 53784.0 34.18 -32.76 -35.10 155388.4 48.65 22.40 427.43 53051.87418939.29 53952.0 34.28 -32.85 -35.14 148946.0 48.10 21.96 428.11 53273.04420991.04 54048.0 34.34 -32.90 -35.15 145330.7 47.79 21.71 428.51 53400.97422162.95

TOTAL ENERGY INPUT BIU :::: 0.155538E+11 SEASONAL ENERGY INPUT BTU ### 0.810595E+09 SEASONAL ENERGY INPUT GAL FUEL ******* 5789.96 SEASONAL ENERGY RATE BTU/HR 2223 272377.48 111098.85 TOTAL ENERGY INPUT GAL FUEL :::: AVERAGE LB. WATER PER LB. FUEL = 26.86
SEASONAL LB. WATER PER LB. FUEL = 28.90
ENERGY FROM AIR TO ICE BTU = 0.699018E+10 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.417785E+09

```
TOTAL WATER WITHDRAWN GAL = 2409649.75
SEASONAL WATER WITHDRAWN GAL = 246603.21
TOTAL WATER LOSS GAL = 34563.42
SEASONAL WATER LOSS GAL = 0.00
```

YEAR 8 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 16m/hr
                                                       7549.50
BOILER WATER TEMPERATURE DEG F
                                                        74.08
WATER WITHDRAWAL GAL/DAY
                                                        600.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                        15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                                         82.50
                                                 = 54048.00
START WITHDRAWAL AT HOUR
 54120.0 34.47 -32.91 -35.17 145672.1 47.80 21.75 428.84 53468.19422673.32
 54288.0 34.39 -32.92 -35.20 150133.8 48.13 22.12 429.62 53590.93423434.25
 54456.0 34.32 -32.92 -35.23 154522.7 48.44 22.47 430.39 53711.88424192.91
 54624.0 34.25 -32.93 -35.26 158836.7 48.75 22.81 431.13 53831.09424949.29
 54792.0 34.19 -32.94 -35.29 163077.3 49.05 23.13 431.86 53948.64425703.43
 54960.0 34.13 -32.95 -35.32 167245.9 49.34 23.44 432.57 54064.60426455.39
 55128.0 34.07 -32.96 -35.35 171343.5 49.62 23.75 433.26 54179.04427205.22
 55296.0 34.02 -32.97 -35.38 175372.2 49.90 24.04 433.94 54292.03427952.98
 55464.0 33.97 -32.98 -35.41 179333.0 50.16 24.32 434.60 54403.63428698.71
 55632.0 33.92 -32.98 -35.44 183227.2 50.42 24.59 435.25 54513.88429442.46
 55800.0 33.88 -32.99 -35.46 187055.9 50.68 24.85 435.88 54622.84430184.27
 55968.0 33.84 -33.00 -35.49 190820.0 50.93 25.11 436.50 54730.56430924.18
 56136.0 33.79 -33.01 -35.52 194521.6 51.17 25.35 437.10 54837.09431662.25
 56304.0 33.76 -33.02 -35.54 198153.1 51.40 25.59 437.70 54942.54432399.50
 56472.0 38.72 -88.08 -85.57 201782.4 51.68 25.82 488.28 55046.82488184.00
 56640.0 38.68 -88.04 -85.59 205252.0 51.86 26.05 488.86 55150.02488866.77
 56808.0 33.65 -33.05 -35.62 208712.8 52.08 26.26 439.42 55252.18434597.83
 56976.0 33.62 -33.06 -35.64 212116.6 52.29 26.47 439.97 55353.34435327.24
 57144.0 33.59 -33.06 -35.67 215464.0 52.50 26.68 440.51 55453.54436055.03 57312.0 33.56 -33.07 -35.69 218756.0 52.70 26.88 441.04 55552.81436781.23
          33.56 -33.07 -35.69 218756.0 52.70 26.88 441.04 55552.81436781.23
 57480.0 33.53 -33.08 -35.71 221993.7 52.90 27.07 441.57 55651.17437505.88
 57648.0 33.51 -33.09 -35.74 225177.6 53.10 27.25 442.08 55748.64438228.99
 57816.0 33.48 -33.10 -35.76 228309.5 53.29 27.44 442.59 55845.27438950.61
 57984.0 88.46 -88.11 -85.78 281889.7 58.47 27.61 448.09 55941.08489670.77
 58152.0 33.43 -33.12 -35.80 234419.4 53.66 27.79 443.58 56036.08440389.50
 58320.0 33.41 -33.13 -35.82 237399.3 53.83 27.95 444.06 56130.31441106.82
 58488.0 33.39 -33.14 -35.85 240329.9 54.01 28.11 444.54 56223.79441822.75
 58656.0 33.37 -33.14 -35.87 243212.8 54.18 28.27 445.01 56316.53442537.34
 58824.0 33.35 -33.15 -35.89 246048.5 54.35 28.43 445.47 56408.56443250.60
 58992.0 33.33 -33.16 -35.91 248837.7 54.51 28.58 445.93 56499.90443962.56
 59160.0 33.31 -33.17 -35.93 251581.3 54.67 28.72 446.38 56590.56444673.24
 59328.0 33.29 -33.18 -35.95 254279.7 54.83 28.86 446.82 56680.57445382.66
 59496.0 33.27 -33.19 -35.97 256934.2 54.98 29.00 447.26 56769.94446090.86
 59664.0 33.25 -33.20 -35.99 259545.4 55.13 29.14 447.69 56858.69446797.85
 59832.0 33.24 -33.21 -36.01 262105.7 55.28 29.27 448.12 56946.90447504.64
 59832.0 33.24 -33.21 -36.01 262105.7 55.28 29.27 448.12 56946.90447504.64
  TOTAL ENERGY INPUT BTU = 0.172404E+11
SEASONAL ENERGY INPUT BTU = 0.168653E+10
SEASONAL ENERGY INPUT GAL FUEL = 12046.63
SEASONAL ENERGY RATE BTU/HR = 291585.02
TOTAL ENERGY INPUT GAL FUEL = 128145.49
AVERAGE LB. WATER PER LB. FUEL = 26.73
SEASONAL LB. WATER PER LB. FUEL = 25.49
ENERGY FROM AIR TO ICE BTU = 0.780995E+10
   TOTAL ENERGY INPUT BTU
                                                0.172404E+11
```

```
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.819762E+09
TOTAL WATER WITHDRAWN GAL = 2555660.26
SEASONAL WATER WITHDRAWN GAL = 146010.52
TOTAL WATER LOSS GAL = 34563.42
SEASONAL WATER LOSS GAL = 0.00
```

YEAR 8 STANDBY OR WATER WITHDRAWAL

		STANDBY	Y OR WATER	RWITHI	JRAWAL.		
BOILER WA	TER FLOW R	RATE lbm/hr			== 7	549.50	
		CATURE DEG F	:		::::	72.97	
	HDRAWAL G				===	00.00	
WITHDRAWA	L FLOW RAT	E GALZMIN			::::	15.00	
CONVECTIV	E COEFF AF	TER R=30 F1	r BTUZHR-F	T2-F	1111	32.50	
START WIT	HDRAWAL AT	HOUR			= 59	9832.01	
60000.0							57111.50449320.25
60168.0							57290.44451820.88
60886.0							57471.65453321.34
60504.0							57655.38455825.24
60672.0							57841.41457880.04
60840.0							58030.19459338.72
61008.0							58221.54461348.27
61176.0							58415.53463358.69
61344.0							58612.33465370.96
61512.0							58812.03467385.06
61680.0							59014.88469402.97
61848.0							59220.77471421.68
62016.0							59429.89473442.18
62184.0							59642.28475468.45
62352.0							59858.14477486.47
62520.0							60077.76479513.20
62688.0							60801.15481541.68
62808.0	34.50 -84	1.4/ -36.43	1.5024246	40 # 7 1	ad A. a. A. Ci	40/.0/	60462.91482989.26
TOTAL.	ENERGY INF	UT BTU		::::	0.180	510E+11	
SEASON	AL ENERGY	IMPUT BTU		===	0.810)595E+09)
SEASON	AL ENERGY	INPUT GAL	FUEL 4R EL	:::		5789.96)
SEASON	AL ENERGY	RATE BTUZE	4R	::::	2.7	72877.48	;
TOTAL	ENERGY INF	PUT GAL FUE	EL.	::::	1. 2	28935.45	
		ER PER LB. F				26.61	
		TER PER LB.	FUEL	***		24.16	
	FROM AIR		•	::::		2828E+1(
		LOSS, AIR T	ro ice bi	"U ===		:280E+09	
	WATER WITH			***		2263.47	
	AL WATER W		9AL	****		16603.21	
	WATER LOSS			***	3	14563.42	
SEASON	AL WATER L	.OSS GAL		****		0.00)

YEAR 9 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	::::	7549.50
BOILER WATER TEMPERATURE DEG F	22	74.23
WATER WITHDRAWAL GAL/DAY	:::	.600.00
WITHDRAWAL FLOW RATE GAL/MIN	::::	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	1211	82.50
START WITHDRAWAL AT HOUR	:::	62808.00

62856.0 34.61 -34.48 -36.44 134984.5 46.67 21.14 457.59 60513.00483383.89

```
63024.0 34.55 -34.49 -36.46 139569.4 47.02 21.54 458.41 60636.07484118.31
63192.0 34.47 -34.49 -36.49 144083.6 47.36 21.92 459.21 60757.26484850.74
63360.0
        34.39 -34.50 -36.52 148509.3 47.69 22.28 459.98 60876.65485582.02
        34.32 -34.50 -36.55 152864.6 48.02 22.62 460.74 60994.18486310.22
63528.0
63696.0
        84.25 -84.51 -86.57 157142.6 48.88 22.96 461.47 61110.00487086.88
        34.18 -34.52 -36.60 161345.6 48.63 23.28 462.19 61224.21487760.56
63864.0
         34.12 -34.52 -36.62 165474.6 48.92 23.59 462.88 61336.86488482.82
64032.0
64200.0 34.07 -34.53 -36.65 169531.3 49.21 23.89 463.56 61448.03489203.20
64368.0 34.01 -34.53 -36.67 173516.9 49.49 24.18 464.23 61557.79489921.74
64536.0 38.96 -34.54 -36.70 177432.7 49.76 24.46 464.88 61666.17490638.48 64704.0 38.92 -34.55 -36.72 181280.7 50.02 24.72 465.51 61778.26491353.48
64872.0 33.87 -34.55 -36.75 185061.9 50.28 24.98 466.13 61879.09492066.78
65040.0 33.83 -34.56 -36.77 188777.6 50.52 25.23 466.74 61983.72492778.42
65208.0 33.79 -34.57 -36.79 192429.1 50.77 25.48 467.34 62087.19493488.43
65376.0 33.75 -34.57 -36.82 196017.3 51.00 25.71 467.92 62189.54494196.84
65544.0 33.71 -34.58 -36.84 199544.1 51.23 25.94 468.49 62290.82494903.71
65712.0 33.68 -34.59 -36.86 203010.4 51.46 26.16 469.05 62391.06495609.06
65880.0 33.65 -34.59 -36.88 206417.2 51.68 26.37 469.60 62490.30496312.93
66048.0 33.61 -34.60 -36.90 209765.8 51.89 26.58 470.14 62588.57497015.35
66216.0 33.58 -34.61 -36.93 213056.8 52.10 26.78 470.68 62685.90497716.35
66384.0 33.55 -34.61 -36.95 216292.1 52.31 26.98 471.20 62782.33498415.96
66552.0 88.58 -84.62 -86.97 219472.2 52.51 27.16 471.71 62877.89499114.22
66720.0 33.50 -34.63 -36.99 222598.3 52.70 27.35 472.22 62972.60499811.15
66888.0 33.47 -34.63 -37.01 225663.3 52.89 27.53 472.71 63066.57500507.76
67056.0 33.45 -34.64 -37.03 228683.7 53.08 27.70 473.20 63159.66501202.11
        33.43 -34.65 -37.05 231653.6 53.26 27.87 473.68 63251.99501895.21
67224.0
67392.0
        33.40 -34.66 -37.07 234573.2 53.44 28.03 474.16 63343.57502587.09
67560.0
        33.38 -34.66 -37.08 237443.4 53.61 28.19 474.62 63434.42503277.77
67728.0
        33.36 -34.67 -37.10 240265.1 53.78 28.35 475.08 63524.57503967.27
67896.0
        33.34 -34.68 -37.12 243038.8 53.95 28.50 475.53 63614.03504655.62
68064.0 33.32 -34.69 -37.14 245766.1 54.11 28.64 475.98 63702.82505342.84
68282.0 88.80 -84.69 -87.16 248447.8 54.27 28.79 476.42 68790.97506028.96
68400.0 33.28 -34.70 -37.18 251083.4 54.42 28.92 476.86 63878.49506713.99
68568.0 33.27 -34.71 -37.19 253675.1 54.58 29.06 477.28 63965.40507397.95
68592.0 33.26 -34.71 -37.20 254041.7 54.60 29.08 477.35 63977.77507495.58
  TOTAL ENERGY INPUT BTU
                                             0.197375E+11
 SEASONAL ENERGY INPUT BTU
                                       ::::
                                             0.168658E+10
 SEASONAL ENERGY INPUT GAL FUEL
                                      ::::
                                                12046.68
 SEASONAL ENERGY RATE BIU/HR
                                                291585.01
 TOTAL ENERGY IMPUT GAL FUEL
                                       :::
                                               140982.08
 AVERAGE LB. WATER PER LB. FUEL
                                       :=:
  SEASONAL LB. WATER PER LB. FUEL
                                      ==:
                                                    25,68
 ENERGY FROM AIR TO ICE BTU
                                          0.908625E+10
                                       ::::
 SEASONAL ENERGY LOSS, AIR TO ICE BTU =
                                           0.813026E+09
 TOTAL WATER WITHDRAWN GAL =
                                             2948273.99
 SEASONAL WATER WITHDRAWN GAL
                                               146010.52
 TOTAL WATER LOSS GAL
                                       ::::
                                                 34563.42
 SEASONAL WATER LOSS GAL
                                                     0.00
```

YEAR 9 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	::: :	7549.50
BOILER WATER TEMPERATURE DEG F	::: :	73,00
WATER WITHDRAWAL GAL/DAY	::::	2000.00
WITHDRAWAL FLOW RATE GAL/MIN	::::	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	***	82.50
START WITHDRAWAL AT HOUR	::::	68592.01

```
68736.0 33.20 -34.76 -37.21 248599.6 54.31 28.76 477.67 64116.94509009.57
68904.0 33.25 -34.82 -37.23 240504.9 53.88 28.27 478.05 64295.66510989.41
69072.0 33.31 -34.88 -37.25 232517.3 53.43 27.79 478.45 64476.83512971.87
69240.0 33.37 -34.94 -37.27 224653.9 52.98 27.31 478.86 64660.36514954.95
69408.0 33.43 -35.00 -37.29 216891.3 52.52 26.83 479.29 64846.56516941.63
         33.49 -35.06 -37.31 209254.5 52.06 26.35 479.73 65035.28518928.90
69576.0
         33.56 -35.13 -37.33 201736.6 51.58 25.87 480.20 65226.68520917.75
69744.0
69912.0 33.63 -35.19 -37.35 194346.6 51.10 25.39 480.68 65420.77522907.18
70080.0 88.71 -85.25 -87.87 187077.0 50.62 24.92 481.19 65617.78524898.14
70248.0 33.79 -35.32 -37.39 179912.6 50.12 24.44 481.71 65817.79526892.62
70416.0 33.87 -35.38 -37.41 172878.8 49.61 23.97 482.26 66020.85528887.62
70584.0 38.96 -35.45 -37.48 165968.8 49.10 28.49 482.84 66227.09530884.12
70752.0 34.06 -35.52 -37.46 159191.8 48.57 23.02 483.43 66436.55532881.09
70920.0 34.14 -35.58 -37.48 152540.4 48.04 22.55 484.06 66649.43534879.50
71088.0 34.27 -35.65 -37.50 145999.8 47.49 22.09 484.71 66866.03536881.33
71256.0 34.39 -35.72 -37.53 139587.5 46.93 21.62 485.39 67086.34538884.57
71424.0 84.51 -85.79 -87.55 188820.5 46.87 21.16 486.10 67810.85540887.17
71568.0 34.62 -35.85 -37.57 128056.6 45.87 20.77 486.74 67505.52542604.34
  TOTAL ENERGY INPUT BTU
SEASONAL ENERGY INPUT BTU
SEASONAL ENERGY INPUT GAL FUEL
SEASONAL ENERGY RATE BTU/HR
                                               0.205481E+11
                                           ***
                                          231
                                               0.810592E+09
                                          :::
::::
                                                       5789.94
                                                    272876.54
 TOTAL ENERGY INPUT GAL FUEL = 146772.02

AVERAGE LB. WATER PER LB. FUEL = 26.45

SEASONAL LB. WATER PER LB. FUEL = 24.84

ENERGY FROM AIR TO ICE BTU = 0.944649E+10
  TOTAL ENERGY INPUT GAL FUEL
                                                   146772.02
  SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.410244E+09
  TOTAL WATER WITHDRAWN GAL = SEASONAL WATER WITHDRAWN GAL =
                                                3194884.69
                                                   246610.70
  TOTAL WATER LOSS GAL
                                                    34563.42
                                                         0.00
  SEASONAL WATER LOSS GAL
```

YEAR 10 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 16m/hr

7549.50

BOILER WATER TEMPERATURE DEG F :::: 74.36 :::: 600.00 WATER WITHDRAWAL GALZDAY WITHDRAWAL FLOW RATE GAL/MIN :::: 15.00 CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F 32,50 :::: = 71568.00 START WITHDRAWAL AT HOUR 71592.0 34.64 -35.86 -37.58 127184.5 45.78 20.70 486.85 67538.38542891.13 71760.0 34.68 -35.86 -37.60 131831.3 46.16 21.12 487.69 67660.59543598.05 71928.0 34.59 -35.86 -37.63 136437.8 46.52 21.52 488.51 67781.09544303.73 72096.0 34.50 -35.86 -37.65 140959.4 46.87 21.90 489.30 67899.62545007.45 72264.0 34.42 -35.87 -37.68 145397.4 47.21 22.26 490.07 68016.26545709.27 72432.0 34.34 -35.87 -37.70 149754.5 47.54 22.61 490.82 68131.13546409.26 72600.0 34.27 -35.87 -37.72 154032.2 47.85 22.95 491.55 **6**8244.30547107.46 72768.0 34.21 -35.88 -37.75 158232.0 48.16 23.28 492.26 68355.87547803.91 72936.0 34.14 -35.88 -37.77 162355.6 48.46 23.59 492.95 68465.89548498.67 73104.0 34.09 -35.89 -37.79 166404.2 48.75 23.89 493.63 68574.44549191.77 73272.0 34.03 -35.89 -37.81 170380.3 49.04 24.18 494.28 68681.59549883.28 78440.0 38.98 -35.89 -37.88 174285.0 49.81 24.46 494.98 68787.40550578.21 73608.0 38.98 -35.90 -37.85 178119.8 49.58 24.78 495.55 68891.92551261.68 78776.0 88.88 -85.90 -87.88 181886.0 49.84 24.99 496.17 68995.20551948.55 73944.0 33.84 -35.91 -37.90 185584.7 50.09 25.24 496.77 69097.30552634.02 74112.0 33.80 -35.91 -37.92 189218.2 50.34 25.48 497.36 69198.26553318.08 74280.0 33.76 -35.92 -37.94 192787.2 50.58 25.72 497.94 69298.12554000.76

```
74448.0 33.72 -35.92 -37.96 196293.1 50.81 25.94 498.50 69396.92554682.09
        33.69 -35.93 -37.98 199737.1 51.04 26.16 499.06 69494.71555362.11
74616.0
         33.65 -35.93 -38.00 203120.1 51.26 26.38 499.60 69591.51556040.84
74784.0
        33.62 -35.94 -38.01 206444.1 51.48 26.58 500.13 69687.37556718.31
74952.0
75120.0 33.59 -35.94 -38.03 209709.7 51.69 26.78 500.66 69782.32557394.56
75288.0 33.56 -35.95 -38.05 212918.2 51.89 26.98 501.17 69876.38558069.61
75456.0 33.53 -35.95 -38.07 216070.6 52.10 27.17 501.68 69969.59558743.48
75624.0 33.51 -35.96 -38.09 219167.6 52.29 27.35 502.18 70061.96559416.20
75792.0 33.48 -35.96 -38.11 222211.0 52.48 27.53 502.67 70153.54560087.81
75960.0 33.46 -35.97 -38.12 225201.4 52.67 27.70 503.15 70244.35560758.31
76128.0 33.43 -35.98 -38.14 228139.9 52.85 27.87 503.62 70334.40561427.74
76296.0 33.41 -35.98 -38.16 231027.3 53.03 28.03 504.09 70423.73562096.12
76464.0 33.39 -35.99 -38.18 233864.3 53.21 28.19 504.55 70512.34562763.45
76632.0 33.36 -35.99 -38.19 236652.5 53.38 28.34 505.00 70600.28563429.79
76800.0 33.34 -36.00 -38.21 239392.4 53.54 28.49 505.45 70687.55564095.14 76968.0 33.32 -36.01 -38.23 242084.9 53.71 28.64 505.89 70774.17564759.51
77136.0 33.31 -36.01 -38.24 244730.8 53.87 28.78 506.32 70860.16565422.94
77304.0 33.29 -36.02 -38.26 247330.6 54.02 28.92 506.75 70945.54566085.43
77352.0 33.28 -36.02 -38.26 248065.5 54.07 28.96 506.87 70969.83566274.55
```

YEAR 10 STANDBY OR WATER WITHDRAWAL

```
BOILER WATER FLOW RATE 15m/hr
                                                    7549.50
BOILER WATER TEMPERATURE DEG F
                                                222
                                                     78.02
WATER WITHDRAWAL GALZDAY
                                                222
                                                    2000.00
WITHDRAWAL FLOW RATE GALIMIN
                                                222
                                                      15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F
                                               ::::
                                                      32,50
START WITHDRAWAL AT HOUR
                                                   77352.01
```

```
80160.0 | 34.58 | -36.99 | -38.58 | 128732.3 | 45.80 | 20.94 | 515.57 | 74268.37599027.60 | 80328.0 | 34.72 | -37.06 | -38.60 | 122636.7 | 45.21 | 20.47 | 516.33 | 74496.26601007.54 | 80328.0 | 34.72 | -37.06 | -38.60 | 122636.7 | 45.21 | 20.47 | 516.33 | 74496.26601007.54
```

TOTAL EMERGY INPUT BTU	***	0.280452E+11
SEASONAL ENERGY INPUT BTU	****	0.810597E+09
SEASONAL ENERGY INPUT GAL FUEL	***	5789.98
SEASONAL ENERGY RATE BTU/HR	:::	272378.19
TOTAL EMERGY INPUT GAL FUEL	===	164608.67
AVERAGE LB. WATER PER LB. FUEL	:::	26.88
SEASONAL LB. WATER PER LB. FUEL	=::	24.45
ENERGY FROM AIR TO ICE BTU	****	0.106639E+11
SEASONAL ENERGY LOSS, AIR TO ICE	BTU =	0.408375E+09
TOTAL WATER WITHDRAWN GAL	::::	3587475.91
SEASONAL WATER WITHORAWN GAL	::::	246595.71
TOTAL WATER LOSS GAL	::::	34568.42
SEASONAL WATER LOSS GAL	***	0.00

TOTAL ENERGY INPUT BTU = 0.230452E+11
TOTAL ENERGY INPUT GAL FUEL = 164608.67
TOTAL ENERGY LOSS AIR TO ICE BTU = 0.106639E+11

Case 12

```
ANTARCTIC PARABOLIC ICE RESEVOIR FORMATION
  BOILER WHITEK TERM DEG F = 124.00
BOILER WATER FLOW RATE 15m/hr = 5000 00
  CONVECTIVE COEFFICIENT BTU/HR-FT2-F = 32.50
INITIAL DRILL RADIUS FT = 1.50
  INITIAL WATER TEMP TW DEG F
                                                                         = 124.00
                                                                                 -60.00
  INITIAL AIR TEMP TA DEG F
                                                                         ***
   INITIAL ICE SURFACE TEMP TS DEG F
                                                                                   -60.00
  AMBIENT ICE TEMP DEG F
  AMBIENT ICE TEMP DEG F = -60.00
EFFECTIVE LATENT HEAT BTU/LB = 392.35
 TIME IN HRS, WATER VOL MW GALLONS, ICE AREA AI FT2. AIR VOL VA FT3
      TIME
                  TU
                            TΑ
                                        TS
     TIME TW TA TS NW D HW HWB AT QA 0.0 124.00 -60.00 -60.00 527.5 4.24 10.00 167.00 1479.69 1109.77 24.0 88.17 -51.53 -56.96 2530.8 9.19 10.24 174.30 1703.72 1362.60 48.0 73.47 -48.01 -54.92 4404.0 11.67 11.03 178.42 1880.60 1649.00 72.0 66.21 -45.53 -53.27 6148.0 13.41 11.67 181.51 2038.04 1952.38 96.0 61.72 -43.63 -51.88 7793.6 14.76 12.20 184.06 2183.60 2266.90 120.0 58.60 -42.10 -50.70 9362.8 15.89 12.65 186.26 2320.67 2589.26 144.0 564.45 -00.77 40.77 10301.5 16.86 13.06 188.22 2451.14 2917.26
                                                          MM
                                                                                 HW
                                                                                           HWB
                                                                                                              ΑI
                                                                                                                              UΔ
      168.0 54.45 -39.76 -48.77 12331.9 17.71 13.42 190.00 2576.21 3249.36
      168.0 54.45 -39.76 -48.77 12331.9 17.71 13.42 190.00 2576.21 3249.36
     TOTAL ENERGY INPUT BTU = 0.6/2036E+08
SEASONAL ENERGY INPUT BTU = 0.6/2036E+08
SEASONAL ENERGY INPUT GAL FUEL = 480.03
400017.86
                                                                     = 0.672036E+08
      SEASONAL ENERGY RATE BTU/HR
                                                                     =::
     TOTAL ENERGY INPUT GAL FUEL = 480.03
AVERAGE LB. WATER PER LB. FUEL = 28.73
SEASONAL LB. WATER PER LB. FUEL = 0.267174E+07
ENERGY FROM AIR TO ICE BTU = 0.267174E+07
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.267174E+07
TOTAL WATER WITHDRAWN GAL = 0.00
SEASONAL WATER WITHDRAWN GAL = 6637.45
SEASONAL WATER LOSS GAL = 6637.45
      TOTAL ENERGY INPUT GAL FUEL
                                                                     ;;;
                                                                                    480.03
                                                   YEAR 1
                                        STANDBY OR WATER WITHDRAWAL
BOILER WATER FLOW RATE 16m/hr
                                                                               = 7549.50
BOILER WATER TEMPERATURE DEG F
WATER WITHDRAWAL GAL/DAY
WITHDRAWAL FLOW RATE GAL/MIN
                                                                              = 188.92
                                                                                          0.00
WITHDRAWAL FLOW RATE GAL/MIN
                                                                                          15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F =
                                                                                        32.50
START WITHDRAWAL AT HOUR
                                                                                       168.00
     192.0 70.23 -36.34 -47.64 15748.3 19.30 14.42 192.76 2758.30 3720.25 860.0 52.33 -29.40 -41.50 42080.6 27.15 19.48 206.63 3911.17 7516.60 884.0 51.24 -28.78 -40.87 45704.4 27.93 19.99 208.06 4052.68 8065.73
     TOTAL ENERGY INPUT BIU
    TOTAL ENERGY INPUT BTU = 0.240004E+09
SEASONAL ENERGY INPUT BTU = 0.172800E+09
SEASONAL ENERGY INPUT GAL FUEL = 1234.29
SEASONAL ENERGY RATE BTU/HR = 800000.93
TOTAL ENERGY INPUT GAL FUEL = 1714.31
AVERAGE LB. WATER PER LB. FUEL = 30.79
                                                                              0.240004E+09
```

```
SEASONAL LB. WATER PER LB. FUEL = $1.59
ENERGY FROM AIR TO ICE BTU = 0.112432E+08
SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.857146E+07
TOTAL WATER WITHDRAWN GAL = 0.00
SEASONAL WATER WITHDRAWN GAL = 0.00
TOTAL WATER LOSS GAL = 20672.83
SEASONAL WATER LOSS GAL = 14035.38
```

YEAR 1 STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr BOILER WATER TEMPERATURE DEG F WATER WITHDRAWAL GAL/DAY WITHDRAWAL FLOW RATE GAL/MIN CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT: START WITHDRAWAL AT HOUR		===			
528.0 47.30 -26.25 -38.00 63856.2 3 696.0 44.56 -24.25 -35.75 85404.4 3					
864.0 42.65 -22.71 -34.09 108221.9 3					19265.14
1032.0 41.26 -21.45 -32.76 131815.0 4			· · · · · · · · · · · · · · · · · · ·		
1200.0 40.19 -20.86 -81.65 156828.9 4					
1868.0 89.85 -19.89 -80.68 181666.5 4					29138.63
1488.0 88.84 -18.76 -30.06 200208.0 4	6.1/	32,04	242.20	8280.18	31247.95
TOTAL ENERGY INPUT RILL		0.109	9921E+10		
TOTAL ENERGY INPUT BTU SEASONAL ENERGY INPUT BTU SEASONAL ENERGY INPUT GAL FUEL	::: :	0.859	205E+09		
SEASONAL ENERGY INPUT GAL FUEL	==:	45- H 417-41- A	6137.18		
SEASONAL ENERGY RATE BILLIER	:::	77	78261.01		
TOTAL ENERGY INPUT GAL FUEL	::::		7851.49		
SEASONAL ENERGY RATE BTU/HR TOTAL ENERGY INPUT GAL FUEL AVERAGE LB. WATER PER LB. FUEL	::: :		33.73		
SEASONAL LB. WATER PER LB. FUEL	222		34.55		
ENERGY FROM AIR TO ICE BTU	::: :	0.987	7090E+08		
SEASONAL ENERGY LOSS, AIR TO ICE BTU			4658E+08		
TOTAL WATER WITHDRAWN GAL	=::	Ä	26998.71		
SEASONAL WATER WITHDRAWN GAL	::::	2	26998.71		
TOTAL WATER WITHDRAWN GAL SEASONAL WATER WITHDRAWN GAL TOTAL WATER LOSS GAL	::::	7	1691.79		
SEASONAL WATER LOSS GAL	:::	15 52	51018.96		

YEAR 1 STANDBY OR WATER WITHDRAWAL

BOILER WAT	TER FLO	OW RATE	lbm/br			# ;	7549.50		
BOILER WAT	TER TER	TPERATUR	RE DEG F	:		::::	144.81		
WATER WITH	TORAWAL	. GALZI	DAY			::::	600.00		
WITHDRAWA	_ FLOW	RATE GA	ALZMIN			===	15.00		
CONVECTIV	E COEFF	AFTER	R=30 F1	C BTUZHR-F	TT2-F	****	82.50		
START WITH	HDRAWAL	. AT HOU	JR			== :	1488.01		
1586.0	38.38	-19.51	-29.88	202117.7	46.34	32.12	242.60	8605.14	31783.26
1704.0				199745.8				8758.76	33129.25
1872.0	33.10	-19.18	-29.03	197697.4	46.22	31.58	243.61	8905.98	34407.41
2040.0	33.11	-19.05	-28.72	196074.6	46.19	31.35	244.12	9048.91	35631.51
2208.0	33.12	-18.96	-28,45	194828.8	46.19	31.16	244.68	9187.84	36806,68
2376.0	33.13	-18.88	-28.23	193917.4	46.20	31.00	245.15	9323.07	37937.56
2544.0	33.13	-18.82	-28.04	198802.6	46.23	30.87	245.66	9454.87	39028.36
2712.0				192950.2				9588.49	40082.87
2880.0				192830.1					41104.62
2048 0		,		192914 4				9999 14	420Q4 7Q

```
3216.0 33.13 -18.66 -27.49 193178.1 46.47 30.52 247.71 9952.61 43062.30
       33.13 -18.63 -27.38 193598.2 46.56 30.48 248.22 10070.76 44003.86
3384.0
       33.13 -18.61 -27.29 194153.4 46.65 30.44 248.73 10186.79 44923.96
3552.0
       33.12 -18.59 -27.20 194817.0 46.75 30.42 249.23 10300.96 45825.95
3720.0
3888.0 33.12 -18.57 -27.12 195586.5 46.85 30.40 249.73 10413.28 46710.07
4056.0 33.11 -18.55 -27.05 196437.2 46.96 30.40 250.23 10523.99 47579.36
4224.0 33.10 -18.53 -26.98 197353.4 47.07 30.40 250.72 10633.24 48435.81
4392.0 33.10 -18.52 -26.92 198320.3 47.18 30.40 251.21 10741.20 49281.28
4560.0 33.09 -18.50 -26.86 199323.5 47.30 30.41 251.69 10848.01 50117.56
4728.0 33.08 -18.49 -26.80 200350,3 47.41 30.42 252.17 10953.82 50946.44
4896.0 33.08 -18.48 -26.75 201387.5 47.52 30.43 252.65 11058.77 51769.58
5064.0 33.07 -18.47 -26.70 202422.7 47.64 30.44 253.12 11163.01 52588.67
5282.0
5400.0
        33.06 -18.47 -26.65 203443.8 47.75 30.45 253.59 11266.68 53405.31
       38.06 -18.46 -26.61 2044444.5 47.86 30.46 254.06 11369.86 54220.35
        33.05 -18.46 -26.57 205425.3 47.96 30.47 254.52 11472.56 55033.87
5568.0
5736.0 33.04 -18.46 -26.53 206386.1 48.07 30.48 254.98 11574.79 55845.88 5904.0 33.04 -18.46 -26.49 207327.1 48.17 30.49 255.43 11676.56 56656.39
6072.0 33.03 -18.46 -26.46 208248,4 48.27 30.50 255.89 11777.87 57465.43
6240.0 33.02 -18.46 -26.43 209149.9 48.37 30.51 256.33 11878.75 58273.00
6408.0 88.02 -18.47 -26.40 210082.5 48.47 80.51 256.78 11979.18 59079.15
6576.0 83.01 -18.47 -26.37 210896.0 48.56 80.52 257.22 12079.19 59888.88
6744.0 33.01 -18.48 -26.34 211740.7 48.65 30.52 257.66 12178.78 60687.21
6912.0 33.00 -18.49 -26.32 212566.6 48.74 30.53 258.09 12277.96 61489.16
7080.0 32,99 -18.50 -24.29 213373.9 48.83 30.53 258.53 12374.73 62289.73
7248.0 32.99 -18.51 -26.27 214155.1 48.92 30.53 258.95 12475.19 63089.95
7272.0 32.99 -18.51 -26.27 214266.3 48.93 30.53 259.02 12489.21 63204.01
                                    . .
                                          0.222387E+10
 TOTAL ENERGY INPUT BTU
 SEASONAL ENERGY INPUT BTU
                                             0.112466E+10
                                      ##
 SEASONAL ENERGY INPUT GAL FUEL
                                                 8023.30
                                      ****
                                               194443.94
```

::::

::::

::::

2::

....

15884.79

0.618889E+09

0.525180E+09

171606.79

144608.08

97650.82

25959.03

28.34

28.08

YEAR

SEASONAL ENERGY RATE BTU/HR

AVERAGE LB. WATER PER LB. FUEL

ENERGY FROM AIR TO ICE BTU

SEASONAL WATER WITHDRAWN GAL

TOTAL WATER LOSS GAL

SEASONAL WATER LOSS GAL

SEASONAL LB. WATER FER LB. FUEL = 500000 ATD TO TOP BTH

SEASONAL ENERGY LOSS, AIR TO ICE BTU =

TOTAL WATER WITHDRAWN GAL

TOTAL ENERGY INPUT GAL FUEL

				TEOR Z					
			STANDBY	OR WATER	CWITHI	TRAVAL			
BOILER WA	TER FLOW	RATE	15m/hr			=== 7	7549.50		
BOILER WA	TER TEMPI	ERATUR	E DEG F	•		200	59.48		
WATER WIT	HDRAWAL.	GAL/I	ŧΑΥ			:::: 2	2000.00		
WITHDRAWA	L FLOW R	ATE GA	LZMIN .			===	15.00		
CONVECTIV	E COEFF	AFTER	R=30 F1	BTUZHR-F	T2-F	***	82.50		
START WIT	HDRAWAL -	AT HOL	IR.			=== 7	7272.00		
7416.0	32,96 -	18.69	-26.26	207519.0	48.58	30.01	259.35	12646.08	64804.63
7584.0	88.01 -	18.93	-26.26	197918.0	48.04	29.26	259.74	12848.32	66888.22
7752.0	33.07 -	19.19	-26.28	188388.8	47.49	28.51	260.15	13054.01	6897578
7920.0	33.13 -	19.47	-26.32	178948.6	46.91	27.74	260.58	13263.12	71065.87
8088.0	38.20 -	19.75	-26.38	169600.2	46.82	26.97	261.04	13475.88	73157.05
8256.0	38.27 -	20.05	-26.44	160337.7	45.71	26.19	261.51	13692.59	75251.87
8424.0	38.85 -	20.37	-26.58	151155.8	45.07	25.39	262.02	13913.59	77350.88
8592.0	88.44 -	20.69	-26.62	142065.9	44.40	24.59	262.55	14139.12	79453,17
8760.0	88.55 -	21.03	-26.73	133071.0	48.71	28.77	268.12	14369.51	81558.84

```
8928.0 33.66 -21.38 -26.85 124183.6 42.98 22.94 263.72 14605.07 83667.02
        33.79 -21.74 -26.98 115399.8 42.22 22.10 264.36 14846.32 85778.81
9096.0
        33.94 -22.12 -27.12 106716.4 41.41 21.24 265.05 15093.89 87895.31
9264.0
        34.11 -22.51 -27.28 98138.9 40.56 20.36 265.78 15348.39 90016.69
9482.0
        34.31 -22.92 -27.44 89689.0 39.65 19.47 266.57 15610.35 92141.12
9600.0
        34.54 -23.33 -27.62 81373.8 38.68 18.56 267.43 15880.64 94268.79
9768.0
        34.81 -23.77 -27.80 73184.7 37.64 17.62 268.37 16160.48 96401.86
9936.0
        85.14 -24.22 -28.00 65146.0 86.52 16.67 269.40 16450.99 98588.56
10104.0
10248.0 35.49 -24.62 -28.17 58355.9 35.47 15.82 270.36 16710.04100376.40
                                             0.276427E+10
  TOTAL ENERGY INPUT BTU
  SEASONAL ENERGY IMPUT BTU
                                        ::::
                                             O.540397E+09
  SEASONAL ENERGY INPUT GAL FUEL
                                                  3859.98
                                        ==:
                                                181584.58
  SEASONAL ENERGY RATE BTU/HR
                                        ;;;;
                                                 19744.77
  TOTAL ENERGY INPUT GAL FUEL
                                        =::
                                                    28.17
  AVERAGE LB. WATER PER LB. FUEL
                                        ::::
                                                    27,45
                                        222
```

::::

0.857715E+09

0.238826E+09 418210.00

246603.21

97650.82

0.00

YEAR 2. STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/br	::::	7549.50
BOILER WATER TEMPERATURE DEG F	::::	61.98
WATER WITHDRAWAL GAL/DAY	221	600.00
WITHDRAWAL FLOW RATE GAL/MIN	::::	A, -2- H -C- C-
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F		
START WITHDRAWAL AT HOUR	:=:	10248.01
	4 (0)	40 070 S4

SEASONAL LB. WATER PER LB. FUEL

ENERGY FROM AIR TO ICE BTU

TOTAL WATER WITHDRAWN GAL

SEASONAL WATER WITHDRAWN GAL

TOTAL WATER LOSS GAL

SEASONAL WATER LOSS GAL

SEASONAL ENERGY LOSS, AIR TO ICE BTU =

```
35.55 -24.68 -28.20 57243.4 35.29 15.68 270.54 16754.08100682.08
10272.0
        35.58 -24.85 -28.41 59881.0 35.62 16.11 271.83 16923.45101541.27
10440.0
        35.38 -25.02 -28.60 62482.9 35.94 16.51 273.09 17089.94102397.57
10608.0
        35.25 -25.18 -28.79 65022.2 36.25 16.89 274.31 17253.53103251.20
10776.0
        85.18 -25.88 -28.97 67515.8 86.55 17.25 275.48 17414.19104100.29
10944.0
        35.02 -25.47 -29.14 69954.7 36.84 17.59 276.63 17572.17104945.90
11112.0
11280.0 34.92 -25.61 -29.31 72340.9 37.13 17.91 277.73 17727.61105788.11
11448.0 34.83 -25.75 -29.47 74675.3 37.41 18.21 278.81 17880.64106627.04
11616.0 34.74 -25.88 -29.63 76958.3 37.68 18.50 279.85 18031.39107462.77
                             79190.8 37.94 18.77 280.87 18179.97108295.37
11784.0 84.66 -26.00 -29.77
                             81373.8 38.19 19.03 281.86 18326.48109124.93
11952.0 84.59 -26.12 -29.92
                             83508.0 38.44 19.28 282.83 18471.02109951.53
12120.0
        84.52 -26.24 -80.06
                             85594.1 38.68 19.52 283.77 18613.67110775.24
        84.46 -26.85 -80.19
12288.0
        34.40 -26.46 -30.32 87633.6 38.92 19.75 284.69 18754.54111596.15
12456.0
        34.34 -26.56 -30.44 89627.1 39.14 19.96 285.60 18893.69112414.33
12624.0
                             91575.6 39.36 20.17 286.48 19031.20113229.85
        84.29 -26.66 -80.56
12792.0
                             93479.8 39.58 20.36 287.34 19167.13114042.78
        34.24 -26.76 -30.67
12960.0
                            95340.5 39.79 20.55 288.19 19301.56114853.17
        34.19 -26.85 -30.78
13128.0
                             97159.0 89.99 20.78 289.01 19484.55115661.11
        34.14 -26.94 -30.89
13296.0
        34.10 -27.03 -31.00 98935.9 40.18 20.91 289.83 19566.14116466.65
13464.0
        34.06 -27.12 -31.10 100672.0 40.37 21.07 290.62 19696.41117269.86
18682.0
        84.02 -27.20 -81.19 102868.8 40.56 21.28 291.41 19825.89118070.78
13800.0
        33.99 -27.28 -31.29 104025.1 40.74 21.39 292.18 19953.14118869.47
13968.0
14186.0 88.95 -27.86 -81.88 105644.0 40.92 21.58 292.98 20079.70119666.00
14804.0 88.92 -27.44 -81.47 107217.8 41.09 21.67 298.68 20205.22120461.40
14472.0 33.89 -27.51 -31.55 108762.1 41.25 21.81 294.41 20329.54121253.76
```

```
      14640.0
      33.86
      -27.59
      -31.68
      110270.8
      41.42
      21.94
      295.13
      20452.79122044.10

      14808.0
      33.83
      -27.66
      -31.72
      111743.9
      41.57
      22.06
      295.84
      20575.02122832.45

      14976.0
      33.80
      -27.73
      -31.79
      113182.8
      41.73
      22.18
      296.53
      20696.26123618.90

      15144.0
      33.75
      -27.80
      -31.87
      114587.9
      41.88
      22.30
      297.22
      20816.54124403.47

      15312.0
      33.75
      -27.86
      -31.94
      115959.8
      42.02
      22.41
      297.90
      20935.90125186.21

      15480.0
      33.73
      -27.93
      -32.02
      117299.2
      42.16
      22.51
      298.57
      21054.36125967.16

      15648.0
      33.60
      -27.99
      -32.08
      118606.5
      42.30
      22.62
      299.23
      21171.96126746.35

      15816.0
      33.66
      -28.05
      -32.15
      119883.0
      42.44
      22.72
      299.88
      21288.72127523.83

      15984.0
      33.65
      -28.11
      -32.22
      121128.9
      42.57
      22.81
      300.52
      21404.67128299.
```

TOTAL ENERGY INPUT BIU 0.388862E+10 SEASONAL ENERGY INPUT BTU :::: 0.112485E+10 SEASONAL ENERGY INPUT GAL FUEL :::: 8031.08 SEASONAL ENERGY RATE BTU/HR ::: 194390.05 TOTAL ENERGY INPUT GAL FUEL *** 27775.85 AVERAGE LB. WATER PER LB. FUEL :::: 28.82 SEASONAL LB. WATER PER LB. FUEL **** 80.42 ENERGY FROM AIR TO ICE BTU = 0.129105E+10 SEASONAL ENERGY LOSS, AIR TO ICE BTU = 0.488840E+09 TOTAL WATER WITHDRAWN GAL = 564218.01 SEASONAL WATER WITHDRAWN GAL 146008.02 TOTAL WATER LOSS GAL 97650.82 SEASONAL WATER LOSS GAL 0.00

YEAR S. STANDBY OR WATER WITHDRAWAL

BOILER WATER FLOW RATE 15m/hr	:::	7549.50
BOILER WATER TEMPERATURE DEG F	::::	60.15
WATER WITHDRAWAL GALZDAY	211	2000.00
WITHDRAWAL FLOW RATE GAL/MIN	::::	15.00
CONVECTIVE COEFF AFTER R=30 FT BTU/HR-FT2-F	::::	82.50
START WITHDRAWAL AT HOUR	;:::	16032.00

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestion for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY	(Leave blank)	2. REPORT DATE	h 1995	3. REPORT TY	PE AND DATES COVERED	
4. TITLE AND SUBTITLE		Iviaic	11 1770		5. FUNDING NUMBERS	
		arctic Water Well			5. FUNDING NUMBERS	
S. AUTHORS					_	
Virgil J. Lunard	ini and Joh	n Rand				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION	
U.S. Army Cold Regions Research and Engineering Laboratory 72 Lyme Road Hanover, N.H. 03755-1290					Special Report 95-10	
D. SPONSORING/MONIT	ORING AGENO	CY NAME(S) AND ADDRES	SS(ES)		10. SPONSORING/MONITORING	
Office of the Chief of Engineers Washington, D.C. 20314-1000			AGENCY REPORT NUMBER			
					8.	
11. SUPPLEMENTARY N	IOTES					
	ublic releas	TEMENT e; distribution is un gfield, Virginia 221			12b. DISTRIBUTION CODE	
3. ABSTRACT (<i>Maximui</i>	m 200 words)					
Antarctica, are d water temperatu environment, bu	etailed. The re and mas It the model	e thermal model car s, and energy requir l is valid for other pe	n be used for ements as ermanent s	or preliminary design, a function of time. Pre	depth in a permanent snowfield in to predict reservoir size and depth, dictions are made for the South Pole oir characteristics are influenced by ir.	
14. SUBJECT TERMS Energy requirements Firn/ice heat loss		heat loss	Ice melt Polar ut	ilities	15. NUMBER OF PAGES 104 16. PRICE CODE	
·	Ice cap fa	acılities	Water re	eservoir		
7. SECURITY CLASSIFICATION OF REPORT		18. SECURITY CLASSIFIC OF THIS PAGE	SECURITY CLASSIFICATION 19. SEC OF THIS PAGE OF A		TION 20. LIMITATION OF ABSTRACT	
LINCL ASSIETE)	TINICI ASSIEI	ED	LINICI ASSIETED	7 77	