Introduction to Mathematical Programming IE406

Lecture 7

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 3.2-3.4

The Simplex Method

A typical iteration of the simplex method:

- 1. Start with a specified basis matrix B and a corresponding BFS x^0 .
- 2. Compute the reduced cost vector \bar{c} . If $\bar{c} \geq 0$, then x^0 is optimal.
- 3. Otherwise, choose j for which $\bar{c}_j < 0$.
- 4. Compute $u = B^{-1}A_j$. If $u \leq 0$, then $\theta^* = \infty$ and the LP is unbounded.
- 5. Otherwise, $\theta^* = \min_{\{i|u_i>0\}} \frac{x_{B(i)}^0}{u_i}$.
- 6. Choose l such that $\theta^*=\frac{x_{B(l)}^0}{u_l}$ and form a new basis matrix, replacing $A_{B(l)}$ with A_j .
- 7. The values of the new basic variables are $x_j^1 = \theta^*$ and $x_{B(i)}^1 = x_{B(i)}^0 \theta^* u_i$ if $i \neq l$.

Some Notes on the Simplex Method

- We will see later how to construct an initial basic feasible solution.
- We saw last time that each iteration of the simplex methods ends with a new basic feasible solution (assuming nondegeneracy).
- This is all we need to prove the following result:
 - **Theorem 1.** Consider a linear program over a nonempty polyhedron \mathcal{P} and assume every basic feasible solution is nondegenerate. Then the simplex method terminates after a finite number of iterations in one of the following two conditions:
 - We obtain an optimal basis and a corresponding optimal basic feasible solution.
 - We obtain a vector $d \in \mathbb{R}^n$ such that Ad = 0, $d \ge 0$, and $c^{\top}d < 0$, and the LP is unbounded.

Pivot Selection

- The process of removing one variable and replacing from the basis and replacing it with another is called *pivoting*.
- We have the freedom to choose the entering variable from among a list of candidates.
- How do we make this choice?
- The reduced cost tells us the cost in the objective function for each unit of change in the given variable.
- Intuitively, c_j is the cost for the change in the variable itself and $-c_B^{\top}B^{-1}A_j$ is the cost of the compensating change in the other variables.
- This leads to the following possible rules:
 - Choose the column with the most negative reduced cost.
 - Choose the column for which $\theta^*|\bar{c}_i|$ is largest.

Other Pivoting Rules

- In practice, sophisticated pivoting rules are used.
- Most try to estimate the change in the objective function resulting from a particular choice of pivot.
- For large problems, we may not want to compute all the reduced costs.
- Remember that all we require is some variable with negative reduced cost.
- It is not necessary to calculate all of them.
- There are schemes that calculate only a small subset of the reduced costs each iteration.

Simplex for Degenerate Problems

• If the current BFS is degenerate, then the step size might be limited to zero (why?).

- This means that the next feasible solution is the same as the last.
- We can still form a new basis, however, as before.
- Even if the step-size is positive, we might end up with one or more basic variables at level zero.
 - In this case, we have to decide arbitrarily which variable to remove from the basis.
 - The new solution will be degenerate.
- Degeneracy can cause *cycling*, a condition in which the same feasible solution is reached more than once.
- If the algorithm doesn't terminate, then it must cycle.

Anticycling and Bland's Rule

Bland's pivoting rule:

- The entering variable is the one with the smallest subscript among those whose reduced costs are negative.
- The leaving variable is the one with the smallest subscript among those that are eligible to leave the basis.
- Bland's rule guarantees that cycling cannot occur.
- We also don't need to compute all the reduced costs.

Implementing the Simplex Method

"Naive" Implementation

- 1. Start with a basic feasible solution \hat{x} with indices $B(1), \ldots, B(m)$ corresponding to the current basic variables.
- 2. Form the basis matrix B and compute $p^\top = c_B^\top B^{-1}$ by solving $p^\top B = c_B^\top$.
- 3. Compute the reduced costs by the formula $\bar{c}_j = c_j p^\top A_j$. If $\bar{c} \geq 0$, then \hat{x} is optimal.
- 4. Select the entering variable j and obtain $u = B^{-1}A_j$ by solving the system $Bu = A_j$. If $u \le 0$, the LP is unbounded.
- 5. Determine the step size $\theta^* = \min_{\{i|u_i>0\}} \frac{\hat{x}_{B(i)}}{u_i}$.
- 6. Determine the new solution and the leaving variable i.
- 7. Replace i with j in the list of basic variables.
- 8. Go to Step 1.

Calculating the Basis Inverse

 Note that most of the effort in each iteration of the Simplex algorithm is spent solving the systems

$$p^{\top}B = c_B^{\top}$$
$$Bu = A_j$$

- If we knew B^{-1} , we could solve both of these systems.
- Calculating B^{-1} quickly and accurately is the biggest challenge of implementing the simplex algorithm.
- The full details of how to do this are beyond the scope of this course.
- We will take a cursory look at these issues in the rest of the chapter.

Efficiency of the Simplex Method

- To judge efficiency, we calculate the number of arithmetic operations it takes to perform the algorithm.
- To solve a system of m equations and m unknowns, it takes on the order of m^3 operations, denoted $O(m^3)$.
- To take the inner product of two n-dimensional vectors takes O(n) operations (n multiplications and n additions).
- Hence, each iteration of the naive implementation of the Simplex method takes $O(m^3 + mn)$ operations.
- We'll try to improve upon this.

Improving the Efficiency of Simplex

- Again, the matrix B^{-1} plays a central role in the simplex method.
- If we had B^{-1} available at the beginning of each iteration, we could easily compute everything we need.
- Recall that B changes in only one column during each iteration.
- How does B^{-1} change?
- It may change a lot, but we can update it instead of recomputing it.

Way Back in Linear Algebra

- Recall from linear algebra how to invert a matrix by hand.
- We use *elementary row operations*.
- An elementary row operation is adding a multiple of a row to the same or another row.
- To invert a matrix, we use elementary row operation to change the matrix into the identity.
- We then apply the same operations to the identity to change it into the matrix inverse.
- We can use the same trick to update B^{-1} .

Updating the Basis Inverse

- We have $B^{-1}B = I$, so that $B^{-1}A_{B(i)}$ is the *i*th unit vector e_i .
- ullet If B is the old basis and $ar{B}$ is the new one, then

$$B^{-1}\bar{B} = [e_1 \cdots e_{l-1} u e_{l+1} \cdots e_m]$$

$$= \begin{bmatrix} 1 & u_1 & & & \\ & \ddots & \vdots & & \\ & & u_l & & \\ & \vdots & \ddots & \\ & & u_m & & 1 \end{bmatrix}$$

- We want to turn this matrix into *I* using elementary row operations.
- If we apply these same row operations to B^{-1} , we will turn it into \bar{B}^{-1} .

Representing Elementary Row Operations

- Performing an elementary row operation is the same as left-multiplying by a specially constructed matrix.
- To multiply the jth row by β and add it to the ith row, take I and change the (i, j)th entry to β .
- A sequence of row operations can similarly be represented as a matrix.
- Hence, we can change B^{-1} into \bar{B}^{-1} by left-multiplying by a matrix Q which looks like

$$Q = \begin{bmatrix} 1 & -\frac{u_1}{u_l} \\ & \ddots & \vdots \\ & \frac{1}{u_l} \\ & \vdots & \ddots \\ -\frac{u_m}{u_l} & 1 \end{bmatrix}$$

The Revised Simplex Method

A typical iteration of the revised simplex method:

- 1. Start with a specified BFS \hat{x} and the associated basis inverse B^{-1} .
- 2. Compute $p^{\top} = c_B^{\top} B^{-1}$ and the reduced costs $\bar{c}_j = c_j p^{\top} A_j$.
- 3. If $\bar{c} \geq 0$, then the current solution is optimal.
- 4. Select the entering variable j and compute $u = B^{-1}A_j$.
- 5. If $u \leq 0$, then the LP is unbounded.
- 6. Determine the step size $\theta^* = \min_{\{i|u_i>0\}} \frac{\hat{x}_{B(i)}}{u_i}$.
- 7. Determine the new solution and the leaving variable i.
- 8. Update B^{-1} .
- 9. Go to Step 1.