Webscraping, Processing, and Text Analysis Workshop

Denver McNeney

Centre for the Study of Democratic Citizenship McGill University

denver.mcneney@mail.mcgill.ca

March 14, 2016

Required Resources

Webscraping

Scraping Overview
Scraping with APIs (Twitter)
Scraping with R and HTML (SOTUs)

Automated Text Analysis

Approaches
Automated Sentiment Analysis
Estimating Policy Positions from Text

Machine Learning Approaches

What is Machine Learning? Supervised Learning

Required Resources

Webscraping

Scraping Overview
Scraping with APIs (Twitter)
Scraping with R and HTML (SOTUs)

Automated Text Analysis

Approaches
Automated Sentiment Analysis
Estimating Policy Positions from Text

Machine Learning Approaches

What is Machine Learning?
Supervised Learning

Required Resources

Webscraping

Scraping Overview
Scraping with APIs (Twitter)
Scraping with R and HTML (SOTUs)

Automated Text Analysis

Approaches
Automated Sentiment Analysis
Estimating Policy Positions from Text

Machine Learning Approaches
What is Machine Learning?
Supervised Learning

Required Resources

Webscraping

Scraping Overview
Scraping with APIs (Twitter)
Scraping with R and HTML (SOTUs)

Automated Text Analysis

Approaches
Automated Sentiment Analysis
Estimating Policy Positions from Text

Machine Learning Approaches

What is Machine Learning? Supervised Learning

Download Materials

- To download slides, scripts, and example materials, visit: https: //github.com/denvermc/Text-Analyses-Workshops/
- ► To download R, visit https://www.r-project.org/

- Automatic extraction and parsing of online information to create structured database
- ► Two kinds:
 - ▶ Web APIs (Application Program Interface) → Website or database creates interface for data requests that return JSON or XML files
 - Screen or Pseudo-Manual Scraping

 Need to either extract from html or interact with website using bots to download materials

- Automatic extraction and parsing of online information to create structured database
- ► Two kinds:
 - ▶ Web APIs (Application Program Interface) → Website or database creates interface for data requests that return JSON or XML files
 - Screen or Pseudo-Manual Scraping → Need to either extract from html or interact with website using bots to download materials

- Automatic extraction and parsing of online information to create structured database
- Two kinds:
 - ▶ Web APIs (Application Program Interface) → Website or database creates interface for data requests that return JSON or XML files
 - Screen or Pseudo-Manual Scraping → Need to either extract from html or interact with website using bots to download materials

- Automatic extraction and parsing of online information to create structured database
- Two kinds:
 - ▶ Web APIs (Application Program Interface) → Website or database creates interface for data requests that return JSON or XML files
 - Screen or Pseudo-Manual Scraping → Need to either extract from html or interact with website using bots to download materials

- Amazing amount of data available online
- But! Data is usually unstructured and often available across a number of databases or websites
- Downloading information manually is time-consuming (perhaps impossible), boring & error-ridden

- Amazing amount of data available online
- But! Data is usually unstructured and often available across a number of databases or websites
- Downloading information manually is time-consuming (perhaps impossible), boring & error-ridden

- Amazing amount of data available online
- But! Data is usually unstructured and often available across a number of databases or websites
- Downloading information manually is time-consuming (perhaps impossible), boring & error-ridden

- ► RESTful API:
 - ▶ Information about users and their existing tweets (static
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- ► Streaming API:
 - "Stream" of Tweets as they become available
 - ▶ i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues
 - Unless using "Firehose" method (\$\$\$) can only collect.
 - random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- ► Streaming API:
 - "Stream" of Tweets as they become available
 - i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues
 - Unless using "Finehose" method (\$55) can only collect curden 1% of tweets
 - Can only go back 2 weeks

Twitter provides resources (APIs) for downloading Tweets:

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.

Streaming API:

- "Stream" of Tweets as they become available
- i.e. Keyword-specific tweets, Geo-tagged tweets
- Issues
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues:
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues:
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - ▶ i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - ▶ i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues:
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

- RESTful API:
 - ▶ Information about users and their *existing* tweets (static)
 - i.e. All tweets by Donald Trump, list of followers and friends, etc.
- Streaming API:
 - "Stream" of Tweets as they become available
 - ▶ i.e. Keyword-specific tweets, Geo-tagged tweets
 - Issues:
 - Unless using "Firehose" method (\$\$\$) can only collect random 1% of tweets
 - Can only go back 2 weeks

Accessing Twitter's API

Sign in to your twitter account and go to https://apps.twitter.com/

Create New App

Accessing Twitter's API

No Twitter Account?

Username: sfu_workshop

Password: SFUworkshop1

Accessing Twitter's API

 Get your credentials: consumer key, consumer secret, access token, and access token secret

Working with Twitter APIs in \mathbb{R}

```
Open "Twitter.R"
getwd()
setwd("~/Desktop/Dropbox/Text Analysis
   Workshop/TextAnalysisWorkshop/1 - Twitter
    Scraping")
PackagesToInstall <- c("streamR", "ROAuth", "
   twitteR", "ggplot2", "devtools",
                        "RCurl", "wordcloud",
                            "tm")
install.packages(PackagesToInstall, repos =
   "http://cran.r-project.org")
```

Inspecting Website

Obama's 2016 SOTU

www.presidency.ucsb.edu/ws/index.php?pid=111174

Inspecting Website

Inspecting Website

\mathbb{R} Loops

Approaches to Automated Text Analysis

► Bag of Words

- Does not take words' "context" into account
- Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
- Lexicoder and Lexicoder Sentiment Dictionary are examples

► Natural Language Processing

- Attempt to take sentence structure and context into account
- To have machine understand grammar, need to tag parts of speech (called entities)
- ▶ Software suite from Stanford NLP Group an example

► Bag of Words

- Does not take words' "context" into account
- Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
- Lexicoder and Lexicoder Sentiment Dictionary are examples

Natural Language Processing

- Attempt to take sentence structure and context into account
- ► To have machine understand grammar, need to tag parts of speech (called entities)
- ▶ Software suite from Stanford NLP Group an example

► Bag of Words

- Does not take words' "context" into account
- Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
- Lexicoder and Lexicoder Sentiment Dictionary are examples

Natural Language Processing

- Attempt to take sentence structure and context into account
- ► To have machine understand grammar, need to tag parts of speech (called entities)
- ▶ Software suite from Stanford NLP Group an example

- ► Bag of Words
 - Does not take words' "context" into account
 - Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
 - Lexicoder and Lexicoder Sentiment Dictionary are examples
- Natural Language Processing
 - Attempt to take sentence structure and context into account
 - ► To have machine understand grammar, need to tag parts of speech (called entities)
 - ▶ Software suite from *Stanford NLP Group* an example

- ► Bag of Words
 - Does not take words' "context" into account
 - Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
 - Lexicoder and Lexicoder Sentiment Dictionary are examples
- Natural Language Processing
 - Attempt to take sentence structure and context into account
 - ► To have machine understand grammar, need to tag parts of speech (called entities)
 - ▶ Software suite from Stanford NLP Group an example

- ► Bag of Words
 - Does not take words' "context" into account
 - Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
 - Lexicoder and Lexicoder Sentiment Dictionary are examples
- Natural Language Processing
 - Attempt to take sentence structure and context into account
 - ▶ To have machine understand grammar, need to tag parts of speech (called entities)
 - ▶ Software suite from *Stanford NLP Group* an example

- ► Bag of Words
 - Does not take words' "context" into account
 - Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
 - Lexicoder and Lexicoder Sentiment Dictionary are examples
- Natural Language Processing
 - Attempt to take sentence structure and context into account
 - To have machine understand grammar, need to tag parts of speech (called entities)
 - Software suite from Stanford NLP Group an example

- ► Bag of Words
 - Does not take words' "context" into account
 - Either create Document-Term Matrix and sum word scores to look for similarities or classification schemes in documents or use simple dictionaries to count pre-classified words
 - Lexicoder and Lexicoder Sentiment Dictionary are examples
- Natural Language Processing
 - Attempt to take sentence structure and context into account
 - To have machine understand grammar, need to tag parts of speech (called entities)
 - ▶ Software suite from *Stanford NLP Group* an example

- ▶ Bag of Words, dictionary-based approach to sentiment analysis
- Lexicoder Sentiment Dictionary has coded 4,500 words as either positive or negative
- ▶ Tone scores for each unit of analysis usually expressed as:

#PositiveWords - #NegativeWords $_{Total \#Words}$ $_{X}$ $_{X}$ $_{Y}$ $_{Y}$

- ▶ Bag of Words, dictionary-based approach to sentiment analysis
- ► Lexicoder Sentiment Dictionary has coded 4,500 words as either **positive** or **negative**
- ▶ Tone scores for each unit of analysis usually expressed as:

 $\frac{\#PositiveWords - \#NegativeWords}{Total \#Words} imes 100$

- ▶ Bag of Words, dictionary-based approach to sentiment analysis
- ► Lexicoder Sentiment Dictionary has coded 4,500 words as either **positive** or **negative**
- ▶ Tone scores for each unit of analysis usually expressed as:

$$\frac{\#PositiveWords - \#NegativeWords}{Total \#Words} \times 100$$

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 - W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

- Assumption that politics exists on (uni-dimensional) policy continuum
- Latent policy positions can be estimated based on word occurrences
- Basic data structure is frequency matrix (we'll call it W)
 N Documents × V Words
 W_{ij} is number of times j appears in i
- ▶ Can use W_{ij} to (indirectly) estimate actors' policy positions (θ_i)

	1 ‡	2 ‡	3 ÷	4 ‡	5 ‡	6 ÷	7 ‡	8 ‡	9 ÷	10 ‡	11 ‡	12 [‡]	13 ‡	14 [‡]	15 ‡	16 [‡]	17 ‡	18 ‡	1
abroad	0	7	4	3	- 1	0	2	-1	0	1	4	0	2	3	2	2	0	1	
access	2	- 1	0	2	2	0	- 1	4	4	0	1	1	1	0	0	2	0	2	
achieve	0	3	0	2	2	2	2	- 1	0	3	- 1	0	2	2	4	2	0	0	
achievement	0	0	0	1	1	1	1	2	1	0	0	0	1	1	2	2	0	1	
act	6	5	5	1	5	6	9	9	5	7	4	15	5	10	5	5	5	8	
action	0	2	3	0	13	2	2	3	2	4	2	0	1	3	2	0	2	2	
actions	1	0	0	0	0	3	0	1	0	0	1	2	2	0	0	2	0	1	
address	- 1	0	-1	3	0	2	4	2	1	0	2	1	0	1	0	1	0	2	
dministration	1	3	5	5	0	0	0	0	1	0	0	2	1	0	0	4	2	5	
advance	0	- 1	0	0	3	3	2	- 1	0	0	0	0	4	2	1	1	0	1	
afford	1	0	1	2	1	2	0	0	0	0	0	2	1	2	2	1	0	7	
affordable	1	1	3	0	1	1	4	9	0	1	1	1	2	2	3	1	0	3	
afghanistan	0	0	0	0	0	0	0	0	0	13	3	5	3	2	4	4	0	3	
africa	0	1	-1	0	1	1	2	2	0	2	7	0	0	0	2	0	0	0	
agenda	0	- 1	-1	0	0	2	- 1	- 1	- 1	0	0	2	1	2	0	0	0	0	
ago	3	3	9	3	2	3	7	5	3	1	2	1	6	1	2	3	0	4	
agree	2	- 1	4	6	3	0	- 1	2	3	0	0	0	1	0	0	1	2	2	
agreement	2	0	1	3	2	2	1	3	0	0	1	0	0	0	0	10	0	1	
ahead	- 1	3	2	2	2	5	2	2	1	2	2	1	1	0	3	4	0	2	
air	0	- 1	-1	4	0	1	2	2	0	1	2	0	1	0	1	0	0	0	
					_	_	_		_	_	_		_	_	_	_	_	_	

Open "Webscraper.R"

```
doc.corpus = Corpus(VectorSource(data$text))
doc.corpus <- tm_map(doc.corpus, content_</pre>
   transformer(tolower), mc.cores=1)
doc.corpus <- tm_map(doc.corpus,</pre>
   removeNumbers, mc.cores=1)
doc.corpus <- tm_map(doc.corpus, removeWords</pre>
   , stopwords("SMART"), mc.cores=1)
doc.corpus <- tm_map(doc.corpus, removeWords</pre>
   , stopwords("english"), mc.cores=1)
doc.corpus <- tm_map(doc.corpus,</pre>
   removePunctuation, mc.cores=1)
```

What is Machine Learning?

a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories... The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert manpower, and straightforward portability to different domains.

Manually code subset of data

- ► Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightharpoonup Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightharpoonup Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- ► Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ► F-Score → Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightharpoonup Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightharpoonup Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ▶ Recall → Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightharpoonup Weighted average of precision and recall

- Manually code subset of data
- Train multiple algorithms on subset of manually coded data
- ► Test accuracy of algorithms on subset of manually coded data not used for training
- Examine model statistics:
 - ▶ Precision → How often a case the algorithm predicts as belonging to a class actually belongs to that class
 - ightharpoonup Recall ightharpoonup Proportion of units in a class the algorithm correctly assigns to that class
 - ightharpoonup F-Score ightarrow Weighted average of precision and recall