Chapitre 21

Applications linéaires

21	Applications linéaires
	21.4 Exemple
	21.8 Structure de $\mathcal{L}(E,F)$
	21.10Composition de deux AL
	21.13Bilinéarité de la composition
	21.16Structure des images directes et réciproques
	21.21 Famille génératrice de $Im(f)$
	21.23Réciproque d'un isomophisme
	21.41Structure de l'ensemble des polynômes annulateurs - Hors Programme
	21.52 Caractérisation de l'image d'un projecteur
	21.53Diagonalisation d'un projecteur
	21.57Caractérisation géométrique des projecteurs
	21.59Diagonalisation d'une symétrie
	21.63Détermination d'une AL par l'image d'une base, ou rigidité
	21.64Exemple
	21.68 Caractérisation de l'injectivité par l'image d'une base

21.4 Exemple

Exemple 21.4.1

L'application de \mathbb{R}^2 dans \mathbb{R} définie par f(x,y) = 2x + 3y.

Soit $((x,y),(x',y'),\lambda) \in (\mathbb{R}^2)^2 \times \mathbb{R}$. On a

$$f((x,y) + \lambda(x',y')) = f(x + \lambda x', y + \lambda y')$$

= 2(x + \lambda x') + 3(y + \lambda y')
= 2x + 3y + \lambda(2x' + 3y')
= f(x,y) + \lambda f(x',y').

21.8 Structure de $\mathcal{L}(E, F)$

Propostion 21.8

 $\mathcal{L}(E,F)$ est un estpace vectoriel sur \mathbb{K} .

- $--\mathcal{L}(E,F)\subset F^E$
- $\overline{0} \hat{\mathcal{L}}(E, F)$
- Soit $(f,g) \in \mathcal{L}(E,F)^2$ et $\alpha \in \mathbb{K}$. Soit $(x,y) \in E^2, \lambda \in \mathbb{K}$. On a :

$$\begin{split} (f+\alpha g)(x+\lambda y) &= f(x+\lambda y) + \alpha g(x+\lambda y) \\ &= f(x) + \lambda f(y) + \alpha g(x) + \alpha \lambda g(y) \\ &= f(x) + \alpha g(x) + \lambda (f(y) + \alpha g(y)) \\ &= (f+\alpha g)(x) + \lambda (f+\alpha g)(y). \end{split}$$

Donc $f + \alpha g \in \mathcal{L}(E, F)$.

21.10 Composition de deux AL

Propostion 21.10

Soit $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$, alors $g \circ f \in \mathcal{L}(E, G)$.

Soit $(x, y) \in E^2$ et $\lambda \in \mathbb{K}$:

$$\begin{split} g \circ f(x + \lambda y) &= g(f(x + \lambda y)) \\ &= g(f(x) + \lambda f(y)) \\ &= g(f(x)) + \lambda g(f(y)) \\ &= g \circ f(x) + \lambda g \circ f(y). \end{split}$$

Donc $g \circ f \in \mathcal{L}(E, G)$.

21.13 Bilinéarité de la composition

Propostion 21 13

La composition d'application linéaire est bilinéaire. En termes plus précis, $E,\,F$ et G étant des \mathbb{K} -ev, l'application

$$\Psi: \mathcal{L}(E,F) \times \mathcal{L}(F,G) \longrightarrow \mathcal{L}(E,G); (u,v) \mapsto v \circ u$$

est une application bilinéaire.

D'après la remarque (21.11), Ψ est linéaire à droite.

$$\forall u \in \mathcal{L}(E,F), \forall (v,v') \in \mathcal{L}(F,G)^2, \forall \lambda \in \mathbb{K}, \Psi(u,v+\lambda v') = \Psi(u,v) + \lambda \Psi(u,v')$$
 Soit $(u,u') \in \mathcal{L}(E,F)^2, v \in \mathcal{L}(F,G), \lambda \in \mathbb{K}$. On a :
$$\forall x \in \mathbb{E}, \Psi(u+\lambda u',v)(x) = v \circ (u+\lambda u')(x)$$

$$= v(u(x)+\lambda u'(x))$$

$$= v(u(x)) + \lambda v(u'(x))$$

$$= \Psi(u,v)(x) + \lambda \Psi(u',v)(x)$$

Donc $\Psi(u + \lambda u', v) = \Psi(u, v) + \lambda \Psi(u', v)$.

21.16 Structure des images directes et réciproques

Propostion 21.16

- 1. Soit E' un sev de E. Alors f(E') est un sev de F.
- 2. Soit F' un sev de F. Alors $f^{-1}(F')$ est un sev de E.
- 1. $-f(E') \subset F$ $-0 = f(0) \in f(E')$ $-\text{Soit } (x,y) \in f(E')^2, \lambda \in \mathbb{K}$. On écrit $x = f(\alpha), y = f(\beta)$ avec $(\alpha,\beta) \in E'^2$.

$$x + \lambda y = f(\alpha) + \lambda f(\beta)$$
$$= f(\alpha + \lambda \beta)$$
$$\in f(E')$$

$$\begin{split} 2. & \ -- \ f^{-1}(F') \subset E \\ & \ -- \ 0 = f(0) \in f^{-1}(F') \\ & \ -- \ \mathrm{Soit} \ (x,y) \in f^{-1}(F')^2, \lambda \in \mathbb{K}. \end{split}$$

$$f(x + \lambda y) = f(x) + \lambda f(y) \in F'$$
donc $x + \lambda y \in f^{-1}(F')$

21.21 Famille génératrice de Im(f)

Propostion 21.21

Soit $f \in \mathcal{L}(E, F)$ et $(e_i)_{i \in I}$ une famille génératrice de E. Alors $(f(e_i)_{i \in I})$ est une famille génératrice de Im(f). Soit

$$Im(f) = Vect(f(e_i)_{i \in I})$$

— Pour tout $i \in I, f(e_i) \in Im(f)$. Comme Im(f) est un sev :

$$Vect(f(e_i)_{i\in I})\subset Im(f)$$

— Soit $a \in Im(f)$. On choisit $x \in E$ tel que a = f(x). Comme $(e_i)_{i \in I}$ est une famille génératrice de E, on peut écrit $x = \sum_{i \in I} \lambda_i e_i$ où $(\lambda_i)_{i \in I}$ est à spport fini.

$$a = f\left(\sum_{i \in I} \lambda_i e_i\right)$$
$$= \sum_{i \in I} \lambda_i f(e_i)$$
$$\in Vect(f(e_i)_{i \in I})$$

21.23 Réciproque d'un isomophisme

Théorème 12.23

Soit f un isomorphisme de E vers F. Alors f^{-1} est une application linéaire, donc un isomophisme de F vers E.

On pose $g = f^{-1}$. Soit $(x, y) \in F^2, \lambda \in \mathbb{K}$.

$$g(x + \lambda y) = g(f(g(x)) + \lambda f(g(y)))$$
$$= g(f(g(x)) + \lambda f(g(y)))$$
$$= g(x) + \lambda g(y)$$

Donc $g \in \mathcal{L}(F, E)$.

21.41 Structure de l'ensemble des polynômes annulateurs - Hors Programme

Propostion 21.41 - HP

L'ensemble des polynômes annulateurs de f est un idéal de $\mathbb{K}[X]$.

Si P et Q annulent u, alors :

$$(P-Q)(u) = P(u) - Q(u) = 0_{\mathcal{L}(E)}$$

Si $B \in \mathbb{K}[X]$:

$$(PB)(u) = P(u) \circ B(u) = B(u) \circ 0_{\mathcal{L}(E)} = 0_{\mathcal{L}(E)}$$

21.52 Caractérisation de l'image d'un projecteur

Propostion 21.52

Soit p un projecteur de E. Alors $x \in Im(p)$ si et seulement si p(x) = x. Soit :

$$Im(p) = \ker(p - id_E)$$

 $x \in Im(p) \Leftrightarrow p(x) = x$

Soit p un projecteur. Soit $x \in E$.

- Si $x \in Im(p)$, on choisit $y \in E$ tel que x = p(y).
- Donc $p(x) = p^2(y) = p(y) = x$.
- Si p(x) = x, alors $x \in Im(p)$.

 $\Leftrightarrow p(x) - x = 0$ $\Leftrightarrow (p - id)(x) = 0$ $\Leftrightarrow x \in \ker(p - id)$

21.53 Diagonalisation d'un projecteur

Théorème 21.53

Soit p un projecteur de E. Alors :

$$E = \ker(p) \oplus \ker(p - id_E)$$

Soit $x \in \ker(p) \cap \ker(p - id_E)$.

Donc p(x) = 0 et p(x) - x = 0.

Donc x = 0.

Soit
$$x \in E$$
, on écrit $x = \underbrace{x - p(x)}_{\in \ker(p)} + \underbrace{p(x)}_{\in Im(p) = \ker(p - id)}$.

21.57 Caractérisation géométrique des projecteurs

Théorème 21.57

Soit $p \in \mathcal{L}(E)$.

— p est un projecteur si, et seulement si, il existe deux sous-espaces vectoriels F et G de E tels que $E = F \oplus G$ et

$$\forall f \in F, \forall g \in G, p(f+g) = f.$$

- Dans ce cas, F = Im(p) et $G = \ker(p)$.
- Ainsi, un projecteur est une projection géométrique sur Im(p) parallèlement à ker(p).

 \Rightarrow

Existence justifiée avec F = Im(p) et $G = \ker(p)$.

$$p^{2}(x) = p \circ p(f+g)$$

$$= p(f)$$

$$= f$$

$$= p(f+g)$$

$$= p(x)$$

Donc $p^2 = p$, donc p est un projecteur.

21.59 Diagonalisation d'une symétrie

Théorème 21.59

On suppose que \mathbb{K} n'est pas de caractéristique 2. Soit s une symétrie de E. Alors :

$$E = \ker(s + id_E) \oplus \ker(s - id_E)$$

— Soit $x \in \ker(s - id) \cap \ker(s + id)$. Donc:

$$s(x) - x = 0$$

$$s(x) + x = 0$$

$$donc 2x = 0$$

$$donc x = 0$$

— Pour
$$x \in E$$
, $x = \frac{1}{2} (\underbrace{x - s(x)}_{\in \ker(s+id)}) + \frac{1}{2} (\underbrace{x + s(x)}_{\in \ker(s-id)})$.

21.63 Détermination d'une AL par l'image d'une base, ou rigidité

Etant donné une base $(b_i)_{i\in I}$ de E et $(f_i)_{i\in I}$ une famille quelconque de F, il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que pour tout $i \in I, u(b_i) = f_i$.

Soit $(b_i)_{i\in I}$ une base de E et $(f_i)_{i\in I}$ une famille de F.

Soit $x \in E$. On écrit $x = \sum_{i \in I} \lambda_i b_i$ avec $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini.

On pose $u(x) = \sum_{i \in I} \lambda_i f_i$. On définit bien une application ca les λ_i sont uniques.

Montrons que $u \in \mathcal{L}(E, F)$. Soit $(x, y) \in E^2$ et $\alpha \in \mathbb{K}$. On écrit $x = \sum_{i \in I} \lambda_i b_i$ et $y = \sum_{i \in I} \mu_i b_i$. Ainsi :

$$x + \alpha y = \sum_{i \in I} (\lambda_i + \alpha \mu_i) b_i$$

Par définition:

$$u(x + \alpha y) = \sum_{i \in I} (\lambda_i + \alpha \mu_i) f_i$$
$$= \sum_{i \in I} \lambda_i f_i + \alpha \sum_{i \in I} \mu_i f_i$$
$$= u(x) + \alpha u(y)$$

L'existence est prouvée, et si $v \in \mathcal{L}(E, F)$ tel que :

$$\forall i \in I, v(b_i) = f_i$$

Le raisonnement précédent impose que :

$$\forall x \in E, u(x) = v(x)$$

Soit:

$$u = v$$

21.64Exemple

Exemple 21.64

1. Déterminer l'expression générale de l'application lin de \mathbb{R}^2 dans \mathbb{R}^2 telle que :

$$f(1,0) = (3,2)$$
 et $f(0,1) = (2,1)$

- 2. Montrer que toute application linéaire de \mathbb{R}^p dans \mathbb{R}^n est de la forme $X\mapsto MX$ et décrire M à partir d'une base de \mathbb{R}^p .
- 3. Soit $(b_i)_{i\in I}$ de E et $(f_i)_{i\in I}$ une famille quelconque de F, il existe une unique application linéaire $u \in \mathcal{L}(E, F)$ telle que pour tout $i \in I, u(b_i) = f_i$.
- 1. Pour tout (x, y).

$$f(x,y) = f(x(1,0) + y(0,1))$$

$$= xf(1,0) + yf(0,1)$$

$$= x(3,2) + y(2,1)$$

$$= (3x + 2y, 2x + y)$$

2. Soit $f \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^n)$. Soit (b_1,\ldots,b_p) la base canonique de \mathbb{R}^p et (e_1,\ldots,e_n) la base canonique de \mathbb{R}^n .

$$\forall j \in [1, n], f(b_j) = \sum_{i=1}^{n} m_{ij} e_i$$

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{R}^p$$
.

$$f(X) = f\left(\sum_{j=1}^{p} x_{j} b_{j}\right)$$

$$= \sum_{j=1}^{p} x_{j} f(b_{j})$$

$$= \sum_{j=1}^{p} x_{j} \sum_{i=1}^{n} m_{ij} e_{i}$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{p} m_{ij} x_{j}\right) e_{i}$$

$$= \left(\sum_{j=1}^{p} m_{1j} x_{j}\right)$$

$$\vdots$$

$$\vdots$$

$$\sum_{j=1}^{p} m_{nj} x_{j}$$

$$= \left(m_{11} \cdots m_{1p}\right) \left(x_{1} \right)$$

$$\vdots$$

$$m_{n1} \cdots m_{np}$$

$$\left(x_{1} \right)$$

21.68 Caractérisation de l'injectivité par l'image d'une base

Propostion 21.68

Soit $f \in \mathcal{L}(E, F)$. Les propriétés suivantes sont équivalentes :

- 1. f est injective
- 2. l'image de la famille libre de E par f est une famille libre de F Si de plus E admet au moins une base, elles sont aussi équivalentes à :
- 3. l'image de toute base de E par f est une famille libre de F
- 4. il existe une base de E dont l'image par f est une famille libre de F

$$1 \Rightarrow 2$$

Soit $(x_i)_{i\in I}$ une famille libre de E.

On suppose $\sum_{i \in I} \lambda_i f(x_i) = 0$ avec $(\lambda_i)_{i \in I}$ une famille de scalaires à support fini.

Donc:

$$f\left(\sum_{i \in I} \lambda_i x_i\right) = 0$$
$$\operatorname{donc} \sum_{i \in I} \lambda_i x_i = 0$$
$$\operatorname{donc} \forall i \in I, \lambda_i = 0$$

$$2 \Rightarrow 1$$

On suppose f non injective. Donc $ker(f) \neq \{0\}$.

Soit $x \neq 0$ tel que f(x) = 0.

Or (x) est libre $(x \neq 0)$ et (f(x)) est liée.

On suppose que E admet une base.

$$2 \Rightarrow 3$$
 RAF

$$\boxed{3 \Rightarrow 4}$$
 RAF

$$4 \Rightarrow 1$$

 $\boxed{4\Rightarrow 1}$ Soit $(b_i)_{i\in I}$ une base de E telle que $(f(b_i))_{i\in I}$ est libre. Soit $x\in \ker f$. Donc f(x)=0 et $x=\sum_{i\in I}\lambda_ib_i$ avec $(\lambda_i)_{i\in I}$ une famille de scalaires à support fini.

$$0 = f(x)$$
$$= \sum_{i \in I} \lambda_i f(b_i)$$

Donc, car $(f(b_i))_{i\in I}$ est libre, on a :

$$\forall i \in I, \lambda_i = 0$$

Donc x = 0.

Donc f est injective.