Examenul de bacalaureat național 2019 Proba E. c)

Matematică M_mate-info

Model

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

• Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.

4p 1. Rezultatul calculului $5,1\cdot10+0,49\cdot100$ este:

• Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I – Scrieți, pe foaia de examen, litera corespunzătoare răspunsului corect. (40 de puncte)

	A. 5,149	B. 5,59	C. 10	D. 100
4p	2. Se consideră progresia ș	geometrică $(b_n)_{n>1}$ cu b	$b_1 = 1$ și $b_2 = 2$. Suma	primilor trei termeni ai
	acestei progresii este egală cu:			
	A. 7	B. 6	C. 4	D. 3
4 p	3. Mulțimea $M = \left\{ x \in \mathbb{Z} \middle \frac{1}{x} \right\}$	$\frac{3}{+1} \in \mathbb{N}$ este egală cu:		
	A. $\{-4, -2, 0, 2\}$	B. $\{-4, -2\}$	$C. \{0, 2\}$	D. Ø
4p	4. Știind că $\frac{x_1^2 - 1}{x_1} + \frac{x_2^2 - 1}{x_2} = 2$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 - mx - 1 = 0$, numărul real m			
	este egal cu: A. 0	B. 1	C. 2	D. 3
4 p	5. Mulțimea soluțiilor ecuației $\sqrt{2-x} - x = 0$ este:			
·P			$G_{-}(-2.1)$	D (12)
	A. {1}	B. {-2}	C. {-2,1}	
4p	6. Probabilitatea ca, alegând un număr din mulțimea $A = \{\log_2 n \mid n \in \mathbb{N}^*, n \le 20\}$, acesta să fie număr			
	natural este egală cu:			
	A. $\frac{1}{20}$	B. $\frac{3}{20}$	C. $\frac{1}{5}$	D. $\frac{1}{4}$
4p	7. În reperul cartezian xOy se consideră punctele $M(0,2)$ și $P(1,1)$. Ecuația mediatoarei segmentului MP este:			
	A. $y = x - 2$	B. $y = -x + 2$	C. $y = -2x + 2$	D. $y = x + 1$
4p	8. Se consideră triunghiul	ABC cu $AB = 5\sqrt{2}$, m	$(A) = 45^\circ $ şi $m(C)$)=30°. Lungimea laturii
	BC este egală cu:			
	A. 5	B. $5\sqrt{2}$	C. 10	D. $10\sqrt{2}$
	9. Știind că determinantul matricei $A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & -1 & 1 \\ -3 & a & 1 \end{pmatrix}$ este egal cu -5 , numărul a este egal cu:			
4 p	9. Știind că determinantul m	natricei $A = \begin{bmatrix} 3 & -1 & 1 \\ -3 & a & 1 \end{bmatrix}$	este egal cu -5, numă	rul a este egal cu:
	A. -5	B. 0	C. 5	D. 10
4p	10. Se consideră x_1 , x_2 și x_3 rădăcinile polinomului $f = X^3 + 3X^2 + 2X - 6$. Numărul $x_1^2 + x_2^2 + x_3^2$			
	este egal cu: A. 5	B. 4	C. -3	D. -13
	A. 3	D. 4	C. -3	D. -13

SUBIECTUL al II-lea – Scrieți, pe foaia de examen, rezolvările complete.

(20 de puncte)

1. Se consideră matricea $M(m) = \begin{pmatrix} 1 & 2 & 4 \\ -1 & m & -1 \\ m & 1 & 3 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x + 2y + 4z = 5 \\ -x + my - z = -2 \end{cases}$, unde m mx + y + 3z = 4

este număr real.

- **5p** a) Determinați valorile reale ale lui m pentru care sistemul are soluție unică.
- **5p b)** Pentru m = 1, determinați soluțiile (x_0, y_0, z_0) ale sistemului pentru care $4y_0^2 = (x_0 + z_0)^2$. **2.** Pe mulțimea numerelor reale se definește legea de compoziție asociativă, cu element neutru,

 $x * y = \frac{1}{3} \left(x - \frac{3}{2} \right) \left(y - \frac{3}{2} \right) + \frac{3}{2}.$

- **5p** a) Determinați numerele reale x pentru care x * x * x = x.
- **5p b)** Demonstrați că **nu** există niciun număr natural *n* al cărui simetric în raport cu legea de compoziție "*" să fie număr natural.

SUBIECTUL al III-lea - Scrieți, pe foaia de examen, rezolvările complete.

(30 de puncte)

- 1. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x \ln(x^2 + x + 1)$.
- **5p** a) Arătați că $f'(x) = \frac{x(x-1)}{x^2 + x + 1}, x \in \mathbb{R}$.
- **5p b)** Determinați abscisele punctelor situate pe graficul funcției f în care tangenta la graficul funcției f este paralelă cu dreapta de ecuație $y = -\frac{1}{7}x + 2$.
- **5p** c) Demonstrați că pentru fiecare număr natural nenul n, ecuația f(x) + n = 0 are soluție unică.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x}{e^x}$.
- **5p** a) Arătați că $\int_{0}^{2} e^{x} f(x) dx = 2$.
- **5p b)** Demonstrați că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = -1 și x = 1 are aria egală cu $2 \frac{2}{e}$.
- **5p** c) Pentru fiecare număr natural nenul n, se consideră $I_n = \int_0^1 x^n f(x) dx$. Demonstrați că $\lim_{n \to +\infty} (n+2)I_n = \frac{1}{e}.$