

Lecture 10:

Simulation and Monte Carlo Method

Markus Hohle

University California, Berkeley

Numerical Methods for Computational Science

Numerical Methods for Computational Science

Course Map

Week 1: Introduction to Scientific Computing and Python Libraries

Week 2: Linear Algebra Fundamentals

Week 3: Vector Calculus

Week 4: Numerical Differentiation and Integration

Week 5: Solving Nonlinear Equations

Week 6: Probability Theory Basics

Week 7: Random Variables and Distributions

Week 8: Statistics for Data Science

Week 9: Eigenvalues and Eigenvectors

Week 10: Simulation and Monte Carlo Method

Week 11: Data Fitting and Regression

Week 12: Optimization Techniques

Week 13: Machine Learning Fundamentals

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

CHECKING IN

<u>Outline</u>

- The Problem
- Finding PI
- Gillespie Algorithm
- Metropolis Algorithm

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

CHECKING IN

<u>Outline</u>

- The Problem
- Finding PI
- Gillespie Algorithm
- Metropolis Algorithm

- many dynamic problems don't have an analytical solution
- some quantities have singularities \rightarrow standard simulations are not possible

- many dynamic problems don't have an analytical solution
- some quantities have singularities \rightarrow standard simulations are not possible

degradation of a chemical compound A with rate k

classic and deterministic approach: many particles of A \rightarrow concentration [A]

$$A \stackrel{k}{\rightarrow} \emptyset$$
 What is $A(t)$?

constant relative change per time step

$$\frac{\Delta A(t)}{A(t)} \frac{1}{\Delta t} = -k \quad \text{for small } \Delta t$$

$$\text{see lecture 2} \qquad \frac{dA(t)}{A(t)} = -k \ dt$$

$$\int_{A(t=0)}^{A(t)} \frac{1}{A(t)} dA(t) = -k \int_{0}^{\tau} dt \qquad A(t) = A(t=0) e^{-kt}$$

$$A(t) = A(t=0) e^{-kt}$$

- many dynamic problems don't have an analytical solution
- some quantities have singularities → standard simulations are not possible

degradation of a chemical compound A with rate k

single particle dynamics: concentration [A] doesn't make sense

How can we model that? How do we take stochasticity into account?

- many dynamic problems don't have an analytical solution
- some quantities have singularities -> standard simulations are not possible

moving particles in a potential U

classic approach: solving Newton's equations of motion

- many dynamic problems don't have an analytical solution
- some quantities have singularities -> standard simulations are not possible

moving particles in a potential U

Lennard – Jones - Potential

How can we prevent the simulation from creating non physical results?

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

CHECKING IN

<u>Outline</u>

- The Problem
- Finding PI
- Gillespie Algorithm
- Metropolis Algorithm

idea: generating a set of values randomly

i.e. repeated random sampling

→ Monte Carlo method

pros: for many sample repetitions \rightarrow the actual probability density function emerges

pretty simple set up & easy to implement

easy to parallelize

cons: not directed like e.g. gradient descent (see later modules)

example: finding π via Monte Carlo

$$A_{square} = 1$$

$$A_{section} = \frac{\pi}{4}$$

$$\pi = 4 \frac{A_{section}}{A_{square}}$$

picking N_{tot} random values [0,1] x [0,1]

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

example: finding π via Monte Carlo

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

We know that a point within the section is drawn with the probability p

That is a binomial problem!

In practice, k points fall into the section with probability p and $N_{tot}-k$ don't, with a probability of 1-p

Thus, we can tell the mean and the variance of **one** simulation for one specific N_{tot}

$$\sigma(k)^2 = N_{tot} \, p(1-p)$$

$$\mu(k) = pN_{tot}$$

(see module 7)

example: finding π via Monte Carlo

How does the accuracy of π depend on N_{tot} ?

$$\pi pprox 4 rac{N_{section}}{N_{tot}}$$
 $\sigma(k)^2 = N_{tot} \; p(1-p) \quad \mu(k) = pN_{tot}$ (see module 7)

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right)$ standard deviation σ of the ratio $\frac{N_{section}}{N_{tot}}$

Say we run the simulation for a **specific** N_{tot} many times $\rightarrow Var(k)$

example: finding π via Monte Carlo

How does the accuracy of π depend on N_{tot} ?

$$\pi pprox 4 rac{N_{section}}{N_{tot}}$$
 $\sigma(k)^2 = N_{tot} \ p(1-p)$ $\mu(k) = pN_{tot}$ (see module 7)

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right)$

Say we run the simulation for a specific N_{tot} many times $\rightarrow Var(k)$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sigma\left(\frac{k}{N_{tot}}\right) = 4\sqrt{Var\left(\frac{k}{N_{tot}}\right)} = 4\sqrt{\frac{1}{N_{tot}^2}Var(k)} = 4\sqrt{\frac{1}{N_{tot}^2}Var(k)} = 4\sqrt{\frac{1}{N_{tot}^2}N_{tot}p(1-p)}$

We know: $Var(x) = \langle x^2 \rangle - \langle x \rangle^2$ (see module 7)

$$x \to ax \quad Var(ax) = \langle (ax)^2 \rangle - \langle ax \rangle^2 = a^2(\langle x^2 \rangle - \langle x \rangle^2) = a^2 Var(x)$$

example: finding π via Monte Carlo

How does the accuracy of π depend on N_{tot} ?

$$\pi pprox 4 rac{N_{section}}{N_{tot}}$$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sqrt{\frac{1}{N_{tot}^2}N_{tot}p(1-p)} = 4\sqrt{\frac{1}{N_{tot}}p(1-p)}$

of course we **don't know**
$$p = \frac{\pi}{4} = \frac{A_{section}}{A_{square}}$$

because we wanted find π in the first place

but we can *estimate* it during the simulation

$$4\sqrt{\frac{1}{N_{tot}}} p(1-p) \approx 4 \cdot 0.4 \sqrt{\frac{1}{N_{tot}}}$$

example: finding π via Monte Carlo

How does the accuracy of π depend on N_{tot} ?

$$\pi \approx 4 \frac{N_{section}}{N_{tot}}$$

error of
$$\pi$$
: $4\sigma\left(\frac{N_{section}}{N_{tot}}\right) = 4\sqrt{\frac{1}{N_{tot}}} \ p(1-p) \approx 4 \cdot 0.4\sqrt{\frac{1}{N_{tot}}}$

running 100 simulations for each N_{tot}

 \rightarrow calculating standard deviation of π

$$\rightarrow$$
 comparing to $4 \cdot 0.4 \sqrt{\frac{1}{N_{tot}}}$

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

CHECKING IN

<u>Outline</u>

- The Problem
- Finding PI
- Gillespie Algorithm
- Metropolis Algorithm

We can combine the MC method with different ways *how* to run a simulation

example: - radioactive decay of atoms

- reaction $A \stackrel{k}{\rightarrow} \emptyset$

challenge: on single particle level: decay/reaction (= changing its state) is random

t

each atom has the probability $\pmb{\tau}$ to decay within the next time step $\Delta \pmb{t}$

 $\Delta \mathbf{t}$

for t = 0 many atoms \rightarrow very likely that a big part will decay after $t + \Delta t$

We can combine the MC method with different ways *how* to run a simulation

example: - radioactive decay of atoms

- reaction $A \stackrel{k}{\rightarrow} \emptyset$

challenge: on single particle level: decay/reaction (= changing its state) is random

for t=0 many atoms \rightarrow very likely that a big part will decay after $t+\Delta t$

 $\Delta \mathbf{t}$

naïve solution: making Δt even smaller

We can combine the MC method with different ways *how* to run a simulation

example: - radioactive decay of atoms

- reaction $A \stackrel{k}{\rightarrow} \emptyset$

challenge: on single particle level: decay/reaction (= changing its state) is random

 \bullet^{τ}

naïve solution: making Δt even smaller

 Δt

problem: towards the end, only a **few atoms are left**→ we need to **wait longer** until one atom decays

 \rightarrow for many Δt : nothing happens

1.00

Berkeley Simulation and Monte Carlo Method:

We can combine the MC method with different ways *how* to run a simulation

example: - radioactive decay of atoms

- reaction $A \stackrel{k}{\rightarrow} \emptyset$

challenge: - on single particle level: decay/reaction (= changing its state) is random

- avoiding Δt where nothing happens \rightarrow very inefficient

- modeling the randomness

We can combine the MC method with different ways *how* to run a simulation

example: - radioactive decay of atoms

- reaction $A \stackrel{k}{\rightarrow} \emptyset$

standard MCS: - set a value Δt

Leads to the problems mentioned earlier!

- check *if* an atom decays

- if: $N(t + \Delta t) = N(t) - 1$

- else: $N(t + \Delta t) = N(t)$

 $-t \rightarrow t + \Delta t$ and repeat

Gillespie:

- based on N(t) and τ , calculate the time Δt that elapses until one atom decays

 $-N(t + \Delta t) = N(t) - 1$

 $-t \rightarrow t + \Delta t$ and repeat

- Δt adapts automatically to N(t)

Gillespie:

- based on N(t) and au, calculate the time Δt that elapses until one atom decays
- $-N(t + \Delta t) = N(t) 1$
- $-t \rightarrow t + \Delta t$ and repeat
- - Δt adapts automatically to N(t)

decay is Poissonian:
$$P(n|\tau) = \frac{(\tau \Delta t)^n}{n!} exp(-\tau \Delta t)$$

(see module 7)

t

aim:

 Δt **between** two decays \rightarrow no decay within Δt , i. e. n = 0

$$P(0|\tau) = \frac{(\tau \Delta t)^0}{0!} exp(-\tau \Delta t) = exp(-\tau \Delta t)$$

$$\Delta t = -\frac{1}{\tau} ln[P(0|\tau)]$$

Gillespie:

- based on N(t) and au, calculate the time Δt that elapses until one atom decays
- $-N(t + \Delta t) = N(t) 1$
- t → t + Δt and repeat
- - Δt adapts automatically to N(t)

$$\Delta t = -\frac{1}{\tau} ln[P(0|\tau)]$$
 Poissonian Stepper

t

each atom has the probability of decay per time τ

atom 1 can undergo a decay, or atom 2 or atom 3 or...

logical $or \rightarrow adding$ the probabilities (see module 6)

$$\tau \to \tau N(t)$$

$$\Delta t = -\frac{1}{\tau N(t)} ln[P(0|\tau)]$$

Gillespie:

- 1) draw a **random number** ρ from a **uniform distribution** in the interval (0,1)
- 2) calculate the time Δt that elapses until the next decay

$$\Delta t = -\frac{1}{\tau N(t)} \ln \rho$$

3) set
$$t \to t + \Delta t$$
 and $N(t + \Delta t) = N(t) - 1$

4) repeat

$$\Delta t = -\frac{1}{\tau N(t)} ln [P(0|\tau)]$$

Gillespie:

- 1) draw a random number ρ from a uniform distribution in the interval (0,1)
- 2) calculate the time Δt that elapses until the next decay $\Delta t = -\frac{1}{\tau N(t)} \ln \rho$
- 3) set $t \rightarrow t + \Delta t$ and $N(t + \Delta t) = N(t) 1$
- 4) repeat

example:

$$A \overset{k_+}{\underset{k_-}{\longleftrightarrow}} B$$

need to calculate Δt for α reaction (either A \rightarrow B or B \rightarrow A)

logical $or \rightarrow adding$ the probabilities (see module 6)

$$\tau(A) \to k_+ A(t)$$

$$\tau(B) \to k_- B(t)$$

$$\tau(A) \to k_{+} A(t)$$
 $\tau(B) \to k_{-} B(t)$ $\tau_{tot} = \tau(A) + \tau(B)$
= $k_{+} A(t) + k_{-} B(t)$

$$\Delta t = -\frac{1}{k_{+} A(t) + k_{-} B(t)} ln[P(0|\tau_{tot})]$$

time that elapses for a reaction to occur

next: deciding which reaction should occur

example:

$$A \overset{k_+}{\underset{k_-}{\longleftrightarrow}} B$$

$$\tau(A) \to k_+ A(t)$$

$$\tau(A) \to k_+ A(t)$$
 $\tau(B) \to k_- B(t)$

$$\tau_{tot} = \tau(A) + \tau(B) = k_{+} A(t) + k_{-} B(t)$$

$$\Delta t = -\frac{1}{k_{+} A(t) + k_{-} B(t)} ln[P(0|\tau_{tot})]$$

time that elapses for a reaction to occur

next: deciding which reaction should occur

depending into which fraction this random number falls → this reaction occurs

generating a random number from a uniform distribution in the interval (0, 1)

Gillespie:

- 1) draw a random number ρ_1 from a uniform distribution in the interval $(\mathbf{0},\mathbf{1})$
- 2) calculate the time Δt that elapses until the next reaction

$$\Delta t = -\frac{1}{k_+ A(t) + k_- B(t)} \ln \rho_1$$

- 3) draw a second random number ρ_2 from a uniform distribution in the interval (0,1)
- 4) decide which reaction occurs:

if
$$\rho_2 < \frac{k_+ A(t)}{k_+ A(t) + k_- B(t)}$$
: reaction A \rightarrow B is more likely
$$A(t + \Delta t) = A(t) - 1$$
$$B(t + \Delta t) = B(t) + 1$$

else: reaction $B \rightarrow A$ is more likely

$$A(t + \Delta t) = A(t) + 1$$

$$B(t + \Delta t) = B(t) - 1$$

equilibrium at

$$\frac{A}{B} = \frac{k_{-}}{k+}$$

 $k_{+} = 1$ $k_{-} = 0.5$

time

N = 100

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

CHECKING IN

<u>Outline</u>

- The Problem
- Finding PI
- Gillespie Algorithm
- Metropolis Algorithm

We can combine the MC method with different ways *how* to run a simulation

example:

- molecules and the Lennard – Jones potential

the problem:

simulating many particles

Naïve solution: solving Newton's equation of motion

$$x_{t+\Delta t} = x_t + v(x)_t \cdot \Delta t + \frac{1}{2} a(x)_t \Delta t^2$$

$$y_{t+\Delta t} = y_t + v(y)_t \cdot \Delta t + \frac{1}{2} a(y)_t \Delta t^2$$

total force/potential that acts on the particle

$$a(x) = \frac{F(x)_{tot}}{m} = \frac{1}{m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial x}$$

$$a(y) = \frac{F(y)_{tot}}{m} = \frac{1}{m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial y}$$

the problem:

Naïve solution: solving Newton's equation of motion

$$x_{t+\Delta t} = \left. x_t + v(x)_t \cdot \Delta t + \frac{1}{2m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial x} \right|_t \Delta t^2$$

$$y_{t+\Delta t} = y_t + v(y)_t \cdot \Delta t + \frac{1}{2m} \frac{\partial U_{tot}(x, y)_{LJ}}{\partial y} \bigg|_{t} \Delta t^2$$

We pick a specific value for Δt and update locations, velocities and acceleration

for particles with $r \approx r_0$:

$$-\frac{\partial U(x,y)_{LJ}}{\partial y}$$
 or $\frac{\partial U(x,y)_{LJ}}{\partial x}$ explode

- particles get kicked out
- wouldn't have gotten so close in the first place \rightarrow Δt too large

for particles with $r\gg r_0$:

$$-\frac{\partial U(x,y)_{LJ}}{\partial y} \text{ or } \frac{\partial U(x,y)_{LJ}}{\partial x} \approx 0$$

- nothing happens, very inefficient $\rightarrow \Delta t$ too small

the solution:

Gillespie: calculating *when* a particle changes its state

Metropolis: calculating if a particle changes its state (here locations, velocities and acceleration)

If $dU_{tot}(x,y)_{LI}$ is **negative**: \rightarrow always move (a ball always rolls down the hill)

If $dU_{tot}(x,y)_{LI}$ is positive: \rightarrow calculate the probability to move

Why should a particle move, even though that increases its energy?

reason: random Brownian motion

one can show (statistical physics, max entropy)

$$p_{move} \sim \exp\left[-\frac{dU_{tot}(x,y)_{LJ}}{T}\right]$$
 Boltzmann factor

T: temperature

Metropolis: calculating if a particle changes its state (here locations, velocities and acceleration)

If $dU_{tot}(x,y)_{LJ}$ is **negative**: \rightarrow always move (a ball always rolls down the hill)

If $dU_{tot}(x,y)_{LJ}$ is **positive**: \rightarrow calculate the **probability to move**

$$p_{move} \sim \exp\left[-\frac{dU_{tot}(x,y)_{LJ}}{T}\right]$$
 Boltzmann factor T: temperature

draw a random number ρ from a uniform distribution in the interval $(\mathbf{0},\mathbf{1})$

Metropolis: calculating if a particle changes its state (here locations, velocities and acceleration)

If $dU_{tot}(x,y)_{LJ}$ is **negative**: \rightarrow always move (a ball always rolls down the hill)

If $dU_{tot}(x,y)_{LI}$ is **positive**: \rightarrow calculate the **probability to move**

$$p_{move} \sim \exp\left[-rac{dU_{tot}(x,y)_{LJ}}{T}
ight]$$
 Boltzmann factor T: temperature

draw a random number ρ from a uniform distribution in the interval $(\mathbf{0},\mathbf{1})$

if
$$\rho < p_{move} \rightarrow$$
 move

(the larger dU_{tot} , the smaller p_{move} , the harder to meet the condition $ho < p_{move}$)

Metropolis:

- 1) suggest a random move Δx and Δy for all particles
- 2) calculate $\Delta U_{tot}(x,y)_{LJ}$ based on Δx and Δy for each particle
- 3) move or not:
 - a) move those particles where $\Delta U_{tot}(x,y)_{LI} < 0$
 - b) for those particles where $\Delta U_{tot}(x,y)_{LJ}>0$
 - draw a random number ho from a uniform distribution in the interval (0,1)
 - move those particles for which $ho < \exp\left[-\frac{\Delta U_{tot}(x,y)_{LJ}}{T}\right]$

4) repeat

N = 200

summary

- 1) draw random numbers from a uniform distribution (unbiased)
- 2) compare these numbers to a distribution d that characterizes the systems dynamics

no bias, d is uniform

natural numbers: **d** is Poissonian

$$\Delta t = -\frac{1}{k_+ A(t) + k_- B(t)} \ln \rho_1$$

energy is conserved:d is a Boltzmann distribution

$$p_{move} \sim \exp\left[-\frac{dU_{tot}(x,y)_{LJ}}{T}\right]$$

summary

- 1) draw random numbers from a uniform distribution (unbiased)
- 2) compare these numbers to a distribution d that characterizes the systems dynamics

Distribution name	Probability density / mass function	Maximum Entropy constraint	Support
Uniform (discrete)	$f(k) = \frac{1}{b-a+1}$	None	$\{a,a+1,\dots,b-1,b\}$
Uniform (continuous)	$f(x) = rac{1}{b-a}$	None	[a,b]
Bernoulli	$f(k) = p^k (1-p)^{1-k}$	$\mathbb{E}[\ K\]=p$	$\{0,1\}$
Geometric	$f(k)=(1-p)^{k-1}\;p$	$\mathbb{E}[K]=rac{1}{p}$	$\mathbb{N} \smallsetminus \{0\} = \{1,2,3,\dots\}$
Exponential	$f(x) = \lambda \exp(-\lambda x)$	$\mathbb{E}[X]=rac{1}{\lambda}$	$[0,\infty)$
Laplace	$f(x) = rac{1}{2b} \expigg(-rac{ x-\mu }{b}igg)$	$\mathbb{E}[\: X-\mu \:]=b$	$(-\infty,\infty)$
Asymmetric Laplace	$f(x) = rac{\lambda \; \expig(-\left(x-m ight) \lambda s \kappa^sig)}{\left(\kappa + rac{1}{\kappa} ight)}$ where $s \equiv \mathrm{sgn}(x-m)$	$\mathbb{E}[\;(X-m)\;s\;\kappa^s\;]=rac{1}{\lambda}$	$(-\infty,\infty)$
Pareto	$f(x)=rac{lpha\ x_m^lpha}{x^{lpha+1}}$	$\mathbb{E}[\; \ln X] = rac{1}{lpha} + \ln(x_m)$	$[x_m,\infty)$
Normal	$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\Biggl(-rac{(x-\mu)^2}{2\sigma^2}\Biggr)$	$egin{array}{ll} \mathbb{E}[\:X\:] &= \mu\:, \ \mathbb{E}[\:X^2\:] &= \sigma^2 + \mu^2 \end{array}$	$(-\infty,\infty)$

How do I know which d to pick?

At the end... all probability distributions are

Maximum Entropy distributions, subject to a set of constrains

(see module 7)

Berkeley Numerical Methods for Computational Science: Simulation and Monte Carlo Method

Thank you very much for your attention!

