Teoria de Algoritmos

Capitulo 1: La Eficiencia de los Algoritmos

Tema 3: Resolución de Recurrencias Asintóticas

- Inducción
- Resolución de recurrencias con función característica
- Ecuaciones homogéneas
- Ecuaciones no homogéneas
- Cambio de variable
- Transformaciones del rango

Motivación

- Las ecuaciones recurrentes son frecuentes en Teoría de Algoritmos
- La inducción se usa en las demostraciones matemáticas asociadas a algoritmos recursivos
 - e.g. quicksort, búsqueda binaria
- También se usa para obtener estimaciones de los tiempos de ejecución
 - A partir de los tamaños de los datos de entrada
 - ◆ e.g. El tiempo crece linealmente con el numero de datos que se procesan
 - ◆ e.g. Tiempos basados en las veces que se ejecuta un lazo

El método inductivo

- La inducción se usa para resolver problemas como:
 - ¿Es cierto S(n) para todos los valores de n?
 - generalmente para todo n >= 0 o todo n >= 1
- Ejemplo:
 - Sea S(n) " $n^2 + 1 > 0$ "
 - Es cierto S(n) para todo n >= 1?

S(n) puede ser mucho mas complicado, por ejemplo un programa que se tenga que ejecutar para un valor n

El método inductivo

- ¿Como demostramos la veracidad o falsedad de S(n)?
- Una forma sería hacer la demostración para cada valor de n:
 - ¿Es S(1) cierto?
 - ¿Es S(2) cierto?
 - ...
 - ¿Es S(10,000) cierto?
 - ... iiiEl método de la fuerza bruta!!!

No es muy práctico

El método inductivo

- La inducción es una técnica para demostrar rápidamente la veracidad o falsedad de S(n) para todo n
 - Solo hay que hacer dos cosas
- Primero demostrar que S(1) es cierto
- Segundo, suponer que S(n) es cierto, y usarlo para probar que S(n+1) es cierto
- Entonces S(n) es cierto para todo n>=1.

- Demostrar que S(n): " $n^2 + 1 > 0$ " $\forall n \ge 1$
- Primero probamos que S(1) es verdadero
- $5(1) = 1^2 + 1 = 2$, que es > 0
 - Así S(1) es verdadero
- Ahora probamos que S(n+1) es cierto supuesto que S(n) lo es
- Si S(n) es cierto, entonces n²+1 > 0, luego
 - $S(n+1) = (n+1)^2 + 1 = n^2 + 2n + 1 + 1 = (n^2 + 1) + 2n + 1$
 - Como $n^2 + 1 > 0$, entonces $(n^2 + 1) + 2n + 1 > 0$
 - así S(n+1) es cierto, dado que S(n) lo era
 - Por tanto S(n) --> S(n+1)

La Inducción mas formalmente

- Tres hechos:
 - 1. Hay que demostrar una propiedad S(n)
 - ◆ la propiedad debe estar planteada sobre un valor entero n
 - 2. Una base para la demostración.
 - ◆ Esta es la propiedad S(b) para algún entero. A menudo b = 0, 1.
 - 3. Una etapa inductiva para la demostración. Se trata de demostrar que S(n+1) se sigue de S(n) "S(n) --> S(n+1)" $\forall n$.
- A S(n) se le suele llamar Hipótesis de Inducción
 - Se concluye que S(n) es cierto para todo n >= b
 - ◆ S(n) podría no ser cierto para algún < b</p>

• Demostrar S(n):
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \forall n \ge 1$$

- e.g.
$$1+2+3+4 = (4*5)/2 = 10$$

• Base. S(1), n = 1
$$\sum_{i=1}^{1} i = 1$$
 1 = (1*2)/2

• *Inducción*. Suponemos que S(n) es cierto. Demostramos S(n+1), es decir:

$$\sum_{i=1}^{n+1} i = \frac{n+1(n+1+1)}{2} = \frac{(n+1)(n+2)}{2} \qquad \sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

• Probar S(n):
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \forall n \ge 0$$

$$-$$
 e.g. $1+2+4+8 = 16-1$

• **Base.** S(0), n = 0
$$\sum_{i=0}^{0} 2^{i} = 2^{0} \qquad 2^{0} = 2^{1} - 1$$

 Inducción. Suponemos S(n) cierta, y probamos S(n+1), que es:

$$\sum_{i=0}^{n+1} 2^i = 2^{n+2} - 1$$

$$\sum_{i=0}^{n+1} 2^i = \sum_{i=0}^{n} 2^i + 2^{n+1}$$

• Demostrar S(n): $n! >= 2^{n-1} \forall n \ge 1$ - e.g. $5! >= 2^4$, o lo que es lo mismo 120 >= 16

- Base. S(1), n = 1: 1! >= 20 así tenemos 1 >= 1
- Inducción. Suponemos S(n) cierta y probamos S(n+1), es decir: $(n+1)! >= 2^{(n+1)-1} >= 2^n$

$$(n+1)! = n! * (n+1)$$

Inducción parcial constructiva

- Supongamos la hipótesis (parcialmente especificada) de que cualquier entero >= 24 puede escribirse como 5a+7b para enteros no negativos a y b.
- La idea es aplicar el método inductivo y a lo largo de las demostraciones que hay que realizar, reunir información sobre a y b como para que se verifique la hipótesis inicial

Pueden encontrarse ejemplos en el libro de Brassard-Bratley

Resolución de recurrencias

- Método de la función característica
 - Recurrencias homogéneas

$$a_0 t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = 0$$

- Los ti son los valores que buscamos. La recurrencia es lineal porque no contiene términos de la forma $t_i t_{i+1}$, t_i^2 ,
- Los coeficientes a son constantes, y
- La recurrencia es homogénea porque la combinación lineal de los ti es igual a cero.
- La intuición nos sugiere intentar una solución de la forma

$$t_n = x^n$$

donde xⁿ es una constante aun desconocida

Recurrencias homogéneas

Si ensayamos esa solución, obtenemos,

$$a_0 x^n + a_1 x^{n-1} + ... + a_k x^{n-k} = 0$$

• Esta ecuación se satisface si x = 0, o en caso contrario si

$$a_0 x^k + a_1 x^{k-1} + ... + a_k = 0$$

- Esta ecuación de grado k en x es la que se llama la ecuación característica de la recurrencia.
- Si las k raíces de esta ecuación, r₁,...,r_k, son todas distintas (ipodrían ser números complejos!), entonces

$$t_n = \sum_{i=1..n} c_i r_i^n$$

es una solución de la recurrencia, donde las k constantes c_i se determinan mediante condiciones iniciales. (Necesitamos exactamente k condiciones iniciales para determinar los valores de esas k ctes).

$$t_{n}$$
 - $3t_{n-1}$ - $4t_{n-2}$ = 0, t_{0} = 0, t_{1} = 1.

Ecuación característica,

$$x^2 - 3x - 4 = 0$$

• Raíces: -1 y 4. Por tanto, la solución general tiene la forma,

$$t_n = c_1 (-1)^n + c_2 4^n$$

• El uso de las condiciones iniciales produce,

$$c_1 + c_2 = 0$$
, $n = 0$
 $-c_1 + 4c_2 = 1$, $n = 1$

• $c_1 = -1/5$ y $c_2 = 1/5$, obteniendo finalmente,

$$t_n = (1/5)[4^n - (-1)^n]$$

$$t_n = t_{n-1} + t_{n-2}, n \ge 2, t_0 = 0 y t_1 = 1.$$

- Esta recurrencia se corresponde con el algoritmo para calcular el termino general de la sucesión de Fibonacci
- Puede escribirse como

$$t_{n} - t_{n-1} - t_{n-2} = 0$$

- Ecuación característica: $x^2 x 1 = 0$
- Obtenemos,

$$t_n = (1/\sqrt{5})(r_1^n - r_2^n)$$
 $r_1 = \frac{1+\sqrt{5}}{2}, r_2 = \frac{1-\sqrt{5}}{2}$

 Es fácil demostrar que este es el mismo resultado que el obtenido por De Moivre, con su formula para calcular números de la sucesión de Fibonacci

Recurrencias homogéneas

- Las raíces de la ecuación característica no son distintas.
- Sea $p(x) = a_0 x^k + a_1 x^{k-1} + ... + a_k y r$ una raíz múltiple. Para cualquier valor $n \ge k$, consideramos el polinomio,

$$h(x) = x[x^{n-k}p(x)]' = a_0nx^n + a_1(n-1)x^{n-1} + ... + a_k(n-k)x^{n-k}$$

- Sea q(x) el polinomio tal que $p(x) = (x-r)^2 q(x)$.
- Entonces,

$$h(x) = x[(x-r)^2x^{n-k}q(x)]' = x[2(x-r)x^{n-k}q(x) + (x-r)^2[x^{n-k}q(x)]']$$

Como h(r) = 0, se demuestra que,

$$a_0 nr^n + a_1 (n-1)r^{n-1} + ... + a_k (n-k)r^{n-k}$$

es decir, t = nrⁿ es también una solución

Recurrencias homogéneas

 Mas generalmente, si m es la multiplicidad de la raíz r, entonces

 $t_1 = r$, $t_2 = nr^n$, $t_3 = n^2r^n$,..., $t_m = n^{m-1}r^n$ son todas las posibles soluciones de la ecuación.

- La solución general es una combinación lineal de estos términos y de los términos contribuidos por otras raíces de la ecuación característica.
- Así, de nuevo hay k constantes a determinar por las condiciones iniciales

$$t_n = 5t_{n-1} - 8t_{n-2} + 4t_{n-3}, n \ge 3, t_0 = 0, t_1 = 1, y t_2 = 2.$$

Esta recurrencia puede escribirse,

$$t_{n} - 5 t_{n-1} + 8 t_{n-2} - 4 t_{n-3} = 0$$

- Característica: $x^3 5x^2 + 8x 4 = 0 \Leftrightarrow (x-1)(x-2)^2 = 0$
- Raíces: 1 (simple) y 2 (doble).
- Por tanto, la solución general es $t_n = c_1 1^n + c_2 2^n + c_3 n 2^n$.
- Las condiciones iniciales dan,

$$c_1 + c_2 = 0, n = 0$$

 $c_1 + 2c_2 + 2c_3 = 1, n = 1$
 $c_1 + 4c_2 + 8c_3 = 2, n = 2$

• Así,
$$c_1 = -2$$
, $c_2 = 2$, $c_3 = -(1/2)$ y $t_n = 2^{n+1} - n2^{n-1} - 2$.

Recurrencias no homogéneas

$$a_0t_n + a_1t_{n-1}+...+ a_kt_{n-k} = b^np(n)$$

- El primer miembro es lo mismo que el de las homogéneas, pero en el segundo tenemos bⁿp(n), donde
 - b es una constante, y
 - p(n) es un polinomio en n de grado d.
- Por ejemplo, la recurrencia podría ser,

$$t_n - 2t_{n-1} = 3^n$$

en cuyo caso b = 3 y p(n) = 1 es un polinomio de grado cero

Recurrencias no homogéneas

$$a_0t_n + a_1t_{n-1}+...+ a_kt_{n-k} = b^np(n)$$

 La ecuación característica que le corresponde se organiza como

(Ecuación característica de la homogénea)(x-b)^{d+1} = 0 $(a_0x^k + a_1x^{k-1} + ... + a_k)(x-b)^{d+1} = 0$

y se resuelve como en el caso de las homogéneas

- Si $t_n 2t_{n-1} = 3^n$ entonces (x-2)(x-3) = 0
- Se aplican las mismas normas para raíces simples o múltiples que en el caso anterior

$$t_n - 2t_{n-1} = (n+5) 3^n$$

• Ecuación característica

$$(x-2)(x-3)^2 = 0$$

Y por tanto la solución es

$$t_n = c_1 2^n + c_2 3^n + c_3 n 3^n$$

- Las constantes solo son útiles para conocer la solución con exactitud, pero no de cara a saber el orden del algoritmo del que proviene la recurrencia que estamos resolviendo
- Lo normal es conocer las condiciones iniciales a partir de datos experimentales

Ejemplo: Las Torres de Hanoi

Problema: trasladar todos los aros de la barra A a la B.

$$t_n = 2t_{n-1} + 1$$
, $n \ge 1$, con $t_0 = 0 \Rightarrow t_n = c_1 1^n + c_2 2^n$

$$t_n = 2t_{n-1} + n$$

- Puede rescribirse como $t_n 2t_{n-1} = n$
- b = 1 y p(n) = n un polinomio de grado 1.
- Ecuación característica: $(x-2)(x-1)^2 = 0$
- Raíces 2 (con multiplicidad 1) y 1 (con multiplicidad 2).
- Solución general: $t_n = c_1 2^n + c_2 1^n + c_3 n1^n$
- En el problema buscamos una solución para la que $t_n \ge 0$ para cualquier n. Si esto es así podemos concluir inmediatamente que t_n debe ser $O(2^n)$.

Generalización

Sea

$$a_0 t_n + a_1 t_{n-1} + ... + a_k t_{n-k} = b_1^n p_1(n) + b_2^n p_2(n) + ...$$

donde las b_i son constantes distintas y los p_i (n) son polinomios en n de grado d_i respectivamente.

• Basta escribir la ecuación característica,

$$(a_0x^k + a_1x^{k-1} + ... + a_k)(x-b_1)^{d_1+1}(x-b_2)^{d_2+1} = 0$$

- Por ejemplo $t_n = 2t_{n-1} + n + 2^n$, $n \ge 1$, con $t_0 = 0$.
- $b_1 = 1$, $p_1(n) = n$, $b_2 = 2$, $p_2(n) = 1$.
- Ecuación característica: $(x-2)(x-1)^2(x-2) = 0$,
- Solución general: $t_n = c_1 1^n + c_2 n 1^n + c_3 2^n + c_4 n 2^n$

• Calcular el orden de T(n) si n es potencia de 2, y

$$T(n) = 4T(n/2) + n, n > 1$$

• Reemplazamos n por 2^k (de modo que k = lg n) para obtener $T(2^k) = 4T(2^{k-1}) + 2^k$. Esto puede escribirse,

$$t_k = 4t_{k-1} + 2^k$$

- $si t_k = T(2^k) = T(n)$.
- La ecuación característica es (x-4)(x-2) = 0y entonces $t_k = c_1 4^k + c_2 2^k$.
- Poniendo n en lugar de k, tenemos $T(n) = c_1 n^2 + c_2 n$
- y T(n) esta por tanto es $O(n^2 / n)$ es una potencia de 2)

 Encontrar el orden de T(n) si n es una potencia de 2 y si

$$T(n) = 4T(n/2) + n^2, n > 1$$

Obtenemos sucesivamente

$$T(2^k) = 4T(2^{k-1}) + 4^k, y$$

 $t_k = 4t_{k-1} + 4^k$

- Ecuación característica: $(x-4)^2 = 0$, y así $t_k = c_1 4^k + c_2 k4^k$, $T(n) = c_1 n^2 + c_2 n^2 lgn$
- y (n) es O(n²log n / n es potencia de 2).

• Calcular el orden de T(n) si n es una potencia de 2 T(n) = 2T(n/2) + nlg n, n > 1

Obtenemos

$$T(2^{k}) = 2T(2^{k-1}) + k2^{k}$$

 $t_{k} = 2t_{k-1} + k2^{k}$

• La ecuación característica es $(x-2)^3 = 0$, y así,

$$t_k = c_1 2^k + c_2 k2^{k+} c_3 k^2 2^k$$
 $T(n) = c_1 n + c_2 nlg n + c_3 nlg^2 n$

Así T(n) es O(nlog²n / n es potencia de 2).

- Calcular el orden de T(n) si n es potencia de 2 y T(n) = 3T(n/2) + cn (c es constante, $n \ge 1$).
- Obtenemos sucesivamente,

$$T(2^{k}) = 3T(2^{k-1}) + c2^{k}$$

 $t_{k} = 3t_{k-1} + c2^{k}$

- Ecuación característica: (x-3)(x-2) = 0, y así, $t_k = c_1 3^k + c_2 2^k$ $T(n) = c_1 3^{lgn} + c_2 n$
- y como $a^{lgb} = b^{lga}$, $T(n) = c_1 n^{lg3} + c_2 n$ y finalmente T(n) es $O(n^{lg3} / n)$ es potencia de 2).

Transformaciones del rango

- $T(n) = nT^2(n/2), n > 1, T(1) = 6 y n potencia de 2.$
- Cambiamos la variable: $t_k = T(2^k)$, y así $t_k = 2^k t_{k-1}^2$, k > 0; $t_0 = 6$.
- Esta recurrencia no es lineal, y uno de los coeficientes no es constante.
- Para transformar el rango, creamos una nueva recurrencia tomando $V_k = \lg t_k$, lo que da,

$$V_k = k + 2 V_{k-1}, k > 0; V_0 = \lg 6.$$

• Ecuación característica: $(x-2)(x-1)^2 = 0$ y así, $V_k = c_1 2^k + c_2 1^{k+1} + c_3 k 1^k$