CH55X 汇编指令周期表

CH55X汇编指令概述:

非跳转指令的指令周期数与指令字节数相同;

跳转指令含MOVC/RET/CALL通常比字节数多若干个周期;

MOVC指令多4或5个周期(下条指令地址为奇数时多5个);

RET/RETI指令多3或4个周期(返回地址为奇数时多4个);

其余指令多2或3个周期(目标地址是奇数时多3个);

条件跳转指令如果未发生跳转则周期数与指令字节数相同;

以上周期是指当前 CH55X 的系统主频的倒数。

CH559 指令周期表						
类 别	指令格式	功能描述	字节	机器周 期 1/12 倍数	比普通 51 快 倍数	
	MOV A, Rn	(Rn)→(A) Rn 中的内容送到累加器 A 中, Rn=R0-R7	1	1	12	
	MOV A, data	(data)→(A) 直接单元地址中的内容送到 累加器 A	2	2	6	
	MOV A,@Ri	((Ri))→(A) Ri 内容指向的地址单元中 的内容送到累加器 A,Ri=R0 或 R1	1	1	12	
	MOV A,#data	#data→(A) 立即数送到累加器 A 中。	2	2	6	
	MOV Rn, A	(A)→(Rn) 累加器 A 中的内容送到寄存器 Rn 中	1	1	12	
生	MOV Rn, data	(data)→(Rn)直接寻址单元中的内容送寄 存器	2	2	12	
传 送 类	MOV Rn,#data	#data→(Rn)立即数直接送到寄存器 Rn 中。	2	2	12	
指令	MOV data, A	(A)→(data)累加器 A 中的内容送直接寻址单 元。	2	2	6	
(29 条)	MOV data, Rn	(Rn)→(data)寄存器中的内容送直接寻址 单元	2	2	12	
. 水/	MOV data2, data1	(data1)→(data2)直接寻址单元中的内容 1 送直接寻址单元 2 。	3	3	8	
	MOV data,@Ri	(Rn)→(data)寄存器中的内容送直接寻址 单元	2	2	12	
	MOV data,#data	#data→(data)立即数送直接寻址单元 。	3	3	8	
	MOV @Ri,A	(A) → ((Ri)) 累加器 A 中的内容送到以 Ri 中的内容为地址的 RAM 单元	1	1	12	
	MOV @Ri,data	(data)→((Ri))直接寻址单元内容送到 以 Ri 中的内容为地址的 RAM 单元	2	2	12	
	MOV @Ri,#data	#data→((Ri))立即数送到以 Ri 中的内容 为地址的 RAM 单元	2	2	6	

	MOV DPTR,#data1 6	#dataH→(DPH),#dataL→(DPL)16 位常数 的高 8 位送到 DPH,低 8 位送到 DPL	3	3	8
	MOVX A, @DPTR	((DPTR))→(A) 数据指针指向片外 RAM 地址中的内容送到累加器 A 中	1	1	24
	MOVX @DPTR, A	(A)→((DPTR)) 累加器中的内容送到数据指针指向片外 RAM 地址中	1	1	24
	MOVX A, @Ri	((Ri)) → (A) 寄存器 Ri 指向片外 RAM 地 址中的内容送到累加器 A 中。	1	1	24
	MOVX @Ri,A	(A)→((Ri)) 累加器中的内容送到寄存器 Ri 指向片外 RAM 地址中。	1	1	24
	MOVC A, @A+DPTR	((A))+(DPTR)→(A) 表格地址单元中 的内容送到累加器 A 中	1	6	2
	MOVC A, @A+PC	((PC))+1→(A),((A))+(PC)→(A) 表格地址单元中的内容送到累加器 A 中	1	6	2
	XCH A, Rn	(A)←→(Rn)累加器与工作寄存器 Rn 中的 内容互换	1	1	12
	XCH A, data	(data)→(A)累加器 A 的内容与直接寻址单 元的内容交换	2	2	6
	XCH A, @Ri	(A)←→((Ri))累加器与工作寄存器 Ri 所指的存储单元中的内容互换	1	1	12
	XCHD A, @Ri	(A₃₀) ←→ ((Ri)₃₀) 累加器与工作寄存器 Ri 所指的存储单元中的内容低半字节互换	1	1	12
	SWAP A	(A₃-₀)←→(A₁-₄)累加器中的内容高低半字节 互换。	1	1	12
	PUSH data	(SP)+1→(SP), (data)→(SP) 堆栈指 针首先加 1,直接寻址单元中的数据送到堆栈指 针 SP 所指的单元中	2	2	12
	POP data	(SP) → (data) (SP) -1→ (SP), 堆栈指针 SP 所指的单元数据送到直接寻址单元中,堆 栈指针 SP 再进行减 1 操作	2	2	12
	ADD A, Rn	(A)+(Rn)→(A) 累加器 A 中的内容与工作寄存器 Rn 中的内容相加,结果存在 A 中。	1	1	12
算	ADD A, data	(A)+(data)→(A) 累加器 A 中的内容与 直接地址单元中的内容相加,结果存在 A 中。	2	2	6
术运算类	ADD A, @Ri	(A)+((Ri))→(A) 累加器 A 中的内容 与工作寄存器 Ri 所指向地址单元中的内容相 加,结果存在 A 中。	1	1	12
失 指 令 (24 条)	ADD A, #data	(A) +#data→(A) 累加器 A 中的内容与立即 数#data 相加,结果存在 A 中。	2	2	6
	ADDC A, Rn	(A) +Rn+(C) → (A) 累加器 A 中的内容与 工作寄存器 Rn 中的内容、连同进位位相加,结 果存在 A 中。	1	1	12
	ADDC A, data	(A) + (data) + (C) → (A) 累加器 A 中的 内容与直接地址单元的内容连同进位位相加,	2	2	6

	4. 田左左 A 中		1	
	结果存在 A 中。			
1000 1 00'	(A) + ((Ri)) + (C) → (A) 累加器 A 中			10
ADDC A, @Ri	的内容与工作寄存器 Ri 指向地址单元中的内	1	1	12
	容、连同进位位相加,结果存在 A 中。			
ADDC	(A) +#data + (C) → (A) 累加器 A 中的内	2	2	6
A, #data	容与立即数连同进位位相加,结果存在 A 中。	_		_
INC A	(A) +1→(A) 累加器 A 中的内容加 1, 结果	1 1	1	12
1110 /1	存在 A 中。			
INC Rn	(Rn) +1→(Rn) 寄存器 Rn 的内容加 1, 结果	1	1	12
THO KIT	送回原地址单元中。	•		
INC data	(data)+1→(data) 直接地址单元中的内容	0	0	_
INC data	加 1,结果送回原地址单元中。	2	2	6
	((Ri))+1→((Ri)) 寄存器的内容指向			
INC @Ri	的地址单元中的内容加 1, 结果送回原地址单元	1	1	12
	中。			
	(DPTR)+1→(DPTR)数据指针的内容加 1,结			
INC DPTR	果送回数据指针中。	1	1	12
	(A) - (Rn) - (C) → (A) 累加器 A 中的内			12
SUBB A, Rn	容与工作寄存器中的内容、连同借位位相减,	1	1	
OODD A, KII	结果存在 A 中。		'	12
	コポ行なるで。 (A) - (data) - (C) → (A) 累加器 A 中的			
SUBB		0	_	6
A, data	内容与直接地址单元中的内容、连同借位位相	2	2	6
	减,结果存在 A 中。			
OUDD A OD!	(A) - ((Ri)) - (C) → (A) 累加器 A 中	1	1	12
SUBB A, @Ri	的内容与工作寄存器 Ri 指向的地址单元中的内			
	容、连同借位位相减,结果存在 A 中。			
SUBB	(A) -#data - (C) → (A) 累加器 A 中的内	2	2	6
A, #data	│ 容与立即数、连同借位位相减,结果存在 A 中。			
DEC A	(A)-1→(A) 累加器 A 中的内容减 1, 结果送	1	1	12
DEO A	回累加器 A 中。	1	· ·	12
DEC Rn	(Rn)-1→(Rn)寄存器 Rn 中的内容减 1,结	1	1	12
DEO INI	果送回寄存器 Rn 中。	•	' '	
DEC data	(data)−1→(data)直接地址单元中的内容	2	2	6
DEC data	减 1,结果送回直接地址单元中。	2		
DEO @D:	((Ri))-1→((Ri))寄存器 Ri 指向的地	4	4	12
DEC @Ri	址单元中的内容减 1,结果送回原地址单元中。	1	1	
	(A) × (B) → (A) 和 (B) 累加器 A 中的内	コ(B) 累加器 A 中的内	_	48
MUL AB	容与寄存器 B 中的内容相乘,结果存在 A、B 中。	1	1	
	(A) ÷ (B) → (A) 和 (B) 累加器 A 中的内	1	1	48
DIV AB	容除以寄存器 B 中的内容,所得到的商存在累			
	加器 A,而余数存在寄存器 B 中。			
	在进行 BCD 码运算时,这条指令总是跟在 ADD			
DA A	或 ADDC 指令之后,其功能是将执行加法运算后	1	1	12
DA A	存于累加器 A 中的结果进行调整和修正。	'	'	12
ΔNI Λ D∽	累加器 A 的内容和寄存器 Rn 中的内容执行与逻	1	1	12
ANL A, Rn	参加命 ^ 则约合州市任命 KII 中的约合执行与这	I	'	12

逻

辑 辑操作。结果存在累加器 A 中。 操 ANL 累加器 A 中的内容和直接地址单元中的内容执 2 2 6 作 行与逻辑操作。结果存在寄存器 A 中。 A, direct 指 累加器 A 的内容和工作寄存器 Ri 指向的地址单 令 ANL A, @Ri 元中的内容执行与逻辑操作。结果存在累加器 A 12 1 1 (24 中。 条) ANL 累加器 A 的内容和立即数执行与逻辑操作。结 2 2 6 A, #data 果存在累加器A中。 直接地址单元中的内容和累加器 A 的内容执行 2 2 ANL data, A 6 与逻辑操作。结果存在直接地址单元中。 直接地址单元中的内容和立即数执行与逻辑操 ANL 3 3 8 data, #data 作。结果存在直接地址单元中。 累加器 A 的内容和寄存器 Rn 中的内容执行逻辑 ORL A. Rn 1 12 1 或操作。结果存在累加器A中。 累加器 A 中的内容和直接地址单元中的内容执 ORL A. data 2 2 行逻辑或操作。结果存在寄存器 A 中。 累加器 A 的内容和工作寄存器 Ri 指向的地址单 ORL A. @Ri 元中的内容执行逻辑或操作。结果存在累加器 A 1 1 12 中。 0RL 累加器 A 的内容和立即数执行逻辑或操作。结 2 2 6 A. #data 果存在累加器A中。 直接地址单元中的内容和累加器 A 的内容执行 2 ORL data, A 2 6 逻辑或操作。结果存在直接地址单元中。 0RL 直接地址单元中的内容和立即数执行逻辑或操 3 3 8 data, #data 作。结果存在直接地址单元中。 累加器 A 的内容和寄存器 Rn 中的内容执行逻辑 XRL A. Rn 1 1 12 异或操作。结果存在累加器 A 中。 累加器 A 中的内容和直接地址单元中的内容执 XRL A. data 2 2 6 行逻辑异或操作。结果存在寄存器A中。 累加器 A 的内容和工作寄存器 Ri 指向的地址单 XRL A, @Ri 元中的内容执行逻辑异或操作。结果存在累加 1 1 12 器A中。 XRL 累加器 A 的内容和立即数执行逻辑异或操作。 2 2 6 A, #data 结果存在累加器A中。 直接地址单元中的内容和累加器 A 的内容执行 XRL data, A 2 2 6 逻辑异或操作。结果存在直接地址单元中。 XRL 直接地址单元中的内容和立即数执行逻辑异或 3 3 8 data, #data 操作。结果存在直接地址单元中。 1 CLR A 0→(A),累加器中的内容清 0。 1 12 CPL A 累加器中的内容按位取反。 1 1 12 累加器 A 中的内容左移一位。 12 RL Α 1 1 RR 累加器 A 中的内容右移一位。 1 1 12 RLC A 累加器 A 中的内容连同进位位 CY 左移一位。 1 12 1

累加器 A 中的内容连同进位位 CY 右移一位。

addr16→ (PC), 给程序计数器赋予新值(16

1

1

12

RRC A

LJMP

控

制转移指令(16条)

addr16	位地址)。			
AJMP addr11	(PC)+2→(PC),addr11→(PC10-0)程序 计数器赋予新值(11 位地址),(PC15-11)不 改变。	2	5	4. 8
SJMP rel	(PC) + 2 + rel→ (PC) 当前程序计数器先加上 2 再加上偏移量给程序计数器赋予新值。	2	5	4. 8
JMP @A+DPTR	(A)+(DPTR)→(PC),累加器所指向地址 单元的值加上数据指针的值给程序计数器赋予 新值。	1	5	4. 8
JZ rel	A=0, (PC) + 2 + rel→ (PC), 累加器中的内容为 0, 则转移到偏移量所指向的地址, 否则程序往下执行。	2	2	12
JNZ rel	A≠0, (PC) + 2 + rel→ (PC), 累加器中的内容不为 0, 则转移到偏移量所指向的地址, 否则程序往下执行。	2	2	12
CJNE A, #data, rel	A≠#data, (PC) + 3 + rel→ (PC), 累加器中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行。	3	6	4
CJNE Rn, #data, re I	A≠#data, (PC) + 3 + rel→ (PC), 工作寄存器 Rn 中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行。	3	6	4
CJNE @Ri,#data,r el	A≠#data, (PC) + 3 + rel→ (PC), 工作寄存器 Ri 指向地址单元中的内容不等于立即数,则转移到偏移量所指向的地址,否则程序往下执行。	3	6	4
CJNE A, data, rel	A≠(data),(PC)+3+rel→(PC),累加器中的内容不等于直接地址单元的内容,则转移到偏移量所指向的地址,否则程序往下执行	3	6	4
DJNZ Rn, rel	(Rn) -1→ (Rn), (Rn) ≠0, (PC) + 2 + rel → (PC) 工作寄存器 Rn 减 1 不等于 0,则转移 到偏移量所指向的地址,否则程序往下执行	2	4	6
DJNZ data, rel	(Rn) -1→ (Rn), (Rn) ≠0, (PC) + 2 + rel → (PC) 直接地址单元中的内容减 1 不等于 0, 则转移到偏移量所指向的地址,否则程序往下 执行。	3	5	4. 8
LCALL addr16	长调用指令,可在 64kB 空间调用子程序。此时 (PC) + 3→ (PC), (SP) + 1→ (SP), (PC ₇₋₀) → (SP), (SP) + 1→ (SP), (PC ₁₅₋₈) → (SP), addr16→ (PC), 即分别从堆栈中弹出调用子 程序时压入的返回地址。	3	6	4
ACALL addr11	绝对调用指令,可在 2kB 空间调用子程序,此时 (PC) + 2→ (PC) , (SP) + 1→ (SP) , (PC ₇₋₀) → (SP) , (SP) + 1→ (SP) , (PC ₁₅₋₈) → (SP) , addr11→ (PC ₁₀₋₀)	2	5	4. 8
RET	子程序返回指令。此时(SP)→(PC ₁₅₋₈),(SP)	1	5	4. 8

		$-1 \rightarrow (SP)$, $(SP) \rightarrow (PC_{7-0})$, $(SP) -1$ $\rightarrow (SP)$			
	RETI	中断返回指令,除具有 RET 功能外,还具有恢复中断逻辑的功能,需注意的是,RETI 指令不能用 RET 代替。	1		
	MOV C, bit	bit→CY,某位数据送 CY。	2	2	6
	MOV bit, C	CY→bit, CY 数据送某位。	2	2	12
	CLR C	0→CY, 清 CY	1	1	12
	CLR bit	0→bit,清某一位。	2	2	6
	SETB C	1→CY, 置位 CY	1	1	12
	SETB bit	1→bit,置位某一位	2	2	6
	CPL C	CY 取反	1	1	12
	CPL bit	Bit 取反	2	2	6
	ANL C, bit	(CY) ∧ (bit) → CY	2	2	12
位	ANL C,/bit	(CY) ∧(bit 取反) →CY	2	2	12
操	ORL C, bit	$(CY) \lor (bit) \rightarrow CY$	2	2	12
作	ORL C,/bit	(CY) ∨(bit 取反)CY	2	2	12
指令	JC rel	(CY)=1 转移,(PC)+2+rel→PC,否则程序往 下执行,(PC)+2→PC。	2	2	12
(18 条)	JNC rel	(CY)=0 转移, (PC) +2+rel→PC, 否则程序往 下执行, (PC) +2→PC。	2	4	6
	JB bit, rel	位状态为 1 转移,(PC)+3+rel→PC,否则程 序往下执行,(PC)+3→PC。	3	6	4
	JNB bit, rel	位状态为 0 转移,(PC)+3+rel→PC,否则程 序往下执行,(PC)+3→PC。	3	5	4. 8
	JBC bit, rel	位状态为 1 转移,并使该位清"0" ,(PC) +3+rel→PC,否则程序往下执行,(PC)+3→ PC。	3	6	4
	NOP	这条指令除了使 PC 加 1,消耗一个机器周期外, 没有执行任何操作。可用于短时间的延时。	1	1	12

注:标记为深色,代表指令字节数不等于执行该指令需要的机器周期;