GEOMETRIE REPEREE

Dans ce chapitre, on se place dans un repère orthonormé $(O; \vec{i}, \vec{j})$

I. Vecteur directeur et équation cartésienne de droite

<u>Définition</u>: Deux vecteurs \vec{u} et \vec{v} non nuls sont colinéaires s'il existe un réel k non nul tel que $\vec{u} = k \times \vec{v}$

Conséquence : Deux vecteurs \vec{u} et \vec{v} non nuls sont colinéaires si et seulement si leurs coordonnées sont proportionnelles.

<u>Définition</u>: Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ deux vecteurs, on appelle déterminant de \vec{u} et \vec{v} noté $det(\vec{u};\vec{v})$ le nombre réel défini par $det(\vec{u};\vec{v}) = xy' - yx'$

Propriété: Deux vecteurs sont colinéaires si et seulement si leur déterminant est nul.

Exemple : On considère les points R, S et T de coordonnées : R(-4;4), S(5;8), T(-2;0). Les points R, S et T sont-ils alignés ?

$$\begin{array}{ll} \overline{\mathrm{RS}}\left(5-(-4);8-4\right) & \overline{\mathrm{RT}}\left(-2-(-4);0-4\right) & \det\left(\overline{\mathrm{RS}};\overline{\mathrm{RT}}\right)=9\times(-4)-2\times4=-44 \\ \overline{\mathrm{RS}}\left(9;4\right) & \overline{\mathrm{RT}}\left(2;-4\right) \end{array}$$

Le déterminant entre \overline{RS} et \overline{RT} est différent de 0 donc les vecteurs \overline{RS} et \overline{RT} ne sont pas colinéaires. Donc les points R, S et T ne sont pas alignés.

Propriété:

Dans un repère orthonormé, les coordonnées de l'ensemble des points M(x;y) d'une droite d vérifient une relation ax+by+c=0 où a, b et c sont des nombres réels.

La relation ax + by + c = 0 s'appelle **équation cartésienne** de la droite d.

<u>Déterminer une équation cartésienne d'une droite méthode 1</u>: En utilisant le déterminant Déterminer une équation cartésienne de la droite (d) passant par les points C(4;-3) et D(2;1)

Soit M(x; y) un point appartenant à la droite (d). Par conséquent les ponts M, C et D sont alignés et donc le déterminant entre \overrightarrow{CD} et \overrightarrow{CM} est égal à 0.

$$\overrightarrow{CD}(-2;4)$$
 et $\overrightarrow{CM}(x-4;y+3)$

On a alors :
$$det(\overrightarrow{CD}; \overrightarrow{CM}) = 0$$
 $-2 \times (y+3) - (x-4) \times 4 = 0$ $-2y-6-4x+16=0$ $-4x-2y+10=0$

Une équation cartésienne de la droite (CD) est : -4x-2y+10=0

Définition:

On appelle **vecteur directeur** d'une droite d tout représentant du vecteur \overrightarrow{AB} où A et B sont deux points quelconques distincts de la droite d.

Sur le schéma ci-contre les vecteurs \vec{u} , \vec{v} et \overrightarrow{AB} sont des vecteurs directeurs de (AB).

Donnons les coordonnées des vecteurs ci-contre graphiquement:

$$\vec{u}(-2;-1)$$
 $\vec{v}(4;2)$ $\overrightarrow{AB}(2;1)$

On peut voir que tous les vecteurs directeurs d'une droite sont colinéaires entre eux.

Propriété:

Soit d une droite dont une équation cartésienne est ax + by + c = 0.

Le vecteur $\vec{u}(-b;a)$ est un vecteur directeur de d.

<u>Déterminer une équation cartésienne d'une droite méthode 2</u>: en utilisant les coordonnées d'un vecteur directeur

Déterminer une équation cartésienne de la droite (d) passant par les points C(4;-3) et D(2;1):

(d) passe par les points C et D donc $\overrightarrow{\mathrm{CD}}$ est un vecteur directeur de (d).

$$\overrightarrow{CD}(-2;4)$$
 donc $-b=-2$ et $a=4$
 $b=2$ et $a=4$

Par conséquent la droite (CD) a pour équation cartésienne : 4x+2y+c=0

Reste à déterminer c:

Pour cela on prend un point appartenant à (d) par exemple le point C(4;-3). Puisque le point C appartient à la droite (d) ses coordonnées doivent vérifier l'équation de (d) on peut donc remplacer x et y par les coordonnées de C afin de déterminer la valeur de c:

$$4\times4+2\times(-3)+c=0$$
 $16-6+c=0$ $10+c=0$ $c=-10$
Par conséquent une équation cartésienne de (d) est $4x+2y-10=0$

<u>Remarque:</u> On ne trouve pas exactement la même équation cartésienne qu'avec la première méthode, il existe une infinité d'équations cartésiennes pour une même droite mais on peut passe de l'une à l'autre en multipliant par un nombre réel non nul.

Exercice type:

1. Est-ce que le point E(5;-3) appartient à (CD) ?

(CD) a pour équation cartésienne 4x+2y-10=0

Si E appartient à (CD) alors les coordonnées de E doivent vérifier l'équation de (CD):

 $4\times5+2\times(-3)-10=20-6-10=4$ on ne tombe pas sur 0 donc E n'appartient pas à (CD).

2. Déterminer les coordonnées du point F intersection entre (CD) et l'axe des ordonnées.

Si F appartient à l'axe des ordonnées son abscisse est égale à 0.

De plus F appartient à (CD), on va donc remplacer x par 0 dans l'équation cartésienne de (CD) pour trouver l'ordonnée de F:

$$4 \times 0 + 2y - 10 = 0$$
 $2y - 10 = 0$ $2y = 10$ $y = 5$

Par conséquent F(0;5)

3. Déterminer les coordonnées du point G intersection entre (CD) et l'axe des abscisses.

Si G appartient à l'axe des abscisse son ordonnée est égale à 0.

De plus G appartient à (CD), on va donc remplacer y par 0 dans l'équation cartésienne de (CD) pour trouver l'ordonnée de F:

$$4x+2\times0-10=0$$
 $4x-10=0$ $4x=10$ $x=\frac{10}{4}=\frac{5}{2}$

Par conséquent $F(\frac{5}{2};0)$

4. Déterminer une équation cartésienne de la droite d_2 parallèle à (CD) et passant par E(5;-3).

 d_2 est parallèle à (CD) donc les vecteurs directeurs de (CD) sont également des vecteurs directeurs de d_2 en particulier $\overrightarrow{CD}(-2;4)$.

On a donc :
$$-b=-2$$
 et a=4
 $b=2$ et $a=4$

Donc d_2 a pour équation cartésienne 4x+2y+c=0

Or E(5;-3) appartient à
$$d_2$$
 donc : $4\times 5+2\times (-3)+c=0$ $20-6+c=0$ $14+c=0$ $c=-14$

Donc d_2 a pour équation cartésienne 4x+2y-14=0

<u>Remarque</u>: L'équation réduite d'une droite nous donne également les coordonnées d'un vecteur directeur. En effet si une droite d a pour équation réduite y=mx+p alors on peut en déduire que le vecteur $\vec{u}(1;m)$ est un vecteur directeur de d.

II. Vecteur normal et équation cartésienne de droite

Vecteur normal: On dit qu'un vecteur \vec{n} est un vecteur normal à une droite (d) si la direction de \vec{n} est **orthogonale** à (d).

Déterminer une équation cartésienne d'une droite méthode3 : en utilisant le produit scalaire

Déterminer une équation cartésienne de la droite (d) passant par $A(\frac{2}{3};\frac{1}{6})$ et de vecteur normal $\vec{n}(1;-1)$

Soit M(x; y) appartenant à (d) alors $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$ car \overrightarrow{AM} et \overrightarrow{n} sont orthogonaux.

$$\overline{AM}\left(x-\frac{2}{3};y-\frac{1}{6}\right)$$
 et $\vec{n}(1;-1)$

On a donc: $\overrightarrow{AM} \cdot \overrightarrow{n} = 0$

$$\left(x - \frac{2}{3}\right) \times 1 + \left(y - \frac{1}{6}\right) \times (-1) = 0$$

$$x - \frac{2}{3} - y + \frac{1}{6} = 0 \quad ; \quad x - y - \frac{3}{6} = 0 \quad ; \quad x - y - \frac{1}{2} = 0$$

Une équation cartésienne de (d) est alors : $x-y-\frac{1}{2}=0$

Propriété : Soit (d) la droite d'équation ax + by + c = 0

alors, le vecteur $\vec{n}(a;b)$ est un vecteur normal à la droite (d).

<u>Déterminer une équation cartésienne d'une droite méthode 4 :</u> en utilisant les coordonnées d'un vecteur normal

Déterminer une équation cartésienne de la droite (d) passant par $A(\frac{2}{3}; \frac{1}{6})$ et de vecteur normal $\vec{n}(1; -1)$

 $\vec{n}(1;-1)$ et on sait que $\vec{n}(a;b)$, on a directement : a=1 et b=-1

Par conséquent une équation cartésienne de (d) est sous la forme : x-y+c=0

Reste à déterminer la valeur de c pour cela on utilise le point $A\left(\frac{2}{3}; \frac{1}{6}\right)$:

$$\frac{2}{3} - \frac{1}{6} + c = 0$$
 $\frac{3}{6} + c = 0$ $c = \frac{-1}{2}$

Une équation cartésienne de (d) est donc : $x-y-\frac{1}{2}=0$

Exercice type:

On considère les droites (d_1) , (d_2) , (d_3) et (d_4) d'équations respectives 3x - 2y + 1 = 0, -5x + y + 4 = 0, 6x + 9y + 4 = 0 et $-x + \frac{2}{3}y - \frac{1}{3} = 0$

- 1. Associer les droites parallèles et les droites perpendiculaires entre elles.
 - (d_1) a pour vecteur directeur $\vec{u}_1(2;3)$
 - (d_2) a pour vecteur directeur $\vec{u}_2(-1;-5)$
 - (d_3) a pour vecteur directeur $\vec{u}_3(-9;6)$
 - (d_4) a pour vecteur directeur $\vec{u}_4\left(-\frac{2}{3};-1\right)$

A retenir:

- Deux droites sont **parallèles** si leurs vecteurs directeurs sont **colinéaires** donc si le **déterminant** entre ces vecteurs est égal à 0.
- Deux droites sont **perpendiculaires** si leurs vecteurs directeurs sont **orthogonaux** donc si le **produit** scalaire entre ces vecteurs est égal à 0.

$$det(\vec{u}_1; \vec{u}_2) = 2 \times (-5) - (-1) \times 3 = -7$$
 donc (d_1) et (d_2) ne sont pas parallèles. $\vec{u}_1 \cdot \vec{u}_2 = 2 \times (-1) + 3 \times (-5) = -17$ donc (d_1) et (d_2) ne sont pas perpendiculaires.

$$det(\vec{u}_1; \vec{u}_3) = 2 \times 6 - (-9) \times 3 = 39$$
 donc (d_1) et (d_3) ne sont pas parallèles. $\vec{u}_1 \cdot \vec{u}_3 = 2 \times (-9) + 3 \times 6 = 0$ donc (d_1) et (d_3) sont perpendiculaires.

$$det(\vec{u}_1; \vec{u}_4) = 2 \times (-1) - (-\frac{2}{3}) \times 3 = 0$$
 donc (d_1) et (d_4) sont parallèles.

On peut en déduire que (d_3) et (d_4) sont perpendiculaires et que (d_2) n'est ni parallèle ni perpendiculaire avec (d_3) et (d_4)

- 2. Déterminer une équation cartésienne de la droite (d_5) perpendiculaire à (d_2) passant par A (-1;2)
- (d_5) est perpendiculaire à (d_2) donc un vecteur directeur de (d_2) est un vecteur normal de (d_5) Par conséquent $\vec{u}_2(-1;-5)$ est un vecteur normal de (d_5) et il vient que a=-1 et b=-5.

Une équation cartésienne de (d_5) est sous la forme -x-5 y+c=0Pour déterminer c on se sert du pont A puisque A appartient à (d_5) : $-(-1)-5\times 2+c=0$ 1-10+c=0 c=9.

Une équation cartésienne de (d_5) est alors : -x-5y+9=0

III. Équation de cercle

Soit un cercle de centre $\Omega(\alpha; \beta)$ et de rayon r et un point M(x; y) appartenant à ce cercle

Théorème : Une équation d'un cercle de centre $\Omega(\alpha; \beta)$ et de rayon r est :

$$(x-\alpha)^2 + (y-\beta)^2 = r^2$$

<u>Déterminer une équation du cercle C méthode 1 :</u> en utilisant les coordonnées de son centre et son rayon :

Déterminer une équation du cercle de centre $\Omega(-1;2)$ et de rayon 3.

Exercice type:

Soit le cercle d'équation $x^2 + y^2 - 2x + 4y - 20 = 0$, déterminer les coordonnées de son centre et son rayon

<u>Théorème</u>: Le cercle de diamètre [AB] est l'ensemble de points M tels que : $\overline{MA} \cdot \overline{MB} = 0$

Démonstration : Si M est en A ou en B, le résultat est évident.

<u>Déterminer une équation du cercle C méthode 2</u>: en utilisant les coordonnées des extrémités d'un diamètre

Déterminer une équation du cercle C de diamètre [AB] avec A(-1;2) et B(1;3) puis déterminer les coordonnées de son centre et son rayon