

Tipos de eletricidade

A eletricidade é uma forma de energia que faz parte da constituição da matéria. Existe, portanto, em todos os corpos.

O estudo da eletricidade é organizado em dois campos:

- ·Eletrostática
- ·Eletrodinâmica.

Eletrostática é a parte da eletricidade que estuda a eletricidade estática. Dá-se o nome de eletricidade estática à eletricidade produzida por cargas elétricas em repouso em um corpo.

Cargas elétricas em repouso nos corpos eletrizados.

Um corpo se eletriza negativamente (-) quando ganha elétrons e positivamente (+) quando perde elétrons.

Interação entre corpos Eletrizados

Entre corpos eletrizados, ocorre o efeito da atração quando as cargas elétricas têm sinais contrários. O efeito da repulsão acontece quando as cargas elétricas dos corpos eletrizados têm sinais iguais.

No estado natural, qualquer porção de matéria é eletricamente neutra.

É o processo pelo qual se faz com que um corpo eletricamente neutro fique carregado.

A maneira mais comum de se provocar eletrização é por meio da Eletrização por atrito.

Tabela (série triboelétrica) para prever o sinal que cada substância adquire quando atritada com outro material. Quando eletrizados por atrito, os corpos ficam com igual quantidade de cargas, mas de sinais opostos

Asbesto	Acetato	Vidro	Mica	Cabelo	Náilon	Lã	Seda	Alumínio	Papel	Algodão	Âmbar	Borracha	Prata	Ouro	Acrílico	Poliuretano	Poliéster	PVC	Teflon	Silicone
+	+ Positivo Negativo -															-				

A eletrização pode ainda ser obtida por outros processos como por contato.

Durante a Eletrização por contato, os corpos condutores trocam cargas elétricas entre si.

A eletrização por indução ocorre em quatro etapas da indução de uma esfera A, negativa, próxima a uma esfera B, inicialmente neutra.

Em qualquer processo, contudo, obtém-se corpos carregados eletricamente.

Descargas elétricas

Sempre que dois corpos com cargas elétricas contrárias são colocados próximos um do outro, em condições favoráveis, o excesso de elétrons de um deles é atraído na direção daquele que está com falta de elétrons, sob a forma de um descarga elétrica. Essa descarga pode se dar por contato ou por arco.

Carga elétrica

Como certos átomos são forçados a ceder elétrons e outros a receber elétrons, é possível produzir uma transferência de elétrons de um corpo para outro.

Quando isso ocorre, a distribuição igual das cargas positivas e negativas em cada átomo deixa de existir. Portanto, um corpo conterá excesso de elétrons e a sua carga terá uma polaridade negativa (-). O outro corpo, por sua vez, conterá excesso de prótons e a sua carga terá polaridade positiva (+).

Carga elétrica

A quantidade de carga elétrica que um corpo possui, é determinada pela diferença entre o número de prótons e o número de elétrons que o corpo contém.

O símbolo que representa a quantidade de carga elétrica de um corpo é Q e sua unidade de medida é o:

Coulomb (c).

Observação

1 coulomb = $6,25 \times 10^{18}$ elétrons

Condutores e isolantes

Condutores e isolantes

Nos condutores:

Um ou mais dos elétrons das camadas mais externas desses átomos não estão firmemente presos aos núcleos. Estes elétrons são também chamados de elétrons livres. E por isso esses materiais apresentam baixa resistência a passagem da corrente.

Nos Isolantes:

Materiais isolantes são os que apresentam forte oposição à circulação de corrente elétrica no interior de sua estrutura. Isso acontece porque os elétrons livres dos átomos que compõem a estrutura química dos materiais isolantes são fortemente ligados a seus núcleos e dificilmente são liberados para a circulação.