

What is claimed is:

- 1 1. A method for generating a pulse train, comprising the steps of:
 - 2 providing a frequency modulated signal; and
 - 3 impinging the signal on a dispersive element, said dispersive element being
 - 4 adapted to compress the signal in time.
- 5
- 1 2. The method of claim 1, wherein the dispersive element is a fiber Bragg grating.
- 2
- 1 3. The method of claim 1, wherein the dispersive element is single mode fiber.
- 2
- 1 4. The method of claim 3, wherein the fiber has a length of at least about 40 km.
- 2
- 1 5. The method of claim 3, wherein the fiber has a length of at least about 60 km.
- 2
- 1 6. The method of claim 3, wherein the fiber has a length of at least about 80 km.
- 2
- 1 7. The method of claim 1, wherein the signal has a single longitudinal mode.
- 2
- 1 8. The method of claim 1, wherein the signal is generated by a laser equipped with a reflective element, and wherein the signal is frequency modulated by applying a current across the mirror.
- 4
- 1 9. The method of claim 8, wherein the current modulates the center wavelength of the reflective element by way of carrier induced index changes.
- 3
- 1 10. A method for frequency modulating the optical carrier in a laser, comprising the steps of:
 - 3 providing a laser equipped with a distributed Bragg reflector and having an optical carrier;
 - 5 impinging the optical carrier on the distributed Bragg reflector; and
 - 6 rapidly tuning the distributed Bragg reflector so as to modulate the frequency of
 - 7 the optical carrier.

1 11. The method of claim 10, wherein the reflector is tuned by applying a high
2 frequency current signal thereto.

1 12. The method of claim 11, wherein the current signal has a frequency of at least 0.5
2 GHz.

1 13. The method of claim 10, wherein the optical signal is frequency modulated with a
2 modulation index of about 50.

1 14. An apparatus for producing a frequency modulated signal, comprising:

2 a rapidly tunable laser; and

3 a passive dispersive element in optical communication with said laser;

4 wherein said dispersive element comprises (i) a fiber Bragg grating, and (ii) a circulator.

1 15. The apparatus of claim 14, wherein the dispersive element is at the output of said
2 laser.

1 16. The apparatus of claim 14, wherein the laser comprises a cavity, and wherein the
2 dispersive element is disposed inside of said cavity.

1 17. The apparatus of claim 14, further comprising an electronic signal generator
2 adapted to modulate the frequency of the laser.

1 18. The apparatus of claim 14, wherein the laser is equipped with a mirror, and
2 wherein the electronic signal generator is adapted to drive the mirror.

1 19. A method for conducting high speed optical sampling for A/D conversion, using
2 the apparatus of claim 14.

1 20. A method for optimizing the peak intensity of a non-linear optical signal,
2 comprising the steps of:

3 generating a modulation signal using the apparatus of claim 14; and
4 tailoring the dispersive element to the modulation signal.

5
1 21. The method of claim 20, wherein the modulation signal is a sawtooth wave.
2

1 22. The method of claim 14, wherein the dispersive element is a sinusoidally chirped
2 fiber Bragg grating.

3
1 23. A method for optimizing the peak intensity of a non-linear optical signal,
2 comprising the steps of:

3 generating a modulation signal using the apparatus of claim 14; and
4 tailoring the modulation signal to the dispersive element.

5
1 24. The method of claim 14, wherein the modulation signal is a sawtooth wave.
2

1 25. An optical communications system comprising the apparatus of claim 14.
2

1 26. An apparatus for producing a frequency modulated signal, comprising:
2 a signal source adapted to generate a frequency modified signal; and
3 a passive dispersive element in optical communication with said source;
4 wherein the dispersive element comprises (i) a fiber Bragg grating, and (ii) a circulator.

5
1 27. The apparatus of claim 26, wherein the signal is frequency modified by way of a
2 current induced change in the index of refraction on a reflective element contained therein
3

1 28. The apparatus of claim 26, wherein the signal source is a single mode signal
2 source.
3

1 29. A method for producing a pulse train, comprising the steps of:
2 providing a source of a frequency modified optical signal;
3 providing a dispersive element; and
4 directing the signal into the dispersive element;

5 wherein the source is a frequency modified laser, and wherein the dispersive element is a
6 long fiber Bragg grating.

7

30. The method of claim 29, wherein the source is a single mode signal source.