Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD

Yang Mu, Liangfu Lu

School of Mathematics, Tianjin University liangfulv@tju.edu.cn

2018-04-15

Contents

- 1 Introduction
 - Tensor completion
 - Tensor-SVD
 - Innovation
- 2 Theory
 - Weighted tensor nuclear norm
 - The convergence of algorithm
- 3 Experiments
 - Image Recovery
 - Video Recovery

Matrix completion

Figure: Netflix Challenge

Matrix completion problem can be expressed as:

minimize
$$rank(\mathbf{X})$$

subject to $P_{\Omega}(\mathbf{X}) = P_{\Omega}(\mathbf{M}),$ (1)

Tensor completion

$$Evaluation(Feature) \rightarrow (Feature_1, Feature_2, ... Feature_n)$$

$$Matrix \ completion \rightarrow \ Tensor \ completion$$

Then tensor completion problem can be expressed as:

minimize
$$rank(\mathcal{X})$$

subject to $P_{\Omega}(\mathcal{X}) = P_{\Omega}(\mathcal{M}),$ (2)

Tensor multiplication

$$bcirc(\mathcal{A}) = \begin{bmatrix} \mathbf{A}^{(1)} & \mathbf{A}^{(n_3)} & \cdots & \mathbf{A}^{(2)} \\ \mathbf{A}^{(2)} & \mathbf{A}^{(1)} & \cdots & \mathbf{A}^{(3)} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{A}^{(n_3)} & \mathbf{A}^{(n_3-1)} & \cdots & \mathbf{A}^{(1)} \end{bmatrix},$$

$$\mathit{unfold}(\mathcal{A}) = egin{bmatrix} \mathbf{A}^{(1)} \\ \mathbf{A}^{(2)} \\ \vdots \\ \mathbf{A}^{(n_3)} \end{bmatrix}, \mathit{fold}(\mathit{unfold}(\mathcal{A})) = \mathcal{A}.$$

Tensor multiplication

$$(F_{n_3} \otimes I_{n_1}) \cdot bcirc(A) \cdot (F_{n_3} \otimes I_{n_2}) = blkdiag(\hat{A}),$$

where

$$blkdiag(\hat{\mathcal{A}}) = egin{bmatrix} \hat{\mathcal{A}}^{(1)} & & & & & \\ & \hat{\mathcal{A}}^{(2)} & & & & & \\ & & & \ddots & & \\ & & & & \hat{\mathcal{A}}^{(n_3)} \end{bmatrix}$$

$$A * B = fold(bcirc(A) \cdot (unfold(B))).$$

Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD

Tensor-SVD

Theorem (Tensor-SVD)

Let $A \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, then it can be decomposed as

Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD

$$\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\mathsf{T}},\tag{3}$$

where $\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3}$ and $\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3}$ are orthogonal and $\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is a f-diagonal tensor.

Figure: Tensor-SVD

Innovation

- Weighted tensor nuclear norm is used to approximate the tensor completion problem using Tensor-SVD.
- The **convergence** of the algorithm is discussed under certain condition.
- The **KKT condition** is proofed under this situation.

Weighted tensor nuclear norm

$$\|\mathcal{X}\|_{\omega} = \sum_{i=1}^{\min(n_1, n_2)} \sum_{j=1}^{n_3} \omega_i \sigma_i$$

- when $\omega_i = 1$, $\|\mathcal{X}\|_{w} = \|\mathcal{X}\|_{*}$,
- when $\omega_i \leq \omega_j$ $(i \geq j)$, $\|\mathcal{X}\|_{\omega}$ is nonsmooth convex function,
- when $\omega_i \geq \omega_j$ $(i \geq j)$, $\|\mathcal{X}\|_{\omega}$ is nonsmoth nonconvex function(better performance for tensor completion).

Convergence condition

$$\begin{split} \mathcal{L}(\hat{\mathcal{X}}, \hat{\mathcal{Z}}, \hat{\mathcal{Q}}) &= \arg\min_{\hat{\mathcal{X}}, \hat{\mathcal{Z}}, \hat{\mathcal{Q}}} \|(\hat{\mathcal{Z}})\|_{\omega} + \delta_{\hat{\mathcal{Y}} = \mathcal{G}(\hat{\mathcal{X}})} + \langle \hat{\mathcal{Q}}(:), \hat{\mathcal{X}}(:) - \hat{\mathcal{Z}}(:) \rangle \\ &+ \frac{\beta}{2} \|\hat{\mathcal{X}} - \hat{\mathcal{Z}}\|_F^2, \end{split} \tag{4}$$

The convergence condition:

$$\mathcal{L}(\hat{\mathcal{X}}_{k+1}, \hat{\mathcal{Z}}_{k+1}, \hat{\mathcal{Q}}_{k+1}) - \mathcal{L}(\hat{\mathcal{X}}_k, \hat{\mathcal{Z}}_k, \hat{\mathcal{Q}}_k) \leq 0$$

$$\|(\hat{\mathcal{Z}})\|_{\omega} + \delta_{\hat{\mathcal{Y}} = \mathcal{G}(\hat{X})}$$

Assumption

Suppose that exist β' , β'' such that subproblem are strongly convex, and the strongly convex parameters are γ' and γ'' .

$$\hat{\mathcal{Q}}(:), \hat{\mathcal{X}}(:) - \hat{\mathcal{Z}}(:) \rangle + \frac{\beta}{2} \|\hat{\mathcal{X}} - \hat{\mathcal{Z}}\|_F^2$$

Assumption

Let $\gamma = \min(\gamma_{'}, \gamma_{''})$, the following inequation exist $\|P_{\Omega}(\mathcal{M} - \mathcal{Z}_{k+1})\|_{F} \leq \sqrt{\frac{\gamma}{\beta_{k}}} (\|\mathcal{Z}_{k+1} - \mathcal{Z}_{k}\|_{F} + \|\mathcal{X}_{k+1} - \mathcal{X}_{k}\|_{F}).$

Theory ○ ○ ○ ○ ○

The convergence of algorithm

Assumption

Figure: The difference between DIFFZX and DIFFQ with varying missing ratio and tubal rank. The tensor size is $100 \times 100 \times 50$ The tubal rank is 5. The missing ratio from up to down respectively are 45% 60%, 75% and 90%.

Subgradient of weighted tensor nuclear norm

Theorem

The function of weighted sum of singular values $h(\mathcal{X}) = \|\mathcal{X}\|_w = \sum_{i=1}^{\min(n_1,n_2)} \sum_{j=1}^{n_3} w_i \sigma_i$ (where w_i denotes the weight of the singular value) for $\mathcal{X} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is Lipschitz continuous. Namely, there exists a constant scalar K satisfying

$$|h(\mathcal{X}_1) - h(\mathcal{X}_2)| \le K \|\mathcal{X}_1 - \mathcal{X}_2\|_F$$

for all $\mathcal{X}_1, \mathcal{X}_2 \in \mathbb{R}^{n_1 \times n_2 \times n_3}$.

Lemma

Let $f: \mathbb{R}^{n_1 \times n_2 \times n_3} \to \mathbb{R}$ be a locally Lipschitz continuous function at \mathcal{X} Then the differential $\partial_C f(\mathcal{X})$ is non-empty, convex and compact set.

The subgradient of $h(\mathcal{X})$ exits.

Lemma

Let $f: \mathbb{R}^{n_1 \times n_2 \times n_3} \to \mathbb{R}$ be a locally Lipschitz continuous function at \mathcal{X} , then a subgradient $\mathbf{W} \in \partial_C f(\mathcal{X})$ is bounded as

$$\|\mathbf{W}\|_F \leq B$$
.

Let
$$\mathcal{Q}_{k+1}' = \mathcal{Q}_k + \beta_k (\mathcal{X}_k - \mathcal{Z}_{k+1})$$
, $\{\mathcal{Q}_{k+1}'\}_{k=1}^{\infty}$ is bounded.

Theorem

Suppose that $S_k = \{\mathcal{X}_k, \mathcal{Z}_k, \mathcal{Q}_k, \mathcal{Q}_k', \}$. $\{\mathcal{Q}_{k+1}'\}_{k=1}^{\infty}$ is bounded. $\lim_{k \to \infty} (\mathcal{Q}_{k+1} - \mathcal{Q}_k) = 0$ and μ_k is non-decreasing. Then the limit point $(\mathcal{X}^*, \mathcal{Z}^*, \mathcal{Q}^*)$ is a stationary point, which is $0 \in \partial \mathcal{L}_{\beta}(\mathcal{X}^*, \mathcal{Z}^*, \mathcal{Q}^*)$, or equivalently,

$$\mathcal{Q}^* \in \partial \|\mathcal{Z}\|_{\omega}, \ \mathcal{X}^* - \mathcal{Z}^* = 0, \ \mathcal{Q}^* \in \partial 1_{\mathcal{X}_{\Omega} = \mathcal{M}_{\Omega}}$$

.

- SNN where $\alpha_i = \frac{1}{3}$
- TNN where $\omega_i = 1$;
- TTNN2 where $\omega_1 = 0$, $\omega_2 = 0$ and $\omega_i = 1$; $(i \neq 1, 2)$
- TTNN3 where $\omega_1 = 0$, $\omega_2 = 0$, ω_3 and $\omega_i = 1$; $(i \neq 1, 2, 3)$
- TTNN5 where $\omega_j = 0$; (i = 1, 2, 3, 4, 5) and $\omega_i = 1$ other wise;
- WWNN where

$$\omega(i,i,j) = \frac{1}{\sigma_1(i,i,j) + \epsilon} \quad \text{where } \epsilon > 0.$$
 (5)

■ RWTN where

$$\omega_k(i,i,j) = \frac{1}{\sigma_{k-1}(i,i,j) + \epsilon} \quad \text{where} \quad \epsilon > 0.$$
 (6)

Image Recovery

Table: The color image with 80% percentage missing ratio, the PSNR value and computation time of the each method list in the table. The sampling mode is using i.i.d.

PSNR	Bridge	Pond	Residential	River	
SNN	27.42	26.35	21.59	26.70	
	122	116	99	100	
TNN	30.03	27.57	22.18	27.80	
	128	123	122	121	
TTNN2	30.23	27.81	22.39	28.00	
	132	126	126	124	
TTNN3	30.14	27.87	22.49	28.04	
	136	129	130	128	
TTNN5	30.28	27.86	22.55	27.81	
	143	132	135	132	
RWTN	33.86	29.44	23.33	28.95	
	159	161	155	152	

Table: Fist row is the PSNR value of each method. Second row is the computation time

Mask	SNN	TNN	TTNN2	TTNN3	TTNN5	RWTN
Facede1	27.99	27.96	28.17	28.18	28.19	27.33
	70	104	100	101	104	121
Facede2	31.82	31.81	32.01	32.03	32.21	31.59
	68	111	109	105	113	130

(a) Ground truth

(b) Facede1

(c) Facede2

Figure: The recovering result on the tomato video with 80% missing ratio, The PSNR is corresponding for the whole data.

Weighted tensor nuclear norm minimization for tensor completion using tensor-SVD

Table: The result of MRI video with different missing ratio is showed in this table. The fist column is the PSNR value, and the second column is the computation time.

Missing ratio	55%	60%	65%	70%	75%	80%	85%	90%
SNN	153	151	134	111	88	68	50	36
	516	493	507	525	590	585	644	585
TNN	122	114	106	91	81	73	69	59
	989	996	992	1016	993	996	1050	1053
RWTN	130	122	113	102	96	81	79	68
	906	1013	995	1029	1017	1024	1119	972
WWNN	124	117	107	93	82	74	69	58
	784	765	758	766	817	805	918	808

Figure: Tomato video and MRI data is design to recovery

Video Recovery

Thank you for your attention !!!