Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Obliczenia Naukowe Sprawozdanie z Laboratorium

LISTA 5

Autor: Krzysztof Nowak III Rok INF. Nr Indeksu: 229807

1 Zadanie 1

1.1 Opis problemu

Naszym zadaniem było napisanie funkcji rozwiązującej układ Ax = b metodą eliminacji Gaussa uwzględniając specyficzną postać macierzy A dla dwóch wariantów:

- bez wyboru elementu głównego
- z częściowym wyborem elementu głównego

Macierz $A \in \mathbb{R}^{n \times n}$ ma następującą strukturę:

$$A = \begin{pmatrix} A_1 & C_1 & 0 & 0 & 0 & \cdots & 0 \\ B_2 & A_2 & C_2 & 0 & 0 & \cdots & 0 \\ 0 & B_2 & A_2 & C_2 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_{v-2} & A_{v-2} & C_{v-2} & 0 \\ 0 & \cdots & 0 & 0 & B_{v-1} & A_{v-1} & C_{v-1} \\ 0 & \cdots & 0 & 0 & 0 & B_{v-1} & A_{v-1} \end{pmatrix}$$

Gdzie v=n/l przy założeniu, że n jest podzielne przez l, dla $l\geq 2$, które to jest rozmiarem wszystkich kwadratowych macierzy wewnętrznych: $A_k, B_k, C_k \in \mathbb{R}^{l\times l}$ o następujących postaciach:

$$A_{k} = \begin{pmatrix} a_{11}^{k} & a_{12}^{k} & \cdots & a_{1l-1}^{k} & a_{1l}^{k} \\ a_{21}^{k} & a_{22}^{k} & \cdots & a_{2l-1}^{k} & a_{2l}^{k} \\ \vdots & & \vdots & \vdots & \vdots \\ a_{l1}^{k} & a_{l2}^{k} & \cdots & a_{ll-1}^{k} & a_{ll}^{k} \end{pmatrix}$$

$$B_{k} = \begin{pmatrix} 0 & \cdots & 0 & b_{1l-1}^{k} & b_{1l}^{k} \\ 0 & \cdots & 0 & b_{2l-1}^{k} & b_{2l}^{k} \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & b_{ll-1}^{k} & b_{ll}^{k} \end{pmatrix}$$

$$C_{k} = \begin{pmatrix} c_{11}^{k} & 0 & 0 & \cdots & 0 \\ 0 & c_{22}^{k} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & c_{l-1l-1}^{k} & 0 \\ 0 & \cdots & 0 & 0 & c_{1l}^{k} \end{pmatrix}$$

Natomiast $b \in \mathbb{R}^n$ jest wektorem prawych stron.

1.2 Opis rozwiązania

1.2.1 Przechowywanie macierzy oraz jej wczytywanie

Macierz A jest przechowywana w pamięci za pomocą SparseMatrixCSC - specjalnego typu stworzonego do tego typu problemów, dostępnego standardowo w języku programowania Julia. Macierz ta przechowuje wyłącznie elementy niezerowe, co efektywnie zmniejsza zapotrzebowanie na pamięć przy macierzach rzadkich. Dzięki wykorzystaniu tego typu spełniamy założenie zadania o efektywnym przechowywaniu macierzy A. Macierz A jest wczytywana z pliku tekstowego, gdzie pierwszy wiersz zawiera kolejno: n - rozmiar macierzy A, l - rozmiar macierzy blokowych A_k, B_k, C_L znajdujących się wewnątrz macierzy A

Kolejne wiersze przedstawiają elementy niezerowe macierzy i są one w tej postaci:

i - i-ty wiersz , j - j-ta kolumna, a- wartość znajdująca się na i-tym wierszu i j-tej kolumnie w macierzy ${\bf A}$

1.2.2 Przechowywanie wektora oraz jego wczytywanie

Wektor b jest przechowywany w pamięci za pomocą Vector - typu dostępnego standardowo w języku programowania Julia. Wczytywany jest on z pliku tekstowego gdzie pierwszy wiersz to liczba elementów w wektorze, a następne wiersze to kolejne wartości wektora b.

1.2.3 Metoda eliminacji Gaussa

Załóżmy, że mamy następujący układ równań

możemy go przestawić jako iloraz Ax=b, gdzie A jest macierzą, x jest wektorem niewiadomych, a b jest wektorem prawej strony równania. Chcąc obliczyć to równanie możemy wykorzystać metodę eliminacji Gaussa, w której to z wyżej podanej postaci macierzy, przechodzimy do bardziej przystępnej jeżeli chodzi o liczenie niewiadomych macierzy schodkowej. Metoda ta polega na elimininowaniu zmienniej x_i z równań od i+1-go do n-tego. Na początku mnożymy i-te równanie przez $I_{ji}=\frac{a_{ji}}{a_{ii}}$, gdzie $j=i+1,\ldots,n$ a następnie odejmujemy od pozostałych. Na przykład dla pierwszego kroku:

 $I_{j1} = \frac{a_{j1}}{a_{11}}$ gdzie $j=2,\ldots,n$ a po odjeciu otrzymamy

Powtarzając kolejno, po n-1 krokach otrzymamy układ z macierzą górno trójkątną

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

 $a'_{22}x_2 + \cdots + a'_{2n}x_n = b'_2$
 $\vdots \vdots \vdots$
 $a_{nn}^{(n)}x_n = b_n^{(n)}$

Mając tą postać jesteśmy zdolni obliczyć w prosty sposób nasze niewiadome. Wyznaczany najpierw $x_n=\frac{b_n^{(n)}}{a_{nn}^{(n)}}$, a potem dalej dla x_k , gdzie $k=n-1,\ldots,1$

$$x_k = \frac{b_k^{(k)} - \sum_{j=k+1}^n a_{kj}^{(k)} x_j}{a_{kk}^{(k)}}$$

W ramach tej metody możemy wybierać jeszcze w każdym k-tym kroku element główny to jest $|A_{pk}| = max|A_{ik}|$ dla $k \le i \le n$, a następnie przestawiamy p-ty wiersz z k-tym w macierzy A,

oraz p-ty element z k-tym wektora b. Ma to na celu umożliwienie wykonania tej metody na niektórych macierzach nieosobliwych, oraz zapewnia z numerycznego punktu widzenia mniejszy błąd przy obliczeniach, dla zadanej dokładności. Metoda ta ma złożoność obliczeniową na poziomie $O(n^3)$.

Pseudokod tej metody prezentuje się następująco:

```
Algorithm 1: gauss
   Data: A,b,n, gdzie
         A - Macierz określająca współczynniki przy równaniach,
        b - Wektor prawej strony
         n - Rozmiar macierzy i wektora
   Result: x, gdzie
         x - Wektor rozwiązań równania
 1 begin
       for k = 1 to n - 1 do
 2
           index \leftarrow p \text{ dla którego } |A[p][k]| = max|A[i][k]| \text{ dla } k \leq i \leq n \text{ /* Wybór}
 3
                elementu głównego
                                                                                                       */
 4
           swap(A[k], A[index])
 5
           swap(b[k], b[index])
 6
           for i = k + 1 to n do
 7
               I[i][k] \longleftarrow A[i][k]/A[k][k]
 8
               for j = k + 1 to n do
 9
                A[i][j] \longleftarrow A[i][j] - I[i][k] * A[k][j]
10
11
               b[i] \longleftarrow b[i] - I[i][k] * b[k]
12
           end
13
14
       end
       for i = n down to 1 do
15
           x[i] \longleftarrow b[i]
16
           for j = i + 1 to n do
17
             x[i] \longleftarrow x[i] - A[i][j] * x[j]
18
19
           x[i] \longleftarrow x[i]/A[i][i]
20
       end
21
       return x
23 end
```

1.2.4 Uwzględnienie specyficznej postaci macierzy

Niestety w naszym przypadku standardowa metoda eliminacji Gaussa się nie sprawdzi, spowodowane jest to tym, że dla dużych rozmiarów macierzy, obliczenie rozwiązania staje się czasochłonne, a każdorazowa pomyłka w danych, zmusza nas do kolejnego długiego oczekiwania na wynik. Jednakże specyficzna postać naszej macierzy umożliwia nam dokonanie pewnych optymalizacji względem standardowej metody. Wiedząc, że każda macierz blokowa ma rozmiar $l \times l$ i w tylko ich obrębie są wartości niezerowe, możemy sprawdzać w 2 i 3 pętli maksymalnie 2*l elementów, zamiast przechodzić każdorazowo n razy, gdzie w znacznej większości przypadków były to mnożenia i odejmowania zer. co zmniejsza już nam złożoność z $O(n^3)$ do $O(4l^2n)$ co przy założeniu, że 1 jest stałe daje nam O(n) a przy naszych dużych rozmiarach macierzy jest to diametralna optymalizacja i przyśpieszenie obliczeń.

1.3 Rozwiązania

Dla każdego zestawu danych tj. dla rozmiarów macierzy 16, 10000 oraz 50000 wynikiem był wektor jedynek o zadanym rozmiarze. Skupmy się natomiast na czasach wykonywania naszej implementacji metody eliminacji Gaussa, oraz dla standardowej metody

Funkcja	Rozmiar danych	Wybór	Czas (s)
Gauss	16	Nie	8.5283913e - 5
Gauss z uwzględnieniem	16	Tak	0.00010327101
Gauss z uwzględnieniem	16	Nie	4.2476961e - 5
Gauss	10000	Nie	ok.60000
Gauss z uwzględnieniem	10000	Tak	0.52993301475
Gauss z uwzględnieniem	10000	Nie	0.358175245
Gauss	50000	Nie	_
Gauss z uwzględnieniem	50000	Tak	17.4584088357
Gauss z uwzględnieniem	10000	Nie	10.2199510277

Jak widać, dla większych danych zdecydowanie lepsze czasy uzyskuje Gauss z uwzględnieniem specyficznej postaci macierzy A. Niestety nie mogłem sprawdzić jak prezentują się porównania pod względem wykorzystanej pamięci z powodu braków zasobów, aczkolwiek można wywnioskować, ze normalne przechowywanie zerowych elementów w arytmetyce Float64 dla dużych rozmiarów może zająć całą pamięć RAM komputera.

1.4 Wnioski

Jeżeli jest to możliwe, oraz stosunkowo nieskomplikowane do implementacji, to warto wykonywać optymalizację funkcji pod nasze dane. Pomimo tego, że dokonał się wielki postęp technologiczny i nie musimy już tak bardzo dbać o optymalność rozwiązania, to jednak są przypadki, gdzie bez tego, możemy niepotrzebnie tracić mnóstwo czasu, oraz zasobów pamięci.