AE.4A- Image donnée par une lentille convergente

Comment bricoler un rétroprojecteur

Construction graphique:

1. Ouvrir l'animation de simulation sur le site du lycée

Lien de la simulation

https://www.pccl.fr/physique_chimie_college_lycee/quatrieme/optique/lentille_convergente.htm

- 2. Comment sont représentés **un objet** et **une image** lors d'un représentation graphique ?
- 3. Déterminer la position de l'objet (ou image) par rapport à l'axe optique.
- 4. Relier les **trois règles aux trois rayons colorés** pour construire une image d'un objet.

Rayon violet	•	Le rayon qui passe par l'objet et par le centre de la lentille n'est pas dévié.
Rayon vert	•	Le rayon passant par l'objet qui passe par le foyer objet F ressort après la lentille parallèle à l'axe optique
Rayon bleu	•	Les rayons qui arrivent parallèle à l'axe optique, ressortant de la lentille passent par le foyer image F'

Formation d'une image :

5. Quel est le type de lentille qui compose le rétroprojecteur ?

Document 2

La distance focale, notée f' correspond à la distance algébrique, en mètre, entre son centre optique et son foyer image.

$$f' = OF' = OF$$

La vergence C, qui se mesure en dioptries (δ) est l'inverse de la distance focale :

$$C = \frac{1}{f'}$$

- 6. On dispose de deux lentilles de vergences 5,0 δ et 10 δ . Calculer les distances focales de ces lentilles.
- 7. Calculer la vergence d'une lentille de distance focale f'=200mm

Expérience

On utilise un banc d'optique afin que les différents éléments soient alignés. L'objet lumineux est un objet étendu : on utilisera la lettre F. La lentille est une lentille convergente de distance focale f' = Placer l'objet sur le banc d'optique, disposer ensuite la lentille et rechercher l'image nette en déplaçant l'écran.

8. Réaliser le montage en positionnant la lentille telle que :

$$AO = 4f'$$
; $AO = 3f'$; $AO = 2f'$; $AO = 1,5 f'$.

On recopie et on complète le tableau au fur et à mesure des questions suivantes.

A0	A'O	AB	A'B'	γ
Distance Objet	Distance	Taille de l'objet	Taille de	·
lentille	image lentille	-	l'image	
4 f'				
3 f'				
2 f'				
1,5 f'				

9. Noter les positions de l'image dans un tableau. Calculer dans le tableau le grandissement défini par :

$$\gamma = -\frac{A'B'}{AB}$$

- 10. Pour chaque position de l'objet, calculer $-\frac{OA'}{OA}$. Que remarque-t-on ?
- 11. Que se passe-t-il si AO < f' et si AO = f' ?
- 12. Construire sur un schéma à l'échelle l'image A'B' formée par la lentille mince convergente d'un objet AB tel que AO = 2f' afin de vérifier que les mesures expérimentales sont en accort avec le modèle de la lentille mince convergente.