Design-of-Dadda-Multiplier

Designed by Omkar Chavare, IIT Bombay.

Designed a 16 x 16 Dadda Multiplier in Verilog with a Brent Kung adder for the final addition.

- Verified the design operation through simulation in ModelSim with appropriate test vectors.
- Identified the critical path and computed the worst-case delay using the specified component delays.

Introduction

The speed of multiplier circuits affects the performance of digital systems and so it is very important to develop better algorithms for faster, more efficient processing and Dadda multiplier is one of the fastest ways of implementing a multiplier. Dadda multipliers are generally more gate efficient than their Wallace counterparts

Reference Circuit

This is the reduction methodology as used in the multiplier circuit. In this the Dadda reduction technique reduces from 4 partial product to 3 and from 3 to 2 from where we can use the normal addition. The dadda reduction series is consulted for reduction of partial products

Code for dadda multiplier: -	
module adder(a,b,cin,s,cout);	
input[31:0] a,b;	
input cin;	
output[31:0] s;	
output cout;	
wire [32:0] c;	
wire[31:0] p1,g1;	
wire[15:0] p2,g2;	
wire[7:0] p3,g3;	
wire[3:0] p4,g4;	
wire[1:0] p5,g5;	
wire [0:0]p6,g6;	
assign c[0]=cin;	
genvar i;	

```
generate
for(i=0;i<=31;i=i+1)
begin: a1
assign p1[i]=a[i] ^ b[i];
assign g1[i]=a[i] & b[i];
end
endgenerate
generate
for(i=0;i<=15;i=i+1)
begin: a2
assign p2[i]= p1[2*i+1] & p1[2*i];
assign g2[i]= g1[2*i+1] | (p1[2*i+1] & g1[2*i]);
end
endgenerate
generate
for(i=0;i<=7;i=i+1)
begin: a3
assign p3[i]= p2[2*i+1] & p2[2*i];
```

```
assign g3[i]=g2[2*i+1]| (p2[2*i+1] & g2[2*i]);
end
endgenerate
generate
for(i=0;i<=3;i=i+1)
begin: a4
assign p4[i]=p3[2*i+1] & p3[2*i];
assign g4[i]=g3[2*i+1] | (p3[2*i+1] & g3[2*i]);
end
endgenerate
generate
for(i=0;i<=1;i=i+1)
begin: a5
assign p5[i]=p4[2*i+1] & p4[2*i];
assign g5[i]=g4[2*i+1] | (p4[2*i+1] & g4[2*i]);
end
endgenerate
```

generate

```
for(i=0;i<=0;i=i+1)
begin: a6
assign p6[i]=p5[2*i+1] & p5[2*i];
assign g6[i]=g5[2*i+1] | (p5[2*i+1] & g5[2*i]);
end
endgenerate
assign c[1]= g1[0] | ( p1[0] & c[0]);
assign c[2] = g2[0] \mid (p2[0] \& c[0]);
assign c[4]= g3[0] | ( p3[0] & c[0]);
assign c[8]= g4[0] | ( p4[0] & c[0]);
assign c[16]= g5[0] | ( p5[0] & c[0]);
assign c[32]= g6[0] | ( p6[0] & c[0]);
assign c[3]=g1[2] | (p1[2] & c[2]);
assign c[5]= g1[4] | ( p1[4] & c[4]);
assign c[6] = g2[2] | (p2[2] \& c[4]);
assign c[9]= g1[8] | ( p1[8] & c[8]);
assign c[10]= g2[4] | ( p2[4] & c[8]);
assign c[12]= g3[2] | ( p3[2] & c[8]);
```

```
assign c[13]= g1[12] | ( p1[12] & c[12]);
assign c[7]= g1[6] | ( p1[6] & c[6]);
assign c[11]= g1[10] | ( p1[10] & c[10]);
assign c[14]= g2[6] | ( p2[6] & c[12]);
assign c[15]= g1[14] | ( p1[14] & c[14]);
assign c[17]= g1[16] | ( p1[16] & c[16]);
assign c[18]= g2[8] | ( p2[8] & c[16]);
assign c[20]= g3[4] | ( p3[4] & c[16]);
assign c[19]= g1[18] | ( p1[18] & c[18]);
assign c[21]= g1[20] | ( p1[20] & c[20]);
assign c[22]= g2[10] | ( p2[10] & c[20]);
assign c[24]= g3[5] | ( p3[5] & c[20]);
assign c[23]= g1[22] | ( p1[22] & c[22]);
assign c[25]= g1[24] | ( p1[24] & c[24]);
assign c[26]= g2[12] | ( p2[12] & c[24]);
assign c[28]= g3[6] | ( p3[6] & c[24]);
assign c[27]= g1[26] | ( p1[26] & c[26]);
assign c[29]= g1[28] | ( p1[28] & c[28]);
assign c[30]= g2[14] | ( p2[14] & c[28]);
assign c[31]= g1[30] | (p1[30] & c[30]);
```

```
generate
for(i=0;i<=31;i=i+1)
begin: a9
assign s[i]= p1[i] ^ c[i];
end
endgenerate
assign cout=c[32];
endmodule
module multiplier(a,b,mul_out);
input [15:0]a;
input [15:0]b;
output [31:0] mul_out;
wire cout,cin;
wire [15:0] pp1;
wire [16:1]pp2;
wire [17:2]pp3;
wire [18:3]pp4;
wire [19:4]pp5;
```


wire [25:6] s0;
wire [26:7] s1;
wire [24:7] s2;
wire [25:8] s3;
wire [23:8] s4;
wire [24:9] s5;

wire [27:4]t0;

```
wire [28:5]t1;
wire [26:5]t2;
wire [27:6]t3;
wire [28:3]u0;
wire [29:4]u1;
wire [31:0]v0;
wire [31:0]v1;
//partial products :
generate
for(i=0;i<=15;i=i+1)begin: dhanu
assign pp1[i]= a[i] & b[0];
assign pp2[i+1]= a[i] & b[1];
assign pp3[i+2]= a[i] & b[2];
assign pp4[i+3]= a[i] & b[3];
assign pp5[i+4]= a[i] & b[4];
assign pp6[i+5]= a[i] & b[5];
assign pp7[i+6]= a[i] & b[6];
```

```
assign pp8[i+7]= a[i] & b[7];
assign pp9[i+8]= a[i] & b[8];
assign pp10[i+9]= a[i] & b[9];
assign pp11[i+10]= a[i] & b[10];
assign pp12[i+11]= a[i] & b[11];
assign pp13[i+12]= a[i] & b[12];
assign pp14[i+13]= a[i] & b[13];
assign pp15[i+14]= a[i] & b[14];
assign pp16[i+15]= a[i] & b[15];
end
endgenerate
//Intializing values:
assign v0[0] = pp1[0];
assign v1[0]= 1'b0;
assign v0[1]=pp1[1];
assign v1[1]=pp2[1];
assign v1[2]=pp3[2];
assign v0[30]=pp16[30];
```

```
assign v0[31]=1'b0;
assign v1[31]=1'b0;
//1st layer addition
ha ha13(pp1[13],pp2[13],q0[13],q1[14]);
fa fa14(pp1[14],pp2[14],pp3[14],q0[14],q1[15]);
ha ha14(pp4[14],pp5[14],q2[14],q3[15]);
fa fa15_1(pp1[15],pp2[15],pp3[15],q0[15],q1[16]);
fa fa15_2(pp4[15],pp5[15],pp6[15],q2[15],q3[16]);
ha ha15(pp7[15],pp8[15],q4[15],q5[16]);
fa fa16_1(pp2[16],pp3[16],pp4[16],q0[16],q1[17]);
fa fa16_2(pp5[16],pp6[16],pp7[16],q2[16],q3[17]);
ha ha16(pp8[16],pp9[16],q4[16],q5[17]);
fa fa17_1(pp3[17],pp4[17],pp5[17],q0[17],q1[18]);
fa fa17_2(pp6[17],pp7[17],pp8[17],q2[17],q3[18]);
fa fa18(pp4[18],pp5[18],pp6[18],q0[18],q1[19]);
//2nd layer addition(ha9_2 implies 9th clmn and its is for layer2)
ha ha9_2(pp1[9],pp2[9],r0[9],r1[10]);
fa fa10_2(pp1[10],pp2[10],pp3[10],r0[10],r1[11]);
ha ha10_2(pp4[10],pp5[10],r2[10],r3[11]);
```

```
fa fa11a_2(pp1[11],pp2[11],pp3[11],r0[11],r1[12]);
fa fa11b_2(pp4[11],pp5[11],pp6[11],r2[11],r3[12]);
ha ha11_2(pp7[11],pp8[11],r4[11],r5[12]);
fa fa12a_2(pp1[12],pp2[12],pp3[12],r0[12],r1[13]);
fa fa12b_2(pp4[12],pp5[12],pp6[12],r2[12],r3[13]);
fa fa12c_2(pp7[12],pp8[12],pp9[12],r4[12],r5[13]);
ha ha12_2(pp10[12],pp11[12],r6[12],r7[13]);
fa fa13a_2(pp3[13],pp4[13],pp5[13],r0[13],r1[14]);
fa fa13b_2(pp6[13],pp7[13],pp8[13],r2[13],r3[14]);
fa fa13c_2(pp9[13],pp10[13],pp11[13],r4[13],r5[14]);
fa fa13d_2(pp12[13],pp13[13],pp14[13],r6[13],r7[14]);
fa fa14a_2(q0[14],q2[14],pp6[14],r0[14],r1[15]);
fa fa14b_2(pp7[14],pp8[14],pp9[14],r2[14],r3[15]);
fa fa14c_2(pp10[14],pp11[14],pp12[14],r4[14],r5[15]);
fa\ fa14d\_2(pp13[14],pp14[14],pp15[14],r6[14],r7[15]);\\
fa fa15a_2(q0[15],q1[15],q2[15],r0[15],r1[16]);
fa fa15b_2(pp10[15],pp9[15],q4[15],r2[15],r3[16]);
fa fa15c_2(pp12[15],pp13[15],pp11[15],r4[15],r5[16]);
fa fa15d_2(pp14[15],pp15[15],pp16[15],r6[15],r7[16]);
```

```
fa fa16a_2(q0[16],q1[16],q2[16],r0[16],r1[17]);
fa fa16b_2(pp10[16],q4[16],q5[16],r2[16],r3[17]);
fa fa16c_2(pp12[16],pp13[16],pp11[16],r4[16],r5[17]);
fa fa16d_2(pp14[16],pp15[16],pp16[16],r6[16],r7[17]);
fa fa17a_2(q0[17],q1[17],q2[17],r0[17],r1[18]);
fa fa17b_2(pp9[17],pp10[17],q5[17],r2[17],r3[18]);
fa fa17c_2(pp11[17],pp12[17],pp13[17],r4[17],r5[18]);
fa fa17d_2(pp14[17],pp15[17],pp16[17],r6[17],r7[18]);
fa fa18a_2(q0[18],q1[18],pp7[18],r0[18],r1[19]);
fa fa18b_2(pp8[18],pp9[18],pp10[18],r2[18],r3[19]);
fa fa18c_2(pp11[18],pp12[18],pp13[18],r4[18],r5[19]);
fa fa18d_2(pp14[18],pp15[18],pp16[18],r6[18],r7[19]);
fa fa19a_2(pp5[19],pp6[19],pp7[19],r0[19],r1[20]);
fa fa19b_2(pp8[19],pp9[19],pp10[19],r2[19],r3[20]);
fa fa19c_2(pp11[19],pp12[19],pp13[19],r4[19],r5[20]);
fa fa19d_2(pp14[19],pp15[19],pp16[19],r6[19],r7[20]);
fa fa20a_2(pp6[20],pp7[20],pp8[20],r0[20],r1[21]);
fa fa20b_2(pp9[20],pp10[20],pp11[20],r2[20],r3[21]);
fa fa20c_2(pp12[20],pp13[20],pp14[20],r4[20],r5[21]);
fa fa21a_2(pp9[21],pp7[21],pp8[21],r0[21],r1[22]);
fa fa21b_2(pp12[21],pp10[21],pp11[21],r2[21],r3[22]);
```

```
fa fa22a_2(pp10[22],pp8[22],pp9[22],r0[22],r1[23]);
//3rd addition
ha ha6_3(pp1[6],pp2[6],s0[6],s1[7]);
fa fa7a_3(pp1[7],pp2[7],pp3[7],s0[7],s1[8]);
ha ha7b_3(pp4[7],pp5[7],s2[7],s3[8]);
fa fa8a_3(pp1[8],pp2[8],pp3[8],s0[8],s1[9]);
fa fa8b_3(pp4[8],pp5[8],pp6[8],s2[8],s3[9]);
ha ha8c_3(pp7[8],pp8[8],s4[8],s5[9]);
fa fa9a_3(pp3[9],pp4[9],r0[9],s0[9],s1[10]);
fa fa9b_3(pp5[9],pp6[9],pp7[9],s2[9],s3[10]);
fa fa9c_3(pp8[9],pp9[9],pp10[9],s4[9],s5[10]);
fa fa10a_3(r0[10],r1[10],r2[10],s0[10],s1[11]);
fa fa10b_3(pp8[10],pp6[10],pp7[10],s2[10],s3[11]);
fa fa10c_3(pp11[10],pp9[10],pp10[10],s4[10],s5[11]);
fa fa11a_3(r0[11],r1[11],r2[11],s0[11],s1[12]);
fa fa11b_3(r3[11],r4[11],pp9[11],s2[11],s3[12]);
fa fa11c_3(pp10[11],pp11[11],pp12[11],s4[11],s5[12]);
fa fa12a_3(r0[12],r1[12],r2[12],s0[12],s1[13]);
fa fa12b_3(r3[12],r4[12],r5[12],s2[12],s3[13]);
fa fa12c_3(r6[12],pp12[12],pp13[12],s4[12],s5[13]);
```

fa fa13a_3(r0[13],r1[13],r2[13],s0[13],s1[14]);

fa fa13b_3(r3[13],r4[13],r5[13],s2[13],s3[14]);

fa fa13c_3(r6[13],r7[13],q0[13],s4[13],s5[14]);

fa fa14a_3(r0[14],r1[14],r2[14],s0[14],s1[15]);

fa fa14b_3(r3[14],r4[14],r5[14],s2[14],s3[15]);

fa fa14c_3(r6[14],r7[14],q1[14],s4[14],s5[15]);

fa fa15a_3(r0[15],r1[15],r2[15],s0[15],s1[16]);

fa fa15b_3(r3[15],r4[15],r5[15],s2[15],s3[16]);

fa fa15c_3(r6[15],r7[15],q3[15],s4[15],s5[16]);

fa fa16a_3(r0[16],r1[16],r2[16],s0[16],s1[17]);

fa fa16b_3(r3[16],r4[16],r5[16],s2[16],s3[17]);

fa fa16c_3(r6[16],r7[16],q3[16],s4[16],s5[17]);

fa fa17a_3(r0[17],r1[17],r2[17],s0[17],s1[18]);

fa fa17b_3(r3[17],r4[17],r5[17],s2[17],s3[18]);

fa fa17c_3(r6[17],r7[17],q3[17],s4[17],s5[18]);

```
fa fa18a_3(r0[18],r1[18],r2[18],s0[18],s1[19]);
fa fa18b_3(r3[18],r4[18],r5[18],s2[18],s3[19]);
fa fa18c_3(r6[18],r7[18],q3[18],s4[18],s5[19]);
fa fa19a_3(r0[19],r1[19],r2[19],s0[19],s1[20]);
fa fa19b_3(r3[19],r4[19],r5[19],s2[19],s3[20]);
fa fa19c_3(r6[19],r7[19],q1[19],s4[19],s5[20]);
fa fa20a_3(r0[20],r1[20],r2[20],s0[20],s1[21]);
fa fa20b_3(r3[20],r4[20],r5[20],s2[20],s3[21]);
fa fa20c_3(r7[20],pp15[20],pp16[20],s4[20],s5[21]);
fa fa21a_3(r0[21],r1[21],r2[21],s0[21],s1[22]);
fa fa21b_3(r3[21],r5[21],pp13[21],s2[21],s3[22]);
fa fa21c_3(pp14[21],pp15[21],pp16[21],s4[21],s5[22]);
```

fa fa22a_3(r0[22],r1[22],pp11[22],s0[22],s1[23]);

```
fa fa22b_3(r3[22],pp12[22],pp13[22],s2[22],s3[23]);
fa fa22c_3(pp14[22],pp15[22],pp16[22],s4[22],s5[23]);
fa fa23a_3(r1[23],pp9[23],pp10[23],s0[23],s1[24]);
fa fa23b_3(pp11[23],pp12[23],pp13[23],s2[23],s3[24]);
fa fa23c_3(pp14[23],pp15[23],pp16[23],s4[23],s5[24]);
fa fa24a_3(pp10[24],pp11[24],pp12[24],s0[24],s1[25]);
//doubt 2 times pp14 used
fa fa24b_3(pp13[24],pp14[24],pp15[24],s2[24],s3[25]);
fa fa25_3(pp11[25],pp12[25],pp13[25],s0[25],s1[26]);
//4th stage addition
ha ha4a_4(pp1[4],pp2[4],t0[4],t1[5]);
fa fa5a_4(pp1[5],pp2[5],pp3[5],t0[5],t1[6]);
ha ha5b_4(pp4[5],pp5[5],t2[5],t3[6]);
fa fa6a_4(s0[6],pp3[6],pp4[6],t0[6],t1[7]);
fa fa6b_4(pp5[6],pp6[6],pp7[6],t2[6],t3[7]);
fa fa7a_4(s0[7],s1[7],s2[7],t0[7],t1[8]);
fa fa7b_4(pp6[7],pp7[7],pp8[7],t2[7],t3[8]);
fa fa8a_4(s0[8],s1[8],s2[8],t0[8],t1[9]);
fa fa8b_4(s3[8],s4[8],pp9[8],t2[8],t3[9]);
fa fa9a_4(s0[9],s1[9],s2[9],t0[9],t1[10]);
fa fa9b_4(s3[9],s4[9],s5[9],t2[9],t3[10]);
```

```
fa fa10a_4(s0[10],s1[10],s2[10],t0[10],t1[11]);
fa fa10b_4(s3[10],s4[10],s5[10],t2[10],t3[11]);
fa fa11a_4(s0[11],s1[11],s2[11],t0[11],t1[12]);
fa fa11b_4(s3[11],s4[11],s5[11],t2[11],t3[12]);
fa fa12a_4(s0[12],s1[12],s2[12],t0[12],t1[13]);
fa fa12b_4(s3[12],s4[12],s5[12],t2[12],t3[13]);
fa fa13a_4(s0[13],s1[13],s2[13],t0[13],t1[14]);
fa fa13b_4(s3[13],s4[13],s5[13],t2[13],t3[14]);
fa fa14a_4(s0[14],s1[14],s2[14],t0[14],t1[15]);
fa fa14b_4(s3[14],s4[14],s5[14],t2[14],t3[15]);
fa fa15a_4(s0[15],s1[15],s2[15],t0[15],t1[16]);
fa fa15b_4(s3[15],s4[15],s5[15],t2[15],t3[16]);
fa fa16a_4(s0[16],s1[16],s2[16],t0[16],t1[17]);
fa fa16b_4(s3[16],s4[16],s5[16],t2[16],t3[17]);
fa fa17a_4(s0[17],s1[17],s2[17],t0[17],t1[18]);
fa fa17b_4(s3[17],s4[17],s5[17],t2[17],t3[18]);
fa fa18a_4(s0[18],s1[18],s2[18],t0[18],t1[19]);
fa fa18b_4(s3[18],s4[18],s5[18],t2[18],t3[19]);
fa fa19a_4(s0[19],s1[19],s2[19],t0[19],t1[20]);
fa fa19b_4(s3[19],s4[19],s5[19],t2[19],t3[20]);
```

```
fa fa20a_4(s0[20],s1[20],s2[20],t0[20],t1[21]);
fa fa20b_4(s3[20],s4[20],s5[20],t2[20],t3[21]);
fa fa21a_4(s0[21],s1[21],s2[21],t0[21],t1[22]);
fa fa21b_4(s3[21],s4[21],s5[21],t2[21],t3[22]);
fa fa22a_4(s0[22],s1[22],s2[22],t0[22],t1[23]);
fa fa22_4(s3[22],s4[22],s5[22],t2[22],t3[23]);
fa fa23a_4(s0[23],s1[23],s2[23],t0[23],t1[24]);
fa fa23_4(s3[23],s4[23],s5[23],t2[23],t3[24]);
fa fa24a_4(s0[24],s1[24],s2[24],t0[24],t1[25]);
fa fa24_4(s3[24],pp16[24],s5[24],t2[24],t3[25]);
fa fa25a_4(s0[25],s1[25],pp14[25],t0[25],t1[26]);
fa fa25_4(s3[25],pp15[25],pp16[25],t2[25],t3[26]);
fa fa26a_4(s1[26],pp12[26],pp13[26],t0[26],t1[27]);
fa fa26_4(pp14[26],pp15[26],pp16[26],t2[26],t3[27]);
fa fa27_4(pp13[27],pp14[27],pp15[27],t0[27],t1[28]);
//fifth stage addition
ha ha3a_5(pp1[3],pp2[3],u0[3],u1[4]);
fa fa4a_5(pp3[4],pp4[4],pp5[4],u0[4],u1[5]);
fa fa5a_5(t1[5],t2[5],pp6[5],u0[5],u1[6]);
fa fa6a_5(t0[6],t1[6],t2[6],u0[6],u1[7]);
fa fa7_5(t0[7],t1[7],t2[7],u0[7],u1[8]);
```

```
fa fa8_5(t0[8],t1[8],t2[8],u0[8],u1[9]);
fa fa9_5(t0[9],t1[9],t2[9],u0[9],u1[10]);
fa fa10_5(t0[10],t1[10],t2[10],u0[10],u1[11]);
fa fa11_5(t0[11],t1[11],t2[11],u0[11],u1[12]);
fa fa12_5(t0[12],t1[12],t2[12],u0[12],u1[13]);
fa fa13_5(t0[13],t1[13],t2[13],u0[13],u1[14]);
fa fa14_5(t0[14],t1[14],t2[14],u0[14],u1[15]);
fa fa15_5(t0[15],t1[15],t2[15],u0[15],u1[16]);
fa fa16_5(t0[16],t1[16],t2[16],u0[16],u1[17]);
fa fa17_5(t0[17],t1[17],t2[17],u0[17],u1[18]);
fa fa18_5(t0[18],t1[18],t2[18],u0[18],u1[19]);
fa fa19_5(t0[19],t1[19],t2[19],u0[19],u1[20]);
fa fa20_5(t0[20],t1[20],t2[20],u0[20],u1[21]);
fa fa21_5(t0[21],t1[21],t2[21],u0[21],u1[22]);
fa fa22_5(t0[22],t1[22],t2[22],u0[22],u1[23]);
fa fa23_5(t0[23],t1[23],t2[23],u0[23],u1[24]);
fa fa24_5(t0[24],t1[24],t2[24],u0[24],u1[25]);
fa fa25_5(t0[25],t1[25],t2[25],u0[25],u1[26]);
fa fa26_5(t0[26],t1[26],t2[26],u0[26],u1[27]);
fa fa27_5(t0[27],t1[27],pp16[27],u0[27],u1[28]);
```

```
fa fa28_5(t1[28],pp14[28],pp15[28],u0[28],u1[29]);
//6th stage addition
ha ha2_6(pp1[2],pp2[2],v0[2],v1[3]);
fa fa3_6(u0[3],pp3[3],pp4[3],v0[3],v1[4]);
fa fa4_6(u0[4],u1[4],t0[4],v0[4],v1[5]);
fa fa5_6(u0[5],u1[5],t0[5],v0[5],v1[6]);
fa fa6_6(u0[6],u1[6],t3[6],v0[6],v1[7]);
fa fa7_6(u0[7],u1[7],t3[7],v0[7],v1[8]);
fa fa8_6(u0[8],u1[8],t3[8],v0[8],v1[9]);
fa fa9_6(u0[9],u1[9],t3[9],v0[9],v1[10]);
fa fa10_6(u0[10],u1[10],t3[10],v0[10],v1[11]);
fa fa11_6(u0[11],u1[11],t3[11],v0[11],v1[12]);
fa fa12_6(u0[12],u1[12],t3[12],v0[12],v1[13]);
fa fa13_6(u0[13],u1[13],t3[13],v0[13],v1[14]);
fa fa14_6(u0[14],u1[14],t3[14],v0[14],v1[15]);
fa fa15_6(u0[15],u1[15],t3[15],v0[15],v1[16]);
fa fa16_6(u0[16],u1[16],t3[16],v0[16],v1[17]);
fa fa17_6(u0[17],u1[17],t3[17],v0[17],v1[18]);
fa fa18_6(u0[18],u1[18],t3[18],v0[18],v1[19]);
fa fa19_6(u0[19],u1[19],t3[19],v0[19],v1[20]);
fa fa20_6(u0[20],u1[20],t3[20],v0[20],v1[21]);
```

```
fa fa21_6(u0[21],u1[21],t3[21],v0[21],v1[22]);

fa fa22_6(u0[22],u1[22],t3[22],v0[22],v1[23]);

fa fa23_6(u0[23],u1[23],t3[23],v0[23],v1[24]);

fa fa24_6(u0[24],u1[24],t3[24],v0[24],v1[25]);

fa fa25_6(u0[25],u1[25],t3[25],v0[25],v1[26]);

fa fa26_6(u0[26],u1[26],t3[26],v0[26],v1[27]);

fa fa27_6(u0[27],u1[27],t3[27],v0[27],v1[28]);

fa fa28_6(u0[28],u1[28],pp16[28],v0[28],v1[29]);

fa fa29_6(pp15[29],u1[29],pp16[29],v0[29],v1[30]);

bentkung adder(v0,v1,1'b0,mul_out,cout);

endmodule
```

SIMULATION: - simulation performed using Quartus Prime and Modelsim Altera.

Results: - a,b are inputs and the output product is highlighted.

			· · · · · ·		::::::::::::::::::::::::::::::::::::::				
→ /test_dadda/dut/a	59897	13604	54793	31501	33893	(58113	61814	22509	59897
→ /test_dadda/dut/b	9414	24193	22115	39309	21010	52493	52541	63372	9414
/test_dadda/dut/product	563870358	329121572	1211747195	1238272809	712091930	3050525709	3247769374	1426440348	,563870 <mark>85</mark> 8
/test_dadda/dut/cout	0								
/test_dadda/dut/cin	z								
/test_dadda/dut/partial_product1	0	13604	54793	31501	(0	58113	(61814	X 0	
/test_dadda/dut/partial_product2	59897	(0	54793	(0	(33893	(0			59897
/test_dadda/dut/partial_product3	59897	(0		(31501	(0	(58113	(61814	22509	(59897
/test_dadda/dut/partial_product4	0	(0		(31501	(0	(58113	(61814	22509	X O
/test_dadda/dut/partial_product5	0	(0			33893	(0	(61814	XO .	
→ /test_dadda/dut/partial_product6 →	0	(0	54793	(O			(61814	XO .	
→ /test_dadda/dut/partial_product7	59897	(0	54793	(O					(59897
// /test_dadda/dut/partial_product8	59897	(13604	XO .	(31501	(0			22509	59897
/test_dadda/dut/partial_product9	0	(0		(31501	(0	(58113	61814	22509	(0
→ /test_dadda/dut/partial_product1	0 0	13604	54793	10	33893	10		22509	(0
→ /test_dadda/dut/partial_product1	1 59897	13604	54793	10		(58113	(61814	22509	59897
⊕	2 0	(13604	10	31501	10	(58113	61814	10	
⊕ ✓ /test_dadda/dut/partial_product1	3 0	(13604	54793	(31501	(33893	10		(22509	(0
⊞_ /test_dadda/dut/partial_product1	4 59897	(0						22509	(59897
⊞_ /test_dadda/dut/partial_product1	5 0	(13604	54793	10	(33893	(58113	[61814	22509	<u> </u>
	6 0	10		(31501	10	(58113	(61814	22509	(0
⊞_ /test_dadda/dut/q0	18)1	<u>1</u> 11	21	18	135	149	(26	(18
⊞_ /test_dadda/dut/q1	12	10	14	110	10	128	162	10	12
	8	(8	14	3	<u> </u>	(0	14	(10	(8
	0	1:0	10	10				10	
	1	XI.	li l	11	10	12		X1	X1
☐ /test_dadda/dut/q5	0	10		12	io			2	(o
	9659	(10506	(6093	110363	11188	I12711	I14602	12542	(9659
	6400	10	2210	14420	10	1512	Ĭ1984	256	(6400
	2336	1184	3872	I1318	1545	I198	1117	2287	12336
⊞_● /test_dadda/dut/r3	24	2560	10	1640	io	10	2	1968	24
	764	1018	1276	1280	200	1640	1462	142	1764
⊞ /test_dadda/dut/r5	3	n	Tin I	512	Yn .	1256	148	1980	3