JAYPEE INSTITUTE OF INFORMATION TECHNOLOGY

Electronics and Communication Engineering Electrical Science-2 (15B11EC211)

Tutorial Sheet: 9

- Q1[CO3]. The current flowing in a PN-junction diode at room temperature is 200 nA, when a large reverse bias is applied. Calculate the current through the diode when 0.1 V forward bias is applied.

 [Ans. 9.1625 μA]
- **Q2[CO3].** In the circuit given in Fig. 1, a silicon diode with knee voltage 0.7 V is used. The dynamic resistance of the diode in forward bias may assumed to be zero.
 - (a) If $V_{\rm DD} = 5$ V, what should be the value of R to establish a current of 5 mA in the circuit?
 - (b) Determine the power dissipated in the resistance R and in the diode D, when a current of 5 mA flows in the circuit at $V_{DD} = 6$ V. [Ans. (a) 860 Ω ; (b) 26.5 mW, 3.5 mW]

- Q3[CO3]. Germanium diodes D_1 and D_2 with knee voltage 0.3 V are used in the circuit given in Fig. 2. Determine the potential of point X with respect to point Y. [Ans. -0.5 V]
- **Q4[CO3].** The diodes used in the circuit Fig. 3 are identical with $V_T = 0.6$ V and $R_F = 10 \Omega$. Determine V_D , I_D and V_o as marked in the figure. [Ans. 1.833 V, 31.667 mA, 3.167 V]
- **Q5[CO3].** Determine the current through the 3- Ω resistor in the circuit of Fig. 4. Assume the diode to be ideal. [Ans. 1 A]

Q6[CO3]. If the terminals of the diode are reversed in the circuit of Fig. 4, what would be the current in the $3-\Omega$ resistor? [Ans. zero]

Q7[CO3]. Determine the current through the circuit of Fig. 5, assuming the diode to be a piecewise linear model with $V_T = 0.3$ V and $r_f = 8 \Omega$. [Ans. 25 mA]

Q8[CO3]. Determine the value of current through the $300-\Omega$ resistor in the circuit of Fig. 6. Assume that the diodes D_1 and D_2 are ideal. [Ans. 16.66 mA]

Q9[CO3]. In the circuit given in Fig. 7, all diodes are identical and have a cut-in voltage $(V_T) = 0.6 \text{ V}$. (a) Find the voltage V_0 and current I, for (i) $V_i = 0 \text{ V}$, and (ii) $V_i = +2 \text{ V}$. (b) Plot the output voltage v_0 , if the input voltage is $v_i = 2\sin 2\pi f t \text{ V}$, where f = 50 Hz.

[**Ans**. (a) (i) 0.6 V, 4.7 mA; (ii) 1.8 V, 4.1 mA]

