Features

• Code listed under IBC/IRC in accordance with ICC-ES AC193 for cracked and uncracked concrete per ICC-ES ESR-2713

industry-leading performance even in seismic conditions.

- Code listed under IBC/IRC in accordance with ICC-ES AC106 for masonry per ICC-ES ESR-1056
- Qualified for static and seismic loading conditions
- Thread design undercuts to efficiently transfer the load to the base material
- Standard fractional sizes
- Specialized heat-treating process creates tip hardness for better cutting without compromising the ductility
- No special drill bit required designed to install using standard-sized ANSI tolerance drill bits
- Testing shows the Titen HD® installs in concrete with 50% less torque than competitor anchors
- Hex-washer head requires no separate washer and provides a clean installed appearance
- Removable ideal for temporary anchoring (e.g., formwork, bracing) or applications where fixtures may need to be moved (reuse of the anchor to achieve listed load values is not recommended)

Codes: ICC-ES ESR-2713 (concrete); ICC-ES ESR-1056 (masonry); City of L.A. RR25741 (concrete), RR25560 (masonry); Florida FL-15730.6; FM 3017082, 3035761 and 3043442; Multiple DOT listings

Material: Carbon steel

Coating: Zinc plated or mechanically galvanized

reduce installation torque.

and 6,623,228 Serrated teeth on the tip of the Titen

Installation

Mechanical Anchors

Holes in metal fixtures to be mounted should match the diameter specified in the table below. Use a Titen HD® screw anchor one time only - installing the anchor multiple times may result in excessive thread wear and reduce load capacity.

Do not use impact wrenches to install into hollow CMU.

Caution: Oversized holes in base material will reduce or eliminate the mechanical interlock of the threads with the base material and reduce the anchor's load capacity.

- 1. Drill a hole in the base material using a carbide drill bit the same diameter as the nominal diameter of the anchor to be installed. Drill the hole to the specified embedment depth plus minimum hole depth overall (see table below right) to allow the thread tapping dust to settle, and blow it clean using compressed air. (Overhead installations need not be blown clean.) Alternatively, drill the hole deep enough to accommodate embedment depth and the dust from drilling and tapping.
- 2. Insert the anchor through the fixture and into the hole.
- 3. Tighten the anchor into the base material until the hex-washer head contacts the fixture.

Installation Sequence

Titen HD®

Screw Anchor

U.S. Patents 5,674,035

and 6,623,228

Additional Installation Information

Titen HD® Diameter (in.)	Wrench Size (in.)	Recommended Fixture Hole Size (in.)	Min. Hole Depth Overdrill (in.)
1/4	3/8	3/8 to 7/16	1/8
3/8	9/16	½ to %16	1/4
1/2	3/4	5/8 to 11/16	1/2
5/8	15/16	3/4 to 13/16	1/2
3/4	11/8	7/8 to ¹⁵ / ₁₆	1/2

Titen HD® Heavy-Duty Screw Anchor

Titen HD® Anchor Product Data — Zinc Plated

Size	Model No.	Drill Bit Dia.	Wrench Size	Qua	ntity
(in.)	MIDUGI NO.	(in.)	(in.)	Вох	Carton
1/4 x 1 7/8	THDB25178H	1/4	3/8	100	500
1/4 x 23/4	THDB25234H	1/4	3/8	50	250
1/4 x 3	THDB25300H	1/4	3/8	50	250
1/4 x 3 1/2	THDB25312H	1/4	3/8	50	250
1/4 x 4	THDB25400H	1/4	3/8	50	250
3/8 x 13/4	THD37134H*	3/8	9/16	50	250
3/8 x 21/2	THD37212H*	3/8	9/16	50	200
3/8 x 3	THD37300H	3/8	9/16	50	200
3/8 x 4	THD37400H	3/8	9/16	50	200
3/8 x 5	THD37500H	3/8	9/16	50	100
3/8 x 6	THD37600H	3/8	9/16	50	100
½ x 3	THD50300H	1/2	3/4	25	100
½ x 4	THD50400H	1/2	3/4	20	80
½ x 5	THD50500H	1/2	3/4	20	80
½ x 6	THD50600H	1/2	3/4	20	80
½ x 6½	THD50612H	1/2	3/4	20	40
½ x 8	THD50800H	1/2	3/4	5	25
½ x 12	THD501200H	1/2	3/4	5	25
½ x 13	THD501300H	1/2	3/4	5	25
½ x 14	THD501400H	1/2	3/4	5	25
½ x 15	THD501500H	1/2	3/4	5	25
5/8 x 4	THDB62400H	5/8	15/16	10	40
5⁄8 x 5	THDB62500H	5/8	15/16	10	40
5⁄8 x 6	THDB62600H	5/8	15/16	10	40
5/8 x 6 1/2	THDB62612H	5/8	15/16	10	40
% x 8	THDB62800H	5/8	15/16	10	20
3/4 x 4	THD75400H	3/4	11/8	10	40
3/4 x 5	THD7500H	3/4	11/8	5	20
3/4 x 6	THDT75600H	3/4	11/8	5	20
3/4 x 7	THD75700H	3/4	11/8	5	10
3/4 x 8 1/2	THD75812H	3/4	11/8	5	10
3/4 x 10	THD75100H	3/4	1 1/8	5	10

^{*}These models do not meet minimum embedment depth requirements for strength design and require maximum installation torque of 25 ft. – lb. using a torque wrench, driver drill or cordless $\frac{1}{4}$ " impact driver with a maximum permitted torque rating of 100 ft. – lb.

Titen HD® Anchor Product Data — Mechanically Galvanized

Size	Model	Drill Bit Dia.	Wrench Size	Qua	ntity
(in.)	No.	(in.)	(in.)	Вох	Carton
3% x 5	THD37500HMG	3/	9/	50	100
3/8 x 6	THD37600HMG	3/8	9/16	50	100
½ x 5	THD50500HMG			20	80
½ x 6	THD50600HMG	1/	3/	20	80
½ x 6½	THD50612HMG	1/2	3/4	20	40
½ x 8	THD50800HMG			20	40
5⁄8 x 5	THD62500HMG			10	40
5⁄8 x 6	THD62600HMG	5/	15/	10	40
5% x 61/2	THD62612HMG	5/8	15/16	10	40
5% x 8	THD62800HMG			10	20
5⁄8 x 5	THDB62500HMG			10	40
5⁄8 x 6	THDB62600HMG	5/	15/	10	40
5/8 x 61/2	THDB62612HMG	5/8	15/16	10	40
5% x 8	THDB62800HMG			10	20
3/4 X 8 1/2	THD75812HMG	3/	11/	5	10
3/4 x 10	THD75100HMG	3/4	11/8	5	10

Mechanical galvanizing meets ASTM B695, Class 65, Type 1. Intended for some pressure-treated wood sill plate applications. Not for use in other corrosive or outdoor environments. See page 316 or visit www.strongtie.com/info for more corrosion information.

Titen HD® Installation Information and Additional Data¹

Characteristic	Cumbal	Units				Nomina	I Anchor	Diamete	r, d _a (in.)			
Characteristic	Symbol	oi oilita		1/44 3/8		1/2		5⁄8 ⁴		3	3/4	
		Install	ation Info	rmation								
Drill Bit Diameter	d _{bit}	in.	1,	/4	3,	/ 8	1,	/2	5	/8	3	V ₄
Baseplate Clearance Hole Diameter	d_c	in.	3	%	1,	⁄2	5	/8	3	4	7	/8
Maximum Installation Torque	T _{inst,max}	ftlbf	2	4 ²	50) ²	6	5 ²	10	00^{2}	15	50 ²
Maximum Impact Wrench Torque Rating	T _{impact,max}	ftlbf	12	25 ³	15	iO ³	34	103	34	10 ³	38	35 ³
Minimum Hole Depth	h _{hole}	in.	13/4	25/8	23/4	31/2	3¾	41/2	41/2	6	6	63/4
Nominal Embedment Depth	h _{nom}	in.	15/8	21/2	21/2	31/4	31/4	4	4	51/2	51/2	61/4
Critical Edge Distance	Cac	in.	3	6	211/16	35/8	3%16	41/2	41/2	6%	6%	75/16
Minimum Edge Distance	C _{min}	in.	1	1/2		13⁄4						
Minimum Spacing	Smin	in.					(3				
Minimum Concrete Thickness	h _{min}	in.	31/4	31/2	4	5	5	61/4	6	81/2	83/4	10
		Ac	ditional l	Data								
Anchor Category	Category	_						1				
Yield Strength	f _{va}	psi	100	,000				97,	000			
Tensile Strength	f _{uta}	psi	125	,000				110	,000			
Minimum Tensile & Shear Stress Area	A _{se}	in ²	0.0	·		83	0.2	276	0.4	114		
Axial Stiffness in Service Load Range – Uncracked Concrete	$eta_{ ext{uncr}}$	lb./in.	202	202,000 715,000								
Axial Stiffness in Service Load Range – Cracked Concrete	eta_{cr}	lb./in.	173,000 345,000									

- 1. The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.
- 2. Tinst, max is the maximum permitted installation torque for the embedment depth range covered by this table using a torque wrench.
- 3. T_{impact,max} is the maximum permitted torque rating for impact wrenches for the embedment depth range covered by this table.
- 4. Data for ¼" anchor is only valid for THDB25 series. Data for the %" anchor is valid only for the THDB62 series.

Titen HD® Tension Strength Design Data¹

Characteristic	Cumbal	Units				Nomina	Anchor	Diamete	r, d _a (in.)			
Glididelelistic	Symbol	Uillis	1,	1/49 3/8			1	/2	5/	8 ⁹	3,	/4
Nominal Embedment Depth	h _{nom}	in.	15⁄8	21/2	21/2	31/4	31/4	4	4	51/2	51/2	61/4
		Steel S	Strength	in Tensio	n							
Tension Resistance of Steel	N_{sa}	lb.	5,	5,195 10,890 20,130 30,360					45,	540		
Strength Reduction Factor — Steel Failure	ϕ_{sa}	_					0.0	35 ²				
	Conci	ete Brea	kout Stre	ength in T	ension ^{6,8}							
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	4.22	4.86
Critical Edge Distance ⁶	c_{ac}	in.	3	6	211/16	35/8	3%16	41/2	41/2	6 %	6%	75/16
Effectiveness Factor — Uncracked Concrete	k _{uncr}		30					24				
Effectiveness Factor — Cracked Concrete	<i>k_{cr}</i>						1	7				
Modification Factor	$\psi_{c,N}$						1	.0				
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_					0.0	65 ⁷				
		Pullout :	Strength	in Tensio	n ⁸							
Pullout Resistance, Uncracked Concrete (f'c=2,500 psi)	$N_{p,uncr}$	lb.	3	3	2,7004	3	3	3	3	9,8104	3	3
Pullout Resistance, Cracked Concrete (f'c=2,500 psi)	$N_{p,cr}$	lb.	3	1,9054	1,2354	2,7004	3	3	3,2604	5,5704	6,0704	7,1954
Strength Reduction Factor — Concrete Pullout Failure	$\phi_{ ho}$	_	— 0.65 ⁵									
Breako	ut or Pullo	ut Streng	th in Ten	sion for S	Seismic A	pplication	1S ⁸					
Nominal Pullout Strength for Seismic Loads (f'c=2,500 psi)	$N_{p,eq}$	lb.	3	1,9054	1,2354	2,7004	3	3	3,2604	5,5704	6,0704	7,1954
Strength Reduction Factor — Breakout or Pullout Failure	ϕ_{eq}	_	— 0.65 ⁵									

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ . Anchors are considered brittle steel elements.
- 3. Pullout strength is not reported since concrete breakout controls.
- Adjust the characteristic pullout resistance for other concrete compressive strengths by multiplying the tabular value by (f'_{c,Specified} / 2,500)^{0.5}.
- 5. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 6. The modification factor \(\psi_{CD,N} = 1.0 \) for cracked concrete. Otherwise, the modification factor for uncracked concrete without supplementary reinforcement to control splitting is either:

(1) $\psi_{cp,N} = 1.0 \text{ if } c_{a,min} \ge c_{ac} \text{ or } (2) \ \psi_{cp,N} = \frac{c_{a,min}}{c_{ac}} \ge \frac{1.5 h_{ef}}{c_{ac}} \text{ if } c_{a,min} < c_{ac}$

The modification factor, $\Psi_{cp,N}$ is applied to the nominal concrete breakout strength, N_{cb} or N_{cbg} .

- 7. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- 8. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength, $N_{p,cr}$, $N_{p,uncr}$ and N_{eq} by 0.6. All-lightweight concrete is beyond the scope of this table.
- 9. Data for ¼" anchor is valid only for THDB25 series. Data for %" anchor is valid only for THDB62 series.

Titen HD® Shear Strength Design Data¹

Characteristic	Symbol	Units				Nomina	I Anchor	Diameter	; d _a (in.)			
Glidi delel istic	Syllibol	Uiiits	1,	⁄4 ⁵	3,	3/8		¹ 2	5/8 ⁵		3/4	
Nominal Embedment Depth	h _{nom}	in.	15/8	21/2	21/2	31/4	31/4	4	4	51/2	51/2	61/4
		Steel	Strength	in Shear								
Shear Resistance of Steel	V _{sa}	lb.	2,0	020	4,460 7,455			10,0	000	16,840		
Strength Reduction Factor — Steel Failure	ϕ_{sa}						0.6	60 ²				
	Cond	crete Bre	akout St	rength in	Shear ⁶							
Outside Diameter	d _a	in.	0.	25	0.3	0.375		00	0.625		0.750	
Load Bearing Length of Anchor in Shear	ℓ_e	in.	1.19	1.94	1.77	2.40	2.35	2.99	2.97	4.24	4.22	4.86
Strength Reduction Factor — Concrete Breakout Failure	ϕ_{cb}	_			0.70^{4}							
	Co	ncrete P	ryout Str	ength in	Shear							
Coefficient for Pryout Strength	k _{cp}	lb.			1.0					2.0		
Strength Reduction Factor — Concrete Pryout Failure	ϕ_{cp}	_					0.7	'0 ⁴				
	Steel Stre	ngth in S	Shear for	Seismic	Applicati	ons						
Shear Resistance for Seismic Loads	V _{eq}	lb.	1,6	595	2,8	355	4,7	90	8,0	00	9,3	350
Strength Reduction Factor — Steel Failure	ϕ_{eq}	_					0.6	60 ²				

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. The value of ϕ applies when the load combinations of ACI 318 Section 9.2 are used. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ . Anchors are considered brittle steel elements.
- 3. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Section 9.2 are used, and the requirements of Section D.4.3(c) for Condition A are met, refer to Section D.4.3 to determine the appropriate value of ϕ . If the load combinations of ACI 318 Appendix C are used,
- * See page 12 for an explanation of the load table icons.

- refer to Section D.4.4 to determine the appropriate value of ϕ .
- 4. The value of ϕ applies when both the load combinations of ACI 318 Section 9.2 are used and the requirements of Section D.4.3(c) for Condition B are met. If the load combinations of ACI 318 Appendix C are used, refer to Section D.4.4 to determine the appropriate value of ϕ .
- Data for ¼" anchor is valid only for THDB25 series. Data for ¾" anchor is valid only for THDB62 series.
- 6. For sand-lightweight concrete, in lieu of ACI 318 Section D.3.6, modify the value of concrete breakout strength by 0.6. All-lightweight concrete is beyond the scope of this table.

Titen HD® Tension and Shear Strength Design Data for the Soffit of Normal-Weight or Sand-Lightweight Concrete over Metal Deck^{1,6,8}

IBC		
100	li	X

						Nomina	l Anchor	Diameter	r, d _a (in.)			
Characteristic	Symbol	Units			Lowe	Flute				Upper	Flute	
Gildideleristic	Зунион	UIIILS	Figu	Figure 2 Figure 1					Figure 2		Figu	ire 1
			1/	48	3,	/8	1,	/2	1/.	4 ⁸	3/8	1/2
Nominal Embedment Depth	h _{nom}	in.	1%	21/2	1 1/8	21/2	2	31/2	15/8	21/2	17/8	2
Effective Embedment Depth	h _{ef}	in.	1.19	1.94	1.23	1.77	1.29	2.56	1.19	1.94	1.23	1.29
Pullout Resistance, concrete on metal deck (cracked) ^{2,3,4}	$N_{p,deck,cr}$	lb.	420	535	375	870	905	2,040	655	1,195	500	1,700
Pullout Resistance, concrete on metal deck (uncracked) ^{2,3,4}	N _{p,deck,uncr}	lb.	995	1,275	825	1,905	1,295	2,910	1,555	2,850	1,095	2,430
Steel Strength in Shear, concrete on metal deck ⁵	V _{sa, deck}	lb.	1,335	1,745	2,240	2,395	2,435	4,430	2,010	2,420	4,180	7,145
Steel Strength in Shear, Seismic	V _{sa, deck,eq}	lb.	870	1,135	1,434	1,533	1,556	2,846	1,305	1,575	2,676	4,591

- The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D, except as modified below.
- 2. Concrete compressive strength shall be 3,000 psi minimum. The characteristic pullout resistance for greater compressive strengths shall be increased by multiplying the tabular value by $(f^i_{c,specified}/3,000)^{0.5}$.
- 3. For anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies, as shown in Figure 1 and Figure 2, calculation of the concrete breakout strength may be omitted.
- 4. In accordance with ACI 318 Section D.5.3.2, the nominal pullout strength in cracked concrete for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies $N_{p,deck,cr}$
- shall be substituted for $N_{p,cr}$. Where analysis indicates no cracking at service loads, the normal pullout strength in uncracked concrete $N_{p,deck,uncr}$ shall be substituted for $N_{p,uncr}$.
- 5. In accordance with ACI 318 Section D.6.1.2(c), the shear strength for anchors installed in the soffit of sand-lightweight or normal-weight concrete over metal deck floor and roof assemblies V_{sa,deck} and V_{sa,deck,eq} shall be substituted for V_{sa}.
- 6. Minimum edge distance to edge of panel is 2hef.
- 7. The minimum anchor spacing along the flute must be the greater of $3h_{\rm ef}$ or 1.5 times the flute width.
- 8. Data for 1/4" anchor is valid only for THDB25 series.

Titen HD® Anchor Tension and Shear Strength Design Data in the Topside of Normal-Weight Concrete or Sand-Lightweight Concrete over Metal Deck

			Figure 3 1/4" 15% 1.19 21/2	or Diameter, d _a
Design Information	Symbol	Units		Figure 2
Name in all Emph advanant Danth	b	in		3%"
Nominal Embedment Depth	h _{nom}	in.	1 %	21/2
Effective Embedment Depth	h _{ef}	in.	1.19	1.77
Minimum Concrete Thickness	h _{min,deck}	in.	21/2	31/4
Critical Edge Distance	C _{ac,deck,top}	in.	3¾	71/4
Minimum Edge Distance	C _{min,deck,top}	in.	31/2	3
Minimum Spacing	S _{min,deck,top}	in.	31/2	3

- 1. For anchors installed in the topside of concrete-filled deck assemblies, as shown in Figures 2 and 3, the nominal concrete breakout strength of a single anchor or group of anchors in shear, V_{cb} or V_{cbg} , respectively, must be calculated in accordance with ACI 318 D.6.2, using the actual member thickness, $h_{min,deck^*}$ in the determination of A_{vc} .
- Design capacity shall be based on calculations according to values in the tables featured on pages 185 and 186.
- 3. Minimum flute depth (distance from top of flute to bottom of flute) is $1\frac{1}{2}$ inch (see Figures 2 and 3).
- 4. Steel deck thickness shall be minimum 20 gauge.
- Minimum concrete thickness (h_{min,deck}) refers to concrete thickness above upper flute (see Figures 2 and 3).

Figure 1. Installation of %" and ½" Diameter Anchors in the Soffit of Concrete over Metal Deck

Figure 2. Installation of %" Diameter Anchors in the Topside and ¼" Diameter Anchors in the Soffit of Concrete over Metal Deck

Figure 3. Installation of 1/4" Diameter Anchors in the Topside of Concrete over Metal Deck

^{*} See page 12 for an explanation of the load table icons.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Concrete

Titen HD® Tension Design Strengths in Normal-Weight Concrete (f'_c = 2,500 psi)

		Min.	Critical	Minimum	Tension Design Strength (lb.)								
Anchor Dia.	Nominal Embed.	Concrete Thickness	Concrete Edge	Edge Distance	Edge I	Distances =	c _{ac} on all si	des	Edge	e side			
(in.)	Depth (in.)	h _{min} (in.)			C-F ^{6,7}	SDC A	1-B ⁵	SDC C-F ^{6,7}					
	()		(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/	1 5/8	31/4	3	1 1/2	1,265	715	950	540	660	630	495	470	
1/4	21/2	31/2	6	1 1/2	2,110	1,240	1,580	930	660	965	495	725	
3/8	21/2	4	211/16	13/4	1,755	805	1,315	600	1,350	805	1,015	600	
9/8	31/4	5	35/8	13/4	2,900	1,755	2,175	1,315	1,810	1,290	1,360	970	
1/	31/4	5	39/16	13/4	2,810	1,990	2,105	1,495	1,765	1,265	1,325	950	
1/2	4	61/4	41/2	13/4	4,035	2,855	3,025	2,140	2,285	1,620	1,710	1,220	
5/	4	6	41/2	13/4	3,990	1,975	2,995	1,480	2,250	1,610	1,690	1,210	
5/8	51/2	81/2	6%	13/4	6,375	3,620	4,780	2,715	3,390	2,405	2,540	1,805	
3/	51/2	83/4	6%	13/4	6,760	3,945	5,070	2,960	3,355	2,395	2,515	1,795	
3/4	61/4	10	75/16	13/4	8,355	4,675	6,265	3,510	3,990	2,835	2,990	2,125	

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

Titen HD® Allowable Tension Loads in Normal-Weight Concrete ($f'_c = 2,500 \text{ psi}$) — Static Load

	Naminal	Min. Concrete Critical Edge		Minimum Educ	Allowable Tension Load (lb.)							
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)		= c _{ac} on all sides	Edge Distances = c _{min} on one sident and c _{ac} on three sides					
	(111.)	(111.)	(111.)		Uncracked	Cracked	Uncracked	Cracked				
1/4	15/8	31/4	3	1 1/2	905	510	470	450				
74	21/2	31/2	6	1 1/2	1,505	885	470	690				
3/8	21/2	4	211/16	13/4	1,255	575	965	575				
98	31/4	5	35/8	13/4	2,070	1,255	1,295	920				
1/	31/4	5	3%16	13/4	2,005	1,420	1,260	905				
1/2	4	61/4	41/2	13/4	2,880	2,040	1,630	1,155				
5/8	4	6	41/2	13/4	2,850	1,410	1,605	1,150				
9/8	51/2	81/2	6%	13/4	4,555	2,585	2,420	1,720				
3/4	51/2	8¾	6%	13/4	4,830	2,820	2,395	1,710				
	61/4	10	75/16	13/4	5,970	3,340	2,850	2,025				

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = 1.4$. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted

Titen HD® Allowable Tension Loads in Normal-Weight Concrete (f'_c = 2,500 psi) — Wind Load

	Manadarat	Min Ormanda	Outlined Educ	Minimum Edua	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Nominal Embed. Depth (in.)	Min. Concrete Thickness h _{min} (in.)	Critical Edge Distance c _{ac} (in.)	Minimum Edge Distance c _{min} (in.)	Edge Distances	Edge Distances = c_{ac} on all sides		c _{min} on one side three sides			
	()	(111.)	(111.)	(111.)	Uncracked	Cracked	Uncracked	Cracked			
1/	15/8	31/4	3	1 ½	760	430	395	380			
1/4	21/2	31/2	6	1 ½	1,265	745	395	580			
3/8	21/2	4	211/16	13/4	1,055	485	810	485			
98	31/4	5	35/8	13/4	1,740	1,055	1,085	775			
1/	31/4	5	3%16	13/4	1,685	1,195	1,060	760			
1/2	4	61/4	41/2	13/4	2,420	1,715	1,370	970			
5/	4	6	41/2	13/4	2,395	1,185	1,350	965			
5/8	51/2	81/2	6%	13/4	3,825	2,170	2,035	1,445			
3/	51/2	8¾	6%	13/4	4,055	2,365	2,015	1,435			
3/4	61/4	10	75/16	13/4	5,015	2,805	2,395	1,700			

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.

^{*} See page 12 for an explanation of the load table icons.

Titen HD® Allowable Tension Loads in Normal-Weight Concrete ($f'_C = 2,500 \text{ psi}$) — Seismic Load

		Min.	Critical	tical Minimum		Allowable Tension Load (lb.)								
Anchor Dia.	Nominal Embed.	Concrete Thickness	Edge	Edge Distance	Edge Distances = c _{ac} on all sides				Edge Distances = c_{min} on one side and c_{ac} on three sides					
(in.)	Depth (in.)	hmin		c _{min} (in.)	SDC	SDC A-B ⁴		C-F ^{5,6}	SDC A-B ⁴		SDC C-F ^{5,6}			
	()	(in.)			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1/	1%	31/4	3	1 ½	885	500	665	380	460	440	345	330		
1/4	21/2	31/2	6	1 ½	1,475	870	1,105	650	460	675	345	510		
0/	21/2	4	211/16	13/4	1,230	565	920	420	945	565	710	420		
3/8	31/4	5	35/8	13/4	2,030	1,230	1,525	920	1,265	905	950	680		
1/	31/4	5	3%16	13/4	1,965	1,395	1,475	1,045	1,235	885	930	665		
1/2	4	61/4	41/2	13⁄4	2,825	2,000	2,120	1,500	1,600	1,135	1,195	855		
E/	4	6	41/2	13/4	2,795	1,385	2,095	1,035	1,575	1,125	1,185	845		
5/8	51/2	81/2	6%	13/4	4,465	2,535	3,345	1,900	2,375	1,685	1,780	1,265		
3/4	51/2	8¾	6%	13/4	4,730	2,760	3,550	2,070	2,350	1,675	1,760	1,255		
	61/4	10	75/16	13/4	5,850	3,275	4,385	2,455	2,795	1,985	2,095	1,490		

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{2}$. The conversion factor α is based on the load combination assuming 100% seismic load.

^{2.} Tabulated values are for a single anchor with no influence of another anchor.

^{3.} Interpolation between embedment depths is not permitted.

^{4.} The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

^{5.} When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

^{6.} Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Concrete

Titen HD® Tension Design Strengths in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies ($f'_c = 3,000 \text{ psi}$)

	Naminal Minimum Eng		Tension Design Strength (lb.)								
Anchor Dia.	Nominal Embed, Depth	Minimum End Distance c _{min} (in.)		Lowe	r Flute			Upper Flute			
(in.)	(in.)		SDC A-B ⁵		SDC (SDC C-F ^{6,7}		SDC A-B ⁵		C-F ^{6,7}	
			Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	
1/4	1 5/8	21/2	645	275	485	205	1,010	425	760	320	
74	21/2	4	830	350	620	260	1,855	775	1,390	585	
3/8	17/8	21/2	535	245	400	185	710	325	535	245	
78	21/2	3 %	1,240	565	930	425	_	_	_	_	
1/2	2	2 %	840	590	630	440	1,580	1,105	1,185	830	
	31/2	51/4	1,890	1,325	1,420	995	_		_	_	

- 1. Tension design strengths are based on the strength design provisions of ACI 318-11 Appendix D.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Strength reduction factor, ϕ , is based on using a load combination from ACI 318-11 Section 9.2.
- 5. The tension design strength listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination
- 6. When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.
- 7. Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.
- 8. Installation must comply with Figure 1 on page 187.

Titen HD® Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' c = 3,000 psi) — Static Load

Aughan Dia	Nominal Embed.	Minimum End	Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Depth	Distance c _{min}	Lowe	r Flute	Upper Flute				
(111.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked			
1/	1%	21/2	460	195	720	305			
1/4	21/2	4	595	250	1,325	555			
3/8	1 1/8	21/2	380	175	505	230			
98	21/2	3%	885	405	_	_			
1/2	2	2%	600	420	1,130	790			
	31/2	51/4	1,350	945	_	_			

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of α = 1.4. The conversion factor α is based on the load combination 1.2D + 1.6L assuming 50% dead load and 50% live load: 1.2(0.5) + 1.6(0.5) = 1.4.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 1 on page 187.

Titen HD $^{\odot}$ Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' $_{\rm C}$ = 3,000 psi) — Wind Load

	Nominal Embed.			Allowable Tension Load (lb.)						
Anchor Dia. (in.)	Depth	Distance c _{min}	Lower	Flute	Upper Flute					
(***.)	(in.)	(in.)	Uncracked	Cracked	Uncracked	Cracked				
1/4	1%	21/2	385	165	605	255				
74	21/2	4	500	210	1,115	465				
3/8	17/8	21/2	320	145	425	195				
9/8	21/2	3%	745	340	_	_				
1/	2	2%	505	355	950	665				
1/2	31/2	51/4	1,135	795	_	_				

- 1. Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = 16.6$ = 1.67. The conversion factor α is based on the load combination assuming 100% wind load.
- 2. Tabulated values are for a single anchor with no influence of another anchor.
- 3. Interpolation between embedment depths is not permitted.
- 4. Installation must comply with Figure 1 on page 187.

^{*} See page 12 for an explanation of the load table icons.

Titen HD $^{\circ}$ Allowable Tension Loads in Soffit of Normal-Weight or Sand-Lightweight Concrete-Filled Profile Steel Deck Assemblies (f' $_{\rm c}$ = 3,000 psi) — Seismic Load

IBC		
IDU	30 30	

	Nominal			Allowable Tension Load (lb.)								
Anchor Dia.	Embed. Depth (in.)			Lowe	r Flute			Upper Flute				
(in.)		C _{min}	SDC A-B⁴		SDC (SDC C-F ^{5,6}		SDC A-B ⁴		C-F ^{5,6}		
		(in.)	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked	Uncracked	Cracked		
1/	15%	2 1/2	450	195	340	145	705	300	530	225		
1/4	21/2	4	580	245	435	180	1300	545	975	410		
3/8	1 1//8	2 1/2	375	170	280	130	495	230	375	170		
9/8	21/2	35/8	870	395	650	300	_	_	_	_		
1/2	2	25/8	590	415	440	310	1105	775	830	580		
	31/2	5 1/4	1325	930	995	695	_	_	_	_		

^{1.} Allowable tension loads are calculated based on the strength design provision of ACI 318-11 Appendix D using a conversion factor of $\alpha = \frac{1}{0.7} = 1.43$. The conversion factor α is based on the load combination assuming 100% seismic load.

^{2.} Tabulated values are for a single anchor with no influence of another anchor.

^{3.} Interpolation between embedment depths is not permitted.

^{4.} The allowable tension load listed for SDC (Seismic Design Category) A-B may also be used in SDC C-F when the tension component of the strength-level seismic design load on the anchor does not exceed 20% of the total factored tension load on the anchor associated with the same load combination.

^{5.} When designing anchorages in SDC C-F, the designer shall consider the ductility requirements of ACI 318-11 Section D.3.3.

^{6.} Tension design strengths in SDC C-F have been adjusted by 0.75 factor in accordance with ACI 318-11 Section D.3.3.4.4.

^{7.} Installation must comply with Figure 1 on page 187.

Titen HD® Allowable Tension Loads in Normal-Weight Concrete

			0.00	0.111.1	Pritical Tension Load										
Size (in.)	Drill Bit Dia.	Embed. Depth in.	Critical Edge Dist. in.	Critical Spacing in.	f' _c ≥2,000	osi (13.8 MPa	a Concrete)	f¹ _c ≥3,000 psi (20.7 MPa Concrete)	f' _c ≥4,000	osi (27.6 MPa	a Concrete)				
(111.)	(in.)	(mm)	(mm)	(mm)	Ultimate lb. (kN)	Std. Dev. lb. (kN)	Allowable lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Std. Dev. lb. (kN)	Allowable lb. (kN)				
		1 ½ (38)	6 (152)	4 (102)	2,070 (9.2)	_	520 (2.3)	635 (2.8)	2,974 (13.2)	_	745 (3.3)				
3/8 (9.5)	5) 98 (70)	3	6	4,297 (19.1)	_	1,075 (4.8)	1,315 (5.8)	6,204 (27.6)	_	1,550 (6.9)					
		3¾ (95)	(76)	(152)	7,087 (31.5)	347 (1.5)	1,770 (7.9)	2,115 (9.4)	9,820 (43.7)	1,434 (6.4)	2,455 (10.9)				
		2¾ (70)			4,610 (20.5)	_	1,155 (5.1)	1,400 (6.2)	6,580 (29.3)	_	1,645 (7.3)				
½ (12.7)	33/8	4 (102)	8 (203)	7,413 (33.0)	412 (1.8)	1,855 (8.3)	2,270 (10.1)	10,742 (47.8)	600 (2.7)	2,685 (11.9)					
		5¾ (146)			10,278 (45.7)	297 (1.3)	2,570 (11.4)	3,240 (14.4)	15,640 (69.6)	2,341 (10.4)	3,910 (17.4)				
		2¾ (70)	5 (127)			5 (127)			4,610 (20.5)	_	1,155 (5.1)	1,400 (6.2)	6,580 (29.3)	_	1,645 (7.3)
5% (15.9)	5/8	4 1/8 (105)						10 (254)	8,742 (38.9)	615 (2.7)	2,185 (9.7)	2,630 (11.7)	12,286 (54.7)	1,604 (7.1)	3,070 (13.7)
		5¾ (146)			12,953 (57.6)	1,764 (7.8)	3,240 (14.4)	3,955 (17.6)	18,680 (83.1)	_	4,670 (20.8)				
	23/4 (70) 3/4 (19.1) 3/4 (117) 53/4 (146)				4,674 (20.8)	_	1,170 (5.2)	1,405 (6.3)	6,580 (29.3)	_	1,645 (7.3)				
		45/8	4 ⁵ / ₈ 6 (117) 5 ³ / ₄	12 (305)	10,340 (46.0)	1,096 (4.9)	2,585 (11.5)	3,470 (15.4)	17,426 (77.5)	1,591 (7.1)	4,355 (19.4)				
					13,765 (61.2)	1,016 (4.5)	3,440 (15.3)	4,055 (18.0)	18,680 (83.1)	1,743 (7.8)	4,670 (20.8)				

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Refer to allowable load-adjustment factors for spacing and edge distance on pages 198 and 199.
- 3. The minimum concrete thickness is 11/2 times the embedment depth.
- 4. Tension and shear loads for the Titen HD anchor may be combined using the elliptical interaction equation (n=5%). Allowable load may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi.

Titen HD® Allowable Shear Loads in Normal-Weight Concrete

								Shear Load						
Size (in.)	Drill Bit Dia. (in.)	Embed. Depth in. (mm)	Critical Edge Dist. in. (mm)	Critical Spacing in.	f¹ _c ≥2,000 p	osi (13.8 MP	a Concrete)	f' _c ≥3,000 psi (20.7 MPa Concrete)	f' _c ≥4,000	psi (27.6 MP	a Concrete)			
	Dia. (iii.)	()	Dist. III. (IIIII)	(mm)		Std. Dev. lb. (kN)	Allowable lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Std. Dev. lb. (kN)	Allowable lb. (kN)			
		1½ (38)	6 (152)	4 (102)	2,912 (13.0)	_	730 (3.2)	825 (3.7)	3,668 (16.3)	_	915 (4.1)			
3/8 (9.5)	3/8	2¾ (70)	41/2	6	6,353 (28.3)	_	1,585 (7.1)	1,665 (7.4)	_	_	1,740 (7.7)			
	33/4 (95)	(114)	(152)	6,377 (28.4)	1,006 (4.5)	1,595 (7.1)	1,670 (7.4)	_	_	1,740 (7.7)				
		2¾ (70)	6 (152)					6,435 (28.6)	_	1,605 (7.1)	2,050 (9.1)	9,987 (44.4)	_	2,495 (7.8)
½ (12.7)	1/2 1/2 33/8	3 % (92)		8 (203)	9,324 (41.5)	1,285 (5.7)	2,330 (10.4)	2,795 (12.4)	13,027 (57.9)	597 (2.7)	3,255 (14.5)			
		5¾ (146)			11,319 (50.3)	1,245 (5.5)	2,830 (12.6)	3,045 (13.5)	_	_	3,255 (14.5)			
		2¾ (70)					7,745 (34.5)	_	1,940 (8.6)	2,220 (9.9)	9,987 (44.4)	_	2,495 (7.8)	
5% (15.9)	5/8	4 1/8 (105)	7½ (191)	10 (254)	8,706 (38.7)	1,830 (8.1)	2,175 (9.7)	3,415 (15.2)	18,607 (82.8)	1,650 (7.3)	4,650 (20.7)			
		5¾ (146)			12,498 (55.6)	2,227 (9.9)	3,125 (13.9)	3,890 (17.3)	_	_	4,650 (20.7)			
	3/4 (70) 3/4 (19.1) 3/4 (117) 53/4 (146)	23/4			7,832 (34.8)	_	1,960 (8.7)	2,415 (10.7)	11,460 (51.0)	_	2,865 (12.7)			
		45/8	9 (229)	12 (305)	11,222 (49.9)	2,900 (12.9)	2,805 (12.5)	4,490 (20.0)	24,680 (109.8)	2,368 (10.5)	6,170 (27.4)			
					19,793 (88.0)	3,547 (15.8)	4,950 (22.0)	5,560 (24.7)	24,680 (109.8)	795 (3.5)	6,170 (27.4)			

- 1. The allowable loads listed are based on a safefy factor of 4.0.
- 2. Refer to allowable load-adjustment factors for spacing and edge distance on pages 198 and 199.
- 3. The minimum concrete thickness is 11/2 times the embedment depth.
- 4. Tension and shear loads for the Titen HD anchor may be combined using the elliptical interaction equation (n=%). Allowable load may be interpolated for concrete compressive strengths between 2,000 psi and 4,000 psi.

^{*} See page 12 for an explanation of the load table icons.

SIMPSON Strong-Tie

Titen HD® Allowable Shear Loads in Normal-Weight Concrete, Load Applied Parallel to Concrete Edge

LUau F	Load Applied Farallel to Contrete Lage									
Size	Drill Bit	Embed.	Minimum Edge Dist. in. (mm)	Minimum End Dist. in. (mm)	Minimum Spacing Dist. in. (mm)	Shear Load Based on Concrete Edge Distance $f_c^* \ge 2,500$ psi (17.2 MPa) Concrete				
in.	Dia.	Depth in.								
(mm)	in.	(mm)				Ultimate lb. (kN)	Std. Dev. lb. (kN)	Allowable lb. (kN)		
		23/4 (70)		8 (203)	8 (203)	4,660 (20.7)	575 (2.6)	1,165 (5.2)		
1/2		31/4 (83)	13/4 (45)			_	_	1,530 (6.8)		
(12.7)		3½ (89)				6,840 (30.4)	860 (3.8)	1,710 (7.6)		
		4½ (114)				7,800 (34.7)	300 (1.3)	1,950 (8.7)		
		2¾ (70)			10 (254)	4,820 (21.4)	585 (2.6)	1,205 (5.3)		
5% (15.9)	5/8	31/4 (83)	13/4 (45)	10 (254)		_	_	1,580 (7.0)		
		31/2				7,060	1,284	1,765		

(31.4)

(5.7)

(7.9)

Note: Rebar not shown for clarity.

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. The minimum concrete thickness is 11/2 times the embedment depth.

Titen HD® Allowable Tension Loads in Normal-Weight Concrete Stemwall

(89)

			Stemwall Width in. (mm)	Min. Edge Dist. in. (mm)		Tension Load				
Size in.	Drill Bit Dia.	Embed. Depth in.			Min. End Dist.	f' _c ≥ 2,5 (17.2 N Concr	ИРа́)	f' _c ≥ 4,5 (31.0 N Concr	MPa)	
(mm)	in.	(mm)			in. (mm)	Ultimate lb. (kN)	Allow. lb. (kN)	Ultimate lb. (kN)	Allow. lb. (kN)	
1/2		10 6 (254) (152)	1¾	8 (203)	15,420 (68.6)	3,855 (17.1)	20,300 (90.3)	5,075 (22.6)		
(12.7)	1/2			(45)	4 % (111)	14,280 (63.5)	3,570 (15.9)	19,040 (84.7)	4,760 (21.2)	

- 1. The allowable loads are based on a safety factor of 4.0.
- 2. The minimum anchor spacing is 15 inches.

C-A-2016 @2015 SIMPSON STRONG-TIE COMPANY INC.

- 3. The minimum concrete thickness (depth) is 12 inches.
- 4. Allowable loads may be interpolated for compressive strengths between 2,500 and 4,500 psi.

Titen HD® Allowable Tension Loads in Normal-Weight Concrete, Load Applied at 60° Angle to Horizontal for Tilt-Up Wall Braces

		Drill Bit Embed.		Tension Applied at 60 degrees to Horizontal				
Size in. (mm)	Drill Bit Dia. in.	Depth in. (mm)	f¹ _c ≥ 2,500 psi (17.2 MPa) Concrete					
		(11111)	Ultimate lb. (kN)	Std. Dev. lb. (kN)	Allow. lb. (kN)			
5% (15.9)	5/8	5 (127)	13,420 (59.7)	1,273 (5.7)	3,355 (14.9)			
3/4 (19.1)	3/4	5 (127)	15,180 (67.5)	968 (4.3)	3,795 (16.9)			

- 1. The allowable loads are based on a safety factor of 4.0.
- Anchor must be installed into a concrete floor slab, footing, or deadman with sufficient area, weight, and strength to resist the anchorage load.
- Titen HD® has been qualified for temporary outdoor use of up to 90 days through testing for this application.

The Titen HD® screw anchor %" x 6" and %" x 7" (models THDT75600H and THD75700H) have a 1" section under the head that is unthreaded to allow installation into tilt-up wall braces.

^{*} See page 12 for an explanation of the load table icons.

Titen HD® Allowable Tension and Shear Loads in Sand-Lightweight Concrete over Metal Deck

₽Ć	→	

					Inst	tall in Concrete	(see Figure bel	ow)	Install t	hrough Metal D	eck (see Figure	e below)											
Size	Drill	Embed.	Critical Edge	Critical Spacing	Tensio	n Load	Shea	Load	Tensio	n Load	Shea	r Load											
in. (mm)	Bit Dia. in.	Depth in. (mm)	Dist. in.	Dist. in.	f' _c ≥ 3,000 psi (20.7 MPa) Lightweight Concrete		f' _c ≥ 3,000 psi (20.7 MPa) Lightweight Concrete		f' _c ≥ 3,000 ps Lightweigh	si (20.7 MPa) nt Concrete	f' _c ≥ 3,000 psi (20.7 MPa) Lightweight Concrete												
		(11111)	(mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lbs. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)											
3/8	3/	2¾ (70)	6	6	2,560 (11.4)	640 (2.8)	4,240 (18.9)	1,060 (4.7)	_	_	_	_											
(9.5)	70 3/2		(152)	(152)	_	_	_	_	5,420 (24.1)	1,355 (6.0)	4,100 (18.2)	1,025 (4.6)											
1/2	1/2	2¾ (70)	8	8	3,040 (13.5)	760 (3.4)	6,380 (28.4)	1,595 (7.1)	_	_	_	_											
(12.7)	72	4 (102)	(203)	8 (203)				_	_	_	_	7,020 (31.2)	1,755 (7.8)	6,840 (30.4)	1,710 (7.6)								
5/8	5% (15.9) 5%	2¾ (70)	10	10 (254)	10	10	10	10	10	10	10	10	10	10	10	3,100 (13.8)	775 (3.4)	6,380 (28.4)	1,595 (7.1)	_	_	_	_
(15.9)		. ,	(254)		_	_	_	_	8,940 (39.8)	2,235 (9.9)	10,700 (47.6)	2,675 (11.9)											

- 1. The allowable loads listed are based on a safety factor of 4.0.
- 2. Allowable loads for anchors installed in the lower flute of the steel deck are for flutes with a trapezoidal profile with a depth of 3 inches, and a width varying from 4½ inches at the bottom to 7½ inches at the top. The spacing of the flutes is 12 inches. The metal deck must be minimum 20-gauge with a minimum yield strength of 38 ksi and minimum ultimate strength of 45 ksi.
- 3. Anchors may be installed off-center in the lower flute (up to 11/2" from the edge of the lower flute) without a load reduction.
- 4.100% of the allowable load is permitted at critical edge distance and critical spacing. Testing at smaller edge distances and spacings has not been performed.

Titen HD® screw anchor installed in the top and bottom of a structural sand-lightweight-concrete and metal-deck assembly

Titen HD® Design Information — Masonry

Titen HD® Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU

Grout.	-Filleo	CIVIU						(<u>0.416.3</u>)					
Size	Drill	Min. Embed.	Critical Edge	Critical End	Critical Spacing	Values for 8-inch Lightweight, Medium-Weight or Normal-Weight Grout-Filled CMU							
in.	Bit Dia.	Depth	Dist.	Dist.	Dist.	Tensio	n Load	Shear Load					
(mm)	in.	in. (mm)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)				
		I	Anchor Ins	talled in t	he Face of	the CMU Wal	I (See Figure	4)					
3/8 (9.5)	3/8	2¾ (70)	12 (305)	12 (305)	6 (152)	2,390 (10.6)	480 (2.1)	4,340 (19.3)	870 (3.9)				
½ (12.7)	1/2	3½ (89)	12 (305)	12 (305)	8 (203)	3,440 (15.3)	690 (3.1)	6,920 (30.8)	1,385 (6.2)				
5/8 (15.9)	5/8	4½ (114)	12 (305)	12 (305)	10 (254)	5,300 (23.6)	1,060 (4.7)	10,420 (46.4)	2,085 (9.3)				
3/4	0.4	51/2	12	12	12	7.990	1.600	15.000	3.000				

IBC ↑ → F

(305)1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.

(35.5)

(7.1)

(66.7)

(13.3)

- 2. Values for 8-inch-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.

(140)

(305)

(19.1)

C-A-2016 @2015 SIMPSON STRONG-TIE COMPANY INC.

- 4. The minimum specified compressive strength of masonry, f'_{m} , at 28 days is 1,500 psi.
- 5. Embedment depth is measured from the outside face of the concrete masonry unit.

(305)

- 6. Allowable loads may be increased 331/3% for short-term loading due to wind or seismic forces where permitted by code.
- 7. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 8. Refer to allowable load-adjustment factors for spacing and edge distance on page 200.

Figure 4. Shaded Area = Placement for Full and Reduced Allowable Load Capacity in Grout-Filled CMU

Titen HD® Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Hollow CMU

I NOITHAI	vveigniti	IOIIOVV O	IVIO								
Cino	Drill	Embed.	Min.	Min. End Dist. in.	8-ir		MU Loads Based Strength				
Size in. (mm)	Bit Dia.	Depth⁴ in. (mm)	Edge Dist. in.		Tensio	n Load	Shear Load				
()	(mm) Dia.		(mm)	(mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)			
		An	chor Installe	ed in Face S	hell (See Fig	ell (See Figure 5)					
3/8 (9.5)	3/8	1 3/4 (45)	4 (102)	4 5/8 (117)	720 (3.2)	145 (0.6)	1,240 (5.5)	250 (1.1)			
½ (12.7)	1/2	1 3/4 (45)	4 (102)	4 5/8 (117)	760 (3.4)	150 (0.7)	1,240 (5.5)	250 (1.1)			
5% (15.9)	5/8	1 3/4 (45)	4 (102)	4 5/8 (117)	800 (3.6)	160 (0.7)	1,240 (5.5)	250 (1.1)			
3/4 (19.1)	3/4	1 3/4 (45)	4 (102)	4 5/8 (117)	880 (3.9)	175 (0.8)	1,240 (5.5)	250 (1.1)			

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values for 8-inch-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The minimum specified compressive strength of masonry, f'_m , at 28 days is 1,500 psi.
- 4. Embedment depth is measured from the outside face of the concrete masonry unit and is based on the anchor being embedded an additional ½" through 1 ¼" thick face shell.
- 5. Allowable loads may not be increased for short-term loading due to wind or seismic forces. CMU wall design must satisfy applicable design standards and be capable of withstanding applied loads.
- 6. Do not use impact wrenches to install in hollow CMU.
- 7. Set drill to rotation-only mode when drilling into hollow CMU.

^{*} See page 12 for an explanation of the load table icons.

Titen HD® Design Information — Masonry

Titen ${\rm HD^{\scriptsize @}}$ Allowable Tension and Shear Loads in 8" Lightweight, Medium-Weight and Normal-Weight Grout-Filled CMU Stemwall

IBC	1	→	*
l J	200.0	22.4 (1.54)	

Size Drill		Embed.	Min.	Min.	Critical	8-inch Grout-Filled CMU Allowable Loads Based on CMU Strength								
Size in.	Bit	Depth	Edge Dist.	End Dist.	Spacing Dist.	Ten	sion	Shear Per	p. to Edge	Shear Parallel to Edge				
(mm)		in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)	Ultimate lb. (kN)	Allowable lb. (kN)				
			An	chor Ins	talled in Ce	ell Opening o	Opening or Web (Top of Wall) (See Figure 6)							
½ (12.7)	1/2	4½ (114)	13/4 (45)	8 (203)	8 (203)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	2,920 (13.0)	585 (2.6)			
5/8 (15.9)	5/8	4½ (114)	13/4 (45)	10 (254)	10 (254)	2,860 (12.7)	570 (2.5)	800 (3.6)	160 (0.7)	3,380 (15.0)	675 (3.0)			

- 1. The tabulated allowable loads are based on a safety factor of 5.0 for installations under the IBC and IRC.
- 2. Values are for 8-inch-wide, lightweight, medium-weight and normal-weight concrete masonry units.
- 3. The masonry units must be fully grouted.
- 4. The minimum specified compressive strength of masonry, $f'_{\it m}$, at 28 days is 1,500 psi.
- 5. Allowable loads may be increased 331% for short-term loading due to wind or seismic forces where permitted by code.
- 6. Grout-filled CMU wall design must satisfy applicable design standards and be capable of withstanding applied design loads.
- 7. Loads are based on anchor installed in either the web or grout-filled cell opening in the top of wall.

Figure 6. Anchor Installed in top of wall

Titen HD® Design Information — Masonry

Titen HD $^{\otimes}$ Allowable Tension Loads for 8" Lightweight, Medium-Weight and Normal-Weight CMU Chair Blocks Filled with Normal-Weight Concrete

	1	1	Ш	(==7
RC		_	Ш	
- J		9.58		

Size in.	Drill Bit Dia.	Min. Embed. Depth	Min. Edge Dist.	Critical Spacing	8-inch Concrete-Filled CMU Chair Block Allowable Tension Loads Based on CMU Strength			
(mm)	(in.)	in. (mm)	in. (mm)	in. (mm)	Ultimate lb. (kN)	Allowable lb. (kN)		
		2 % (60)	13/4 (44)	9½ (241)	3,175 (14.1)	635 (2.8)		
3% (9.5)	3/8	3 % (86)	13/4 (44)	13½ (343)	5,175 (23.0)	1,035 (4.6)		
		5 (127)	21/4 (57)	20 (508)	10,584 (47.1)	2,115 (9.4)		
1/2	1/2	8 (203)	21/4 (57)	32 (813)	13,722 (61.0)	2,754 (12.2)		
(12.7)	/2	10 (254)	21/4 (57)	40 (1016)	16,630 (74.0)	3,325 (14.8)		
5/8	5/8	5½ (140)	13/4 (44)	22 (559)	9,025 (40.1)	1,805 (8.1)		
(15.9)		12 (305)	21/4 (57)	48 (1219)	18,104 (80.5)	3,620 (16.1)		

^{1.} The tabulated allowable loads are based on a safety factor of 5.0.

^{3.} Center #5 rebar in CMU cell and concrete slab as shown in the illustration below.

^{2.} Values are for 8-inch-wide concrete masonry units (CMU) filled with concrete, with minimum compressive strength of 2,500 psi and poured monolithically with the floor slab.

^{*} See page 12 for an explanation of the load table icons.

Load Adjustment Factors for Titen HD® Anchors in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the anchor embedment (E) used for either a tension and/or shear load application.
- 4. Locate the edge distance (c_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor(s).
- 7. Reduction factors for multiple edges are multiplied together.

Edge Distance Tension (f_c)

	Dia.		3/8		1/2			5/8			3/4		
Edge	Ε	11/2	23/4	33/4	23/4	35/8	53/4	23/4	41/8	53/4	23/4	45%	53/4
Dist.	Ccr	6	3	3	4	4	4	5	5	5	6	6	6
c _{act} (in.)	Cmin	6	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4
(111.)	f _{cmin}	1.00	0.83	0.73	0.67	0.57	0.73	0.67	0.57	0.59	0.67	0.48	0.58
13/4			0.83	0.73	0.67	0.57	0.73	0.67	0.57	0.59	0.67	0.48	0.58
2			0.86	0.78	0.71	0.62	0.76	0.70	0.60	0.62	0.69	0.51	0.60
21/4			0.90	0.84	0.74	0.67	0.79	0.72	0.64	0.65	0.71	0.54	0.63
21/2			0.93	0.89	0.78	0.71	0.82	0.75	0.67	0.68	0.73	0.57	0.65
23/4			0.97	0.95	0.82	0.76	0.85	0.77	0.70	0.72	0.75	0.60	0.68
3			1.00	1.00	0.85	0.81	0.88	0.80	0.74	0.75	0.77	0.63	0.70
31/4					0.89	0.86	0.91	0.82	0.77	0.78	0.79	0.66	0.73
31/2					0.93	0.90	0.94	0.85	0.80	0.81	0.81	0.69	0.75
3¾					0.96	0.95	0.97	0.87	0.83	0.84	0.83	0.72	0.78
4					1.00	1.00	1.00	0.90	0.87	0.87	0.84	0.76	0.80
41/4								0.92	0.90	0.91	0.86	0.79	0.83
41/2								0.95	0.93	0.94	0.88	0.82	0.85
43/4								0.97	0.97	0.97	0.90	0.85	0.88
5								1.00	1.00	1.00	0.92	0.88	0.90
51/4											0.94	0.91	0.93
5½											0.96	0.94	0.95
5¾											0.98	0.97	0.98
6		1.00									1.00	1.00	1.00

See notes below.

Edge Distance Shear (f_c)

	Dia.				1/2			5/8			3/4		
Edge	Ε	11/2	23/4	3¾	23/4	35/8	53/4	23/4	41/8	5¾	23/4	4%	5¾
Dist.	Ccr	6	41/2	41/2	6	6	6	71/2	71/2	71/2	9	9	9
c _{act} (in.)	Cmin	6	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4	13/4
()	f _{cmin}	1.00	0.25	0.24	0.25	0.20	0.17	0.19	0.16	0.19	0.19	0.14	0.13
13/4			0.25	0.24	0.25	0.20	0.17	0.19	0.16	0.19	0.19	0.14	0.13
2			0.32	0.31	0.29	0.25	0.22	0.23	0.20	0.23	0.22	0.17	0.16
21/2			0.45	0.45	0.38	0.34	0.32	0.30	0.27	0.30	0.27	0.23	0.22
3			0.59	0.59	0.47	0.44	0.41	0.37	0.34	0.37	0.33	0.29	0.28
31/2			0.73	0.72	0.56	0.53	0.51	0.44	0.42	0.44	0.39	0.35	0.34
4			0.86	0.86	0.65	0.62	0.61	0.51	0.49	0.51	0.44	0.41	0.40
41/2			1.00	1.00	0.74	0.72	0.71	0.58	0.56	0.58	0.50	0.47	0.46
5					0.82	0.81	0.80	0.65	0.63	0.65	0.55	0.53	0.52
51/2					0.91	0.91	0.90	0.72	0.71	0.72	0.61	0.58	0.58
6		1.00			1.00	1.00	1.00	0.79	0.78	0.79	0.66	0.64	0.64
61/2								0.86	0.85	0.86	0.72	0.70	0.70
7								0.93	0.93	0.93	0.78	0.76	0.76
71/2								1.00	1.00	1.00	0.83	0.82	0.82
8											0.89	0.88	0.88
81/2											0.94	0.94	0.94
9											1.00	1.00	1.00

The tabled adjustment values (f_c) have been calculated using the following information:

- 1. E = Embedment depth (inches).
- 2. c_{act} = actual edge distance at which anchor is installed (inches).
- 3. c_{cr} = critical edge distance for 100% load (inches).
- 4. c_{min} = minimum edge distance for reduced load (inches).
- 5. f_c = percent of allowable load at actual edge distance.
- 6. f_{CCT} = percentage of allowable load at critical edge distance. f_{CCT} is always = 1.00.
- 7. f_{cmin} = percent of allowable load at minimum edge
- 8. $f_c = f_{cmin} + [(1 f_{cmin}) (c_{act} c_{min}) / (c_{cr} c_{min})].$

^{*} See page 12 for an explanation of the load table icons.

Load Adjustment Factors for Titen HD® Anchors in Normal-Weight Concrete: Edge Distance, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance.
- 2. Locate the anchor size to be used for either a tension and/or a shear load application.
- 3. Locate the anchor embedment (E) used for either a tension and/or a shear load application.
- 4. Locate the edge distance (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor(s).
- 7. Reduction factors for multiple edges are multiplied together.

Spacing Tension (f_s)

	Dia.		3/8		1/2			5/8			3/4		
	Ε	11/2	23/4	3¾	23/4	35/8	53/4	23/4	41//8	5¾	23/4	45/8	53/4
s _{act} (in)	Scr	4	6	6	8	8	8	10	10	10	12	12	12
(111)	Smin	4	1 1/2	1 1/2	2	2	2	21/2	21/2	21/2	3	3	3
	f _{smin}	1.00	0.66	0.56	0.72	0.63	0.76	0.79	0.69	0.73	0.80	0.70	0.72
1													
1 ½			0.66	0.56									
2			0.70	0.61	0.72	0.63	0.76						
21/2			0.74	0.66	0.74	0.66	0.78	0.79	0.69	0.73			
3			0.77	0.71	0.77	0.69	0.80	0.80	0.71	0.75	0.80	0.70	0.72
4		1.00	0.85	0.80	0.81	0.75	0.84	0.83	0.75	0.78	0.82	0.73	0.75
5			0.92	0.90	0.86	0.82	0.88	0.86	0.79	0.82	0.84	0.77	0.78
6			1.00	1.00	0.91	0.88	0.92	0.89	0.83	0.86	0.87	0.80	0.81
7					0.95	0.94	0.96	0.92	0.88	0.89	0.89	0.83	0.84
8					1.00	1.00	1.00	0.94	0.92	0.93	0.91	0.87	0.88
9								0.97	0.96	0.96	0.93	0.90	0.91
10								1.00	1.00	1.00	0.96	0.93	0.94
11											0.98	0.97	0.97
12											1.00	1.00	1.00

See notes below

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Spacing Shear (f_s)

	0 (0)													
	Dia.		3/8		1/2			5/8			3/4			
	Ε	11/2	23/4	3¾	23/4	35/8	5¾	23/4	41/8	5¾	23/4	45/8	5¾	
s _{act} (in)	Scr	4	0	0	0	0	0	0	0	0	0	0	0	
(111)	Smin	4	0	0	0	0	0	0	0	0	0	0	0	
	f _{smin}	1.00	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.77	
1														
1 1/2			0.77	0.77	0.88									
2			0.80	0.80	0.77	0.77	0.77							
21/2			0.82	0.82	0.79	0.79	0.79	0.77	0.77	0.77				
3			0.85	0.85	0.81	0.81	0.81	0.79	0.79	0.79	0.77	0.77	0.77	
4		1.00	0.90	0.90	0.85	0.85	0.85	0.82	0.82	0.82	0.80	0.80	0.80	
5			0.95	0.95	0.89	0.89	0.89	0.85	0.85	0.85	0.82	0.82	0.82	
6			1.00	1.00	0.92	0.92	0.92	0.88	0.88	0.88	0.85	0.85	0.85	
7					0.96	0.96	0.96	0.91	0.91	0.91	0.87	0.87	0.87	
8					1.00	1.00	1.00	0.94	0.94	0.94	0.90	0.90	0.90	
9								0.97	0.97	0.97	0.92	0.92	0.92	
10								1.00	1.00	1.00	0.95	0.95	0.95	
11											0.97	0.97	0.97	
12											1.00	1.00	1.00	

The tabled adjustment values (f_{s}) have been calculated using the following information:

- 1.E = Embedment depth (inches).
- 2. s_{act} = actual spacing distance at which anchors are installed (inches).
- 3. s_{cr} = critical spacing distance for 100% load (inches).
- 4. s_{min} = minimum spacing distance for reduced load (inches).
- 5. f_s = adjustment factor for allowable load at actual spacing distance.
- 6. f_{SCT} = adjustment factor for allowable load at critical spacing distance. f_{SCT} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

^{*} See page 12 for an explanation of the load table icons.

C-A-2016 @ 2015 SIMPSON STRONG-TIE COMPANY INC.

Titen HD® Design Information — Masonry

Load-Adjustment Factors for Titen HD® Anchors in Face-of-Wall Installation in 8" Grout-Filled CMU: Edge Distance and Spacing, Tension and Shear Loads

How to use these charts:

- 1. The following tables are for reduced edge distance and spacing.
- 2. Locate the anchor size to be used for either a tension and/or shear load application.
- 3. Locate the embedment (E) at which the anchor is to be installed.
- 4. Locate the edge distance (c_{act}) or spacing (s_{act}) at which the anchor is to be installed.
- 5. The load adjustment factor (f_c or f_s) is the intersection of the row and column.
- 6. Multiply the allowable load by the applicable load adjustment factor.
- 7. Reduction factors for multiple edges or spacings are multiplied together.

Edge or End Distance Tension (f_c)

_			. 0,			
	Dia.	3F8	1/2	5F8	3F4	IBC *
	E	4 1/2	31/2	4 1/2	4 1/2	
c _{act} (in.)	C _{cr}	12	12	12	12	
()	C _{min}	4	4	4	4	W 53
	f _{cmin}	1.00	1.00	0.83	0.66	(==/=·
4		1.00	1.00	0.83	0.66	
6		1.00	1.00	0.87	0.75	
8		1.00	1.00	0.92	0.83	√ j
10		1.00	1.00	0.96	0.92	
12		1.00	1.00	1.00	1.00	

See notes below

Edge or End Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Towards Edge or End)

0	`		0	,		
c _{act} (in.)	Dia.	3/8	1/2	5/8	3/4	IBC
	E	2¾	31/2	4 1/2	5 1/2	IDC
	C _{cr}	12	12	12	12	-
	C _{min}	4	4	4	4	257 Et
	f _{cmin}	0.58	0.38	0.30	0.21	(==(
4		0.58	0.38	0.30	0.21	
6		0.69	0.54	0.48	0.41	
8		0.79	0.69	0.65	0.61	
10		0.90	0.85	0.83	0.80	
12		1.00	1.00	1.00	1.00	

- 1. E = Embedment depth (inches).
- $2. c_{act}$ = actual end or edge distance at which anchor is installed (inches).
- 3. c_{cr} = critical end or edge distance for 100% load (inches).
- 4. c_{min} = minimum end or edge distance for reduced load (inches).
- 5. f_c = adjustment factor for allowable load at actual end or edge distance.
- 6. f_{ccr} = adjustment factor for allowable load at critical end or edge distance. f_{ccr} is always = 1.00.
- 7. f_{cmin} = adjustment factor for allowable load at minimum end or edge distance.
- $8.\,f_{c} = f_{cmin} + \left[\left(1 f_{cmin} \right) \left(c_{act} c_{min} \right) / \left(c_{cr} c_{min} \right) \right].$

Spacing Tension (f_s)

	Dia.	3/8	1/2	5/8	3/4	IB
	E	23/4	3 1/2	4 1/2	5 1/2	
s _{act} (in.)	s _{cr}	6	8	10	12	1
(111.)	S _{min}	3	4	5	6	257
	f _{smin}	0.87	0.69	0.59	0.50	<u></u>
3		0.87				世
4		0.91	0.69			n-
5		0.96	0.77	0.59		14—
6		1.00	0.85	0.67	0.50	-
8			1.00	0.84	0.67	
10				1.00	0.83	
12					1.00	

- 1. E = Embedment depth (inches).
- $2. s_{act}$ = actual spacing distance at which anchors are installed (inches).
- $3. s_{cr}$ = critical spacing distance for 100% load (inches).
- 4. s_{min} = minimum spacing distance for reduced load (inches).
- $5.\,f_{\rm S}=$ adjustment factor for allowable load at actual spacing distance.
- $6.\,f_{SCr}$ = adjustment factor for allowable load at critical spacing distance. f_{SCr} is always = 1.00.
- 7. f_{smin} = adjustment factor for allowable load at minimum spacing distance.
- 8. $f_s = f_{smin} + [(1 f_{smin}) (s_{act} s_{min}) / (s_{cr} s_{min})].$

* See page 12 for an explanation of the load table icons.

Edge and End Distance Shear (f_c) Shear Load Parallel to Edge or End

	Dia.	3/8	1/2	5/8	3/4
	E	23/4	31/2	41/2	41/2
act in.)	C _{cr}	12	12	12	12
,	Cmin	4	4	4	4
	f _{cmin}	0.77	0.48	0.46	0.44
		0.77	0.48	0.46	0.44
		0.83	0.61	0.60	0.58
3		0.89	0.74	0.73	0.72
0		0.94	0.87	0.87	0.86
2		1.00	1.00	1.00	1.00

See notes below

Edge or End Distance Shear (f_c) Shear Load Perpendicular to Edge or End (Directed Away From Edge or End)

,		•		0	,	
c _{act} (in.)	Dia.	3/8	1/2	5/8	3/4	
	E	23/4	31/2	4 1/2	5 1/2	
	C _{cr}	12	12	12	12	
(111.)	Cmin	4	4	4	4	
	f _{cmin}	0.89	0.79	0.58	0.38	
4		0.89	0.79	0.58	0.38	
6		0.92	0.84	0.69	0.54	
8		0.95	0.90	0.79	0.69	
10		0.97	0.95	0.90	0.85	
12		1.00	1.00	1.00	1.00	

Spacin	ig Shea	ar (f _s)				
s _{act} (in.)	Dia.	3/8	1/2	5/8	3/4	IBC
	E	23/4	3 1/2	4 1/2	51/2	ibu
	Scr	6	8	10	12	→
	Smin	3	4	5	6	87 89
	f _{smin}	0.62	0.62	0.62	0.62	(T T T T
3		0.62				
4		0.75	0.62			<u> </u>
5		0.87	0.72	0.62		<i>I</i> ←→ \
6		1.00	0.81	0.70	0.62	
8			1.00	0.85	0.75	
10				1.00	0.87	
12					1.00	