USN:	ourse Co	de :	16CS	63
Sixth Semester B.E Makeup Examination, SEPT	oct	20	20	
COMPILER DESIGN				
Time: 3 hrs Instructions: 1. Answer any Five full Questions selecting at least One Full Question Question carry Equal Marks. 3. Missing Data may be suitably assumed. In necessary.	antiam fun	Max.M om Ea Figure:	-L TT	
MODULE 1	L (co	PO	M
la. Explain with a diagram the phases of a Compiler. Show the trans these phases for the statement $a=b+c*5$, where a, b and c are reals.	ition ma	de by	eac	h of
1b. Explain typical Language Processing System with a neat diagram	[2]	[1]	[1]	[8]
Design a transition diagram to recognize the following tokens. i) Integer constant ii) Identifier	[2]	[1]	[1]	[6]
OR	[3]			[6]
2a. Explain with a neat diagram the interaction between Lexical Analyse2b. Design the transition diagram and hence write program to recognizei) Relational operator ii)unsigned number				[6]
2c. What are the applications of a Compiler? Explain.	[3]	[1]	[3]	[8]
MODULE 2	[2]	[1]	[1]	[6]
3a. Give the algorithm for the Left Recursion .Apply the technique recursion from the following grammar. A→BC a B→CA Ab C→AB CC a	and el	imina	ite L	eft
3b. Explain Panic mode and phrase level error recovery strategies.	[3]	[1]	[3]	[8]
3c, Find the First and Follow for the given grammar $E \rightarrow E+T \mid T$ $T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid id$	[2]	[1]	[1]	[6]
OR	[3]	[1]	[3]	
4a. Develop predictive parsing table for the following grammar ,show the parser for the given input string $(a,(a,a))$ $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$	moves	made	by t	he

4b. Give the algorithm for constructing First and Follow sets with an example. [3] [1] [3] [8]

4c. Write an Algorithm to Left Factor a grammar .Give the Left Factored grammar for the [1] [6] following.

 $S \rightarrow iEtS \mid iRtSeS \mid a$ $E \rightarrow b$

3

3

3

)

3

3

MODULE 3 5a. Construct LALR parsing table for the given grammar. S' →S S→ CC C−	+cC [3]	d [1]	[3]	[8	3]	
5b. Explain the working of Shift reduce parser.	[2]	[1]	[1]	[5]	
5c. Analyse the grammar and hence find LR(0) items S→(S) S S→€	[4]	[1]	[3] [6]	
OR Show the mo	oves	mad	le b	y tł	ne	
OR 6a. Construct SLR Parsing Table for the following grammar. Show the more parser for the input aa*a+ S→SS+ SS* a	a [1	11	[1, 2]	Ų	v)	
6b. Write an algorithm for constructing SLR parsing table and hence Expla Shift reduce parsing with suitable examples	in the	e co	nflio [1]	ets [of [0]	
MODULE 4						
7a. Explain the parser stack implementation of postfix SDT with an example	e [2]	[2]] [1]	[8]	
7b. Construct Directed Acyclic Graph for the expression $a + a * (b - c) + (b - c) * d$	[3]	[2) [3]	[6]	
7c. Explain the following with an example i) Quadruples ii) Triples iii) Indirect Triples	[2]	[2	3]	[1]	[6]	
OR						
8a. Write Syntax Directed definition for flow of control statements	[2]] [2	2]	[1]	[8]	
8b. Construct a Dependency Graph for the declaration float id1, id2, id3	[3]) [2]	[3]	[6]	
8c. Write annotated parse tree for 6 * 5 + 7m using top down approach. w					es [6]	
for each. MODULE 5	[3	1 1	[2]	[3]	[O]	
9a. Discuss the issues in the design of a code generator						
9a. Discuss the issues in the design of a code gas. 9b. Illustrate with an example, common sub expression and dead code eli	[2] mina	tion	imet	[1] :ho	(10) ds (10)	
OP				լոյ	[10]	
10a. Apply the code generation algorithm to translate the basic block show	wn be	elow	7			
t = a - b						
u = a - c						
v = t + u $a = d$						
d = v + u denote the block while a b c d are y	varial	bles	that	are	e line	
d = v + u assume t, u, v are temporaries local to the block while a, b, c, d are v						
on exit from the block	[[3]	[3]	[3	[10]	i
10b. Explain the following with suitable examples						
i) Basic blocks						
ii) Flow Graphs		[2]	[3]	[:	[10)]

	USN		1	5 CS 63	3/16CS6	3
	Sixt	th Semester B.E. Fast Track Semester End Examinat	ion, .	July/A	ugust 2	019
	Time:	COMPILER DESIGN 3 Hours		Max	. Marks:	100
		Instructions: 1. UNIT I & V are Compulsory. 2. Answer any one full question from remaining 3. Assume any missing information	g each	UNITS.		Transfer of the same
1	la.	UNIT - I (Compulsory) With suitable example explain the role of LEXICAL ANALYSER is interaction between parser.	L n the c	CO ompilati	PO on proces	M ss and
	b.	Construct Transition diagram for token Relation Operators (<, <=, language and design a lexical analyzer in C++ using techniques suital recognize the same. Assume suitable C++ functions to read, failure an	ble for	, <>, = hand im	plementat	
			(6)	(1)	(3, 5)	(10)
. 2	2 a.	UNIT – II Consider the Grammar	L	CO	PO	M
	b.	S→S+S SS (S) S* a 1. Write LMD and RMD for the input string w = (a + a) * a 2. Construct Parse Tree for the same string 3. What is ambiguous grammar? Is the above grammar ambiguo What is Left Recursion? Give the Algorithm to eliminate left recurse eliminate the left recursion for the following grammar. A→ABd Aa a B→Be b	(3)	(1)	(12) Algorith	(10) m and
		B→Be b	(2)	(1)	(3,12)	(10)
3	3 a.	OR What is the need of left factoring? Given the grammar A→ aAB aBc aAc B→D 1. Left factor the above grammar 2. Define FIRST and FOLLOW symbols and Construct FIRST grammar				
)	b.	Explain the model of Predictive Parser with Parsing Algorithm.	(4)	(1)	(3, 12)	(10)
4	, a.	UNIT - III What is Handle? For the following grammar S→SS+ SS* a 1. Indicate the handle for right sentential forms. aaa*a++	(2) L	CO	(3,12) PO	(10) M
		2. Write the configuration of shift Reduce parser for the input:	aaa*a+	+		
	b.	Explain the working Model of LR parser with Parsing Algorithm	(3)	(1)	(1,3)	(10)
		Note: L (Level), CO (Course Outcome), PO (Programme Outcome), M	(2)	(1)	(1,12)	(10)
		in the Branning Odiconie, W	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

		OR		9		
5	a	What is LR(0) item in SLR parser? Give the Algorithm to build the citems along with two procedures CLOSURE and GOTO	collection	ns of se	ts of valid	LR(0
			(2)	(1)	(1,12)	(10)
	b	Construct canonical sets of LR(0) items for the following grammar. $S \rightarrow 0 S 1 \mid 01$				
			(3)	(1)	(1,3)	(10
		UNIT – IV	L	CO	PO	M
6	a.	Define Synthesized Attribute and Give SDD for simple calculator tree for expression 3+5 * 4n	and Dra	aw the	Annotated	pars
		•	(3)	(2)	(3,5)	(10)
	b.	Define Inherited Attribute and Give SDD for simple TYPE declar	ation o	f C-lan	guage for	` '
		and Integer data-types. Draw the Annotated parse tree for type decl				
			(3)	(2)	(3,5)	(10)
		OR	A	ONY		. ,
7	a.	Write S-Attributed Definition to Construct Syntax Trees for Sin Indicate the steps of construction of syntax tree for the expression a-		thmetic	expression	n and
			(3)	(2)	(3,5)	(10)
	b.	What is Three Address Code? Construct the Three Address code for	the follo	owing e		()
		1. $a + b + (a + b)$		C	•	
		2. $a + a * (b - c) + (b - c) * d$				
			(4)	(2)	(3,5)	(10)
		UNIT –V (Compulsory)	\mathbf{L}	CO	PO	M
8	a.	Generate the Target code for the following three address statement memory locations.	ts assun	ning all	variables	are in
		1. x=y-z				
		2. b=a[i]				
		3. if $x < y$ goto L				
		(C.)	(4)	(3)	(2 12)	(10)
	b.	Discuss the following code optimization techniques	(4)	(3)	(3, 12)	(10)
		1. Finding Local Common Sub-expression and elimination				
		2. Loop Optimization				
			(2)	(3)	(5,12)	(10)
			(-)	(0)	(0,12)	(10)

Explain Recursive-Descent parsing algorithm and discuss the difficulties to implement

What is Left Factoring? Explain the algorithm for Left factoring the grammar G. Apply the

b.

c.

Recursive Descent Parser.

technique and left factor the following grammar.

(Level [2], CO [2], PO [3])

(Level [2], CO [2], PO [1])

06 M

08 M

```
(Level [2, 3], CO [2], PO [3])
                                              UNIT - III
                                                                                                      12 M
5
         Construct SLR Parsing Table for the following grammar:
                S \rightarrow SS + |SS^*| a
         Show the moves made by the parser on input: aa*a+
                                                                 (Level [6,2], CO [2], PO [3,5])
         Explain the working of a Shift Reduce Parser. Show with suitable examples the
    b.
          conflicts that may occur during shift reduce parsing.
                                                                    (Level [2], CO [2], PO
                                                  OR
         What is an LR(1) item? Construct canonical LR(1) collection of items and the
                                                                                                     12 M
    a.
          Automaton for the following grammar:
                   S \rightarrow CC
                 C \rightarrow aC \mid d
                                                                             eO [2], PO [1,3,5] )
                                                               ( Level [1,6]
    b.
          Compare LL and LR Parsing methods. Also Compare the different kinds of LR parsers
                                                                                                     08 M
                                                                    ()Level [2], CO [2], PO [1] )
                                              UNIT - IV
         How would you define Syntax Directed Definition? Construct semantic rules for the
7
    a.
                                                                                                     06 M
         following grammar and show the annotated parse for the string 3+5*4n
          L \rightarrow En
          E \rightarrow E + T
          E \rightarrow T
          T \rightarrow T*F
          T \rightarrow F
          F \rightarrow (E)
          F→ digit
                                                             (Level [1, 3], CO [3], PO [1, 3])
                          Construct a DAG, Three address code, Quadruple and Triple
    b.
         What is DAG?
         representation for the following expression.
             a + a * (b-c) + (b-c) *d.
                                                            (Level [1, 3], CO [4], PO [1, 3])
         Construct the semantic rules for translation of while statement of C language.
    c
                                                                                                    04 M
                                                               (Level [3], CO[3], PO[1,3])
                                              UNIT -V
         Explain in brief, various issues in code generation phase.
                                                                                                    10 M
                                                                    ( Level [2], CO [4], PO [1])
         Explain the following with suitable examples:
              Basic Blocks
                                                                                                    10 M
              Flow graphs
                                                                    ( Level [2], CO [4], PO [1])
```

 $S \rightarrow aS \mid Aa \mid Bb$

 $B \rightarrow b$

 $A \rightarrow abB \mid aB \mid cdg \mid cdeB \mid cdfB$