F-328 – Física Geral III

Aula exploratória-08 UNICAMP – IFGW

F328 - 1S2014

Pontos essenciais

Campo magnético \vec{B} causa uma força sobre uma carga em movimento

Força perpendicular a:

Nenhum trabalho realizado

Força magnética

Sobre uma carga em movimento

$$\vec{F}_{R} = q\vec{v} \times \vec{B}$$

Sobre um fio com corrente

(fluxo de cargas em movimento)

$$\vec{F}_B = i \vec{L} \times \vec{B}$$
(no sentido de i)

Campos elétricos e magnéticos (força de Lorentz)

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Vetores 3D

Sentido

• > Saindo da tela

× **→** Entrando na tela

Produto vetorial

$$\vec{A} \times \vec{B} = (A_y B_z - A_z B_y) \vec{i} + (A_z B_x - A_x B_z) \vec{j} + (A_x B_y - A_y B_x) \vec{k}$$

Sentido segue a regra da mão direita:

- Dobrar os dedos no sentido de de A para B
- Polegar indica a direção de $A \times B$

Vetores unitários

$$\vec{a} \times \vec{b} = \vec{0}$$
 \Longrightarrow Se a = b $(\vec{i} \times \vec{i} = \vec{0})$
= $+\vec{c}$ \Longrightarrow Se a e b estão na ordem i, j, k $(\vec{i} \times \vec{j} = \vec{k})$
= $-\vec{c}$ \Longrightarrow Se a e b **não e**stão na ordem $(\vec{i} \times \vec{k} = -\vec{j})$

Movimento de uma partícula carregada em um campo magnético uniforme

Movimento circular

• Raio:
$$r = \frac{mv}{|q|B}$$

• Período:
$$T = \frac{2\pi r}{v} = \frac{2\pi m}{|q|B}$$

• Frequência de cíclotron:
$$f = \frac{1}{T} = \frac{|q|B}{2\pi m}$$

Movimento helicoidal

$$\rightarrow \vec{v} \times \vec{B}$$

- \vec{v}_{\perp} : Movimento circular
- \vec{v}_{\parallel} : Movimento helicoidal

Passo:
$$p = v_{||}T = v_{||} \frac{2\pi m}{|q|B}$$

Torque em espira com corrente

Momento magnético dipolar da espira

$$\vec{F}_2 = -\vec{F}_4$$
 (têm mesma linha de ação)

$$F_1 = F_3 = ibB$$

A força líquida sobre a espira é nula

$$\vec{\mu} = NiA\hat{n}$$

Torque em relação ao ponto O

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Uma carga $q=-25~\mu\text{C}$ tem uma velocidade de 2×10^6 m/s fazendo um angulo de 45° com o eixo x no plano xz. Há um campo magnético de intensidade 0,03~T.

- a) Se \vec{B} está orientado ao longo do eixo z positivo, qual é a força atuando sobre a carga?
- b) Se a força atuando sobre a carga é igual a 4×10^{-3} N ao longo do eixo y positivo, quais são a direção e o sentido de \vec{B} ?

Uma barra de metal de massa *m* desloca-se sobre um par de guias condutoras longas e horizontais separadas por uma distância *d* e conectados a um dispositivo que fornece uma corrente *i* constante para o circuito. Existe um campo magnético vertical, como mostrado.

- a) se não há atrito e a barra parte do repouso em t = 0, mostre que no instante t a barra tem uma velocidade v = (Bid/m) t;
- b) em que sentido a barra vai se mover?
- c) se o coeficiente de atrito estático é μ_e , encontre o mínimo campo B necessário para iniciar o movimento da barra.

Uma espira de um fio consiste de duas semicircunferências conectadas por segmentos retos (conforme figura abaixo). A semicircunferência interna tem raio R_1 e a externa tem raio R_2 . Uma corrente i passa nessa espira com sentido anti-horário na parte externa. A espira está numa região onde há um campo de indução magnética uniforme entrando perpendicularmente no plano do papel.

- a) calcule a força magnética total sobre a espira;
- b) qual é o momento magnético dessa espira com corrente?
- c) qual é o torque magnético sobre a espira?

Um disco uniforme de massa m, raio R e densidade de carga superficial σ gira em torno do seu eixo com velocidade angular ω . Um campo magnético uniforme de módulo B atravessa o disco, fazendo um ângulo θ com o eixo de rotação do disco. Calcule:

- a)o momento de dipolo magnético do disco girante;
- b)o torque líquido sobre o disco.

Exercício 05 - Extra

Uma haste condutora de comprimento L=15 cm e de massa m=30 g está localizada sobre um plano inclinado que faz um ângulo $\theta=37^{\circ}$ com a horizontal. A corrente entra e sai da haste por fios flexíveis e leves que não são levados em consideração. Para qual corrente (intensidade e sentido) a haste está em equilíbrio num campo magnético vertical de intensidade B=0,25 T, como indicado na figura?

