In [1]:

```
# here comes the imports!
import numpy as np
import pandas as pd
import seaborn as sns

import matplotlib.pyplot as plt;
%matplotlib inline
import datetime
import time
```

In [2]:

```
# imports relativos a machine learning
import sklearn
from sklearn.model_selection import train_test_split
import h2o
from h2o.automl import H2OAutoML

from sklearn.metrics import f1_score
from sklearn.metrics import recall_score
from sklearn.metrics import precision_score
from sklearn.metrics import roc_auc_score
```

Versões dos pacotes utilizados!

Isto é relevante com respeito às questões 3 e 4, em que é pedido para especificar as versões das bibliotecas de Python para que os resultados possam ser reproduzidos.

In [3]:

```
print('A versão do numpy é {}'.format(np.__version__))
print('A versão do pandas é {}'.format(pd.__version__))
print('A versão do seaborn é {}'.format(sns.__version__))
print('A versão do sklearn é {}'.format(sklearn.__version__))
print('A versão do h2o é {}'.format(h2o.__version__))
```

```
A versão do numpy é 1.16.2
A versão do pandas é 0.23.4
A versão do seaborn é 0.9.0
A versão do sklearn é 0.20.3
A versão do h2o é 3.18.0.2
```

vamos ler o dataset utilizando o pandas!

In [4]:

```
data_json='./dataset.json'
df=pd.read_json(data_json)
```

In [5]:

df

Out[5]:

	branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quantity	re
0	0	143	0	0.0	854	292.91	21804	10	10
1	0	433	0	0.0	246	287.19	5486	20	16
2	0	486	0	0.0	1420	184.84	22662	12	24
3	0	107	0	0.0	1963	189.18	3956	18	28
4	0	768	0	0.0	1786	66.87	4730	5	17
5	0	740	0	0.0	2854	226.80	1835	10	07 🔻
4									•

In [7]:

```
# verificando o tipo das variaveis
df.dtypes
```

Out[7]:

branch_id	int64
customer_code	int64
group_code	int64
is_churn	float64
item_code	int64
item_total_price	float64
order_id	int64
quantity	int64
register_date	object
sales_channel	int64
segment_code	int64
seller_code	int64
total_price	float64
unit_price	float64
dtype: object	

Os tipos das variaveis parecem bem razoaveis

A coluna 'register_date' que é do tipo objeto, ela representa datas

Vamos ver as dimensões desse DataFrame!

Podemos acessar isso através do atributo .shape

In [8]:

```
df.shape
```

Out[8]:

(204428, 14)

```
In [9]:
```

```
print('Temos {0} linhas.'.format(df.shape[0]))
print('Temos {0} colunas.'.format(df.shape[1]))
```

Temos 204428 linhas. Temos 14 colunas.

Verificando se há duplicatas!

```
In [10]:
```

```
print(df.duplicated().any())
print(df.duplicated().sum())
```

True 53

Há 53 duplicatas! Vamos retirá-las.

```
In [11]:
```

```
df.drop_duplicates(inplace=True)
```

```
In [12]:
```

```
# verificando, novamente, se há duplicatas
print(df.duplicated().any())
print(df.duplicated().sum())
```

False

Não há mais valores duplicados!

```
In [ ]:
```

Vamos ver valores faltantes nesse DataFrame

In [13]:

```
df.isnull().any()
```

Out[13]:

branch id	False
_	False
customer_code	
group_code	False
is_churn	True
item_code	False
item_total_price	False
order_id	False
quantity	False
register_date	False
sales_channel	False
segment_code	False
seller_code	False
total_price	False
unit_price	False
dtype: bool	

In [14]:

```
df.isnull().sum()
```

Out[14]:

branch_id	0
customer_code	0
group_code	0
is_churn	1909
item_code	0
item_total_price	0
order_id	0
quantity	0
register_date	0
sales_channel	0
segment_code	0
seller_code	0
total_price	0
unit_price	0
dtype: int64	

só há valores faltantes na coluna 'is_churn'

Há 1909 valores faltantes na coluna 'is_churn', o que pode parecer bastante, mas o correto é ver como esse número se compara com o total de linhas

In [15]:

```
print('Porcentagem de valores faltantes {0}%'.format(100*1909/df.shape[0]))
```

Porcentagem de valores faltantes 0.9340672782874617%

Logo, temos menos de 1% de valores faltantes!

Vamos proceder removendo esses valores, que são relativamente poucos, que estão faltando na coluna 'is churn'

In [16]:

```
df.dropna(inplace=True)
```

Vamos verificar se ainda há valores faltantes

In [17]:

```
df.isnull().any()
```

Out[17]:

branch_id	False
customer_code	False
group_code	False
is_churn	False
item_code	False
item_total_price	False
order_id	False
quantity	False
register_date	False
sales_channel	False
segment_code	False
seller_code	False
total_price	False
unit_price	False
dtype: bool	

Não há mais valores faltantes!

Lidando com a coluna que é do tipo objeto, que

representa data!

In [18]:

```
df['register_date']
```

Out[18]:

```
0
          2017 - 11 - 10T00 : 00 : 00Z
1
          2011-05-16T00:00:00Z
2
          2018-01-24T00:00:00Z
3
          2010-07-28T00:00:00Z
4
          2010-12-17T00:00:00Z
5
          2009-05-07T00:00:00Z
6
          2013-12-17T00:00:00Z
7
          2009-09-29T00:00:00Z
8
          2017-11-09T00:00:00Z
9
          2008-08-19T00:00:00Z
10
          2011-01-27T00:00:00Z
          2013-07-31T00:00:00Z
11
12
          2016-07-19T00:00:00Z
13
          2015-02-18T00:00:00Z
          2017-06-05T00:00:00Z
14
15
          2008-01-18T00:00:00Z
          2017-07-10T00:00:00Z
16
17
          2018-01-29T00:00:00Z
18
          2018-06-13T00:00:00Z
19
          2016-03-15T00:00:00Z
20
          2016-03-10T00:00:00Z
21
          2011-07-09T00:00:00Z
22
          2018-03-21T00:00:00Z
23
          2016-10-24T00:00:00Z
24
          2010-05-07T00:00:00Z
25
          2011-09-22T00:00:00Z
26
          2008-06-26T00:00:00Z
27
          2011-04-29T00:00:00Z
28
          2017-02-02T00:00:00Z
29
          2013-12-04T00:00:00Z
204398
          2014-02-21T00:00:00Z
204399
          2009-02-19T00:00:00Z
204400
          2015-08-28T00:00:00Z
          2017-08-15T00:00:00Z
204401
204402
          2012-09-29T00:00:00Z
          2015-03-16T00:00:00Z
204403
          2010-07-27T00:00:00Z
204404
204405
          2015-02-11T00:00:00Z
          2015-04-15T00:00:00Z
204406
204407
          2015-11-17T00:00:00Z
204408
          2015-05-29T00:00:00Z
204409
          2009-07-30T00:00:00Z
204410
          2016-11-17T00:00:00Z
204411
          2016-09-23T00:00:00Z
204412
          2017-01-24T00:00:00Z
204413
          2018-05-18T00:00:00Z
204414
          2016-08-16T00:00:00Z
204415
          2014-01-24T00:00:00Z
204416
          2008-07-10T00:00:00Z
204417
          2012-08-21T00:00:00Z
204418
          2015-10-02T00:00:00Z
```

```
2017-10-19T00:00:00Z
204420
          2018-06-28T00:00:00Z
204421
          2018-01-24T00:00:00Z
204422
          2008-09-09T00:00:00Z
204423
          2017-02-15T00:00:00Z
          2018-05-23T00:00:00Z
204424
204425
          2014-10-20T00:00:00Z
          2015-08-18T00:00:00Z
204426
          2013-02-26T00:00:00Z
204427
Name: register date, Length: 202466, dtype: object
In [19]:
# vamos lidar com essa coluna!
redefinindo os índices
In [21]:
df=df.reset index(drop=True)
In [ ]:
In [22]:
# Usando série temporal!
In [23]:
df3=df.copy()
In [24]:
df3['Date']=pd.to_datetime(df3.register_date)
In [25]:
df3.sort_values(by='Date',inplace=True)
```

project_ambev2019_v1

8/11/2019

204419

In [26]:

df3.drop('register_date',axis=1,inplace=True)

In [27]:

df3

Out[27]:

	branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quantity	sa
91229	0	588	0	0.0	1768	166.04	0	2	
163387	0	588	0	0.0	2675	255.90	0	20	
51446	0	588	0	0.0	282	363.08	0	20	
81273	0	114	2	1.0	2675	382.65	1	50	
132216	0	435	0	0.0	2624	495.83	2	32	
13263	0	681	0	0.0	1778	116.56	6	3	•
4									•

In [28]:

#df3=df3.reset_index(drop=True,inplace=True)
df3=df3.reset_index(drop=True)

In [29]:

df3

Out[29]:

	branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quantity	sa
0	0	588	0	0.0	1768	166.04	0	2	
1	0	588	0	0.0	2675	255.90	0	20	
2	0	588	0	0.0	282	363.08	0	20	
3	0	114	2	1.0	2675	382.65	1	50	
4	0	435	0	0.0	2624	495.83	2	32	
5	0	681	0	0.0	1778	116.56	6	3	•
4									•

In [30]:

```
# Extracting date features
#df3['Date'].dt.weekofyear

df3['dayofmonth'] = df3['Date'].dt.day
df3['dayofweek'] = df3['Date'].dt.dayofweek
df3['month'] = df3['Date'].dt.month
df3['year'] = df3['Date'].dt.year
df3['weekofyear'] = df3['Date'].dt.weekofyear
df3['is_month_start'] = (df3['Date'].dt.is_month_start).astype(int)
df3['is_month_end'] = (df3['Date'].dt.is_month_end).astype(int)
```

In [31]:

```
df3.drop('Date',axis=1,inplace=True)
```

In [32]:

df3

Out[32]:

	branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_
0	0	588	0	0.0	1768	166.04	
1	0	588	0	0.0	2675	255.90	
2	0	588	0	0.0	282	363.08	
3	0	114	2	1.0	2675	382.65	
4	0	435	0	0.0	2624	495.83	
5	0	681	0	0.0	1778	116.56	
6	0	681	0	0.0	416	128.46	
7	0	613	0	0.0	1767	520.61	
8	0	681	0	0.0	282	155.95	
9	0	681	0	0.0	2630	176.85	
10	0	558	0	0.0	2630	863.53	
11	0	435	0	0.0	1774	171.35	
12	0	681	0	0.0	1785	108.26	
13	0	435	0	0.0	1963	165.25	
14	0	613	0	0.0	2630	139.70	
15	0	435	0	0.0	1967	247.93	
16	0	613	0	0.0	390	130.66	
17	0	507	0	0.0	1778	206.39	
18	0	613	0	0.0	360	118.70	
19	0	435	0	0.0	467	185.13	
20	0	681	0	0.0	1787	46.39	
21	0	613	0	0.0	2624	147.05	
22	0	435	0	0.0	2259	162.49	
23	0	507	0	0.0	2630	142.46	
24	0	507	0	0.0	1767	278.32	
25	0	507	0	0.0	246	303.55	
26	0	435	0	0.0	1966	326.06	
27	0	666	0	0.0	1767	624.73	
28	0	666	0	0.0	282	115.49	
29	0	681	0	0.0	1786	46.39	
202436	0	557	0	0.0	2624	218.40	246
202437	0	35	0	0.0	1778	127.85	246

	project_umbev2015_v1						
	branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_
202438	0	311	0	0.0	24	71.65	246
202439	0	311	0	0.0	2861	327.50	246
202440	0	311	0	0.0	2860	131.00	246
202441	0	311	0	0.0	2847	334.62	246
202442	0	557	0	0.0	795	329.22	246
202443	0	35	0	0.0	1781	108.66	246
202444	0	35	0	0.0	1414	315.32	246
202445	0	35	0	0.0	1787	51.14	246
202446	0	35	0	0.0	1410	235.43	246
202447	0	311	0	0.0	2844	225.20	246
202448	0	557	0	0.0	1767	376.20	246
202449	0	35	0	0.0	1601	193.12	246
202450	0	311	0	0.0	2865	520.25	246
202451	0	35	0	0.0	1605	396.01	246
202452	0	250	2	0.0	1159	4.23	246
202453	0	35	0	0.0	246	277.26	246
202454	0	250	2	0.0	1740	22.44	246
202455	0	557	0	0.0	2630	327.60	246
202456	0	35	0	0.0	1412	235.43	246
202457	0	311	0	0.0	2866	353.84	246
202458	0	557	0	0.0	359	252.36	246
202459	0	114	2	1.0	773	101.95	246
202460	0	114	2	1.0	889	175.49	246
202461	0	114	2	1.0	1924	76.74	246
202462	0	759	0	0.0	2854	126.01	246
202463	0	759	0	0.0	1970	1211.05	246
202464	0	759	0	0.0	2863	374.40	246
202465	0	759	0	0.0	2624	361.70	246

202466 rows × 21 columns

-	-	-
Tn		
1111		- 1 - 3
		- 4 - 1

In []:

In []:			
In []:			

Agora vamos às questões!

Question 1 (10 Points)

List as many use cases for the dataset as possible.

Re: Os casos de uso de uso para o conjunto de dados são:

- 1. saber em função do preço total 'total price' quantos clientes estão comprando certo item, criando intervalos para o preço total onde há maior lucro;
- 2. saber qual canal de venda gera maior lucro 'sales_channel', determinando uma preferência e onde investir:
- 3. determinar a partir de 'register_date' (data de pedido) qual ano período gerou maior lucro;
- 4. determinar a partir de 'total_price' (preço total) qual faixa gera mais lucro, buscando assim maximizar o lucro e otimizar o tipo de cliente;
- 5. a partir de 'segment_code' (código de segmento que o cliente pertence) otimizar ...
- 6. a partir de 'group_code' (código de grupo) otimizar o lucro da empresa e encontrar qual é o grupo ótimo de consumidor em que se deve ser investido mais esforços;
- 7. criar um modelo preditivo a partir de 'is_churn' para obter informações sobre qual grupo, segmento, canal de venda, vendedor, tem maior chance de que esse cliente retorne;
- 8. estudar qual 'seller_code' (código de vendedor) tem mais sucesso com os clientes.

Question 2 (10 Points)

Pick one of the use cases you listed in question 1 and describe how building a statistical model based on the dataset could best be used to improve the business this data comes from.

Re: Escolhendo o caso de uso 7 da questão 1 podemos criar um modelo estatístico, de machine learning, para prever se um dado cliente voltará, estudando então a influência dos features na predição dos dados.

Question 3 (20 Points)

Implement the model you described in question 2, preferably in Python. The code has to retrieve the data, train and test a statistical model, and report relevant performance criteria. Ideally, we should be able to replicate your analysis from your submitted source-code, so please explicit the versions of the tools and packages you are using.

A versão dos pacotes!

In [33]:

```
print('A versão do numpy é {}'.format(np.__version__))
print('A versão do pandas é {}'.format(pd.__version__))
print('A versão do seaborn é {}'.format(sns.__version__))
print('A versão do sklearn é {}'.format(sklearn.__version__))
print('A versão do h2o é {}'.format(h2o.__version__))
```

```
A versão do numpy é 1.16.2
A versão do pandas é 0.23.4
A versão do seaborn é 0.9.0
A versão do sklearn é 0.20.3
A versão do h2o é 3.18.0.2
```

separando em dados de treino e teste

In [34]:

```
#df_ml=df2.copy()
df_ml=df3.copy()
```

In [35]:

```
#msk = np.random.random(len(df_ml)) < 0.8
# criando a mascara
percent=0.66

msk=[]
for i in range(len(df_ml)):
    msk.append(i<=percent*len(df_ml))
msk=np.array(msk)</pre>
```

```
In [36]:
```

```
train = df_ml[msk]
```

In [37]:

test=df ml[~msk]

Vamos utilizar h2o para automatizar os cálculos estatísticos de machine learning.

Vamos initializar h2o!

In [40]:

h2o.init()

Checking whether there is an H2O instance running at http://localhos t:54321. (http://localhost:54321.) connected. Warning: Your H2O cluster version is too old (1 year, 5 months and 6 days)! Please download and install the latest version from http://h2 o.ai/download/ (http://h2o.ai/download/)

H2O cluster uptime: 11 secs

H2O cluster timezone: America/Sao_Paulo

H2O data parsing UTC

timezone:

H2O cluster version: 3.18.0.2

1 year, 5 months and 6 H2O cluster version age: days !!!

H2O cluster name: H2O_from_python_vagner_ig2b41

H2O cluster total nodes:

H2O cluster free 3.433 Gb memory:

H2O cluster total cores: 8

H2O cluster allowed 8 cores:

H2O cluster status: locked, healthy

H2O connection url: http://localhost:54321

H2O connection proxy:

False H2O internal security:

XGBoost, Algos,

H2O API Extensions: AutoML, Core V3, Core

None

Python version: 3.6.9 final

In [41]:

train.iloc[-1]

Out[41]:

branch_id	0.00
customer_code	377.00
group_code	0.00
is_churn	0.00
item_code	1048.00
item_total_price	97.08
order_id	16241.00
quantity	6.00
sales_channel	0.00
segment_code	0.00
seller_code	50.00
total_price	3216.77
unit_price	16.18
dayofmonth	17.00
dayofyear	48.00
dayofweek	2.00
month	2.00
year	2016.00
weekofyear	7.00
is_month_start	0.00
is_month_end	0.00
Name: 133627, dtype:	float64

In [42]:

test.iloc[1]

Out[42]:

branch_id	0.00
customer_code	428.00
group_code	0.00
is_churn	0.00
item_code	410.00
item_total_price	138.60
order_id	16245.00
quantity	3.00
sales_channel	0.00
segment_code	0.00
seller_code	39.00
total_price	1697.39
unit_price	45.64
dayofmonth	17.00
dayofyear	48.00
dayofweek	2.00
month	2.00
year	2016.00
weekofyear	7.00
is_month_start	0.00
is_month_end	0.00
Name: 133629, dtype:	float64

In [43]:

train=h2o.H2OFrame(train)

/home/vagner/anaconda3/lib/python3.6/site-packages/h2o/utils/shared_u tils.py:170: FutureWarning: Method .as_matrix will be removed in a fu ture version. Use .values instead.

data = _handle_python_lists(python_obj.as_matrix().tolist(), -1)[1]

Parse progress: |

http://localhost:8889/notebooks/project_ambev2019_v1.ipynb#

```
In [44]:
```

```
test=h2o.H20Frame(test)
```

/home/vagner/anaconda3/lib/python3.6/site-packages/h2o/utils/shared_u tils.py:170: FutureWarning: Method .as_matrix will be removed in a fu ture version. Use .values instead.

```
data = _handle_python_lists(python_obj.as_matrix().tolist(), -1)[1]
```

Parse progress: |

In [45]:

```
# Identify predictors and response
x = train.columns
y = "is_churn"
x.remove(y)
```

In [46]:

Χ

Out[46]:

```
['branch_id',
 'customer code',
 'group code',
 'item_code',
 'item_total_price',
 'order_id',
 'quantity',
 'sales_channel',
 'segment code',
 'seller_code',
 'total_price',
 'unit_price',
 'dayofmonth',
 'dayofyear',
 'dayofweek',
 'month',
 'year',
 'weekofyear',
 'is month_start',
 'is_month_end']
```

In []:

Let us visualize train

In [47]:

train

branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quan
0	588	0	0	1768	166.04	0	
0	588	0	0	2675	255.9	0	
0	588	0	0	282	363.08	0	
0	114	2	1	2675	382.65	1	
0	435	0	0	2624	495.83	2	
0	681	0	0	1778	116.56	6	
0	681	0	0	416	128.46	6	
0	613	0	0	1767	520.61	4	
0	681	0	0	282	155.95	6	
0	681	0	0	2630	176.85	6	
4							•

Out[47]:

Let us visualize the test

In [48]:

test

branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quan
0	237	0	0	1767	542.66	16232	
0	428	0	0	410	138.6	16245	
0	812	0	0	1760	14.4	16240	
0	636	0	0	204	117.08	16233	
0	103	0	0	361	295.08	16230	
0	636	0	0	1788	180.6	16233	
0	636	0	0	2630	183.32	16233	
0	237	0	0	1767	542.66	16229	
0	377	0	0	1045	149.34	16241	
0	812	0	0	1434	100.3	16240	
4							•

Out[48]:

In []:

In []:

In [49]:

For binary classification, response should be a factor
train[y] = train[y].asfactor()

In [50]:

test[y] = test[y].asfactor()

In [51]:

```
# Vamos limitar o número máximo de modelos
# Vamos tirar cross-validation, colocando nfols=0
# vamos limitar o tempo maximo de calculo
```

In [52]:

```
# Run AutoML for 20 base models (limited to 1 hour max runtime by default)
aml = H20AutoML(max_models=5,nfolds=0,max_runtime_secs=1200, seed=1)
aml.train(x=x, y=y, training_frame=train)
```

In [53]:

#salvando o modelo

In [54]:

```
#model_path = h2o.save_model(model=aml, path="./mymodel", force=True)
#h2o.save_model(aml.leader, path = "./mymodel")
```

In [55]:

aml.leader

Model Details

=========

H20GradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_grid_0_AutoML_20190811_201902_model_0

ModelMetricsBinomial: gbm
** Reported on train data. **

MSE: 3.285506325756697e-35 RMSE: 5.731933640366658e-18 LogLoss: 1.484852297690794e-19 Mean Per-Class Error: 0.0

AUC: 1.0 Gini: 1.0

Confusion Matrix (Act/Pred) for max f1 @ threshold = 1.0:

0 1 Error Rate

In [56]:

aml.leaderboard

model_id	auc	logloss
GBM_grid_0_AutoML_20190811_201902_model_0	1,000000	0,000000
GBM_grid_0_AutoML_20190811_201902_model_1	1,000000	0,000000
DRF_0_AutoML_20190811_201902	1,000000	0,005682
XRT_0_AutoML_20190811_201902	0,999999	0,018917
GLM_grid_0_AutoML_20190811_201902_model_0	0,945772	0,174354

Out[56]:

In [57]:

```
# If you need to generate predictions on a test set, you can make
# predictions directly on the `"H2OAutoML"` object, or on the leader
# model object directly
preds = aml.predict(test)
```

```
Parse progress: | 100%
gbm prediction progress: | 100%
```

In [58]:

(train.as_data_frame)

branch_id	customer_code	group_code	is_churn	item_code	item_total_price	order_id	quan
0	588	0	0	1768	166.04	0	
0	588	0	0	2675	255.9	0	
0	588	0	0	282	363.08	0	
0	114	2	1	2675	382.65	1	
0	435	0	0	2624	495.83	2	
0	681	0	0	1778	116.56	6	
0	681	0	0	416	128.46	6	
0	613	0	0	1767	520.61	4	
0	681	0	0	282	155.95	6	
0	681	0	0	2630	176.85	6	
4							•

Out[58]:

<bound method H20Frame.as_data_frame of >

In [59]:

```
lb=aml.leaderboard
lb.head(rows=lb.nrows)
```

model_id	auc	logloss
GBM_grid_0_AutoML_20190811_201902_model_0	1,000000	0,000000
GBM_grid_0_AutoML_20190811_201902_model_1	1,000000	0,000000
DRF_0_AutoML_20190811_201902	1,000000	0,005682
XRT_0_AutoML_20190811_201902	0,999999	0,018917
GLM_grid_0_AutoML_20190811_201902_model_0	0,945772	0,174354

Out[59]:

In [60]:

```
print('Generate Predictions!')

testy=aml.leader.predict(test)
#testy=testy.as_data_frame()
```

```
Generate Predictions!
gbm prediction progress: | The state of the stat
```

In [61]:

very nice
testy

p1	p0	predict
1e-19	1	0
3.51619e-19	1	0
1e-19	1	0

Out[61]:

In [405]:

#(test['is_churn']==testy['predict']).sum()/testy.shape[0]

```
In [62]:
test['is_churn']
is_churn
       0
       0
       0
       0
       0
       0
Out[62]:
In [63]:
testy['predict']
predict
     0
     0
     0
     0
     0
     0
     0
     0
     0
     0
Out[63]:
```

Calculation of some metrics of the predicted model!

The f1_score

```
In [65]:
f1_score(testy['predict'].as_data_frame(),test['is_churn'].as_data_frame())
Out[65]:
0.762225147481839
```

The Recall

```
In [66]:
recall_score(testy['predict'].as_data_frame(),test['is_churn'].as_data_frame())
Out[66]:
1.0
```

The Precision

```
In [67]:
precision_score(testy['predict'].as_data_frame(),test['is_churn'].as_data_frame())

Out[67]:
0.6158027414526548
```

The ROC AUC score

```
In [68]:
roc_auc_score(testy['predict'].as_data_frame(),test['is_churn'].as_data_frame())
Out[68]:
0.9600383474541551
```

O valor de 'ROC AUC Score' acima, que é próximo a 1, mostra que temos um modelo bom para classificação binária do target 'is_churn'.

In []:		
In []:		
In []:		

Question 4 (60 Points)

A. Explain each and every of your design choices, you can use jupyter notebooks. (e.g., preprocessing, model selection, hyper parameters, evaluation criteria). Compare and contrast your choices with alternative methodologies.

Foi escolhido utilizar o h2o para efetuar os cálculos de machine learning, pois é um pacote que otimiza o tempo de cálculo de cada algoritmo e tem uma ótima automatização. O h2o consegue achar o melhor modelo e qual modelo prediz melhor o 'target', juntamente com os parâmetros do modelo que vão gerar os melhores resultados, permitindo saber qual a melhor faixa de parâmetros a serem escolhidos no modelo.

Foi retirada a validação cruzada (cross-validation), colocando o parâmetro nfolds=0, uma vez que ela não é uma boa prática para séries temporais. A melhor técnica no caso para cross validation é a 'walkforward' [https://medium.com/@samuel.monnier/cross-validation-tools-for-time-series-ffa1a5a09bf9] (https://medium.com/@samuel.monnier/cross-validation-tools-for-time-series-ffa1a5a09bf9%5D). No entanto, essa técnica de cross validation não está implementada no automl.

A métrica mais interessante para o problema de prever 'is_churn', uma vez que é uma classificação binária, é a "ROC AUC" (Area Under the ROC Curve), pois ela está intimamente ligada com a taxa de true positives e falsos positivos.

O melhor modelo foi obtido com base na métrica "ROC AUC", que é feito automaticamente no h2o.

Alternativamente, é interessante olhar para as métricas recall e precision, uma vez que elas estão relacionadas com 'true positives' e 'falsos positivos'. Essas métricas são importantes que elas identificam bem casos em que houve uma predição errada [https://medium.com/@yashwant140393/the-3-pillars-of-binary-classification-accuracy-precision-recall-d2da3d09f664] (https://medium.com/@yashwant140393/the-3-pillars-of-binary-classification-accuracy-precision-recall-d2da3d09f664%5D).

In []:		
In []:		

B. Describe how you would improve the model in Question 3 if you had more time.

Seguem a seguir algumas melhorias que poderiam ser feitas no modelo (caso houvesse mais tempo):

- 1. O modelo poderia ser melhorado usando **feature engineering**, por exemplo, definindo novos features em termos dos antigos.
- 2. Também poderia ser trabalhada a remoção de outliers, removendo, por exemplo, 10% dos dados mais "fora da curva" que seriam os que estão mais distantes da média, com base em uma função custo que é a diferença entre predição (através de uma regressão linear dos dados) e o valor do ponto, e assim eliminando-os do conjunto de dados;
- 3. Também é possível aumentar o número de modelos testados e o tempo de execução total dos cálculos ou o tempo máximo de cada modelo;
- 4. Poderíamos também refinar o melhor modelo que foi encontrado (aqui LightGBM) e refinar os parâmetros que o h2o devolve ao final dos cálculos;
- 5. poderíamos também melhor as features temporais e adicionar feriados regionais e nacionais.

In []:			