DD2370 Computational Methods for Electromagnetics Weighted Residual Formulation of Finite Element Method

Stefano Markidis, KTH Royal Institute of Technology

Problem to be Solved

 We start by giving the general recipe for how to solve a differential equation by the FEM. The equation is written as

$$L[f] = s$$

• where \boldsymbol{L} is an operator, \boldsymbol{s} the source, and \boldsymbol{f} the unknown function to be computed in the region Ω .

1. Discretization

• Subdivide the solution domain into cells, or *elements*. For example, a 2D domain can be subdivided into triangles or quadrilaterals.

2. Approximation of solution with Basis Function

Approximate the solution by an expansion in a finite number of basis functions

$$f(\mathbf{r}) \approx \sum_{i=1}^{n} f_i \varphi_i(\mathbf{r})$$

Where f_i are (unknown) coefficients multiplying the basis functions ϕ_i .

The basis functions ϕ_i are generally low-order polynomials that are nonzero only in a few adjacent elements.

3. Form Residual

Form the **residual**

$$r = L[f] - s$$

which we want to make as small as possible.

In general, it will not be zero pointwise, but we require it to be zero in the so-called weak sense by setting a weighted average of it to zero.

4. Introduce Weighting Functions – Galerkin Method

- Choose *test*, or *weighting*, functions w_i , i = 1,2,...,n (as many as there are unknown coefficients) for weighting the residual r.
- Often, the weighting functions are the same as the basis functions
 - $w_i = \phi_i$, and this method is then called **Galerkin's method**.

5. Solve the equation of Weighted Residual

 Set the weighted residuals to zero and solve for the unknowns f; i.e., solve the set of equations

$$\langle w_i, r \rangle = \int_{\Omega} w_i \, r \, d\Omega = 0, i = 1, 2, \dots, n$$

"Finite Element"

- In mathematical definitions, the term *finite element* usually refers to an element (e.g., a triangle) together with a polynomial space defined in this element (e.g., the space of linear functions) and a set of degrees of freedom defined on this space (e.g., the values of the linear functions in the corners (nodes) of the triangle).
- This definition is seldom used in electrical engineering, where one tends to focus on the basis functions used to expand the solution instead.