Assignment - 4 (PDE)

Course Teacher Koeli Gheshal 1.9.2017

Q1. Form pde by eliminating arbitrary constants a and b from the following relations

(a) 2 = a(n+y)6 (b) 2 = an+by+ab (c) $2 = an+dy^2+b$ (d) $2 = aney+ \frac{1}{2} \times a^2e^2y+b$

[Ano: (a) $\beta = \alpha r$ (b) $z = \alpha \beta + \beta \alpha r + \beta \alpha r$ (c) $\alpha = 2 \beta \beta^2$ (d) $\alpha = \alpha \alpha e^{2\beta} + \beta e^{2\beta}$

92. Form a β de by eliminating ϕ from ϕ ($\gamma + \gamma + \gamma + \gamma^2 - 2^2$) =0

[Am: $(\gamma + 2)\beta - (\alpha + 2)\alpha = \lambda - \gamma$]

Q3. Test if $\beta^2 + \alpha^2 = 1$ and $(\beta^2 + \alpha^2) n = \beta 2$ are compatible on not. If yes, solve them.

[Am: $2^2 = x^2 + (y+c)^2$]

g4. Find a complete integral $2 = \beta n + 9 + \beta^2 + 4 + 4 + 6^2$ [Am. $2 = \alpha n + 6 + 6 + 4 + 6^2$]

95. Ze Find a complète integral of 22(\$22+92)=1.

[Am: $9a^4 (an+y+6)^2 = (a^2 z^2+1)^3$]

XXXX The End XXXX