Sequence Listing

```
<110> Baker, Kevin
      Botstein, David
      Eaton, Dan
      Ferrara, Napoleone
      Filvaroff, Ellen
      Gerritsen, Mary
      Goddard, Audrey
      Godowski, Paul
      Grimaldi, Christopher
      Gurney, Austin
      Hillan, Kenneth
      Kljavin, Ivar
      Napier, Mary
      Roy, Margaret
      Tumas, Daniel
      Wood, William
```

- <120> SECRETED AND TRANSMEMBRANE POLYPEPTIDES AND NUCLEIC
 ACIDS ENCODING THE SAME
- <130> P2548P1C1
- <150> 60/067,411
- <151> December 3, 1997
- <150> 60/069,334
- <151> December 11, 1997
- <150> 60/069335
- <151> December 11, 1997
- <150> 60/069,278
- <151> December 11, 1997
- <150> 60/069,425
- <151> December 12, 1997
- <150> 60/069,696
- <151> December 16, 1997
- <150> 60/069,694
- <151> December 16, 1997
- <150> 60/069,702
- <151> December 16, 1997
- <150> 60/069,870
- <151> December 17, 1997
- <150> 60/069,873
- <151> December 17, 1997
- <150> 60/068,017
- <151> December 18, 1997
- <150> 60/070,440

- <151> January 5, 1998
- <150> 60/074,086
- <151> February 9, 1998
- <150> 60/074,092
- <151> February 9, 1998
- <150> 60/075,945
- <151> February 25, 1998
- <150> 60/112,850
- <151> December 16, 1998
- <150> 60/113,296
- <151> December 22, 1998
- <150> 60/146,222
- <151> July 28, 1999
- <150> PCT/US98/19330
- <151> September 16, 1998
- <150> PCT/US98/25108
- <151> December 1, 1998
- <150> 09/216,021
- <151> December 16, 1998
- <150> 09/218,517
- <151> December 22, 1998
- <150> 09/254,311
- <151> March 3, 1999
- <150> PCT/US99/12252
- <151> June 22, 1999
- <150> PCT/US99/21090
- <151> September 15, 1999
- <150> PCT/US99/28409
- <151> November 30, 1999
- <150> PCT/US99/28313
- <151> November 30, 1999
- <150> PCT/US99/28301
- <151> December1, 1999
- <150> PCT/US99/30095
- <151> December 16, 1999
- <150> PCT/US00/03565
- <151> February 11, 2000
- <150> PCT/US00/04414
- <151> February 22, 2000

- <150> PCT/US00/05841 <151> March 2, 2000
- <150> PCT/US00/08439
- <151> March 30, 2000
- <150> PCT/US00/14042
- <151> May 22, 2000
- <150> PCT/US00/20710
- <151> July 28, 2000
- <150> PCT/US00/32678
- <151> December 1, 2000
- <150> PCT/US01/06520
- <151> February 28, 2001
- <160> 120
- <210> 1
- <211> 2454
- <212> DNA
- <213> Homo Sapien
- <400> 1
- ggactaatct gtgggagcag tttattccag tatcacccag ggtgcagcca 50 caccaggact gtgttgaagg gtgttttttt tcttttaaat qtaatacctc 100 ctcatctttt cttcttacac agtgtctgag aacatttaca ttatagataa 150 gtagtacatg gtggataact tetaetttta ggaggactac tetettetga 200 cagtectaga etggtettet acactaagae accatgaagg agtatgtget 250 cctattattc ctggctttgt gctctgccaa acccttcttt agcccttcac 300 acategeact gaagaatatg atgetgaagg atatggaaga cacagatgat 350 gatgatgatg atgatgatga tgatgatgat gatgaggaca actctcttt 400 tccaacaaga gagccaagaa gccattttt tccatttgat ctgtttccaa 450 tgtgtccatt tggatgtcag tgctattcac gagttgtaca ttgctcagat 500 ttaggtttga cctcagtccc aaccaacatt ccatttgata ctcgaatgct 550 tgatcttcaa aacaataaaa ttaaggaaat caaagaaaat gattttaaag 600 gactcacttc actttatggt ctgatcctga acaacaacaa gctaacgaag 650 attcacccaa aagcctttct aaccacaaag aagttgcgaa ggctgtatct 700 gtcccacaat caactaagtg aaataccact taatcttccc aaatcattag 750 cagaactcag aattcatgaa aataaagtta agaaaataca aaaggacaca 800

ttcaaaggaa tgaatgcttt acacgttttg gaaatgagtg caaaccctct 850 tgataataat gggatagagc caggggcatt tgaaggggtg acggtgttcc 900 atatcagaat tgcagaagca aaactgacct cagttcctaa aggcttacca 950 ccaactttat tggagcttca cttagattat aataaaattt caacagtgga 1000 acttgaggat tttaaacgat acaaagaact acaaaggctg ggcctaggaa 1050 acaacaaaat cacagatatc gaaaatggga gtcttgctaa cataccacgt 1100 gtgagagaaa tacatttgga aaacaataaa ctaaaaaaaa tcccttcagg 1150 attaccagag ttgaaatacc tccagataat cttccttcat tctaattcaa 1200 ttgcaagagt gggagtaaat gacttctgtc caacagtgcc aaagatgaag 1250 aaatctttat acagtgcaat aagtttattc aacaacccgg tgaaatactg 1300 ggaaatgcaa cctgcaacat ttcgttgtgt tttgagcaga atgagtgttc 1350 agcttgggaa ctttggaatg taataattag taattggtaa tgtccattta 1400 atataagatt caaaaatccc tacatttgga atacttgaac tctattaata 1450 atggtagtat tatatataca agcaaatatc tattctcaag tggtaagtcc 1500 actgacttat tttatgacaa gaaatttcaa cggaattttg ccaaactatt 1550 gatacataag gggttgagag aaacaagcat ctattgcagt ttcctttttg 1600 cgtacaaatg atcttacata aatctcatgc ttgaccattc ctttcttcat 1650 aacaaaaaag taagatattc ggtatttaac actttgttat caagcacatt 1700 ttaaaaagaa ctgtactgta aatggaatgc ttgacttagc aaaatttgtg 1750 ctctttcatt tgctgttaga aaaacagaat taacaaagac agtaatgtga 1800 agagtgcatt acactattct tattctttag taacttgggt agtactgtaa 1850 tatttttaat catcttaaag tatgatttga tataatctta ttgaaattac 1900 cttatcatgt cttagagccc gtctttatgt ttaaaactaa tttcttaaaa 1950 taaagcette agtaaatgtt cattaccaac ttgataaatg ctactcataa 2000 gagctggttt ggggctatag catatgcttt ttttttttta attattacct 2050 gatttaaaaa tototgtaaa aacgtgtagt gtttoataaa atotgtaact 2100 cqcattttaa tqatccqcta ttataaqctt ttaataqcat gaaaattgtt 2150 aggetatata acattgeeac tteaacteta aggaatattt ttgagatate 2200 cctttggaag accttgcttg gaagagcctg gacactaaca attctacacc 2250

aaattqtctc ttcaaatacq tatqqactgg ataactctga gaaacacatc 2300 tagtataact gaataagcag agcatcaaat taaacagaca gaaaccgaaa 2350 qctctatata aatqctcaqa qttctttatg tatttcttat tggcattcaa 2400 catatgtaaa atcagaaaac agggaaattt tcattaaaaa tattggtttg 2450 aaat 2454

<210> 2 <211> 379 <212> PRT <213> Homo Sapien

<400> 2 Met Lys Glu Tyr Val Leu Leu Leu Phe Leu Ala Leu Cys Ser Ala Lys Pro Phe Phe Ser Pro Ser His Ile Ala Leu Lys Asn Met Met Leu Lys Asp Met Glu Asp Thr Asp Glu Asp Asn Ser Leu Phe Pro Thr Arg Glu Pro Arg Ser His Phe Phe Pro Phe Asp Leu Phe Pro Met Cys Pro Phe Gly Cys Gln Cys Tyr Ser Arg Val Val His Cys Ser Asp Leu 80 Gly Leu Thr Ser Val Pro Thr Asn Ile Pro Phe Asp Thr Arg Met Leu Asp Leu Gln Asn Asn Lys Ile Lys Glu Ile Lys Glu Asn Asp 110 Phe Lys Gly Leu Thr Ser Leu Tyr Gly Leu Ile Leu Asn Asn Asn Lys Leu Thr Lys Ile His Pro Lys Ala Phe Leu Thr Thr Lys Lys 140 145 Leu Arg Arg Leu Tyr Leu Ser His Asn Gln Leu Ser Glu Ile Pro Leu Asn Leu Pro Lys Ser Leu Ala Glu Leu Arg Ile His Glu Asn 175 Lys Val Lys Lys Ile Gln Lys Asp Thr Phe Lys Gly Met Asn Ala 190 Leu His Val Leu Glu Met Ser Ala Asn Pro Leu Asp Asn Asn Gly 210 200 205

Ile Glu Pro Gly Ala Phe Glu Gly Val Thr Val Phe His Ile Arg 215 Ile Ala Glu Ala Lys Leu Thr Ser Val Pro Lys Gly Leu Pro Pro 230 235 Thr Leu Leu Glu Leu His Leu Asp Tyr Asn Lys Ile Ser Thr Val Glu Leu Glu Asp Phe Lys Arg Tyr Lys Glu Leu Gln Arg Leu Gly Leu Gly Asn Asn Lys Ile Thr Asp Ile Glu Asn Gly Ser Leu Ala Asn Ile Pro Arg Val Arg Glu Ile His Leu Glu Asn Asn Lys Leu Lys Lys Ile Pro Ser Gly Leu Pro Glu Leu Lys Tyr Leu Gln Ile Ile Phe Leu His Ser Asn Ser Ile Ala Arg Val Gly Val Asn Asp 325 320 Phe Cys Pro Thr Val Pro Lys Met Lys Lys Ser Leu Tyr Ser Ala 335 Ile Ser Leu Phe Asn Asn Pro Val Lys Tyr Trp Glu Met Gln Pro 350 Ala Thr Phe Arg Cys Val Leu Ser Arg Met Ser Val Gln Leu Gly Asn Phe Gly Met <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Synthetic Oligonucleotide Probe <400> 3 ggaaatgagt gcaaaccctc 20 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 4 tcccaagctg aacactcatt ctgc 24

```
<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 5
gggtgacggt gttccatatc agaattgcag aagcaaaact gacctcagtt 50
<210> 6
<211> 3441
<212> DNA
<213> Homo Sapien
<400> 6
cggacgcgtg ggcggacgcg tgggcccgcs gcaccgccc cggcccggcc 50
ctccgccctc cgcactcgcg cctccctccc tccgcccgct cccgcgccct 100
cetecetece tectececag etgtecegtt egegteatge egageetece 150
ggcccgccg gcccgctgc tgctcctcgg gctgctgctg ctcggctccc 200
ggccggcccg cggcgccggc ccagagcccc ccgtgctgcc catccgttct 250
gagaaggage egetgeeegt teggggageg geaggetgea cetteggegg 300
gaaggtctat gccttggacg agacgtggca cccggaccta gggcagccat 350
tcggggtgat gcgctgcgtg ctgtgcgcct gcgaggcgcc tcagtggggt 400
cgccgtacca ggggccctgg cagggtcagc tgcaagaaca tcaaaccaga 450
gtgcccaacc ccggcctgtg ggcagccgcg ccagctgccg ggacactgct 500
gccagacctg ccccaggag cgcagcagtt cggagcggca gccgagcggc 550
ctgtccttcg agtatccgcg ggacccggag catcgcagtt atagcgaccg 600
cggggagcca ggcgctgagg agcgggcccg tggtgacggc cacacggact 650
tcgtggcgct gctgacaggg ccgaggtcgc aggcggtggc acgagcccga 700
gtctcgctgc tgcgctctag cctccgcttc tctatctcct acaggcggct 750
ggaccgccct accaggatcc gcttctcaga ctccaatggc agtgtcctgt 800
ttgagcaccc tgcagccccc acccaagatg gcctggtctg tggggtgtgg 850
cgggcagtgc ctcggttgtc tctgcggctc cttagggcag aacagctgca 900
tgtggcactt gtgacactca ctcacccttc aggggaggtc tgggggcctc 950
teateeggea eegggeeetg getgeagaga eetteagtge eateetgaet 1000
ctagaaggcc ccccacagca gggcgtaggg ggcatcaccc tgctcactct 1050
```


<210> 7

<211> 954

<212> PRT

<213> Homo Sapien

<400> 7

Met Pro Ser Leu Pro Ala Pro Pro Ala Pro Leu Leu Leu Gly
1 5 10 15

Leu Leu Leu Gly Ser Arg Pro Ala Arg Gly Ala Gly Pro Glu
20 25 30

Pro Pro Val Leu Pro Ile Arg Ser Glu Lys Glu Pro Leu Pro Val 35 40 45

Arg Gly Ala Ala Gly Cys Thr Phe Gly Gly Lys Val Tyr Ala Leu
50 55 60

Asp Glu Thr Trp His Pro Asp Leu Gly Gln Pro Phe Gly Val Met
65 70 75

			365					370					375
Leu Gly	Glu	Leu	Gln 380	Met	Ala	Leu	Glu	Trp 385	Ala	Gly	Arg	Pro	Gly 390
Leu Arg	Ile	Ser	Gly 395	His	Ile	Ala	Ala	Arg 400	Lys	Ser	Cys	Asp	Val 405
Leu Gln	Ser	Val	Leu 410	Cys	Gly	Ala	Asp	Ala 415	Leu	Ile	Pro	Val	Gln 420
Thr Gly	Ala	Ala	Gly 425	Ser	Ala	Ser	Leu	Thr 430	Leu	Leu	Gly	Asn	Gly 435
Ser Leu	Ile	Tyr	Gln 440	Val	Gln	Val	Val	Gly 445	Thr	Ser	Ser	Glu	Val 450
Val Ala	Met	Thr	Leu 455	Glu	Thr	Lys	Pro	Gln 460	Arg	Arg	Asp	Gln	Arg 465
Thr Val	Leu	Cys	His 470	Met	Ala	Gly	Leu	Gln 475	Pro	Gly	Gly	His	Thr 480
Ala Val	Gly	Ile	Cys 485	Pro	Gly	Leu	Gly	Ala 490	Arg	Gly	Ala	His	Met 495
Leu Leu	Gln	Asn	Glu 500	Leu	Phe	Leu	Asn	Val 505	Gly	Thr	Lys	Asp	Phe 510
Pro Asp	Gly	Glu	Leu 515	Arg	Gly	His	Val	Ala 520	Ala	Leu	Pro	Tyr	Cys 525
Gly His	Ser	Ala	Arg 530	His	Asp	Thr	Leu	Pro 535	Val	Pro	Leu	Ala	Gly 540
Ala Leu	Val	Leu	Pro 545	Pro	Val	Lys	Ser	Gln 550	Ala	Ala	Gly	His	Ala 555
Trp Leu	Ser	Leu	Asp 560	Thr	His	Cys	His	Leu 565	His	Tyr	Glu	Val	Leu 570
Leu Ala	Gly	Leu	Gly 575	Gly	Ser	Glu	Gln	Gly 580	Thr	Val	Thr	Ala	His 585
Leu Leu	Gly	Pro	Pro 590	Gly	Thr	Pro	Gly	Pro 595	Arg	Arg	Leu	Leu	Lys 600
Gly Phe	Tyr	Gly	Ser 605	Glu	Ala	Gln	Gly	Val 610	Val	Lys	Asp	Leu	Glu 615
Pro Glu	Leu	Leu	Arg 620	His	Leu	Ala	Lys	Gly 625	Met	Ala	Ser	Leu	Met 630
Ile Thr	Thr	Lys	Gly 635	Ser	Pro	Arg	Gly	Glu 640	Leu	Arg	Gly	Gln	Val 645
His Ile	Ala	Asn	Gln 650	Cys	Glu	Val	Gly	Gly 655	Leu	Arg	Leu	Glu	Ala 660


```
<210> 8
   <211> 44
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic Oligonucleotide probe
    <210> 9
   <211> 28
   <212> DNA
    <213> Artificial Sequence
<223> Synthetic oligonucleotide probe
    <400> 9
    cggacgcgtg gggcctgcgc acccagct 28
    <210> 10
    <211> 36
    <212> DNA
    <213> Artificial Sequence
ş
    <220>
<223> Synthetic oligonucleotide probe
    gccgctcccc gaacgggcag cggctccttc tcagaa 36
    <210> 11
    <211> 36
    <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 11
    ggcgcacagc acgcagcgca tcaccccgaa tggctc 36
   <210> 12
   <211> 26
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic Oligonucleotide Probe
   <400> 12
    gtgctgccca tccgttctga gaagga 26
   <210> 13
```

- <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 13
 gcagggtgct caaacaggac ac 22
 <210> 14
 <211> 3231
 <212> DNA
 <213> Homo Sapien
 <400> 14
 qqcqqaqcaq ccctagccgc caccgtcgct ctcd
 - ggcggagcag ccctagccgc caccgtcgct ctcgcagctc tcgtcgccac 50 tgccaccgcc gccgccgtca ctgcgtcctg gctccggctc ccgcgccctc 100 ceggeeggee atgeageece geegegeeca ggegeeeggt gegeagetge 150 tgcccgcgct ggccctgctg ctgctgctgc tcggagcggg gccccgaggc 200 agetecetgg ccaaceeggt geeegeegeg ceettgtetg egeeegggee 250 gtgcgccgcg cagccctgcc ggaatggggg tgtgtgcacc tcgcgccctg 300 agecggaece geageacecg geceeegeeg gegageetgg etacagetge 350 acctgccccg ccgggatctc cggcgccaac tgccagcttg ttgcagatcc 400 ttgtgccagc aaccettgtc accatggcaa ctgcagcagc agcagcagca 450 gcagcagcga tggctacctc tgcatttgca atgaaggcta tgaaggtccc 500 aactgtgaac aggcacttcc cagtctccca gccactggct ggaccgaatc 550 catggcaccc cgacagcttc agcctgttcc tgctactcag gagcctgaca 600 aaatcctgcc tcgctctcag gcaacggtga cactgcctac ctggcagccg 650 aaaacagggc agaaagttgt agaaatgaaa tgggatcaag tggaggtgat 700 cccagatatt gcctgtggga atgccagttc taacagctct gcgggtggcc 750 gcctggtatc ctttgaagtg ccacagaaca cctcagtcaa gattcggcaa 800 gatgccactg cctcactgat tttgctctgg aaggtcacgg ccacaggatt 850 ccaacagtgc tccctcatag atggacgaag tgtgaccccc cttcaggctt 900 cagggggact ggtcctcctg gaggagatgc tcgccttggg gaataatcac 950 tttattggtt ttgtgaatga ttctgtgact aagtctattg tggctttgcg 1000 cttaactctg gtggtgaagg tcagcacctg tgtgccgggg gagagtcacg 1050

<210> 15

<211> 737

<212> PRT

<213> Homo Sapien

<400> 15

Met Gln Pro Arg Arg Ala Gln Ala Pro Gly Ala Gln Leu Leu Pro 1 5 10 15

Ala Leu Ala Leu Leu Leu Leu Leu Gly Ala Gly Pro Arg Gly
20 25 30

Ser Ser Leu Ala Asn Pro Val Pro Ala Ala Pro Leu Ser Ala Pro
40
45

Gly Pro Cys Ala Ala Gln Pro Cys Arg Asn Gly Gly Val Cys Thr
50 55 60

Ser Arg Pro Glu Pro Asp Pro Gln His Pro Ala Pro Ala Gly Glu 65 70 75

Pro Gly Tyr Ser Cys Thr Cys Pro Ala Gly Ile Ser Gly Ala Asn 80 85 90

Cys Gln Leu Val Ala Asp Pro Cys Ala Ser Asn Pro Cys His His 95 100 105

Gly Asn Cys Ser Ser Ser Ser Ser Ser Ser Ser Asp Gly Tyr Leu

695 700 705

Ser Arg Pro Ala Met Tyr Asp Val Ser Pro Ile Ala Tyr Glu Asp 710 715 720

Tyr Ser Pro Asp Asp Lys Pro Leu Val Thr Leu Ile Lys Thr Lys
725 730 735

Asp Leu

<210> 16

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 16

tgtaaaacga cggccagtta aatagacctg caattattaa tct 43

<210> 17

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 17

caggaaacag ctatgaccac ctgcacacct gcaaatccat t 41

<210> 18

<211> 508

<212> DNA

<213> Homo Sapien

<400> 18

acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
aggagatgct cgccttgggg aataatcact ttattggttt tgtgaatgat 150
tctgtgacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
aagatggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450

ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500

<220>

```
taggggag 508
<210> 19
<211> 508
<212> DNA
<213> Homo Sapien
<400> 19
ctctggaagg tcacggccac aggattccaa cagtgctccc tcatagatgg 50
 acgaaagtgt gaccccctt tcaggctttc agggggactg gtcctcctgg 100
 aggagatget egeettgggg aataateact ttattggttt tgtgaatgat 150
 tctgtgacta agtctattgt ggctttgcgc ttaactctgg tggtgaaggt 200
 cagcacctgt gtgccggggg agagtcacgc aaatgacttg gagtgttcag 250
 gaaaaggaaa atgcaccacg aagccgtcag aggcaacttt ttcctgtacc 300
 tgtgaggagc agtacgtggg tactttctgt gaagaatacg atgcttgcca 350
 gaggaaacct tgccaaaaca acgcgagctg tattgatgca aatgaaaagc 400
 aagatgggag caatttcacc tgtgtttgcc ttcctggtta tactggagag 450
 ctttgccaac cgaactgaga ttggagcgaa cgacctacac cgaactgaga 500
 taggggag 508
<210> 20
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide Probe
<400> 20
ctctggaagg tcacggccac agg 23
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 21
ctcagttcgg ttggcaaagc tctc 24
<210> 22
<211> 69
<212> DNA
<213> Artificial Sequence
```

<223> Synthetic oligonucleotide probe

<400> 22
cagtgetece teatagatgg acgaaagtgt gaceceett teaggegaga 50
getttgeeaa eegaactga 69

<210> 23

<211> 1520

<212> DNA

<213> Homo Sapien

<400> 23

getgagtetg etgeteetge tgetgetget eeageetgta acetgtgeet 50 acaccacgcc aggccccccc agagccctca ccacgctggg cgcccccaga 100 geccaeacea tgeegggeae etaegeteee tegaecaeae teagtagtee 150 caqcacccaq qqcctgcaag agcaggcacg ggccctgatg cgggacttcc 200 cgctcgtgga cggccacaac gacctgcccc tggtcctaag gcaggtttac 250 cagaaagggc tacaggatgt taacctgcgc aatttcagct acggccagac 300 cagcotggac aggottagag atggcotcgt gggcgcccag ttotggtcag 350 cctatgtgcc atgccagacc caggaccggg atgccctgcg cctcaccctg 400 qaqcaqattq acctdatacg ccgcatgtgt gcctcctatt ctgagctgga 450 gettgtgace teggetaaag etetgaacga caeteagaaa ttggeetgee 500 tcatcggtgt agagggtggc cactcgctgg acaatagcct ctccatctta 550 cgtaccttct acatgctggg agtgcgctac ctgacgctca cccacacctg 600 caacacacco tgggcagaga gotocgotaa gggcgtocac toottotaca 650 acaacatcag cgggctgact gactttggtg agaaggtggt ggcagaaatg 700 aaccgcctgg gcatgatggt agacttatcc catgtctcag atgctgtggc 750 acggcgggcc ctggaagtgt cacaggcacc tgtgatcttc tcccactcgg 800 ctgcccgggg tgtgtgcaac agtgctcgga atgttcctga tgacatcctg 850 cagettetga agaagaacgg tggegtegtg atggtgtett tgteeatggg 900 agtaatacag tgcaacccat cagccaatgt gtccactgtg gcagatcact 950 tcgaccacat caaggetgte attggateca agtteategg gattggtgga 1000 gattatgatg gggccggcaa attccctcag gggctggaag acgtgtccac 1050 atacccggtc ctgatagagg agttgctgag tcgtggctgg agtgaggaag 1100 agetteaggg tgteettegt ggaaacetge tgegggtett cagacaagtg 1150

<210> 24 <211> 433 <212> PRT <213> Homo Sapien

<400> 24

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe _ 25 Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser Tyr Gly Gln Thr Ser Leu Asp Arg Leu Arg Asp Gly Leu Val Gly Ala Gln Phe Trp Ser Ala Tyr Val Pro Cys Gln Thr Gln Asp Arg Asp Ala Leu Arg Leu Thr Leu Glu Gln Ile Asp Leu Ile Arg Arg Met Cys Ala Ser Tyr Ser Glu Leu Glu Leu Val Thr Ser Ala Lys Ala Leu Asn Asp Thr Gln Lys Leu Ala Cys Leu Ile Gly Val Glu Gly Gly His Ser Leu Asp Asn Ser Leu Ser Ile Leu Arg Thr Phe 150 140 Tyr Met Leu Gly Val Arg Tyr Leu Thr Leu Thr His Thr Cys Asn Thr Pro Trp Ala Glu Ser Ser Ala Lys Gly Val His Ser Phe Tyr 180 170

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 25 agttctggtc agcctatgtg cc 22 <210> 26 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 26 cgtgatggtg tctttgtcca tggg 24 <210> 27 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 27 ctccaccaat cccgatgaac ttgg 24 <210> 28 <211> 50 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 28 gagcagattg acctcatacg ccgcatgtgt gcctcctatt ctgagctgga 50 <210> 29 <211> 1416 <212> DNA <213> Homo Sapien <400> 29 aaaacctata aatattccgg attattcata ccgtcccacc atcgggcgcg 50 gateegege egegaattet aaaccaacat geegggeace taegeteeet 100 cgaccacact cagtagtccc agcacccagg gcctgcaaga gcaggcacgg 150 geeetgatge gggaetteee getegtggae ggeeacaaeg acetgeeeet 200 ggtcctaagg caggtttacc agaaagggct acaggatgtt aacctgcgca 250 atttcagcta cggccagacc agcctggaca ggcttagaga tggcctcgtg 300 ggcgcccagt tctggtcagc ctatgtgcca tgccagaccc aggaccggga 350 tgccctgcgc ctcaccctgg agcagattga cctcatacgc cgcatgtgtg 400 cctcctattc tgagctggag cttgtgacct cggctaaagc tctgaacgac 450 actcagaaat tggcctgcct catcggtgta gagggtggcc actcgctgga 500 caatageete tecatettae gtacetteta catgetggga gtgegetaee 550 tgacgctcac ccacacctgc aacacaccct gggcagagag ctccgctaag 600 ggcgtccact ccttctacaa caacatcagc gggctgactg actttggtga 650 gaaggtggtg gcagaaatga accgcctggg catgatggta gacttatccc 700 atgtctcaga tgctgtggca cggcgggccc tggaagtgtc acaggcacct 750 gtgatettet eccaetegge tgeeeggggt gtgtgeaaca gtgeteggaa 800 tgttcctgat gacatcctgc agcttctgaa gaagaacggt ggcgtcgtga 850 tggtgtcttt gtccatggga gtaatacagt gcaacccatc agccaatgtg 900 tccactgtgg cagatcactt cgaccacatc aaggctgtca ttggatccaa 950 gttcatcggg attggtggag attatgatgg ggccggcaaa ttccctcagg 1000 ggctggaaga cgtgtccaca tacccggtcc tgatagagga gttgctgagt 1050 cgtggctgga gtgaggaaga gcttcagggt gtccttcgtg gaaacctgct 1100 gcgggtcttc agacaagtgg aaaaggtaca ggaagaaaac aaatggcaaa 1150 gccccttgga ggacaagttc ccggatgagc agctgagcag ttcctgccac 1200 teegaeetet eaegtetgeg teagagaeag agtetgaett eaggeeagga 1250 actcactgag attcccatac actggacage caagttacca gccaagtggt 1300 cagteteaga gteeteece caecetgaca aaacteacac atgeecaceg 1350 tgcccagcac ctgaactcct ggggggaccg tcagtcttcc tcttcccccc 1400 aaaacccaag gacacc 1416

<210> 30

<211> 446

<212> PRT

<213> Homo Sapien

<400> 30

Met Pro Gly Thr Tyr Ala Pro Ser Thr Thr Leu Ser Ser Pro Ser 1 5 10 15

Thr Gln Gly Leu Gln Glu Gln Ala Arg Ala Leu Met Arg Asp Phe
20 25 30

Pro Leu Val Asp Gly His Asn Asp Leu Pro Leu Val Leu Arg Gln
35 40 40

Val Tyr Gln Lys Gly Leu Gln Asp Val Asn Leu Arg Asn Phe Ser

				50					55					60
Tyr	Gly	Gln	Thr	Ser 65	Leu	Asp	Arg	Leu	Arg 70	Asp	Gly	Leu	Val	Gly 75
Ala	Gln	Phe	Trp	Ser 80	Ala	Tyr	Val	Pro	Cys 85	Gln	Thr	Gln	Asp	Arg 90
Asp	Ala	Leu	Arg	Leu 95	Thr	Leu	Glu	Gln	Ile 100	Asp	Leu	Ile	Arg	Arg 105
Met	Cys	Ala	Ser	Tyr 110	Ser	Glu	Leu	Glu	Leu 115	Val	Thr	Ser	Ala	Lys 120
Ala	Leu	Asn	Asp	Thr 125	Gln	Lys	Leu	Ala	Cys 130	Leu	Ile	Gly	Val	Glu 135
Gly	Gly	His	Ser	Leu 140	Asp	Asn	Ser	Leu	Ser 145	Ile	Leu	Arg	Thr	Phe 150
Tyr	Met	Leu	Gly	Val 155	Arg	Tyr	Leu	Thr	Leu 160	Thr	His	Thr	Cys	Asn 165
Thr	Pro	Trp	Ala	Glu 170	Ser	Ser	Ala	Lys	Gly 175	Val	His	Ser	Phe	Туг 180
Asn	Asn	Ile	Ser	Gly 185	Leu	Thr	Asp	Phe	Gly 190	Glu	Lys	Val	Val	Ala 195
Glu	Met	Asn	Arg	Leu 200	Gly	Met	Met	Val	Asp 205	Leu	Ser	His	Val	Ser 210
Asp	Ala	Val	Ala	Arg 215	Arg	Ala	Leu	Glu	Val 220	Ser	Gln	Ala	Pro	Val 225
Ile	Phe	Ser	His	Ser 230	Ala	Ala	Arg	Gly	Val 235	Cys	Asn	Ser	Ala	Arg 240
Asn	Val	Pro	Asp	Asp 245	Ile	Leu	Gln	Leu	Leu 250	Lys	Lys	Asn	Gly	Gly 255
Val	Val	Met	Val	Ser 260	Leu	Ser	Met	Gly	Val 265	Ile	Gln	Cys	Asn	Pro 270
Ser	Ala	Asn	Val	Ser 275	Thr	Val	Ala	Asp	His 280	Phe	Asp	His	Ile	Lys 285
Ala	Val	Ile	Gly	Ser 290	Lys	Phe	Ile	Gly	Ile 295	Gly	Gly	Asp	Tyr	Asp 300
Gly	Ala	Gly	Lys	Phe 305	Pro	Gln	Gly	Leu	Glu 310	Asp	Val	Ser	Thr	Tyr 315
Pro	Val	Leu	Ile	Glu 320	Glu	Leu	Leu	Ser	Arg 325	Gly	Trp	Ser	Glu	Glu 330
Glu	Leu	Gln	Gly	Val	Leu	Arg	Gly	Asn	Leu	Leu	Arg	Val	Phe	Arg

<210> 31 <211> 1790 <212> DNA

<213> Homo Sapien

<400> 31 cgcccagcga cgtgcgggcg gcctggcccg cgccctcccg cgcccggcct 50 gegtecegeg ecetgegeea eegeegeega geegeageee geegegegee 100 cccggcagcg ccggcccat gcccgccggc cgccggggcc ccgccgccca 150 atccgcgcgg cggccgccgc cgttgctgcc cctgctgctg ctgctctgcg 200 teetegggge geegegagee ggateaggag eccaeaage tgtgateagt 250 ccccaggatc ccacgcttct catcggctcc tccctgctgg ccacctgctc 300 agtgcacgga gacccaccag gagccaccgc cgagggcctc tactggaccc 350 tcaacgggcg ccgcctgccc cctgagctct cccgtgtact caacgcctcc 400 accttggctc tggccctggc caacctcaat gggtccaggc agcggtcggg 450 ggacaacctc gtgtgccacg cccgtgacgg cagcatcctg gctggctcct 500 geetetatgt tggeetgeee ceagagaaae eegteaaeat eagetgetgg 550 tccaagaaca tgaaggactt gacctgccgc tggacgccag gggcccacgg 600 ggagacette etecacacea actacteeet caagtacaag ettaggtggt 650 atggccagga caacacatgt gaggagtacc acacagtggg gccccactcc 700 tgccacatcc ccaaggacct ggctctcttt acgccctatg agatctgggt 750 ggaggccacc aaccgcctgg gctctgcccg ctccgatgta ctcacgctgg 800

atateetgga tgtggtgaee aeggaeeeee egeeegaegt geaegtgage 850 cgcgtcgggg gcctggagga ccagctgagc gtgcgctggg tgtcgccacc 900 cgccctcaag gatttcctct ttcaagccaa ataccagatc cgctaccgag 950 tggaggacag tgtggactgg aaggtggtgg acgatgtgag caaccagacc 1000 tectgeegee tggeeggeet gaaaceegge acegtgtact tegtgeaagt 1050 gegetgeaac ecetttggea tetatggete caagaaagee gggatetgga 1100 gtgagtggag ccaccccaca gccgcctcca ctccccgcag tgagcgcccg 1150 ggcccgggcg gcggggcgtg cgaaccgcgg ggcggagagc cgagctcggg 1200 gccggtgcgg cgcgagctca agcagttcct gggctggctc aagaagcacg 1250 cgtactgctc caacctcagc ttccgcctct acgaccagtg gcgagcctgg 1300 atgcagaagt cgcacaagac ccgcaaccag gacgagggga tcctgccctc 1350 gggcagacgg ggcacggcga gaggtcctgc cagataagct gtaggggctc 1400 aggccaccct ccctgccacg tggagacgca gaggccgaac ccaaactggg 1450 gccacctctg taccctcact tcagggcacc tgagccaccc tcagcaggag 1500 ctggggtggc ccctgagctc caacggccat aacagctctg actcccacgt 1550 gaggccacct ttgggtgcac cccagtgggt gtgtgtgtgt gtgtgagggt 1600 tggttgagtt gcctagaacc cctgccaggg ctgggggtga gaaggggagt 1650 cattactccc cattacctag ggcccctcca aaagagtcct tttaaataaa 1700 tgagctattt aggtgctgtg attgtgaaaa aaaaaaaaa aaaaaaaaa 1750

<210> 32

<211> 422

<212> PRT

<213> Homo Sapien

<400> 32

Met Pro Ala Gly Arg Arg Gly Pro Ala Ala Gln Ser Ala Arg Arg
1 5 10 15

Pro Pro Pro Leu Leu Pro Leu Leu Leu Leu Cys Val Leu Gly
20 25 30

Ala Pro Arg Ala Gly Ser Gly Ala His Thr Ala Val Ile Ser Pro 35 40 45

Gln Asp Pro Thr Leu Leu Ile Gly Ser Ser Leu Leu Ala Thr Cys
50 55 60

Ser Val His Gly Asp Pro Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn Gly Arg Arg Leu Pro Pro Glu Leu Ser Arg Val Leu Asn Ala Ser Thr Leu Ala Leu Ala Leu Ala Asn Leu Asn Gly 95 Ser Arg Gln Arg Ser Gly Asp Asn Leu Val Cys His Ala Arg Asp 115 110 Gly Ser Ile Leu Ala Gly Ser Cys Leu Tyr Val Gly Leu Pro Pro Glu Lys Pro Val Asn Ile Ser Cys Trp Ser Lys Asn Met Lys Asp 145 Leu Thr Cys Arg Trp Thr Pro Gly Ala His Gly Glu Thr Phe Leu His Thr Asn Tyr Ser Leu Lys Tyr Lys Leu Arg Trp Tyr Gly Gln Asp Asn Thr Cys Glu Glu Tyr His Thr Val Gly Pro His Ser Cys His Ile Pro Lys Asp Leu Ala Leu Phe Thr Pro Tyr Glu Ile Trp 205 Val Glu Ala Thr Asn Arg Leu Gly Ser Ala Arg Ser Asp Val Leu Thr Leu Asp Ile Leu Asp Val Val Thr Thr Asp Pro Pro Pro Asp 240 235 Val His Val Ser Arg Val Gly Gly Leu Glu Asp Gln Leu Ser Val 250 Arg Trp Val Ser Pro Pro Ala Leu Lys Asp Phe Leu Phe Gln Ala 270 Lys Tyr Gln Ile Arg Tyr Arg Val Glu Asp Ser Val Asp Trp Lys 280 Val Val Asp Asp Val Ser Asn Gln Thr Ser Cys Arg Leu Ala Gly 295 Leu Lys Pro Gly Thr Val Tyr Phe Val Gln Val Arg Cys Asn Pro Phe Gly Ile Tyr Gly Ser Lys Lys Ala Gly Ile Trp Ser Glu Trp Ser His Pro Thr Ala Ala Ser Thr Pro Arg Ser Glu Arg Pro Gly Pro Gly Gly Gly Ala Cys Glu Pro Arg Gly Glu Pro Ser Ser

	350				355					360
Gly Pro Val Arg	Arg Glu 365	Leu	Lys	Gln	Phe 370	Leu	Gly	Trp	Leu	Lys 375
Lys His Ala Tyr	Cys Ser 380	Asn	Leu	Ser	Phe 385	Arg	Leu	Tyr	Asp	Gln 390
Trp Arg Ala Trp	Met Gln 395	Lys	Ser	His	Lys 400	Thr	Arg	Asņ	Gln	Asp 405
Glu Gly Ile Leu	Pro Ser 410	Gly	Arg	Arg	Gly 415	Thr	Ala	Arg	Gly	Pro 420
Ala Arg										
<210> 33 <211> 23 <212> DNA <213> Artificial	Sequenc	e								
<220> <223> Synthetic	oligonuc	leot.	ide	prob	e .					
<400> 33 cccgcccgac gtgc	acgtga g	cc 2	3							
<210> 34 <211> 23 <212> DNA <213> Artificial Sequence										
<220> <223> Synthetic oligonucleotide probe										
<400> 34 tgagccagcc caggaactgc ttg 23										
<210> 35 <211> 50 <212> DNA <213> Artificial Sequence										
<220> <223> Synthetic	oligonuc	leot	ide	prob	е					
<400> 35 caagtgcgct gcaa	icccctt t	.ggca	tcta	t gg	ctcc	aaga	aag	ıccgg	gat	50
<210 > 36 <211 > 1771 <212 > DNA <213 > Homo Sapie	en									
<400> 36	aatatt a	gato	aaaa	a ac	cctc	taaa	ago	agtt	tag	50

<210> 37 <211> 300 <212> PRT <213> Homo Sapien

<400> 37

Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly Asp Val Ser Ile Leu Val Asn Asn 115 110 Ala Gly Val Val Tyr Thr Ser Asp Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn Val Leu Ala His Phe Trp 145 140 Thr Thr Lys Ala Phe Leu Pro Ala Met Thr Lys Asn Asn His Gly 160 155 His Ile Val Thr Val Ala Ser Ala Ala Gly His Val Ser Val Pro 170 Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe

His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile Thr Gly

200 205	5 210							
Val Lys Thr Thr Cys Leu Cys Pro Asn Phe 215 220	e Val Asn Thr Gly Phe 0 225							
Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro	o Thr Leu Glu Pro Glu 5 240							
Glu Val Val Asn Arg Leu Met His Gly Ile 245 250	e Leu Thr Glu Gln Lys 0 255							
Met Ile Phe Ile Pro Ser Ser Ile Ala Phe 260 265	e Leu Thr Thr Leu Glu 5 270							
Arg Ile Leu Pro Glu Arg Phe Leu Ala Val 275 280	l Leu Lys Arg Lys Ile 0 285							
Ser Val Lys Phe Asp Ala Val Ile Gly Tyr 290 295								
<210> 38 <211> 23 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic oligonucleotide probe	•							
<400> 38 ggtgaaggca gaaattggag atg 23								
<210> 39 <211> 24 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic oligonucleotide probe								
<400> 39 atcccatgca tcagcctgtt tacc 24								
<210> 40 <211> 48 <212> DNA <213> Artificial Sequence								
<220> <223> Synthetic oligonucleotide probe								
<400> 40 gctggtgtag tctatacatc agatttgttt gctac	cacaag atcctcag 48							

COCHAPTED TARES

<210> 41 <211> 1377 <212> DNA <213> Homo Sapien

<210> 42

<400> 42
Met Arg Pro Leu Leu Val Leu Leu Leu Leu Gly Leu Ala Ala Gly
1 5 10 15

Ser Pro Pro Leu Asp Asp Asn Lys Ile Pro Ser Leu Cys Pro Gly
20 25 30

His Pro Gly Leu Pro Gly Thr Pro Gly His His Gly Ser Gln Gly
35 40 45

Leu Pro Gly Arg Asp Gly Arg Asp Gly Arg Asp Gly Ala Pro Gly 50 55 60

Ala Pro Gly Glu Lys Gly Glu Gly Gly Arg Pro Gly Leu Pro Gly
65 70 75

Pro Arg Gly Asp Pro Gly Pro Arg Gly Glu Ala Gly Pro Ala Gly 80 85 90

Pro Thr Gly Pro Ala Gly Glu Cys Ser Val Pro Pro Arg Ser Ala 95 100 105

Phe Ser Ala Lys Arg Ser Glu Ser Arg Val Pro Pro Pro Ser Asp 110 115 120

Ala Pro Leu Pro Phe Asp Arg Val Leu Val Asn Glu Gln Gly His
125 130 135

Tyr Asp Ala Val Thr Gly Lys Phe Thr Cys Gln Val Pro Gly Val

Tyr Tyr Phe Ala Val His Ala Thr Val Tyr Arg Ala Ser Leu Gln
155 160 165

Phe Asp Leu Val Lys Asn Gly Glu Ser Ile Ala Ser Phe Phe Gln
170 175 180

Phe Phe Gly Gly Trp Pro Lys Pro Ala Ser Leu Ser Gly Gly Ala

Met Val Arg Leu Glu Pro Glu Asp Gln Val Trp Val Gln Val Gly

Val Gly Asp Tyr Ile Gly Ile Tyr Ala Ser Ile Lys Thr Asp Ser 215 220 225

Thr Phe Ser Gly Phe Leu Val Tyr Ser Asp Trp His Ser Ser Pro 230 235

Val Phe Ala

<210> 43</br><211> 24

```
<212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    tacaggccca gtcaggacca gggg 24
    <210> 44
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 44
    agccagcctc gctctcgg 18
    <210> 45
IIGHHHIZ
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 45
    gtctgcgatc aggtctgg 18
<210> 46
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 46
     gaaagaggca atggattcgc 20
    <210> 47
    <211> 24
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 47
     gacttacact tgccagcaca gcac 24
    <210> 48
    <211> 45
    <212> DNA
```

<213> Artificial Sequence

<220> <223> Synthetic oligonucleotide probe <400> 48 ggagcaccac caactggagg gtccggagta gcgagcgccc cgaag 45 <210> 49 <211> 1876 <212> DNA <213> Homo Sapien <400> 49 ctcttttgtc caccagccca gcctgactcc tggagattgt gaatagctcc 50 atccagcctg agaaacaagc cgggtggctg agccaggctg tgcacggagc 100 acctgacggg cccaacagac ccatgctgca tccagagacc tcccctggcc 150 gggggcatct cetggetgtg etectggeee teettggeae cacetgggea 200 gaggtgtggc caccccagct gcaggagcag gctccgatgg ccggagccct 250 gaacaggaag gagagtttet tgeteetete eetgeacaae egeetgegea 300 getgggteca geceetgeg getgaeatge ggaggetgga etggagtgae 350 agectggeec aactggetea agecagggea gecetetgtg gaateecaae 400

tgcagctgct gcatccggc tgtggcgcac cctgcaagtg ggctggaaca 450
tgcagctgct gcccgcgggc ttggcgtcct ttgttgaagt ggtcagccta 500
tggtttgcag aggggcagcg gtacagccac gcggcaggag agtgtgctcg 550
caacgccacc tgcacccact acacgcagct cgtgtgggcc acctcaagcc 600
agctgggctg tgggcggcac ctgtgctctg caggccagac agcgatagaa 650
gcctttgtct gtgcctactc ccccggaggc aactgggagg tcaacgggaa 700
gacaatcatc ccctataaga agggtgcctg gtgttcgctc tgcacagcca 750
gtgtctcagg ctgcttcaaa gcctgggacc atgcagggg gctctgtgag 800
gtccccagga atccttgtcg catgagctg cagaaccatg gacgtctcaa 850
catcagcacc tgccactgc actgtccccc tggctacacg ggcagatact 900
gccaagtgag gtgcagcctg cagtgttgc acggccggtt ccgggaggag 950
gagtgctcgt gcgtctgta catcggctac gggggagccc agtgtgccac 1000
caaggtgcat tttcccttcc acacctgtga cctgaggac caggatgaaa 1100
tgtcagagga aaggcgggt gctggcccag atcaagagcc agaaagtgca 1150

<210> 50

<211> 455

<212> PRT

<213> Homo Sapien

<400> 50

Met Leu His Pro Glu Thr Ser Pro Gly Arg Gly His Leu Leu Ala 1 5 10 15

Val Leu Leu Ala Leu Leu Gly Thr Trp Ala Glu Val Trp Pro 20 25 30

Pro Gln Leu Gln Glu Gln Ala Pro Met Ala Gly Ala Leu Asn Arg
35 40 45

Lys Glu Ser Phe Leu Leu Leu Ser Leu His Asn Arg Leu Arg Ser
50 55 60

Trp Val Gln Pro Pro Ala Ala Asp Met Arg Arg Leu Asp Trp Ser
65 70 75

Asp Ser Leu Ala Gln Leu Ala Gln Ala Arg Ala Ala Leu Cys Gly 80 85 90

Ile Pro Thr Pro Ser Leu Ala Ser Gly Leu Trp Arg Thr Leu Gln 95 100 105

Val Gly Trp Asn Met Gln Leu Leu Pro Ala Gly Leu Ala Ser Phe

				110					115					120
Val	Glu	Val	Val	Ser 125	Leu	Trp	Phe	Ala	Glu 130	Gly	Gln	Arg	Tyr	Ser 135
His	Ala	Ala	Gly	Glu 140	Cys	Ala	Arg	Asn	Ala 145	Thr	Cys	Thr	His	Tyr 150
Thr	Gln	Leu	Val	Trp 155	Ala	Thr	Ser	Ser	Gln 160	Leu	Gly	Cys	Gly	Arg 165
His	Leu	Cys	Ser	Ala 170	Gly	Gln	Thr	Ala	Ile 175	Glu	Ala	Phe	Val	Cys 180
Ala	Tyr	Ser	Pro	Gly 185	Gly	Asn	Trp	Glu	Val 190	Asn	Gly	Lys	Thr	Ile 195
Ile	Pro	Tyr	Lys	Lys 200	Gly	Ala	Trp	Cys	Ser 205	Leu	Cys	Thr	Ala	Ser 210
Val	Ser	Gly	Cys	Phe 215	Lys	Ala	Trp	Asp	His 220	Ala	Gly	Gly	Leu	Cys 225
Glu	Val	Pro	Arg	Asn 230	Pro	Cys	Arg	Met	Ser 235	Сув	Gln	Asn	His	Gly 240
Arg	Leu	Asn	Ile	Ser 245	Thr	Cys	His	Cys	His 250	Cys	Pro	Pro	Gly	Tyr 255
Thr	Gly	Arg	Tyr	Cys 260	Gln	Val	Arg	Cys	Ser 265		Gln	Cys	Val	His 270
Gly	Arg	Phe	Arg	Glu 275		Glu	Cys	Ser	Cys 280		Cys	Asp	Ile	Gly 285
Tyr	Gly	Gly	Ala	Gln 290		Ala	Thr	Lys	Val 295		Phe	Pro	Phe	His 300
Thr	Cys	Asp	Leu	Arg 305		Asp	Gly	Asp	Cys 310	Phe	Met	Val	Ser	Ser 315
Glu	Ala	Asp	Thr	Tyr 320		Arg	Ala	Arg	Met 325	Lys	Cys	Gln	Arg	330 330
Gly	Gly	Val	Leu	Ala 335		Ile	Lys	Ser	Gln 340		: Val	Gln	Asp	345
Leu	Ala	. Phe	Туг	Leu 350		Arg	Leu	Glu	355	Thr	Asn	Glu	ı Val	Thr 360
Asp	Ser	Asp	Phe	365		Arg	Asn	Phe	370		e Gly	Leu	Thr	Tyr 375
Lys	Thr	Ala	Lys	380		Phe	Arg	Trp	385		c Gly	/ Gli	ı His	390
Ala	Phe	Thr	Ser	Phe 395		Phe	Gly	Glr Glr	1 Pro) Asr	n His	Gly	/ Leu 405

```
COSHARD. CESOOT
```

Val Trp Leu Ser Ala Ala Met Gly Phe Gly Asn Cys Val Glu Leu 410 Gln Ala Ser Ala Ala Phe Asn Trp Asn Asp Gln Arg Cys Lys Thr 425 Arg Asn Arg Tyr Ile Cys Gln Phe Ala Gln Glu His Ile Ser Arg 445 440 Trp Gly Pro Gly Ser 455 <210> 51 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Synthetic oligonucleotide probe <400> 51 aggaacttct ggatcgggct cacc 24 <210> 52 <211> 24 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe <400> 52 gggtctgggc caggtggaag agag 24 <210> 53 <211> 45 <212> DNA <213> Artificial Sequence <223> Synthetic oligonucleotide probe gccaaggact ccttccgctg ggccacaggg gagcaccagg ccttc 45 <210> 54 <211> 2331 <212> DNA <213> Homo Sapien <400> 54 cggacgcgtg ggctgggcgc tgcaaagcgt gtcccgcgg gtccccgagc 50 gtcccgcgcc ctcgccccgc catgctcctg ctgctggggc tgtgcctggg 100 gctgtccctg tgtgtggggt cgcaggaaga ggcgcagagc tggggccact 150 cttcggagca ggatggactc agggtcccga ggcaagtcag actgttgcag 200

<210> 55 <211> 694 <212> PRT

<213> Homo Sapien

<400> 55

Met Leu Leu Leu Gly Leu Cys Leu Gly Leu Ser Leu Cys Val 1 5 10 15

Gly Ser Gln Glu Glu Ala Gln Ser Trp Gly His Ser Ser Glu Gln
20 25 30

Asp Gly Leu Arg Val Pro Arg Gln Val Arg Leu Leu Gln Arg Leu 35 40 45

Lys Thr Lys Pro Leu Met Thr Glu Phe Ser Val Lys Ser Thr Ile
50 55 60

Ile Ser Arg Tyr Ala Phe Thr Thr Val Ser Cys Arg Met Leu Asn 65 70 75

Arg Ala Ser Glu Asp Gln Asp Ile Glu Phe Gln Met Gln Ile Pro 80 85 90

Ala Ala Ala Phe Ile Thr Asn Phe Thr Met Leu Ile Gly Asp Lys 95 100 105

Val Tyr Gln Gly Glu Ile Thr Glu Arg Glu Lys Lys Ser Gly Asp 110 115 120

Arg	Val	Lys	Glu	Lys 125	Arg	Asn	Lys	Thr	Thr 130	Glu	Glu	Asn	Gly	Glu 135
Lys	Gly	Thr	Glu	Ile 140	Phe	Arg	Ala	Ser	Ala 145	Val	Ile	Pro	Ser	Lys 150
Asp	Lys	Ala	Ala	Phe 155	Phe	Leu	Ser	Tyr	Glu 160	Glu	Leu	Leu	Gln	Arg 165
Arg	Leu	Gly	Lys	Tyr 170	Glu	His	Ser	Ile	Ser 175	Val	Arg	Pro	Gln	Gln 180
Leu	Ser	Gly	Arg	Leu 185	Ser	Val	Asp	Val	Asn 190	Ile	Leu	Glu	Ser	Ala 195
Gly	Ile	Ala	Ser	Leu 200	Glu	Val	Leu	Pro	Leu 205	His	Asn	Ser	Arg	Gln 210
Arg	Gly	Ser	Gly	Arg 215	Gly	Glu	Asp	Asp	Ser 220	Gly	Pro	Pro	Pro	Ser 225
Thr	Val	Ile	Asn	Gln 230	Asn	Glu	Thr	Phe	Ala 235	Asn	Ile	Ile	Phe	Lys 240
Pro	Thr	Val	Val	Gln 245	Gln	Ala	Arg	Ile	Ala 250	Gln	Asn	Gly	Ile	Leu 255
Gly	Asp	Phe	Ile	Ile 260	Arg	Tyr	Asp	Val	Asn 265	Arg	Glu	Gln	Ser	Ile 270
Gly	Asp	Ile	Gln	Val 275	Leu	Asn	Gly	Tyr	Phe 280	Val	His	Tyr	Phe	Ala 285
Pro	Lys	Asp	Leu	Pro 290	Pro	Leu	Pro	Lys	Asn 295	Val	Val	Phe	Val	Leu 300
Asp	Ser	Ser	Ala	Ser 305	Met	Val	Gly	Thr	Lys 310	Leu	Arg	Gln	Thr	Lys 315
Asp	Ala	Leu	Phe	Thr 320	Ile	Leu	His	Asp	Leu 325	Arg	Pro	Gln	Asp	Arg 330
Phe	Ser	Ile	Ile	Gly 335	Phe	Ser	Asn	Arg	11e 340	Lys	Val	Trp	Lys	Asp 345
His	Leu	Ile	Ser	Val 350	Thr	Pro	Asp	Ser	Ile 355	Arg	Asp	Gly	Lys	Val 360
Tyr	Ile	His	His	Met 365	Ser	Pro	Thr	Gly	Gly 370		Asp	Ile	Asn	Gly 375
Ala	Leu	Gln	Arg	Ala 380	Ile	Arg	Leu	Leu	Asn 385	Lys	Tyr	Val	Ala	His 390
Ser	Gly	Ile	Gly	Asp 395	Arg	Ser	Val	Ser	Leu 400	Ile	Val	Phe	Leu	Thr 405
Asp	Gly	Lys	Pro	Thr	Val	Gly	Glu	Thr	His	Thr	Leu	Lys	Ile	Leu

410 420 415 Asn Asn Thr Arg Glu Ala Ala Arg Gly Gln Val Cys Ile Phe Thr Ile Gly Ile Gly Asn Asp Val Asp Phe Arg Leu Leu Glu Lys Leu 445 Ser Leu Glu Asn Cys Gly Leu Thr Arg Arg Val His Glu Glu Asp Ala Gly Ser Gln Leu Ile Gly Phe Tyr Asp Glu Ile Arg Thr 470 Pro Leu Leu Ser Asp Ile Arg Ile Asp Tyr Pro Pro Ser Ser Val Val Gln Ala Thr Lys Thr Leu Phe Pro Asn Tyr Phe Asn Gly Ser 500 505 Glu Ile Ile Ile Ala Gly Lys Leu Val Asp Arg Lys Leu Asp His Leu His Val Glu Val Thr Ala Ser Asn Ser Lys Lys Phe Ile Ile 530 535 Leu Lys Thr Asp Val Pro Val Arg Pro Gln Lys Ala Gly Lys Asp 545 Val Thr Gly Ser Pro Arg Pro Gly Gly Asp Gly Glu Gly Asp Thr Asn His Ile Glu Arg Leu Trp Ser Tyr Leu Thr Thr Lys Glu Leu Leu Ser Ser Trp Leu Gln Ser Asp Asp Glu Pro Glu Lys Glu Arg 590 595 Leu Arg Gln Arg Ala Gln Ala Leu Ala Val Ser Tyr Arg Phe Leu Thr Pro Phe Thr Ser Met Lys Leu Arg Gly Pro Val Pro Arg Met Asp Gly Leu Glu Glu Ala His Gly Met Ser Ala Ala Met Gly Pro Glu Pro Val Val Gln Ser Val Arg Gly Ala Gly Thr Gln Pro Gly 655 650 Pro Leu Leu Lys Lys Pro Asn Ser Val Lys Lys Gln Asn Lys Thr Lys Lys Arg His Gly Arg Asp Gly Val Phe Pro Leu His His 685 Leu Gly Ile Arg

```
<210> 56
   <211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 56
    gtgggaacca aactccggca gacc 24
   <210> 57
   <211> 18
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 57
    cacatcgagc gtctctgg 18
Ф
   <210> 58
<211> 24
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Synthetic oligonucleotide probe
   <400> 58
agccgctcct tctccggttc atcg 24
Ш
<210> 59
   <211> 48
   <212> DNA
   <213> Artificial Sequence
   <223> Synthetic oligonucleotide probe
   <400> 59
    tggaaggacc acttgatatc agtcactcca gacagcatca gggatggg 48
   <210> 60
   <211> 1413
   <212> DNA
   <213> Homo Sapien
   <400> 60
    cggacgcgtg gggtgcccga catggcgagt gtagtgctgc cgagcggatc 50
    ccagtgtgcg gcggcagcgg cggcggcggc gcctcccggg ctccggcttc 100
    tgctgttgct cttctccgcc gcggcactga tccccacagg tgatgggcag 150
```

aatctgttta cgaaagacgt gacagtgatc gagggagagg ttgcgaccat 200

cagttgccaa gtcaataaga gtgacgactc tgtgattcag ctactgaatc 250 ccaacaggca gaccatttat ttcagggact tcaggccttt gaaggacagc 300 aggtttcagt tgctgaattt ttctagcagt gaactcaaag tatcattgac 350 aaacgtctca atttctgatg aaggaagata cttttgccag ctctataccg 400 atcccccaca ggaaagttac accaccatca cagtcctggt cccaccacgt 450 aatctgatga tcgatatcca gaaagacact gcggtggaag gtgaggagat 500 tgaagtcaac tgcactgcta tggccagcaa gccagccacg actatcaggt 550 ggttcaaagg gaacacagag ctaaaaggca aatcggaggt ggaagagtgg 600 tcagacatgt acactgtgac cagtcagctg atgctgaagg tgcacaagga 650 ggacgatggg gtcccagtga tctgccaggt ggagcaccct gcggtcactg 700 gaaacctgca gacccagcgg tatctagaag tacagtataa gcctcaagtg 750 cacattcaga tgacttatcc tctacaaggc ttaacccggg aaggggacgc 800 gcttgagtta acatgtgaag ccatcgggaa gccccagcct gtgatggtaa 850 cttgggtgag agtcgatgat gaaatgcctc aacacgccgt actgtctggg 900 cccaacctgt tcatcaataa cctaaacaaa acagataatg gtacataccg 950 ctgtgaagct tcaaacatag tggggaaagc tcactcggat tatatgctgt 1000 atgtatacga tecececaca actatecete eteceacaac aaceaceace 1050 accaccacca ccaccaccac caccatcctt accatcatca cagattcccg 1100 aqcaqqtqaa qaaqqctcqa tcagggcagt ggatcatgcc gtgatcggtg 1150 gcgtcgtggc ggtggtggtg ttcgccatgc tgtgcttgct catcattctg 1200 gggcgctatt ttgccagaca taaaggtaca tacttcactc atgaagccaa 1250 aggagccgat gacgcagcag acgcagacac agctataatc aatgcagaag 1300 gaggacagaa caactccgaa gaaaagaaag agtacttcat ctagatcagc 1350 ctttttgttt caatgaggtg tccaactggc cctatttaga tgataaagag 1400 acagtgatat tgg 1413

<210> 61

<211> 440

<212> PRT

<213> Homo Sapien

<400> 61

Met Ala Ser Val Val Leu Pro Ser Gly Ser Gln Cys Ala Ala 1 5 10 15

Ala A	Ala	Ala	Ala	Ala 20	Pro	Pro	Gly	Leu	Arg 25	Leu	Leu	Leu	Leu	Leu 30
Phe S	Ser	Ala	Ala	Ala 35	Leu	Ile	Pro	Thr	Gly 40	Asp	Gly	Gln	Asn	Leu 45
Phe T	Thr	Lys	Asp	Val 50	Thr	Val	Ile	Glu	Gly 55	Glu	Val	Ala	Thr	Ile 60
Ser (Cys	Gln	Val	Asn 65	Lys	Ser	Asp	Asp	Ser 70	Val	Ile	Gln	Leu	Leu 75
Asn I	Pro	Asn	Arg	Gln 80	Thr	Ile	Tyr	Phe	Arg 85	qaA	Phe	Arg	Pro	Leu 90
Lys A	Asp	Ser	Arg	Phe 95	Gln	Leu	Leu	Asn	Phe 100	Ser	Ser	Ser	Glu	Leu 105
Lys \	Val	Ser	Leu	Thr 110	Asn	Val	Ser	Ile	Ser 115	Asp	Glu	Gly	Arg	Tyr 120
Phe (Cys	Gln	Leu	Tyr 125	Thr	Asp	Pro	Pro	Gln 130	Glu	Ser	Tyr	Thr	Thr 135
Ile :	Thr	Val	Leu	Val 140	Pro	Pro	Arg	Asn	Leu 145	Met	Ile	Asp	Ile	Gln 150
Lys i	Asp	Thr	Ala	Val 155	Glu	Gly	Glu	Glu	Ile 160	Glu	Val	Asn	Cys	Thr 165
Ala !	Met	Ala	Ser	Lys 170	Pro	Ala	Thr	Thr	Ile 175	Arg	Trp	Phe	Lys	Gly 180
Asn '	Thr	Glu	Leu	Lys 185	Gly	Lys	Ser	Glu	Val 190	Glu	Glu	Trp	Ser	Asp 195
Met '	Tyr	Thr	Val	Thr 200		Gln	Leu	Met	Leu 205	Lys	Val	His	Lys	Glu 210
Asp .	Asp	Gly	Val	Pro 215		Ile	Cys	Gln	Val 220	Glu	His	Pro	Ala	Val 225
Thr	Gly	Asn	Leu	Gln 230		Gln	Arg	Tyr	Leu 235	Glu	Val	Gln	Tyr	Lys 240
Pro	Gln	Val	His	Ile 245		Met	Thr	Tyr	Pro 250		Gln	Gly	Leu	Thr 255
Arg	Glu	Gly	Asp	Ala 260		Glu	Leu	Thr	Cys 265	Glu	Ala	Ile	Gly	Lys 270
Pro	Gln	Pro	Val	Met 275		Thr	Trp	Val	Arg 280		Asp	Asp	Glu	Met 285
Pro	Gln	His	Ala	Val 290		Ser	Gly	Pro	Asn 295		Phe	lle	. Asn	Asn 300
Leu	Asn	Lys	Thr	Asp	Asn	Gly	Thr	Tyr	Arg	Cys	Glu	Ala	Ser	Asn

	:			305					310					315
Ile '	Val	Gly	Lýs	Ala 320	His	Ser	Asp	Tyr	Met 325	Leu	Tyr	Val	Tyr	Asp 330
Pro !	Pro	Thr	Thr	Ile 335	Pro	Pro	Pro	Thr	Thr 340	Thr	Thr	Thr	Thr	Thr 345
Thr '	Thr	Thr	Thr	Thr 350	Thr	Ile	Leu	Thr	Ile 355	Ile	Thr	Asp	Ser	Arg 360
Ala	Gly	Glu	Glu	Gly 365	Ser	Ile	Arg	Ala	Val 370	Asp	His	Ala	Val	Ile 375
Gly	Gly	Val	Val	Ala 380	Val	Val	Val	Phe	Ala 385	Met	Leu	Cys	Leu	Leu 390
Ile	Ile	Leu	Gly	Arg 395	Tyr	Phe	Ala	Arg	His 400	Lys	Gly	Thr	Tyr	Phe 405
Thr	His	Glu	Ala	Lys 410	Gly	Ala	Asp	Asp	Ala 415	Ala	Asp	Ala	Asp	Thr 420
Ala	Ile	Ile	Asn	Ala 425	Glu	Gly	Gly	Gln	Asn 430	Asn	Ser	Glu	Glu	Lys 435
Lys	Glu	Tyr	Phe	Ile 440										
<210>	62													
<211>														
<212>	DN.	Ą												
<213>	Art	cific	cial	Sequ	uence	=								
<220>														
<223>		nthe	cic	oligo	onuc:	leot	ide p	prob	е					
400	<i>c</i> 2													
<400> ggct		gct (gttg	ctcti	to to	ccg :	24							
010	63													
<210><211>														
<212>		4												
<213>			cial	Sequ	uence	9								
<220>														
<223>		nthe	tic o	oligo	onuc:	leot	ide p	prob	e					
<400>	63													
gtac		gtg a	acca	gtca	gc 20	0								
<210>	61													
<211>														
<212>		Ą												
<213>	Art	tifi	cial	Seq	uence	9								
<220>														
<223>	Syı	nthe	tic o	oligo	onuc.	leot	ide j	prob	9					

```
<400> 64
atcatcacag attcccgagc 20
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 65
ttcaatctcc tcaccttcca ccgc 24
<210> 66
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 66
atagctgtgt ctgcgtctgc tgcg 24
<210> 67
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 67
cgcggcactg atccccacag gtgatgggca gaatctgttt acgaaagacg 50
<210> 68
<211> 2555
<212> DNA
<213> Homo Sapien
<400> 68
ggggcgggtg gacgcggact cgaacgcagt tgcttcggga cccaggaccc 50
cctcgggccc gacccgccag gaaagactga ggccgcggcc tgccccgccc 100
ggctccctgc gccgccgccg cctcccggga cagaagatgt gctccagggt 150
 ccctctgctg ctgccgctgc tcctgctact ggccctgggg cctggggtgc 200
 agggetgeec atceggetge cagtgeagee agecacagae agtettetge 250
 actgcccgcc aggggaccac ggtgccccga gacgtgccac ccgacacggt 300
 ggggctgtac gtctttgaga acggcatcac catgctcgac gcaagcagct 350
 ttgccggcct gccgggcctg cagctcctgg acctgtcaca gaaccagatc 400
```


gegggtetga gtgtgaggtg ceaeteatgg getteceagg geetggeete 1900
cagteaccee tecaegeaaa geeetacate taageeagaa agagacaggg 1950
cagetgggge egggetetea geeagtgaga tggecageee eeteetgetg 2000
ceaeaccaeg taagttetea gteeeaacet eggggatgtg tgeagacagg 2050
getgtgtgae cacagetggg eeetgtteee tetggacete ggteteetea 2100
tetgtgagat getgtggeee agetgaegag eeetaaegte eeeagaaeeg 2150
agtgeetatg aggacagtgt eegeeetgee eteegeaaeg tgeagteeet 2200
gggeaeggeg ggeeetgeea tgtgetggta aegeatgeet gggeeetgee 2250
gggeteteee aeteeaggeg gaeeetgggg geeagtgaag gaageteeeg 2300
gaaagageag agggagaeg ggtaggegge tgtgtgaete tagtettgge 2350
ceeaggaage gaaggaacaa aagaaaetgg aaaggaagat getttaggaa 2400
catgtttge tttttaaaa tatatataa tttataagag ateetteee 2450
atttattetg ggaagatgt ttteaaaete agagacaagg aetttggttt 2500
ttgtaagaca aacgatgata tgaaggeett ttgtaagaaa aaataaaaaa 2550
aaaaa 2555

<210> 69

<211> 598

<212> PRT

<213> Homo Sapien

<400> 69

Met Cys Ser Arg Val Pro Leu Leu Leu Pro Leu Leu Leu Leu 1 5 10 . 15

Ala Leu Gly Pro Gly Val Gln Gly Cys Pro Ser Gly Cys Gln Cys 20 25 30

Ser Gln Pro Gln Thr Val Phe Cys Thr Ala Arg Gln Gly Thr Thr 35 40 45

Val Pro Arg Asp Val Pro Pro Asp Thr Val Gly Leu Tyr Val Phe 50 55 60

Glu Asn Gly Ile Thr Met Leu Asp Ala Ser Ser Phe Ala Gly Leu 65 70 75

Pro Gly Leu Gln Leu Leu Asp Leu Ser Gln Asn Gln Ile Ala Ser 80 85 90

Leu Arg Leu Pro Arg Leu Leu Leu Leu Asp Leu Ser His Asn Ser 95 100 105

Leu Leu Ala Leu Glu Pro Gly Ile Leu Asp Thr Ala Asn Val Glu

				110					115					120
Ala	Leu	Arg	Leu	Ala 125	Gly	Leu	Gly	Leu	Gln 130	Gln	Leu	Asp	Glu	Gly 135
Leu	Phe	Ser	Arg	Leu 140	Arg	Asn	Leu	His	Asp 145	Leu	Asp	Val	Ser	Asp 150
Asn	Gln	Leu	Glu	Arg 155	Val	Pro	Pro	Val	Ile 160	Arg	Gly	Leu	Arg	Gly 165
Leu	Thr	Arg	Leu	Arg 170	Leu	Ala	Gly	Asn	Thr 175	Arg	Ile	Ala	Gln	Leu 180
Arg	Pro	Glu	Asp	Leu 185	Ala	Gly	Leu	Ala	Ala 190	Leu	Gln	Glu	Leu	Asp 195
Val	Ser	Asn	Leu	Ser 200	Leu	Gln	Ala	Leu	Pro 205	Gly	Asp	Leu	Ser	Gly 210
Leu	Phe	Pro	Arg	Leu 215	Arg	Leu	Leu	Ala	Ala 220	Ala	Arg	Asn	Pro	Phe 225
Asn	Cys	Val	Cys	Pro 230	Leu	Ser	Trp	Phe	Gly 235	Pro	Trp	Val	Arg	Glu 240
Ser	His	Val	Thr	Leu 245	Ala	Ser	Pro	Glu	Glu 250	Thr	Arg	Cys	His	Phe 255
Pro	Pro	Lys	Asn	Ala 260	Gly	Arg	Leu	Leu	Leu 265	Glu	Leu	Asp	Tyr	Ala 270
Asp	Phe	Gly	Cys	Pro 275	Ala	Thr	Thr	Thr	Thr 280	Ala	Thr	Val	Pro	Thr 285
Thr	Arg	Pro	Val	Val 290	Arg	Glu	Pro	Thr	Ala 295	Leu	Ser	Ser	Ser	Leu 300
Ala	Pro	Thr	Trp	Leu 305	Ser	Pro	Thr	Ala	Pro 310		Thr	Glu	Ala	Pro 315
Ser	Pro	Pro	Ser	Thr 320		Pro	Pro	Thr	Val 325	Gly	Pro	Val	Pro	Gln 330
Pro	Gln	Asp	Cys	Pro 335		Ser	Thr	Cys	Leu 340		Gly	Glý	Thr	Cys 345
His	Leu	Gly	Thr	Arg 350		His	Leu	Ala	Cys 355		Cys	Pro	Glu	Gly 360
Phe	Thr	Gly	Leu	Tyr 365		Glu	Ser	Gln	Met 370		Gln	Gly	Thr	Arg 375
Pro	Ser	Pro	Thr	9rc 380		Thr	Pro	Arg	Pro 385		Arg	Ser	Leu	Thr 390
Leu	Gly	Ile	Glu	Pro 395		Ser	Pro	Thr	Ser 400	Leu	Arg	y Val	Gly	Leu 405

<212> DNA

<213> Artificial Sequence

<223> Synthetic oligonucleotide probe

Gln	Arg	Tyr	Leu	Gln 410	Gly	Ser	Ser	Val	Gln 415	Leu	Arg	Ser	Leu	Arg 420
Leu	Thr	Tyr	Arg	Asn 425	Leu	Ser	Gly	Pro	Asp 430	Lys	Arg	Leu	Val	Thr 435
Leu	Arg	Leu	Pro	Ala 440	Ser	Leu	Ala	Glu	Tyr 445	Thr	Val	Thr	Gln	Leu 450
Arg	Pro	Asn	Ala	Thr 455	Tyr	Ser	Val	Cys	Val 460	Met	Pro	Leu	Gly	Pro 465
Gly	Arg	Val	Pro	Glu 470	Gly	Glu	Glu	Ala	Cys 475	Gly	Glu	Ala	His	Thr 480
Pro	Pro	Ala	Val	His 485	Ser	Asn	His	Ala	Pro 490	Val	Thr	Gln	Ala	Arg. 495
Glu	Gly	Asn	Leu	Pro 500	Leu	Leu	Ile	Ala	Pro 505	Ala	Leu	Ala	Ala	Val 510
Leu	Leu	Ala	Ala	Leu 515	Ala	Ala	Val	Gly	Ala 520	Ala	Tyr	Cys	Val	Arg 525
Arg	Gly	Arg	Ala	Met 530	Ala	Ala	Ala	Ala	Gln 535	Asp	Lys	Gly	Gln	Val 540
Gly	Pro	Gly	Ala	Gly 545		Leu	Glu	Leu	Glu 550	Gly	Val	Lys	Val	Pro 555
Leu	Glu	Pro	Gly	Pro 560		Ala	Thr	Glu	Gly 565	Gly	Gly	Glu	Ala	Leu 570
Pro	Ser	Gly	Ser	Glu 575		Glu	Val	Pro	Leu 580	Met	Gly	Phe	Pro	Gly 585
Pro	Gly	Leu	Gln	Ser 590		Leu	His	Ala	Lys 595		Туr	Ile		
<211 <212	> 70 > 22 > DN > Ar	A	.cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					
)> 70 tcca		cccc	accg	ac t	g 22								
)> 71 .> 24													

53

```
<400> 71
cggttctggg gacgttaggg ctcg 24
<210> 72
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 72
ctgcccaccg tccacctgcc tcaat 25
<210> 73
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 73
 aggactgccc accgtccacc tgcctcaatg ggggcacatg ccacc 45
<210> 74
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Oligonucleotide Probe
<400> 74
 acgcaaagcc ctacatctaa gccagagaga gacagggcag ctggg 45
<210> 75
<211> 1077
<212> DNA
<213> Homo Sapien
<400> 75
 ggcactagga caaccttctt cccttctgca ccactgcccg tacccttacc 50
 cgcccgcca cctccttgct accccactct tgaaaccaca gctgttggca 100
 gggtccccag ctcatgccag cctcatctcc tttcttgcta gcccccaaag 150
 ggcctccagg caacatgggg ggcccagtca gagagccggc actctcagtt 200
 gccctctggt tgagttgggg ggcagctctg ggggccgtgg cttgtgccat 250
 ggctctgctg acccaacaaa cagagctgca gagcctcagg agagaggtga 300
 gccggctgca ggggacagga ggcccctccc agaatgggga agggtatccc 350
 tggcagagtc tcccggagca gagttccgat gccctggaag cctgggagaa 400
```

tggggagaga tcccggaaaa ggagagcagt gctcacccaa aaacagaaga 450
agcagcactc tgtcctgcac ctggttccca ttaacgccac ctccaaggat 500
gactccgatg tgacagaggt gatgtggcaa ccagctctta ggcgtgggag 550
aggcctacag gcccaaggat atggtgtccg aatccaggat gctggagttt 600
atctgctgta tagccaggtc ctgtttcaag acgtgacttt caccatgggt 650
caggtggtgt ctcgagaagg ccaaggaagg caggagactc tattccgatg 700
tataagaagt atgccctccc acccggaccg ggcctacaac agctgctata 750
gcgcaggtgt cttccattta caccaagggg atattctgag tgtcataatt 800
ccccgggcaa gggcgaaact taacctctct ccacatggaa ccttcctggg 850
gtttgtgaaa ctgtgattgt gttataaaaa gtggctccca gcttggaaga 900
ccagggtggg tacatactgg agacagccaa gagctgagta tataaaggag 950
agggaatgtg caggaacaga ggcatcttcc tgggtttggc tccccgttcc 1000
tcacttttcc cttttcattc ccaccccta gactttgatt ttacggatat 1050
cttgcttctg ttcccatgg agctccg 1077

<210> 76

<211> 250

<212> PRT

<213> Homo Sapien

<400> 76

Met Pro Ala Ser Ser Pro Phe Leu Leu Ala Pro Lys Gly Pro Pro 1 5 10 15

Gly Asn Met Gly Gly Pro Val Arg Glu Pro Ala Leu Ser Val Ala 20 25 30

Leu Trp Leu Ser Trp Gly Ala Ala Leu Gly Ala Val Ala Cys Ala 35 40 45

Met Ala Leu Leu Thr Gln Gln Thr Glu Leu Gln Ser Leu Arg Arg
50 55 60

Glu Val Ser Arg Leu Gln Gly Thr Gly Gly Pro Ser Gln Asn Gly
65 70 75

Glu Gly Tyr Pro Trp Gln Ser Leu Pro Glu Gln Ser Ser Asp Ala 80 85 90

Leu Glu Ala Trp Glu Asn Gly Glu Arg Ser Arg Lys Arg Arg Ala 95 100 105

Val Leu Thr Gln Lys Gln Lys Gln His Ser Val Leu His Leu 110 115 120

Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser Pro

235

240

His Gly Thr Phe Leu Gly Phe Val Lys Leu 245 250

230

<210> 77

<211> 2849

<212> DNA

<213> Homo Sapien

<400> 77

 caggctcagc aggggccagg ggccacactg gacccaaagg gcagaagggc 700 tccatggggg cccctgggga gcggtgcaag agccactacg ccgccttttc 750 ggtgggccgg aagaagccca tgcacagcaa ccactactac cagacggtga 800 tettegacae ggagttegtg aacetetaeg accaetteaa catgtteaec 850 ggcaagttct actgctacgt gcccggcctc tacttcttca gcctcaacgt 900 gcacacctgg aaccagaagg agacctacct gcacatcatg aagaacgagg 950 aggaggtggt gatcttgttc gcgcaggtgg gcgaccgcag catcatgcaa 1000 agccagagcc tgatgctgga gctgcgagag caggaccagg tgtgggtacg 1050 cctctacaag ggcgaacgtg agaacgccat cttcagcgag gagctggaca 1100 cctacatcac cttcagtggc tacctggtca agcacgccac cgagccctag 1150 ctggccggcc acctcctttc ctctcgccac cttccacccc tgcgctgtgc 1200 tgaccccacc gcctcttccc cgatccctgg actccgactc cctggctttg 1250 gcattcagtg agacgccctg cacacacaga aagccaaagc gatcggtgct 1300 cccagatccc gcagcctctg gagagagctg acggcagatg aaatcaccag 1350 ggcggggcac ccgcgagaac cctctgggac cttccgcggc cctctctgca 1400 cacatectea agtgaceeg caeggegaga egegggtgge ggeagggegt 1450 cccagggtgc ggcaccgcgg ctccagtcct tggaaataat taggcaaatt 1500 ctaaaggtct caaaaggagc aaagtaaacc gtggaggaca aagaaaaggg 1550 ttgttatttt tgtctttcca gccagcctgc tggctcccaa gagagaggcc 1600 ttttcagttg agactctgct taagagaaga tccaaagtta aagctctggg 1650 gtcaggggag gggccggggg caggaaacta cctctggctt aattctttta 1700 agccacgtag gaactttctt gagggatagg tggaccctga catccctgtg 1750 geettgeeca agggetetge tggtetttet gagteacage tgegaggtga 1800 tgggggctgg ggccccaggc gtcagcctcc cagagggaca gctgagcccc 1850 ctgccttggc tccaggttgg tagaagcagc cgaagggctc ctgacagtgg 1900 ccagggaccc ctgggtcccc caggcctgca gatgtttcta tgaggggcag 1950 ageteettgg tacatecatg tgtggetetg etecacecet gtgccacece 2000 agagecetgg ggggtggtet ceatgeetge caecetggea teggetttet 2050 gtgccgcctc ccacacaaat cagccccaga aggccccggg gccttggctt 2100

tgggctaage ateacegett ceaegtgtg tgtgttggt ggeageaagg 2200
ctgatecaga ececttetge ececaetgee eteatecagg ectetgacea 2250
gtagectgag aggggetttt tetaggette agageaggg agagetggaa 2300
ggggctagaa ageteceget tgtetgtte teaggeteet gtgageetea 2350
gteetgagae eagagteaag aggaagtaea egteceaate gegggeteae 2400
ggatteaete teaggagetg ggtggeagga gaggeaatag ecectgtgge 2450
aattgeagga ecagetggag eagggttgeg gtgteteea ggtgeteteg 2500
eeetgeeat ggeeaeeea gaetetgate teeaggaaee ecatageee 2550
tetecaeete aceceatgt gatgeeagg gteaetettg etaeeegge 2600
ggeeeeeaaa eeeeeggtge etetetteet teeeeeate eeeeaetgg 2600
ttttgaetaa teetgettee etetetgge etggetgeeg ggatetggg 2700
teeetaagte eetetetta aagaaettet gegggteaga etetgaagee 2750
gagttgetg gggegtgeee ggaageagag egeeaeaete getgettaag 2800
eteeeeeage tettteeaga aaaeattaaa eteagaattg tgttteaa 2849

<210> 78

<211> 281

<212> PRT

<213> Homo Sapien

<400> 78

Met Gly Ser Arg Gly Gln Gly Leu Leu Leu Ala Tyr Cys Leu Leu

1 5 10 15

Leu Ala Phe Ala Ser Gly Leu Val Leu Ser Arg Val Pro His Val 20 25 30

Gln Gly Glu Gln Glu Trp Glu Gly Thr Glu Glu Leu Pro Ser

Pro Pro Asp His Ala Glu Arg Ala Glu Glu Gln His Glu Lys Tyr
50 55 60

Arg Pro Ser Gln Asp Gln Gly Leu Pro Ala Ser Arg Cys Leu Arg
65 70 75

Cys Cys Asp Pro Gly Thr Ser Met Tyr Pro Ala Thr Ala Val Pro 80 85 90

Gln Ile Asn Ile Thr Ile Leu Lys Gly Glu Lys Gly Asp Arg Gly 95 100 105

Asp Arg Gly Leu Gln Gly Lys Tyr Gly Lys Thr Gly Ser Ala Gly

									115					120
				110					115					
Ala	Arg	Gly	His	Thr 125	Gly	Pro	Lys	Gly	Gln 130	Lys	Gly	Ser	Met	Gly 135
Ala	Pro	Gly	Glu	Arg 140	Cys	Lys	Ser	His	Tyr 145	Ala	Ala	Phe	Ser	Val 150
Gly	Arg	Lys	Lys	Pro 155	Met	His	Ser	Asn	His 160	Tyr	Tyr	Gln	Thr	Val 165
Ile	Phe	Asp	Thr	Glu 170	Phe	Val	Asn	Leu	Tyr 175	Asp	His	Phe	Asn	Met 180
Phe	Thr	Gly	Lys	Phe 185	Tyr	Cys	Tyr	Val	Pro 190	Gly	Leu	Tyr	Phe	Phe 195
Ser	Leu	Asn	Val	His 200	Thr	Trp	Asn	Gln	Lys 205	Glu	Thr	Tyr	Leu	His 210
Ile	Met	Lys	Asn	Glu 215	Glu	Glu	Val	Val	Ile 220	Leu	Phe	Ala	Gln	Val 225
Gly	Asp	Arg	Ser	Ile 230	Met	Gln	Ser	Gln	Ser 235	Leu	Met	Leu	Glu	Leu 240
Arg	Glu	Gln	Asp	Gln 245	Val	Trp	Val	Arg	Leu 250	Tyr	Lys	Gly	Glu	Arg 255
Glu	Asn	Ala	Ile	Phe 260	Ser	Glu	Glu	Leu	Asp 265	Thr	Tyr	Ile	Thr	Phe 270
Ser	Gly	Tyr	Leu	Val 275	Lys	His	Ala	Thr	Glu 280	Pro				
<210 <211 <212 <213	> 24 > DN	A	cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					
<400 tac			gtca	ggac	ca g	9 99	24							
<211 <212	> DN	A	cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					
	> 80 aaga		agag	gccg	igg c	acg	24							
<210	> 81													

- <211> 45
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic oligonucleotide probe
 <400> 81
 cccggtgctt gcgctgctgt gaccccggta cctccatgta cccgg 45
 <210> 82
 <211> 2284
 <212> DNA
 <213> Homo Sapien
 <400> 82
 - geggageate egetgeggte etegeegaga eeceegegeg gattegeegg 50 teetteeege gggegegaca gagetgteet egcacetgga tggcageagg 100 ggcgccgggg tcctctcgac gccagagaga aatctcatca tctgtgcagc 150 cttcttaaag caaactaaga ccagagggag gattatcctt gacctttgaa 200 gaccaaaact aaactgaaat ttaaaatgtt cttcggggga gaagggagct 250 tgacttacac tttggtaata atttgcttcc tgacactaag gctgtctgct 300 agtcagaatt gcctcaaaaa gagtctagaa gatgttgtca ttgacatcca 350 gtcatctctt tctaagggaa tcagaggcaa tgagcccgta tatacttcaa 400 ctcaagaaga ctgcattaat tcttgctgtt caacaaaaaa catatcaggg 450 gacaaagcat gtaacttgat gatcttcgac actcgaaaaa cagctagaca 500 acccaactgc tacctatttt tctgtcccaa cgaggaagcc tgtccattga 550 aaccagcaaa aggacttatg agttacagga taattacaga ttttccatct 600 ttgaccagaa atttgccaag ccaagagtta ccccaggaag attctctctt 650 acatggccaa ttttcacaag cagtcactcc cctagcccat catcacacag 700 attattcaaa gcccaccgat atctcatgga gagacacact ttctcagaag 750 tttggatcct cagatcacct ggagaaacta tttaagatgg atgaagcaag 800 tgcccagctc cttgcttata aggaaaaagg ccattctcag agttcacaat 850 tttcctctga tcaagaaata gctcatctgc tgcctgaaaa tgtgagtgcg 900 ctcccagcta cggtggcagt tgcttctcca cataccacct cggctactcc 950 aaagcccgcc acccttctac ccaccaatgc ttcagtgaca ccttctggga 1000 cttcccagcc acagctggcc accacagctc cacctgtaac cactgtcact 1050

tctcagcctc ccacgaccct catttctaca gtttttacac gggctgcggc 1100 tacactccaa gcaatggcta caacagcagt tctgactacc acctttcagg 1150 cacctacgga ctcgaaaggc agcttagaaa ccataccgtt tacagaaatc 1200 tccaacttaa ctttgaacac agggaatgtg tataacccta ctgcactttc 1250 tatgtcaaat gtggagtctt ccactatgaa taaaactgct tcctgggaag 1300 gtagggaggc cagtccaggc agttcctccc agggcagtgt tccagaaaat 1350 cagtacggcc ttccatttga aaaatggctt cttatcgggt ccctgctctt 1400 tggtgtcctg ttcctggtga taggcctcgt cctcctgggt agaatccttt 1450 cggaatcact ccgcaggaaa cgttactcaa gactggatta tttgatcaat 1500 gggatctatg tggacatcta aggatggaac tcggtgtctc ttaattcatt 1550 tagtaaccag aagcccaaat gcaatgagtt tctgctgact tgctagtctt 1600 agcaggaggt tgtattttga agacaggaaa atgccccctt ctgctttcct 1650 tttttttttt ggagacagag tcttgctctg ttgcccaggc tggagtgcag 1700 tagcacgate teggetetea eegeaacete egteteetgg gtteaagega 1750 ttctcctgcc tcagcctcct aagtatctgg gattacaggc atgtgccacc 1800 acacctgggt gatttttgta tttttagtag agacggggtt tcaccatgtt 1850 ggtcaggctg gtctcaaact cctgacctag tgatccaccc tcctcggcct 1900 cccaaagtgc tgggattaca ggcatgagcc accacagctg gcccccttct 1950 gttttatgtt tggtttttga gaaggaatga agtgggaacc aaattaggta 2000 attttgggta atctgtctct aaaatattag ctaaaaacaa agctctatgt 2050 aaagtaataa agtataattg ccatataaat ttcaaaattc aactggcttt 2100 tatgcaaaga aacaggttag gacatctagg ttccaattca ttcacattct 2150 tggttccaga taaaatcaac tgtttatatc aatttctaat ggatttgctt 2200 ttctttttat atggattcct ttaaaactta ttccagatgt agttccttcc 2250 aattaaatat ttgaataaat cttttgttac tcaa 2284

<210> 83

<211> 431

<212> PRT

<213> Homo Sapien

				305					310					315
Ser	Leu	Glu	Thr	Ile 320	Pro	Phe	Thr	Glu	Ile 325	Ser	Asn	Leu	Thr	Leu 330
Asn	Thr	Gly	Asn	Val 335	Tyr	Asn	Pro	Thr	Ala 340	Leu	Ser	Met	Ser	Asn 345
Val	Glu	Ser	Ser	Thr 350	Met	Asn	Lys	Thr	Ala 355	Ser	Trp	Glu	Gly	Arg 360
Glu	Ala	Ser	Pro	Gly 365	Ser	Ser	Ser	Gln	Gly 370	Ser	Val	Pro	Glu	Asn 375
Gln	Tyr	Gly	Leu	Pro 380	Phe	Glu	Lys	Trp	Leu 385	Leu	Ile	Gly	Ser	Leu 390
Leu	Phe	Gly	Val	Leu 395	Phe	Leu	Val	Ile	Gly 400	Leu	Val	Leu	Leu	Gly 405
Arg	Ile	Leu	Ser	Glu 410	Ser	Leu	Arg	Arg	Lys 415	Arg	Tyr	Ser	Arg	Leu 420
Asp	Tyr	Leu	Ile	Asn 425	Gly	Ile	Tyr	Val	Asp 430	Ile				
<210 <211 <212 <213	> 30 > DN		cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide :	prob	e					
<400 agg		att	atcc	ttga	cc t	ttga	agac	c 30						
<210 <211 <212 <213	> 18 > DN		cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					
<400 gaa		gtg	ccca	gctc	18									
<210 <211 <212 <213	> 18 > DN	A	cial	Seq	uenc	e								
<220 <223		nthe	tic	olig	onuc	leot	ide	prob	e					,
<400 caa		cta	ctct	ttqq	18									

```
<210> 87
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 87
caccgtagct gggagcgcac tcac 24
<210> 88
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 88
 agtgtaagtc aagctccc 18
<210> 89
<211> 49
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 89
 qcttcctgac actaaggctg tctgctagtc agaattgcct caaaaagag 49
<210> 90
<211> 957
<212> DNA
<213> Homo Sapien
<400> 90
 cctggaagat gcgcccattg gctggtggcc tgctcaaggt ggtgttcgtg 50
 gtcttcgcct ccttgtgtgc ctggtattcg gggtacctgc tcgcagagct 100
 cattccagat gcacccctgt ccagtgctgc ctatagcatc cgcagcatcg 150
 gggagaggcc tgtcctcaaa gctccagtcc ccaaaaggca aaaatgtgac 200
 cactggactc cctgcccatc tgacacctat gcctacaggt tactcagcgg 250
 aggtggcaga agcaagtacg ccaaaatctg ctttgaggat aacctactta 300
 tgggagaaca gctgggaaat gttgccagag gaataaacat tgccattgtc 350
 aactatgtaa ctgggaatgt gacagcaaca cgatgttttg atatgtatga 400
 aggegataac tetggacega tgacaaagtt tatteagagt getgeteeaa 450
 aatccctgct cttcatggtg acctatgacg acggaagcac aagactgaat 500
```


<210> 91 <211> 235

<212> PRT

<213> Homo Sapien

<400> 91

Met Arg Pro Leu Ala Gly Gly Leu Leu Lys Val Val Phe Val Val 1 5 10 15

Phe Ala Ser Leu Cys Ala Trp Tyr Ser Gly Tyr Leu Leu Ala Glu 20 25 30

Leu Ile Pro Asp Ala Pro Leu Ser Ser Ala Ala Tyr Ser Ile Arg
35 40 45

Ser Ile Gly Glu Arg Pro Val Leu Lys Ala Pro Val Pro Lys Arg
50 55 60

Gln Lys Cys Asp His Trp Thr Pro Cys Pro Ser Asp Thr Tyr Ala 65 70 75

Tyr Arg Leu Leu Ser Gly Gly Gly Arg Ser Lys Tyr Ala Lys Ile 80 85 90

Cys Phe Glu Asp Asn Leu Leu Met Gly Glu Gln Leu Gly Asn Val 95 100 105

Ala Arg Gly Ile Asn Ile Ala Ile Val Asn Tyr Val Thr Gly Asn 110 115 120

Val Thr Ala Thr Arg Cys Phe Asp Met Tyr Glu Gly Asp Asn Ser

Gly Pro Met Thr Lys Phe Ile Gln Ser Ala Ala Pro Lys Ser Leu 140 145 150

Leu Phe Met Val Thr Tyr Asp Asp Gly Ser Thr Arg Leu Asn Asn 155 160 165

Asp Ala Lys Asn Ala Ile Glu Ala Leu Gly Ser Lys Glu Ile Arg

Asn Met Lys Phe Arg Ser Ser Trp Val Phe Ile Ala Ala Lys Gly 185

Leu Glu Leu Pro Ser Glu Ile Gln Arg Glu Lys Ile Asn His Ser

Asp Ala Lys Asn Asn Arg Tyr Ser Gly Trp Pro Ala Glu Ile Gln 225 215

Ile Glu Gly Cys Ile Pro Lys Glu Arg Ser 230

- <210> 92
- <211> 20
- <212> DNA
- <213> Artificial Sequence
- <220>
- <223> Synthetic oligonucleotide probe
- <400> 92
 - aatgtgacca ctggactccc 20
- <210> 93
- <211> 18
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- <400> 93
- aggettggaa eteeette 18
- <210> 94
- <211> 24
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- <400> 94
- aagattettg agegatteea getg 24
- <210> 95
- <211> 47
- <212> DNA
- <213> Artificial Sequence
- <223> Synthetic oligonucleotide probe
- <400> 95
- aatccctgct cttcatggtg acctatgacg acggaagcac aagactg 47


```
<210> 96
   <211> 21
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 96
    ctcaagaagc acgcgtactg c 21
    <210> 97
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 97
ccaacctcag cttccgcctc tacga 25
    <210> 98
    <211> 18
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
<400> 98
     catccaggct cgccactg 18
    <210> 99
    <211> 20
    <212> DNA
    <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
    <400> 99
     tggcaaggaa tgggaacagt 20
    <210> 100
    <211> 25
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 100
     atgctgccag acctgatcgc agaca 25
    <210> 101
    <211> 19
    <212> DNA
```



```
<223> Synthetic oligonucleotide probe
<400> 106
 tggcccagct gacgagccct 20
<210> 107
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 107
 ctcataggca ctcggttctg g 21
<210> 108
<211> 19
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 108
 tggctcccag cttggaaga 19
<210> 109
<211> 30
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 109
 cagctcttgg ctgtctccag tatgtaccca 30
<210> 110
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 110
gatgcctctg ttcctgcaca t 21
<210> 111
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 111
```


<210> 117


```
ggattctaat acgactcact atagggctgc ccgcaacccc ttcaactg 48
<210> 112
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic oligonucleotide probe
<400> 112
ctatgaaatt aaccctcact aaagggaccg cagctgggtg accgtgta 48
<210> 113
<211> 43
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 113
ggattctaat acgactcact atagggccgc cccgccacct cct 43
<210> 114
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
ctatgaaatt aaccctcact aaagggactc gagacaccac ctgaccca 48
<210> 115
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic oligonucleotide probe
<400> 115
ggattctaat acgactcact atagggccca aggaaggcag gagactct 48
<210> 116
<211> 48
<212> DNA
<213> Artificial Sequence
<223> Synthetic Oligonucleotide probe
<400> 116
ctatgaaatt aaccctcact aaagggacta gggggtggga atgaaaag 48
```


١

```
<211> 48
     <212> DNA
     <213> Artificial Sequence
     <223> Synthetic oligonucleotide probe
     <400> 117
     ggattctaat acgactcact atagggcccc cctgagctct cccgtgta 48
     <210> 118
     <211> 48
     <212> DNA
     <213> Artificial Sequence
     <220>
     <223> Synthetic oligonucleotide probe
     <400> 118
     ctatgaaatt aaccctcact aaagggaagg ctcgccactg gtcgtaga 48
<210> 119
     <211> 48
     <212> DNA
     <213> Artificial Sequence
    <223> Synthetic oligonucleotide probe
H
    <400> 119
ggattctaat acgactcact atagggcaag gagccgggac ccaggaga 48
    <210> 120
    <211> 47
    <212> DNA
    <213> Artificial Sequence
    <220>
    <223> Synthetic oligonucleotide probe
    <400> 120
     ctatgaaatt aaccctcact aaagggaggg ggcccttggt gctgagt 47
```