

Ejercicio 1: Para la función de transferencia G(s) que le corresponde a cada grupo:

Graficar las respuestas a lazo abierto, correspondientes a las siguientes entradas:

- escalón unitario
- rampa unitaria
- impulso unitario
- seno (wt) (para w=0.1, 0.5, 1 y 2)

Graficar en cada caso la función de transferencia con y sin tiempo muerto.

Ejercicio 2:

- 2.1 Graficar el lugar de raíces de Go(s)= G(s)*H(s) y determinar Kcu y Tu.(considerar el sistema Go(s) SIN TIEMPO MUERTO y H(s) según grupo)
- 2.2- Determinar Kcu y Tu, aplicando Método de Routh y Método de Sustitución Directa
- 2.3- Calcular los ajustes óptimos aplicando Ajustes de Ziegler-Nichols

Table 6-1 Fórmulas para ajuste de razón de asentamiento de un cuarto.

Tipo de controlador		Genencie proporcional K _C	Tiempo de integración 17	Tiempo de derivación [†] o
Proporcional	Р	K _{ov} / 2		
Proporcional-integral Proporcional-integral-	PI	K _{cu} / 2.2	T _u / 1.2	
derivativo	PID	K _{ov} / 1.7	T,/2	7,/8

Ejercicio 3:

- 3.1-Graficar la respuesta del sistema representado por la función de transferencia Go(s) SIN TIEMPO MUERTO para la entrada sen wt (para w=0.1, 0.5, 1 y 2).
- 3.2- Determinar a partir de los gráficos obtenidos en el punto 2.1 la amplitud y el desfasaje entre la salida y la entrada a cada frecuencia w.
- 3.3- Verificar en el Diagrama de Bode correspondiente a Go(s), los valores calculados a partir de los gráficos.

Ejercicio 4:

Para la función de transferencia de lazo abierto Go(s)= G(s)*H(s) SIN TIEMPO MUERTO, graficar los Diagramas de Bode, Nyquist y Lugar de Raíces para los siguientes casos:

- 4.1- A partir de la función Go (s) determinar: asíntotas, Gss, constantes de tiempo, margen de ganancia y de fase, Wu y Tu, Kcu (gráficamente)
- 4.2- Función Go(s) con controlador solo P (mostrar solo Go(s), solo Gp(s) y Go(s)*Gc(s))
- 4.3- Función Go(s) con controlador P+I (mostrar solo Go(s), solo Gpi(s) y Go(s)*Gpi(s))
- 4.4- Función Gop(s) con controlador P+D (mostrar solo Go(s), solo Gpd(s) y Go(s)*Gpd(s))
- 4.5- Función Go(s) con controlador P+I+D (mostrar solo Go(s), solo Gpid(s) y Go(s)*Gpid(s))

Presentar conclusiones: como varia Tu, análisis de estabilidad y velocidad de respuesta a partir del análisis de estas graficas

Ejercicio 5:

Graficar la Respuesta temporal a lazo cerrado de cada uno de los casos (puntos 4.2, 4.3, 4.4 y 4.5). Compararlas y revisar las conclusiones obtenidas en punto 4.