

CÉSAR VALLEJO

CÉSAR VALLEJO

OPERACIONES MATEMÁTICAS II

*		2		3	5	7
3		3		5	7	2
7		7		2	3	5
2	Į	2)	3	5	7
5		5		7	2	3

PROPIEDAD DE CERRADURA O DE CLAUSURA

PROPIEDAD CONMUTATIVA

ELEMENTO NEUTRO

ELEMENTO INVERSO

OBJETIVOS:

Conocer, analizar y aplicar de manera correcta las propiedades de clausura, conmutativa, elemento neutro y elemento inverso de las operaciones matemáticas.

PROPIEDAD DE CLAUSURA O CERRADURA

En un conjunto A $\neq \phi$ definimos una operación matemática simbolizada por (*) y encontramos la siguiente propiedad:

Si al realizar la operación representada por (*) con dos elementos cualesquiera del conjunto A el resultado termina siendo un elemento del conjunto A, entonces la operación cumple con la propiedad de clausura o cerradura y, por consiguiente, la operación es cerrada en el conjunto A.

$$\forall$$
 a; b \in A \rightarrow a*b \in A

APLICACIÓN 1

Se define en \mathbb{R} : $a*b = 3a^2 + b$ Si la regla fuera:

¿ La operación es cerrada en $\mathbb N$?

Si la regla fuera: a*b = 3a² - b ¿Es cerrada en № ?

Resolución:

Sean a y b números naturales (\mathbb{N}) entonces:

$$\mathbb{N} * \mathbb{N} = 3(\mathbb{N})^2 + \mathbb{N} = \mathbb{N}$$

 ∴ Por lo tanto la operación con (*) es cerrada en N.

APLICACIÓN 2

En A={2; 3; 5; 7} se define la operación matemática representada en el operador (*) mediante la siguiente tabla:

Resolución:

Para saber si la operación es cerrada en A, verificar que todos los elementos del conjunto A estén presentes tanto en la columna, en la fila de entrada y también en el cuerpo de la tabla. Si es así, la operación es cerrada en A.

Notamos que $6 \notin A$: La operación definida no es <u>cerrada en A</u>.

PROPIEDAD CONMUTATIVA

Para todo par de elementos del conjunto A, si el orden de dichos elementos en la operación matemática representada por (*) no altera el resultado de la misma, entonces la operación es conmutativa en A.

$$\forall \ a \ ; \ b \in A \rightarrow a*b = b*a$$

APLICACIÓN 3

Se define en \mathbb{Q} a * b = a + b - ab

¿Esta operación cumple la propiedad conmutativa?

Resolución:

Para saber si la operación cumple o no con la propiedad de la conmutatividad, calculamos $m{b}*m{a}$

$$b * a = b + a - ba$$

Comparamos los resultados en ambos casos

$$(a+b-ab)$$
 y $(b+a-ba)$

Son iguales, es decir, el resultado es el mismo.

∴ La operación representada por (*) es conmutativa.

APLICACIÓN 4

En A= {a; b; c; d} se define una operación matemática representada por el operador (*) mediante la siguiente tabla. ¿Es conmutativa la operación?

Resolución:

Criterio de la diagonal:

Se ordena la fila y la columna de entrada.

Se traza la diagonal principal.

Se verifica simetría a ambos lados de la diagonal.

∴ La operación sí es conmutativa

ELEMENTO NEUTRO

Sea **e** un elemento del conjunto A, tal que al operarlo con cualquier elemento **a**, del conjunto A, tanto a derecha como izquierda, da como resultado el mismo elemento a.

Si este elemento **e** existe, se *denominará elemento neutro*.

$$\exists$$
! $e \in A / \forall a \in A \rightarrow a*e = e*a = a$

Por ejemplo:

En la adición, el elemento neutro es el 0.

$$a + 0 = 0 + a = a$$

$$\rightarrow$$
 e = 0

En la multiplicación el elemento neutro es el 1.

Si una operación matemática tiene elemento neutro. éste es único.

APLICACIÓN 5

Se define en \mathbb{Z} : a*b = a + b - 3. ¿Cuál es el elemento neutro? Resolución:

Por definición, operamos el neutro por izquierda y por derecha.

$$e * a = a$$

 $e + a - 3 = a$

$$e = 3$$

Se observa que, para ambos casos, **e** tiene el mismo valor

∴ El elemento neutro es 3

APLICACIÓN 6

NOTA:

Un elemento **e** que cumpla solamente a * e = aSe llama **elemento** neutro la por derecha.

¿Cuál es, si tiene, el elemento neutro?

Resolución:

Criterio de la intersección:

Ubicar en el cuerpo de la tabla, una columna igual a la columna de entrada y una fila igual a la fila de entrada.

La intersección de la fila y la columna mencionadas nos dará el elemento neutro.

a (b) c bΙ b С

: El elemento neutro es b

ELEMENTO INVERSO

En una operación, con elemento neutro, tenemos un elemento $\mathbf{a} \in A$, de modo tal que para éste, existe un elemento $\mathbf{a}^{-1} \in A$ que al ser operado, tanto a la derecha como a la izquierda de **a** , da como resultado el elemento neutro de la operación. Dicho elemento **a**-1 es denominado elemento inverso de a.

Dado $e \in A$, $\forall a \in A$, $\exists a^{-1} \in A / a^* a^{-1} = a^{-1} * a = e$

e: Elemento neutro

a-1: Elemento inverso de a

La adición en $\mathbb R$ inverso neutro aditivo aditivo (-3)= 0(-5)= 0= 0— a) a +

La multiplicación en $\mathbb R$ neutro inverso multiplicativo multiplicativo 4 x 6 x a x

APLICACIÓN 7

Se define en \mathbb{R}

Recuerda:

Para neutro:

Para inverso: $a * a^{-1} = e$

$$a \diamond b = \frac{2ab}{3}$$

Donde a-1 es el elemento inverso de a.

Calcule 4⁻¹

Resolución:

Primero calculamos el neutro:

$$\frac{2ae}{2} = a$$

$$e = \frac{3}{2}$$

Luego calculamos **a**-1

$$\frac{2a \times a^{-1}}{3} = \frac{3}{2}$$

$$a^{-1} = \frac{9}{4a}$$

Reemplazamos a = 4 para obtener lo pedido

$$4^{-1} = \frac{9}{4(4)} = \frac{9}{16}$$

∴ El resultado es 9/16

APLICACIÓN 8

Se define en A = {a; b; c; d} una operación matemática mediante la siguiente tabla

*	а	b	С
а	е	С	а
b	С	d	b
С	а	b	С

Donde n^{-1} es el elemento inverso de n. Calcule a^{-1}

- A) a
- **B**) b
- C) c
- D) d
- E) e

Si una operación no es conmutativa aún puede tener elemento neutro. Que sea conmutativa no asegura que tenga neutro.

Resolución

Nos piden: El valor de a-1

Primero hallamos el elemento neutro *e*

Por definición de inversas

∴ El valor de **a**-¹ es b

Gráficamente

En el cuerpo de la tabla, señalamos el elemento neutro y procedemos a calcular los elementos inversos.

Criterio del rebote:

$$a^{-1} = b$$

 $b^{-1} = a$

$$c^{-1} = c$$

- ACADEMIA -CÉSAR VALLEJO

GRACIAS

academiacesarvallejo.edu.pe