Ray Tracing One Weekend

Ian Turner

June 14, 2024

1 Week 0: Ray Tracing Class

Thursday, 06/13/2023

- course link
- shoutout to **TODO** add x user that pointed me to this (shoutout ml btw (for you page))
- this is my very first c or cpp project (op says it's c flavored cpp) beyond hello worlds and basic basic robotics stuff
- i love rust but i am not cracked at all so i would probably not be able to follow along in rust
- i will, however, follow op's advice to not copy pasta (besides most of makefile compiler flags hehehe) and build it up slowly by typing along
- going to try my best to thug this out by Sunday
- test bib [1]
- bib working lets go
- important setup for fresh arch install (not in order, and just off the dome, i likely am forgetting tons of things)
 - install unzip (will need for nvim clangd Mason lsp stuff)
 - install cmake, clangd, gcc stuff
 - setup debugger for nvim using dap, dap-ui, etc.
 - build, compile, run: (i think lol)
 - 1. cmake -B build/Debug -DCMAKE_BUILD_TYPE=Debug
 - 2. cmake --build build/Debug
 - 3. build/rayTracing > image.ppm
- op claims that if we can build project correctly in the beginning, then we are golden for rest of tutorial
- i hope this is true since the provided cmake file is cash money and really easy to get working with my setup (Figure ??)
- make rtrace aliase for build, compile, run, then open image in feh, probably terrible idea but whatever
- got color header file with a write_color util function
- now working on a ray class which will use our vec3 class.
- refresher on rays: think of them as functions (Equation 1):

$$\mathbf{P}(t) = \mathbf{A} + t\mathbf{b} \tag{1}$$

• here **P** is a 3D position along a line in 3D. **A** is the ray origin and **b** is the ray direction. The ray parameter t is a real number (double in the code). Plug in a different t and **P**(t) moves the point along the ray. Add in negative t values and you can go anywhere on the 3D line. For positive t, you get only the parts in front of **A**, and this is what is often called a half-line or a ray. (Figure 1)

Figure 1: linear interpolation

- to make the actual ray tracer we will make simple camera with 16:9 aspect ratio since it will be easier to debug x and y transpositions.
- we need the height to be at least 1 since we divide width by height since it's easier to set the aspect ratio to width then divide by height. e.g. width/height = 16/9 = 1.7778
- apparently this is just an *optimistic* (my words) ratio since these values are not integers. we approximate the aspect ratio as best we can by rounding height to the nearest integer (and don't allow it to be less than one)

- now we have a camera center in 3d space from which all the rays will originate (commonly referred to as the *eye* point). we initially set the distance between the viewport of the camera center point to be one unit. This is often referred to as the focal length.
- we will use right-handed coordinates (right hand rule gang) Figure 2

Figure 2: camera geometry

• unfortunately, the camera pose conflicts with the way we would like to render our image starting from the upper left pixel row by row scanning across from left to right. (Figure 3)

Figure 3: viewport and pixel grid

• we have example 7x5 resolution image, the viewport upper left corner \mathbf{Q} , the pixel $\mathbf{P_{0,0}}$ location, the viewport vector $\mathbf{V_u}$ (viewport_u), the viewport vector $\mathbf{V_v}$ (viewport_v), and the pixel delta vectors $\mathbf{\Delta u}$ and $\mathbf{\Delta v}$.

References

[1] S. H. Peter Shirley, Trevor David Black, "Ray tracing in one weekend," April 2024.