Recommender Systems

Machine Learning (AIM 5002-41)

Joon Hee Choi Sungkyunkwan University

Problem formulation

Example: Predicting movie ratings

User rates movies using zero to five stars

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
'				

 n_u = no. users n_m = no. movies r(i,j) = 1 if user j has rated movie i $y^{(i,j)}$ = rating given by user j to movie i (defined only if r(i,j)=1)

Content-based recommendations

Content-based recommender systems

_	Movie	Alice (1) $\theta^{(1)}$	Bob (2) $\theta^{(2)}$	Carol (3) $\boldsymbol{\theta}^{(3)}$	Dave (4) $\boldsymbol{\theta}^{(4)}$
$\mathbf{x}^{(1)}$	Love at last	5	5	0	0
$\mathbf{x}^{(2)}$	Romance forever	5	?	?	0
$\mathbf{x}^{(3)}$	Cute puppies of love	?	4	0	?
$\mathbf{x}^{(4)}$	Nonstop car chases	0	0	5	4
$\mathbf{x}^{(5)}$	Swords vs. karate	0	0	5	?

For each user j, learn a parameter $\theta^{(j)} \in \mathbb{R}^3$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

$$\mathbf{x}^{(3)} = \begin{bmatrix} 1 \\ 0.99 \\ 0 \end{bmatrix} \leftrightarrow \boldsymbol{\theta}^{(1)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix} \quad \Rightarrow \left(\boldsymbol{\theta}^{(1)}\right)^T \mathbf{x}^{(3)} = 4.95$$

Problem formulation

r(i,j) = 1 if user j has rated movie i (0 otherwise) $y^{(i,j)} = \text{rating by user } j \text{ on movie } i$ (if defined)

 $heta^{(j)}$ = parameter vector for user j $x^{(i)}$ = feature vector for movie i For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$

 $m^{(j)}$ = no. of movies rated by user j To learn $\theta^{(j)}$:

$$\min_{\theta^{(j)}} \frac{1}{2m^{(j)}} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2m^{(j)}} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

$$J(\theta^{(1)},...,\theta^{(n_u)})$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

$$\frac{\partial}{\partial \theta^{(j)}} J(\theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

Problem motivation

 $x_0 = 1$ x_1 Movie Alice (1) **Bob** (2) Carol (3) **Dave (4)** $\boldsymbol{\theta}^{(1)}$ $\boldsymbol{\theta}^{(2)}$ $\boldsymbol{\theta}^{(3)}$ $\boldsymbol{\theta}^{(4)}$ (action) (romance) ? \rightarrow 1.0 $\rightarrow 0.0$ Love at last 5 5 0 0 Romance forever 5 0 Cute puppies of 4

$$\theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(2)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(3)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(3)} = \begin{bmatrix} 0 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(4)} = \begin{bmatrix} 0 \\ 6 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(4)} = \begin{bmatrix} 0 \\ 6 \\ 5 \\ 0 \end{bmatrix}, \ \theta^{(4)} = \begin{bmatrix} 0 \\ 6 \\ 5 \\ 0 \end{bmatrix}$$

Optimization algorithm

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(i)}$:

$$\min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $x^{(1)}, \ldots, x^{(n_m)}$:

$$\min_{x^{(1)},\dots,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $x^{(1)}, \ldots, x^{(n_m)}$ (and movie ratings), can estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
,
can estimate $x^{(1)}, \dots, x^{(n_m)}$

$$\theta \to x \to \theta \to x \to \theta \to x \to \cdots$$

Collaborative filtering algorithm

Collaborative filtering optimization objective

Given $x^{(1)}, \ldots, x^{(n_m)}$, estimate $\theta^{(1)}, \ldots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, estimate $x^{(1)}, \ldots, x^{(n_m)}$:

 $\theta^{(1)},\ldots,\theta^{(n_u)}$

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \ldots, x^{(n_m)}$ and $\theta^{(1)}, \ldots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

$$\min_{x^{(1)}, \dots, x^{(n_m)}} J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$$

Collaborative filtering algorithm

- 1. Initialize $x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)}$ to small random values.
- 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j=1,\ldots,n_u, i=1,\ldots,n_m$:

$$\begin{aligned} x_k^{(i)} &:= x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right) \\ \theta_k^{(j)} &:= \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \end{aligned}$$

3. For a user with parameters θ and a movie with (learned) features x, predict a star rating of $\theta^T x$.

Vectorization: Low rank matrix factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	?	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?

Collaborative filtering

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix} \qquad \begin{bmatrix} (\theta^{(1)})^T(x^{(1)}) & (\theta^{(2)})^T(x^{(1)}) & \dots & (\theta^{(n_u)})^T(x^{(1)}) \\ (\theta^{(1)})^T(x^{(2)}) & (\theta^{(2)})^T(x^{(2)}) & \dots & (\theta^{(n_u)})^T(x^{(2)}) \\ \vdots & & \vdots & & \vdots & \vdots \\ (\theta^{(1)})^T(x^{(n_m)}) & (\theta^{(2)})^T(x^{(n_m)}) & \dots & (\theta^{(n_u)})^T(x^{(n_m)}) \end{bmatrix}$$

 $\mathbf{X}\mathbf{\Theta}^{\mathrm{T}}$

$$X = \begin{bmatrix} - & (x^{(1)})^T & - \\ \vdots & \vdots & \\ - & (x^{(n_m)})^T & - \end{bmatrix} \qquad \Theta = \begin{bmatrix} - & (\theta^{(1)})^T & - \\ \vdots & \vdots & \\ - & (\theta^{(n_u)})^T & - \end{bmatrix}$$

→ Low rank matrix factorization

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

$$\rightarrow x_1$$
 = romance, x_2 = action, x_3 = comedy, x_4 = ...

How to find movies j related to movie i?

Small
$$||x^{(i)} - x^{(j)}|| \rightarrow$$
 movies j and i are "similar"

5 most similar movies to movie i: Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Implementational detail: Mean normalization

Users who have not rated any movies

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	_	Г~	_	0	0	٦٦
Love at last	5	5	0	0	?	_	5	5	0	0	
Romance forever	5	?	?	0	?	17	$\frac{1}{2}$			0	$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$
Cute puppies of love	?	4	0	?	?	Y =		4	U		$\begin{bmatrix} \cdot \\ \cdot \end{bmatrix}$
Nonstop car chases	0	0	5	4	,			0	O	4	•
Swords vs. karate	0	0	5	?	?		Γ_{Ω}	U	\mathbf{G}	U	•]

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Mean Normalization:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 & ? \\ 5 & ? & ? & 0 & ? \\ ? & 4 & 0 & ? & ? \\ 0 & 0 & 5 & 4 & ? \\ 0 & 0 & 5 & 0 & ? \end{bmatrix} \qquad \mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow Y = \begin{bmatrix} 2.5 & 2.5 & -2.5 & -2.5 & ? \\ 2.5 & ? & ? & -2.5 & ? \\ ? & 2 & -2 & ? & ? \\ -2.25 & -2.25 & 2.75 & 1.75 & ? \\ -1.25 & -1.25 & 3.75 & -1.25 & ? \end{bmatrix}$$

For user j, on movie i predict:

$$\rightarrow \left(\theta^{(j)}\right)^T \left(x^{(i)}\right) + \mu_i$$

User 5 (Eve):

$$\theta^{(5)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \qquad \underbrace{\left(\theta^{(5)} - \theta^{(5)}\right)}_{\text{magnitude}}$$

$$(\theta^{(5)})^T (x^{(i)}) + \mu_i$$

$$= 0$$