Problema 1

Resolver, mediante hiperplanos de corte, el siguiente problema:

min
$$z = -2x_1 - x_2$$

s. a.: $x_1 + x_2 + x_3 = 5$
 $-x_1 + x_2 + x_4 = 0$
 $6x_1 + 2x_2 + x_5 = 21$
 $x_j \ge 0, \ j = 1, ... 5$
 $x_1, x_2, x_3, x_4 \ y \ x_5$ enteros

La solución óptima, del problema de programación lineal correspondiente a la relajación continua del problema anterior, se presenta en la siguiente tabla

	\mathcal{X}_1	x_2	χ_3	χ_4	χ_5	
x_2	0	1	3/2	0	-1/4	9/4
362	0	0	-2	1	1/2	1/2
X_4	1	0	1 /2	0	1 / 4	11/4
x_1	1	U	-1/2	0	1/4	11/4
	0	0	1/2	0	1/4	Z - (-31/4)

Considerando como ecuación generatriz del corte: $-2x_3 + x_4 + \frac{1}{2}x_5 = \frac{1}{2}$

se obtiene el corte:

$$\frac{1}{2}x_5 \ge \frac{1}{2}$$

Introduciendo la anterior desigualdad y denotando por x_6 la correspondiente variable de holgura, se obtiene la siguiente tabla:

	x_1	χ_2	χ_3	χ_4	χ_5	χ_6	
	0	1	3/2	0	-1/4	0	9/4
χ_2							
x_4	0	0	-2	1	1/2	0	1/2
x_1	1	0	-1/2	0	1/4	0	11/4
χ_6	0	0	0	0	-1/2	1	-1/2
	0	0	1/2	0	1/4	0	Z - (-31/4)

Aplicando el algoritmo dual del simplex se obtiene la solución óptima de la relajación continua del nuevo problema:

	x_1	x_2	χ_3	χ_4	χ_5	χ_6	
x_2	0	1	3/2	0	0	-1/2	5/2
	0	0	-2	1	0	1	0
X_4	1	0	-1/2	0	0	1/2	5/2
X_1	0	0	0	0	1	-2	1
<i>X</i> ₅	Ů						1
	0	0	1/2	0	0	1/2	Z - (-15/2)

Considerando como ecuación generatriz del corte: $x_2 + \frac{3}{2}x_3 - \frac{1}{2}x_6 = \frac{5}{2}$ se obtiene el corte:

$$\frac{1}{2}x_3 + \frac{1}{2}x_6 \ge \frac{1}{2}$$

Introduciendo la anterior desigualdad y denotando por x_7 la correspondiente variable de holgura, se obtiene la siguiente tabla:

	x_1	χ_2	χ_3	χ_4	χ_5	χ_6	<i>X</i> ₇	
x_2	0	1	3/2	0	0	-1/2	0	5/2
χ_4	0	0	-2	1	0	1	0	0
x_1	1	0	-1/2	0	0	1/2	0	5/2
x_5	0	0	0	0	1	-2	0	1
	0	0	-1/2	0	0	-1/2	1	-1/2
X_7	0	0	1/2	0	0	1/2	0	Z - (-15/2)
								, ,

Aplicando el algoritmo dual del simplex, se obtiene la solución óptima de la relajación continua del nuevo problema:

	\mathcal{X}_1	x_2	χ_3	χ_4	χ_5	χ_6	x_7	
X_2	0	1	0	0	0	-2	3	1
χ_4	0	0	0	1	0	3	-4	2
x_1	1	0	0	0	0	1	-1	3
x_5	0	0	0	0	1	-2	0	1
<i>X</i> ₃	0	0	1	0	0	1	-2	1
	0	0	0	0	0	0	1	Z-(-7)

Obteniéndose la solución óptima del problema entero.

Solución óptima: $x_1^* = 3$, $x_2^* = 1$, $x_3^* = 1$, $x_4^* = 2$, $x_5^* = 1$, $z^* = -7$

Hoja 7

Problema 2

Resolver el siguiente problema de programación lineal entera, mediante *hiperplanos de corte*:

min
$$4x_1 + 5x_2$$

s. a.: $3x_1 + x_2 \ge 2$
 $x_1 + 4x_2 \ge 5$
 $3x_1 + 2x_2 \ge 7$
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \ y \ x_2 \ \text{enteros}$

La solución óptima de la relajación lineal continua, del problema anterior, se presenta en la siguiente tabla:

	x_1	χ_2	<i>X</i> ₃	χ_4	<i>X</i> ₅	
<i>X</i> ₃	0	0	1	$\frac{3}{10}$	$-\frac{11}{10}$	21 5
x_2	0	1	0	$-\frac{3}{10}$	$\frac{1}{10}$	4 5
\mathcal{X}_1	1	0	0	$\frac{1}{5}$	$-\frac{2}{5}$	9 5
	0	0	0	$\frac{7}{10}$	$\frac{11}{10}$	$Z-\frac{56}{5}$

Seleccionando como ecuación generatriz del corte la correspondiente a la variable x_2 ,

$$x_2 - \frac{3}{10}x_4 + \frac{1}{10}x_5 = \frac{4}{5}$$

se obtiene el corte

$$\frac{7}{10}x_4 + \frac{1}{10}x_5 \ge \frac{4}{5}$$

	x_1	\mathcal{X}_2	χ_3	χ_4	χ_5	χ_6	
<i>X</i> ₃	0	0	1	$\frac{3}{10}$	$-\frac{11}{10}$	0	21 5
x_2	0	1	0	$-\frac{3}{10}$	$\frac{1}{10}$	0	$\frac{4}{5}$
X_1	1	0	0	1 5	$-\frac{2}{5}$	0	9 5
χ_6	0	0	0	$-\frac{7}{10}$	$-\frac{1}{10}$	1	$-\frac{4}{5}$
	0	0	0	$\frac{7}{10}$	$\frac{11}{10}$	0	$Z-\frac{56}{5}$

	\mathcal{X}_1	χ_2	χ_3	<i>X</i> ₄	<i>X</i> ₅	χ_6	
<i>X</i> ₃	0	0	1	0	$-\frac{8}{7}$	$\frac{3}{7}$	27 7
<i>X</i> ₂	0	1	0	0	$\frac{1}{7}$	$-\frac{3}{7}$	8 7
X_1	1	0	0	0	$-\frac{3}{7}$	$\frac{2}{7}$	11 7
X_4	0	0	0	1	$\frac{1}{7}$	$-\frac{10}{7}$	8 7
	0	0	0	0	1	1	Z-12

Seleccionando como ecuación generatriz del corte la correspondiente a la variable x_3 ,

$$x_3 - \frac{8}{7}x_5 + \frac{3}{7}x_6 = \frac{27}{7}$$

se obtiene el corte

$$\frac{6}{7}x_5 + \frac{3}{7}x_6 \ge \frac{6}{7}$$

	x_1	χ_2	<i>X</i> ₃	χ_4	<i>X</i> ₅	χ_6	<i>X</i> ₇	
<i>X</i> ₃	0	0	1	0	$-\frac{8}{7}$	$\frac{3}{7}$	0	$\frac{27}{7}$
x_2	0	1	0	0	$\frac{1}{7}$	$-\frac{3}{7}$	0	8 7
x_1	1	0	0	0	$-\frac{3}{7}$	$\frac{2}{7}$	0	$\frac{11}{7}$
X_4	0	0	0	1	$\frac{1}{7}$	$-\frac{10}{7}$	0	8 7
<i>X</i> ₇	0	0	0	0	$-\frac{6}{7}$	$-\frac{3}{7}$	1	$-\frac{6}{7}$
	0	0	0	0	1	1	0	Z-12

	x_1	x_2	χ_3	χ_4	X_5	\mathcal{X}_6	x_7	
<i>X</i> ₃	0	0	1	0	0	1	$-\frac{4}{3}$	5
x_2	0	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{6}$	1
\mathcal{X}_1	1	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	2
χ_4	0	0	0	1	0	$-\frac{3}{2}$	$\frac{1}{6}$	1
<i>X</i> ₅	0	0	0	0	1	$\frac{1}{2}$	$-\frac{7}{6}$	1
	0	0	0	0	0	$\frac{1}{2}$	<u>7</u> 6	Z-13

Obteniéndose la solución óptima del problema entero.

Solución óptima: $x_1^* = 2$, $x_2^* = 1$, $x_3^* = 5$, $x_4^* = 1$, $x_5^* = 1$, $z^* = 13$