13 Continuous-Time Modulation

Solutions to Recommended Problems

S13.1

(a) By the shifting property,

$$x(t)e^{j3\omega_c t} \stackrel{\mathcal{F}}{\to} X(\omega - 3\omega_c) = Y(\omega)$$

The magnitude and phase of $Y(\omega)$ are given in Figure S13.1-1.

(b) Since $e^{j3\omega_c+j\pi/2}=e^{j\pi/2}e^{j3\omega_ct}$, we are modulating the same carrier as in part (a) except that we multiply the result by $e^{j\pi/2}$. Thus

$$Y(\omega) = e^{j\pi/2}X(\omega - 3\omega_c)$$

Note in Figure S13.1-2 that the magnitude of $Y(\omega)$ is unaffected and that the phase is shifted by $\pi/2$.

(c) Since

$$\cos 3\omega_c t = \frac{e^{j3\omega_c t}}{2} + \frac{e^{-j3\omega_c t}}{2},$$

we can think of modulation by $\cos 3\omega_c t$ as the sum of modulation by

$$rac{e^{j3\omega_c t}}{2}$$
 and $rac{e^{-j3\omega_c t}}{2}$

Thus, the magnitude and phase of $Y(\omega)$ are as shown in Figure S13.1-3. Note the scaling in the magnitude.

(d) We can think of modulation by $\sin 3\omega_c t$ as the sum of modulation by

$$\frac{e^{j3\omega_c t - j\pi/2}}{2}$$
 and $\frac{e^{-j3\omega_c t - j\pi/2}}{2}$

Thus, the magnitude and phase of $Y(\omega)$ are as given in Figure S13.1-4. Note the scaling by $\frac{1}{2}$ in the magnitude.

(e) Since the phase terms are different in parts (c) and (d), we cannot just add spectra. We need to convert $\cos 3\omega_c t + \sin 3\omega_c t$ into the form $A \cos(3\omega_c t + \theta)$. Note

that

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

Let $\alpha = 3\omega_c t$ and $\beta = \pi/4$. Then

$$\cos\left(3\omega_c t - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\cos 3\omega_c t + \sin 3\omega_c t)$$

Thus

$$\cos 3\omega_c t + \sin 3\omega_c t = \sqrt{2} \cos \left(3\omega_c t - \frac{\pi}{4}\right)$$

Now we write c(t) as

$$rac{\sqrt{2}}{2} \, e^{j[3\omega_c t - (\pi/4)]} + rac{\sqrt{2}}{2} \, e^{-j[3\omega_c t - (\pi/4)]}$$

Modulating by each exponential separately and then adding yields the magnitude and phase given in Figure S13.1-5. (Note the scaling in the magnitude.)

S13.2

In Figure S13.2-1 we redraw the system with some auxiliary signals labeled.

By the modulation property, $R_1(\omega)$, the Fourier transform of $r_1(t)$, is

$$R_1(\omega) = \frac{1}{2\pi} [X(\omega) * S(\omega)]$$

Since $S(\omega)$ is composed of impulses, $R_1(\omega)$ is a repetition of $X(\omega)$ centered at $-2\omega_c$, 0, and $2\omega_c$, and scaled by $1/(2\pi)$. See Figure S13.2-2.

(a) Since m(t) = d(t) = 1, y(t) is $r_1(t)$ filtered twice by the same ideal lowpass filter with cutoff at ω_c . Thus, comparing the resulting Fourier transform of y(t), shown in Figure S13.2-3, we see that $y(t) = 1/(2\pi)x(t)$, which is nonzero.

(b) Modulating $r_1(t)$ by $e^{j\omega_c t}$ yields $R_1(\omega - \omega_c)$ as shown in Figure S13.2-4.

Similarly, modulating by $e^{-j\omega_c t}$ yields $R_1(\omega+\omega_c)$ as shown in Figure S13.2-5.

Since $\cos \omega_c t=(e^{j\omega_c t}+e^{-j\omega_c t})/2$, modulating $r_{\rm l}(t)$ by $\cos \omega_c t$ yields a Fourier transform of $r_{\rm l}(t)$ given by

$$\frac{R_1(\omega-\omega_c)+R_1(\omega+\omega_c)}{2}$$

Thus, $R_2(\omega)$ is as given in Figure S13.2-6.

After filtering, $R_3(\omega)$ is given as in Figure S13.2-7.

 $R_4(\omega)$ is given by shifting $R_3(\omega)$ up and down by ω_c and dividing by 2. See Figure S13.2-8.

After filtering, $Y(\omega)$ is as shown in Figure S13.2-9.

Comparing $Y(\omega)$ and $X(\omega)$ yields

$$y(t) = \frac{1}{4\pi} x(t)$$

(c) Since

$$\sin \omega_c t = \frac{e^{j\omega_c t} - e^{-j\omega_c t}}{2j},$$

then

$$R_2(\omega) = \frac{R_1(\omega - \omega_c) - R_1(\omega + \omega_c)}{2j},$$

which is drawn in Figure S13.2-10.

After filtering, $R_3(\omega) = 0$. Therefore, y(t) = 0.

(d) In this case, it is not necessary to know $r_3(t)$ exactly. Suppose $r_3(t)$ is nonzero, with $R_3(\omega)$ given as in Figure S13.2-11.

After modulating by $d(t) = \cos 2\omega_c t$, $R_4(\omega)$ is given as in Figure S13.2-12.

After filtering, y(t) = 0 since $R_4(\omega)$ has no energy from $-\omega_c$ to ω_c .

(e) For this part, let us calculate $R_2(\omega)$ explicitly.

$$R_2(\omega) = \frac{R_1(\omega - 2\omega_c) + R_1(\omega + 2\omega_c)}{2},$$

which is drawn in Figure S13.2-13.

After filtering, $R_3(\omega)$ is as shown in Figure S13.2-14.

Modulating again yields $R_4(\omega)$ as shown in Figure S13.2-15.

Finally, filtering $R_4(\omega)$ gives the Fourier transform of y(t), shown in Figure S13.2-16.

Thus,

$$y(t) = \frac{1}{8\pi} x(t)$$

<u>S13.3</u>

(a) The demodulator signal $\boldsymbol{w}(t)$ is related to $\boldsymbol{x}(t)$ via

$$\omega(t) = (\cos \omega_d t) (\cos \omega_c t) x(t)$$

Since
$$\cos A \cos B = \frac{1}{2}[\cos(A-B) + \cos(A+B)],$$

$$w(t) = \frac{1}{2}[\cos(\Delta\omega)t + \cos(\Delta\omega + 2\omega_c)t]x(t)$$

$$= \frac{1}{2}[\cos(\Delta\omega)t]x(t) + \frac{1}{2}[\cos(\Delta\omega + 2\omega_c)t]x(t)$$

The first term is bandlimited to $\pm(\omega_M + |\Delta\omega|)$, while the second term is bandlimited from $\Delta\omega + 2\omega_c - \omega_M$ to $\Delta\omega + 2\omega_c + \omega_M$. Thus after filtering, only the first term remains. Therefore, the output of the demodulator lowpass filter is given by $\frac{1}{2}x(t)\cos\Delta\omega t$.

(b) Consider first $|\Delta\omega| > \omega_M$. Then for $X(\omega)$ as given, $\frac{1}{2}x(t)\cos\Delta\omega t$ has a Fourier transform as shown in Figure S13.3-1.

For $|\Delta\omega| < \omega_{\rm M}$, there is some overlap. See Figure S13.3-2.

S13.4

(a) In this case,

$$y(t) = [A + \cos \omega_M t] \cos(\omega_c t + \theta_c)$$

But

$$\cos \omega_{\rm M} t \cos(\omega_{\rm c} t + \theta_{\rm c}) = \frac{1}{2} [\cos((\omega_{\rm M} - \omega_{\rm c}) t - \theta_{\rm c}) + \cos((\omega_{\rm M} + \omega_{\rm c}) t + \theta_{\rm c})]$$

Thus,

$$y(t) = A\cos(\omega_{c}t + \theta_{c}) + \frac{1}{2}\cos((\omega_{M} - \omega_{c})t - \theta_{c}) + \frac{1}{2}\cos((\omega_{M} + \omega_{c})t + \theta_{c})$$

$$= \frac{Ae^{j\theta_{c}}}{2}e^{j\omega_{c}t} + \frac{Ae^{-j\theta_{c}}}{2}e^{-j\omega_{c}t} + \frac{1}{4}e^{-j\theta_{c}}e^{j(\omega_{M} - \omega_{c})t}$$

$$+ \frac{1}{4}e^{j\theta_{c}}e^{-j(\omega_{M} - \omega_{c})t} + \frac{1}{4}e^{j\theta_{c}}e^{j(\omega_{M} + \omega_{c})t} + \frac{1}{4}e^{-j\theta_{c}}e^{-j(\omega_{M} + \omega_{c})t}$$

We recognize that the preceding expression is a Fourier series expansion. Using Parseval's theorem for the Fourier series, we have

$$\frac{1}{T_0} \int_{T_0} |y(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2 = P_y$$

Thus,

$$P_y = 2\left(\frac{A}{2}\right)^2 + 4\left(\frac{1}{4}\right)^2 = \frac{A^2}{2} + \frac{1}{4}$$

Since

$$m=\frac{\max|x(t)|}{A}=\frac{1}{A},$$

then

$$P_{y} = \frac{1}{2m^{2}} + \frac{1}{4},$$

as shown in Figure S13.4-1.

(b) The power in the sidebands is found from P_y when A=0. Thus, $P_y=\frac{1}{4}$ and the efficiency is

$$E = \frac{\frac{1}{4}}{1/(2m^2) + \frac{1}{4}} = \frac{m^2}{2 + m^2},$$

which is sketched in Figure S13.4-2.

Solutions to Optional Problems

S13.5

(a) Using the identity for cos(A + B), we have

$$A(t)\cos(\omega_c t + \theta_c) = A(t)(\cos\theta_c\cos\omega_c t - \sin\theta_c\sin\omega_c t)$$

Thus, we see that

$$x(t) = A(t) \cos \theta_c,$$

$$y(t) = -A(t) \sin \theta_c$$

Therefore,

$$z(t) = A(t)\cos(\omega_c t + \theta_c)$$

= $x(t)\cos(\omega_c t) + y(t)\sin(\omega_c t)$

(b) Consider modulating z(t) by $\cos \omega_c t$. Then

$$z(t)\cos \omega_c t = x(t)\cos^2 \omega_c t + y(t)\sin \omega_c t \cos \omega_c t$$

Using trigonometric identities, we have

$$z(t)\cos \omega_c t = \frac{x(t)}{2} + \frac{x(t)}{2}\cos 2\omega_c t + \frac{y(t)}{2}\sin 2\omega_c t$$

If we use an ideal lowpass filter with cutoff ω_c and if A(t), and thus x(t), is bandlimited to $\pm \omega_c$, then we recover the term x(t)/2. Thus the processing is as shown in Figure S13.5-1.

(c) Similarly, consider

$$z(t)\sin \omega_c t = x(t)\cos \omega_c t \sin \omega_c t + y(t)\sin^2 \omega_c t$$
$$= \frac{x(t)}{2}\sin 2\omega_c t + \frac{y(t)}{2} - \frac{y(t)}{2}\cos 2\omega_c t$$

Filtering $z(t) \sin \omega_c t$ with the same filter as in part (b) yields y(t), as shown in Figure S13.5-2.

(d) We can readily see that

$$x^{2}(t) + y^{2}(t) = A^{2}(t) (\cos^{2}\theta_{c} + \sin^{2}\theta_{c}) = A^{2}(t)$$

Therefore, $A(t) = \sqrt{x^2(t) + y^2(t)}$. The block diagram in Figure S13.5-3 summarizes how to recover A(t) from z(t).

Note that to be able to recover A(t) in this way, the Fourier transform of A(t) must be zero for $\omega > |\omega_c|$ and A(t) > 0. Also note that we are implicitly assuming that A(t) is a real signal.

S13.6

From Figures P13.6-1 to P13.6-3, we can relate the Fourier transforms of all the signals concerned.

$$S_{1}(\omega) = \frac{1}{2j} \left[X \left(\omega - \frac{\omega_{0}}{2} \right) - X \left(\omega + \frac{\omega_{0}}{2} \right) \right]$$

$$S_{2}(\omega) = \frac{1}{2} \left[X \left(\omega - \frac{\omega_{0}}{2} \right) + X \left(\omega + \frac{\omega_{0}}{2} \right) \right]$$

Thus, $S_1(\omega)$ and $S_2(\omega)$ appear as in Figure S13.6-1.

After filtering, $S_3(\omega)$ and $S_4(\omega)$ are given as in Figure S13.6-2.

 $S_5(\omega)$ is as follows (see Figure S13.6-3):

$$S_5(\omega) = rac{1}{2j} \left[S_3 \left(\omega - \omega_c - rac{\omega_0}{2}
ight) - S_3 \left(\omega + \omega_c + rac{\omega_0}{2}
ight)
ight]$$

Note that the amplitude is reversed since $(1/2j)(1/2j) = -\frac{1}{4}$.

 $S_6(\omega)$ is as follows and as shown in Figure S13.6-4.

$$S_6(\omega) = rac{1}{2} \left[S_4 \left(\omega - \omega_c - rac{\omega_0}{2}
ight) + S_4 \left(\omega + \omega_c + rac{\omega_0}{2}
ight) \,
ight]$$

Finally, $Y(\omega) = S_5(\omega) + S_6(\omega)$, as shown in Figure S13.6-5.

Thus, y(t) is a single-sideband modulation of x(t).

S13.7

Note that

$$q_1(t) = [s_1(t)\cos \omega_0 t + s_2(t)\sin \omega_0 t]\cos \omega_0 t$$

= $s_1(t)\cos^2 \omega_0 t + s_2(t)\sin \omega_0 t \cos \omega_0 t$

Using trigonometric identities, we have

$$q_1(t) = \frac{1}{2}s_1(t) + \frac{1}{2}s_1(t)\cos 2\omega_0 t + \frac{1}{2}s_2(t)\sin 2\omega_0 t$$

Thus, if $s_1(t)$ is bandlimited to $\pm \omega_0$ and we use the filter $H(\omega)$ as given in Figure S13.7, $y_1(t)$ will then equal $s_1(t)$.

Similarly,

$$q_{2}(t) = s_{1}(t)\cos \omega_{0}t \sin \omega_{0}t + s_{2}(t)\sin^{2}\omega_{0}t$$
$$= \frac{s_{1}(t)}{2}\sin 2\omega_{0}t + \frac{s_{2}(t)}{2} - \frac{s_{2}(t)}{2}\cos 2\omega_{0}t$$

Using the same filter and imposing the same restrictions on $s_2(t)$, we obtain $y_2(t) = s_2(t)$.

S13.8

(a) $X(\omega)$ is given as in Figure S13.8-1.

For $Y(\omega)$, the spectrum of the scrambled signal is as shown in Figure S13.8-2.

Thus, $X(\omega)$ is reversed for $\omega > 0$ and $\omega < 0$.

(b) Suppose we multiply x(t) by $\cos \omega_M t$. Denoting $z(t) = x(t)\cos \omega_M t$, we find that $Z(\omega)$ is composed of scaled versions of $X(\omega)$ centered at $\pm \omega_M$. See Figure S13.8-3.

Filtering z(t) with an ideal lowpass filter with a gain of 2 yields y(t), as shown in Figure S13.8-4.

(c) Suppose we use the same system to recover x(t). Let $y(t)\cos \omega_{M}t = r(t)$. Then $R(\omega)$ is as given in Figure S13.8-5.

Filtering with the same lowpass filter yields x(t).

MIT OpenCourseWare http://ocw.mit.edu

Resource: Signals and Systems Professor Alan V. Oppenheim

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.