

CS231n: Convolutional Neural Networks for Visual Recognition

(index.html)

Schedule and Syllabus

(The syllabus for the (previous) Winter 2015 class offering has been moved here (syllabus winter 2015.html).) Unless otherwise specified the course lectures and meeting times are Monday, Wednesday 3:00-4:20. Bishop Auditorium in Lathrop Building (map (http://campus-map.stanford.edu/?id=&lat=37.4292007889&lnq=-122.167299117&zoom=16&srch=Bishop%20Auditorium))

Update: The class has ended! There are many people to thank for making this class run smoothly. Andrej Karpathy (https://twitter.com/karpathy) for the class notes and lectures, Justin Johnson (http://cs.stanford.edu/people/jcjohns/) the assignments and lectures, Fei-Fei Li (https://twitter.com/drfeifei) for maintaining order, the entire TA team (https://twitter.com/cs231n/status/707760595030781952) for their hard work on grading, office hours, and class logistics, and our wonderful students for their valuable feedback! The final course projects were posted here (http://cs231n.stanford.edu/reports2016.html). You can find the raw lecture slides (Google Presentations) here (https://drive.google.com/open?id=0B62MBK9B2knSY3ZmeHktSEhJNXM) and feel free to use material from any of the slides. Stay in touch on Twitter (https://twitter.com/cs231n) or Reddit r/cs231n (https://www.reddit.com/r/cs231n), and we'll see you again next year!

Update2: We are working hard to bring the videos back up. Sorry about that and stay tuned.

Event Type	Date	Description	Course Materials
Lecture	Jan 4	Intro to Computer Vision, historical context.	[slides] (slides/winter1516_lecture1.pdf)
Lecture	Jan 6	Image classification and the data-driven approach k-nearest neighbor Linear classification I	[slides] (slides/winter1516_lecture2.pdf) [video] [python/numpy tutorial] (http://cs231n.github.io/python-numpy-tutorial) [image classification notes] (http://cs231n.github.io/classification) [linear classification notes] (http://cs231n.github.io/linear-classify)
Lecture	Jan 11	Linear classification II Higher-level representations, image features Optimization, stochastic gradient descent	[slides] (slides/winter1516_lecture3.pdf) [video] [linear classification notes] (http://cs231n.github.io/linear-classify) [optimization notes] (http://cs231n.github.io/optimization-1)
Lecture	Jan 13	Backpropagation Introduction to neural networks	[slides] (slides/winter1516_lecture4.pdf) [video] [backprop notes] (http://cs231n.github.io/optimization-2) [Efficient BackProp] (http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) (optional) related: [1] (http://colah.github.io/posts/2015-08-Backprop/), [2] (http://neuralnetworksanddeeplearning.com/chap2.html), [3] (https://www.youtube.com/watch?v=q0pm3BrIUFo) (optional)
Lecture	Jan 18	Holiday; No class.	
A1 Due	Jan 20	Assignment #1 (kNN/SVM/Softmax/2-Layer Net) Due date	[Assignment #1] (http://cs231n.github.io/assignments2016/assignment1/)
Lecture	Jan 20	Training Neural Networks Part 1 activation functions, weight initialization, gradient flow, batch normalization babysitting the learning process, hyperparameter optimization	[slides] (slides/winter1516_lecture5.pdf) [video] Neural Nets notes 1 (http://cs231n.github.io/neural-networks-1/) Neural Nets notes 2 (http://cs231n.github.io/neural-networks-2/) Neural Nets notes 3 (http://cs231n.github.io/neural-networks-3/) tips/tricks: [1] (http://research.microsoft.com/pubs/192769/tricks- 2012.pdf), [2] (http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf), [3] (http://arxiv.org/pdf/1206.5533v2.pdf) (optional) Deep Learning [Nature] (http://www.nature.com/nature/journal/v521/n7553/full/nature14539.html) (optional)
Lecture	Jan 25	Training Neural Networks Part 2: parameter updates, ensembles, dropout Convolutional Neural Networks: intro	[slides] (slides/winter1516_lecture6.pdf) [video] Neural Nets notes 3 (http://cs231n.github.io/neural-networks-3/)
Lecture	Jan	Convolutional Neural Networks: architectures, convolution /	[slides] (slides/winter1516_lecture7.pdf) [video]

		cace etaaj etaget tet enamengeng eenete	
Proposal due	Jan 30	Couse Project Proposal due	[proposal description] (http://cs231n.stanford.edu/project.html)
Lecture	Feb 1	ConvNets for spatial localization Object detection	[slides] (slides/winter1516_lecture8.pdf) [video]
Lecture	Feb 3	Understanding and visualizing Convolutional Neural Networks Backprop into image: Visualizations, deep dream, artistic style transfer Adversarial fooling examples	[slides] (slides/winter1516_lecture9.pdf) [video]
A2 Due	Feb 5	Assignment #2 (Neural Nets) Due date	[Assignment #2] (http://cs231n.github.io/assignments2016/assignment2/)
Lecture	Feb 8	Recurrent Neural Networks (RNN), Long Short Term Memory (LSTM) RNN language models Image captioning	[slides] (slides/winter1516_lecture10.pdf) [video] DL book RNN chapter (http://www.deeplearningbook.org/contents/rnn.html) (optional) min-char-rnn (https://gist.github.com/karpathy/d4dee566867f8291f086), char-rnn (https://github.com/karpathy/char-rnn), neuraltalk2 (https://github.com/karpathy/neuraltalk2)
Midterm	Feb 10	In-class midterm	
Lecture	Feb 15	Holiday; No class.	
Milestone	Feb 17	Course Project Milestone	
Lecture	Feb 17	Training ConvNets in practice Data augmentation, transfer learning Distributed training, CPU/GPU bottlenecks Efficient convolutions	[slides] (slides/winter1516_lecture11.pdf) [video]
Lecture	Feb 22	Overview of Caffe/Torch/Theano/TensorFlow	[slides] (slides/winter1516_lecture12.pdf) [video]
A3 Due	Feb 24	Assignment #3 (ConvNets) Due date	[Assignment #3] (http://cs231n.github.io/assignments2016/assignment3/)
Lecture	Feb 24	Segmentation Soft attention models Spatial transformer networks	[slides] (slides/winter1516_lecture13.pdf) [video]
Lecture	Feb 29	ConvNets for videos Unsupervised learning	[slides] (slides/winter1516_lecture14.pdf) [video]
Lecture	Mar 2	Invited Talk: Jeff Dean (https://en.wikipedia.org/wiki/Jeff_Dean_(computer_scientist)) [video]	
Lecture	Mar 7	Student spotlight talks, conclusions	[slides] (slides/winter1516_lecture15.pdf)

[reports] (http://cs231n.stanford.edu/reports2016.html)

Poster

Due

Presentation 9

Mar

13

Final Project Mar Final course project due date