Package 'Copula.Markov.survival'

October 12, 2022

Type Package

Title Copula Markov Model with Dependent Censoring
Version 1.0.0
Author Xin-Wei Huang, Takeshi Emura
Maintainer Xin-Wei Huang <xinweihuang@hotmail.com></xinweihuang@hotmail.com>
Description Perform likelihood estimation and corresponding analysis under the copulabased Markov chain model for serially dependent event times with a dependent terminal event. Available are statistical methods in Huang, Wang and Emura (2020, JJSD accepted).
License GPL-3
Depends survival
Imports stats, graphics
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-07-20 09:12:18 UTC
R topics documented: ClaytonClayton.Weibull.data 2 ClaytonClayton.Weibull.MLE 3 ClaytonFrank.Weibull.data 5 ClaytonFrank.Weibull.MLE 6 Copula.Markov.survival 8
FrankClayton.Weibull.data8FrankClayton.Weibull.MLE9FrankFrank.Weibull.data11FrankFrank.Weibull.MLE12
Index 15

ClaytonClayton.Weibull.data

Generate data from the Clayton copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Clayton copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant b. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

ClaytonClayton.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, 1)

Arguments

N	sample size
scale1	scale parameter for Weib(scale1, shape1), scale $1 > 0$
shape1	shape parameter for Weib(scale1, shape1), shape1 > 0
theta	copula parameter for C_{theta} , theta > 0
scale2	scale parameter for Weib(scale2, shape2), scale2 > 0
shape2	shape parameter for Weib(scale2, shape2), shape2 > 0
alpha	copula parameter for tilde(C)_alpha, alpha > 0
b	parameter of Unif(0, b) for controlling censoring percentage
1	length for data generation (default = 300)

Value

A list with the following elements:

```
Subject a vector for numbers of subject

T_ij a vector for event times

delta_ij a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star a vector for death times

delta_i_star a vector for death indicator (=1 if death; =0 if censoring)
```

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

```
Y = ClaytonClayton.Weibull.data(N = 100, scale1 = 1, shape1 = 0.5, theta = 2, scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, 1 = 300)
```

ClaytonClayton.Weibull.MLE

Parameter estimation based on the Clayton copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Clayton copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

```
ClaytonClayton.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot, jackknife, plot, GOF, GOF.plot, rep.GOF, digit)
```

Arguments

subject	a vector for numbers of subject
t.event	a vector for event times
event	a vector for event indicator (=1 if recurrent; =0 if censoring)
t.death	a vector for death times
death	a vector for death indicator (=1 if death; =0 if censoring)
stageI	an option to select MLE or LSE method for the 1st-stage optimization
Weibull.plot	if TRUE, show the Weibull probability plot
jackknife	if TRUE, the jackknife method is used for estimate covariance matrix (default = $TRUE$)
plot	if TRUE, the plots for marginal distributions are shown (default = FALSE)
GOF	if TRUE, show the p-values for KS-test and CvM-test
GOF.plot	if TRUE, show the model diagnostic plot
rep.GOF	repetition number of parametric bootstrap
digit	accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size	Sample size N
Case	Count for event occurences
scale1	Scale parameter for Weib(scale1, shape1)
shape1	Shape parameter for Weib(scale1, shape1)
scale2	Scale parameter for Weib(scale2, shape2)
shape2	Shape parameter for Weib(scale2, shape2)
theta	Copula parameter for the Clayton copula C_theta
alpha	Copula parameter for the Clayton copula tilde(C)_alpha
COV	Asymptotic covariance estimated by the jackknife method
KS	Kolmogorov-Smirnov test statistics
p.KS	P-values for Kolmogorov-Smirnov tests
CM	Cramer-von Mises test statistics
p.CM	P-values for Cramer-von Mises tests
Convergence	Convergence results for each stage
Jackknife_error	
	Count for error in jackknife repititions
1 121 . 121	T 121 1

Log_likelihood Log-likelihood values

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

ClaytonFrank.Weibull.data

Generate data from the Clayton copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Clayton copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant b. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

```
ClaytonFrank.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, 1)
```

Arguments

N	sample size
scale1	scale parameter for Weib(scale1, shape1), scale $1 > 0$
shape1	shape parameter for Weib(scale1, shape1), shape $1 > 0$
theta	copula parameter for C_{theta} , theta > 0
scale2	scale parameter for Weib(scale2, shape2), scale2 > 0
shape2	shape parameter for Weib(scale2, shape2), shape $2 > 0$
alpha	copula parameter for tilde(C)_alpha, alpha $\neq 0$
b	parameter of Unif(0, b) for controlling censoring percentage
1	length for data generation (default = 300)

Value

A list with the following elements:

```
Subject a vector for numbers of subject

T_ij a vector for event times

delta_ij a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star a vector for death times

delta_i_star a vector for death indicator (=1 if death; =0 if censoring)
```

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

```
Y = ClaytonFrank.Weibull.data(N = 100, scale1 = 1, shape1 = 0.5, theta = 2, scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, 1 = 300)
```

ClaytonFrank.Weibull.MLE

Parameter estimation based on the Clayton copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Clayton copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019) and Huang, Wang and Emura (2020).

Usage

```
ClaytonFrank.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot, jackknife, plot, GOF, GOF.plot, rep.GOF, digit)
```

Arguments

subject	a vector for numbers of subject
t.event	a vector for event times
event	a vector for event indicator (=1 if recurrent; =0 if censoring)
t.death	a vector for death times
death	a vector for death indicator (=1 if death; =0 if censoring)
stageI	an option to select MLE or LSE method for the 1st-stage optimization
Weibull.plot	if TRUE, show the Weibull probability plot
jackknife	if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE)
plot	if TRUE, the plots for marginal distributions are shown (default = FALSE)
GOF	if TRUE, show the p-values for KS-test and CvM-test
GOF.plot	if TRUE, show the model diagnostic plot
rep.GOF	repetition number of parametric bootstrap
digit	accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size	Sample size N
Case	Count for event occurences
scale1	Scale parameter for Weib(scale1, shape1)
shape1	Shape parameter for Weib(scale1, shape1)
scale2	Scale parameter for Weib(scale2, shape2)
shape2	Shape parameter for Weib(scale2, shape2)
theta	Copula parameter for the Clayton copula C_theta
alpha	Copula parameter for the Frank copula tilde(C)_alpha
COV	Asymptotic covariance estimated by the jackknife method
KS	Kolmogorov-Smirnov test statistics
p.KS	P-values for Kolmogorov-Smirnov tests
CM	Cramer-von Mises test statistics
p.CM	P-values for Cramer-von Mises tests
Convergence	Convergence results for each stage
Jackknife_error	•
	Count for error in jackknife repititions
Log_likelihood	Log-likelihood values

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

Copula.Markov.survival

Copula.Markov.survival

Description

Perform likelihood estimation and corresponding analysis under the copula-based Markov chain model for serially dependent event times with a dependent terminal event. A two stage estimation method is applied for estimating model parameters. Two copula functions are used for measuring dependence. One is used for modeling serial dependence in recurrent event times. The other one is for modeling dependent censoring. The baseline hazard functions are modeled by the Weibull distributions. See Huang (2019) <a href="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncucdr&s=id="https://etd.lib.nctu.edu.tw/cgi-bin/gs32/ncugsweb.cgi?o=dncuc

Author(s)

Xinwei Huang <xinweihuang@hotmail.com>

References

Huang, X.-W. (2019). Likelihood-based inference for copula-based Markov chain models for continuous, discrete, and survival data. NCU library.

FrankClayton.Weibull.data

Generate data from the Frank copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Frank copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant c. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankClayton.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, 1)

Arguments

sample size

scale1 scale parameter for Weib(scale1, shape1), scale1 > 0shape1 shape parameter for Weib(scale1, shape1), shape1 > 0

theta	copula parameter for C_theta, theta $\neq 0$
scale2	scale parameter for Weib(scale2, shape2), scale2 > 0
shape2	shape parameter for Weib(scale2, shape2), shape2 > 0
alpha	copula parameter for tilde(C)_alpha, alpha > 0
b	parameter of Unif(0, b) for controlling censoring percentage
1	length for data generation (default = 300)

Value

A list with the following elements:

```
Subject a vector for numbers of subject

T_ij a vector for event times

delta_ij a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star a vector for death times

delta_i_star a vector for death indicator (=1 if death; =0 if censoring)
```

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

```
Y = FrankClayton.Weibull.data(N = 100, scale1 = 1, shape1 = 0.5, theta = 2, scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)
```

 ${\tt FrankClayton.Weibull.MLE}$

Parameter estimation based on the Frank copula for serial dependence and the Clayton copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Clayton copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

FrankClayton.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot, jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

Arguments

a vector for numbers of subject subject a vector for event times t.event a vector for event indicator (=1 if recurrent; =0 if censoring) event t.death a vector for death times death a vector for death indicator (=1 if death; =0 if censoring) stageI an option to select MLE or LSE method for the 1st-stage optimization if TRUE, show the Weibull probability plot Weibull.plot if TRUE, the jackknife method is used for estimate covariance matrix (default = jackknife TRUE) if TRUE, the plots for marginal distributions are shown (default = FALSE) plot GOF if TRUE, show the p-values for KS-test and CvM-test GOF.plot if TRUE, show the model diagnostic plot rep.GOF repetition number of parametric bootstrap digit accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size	Sample size N
Case	Count for event occurences
scale1	Scale parameter for Weib(scale1, shape1)
shape1	Shape parameter for Weib(scale1, shape1)
scale2	Scale parameter for Weib(scale2, shape2)
shape2	Shape parameter for Weib(scale2, shape2)
theta	Copula parameter for the Frank copula C_theta
alpha	Copula parameter for the Clayton copula tilde(C)_alpha
COV	Asymptotic covariance estimated by the jackknife method
KS	Kolmogorov-Smirnov test statistics
p.KS	P-values for Kolmogorov-Smirnov tests
CM	Cramer-von Mises test statistics

FrankFrank.Weibull.data 11

p.CM P-values for Cramer-von Mises tests

Convergence Convergence results for each stage

Jackknife_error

Count for error in jackknife repititions

Log_likelihood Log-likelihood values

Author(s)

Xinwei Huang

Examples

FrankFrank.Weibull.data

Generate data from the Frank copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

The data generation process is based on the Frank copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). Censoring percentage can be controlled by constant c. This function is used when doing parametric bootstrap. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

Usage

```
FrankFrank.Weibull.data(N, scale1, shape1, theta, scale2, shape2, alpha, b, 1)
```

Arguments

N	sample size
scale1	scale parameter for Weib(scale1, shape1), scale $1 > 0$
shape1	shape parameter for Weib(scale1, shape1), shape $1 > 0$
theta	copula parameter for C theta, theta $\neq 0$

scale2	scale parameter for Weib(scale2, shape2), scale $2 > 0$
shape2	shape parameter for Weib(scale2, shape2), shape2 > 0
alpha	copula parameter for tilde(C)_alpha, alpha $\neq 0$
L	

b parameter of Unif(0, b) for controlling censoring percentage

length for data generation (default = 300)

Value

A list with the following elements:

Subject a vector for numbers of subject T_ij a vector for event times

delta_ij a vector for event indicator (=1 if recurrent; =0 if censoring)

T_i_star a vector for death times

delta_i_star a vector for death indicator (=1 if death; =0 if censoring)

Author(s)

Xinwei Huang

References

Huang XW, Wang W, Emura T (2020) A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics & Data Science. Accepted.

Examples

```
Y = FrankFrank.Weibull.data(N = 100, scale1 = 1, shape1 = 0.5, theta = 2, scale2 = 0.45, shape2 = 0.5, alpha = 2, b = 10, l = 300)
```

FrankFrank.Weibull.MLE

Parameter estimation based on the Frank copula for serial dependence and the Frank copula for dependent censoring with the Weibull distributions

Description

Perform two-stage estimation based on the Frank copula C_theta for serial dependence and the Frank copula tilde(C)_alpha for dependent censoring with the marginal distributions Weib(scale1, shape1) and Weib(scale2, shape2). The jackknife method estimates the asymptotic covariance matrix. Parametric bootstrap is applied while doing Kolmogorov-Smirnov tests and Cramer-von Mises test. The guide for using this function shall be explained by Huang (2019), and Huang, Wang and Emura (2020).

FrankFrank.Weibull.MLE

Usage

FrankFrank.Weibull.MLE(subject, t.event, event, t.death, death, stageI, Weibull.plot, jackknife, plot, GOF, GOF.plot, rep.GOF, digit)

13

Arguments

a vector for numbers of subject subject a vector for event times t.event a vector for event indicator (=1 if recurrent; =0 if censoring) event t.death a vector for death times death a vector for death vindicator (=1 if death; =0 if censoring) stageI an option to select MLE or LSE method for the 1st-stage optimization if TRUE, show the Weibull probability plot Weibull.plot jackknife if TRUE, the jackknife method is used for estimate covariance matrix (default = TRUE) if TRUE, the plots for marginal distributions are shown (default = FALSE) plot GOF if TRUE, show the p-values for KS-test and CvM-test GOF.plot if TRUE, show the model diagnostic plot rep.GOF repetition number of parametric bootstrap digit accurate to some decimal places

Details

When jackknife=FALSE, the corresponding standard error and confidence interval values are shown as NA.

Value

A list with the following elements:

Sample_size	Sample size N
Case	Count for event occurences
scale1	Scale parameter for Weib(scale1, shape1)
shape1	Shape parameter for Weib(scale1, shape1)
scale2	Scale parameter for Weib(scale2, shape2)
shape2	Shape parameter for Weib(scale2, shape2)
theta	Copula parameter for the Frank copula C_theta
alpha	Copula parameter for the Frank copula $tilde(C)$ _alpha
COV	Asymptotic covariance estimated by the jackknife method
KS	Kolmogorov-Smirnov test statistics
p.KS	P-values for Kolmogorov-Smirnov tests
CM	Cramer-von Mises test statistics

p. CM P-values for Cramer-von Mises tests
Convergence Convergence results for each stage
Jackknife_error

Count for error in jackknife repititions

Log_likelihood Log-likelihood values

Author(s)

Xinwei Huang

Examples

Index

```
ClaytonClayton.Weibull.data, 2
ClaytonClayton.Weibull.MLE, 3
ClaytonFrank.Weibull.data, 5
ClaytonFrank.Weibull.MLE, 6
Copula.Markov.survival, 8
FrankClayton.Weibull.data, 8
FrankClayton.Weibull.MLE, 9
FrankFrank.Weibull.data, 11
FrankFrank.Weibull.MLE, 12
```