▼ 머신러닝 파이프라인-결측치/이상치/표준화/교차검증/적대적공격/AutoML등

2강. 머신러닝 파이프라인

- · 정형/반정형/비정형 데이터
- ·데이터 전처리 (결손값, 이상값, 표준화)
- · 교차 검증(Cross Validation)
- · 적대적 공격(Adversarial Attack)

머신러닝 전체 과정을 순차적으로 처리하는 일련의 프로세스

정형 데이터

구조가 정해진 데이터

엑셀 스프레드 시트 CSV파일 RDBMS 반정형 데이터

내부 정보를 표현하는 메타정보가 포함된 데이터

> XML JSON 로그 파일

비정형 데이터

구조화 되어 있지 않은 데이터

> 영상, 이미지 SNS 게시글 텍스트 문서

- · 데이터를 분석할 수 있도록 데이터를 가공하는 작업
- · Raw Data를 Clean Data로 만드는 작업
- · 데이터 없이는 분석이 불가하기에 대단히 중요한 단계
- · Garbage In Garbage Out

결측값 처리

이상값 처리

표준화

결측값 처리

이상값 처리

표준화

결측값 처리

이상값 처리

표준화

교차검증 (Cross Validation)

Data Set을 Train Set과 Test Set을 분리 한 뒤, Train Set으로 학습하고 Test Set으로 평가하는 방식

HoldOut Cross Validation

K-Fold Cross Validation

학습

HoldOut Cross Validation

K-Fold Cross Validation

예측과 평가

교차검증 (Cross Validation)

Train Set	Train Set	Train Set	Test Set
Train Set	Train Set	Test Set	Train Set
Train Set	Test Set	Train Set	Train Set
Test Set	Train Set	Train Set	Train Set

K개 나눠 학습 후 평균 결과 활용

HoldOut Cross Validation

K-Fold Cross Validation

교차검증 (Cross Validation)

1학년 100명	→ 25명
2학년 100명	→ 25명
3학년 100명	→ 25명
4학년 100명	→ 25명

Train Set	Train Set	Train Set	Test Set		
1학년 100명	2학년 100명	3학년 100명	4학년 100명		
학습이 엉망!					

데이터를 어떻게 하면 골고루 분리가 가능할까?

층화추출법 (Stratified random sampling)

층내는 동질적, 층간은 이질적 특성을 가지도록 구성하여 추출

→ 적은 비용으로 더 정확한 모델 학습이 가능

계통추출법

- ✓ 체계적 표집, 체계적 추출법(systematic sampling)
- ✓ 첫 번째 요소는 무작위로 선정한 후 목록의 매번 k번째 요소를 표본으로 선정하는 표집방법
- ✓ 모집단의 크기를 원하는 표본의 크기로 나누어 k를 계산(여기서 k는 표집간격)

층화 추출법

- ✓ 모집단을 먼저 서로 겹치지 않는 여러 개의 층으로 분할한 후, 각 층에서 단순 임의추출법에 따라 배정된 표본을 추출하는 방법
- ✓ 모집단의 분할이 되는 부모집단을 층(stratum)이라고 하고, 각 층에서 임의추출을 하는 표본추출방법
- √ 예) 전국 가구를 모집단으로 하는 "생활실태조사"

■적대적 공격(Adversarial Attack)

적대적 공격(Adversarial Attack)

- ✓ 인공지능(AI) 시스템의 취약점을 이용해 의도적으로 오작동이나 잘못된 판단을 유도하는 공격 기법
- ✓ 눈에 띄지 않는 작은 변화를 가한 입력(adversarial examples)을 넣어 모델의 정상 작동을 방해하는 것을 목표로 함

■적대적 공격(Adversarial Attack)

적대적 공격 대응방안

적대적 훈련 가능한 모든 적대적 사례를 포함하여 학습

결과 값 차단 결과 값이 노출되지 않도록 하거나, 분석 하지 못하게 변환

탐지 차단 적대적 공격 모델을 추가하여 차이점 비교

| 공격자 | 공격 패턴 p | 깨끗한 이미지 | 적대적 공격 당한 이미지 | 방이자 | 방어 프레임 d | 방어프레임 경용 | 기학습된 경출 모델 | 방어된검출결과

■머신러닝 파이프라인의 확장

1. What Is AutoML?

1.1 Overview

AutoML (automated machine learning) refers to the automated end-to-end process of applying machine learning in real and practical scenarios.

A typical machine learning model includes the four following steps:

