I. Fonction dérivée d'une fonction polynôme du second degré

A. Définition

Définition 1

Soit f la fonction définie pour tout $x \in \mathbb{R}$ par $f(x) = ax^2 + bx + c$ avec $a \neq 0$. La **dérivée** de f (ou fonction dérivée de f) est notée f' et est définie pour tout $x \in \mathbb{R}$ par :

$$f'(x) = 2ax + b.$$

<u> Remarque</u>

\$ La fonction dérivée d'une fonction polynôme du second degré est une fonction affine.

Exemple • Si
$$f(x) = 3x^2 - 4x + 7$$
 alors $f'(x) = 2 \times 3x - 4 = 6x - 4$.

B. Lien entre une fonction et sa dérivée

-\(\gamma^-\) Théorème 1 (admis)

Soit f une fonction polynôme du second degré dont on note f' la dérivée. I est un intervalle.

- Si, pour tout $x \in I$, f'(x) > 0, alors f est strictement croissante sur I.
- Si, pour tout x ∈ I, f'(x) < 0, alors f est strictement décroissante sur I.
- Si f'(x) = 0, alors f admet un maximum ou un minimum en x.

<u> Remarque</u>

Puisque f'(x) = 2ax + b alors $f'(x) = 0 \Leftrightarrow 2ax + b = 0 \Leftrightarrow x = \frac{-b}{2a}$.

De plus, le signe de la fonction affine f' dépend du signe du cœfficient directeur 2a et donc uniquement du signe de a.

a > 0					
χ	$-\infty$		$\frac{-b}{2a}$		$+\infty$
Signe de $2ax + b$		_	0	+	
Variations de f			\		7
minimum					

II. Nombre dérivé et tangente

Définition 2

Soit f une fonction définie sur \mathbb{R} , f' sa dérivée et $\mathfrak{a} \in \mathbb{R}$.

On appelle **nombre dérivé** en a le nombre égal à f'(a).

Exemple • La fonction f définie par $f(x) = -4x^2 + 5x - 1$ admet pour dérivée f' définie par f'(x) = -8x + 5. Le nombre dérivé en 4 est alors égal à $f'(4) = -8 \times 4 + 5 = -27$.

Définition 3

Soit f une fonction. On note \mathscr{C}_f sa courbe représentative dans un repère. On appelle $A(x_A; y_A)$ un point de \mathscr{C}_{f} .

On appelle tangente au point A la droite qui passe par A et qui n'a aucun autre point commun avec \mathscr{C}_f dans un voisinage très proche de A.

Propriété 1 (admise)

Soit f une fonction. On note \mathscr{C}_f sa courbe représentative dans un repère. On note $A(x_A; y_A)$ un point de \mathscr{C}_f et (T) la tangente en A.

Le coefficient directeur de (T) est alors égale à $f'(x_A)$.

Soit f la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + x + 1$. Exemple •

On veut connaître l'équation réduite de la tangente (T) au point A d'abscisse -1.

L'ordonnée de A est égale à $f(-1) = -2 \times (-1)^2 + (-1) + 1 = -2$.

L'équation réduite est de la forme y = mx + p avec m = f'(-1). On calcule donc l'expression de f':

 $f'(x) = 2 \times (-2x) + 1 = -4x + 1$ donc $m = -4 \times (-1) + 1 = 5$.

Pour finir, on sait que $A \in (T)$ donc ses coordonnées vérifient l'équation réduite de (T):

$$y_A = 5x_A + p \quad \Leftrightarrow \quad -2 = 5 \times (-1) + p \quad \Leftrightarrow \quad -2 + 5 = p \quad \Leftrightarrow \quad p = 3.$$

L'équation réduite de T est donc : y = 5x + 3.

