I acknowledge that I have read and agree to the Crespi Carmelite High School Academic Integrity Contract (page 24 of the Parent/Student Handbook), and I agree to complete this exam in accordance with the contract's stipulations.

Name and period:		
Signature:		

DO NOT BEGIN UNTIL INSTRUCTED TO DO SO

You have until the end of the period to finish this exam. If you happen to finish early please have a seat until the end of the period. The exam is worth **100 points**. You are allowed to write on this exam.

Calculus AB Chapter 4 Exam

Differentiate the following functions using an appropriate technique. If you are unsure how to continue, state the technique you think could be used.

1.
$$y = (3x^3 - 2x^2)(3x^3 + 2x^2)$$

4.
$$y(x) = x + \tan^{-1}(3x^2)$$

2.
$$y = e^{\csc(3x^2)}$$

3.
$$m(z) = \sqrt{(2x-3)^5}$$

5.
$$T(x) = \frac{\ln(\sin(x))}{x^2 + 1}$$

Evaluate the following integrals using an appropriate technique.

6.
$$\int (x^3 + 1)(x^2 + 5) \ dx$$

8.
$$\int 3e^{5-3x} + \sin(\frac{\pi}{2}x) + \frac{3}{\sqrt{1-x^2}} dx$$

$$7. \int \frac{x^2 - 1}{x^2} + \frac{2}{1 - 5x} \, dx$$

9.
$$\int \frac{1}{(x-2)(x+5)} \, dx$$

10. (10 points) The function g, is a differentiable functions with the following values. The graph of f is provided. Using the chart below find h'(x) at the indicated point:

x	g(x)	g'(x)
0	-2	12
2	0	-3
4	5	5
6	3	8
8	-4	11

(a) Find the equation of the tangent line to g(x) at x = 4.

(b) If
$$K(x) = \frac{1}{f(f(x))}$$
, find $K'(4)$.

(c) If
$$T(x) = g(f(x))$$
, find $T'(1)$.

(d) If
$$J(x) = \frac{f(2x)}{g(3x)}$$
, find $J'(2)$.

11. (10 points) Find the following using:

$$f(x) = \frac{1}{3}x^3 + 5x^2 + \ln(e)$$

- (a) State the OPEN intervals over which f is decreasing. Justify your response.
- (b) State the x-values at which the function has any local extrema and find its value. Justify your response.
- (c) State the x-values at which the function has a point of inflection. Justify your response.
- 12. (10 points) The velocity of a XC 1 runner on their last mile is described by $v(t) = t^{2} 8t + 15$.
 - (a) Find the acceleration of the runner at t=2.
 - (b) Find the position function of the runner if x = 5 when t = 0.
 - (c) Find the position the first time the runner changes direction.
- 13. (10 points) Approximate $\sqrt[3]{(1001)^4}$. Determine whether this is an over or under approximation.
- 14. (10 points) Consider the differential equation

$$\frac{dy}{dx} = \frac{(y-1)}{x^2}$$

(a) On the axis provided, sketch the slope field for $\frac{dy}{dx}$ at all points plotted on the graph.

(b) Find the particular solution y = f(x) that passes through f(2) = 0.

¹XC - cross country