

Midterm 2 Review Problem Set

Differential Equations

Spring 2025

Instructions:

The set of questions serves as PILOT practices to midterm 2 for the Spring 2025 term of AS.110.302 Differential Equations and Applications at Johns Hopkins University.

- The questions are designed to be done without notes and calculators.
- Solutions to selected questions will be discussed during the PILOT review session.
- 1. Solve the following second order differential equations for y = y(x):

(a)
$$y'' + y' - 132y = 0.$$

(b)
$$y'' - 4y' = -4y$$
.

(c)
$$y'' - 2y' + 3y = 0.$$

2. Given a differential equation for y = y(t) being:

$$t^3y'' + ty' - y = 0.$$

- (a) Verify that $y_1(t) = t$ is a solution to the differential equation.
- (b) Find the full set of solutions using reduction of order.
- (c) Show that the set of solutions from part (b) is linearly independent.
- 3. Given the following second order initial value problem:

$$\begin{cases} \frac{d^2y}{dx^2} + \cos(1-x)y = x^2 - 2x + 1, \\ y(1) = 1, & \frac{dy}{dx}(1) = 0. \end{cases}$$

Prove that the solution y(x) is symmetric about x = 1, *i.e.*, satisfying that y(x) = y(2 - x). *Hint:* Consider the interval in which the solution is unique.

4. Solve the general solution for y = y(t) to the following second order non-homogeneous ODEs.

(a)
$$y'' + 2y' + y = e^{-t}.$$

$$y'' + y = \tan t.$$

5. Solve for the general solution to the following higher order ODE.

(a)
$$4\frac{d^4y}{dx^4} - 24\frac{d^3y}{dx^3} + 45\frac{d^2y}{dx^2} - 29\frac{dy}{dx} + 6y = 0.$$

$$\frac{d^4y}{dx^4} + y = 0.$$

Hint: Consider the 8-th root of unity, *i.e.*, ζ_8 , and verify which roots satisfies the polynomial.

6. Let a third order differential equation be as follows:

$$\ell[y(t)] = y^{(3)}(t) + 3y''(t) + 3y'(t) + y(t).$$

Let $\ell[y(t)] = 0$ be trivial initially.

(a) Find the set of all linearly independent solutions.

Then, assume that $\ell[y(t)]$ is non-trivial.

- (b) Find the particular solution to $\ell[y(t)] = \sin t$.
- (c) Find the particular solution to $\ell[y(t)] = e^{-t}$.
- (d) Suppose that $\ell[y_1(t)] = f(t)$ and $\ell[y_2(t)] = g(t)$ where f(t) and g(t) are "good" functions. Find an expression to $y_3(t)$ such that $\ell[y_3(t)] = f(t) + g(t)$.