

AUTOMATION SYSTEMS – INDUSTRIAL ROBOTS

Prof. Dr.-Ing. Thomas Wich

2 - BASICS

Objectives of the lecture

- We want to find out:
 - How are robots constructed and which typical structures are used?
 - Which sensory and actuator components are installed in robots?
 - Basics of grasping objects
 - In addition:
 - Short review of:
 - Forces
 - Torques and moments of inertia
 - Steiner's theorem

Contents of the lecture

- Basics:
 - Construction of robots
 - The kinematic chain
 - Forces and torques
 - Actuators and sensors
 - Handling and gripper
- Exercise: supplementary tasks to the chapter

Construction of robots

- Pose:
 - Objects have 6 degrees of freedom in space
 - 3 translational
 - 3 rotational
 - Position = translational coordinates
 - Orientation = rotational coordinates
 - The transformation of individual poses is called a coordinate transformation and includes:
 - Translation
 - Rotation

•

TECHNISCHE

$$\overrightarrow{P^o} = \overrightarrow{O^1} + \mathbf{R_1^0} \overrightarrow{P^1}$$

Construction of robots

- Example: Articulated robot
 - Joints
 - Base
 - Shoulder
 - Elbow
 - Wrist
 - Wrist Rotation / Twist
 - Links
 - With gripper at the Tool Connector Point (TCP)
 - Through which movements does the robot reach the target position?
 - What does the workspace look like?

Construction of robots

- Example: Scara robot
 - No tool at the Tool Connector Point
 - With control
 - Keypad

- What movements does the robot use to reach the target position?
- What does the workspace look like?

Construction of robots

• Example: Gantry Robot

- •
- What movements does the robot use to reach the target position?
- What does the workspace look like?

Construction of robots

- General structure
 - T = translational drive
 - R = rotatory drive

•

TTT

RTT

RRT

Construction of robots

- General structure
 - T = translational drive
 - R = rotary drive

•

RRT

RRR

Kinematic chain

- Kinematic chain:
 - Structure of the robot consists of:
 - Joints (both rotational and translational)
 - And links
 (are assumed to be rigid)
 - Open chain:
 - Serial kinematics
 - No reciprocal Dependences
 - Closed chain:
 - Parallel kinematics
 - Reciprocal Dependences

Kinematic chain

- Description of the kinematic chain:
 - Swivel joints (R) as cylinder
 - Push joints (T) as cuboids

•

Forces and torques

Mechanical basics:

- Force F
 - 2. Newton's Law:
 with mass m and acceleration a
 - Unit: kg*m/s²
 - Examples:
 - Stroke (g:Gravitational acceleration):
 - Mech. Spring (c: Spring stiffness):
- mechanical power P:
 - Work W per time t
 - Unit: Watt [W]

$$F = m \cdot a = m \cdot \ddot{x}$$

$$F = m \cdot g$$

$$F = c \cdot x$$

$$P = \frac{\Delta W}{\Delta t}$$

Forces and torques

- Mechanical basics
 - Torque
 - Definition:
 Force F acting orthogonally on the lever r
 - Unit: Nm

•

 $\vec{M} = \vec{F} \times \vec{r}$

 important for drive technology: Torque is the product of moment of inertia J and angular acceleration

$$M = J \cdot \dot{\omega} = J \cdot \ddot{\varphi}$$

 $J = \int r^2 \cdot \rho(\vec{r}) dV$

Forces and torques

- Mechanical basics
 - Moment of inertia J:
 - Inertia of a body to rotational movement
 - Unit: kg m²
 - Steiner's theorem:
 If the moment of inertia for a body is known with respect to a defined axis, the moment of inertia of a parallel axis can be determined by:

$$J_P = J_S + md^2$$

• Sudden changes in the speed are not possible due to the moment of inertia (cf. Newton's laws)!

Forces and torques

- Mechanical basics
 - For continuous mass Distributions applies:

$$J = \sum_{i=1}^{n} m_i r_i^2 \quad \to \quad J = \int r^2 \, dm$$

· Calculation of moments of inertia

$$\rho = \frac{m}{V} \rightarrow m = \rho V \rightarrow dm = \rho dV$$

$$J = \rho \int r^2 dV \quad \text{für } \rho = konst.$$

Example: Rod with constant
 Density ρ (assumption: L>>Lz and L>>Ly
 and "line density" ρ=m/L)

$$J = \frac{m}{L} \int_{0}^{L} x^{2} dx = \frac{1}{3} mL^{2}$$

Forces and torques

- Mechanical basics
 - Moments of inertia
 Selected Primitivs

•

Trägheitsmomente		
	I = MR ²	Dünnwandige Hohlzylinder
	I = 1/2 MR ²	Vollzylinder
	I = 1/12 ML ²	Dünner Stab
L >	I = 1/3 ML ²	Dünner Stab
RA I	I = 2/5 MR ²	Vollkugel
	I = 7/2 MR ²	Vollkugel
	I = 2/3 MR ²	Hohlkugel
WHAT IS ADDRESS.		

Forces and torques

- Mechanical basics
 - Example moment of inertia:
 - Determine the moment of inertia of the displayed pulley. The pulley is made of unalloyed steel with a density of 7.9 g/cm³.

The bore for the shaft is moved eccentrically by 5mm. How does the moment of inertia change?
 2,5
 2,5

Actuators & Sensors

- Drive system
 - open loop:
 - open timing chain
 - Stability in the open timing chain required!
 - closed loop:
 - Sensor feedback necessary!
 - control values:
 - Position, angle of rotation
 - Power, torque
 - Speed, angular velocity
 - Essential in robotics!

_

Drives

• Drives / Actuators:

- Pneumatic:
 - Compressed air is used for displacement/force generation
 - Version as linear drive or rotary drive
 - Compressibility of the air makes the robot "soft" ("Cobot" vs. position control)
 - Loud (compressed air escapes)
 - Expensive (air resources)

Actuators & Sensors

Drives / Actuators:

- Hydraulic drive:
 - Controllable valves control the oil flow
 - Very high forces / torques achievable
 - Contamination due to oil loss
 - Compressibility of the oil leads to positioning inaccuracies

Actuators & Sensors

- Drives / Actuators:
 - Electric drives
 - preferably used in the field of robotics
 - Power 10W to 10 kW
 - Typical:
 - PMDC Servo Motor
 - Brushless DC servo motor
 - Servomotor:

23

- Sensors for speed and position:
 - Measurement with on-board sensors:
 - Displacement measurement can often be based on an angle measurement be returned to the rotary drive
 - Important angle measuring systems: incremental and absolute encoders
 - Scanning of light signals with one photodiode per track
 - Resolution: 360°/2n with n: Number of tracks e.g. 4 tracks: $360^{\circ}/24 = 22.5^{\circ}$
 - still in use: resolvers, potentiometers

Scheibe eines Absolut wertgebers

- Optical Encoders
 - Schmitt trigger: Converts sine wave signal to rectangular signal

Optical Encoders

Handling techniques and grippers

- Principles of action:
 - Form fit
 - force bonded
 - adhesive bond
- Typical characteristics:
 - Jaw gripper (mechanical)
 - Jaw gripper (pneumatic)
 - Vacuum grippers / suction pads

2-Backen-Greifer

3-Backen-Greifer

Handling techniques and grippers

- Requirements for grippers:
 - Optimal adaptation to handling surgery
 - Flexible adaptation to handling tasks
 - Great security against moving or slipping the object
 - Optimum gripping force-displacement characteristic curve
 - High gripping accuracy
 - Small installation space, low mass
 - Integration of sensors (camera, force sensors, etc.)

•

Handling techniques and grippers

- Two-jaw gripper
 - Plier grippers:
 - Replaceable jaws
 - Gripping force is not constant!
 - Note size dependency of the recording location

•

Handling techniques and grippers

- Two-jaw gripper
 - Parallel
 - Gripper drive up and down in parallel
 - Pneumatic or electric
 - Gripper shape adaptable to the use case
 - It can also grip with the outer surface

TECHNISCHE HOCHSCHULE

Handling techniques and grippers

- Finger grippers
 - Enable easy implementation of the form-fitting gripping
 - Mechanical or pneumatic Execution possible
 - Finger design can be easily adapted to handling task
 - With pneumatic drive, the maximum gripping force can be easily adjusted

Handling techniques and grippers

- Vacuum grippers / suction pads
 - Objects are sucked in by vacuum
 - Vacuum generation via vacuum pump or compressed air
 - Surface must allow tight closure between suction cup and workpiece
 - No drives on the gripper necessary
 - Vacuum line across all joints

•

32