Image GPT

Sangho Lee

Paper Understanding

Abstract

- Image GPT from OpenAl
- GPT?
 - Language model pretrained to predict next word with decoders from 40GB web-crawled text
 - I am a _____
- Motivation
 - Inspired by progress in unsupervised representation learning for natural language
 - Can learn useful representation from images
- Train a sequence Transformer to auto-regressively predict pixels
 - NLP words → Image pixels

Approach

- Consists of a pre-training stage and fine-tuning stage
- Pre-training
 - Apply the sequence Transformer architecture to predict pixels instead of language tokens
 - Auto-regressive, BERT

Approach

- Fine-tuning & Linear probing
 - Linear probe
 - Generate class logit with features from medium layer
 - Fine-tuning
 - Extract class logit from sequence dimension by average polling

Methodology

Data augmentation

- No augmentation when pre-training except randomly 224 x 224 crop
- For full-network fine-tuning, pad 4 pixels on each side and randomly 32 x 32 crop / horizontal flip

Context reduction

- Memory requirements of the transformer decoder increase quadratically
- (224x224x3 → Tens of thousands of larger than language models)
- Resize image to low resolution (32x32x3, 48x48x4, 64x64x4)
- RGB to clusters using k-means \rightarrow 32x32, 48x48, 64x64

Model

- iGPT-XL (60 layers, d=3072, 6.8B parameters)
- iGPT-L (48 layers, d=1536)
- iGPT-S (24 layers, d=512)

- What representation works best in a generative model without latent variables
 - In supervised pre-training, second to last layer tends to have best quality representation
 - To find representation works best from generative pre-training, test with each layers

• Representations improve as a function of depth, starting around the middle layer, begin to deteriorate

- Better generative models learn better representations
 - With high validation performance and high capacity shows better representations in linear probing

- On CIFAR and STL-10
 - Best performance when pretrained on ImageNet and classify on CIFAR and STL-10

Model	Acc	Unsup Transfer	Sup Transfer
CIFAR-10			
ResNet-152	94		\checkmark
SimCLR	95.3	\checkmark	·
iGPT-L	96.3	\checkmark	
CIFAR-100 ResNet-152 SimCLR iGPT-L	78.0 80.2 82.8	_	\checkmark
STL-10 AMDIM-L iGPT-L	94.2 95.5	√	

On ImageNet

• High accuracy(?) trained with row resolution image

Method	IR	Params (M)	Features	Acc
Rotation	orig.	86	8192	55.4
iGPT-L	$32^{2} \cdot 3$	1362	1536	60.3
BigBiGAN	orig.	86	8192	61.3
iGPT-L	$48^2 \cdot 3$	1362	1536	65.2
AMDIM	orig.	626	8192	68.1
MoCo	orig.	375	8192	68.6
iGPT-XL	$64^2 \cdot 3$	6801	3072	68.7
SimCLR	orig.	24	2048	69.3
CPC v2	orig.	303	8192	71.5
iGPT-XL	$64^2 \cdot 3$	6801	15360	72.0
SimCLR	orig.	375	8192	76.5

Contributions & Limitations

Contributions

- Suggests generative image modeling continues to be a promising route to learn high-quality unsupervised image representations
- Simply predicting pixels learns state of the art representations for low resolution datasets

Limitations

- Currently model low-resolution inputs
- Requires large models to learn high quality representations (iGPT-L has 2 to 3 times as many parameters as similarly performing models on ImageNet and uses more compute)

Model Implementation & Test

Environments

- Environments
 - 3 A100 GPU, CUDA 11.2
 - Framework: Pytorch Lightning

- Code description
 - run.py : Execution code
 - data.py: Data preprocessing
 - gpt2.py : GPT2 model
 - image_gpt.py : PL module for run image GPT in Pytorch Lightning

Test Result

Loss (After 50 epochs)

• Train loss: 1.092

Validation loss: 1.36

- FID-5K: 6.724 (feature 64), 409.865 (feature 2048)
- Selected samples

Next Research Plan

Research Plan

- Topic : Generate image with specific pose or action
- Method
 - Pretrain pose or action representation from weakly labelled dataset with image-GPT
 - Generate images with target pose/action and style

Dataset plan

Side

Research Plan

Candidate contribution

- Can be used without specific pose dataset regardless target objects
 - Usually pose transfer / generation model uses pretrained pose network to extract pose
 - No such dataset or pretrained dataset except human (animals, animation, etc.)
- Can generate pose or action without reality
 - If we need image with unreality, we can just draw and add any label to such images

