Algebraic Semantics for Modal Logic

Yudai Kubono

May 27, 2023

Shizuoka University, Graduate School of Science and Technology

Basic Notions

- An algebraic similarity type is a pair $\mathcal{T} = \langle F, \rho \rangle$, where F is a non-empty set of function symbols, and ρ is a function $F \to \mathbb{N}$ assigning a finite rank (arity) to each function symbol.
- Algebras of type $\mathcal T$ is a tuple $\mathfrak A=\langle A,I\rangle$, where A is a non-empty carrier, and I is an interpretation, that is a function assigning n-ary operations on A to each function symbol f of rank n. Notationally, we write $\langle A,f_{\mathfrak A}\rangle_{f\in F}$ for such an algebra.
- Let $\mathfrak A$ and $\mathfrak B$ be algebras of the same similarity type. A function $\eta:A\to B$ is a homomorphism if for all $f_{\mathfrak A}, a_1, \cdots, a_n$, $\eta f_{\mathfrak A}(a_i, \cdots, a_n) = f_{\mathfrak B}(\eta(a_i), \cdots, \eta(a_n))$, where n is the rank of $f_{\mathfrak A}$. Besides, we call $\mathfrak B$ the homomorphic image of $\mathfrak A$ if η is a surjective homomorphism.

- ▶ Let $\langle A, f_{\mathfrak{A}} \rangle_{f \in F}$ be an algebra. If $B \subseteq A$ is closed under every operations $f_{\mathfrak{A}}$, $\mathfrak{B} = \langle A, f_{\mathfrak{A}} \upharpoonright_B \rangle_{f \in F}$ is a subalgebra of the algebra.
- ▶ $\mathfrak{A} = \langle A, f_{\mathfrak{A}} \rangle$ is a (direct) product of $\{\mathfrak{A}_i\}_{i \in \mathcal{I}}$ where $A = \prod_{i \in \mathcal{I}} A_i$, and $f_{\mathfrak{A}}$ is defined componentwisely: for each $i \in \mathcal{I}$, $f_{\mathfrak{A}}(a_1, \cdots, a_n)(i) = f_{\mathfrak{A}_i}(a_1(i), \cdots, a_n(i))$, where $a_n(i) \coloneqq \pi_i(a)$, and $\pi_i : A \to A_i$ is a projection.
- ▶ A class is called a variety if the class is closed under homomorphic images, subalgebras and direct products. $\mathbb{V}(C)$ denotes the smallest variety containing C.

- ▶ Let X be a set of variables, and \mathcal{T} be a similarity type. $\operatorname{Term}_{\mathcal{T}}(X)$ is the smallest set of \mathcal{T} -terms over X, which are recursively composed of X and function symbols in F.
- ▶ A function $\theta: X \to A$ is called an assignment. the extention $\tilde{\theta}: \operatorname{Term}_F(X) \to A$ called a meaning is defined as follow: $\tilde{\theta}(p) = \theta(p)$; $\tilde{\theta}(c) = c_{\mathfrak{A}}$; $\tilde{\theta}(f(t_1, \dots, t_n)) = f(\tilde{\theta}(t_1), \dots, \tilde{\theta}(t_n))$, where $p \in X$.
- ▶ An equation is a pair of $\operatorname{Term}_{\mathcal{T}}(X)$. An equation $t \approx t'$ is true in an algebra if $\tilde{\theta}(t) = \tilde{\theta}(t')$ for all θ on \mathfrak{A} . It is denoted by $\mathfrak{A} \vDash t \approx t'$. The algebra is called a model for $t \approx t'$.

- ightharpoonup A class of algebras is equationally definable if there is a set of equations E such that the class precisely contains models for E.
- Birkhoff's theorem: a class of algebras is equationally definable if and only if it is a variety.
- ▶ A term algebra of \mathcal{T} over X is a tuple $\mathfrak{Term}_{\mathcal{T}}(X) = \langle \operatorname{Term}_{\mathcal{T}}(X), I \rangle$, where $I(f)(t_1, \dots, t_n) := f(t_1, \dots, t_n)$.

Equational Logic

- Let E be a set of equations. A derivation of E is a list of equations such that every element is axioms (elements in E), has the form of $t \approx t$, or is obtained from earlier elements using symmetry, transitivity, replacement (congruence), or substitution rules.
- ▶ An equation (formula) is derivable from E, which is denoted by $E \vdash t \approx u$, if the equation appears at the end of a derivation of E.
- ▶ An equation is a semantic consequence of E, which is denoted by $E \vDash t \approx u$, if for all \mathfrak{A} , $\mathfrak{A} \vDash E \Rightarrow \mathfrak{A} \vDash t \approx u$.
- ▶ Completeness theorem: for all equations $t \approx u$, $E \vDash t \approx u \Leftrightarrow E \vdash t \approx u$.

Algebraizing Propositional Logic

- ▶ The type Bool $\mathcal B$ is a tuple $\langle \{\neg, \lor, \bot\}, \rho \rangle$ such that $\rho(\neg) = 1, \rho(\lor) = 2$, and $\rho(\bot) = 0$.
- ► The propositional formula algebra over X is the term algebra of \mathcal{B} over X, that is $\mathfrak{Form}_{\mathcal{B}}(X) = \langle \operatorname{Form}_{\mathcal{B}}(X), -, +, \bot \rangle$, where $-\varphi := \neg \varphi$, and $\varphi + \psi := \varphi \vee \psi$.
- ▶ The algebra of truth value 2 is a tuple $\langle \{1,0\},-,+,0\rangle$, where $-a \coloneqq 1-a$, and $a+b \coloneqq \max(a,b)$.
- ▶ Given an assignment θ , we obtain a meaning $\tilde{\theta}$:Form_{\mathcal{B}} $(X) \to \{1,0\}$, that is a homomorphism.

Theorem 1

 $\models_{\mathrm{CL}} \varphi \Leftrightarrow 2 \models \varphi \approx \top.$

Proof.

We prove it immediately from the definition of a valuation and an assignment.

- ▶ A set algebra $\mathfrak S$ of A is a subalgebra of a power set algebra $\mathfrak P$ of A, which is a tuple $\mathfrak P = \langle \mathcal P(A), {}^-, \cup, \emptyset \rangle$.
- ▶ A \mathcal{I} power of 2 is the (direct) product of $(2_i)_{i \in \mathcal{I}}$.

Lemma 1

Every power set algebra is isomorphic to a power of 2.

Proof.

Let A be an arbitrary set and B and C be subsets of A. we consider the characteristic function ζ of B, that is $\zeta:\mathcal{P}(A)\to\prod_{i\in A}\{1,0\}_i$. For all operations in a power set algebra, $\zeta(\bar{B})=-\zeta(B)$, $\zeta(B\cup C)=\zeta(B)+\zeta(C)$ and $\zeta(\emptyset)=0$. Thus, the function ζ is a homomorphism between a power set algebra \mathfrak{P} of A and a A power of 2. Moreover, if $B\neq C$, then $\zeta(B)\neq \zeta(C)$. For each element t of $\prod_{i\in A}\{1,0\}_i$, there exists B such that $\zeta(B)=t$. Therefore, ζ is an isomorphism. \square

Lemma 2

If $\mathfrak A$ is isomorphic to $\mathfrak B$, then the validity of equations is preserved.

Proof.

Let ι be an isomorphism between A and B, and $\varphi \approx \psi$ be an equation. For an arbitrary meaning $\tilde{\theta}_{\mathfrak{B}}$ in \mathfrak{B} , there is a corresponding meaning $\tilde{\theta}_{\mathfrak{A}}$ such that $\tilde{\theta}_{\mathfrak{B}}(\varphi) = \iota(\tilde{\theta}_{\mathfrak{A}}(\varphi))$. By the assumption $\tilde{\theta}_{\mathfrak{A}}(\varphi) = \tilde{\theta}_{\mathfrak{A}}(\psi)$. Thus, $\tilde{\theta}_{\mathfrak{B}}(\varphi) = \tilde{\theta}_{\mathfrak{B}}(\psi)$.

Lemma 3

The validity of equations is preserved under taking a direct product and a subalgebra.

Proof.

As for a direct product, it is easy to prove by contraposition. The other one is trivial.

Theorem 2

 $\models_{\mathrm{CL}} \varphi \Leftrightarrow \mathfrak{S} \models \varphi \approx \top$.

Proof.

We prove it immediately from theorem 1, lemma 1, 2, and 3.

- ▶ If $\vdash \varphi \leftrightarrow \psi$, it is called that two formulas φ and ψ are provably equivalent. \equiv denotes the relation. The relation is a congruence on the propositional formula algebra.
- Lindenbaum-Tarski algebra is the quotient algebra of the propositional formula algebra over X, that is $\mathfrak{L}_{\equiv}(X) = \langle \operatorname{Form}_{\mathcal{B}}(X)/\equiv,-,+,0 \rangle$, where $-[\varphi] \coloneqq [\neg \varphi]$, $[\varphi] + [\psi] \coloneqq [\varphi \vee \psi]$, and $0 \coloneqq [\bot]$.

Theorem 3

 $\vdash_{\mathrm{CL}} \varphi \Leftrightarrow \mathfrak{L}_{\equiv}(X) \vDash \varphi \approx \top.$

Proof.

(\Rightarrow) Let θ be an arbitrary assignment, and σ be a substitution, that is $\theta(p) = [\sigma(p)]$. It follows from induction of the complexicity of formulas that $\tilde{\theta}(\psi) = [\sigma(\psi)]$. By the assumption, $\sigma(\varphi)$ is a theorem. Thus, $[\sigma(\varphi)] = [\top]$.

(\Leftarrow) We prove it by contraposition. Suppose that φ is not the theorem, then $[\varphi] \neq [\top]$. We consider an assignment such that $\tilde{\theta}(\psi) = [\psi]$. This assignment is an example that $\tilde{\theta}(\varphi) \neq \tilde{\theta}(\top)$.

▶ An algebra of type Bool is called a boolean algebra iff it satisfies commutativity, associativity, distributivity, identity, and complementation. BA denotes the class of boolean algebras.

Lemma 4

Both \mathfrak{S} and $\mathfrak{L}_{\equiv}(X)$ are boolean algebras.

Theorem 4 (Algebraic Completeness)

 $\vdash_{\text{CL}} \varphi \Leftrightarrow \text{BA} \vDash \varphi \approx \top.$

Proof.

- (\Rightarrow) We prove it by induction on the construction of logic.
- (⇐) This direction follows immediately from lemma 4.

▶ A ultrafilter of $\mathfrak{A} = \langle A, +, -, 0, f_{\Diamond} \rangle$ is a subset $L \subseteq A$ satisfying four conditions: $1 \in L$; L is closed under taking meets; L is upward closed; $0 \not\in \mathtt{L}$; for every $a \in A$, $a \in L$ or $-a \in L$. A class $U(\mathfrak{A})$ denotes the collection of ultrafilters of \mathfrak{A} .

Theorem 5 (Stone's Representation Theorem)

Any boolean algebra is isomorphic to a set algebra.

Proof.

Let $\mathfrak A$ be a boolean algebra. We consider a map $\iota:A\to \mathcal P(U(\mathfrak A))$ such that $\iota(a)=\{u\in U(\mathfrak A)\mid a\in u\}$. This map is a homomorphism, since it is established that $\iota(f_{\mathfrak A}(a_1,\cdots,a_n))=f_{\mathfrak U(\mathfrak A)}(\iota(a_1),\cdots,\iota(a_n))$ (e.g. $\iota(a+b)=\iota(a)\cup\iota(b)$). Moreover, if $a\neq b,\ \iota(a)\neq\iota(b)$. Therefore, any boolean algebra is enbeddable in a power set algebra of $U(\mathfrak A)$.

Theorem 6 (Completeness Theorem)

 $\vdash_{\mathrm{CL}} \varphi \Leftrightarrow \vDash_{\mathrm{CL}} \varphi.$

Proof.

- (\Rightarrow) We prove it by induction on the construction of logic.
- (\Leftarrow) This direction follows immediately from lemma 4 and theorem 5, that is the fact, the Lindenbaum-Tarski algebra is isomorphic to a set algebra of ultrafilters of the algebra.

Algebraizing Modal Logic

- Let the concatenation of the boolean similarity type $\mathcal B$ and the modal similarity type τ be $\mathcal B_{\tau}$. The boolean similarity type is $\langle \{\neg, \lor, \bot\}, \rho \rangle$ such that $\rho(\neg) = 1, \rho(\lor) = 2$, and $\rho(\bot) = 0$. The modal similarity type is $\langle O, \rho \rangle$. In basic modal logic, $O = \{\lozenge\}$ and $\rho(\lozenge) = 1$.
- ▶ The modal formula algebra over X is the term algebra of \mathcal{B}_{τ} over X, that is $\mathfrak{Form}_{\mathcal{B}_{\tau}}(X) = \langle \mathrm{Form}_{\mathcal{B}_{\tau}}(X), -, +, \bot, f_{\Diamond} \rangle$.

- ▶ A τ -frame is a tuple $\mathcal{F} = \langle W, R_{\Diamond} \rangle$. A function in a frame $m_{R_{\Diamond}} : \mathcal{P}(W) \to \mathcal{P}(W)$ is defined by $m_{R_{\Diamond}}(Y) = \{w \in W \mid \text{there exists } y \in Y \text{ such that } (w, y) \in R_{\Diamond} \}$. It means that $V(\Diamond \varphi) = m_{R_{\Diamond}}(V(\varphi))$.
- ▶ A complex algebra of \mathcal{F} is a subalgebra of the full complex algebra \mathcal{F}^+ of \mathcal{F} , that is a tuple $\mathcal{F} = \langle \mathcal{P}(W), {}^-, \cup, \emptyset, \ m_{R_\Diamond} \rangle$. If K is a class of τ -frame, CmK denotes the class of full complex algebras of frames in K.

Lemma 5

$$(\mathcal{F}, \theta), w \vDash_K \varphi \Leftrightarrow w \in \tilde{\theta}(\varphi).$$

Lemma 6

 $\mathcal{F} \vDash_K \varphi \Leftrightarrow \mathcal{F}^+ \vDash \varphi \approx \top$.

Proof.

By lemma 5, for an arbitary meaning $\tilde{\theta}$ and $w \in W$ in \mathcal{F} , $w \in \tilde{\theta}(\varphi)$. Since $w \in \tilde{\theta}(\top)$, $\tilde{\theta}(\varphi) = \tilde{\theta}(\top)$.

Theorem 7

 $\vDash_{\mathsf{K}} \varphi \Leftrightarrow \mathsf{CmK} \vDash \varphi \approx \top.$

- ▶ A relation of provable equivalence $\equiv_{\Lambda} (\varphi \equiv_{\Lambda} \psi : \Leftrightarrow \vdash_{\Lambda} \varphi \leftrightarrow \psi)$ is a congruence on the modal formula algebra $\mathfrak{Form}_{\mathcal{B}_{\tau}}(X)$, if Λ is normal modal τ -logic.
- ▶ Lindenbaum-Tarski algebra of Λ over X is the quotient algebra of the formula algebra over \equiv_{Λ} , that is $\mathfrak{L}_{\Lambda}(X) = \langle \operatorname{Form}_{\mathcal{B}_{\tau}}(X) / \equiv_{\Lambda}, -, +, 0, f_{\Diamond} \rangle$.

Theorem 8

 $\vdash_{\Lambda} \varphi \Leftrightarrow \mathfrak{L}_{\Lambda}(X) \vDash \varphi \approx \top.$

Proof.

This proof is analogous to theorem 3. As for the right direction, we additionally prove a \Diamond case of $\tilde{\theta}(\psi) = [\sigma(\psi)]$, that is $\tilde{\theta}(\Diamond\chi) = [\sigma(\Diamond\chi)]$. This can be proven by the induction hypothesis and the definition of the algebra.

- ▶ A boolean algebra with τ -operators is an algebra $\langle A, +, -, 0, f_{\Diamond} \rangle$ such that $\langle A, +, -, 0 \rangle$ is a boolean algebra, and f_{\Diamond} is an operation satisfying normality and additivity. BAO denotes the class of boolean algebras with τ -operators, if τ is known from the context.
- lacktriangle All of \mathcal{F}^+ and $\mathfrak{L}_{\Lambda}(X)$ are examples of a boolean algebra with an operator.

Theorem 9 (Algebraic Completeness)

 $\vdash_{\Lambda} \varphi \Leftrightarrow BAO \vDash \varphi \approx \top.$

Proof.

The proof is completely analogous to theorem 4.

▶ The ultrafilter frame of $\mathfrak{A} = \langle A, +, -, 0, f_{\Diamond} \rangle$ is a tuple $\langle U(\mathfrak{A}), Q_{f_{\Diamond}} \rangle$, where $Q_{f_{\Diamond}}$ is a binary relation on $U(\mathfrak{A})$ to be defined by $(u, u') \in Q_{f_{\Diamond}} \Leftrightarrow \{f_{\Diamond}(a) \mid a \in u'\} \subseteq u$. It is denoted as \mathfrak{A}_+ .

Theorem 10 (Jónsson-Tarski Theorem)

Every boolean algebra with an operator $\mathfrak A$ is embeddable in the full complex algebra of its ultrafilter frame $(\mathfrak A_+)^+$.

Proof.

We consider a map $\iota:A\to \mathcal{P}(U(\mathfrak{A}))$ such that $\iota(a)=\{u\in U(\mathfrak{A})\mid a\in u\}$. For boolean operations, it is an embedding by the stone's representation theorem (theorem 5). Thus, It suffices to prove that $\iota(f_{\Diamond}(a))=m_{Q_{f_{\Diamond}}}(\iota(a))$. Moreover, for every $a,b\in A$, if $a\neq b$ then $\iota(a)\neq\iota(b)$. Therefore, any boolean algebra with an operator is enbeddable in the full complex algebra of its ultrafilter frame.

Theorem 11 (Completeness Theorem)

 $\vdash_{\Lambda} \varphi \Leftrightarrow \vDash_{\Lambda} \varphi.$

Proof.

The proof is completely analogous to the stone's representation theorem (theorem 5).

Reference

[1] Blackburn, P., Rijke, M., and Venema, Y. (2001). *Modal Logic*. Cambridge: Cambridge University Press. doi:10.1017/CBO9781107050884