EDEXCEL MECHANICS M2 (6678) – JUNE 2004

MARK SCHEME

Question Number	Scheme	Marks
1. (a)	$F = \frac{36000}{20} (=1800)$	B1
	N2L $\frac{3600}{20} - 750 = 1500a$ ft their F	M1 A1ft
	$a = 0.7 \left(\text{m s}^{-2}\right)$	A1 4
(b)	$F = 750 + 1500g \times \frac{1}{10} (=2220)$	M1 A1
	α Ψ_{1800g} $P = 2220 \times 20 = 44400$	
	Accept also 44000, 44 kW, 44.4 kW	A1 3 7
2.	$\mathbf{I} = m\mathbf{v} - m\mathbf{u}$	
	$-4\mathbf{i} + 4\mathbf{j} = 0.2\mathbf{v} - 0.2 \times 30\mathbf{i}$	M1 A1
	$\mathbf{v} = 10\mathbf{i} + 20\mathbf{j} (\mathbf{m}\mathbf{s}^{-1})$	A1 <u>3</u>
	$\tan \theta = \frac{20}{10}$	M1
	$\theta = 63.4^{\circ}$ accept awrt 63° or 1.1°	A1 <u>2</u>
	(c) Final K.E. = $\frac{1}{2} \times 0.2 \times (10^2 + 20^2)$ (= 50) ft their v	M1 A1ft
	K.E. lost = $\frac{1}{2} \times 0.2 \times 30^2 - \frac{1}{2} \times 0.2 \times (10^2 + 20^2)$	M1
	= 40 (J) cao	A1 <u>4</u> 9

Ques Num		Scheme	Marks
3.	(a)	Rectangle Triangle Decoration	
		Mass Ratio 6 12 18 Ratio 1:2:3 CM from BG $(-)1\frac{1}{2}$ 2 \overline{x}	B1 B1
		$18 \times \overline{x} = -6 \times 1\frac{1}{2} + 12 \times 2$	M1 A1
		$\overline{x} = \frac{5}{6}$ accept exact equivalents	A1 <u>5</u>
	(b)	Q G \overline{x} 3	
		Identification and use of correct triangle	M1
		$\tan \theta = \frac{1}{3 + \overline{x}}$ ft their \overline{x}	M1 A1ft
		$\theta = 14.6^{\circ}$ cao	A1 <u>4</u> 9

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

MARK SCHEME

Question Number	Scheme	Marks
4.	(a) $\mathbf{p} = (2t^2 - 7t)\mathbf{i} - 5t\mathbf{j}, +3\mathbf{i} + 5\mathbf{j}$ $= (2t^2 - 7t + 3)\mathbf{i} + (5 - 5t)\mathbf{j}$	M1, M1 A1+A1 <u>4</u>
	(b) $\mathbf{q} = (2\mathbf{i} - 3\mathbf{j})t - 7\mathbf{i}$	M1 A1
	$\mathbf{j}: 5-5t = -3t \implies t = 2.5$ equating and solving	M1 A1
	At $t = 2.5$ i : $p_x = 2 \times 2.5^2 - 7 \times 2.5 + 3 = -2$ $q_x = 2 \times 2.5 - 7 = -2$ both	M1
	$p_x = q_x \implies \text{collision}$ cso	A1 <u>6</u> 10
	Alternative in (b)	
	i: $2t^2 - 7t + 3 = 2t - 7 \implies 2t^2 - 9t + 10 = 0$ t = 2, 2.5 equating and solving	M1 A1
	At $t = 2.5$ j : $p_y = 5 - 5 \times 2.5 = -7.5$ $q_y = -3 \times 2.5 = -7.5$ both	M1
	$p_y = q_y \implies \text{collision}$ cso	A1
	In alternative, ignore any working associated with $t = 2$	

Question Number	Scheme	Marks
5.	$ \begin{array}{c} 5u \\ \hline 2m \\ x \end{array} $ $ \begin{array}{c} 3m \\ y \end{array} $	
	(a) $LM 10mu = 2mx + 3my$ $NEL y - x = 5eu$	M1 A1 B1
	Solving to $y = 2(1+e)u$ * cso	M1 A1 <u>5</u>
	(b) $x = 2u - 3eu$ finding x , with or without $e = 0.4$ $x = 0.8u$	M1 A1
	$x > 0 \implies P$ moves towards wall and Q rebounds from wall \Rightarrow second collision ft any positive x	A1 ft 3
	(c) $x = -0.4u$	B1
	Speed of <i>Q</i> on rebound is 3.6 <i>fu</i>	
	For second collision $3.6 fu > 0.4 u$	M1
	$f > \frac{1}{9}$ ignore $f \mid 1$	A1 <u>3</u> 11

Question Number	Scheme	Marks
6.	B N A	
	(a) $M(A) N \times 2a \sin \alpha = mg \times a \cos \alpha + 10mg \times 2a \cos \alpha$	M1 A2(1, 0)
	$2N \tan \alpha = 21mg$	361 41 6
	N = 7mg * cso	M1 A1 <u>5</u>
	$\uparrow R = 11mg$	B1
	$F_r = 0.6 \times 11mg = 6.6mg$	B1
	For min P $F_r \rightarrow P_{\text{min}} = 7mg - 6.6mg = 0.4mg$	M1 A1
	For max P $F_r \leftarrow P_{\text{max}} = 7mg + 6.6mg = 13.6mg$	M1 A1
	$0.4mg \mid P \mid 13.6mg$ cso	A1 <u>7</u> 12
	Note: In (a), if moments are taken about a point other than A, a complete set of equations for finding N is needed for the first M1. If this M1 is gained, the A2(1, 0) is awarded for the moments equation as it first appears.	

EDEXCEL MECHANICS M2 (6678) – JUNE 2004

MARK SCHEME

Question Number	Scheme	Marks
7.	(a) Work-Energy $R \times 60 = 80 \times 9.8 \times 24.4 - \frac{1}{2} \times 80 \times 20^2$	M1 A2(1, 0)
	(=19129.6-16000=3129.6) R = 52 (N) accept 52.2	M1 A1 <u>5</u>
	(b) $-8.1 = 20 \sin \alpha \times t - \frac{1}{2} gt^2$	M1 A2(1, 0)
	$4.9t^{2} - 12t - 8.1 = 0$ $t = 3 (s)$	M1 A1 <u>5</u>
	(c) $20\cos\alpha \times 3 = 16 \times 3 = 48$ (m) ft their t	M1 A1ft 2
	(d) Energy $\frac{1}{2}mv^2 - \frac{1}{2}m \times 20^2 = m \times 9.8 \times 8.1$	M1 A2(1, 0)
	$v = \sqrt{(558.56)} \approx 24 \text{ (m s}^{-1})$ accept 23.6	M1 A1 <u>5</u> 17
	Alternative to (d)	
	$\uparrow v_y = 12 - 3g = -17.4$ $\rightarrow v_x = 16$	M1 A1 A1
	$v = \sqrt{(17.4^2 + 16^2)} \approx 24 \text{ (m s}^{-1})$ accept 23.6	M1 A1 <u>5</u>