

Molecular Descriptors

HOW TO REPRESENT CHEMICAL STRUCTURES IN NUMBERS?

Content

- Molecular Descriptors
- Types of Descriptors
- Physicochemical Descriptors
 - Hydrophobic
 - **❖** Electronic
 - **❖**Shape

Molecular Descriptors

Molecular Property	Corresponding Interaction	Parameters
Lipophilicity	hydrophobic interactions	log P, π, f, R _M , χ
Polarizability	van-der-Waals interactions	MR, parachor, MV
Electron density	ionic bonds, dipol-dipol interactions, hydrogen bonds, charge transfer interactions	σ, <i>R</i> , <i>F</i> , κ, quantum chemical indices
Topology	steric hindrance geometric fit	E _S , r _V , L, B, distances, volumes

Type of Molecular Descriptors

- OD-descriptors (i.e. constitutional descriptors, count descriptors)
- □1D-descriptors (i.e. list of structural fragments, fingerprints)
- □2D-descriptors (i.e. graph invariants)
- □3D-descriptors (i.e. quantum-chemical descriptors, size, steric, surface and volume)
- ■4D-descriptors (i. e. GRID or CoMFA methods, Volsurf)

What should a descriptor be like?

- ■Should have structural interpretation
- ☐ Should have good correlation with at least one property
- ☐ Should preferably discriminate among isomers
- ☐ Should be possible to apply to local structure
- Should possible to generalize to "higher" descriptors
- ☐ Should be simple

What should a descriptor be like?

- ☐ Should not be based on experimental properties
- Should not be trivially related to other descriptors
- ☐ Should be possible to construct efficiently
- Should use familiar structural concepts
- ■Should change gradually with gradual change in structures
- ■Should have the correct size dependence, if related to the molecule size

Laying the foundation

- A.F.A. Cros (University of Strasbourg; 1863)
 - Increased toxicity of alcohols with decrease in water solubility
- H. H. Meyer (University of Marburg; 1890's) and Charles Ernest Overton (University of Zurich; 1890's) [working independently]
 - Toxicity of organic compounds depended on their lipophilicity
- Crum-Brown and Fraser
 - the physiological action of a substance was a function of its chemical composition and constitution
- Richet
 - inverse relationship between the cytotoxicity of a diverse set of simple organic molecules with water solubility.

Laying the foundation

Hammett

*"sigma-rho" culture; to understand the effect of substituents on organic reactions

* Taft

devised a way to separate polar, steric, and resonance effects and introduced the first steric parameter, Es

Hansch and Fujita

❖The contributions of Hammett and Taft together laid the mechanistic basis for the development of the QSAR paradigm.

Hammett Constant

- ➤ Linear Free Energy Relationships
 - ➤ Louis Hammett (1894-1987), correlated electronic properties of organic acids and bases with their equilibrium constants and reactivity
 - ➤ Measures the electron withdrawing or electron donating effects in comparison to benzoic acid & how affected its ionization)
- ➤ Consider the dissociation of benzoic acid:

$$\bigcirc \bigcirc -\text{COOH} = \bigcirc \bigcirc \bigcirc -\text{COO} + \text{H}^{\frac{1}{2}}$$

Hammett Constant

Hammett Constant

Hammett observed similar substituent effects on the organic acids and bases dissociation like phenyl acetic acid.

$$CH_{2}COOH \xrightarrow{K=5.20\times10^{-5}} CH_{2}COO^{-} + H^{+}$$

$$O_{2}N \longrightarrow CH_{2}COOH \xrightarrow{K=10.7\times10^{-5}} O_{2}N \longrightarrow CH_{2}COO^{-} + H^{+}$$

$$O_{2}N \longrightarrow CH_{2}COOH \xrightarrow{K=14.1\times10^{-5}} O_{2}N \longrightarrow CH_{2}COO^{-} + H^{+}$$

$$CH_{2} \longrightarrow CH_{2}COOH \xrightarrow{K=4.27\times10^{-5}} CH_{3}CH_{2} \longrightarrow CH_{2}COO^{-} + H^{+}$$

Lipophilicity Effects

- Just as the Hammett equation relates the electronic effects of substituents to reactions rates, Hansch believed that a linear free-energy relationship should exist for lipophilicity and biological activity
- Hansch suggested that the drug in the aqueous phase surrounding the cell made a random walk through the cell membrane (next slide), which is lipophilic, to interact with a particular site in the cell, the rate of which is dependent on the structure of the drug.

Lipophilicity and the random walk

Hydrophobic interaction between a drug and a binding site at a receptor

The "random walk" process

Calculation of Lipophilicity

As a measure of lipophilicity, Hansch proposed the partition coefficient, *P* as

$$P = [compound]_{oct}/[compound]_{aq} (1 - \alpha)$$

where α is the degree of dissociation of the compound in water calculated from the ionization constant

P < 1, means that the compound is more soluble in water,

if a compound is more soluble in octanol, then P > 1

Why n-Octanol is used?

N-Octonal/water as a standard system

- Membrane analogous structure
- Hydrogen bond donor and acceptor
- Practically insoluble in water
- No desolvation on transfer into organic phase
- Very low vapor pressure
- Transparent in the UV region
- Enormously large database of Log P values

LogP vs LogD

P = Partition Coefficient = Concentration of neutral species dissolved in partition solvent

Concentration of neutral species dissolved in water

D = Distribution Coefficient = Concentration of all species dissolved in partition solvent

Concentration of all species dissolved in water

Calculation of Log P

- O OH
- cLogP: 1.56

- Atom-based
 - Atom contribution
 - Eg: Alog P, Xlog P or Mlog P
- Fragment-based
 - Group Contribution
- Knowledge-based-
 - By data mining approach- SVMs, Decision Trees or Neural Network

cLogP: 4.397

cLogP: 4.209

cLogP: 1.928

cLogP: 4.24

Calculation Log P

Atom-based

$$\log P = \sum_{i} a_{i} f_{i} + \sum_{j} b_{j} f_{j}$$

SMILES: BrCc1cccc1 ATOM #: 1.23.45678. ISOC-ID: ..Za.aaaaa. FRAG-ID: 1........ H-COUNT: ..2..11111. RING 1: ...a.aaaaa.

benzylbromide 2.3.1.

Class	Туре	Log(P) Contribution Description	Comment	Value
Fragment Carbon Carbon ExFragment ExFragment	# 1 Hydrog Bonds	Bromide [Z] 1 aliphatic isolating carbon 6 aromatic isolating carbons 7 hydrogens on isolating carbons 1 chain and 0 alicyclic (net)	Measured - - -	0.480 0.195 0.780 1.589 -0.120

2.924

Calculation/prediction of Log P/log D

Computational Methods:

- From Log S (solubility)-
- Log D from Log P and pK_a

$$\frac{\log P = \log S_0 - \log S_W}{\langle S_a \rangle}$$

$$= \log\left(\frac{S_o}{S_w}\right)$$

$$\log D \cong \log P$$
 >>> For unionised molecules $\log D \cong \log P + \log (f^0)$ >>> at a give pH. f^0 is mole fraction of the un-ionized form

$$log D_{acids} \cong log P + pK_a - pH$$
 >>> When pH - pK_a > 1 for acids $log D_{acids} \cong log P + pK_a + pH$ >>> When pK_a - pH > 1 for bases

Substituent constants π

- >Just as substituent constants were derived by Hammett for the electronic effects of atoms and groups (σ constants),
- ➤ Hansch derived substituent constants for the contribution of individual atoms and groups to the partition coefficient.

Substituent Constant T

The lipophilicity substituent constant π for group X is given by

$$\pi_X = \log P_X - \log P_H = \log P_X/P_H$$

 $P_{\rm x}$ is the partition coefficient of the compound with substituent X and $P_{\rm H}$ is for the parent compound (X = H)

This means $\pi_H = 0$

π is both

- additive (multiple substituents exert an influence equal to the sum of the individual substituents)
- constitutive (effect of a substituent may differ depending on the molecule to which it is attached)

Substituent constants T

J. B. Houston et al., J. Pharmacol. Exp. Ther. **189**, 244 (1974)

R-OCONH ₂	Р	log P	$\Delta \log P = \pi CH_2$
Methyl	0.22	-0.66	} 0.51
Ethyl	0.70	-0.15	} 0.51
Propyl	2.3	0.36	} 0.31
Butyl	7.1	0.85	,
Pentyl	22.5	1.35	} 0.50 } 0.50
Hexyl	70.8	1.85	} 0.50
Heptyl	230	2.36	} 0.51
Octyl	700	2.85	} 0.49
sec-Butyl	4.5	0.65	-0.20 *)
tert-Butyl	3.0	0.48	-0.37 *)

^{*)} relative to *n*-butyl carbamate

π for some substituents

Substituent	CH ₃	t-Bu	ОН	OCH₃	CF ₃	Cl	Br	F
π (aliphatic substituents)	0.50	1.68	-1.16	0.47	1.07	0.39	0.60	-0.17
π (aromatic substituents)	0.52	1.68	-0.67	-0.02	1.16	0.71	0.86	0.14

- Note that these sets of π values are not true constants and they are accurate only for the structures from which they have been derived.
- They are good approximations! for other structures, but remember that some adjustments have to be made to get accurate values

22-Aug-20 23

Steric Effects: Taft's equation

Since interaction of a drug with its receptor brings together two molecules, steric effects come into play.

Taft derived the steric parameter E_s as

$$E_s = \log k_{XCOOMe} - \log k_{CH_3COOMe} = \log k_x/k_o$$

The reference reaction is the acid catalyzed hydrolysis of α-substituted acetates (XCH₂COOMe).

This parameter is normally standardized for the methyl group ($X = CH_3$)

 k_x represents the rate of hydrolysis of an aliphatic ester bearing the substituent X and k_0 represents the rate of hydrolysis of the reference ester.

Taft's steric constants for some groups

Substituent	Н	F	Me	Et	n-Pr	n-Bu	i-Pr	i-Bu	cyclopentyl
Es	1.24	0.78	0.0	-0.07	-0.36	-0.39	-0.47	-0.93	-0.51

Note that the reference ester is X = Me, therefore E_s is 0.

Substituents such as H and F which are smaller than the Me group, result in a faster rate of hydrolysis $k_x > k_o$, making E_s positive

Substituents larger than Me reduce the rate of hydrolysis $k_x < k_o$ making E_s negative

22-Aug-20 25

STERIMOL Parameters

- ❖ A multiparametric method for characterizing the steric features of the substituents in more complex biological systems. (By Verloop)
- ❖ STERIMOL parameters are a set of five descriptors (L, B1, B2, B3, and B4)
 - ❖ L is the length of the substituent along the axis of the bond between the first atom of the substituent and the parent molecule.
 - width parameters B1-B4 are all orthogonal to L and form angles of 90 to each other

22-Aug-20 26

List of substituent constant parameters for common aromatic substituents

Substituent	π	MR	$\sigma_{\mathbf{m}}$	$\sigma_{\mathbf{p}}$	L	<i>B</i> 1	<i>B</i> 2	<i>B</i> 3	<i>B</i> 4	<i>B</i> 5
Н	0.00	0.103	0.00	0.00	2.06	1.00	1.00	1.00	1.00	1.00
CH_3	0.56	0.565	-0.07	-0.17	3.00	1.52	2.04	1.90	1.90	2.04
CH_2CH_3	1.02	1.030	-0.07	-0.15	4.11	1.52	2.97	1.90	1.90	3.17
CH_2OH	-1.03	0.719	0.00	0.00	3.97	1.52	2.70	1.90	1.90	2.70
CH_2CN	-0.57	1.011	0.16	0.01	3.99	1.52	4.12	1.90	1.90	4.12
CH ₂ Cl	0.17	1.049	0.11	0.12	3.89	1.52	3.46	1.90	1.90	3.46
CH ₂ Br	0.79	1.339	0.12	0.14	4.09	1.52	3.75	1.95	1.95	3.75
CH_2I	1.50	1.886	0.10	0.11	4.36	1.52	4.15	2.15	2.15	4.15
$CH_2C_6H_5$	2.01	3.001	-0.08	-0.09	3.63	1.52	6.02	3.11	3.11	6.02
$CH(CH_3)_2$	1.53	1.496	-0.07	-0.15	4.11	2.04	2.76	3.16	3.16	3.17
n - C_3H_7	1.55	1.496	-0.07	-0.13	5.05	1.52	3.49	1.90	1.90	3.49
n - C_4H_9	2.13	1.969	-0.08	-0.16	6.17	1.52	4.42	1.90	1.90	4.54
C_5H_{11}	2.67	2.426	-0.08	-0.16	7.11	1.52	4.94	1.90	1.90	4.94
C_6H_5	1.96	2.536	0.06	-0.01	6.28	1.70	1.70	3.11	3.11	3.11
$COCH_3$	-0.55	1.118	0.38	0.50	4.06	1.90	1.90	2.36	2.93	3.13
$CONH_2$	-1.49	0.981	0.28	0.36	4.06	1.60	1.60	2.42	3.07	3.07
COC_6H_5	1.05	3.033	0.34	0.43	4.57	2.36	5.98	3.11	3.11	5.98
OH	-0.67	0.285	0.12	-0.37	2.74	1.35	1.93	1.35	1.35	1.93