1 Rachunek

- 1. Pojęcie wektora losowego
- 2. Wartość oczekiwana wektora losowego
- 3. Warunkowa wartość oczekiwana wektora losowego
- 4. Macierz wariancji kowariancji wektora losowego
- 5. Własności rozkładu normalnego, rozkładu χ^2 , rozkładu t i F.

1.1 Zadania: własności wartości oczekiwanej i wariancji

- 1. Pokazać, że $Cov(x_i, x_j) = E(x_i x_j) E(x_i) E(x_j)$
- 2. Pokazać, że jeśli $E(x_i) = 0$ to $Var(x_i) = E(x_i^2)$
- 3. Które z macierzy

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 1 \\ 4 & 2 & 3 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 2 & 2 \\ 2 & 2 & 3 \end{bmatrix}, \mathbf{C} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 4 \end{bmatrix}$$

mogą być macierzami kowariancji?

4. Pokazać, że dla dowolnego wektora losowego ε , wektora nielosowego a i macierzy nielosowej B

$$E(\mathbf{a} + \mathbf{B}\boldsymbol{\varepsilon}) = \mathbf{a} + \mathbf{B}E(\boldsymbol{\varepsilon})$$
$$Var(\mathbf{a} + \mathbf{B}\boldsymbol{\varepsilon}) = \mathbf{B}Var(\boldsymbol{\varepsilon})\mathbf{B}'$$

- 5. Mamy wektor losowy \mathbf{x} , przy czym $\mathbf{E}\left(\mathbf{x}\right) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathrm{Var}\left(\mathbf{x}\right) = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Policz wartość oczekiwaną i wariancję $\mathbf{y} = \begin{bmatrix} x_1 + 2x_2 + 5 \\ x_1 + x_2 + 1 \end{bmatrix}$.
- 6. Mamy wektor losowy $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, przy czym $\mathbf{E}(\mathbf{x}) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\mathrm{Var}(\mathbf{x}) = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix}$. Policzyć:
 - (a) odchylenie standardowe x_1, x_2
 - (b) współczynnik korelacji między x_1, x_2

- (c) wartość oczekiwaną i wariancję dla $y = y = 5 + x_1 + 2x_2$
- 7. Udowodnić, że dla dowolnej macierzy losowej \mathbf{A} : $\mathbf{E}[\mathrm{tr}(\mathbf{A})] = \mathrm{tr}[\mathbf{E}(\mathbf{A})]$
- 8. Załóżmy, że E(x) > 0. Jaka jest relacja między E(x) i $E\left(\frac{1}{x}\right)$? **Podpowiedź**: wykorzystaj twierdzenie Jensena.
- 9. Załóżmy, że y i x są zmiennymi losowymi, czemu równe jest $\mathbb{E}\left(\frac{y}{x} \mid x\right)$?
- 10. Wiemy, że E(x) = 2 oraz E(y|x) = 1 + 2x. Czemu równe jest E(y)?

2 Własności rozkładu normalnego

- 1. Jaki rozkład ma $\mathbf{v} = \mathbf{a} + \mathbf{B}\boldsymbol{\varepsilon}$, jeśli $\boldsymbol{\varepsilon} \sim N\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$?
- 2. Pokazać, że dla k-wymiarowego wektora losowego $\varepsilon \sim N\left(\mathbf{0}, \mathbf{\Sigma}\right)$ forma kwadratowa $\varepsilon' \mathbf{\Sigma}^{-1} \varepsilon \sim \chi_k^2$
- 3. Mamy wektor losowy $\mathbf{x} \sim N\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$, gdzie $\boldsymbol{\mu} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$, $\boldsymbol{\Sigma} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$. Jaki rozkład ma zmienna losowa $v = x_1 + 2x_2 + x_3$?
- 4. Mamy wektor losowego $\mathbf{x} \sim N\left(\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$, gdzie $\boldsymbol{\mu} = \left[\begin{array}{c} 2 \\ 3 \end{array}\right], \boldsymbol{\Sigma} = \left[\begin{array}{c} 5 & 3 \\ 3 & 2 \end{array}\right]$. Pokazać, że wektor $v = \left[\begin{array}{c} x_1 x_2 1 \\ -x_1 + 2x_2 + 4 \end{array}\right]$ ma rozkład $v \sim N\left(0, \mathbf{I}\right)$. Udowodnić, że $\left(x_1 x_2 1\right)^2 + \left(-x_1 + 2x_2 + 4\right)^2 \sim \chi_2^2$.

Pokazać ten sam wynik przy użyciu faktu, że $\Sigma^{-\frac{1}{2}} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$

- 5. (*)
 - (a) Pokazać, dla macierzy idempotentej ${\bf M}$ wartości własne są równe 0 lub 1. Jaka formę będzie miała macierz ${\bf \Lambda}$ w dekompozycji spektralnej ${\bf M}={\bf C}{\bf \Lambda}{\bf C}'$
 - (b) Jaki rozkład ma $\mathbf{C}\boldsymbol{\varepsilon}$ jeśli $\mathbf{C}\mathbf{C}' = \mathbf{I}$ a $\boldsymbol{\varepsilon} \sim N\left(\mathbf{0}, \boldsymbol{\sigma}^2 I\right)$
 - (c) Pokazać, że dla macierzy idempotentnej rząd macierzy jest równy jej śladowi
 - (d) Pokazać, że dla n-wymiarowego wektora losowego $\varepsilon \sim N\left(\mathbf{0}, \boldsymbol{\sigma}^2 I\right)$ i dowolnej macierzy idempotentnej \mathbf{M} rzędu k forma kwadratowa $\frac{\varepsilon' \mathbf{M} \varepsilon}{\sigma^2} \sim \chi_k^2$ **Podpowiedź**: skorzystaj z punktu 5a.

- 6. (*)
 - (a) Pokazać, że $\mathbf{x}-\overline{\mathbf{x}}=\mathbf{x}\left(\mathbf{I}-\frac{1}{n}\mathbf{1}\mathbf{1}'\right)$ i macierz $\mathbf{I}-\frac{1}{n}\mathbf{1}\mathbf{1}'$ jest macierzą idempotentną rzędu n-1
 - (b) Pokazać, że dla n-wymiarowego wektora losowego $\mathbf{x} \sim N\left(0, \boldsymbol{\sigma}^2 \mathbf{I}\right)$ suma $\frac{1}{\sigma^2} \sum_{i=1}^n \left(x_i \overline{x}\right)^2 \sim \chi_{n-1}^2$

Podpowiedź: wykorzystaj wynik z punktu (5d).

- (c) (*) Pokazać, że $\overline{\mathbf{x}}$ i $\mathbf{x} \overline{\mathbf{x}}$ są nieskorelowane. Założmy, że $\mathbf{x} \sim N\left(0, \boldsymbol{\sigma}^2 \mathbf{I}\right)$ ma rozkład normalny. Pokazać, że w tym przypadku \overline{x} i $\sum_{i=1}^{n} \left(x_i \overline{x}\right)^2 = \left(\mathbf{x} \overline{\mathbf{x}}\right)' \left(\mathbf{x} \overline{\mathbf{x}}\right)$ są niezależne.
- (d) Pokaż, że że dla n-wymiarowego wektora losowego $\mathbf{x} \sim N\left(0, \boldsymbol{\sigma}^2 \mathbf{I}\right)$ staystyka $\frac{\overline{x}}{\sqrt{s_x^2}} \sim t_{n-1}$ a $\frac{\overline{x}^2}{s_x^2} \sim F\left(1, n-1\right)$, gdzie $s_x^2 = \frac{\sum_{i=1}^n (x_i \overline{x})^2}{n-1}$

Podpowiedź: Wykorzystaj wynik z punktów (6c i 6b).

3 Statystyka

- 1. Pojęcie estymatora
- 2. Nieobciążoność estymatora
- 3. Wariancja estymatora i efektywność
- 4. Przedziały ufności
- 5. Testowanie hipotez statystycznych, wartości krytyczne i wartości p

3.1 Zadania

1. Pokazać, że jeśli mamy dwa estymatory $\widehat{\boldsymbol{\theta}}$ i $\widetilde{\boldsymbol{\theta}}$ wektora parametrów $\boldsymbol{\theta}$ o wariancjach $\widetilde{\Sigma}$ i $\widehat{\Sigma}$ i różnica $\widehat{\Sigma} - \widetilde{\Sigma}$ jest dodatnio określona, to dla każdego $\boldsymbol{\delta} \neq \mathbf{0}$

$$\operatorname{Var}\left(oldsymbol{\delta}'\widehat{oldsymbol{ heta}}
ight) > \operatorname{Var}\left(oldsymbol{\delta}'\widetilde{oldsymbol{ heta}}
ight)$$

- 2. Mamy zmienne losowe y_1 i y_2 takie, że $\mathrm{E}\left(y_1\right)=\theta$, $\mathrm{E}\left(y_2\right)=\frac{1}{2}\theta$, $\mathrm{Var}\left(y_1\right)=3\sigma^2$, $\mathrm{Var}\left(y_2\right)=\sigma^2$, $\mathrm{Cov}\left(y_1,y_2\right)=\sigma^2$.
 - (a) podać warunek jaki muszą spełniać a_1 i a_2 , by estymator liniowy $\widehat{\theta}=a_1y_1+a_2y_2$ był nieobciążony

- (b) podać jakie powinny być a_1 i a_2 , by estymator liniowy $\widehat{\theta}$ miał najniższą wariancję i był nieobciążony
- (c) dla y_1 i y_2 mających rozkład normalny podać rozkład estymatora $\widehat{\theta}$
- 3. Mamy n wymiarowy wektor x. Elementy tego wektora mają tę samą wartość oczekiwaną μ i wariancje σ^2 oraz są nieskorelowane.
 - (a) Podać postać macierzy wariancji kowariancji x
 - (b) Udowodnić, że $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ jest nieobciążonym estymatorem μ
 - (c) Pokazać, że wariancja \overline{x} maleje, gdy N rośnie
 - (d) (*) Pokazać, że estymator σ^2 postaci $s^2=\frac{1}{n}\sum_{i=1}^n \left(x_i-\overline{x}\right)^2$ jest nieobciążony

Podpowiedź: możesz wykorzystać fakt, że $\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$, $\operatorname{E}(x_i x_j) = \operatorname{Cov}(x_i x_j) + \operatorname{E}(x_i) \operatorname{E}(x_j)$, $(\sum_{i=1}^{n} a_i)^2 = \sum_{i=1}^{n} a_i^2 + (n-1) \sum_{i \neq j} a_i a_j$

- 4. Mamy estymator $\widehat{\theta}$ parametru θ i oszacowanie jego błędu standardowego $se\left(\widehat{\theta}\right)$. Wiemy, że $\frac{\widehat{\theta}-\theta}{se\left(\widehat{\theta}\right)}\sim t_s$ gdzie s jest liczbą obserwacji. Dla $\widehat{\theta}=1,$ $se\left(\widehat{\theta}\right)=0.5,$ s=10
 - (a) zbudować 95% przedział ufności dla $\widehat{\theta}$
 - (b) co się stanie z przedziałem ufności jeśli zamiast przedziału 95% policzymy przedział 90%?
 - (c) co sie najprawdopodobniej stanie z przedziałem ufoności jeśli zwiększy się liczba obserwacji?
 - (d) zweryfikować hipotezę, $H_0=0$ dla $\alpha=0.05$

Podpowiedź: wartość dystrybuanty $t_{10}\left(2\right)=0.07$