Сеть. Разрез. Поток. Теорема о величине потока. Теорема Форда-Фалкерсона

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 23.04.2024

Содержание лекции

- Сеть: определения и вспомогательные обозначения.
- Разрез, пропускная способность разреза.
- Поток: определение и лемма о величине потока.
- Теорема Форда-Фалкерсона, алгоритм построения наибольшего потока.
- Небольшое введение в экстремальные задачи.

Необходимые обозначения

Пусть есть граф G=(V,E). $\forall e\in E(G)\ e=xy$ определим $\overrightarrow{e}=(e,x,y), \overleftarrow{e}=(e,y,x).$

 $\overrightarrow{E}\coloneqq \big\{(e,x,y): e=xy;\; x,y\in V(G); e\in E(G)\big\}$ — заметим, что сюда входят ребра в обе стороны.

Тогда $|\overrightarrow{E}| = 2|E(G)|$.

Для двух подмножеств множества вершин $X,Y\subseteq V(G)$ определим множество $\overrightarrow{E}(X,Y)\coloneqq \left\{(e,x,y):x\in X,y\in Y,(e,x,y)\in\overrightarrow{E}\right\}.$

Для любой функции $f:\overrightarrow{E}\to\mathbb{R}$ определим $\forall X,Y\subseteq V(G)$ значение $f(X,Y)=\sum_{\overrightarrow{e}\in\overrightarrow{E}(X,Y)}f(\overrightarrow{e}).$

Сеть и поток

Пусть имеется произвольный неорграф G.

Определение: Вершины $s,t\in V(G),\ s\neq t$ назовем **истоком** (source) и **стоком** (sink), если любая другая вершина лежит на пути из s в t.

Определение: Функция $c:\overrightarrow{E} \to \mathbb{N}_0$ на G – пропускные способности ребер.

Определение: (G,s,t,c) называют **сетью**.

Определение: Функция $f:\overrightarrow{E} o \mathbb{R}$ – поток (flow) в сети (G,s,t,c), если:

- $ightharpoonup orall e \in E(G) \ f(\overrightarrow{e}) = -f(\overleftarrow{e}) \$ (антисимметричность, кососимметричность).
- lackbox $\forall v \in V(G), v
 eq s, v
 eq t \ f(\{v\}, V(G)) = 0$ (закон сохранения потока).
- $lackbox{} orall \overrightarrow{e} \in \overrightarrow{E} \ f(\overrightarrow{e}) \leq c(\overrightarrow{e})$ (ограничение пропускной способности).

Разрез. Лемма о величине потока

Определение: Разрезом (или (s,t)-разрезом) в сети (G,s,t,c) называют пару (S,\bar{S}) , где $S\subset V(G)$, $\bar{S}\coloneqq V(G)\setminus S$, $s\in S$, $t\notin S$.

Определение: $f(\{s\},V)=:|f|$ — величина потока в сети. $c(S,\bar{S})=\sum_{\overrightarrow{e}\in\overrightarrow{E}(S,\bar{S})}c(\overrightarrow{e})$ — пропускная способность разреза.

Лемма (о величине потока):
$$(S,\bar{S})$$
 – разрез в $G\Rightarrow f(S,\bar{S})=|f|$. Док-во: $f(S,\bar{S})=f(S,V)-f(S,S)=f(\{s\},V)+f(S\setminus\{s\},V)-f(S,S)$.

Второе слагаемое обнуляется по второму свойству из определения потока, третье — по третьему (ведь для любого ребра, поток по которому мы будем прибавлять, мы будем прибавлять и поток по обратному ребру).

Лемма: (S, \bar{S}) — разрез в G. Тогда $|f| \leq c(S, \bar{S}) \ \forall f$.

Док-во:
$$|f| = f(S, \bar{S}) = \sum_{\overrightarrow{e} \in \overrightarrow{E}(S, \bar{S})} f(\overrightarrow{e'}) \leq \sum_{\overrightarrow{e} \in \overrightarrow{E}(S, \bar{S})} c(\overrightarrow{e'}) = c(S, \bar{S}).$$

Теорема Форда-Фалкерсона

Определение: Минимальным разрезом (minimum cut) называется разрез с минимально возможной пропускной способностью.

Определение: Остаточная пропускная способность (residual capacity) ребра $c_f(u,v) = c(u,v) - f(u,v)$. Она всегда неотрицательна из-за условия на ограничение пропускной способности.

Определение: Остаточная сеть – граф $G_f = (V, E_f)$, где E_f – множество рёбер с положительной остаточной пропускной способностью.

Задача о максимальном потоке (maximum flow problem): найти поток f такой, что величина потока максимальна.

Теорема (Форда-Фалкерсона): Пусть в сети целые пропускные способности. Тогда величина максимального потока равна пропускной способности минимального разреза: $\max |f| = \min c(S, \bar{S})$.

Док-во: Уже знаем, что $\forall f, (S, \bar{S})$ справедливо $|f| < c(S, \bar{S})$. f_0 — нулевой поток (поток на всех рёбрах равен 0). Рассмотрим следующую итеративную процедуру: пусть есть

 f_n – целочисленный поток и $S_n = \{v \in V(G) \mid (s=v_0,\ldots,v_k=v)$ – простой путь, $(e_i,v_i,v_{i+1})=\overrightarrow{e_i}\in \overrightarrow{E}, c(\overrightarrow{e_i})-f_n(\overrightarrow{e_i})>0$ — множество вершин, достижимых из s простыми путями.

 1° : $t\in S_n$, т.е. есть простой путь $(s=v_0,\ldots,v_k=t)$ из истока в сток. Обозначим $arepsilon\coloneqq \min_{i\in \overline{0}:(k-1)}(c(\overrightarrow{e_i})-f_n(\overrightarrow{e_i}))$ и определим f_{n+1} :

- $ightharpoonup f_{n+1}(\overrightarrow{e}) = f_n(\overrightarrow{e}) + \varepsilon$, если $\exists \ j \in \overline{0:(k-1)}: \ \overrightarrow{e} = \overrightarrow{e_j}$,
- $lackbox{} f_{n+1}(\overrightarrow{e}) = f_n(\overrightarrow{e}) arepsilon$, если $\exists \ j \in \overline{0:(k-1)}: \ \overrightarrow{e} = \overleftarrow{e_i}$.
- $ightharpoonup f_{n+1}(\overrightarrow{e}) = f_n(\overrightarrow{e})$ иначе.

Проверкой определения убеждаемся, что f_{n+1} – поток.

 $|f_{n+1}| = |f_n| + arepsilon$, т.е. на каждой итерации величина потока увеличивается на положительное целое число, а поскольку поток ограничен сверху пропускной способностью минимального разреза, алгоритм сделает конечное количество шагов.

 2° : если $t \notin S_n$, то $(S_n, \bar{S_n})$ – разрез, причём

$$\forall \ \overrightarrow{e} \in \overrightarrow{E}(S_n, \overline{S}_n) : f_n(\overrightarrow{e}) = c(\overrightarrow{e}) \Rightarrow c(S_n, \overline{S}_n) = f_n(S_n, \overline{S}_n) = |f_n|. \ \Box$$

Замечание: Равенство величины максимального потока и пропускной способности минимального разреза доказано конструктивно. Использовавшийся в теореме алгоритм – алгоритм Форда-Фалкерсона.

Замечание: Алгоритм работает только для целых пропускных способностей. В противном случае он может работать бесконечно долго, не сходясь к правильному ответу!

Самостоятельно

Лемма: Сумма потоков из источника равна сумме потоков в сток.

Лемма: Максимальный поток положителен тогда и только тогда, когда существует путь из источника в сток, проходящий по рёбрам с положительной пропускной способностью.

Определение: Увеличивающий путь – путь $(s=u_1,u_2,\ldots,u_k=t)$ в остаточной сети и $c_f(u_i,u_{i+1})>0$.

Теорема: Поток максимален тогда и только тогда, когда нет увеличивающего пути в остаточной сети.