Índice

1.	Cál	culo del poliedro	1
		Determinación de la posición de los vértices	
	1.2.	Cubrimiento convexo de los vértices	2
2.	Ejei	mplos de poliedros para $4 \le N \le 24$	2
	2.1.	Poliedros regulares	3
	2.2.	Poliedros con cuadrados	3
3.	Imp	plementación	3
	3.1.	Características del lenguaje	5
	3.2.	Cálculo de la posición final de las cargas	6
	3.3.	Cálculo del cubrimiento convexo	7
	3.4.	Renderización de poliedros	9

Resumen

Un conjunto de cargas eléctricas del mismo signo en un conductor tienden a repelerse, de forma que se sitúan en una configuración de mínima energía. Esta configuración sitúa las cargas en la superficie del conductor.

El siguiente programa de **OpenSCAD** simula el comportamiento de varias cargas encerradas en un conductor esférico. Tras encontrar la configuración de mínima energía, se representa como las aristas del poliedro que resulta del cubrimiento convexo de las cargas.

Los poliedros generados presentan un alto grado se simetría. La forma final alcanzada parece depender únicamente del número de vértices iniciales, excepto por algunas simetrías especulares.

1. Cálculo del poliedro

1.1. Determinación de la posición de los vértices

Para determinar la posición final de las cargas dentro de la esfera se realiza una simulación del movimiento de las cargas eléctricas dentro de la esfera, hasta que su posición se estabilice. Para ello se siguen los siguientes pasos:

- 1. Se inicializa el conjunto C de las N cargas a posiciones c_i aleatorias del espacio.
- 2. Por cada carga $c_i \in C$:
 - a) La fuerza de repulsión con cada una de las otras cargas c_i se calcula como

$$f_{ij} = K \cdot \frac{(c_i - c_j)}{|(c_i - c_j)|^2}$$

La constante K debería representar factores como el intervalo de tiempo de cada paso de la simulación y las masas de las cargas y su resistencia al movimiento, aunque en la práctica se ajusta a valores más altos para acelerar el resultado.

- b) Se suman dichas fuerzas para encontrar la fuerza total resultante f_i sobre c_i . $f_i = \sum_{j \neq i}^N f_{ij}$
- 3. Por cada carga c_i :
 - a) Se calcula la nueva posición de la carga i como $c'_i = c_i + f_i$.
 - b) La posición resultante se proyecta sobre una esfera de radio r centrada en el origen $c_i'' = \frac{c_i'}{|c_i'|}$
- 4. Las nuevas posiciones c_i son los valores de c_i''
- 5. Se itera desde el paso 2 hasta alcanzar el criterio de terminación.
 - a) El criterio de terminación del bucle es la estabilidad de las posiciones c_i , comparando un umbral ϵ con $\sum_i^N |c_i'' c_i|$

La figura 1 muestra gráficamente el proceso del cálculo de la nueva posición de una carga, para dos dimensiones y tres cargas totales.

Figura 1: Cálculo de la nueva posición $c_1^{\prime\prime}$ de la carga c_1 para un total de 3 cargas

1.2. Cubrimiento convexo de los vértices

Tras a primera parte del cálculo, se obtienen las posiciones c_i de los vértices del poliedro. Cada triplete de puntos define uno de estos dos tipos de plano:

- Una cara *exterior* (o parte de una cara) de este poliedro.
- O bien, un triángulo *interior* que no forma parte del cubrimiento convexo de los vértices.

El algoritmo utilizado para determinar las aristas exteriores del poliedro es el siguiente:

1. Se parte del conjunto T de todos los tripletes

$$T = \{ \{c_i, c_j, c_k\} | 1 \le i < j < k \le N \}$$

- 2. Por cada triplete $\{t_1, t_2, t_3\} \in T$
 - a) Se calcula la ecuación del plano que contiene sus tres puntos ax+by+cy+d=0, siendo \times el producto vectorial y \cdot el producto escalar.

$$(a, b, c) = (t_2 - t_1) \times (t_3, t_1)$$

 $d = -(a, b, c) \cdot t_1$

- b) Se sustituye cada punto $c_i \in (C \setminus \{t_1, t_2, t_3\})$ en la ecuación del plano obtenida. Si el triplete pertenece al cubrimiento convexo, todos los resultados tendrán el mismo signo (o 0).
- c) Si el triplete pertenece al cubrimiento, sus aristas $\{t_1, t_2\}$, $\{t_2, t_3\}$ y $\{t_3, t_1\}$ se añaden al conjunto A de aristas exteriores.

2. Ejemplos de poliedros para $4 \le N \le 24$

Los ficheros STL de definición de cada poliedro pueden generarse desde la línea de comandos de **OpenSCAD**. El programa se invoca con los parámetros necesarios para fijar el número de vértices a calcular, así como la precisión del cálculo (variables \$fn y \$fa). El shellscript del listado 1 muestra un bucle con el cálculo de los poliedros desde 4 a 24 vértices.

```
#!/bin/sh
SCADFILE=./electrostatic-polyedron.scad

poliedro () {
   local N=$1
   openscad -o stl/poliedro-$N.stl -D N=$N -D '$fn=50', -D '$fa=50', "$SCADFILE"
}
for i in $(seq 4 24)
   do
        poliedro $i
   done
```

Listado 1: Generación de los sólidos de ejemplo

Los ficheros STL generados pueden visualizarse con **OpenSCAD**, utilizando la orden **import**, como se muestra en el listado 2

```
STLFILE="images/poliedro-10.stl";
ANGLE=20;
rotate([ANGLE,0,0]) {
    translate([0,0,0]) {
        import(STLFILE);
    }
}
```

Listado 2: Generación de los sólidos de ejemplo

Las imágenes utilizadas en la tabla 1 se han generado con el programa del listado 1 y el script del listado 3

Listado 3: Generación de los sólidos de ejemplo

Los ficheros STL se han importado en el servicio Sculpteo para su visualización en línea. La tabla 1 incluye la lista de poliedros y su URL.

2.1. Poliedros regulares

Dado el grado de simetría del proceso, no es sorprendente que se consigan varios poliedros regulares. Con 4, 6 y 12 vértices se obtiene un tetraedro, octaedro e icosaedro, respectivamente.

2.2. Poliedros con cuadrados

Para 8 y 24 vértices se obtienen poliedros con varias caras cuadradas, además de las triangulares. Este hecho no puede probarse con el proceso aquí presentado, ya que es un método iterativo de simulación, y se necesitaría una demostración matemática.

Figura 2: N=8 genera un poliedro con dos caras cuadradas

Para 17 el poliedro generado no contiene cuadrados *por muy poco*. Aún así se incluye en este apartado por su simetría pentagonal. El autor ha bautizado esta forma geométrica como **pachiedro**.

3. Implementación

Los ficheros descritos en este apartado están disponibles en un repositorio Github

Cuadro 1: Poliedros de ejemplo

Vértices	Sculpteo ID	Enlace	
4	hwBvUUPS	http://www.sculpteo.com/embed/design/hwBvUUPS	
5	zywXZ2Vv	http://www.sculpteo.com/embed/design/zywXZ2Vv	
6	Hd6M6qdV	http://www.sculpteo.com/embed/design/Hd6M6qdV	
7	e3Z7njee	http://www.sculpteo.com/embed/design/e3Z7njee	
8	zF9bWGAC	http://www.sculpteo.com/embed/design/zF9bWGAC	
9	MTTJEqKN	http://www.sculpteo.com/embed/design/MTTJEqKN	
10	XHaVXMzy	http://www.sculpteo.com/embed/design/XHaVXMzy	
11	cTu8ZKCy	http://www.sculpteo.com/embed/design/cTu8ZKCy	
12	XHZQE7ST	http://www.sculpteo.com/embed/design/XHZQE7ST	
13	A9fQg8jN	http://www.sculpteo.com/embed/design/A9fQg8jN	
14	BhTtJYyY	http://www.sculpteo.com/embed/design/BhTtJYyY	
15	kyYvU3Xd	http://www.sculpteo.com/embed/design/kyYvU3Xd	
16	HZBAytyz	http://www.sculpteo.com/embed/design/HZBAytyz	
17	BjZoe6GZ	http://www.sculpteo.com/embed/design/BjZoe6GZ	
18	dPc6d8nD	http://www.sculpteo.com/embed/design/dPc6d8nD	
19	PUog4ujR	http://www.sculpteo.com/embed/design/PUog4ujR	
20	Hfhs8x45	http://www.sculpteo.com/embed/design/Hfhs8x45	
21	SJuWkeMm	http://www.sculpteo.com/embed/design/SJuWkeMm	
22	ii3Bej6z	http://www.sculpteo.com/embed/design/ii3Bej6z	
23	KtMCe5s6	http://www.sculpteo.com/embed/design/KtMCe5s6	
24	xxAz2juM	http://www.sculpteo.com/embed/design/xxAz2juM	

Figura 3: ${\cal N}=8$ posee una proyección con contorno octogonal regular

Figura 4: N=24 consigue un poliedro con 6 caras cuadradas, que podría tallarse en un cubo

- Repositorio: https://github.com/alvarogonzalezsotillo/polyhedron
- Fichero principal SCAD: electrostatic-polyhedron.scad
- Este documento
 - En formato ORG: electrostatic-polyhedron.org
 - En formato PDF (a partir del fichero ORG): electrostatic-polyhedron.pdf
 - En formato HTML (a partir del fichero ORG): electrostatic-polyhedron.html

3.1. Características del lenguaje

El lenguaje de **OpenSCAD** es de tipo funcional, con funciones matemáticas básicas.

• No hay bucles de tipo *mientras*, y deben implementarse como funciones recurivas.

Figura 5: ${\cal N}=17$ ofrece una perspectiva con simetria pentagonal

Figura 6: En esta vista de N=17 se observan uno de los casi 5 cuadrados del poliedro de forma tangencial, abajo a la izquierda

- Distingue entre funciones (sin efectos laterales) y módulos (que crean efectivamente los sólidos).
 - Una consecuencia de que las funciones no tengan efectos laterales es la imposibilidad de trazar la ejecución de las mismas, ya que la instrución log se considera un efecto lateral.
- Las funciones admiten parámetros por defecto.
- Permite la construcción de listas de objetos, similares a arrays.
 - Los objetos pueden ser, entre otros, números y otras listas.
- Un punto tridimensional se especifica como una lista de tres valores.
- Ofrece facilidades para for comprehensions.

En la implementación se ha optado por utilizar las mínimas funciones del sistema.

3.2. Cálculo de la posición final de las cargas

OpenSCAD no ofrece facilidades básicas como la distancia entre puntos tridimentsionales. Esto permite incluir esta función simple a modo de ejemplo de sintaxis de su lenguaje en el listado 4

```
function distancia(a,b) =
let(
    dx = a[0] - b[0],
    dy = a[1] - b[1],
    dz = a[2] - b[2]
)
sqrt(dx*dx + dy*dy + dz*dz);
```

Listado 4: Distancia entre puntos tridimensionales (sqrt es una función incluída en OpenSCAD)

A diferencia de la mayoría de lenguajes, **OpenSCAD** no ofrece bucles de tipo **mientras**. Estas construcciones deben emularse con funciones recursivas, que utilicen a su vez operador condicional ternario. En el ejemplo del listado 5, se utiliza una función recursiva para recorrer una lista y acumular sus valores. puede verse también el uso de parámetros por defecto.

```
function sumaPuntos(lista) = suma(lista,[0,0,0],0);
function suma(lista,retorno=0,i=0) =
  i>=len(lista) ?
  retorno :
  suma(lista,lista[i]+retorno,i+1);
```

Listado 5: Distancia entre puntos tridimensionales

Los bucles for siempre forman parte de un for comprehension, lo que implica que su resultado no puee ser un valor único, sino una lista con una posición por cada vuelta. Para conseguir acumular la distancia total entre dos listas de puntos es necesario, por tanto, un bucle for y un bucle while implementado como función recursiva (ver listado 6). Las fuerzas aplicadas en cada carga se calculan también como un for comprehension, como se muestra en el listado 7

```
function errorTotal(puntos1,puntos2) = suma(distancias(puntos1,puntos2));
```

Listado 6: Suma de distancias entre dos listas de puntos

```
function fuerzasParaPunto( p, puntos ) = [
  for( punto = puntos )
    let(
         d = distancia(p,punto)
    )
    if( punto != p)
         (p - punto)/(d*d)
];
function modulo(vector) = distancia(vector,[0,0,0]);
```

Listado 7: Cálclo de las fuerzas que actúan sobre una carga

La función nuevoPuntoParaIteracion determina la nueva posición de un punto, y la función iteracion utiliza la anterior para calcular la nueva posición de todos los puntos (listado 8)

```
function normaliza( p, radio ) = radio * p / modulo(p);

function nuevoPuntoParaIteracion(p,puntos, radio=100) =
    let(
        fuerzas = fuerzasParaPunto( p, puntos ),
        factorDeAmpliacion = radio*radio,
        fuerza = sumaPuntos(fuerzas)*factorDeAmpliacion,
        nuevoPunto = p + fuerza
    )
    normaliza(nuevoPunto,radio);

function iteracion(puntos, radio=100) = [
    for( i = puntos) nuevoPuntoParaIteracion(i,puntos,radio)
];
```

Listado 8: Cálculo de las nuevas posiciones de las cargas a partir de las actuales

La función iteraCalculoDePuntos realiza un bucle while (nuevamente, en forma de función recursiva) hasta que la diferencia de posición entre un paso y el anterior es menor de un umbral. Por seguridad, se incluye también un límite en el número máximo de iteraciones como parámetro por defecto, tal y como se muestra en el listado 9.

```
function iteraCalculoDePuntos( puntos, radio=100, errorMaximo=0.01, contador=0, iteracionesMaximas=1000 ) =
let(
    siguientesPuntos = iteracion(puntos, radio),
    error = errorTotal(siguientesPuntos, puntos)
)
error <= errorMaximo || contador >= iteracionesMaximas ?
    siguientesPuntos :
    iteraCalculoDePuntos(siguientesPuntos, radio, errorMaximo, contador+1, iteracionesMaximas);
```

Listado 9: Bucle hasta no superar una diferencia mínima o un número máximo de iteraciones

Tan solo resta comenzar con un número determinado de puntos aleatorios e iterarlos hasta conseguir llegar al equilibrio (listado 10)

```
function puntoAleatorio() = rands(-1000,1000,3);
function puntosAleatorios(n) = [for( i=[0:n-1] ) puntoAleatorio()];
function verticesPoliedroElectrostatico(n) = iteraCalculoDePuntos(puntosAleatorios(n));
```

Listado 10: Cálculo de los vértices de un poliedro a partir de puntos aleatorios

3.3. Cálculo del cubrimiento convexo

Comenzamos definiendo primitivas básicas para el trabajo con vectores: producto escalar y vectorial. El producto vectorial ya está implementado en **OpenSCAD** (función **cross**), pero se incluye en el listado 11 por completitud del algoritmo.

```
function productoEscalar(v1,v2) =
   suma([
     for(i=[0:len(v1)-1]) v1[i]*v2[i]
   ]);

function productoVectorial(v1,v2) = [
     v1[1]*v2[2] - v1[2]*v2[1],
     - v1[0]*v2[2] + v1[2]*v2[0],
     v1[0]*v2[1] - v1[1]*v2[0]
];
```

Listado 11: Cálculo del producto escalar y vectorial

Utilizando los productos, podemos definir la ecuación del plano que pasa por tres puntos, y una función que determina si un punto pertenece a un plano, o si queda a un lado o a otro del mismo (listado 12).

```
function ecuacionDePlanoPorTresPuntos(p1,p2,p3) =
let(
   puntoEnElPlano = p1,
   vector1 = p2-p1,
   vector2 = p3-p1,
   normal = productoVectorial(vector1,vector2),
   d = -productoEscalar(puntoEnElPlano,normal)
)
[normal,d];

function ecuacionDePlanoPorTresPuntosEnLista(lista) =
   ecuacionDePlanoPorTresPuntos(lista[0],lista[1],lista[2]);

function sustituyeEcuacionPlano(ecuacion,punto) =
   productoEscalar(ecuacion[0],punto) + ecuacion[1];
```

Listado 12: Determinación de la ecuación de un plano por tres ypuntos, y su aplicación a un punto

Las funciones del listado 13 resumen el cálculo de aristas ocultas. Necesitan varias funciones de utilidad definidas en el listado 14.

```
function quitarAristasDuplicadas(aristas,ret=[],indice=0) =
 indice >= len(aristas) ?
  ret :
      let(
       a1 = aristas[indice],
       a2 = [a1[1],a1[0]]
      contenidoEnLista(a1,ret) || contenidoEnLista(a2,ret) ?
      quitarAristasDuplicadas(aristas,ret,indice+1)
      quitarAristasDuplicadas(aristas,agregarALista(ret,a1),indice+1)
function aristasExteriores(vertices) =
   let(
     n = len(vertices),
      indicesTriangulos = todosLosTripletesHasta(n)
   aplanaUnNivel(「
        for( indices = indicesTriangulos )
            if( todosLosPuntosAlMismoLado(indices, vertices) )
                aristasDeTriangulo(indices)
function todosLosPuntosAlMismoLado(triangulo,puntos,tolerancia=1) =
  let(
      ecuacionPlano = ecuacionDePlanoPorTresPuntosEnLista(trianguloConIndicesDeVertices(triangulo,puntos)),
      lados = [
        for (punto=puntos)
            sustituyeEcuacionPlano(ecuacionPlano,punto)
      ladosNegados = [for(lado=lados) -lado]
   todosMayoresOIgualesQue(lados,-tolerancia) ||
        todosMayoresOIgualesQue(ladosNegados,-tolerancia);
```

Listado 13: Cálculo de aristas exteriores

```
function todosMayoresOIgualesQue(valores,umbral) =
    let(
         comprobaciones = [
             for( v=valores )
                 v - umbral >= 0 ?
                 1 :
        ]
    suma(comprobaciones) == len(valores);
function todosLosTripletesHasta(n) = [
      for ( i = [0:n-3], j = [i+1:n-2], k = [j+1:n-1]) [i,j,k]
1:
function trianguloConIndicesDeVertices(indices, vertices) =
  [vertices[indices[0]], vertices[indices[1]], vertices[indices[2]]];
function aristasDeTriangulo(triplete) = [
      [triplete[0], triplete[1]],
[triplete[1], triplete[2]],
      [triplete[2], triplete[0]]
];
```

Listado 14: Funciones auxiliares para el cálculo de aristas exteriores

3.4. Renderización de poliedros

Hasta el momento, sólo se ha realizado el cálculo de los vértices del poliedro, pero **OpenSCAD** no ha renderizado ninguna forma.

Para que **OpenSCAD** genere algún volumen hay que utilizar un module predefinido o uno propio construido a base de los ya existentes, como se muestra en el listado 15. En este caso, cada arista se renderiza como un cilindro rematado por esferas.

```
N = 20;
vertices = verticesPoliedroElectrostatico(N);
aristas = aristasExteriores(vertices);
aristasSinDuplicados = quitarAristasDuplicadas(aristas);

module palo(a,b,r){
    hull(){
        translate(a) sphere(r);
        translate(b) sphere(r);
    }
}

module aristasAPalos(aristas, vertices, ancho=10){
    for( i=aristas )
        palo(vertices[i[0]], vertices[i[1]], ancho);
}

aristasAPalos(aristasSinDuplicados, vertices, 5);
```

Listado 15: Generación de un poliedro wire frame

Si se desea visualizar un sólido tradicional, basta con que **OpenSCAD** calcule el cubrimiento de los vértices. En este caso, los vérices se modelan como pequeñas esferas (listado 16)

Listado 16: Generación de un poliedro sólido