

Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

EVALUACION	SOLUCION Examen FECHA 20/10/201					
MATERIA	Algoritmos y Estructuras de Datos1					
CARRERA	Analista Programador / Analista en Tecnologías de la Información					
CONDICIONES	Especifique las pre y post condiciones de los métodos que implemente.					
	Serán tenidos en cuenta ejercicios o partes de ellos completas y que el estilo y metodología de desarrollo se ajuste al curso.					
	metodología de desarrollo se ajuste al curso					

ESTUDIANTE	Nota
(nombre y número)	

Ejercicio 1 (35 puntos)

Dado el siguiente array V:

1	5	17	11	21	13	15	19	23	25
0	1	2	3	4	5	6	7	8	9

a) Implementar un algoritmo que haga una transposición entre los k primeros términos del array y los n – k términos restantes sin utilizar un vector auxiliar.

Firma para el método a implementar :

public void cambiar(int[] array, int n, int k)

Si ejecutamos el método con los valores del ejemplo, Cambiar(V, 3, k) luego de ejecutado el algoritmo, el vector resultante es el siguiente:

11	21	13	15	19	23	25	1	5	17
0	1	2	3	4	5	6	7	8	9

- b) Ordenar el vector utilizando el método de inserción
- c) Implemente un algoritmo recursivo que sume los elementos del vector Utilizar ls siguiente firma:

int suma_vec(int v [], int n) // n es la cantidad de elementos del vector

Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

Ejercicio 2 (25 puntos)

Dados los siguientes seudocódigos correspondientes a los métodos de ordenamiento

```
Sort (int* A, int n){
void
                                                      void
                                                                          Sort (int* A, int n){
int i, j, First;
                                                      int i, j, posmin, tmp;
for (i = 1; i < n; i++)
                                                      for (i = 0; i < n-1; i++)
First = A[i];
                                                      posmin = i;
j = i-1;
                                                      for (j = i+1; j < n; j++){
while (j \ge 0 \&\& First < A[j])
                                                      if (A[j] < A[posmin])
A[j+1] = A[j];
                                                      posmin = j;
j--;
                                                      }
                                                      // Intercambio de elementos
A[j+1] = First;
                                                      tmp = A[i];
                                                      A[i] = A[posmin];
                                                      A[posmin] = tmp;
}
```

- a) Indique a que algoritmo corresponde cada seudocódigo.
- b) Aplique los mismos al siguiente vector de enteros 2, 3, 5, 1, 4. Y:
 - a. Muestre la secuencia generada hasta ordenar el vector.
 - b. Determine cual algoritmo emplea menos esfuerzo en ordenarlo.

Para ello se consideran las siguientes reglas:

- La comparación entre elementos del arreglo implica una unidad de esfuerzo
- El intercambio de elementos en el arreglo implica dos unidades de esfuerzo (solo si son elementos diferentes).

Justifique su respuesta mostrando paso a paso la ejecución de los algoritmos, especificando en cada paso qué elementos se comparan, cuáles intercambios se realizan y cómo queda el arreglo al final de cada paso.

Bernard Wand-Polak
Cuareim 1451
11.100 Montevideo, Uruguay
Tel 902 15 05 Fax 908 13 70
www.ort.edu.uy

Ejercicio 3 (40 puntos)

Dada la siguiente programa en el que se esta probando una lista simplemente enlazada:

public static void main(String[] args) {

```
System.out.println("Creamos lista vacia:");
Lista miLista=new Lista();
System.out.println("Agregamos al inicio valores 3, 2, 1:");
miLista.agregarlnicio(3);
miLista.agregarlnicio(2);
miLista.agregarlnicio(1);
System.out.println("Mostrar Lista: ");
miLista.mostrar (miLista.getlnicio()); // se debe mostrar en orden inverso del ultimo al primero
}
```

Con la siguiente estructura

- A) Defina la estructura de nodo y lista para una lista de enteros.
- B) Implemente un método agregar inicio
- C) Implemente un método que muestre la lista del ultimo al primero Es decir, si se ingresan los datos como se muestra en la figura y el código el método mostrar debe mostrar 3 – 2 - 1

Uruguay

Facultad de Ingeniería

Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

soluciones

```
Solución Ejercicio 1
A) void cambiar(int[] array, int n, int k) {
         if (k>0) {
              int aux= array[0];
             for(int i=1;i<n; i++)
                     array[i-1]=array[i];
             array[n-1]=aux;
              cambiar(array, n, k-1); }
   B) ordenoporInsercion(int array[]){
           int i, temp, j;
           for (i = 1; i < array.length; i++){
                    temp = array[i];
                   j = i - 1;
                   while ((array[j] > temp) && (j >= 0)){
                      array[j + 1] = array[j];
                      j--;
                   array[j + 1] = temp;
           }
      }
   C) int suma_vec(int v [], int n) {
      if (n == 0)
         return v [n];
      else
         return suma_vec(v, n - 1) + v [n];
```


Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

Solución Ejercicio 2

INSERTION SORT	SELECTIONSORT			
Primer paso	Primer paso			
First = 2	Posmin = 0			
Arreglo: 2,3,5,1,4	3 < 2 NO			
Segundo paso:	5 < 2 NO			
First = 3	1 < 2 SI			
3 < 2 NO	Posmin = 3			
Arreglo: 2,3,5,1,4	4 < 1 NO			
Tercer paso	Intercambian 1 y 2			
First = 5	Arreglo: 1,3,5,2,4			
5 < 3 NO	Segundo paso:			
Arreglo: 2,3,5,1,4	Posmin = 1			
Cuarto paso	5 < 3 NO			
First = 1	2 < 3 SI			
1 < 5 SI	Posmin = 3			
Intercambian 5 y 1	4 < 2 NO			
Arreglo: 2,3,1,5,4	Intercambian 2 y 3			
1 < 3 SI	Arreglo: 1,2,5,3,4			
Intercambian 3 y 1	Tercer paso:			
Arreglo: 2,1,3,5,4	Posmin = 2			
1 < 2 SI	3 < 5 SI			
Arreglo: 1,2,3,5,4	Posmin = 3			
Quinto paso:	4 < 3 NO			
First = 4	Intercambian 3 y 5			
4 < 5 SI	Arreglo: 1,2,3,5,4			
Intercambian 5 y 4	Cuarto paso:			
Arreglo: 1,2,3,4,5	Posmin = 3			
4 < 3 NO	4 < 5 SI			
	Intercambian 4 y 5			
^	Arreglo: 1,2,3,4,5			

Se hacen 7 comparaciones y 4 intercambios, por lo que el esfuerzo total del insertion sort para ordenar de forma ascendente el arreglo es de 15 unidades.

Se hacen 10 comparaciones y 4 intercambios, por lo que el esfuerzo total del selection sort para ordenar de forma ascendente el arreglo es de 18 unidades.

En resumen, insertionsort lo hace con menos esfuerzo.

Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

Solucion Ejercicio 3 Parte a)

```
//Definición de la estructura
public class NodoLista{
      private int dato;
      private NodoLista sig;
  //Constructor
  public NodoLista(int n){
     this.dato=n;
     this.sig=null;
  //Dato
  public void setDato(int d){
     this.dato=d;
  public int getDato(){
     return this.dato;
  //Siguiente
  public void setSig(NodoLista s){
     this.sig=s;
  public NodoLista getSig(){
     return this.sig;
```


Bernard Wand-Polak

Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy

```
public class Lista {
  private NodoLista inicio;
  //Constructor
  public void Lista(){
     this.inicio=null;
  //Inicio
  public void setInicio(NodoLista i){
     inicio=i;
  public NodoLista getInicio(){
     return inicio;
Parte b
public void agregarInicio(int n){
     NodoLista nuevo= new NodoLista(n);
     nuevo.setSig(inicio);
     this.inicio=nuevo;
     if(this.fin==null)//estoy insertando el primer nodo
        this.fin=nuevo;
    }
Parte c)
 public void mostrar (NodoLista I){
    if(I!=null){
      mostrarl.getSig());
    System.out.println(l.getDato());
```


Facultad de Ingeniería Bernard Wand-Polak Cuareim 1451 11.100 Montevideo, Uruguay Tel 902 15 05 Fax 908 13 70 www.ort.edu.uy