

CV505

USN 1 S

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(AUTONOMOUS INSTITUTE, AFFILIATED TO VTU) **BANGALORE** – 560 054

SEMESTER END EXAMINATIONS - DEC 2013 / JAN 2014

Course & Branch : B.E.- Civil Engineering

Semester

Subject

Hydrology and Water Resources

Max. Marks 100

Subject Code

Engineering

Duration

3 Hrs

Instructions to the Candidates:

Answer one full question from each unit.

: CV505

UNIT - I

Explain briefly three different types of precipitation. 1. a)

(06)(80)

What are recording gauges? Give their relative merits and demerits over b) the non-recording gauges.

For a drainage basin of 600 km², isohyetals drawn for a storm gave the c) following data:

(06)

Isohyetals (interval) (cm)	15-12	12-9	9-6	6-3	3-1
Inter-isohyetal area (km²)	92	128	120	175	85

Estimate the average depth of precipitation over the catchment.

2. Define the following: a)

(80)

(06)

- 1. Catchment 2. Drainage density 3. Stream density 4. Form Factor
- Describe the three methods of determining the average depth of rainfall b) (06)over an area.
- The normal annual precipitation of five raingauge stations P, Q, R, S and T C) are respectively 125, 102, 76, 113, and 137 cm. During a particular storm, the instrument at station T was inoperative and the precipitation recorded by stations P, Q, R and S are 13.2, 9.2, 6.8 and 10.2 respectively.

Estimate the rainfall at station T during that storm.

UNIT-II

What are the factors affecting evaporation? Explain them briefly 3. a)

(06)

- Explain the estimation of evaporation by IS-Pan method. Also define pan (80)b) coefficient and state its necessity.
- Explain briefly: 1. Infiltration capacity $2.\Phi$ index c)

(06)

A catchment of area 0.25 km² is subjected to a storm with the following (80)4. a) profile:

Page 1 of 3

Time (hr)	1	2	3	4	5	6
Rainfall	7	10	25	13	10	2
Intensity (mm/hr)	/	10	25	1 12	10	3

If the volume of storm runoff is 8250 m³, estimate the φ -index.

b) Define runoff. Explain in detail, the factors affecting runoff. (12)

UNIT-III

- 5 Define hydrograph. With a neat sketch, explain various elements of a flood a) (80)hydrograph.
 - Given the ordinates of a 4-h unit hydrograph as below derive the ordinates b) (08)of a 12-h unit hydrograph for the same catchment.

Time (h)	0	4	8	12	16	20	24	28	32	36	40	44
Ordinates of 4-h UH	0	20	80	130	150	130	90	52	27	15	5	0
c) Define:												(04)

- Define: C)
 - Direct runoff (i)
 - (ii) Rainfall excess
- 6. What is a unit hydrograph? What are its assumptions and uses? a)
- (10)(10)
- b) The ordinates of a 4-hour unit hydrograph for a particular basin are given below. Determine the ordinates of the S-curve hydrograph and therefore the ordinates of the 6-hour unit hydrograph.

Time (hr)	0	2	4	6	8	10	12	1 4	1 6	1 8	2 0	22	2
4hr UH ordinates (cumecs)	0	2 5	10 0	16 0	19 0	17 0	11 0	7 0	3 0	2 0	6	1. 5	0

UNIT-IV

7. Explain the following terms: a)

(10)

- (i) Specific yield
- Specific retention (ii)
- (iii) Confined aguifer
- Transmissibility (iv)
- (v) Porosity
- b) A 30 cm well completely penetrates an unconfined aquifer of saturated (10)depth 40 m. After a long period of pumping at a steady rate of 1500 lpm, the drawdown in two observation wells 25 and 75 m from the pumping well were found to be 3.5 and 2.0 m respectively. Determine the transmissibility of the aquifer. What is the drawdown of the pumping well?
- Derive the expression to determine the discharge for the steady radial flow (10)8. a)

CV505

to a well in an unconfined aquifer

- b) At station A, the water table elevation is 642m above the mean sea level, (06) and at B, the elevation is 629m. The stations are 1100 m apart. The aquifer has a permeability of 1.5×10^{-6} m/s and a porosity of 24 percent. What is the actual velocity in the aquifer?
- c) Explain Darcy's law. (04)

UNIT-V

- 9. a) The highest annual floods for a river for 60 years were statistically (08) analysed. The sixth largest flood was 30,000 cumec. Determine:
 - (i) The period in which the flood of 30,000 cumec may reoccur once
 - (ii) The percentage chance that this flood may occur in any one year
 - (iii) The percentage chance that this flood may not occur in the next 20 years
 - (iv) The percentage chance that this flood may occur once or more in the next 20 years
 - b) List out different methods of avoiding damage by floods. (08)
 - c) Differentiate between Probable Maximum Flood and Design Flood (04)
- 10. a) With a neat sketch, explain the different zones of storage in a reservoir. (08)
 - b) What is a reservoir mass curve? What are its uses? With a neat sketch, (12) explain how it is useful in determining the storage capacity of a reservoir.
