CONSIDER DATA POINTS $f_1, ..., f_N$. THE ARITHMETIC AVERAGE \overline{f} is ave N

OW SUPPOSE WE WANT TO DEFINE THE "AVERAGE" OF A FUNCTION f(x) in a f(x) with f(x) and f(x)

HEN THE AVERACE OF $f(x_1^x)$, ..., $f(x_n^x)$ is simply ave N of $f(x_1^x)$... $f(x_n^x)$ = $\frac{1}{N} \sum_{i=1}^{N} f(x_i^x)$.

MULTIPLY BY b-a 701 AND BOTTOM AND USE $\Delta x: \frac{b-a}{N}$.

So $f = \frac{1}{ave} \sum_{b-a}^{N} f(x_i^x) \Delta x$.

IN WE DEFINE

$$\overline{f} \equiv \frac{1}{b \cdot a} \int_{a}^{b} f(x) dx. \qquad (1)$$

OR A POSITIVE FUNCTION FIX) THIS YIELDS THE GEOMETRIC INTERPRETATION:

AREA OF RECTANCE $\overline{F}(b-a)$ IJ AREA $\int_a^b f(x) dx$ so -, +

LOBEJ CAN (EL IN AREA.

PROBLEM I FIND THE AVERAGE OF $f(x) = x^2$ on $0 \le x \le 3$. LIGHG (1)

WE GET $f = \frac{1}{3} \int_{0}^{3} x^2 dx = \frac{1}{4} \left[x^3 \right]_{0}^{3} = 3$.

SHADED AREAJ ARE THE JAME.

PROBLEM 2 LET V(t) BE THE SPEED OF A PARTICLE ON A

TIME INTERVAL OSTST. WHAT IN THE AVERACE JPERD?

$$\frac{SOL'N}{T-Q}$$
 Vave = $\frac{1}{T-Q}$ \int_{0}^{T} V(t) dt.

BUT VItI:
$$\frac{dx}{dt}$$
 so that $V_{ave} = \frac{1}{T} \int_{0}^{T} \frac{dx}{dt} dt = \frac{1}{T} X(t) \int_{0}^{T}$.

AOBLEM 3 IF A CUP OF COFFEE HAJ TEMPERATURE 95° C IN A ROOM WHERE THE TEMPERATURE IS 20° C, THEN FROM NEWTON'S LAW OF COOLING THE TEMPERATURE OF THE COFFEE AFTER t MINUTES IS $T(t) = 20 + 75 e^{-t/50}$.

NHAT IJ THE AVERACE TEMPERATURE OF THE COFFEE DURING THE FIRST HALF HOUR?

$$\frac{50 \text{ LUT 10N}}{50} = \frac{1}{30} \begin{bmatrix} 30 \\ 0 \end{bmatrix} + \frac{1}{30} \begin{bmatrix} 150 \\ 0 \end{bmatrix} = \frac{1}{30} \begin{bmatrix} 20 + 75 e^{-\frac{1}{50}} \end{bmatrix} = 20 - \frac{75}{30} \begin{bmatrix} 20 + \frac{30}{50} \end{bmatrix} = 20 - \frac{75}{30} \begin{bmatrix} e^{-\frac{30}{50}} \end{bmatrix} = 20 + \frac{175}{30} \begin{bmatrix} 1 - e^{-\frac{3}{5}} \end{bmatrix} = 20 + \frac{125}{30} \begin{bmatrix} 1 - e^{-\frac{3}{5}} \end{bmatrix} = 76.4 ^{\circ}\text{C}.$$

OPTIONAL (MEAN- VALUE THEOREM FOR INTECRALS)

THEOREM IF f(x) II CONTINUOLU ON [q,b] THEN THERE II A NUMBER C IN [a,b] SUCH THAT $\int_{a}^{b} f(x) dx = f(c)[b-a].$

INTERPRETATION $f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$, i.e. if f(x) is A continuous

FUNCTION THEN SOMEWHERE IN [a, b] THE FUNCTION WILL TAKE ON

ITI AVERAGE VALUE.

INTEGRALY IS SATISFIED FOR $f(x) = x^2 + 3x + 2$ on $f(x) = x^2 + 3x +$