Felhívjuk szíves figyelmüket, hogy a jelen videófelvétel teljes tartalma szerzői jogvédelem alatt áll.

A videófelvétel a szerző kizárólag oktatási céllal bocsájtja a jogosultak rendelkezésére.

A videófelvétel egészének és/vagy bármely részének sokszorosítása, közzététele, bármely egyéb módon történő felhasználása kizárólag a szerző írásbeli engedélyével lehetséges.

Gépelemek mechatronikai mérnököknek

3. témakör

Alakkal záró kötések

Alakkal záró kötések (ismétlés)

Feladata (funkciója):

Az erőfolyam továbbítása, vezetése terhelésátadó – nyomott és nyírt – felületek, keresztmetszetek révén.

Méretezés lépései:

- 1.A terhelések és kényszerek meghatározása
- 2. Hatásfelületek meghatározása (terhelésátadó felületek: nyomott felület, veszélyes keresztmetszet) az **erőfolyam** alapján.
- 3. Egységnyi felületre eső terhelés meghatározása (átlagos nyomás, igénybevétel)
- 4.Összehasonlítás a határállapottal (megengedett igénybevétel) → n = ... (biztonsági tényező)
- 5. Különlegességek elemzése

Szegecsek alkalmazása

- A szegecs főleg a acélszerkezetekben használt kötőelem.
- Főbb alkalmazási területek: nyomástartó edény, kazán, acélszerkezetek pl. hidak, emelők, hajók, stb.
- A hegesztés megjelenéséig a csavarkötésen kívül az egyetlen alakzáró kötési mód.

Szegecskötés készítése

Kis méret (d<10 mm) esetén hideg szegecselés

$$l = k + (1,3...1,75)d$$

Szegecs átmérő [mm]	10	13	16	19	22	25	28	31	34	37	40	43
Ajánlott játék [mm]	0,3	0,3	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1	1

Nagyobb méretben: meleg szegecselés

Meleg szegecselés

Szegecsfajták

Klasszikus szegecsek

Félgömbfejû szegecs

Süllyesztettfejû szegecs

Lencsefejû szegecs

Alcsony félgömbfejû szegecs

Szíjszegecs

Csőszegecs

Csőszegecs gépkocsi fék- és tengelykapcsoló betétekhez

Vakszegecsek

Robbanás

Húzás

Nyomás

Pop-szegecs

Pop-szegecselés

Polimer szegecskötések

Szegecselés ultrahanggal

Szegecsek lemezekhez

Zömítőszegecsek

			Smax=2			
Kereske- delmi méretek	Lemezcsavar B 4,2	Normál csavar M 4	Lemezcsavar B 3,5 4,2 4,8 6,5 8 A 3,6 4,3 4,9 6,5 8,5	Normál csavar M3, M4, M5, M6		
Furat- méret, mm	6,5 ^{ϕ}	6,5 [¢]	6,10 6,10 6,80 8,20 10,10	1		
Húzószi- lárdság, N	2000 2000		1000 1100 1700 2500 4000	450 570 1200 2700		

Szegecskötések kialakítása

Szegecs elrendezések

Szegecsek méretezése

- 1.A terhelések és kényszerek meghatározása
- 2.Hatásfelületek meghatározása (terhelésátadó felületek: nyomott felület, veszélyes keresztmetszet) az **erőfolyam** alapján.
- 3. Egységnyi felületre eső terhelés meghatározása (átlagos nyomás, igénybevétel)
- 4.Összehasonlítás a határállapottal (megengedett igénybevétel) → n = ... (biztonsági tényező)
- 5. Különlegességek elemzése
 - szegecsátmérő-lemezvastagság összehasonlítása
 - a szállítófeszültsége ellenőrzése
 - rugalmas párna modell

Különlegességes szegecskötés esetén

1) Optimális szegecsátmérő

$$\tau = \frac{F}{\frac{d^2\pi}{4}} \to F = \tau_{meg} \frac{d^2\pi}{4} \qquad \qquad p = \frac{F}{vd} \to F = p_{meg}vd$$

$$p = \frac{F}{vd} \to F = p_{meg}vd$$

$$\tau_{meg} \frac{d^2 \pi}{4} = p_{meg} v d$$

$$p_{meg} \approx 2\tau_{meg}$$

$$d_{opt} \approx \frac{8v}{\pi}$$

2) Szegecsek osztása

$$\sigma = \frac{F}{z(t-d)v} \to F = z(t-d)v\sigma_{meg}$$

$$F_p = zdvp_{meg}$$

$$\sigma_{meg} \approx p_{meg}$$

$$t_{opt} = 2d$$

Szegkötések

Szegkötések alkalmazása

Fejes csapszeg

(Csap)Szegek méretezése

Definíció

Bepattanó kötés: olyan alakkal záró kötés, amelynél az összeszerelendő alkatrészeket túlfedéses szakaszon keresztül toljuk össze. A szerelés során egyik, vagy mindkét alkatrész rugalmasan deformálódik, majd terheletlen állapotba ugrik vissza.

Előnyök-hátrányok

Előny:

rugalmas,

$$E_{pol}=2-3$$
 GPa

$$E_{\text{fém}} = 210 \text{ GPa}$$

(nagy alakváltozásra képes)

- gyors kötési művelet,
- oldható.

Hátrány:

•Bonyolult geometria. (alámetszés)

Oldható-oldhatatlan kötés

Oldható

Annál könnyebb az oldás, minél kisebbre választjuk az α₂ szöget

Nem oldható

- Csak erőszakkal szedhető szét,
- roncsolódik,
- újra nem használható.

Erők karos pattanókötésnél

Szerelési erő: a kötés szerelésekor – a rugalmas alakváltozás legyőzésére – alkalmazott erő. Nagysága függ a kötés típusától.

Rögzítő erő: az az erő, amelyet a kötés kibír anélkül, hogy oldódna vagy roncsolódna.

Szerelési erő meghatározása

$$F_{SZ} = Q \cdot tg(\alpha + \rho)$$

$$tg\rho = \mu$$

$$tg(\alpha + \rho) = \frac{tg\alpha + tg\rho}{1 - tg\alpha \cdot tg\rho}$$

$$F_{SZ} = Q \frac{\mu + tg\alpha}{1 - \mu tg\alpha}$$

Tervezési irányelvek

- Tervezéskor ki kell választani : A megfelelő nagyságú túlfedést (a megkívánt szerelési és rögzítő erő számára), a szerkezeti megoldást (oldható/oldhatatlan), a kötés anyagát.
- Oldhatatlan kötés nagyobb erőt tud átadni, mint az oldható.
- Nagy szerelési erőhöz nagy rögzítő erő is tartozik. A minél nagyobb túlfedés érdekében a polimer rugalmas alakváltozási képességét a legnagyobb mértékben ki kell használni.
- Gyakran szerelt kötésnél a szerkezet "elernyedésének" (kúszás) elkerülésére csak kisebb alakváltozást szabad megengedni.
- Mindig pontosan kell szerelni, mert a félig szerelt kötés idővel tönkremegy (kúszás), ezt figyelembe kell venni a tervezéskor.

Típusok – karos (konzolos)

Típusok - hengeres

Típusok - egyéb

(ĠT

28

Alakkal záró nyomatékkötések

Funkciója: nyomaték továbbítása tengely és agy között, esetenként axiális erő átvitele is.

A nyomatékkötések osztályozása hatásmechanizmus szerint:

- alakkal záró kötés;
- erővel záró kötés;
- anyaggal záró kötés.

Kialakítás szerint:

- közvetítőelemmel kapcsolódik (fészkes-, íves, siklóretesz);
- közvetlenül kapcsolódik (bordás-, poligonkötés).

Szabályozhatóság szerint

- állítható;
- nem állítható.

Reteszkötés

Előnye:

- egyszerű felépítés;
- egyszerű szerelés;
- szabványosított;
- megbízható méretezési eljárás.

Hátrányai:

- kiegyensúlyozatlanságot okoz, ezért nagy fordulatszámra nem alkalmas;
- gazdaságtalan, nagy tengely átmérőt kell választani;
- nem alkalmas alternáló nyomaték átvitelére.

Méretezése megegyezik az alakkal záró kötések méretezésének lépéseivel!

Reteszkötés méretezése

1. Terhelések meghatározása

Reteszkötés méretezése

2. Hatásfelületek meghatározása

Nyomott felület
$$A_p = (l - b)(h - t - f)$$

Nyírt felület $A_\tau \approx b \cdot l$

3. Egységnyi felületre eső terhelés meghatározása

$$\bar{p} = \frac{F}{A_p}$$
 $\bar{\tau} = \frac{F}{A_{\tau}}$

4. Összehasonlítás a határállapottal

$$\bar{p} \le p_{meg}$$
 $\bar{\tau} \le \tau_{meg}$

5. Egyebek

Tengely ellenőrzése
$$\tau_t = \frac{M_t}{K_p} \le \tau_{tmeg}$$

Agyvastagság ellenőrzése

Reteszkötés konstrukciós irányelvek

A valóságos nyomáseloszlás a retesz hossza és magassága mentén

A retesz hosszának kihasználtsága a nyomatékbevezetés helyétől függ

Bordáskötés

Előnye:

- a terhelés átadás a kerület mentén közel egyenletesen oszlik meg;
- kis helyen nagy terhelés vihető át;
- nincs kiegyensúlyozatlanság;
- alkalmas tengelyirányú pozíció változtatására;
- egyszerű szerelés;
- méretei szabványosítva vannak.

Hátrányai:

• tömeggyártás esetén gazdaságos.

Bordafogazatú tengelykötések

Előnyük:

• kedvezőbb a terheléskihasználtsága, mint a bordástengelyé;

• gyártásához és a méretellenőrzéshez használhatók a fogaskerékgyártó ipar gyártóeszközei és műszerezettsége

- nincs kiegyensúlyozatlanság;
- alkalmas tengelyirányú pozíció változtatására;
- egyszerű szerelés;
- méretei szabványosítva vannak. *Hátrányai:*
- tömeggyártás esetén gazdaságos.

Poligon tengelykötés

Előnyük:

- önközpontosító;
- a tengely keresztmetszete homogén, a feszültséggyűjtő hatás kicsi, ezért használata időben változó és dinamikus terhelések esetén kedvező;
- nincs kiegyensúlyozatlanság (terhelésátvitelnél). *Hátrányai:*
- gyártása csak speciális szerszámgépekkel lehetséges;
- nagy helyi felületi nyomások miatt az agy csak jó minőségű anyagból készíthető;
- az agy szilárdsági ellenőrzésének nehézsége;

Köszönöm a figyelmet!

