Homework 6

- 1. Verify which of the following sets are linear independent, if so prove it, otherwise explain why not.
 - (a) $V = \mathbb{R}^2$. $S = \{(1,0), (0,1)\}; S = \{(1,1), (1,-1)\}; S = \{(1,0), (1,1), (-1,1)\}$.
 - (b) $V = \mathbb{R}^3$. $S = \{(1,0,0), (0,1,0), (0,0,1)\}; S = \{(1,0,0), (0,1,1), (0,0,1)\}; S = \{(1,1,1), (0,1,1), (2,0,1)\}.$
 - (c) $V = \mathbb{R}^n$. $S = \{e_1, e_2, ..., e_n\}$ where $e_i = \underbrace{(0, ..., 0, 1, 0, ..., 0)}_{ith}$; $S = \{e_1, ..., e_{n-1}, e_1 + ... + e_n\}$; $S = \{e_1, e_2 e_1, e_3 e_2, ..., e_n e_{n-1}\}$.
 - (d) X a finite set, V = F(X) where F is an arbitrary field. $S = \{\delta_x : x \in X\}; U \subset X$ a subset, $S_U = \{\delta_x : x \in U\}; S = \{f_x : x \in X\}$ where

 $f_x(y) = \begin{cases} 1 & y \neq x \\ 0 & \text{otherwise} \end{cases}$.

- (e) $V=\mathbb{R}[x]$. $S=\left\{1,x,x^2,..x^d\right\}$ for some positive number d; $S=\left\{1,x,x^2,..x^{d-1},1+x+x^2+..x^d\right\}$ for some positive number d.
- 2. Verify which of the sets in question 1 is a spanning set, if so prove it, if not explain why, that is exhibit a vector that cannot be written as a linear combination of the elements in the set.
- 3. Verify which of the sets in question 1 is a basis, if so prove it, if not explain why not.
- 4. Let V be a vector space over a field F of dimension N. Let $S = \{v_1, ..., v_N\}$ be a spanning set (consisting of N elements). Prove that S must be linear independent and therefore a basis of V.
- 5. Write in a nice form the proof (given in class) that any finite dimensional vector space admits a basis.
- 6. Prove that the vector space of polynomials $\mathbb{R}[x]$ is not finite dimensional.
- 7. Let $B = \{v_1, ..., v_n\}$ be a basis of a vector space V over F. Prove that any vector $v \in V$ can be written as a linear combination

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

in a unique way.

8. Let V be a vector space over a field F of dimension n. Let $S \subset V$ be a linear independent set. Prove that $\#S \leq n$. Prove that if #S = n then S is a basis. Conclude that a basis is a mximal linear independent set.

1

- 9. Let V be a finite dimensional vector space over F. Prove that any subspace of V is finite dimensional.
- 10. Let V be a finite dimensional vector space of dimension n. Let $B=\{v_1,..,v_m\}$ m< n. Prove that B can be completed to a basis. Is this completion unique?