CC1 - Lundi 27 septembre 2021

Exercice 1. Les questions sont indépendantes.

- 1. Donner la définition d'une probabilité.
- 2. Donner la définition d'une variable aléatoire.
- 3. On considère une suite $(A_n)_{n\geq 1}$ d'événements dans un espace de probabilités (Ω, \mathcal{F}, P) telle que pour tout $n\geq 1$, $P(A_n)=0$. Montrer que $\cup_{n\geq 1}A_n$ est un événement négligeable.

Exercice 2. On considère une première urne contenant n billes rouges numérotées de 1 à p. On suppose que $n \ge p$. On tire une boule dans chaque urne.

- 1. Proposer un espace probabilisé pour modéliser cette expérience.
- 2. Donner une écriture mathématique de l'événement $A: \ll$ la boule rouge a un numéro inférieur ou égal à la boule bleue \gg .
- 3. Calculer la probabilité de A.

Exercice 3. On considère (Ω, \mathcal{F}, P) un espace probabilisé. Les questions sont indépendantes.

- 1. Soit $(A_n)_{n\geq 1}$ une suite d'événements de \mathcal{F} deux à deux disjoints. Montrer que la suite $(P(A_n))_{n\geq 1}$ converge vers 0.
- 2. Soit A, B et C trois événements de \mathcal{F} . Montrer que

$$P(A\Delta C) \le P(A\Delta B) + P(B\Delta C).$$

On rappelle que $A\Delta B = (A \cup B) \setminus (A \cap B)$.

3. L'ensemble $\{A \subset \mathbb{N}, A \text{ fini ou } A^c \text{ fini}\}$ forme-t-il une tribu sur \mathbb{N} ?