

MATHEMATICS BY

Dr. ANOOP DIXIT

B.Tech (Mech) M.Tech (P&I) PhD(NIT Kurukshetra)

DIFFERENTIATION (ASSIGNMENT-II)

Student's Name:	
Batch:	

EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

1. If y = f(x) is an odd differentiable function defined on $(-\infty, \infty)$ such that f'(3) = -2, then f'(-3) equals (B) 2 (C) - 2(D) 0 (A) 4

Sol.

2. If $f(x) = \log_x (\ln x)$ then f'(x) at x = e is (A) 1/e (B) e (C) 1 (D) zero Sol.

If $y = \cos^{-1}(\cos x)$ then $\frac{dy}{dt}$ at $x = \frac{5\pi}{4}$ is equal to

- (A) 1
- (C) $\frac{1}{\sqrt{2}}$

Sol.

dy then, x dx

- (A) 0
- (B) 1

Sol.

5. If $\sin(xy) + \cos(xy) = 0$ then $\frac{dy}{dx} = 0$

- (A) $\frac{y}{x}$ (B) $-\frac{y}{x}$ (C) $-\frac{x}{y}$ (D) $\frac{x}{y}$

Sol.

6. If $y = x^{x^2}$ then $\frac{dy}{dx}$

(A) 2 $\ln x$. x^{x^2}

Sol.

- (B) $(2 \ln x + 1) \cdot x^{x^2}$
- (C) $(2 \ln x + 1) \cdot x$
- (D) none of these

7. If $f(x) = |x|^{|\sin x|}$ then $f'(\pi/4)$ equals

- (C) $\left(\frac{\pi}{4}\right)^{1/\sqrt{2}} \left(\frac{\sqrt{2}}{2} \ln \frac{\pi}{4} \frac{2\sqrt{2}}{\pi}\right)$
- (D) $\left(\frac{\pi}{4}\right)^{1/\sqrt{2}} \left(\frac{\sqrt{2}}{2} \ln \frac{\pi}{4} + \frac{2\sqrt{2}}{\pi}\right)$

8. If $y = \sin^{-1} \frac{x^2 - 1}{x^2 + 1} + \sec^{-1} \frac{x^2 + 1}{x^2 - 1}$, |x| > 1 then

 $\frac{dy}{dx}$ is equal to

- (A) $\frac{x}{x^4 1}$ (B) $\frac{x^2}{x^4 1}$ (C) 0 (D) 1

Sol.

9. If $y = x - x^2$, then the derivative of y^2 w.r.t. x^2 is (A) $2x^2 + 3x - 1$ (B) $2x^2 - 3x + 1$ (C) $2x^2 + 3x + 1$ (D) none of these

Sol.

10. Let f(x) be a polynomial in x. Then the second derivative of f(e^x), is

- (A) $f''(e^x) \cdot e^x + f'(e^x)$ (B) $f''(e^x) \cdot e^{2x} + f'(e^x) \cdot e^{2x}$ (C) $f''(e^x) \cdot e^{2x}$ (D) $f''(e^x) \cdot e^{2x} + f'(e^x) \cdot e^x$

Sol.

11. If $x = at^2$, y = 2at, then $\frac{d^2y}{dx^2}$ is

Sol.

12. If f(x), g(x), h(x) are polynomials in x of degree 2

and $F(x) = \begin{vmatrix} f' & g' & h' \\ f'' & g'' & h'' \end{vmatrix}$, then F'(x) is equal to

(A) 1 (C) -1

- (D) f(x) . g(x) . h(x)

Sol.

13. If $y = \sin^{-1} (x\sqrt{1-x})$

and
$$\frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} + p$$
, then $p =$

- (A) 0

Sol

= ax + b then the value of a

and b are respectively

- (A) 2 and 1
- (C) 2 and -1
- (B) -2 and 1 (D) none of these

15. Let
$$f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix}$$
. Then $\underset{x\to 0}{\text{Limit}} \frac{f'(x)}{x} = \frac{1}{x}$

- (A) 2 (B) -2 (C) -1 (D) 0

Sol.

16. If u = ax + b then $\frac{d^n}{dx^n}$ (f(ax + b)) is equal to

- (A) $\frac{d^n}{du^n}$ (f(u)) (B) $a \frac{d^n}{du^n}$ (f(u))
- (C) $a^{n} \frac{d^{n}}{du^{n}}$ (f(u)) (D) $a^{-n} \frac{d^{n}}{du^{n}}$ (f(u))

Sol.

17. If $y = x + e^x$ then $\frac{d^2x}{dy^2}$ is

(A) e^x

Sol.

- **18.** If $y = f\left(\frac{2x-1}{x^2+1}\right)$ and $f'(x) = \sin x$ then $\frac{dy}{dx} = \frac{1}{2}$
- (A) $\frac{1+x-x^2}{(1+x^2)^2} \sin\left(\frac{2x-1}{x^2+1}\right)$ (B) $\frac{2(1+x-x^2)}{(1+x^2)^2} \sin\left(\frac{2x-1}{x^2+1}\right)$
- (C) $\frac{1-x+x^2}{(1+x^2)^2} \sin\left(\frac{2x-1}{x^2+1}\right)$ (D) none of these

Sol.

19. If 8 f(x) + 6 f $\left(\frac{1}{x}\right)$ = x +5 and y = x² f(x), then

 $\frac{dy}{dx}$ at x = -1 is equal to

- (B) $\frac{1}{14}$ (A) 0
- $\frac{1}{14}$ (D) none of these

Sol

20. If $x = e^{y + e^{y + \dots + \cos x}}$, x > 0, then $\frac{dy}{dx}$

- (C) $\frac{1-x}{y}$ (D) $\frac{1+x}{y}$

Sol

21. If $f(x) = x^n$, then the value of

$$f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + \frac{(-1)^n f^n(1)}{n!}$$
 is

- (B) 2^{n-1} (C) 0 (A) 2ⁿ
- (D) 1

SPECTRUM INTERACTIVE LIVE CLASSES

METHOD OF DIFFERENTIATION

22. If
$$y = \frac{a + bx^{3/2}}{x^{5/4}} & \frac{dy}{dx}$$
 vanishes when $x = 5$ then $\frac{a}{b} = \frac{a}{b}$

- (A) $\sqrt{3}$ (B) 2 (C) $\sqrt{5}$ (D) None of these

Sol.

- **23.** If $f(x) = f'(x) + f''(x) + f'''(x) + f'''(x) \dots \infty$ also f(0) = 1 and f(x) is a differentiable function indefinitely then f(x) has the value
- (A) e^x
- (B) e^{x/2}
- (C) e^{2x}
- (D) e^{4x}

Sol.

- **24.** If $y = \sin^{-1} \frac{2x}{1+x^2}$ then $\frac{dy}{dx}$

- (D) None of these

Sol.

- **25.** If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx} =$
- (A) $\frac{\sin x}{2y-1}$ (B) $\frac{\sin x}{1-2y}$ (C) $\frac{\cos x}{1-2y}$ (D) $\frac{\cos x}{2y-1}$

Sol.

26. If $y = e^{-x} \cos x$ and $y_4 + ky = 0$, where $y_4 = \frac{d^4y}{dx^4}$,

then k =

- (A) 4
- (C) 2

(B) -4

Sol.

- **27.** If y = a cos (In x) + b sin (In x), then $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx}$
- (A) 0(B) y Sol.
- (C) -y (D) None of these

28. If y = sin mx then the value of $\begin{vmatrix} y & y_1 & y_2 \\ y_3 & y_4 & y_5 \\ y_6 & y_7 & y_8 \end{vmatrix}$ (where

subscripts of y shows the order of derivative) is

- (A) independent of x but dependent on m
- (B) dependent of x but independent of m
- (C) dependent on both m & x
- (D) independent of m & x

Sol.

32. If $y = (1 + x) (1 + x^2) (1 + x^4) \dots (1 + x^{2n})$, then $\frac{dy}{dx}$ at x = 0 is (A) -1 (B) 1 (C) 0 (D) 2^n **Sol.**

29. If f is differentiable in (0, 6) & f'(4) = 5 then

$$\lim_{x\to 2} \frac{f(4) - f(x^2)}{2 - x} =$$
(A) 5 (B) 5/4 (C) 10 (D) 20
Sol.

30. Let $y = e^{2x}$. Then $\left(\frac{d^2y}{dx^2}\right) \left(\frac{d^2x}{dy^2}\right)$ is (A) 1 (B) e^{-2x} (C) $2e^{-2x}$ (D) $-2e^{-2x}$ **Sol.**

31. If g is the inverse function of f an $f'(x) = \frac{x^5}{1+x^4}$ If g(2) = a, then f'(2) is equal to

(A)
$$\frac{a^5}{1+a^4}$$
 (B) $\frac{1+a^4}{a^5}$ (C) $\frac{1+a^5}{a^4}$ (D) $\frac{a^4}{1+a^5}$

33. The derivative of $\sec^{-1}\left(\frac{1}{2x^2-1}\right)$ w.r.t. $\sqrt{1-x^2}$ at $x=\frac{1}{2}$ is

(A) 4 (B) 1/4 (C) 1 (D) None of these **Sol.**

34. Let
$$f(x) = \begin{vmatrix} \cos x & \sin x & \cos x \\ \cos 2x & \sin 2x & 2\cos 2x \\ \cos 3x & \sin 3x & 3\cos 3x \end{vmatrix}$$
 then $f'(\frac{\pi}{2}) =$
(A) 0 (B) 1 (C) 4 (D) None of these **Sol.**

EXERCISE - II

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

1. The differential coefficient of $\sin^{-1} \frac{t}{\sqrt{1+t^2}}$ w.r.t

 $\cos^{-1} \frac{1}{\sqrt{1+t^2}}$ is

- (A) $1 \forall t > 0$
- (B) $-1 \forall t < 0$
- (C) $1 \forall t \in R$
- (D) none of these

Sol.

2. If f(x) = |(x-4)(x-5)|, then f'(x) is (A) -2x + 9, for all $x \in R$ (B) 2x - 9 if x > 5(C) -2x + 9 if 4 < x < 5 (D) not defined for x = 4, 5

- **3.** If x^p . $y^q = (x + y)^{p+q}$ then
- (A) independent of p
- (B) independent of q
- (C) dependent on both p and q
- Sol.

4. The functions $u = e^x \sin x$; $v = e^x \cos x$ satisfy the

(A) $v \frac{du}{dx} - u \frac{dv}{dx} = u^2 + v^2$ (B) $\frac{d^2u}{dx^2} = 2 v$

(C) $\frac{d^2v}{dx^2} = -2 u$

(D) $\frac{du}{dx} + \frac{dv}{dx} = 2 v$

Sol.

- $= e^t$ where $t = \sin^{-1}$

- **6.** If $f_n(x) = e^{f_{n-1}(x)}$ for all $n \in N$ and $f_0(x) = x$, then
- $\frac{d}{dx} \{f_n(x)\}$ is equal to
- (A) $f_n(x)$. $\frac{d}{dx} \{f_{n-1}(x)\}$ (B) $f_n(x)$. $f_{n-1}(x)$
- (C) $f_n(x) \cdot f_{n-1}(x) \cdot \dots \cdot f_2(x) \cdot f_1(x)$ (D) none of these
- Sol.

7. If f is twice differentiable such that f''(x) = -f(x)and f'(x) = g(x). If h(x) is twice differentiable function such that $h'(x) = [f(x)]^2 + [g(x)]^2$. If h(0) = 2, h(1) = 4, then the equation y = h(x) represents

- (A) a curve of degree 2
- (B) a curve passing through the origin
- (C) a straight line with slope 2
- (D) a straight line with y intercept equal to 2. Sol.

8. If
$$f(x) = \begin{vmatrix} \cos(x+x^2) & \sin(x+x^2) & -\cos(x+x^2) \\ \sin(x-x^2) & \cos(x-x^2) & \sin(x-x^2) \\ \sin 2x & 0 & \sin 2x^2 \end{vmatrix}$$

then
(A) $f(-2) = 0$ (B) $f'(-1/2) = 0$
(C) $f'(-1) = 2$ (D) $f''(0) = 4$

9. If $f(x) = (ax + b) \sin x + (cx + d) \cos x$, then the values of a, b, c and d such that $f'(x) = x \cos x$ for all

(A)
$$a = d = 1$$
 (B) $b = 0$ (C) $c = 0$ (D) $b = c$

(C)
$$c = 0$$

(D)
$$b = c$$

10. y =
$$\cos^{-1} \sqrt{\frac{\sqrt{1+x^2}+1}{2\sqrt{1+x^2}}}$$
 then $\frac{dy}{dx}$ is

(A)
$$\frac{1}{2(1+x^2)}$$
, $x \in R$ (B) $\frac{1}{2(1+x^2)}$, $x > 0$

(B)
$$\frac{1}{2(1+x^2)}$$
, $x > 0$

(C)
$$\frac{-1}{2(1+x^2)}$$
, x < 0 (D) $\frac{1}{2(1+x^2)}$ < 0

(D)
$$\frac{1}{2(1+x^2)} < 0$$

11. Two functions f & g have first & second derivatives

at x = 0 satisfy the relations, $f(0) = \frac{2}{g(0)}$, f'(0) = 2g'(0) = 4g(0), g''(0) = 5 f''(0) = g(0) = 3 then

(A) if
$$h(x) = \frac{f(x)}{g(x)}$$
 then $h'(0) = \frac{15}{4}$

- (B) if k(x) = f(x). $g(x) \sin x$ then k'(0) = 2
- (D) None of these

Sol.

12. If
$$y = \tan^{-1} \left(\frac{\ln \frac{e}{x^2}}{\ln ex^2} \right) + \tan^{-1} \frac{3 + 2 \ln x}{1 - 6 \ln x}$$
 then

$$(A) \frac{dy}{dx} = 0$$

(B)
$$\frac{d^2y}{dx^2} = 0$$

(C)
$$\frac{dy}{dx} = \frac{2}{x(1 + \ln^2 x)}$$
 (D) $\frac{dy}{dx} = 1$

(D)
$$\frac{dy}{dx} = 1$$

EXERCISE - III

SUBJECTIVE QUESTIONS

1. Find the derivative of following functions with respect to x from the first principle (ab – initio method). (i) $f(x) = \sin x^2$ Sol.

Sol.

(v)
$$\tan \left(\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}} \right)$$

Sol.

(ii)
$$f(x) = e^{2x+3}$$

Sol.

3. If $f(x) = 2 \ln (x - 2) - x^2 + 4x + 1$, then find the solution set of the inequality $f'(x) \ge 0$.

2. Differentiate the following functions with respect to x.

(i)
$$x^{2/3} + 7e - \frac{5}{x} + 7 \tan x$$

Sol.

4. Find $\frac{dy}{dx}$ when x and y are connected by the fol-

lowing relations

(i)
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

(ii) x² . ln x. e³ Sol.

Sol.

(ii)
$$xy + xe^{-y} + y \cdot e^{x} = x^{2}$$

Sol.

5. Differentiate the given functions w.r.t.x.

(i) (/n x)^{cos x}

(iv)
$$\frac{\sin x - x \cos x}{x \sin x + \cos x}$$

(ii) xx - 2sinx

Sol.

(iii)
$$y = (x / n x)^{/n / n x}$$

Sol.

6. If P_n is the sum of GP upon n terms. Show that

$$(1-r) \frac{dP_n}{dr} = n \cdot P_{n-1} - (n-1) P_n.$$

Sol.

7. If $x = a t^3$ and $y = b t^2$, where t is a parameter, then prove that $\frac{d^3y}{dx^3} = \frac{8b}{27a^3.t^7}$

Sol.

8. Show that the substitution $z = \ln\left(\tan\frac{x}{2}\right)$ changes

the equation $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$ to $(d^2y/dz^2) + 4y = 0$.

Sol.

9. If $f(x) = x^n$ then find the value of

 $f(1) + \frac{f^1(1)}{1!} + \frac{f^2(1)}{2!} + \dots + \frac{f^n(1)}{n!}$ where f'(x) denotes

the r^{th} derivative of f(x) w.r.t. x

Sol.

10. If $\lim_{x\to 0} \frac{a\sin x - bx + cx^2 + x^3}{2x^2 \cdot \ln(1+x) - 2x^3 + x^4}$ exists and is finite,

find the values of a, b, c and the limit.

Sol.

11. If $\cos \frac{x}{2} . \cos \frac{x}{2^2} . \cos \frac{x}{2^3} ... \infty = \frac{\sin x}{x}$ then find

the value of $\frac{1}{2^2} \sec^2 \frac{x}{2} + \frac{1}{2^4} \sec^2 \frac{x}{2^2} + \frac{1}{2^6} \sec^2 + \frac{1}{2^6} \sec^2$

$$\frac{X}{2^3}$$
... ∞ .

Sol.

12. Show that the function y = f(x) defined by the parametric equations $x = e^t \sin t$, $y = e^t \cos t$ satisfies the relation $y''(x + y)^2 = 2(xy' - y)$.

Sol.

13. If $y = x \log \left(\frac{x}{a + bx}\right)$, then prove that x^3 $\frac{d^2y}{dx^2} = \left(x\frac{dy}{dx} - y\right)^2.$

14. If
$$y = (\cos x)^{\ln x} + (\ln x)^x \text{ find } \frac{dy}{dx}$$
.

Sol.

- **15.** Suppose $f(x) = \tan(\sin^{-1}(2x))$
- (a) Find the domain and range of f.

Sol.

- Express f(x) as an algebraic function of x. (b) Sol.
- Find f'(1/4). (c) Sol.

16. Let
$$f(x) = x + \frac{1}{2x + \frac{1}{2x + \frac{1}{2x + \dots \infty}}}$$
. Compute the

value of f(100) . f'(100).

17. Differentiate

Sol.

18. Find the derivative with respect to x of the function

$$(\log_{\cos x} \sin x) (\log_{\sin x} \cos x)^{-1} + \arcsin \frac{2x}{1+x^2} \text{ at } x = \frac{\pi}{4}$$

19. If
$$\sqrt{1-x^6} + \sqrt{1-y^6} = a^3 (x^3 - y^3)$$
, prove that
$$\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}.$$

$$\frac{dy}{dx} = \frac{x^2}{y^2} \sqrt{\frac{1-y^6}{1-x^6}}$$

Sol.

20. If
$$y = x + \frac{1}{x + \frac{1}{x + \frac{1}{x + \dots}}}$$
, prove that

$$\frac{dy}{dx} = \frac{1}{2 - \frac{x}{x + \frac{1}{x + \frac{1}{x + \dots}}}}$$

Sol.

21. If
$$y = tan^{-1} \frac{u}{\sqrt{1-u^2}} & x = sec^{-1} \frac{1}{2u^2-1}$$

$$u \in \left(0, \frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}, 1\right)$$
 prove that $2\frac{dy}{dx} + 1 = 0$.

Sol.

22. If
$$y = \cot^{-1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}$$
, find $\frac{dy}{dx}$

if
$$x \in \left(0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right)$$
.

Sol.

23. If
$$y = tan^{-1} \frac{x}{1 + \sqrt{1 - x^2}} + sin \left(2tan^{-1} \sqrt{\frac{1 - x}{1 + x}} \right)$$

then find $\frac{dy}{dx}$ for $x \in (-1, 1)$.

Sol.

24. (a) Let $f(x) = x^2 - 4x - 3$, x > 2 and let g be the inverse of f. Find the value of g' where f(x) = 2. **Sol.**

(b) Let f, g and h are differentiable functions. If f(0) = 1; g(0) = 2; h(0) = 3 and the derivatives of their pair wise products at x = 0 are (fg)'(0) = 6; (gh)'(0) = 4 and (hf)'(0) = 5 then compute the value of (fgh)'(0).

Sol.

25. If $x = 2 \cos t - \cos 2t \& y = 2 \sin t - \sin 2t$, find the

value of
$$\left(\frac{d^2y}{dx^2}\right)$$
 when $t = \left(\frac{\pi}{2}\right)$.

Sol.

26. If $f: R \to R$ is a function such that $f(x) = x^3 + x^2 f'(1) + xf''(2) + f'''(3)$ for all $x \in R$, then prove that f(2) = f(1) - f(0).

Sol.

27. If $y = x /n [(ax)^{-1} + a^{-1}]$, prove that

$$x (x + 1) \frac{d^2y}{dy^2} + x \frac{dy}{dy} = y - 1$$

Sol.

28. Let g(x) be a polynomial, of degree one & f(x) be

$$\mbox{defined by } f(x) = \begin{bmatrix} g(x), & x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{1/x}, & x > 0 \end{bmatrix}.$$
 Find the continuous function $f(x)$ sati

Find the continuous function f(x) satisfying f'(1) = f(-1)

Sol.

29. If
$$\sin y = x \sin (a + y)$$
, show that

$$\frac{dy}{dx} = \frac{\sin a}{1 - 2x \cos a + x^2}.$$

Sol.

30. If
$$y = \tan^{-1} \frac{1}{x^2 + x + 1} + \tan^{-1} \frac{1}{x^2 + 3x + 3} + \frac{1}{x^2 + 3x + 3}$$

$$\tan^{-1} \frac{1}{x^2 + 5x + 7} + \tan^{-1} \frac{1}{x^2 + 7x + 13} + \dots$$
 to n

terms. Find dy/dx, expressing your answer in 2 terms. Sol.

EXERCISE - IV

ADVANCED SUBJECTIVE QUESTIONS

1. Prove that

if $| a_1 \sin x + a_2 \sin 2x + + a_n \sin nx | \le | \sin x |$ for $x \in R$, then $| a_1 + 2a_2 + 3a_3 + ... + na_n | \le 1$

2. The function $f: R \to R$ satisfies $f(x^2) \cdot f'(x) = f'(x) \cdot f'(x^2)$ for all real x. Given that f(1) = 1 and f'''(1) = 8, compute the value of f'(1) + f''(1). **Sol.**

3. Let $y = x \sin kx$. Find the possible vale of k for which the differential equation $\frac{d^2y}{dx^2} + y = 2k \cos kx$ holds true for all $x \in R$.

4. Let $f(x) = \frac{\sin x}{x}$ if $x \ne 0$ and f(0) = 1. Define the function f'(x) for all x find f''(0) if it exist. **Sol.**

5. Show that the substitution $z = In \left(\tan \frac{x}{2} \right)$ changes the equation $\frac{d^2y}{dx^2} + \cot x \frac{dy}{dx} + 4y \csc^2 x = 0$ to $\frac{d^2y}{dz^2} + 4y = 0$.

- **6.** Prove that $\cos x + \cos 3x + \cos 5x + + \cos (2n-1) x$ $= \frac{\sin 2nx}{2\sin x}, x \neq K \pi, K \in I \text{ and deduce from this:}$ $\sin x + 3\sin 3x + 5\sin 5x + + (2n-1)\sin (2n-1) x$ $= \frac{[(2n+1)\sin(2n-1)x (2n-1)\sin(2n+1)x]}{4\sin^2 x}.$ **Sol.**
- **7.** Find a polynomial function f(x) such that f(2x) = f'(x) f''(x). **Sol.**

8. (i) Let $f(x) = \begin{bmatrix} xe^x & x \le 0 \\ x + x^2 - x^3 & x < 0 \end{bmatrix}$ then prove that (a) f is continuous and differentiable for all x. **Sol.**

Page # 31

(b) f' is continuous and differentiable for all x. Sol.

(ii) $f:[0,1] \rightarrow R$ is defined as

$$f(x) = \begin{bmatrix} x^3(1-x)\sin\left(\frac{1}{x^2}\right) & \text{if} & 0 < x \le 1 \\ 0 & \text{if} & x = 0 \end{bmatrix}, \text{ then prove that}$$

- (a) f is differentiable in [0, 1] **Sol.**
- **(b)** f is bounded in [0, 1] **Sol.**
- **(c)** f is bounded in [0, 1] **Sol.**
- **9.** Let f(x) be a derivable function at x = 0 & $f\left(\frac{x+y}{k}\right) = \frac{f(x)+f(y)}{k}$ ($k \in \mathbb{R}$, $k \ne 0$, 2). Show that f(x) is either a zero or an odd linear function. **Sol.**
- **10.** Let $\frac{f(x)-f(y)}{2}=\frac{f(y)-a}{2}+xy$ for all real x and y. If f(x) is differentiable and f'(0) exists for all real permissible values of 'a' and is equal to $\sqrt{5a-1-a^2}$. Prove that f(x) is positive for all real x. **Sol.**

11. If
$$f(x) = \begin{vmatrix} (x-a)^4 & (x-a)^3 & 1 \\ (x-b)^4 & (x-b)^3 & 1 \\ (x-c)^4 & (x-c)^3 & 1 \end{vmatrix}$$
 then
$$f'(x) = \lambda \cdot \begin{vmatrix} (x-a)^4 & (x-a)^2 & 1 \\ (x-b)^4 & (x-b)^2 & 1 \\ (x-c)^4 & (x-c)^2 & 1 \end{vmatrix}$$
. Find the value of λ .

13.
$$\lim_{x \to 0} \left[\frac{1}{x \sin^{-1} x} - \frac{1 - x^2}{x^2} \right]$$
Sol.

14.
$$\lim_{x\to 0} \frac{x\cos x - \ln(1+x)}{x^2}$$
Sol.

15. If
$$\lim_{x\to a} \frac{a^x - x^a}{x^x - a^a}$$
 find 'a'.

Sol.

16.
$$\lim_{x\to 0} \frac{1+\sin x -\cos x + \ln(1-x)}{x \cdot \tan^2 x}$$

Sol.

17. Determine the values of a, b and c so that

$$\underset{x\to 0}{\text{Lim}}\frac{(a+b\cos x)x-c\sin x}{x^5} \ = \ 1.$$

Sol.

18.
$$\lim_{x \to \frac{\pi}{2}} \frac{\sin x - (\sin x)^{\sin x}}{1 - \sin x + \ln(\sin x)}$$

Sol.

19.
$$\lim_{x\to 0} \frac{3x \ln\left(\frac{\sin x}{x}\right)^2 + x^3}{(x - \sin x)(1 - \cos x)}$$

Sol.

20. Find the value of f(0) so that the function

$$f(x) = \frac{1}{x} - \frac{2}{e^{2x} - 1}, x \neq 0 \text{ is continuous at } x = 0 \&$$
examine the differentiability of $f(x)$ at $x = 0$.

Sol.

21. If $\lim_{x\to 0}\frac{a\sin x-bx+cx^2+x^3}{2x^2.\ln(1+x)-2x^3+x^4}$ exists & is finite, find the vales of a, b, c & the limit. **Sol.**

23. If $\lim_{x\to 0}\frac{1-\cos x.\cos 2x.\cos 3x.....\cos nx}{x^2}$ has the value equal to 253, find the value of n (where $n\in N$) **Sol.**

Sol.

EXERCISE - V

JEE PROBLEMS

1. If $f(x) = \frac{x^2 - x}{x^2 + 2x}$, then find the domain and the range of f. Show that f is one-one. Also find the function $\frac{df^{-1}(x)}{dx}$ and its domain. **[REE 99,6] Sol.**

4. (a) If y = y(x) and it follows the relation $x \cos y + y \cos x = \pi$, then y''(0) [**JEE 2005 (Scr.)**] (A) 1 (B) -1 (C) π (D) $-\pi$ **Sol.**

- **2. (a)** If $x^2 + y^2 = 1$ then **[JEE 2000 (Scr.), 1]** (A) $yy'' 2(y')^2 + 1 = 0$ (B) $yy'' + (y')^2 + 1 = 0$ (C) $yy'' (y')^2 1 = 0$ (D) $yy'' + 2(y')^2 + 1 = 0$ **Sol.**
- (b) If P(x) is a polynomial of degree less than or equal to 2 and S is the set of all such polynomials so that P(1) = 1, P(0) = 0 and P'(x) > 0 \forall x \in [0, 1], then (A) S = ϕ (B) S = {(1 a)x² + ax, 0 < a < 2} (C) (1 a)x² + ax, a \in (0, ∞) (D) S = {(1 a)x² + ax, 0 < a < 1} **Sol.**
- **(b)** Suppose $p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$. If $|p(x)| \le |e^{x-1} 1|$ for all $x \ge 0$ prove that $|a_1 + 2 a_2 + \dots + n a_n| \le 1$. [**JEE 2000 (Mains), 5] Sol.**
- (c) If f(x) is a continuous and differentiable function and $f(1/n)=0, \ \forall \ n\geq 1$ and $n\in I$, then (A) $f(x)=0, x\in (0,1]$ (B) f(0)=0, f'(0)=0 (C) $f'(x)=0=f''(x), x\in (0,1]$ (D) f(0)=0 and f'(0) need not to be zero **Sol.**

3. (a) If ln(x + y) = 2xy, then y'(0) =[**JEE 2004 (Scr.)**] (A) 1 (B) -1 (C) 2 (D) 0 **Sol.**

(b)
$$f(x) = \begin{cases} b \sin^{-1}\left(\frac{x+c}{2}\right), & -\frac{1}{2} < x < 0 \\ \frac{1}{2} & \text{at } x = 0 \\ \frac{e^{ax/2} - 1}{x}, & 0 < x < \frac{1}{2} \end{cases}$$
 [JEE 2004, 4]

If f(x) is differentiable at x = 0 and |c| < 1/2 then find the value of 'a' and prove that $64b^2 = 4 - c^2$.

(d) If $f(x - y) = f(x) \cdot g(y) - f(y) \cdot g(x)$ and $g(x - y) = g(x) \cdot g(y) + f(x) \cdot f(y)$ for all $x, y \in R$. If right hand derivative at x = 0 exists for f(x). Find derivative of g(x) and x = 0. [JEE 2005 (Mains), 4] Sol.

5. For x > 0, $\lim_{x \to 0} \left((\sin x)^{1/x} + (1/x)^{\sin x} \right)$ is [**JEE 2006, 3**] (A) 0 (C) 1 (B) -1(D) 2 Sol.

6. $\frac{d^2x}{dv^2}$ equals

[JEE 2007, 3]

- (A) $\left(\frac{d^2y}{dx^2}\right)^{-1}$ (B) $-\left(\frac{d^2y}{dx^2}\right)^{-1} \left(\frac{dy}{dx}\right)^{-3}$
- (C) $\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-2}$ (D) $-\left(\frac{d^2y}{dx^2}\right) \left(\frac{dy}{dx}\right)^{-3}$

7. (a) Let g(x) = ln f(x) where f(x) is a twice differentiable positive function on $(0, \infty)$ such that f(x + 1) = x f(x). Then for N = 1, 2, 3;

$$g''\!\!\left(N+\frac{1}{2}\right)-g''\!\!\left(\frac{1}{2}\right)=$$

[JEE 2008, 3 + 3]

- (A) -4 $\left\{1+\frac{1}{9}+\frac{1}{25}+\dots\right\}$

Sol.

(b) Let f and g be real valued functions defined on interval (-1, 1) such that g''(x) is continuous, $g(0) \neq 0$, g'(0) = 0, $g''(0) \neq 0$, and $f(x) = g(x) \sin x$.

Statement-1: $\lim_{x\to 0} [g(x) \cot x - g(0) \csc x] = f''(0)$.

Statement-2: f'(0) = g(0).

- (A) Statement (1) is correct and statement (2) is correct and statement (2) is correct explanation for (1)
- (B) Statement (1) is correct and statement (2) is correct and statement (2) is NOT correct explanation for (1)
- (C) Statement (1) is true but (2) is false
- (D) Statement (1) is false but (2) is true Sol.

and $g(x) = f^{-1}(x)$, **8.** If the function f(x)then the value of g'(1) is [JEE 2009]

 $\frac{\sin \theta}{\sqrt{\cos 2\theta}}$), where $-\frac{\pi}{4} < \theta < \frac{\pi}{4}$. **9.** Let $f(\theta) = \sin \theta$ tan

Then the value of $\frac{d}{d(\tan \theta)}$ (f(θ)) is [JEE 2011] Sol.

10. Let y'(x) + y(x)g'(x) = g(x)g'(x), y(0) = 0, $x \in R$, where f'(x) denotes $\frac{d f(x)}{dx}$ and g(x) is a given non-constant differentiable function on R with g(0) = g(2) = 0. Then the value of y(2) is **[JEE 2011]** Šòl.