

Lecture 10: Minimum Spanning Tree Algorithms

Yao-Chung Fan yfan@nchu.edu.tw

- Introduction
- edge-weighted graph API
- Greedy Strategy
- Kruskal's algorithm
- Prim's algorithm
- **context**

Weighted edge API

Edge abstraction needed for weighted edges.

public class Edge implements Comparable< Edge			
	Edge(int v, int w, double weight)	create a weighted edge v-w	
int	either()	either endpoint	
int	other(int v)	the endpoint that's not v	
int	compareTo(Edge that)	compare this edge to that edge	
double	weight()	the weight	
String	toString()	string representation	

Idiom for processing an edge e: int v = e.either(), w = e.other(v);

Weighted edge: Java implementation

```
public class Edge implements Comparable<Edge>
  private final int v, w;
  private final double weight;
 public Edge(int v, int w, double weight)
   this.v = v;
    this.w = w;
                                                                                                    constructor
   this.weight = weight;
 public int either()
 { return v; }
                                                                                                    either endpoint
 public int other(int vertex)
    if (vertex == v) return w;
                                                                                                    other endpoint
    else return v;
 public int compareTo(Edge that)
         (this.weight < that.weight) return -1;
                                                                                                    compare edges by weight
    else if (this.weight > that.weight) return +1;
                              return 0;
    else
```

Edge-weighted graph API

public class EdgeWeightedGraph				
	EdgeWeightedGraph(int V)	create an empty graph with V vertices		
	EdgeWeightedGraph(In in)	create a graph from input stream		
void	addEdge(Edge e)	add weighted edge e to this graph		
Iterable <edge></edge>	adj(int v)	edges incident to v		
Iterable <edge></edge>	edges()	all edges in this graph		
int	V()	number of vertices		
int	E()	number of edges		
String	toString()	string representation		

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

```
public class EdgeWeightedGraph
 private final int V;
 private final Bag<Edge>[] adj;
                                                                                   same as Graph, but adjacency lists of Edges
                                                                                   instead of integers
  public EdgeWeightedGraph(int V)
   this.V = V;
                                                                                   constructor
   adj = (Bag<Edge>[]) new Bag[V];
   for (int v = 0; v < V; v++)
      adj[v] = new Bag<Edge>();
 public void addEdge(Edge e)
   int v = e.either(), w = e.other(v);
                                                                                   add edge to both adjacency lists
   adj[v].add(e);
   adj[w].add(e);
 public Iterable<Edge> adj(int v)
 { return adj[v]; }
```

- Connected.
- Acyclic.
- Includes all of the vertices.

graph G

- Connected.
- Acyclic.
- Includes all of the vertices.

not connected

- Connected.
- Acyclic.
- Includes all of the vertices.

not acyclic

- Connected.
- Acyclic.
- Includes all of the vertices.

not spanning

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights.

edge-weighted graph G

Minimum spanning tree problem

Input. Connected, undirected graph G with positive edge weights. Output. A min weight spanning tree.

minimum spanning tree T
(weight =
$$50 = 4 + 6 + 8 + 5 + 11 + 9 + 7$$
)

Brute force. Try all spanning trees?

Q. How to represent the MST?

public class MST				
	MST(EdgeWeightedGraph G)	constructor		
Iterable <edge></edge>	edges()	edges in MST		
double	weight()	weight of MST		

Q. How to represent the MST?

```
public static void main(String[] args)
{
    In in = new In(args[0]);
    EdgeWeightedGraph G = new EdgeWeightedGraph(in);
    MST mst = new MST(G);
    for (Edge e : mst.edges())
        StdOut.println(e);
    StdOut.printf("%.2f\n", mst.weight());
}
```

```
% java MST tinyEWG.txt
0-7 0.16
1-7 0.19
0-2 0.26
2-3 0.17
5-7 0.28
4-5 0.35
6-2 0.40
1.81
```


Kruskal's algorithm

Prim's algorithm

Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle. $\frac{1}{\text{graph edges}}$ sorted by weight

an edge-weighted graph

	\
0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

does not create a cycle

in MST \longrightarrow 0-7 0.16

Consider edges in ascending order of weight.

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

a minimum spanning tree

0-7 0.16 2-3 0.17 0.19 1-7 0-2 0.26 5-7 0.28 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 0.58 $6-4 \quad 0.93$

Kruskal's algorithm: visualization

Kruskal's algorithm: correctness proof

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Kruskal's algorithm is a special case of the greedy MST algorithm.

- Suppose Kruskal's algorithm colors the edge e = v w black.
- Cut = set of vertices connected to v in tree T.
- No crossing edge is black (by the algorithm).
- No crossing edge has lower weight. Why?

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

How difficult?

- \bullet E+V
- V -

run DFS from v, check if w is reachable (T has at most V - 1 edges)

- log *V*
- $\log^* V$ use the union-find data structure !
- 1

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge v—w to tree T create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If v and w are in same set, then adding v—w would create a cycle.
- To add v—w to T, merge sets containing v and w.

Case 1: adding v-w creates a cycle

Case 2: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

```
public class KruskalMST
{
   private Queue<Edge> mst = new Queue<Edge>();
   public KruskalMST(EdgeWeightedGraph G)
                                                                      build priority queue
                                                                      (or sort)
   {
      MinPQ<Edge> pq = new MinPQ<Edge>(G.edges());
      UF uf = new UF(G.V());
      while (!pq.isEmpty() && mst.size() < G.V()-1)
          Edge e = pq.delMin();
                                                                      greedily add edges to MST
          int v = e.either(), w = e.other(v);
          if (!uf.connected(v, w))
                                                                      edge v-w does not create cycle
             uf.union(v, w);
                                                                      merge sets
             mst.enqueue(e);
                                                                      add edge to MST
   public Iterable<Edge> edges()
      return mst; }
```

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to $E \log E$ (in the worst case).

Pf.

operation	frequency	time per op
build pq	1	E
delete-min	E	$\log E$
union	V	log* V†
connected	E	log* V†

[†] amortized bound using weighted quick union with path compression

- edge-weighted graph APK
- Kruskal's algorithm
- Prim's algorithm

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

6-4 0.93

0.58

0.93

6-0

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 0.16 0.17 0.19 1-7 0.26 0-2 5 0.28 0.29 0.32 0.34 2-7 0.35 0 0.36 1-2 0.37 4-7 0.38 0-4 6-2 0.40 0.52 3-6 0.58 6-0 **MST** edges 6-4 0.93 0-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 0.16 0.17 0.19 1-7 0.26 0-2 0.28 5 0.29 0.32 0.34 2-7 0.35 0 0.36 1-2 0.37 4-7 0.38 0 - 46-2 0.40 0.52 3-6 0.58 6-0 **MST** edges 6-4 0.93 0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 0.16 0.17 0.19 1-7 0.26 0-2 0.28 5 0.29 0.32 0.34 2-7 0.35 0 0.36 1-2 0.37 4-7 0.38 0 - 46-2 0.40 0.52 3-6 0.58 6-0 **MST** edges 6-4 0.93 0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 0.16 0.17 0.19 1-7 0.26 0-2 0.28 5 0.29 0.32 0.34 2-7 0.35 0 0.36 1-2 0.37 4-7 0.38 0 - 46-2 0.40 0.52 3-6 0.58 6-0 **MST** edges 6-4 0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 0.16 0.17 0.19 1-7 0.26 0-2 5 0.28 0.29 0.32 0.34 2-7 0.35 0 0.36 1-2 0.37 4-7 0.38 0 - 46-2 0.40 0.52 3-6 0.58 6-0 **MST** edges 6-4 0.93 0-7 1-7 0-2 2-3 5-7

55

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

Prim's algorithm: implementation challenge

Challenge. Find the min weight edge with exactly one endpoint in *T*.

How difficult?

- ullet try all edges
- ElogE
- $\log^* E$
- 1

Challenge. Find the min weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

- Key = edge; priority = weight of edge.
- Delete-min to determine next edge e = v w to add to T.
- Disregard if both endpoints v and w are marked (both in T).
- Otherwise, let w be the unmarked vertex (not in T):
- add to PQ any edge incident to w (assuming other endpoint not in T)
- add e to T and mark w


```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
         pq = new MinPQ<Edge>();
         mst = new Queue<Edge>();
         marked = new boolean[G.V()];
         visit(G, 0);
                                                                      assume G is connected
         while (!pq.isEmpty() && mst.size() < G.V() - 1)
                                                                      repeatedly delete the
                                                                      min weight edge e = v-w from PQ
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
                                                                      ignore if both endpoints in T
            if (marked[v] && marked[w]) continue;
                                                                      add edge e to tree
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
                                                                      add v or w to tree
            if (!marked[w]) visit(G, w);
```

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 0

edges on PQ (sorted by weight)

- * 0-7 0.16
- * 0-2 0.26
- * 0-4 0.38
- ***** 6-0 0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 0-7 and add to MST

edges on PQ (sorted by weight)

0-7 0.16

0-2 0.26

0-4 0.38

6-0 0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

0-2 0.26

0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 7

edges on PQ (sorted by weight)

***** 1-7 0.19

0-2 0.26

***** 5-7 0.28

***** 2-7 0.34

***** 4-7 0.37

0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-7 and add to MST

edges on PQ (sorted by weight)

1-7 0.19 0-2 0.26 5-7 0.28 2-7 0.34 4-7 0.37 0-4 0.38

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

2-7 0.34

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 1

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

***** 1-3 0.29

***** 1-5 0.32

2-7 0.34

***** 1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete edge 0-2 and add to MST

edges on PQ (sorted by weight)

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-0 0.58

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.

no need to add edge 1-2 or 2-7

• Repeat until V-1 edges.

add to PQ all edges incident to 2

because it's already obsolete

7

0

6

edges on PQ (sorted by weight)

*	2-3	0.17
	5-7	0.28
	1-3	0.29
	1-5	0.32
	2-7	0.34
	1-2	0.36
	4-7	0.37
	0-4	0.38
*	6-2	0.40
	6-0	0.58

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 2-3 and add to MST

MST edges

0-7 1-7 0-2

edges on PQ (sorted by weight)

* 2-3	0.17
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
1-2	0.36
4-7	0.37
0-4	0.38
* 6-2	0.40
6-0	0.58

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

5-7 0.28

 $1-3 \quad 0.29$

1-5 0.32

2-7 0.34

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

6-0 0.58

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 3

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

г 7	0.28
5-7	0.20

$$1-3$$
 0.29

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 5-7 and add to MST

MST edges

0-7 1-7 0-2 2-3

edges on PQ (sorted by weight)

F 7	0.28
5-7	0.20

$$1-3 \quad 0.29$$

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

1-3	0.29
1-5	0.32
2-7	0.34
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 5

MST edges

0-7 1-7 0-2 2-3 5-7

edges on PQ (sorted by weight)

1_	3	\cap	7	C
_)	U .		Ū

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-3 and discard obsolete edge

MST edges

0-7 1-7 0-2 2-3 5-7

edges on PQ (sorted by weight)

-	1	3	\cap	70
			U	40

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-5 and discard obsolete edge

edges on PQ (sorted by weight)

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 2-7 and discard obsolete edge

edges on PQ (sorted by weight)

2-7 0.34 4-5 0.35 1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40

6-0 0.58

3-6 0.52

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 4-5 and add to MST

edges on PQ (sorted by weight)

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

add to PQ all edges incident to 4

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 * 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)

1-2 0.36 4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)

4-7 0.37 0-4 0.38 6-2 0.40 3-6 0.52 6-0 0.58 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 0-4 and discard obsolete edge

edges on PQ (sorted by weight)

0-4 0.38 6-2 0.40 3-6 0.52

6-0 0.58 6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

delete 6-2 and add to MST

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

stop since V-1 edges

edges on PQ (sorted by weight)

3-6 0.52

6-0 0.58

 $6-4 \quad 0.93$

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

```
public class LazyPrimMST
   private boolean[] marked; // MST vertices
   private Queue<Edge> mst; // MST edges
   private MinPQ<Edge> pq; // PQ of edges
    public LazyPrimMST(WeightedGraph G)
         pq = new MinPQ<Edge>();
         mst = new Queue<Edge>();
         marked = new boolean[G.V()];
         visit(G, 0);
                                                                      assume G is connected
         while (!pq.isEmpty() && mst.size() < G.V() - 1)
                                                                      repeatedly delete the
                                                                      min weight edge e = v-w from PQ
            Edge e = pq.delMin();
            int v = e.either(), w = e.other(v);
                                                                      ignore if both endpoints in T
            if (marked[v] && marked[w]) continue;
                                                                      add edge e to tree
            mst.enqueue(e);
            if (!marked[v]) visit(G, v);
                                                                      add v or w to tree
            if (!marked[w]) visit(G, w);
```

```
private void visit(WeightedGraph G, int v)
{
    marked[v] = true;
    for (Edge e : G.adj(v))
        if (!marked[e.other(v)])
            pq.insert(e);
}

public Iterable<Edge> mst()
{ return mst; }
```

Prim's algorithm: visualization

Lazy Prim's algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E (in the worst case).

Pf.

operation	frequency	binary heap
delete min	E	$\log E$
insert	E	$\log E$

Challenge. Find min weight edge with exactly one endpoint in *T*.

Observation. For each vertex v, need only shortest edge connecting v to T.

MST includes at most one edge connecting v to T. Why?

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

an edge-weighted graph

0-7	0.16
2-3	0.17
1-7	0.19
0-2	0.26
5-7	0.28
1-3	0.29
1-5	0.32
2-7	0.34
4-5	0.35
1-2	0.36
4-7	0.37
0-4	0.38
6-2	0.40
3-6	0.52
6-0	0.58
6-4	0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

6-4 0.93

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0.58

0.93

6-0

6-4

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

•

	V	edgeTo[]	distTo[]
	0	-	_
$\overline{3}$	7	0-7	0.16
5	1	1-7	0.19
	2	0-2	0.26
	3	2-3	0.17
	5	5-7	0.28
\longrightarrow	4	4-5	0.35
4	6	6–2	0.40

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

•

	V	edgeTo[]	distTo[]
	0	-	_
$\overline{3}$	7	0-7	0.16
5	1	1-7	0.19
	2	0-2	0.26
	3	2-3	0.17
	5	5-7	0.28
$\begin{array}{c} 0 \\ \end{array}$. 4	4–5	0.35
4	6	6–2	0.40

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

Start with vertex 0 and greedily grow tree T.

0-7 1-7 0-2 2-3 5-7 4-5

- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

edgeTo[] distTo[] 0 - 70.16 1 - 70.19 0.26 0-20.17 2 - 35 - 70.28 4-5 0.35 6 6-2 0.40 already a better connection to 6 (discard) **MST** edges

- Start with vertex 0 and greedily grow tree *T*.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

•

	V	edgeTo[]	distTo[]
	0	-	_
$\overline{3}$	7	0-7	0.16
5	1	1-7	0.19
	2	0-2	0.26
	3	2-3	0.17
	5	5-7	0.28
	4	4-5	0.35
$\begin{array}{c} \\ \\ \\ \\ \end{array}$	6	6–2	0.40

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

(D	
`	_	

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V-1 edges.

V	edgeTo[]	distTo[]
0	-	_
7	0-7	0.16
1	1-7	0.19
2	0-2	0.26
3	2–3	0.17
5	5-7	0.28
4	4-5	0.35
6	6–2	0.40

MST edges

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Challenge. Find min weight edge with exactly one endpoint in *T*.

pq has at most one entry per vertex

Eager solution. Maintain a PQ of vertices connected by an edge to T, where priority of vertex v = weight of shortest edge connecting v to T.

- Delete min vertex v and add its associated edge e = v w to T.
- Update PQ by considering all edges e = v x incident to v
- ignore if x is already in T
- add x to PQ if not already on it
- decrease priority of x if v-x becomes shortest edge connecting x to T


```
public class PrimMST
  private Edge[] edgeTo;  // shortest edge from tree vertex
  private IndexMinPQ<Double> pq: // eligible crossing edges
  public PrimMST(EdgeWeightedGraph G)
     edgeTo = new Edge[G.V()];
     distTo = new double[G.V()];
     marked = new boolean[G.V()];
     for (int v = 0; v < G.V(); v++)
        distTo[v] = Double.POSITIVE_INFINITY;
     pq = new IndexMinPQ<Double>(G.V());
     distTo[0] = 0.0;
     pq.insert(0, 0.0);
                                 // Initialize pg with 0, weight 0.
     while (!pq.isEmpty())
        visit(G, pq.delMin()); // Add closest vertex to tree.
  }
  private void visit(EdgeWeightedGraph G, int v)
  { // Add v to tree; update data structures.
     marked[v] = true;
     for (Edge e : G.adj(v))
        int w = e.other(v);
        if (marked[w]) continue;
                                 // v-w is ineligible.
        if (e.weight() < distTo[w])</pre>
        { // Edge e is new best connection from tree to w.
           edgeTo[w] = e;
           distTo[w] = e.weight();
           if (pq.contains(w)) pq.change(w, distTo[w]);
                             pq.insert(w, distTo[w]);
           else
     }
  }
  public Iterable<Edge> edges() // See Exercise 4.3.21.
  public double weight()
                        // See Exercise 4.3.31.
```

Eager Version's Prim's algorithm

The eager version of Prim's algorithm uses extra space proportional to V and time proportional to E log V (in the worst case) to compute the MST of a connected edge- weighted graph with E edges and V vertices.

lazy Prim	E	$E \log E$
eager Prim	V	$E \log V$
Kruskal	E	$E \log E$