

Theory of Programming Languages

Describing Syntax and Semantics

Sajid Anwer

Department of Computer Science, FAST-NUCES, CFD Campus

Introduction

- Syntax: the form or structure of the expressions, statements, and program units
- Semantics: the meaning of the expressions, statements, and program units
- Syntax and semantics provide a language's definition
 - » Users of a language definition
 - Other language designers
 - Implementers
 - Programmers (the users of the language)

Describing Syntax: Fundamentals

- A sentence is a string of characters over some alphabet
- A language is a set of sentences
- A lexeme is the lowest level syntactic unit of a language (e.g., *, sum, begin)
- A token is a category of lexemes (e.g., identifier)

Describing Syntax: Fundamentals

Recognizers

- » A recognition device reads input strings over the alphabet of the language and decides whether the input strings belong to the language
- » Example: syntax analysis part of a compiler

Generators

- » A device that generates sentences of a language
- » One can determine if the syntax of a particular sentence is syntactically correct by comparing it to the structure of the generator

BNF and Context-Free Grammars

Context-Free Grammars

- » Developed by Noam Chomsky in the mid-1950s
- » Language generators, meant to describe the syntax of natural languages
- » Define a class of languages called context-free languages
- Backus-Naur Form (1959)
 - » Invented by John Backus to describe the syntax of Algol 58
 - » BNF is equivalent to context-free grammars

BNF and Context-Free Grammars

BNF Fundamentals

- In BNF, abstractions are used to represent classes of syntactic structures
 - » nonterminal
 - » terminals
- Terminals are lexemes or tokens
- A statement is BNF is called production rule and it has a:
 - » left-hand side (LHS), which is a nonterminal,
 - » A right-hand side (RHS), which is a string of terminals and/or nonterminals.

BNF Fundamentals (continued)

- Nonterminals are often enclosed in angle brackets
 - » Examples of BNF rules:

```
<ident_list> \rightarrow identifier | identifier, <ident_list> <if_stmt> \rightarrow if <logic_expr> then <stmt>
```

- Grammar: a finite non-empty set of rules
- A start symbol is a special element of the nonterminals of a grammar

An Example Grammar

Generate a=b;

An Example Derivation

Derivations

- Every string of symbols in a derivation is a sentential form
- A sentence is a sentential form that has only terminal symbols
- A leftmost derivation is one in which the leftmost nonterminal in each sentential form is the one that is expanded
- A derivation may be neither leftmost nor rightmost

Parse Tree

A hierarchical representation of a derivation

An Ambiguous Expression Grammar

 A grammar is ambiguous if and only if it generates a sentential form that has two or more distinct parse trees

An Unambiguous Expression Grammar

 If we use the parse tree to indicate precedence levels of the operators, we cannot have ambiguity

```
<expr> → <expr> - <term> | <term>
<term> → <term> / const| const
```


Associativity of Operators

Operator associativity can also be indicated by a grammar

```
<expr> -> <expr> + <expr> | const (ambiguous)
<expr> -> <expr> + const | const (unambiguous)
```


Extended BNF

Optional parts are placed in brackets []

 Alternative parts of RHSs are placed inside parentheses and separated via vertical bars

```
\langle \text{term} \rangle \rightarrow \langle \text{term} \rangle (+|-) \text{ const}
```

Repetitions (0 or more) are placed inside braces { }

```
<ident> → letter {letter|digit}
```


BNF and **EBNF**

BNF

EBNF

```
\langle expr \rangle \rightarrow \langle term \rangle \{ (+ | -) \langle term \rangle \}
\langle term \rangle \rightarrow \langle factor \rangle \{ (* | /) \langle factor \rangle \}
```


Semantics

- There is no single widely acceptable notation or formalism for describing semantics
- Several needs for a methodology and notation for semantics:
 - » Programmers need to know what statements mean
 - » Compiler writers must know exactly what language constructs do
 - » Correctness proofs would be possible
 - » Compiler generators would be possible
 - » Designers could <u>detect</u> ambiguities and inconsistencies

Operational Semantics

- Operational Semantics
 - » Describe the meaning of a program by executing its statements on a machine, either simulated or actual. The change in the state of the machine (memory, registers, etc.) defines the meaning of the statement
- A hardware pure interpreter would be too expensive
- A software pure interpreter also has problems
 - » The detailed characteristics of the particular computer would make actions difficult to understand
 - » Such a semantic definition would be machine- dependent
- To use operational semantics for a high-level language, a virtual machine is needed.

Operational Semantics (continued)

- A better alternative: A complete computer simulation
- The process:
 - » Build a translator (translates source code to the machine code of an idealized computer)
 - » Build a simulator for the idealized computer

Denotational Semantics

- Based on recursive function theory
- The most abstract semantics description method
- Originally developed by Scott and Strachey (1970)
- The process of building a denotational specification for a language:
 - » Define a mathematical object for each language entity
 - » Define a function that maps instances of the language entities onto instances of the corresponding mathematical objects
- The meaning of language constructs are defined by only the values of the program's variables
- Denotational vs operational semantics?

Denotational Semantics

```
M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,0}\,{}^{\,\prime}\,) = 0 M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,1}\,{}^{\,\prime}\,) = 1 M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,\rm bin\_num}\!>\,{}^{\,\prime}\,{}^{\,0}\,{}^{\,\prime}\,) = 2 * M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,\rm bin\_num}\!>\,) M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,\rm bin\_num}\!>\,{}^{\,\prime}\,{}^{\,\prime}\,) = 2 * M_{\rm bin}\,(\,{}^{\,\prime}\,{}^{\,\rm bin\_num}\!>\,) + 1
```


Decimal Numbers

```
<dec num> \rightarrow '0' | '1' | '2' | '3' | '4' | '5' |
                '6' | '7' | '8' | '9'
                <dec num> ('0' | '1' | '2' | '3' |
                             '4' | '5' | '6' | '7' |
                             181 | 191)
M_{dec}('0') = 0, M_{dec}('1') = 1, ..., M_{dec}('9') = 9
M_{dec} (<dec num> '0') = 10 * M_{dec} (<dec num>)
M_{dec} (<dec num> '1') = 10 * M_{dec} (<dec num>) + 1
• • •
M_{dec} (<dec_num> '9') = 10 * M_{dec} (<dec_num>) + 9
```


Axiomatic Semantics

- Based on formal logic (predicate calculus)
- Original purpose: formal program verification
- Axioms or inference rules are defined for each statement type in the language (to allow transformations of logic expressions into more formal logic expressions)
- The logic expressions are called assertions

Axiomatic Semantics (continued)

- An assertion before a statement (a precondition) states the relationships and constraints among variables that are true at that point in execution
- An assertion following a statement is a postcondition
- A weakest precondition is the least restrictive precondition that will guarantee the postcondition
- Pre-, post form: {P} statement {Q}
- An example
 - a = b + 1 {a > 1}
 - » One possible precondition: {b > 10}
 - » Weakest precondition: {b > 0}

Program Proof Process

- The postcondition for the entire program is the desired result
 - » Work back through the program to the first statement. If the precondition on the first statement is the same as the program specification, the program is correct.

Axiomatic Semantics: Assignment

- An axiom for assignment statements $(x = E): \{Q_{x->E}\} \ x = E \ \{Q\}$
- The Rule of Consequence:

$$\frac{\{P\} S \{Q\}, P' \Rightarrow P, Q \Rightarrow Q'}{\{P'\} S \{Q'\}}$$

Evaluation of Axiomatic Semantics

- Developing axioms or inference rules for all of the statements in a language is difficult
- It is a good tool for correctness proofs, and an excellent framework for reasoning about programs, but it is not as useful for language users and compiler writers
- Its usefulness in describing the meaning of a programming language is limited for language users or compiler writers