PATENT ABSTRACTS OF JAPAN

(11) Publication number :

2001-235758

(43) Date of publication of application: 31.08.2001

(51) Int. CI.

G02F 1/1339 G02F 1/1368

G09F 9/00

(21) Application number: 2000-

(71) Applicant: FUJITSU LTD

045591

(22) Date of filing:

23.02.2000 (72) Inventor: SHINODA KATSUKI

(54) LIQUID CRYSTAL DISPLAY PANEL AND ITS MANUFACTURING METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To enhance the display quality of a liquid crystal display device by eliminating the problem that when a liquid crystal is injected into a liquid crystal display panel, then an opening part for injecting the liquid crystal is sealed, a sealing material enters to a liquid crystal display region to generate display defects. SOLUTION: A metal film 9 is provided between the liquid crystal display region 8 and the opening part 3 for injecting the liquid crystal on at least one substrate of two substrates opposed to each other of the liquid crystal display panel 10.

本先明の党的確全の発品を示された中心が

(19) B本图特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2001-235758

(P2001 – 235758A)

(43)公開日 平成13年8月31日(2001.8.31)

(51) Int.Cl. ⁷		識別記号	ΡI			テーマコード(参考)
G02F	1/1339	505	G 0 2 F	1/1339	505	2H089
	1/1368		G09F	9/00	338	2H092
G09F	9/00	3 3 8	G02F	1/136	500	5 G 4 3 5

審査請求 未請求 請求項の数3 〇L (全 5 頁)

(21)出願番号	特願2000-45591(P2000-45591)	(71)出顧人	000005223
		1	富士通株式会社
(22)出願日	平成12年2月23日(2000.2.23)		神奈川県川崎市中原区上小田中4丁目1番
		1	1号
		(72)発明者	篠田 克毅
			鳥取県米子市石州府字大塚ノ弐650番地
			株式会社米子富士通内
		(74)代理人	100108187
		1 2 1	弁理士 横山 淳一

最終頁に続く

(54) 【発明の名称】 液晶表示パネルおよびその製造方法

(57)【要約】

【課題】 液晶表示パネルに液晶注入後、注入用の開口 部を封止する際に、封止材が液晶表示領域にまで侵入し て表示不良が発生するという課題を解消し、液晶表示装 置の表示品質の向上を図る。

【解決手段】液晶表示パネル10の対向する2枚の基板 の少なくとも一方の基板上の液晶注入用の開口部3と液 晶表示領域8との間に、金属膜9を設けるよう構成す る。

本発明の支集部隊の被員表示パネルの平面図

【特許請求の範囲】

【請求項1】 2枚の基板の少なくとも一方の基板に液晶注入用の開口部を残して液晶表示領域を囲むようにシール材を枠状に塗布し、対向して配置された該2枚の基板間を該シール材で固着した液晶表示パネルにおいて、該2枚の基板の少なくとも一方の基板上の前記開口部と前記液晶表示領域との間に、金属膜を設けたことを特徴とする液晶表示パネル。

【請求項2】 前記金属膜の材質は、アルミニウム、チタン、クロム、シリコンの何れかであることを特徴とする請求項1に記載の液晶表示バネル。

【請求項3】 2枚の基板の一方に少なくとも薄膜トランジスタ、ゲートバスラインおよびドレインバスラインが形成され、該2枚の基板の少なくとも一方の基板に液晶注入用の開口部を残して液晶表示領域を囲むようにシール材を枠状に塗布し、対向して配置された該2枚の基板間を該シール材で固着する液晶表示パネルの製造方法において、

該基板上の前記開口部と前記液晶表示領域との間に、金属膜を前記ゲートバスラインと同一工程で形成することを特徴とする液晶表示パネルの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示パネルおよびその製造方法に関し、特に液晶表示パネル内にディップ注入法で液晶を注入する液晶表示パネルに関する. 【〇〇〇2】

【従来の技術】近年、液晶表示装置は、薄型軽量、低電圧駆動、低消費電力等の長所を生かしパーソナルコンピュータ、テレビ、デジタルカメラ等の表示デバイスとして広く使用されるようになった。液晶表示装置を構成する液晶表示パネルは、一般にガラス等の2枚の透明基板間に液晶を封入した構造であり、一方の基板(CF基板)にはブラックマトリックス、カラーフィルタ、共通電極および配向膜等が形成され、他方の基板(TFT基板)には薄膜トランジスタ(以下、TFTという)、ゲートバスライン、ドレインバスライン、画素電極および配向膜等が形成されている。

【0003】2枚の透明基板間に液晶を注入する方法の 一つとしてディップ注入法がある。

【0004】これは、2枚の透明基板の何れか一方の基板に液晶の注入用の開口部を残して表示領域を囲むようにシール材を塗布し、球や円柱状のスペーサを散布してこのシール材で2枚の基板間を固着する。その後真空中でこの液晶注入用の開口部を液晶中に漬けた状態で大気圧に戻すと、圧力差により液晶が基板間に注入される。

次に、開口部に熱硬化性または紫外線硬化性樹脂(封止材)を塗布し、開口部を封止することにより液晶表示パネルが完成する。

[0005] 図4は、このような従来の液晶表示パネル

組立工程の例を説明するものである。図4(A)に示すように、液晶注入用の開口部3を残してシール材2を塗布した基板1をスクライブラインXおよびYに沿って切断した一方の基板11と、端部にゲートバスラインと接続されたゲート端子4およびドレインバスラインと接続されたドレイン端子5が形成された他方の基板12とを固着し、開口部3から液晶を注入した後、開口部3を封止材7で封止して図4(B)に示す液晶表示パネル10となる。

[0006]

【発明が解決しようとする課題】液晶注入用の開口部3から液晶を注入した後、この開口部3に封止材7を塗布するが、開口部3を完全に塞ぐためには、封止材7が表示領域に達しない程度に少しだけ開口部3の内部に侵入させておく必要がある。そのため封止材7である樹脂を塗布してから数秒から数十秒そのまま放置して樹脂が侵入してから熱または紫外線を照射して封止材7を硬化していた。

【0007】しかしながら、封止材7の粘度、開口部3の幅のばらつき、温度、湿度等の環境条件、基板がガラスの場合ガラス面の処理状態等により内部への封止材7の浸入速度が大きく変動し、開口部3の部分拡大平面図である図3に示すように封止材7が表示領域8にまで侵入してしまい表示不良が発生する問題がある。また近年の液晶表示パネルの狭額縁化(表示領域以外の部分が狭くなること)や、これら封止材7の混入に対する影響を受け易い低電圧駆動用液晶材料の採用により、封止材7の混入による表示不良も問題として浮上している。

【0008】なお、封止材が液晶表示パネル内部に侵入するのを規制するため、流路規制バーを開口部近傍に設けることが特開平2-055333号公報で提案されているが、これは実質的に液晶注入用の開口部の幅を狭めることになり液晶注入時間を大幅に増大させてしまう問題がある。

[0009]

【課題を解決するための手段】上記課題を解決するため 請求項1の発明では、2枚の基板の少なくとも一方の基 板に液晶注入用の開口部を残して液晶表示領域を囲むようにシール材を枠状に塗布し、対向して配置された2枚 の基板間をシール材で固着した液晶表示パネルにおい て、この2枚の基板の少なくとも一方の基板上の開電を設けたこの2枚の基板の少なくとも一方の基板上の開業を設けたことを特徴との間に、金属膜を設けたことを特徴との表現に、シリコンの何れかである。また請求項2の発明は、この位置に少なくとも薄膜トランジスタ、ゲートバスラインが形成され、この2枚の基板で表して変なくとも一方の基板に液晶注入用の開口部を残し、対象よ示領域を囲むようにシール材で控着する液晶とで配置された2枚の基板間をシール材で国着する液晶 表示バネルの製造方法において、この基板上の開口部と 液晶表示領域との間に、金属膜をゲートバスラインと同 一工程で形成することを特徴とする。

[0010] すなわち、本発明は液晶注入用の開口部と 液晶表示領域の間の基板上に、金属膜を設けることによ り、液晶表示パネルに液晶注入後に開口部を封止する 際、封正材との間のぬれ性が変化することにより封止材 が液晶表示領域まで侵入してしまうことがなくなり表示 不良が発生しない。また金属膜は極めて薄いため液晶注 入の際に妨げとならない。さらに金属膜の材質として、 液晶表示パネルを構成する電極、配線の材質と同じもの を使用することにより、従来の液晶表示パネルの電極、 配線と同一工程で形成することができるので製造工数が 増えることもない。

[0011]

【発明の実施の形態】以下、本発明の実施の形態につい て説明する。図1(A)および図1(A)における開口 部3の部分拡大図である図1(B)に示す如く、本発明 では液晶表示パネル10の開口部3と液晶表示領域8と の間であって基板12の面に金属膜9が形成されてい る。金属膜9の材質としては、実際には液晶表示パネル の製造工数を増やさないため、基板上に電極や配線を形 成する工程で使用する材質を使用することが望ましい。 例えば、TFTを使用する液晶表示パネルではアルミニ ウム (Al)、チタン (Ti)、クローム (Cr)、シ リコン(Si)等が挙げられる。封止材7の液晶表示パ ネル10内への侵入速度は、封止材7の粘度および開口 部3の大きさが一定ならば、ガラスと比較して金属膜の 方が侵入速度は遅くなる。

【0012】従来の液晶表示パネルの開口部3近傍の基 板表面はガラスが剥き出しになっており、ガラスの場合 は封止材7が素早く侵入してしまい、封止材7の粘度、 開口部3の大きさに対するマージンが狭かった。従来で は封止材7の侵入速度はガラスに対して200μm/分 程度であり、開口部3からの距離aが700μm程度の 侵入位置を設計中心値としているが、封止材7の粘度や 開口部3の幅のばらつきにより3割程度侵入速度がばら つくと、210μm程度侵入距離が変動し、最大侵入距 離は910μmとなってしまう。

【0013】これに対し、本発明における金属膜9の場 合、封止材7の侵入速度は50μm/分程度と遅くな る。これはガラスおよび金属膜と封止材との間のぬれ性 に関係して侵入速度が変化していると考えられる。金属 膜9を開口部3から内側に向かっての距離bが650μ mから幅cが150μmの幅に形成した場合、封止材7 の侵入速度が3割ばらついても最大侵入距離は750μ m程度になり、図1(B)に示すように設計値700μ mの近くに収まる。このため封止材7が液晶表示パネル 10の液晶表示領域8まで侵入することがなくなり、表 示不良が生じない。 ガラス剝き出しの部分は、封止杖

7が素早く侵入するが、金属膜9の部分は侵入速度が遅 くなるので基板上に形成する金属膜9の大きさ、位置つ まり図1(B)における距離b,幅cを種々変えること により封止材での侵入距離を設計的に微妙に制御するこ とが可能となる。なお、金属膜9を基板12の上に形成 する形態について述べたが金属膜9は基板11の上また は基板11、12の両方に形成してもよい。

【0014】次に本発明における金属膜の形成をTFT 基板のゲート電極、ゲートバスライン形成と同一製造工 程(以下、ゲート工程という)で行う場合の例を図2の 本発明の実施態様による液晶表示パネルの製造工程を示 す図により説明する。

【0015】まず、ステップS1においてガラス基板上 の塵埃や、アルカリ分等を除くため基板の洗浄を行う。 次にステップ2として基板上にゲート膜となる金属をス パッタリングやプラズマCVDにより成膜するが、本発 明の実施態様ではアルミニウムをゲート電極、ゲートバ スラインと同じ約1000オングストロームの厚さに成 膜する。次にその上にステップ3で紫外線に反応するレ ジストをスピンコーテングにより塗布する。次にステッ プ4で露光マスク6を介して紫外線露光を行うが、この 露光マスク6にはゲート電極、ゲートバスライン以外 に、本発明の特徴である金属膜を液晶注入用の開口部3 近傍に形成するためのパターンが設けられていてゲート 電板、ゲートバスラインのパターンと同時に露光され る。次にステップ5で紫外線が照射された部分のレジス トを現像液に浸たして取り去る。次にステップ6でレジ ストに覆われてない部分のアルミニウム膜をエッチング 液に浸たして取り去る。次にステップ7で残っているレ ジストをレジスト剥離剤で剥離した後洗浄する。次にス テップ8で所望のゲート電極、ゲートバスライン、金属 膜等が形成されているか否か検査する。

【0016】本発明の実施態様では金属膜9として、液 晶注入用の開口部3のガラス基板エッジからの距離b= 650μmに短手方向の幅150μm、長手方向の幅1 5mmの長方形のパターンを形成する。

【0017】以上でTFT基板のゲート工程が終了する が、TFT基板の製造には、この後公知のTFT基板の 製造方法により、ゲート絶縁膜、TFT、ドレイン電 極、ドレインバスライン、画素電極、配向膜等が形成さ れる。一方TFT基板と対向するCF基板にはブラック マトリックス、カラーフィルタ、共通電極、配向膜等が 形成される。そしてCF基板にエポキシ樹脂等のシール 材を塗布し、スペーサを散布した後、2枚の基板を貼り 合わせる。なおシール材2を塗布する際に液晶注入用の 開口部3を20mmだけ開けておき、液晶を注入する。 液晶を注入した後スリーボンド製の紫外線硬化封止材 (30Y-228)を使用し、封止材7を塗布してから

250秒経った時に紫外線を照射して封止材7を硬化す る。この結果、封止材での流れは設計値で 00μmの近 くに収まり、このため封建設7が液晶表示パネル10の液晶表示領域8まで侵入することがなくなり、表示不良は生じない。

[0018]

【発明の効果】以上説明したように、本発明は液晶表示 パネルへ液晶注入したあとの開口部を封止する際に、封 止材が液晶表示領域まで侵入することが阻止され、表示 不良が発生する問題が解消する。またこのための製造工 数の増加もなく、液晶表示装置の表示品質の向上に寄与 するところが大きい。

【図面の簡単な説明】

【図1】 本発明の実施態様の液晶表示パネルの平面図である。

【図1】

本発明の実施越様の被品表示パネルの平面区

【図2】 本発明の実施態様による液晶表示パネルの製造工程を示す図である。

【図3】 従来の液晶表示パネルの課題を説明する図である。

【図4】 従来の液晶表示パネルの平面図である。 【符号の説明】

- 2 シール材
- 3 液晶注入用の開口部
- 7 封止材
- 8 液晶表示領域
- 9 金属膜
- 10 液晶表示パネル

[図2]

本発明の実施職権による液晶表示パネルの製造工程を示す図

【図3】

従来の液晶表示パネルの課題を説明する図

【図4】

従来の液晶表示パネルの平面図

フロントページの続き

Fターム(参考) 2H089 JA11 LA22 LA32 LA48 NA19

NA24 NA55 NA60 PA13 QA12

QA13 TA06 TA09

2H092 JA26 JA39 JB27 KA16 KA18

MA05 MA14 MA15 MA16 MA17

MA35 MA37 NA25 NA29 PA04

5G435 AA14 AA17 EE06 EE09 EE12

KKO2 KKO5 LLO4 LLOS LL14