1. Consider the HMM of Homework #2 again, with the parameter matrices p(s'|s), q(s'|s), $q(\mathbf{0}|s \to s')$ and $q(\mathbf{1}|s \to s')$ as previously specified.

Perform the following calculations by hand, again retaining adequate numerical precision of the intermediate answers.

(a) Draw a 4-stage trellis for this HMM, showing only the paths which could have resulted in the output **0110**. (You may copy your solution from Homework #2.)

$$A = \begin{bmatrix} p(1|1) & p(2|1) & p(3|1) \\ p(1|2) & p(2|2) & p(3|2) \\ p(1|3) & p(2|3) & p(3|3) \end{bmatrix} p(s'|s) = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{6} \\ 0 & 0 & \frac{1}{3} \\ \frac{3}{4} & \frac{1}{4} & 0 \end{bmatrix}$$

$$V = \begin{bmatrix} q(1|1) & q(2|1) & q(3|1) \\ q(1|2) & q(2|2) & q(3|2) \\ q(1|3) & q(2|3) & q(3|3) \end{bmatrix} \underline{\qquad} q(s'|s) = \begin{bmatrix} 0 & 0 & \frac{1}{6} \\ \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

$$B(0) = \begin{bmatrix} q(Y=0|1,1) & q(Y=0|2,1) & q(Y=0|3,1) \\ q(Y=0|1,2) & q(Y=0|2,2) & q(Y=0|3,2) \\ q(Y=0|1,3) & q(Y=0|2,3) & q(Y=0|3,3) \end{bmatrix} \quad q(\mathbf{0}|s \to s') = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

$$B(0) = \begin{bmatrix} q(Y=0|1,1) & q(Y=0|2,1) & q(Y=0|3,1) \\ q(Y=0|1,3) & q(Y=0|3,3) \end{bmatrix} \quad q(\mathbf{0}|s \to s') = \begin{bmatrix} 1 & \frac{1}{2} & 1 \\ 0 & 0 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} q(Y=0|1,1) & q(Y=1|3,1) & q(Y=1|3,1) \\ q(Y=1|1,1) & q(Y=1|3,2) & q(Y=1|3,2) \\ q(Y=1|1,2,3) & q(Y=1|3,3) \end{bmatrix} \quad q(\mathbf{1}|s \to s') = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ 1 & 1 & \frac{2}{3} \\ 1 & 1 & 1 \end{bmatrix}$$

Figure 2.8
Addition of null transitions to the HMM of figure 2.3

(b) Calculate the *a posteriori* probabilities $P(t^i = t | y_1 y_2 y_3 y_4 = \mathbf{0110}, s_0 = 1)$ for each arc in the trellis. Show your answers on the trellis.

```
from previous HW,
 ALPHA 0
   [[1 0 0]]
 ALPHA 1
   [[0.52777778]
   [0.08333333]
   [0.28240741]]
 ALPHA 2
   [[0.25
   [0.11458333]
   [0.09837963]]
 ALPHA 3
   [[0.08892747]
   [0.04542824]
   [0.05542695]]
 ALPHA 4
   [[0.04446373]
   [0.00741062]
   [0.01986883]]
Manginal probability
  [0.07174318]
```


0.75

B. =	B, (1) p(111) g(6) (1) + B,(2) p(112) q(012→1) + B,(3) p(113) q(013→1)	1)
	0	

posterior probability:

Marginal grob = 0.07174318


```
formula
 p(to | y, n) = d. (1) p(111) q(0 | 1 -1) 3, (1)
                       marg
             = 1x 1/2 x 1 x
                     0.07174
                 0.35
p(t2° | y,") = d.(1) p(211) q(0|1-2) B,(2)
                         Marg
             = 1. 1/2. 1/2. 11.33/
                    0.07174
              z 0.2539
p(t3° | y, N) = do(1) P(3|1) q(0|1-3) B, (3)
               1. 49/288
                  0.07174
                0.4
P(t'2 | y, ") = x,(1) P(211) q(1 | 1-2) B2(2)
                         morg
```

$$P(t_{9}^{1}|Y,^{N}) = \frac{d_{1}(1) \cdot \gamma(311) \cdot \beta_{3}(3)}{marg}$$

$$= 0.20864$$

$$P(t_{1}^{2}|Y,^{N}) = \frac{d_{2}(1) \cdot p(211) \cdot q(111112) \cdot \beta_{3}(2)}{marg}$$

$$= 0.1046$$

$$P(t_{1}^{2}|Y,^{N}) = \frac{d_{2}(3) \cdot P(213) \cdot q(11312) \cdot \beta_{3}(1)}{marg}$$

$$= 0.771$$

$$P(t_{1}^{2}|Y,^{N}) = \frac{d_{2}(3) \cdot P(213) \cdot q(11312) \cdot \beta_{3}(1)}{marg}$$

$$= 0.12$$

$$P(t_{2}^{2}|Y,^{N}) = \frac{d_{2}(2) \cdot r(112) \cdot \beta_{3}(1)}{marg}$$

$$= 0.14$$

$$P(t_{3}^{2} | Y,^{N}) \sim \frac{\alpha_{2}(2) \pi(3|2) g_{2}(3)}{Marg}$$

$$= 0.347$$

$$P(t_{3}^{2} | Y,^{N}) : \alpha_{3}(1) \pi(3|1) g_{2}(3)$$

$$= 0.4$$

$$P(t_{3}^{3} | Y,^{N}) \cdot \alpha_{3}(1) P(1|1) g_{2}(0|1 \rightarrow 1) g_{4}(1)$$

$$= 0.61976$$

$$P(t_{3}^{3} | Y,^{N}) \cdot \alpha_{3}(1) P(2|1) g_{2}(0|1 \rightarrow 2) g_{4}(2)$$

$$= 0.9$$

$$P(t_{3}^{3} | Y,^{N}) \cdot \alpha_{3}(1) P(3|1) g_{2}(0|1 \rightarrow 2) g_{4}(3)$$

$$= 0.21$$

$$P(t_{3}^{3} | Y,^{N}) : \alpha_{3}(2) P(3|2) g_{2}(0|2 \rightarrow 3) g_{4}(3)$$

$$= 0.21$$

$$P(t_{3}^{3} | Y,^{N}) : \alpha_{3}(2) P(3|2) g_{2}(0|2 \rightarrow 3) g_{4}(3)$$

$$= 0.21$$

(c) Based on your calculations in (b), compute the *expected* counts c(y,t) of each non-null arc, and *reestimate* the emission probability matrices $q(\mathbf{0}|s \to s')$ and $q(\mathbf{1}|s \to s')$.

t; +t;3	t°, + t2	t°3 + t3
+,° + +,3	t, + + + + + + + + + + + + + + + + + + +	t3° +t3
٥	O	+ t,3
		t4 + t4
0	0	0
		0116

$$q(1|S \rightarrow S^{1}) = \begin{cases} \frac{t_{2}' + t_{2}'}{t_{1}' + t_{2}' + t_{1}'} & 0 \\ \frac{t_{2}' + t_{2}' + t_{2}' + t_{2}'}{t_{1}' + t_{1}' + t_{1}' + t_{1}'} & \frac{t_{1}' + t_{2}'}{t_{1}' + t_{1}' + t_{1}' + t_{1}'} \end{cases}$$

19			-
Ξ	0	0.45	0
		1	0.7
	_	1	(_

(d) Based on your calculations in (b), compute the expected counts c(t) of each transition, and reestimate the transition probability matrices p(s'|s) and q(s'|s).

$$L^*(t) = \sum_{i=0}^{k-1} p^* \{ t^i = t \}$$

q,(sls') =	0	0	ta' + ta²
		O	$ \frac{\left(t_{1}^{0}+t_{2}^{0}+t_{3}^{0}+t_{1}^{1}+t_{1}^{1}+t_{2}^{1}+t_{2}^{2}\right)}{+t_{1}^{2}+t_{1}^{3}+t_{3}^{3}+t_{2}^{3}+t_{3}^{3}} $
	ti + ti + ti + ti =	0	ts' +tg ²
	$ \left(\begin{array}{c} t_{4} + t_{8} + t_{7} + t_{6} + t_{7}^{2} + t_{8}^{2} + t_{4}^{3} \\ + t_{7}^{3} + t_{8}^{3} \end{array} \right) $		$\begin{pmatrix} t_{4}^{'} + t_{8}^{'} + t_{7}^{'} + t_{4}^{1} + t_{7}^{1} + t_{4}^{1} + t_{4}^{3} \\ + t_{3}^{3} + t_{8}^{3} \end{pmatrix}$
	0	0	0
	0	O	

			_
	0	0	0-211
4			
	0.3	0	0,4
	0	0	0

- 2. Consider the HMM of Homework #2 once again (!) and the Viterbi path you calculated in Homework #2 (f) for the output $\bf 0110$.
 - (a) Compute the Viter bi or "hard" counts $\hat{c}(y,t)$ of each arc of the HMM. How many $\hat{c}(y,t)$ are nonzero?

$$((y, t_3^\circ), ((y, t_3^\circ), ((y, t_3^\circ), ((y, t_3^\circ)) = p^*(t_3^\circ)$$

$$= p^*(t_3^\circ) = p^*(t_3^\circ) = p^*(t_3^\circ)$$

(b) Replace $c^*(y,t)$ in Equations (36) on p33 with these $\hat{c}(y,t)$ and reestimate the HMM emission probability matrices $q(\mathbf{0}|s \to s')$ and $q(\mathbf{1}|s \to s')$.

a [ols → s'] =	+13/ +13	0	ts'/ts
	0	0	0
	0	0	0

(c) Compute the *Viterbi* or "hard" counts $\hat{c}(t)$ of each arc of the HMM. How many $\hat{c}(t)$ are nonzero?

$$(*(t) = \begin{cases} x^{-1} \\ y^{-1} \\ y^{-1} \end{cases}$$

(d) Replace $c^*(t)$ in Equations (37) on p33 with these $\hat{c}(t)$ and reestimate the HMM transition probability matrices p(s'|s) and q(s'|s). (See the Note above.)

n [sls'] =	t,3	0	t°3	
PCT	t3 1 t, 3 + t4		$t_3^0 + t_1^3 + t_4^2$	
	o	0	D	
	ts + t =	0	0	
	t's + t +	O		
	p [sls'] =		t ₃ + t ₄ 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

g[s s'] =	0	0	- tq2	
V		0	t3 + t13 + t4	
	6	0	0	
	_			1

z.	0	0	0.4	
	0	0	О	
	0	0	0	