CSE 564 VISUALIZATION & VISUAL ANALYTICS

MEDICAL & SCIENTIFIC VISUALIZATION

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

Lecture	Торіс	Projects
1	Intro, schedule, and logistics	
2	Applications of visual analytics, basic tasks, data types	
3	Introduction to D3, basic vis techniques for non-spatial data	Project #1 out
4	Data assimilation and preparation	
5	Bias in visualization	
6	Data reduction and dimension reduction	
7	Visual perception and cognition	Project #1 due
8	Visual design and aesthetics	Project #2 out
9	Python/Flask hands-on	
10	Cluster analysis: numerical data	
11	Cluster analysis: categorical data	
12	Foundations of scientific and medical visualization	
13	Computer graphics and volume rendering	Project #2 due
14	Scientific and medical visualization	Project #3 out
15	High-dimensional data, dimensionality reduction	
16	Big data: data reduction, summarization	
17	Correlation and causal modeling	Project #3 due
18	Principles of interaction	
19	Midterm #1	
20	Visual analytics and the visual sense making process	Final project proposal due
21	Evaluation and user studies	
22	Visualization of time-varying and time-series data	
23	Visualization of streaming data	
24	Visualization of graph data	Final Project preliminary report due
25	Visualization of text data	
26	Midterm #2	
27	Data journalism	
	Final project presentations	Final Project slides and final report due

Medical Imaging: Overall Concept

Imaging Modalities Overview

CT

MRI / fMRI

Nuclear

Ultrasound

X-ray

magnetic spin

metabolic tracer X-ray emission

SPECT

sound waves

Anatomic vs Functional Imaging

History: X-Rays

Wilhelm Conrad Röntgen

- 8 November 1895: discovers X-rays.
- 22 November 1895: X-rays Mrs. Röntgen's hand.
- 1901: receives first Nobel Prize in physics

An early X-ray imaging system:

Note: so far all we can see is a projection across the patient:

History: Computed Tomography

The breakthrough:

acquiring many projections around the object enables the reconstruction of the 3D object (or a cross-sectional 2D slice)

CT reconstruction pioneers:

- 1917: Johann Radon establishes the mathematical framework for tomography, now called the Radon transform.
- 1963: Allan Cormack publishes mathematical analysis of tomographic image reconstruction, unaware of Radon's work
- 1972: Godfrey Hounsfield develops first CT system, unaware of either Radon or Cormack's work, develops his own reconstruction method.
- 1979 Hounsfield and Cormack receive the Nobel Prize in Physiology or Medicine.

Radon

Cormack Hounsfield

Computed Tomography: Concept

Slice Viewer

Reviewing Radiographs

Would 3D visualization help?

Slice Matrix

Would 3D visualization help?

3D Visualization via Volume Rendering

Reconstructed object enables:

- Enhanced X-ray visualization from novel views:
- Maximum Intensity (MIP) visualization:

• Shaded object display:

Aortic Stent and Arterial Vessels

Cartotid Stenosis

Virtual Colonoscopy

Virtual endoscopy, arthroscopy, etc.

Dataset

 Data scanned with medical scanners (MRI, CT, PET, SPECT, etc.)

aortic aneurism heart renals (with kidneys)

• Data photographed from histological slices (NIH-NLM Visible Human)

head thorax feet atlas created from \sim 1700 1/3 mm slices

Comes Back to Life...

Scientific Visualization

shock wave

spiral flow

transparent MRI head

nerve cell

semi-transparent tomato

MRI head

Simulations

Relativistic simulation of laser particle acceleration in an under-dense hydrogen plasma (800M particles)

Fluid Dynamics Simulations

Navier-Stokes equations for viscous, incompressible liquids.

$$\nabla \cdot \mathbf{u} = 0$$
 Conversation of mass

$$\mathbf{u}_{t} = -(\mathbf{u} \cdot \nabla)\mathbf{u} + \nu \nabla^{2}\mathbf{u} - \frac{1}{\rho}\nabla p + \mathbf{f}$$

Advection

Diffusion

Pressure

Navier-Stokes Solution

Via finite differencing

It all boils down to Ax=b.

$$\begin{bmatrix} ? & ? & \cdots & \cdots & ? \\ ? & ? & & & \vdots \\ \vdots & & \ddots & & \vdots \\ \vdots & & & \ddots & \vdots \\ ? & \cdots & \cdots & ? \end{bmatrix}_{n^d \times n^d} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_{n^d} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \\ x_{n^d} \end{bmatrix}$$

Visualize via Volume Rendering

