Analyse vectorielle-Courbes et surfaces

Exercice 1 underlineChamps et potentiels scalaires

Soit le champ de vecteurs \overrightarrow{V} de \mathbb{R}^3 dans \mathbb{R}^3 dèfini par :

$$\overrightarrow{V} = \begin{pmatrix} yz - x^2 \\ zx - y^2 \\ xy - z^2 \end{pmatrix}$$

Montrer qu'il dèrive d'un potentiel scalaire que l'on dèterminera.

Corrigè:

Pour montrer que le champ de vecteurs \overrightarrow{V} dèrive d'un potentiel scalaire f, il suffit de montrer que $\overrightarrow{rot}(\overrightarrow{V}) = \overrightarrow{0}$. Pour dèterminer le potentiel f, il suffit de rèsoudre le système $\overrightarrow{\nabla} f = \overrightarrow{V}$, que l'on l'obtient de deux manières diffèrentes, soit en rèsolvant le système $\overrightarrow{\nabla} f = \overrightarrow{V}$, soit on utilsant la forme intègrale de f donnée dans le cas gènèrale par

$$f(x,y,z) = \int_0^1 xP(tx,ty,tz) + yQ(tx,ty,tz) + zR(tx,ty,tz)dt$$

où P,Q,R dèsignent les composantes du champ \overrightarrow{V} . Par la deuxième mèthode on obtient,

$$f(x,y,z) = \int_0^1 x(t^2(yz-x^2)) + yt^2(zx-y^2) + zt^2(xy-z^2)dt = \frac{1}{3}(xyz-x^3+yzx-y^3+zxy-z^3)$$

Exercice 2 Champs et potentiels scalaires

Soit le champ de vecteur \overrightarrow{V} de \mathbb{R}^3 dans \mathbb{R}^3 dèfini par :

$$\overrightarrow{V}(x,y,z) = \begin{pmatrix} \frac{x}{1+r^2} \\ \frac{y}{1+r^2} + \beta y^2 z \\ \frac{\alpha z}{1+r^2} + \frac{\beta y^3}{3} \end{pmatrix}$$

où $\alpha, \beta \in \mathbb{R}$ et où on a posè $r = \sqrt{x^2 + y^2 + z^2}$.

1. Montrer que

$$\forall \ \beta \in \mathbb{R}, \ \overrightarrow{rot}\overrightarrow{V} = \overrightarrow{0} \Leftrightarrow \alpha = \alpha_0$$

où α_0 est une constante à dèterminer.

- 2. Le champ de vecteurs \overrightarrow{V} dèrive t-il d'un potentiel scalaire f? Si oui le dèterminer.
- 3. On pose $\beta = 0$. Si f existe, Calculer Δf .
- 4. Retrouver le rèsultat prècèdent en utilisant les coordonnées sphèriques.

Corrigè:

1.

$$\overrightarrow{rot}\overrightarrow{V}(x,y,z) = \begin{pmatrix} \frac{2yz}{(1+r^2)^2}(1-\alpha) \\ -\frac{2xz}{(1+r^2)^2}(1-\alpha) \\ 0 \end{pmatrix}$$

Donc

$$\overrightarrow{rot}\overrightarrow{V} = \overrightarrow{0} \Leftrightarrow \alpha = 1$$

2. On choisit $\alpha=1$. Comme $\overrightarrow{rot}\overrightarrow{V}=\overrightarrow{0}$, il existe $f:\mathbb{R}^3\to\mathbb{R}$ telle que $\overrightarrow{V}=\overrightarrow{\nabla f}$

$$\begin{cases}
\frac{\partial f}{\partial x} = \frac{x}{1+x^2+y^2+z^2} \\
\frac{\partial f}{\partial y} = \frac{y}{1+x^2+y^2+z^2} + \beta y^2 z \quad (2) \\
\frac{\partial f}{\partial z} = \frac{z}{1+x^2+y^2+z^2} + \frac{\beta}{3} y^3 \quad (3)
\end{cases}$$

En intègrant (1) par rapport à x (à y et z fixès)

$$f(x, y, z) = \frac{1}{2}ln(1 + x^2 + y^2 + z^2) + \lambda(y, z)$$

En reportant dans (2):

$$\frac{\partial \lambda}{\partial u} = \beta y^2 z$$

qui s'intègre (par rapport à y, à z fixè) en

$$\lambda(y,z) = \frac{\beta}{3}y^3 + \nu(z)$$

D'où $f(x,y,z)=\frac{1}{2}ln(1+x^2+y^2+z^2)+\frac{\beta}{3}y^3+\nu(z)$ qu'on reporte dans (3) pour obtenir : $\nu'(z)=0$ et donc $\nu(z)=c$ (fonction constante).

On peut donc choisir comme potentiel, toute fonction du type :

$$f(x,y,z) = \frac{1}{2}ln(1+x^2+y^2+z^2) + \frac{\beta}{3}y^3 + c$$

où $c \in \mathbb{R}$ est une constante arbitraire.

3. On pose $\beta=0.$ On choisit c=0, on a donc $f(x,y,z)=\frac{1}{2}\ln(1+x^2+y^2+z^2).$

$$\frac{\partial f}{\partial x} = \frac{x}{1 + x^2 + y^2 + z^2}$$
 (sans calcul, car c'est la première composante de V)

$$\frac{\partial^2 f}{\partial x^2} = \frac{1 + y^2 + z^2 - x^2}{(1 + x^2 + y^2 + z^2)^2}$$

De même (rôle symètrique jouè par y et z)

$$\frac{\partial^2 f}{\partial y^2} = \frac{1 + x^2 - y^2 + z^2}{(1 + x^2 + y^2 + z^2)^2}$$
$$\frac{\partial^2 f}{\partial z^2} = \frac{1 + x^2 + y^2 - z^2}{(1 + x^2 + y^2 + z^2)^2}$$

D'où:

$$\Delta f = \frac{3 + x^2 + y^2 + z^2}{(1 + x^2 + y^2 + z^2)^2}$$

MT22-A10 3

4. $f(x, y, z) = \frac{1}{2}ln(1 + r^2)$ en posant $r^2 = x^2 + y^2 + z^2$ (coord. sphèrique)

En coordonnées sphériques (cf cours):

$$\Delta f = \frac{\partial^2 g}{\partial r^2} + \frac{2}{r} \frac{\partial g}{\partial r} \text{ où } g(r,\theta,\phi) = \frac{1}{2} ln(1+r^2) \text{ (indèpendant de } \theta \text{ et } \phi \text{ ici)}$$

$$g'(r) = \frac{r}{1+r^2}, g''(r) = \frac{1-r^2}{(1+r^2)^2}. \text{ D'où :}$$

$$\Delta f = \frac{1 - r^2}{(1 + r^2)^2} + \frac{2r}{r(1 + r^2)} = \frac{3 + r^2}{(1 + r^2)^2}$$

Ce qui est bien le rèsultat obtenu au 3.

Exercice 3 Champs et potentiels vecteurs

Soit le champ de vecteur \overrightarrow{V} de \mathbb{R}^3 dans \mathbb{R}^3 et la fonction f de \mathbb{R}^3 dans \mathbb{R} dèfinis par :

$$\overrightarrow{V} = \begin{pmatrix} 2y + z \\ 2x + z \\ x + y \end{pmatrix}$$

- 1. Montrer qu'il existe un champ de vecteur \overrightarrow{A} tel que $\overrightarrow{V} = \overrightarrow{rot}\overrightarrow{A}$
- 2. On cherche un tel champ sous la forme $\overrightarrow{A} = \begin{pmatrix} x(2z-y) \\ y\varphi(x,z) \\ z\psi(x,y) \end{pmatrix}$. Dèterminer la forme gènèrale des fonctions φ et ψ .
- 3. expliciter ces fonctions lorsque $\nabla \cdot \overrightarrow{A} = 0$.

Corrigè:

1. Il suffity de remarquer que $div \overrightarrow{V} = 0$

2. On obtient
$$\overrightarrow{rot}\overrightarrow{A} = \begin{pmatrix} z\frac{\partial\psi}{\partial y} - y\frac{\partial\varphi}{\partial z} \\ -z\frac{\partial\psi}{\partial x} \\ y \\ dspfrac\partial\varphi\partial x \end{pmatrix}$$

Par consèquent $\psi(x,y) = -xh(y)$ et $\varphi(x,z) = yx + k(z)$.

3.

Exercice 4 Calcul du Laplacien

Soient f et g deux fonctions définies respectivement de \mathbb{R}^2 à valeurs dans \mathbb{R} et de \mathbb{R}^3 à valeurs dans \mathbb{R} par :

$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$$
 et $g(x,y,z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$

- 1. Calculer $\triangle f$ et $\triangle g$ en utilisant les coordonnées cartésiennes
- 2. Calculer $\triangle f$ et $\triangle g$ en utilisant respectivement les coordonnèes polaires et cylindriques
- 3. Calculer $\triangle g$ en utilisant les coordonnées sphériques.

Corrigè: voir cours

Exercice 5 Soit M_0 un point de coordonnèes (x_0, y_0, z_0) , soient \overrightarrow{U}_1 , \overrightarrow{U}_2 deux vecteurs non colinèaires dont les composantes sont (a_1, b_1, c_1) et (a_2, b_2, c_2) .

- 1. Donner l'èquation cartèsienne et les èquations paramètriques du plan Π contenant M_0 , \overrightarrow{U}_1 et \overrightarrow{U}_2
- 2. Donner les èquations paramètriques de la droite Δ passant par M_0 et ayant \overrightarrow{U}_1 comme vecteur directeur

Corrigè:

- 1. $M \in \Pi \Leftrightarrow \overrightarrow{M_0M} = u\overrightarrow{U}_1 + v\overrightarrow{U}_2 : x = x_0 + a_1u + a_2v, \ y = y_0 + b_1u + b_2v, \ z = z_0 + c_1u + c_2v$
- 2. On pourra ècrire que $M \in \Delta \Leftrightarrow \overline{M_0M}$ est proportionnel à $\overrightarrow{U}_1: x = x_0 + \lambda a, \quad y = y_0 + \lambda b, \quad z = z_0 + \lambda c$

Exercice 6 Soit M_0 un point de coordonnèes $(x_0; y_0; z_0)$, \overrightarrow{V} un vecteur non nul de composantes $(\alpha; \beta; \gamma)$, on appelle Δ la droite passant par M_0 et de vecteur directeur \overrightarrow{V} . Soit M_1 un point de coordonnèes $(x_1; y_1; z_1)$. Dèterminer le point M_2 projection orthogonale de M_1 sur Δ .

Corrigè:

Il existe λ tel que $\overrightarrow{M_0M_2} = \lambda \overrightarrow{V}$. Par suite, le produit scalaire $\overrightarrow{M_0M_1}.\overrightarrow{V} = \overrightarrow{M_0M_2}.\overrightarrow{V} + \overrightarrow{M_2M_1}.\overrightarrow{V} = \lambda \|\overrightarrow{V}\|^2$. Ce qui permet d'obtenir λ et par suite le vecteur $\overrightarrow{M_0M_2}$.

Exercice 7 Soit Π le plan d'èquation ax + by + cz = d.

- 1. Dèterminer un vecteur \overrightarrow{N} normal au plan Π .
- 2. Soit M_1 le point de coordonnèes $(x_1; y_1; z_1)$, on appelle M_2 la projection orthogonale de M_1 sur Π , dèterminer les coordonnèes de M_2 .
- 3. En dèduire la distance de M_1 à Π .
- 4. Dèterminer les coordonnées de M_3 symètrique de M_1 par rapport à Π .

Corrigè:

- 1. La normale est le vecteur de composantes (a,b,c)
- 2. Il existe λ tel que $\overrightarrow{M_1M_2} = \lambda \overrightarrow{N}$. Par suite, pour un point quelconque $M_0 \in \Pi$, le produit scalaire $0 = \overrightarrow{M_0M_2}.\overrightarrow{N} = \overrightarrow{M_0M_1}.\overrightarrow{N} + \overrightarrow{M_1M_2}.\overrightarrow{N} = \overrightarrow{M_0M_1}.\overrightarrow{N} + \lambda \|\overrightarrow{N}\|^2$. Ce qui permet d'obtenir λ et par suite le vecteur $\overrightarrow{M_1M_2}$.
- 3. $\|\overrightarrow{M_1M_2}\|$
- 4. Il suffit d'observer que $\overrightarrow{M_1M_3} = 2\overrightarrow{M_1M_2}$

Exercice 8 Dèterminer les èquations paramètriques de la droite dèfinie par les èquations x + y + z = 1 et x - y + 2z = 1.

Corrigè : Il suffit de dèterminer un vecteur directeur \overrightarrow{V} de la droite intersection des deux plans d'èquations x+y+z=1 et x-y+2z=1 de normales respectives $\overrightarrow{N}_1=(1,1,1)et\overrightarrow{N}_2=(1,-1,2)$. Un tel vecteur est donné par $\overrightarrow{V}=\overrightarrow{N}_1\Lambda\overrightarrow{N}_2=(3,-1,-2)$.

MT22-A10 5

Exercice 9 Soient a; b; c trois paramètres strictement positifs. Donner des èquations paramètriques des surfaces dont les èquations cartèsiennes sont définies ci-après, prèciser dans chacun des cas de quelle surface il s'agit.

1.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

2.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{a^2} = 1$$

3.
$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.

4.
$$\frac{x^2}{a^2} + \frac{y^2}{a^2} - \frac{z^2}{c^2} = 0$$

5.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

6.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + z = 0$$

Corrigè: A faire

Exercice 10 1. Pour chacune des trois courbes ci-dessous, faire un dessin (allure) et donner une paramètrisation.

(a)
$$x^2 + y^2 = 1$$
; $z = 3$

(b)
$$x^2 + y^2 = 1$$
; $x + y + z = 1$

(c)
$$x^2 + y^2 = 1$$
; $x + y = 1$.

- 2. Soit la courbe de \mathbb{R}^3 définie par les équations suivantes $z=x^2+y^2; \ x^2+\frac{1}{2}y^2=1$
 - (a) Tracer et paramètrer cette courbe.
 - (b) Donner une paramètrisation de la droite tangente à cette courbe au point $M_0 = (1,0,1)$.

Corrigè:

- 1. (a) $\{x^2 + y^2 = 1; z = 3\} \Leftrightarrow \{x = \cos(\theta), y = \sin(\theta), \theta \in [0, 2\pi], z = 3\}$
 - (b) $\{x^2 + y^2 = 1; x + y + z = 1\} \Leftrightarrow \{x = \cos(\theta), y = \sin(\theta), \theta \in [0, 2\pi], z = 1 \cos(\theta) \sin(\theta)\}$
 - (c) $\{x^2 + y^2 = 1; x + y = 1\} \Leftrightarrow \{x^2 + (1 x)^2 = 1; x + y = 1\} \Leftrightarrow \{x^2 + -2x = 0; x + y = 1\} \Leftrightarrow \{(x, y) = (0, 1) \text{ ou } (x, y) = (2, -1)\}$ Il s'agit de deux droites.

(a)

$$\{z = x^2 + y^2; \ x^2 + \frac{1}{2}y^2 = 1\} \Leftrightarrow \{z = x^2 + y^2; \ x = \cos(\theta), y = \sqrt{2}\sin(\theta), \ \theta \in [0, 2\pi]\}$$
$$\Leftrightarrow \{z = \cos^2(\theta) + 2\sin^2(\theta); \ x = \cos(\theta), y = \sqrt{2}\sin(\theta), \ \theta \in [0, 2\pi]\} \Leftrightarrow \{z = 1 + \sin^2(\theta); \ x = \cos(\theta), y = \sqrt{2}\sin(\theta), \ \theta \in [0, 2\pi]\}$$

(b) Le point M_0 correspond à la valeur de $\theta=0$. Un vecteur directeur à la droite tangente à la courbe au point M_0 est obtenu par $\overrightarrow{V}=(x'(0),y'(0),z'(0))$. D'où le rèsultat.....

Exercice 11 On considère la courbe C, intersection des deux surfaces S_1 et S_2 dèfinies paramètriquement par :

$$(S_1) \begin{cases} x = u + v + \frac{1}{3} \\ y = u - 2v + \frac{1}{3} \\ z = -2u + v + \frac{1}{3} \end{cases}$$

$$(S_2) \begin{cases} x = u \\ y = v \\ z = u^2 + v^2. \end{cases}$$

 $où(u,v) \in \mathbb{R}^2$

- 1. Donner des èquations implicites pour S_1 et S_2 .
- 2. Soit $M_2 \in S_2$. Utiliser deux mèthodes diffèrentes pour trouver un vecteur normal à S_2 au point M_2 . En dèduire l'èquation du plan tangent à S_2 au point M_2 .
- 3. On suppose que M_2 appartient aussi à S_1 . Donner un vecteur tangent à la courbe C en M_2 . En dèduire des èquations paramètriques de la tangente à C en M_2 .

Corrigè:

- 1. x + y + z = 1 pour S_1 et $z = x^2 + y^2$ pour S_2 .
- 2. Pour un vecteur normal à la surface S_2 , soit on utilise les equations paramètriques, soit l'èquation cartèsiènne. Dans le premier cas on effectue le produit vectoriel des vecteurs (dèrivèes partielles par rapport à u et v) $T_u(M_2)=(1,0,2u)$ et $T_v(M_2)=(0,1,2v)$. Dans le deuxième cas il s'agit d'une direction du gradient de la fonction $f(x,y,z)=z-x^2-y^2$, à savoir $\overrightarrow{N}_2=(-2x_2,-2y_2,1)$, où $M_2=(x_2,y_2,z_2)$.
- 3. Soit $\overrightarrow{N}_1 = (1,1,1)$ un vecteur normal au plan S_1 . Un vecteur directeur de la droite tangente en M_2 à la courbe C est obtenu comme produit vectoriel des normales \overrightarrow{N}_1 et \overrightarrow{N}_2 . Ensuite on en dèduira facilement les èquations paramètriques de la droite tangente.

Exercice 12 Pour chacun des domaines $D \subset \mathbb{R}^2$ ci-dessous, faire un dessin reprèsentant D et paramètrer son bord.

- 1. $D = \{(x; y) \in \mathbb{R}^2; |x| < 1; |y| < 1\}$
- 2. $D = \{(x; y) \in \mathbb{R}^2; \ x^2 + (y 1)^2 \le 1; \ y \ge x\}$
- 3. $D = \{(x; y) \in \mathbb{R}^2; x > 0; y > 0; x + y < 1\}$
- 4. $D = \{(x; y) \in \mathbb{R}^2; \ x^2 + y^2 x < 0; \ x^2 + y^2 y > 0; \ y > 0\}$
- 5. $D = \{(x; y) \in \mathbb{R}^2; \ x^2 + (y 2)^2 \le 4; \ x \ge 0\}$
- 6. $D = \{(x; y) \in \mathbb{R}^2; y^2 \le 4x; y \ge 0; x \le h\}$
- 7. $D = \{(x; y) \in \mathbb{R}^2; x < 2y; y < 2x; y < 2\}$

Corrigè : facile à faire!

Exercice 13 On considère la surface S, dèfinie par :

$$\begin{cases} z = x^2 + y^2 \\ z \le 1 - 2y \end{cases}$$

- 1. Dessiner S.
- 2. Paramètrer S
- 3. Donner l'èquation du plan tangent à S en un point M_0 , d'une part en utilisant la reprèsentation paramètrique, d'autre part en utilisant l'èquation cartèsienne.
- 4. On appelle C le bord de S.

MT22-A10 7

- (a) Donner les èquations cartèsiennes de C.
- (b) Montrer que C est l'intersection d'un plan et d'un cylindre. En dèduire des èquations paramètriques de C.
- (c) Donner un vecteur tangent à la courbe C en un point M_0 .

Corrigè:

1. S est l'intersection de la paraboloide $z=x^2+y^2$ et du demi-plan $z+2y\leq 1$

2.

$$\begin{cases} z = x^2 + y^2 \\ z \le 1 - 2y \end{cases} \Leftrightarrow \begin{cases} z = x^2 + y^2 \\ x^2 + y^2 \le 1 - 2y \end{cases} \Leftrightarrow \begin{cases} z = x^2 + y^2 \\ x^2 + (y+1)^2 \le 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = r\cos(\theta), & \theta \in [0, 2\pi], \ r \in [0, \sqrt{2}] \\ y = -1 + r\sin(\theta), \ \theta \in [0, 2\pi], \ r \in [0, \sqrt{2}] \\ z = 3 - 2r\sin(\theta), \ \theta \in [0, 2\pi], \ r \in [0, \sqrt{2}] \end{cases}$$

- 3. Il suffit de calculer une normale par les deux mèthodes ; celle du gradient dans le cas de l'èquation cartèsienne $z x = 2 y^2 = 0$ et celle qui utilise les èquations paramètriques.
- 4. (a) Les èquations cartèsiennes de C sont $z=x^2+y^2etz+2y=1$. (C est une courbe obtenue comme l'intersection de deux surfaces)
 - (b) $M(x, y, z) \in C \Leftrightarrow$

$$\begin{cases} z = x^2 + y^2 \\ z + 2y = 1 \end{cases} \Leftrightarrow \begin{cases} 1 - 2y = x^2 + y^2 \\ z + 2y = 1 \end{cases} \Leftrightarrow \begin{cases} x^2 + (y+1)^2 = 2 \\ z + 2y = 1 \end{cases}$$

L'èquation cartèsienne $x^2 + (y+1)^2 = 1$ dècrit le cylindre d'axe (x=1,y=-1). Par consèquent les èquations paramètriques sont donnèes par :

$$\begin{cases} x = \sqrt{2}\cos(\theta), & \theta \in [0, 2\pi] \\ y = -1 + \sqrt{2}\sin(\theta), & \theta \in [0, 2\pi] \\ z = 3 - 2\sqrt{2}\sin(\theta), & \theta \in [0, 2\pi] \end{cases}$$

(c) Soit $M_0=M(x(\theta_0),y(\theta_0),z(\theta_0))$. Prenons, pour simplifier, $\theta_0=\frac{\pi}{4}$, ce qui correspond à $M_0=(1,0,1)$. Un vecteur tangent est donné par

$$T(\theta_0) = (x'(\theta_0), y'(\theta_0), z'(\theta_0)) = (-1, 1, -2)$$