K Kytölä & M Orlich

(Exercise sessions: 3.-4.2.2022) Hand-in due: Tue 8.2.2022 at 23:59

Fill-in-the-blanks 1. Let (X, d) be a metric space. Complete the proof of the following claim.

Claim. For any $z \in X$ and $r \geq 0$, the closed ball $\overline{\mathcal{B}}_r(z) \subset X$ is a closed set.

Proof. Let $z \in X$ and r	\geq 0. The claim means, by definition of
	, that the set
is open. We will prove this	directly from the definition of open sets.
For every $x \in \underline{\hspace{1cm}}$	we must therefore find some
$\varepsilon > 0$ such that $\mathcal{B}_{\varepsilon}(x) \subset X \setminus$	$\sqrt{\mathcal{B}}_r(z).$
So let $x \in \underline{\hspace{1cm}}$	Note that by definition of the
complement and the closed	ball we then have

$$d(z, x) > r.$$

Let $\varepsilon = \mathsf{d}(z,x) - r$, and notice that from the above we get that $\varepsilon > 0$. Suppose now that $y \in \mathcal{B}_{\varepsilon}(x)$, i.e., $\mathsf{d}(x,y) < \varepsilon$. Then by the triangle inequality lower bound we get

$$\geq d(z,x) - d(x,y) > d(z,x) - \varepsilon =$$
_____.

This shows that $\mathcal{B}_{\varepsilon}(x) \subset X \setminus \overline{\mathcal{B}}_r(z)$. The proof is complete. \square

Fill-in-the-blanks 2. Complete the proofs of the following statements.

a) Claim. If (X, d) is a metric space and $(x_n)_{n \in \mathbb{N}}$ is a convergent sequence in the space X, then the sequence $(x_n)_{n\in\mathbb{N}}$ is bounded. **Proof.** Let $(x_n)_{n\in\mathbb{N}}$ be a convergent sequence in X and denote its limit by $a = \lim_{n \to \infty} x_n.$ Apply the definition of limit by choosing $\varepsilon = 1$. Then there exists an $n_1 \in \mathbb{N}$, such that $\underline{\hspace{1cm}}$ < 1 whenever $\underline{\hspace{1cm}}$. Since $x_1, x_2, \ldots, x_{n_1-1}$ is a finite list of points, we can define $R = \max\{1, d(x_1, a), \underline{\qquad}, \dots, \underline{\qquad}\} < \infty.$ Then for all members x_k of the sequence we have $\mathsf{d}(x_k,a) \leq \underline{\hspace{1cm}},$ so the members of the sequence are contained in the closed ball This proves that the sequence is bounded. b) Claim. Consider the metric space $(\mathbb{R}, d_{0/1})$, where on the real line \mathbb{R} we use the discrete 0/1-metric $\mathsf{d}_{0/1}$. Then the sequence $(x_n)_{n\in\mathbb{N}}$ in $(\mathbb{R}, \mathsf{d}_{0/1})$ defined by the formula $x_n = \frac{1}{n}$ does not have 0 as its limit. **Proof.** For all $n \in \mathbb{N}$ we have so there does not exists _____ such that

The defining condition of limit therefore is not fulfilled for $\varepsilon = 1/2$, so

the sequence $(x_n)_{n\in\mathbb{N}}$ does not converge to 0.