

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Document created by Robert Rainey
Document last edited on 12/13/2019 by Robert Rainey

TABLE OF CONTENTS

Table of Contents	
Overview	
System Components	
ATI Components	
PEAK System Components	
Software	
System Configuration	
Configure ATI Hardware	
Configure PCAN VIEW	
Using PCAN to Communicate with the Sensor	
Send a Message	
Understanding the Sensor Data	
Request Sensor Data	
Status Word	
Strain Gage Measurement	
Decoding the Status Word	
Decoding Gage Values from Hex to Counts	
How to Read Matrix Coefficients	
Using the Matrix Coefficients	
Matrix Coefficients Diagnostics	
Read FT Serial Number	
Set Active Calibration	
Read Unit Codes	
Read Counts Per Unit	
Example Calculation	
Comments About the Windows 10 Calculator	
Word vs DWORD/OWORD	21

OVERVIEW

This guide covers how to use PCAN View (PEAK-System CAN Viewer) to communicate with the ATI CAN BUS interface of a 9105-NETCANOEM board.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

SYSTEM COMPONENTS

ATI Components

9105-NETCANOEM

PEAK System Components

The hardware used to generate the screenshots in this guide was the PCAN-USB from PEAK System. The link to the device used is below:

https://www.peak-system.com/PCAN-USB.199.0.html?&L=1

Note: There may be other compatible devices that also work.

The driver for this adaptor can be found at the same link under *Downloads*.

Downloads

Device driver setup for Windows

PEAK-System installation package for device drivers and tools for Windows® 10, 8.1, 7 (32/64-bit) for our PC interfaces.

Included tools: PEAK-CPL, PCAN-View, PLIN-View Pro, and Virtual PCAN-Gateway

Software

The software tested was PCAN VIEW:

https://www.peak-system.com/PCAN-View.242.0.html

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

SYSTEM CONFIGURATION

Please review the 9105-NETCANOEM manual for the information required to wire and power the OEM board. The 9105-NETCANOEM manual can be found at the following link: https://www.ati-ia.com/app_content/documents/9610-05-1030.pdf

The NETCANOEM board can be powered with a DC voltage between 12V and 24V.

Configure ATI Hardware

On the NETCANOEM board, there are 2 DIP switches for *SW2*: Set DIP switch One to On -> Default settings Set DIP switch Two to On -> Termination Resistor ON

For reference, the Default settings are below:

Bit rate = 250 kBit/s Address (hex) = 20

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Configure PCAN VIEW

In the Connect window, set the Bit rate to 250 kBit/s and click OK.

USING PCAN TO COMMUNICATE WITH THE SENSOR

Send a Message

Click on the envelope to create a new message.

After a new message is created, it will show up under *Transmit*. To send the message, double-click on the *CAN-ID* of the message to send it.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

UNDERSTANDING THE SENSOR DATA

Request Sensor Data

Use the following message to request one sample of data from the sensor.

In order to stream the data continuously from the sensor, set the *Cycle Time*. This will put the command in a loop every xxx ms. In the following picture, the *Cycle Time* was set to 100 ms which will request sensor data every tenth of a second.

INDUSTRIAL AUTOMATION

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

The sensor will return two data packets, one with CAN-ID 0x200 and one with 0x201.

To stream the data, click the check box under *Cycle Time* as shown in previous picture.

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Status Word

The first 2 bytes of CAN-ID 0x200 shown below are the Status Word.

	CAN-ID Type		Length	Data	Cycle Time	Count
ı	200h		8	00 00 FF 57 00 0E FD 2C		1
ı	201h		6	01 42 F9 43 FD 2E		1

This 00 00 indicates a healthy sensor with no status bits shown. If this is not 00 00, we recommend reviewing the *NETCANOEM Status Register* table in the NETCANOEM manual to confirm the meaning of the status bit.

Below is a link to the NETCANOEM Manual:

https://www.ati-ia.com/app_content/documents/9610-05-1030.pdf

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Strain Gage Measurement

Similarly, the strain gage readings are returned when sensor data is requested. The values for SG0, SG2, and SG4 are returned in the packet for CAN-ID 0x200. The values for SG1, SG3, and SG5 are returned in the packet for CAN-ID 0x201.

S	G0						
ı		CAN-ID	Туре	Length	Data	Cycle Time	Count
		200h		8	00 00 FF 57 00 0E FD 2C		1
		201h		6	01 42 F9 43 FD 2E		1

SG	SG2									
ı		CAN-ID	Туре	Length	Data	Cycle Time	Count			
ı		200h		8	00 00 FF 57 00 0E FD 2C		1			
ı		201h		6	01 42 F9 43 FD 2E		1			

SG4										
ı		CAN-ID	Type	Length	Data	Cycle Time	Count			
ı		200h		8	00 00 FF 57 00 0E FD 2C		1			
ı		201h		6	01 42 F9 43 FD 2E		1			

SG1						
	CAN-ID	Туре	Length	Data	Cycle Time	Count
	200h		8	00 00 FF 57 00 0E FD 2C		1
	201h		6	01 42 F9 43 FD 2E		1

SG3						
	CAN-ID	Туре	Length	Data	Cycle Time	Count
	200h		8	00 00 FF 57 00 0E FD 2C		1
	201h		6	01 42 F9 43 FD 2E		1

SG5										
		CAN-ID	Type	Length	Data	Cycle Time	Count			
		200h		8	00 00 FF 57 00 0E FD 2C		1			
		201h		6	01 42 F9 43 FD 2E		1			

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Decoding the Status Word

The Status Word is provided in Hex format. For Microsoft Calculator to convert these correctly, *Word* must be selected. The example below shows how to see which bits the word 0x01E7 corresponds to. If you are using Windows 10, please review the section *Comments About the Windows 10 Calculator* before proceeding.

In the calculator under View, select Programmer.

Select Hex and Word as shown below.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Type in the Hex value that you wish to decode. For the example, we are decoding 0x01E7 from Hex to Binary. The Binary bits are shown below.

This shows that 0x01E7 = 0000 0001 1110 0111

ATI F/T CAN Bus for NETCANOEM Guide

INDUSTRIAL AUTOMATION

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Decoding Gage Values from Hex to Counts

The gage counts are provided in signed bytes (two's compliment). For Microsoft Calculator to convert these correctly, *Word* must be selected. The example below shows how to convert the word 0x01E7 from Hex to counts. If you are using Windows 10, please review the section *Comments About the Windows 10 Calculator* before proceeding.

In the calculator select *Programmer*, then select *Hex* and *Word*. Type in the HEX that you wish to convert to counts.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Now click on Dec to convert to decimal format.

This shows that 0x01E7 = 0000 0001 1110 0111 = 487 counts (or a signed integer value of +487).

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

HOW TO READ MATRIX COEFFICIENTS

To read the coefficients for Fx of the currently selected calibration, send a message to CAN-ID of 0x202 with a *Length* of 1(one data byte) containing the *Data* value of 00.

This will return 3 packets of data from 0x203, 0x204, and 0x205 as shown below.

Note: To send the message, under Transmit double click on the CAN-ID of the message you wish to send.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

To read the coefficients for Fy, send a message to CAN-ID of 0x202 with a *Length* of 1(one data byte) containing the *Data* value of 01.

Notice that the values returned under 0x202, 0x203, and 0x204 are now updated. These correspond to Fy.

The Data pattern continues for Fz, Tx, Ty, and Tz coefficients as shown below:

Fx=00 Tx=03

Fy=01 Ty=04

Fz=02 Tz=05

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Using the Matrix Coefficients

The Six coefficients for the Six strain gages of the Fy example are shown below. Please note that the values for your sensor will be different.

SG0 Coefficient

п	_ 202h	8	42 E7 94 F2 C	5 89 65 CB	1175.9	7
п	2 03h	8	C1 AA E7 D8 4	5 06 2A 82	1175.9	7
п	204h	8	C2 BF AE 17 4	5 08 A4 37	1175.9	7

SG1 Coefficient

П	ei×	202h	8	42 E7 94 F2	C5 89 65 CB	1175.9	7
П	ě	203h	8	C1 AA E7 D8	45 06 2A 82	1175.9	7
П	Œ	204h	8	C2 BF AE 17	45 08 A4 37	1175.9	7

SG2 Coefficient

П	∑ 202h	8	42 E7 94 F2 C5 89 65 CB	1175.9	7
п	စ္တီ 203h	8	C1 AA E7 D8 45 06 2A 82	1175.9	7
П	204h	8	C2 BF AE 17 45 08 A4 37	1175.9	7

SG3 Coefficient

ı	eive	202h	8	42 E7 94 F2	C5 89 65 CB	1175.9	7
П	ě	203h	8	C1 AA E7 D8	45 06 2A 82	1175.9	7
П	4	204h	8	C2 BF AE 17	45 08 A4 37	1175.9	7

SG4 Coefficient

-	_				
н	. ≥ 202h	8	42 E7 94 F2 C5 89 65 CB	1175.9	7
п	စ္တီ 203h	8	C1 AA E7 D8 45 06 2A 82	1175.9	7
П	204h	8	C2 BF AE 17 45 08 A4 37	1175.9	7

SG5 Coefficient

ei v	202h	8	42 E7 94 F2 C5 89 65 CB	1175.9	7	
M S	203h	8	C1 AA E7 D8 45 06 2A 82	1175.9	7	
~	204h	8	C2 BF AE 17 45 08 A4 37	1175.9	7	

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

For this example, the sensor output value for Fy can be constructed using the following expression, where FP("") indicates the floating point conversion of the data:

SG0*FP(42 E7 94 F2)+SG1*FP(C5 89 65 CB)+SG2*FP(C1 AA E7 D8)+...+SG5*FP(45 08 A4 37)

Your programming language should have a way to do this conversion.

Matrix Coefficients Diagnostics

It is a good idea to see if you are converting these numbers correctly.

There is an online converter at the following link: https://www.h-schmidt.net/FloatConverter/leef754.html

This converter lets you enter a decimal number to see the corresponding hexadecimal and binary representation. Alternatively, you can enter a sequence of hexadecimal bytes to see what the decimal value is. Try entering the byte values you are reading into the converter to see if it matches your program's output.

Below, is an example using the converter to convert a 4 byte floating point Hex (42 E7 94 F2) into decimal format.

FP(42 E7 94 F2) = 115.79

ATI F/T CAN Bus for NETCANOEM Guide

INDUSTRAUTOMA

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

READ FT SERIAL NUMBER

Use the following message to read the FT Serial Number.

This will return a message with a CAN-ID of 0x205. Right click on the message and select *Data Bytes Format* of *ASCII* to change the output to an easy to read format.

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Notice that the FT serial number (in this case FT21406) is now displayed.

ATI F/T CAN Bus for NETCANOEM Guide

INDUSTRIAL AUTOMATION

Engineered Products for Robotic Productivity

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

SET ACTIVE CALIBRATION

The active calibration is set to the first slot using the following message.

The active calibration is set to the second slot using the following message.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

After sending a message with a new calibration slot, double click on the *CAN-ID* 205h message to resend, this will refresh the serial number data.

Notice a new serial number is now loaded.

INDUSTRIAL AUTOMATION

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Re-send the messages requesting the matrix coefficients. With a new active calibration loaded, the coefficients for the matrix are now different. The active calibration must be selected before the coefficients for that serial number can be retrieved.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

READ UNIT CODES

The following message is used to read the unit codes from the sensor for the current calibration.

For this sensor, note that 02 and 03 in table 5.1 of the NETCANOEM manual correspond to N and Nm.

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Below is a link to the NETCANOEM Manual:

https://www.ati-ia.com/app_content/documents/9610-05-1030.pdf

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

READ COUNTS PER UNIT

The following message is used to read the *Counts Per Unit* for the current calibration.

This returns a message with a CAN-ID of 0x207. The first 4 bytes are the *Counts Per Unit* of force. The second 4 bytes are for the *Counts Per Unit* of torque.

INDUSTRIAL AUTOMATION

Engineered Products for Robotic Productivity

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

convert these.

The Counts Per Unit are provided in a 4 bytes integer format. Below is an example using Microsoft Calculator to

In the calculator, first select *Programmer*, then select *Hex* and *DWord*. Type in the Hex that you wish to convert to counts.

Notice that this shows 1,000,000 Counts Per Unit, since the force unit is N, this is 1,000,000 counts/N.

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

To find the *Counts Per Unit* of torque, use the second 4 bytes. Notice that for this sensor and calibration, this is the same value which indicates 1,000,000 counts/(Nm)

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

EXAMPLE CALCULATION

Below we show how to calculate Fy from the following strain gage data and matrix coefficients that were retrieved for Fy. In order to calculate a different sensor output (Fx, Fy, Fz, Tx, Ty, Tz), request the corresponding coefficients as shown in the *How to read matrix coefficients* Section of this guide.

Fy matrix coefficients: (Please review How to Read Matrix Coefficients for more information)

			 			, - <i>,</i>
ı	<u>\S</u>	202h	8	42 E7 94 F2 C5 89 65 CB	1175.9	7
1	ŏ	203h	8	C1 AA E7 D8 45 06 2A 82	1175.9	7
ı	l **	204h	8	C2 BF AE 17 45 08 A4 37	1175.9	7

Strain gage data: (Please review Understanding the Sensor Data for more information)

CAN-ID	Туре	Length	Data	Cycle Time	Count
200h		8	00 00 FF 57 00 0E FD 2C		1
201h		6	01 42 F9 43 FD 2E		1

Fy is calculated using the following equation:

Fy = SG0*SG0_Coefficient + SG1*SG1_Coefficient + SG2*SG2_Coefficient + SG3*SG3_Coefficient + SG4*SG4_Coefficient + SG5*SG5_Coefficient

Here is the raw data:

SG0 = FF 57	SG0 Coefficient = FP(42 E7 94 F2)
SG1 = 01 42	SG1 Coefficient = FP(C5 89 65 CB)
SG2 = 00 0E	SG2 Coefficient = FP(C1 AA E7 D8)
SG3 = F9 43	SG3 Coefficient = FP(45 06 2A 82)
SG4 = FD 2C	SG4 Coefficient = FP(C2 BF AE 17)
SG5 = FD 2E	SG5 Coefficient = FP(45 08 A4 37)

Converting the data into Signed Integer and Floating point results in the following:

SG0 = -169	SG0 Coefficient = 115.79091
SG1 = 322	SG1 Coefficient = -4396.724
SG2 = 14	SG2 Coefficient = -21.363205
SG3 = -1725	SG3 Coefficient = 2146.6567
SG4 = -724	SG4 Coefficient = -95.84002
SG5 = -722	SG5 Coefficient = 2186.2634

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Fy is calculated to be the following:

Fy = -169*115.79091 + 322*(-4396.724) + 14*(-21.363205) + (-1725)*2146.6567 + (-724)*(-95.84002) + (-722)*2186.2634

Fy = - 6647689.7 counts

Earlier, for this example sensor, we determined that the unit for Fy was N, and the *Counts Per Unit* of force was 1,000,000 counts/N.

Fy = -6,647,689.7 counts / 1,000,000 (counts/N) = -6.64 N

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

COMMENTS ABOUT THE WINDOWS 10 CALCULATOR

Please note there are some differences between the calculator program in Windows 7 and Windows 10. The functionality is the same, but there are differences in appearance.

Below we will go over how to perform operations shown earlier, but using the Windows 10 calculator instead.

In Windows 10 under settings select Programmer.

Word and Dword are accessed by clicking on the following to toggle between data types.

Calculat	or		-		×	
=	Prog	ramn	ner			
					0	
HEX	0					
	0					
1000000 A	0					
BIN	0					
- # -	**	DW	ORD	MS		
Lsh	Rsh	Or	Xor	Not	And	
1	Mod	CE	С	(8)	÷	
Α	В	7	8	9	×	
С	D	4	5	6	-	
Е	F	1	2	3	+	
()	±	0		=	

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

The Windows 10 calculator has the Bit toggling keypad which can be useful in troubleshooting.

Notice that when WORD is selected the top 3 rows of bits are greyed out.

To convert Hex to either Binary or Decimal, first select Hex input mode and use the Full keypad.

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

In the following example, we will convert 0x01E7 from Hex to Binary and to Dec(two's compliment signed integer). On the Keypad with Hex selected, input 01E7.

Notice that the calculator did not allow us to input the leading 0 of the 01E7, but the conversion is still the same. The calculator convieniently shows all conversions to other formats at a glance. If reviewing a status word, clicking on the *Bit toggling keypad* allows to quickly confirm which individual status bits are ON.

0x01E7 = 487 = 0000 0001 1110 0111

ATI F/T CAN Bus for NETCANOEM Guide

December 13, 2019
THIS DOCUMENT IS NOT CONTROLLED

Engineered Products for Robotic Productivity

Word vs DWORD/QWORD

The gage counts are provided in signed bytes (two's compliment). For Microsoft Calculator to convert these correctly, *Word* must be selected. In the screenshots below notice that the *Dec* conversion for 0x81E7 changes when *Word* is selected.

