数值分析实验报告 - Code 5

Chase Young

2024年4月7日

1 实验目的

分别编写用复化 Simpson 积分公式和复化梯形积分公式计算积分的通用程序,并用如上程序计算积分

$$I_1 = \int_0^4 \sin x dx, \ I_2 = \int_0^{2\pi} \sin x dx$$

取节点 x_i , i = 0, 1, ..., N, N 为 2^k , k = 1, 2, ..., 12,并分析误差。 利用公式计算算法的收敛阶:

$$Ord = \frac{\ln (Error_{old}/Error_{now})}{\ln (N_{now}/N_{old})}.$$

2 实验方法

2.1 复化 Simpson 公式

给定正整数 N,对于区间 [a,b] 中的等距点列 $a=x_0 < x_1 < \cdots < x_N = b$,令 $h=\frac{b-a}{N}$,则 复化 Simpson 公式为

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{N/2} \int_{x_{2i-2}}^{x_{2i}} f(x) dx \approx \frac{h}{3} \sum_{i=1}^{N/2} [f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i})]$$
$$= \frac{h}{3} \left[f(x_0) + 2 \sum_{i=2}^{N/2} f(x_{2i-2}) + 4 \sum_{i=1}^{N/2} f(x_{2i-1}) + f(x_N) \right]$$

对于函数 $f(x) = \sin x, x \in [a, b]$, 理论误差为

$$e = -\frac{1}{180} (b - a) h^4 f^{(4)}(\xi), \ \xi \in (a, b)$$

[a,b] 分别取 [0,4] 和 $[0,2\pi]$,上述误差界分别为

$$e_1 \le \frac{256}{45N^4}, \quad e_2 \le \frac{8\pi^5}{45N^4}$$

复化 Simpson 公式的具体实现见函数

• function I = compositeSimpson(f, x)

2.2 复化梯形公式

给定正整数 N,对于区间 [a,b] 中的等距点列 $a=x_0 < x_1 < \cdots < x_N = b$,令 $h=\frac{b-a}{N}$,则 复化梯形公式为

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{1}{2} \sum_{i=1}^{N} (x_i - x_{i-1}) [f(x_{i-1}) + f(x_i)]$$

对于函数 $f(x) = \sin x, x \in [a, b]$, 理论误差为

$$e = -\frac{1}{12} (b - a) h^2 f''(\xi), \ \xi \in (a, b)$$

[a,b] 分别取 [0,4] 和 $[0,2\pi]$,上述误差界分别为

$$e_1 \le \frac{16}{3N^2}, \quad e_2 \le \frac{2\pi^3}{3N^2}$$

复化梯形法则的具体实现见函数

• function I = compositeTrapezoidal(f, x)

3 实验结果

取 $N=2^k, k=1,2,\ldots,12$,分别使用复化 Simpson 公式和复化梯形公式计算积分 I_1,I_2 ,计算结果以及收敛阶如表 1, 2所示。

\overline{N}	Composite Simpson error	Order	Composite Trapezoidal error	Order
2	2.666145e-01	_	5.918513e-01	
4	1.040849e-02	4.6789e + 00	1.401564 e-01	2.0782e+00
8	5.917309e-04	4.1367e + 00	3.459531 e- 02	2.0184e+00
16	3.615514 e-05	4.0327e+00	8.621712 e-03	2.0045e+00
32	2.247077e-06	4.0081e+00	2.153743e-03	2.0011e+00
64	1.402463e- 07	4.0020e+00	5.383305 e-04	2.0003e+00
128	8.762338e-09	4.0005e+00	1.345761e-04	2.0001e+00
256	5.475982e-10	4.0001e+00	3.364360 e-05	2.0000e+00
512	3.422440 e-11	4.0000e+00	8.410875 e-06	2.0000e+00
1024	2.141398e-12	$3.9984e{+00}$	2.102717e-06	2.0000e+00
2048	1.323386e-13	4.0162e+00	5.256792 e-07	2.0000e+00
4096	8.215650 e-15	4.0097e+00	1.314198e-07	2.0000e+00

表 1: 复化 Simpson 公式和复化梯形公式计算 I_1 的结果

观察表格 1可知,对于积分 I_1 ,复化 Simpson 公式和复化梯形公式均能很好地工作,并且计算得到复化 Simpson 公式的收敛阶为 4,复化梯形公式的收敛阶为 2,符合预期。

观察表格 2可知,对于积分 I_2 ,复化 Simpson 公式和复化梯形公式计算数值积分的结果与真实值很接近;但由于已经接近机器精度,并且积分区间为一个周期,被划分成偶数个小区间,这些小区间的积分正负相消,因此收敛阶数不具有参考意义。

\overline{N}	Composite Simpson error	Order	Composite Trapezoidal error	Order
2	2.564894e-16	_	0.000000e+00	_
4	1.042799e-16	1.2984e+00	0.000000e+00	NaN
8	1.743934e-16	-7.4189e-01	1.743934e-16	-Inf
16	1.743934e-16	0.0000e+00	4.359836e-17	2.0000e+00
32	1.453279e-17	3.5850e + 00	4.414334e-16	-3.3399e+00
64	8.538011e-17	-2.5546e+00	3.528742 e-16	3.2304 e-01
128	1.362449 e-18	5.9696e + 00	3.661581 e- 16	-5.3313e-02
256	1.104719e-16	-6.3413e+00	5.097261e-16	-4.7726e-01
512	5.364641e-17	1.0421e+00	3.564293 e-16	5.1611e-01
1024	5.838589e-16	-3.4441e+00	8.692529 e-17	2.0358e+00
2048	2.035495 e-16	1.5202e+00	7.409525e-16	-3.0915e+00
4096	7.120333e-16	-1.8066e+00	3.505012e-17	4.4019e+00

表 2: 复化 Simpson 公式和复化梯形公式计算 I_2 的结果

4 后续讨论

从上述结果可知,复化 Simpson 公式具有 4 阶精度,而复化梯形公式只具有 2 阶精度,因此 复化 Simpson 公式的计算效率更高。