SVKM's

D. J. Sanghvi College of Engineering

Program: B.Tech in Electronics & Academic Year: 2022 Duration: 3 hours

Telecommunication Engg

Date: 07.01.2023

Time: 10:30 am to 01:30 pm

Subject: Digital Signal Processing (Semester V)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

Question No.		Max. Marks
Q1 (a)	Given $x(n)=\{1,2,3,4,4,3,2,1\}$ and N=8 Find $X(k)$ using DIT FFT algorithms	[10]
	OR Given $x(n) = n + 1$ and $N = 8$ Find $X(k)u \sin g$ DIFFFT $a \lg orithms$	[10]
Q1 (b)	State and prove Parseval's theorem	[05]
Q2 (a)	Convert an analog filter with system function H(s)in to digital IIR filter using impulse invariance method $H(s) = \frac{10}{s^2 + 7s + 10}$ Assume T= 1 sec	[08]
	OR	
	For the analog transfer function $H(s) = \frac{3}{(s+2)(s+3)}$ Determine $H(z)$ with sampling period $T = 0.1$ sec using Bilinear Transformation method	[08]
Q2 (b)	Explain the Design procedure for Chebyshev approximation	[07]
Q3 (a)	Determine the zeros of be following FIR systems and indicate whether the system is minimum phase, maximum phase or mixed phase (i) $H_1(Z) = 6 + Z^{-1} - Z^{-2}$ (ii) $H_2(Z) = 1 - Z^{-1} - 6Z^{-2}$	[07] [4+3]
	Comment on the stability of the minimum and maximum phase system	
	(OR)	
		[07]

******* 1 *******

	Explain the Minimum phase, Maximum Phase, Mixed Phase, all pass, linear phase, stable systems with proper diagrams	
Q3 (b)	Design a Linear phase FIR Digital filter for a given specification for hamming window of length M=7 $Hd(\omega) = e^{-j3\omega}$ for $\omega \le \pi/6$ $= 0$ otherwise	[08]
	OR Design the seventh order low pass linear phase FIR filter with cut off frequency 1 rad/ sec using hanning window	[08]
Q4 (a)	Explain the Quantization, truncation and rounding in detail	[10]
	OR Explain the architecture of TMS320CX fixed point DSP processors.	[10]
Q4 (b)	Explain the Special Instructions used in DSP Processors	[05]
Q5 (a)	Solve any two. i. State and prove the Twiddle factor (phase factor) property ii. Obtain the transfer function of Butterworth filter when N=1 iii. Explain the application of DSP for ECG signals analysis iv. Write a short note on Computer architecture for signal processing	[05] [05] [05] [05]
Q5 (b)	Explain the Application of DSP for Dual Tone Multi Frequency signal detection	[05]

******* 2 *******

******** 3 *******

******* 4 ******