Générateur semi-procédural de villes virtuelles à partir de données géographiques ouvertes

Nicolas Audebert

LASTIG - équipe STRUDEL

Journée de la recherche UGE-IGN-ENSG - 28 mars 2024

Apprentissage machine et observation de la Terre

Le machine learning est un outil essentiel pour l'interprétation des images de télédétéction :

- estimation de la biomasse,
- cartographie de l'occupation/usage des sols,
- calcul d'indicateurs démographiques ou de développement

(a) Hauteur de la canopée (EcoVision, ETHZ)

nicolas.audebert@ign.fr

(b) Occupation des sols par IA (IGN)

Apprentissage machine et observation de la Terre

Le machine learning est un outil essentiel pour l'interprétation des images de télédétéction :

- estimation de la biomasse,
- cartographie de l'occupation/usage des sols,
- calcul d'indicateurs démographiques ou de développement

(a) Hauteur de la canopée (EcoVision, ETHZ)

(b) Occupation des sols par IA (IGN)

nicolas.audebert@ign.fr

Apprentissage machine et observation de la Terre

Le machine learning est un outil essentiel pour l'interprétation des images de télédétéction :

- estimation de la biomasse,
- cartographie de l'occupation/usage des sols,
- calcul d'indicateurs démographiques ou de développement

(a) Hauteur de la canopée (EcoVision, ETHZ)

(b) Occupation des sols par IA (IGN)

Apprentissage machine et observation de la Terre

Le machine learning est un outil essentiel pour l'interprétation des images de télédétéction :

- estimation de la biomasse,
- cartographie de l'occupation/usage des sols,
- calcul d'indicateurs démographiques ou de développement

Sur quoi entraîner nos modèles?

Les données de télédétection (images aériennes ou satellitaires) sont extrêmement nombreuses...mais quasiment jamais étiquetées.

Pourtant les modèles ont besoin d'exemples pour être entraînés!

ANR JCJC MAGE (2022-2026)

Figure 1 – Ouragan Harvey, tsunami Palu, séisme à Mexico, feu à Santa Rosa. ¹

Les catastrophes naturelles sont des événements rares :

- Peu d'exemples annotés,
- Peu d'exemples tout court...

Comment peut-on entraîner des modèles d'IA pour cartographier les conséquences d'une catastrophe avec peu d'exemples réels?

1. Images DigitalGlobe, xBD : Gupta et al., 2019.

Génération de villes virtuelles

Comment produire une ville synthétique?

Au niveau macro, il nous faut savoir :

- ► Quel est son organisation?
 - Réseau routier, plan d'urbanisme, répartition des zones commerciales/résidentielles/industrielles
- ► Quelle est sa topographie?

Au niveau micro:

- Quelle architecture? Quelles infrastructures?
- Quelle végétation, quel climat, quels usages?

Solution : jumeau basse fidélité

S'inspirer du réel et inventer là où c'est nécessaire : « géotypique ».

Quelles données ouvertes?

RGE ALTI

Modèle numérique de terrain :

- ► Résolution 1 point/m²
- Exactitude altimétrique < 1m</p>
 - ightharpoonup < 0,5m en zone inondable

BD TOPO

Base de données vectorielles des éléments du territoire : bâti, hydrographie, occupation du sol (végétation), transport (réseau routier).

⇒ résout la question de la topographie et de l'organisation spatiale de l'aire géographique à simuler

https://geoservices.ign.fr/rgealti

https://geoservices.ign.fr/bdtopo

Première couche : terrain et environnement

Figure 2 – Création d'un maillage du terrain à partir du RGEALTI

Première couche : terrain et environnement

Figure 2 – Application d'une texture raster de la BD ORTHO

Première couche : terrain et environnement

Figure 2 – Modélisation des tronçons hydrographiques depuis la BD TOPO

Deuxième couche: éléments hors-sol

Figure 3 – Distribution aléatoire d'arbres dans les zones forestières identifiées dans la BD TOPO

Deuxième couche: éléments hors-sol

Figure 3 – Modélisation des bâtiments et des routes à partir des empreintes au sol (polygones pour le bâti, linéaires pour le routier)

Génération procédurale du bâti

Buildify² est un générateur procédural de bâtiments.

- Nécessite seulement l'emprise 2D du bâtiment et sa hauteur
- Intégré dans Blender (Geometry Nodes)
- Ne gère que les toits plats

Points spécifiques

- Catégorisation des bâtiments selon l'usage
- Extraction du nombre d'étages et/ou de la hauteur

⇒ si information absent	te, tirage aléatoire
-------------------------	----------------------

BATIMENT0000000358879996

BATIMENT0000000358879997

BATIMENT0000002000193826

BATIMENT0000002000193827

RATIMENT0000002000478237

BATIMENT0000002000478240

BATIMENT0000002000566756

BATIMENT0000002002027771 BATIMENT0000002002027772 Indifférencié

Indifférencié

Religieux

12.20

13.80 24.30

17,80

27.00

27,00

19,40

18.60

Troisième couche: embellissement

Figure 4 – Zoom sur une portion de ville

Troisième couche: embellissement

Figure 4 – Ajout aléatoire de voitures sur le réseau routier

Troisième couche: embellissement

Figure 4 – Simulation d'une inondation par crue

Simulation d'inondation

Inondation par montée des eaux

- Hypothèse : même capacité d'absorption de tous les sols, apport de l'eau uniquement par crue.
- ➤ Simulation par propagation : la hauteur d'eau ajoutée est proportionnelle à la distance géodésique d'un point au tronçon hydrographique le plus proche.

Génération d'orthophotos synthétiques

Figure 5 – Simulation d'une acquisition aérienne

Rendu des orthophotos

- Choix des paramètres d'illumination : date et heure pour la position du soleil
- Caméra orthographique réelle ou projective : résolution, altitude, angle, focale

Extensions futures

Complétude du générateur procédural

- Intégrer des générateurs plus variés pour ≠ catégories de bâti
- Gestion des infrastructures routières hors-route
- Génération du mobilier urbain
- Génération de textures

Au-delà de la photo

- Simulation de nuages de points Lidar
- Simulation d'acquisitions multispectrales

Vers un jumeau haute fidélité

- Croisement des sources de données : BD Forêt, cadastre, RPG.
- Quelles données pour plus de réalisme?

En conclusion

- Données ouvertes + génération procédurale = jumeau numérique basse fidélité
- ► Travailler en monde virtuel permet de simuler des acquisitions difficiles à obtenir dans le réel

Contact: nicolas.audebert@ign.fr

Code: https://github.com/geo-mage/

anr° Ces travaux sont issus du projet MAGE (2022–2026), financé par l'Agence Nationale de la Recherche.

Travaux menés au Conservatoire national des arts et métiers par Armand Verstraete et Nicolas Audebert.

