Appendix B: Notebook Code

Course: Productos Derivados: O25 LAT4012 2

Professor: Enríque Covarrubias Jaramillo

Heriberto Espino Montelongo, ID: 175199

Universidad de las Américas Puebla

Contents

Import necessary libraries	3
Fetching data from Investing.com	4
SOFR	6
Silver	8
Stock Price	. 9
Futures Contract Price	. 10
Horizon	. 11
Dividens	. 12
Theoretical Futures Price	. 13
Difference between Theoretical and Market Price	. 14
Risk Premium	. 15
Create a DataFrame with all the information	. 16
Plot the table for LaTeX	. 17
Plot the difference between Theoretical and Market Price	. 19
Plot the risk premium	. 20
Generalize the function for other derivatives	21
MXN/USD	24
Futures Contract Price	. 25
Spot Price	. 26
Pricing	. 27
Difference between Theoretical and Market Price	. 28
Premium Risk	. 29
Crude Oil	30
Futures Contract Price	. 31
Spot Price	. 32
Pricing	. 33

Difference between Theoretical and Market Price	34
Premium Risk	35
IPC	36
Futures Contract Price	37
Stock Price	38
Difference between Theoretical and Market Price	39
Premium Risk	40
CORN	41
Futures Contract Price	42
Spot Price	43
THE	44
Futures Contract Price	45
Spot Price	46
Pricing	
Difference between Theoretical and Market Price	40

Import necessary libraries

```
import numpy as np
import pandas as pd
import requests
import re
import matplotlib.pyplot as plt

import style
style.mpl_apply()
```

Fetching data from Inves-

ting.com

```
[2]: def fetch_from_investing(URL):
           HDRS = {
              "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)
        ⇔Chrome/122.0 Safari/537.36",
               "Accept-Language": "en-US,en;q=0.9",
           def parse_investing_hist(url=URL, headers=HDRS):
               html = requests.get(url, headers=headers, timeout=30).text
               tables = pd.read_html(html, flavor="lxml") # all tables, any locale
               # column name normalizer
               def norm_cols(df):
                   # flatten MultiIndex if present
                   if isinstance(df.columns, pd.MultiIndex):
                       df.columns = [" ".join([str(x) for x in tup if str(x)!='nan']).strip()
                                   for tup in df.columns]
                   df.columns = [c.strip().lower().replace("%","%").replace(" ", "_") for c in df.columns]
               # candidate header translations
               name_map = {
                   "fecha": "date", "date": "date",
                   "precio": "price", "price": "price",
                   "apertura": "open", "open": "open",
                   "máximo": "high", "maximo": "high", "high": "high",
                   "minimo":"low", "minimo":"low", "low":"low",
                   "volumen": "volume", "volume": "volume",
```

```
"var._%":"change_%", "variación_%":"change_%", "change_%":"change_%", "chg_%":"change_%"
   }
    for t in tables:
       t = norm_cols(t.copy())
        # try to rename known headers
        for k,v in list(name_map.items()):
           if k in t.columns and v not in t.columns:
                t = t.rename(columns={k:v})
        # fallback: detect a date-like first column
        if "date" not in t.columns:
            first = t.columns[0]
            # keep only rows that look like dates
            mask = t[first].astype(str).str.contains(r"\d{1,2}/\d{1,2}/\d{2,4}", na=False)
            if mask.any():
                t = t.loc[mask].rename(columns={first:"date"})
        if "date" not in t.columns:
            continue # not the right table
        # keep plausible price table (has at least price/open/high/low or price+change)
        if not ({"price", "open", "high", "low"} & set(t.columns)):
            continue
        # clean rows with actual dates
        t = t[t["date"].astype(str).str.contains(r"\d", na=False)].copy()
        t["date"] = pd.to_datetime(t["date"], errors="coerce", dayfirst=False)
        num_cols = [c for c in ["price","open","high","low","volume","change_%"] if c in t.columns]
        for c in num_cols:
            s = t[c].astype(str)
            # remove thousands separators and percent signs
           s = s.str.replace("%","", regex=False)
            s = s.str.replace(",","").str.replace("\u202f","")
            # handle suffixes like 'K', 'M'
            def to_num(x):
                m = re.fullmatch(r"(-?\d+(?:\.\d+)?)([KkMmBb])?", x.strip())
                if not m:
                    return pd.to_numeric(x, errors="coerce")
                val, suf = m.groups()
                val = float(val)
                mult = {"K":1e3,"k":1e3,"M":1e6,"m":1e6,"B":1e9,"b":1e9}.get(suf,1.0)
                return val*mult
            t[c] = s.map(to_num)
       t = t.sort_values("date").reset_index(drop=True)
        # standardize column order
       want = [c for c in ["date","price","open","high","low","volume","change_%"] if c in t.columns]
       return t[want]
   raise RuntimeError("Historical table not found. Page structure or consent wall blocked parsing.")
df = parse_investing_hist()
# make date the index
df = df.set_index("date").sort_index()
```

return df

SOFR

```
[3]: SOFR_rate = [4.34, 4.34, 4.39, 4.39, 4.41, 4.42, 4.40, 4.40, 4.39, 4.41, 4.41]
                   # Remove the non-bank day 2025-09-01
                  non_bank_day = ['2025-09-01']
                  dates = pd.date_range(start='2025-08-28', periods=len(SOFR_rate) + len(non_bank_day), freq='B')
                   \# Filter out the non-bank day from dates and SOFR
                  dates = dates[~dates.isin(non_bank_day)]
                   SOFR_rate = [rate for date, rate in zip(dates, SOFR_rate) if date != non_bank_day]
                   # Update SOFR_series
                  SOFR = pd.Series(SOFR_rate, index=dates)
                \label{local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-local-loc
                FutureWarning: The behavior of 'isin' with dtype=datetime64[ns] and castable
                values (e.g. strings) is deprecated. In a future version, these will not be
                considered matching by isin. Explicitly cast to the appropriate dtype before
                calling isin instead.
                     dates = dates[~dates.isin(non_bank_day)]
[4]: SOFR
[4]: 2025-08-28
                                                     4.34
                  2025-08-29 4.34
                  2025-09-02 4.39
                  2025-09-03 4.39
                  2025-09-04 4.41
                  2025-09-05 4.42
                  2025-09-08 4.40
                  2025-09-09 4.40
                  2025-09-10 4.39
                  2025-09-11
                                                      4.41
                  2025-09-12
                                                4.41
                  dtype: float64
[5]: start_date = SOFR.index[0]
                  end_date = SOFR.index[-1]
[6]: # keep the SOFR from 5sep until max
                  SOFR = SOFR[(SOFR.index >= '2025-09-05')]
[7]: SOFR
```

SOFR 8

```
[7]: 2025-09-05
                    4.42
      2025-09-08
                    4.40
      2025-09-09
                    4.40
      2025-09-10
                   4.39
      2025-09-11
                    4.41
      2025-09-12
                    4.41
      dtype: float64
[8]: dates = SOFR.index
[9]: SOFR_daily = (1 + SOFR/100)**(1/360) - 1 # daily compounding
      SOFR_daily
[9]: 2025-09-05
                    0.000120
      2025-09-08
                    0.000120
      2025-09-09
                    0.000120
      2025-09-10
                   0.000119
      2025-09-11
                    0.000120
      2025-09-12
                   0.000120
      dtype: float64
```

Silver

Stock Price

```
[10]: silver = fetch_from_investing("https://www.investing.com/currencies/xag-usd-historical-data")
       C:\Users\herie\AppData\Local\Temp\ipykernel_21496\338722890.py:11:
       FutureWarning: Passing literal html to 'read_html' is deprecated and will be
       removed in a future version. To read from a literal string, wrap it in a
       'StringIO' object.
         tables = pd.read_html(html, flavor="lxml") # all tables, any locale
[11]: silver
                                        high
                                                  low change_%
                      price
                               open
[11]:
        2025-08-18 38.0350 38.0350 38.2850 37.8176
                                                           0.05
        2025-08-19 37.3950 38.0357 38.1750 37.2665
                                                          -1.68
        2025-08-20 37.9087 37.3495 37.9650 36.9556
                                                           1.37
        2025-08-21 38.1900 37.8729 38.2550 37.5262
                                                           0.74
        2025-08-22 38.8475 38.1456 39.0950 37.6868
                                                           1.72
        2025-08-25 38.5750 38.9319 39.0250 38.5222
                                                          -0.70
        2025\hbox{-}08\hbox{-}26 \quad 38.6150 \quad 38.5811 \quad 38.8850 \quad 38.3275
                                                           0.10
        2025-08-27 38.6385 38.5839 38.7249 38.0774
                                                           0.06
        2025-08-28 39.0950 38.5767 39.1467 38.5404
                                                           1.18
        2025-08-29 39.6950 39.0361 40.0050 38.7090
                                                           1.53
        2025-09-01 40.6996 39.7050 40.7850 39.5160
                                                           2.53
        2025-09-02 40.9150 40.7542 40.9750 40.1307
                                                           0.53
        2025-09-03 41.2150 40.8735
                                    41.4850 40.6171
                                                           0.73
        2025-09-04 40.6950 41.1801
                                     41.2431 40.3947
                                                          -1.26
        2025-09-05 41.0050 40.6890
                                     41.4350 40.5497
                                                          0.76
        2025-09-07 40.8645 41.0020
                                     41.0055 40.7565
                                                          -0.34
        2025-09-08 41.3550 41.0050
                                     41.6750 40.5132
                                                          1.20
        2025-09-09 40.9050 41.3382 41.4984 40.7728
                                                          -1.09
        2025-09-10 41.1700 40.9085 41.3150 40.7155
                                                          0.65
        2025-09-11 41.5850 41.1929 41.7850 40.8810
                                                          1.01
        2025-09-12 42.1950 41.5695 42.4950 41.3931
                                                          1.47
        2025-09-14 42.1035 42.2325 42.2425 42.0705
                                                          -0.22
        2025-09-15 42.6165 42.2050 42.7656 41.9966
                                                          1.22
        2025-09-16 42.5295 42.6175 42.7525 42.3505
                                                          -0.20
[12]: silver_price = silver.iloc[:,0]
        silver_price = silver_price[silver_price.index.isin(dates)]
        silver_price
[12]: date
        2025-09-05
                     41.005
        2025-09-08
                      41.355
        2025-09-09
                     40.905
        2025-09-10
                     41.170
        2025-09-11
                     41.585
        2025-09-12
                     42.195
        Name: price, dtype: float64
```

Futures Contract Price

```
[13]: SIZ25_settle = [41.902-.35, 41.902, 41.341, 41.6, 42.149, 42.83]
SIZ25_expiration_date = pd.to_datetime("2025-12-29")
SIZ25_days_to_exp = (SIZ25_expiration_date - dates[-1]).days
SIZ25 = pd.Series(SIZ25_settle, index=dates)
SIZ25
[13]: 2025-09-05    41.552
2025-09-08    41.902
2025-09-09    41.341
```

2025-09-12 42.830 dtype: float64

2025-09-10 41.600 2025-09-11 42.149

Horizon

Dividens

Theoretical Futures Price

[16]: theoretical_price = silver_price * np.exp((SOFR_daily-silver_dividends) * SIZ25_days_to_exp)
theoretical_price

[16]: date

 2025-09-05
 41.575504

 2025-09-08
 41.912764

 2025-09-09
 41.451737

 2025-09-10
 41.714067

 2025-09-11
 42.131967

 2025-09-12
 42.744866

dtype: float64

dtype: float64

Difference between Theoretical and Market Price

Risk Premium

```
[18]: SIZ25_risk_premium = SIZ25_settle / silver_price - 1
SIZ25_risk_premium
```

[18]: date 2025-09-05

Create a DataFrame with all the information

```
[19]: SILVER = pd.DataFrame({
          "SOFR Rate": SOFR,
          "Horizon (days)": SIZ25_days_to_exp,
          "Silver Price": silver_price,
          "Market Settlement": SIZ25,
          "Theoretical Price": theoretical_price,
          "Difference": SIZ25_difference,
          "Risk Premium": SIZ25_risk_premium
       })
       SILVER
                 SOFR Rate Horizon (days) Silver Price Market Settlement \
[19]:
       2025-09-05 4.42 115 41.005
                                                          41.552
       2025-09-08 4.40
                                   112
                                            41.355
                                                            41.902
       2025-09-09
                     4.40
                                   111
                                            40.905
                                                            41.341
       2025-09-10
                     4.39
                                   110
                                            41.170
                                                            41.600
                                   109
       2025-09-11
                     4.41
                                            41.585
                                                            42.149
       2025-09-12
                     4.41
                                   108
                                            42.195
                                                            42.830
                 Theoretical Price Difference Risk Premium
       2025-09-05
                      41.575504 -0.023504 0.013340
       2025-09-08
                      41.912764 -0.010764
                                              0.013227
       2025-09-09
                      41.451737 -0.110737
                                              0.010659
       2025-09-10
                      41.714067 -0.114067
                                              0.010444
       2025-09-11
                      42.131967 0.017033
                                              0.013563
       2025-09-12
                     42.744866 0.085134
                                              0.015049
```

Plot the table for LaTeX

```
[20]: fig, ax = plt.subplots(figsize=(12, 6))
        ax.axis('tight')
        ax.axis('off')
        # Include the index in the table
        table_data = SILVER.reset_index() # Reset index to include it as a column
        # Rename the index column
        table_data = table_data.rename(columns={"index": "Date"})
        # show only the days, not the time
        table_data['Date'] = table_data['Date'].dt.date
        cell_text = table_data.round(4).values
        col_labels = table_data.columns
        the_table = ax.table(
            cellText=cell_text,
            colLabels=col_labels,
            loc='center',
            cellLoc='center'
        the_table.auto_set_font_size(True)
        the_table.set_fontsize(10)
        the_table.scale(1.2, 1.8)
        # Apply styles to the table
        for key, cell in the_table.get_celld().items():
            cell.set\_facecolor('\#001a60') # Set background color to blue
            cell.set_edgecolor('white') # Set border color to white
            cell.set_text_props(color='white') # Set font color to white
            # Make the Date and first column bold
            if key[1] == 0: # Date column
                 cell.set_text_props(weight='bold')
            # Make the first row (header) bold
            if key[0] == 0: # Header row
                cell.set_text_props(weight='bold')
        # Adjust layout to reduce margins
        plt.tight_layout(pad=0.1)
        \verb|plt.savefig("latex/figures/silver\_pricing\_over\_the\_week.pdf", bbox\_inches='tight', pad\_inches=0.2)|
        plt.show()
```

Date	SOFR Rate	Horizon (days)	Silver Price	Market Settlement	Theoretical Price	Difference	Risk Premium
2025-09-05	4.42	115	41.005	41.552	41.5755	-0.0235	0.0133
2025-09-08	4.4	112	41.355	41.902	41.9128	-0.0108	0.0132
2025-09-09	4.4	111	40.905	41.341	41.4517	-0.1107	0.0107
2025-09-10	4.39	110	41.17	41.6	41.7141	-0.1141	0.0104
2025-09-11	4.41	109	41.585	42.149	42.132	0.017	0.0136
2025-09-12	4.41	108	42.195	42.83	42.7449	0.0851	0.015

Plot the difference between Theoretical and Market Price

```
# plot a bar chart of the difference between theoretical and market price
plt.figure(figsize=(10, 5))
plt.plot(SILVER.index.strftime('%m-%d'), SILVER['Difference'], color='#001a60', marker='o')
plt.xlabel('Date')
plt.ylabel('Difference (Market - Theoretical)')
plt.title('Difference between Market Settlement and Theoretical Price of SIZ25')
plt.axhline(0, color='#880000', linestyle='-', linewidth=2)
plt.grid(True)
plt.savefig("latex/figures/silver_difference.pdf", bbox_inches='tight', pad_inches=0.2)
plt.show()
```

Difference between Market Settlement and Theoretical Price of SIZ25

Plot the risk premium

```
[22]: # plot the risk premium
plt.figure(figsize=(10, 5))
plt.plot(SILVER.index.strftime('%m-%d'), SILVER['Risk Premium']*100, color='#001a60', marker='o')
plt.xlabel('Date')
plt.ylabel('Risk Premium (%)')
plt.title('Risk Premium of SIZ25 over Theoretical Price')
plt.axhline(0, color='#880000', linestyle='-', linewidth=2)
plt.grid(True)
plt.savefig("latex/figures/silver_risk_premium.pdf", bbox_inches='tight', pad_inches=0.2)
plt.show()
```


Generalize the function for

other derivatives

```
[23]: def pricing_derivatives_over_time(SOFR, spot, name, futures_contract_settle,_
         →futures_contract_expiration_date,
                                        spot_dividends=None):
            futures_contract_settle = [41.902-.35, 41.902, 41.341, 41.6, 42.149, 42.83]
            futures_contract_expiration_date = pd.to_datetime("2025-12-29")
            dates = SOFR.index
            SOFR_daily = (1 + SOFR/100)**(1/360) - 1
            SOFR_daily
            spot_price = spot.iloc[:,0]
            spot_price = spot_price[spot_price.index.isin(dates)]
            futures_contract_expiration_date = pd.to_datetime(futures_contract_expiration_date)
            futures_contract_days_to_exp = (futures_contract_expiration_date - dates[-1]).days
            futures_contract = pd.Series(futures_contract_settle, index=dates)
            futures_contract_days_to_exp = []
            for day in range(len(dates)):
                futures_contract_days_to_exp.append((futures_contract_expiration_date - dates[day]).days)
            futures_contract_days_to_exp = pd.Series(futures_contract_days_to_exp, index=dates)
            if spot_dividends is None:
                spot_dividends = pd.Series(np.zeros(len(dates)), index=dates)
            else :
```

```
spot_dividends = spot_dividends[spot_dividends.index.isin(dates)]
   theoretical_price = spot_price * np.exp((SOFR_daily-spot_dividends) * futures_contract_days_to_exp)
   futures\_contract\_difference = futures\_contract - theoretical\_price
   futures_contract_risk_premium = futures_contract_settle / spot_price - 1
   spot = pd.DataFrame({
       "SOFR Rate": SOFR,
       "Horizon (days)": futures_contract_days_to_exp,
       f"{name} Price": spot_price,
       "Market Settlement": futures_contract,
       "Theoretical Price": theoretical_price,
       "Difference": futures_contract_difference,
       "Risk Premium": futures_contract_risk_premium
   })
   return spot
def plot_table(spot, name):
   # plot the table for LaTeX
   fig, ax = plt.subplots(figsize=(12, 6))
   ax.axis('tight')
   ax.axis('off')
   table_data = spot.reset_index()
   table_data = table_data.rename(columns={"index": "Date"})
   table_data['Date'] = table_data['Date'].dt.date
   cell_text = table_data.round(4).values
   col_labels = table_data.columns
   the_table = ax.table(
       cellText=cell_text,
       colLabels=col_labels,
       loc='center',
       cellLoc='center'
   the_table.auto_set_font_size(True)
   the_table.set_fontsize(10)
   the_table.scale(1.2, 1.8)
   # Apply styles to the table
   for key, cell in the_table.get_celld().items():
       cell.set_facecolor('#001a60') # Set background color to blue
       cell.set_edgecolor('white') # Set border color to white
       cell.set_text_props(color='white') # Set font color to white
       # Make the Date and first column bold
       if key[1] == 0: # Date column
           cell.set_text_props(weight='bold')
       # Make the first row (header) bold
        if key[0] == 0: # Header row
           cell.set_text_props(weight='bold')
   # Adjust layout to reduce margins
   plt.tight_layout(pad=0.1)
```

```
plt.savefig(f"latex/figures/{name}_pricing_over_the_week.pdf", bbox_inches='tight', pad_inches=0.2)
   plt.show()
   return spot
def plot_difference(spot, name):
   # plot a bar chart of the difference between theoretical and market price
   plt.figure(figsize=(10, 5))
   plt.plot(spot.index.strftime('%m-%d'), spot['Difference'], color='#001a60', marker='o')
   plt.xlabel('Date')
   plt.ylabel('Difference (Market - Theoretical)')
   plt.title('Difference between Market Settlement and Theoretical Price of futures_contract')
   plt.axhline(0, color='#880000', linestyle='-', linewidth=2)
   plt.savefig(f"latex/figures/{name}_difference.pdf", bbox_inches='tight', pad_inches=0.2)
   plt.show()
def plot_risk_premium(spot, name):
   # plot the risk premium
   plt.figure(figsize=(10, 5))
   plt.plot(spot.index.strftime('%m-%d'), spot['Risk Premium']*100, color='#001a60', marker='o')
   plt.xlabel('Date')
   plt.ylabel('Risk Premium (%)')
   plt.title('Risk Premium of futures_contract over Theoretical Price')
   plt.axhline(0, color='#880000', linestyle='-', linewidth=2)
   plt.grid(False)
   plt.savefig(f"latex/figures/{name}_risk_premium.pdf", bbox_inches='tight', pad_inches=0.2)
   plt.show()
```

MXN/USD

Futures Contract Price

-0.07

0.37

0.21

0.13

0.74

0.18

-0.13

0.46

0.06

Spot Price

```
[25]: mxnusd = fetch_from_investing("https://www.investing.com/currencies/mxn-usd-historical-data")
mxnusd
```

C:\Users\herie\AppData\Local\Temp\ipykernel_21496\338722890.py:11:
FutureWarning: Passing literal html to 'read_html' is deprecated and will be removed in a future version. To read from a literal string, wrap it in a 'StringIO' object.

tables = pd.read_html(html, flavor="lxml") # all tables, any locale

[25]:		price	open	high	low	change_%
[20].	date					
	2025-08-18	0.05323	0.05343	0.05345	0.05299	-0.22
	2025-08-19	0.05314	0.05324	0.05332	0.05299	-0.17
	2025-08-20	0.05328	0.05314	0.05341	0.05305	0.26
	2025-08-21	0.05332	0.05321	0.05340	0.05314	0.08
	2025-08-22	0.05375	0.05335	0.05386	0.05322	0.81
	2025-08-25	0.05355	0.05381	0.05391	0.05347	-0.37
	2025-08-26	0.05358	0.05355	0.05372	0.05345	0.06
	2025-08-27	0.05358	0.05357	0.05364	0.05319	0.00
	2025-08-28	0.05361	0.05358	0.05376	0.05350	0.06
	2025-08-29	0.05360	0.05363	0.05370	0.05341	-0.02
	2025-09-01	0.05362	0.05362	0.05376	0.05354	0.04
	2025-09-02	0.05340	0.05364	0.05366	0.05299	-0.41
	2025-09-03	0.05346	0.05342	0.05361	0.05323	0.11
	2025-09-04	0.05337	0.05345	0.05349	0.05317	-0.17
	2025-09-05	0.05343	0.05337	0.05382	0.05334	0.11

2025-09-07 0.05339 0.05344 0.05349 0.05337

2025-09-08 0.05359 0.05343 0.05371 0.05336

2025-09-09 0.05370 0.05359 0.05381 0.05356

2025-09-10 0.05377 0.05369 0.05387 0.05360

2025-09-11 0.05417 0.05377 0.05421 0.05356

2025-09-12 0.05427 0.05416 0.05429 0.05399

2025-09-14 0.05420 0.05424 0.05424 0.05416

2025-09-15 0.05445 0.05421 0.05456 0.05416

2025-09-16 0.05448 0.05446 0.05449 0.05443

Pricing

2025-09-12

[26]: MXNUSD = pricing_derivatives_over_time(SOFR, mxnusd, "mxnusd", MPU25_settle, MXNUSD_expiration_date)
MXNUSD

-0.001106

[0.0]		SOFR Rate Horizon	n (davs) m	xnusd Price	Market Settlement	\
[26]:	2025-09-05	4.42	10	0.05343	0.05342	•
	2025-09-08	4.40	7	0.05359	0.05357	
	2025-09-09	4.40	6	0.05370	0.05367	
	2025-09-10	4.39	5	0.05377	0.05378	
	2025-09-11	4.41	4	0.05417	0.05409	
	2025-09-12	4.41	3	0.05427	0.05421	
		Theoretical Price	Differenc	e Risk Premi	um	
	2025-09-05	0.053494				
	2025-09-08	0.053635	-0.00006	5 -0.0003	373	
	2025-09-09	0.053739	-0.00006	9 -0.0005	559	
	2025-09-10	0.053802	-0.00002	2 0.0001	86	
	2025-09-11	0.054196	-0.00010	6 -0.0014	177	

0.054290 -0.000080

Difference between Theoretical and Market Price

[27]: plot_difference(MXNUSD, "mxnusd")

Difference between Market Settlement and Theoretical Price of futures_contract

Premium Risk

[28]: plot_risk_premium(MXNUSD, "mxnusd")

Crude Oil

Futures Contract Price

```
[29]: # Crude Oil Futures (CLV25)
CLV25_settle = [62.26-.39, 62.26, 62.63, 63.67, 62.37, 62.69]
CLV25_expiration_date = "2025-09-22"
CLV25 = pd.Series(CLV25_settle, index=dates)
CLV25

[29]: 2025-09-05    61.87
2025-09-08    62.26
2025-09-09    62.63
2025-09-10    63.67
2025-09-11    62.37
2025-09-12    62.69
dtype: float64
```

Spot Price

```
[30]: wti = fetch_from_investing("https://www.investing.com/commodities/crude-oil-historical-data")
wti
```

C:\Users\herie\AppData\Local\Temp\ipykernel_21496\338722890.py:11:
FutureWarning: Passing literal html to 'read_html' is deprecated and will be removed in a future version. To read from a literal string, wrap it in a 'StringIO' object.

tables = pd.read_html(html, flavor="lxml") # all tables, any locale

[30]:

	price	open	high	low	change_%
date					
2025-08-18	63.42	63.00	63.79	62.18	0.99
2025-08-19	62.35	63.27	63.39	62.25	-1.69
2025-08-20	63.21	62.60	63.55	62.39	1.38
2025-08-21	63.52	62.85	63.67	62.52	0.49
2025-08-22	63.66	63.50	63.93	63.31	0.22
2025-08-25	64.80	63.88	65.10	63.53	1.79
2025-08-26	63.25	64.75	64.76	63.13	-2.39
2025-08-27	64.15	63.31	64.23	62.95	1.42
2025-08-28	64.60	63.87	64.70	63.35	0.70
2025-08-29	64.01	64.26	64.55	63.88	-0.91
2025-08-31	63.96	63.98	64.01	63.92	-0.08
2025-09-01	64.64	64.61	64.88	63.67	1.06
2025-09-02	65.59	63.95	66.03	63.66	1.47
2025-09-03	63.97	65.62	65.72	63.72	-2.47
2025-09-04	63.48	63.82	63.84	62.72	-0.77
2025-09-05	61.87	63.33	63.49	61.45	-2.54
2025-09-07	62.23	62.34	62.34	61.87	0.58
2025-09-08	62.26	62.00	63.34	61.85	0.05
2025-09-09	62.63	62.43	63.67	62.37	0.59
2025-09-10	63.67	62.74	64.08	62.72	1.66
2025-09-11	62.37	63.80	63.80	62.21	-2.04
2025-09-12	62.69	62.27	63.98	61.69	0.51
2025-09-14	62.68	62.32	62.71	62.26	-0.02
2025-09-15	63.33	63.32	63.67	62.52	1.04
2025-09-16	63.43	63.32	63.52	63.31	0.16

Pricing

[31]: CRUDE_OIL = pricing_derivatives_over_time(SOFR, wti, "crude_oil", CLV25_settle, CLV25_expiration_date)
CRUDE_OIL

[31]:		SOFR Rate Horizon	(days) cr	ude_oil Price N	Market Settlement	\
[01].	2025-09-05	4.42	17	61.87	61.87	
	2025-09-08	4.40	14	62.26	62.26	
	2025-09-09	4.40	13	62.63	62.63	
	2025-09-10	4.39	12	63.67	63.67	
	2025-09-11	4.41	11	62.37	62.37	
	2025-09-12	4.41	10	62.69	62.69	
		Theoretical Price	Difference	Risk Premium		
	2025-09-05	61.996501	-0.126501	0.0		
	2025-09-08	62.364350	-0.104350	0.0		
	2025-09-09	62.727467	-0.097467	0.0		
	2025-09-10	63.761254	-0.091254	0.0		
	2025-09-11	62.452302	-0.082302	0.0		
	2025-09-12	62.765200	-0.075200	0.0		

Difference between Theoretical and Market Price

[32]: plot_difference(CRUDE_OIL, "crude_oil")

Difference between Market Settlement and Theoretical Price of futures_contract

Premium Risk

[33] · plot_risk_premium(CRUDE_OIL, "crude_oil")

Risk Premium of futures_contract over Theoretical Price

IPC

Futures Contract Price

Stock Price

```
import yfinance as yf
[35]:
        ipc = yf.download('^MXX', start='2020-01-01', end='2025-12-31')
       C:\Users\herie\AppData\Local\Temp\ipykernel_21496\2632186628.py:4:
       FutureWarning: YF.download() has changed argument auto_adjust default to True
         ipc = yf.download('^MXX', start='2020-01-01', end='2025-12-31')
       [********* 100 %******** 1 of 1 completed
                                          High
                                                                               Volume
        Price
                           Close
                                                         Low
                                                                      0pen
[35]:
        Ticker
                                                        ^MXX
                                                                      ^MXX
                            ^MXX
                                          ^MXX
                                                                                 ^MXX
        Date
        2020 \hbox{-} 01 \hbox{-} 02 \quad 44437.230469 \quad 44521.519531 \quad 43716.488281 \quad 43739.519531
                                                                             95180400
        2020-01-03 44624.851562 44742.980469 44177.910156 44355.210938
        2020-01-06 44495.300781 44571.738281 44287.128906 44489.968750
                                                                             86928400
        2020-01-07 44157.808594 44588.269531 44018.058594 44522.359375 137546300
        2020-01-08 44470.910156 44515.988281 44078.410156 44160.550781 144629400
        2025-09-09 60679.531250 60820.859375 60447.128906 60688.058594 172272600
        2025-09-10 60489.191406
                                  60987.351562 60431.628906 60643.140625 156040900
        2025-09-11 61553.578125
                                  61886.121094 60605.320312 60686.628906
        2025-09-12 61798.941406 61941.988281 61535.960938 61596.890625
        2025-09-15 62102.128906 62252.128906 61730.359375 61894.851562 134046507
        [1437 rows x 5 columns]
        monthly_dividends_expected = 0.04
[36]:
        # Ensure IPCU25_expiration_date is a datetime object
[37]:
        IPCU25_expiration_date = pd.to_datetime(IPCU25_expiration_date)
        # U in futures stands for the month of September
        # Calculate days for expiration
        days_for_expiration = (IPCU25_expiration_date - dates).days
        days_for_expiration
        Index([14, 11, 10, 9, 8, 7], dtype='int64')
[37]:
        {\tt expected\_dividends = monthly\_dividends\_expected / 30 * days\_for\_expiration}
[38]:
        expected_dividends = pd.Series(expected_dividends, index=dates)
        IPC = pricing_derivatives_over_time(SOFR, ipc, "ipc", IPCU25_settle, IPCU25_expiration_date,u
[39]:
         \hookrightarrowexpected_dividends)
                    SOFR Rate Horizon (days)
                                                  ipc Price Market Settlement \
[39]:
        2025-09-05
                         4.42
                                           14 60479.761719
                                                                         60722
        2025-09-08
                         4.40
                                           11 60649.761719
                                                                         60814
        2025-09-09
                         4.40
                                           10 60679.531250
                                                                         60759
        2025-09-10
                         4.39
                                           9 60489.191406
                                                                         60685
                         4.41
                                            8 61553.578125
                                                                         61614
        2025-09-11
        2025-09-12
                                            7 61798.941406
                                                                         61758
                         4.41
```

	Theoretical Price	Difference	Risk Premium
2025-09-05	46649.282408	14072.717592	0.004005
2025-09-08	51681.410836	9132.589164	0.002708
2025-09-09	53168.667423	7590.332577	0.001310
2025-09-10	54355.122058	6329.877942	0.003237
2025-09-11	56573.106082	5040.893918	0.000982
2025-09-12	57939.078173	3818.921827	-0.000662

Difference between Theoretical and Market Price

[40]: plot_difference(IPC, "ipc")

Difference between Market Settlement and Theoretical Price of futures_contract

Premium Risk

[41]: plot_risk_premium(IPC, "ipc")

Risk Premium of futures_contract over Theoretical Price

CORN

Futures Contract Price

Spot Price

It is difficult to get reliable data for the spot price of corn.

THE

Futures Contract Price

```
[43]: # TIIE Futures (TIEU26)
        TIEU26_settle = [92.925-.07, 92.925, 92.955, 92.93, 92.965, 93.035]
        TIEU26 = pd.Series(TIEU26_settle, index=dates)
        TIEU26
[43]: 2025-09-05
                     92.855
        2025-09-08
                     92.925
        2025-09-09
                     92.955
        2025-09-10 92.930
        2025-09-11 92.965
        2025-09-12 93.035
        dtype: float64
[44]: TIEU26_expiration_date = "2026-09-30"
        TIEU26_expiration_date = pd.to_datetime(TIEU26_expiration_date)
        days_for_expiration = (TIEU26_expiration_date - dates).days
        days_for_expiration = pd.Series(days_for_expiration, index=dates)
        days_for_expiration
[44]: 2025-09-05
                     390
        2025-09-08
                     387
        2025-09-09
                     386
        2025-09-10
                     385
        2025-09-11
                     384
        2025-09-12
                     383
        dtype: int64
```

Spot Price

```
[45]: # read the Sheet1 from tile.xlsx
        tiie = pd.read_excel("tiie.xlsx", sheet_name="Sheet1", index_col=0, parse_dates=True)
                   TIIE a 28 días, Tasa de interés en por ciento anual
[45]:
        Fecha
        2006-01-02
                                                              8.5700
        2006-01-03
                                                              8.5650
        2006-01-04
                                                              8.5500
        2006-01-05
                                                              8.5650
        2006-01-06
                                                              8.5750
        2025-09-09
                                                              8.0126
        2025-09-10
                                                              8.0126
        2025-09-11
                                                              8.0126
        2025-09-12
                                                              8.0126
        2025-09-15
                                                              8.0126
        [4955 rows x 1 columns]
[46]: tile = tile[tile.index.isin(dates)]
        tiie = pd.Series(tiie.iloc[:,0], index=tiie.index)
[46]: Fecha
        2025-09-05
                     8.0226
        2025-09-08
                     8.0226
        2025-09-09
                   8.0126
        2025-09-10 8.0126
        2025-09-11 8.0126
        2025-09-12 8.0126
        Name: TIIE a 28 días, Tasa de interés en por ciento anual, dtype: float64
```

Pricing

```
theoretical\_price\_tiie = 100 - 100*((1 + tiie/100/360) ** days\_for\_expiration-1)*360/days\_for\_expiration-1)*360/days\_for\_expiration-1)*360/days\_for\_expiration-10*((1 + tiie/100/360) ** days\_for\_expiration-1)*360/days\_for\_expiration-10*((1 + tiie/100/360) ** days\_for\_expiration-10*((1 + tiie/100/
[47]:
                      theoretical_price_tiie
[47]: Fecha
                     2025-09-05
                                                       91.619424
                     2025-09-08
                                                       91.622265
                     2025-09-09
                                                       91.634107
                     2025-09-10
                                                      91.635051
                     2025-09-11
                                                       91.635995
                     2025-09-12
                                                       91.636939
                     dtype: float64
                    difference_tiie = TIEU26 - theoretical_price_tiie
[48]:
                      difference_tiie
[48]: 2025-09-05
                                                      1.235576
                     2025-09-08
                                                       1.302735
                     2025-09-09
                                                       1.320893
                     2025-09-10
                                                      1.294949
                     2025-09-11
                                                      1.329005
                     2025-09-12
                                                      1.398061
                     dtype: float64
[49]: TIIE = pd.DataFrame({
                               "SOFR Rate": SOFR,
                               "Horizon (days)": days_for_expiration,
                               "TIIE Rate": tiie,
                               "Market Settlement": TIEU26,
                               "Theoretical Price": theoretical_price_tiie,
                               "Difference": difference_tiie
                     })
                     TIIE
                                                  SOFR Rate Horizon (days) TIIE Rate Market Settlement \
[49]:
                     2025-09-05
                                                              4.42
                                                                                                       390
                                                                                                                           8.0226
                                                                                                                                                                          92.855
                     2025-09-08
                                                              4.40
                                                                                                       387
                                                                                                                            8.0226
                                                                                                                                                                          92.925
                     2025-09-09
                                                              4.40
                                                                                                       386
                                                                                                                           8.0126
                                                                                                                                                                          92.955
                     2025-09-10
                                                              4.39
                                                                                                       385
                                                                                                                           8.0126
                                                                                                                                                                          92.930
                     2025-09-11
                                                              4.41
                                                                                                        384
                                                                                                                           8.0126
                                                                                                                                                                          92.965
                     2025-09-12
                                                              4.41
                                                                                                        383
                                                                                                                           8.0126
                                                                                                                                                                          93.035
                                                  Theoretical Price Difference
                     2025-09-05
                                                                    91.619424 1.235576
                                                                     91.622265
                                                                                                1.302735
                     2025-09-08
                     2025-09-09
                                                                                                1.320893
                                                                     91.634107
                     2025-09-10
                                                                     91.635051
                                                                                                    1.294949
                                                                     91.635995
                     2025-09-11
                                                                                                    1.329005
                     2025-09-12
                                                                     91.636939
                                                                                                     1.398061
[50]: def tile_pricing_derivatives_over_time(spot, name):
                               # plot the table for LaTeX
                               fig, ax = plt.subplots(figsize=(12, 6))
                              ax.axis('tight')
                              ax.axis('off')
```

```
table_data = spot.reset_index()
table_data = table_data.rename(columns={"index": "Date"})
table_data['Date'] = table_data['Date'].dt.date
cell_text = table_data.round(4).values
col_labels = table_data.columns
the_table = ax.table(
   cellText=cell_text,
   colLabels=col_labels,
   loc='center',
   cellLoc='center'
)
the_table.auto_set_font_size(True)
the_table.set_fontsize(10)
the_table.scale(1.2, 1.8)
# Apply styles to the table
for key, cell in the_table.get_celld().items():
   cell.set_facecolor('#001a60') # Set background color to blue
   cell.set_edgecolor('white') # Set border color to white
   cell.set_text_props(color='white') # Set font color to white
   # Make the Date and first column bold
   if key[1] == 0: # Date column
        cell.set\_text\_props(weight="bold")
   # Make the first row (header) bold
    if key[0] == 0: # Header row
        cell.set_text_props(weight='bold')
```

[51]: tile_pricing_derivatives_over_time(TIIE, "tile")

Date	SOFR Rate	Horizon (days)	TIIE Rate	Market Settlement	Theoretical Price	Difference
2025-09-05	4.42	390	8.0226	92.855	91.6194	1.2356
2025-09-08	4.4	387	8.0226	92.925	91.6223	1.3027
2025-09-09	4.4	386	8.0126	92.955	91.6341	1.3209
2025-09-10	4.39	385	8.0126	92.93	91.6351	1.2949
2025-09-11	4.41	384	8.0126	92.965	91.636	1.329
2025-09-12	4.41	383	8.0126	93.035	91.6369	1.3981

```
def plot_difference(spot, name):
    # Adjust layout to reduce margins
    plt.tight_layout(pad=0.1)

plt.savefig(f"latex/figures/{name}_pricing_over_the_week.pdf", bbox_inches='tight', pad_inches=0.2)
    plt.show()

# plot a bar chart of the difference between theoretical and market price
```

```
plt.figure(figsize=(10, 5))
plt.plot(spot.index.strftime('%m-%d'), spot['Difference'], color='#001a60', marker='o')
plt.xlabel('Date')
plt.ylabel('Difference (Market - Theoretical)')
plt.title('Difference between Market Settlement and Theoretical Price of futures_contract')
plt.axhline(0, color='#880000', linestyle='-', linewidth=2)
plt.grid(False)
plt.savefig(f"latex/figures/{name}_difference.pdf", bbox_inches='tight', pad_inches=0.2)
plt.show()
return spot
```

Difference between Theoretical and Market Price

[53]: plot_difference(TIIE, "tile")

2025-09-10

2025-09-11

2025-09-12

<Figure size 800x800 with 0 Axes>

Difference between Market Settlement and Theoretical Price of futures_contract

[53]:		SOFR Rate Horizo	on (days) T	IIE Rate	Market Settlement	١
	2025-09-05	4.42	390	8.0226	92.855	
	2025-09-08	4.40	387	8.0226	92.925	
	2025-09-09	4.40	386	8.0126	92.955	
	2025-09-10	4.39	385	8.0126	92.930	
	2025-09-11	4.41	384	8.0126	92.965	
	2025-09-12	4.41	383	8.0126	93.035	
		Theoretical Price	Differenc	е		
	2025-09-05	91.619424	1.23557	6		
	2025-09-08	91.622265	1.30273	5		
	2025-09-09	91 634107	1 32089	3		

1.294949

1.329005

1.398061

91.635051

91.635995

91.636939