

planetmath.org

Math for the people, by the people.

topological vector lattice

Canonical name TopologicalVectorLattice

Date of creation 2013-03-22 17:03:51 Last modified on 2013-03-22 17:03:51

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 6

Author CWoo (3771)
Entry type Definition
Classification msc 06F20
Classification msc 46A40
Defines locally solid

A topological vector lattice V over \mathbb{R} is

- a Hausdorff topological vector space over \mathbb{R} ,
- a vector lattice, and
- *locally solid*. This means that there is a neighborhood base of 0 consisting of solid sets.

Proposition 1. A topological vector lattice V is a topological lattice.

Before proving this, we show the following equivalence on the continuity of various operations on a vector lattice V that is also a topological vector space.

Lemma 1. Let V be a vector lattice and a topological vector space. The following are equivalent:

- 1. $\vee: V^2 \to V$ is continuous (simultaneously in both arguments)
- 2. $\wedge: V^2 \to V$ is continuous (simultaneously in both arguments)
- 3. $^+:V \rightarrow V$ given by $x^+:=x \lor 0$ is continuous
- 4. $\bar{} : V \to V \text{ given by } x^- := -x \lor 0 \text{ is continuous}$
- 5. $|\cdot|: V \to V$ given by $|x|:=-x \lor x$ is continuous

Proof. $(1 \Leftrightarrow 2)$. If \vee is continuous, then $x \wedge y = x + y - x \vee y$ is continuous too, as + and - are both continuous under a topological vector space. This proof works in reverse too. $(1 \Rightarrow 3)$, $(1 \Rightarrow 4)$, and $(3 \Leftrightarrow 4)$ are obvious. To see $(4 \Rightarrow 5)$, we see that $|x| = x^+ + x^-$, since - is continuous, + is continuous also, so that $|\cdot|$ is continuous. To see $(5 \Rightarrow 4)$, we use the identity $x = x^+ - x^-$, so that $|x| = (x + x^-) + x^-$, which implies $x^- = \frac{1}{2}(|x| - x)$ is continuous. Finally, $(3 \Rightarrow 1)$ is given by $x \vee y = (x - y + y) \vee (0 + y) = (x - y) \vee 0 + y = (x - y)^+ + y$, which is continuous.

In addition, we show an important inequality that is true on any vector lattice:

Lemma 2. Let V be a vector lattice. Then $|a^+ - b^+| \le |a - b|$ for any $a, b \in V$.

Proof. $|a^+ - b^+| = (b^+ - a^+) \lor (a^+ - b^+) = (b \lor 0 - a \lor 0) \lor (a \lor 0 - b \lor 0)$. Next, $a \lor 0 - b \lor 0 = (b + (-a \land 0) \lor (-a \land 0) = ((b - a) \land b) \lor (-a \land 0)$ so that $|a^+ - b^+| = ((b - a) \land b) \lor (-a \land 0) \lor ((a - b) \land a) \lor (-b \land 0) \le (b - a) \lor (-a \land 0) \lor (a - b) \lor (-b \land 0)$. Since $(b - a) \lor (a - b) = |a - b|$ and $a \lor 0$ are both in the positive cone of V, so is their sum, so that $0 \le (b - a) \lor (a - b) + (a \lor 0) = (b - a) \lor (a - b) - (-a \land 0)$, which means that $(-a \land 0) \le (b - a) \lor (a - b)$. Similarly, $(-b \land 0) \le (b - a) \lor (a - b)$. Combining these two inequalities, we see that $|a^+ - b^+| \le (b - a) \lor (-a \land 0) \lor (a - b) \lor (-b \land 0) \le (b - a) \lor (a - b)$. \square

We are now ready to prove the main assertion.

Proof. To show that V is a topological lattice, we need to show that the lattice operations meet \wedge and join \vee are continuous, which, by Lemma 1, is equivalent in showing, say, that $^+$ is continuous. Suppose N is a neighborhood base of 0 consisting of solid sets. We prove that $^+$ is continuous. This amounts to showing that if x is close to x_0 , then x^+ is close to x_0^+ , which is the same as saying that if $x - x_0$ is in a solid neighborhood U of 0 ($U \in N$), then so is $x^+ - x_0^+$ in U. Since $x - x_0 \in U$, $|x - x_0| \in U$. But $|x^+ - x_0^+| \leq |x - x_0|$ by Lemma 2, and U is solid, $x^+ - x_0^+ \in U$ as well, and therefore $^+$ is continuous.

As a corollary, we have

Proposition 2. A topological vector lattice is an ordered topological vector space.

Proof. All we need to show is that the positive cone is a closed set. But the positive cone is defined as $\{x \mid 0 \le x\} = \{x \mid x^- = 0\}$, which is closed since $\bar{}$ is continuous, and the positive cone is the inverse image of a singleton, a closed set in \mathbb{R} .