

CprE 281: Digital Logic

Instructor: Alexander Stoytchev

http://www.ece.iastate.edu/~alexs/classes/

Serial Adder

CprE 281: Digital Logic Iowa State University, Ames, IA Copyright © Alexander Stoytchev

Administrative Stuff

- Homework 10 is out
- It is due on Monday Nov 14 @ 4pm

Administrative Stuff

Final Project

Quick Review

Adding two bits (there are four possible cases)

Adding two bits (the truth table)

	Carry	Sum
x y	С	
0 0	0	0
0 1	0	1
1 0	0	1
1 1	1	0

Adding two bits (the logic circuit)

The Half-Adder

(d) Graphical symbol

Addition of multibit numbers

Generated carries
$$\longrightarrow$$
 1 1 1 0 ... c_{i+1} c_i ... $X = x_4 x_3 x_2 x_1 x_0$ 0 1 1 1 1 (15)₁₀ ... x_i ... x_i ... y_i ...

Bit position *i*

Problem Statement and Truth Table

	c_{i+1}	C_{i}	
		y_i	
_			
•••	•••	s_i	•••

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0		0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Let's fill-in the two K-maps

c_i	x_i	y_i	c_{i+1}	s_i
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_{i+1} =$$

Let's fill-in the two K-maps

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1	0 0 0 1 0 1	0 1 1 0 1 0 0
1	1	1	1	1

$$s_i = x_i \oplus y_i \oplus c_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

The circuit for the two expressions

This is called the Full-Adder

XOR Magic

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

XOR Magic

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

$$s_i = (\overline{x}_i y_i + x_i \overline{y}_i) \overline{c}_i + (\overline{x}_i \overline{y}_i + x_i y_i) c_i$$
$$= (x_i \oplus y_i) \overline{c}_i + (\overline{x}_i \oplus y_i) c_i$$
$$= (x_i \oplus y_i) \oplus c_i$$

XOR Magic

$$s_i = \overline{x}_i y_i \overline{c}_i + x_i \overline{y}_i \overline{c}_i + \overline{x}_i \overline{y}_i c_i + x_i y_i c_i$$

Can you prove this?

$$s_{i} = (\overline{x}_{i}y_{i} + x_{i}\overline{y}_{i})\overline{c}_{i} + (\overline{x}_{i}\overline{y}_{i} + x_{i}y_{i})c_{i}$$

$$= (x_{i} \oplus y_{i})\overline{c}_{i} + (x_{i} \oplus y_{i})e_{i}$$

$$= (x_{i} \oplus y_{i}) \oplus c_{i}$$

XOR Magic (s_i can be implemented in two different ways)

$$s_i = x_i \oplus y_i \oplus c_i$$

A decomposed implementation of the full-adder circuit

(a) Block diagram

(b) Detailed diagram

The Full-Adder Abstraction

The Full-Adder Abstraction

We can place the arrows anywhere

n-bit ripple-carry adder

n-bit ripple-carry adder abstraction

n-bit ripple-carry adder abstraction

The x and y lines are typically grouped together for better visualization, but the underlying logic remains the same

Serial Adder

 The n-bit adder requires all bits to be provided at the same time.

 In some cases we may want to add the numbers as the bits come in.

Also, with an n-bit adder we are limited to n-bits.
 Circuits for larger n are more complex.

Can we add arbitrarily long numbers.

Block diagram for the serial adder

G: carry-in = 0

c_{i}	x_i	y_i	c_{i+1}	s_i
0	0	0 1	0	0 1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

G: carry-in = 0

c_i	x_i	y_i	c_{i+1}	s_i
0 0 0	0 0 1	0 1 0	0 0 0	0 1 1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

G: carry-in = 0

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	0 0 0 1 0 1	0 1 1 0 1 0
1 1	1	0 1	1 1	0 1

G: carry-in = 0

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0	0 0 0 1 0 1	0 1 1 0 1 0
1 1	1	0 1	1 1	0 1

G: carry-in = 0

c_{i}	x_i	y_i	c_{i+1}	s_i
0 0 0 0 1 1	_	0 1 0 1 0 1	0 0 0 1 0 1	0 1 1 0 1 0 0
1	1	1	1	1

G: carry-in = 0

$c_i x_i y_i$	c_{i+1}	s_i
G 0 0 G 0 1 G 1 0 G 1 1 H 0 0 H 0 1 H 1 0 H 1 1	G G H G H H	0 1 1 0 1 0 0 1

G: carry-in = 0

$c_i x_i y$	c_{i+1}	s_i
G 0 0 G 0 1 G 1 0 G 1 1 H 0 0 H 0 1 H 1 0 H 1 1	G G H G H	0 1 1 0 1 0 0 0
	- I	

G: carry-in = 0

$c_i x_i$	y_i	c_{i+1}	s_i
G 0 G 0 G 1 G 1 H 0 H 0 H 1 H 1	0 1 0 1 0 1 0	G G H G H H	0 1 0 1 0 0 0

G: carry-in = 0

\boldsymbol{c}_{i}	i	x_i	y_i	c_{i+1}	s_i
C C C H H	i i i I	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	G G H G H H	0 1 1 0 1 0 0

G: carry-in = 0

c_i	x_i	y_i	c_{i+1}	s_i
G G G H H H	0 0 1 1 0 0 1 1	0 1 0 1 0 1 0	G G H G H H	0 1 1 0 1 0 0

G: carry-in = 0

Present	N	Output s						
state	<i>ab</i> =00	01	10	11	00	01	10	11
G								
Н								

Present	N	ext st	ate	Output s				
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н				
Н	G	Н	Н	Н				

Present	N	Output s						
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

Present	N	ext st	ate	Output s				
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	H	Н	Н	1	0	0	$1 \mid$

Present	N	Output s						
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

State-assigned table for the serial adder

Present	N	Output						
state	<i>ab</i> =00	01	10	11	00	01	10	11
у	Y				S			
0								
1								

Present	N	Output s						
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	Н	Н	Н	1	0	0	1

State-assigned table for the serial adder

Present	N	Output						
state	<i>ab</i> =00	01	10	11	00	01	10	11
у		S						
0	0	0	0	1				
1	0	1	1	1				

Present	N	Output s						
state	<i>ab</i> =00	01	10	11	00	01	10	11
G	G	G	G	Н	0	1	1	0
Н	G	Н	H	Н	1	0	0	1

State-assigned table for the serial adder

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
у	Y				S			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

Present	Next state				Output			
state	<i>ab</i> =00	01	10	11	00	01	10	11
У	\overline{Y}				S			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
У	Y				S			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
У	Y				S			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
у	Y				\boldsymbol{S}			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
у	Y				\boldsymbol{S}			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Present	Next state				Output			
state	ab =00	01	10	11	00	01	10	11
у	Y				\boldsymbol{S}			
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Present Next state					Output			
state	ab =00	01	10	11	00	01	10	11
У		Y				À	S	
0	0	0	0	1	0	1	1	0
1	0	1	1	1	1	0	0	1

у	а	b	Y	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$Y = ab + ay + by$$

$$Y = ab + ay + by$$
 $s = XOR(XOR(a, b), y)$

Circuit for the serial adder FSM

$$Y = ab + ay + by$$

$$s = XOR(XOR(a, b), y)$$

Moore Machine Implementation

State diagram for the Moore-type serial adder FSM

State diagram for the Moore-type serial adder FSM

carry=0, sum=1

carry=1, sum=1

State diagram for the Moore-type serial adder FSM

Present	N	Output			
state	<i>ab</i> =00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Present	N	Output			
state	<i>ab</i> =00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1 1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Present	N	Output			
state	<i>ab</i> =00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Present				
state	<i>ab</i> =00	Output		
<i>y</i> 2 <i>y</i> 1		Y_2Y_1		S
00				
01				
10				
11				

Present	N	Output			
state	<i>ab</i> =00	01	10	11	S
G_0	G_0	G_1	G_1	H_0	0
G_1	G_0	G_1	G_1	H_0	1
H_0	G_1	H_0	H_0	H_1	0
H_1	G_1	H_0	H_0	H_1	1

Present	ľ						
state	<i>ab</i> =00	01	10	11	Output		
<i>y</i> 2 <i>y</i> 1		Y_2Y_1					
00	0 0	01	0 1	10	0		
01	0 0	01	0 1	10	1		
10	0 1	10	10	11	0		
11	0 1	10	10	11	1		

Present	ľ	Nextstate						
state	<i>ab</i> =00	Output						
<i>y</i> 2 <i>y</i> 1		Y_2Y_1						
00	0 0	01	0 1	10	0			
01	0 0	01	0 1	10	1			
10	0 1	10	10	11	0			
11	0 1	10	10	11	1			

Deriving Y1, Y2, and s

Present	N							
state	<i>ab</i> =00	ab =00 01 10 11						
<i>y</i> 2 <i>y</i> 1		Y_2Y_1						
00	0 0	01	0 1	10	0			
01	0 0	01	0 1	10	1			
10	0 1	10	10	11	0			
11	0 1	10	10	11	1			

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Present	N						
state	<i>ab</i> =00	01	10	11	Output		
<i>y</i> 2 <i>y</i> 1		Y_1					
00	0	1	1	0	0		
01		1		0	1		
10		0	0	1	0		
11	1	0	0	1	1		

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Present	N					
state	<i>ab</i> =00	01	10	11	Output	
<i>y</i> 2 <i>y</i> 1		Y_1				
00	0	1	1	0	0	
01		1		0	1	
10	1	0	0	1	0	
11		0 [0 [1	1	

y_2	y_I	а	b	Y_I	Y_2
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

D	N						
Present state	<i>ab</i> =00						
y2y1		Y_1			S		
00	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0		
01			$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	$\begin{bmatrix} & 1 \\ & 0 \end{bmatrix}$		
11		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	1		

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

	_						
Present	l 1	Nextstate					
state	<i>ab</i> =00	01	10	11	Output		
<i>y</i> 2 <i>y</i> 1		Y_1					
00	0	1	1	0	0		
01		1		0	1		
10		0	0	1	0		
11		0	0 [1	1		

$\sqrt{y_2y}$	1			
a b	00	01	11	10
00	0	0	1	1
01	1	1	0	0
11	0	0	1	1
10	1	1	0	0

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

Present	N				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		y_1	-		S
00	0	1	1	0	0
01		1	1	0	1
10		0	0	1	$\mid 0 \mid$
11		0	0	1	1

$$Y_1 = a \oplus b \oplus y_2$$

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

Present	1						
state	<i>ab</i> =00	ab =00 01 10 11					
<i>y</i> 2 <i>y</i> 1		Y_2					
00	0	0	0		0		
01	0	0	0		1		
10	0		1		0		
11	0		1		1		

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	1	
0	0	1	1	0	
0	1	0	0	0	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	0	
1	1	1	0	0	
1	1	1	1	1	

Present	1				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		S			
00	0	0	0	1	0
01	0	0	0		1
10	0	1	1		0
11	0] 1			1

y_2	y_I	а	b	Y_I	Y_2
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

Present	1	Vextst	ate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1	Y_2				S
00	0	0	0		0
01	0		0		1
10	0		1		0
11	0		1		1

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

Present	1				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2			
00	О	0	0	1	О
01	0		0		1
10	0		1		0
11	0		1		1

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

Present	1	Vextst	ate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1	Y_2				S
00	0	0	0		0
01	0		0		1
10	0		1		0
11	0		1		1

y_2	y_I	а	b	Y_I	Y_2
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

Present	1	Vextst	ate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1	Y_2				S
00	О	0	0	1	0
01	0	0	0		1
10	0		1		0
11	0	1	1		1

$$Y_2 = ab + ay_2 + by_2$$

y_2	y_I	а	b	Y_{I}	Y_2
0	0	0	0	0	0
0	0	0	1	1	0
0	0	1	0	1	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	1	0	0	1
1	0	1	1	1	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	1	1

Present	N	Vextst	ate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2Y	1		S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

y_2	y_I	S
0	0	
0	1	
1	0	
1	1	

Present	N	Vextst	ate		
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2Y	1		S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

y_2	y_I	S
0	0	0
0	1	1
1	0	0
1	1	1

Present	Present Nextstate				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1				S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

y_2	y_I	S
0	0	0
0	1	1
1	0	0
1	1	1

Present	Present Nextstate				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2Y	1		S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

y_2	y_I	S
0	0	0
0	1	1
1	0	0
1	1	1

Present	ent Nextstate				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1	Y_2Y_1				S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

y_2	y_I	S
0	0	0
0	1	1
1	0	0
1	1	1

$$s = y_1$$

State-assigned table for the Moore-type serial adder FSM

Present	Nextstate				
state	<i>ab</i> =00	01	10	11	Output
<i>y</i> 2 <i>y</i> 1		Y_2Y	1		S
00	0 0	01	0 1	10	0
01	0 0	01	0 1	10	1
10	0 1	10	10	11	0
11	0 1	10	10	11	1

$$Y_1 = a \oplus b \oplus y_2$$

$$Y_2 = ab + ay_2 + by_2$$

$$s = y_1$$

Circuit for the Moore-type serial adder FSM

$$Y_1 = a \oplus b \oplus y_2$$
 (sum bit from FA)
 $Y_2 = ab + ay_2 + by_2$ (carry bit from FA)
 $s = y_1$

[Figure 6.47 from the textbook]

Questions?

THE END