

INFORME DE PROYECTO

DILATACION LINEAL DE UN RESORTE

FIS102-NX-2-2024

Integrantes:

- >Diego hinojosa saavedra
- >Esteban Gomez
- >Jose Illescas
- >Ruben caceres

INDICE

>Introduccion
Objetivos del proyecto2
Historia de la dilatacion lineal2
>Fundamento teorico
Preguntas sobre dilatacion Lineal3
Coeficiente de dilatación lineal4
Aplicaciones prácticas4
>Materiales
Equipo y materiales usados5
Procedimientos5-6
>Calculos
Datos del ejercicio7
>Conclusion
Resumen del proyecto8
Conclusion del proyecto8
>Referencias
Fuentes de informacion utilizados9

OBJETIVOS

- 1. Comprender el Fenómeno de la Dilatación Lineal: Explicar cómo y por qué los materiales, en este caso un resorte, se expanden o contraen con los cambios de temperatura.
- 2. Determinar el Coeficiente de Dilatación Lineal del Resorte: Calcular el coeficiente específico del material del resorte utilizado en el experimento.
- 3. Comparar Resultados Experimentales con Teoría: Evaluar si los resultados obtenidos en el experimento coinciden con las predicciones teóricas y discutir posibles discrepancias.
- 4. **Identificar Aplicaciones Prácticas**: Explorar cómo el conocimiento de la dilatación lineal se aplica en la ingeniería y otras áreas prácticas.

HISTORIA

Orígenes y Primeros Estudios

- 1. **Antigüedad:** Los primeros estudios sobre la dilatación térmica se remontan a la antigua Grecia, donde filósofos como Aristóteles observaron que los materiales se expanden al calentarse.
- 2. **Edad Media:** Durante este período, los estudios sobre la dilatación térmica fueron limitados debido a la falta de instrumentos precisos y el enfoque en otros campos del conocimiento.

Desarrollo Científico

- 1. Siglo XVII: Con el avance de la ciencia experimental, Galileo Galilei y otros científicos comenzaron a investigar la dilatación térmica de manera más sistemática. Galileo observó que los metales se expanden cuando se calientan.
- 2. **Siglo XVIII:** Joseph Black, un químico escocés, realizó experimentos detallados sobre la..

.Formalización y Aplicaciones

- 1. Siglo XIX: La dilatación lineal se formalizó matemáticamente. Jean-Baptiste Biot y otros científicos desarrollaron fórmulas para calcular la expansión de los materiales. La Revolución Industrial impulsó el estudio de la dilatación térmica debido a su importancia en la ingeniería y la construcción.
- 2. Siglo XX: Con el desarrollo de la física moderna, se comprendieron mejor los mecanismos atómicos y moleculares detrás de la dilatación térmica. La teoría de la dilatación se integró en la termodinámica y la física de materiales.

Era Moderna

1. **Siglo XXI:** Hoy en día, la dilatación lineal es un concepto fundamental en la ingeniería y la ciencia de materiales. Se utiliza en el diseño de estructurad puentes, vías férreas y en la fabricación de componentes electrónicos, donde la precisión es crucial.

FUNDAMENTO TEORICO

• ¿Qué es la dilatación lineal?

Es el cambio en la longitud de un objeto debido a una variación de temperatura.

• Fórmula de la dilatación lineal:

 $\Delta L=LO \cdot \alpha \cdot \Delta T \setminus Delta L = L_O \setminus cdot \setminus alpha \setminus cdot \setminus Delta T$

Factores que afectan la dilatación lineal:

Longitud original (LOL_0), coeficiente de dilatación (α \alpha), y cambio de temperatura (Δ T\Delta T).

Importancia en la construcción:

Permite diseñar estructuras que soporten cambios de temperatura sin dañarse.

• Uso en termómetros:

Los líquidos en termómetros se expanden o contraen con la temperatura, indicando así la temperatura.

Coeficiente de dilatación lineal:

El coeficiente de dilatación lineal (α) es un parámetro que mide cuánto se expande o contrae un material en una dimensión lineal cuando cambia su temperatura. Este coeficiente es característico de cada material y se expresa en unidades de°C-loK-l

Aplicaciones prácticas:

Puentes y Vías Férreas

Juntas de Expansión: Los puentes y las vías férreas están equipados con juntas de expansión para permitir la dilatación y contracción debido a los cambios de temperatura, evitando así daños estructurales.

2. Edificios y Estructuras

Materiales de Construcción: Los materiales como el concreto y el acero se seleccionan y diseñan teniendo en cuenta sus coeficientes de dilatación para evitar grietas y deformaciones.

3. Tuberías

 Sistemas de Tuberías: En las tuberías de agua caliente y vapor, se utilizan bucles de expansión y juntas flexibles para acomodar los cambios de longitud debido a las variaciones de temperatura.

4. Instrumentos de Precisión

 Instrumentos de Medición: Los instrumentos de precisión, como los calibradores y micrómetros, están fabricados con materiales que tienen coeficientes de dilatación muy bajos para minimizar los errores de medición causados por cambios de temperatura.

5. Industria Aeroespacial

 Componentes de Aeronaves: En la industria aeroespacial, se seleccionan materiales con coeficientes de dilatación específicos para garantizar que los componentes de las aeronaves mantengan su integridad estructural a diferentes altitudes y temperaturas.

6. Electrónica

• Circuitos Integrados: Los materiales utilizados en los circuitos integrados y otros componentes electrónicos se eligen para minimizar la expansión y contracción térmica, lo que podría causar fallos en los circuitos.

7. Vidrios y Cristales

 Ventanas y Espejos: Los vidrios y espejos en edificios y vehículos están diseñados para soportar cambios de temperatura sin romperse, gracias a su coeficiente de dilatación controlado.

MATERIALES

- >3 Palos de diferentes tamaños
- >Alambre de cobre
- >Un soporte cuadrado para base
- >1Tuerca
- >1 Resorte
- >1Vela
- >Pistola de silicona

PROCEDIMIENTO

Paso 1: Armar la base

Unimos los palos con la base, usando la pistola de

silicona

Paso 2:Unir el alambre de cobre con la estructura y el resorte y agregar el contrapeso de la tuerca.

Paso 3:Tensamos una linea guia de cobre al nivel de la tuerca para medir la distancia de la dilatacion lineal.

Paso 4: Con la vela encendida aplicar calor sobre el resorte.

CALCULOS

L=30cm+0.00264cm=30.00264cm

Un resorte de acero tiene una longitud inicial de 30 cm a 20°C. Se utiliza en un experimento para medir la dilatación lineal cuando se calienta. Se sabe que el coeficiente de dilatación lineal del acero es 11 x 10⁻⁶ °C⁻¹. ¿Cuál será la nueva longitud del resorte si se calienta hasta 100°C? ¿Cuánto se ha expandido el resorte en centímetros? Solución: Datos: Longitud inicial del resorte (L₀): 30 cm = 0.30 m Coeficiente de dilatación lineal del acero (α): 11 x 10⁻⁶ °C⁻¹ Temperatura inicial (T_0): 20°C Temperatura final (T_1) : 100°C Cambio de temperatura (ΔT) : $T_1 - T_0 = 100$ °C - $20^{\circ}C = 80^{\circ}C$ Fórmula de Dilatación Lineal: $\Delta L = \alpha \cdot L \circ \cdot \Delta T \Delta L = \alpha \cdot L \circ \cdot \Delta T$ Cálculo del cambio en la longitud (ΔL): $\Delta L = (11 \times 10 - 6 \, ^{\circ}\text{C} - 1) \cdot (0.30 \, \text{m}) \cdot (80 \, ^{\circ}\text{C}) \, \Delta L =$ $(11 \times 10 -6 \, ^{\circ}\text{C} -1) \cdot (0.30\,\text{m}) \cdot (80\, ^{\circ}\text{C}) \, \Delta \, L =$ $11 \times 10 - 6 \cdot 0.30 \cdot 80 \Delta L = 11 \times 10 - 6 \cdot 0.30 \cdot 80 \Delta L =$ $2.64 \times 10 - 5 \text{ m} = 0.0000264 \text{ m} =$ $0.00264 \text{ cm } \Delta L = 2.64 \times 10 - 5 \text{ m} =$ 0.0000264m=0.00264cm Nueva Longitud del Resorte (L): $L = L \ 0 + \Delta L \ L = L \ 0 + \Delta L \ L = 30 \ cm + 0.00264 \ cm = 30.00264 \ cm$

Resultados: La nueva longitud del resorte será aproximadamente 30.00264 cm. La dilatación del resorte es de aproximadamente 0.00264 cm.

CONCLUSION

La dilatación lineal es un fenómeno físico fundamental que debe considerarse en el diseño y uso de materiales en diversas industrias. Comprender y calcular correctamente la dilatación lineal ayuda a prevenir fallos estructurales y a garantizar la seguridad y durabilidad de las construcciones y dispositivos.

RESUMEN

En este experimento medimos la distancia de un resorte al someterse a altas temperaturas y comprendimos la dilatacion lineal con un facil ejemplo de un resorte usando materiales basicos de la vida cotidiana.

REFERENCIAS

https://www.youtube.com/watch? v=ZpiWEDxHhA4&ab_channel=IsaacBadillo

https://es.wikipedia.org/wiki/Coeficiente_de_dilataci%C3%B3n

https://www.ingenierizando.com/termodinamica/coeficiente-de-dilatacion/

https://www.lifeder.com/dilatacion-lineal/

https://www.euston96.com/dilatacion-lineal/

https://nucleovisual.com/dilatacion-lineal/