

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 684 313 A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: **95105693.6**

(51) Int. Cl.⁶: **C12N 15/55, C12N 9/16,
A23K 1/165**

(22) Date of filing: **15.04.95**

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(30) Priority: **25.04.94 EP 94810228**

(43) Date of publication of application:
29.11.95 Bulletin 95/48

(64) Designated Contracting States:
AT BE CH DE DK ES FR GB IT LI NL

(71) Applicant: **F. Hoffmann-La Roche AG
CH-4002 Basel (CH)**

(72) Inventor: **Van Loon, Adolphus
17 Waldshuterstrasse
CH-4310 Rheinfelden (CH)**
Inventor: **Mitchell, David
2a Kundmannweg
CH-4147 Aesch (CH)**

(74) Representative: **Braun, Axel et al
F.Hoffmann-La Roche AG
Grenzacherstrasse 124
Postfach 32 55
CH-4002 Basel (CH)**

(54) **Polypeptides with phytase activity.**

(57) The present invention is directed to a DNA sequence coding for a polypeptide having phytase activity which DNA sequence is derived from specific groups of fungi, polypeptides encoded by such DNA sequences, vectors comprising such DNA sequences, bacteria or a fungal or yeast host transformed by such DNA sequences or vectors, a process for the preparation of a polypeptide by culturing such transformed hosts and composite feeds comprising one or more such polypeptides.

Phytases (*myo*-inositol hexakisphosphate phosphohydrolases; EC 3.1.3.8) are enzymes that hydrolyze phytate (*myo*-inositol hexakisphosphate) to *myo*-inositol and inorganic phosphate and are known to be valuable feed additives.

A phytase was first described in rice bran in 1907 [Suzuki et al., Bull. Coll. Agr. Tokio Imp. Univ. 7, 495 (1907)] and phytases from *Aspergillus* species in 1911 [Dox and Golden, J. Biol. Chem. 10, 183-186 (1911)]. Phytases have also been found in wheat bran, plant seeds, animal intestines and in microorganisms [Howson and Davis, Enzyme Microb. Technol. 5, 377-382 (1983), Lambrechts et al., Biotech. Lett. 14, 61-66 (1992), Shieh and Ware, Appl. Microbiol. 16, 1348-1351 (1968)].

The cloning and expression of the phytase from *Aspergillus niger* (ficuum) has been described by VanHartingsveldt et al., in Gene, 127, 87-94 (1993) and in European Patent Application, Publication No. 420 358 and from *Aspergillus niger* var awamori by Piddington et al. in Gene 133, 55-62 (1993).

Since phytases used so far in agriculture have certain disadvantages it is an object of the present invention to provide new phytases or more generally speaking polypeptides with phytase activity against inositol phosphates including phytases ("phytase activity") in large quantities with improved properties. Since it is known that phytases used so far loose activity during the feed pelleting process due to heat treatment, improved heat tolerance would be such a property.

So far phytases have not been reported in thermotolerant fungus with the exception of *Aspergillus fumigatus* [Dox and Golden et al., J. Biol. Chem. 10, 183-186 (1911)] and *Rhizopus oryzae* [Howson and Davies, Enzyme Microb. Technol. 5, 377-382 (1993)]. Thermotolerant phytases have been described originating from *Aspergillus terreus* Strain 9A-1 [Temperature optimum 70 °C; Yamada et al., Agr. Biol. Chem. 32, 1275-1282 (1968)] and *Schwanniomyces castellii* [Temperature optimum 77 °C; Segueilha et al., Bioeng. 74, 7-11 (1992)]. However for commercial use in agriculture such phytases must be available in large quantities. Accordingly it is an object of the present invention to provide DNA sequences coding for heat tolerant phytases. Improved heat tolerance of phytases encoded by such DNA sequences can be determined by assays known in the art, e.g. by the processes used for feed pelleting or assays determining the heat dependence of the enzymatic activity itself as described, e.g. by Yamada et al. (s.a.).

It is furthermore an object of the present invention to screen fungi which show a certain degree of thermotolerance for phytase production. Such screening can be made as described, e.g. in Example 1. In this way heat tolerant fungal strains, listed in Example 1, have been identified for the first time to produce a phytase.

Heat tolerant fungal strains, see e.g. those listed in Example 1, can than be grown as known in the art, e.g. as indicated by their supplier, e.g. the American Tissue Type Culture Collection (ATCC), Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM), Agricultural Research Service Culture Collection (NRRL) and the Centralbureau voor Schimmelcultures (CBS) from which such strains are available or as indicated, e.g. in Example 2.

Further improved properties are, e.g. an improved substrate specificity regarding phytic acid [*myo*-inositol (1,2,3,4,5,6) hexakisphosphate] which is a major storage form of phosphorous in plants and seeds. For the complete release of the six phosphate groups from phytic acid an enzyme is required with sufficient activity against phytic acid and all other inositol phosphate molecules. Using e.g. *Aspergillus niger* phytase requires for this complete release the addition of the pH 2.5 acid phosphatase. Having only one enzyme with the required activity would be of clear advantage. For example, International Patent Application Publication No. 94/03072 discloses an expression system which allows the expression of a mixture of phytate degrading enzymes in desired ratios. However, it would be even more desirable to have both such activities in a single polypeptide. Therefore it is also an object of the present invention to provide DNA sequences coding for such polypeptides. Phytase and phosphatase activities can be determined by assays known in the state of the art or described, e.g. in Example 9.

Another improved property is, e.g. a so called improved pH-profile. This means, e.g. two phytin degrading activity maxima, e.g. one at around pH 2.5 which could be the pH in the stomach of certain animals and another at around pH 5.5 which could be the pH after the stomach in certain animals. Such pH profile can be determined by assays known in the state of the art or described, e.g. in Example 9. Accordingly it is also an object of the present invention to provide DNA sequences coding for such improved polypeptides.

In general it is an object of the present invention to provide a DNA sequence coding for a polypeptide having phytase activity and which DNA sequence is derived from a fungus selected from the group consisting of *Acrophialophora levis*, *Aspergillus terreus*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Aspergillus sojae*, *Calcarisporiella thermophila*, *Chaetomium rectopilum*, *Corynascus thermophilus*, *Humicola* sp., *Mycelia sterilia*, *Myrococcum thermophilum*, *Myceliophthora thermophila*, *Rhizomucor miehei*, *Sporotrichum cellulophilum*, *Sporotrichum thermophile*, *Scytalidium indonesicum* and *Talaromyces thermophilus* or a DNA

sequence coding for a fragment of such a polypeptide which fragment still has phytase activity, or more specifically such a DNA sequence wherein the fungus is selected from the group consisting of *Actrophialophora levis*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Aspergillus terreus*, *Calcarisporiella thermophila*, *Chaetomium rectopilum*, *Corynascus thermophilus*, *Sporotrichum cellulophilum*, *Sporotrichum thermophile*, *Mycelia sterilia*, *Myceliophthora thermophila* and *Talaromyces thermophilus*, or more specifically such a DNA sequence wherein the fungus is selected from the group consisting of *Aspergillus terreus*, *Myceliophthora thermophila*, *Aspergillus fumigatus*, *Aspergillus nidulans* and *Talaromyces thermophilus*. DNA sequences coding for a fragment of a polypeptide of the present invention can, e.g. be between 1350 and 900, preferably between 900 and 450 and most preferably between 450 and 150 nucleotides long and can be prepared on the basis of the DNA sequence of the complete polypeptide by recombinant methods or by chemical synthesis with which a man skilled in the art is familiar with.

Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

- (a) the DNA sequence of Figure 1 [SEQ ID NO:1] or its complementary strand;
- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably with the coding region of such sequences or more preferably with a region between positions 491 to 1856 of such DNA sequences or even more preferably with a genomic probe obtained by preferably random priming using DNA of *Aspergillus terreus* 9A1 as described in Example 12.
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
- (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).

"Standard conditions" for hybridization mean in this context the conditions which are generally used by a man skilled in the art to detect specific hybridization signals and which are described, e.g. by Sambrook et al., "Molecular Cloning" second edition, Cold Spring Harbor Laboratory Press 1989, New York, or preferably so called stringent hybridization and non-stringent washing conditions or more preferably so called stringent hybridization and stringent washing conditions a man skilled in the art is familiar with and which are described, e.g. in Sambrook et al. (s.a.) or even more preferred the stringent hybridization and non-stringent or stringent washing conditions as given in Example 12. "Fragment of the DNA sequences" means in this context a fragment which codes for a polypeptide still having phytase activity as specified above.

It is also an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

- (a) the DNA sequence of Figure 2 [SEQ ID NO:3] or its complementary strand;
- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably a region which extends to about at least 80 % of the coding region optionally comprising about between 100 to 150 nucleotides of the 5'end of the non-coding region of such DNA sequences or more preferably with a region between positions 2068 to 3478 of such DNA sequences or even more preferably with a genomic probe obtained by preferably random priming using DNA of *Myceliophthora thermophila* as described in Example 12.
- (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
- (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).

"Fragments" and "standard conditions" have the meaning as given above.

It is also an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:

- (a) a DNA sequence comprising one of the DNA sequences of Figures 4 [SEQ ID NO:5], 5 [SEQ ID NO:7], 6 [SEQ ID NO:9] or 10 ["aterr21", SEQ ID NO:13: "aterr58": SEQ ID NO:14] or its complementary strand;
- (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a) or preferably with such sequences comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable from *Talaromyces thermophilus*, or of Figure 5 [SEQ ID NO:7] isolatable from *Aspergillus fumigatus*, or of Figure 6 [SEQ ID NO:9] isolatable from *Aspergillus nidulans* or of one or both of the sequences given in Figure 10 ["aterr21", SEQ ID NO:13: "aterr58": SEQ ID NO:14] isolatable from *Aspergillus terreus* (CBS 220.95) or more preferably with a region of such DNA sequences spanning at least 80 % of the coding region or most preferably with a genomic probe obtained by random priming using DNA of *Talaromyces thermophilus* or *Aspergillus fumigatus* or *Aspergillus nidulans* or *Aspergillus terreus* (CBS

220.95) as described in Example 12.

(c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b) but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and

5 (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).

It is furthermore an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from a DNA sequence comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable from Talaromyces thermophilus, of Figure 5 [SEQ ID NO:7] isolatable from Aspergillus fumigatus, of Figure 6 [SEQ ID NO:9] isolatable from Aspergillus 10 nidulans or of Figure 10 ["aterr21": SEQ ID NO:13; "aterr58":SEQ ID NO:14] isolatable from Aspergillus terreus (CBS 220.95) or which DNA sequence is a degenerate variant or equivalent thereof.

"Fragments" and "standard conditions" have the meaning as given above. "Degenerate variant" means in this context a DNA sequence which because of the degeneracy of the genetic code has a different nucleotide sequence as the one referred to but codes for a polypeptide with the same amino acid 15 sequence. "Equivalent" refers in this context to a DNA sequence which codes for polypeptides having phytase activity with an amino acid sequence which differs by deletion, substitution and/or addition of one or more amino acids, preferably up to 50, more preferably up to 20, even more preferably up to 10 or most 20 preferably 5, 4, 3 or 2, from the amino acid sequence of the polypeptide encoded by the DNA sequence to which the equivalent sequence refers to. Amino acid substitutions which do not generally alter the specific activity are known in the state of the art and are described, for example, by H. Neurath and R.L. Hill in "The Proteins" (Academic Press, New York, 1979, see especially Figure 6, page 14). The most commonly occurring exchanges are: Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Tyr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly as well as these in reverse (the three letter abbreviations are used for amino acids and are standard and known in the art).

25 Such equivalents can be produced by methods known in the state of the art and described, e.g. in Sambrook et al. (s.a.). Whether polypeptides encoded by such equivalent sequences still have a phytase activity can be determined by one of the assays known in the art or, e.g. described in Example 9.

It is also an object of the present invention to provide one of the aforementioned DNA sequences which 30 code for a polypeptide having phytase activity which DNA sequence is derived from a fungus, or more specifically such a fungus selected from one of the above mentioned specific groups of fungi.

Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from a fungus of one of the above mentioned groups of fungi and the following pair of PCR primer:

35 "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as sense primer and

"TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO: 16] as anti-sense primer.

"Standard conditions" have the meaning given above. "Product of a PCR reaction" means preferably a product obtainable or more preferably as obtained by a reaction described in Example 12 referring back to Example 11.

40 Furthermore it is an object of the present invention to provide a DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from Aspergillus terreus (CBS 220.95) and the following two pairs of PCR primers:

(a) "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as the sense primer and

45 "TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as the anti-sense primer; and

(b) "TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA" [SEQ ID NO: 17] as the sense primer and

"CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C" [SEQ ID NO: 18] as the anti-sense primer.

"Standard conditions" are as defined above and the term "product of a PCR reaction" means preferably a product obtainable or more preferably as obtained by a reaction described in Example 11.

50 It is furthermore an object of the present invention to provide a DNA sequence coding for a chimeric construct having phytase activity which chimeric construct comprises a fragment of a DNA sequence as specified above or preferably such a DNA sequence wherein the chimeric construct consists at its N-terminal end of a fragment of the Aspergillus niger phytase fused at its C-terminal end to a fragment of the Aspergillus terreus phytase, or more preferably such a DNA sequence with the specific nucleotide sequence as shown in Figure 7 [SEQ ID NO:11] and a degenerate variant or equivalent thereof, wherein "degenerate variant" and "equivalent" have the meanings as given above.

Furthermore it is an object of the present invention to provide a DNA sequence as specified above wherein the encoded polypeptide is a phytase.

Genomic DNA or cDNA from fungal strains can be prepared as known in the art [see e.g. Yelton et al., Proc. Natl. Acad. Sci. USA, 1470-1474 (1984) or Sambrook et al., s.a., or, e.g. as specifically described in Example 2.

The cloning of the DNA-sequences of the present invention from such genomic DNA can than be effected, e.g. by using the well known polymerase chain reaction (PCR) method. The principles of this method are outlined e.g. by White et al. (1989), whereas improved methods are described e.g. in Innis et al. [PCR Protocols: A guide to Methods and Applications, Academic Press, Inc. (1990)]. PCR is an in vitro method for producing large amounts of a specific DNA of defined length and sequence from a mixture of different DNA-sequences. Thereby, PCR is based on the enzymatic amplification of the specific DNA fragment of interest which is flanked by two oligonucleotide primers which are specific for this sequence and which hybridize to the opposite strand of the target sequence. The primers are oriented with their 3' ends pointing toward each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences and extension of the annealed primers with a DNA polymerase result in the amplification of the segment between the PCR primers. Since the extension product of each primer can serve as a template for the other, each cycle essentially doubles the amount of the DNA fragment produced in the previous cycle. By utilizing the thermostable Taq DNA polymerase, isolated from the thermophilic bacteria *Thermus aquaticus*, it has been possible to avoid denaturation of the polymerase which necessitated the addition of enzyme after each heat denaturation step. This development has led to the automation of PCR by a variety of simple temperature-cycling devices. In addition, the specificity of the amplification reaction is increased by allowing the use of higher temperatures for primer annealing and extension. The increased specificity improves the overall yield of amplified products by minimizing the competition by non-target fragments for enzyme and primers. In this way the specific sequence of interest is highly amplified and can be easily separated from the non-specific sequences by methods known in the art, e.g. by separation on an agarose gel and cloned by methods known in the art using vectors as described e.g. by Holten and Graham in Nucleic Acid Res. 19, 1156 (1991), Kovalic et al. in Nucleic Acid Res. 19, 4560 (1991), Marchuk et al. in Nucleic Acid Res. 19, 1154 (1991) or Mead et al. in Bio/Technology 9, 657-663 (1991).

The oligonucleotide primers used in the PCR procedure can be prepared as known in the art and described e.g. in Sambrook et al. (1989 "Molecular cloning" 2nd edt., Cold Spring Harbor Laboratory Press, Cold Spring Harbor).

The specific primers used in the practice of the present invention have been designed as degenerate primers on the basis of DNA-sequence comparisons of known sequences of the *Aspergillus niger* phytase, the *Aspergillus niger* acid phosphatase, the *Saccharomyces cerevisiae* acid phosphatase and the *Schizosaccharomyces pombe* acid phosphatase (for sequence information see, e.g. European Bioinformatics Institute (Hinxton Hall, Cambridge, GB). The degeneracy of the primers was reduced by selecting some codons according to a codon usage table of *Aspergillus niger* prepared on the basis of known sequences from *Aspergillus niger*. Furthermore it has been found that the amino acid at the C-terminal end of the amino acid sequences used to define the specific probes should be a conserved amino acid in all acid phosphatases including phytases specified above but the rest of the amino acids should be more phytase than phosphatase specific.

Such amplified DNA-sequences can than be used to screen DNA libraries of DNA of, e.g. fungal origin by methods known in the art (Sambrook et al., s.a.) or as specifically described in Examples 5-7.

Once complete DNA-sequences of the present invention have been obtained they can be integrated into vectors by methods known in the art and described e.g. in Sambrook et al. (s.a.) to overexpress the encoded polypeptide in appropriate host systems. However, a man skilled in the art knows that also the DNA-sequences themselves can be used to transform the suitable host systems of the invention to get overexpression of the encoded polypeptide. Appropriate host systems are for example fungi, like Aspergilli, e.g. *Aspergillus niger* [ATCC 9142] or *Aspergillus ficuum* [NRRL 3135] or like Trichoderma, e.g. *Trichoderma reesei* or yeasts, like *Saccharomyces*, e.g. *Saccharomyces cerevisiae* or *Pichia*, like *Pichia pastoris*, all available from ATCC. Bacteria which can be used are e.g. *E. coli*, *Bacillus* as, e.g. *Bacillus subtilis* or *Streptomyces*, e.g. *Streptomyces lividans* (see e.g. Anné and Mallaert in FEMS Microbiol. Letters 114, 121 (1993)). *E. coli*, which could be used are *E. coli* K12 strains e.g. M15 [described as DZ 291 by Villarejo et al. in J. Bacteriol. 120, 466-474 (1974)], HB 101 [ATCC No. 33694] or *E. coli* SG13009 [Gottesman et al., J. Bacteriol. 148, 265-273 (1981)].

Vectors which can be used for expression in fungi are known in the art and described e.g. in EP 420 358, or by Cullen et al. [Bio/Technology 5, 369-376 (1987)] or Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York (1991), Upshall et al. [Bio/Technology 5, 1301-1304 (1987)] Gwynne et al. [Bio/Technology 5, 71-79 (1987)], Punt et al. [J. of

Biotechnology 17, 19-34 (1991)] and for yeast by Sreekrishna et al. [J. Basic Microbiol. 28, 265-278 (1988), Biochem. 28, 4117-4125 (1989)], Hitzemann et al. [Nature 293, 717-722 (1981)] or in EP 183 070, EP 183 071, EP 248 227, EP 263 311. Suitable vectors which can be used for expression in *E. coli* are mentioned, e.g. by Sambrook et al. [s.a.] or by Fiers et al. in Procd. 8th Int. Biotechnology Symposium" [Soc. Franc. de Microbiol., Paris (Durand et al., eds.), pp. 680-697 (1988)] or by Bujard et al. in Methods in Enzymology, eds. Wu and Grossmann, Academic Press, Inc. Vol. 155, 416-433 (1987) and Stüber et al. in Immunological Methods, eds. Lefkovits and Pernis, Academic Press, Inc., Vol. IV, 121-152 (1990). Vectors which could be used for expression in *Bacilli* are known in the art and described, e.g. in EP 405 370, Procd. Nat. Acad. Sci. USA 81, 439 (1984) by Yansura and Henner, Meth. Enzym. 185, 199-228 (1990) or EP 207 459.

Either such vectors already carry regulatory elements, e.g. promotors or the DNA-sequences of the present invention can be engineered to contain such elements. Suitable promotor-elements which can be used are known in the art and are, e.g. for *Trichoderma reesei* the cbh1- [Haarki et al., Biotechnology 7, 596-600 (1989)] or the pki1-promotor [Schindler et al., Gene 130, 271-275 (1993)], for *Aspergillus oryzae* the amy-promotor [Christensen et al., Abstr. 19th Lunteren Lectures on Molecular Genetics F23 (1987), Christensen et al., Biotechnology 6, 1419-1422 (1988), Tada et al., Mol. Gen. Genet. 229, 301 (1991)], for *Aspergillus niger* the glaA- [Cullen et al., Bio/Technology 5, 369-376 (1987), Gwynne et al., Bio/Technology 5, 713-719 (1987), Ward in Molecular Industrial Mycology, Systems and Applications for Filamentous Fungi, Marcel Dekker, New York, 83-106 (1991)], alcA- [Gwynne et al., Bio/Technology 5, 71-719 (1987)], suc1- [Boddy et al. Current Genetics 24, 60-66 (1993)], aphaA- [MacRae et al., Gene 71, 339-348 (1988), MacRae et al., Gene 132, 193-198 (1993)], tpiA- [McKnight et al., Cell 46, 143-147 (1986), Upshall et al., Bio/Technology 5, 1301-1304 (1987)], gpdA- [Punt et al., Gene 69, 49-57 (1988), Punt et al., J. of Biotechnology 17, 19-37 (1991)] and the pkiA-promotor [de Graaff et al., Curr. Genet. 22, 21-27 (1992)]. Suitable promotor-elements which could be used for expression in yeast are known in the art and are, e.g. the pho5-promotor [Vogel et al., Molecular and Cellular Biology, 2050-2057 (1989); Rudolf and Hinnen, Proc. Natl. Acad. Sci. 84, 1340-1344 (1987)] or the gap-promotor for expression in *Saccharomyces cerevisiae* und for *Pichia pastoris*, e.g. the aox1-promotor [Koutz et al. Yeast 5, 167-177 (1989); Sreekrishna et al., J. Basic Microbiol. 28, 265-278 (1988)].

Accordingly vectors comprising DNA sequences of the present invention, preferably for the expression of said DNA sequences in bacteria or a fungal or a yeast host and such transformed bacteria or fungal or yeast hosts are also an object of the present invention.

Once such DNA-sequences have been expressed in an appropriate host cell in a suitable medium the encoded phytase can be isolated either from the medium in the case the phytase is secreted into the medium or from the host organism in case such phytase is present intracellularly by methods known in the art of protein purification or described, e.g. in EP 420 358. Accordingly a process for the preparation of a polypeptide of the present invention characterized in that transformed bacteria or a host cell as described above is cultured under suitable culture conditions and the polypeptide is recovered therefrom and a polypeptide when produced by such a process or a polypeptide encoded by a DNA sequence of the present invention are also an object of the present invention.

Once obtained the polypeptides of the present invention can be characterized regarding their activity by assays known in the state of the art or as described, e.g. by Engelen et al. [J. AOAC Intern. 77, 760-764 (1994)] or in Example 9. Regarding their properties which make the polypeptides of the present invention useful in agriculture any assay known in the art and described e.g. by Simons et al. [British Journal of Nutrition 64, 525-540 (1990)], Schöner et al. [J. Anim. Physiol. a. Anim. Nutr. 66, 248-255 (1991)], Vogt [Arch. Geflügelk. 56, 93-98 (1992)], Jongbloed et al. [J. Anim. Sci., 70, 1159-1168 (1992)], Perney et al. [Poultry Science 72, 2106-2114 (1993)], Farrell et al., [J. Anim. Physiol. a. Anim. Nutr. 69, 278-283 (1993), Broz et al., [British Poultry Science 35, 273-280 (1994)] and Düngethoef et al. [Animal Feed Science and Technology 49, 1-10 (1994)] can be used. Regarding their thermotolerance any assay known in the state of the art and described, e.g. by Yamada et al. (s.a.), and regarding their pH and substrate specificity profiles any assays known in the state of the art and described, e.g. in Example 9 or by Yamada et al., s.a., can be used.

In general the polypeptides of the present invention can be used without being limited to a specific field of application for the conversion of phytate to inositol and inorganic phosphate.

Furthermore the polypeptides of the present invention can be used in a process for the preparation of compound food or feeds wherein the components of such a composition are mixed with one or more polypeptides of the present invention. Accordingly compound food or feeds comprising one or more polypeptides of the present invention are also an object of the present invention. A man skilled in the art is familiar with their process of preparation. Such compound foods or feeds can further comprise additives or components generally used for such purpose and known in the state of the art.

It is furthermore an object of the present invention to provide a process for the reduction of levels of phytate in animal manure characterized in that an animal is fed such a feed composition in an amount effective in converting phytate contained in the feedstuff to inositol and inorganic phosphate.

5 Examples

Specific media and solutions used

Complete medium (Clutterbuck)

10

15

20

Glucose	10 g/l
-CN solution	10 ml/l
Sodium nitrate	6 g/l
Bacto peptone (Difco Lab., Detroit, MI, USA)	2 g/l
Yeast Extract (Difco)	1 g/l
Casamino acids (Difco)	1.5 g/l
Modified trace element solution	1 ml/l
Vitamin solution	1 ml/l

M3 Medium

25

30

Glucose	10 g/l
-CN Solution	10 ml/l
Modified trace element solution	1 ml/l
Ammonium nitrate	2 g/l

M3 Medium - Phosphate

35 M3 medium except that -CN is replaced with -CNP

M3 Medium - Phosphate + Phytate

40 M3 Medium - Phosphate with the addition of 5 g/l of Na₁₂ Phytate (Sigma #P-3168; Sigma, St. Louis, MO, USA)

Modified trace element solution

45

50

CuSO ₄	0.04%
FeSO ₄ • 7H ₂ O	0.08%
Na ₂ MoO ₄ • 2H ₂ O	0.08%
ZnSO ₄ • 7H ₂ O	0.8%
B ₄ Na ₂ O ₇ • 10H ₂ O	0.004%
MnSO ₄ • H ₂ O	0.08%

55

Vitamin Solution

5

Riboflavin	0.1%
Nicotinamide	0.1%
p-amino benzoic acid	0.01%
Pyridoxine/HCl	0.05%
Aneurine/HCl	0.05%
Biotin	0.001%

10

-CN Solution

15

KH ₂ PO ₄	140 g/l
K ₂ PO ₄ • 3H ₂ O	90 g/l
KCl	10 g/l
MgSO ₄ • 7H ₂ O	10 g/l

20

-CNP Solution

25

HEPES	47.6g/200 mls
KCl	2 g/200 mls
MgSO ₄ • 7H ₂ O	2 g/200 mls

30

Example 1Screening fungi for phytase activity

35

Fungi were screened on a three plate system, using the following three media:

"M3" (a defined medium containing phosphate),

"M3-P" (M3 medium lacking phosphate) and

"M3-P + Phytate" (M3 medium lacking phosphate but containing phytate as a sole phosphorus source).

40

Plates were made with agarose to decrease the background level of phosphate.

Fungi were grown on the medium and at the temperature recommended by the supplier. Either spores or mycelium were transferred to the test plates and incubated at the recommended temperature until growth was observed.

45

The following thermotolerant strains were found to exhibit such growth:

Myceliophthora thermophila [ATCC 48 102]

Talaromyces thermophilus [ATCC 20 186]

Aspergillus fumigatus [ATCC 34 625]

50

Example 2Growth of fungi and preparation of genomic DNA

55

Strains of *Myceliophthora thermophila*, *Talaromyces thermophilus*, *Aspergillus fumigatus*, *Aspergillus nidulans*, *Aspergillus terreus* 9A-1, and *Aspergillus terreus* CBS 220.95 were grown in Potato Dextrose Broth (Difco Lab., Detroit, MI, USA) or complete medium (Clutterbuck). *Aspergillus terreus* 9A-1 and *Aspergillus nidulans* have been deposited under the Budapest Treaty for patent purposes at the DSM in Braunschweig, BRD at March 17, 1994 under accession number DSM 9076 and at February 17, 1995 under accession

number DSM 9743, respectively.

Genomic DNA was prepared as follows:

- Medium was innoculated at a high density with spores and grown O/N with shaking. This produced a thick culture of small fungal pellets. The mycelium was recovered by filtration blotted dry and weighed. Up to 5 2.0g was used per preparation. The mycelium was ground to a fine powder in liquid nitrogen and immediately added to 10 mls of extraction buffer (200 mM Tris/HCl, 250 mM NaCl, 25 mM EDTA, 0.5% SDS, pH 8.5) and mixed well. Phenol (7 mls) was added to the slurry and mixed and then chloroform (3 mls) was also added and mixed well. The mixture was centrifuged (20,000 g) and the aqueous phase recovered. RNase A was added to a final concentration of 250 µg/ml and incubated at 37 °C for 15 minutes.
- 10 The mixture was then extracted with 1 volume of chloroform and centrifuged (10,000 g, 10 minutes). The aqueous phase was recovered and the DNA precipitated with 0.54 volumes of RT isopropanol for 1 hour at RT. The DNA was recovered by spooling and resuspended in water.

The resultant DNA was further purified as follows:

- A portion of the DNA was digested with proteinase K for 2 hrs at 37 °C and then extracted repeatedly 15 (twice to three times) with an equal volume of phenol/chloroform and then ethanol precipitated prior to resuspension in water to a concentration of approximately 1 µg/ml.

Example 3

20 Degenerate PCR

PCR was performed essentially according to the protocol of Perkin Elmer Cetus [(PEC); Norwalk, CT, USA]. The following two primers were used (bases indicated in brackets are either/or):

Phyt 8: 5' ATG GA(CT) ATG TG(CT) TCN TT(CT) GA 3' [SEQ ID NO:19] Degeneracy = 32

25 Tm High = 60 °C/ Tm Low 52 °C

Phyt 9: 5' TT(AG) CC(AG) GC(AG) CC(GA) TGN CC(GA) TA 3' [SEQ ID NO:20]

Tm High = 70 °C/Tm Low 58 °C

A typical reaction was performed as follows:

30	H ₂ O	24.5 µl
	10 X PEC GeneAmp Buffer	5 µl
	GeneAmp dNTP's (10 mM)	8 µl
	Primer 1 (Phyt 8, 100 µM)	5 µl
35	Primer 2 (Phyt 9, 100 µM)	5 µl
	DNA (~1 µg/ml)	1 µl
	Taq Polymerase (PEC)	0.5 µl
		50 µl

- 40 All components with the exception of the Taq polymerase were incubated at 95 °C for 10 minutes and then 50 °C for 10 minutes and then the reaction placed on ice. The Taq polymerase (AmpliTaq, Hoffmann-La Roche, Basel, CH) was then added and 35 cycles of PCR performed in a Triothermoblock (Biometra, Göttingen, DE) according to the following cycle profile:

95 °C/ 60"

45 50 °C/ 90"

72 °C/ 120"

An aliquot of the reaction was analysed on 1.5% agarose gel.

Example 4

50 Subcloning and sequencing of PCR fragments

- PCR products of the expected size (approximately 146 bp predicted from the *Aspergillus niger* DNA-sequence) were excised from low melting point agarose and purified from a NACS - PREPAC - column 55 (BRL Life Technologies Inc., Gaithersburg, MD, USA) essentially according to the manufacturer's protocol. The fragment was polyadenylated in 50 µl 100 mM Sodiumcacodylate pH6.6, 12.5 mM Tris/HCl pH 7.0, 0.1 mM Dithiothreitol, 125 µg/ml bovine serum albumin, 1 mM CoCl₂, 20 µM dATP, 10 units terminal deoxytransferase (Boehringer Mannheim, Mannheim, DE) for 5 minutes at 37 °C and cloned into the p123T

vector [Mitchell et al., PCR Meth. App. 2, 81-82 (1992)].

Alternatively, PCR fragments were purified and cloned using the "Sure Clone" ligation kit (Pharmacia) following the manufacturers instructions.

Sequencing was performed on dsDNA purified on a Quiagen-column

5 (Diagen GmbH, Hilden, DE) using the dideoxy method and the Pharmacia T7 kit (Pharmacia, LKB Biotechnology AB, Uppsala, SE) according to the protocol supplied by the manufacturer.

Example 5

10 Construction and Screening of Lambda Fix II libraries

The fragments from *Aspergillus terreus* Strain 9A-1 and *Myceliophthora thermophila* were used to probe Bam HI and BgIII southern blots to determine the suitable restriction enzyme to use to construct genomic

15 libraries in the Lambda Fix II vector (Stratagene, La Jolla, CA, USA). Lambda Fix II can only accept inserts from 9-23 kb. Southern blots were performed according to the following protocol. Genomic DNA (10 µg) was digested in a final volume of 200 µl. The reaction without enzyme was prepared and incubated on ice for 2 hours. The enzyme (50 units) was added and the reaction incubated at the appropriate temperature for 3 hours. The reaction was then extracted with an equal volume of phenol/chloroform and ethanol precipitated. The resuspended DNA in loading buffer was heated to 65 °C for 15 minutes prior to separation on a 0.7% agarose gel (O/N 30 V). Prior to transfer the gel was washed twice in 0.2 M HCl/ 10°/room temperature (RT) and then twice in 1M NaCl/0.4M NaOH for 15' at RT. The DNA was transferred in 0.4M NaOH in a capillary transfer for 4 hours to Nytran 13N nylon membrane (Schleicher and Schuell AG, Feldbach, Zürich, CH). Following transfer the membrane was exposed to UV. [Auto cross-link, UV Stratalinker 2400, Stratagene (La Jolla, CA, USA)].

20 The membrane was prehybridized in hybridization buffer [50 % formamide, 1% sodium dodecylsulfate (SDS), 10% dextran sulfate, 4 x SSPE (180 mM NaCl, 10 mM NaH₂ PO₄, 1 mM EDTA, pH 7.4)] for 4 hours at 42 °C and following addition of the denatured probe O/N at 42 °C.. The blot was washed:

1 x SSPE/0.5 % SDS/RT/30 minutes

0.1 x SSPE/0.1 % SDS/RT/30 minutes

30 0.1 x SSPE/0.1 % SDS/65 °C/30 minutes

Results indicate that *Aspergillus terreus* Strain 9A-1 genomic DNA digested with BamHI and *Myceliophthora thermophila* genomic DNA digested with BgIII produce fragments suitable for cloning into the lambda Fix II vector.

35 The construction of genomic libraries of *Aspergillus terreus* Strain 9A-1 and *Myceliophthora thermophila* in Lambda Fix II was performed according to the manufacturer's protocols (Stratagene).

The lambda libraries were plated out on 10 137 mm plates for each library. The plaques were lifted to Nytran 13N round filters and treated for 1 minute in 0.5 M NaOH/1.5 M NaCl followed by 5 minutes in 0.5 M Tris-HCl pH 8.0/1.5 M NaCl. The filters were then treated in 2 X SSC for 5 minutes and air dried. They were then fixed with UV (1 minute, UV Stratalinker 2400, Stratagene). The filters were hybridized and washed as

40 above. Putative positive plaques were cored and the phage soaked out in SM buffer (180 mM NaCl, 8 mM MgSO₄ • 7H₂O, 20mMTris/HCl pH 7.5, 0.01% gelatin). This stock was diluted and plated out on 137 mm plates. Duplicate filters were lifted and treated as above. A clear single positive plaque from each plate was picked and diluted in SM buffer. Three positive plaques were picked. Two from *Aspergillus terreus* Strain 9A-1 (9A1λ17 and 9A1λ22) and one from *Myceliophthora thermophila* (MTλ27).

45

Example 6

Preparation of Lambda DNA and confirmation of the clones

50 Lambda DNA was prepared from the positive plaques. This was done using the "Magic Lambda Prep" system (Promega Corp., Madison, WI, USA) and was according to the manufacturer's specifications. To confirm the identity of the clones, the lambda DNA was digested with PstI and Sall and the resultant blot probed with the PCR products. In all cases this confirmed the clones as containing sequences complementary to the probe.

55

Example 7Subcloning and sequencing of phytase genes

- 5 DNA from 9A1λ17 was digested with PstI and the resultant mixture of fragments ligated into pBluescript II SK+ (Stratagene) cut with PstI and treated with shrimp alkaline phosphatase (United States Biochemical Corp., Cleaveland, OH, USA). The ligation was O/N at 16 °C. The ligation mixture was transformed into XL-1 Blue Supercompetent cells (Stratagene) and plated on LB Plates containing 0.5 mM isopropyl- β -D-thiogalactopyranoside (IPTG), 40 µg/ml 5-bromo-4-chloro-3-indoyl- β -D-galactopyranoside (Xgal), 50 µg/ml ampicillin.
- 10 DNA from 9A1λ17 was digested with Bgl II and Xba I and the resultant mixture ligated into pBluescript II SK+ digested with BamHI/Xba I. Ligation, transformation and screening were performed as described above.
- 15 DNA from MTλ27 was digested with Sall and the resultant mixture of fragments ligated into pBluescript II SK+ cut with Sall and treated with shrimp alkaline phosphatase. The ligation was O/N at 16 °C. The ligation mixture was transformed into XL-1 Blue Supercompetent cells and plated on LB Plates containing Xgal/IPTG and ampicillin.
- 20 Colonies from the above transformations were picked and "gridded" approximately 75 to a single plate. Following O/N incubation at 37 °C the colonies were lifted to a nylon filter ("Hybond-N", Amersham Corp., Arlington Heights, IL, USA) and the filters treated with 0.5M NaOH for 3 minutes, 1M Tris/HCl pH7.5 twice for 1 minute, then 0.5M Tris/HCl pH7.5/1.5 M NaCl for 5 minutes. The filters were air dried and then fixed with UV (2 minutes, UV Stratalinker 2400, Stratagene). The filters were hybridized with the PCR products of Example 5. Positive colonies were selected and DNA prepared. The subclones were sequenced as previously described in Example 4. Sequences determined are shown in Figure 1 (Fig. 1) for the phytase
- 25 from Aspergillus terreus strain 9A1 and its encoding DNA sequence, Figure 2 for the phytase from Myceliophthora thermophila and its encoding DNA-sequence, Figure 3A shows a restriction map for the DNA of Aspergillus terreus (wherein the arrow indicates the coding region, and the strips the regions sequenced in addition to the coding region) and 3B for M. thermophila, and Figure 4 for part of the phytase from Talaromyces thermophilus and its encoding DNA sequence, Figure 5 for part of the phytase from
- 30 Aspergillus fumigatus and its encoding DNA-sequence and Figure 6 for part of the phytase from Aspergillus nidulans and its encoding DNA-sequence. The sequences for the parts of the phytases and their encoding DNA-sequences from Talaromyces thermophilus, Aspergillus fumigatus and Aspergillus nidulans were obtained in the same way as described for those of Aspergillus terreus strain 9A1 and Myceliophthora thermophila in Examples 2-7. Bases are given for both strands in small letters by the typically used one letter code abbreviations. Derived amino acid sequences of the phytase are given in capital letters by the typically used one letter code below the corresponding DNA-sequence.

Example 8

- 40 Construction of a chimeric construct between A. niger and A. terreus phytase DNA-sequences

All constructions were made using standard molecular biological procedures as described by Sambrook et al., (1989) (Molecular cloning, A laboratory Manual, Cold Spring Harbor Laboratory Press, NY).

The first 146 amino acids (aa) of the *Aspergillus niger* phytase, as described in EP 420 358, were fused to the 320 C-terminal aa of the *Aspergillus terreus* 9A1 gene. A Ncol site was introduced at the ATG start codon when the *A. niger* phytase gene was cloned by PCR. The intron found in the *A. niger* phytase was removed by site directed mutagenesis (Bio-Rad kit, Cat Nr 170-3581; Bio-Rad, Richmond, CA, USA) using the following primer (wherein the vertical dash indicates that the sequence to its left hybridizes to the 3'end of the first exon and the sequence to its right hybridizes to the 5'end of the second exon):

50 5'-AGTCCGGAGGTGACT|CCAGCTAGGAGATAC-3' [SEQ ID NO:21].

To construct the chimeric construct of phytases from *A. niger* and *A. terreus* an Eco 47III site was introduced into the *A. niger* coding sequence to aid cloning. PCR with a mutagenic primer (5' CGA TTC GTA gCG CTG GTA G 3') in conjunction with the T3 primer was used to produce a DNA fragment that was cleaved with Bam HI and Eco 47III. The Bam HI/Eco 47III fragment was inserted into Bam HI/Eco 47III cut p9A1Pst (Example 7). Figure 7 shows the amino acid sequence of the fusion construct and its encoding DNA-sequence.

Example 9Expression of phytases

5 Construction of expression vectors

For expression of the fusion construct in *A. niger* an expression cassette was chosen where the fusion gene was under control of the inducible *A. niger* glucoamylase (*glaA*) promoter.

For the complete *A. terreus* 9A1 gene, expression cassettes with the constitutive *A. nidulans* glyceraldehyde-3-phosphate dehydrogenase (*gpdA*) promoter were made.

All genes used for expression in *A. niger* carried their own signal sequence for secretion.

Construction of vector pFPAN1

15 The *A. niger* glucoamylase (*glaA*) promoter was isolated as a 1960 bp Xhol/ClaI fragment from plasmid pDH33 [Smith et al. (1990), Gene 88: 259-262] and cloned into pBluescriptSK⁺-vector (pBS) [Stratagene, La Jolla, CA, USA] containing the 710 bp BamHI/XbaI fragment of the *A. nidulans* *trpC* terminator. The plasmid with the cassette was named pGLAC. The fusion gene, as described in Example 8, was put under control of the *A. niger* *glaA* promoter by ligating the blunt ended Ncol/EcoRI fragment to the blunt ended
20 ClaI site and the EcoRV site of plasmid pGLAC. The correct orientation was verified by restriction enzyme digests. The entire cassette was transferred as a KpnI/XbaI fragment to pUC19 (New England Biolabs, GmbH, Schwalbach, BRD), that carried the *Neurospora crassa* *pyr4* gene (pUC19-pyr4), a selection marker in uridine auxotrophic *Aspergillus*, resulting in vector pFPAN1 (see Figure 8 with restriction sites and coding regions as indicated; crossed out restriction sites indicate sites with blunt end ligation).

25 Construction of vector pPAT1

The *A. nidulans* glyceraldehyd-3-phosphate dehydrogenase (*gpdA*) promoter was isolated as a ~2.3 kb EcoRI/Ncol fragment from plasmid pAN52-1 [Punt et al. (1987), Gene 56: 117-124], cloned into pUC19-Ncol (pUC19 having a SmaI-site replaced by a Ncol-site), reisolated as EcoRI/BamHI fragment and cloned into pBS with the *trpC* terminator as described above. The obtained cassette was named pGPDN. The *A. terreus* gene was isolated as a Ncol/EcoRI fragment, where the EcoRI site was filled in to create blunt ends. Plasmid pGPDN was cut with BamHI and Ncol. The BamHI site was filled in to create blunt ends. The Ncol/EcoRI(blunt) fragment of the *A. terreus* gene was cloned between the *gpdA* promoter and *trpC*
30 terminator. The expression cassette was isolated as KpnI/XbaI fragment and cloned into pUC19-pyr4 resulting in plasmid pPAT1 (see Figure 9; for explanation of abbreviations see legend to Figure 8).

Expression of the fusion protein in *Aspergillus niger*40 A) Transformation

The plasmid pFPAN1 was used to transform *A. niger* by using the transformation protocol as described by Ballance et al. [(1983), Biochem. Biophys. Res. Commun 112, 284-289] with some modifications:

- YPD medium (1 % yeast extract, 2% peptone, 2 % dextrose) was inoculated with 10^6 spores per ml and grown for 24 hours at 30° C and 250 rpm
- cells were harvested using Wero-Lene N tissue (No. 8011.0600 Wernli AG Verbandstoffabrik, 4852 Rothrist, CH) and once washed with buffer (0.8 M KCl, 0.05 M CaCl₂, in 0.01 M succinate buffer; pH 5.5)
- for protoplast preparation only lysing enzymes (SIGMA L-2265, St. Louis, MO, USA) were used
- the cells were incubated for 90 min at 30° C and 100 rpm, and the protoplasts were separated by filtration (Wero-Lene N tissue)
- the protoplasts were once washed with STC (1 M sorbitol, 0.05 M CaCl₂, 0.01 M Tris/HCl pH 7.5) and resuspended in the same buffer
- 150 µl protoplasts (~ 10^8 /ml) were gently mixed with 10-15 µg plasmid DNA and incubated at room temperature (RT) for 25 min
- polyethylene glycol (60% PEG 4000, 50 mM CaCl₂, 10 mM Tris/HCl pH 7.5) was added in three steps, 150 µl, 200 µl and 900µl, and the sample was further incubated at room temperature (RT) for 25 min

- 5 ml STC were added, centrifuged and the protoplasts were resuspended in 2.5 ml YGS (0.5% yeast extract, 2% glucose, 1.2 M sorbitol)
- the sample was incubated for 2 hours at 30° C (100 rpm) centrifuged and the protoplasts were resuspended in 1 ml 1.2 M sorbitol
- 5 - the transformed protoplasts were mixed with 20 ml minimal regeneration medium (0.7% yeast nitrogen base without amino acids, 2% glucose, 1 M sorbitol, 1.5% agar, 20 mM Tris/HCl pH 7.5 supplemented with 0.2 g arginine and 10 mg nicotinamide per liter)
- the plates were incubated at 30° C for 3-5 days

10 B) Expression

Single transformants were isolated, purified and tested for overproduction of the fusion protein. 100 ml M25 medium (70g maltodextrin (Glucidex 17D, Sugro Basel, CH), 12.5g yeast extract, 25g casein-hydrolysate, 2g KH_2PO_4 , 2g K_2SO_4 , 0.5g $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 0.03g ZnCl_2 , 0.02g CaCl_2 , 0.05g $\text{MnSO}_4 \cdot 4\text{H}_2\text{O}$, 0.05g FeSO_4 per liter pH 5.6) were inoculated with 10^6 spores per ml from transformants FPAN1#11, #13, #16, #E25, #E30 respectively #E31 and incubated for 5 days at 30° C and 270 rpm. Supernatant was collected and the activity determined. The fusion protein showed the highest activity with phytic acid as substrate at pH 2.5, whereas with 4-nitrophenyl phosphate as substrate it showed two activity optima at pH 2.5 and 5.0 (Table 1).

20 C) Activity assay

a) Phytic acid

A 1 ml enzyme reaction contained 0.5 ml dialyzed supernatant (diluted if necessary) and 5.4 mM phytic acid (SIGMA P-3168). The enzyme reactions were made in 0.2 M sodium acetate buffer pH 5.0, respectively 0.2 M glycine buffer pH 2.5. The samples were incubated for 15 min at 37° C. The reactions were stopped by adding 1 ml 15% TCA (trichloroacetic acid). For the colour reaction 0.1 ml of the stopped sample was diluted with 0.9 ml distilled water and mixed with 1 ml reagent solution (3 volumes 1 M H_2SO_4 , 1 volume 2.5% $(\text{NH}_4)_6\text{Mo}_7\text{O}_24$, 1 volume 10% ascorbic acid). The samples were incubated for 20 min at 50° C and the blue colour was measured spectrophotometrically at 820 nm. Since the assay is based on the release of phosphate a phosphate standard curve, 11 - 45 nmol per ml, was used to determine the activity of the samples.

b) 4-nitrophenyl phosphate

A 1 ml enzyme reaction contained 100 μl dialyzed supernatant (diluted if necessary) and 1.7 mM 4-nitrophenyl phosphate (Merck, 6850, Darmstadt, BRD). The enzyme reactions were made in 0.2 M sodium acetate buffer pH 5.0, respectively 0.2 M glycine buffer pH 2.5. The samples were incubated for 15 min at 37° C. The reactions were stopped by adding 1 ml 15% TCA.

For the determination of the enzyme activity the protocol described above was used.

40

45

50

55

TABLE 1

Transformant	SUBSTRATE			
	* Phytic Acid		* 4-Nitrophenyl phosphate	
	pH 5.0	pH 2.5	pH 5.0	pH 2.5
A. niger ¹⁾	0.2	1	1	2
FPAN1 # 11	6	49	173	399
FPAN1 # 13	2	21	60	228
FPAN1 # 16	1	16	46	153
FPAN1 # E25	3	26	74	228
FPAN1 # E30	3	43	157	347
FPAN1 # E31	3	39	154	271

* Units per ml: 1 unit = 1 µmol phosphate released per min at 37° C

¹⁾ not transformed

Expression of the *Aspergillus terreus* 9A1 gene in *Aspergillus niger*

- 25 *A. niger* NW205 was transformed with plasmid pPAT1 as described above. Single transformants were isolated, purified and screened for overproduction of the *A. terreus* protein. 50 ml YPD medium were inoculated with 10⁶ spores per ml from transformants PAT1#3, #10, #11, #13 and #16 and incubated for 3 days at 30° C and 270 rpm. Supernatant was collected and the activity determined as described above except that the pH for the enzyme reactions were different. The enzyme showed its main activity at pH 5.5 with phytic acid as substrate and at pH 3.5 with 4-nitrophenyl phosphate as substrate (Table 2).

TABLE 2

Transformant	SUBSTRATE			
	* Phytic Acid		* 4-Nitrophenyl phosphate	
	pH 5.5	pH 3.5	pH 5.5	pH 3.5
A. niger ¹⁾	0	0	0	0.1
PAT1 # 3	10	0	0.2	0.7
PAT1 # 10	9	0	0.2	0.8
PAT1 # 11	5	0	0.1	0.5
PAT1 # 13	9	0	0.2	0.7
PAT1 # 16	5	0	0.1	0.5

* Units per ml: 1 unit = 1 µmol phosphate released per min at 37° C

¹⁾ not transformed

50

55

Example 10Fermentation of *Aspergillus niger* NW 205 transformants

5 A) Transformant FPAN1#11

Preculture medium [30 g maltodextrin (Glucidex 17D), 5 g yeast extract, 10 g casein-hydrolysate, 1 g KH₂PO₄, 0.5g MgSO₄•7H₂O, 3 g Tween 80 per liter; pH 5.5] was inoculated with 10⁶ spores per ml in a shake flask and incubated for 24 hours at 34° C and 250 rpm.

10 A 10 liter fermenter was inoculated with the pre-culture to a final dilution of the pre-culture of 1:100. The batch fermentation was run at 30° C with an automatically controlled dissolved oxygen concentration of minimum 25% (pO₂≥25%). The pH was kept at 3.0 by automatic titration with 5 M NaOH.

The medium used for the fermentation was: 35 g maltodextrin, 9.4 g yeast extract, 18.7 g casein-hydrolysate, 2 g KH₂PO₄, 0.5 g MgSO₄•7H₂O, 2 g K₂SO₄, 0.03 g ZnCl₂, 0.02 g CaCl₂, 0.05 g MnSO₄•4H₂O, 0.05 g FeSO₄ per liter; pH 5.6.

15 Enzyme activities reached after 3 days under these conditions were 35 units/ml respectively 16 units/ml at pH 2.5 respectively pH 5.0 with phytic acid as substrate and 295 units/ml respectively 90 units/ml at pH 2.5 respectively pH 5.0 and 4-nitrophenyl phosphate as substrate.

20 B) Transformant PAT1#11

Preculture, inoculation of the fermenter and the fermentation medium were as described above, except that the pH was kept at 4.5 by automatic titration with 5 M NaOH.

25 Enzyme activities reached after 4 days under these conditions were 17.5 units/ml at pH 5.5 with phytic acid as substrate and 2 units/ml at pH 3.5 with 4-nitrophenyl phosphate as substrate.

Example 11Isolation of PCR fragments of a phytase gene of *Aspergillus terreus* (CBS 220.95)

30 Two different primer pairs were used for PCR amplification of fragments using DNA of *Aspergillus terreus* [CBS 220.95]. The primers used are shown in the Table below.

35	Fragment amplified	Primers	Oligonucleotide sequences (5' to 3')
40	8 plus 9 about 150 bp	8	ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA [SEQ ID NO:8]
			Amino acids 254-259: MDMCSF
		9	TT(A/G)CC(A/G)GC(A/G)CC(G/A)TG(N)CC(A/G)TA [SEQ ID NO:9]
			Amino acids 296-301: YGHGAG
45	10 plus 11 about 250 bp	10	TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA [SEQ ID NO:10]
			Amino acids 349-354: YADFSH
		11	CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C [SEQ ID NO:11]
			Amino acids 416-422: RVLVNDR

50 DNA sequences in bold show the sense primer and in italics the antisense primer. The primers correspond to the indicated part of the coding sequence of the *Aspergillus niger* gene. The combinations used are primers 8 plus 9 and 10 plus 11. The Taq-Start antibody kit from Clontech (Palo Alto, CA, USA) was used according to the manufacturer's protocol. Primer concentrations for 8 plus 9 were 0.2 mM and for primers 10 plus 11 one mM. Touch-down PCR was used for amplification [Don, R.H. et al. (1991), Nucleic Acids Res. 19, 4008]. First the DNA was denatured for 3 min at 95°C. Then two cycles were done at each of the following annealing temperatures: 60°C, 59°C, 58°C, 57°C, 56°C, 55°C, 54°C, 53°C, 52°C and 51°C, with an annealing time of one min. each. Prior to annealing the incubation was heated to 95°C for one min and after annealing elongation was performed for 30 sec at 72°C. Cycles 21 to 35 were performed as follows: denaturation one min at 95°C, annealing one min at 50°C and elongation for 30 sec at 72°C.

Two different PCR fragments were obtained. The DNA sequences obtained and their comparison to relevant parts of the phytase gene of *Aspergillus terreus* 9A1 are shown in Figure 10 [relevant parts of the phytase gene of *Aspergillus terreus* 9A1 "9A1"(top lines) (1) and the PCR fragments of *Aspergillus terreus* CBS 220.95 "aterr21" (bottom lines). Panel A: Fragment obtained with primer pair 8 plus 9 (aterr21). Panel B: Fragment obtained with primer pair 10 plus 11 (aterr58). DNA sequences of *Aspergillus terreus* CBS 220.95 (top lines) are compared with those of *Aspergillus terreus* 9A1 (1) (bottom lines). Panel A: The bold gc sequence (bases 16 plus 17) in the aterr21 fragment could possibly be cg (DNA sequencing uncertainty). Panel B: The x at position 26 of the aterr58 PCR fragment could possibly represent any of the four nucleotides].

10

Example 12

Cross hybridizations under non-stringent and stringent washing conditions

15 Five µg's of genomic DNA of each strain listed in Table 3 were incubated with 4 units of *Hind*III or *Pst*I, respectively, per µg of DNA at 37°C for 4 hours. After digestion, the mixtures were extracted with phenol and DNAs were precipitated with ethanol. Samples were then analyzed on 0.8% agarose gels. DNAs were transferred to Nytran membranes (Schleicher & Schuell, Keene, NH, USA) using 0.4M NaOH containing 1M NaCl as transfer solution. Hybridizations were performed for 18 hours at 42°C. The hybridization solution
20 contained 50% formamide, 1% SDS, 10% dextran sulphate, 4 x SSPE (1 x SSPE = 0.18M NaCl, 1 mM EDTA, 10 mM NaH₂PO₄, pH 7.4), 0.5% blotto (dried milk powder in H₂O) and 0.5 mg salmon sperm DNA per ml. The membranes were washed under non-stringent conditions using as last and most-stringent washing condition incubation for 30 min at room temperature in 0.1 x SSPE containing 0.1% SDS. The probes (labelled at a specific activity of around 10⁹ dpm/µg DNA) used were the PCR fragments generated
25 with primers 8 plus 9 (see Example 11) using genomic DNA of *Myceliocephthora thermophila*; *Mycelio. thermo.*; *Aspergillus nidulans*, *Asperg. nidul.*; *Aspergillus fumigatus*, *Asperg. fumig.*; *Aspergillus terreus* 9A1, *Asperg. terreus* 9A1. *Talaromyces thermophilus*, *Talarom. thermo.* The MT2 genomic probe was obtained by random priming (according to the protocol given by Pharmacia, Uppsala, Sweden) and spans 1410 bp, from the BspEI site upstream of the N-terminus of the *Mycelio. thermo.* phytase gen
30 to the Pvull site in the C-terminus (positions 2068 to 3478). The AT2 genomic probe was obtained by random priming and spans 1365 bp, from the Apal site to the Ndel site of the *Asperg. terreus* 9A1 phytase gene (positions 491 to 1856). The AN2 DNA probe was obtained by random priming and spans the complete coding sequence (1404 bp) of the *Asperg. niger* gene (EP 420 358). Results are given in Table 3.
35 [***except for weak signal corresponding to a non-specific 20kb fragment; In case of the very weak cross-hybridization signal at 20 kb seen with DNA from *Aspergillus niger* using the PCR fragment from *Talaromyces thermophilus* this signal is unspecific, since it differs significantly from the expected 10 kb *Hind*III fragment, containing the phytase gene; *** signal due to only partial digest of DNA].
For cross-hybridizations with stringent washing conditions membranes were further washed for 30 min. at
40 65°C in 0.1 x SSPE containing 0.1% SDS. Results are shown in Table 4 [(1) only the 10.5-kb *Hind*III fragment is still detected, the 6.5-kb *Hind*III fragment disappeared (see table 3)].

45

50

55

Table 3

	Source of DNA used for cross-hybridization	PCR Probes					Genomic Probes		DNA Probes
		Band (kb) detected with Probe of <i>Asperg. fumig.</i>	Band (kb) detected with Probe of <i>Asperg. nidul.</i>	Band (kb) detected with Probe of <i>Asperg. terreus</i> 9A1	Band (kb) detected with Probe of <i>Mycelio. thermo.</i>	Band (kb) detected with Probe of <i>Talarom. thermo.</i>	Band (kb) detected with genomic Probe MT2 of <i>Mycelio. thermo.</i>	Band (kb) detected with genomic Probe AT2 of <i>Asperg. terreus</i> 9A1	
5									
10									
15	<i>Acrophialophora levis</i> [ATCC 48380]	no	no	no	no	no	8-kb	no	no
20	<i>Aspergillus niger</i> [ATCC 9142] (control)	no	no	no	no	no*	no	no	10 kb <i>Hind</i> III
25	<i>Aspergillus terreus</i> [CBS 220.95]	no	no	11-kb <i>Hind</i> III	no	no	no	11-kb <i>Hind</i> III	no
30	<i>Aspergillus sojae</i> [CBS 221.95]	no	no	no	no	no*	no	3.7-kb <i>Hind</i> III	no
35	<i>Calcarisporiella thermophila</i> [ATCC 22718]	no	no	10.5-kb <i>Hind</i> III	no	no	10.5-kb <i>Hind</i> III	10.5-kb <i>Hind</i> III	no
40	<i>Chaetomium rectopilum</i> [ATCC 22431]	no	no	no	no	no	>20-kb** <i>Hind</i> III	>20-kb** <i>Hind</i> III	no
45	<i>Corynascus thermophilus</i> [ATCC 22066]	no	no	no	no	no	10.5-kb <i>Hind</i> III	no	no
50	<i>Humicola sp.</i> [ATCC 60849]	no	no	no	no	no	9.5-kb <i>Hind</i> III	no	no
55	<i>Mycelia sterilia</i> [ATCC 20350]	no	no	no	6-kb <i>Hind</i> III	no	6-kb <i>Hind</i> III	6-kb <i>Hind</i> III	no

	<i>Myrococcum thermophilum</i> [ATCC 22112]	no	no	no	no	4.8-kb <i>Hind</i> III	no	no	no
5	<i>Rhizomucor miehei</i> [ATCC 22064]	no	3.8-kb <i>Hind</i> III	no	no	no	no	no	no
10	<i>Sporotrichum cellulophilum</i> [ATCC 20494]	no	no	no	6-kb <i>Hind</i> III 2.1/3.7-kb <i>Pst</i> I	no	6-kb and 10.5-kb <i>Hind</i> III	6-kb and 10.5-kb <i>Hind</i> III	no
15	<i>Sporotrichum thermophile</i> [ATCC 22482]	no	no	no	6-kb <i>Hind</i> III 2.1/3.7-kb <i>Pst</i> I	6-kb <i>Hind</i> III	6-kb <i>Hind</i> III	6-kb <i>Hind</i> III	no
20	<i>Scyphularium indonesicum</i> [ATCC 46858]	no	no	no	no	no	9-kb <i>Hind</i> III	no	no
25	<i>Aspergillus fumigatus</i> [ATCC 34625]	2.3-kb <i>Hind</i> III	no	no	no	no	no	no	no
30	<i>Aspergillus nidulans</i> [DSM 9743]	no	9.5-kb <i>Hind</i> III	no	no	no	no	9.5-kb <i>Hind</i> III	no
35	<i>Aspergillus terreus</i> 9A1 [DSM 9076]	no	no	10.5-kb <i>Hind</i> III	no	6.5-kb <i>Hind</i> III	10.5-kb <i>Hind</i> III	10.5-kb <i>Hind</i> III	no
40	<i>Myceliophthora thermophila</i> [ATCC 48102]	no	no	no	6.5-kb <i>Hind</i> III	no	6.5-kb <i>Hind</i> III	6.5-kb <i>Hind</i> III	no
45	<i>Talaromyces thermophilus</i> [ATCC 20186]	no	no	no	no	9.5-kb <i>Hind</i> III	no	no	no
50									
55									

Table 4

Source of DNA used for cross-hybridization	Probe Asperg. fumig.	Probe Asperg. nidul.	Probe Asperg. terreus 9A1	Probe Mycelio. thermo.	Probe Talarom. thermo.	Genomic c Probe of MT2 Mycelio. thermo.	Genomic Probe of AT2 Asperg. terreus 9A1	DNA Probe of AN2 Asperg. niger (control)
<i>Acrophiophthora levis</i>						yes		yes
<i>Asperillus niger</i> (control)								
<i>Asperillus terreus</i> (CBS 116.46)		yes					yes	
<i>Calcarisporiella thermophila</i>		yes					yes	
<i>Chaetomium rectopilum</i>						yes		
<i>Corynascus thermophilus</i>						yes		
<i>Sporotrichum cellulophilum</i>				yes		yes		
<i>Sporotrichum thermophile</i>				yes		yes		
<i>Asperillus fumigatus</i>	yes					yes		
<i>Asperillus nidulans</i>		yes				yes		
<i>Asperillus terreus</i> 9A1			yes				yes	
<i>Mycelia sterilia</i>						yes		
<i>Myceliophthora thermophila</i>						yes		
<i>Talaromyces thermophilus</i>					yes		yes	

5

10

15

20

25

30

35

40

45

50

55

SEQUENCE LISTING

(1) GENERAL INFORMATION:

5 (i) APPLICANT:
(A) NAME: F. HOFFMANN-LA ROCHE AG
(B) STREET: Grenzacherstrasse 124
(C) CITY: Basle
(D) STATE: BS
(E) COUNTRY: Switzerland
(F) POSTAL CODE (ZIP): CH-4002
(G) TELEPHONE: 061 - 688 25 05
(H) TELEFAX: 061 - 688 13 95
(I) TELEX: 962292/965542 hlr ch

10 (ii) TITLE OF INVENTION: Polypeptides with phytase activity

15 (iii) NUMBER OF SEQUENCES: 21

20 (iv) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: Apple Macintosh
(C) OPERATING SYSTEM: System 7.1 (Macintosh)
(D) SOFTWARE: WORD 5.0

(vi) PRIOR APPLICATION DATA:
(A) APPLICATION NUMBER: EP 94810228.0
(B) FILING DATE: 25-APR-1994

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2327 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: join(374..420, 469..1819)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

TCTAGAACAA	TAACAGGTAC	TCCCTAGGTA	CCCGAAGGAC	CTTGTGGAAA	ATGTATGGAG	60
GTGGACACGG	CACCAACCAC	CACCCGCGAT	GGCGCACGTG	GTGCCCTAAC	CCCTTGCTCC	120
CTCAGGATGG	AATCCATGTC	GACTCTTTAC	CCTCACCATC	GCCTGGATGA	AACCTCCCCG	180
CTAAGCTCAC	GACGATCGCT	ATTCCGACC	GATTTGACCG	TCATGGTGGA	GGGCTGATTG	240
GGTCGATGCT	CCTGCCCTCA	TTTCGGAGTT	CGGAGACATG	AAAGGCTTAT	ATGAGGACGT	300
CCCAGGTCGG	GGACGAAATC	CGCCCTGGGC	TGTGCTCCTT	CGTCGGAAAC	ATCTGCTGTC	360

EP 0 684 313 A2

	CGTGATGGCT ACC ATG GGC TTT CTT GCC ATT GTG CTC TCC GTC GCC TTG Met Gly Phe Leu Ala Ile Val Leu Ser Val Ala Leu	409
5	1 5 10	
	CTC TTT AGA AG GTATGCACCC CTCTACGTCC AATTCTCTGG GCACTGACAA Leu Phe Arg Ser	460
	15	
10	CGGGCGCAG C ACA TCG GGC ACC CCG TTG GGC CCC CGG GGC AAA CAT AGC Thr Ser Gly Thr Pro Leu Gly Pro Arg Gly Lys His Ser	508
	20 25	
	GAC TGC AAC TCA GTC GAT CAC GGC TAT CAA TGC TTT CCT GAA CTC TCT Asp Cys Asn Ser Val Asp His Gly Tyr Gln Cys Phe Pro Glu Leu Ser	556
	30 35 40 45	
15	CAT AAA TGG GGA CTC TAC GCG CCC TAC TTC TCC CTC CAG GAC GAG TCT His Lys Trp Gly Leu Tyr Ala Pro Tyr Phe Ser Leu Gln Asp Glu Ser	604
	50 55 60	
20	CCG TTT CCT CTG GAC GTC CCA GAG GAC TGT CAC ATC ACC TTC GTG CAG Pro Phe Pro Leu Asp Val Pro Glu Asp Cys His Ile Thr Phe Val Gln	652
	65 70 75	
	GTG CTG GCC CGC CAC GGC GCG CGG AGC CCA ACC CAT AGC AAG ACC AAG Val Leu Ala Arg His Gly Ala Arg Ser Pro Thr His Ser Lys Thr Lys	700
	80 85 90	
25	GCG TAC GCG GCG ACC ATT GCG GCC ATC CAG AAG AGT GCC ACT GCG TTT Ala Tyr Ala Ala Thr Ile Ala Ile Gln Lys Ser Ala Thr Ala Phe	748
	95 100 105	
30	CCG GGC AAA TAC GCG TTC CTG CAG TCA TAT AAC TAC TCC TTG GAC TCT Pro Gly Lys Tyr Ala Phe Leu Gln Ser Tyr Asn Tyr Ser Leu Asp Ser	796
	110 115 120 125	
	GAG GAG CTG ACT CCC TTC GGG CGG AAC CAG CTG CGA GAT CTG GGC GCC Glu Glu Leu Thr Pro Phe Gly Arg Asn Gln Leu Arg Asp Leu Gly Ala	844
	130 135 140	
35	CAG TTC TAC GAG CGC TAC AAC GCC CTC ACC CGA CAC ATC AAC CCC TTC Gln Phe Tyr Glu Arg Tyr Asn Ala Leu Thr Arg His Ile Asn Pro Phe	892
	145 150 155	
40	GTC CGC GCC ACC GAT GCA TCC CGC GTC CAC GAA TCC GCC GAG AAG TTC Val Arg Ala Thr Asp Ala Ser Arg Val His Glu Ser Ala Glu Lys Phe	940
	160 165 170	
	GTC GAG GGC TTC CAA ACC GCT CGA CAG GAC GAT CAT CAC GCC AAT CCC Val Glu Gly Phe Gln Thr Ala Arg Gln Asp Asp His His Ala Asn Pro	988
	175 180 185	
45	CAC CAG CCT TCG CCT CGC GTG GAC GTG GCC ATC CCC GAA GGC AGC GCC His Gln Pro Ser Pro Arg Val Asp Val Ala Ile Pro Glu Gly Ser Ala	1036
	190 195 200 205	
50	TAC AAC AAC ACG CTG GAG CAC AGC CTC TGC ACC GCC TTC GAA TCC AGC Tyr Asn Asn Thr Leu Glu His Ser Leu Cys Thr Ala Phe Glu Ser Ser	1084
	210 215 220	

EP 0 684 313 A2

	ACC GTC GGC GAC GAC GCG GTC GCC AAC TTC ACC GCC GTG TTC GCG CCG Thr Val Gly Asp Asp Ala Val Ala Asn Phe Thr Ala Val Phe Ala Pro	1132
	225 230 235	
5	GCG ATC GCC CAG CGC CTG GAG GCC GAT CTT CCC GGC GTG CAG CTG TCC Ala Ile Ala Gln Arg Leu Glu Ala Asp Leu Pro Gly Val Gln Leu Ser	1180
	240 245 250	
10	ACC GAC GAC GTG GTC AAC CTG ATG GCC ATG TGT CCG TTC GAG ACG GTC Thr Asp Asp Val Val Asn Leu Met Ala Met Cys Pro Phe Glu Thr Val	1228
	255 260 265	
15	AGC CTG ACC GAC GAC GCG CAC ACG CTG TCG CCG TTC TGC GAC CTC TTC Ser Leu Thr Asp Asp Ala His Thr Leu Ser Pro Phe Cys Asp Leu Phe	1276
	270 275 280 285	
20	ACG GCC ACT GAG TGG ACG CAG TAC AAC TAC CTG CTC TCG CTG GAC AAG Thr Ala Thr Glu Trp Thr Gln Tyr Asn Tyr Leu Leu Ser Leu Asp Lys	1324
	290 295 300	
25	TAC TAC GGC TAC GGC GGG GGC AAT CCG CTG GGT CCG GTG CAG GGG GTC Tyr Tyr Gly Tyr Gly Gly Asn Pro Leu Gly Pro Val Gln Gly Val	1372
	305 310 315	
30	GGC TGG GCG AAC GAG CTG ATG GCG CGG CTA ACG CGC GCC CCC GTG CAC Gly Trp Ala Asn Glu Leu Met Ala Arg Leu Thr Arg Ala Pro Val His	1420
	320 325 330	
35	GAC CAC ACC TGC GTC AAC AAC ACC CTC GAC GCG AGT CCG GCC ACC TTC Asp His Thr Cys Val Asn Asn Thr Leu Asp Ala Ser Pro Ala Thr Phe	1468
	335 340 345	
40	CCG CTG AAC GCC ACC CTC TAC GCC GAC TTC TCC CAC GAC AGC AAC CTG Pro Leu Asn Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Ser Asn Leu	1516
	350 355 360 365	
45	GTG TCG ATC TTC TGG GCG CTG GGC CTG TAC AAC GGC ACC GCG CCG CTG Val Ser Ile Phe Trp Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu	1564
	370 375 380	
50	TCG CAG ACC TCC GTC GAG AGC GTC TCC CAG ACG GAC GGG TAC GCC GCC Ser Gln Thr Ser Val Glu Ser Val Ser Gln Thr Asp Gly Tyr Ala Ala	1612
	385 390 395	
55	GCC TGG ACG GTG CCG TTC GCC GCT CGC GCG TAC GTC GAG ATG ATG CAG Ala Trp Thr Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln	1660
	400 405 410	
60	TGT CGC GCC GAG AAG GAG CCG CTG GTG CGC GTG CTG GTC AAC GAC CGG Cys Arg Ala Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg	1708
	415 420 425	
65	GTC ATG CCG CTG CAT GGC TGC CCT ACG GAC AAG CTG GGG CGG TGC AAG Val Met Pro Leu His Gly Cys Pro Thr Asp Lys Leu Gly Arg Cys Lys	1756
	430 435 440 445	
70	CGG GAC GCT TTC GTC GCG GGG CTG AGC TTT GCG CAG GCG GGC GGG AAC Arg Asp Ala Phe Val Ala Gly Leu Ser Phe Ala Gln Ala Gly Asn	1804
	450 455 460	

TGG GCG GAT TGT TTC TGATGTTGAG AAGAAAGGTA GATAGATAGG TAGTACATAT	1859
Trp Ala Asp Cys Phe	
465	
5 GGATTGCTCG GCTCTGGTC GTTGCCCACA ATGCATATTA CGCCCGTCAA CTGCCCTGCG	1919
CCATCCACCT CTCACCCTGG ACGCAACCGA GCGGTCTACC CTGCACACGG CTTCCACCGC	1979
10 GACGCGCACG GATAAGGCGC TTTTGTACG GGGTTGGGC TGGGGGCAGC CGGAGCCGGA	2039
GAGAGAGACC AGCGTGAAAA ACGACAGAAC ATAGATATCA ATTGACGCC AATTGATGCA	2099
GAGTAGTATA CAGACGAAC GAAACAAACA CATCACTTCC CTCGCTCCTC TCCTGTAGAA	2159
15 GACGCTCCCA CCAGCCGCTT CTGGCCCTTA TTCCCGTACG CTAGGTAGAC CAGTCAGCCA	2219
GACGCATGCC TCACAAGAAC GGGGGCGGGG GACACACTCC GCTCGTACAG CACCCACGAC	2279
GTGTACAGGA AAACCGGCAG CGCCACAATC GTCGAGAGCC ATCTGCAG	2327

20 (2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 466 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Gly Phe Leu Ala Ile Val Leu Ser Val Ala Leu Leu Phe Arg Ser	
30 1 5 10 15	15
Thr Ser Gly Thr Pro Leu Gly Pro Arg Gly Lys His Ser Asp Cys Asn	
20 20 25 30	30
Ser Val Asp His Gly Tyr Gln Cys Phe Pro Glu Leu Ser His Lys Trp	
35 35 40 45	45
Gly Leu Tyr Ala Pro Tyr Phe Ser Leu Gln Asp Glu Ser Pro Phe Pro	
50 50 55 60	60
Leu Asp Val Pro Glu Asp Cys His Ile Thr Phe Val Gln Val Leu Ala	
40 65 70 75 80	80
Arg His Gly Ala Arg Ser Pro Thr His Ser Lys Thr Lys Ala Tyr Ala	
85 85 90 95	95
Ala Thr Ile Ala Ala Ile Gln Lys Ser Ala Thr Ala Phe Pro Gly Lys	
45 100 105 110	110
Tyr Ala Phe Leu Gln Ser Tyr Asn Tyr Ser Leu Asp Ser Glu Glu Leu	
115 115 120 125	125
50 Thr Pro Phe Gly Arg Asn Gln Leu Arg Asp Leu Gly Ala Gln Phe Tyr	
130 135 140	140

EP 0 684 313 A2

	Glu Arg Tyr Asn Ala Leu Thr Arg His Ile Asn Pro Phe Val Arg Ala			
145	150	155	160	
	Thr Asp Ala Ser Arg Val His Glu Ser Ala Glu Lys Phe Val Glu Gly			
5	165	170	175	
	Phe Gln Thr Ala Arg Gln Asp Asp His His Ala Asn Pro His Gln Pro			
	180	185	190	
10	Ser Pro Arg Val Asp Val Ala Ile Pro Glu Gly Ser Ala Tyr Asn Asn			
	195	200	205	
	Thr Leu Glu His Ser Leu Cys Thr Ala Phe Glu Ser Ser Thr Val Gly			
	210	215	220	
15	Asp Asp Ala Val Ala Asn Phe Thr Ala Val Phe Ala Pro Ala Ile Ala			
	225	230	235	240
	Gln Arg Leu Glu Ala Asp Leu Pro Gly Val Gln Leu Ser Thr Asp Asp			
	245	250	255	
20	Val Val Asn Leu Met Ala Met Cys Pro Phe Glu Thr Val Ser Leu Thr			
	260	265	270	
	Asp Asp Ala His Thr Leu Ser Pro Phe Cys Asp Leu Phe Thr Ala Thr			
	275	280	285	
25	Glu Trp Thr Gln Tyr Asn Tyr Leu Leu Ser Leu Asp Lys Tyr Tyr Gly			
	290	295	300	
	Tyr Gly Gly Asn Pro Leu Gly Pro Val Gln Gly Val Gly Trp Ala			
	305	310	315	320
30	Asn Glu Leu Met Ala Arg Leu Thr Arg Ala Pro Val His Asp His Thr			
	325	330	335	
	Cys Val Asn Asn Thr Leu Asp Ala Ser Pro Ala Thr Phe Pro Leu Asn			
	340	345	350	
35	Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Ser Asn Leu Val Ser Ile			
	355	360	365	
	Phe Trp Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Gln Thr			
	370	375	380	
40	Ser Val Glu Ser Val Ser Gln Thr Asp Gly Tyr Ala Ala Ala Trp Thr			
	385	390	395	400
	Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Arg Ala			
	405	410	415	
45	Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Met Pro			
	420	425	430	
	Leu His Gly Cys Pro Thr Asp Lys Leu Gly Arg Cys Lys Arg Asp Ala			
	435	440	445	
50	Phe Val Ala Gly Leu Ser Phe Ala Gln Ala Gly Gly Asn Trp Ala Asp			
	450	455	460	

Cys Phe
465

5 (2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3995 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

15 (ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: join(2208..2263, 2321..3725)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

20	GTCGACGAGG CACACCACGC CCGTCCTCGG CGGGTCCGAG AGGGCCGGGC TCGGGTTCGA	60
	CAAGGAGACG GGC GTCCCTT CGGGCGCGC TGCGGGTGTG GGTGTTGCTG TGGACGGTGA	120
	GGAGGGGGAC GGGCTGGCG TTGATGACGG TACGAATGCG AACGGACACA GGCGCTGAG	180
25	CGTGGGTGTT GCGTTCTAA T CT TCTTGTG GTGGGTGTG ACGTGTGGGT GTGTATGTGT	240
	TTGGGGGGGG GAATGTTCTT GGTAATTATC TTTCTACCCCT TCTTCTCTT CCTTTATTCT	300
	GTTCAGCAGG TATACCCCGT GTAAGTGTAC AGGATTATGG GACGGGTGGG TGGATGGACT	360
30	ACTTCTAGAA GGACGGATAA GGAAAAAGGG GAAACACGAA TATGGCGCCC TGGGTGGCGC	420
	GTCGAGCTGG ATGCTTGACG CCGGTCTGGC AAACATTTTC TTCTCTAGC ACCCAACCTA	480
	GTACTTGATA GAGTGTTCG GGGCCAGGCG GTT TGC GCTG TGTTTTACC AATCACCAAC	540
35	TAGTGCTACT ACTATTATTG CGGCTGTGA TGCAGCCGTG TACCAAAAT GCCGCGGCAT	600
	CTCCATTGAT ACTTGTAGTT TTGATAGATC AATATTTGGG AGGTTGCCT GGGCTGCTCT	660
	GAAACCCCTC TCTCTGCTG TACGTAACGT ATGTGCACAG TATGTCACCG ACAAAAGACGA	720
40	TTGCATGCGC ATCGTTTTT GTTGTGTTTC AGGCCTCGCT CGTGTCTAGG GTATAAACAC	780
	ATTGAAGACT ACATATGCGC AAGACGTTGA CATTAACGGG GTCCTGCAGC CGCCGCAGGT	840
	GCATGTCGTG ATTAATACCA CGCGCCTGCG TAAATTAGCT AGCCGCCGCC CTGTTCACT	900
45	CGGTTAGAGA CGGACAGGTG AGACGGGTCT CGGTTAAGCA AGCAAATTGG AATGCAAGGT	960
	TGAAGGTGTA ATCTGCATAG CGTGAAATG AGAGGGCTCT GTGGGCAGCC AGGAAGGTGA	1020
	GACGAAATGA GGAAAGAGGC ACCAGAAGCT GTTGTCTGA AGTGCCTG GTCATAGCTC	1080
	CAGGATTAAG TACGGATGTC CCATGCCAAG CTGCTGGCTT CGAAAGCGAG TACGGAGTAG	1140
50	TGTCCATTGT TCACGAGGGA TCCCCAATGT GTTAGACATG CCTGAATCAA TTTTGTCTA	1200

EP 0 684 313 A2

	TTTTGGATT TCAACTGTTT CTCTCGACTG TGCTCGGTAG CGACTATGCC GCAAGGTACA	1260
5	CTACATGTTG TACAATAATC ATACATCGAC CTTCCGTAGG AGTGCTGAAA TACCCGACCT	1320
	GCTCTCTCTA GCAGGTGCCT AATGGCTTC GTGTAACTCG ATCGAAACGG ATCAGCAAGT	1380
	CCATTTGCTG TTGGTTGAGA TGTACGATTT ACAAAACACGT GGAGAGGTGA GCCACAGCGA	1440
10	TAGGCTTCTG GAAGGATTCT GGCGTCTCGG AAAGAGGCC ACTCGCCCCA CTAACCGCG	1500
	CCGATCTTGA CATGGGGCTC GCAGGGGTT TAAGTGCACA CTACGGAGTA CGGATTACAC	1560
	AGTAGTGTAT GGGTGGGGC GAGTTGGGT GGCCTTGTGT GGGGCTCACCC GGCTGCCTGT	1620
15	TCTCGGGGAG TCTTGGCGGG CCGATTGGAC CCACCTAACCC ACGGGTAGTC TTGGCCCGGC	1680
	CAACTCACAC CGCCCTCATG TTTCGGAGCC AGTCAGGGAG GCAGGCACCA CTCAGTCAGG	1740
	TACACACGTC GGGCTCCTCG ATGCTGGGTG ACATCGAGGC GATACTGCAT TCCAACATACG	1800
	GTTGGCATAG GAGGTATCCT ATTCTAGAGC TGTCTACGC CGGAACGTAACCCGGGATAAA	1860
20	CCCGGGATAT CGCTTCCCTG AGCGAGCGCG CTGCTGAGGA TCATACAAACC CAACAACCGA	1920
	CGACGGTGCA AGAAGGTTGG GGGAAAGGAAG AAATCAAGGA AAAAAAAATA GGGGGGGTGG	1980
	GGACCAAGAG AGAAAGAAAG GAGAAAAGGG TGGGGGGAGG GAAGAGAAAA AAAAAACGGA	2040
25	GGAATATGGC GTCGCTCTTC GACTGGTTCC GGAAGGGGCC ATCTGGGTAC ACATATGCAC	2100
	CTCTTCCGCA CGGCAGGGAT ATAAACCGGG AGTGCAGTCC CACCGATCAT GCTGAGTCCG	2160
	CCCGTCTCCA GACTTCACGG TCGCAGAGGA CTAGACCGCGC GGTGAAG ATG ACT GGC Met Thr Gly	2216
30	1	
	CTC GGA GTG ATG GTG GTG ATG GTC GGC TTC CTG GCG ATC GCC TCT CT Leu Gly Val Met Val Val Met Val Gly Phe Leu Ala Ile Ala Ser Leu	2263
	5 10 15	
35	GTAAGCAGCG ATTCCAGGGG TCCGGTGTGC GTTAAAGAA AAAGCTAACG CCACCAAG A	2321
	CAA TCC GAG TCC CGG CCA TGC GAC ACC CCA GAC TTG GGC TTC CAG TGT Gln Ser Glu Ser Arg Pro Cys Asp Thr Pro Asp Leu Gly Phe Gln Cys	2369
	20 25 30 35	
40	GGT ACG GCC ATT TCC CAC TTC TGG GGC CAG TAC TCG CCC TAC TTC TCC Gly Thr Ala Ile Ser His Phe Trp Gly Gln Tyr Ser Pro Tyr Phe Ser	2417
	40 45 50	
45	GTG CCC TCG GAG CTG GAT GCT TCG ATC CCC GAC GAC TGC GAG GTG ACG Val Pro Ser Glu Leu Asp Ala Ser Ile Pro Asp Asp Cys Glu Val Thr	2465
	55 60 65	
	TTT GCC CAA GTC CTC TCC CGC CAC GGC GCG AGG GCG CCG ACG CTC AAA Phe Ala Gln Val Leu Ser Arg His Gly Ala Arg Ala Pro Thr Leu Lys	2513
	70 75 80	
50	CGG GCC GCG AGC TAC GTC GAT CTC ATC GAC AGG ATC CAC CAT GGC GCC	2561

EP 0 684 313 A2

	Arg Ala Ala Ser Tyr Val Asp Leu Ile Asp Arg Ile His His Gly Ala		
	85 90 95		
5	ATC TCC TAC GGG CCG GGC TAC GAG TTC CTC AGG ACG TAT GAC TAC ACC Ile Ser Tyr Gly Pro Gly Tyr Glu Phe Leu Arg Thr Tyr Asp Tyr Thr 100 105 110 115		2609
10	CTG GGC GCC GAC GAG CTC ACC CGG ACG GGC CAG CAG CAG ATG GTC AAC Leu Gly Ala Asp Glu Leu Thr Arg Thr Gly Gln Gln Gln Met Val Asn 120 125 130		2657
	TCG GGC ATC AAG TTT TAC CGC CGC TAC CGC GCT CTC GCC CGC AAG TCG Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Arg Ala Leu Ala Arg Lys Ser 135 140 145		2705
15	ATC CCC TTC GTC CGC ACC GCC GGC CAG GAC CGC GTC GTC CAC TCG GCC Ile Pro Phe Val Arg Thr Ala Gly Gln Asp Arg Val Val His Ser Ala 150 155 160		2753
20	GAG AAC TTC ACC CAG GGC TTC CAC TCT GCC CTG CTC GCC GAC CGC GGG Glu Asn Phe Thr Gln Gly Phe His Ser Ala Leu Leu Ala Asp Arg Gly 165 170 175		2801
	TCC ACC GTC CGG CCC ACC CTC CCC TAT GAC ATG GTC GTC ATC CCG GAA Ser Thr Val Arg Pro Thr Leu Pro Tyr Asp Met Val Val Ile Pro Glu 180 185 190 195		2849
25	ACC GCC GGC GCC AAC AAC ACG CTC CAC AAC GAC CTC TGC ACC GCC TTC Thr Ala Gly Ala Asn Asn Thr Leu His Asn Asp Leu Cys Thr Ala Phe 200 205 210		2897
30	GAG GAA GGC CCG TAC TCG ACC ATC GGC GAC GAC GGC CAA GAC ACC TAC Glu Glu Gly Pro Tyr Ser Thr Ile Gly Asp Asp Ala Gln Asp Thr Tyr 215 220 225		2945
	CTC TCC ACC TTC GCC GGA CCC ATC ACC GCC CGG GTC AAC GCC AAC CTG Leu Ser Thr Phe Ala Gly Pro Ile Thr Ala Arg Val Asn Ala Asn Leu 230 235 240		2993
35	CCG GGC GCC AAC CTG ACC GAC GCC GAC ACG GTC GCG CTG ATG GAC CTC Pro Gly Ala Asn Leu Thr Asp Ala Asp Thr Val Ala Leu Met Asp Leu 245 250 255		3041
40	TGC CCC TTC GAG ACG GTC GCC TCC TCC TCC GAC CCG GCA ACG GCG Cys Pro Phe Glu Thr Val Ala Ser Ser Ser Asp Pro Ala Thr Ala 260 265 270 275		3089
	GAC GCG GGG GGC AAC GGG CGG CCG CTG TCG CCC TTC TGC CGC CTG Asp Ala Gly Gly Asn Gly Arg Pro Leu Ser Pro Phe Cys Arg Leu 280 285 290		3137
45	TTC AGC GAG TCC GAG TGG CGC GCG TAC GAC TAC CTG CAG TCG GTG GGC Phe Ser Glu Ser Glu Trp Arg Ala Tyr Asp Tyr Leu Gln Ser Val Gly 295 300 305		3185
50	AAG TGG TAC GGG TAC GGG CCG GGC AAC CCG CTG GGG CCG ACG CAG GGG Lys Trp Tyr Gly Tyr Gly Pro Gly Asn Pro Leu Gly Pro Thr Gln Gly 310 315 320		3233

	GTC GGG TTC GTC AAC GAG CTG CTG GCG CGG CTG GCC GGG GTC CCC GTG Val Gly Phe Val Asn Glu Leu Leu Ala Arg Leu Ala Gly Val Pro Val 325 330 335	3281
5	CGC GAC GGC ACC AGC ACC AAC CGC ACC CTC GAC GGC GAC CCG CGC ACC Arg Asp Gly Thr Ser Thr Asn Arg Thr Leu Asp Gly Asp Pro Arg Thr 340 345 350 355	3329
10	TTC CCG CTC GGC CGG CCC CTC TAC GCC GAC TTC AGC CAC GAC AAC GAC Phe Pro Leu Gly Arg Pro Leu Tyr Ala Asp Phe Ser His Asp Asn Asp 360 365 370	3377
	ATG ATG GGC GTC CTC GGC GCC CTC GGC GCC TAC GAC GGC GTC CCG CCC Met Met Gly Val Leu Gly Ala Leu Gly Ala Tyr Asp Gly Val Pro Pro 375 380 385	3425
15	CTC GAC AAG ACC GCC CGC CGC GAC CCG GAA GAG CTC GGC GGG TAC GCG Leu Asp Lys Thr Ala Arg Arg Asp Pro Glu Glu Leu Gly Gly Tyr Ala 390 395 400	3473
20	GCC AGC TGG GCC GTC CCG TTC GCC AGG ATC TAC GTC GAG AAG ATG Ala Ser Trp Ala Val Pro Phe Ala Ala Arg Ile Tyr Val Glu Lys Met 405 410 415	3521
	CGG TGC AGC GGC GGC GGC GGC GGC GGC GGC GGC GAG GGG CGG CAG Arg Cys Ser Gly Gly Gly Gly Gly Gly Glu Gly Arg Gln 420 425 430 435	3569
25	GAG AAG GAT GAG GAG ATG GTC AGG GTG CTG GTG AAC GAC CGG GTG ATG Glu Lys Asp Glu Glu Met Val Arg Val Leu Val Asn Asp Arg Val Met 440 445 450	3617
30	ACG CTG AAG GGG TGC GGC GCC GAC GAG AGG GGG ATG TGT ACG CTA GAA Thr Leu Lys Gly Cys Gly Ala Asp Glu Arg Gly Met Cys Thr Leu Glu 455 460 465	3665
	CGG TTC ATC GAA AGC ATG GCG TTT GCG AGG GGG AAC GGC AAG TGG GAT Arg Phe Ile Glu Ser Met Ala Phe Ala Arg Gly Asn Gly Lys Trp Asp 470 475 480	3713
35	CTC TGC TTT GCT TGATATGCC ACGCCGAGA TTGAACAGAA CTTGTGATGG Leu Cys Phe Ala 485	3765
40	GGGTAGAGTG TGGTATTCGA GATGATAGTT CACAGTTTC GGGATCAAA AATCGGTTAG ACTGGCGAAA TTCAAGTCTG GGGCCTGCGG CGTCTGCATT CTCCGTTCCC TGTTGTTACC TTCTTAATGG TTTTTTTTA TTTTTTATT TTCTTAAATT TTCACACAAA CCTTTTATTG TCTTTTTTC TTCTTTTCT TCTCTGCAC ATCGGATGGG AATTGTCGAC	3825 3885 3945 3995

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 487 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

5 Met Thr Gly Leu Gly Val Met Val Val Met Val Gly Phe Leu Ala Ile
 1 5 10 15

Ala Ser Leu Gln Ser Glu Ser Arg Pro Cys Asp Thr Pro Asp Leu Gly
 20 25 30

10 Phe Gln Cys Gly Thr Ala Ile Ser His Phe Trp Gly Gln Tyr Ser Pro
 35 40 45

Tyr Phe Ser Val Pro Ser Glu Leu Asp Ala Ser Ile Pro Asp Asp Cys
 50 55 60

15 Glu Val Thr Phe Ala Gln Val Leu Ser Arg His Gly Ala Arg Ala Pro
 65 70 75 80

Thr Leu Lys Arg Ala Ala Ser Tyr Val Asp Leu Ile Asp Arg Ile His
 85 90 95

20 His Gly Ala Ile Ser Tyr Gly Pro Gly Tyr Glu Phe Leu Arg Thr Tyr
 100 105 110

Asp Tyr Thr Leu Gly Ala Asp Glu Leu Thr Arg Thr Gly Gln Gln
 115 120 125

25 Met Val Asn Ser Gly Ile Lys Phe Tyr Arg Arg Tyr Arg Ala Leu Ala
 130 135 140

Arg Lys Ser Ile Pro Phe Val Arg Thr Ala Gly Gln Asp Arg Val Val
 145 150 155 160

30 His Ser Ala Glu Asn Phe Thr Gln Gly Phe His Ser Ala Leu Ala
 165 170 175

Asp Arg Gly Ser Thr Val Arg Pro Thr Leu Pro Tyr Asp Met Val Val
 180 185 190

35 Ile Pro Glu Thr Ala Gly Ala Asn Asn Thr Leu His Asn Asp Leu Cys
 195 200 205

Thr Ala Phe Glu Glu Gly Pro Tyr Ser Thr Ile Gly Asp Asp Ala Gln
 210 215 220

40 Asp Thr Tyr Leu Ser Thr Phe Ala Gly Pro Ile Thr Ala Arg Val Asn
 225 230 235 240

Ala Asn Leu Pro Gly Ala Asn Leu Thr Asp Ala Asp Thr Val Ala Leu
 245 250 255

45 Met Asp Leu Cys Pro Phe Glu Thr Val Ala Ser Ser Ser Ser Asp Pro
 260 265 270

Ala Thr Ala Asp Ala Gly Gly Asn Gly Arg Pro Leu Ser Pro Phe
 275 280 285

50 Cys Arg Leu Phe Ser Glu Ser Glu Trp Arg Ala Tyr Asp Tyr Leu Gln
 290 295 300

Ser Val Gly Lys Trp Tyr Gly Tyr Gly Pro Gly Asn Pro Leu Gly Pro
 305 310 315 320
 5 Thr Gln Gly Val Gly Phe Val Asn Glu Leu Leu Ala Arg Leu Ala Gly
 325 330 335
 Val Pro Val Arg Asp Gly Thr Ser Thr Asn Arg Thr Leu Asp Gly Asp
 340 345 350
 10 Pro Arg Thr Phe Pro Leu Gly Arg Pro Leu Tyr Ala Asp Phe Ser His
 355 360 365
 Asp Asn Asp Met Met Gly Val Leu Gly Ala Leu Gly Ala Tyr Asp Gly
 370 375 380
 15 Val Pro Pro Leu Asp Lys Thr Ala Arg Arg Asp Pro Glu Glu Leu Gly
 385 390 395 400
 Gly Tyr Ala Ala Ser Trp Ala Val Pro Phe Ala Ala Arg Ile Tyr Val
 405 410 415
 20 Glu Lys Met Arg Cys Ser Gly Gly Gly Gly Gly Gly Glu
 420 425 430
 Gly Arg Gln Glu Lys Asp Glu Glu Met Val Arg Val Leu Val Asn Asp
 435 440 445
 25 Arg Val Met Thr Leu Lys Gly Cys Gly Ala Asp Glu Arg Gly Met Cys
 450 455 460
 Thr Leu Glu Arg Phe Ile Glu Ser Met Ala Phe Ala Arg Gly Asn Gly
 465 470 475 480
 30 Lys Trp Asp Leu Cys Phe Ala
 485

(2) INFORMATION FOR SEQ ID NO: 5:

35 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 100 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

45 (ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 2..100

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

G ACC TTG GCT CGC AAC CAC ACA GAC ACG CTG TCT CCG TTC TGC GCT
 50 Thr Leu Ala Arg Asn His Thr Asp Thr Leu Ser Pro Phe Cys Ala
 1 5 10 15

46

CTT TCC ACG CAA GAG GAG TGG CAA GCA TAT GAC TAC TAC CAA AGT CTG
 Leu Ser Thr Gln Glu Glu Trp Gln Ala Tyr Asp Tyr Tyr Gln Ser Leu
 20 25 30

94

5

GGG AAT
 Gly Asn

100

10

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 33 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

15

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Thr Leu Ala Arg Asn His Thr Asp Thr Leu Ser Pro Phe Cys Ala Leu
 1 5 10 15

Ser Thr Gln Glu Glu Trp Gln Ala Tyr Asp Tyr Tyr Gln Ser Leu Gly
 20 25 30

25

Asn

25

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 106 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: DNA (genomic)

35

(ix) FEATURE:

- (A) NAME/KEY: CDS
- (B) LOCATION: 2..106

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

T ACG GTA GCG CGC ACC AGC GAC GCA AGT CAG CTG TCA CCG TTC TGT
 Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys
 1 5 10 15

46

45

CAA CTC TTC ACT CAC AAT GAG TGG AAG AAG TAC AAC TAC CTT CAG TCC
 Gln Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser
 20 25 30

94

50

TTG GGC AAG TAC
 Leu Gly Lys Tyr
 35

106

55

(2) INFORMATION FOR SEQ ID NO: 8:

- 5 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 35 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: protein

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

15 Thr Val Ala Arg Thr Ser Asp Ala Ser Gln Leu Ser Pro Phe Cys Gln
 1 5 10 15
 Leu Phe Thr His Asn Glu Trp Lys Lys Tyr Asn Tyr Leu Gln Ser Leu
 20 25 30
 Gly Lys Tyr
 35

(2) INFORMATION FOR SEQ ID NO: 9:

- 20 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 109 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

25 (ii) MOLECULE TYPE: DNA (genomic)

- 30 (ix) FEATURE:
 (A) NAME/KEY: CDS
 (B) LOCATION: 2..109

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

40 C ACC ATG GCG CGC ACC GCC ACT CGG AAC CGT AGT CTG TCT CCA TTT 46
 Thr Met Ala Arg Thr Ala Thr Arg Asn Arg Ser Leu Ser Pro Phe
 1 5 10 15
 TGT GCC ATC TTC ACT GAA AAG GAG TGG CTG CAG TAC GAC TAC CTT CAA 94
 Cys Ala Ile Phe Thr Glu Lys Glu Trp Leu Gln Tyr Asp Tyr Leu Gln
 20 25 30
 TCT CTA TCA AAG TAC 109
 Ser Leu Ser Lys Tyr
 35

45 (2) INFORMATION FOR SEQ ID NO: 10:

- 50 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 36 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear

55 (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

Thr Met Ala Arg Thr Ala Thr Arg Asn Arg Ser Leu Ser Pro Phe Cys
 1 5 10 15

Ala Ile Phe Thr Glu Lys Glu Trp Leu Gln Tyr Asp Tyr Leu Gln Ser
 20 25 30

Leu Ser Lys Tyr
 35

(2) INFORMATION FOR SEQ ID NO: 11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1912 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1396
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..1398

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

ATG GGC GTC TCT GCT GTT CTA CTT CCT TTG TAT CTC CTA GCT GGA GTC 30 Met Gly Val Ser Ala Val Leu Leu Pro Leu Tyr Leu Leu Ala Gly Val 1 5 10 15	48
ACC TCC GGA CTG GCA GTC CCC GCC TCG AGA AAT CAA TCC ACT TGC GAT 35 Thr Ser Gly Leu Ala Val Pro Ala Ser Arg Asn Gln Ser Thr Cys Asp 20 25 30	96
ACG GTC GAT CAA GGG TAT CAA TGC TTC TCC GAG ACT TCG CAT CTT TGG 40 Thr Val Asp Gln Gly Tyr Gln Cys Phe Ser Glu Thr Ser His Leu Trp 35 40 45	144
GGT CAA TAC GCG CCG TTC TTC TCT CTG GCA AAC GAA TCG GTC ATC TCC 45 Gly Gln Tyr Ala Pro Phe Phe Ser Leu Ala Asn Glu Ser Val Ile Ser 50 55 60	192
CCT GAT GTG CCC GCC GGT TGC AGA GTC ACT TTC GCT CAG GTC CTC TCC 50 Pro Asp Val Pro Ala Gly Cys Arg Val Thr Phe Ala Gln Val Leu Ser 65 70 75 80	240
CGT CAT GGA GCG CGG TAT CCG ACC GAG TCC AAG GGC AAG AAA TAC TCC 55 Arg His Gly Ala Arg Tyr Pro Thr Glu Ser Lys Gly Lys Lys Tyr Ser 85 90 95	288
GCT CTC ATT GAG GAG ATC CAG CAG AAC GTG ACC ACC TTT GAT GGA AAA 60 Ala Leu Ile Glu Glu Ile Gln Gln Asn Val Thr Thr Phe Asp Gly Lys 100 105 110	336

EP 0 684 313 A2

	TAT GCC TTC CTG AAG ACA TAC AAC TAC AGC TTG GGT GCA GAT GAC CTG Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Ser Leu Gly Ala Asp Asp Leu 115 120 125	384
5	ACT CCC TTC GGA GAG CAG GAG CTA GTC AAC TCC GGC ATC AAG TTC TAC Thr Pro Phe Gly Glu Gln Glu Leu Val Asn Ser Gly Ile Lys Phe Tyr 130 135 140	432
10	CAG CGC TAC AAC GCC CTC ACC CGA CAC ATC AAC CCC TTC GTC CGC GCC Gln Arg Tyr Asn Ala Leu Thr Arg His Ile Asn Pro Phe Val Arg Ala 145 150 155 160	480
	ACC GAT GCA TCC CGC GTC CAC GAA TCC GCC GAG AAG TTC GTC GAG GGC Thr Asp Ala Ser Arg Val His Glu Ser Ala Glu Lys Phe Val Glu Gly 165 170 175	528
15	TTC CAA ACC GCT CGA CAG GAC GAT CAT CAC GCC AAT CCC CAC CAG CCT Phe Gln Thr Ala Arg Gln Asp Asp His His Ala Asn Pro His Gln Pro 180 185 190	576
20	TCG CCT CGC GTG GAC GTG GCC ATC CCC GAA GGC AGC GCC TAC AAC AAC Ser Pro Arg Val Asp Val Ala Ile Pro Glu Gly Ser Ala Tyr Asn Asn 195 200 205	624
	ACG CTG GAG CAC CTC TGC ACC GCC TTC GAA TCC AGC ACC GTC GGC Thr Leu Glu His Ser Leu Cys Thr Ala Phe Glu Ser Ser Thr Val Gly 210 215 220	672
25	GAC GAC GCG GTC GCC AAC TTC ACC GCC GTG TTC GCG CCG GCG ATC GCC Asp Asp Ala Val Ala Asn Phe Thr Ala Val Phe Ala Pro Ala Ile Ala 225 230 235 240	720
30	CAG CGC CTG GAG GCC GAT CTT CCC GGC GTG CAG CTG TCC ACC GAC GAC Gln Arg Leu Glu Ala Asp Leu Pro Gly Val Gln Leu Ser Thr Asp Asp 245 250 255	768
	GTG GTC AAC CTG ATG GCC ATG TGT CCG TTC GAG ACG GTC AGC CTG ACC Val Val Asn Leu Met Ala Met Cys Pro Phe Glu Thr Val Ser Leu Thr 260 265 270	816
35	GAC GAC GCG CAC ACG CTG TCG CCG TTC TGC GAC CTC TTC ACG GCC ACT Asp Asp Ala His Thr Leu Ser Pro Phe Cys Asp Leu Phe Thr Ala Thr 275 280 285	864
40	GAG TGG ACG CAG TAC AAC TAC CTG CTC TCG CTG GAC AAG TAC TAC GGC Glu Trp Thr Gln Tyr Asn Tyr Leu Leu Ser Leu Asp Lys Tyr Tyr Gly 290 295 300	912
	TAC GGC GGG GGC AAT CCG CTG GGT CCG GTG CAG GGG GTC GGC TGG GCG Tyr Gly Gly Asn Pro Leu Gly Pro Val Gln Gly Val Gly Trp Ala 305 310 315 320	960
45	AAC GAG CTG ATG GCG CGG CTA ACG CGC GCC CCC GTG CAC GAC CAC ACC Asn Glu Leu Met Ala Arg Leu Thr Arg Ala Pro Val His Asp His Thr 325 330 335	1008
50	TGC GTC AAC AAC ACC CTC GAC GCG AGT CCG GCC ACC TTC CCG CTG AAC Cys Val Asn Asn Thr Leu Asp Ala Ser Pro Ala Thr Phe Pro Leu Asn 340 345 350	1056

EP 0 684 313 A2

	GCC ACC CTC TAC GCC GAC TTC TCC CAC GAC AAC CTG GTG TCG ATC Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Ser Asn Leu Val Ser Ile 355 360 365	1104
5	TTC TGG GCG CTG GGC CTG TAC AAC GGC ACC GCG CCG CTG TCG CAG ACC Phe Trp Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Gln Thr 370 375 380	1152
10	TCC GTC GAG AGC GTC TCC CAG ACG GAC GGG TAC GCC GCC TGG ACG Ser Val Glu Ser Val Ser Gln Thr Asp Gly Tyr Ala Ala Ala Trp Thr 385 390 395 400	1200
	GTG CCG TTC GCC GCT CGC GCG TAC GTC GAG ATG ATG CAG TGT CGC GCC Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Arg Ala 405 410 415	1248
15	GAG AAG GAG CCG CTG GTG CGC GTG CTG GTC AAC GAC CGG GTC ATG CCG Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Met Pro 420 425 430	1296
20	CTG CAT GGC TGC CCT ACG GAC AAG CTG GGG CGG TGC AAG CGG GAC GCT Leu His Gly Cys Pro Thr Asp Lys Leu Gly Arg Cys Lys Arg Asp Ala 435 440 445	1344
	TTC GTC GCG GGG CTG AGC TTT GCG CAG GCG GGC GGG AAC TGG GCG GAT Phe Val Ala Gly Leu Ser Phe Ala Gln Ala Gly Asn Trp Ala Asp 450 455 460	1392
25	TGT TTC TGATGTTGAG AAGAAAGGTA GATAGATAGG TAGTACATAT GGATTGCTCG Cys Phe 465	1448
30	GCTCTGGGTC GTTGCCCACA ATGCATATTA CGCCCGTCAA CTGCCTTGCCT CCATCCACCT CTCACCCCTGG ACGCAACCGA GCGGTCTACC CTGCACACGG CTTCCACCGC GACGCGCACG GATAAGGCGC TTTTGTTACG GGGTTGGGGC TGGGGGCAGC CGGAGCCGGA GAGAGAGACC AGCGTGAAAA ACGACAGAAC ATAGATATCA ATTGACGCC AATTGATGCA GAGTAGTATA CAGACGAACT GAAACAAACA CATCACTTCC CTCGCTCCTC TCCTGTAGAA GACGCTCCCA CCAGCCGCTT CTGGCCCTTA TTCCCGTACG CTAGGTAGAC CAGTCAGCCA GACGCATGCC TCACAAGAAC GGGGGCGGGG GACACACTCC GCTCGTACAG CACCCACGAC GTGTACAGGA AAACCGGCAG CGCCACAATC GTCGAGAGCC ATCTGCAGGA ATTC	1508 1568 1628 1688 1748 1808 1868 1912
35		
40		

(2) INFORMATION FOR SEQ ID NO: 12:

- 45 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 466 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 50 (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

Met Gly Val Ser Ala Val Leu Leu Pro Leu Tyr Leu Leu Ala Gly Val
 1 5 10 15

5 Thr Ser Gly Leu Ala Val Pro Ala Ser Arg Asn Gln Ser Thr Cys Asp
 20 25 30

Thr Val Asp Gln Gly Tyr Gln Cys Phe Ser Glu Thr Ser His Leu Trp
 35 40 45

10 Gly Gln Tyr Ala Pro Phe Phe Ser Leu Ala Asn Glu Ser Val Ile Ser
 50 55 60

Pro Asp Val Pro Ala Gly Cys Arg Val Thr Phe Ala Gln Val Leu Ser
 65 70 75 80

15 Arg His Gly Ala Arg Tyr Pro Thr Glu Ser Lys Gly Lys Lys Tyr Ser
 85 90 95

Ala Leu Ile Glu Ile Gln Gln Asn Val Thr Thr Phe Asp Gly Lys
 100 105 110

20 Tyr Ala Phe Leu Lys Thr Tyr Asn Tyr Ser Leu Gly Ala Asp Asp Leu
 115 120 125

Thr Pro Phe Gly Glu Gln Glu Leu Val Asn Ser Gly Ile Lys Phe Tyr
 130 135 140

25 Gln Arg Tyr Asn Ala Leu Thr Arg His Ile Asn Pro Phe Val Arg Ala
 145 150 155 160

Thr Asp Ala Ser Arg Val His Glu Ser Ala Glu Lys Phe Val Glu Gly
 165 170 175

30 Phe Gln Thr Ala Arg Gln Asp Asp His His Ala Asn Pro His Gln Pro
 180 185 190

Ser Pro Arg Val Asp Val Ala Ile Pro Glu Gly Ser Ala Tyr Asn Asn
 195 200 205

35 Thr Leu Glu His Ser Leu Cys Thr Ala Phe Glu Ser Ser Thr Val Gly
 210 215 220

Asp Asp Ala Val Ala Asn Phe Thr Ala Val Phe Ala Pro Ala Ile Ala
 225 230 235 240

40 Gln Arg Leu Glu Ala Asp Leu Pro Gly Val Gln Leu Ser Thr Asp Asp
 245 250 255

Val Val Asn Leu Met Ala Met Cys Pro Phe Glu Thr Val Ser Leu Thr
 260 265 270

45 Asp Asp Ala His Thr Leu Ser Pro Phe Cys Asp Leu Phe Thr Ala Thr
 275 280 285

Glu Trp Thr Gln Tyr Asn Tyr Leu Leu Ser Leu Asp Lys Tyr Tyr Gly
 290 295 300

50 Tyr Gly Gly Gly Asn Pro Leu Gly Pro Val Gln Gly Val Gly Trp Ala
 305 310 315 320

Asn Glu Leu Met Ala Arg Leu Thr Arg Ala Pro Val His Asp His Thr
 325 330 335
 5 Cys Val Asn Asn Thr Leu Asp Ala Ser Pro Ala Thr Phe Pro Leu Asn
 340 345 350
 Ala Thr Leu Tyr Ala Asp Phe Ser His Asp Ser Asn Leu Val Ser Ile
 355 360 365
 10 Phe Trp Ala Leu Gly Leu Tyr Asn Gly Thr Ala Pro Leu Ser Gln Thr
 370 375 380
 Ser Val Glu Ser Val Ser Gln Thr Asp Gly Tyr Ala Ala Ala Trp Thr
 385 390 395 400
 15 Val Pro Phe Ala Ala Arg Ala Tyr Val Glu Met Met Gln Cys Arg Ala
 405 410 415
 Glu Lys Glu Pro Leu Val Arg Val Leu Val Asn Asp Arg Val Met Pro
 420 425 430
 20 Leu His Gly Cys Pro Thr Asp Lys Leu Gly Arg Cys Lys Arg Asp Ala
 435 440 445
 Phe Val Ala Gly Leu Ser Phe Ala Gln Ala Gly Gly Asn Trp Ala Asp
 450 455 460
 25 Cys Phe
 465

(2) INFORMATION FOR SEQ ID NO: 13:

- 30 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 112 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

40 GACGGTCAGC CTGACCGACG ACGCCGACAC GCTGTCGCCG TTCTGCGACC TCTTCACCGC 60
 CGCCGAGTGG ACGCAGTACA ACTACCTGCT CTCGCTGGAC AAGTACTACG TC 112

(2) INFORMATION FOR SEQ ID NO: 14:

- 45 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 90 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
- 50 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

5	CAGTAACCTG GTGTCGATCT TCTGGNCGCTG GGTCTGTACA ACGGCACCAA GCCCCTGTCG	61
	CAGACCACCG TGGAGGATAT CACCCGGACG	90

(2) INFORMATION FOR SEQ ID NO: 15:

- 10 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

15 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

20	ATGGAYATGT GYTCNTTYGA	20
----	-----------------------	----

(2) INFORMATION FOR SEQ ID NO: 16:

- 25 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

30 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

20	TTRCCRGCRC CRTGNCCRATA	20
----	------------------------	----

(2) INFORMATION FOR SEQ ID NO: 17:

- 35 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

40 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

45	TAYGCNGAYT TYTCNCAYGA	20
----	-----------------------	----

(2) INFORMATION FOR SEQ ID NO: 18:

- 50 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 19 base pairs
 (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
(D) TOPOLOGY: linear

5 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

10 CGRTCRTTNA CNAGNACNC

19

(2) INFORMATION FOR SEQ ID NO: 19:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

20 (ii) MOLECULE TYPE: DNA (genomic)

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:

ATGGAYATGT GYTCNTTYGA

20

25 (2) INFORMATION FOR SEQ ID NO: 20:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

30 (ii) MOLECULE TYPE: DNA (genomic)

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTRCCRGCRC CRTGNCCRTA

20

(2) INFORMATION FOR SEQ ID NO: 21:

- 40 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 30 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

45 (ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:

50 AGTCCGGAGG TGACTCCAGC TAGGAGATAAC

30

55 Claims

1. A DNA sequence coding for a polypeptide having phytase activity and which DNA sequence is derived from a fungus selected from the group consisting of *Acrophialophora levis*, *Aspergillus terreus*,

Aspergillus fumigatus, Aspergillus nidulans, Aspergillus sojae, Calcarisporiella thermophila, Chaetomium rectopilum, Corynascus thermophilus, Humicola sp., Mycelia sterilia, Myrococcum thermophilum, Myceliophthora thermophila, Rhizomucor miehei, Sporotrichum cellulophilum, Sporotrichum thermophile, Scytalidium indonesicum and Talaromyces thermophilus or a DNA sequence coding for a fragment of such a polypeptide which fragment still has phytase activity.

- 5 2. A DNA sequence according to claim 1 wherein the fungus is selected from the group consisting of Acrophialophora levis, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus terreus, Calcarisporiella thermophila, Chaetomium rectopilum, Corynascus thermophilus, Sporotrichum cellulophilum, Sporotrichum thermophile, Mycelia sterilia, Myceliophthora thermophila and Talaromyces thermophilus.
- 10 3. A DNA sequence according to claim 2 wherein the fungus is selected from the group consisting of Aspergillus terreus, Myceliophthora thermophila, Aspergillus fumigatus, Aspergillus nidulans and Talaromyces thermophilus.
- 15 4. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:
 - (a) the DNA sequence of Figure 1 [SEQ ID NO:1] or its complementary strand;
 - (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
 - 20 (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- 25 5. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:
 - (a) the DNA sequence of Figure 2 [SEQ ID NO:3] or its complementary strand;
 - (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
 - 30 (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b), but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- 35 6. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from the following:
 - (a) a DNA sequence comprising one of the DNA sequences of Figures 4 [SEQ ID NO:5], 5 [SEQ ID NO:7], 6 [SEQ ID NO:9] or 10 [SEQ ID NO:13 and/or SEQ ID NO:14] or its complementary strand;
 - (b) a DNA sequence which hybridizes under standard conditions with sequences defined under (a);
 - 40 (c) a DNA sequence which, because of the degeneracy of the genetic code, does not hybridize with sequences of (a) or (b) but which codes for polypeptides having exactly the same amino acid sequences as the polypeptides encoded by these DNA sequences; and
 - (d) a DNA sequence which is a fragment of the DNA sequences specified in (a), (b) or (c).
- 45 7. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence is selected from a DNA sequence comprising the DNA sequence of Figure 4 [SEQ ID NO:5] isolatable from Talaromyces thermophilus, of Figure 5 [SEQ ID NO:7] isolatable from Aspergillus fumigatus, of Figure 6 [SEQ ID NO:9] isolatable from Aspergillus nidulans or of Figure 10 [SEQ ID NO:13 and/or SEQ ID NO:14] isolatable from Aspergillus terreus (CBS 220.95) or which DNA sequence is a degenerate variant or aequivalent thereof.
- 50 8. A DNA sequence as claimed in any one of claims 4 to 6 which codes for a polypeptide having phytase activity which DNA sequence is derived from a fungus.
- 55 9. A DNA sequence according to claim 8 wherein the fungus is selected from a group as defined in claim 1, 2 or 3.
- 60 10. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA

isolated from a fungus as defined in any one of claims 1 to 3 and the following pair of PCR primer:
 "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as sense primer and
 "TT(A/G)CC(A/G)GC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as anti-sense primer.

- 5 11. A DNA sequence which codes for a polypeptide having phytase activity and which DNA sequence hybridizes under standard conditions with a probe which is a product of a PCR reaction with DNA isolated from *Aspergillus terreus* (CBS 220.95) and the following two pairs of PCR primers:
 - (a) "ATGGA(C/T)ATGTG(C/T)TC(N)TT(C/T)GA" [SEQ ID NO:15] as the sense primer and "TT(A/G)CC(A/G)GC(G/A)TG(N)CC(A/G)TA" [SEQ ID NO:16] as the anti-sense primer; and
 - (b) "TA(C/T)GC(N)GA(C/T)TT(C/T)TC(N)CA(C/T)GA" [SEQ ID NO: 17] as the sense primer and "CG(G/A)TC(G/A)TT(N)AC(N)AG(N)AC(N)C" [SEQ ID NO: 18] as the anti-sense primer.
- 10 12. A DNA sequence coding for a chimeric construct having phytase activity which chimeric construct comprises a fragment of a DNA sequence as claimed in any one of claims 1 to 11.
- 15 13. A DNA sequence coding for a chimeric construct as defined in claim 12 which chimeric construct consists at its N-terminal end of a fragment of the *Aspergillus niger* phytase fused at its C-terminal end to a fragment of the *Aspergillus terreus* phytase.
- 20 14. A DNA sequence as claimed in claim 13 with the specific nucleotide sequence as shown in Figure 7 [SEQ ID NO:11] and a degenerate variant or aequivalent thereof.
- 25 15. A DNA sequence as claimed in any one of claims 1 to 14 wherein the encoded polypeptide is a phytase.
- 30 16. A polypeptide encoded by a DNA sequence as claimed in any one of claims 1 to 15.
- 35 17. A vector comprising a DNA sequence as claimed in any one of claims 1 to 15.
- 40 18. A vector as claimed in claim 17 suitable for the expression of said DNA sequence in bacteria or a fungal or a yeast host.
- 45 19. Bacteria or a fungal or yeast host transformed by a DNA sequence as claimed in any one of claims 1 to 15 or a vector as claimed in claim 17 or 18.
- 50 20. A composit food or feed comprising one or more polypeptides as defined in claim 16.
- 55 21. A process for the preparation of a polypeptide as claimed in claim 16 characterized in that transformed bacteria or host cell as claimed in claim 19 is cultured under suitable culture conditions and the polypeptide is recovered therefrom.
- 60 22. A polypeptide when produced by a process as claimed in claim 21.
- 65 23. A process for the preparation of a composit feed or food wherein the components of the composition are mixed with one or more polypeptides as defined in claim 16.
- 70 24. A process for the reduction of levels of phytate in animal manure characterized in that an animal is fed a composit feed as defined in claim 20 in an amount effective in converting phytate contained in the feedstuff to inositol and inorganic phosphate.
- 75 25. Use of a polypeptide according to claim 16 for the conversion of phytate to inositol phosphates, inositol and inorganic phosphate.

Fig. 1/1

tctagaacaataacaggtaactccctaggtacccgaaggaccttgcggaaaatgtatggag	60
gtggacacggcaccaaccaccacccgcgatggcgacgtggcctaacccttgctcc	120
ctcaggatgaaatccatgtcactcttaccctcaccatgcgcggatgaaacctccccg	180
ctaagctcacgacgatcgatattccgaccgattgaccgtatggggctgatc	240
ggtcgatgctctgccttcatttcggagttcgagacatgaaaggcttatatgaggacgt	300
cccaggctggggacaaatccgcctggctgtgccttcgtcgaaacatctgctgtc	360
cgtatggctaccatggcttcttgcattgtgcctccgtcgccctgtcttagaaag	420
M G F L A I V L S V A L L F R S	16
gtatgcacccctctacgtccaattctctggcactgacaacggcgacatcgccac	480
T S G T	20
cccggtggccccggggcaaacatagcgactgcaactcagtcgatcacgctatcaatg	540
P L G P R G K H S D C N S V D H G Y Q C	40
cttcctgaactctctcataaatgggactctacgcgcctacttctccctccaggacga	600
F P E L S H K W G L Y A P Y F S L Q D E	60
gttccgtttctctggacgtcccagaggactgtcacatcacccgtgcagggtctggc	660
S P F P L D V P E D C H I T F V Q V L A	80
ccgccacggcgccggagccaaacctatagcaagaccaaggcgtaacgcggcaccattgc	720
R H G A R S P T H S K T K A Y A A T I A	100
ggccatccagaagagtgccactgcgttccggcaaatacgcgttctgcagtcatataa	780
A I Q K S A T A F P G K Y A F L Q S Y N	120
ctactcctggactctgaggagctgactcccttcggcgaaaccagctgcgagatctggg	840
Y S L D S E E L T P F G R N Q L R D L G	140
cgcgcaggacttacgcgcgtacaacgcgcctcaccgcacacatcaaccccttcgtccgc	900
A Q F Y E R Y N A L T R H I N P F V R A	160
caccgatgcatcccggtccacgaatccggcgagaagttcgagggcttccaaaccgc	960
T D A S R V H E S A E K F V E G F Q T A	180
tcgacaggacgatcatcacgccaatccccaccagccttcgcctcgctggacgtggccat	1020
R Q D D H H A N P H Q P S P R V D V A I	200
ccccgaaggcagcgccataacaacaacacgcgtggagcacgcctctgcaccccttcgaatc	1080
P E G S A Y N N T L E H S L C T A F E S	220
cagcaccgtcgccgacgcgcggcgccaacttcaccgcgtttcgccggcgtcgatgc	1140
S T V G D D A V A N F T A V F A P A I A	240
ccagcgcctggaggccgatttcccggtgcagctgtccaccgcacgcgtggtaacct	1200
Q R L E A D L P G V Q L S T D D V V N L	260
gatggccatgtgtccgttcgagacggctacgcgttgcacgcgcacacgcgtcgcc	1260
M A M C P F E T V S L T D D A H T L S P	280
gttctgcaccccttcacggccactgagtggacgcagtcacactacctgcgtcgatgg	1320
F C D L F T A T E W T Q Y N Y L L S L D	300
caagtactacggctacggcgccggcaatccgctgggtccgggtgcagggggctggctggc	1380
K Y Y G Y G G G N P L G P V Q G V G W A	320
gaacgagctgatggcgccgtaacgcgcgccccgtgcacgaccacacgcgtcaacaa	1440
N E L M A R L T R A P V H D H T C V N N	340
caccctcgacgcgagtcggccacccctccgtgaacgcacccttcacgcgcacttc	1500
T L D A S P A T F P L N A T L Y A D F S	360

Fig. 1/2

ccacgacagcaacctgggtcgatcttctgggcgtggcgtacaacggcacccgccc 1560
 H D S N L V S I F W A L G L Y N G T A P 380

 gctgtcgacacccgtcgagagcgctccacagacggacgggtacccgcgcctggac 1620
 L S Q T S V E S V S Q T D G Y A A A W T 400

 ggtgccgttcggccgtcgacgtcgagatgatgcagtgtcgccgagaaggagcc 1680
 V P F A A R A Y V E M M Q C R A E K E P 420

 gctggtgccgtgtggtaacgaccgggtcatggccgtcatggctgcctacggacaa 1740
 L V R V L V N D R V M P L H G C P T D K 440

 gctggggcggtgcaagcgacgcttcgtcgccggctgagcttgcgcaggcgccgg 1800
 L G R C K R D A F V A G L S F A Q A G G 460

 gaactggcgattgttctgatgttggaaagaaaggtagatagataggtacatatg 1860
 N W A D C F 466

 gattgctcggtctgggtcggtccccacaatgcataattacgcccgtcaactgcctgc 1920
 catccacccctcaccctggacgcaaccgagcggtctaccctgcacacggctccaccg 1980
 acgcgcacggataaggcgctttgttacggggctggggcagccggagccggag 2040
 agagagaccacgtaaaaacgacagaacatagatatcaattcgacgccaattcatgc 2100
 agtagtatacagacgaactgaaacaacacatcacttccctgcctctgtttagaa 2160
 acgctcccaccagccgttctggcccttattccctgtacgcttaggttagaccagt 2220
 acgcatgcctacaagaacggggggggggacacactccgtcgatcagcaccacgac 2280
 ttagggaaaaccggcagccacaatcgagccatctgcag 2327

Fig. 2/1

Fig. 2/2

Fig. 3A

Fig. 3B

Fig. 4

gaccttggctcgcaaccacacagacacgctgtccgttctgcgcctttccacgcaaga
1 -----+-----+-----+-----+-----+-----+ 60
ctggAACCGAGCGTTGGTGTGTGCGACAGAGGCAAGACGCGAGAAAGGTGCGTTCT
T L A R N H T D T L S P F C A L S T Q E
ggagtggcaaggcatatgactactaccaaagtctggggat
61 -----+-----+-----+-----+ 100
cctcaccgttcgtatactgatgatggttcagaccccctt
E W Q A Y D Y Y Q S L G N

Fig. 5

1 tacggtagcgccgaccaggcagcaagtcagtcgtcaccgttctgtcaactcttcactca
-----+-----+-----+-----+-----+-----+-----+-----+ 60
atgccatcgccgtggtcgtcggttcagtcgacagtggcaagacagtggagaagtggat
T V A R T S D A S Q L S P F C Q L F T H

61 caatgagtggaaagaagtacaactacccatgtccttggcaagttac
-----+-----+-----+-----+-----+-----+-----+-----+ 106
gttactcaccttcttcatgttcatggaaagtccaggaccgcgttcatg
N E W K K Y N Y L Q S L G K Y

Fig. 6

1 caccatggcgccaccggcactcggaaccgtagtctgtctccatttgcacatcttcac
-----+-----+-----+-----+-----+-----+-----+-----+ 60
gtggtaaccgcgcgtggcggtgagccttggcatcagacagaggtaaaacacggtagaagtg
T M A R T A T R N R S L S P F C A I F T

61 tgaaaaggagtggctgcagtacgactacacctcaatctcttatcaaagtac
-----+-----+-----+-----+-----+-----+-----+-----+ 109
acttttcctcaccgacgtcatgtatggaaagtttagagatagttcatg
E K E W L Q Y D Y L Q S L S K Y

Fig. 7/1

atgggcgtctctgttctacttccttgatctccatgtggagtcaccccgactg
 1 -----+-----+-----+-----+-----+ 60
 taccggcagagacgacaagatgaaggaaacatacgaggatcgacccatgtggaggcctgac
 M G V S A V L L P L Y L L A G V T S G L

 gcagtccccgcctcgagaaatcaatccacttgcgatacggtcgatcaagggtatcaatgc
 61 -----+-----+-----+-----+-----+ 120
 cgtcaggggcggagctcttagtttaggtgaacgctatgccagctagttcccatagttacg
 A V P A S R N Q S T C D T V D Q G Y Q C

 ttctccgagacttcgcatcttgggtcaatacgcgcgttctctggcaaacgaa
 121 -----+-----+-----+-----+-----+ 180
 aagaggctctaagcgtagaaaaccccagttatgcgcggcaagaagagagaccgttgctt
 F S E T S H L W G Q Y A P F F S L A N E

 tcggtcatctccctgatgtgcccgggttgcagagtcaatttcgcgtcagggtccctcc
 181 -----+-----+-----+-----+-----+ 240
 agccagttagaggggactacacggggccaaacgtctcagtgaaagcgtccaggagagg
 S V I S P D V P A G C R V T F A Q V L S

 cgtcatggagcgcggtatccgaccgagtccaaggcaagaaatactccgtctcattgag
 241 -----+-----+-----+-----+-----+ 300
 gcagtacctcgcgcataaggctggctcaggtcccttctttagggcagactaactc
 R H G A R Y P T E S K G K K Y S A L I E

 gagatccagcagaacgtgaccacttgtatggaaaatatgccttcctgaagacataaac
 301 -----+-----+-----+-----+-----+ 360
 ctctaggtcgcttcactggtaactacctttatacggaggacttctgtatgttg
 E I Q Q N V T T F D G K Y A F L K T Y N

 tacagcttgggtgcagatgacactcccttcggagagcaggagctagtcaactccgc
 361 -----+-----+-----+-----+-----+ 420
 atgtcgaaaccacgtctactggactgagggaaacgcctctcgatcagttggggccg
 Y S L G A D D L T P F G E Q E L V N S G

 atcaagttctaccagcgctacaacgcgcctcacccgacacatcaaccccttcgtccgc
 421 -----+-----+-----+-----+-----+ 480
 tagttcaagatggtcgcgttgcggagttggctgttagttggggaaagcaggcgcgg
 I K F Y Q R Y N A L T R H I N P F V R A

 accgatgcatccgcgtccacgaatccggcggagaagttcggtcgagggttccaaaccgct
 481 -----+-----+-----+-----+-----+ 540
 tggctacgttagggcgcagggtgcttaggcggcttcacgcgcgtccgcggatgtttggcga
 T D A S R V H E S A E K F V E G F Q T A

 cgacaggacgatcatcacgcaatccccaccagcctcgctcggtggacgtggccatc
 541 -----+-----+-----+-----+-----+ 600
 gctgtcctgttagtgcggtaggggtggcggaaagcggagcgcacccgtcaccggtag
 R Q D D H H A N P H Q P S P R V D V A I

Fig. 7/2

cccgaaggcagcgccataacaacaacacgctggagcacagcctctgcaccgccttcgaatcc
 601 -----+-----+-----+-----+-----+-----+-----+ 660
 gggcttccgtcgccatgttgtgtgcgacctcgatcgagacgtggcgaaagcttagg
 P E G S A Y N N T L E H S L C T A F E S

agcaccgtcgccgacgacgcggtcgccaacttcaccgcgtgttcgcgcggcgatcgcc
 661 -----+-----+-----+-----+-----+-----+-----+ 720
 tcgtggcagccgctgtgcgcacgcggtaagtggcgccacaagcgcggccctagcg
 S T V G D D A V A N F T A V F A P A I A

cagcgccctggaggccatctcccgccgtgcagctgtccaccgacgacgtggtaacctg
 721 -----+-----+-----+-----+-----+-----+-----+ 780
 gtcgcggacacctccggctagaaggccgcacgtcgacagggtggctgtgcaccagttggac
 Q R L E A D L P G V Q L S T D D V V N L

atggccatgtgtccgttcgagacggtcagccgtaccgacgcgcacacgctgtcgccg
 781 -----+-----+-----+-----+-----+-----+-----+ 840
 taccggtaacaggcaagctctgccagtcggactggctgtgcgcgtgtgcacagccgc
 M A M C P F E T V S L T D D A H T L S P

ttctgcgacaccttacggccactgagtggacgcagttacaactaccgtctcgctggac
 841 -----+-----+-----+-----+-----+-----+-----+ 900
 aagacgctggagaagtgcgggtgactcacctgcgtcatgttgatggacgagacgacctg
 F C D L F T A T E W T Q Y N Y L L S L D

aagtactacggctacggcgaaaaatccgctgggtccgggtgcagggggtcggctggcg
 901 -----+-----+-----+-----+-----+-----+-----+ 960
 ttcatgtgcgcgtatggccggccggccatggcgcacccagggccacgtccccccagccgacccgc
 K Y Y G Y G G G N P L G P V Q G V G W A

aacgagctgtatggcgccgtacgcgcggccatccgtggacgcacccatgcgtcaacaac
 961 -----+-----+-----+-----+-----+-----+-----+ 1020
 ttgctcgactaccgcgcattgcgcgcggggcactgtgtggacgcagtttg
 N E L M A R L T R A P V H D H T C V N N

accctcgacgcgagtcggccacccctccgcgtacgcgcacccatgcgtacttcc
 1021 -----+-----+-----+-----+-----+-----+-----+ 1080
 tggagctgcgtcaggccgggtggaaaggccgacttgcgggtggagatgcggctgaagagg
 T L D A S P A T F P L N A T L Y A D F S

cacgacagcaacctgggtcgatccgtggccgtggccgttacaacggcaccgcgg
 1081 -----+-----+-----+-----+-----+-----+-----+ 1140
 gtgctgtcggtggaccacagctagaagacccgcacccggacatgtgcgtggacgc
 H D S N L V S I F W A L G L Y N G T A P

ctgtcgacacccgtcgagacgcgttcccgacggacgggtacgcgcgcctggac
 1141 -----+-----+-----+-----+-----+-----+-----+ 1200
 gacagcgtctggaggcagcttcgcagagggtctgcgtccatgcggcgccgacctgc
 L S Q T S V E S V S Q T D G Y A A A W T

Fig. 7/3

gtcccggttcgcggctcgcgcgtacgtcgagatgatgcagtgcgcgcgagaaggagccg
 1201 -----+-----+-----+-----+-----+-----+-----+-----+ 1260
 cacggcaagcggcgagcgcgcatgcagctactacgtcacagcgcggcttccctcgcv
 V P F A A R A Y V E M M Q C R A E K E P

 ctggtgccgtctggtaacgaccgggtcatgccgtgcatggctgcctacggacaag
 1261 -----+-----+-----+-----+-----+-----+-----+ 1320
 gaccacgcgcacgaccagttgtggcccaagtacggcgacgtaccgacggatgcctgttc
 L V R V L V N D R V M P L H G C P T D K

 ctggggcggtgcaagcgggacgcttcgtcgccccgtgagcttgcgcaggcgccgg
 1321 -----+-----+-----+-----+-----+-----+-----+ 1380
 gaccccgcacgttcgcgcctgcgaaagcagcgcggccactcgaaacgcgtccgcggcc
 L G R C K R D A F V A G L S F A Q A G G

 aactgggcggattgtttctgtatgttggaaagaaaggtagatagataggttagtacatatgg
 1381 -----+-----+-----+-----+-----+-----+-----+ 1440
 ttgacccgcctaacaaagactacaactttttccatcttatcttatccatcatgtataacc
 N W A D C F

 attgctcggtctgggtcggtgcacatattacgcgtcaactgcctgcgc
 1441 -----+-----+-----+-----+-----+-----+-----+ 1500
 taacgagccgagaccacgggtgttacgtataatgcgggcagttgacggacgcgg

 atccacctctcaccctggacgcacccgggtctaccctgcacacgggttccaccgcga
 1501 -----+-----+-----+-----+-----+-----+-----+ 1560
 tagtgtggagagtggacactgcgttgctcgccagatggacgtgtgccaaagggtggcgct

 cgccacggataaggcgctttgttacgggttgggtggcagccggagccggaga
 1561 -----+-----+-----+-----+-----+-----+-----+ 1620
 ggcgtgcctattccgcggaaaacaatgcggccacccgggtcgccctcgccct

 gagagaccacgcgtaaaaacgcacagaacatagatataatcgacgcattatgcaga
 1621 -----+-----+-----+-----+-----+-----+-----+ 1680
 ctctctggtcgcactttgtctgttatctatagttaaagctgcggtaagtacgtct

 gtatgtatcagacgactgaaacaaacacatcaactccctcgctctctgtttagaaga
 1681 -----+-----+-----+-----+-----+-----+-----+ 1740
 catcatatgtctgtttgtttgttagtgaaggagcgaggagaggacatcttct

 cgctccaccagccgttctggcccttattccgtacgcttaggttagaccagtcagccaga
 1741 -----+-----+-----+-----+-----+-----+-----+ 1800
 gcgagggtggtcggcgaagacccgggataaggcatgcgatccatctggtcagtcggct

 cgcacgcctcacaagaacggggcggggacacactccgtcgatcagcacccacgcacgt
 1801 -----+-----+-----+-----+-----+-----+-----+ 1860
 gctacggagtgttcttggcccgccctgtgtgaggcgagcatgtcgtgggtgctgc

 gtacaggaaaacccggcagcgccacaatcgatcgagagccatctgcaggaaattc
 1861 -----+-----+-----+-----+-----+-----+-----+ 1912
 catgtccctttggccgtcgccgtgttagcagctctcggttagacgtcgtcccttaaq

Fig. 8

Fig. 9

Fig. 10

A

```
9a1      1222 gacggtcagcctgaccgacgcgcacacgctgtcgccgttctgcgacc 1271
         ||||||| | | | | | | | | | | | | | | | | | | | | | | | | | |
aterr21    1 gacggtcagcctgaccgacgcgcacacgctgtcgccgttctgcgacc 50
9a1      1272 tcttcacggccactgagtggacgcagtaacaactacacctgctctcgctggac 1321
         ||||| | | | | | | | | | | | | | | | | | | | | | | | | | |
aterr21    51 tcttcacccggccggactggacgcagtaacaactacacctgctctcgctggac 100
9a1      1322 aagtactacggc 1333
         ||||| | | | | | |
aterr21   101 aagtactacgtc 112
```

B

```
9a1      1507 cagcaacctggtgtcgatcttctggcgctggcctgtacaacggcacgg 1556
         ||| | | | | | | | | | | | | | | | | | | | | | | | | | | |
aterr58    1 cagtaacctggtgtcgatcttctggxgcgctgggtctgtacaacggcacca 50
9a1      1557 cgccgctgtcgcagacacctccgtcgagagcgtctcccagacg 1597
         ||| | | | | | | | | | | | | | | | | | | | | | | | | |
aterr58    51 agccccctgtcgcagaccaccgtggaggatatcacccggacg 91
```


(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 684 313 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
19.05.1999 Bulletin 1999/20

(51) Int. Cl.⁶: C12N 15/55, C12N 9/16,
A23K 1/165

(43) Date of publication A2:
29.11.1995 Bulletin 1995/48

(21) Application number: 95105693.6

(22) Date of filing: 15.04.1995

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IT LI NL

(30) Priority: 25.04.1994 EP 94810228

(71) Applicant:
F. Hoffmann-La Roche AG
4002 Basel (CH)

(72) Inventors:
• Van Loon, Adolphus
CH-4310 Rheinfelden (CH)
• Mitchell, David
CH-4147 Aesch (CH)

(74) Representative: Braun, Axel et al
F.Hoffmann-La Roche AG
Patent Department (PLP),
124 Grenzacherstrasse
4070 Basel (CH)

(54) Polypeptides with phytase activity

(57) The present invention is directed to a DNA sequence coding for a polypeptide having phytase activity which DNA sequence is derived from specific groups of fungi, polypeptides encoded by such DNA sequences, vectors comprising such DNA sequences, bacteria or a fungal or yeast host transformed by such DNA sequences or vectors, a process for the preparation of a polypeptide by culturing such transformed hosts and composite feeds comprising one or more such polypeptides.

EP 0 684 313 A3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 95 10 5693

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
D,X	YAMADA K ET AL: "PHYTASE FROM ASPERGILLUS TERREUS. PART I. PRODUCTION, PURIFICATION AND SOME GENERAL PROPERTIES OF THE ENZYME" AGRICULTURAL AND BIOLOGICAL CHEMISTRY, vol. 32, no. 10, July 1968, pages 1275-1282, XP002053182 * the whole document *	1-3,16, 22	C12N15/55 C12N9/16 A23K1/165
Y	---	4-15, 17-21, 23-25	
X	PIDDINGTON C S ET AL: "The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var awamori" GENE, vol. 133, 1993, pages 55-62, XP002089982 * the whole document *	4-8	
Y	---	4-15, 17-19,21	TECHNICAL FIELDS SEARCHED (Int.Cl.6) C12N A23K
Y	MULLANEY EJ ET AL: "POSITIVE IDENTIFICATION OF A LAMBDA GT11 CLONE CONTAINING A REGION OF FUNGAL PHYTASE GENE BY IMMUNOPROBE AND SEQUENCE VERIFICATION" APPL MICROBIOL BIOTECHNOL, vol. 35, no. 5, August 1991, pages 611-614, XP002096740 * the whole document *		
Y	---	20,23-25	
	PEN J ET AL: "PHYTASE-CONTAINING TRANSGENIC SEEDS AS A NOVEL FEED ADDITIVE FOR IMPROVED PHOSPHORUS UTILIZATION" BIO/TECHNOLOGY, vol. 11, no. 7, July 1993, pages 811-814, XP002026203 * the whole document *	---	
	---	-/-	
The present search report has been drawn up for all claims			
Place of search	Date of completion of the search	Examiner	
MUNICH	22 March 1999	Bilang, J	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons A : technological background R : non-written disclosure P : intermediate document S : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background R : non-written disclosure P : intermediate document			

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number

EP 95 10 5693

DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim
D,A	<p>SEGUEILHA L ET AL: "PURIFICATION AND PROPERTIES OF THE PHYTASE FROM SCHWANNIOMYCES CASTELLII" JOURNAL OF FERMENTATION AND BIOENGINEERING, vol. 74, no. 1, 1992, pages 7-11, XP002053183 * the whole document *</p> <p>---</p>	
L	<p>MITCHELL DB ET AL: "THE PHYTASE SUBFAMILY OF HISTIDINE ACID PHOSPHATASES: ISOLATION OF GENES FOR TWO NOVEL PHYTASES FROM THE FUNGI ASPERGILLUS TERREUS AND MYCELIOPHTHORA THERMOPHILA" MICROBIOLOGY, vol. 143, 1997, pages 245-252, XP002097277 * the whole document *</p> <p>-----</p>	
The present search report has been drawn up for all claims		
Place of search	Date of completion of the search	Examiner
MUNICH	22 March 1999	Bilang, J
CATEGORY OF CITED DOCUMENTS		
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons S : member of the same patent family, corresponding document

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.