INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT4016Quad bilateral switches

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT4016

FEATURES

• Low "ON" resistance:

160 Ω (typ.) at $V_{CC} = 4.5 \text{ V}$

120 Ω (typ.) at V_{CC} = 6.0 V

80 Ω (typ.) at $V_{CC} = 9.0 \text{ V}$

· Individual switch controls

• Typical "break before make" built in

· Output capability: non-standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT4016 are high-speed Si-gate CMOS devices and are pin compatible with the "4016" of the

"4000B" series. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4016 have four independent analog switches (transmission gates).

Each switch has two input/output terminals (Y_n, Z_n) and an active HIGH enable input (E_n) . When E_n is connected to V_{CC} , a low bidirectional path between Y_n and Z_n is established (ON condition). When E_n is connected to ground (GND), the switch is disabled and a high impedance between Y_n and Z_n is established (OFF condition).

Current through a switch will not cause additional V_{CC} current provided the voltage at the terminals of the switch is maintained within the supply voltage range; $V_{CC} >> (V_Y, V_Z) >> GND$. Inputs Y_n and Z_n are electrically equivalent terminals.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYF	UNIT	
STWIBOL	PARAWETER	CONDITIONS	нс	нст	UNII
t _{PZH} / t _{PZL}	turn "ON" time E _n to V _{OS}	$C_L = 15 \text{ pF}; R_L = 1 \text{ k}\Omega;$	16	17	ns
t _{PHZ} / t _{PLZ}	turn "OFF" time E _n to V _{OS}	V _{CC} = 5 V	14	20	ns
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	12	12	pF
Cs	max. switch capacitance		5	5	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum \{ (C_L + C_S) \times V_{CC}^2 \times f_o \}$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\} = \text{sum of outputs}$

C_L = output load capacitance in pF

C_S = max. switch capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT4016

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 8, 11	Y ₀ to Y ₃	independent inputs/outputs
7	GND	ground (0 V)
2, 3, 9, 10	Z_0 to Z_3	independent inputs/outputs
13, 5, 6, 12	E ₀ to E ₃	enable inputs (active HIGH)
14	V _{CC}	positive supply voltage

74HC/HCT4016

APPLICATIONS

- Signal gating
- Modulation
- Demodulation
- Chopper

FUNCTION TABLE

INPUT E _n	CHANNEL IMPEDANCE
L	high
Н	low

Notes

H = HIGH voltage level
 L = LOW voltage level

74HC/HCT4016

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to GND (ground = $0\ V$)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for $V_I < -0.5 \text{ V}$ or $V_I > V_{CC} + 0.5 \text{ V}$
±I _{SK}	DC switch diode current		20	mA	for $V_S < -0.5 \text{ V}$ or $V_S > V_{CC} + 0.5 \text{ V}$
±I _S	DC switch current		25	mA	for $-0.5 \text{ V} < \text{V}_{\text{S}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: –40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

RECOMMENDED OPERATING CONDITIONS

CVMDOL	PARAMETER		74HC	;		74HC	Γ	LINUT	CONDITIONS	
SYMBOL	PARAIMETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS	
V _{CC}	DC supply voltage	2.0	5.0	10.0	4.5	5.0	5.5	V		
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V		
V _S	DC switch voltage range	GND		V _{CC}	GND		V _{CC}	V		
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC	
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTERIS- TICS	
				1000					V _{CC} = 2.0 V	
t_r , t_f	input rise and fall times		6.0	500 400 250		6.0	500	ns	$V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$ $V_{CC} = 10.0 \text{ V}$	

74HC/HCT4016

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: $V_{CC} = 2.0, 4.5, 6.0 \text{ and } 9.0 \text{ V}$

For 74HCT: $V_{CC} = 4.5 \text{ V}$

				Т	amb (°C	;)				TE	ST CO	NDITIC	NS
SYMBOL	PARAMETER			74	HC/HC	UNIT		_					
STWIBOL	PARAMETER	+25			−40 t	o +85	-40 to	-40 to +125		V _{CC}	Ι _S (μΑ)	V _{is}	Vı
		min.	typ.	max.	min.	max.	min.	max.		(- /	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
R _{ON}	ON resistance (peak)		- 160 120	- 320 240		- 400 300		- 480 360	Ω Ω Ω	2.0 4.5 6.0	100 1000 1000	V _{CC} to GND	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		85 160 80 70 60	170 - 160 140 120		213 - 200 175 150		255 - 240 210 180	Ω Ω Ω Ω	9.0 2.0 4.5 6.0 9.0	1000 100 1000 1000 1000	GND	V _{IH} or V _{IL}
R _{ON}	ON resistance (rail)		170 90 80 65	- 180 160 135		- 225 200 170		- 270 240 205	Ω Ω Ω	2.0 4.5 6.0 9.0	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}
ΔR _{ON}	maximum ΔON resistance between any two channels		- 16 12 9						Ω Ω Ω Ω	2.0 4.5 6.0 9.0		V _{CC} to GND	V _{IH} or V _{IL}

Notes to the DC Characteristics

- 1. At supply voltages approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. Therefore it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.6.

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4016

74HC/HCT4016

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

				7	amb (°	C)				TE	ST CO	NDITIONS
SYMBOL	PARAMETER				74HC	;	UNIT			OTHER		
STWIBOL	FARAWLILK	+25			-40 to +85 -40 to -			+125	DIVIT	V _{CC}	Vı	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(' /		
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.3		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0		
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.50 1.35 1.80 2.70		0.50 1.35 1.80 2.70		0.50 1.35 1.80 2.70	V	2.0 4.5 6.0 9.0		
±I _I	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μА	6.0 10.0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.7)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	10.0	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.8)
I _{CC}	quiescent supply current			2.0 4.0		20.0 40.0		40.0 80.0	μΑ	6.0 10.0	V _{CC} or GND	$V_{is} = GND \text{ or } V_{CC}; V_{os} = V_{CC} \text{ or } GND$

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				7	amb (°	C)				Т	EST CONDITIONS
SYMBOL	PARAMETER				74HC	;			UNIT		OTHER
STIVIBUL	PARAMETER		+25		-40 t	to +85	-40 to	+125	UNII	V _{CC} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(1)	
t _{PHL} / t _{PLH}	propagation		17	60		75		90	ns	2.0	$R_L = \infty$; $C_L = 50 \text{ pF}$
	delay		6	12		15		18		4.5	(see Fig.16)
	V _{is} to V _{os}		5	10		13		15		6.0	
			4	8		10		12		9.0	
t _{PZH} / t _{PZL}	turn "ON" time		52	190		240		235	ns	2.0	$R_L = 1 \text{ k}\Omega$; $C_L = 50 \text{ pF}$
	E _n to V _{os}		19	38		48		57		4.5	(see Figs 17 and 18)
			15	32		41		48		6.0	
			11	28		35		42		9.0	
t _{PHZ} / t _{PLZ}	turn "OFF" time		47	145		180		220	ns	2.0	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$
	E _n to V _{os}		17	29		36		44		4.5	(see Figs 17 and 18)
			14	25		31		38		6.0	
			13	22		28		33		9.0	

74HC/HCT4016

DC CHARACTERISTICS FOR 74HCT

Voltages are referenced to GND (ground = 0 V)

				-	T _{amb} (°	C)				TES	T CONE	DITIONS
CVMBOL	DADAMETED				74HC	Т	LINUT			OTHER		
SYMBOL	PARAMETER	+25			-40 to +85 -40 to			o +125	UNIT	V _{CC}	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(,,		
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5		
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5		
±I _I	input leakage current			0.1		1.0		1.0	μΑ	5.5	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	5.5	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.7)
±I _S	analog switch ON-state current			0.1		1.0		1.0	μΑ	5.5	V _{IH} or V _{IL}	$ V_S = V_{CC} - GND$ (see Fig.8)
I _{CC}	quiescent supply current			2.0		20.0		40.0	μΑ	4.5 to 5.5	V _{CC} or GND	$V_{is} = GND \text{ or}$ V_{CC} ; $V_{os} =$ $V_{CC} \text{ or } GND$
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μА	4.5 to 5.5	V _{CC} -2.1V	other inputs at V _{CC} or GND

Note

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
E _N	1.00

74HC/HCT4016

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					Г _{аmb} (°	C)				TEST CONDITIONS		
SYMBOL	PARAMETER				74HC	Т			UNIT		OTHER	
STWIBOL	PARAMETER		+25		−40 t	o +85	-40 to	+125	UNIT	V _{CC}	OTHER	
		min.	typ.	max.	min.	max.	min.	max.		(1)		
t _{PHL} / t _{PLH}	propagation delay V _{is} to V _{os}		6	12		15		18	ns	4.5	$R_L = \infty$; $C_L = 50 \text{ pF}$ (see Fig.16)	
t _{PZH}	turn "ON" time E _n to V _{os}		19	35		44		53	ns	4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Figs 17 and 18)	
t _{PZL}	turn "ON" time E _n to V _{os}		20	35		44		53	ns	4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Figs 17 and 18)	
t _{PHZ} / t _{PLZ}	turn "OFF" time E _n to V _{os}		23	35		44		53	ns	4.5	$R_L = 1 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Figs 17 and 18)	

ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns$

SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.80 0.40	% %	4.5 9.0	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	2.40 1.20	% %	4.5 9.0	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	4.5 9.0	note 3	$R_L = 600 \Omega$; $C_L = 50 pF$; f = 1 MHz (see Figs 10 and 15)
	crosstalk between any two switches	-60 -60	dB dB	4.5 9.0	note 3	$R_L = 600 \Omega; C_L = 50 pF;$ f = 1 MHz (see Fig.12)
V _(p-p)	crosstalk voltage between enable or address input to any switch (peak-to-peak value)	110 220	mV mV	4.5 9.0		$R_L = 600 \ \Omega; \ C_L = 50 \ pF;$ $f = 1 \ MHz \ (E_n, \ square \ wave \ between \ V_{CC} \ and \ GND,$ $t_r = t_f = 6 \ ns) \ (see Fig.13)$
f _{max}	minimum frequency response (–3dB)	150 160	MHz MHz	4.5 9.0	note 4	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 11 and 14)
Cs	maximum switch capacitance	5	pF			

Notes

- 1. V_{is} is the input voltage at a Y_n or Z_n terminal, whichever is assigned as an input.
- 2. V_{os} is the output voltage at a Y_n or Z_n terminal, whichever is assigned as an output.
- 3. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).
- 4. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4016

Philips Semiconductors Product specification

Quad bilateral switches

74HC/HCT4016

74HC/HCT4016

AC WAVEFORMS

74HC/HCT4016

TEST CIRCUIT AND WAVEFORMS

Conditions

TEST	SWITCH	V _{is}
t _{PZH}	GND	V _{CC}
t _{PZL}	V _{CC}	GND
t _{PHZ}	GND	V _{CC}
t _{PLZ}	V _{CC}	GND
others	open	pulse

 C_L = load capacitance including jig and probe capacitance (see AC CHARACTERISTICS for values).

 $R_T = \mbox{termination resistance should be equal to the output impedance Z_O of the pulse generator.} \label{eq:RT}$

 $t_r = t_f = 6$ ns; when measuring f_{max} , there is no constraint t_r , t_f with 50% duty factor.

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC 74HCT	V _{CC} 3.0 V	50% 1.3 V	< 2 ns < 2 ns	6 ns 6 ns

Fig.18 Test circuit for measuring AC performance.

	AMPLITUDE	V _M	t _r ; t _f	
FAMILY			f _{max} ; PULSE WIDTH	OTHER
74HC 74HCT	V _{CC} 3.0 V	50% 1.3 V	< 2 ns < 2 ns	6 ns 6 ns

Fig.19 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".