

MENT-062

This Response To Office Action is in response to the Office Action mailed November 10, 2003.

In the Claims

1 1 (currently amended). An arrangement for generating a representation of a feature in a surface
2 defined by a mesh representation, the mesh comprising at a selected level a plurality of points
3 including at least one point, referred to as a vertex, connected to a plurality of neighboring points by
4 respective edges, the feature being defined in connection with the vertex and at least one of the
5 neighboring points and the edge interconnecting the vertex and the at least one of the neighboring
6 points in the mesh representation, the feature generating arrangement comprising:

- 7 A. a weight vector generator module configured to generate at least one weight vector based on
8 a parameterized subdivision rule defined at a plurality of levels, for which a value of at least
9 one parameter differs at at least two levels in the mesh; and
10 B. a feature representation generator module configured to use the at least one weight vector and
11 positions of the vertex and the neighboring points to generate the representation of the feature.
- AM
CMF
10*

1 2 (currently amended). An arrangement as defined in claim 1 in which the weight vector generator
2 module is configured to make use of values of the at least one parameter that differ at at least two
3 levels are related by a selected mathematical function.

1 3 (original). An arrangement as defined in claim 1 in which the feature is a smooth feature line.

1 4 (currently amended). An arrangement as defined in claim 3 in which the smooth feature line is
2 defined in connection with the vertex and two neighboring points and edges interconnecting the vertex
3 and the respective neighboring points, the weight vector generator module being configured to make
4 use of the parameterized subdivision rule having a parameter value associated with each of the edges
5 along which the smooth feature line is defined.

-2-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

1 5 (original). An arrangement as defined in claim 4 in which the weight vector generator module is
2 configured to make use of parameters associated with the edges along which the smooth feature line
3 is defined whose values are the same.

1 6 (original). An arrangement as defined in claim 5 in which the weight vector generator module is
2 configured to make use of the parameters that are in relation to a subdivision rule that, in turn, reflects
3 a sharp crease along the edges along which the smooth feature line is defined, the values of the
4 parameters being defined in the interval [0,1], where higher values define a sharper crease, the values
5 of the parameters at a lower level being related to the values of the parameters at a higher level being
6 related by

$$s(j+1) = (s(j))^2$$

*Al
Cmt
9*
where $s(j)$ represents the values of the parameters at level "j" and $s(j+1)$ represents the values of the
parameters at the higher level "j+1."

1 7 (original). An arrangement as defined in claim 4 in which the weight vector generator module is
2 configured to make use of parameters associated with the edges along which the smooth feature line
3 is defined whose values differ.

1 8 (original). An arrangement as defined in claim 7 in which the weight vector generator module is
2 configured to make use of the parameters that are in relation to a subdivision rule that, in turn,
3 reflects a sharp crease along the edges along which the smooth feature line is defined, the values of
4 the parameters being defined in the interval [0,1], where higher values define a sharper crease, the values
5 of the parameters at a lower level being related to the values of the parameters at a higher level
6 being related by

$$s_1(j+1) = \left(\frac{3}{4}s_1(j) + \frac{1}{4}s_2(j) \right)^2$$

7
8 and

-3-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$s_2(j+1) = \left(\frac{1}{4}s_1(j) + \frac{3}{4}s_2(j) \right)^2$$

9
10 where $s_1(j)$ and $s_2(j)$ represent the values of the parameters associated with the respective edges at
11 level "j," and $s_1(j+1)$ and $s_2(j+1)$ represent the values of the parameters associated with the respective
12 edges at the higher level "j+1."

1 M 9 (original). An arrangement as defined in claim 4 in which the mesh comprises a triangular mesh in
2 C 10 which, at a selected level "j," vertex $v_q(0)$ is at position $\phi^j(0)$ and neighboring points $v_q(k)$, $k=1,\dots,K$
3 are at respective positions $\phi^j(k)$, and in which the weight vector generator module is configured to
4 make use of a parameterized subdivision rule $S_{sc,T,K,L}$ that relates the position $\phi^{j+1}(0)$ of the vertex $v_q(0)$
5 and positions $\phi^{j+1}(k)$ of neighboring points $v_q(k)$ at the next higher level "j+1" as follows

$$\phi^{j+1} = S_{sc,T,K,L} \phi^j$$

6
7 where subdivision rule $S_{sc,T,K,L}$ is given by

-4-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

A
CMT

$$(S_{sc,T,K,L}(s_1, s_2))_{l,m} = \begin{cases} (1-s_3)(1-\alpha(K)) + \frac{3}{4}s_3 & \text{if } l=0, m=0 \\ (1-s_3)\frac{\alpha(K)}{K} + \frac{1}{8}s_3 & \text{if } l=0, m=1 \text{ or } L+1 \\ (1-s_3)\frac{\alpha(K)}{K} & \text{if } l=0, m=2, \dots, L \\ & \text{or } l=0, m=L+2, \dots, K \\ \frac{3}{8} + \frac{1}{8}s_2 & \text{if } l=1, m=0 \text{ or } 1 \\ \frac{3}{8} + \frac{1}{8}s_1 & \text{if } l=L+1, m=0 \text{ or } L+1 \\ \frac{1}{8}(1-s_2) & \text{if } l=1, m=2 \text{ or } K \\ \frac{1}{8}(1-s_1) & \text{if } l=L+1, m=L \text{ or } L+2 \\ \frac{3}{8} & \text{if } l=2, \dots, L, m=0 \\ & \text{or } l=L+2, \dots, K, m=0 \\ & \text{or } l=m=2, \dots, L \\ & \text{or } l=m=L+2, \dots, K \\ \frac{1}{8} & \text{if } l=2, \dots, L, m=l-1 \\ & \text{or } l=L+2, \dots, K, m=l-1 \\ & \text{or } l=2, \dots, L, m=l+1 \\ & \text{or } l=L+2, \dots, K, m=l+1 \\ & \text{or } l=K, m=1 \\ 0 & \text{otherwise} \end{cases}$$

8

9 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 10 and $v_q(L+1)$ ($L+1 \leq K$) and vertex $v_q(0)$, s_i is the parameter associated with the edge between point

-5-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

11 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex

12 $v_q(0)$, $s_3 = \frac{1}{2}(s_1 + s_2)$, and

$$\sigma(K) = \frac{5}{8} - \left(\frac{3 + 2 \cos\left(\frac{2\pi}{K}\right)}{8} \right)^2$$

13

*AM 1
CMF 2
3*

10 (original). An arrangement as defined in claim 9 in which the representation of the feature is defined by at least one limit point associated with the vertex, the feature representation generator module being configured to determine a position $\sigma(q)$ of the limit point in accordance with

$$\sigma(q) = \sum_{i=0}^K \left(l_{LP}(s_1, s_2) \right)_i c^j(i)$$

4

5 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc,T,K,L,LP}(s_1, s_2)$$

6

7 where

$$S_{sc,T,K,L,LP}(s_1, s_2) = \prod_{j=\infty}^{j_D} S_{sc,T,K,L}(s_1(j), s_2(j))$$

8

9 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th" level in the matrix product, where $S_{sc,T,K,L,LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to "Limit Point," and

-6-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$\mathbf{v}_{LP} = \left(\frac{\omega(K)}{\varpi(K) + K}, \frac{1}{\varpi(K) + K}, \frac{1}{\varpi(K) + K}, \dots, \frac{1}{\varpi(K) + K} \right)$$

13

14 where

$$\varpi(K) = \frac{3K}{8a(K)}$$

15

AM
1 11 (original). An arrangement as defined in claim 10 in which the weight vector generator module is
2 configured to generate an approximation for the limit point weight vector \mathbf{l}_{LP} using a polynomial
3 approximation methodology.

1 12 (original). An arrangement as defined in claim 11 in which the weight vector generator module is
2 configured to generate the approximation for the limit point weight vector \mathbf{l}_{LP} in accordance with the
3 polynomial

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2$$

4

5 in a symmetric case, or the polynomial

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_2^2 + b_{i5}s_1s_2$$

6

7 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 13 (original). An arrangement as defined in claim 12 in which weight vector generator module is
2 configured to select values of s_1 and s_2 in accordance with

-7-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3
4 where "N" is a selected integer, and indices i,j=0,...,N-1.

1 14 (original). An arrangement as defined in claim 10 in which the weight vector generator module is
2 configured to generate an approximation for the limit point weight vector l_{LP} using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}, J=0,..,M$ and then evaluating this polynomial by extrapolation at the point
x=0.

1 15 (original). An arrangement as defined in claim 14 in which the weight vector generator module is
2 configured to perform the extrapolation approximation methodology such that M=3.

1 16 (original). An arrangement as defined in claim 15 in which the weight vector generator module is
2 configured to generate the approximation for the limit point weight vector weight vector in accordance
3 with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

4
5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc,T,KL,Lp}(J)(s_1, s_2))_{1,m}$$

6
7 where

-8-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

8

9 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1}$$

10

11 where I_{K+1} is the "K+1" by "K+1" identity matrix, and

12 where

*AI
cmk*

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

13

1 17 (original). An arrangement as defined in claim 9 in which the representation of the feature is
 2 defined by a tangent vector associated with the vertex, the tangent vector being along the smooth
 3 feature line, the feature representation generator module being configured to determine the tangent
 4 vector $e_c(q)$ in accordance with

-9-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$e_C(q) = \sum_{i=0}^K \left(l_C(s_1, s_2) \right)_i c^i(i)$$

5

6 where $l_C(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_C = \lim_{J \rightarrow \infty} \frac{l_C(J)}{\|l_C(J)\|}$$

7

8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, and where

AM CMT

$$l_C(J) = (0, 1, 0, \dots, -1, 0, \dots) \cdot \prod_{j=J}^{J_D} S_{sc, T, K, L}(s_1(j), s_2(j))$$

9

10 where two non-zero components of the row vector on the right hand side are a "one" at position "one"

11 in the row vector, and a "negative one" at position $\frac{K}{2} + 1$, and where $S_{sc, T, K, L}(s_1(j), s_2(j))$ corresponds12 to $S_{sc, T, K, L}$ for sharpness parameters corresponding to the "j-th" level in the matrix product.1 18 (original). An arrangement as defined in claim 17 in which the weight vector generator module is
2 configured to generate the tangent vector weight vector l_C using a polynomial approximation
3 methodology.1 19 (original). An arrangement as defined in claim 18 in which the weight vector generator module is
2 configured to generate the approximation for the tangent vector weight vector l_C in accordance with
3 the polynomial

-10-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(l_c)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2)$$

- 4
5 in the anti-symmetric case, or the polynomial

$$(l_c)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

- 6
7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

PL CMF
1 20 (original). An arrangement as defined in claim 19 in which weight vector generator module is
2 configured to select values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

- 3
4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 21 (original). An arrangement as defined in claim 17 in which the weight vector generator module is
2 configured to generate an approximation for the tangent vector weight vector l_c using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0,\dots,M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 22 (original). An arrangement as defined in claim 21 in which the weight vector generator module is
2 configured to perform the extrapolation approximation methodology such that $M=3$.

-11-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

1 23 (original). An arrangement as defined in claim 22 in which the weight vector generator module is
2 configured to generate the approximation for the tangent vector weight vector l_c in accordance with

$$l_c \approx \sum_{J=0}^3 b_J l_c(J)$$

3
4 where "J" is a predetermined integer and where

$$l_c(J)(s_1, s_2) = d(K)^J v_c \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2)$$

5
6 where vector v_c is given by

$$v_c = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right)$$

7
8 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

9
10 and

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

11
12 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1}$$

13
14 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

-12-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

R
Cmt

1 24 (original). An arrangement as defined in claim 9 in which the representation of the feature is
2 defined by a tangent vector associated with the vertex, the tangent vector being across the smooth
3 feature line, the feature representation generator module being configured to determine the tangent
4 vector $e_c(q)$ in accordance with

$$e_s(q) = \sum_{i=0}^K \left(l_s(s_1, s_2) \right)_i c^i(i)$$

5
6 where $l_s(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s = \lim_{j \rightarrow \infty} \frac{l_s(J)}{\|l_s(J)\|}$$

7
8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, where

-13-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$l_s(J) = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right) \cdot \prod_{j=J}^{J_D} S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

9
10 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th"
11 level in the matrix product.

1 25 (original). An arrangement as defined in claim 24 in which the weight vector generator module is
2 configured to generate the tangent vector weight vector l_c using a polynomial approximation
3 methodology.

1 26 (original). An arrangement as defined in claim 25 in which the weight vector generator module is
2 configured to generate the approximation for the tangent vector weight vector l_s in accordance with
3 the polynomial

*AI
On*

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2)$$

4
5 in the anti-symmetric case, or the polynomial

$$(l_s)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 +
b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6
7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 27 (original). An arrangement as defined in claim 26 in which weight vector generator module is
2 configured to select values of s_1 and s_2 in accordance with

-14-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3 where "N" is a selected integer, and indices i,j=0,...,N-1.
4

1 28 (original). An arrangement as defined in claim 23 in which the weight vector generator module is
2 configured to generate an approximation for the tangent vector weight vector l_s using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this polynomial by extrapolation at the point

5 x=0.

A
Cmt 1 2 29 (original). An arrangement as defined in claim 28 in which the weight vector generator module is
configured to perform the extrapolation approximation methodology such that M=3.

1 30 (original). An arrangement as defined in claim 29 in which the weight vector generator module is
2 configured to generate the approximation for the limit point weight vector weight vector in accordance
3 with

$$l_s \approx \sum_{J=0}^3 b_J l_s(J)$$

4 where "J" is a predetermined integer and where
5

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2)$$

6
7 where vector v_s is given by

MENT-062

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right)$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

12

13 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1}$$

14

15 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

*AN
CNOT*

Serial Number 10/062,192
Filing Date February 1, 2002

-16-

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

A
Cmt
16

1 31 (original). An arrangement as defined in claim 4 in which the mesh comprises a quadrilateral mesh
2 in which, at a selected level "j," vertex $v_q(0)$ is at position $c^j(0)$ and neighboring points $v_q(k)$,
3 $k=1,\dots,2K$ are at respective positions $c^j(k)$, and in which the weight vector generator module is
4 configured to make use of a parameterized subdivision rule $S_{sc,Q,K,L}$ that relates the position $c^{j+1}(0)$ of
5 the vertex $v_q(0)$ and positions $c^{j+1}(k)$ of neighboring points $v_q(k)$ at the next higher level "j+1" as
6 follows

$$c^{j+1} = S_{sc,T,K,L} c^j$$

7

8 where subdivision rule $S_{sc,Q,K,L}$ is given by

-17-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

-18-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

A/Cmt

$$\left(S_{sc,Q,K,L}(s_1, s_2) \right)_{l,m} = \begin{cases} \left(1 - s_3\right)\left(1 - \frac{7}{4K}\right) + \frac{3}{4}s_3 & \text{if } l = 0, m = 0 \\ \left(1 - s_3\right)\left(\frac{3}{2K^2}\right) + \frac{1}{8}s_3 & \text{if } l = 0, m = 1 \text{ or } L + 1 \\ \left(1 - s_3\right)\left(\frac{3}{2K^2}\right) & \text{if } l = 0, m = 2, \dots, L \\ & \text{or } l = 0, m = L + 2, \dots, K \\ \left(1 - s_3\right)\left(\frac{1}{4K^2}\right) & \text{if } l = 0, m = K + 1, \dots, 2K \\ \frac{3}{8}\left(1 - s_2\right) + \frac{1}{2}s_2 & \text{if } l = 1, m = 0 \text{ or } 1 \\ \frac{1}{16}\left(1 - s_2\right) & \text{if } l = L + 1, m = 2, K, \\ & K + 1 \text{ or } 2K \\ \frac{3}{8}\left(1 - s_1\right) + \frac{1}{2}s_1 & \text{if } l = L + 1, m = 0 \text{ or } L + 1 \\ \frac{1}{16}\left(1 - s_1\right) & \text{if } l = L + 1, m = L, L + 2, \\ & K + 1 \text{ or } K + L + 1 \\ \frac{3}{8} & \text{if } l = 2, \dots, L, m = 0 \\ & \text{or } l = L + 2, \dots, K, m = 0 \\ & \text{or } l = m = 2, \dots, L \\ & \text{or } l = m = L + 2, \dots, K \\ \frac{1}{16} & \text{if } l = 2, \dots, L, m = l - 1 \\ & \text{or } l = 2, \dots, L, m = l + 1 \\ & \text{or } l = 2, \dots, L, m = K + l - 1 \\ & \text{or } l = 2, \dots, L, m = K + l \\ & \text{or } l = L + 2, \dots, K, m = l - 1 \\ & \text{or } l = L + 2, \dots, K - 1, m = l + 1 \\ & \text{or } l = K, m = 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l - 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l \\ \frac{1}{4} & \text{if } l = K + 1, \dots, 2K - 1, m = 0, \\ & l - K, l - K + 1 \text{ or } l \\ & \text{or } l = 2K, m = 0, K, 1 \text{ or } 2K \\ 0 & \text{otherwise} \end{cases}$$

-19-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

9 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 10 and $v_q(L+1)$ ($L+1 \leq 2K$) and vertex $v_q(0)$, s_1 is the parameter associated with the edge between point
 11 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex
 12 $v_q(0)$, and $s_3 = \frac{1}{2}(s_1 + s_2)$.

1 32 (original). An arrangement as defined in claim 31 in which the representation of the feature is
 2 defined by at least one limit point associated with the vertex, the feature representation generator
 3 module being configured to determine a position $\sigma(q)$ of the limit point in accordance with

$$\sigma(q) = \sum_{i=0}^{2K} l_{LP}(s_1, s_2)_i c^j(i)$$

5 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc, Q, K, L, LP}(s_1, s_2)$$

6
 7 where

$$S_{sc, Q, K, L, LP}(s_1, s_2) = \prod_{j=\infty}^{J_D} S_{sc, Q, K, L}(s_1(j), s_2(j))$$

8
 9 where $S_{sc, Q, K, L}(s_1(j), s_2(j))$ corresponds to $S_{sc, Q, K, L}$ for sharpness parameters corresponding to the "j-th"
 10 level in the matrix product, where $S_{sc, Q, K, L, LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to
 11 the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to
 12 "Limit Point," and

$$v_{LP} = \frac{1}{K(K+5)}(K^2, 4, \dots, 4, 1, \dots, 1)$$

13

-20-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

1 33 (original). An arrangement as defined in claim 32 in which the weight vector generator module is
 2 configured to generate an approximation for the limit point weight vector \mathbf{l}_{LP} using a polynomial
 3 approximation methodology.

1 34 (original). An arrangement as defined in claim 33 in which the weight vector generator module is
 2 configured to generate the approximation for the limit point weight vector \mathbf{l}_{LP} in accordance with the
 3 polynomial

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2 ,$$

4 in a symmetric case, or the polynomial
 5 ~~Am Crnt~~

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 ,$$

6 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 7 and the values of the parameters s_1 and s_2 are at selected values.

1 35 (original). An arrangement as defined in claim 34 in which weight vector generator module is
 2 configured to select values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right) ,$$

3
 4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 36 (original). An arrangement as defined in claim 32 in which the weight vector generator module is
 2 configured to generate an approximation for the limit point weight vector \mathbf{l}_{LP} using an extrapolation
 3 approximation methodology in relation to an M-degree polynomial that interpolates the points

-21-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

4 $\{x = 2^{-2^J}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this polynomial by extrapolation at the point
 5 x=0.

1 37 (original). An arrangement as defined in claim 36 in which the weight vector generator module is
 2 configured to perform the extrapolation approximation methodology such that M=3.

1 38 (original). An arrangement as defined in claim 37 in which the weight vector generator module is
 2 configured to generate the approximation for the limit point weight vector weight vector in accordance
 3 with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc, Q, K, L, LP}(J)(s_1, s_2))_{1,m},$$

6
 7 where

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc, Q, K, L}(s_1(j), s_2(j)),$$

8
 9 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1},$$

10
 11 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

-22-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

*AI
Cnlt
12*

1 39 (original). An arrangement as defined in claim 31 in which the representation of the feature is
 2 defined by a tangent vector associated with the vertex, the tangent vector being along the smooth
 3 feature line, the feature representation generator module being configured to determine the tangent
 4 vector $e_c(q)$ in accordance with

$$e_c(q) = \sum_{i=0}^{2K} \left(l_c(s_1, s_2) \right)_i c^i(i) ,$$

5
 6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_c(s_1, s_2) = d(K)^K v_c \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j)) ,$$

7
 8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{j_D} S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

9

-23-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_c is defined as

$$(v_c)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \cos \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \cos \frac{2\pi(i-K-1)}{K} + \cos \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

$$A_K = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

A/
Cont³
14 and where dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{A_K}{16} + \frac{1}{4}}$$

1 40 (original). An arrangement as defined in claim 39 in which the weight vector generator module is
2 configured to generate the tangent vector weight vector l_c using a polynomial approximation
3 methodology.

1 41 (original). An arrangement as defined in claim 40 in which the weight vector generator module is
2 configured to generate the approximation for the tangent vector weight vector l_c in accordance with
3 the polynomial

$$(l_c)_i \approx b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4
5 in the anti-symmetric case, or the polynomial

-24-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(l_C)_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6
7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 42 (original). An arrangement as defined in claim 41 in which weight vector generator module is
2 configured to select values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3
4 where "N" is a selected integer, and indices $i, j = 0, \dots, N-1$.

1 43 (original). An arrangement as defined in claim 39 in which the weight vector generator module is
2 configured to generate an approximation for the tangent vector weight vector l_C using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}, J=0, \dots, M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 44 (original). An arrangement as defined in claim 43 in which the weight vector generator module is
2 configured to perform the extrapolation approximation methodology such that $M=3$.

1 45 (original). An arrangement as defined in claim 44 in which the weight vector generator module is
2 configured to generate the approximation for the tangent vector weight vector l_C in accordance with

-25-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$l_C \approx \sum_{J=0}^3 b_J l_C(J)$$

3

4 where "J" is a predetermined integer and where

$$l_C(J)(s_1, s_2) = d(K)^J v_C \cdot S_{sc,Q,K,L,LP}(J)(s_1, s_2)$$

5

6 where vector v_C is given by

$$v_C = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right)$$

AI
Cent 7 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

9

10 and

$$S_{sc,Q,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,Q,K,L}(s_1(j), s_2(j))$$

11

12 with

$$S_{sc,Q,K,L,LP}(0)(s_1, s_2) := I_{2K+1}$$

13

14 where I_{K+1} is the "2K+1" by "2K+1" identity matrix, and where

-26-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

M
Cont
15

1 46 (original). An arrangement as defined in claim 31 in which the representation of the feature is
 2 defined by a tangent vector associated with the vertex, the tangent vector being across the smooth
 3 feature line, the feature representation generator module being configured to determine the tangent
 4 vector $e_c(q)$ in accordance with

$$e_s(q) = \sum_{i=0}^{2K} (l_s(s_1, s_2))_i c^i(i)$$

5
 6 where $l_s(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s(s_1, s_2) = d(K)^K v_s \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j))$$

7
 8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{J_p} S_{sc,Q,K,L}(s_1(j), s_2(j))$$

9

-27-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_c is defined as

$$(v_s)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \sin \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \sin \frac{2\pi(i-K-1)}{K} + \sin \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

$$A_k = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

14 and where dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{A_k}{16} + \frac{1}{4}}$$

1 47 (original). An arrangement as defined in claim 46 in which the weight vector generator module is
 2 configured to generate the tangent vector weight vector l_c using a polynomial approximation
 3 methodology.

1 48 (original). An arrangement as defined in claim 47 in which the weight vector generator module is
 2 configured to generate the approximation for the tangent vector weight vector l_s in accordance with
 3 the polynomial

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4

-28-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

5 in the anti-symmetric case, or the polynomial

$$(l_s)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 49 (original). An arrangement as defined in claim 48 in which weight vector generator module is
2 configured to select values of s_1 and s_2 in accordance with

M
Conf

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices $i, j = 0, \dots, N-1$.

1 50 (original). An arrangement as defined in claim 46 in which the weight vector generator module is
2 configured to generate an approximation for the tangent vector weight vector l_s using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0, \dots, M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 51 (original). An arrangement as defined in claim 50 in which the weight vector generator module is
2 configured to perform the extrapolation approximation methodology such that $M=3$.

1 52 (original). An arrangement as defined in claim 51 in which the weight vector generator module is
2 configured to generate the approximation for the limit point weight vector weight vector in accordance
3 with

-29-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$l_s \approx \sum_{J=0}^3 b_J l_s(J)$$

4

5 where "J" is a predetermined integer and where

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc, Q, K, L, LP}(J)(s_1, s_2)$$

6

7 where vector v_s is given by

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right)$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc, Q, K, L}(s_1(j), s_2(j))$$

12

13 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1}$$

14

15 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

-30-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

1 53 (currently amended). A computer program product for use in connection with a computer to
2 provide an arrangement for generating a representation of a feature in a surface defined by a mesh
3 representation, the mesh comprising at a selected level a plurality of points including at least one
4 point, referred to as a vertex, connected to a plurality of neighboring points by respective edges, the
5 feature being defined in connection with the vertex and at least one of the neighboring points and the
6 edge interconnecting the vertex and the at least one of the neighboring points in the mesh
7 representation, the computer program product comprising:

- 8 A. a weight vector generator module configured to enable the computer to generate at least one
9 weight vector based on a parameterized subdivision rule defined at a plurality of levels, for
10 which a value of at least one parameter differs at at least two levels in the mesh; and
11 B. a feature representation generator module configured to enable the computer to use the at least
12 one weight vector and positions of the vertex and the neighboring points to generate the
13 representation of the feature.

1 54 (currently amended). A computer program product as defined in claim 53 in which the weight
2 vector generator module is configured to enable the computer to make use of values of the at least
3 one parameter that differ at at least two levels are related by a selected mathematical function.

-31-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

1 55 (original). A computer program product as defined in claim 53 in which the feature is a smooth
2 feature line.

1 56 (currently amended). A computer program product as defined in claim 55 in which the smooth
2 feature line is defined in connection with the vertex and two neighboring points and edges
3 interconnecting the vertex and the respective neighboring points, the weight vector generator module
4 being configured to enable the computer to make use of the parameterized subdivision rule having
5 a parameter value associated with each of the edges along which the smooth feature line is defined.

1 57 (original). A computer program product as defined in claim 56 in which the weight vector
2 generator module is configured to enable the computer to make use of parameters associated with the
3 edges along which the smooth feature line is defined whose values are the same.
M
cont

1 58 (original). A computer program product as defined in claim 57 in which the weight vector
2 generator module is configured to enable the computer to make use of the parameters that are in
3 relation to a subdivision rule that, in turn, reflects a sharp crease along the edges along which the
4 smooth feature line is defined, the values of the parameters being defined in the interval [0,1], where
5 higher values define a sharper crease, the values of the parameters at a lower level being related to
6 the values of the parameters at a higher level being related by

$$s(j+1) = (s(j))^2$$

7
8 where $s(j)$ represents the values of the parameters at level "j" and $s(j+1)$ represents the values of the
9 parameters at the higher level "j+1."

1 59 (original). A computer program product as defined in claim 56 in which the weight vector
2 generator module is configured to enable the computer to make use of parameters associated with the
3 edges along which the smooth feature line is defined whose values differ.

-32-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

1 60 (original). A computer program product as defined in claim 59 in which the weight vector
 2 generator module is configured to enable the computer to make use of the parameters that are in
 3 relation to a subdivision rule that, in turn, reflects a sharp crease along the edges along which the
 4 smooth feature line is defined, the values of the parameters being defined in the interval [0,1], where
 5 higher values define a sharper crease, the values of the parameters at a lower level being related to
 6 the values of the parameters at a higher level being related by

$$s_1(j+1) = \left(\frac{3}{4}s_1(j) + \frac{1}{4}s_2(j) \right)^2 ,$$

7
 8 and

$$s_2(j+1) = \left(\frac{1}{4}s_1(j) + \frac{3}{4}s_2(j) \right)^2 ,$$

9
 10 where $s_1(j)$ and $s_2(j)$ represent the values of the parameters associated with the respective edges at
 11 level "j," and $s_1(j+1)$ and $s_2(j+1)$ represent the values of the parameters associated with the respective
 12 edges at the higher level "j+1."

1 61 (original). A computer program product as defined in claim 56 in which the mesh comprises a
 2 triangular mesh in which, at a selected level "j," vertex $v_q(0)$ is at position $c^j(0)$ and neighboring points
 3 $v_q(k)$, $k=1,\dots,K$ are at respective positions $c^j(k)$, and in which the weight vector generator module is
 4 configured to enable the computer to make use of a parameterized subdivision rule $S_{sc,T,K,L}$ that relates
 5 the position $c^{j+1}(0)$ of the vertex $v_q(0)$ and positions $c^{j+1}(k)$ of neighboring points $v_q(k)$ at the next
 6 higher level "j+1" as follows

$$c^{j+1} = S_{sc,T,K,L} c^j ,$$

7
 8 where subdivision rule $S_{sc,T,K,L}$ is given by

-33-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$\begin{aligned}
 S_{sc,T,K,L}(s_1, s_2)_{l,m} = & \left\{ \begin{array}{ll}
 (1-s_3)(1-\alpha(K)) + \frac{3}{4}s_3 & \text{if } l=0, m=0 \\
 (1-s_3)\frac{\alpha(K)}{K} + \frac{1}{8}s_3 & \text{if } l=0, m=1 \text{ or } L+1 \\
 (1-s_3)\frac{\alpha(K)}{K} & \text{if } l=0, m=2, \dots, L \\
 & \text{or } l=0, m=L+2, \dots, K \\
 \frac{3}{8} + \frac{1}{8}s_2 & \text{if } l=1, m=0 \text{ or } 1 \\
 \frac{3}{8} + \frac{1}{8}s_1 & \text{if } l=L+1, m=0 \text{ or } L+1 \\
 \frac{1}{8}(1-s_2) & \text{if } l=1, m=2 \text{ or } K \\
 \frac{1}{8}(1-s_1) & \text{if } l=L+1, m=L \text{ or } L+2 \\
 \frac{3}{8} & \text{if } l=2, \dots, L, m=0 \\
 & \text{or } l=L+2, \dots, K, m=0 \\
 & \text{or } l=m=2, \dots, L \\
 & \text{or } l=m=L+2, \dots, K \\
 \frac{1}{8} & \text{if } l=2, \dots, L, m=l-1 \\
 & \text{or } l=L+2, \dots, K, m=l-1 \\
 & \text{or } l=2, \dots, L, m=l+1 \\
 & \text{or } l=L+2, \dots, K, m=l+1 \\
 & \text{or } l=K, m=1 \\
 0 & \text{otherwise}
 \end{array} \right. ,
 \end{aligned}$$

*M
Cont*

9

10 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 11 and $v_q(L+1)$ ($L+1 \leq K$) and vertex $v_q(0)$, s_i is the parameter associated with the edge between point

-34-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

12 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex

13 $v_q(0)$, $s_3 = \frac{1}{2}(s_1 + s_2)$, and

$$\alpha(K) = \frac{5}{8} - \left(\frac{3 + 2 \cos\left(\frac{2\pi}{K}\right)}{8} \right)^2$$

14

1 62 (original). A computer program product as defined in claim 61 in which the representation of the
 2 feature is defined by at least one limit point associated with the vertex, the feature representation
 3 generator module being configured to enable the computer to determine a position $\sigma(q)$ of the limit
 4 point in accordance with

$$\sigma(q) = \sum_{i=0}^K \left(l_{LP}(s_1, s_2) \right)_i c^j(i) ,$$

5

6 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc,T,K,L,LP}(s_1, s_2) ,$$

7

8 where

$$S_{sc,T,K,L,LP}(s_1, s_2) = \prod_{j=-\infty}^{j_p} S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

9

10 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th"
 11 level in the matrix product, where $S_{sc,T,K,L,LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to

-35-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

12 the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to
 13 "Limit Point," and

$$\nu_{LP} = \left(\frac{\omega(K)}{\omega(K)+K}, \frac{1}{\omega(K)+K}, \frac{1}{\omega(K)+K}, \dots, \frac{1}{\omega(K)+K} \right),$$

14

15 where

$$\omega(K) = \frac{3K}{8a(K)}$$

16

M
Com

1 63 (original). A computer program product as defined in claim 62 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the limit
 3 point weight vector l_{LP} using a polynomial approximation methodology.

1 64 (original). A computer program product as defined in claim 63 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit
 3 point weight vector l_{LP} in accordance with the polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2,$$

4

5 in a symmetric case, or the polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_2^2 + b_{i5}s_1s_2,$$

6

7 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 65 (original). A computer program product as defined in claim 64 in which weight vector generator
 2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices i,j=0,...,N-1.

1 66 (original). A computer program product as defined in claim 62 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the limit
 3 point weight vector l_{LP} using an extrapolation approximation methodology in relation to an M-degree
 4 polynomial that interpolates the points $\{x = 2^{-2^J}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this

5 polynomial by extrapolation at the point x=0.

M
cont
1 67 (original). A computer program product as defined in claim 66 in which the weight vector
 2 generator module is configured to enable the computer to perform the extrapolation approximation
 3 methodology such that M=3.

1 68 (original). A computer program product as defined in claim 67 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit
 3 point weight vector weight vector in accordance with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

4

5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc,T,KL,Lp}(J)(s_1, s_2))_{1,m}$$

6

-37-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

7 where

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

8

9 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1} ,$$

10

11 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

$$b_0 = \frac{-135}{120015}$$

M
Amnt

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

12

1 69 (original). A computer program product as defined in claim 61 in which the representation of the
 2 feature is defined by a tangent vector associated with the vertex, the tangent vector being along the
 3 smooth feature line, the feature representation generator module being configured to enable the
 4 computer to determine the tangent vector $e_c(q)$ in accordance with

$$e_c(q) = \sum_{i=0}^K \left(l_c(s_1, s_2) \right)_i c^i(i) ,$$

-38-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

5

6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_c = \lim_{J \rightarrow \infty} \frac{l_c(J)}{\|l_c(J)\|}$$

7

8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, and where

$$l_c(J) = (0, 1, 0, \dots, -1, 0, \dots) \cdot \prod_{j=J}^{J_D} S_{sc,T,K,L}(s_1(j), s_2(j))$$

A1
cont

where two non-zero components of the row vector on the right hand side are a "one" at position "one"

11 in the row vector, and a "negative one" at position $\frac{K}{2} + 1$, and where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds12 to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th" level in the matrix product.1 70 (original). A computer program product as defined in claim 69 in which the weight vector
2 generator module is configured to enable the computer to generate the tangent vector weight vector
3 l_c using a polynomial approximation methodology.1 71 (original). A computer program product as defined in claim 70 in which the weight vector
2 generator module is configured to enable the computer to generate the approximation for the tangent
3 vector weight vector l_c in accordance with the polynomial

$$(l_c)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2)$$

4

-39-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

5 in the anti-symmetric case, or the polynomial

$$(l_C)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 72 (original). A computer program product as defined in claim 71 in which weight vector generator
2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

*All
Cont*

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 73 (original). A computer program product as defined in claim 69 in which the weight vector
2 generator module is configured to enable the computer to generate an approximation for the tangent
3 vector weight vector l_C using an extrapolation approximation methodology in relation to an M-degree
4 polynomial that interpolates the points $\{x = 2^{-2'}, y = l_{LP}(J)\}$, $J=0,\dots,M$ and then evaluating this
5 polynomial by extrapolation at the point $x=0$.

1 74 (original). A computer program product as defined in claim 73 in which the weight vector
2 generator module is configured to enable the computer to perform the extrapolation approximation
3 methodology such that $M=3$.

-40-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

1 75 (original). A computer program product as defined in claim 74 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the tangent
 3 vector weight vector l_C in accordance with

$$l_C \approx \sum_{J=0}^3 b_J l_C(J) ,$$

4

5 where "J" is a predetermined integer and where

$$l_C(J)(s_1, s_2) = d(K)^J v_C \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2) ,$$

6

7 where vector v_C is given by

$$v_C = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right) ,$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}} ,$$

10

11 and

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

12

13 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1} ,$$

14

-41-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

15 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

*M
Cur
16*

1 76 (original). A computer program product as defined in claim 61 in which the representation of the
 2 feature is defined by a tangent vector associated with the vertex, the tangent vector being across the
 3 smooth feature line, the feature representation generator module being configured to enable the
 4 computer to determine the tangent vector $e_c(q)$ in accordance with

$$e_s(q) = \sum_{i=0}^K \left(l_s(s_1, s_2) \right)_i c^j(i) ,$$

5

6 where $l_s(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s = \lim_{j \rightarrow \infty} \frac{l_s(J)}{\|l_s(J)\|} ,$$

7

8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, where

-42-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$l_s(J) = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right) \cdot \prod_{j=J}^{j_D} S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

9
 10 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th"
 11 level in the matrix product.

1 77 (original). A computer program product as defined in claim 76 in which the weight vector
 2 generator module is configured to enable the computer to generate the tangent vector weight vector
 3 l_c using a polynomial approximation methodology.

1 78 (original). A computer program product as defined in claim 77 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the tangent
 3 vector weight vector l_s in accordance with the polynomial

M
cont

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2) ,$$

4
 5 in the anti-symmetric case, or the polynomial

$$(l_s)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + \\ b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3 ,$$

6
 7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 79 (original). A computer program product as defined in claim 78 in which weight vector generator
 2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices i,j=0,...,N-1.

1 80 (original). A computer program product as defined in claim 75 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the tangent
 3 vector weight vector l_s using an extrapolation approximation methodology in relation to an M-degree
 4 polynomial that interpolates the points $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this

5 polynomial by extrapolation at the point x=0.

*Al
Cmt*
1 81 (original). A computer program product as defined in claim 80 in which the weight vector
 2 generator module is configured to enable the computer to perform the extrapolation approximation
 3 methodology such that M=3.

1 82 (original). A computer program product as defined in claim 81 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit
 3 point weight vector weight vector in accordance with

$$l_s \approx \sum_{J=0}^3 b_J l_s(J)$$

4

5 where "J" is a predetermined integer and where

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2)$$

6

7 where vector v_s is given by

-44-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right)$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

*RJ
Cont'd*

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

13 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1}$$

14

15 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

-45-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

M
16
Cmt

1 83 (original). A computer program product as defined in claim 56 in which the mesh comprises a
2 quadrilateral mesh in which, at a selected level "j," vertex $v_q(0)$ is at position $c^j(0)$ and neighboring
3 points $v_q(k)$, $k=1,...,2K$ are at respective positions $c^j(k)$, and in which the weight vector generator
4 module is configured to enable the computer to make use of a parameterized subdivision rule $S_{sc,Q,K,L}$
5 that relates the position $c^{j+1}(0)$ of the vertex $v_q(0)$ and positions $c^{j+1}(k)$ of neighboring points $v_q(k)$ at
6 the next higher level "j+1" as follows

$$c^{j+1} = S_{sc,T,K,L} c^j ,$$

7

8 where subdivision rule $S_{sc,Q,K,L}$ is given by

-46-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

*Al
Cont*

$$\left(S_{sc,Q,K,L}(s_1, s_2) \right)_{l,m} = \begin{cases} \left(1 - s_3\right)\left(1 - \frac{7}{4K}\right) + \frac{3}{4}s_3 & \text{if } l = 0, m = 0 \\ \left(1 - s_3\right)\left(\frac{3}{2K^2}\right) + \frac{1}{8}s_3 & \text{if } l = 0, m = 1 \text{ or } L + 1 \\ \left(1 - s_3\right)\left(\frac{3}{2K^2}\right) & \text{if } l = 0, m = 2, \dots, L \\ & \text{or } l = 0, m = L + 2, \dots, K \\ \left(1 - s_3\right)\left(\frac{1}{4K^2}\right) & \text{if } l = 0, m = K + 1, \dots, 2K \\ \frac{3}{8}\left(1 - s_2\right) + \frac{1}{2}s_2 & \text{if } l = 1, m = 0 \text{ or } 1 \\ \frac{1}{16}\left(1 - s_2\right) & \text{if } l = L + 1, m = 2, K, \\ & K + 1 \text{ or } 2K \\ \frac{3}{8}\left(1 - s_1\right) + \frac{1}{2}s_1 & \text{if } l = L + 1, m = 0 \text{ or } L + 1 \\ \frac{1}{16}\left(1 - s_1\right) & \text{if } l = L + 1, m = L, L + 2, \\ & K + 1 \text{ or } K + L + 1 \\ \frac{3}{8} & \text{if } l = 2, \dots, L, m = 0 \\ & \text{or } l = L + 2, \dots, K, m = 0 \\ & \text{or } l = m = 2, \dots, L \\ & \text{or } l = m = L + 2, \dots, K \\ \frac{1}{16} & \text{if } l = 2, \dots, L, m = l - 1 \\ & \text{or } l = 2, \dots, L, m = l + 1 \\ & \text{or } l = 2, \dots, L, m = K + l - 1 \\ & \text{or } l = 2, \dots, L, m = K + l \\ & \text{or } l = L + 2, \dots, K, m = l - 1 \\ & \text{or } l = L + 2, \dots, K - 1, m = l + 1 \\ & \text{or } l = K, m = 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l - 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l \\ \frac{1}{4} & \text{if } l = K + 1, \dots, 2K - 1, m = 0, \\ & l - K, l - K + 1 \text{ or } l \\ & \text{or } l = 2K, m = 0, K, 1 \text{ or } 2K \\ 0 & \text{otherwise} \end{cases}$$

-47-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

9 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 10 and $v_q(L+1)$ ($L+1 \leq 2K$) and vertex $v_q(0)$, s_1 is the parameter associated with the edge between point
 11 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex
 12 $v_q(0)$, and $s_3 = \frac{1}{2}(s_1 + s_2)$.

1 84 (original). A computer program product as defined in claim 83 in which the representation of the
 2 feature is defined by at least one limit point associated with the vertex, the feature representation
 3 generator module being configured to enable the computer to determine a position $\sigma(q)$ of the limit
 4 point in accordance with

$$\sigma(q) = \sum_{i=0}^{2K} (l_{LP}(s_1, s_2))_i c^i(i),$$

6 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc,Q,K,L,LP}(s_1, s_2),$$

7
 8 where

$$S_{sc,Q,K,L,LP}(s_1, s_2) = \prod_{j=\infty}^{j_D} S_{sc,Q,K,L}(s_1(j), s_2(j)),$$

9
 10 where $S_{sc,Q,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,Q,K,L}$ for sharpness parameters corresponding to the "j-th"
 11 level in the matrix product, where $S_{sc,Q,K,L,LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to
 12 the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to
 13 "Limit Point," and

$$v_{LP} = \frac{1}{K(K+5)}(K^2, 4, \dots, 4, 1, \dots, 1)$$

-48-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

14

1 85 (original). A computer program product as defined in claim 84 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the limit
 3 point weight vector \mathbf{l}_{LP} using a polynomial approximation methodology.

1 86 (original). A computer program product as defined in claim 85 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit
 3 point weight vector \mathbf{l}_{LP} in accordance with the polynomial

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2 ,$$

4

5 in a symmetric case, or the polynomial

$$(\mathbf{l}_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 ,$$

6
 7 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 87 (original). A computer program product as defined in claim 86 in which weight vector generator
 2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right) ,$$

3

4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 88 (original). A computer program product as defined in claim 84 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the limit

-49-

MENT-062

3 point weight vector l_{LP} using an extrapolation approximation methodology in relation to an M-degree
 4 polynomial that interpolates the points $\{x = 2^{-2^J}, y = l_{LP}(J)\}$, $J=0, \dots, M$ and then evaluating this
 5 polynomial by extrapolation at the point $x=0$.

1 89 (original). A computer program product as defined in claim 88 in which the weight vector
 2 generator module is configured to enable the computer to perform the extrapolation approximation
 3 methodology such that $M=3$.

1 90 (original). A computer program product as defined in claim 89 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit point
 3 weight vector weight vector in accordance with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc, Q, K, L, LP}(J)(s_1, s_2))_{1,m},$$

6

7 where

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc, Q, K, L}(s_1(j), s_2(j)),$$

8

9 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1},$$

10

11 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

-50-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

1 91 (original). A computer program product as defined in claim 83 in which the representation of the
 2 feature is defined by a tangent vector associated with the vertex, the tangent vector being along the
 3 smooth feature line, the feature representation generator module being configured to enable the
 4 computer to determine the tangent vector $e_c(q)$ in accordance with

$$e_c(q) = \sum_{i=0}^{2K} (l_c(s_1, s_2))_i c^i(i) ,$$

5
 6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_c(s_1, s_2) = d(K)^K v_c \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j)) ,$$

7
 8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{J_D} S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

9

-51-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_c is defined as

$$(v_c)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \cos \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \cos \frac{2\pi(i-K-1)}{K} + \cos \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

$$A_K = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

13

14 and where dilation factor $d(K)$ is given by

*AI
Cont*

$$d(K) = \frac{1}{\frac{A_K}{16} + \frac{1}{4}}$$

1 92 (original). A computer program product as defined in claim 91 in which the weight vector
 2 generator module is configured to enable the computer to generate the tangent vector weight vector
 3 l_c using a polynomial approximation methodology.

1 93 (original). A computer program product as defined in claim 92 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the tangent
 3 vector weight vector l_c in accordance with the polynomial

$$(l_c)_i \approx b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4
 5 in the anti-symmetric case, or the polynomial

-52-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$(l_c)_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 94 (original). A computer program product as defined in claim 93 in which weight vector generator
 2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

3

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 95 (original). A computer program product as defined in claim 91 in which the weight vector
 2 generator module is configured to enable the computer to generate an approximation for the tangent
 3 vector weight vector l_c using an extrapolation approximation methodology in relation to an M-degree
 4 polynomial that interpolates the points $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0,\dots,M$ and then evaluating this
 5 polynomial by extrapolation at the point $x=0$.

1 96 (original). A computer program product as defined in claim 95 in which the weight vector
 2 generator module is configured to enable the computer to perform the extrapolation approximation
 3 methodology such that $M=3$.

1 97 (original). A computer program product as defined in claim 96 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the tangent
 3 vector weight vector l_c in accordance with

-53-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$l_C \approx \sum_{J=0}^3 b_J l_C(J)$$

4

5 where "J" is a predetermined integer and where

$$l_C(J)(s_1, s_2) = d(K)^J v_C \cdot S_{sc, Q, K, L, LP}(J)(s_1, s_2)$$

6

7 where vector v_C is given by

$$v_C = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right)$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc, Q, K, L}(s_1(j), s_2(j))$$

12

13 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1}$$

14

15 where I_{K+1} is the "2K+1" by "2K+1" identity matrix, and where

-54-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

16

1 98 (original). A computer program product as defined in claim 83 in which the representation of the
 2 feature is defined by a tangent vector associated with the vertex, the tangent vector being across the
 3 smooth feature line, the feature representation generator module being configured to enable the
 4 computer to determine the tangent vector $e_c(q)$ in accordance with

$$e_s(q) = \sum_{i=0}^{2K} (l_s(s_1, s_2))_i c^i(i) ,$$

5
 6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s(s_1, s_2) = d(K)^K v_s \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j)) ,$$

7
 8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{J_p} S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

9

-55-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_c is defined as

$$(v_s)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \sin \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \sin \frac{2\pi(i-K-1)}{K} + \sin \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

M.J.

$$A_k = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

13
14 and where dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{A_k}{16} + \frac{1}{4}}$$

1 99 (original). A computer program product as defined in claim 98 in which the weight vector
 2 generator module is configured to enable the computer to generate the tangent vector weight vector
 3 l_c using a polynomial approximation methodology.

1 100 (original). A computer program product as defined in claim 99 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the tangent
 3 vector weight vector l_s in accordance with the polynomial

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4

-56-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

5 in the anti-symmetric case, or the polynomial

$$(l_s)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 101 (original). A computer program product as defined in claim 100 in which weight vector generator
2 module is configured to enable the computer to select values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 102 (original). A computer program product as defined in claim 98 in which the weight vector
2 generator module is configured to enable the computer to generate an approximation for the tangent
3 vector weight vector l_s using an extrapolation approximation methodology in relation to an M-degree
4 polynomial that interpolates the points $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0,\dots,M$ and then evaluating this
5 polynomial by extrapolation at the point $x=0$.

1 103 (original). A computer program product as defined in claim 102 in which the weight vector
2 generator module is configured to enable the computer to perform the extrapolation approximation
3 methodology such that $M=3$.

MENT-062

1 104 (original). A computer program product as defined in claim 103 in which the weight vector
 2 generator module is configured to enable the computer to generate the approximation for the limit
 3 point weight vector weight vector in accordance with

$$l_s \approx \sum_{J=0}^3 b_J l_s(J) ,$$

4
 5 where "J" is a predetermined integer and where

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc,Q,K,L,LP}(J)(s_1, s_2) ,$$

6
 7 where vector v_s is given by

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right) ,$$

8
 9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}} ,$$

10
 11 and

$$S_{sc,Q,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

12
 13 with

$$S_{sc,Q,K,L,LP}(0)(s_1, s_2) := I_{2K+1} ,$$

14

-58-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

15 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

1 105 (currently amended). A method for generating a representation of a feature in a surface defined
2 by a mesh representation, the mesh comprising at a selected level a plurality of points including at
3 least one point, referred to as a vertex, connected to a plurality of neighboring points by respective
4 edges, the feature being defined in connection with the vertex and at least one of the neighboring
5 points and the edge interconnecting the vertex and the at least one of the neighboring points in the
6 mesh representation, the method comprising:

- 7 A. a weight vector generator step configured to generate at least one weight vector based on a
8 parameterized subdivision rule defined at a plurality of levels, for which a value of at least one
9 parameter differs at at least two levels in the mesh; and
10 B. a feature representation generator step configured to use the at least one weight vector and
11 positions of the vertex and the neighboring points to generate the representation of the feature.

1 106 (currently amended). A method as defined in claim 105 in which the weight vector generator step
2 includes the step of making use of values of the at least one parameter that differ at at least two levels
3 are related by a selected mathematical function.

MENT-062

- 1 107 (original). A method as defined in claim 105 in which the feature is a smooth feature line.
- 1 108 (currently amended). A method as defined in claim 107 in which the smooth feature line is
2 defined in connection with the vertex and two neighboring points and edges interconnecting the vertex
3 and the respective neighboring points, the weight vector generator step includes including the step of
4 making use of the parameterized subdivision rule having a parameter value associated with each of
5 the edges along which the smooth feature line is defined.
- 1 109 (original). A method as defined in claim 108 in which the weight vector generator step includes
2 the step of making use of parameters associated with the edges along which the smooth feature line
3 is defined whose values are the same.
- 1 110 (original). A method as defined in claim 109 in which the weight vector generator step includes
2 the step of making use of the parameters that are in relation to a subdivision rule that, in turn, reflects
3 a sharp crease along the edges along which the smooth feature line is defined, the values of the
4 parameters being defined in the interval [0,1], where higher values define a sharper crease, the values
5 of the parameters at a lower level being related to the values of the parameters at a higher level being
6 related by

$$s(j+1) = (s(j))^2 ,$$

7
8 where s(j) represents the values of the parameters at level "j" and s(j+1) represents the values of the
9 parameters at the higher level "j+1."

1 111 (original). A method as defined in claim 108 in which the weight vector generator step includes
2 the step of making use of parameters associated with the edges along which the smooth feature line
3 is defined whose values differ.

1 112 (original). A method as defined in claim 111 in which the weight vector generator step includes
2 the step of making use of the parameters that are in relation to a subdivision rule that, in turn, reflects
3 a sharp crease along the edges along which the smooth feature line is defined, the values of the

MENT-062

4 parameters being defined in the interval [0,1], where higher values define a sharper crease, the values
 5 of the parameters at a lower level being related to the values of the parameters at a higher level being
 6 related by

$$s_1(j+1) = \left(\frac{3}{4}s_1(j) + \frac{1}{4}s_2(j) \right)^2 ,$$

7
 8 and

$$s_2(j+1) = \left(\frac{1}{4}s_1(j) + \frac{3}{4}s_2(j) \right)^2 ,$$

MJ
10
11 where $s_1(j)$ and $s_2(j)$ represent the values of the parameters associated with the respective edges at
12 level "j," and $s_1(j+1)$ and $s_2(j+1)$ represent the values of the parameters associated with the respective
 edges at the higher level "j+1."

1 113 (original). A method as defined in claim 108 in which the mesh comprises a triangular mesh in
 2 which, at a selected level "j," vertex $v_q(0)$ is at position $c^j(0)$ and neighboring points $v_q(k)$, $k=1,...,K$
 3 are at respective positions $c^j(k)$, and in which the weight vector generator step includes the step of
 4 making use of a parameterized subdivision rule $S_{sc,T,K,L}$ that relates the position $c^{j+1}(0)$ of the vertex
 5 $v_q(0)$ and positions $c^{j+1}(k)$ of neighboring points $v_q(k)$ at the next higher level "j+1" as follows

$$c^{j+1} = S_{sc,T,K,L} c^j ,$$

6
 7 where subdivision rule $S_{sc,T,K,L}$ is given by

MENT-062

[Handwritten signature]

$$\left(S_{sc,T,K,L}(s_1, s_2) \right)_{l,m} = \begin{cases} (1 - s_3)(1 - \alpha(K)) + \frac{3}{4}s_3 & \text{if } l = 0, m = 0 \\ (1 - s_3) \frac{\alpha(K)}{K} + \frac{1}{8}s_3 & \text{if } l = 0, m = 1 \text{ or } L+1 \\ (1 - s_3) \frac{\alpha(K)}{K} & \text{if } l = 0, m = 2, \dots, L \\ & \text{or } l = 0, m = L+2, \dots, K \\ \frac{3}{8} + \frac{1}{8}s_2 & \text{if } l = 1, m = 0 \text{ or } 1 \\ \frac{3}{8} + \frac{1}{8}s_1 & \text{if } l = L+1, m = 0 \text{ or } L+1 \\ \frac{1}{8}(1 - s_2) & \text{if } l = 1, m = 2 \text{ or } K \\ \frac{1}{8}(1 - s_1) & \text{if } l = L+1, m = L \text{ or } L+2 \\ \frac{3}{8} & \text{if } l = 2, \dots, L, m = 0 \\ & \text{or } l = L+2, \dots, K, m = 0 \\ & \text{or } l = m = 2, \dots, L \\ & \text{or } l = m = L+2, \dots, K \\ \frac{1}{8} & \text{if } l = 2, \dots, L, m = l-1 \\ & \text{or } l = L+2, \dots, K, m = l-1 \\ & \text{or } l = 2, \dots, L, m = l+1 \\ & \text{or } l = L+2, \dots, K, m = l+1 \\ & \text{or } l = K, m = 1 \\ 0 & \text{otherwise} \end{cases}$$

8

9 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 10 and $v_q(L+1)$ ($L+1 \leq K$) and vertex $v_q(0)$, s_i is the parameter associated with the edge between point

-62-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

11 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex

12 $v_q(0)$, $s_3 = \frac{1}{2}(s_1 + s_2)$, and

$$\alpha(K) = \frac{5}{8} - \left(\frac{3 + 2 \cos\left(\frac{2\pi}{K}\right)}{8} \right)^2$$

13

1 114 (original). A method as defined in claim 113 in which the representation of the feature is defined
 2 by at least one limit point associated with the vertex, the feature representation generator step includes
 3 the step of determining a position $\sigma(q)$ of the limit point in accordance with

$$\sigma(q) = \sum_{i=0}^K \left(l_{LP}(s_1, s_2) \right)_i c^j(i)$$

4

5 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc,T,K,L,LP}(s_1, s_2)$$

6

7 where

$$S_{sc,T,K,L,LP}(s_1, s_2) = \prod_{j=\infty}^{j_D} S_{sc,T,K,L}(s_1(j), s_2(j))$$

8

9 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th"
 10 level in the matrix product, where $S_{sc,T,K,L,LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to
 11 the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to
 12 "Limit Point," and

-63-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$\nu_{LP} = \left(\frac{\varpi(K)}{\varpi(K) + K}, \frac{1}{\varpi(K) + K}, \frac{1}{\varpi(K) + K}, \dots, \frac{1}{\varpi(K) + K} \right)$$

13

14 where

$$\varpi(K) = \frac{3K}{8 a(K)}$$

15

1 115 (original). A method as defined in claim 114 in which the weight vector generator step includes
2 the step of generating an approximation for the limit point weight vector l_{LP} using a polynomial
3 approximation methodology.

1 116 (original). A method as defined in claim 115 in which the weight vector generator step includes
2 the step of generating the approximation for the limit point weight vector l_{LP} in accordance with the
polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2$$

4

5 in a symmetric case, or the polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_2^2 + b_{i5}s_1s_2$$

6
7 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 117 (original). A method as defined in claim 116 in which weight vector generator step includes the
2 step of selecting values of s_1 and s_2 in accordance with

-64-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices i,j=0,...,N-1.

1 118 (original). A method as defined in claim 114 in which the weight vector generator step includes
 2 the step of generating an approximation for the limit point weight vector l_{LP} using an extrapolation
 3 approximation methodology in relation to an M-degree polynomial that interpolates the points
 4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this polynomial by extrapolation at the point

At
Cont
5 $x=0$.

1 119 (original). A method as defined in claim 118 in which the weight vector generator step includes
 2 the step of performing the extrapolation approximation methodology such that M=3.

1 120 (original). A method as defined in claim 119 in which the weight vector generator step includes
 2 the step of generating the approximation for the limit point weight vector weight vector in accordance
 3 with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

4

5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc,T,KL,Lp}(J)(s_1, s_2))_{1,m}$$

6

7 where

-65-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

8

9 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1} ,$$

10

11 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

$$b_0 = \frac{-135}{120015}$$

A/Cmt

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

12

1 121 (original). A method as defined in claim 9 in which the representation of the feature is defined
 2 by a tangent vector associated with the vertex, the tangent vector being along the smooth feature line,
 3 the feature representation generator step includes the step of determining the tangent vector $e_c(q)$ in
 4 accordance with

$$e_c(q) = \sum_{i=0}^K \left(l_c(s_1, s_2) \right)_i c^i(i) ,$$

5

-66-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_c = \lim_{j \rightarrow \infty} \frac{l_c(j)}{\|l_c(j)\|}$$

7

8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, and where

$$l_c(j) = (0, 1, 0, \dots, -1, 0, \dots) \cdot \prod_{j=J}^{j_D} S_{sc,T,K,L}(s_1(j), s_2(j))$$

*A
C
9*

10 where two non-zero components of the row vector on the right hand side are a "one" at position "one"

11 in the row vector, and a "negative one" at position $\frac{K}{2} + 1$, and where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds

12 to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th" level in the matrix product.

1 122 (original). A method as defined in claim 121 in which the weight vector generator step includes
2 the step of generating the tangent vector weight vector l_c using a polynomial approximation
3 methodology.

1 123 (original). A method as defined in claim 122 in which the weight vector generator step includes
2 the step of generating the approximation for the tangent vector weight vector l_c in accordance with
3 the polynomial

$$(l_c)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2)$$

4

5 in the anti-symmetric case, or the polynomial

-67-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(l_C)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6
7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 124 (original). A method as defined in claim 123 in which weight vector generator step includes the
2 step of selecting values of s_1 and s_2 in accordance with

Alt Cnt

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3
4 where "N" is a selected integer, and indices $i, j = 0, \dots, N-1$.

1 125 (original). A method as defined in claim 121 in which the weight vector generator step includes
2 the step of generating an approximation for the tangent vector weight vector l_C using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}, J=0, \dots, M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 126 (original). A method as defined in claim 125 in which the weight vector generator step includes
2 the step of performing the extrapolation approximation methodology such that $M=3$.

1 127 (original). A method as defined in claim 126 in which the weight vector generator step includes
2 the step of generating the approximation for the tangent vector weight vector l_C in accordance with

MENT-062

$$l_C \approx \sum_{J=0}^3 b_J l_C(J)$$

3

4 where "J" is a predetermined integer and where

$$l_C(J)(s_1, s_2) = d(K)^J v_C \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2)$$

5

6 where vector v_C is given by

$$v_C = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right)$$

*A1
Cmt
7
8*

dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

9

10 and

$$S_{sc,T,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

11

12 with

$$S_{sc,T,K,L,LP}(0)(s_1, s_2) := I_{K+1}$$

13

14 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

-69-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

*At
cont.*

15

1 128 (original). A method as defined in claim 9 in which the representation of the feature is defined
 2 by a tangent vector associated with the vertex, the tangent vector being across the smooth feature line,
 3 the feature representation generator step includes the step of determining the tangent vector $e_c(q)$ in
 4 accordance with

$$e_s(q) = \sum_{i=0}^K \left(l_s(s_1, s_2) \right)_i c^i(i)$$

5

6 where $l_s(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s = \lim_{J \rightarrow \infty} \frac{l_s(J)}{\|l_s(J)\|},$$

7

8 where $\|v\| = \sqrt{\sum_i v_i^2}$, that is, the Euclidean norm, where

-70-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$l_s(J) = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right) \cdot \prod_{j=J}^{J_D} S_{sc,T,K,L}(s_1(j), s_2(j)) ,$$

9

10 where $S_{sc,T,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,T,K,L}$ for sharpness parameters corresponding to the "j-th"
 11 level in the matrix product.

1 129 (original). A method as defined in claim 128 in which the weight vector generator step includes
 2 the step of generating the tangent vector weight vector l_c using a polynomial approximation
 3 methodology.

1 130 (original). A method as defined in claim 129 in which the weight vector generator step includes
 2 the step of generating the approximation for the tangent vector weight vector l_s in accordance with
 3 the polynomial

A/
Cmt

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2) ,$$

4

5 in the anti-symmetric case, or the polynomial

$$(l_s)_i = b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + \\ b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 131 (original). A method as defined in claim 130 in which weight vector generator step includes the
 2 step of selecting values of s_1 and s_2 in accordance with

MENT-062

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices i,j=0,...,N-1.

1 132 (original). A method as defined in claim 127 in which the weight vector generator step includes
 2 the step of generating an approximation for the tangent vector weight vector l_s using an extrapolation
 3 approximation methodology in relation to an M-degree polynomial that interpolates the points
 4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0, \dots, M$ and then evaluating this polynomial by extrapolation at the point

5 $x=0$.*A/C*

1 133 (original). A method as defined in claim 132 in which the weight vector generator step includes
 2 the step of performing the extrapolation approximation methodology such that $M=3$.

1 134 (original). A method as defined in claim 133 in which the weight vector generator step includes
 2 the step of generating the approximation for the limit point weight vector weight vector in accordance
 3 with

$$l_s \approx \sum_{J=0}^3 b_J l_s(J)$$

4

5 where "J" is a predetermined integer and where

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc,T,K,L,LP}(J)(s_1, s_2)$$

6

7 where vector v_s is given by

-72-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right)$$

8

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

A

$$S_{sc,T,K,L,L_P}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,T,K,L}(s_1(j), s_2(j))$$

12

13 with

$$S_{sc,T,K,L,L_P}(0)(s_1, s_2) := I_{K+1}$$

14

15 where I_{K+1} is the "K+1" by "K+1" identity matrix, and where

-73-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

Ad Cont
16

1 135 (original). A method as defined in claim 108 in which the mesh comprises a quadrilateral mesh
2 in which, at a selected level "j," vertex $v_q(0)$ is at position $c^j(0)$ and neighboring points $v_q(k)$,
3 $k=1,\dots,2K$ are at respective positions $c^j(k)$, and in which the weight vector generator step includes the
4 step of making use of a parameterized subdivision rule $S_{sc,Q,K,L}$ that relates the position $c^{j+1}(0)$ of the
5 vertex $v_q(0)$ and positions $c^{j+1}(k)$ of neighboring points $v_q(k)$ at the next higher level "j+1" as follows

$$c^{j+1} = S_{sc,T,K,L} c^j$$

6

7 where subdivision rule $S_{sc,Q,K,L}$ is given by

-74-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

*A
Cert*

$$\left(S_{sc,Q,K,L}(s_1, s_2) \right)_{l,m} = \begin{cases} \left(1 - s_3 \right) \left(1 - \frac{7}{4K} \right) + \frac{3}{4} s_3 & \text{if } l = 0, m = 0 \\ \left(1 - s_3 \right) \left(\frac{3}{2K^2} \right) + \frac{1}{8} s_3 & \text{if } l = 0, m = 1 \text{ or } L + 1 \\ \left(1 - s_3 \right) \left(\frac{3}{2K^2} \right) & \text{if } l = 0, m = 2, \dots, L \\ & \text{or } l = 0, m = L + 2, \dots, K \\ \left(1 - s_3 \right) \left(\frac{1}{4K^2} \right) & \text{if } l = 0, m = K + 1, \dots, 2K \\ \frac{3}{8} \left(1 - s_2 \right) + \frac{1}{2} s_2 & \text{if } l = 1, m = 0 \text{ or } 1 \\ \frac{1}{16} \left(1 - s_2 \right) & \text{if } l = L + 1, m = 2, K, \\ & K + 1 \text{ or } 2K \\ \frac{3}{8} \left(1 - s_1 \right) + \frac{1}{2} s_1 & \text{if } l = L + 1, m = 0 \text{ or } L + 1 \\ \frac{1}{16} \left(1 - s_1 \right) & \text{if } l = L + 1, m = L, L + 2, \\ & K + 1 \text{ or } K + L + 1 \\ \frac{3}{8} & \text{if } l = 2, \dots, L, m = 0 \\ & \text{or } l = L + 2, \dots, K, m = 0 \\ & \text{or } l = m = 2, \dots, L \\ & \text{or } l = m = L + 2, \dots, K \\ \frac{1}{16} & \text{if } l = 2, \dots, L, m = l - 1 \\ & \text{or } l = 2, \dots, L, m = l + 1 \\ & \text{or } l = 2, \dots, L, m = K + l - 1 \\ & \text{or } l = 2, \dots, L, m = K + l \\ & \text{or } l = L + 2, \dots, K, m = l - 1 \\ & \text{or } l = L + 2, \dots, K - 1, m = l + 1 \\ & \text{or } l = K, m = 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l - 1 \\ & \text{or } l = L + 2, \dots, K, m = K + l \\ \frac{1}{4} & \text{if } l = K + 1, \dots, 2K - 1, m = 0, \\ & l - K, l - K + 1 \text{ or } l \\ 0 & \text{or } l = 2K, m = 0, K, 1 \text{ or } 2K \\ & \text{otherwise} \end{cases}$$

-75-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

8 where the smooth feature line is defined in connection with the edges between respective points $v_q(1)$
 9 and $v_q(L+1)$ ($L+1 \leq 2K$) and vertex $v_q(0)$, s_1 is the parameter associated with the edge between point
 10 $v_q(1)$ and vertex $v_q(0)$, s_2 is the parameter associated with the edge between point $v_q(L+1)$ and vertex
 11 $v_q(0)$; and $s_3 = \frac{1}{2}(s_1 + s_2)$.

1 136 (original). A method as defined in claim 135 in which the representation of the feature is defined
 2 by at least one limit point associated with the vertex, the feature representation generator step includes
 3 the step of determining a position $\sigma(q)$ of the limit point in accordance with

$$\sigma(q) = \sum_{i=0}^{2K} \left(l_{LP}(s_1, s_2) \right)_i c^i(i),$$

*At
Conf*

5 where $l_{LP}(s_1, s_2)$ is a vector of limit point weight values defined by

$$l_{LP}(s_1, s_2) = v_{LP} \cdot S_{sc,Q,K,L,LP}(s_1, s_2),$$

6
 7 where

$$S_{sc,Q,K,L,LP}(s_1, s_2) = \prod_{j=\infty}^{J_D} S_{sc,Q,K,L}(s_1(j), s_2(j)),$$

8
 9 where $S_{sc,Q,K,L}(s_1(j), s_2(j))$ corresponds to $S_{sc,Q,K,L}$ for sharpness parameters corresponding to the "j-th"
 10 level in the matrix product, where $S_{sc,Q,K,L,LP}(s_1, s_2)$ arguments s_1 and s_2 on the left-hand side refer to
 11 the sharpness parameters a definition level of the smooth feature line and the subscript "LP" refers to
 12 "Limit Point," and

$$v_{LP} = \frac{1}{K(K+5)}(K^2, 4, \dots, 4, 1, \dots, 1)$$

13

-76-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

1 137 (original). A method as defined in claim 136 in which the weight vector generator step includes
 2 the step of generating an approximation for the limit point weight vector l_{LP} using a polynomial
 3 approximation methodology.

1 138 (original). A method as defined in claim 137 in which the weight vector generator step includes
 2 the step of generating the approximation for the limit point weight vector l_{LP} in accordance with the
 3 polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}(s_1 + s_2) + b_{i2}(s_1^2 + s_2^2) + b_{i3}s_1s_2 ,$$

4
 5 in a symmetric case, or the polynomial

$$(l_{LP})_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 ,$$

6
 7 in an asymmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
 8 and the values of the parameters s_1 and s_2 are at selected values.

1 139 (original). A method as defined in claim 138 in which weight vector generator step includes the
 2 step of selecting values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right) ,$$

3
 4 where "N" is a selected integer, and indices $i, j = 0, \dots, N-1$.

1 140 (original). A method as defined in claim 134 in which the weight vector generator step includes
 2 the step of generating an approximation for the limit point weight vector l_{LP} using an extrapolation
 3 approximation methodology in relation to an M-degree polynomial that interpolates the points

MENT-062

4 $\{x = 2^{-2^J}, y = l_{LP}(J)\}$, J=0,...,M and then evaluating this polynomial by extrapolation at the point

5 x=0.

1 141 (original). A method as defined in claim 140 in which the weight vector generator step includes
2 the step of performing the extrapolation approximation methodology such that M=3.

1 142 (original). A method as defined in claim 141 in which the weight vector generator step includes
2 the step of generating the approximation for the limit point weight vector weight vector in accordance
3 with

$$l_{LP} \approx \sum_{J=0}^3 b_J l_{LP}(J)$$

A/Cmt
4

5 where "J" is a predetermined integer and where

$$(l_{LP}(J)(s_1, s_2))_m = (S_{sc,Q,K,L,LP}(J)(s_1, s_2))_{1,m} ,$$

6

7 where

$$S_{sc,Q,K,L,LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

8

9 with

$$S_{sc,Q,K,L,LP}(0)(s_1, s_2) := I_{2K+1} ,$$

10

11 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

-78-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

*At
Conf*

12

1 143 (original). A method as defined in claim 135 in which the representation of the feature is defined
 2 by a tangent vector associated with the vertex, the tangent vector being along the smooth feature line,
 3 the feature representation generator step includes the step of determining the tangent vector $e_c(q)$ in
 4 accordance with

$$e_c(q) = \sum_{i=0}^{2K} \left(l_c(s_1, s_2) \right)_i c^i(i) ,$$

5

6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_c(s_1, s_2) = d(K)^K v_c \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j)) ,$$

7

8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{J_p} S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

9

-79-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_c is defined as

$$(v_c)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \cos \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \cos \frac{2\pi(i-K-1)}{K} + \cos \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

A1

$$A_k = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

Cont

13
14 and where dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{A_k}{16} + \frac{1}{4}}$$

1 144 (original). A method as defined in claim 143 in which the weight vector generator step includes
2 the step of generating the tangent vector weight vector l_c using a polynomial approximation
3 methodology.1 145 (original). A method as defined in claim 144 in which the weight vector generator step includes
2 the step of generating the approximation for the tangent vector weight vector l_c in accordance with
3 the polynomial

$$(l_c)_i \approx b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4
5 in the anti-symmetric case, or the polynomial

-80-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$(l_c)_i \approx b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3$$

6
7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 146 (original). A method as defined in claim 145 in which weight vector generator step includes the
2 step of selecting values of s_1 and s_2 in accordance with

A/C

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3
4 where "N" is a selected integer, and indices $i, j = 0, \dots, N-1$.

1 147 (original). A method as defined in claim 143 in which the weight vector generator step includes
2 the step of generating an approximation for the tangent vector weight vector l_c using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}, J=0, \dots, M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 148 (original). A method as defined in claim 147 in which the weight vector generator step includes
2 the step of performing the extrapolation approximation methodology such that $M=3$.

1 149 (original). A method as defined in claim 148 in which the weight vector generator step includes
2 the step of generating the approximation for the tangent vector weight vector l_c in accordance with

MENT-062

$$l_C \approx \sum_{J=0}^3 b_J l_C(J)$$

3

4 where "J" is a predetermined integer and where

$$l_C(J)(s_1, s_2) = d(K)^J v_C \cdot S_{sc, Q, K, L, LP}(J)(s_1, s_2)$$

5

6 where vector v_C is given by

$$v_C = \left(0, \cos \frac{2\pi(0)}{K}, \cos \frac{2\pi(1)}{K}, \dots, \cos \frac{2\pi(K-1)}{K} \right)$$

7 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

9

10 and

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) = \prod_{j=J}^{J_D} S_{sc, Q, K, L}(s_1(j), s_2(j))$$

11

12 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1}$$

13

14 where I_{K+1} is the "2K+1" by "2K+1" identity matrix, and where

-82-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

15

1 150 (original). A method as defined in claim 135 in which the representation of the feature is defined
 2 by a tangent vector associated with the vertex, the tangent vector being across the smooth feature line,
 3 the feature representation generator step includes the step of determining the tangent vector $e_c(q)$ in
 4 accordance with

$$e_s(q) = \sum_{i=0}^{2K} (l_s(s_1, s_2))_i c^j(i) ,$$

5

6 where $l_c(s_1, s_2)$ is a vector of tangent vector weight values defined by

$$l_s(s_1, s_2) = d(K)^K v_s \cdot S_{sc,Q,K,L,Lp}(s_1(j), s_2(j)) ,$$

7

8 where

$$S_{sc,Q,K,L,Lp}(s_1, s_2) = \prod_{j=\infty}^{J_p} S_{sc,Q,K,L}(s_1(j), s_2(j)) ,$$

9

-83-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

10 and vector v_C is defined as

$$(v_s)_i = \begin{cases} 0 & \text{if } i = 0 \\ A_k \sin \frac{2\pi(i-1)}{K} & \text{if } i = 1, \dots, K \\ \sin \frac{2\pi(i-K-1)}{K} + \sin \frac{2\pi(i-K)}{K} & \text{if } i = K+1, \dots, 2K \end{cases},$$

11

12 where

*A/C
C/N
13*

$$A_K = 1 + \cos\left(\frac{2\pi}{K}\right) + \cos\left(\frac{\pi}{K}\right) \sqrt{2\left(9 + \cos\frac{2\pi}{K}\right)},$$

14 and where dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{A_K}{16} + \frac{1}{4}}$$

1 151 (original). A method as defined in claim 150 in which the weight vector generator step includes
 2 the step of generating the tangent vector weight vector l_C using a polynomial approximation
 3 methodology.

1 152 (original). A method as defined in claim 151 in which the weight vector generator step includes
 2 the step of generating the approximation for the tangent vector weight vector l_s in accordance with
 3 the polynomial

$$(l_s)_i = b_{i0}(s_1 - s_2) + b_{i1}(s_1^2 - s_2^2) + b_{i2}(s_1^3 - s_2^3) + b_{i3}(s_1^2 s_2 - s_1 s_2^2),$$

4

-84-

Serial Number 10/062,192
 Filing Date February 1, 2002

Response To Office Action
 Mailing/Fax Date January 30, 2004

MENT-062

5 in the anti-symmetric case, or the polynomial

$$\begin{aligned} (l_s)_i = & b_{i0} + b_{i1}s_1 + b_{i2}s_2 + b_{i3}s_1^2 + b_{i4}s_1s_2 + \\ & b_{i5}s_2^2 + b_{i6}s_1^3 + b_{i7}s_1^2s_2 + b_{i8}s_1s_2^2 + b_{i9}s_2^3 \end{aligned}$$

6

7 in the non-symmetric case, in which the coefficients b_{ij} are determined by a least squares methodology
8 and the values of the parameters s_1 and s_2 are at selected values.

1 153 (original). A method as defined in claim 152 in which weight vector generator step includes the
2 step of selecting values of s_1 and s_2 in accordance with

$$(s_1, s_2) = \left(\cos\left(\frac{\left(i + \frac{1}{2}\right)\pi}{N}\right), \cos\left(\frac{\left(j + \frac{1}{2}\right)\pi}{N}\right) \right)$$

3

4 where "N" is a selected integer, and indices $i,j=0,\dots,N-1$.

1 154 (original). A method as defined in claim 150 in which the weight vector generator step includes
2 the step of generating an approximation for the tangent vector weight vector l_s using an extrapolation
3 approximation methodology in relation to an M-degree polynomial that interpolates the points
4 $\{x = 2^{-2^j}, y = l_{LP}(J)\}$, $J=0,\dots,M$ and then evaluating this polynomial by extrapolation at the point
5 $x=0$.

1 155 (original). A method as defined in claim 154 in which the weight vector generator step includes
2 the step of performing the extrapolation approximation methodology such that $M=3$.

1 156 (original). A method as defined in claim 155 in which the weight vector generator step includes
2 the step of generating the approximation for the limit point weight vector weight vector in accordance
3 with

MENT-062

$$l_s \approx \sum_{J=0}^3 b_J l_s(J)$$

4

5 where "J" is a predetermined integer and where

$$l_s(J)(s_1, s_2) = d(K)^J v_s \cdot S_{sc, Q, K, L, LP}(J)(s_1, s_2)$$

6

7 where vector v_s is given by

A/

$$v_s = \left(0, \sin \frac{2\pi(0)}{K}, \sin \frac{2\pi(1)}{K}, \dots, \sin \frac{2\pi(K-1)}{K} \right)$$

C/M

9 dilation factor $d(K)$ is given by

$$d(K) = \frac{1}{\frac{3}{8} + \frac{1}{4} \cos \frac{2\pi}{K}}$$

10

11 and

$$S_{sc, Q, K, L, LP}(J)(s_1, s_2) := \prod_{j=J}^0 S_{sc, Q, K, L}(s_1(j), s_2(j))$$

12

13 with

$$S_{sc, Q, K, L, LP}(0)(s_1, s_2) := I_{2K+1}$$

14

15 where I_{2K+1} is the "2K+1" by "2K+1" identity matrix, and where

-86-

Serial Number 10/062,192
Filing Date February 1, 2002Response To Office Action
Mailing/Fax Date January 30, 2004

MENT-062

$$b_0 = \frac{-135}{120015}$$

$$b_1 = \frac{1270}{120015}$$

$$b_2 = \frac{-12192}{120015}$$

$$b_3 = \frac{131072}{120015}$$

16

-87-

Serial Number 10/062,192
Filing Date February 1, 2002

Response To Office Action
Mailing/Fax Date January 30, 2004