Model Documentation of the Flyback Converter

1 Nomenclature

1.1 Nomenclature for Model Equations

L inductivity of the inductor

C capacity of the capacitor

R resistance of the load

 U_E input voltage

k transmission ratio of the transformer

 i_L current through the inductor

 u_C voltage over the capatitor d duty ratio of the switch

1.2 Circuit Diagram

Figure 1: Circuit

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2)^T = (i_L \ u_C)^T$$
$$u = d$$

System Equations:

$$\dot{x}_1 = -(1-u)\frac{k}{L}x_2 + \frac{U_E}{L}u\tag{1a}$$

$$\dot{x}_2 = (1 - u)\frac{k}{C}x_1 - \frac{1}{RC}x_2 \tag{1b}$$

Parameters: $L \ C \ R \ U_E \ k$

Outputs: $x_2 = u_C$

2.1 Exemplary parameter values

	Symbol	Value	Unit
Inductiviy	L	0.00018	Н
Capacity	C	$2.0 \cdot 10^{-5}$	F
Resistence	R	10	Ω
Input Voltage	U_E	24	V
Transmission Ratio	k	0.5	

3 Derivation and Explanation

See boost converter.

4 Simulation

Figure 2: Simulation of the flyback converter.

References

[1] M. Salimi, J. Soltani, A. Zakipour, and V. Hajbani, Sliding mode control of the DC-DC flyback converter with zero steady-state error, in 4th Annual International Power Electronics, Drive Systems and Technologies Conference, Feb. 2013, pp. 158–163. doi: 10.1109/PEDSTC.2013.6506695.

[2] K. Röbenack, Nichtlineare Regelungssysteme: Theorie und Anwendung der exakten Linearisierung. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-44091-9.