ROBUST SYSTEMS DESIGN

Systems Analysis & Design

Author: Eng. Carlos Andrés Sierra, M.Sc. cavirguezs@udistrital.edu.co

Full-time Adjunct Professor Computer Engineering Program School of Engineering Universidad Distrital Francisco José de Caldas

2025-III

Outline

1 Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures

2 / 27

Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures

Concepts Generation

- Concepts generation is the process of creating ideas for a system that meet the needs of its users.
- It involves brainstorming, research, and analysis to generate innovative ideas for a system.
- It is a creative process that encourages innovation and creativity in the design of a system.

Concepts Generation

- Concepts generation is the process of creating ideas for a system that meet the needs of its users.
- It involves brainstorming, research, and analysis to generate innovative ideas for a system.
- It is a creative process that encourages innovation and creativity in the design of a system.

Concepts Generation

- Concepts generation is the process of creating ideas for a system that meet the needs of its users.
- It involves brainstorming, research, and analysis to generate innovative ideas for a system.
- It is a creative process that encourages innovation and creativity in the design of a system.

Innovation and Creativity

- **Innovation** is the process of creating new ideas and solutions that improve the performance of a system.
- Creativity is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and effective.

Innovation and Creativity

- **Innovation** is the process of creating new ideas and solutions that improve the performance of a system.
- **Creativity** is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and
 effective.

Innovation and Creativity

- **Innovation** is the process of creating new ideas and solutions that improve the performance of a system.
- **Creativity** is the ability to generate original and innovative ideas that solve problems and meet the needs of users.
- They are important for ensuring that a system is robust, efficient, and effective.

Is this Innovation & Creativity?

Concepts Selection

- Concepts selection is the process of evaluating and choosing the best ideas for a system.
- It involves analysis, comparison, and evaluation of concepts to determine which ones are the most feasible and effective.

7 / 27

Stock and Flow Diagram

Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures

Quality Guidelines

- Quality guidelines are *principles* that *guide* the design of a system to *ensure* that it meets the needs of its users.
- They include reliability, scalability, maintainability, and usability guidelines.
- They are *important* for *ensuring* that a **system** is robust, efficient, and effective.

Reliability Guidelines

- Reliability guidelines are principles that guide the design of a system to ensure that it is reliable and dependable.
- They include fault-tolerance, redundancy, and error-handling guidelines.
- They are *important* for *ensuring* that a system is robust and resilient to failures.

Scalability Guidelines

- Scalability guidelines are *principles* that *guide* the design of a system to *ensure* that it is scalable and flexible.
- They include modularity, extensibility, and performance guidelines.
- They are *important* for *ensuring* that a system can grow and adapt to changing requirements.

Maintainability Guidelines

- Maintainability guidelines are *principles* that *guide* the design of a system to *ensure* that it is easy to maintain and update.
- They include modularity, documentation, and versioning guidelines.
- They are *important* for *ensuring* that a system can be easily maintained and updated by its developers.

Quality Standards

- Quality standards are benchmarks that define the level of quality that a system must meet.
- They include ISO 9000, CMMI, and Six Sigma standards.

2025-III

ISO 9000

- **ISO 9000** is a quality standard that *defines* the **requirements** for a quality management system.
- It is *designed* to help organizations ensure that they meet the needs of their customers and stakeholders.
- It is based on a number of quality management principles, including customer focus, leadership, and continuous improvement.

ISO 27001

- **ISO 27001** is a quality standard that *defines* the **requirements** for an information security management system.
- It is *designed* to help organizations protect their information and ensure that it is secure and confidential.
- It is based on a number of information security management principles, including risk assessment, security policies, and incident response.

CMMI

- CMMI is a quality standard that defines the requirements for a mature software development process.
- It is designed to help organizations improve their software development processes and deliver high-quality products to their customers.
- It is based on a number of best practices for software development, including requirements management, project planning, and process monitoring.

Six Sigma

- Six Sigma is a quality standard that defines the requirements for a process that is capable of producing high-quality products.
- It is *designed* to help organizations improve their processes and reduce defects in their products and services.
- It is based on a number of quality management principles, including data-driven decision-making, process improvement, and customer focus.

Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures

What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A system architecture is the blueprint of a system that guides its development and implementation.
- A system architecture is the foundation of a system that ensures that it meets the needs of its users.

What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A **system architecture** is the blueprint of a system that guides its development and implementation.
- A system architecture is the foundation of a system that ensures that it meets the needs of its users.

What is a System Architecture?

- A system architecture is the structure of a system that defines its components, interactions, and relationships.
- A **system architecture** is the blueprint of a system that guides its development and implementation.
- A **system architecture** is the foundation of a system that ensures that it meets the needs of its users.

Types of System Architectures

- There are several types of system architectures that are used in systems development.
- They include monolithic, client-server, peer-to-peer, and distributed architectures.
- Each type of architecture has its own advantages and disadvantages that depend on the specific requirements of the system.

Types of System Architectures

- There are several types of system architectures that are used in systems development.
- They include monolithic, client-server, peer-to-peer, and distributed architectures.
- Each type of architecture has its own advantages and disadvantages that depend on the specific requirements of the system.

Monolithic System Architecture

- A monolithic system architecture is a single-tier architecture that consists of a single unit that performs all the functions of the system.
- It is simple, easy to develop, and maintain, but it is not scalable and flexible. It is used for small systems that do not require high performance or reliability.

Client-Server System Architecture

- A client-server system architecture is a two-tier architecture that consists of a client and a server that communicate with each other over a network.
- It is scalable, flexible, and efficient, but it is *complex* and *difficult* to develop and maintain. It is *used* in medium to large systems that require high performance and reliability.

Peer-to-Peer System Architecture

- A peer-to-peer system architecture is a two-tier architecture that consists of a network of peers that communicate with each other directly.
- It is scalable, flexible, and efficient, but it is *complex* and *difficult* to develop and maintain. It is *used* in medium to large systems that require high performance and reliability.

Distributed System Architecture

- A distributed system architecture is a multi-tier architecture that consists of a network of nodes that communicate with each other over a network.
- It is scalable, flexible, and efficient, but it is complex and difficult to develop and maintain. It is used in large systems that require high performance and reliability.

Outline

Concepts Generation & Selection

Quality Guidelines in Systems Design

Systems Architectures

Thanks!

Questions?

Repo: https://github.com/EngAndres/ud-public/tree/main/courses/systems-analysis

