Name:	

ChBE 2130 Thermodynamics I Fall 2015 Exam 3

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________
- Submit your crib sheet with your exam.

Problem	Possible Points	Score
1	20	
2	20	
3	20	
4	40	
Total		

- 1. Concept Questions [20 pts: 5 points each, no partial credit within sub-problem]
 - For an ideal gas, simplify the equation, $V-T\left(\frac{\partial V}{\partial T}\right)_P$
 - a. V
 - b. R/P
 - c. RT/P
 - d. 0
 - Using the differential form of enthalpy as a basis, simplify $\left(\frac{\partial H}{\partial S}\right)_P$
 - a. P
 - b. T
 - c. U
 - d. 0
 - A gas is flowing in an insulated duct of constant cross sectional area at stable conditions. Compared to the inlet conditions, the outlet will have
 - a. Lower pressure and higher velocity
 - b. Higher pressure and higher velocity
 - c. Lower pressure and lower velocity
 - d. Higher pressure and lower velocity
 - A saturated liquid at moderate temperature and pressure enter a throttle valve where the pressure is reduced by half. The existing stream will consist of which of the following
 - a. Subcooled liquid
 - b. Saturated liquid
 - c. Mixed phase gas and liquid
 - d. Saturated gas

2. **[20 pts]** The behavior of a fluid is described by the following equation of state: $V = B + \binom{RT}{P}$ where B is a constant. Develop a simplified expression for the residual enthalpy, H^R. Show intermediate steps for full credit.

- 3. **[20 pts]** In terms of experimentally measurable properties, $\left(\frac{\partial T}{\partial V}\right)_S$ equals which of the following? Show your calculations and substitutions for full credit. Hint: Start with the cyclic relationship for $\left(\frac{\partial T}{\partial V}\right)_S$.
 - a. $-(T/C_V)(\beta/\kappa)$
 - b. $-(T/C_V)(1/\beta V)$
 - c. $\binom{C_P}{T}\binom{1}{\beta V}$
 - d. $\binom{C_p}{T}\binom{\beta}{\kappa}$

4.		Is Steam enters a turbine at 2000 kPa and 500°C. The exhaust is at 20 kPa. If the turbine operates isentropically, what is the outlet phase and/or quality and the enthalpy?
		Phase/Quality
		Outlet Enthalpy
		Outlet Enthalpy
	b.	If work is produced at a rate of 2500 kW and the exhaust is saturated vapor, what is the outlet enthalpy, mass flow rate, and turbine efficiency? Note that a kW = kJ/s
		Outlet Enthalpy
		outlet Enthalpy
		Mass Flow Rate (in kg/s)
		Efficiency
		5