- •1 ILW A fish maintains its depth in fresh water by adjusting the air content of porous bone or air sacs to make its average density the same as that of the water. Suppose that with its air sacs collapsed, a fish has a density of 1.08 g/cm³. To what fraction of its expanded body volume must the fish inflate the air sacs to reduce its density to that of water?
- •4 Three liquids that will not mix are poured into a cylindrical container. The volumes and densities of the liquids are 0.50 L, $2.6 g/cm^3$; 0.25 L, $1.0 g/cm^3$; and 0.40 L, $0.80 g/cm^3$. What is the force on the bottom of the container due to these liquids? One liter = $1 L = 1000 cm^3$. (Ignore the contribution due to the atmosphere.)
- ••7 In 1654 Otto von Guericke, inventor of the air pump, gave a demonstration before the noblemen of the Holy Roman Empire in

which two teams of eight horses could not pull apart two evacuated brass hemispheres. (a) Assuming the hemispheres have (strong) thin walls, so that R in Fig. 14-29 may be considered both the inside and outside radius, show that the force \vec{F} required to pull apart the hemispheres has magnitude $F = \pi R^2 \Delta p$,

Fig. 14-29 Problem 7.

where Δp is the difference between the pressures outside and inside the sphere. (b) Taking R as 30 cm, the inside pressure as 0.10 atm, and the outside pressure as 1.00 atm, find the force magnitude the teams of horses would have had to exert to pull apart the hemispheres. (c) Explain why one team of horses could have proved the point just as well if the hemispheres were attached to a sturdy wall.

•8 The bends during flight. Anyone who scuba dives is advised not to fly within the next 24 h because the air mixture for div-

ing can introduce nitrogen to the bloodstream. Without allowing the nitrogen to come out of solution slowly, any sudden air-pressure reduction (such as during airplane ascent) can result in the nitrogen forming bubbles in the blood, creating the *bends*, which can be painful and even fatal. Military special operation forces are especially at risk. What is the change in pressure on such a special-op soldier who must scuba dive at a depth of 20 m in seawater one day and parachute at an altitude of 7.6 km the next day? Assume that the average air density within the altitude range is 0.87 kg/m³.

- above its heart, and its heart 2.0 m above its feet, the (hydrostatic) gauge pressure in the blood at its heart is 250 torr. Assume that the giraffe stands upright and the blood density is $1.06 \times 10^3 \text{ kg/m}^3$. In torr (or mm Hg), find the (gauge) blood pressure (a) at the brain (the pressure is enough to perfuse the brain with blood, to keep the giraffe from fainting) and (b) at the feet (the pressure must be countered by tight-fitting skin acting like a pressure stocking). (c) If the giraffe were to lower its head to drink from a pond without splaying its legs and moving slowly, what would be the increase in the blood pressure in the brain? (Such action would probably be lethal.)
- •12 The maximum depth $d_{\rm max}$ that a diver can snorkel is set by the density of the water and the fact that human lungs can function against a maximum pressure difference (between inside and outside the chest cavity) of 0.050 atm. What is the difference in $d_{\rm max}$ for fresh water and the water of the Dead Sea (the saltiest natural water in the world, with a density of 1.5×10^3 kg/m³)?
- •13 At a depth of 10.9 km, the Challenger Deep in the Marianas Trench of the Pacific Ocean is the deepest site in any ocean. Yet, in 1960, Donald Walsh and Jacques Piccard reached the Challenger Deep in the bathyscaph *Trieste*. Assuming that seawater has a uniform density of 1024 kg/m³, approximate the hydrostatic pressure (in atmospheres) that the *Trieste* had to withstand. (Even a slight defect in the *Trieste* structure would have been disastrous.)

•16 Snorkeling by humans and elephants. When a person snorkels, the lungs are connected directly to the atmosphere through the snorkel tube and thus are at atmospheric pressure. In atmospheres, what is the difference Δp between this internal air pressure and the water pressure against the body if the length of the snorkel

Fig. 14-31 Problem 16.

tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably lethal situation)? In the latter, the pressure difference causes blood vessels on the walls of the lungs to rupture, releasing blood into the lungs. As depicted in Fig. 14-31, an elephant can safely snorkel through its trunk while swimming with its lungs 4.0 m below the water surface because the membrane around its lungs contains connective tissue that holds and protects the blood vessels, preventing rupturing.

cal features, it is often appropriate to assume that the pressure at some horizontal *level of compensation*, deep inside Earth, is the same over a large region and is equal to the pressure due to the gravitational force on the overlying material. Thus, the pressure on the level of compensation is given by the fluid pressure formula. This model requires, for one thing, that mountains have *roots* of continental rock extending into the denser

Fig. 14-34 Problem 23.

mantle (Fig. 14-34). Consider a mountain of height H = 6.0 km on a continent of thickness T = 32 km. The continental rock has a density of 2.9 g/cm³, and beneath this rock the mantle has a density of 3.3 g/cm³. Calculate the depth D of the root. (*Hint:* Set the pressure at points a and b equal; the depth y of the level of compensation will cancel out.)

stands at depth D = 35.0 m behind the vertical upstream face of a dam of width W = 314 m. Find (a) the net horizontal force on the dam from the gauge pressure of the water and (b) the net torque due to that force about a horizontal line through O paral-

Fig. 14-35 Problem 24.

lel to the (long) width of the dam. This torque tends to rotate the dam around that line, which would cause the dam to fail. (c) Find the moment arm of the torque.

••29 In Fig. 14-37, a spring of spring constant 3.00×10^4 N/m is between a rigid beam and the output piston of a hydraulic lever. An empty container with negligible mass sits on the input piston. The input piston has area A_i , and the output piston has area $18.0A_i$. Initially the spring is at its rest

Fig. 14-37 Problem 29.

length. How many kilograms of sand must be (slowly) poured into the container to compress the spring by 5.00 cm?

••36 In Fig. 14-39a, a rectangular block is gradually pushed facedown into a liquid. The block has height d; on the bottom and top the face area is $A = 5.67 \text{ cm}^2$. Figure 14-39b gives the apparent weight W_{app} of the block as a function of the depth h of its lower face. The scale on the vertical axis is set by $W_s = 0.20 \text{ N}$. What is the density of the liquid?

Fig. 14-39 Problem 36.

••39 SSM WWW A hollow sphere of inner radius 8.0 cm and outer radius 9.0 cm floats half-submerged in a liquid of density 800 kg/m³. (a) What is the mass of the sphere? (b) Calculate the density of the material of which the sphere is made.

Lurking alligators. An alligator waits for prey by floating with only the top of its head exposed, so that the prey cannot easily see it. One way it can adjust the extent of sinking is by controlling the size of its

Fig. 14-41 Problem 40.

lungs. Another way may be by swallowing stones (*gastrolithes*) that then reside in the stomach. Figure 14-41 shows a highly simplified model (a "rhombohedron gater") of mass 130 kg that roams with its head partially exposed. The top head surface has area 0.20 m². If the alligator were to swallow stones with a total mass of 1.0% of its body mass (a typical amount), how far would it sink?

••41 What fraction of the volume of an iceberg (density 917 kg/m³) would be visible if the iceberg floats (a) in the ocean (salt water, density 1024 kg/m³) and (b) in a river (fresh water, density 1000 kg/m³)? (When salt water freezes to form ice, the salt is excluded. So, an iceberg could provide fresh water to a community.)

••43 When researchers find a reasonably complete fossil of a dinosaur, they can determine the mass and weight of the living dinosaur with a scale model sculpted from plastic and based on the dimensions of the fossil bones. The scale of the model is 1/20; that is, lengths are 1/20 actual length, areas are $(1/20)^2$ ac-

Fig. 14-42 Problem 43.

tual areas, and volumes are $(1/20)^3$ actual volumes. First, the model is suspended from one arm of a balance and weights are added to the other arm until equilibrium is reached. Then the model is fully submerged in water and enough weights are removed from the second arm to reestablish equilibrium (Fig. 14-42). For a model of a particular T. rex fossil, 637.76 g had to be removed to reestablish equilibrium. What was the volume of (a) the model and (b) the actual T. rex? (c) If the density of T. rex was approximately the density of water, what was its mass?

The volume of air space in the passenger compartment of an 1800 kg car is 5.00 m³. The volume of the motor and front wheels is 0.750 m³, and the volume of the rear wheels, gas tank, and trunk is 0.800 m³; water cannot enter these two regions. The car rolls into a lake. (a) At first, no water enters the passenger compartment. How much of the car, in cubic meters, is below the water surface with the car floating (Fig. 14-43)? (b) As water slowly enters, the car sinks. How many cubic meters of water are in the car as it disappears below the water surface? (The car, with a heavy load in the trunk, remains horizontal.)

Fig. 14-43 Problem 47.

suspended by thread of negligible mass from an upright cylinder that floats partially submerged in water. The cylinder has a height of 6.00 cm, a face area of 12.0 cm² on the top and bottom, and a density of 0.30 g/cm³, and 2.00 cm of its height is above the water surface. What is the radius of the iron ball?

Fig. 14-44 Problem 48.

•49 *Canal effect*. Figure 14-45 shows an anchored barge that

extends across a canal by distance d = 30 m and into the water by distance b = 12 m. The canal has a width D = 55 m, a water depth H = 14 m, and a uniform waterflow speed $v_i = 1.5$ m/s. Assume that the flow around the barge is uniform. As the water passes the bow, the water level undergoes a dramatic dip known as the canal effect. If the dip has depth h = 0.80 m, what is the water speed alongside the boat through the vertical cross

Fig. 14-45 Problem 49.

sections at (a) point a and (b) point b? The erosion due to the speed increase is a common concern to hydraulic engineers.

••54 The water flowing through a 1.9 cm (inside diameter) pipe flows out through three 1.3 cm pipes. (a) If the flow rates in the three smaller pipes are 26, 19, and 11 L/min, what is the flow rate in the 1.9 cm pipe? (b) What is the ratio of the speed in the 1.9 cm pipe to that in the pipe carrying 26 L/min?

•58 The intake in Fig. 14-47 has cross-sectional area of 0.74 m^2 and water flow at 0.40 m/s. At the outlet, distance D = 180 m below the intake, the cross-sectional area is smaller than at the intake and the water flows out at 9.5 m/s into equipment. What is the pressure difference between inlet and outlet?

Fig. 14-47 Problem 58.

••62 A pitot tube (Fig. 14-48) is used to determine the air-speed of an airplane. It consists of an outer tube with a number of small holes B (four are shown) that allow air into the tube; that tube is connected to one arm of a U-tube. The other arm of the U-tube is connected to hole A at the front end of the device, which points in the direction the plane is headed. At A the air becomes stagnant so that $v_A = 0$. At B, however, the speed of the air presumably equals the airspeed v of the plane. (a) Use Bernoulli's equation to show that

$$v = \sqrt{\frac{2\rho gh}{\rho_{\text{air}}}},$$

where ρ is the density of the liquid in the U-tube and h is the difference in the liquid levels in that tube. (b) Suppose that the tube contains alcohol and the level difference h is 26.0 cm. What is the plane's speed relative to the air? The density of the air is 1.03 kg/m³ and that of alcohol is 810 kg/m³.

Fig. 14-48 Problems 62 and 63.

••63 A pitot tube (see Problem 62) on a high-altitude aircraft measures a differential pressure of 180 Pa. What is the aircraft's airspeed if the density of the air is 0.031 kg/m³?

••64 ••64 In Fig. 14-49, water flows through a horizontal pipe and then out into the atmosphere at a speed $v_1 = 15$ m/s. The diameters of the left and right sections of the pipe are 5.0 cm and 3.0 cm. (a) What volume of water flows into the atmosphere

Fig. 14-49 Problem 64.

during a 10 min period? In the left section of the pipe, what are (b) the speed v_2 and (c) the gauge pressure?

****65 SSM WWW** A *venturi meter* is used to measure the flow speed of a fluid in a pipe. The meter is connected between two sections of the pipe (Fig. 14-50); the cross-sectional area A of the entrance and exit of the meter matches the pipe's cross-sectional area. Between the entrance and exit, the fluid flows from the pipe with speed V and then through a narrow "throat" of cross-

Fig. 14-50 Problems 65 and 66.

sectional area a with speed v. A manometer connects the wider portion of the meter to the narrower portion. The change in the fluid's speed is accompanied by a change Δp in the fluid's pressure, which causes a height difference h of the liquid in the two arms of the manometer. (Here Δp means pressure in the throat minus pressure in the pipe.) (a) By applying Bernoulli's equation and the equation of continuity to points 1 and 2 in Fig. 14-50, show that

$$V = \sqrt{\frac{2a^2 \,\Delta p}{\rho (a^2 - A^2)}},$$

where ρ is the density of the fluid. (b) Suppose that the fluid is fresh water, that the cross-sectional areas are 64 cm² in the pipe and 32 cm² in the throat, and that the pressure is 55 kPa in the pipe and 41 kPa in the throat. What is the rate of water flow in cubic meters per second?

Consider the venturi tube of Problem 65 and Fig. 14-50 without the manometer. Let A equal 5a. Suppose the pressure p_1 at A is 2.0 atm. Compute the values of (a) the speed V at A and (b) the speed v at a that make the pressure p_2 at a equal to zero. (c) Compute the corresponding volume flow rate if the diameter at A is 5.0 cm. The phenomenon that occurs at a when p_2 falls to nearly zero is known as cavitation. The water vaporizes into small bubbles.

••67 ILW In Fig. 14-51, the fresh water behind a reservoir dam has depth D = 15 m. A horizontal pipe 4.0 cm in diameter passes through the dam at depth d = 6.0 m. A plug secures the pipe opening. (a) Find the magnitude of the frictional force between plug and pipe wall. (b) The plug is removed. What water volume exits the pipe in 3.0 h?

Fig. 14-51 Problem 67.

•••72 A very simplified schematic of the rain drainage system for a home is shown in Fig. 14-55. Rain falling on the slanted roof runs off into gutters around the roof edge; it then drains through downspouts (only one is shown) into a main drainage pipe M below the basement, which carries the water to an even larger pipe below the street. In Fig. 14-55, a floor drain in the basement is also connected to drainage pipe M. Suppose the following apply:

- 1. the downspouts have height $h_1 = 11 \text{ m}$,
- 2. the floor drain has height $h_2 = 1.2 \text{ m}$,
- 3. pipe M has radius 3.0 cm,
- 4. the house has side width w = 30 m and front length L = 60 m,
- 5. all the water striking the roof goes through pipe M,
- 6. the initial speed of the water in a downspout is negligible,
- 7. the wind speed is negligible (the rain falls vertically).

At what rainfall rate, in centimeters per hour, will water from pipe M reach the height of the floor drain and threaten to flood the basement?

Fig. 14-55 Problem 72.