The problem is in \mathcal{NP} , since we can exhibit a set of disjoint paths P_i , and it can be checked in polynomial time that they are paths in G, connect the corresponding nodes, and are disjoint.

Now we show $3\text{-}SAT \leq_P Directed Disjoint Paths$. Consider a 3-SAT problem given by a set of clauses C_1, \ldots, C_k , each of length 3, over a set of variables $X = \{x_1, \ldots, x_n\}$. To create the corresponding instance of the Directed Disjoint Paths problem, we will have 2n directed paths, each of length k, one paths P_i corresponding to variable x_i and one path P_i' corresponding to $\overline{x_i}$. We add n source-sink pairs corresponding to the n variables, and connect source s_i to the first node on paths P_i and P_i' and connect the last nodes in paths P_i and and P_i' to sink t_i . Note that there are two directed paths connecting s_i to t_i : the path s_i, P_i, t_i , and the path s_i, P_i', t_i . We will think of selecting the first of these paths as setting the variable x_i to false (as the variable through the copies of $\overline{x_i}$ are left unused), and selecting the second path will correspond to setting the variable x_i to true.

Now will will add k additional source sink pairs, one corresponding to each clause C_j . Let S_j and T_j the source sink pair corresponding to clause C_j . We will claim that there is a path from S_j to T_j disjoint from the path selected to connect the s_i - t_i source-sink pairs if and only of clause C_j is satisfied by the corresponding assignment. Assume clause C_j contains the literal t_{j1} , t_{j2} and t_{j3} . Now we have a path P_i or P'_i corresponding to each of these variables or negated variables. The paths have n nodes each, let v_{j1} , v_{j2} and v_{j3} denote the jth node on the 3 corresponding paths. We add the edges $(S_j, v_{j\ell})$ and $(v_{j\ell}, T_j)$ for each of $\ell = 1, 2, 3$.

Now we claim that the resulting directed graph has node disjoint paths connecting the source-sink pairs s_i - t_i and S_j - T_j for $i=1,2,\ldots,n$ and $j=1,\ldots,k$ if and only if the 3-SAT instance is satisfiable. One direction is easy to see: if the 3-SAT instance is satisfiable, then select the paths connecting s_i to t_i corresponding to the satisfying assignment, as suggested above. Then the source-sink pair S_j and T_j can be connected through the path using the true variable in the clause.

Finally, we need to show that if the disjoint paths exists, than the 3-SAT formula has a satisfying assignment. Note that the paths P_i and P_j are disjoint, and the graph has no edges connecting different paths. The only edges outside these paths in the graph are edges entering one of the sinks, or leaving a source. As a result the only paths in the graph connecting an s_i - t_i pair are the two paths s_i , P_i , t_i and s_i , P'_i , t_i , and the only paths in G connecting S_j - T_j pairs are the three possible paths through each of the 3 variable nodes in C_j . Hence, sets of disjoint paths connecting the source-sink pairs, correspond to satisfying assignments.

 $^{^{1}}$ ex563.824.406