- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08 Profesor: Rafael López Camino

Nombre:

- 1. Sea X un conjunto y $A \subset X$. Para cada $x \in X$, definimos $B_x = A \cup \{x\}$. Probad que $\beta = \{B_x; x \in X\}$ es una base de topología de X. Hallad la adherencia de A.
- 2. Con la topología usual de \mathbb{R} , sea $\{x_n\}_n \to x$. Hallad el interior y la adherencia de $\{x_n\}_n \cup \{x\}$.
- 3. Con la topología usual de \mathbb{R}^2 , se considera $A=\mathbb{Z}\times\mathbb{Z}$. Describid la topología inducida en A.
- 4. Se considera un espacio métrico (X,d) y $A\subset X$. Si $x\in X$, se define

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

Probad que $x \in \overline{A}$ sii d(x, A) = 0.

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2007/08

Profesor: Rafael López Camino

1. Sea X un conjunto y $A \subset X$. Para cada $x \in X$, definimos $B_x = A \cup \{x\}$. Probad que $\beta = \{B_x; x \in X\}$ es una base de topología de X. Hallad la adherencia de A. Solución: Probamos las dos propiedades para β .

(a)

$$\bigcup_{x \in X} B_x = A \bigcup \left(\bigcup_{x \in X} \{x\} \right) = X.$$

(b) Se tiene (si $x \neq y$)

$$B_x \cap B_y = (A \cup \{x\}) \cap (A \cup \{y\}) = A$$

y $A \in \beta$ porque $A = B_a$ para cualquier $a \in A$. Por tanto, si $z \in B_x \cap B_y = A$, tomamos B_a y es evidente que $z \in B_a = B_x \cap B_y$.

Como cualquier elemento de la base β interseca a A, por la caracterización de punto adherente mediante bases de abiertos, se tiene entonces que $\overline{A} = X$.

- 2. Con la topología usual de \mathbb{R} , sea $\{x_n\}_n \to x$. Hallad el interior y la adherencia de $\{x_n\}_n \cup \{x\}$. Solución: Llamemos $A = \{x_n\}_n \cup \{x\}$.
 - (a) Si $a \in A$ es un punto interior, existe $\epsilon > 0$ tal que $(x \epsilon, x + \epsilon) \subset A$: contradicción, pues A es numerable y cualquier intervalo de \mathbb{R} no lo es. Por tanto, $int(A) = \emptyset$.
 - (b) Sea $y \in \overline{A}$. Entonces existe $\{a_n\} \subset A$ convergente a y. En particular, $\{a_n\}$ es una subsucesión de A. Las únicas que son convergentes son las que son constantes a partir de un cierto luegar –y en tal caso, $y \in A$ –, o es una parcial de $\{x_n\}$ y por tanto, su límite es x. En particular, $y = x \in A$. Por tanto, hemos probado que $\overline{A} = A$.
- 3. Con la topología usual de \mathbb{R}^2 , se considera $A = \mathbb{Z} \times \mathbb{Z}$. Describid la topología inducida en A. Solución: Sea $p = (n, n) \in \mathbb{Z} \times \mathbb{Z}$. Se sabe que la familia de discos $\{B_r(p); 0 < r < 1\}$ es una base de entornos p en la topología de \mathbb{R}^2 . Por tanto, $\{B_r(p) \cap (\mathbb{Z} \times \mathbb{Z}); 0 < r < 1\}$ es una base de entornos de p en la topología inducida de A. Pero es evidente que $B_r(p) \cap (\mathbb{Z} \times \mathbb{Z}) = \{p\}$. En clase se había probado que la topología que tiene como base de entornos de cualquier punto el propio punto, es la topología discreta.
- 4. Se considera un espacio métrico (X,d) y $A \subset X$. Si $x \in X$, se define

$$d(x, A) = \inf\{d(x, a); a \in A\}.$$

Probad que $x \in \overline{A}$ sii d(x, A) = 0.

Solución:

- (a) Supongamos que $x \in \overline{A}$. Entonces existe $\{a_n\} \subset A$ tal que $\{a_n\} \to x$. En particular $\{d(x,a_n)\} \to 0$. Por tanto, en el conjunto $\{d(x,a); a \in A\}$ –que está acotado inferiormente por 0–, existe un subconjunto, a saber, $\{d(x,a_n)\}$, cuyo ínfimo es 0. Concluímos entonces que el ínfimo del primer conjunto también es 0.
- (b) Supongamos que d(x,A) = 0. Sea $n \in \mathbb{N}$ y 0 = d(x,A) < 1/n. Por la definición de ínfimo, existe $a_n \in A$ tal que $0 \le d(x,a_n) < 1/n$. Tomando límites cuando $n \to \infty$, se tiene que $\{d(x,a_n)\} \to 0$. Esto quiere decir que hemos encontrado una sucesión en A, a saber, $\{a_n\}$, que converge a x. En particular, $x \in \overline{A}$.

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2008/09 Profesor: Rafael López Camino

Nombre:

- 1. Sea X=[-1,1] y se define $\beta=\{\{x\};x\neq 0\}\cup\{(-1,1)\}$. Probad que β es base de una topología en X. Hallad el interior y adherencia del conjunto A=[0,1].
- 2. Se considera $\mathbb R$ con la topología usual τ . Probad $\tau_{|\mathbb Z}$ es la topología discreta en $\mathbb Z$. Si $A=\{\frac{1}{n};n\in\mathbb N\}\cup\{0\},$ probad $\tau_{|A}$ no es la topología discreta en A.
- 3. Sea X un conjunto y $A, B \subset X$ dos subconjuntos no triviales. Se define $\tau = \{\emptyset, X, A, B\}$. ¿Qué propiedades deben satisfacer A y B para que τ sea una topología en X? Sea $p \in X$. Hallad el interior, adherencia, frontera y exterior de $C = \{p\}$.

- Licenciatura de Matemáticas. GRUPO 2^0 B - Curso 2008/09

Profesor: Rafael López Camino

Nombre:

1. Sea X = [-1, 1] y se define $\beta = \{\{x\}; x \neq 0\} \cup \{(-1, 1)\}$. Probad que β es base de una topología en X. Hallad el interior y adherencia del conjunto A = [0, 1].

Solución: Es evidente que la unión de todos los elementos de β es [-1,1]. Incluso menos, pues $[-1,1]=\{-1\}\cup\{1\}\cup(-1,1)$. Por otro lado, si $B_1,B_2\in\beta$ con $B_1\cap B_2\neq\emptyset$, es porque uno es $B_1=\{x\},\ x\neq 0$ y el otro es $B_2=(-1,1)$. Ya que $B_1\cap B_2\neq\emptyset$, entonces $B_1\cap B_2=B_1$, luego la segunda propiedad de bases es evidente.

Para calcular el interior de A estudiamos el mayor abierto dentro de A. Es evidente que $\bigcup_{x\in(0,1]}\{x\}=(0,1]$ es un abierto incluido en A. Veamos que $0 \notin int(A)$. En tal caso, existiría $B\in\beta$ tal que $0\in B\subset A$. Como $0\in B$, entonces B=(-1,1) pero $(-1,1)\not\subset [0,1]$. Esto quiere decir que 0 no es interior. Como consecuencia int(A)=(0,1].

Por otro lado, $[-1,1] - A = [-1,0) = \bigcup_{x \in [-1,0)} \{x\}$, entonces [-1,1] - A es abierto, es decir, A es cerrado. Por tanto $\overline{A} = A$.

2. Se considera \mathbb{R} con la topología usual τ . Probad $\tau_{|\mathbb{Z}}$ es la topología discreta en \mathbb{Z} . Si $A = \{\frac{1}{n}; n \in \mathbb{N}\} \cup \{0\}$, probad $\tau_{|A}$ no es la topología discreta en A.

Solución: Una base de entornos para cada $x \in \mathbb{R}$ en \mathbb{R} es $\beta_x = \{(x-r,x+r); 0 < r < 1\}$. Por tanto, una base de entornos de $n \in \mathbb{Z}$ es

$$\beta_n^{\mathbb{Z}} = \{ (n-r, n+r) \cap \mathbb{Z}; 0 < r < 1 \} = \{ \{n\} \}.$$

Se sabe entonces que la topología es la discreta.

En el conjunto A, un base de entornos de 0 es

$$\beta_0^A = \{ (-r, r) \cap A; r > 0 \}.$$

Si la topología fuera la discreta, el conjunto $\{0\}$ sería abierto en A, y por tanto, 0 sería interior en $\{0\}$. En tal caso, existiría r > 0 tal que

$$(-r,r) \cap A \subset \{0\}.$$

Pero el conjunto de la izquiera tiene más de un punto, puesto que $\left\{\frac{1}{n}\right\} \to 0$.

3. Sea X un conjunto y $A, B \subset X$ dos subconjuntos no triviales. Se define $\tau = \{\emptyset, X, A, B\}$. ¿Qué propiedades deben satisfacer A y B para que τ sea una topología en X? Sea $p \in X$. Hallad el interior, adherencia, frontera y exterior de $C = \{p\}$.

Solución: Se tiene que $A \cup B \in \tau$ y que $A \cap B \in \tau$, es decir,

$$A \cup B \in \{\emptyset, X, A, B\}, \quad A \cap B \in \{\emptyset, X, A, B\}.$$

Las posibilidades son entonces:

- (a) $A \cup B = X$ y $A \cap B = \emptyset$, es decir, A y B son complementarios uno del otro.
- (b) $A \cup B = A$, es decir, $B \subset A$, entonces $A \cap B = B \in \tau$.
- (c) $A \cup B = B$, es decir, $A \subset B$, entonces $A \cap B = A \in \tau$.

Para hallar el interior y la adherencia de C usamos las caracterizaciones que nos dicen que el interior es el mayor conjunto abierto en C y la adherencia es el menor cerrado que contiene a C. Para cada una de las anteriores topologías, tenemos

- (a) En este caso, $\mathcal{F} = \tau$. Supongamos que $p \in A$. Entonces $int(C) = \emptyset$ si $\{p\} \neq A$ o $int(C) = \{p\}$ si $A = \{p\}$. En cualquiera de los dos casos, $\overline{C} = A$. Si $p \in B$, el razonamiento es análogo, cambiando A por B.
- (b) Supongamos que $B \subset A$.
 - i. Si $p \in B$, entonces $int(C) = \emptyset$ si $\{p\} \neq B$ o $int(C) = \{p\}$ si $B = \{p\}$. En cualquier caso, $ext(C) = \emptyset$.
 - ii. Si $p \in A B$, entonces $int(C) = \emptyset$ y ext(C) = B.
 - iii. Si $p \in X A$, entonces $int(C) = \emptyset$ y ext(C) = A.
- (c) Este caso es análogo al anterior, cambiando A por B.

- Licenciatura de Matemáticas. GRUPO 2^0 A - Curso 2010/11 Profesor: Rafael López Camino

Nombre:

Razonar las respuestas

- 1. En \mathbb{N} se considera $\tau = \{A_n; n \in \mathbb{N}\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Probar que es una topología. Hallar el interior y adherencia de $A = \{\text{números pares}\}\$ y $B = \{4, 6\}$.
- 2. En \mathbb{R} se considera la topología τ que tiene por base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probar que para cada $x \in \mathbb{R}$, $\beta_x = \{[x, \infty)\}$ es una base de entornos de x. Hallar la adherencia de (0, 1).
- 3. En \mathbb{R} se considera la topología τ del punto incluido para p=0. Sean A=[0,2] y B=(1,2). Hallar Fr(A). Probar que $\tau_{|B}$ es la topología discreta en B.

1. En \mathbb{N} se considera $\tau = \{A_n; n \in \mathbb{N}\} \cup \{\emptyset\}$, con $A_n = \{n, n+1, \ldots\}$. Probar que es una topología. Hallar el interior y adherencia de $A = \{\text{números pares}\}\$ y $B = \{4, 6\}$.

Solución:

(a)
$$\mathbb{N} = A_1$$
. Por otro lado, $A_n \cap A_m = A_{\max\{n,m\}}$ y $\bigcup_{i \in I} A_{n_i} = A_{\min\{n_i: i \in I\}}$.

Como consecuencia, la familia de cerrados es

$$\mathcal{F} = \{\emptyset, \mathbb{N}\} \cup \{\{1, \dots, n\}; n \in \mathbb{N}\}.$$

- (b) Ningún conjunto A_n está incluido en A, luego su interior es vacío. El único cerrado que contiene a A es \mathbb{N} , luego su adherencia es \mathbb{N} .
- (c) Ningún conjunto A_n está incluido en B, luego su interior es el vacío. El cerrado más pequeño que lo contiene es $\{1, \ldots, 6\}$.
- 2. En \mathbb{R} se considera la topología τ que tiene por base $\beta = \{[a, \infty); a \in \mathbb{R}\}$. Probar que para cada $x \in \mathbb{R}$, $\beta_x = \{[x, \infty)\}$ es una base de entornos de x. Hallar la adherencia de $\{-1, 1\}$.

Solución: Como el conjunto $[x, \infty)$ es un abierto que contiene a x, es un entorno suyo. Por otro lado, sea U un entorno de x. Entonces existe $a \in \mathbb{R}$ tal que $x \in [a, \infty) \subset U$. En particular, $a \leq x$ y por tanto, $[x, \infty) \subset [a, \infty)$.

Los conjuntos cerrados son, aparte de los triviales, los de la forma $(-\infty, a)$ y $(-\infty, a]$. Por tanto la adherencia es $(-\infty, 1]$.

3. En \mathbb{R} se considera la topología τ del punto incluido para p=0. Se considera A=[0,2] y B=(1,2). Hallar Fr(A). Probar que $\tau_{|B}$ es la topología discreta en B.

Solución:

Como A contiene al 0, es abierto. Como $ext(A) = int(\mathbb{R} - A)$, entonces es vacío. Por tanto, la frontera es $\mathbb{R} - A$.

Dado $b \in B$, $\{b\} = B \cap \{0, b\}$. Por tanto, $\{b\}\tau_{|B}$. Como todo punto es abierto, la topología correspondiente es la discreta.

- Grado en Matemáticas - Curso 2011/12

Nombre:

Razonar todas las respuestas

1. Sea X un conjunto y $A \subset X$. Se define una topología mediante

$$\tau = \{ O \subset X; A \subset O \} \cup \{\emptyset\}.$$

- (a) Probar que $\beta = \{\{x\} \cup A; x \in X\}$ es una base de τ .
- (b) Si $B \subset X$, hallar el interior y la adherencia de B.
- (c) ¿Qué topología conocida es $\tau_{|A}$?
- 2. Para X = [-1, 1], probar que $\tau = \{O \subset X; 0 \notin O\} \cup \{O \subset X; (-1, 1) \subset O\}$ es una topología en X. Hallar una base de entornos para $x \in X$ con el menor número de entornos. Hallad el interior y adherencia del conjunto A = [0, 1].
- 3. Sea $A = [0,1) \cup (2,3) \cup \{5\}$ con la topología usual.
 - (a) Estudiar si $\{5\}$ y (2,3) son abiertos o cerrados en A.
 - (b) Hallar el interior y la adherencia en A de (0,1).
 - (c) Probar que $\{\{5\}\}$ es una base de entornos de x=5 en A.

Soluciones

1. Se
aX un conjunto y $A\subset X.$ Se define una topología mediante

$$\tau = \{ O \subset X; A \subset O \} \cup \{\emptyset\}.$$

- (a) Probar que $\beta = \{\{x\} \cup A; x \in X\}$ es una base de τ . Los conjuntos son abiertos ya que contienen a O. Por otro lado, si $O \in \tau$ y $x \in O$, entonces $\{x\} \cup A \subset O$ ya que $A \subset O$. Por tanto, $x \in \{x\} \cup A \subset O$.
- (b) Si B ⊂ X, hallar el interior y la adherencia de B.
 El interior de B es el mayor conjunto abierto dentro de B. En particular, int(B) ⊂ A. Si B ⊃ A, entonces B es abierto y coincide con su interior. En caso contrario, int(B) = Ø ya que si no, A ⊂ int(B) ⊂ B, lo cual no es posible.

Los conjuntos cerrados F son aquéllos tales que $A \subset X - F$ o F = X, es decir, $F \subset X - A$ o F = X. Ya que \overline{B} es el menor cerrado que contiene a B, si $B \subset X - A$, entonces $\overline{B} = B$. En caso contrario, es decir, si $B \not\subset X - A$, entonces $\overline{B} = X$.

(c) ¿Qué topología conocida es $\tau_{|A}$?

$$\tau_{|A} = \{O \cap A; O \in \tau\} \cup \{\emptyset\} = \{A\} \cup \{\emptyset\}.$$

Por tanto, $\tau_{|A}$ es la topología trivial de A.

2. Para X = [-1, 1], probar que $\tau = \{O \subset X; 0 \notin O\} \cup \{O \subset X; (-1, 1) \subset O\}$ es una topología en X. Hallar una base de entornos para $x \in X$ con el menor número de entornos. Hallad el interior y adherencia del conjunto A = [0, 1].

A los abiertos de la primera familia los llamaremos del primer tipo y los de la segunda, del segundo tipo. El conjunto vacío está en τ por definición y por otro lado, X pertenece al del segundo tipo.

Sea $\{O_i\}_{i\in I}\subset \tau$. Si alguno de los abiertos, llamado O_{i_0} , es del segundo tipo, entonces

$$(-1,1) \subset O_{i_0} \subset \cup_{i \in I} O_i,$$

luego la unión es del segundo tipo. En caso contrario, es decir, si todos son del primer tipo, entonces ningún abierto contiene a x=0 y menos aún, la unión de todos.

Sea $O_1, O_2 \in \tau$. Es evidente que si los dos son del primer tipo, la intersección no contiene a x = 0; que si los dos son del segundo tipo, ambos contienen a (-1,1), y por tanto, también la intersección. Finalmente, si O_1 es del primer tipo y O_2 del segundo, entonces $0 \notin O_1$ y por tanto, $0 \notin O_1 \cap O_2$.

Una base de entornos de x es:

$$\beta_x = \begin{cases} \{(-1,1)\} & \text{si } x = 0\\ \{\{x\}\} & \text{si } x \neq 0 \end{cases}$$

Es evidente que en ambos casos, los conjuntos son abiertos, luego entornos de todos sus puntos. Por otro lado, si U es un entorno de 0, existe $O \in \tau$ tal que $0 \in O \subset U$. Entonces O contiene al 0, luego tiene que ser del segundo tipo, en particular, $(-1,1) \subset O$, probando que $0 \in (-1,1) \subset U$. Si $x \neq 0$ y U es un entorno suyo, entonces $x \in \{x\} \subset U$.

El conjunto (0,1] es abierto porque no tiene a x=0. Veamos si 0 es interior a A. En tal caso, $(-1,1) \subset A$, ya que (-1,1) es el elemento de la base de entornos de x=0. Como esto no es posible, int(A)=(0,1]. Para la adherencia, si $x \notin A$, entonces $x \neq 0$, luego $\{x\} \cap A = \emptyset$ y así no es adherente. Esto dice que $\overline{A} = A$ (también A es cerrado ya que su complementario, que es [-1,0), es abierto (del primer tipo)).

- 3. Sea $A = [0,1) \cup (2,3) \cup \{5\}$ con la topología usual.
 - (a) Estudiar si {5} y (2,3) son abiertos o cerrados en A.
 El conjunto {5} es abierto y cerrado en A ya que {5} = (4,6) ∩ A = [4,6] ∩ A y (4,6) y [4,6] son abiertos y cerrados de ℝ, respectivamente.
 El conjunto (2,3) es abierto y cerrado en A ya que (2,3) = (2,3) ∩ A = [2,3] ∩ A y (2,3) y [2,3] son abiertos y cerrados de ℝ, respectivamente.
 - (b) Hallar el interior y la adherencia en A de (0,1). El conjunto (0,1) es abierto en A: $(0,1)=(0,1)\cap A$, luego coincide con su interior. Por otro lado, [0,1) es cerrado en A ya que $[0,1)=[0,1]\cap A$ y [0,1] es cerrado de \mathbb{R} . En particular, la adherencia de (0,1) en A está

contenida en [0,1). Finalmente, x=0 es adherente a A ya que una base de entornos de 0 en A es $\{[0,\epsilon); 0<\epsilon<1\}$ pues $[0,\epsilon)=(-\epsilon,\epsilon)\cap A$ y $\{(-\epsilon,\epsilon); 0<\epsilon<1\}$ es una base de entornos de x=0 en \mathbb{R} . Por tanto la adherencia del conjunto es [0,1).

(c) Probar que $\{\{5\}\}$ es una base de entornos de x=5 en A. Ya se ha visto que $\{5\}$ es un abierto en A, luego un entorno de x=5 en A. Como todo entorno de 5 en A debe contener a x=5, en particular, $\{5\}$ está contenido en dicho entorno. Otra forma es: una base de entornos de x=5 en la topología usual de \mathbb{R} es $\{(5-\epsilon,5+\epsilon);0<\epsilon<1\}$. Por tanto, una base de entornos de 5 en A es

$$\{(5 - \epsilon, 5 + \epsilon) \cap A; 0 < \epsilon < 1\} = \{\{5\}\}.$$

- Grado en Matemáticas - Curso 2012/13

Nombre:

Razonar todas las respuestas

- 1. Probar que $\beta = \{[a,b); a \in \mathbb{Q}, b \in \mathbb{R} \mathbb{Q}, a < b\}$ es base de una topología en \mathbb{R} . Hallar el interior y la adherencia de \mathbb{Q} y [0,1].
- 2. Hallar el interior y la adherencia de los siguientes conjuntos:
 - (a) $A = \{(x, y); -1 \le x \le 1\}$ en \mathbb{R}^2 .
 - (b) $B = \{(x, y); y < x^2\}$ en \mathbb{R}^2 .
 - (c) $C = \{\frac{1}{n}; n \in \mathbb{N}\}$ en \mathbb{R} .
- 3. Se considera en \mathbb{N} la topología $\tau = \{O_n; n \in \mathbb{N}\} \cup \{\emptyset, \mathbb{N}\}$, con $O_n = \{1, \dots, n\}$. Probar que $\beta_n = \{O_n\}$ es una base de entornos de n. Si $A = \{2, 3, 4\}$, hallar el interior y adherencia del conjunto $\{2, 4\}$ en $(A, \tau_{|A})$.

1. Por la densidad de \mathbb{Q} y $\mathbb{R} - \mathbb{Q}$, dado $x \in \mathbb{R}$, existen $a \in \mathbb{Q}$, $b \in \mathbb{R} - \mathbb{Q}$ con a < x < b. Esto prueba que $x \in [a,b) \in \beta$, es decir, $\mathbb{R} = \bigcup_{B \in \beta} B$. Por otro lado, la intersección de dos elementos de β es otro elemento de β , pues $[a,b) \cap [c,d) = [\max\{a,c\}, \min\{b,d\})$ y de nuevo $\max\{a,c\} \in \mathbb{Q}$ y $\min\{b,d\} \in \mathbb{R} - \mathbb{Q}$.

Como no hay ningún elemento de la base incluido en \mathbb{Q} , $int(\mathbb{Q}) = \emptyset$. Por la densidad de los racionales, todo intervalo de la forma $[a,b) \in \beta$ interseca a \mathbb{Q} , luego $\overline{\mathbb{Q}} = \mathbb{R}$.

El conjunto [0,1) es abierto pues si $x_n \to 1$, $x_n < 1$ y $x_n \notin \mathbb{Q}$, entonces $[0,x_n) \subset [0,1)$. Por tanto, $int([0,1]) \supset [0,1)$. Sólo queda probar si x=1 es o no interior. No lo es, pues dado cualquier $[a,b) \in \beta$ con $1 \in [a,b)$, el conjunto [1,b) no está incluido en [0,1]. Esto prueba que int([0,1] = [0,1).

Sea x < 0. Tomamos $r \notin \mathbb{Q}$ tal que x < r < 0 y $q \in \mathbb{Q}$ con q < x. Entonces $[q,r) \cap [0,1] = \emptyset$. De la misma forma, si x > 0, sea $r \notin \mathbb{Q}$ tal que x < r y sea $q \in \mathbb{Q}$ con 1 < q < x. Entonces $[q,r) \cap [0,1]$. Esto prueba que [0,1] = [0,1].

- 2. (a) Usamos como base de la topología usual $\{(a,b) \times (c,d); a < b, c < d\}$. Sea 0 < x < 1. Entonces $(0,1) \times (y-1,y+1) \subset A$. Esto prueba que $int(A) \supset (0,1) \times \mathbb{R}$. Si x=0, ningún elemento de la forma $(-r,r) \times (y-s,y+s)$ está en A (p.ej. (-r/2,y)). Esto prueba que (0,y) no es interior y de la misma forma, tampoco lo es (1,y). Como conclusión $int(A) = (0,1) \times \mathbb{R}$.
 - Sea x < 0. entonces $((x 1, 0) \times (y 1, y + 1)) \cap A = \emptyset$. Esto prueba que (x, y) no es adherente y de la misma forma, tampoco lo es un punto (x, y) con x > 1. Esto prueba que $\overline{A} = A$.
 - (b) El interior de B es B: sea $(x,y) \in B$, con $y < x^2$ y sea $\{(x_n,y_n)\} \to (x,y)$. Entonces $x_n^2 - y_n \to x^2 - y$. Pero como $x^2 - y > 0$, a partir de un cierto lugar de la sucesión $x_n^2 - y_n > 0$, probando que $(x_n, y_n) \in B$.

Sea $(x,y) \in \overline{B}$. Entonces existe $\{(x_n,y_n)\}\subset B$ convergiendo a (x,y). En particular, $x_n^2 - y_n \to x^2 - y$. Como $x_n^2 - y_n > 0$, tomando límites, $x^2 - y \geq 0$. Por tanto, $\overline{B} \subset \{(x,y) : y \leq x^2\}$. Si (x,y) satisface $y = x^2$, entonces es adherente, pues la sucesión de B dada por (x,y-1/n) converge a (x,y).

- (c) No hay ningún intervalo abierto dentro de C, luego $int(C) = \emptyset$. Los puntos adherentes son los límites de las sucesiones convergentes del conjunto. Aparte de los propios elementos del conjunto (usando aplicaciones constantes), está 0. Esto prueba que $\overline{C} = C \cup \{0\}$.
- 3. Como O_n es abierto y contiene a n, es un entorno suyo. Sea ahora $U \in \mathcal{U}_n$. Entonces existe $m \in \mathbb{N}$ tal que $n \in O_m \subset U$. De $n \in O_m$, se tiene $n \leq m$, y por tanto, $O_n \subset O_m$. Esto prueba que $O_n \subset U$.

Por la definición de topología relativa, se tiene:

$$\tau_{|A} = \{\emptyset, A, A \cap O_1, A \cap O_2, A \cap O_3\} = \{\emptyset, A, \{2\}, \{2, 3\}\}.$$

Y de aquí,

$$\mathcal{F}_{|A} = \{\emptyset, A, \{3, 4\}, \{4\}\}.$$

El interior es el abierto más grande dentro de $\{2,4\}$, que es $\{2\}$. La adherencia el es cerrado más pequeño que contiene a $\{2,4\}$, que es A.

- Grado en Matemáticas. Curso 2013/14 -

$\underline{\text{Nombre}}$:

1. Sea X un conjunto y un subconjunto suyo $A \subset X$, que lo fijamos. Definimos

$$\tau = \{O \subset X : A \subset O\} \cup \{\emptyset\}.$$

- (a) Probar que τ es una topología en X.
- (b) Probar que $\beta_x = \{B_x\}$ es base de entornos de $x \in X$, donde $B_x = \{x\} \cup A$.
- (c) Si $C \subset X$, caracterizar el interior y la adherencia de C.
- 2. En (\mathbb{R}^2, τ_u) , hallar el interior y la adherencia de

$$A = B_1((0,0)) - \{(0,0)\}, B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$

- 3. En \mathbb{R}^2 , consideramos la familia $\beta = \{(a,b) \times \{c\} : a < b, a,b,c \in \mathbb{R}\}.$
 - (a) Probar que β es base de abiertos de una topología τ en \mathbb{R}^2 .
 - (b) Comparar τ con τ_u .
 - (c) Dado $C = \{0\} \times \mathbb{R}$, estudiar cuál es la topología relativa $\tau_{|C}$ y si es conocida.

Razonar todas las respuestas

Soluciones

1. Sea X un conjunto y un subconjunto suyo $A \subset X$, que lo fijamos. Definimos

$$\tau = \{ O \subset X : A \subset O \} \cup \{\emptyset\}.$$

- (a) Probar que τ es una topología en X.
 - i. $\emptyset \in \tau$ por definición y $A \subset X$, luego $X \in \tau$.
 - ii. Si $O_1, O_2 \in \tau$, entonces $O_i \supset A$, luego al intersecar ambas inclusiones, $O_1 \cap O_2 \supset A \cap A = A$, luego $O_1 \cap O_2 \in \tau$.
 - iii. Si $\{O_i: i \in \tau\}$, entonces $A \subset O_i, \forall i \in I$. Al hacer uniones en $i \in I$, $A \subset \bigcup_{i \in I} O_i$.
- (b) Probar que $\beta_x = \{B_x\}$ es base de entornos de $x \in X$, donde $B_x = \{x\} \cup A$. En primer lugar, $B_x \supset A$, luego B_x es un abierto, y como $x \in B_x$, es un entorno suyo. Por otro lado, sea U un entorno de x. Entonces existe $O \in \tau$ tal que $x \in O \subset U$. En particular, $A \subset O$. Esto prueba que $B_x = \{x\} \cup A \subset \{x\} \cup O = O \subset U$.
- (c) Si $C \subset X$, caracterizar el interior y la adherencia de C. Los conjuntos cerrados son $\mathcal{F} = \{F \subset X : F \subset X - A\} \cup \{X\}$. Distinguimos casos:
 - i. Si $A \subset C$, entonces C es un abierto, luego int(C) = C. Por otro lado, si F es un cerrado no trivial que contiene a C, entonces $X A \supset F \supset C \supset A$. Esta contradicción, prueba que C es trivial, es decir, F = X y así $\overline{C} = X$.
 - ii. Si $A \not\subset C$, y $O \in \tau$ no trivial tal que $O \subset C$, entonces $C \supset O \supset A$: contradicción. Por tanto, el único abierto incluido en C es el trivial, es decir, $O = \emptyset$, probando que $int(C) = \emptyset$. Si F es un cerrado no trivial conteniendo a C, entonces $X A \supset F \supset C$, es decir, $C \subset X A$, probando que C es cerrado y $\overline{C} = C$. En otro caso, es decir, si $C \not\subset X A$, el único cerrado es que contiene a C es el trivial, es decir, X, probando ahora $\overline{C} = X$.
- 2. En (\mathbb{R}^2, τ_u) , hallar el interior y la adherencia de

$$A = B_1((0,0)) - \{(0,0)\}, \quad B = \{(x,y) \in \mathbb{R}^2 : -1 \le y \le 1\}.$$

(a) Sabemos que un punto en un espacio métrico (en este caso, \mathbb{R}^2) es un cerrado, luego

$$A = B_1((0,0)) \cap (\mathbb{R}^2 - \{(0,0)\},\$$

es decir, intersección de dos abiertos, luego int(A) = A.

Otra manera es darse cuenta que $A = \bigcup_{(x,y) \in \mathbb{S}^1_{1/2}} B_{1/2}(x,y)$, luego es abierto por ser unión de conjuntos abiertos.

Otra manera es que dado $(x,y) \in A$, y tomando $r = \min\{\sqrt{x^2 + y^2}, 1 - \sqrt{x^2 + y^2}\}$ entonces r es positivo (ya que $x^2 + y^2 \notin \{0,1\}$) y que $B_r((x,y)) \subset A$. Si $(x,y) \in \overline{A}$, entonces existe $\{(x_n,y_n)\} \subset A \to (x,y)$. En particular, $0 < x_n^2 + y_n^2 < 1$. Ya que $x_n \to x$ e $y_n \to y$, tomando límites obtenemos $0 \le x^2 + y^2 \le 1$. Por tanto, $\overline{A} \subset \{(x,y): 0 \le x^2 + y^2 \le 1\}$. Para probar la igualdad, observemos que si $\lambda_n \to 1$ con $0 < \lambda_n < 1$ (por ejemplo, $\lambda_n = 1 - 1/n$), entonces si (x,y) satisface $x^2 + y^2 = 1$, tenemos $\lambda_n(x,y) \in A$, pues $|\lambda_n| |(x,y)| = \lambda_n \in (0,1)$ y

$$\lim \lambda_n(x,y) = (x,y) \Rightarrow (x,y) \in \overline{A}.$$

Para el punto (0,0) basta darse cuenta que

$$B_r(0,0) \cap A = B_{\min\{1,r\}}(0,0) - \{(0,0)\},\$$

que no es vacío, al ser una bola de \mathbb{R}^2 (que es un conjunto infinito) menos un punto.

(b) El conjunto $\mathbb{R} \times (-1,1)$ es abierto pues

$$\mathbb{R} \times (-1,1) = \bigcup_{n \in \mathbb{N}} (-n,n) \times (-1,1) \in \tau_u.$$

Por tanto, $int(B) \supset \mathbb{R} \times (-1,1)$. Veamos que es una igualdad. Para $(x,1) \in B$, dado $B_r(x,1)$, entonces esta bola no está contenida en B ya que $(x,1+r/2) \in B_r(x,1)$ pero $(x,1+r/2) \notin B$. Esto prueba que (x,1) no es interior. Del mismo modo se hace para los punto (x,-1).

Para la adherencia, y haciendo un razonamiento como en el caso A (seguimos la misma notación), se tendría $-1 \le y_n \le 1$. Tomando límites, $-1 \le y \le 1$, es decir, $\overline{B} \subset B$, obteniendo pues, la igualdad.

- 3. En \mathbb{R}^2 , consideramos la familia $\beta = \{(a,b) \times \{c\} : a < b, a, b, c \in \mathbb{R}\}.$
 - (a) Probar que β es base de abiertos de una topología τ en \mathbb{R}^2 . Si $(x,y) \in \mathbb{R}^2$, entonces $(x,y) \in (x-1,x+1) \times \{y\} \in \beta$, probando que $\mathbb{R}^2 = \bigcup_{B \in \beta} B$.

Por otro lado, sean $B_1 = (a, b) \times \{c\}$, $B_2 = (a', b') \times \{c'\}$ y $(x, y) \in B_1 \cap B_2$. En particular, $B_1 \cap B_2 \neq \emptyset$. Esto prueba que c = c'. Entonces tomamos

$$B_3 = B_1 \cap B_2 = (\max\{a, a'\}, \min\{b, b'\}) \times \{c\}.$$

(b) Comparar τ con τ_u .

Tomamos como base de τ_u el producto de intervalos abiertos. Entonces dado $B \in \beta_u$ y $(x,y) \in B$, con $B = (a,b) \times (c,d)$, tomamos $B' = (a,b) \times \{y\}$, teniendo $(x,y) \in B' \subset B$. Esto prueba que $\tau_u \subset \tau$.

La otra inclusión no es cierta, pues dado $B' = (0,2) \times \{0\}$ y $(1,0) \in B'$, si $\tau \subset \tau_u$ existiría $(a,b) \times (c,d) \in \beta_u$ tal que

$$(1,0) \subset (a,b) \times (c,d) \subset B' = (0,2) \times \{0\}.$$

En particular, $(c,d) \subset \{1\}$, una contradicción ya que el intervalo (c,d) tiene infinitos puntos.

(c) Dado $C = \{0\} \times \mathbb{R}$, estudiar cuál es la topología relativa $\tau_{|C}$ y si es conocida. Una base de $\tau_{|C}$ es $\beta_{|C} = \{B \cap C : B \in \beta\}$. La intersección de B con C o es vacío o es un punto. Concretamente, dicha base tiene al menos las siguientes intersecciones:

$$\{((-1,1)\times\{y\})\cap C=\{(0,y)\}:y\in\mathbb{R}\}.$$

Esto prueba que los puntos de C son abiertos y así, $\tau_{|C}$ es la topología discreta.

Prueba Tema 1. Topología I Doble grado en Informática y Matemáticas 7 de noviembre de 2019

1.— Sea \mathbb{R} el conjunto de los números reales, y $K \subset \mathbb{R}$ el subconjunto:

$$K := \{1/n : n \in \mathbb{N}\}.$$

Consideramos la familia $\mathcal{B} \subset P(\mathbb{R})$ dada por:

$$\mathcal{B} := \{ (a, b) : a, b \in \mathbb{R}, a < b \} \cup \{ (a, b) \setminus K : a, b \in \mathbb{R}, a < b \}.$$

- 1. ¿Es \mathcal{B} base de una topología en \mathbb{R} ?
- 2. Sea T_K la topología generada por \mathcal{B} . Probar que T_K es estrictamente más fina que la topología usual T_u de \mathbb{R} $(T_u \subset T_K, \text{ pero } T_u \neq T_K)$.
- 3. ¿Es (\mathbb{R}, T_K) un espacio Hausdorff?
- 4. Calcular la clausura de (0,1) en (\mathbb{R},T_K) .
- 5. Dar un ejemplo de una sucesión convergente con la topología usual T_u que no converge con la topología T_K .
- 1. Para probar que \mathcal{B} es base de una topología hay que verificar:
- 1. $\mathbb{R} = \bigcup_{B \in \mathcal{B}} B$,
- 2. Para cualquier par de conjuntos $B_1, B_2 \in \mathcal{B}$, y $x \in B_1 \cap B_2$, existe $B_3 \in \mathcal{B}$ tal que $x \in B_3 \subset B_1 \cap B_2$.

La primera propiedad se comprueba fácilmente puesto que:

$$\mathbb{R} = \bigcup_{n \in \mathbb{N}} (-n, n) \subset \bigcup_{B \in \mathcal{B}} B,$$

ya que $(-n, n) \in \mathcal{B}$ para todo $n \in \mathbb{N}$.

Para probar la segunda propiedad, tomamos $B_1, B_2 \in \mathcal{B}$. Distinguimos varios casos:

- (a) Si $B_1 = (a_1, b_1), B_2 = (a_2, b_2)$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d)$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}$).
- (b) Si $B_1 = (a_1, b_1), B_2 = (a_2, b_2) \setminus K$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d) \setminus K$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}.$

El caso $B_1 = (a_1, b_1) \setminus K$, $B_2 = (a_2, b_2)$ se reduce a (b) intercambiando los papeles de B_1 y B_2 .

- (c) Si $B_1 = (a_1, b_1) \setminus K$, $B_2 = (a_2, b_2) \setminus K$ y $x \in B_1 \cap B_2$, entonces $B_3 = B_1 \cap B_2 = (c, d) \setminus K$ pertenece a \mathcal{B} , con $c = \max\{a_1, a_2\}, d = \min\{b_1, b_2\}.$
- 2. Para probar que $T_u \subset T_K$ tenemos en cuenta que la base $\mathcal{B}_u = \{(a,b) : a < b\}$ de la topología usual T_u está contenida en \mathcal{B} . Tomamos $U \in T_u$. Entonces existen conjuntos $\{B_i\}_{i \in I}$ pertenecientes a \mathcal{B}_u tales que $U = \bigcup_{i \in I} B_i$. Como $B_i \in \mathcal{B}_u \subset \mathcal{B} \subset T_K$ para todo $i \in I$, concluimos que $U \in T_K$ por ser unión de elementos de T_K .

Para probar que $T_u \subsetneq T_K$ tomamos el conjunto $U = (-1,1) \setminus K$. Dicho conjunto pertenece a \mathcal{B} y es, por tanto, abierto en la topología T_K . Sin embargo no es abierto de T_u porque $0 \in U$ no es punto interior de U. Para probarlo tenemos en cuenta que los conjuntos $\{(-\varepsilon, \varepsilon) : \varepsilon > 0\}$ forman una base de entornos en 0 en T_u . Si $0 \in \text{int}(U)$, existe $\varepsilon > 0$ tal que $0 \in (-\varepsilon, \varepsilon) \subset U = (-1, 1) \setminus K$. Entonces $\frac{1}{n} \notin (-\varepsilon, \varepsilon)$ para todo $n \in \mathbb{N}$, lo que es imposible.

- 3. Sea $x \neq y, x, y \in \mathbb{R}$. Como (\mathbb{R}, T_u) es Hausdorff, existen dos abiertos $U, V \in T_u$ tales que $x \in U, y \in V, U \cap V = \emptyset$. Como $T_u \subset T_K$, los conjuntos U, V son abiertos en T_K , disjuntos, y contienen a x, y, respectivamente. Esto demuestra que (\mathbb{R}, T_K) es un espacio Hausdorff.
- 4. Para calcular la clausura de (0,1) en T_K tenemos en cuenta que [0,1] es cerrado en T_K puesto que es cerrado en T_u ($T_u \subset T_K$ lo que implica que los cerrados de T_u son cerrados de T_K). Entonces la clausura de (0,1) en T_K está contenida en [0,1].

Veamos que $0, 1 \in \overline{(0,1)}$, lo que demostraría que $\overline{(0,1)} = [0,1]$.

Para todo $x \in \mathbb{R}$, sabemos que $\mathcal{B}(x) = \{B \in \mathcal{B} : x \in B\}$ es base de entornos de x en T_K . Si $U \in \mathcal{B}(1)$, entonces U = (a, b), con a < 1 < b (los conjuntos de la forma $(a, b) \setminus K$ no contienen a 1). Entonces $(0, 1) \cap (a, b) = (\max\{0, a\}, 1) \neq \emptyset$.

- Si $U \in \mathcal{B}(0)$, entonces U es de la forma (a,b) o de la forma $(a,b) \setminus K$, con a < 0 < b. En el primer caso $U \cap (0,1) = (0,\min\{1,b\}) \neq \emptyset$. En el segundo caso, $U \cap (0,1) = (0,\min\{1,b\}) \setminus K \neq \emptyset$. Por tanto, $0 \in \overline{(0,1)}$.
- 5. La sucesión $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ converge a 0 en T_u . Veamos que no converge a ningún punto con la topología T_K . No puede converger a 0 en T_K porque $(-1,1)\setminus K$ es un entorno de 0 que no contiene a ningún elemento de la sucesión. Tampoco puede converger en T_K a otro punto $x\neq 0$: tomamos $\delta, \varepsilon > 0$ tales que $(-\delta, \delta) \cap (x \varepsilon, x + \varepsilon) = \emptyset$. Como $\{\frac{1}{n}\}_{n\in\mathbb{N}}$ converge a 0 en T_u , todos los elementos de la sucesión salvo una cantidad finita están en $(-\delta, \delta)$, por lo que solo hay una cantidad finita en $(x \varepsilon, x + \varepsilon)$. Esto implica que la sucesión no puede converger a $x\neq 0$ en T_K .