

Universidad

NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

PROBLEMAS RESUELTOS

Automatas

Integrantes:

Yonathan Berith Jaramillo Ramírez. 419004640

Profesor: Lourdes del Carmen González Huesca Ayudantes: María Fernanda Mendoza Castillo

9 Diciembre, 2021

Tarea 1

- 1. Sea $\Sigma = \{a,\,b\},$ da las definiciones formales de los siguientes lenguajes:
- a) Todas las cadenas de longitud mayor a 2 que empiecen y terminen con el mismo símbolo.
- b) Todas las cadenas de longitud par.

Respuestas:

- a) $L = \{ w \mid w = ava, a, v \in \Sigma, w \in \Sigma^* \}$
- b) $M = \{w \mid |w| = 2k, k \in \mathbb{N}, w \in \Sigma^*\}$

Tarea 2

- 1. Da la definición completa (no recursiva) del lenguaje que contenga las siguientes cadenas:
 - **"**1"
 - **"**01"
 - **"**11101"
 - **"**0101111"

```
Solution:
\Sigma = \{"01","1"\}
\{w \mid w = a^n, n \in \mathbb{N} \land a \in \Sigma\}
```

2. Sea $\Sigma = \{a, b\}$, definimos los lenguajes L_1, L_2, L_3 como sigue:

$$L_1 = \{\epsilon, "aa", "baaaa", "bb"\}$$

$$L_2 = \{"ababa", "bb", "aabaabaa", "abba", "aababbaa"\}$$

$$L_3 = \{ w \in \Sigma^* \mid \#_a(w) = n, \text{ n es par } \}$$

Escribe el resultado de las siguientes operaciones:

Solution:

- a) $L_1 \cup L_2 = \{\epsilon, "aa", "baaaa", "ababa", "bb", "aabaabaa", "abba", "aababbaa"\}$
- b) $L_2 \cap L_3 = \{"abba", "aababbaa"\}$
- c) $L_1 L_3 = \{\epsilon, "bb"\}$
- d) $\overline{L_3} = L = \{w = \Sigma^* \mid \#_a(w) = n, \text{ n es impar}\}\$

Examen 1

1. A partir del siguiente autómata M_1 , mostrado como tabla de transiciones:

		1/			
Tabla de transiciones					
	Q	0	1	2	
i	$ q_0 $	q_0	q_1	q_2	
	$ q_1 $	q_3	q_1	q_2	
f	$ q_2 $	q_3	q_3	q_2	
	$\parallel q_3$	q_3	q_3	q_3	

a) Describe el lenguaje L_1 que corresponde a $\mathcal{L}(M_1)$ y da la definición completa de la tupla que define al autómata.

Solution: $L_1 = \{ w \in \Sigma^* | w = 0^a 1^a 2^b \}$ donde $a \in \mathbb{N}$ y $b \in \mathbb{Z}^+ \}$ $Q = \{q_0, q_1, q_2, q_3\}$ $\Sigma = \{0, 1, 2\}$ $q_0 \in Q$ Es el estado inicial $F \subseteq Q$ $F = q_2$ Funciíones de transición: $\delta(q_0,0) = q_0$ $\delta(q_0, 1) = q_1$ $\delta(q_0, 2) = q_2$ $\delta(q_1,0) = q_3$ $\delta(q_1, 1) = q_1$ $\delta(q_1, 2) = q_2$ $\delta(q_2,0) = q_3$ $\delta(q_2, 1) = q_3$ $\delta(q_2, 2) = q_2$ $\delta(q_3,0) = q_3$ $\delta(q_3, 1) = q_3$ $\delta(q_3, 2) = q_3$

b) Describe de forma informal la expresión regular que es equivalente al lenguaje de la máquina.

Solution: (0*1*2+)

c) Evalúa $\delta^*(q_0, 11122012)$

Solution: Evaluación: $\delta(q_0,1)=q_1$ $\delta(q_1,1)=q_1$ $\delta(q_1,1)=q_1$ $\delta(q_1,2)=q_2$ $\delta(q_2,2)=q_2$ $\delta(q_2,0)=q_3$ $\delta(q_3,1)=q_3$ $\delta(q_3,2)=q_3$ La cadena es aceptada

- 2. Tomando el lenguaje $L_2 = \{1^n0^m | \text{ n} + \text{m} \text{ es un numero par } \}$ Sobre el alfabeto $\Sigma = \{0,1\}$
 - a) Escribe la expresión regular que genera al lenguaje, indica el método usado.

Solution: $((11)^*(00)^*)$

b) Diseña un AFD (gráfica) que reconoce este lenguaje, indica el método usado.

Metodo usado: Me enfoque en las dos condiciones mas importantes que ví, la primera que el numero de unos y ceros sean pares lo cual lo cubrí con los estados q0 y q2 para los unos y con q5 y q6 para los ceros. Para asegurarme que despues de un 0 no se puedan agregar unos utilice los estados q1, q4 y q3 donde q3 es un estado de error para que de ahi ya no pase nada.

- 3. Sea $L_3=\{w=a_0a_1...a_k|a_{k-3}=0,k\geq 3\}$ sobre el alfabeto $\Sigma=\{0,1\}$:
 - a) Diseña un AFN (sin transiciones épsilon) que acepta el lenguaje.

b) Transforma el AFN anterior a un AFD e incluye la gráfica.

Semanal 5

- 1. Sea $\Sigma = \{a, b\}$, disena un AFN que reconozca el mismo lenguaje que contiene combinaciones de subcadenas 'aa' o 'aab' y todas terminan en b.
- 1. Sea $\Sigma = \{a, b, c\}$, disena un AFN- ϵ que acepte todas las cadenas que contengan exactamente dos simbolos distintos del alfabeto.

Semanal 7

1. Tomando el siguiente AFN- ϵ , elimina las transiciones epsilon para convertirlo en un AFN.

Tabla de tranciciones AFN-ε				
	3	Clε	1	0
q ₀ (inicial)	{q1,q3}	{q0,q1,q3, q4, q5}	Ø	Ø
q1	Ø	{q1}	{q1}	{q2}
q ₂ (final)	{q1}	{q1, q2}	Ø	{q2}
q ₃	{q5}	{q3, q4, q5}	{q4}	Ø
q ₄	Ø	{q4}	{q4}	Ø
q ₅ (final)	{q4}	{q4, q5}	{q5}	{q5}

Tabla de tranciciones AFN				
	1	0		
q0(inicial)	{q1,q4,q5}	{q1,q2, q4, q5}		
q1	{q1}	{q1,q2}		
q ₂ (final)	{q1}	{q1,q2}		
q ₃	{q4,q5}	{q4,q5}		
q_4	q ₄ {q4}			
q ₅ (final)	{q4,q5}	{q4, q5}		

2. Crea un AFN- ϵ a partir de la siguiente expresión regular:

$$c((ab+a)^* + (ab+b^*))^*$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{4} \\
\alpha_{4}
\end{array}$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{4} \\
\alpha_{4}
\end{array}$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{4} \\
\alpha_{5}
\end{array}$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{4} \\
\alpha_{5}
\end{array}$$

$$\begin{array}{c}
\alpha_{5} \\
\alpha_{7} \\
\alpha_{7}
\end{array}$$

$$\begin{array}{c}
\alpha_{7} \\
\alpha_{7} \\
\alpha_{7}
\end{array}$$

$$\begin{array}{c}
\alpha_{7} \\
\alpha_{7} \\
\alpha_{7}
\end{array}$$

$$\begin{array}{c}
\alpha_{7} \\
\alpha_{7}
\end{array}$$

Examen 1

$$a(b+ba)^* + a(a+ab)^*bb (2)$$

$$\underbrace{a}_{\alpha_0}\underbrace{(b+ba)^*}_{\alpha_1} + \underbrace{a}_{\alpha_0}\underbrace{(a+ab)^*}_{\alpha_2}\underbrace{bb}_{\alpha_3}$$

$$(3)$$

Versión 1

a) Diseñar un AFN- ϵ , M considerando el mismo lenguaje de α mediante el método de síntesis de Kleene (se pueden omitir algunas transiciones ϵ).

El automata que queda tras la sintesis es...

b) Calcular el conjunto $Cl_{\epsilon}({\bf q})$ para cada estado ${\bf q}$ de la máquina.

AFN-ε				
Q	CIε			
q ₀ (inicial)	{q0,q1,q11}			
q1	{q1}			
q ₂ (final)	{q2, q3,q6, q8}			
q ₃	{q3}			
q ₄	{q4}			
q ₅ (final)	{q2, q3, q5, q6, q8}			
q ₆	{q6}			
q7 (final)	{q2, q3, q6, q8}			
q _B	{q8}			
q 9	{q9}			
q ₁₀ (final)	{q10}			
q ₁₁	{q11}			
q ₁₂ (final)	{q12, q13,q15}			
q ₁₃	{q13}			
q ₁₄	{q14}			
q ₁₅	{q15}			
q ₁₆ (final)	{q12, q13, q15, q16}			
q ₁₇ (final)	{q12, q13, q15, q17}			

c) Encontrar el AFN equivalente a M.

AFN				
Q	a	b		
q ₀ (inicial)	{q2, q3, q6, q8, q12, q13, 15}	Ø		
q1	{q2, q3, q6, q8}	Ø		
q ₂ (final)	{q2, q3, q4, q6, q7, q8}	{q3, q6, q8, q9}		
q ₃	{q4}	Ø		
q ₄	Ø	{q2, q3, q5, q6, q8}		
q ₅ (final)	{q2, q3, q4, q6, q7, q8}	{q2, q3, q6, q8, q9}		
q ₆	{q2, q3, q6, q7, q8}	Ø		
q7 (final)	{q2, q3, q4, q6, q7, q8}	{q2, q3, q6, q8, q9}		
q ₈	Ø	{q9}		
q ₉	Ø	{q10}		
q ₁₀ (final)	Ø	Ø		
q ₁₁	{q12, q13, q15}	Ø		
q ₁₂ (final)	{q13,q15}	{q12, q13, q14, q15, q16}		
q ₁₃	Ø	{q14}		
q ₁₄	{q12, q13, q15, q17}	Ø		
q ₁₅	Ø	{q12, q13, q15, q16}		
q ₁₆ (final)	{q12, q13, q15}	{q12, q13, q15} {q12, q13, q14, q15, q16}		
q ₁₇ (final)	{q12, q13, q15}	{q12, q13, q14, q15, q16}		

- d) Transformar a un AFD equivalente.
- e) Encontrar el AFD mínimo equivalente.
- 2. **2.5pts.** Encuentra una expresión regular α tal que $L(M) = L(\alpha)$ para el siguiente autómata M:

M:			
	δ	0	1
inicial	q_0	q_1	q_2
	q_1	q_3	q_4
	q_2	q_5	q_6
final	q_3	q_3	q_4
	q_4	q_5	q_6
final	q_5	q_3	q_4
final	q_6	q_5	q_6

Para clarificar el automata lo transformare a un AFD

Ejemplos de cadenas:

Ya que es claro que las no aceptadas terminan con 01 agregaremos la condición de que las cadenas tienen que terminar en (11 + 0) para no aceptar ese caso.

Tambien notaremos que la longitud de las cadenas no parece importar por ende para llenar el cuerpo escribiremos $(a + b)^*$, por último el automata denota que al inicio tiene que haber al menos un 1 o un 0 por ende agregaremos al inicio la condicion (1 + 0). Tambien agregué un + para tambien poder aceptar la cadena 11

La expresion regular que describe el automata es:

$$\alpha = (1+0)^*(11+0) \tag{4}$$

3. Hasta 1pt extra. Minimiza el autómata del ejercicio2.

Examen 1

1. **1.5pts.** Obtener una gramática regular que genere el mismo lenguaje que el aceptado por el siguiente autómata (muestra el proceso):

El lenguaje que genera las cadenas es:

$$L = (a+b)^{+}(a+b)^{*}b^{+}$$

La gramatica regular que genera las cadenas es:

$$G = < V, T, S, P >$$

$$V = \{D\}$$

$$T = \{S, A, B, C\}$$

Reglas de produccion P:

$$S \to \{aA|bB\}$$

$$A \to \{aB|bD\}$$

$$B \to \{aC|bB\}$$

$$C \to \{aB|bD\}$$

$$D \to \{aA|bD|\epsilon\}$$

2. **1.5 pts.** Genera un autómata finito cuyo lenguaje de aceptación es el mismo que el generado por la siguiente gramática:

$$S \to \{aA|\epsilon\} \ D \to \{bC|b|aF|a\}$$

$$A \to \{aB|bE\}\ E \to \{bE|aF|a|\epsilon\}$$

$$B \to \{aA|bC|b\} \ F \to \{aF|a|bF|b\}$$

$$C \to \{bD|aF|a|bS\}$$

	Q	а	b	3
i	s	{A}	φ	{Z}
	А	{B}	{E}	φ
	В	{A}	{C,Z}	φ
	С	{F,Z}	{D,S}	φ
	D	{F,Z}	{C,Z}	φ
	E	{F,Z}	{E}	{Z}
	F	{F,Z}	{F,Z}	φ
f	z	φ	φ	φ
	φ	φ	φ	φ

3. La gramática G permite construir el siguiente árbol de derivación para la cadena abccc

a) (1 pt.) Dar la definición formal de G, asumiendo que las variables, terminales y producciones de G son únicamente las involucradas en el árbol anterior.

Solution: $\langle V, T, S, P \rangle V = \{S, A, B\} T = \{a, b, c\}$

S es el símbolo inicial.

P Son las reglas de producción:

 $S \to A|B$

 $A \to aAb|\epsilon$

 $B \to cBc|c$

b) (1 pt.) Construya dos derivaciones para abccc cuyo árbol de derivación sea el anterior y de manera que una sea por la izquierda y la otra arbitraria.

Solution: Por la izquierda: 1. $S \to AB \to aAbB \to a\epsilon bB \to abB \to abcBc \to abccc$ Arbitraria: 2. $S \to AB \to AcBc \to Accc \to aAbccc \to a\epsilon bccc \to abccc$

c) (1.5 pts.); Quién es L(G)? justifique su respuesta.

Solution: $L(G) = \{a^n b^n c^m | n \ge 0, m \ge 3 | \text{m es impar} \}$

n es mayor o igual que cero para denotar que ab pueden estar o no, y m igual a 3 ya que tiene que haber minimo

4. Considere la siguietne gramática G:

$$S \to Ab|aaB$$

$$A \rightarrow a|Aa$$

$$B \to a|b|c$$

a) (1 pts.) Demuestre que G es ambigua mostrando dos árboles distintos de derivación único aárbol de derivación para una misma cadena w de su elección.

Como se puede ver marque un camino con rojo y otro con azul para que se vea que son arboles diferentes.

b) (1.5 pts.) Defina una gramática G' no ambigua equivalente a G.

$$S \to Aa|Ab|Ac$$

$$A \rightarrow a|Aa$$

c) (1 pts.) Muestre el único aárbol de derivación para la cadena w empleada ene l inciso a).

