Análisis Tarea 3

Sergio Montoya Ramírez

Contents

Chapter.		Problema 1	Page 2
	1.1	Enunciado	2
	1.2	Solución	2
Chapter	2	Problema 2	Page 3
	2.1	Enunciado	3
	2.2	Solución	3
Chapter	3	Problema 3	Page 4
	3.1	Enunciado	4
	3.2	Solución	4
Chapter	4	Problema 4	Page 5
	4.1	Enunciado	5
		Ayuda — 5	
	4.2	Solución	5
Chapter !	5	Problema 5	Page 6
	— 5.1	Enunciado	6
	5.2	Solución	6
Chapter (6	Problema 6	Page 8
	6.1	Enunciado	8
	0.1	Diffallolado	8

Problema 1

1.1 Enunciado

Demuestre el siguiente teorema:

Theorem 1.1.1

Sea $\{a_n\}$ y $\{b_n\}$ sucesiones tales que $a_n>0$ y $b_n>0.$ Si

$$\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0.$$

entonce $\sum_n a_n$ converge si y solo si $\sum_n b_n$ converge

1.2 Solución

Definition 1.2.1: Test de Comparación

Suponga que existe un entero N tal que $0 \le a_n \le b_n$ para todo $n \ge N$. Si $\sum_{n=1}^{\infty} b_n$ converge entonces $\sum_{n=1}^{\infty} a_n$ converge.

En este caso vamos a tomar la sucesión $\frac{a_n}{b_n}$ como una sucesión que converge a L. Ademas, dado que $a_n > 0$ y $b_n > 0$ sabemos que L > 0. Ahora bien, dado que esta serie converge a L sabemos que existe un N tal que para todo $n \ge N$ se cumple:

$$\frac{1}{2}L \le \frac{a_n}{b_n} \le 2L.$$

y con esto sabiendo que $b_n > 0$ entonces podemos encontrar rápidamente

$$\frac{1}{2}Lb_n \le \frac{a_n}{b_n}b_n \le 2Lb_n$$
$$\frac{1}{2}Lb_n \le a_n \le 2Lb_n.$$

Ahora con esto, podemos dividir la demostración para cada caso.

- \implies Sea $\{a_n\}$ una sucesión que converge. Ahora bien, sabemos que para un N se cumple que $\frac{1}{2}Lb_n \leq a_n$ y dado que $\frac{1}{2}L$ es una constante entonces podemos saber por el test de comparación que b_n converge.
- \iff Sea $\{b_n\}$ una sucesión que converge. Ahora bien, sabemos que para un N se cumple que $a_n \le 2Lb_n$ y dado que 2L es una constante entonces podemos saber por el test de comparación que a_n converge.

Problema 2

2.1 Enunciado

Sea

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{x_n}; \ x_0 = 2.$$

 ${\bf a.}\,$ Demuestre que $x_n^2 \geq 2.$ Ayuda: considere la ecuación:

$$x_n^2 - 2x_{n+1}x_n + 2 = 0.$$

donde la incógnita es x_n . ¿Que puede decir del discriminante de dicha ecuación.

b. Demuestre que $x_{n+1} \leq x_n$, el punto anterior puede ser de ayuda.

c. Demuestre que la sucesión $(x_n)_n$ es convergente y que su limite es $\sqrt{2}$

2.2 Solución

a.

b.

c.

Problema 3

3.1 Enunciado

Cada racional x puede ser escrito en la forma $x = \frac{m}{n}$, donde n > 0, con m y n enteros sin divisores en común. Cuando x = 0, tomamos n = 1. Considere la función f definida en R^1 por

$$f(x) = \begin{cases} 0 & x \in \mathbb{Q}' \\ \frac{1}{n} & \left(x = \frac{m}{n}\right) \end{cases}.$$

Pruebe que f es continuo en cada punto irracional, y que f tiene una discontinuidad simple en cada punto racional.

3.2 Solución

En este caso, lo que nos pide el enunciado es esencialmente lo mismo que mostrar que $\lim_{t\to x} f(t) = 0$ para todo x. Para esto sea $\varepsilon > 0$ y sea x cualquier numero real. Sea N el único entero positivo tal que $N < \frac{1}{\varepsilon} < N+1$ y para cada entero positivo $n=1,2,3,\ldots,N$ sea k_n un entero tal que

$$\frac{k_n}{n} \le x \le \frac{k_n + 1}{n}.$$

Entonces, por cada n sea $\delta_n = \frac{1}{n}$ si $x = \frac{k_n}{n}$, en cualquier otro caso sea $\delta_n = \min\left(x - \frac{k_n}{n}, \frac{k_n + 1}{n} - x\right)$. Finalmente, sea $\delta = \min\left(\delta_1, \ldots, \delta_N\right)$. Ahora con todo esto definido, podemos decir que $|f(t)| < \varepsilon$ si $0 < |x - t| < \delta$. Esto es bastante claro para un numero irracional, sin embargo, si t es racional y $t = \frac{m}{n}$, tenemos necesariamente que n > N por la manera en la que escogimos δ_n para $n \le N$. Por lo tanto, si t es racional, entonces $f(t) \le \frac{1}{N+1} < \varepsilon$. Con lo que completamos la prueba.

Una vez tenemos que $\lim_{t\to x} f(t) = 0$. Entonces nos siguen ambas cosas pues para cualquier irracional se cumple que $\lim_{t\to x} f(t) = f(t) = 0$ y lo contrario ocurre para cualquier racional.

Problema 4

4.1 Enunciado

Definition 4.1.1: Propiedad del valor Intermedio

Si f(a) < c < f(b), entonces f(x) = c para algún x entre a y b

Sea f una función real con dominio en \mathbb{R}^1 que tiene la propiedad del valor intermedio. Suponga también, para cada racional r, que el conjunto de todos los x con f(x) = r es cerrado. Pruebe que f es continuo.

4.1.1 Ayuda

Si $x_n \to x_0$ pero $f(x_n) > r > f(x_0)$ para algún r y todo n, entonces $f(t_n) = r$ para algún t_n entre x_0 y x_n ; por lo tanto $t_n \to x_0$. Encuentre una contradicción.

4.2 Solución

La contradicción que se nos pide encontrar en la ayuda esta en que x_0 es un punto limite del conjunto de t tal que f(t) = r, sin embargo, x_0 no pertenece al conjunto. Lo anterior, es una contradicción directa con que este conjunto es cerrado.

Problema 5

Enunciado 5.1

Asuma que f es una función real continua definida en (a, b) tal que

$$f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}.$$

para todo $x, y \in (a, b)$. Pruebe que f es convexo.

5.2 Solución

Debemos mostrar que

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
.

Para todos los números de la forma $\lambda = \frac{k}{2^n}$, donde k es un entero no negativo menor o igual a 2^n . Esto lo haremos por inducción en n.

Caso n=0: Para esto por la definición de λ nos queda que los únicos valores que puede tomar son 0 y 1.

 $\lambda = 0$ En este caso:

$$f(0 \cdot x + (1 - 0)y) \le 0f(x) + (1 - 0)f(y)$$
$$f(y) \le (1)f(y).$$

Por lo tanto se cumple la desigualdad.

 $\lambda = 1$ En este caso:

$$f(1x + (1 - 1)y) \le 1f(x) + (1 - 1)f(y)$$

 $f(x) \le f(x)$.

Por lo tanto también se cumple la desigualdad.

Suposición: Suponga que el resultado se cumple para todo $n \le r$, y considere $\lambda = \frac{k}{2^{r+1}}$.

Demostración : Si k es par, digamos k=2l, entonces $\frac{k}{2^{r+1}}=\frac{l}{2r}$ y podemos apelar a la hipótesis de inducción. Ahora suponga que k es impar. Entonces $1 \le k \le 2^{r+1}-1$, y entonces podemos tener los números $l=\frac{k-1}{2}$ y $m=\frac{k+1}{2}$ son enteros con $0 \le l \le m \le 2^r$. Con esto podemos entonces re escribir

$$\lambda = \frac{s+t}{2}.$$

donde $s = \frac{k-1}{2^{r+1}} = \frac{l}{2^r}$ y $t = \frac{k+1}{2^{r+1}} = \frac{m}{2^r}$. Tenemos entonces

$$\lambda x + (1 - \lambda) y = \frac{[sx + (1 - s)y] + [tx + (1 - t)y]}{2}.$$

Por lo tanto por hipótesis de inducción

$$f(\lambda x + (1 - \lambda) y) \le \frac{f(sx + (1 - s) y) + f(tx + (1 - t) y)}{2}$$

$$\le \frac{sf(x) + (1 - s) f(y) + tf(x) + (1 - t) f(y)}{2}$$

$$= \left(\frac{s + t}{2}\right) f(x) + \left(1 - \frac{s + t}{2}\right) f(y)$$

$$= \lambda f(x) + (1 - \lambda) f(y).$$

Esto completa la inducción. Ahora por cada x y y fijadas y cada lado de la inecuación:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
.

son funciones continuas de λ . Por lo tanto, el conjunto en el cual la inecuación se sostiene (la imagen inversa cerrada del conjunto $[0,\infty)$ bajo el mapa $\lambda \to \lambda f(x) + (1-\lambda) f(y) - f(\lambda x + (1-\lambda) y)$) es un conjunto cerrado. Dado que contiene todos los puntos $\frac{k}{2^n}$, $0 \le k \le n$, $n=1,2,\ldots$ debe contener una cerradura de este conjunto de puntos. Por lo tanto f es convexo.

Problema 6

6.1 Enunciado

Sea

$$X = \{f : [0, 2\pi] \rightarrow R : f \text{ continua} \}.$$

Naturalmente X tiene una estructura de espacio vectorial.

a. Defina

$$\langle f, g \rangle = \int_0^{2\pi} f(x) g(x) dx.$$

Muestre que $\langle \cdot, \cdot \rangle$ define un producto interno sobre X.

b. A partir del producto interno definido en el punto anterior, se puede definir una norma como sigue:

$$||u|| = \sqrt{\langle u, u \rangle}.$$

y a partir de dicha norma una métrica:

$$d(u,v) = ||u - v||.$$

Calcule para $m \neq n$

$$||\sin(mx) - \sin(nx)||$$
.

c. Concluya que ninguna bola cerrada en el origen de X es compacta. ¿Tiene X dimensión finita?

6.2 Solución