智能决策研究组(IDEA Team)

IDEA 代码手册

Handbook for IDEA Codes

著: Dr. Yang (Email: more026@hotmail.com)

PS: 仅用于学术研究,谢谢! 若有疑问,请联系 Dr. Yang! IDEA Team 官网,请访问 https://idea-team.github.io!

说明

首先,感谢你对我们的 IDEA 代码感兴趣,以及使用我们的 IDEA 代码完成数据建模与分析。在使用 IDEA 代码时,请遵守约定: 除了 IDEA 代码的配置文件和数据文件外,请勿拷贝走任何其他文件,也勿将任何文件上传网络。如有特殊需求,请与 Dr. Yang 联系。IDEA 代码的使用流程如下:

步骤 1: 安装第三方远程软件 ToDesk (官网链接)并登陆 ToDesk, 若无 ToDesk 账号,请自行注册。

步骤 2: 通过 ToDesk 远程 IDEA 服务器,若不知设备代码和临时密码,可联系 Dr. Yang。

步骤 3: 将配置文件和数据文件拷贝至 IDEA 服务器,其中配置文件和数据文件可在 IDEA Team 官网下载。每类模型对应一个文件夹,每个文件夹内有该类模型所需的数据样例和配置文件。

步骤 4: 启动 MATLAB,并通过 MATLAB 打开和运行配置文件,其中配置文件和数据文件需同一文件夹。

1. 累积置信规则库

文件名称: Main CBRB.m (内含模型配置说明)

可配模型: EBRB、Micro-EBRB、CBRB

数据文件: 所有模型均需 '.idea-tradata' '.idea-tstdata' '.idea-datainfo';

注: 若 userSetting.baseParaType = 'UsingIniBasePara', 还需 '.idea-inipara'

注: 若 userSetting.baseParaType = 'UsingOptBasePara', 还需 '.idea-optpara'

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case CBRB 文件夹

注:数据文件的相关说明如下。

关于'.idea-tradata''.idea-tstdata''.idea-datainfo'数据文件,假设数据名称为 iris,则这三个文件说明如下:

1) iris.idea-datainfo:存储数据集的基本信息,包括:属性名称、属性类型,以及必要的注释,具体格式如图 1 所示,其中每行表示一个属性信息,每行中有四个位置,每个位置的说明如下:

第一个位置填写标记内容,必填项,见红色方框,标记内容固定填写"@attribute";

第二个位置填写属性名称,必填项,见绿色方框,可填内容如 "SapalLength";

第三个位置填写数据类型,必填项,见蓝色方框,数据类型固定填写 "numeric" (当属性的数据类型为数值型时)或 "nominal" (当属性的数据类型为字符型时)

第四个位置填写注释内容,可选项,见棕色方框,注释起始必须为"%";

注1: 属性名称中勿包含空格、逗号或 Tab 健;

注 2: 每个位置之间以**空格、逗号或 Tab 健**分开。

注 3: 根据最后一个属性的数据类型,可自动识别该数据集是分类数据集或回归数据集,即"numeric"表明数据集为回归数据集;"nominal"表明数据集是分类数据集。

```
@attribute
             SepalLength
                           numeric
                                     % minValue = 4.300000 maxValue = 7.900000
@attribute
             SepalWidth
                            numeric
                                     % minValue = 2.000000 maxValue = 4.400000
@attribute
             PetalLength
                            numeric
                                     % minValue = 1.000000 maxValue = 6.900000
@attribute
             PetalWidth
                                     % minValue = 0.100000 maxValue = 2.500000
                           numeric
                                     % 3 labels: Iris-setosa Iris-versicolor Iris-virginica
@attribute
                           nominal
```

图 1 ".idea-datainfo" 文件类型的样例

- 2)iris.idea-tstdata:存储测试数据集的所有数据,具体格式如图 2 所示,其中每一行表示一组数据,每一列表示一个属性,与".idea-datainfo"中的属性相对应,例如:".idea-tstdata"第一列表示的属性与".idea-datainfo"第一行表示的属性相对应。
 - 注1:每一行可有注释内容,注释起始必须为"%";
 - 注 2: 每个数据之间以**空格、逗号或 Tab 健**分开。

```
1 4.6 3.4 1.4 0.3 Iris-setosa
2 5.4 3.7 1.5 0.2 Iris-setosa
3 5.7 3.8 1.7 0.3 Iris-setosa
4 5.1 3.8 1.5 0.3 Iris-setosa
5 4.9 3.1 1.5 0.1 Iris-setosa
```

图 2 ".idea-tstdata"文件类型的样例

3) iris.idea-tradata:存储训练数据集的所有数据,与".idea-tstdata"的数据格式一致。

🦻 → The Internet → 172.17.192.77					
lame	Size	Туре	Date modified	Date created	Date accessed
iris.idea-datainfo	1 KB	IDEA-DATAINFO File	2022/5/9 19:45	2022/5/9 19:45	2022/5/9 19:45
iris.idea-tradata	4 KB	IDEA-TRADATA File	2022/5/9 19:45	2022/5/9 19:45	2022/5/9 19:45
iris.idea-tstdata	1 KB	IDEA-TSTDATA File	2022/5/9 19:45	2022/5/9 19:45	2022/5/9 19:45
iris.idea-avgpara	1 KB	IDEA-AVGPARA File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-optiter	1 KB	IDEA-OPTITER File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-optpara	1 KB	IDEA-OPTPARA File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-outcome	2 KB	IDEA-OUTCOME File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-ruleset	3 KB	IDEA-RULESET File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-setting	1 KB	IDEA-SETTING File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-traout	5 KB	IDEA-TRAOUT File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12
iris.idea-tstout	2 KB	IDEA-TSTOUT File	2022/5/9 20:12	2022/5/9 20:12	2022/5/9 20:12

1)iris.idea-avgpara:基本参数的平均值,其中平均值指"numeric"属性的效用值由均分的方式获取,前提属性的属性权重均设置为 1.0,其中每行表示一个属性信息,每行中有四个位置(为方便表述,结果属性所在行也当作具有四个位置),每个位置的说明如下:

第一个位置是属性类型,见红色方框,"@antecedentAttribute"表示前提属性,"@consequentAttribte"表示结果属性;

第二个位置是属性权重,其中结果属性不存在属性权重,见绿色方框;

第三个位置是效用值的数量,见蓝色方框;当属性的数据类型为"nominal"时(属性的数据类型见".idea-datainfo"),效用值数量等于该属性中共计出现过的字符串数量;

第四个位置是对应数量的效用值,见棕色方框; 当属性的数据类型为 "nominal"时,效用值等于该属性中共计出现过的字符串;

```
@antecedentAttribute
                       1.000000
                                     4.300000 5.200000 6.100000 7.000000 7.900000
@antecedentAttribute
                       1.000000
                                 5
                                     2.000000 2.600000 3.200000 3.800000 4.400000
@antecedentAttribute
                       1.000000
                                 5
                                      1.000000 2.475000 3.950000 5.425000 6.900000
@antecedentAttribute
                       1.000000
                                  5
                                      0.100000 0.700000 1.300000 1.900000 2.500000
@consequentAttribute
                                     Iris-setosa Iris-versicolor Iris-virginica
```

- 2) iris.idea-optpara: 基本参数的最优值,其中最优值指经参数学习后获得的基本参数取值,文件格式与 ".idea-avgpara" 一致。
 - 3) iris.idea-optiter: 参数学习过程中的 fitness 值,第1列表示第几次迭代;第2列表示 fitness 值;
 - 4) iris.idea-ruleset: 模型中的规则信息,包括:规则权重和每个属性上的置信度分布;
 - 5) iris.idea-setting: 对该数据集进行建模时的模型参数设置;
- 6) iris.idea-outcome: 对实验结果的概述,其中 FailDataNum 表示未激活任何规则的数据数量; RuleActiRation表示规则库中规则被激活的比率;

7)iris.idea-traout: 训练数据集的输出结果,第 1 列表示数据的实际值(当为分类问题时,数值表示 iris.idea-avgpara 或 iris.idea-optpara 文件中的第几个类别);第 2 列表示数据的预测值;第 3 至 3+N 列表示模型推理所得的置信度分布(N 表示结果属性中评价等级的数量);最后一列表示模型在预测该数据时激活规则的数量;

8) iris.idea-tstout: 测试数据集的输出结果, 同 iris.idea-traout。

参考文献:

[1] J. Liu, L. Mart nez, A. Calzada, et al. A novel belief rule base representation, generation and its inference methodology. *Knowledge-Based Systems*, 2013, 53: 129-141. (EBRB)

- [2] L.H. Yang, J. Liu, Y.M. Wang, et al. A Micro-Extended Belief Rule-Based System for Big Data Multiclass Classification Problems. *IEEE Transactions on Systems, Man, and Cybernetics: Systems*, 2021, 51(1): 420-440. (Micro-EBRB)
- [3] L.H. Yang, J. Liu, F.F. Ye, et al. Highly explainable cumulative belief rule-based system with effective rule-base modeling and inference scheme. *Knowledge-Based Systems*, 2022, 240: 107805. (CBRB)

2. 非参数检验

文件名称: Main NoparametricTest.m (内含模型配置说明)

可配模型: Friedman、FriedmanAlignedRanks、Quade、BonferroniDunn、Holm、Holland、Finner、Hochberg数据文件: 请到 IDEA Team 官网下载配置文件样例,参见 Case_NoparametricTest 文件夹参考文献:

- [1] L.H. Yang, J. Liu, Y.M. Wang, et al. A Micro-Extended Belief Rule-Based System for Big Data Multiclass Classification Problems. *IEEE Transactions on Systems*, *Man, and Cybernetics: Systems*, 2021, 51(1): 420-440.
- [2] S. Garc á, A. Fern ández, J. Luengo, et al. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. *Information Sciences*, 2010, 180: 2044-2064.

DEcision-mAking

3. 数据包络分析

文件名称: Main DEA.m (内含模型配置说明)

可配模型: CCR、BCC、RAM、SBM

数据文件:所有模型均需'.idea-xdata''.idea-ydata'

- 注:假设'.idea-xdata''.idea-ydata'中<u>数据矩阵</u>分别表示为 $\{x(i,j); i=1,...,n; j=1,...,m\}$ 、 $\{y(i,j); i=1,...,n; j=1,...,s\}$, 其中n表示决策单元的数量;m表示投入指标的数量;s表示产出指标的数量。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case DEA 文件夹。

参考文献:

- [1] 杨国梁, 刘文斌, 郑海军. 数据包络分析方法(DEA)综述. *系统工程学报*, 2013, 28(6): 840-860. (CCR, BCC, RAM, SBM)
- [2] Ye F.F., Wang S., Yang L.H., et al. A new air pollution management method based on the integration of evidential reasoning and slacks-based measure. *Journal of Intelligent & Fuzzy Systems*, 2020, 39(5): 6833-6848. (SBM with undesirable outputs)
- [3] Yang L.H., Ye F.F., Wang Y.M., et al. An ensemble model for efficiency evaluation of enterprise performance based on evidential reasoning approach. *Journal of Intelligent & Fuzzy Systems*, 2023, 45(2): 2477-2495. (CCR, RAM, SBM)

4. 区间数据包络分析

文件名称: Main DEAInterval.m (内含模型配置说明)

可配模型: Interval CCR、Interval BCC

数据文件: 所有模型均需'.idea-lowerxdata''.idea-upperxdata''.idea-lowerydata''.idea-upperydata'

- 注:假设'.idea-lowerxdata''.idea-upperxdata'中<u>数据矩阵</u>分别表示为 $\{lowerX(i,j); i=1,..., n; j=1,..., m\}$ 、 $\{upperX(i,j); i=1,..., n; j=1,..., m\}$,其中 n 表示决策单元的数量;m 表示投入指标的数量;lowerX(i,j) 和 upperX(i,j)分别表示第i 个决策单元中第j 个投入指标的取值上下界;
- 注:假设'.idea-lowerydata''.idea-upperydata'中<u>数据矩阵</u>分别表示为 $\{lowerY(i, j); i=1,..., n; j=1,..., s\}$ 、 $\{upperY(i, j); i=1,..., n; j=1,..., s\}$,其中 n 表示决策单元的数量;s 表示产出指标的数量;lowerY(i, j)和 upperY(i, j)分别表示第i个决策单元中第j个产出指标的取值上下界;
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_DEAInterval 文件夹参考文献:
- [1] Ye F.F., Yang L.H., Wang Y.M. An interval efficiency evaluation model for air pollution management based on indicators integration and different perspectives. *Journal of Cleaner Production*, 2020, 245: 118945. (Interval CCR)
- [2] 杨国梁, 刘文斌, 郑海军. 数据包络分析方法(DEA)综述. *系统工程学报*, 2013, 28(6): 840-860. (Interval CCR、Interval BCC)

5. 非期望数据包络分析

文件名称: Main_DEAUndesirable.m(内含模型配置说明)

可配模型: UDEA EJOR2002、UDEA JORS2019、UDEA CAD2020

数据文件: 所有模型均需'.idea-xdata''.idea-ydata''.idea-zdata'

- 注:假设'.idea-xdata''.idea-ydata''.idea-zdata'中<u>数据矩阵</u>分别表示 $\{x(i,j); i=1,...,n; j=1,...,m\}$ 、 $\{y(i,j); i=1,...,n; j=1,...,s\}$ 、 $\{z(i,j); i=1,...,n; j=1,...,h\}$,其中 n 表示决策单元的数量;m 表示投入指标的数量;s 表示期望产出指标的数量;h 表示非期望产出指标的数量。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_DEAUndesirable 文件夹参考文献:
- [1] Seiford L.M., Zhu J., Modeling undesirable factors in efficiency evaluation. *European Journal of Operational Research*, 2002, 142: 16-20. (UDEA_EJOR2002)
- [2] Emrouznejad Ali, et al., A novel inverse DEA model with application to allocate the CO₂ emissions quota to different regions in Chinese manufacturing industries. *Journal of the Operational Research Society*, 2019, 70(7): 1079-1090. (UDEA_JORS2019)
- [3] Yang L.H., Ye F.F., Hu H.B., et al. A Data-Driven Rule-Base Approach for Carbon Emission Trend Forecast with Environmental Regulation and Efficiency Improvement. *Sustainable Production and Consumption*, 2024, 45: 316-332. (UDEA_JORS2019)
- [4] 叶菲菲, 杨隆浩, 王应明. 考虑投入产出关系与效率的环境治理成本预测方法. 控制与决策, 2020, 35(4): 993-1003. (UDEA_CAD2020)

6. 逆数据包络分析

文件名称: Main DEAInverse.m (内含模型配置说明)

可配模型: InvUDEA_JCLP2017、InvUDEA_SASC2021

数据文件: 所有模型均需'.idea-xdata''.idea-ydata''.idea-zdata'

- 注: InvUDEA_JCLP2017 还需'idea-deltaxwdata''idea-deltaydata''idea-deltazdata'
- 注: InvUDEA_SASC2021 还需'idea-deltaallzdata'
- 注: 假设'.idea-xdata''.idea-ydata''.idea-zdata'中<u>数据矩阵</u>分别表示 $\{x(i,j); i=1,...,n; j=1,...,m\}$ 、 $\{y(i,j); i=1,...,n; j=1,...,s\}$ 、 $\{z(i,j); i=1,...,n; j=1,...,h\}$,其中 n 表示决策单元的数量;m 表示投入指标的数量;s 表示期望产出指标的数量;s 表示非期望产出指标的数量。
- 注:假设'idea-deltaxwdata'中<u>数据行向量</u>表示为{deltaXW(j); j=1,...,m},其中m表示投入指标的数量; deltaXW(j)表示第j个投入指标变化量的权重;
- 注:假设'idea-deltaydata''idea-deltazdata'中<u>数据矩阵</u>表示为{deltaY(i,j); i=1,...,n; j=1,...,s}、{deltaZ(i,j); i=1,...,n; j=1,...,h},其中n表示决策单元的数量;s表示期望产出指标的数量;h表示非期望产出指标的数量;deltaY(i,j)表示第i个决策单元中第j个期望产出指标的变化量;deltaZ(i,j)表示第i个决策单元中第j个非期望产出指标的变化量。
- 注:假设'idea-deltaallzdata'中<u>数据行向量</u>表示{deltaAllZ(j); j=1,...,h},其中h表示非期望产出指标的数量; deltaAllZ(j)表示第j个非期望产生关于所有决策单元的总体变化量。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_DEAInverse 文件夹

参考文献:

Intelligent

- [1] Chen L., et al., An investment analysis for China's sustainable development based on inverse data envelopment analysis. *Journal of Cleaner Production*, 2017, 142: 1638-1649. (InvUDEA_JCLP2017)
- [2] Chen L., et al., A new inverse data envelopment analysis approach to achieve China's road transportation safety objectives. *Safety Science*, 2021, 142: 105362. (InvUDEA_SASC2021)

7. 交叉数据包络分析

文件名称: Main_DEACross.m(内含模型配置说明)

可配模型: CrossCCR2010 Aggressive、Benevolent、Neutral; CrossCCR2018 Aggressive、Benevolent

数据文件:所有模型均需'.idea-xdata''.idea-ydata'

- 注:假设'.idea-xdata''.idea-ydata'中<u>数据矩阵</u>分别表示为 $\{x(i,j); i=1,...,n; j=1,...,m\}$ 、 $\{y(i,j); i=1,...,n; j=1,...,s\}$,其中n表示决策单元的数量;m表示投入指标的数量;s表示产出指标的数量。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_DEACross 文件夹。

参考文献:

- [1] Wang Y.M., Chin K.S. A neutral DEA model for cross-efficiency evaluation and its extension. *Expert Systems with Applications*, 2010, 37(5): 3666-3675. (CrossCCR2010 Aggressive, Benevolent, Neutral)
- [2] 刘文丽, 王应明, 吕书龙. 基于交叉效率和合作博弈的决策单元排序方法. 中国管理科学, 2018, 26(04): 163-170. (CrossCCR2018 Aggressive、Benevolent)

8. 信息融合

文件名称: Main BetaFusion.m (内含模型配置说明)

可配模型: ER、Weighting Average (WA)、ER Rule、Cautious Conjunctive (CC) Rule

数据文件: 所有模型均需'.idea-betadata''.idea-wdata'

- 注: 若使用 ER Rule, 还需'.idea-rdata'
- 注:假设'.idea-betadata'中<u>数据矩阵</u>表示为{beta(i, n); i=1,...,M; n=1,...,N},其中M表示证据或属性的数量;N表示评价等级的数量;beta(i, n)表示第i个证据或属性在第n个评价等级上的置信度。
- 注:假设'.idea-wdata''.idea-rdata'中<u>数据列向量</u>分别表示 $\{w(i); i=1,...,M\}$ 和 $\{r(i); i=1,...,M\}$,其中 M 表示证据或属性的数量;w(i)和 $\{r(i)\}$ 分别表示第 $\{i\}$ 个证据或属性的权重和可靠度。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_BetaFusion 文件夹参考文献:
- [1] Y.M. Wang, J.B. Yang, D.L. Xu. Environmental impact assessment using the evidential reasoning approach. European Journal of Operational Research, 2006, 174(3): 1885-1913. (ER)
- [2] T. Denoeux. Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. *Artificial Intelligence*, 2008, 172(2-3): 234-264. (CC Rule)
- [3] L.H. Yang, F.F. Ye, Y.M. Wang. Ensemble belief rule base modeling with diverse attribute selection and cautious conjunctive rule for classification problems. *Expert Systems with Applications*, 2020, 146: 113161. (CC Rule)
- [4] L.H. Yang, S.H. Wang, F.F. Ye, et al. Environmental investment prediction using extended belief rule-based system and evidential reasoning rule. *Journal of Cleaner Production*, 2021, 289: 125661. (ER Rule)

9. 区间信息融合

DEcision-mAking

文件名称: Main_IER.m(内含模型配置说明)

可配模型: ER with interval belief degree(目标函数可为置信度和效用值)

数据文件: 所有模型均需 '.idea-lowerbetadata' '.idea-lowerbetadata' '.idea-wdata'

- 注: 若 intervalBetaHType = 'UsingExpert', 还需 '.idea-lowerbetahdata' '.idea-upperbetahdata'
- 注: 若 targetFunctionType='UsingUtility', 还需 '.idea-udata'
- 注:假设'.idea-lowerbetadata''.idea-upperbetadata'中<u>数据矩阵</u>分别表示{lowerBeta(i, n); i=1,..., M; n=1,..., N}和{upperBeta(i, n); i=1,..., M; n=1,..., N}, 其中 M 表示证据或属性的数量; N 表示评价等级的数量; lowerBeta(i, n)和 upperBeta(i, n)分别表示第 i 个证据或属性在第 n 个评价等级上的置信度上下界。
- 注: 假设'.idea-wdata'中**数据列向量**表示 $\{w(i); i=1,...,M\}$, 其中M表示证据或属性的数量;w(i)表示第i个证据或属性的权重。
- 注:假设 '.idea-lowerbetahdata' '.idea-upperbetahdata'中<u>数据列向量</u>分别表示{lowerBetaH(i); i=1,..., M} 和{upperBetaH(i); i=1,..., M}, 其中 M 表示证据或属性的数量; lowerBeta(i)和 upperBeta(i)分别表示第 i 个证据或属性上未知置信度的上下界。
- 注: 假设 '.idea-udata'中**数据行向量**表示 $\{u(n); n=1,..., N\}$, 其中 N 表示评价等级的数量; u(n)表示第 n 个 评价等级的效用值。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_IBetaFusion 文件夹

参考文献:

[1] Y.M. Wang, J.B. Yang, D.L. Xu, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees. *European Journal of Operational Research*, 2006, 175(1): 35-66.

[2] F.F. Ye, L.H. Yang, Y.M. Wang. An interval efficiency evaluation model for air pollution management based on indicators integration and different perspectives. *Journal of Cleaner Production*, 2020, 245: 118945.

10. 指标权重计算

文件名称: Main_Weighting.m(内含模型配置说明)

可配模型: Correlation Coefficient and Standard Deviation (CCSD)、Entropy、Relieff、Pearson Coefficient

数据文件: 所有模型均需'.idea-tradata''.idea-tstdata''.idea-datainfo''.idea-attrtype'

注:数据文件'.idea-tradata''.idea-tstdata''.idea-datainfo'参见累积置信规则库

注: 假设'.idea-attrtype'中数据行向量表示为 $\{s(m); m=1,..., M; s(m) \in \{0,1\}\}$, 其中 M 表示指标数量,当s(m)=0 时,表示第 m 个指标为 Benefit (The bigger, the better)型; 当 s(m)=1 时,表示第 m 个指标为 Cost (The smaller, the better)型

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_Weighting 文件夹参考文献:

- [1] Ye F.F., Yang L.H., Wang Y.M., A new environmental governance cost prediction method based on indicator synthesis and different risk coefficients. *Journal of Cleaner Production*, 2019, 212: 548-566. (CCSD)
- [2] Ye F.F., Wang S., Yang L.H., *et al.* A new air pollution management method based on the integration of evidential reasoning and slacks-based measure. *Journal of Intelligent & Fuzzy Systems*, 2020, 39(5): 6833-6848. (Entropy)
- [3] Robnik-Sikonja M., Kononenko I., An adaptation of Relief for attribute estimation in regression. *Machine learning: Proceedings of the fourteenth International Conference*, 1997, 5: 296-304. (Relieff)
- [4] Ye F.F., Wang S., Nicholl P., *et al.* Extended belief rule-based model for environmental investment prediction with indicator ensemble selection. *International Journal of Approximate Reasoning*, 2020, 126: 290-307. (Entropy, Relieff, Pearson Coefficient)

11. 主成份分析

文件名称: Main PCA.m(内含模型配置说明)

可配模型: Principal Component Analysis (PCA)

数据文件:所有模型均需'.idea-tradata''.idea-tstdata''.idea-datainfo'

注:数据文件'.idea-tradata''.idea-tstdata''.idea-datainfo'参见累积置信规则库

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_PCA 文件夹

参考文献:

[1] Ye F.F., Yang L.H., Wang Y.M., A new environmental governance cost prediction method based on indicator synthesis and different risk coefficients. *Journal of Cleaner Production*, 2019, 212: 548-566. (CCSD)

12. 时序数列预测

文件名称: Main TSF.m (内含模型配置说明)

可配模型: Grey Model (GM)、Recursive GM (RGM)、ARIMA

数据文件: 所有模型均需'.idea-tradata''.idea-tstdata''.idea-datainfo'

注:数据文件'.idea-tradata''.idea-tstdata''.idea-datainfo'参见累积置信规则库

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_TFS 文件夹

参考文献:

[1] Liu L.Y., et al., The recursive grey model and its application. Expert Systems with Application, 2023, 119: 447-464. (RGM)

13. 统计年鉴数据转 IDEA 数据

文件名称: Main_NBS2IDEA.m(内含模型配置说明)

可配模型:统计年鉴的 xlsx 数据转'.idea-tradata''.idea-tstdata''.idea-datainfo'

数据文件: 所有模型均需'.idea-tradata''.idea-tstdata''.idea-datainfo'

注:数据文件'.idea-tradata''.idea-tstdata''.idea-datainfo'参见累积置信规则库

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case NBS2IDEA 文件夹

14. 数据生成置信度

文件名称: Main_Data2Beta.m(内含模型配置说明)

可配模型: UsingAdjacentUFunction(根据相邻效用值计算置信度)、UsingMinimaxUFunction(根据最小和最大效用计算置信度)、UsingIntervalDataFunction(区间数据生成区间置信度)

数据文件: 所有模型均需'idea-udata'

- 注: UsingIntervalDataFunction, 还需'idea-lowerdata''idea-upperdata'
- 注: UsingAdjacentUFunction 和 UsingMinimaxUFunction, 还需'idea-data'
- 注:假设 '.idea-udata'中**数据行向量**表示 $\{u(n); n=1,..., N\}$,其中 N 表示评价等级的数量;u(n)表示第 n 个评价等级的效用值。
- 注:假设'.idea-lowerdata''.idea-upperdata'中<u>数据列向量</u>分别表示为 $\{lowerX(t); t=1,..., T\}$ 、 $\{upperX(t); t=1,..., T\}$,其中 T 表示数据数量; lowerX(t)和 upperX(t)分别表示第 t 个数据的取值上下界。
- 注:假设'.idea-data'中数据列向量表示 $\{x(t); t=1,...,T\}$,其中T表示数据数量;x(t)表示第t个数据取值。
- 注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_Data2Beta 文件夹

参考文献:

- [1] L.H. Yang, J. Liu, F.F. Ye, et al. Highly explainable cumulative belief rule-based system with effective rule-base modeling and inference scheme. *Knowledge-Based Systems*, 2022, 240: 107805.
- [2] Y.M. Wang, J.B. Yang, D.L. Xu, et al. The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees. *European Journal of Operational Research*, 2006, 175(1): 35-66.

15. 深度卷积模糊系统

文件名称: Main DCFS.m (内含模型配置说明)

可配模型: Deep Convolutional Fuzzy System (DCFS)

数据文件: .idea-tradata' '.idea-tstdata' '.idea-datainfo';

注:数据文件说明参见累积置信规则库

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_DCFS 文件夹

参考文献:

[1] Wang L.X. Fast Training Algorithms for Deep Convolutional Fuzzy Systems with Application to Stock Index Prediction. *IEEE Transactions on Fuzzy Systems*, 2020, 28(7): 1301-1314.

16. 非均衡数据采样 FW-SMOTE

文件名称: Main_FWSMOTE.m(内含模型配置说明)

可配模型: Feature-Weigihted SMOTE (FW-SMOTE)

数据文件: .idea-tradata' '.idea-tstdata' '.idea-datainfo';

注:数据文件说明参见累积置信规则库

注: 只适用于二分类数据集

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_FWSMOTE 文件夹

参考文献:

[1] Maldonado S., Vairetti C., Fernandez A., et al., FW-SMOTE: A feature-weighted oversampling approach for imbalanced classification. *Pattern Recognition*, 2022, 124: 108511.

17. 扩展置信规则库-Fu et al., 2023

文件名称: Main_Fu2023.m(内含模型配置说明)

可配模型: Extended Belief Rule Base (EBRB) proposed by Fu et al. at 2023

数据文件: .idea-tradata' '.idea-tstdata' '.idea-datainfo';

注:数据文件说明参见累积置信规则库

注: 只适用于分类数据集

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_Fu2023 文件夹

参考文献:

[1] Fu C., Hou B.B., Xue M., *et al.*, Extended Belief Rule-Based System with Accurate Rule Weights and Efficient Rule Activation for Diagnosis of Thyroid Nodules. *IEEE Transactions on Systems*, *Man, and Cybernetics: Systems*, 2023, 53(1): 251-263.

18. 非均衡扩展置信规则库-Hou et al., 2024

文件名称: Main_Hou2024.m (内含模型配置说明)

可配模型: Extended Belief Rule Base (EBRB) proposed by Hou et al. at 2024

数据文件: .idea-tradata' '.idea-tstdata' '.idea-datainfo';

注: 数据文件说明参见累积置信规则库

注: 只适用于二分类数据集

注:请到 IDEA Team 官网下载数据文件和配置文件样例,参见 Case_Hou2024 文件夹

参考文献:

[1] Hou B., Fu C., Xue M., An extended belief rule-based system with hybrid sampling strategy for imbalanced rule base. *Information Sciences*, 2024, 684: 121288.

