Lab Worksheet

ชื่อ-นามสกุล <u>หาย คุภจิชส์ สักลิเคในหรื</u> รหัสนศ. <u>663380239 - 8</u> Section 1

Lab#7 - White-box testing

วัตถุประสงค์การเรียนรู้

- 1. ผู้เรียนสามารถออกแบบการทดสอบแบบ White-box testing ได้
- 2. ผู้เรียนสามารถวิเคราะห์ปัญหาด้วย Control flow graph ได้
- 3. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Line coverage ได้
- 4. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Block coverage ได้
- 5. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch coverage ได้
- 6. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Condition coverage ได้
- 7. ผู้เรียนสามารถออกแบบกรณีทดสอบโดยคำนึงถึง Branch and Condition coverage ได้

โจทย์: CLUMP COUNTS

Clump counts (https://codingbat.com/prob/p193817) เป็นโปรแกรมที่ใช้ในการนับการเกาะกลุ่มกันของข้อมูลภายใน Array โดยการเกาะกลุ่มกันจะนับสมาชิกใน Array ที่อยู่ติดกันและมีค่าเดียวกันตั้งแต่สองตัวขึ้นไปเป็นหนึ่งกลุ่ม เช่น

$$[1, 2, 2, 3, 4, 4] \rightarrow 2$$

 $[1, 1, 2, 1, 1] \rightarrow 2$
 $[1, 1, 1, 1, 1] \rightarrow 1$

ซอร์สโค้ดที่เขียนขึ้นเพื่อนับจำนวนกลุ่มของข้อมูลที่เกาะอยู่ด้วยกันอยู่ที่

https://github.com/ChitsuthaCSKKU/SOA/tree/2025/Assignment/Lab7 โดยที่ nums เป็น Array ที่ใช้ในการสนับสนุน การนับกลุ่มของข้อมูล (Clump) ทำให้ nums เป็น Array ที่จะต้องไม่มีค่าเป็น Null และมีความยาวมากกว่า 0 เสมอ หาก nums ไม่เป็นไปตามเงื่อนไขที่กำหนดนี้ โปรแกรมจะ return ค่า 0 แทนการ return จำนวนกลุ่มของข้อมูล

แบบฝึกปฏิบัติที่ 7.1 Control flow graph

จากโจทย์และ Source code ที่กำหนดให้ (CountWordClumps.java) ให้เขียน Control Flow Graph (CFG) ของเมธอด countClumps() จากนั้นให้ระบุ Branch และ Condition ทั้งหมดที่พบใน CFG ให้ครบถ้วน

ตอบ

Branch:

CP353201 Software Quality Assurance (1/2568)

Lab instruction

Condition:

A: nums == null;

B: nums.length == 0;

C: i < nums.length;

D: num[i] == prev;

F: num[i] V = prev;

แบบฝึกปฏิบัติที่ 7.2 Line Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Line coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุบรรทัดที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Line coverage

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
1	null	0	Line No.: 6,7
2	[]	0	Line No.: 6, 7
3	[1,1,1]	1	Line No.: 6,10,11,12,14,15,16,15
4	[1,1,2,3,3]	2	Line No.: 6, 10, 11, 12, 14, 15, 16, 17

Line coverage =
$$\binom{13}{11}$$
 × 100 * 100 $\frac{1}{11}$

แบบฝึกปฏิบัติที่ 7.3 Block Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Block coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Block ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า Block coverage

Lab instruction

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
9	[]	0	Block: 1, 2
6	[1,1]	1	Block: 1,3,4,5,6,7,8,9,11
7	[1,2]	0	Block: 1,3,4,5,6,7,9,10,11
8	[2,2,2]	1	Block: 1,3,4,5,6,7,8,9,11

Block coverage =
$$\binom{11}{11}$$
 x 100 = 100 $\frac{1}{11}$

แบบฝึกปฏิบัติที่ 7.3 Branch Coverage

- 4. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Branch coverage = 100%
- 5. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Branch ที่ถูกตรวจสอบทั้งหมด
- 6. แสดงวิธีการคำนวณค่า Branch coverage

<u>ตอบ</u>

Test Case No.	Input(s)	Expected Result(s)	Path and Branch
9	[]	D	Path: 1-2 Branch: 1T
10	[1]	0	Path: 1-3-4-5-7 Branch: 1F , 5F
11	[1,1]	1	Path: 1-3-4-6-6-8-9-11-5-7 Branch: 1F, 5T, 5F, 1T, 9F
12	[1,2]	O	Path: 1-3-4-5-6-9-10-11-5-7 Branch: 1F, 5T, 5F, 6F, 9T

CP353201 Software Quality Assurance (1/2568)

Lab instruction

13	[2,2,2]	1	Path: 1-3-4-5-6-8-9-11-5-6-9-10 -11-5-7 Branch: 4F, 5T, 5F, 61, 6F, 9T, 9F
			Path:
			Branch:
			Path:
			Branch:
			Path:
			Branch:

Branch coverage = $\binom{\$}{\$}$ × 100 $\frac{1}{\$}$

แบบฝึกปฏิบัติที่ 7.4 Condition Coverage

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบเพื่อให้ได้ Condition coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path และ Condition ที่ถูกตรวจสอบทั้งหมด เช่น Condition A = T และ Condition B = F
- 3. แสดงวิธีการคำนวณค่า Condition coverage

ตอบ

Test Case No.	Input(s)	Expected Result(s)	Path and Condition
14	Mull	0	P = 1-2
			C = Num == null
ΛC	[1	O	P = 1 - 2
15			C = nuns.length = 0
16	[1,1]	4	P= 1-3-4-5-6-8-9-11-5-7
	•		C= ilhums.length , numsLi] == prev, ? incl
17	۲۰۰٦	0	P: 1-3-4-5-6-9-10-11-5-7
V I	[1,2]	U	C= it nons.length , homs[i] } = prev

CP353201 Software Quality Assurance (1/2568)

Lab instruction

Condition coverage = $\binom{b}{b} \times 1^{\circ \circ} = 100\%$

แบบฝึกปฏิบัติที่ 7.5 Branch and Condition Coverage (C/DC coverage)

- 1. จาก Control Flow Graph (CFG) ของเมธอด countClumps() ในข้อที่ 1 ให้ออกแบบกรณีทดสอบให้ได้ C/DC coverage = 100%
- 2. เขียนกรณีทดสอบที่ได้ พร้อมระบุ Path, Branch, และ Condition ที่ถูกตรวจสอบทั้งหมด
- 3. แสดงวิธีการคำนวณค่า C/DC coverage
- 4. เขียนโค้ดสำหรับทดสอบตามกรณีทดสอบที่ออกแบบไว้ด้วย JUnit และบันทึกผลการทดสอบ

ตอบ

Input(s)	Expected Result(s)	Actual Result(s)	Path, Branch, and
			Condition
			P= 1-2
n ul	0		B = 1T
		Pass/Fail: 🌬ss	C = Num = 4 1
			nul D

Lab instruction

19	[]	0	Pass/Fail: Pass	P = 1-2 B = 1T C = hums.length == 0
20	[1]	0	Pass/Fail:	P=1-3-4-5-7 B= 1F, 5F C= 74in Condition On
21	[2,2]	1	Pass/Fail: Pass	P = 1-3-4-5-6-8-9-11-5-7 B = 1F,5T,5F,6T,9F C = C, D, E
21	[3,4]	0	Pass/Fail: Pass	P = 1-3-4-5-6-9-10-11-5-9 B = 1F, ST, SF, 6F, 9T C = C, F, F
23	[5,6,6]	1	Pass/Fail: Pass	P= 1-3-4-5-6-4-9-11-5-6- 9-10-11-5-7 B=1F,5T,5F,6T,6F,9T C=C,D,F,F
			Pass/Fail:	
			Pass/Fail:	
			Pass/Fail:	

C/DC coverage =