L2 Math et Math Info – Analyse 3 Contrôle 2 Version B

Durée: 1 heure 30 minutes

9 Novembre 2023

Les documents et appareils électroniques sont interdits. Tout argument devra être justifié par une référence précise au cours ou une démonstration. Le barème est donné à titre indicatif et est susceptible de changer

Ne tournez pas la page avant d'avoir été autorisé.e à le faire

Exercice 1. (4pt)

Discuter suivant la valeur du paramètre $\alpha \in \mathbb{R}$ la convergence de l'intégrale

$$\int_0^{+\infty} \frac{e^{-t} - 1}{t^{\alpha}} dt$$

Exercice 2. (4pt) Etudier la convergence simple et la convergence uniforme de la suite de fonction $(f_n)_{n\in\mathbb{N}}$ défini par $f_n(t) = \frac{1}{(1+t^2)^n}$ sur \mathbb{R} , puis sur $[a, +\infty[$ avec a>0.

Exercice 3. (3pt) Soit g la fonction définie sur $]0, +\infty[$ par

$$g(t) = \arctan(\sqrt{t}).$$

- 1. Étudier les variation de g.
- 2. La fonction q est-elle bornée?
- 3. Calculer $M = \sup_{t \in]0,+\infty[} |f(t)|$. La borne supérieure M est-elle atteinte? Donner une suite de nombres $t_n \in]0,+\infty[$ telle que $\lim_{n\to +\infty} |g(t_n)| = M$.

Exercice 4. (4pt) Soit $n \in \mathbb{N}^*$ et f_n la fonction définie sur [0,1] par

$$\forall t \in [0,1], \qquad f_n(t) = \frac{2^n t}{1 + n2^n t^2}.$$

- 1. Montrer que la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ converge simplement sur [0,1] vers une fonction f que l'on déterminera.
- 2. Calculer $I_n = \int_0^1 f_n(t)dt$ et sa limite en $+\infty$. En déduire que la convergence $(f_n)_{n\in\mathbb{N}}$ n'est pas uniforme sur [0,1].
- 3. Donner une démonstration directe du fait que la suite $(f_n)_{n\in\mathbb{N}}$ ne converge pas uniformément sur [0,1].
- 4. La convergence de $(f_n)_{n \in \mathbb{N}}$ est-elle uniforme sur [a, 1] avec 0 < a < 1?

Exercice 5. (5pt) Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée de nombre réels. Pour tout $n\in\mathbb{N}$, on pose $x_n = \inf\{u_p; p \ge n\}$ et $y_n = \sup\{u_p; p \ge n\}$.

- 1. Pourquoi les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont-elles bien définies?
- 2. Déterminer les suites $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ dans les cas suivants :

(a)
$$u_n = (-1)^n$$
 (b) $u_n = 1 - \frac{1}{n+1}$.

- 3. Démontrer que $(x_n)_{n\in\mathbb{N}}$ est croissante, que $(y_n)_{n\in\mathbb{N}}$ est décroissante. En déduire que ces deux suites sont convergentes. On notera α la limite de $(x_n)_{n\in\mathbb{N}}$ et β celle de $(y_n)_{n\in\mathbb{N}}$
- 4. Démontrer que $\alpha \leq \beta$
- 5. Démontrer que si $\alpha = \beta$, alors la suite $(u_n)_{n \in \mathbb{N}}$ converge.
- 6. Démontrer que si $(u_n)_{n\in\mathbb{N}}$ admet une sous-suite convergeant vers un réel l alors $\alpha \leq l \leq \beta$
- 7. Démontrer que, pour tout $\epsilon > 0$ et pour tout $n \in \mathbb{N}$, il existe $p \geq n$ tel que $y_n \epsilon \leq u_p \leq y_n$.
- 8. Démontrer que, pour tout $\epsilon > 0$ et pour tout $p_0 \in \mathbb{N}$, il existe $p > p_0$ tel que $\beta 2\epsilon \le u_p \le \beta + 2\epsilon$.
- 9. En déduire qu'il existe une sous-suite de $(u_n)_{n\in\mathbb{N}}$ qui converge vers β
- 10. Quel théorème vient-on de redémontrer?