

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO								
Disciplina:				Códi	igo da Disciplina:			
Inteligência Artificial					ECM502			
Course:								
Artificial Intelligence								
Materia:								
Inteligencia Artificial								
Periodicidade: Anual	Carga horária total:	80	Carga horária semar	ial: 00 ·	- 00 - 02			
Curso/Habilitação/Ênfase:			Série:	Período:	:			
Engenharia de Computação			5	Diurno				
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação			
Sergio Ribeiro Augusto		Engenheiro Ele	tricista		Doutor			
Professores:	Titulação - Graduação				Pós-Graduação			
Sergio Ribeiro Augusto	Engenheiro Eletricista			Doutor				
Tiago Sanches da Silva	Engenheiro em Elétrica e Eletrônica			Mestre				
OBJ	ETIVOS - Conheci	mentos. Habili	dades. e Atitude:					

ETIVOS - Connecimentos, Habilidades, e Atitudes

Introduzir o conceito de inteligência artificial como um conjunto de técnicas e metodologias de programação, utilizadas como tentativas na resolução de problemas, de forma mais eficiente que soluções algorítmicas e da forma mais próxima possível da solução proposta por um ser humano.

Apresentar alguns modelos clássicos de inteligência artificial: Lógica Nebulosa (Fuzzy), Redes Neurais Artificiais. Apresentar o conceito sobre lógica fuzzy e suas aplicações no contexto da inteligência artificial.

Apresentar alguns modelos tradicionais de redes neurais artificiais e suas aplicações em reconhecimento de padrões. Utilizar alguns dos modelos resolução de problemas de interesse: aproximadores apresentados para universais, reconhecimento de caracteres (OCR). Integração de aplicações com soluções de mercado, como scikit-learn e TensorFlow.

EMENTA

Introdução. Conceitos, evolução e histórico da inteligência artificial. Modelos clássicos de inteligência artificial: Lógica Nebulosa (Fuzzy Logic), Redes Neurais Artificiais. Aplicações da lógica fuzzy. Redes neurais Perceptron multicamadas aplicadas no reconhecimento de padrões. Conceitos de aprendizagem Soluções de mercado: IBM (Watson) e Google (deep learning). (TensorFlow). Desenvolvimento de aplicações e integração com soluções em nuvem.

2020-ECM502 página 1 de 9

SYLLABUS

Introduction. Concepts, evolution and history of artificial intelligence. Classic models of artificial intelligence: Fuzzy logic, artificial neural networks. Applications of fuzzy. Multilayer Perceptron applied in pattern recognition. Concepts of deep learning. Market solutions: IBM (Watson) and Google TensorFlow). Development of applications and integration with cloud solutions.

TEMARIO

Introducción. Conceptos, evolución y la historia de la inteligencia artificial. Introducción. Clásicos modelos de la inteligencia artificial: Lógica Difusa (Fuzzy Logic), redes neurales artificiales. Lógica Difusa y sus aplicaciones. Redes neurales Perceptron multi-capas aplicado en el reconocimiento de las señales. Conceptos de aprendizaje profundo ("deep learning"). Soluciones de mercado: IBM (Watson) y Google (TensorFlow). Desarrollo de aplicaciones e integración con soluciones en nube.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Sala de aula invertida
- Project Based Learning
- Seminários

METODOLOGIA DIDÁTICA

A disciplina envolve aulas teóricas expositivas com utilização de equipamento multimídia e aulas práticas com recursos computacionais, sendo que os assuntos abordados em teoria serão exercitados nas aulas práticas e também no sentido inverso. Software de simulação Matlab será utilizado, assim como soluções de mercado (scikit-learn, TensorFlow), para desenvolvimento de aplicações.

Trabalhos práticos e estudos de caso são realizados.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Utilização do software MATLAB, computação em nuvem, estatística e lógica de programação.

CONTRIBUIÇÃO DA DISCIPLINA

Apresentar o conceito de inteligência artificial destacando: aspectos históricos desde os primórdios até a atualidade; a evolução ao longo do tempo destacando as definições com abordagens clássicas e abordagens conexionistas; estudo de alguns modelos tradicionais e seus campos de aplicação; tendências e perspectivas futuras.

Apresentar modelos: Lógica Fuzzy, Redes Neurais Artificiais e aspectos de Aprendizagem Profunda ("Deep Learning"). Utilizá-los como ferramentas aplicáveis aos problemas que envolvam reconhecimento de padrões, otimização e classificação de dados. Utilização de softwares de mercado para desenvolvimento de aplicações ligadas à aprendizagem de máquina ("Machine Learning").

2020-ECM502 página 2 de 9

BIBLIOGRAFIA

Bibliografia Básica:

GERON, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow. Sebastopol, CA: O'Reilly, 2017.

GOODFELLOW, I.; BENGIO, Y.; COURVILE, A. Deep Learning. London: The MIT Press, 2016.

HAYKIN, Simon. Redes neurais: princípios e prática. [Neural networks : a comprehensive foundation]. ENGEL, Paulo Martins (Trad.). 2. ed. Porto Alegre: Bookman, 2001. 900 p. ISBN 8573077182.

ROSS, Thimothy J. Fuzzy logic with engineering applications. 4. ed. Hoboken, N. J: Wiley, c2017. 562 p.

ROY, Samir; CHAKRABORTY, Udit; Introduction to Soft Computing: Neuro-Fuzzy and Genetic Algorithms. Editora: Pearson; 608p; 2013.

RUSSELL, Stuart J; NORVIG, Peter. Inteligência artificial. [Artificial inteligence]. MACEDO, Regina Célia Simille de (Trad.). 3. ed. Rio de Janeiro: Elsevier, 2013. 988 p. ISBN 9788535237016.

Bibliografia Complementar:

FACELI, Katti. Inteligência Artificial. Uma Abordagem de Aprendizado de Máquina. 1 ed. LTC, 2011.

HOPE, T.; RESHEFF, Y.; LIEDER, I. Learning TensorFlow. Sebastopol, CA: O'Reilly, 2017.

JANG, Jyh-Shing Roger; SUN, Chuen-Tsai; MIZUTANI, Eiji. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. New Jersey: Prentice Hall, c1997. 614 p. (MATLAB Curriculum Series). ISBN 0132610663.

LINDEN, Ricardo. Algoritmos genéticos: importante ferramenta da inteligência computacional. Rio de Janeiro: Brasport, 2006. 348 p. ISBN 8574522651.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-ECM502 página 3 de 9

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

Trabalhos:

- 1. Redes Neurais Artificiais;
- 2. Lógica Nebulosa (Fuzzy);
- 3. Desenvolvimento de aplicação utilizando soluções de mercado: scikit-learn;
- 4. Desenvolvimento de aplicação utilizando soluções de mercado: TensorFlow;

2020-ECM502 página 4 de 9

OUTRAS INFORMAÇÕES				

2020-ECM502 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
1- Matlab com os toolboxes de Redes Neurais Artificias (Neural Networks
toolbox) e de Lógica Nebulosa (Fuzzy Logic toolbox).
2- Microsoft office.
3- Anaconda para python 3.X: https://www.anaconda.com/download/
4- Scikit-Learn: https://scikit-learn.org/stable/install.html Obs: Instalação do scikit-learn no anaconda pode ser realizada dentro do próprio ambiente do anaconda usando o comando: - conda
5 - Tensorflow no anaconda: https://www.anaconda.com/blog/developer-blog/tensorflow-in-anaconda/
6 - Pandas: https://anaconda.org/anaconda/pandas

2020-ECM502 página 6 de 9

2020-ECM502 página 7 de 9

	DDOOD AMA DA DICCIDI INIA	
	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Semana de recepção de calouros. Atividades de planejamento e	0
	atendimento.	
2 L	Apresentação da disciplina. Introdução à Inteligência Artificial	0
	(IA) e ao aprendizado de máquina. Introdução às Redes Neurais	
	Artificiais (RNA).	
3 L	Carnaval. Atendimento.	0
4 L	O modelo perceptron e o problema da separabilidade linear.	0
5 L	Tipos de aprendizagem: supervisionada, não supervisionada,	0
	aprendizagem por reforço. Introdução às redes Perceptron	
	Multicamada (PMC/MLP).	
6 L	O modelo Perceptron Multicamada. Algoritmo de retropropagação do	0
	erro ("backpropagation").	
7 L	Utilização da ferramenta NNTOOL do Matlab. Aplicação de MLP/PMC	41% a 60%
	como aproximador de funções.	
8 L	Aplicação de MLP/PMC como aproximador de funções (cont.)	91% a
		100%
9 L	Semana de provas - P1.	0
10 L	Aplicação de MLP em problemas de reconhecimento de caracteres	61% a 90%
	(OCR).	
11 L	Aplicação de MLP em problemas de reconhecimento de caracteres	91% a
	(OCR) usando a ferramenta NNTOOL.	100%
12 L	Introdução à Lógica Nebulosa (Fuzzy) : conjuntos nebulosos,	0
	funções de pertinência, operações, lógica, regras Fuzzy (Mamdani,	
	Takagi-Sugeno)	
13 L	Mecanismos de inferência, desnebulização ("defuzzificação").	0
	Exemplos de controladores nebulosos e aplicações.	
14 L	Utilização de ferramentas do Matlab/Simulink para Lógica	11% a 40%
	Nebulosa. Exemplos.	
15 L	Semana da Inovação.	0
16 L	Outros Exemplos de aplicação de Lógica Nebulosa. Redes de	0
	Hopfield.	
17 L	Apresentação de trabalhos.	91% a
		100%
18 L	Apresentação de trabalhos.	91% a
		100%
19 L	Semana de provas - P2	0
20 L	Semana de provas - P2	0
21 L	Atendimento.	0
22 L	Férias.Atendimento	0
23 L	Semana de Provas - PS1.	0
24 L	Aspectos de Aprendizagem de Máquina ("Machine Learning").	1% a 10%
25 L	Aprendizagem de Máquina ("Machine Learning"): apresentação de	1% a 10%
	soluções de mercado.	

2020-ECM502 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

41% a 60%
41% a 60%
61% a 90%
91% a
100%
0
41% a 60%
61% a 90%
91% a
100%
91% a
100%
0
0
91% a
100%
91% a
100%

2020-ECM502 página 9 de 9