

CACEIt

"Die Zertifizierungsstelle der Community"

Probleme der virtuellen Welt des Internets

- Privatsphäre durch Verschlüsselung
 - Warum verwenden die meisten Leute noch immer das elektronische Gegenstück der Postkarte?
- Sicherheit durch Authentifizierung
 - Wie kann ich sicher sein, wer auf der "anderen Seite" der Leitung ist?
- Vertrauen in das Internet
- Kostengünstige Lösung für jedermann

Der Evergreen: PGP web of trust

 A vertraut B, B vertraut C, C vertraut D, D vertraut E, also vertraut A auch E und kann ihm verschlüsselte Nachrichten schicken

 Vorteil : keine Zentrale Stelle, jeder kann mitmachen

Nachteil bei PGP

- Was, wenn D ein Bösewicht ist?
 - Wie kann ich sicher sein, dass E wirklich E ist?
 - Beispiel: Chinesischer Dissident schreibt an Obama
 - In Wirklichkeit liest der Geheimdienst und verhaftet ihn
 - Wie kann ich sicher sein, dass D meine Nachricht an E nicht verfälscht?
 - Beispiel: Exil-Kubaner schreibt an JFK:
 "in der Schweinebucht NICHT landen"
- Jeder bestätigt die Schlüssel wie er es mag

Der CAcert Ansatz

- Nicht nur die E-Mail Adresse sondern auch die Identität wird überprüft
 - "Vertrauenspunkte" werden vergeben
 - Postident-ähnliches Verfahren
 - Aber Mehraugenprinzip: es müssen mindestens 2
 Personen Punkte vergeben
 - Punkte System: wer mehr Erfahrung hat, darf auch mehr Vertrauenspunkte vergeben
- Festgelegtes, verpflichtendes Verfahren

Der CAcert Ansatz in der Praxis

- B, C und D ("Assurer") haben E gesehen, seine Identität festgestellt ("Assurance") und an CAcert berichtet
- A vertraut dem CAcert System und kann sich sicher sein, dass E die richtige Person ist

CAcert Zertifikate: Anwendungsfelder

- Verschlüsselung von E-Mail & Dokumenten
 - Sowohl PGP als auch S/MIME (X509) Format
- Digitale Signatur von Dokumenten, E-Mails ...
 - Echtheit und Ursprung von Rechnungen
 - Echtheit & Datum von Erfindungen
 - Integrität von Testamenten
- SSL-Zertifikate f
 ür Webseiten
- Auto-Login per Browser-Zertifikat
- SSL-basierte VPNs
- SSL/TLS-abgesicherte Übertragungen

Vor- und Nachteile

- Zertifikate sind kostenlos
- Einmalige Identitätsfeststellung gilt lebenslang
- Unbegrenzte Anzahl an Zertifikaten

- Zentrale Anlaufstelle, der man vertrauen muss
- Root-Zertifikate nicht standardmäßig installiert

Assurance

- Konto bei CAcert anlegen
- Ausreichend Assurer besuchen, je nach Punktebedarf
 - Mind. 1 amtlichen Ausweis mit Foto, besser 2
 - Formular (korrekt) ausfüllen
- Assurer bestätigt Identität an CAcert und vergibt Vertrauenspunkte
- Features werden entsprechend bei CAcert freigeschaltet

Punktesystem

- Jeder Assurer vergibt Punkte je nach Erfahrung
 maximal 10 bis 35, kann auch weniger
- Name nicht im Zertifikat enthalten.
- Man kann Client- und Server-Zertifikate mit 6 Monaten Gültigkeit erhalten.
- Maximal von anderen Assurern erhältliche Punktzahl.
- Code-Signing kann beantragt werden.
- Man kann Assurer werden.

0-49 Punkte nicht Assured

50 Punkte Assured 100 Punkte Assurer 150 Punkte
Vollständig
Assured

- Name kann im Zertifikat enthalten sein.
- Server-Zertifikat ist 2 Jahre gültig.
- PGP/GPG Key kann von CAcert signiert werden.

- Maximale Punktezahl, die durch das Assuren erreicht werden kann
- Als Assurer kann man die maximale Zahl von 35 Punkten vergeben.

Die CAcert AGB: CAcert Community Agreement (CCA)

- Rechte ...
 - Begrenzung von Schadensersatzforderungen gegen Assurer
 - CAcert und Ausstellung von Zertifikaten bleiben frei
 - Datenschutz
- ... und Pflichten
 - CAcert Regeln anerkennen
 - Streitigkeiten nur über CAcert, nicht gerichtlich
 - Angaben müssen wahrheitsgemäß sein
 - Keinen Einsatz in "mission critical" Systemen

Organisation Assurance: für Betriebe

- Firma als solche wird assured
 - Anschließend kann deren Sysadmin selbst die Mitarbeiter assuren
 - Die Mitarbeiter können sich Zertifikate erstellen
- Firma kommt kostengünstig zu sicheren Kommunikation und kann ihre Dokumente digital signieren (Archivierung, Rechnungswesen ...)
- Mehr Infos : direkt bei CAcert anfragen

Wermutstropfen: Browser-Integration

- CAcert Root-Zertifikat nicht standardmäßig bei den Browsern dabei
 - daher: von CAcert ausgestellte Zertifikate nicht als gültig erkannt
- Audit läuft. Wenn erfolgreich: Aufnahme bei der Mozilla Foundation
- Bis dahin: Zertifikat per Hand auf den Clients installieren
 - Bei den meisten Linux Distributionen als Paket

Zusammenspiel mit anderen OSS-Tools

- Browser
 - Firefox, Epiphany, Konqueror
- https://

 Verified by: CAcert Inc.

_il.joel-hatsch.net/ii

- Mailprogramme
 - Thunderbird, Evolution, Kmail ...
- Good signature from

Verified by: CAcert Inc. Linux 🚞

OpenOffice.org: Datei digital Signieren

- OpenVPN
- Fetchmail / Postfix / ...

CAcert lebt nur durch die Community

- ~157.000 User, ~3000 Assurer
- >200.000 E-Mails
- >115.000 Domains
- > 517.000 certs in use
- Deutschland #1 bei CAcert

Mitmachen

- Mitglied werden sich assuren lassen
- CAcert benutzen
 - PGP Schlüssel von CAcert signieren lassen
 - SSL Zertifikat von CAcert bestätigen lassen
- Assurer werden
 - 100 Punkte & Assurer Test ablegen
- An Treffen teilnehmen
- Technisch mitwirken (Code-Entwicklung, Doku ...)

Die "Konkurrenz"

- Verisign (& Thawte)
 - Ganz große kommerzielle Anbieter
- Thawte Free Web of Trust → R.I.P.
- PGP
 - Nur RSA Verschlüsselung, kein S/Mime, kein SSL
- StartSSL
 - Freie Zertifikate, SSL nur 1 Jahr
 - Volle Features (code signing, wildcard domains) nur entgeltlich

Hiiiiilfe! Wo gibt's Support?

"Offizielle" Anfragen

support@cacert.org

- cacert-support@lists.cacert.org
- cacert-de@lists.cacert.org
- irc://irc.cacert.org/cacert.ger
- http://wiki.cacert.org/GettingSupport

Assurance beim OpenSource Treffen

- Es sollten ausreichend Assurer im Raum sein
- 100 Punkte problemlos erreichbar
- Formulare vorhanden
- Ausweis & Führerschein wird wohl jeder dabei haben

Let's assure!

BACKUP

How to join the community

HowTo register

- read, agree CCA
- create
 - a CAcert accountprimary email address
 - password/phrase
 - five Q/A's
- remember them!

What is a CA?

Certificate Authority

I, <u>Certificate Authority XYZ</u>, do hereby **certify** that <u>Borja Sotomayor</u> is who he/she claims to be and that his/her public key is <u>49E51A3EF1C</u>

Certificate Authority XYZ

- The CA Root Key is added into "your" CA-list
 - On which authority?
- Signs your X.509 public certificate
 - When signed you might be trusted?

Bestandteile eines digitalen Zertifikats

Herausgegeben für

Allgemeiner Name (CN) Jens Paul

Organisation (O) < kein Teil des Zertifikats>
Organisationseinheit (OU) < kein Teil des Zertifikats>

Seriennummer 02:A3:BA

Herausgegeben von

Allgemeiner Name (CN) CA Cert Signing Authority

Organisation (O) Root CA

Organisationseinheit (OU) http://www.cacert.org

Validität

Herausgegeben am 05.09.2006 Läuft ab am 05.09.2007

Fingerabdrücke

SHA1-Fingerprint CA:BB:B8:8D:F1:B1:9C:6E:B5:BC:E2:0C:B6:64:BF:89:AB:38:7C:59

MD5-Fingerprint 55:55:63:67:F2:27:73:5C:FB:E9:C4:17:B4:39:94:D4

Informationen über den Besitzer

- Informationen über die ausstellende Institution
- Fingerabdrücke zur Validierung des Zertifikates und des Besitzers
- Ausstellungs- und Ablaufdatum des Zertifikats

Öffentlicher Schlüssel

30	82	01	0a	02	82	01	01	00	b2	d8	fb	99	f5	07	a9
6e	ee	2d	8a	97	c0	de	60	40	bb	64	a 7	ec	04	b6	01
be	3с	5с	8e	41	8c	d1	6£	с6	bb	72	81	b 7	15	52	dc
a2	fe	96	64	04	79	6с	88	01	94	21	74	63	55	CC	c4
d8	07	46	60	45	93	65	d1	се	a6	b2	39	8a	9b	b8	7d
49	7d	81	54	bb	20	07	95	b9	a1	86	37	d1	31	28	2b
0b	7a	c1	c0	07	3b	96	6b	48	ab	25	0d	74	77	33	03
22	ae	6£	fd	09	6b	6a	68	dd	4f	2b	5с	9d	7a	7£	a9
17	50	fe	4c	3b	6£	a5	fd	b4	26	d8	16	b8	32	b3	ad
89	7b	27	14	d0	01	98	48	57	41	0d	9d	fc	91	50	1c
83	ce	5с	95	ff	53	ff	13	40	bd	2c	6a	е9	41	56	6a
с9	46	b2	51	87	94	55	39	1b	62	48	cb	bb	10	a2	a8
0a	09	20	67	7с	7d	73	a 6	79	72	6с	58	51	5с	5£	54
09	63	df	a 6	7e	£3	0с	a0	e0	07	ba	48	bf	3b	2f	4b
84	1d	7b	fb	67	35	0d	b0	51	77	fa	26	е6	5a	6£	d8
£8	c6	ca	dc	74	70	92	e1	66	52	88	8e	с5	30	06	09
bb	33	d1	2c	4f	45	f1	61	27	02	03	01	00	01	11	

- Ein öffentlicher Schlüssel, welcher es dem Kommunikationspartner ermöglicht, Hash-Werte (Fingerabdrücke) zu entschlüsseln und Nachrichten an den Besitzer zu verschlüsseln.
- Ein privater Schlüssel, welcher es dem Besitzer erlaubt, an ihn adressierte Nachrichten zu entschlüsseln und Hash-Werte zu verschlüsseln.

Privater Schlüssel

...

Zertifikatstypen

T	ур	Einsatzmöglichkeiten					
Allgemein	Protokoll	Beschreibung	Anmerkungen				
0	TLS	Webserver- Verschlüsselung	Ermöglicht die Verschlüsselung				
Server	Embedded	Authentifizierung auf embedded servern	Mailserver, Instant-Messaging				
	S/MIME	E-Mail-Verschlüsselung	"Digitale Signaturen" innerhalb von S/MIME sind keine händischen Unterschriften, vielmehr gestatter Sie die Verschlüsselung der Nachrichteninhalte.				
Client	TLS	Authentifizierung am Client	Verbesserung der Client Sicherheit				
Cilent	TLS	Authentifizierung an Web basierten Signaturanwendungen	Das Zertifikat dient lediglich der Authentifizierung. Details siehe CPS.				
	Advanced Signing	Signierung von Dokumenten	Bitte beachten Sie hierzu die Detailregelungen der CPS sowie die geltenden Gesetze Ihre Landes.				
Code		Signierung von Quellcodes	Die Signaturen dienen lediglich zur Identitätsfeststellung.				
PGP	OpenPGP	Schlüsselsignierung	Die Signaturen dienen lediglich zur Identitätsfeststellung.				