3739. Пусть F(k) и F(k) — полные эллиптические интегралы (см. задачу 3725). Доказать формулы

a)
$$\int_{0}^{k} F(k) k dk = E(k) - k_{1}^{2} F(k);$$

6)
$$\int_{0}^{k} E(k) k dk = \frac{1}{3} [(1+k^{2}) E(k) - k_{1}^{2} F(k)],$$

где $k_1^2 = 1-k^2$.

3740. Доказать формулу

$$\int_{0}^{x} x J_{0}(x) dx = x J_{1}(x),$$

где $J_0(x)$ и $J_1(x)$ — функции Бесселя индексов 0 и 1 (см. задачу 3726).

§ 2. Несобственные интегралы, зависящие от параметра. Равномерная сходимость интегралов

1°. Определение равномерной сходи - мости. Сходящийся несобственный интеграл

$$\int_{0}^{+\infty} f(x, y) dx = \lim_{b \to +\infty} \int_{0}^{b} f(x, y) dx, \qquad (1)$$

где функция f(x, y) непрерывна в области $a \leqslant x < +\infty$, $y_1, < y < y_2$, называется равномерно сходящимся в интервале (y_1, y_2) , если для любого $\varepsilon > 0$ существует число B = B (8) такое, что при всяком $b \geqslant B$ имеем:

$$\left|\int_{b}^{+\infty} f(x, y) dx\right| < \varepsilon \ (y_1 < y < y_2).$$

Равномерная сходимость интеграла (1) эквивалентна равномерной сходимости всех рядов вида

$$\sum_{n=0}^{\infty} \int_{a_n}^{a_{n+1}} f(x, y) dx,$$
 (2)

rue $a = a_0 < a_1 < a_2 < \ldots < a_n < a_{n+1} < \ldots$ u $\lim_{n \to \infty} a_n = +\infty$.

Если интеграл (1) сходится равномерно в интервале (y_1 , y_2), то он представляет собой непрерывную функцию параметра y в этом интервале.

 2° . Критерий Коши. Для равномерной сходимоств интеграла (1) в интервале (y_1, y_2) необходимо и достаточно, 25^{-2393}