元素及其化合物·六·「氯 (Cl) 与卤族元素」

氯 Cl

氯气

物理性质

黄绿色气体,有刺激性气味,可溶于水,密度大于空气,沸点比气体高,易液化,有毒

闻氯气气味的方法: 抽去盛氯气的集气瓶口处的毛玻璃片, 用手掌在瓶口上方轻轻扇动, 使少量氯气飘进鼻孔

化学性质

1. 氯气与氢气反应: $H_2 + Cl_2 \stackrel{\text{...}}{=\!\!\!=\!\!\!=\!\!\!=} 2 \, HCl$

氢气在氯气中安静地燃烧,发出苍白色的火焰,瓶口出现白雾 工业制 HCl 时采用点燃法,工业浓 HCl 常显黄色,是因为含 Fe³⁺

- 2. 氯气与金属单质反应
 - 1. $2 \operatorname{Fe} + 3 \operatorname{Cl}_2 \stackrel{\stackrel{ ext{s.m.}}{=\!=\!=}}{=\!=\!=} 2 \operatorname{FeCl}_3$

产生黄色火焰, 棕褐色烟雾

与反应物的量无关($Fe^{3+} \xrightarrow{Fe} Fe^{2+}$ 只发生在氯化铁溶液中)

氧化性从高到低排列为: $Cl_2 > O_2 > S$

- 1. Cl₂与 Fe 反应生成 FeCl₃
- 2. O₂ 与 Fe 反应可以生成 Fe₃O₄
- 3.S与Fe反应生成FeS

2.
$$Cu + Cl_2 \stackrel{\text{f.M.}}{=\!\!=\!\!=} CuCl_2$$

产生棕黄色固体

- 3. $2 \operatorname{Na} + \operatorname{Cl}_2 \stackrel{$ 点燃 $}{=\!\!\!=\!\!\!=} 2 \operatorname{NaCl}$
- 3. 氯气与水反应: Cl₂ + H₂O ← HCl + HClO

注意:该反应为可逆反应,且由于HClO为弱酸,离子反应中不可拆

- 4. 氯气与碱反应
 - 4 OI 上灣泪下的 NI AII 滚流

 $^{-1}$ 2 NaOH $^{+}$ Cl $_2$ $\stackrel{-}{=}$ NaCl $_2$ NaClO $^{+}$ H $_2$ O

应用:

- 1. 实验室吸收多余的 Cl₂
- 2. 工业制漂白液、84消毒液,有效成分为NaClO
- 2. Cl₂ 与冷的石灰乳 Ca(OH)₂

$$2 \, \text{Ca}(\text{OH})_2 + 2 \, \text{Cl}_2 \ = \ \text{CaCl}_2 + \text{Ca}(\text{ClO})_2 + 2 \, \text{H}_2 \text{O}$$

如果书写离子方程式, Ca(OH)2 不要拆开, 其是以悬浊液存在的

Ca(ClO)₂是漂白粉、漂白精的有效成分

起效: $Ca(ClO)_2 + CO_2 + H_2O = CaCO_3 + 2HClO$

失效: 2 HClO ______ 2 HCl + O₂↑

- 5. 氯气与还原性无机化合物反应
 - $1. Cl_2 + 2 FeCl_2 = 2 FeCl_3$ (除去 $FeCl_3$ 中的 $FeCl_2$)
 - 2. $Cl_2 + H_2S = 2HCl + S$ (氧化性: $Cl_2 > S$)
 - $3. Cl_2 + 2 NaBr = 2 NaCl + Br_2$ (用于海水提取溴)
 - $4. Cl_2 + 2 KI = 2 KCl + I_2$ (用于用 $KI 淀粉试纸检验 Cl_2$)
 - $5. Cl_2 + SO_2 + 2H_2O = 2HCl + H_2SO_4$ (失去漂白作用)

实验室制备

- **1.** 原理: $MnO_2 + 4HCl(液) \stackrel{\Delta}{=} MnCl_2 + Cl_2 \uparrow + H_2O$ (不浓不热不反应)
- 2. 装置:
 - 1. 分液漏斗: 固液加热生成气体所需, 用于调节浓盐酸滴入速率
 - 2. 饱和食盐水:降低 Cl_2 对水的溶解性,减少损耗($Cl_2 + H_2O \rightleftharpoons H^+ + Cl^- + HClO$,氯化钠促进平衡逆移);用于除 HCl 气体(氯化氢极易溶于水)
 - 3. 浓硫酸:用于除 H_2O 蒸汽
 - 4. 向上排空气法: 氯气密度比空气大(或排饱和食盐水法)
 - 5. NaOH 水溶液: $2 \text{ NaOH} + \text{Cl}_2 = \text{NaCl} + \text{NaClO} + \text{H}_2\text{O}$
- 3. 验满:将KI 淀粉试纸靠近瓶口,若试纸立即变蓝,则证明氯气已经收集满

氯水

新制氯水

1. 新制氯水的成分(由大到小)

• 分子: H₂O、Cl₂、HClO

• 离子: H⁺、Cl⁻、ClO⁻、OH⁻

2. 性质

成分	表现性质	实例
Cl_2	黄绿色 强氧化性	$ \begin{array}{c} (\overset{-2}{\mathrm{S}}) \mathrm{H}_2 \mathrm{S} , \ \mathrm{HS}^- , \ \mathrm{S}^{2-} \xrightarrow{\mathrm{Cl}_2} \mathrm{S} \downarrow \\ (\overset{+4}{\mathrm{S}}) \mathrm{SO}_2 , \ \mathrm{H}_2 \mathrm{SO}_3 , \ \mathrm{HSO}_3^- , \ \mathrm{SO}_3^{2-} \xrightarrow{\mathrm{Cl}_2} \mathrm{SO}_4^{2-} \downarrow \\ \mathrm{SO}_2 + \mathrm{Cl}_2 + 2 \mathrm{H}_2 \mathrm{O} = \mathrm{H}_2 \mathrm{SO}_4 + 2 \mathrm{HCl} \\ 2 \mathrm{I}^- + \mathrm{Cl}_2 = \mathrm{I}_2 + 2 \mathrm{Cl}^- 2 \mathrm{Br}^- + \mathrm{Cl}_2 = \mathrm{Br}_2 + 2 \mathrm{Cl}^- \\ 2 \mathrm{Fe}^{2+} + \mathrm{Cl}_2 = 2 \mathrm{Fe}^{3+} + 2 \mathrm{Cl}^- \end{array} $
H^+	弱酸性	与镁反应放出 $ m H_2$ 与 $ m CaCO_3$ 反应放出 $ m CO_2$
HClO	弱酸性 强氧化性	1. 漂白、杀菌、消毒 2. Cl ₂ 使湿润的有色布条褪色,不能使干燥的有色布条褪色,说明 Cl ₂ 没有漂白性,而是 HClO 起漂白作用 3. 使紫色石蕊试剂先变红(H ⁺ 酸性作用),后褪色(HClO 氧化性作用)
Cl-	沉淀反应	$ m Ag^+ + Cl^- = AgCl \downarrow$

旧置氯水

1. 反应方程式: 2 HClO ^{光照} 2 HCl + O₂ ↑

2. 成分: HCl 水溶液

3. 性质:有酸性(比新制氯水强),无氧化性、无漂白性

4. 实验室中氯水需现用现配,且避光、密封保存在棕色试剂瓶中

液氯、新制氯水、旧置氯水的比较

	液氯	新制氯水	久置氯水
分类	纯净物	混合物	混合物
颜色	黄绿色	浅黄绿色	无色
性质	氧化性	酸性、氧化性、漂白性	酸性
粒子种类	Cl_2	Cl_2 , HClO , H_2O , H^+ , Cl^- , ClO^- , OH^-	$\mathrm{H}_2\mathrm{O}$, H^+ , Cl^- , OH^-

氯离子的检验

借助 AgCl 沉淀来检验氯离子的存在,但需要排除碳酸根离子的干扰

- **1.**实验过程:在三支试管中分别加入 2~3mL 稀盐酸、NaCl 溶液、Na₂CO₃ 溶液,然后各滴入几滴 $AgNO_3$ 溶液,观察现象。再分别加入少量稀硝酸,观察现象
- 2. 实验现象:

物质	加入 AgNO ₃ 溶液后	加入稀硝酸后	解释或离子方程式
稀盐酸	白色沉淀(AgCl)	不溶解	$\mathrm{Ag^{+}} + \mathrm{Cl^{-}} = \mathrm{AgCl} \downarrow$
NaCl 溶液	白色沉淀(AgCl)	不溶解	$\mathrm{Ag^{+}} + \mathrm{Cl^{-}} \ = \mathrm{AgCl} \downarrow$
Na ₂ CO ₃ 溶液	白色沉淀(Ag ₂ CO ₃)	溶解并产生气泡	$egin{aligned} 2\mathrm{Ag^+} + \mathrm{CO_3^{2-}} &= \mathrm{Ag_2CO_3} \downarrow \ \mathrm{Ag_2CO_3} + 2\mathrm{H^+} &= 2\mathrm{Ag^+} + \mathrm{H_2O} + \mathrm{CO_2} \uparrow \end{aligned}$

3. 结论:

检验氯离子应先加入硝酸酸化,排除 CO_3^{2-} 的干扰,再加入 $AgNO_3$ 检验,如果产生白色沉淀,即证明有氯离子

卤族元素

相似性

- **1.** 都能与大多数金属反应: Fe $\xrightarrow{\mathrm{F_2/Cl_2/Br_2}}$ Fe³⁺; Fe $\xrightarrow{\mathrm{I_2}}$ Fe²⁺
- 2. 都能与 H_2 反应: $H_2 + X_2 = 2 HX$
- 3. 都能与水反应: $H_2O + Cl_2/Br_2/I_2 \rightleftharpoons HX + HXO$; $2H_2O + 2F_2 \rightleftharpoons 4HF + O_2$
- 4. 都能与碱液反应: $2 \text{ NaOH} + \text{Cl}_2/\text{Br}_2/\text{I}_2 = \text{NaX} + \text{NaXO} + \text{H}_2\text{O}; 2 \text{ F}_2 + 4 \text{ NaOH} = 4 \text{ NaF} + 2 \text{ H}_2\text{O} + \text{O}_2$

递变性

颜色: $F_2(浅黄绿色) \longrightarrow Cl_2(黄绿色) \longrightarrow Br_2(深红棕色) \longrightarrow I_2(紫黑色) 颜色加深$

熔沸点: $F_2(气体) \longrightarrow Cl_2(气体) \longrightarrow Br_2(液体) \longrightarrow I_2(固体)$ 逐渐升高

密度: $F_2 \longrightarrow Cl_2 \longrightarrow Br_2 \longrightarrow I_2$ 逐渐升高

水溶性: $F_2(反应) \longrightarrow Cl_2(溶解) \longrightarrow Br_2(溶解) \longrightarrow I_2(微溶)$ 逐渐降低

氧化性: $\frac{F_2 \times Cl_2 \times Br_2 \times I_2}{f_{5a}$ 逐渐减小

还原性: $\xrightarrow{F^-, Cl^-, Br^-, I^-}$ 逐渐增强

比较氧化性的方法:

①与氢气化合难易程度;②氢化物的稳定性;③最高价氧化物对应水化物的酸性;④置换反应

特殊性

- 1. 氟 F₂
 - 1. 氟没有正价,是非金属性最强,F-的还原性最弱
 - 2. F_2 与 H_2 O 反应生成 HF 和 O_2 , F_2 与 H_2 在暗处即可爆炸反应
 - 3. HF是弱酸,能腐蚀玻璃,应保存在铅制器皿或塑料瓶中;有毒;在卤素氢化物中,HF的沸点最高(分子间存在氢键)

- 2. 溴 Br₂
 - 1. Br₂ 是深红棕色液体, 易挥发
 - 2. Br₂ 易溶于有机溶剂
 - 3. 盛放液态溴时, 试剂瓶需加水封, 保存时不能用橡胶塞封口
- 3.碘 I₂
 - 1. I₂ 遇淀粉变蓝色
 - 2. I₂ 加热时易升华(用于分离提纯 I₂)
 - 3. I₂ 易溶于有机溶剂
 - 4. 食盐中添加 KIO3 可预防和治疗甲状腺肿大

卤素离子的检验

1. AgNO₃ 溶液——沉淀法

未知液
$$\xrightarrow{\text{AgNO}_3$$
溶液 $\xrightarrow{\text{AgNO}_3$ 溶液 $\text{ }}$ $\begin{cases} \text{白色沉淀} & \text{Cl}^- \\ \text{淡黄色沉淀} & \text{Br}^- \\ \text{黄色沉淀} & \text{I}^- \end{cases}$

2. 置换——萃取法

未知液
$$\xrightarrow{\text{适量新制饱和氯水}}$$
 $\xrightarrow{\text{CCl}_4$ 或汽油 $}$ 有机层 $\left\{ egin{array}{c} 橙色或橙红色 & \mathbf{Br}^- \\ \text{紫色、浅紫色或紫红色} & \mathbf{I}^- \end{array} \right.$

3. 氧化——淀粉法检验 I-

未知液(无色)
$$\xrightarrow[\mathrm{k\bar{s}}]{\text{fills}}$$
 $\xrightarrow[\mathrm{k\bar{s}}]{\text{fills}}$ $\xrightarrow[\mathrm{k\bar{s}}]{\text{fills}}$ 蓝色溶液 \mathbf{I}^-

海水资源的开发和利用

- 1. 海水淡化:蒸馏法、电渗析法、离子交换法
- 2. 海水制盐: 氯碱工业

$$2 \, \mathrm{NaCl} + 2 \, \mathrm{H}_2\mathrm{O} \stackrel{\mathrm{eff}}{=\!=\!=\!=\!=} 2 \, \mathrm{NaOH} + \mathrm{H}_2 \, \uparrow \, + \mathrm{Cl}_2 \, \uparrow$$
 海水 \longrightarrow 粗盐 $\stackrel{\mathrm{h}\mathrm{u}}{\longrightarrow}$ 饱和食盐水 $\stackrel{\mathrm{eff}}{\longrightarrow}$ $\begin{cases} \mathrm{PI} \, \mathrm{WP} \, \mathrm{PI} \, \mathrm{V} \, \mathrm{NaOH} \end{cases}$

3. 海水提溴

4. 海水提碘

