

ANÁLISIS NUMÉRICO 2 PROFESOR: Cristhian Montoya Ingeniería Matemática: Taller 1

- 1. Considere las normas $\|\cdot\|_1$ y $\|\cdot\|_\infty$ en \mathbb{R}^n .
 - a) Pruebe que $||u|| = \frac{1}{2}||u||_1 + \frac{2}{2}||u||_{\infty}$ define una norma en \mathbb{R}^n .
 - b) Pruebe que $\|\cdot\|_p \to \|\cdot\|_{\infty}$, cuando $p \to \infty$.
 - c) Para $0 , la función <math>\|\cdot\|_p$ (ver presentación) define una norma para \mathbb{R}^n ?
 - d) Pruebe que $|x_i| \le ||x||_2 \le \sqrt{n} ||x||_{\infty}$.
- 2. Verifique que $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$, es una norma en el espacio vectorial C([a,b]).
- 3. Discutir la posibilidad de que la desigualdad
d triangular para la norma de la suma en \mathbb{R}^n sea la igualdad , es decir, encontrar la condición necesaria y suficiente que deben cumplir los vectores $x, y \in \mathbb{R}^n$ para verificar que

$$||x + y||_1 = ||x||_1 + ||y||_1.$$

4. Sea X un espacio vectorial y sean $u, v : X \to [0, \infty)$ dos normas en X. En cada uno de los siguientes casos, probar que la función $\|\cdot\|: X \to \mathbb{R}$ definida para todo $x \in X$ en la forma que se indica, es una norma en X:

$$||x|| = u(x) + v(x)$$

$$||x|| = \max\{v(x), u(x)\}$$

$$||x|| = (u(x)^{2} + v(x)^{2})^{1/2}$$

5. Probar que la función $\rho: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definida por

$$\rho(x,y) := |y - x|^{1/2}$$

es una distancia en \mathbb{R} .

6. Sean X un espacio normado, Y un espacio vectorial y $f:X\to Y$ una aplicación lineal e inyectiva. Probar que, definiendo

$$||y|| = ||f(x)|| \quad \forall y \in Y$$

se obtiene una norma en Y. Establecer un resultado análogo para espacios métricos.

7. Consideremos en $L^2([a,b] \times [a,b])$ la aplicación

$$||f|| := \sqrt{\int_a^b \int_a^b |f(t,s)|^2 dt ds}.$$

Mostrar que $(L^2([a,b]\times[a,b]),\|\cdot\|)$ es una norma.

8. Sea $\mathcal{C}^1([0,1]) := \{ f \in \mathcal{C}([0,1]) : \exists f' \in \mathcal{C}([0,1]) \}$. Mostrar que la siguiente función sobre $\mathcal{C}^1([0,1])$ es una norma

$$||f|| := \left(\int_0^1 |f'(t)|^2 dt + \int_0^1 |f(t)|^2 dt\right)^{1/2} = \sqrt{||f||_2^2 + ||f'||_2^2}.$$

9. Sea (V, \langle , \rangle) un espacio con producto interno. Demostrar que para $x, y \in V$ se tiene

- a) La ley del paralelogramo: $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2$.
- b) Teorema de Pitágoras: $\langle x, y \rangle = 0 \Longleftrightarrow ||x + y||^2 = ||x||^2 + ||y||^2$.
- c) La identidad polar: $\langle x, y \rangle = \frac{\|x+y\|^2 \|x-y\|^2}{4}$ (caso real) $\langle x, y \rangle = \frac{\|x+y\|^2 \|x-y\|^2 + i\|x+iy\|^2 i\|x-iy\|^2}{4}.$
- d) $||x+y|| = ||x|| + ||y|| \iff x = ay$ o y = ax para alguna constante $a \ge 0$.
- 10. Sea V = C([a, b]).
 - a) Pruebe que V es un espacio de Banach con la norma $||f||_{\infty} = \max_{a \le t \le b} |f(t)|$ para todo $f \in V$ y para todo $t \in [a,b]$.
 - b) Pero con la norma $||f||_1 = \int_a^b |f(t)| dt$, no lo es.

Ayuda: Considere la sucesión de funciones $\{f_n\}_{n=1}^{\infty}$ definidas por

$$f_n(t) = \begin{cases} 0, & 0 \le t < \frac{1}{2}, \\ \left(t - \frac{1}{2}\right)^{1/n}, & \frac{1}{2} \le t \le 1. \end{cases}$$

Siga estos pasos:

- i) Pruebe que $\{f_n\}_n$ es una sucesión de Cauchy.
- ii) Sea $f(t) = \lim_{n \to \infty} f_n(t) = \begin{cases} 0, & 0 \le t < \frac{1}{2}, \\ 1, & \frac{1}{2} \le t \le 1, \end{cases}$ verifique que $f \notin V$.
- 11. Sea $x = (x_1, \dots, x_n)$, $y = (y_1, \dots, y_n)$ vectores de \mathbb{R}^n determine si $\langle x, y \rangle$ es o no un producto interno, en caso de no serlo, indicar qué propiedades no se cumplen.

a)
$$\langle x, y \rangle = \sum_{k=1}^{n} x_k |y_k|$$

b)
$$\langle x, y \rangle = \left| \sum_{k=1}^{n} x_k y_k \right|$$

c)
$$\langle x, y \rangle = \left(\sum_{k=1}^{n} x_k^2 y_k^2 \right)^{1/2}$$

12. Sea V=C[0,1], determine si $\langle f,g\rangle$ es o no un producto interno, en caso de no serlo, indicar qué propiedades no se cumplen.

a)
$$\langle f, g \rangle = f(1)g(1)$$

b)
$$\langle f, g \rangle = \int_0^1 f'(t)g'(t)dt$$
, donde $f' = \frac{df}{dt}$ y lo mismo para g' .

c)
$$\langle f, g \rangle = \left(\int_0^1 f(t)dt \right) \left(\int_0^1 g(t)dt \right)$$

13. En el espacio vectorial V = C(1, e), se define un producto interno por

$$\langle f, g \rangle = \int_{1}^{e} (\ln t) f(t) g(t) dt.$$

- a) Si $f(t) = \sqrt{t}$, calcular ||f||.
- b) Encontrar un polinomio de primer grado g(t) = a + bt que sea ortogonal a la función constante f(t) = 1.
- 14. En el espacio C(-1,1), sea $\langle f,g\rangle=\int_{-1}^1 f(t)g(t)dt$.

Considere las tres funciones u_1 , u_2 y u_3 dadas por

$$u_1(t) = 1$$
, $u_2(t) = t$, $u_3(t) = 1 + t$.

Pruebe que dos de ellas son ortogonales, dos forman entre sí un ángulo de $\pi/3$, y dos forman entre sí un ángulo de $\pi/6$.

15. En el espacio vectorial \mathcal{P}_n de todos los polinomios reales de grado $\leq n$, se define

$$\langle f, g \rangle = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) g\left(\frac{k}{n}\right).$$

- a) Demostrar que $\langle f, g \rangle$ es un producto interno para \mathcal{P}_n .
- b) Calcular $\langle f, g \rangle$ cuando f(t) = t y g(t) = at + b.
- c) Si f(t) = t, hallar todos los polinomios lineales g ortogonales a f.
- 16. Sea H un subespacio de \mathbb{R}^n . El complemento ortogonal de H, denotado por H^{\perp} , se define como

$$H^{\perp} = \{ x \in \mathbb{R}^n : \langle x, h \rangle = 0, \ \forall h \in H \}.$$

- a) Pruebe que H^{\perp} es un subespacio cerrado de \mathbb{R}^n .
- b) Para $V = \mathbb{R}^3$ y $H = \{(x, y, z) : 4x y + 6z = 0\}$
 - i) Encuentre H^{\perp} .
 - ii) Muestre que $\mathbb{R}^3 = H \oplus H^{\perp}$, es decir, $\mathbb{R}^3 = H + H^{\perp}$ y $H \cap H^{\perp} = \{0\}$.
 - iii) Exprese el vector v = (2, 1, 3) como h + u, donde $h \in H$ y $u \in H^{\perp}$.
- 17. Sea V = C[-1,1] y $H = \{ f \in V : f(-t) = f(t), \forall t \in [-1,1] \}$, el conjunto de las funciones pares.
 - a) Pruebe que el complemento ortogonal H^{\perp} es el conjunto de todas las funciones impares.
 - b) Pruebe que $V = H \oplus H^{\perp}$
- 18. Sea H y K subespacios de \mathbb{R}^n .
 - a) Pruebe que si $H \subset K$, entonces $K^{\perp} \subset H^{\perp}$.
 - b) Pruebe que $(H+K)^{\perp}=H^{\perp}\cap K^{\perp}$.
 - c) Pruebe que $H^{\perp\perp} = H$, donde $H^{\perp\perp} = (H^{\perp})^{\perp}$.
- 19. Sea $V = \mathcal{M}_{nn}$ el espacio de las matrices de orden $n \times n$.

- a) Definamos $\langle A, B \rangle = \operatorname{tr}(AB^T)$, donde $\operatorname{tr} A = \sum_{i=1}^n a_{ii}$, es la traza de la matriz $A = (a_{ij})$ y B^T es la transpuesta de B. Pruebe que V es un espacio con producto interno.
- b) Pruebe que tr(AB) = tr(BA).
- c) Si P es una matriz invertible de orden $n \times n$, pruebe que

$$\operatorname{tr}(P^{-1}AP) = \operatorname{tr}A.$$

- 20. Sean $x_1, \ldots, x_n, y_1, \ldots, y_n$ números reales, 1 y <math>q definido por $\frac{1}{p} + \frac{1}{q} = 1$. Probar las siguientes desigualdades:
 - a) Desigualdad de Hölder

$$\sum_{k=1}^{n} |x_k y_k| \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{1/p} \left(\sum_{k=1}^{n} |y_k|^q\right)^{1/q}.$$

b) Desigualdad de Minkowski

$$\left(\sum_{k=1}^{n}|x_k+y_k|^p\right)^{1/p} \leq \left(\sum_{k=1}^{n}|x_k|^p\right)^{1/p} + \left(\sum_{k=1}^{n}|y_k|^p\right)^{1/p}.$$

21. Sea $\{v_k\}_{k=1}^{\infty}$ una sucesión de puntos de \mathbb{R}^n . Supongamos que existe $\alpha \in (0,1)$, tal que

$$||v_{k+1} - v_k|| \le \alpha ||v_k - v_{k-1}||, \qquad \forall k \in \mathbb{N}.$$

Probar que la sucesión $\{v_k\}_{k=1}^{\infty}$ es de Cauchy y, por tanto, convergente en \mathbb{R}^n .

- 22. Pruebe que todo espacio vectorial finito-dimensional normado es de Banach.
- 23. Pruebe que $l_p(\mathbb{R}) = \left\{ x = (x_n)_{n \in \mathbb{N}} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}$ para $p \ge 1$, es un espacio de Banach con la norma definida por:

$$||x|| = \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p}$$

donde $x + y = (x_n) + (y_n) = (x_n + y_n)_{n \ge 1}$ y $ax = (ax_n)_{n \ge 1}$, a un escalar real.

24. Sea M un subespacio cerrado de un espacio de Hilbert V.

Pruebe que $V = M \oplus M^{\perp}$, es decir, hay que demostrar:

- i) $V = M + M^{\perp}$.
- ii) Todo $v \in V$ se puede expresar como v = m + p de manera única, donde $m \in M$ y $p \in M^{\perp}$.
- 25. Sea M un subespacio de un espacio de Hilbert V. Entonces
 - a) M es completo si y sólo si M es cerrado en V.
 - b) $M^{\perp} = \{0\}$ si y sólo si M es denso en V.
 - c) Si M es cerrado y $M^{\perp} = \{0\}$, entonces M = V.

- d) $M^{\perp \perp} = \overline{M}$, donde \overline{M} es la clausura de M.
- e) Si M es cerrado, entonces $M^{\perp \perp} = M$.
- 26. Supongamos que $\{v_j\}_{j=0}^{\infty}$ un conjunto ortonormal en un espacio de Hilbert V. Las siguientes afirmaciones son equivalentes:
 - a) $\{v_i\}_{i=0}^{\infty}$ es una base ortonormal para V.
 - b) $\langle u,v\rangle=\sum_{j=0}^{\infty}\langle u,v_j\rangle\overline{\langle v,v_j\rangle}$ para cada $u,v\in V.$
 - c) La igualdad de Parseval se tiene: $||u||^2 = \sum_{j=0}^{\infty} |\alpha_j|^2$, donde $\alpha_j = \langle u, v_j \rangle$, para todo $u \in V$.
 - d) El subespacio generado por $\{v_j\}_{j=0}^{\infty}$ es denso en V.
 - e) Para cada $u \in V$, si $\langle u, v_j \rangle = 0$, para $j = 0, 1, 2, \dots$ entonces u = 0.

Afirmaciones equivalentes significa que $a \Rightarrow b \Rightarrow \cdots \Rightarrow a$.

Universidad EAFIT-Campus principal Carrera 49 7 Sur 50, avenida Las Vegas

Medellín-Colombia Teléfonos: (57) (4) 2619500-4489500

Apartado Aéreo: 3300 | Fax: 3120649

Nit: 890.901.389-5

EAFIT Llanogrande

Teléfono: (57) (4) 2619500 exts. 9562-9188 **EAFIT Bogotá**

Teléfonos: (57) (1) 6114523-6114618 **EAFIT Pereira**

Teléfono: (57) (6) 3214157