THE 2019 E-DEFENSE SHAKE-TABLE TEST OF A LARGE-SCALE 3-STORY DISASTER MANAGEMENT CENTER

Koichi Kusunoki Earthquake Research Institute, the University of Tokyo

TZ. Yeow¹, T. Seike², S. Yagi², A. Teramoto³, I. Nakamura⁴, Y. Hibino⁵, & S. Fukai⁶

Conventional R/C structure in Japan

- Wing/Hanging/Standing walls contribute.
- High ultimate strength.
- Low allowable strength.
- Low ductility.

Design guidelines for key disaster buildings

- Reinforce concrete buildings;
 - Category I:
 - Base shear coefficient exceeds 0.55 at the maximum deflection angle of 1/300.
 - Yielding factor of members is less than 1.0
 - Category II:
 - Base shear coefficient exceeds 0.40 at the maximum deflection angle of 1/200.
 - Yielding factor of members is less than 2.0
 - Total yielding mechanism is formed.

The guidelines were developed in Y2018.

New details at the end of the walls

Objectives #1

Confirm the following items;

- The validity of the new guidelines.
 - Design earthquake level and 1.5 times the level.
- The performance of the new detailing of the spandrel walls.

The validity of the structural health monitoring system.

The performance of the non-structural elements.

150%-2

Structural health monitoring

Tiles

• Optical fiber sensor can detect the damage of tiles.

Windows

- < Outlines >
- Windows are placed on 2nd and 3rd floors.
- Inter-story drift: 2nd floor > 3rd floor
- Windows;

3rd floor: Double sliding window

+ Large fixed window

2nd floor: Double sliding window

+ Small fixed windows

Double sliding window

Double sliding window

- →The double sliding wall has high deformability.
- →The seismic performance of the large fixed window is less than the smaller fixed windows.

150%-2

2nd floor

3rd floor

150%-2 Ceiling system

Conventional ceiling

Seismic ceiling

150% Piping system

150%

3D laser scanning

Detected tile damage

Concluding remarks

- A 3-story full-scale reinforced concrete disaster management center was tested on E-Defense.
- Damage to the non-structural elements was also tested to assess the continuous functionality of the building.
 - finishing tiles, window frames, ceiling systems, ceiling systems, and piping equipment
- Especially for non-structural elements, the scaling effect is not negligible, and the specimen needs to be full-scale.
- A full-scale shaking table test is costly and takes time to prepare.
 Researchers of many research fields should be involved in the large-scale shaking table test to utilize the test most efficiently.

Thank you for your kind attention...