

Contents

- Adal MN, see Yeung WSB, et al. 383-394
Aepli F, Labhart T, Meyer EP: Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects 19-24
Agricola H, Eckert M, Ude J, Birkenbihl H, Penzlin H: The distribution of a proctolin-like immunoreactive material in the terminal ganglion of the cockroach, *Periplaneta americana* L. 203-209
Aida K, see Kaneko T, et al. 337-342
Akaji K, see Owada K, et al. 349-354
Akita H, Kagayama M: Ultrastructure of mouse incisor ameloblasts after vascular perfusion with colchicine 567-574
Albedi FM, Barsotti P, Mingazzini P, Maranozz V: Visualization of the secretory canalicular of human parietal cells with a peroxidase-labelled peanut lectin. Light- and electron-microscopic observations 447-450
Amsterdam A, see Hazum E, et al. 3-8
Angermüller S, see Taugner R, et al. 575-587
Änggård A, see Lundberg JM, et al. 9-18
Bachmann P, see Kaehn K, et al. 417-422
Baluk P, Fujiwara T, Matsuda S: The fine structure of the ganglia of the guinea-pig trachea 51-60
Barrutia MSG, Villena A, Gomariz RP, Razquin B, Zapata A: Ultrastructural changes in the spleen of the natterjack, *Bufo calamita*, after antigenic stimulation 435-441
Barsotti P, see Albedi FM, et al. 447-450
Beaudoin AR, see Phaneuf S, et al. 105-109
Beier HM, see Birkenfeld A, et al. 497-503
Belenky MA, Polenov AL, Kornienko GG, Konstantinova MS: The hypothalamo-hypophyseal system of the wild carp, *Cyprinus carpio* L. II. Structure and ultrastructure of the anterior neurohypophysis 211-218
Bennett MVL, see Ginzberg RD, et al. 477-484
Berdan RC, Caveney S: Gap junction ultrastructure in three states of conductance 111-122
Betail G, see Depeiges A, et al. 463-466
Birkenbihl H, see Agricola H, et al. 203-209
Birkenfeld A, Weber-Bendorf M, Beier HM: Effect of clomiphene citrate on the rabbit ovary 497-503
Bishop MA: Vascular permeability to lanthanum in the rat incisor pulp. Comparison with endoneurial vessels in the inferior alveolar nerve 131-136
Bishop MA: Evidence for tight junctions between odontoblasts in the rat incisor 137-140
Borg LAH, see Schnell AH 537-545
Botte L, see Scippa S, et al. 459-461
Boucaut JC, see Darribere T, et al. 75-80
Boulekbache H, see Darribere T, et al. 75-80
Bronson D, see Jennes L, et al. 311-315
Brugge-Gamelkoorn van der GJ, Ende van de MB, Sminia T: Non-lymphoid cells of bronchus-associated lymphoid tissue of the rat in situ and in suspension. With special reference to interdigitating and follicular dendritic cells 177-182
Buchanan KD, see Johnston CF, et al. 229-233
Bührle CP, see Taugner R, et al. 575-587
Burke RD: Actin-mediated retraction of the larval epidermis during metamorphosis of the sand dollar, *Dendaster excentricus* 589-597
Burnstock G, see Leake LD, et al. 123-130
Caballero S, see Leung KP, et al. 693-701
Cameron RA, Holland ND: Demonstration of the granular layer and the fate of the hyaline layer during the development of a sea urchin (*Lytechinus variegatus*) 455-458
Cantera R, see Nässle DR 423-434
Caveney S, see Berdan RC 111-122
Ceccarelli P, see Pascolini R, et al. 443-445
Chan STH, see Yeung WSB, et al. 383-394
Colley NJ, Trench RK: Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate 93-103
Conn PM, see Jennes L, et al. 311-315
Cornillie FJ, Lauweryns JM: Phagocytotic and iron-storing capacities of stromal cells in the rat endometrium. A histochemical and ultrastructural study 467-476
Coulet M, see Depeiges A, et al. 463-466
Csillik B, see Knyihár-Csillik E, et al. 633-641
Darribere T, Boulekbache H, Shi DL, Boucaut JC: Immuno-electron-microscopic study of fibronectin in gastrulating amphibian embryos 75-80
Dayer AM, Kapanci Y, Rademakers A, Rusy LM, Mey De J, Will JA: Increased numbers of neuroepithelial bodies (NEB) in lungs of fetal Rhesus monkeys following maternal dexamethasone treatment 703-705
Dayer AM, Mey De J, Will JA: Localization of somatostatin-, bombesin-, and serotonin-like immunoreactivity in the lung of the fetal Rhesus monkey 621-625
Dekker A, see Rombout JHWM, et al. 519-530
Depeiges A, Betail G, Coulet M, Dufaure JP: Histochemical study of epididymal secretions in the lizard, *Lacerta vivipara*. Localization of lectin-binding sites 463-466
Dorshkind K, Schouest L, Fletcher WH: Morphologic analysis of long-term bone marrow cultures that support B-lymphopoiesis or myelopoiesis 375-382
Dufaure JP, see Depeiges A, et al. 463-466
Eckert M, see Agricola H, et al. 203-209
Ehrlich D, Mills D: Myelogenesis and estimation of the number of axons in the anterior commissure of the chick (*Gallus gallus*) 661-666
Ekblad E, see Mattiasson A, et al. 141-146
Elekes K, S-Rózsa K, Véhovszky Á, Hernádi L, Salánki J: Nerve cells and synaptic connections in the intestinal nerve of the snail, *Helix pomatia* L.. An ultrastructural and HRP study 611-620
Ende van de MB, see Brugge-Gamelkoorn van der GJ, et al. 177-182
Fahrenkrug J, see Melander T, et al. 253-270
Falkenberg FW, see Kaehn K, et al. 417-422
Fisher SK, see Immel JH 667-675
Fletcher WH, see Dorshkind K, et al. 375-382
Forssmann WG, see Greenberg J, et al. 395-404
Fujita H, see Tatsumi H, et al. 343-347
Fujita T, see Yoshie S, et al. 25-29
Fujita T, see Iwanaga T, et al. 505-510
Fujiwara T, see Baluk P, et al. 51-60
Fung BP, Kasamatsu H: Immuno-electron-microscopic localization of a centriole-related antigen in ciliated cells 43-50
Gargiulo AM, see Pascolini R, et al. 443-445
Gery I, see Korf HW, et al. 81-85
Gibney JA, see Malamed S, et al. 87-91
Gille JJP, see Valk van der P, et al. 61-68
Ginzberg RD, Morales EA, Spray DC, Bennett MVL: Cell junctions in early embryos of squid (*Loligo pealei*) 477-484
Gomariz RP, see Barrutia MSG, et al. 435-441
Gooday D, see Newgreen DF 329-336
Görner P, see Will U, et al. 147-161
Görner P, see Will U, et al. 163-175
Gorvel JP, Rigal A, Sarles J, Maroux S: Aminopeptidase N- and human blood group A-antigenicity along the digestive tract and associated glands in the rabbit 241-248
Gray EG, see Paula-Barbosa MM, et al. 627-631
Greenberg J, Schubert W, Metz J, Yanaihara N, Forssmann WG: Studies of the guinea-pig epididymis. III. Innervation of epididymal segments 395-404

- Griffith SG, see Leake LD, et al. 123-130
 Grillo DB, see Sasaki F, et al. 511-517
 Grondin G, see Phaneuf S, et al. 105-109
 Hackenthal E, see Taugner R, et al. 575-587
 Hansen BL, see Hansen GN 355-358
 Hansen GN, Hansen BL: Immunocytochemical demonstration of mammalian lutropin-like material in the pituitary of the lungfish, *Lepidosiren paradoxa* 355-358
 Hanyu I, see Kaneko T, et al. 337-342
 Harrison F, Hoof Van J, Vanroelen Ch, Vakaet L: Transfer of extracellular matrix components between germ layers in chimaeric chicken-quail blastoderms 643-649
 Hazum E, Koch Y, Liscovitch M, Amsterdam A: Intracellular pathways of receptor-bound GnRH agonist in pituitary gonadotropes 3-8
 Helfrich MH, see Rombout JHWM, et al. 519-530
 Hernádi L, see Elekes K, et al. 611-620
 Hervonen A, see Vaalasti A, et al. 683-687
 Heynen MJ, Tricot G, Verwilghen RL: Autophagy of mitochondria in rat bone marrow erythroid cells. Relation to nuclear extrusion 235-239
 Higashi S, see Sasaki T, et al. 547-553
 Himstedt W, Manteuffel G: Retinal projections in the caecilian *Ichthyophis kohtaoensis* (Amphibia, Gymnophiona) 689-692
 Hökfelt T, see Lundberg JM, et al. 9-18
 Hökfelt T, see Melander T, et al. 253-270
 Holland ND, see Cameron RA 455-458
 Hoof Van J, see Harrison F, et al. 643-649
 Horiguchi T, see Sasaki F, et al. 511-517
 Hou-Yu A, see Tennyson VM, et al. 279-291
 Huber F, see Wohlers DW 555-565
 Hui SWB, see Yeung WSB, et al. 383-394
 Ikuta F, see Matsumoto Y 271-278
 Immel JH, Fisher SK: Cone photoreceptor shedding in the tree shrew (*Tupaia belangerii*) 667-675
 Iwanaga T, Takahashi Y, Fujita T: Immunohistochemical localization of S-100 protein in the retina, ciliary body and iris of human fetuses 505-510
 Iwanaga T, see Yoshiie S, et al. 25-29
 Jennes L, Bronson D, Stumpf WE, Conn PM: Evidence for an association between calmodulin and membrane patches containing gonadotropin-releasing hormone - receptor complexes in cultured gonadotropes 311-315
 Joenje H, see Valk van der P, et al. 61-68
 Johnson GD, Stay B, Rankin SM: Ultrastructure of corpora allata of known activity during the vitellogenesis cycle in the cockroach *Diploptera punctata* 317-327
 Johnston CF, Shaw C, Buchanan KD: Vincristine-induced abnormalities of gastrointestinal regulatory peptide cells of the rat. An immunocytochemical study 229-233
 Kaehn K, Bachmann P, Falkenberg FW: Immunofluorescence staining of thin-filament sections not participating in actomyosin crossbridges: Studies by use of a monoclonal antibody specific to actin 417-422
 Kagayama M, see Akita H 567-574
 Kalnins VI, see Opas M 451-454
 Kaneko T, Kobayashi M, Aida K, Hanyu I: Ultrastructural immunocytochemistry of gonadotrophs in the goldfish pituitary gland 337-342
 Kapanci Y, see Dayer AM, et al. 703-705
 Kasamatsu H, see Fung BP 43-50
 Kataoka K, Miura J, Takeoka Y, Kusumoto Y, Yanaihara N: Ontogenesis of gastrin cells in the pyloric antrum and duodenum of the mouse 531-535
 Kawata M, see Owada K, et al. 349-354
 Kerr JB, Sharpe RM: Stimulatory effect of follicle-stimulating hormone on rat Leydig cells. A morphometric and ultrastructural study 405-415
 King BF: Ultrastructural localization of acid phosphatase in nonhuman primate vaginal epithelium 249-252
 Kingsley RJ, Watabe N: An autoradiographic study of calcium transport in spicule formation in the gorgonian *Leptogorgia virgulata* (Lamarck) (Coelenterata: Gorgonacea) 305-310
 Klein DC, see Korf HW, et al. 81-85
 Knyihár-Csílik E, Rakic P, Csílik B: Fine structure of growth cones in the upper dorsal horn of the adult primate spinal cord in the course of reactive synapto-neogenesis 633-641
 Kobayashi H, see Owada K, et al. 349-354
 Kobayashi M, see Kaneko T, et al. 337-342
 Koch Y, see Hazum E, et al. 3-8
 Komuro T: Fenestrations of the basal lamina of intestinal villi of the rat. Scanning and transmission electron microscopy 183-188
 Konstantinova MS, see Belenky MA, et al. 211-218
 Korf HW, Möller M, Gery I, Zigler JS, Klein DC: Immunocytochemical demonstration of retinal S-antigen in the pineal organ of four mammalian species 81-85
 Korf HW, see Omura Y, et al. 599-610
 Kornienko GG, see Belenky MA, et al. 211-218
 Kors N, see Rooijen van N, et al. 657-660
 Kusumoto Y, see Kataoka K, et al. 531-535
 Labhart T, see Aepli F, et al. 19-24
 Lamers APM, Verhofstad AAJ, Stadhouders AM, Michelakis AM: Immunohistochemical demonstration of renin in the juxtaglomerular apparatus of three *Bufo* species 677-682
 Lamers CHJ, see Rombout JHWM, et al. 519-530
 Lauweryns JM, see Cornillie FJ 467-476
 Leake LD, Griffith SG, Burnstock G: 5-Hydroxytryptamine-like immunoreactivity in the peripheral and central nervous systems of the leech *Hirudo medicinalis* 123-130
 LeBlanc PA, see Leung KP, et al. 693-701
 Leung KP, Russell SW, LeBlanc PA, Caballero S: Heterogeneity among macrophages cultured from mouse bone marrow. Morphologic, cytochemical and flow cytometric analyses 693-701
 Liscovitch M, see Hazum E, et al. 3-8
 Loesser KE, see Malamed S, et al. 87-91
 Lord A, see Phaneuf S, et al. 105-109
 Lorvik S, see Pascolini R, et al. 443-445
 Luhede G, see Will U, et al. 147-161
 Luhede G, see Will U, et al. 163-175
 Lundberg JM, Ånggård A, Pernow J, Hökfelt T: Neuropeptide Y-, substance P- and VIP-immunoreactive nerves in cat spleen in relation to autonomic vascular and volume control 9-18
 Malamed S, Gibney JA, Loesser KE, Scanes CG: Age-related changes of the somatotrophs of the domestic fowl *Gallus gallus* 87-91
 Manteuffel G, see Himstedt W 689-692
 Marinuzzi V, see Albedi FM, et al. 447-450
 Maroux S, see Gorvel JP, et al. 241-248
 Matos-Lima L, see Paula-Barbosa MM, et al. 627-631
 Matsuda S, see Baluk P, et al. 51-60
 Matsumoto Y, Ikuta F: Appearance and distribution of fetal brain macrophages in mice. Immunohistochemical study with a monoclonal antibody 271-278
 Mattiasson A, Eklund E, Sundler F, Uvelius B: Origin and distribution of neuropeptide Y-, vasoactive intestinal polypeptide- and substance P-containing nerve fibers in the urinary bladder of the rat 141-146
 Mazière A, see Meiniel R 359-364
 Meiniel R, Meiniel A: Analysis of the secretions of the subcommissural organs of several vertebrate species by use of fluorescent lectins 359-364
 Melander T, Hökfelt T, Rökaeus Å, Fahrenkrug J, Tatamoto K, Mutt V: Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian species 253-270
 Möller K: Ultrastructural aspects of the choroid plexus

- epithelium as revealed by the rapid-freezing and deep-etching techniques 189-201
- Metz J, see Greenberg J, et al. 395-404
- Mey De J, see Dayer AM, et al. 621-625
- Mey De J, see Dayer AM, et al. 703-705
- Meyer EP, see Aepli F, et al. 19-24
- Michelakis AM, see Lamers APM, et al. 677-682
- Mikami S, see Yamada S 299-304
- Mills D, see Ehrlich D 661-666
- Mingazzini P, see Albedi FM, et al. 447-450
- Miura J, see Kataoka K, et al. 531-535
- Morales EA, see Ginzberg RD, et al. 477-484
- Moriga M, see Owada K, et al. 349-354
- Möller M, see Korf HW, et al. 81-85
- Møller Graabæk P: Fine structure of the lysosomes in the two types of synoviocytes of normal rat synovial membrane. A cytochemical study 293-298
- Mutt V, see Melander T, et al. 253-270
- Nässel DR, Cantera R: Mapping of serotonin-immunoreactive neurons in the larval nervous system of the flies *Calliphora erythrocephala* and *Sarcophaga bullata*. A comparison with ventral ganglion in adult animals 423-434
- Newgreen DF, Gooday D: Control of the onset of migration of neural crest cells in avian embryos. Role of Ca^{++} -dependent cell adhesions 329-336
- Nieuwmeijen van R, see Rooijen van N, et al. 657-660
- Nilaver G, see Tennyson VM, et al. 279-291
- Nilsson J, see Thyberg J, et al. 69-74
- Oksche A, Editorial 1
- Oksche A, see Omura Y, et al. 599-610
- Omura Y, Korf HW, Oksche A: Vascular permeability (problem of the blood-brain barrier) in the pineal organ of the rainbow trout, *Salmo gairdneri* 599-610
- Oostra AB, see Valk van der P, et al. 61-68
- Opas M, Kalnins VI: Spatial distribution of cortical proteins in cells of epithelial sheets 451-454
- Owada K, Kawata M, Akaji K, Takagi A, Moriga M, Kobayashi H: Urotensin II-immunoreactive neurons in the caudal neurosecretory system of freshwater and seawater fish 349-354
- Palmberg L, see Thyberg J, et al. 69-74
- Pascolini R, Ceccarelli P, Gargiulo AM, Lorvik S: Immunohistochemical localization of cyclic AMP and ultrastructural demonstration of adenylate cyclase activity in the testis of *Esox lucius* at time of spermatiation 443-445
- Paula-Barbosa MM, Tavares MA, Ruela C, Matos-Lima L, Gray EG: Thyroideectomy induces coated pit formation on cerebellar mossy fiber terminals 627-631
- Peltt-Huikko M, see Vaalasti A, et al. 683-687
- Peng FS, see Sainte-Marie G 31-35
- Peng FS, see Sainte-Marie G 37-42
- Penzlin H, see Agricola H, et al. 203-209
- Pernow J, see Lundberg JM, et al. 9-18
- Peters BH: The innervation of spines in the sea-urchin *Echinus esculentus* L.. An electron-microscopic study 219-228
- Phaneuf S, Grondin G, Lord A, Beaudoin AR: Electrophoretic and cytological evidence for heterogeneity of pancreatic acinar cell responsiveness to carbachol, caerulein and secretin 105-109
- Pies NJ, Wohlfarth-Bottermann KE: Enrichment of fibrillar cytoplasmic actomyosin in protoplasmic strands of *Physarum polycephalum* for the production of cell-free models 365-374
- Polenov L, see Belenkaya MA, et al. 211-218
- Rademakers A, see Dayer AM, et al. 703-705
- Rakic P, see Knyihár-Csílik E, et al. 633-641
- Rankin SM, see Johnson GD, et al. 317-327
- Razquin B, see Barrutia MSG, et al. 435-441
- Rigal A, see Gorvel JP, et al. 241-248
- Rökaeus Å, see Melander T, et al. 253-270
- Rombout JHWM, Lamers CHJ, Heifrich MH, Dekker A, Taverne-Thiele JJ: Uptake and transport of intact macromolecules in the intestinal epithelium of carp (*Cyprinus carpio* L.) and the possible immunological implications 519-530
- Rooijen van N, Nieuwmeijen van R, Kors N: The influence of the route of antigen administration on the development of specific antibody-producing cells in the follicles of the popliteal lymph nodes of rabbits 657-660
- Roubous EW, see Valk van der P, et al. 61-68
- Ruela C, see Paula-Barbosa MM, et al. 627-631
- Russell SW, see Leung KP, et al. 693-701
- Rusy LM, see Dayer AM, et al. 703-705
- Sainte-Marie G, Peng FS: Distribution pattern of drained antigens and antibodies in the subcapsular sinus of the lymph node of the rat 31-35
- Sainte-Marie G, Peng FS: Evidence for the existence of a subsinus layer of the peripheral cortex in the lymph node of the rat 37-42
- Salánki J, see Elekes K, et al. 611-620
- Sarles J, see Gorvel JP, et al. 241-248
- Sasaki F, Grillo DB, Horiguchi T, Watanabe K: Acetylcholinesterase activity in nerve endings of tails of *Rana japonica* and *R. catesbeiana* during metamorphosis 511-517
- Sasaki T, Yamaguchi A, Higashi S, Yoshiiki S: Uptake of horseradish peroxidase by bone cells during endochondral bone development 547-553
- Scanes CG, see Malamed S, et al. 87-91
- Scheuermann DW, see Mazière De AMGL 651-655
- Schnell AH, Borg LAH: Lysosomes and pancreatic islet function. Glucose-dependent alterations of lysosomal morphology 537-545
- Schouest L, see Dorshkind K, et al. 375-382
- Schubert W, see Greenberg J, et al. 395-404
- Scippa S, Botte L, Zierold K, Vincentiis de M: X-ray microanalytical studies on cryofixed blood cells of the ascidian *Phallusia mammillata*. I. Elemental composition of morula cells 459-461
- Sharpe RM, see Kerr JB 405-415
- Shaw C, see Johnston CF, et al. 229-233
- Shi DL, see Darrirere T, et al. 75-80
- Sjölund M, see Thyberg J, et al. 69-74
- Sminia T, see Valk van der P, et al. 61-68
- Sminia T, see Brugge-Gamelkoorn van der GJ, et al. 177-182
- Spray DC, see Ginzberg RD, et al. 477-484
- S-Rózsa K, see Elekes K, et al. 611-620
- Stadhouders AM, see Lamers APM, et al. 677-682
- Stay B, see Johnson GD, et al. 317-327
- Stumpf WE, see Jennes L, et al. 311-315
- Sundler F, see Mattiasson A, et al. 141-146
- Tainio H, see Vaalasti A, et al. 683-687
- Takagi A, see Owada K, et al. 349-354
- Takahashi Y, see Iwanaga T, et al. 505-510
- Takeoka Y, see Kataoka K, et al. 531-535
- Tamura S, see Tatsumi H, et al. 343-347
- Tatemoto K, see Melander T, et al. 253-270
- Tatsumi H, Fujita H, Tamura S: Electron-microscopic studies on the physiological cell loss in the gastric mucosa of the golden hamster 343-347
- Taugner R, Whalley A, Angermüller S, Bührle CP, Hackenthal E: Are the renin-containing granules of juxtapaglomerular epithelioid cells modified lysosomes? 575-587
- Tavares MA, see Paula-Barbosa MM, et al. 627-631
- Taverne-Thiele JJ, see Rombout JHWM, et al. 519-530
- Tennyson VM, Hou-Yu A, Nilaver G, Zimmerman EA: Immunocytochemical studies of vasotocin and mesotocin in the hypothalamo-hypophysial system of the chicken 279-291
- Thyberg J, Nilsson J, Palmberg L, Sjölund M: Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype 69-74
- Trench RK, see Colley NJ 93-103
- Tricot G, see Heynen MJ, et al. 235-239
- Ude J, see Agricola H, et al. 203-209

- Uvelius B, see Mattiasson A, et al. 141–146
 Vaalasti A, Pelto-Huikko M, Tainio H, Hervonen A: Light- and electron-microscopic demonstration of enkephalin-like immunoreactivity in paraganglia of the human urinary bladder 683–687
 Vakaet L, see Harrisson F, et al. 643–649
 Valk van der P, Gille JJP, Oostra AB, Roubos EW, Sminia T, Joenje H: Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Antioxigenic enzyme levels and ultrastructural morphometry of peroxisomes and mitochondria 61–68
 Vanroelen Ch, see Harrisson F, et al. 643–649
 Vehovszky A, see Elekes K, et al. 611–620
 Verhofstad AAJ, see Lamers APM, et al. 677–682
 Verwilghen RL, see Heynen MJ, et al. 235–239
 Villena A, see Barrutia MSG, et al. 435–441
 Vincentis de M, see Scippa S, et al. 459–461
 Wasano K, Yamamoto T: Microthread-like filaments connecting the epithelial basal lamina with underlying fibrillar components of the connective tissue in the rat trachea. A real anchoring device? 485–495
 Watabe N, see Kingsley RJ 305–310
 Watanabe K, see Sasaki F, et al. 511–517
 Weber-Bennedorf M, see Birkenfeld A, et al. 497–503
 Whalley A, see Taugner R, et al. 575–587
 Will JA, see Dayer AM, et al. 621–625
 Will JA, see Dayer AM, et al. 703–705
 Will U, Luhede G, Görner P: The area octavo-lateralis in *Xenopus laevis*. I. The primary afferent projections 147–161
 Will U, Luhede G, Görner P: The area octavo-lateralis in *Xenopus laevis*. II. Second order projections and cytoarchitecture 163–175
 Wohlers DW, Huber F: Topographical organization of the auditory pathway within the prothoracic ganglion of the cricket *Gryllus campestris* L. 555–565
 Wohlforth-Bottermann KE, see Pies NJ 365–374
 Yamada S, Mikami S: Immunohistochemical localization of corticotropin-releasing factor (CRF)-containing neurons in the hypothalamus of the Japanese quail, *Coturnix coturnix* 299–304
 Yamaguchi A, see Sasaki T, et al. 547–553
 Yamamoto T, see Wasano K 485–495
 Yanaihara N, see Greenberg J, et al. 395–404
 Yanaihara N, see Kataoka K, et al. 531–535
 Yeung WSB, Adal MN, Hui SWB, Chan STH: The ultrastructural and biosynthetic characteristics of steroidogenic cells in the gonad of *Monopterus albus* (Teleostei) during natural sex reversal 383–394
 Yoshie S, Iwanaga T, Fujita T: Coexistence of bombesin and 5-hydroxytryptamine in the cutaneous gland of the frog, *Bombina orientalis* 25–29
 Yoshiiki S, see Sasaki T, et al. 547–553
 Zapata A, see Barrutia MSG, et al. 435–441
 Zierold K, see Scippa S, et al. 459–461
 Zigler JS, see Korf HW, et al. 81–85
 Zimmerman EA, see Tennyson VM, et al. 279–291

Indexed in Current Contents

Subject Index

- Absorption
 Rombout JHW, et al. 519–530
- Acetylcholinesterase
 Sasaki F, et al. 511–517
- Acid phosphatase
 Brugge-Gamelkoorn van der GJ, et al. 177–182
 Graabæk PM 293–298
 King BF 249–252
 Schnell AH, et al. 537–545
- Actin
 Burke RD 589–597
 Opas M, et al. 451–454
- Actin filaments
 Kachin K, et al. 417–422
- Actomyosin
 Pies NJ, et al. 365–374
- Adaptation
 Valk van der P, et al. 61–68
- Adenylate cyclase
 Pascolini R, et al. 443–445
- Adipose tissue
 Malamed S, et al. 87–91
- Adrenalectomy
 Yamada S, et al. 299–304
- Ameloblasts
 Akita H, et al. 567–574
- Aminopeptidases
 Gorvel JP, et al. 241–248
- Amylase
 Phaneuf S, et al. 105–109
- Antigen localization
- Sainte-Marie G, et al. 31–35, 37–42
- Arteries
 Thyberg J, et al. 69–74
- Auditory system
 Wohlers DW, et al. 555–565
- Autonomic ganglia
 Baluk P, et al. 51–60
- Autophagy
 Heynen MJ, et al. 235–239
- Autoradiography
 Hazum E, et al. 3–8
 Kingsley RJ, et al. 305–310
- Basal body
 Fung BP, et al. 43–50
- Basal lamina
 Harrisson F, et al. 643–649
 Komuro T 183–188
 Wasano K, et al. 485–495
- Blood cells
 Scippa S, et al. 459–461
- Blood-brain barrier
 Kerr JB, et al. 405–415
 Omura Y, et al. 599–610
- Blood-group antigens
 Gorvel JP, et al. 241–248
- Bombesin
 Dayer AM, et al. 621–625
 Yoshie S, et al. 25–29
- Bone formation
 Sasaki T, et al. 547–553
- Bone marrow
 Dorshkind K, et al. 375–382
- Leung KP, et al. 693–701
- Brain, vertebrate
 Matsumoto Y, et al. 271–278
- Brain nuclei (other than listed)
 Will U, et al. 147–161, 163–175
- Brainstem
 Will U, et al. 147–161, 163–175
- Bronchi
 Brugge-Gamelkoorn van der GJ, et al. 177–182
- Ca^{++} -induced structural changes
 Pies NJ, et al. 365–374
- Calcification
 Kingsley RJ, et al. 305–310
- Calcium ions
 Kingsley RJ, et al. 305–310
 Newgreen DF, et al. 329–336
- Calcium, transport
 Kingsley RJ, et al. 305–310
- Calmodulin
 Jennes L, et al. 311–315
- cAMP
 Mazière de AMGL, et al. 651–655
 Pascolini R, et al. 443–445
- Capillaries
 Bishop MA 131–136
- Carbohydrates
- Depeiges A, et al. 463–466
- Cell communication
 Berdan RC, et al. 111–122
- Cell culture
 Thyberg J, et al. 69–74
 Valk van der P, et al. 61–68
- Cell-free models
 Pies NJ, et al. 365–374
- Cell junctions
 Newgreen DF, et al. 329–336
- Cell migration, motility, movements
 Newgreen DF, et al. 329–336
- Tatsumi H, et al. 343–347
- Cell proliferation
 Tatsumi H, et al. 343–347
- Cell transformation
 Newgreen DF, et al. 329–336
- Centrioles
 Fung BP, et al. 43–50
- Cerebellum
 Paula-Barbosa MM, et al. 627–631
- Choroid plexus
 Meller K 189–201
- Cilia
 Fung BP, et al. 43–50
- Ciliary process, – body
 Iwanaga T, et al. 505–510
- Clomiphene citrate

- Birkenfeld A, et al. 497–503
Colchicine
 Akita H, et al. 567–574
Commissure, anterior
 Ehrlich D, et al. 661–666
Connective tissue
 Cornillie FJ, et al. 467–476
Cornea
 Aepli F, et al. 19–24
Corpora allata
 Johnson GD, et al. 317–327
Corticotropin-releasing factor (CRF)
 Yamada S, et al. 299–304
Crinophagy
 Schnell AH, et al. 537–545
Cryofixation
 Scippa S, et al. 459–461
Cryosectioning
 Pies NJ, et al. 365–374
Cuticle
 Cameron RA, et al. 455–458
Dendritic reticulum cell
 Barrutia MSG, et al. 435–441
Derivation
 Mattiasson A, et al. 141–146
Development, ontogenetic
 Burke RD 589–597
 Cameron RA, et al. 455–458
 Ehrlich D, et al. 661–666
 Harrisson F, et al. 643–649
 Kataoka K, et al. 531–535
 Matsumoto Y, et al. 271–278
 Nässel DR, et al. 423–434
 Sasaki F, et al. 511–517
Dexamethasone
 Dayer AM, et al. 703–705
Differentiation
 Heynen MJ, et al. 235–239
 Matsumoto Y, et al. 271–278
Digestive tract
 Gorvel JP, et al. 241–248
DNA
 Thyberg J, et al. 69–74
Duodenum
 Kataoka K, et al. 531–535
Endocytosis
 Jennes L, et al. 311–315
Endometrium
 Cornillie FJ, et al. 467–476
Enkephalin
 Lundberg JM, et al. 9–18
Enkephalin-like immunoreactivity
 Vaalahti A, et al. 683–687
Enterocytes
 Rombout JHWM, et al. 519–530
Enteroendocrine cells
 Johnston CF, et al. 229–233
Epidermis
 Berdan RC, et al. 111–122
Epididymis
 Depeiges A, et al. 463–466
 Greenberg J, et al. 395–404
Epithelial cells
 Meller K 189–201
- Epithelium**
 Birkenfeld A, et al. 497–503
 King BF 249–252
 Meller K 189–201
Erythroblasts
 Heynen MJ, et al. 235–239
Erythropoiesis
 Heynen MJ, et al. 235–239
Ethanol
 Pies NJ, et al. 365–374
Extracellular matrix, – structures
 Cameron RA, et al. 455–458
 Darribere T, et al. 75–80
 Harrisson F, et al. 643–649
 Wasano K, et al. 485–495
Eyes, compound
 Aepli F, et al. 19–24
Ferritin
 Rombout JHWM, et al. 519–530
Fibrillogenesis
 Pies NJ, et al. 365–374
Fibronectin
 Darribere T, et al. 75–80
Filaments, 10 nm, intermediate
 Bafuk P, et al. 51–60
Filaments, molecular substructure
 Kaehn K, et al. 417–422
 Wasano K, et al. 485–495
Follicle maturation
 Birkenfeld A, et al. 497–503
Freeze-fracturing
 Berdan RC, et al. 111–122
 Ginzberg RD, et al. 477–484
 Mazière de AMGL, et al. 651–655
 Meller K 189–201
FSH
 Kerr JB, et al. 405–415
Galanin
 Melander T, et al. 253–270
Ganglia, invertebrate
 Agricola H, et al. 203–209
Gap junctions (see also Nexus)
 Berdan RC, et al. 111–122
 Ginzberg RD, et al. 477–484
 Mazière de AMGL, et al. 651–655
Gastric mucosa
 Albedi FM, et al. 447–450
 Tatsumi H, et al. 343–347
Gastrin cells
 Johnston CF, et al. 229–233
 Kataoka K, et al. 531–535
Gastrulation
 Darribere T, et al. 75–80
 Harrisson F, et al. 643–649
Glucagon
 Johnston CF, et al. 229–233
Glycoconjugates
 Albedi FM, et al. 447–450
 Meinier R, et al. 359–364
Glycoproteins, glycosaminoglycans
 Albedi FM, et al. 447–450
Golgi complex
 Graabæk PM 293–298
Gonadotropic cells, gonadotropes
- Hazum E, et al. 3–8
 Jennes L, et al. 311–315
 Kaneko T, et al. 337–342
Gonadotropic hormones (gonadotropins, GTH)
 Kaneko T, et al. 337–342
Growth hormone (GH)
 Malamed S, et al. 87–91
Gut
 Elekes K, et al. 611–620
 Leake LD, et al. 123–130
 Melander T, et al. 253–270
Hematopoiesis
 Dorshkind K, et al. 375–382
Hemoglobin
 Cornillie FJ, et al. 467–476
Hemosiderin
 Cornillie FJ, et al. 467–476
Horseradish peroxidase (HRP) technique, – transport
 Elekes K, et al. 611–620
 Himstedt W, et al. 689–692
 Rombout JHWM, et al. 519–530
 Sasaki T, et al. 547–553
Hyperoxia
 Vahl van der P, et al. 61–68
Hypothalamo-hypophysial system
 Belenky MA, et al. 211–218
 Tennyson VM, et al. 279–291
Hypothalamo-neurohypophysial system
 Belenky MA, et al. 211–218
Hypothalamus
 Yamada S, et al. 299–304
Ileum
 Komuro T 183–188
Immune response
 Barrutia MSG, et al. 435–441
 Rooijen van N, et al. 657–660
Incisor
 Akita H, et al. 567–574
 Bishop MA 131–136, 137–140
 Leake LD, et al. 123–130
Innervation
 Elekes K, et al. 611–620
 Greenberg J, et al. 395–404
 Peters BH 219–228
Insulin
 Schnell AH, et al. 537–545
Intercellular spaces
 King BF 249–252
Intestine, large
 Melander T, et al. 253–270
Intestine, small
 Elekes K, et al. 611–620
 Komuro T 183–188
 Melander T, et al. 253–270
 Rombout JHWM, et al. 519–530
Iris
 Iwanaga T, et al. 505–510
Jejunum
 Komuro T 183–188
Junctional structures
 Ginzberg RD, et al. 477–484
- Juvenile hormone**
 Johnson GD, et al. 317–327
Juxtaglomerular apparatus, – region
 Lamers APM, et al. 677–682
 Taugner R, et al. 575–587
Kidney
 Lamers APM, et al. 677–682
Lanthanum
 Bishop MA 131–136, 137–140
Lateral-line afferents
 Will U, et al. 147–161, 163–175
Lectins, lectin-binding properties
 Depeiges A, et al. 463–466
 Meinier R, et al. 359–364
Leydig cells
 Kerr JB, et al. 405–415
LH
 Hansen GN, et al. 355–358
LHRH (Lutiberin, GnRH)
 Hazum E, et al. 3–8
 Jennes L, et al. 311–315
Liver
 Gorvel JP, et al. 241–248
 Mazière de AMGL, et al. 651–655
Lung
 Brugge-Gamelkoorn van der GJ, et al. 177–182
 Dayer AM, et al. 621–625, 703–705
Lymph
 Sainte-Marie G, et al. 31–35, 37–42
Lymph nodes
 Rooijen van N, et al. 657–660
 Sainte-Marie G, et al. 31–35, 37–42
B-lymphocytes
 Dorshkind K, et al. 375–382
Lymphoid cells
 Brugge-Gamelkoorn van der GJ, et al. 177–182
Lymphoid organs (other than listed)
 Brugge-Gamelkoorn van der GJ, et al. 177–182
Lysosomes
 Colley NJ, et al. 93–103
 Graabæk PM 293–298
 King BF 249–252
 Schnell AH, et al. 537–545
 Taugner R, et al. 575–587
Macrophages
 Leung KP, et al. 693–701
 Matsumoto Y, et al. 271–278
 Rombout JHWM, et al. 519–530
Membrane retrieval
 Paula-Barbosa MM, et al. 627–631
Mesotocin
 Tennyson VM, et al. 279–291
Mesotocinergic nerve fibers

- Tennyson VM, et al. 279–291
Metamorphosis
 Burke RD 589–597
 Cameron RA, et al. 455–458
 Sasaki F, et al. 511–517
Microfilaments
 Burke RD 589–597
Microprobe analysis
 Scippa S, et al. 459–461
Mitochondria
 Heynen MJ, et al. 235–239
 Valk van der P, et al. 61–68
Monoclonal antibodies
 Matsumoto Y, et al. 271–278
Mucosa
 Johnston CF, et al. 229–233
 Tatsumi H, et al. 343–347
Mucus
 Albedi FM, et al. 447–450
 Tatsumi H, et al. 343–347
Muscle cells
 Thyberg J, et al. 69–74
Muscle, smooth
 Thyberg J, et al. 69–74
Muscle, striated, skeletal
 Kaehn K, et al. 417–422
Myelogenesis
 Dorshkind K, et al. 375–382
 Ehrlich D, et al. 661–666
Nerve cells
 Elekes K, et al. 611–620
Nerve endings
 Sasaki F, et al. 511–517
Nerve tissue
 Bishop MA 131–136
Nervous system, central
 Leake LD, et al. 123–130
 Nässell DR, et al. 423–434
 Wohlers DW, et al. 555–565
Nervous system, peripheral
 Leake LD, et al. 123–130
 Peters BH 219–228
Neural crest, – – cells
 Newgreen DF, et al. 329–336
Neuroepithelial bodies
 Dayer AM, et al. 621–625, 703–705
Neuromuscular junctions, invertebrate
 Peters BH 219–228
Neurons
 Wohlers DW, et al. 555–565
Neuropeptide immunocytochemistry
 Agricola H, et al. 203–209
 Dayer AM, et al. 621–625
 Greenberg J, et al. 395–404
 Mattiasson A, et al. 141–146
 Melander T, et al. 253–270
 Tennyson VM, et al. 279–291
 Yamada S, et al. 299–304
Neuropeptide Y
 Lundberg JM, et al. 9–18
 Mattiasson A, et al. 141–146
Neurosecretory system, caudal
- Tennison VM, et al. 279–291
 Noradrenaline
 Lundberg JM, et al. 9–18
 Octavo-lateralis complex
 Will U, et al. 147–161, 163–175
 Odontoblasts
 Bishop MA 137–140
 Ommatidia
 Aepli F, et al. 19–24
 Osteoblasts
 Sasaki T, et al. 547–553
 Ovary
 Birkenfeld A, et al. 497–503
 Ovulation
 Birkenfeld A, et al. 497–503
 Oxygen requirements
 Valk van der P, et al. 61–68
 Pancreas, endocrine
 Schnell AH, et al. 537–545
 Pancreas, exocrine
 Gorvel JP, et al. 241–248
 Phaneuf S, et al. 105–109
 Paraganglia
 Vaalasti A, et al. 683–687
 Parasympathetic ganglia
 Baluk P, et al. 51–60
 Parietal cells
 Albedi FM, et al. 447–450
 Pinealocytes
 Omura Y, et al. 599–610
 Pineal organ, – complex
 Korf HW, et al. 81–85
 Omura Y, et al. 599–610
 Peptide hormones
 Hansen GN, et al. 355–358
 Peroxisomes
 Valk van der P, et al. 61–68
 Pituitary gland, pars anterior (distalis)
 Belenky MA, et al. 211–218
 Hansen GN, et al. 355–358
 Hazum E, et al. 3–8
 Kaneko T, et al. 337–342
 Malamed S, et al. 87–91
 Pituitary gland, pars nervosa
 Belenky MA, et al. 211–218
 Phagocytosis
 Colley NJ, et al. 93–103
 Immel JH, et al. 667–675
 Photoperiods
 Immel JH, et al. 667–675
 Photoreceptor cells
 Immel JH, et al. 667–675
 Korf HW, et al. 81–85
 Proctolin-like immunoreactivity
 Agricola H, et al. 203–209
 Pyloric gland
 Kataoka K, et al. 531–535
 Receptors, membrane
 Hazum E, et al. 3–8
 Jennes L, et al. 311–315
 Regeneration, CNS
 Knihár-Csillik E, et al. 633–641
 Renin-angiotensin system
 Lamers APM, et al. 677–682
 Taugner R, et al. 575–587
Reproductive cycle
 Johnson GD, et al. 317–327
Retina
 Aepli F, et al. 19–24
 Immel JH, et al. 667–675
 Iwanaga T, et al. 505–510
 Korf HW, et al. 81–85
Retinal pigment epithelium
 Opas M, et al. 451–454
Retinal projections
 Himstedt W, et al. 689–692
Retinal S-antigen
 Korf HW, et al. 81–85
Saccus vasculosus
 Iwanaga T, et al. 505–510
Salivary glands
 Gorvel JP, et al. 241–248
Satellite cells, neurons
 Baluk P, et al. 51–60
Schwann cells
 Baluk P, et al. 51–60
Secretagogues
 Phaneuf S, et al. 105–109
Secretory granules
 Malamed S, et al. 87–91
Secretory process, cycle
 Depeiges A, et al. 463–466
 Phaneuf S, et al. 105–109
Serotonin (5-HT)
 Dayer AM, et al. 621–625, 703–705
 Leake LD, et al. 123–130
 Nässell DR, et al. 423–434
 Yoshiie S, et al. 25–29
Serotonin fluorescence
 Yoshiie S, et al. 25–29
Serotonin-containing cells
 Yoshiie S, et al. 25–29
Sertoli cells
 Pascolini R, et al. 443–445
Sexual maturation, – differentiation
 Yeung WSB, et al. 383–394
Skin
 Yoshiie S, et al. 25–29
Somatostatin (SRIF)
 Dayer AM, et al. 621–625
Somatostatin immunoreactivity
 Johnston CF, et al. 229–233
Somatotropin, (STH)
 Malamed S, et al. 87–91
Spectrin
 Opas M, et al. 451–454
Spinal cord
 Knihár-Csillik E, et al. 633–641
Spleen
 Barrutia MSG, et al. 435–441
 Lundberg JM, et al. 9–18
Steroid production
 Yeung WSB, et al. 383–394
Stomach
 Kataoka K, et al. 531–535
Subcommissural organ
 Meiniel R, et al. 359–364
Substance P
 Greenberg J, et al. 395–404
 Lundberg JM, et al. 9–18
 Mattiasson A, et al. 141–146
Symbiosis
 Colley NJ, et al. 93–103
Synapse formation
 Knihár-Csillik E, et al. 633–641
Synapses
 Peters BH 219–228
Synovial membrane
 Graabæk PM 293–298
Teeth
 Akita H, et al. 567–574
 Bishop MA 131–136, 137–140
Temperature-dependent processes
 Pies NJ, et al. 365–374
Testis
 Pascolini R, et al. 443–445
 Yeung WSB, et al. 383–394
Thyroidectomy
 Paula-Barbosa MM, et al. 627–631
Tight junctions
 Bishop MA 137–140
Tissue culture
 Dorshkind K, et al. 375–382
 Leung KP, et al. 693–701
Toxins, toxicity
 Valk van der P, et al. 61–68
Tracer studies
 Omura Y, et al. 599–610
Trachea
 Baluk P, et al. 51–60
 Fung BP, et al. 43–50
 Wasano K, et al. 485–495
Urinary bladder
 Mattiasson A, et al. 141–146
Urophysis
 Owada K, et al. 349–354
Urotensin I
 Owada K, et al. 349–354
Vagina
 King BF 249–252
Vasoactive intestinal polypeptide (VIP)
 Greenberg J, et al. 395–404
 Lundberg JM, et al. 9–18
 Mattiasson A, et al. 141–146
Vasotocin
 Tennyson VM, et al. 279–291
Vasotocinergic neurons
 Tennyson VM, et al. 279–291
Vestibular organ
 Will U, et al. 147–161, 163–175
Vinblastine
 Johnston CF, et al. 229–233
Vinculin
 Opas M, et al. 451–454
Vitellogenesis
 Johnson GD, et al. 317–327
X-ray spectral analysis
 Scippa S, et al. 459–461

