

DESCRIPTION

The 4N29, 4N30, 4N31, 4N32, 4N33 have a gallium arsenide infrared emitter optically coupled to a silicon planar photodarlington.

4N29 4N30 4N31 4N32 4N33

FEATURES

- High sensitivity to low input drive current
- Meets or exceeds all JEDEC Registered Specifications
- VDE 0884 approval available as a test option -add option .300. (e.g., 4N29.300)

APPLICATIONS

- Low power logic circuits
- Telecommunications equipment
- Portable electronics
- Solid state relays
- Interfacing coupling systems of different potentials and impedances.

Parameter	Symbol	Value	Units	
TOTAL DEVICE		55.4450	20	
Storage Temperature	T _{STG}	-55 to +150	°C	
Operating Temperature	T _{OPR}	-55 to +100	°C	
Lead Solder Temperature	T _{SOL}	260 for 10 sec	°C	
Total Device Power Dissipation @ T _A = 25°C	D	250	mW	
Derate above 25°C	P _D	3.3	mW/°C	
EMITTER		80	mA	
Continuous Forward Current	l _F	80		
Reverse Voltage	V _R	3	V	
Forward Current - Peak (300 µs, 2% Duty Cycle)	I _F (pk)	3.0	А	
LED Power Dissipation @ T _A = 25°C	В	150	mW	
Derate above 25°C	$$ P_{D}	2.0	mW/°C	
DETECTOR	D\/	30	V	
Collector-Emitter Breakdown Voltage	BV _{CEO}	30		
Collector-Base Breakdown Voltage	BV _{CBO}	30	V	
Emitter-Collector Breakdown Voltage	BV _{ECO}	5	V	
Detector Power Dissipation @ T _A = 25°C	В	150	mW	
Derate above 25°C	P _D	2.0	mW/°C	
Continuous Collector Current	I _C	150	mA	

4N29 4N30 4N31 4N32 4N33

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified.)

INDIVIDUAL COMPONENT CHARACTERISTICS						
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
EMITTER	(I _E = 10 mA)	V _F		1.2	1.5	V
*Input Forward Voltage	(15 - 10 111/1)	\ \frac{1}{2}		1.2	1.0	·
*Reverse Leakage Current (V _R = 3.0 V)		I _R		0.001	100	μΑ
*Capacitance	$(V_F = 0 V, f = 1.0 MHz)$	С		150		pF
DETECTOR	(100 0)	D\/	30	60		
*Collector-Emitter Breakdown Voltage	$(I_C = 100 \mu A, I_B = 0)$	BV _{CEO}	30	60		
*Collector-Base Breakdown Voltage $(I_C = 100 \mu A,$		BV _{CBO}	30	100		V
*Emitter-Collector Breakdown Voltage	$(I_E = 100 \mu A, I_B = 0)$	BV _{ECO}	5.0	8		V
*Collector-Emitter Dark Current (V _{CE} = 10 V, Base Open)		I _{CEO}		1	100	nA
DC Current Gain	$(V_{CE} = 5.0 \text{ V}, I_{C} = 500 \mu\text{A})$	h _{FE}		5000		

TRANSFER CHARACTERISTICS							
DC Characteristic	Test Conditions	Symbol	Min	Тур	Max	Units	
*Collector Output Current ^(1,2) (4N32, 4N33)			50 (500)				
(4N29, 4N30)	$(I_F = 10 \text{ mA}, \ V_{CE} = 10 \ V, \ I_B = 0)$	I _C (CTR)	10 (100)			mA (%)	
(4N31)			5 (50)				
*Saturation Voltage ⁽²⁾ (4N29, 4N30, 4N32, 4N33) ($I_F = 8.0 \text{ mA}, I_C = 2.0 \text{ mA}$)		V			1.0	V	
		V _{CE(sat)}			1.2	V	

TRANSFER CHARACTERISTICS							
AC Characteristic		Test Conditions	Symbol	Min	Тур	Max	Units
Turn-on Time ⁽³⁾		(1 000 1 50 1) (10) (t _{on}			5.0	
Turn-off Time ⁽³⁾	(4N32, 4N33)	$(I_F = 200 \text{ mA}, I_C = 50 \text{ mA}, V_{CC} = 10 \text{ V})$				100	μs
(4N2	29, 4N30, 4N31)	(Fig.7)	Loff			40	
Bandwidth ^(4,5)			BW		30		KHz

ISOLATION CHARACTERISTICS						
Characteristic	Test Conditions	Symbol	Min	Тур	Max	Units
Input-Output Isolation Voltage ⁽⁶⁾ (4N29, 4N30, 4N31, 4N32, 4N33)	$(I_{I-O} \le 1 \mu A, Vrms, t = 1 min.)$	V	5300			Vac(rms)
*(4N32)	VDC	V _{ISO}	2500			\ \ \
*(4N33)	VDC	1	1500			1 '
Isolation Resistance ⁽⁶⁾ (V _{I-O} = 500 VDC)		R _{ISO}		10 ¹¹		Ω
Isolation Capacitance ⁽⁶⁾	$(V_{I-O} = \emptyset, f = 1 MHz)$	C _{ISO}		0.8		pf

4N29 4N30 4N31 4N32 4N33

Fig. 1 Output Current vs. Input Current

Fig. 2 Current Transfer Ratio vs. Ambient Temperature

Fig. 3 Collector Current vs. Collector-Emitter Voltage

Fig. 4 Dark Current vs. Ambient Temperature

Fig. 5 Turn-On Time vs. Input Current

Fig. 6 Turn-Off Time vs. Input Current

4N29 4N30 4N31 4N32 4N33

Notes

- * Indicates JEDEC registered data.
- 1. The current transfer $ratio(I_C/I_F)$ is the ratio of the detector collector current to the LED input current with V_{CE} @ 10 V.
- 2. Pulse test: pulse width = $300\mu s$, duty cycle $\leq 2.0\%$.
- 3. For test circuit setup and waveforms, refer to figure 7...
- 4. I_F adjusted to I_C = 2.0 mA and I_C = 0.7 mA rms.
- 5. The frequency at which I_C is 3dB down from the 1 KHz value.
- 6. For this test, LED pins 1 and 2 are common, and phototransistor pins 4,5 and 6 are common.

4N29 4N30 4N31 4N32 4N33

NOTE

All dimensions are in inches (millimeters)

Call QT Optoelectronics for more information or the phone number of your nearest distributor.

United States 800-533-6786 • France 33 [0] 1.45.18.78.78 • Germany 49 [0] 89/96.30.51 • United Kingdom 44 [0] 1296 394499 • Asia/Pacific 603-7248193

4N29 4N30 4N31 4N32 4N33

ORDERING INFORMATION

Option	Order Entry Identifier	Description	
S	.S	Surface Mount Lead Bend	
SD	.SD	Surface Mount; Tape and reel	
W	.W	0.4" Lead Spacing	
300	.300	VDE 0884	
300W	.300W	VDE 0884, 0.4" Lead Spacing	
3S	.3\$	VDE 0884, Surface Mount	
3SD	.3SD	VDE 0884, Surface Mount, Tape & Reel	

NOTE

All dimensions are in millimeters

Call QT Optoelectronics for more information or the phone number of your nearest distributor.

United States 800-533-6786 • France 33 [0] 1.45.18.78.78 • Germany 49 [0] 89/96.30.51 • United Kingdom 44 [0] 1296 394499 • Asia/Pacific 603-7248793

www.qtopto.com

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.