CSE251: Electronic Devices and Circuits

Lecture 10 – Zener Diodes

Prepared By: Shadman Shahid (HAD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: ext.shadman.shahid@bracu.ac.bd

Voltage Regulators

- Voltage Regulation is the measure of how well a system can provide near <u>constant voltage</u>.
- Voltage Regulators provide steady voltage independent of how much power is drawn from the power source

Voltage Regulators

Let's assume that v_{in} is not a perfect DC source. It supplies a voltage of $(V_{DC} \pm \delta)$ V

Voltage Regulator:

Tries to maintain a voltage constant at V_0 even when v_{in} is varying.

Variables: *V₀* should remain constant <u>irrespective of the changes</u> in the following quantities:

- 1. Input Voltage: v_{in}
- 2. Load Current: I_L
- 3. VR current: i_D

Voltage Regulator – Worst Case Scenario

Worst Case Scenario occurs when the three variables $(v_{in}, I_L, \text{ and } i_D)$ change in such a way, such that maintaining V_O constant requires the most power (current) from the Voltage Regulator.

The **Voltage regulator** is at its <u>maximum capacity</u> at the worst case.

Worst Case Scenario occurs when

- 1. Input Voltage is minimum: $v_{in}(min)$
- 2. Load Current is maximum: $I_L(max)$
- 3. VR current minimum: $i_D(min)$

Diodes as Voltage Regulators

Diodes Revisited

- 1. Ideal Diode Model:
- 2. Constant Voltage Drop (CVD) Model:
- 3. Voltage Source in Series with Resistor Model (CVD+R) Model
- 4. Exponential Model:

 v_D : Total Voltage Across diode

 v_d : AC component of the Voltage

 V_d : DC component of Voltage

 V_{Do} : Diode Cut-off voltage

*i*_D: Total current through diode (Anode to Cathode)

Simple

1. Ideal Diode Model:

Not suitable as **VOLTAGE REGULATOR**

2. Constant Voltage Drop (CVD) Model:

Reverse Bias

$$i_D = 0$$
 $y = v_D < V_{Do}$

$$y = 0$$

 $x < V_{Do}$

Forward Bias

The circuit of the adjacent <u>Figure</u> is specified to have the following parameters. The supply voltage V_{in} is nominally 3 V but can vary by \pm 0.1 V. R_L can draw a maximum of 10 mA and $i_D(\min) = 1$ mA.

What is R for worst case scenario if v_D (V_O) is to be regulated at $\mathbf{0.6}$ V? [Since r_O is not provided, you can consider the CVD model.]

Solution:

Worst Case Scenario occurs when

- 1. $v_{in}(min) = 3 0.1 \text{ V} = 2.9 \text{ V}$
- **2.** $I_I(\text{max}) = 10 \text{ mA}$
- 3. $i_D(\min) = 1 \text{ mA}$

$$\frac{U_{in}(min) - 0.6}{R} = I_{L}(max) + i_{D}(min)$$

The circuit of the adjacent <u>Figure</u> is specified to have the following parameters. The supply voltage V_{in} is nominally 3 V but can vary by \pm 0.1 V. R_L can draw a maximum of 10 mA and $i_D(\min) = 1$ mA.

What is R for worst case scenario if v_D (V_O) is to be regulated at $\mathbf{0.6}$ V? [Since r_O is not provided, you can consider the CVD model.]

Solution: $\frac{U_{in}(min) - 0.6}{R} = I_{L}(max) + i_{D}(min)$ $R = \frac{2.9 - 0.6}{10 + 1} \text{ ks2} = 0.209 \text{ ks2}$ $\therefore R = 209 \text{ S2}$

Drawbacks of Diodes as Voltage Regulators

- Regulation voltage is low: $\sim V_{DO}~(0.3~\sim1~\text{V})$
- High i_D(min)
- R can be low → High power loss

Possible Solution:

<u>Stacked Diodes in Series:</u> -- Regulation Voltage can be increased to $n \cdot V_{DO}$ for n stacked diodes.

However, this can make the diodes deviate more from ideal model. **IV characteristics** become flatter (more lossy).

Drawbacks of Diodes as Voltage Regulators

- Regulation voltage is low: $\sim V_{DO}$ (0.3 \sim 1 V)
- High i_D (min)
- R can be low → High power loss

Better Solution:

Use **Breakdown Region** of diodes as constant voltage source because:

- 1. Breakdown Voltage can be controlled during fabrication
- 2. $i_D(\min)$ for reverse breakdown is very low!

4. Exponential model:

The full IV characteristic

Reverse Bias (RB)

$$i_D = -I_S$$

Diode IV Characteristic

Reverse Bias (RB)

$$i_D = -I_S$$
 In this case is the reverse leakage current.

$$y = -I_S$$
 For $v_D < V_{DO}$ there is negligible current flow through the diode.

Normal diodes cannot tolerate large voltages in reverse bias. **Applying large voltages in reverse bias may damage the diode**.

Diode IV Characteristic

Breakdown Region

Normal diodes cannot tolerate large voltages in reverse bias. Applying large voltages in reverse bias may damage the diode.

Special classes of diodes exist, that are primed to operate in <u>large reverse bias</u> voltages. These diodes are called

Zener diodes

In this Breakdown region, the diode acts almost like a "constant voltage source".

Zener Diode IV

Breakdown Region

Zener knee voltage $(-V_{ZK})$: The RB voltage beyond which diode breaks down. The corresponding current is knee current (I_{ZK})

For
$$v_D < -V_{ZK}$$
,
Slope $= \frac{1}{r_z}$

 v_D

Zener Diode IV

Breakdown Region

Since this region is like the forward bias region of a normal diode, we **invert the signs of voltage and currents** across a Zener diode operating at breakdown voltage, to solve Zener diode circuits in a similar way.

For a voltage of $-V_Z$, the diode allows a breakdown current of $-I_Z$.

The slope at this point of the graph is $\frac{1}{r_z}$

If we extrapolate a straight line from $(-V_Z, -I_Z)$ point, and extend it towards the x -axis, $(i_D = 0 \text{ A})$, the intersecting point is V_{Z0} . $(V_{ZK} \approx V_{Z0})$

Zener Diode IV

Breakdown Region $(V_Z > V_{Z0} \approx V_{ZK})$

$$V_Z = V_{Z0} + I_Z r_Z$$

 V_Z

Zener Diode Breakdown IV Characteristic

Breakdown Region $(V_Z > V_{Z0} \approx V_{ZK})$

Reverse Bias Region $(V_Z < V_{Z0} \approx V_{ZK})$

$$\stackrel{I_{ZK}}{\longrightarrow} \qquad I_Z = I_{ZK}$$

Vz: Total RB Voltage Across Zener diode

V_{**Z0**}: Zener knee voltage

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

$$V^+ = 10 \pm 1 V$$

$$V_Z = 6.8 V \text{ at } I_Z = 5 mA$$

$$r_z = 20 \Omega$$
.

$$I_{ZK} = 0.2 mA$$
.

(a) Find V_0 with no load and with V^+ at its nominal value

- (b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I
- (c) Find the R_L that would give rise to worst-case scenario at worst case V^+ . In this worst-case scenario, calculate the Zener voltage V_Z , load current I_L and input current I
- (d) (For $R_L = 2 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_Q , load current I_L and input current I
- (e) Design the circuit, i.e., find the minimum value of the input voltage V^+ such that, voltage regulation is maintained even in the worst-case scenario for $R_L = 2 \ \mathrm{k}\Omega$. (Forget that V^+ is 10 V)
- f) Determine whether the circuit will maintain regulation if V^+ is increased. If yes, argue if it should be increased or not.

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(a) Find V_0 with no load and with V^+ at its nominal value

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(a) Find V_0 with no load and with V^+ at its nominal value

Solution:

Extracting Zener diode 's reverse cut-in voltage

$$V_{ZO} = 6.8 - 5 \times 0.02 \text{ V}$$

 $\therefore V_{ZO} = 6.7 \text{ V}$

Determining current from the 10 V source

$$I = \frac{10 - 6.7}{0.5 + 0.02} \text{ mA} = 6.346 \text{ mA}$$

Determining output voltage

$$V_O = 6.7 + 6.346 \times 0.02 \text{ V}$$

 $V_O = 6.82692 \text{ V}$

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{Z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

Solving the node equation at V_0 .

$$\frac{(10 \pm 1) - V_O}{R} = \frac{V_O - V_{ZO}}{r_z} + \frac{V_O}{R_L}$$
$$\frac{(10 \pm 1) - V_O}{0.5} = \frac{V_O - 6.7}{0.02} + \frac{V_O}{0.5}$$
$$\therefore V_O = 6.537 \sim 6.611 \text{ V}$$

As, $V_O < V_{ZO}$, the Zener diode will not be in reverse breakdown mode, but in cut off

$$I_Z = I_{ZK}$$

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

The 6.8 - V Zener diode in the circuit of <u>Figure</u> is specified to have the following parameters. The supply voltage V^+ is nominally **10** V but can vary by ± 1 V.

(b) (For $R_L = 0.5 \text{ k}\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_O , load current I_L and input current I

Solution:

$$V_0 = 6.537 \sim 6.611 \text{ V}$$

As, $V_O < V_{ZO}$, the Zener diode will not be in reverse breakdown mode, but in cut off

$$I_Z = I_{ZK}$$

So,

$$V_O\left(\frac{1}{0.5} + \frac{1}{0.5}\right) = \frac{10 \pm 1}{0.5} - 0.2$$

 $V_O = 4.95 + 0.5 \text{ V}$

$$I_L = \frac{V_O}{R_I} = \frac{4.95 \pm 0.5}{0.5} \text{ mA} = 9.9 \pm 1 \text{ mA}$$

$$V^{+} = 10 \pm 1 V$$
 $V_{Z} = 6.8 V \text{ at } I_{Z} = 5 mA$
 $V_{ZO} = 6.7 V$
 $r_{z} = 20 \Omega.$
 $I_{ZK} = 0.2 mA.$

- (c) Find the R_L that would give rise to worst-case scenario at worst case V^+ . In this worst-case scenario, calculate the Zener voltage V_Z , load current I_L and input current I
 - (d) (For $R_L = 2 k\Omega$). Find the I_Z . In this scenario, calculate the Zener voltage V_0 , load current I_L and input current I

$$\frac{V_0}{R_L} \le \frac{V^{\frac{1}{2}} - V_0}{R} - I_{21}$$

$$R_L \ge \frac{6.704}{9 - 6.704} - 0.2 \times I_2$$

$$R_L \ge 1.526 \times I_2$$

$$\frac{\sqrt{6}}{R_{L}} \leq \frac{\sqrt{\frac{1}{7} - \sqrt{6}}}{R} - I_{2k} \qquad \sqrt{\frac{1}{2} - 6.704} \sqrt{\frac{1}{2}}$$

$$R_{L} \geqslant \frac{6.704}{9 - 6.704} - 0.2 \qquad I_{L} \leq \frac{\sqrt{6}}{R_{L}} = 4.392 \text{ mA}$$

$$R_{L} \geqslant 1.526 \quad \text{ks2}$$

$$R_{L} \geqslant 1.526 \quad \text{ks2}$$

$$R_{L} \geqslant 1.526 \quad \text{ks2}$$

$$I \geqslant 1 + I_{2k}$$

$$I \geqslant 4.592 \quad \text{mA}$$

So, the zener diode can sustain this load.

(e) Design the circuit, i.e., find the minimum value of the input voltage V^+ such that, voltage regulation is maintained even in the worst-case scenario for $R_L = 2 \text{ k}\Omega$. (Forget that V^+ is 10 V)

Solving Problems

Measures of Worst-Case Scenario (General)

Solving:

Minimum Current through VR:

$$V_{o} = V_{ZO} + I_{Z}r_{z}$$

$$I_{Z}(\min) \ge I_{ZK}$$

$$V_{O} - V_{ZO}$$

$$V_{Z} \ge I_{ZK}$$

Minimum Input Voltage:

$$v_{in}(\min) > V_{ZO} + I_{ZK}(r_z + R) + I_L R$$

Worst Case Scenario occurs when

1. Input Voltage is minimum: $v_{in}(min)$

2. Load Current is maximum: $I_L(max)$

3. VR current minimum: $I_Z(min)$

Maximum Load Current

$$I_L(\max) \leq \frac{v_{in} - V_0}{R} - I_{ZK}$$

Some important tips

- If $\emph{V}_{\emph{ZK}}$, $\emph{V}_{\emph{ZO}}$ and $r_{\emph{Z}}$ are given, we can calculate $\emph{I}_{\emph{ZK}} = \frac{\emph{V}_{\emph{ZK}} \emph{V}_{\emph{ZO}}}{r_{\emph{Z}}}$
- If $oldsymbol{V_{ZO}}$ and $oldsymbol{r_Z}$ are **not** provided, consider $oldsymbol{V_{ZK}} = oldsymbol{V_Z} = oldsymbol{V_{ZO}}$
- Consider $I_{ZK} = 0$ if not provided

