

ETC3550 Applied forecasting for business and economics

Ch5. Regression models
OTexts.org/fpp3/

Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

Multiple regression and forecasting

$$y_t = \beta_0 + \beta_1 x_{1,t} + \beta_2 x_{2,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t.$$

- y_t is the variable we want to predict: the "response" variable
- Each $x_{j,t}$ is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
- The coefficients β_1, \ldots, β_k measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.

 $\mathbf{\varepsilon}_t$ is a white noise error term

```
us_change %>%
  gather("Measure", "Change", Consumption, Income) %>%
  autoplot(Change) +
  ylab("% change") + xlab("Year")
```



```
fit_cons <- us_change %>%
  model(lm = TSLM(Consumption ~ Income))
fit_cons %>% tidy
```



```
fit_consMR <- us_change %>%
   model(lm = TSLM(Consumption ~ Income + Production + Unemployment + Savings))
tidy(fit_consMR)
```

```
## # A tibble: 5 x 6
    .model term
                    estimate std.error statistic p.value
  <chr> <chr>
                      <dbl>
                               <dbl>
                                      <dbl> <dbl>
## 1 lm
         (Intercept) 0.267 0.0372 7.18 1.68e-11
## 2 lm Income
                   0.714 0.0422 16.9 3.06e-39
## 3 lm Production 0.0459 0.0259
                                      1.77 7.78e- 2
## 4 lm Unemployment -0.205 0.106 -1.94 5.38e- 2
## 5 1m
         Savings
                     -0.0453
                             0.00278
                                      -16.3 2.24e-37
```



```
augment(fit_consMR) %>%

gg_tsdisplay(.resid, plot_type="hist")
```


Same useful predictors for linear models

Trend

Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

	Α	В
1	Yes	1
3	Yes	1
	No	0
4	Yes	1
5	No	0
6	No	0
7	Yes	1
8	Yes	1
9	No	0
10	No	0
11	No	0
12	No	0
13	Yes	1
14	No	0

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

		Α	В	С	D	Е
	1	Monday	1	0	0	0
	2	Tuesday	0	1	0	0
	3	Wednesday	0	0	1	0
	4	Thursday	0	0	0	1
	5	Friday	0	0	0	0
	6	Monday	1	0	0	0
	7	Tuesday	0	1	0	0
	8	Wednesday	0	0	1	0
	9	Thursday	0	0	0	1
	10	Friday	0	0	0	0
	11	Monday	1	0	0	0
	12	Tuesday	0	1	0	0
	13	Wednesday	0	0	1	0
	14	Thursday	0	0	0	1
	15	Friday	0	0	0	0

Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

If there is an outlier, you can use a dummy variable to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Regression model

$$y_t = \beta_0 + \beta_1 t + \beta_2 d_{2,t} + \beta_3 d_{3,t} + \beta_4 d_{4,t} + \varepsilon_t$$

 $d_{i,t} = 1$ if t is quarter i and 0 otherwise.

```
fit_beer <- beer %>% model(TSLM(Production ~ trend() + season()))
report(fit_beer)
## Series: Production
## Model: TSLM
##
## Residuals:
##
    Min 10 Median 30
                             Max
## -42.90 -7.60 -0.46 7.99 21.79
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 441.8004 3.7335 118.33 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## season()year2 -34.6597 3.9683 -8.73 9.1e-13 ***
## season()year4 72.7964 4.0230 18.09 < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924. Adjusted R-squared: 0.92
```

F-statistic: 211 on 4 and 69 DF, p-value: <2e-16

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^K \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough *K*.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

Harmonic regression: beer production

```
fourier_beer <- beer %>% model(TSLM(Production ~ trend() + fourier(K=2)))
report(fourier_beer)
```

```
## Series: Production
## Model: TSLM
##
## Residuals:
    Min 10 Median 30
##
                           Max
## -42.90 -7.60 -0.46 7.99 21.79
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 446.8792
                            2.8732 155.53 < 2e-16 ***
## trend()
                 ## fourier(K = 2)C1 4 8.9108 2.0112 4.43 3.4e-05 ***
## fourier(K = 2)S1_4 -53.7281 2.0112 -26.71 < 2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
```

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Steps

Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

■ Variables take values 0 before the intervention and values $\{1, 2, 3, ...\}$ afterwards.

Holidays

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

Trading days

With monthly data, if the observations vary depending on how many different types of days in the month, then trading day predictors can be useful.

```
z<sub>1</sub> = # Mondays in month;
z<sub>2</sub> = # Tuesdays in month;
:
z<sub>7</sub> = # Sundays in month.
```

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

NOT RECOMMENDED!

```
marathon <- read_csv("data/marathon.csv") %>%
   as_tsibble(index = Year)
marathon %>% autoplot(Minutes) +
   xlab("Year") + ylab("Winning times in minutes")
```



```
fit_trends <- marathon %>%
model(
    # Linear trend
    linear = TSLM(Minutes ~ trend()),
    # Exponential trend
    exponential = TSLM(log(Minutes) ~ trend()),
    # Piecewise linear trend
    piecewise = TSLM(Minutes ~ trend(knots = c(1940, 1980)))
)
```

```
fc_trends <- fit_trends %>% forecast(h=10)
```


Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

Computer output for regression will always give the R^2 value. This is a useful summary of the model.

- It is equal to the square of the correlation between y and \hat{y} .
- It is often called the "coefficient of determination".
- It can also be calculated as follows:

$$R^{2} = \frac{\sum (\hat{y}_{t} - \bar{y})^{2}}{\sum (y_{t} - \bar{y})^{2}}$$

It is the proportion of variance accounted for (explained) by the predictors.

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding any variable tends to increase the value of R^2 , even if that variable is irrelevant.

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of R^2 , even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

However ...

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of R^2 , even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} \sum_{t=1}^{T} \varepsilon_t^2$$

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- This is a penalized likelihood approach.
- Minimizing the AIC gives the best model for prediction.
- AIC penalizes terms more heavily than \bar{R}^2 .
- Minimizing the AIC is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation.

Corrected AIC

For small values of *T*, the AIC tends to select too many predictors, and so a bias-corrected version of the AIC has been developed.

$$AIC_C = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

As with the AIC, the AIC_C should be minimized.

```
glance(fit_trends) %>%
  select(r.squared, adj.r.squared, AIC, AICc)
```

■ Be careful making comparisons when transformations are used.

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Warning!

- If there are a large number of predictors, this is not possible.
- For example, 44 predictors leads to 18 trillion possible models!

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Notes

- Stepwise regression is not guaranteed to lead to the best possible model.
- Inference on coefficients of final model will be wrong.

Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

Ex-ante versus ex-post forecasts

- Ex ante forecasts are made using only information available in advance.
 - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
 - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

Scenario based forecasting

- Assumes possible scenarios for the predictor variables
- Prediction intervals for scenario based forecasts do not include the uncertainty associated with the future values of the predictor variables.

Building a predictive regression model

If getting forecasts of predictors is difficult, you can use lagged predictors instead.

$$y_t = \beta_0 + \beta_1 x_{1,t-h} + \cdots + \beta_k x_{k,t-h} + \varepsilon_t$$

A different model for each forecast horizon h.

Beer production

```
beer2 <- ausbeer %>% filter(year(Time) >= 1992)
fit_beer <- beer2 %>% model(TSLM(Production ~ trend() + season()))
fc_beer <- forecast(fit_beer)
fc_beer %>% autoplot(beer2) +
    ggtitle("Forecasts of beer production using regression") +
    xlab("Year") + ylab("megalitres")
```


Vear

US Consumption

```
fit_consBest <- us_change %>%
  model(lm = TSLM(Consumption ~ Income + Savings + Unemployment))
up_future <- new_data(us_change, 4) %>%
  mutate(Income = 1, Savings = 0.5, Unemployment = 0)
down_future <- new_data(us_change, 4) %>%
  mutate(Income = -1, Savings = -0.5, Unemployment = 0)
fc_up <- forecast(fit_consBest, new_data = up_future)
fc_down <- forecast(fit_consBest, new_data = down_future)</pre>
```

US Consumption

```
us_change %>% autoplot(Consumption) +
  ylab("% change in US consumption") +
  autolayer(fc_up, series = "increase") +
  autolayer(fc_down, series = "decrease") +
  guides(colour = guide_legend(title = "Scenario"))
```


Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Let
$$\mathbf{y} = (y_1, \dots, y_T)', \ \varepsilon = (\varepsilon_1, \dots, \varepsilon_T)',$$

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)' \text{ and}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

Let
$$\mathbf{y} = (y_1, \dots, y_T)', \ \varepsilon = (\varepsilon_1, \dots, \varepsilon_T)',$$

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_k)' \text{ and}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{1,1} & x_{2,1} & \dots & x_{k,1} \\ 1 & x_{1,2} & x_{2,2} & \dots & x_{k,2} \\ \vdots & \vdots & & \vdots \\ 1 & x_{1,T} & x_{2,T} & \dots & x_{k,T} \end{bmatrix}.$$

Then

$$y = X\beta + \varepsilon$$
.

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}$$

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$

Differentiate wrt β gives

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

Least squares estimation

Minimize: $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$

Differentiate wrt β gives

$$\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

(The "normal equation".)

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} (\mathbf{y} - \mathbf{X}\hat{\beta})'(\mathbf{y} - \mathbf{X}\hat{\beta})$$

Note: If you fall for the dummy variable trap, (X'X) is a singular matrix.

If the errors are iid and normally distributed, then $\mathbf{y} \sim \mathrm{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$

If the errors are iid and normally distributed, then $\mathbf{v} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

If the errors are iid and normally distributed, then $\mathbf{v} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

If the errors are iid and normally distributed, then $\mathbf{v} \sim \mathsf{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2\mathbf{I}).$

So the likelihood is

$$L = \frac{1}{\sigma^{\mathsf{T}} (2\pi)^{\mathsf{T}/2}} \exp\left(-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right)$$

which is maximized when $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$ is minimized.

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X'y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X'y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

$$Var(y^*|X, x^*) = \sigma^2 [1 + x^*(X'X)^{-1}(x^*)']$$

Multiple regression forecasts

Optimal forecasts

$$\hat{y}^* = E(y^*|y, X, x^*) = x^* \hat{\beta} = x^* (X'X)^{-1} X' y$$

where \mathbf{x}^* is a row vector containing the values of the predictors for the forecasts (in the same format as \mathbf{X}).

Forecast variance

$$Var(y^*|X, x^*) = \sigma^2 [1 + x^*(X'X)^{-1}(x^*)']$$

- This ignores any errors in \mathbf{x}^* .
- 95% prediction intervals assuming normal errors:

$$\hat{y}^* \pm 1.96 \sqrt{\text{Var}(y^*|X,x^*)}$$
.

Outline

- 1 The linear model with time series
- 2 Selecting predictors and forecast evaluation
- 3 Forecasting with regression
- 4 Matrix formulation
- 5 Correlation, causation and forecasting

Correlation is not causation

- When *x* is useful for predicting *y*, it is not necessarily causing *y*.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature x and people z to predict drownings y).

Multicollinearity

In regression analysis, multicollinearity occurs when:

- Two predictors are highly correlated (i.e., the correlation between them is close to ± 1).
- A linear combination of some of the predictors is highly correlated with another predictor.
- A linear combination of one subset of predictors is highly correlated with a linear combination of another subset of predictors.

Multicollinearity

If multicollinearity exists...

- the numerical estimates of coefficients may be wrong (worse in Excel than in a statistics package)
- don't rely on the p-values to determine significance.
- there is no problem with model predictions provided the predictors used for forecasting are within the range used for fitting.
- omitting variables can help.
- combining variables can help.

Outliers and influential observations

Things to watch for

- Outliers: observations that produce large residuals.
- Influential observations: removing them would markedly change the coefficients. (Often outliers in the x variable).
- Lurking variable: a predictor not included in the regression but which has an important effect on the response.
- Points should not normally be removed without a good explanation of why they are different.