Лекція 1.

Поняття моделі. Класифікація моделей. Способи моделювання. Методи моделювання. Процес моделювання.

Інна Вячеславівна Стеценко д.т.н., проф. кафедри ІПІ НТУУ «КПІ ім. Ігоря Сікорського»

Актуальність розробки програмного забезпечення з моделювання систем

- Моделі основний засіб наукового дослідження об'єктів і систем
- Технологія Process Mining дослідження бізнес-процесів
- Manufacturing simulation напрям розробки програмного забезпечення для моделювання виробничих процесів
- Концепція Industry 4.0 (Smart Factory)
 - CyberPhysical systems

Поняття моделі

Моделлю називається представлення об'єкта, системи чи поняття в деякій **абстрактній** формі, що є **зручною** для наукового дослідження.

Загальна структура моделі

- Модель завжди є спрощенням реального процесу/ системи.
- Від рівня деталізації опису процесів залежить складність моделі.
- Мистецтво дослідника, який будує модель, полягає в тому, щоб для найменш складної моделі отримати найбільш точні результати для задачі, яка поставлена

Способи побудови моделей

Перший спосіб: в результаті ретельного вивчення системи встановлюються закони функціонування системи, які потім відтворюються за допомогою моделі => Фізичні моделі

Другий спосіб: без усякого фізичного обґрунтування припускається вид залежності F, невідомі параметри якої P потім відшукуються за даними спостережень за змінними системи X, Y => **Нефізичні** моделі

Класифікація моделей

- З точки зору вихідної змінної моделі:
 - **❖** статичні та динамічні
 - неперервні та дискретні
 - детерміновані та стохастичні
- > 3 точки зору способу побудови моделі:
 - ❖ фізичні та нефізичні
- > 3 точки зору методу моделювання:
 - **❖** алгебраїчні, диференційні, аналітичні, імітаційні,...

Методи моделювання

Імітаційне моделювання

F є алгоритм імітації, який відтворює функціонування системи

Задачі моделювання

Моделювання: відомі X, P, $F \Rightarrow$ знайти Y

Управління: відомі $Y, P, F \Rightarrow$ знайти X

Ідентифікації: відомі X, Y, множина $F \Rightarrow$ знайти $f \in F, P$

Оптимізації: відомі F, критерій $K \Rightarrow$ знайти P, X, Y

Прогнозування: відомі X_t , Y_t , $T \Rightarrow$ знайти F, P, Y_{t+T}

Системний підхід до побудови моделей

<u>Системний підхід</u> до дослідження систем означає, що дослідник вивчає функціонування системи в цілому, не концентруючи свою увагу на окремих її частинах.

Оснований системний підхід на визнанні факту, що навіть найліпше функціонування окремих підсистем та елементів системи не гарантує найліпшого функціонування всієї системи в цілому, оскільки завжди існує взаємодія між частинами системи.

Опис системи разом із указуванням цілі та задачі дослідження складає концептуальну модель системи.

Розробка концептуальної моделі системи складає основну задачу <u>системного аналізу</u> об'єкта, явища чи поняття, що досліджується.

Процес моделювання

Програмне забезпечення моделювання систем

Неперервні моделі: Matlab, Simulink

Дискретно-подійні моделі: VisSim, CPNTools, AnyLogic,

ProModel, Simio https://www.simio.com/index.php

Arena Simulation Software https://www.arenasimulation.com/

Arena Simulation Software

Представлення випадкових величин в моделі

- Випадкова величина спрощене представлення складних процесів, які впливають на значення величини.
- *Стохастичні* моделі ті, що використовують для опису своїх змінних та/або параметрів випадкові величини
- *Закон розподілу* основна характеристика випадкової величини
- *Ідентифікація* закону розподілу метод для визначення закону розподілу випадкової величини за даними спостережень

Ідентифікація закону розподілу

Ідентифікація закону розподілу випадкової величини

Формування масиву значень випадкової величини
Побудова гістограми частот
Формування гіпотези про вид закону розподілу
Оцінка значень параметрів закону розподілу
Перевірка відповідності за критерієм згоди

Перевірка відповідності випадкових чисел закону розподілу

Розраховане значення χ^2 порівнюється з табличним значенням критерію $\chi^2_{\kappa p}$, яке взяте при рівні значимості α =0,05 та кількості степенів свободи, рівній кількості інтервалів у гістограмі частот k мінус 1 мінус кількість параметрів закону розподілу. Якщо $\chi^2 < \chi^2_{\kappa p}$, то з довірчою ймовірністю 0,95 можна стверджувати, що знайдений закон розподілу відповідає спостережуваним значенням випадкової величини ζ .

Генератори випадкових чисел

Генерування випадкової величини r за заданим законом розподілу F(x)

метод оберненої функції

$$r = F^{-1}(\varsigma)$$

експоненціальний закон розподілу

$$r = -\frac{1}{\lambda} \cdot \ln \zeta$$

табличний метод

$$r = x_{i-1} + \frac{x_i - x_{i-1}}{a_i - a_{i-1}} (\varsigma - a_{i-1})$$
$$a_i = F(x_i)$$

емпіричний закон розподілу

спеціальні методи

нормальний закон розподілу(закон Гауса)

закон розподілу Ерланга

$$r = \sigma \cdot \left(\sum_{i=1}^{12} \zeta_i - 6\right) + a$$

$$r = -\frac{1}{k\mu} \ln \left(\prod_{i=1}^{k} \zeta_{i} \right)$$

Генерування рівномірно розподілених в інтервалі (0;1) випадкових величин на основі рекурсивних формул

$$z_{i+1} = (az_i + b) \pmod{c}, i = 0,1,...$$

$$\zeta_{i+1} = z_{i+1} / c$$

Тестування генераторів рівномірно розподілених в інтервалі (0,1) випадкових чисел:

- перевірка на рівномірність,
- перевірка на випадковість,
- кореляції

Генерування випадкової величини методом оберненої функції

$$\varsigma_{i} = F(r_{1}), ..., \varsigma_{n} = F(r_{n})
G(y) = P(\varsigma \leq y) = P(F(r) \leq y) = P(F^{-1}(F(r)) \leq F^{-1}(y)) =
= P(r \leq F^{-1}(y)) = F(F^{-1}(y)) = y$$

$$r = F^{-1}(\varsigma)$$

$$F(x)$$

Приклад: $\varsigma = 1 - e^{-\lambda r} \Leftrightarrow r = -\frac{1}{\lambda} \cdot \ln(1 - \varsigma)$.

Табличний метод генерування випадкового числа r, що має закон розподілу F(x)

Завдання комп'ютерного практикуму

1.1 Завдання до практичної роботи

- ✓ Згенерувати 10000 випадкових чисел трьома вказаними нижче способами.
 45 балів.
 - Згенерувати випадкове число за формулою $x_i = -\frac{1}{\lambda} \ln \xi_i$, де ξ_i випадкове число, рівномірно розподілене в інтервалі (0;1). Числа ξ_i можна створювати за допомогою вбудованого в мову програмування генератора випадкових чисел. Перевірити на відповідність експоненційному закону розподілу $F(x) = 1 e^{-\lambda x}$. Перевірку зробити при різних значеннях λ .
 - Згенерувати випадкове число по формулах:

$$x_i = \sigma \mu_i + a$$

$$\mu_i = \sum_{i=1}^{12} \xi_i - 6$$

де ξ_i - випадкове число, рівномірно розподілене в інтервалі (0;1). Числа ξ_i можна створювати за допомогою убудованого в мову програмування генератора випадкових чисел. Перевірити на відповідність нормальному закону розподілу:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right).$$

Перевірку зробити при різних значеннях a і σ .

- Згенерувати випадкове число за формулою $z_{i+1} = az_i \pmod{c}$, $x_{i+1} = z_{i+1}/c$, де $a=5^{13}$, $c=2^{31}$. Перевірити на відповідність рівномірному закону розподілу в інтервалі (0;1). Перевірку зробити при різних значеннях параметрів a і c.
- ✓ Для кожного побудованого генератора випадкових чисел побудувати гістограму частот, знайти середнє і дисперсію цих випадкових чисел. По виду гістограми частот визначити вид закону розподілу. 20 балів.
- ✓ Відповідність заданому закону розподілу перевірити за допомогою критерію згоди χ². 30 балів
- ✓ Зробити висновки щодо запропонованих способів генерування випадкових величин. 5 балів

... . . .

Цікаво, що

- Розробка першої об'єктно-орієнтованої мови програмування тісно пов'язана з імітаційними проектами. У 1962 році Kristen Nygaard ініціював проект зі створення мови імітаційного моделювання. До проекту приєднався Ole-Johan Dahl і у 1966 році був написаний компілятор нової мови. Мова Simula вперше ввела поняття, які й на сьогоднішній день є основою ООП: клас, об'єкт, інкапсуляція, спадкування та динамічне зв'язування.
- Одна з найвідомих книг з імітаційного моделювання називається «Імітаційне моделювання систем мистецтво і наука»

Robert E. Shennon *Systems Simulation: The Art and Science*. Prentice Hall, 387 p. (1975).