Análisis de complejidad temporal y espacial.

```
public int convertStringToNumbers(K key) {
   int values = 0;
   String s = key.toString();
   for (int i = 0; i < s.length(); i++)
      values += s.charAt(i) * (i + 1);
   return values;
}</pre>
```

Instrucciones	Veces que se repite (Notación Big O)
<pre>1. int values = 0;</pre>	1
<pre>2. String s = key.toString();</pre>	1
3. for (int i = 0; i <	n + 1
s.length(); i++)	
4. values += s.charAt(i) * (i +	n
1);	
5. return values;	1

Tipo	Variable	Tamaño de 1 valor atómico	Cantidad de valores atómicos
Entrada	key	64 bits	1
Auxiliar	S	64 bits	1
	i	32 bits	1
Salida	values	32 bits	1

Complejidad espacial total = Entrada + Auxiliar + Salida = 1 + 2 + 1 = 4 = O(4) = O(1).

Complejidad espacial auxiliar = 2 = O(2) = O(1).

Complejidad espacial auxiliar + salida = Auxiliar + Salida = 2 + 1 = 3 = O(3) = O(1).

```
public void enqueue(T data) {
   Node<T> element = new Node ◇ (data);
   if( isEmpty() ) {
      first = element;
      last = first;
   } else {
      Node<T> temporal = first;

   while( temporal.getNext() ≠ null )
      temporal = temporal.getNext();

   temporal.setNext(element);
   last = element;
}
```

Instrucciones	Veces que se repite (Notación Big
	0)
<pre>1. Node<t> element = new</t></pre>	1
Node<>(data);	
2. If(isEmpty()) {	1
<pre>3. first = element;</pre>	1
4. last = first;	1
5. } else {	1
<pre>6. Node<t> temporal = first;</t></pre>	1
<pre>7. while(temporal.getNext()</pre>	n + 1
¡= null)	
8. temporal =	n
<pre>temporal.getNext();</pre>	
<pre>9. temporal.setNext(element);</pre>	1
<pre>10. last = element;</pre>	1

Tipo	Variable	Tamaño de 1 valor atómico	Cantidad de valores atómicos
Entrada	data	64 bits	1
Auxiliar	temporal	64 bits	1
Salida	Ninguno	0	0

Complejidad espacial total = Entrada + Auxiliar + Salida = 1 + 1 + 0 = 2 = O(2) = O(1).

Complejidad espacial auxiliar = 1 = O(1).

Complejidad espacial auxiliar + salida = Auxiliar + Salida = 1 + 0 = 1 = O(1).