

FCC Measurement/Technical Report on

SmartFlex

FCC ID: 2AIQR-SR305

IC: 21603-SR305

Test Report Reference: MDE_ADVANT_1601_FCCa

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbHBorsigstraße 11
40880 Ratingen, Germany
T +49 (0) 2102 749 0
F +49 (0) 2102 749 350

Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Table of Contents

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary / Signatures	5
2	Administrative Data	7
2.1	Testing Laboratory	7
2.2	Project Data	7
2.3	Applicant Data	7
2.4	Manufacturer Data	7
3	Test object Data	8
3.1	General EUT Description	8
3.2	EUT Main components	9
3.3	Ancillary Equipment	10
3.4	Auxiliary Equipment	10
3.5	EUT Setups	11
3.6	Operating Modes	11
3.7	Product labelling	12
4	Test Results	13
4.1	Conducted Emissions at AC mains	13
4.2	Radiated Emissions	16
5	Test Equipment	22
6	Antenna Factors, Cable Loss and Sample Calculations	25
6.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	25
6.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	26
6.3	Antenna R&S HL562 (30 MHz – 1 GHz)	27
6.4	Antenna R&S HF907 (1 GHz – 18 GHz)	28
6.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	29
6.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	30
7	Setup Drawings	31
8	Measurement Uncertainties	32
9	Photo Report	32

1 Applied Standards and Test Summary

1.1 Applied Standards

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-15 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart B - Unintentional Radiators

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits; general requirements

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC Correlation Table

Correlation of measurement requirements for Information Technology Equipment (ITE) from FCC and IC

Measurement	FCC reference	IC reference
Conducted Emissions (AC Power Line)	§15.107	ICES-003 Issue 6: 6.1
Radiated Spurious Emissions	§15.109	ICES-003 Issue 6: 6.2

Remarks:

- 1. FCC Part 15 subpart B, ICES 003 and CISPR 22 contain different definitions of Class A and Class B limits, i.e. which class is applicable to which kind of EUT. ICES 003 and CISPR 22 distinguish between the location where the EUT is intended to operate whilst FCC refers to the method of commercial distribution (distributive trades).
- 2. The correct assignment of the appropriate class to the concrete EUT is not scope of this test report!
- 3. A radio apparatus that is specifically subject to an Industry Canada Radio Standard Specification (RSS) and which contains an ITE is not subject to ICES-003 provided the ITE is used only to enable operation of the radio apparatus and the ITE does not control additional functions or capabilities.
- 4. ISM (Industrial, Scientific or Medical) radio frequency generators, though they may contain ITE, are excluded from the definition of ITE and are not subject to ICES-003. They are instead subject to the Interference-Causing Equipment Standard ICES-001, which specifically addresses ISM radio frequency generators.

1.3 Measurement Summary / Signatures

47 CFR CHAPTER I FCC PART 15 Subpart B

47 CFR CHAPTER I FCC PART 15 Subpart B Conducted Emissions at AC mains	§ 15.107		
		Final Re	sult
OP-Mode AC mains connection, Test setup	Setup	FCC	IC
via auxilliary equipment, computer peripheral	Setup_aa01	passed	passed
via auxilliary equipment, computer peripheral	Setup_aa02	passed	passed
via auxilliary equipment, computer peripheral	Setup_ab01	passed	passed
via auxilliary equipment, computer peripheral	Setup_ac01	passed	passed
via auxilliary equipment, computer peripheral	Setup_ad01	passed	passed
via auxilliary equipment, computer peripheral	Setup_ae01	passed	passed

§ 15.109

Radiated Emissions The measurement was performed according to ANSI C63.	4-2014	Final Re	esult
·			
OP-Mode AC mains connection, Measurement range, Test setup	Setup	FCC	IC
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_aa01	passed	passed
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_aa02	passed	passed
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_ab01	passed	passed
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_ac01	passed	passed
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_ad01	passed	passed
via auxilliary equipment, 1 GHz - 6 GHz, computer peripheral	Setup_ae01	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_aa01	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_aa02	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_ab01	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_ac01	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_ad01	passed	passed
via auxilliary equipment, 30 MHz - 1 GHz, computer peripheral	Setup_ae01	passed	passed

N/A: Not applicable N/P: Not performed

Revision History

Report version control				
Version	Release date	Change Description	Version validity	
initial	2016-06-06		invalid	
rev1	2016-08-26	FCC-ID and IC-ID changed	valid	

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)

B.Sc. Jens Dörwald

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

2 Administrative Data

2.1 Testing Laboratory

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

This facility has been fully described in a report submitted to the IC and accepted under the registration number: Site# 3699A-1.

The test facility is also accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2016-05-12

2.2 Project Data

Responsible for testing and report: B.Sc. Jens Dörwald

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2016-08-26

Testing Period: 2016-05-15 to 2016-05-15

2.3 Applicant Data

Company Name: Advantech B+B SmartWorx s.r.o.

Address: 562 04 Usti nad Orlici III

Czech Republic

Contact Person: Mr. Eduard Doskocil

2.4 Manufacturer Data

Company Name: please see applicant data

Address:

Contact Person:

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa Page 7 of 32

3 Test object Data

3.1 General EUT Description

Kind of Device product description	M2M & WiFi Router		
Product name	SmartFlex		
Туре	SmartFlex		
Declared EUT data by	the supplier		
Power Supply Type	AC/DC Adapter		
Nominal Voltage / Frequency	12V / DC		
Test Voltage /	input: 120V/60Hz		
Frequency	output: 12 V DC		
Highest internal frequency	1000 MHz		
General Description	The EUT is a M2M Router including WLAN and LTE Technology. The router is supllied in different versions.		
Ports (Basic Version with WiFi)	1 x Power connector (cable length: 150 cm) 1 x Antenna connector ANT, DIV, GPS, DUST and WiFi (cable length: 270 cm) 2 x Ethernet Ports (cable length: 250 cm) 1 x USB Port (cable length: 180 cm) 1 x I/O Port (cable length: 180 cm)		
Ports (Version RS232- RS485-ETH & WiFi)	1 x Power connector (cable length: 150 cm) 1 x Antenna connector ANT, DIV, GPS and WiFi (cable length: 270 cm) 3 x Ethernet Ports (cable length: 250 cm) 1 x USB Port (cable length: 180 cm) 1 x I/O Port (cable length: 180 cm) 1 x RS232 interface (cable length: 180 cm) 1 x RS485 interface (cable length: 180 cm)		
Ports (Version SWITCH & WiFi)	1 x Power connector (cable length: 150 cm) 1 x Antenna connector ANT, DIV, GPS and WiFi (cable length: 270 cm) 5 x Ethernet Ports (cable length: 250 cm) 1 x USB Port (cable length: 180 cm) 1 x I/O Port (cable length: 180 cm)		

Ports (Version RS232-	1 x Power connector (cable length: 150 cm)
RS485 & WiFi)	1 x Antenna connector ANT, DIV, GPS and WiFi (cable length: 270
	cm)
	2 x Ethernet Ports (cable length: 250 cm)
	1 x USB Port (cable length: 180 cm)
	1 x I/O Port (cable length: 180 cm)
	1 x RS232 interface (cable length: 180 cm)
	1 x RS485 interface (cable length: 180 cm)
Ports (Version RS232 &	1 x Power connector (cable length: 150 cm)
WiFi)	1 x Antenna connector ANT, DIV, GPS and WiFi (cable length: 270
	cm)
	2 x Ethernet Ports (cable length: 250 cm)
	1 x USB Port (cable length: 180 cm)
	1 x I/O Port (cable length: 180 cm)
	1 x RS232 interface (cable length: 180 cm)

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

3.2 EUT Main components

Sample Name	Sample Code	Description
SmartFlex	DE1180001aa01	Sample #01
Sample Parameter		Value
Serial No.	-	
HW Version	1.0	
SW Version	6.0.0	
Comment	Basic version with WiFi	

Sample Name	Sample Code	Description	
SmartFlex	DE1180001aa02	Sample #02	
Sample Parameter		Value	
Serial No.	-		
HW Version	1.0		
SW Version	6.0.0		
Comment	Basic version with WiFi		

Sample Name	Sample Code	Description	
SmartFlex	DE1180001ab01	Sample #03	
Sample Parameter		Value	
Serial No.	-		
HW Version	1.0		
SW Version	6.0.0		
Comment	Version RS232-RS485-ETH & WiFi		

Sample Name Sample Code Description

SmartFlex	DE1180001ac01	Sample #04	
Sample Parameter		Value	
Serial No.	-		
HW Version	1.0		
SW Version	6.0.0		
Comment	Version SWITCH & WiFi		

Sample Name	Sample Code	Description
SmartFlex	DE1180001ad01	Sample #05
Sample Parameter	Va	alue
Serial No.	-	
HW Version	1.0	
SW Version	6.0.0	
Comment	Version RS232-RS485 & WiFi	

Sample Name	Sample Code	Description	
SmartFlex	DE1180001ae01	Sample #06	
Sample Parameter		Value	
Serial No.	-		
HW Version	1.0		
SW Version	6.0.0		
Comment	Version RS232 & WiFi		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description	
AC/DC-Adapter	Sunny Computer Technology Europe s.r.o., -, -, MODEL: SYS1561-1212	-	

3.4 Auxiliary Equipment

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, HW, SW, S/N, Model)	Description
Monitor	LG, -, -, 412WAPLOU560, L17MB-P	power supply for EUT
Laptop	FUJITSU, -, Windows 7, DSCK013817, LIFEBOOK E Series E781	-
AC Adapter	FUJITSU, -, -, 13300281B, PJW1942NA	power supply for Laptop
Mouse	Logitech, -, -, HC60915A2XC, M-BT58	-
Keyboard	CHERRY, -, -, G0000273 2P28, RS 6000 USB ON	-

3.5 EUT Setups

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
Setup_aa01	Sample #01,	tests performed with Ancillary and Auxiliary
Setup_aa02	Sample #02,	tests performed with Ancillary and Auxiliary
Setup_ab01	Sample #03,	tests performed with Ancillary and Auxiliary
Setup_ac01	Sample #04,	tests performed with Ancillary and Auxiliary
Setup_ad01	Sample #05,	tests performed with Ancillary and Auxiliary
Setup_ae01	Sample #06,	tests performed with Ancillary and Auxiliary

3.6 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

- Measurement range 150kHz 30MHz:
 LTE eFDD5 uplink on 836.5MHz
 WLAN mode-g TX on 2437MHz
 LAN ping
 Data traffic
- Measurement range 30MHz 1GHz: LTE eFDD2 uplink on 1880MHz WLAN mode-g TX on 2437MHz LAN ping Data traffic
- Measurement range 1GHz 6GHz: LTE eFDD5 idle mode WLAN mode-g TX on 2437MHz LAN ping Data traffic

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

3.7 Product labelling

3.7.1FCC ID label

Please refer to the documentation of the applicant.

3.7.2Location of the label on the EUT

Please refer to the documentation of the applicant.

4 Test Results

4.1 Conducted Emissions at AC mains

Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4-2014

4.1.1Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

Detector: Peak – Maxhold & AverageFrequency range: 150 kHz – 30 MHz

Frequency steps: 2.5 kHzIF-Bandwidth: 9 kHz

- Measuring time / Frequency step: 100 ms (FFT-based)

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

Detector: Quasi-PeakIF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa Page 13 of 32

4.1.2Test Requirements / Limits

FCC Part 15, Subpart B, §15.107

Class B:

Frequency (MHz)	QP Limits (dBμV)	AV Limits (dBμV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Class A:

Frequency (MHz)	QP Limits (dBμV)	AV Limits (dBμV)
0.15 - 0.5	79	66
0.5 - 30	73	60

4.1.3Test Protocol

Temperature: 24 °C Air Pressure: 1013 hPa Humidity: 33 %

DE1180001aa01:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.488	39.9	AV	46.2	6.2
N	0.488	43.4	QP	56.2	12.8

DE1180001aa02:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.490	40.5	AV	46.2	5.7
N	0.490	43.5	QP	56.2	12.7

DE1180001ab01:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.485	39.3	AV	46.2	6.9
N	0.485	42.8	QP	56.2	13.4

DE1180001ac01:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.488	38.8	AV	46.1	7.2
N	0.488	41.9	QP	56.2	14.2

DE1180001ad01:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.483	39.6	AV	46.2	6.6
N	0.483	42.9	QP	56.1	13.2

DE1180001ae01:

AC/DC adapter

Power line	Frequency [MHz]	Level [dBµV]	Detector	Limit [dBµV]	Margin [dB]
N	0.490	40.6	AV	46.1	5.5
N	0.490	43.6	QP	56.1	12.5

Remark: Please see next sub-clause for the measurement plot.

4.1.4Measurement Plot (showing the highest value, "worst case")

DE1180001ae01

4.1.5Test Equipment used

Conducted Emissions

4.2 Radiated Emissions

Standard FCC Part 15 Subpart B

The test was performed according to:

ANSI C63.4-2014

4.2.1Test Description

The test set-up was made in accordance to the general provisions of ANSI C63.4 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:
- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

- Frequency steps: 30 kHz - IF-Bandwidth: 120 kHz

- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 100 ms

- Turntable angle range: \pm 45 ° around the determined value

- Height variation range: ± 100 cm around the determined value

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

- IF - Bandwidth: 120 kHz - Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 $^{\circ}$.

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHzMeasuring time: 1 s

4.2.2Test Requirements / Limits

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits

Class B:

Ciass Di	51d55 D1								
Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)						
30 - 88	100@3m	3	40.0@3m						
88 - 216	150@3m	3	43.5@3m						
216 - 960	200@3m	3	46.0@3m						
960 - 26000	500@3m	3	54.0@3m						
26000 - 40000	500@3m	1	54.0@3m						

Class A:

Frequency (MHz)	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	90@10m	3	39.1@10m
88 - 216	150@10m	3	43.5@10m
216 - 960	210@10m	3	46.4@10m
960 - 26000	300@10m	3	49.5@10m
26000 - 40000	300@10m	1	49.5@10m

The measured values for Class A and for Class B (> 26 GHz) measurements are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.2.3Test Protocol

Ambient temperature: 24-24 °C Air Pressure: 1000-1013 hPa Humidity: 33-37 %

DE1180001aa01:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
30.8	31.6	QP	120	40.0	8.4
72.8	29.0	QP	120	40.0	11.1
148.1	26.2	QP	120	43.5	17.4
194.8	30.5	QP	120	43.5	13.0
349.1	29.4	QP	120	46.0	16.7
369.5	36.0	QP	120	46.0	10.0
2387.8	54.4	PEAK	1000	74.0	19.6
2388.0	36.1	AV	1000	54.0	17.9
2494.4	57.0	PEAK	1000	74.0	17.0
2494.6	37.3	AV	1000	54.0	16.7

DE1180001aa02:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
30.8	31.4	QP	120	40.0	8.6
38.9	27.6	QP	120	40.0	12.4
78.9	28.1	QP	120	40.0	11.9
119.3	29.0	QP	120	43.5	14.5
193.7	31.9	QP	120	43.5	11.6
375.0	38.3	QP	120	46.0	7.7
745.6	31.7	QP	120	46.0	14.3
2348.3	54.2	PEAK	1000	74.0	19.8
2389.4	55.6	PEAK	1000	74.0	18.4
2389.5	36.1	AV	1000	54.0	17.9
2483.5	57.5	PEAK	1000	74.0	16.5
2483.5	36.9	AV	1000	54.0	17.1
2487.3	37.1	AV	1000	54.0	16.9
2487.3	56.8	PEAK	1000	74.0	17.2

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

DE1180001ab01:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
30.2	31.5	QP	120	40.0	8.5
133.4	34.3	QP	120	43.5	9.2
194.8	30.4	QP	120	43.5	13.1
348.2	29.4	QP	120	46.0	16.6
371.0	32.7	QP	120	46.0	13.3
450.0	43.3	QP	120	46.0	2.7
525.0	35.6	QP	120	46.0	10.4
550.0	39.7	QP	120	46.0	6.3
2356.5	54.5	PEAK	1000	74.0	19.5
2361.4	54.2	PEAK	1000	74.0	19.8
2494.4	57.8	PEAK	1000	74.0	16.2
2495.1	37.3	AV	1000	54.0	16.7

DE1180001ac01:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
30.7	31.2	QP	120	40.0	8.9
76.3	24.6	QP	120	40.0	15.4
194.8	30.6	QP	120	43.5	12.9
372.0	31.5	QP	120	46.0	14.5
728.5	24.7	QP	120	46.0	21.3
2367.5	56.0	PEAK	1000	74.0	18.0
2487.0	58.6	PEAK	1000	74.0	15.4

DE1180001ad01:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
30.7	32.3	QP	120	40.0	7.7
72.9	27.8	QP	120	40.0	12.3
347.3	28.7	QP	120	46.0	17.3
367.5	31.4	QP	120	46.0	14.6
741.2	25.5	QP	120	46.0	20.5
1999.6	55.5	PEAK	1000	74.0	18.5
2378.7	56.8	PEAK	1000	74.0	17.3
2513.5	55.7	PEAK	1000	74.0	18.3

DE1180001ae01:

AC/DC adapter

Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detector	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
32.2	27.1	QP	120	40.0	12.9
73.5	26.1	QP	120	40.0	13.9
148.6	25.8	QP	120	43.5	17.7
333.4	28.1	QP	120	46.0	17.9
375.0	37.4	QP	120	46.0	8.6
2362.1	55.0	PEAK	1000	74.0	19.0
2489.5	60.4	PEAK	1000	74.0	13.6
2503.0	57.5	PEAK	1000	74.0	16.5
4499.8	46.4	AV	1000	54.0	7.6

Remark: Please see next sub-clause for the measurement plot.

4.2.4Measurement Plot (showing the highest value, "worst case")

DE1180001ab01 (30MHz - 1GHz)

DE1180001ae01 (1GHz - 6GHz)

4.2.5Test Equipment used

Radiated Emissions

5 Test Equipment

1 Conducted Emissions

Shielded Room 02

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	828304/029		
	ISN/CDN ST08	Impedance Stabilization Network, Coupling Decoupling Network	Teseq	36292	2014-01	2016-01
	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11	2016-11
	ISN T800	Impedance Stabilization Network	Teseq	36159		
	EP 1200/B, NA/B1	Amplifier with integrated variable Oscillator	Spitzenberger & Spieß	B6278	2015-07	2018-07
	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
	Opus10 THI (8152.00)	ThermoHygro Datalogger 02 (Environ)	Lufft Mess- und Regeltechnik GmbH	7489	2015-02	2017-02
	ESH 3-Z5	Two-Line V- Network	Rohde & Schwarz	829996/002		
	NRVS	Powermeter	Rohde & Schwarz GmbH & Co. KG	836333/064		
	CMU 200		Rohde & Schwarz GmbH & Co. KG	102366	2013-02	2016-02
	Opus10 TPR (8253.00)	sure	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
	CMD 55	Digital Radio Communication Tester	Rohde & Schwarz	831050/020	2014-12	2017-12
	ESH 3-Z6	One-Line V- Network	Rohde & Schwarz	100489		
	ESH 3-Z6x	ESH 3-Z6	Rohde & Schwarz	100570		
	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
	CMW 500	CMW 500	Rohde & Schwarz	107500	2015-07	2017-07

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ISN/CDN T8- Cat6	Impedance Stabilization Network, Coupling Decoupling Network	Teseq	32187	2014-01	2016-01
	ISN/CDN ENY41	Impedance Stabilization Network, Coupling Decoupling Network	Rohde & Schwarz	100002	2013-03	2015-02

2 Radiated Emissions

Lab to perform radiated emission tests

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	3160-09		EMCO Elektronic GmbH	00083069		
	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright	09		
	5HC3500/1800 0-1.2-KK	High Pass Filter	Trilithic	200035008		
	Fully Anechoic Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647- 001-PRB		
	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
	ESR 7	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2014-11	2016-11
	TT 1.5 WI	Turn Table	Maturo GmbH	-		
	Anechoic Chamber	10.58 x 6.38 x 6.00 m ³	Frankonia	none	2014-01	2017-01
	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2015-12	2017-12
	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg	Maturo GmbH	TD1.5- 10kg/024/37907 09		
	5HC2700/1275 0-1.5-KK	High Pass Filter	Trilithic	9942012		
	AS 620 P	Antenna mast	HD GmbH	620/37		
	NRV-Z1	Sensor Head A	Rohde & Schwarz	827753/005	2015-05	2016-05
	4HC1600/1275 0-1.5-KK	High Pass Filter	Trilithic	9942011		

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	ASP 1.2/1.8-10 kg	Antenna Mast	Maturo GmbH	-		
	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
	HL 562	Ultralog new biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2015-06	2018-06
	Opus10 THI (8152.00)	ThermoHygro Datalogger 12 (Environ)	Lufft Mess- und Regeltechnik GmbH	12482	2015-03	2017-03
	JS4-00102600- 42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
	HFH2-Z2	Loop Antenna	Rohde & Schwarz GmbH & Co. KG	829324/006	2014-11	2017-11
	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2014-11	2016-11
	Opus10 TPR (8253.00)	ThermoAirpres sure Datalogger 13 (Environ)	Lufft Mess- und Regeltechnik GmbH	13936	2015-02	2017-02
	Chroma 6404	AC Power Source	Chroma ATE INC.	64040001304		
	3160-10	Standard Gain / Pyramidal Horn Antenna 40 GHz	EMCO Elektronik GmbH	00086675		
	HL 562 Ultralog	Logper. Antenna	Rohde & Schwarz GmbH & Co. KG	100609	2016-04	2019-04
	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
	HF 907	Double-ridged horn	Rohde & Schwarz GmbH & Co. KG	102444	2015-05	2018-05

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6 Antenna Factors, Cable Loss and Sample Calculations

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

6.1 LISN R&S ESH3-Z5 (150 kHz - 30 MHz)

	•
Fraguanay	Corr
Frequency	Corr.
MHz	dB
0,15	10,1
5	10,3
7	10,5
10	10,5
12	10,7
14	10,7
16	10,8
18	10,9
20	10,9
22	11,1
24	11,1
26	11,2
28	11,2
30	11,3

•
cable
loss
(incl. 10
dB
atten-
uator)
dB
10,0
10,2
10,3
10,3
10,4
10,4
10,4
10,5
10,5
10,6
10,6
10,7
10,7
10,8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

6.2 Antenna R&S HFH2-Z2 (9 kHz - 30 MHz)

). Z	Ante	IIIIa Kas) ПГП2-2
		AF	
Fred	luency	HFH-Z2)	Corr.
	1Hz	dB (1/m)	dB
	0,009	20,50	-79,6
	0,01	20,45	-79,6
	0,015	20,37	-79,6
	0,02	20,36	-79,6
	0,025	20,38	-79,6
	0,03	20,32	-79,6
	0,05	20,35	-79,6
	0,08	20,30	-79,6
	0,1	20,20	-79,6
	0,2	20,17	-79,6
	0,3	20,14	-79,6
	0,49	20,12	-79,6
0,4	90001	20,12	-39,6
	0,5	20,11	-39,6
	0,8	20,10	-39,6
	1	20,09	-39,6
	2	20,08	-39,6
	3	20,06	-39,6
	4	20,05	-39,5
	5	20,05	-39,5
	6	20,02	-39,5
	8	19,95	-39,5
	10	19,83	-39,4
	12	19,71	-39,4
	14	19,54	-39,4
	16	19,53	-39,3
	18	19,50	-39,3
	20	19,57	-39,3
	22	19,61	-39,3
	24	19,61	-39,3
	26	19,54	-39,3
	28	19,46	-39,2
	30	19,73	-39,1

Cable loss 1 (inside chamber) Cable loss 3 (outside chamber) Cable loss 3 (outside chamber) Cable loss 3 (outside chamber) Cable loss 4 (to corr. (add b) distance corr. (add b) distance decade) Cable distance (limit) (used) dB dB dB dB dB m m 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	9 kHz – 3	O MHZ)					
loss 1 (inside chamber) closs 3 (switch chamber) loss 4 (to chamber) corr. (-40 dB/ decade) (limit) (meas. distance decade) dB dB dB dB dB dB m m 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 <td< td=""><td>cable</td><td>cable</td><td>cable</td><td>cable</td><td>distance</td><td>d_{Limit}</td><td>d_{used}</td></td<>	cable	cable	cable	cable	distance	d_{Limit}	d_{used}
(inside chamber) (outside chamber) (switch unit) (to receiver) (-40 dB/decade) distance (used) dB dB dB dB dB m 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1	loss 1		loss 3	loss 4			
dB dB dB dB dB m m 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 <td< td=""><td>(inside</td><td>(outside</td><td>(switch</td><td>(to</td><td>(-40 dB/</td><td>distance</td><td></td></td<>	(inside	(outside	(switch	(to	(-40 dB/	distance	
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	dB		dB	dB	dB		m
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	0,1	0,1	0,1	0,1			
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1	0,1	0,1	0,1	0,1	-80		
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1	0,1		0,1	0,1	-80		
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1	0,1		0,1	0,1	-80		3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1	0,1	0,1	0,1	0,1	-80	300	
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 <t< td=""><td></td><td></td><td></td><td></td><td>-80</td><td></td><td></td></t<>					-80		
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1		0,1	0,1	0,1	-80		
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0	0,1	0,1	0,1	0,1	-80	300	3
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,	0,1	0,1	0,1	0,1	-80	300	
0,1 0,1 0,1 0,1 -80 300 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1	0,1	0,1	0,1	0,1	-80	300	
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1<	0,1		0,1	0,1	-80	300	
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-80	300	3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-40		
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1				-40		3
0,1 0,1 0,1 0,1 -40 30 3 0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-40	30	
0,1 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-40		3
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-40	30	
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,1	0,1	0,1	0,1	-40	30	
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,2	0,1	0,1	0,1	-40	30	
0,2 0,1 0,1 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1<	0,2	0,1	0,1	0,1	-40	30	3
0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1<			0,1	0,1			3
0,2 0,1 0,2 0,1 -40 30 3 0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,2	0,1	0,1	0,1	-40	30	
0,2 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3					-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,2	0,1	0,2	0,1	-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,2		0,2		-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40	30	
0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,2 0,1 -40 30 3 0,3 0,1 0,3 0,1 -40 30 3 3 0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40	30	3
0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40	30	3
0,3 0,1 0,3 0,1 -40 30 3	0,3	0,1	0,2	0,1	-40		3
				0,1	-40	30	
0,4 0,1 0,3 0,1 -40 30 3					-40	30	
	0,4	0,1	0,3	0,1	-40	30	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

6.3 Antenna R&S HL562 (30 MHz - 1 GHz)

$d_{Limit} = 3 m$					
Frequency	AF R&S HL562	Corr.			
MHz	dB (1/m)	dB			
30	18,6	0,6			
50	6,0	0,9			
100	9,7	1,2			
150	7,9	1,6			
200	7,6	1,9 2,1			
250	9,5	2,1			
300	11,0	2,3			
350	12,4	2,6			
400	13,6	2,9 3,1 3,2 3,5 3,5			
450	14,7	3,1			
500	15,6	3,2			
550	16,3	3,5			
600	17,2	3,5			
650	18,1	3,6			
700	18,5	3,6			
750	19,1	4,1			
800	19,6	4,1			
850	20,1	4,4			
900	20,8	4,7			
950	21,1	4,8			
1000	21,6	4,9			

cable	cable	cable	cable	distance	d_{Limit}	$d_{\sf used}$
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0,29	0,04	0,23	0,02	0,0	3	3
0,39	0,09	0,32	0,08	0,0	3	3
0,56	0,14	0,47	0,08	0,0	3	3
0,73	0,20	0,59	0,12	0,0	3	3
0,84	0,21	0,70	0,11	0,0	3	3
0,98	0,24	0,80	0,13	0,0	3	3
1,04	0,26	0,89	0,15	0,0	3	3
1,18	0,31	0,96	0,13	0,0	3	3
1,28	0,35	1,03	0,19	0,0	3	3
1,39	0,38	1,11	0,22	0,0	3	3
1,44	0,39	1,20	0,19	0,0	3	3
1,55	0,46	1,24	0,23	0,0	3	3
1,59	0,43	1,29	0,23	0,0	3	3
1,67	0,34	1,35	0,22	0,0	3	3
1,67	0,42	1,41	0,15	0,0	3	3
1,87	0,54	1,46	0,25	0,0	3	3
1,90	0,46	1,51	0,25	0,0	3	3
1,99	0,60	1,56	0,27	0,0	3	3
2,14	0,60	1,63	0,29	0,0	3	3
2,22	0,60	1,66	0,33	0,0	3	3
2,23	0,61	1,71	0,30	0,0	3	3

d _{Limit}	=	10	m)
--------------------	---	----	----

$(d_{Limit} = 10 \text{ m})$	1)								
30	18,6	-9,9	0,29	0,04	0,23	0,02	-10,5	10	
50	6,0	-9,6	0,39	0,09	0,32	0,08	-10,5	10	
100	9,7	-9,2	0,56	0,14	0,47	0,08	-10,5	10	
150	7,9	-8,8	0,73	0,20	0,59	0,12	-10,5	10	
200	7,6	-8,6	0,84	0,21	0,70	0,11	-10,5	10	
250	9,5	-8,3	0,98	0,24	0,80	0,13	-10,5	10	
300	11,0	-8,1	1,04	0,26	0,89	0,15	-10,5	10	
350	12,4	-7,9	1,18	0,31	0,96	0,13	-10,5	10	
400	13,6	-7,6	1,28	0,35	1,03	0,19	-10,5	10	
450	14,7	-7,4	1,39	0,38	1,11	0,22	-10,5	10	
500	15,6	-7,2	1,44	0,39	1,20	0,19	-10,5	10	
550	16,3	-7,0	1,55	0,46	1,24	0,23	-10,5	10	
600	17,2	-6,9	1,59	0,43	1,29	0,23	-10,5	10	
650	18,1	-6,9	1,67	0,34	1,35	0,22	-10,5	10	
700	18,5	-6,8	1,67	0,42	1,41	0,15	-10,5	10	
750	19,1	-6,3	1,87	0,54	1,46	0,25	-10,5	10	
800	19,6	-6,3	1,90	0,46	1,51	0,25	-10,5	10	
850	20,1	-6,0	1,99	0,60	1,56	0,27	-10,5	10	
900	20,8	-5,8	2,14	0,60	1,63	0,29	-10,5	10	
950	21,1	-5,6	2,22	0,60	1,66	0,33	-10,5	10	
1000	21,6	-5,6	2,23	0,61	1,71	0,30	-10,5	10	

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.4 Antenna R&S HF907 (1 GHz - 18 GHz)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24,4	-19,4
2000	28,5	-17,4
3000	31,0	-16,1
4000	33,1	-14,7
5000	34,4	-13,7
6000	34,7	-12,7
7000	35,6	-11,0

cable loss 1 (relay + cable inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit, atten- uator & pre-amp)	cable loss 4 (to receiver)	
dB	dB	dB	dB	
0,99	0,31	-21,51	0,79	
1,44	0,44	-20,63	1,38	
1,87	0,53	-19,85	1,33	
2,41	0,67	-19,13	1,31	
2,78	0,86	-18,71	1,40	
2,74	0,90	-17,83	1,47	
2,82	0,86	-16,19	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31,0	-23,4
4000	33,1	-23,3
5000	34,4	-21,7
6000	34,7	-21,2
7000	35,6	-19,8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0,47	1,87	0,53	-27,58	1,33	
0,56	2,41	0,67	-28,23	1,31	
0,61	2,78	0,86	-27,35	1,40	
0,58	2,74	0,90	-26,89	1,47	
0,66	2,82	0,86	-25,58	1,46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35,6	-57,3
8000	36,3	-56,3
9000	37,1	-55,3
10000	37,5	-56,2
11000	37,5	-55,3
12000	37,6	-53,7
13000	38,2	-53,5
14000	39,9	-56,3
15000	40,9	-54,1
16000	41,3	-54,1
17000	42,8	-54,4
18000	44,2	-54,7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0,56	1,28	-62,72	2,66	0,94	1,46
0,69	0,71	-61,49	2,84	1,00	1,53
0,68	0,65	-60,80	3,06	1,09	1,60
0,70	0,54	-61,91	3,28	1,20	1,67
0,80	0,61	-61,40	3,43	1,27	1,70
0,84	0,42	-59,70	3,53	1,26	1,73
0,83	0,44	-59,81	3,75	1,32	1,83
0,91	0,53	-63,03	3,91	1,40	1,77
0,98	0,54	-61,05	4,02	1,44	1,83
1,23	0,49	-61,51	4,17	1,51	1,85
1,36	0,76	-62,36	4,34	1,53	2,00
1,70	0,53	-62,88	4,41	1,55	1,91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB) U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

6.5 Antenna EMCO 3160-09 (18 GHz - 26.5 GHz)

Frequency	AF EMCO 3160-09	Corr.
MHz	dB (1/m)	dB
18000	40,2	-23,5
18500	40,2	-23,2
19000	40,2	-22,0
19500	40,3	-21,3
20000	40,3	-20,3
20500	40,3	-19,9
21000	40,3	-19,1
21500	40,3	-19,1
22000	40,3	-18,7
22500	40,4	-19,0
23000	40,4	-19,5
23500	40,4	-19,3
24000	40,4	-19,8
24500	40,4	-19,5
25000	40,4	-19,3
25500	40,5	-20,4
26000	40,5	-21,3
26500	40,5	-21,1

20.5 0	112)		
cable	cable	cable	cable
loss 2	loss 3	loss 4	loss 5
(pre-	(inside	(switch	(to
amp)	chamber)	unit)	receiver)
dB	dB	dB	dB
-35,85	6,20	2,81	2,65
-35,71	6,46	2,76	2,59
-35,44	6,69	3,15	2,79
-35,07	7,04	3,11	2,91
-34,49	7,30	3,07	3,05
-34,46	7,48	3,12	3,15
-34,07	7,61	3,20	3,33
-33,96	7,47	3,28	3,19
-33,57	7,34	3,35	3,28
-33,66	7,06	3,75	2,94
-33,75	6,92	3,77	2,70
-33,35	6,99	3,52	2,66
-33,99	6,88	3,88	2,58
-33,89	7,01	3,93	2,51
-33,00	6,72	3,96	2,14
-34,07	6,90	3,66	2,22
-35,11	7,02	3,69	2,28
-35,20	7,15	3,91	2,36
	cable loss 2 (pre- amp) dB -35,85 -35,71 -35,44 -35,07 -34,49 -34,46 -34,07 -33,96 -33,57 -33,66 -33,75 -33,89 -33,89 -33,00 -34,07 -35,11	loss 2 (pre- amp) chamber) dB dB -35,85 6,20 -35,71 6,46 -35,44 6,69 -35,07 7,04 -34,49 7,30 -34,46 7,48 -34,07 7,61 -33,96 7,47 -33,57 7,34 -33,66 7,06 -33,75 6,92 -33,35 6,99 -33,99 6,88 -33,89 7,01 -33,00 6,72 -34,07 6,90 -35,11 7,02	cable loss 2 (pre- amp) chamber) cable (switch unit) dB dB dB -35,85 6,20 2,81 -35,71 6,46 2,76 -35,44 6,69 3,15 -35,07 7,04 3,11 -34,49 7,30 3,07 -34,46 7,48 3,12 -34,07 7,61 3,20 -33,57 7,34 3,35 -33,66 7,06 3,75 -33,75 6,92 3,77 -33,35 6,99 3,52 -33,99 6,88 3,88 -33,89 7,01 3,93 -34,07 6,90 3,66 -35,11 7,02 3,69

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

6.6 Antenna EMCO 3160-10 (26.5 GHz - 40 GHz)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26,5	43,4	-11,2
27,0	43,4	-11,2
28,0	43,4	-11,1
29,0	43,5	-11,0
30,0	43,5	-10,9
31,0	43,5	-10,8
32,0	43,5	-10,7
33,0	43,6	-10,7
34,0	43,6	-10,6
35,0	43,6	-10,5
36,0	43,6	-10,4
37,0	43,7	-10,3
38,0	43,7	-10,2
39,0	43,7	-10,2
40,0	43,8	-10,1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4,4				-15,6	3	0,5
4,4				-15,6	3	0,5
4,5				-15,6	3	0,5
4,6				-15,6	3	0,5
4,7				-15,6	3	0,5
4,7				-15,6	3	0,5
4,8				-15,6	3	0,5
4,9				-15,6	3	0,5
5,0				-15,6	3	0,5
5,1				-15,6	3	0,5
5,1				-15,6	3	0,5
5,2				-15,6	3	0,5
5,3				-15,6	3	0,5
5,4				-15,6	3	0,5
5,5				-15,6	3	0,5

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolarisation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7 Setup Drawings

Setup Drawings

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

Setup in the shielded room for conducted measurements at AC mains port

TEST REPORT REFERENCE: MDE_ADVANT_1601_FCCa

8 Measurement Uncertainties

Test Case	Parameter	Uncertainty
Conducted Emissions at AC mains	Voltage	± 3.4 dB
Radiated Emissions	Field Strength	± 5.5 dB

9 Photo Report

Please see separate photo report.