Inteligencia Artificial Tema 6. Problemas de Satisfacción de Restricciones

José Manuel Fuertes García jmf@ujaen.es

Departamento de Informática Universidad de Jaén

27 de abril de 2017

Objetivos

- ► Entender cómo se pueden plantear determinados problemas considerando más información.
- Conocer el significado de los problemas de satisfacción de restricciones.
- Conocer los métodos de resolución de problemas de satisfacción de restricciones y su aplicación.

Índice

Introducción

Tipos de PSF

Resolución de los PSF

Resumen

Bibliografía

Introducción

Un problema de satisfacción de restricciones (PSR) está definido por:

- ▶ Un conjunto de variables $X_1, X_2, ..., X_n$.
- ▶ Un conjunto de restricciones C_1, C_2, \ldots, C_m .
- ightharpoonup Cada variable X_i tiene un dominio no vacío D_i de valores posibles.
- ► Cada restricción implica un subconjunto de variables y especifica las combinaciones de valores aceptables para el mismo.
- Estado del problema: asignación de valores a una o todas las variables.
- Asignación consistente: no viola ninguna restricción.
- ► Solución a un PSR: asignación completa (que asigna valor a todas las variables) y consistente.

Algunos PSR requieren una solución que optimice una función objetivo.

Introducción

Satisfacción de restricciones versus búsqueda estándar

Búsqueda estándar:

▶ El estado es una *caja negra*: Cualquier estructura de datos que apoye la función sucesor, la función heurística y el test objetivo.

Satisfacción de restricciones:

- ▶ El estado se define mediante variables X_i con valores del dominio D_i .
- El test objetivo es un conjunto de restricciones que especifican las combinaciones de valores permitidos para los subconjuntos de variables.
- ▶ Un estado del problema está definido por una asignación de valores (total o parcial) a las variables $X_i = v_i, X_j = v_j, ...$

Pueden emplearse algoritmos que resultan más eficientes que los de búsqueda estándar.

Coloreado de un mapa:

- Variables: AO, TN, Q, NGS, V, AS, T.
- ▶ Dominios $D_i = \{ \text{rojo, verde, azul} \}$.
- ▶ Restricciones: Regiones adyacentes deben tener colores diferentes.

Grafo de restricciones

- ▶ Podemos visualizar el problema como un grafo de restricciones.
- ► En el caso del mapa, el grafo es binario (cada arco une dos nodos).
- Puede haber restricciones unarias, binarias, ternarias, etc.

Ventajas de los PSR

Ventajas:

- ► El modelo es estándar: la función sucesor y el test objetivo pueden escribirse de forma genérica.
- Se pueden desarrollar heurísticas eficaces y genéricas independientes del problema.
- ► La estructura del grafo de restricciones puede usarse para simplificar el proceso de solución.

Formulación incremental de los PSR

Formulación incremental:

- Estado inicial: Asignación vacía.
- Función sucesor: Instanciar una variable no asignada (sin provocar conflictos).
- Test objetivo: Tener instanciadas todas las variables.
- Costo: Constante por cada paso.
- ▶ La solución aparecerá a profundidad *n*. Podemos usar algoritmos primero en profundidad.
- ► Se puede utilizar la formulación completa de estados. Con ella podemos emplear métodos de búsqueda local.

Problemas de satisfacción de restricciones

Ejemplos de problemas reales:

- Problemas de asignación: Quién imparte qué clase.
- Problemas de horarios: Qué clase se ofrece, dónde y cuándo.
- Problemas de configuración de hardware.
- Problemas de organización de transporte.
- Problemas de organización de factorías.
- **.**..

Algunos problemas reales involucran variables con valores reales.

Índice

Introducción

Tipos de PSR

Resolución de los PSR

Resumen

Bibliografía

Con variables discretas:

- De dominios finitos.
 - ▶ *n* variables, tamaño del dominio $d \rightarrow O(d^n)$ asignaciones completas.
 - Ej. PSRs booleanos, que incluyen como casos especiales algunos problemas NP-completos.
- De dominios infinitos.
 - Números enteros, cadenas, etc.
 - Ej., en la construcción de un calendario, la fecha de comienzo de cada trabajo es una variable y los valores posibles son números enteros de días desde la fecha actual.
 - ► Necesidad de un lenguaje de restricción, p.e., ComienzoTrabajo1 + 5 ≤ ComienzoTrabajo3.

Con variables continuas:

- ► Ej., tiempos de comienzo/fin para las observaciones del Telescopio Hubble.
- La categoría más conocida de PSRs en dominios continuos son los problemas de programación lineal, en los que las restricciones deben ser desigualdades lineales que forman una región convexa.
 - Se pueden resolver en tiempo polinomial.

Tipos de restricciones

Unarias: Involucran a una sola variable.

Ejemplo: AS \neq *verde*

Binarias: Implican a un par de variables.

Ejemplo: $AS \neq AO$

- De alto-orden: Afectan a tres o más variables.
 Ejemplo: restricciones de las columnas criptoaritméticas.
- ▶ Preferencias (o restricciones débiles): Frecuentemente se representan a través de un costo en la asignación.

Ejemplo: para una variable, rojo puede ser mejor que verde.

Problemas de optimización restringida.

N-Reinas:

- ▶ Situar **N** reinas en un tablero de ajedrez de tamaño $N \times N$ de forma que no se den jaque mutuamente.
- ightharpoonup Variables: $V_1, ..., V_N$
- ▶ Dominios: $D_i = \{1, ..., N\}$
- Restricciones:
 - ▶ Jaque horizontal: $V_i \neq V_j$
 - ▶ Jaque diagonal: $|V_i V_j| \neq |i j|$
- Ejemplo: $(V_1 = 1, V_2 = 3)$:

- Coloreado de mapas:
 - ▶ Usando tres colores (rojo,azul,verde) colorear el mapa de Andalucía:

- Variables: Huelva, Cádiz, Sevilla, Córdoba, Málaga, Jaen, Granada, Almería.
- ▶ Dominios: {rojo, azul, verde}
- Restricciones:
 - $P \neq Q$, para cada par de provincias vecinas $P \neq Q$.

- Satisfacibilidad proposicional:
 - ▶ Dado un conjunto de variables proposicionales $L = \{p_1, ..., p_n\}$ y un conjunto de cláusulas proposicionales $\{C_1, ..., C_m\}$ formadas con los símbolos de L, determinar si existe una asignación de valores de verdad a los símbolos de L de manera que se satisfagan todas las cláusulas.
 - ▶ Variables: $\{p_1, ..., p_n\}$.
 - ▶ Dominios: {*T*, *F*} (booleanos)
 - ▶ Restricciones: $\{C_1, ..., C_m\}$

▶ Problema criptoaritmético 1:

- Variables: I, D, E, A, M, N, T, C₁, C₂, C₃
- ▶ Dominios: {1, ..., 8} para *I*, *D*, *E*, *A*, *M*, *N*, *T* y {0, 1} para *C*₁, *C*₂, *C*₃.
- Restricciones:
 - ▶ Primera suma: $2 \cdot A = (10 \cdot C_3) + E$
 - ▶ Segunda suma: $(2 \cdot E) + C_3 = (10 \cdot C_2) + T$
 - ▶ Tercera suma: $(2 \cdot D) + C_2 = (10 \cdot C_1) + N$
 - ► Cuarta suma: $(2 \cdot I) + C_1 = (10 \cdot M) + E$

Problema criptoaritmético 2:

- Variables: F, T, U, W, R, O, X₁, X₂, X₃.
- ▶ Dominios $D_i = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$
- Restricciones:
 - $F \neq T \neq W \neq U \neq O \neq R$
 - $O + O = R + 10 \cdot X_1$
 - $X_1 + W + W = U + 10 \cdot X_2$
 - $X_2 + T + T = O + 10 \cdot X_3$
 - ► $X_3 = F$; $T \neq O$; $F \neq O$.

- Asignación de tareas:
 - Asignar tareas a empleados de acuerdo con su capacidad para desarrollarlas.
 - ► Tablas de capacidades (*C_i*):

	<i>T</i> ₁	<i>T</i> ₂	T ₃
E ₁	1	3	2
E ₂	3	2	1
E ₃	2	3	1

- ▶ Variables: E_i
- ▶ Dominios: $Di = \{T_1, ..., T_n\}.$
- Restricciones:
 - ▶ Obtener la mejor $\sum_{i=1}^{n} C_i$

- Planificación de corte:
 - ▶ Encontrar la manera de situar patrones de corte en una pieza de cartón.
 - ▶ Variables: P_1 , P_2 , P_3 , P_4 (piezas)
 - Dominios: Coordenadas en el plano.
 - Restricciones:
 - Las piezas no deben superponerse.

Índice

Introducción

Tipos de PSR

Resolución de los PSR

Resumer

Bibliografía

Técnicas de resolución de los PSR

- Técnicas de consistencia, basadas en la eliminación de valores inconsistentes.
 - ▶ Ejemplo: Problema del carcelero y los tres sombreros.
- ▶ Algoritmos de búsqueda, basados en la exploración sistemática del espacio de posibles soluciones hasta encontrar una (o probar que no hay ninguna).
 - ► Cada nodo tendrá una variable asignada más que su antecesor.
- ▶ Optimización: permitiendo estados con restricciones no satisfechas.

Algoritmo simple de vuelta atrás para problemas de satisfacción de restricciones

- ▶ El término búsqueda con vuelta atrás se utiliza para la búsqueda en profundidad que:
 - elige valores para una variable a la vez y
 - vuelve atrás cuando una variable no tiene ningún valor legal para asignarle.
- El algoritmo:
 - genera los sucesores incrementalmente, uno a la vez.
 - extiende la asignación actual para generar un sucesor, más que volver a copiarlo.

Algoritmo simple de vuelta atrás para problemas de satisfacción de restricciones

```
función Búsqueda-Con-Vuelta-Atrás (psr) devuelve solución o fallo
devolver Vuelta-Atrás-Recursiva ({}, psr)
```

función Vuelta-Atrás-Recursiva (asignación, psr) devuelve una solución o fallo

```
si asignación es completa entonces devolver asignación
var \leftarrow Selec.-Variable-NoAsignada(Variables[psr], asignación, psr)
para cada valor en Orden-Valores(var, asignación, psr) hacer
     si valor es consistente con asignación de acuerdo a las
     Restricciones[psr] hacer
          añadir \{var = valor\} a asignación
          resultado \leftarrow Vuelta-Atrás-Recursiva(asignación, psr)
          si resultado <> fallo entonces devolver resultado
          borrar \{var = valor\} de asignación
```

devolver fallo

4-reinas con usando un algoritmo de búsqueda con vuelta atrás cronológica

- \triangleright Colocar 4 reinas, una en cada fila de un tablero 4x4, sin que se maten.
 - ▶ Variables: R₁, ..., R₄ (reinas)
 - ▶ Dominios: $\{1, ..., 4\}$ para cada R_i (columna)
 - Restricciones: R_i no-mata R_i
- Grafo:

4-reinas con usando un algoritmo de búsqueda con vuelta atrás cronológica

4-reinas con usando un algoritmo de búsqueda con vuelta atrás cronológica

Relleno del mapa usando un algoritmo de búsqueda con vuelta atrás cronológica

Mejoras en la eficiencia

- En principio, la vuelta atrás realiza una búsqueda ciega
 - Búsqueda no informada, ineficiente en la práctica.
- Es posible dotar al algoritmo de cierta heurística que mejora considerablemente su rendimiento.
 - Estas heurísticas son de propósito general.
 - Independientes del problema.
 - Sacan partido de la estructura especial de los PSR.

Mejoras en la eficiencia

- Posibles mejoras heurísticas:
 - ¿ Qué variable se debería asignar en siguiente lugar?
 - ¿ En qué orden se deberían probar sus valores?
 - Luáles son las implicaciones de las variables actuales para las otras variables no asignadas?
 - Cuando un camino falla, ¿puede la búsqueda evitar repetir este fracaso en caminos siguientes?

Variables y ordenamiento de valor

Heurística de Mínimos Valores Restantes (MVR):

Escoger la variable con menos valores legales.

► También llamada heurística de mínimos valores restantes (MVR) o de primero en fallar, porque escoge una variable que con mayor probabilidad causará pronto un fracaso, lo que poda el árbol de búsqueda.

Variables y ordenamiento de valor

Grado heurístico

Escoger la variable con más restricciones en las variables restantes.

► La heurística MVR es en general una guía más poderosa, pero el grado heurístico puede ser útil como desempate.

Variables y ordenamiento de valor

El valor menos restrictivo

- Una vez seleccionada una variable, el algoritmo debe decidir el orden para examinar sus valores.
- Dada una variable, escoger el valor menos restrictivo (el que elimina menos valores posibles en los nodos vecinos del grafo de restricciones):

- ► Ejemplo: Si AO=rojo y TN=Verde, Q=Azul es una mala opción, porque deja bloqueado a AS.
- ▶ Si debemos encontrar todas las soluciones a un problema, o no hay soluciones para el mismo, el orden no importa.

Propagación de la información a través de las restricciones

- Un conjunto de restricciones puede inducir otras (que estaban implícitas).
- La propagación de restricciones (PR) es el proceso de hacerlas explícitas.

- El papel de la Propagación de Restricciones es disminuir el espacio de búsqueda. Pudiéndose realizar:
 - Como pre-proceso: eliminar zonas del espacio donde no hay soluciones (arc consistency).
 - Durante el proceso: podar el espacio a medida que la búsqueda progresa (forward checking).

- Modificación del algoritmo de búsqueda en profundidad con vuelta atrás cronológica.
- Detecta cuanto antes caminos sin solución y lo poda.
 - Asignar un valor y consultar las restricciones sobre las variables futuras con arco desde la actual.
 - Se eliminan valores no compatibles de los dominios correspondientes a dichas variables futuras.
- ▶ Equivale a hacer arco-consistente la variable actual con las futuras en cada paso.

- ▶ Seguir la pista de los valores legales restantes para variables no asignadas.
- Finalizar la búsqueda si ninguna variable tiene ningún valor legal.

- Seguir la pista de los valores legales restantes para variables no asignadas.
- Finalizar la búsqueda si ninguna variable tiene ningún valor legal.

- ▶ Seguir la pista de los valores legales restantes para variables no asignadas.
- Finalizar la búsqueda si ninguna variable tiene ningún valor legal.

- Seguir la pista de los valores legales restantes para variables no asignadas.
- Finalizar la búsqueda si ninguna variable tiene ningún valor legal.

Ejemplo: Comprobación hacia delante aplicado al problema de las 4 reinas

Propagación de restricciones

La comprobación hacia adelante propaga la información de variables asignadas a no asignadas pero no proporciona una detección temprana de fallos.

- Pero TN y AS no pueden tener ambas color azul.
- La propagación de restricciones refuerza de forma continua las restricciones localmente.

Se pueden definir propiedades sobre los grafos de restricciones que permiten reducir el espacio de búsqueda.

Propagación de arco consistente

- **k-consistency:** poda de valores que no sean posibles para un grupo de k variables.
- ▶ Arc consistency (2-consistency): Eliminamos valores imposibles para parejas de variables.
- ▶ Path consistency (3-consistency): Eliminamos valores imposibles para ternas de variables

Propagación de arco consistente

- La forma más simple de propagación hace que cada arco sea consistente.
- ightharpoonup X o Y es consistente si para cada valor de X existe algún valor permitido de Y.
- Si X pierde un valor es necesario volver a comprobar a sus vecinos.
- Detecta fallos antes que la comprobación hacia delante.
- Se puede ejecutar como un preprocesamiento de cualquier asignación.

Propagación de arco consistente

Ejemplo de Arco Consistente.

Lista de arcos inicial:

(X1,X2), (X2,X1), (X2,X3), (X3,X2),

(X2,X4), (X4,X2), (X3,X4), (X4,X3)

Propagación de arco consistente

Ejemplo de Arco Consistente.

1. $X_1 - X_2 \rightarrow \text{Quitar Azul de } X_1$

Lista de arcos inicial:

(X1,X2), (X2,X1), (X2,X3), (X3,X2),

(X2,X4), (X4,X2), (X3,X4), (X4,X3)

Propagación de arco consistente

Ejemplo de Arco Consistente.

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \text{Todo consistente}$

Lista de arcos inicial:

(X1,X2), (X2,X1), (X2,X3), (X3,X2),

(X2,X4), (X4,X2), (X3,X4), (X4,X3)

Propagación de arco consistente

▶ Ejemplo de Arco Consistente.

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 3. $X_2 X_3 \rightarrow \text{Todo consistente}$

Propagación de arco consistente

► Ejemplo de Arco Consistente.

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 3. $X_2 X_3 \rightarrow \text{Todo consistente}$
- 4. $X_3 X_2 \rightarrow \text{Quitar Azul de } X_3,$ Tendríamos que añadir $X_4 - X_3$ pero ya está

Propagación de arco consistente

▶ Ejemplo de Arco Consistente.

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 3. $X_2 X_3 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 4. $X_3 X_2 \rightarrow \text{Quitar Azul de } X_3,$ Tendríamos que añadir $X_4 - X_3$ pero ya está
- 5. $X_2 X_4 \rightarrow \text{Todo consistente}$

Propagación de arco consistente

Ejemplo de Arco Consistente.

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2),(X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \text{Todo consistente}$
- 3. $X_2 X_3 \rightarrow \text{Todo consistente}$
- 4. $X_3 X_2 \rightarrow \text{Quitar Azul de } X_3$, Tendríamos que añadir $X_4 - X_3$ pero ya está
- 5. $X_2 X_4 \rightarrow \text{Todo consistente}$
- 6. $X_4 X_2 \rightarrow \text{Quitar Azul de } X_4$, Tendríamos que añadir $X_3 - X_4$ pero va está

27 de abril de 2017

Propagación de arco consistente

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- $2. \ X_2 X_1 \to \mbox{Todo consistente}$
- 3. $X_2 X_3 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- X₃ X₂ → Quitar Azul de X₃, Tendríamos que añadir X₄ - X₃ pero ya está
- 5. $X_2 X_4 \rightarrow \text{Todo consistente}$
- 6. $X_4 X_2 \rightarrow \text{Quitar Azul de } X_4,$ Tendríamos que añadir $X_3 - X_4$ pero ya está
- 7. $X_3 X_4 \rightarrow \text{Quitar Verde de } X_3$, Añadimos $X_2 X_3$

Propagación de arco consistente

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 3. $X_2 X_3 \rightarrow \text{Todo consistente}$
- 4. $X_3 X_2 o$ Quitar Azul de X_3 , Tendríamos que añadir $X_4 X_3$ pero ya está
- 5. $X_2 X_4 \rightarrow \text{Todo consistente}$
- 6. $X_4-X_2 o ext{Quitar Azul de } X_4,$ Tendríamos que añadir X_3-X_4 pero ya está
- 7. $X_3 X_4 \rightarrow \text{Quitar Verde de } X_3$, Añadimos $X_2 X_3$
- 8. $X_4 X_3 \rightarrow \text{Todo consistente}$

Propagación de arco consistente

▶ Ejemplo de Arco Consistente.

Lista de arcos inicial: (X1,X2), (X2,X1), (X2,X3), (X3,X2), (X2,X4), (X4,X2), (X3,X4), (X4,X3)

- 1. $X_1 X_2 \rightarrow \text{Quitar Azul de } X_1$
- 2. $X_2 X_1 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 3. $X_2 X_3 \rightarrow \mathsf{Todo}\ \mathsf{consistente}$
- 4. $X_3 X_2 \rightarrow \text{Quitar Azul de } X_3,$ Tendríamos que añadir $X_4 - X_3$ pero ya está
- 5. $X_2 X_4 \rightarrow \text{Todo consistente}$
- X₄ − X₂ → Quitar Azul de X₄, Tendríamos que añadir X₃ − X₄ pero ya está
- 7. $X_3 X_4 \rightarrow \text{Quitar Verde de } X_3$, Añadimos $X_2 X_3$
- 8. $X_4 X_3 \rightarrow \text{Todo consistente}$
- 9. $X_2 X_3 \rightarrow \text{Todo consistente}$

Propagación de arco consistente


```
Algorithm 3.1: función AC-3 (psr) devuelve el PSR
  Data: psr, un PSR binario con variables X_1, X_2, \dots, X_n
  Result: El PSR, posiblemente con dominio reducido
  cola \leftarrow todos los arcos del psr
2 while cola \neq \emptyset do
      (X_i, X_i) \leftarrow \text{BorrarPrimero}(cola)
      if BorrarValoresInconsistentes(X_i, X_i) then
4
          for cada X_k en Vecinos[X<sub>i</sub>] do
              añadir (X_k, X_i) a la cola
```

Después de aplicar AC-3, cada arco es arco-consistente, o alguna variable tiene un dominio vacío, indicando que el PSR no puede hacerse arco-consistente (y no puede resolverse).

5

6

```
Algorithm 3.2: función Borrar Valores Inconsistentes (X_i, X_i) devuelve ver-
  dadero si v sólo si hemos borrado un valor
  Result: verdadero si se ha borrado un valor, falso e.c.c
   borrado ← falso
2 for cada x en Dominio[X_i] do
      if no hay un y en Dominio [X_i] que permita a (x,y) satisfacer la
      restricción entre X<sub>i</sub> y X<sub>i</sub> then
          borrar x de Dominio[X_i]
          borrado \leftarrow verdadero
```

6 return borrado

3

Búsqueda local para PSR

- Los algoritmos de ascensión de colinas o temple simulado trabajan habitualmente con estados completos (con todas las variables asignadas).
- Para aplicarlos a PRS:
 - Se permitirán estados que no satisfagan todas las restricciones.
 - Los operadores reasignarán los valores a las variables.
- Selección de variables: Aleatoria entre las variables conflictivas.
- Selección de valor: Mediante la heurística de mínimos conflictos: elegir el valor que incumple el número menor de restricciones.

Búsqueda local para PSR

Algorithm 3.3: función MínimosConflictos (psr, maxpasos) devuelve una solución o fallo

- $actual \leftarrow$ una asignación completa inicial para psr
- for i = 1 to maxpasos do
- if actual es una solución para psr then
- return actual
- $var \leftarrow \text{el valor } v \text{ para } var \text{ que minimiza Conflictos}(var, v, actual, psr)$ conjunto var =valor en actual

Búsqueda local para PSR

Una solución de dos pasos para un problema de 8-reinas utilizando mínimos conflictos.

Índice

Introducción

Tipos de PSR

Resolución de los PSR

Resumen

Bibliografía

Resumen

- ▶ Los PSR son un tipo especial de problema en los que:
 - ► Los estados se definen a través de los valores que se asignan a un conjunto de variables.
 - El test objetivo se define mediante las restricciones en los valores de las variables.
- ► Algoritmo de búsqueda estándar más utilizado en PSR Backtracking = Búsqueda de primero en profundidad con una variable asignada por nodo.
- Las heurísticas de ordenación de variables y selección de valores ayudan significativamente.
- ► La comprobación hacia delante previene asignaciones que garantizan un fallo posterior.
- ▶ La propagación de restricciones (p.e. la consistencia de arcos) hace un trabajo adicional en restricción de valores y detección de inconsistencias.
- La búsqueda local basada en mínimos conflictos es efectiva en la práctica.

Índice

Introducción

Tipos de PSR

Resolución de los PSR

Resumen

Bibliografía

Bibliografía

- S. Russell, P. Norvig. Inteligencia Artificial. Un enfoque moderno.
 Segunda edición. Prentice Hall, 2004.
- ▶ S. Russel, P. Norvig. Artificial Intelligence. A modern approach. Third edition. Prentice Hall, 2010.
- Guía sobre problemas de satisfacción de restricciones: On-Line Guide To Constraint Programming de R.Barták accesible en http://ktiml.mff.cuni.cz/~bartak/constraints/index.html