

PROGETTO DI ROBOTICA AEROSPAZIALE A. A. 2021 - 2022

Il progetto consiste in 3 missioni interplanetarie da progettare con le conoscenze del corso. Ogni studente svolgerà uno dei 3 progetti stabiliti nella tabella alla fine del presente documento. Il progetto può essere svolto sia individualmente che come team di **al massimo 5 studenti** secondo le indicazioni nella suddetta tabella.

Le missioni sono:

- 1. URA: missione partente dalla terra, con arrivo su Urano.
- 2. NET: missione partente dalla terra, con arrivo su Nettuno.
- 3. PLU: missione partente dalla terra, con arrivo su Plutone.

https://solarsystem.nasa.gov/solar-system/our-solar-system/overview/

OUTPUT

Ogni studente deve presentare all'esame:

- Una relazione completa e dettagliata in PDF del lavoro svolto indicando se il progetto è individuale oppure in team (in tal caso deve essere <u>chiaramente</u> presente l'elenco dei membri e il contributo individuale di ciascuno).
- Una presentazione PowerPoint del lavoro svolto da discutere all'esame (15-20 minuti). La presentazione deve includere: scopo della missione, risultati, animazioni della traiettoria ed eventuali criticità e difficoltà riscontrate. Tutte le scelte nella definizione della missione devono essere giustificate.
- Il software usato per svolgere il progetto in modo da essere usato in sede di esame per eventuali domande e possibili variazioni (si suggerisce l'uso di Matlab indicando la versione).

La documentazione di cui sopra deve essere fornita al docente prima dell'esame.

DETTAGLI DELLA MISSIONE

La missione si basa sul problema dei due corpi, svolto con la tecnica "patched conics" ed usando le sfere di influenza per lasciare l'orbita di un pianeta e/o entrare nell'orbita di un pianeta. Il lavoro deve iniziare stabilendo:

- Le caratteristiche orbitali dei pianeti e dei satelliti, la loro posizione, massa, gravità usando informazioni disponibili in rete oppure sui testi di riferimento (per esempio, https://solarsystem.nasa.gov/, effemeridi, ecc.)
- La data di partenza dalla terra è fissata nell'intervallo 01/01/2022 28/02/2022. La durata del viaggio è a scelta del pianificatore di missione tenendo conto delle effemeridi dei pianeti interessati e di una stima di ΔV.
- La scelta giustificata della base di lancio.
- La missione si svolge sul piano dell'eclittica (a meno che non vi siano particolari necessità, a causa di inclinazioni diverse che richiedano un trasferimento fuori dal piano. In tal caso lo studente può decidere quando eseguire la(le) variazione(i) di piano).

- 1. La missione parte da un'orbita circolare, equatoriale terrestre a 200 km di altezza e termina su un'orbita circolare intorno al pianeta destinazione.
- 2. Le missioni URA, PLU, devono avere almeno 2 flyby e la missione NET almeno 3 flyby. I flyby sono a scelta dello studente ma la scelta deve essere giustificata.
- 3. L'orbita circolare di parcheggio su URA è equatoriale a 1000 km di altezza. L'orbita circolare di parcheggio su NET è polare a 500 km di altezza. L'orbita circolare di parcheggio su PLU è sul piano dell'eclittica a 500 km di altezza.
- 4. La missione deve contenere i tempi di volo parziali e totale ed i Delta V parziali e totale.
- 5. La missione deve anche prevedere una traiettoria Hohmann dalla terra al pianeta paragonando i tempi di volo ed i Delta V con la traiettoria progettata.

Gli Studenti che non sono nella tabella sono pregati di rivolgersi al docente del corso.

Cucchi	Marco	URA
Pesce	Mattia	NET
Iotti	Francesco	PLU
De Giacomo	Vincenzo	URA
Gori	Pietro	NET
Zappavigna	Michele	PLU
Telesca	Matteo	URA
Fiorentino	Salvatore	NET
Musi	Leonardo	PLU
De Bonis	Emanuele	URA
Lehmann	Lorenzo	NET
Magrini	Sara	PLU
Gemignani	Gabriele	URA
La Venia	Roberta	NET
Marinelli		PLU