Macroeconomia I Modelo de Crescimento Neoclássico

Tomás R. Martinez

Universidade de Brasília

Introdução

- Solow: Taxa de poupança constante, sY_t , $s \in (0,1)$.
- Ramsey-Cass-Koopmans: Poupança endógena.
- Necessário especificar e resolver o problema do consumidor:
 - ► Entender os determinantes de poupança.
 - Discutir ótimalidade no contexto do modelo.
 - Algum espaço para política?

Referências

- Acemoglu Cap. 8.
- Notas do Dirk Krueger Cap. 9.

Alguns truques importantes

Crescimento em tempo contínuo:

• Taxa de crescimento em um intervalo Δt :

$$\frac{x_{t+\Delta t} - x_t}{x_t \Delta t} \quad \text{ou em log} \quad \frac{\ln x_{t+\Delta t} - \ln x_t}{\Delta t}$$

tomando o limite:

$$\lim_{\Delta t \to 0} \frac{x_{t+\Delta t} - x_t}{x_t \Delta t} = \frac{\dot{x}_t}{x_t} = g$$

• Suponha uma variável x=X/L, sendo que X cresce a uma taxa g e L a uma taxa n:

$$\frac{\dot{x}_t}{x_t} = \frac{\dot{X}_t}{X_t} - \frac{\dot{L}_t}{L_t} = g - n.$$

Ramsey-Cass-Koopmans

Environment e Preferências

- Horizonte infinito e tempo contínuo.
- Família representativa com utilidade instantânea $u(c_t)$.
 - ullet $u(c_t)$ estritamente crescente, côncava, duas vezes diferenciável, satisfaz as condições de Inada.
- Demografia: $L_0 = 1$ e crescimento populacional a uma taxa n: $L_t = e^{nt}$.
- Toda a família oferta trabalho inelasticamente (i.e. não há decisão de trabalho-lazer).

Environment e Preferências

- Consumo per capita: $c_t = \frac{C_t}{L_t}$, onde C_t é o consumo agregado.
- Função utilidade:

$$\int_0^\infty e^{-\rho t} L_t u(c_t) dt = \int_0^\infty e^{-(\rho - n)t} u(c_t) dt$$

• Suposição para garantir que a integral seja limitada: $\rho > n$.

Tecnologia

- Função de produção: $Y_t = F(A_t, K_t, L_t)$.
- Suposições usuais: retornos constante de escala e condições de Inada.
- No momento vamos assumir: $A_0 = 1$ sem avanço tecnológico.
- Defina as variáveis per capita: $y_t = Y_t/L_t$ e $k_t = K_t/L_t$:

$$y_t = \frac{F(K_t, L_t)}{L_t} = F\left(\frac{K_t}{L_t}, 1\right) \equiv f(k_t)$$

 Mercados de fatores/bem final é competitivo: preço do capital e trabalho igual ao produto marginal:

$$r_t = F_k(K_t, L_t) = f'(k_t)$$

 $w_t = F_w(K_t, L_t) = f(k_t) - k_t f'(k_t)$

Problema da Família

A restrição orçamentária (agregada) é:

$$\dot{\mathcal{A}}_t = r_t \mathcal{A}_t + w_t L_t - C_t,$$

onde \mathcal{A}_t é quantidade ativos agregada. Defina $a_t=\mathcal{A}_t/L_t$ e temos a restrição orçamentária per capita:

$$\dot{a}_t = (r_t - \delta - n)a_t + w_t - c_t.$$

- Como já vimos, equilíbrio no mercado de título $a_t = k_t$ (mas não necessariamente em modelos com títulos do governo ou outros ativos arriscados).
- E a condição de *no-Ponzi game* em tempo contínuo:

$$\lim_{t \to \infty} a_t \exp\left(-\int_0^t (r_s - \delta - n)ds\right) \ge 0.$$

Problema da Família

• O problema da família:

$$\max_{c_t \ge 0} \int_0^\infty e^{-(\rho - n)t} u(c_t) dt$$
s.t. $\dot{a}_t = (r_t - \delta - n)a_t + w_t - c_t,$
 $a_0 \text{ dado},$

$$\lim_{t \to \infty} a_t \exp\left(-\int_0^t (r_s - \delta - n) ds\right) \ge 0.$$

Equilíbrio

Definição: O equilíbrio competitivo (sequencial) consiste em alocações para as famílias $\{c_t,a_t\}_{t=0}^{\infty}$, alocações para a firma $\{K_t,L_t\}_{t=0}^{\infty}$ e preços $\{r_t,w_t\}_{t=0}^{\infty}$ em que:

- 1. Dado os preços e $a_0 = K_0/L_0$, as alocações $\{c_t, a_t\}_{t=0}^{\infty}$ resolvem o problema da família.
- 2. Dado os preços, as alocações $\{K_t, L_t\}_{t=0}^{\infty}$ resolvem o problema da firma:

$$\max_{K_t, L_t} F(K_t, L_t) - r_t K_t - w_t L_t$$

3. Market clearing para o mercado de trabalho, de capital e de bens.

$$e^{nt}L_0 = L_t$$

$$a_tL_t = K_t$$

$$F(K_t, L_t) = \dot{K}_t + \delta K_t + L_t c_t$$

Caracterizando o Equilíbrio

• Problema da família. Hamiltoniano:

$$\hat{H}(a_t, c_t, \mu_t) = u(c_t) + \mu_t(a_t(r_t - \delta - n) + w_t - c_t)$$

Condições necessárias (junto com a no-Ponzi e LOM do estado):

$$u'(c_t) = \mu_t$$

$$\mu_t(r_t - \delta - n) = -\dot{\mu}_t + (\rho - n)\mu_t$$

Implica na equação de Euler:

$$\frac{u''(c_t)\dot{c_t}}{u'(c_t)} = -(r_t - \delta - \rho).$$

ou utilizando a elasticidade de substituição intertemporal: $1/\sigma(c_t) = -u'(c_t)/(u''(c_t)c_t)$:

$$\frac{\dot{c}_t}{c_t} = \frac{(r_t - \delta - \rho)}{\sigma(c_t)}.$$

Caracterizando o Equilíbrio

• Substituindo r_t :

$$\frac{\dot{c}_t}{c_t} = \frac{(f'(k_t) - \delta - \rho)}{\sigma(c_t)}.$$

• E a market clearing (derive a partir da restrição orçamentária):

$$\dot{k}_t = f(k_t) - (\delta + n)k_t - c_t$$

- A solução $\{c_t, k_t\}_{t=0}^{\infty}$ é caracterizada pelo sistema de equações diferenciais, juntamente com as condições iniciais/terminais k_0 e TVC $(\lim_{T\to\infty}e^{-\rho T}\mu_T k_T=0)$.
- Note que os teoremas do Bem-Estar são satisfeitos e a solução do Planejador é igual a do equilíbrio descentralizado.

Estado Estacionário e Dinâmica de Transição

Estado Estacionário

- Estado estacionário: variáveis são constantes ao longo do tempo, $\dot{k}_t=0$ e $\dot{c}_t=0$. Defina as variáveis no estado estacionário k^* e c^* .
- Via EE temos podemos encontrar k^* em função de f, ρ e δ (não depende da forma da função utilidade!):

$$\underbrace{f'(k^*)}_{r^*} - \delta = \rho > n$$

• Note que a Golden Rule (capital que maximiza o consumo) é:

$$\frac{dc}{dk} = f'(k^*) - (\delta + n) = 0$$

 Ou seja, o capital escolhido pelo Planejador é menor ao da Golden Rule. Isto se dá por que o Planejador considera que as famílias descontam consumo futuro.

Estado Estacionário

- Ao contrário do modelo de Solow, em RCK k^* não depende do crescimento populacional!
 - Ramsey: $f'(k^*) = \delta + \rho$,
 - Solow: $\frac{f(k^*)}{k^*} = \frac{\delta + n}{s}$,

Note a conexão entre a taxa de poupança s em Solow e o desconto em RCK $\Rightarrow \uparrow \rho$ mais impaciente e menor a acumulação de capital.

- Uma vez que temos k^* computar o resto é fácil:
- Restrição de recursos agregada: $c^* = f(k^*) (\delta + n)k^*$.
- Taxa de poupança:

$$c^* = (1 - s^*)f(k^*) \Leftrightarrow s^* = \frac{(\delta + n)k^*}{f(k^*)}$$

• Exemplo: Utilize $f(k_t) = Ak_t^{\alpha}$ e faça estática comparativa dos efeitos de A, δ , n, e ρ em c^* e k^*

Estado Estacionário

• Exemplo: Utilize $f(k_t) = Ak_t^{\alpha}$ e faça estática comparativa dos efeitos de A, δ , n, e ρ em c^* e k^* .

$$k^* = \left(\frac{\alpha A}{\delta + \rho}\right)^{1/(1-\alpha)}$$

$$c^* = k^* (Ak^{*\alpha - 1} - (\delta + n)) = k^* \left(\frac{(\delta + \rho) - \alpha(\delta + n)}{\alpha}\right)$$

- Já que ho>n e lpha<1, consumo no SS é uma fração do capital no SS.
 - $ightharpoonup \partial k^*/\partial A>0$ e $\partial c^*/\partial A>0$
 - $\partial k^*/\partial \rho < 0$ e $\partial c^*/\partial \rho < 0$
 - $\partial k^*/\partial \delta < 0$ e $\partial c^*/\partial \delta < 0$
 - $ightharpoonup \partial k^*/\partial n = 0$ e $\partial c^*/\partial n < 0$

Transition Dynamics

• Lembre-se que o equilibrío é caracterizado pelas equações (+ TVC e k_0):

$$\frac{\dot{c}_t}{c_t} = \frac{(f'(k_t) - \delta - \rho)}{\sigma(c_t)},$$

$$\dot{k}_t = f(k_t) - (\delta + n)k_t - c_t.$$

- Como podemos analisar a dinâmica do sistema fora do estado estacionário? ⇒ Diagrama de fases.
- Também vamos mostrar que o sistema é saddle-path stable: existe uma única trajetória $\{k_t,c_t\}$ que converge para o estado estacionário.
 - ▶ Dado o estado k_0 , o controle c_0 (ou alternativamente μ_0) se ajusta instantaneamente para a trajetória única. Por isso a variável controle é conhecida como *jump variable*.
 - Por exemplo, se ocorrer uma mudança de política inesperada o consumidor ajusta c_t para a trajetória ótima (enquanto o estado k obrigatoriamente segue a LOM).

Diagrama de Fases

$$\frac{\dot{c}_t}{c_t} = \frac{(f'(k_t) - \delta - \rho)}{\sigma(c_t)}$$

- Se $\uparrow k_t \Rightarrow \downarrow f'(k_t) \Rightarrow \downarrow \dot{c}$.
- Quando $f'(k_t) = \delta + \rho$ consumo é constante.
- ullet A reta é vertical: não depende de c_t .

Diagrama de Fases

$$\dot{k}_t = f(k_t) - (\delta + n)k_t - c_t$$

- Se $\uparrow c_t \Rightarrow \downarrow \dot{k}$.
- Forma de U invertida dado por $f(k_t) (\delta + n)k_t$.
- k_{golden} ponto que maximiza o consumo.

Diagrama de Fases

- Dado k_0 , c_0 salta para o stable-path.
- Se $c_0' > c_0$ a trajetória converge para k=0 e c>0: viola a condição de *feasibility*.
- Se $c_0'' < c_0$ a trajetória converge para c = 0 e k > 0: viola a TVC.
- Trajetória única que converge para o *Steady State*.

Estabilidade Local

- Uma outra forma de checar a Saddle-path Stability do sistema ⇒ Estabilidade local.
- Linearize as equações do sistema com expansão de Taylor na vizinhança do Estado estacionário:

$$\dot{k}_{t} = f(k_{t}) - (\delta + n)k_{t} - c_{t} \Rightarrow \dot{k} = (f'(k^{*}) - (\delta + n))(k - k^{*}) - (c - c^{*})$$

$$\dot{c}_{t} = c_{t} \frac{(f'(k_{t}) - \delta - \rho)}{\sigma} \Rightarrow \dot{c} = c^{*} \frac{f''(k^{*})}{\sigma}(k - k^{*}) + \underbrace{\frac{(f'(k^{*}) - \delta - \rho)}{\sigma}}_{=0}(c - c^{*})$$

Escreva o sistema na forma:

$$\begin{bmatrix} \dot{k} \\ \dot{c} \end{bmatrix} = \begin{bmatrix} f'(k_t) - \delta - n & -1 \\ c^* f''(k^*) / \sigma & 0 \end{bmatrix} \begin{bmatrix} k - k^* \\ c - c^* \end{bmatrix}$$

Estabilidade Local

Theorem (Acemoglu 7.19)

Considere o sistema $\dot{x}_t = G(x_t)$ onde G é continuamente diferenciável e x_0 dado. O estado estacionário é $G(x^*) = 0$ e defina $A = DG(x^*)$, D é a jacobiana de G. Suponha que m autovalores de A tenham partes reais negativas enquanto n-m têm partes reais positivas. Então existe uma variedade (i.e., um espaço topológico) m-dimensional na vizinhança do estado estacionário, de modo que a partir de qualquer x_0 nessa variedade, existe

No nosso caso se a matriz

um único $x_t \to x^*$.

$$A = \begin{bmatrix} f'(k_t) - \delta - n & -1 \\ c^* f''(k^*) / \sigma & 0 \end{bmatrix}$$

tem m=1 autovalores negativos, então em torno do estado estacionário existe uma linha (dimensão m=1) de pontos (c,k) que convergem para o estado estacionário.

Estabilidade Local

• Queremos encontrar os autovalores λ que $Ax = \lambda x$. Neste caso temos $\det(A - \lambda I)x = 0$

$$\det \begin{bmatrix} f'(k_t) - \delta - n - \lambda & -1 \\ c^* f''(k^*) / \sigma & 0 - \lambda \end{bmatrix} = 0$$

$$\det(A - \lambda I) = -\lambda [f'(k_t) - \delta - n - \lambda] + c^* f''(k^*) / \sigma = 0$$

logo

$$\lambda = [f'(k_t) - \delta - n \pm \sqrt{(f'(k_t) - \delta - n)^2 - 4c^* \underbrace{f''(k_t^*)}_{<0} / \sigma}]/2$$

• Como $\sqrt{(f'(k_t) - \delta - n)^2 - 4c^*f''(k^*)/\sigma} > f'(k_t) - \delta - n$, logo existe exatamente um autovalor negativo.

- Para o modelo ser consistente com os Fatos de Kaldor ele tem que ter crescimento de longo prazo.
- Balanced Growth Path: Todas as variáveis crescem a uma taxa constante.
- Suponha uma tecnologia com *Labor-augmenting Technological Change*:

$$Y_t = F(K_t, A_t L_t), \quad \text{onde } A_t = A_0 e^{gt}$$

e g a taxa de crescimento.

• Obviamente não existe mais estado estacionário, precisamos re-definir as variáveis para que elas continuem estacionárias: $\tilde{y}_t = y_t/A_t$, $\tilde{k}_t = k_t/A_t$, $\tilde{c}_t = c_t/A_t$.

 Note que o crescimento das novas variáveis é o crescimento per capita menos o avanço tecnológico:

$$\frac{\dot{ ilde{c}}}{ ilde{c}}=rac{\dot{c}}{c}-rac{\dot{A}_t}{A_t}=rac{\dot{c}}{c}-g$$
 e $rac{\dot{ ilde{k}}}{ ilde{k}}=rac{\dot{k}}{k}-g$

• Utilizando este argumento, o fator que F é CRS $(F(k,A)=AF(\tilde{k},1))$, e a definição de \dot{k} :

$$\frac{\dot{\tilde{k}}}{\tilde{k}} = \frac{F(\tilde{k}_t, 1)A_t - (\delta + n)\tilde{k}_t A_t - \tilde{c}_t A_t}{k_t} - g$$

$$\dot{\tilde{k}} = f(\tilde{k}_t) - (\delta + n + g)\tilde{k}_t - \tilde{c}_t$$

• E a Equação de Euler estacionária:

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{(F_k(k_t, A_t) - \delta - \rho)}{\sigma(c_t)} - g$$

$$= \frac{(f'(\tilde{k}_t) - \delta - \rho)}{\sigma(c_t)} - g,$$

onde usamos o fato que

$$\frac{\partial F(k,A)}{\partial k} = \frac{\partial F(A\tilde{k},A)}{\partial \tilde{k}} \frac{\partial \tilde{k}}{\partial k} = Af'(\tilde{k}) \frac{1}{A} = f'(\tilde{k}).$$

• Por um argumento parecido temos que $r^*=f'(\tilde{k})$ é constante no longo prazo (Fato de Kaldor), ou seja, $r_t\to r^*$.

- A única maneira que $\dot{\tilde{c}}=0$, é se o consumo per capita cresce a uma taxa constante no longo prazo: $\dot{c}_t/c_t \to g$.
- Pela EE, isso implica que $\sigma(c_t) \to \sigma$.
- Condição para BGP é que a elasticidade da utilidade marginal de consumo seja assintoticamente constante. Ou alternativamente, que a elasticidade de substituição intertemporal seja assintoticamente constante.
- Por isso a utilidade CRRA é tão utilizada:

$$u(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

• Dado que $\sigma(c_t) \to \sigma$ é constante no longo prazo. A condição para que a utilidade seja limitada agora é: $\rho - n > g(1 - \sigma)$. Intuição:

$$\int_0^\infty e^{-(\rho-n)t} \frac{c_t^{1-\sigma}}{1-\sigma} dt$$

$$\int_0^\infty e^{-(\rho-n)t} \frac{(\tilde{c}_t A_0 e^{gt})^{1-\sigma}}{1-\sigma} dt$$

$$\int_0^\infty e^{-(\rho-n-g(1-\sigma))t} \frac{(\tilde{c}_t A_0)^{1-\sigma}}{1-\sigma} dt$$

• A solução agora é o sistema de equações:

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{(f'(\tilde{k}_t) - \delta - \rho - g\sigma)}{\sigma}$$

$$\dot{\tilde{k}}_t = f(\tilde{k}_t) - (\delta + n + g)\tilde{k}_t - \tilde{c}_t$$

• Juntamente com a condição inicial \tilde{k}_0 e a TVC:

$$\lim_{t \to \infty} e^{-(\rho - n - g(1 - \sigma))t} u'(\tilde{c}_t) \tilde{k}_t = 0$$

Steady State

• Note que agora o capital do estado estacionário agora depende da forma da utilidade (σ) :

$$f'(\tilde{k}^*) = \delta + \rho + g\sigma,$$

isto implica que: $r^* = \delta + \rho + g\sigma!$

- $\uparrow \sigma \rightarrow$ menor elasticidade de substituição intertemporal $\rightarrow \downarrow \tilde{k}^*$.
- De certa forma, muito parecido com Solow:
 - \tilde{k} é endógeno e depende de δ , g, e do desconto/IES que determinam a poupança (Solow: taxa de poupança exógena, mas depende de n).
 - ightharpoonup Crescimento de longo prazo per capita é exógeno e é dado por g (igual a Solow).

Exemplo

- Considere utilidade CRRA e função de produção Cobb-Douglas, $Y_t = F(K_t, A_t, L_t) = K_t^{\alpha} (A_t L_t)^{1-\alpha}$:
 - $\tilde{y}_t = \tilde{k}^{\alpha}$, onde para uma variável arbitrária agregada X, $\tilde{x} = X/(AL)$.
 - $r = f'(\tilde{k}) = \alpha \tilde{k}^{\alpha 1}$.
- A Equação de Euler e a restrição de recursos:

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{(r_t - \delta - \rho)}{\sigma(c_t)} - g = \frac{1}{\sigma} (\alpha \tilde{k}^{\alpha - 1} - \delta - \rho - \sigma g)$$

$$\dot{\tilde{k}} = f(\tilde{k}_t) - (\delta + n + g)\tilde{k}_t - \tilde{c}_t = \tilde{k}^{\alpha} - (\delta + n + g)\tilde{k}_t - \tilde{c}_t$$

Estado estacionário:

$$\tilde{k}^* = \left(\frac{\alpha}{\delta + \rho + \sigma g}\right)^{1/(1-\alpha)} \quad \text{ e } \quad \tilde{c}^* = \left(\frac{\alpha}{\delta + \rho + \sigma g}\right)^{\frac{1}{1-\alpha}} \left(\frac{(\delta + \rho + \sigma g) - \alpha(\delta + n + g)}{\alpha}\right)$$

Policy and Comparative Dynamics

Aumento de ρ

• Suponha que a economia esteja no SS e ocorre um aumento de ρ .

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{(f'(\tilde{k}_t) - \delta - \rho - g\sigma)}{\sigma}$$

- A linha $\dot{\tilde{c}}$ se desloca para a esqueda, e \tilde{c} salta para o novo stable-path.
- Eventualmente o sistema converge para o novo SS.

Aumento de δ

• Suponha que a economia esteja no SS e ocorre um aumento de δ .

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{(f'(\tilde{k}_t) - \delta - \rho - g\sigma)}{\sigma}$$

$$\dot{\tilde{k}} = f(\tilde{k}_t) - (\delta + n + g)\tilde{k}_t - \tilde{c}_t$$

- A linha $\dot{\tilde{c}}$ se desloca para a esqueda, e a linha $\dot{\tilde{k}}$ para baixo.
- \tilde{c} salta e eventualmente o sistema converge para o novo SS.

Policy

• Considere agora uma pequena extensão, o retorno líquido do capital é taxado a τ :

$$\hat{r}_t = (1 - \tau)(r_t - \delta) = (1 - \tau)(f'(\tilde{k}_t) - \delta)$$

• O imposto agregado arrecadado é distribuído via uma transferência lump-sum \tilde{t} , logo a restrição orçamentária:

$$\dot{\tilde{a}}_t = \tilde{a}_t(\hat{r}_t - n - g) - \tilde{c}_t + w_t + \tilde{t}_t,$$

onde a transferência ajustada é igual a arrecadação: $\tilde{t} = \tau (r_t - \delta) \tilde{a}_t$.

• O imposto distorce a acumulação de capital, e portanto a EE:

$$\frac{\dot{\tilde{c}}}{\tilde{c}} = \frac{((1-\tau)(f'(\tilde{k}_t) - \delta) - \rho - g\sigma)}{\sigma}$$

Policy

• Mas como o imposto é rebatido de volta ao consumidor (não há governo!), a restrição de recursos da economia não se altera (verifique isso!):

$$\dot{\tilde{k}} = f(\tilde{k}_t) - (\delta + n + g)\tilde{k}_t - \tilde{c}_t$$

• Dado o desincentivo a acumulação de capital, o capital no steady state será menor:

$$f'(\tilde{k}^*) = \delta + \frac{\rho + \sigma g}{1 - \tau}$$

Diminuição de au

- Diminuição em τ: aumenta o incentivo para acumular capital.
- Aumento da taxa de poupança reduz o consumo inicialmente.
- Logo a acumulação, aumenta o capital/produção/consumo.

Taking Stock

- Modelo de crescimento neoclássico: explica o precesso de convergência entre diferentes países.
 - Muito das conclusões são parecidas com o modelo de Solow.
- Poupança endógena traz novos insights em relação ao impacto das preferências, taxação, e etc no crescimento de longo prazo.
- Para Balanced-Growth Path necessitamos preferências com elasticidade de substituição constante.
- Não explica crescimento de longuíssimo prazo \Rightarrow cresce a taxa exógena g.
 - Motivação para desenvolver modelos de crescimento endógeno.