Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет)

Кафедра «Прикладная математика»

Курсовая работа

по дисциплине «Численные методы решения задач математической физики»

Изгиб стержня

Bыполнил студент группы Φ H2-71Б Γ олубенко K.~M.

Научный к.ф-м.н. доцент кафедры ФН-2 Родин А.С.

руководитель

Оглавление

1.	Введение	3
2.	Статический случай	4
3.	Заключение	6
Сп	исок литературы	6

1. Введение 3

1. Введение

На неподвижном основании горизонтально установлен упругий стержень. Один конец стержня защемлен, другой свободен. К свободному концу центрально приложена сжимающая сила P. Известны длина стержня l, модуль Юнга E. Силой тяжести в данной работе принебрегаем.

2. Статический случай

Рассмотрим стержень в простейшем одномерном случае.

Изгиб балок

<u>Изгибом</u> стержней называется такой случай деформации стержня, когда его продольная ось искривляется. Стержень, работающий на изгиб, называется <u>балкой</u>.

Рис. 2.1. Одномерный случай

Пусть u(x) - отклонение стержня от оси Ox. Тогда уравнение равновесия будет иметь следующий вид:

$$\frac{\partial \sigma}{\partial x} = 0, u(0) = 0, u(l) = u_l. \tag{1}$$

где σ — внутреннее напряжение. Воспользуемся законом Гука: $\sigma=E\varepsilon=E\frac{\partial u}{\partial x}$ и получим систему:

$$\begin{cases}
E \frac{\partial^2 \sigma}{\partial x^2} = 0, \\
u(0) = 0, \quad u(l) = u_l.
\end{cases}$$
(2)

Воспользуемся методом дискретизации Галеркина. Получим:

$$E\int_{0}^{l} \frac{\partial^{2}\sigma}{\partial x^{2}} N_{i} dx = 0, \tag{3}$$

где N_i - базисные функции вида:

Изгиб балок

<u>Изгибом</u> стержней называется такой случай деформации стержня, когда его продольная ось искривляется. Стержень, работающий на изгиб, называется <u>балкой</u>.

Рис. 2.2. Одномерный случай

Преобразуем:

$$E\int_{0}^{l} \frac{\partial^{2} \sigma}{\partial x^{2}} N_{i} dx = E\int_{0}^{l} \left(\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} N_{i} \right) - \frac{\partial u}{\partial x} \frac{\partial N_{i}}{\partial x} \right) dx = E\int_{0}^{l} \left(\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} N_{i} \right) \right) dx - E\int_{0}^{l} \left(\frac{\partial u}{\partial x} \frac{\partial N_{i}}{\partial x} \right) dx = 0,$$

$$(4)$$

где
$$E \int_{0}^{l} \left(\frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} N_i \right) \right) dx = 0.$$

Заменим точное решение u(x) на приближенное \hat{u} :

$$u \approx \hat{u} = \sum_{j=0}^{n} u_j N_j. \tag{5}$$

Подставим полученное выражение в 4:

$$-Eu_{i-1}\int_{x_{i-1}}^{x_i} \left(\frac{\partial N_{i-1}}{\partial x}\frac{\partial N_i}{\partial x}\right) dx - Eu_i \int_{x_{i-1}}^{x_{i+1}} \left(\frac{\partial N_i}{\partial x}\frac{\partial N_i}{\partial x}\right) dx - Eu_{i+1}\int_{x_i}^{x_{i+1}} \left(\frac{\partial N_{i+1}}{\partial x}\frac{\partial N_i}{\partial x}\right) dx = 0,$$
(6)

где $i = \overline{1, n-2}$.

Найдем значения коэффициентов уравнений:

$$\int_{x_{i-1}}^{x_i} \left(\frac{\partial N_{i-1}}{\partial x} \frac{\partial N_i}{\partial x} \right) dx = \int_{x_{i-1}}^{x_{i+1}} \left(\frac{1}{x_{i-1} - x_i} \frac{1}{x_i - x_{i-1}} \right) dx = -\frac{1}{h} = a_i,$$

$$\int_{x_{i-1}}^{x_{i+1}} \left(\frac{\partial N_i}{\partial x} \right)^2 dx = \int_{x_{i-1}}^{x_i} \left(\frac{1}{x_i - x_{i-1}} \right)^2 dx + \int_{x_i}^{x_{i+1}} \left(\frac{1}{x_i - x_{i+1}} \right)^2 dx = \frac{2}{h} = b_i,$$

$$\int_{x_i}^{x_{i+1}} \left(\frac{\partial N_{i+1}}{\partial x} \frac{\partial N_i}{\partial x} \right) dx = \int_{x_i}^{x_{i+1}} \left(\frac{1}{x_{i+1} - x_i} \frac{1}{x_i - x_{i+1}} \right) dx = -\frac{1}{h} = c_i.$$
(7)

3. Заключение 6

Получим систему уравнений с трехдиагональной матрицей:

$$\begin{cases} u_{i-1}a_i - u_ib_i + u_{i+1}c_i = 0, & i = \overline{1, n-2} \\ u(0) = 0, & u(l) = u_l. \end{cases}$$
 (8)

Запишем систему в матричном виде:

$$\begin{pmatrix}
-b_1 & c_1 & 0 & 0 & \dots & 0 \\
a_2 & -b_2 & c_2 & 0 & \dots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \dots & a_{n-1} & -b_{n-1} & c_{n-1} & 0 \\
0 & 0 & \dots & a_{n-2} & -b_{n-2} & c_{n-2}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
\vdots \\
u_{n-2} \\
u_{n-1}
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
\vdots \\
0 \\
-u_l c_{n-1}
\end{pmatrix}$$
(9)

Решим полученную систему методом прогонкии.f

3. Заключение

Список литературы

1. бебебе с бабаба