What makes wine great?

Yuga Hikida, Adya Maheshwari

2024-01-02

Task

▶ Prediction of quality of (white) wine (from 1, 2,.. up to 10) using physicochemical variables.

2 / 17

Data: Preditictive variables

How to model "quality"?

- ▶ M_1 : Categorical variable. $quality \in \{'1', ..., '10'\}$
 - ⇒ Classification
- ▶ M_2 : Continuous variable. quality $\in [1, 10]$
 - \Rightarrow Regression
- ▶ M_3 : Ordered Categorical variable. $quality \in \{1, ..., 10\}$
 - ⇒ Ordinal Regression

For following slides, y for quality and X for (vector of) predictive variables.

M_1 : Classification (1)

$$y \sim \mathsf{categorical}(\psi_1, ..., \psi_C) = \prod_{c=1}^C \psi_c^{I_{c(y)}}$$

where C is the number of categories (C = 7 for our case), $\psi_c = Pr(y=c)$ such that $\sum_{c=1}^C \psi_c^{I_c(y)} = 1$, and

$$I_{c(y)} = \begin{cases} 1 & y = c \\ 0 & \text{otherwise} \end{cases}$$

M_1 : Classification (2)

```
For c = 1, ..., C:
                 \psi_c = \operatorname{softmax}(\eta_c)
                    =\frac{\mathrm{e}^{\eta_c}}{\sum_{k=1}^C \mathrm{e}^{\eta_k}}
                 \eta_c = X_c \beta_c where X_c = X[y == c]
                 \beta_c \sim \text{Normal}(0, \sigma^2 I)
f <- quality ~ citric.acid + residual.sugar +
    total.sulfur.dioxide + free.sulfur.dioxide +
    chlorides + density + pH + sulphates + alcohol +
    fixed.acidity + volatile.acideity
fit1 <- brm(f.
                data = d.
                family = categorical(link = "logit"),
                prior = p1)
```

M_1 : Result (1)

M_1 : Result (2)

*M*₂: Regression

We choose to use Normal distribution but other distribution such as t-distribution can be also chosen.

```
y \sim \mathsf{Normal}(\eta, \gamma^2)

\eta = x^T \beta

\beta \sim \mathsf{Normal}(0, \sigma_\beta^2 I)

\gamma^2 \sim \mathsf{Half-normal}(0, \sigma_\gamma^2)
```

M₂: Result (1)

M_2 : Result (2)

M_3 : Ordinal Regression: Cumulative Model (1)

For
$$c = 1, ..., C$$
:

$$\begin{split} \psi_c &= Pr(y \leq c) - Pr(y \leq c - 1) \\ &:= Pr(\tilde{y} \leq \tau_c) - Pr(\tilde{y} \leq \tau_{c-1}) \\ \tilde{y} &= \eta + \epsilon, \ \epsilon \sim \mathsf{Normal}(0, 1) \\ \beta &\sim \mathsf{Normal}(0, \sigma^2 I) \\ \tau_c &\sim \mathsf{Normal}(0, \sigma_{\tau_c}^2) \end{split}$$

M_3 : Ordinal Regression: Cumulative Model (2)

Other expression:

$$Pr(\tilde{y} \leq \tau_c) = Pr(\eta + \epsilon \leq \tau_c)$$

= $Pr(\epsilon \leq \tau_c - \eta)$
= $\Phi(\tau_c - \eta) \Phi$: cdf of standard normal aka probit

Then we have:

$$\psi_c = \Phi(\tau_c - \eta) - \Phi(\tau_{c-1} - \eta)$$
:

M₃: Result

Model Comparison

```
leave-one-out CV
loo_compare(fit1, fit2, fit3)
```

```
elpd_diff se_diff
fit1 0.0 0.0
fit3 -144.0 26.8
fit2 -178.4 29.4
```

Posterior Model Probability

```
pmp <- post_prob(fit1, fit2, fit3)</pre>
```

```
fit1 fit2 fit3
1.000000e+00 4.077118e-26 5.371197e-25
```

Partial Pooling

► Adding data of red wine and do partial pooling.

Adding non-linearity