B.Tech. DEGREE EXAMINATION, DECEMBER 2022

Fourth and Fifth Semester

18MAB302T - DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

- (i) Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

ime: 2½ Hours	Max	. Ma	rks:	75
$PART - A (25 \times 1 = 25 Marks)$	Marks	BL	co	PO
Answer ALL Questions				
Power set of empty set has exactlysubset. (A) Two (B) One (C) Zero (D) Three	1	1	1	1,2
		1		
A relation R on set A is said to be partial order relation if (A) R is reflexive, transitive but not (B) R is symmetric, transitive symmetric reflexive (C) R is irreflexive and (D) R is reflexive, antisymmetric transitive	tive but not	4	1	1.2
3. If R and S be relation on a set A represented by the $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	matrices 1	2	I	1,2
$M_R = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} & M_S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ then M _{ROS} is				
(A) (0 1 0) (B) (0 1 1)				
1 1 0 1 1 1				
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$				
(C) (1 1 1) (D) (1 1 1)				
1 1 0				
$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$				
4. If f and g are onto then the function g of is	1	1	1	1.2
(A) One-one (B) Many one (C) Onto (D) Into				
5. Which of the following is not a function?	1	2	1	1,2
(A) $\{(1,2),(1,4),(2,5)(3,8)\}$ (B) $\{(1,2),(2,4),(3,6)\}$ (C) $\{(-1,1),(-2,4),(2,4)\}$ (D) $\{(1,1),(2,2),(3,3)\}$				
6. In how many ways the letters of the word "STRESS" can be arranged	17	2	2	1,2
(A) 360 (B) 720 (C) 240 (D) 120				
 How many 3 digit numbers can be formed from the digits 2,3,5,6,7 a are divisible by 5 and none of the digits is repeated. 	nd 9 which	2	2	1,2
(A) 5 (C) 20 (B) 10 (D) 15				
8. In how many number of ways of arranging 7 persons around a circle (A) 6! (B) 5! (C) 7! (D) 4!	1	1	2	1,2

9.	If $gcd(a,b)=1$, then integers a and b are (A) Prime	(B)	Relatively prime	1		1	2 1
	(C) Composite		Even				
10.	If $a = -23$ and $b = 7$ then (A) $q = 4, r = 5$		q = -4, r = 5	1	2	•	2 1
11	(C) $q = 4, r = -5$	' '	q = -4, r = -5	1	1		3 1,
11.	The converse of the conditional statemed (A) If I get wet then it is raining		If I don't get wet then it is not raining				
	(C) If it is not raining then I don't get wet	(D)					
12.	$P \rightarrow (P \lor Q)$ is equivalent to	(D)		1	2	3	1,2
	(A) F (C) P	(B) (D)	1 7Q				
13.	Dual of $(P \land Q) \lor R$	m \		1	2	3	1,2
	(A) (P∧Q) ∨R (C) (P∨Q) ∧R		$(P \land Q) \land R$ $(P \lor Q) \lor R$				
14.	The logically equivalent proportion of P	°⇔Q	is	1	1	3	1,2
	(A) $(P \wedge Q) \vee (P \wedge Q)$	(B)	$(P \Rightarrow Q) \land (Q \Rightarrow P)$				
	(C) $(P \land Q) \lor (Q \Rightarrow P)$	(D)	$(P \land Q) \Rightarrow (Q \lor P)$				
15.	A premise may be introduced at any po (A) Rule P (C) Rule T	(B)	the derivation is called Rule P and T Rule CP	1	1	3	1,2
16.	If a,b are the elements of a group G. there	n (a*	b) ⁻¹	1	1	4	1,2
	· · · · · · · · · · · · · · · · · · ·	(B)					
	(C) $a^{-1}*b^{-1}$	(D)	a*b				
17.	If α , β are elements of the symmetric gro	oup S	4 given by $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$ and	1	2	4	1,2
	$\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix} \text{ then } \alpha\beta$						
		(B)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$				
	$ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} $	(D)	$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$				
	A ring (R,+, ·) with identity is said to be			1	1	4	1,2
	\$ <u> </u>		Ring Semi group				
	Minimum distance between the code wor	rds x	=1001, y=0100, z=1000	1	2	4	1,2
		(B) (D)	2				
20. 1	If the minimum distance between any two	cod	e words is atleast 5, then maximum	1	2	4	1,2
	number of errors that can be detected is (A) 2	(P)	3				
		(B) (D)	5				

21.	The degree of pendant vertex. (A) 0	(D)		1	1	5	1,2
	(C) 2	(B) (D)					
22.	Graphs that include loops and possibly multiple edges connecting the same pair of vertices is called		1	1	5	1,2	
	(A) Pseudo graph(C) Complete graph	(B) (D)	Bipartite graph Directed graph				
23.	The maximum number of edges in a si and k components is	imple	disconnected graph with n vertices	1	1	5	1,2
	(A) $\frac{(n+k)(n+k+1)}{2}$	(B)	$\frac{(n+k)(n-k+1)}{2}$				
	(C) $\frac{(n-k)(n-k+1)}{2}$	(D)	$\frac{(n+k)(n-k+1)}{2}$ $\frac{(n-k)(n+k+1)}{2}$				
24	A41 :- 1 C 1						
24.	A path in a graph G that includes each (A) Euler path		c exactly once is Simple path	1	2	5	1,2
	(C) Hamiltonian path		Cyclic path				
25.	The chromatic number of the complete	bipar	tite graph K _{4,3}	1	2	5	1,2
	(A) 2 (C) 6	(B) (D)	3				
	PART – B (5 × 10 = 50 Marks) Answer ALL Questions				BL	СО	PO
26. a.	If two functions $f:R \rightarrow R$ and $g:R \rightarrow R$ analyze whether f and g are injective, so	are de urject	efined as $f(x)=x^2-2$ and $g(x)=x+4$, ive and bijective. Also find gof, fog.	10	4	1	1,2
	(OR)						
b.	Applying Warshall's algorithm, find $R = \{(1,1), (1,3), (1,4), (2,2), (3,4), (4,4), (4,2), (4,4), ($	the $\{1,1\}$.	transitive closure of a relation R	10	3	1	1,2
27. a.i.	In a class of 50 students, 20 students p It is found that 10 students play both the who play neither.	lay fo e gam	ootball and 16 students play hockey. es. Compute the number of students	5	3	2	1,2
ii.	Prove that if 10 points are placed in a 3 two points must be less than or equal to	cm by $\sqrt{2}$	y 3 cm square then distance between cm apart.	5	3	2	1,2
	(OR)						
b.	Apply Euclidean algorithm, to find go a linear combination of the given numb	d(181 ber.	9,3587) and also express the gcd as	10	4	2	1,2
28. a.i.	If it rains heavily then travelling will be travelling was not difficult. If they are Check the validity of the conclusion.	e diff	icult. If students arrive on time then n time, then it did not rain heavily.	5	3	3	1,2
ii.	Apply mathematical induction to show	that	$n! \ge 2^{n-1}$ for $n = 1, 2,$	5	3	3	1,2

(OR)

- b. Using indirect method of proof, derive $p \rightarrow 7s$ from the premises $p \rightarrow (q \lor r)$, $q \rightarrow 7p$, s $\rightarrow 7r$, p.
- 29. a. Show that the set Q⁺ of all positive rational numbers forms an abelian group 10 3 4 1,2 under the operation * defined by $a*b=\frac{1}{2}ab;a,b,\in Q^{+}$.

b. Compute the code words generated by the parity check matrix.

$$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

When the encoding function is $e: B^3 \to B^6$.

30. a.i. Check whether, the following two graphs are isomorphic. If not give reasons.

ii. Prove that the number of edges in a bipartite graph with n vertices in atmost $n^2/4$. 5 3 5 1,2

(OR)

 Applying Kruskal's algorithm, to find the minimum spanning tree for the weighted graphs. Also, draw the minimum spanning tree.

10