

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра вычислительных технологий и моделирования

Карандеев Илья Дмитриевич

Отчёт по первому заданию курса "Современные вычислительные технологии"

Содержание

1	Введение	3			
2	Математическая постановка дифференциальной задачи				
3	Уравнения метода	3			
4	Проверка сходимости решений				
5	Аппроксимационные свойства вычислительных схем				
C	список таблиц				
	1 $d_x = 1, d_y = 1 \dots \dots$	4			
	$d_x = 1, d_y = 1 \dots \dots$				
	$d_r = 1, d_u = 100 \dots \dots$	5			

1 Введение

Требуется написать программу для решения стационарного двумерного уравнения диффузии методом конечных разностей.

2 Математическая постановка дифференциальной задачи

В прямоугольнике

$$\Pi = (0,1) \times (0,1),$$

рассматривается стационарное двумерное уравнение диффузии

$$-\nabla * D\nabla C = f$$

где ∇ – оператор Гамильтона(набла), C = C(x, y) - концентрация вещества, f = f(x, y) - функция источников, или стоков, D - тензор диффузии: $D = \begin{pmatrix} d_x & 0 \\ 0 & d_y \end{pmatrix}$ Граничные условия в данной задаче двух типов.

1) Неймана:

$$-D*\frac{\partial C}{\partial \overline{n}} = g_N$$

2) Дирихле:

$$C = g_D$$

На границей рассматриваемой области:

- 1) x = 0, y = N граница g_D
- 2) у = 0 и х != 0 граница g_N
- 3) x = N и у != N граница g_N

3 Уравнения метода

Введем равномерную прямоугольную сетку $\overline{\omega} = \overline{\omega_1} \times \overline{\omega_2}$, где

$$\overline{\omega_1} = \{A_1 + i \cdot h_x, 0 \le i \le N\},$$

$$\overline{\omega_2} = \{B_1 + j \cdot h_y, 0 \le j \le N\},$$

$$h_x = \frac{A_2 - A_1}{M},$$

$$h_y = \frac{B_2 - B_1}{N}.$$

$$h_x = h_y = h$$

Узлам сетки сопоставим неизвестные w_{ij} , и, заменив производные на разностные отношения в узлах сетки, от исходной дифференциальной задачи перейдем к системе линейных алгебраических уравнений

$$\begin{cases} -d_x * \frac{w_{i-1,j} - 2w_{i,j} + w_{i+1,j}}{h_x^2} - d_y * \frac{w_{i,j-1} - 2w_{i,j} + w_{i,j+1}}{h_y^2} = f_{ij}, & 2 \le i \le N-1, & 1 \le j \le N-1, \\ w_{i,j} = g_{D(y=N)}, & 0 \le i \le N, j = N, \\ w_{i,j} = g_{D(x=0)}, & 0 \le j \le N-1, i = 0 \\ -dx * \frac{w_{N,j} - w_{N-1,j}}{h^2} = g_{N(x=N)}, & i = N, & 1 \le j \le N-1, \\ -dy * \frac{w_{i,0} - w_{i,1}}{h^2} = g_{N(y=0)}, & j = 0, & 1 \le i \le N-1, \\ -(dy + dx) * \frac{1}{\sqrt{2}} * \frac{w_{N,0} - w_{N-1,1}}{h^2} = g_{N(y=0,x=N)}, & j = 0, & i == N \end{cases}$$

которую можно представить в матричном виде

$$Aw = f$$
.

4 Проверка сходимости решений

Таблица 1: $d_x = 1, d_y = 1$

Cетка $(n * n)$	$ err _{Ch}$	$ err _{L2_h}$
10×10	$6.02 \cdot 10^{-4}$	$4.32 \cdot 10^{-2}$
20×20	$1.98 \cdot 10^{-5}$	$3.35 \cdot 10^{-2}$
40×40	$2.11 \cdot 10^{-5}$	$2 \cdot 10^{-2}$
80×80	$3.08 \cdot 10^{-6}$	$1.08 \cdot 10^{-2}$
160×160	$2.66 \cdot 10^{-7}$	$5.6 \cdot 10^{-3}$

Таблица 2: $d_x = 1, d_y = 1$

Сетка(n * n)
$$||err||_{Ch}$$
 $||err||_{L2_h}$
 10×10 $1.76 \cdot 10^{-3}$ $6.26 \cdot 10^{-2}$
 20×20 $1.62 \cdot 10^{-4}$ $4.67 \cdot 10^{-2}$
 40×40 $1.88 \cdot 10^{-5}$ $2.71 \cdot 10^{-2}$
 80×80 $2.08 \cdot 10^{-6}$ $1.45 \cdot 10^{-2}$
 160×160 $6.08 \cdot 10^{-7}$ $7.48 \cdot 10^{-3}$

Таблица 3: $d_x = 1, d_y = 100$

Сетка(n * n)	$ err _{Ch}$	$ err _{L2_h}$
10×10	$9.95 \cdot 10^{-3}$	$9.45 \cdot 10^{-2}$
20×20	$1\cdot 10^{-3}$	$7.03\cdot10^{-2}$
40×40	$1.23 \cdot 10^{-4}$	$4 \cdot 10^{-2}$
80×80	$1.46 \cdot 10^{-5}$	$2.1\cdot 10^{-2}$
160×160	$1.74 \cdot 10^{-6}$	$1.08 \cdot 10^{-3}$

5 Аппроксимационные свойства вычислительных схем

Произвелась попытка приблизить схождение норм кривой у = а * х b . То есть найти а и b. L_{2_h} норма имеет коэффициент b в -5.8, -6.18 и -6.319 при dy = 1, 10, 100 соответсвенно. Для C_h эти числа равны -4.82, -3.43 и -3.3.