Exchange Rate Forecasting of INR/CNY: Econometric and Machine Learning Hybrid Approaches

TKSS ASHOK

12 Aug 2025

Abstract

This report investigates the forecasting of the INR/CNY exchange rate using econometric and machine learning methods. Starting with traditional time series approaches such as cointegration analysis, VECM, and VAR, we extend the framework to incorporate macro-financial exogenous drivers like Brent crude, COMEX copper, and the US Dollar Index (DXY). Finally, a hybrid VAR + XGBoost model is introduced to capture nonlinearities in the residuals. Results suggest that while traditional models capture the broad dynamics, hybrid methods provide superior short-term predictive accuracy.

1 Introduction

Exchange rates are influenced by macroeconomic fundamentals (interest rate differentials, CPI inflation, FX reserves) and global financial variables (commodity prices, USD strength). Forecasting them requires combining long-run equilibrium considerations with short-run volatility and nonlinear effects.

This project focuses on INR/CNY exchange rate prediction with:

- Monthly macroeconomic differentials (India vs. China).
- Daily financial drivers (Brent, Copper, DXY).
- Econometric models (VECM, VAR, ARIMAX).
- Hybrid machine learning corrections (VAR + XGBoost).

2 Theoretical Background

2.1 Stationarity and Unit Root Tests

For a series y_t , stationarity was tested using ADF and KPSS.

 H_0^{ADF} : unit root exists, H_0^{KPSS} : stationarity holds.

2.2 Cointegration and VECM

If y_t (INR/CNY) and fundamentals X_t are non-stationary but cointegrated, a Vector Error Correction Model is appropriate:

$$\Delta y_t = \alpha \beta' Z_{t-1} + \sum_{i=1}^p \Gamma_i \Delta Z_{t-i} + \varepsilon_t,$$

where $Z_t = (y_t, X_t)$ and $\beta' Z_t$ gives the cointegration vector.

2.3 Vector Autoregression (VAR)

When no strong cointegration is detected, a VAR in differences can be used:

$$Y_t = c + \sum_{i=1}^{p} A_i Y_{t-i} + \varepsilon_t,$$

where $Y_t = (\Delta y_t, \Delta X_t)'$. Impulse Response Functions (IRF) and Forecast Error Variance Decomposition (FEVD) help understand dynamic responses.

2.4 ARIMAX

An ARIMAX model allows explicit exogenous regressors:

$$y_t = \phi(L)(1-L)^d y_t + \theta(L)\varepsilon_t + \beta' X_t.$$

Here, X_t includes Brent, Copper, DXY returns.

SARIMAX RESULTS							
Dep. Variable: Model: Date: Time: Sample: Covariance Type:	SARIMAX	INRCNY=X 2, 0, 0) Aug 2025 01:59:34 0 - 723 opg	No. Observat: Log Likelihod AIC BIC HQIC		2869 -5727 -5699 -5716	.834	
==========	coef	std err	z	P> z	[0.025	0.975]	
ret_dxy ret_Brent_Oil ret_Comex_Copper ar.L1 ar.L2 sigma2	-0.0132 0.0019 0.0063 -0.3222 -0.1277 2.044e-05	0.035 0.009 0.011 0.025 0.028 6.4e-07		0.704 0.820 0.579 0.000 0.000	-0.081 -0.015 -0.016 -0.371 -0.182 1.92e-05	-0.073	
Ljung-Box (L1) (Q): Prob(Q): Heteroskedasticity (H): Prob(H) (two-sided):		0 2	.01 Jarque-I .93 Prob(JB .54 Skew: .00 Kurtosi:			463.47 0.00 -0.32 6.88	
Warnings: [1] Covariance matrix calculated using the outer product of gradients (complex-step). Forecast ret: -0.0008403432858740897 CI: lower ret_INRCNY=X upper ret_INRCNY=X 723 -0.009701 0.00802							

2.5 Volatility Modelling (GARCH with Exogenous Variables)

Conditional volatility was explored with GARCH:

$$y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, h_t),$$

$$h_t = \omega + \alpha \varepsilon_{t-1}^2 + \beta h_{t-1} + \gamma' X_t.$$

This allows external drivers like DXY to affect volatility.

3 Hybrid VAR + XGBoost Residual Correction

3.1 Motivation

While VAR captures linear dependence, its residuals often show nonlinear structure. We therefore train an XGBoost model on VAR residuals using lagged values of INR/CNY, Brent, Copper, and DXY:

$$\hat{\varepsilon}_t = f_{\text{XGB}}(y_{t-1}, X_{t-1}, \dots).$$

	ret_INRCNY=X
2025-08-08	0.361190
2025-08-11	1.040769
2025-08-12	1.106391
2025-08-13	0.964872
2025-08-14	0.999790
2025-08-15	1.005232
2025-08-18	0.998177
2025-08-19	0.999807
2025-08-20	1.000333
2025-08-21	0.999931

3.2 Implementation

- 1. Fit VAR to INR/CNY with Brent, Copper, DXY.
- 2. Obtain in-sample residuals ε_t .
- 3. Train XGBoost on lagged features \rightarrow predict $\hat{\varepsilon}_t$.
- 4. Hybrid forecast:

$$\hat{y}_t^{Hybrid} = \hat{y}_t^{VAR} + \hat{\varepsilon}_t^{XGB}.$$

4 Conclusion

This project compared multiple forecasting frameworks:

- VECM captured long-run relationships but struggled in out-of-sample forecasts.
- VAR provided stable forecasts but limited in handling nonlinearities.
- ARIMAX allowed flexible inclusion of global variables.
- GARCH captured conditional volatility.
- Hybrid VAR + XGBoost improved forecast accuracy by correcting systematic residual patterns.

Future extensions: include policy dummy shocks, explore LSTM/Transformer models, and expand the dataset.

References

- 1. Yahoo finance, Reserve Bank Of India Website, National Bureau of Statistics, China for the data.
- 2.Long, S., Zhang, M., Li, K. et al. Do the RMB exchange rate and global commodity prices have asymmetric or symmetric effects on China's stock prices?. Financ Innov 7, 48 (2021). https://doi.org/10.1186/s40854-021-00262-0
- 3. Econometric Analysis by Greene
- 4. Exchange Rates and International Finance by Laurence Copeland