The Large Synoptic Survey Telescope

Lucianne Walkowicz The Adler Planetarium

Director, LSSTC Data Science Fellowship Program LSST Science Collaboration Coordinator Member, LSST Science Advisory Committee

What is the LSST?

A survey of 37 billion objects in space and time

What is the LSST?

A survey of 37 billion objects in space and time

An optical/near-IR survey of half the sky in ugrizy bands to r~27.5 (36 nJy) based on ~825 visits over a 10-year period

What is the LSST?

A survey of 37 billion objects in space and time

An optical/near-IR survey of half the sky in ugrizy bands to r~27.5 (36 nJy) based on ~825 visits over a 10-year period

Science Objectives

The Dark Universe
The Transient Universe
Solar System Inventory
Mapping the Milky Way

Private Contributions Charles Simonyi Bill & Melinda Gates

Member Institutions

Adler Planetarium

Argonne National Laboratory

Brookhaven National Laboratory (BNL)

California Institute of Technology

Carnegie Mellon University

Chile

Columbia University

Cornell University

Drexel University

Fermi National Accelerator Laboratory

George Mason University

Google, Inc.

Harvard-Smithsonian Center for Astrophysics

IN2P3

Johns Hopkins University

KIPAC - Stanford University

LCOGT

Lawrence Livermore National Laboratory (LLNL)

Los Alamos National Laboratory (LANL)

National Optical Astronomy Observatory

Northwestern University

Princeton University

Purdue University

Research Corporation for Science Advancement

Rutgers University

SLAC National Accelerator Laboratory

Space Telescope Science Institute

Texas A & M University

IPAS of the Czech Republic

The Pennsylvania State University

The University of Arizona

University of California at Davis

University of Illinois at Urbana-Champaign

University of Michigan

University of Oxford

University of Pennsylvania

University of Pittsburgh

University of Washington

Vanderbilt and Fisk Universities

International Contributors

Australia

The University of Sydney - CAASTRO

The University of Western Australia (UWA)

Brazil

Laboratorio Interinstitucional de e-Astronomia (LIneA)

Laboratorio Nacional de Astrofisica (LNA)

Rede Nacional de Ensino e Pesquisa (RNP)

Academic Network at Sao Paulo (ANSP)

Americas Pathways (AMPATH)

Canada

University of Toronto (UofT)

Canary Islands

Instituto de Astrofisica de Canarias (IAC)

China

LSST-China Consortium

Croatia

Ruđer Bošković Institute (RBI)

France

IN2P3

Germany

Ludwig-Maximilians-Universität (LMU)

Max Planck Institute for Astrophysics (MPA)

Max Planck Institute for Astronomy (MPIA)

Hungary

Eotvos Lorand University (ELTE)

Konkoly Observatory

India

IUCAA

Korea

Korea Astronomy and Space Science Institute (KASI)

New Zealand

University of Auckland (UOA)

Serbia

Nano Center

South Africa

The National Research Foundation (NRF)

Switzerland

ETH Zurich

Taiwan

Academia Sinica

United Kingdom

STFC - UK LSST Consortium

Science Collaborations

Active Galactic Nuclei

Niel Brandt(Penn State)

Solar System

David Trilling (Northern Arizona U) & Lynne Jones (U Washington)

Galaxies:

Michael Cooper(UC Irvine) & Brant Robertson (UCSC)

Transients/Variable Stars

Ashish Mahabal(Caltech) & Federica Bianco (NYU)

Large-scale structure

Eric Gawiser(Rutgers) & Shirley Ho(CMU)

Stars, Milky Way and Local Volume:

John Bochanski(Rider University), Nitya Kallivayalil(UVA) & John Gizis (U Delaware)

Strong Lensing:

Phil Marshall(KIPAC)

Informatics and Statistics:

Tom Loredo(Cornell) & Chad Schafer(CMU)

Dark Energy (DESC):

Rachel Bean (Cornell); Jeffrey Newman (Pitt)

Why do the LSST Science Collaborations exist?

Collaborations played big role in making the science case for LSST

Now they help lay ground work for making the best use of LSST

Telescope Site

System Requirements

Light bucket (go faint, short exposures)

Agile

Large Field-of-View

Excellent image quality (weak lensing)

Fast Readout

Sophisticated Software (20 TB/night, ~30 trillion measurements)

8.4m mirror (6.7m effective)

5 sec slew+settle

LSST Mirrors Completed

LSST Mirrors Completed

Michelle B. Larson @AdlerPrez - Jan 10 It's a good day when you need panorama to photo shoot the telescope mirror! #LSST @shaka_lulu @marksubbarao

M1/M3 Mirror Completion

LSST Camera

Displaying one LSST image would take 1500 HD TV screens!

A Multicolor View of the Universe

CCD Rafts/Field of View

ugrizY Filters

Observing Strategy (For Now)

Main Survey

90% of time

18,000 sq deg to uniform depth over 10 years Visit: two 15 sec consecutive exposures Same pointing revisit within 1 hour

Mini Surveys
10% of time

Continuous 15 sec exposures over ~1 hr/night ~30 selected fields (300 sq deg)

Example simulation: 1.7ppm of the survey

Studying observing strategy with simulations

Large Synoptic Survey Telescope

ls.st/o5k

Science-Driven Optimization of the LSST Observing Strategy

A community white paper about LSST survey strategy ("cadence"), with quantifications via the Metric Analysis Framework. We are drafting some individual science cases, that are either very important, and somehow stress the observing strategy, and descring how we expect them to be sensitive to LSST observing strategy. MAF metric calculations are then being designed and implemented - we started this during the 2015 LSST Observing Strategy Workshop (in Bremerton, WA, August 17-21): these will form the quantitative backbone of the document. You may have heard of the coming "Cadence Wars" - this document represents the Cadence Diplomacy that will allow us, as a community, to avoid, or at least manage, that conflict. We welcome contributions from all around the LSST Science community.

- Read the current draft of the white paper (automatically generated PDF, updated every hour, in principle log file is here)
- Join the conversation about this project at its issues list
- Gauge the project's activity level
- Suggest a new OpSim experiment
- Suggest some interesting commissioning observations

Shortcuts

Computing

The computing cluster at the **LSST Archive** at NCSA will run the processing pipelines.

- Single-user, single-application data center
- Commodity computing clusters.
- Distributed file system for scaling and hierarchical storage
- Local-attached, shared-nothing storage when high bandwidth needed

Archive Site and U.S. Data Access Center NCSA, Champaign, IL

Long Haul Networks to transport data from Chile to the U.S.

- 2x100 Gbps from Summit to La Serena (new fiber)
- 2x40 Gbps for La Serena to Champaign, IL (path diverse, existing fiber)

Base Site and Chilean
Data Access Center

La Serena, Chile

The LSST Science Book contains a wealth of science cases

<u>www.lsst.org/lsst/scibook</u>

LSST System Design
System Performance
Education and Public Outreach
The Solar System
Stellar Populations
Milky Way & Local Volume Structure
The Transient & Variable Universe
Galaxies
Active Galactic Nuclei
Supernovae
Strong Lenses
Large-Scale Structure
Weak Lensing

Cosmological Physics

Data Products

Application Layer -

Generates open, accessible data products with fully documented quality

Processing Cadence Image Category (files) Catalog Category (database)

Source catalog

Alert Category (database)

Nightly

"Level I"

Raw science image Calibrated science image Subtracted science image Noise image Sky image Data quality analysis

(from difference images)
Object catalog
(from difference images)
Orbit catalog
Data quality analysis

Transient alert Moving object alert Data quality analysis

Data Release (Annual)

"Level 2"

Stacked science image Template image Calibration image RGB JPEG Images Data quality analysis

Source catalog
(from calibrated science images)
Object catalog
(optimally measured properties)
Data quality analysis

Alert statistics & summaries Data quality analysis

http://ls.st/dpdd

Data Products

Alerts: I-10 million/night, issued in 60 sec

Orbits for 6 million solar system objects

Catalogs: ~37 billion objects (20B galaxies, 17b Stars); ~7 trillion "sources", ~30 trillion "forced sources"

Deep co-added images

Services/computing resources at Data Access Centers

Software & APIs to enable development of analysis codes

Data Products

Application Layer -

Generates open, accessible data products with fully documented quality

Processing Cadence Image Category (files) Catalog Category (database) Alert Category (database)

Nightly

"Level I"

Data Release

Raw science image Calibrated science image Subtracted science image Noise image Sky image Data quality analysis

Stacked science image Template image Calibration image RGB JPEG Images Data quality analysis Source catalog

(from difference images)

Object catalog

(from difference images)

Orbit catalog

Data quality analysis

Source catalog

(from calibrated science images)

Object catalog

(optimally measured properties)

Data quality analysis

Transient alert Moving object alert Data quality analysis

Alert statistics & summaries Data quality analysis

"Level 2"

(Annual)

What will LSST provide?

Alert generation (60 sec)

Forced photometry (~I day)

automatic on all new sources
on request for limited coordinates

Limited alert subscription/filtering small # of alerts per pointing very basic criteria - no classification

Alert Firehose Support

LSST computing is sized for IOM alerts/night (average), IOk/visit (average), 40k/visit (peak)

Dedicated networking for moving data from Chile to the US

Dedicated image processing clusters

New image differencing pipelines

with improved algorithms

Alert Packets Contain Useful Information

position

flux, size, and shape

light curves in all bands (up to a ~year; stretch: all)

variability characterization (e.g. low-order light-curve moments, probability the object is variable) cut-outs centered on the object (template, difference image)

While LSST doesn't provide classification, it does provide the means to characterize

- Nightly products (real time)
- Aggregate products (data releases)
- Contextual information (neighbors, cross-catalogs)

Classification/Characterization

```
# Keep only never-before-seen events within two
# effective radii of a galaxy. This is for illustration
# only; the exact methods/members/APIs may change.
def filter(alert):
    if len(alert.sources) > 1:
        return False
    nn = alert.diaobject.nearest_neighbors[0]
    if not nn.flags.GALAXY:
        return False
    return nn.dist < 2. * nn.Re</pre>
```

No cross-match or classification Intended for simple user-defined filtering

Sophisticated event brokers/classifiers to be developed by the community

See DPDD: https://ls.st/dpdd

Spectroscopic Follow-up Resources

Multimessenger Co-observing

Multiple wavebands provide SED constraints

e.g. radio (SKA), GW (LIGO), X-ray (LOFT, eROSITA), IR (Euclid)

Multiple potential contexts: Main survey, ToO, Deep Drilling Fields

Logistical issues require forethought

Programmatic: Target Updates

Data access/ information sharing

Large scale collaboration/communication

Synergy between a-LIGO / LSST

LSST field-of-view well-matched to localize LIGO events

Project Timeline

Primera Piedra

Thanks!

