Data Exploration and Preprocessing Template

Dataset variables will be statistically analyzed to identify patterns and outliers, with Python employed for preprocessing tasks like normalization and feature engineering. Data cleaning will address missing values and outliers, ensuring quality for subsequent analysis and modeling, and forming a strong foundation for insights and predictions.

Section	Descrip	otio	n												
	Dimension:														
	949 rows × 39 columns														
	Descriptive statistics:														
Data Overview	S.NO	Age	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	тсн	HDL	Hemoglobin (g/dl)	PCV (%)	RBC (million cells/microliter)	MCV (femtoliters/cell)	Basophil:	Platelet Count (lakhs/mm)	Direct (mg/dl)	Indirect (mg/dl)	
	count 950,000000	950.000000	950.000000	950.000000	591.000000	582.000000	950.000000	920.000000	398.000000	941.000000	901.000000	950.000000	950.000000	895.000000	
	mean 475.500000	50.632632	20.606316	5.158947	197.544839	35.486254	10.263979	33.810000	3.390704	87.651435			4.040737	2.457542	
	std 274.385677	8.808272	7.980664	22.908785	26.694968	7.982057	1.942300	5.751592	0.937089	13.844181	0.712546		2.757443	1.093691	
	min 1.000000 25% 238.250000	32.000000 44.000000	4,000000 15,000000		100.000000	25.000000	4.000000	12.000000	1.000000 2.825000	60.000000			0.800000	0.200000 2.000000	
	25% 238.250000 50% 475.500000	50,000000	20.000000		194.000000	35.000000	9.000000	35,000000	3.500000	78.000000 87.000000			2.700000 3.700000	2.300000	
	75% 712.750000	57.000000	26,000000		210.000000	38.000000	11.500000	38.000000	4.000000	94.000000			4.200000	3.00000	
	max 950.000000	80.000000	45.000000	180.000000	296.000000	81.000000	15.900000	48.000000	5.700000	126.000000		90000.000000	25.000000	6.600000	
Univariate Analysis	plt.title("Loo plt.show()	rural	x='Place(locatio olor='y',size=20 uri	,loc='left')	0	ives)')				Place(location	where the p	atient lives			

Data Preprocessing Code Screenshots

			pd.rea	he Datas d_excel(Codes\Data\HealthCa	reData.xlsx')												
		S.NC	Age	Gender	Place(location where the patient lives)	Duration of alcohol consumption(years)	Quantity of alcohol consumption (quarters/day)	alcohol	Hepatitis B infection	c	Diabetes Result	Blood pressure (mmhg)	Obesity	Family history of cirrhosis/ hereditary	тсн	TG	LDL	HDL Hemogi	obin Po g/dl) (⁹
	0		55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	12.0 40
	1	Ž	55	male	rural	12	2	formula d	negative	negative	YES	138/90	yes	no	205.0	115	120	35.0	9.2 40
Loading Data	2	-	55	male	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2 40
	3	4	55	male	rural	12	2	branded liquor	negative	negative	NO	138/90	no	no	NaN	NaN	NaN	NaN	7.2 40
mig Data	4		55	female	rural	12	2	branded liquor	negative	negative	YES	138/90	no	no	205.0	115	120	35.0	10.2 40

```
df['Tct']-df['Tct'].fillna(df['Tct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct']-df['Nct'].fillna(df['Nct'].mean())
df['Nct'].fillna(df['Nct'].mean())
df['Soncytex'].fillna(df['Nct'].mean())
df['Soncytex'].fillna(df['Soncytex'].fillna(df['Nct'].mean())
df['Soncytex'].fillna(df['Soncytex'].fillna(df['Nct'].mean())
df['Soncytex'].fillna(df['Nct'].mean())
df['Nct'].fillna(df['Nct'].mean())
df['Nct'].fi
Handling Missing Data
                                                                                                                                                                                                               df['A/G Ratio']=df['A/G Ratio'].fillna(df['A/G Ratio'].mode()[0])
                                                                                                                                                                                                                              from sklearn.preprocessing import StandardScaler
                                                                                                                                                                                                                              sc = StandardScaler()
                                                                                                                                                                                                                            x_train = sc.fit_transform(x_train)
#x_test = sc.transform(x_test)
                                                                                                                                                                                                                              x_train
                                                                                                                                                                                                           array([[ 2.44060333, -1.84159498, 1.29329571, ..., 1.08599342, 4.92950302, 6.81450659], [ 0.15458485, 0.50365769, 1.29329571, ..., -0.83331467, -0.20286021, -0.14674577], [-1.44562809, 0.50365769, 1.29329571, ..., 0.49543709, -0.20286021, -0.14674577],
                                                                                                                                                                                                                                            ..., 0.72608947, 0.50365769, -0.76458992, ..., 0.27397846, -0.20286021, -0.14674577], [0.49748762, -1.84159498, -0.76458992, ..., 2.61774893, -0.20286021, -0.14674577], [0.15458485, 0.50365769, -0.76458992, ..., 0.20015892, -0.20286021, -0.14674577]])
Data Transformation
                                                                                                                                                                                                                                                    from sklearn.preprocessing import LabelEncoder
                                                                                                                                                                                                                                                    le = LabelEncoder()
                                                                                                                                                                                                                                                     for column in df.columns:
                                                                                                                                                                                                                                                                      # Check if the column has categorical data
                                                                                                                                                                                                                                                                     if df[column].dtype == 'object':
    # Perform label encoding
                                                                                                                                                                                                                                                                                     df[column] = le.fit_transform(df[column])
```

```
categorical features = df.select dtypes(include=[np.object])
                                                 categorical features.columns
                                             Index(['Gender', 'Place(location where the patient lives)',
                                                      'Type of alcohol consumed', 'Hepatitis B infection',
                                                      'Hepatitis C infection', 'Diabetes Result', 'Blood pressure (mmhg)',
                                                     'Obesity', 'Family history of cirrhosis/ hereditary', 'TG', 'LDL',
                                                     'Total Bilirubin
                                                                           (mg/dl)', 'A/G Ratio',
                                                     'USG Abdomen (diffuse liver or not)', 'Outcome'],
                                                    dtype='object')
                                                 numeric_features = df.select_dtypes(include=[np.number])
Feature Engineering
                                                 numeric_features.columns
                                             Index(['S.NO', 'Age', 'Duration of alcohol consumption(years)',
                                                      'Quantity of alcohol consumption (quarters/day)', 'TCH', 'HDL',
                                                     'Hemoglobin (g/dl)', 'PCV (%)', 'RBC (million cells/microliter)', 'MCV (femtoliters/cell)', 'MCH (picograms/cell)', 'MCHC (grams/deciliter)', 'Total Count', 'Polymorphs (%)',
                                                     'Lymphocytes (%)', 'Monocytes (%)', 'Eosinophils (%)', 'Basophils (%)', 'Platelet Count (lakhs/mm)', 'Direct (mg/dl)',
                                                                      (mg/dl)', 'Total Protein (g/dl)', 'Albumin (g/dl)',
                                                     'Globulin (g/dl)', 'AL.Phosphatase
                                                                                                    (U/L)', 'SGOT/AST
                                                                                                                                  (U/L)',
                                                     'SGPT/ALT (U/L)'],
                                                    dtype='object')
                                                 # Save the cleaned and processed DataFrame to a CSV file
                                                 df.to csv('cleaned data.csv', index=False)
                                                 df.head()
                                               ✓ 0.0s
                                                                                               Quantity of
                                                              Place(location
                                                                                                            Type of alcohol
                                                                                                                              Blood
                                                                          Duration of alcohol
                                                                                                  alcohol
                                                                                                                   Diabetes
                                                  Age Gender
                                                                 where the
                                                                                                                            pressure Obesity
                                                                           consumption(years)
                                                                                             consumption
                                                                                                                     Result
                                                               patient lives)
                                                                                                          consumed
                                                                                                                            (mmhg)
                                                                                            (quarters/day)
Save Processed Data
                                               0 550
                                                                                       12.0
                                                                                                      20
                                                                                                                                 32
                                                                                       12.0
                                                                                                     2.0
                                                                                                                                 32
                                              1 55.0
                                                                                        12.0
                                                                                                      2.0
                                                                                                                                 32
                                                                                                                                         0
                                               2 55.0
                                                                                                                                         0
                                              3 55.0
                                                                                        12.0
                                                                                                     2.0
                                                                                                                                 32
                                                                                        12.0
                                                                                                      2.0
                                                                                                                                         0
                                               4 55.0
```