Dokumentacja Projektowa					
Etap	1				
Grupa	Nicolas Graeb	A POLITECUNIVA			
	Marcin Waszewski	POLITECHNIKA BYDGOSKA Wydział Telekomunikacji, Informatyki i Elektrotechniki			
	Jan Majorkiewicz				
Data	04.04.2024				

1. Założenia

Celem tego etapu jest przygotowanie systemu operacyjnego do realizacji projektu. Na maszynie wirtualnej(lub innym preferowanym rozwiązaniu np. VDI)musi być zainstalowany system operacyjny Ubuntu wraz z narzędziami docker i docker-compose. Ponadto na maszynach wirtualnych musi być dostępne połączenie ssh. W tym etapie należy skonfigurować 4 maszyny.

2. Działanie

Pobieranie dockera:

Po komendzie sudo apt install docker.io:

```
Preparing to unpack .../7–ubuntu–fan_0.12.16_all.deb ...
Unpacking ubuntu–fan (0.12.16) ...
Setting up dnsmasq–base (2.90–0ubuntu0.22.04.1) ...
                                                                                                                           ш
Setting up runc (1.1.7–Oubuntu1~22.04.2) ...
Setting up dns-root-data (2023112702~ubuntu0.22.04.1) ...
                                                                                                           Auto capture keyboard.
Setting up bridge–utils (1.7–1ubuntu3) ...
Setting up pigz (2.6–1) ..
Setting up containerd (1.7.2–Oubuntu1~22.04.1) ...
Created symlink /etc/systemd/system/multi–user.target.wants/containerd.service →
/containerd.service.
Setting up ubuntu–fan (0.12.16) ...
Created symlink /etc/systemd/system/multi–user.target.wants/ubuntu–fan.service →
/ubuntu–fan.service.
Setting up docker.io (24.0.5–0ubuntu1~22.04.1) ...
Adding group `docker' (GID 119) ...
Created symlink /etc/systemd/system/multi–user.target.wants/d<u>ocker.servic</u>e → /li⊧
ker.service.
Created symlink /etc/systemd/system/sockets.target.wants/docker.socket → /lib/sys
socket.
Processing triggers for dbus (1.12.20–2ubuntu4.1) ...
Processing triggers for man–db (2.10.2–1) ...
 Scanning processes...
Scanning linux images...
```

Został zainstalowany pomyślnie:

```
nicolas@nicolasserwer1:~$ docker --version
Docker version 24.0.5, build 24.0.5–Oubuntu1~22.04.1
```

Docker służy do izolacji aplikacji od systemu operacyjnego, co eliminuje konflikty z innymi aplikacjami.

-Pobieranie docker-compose:

```
nicolas@nicolasserwer1:~$ docker–compose ––version
Docker Compose version v2.25.0
```

-Docker-compose służy do łączenia kontenerów oraz zarządzania nimi

-Tworzenie pliku yml, który wyświetli informacje o systemie:

```
GNU nano 6.2

version: '3.8'
services:
system_info:
image: ubuntu
command: ["sh", "-c", "uname -a"]
```

Polecenie "uname -a" wyświetli takie informacje jak: wersja systemu, architektura sprzętu.

Po wpisaniu komendy sudo docker-compose up widać, że działa prawidłowo:

```
Attaching to system_info-1
system_info-1 | Linux 18af2692c80d 5.15.0–100–generic #110–Ubuntu SMP Wed Feb 7 13:27:48 UTC 2024 x
86_64 x86_64 x86_64 GNU/Linux
system_info-1 exited with code 0
nicolas@nicolasserwer1:~$
```

Ustawienie oraz konfiguracja karty sieciowej:

W virtualbox ustawiamy karte sieciowa

Potem klikamy 'narzędzia' i tam wybieramy nasza kartę sieciową

Wpisujemy najpierw tę komendę:

```
nicolas@nicolasserwer1:~$ sudo nano /etc/netplan/00-installer–config.yaml_
```

Następnie ukazuje się nam ten plik:

```
GNU nano 6.2 /etc/netplan/00-installe
# This is the network config written by 'subiquity'
network:
  ethernets:
   enp0s3:
    dhcp4: true
  version: 2
```

Wpisujemy komendę: sudo netplan apply

Potem restartujemy nasza maszynę komendą reboot.

Następnie komenda ip addr show możemy zobaczyć nasz adres ip. I w taki sposób należy skonfigurować każdą z 4 maszyn.

Jak wszystko poszło pomyślnie następnie można przy użyciu komendy ssh się połączyć:

```
nicolas@192.168.56.101's password:
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0–100–generic x86_64)
 * Documentation: https://help.ubuntu.com
 * Management:
                   https://landscape.canonical.com
 * Support:
                   https://ubuntu.com/pro
  System information as of Mon Mar 18 05:39:30 PM UTC 2024
 System load: 0.02685546875
Usage of /: 43.9% of 11.21GB
Memory usage: 11%
                                                               121
                                    Processes:
                                    Users logged in:
                                    IPv4 address for enp0s3: 192.168.56.101
  Swap usage: 0%
Expanded Security Maintenance for Applications is not enabled.
11 updates can be applied immediately.
To see these additional updates run: apt list ––upgradable
Enable ESM Apps to receive additional future security updates.
See https://ubuntu.com/esm or run: sudo pro status
Last login: Mon Mar 18 17:37:26 2024
nicolas@nicolasserwer1:~$ _
```

3. Problemy, bugi, TODO's

Brak uwag

4. Załączniki

. . .

5. Tabela punktowa

Nicolas Graeb	Marcin Waszewski	Jan Majorkiewicz	SUMA
3	3	2	8