is any isotropic vector, since $y \in U_1^{\perp}$, by a previous remark, $y \in U_1$, so $y \in D \cap U_1$. But, $D \subseteq N$ with $N \cap (S_1 + S_2) = (0)$, and $D \cap (U + W) = (0)$, so $D \cap (U + S_1) = D \cap U_1 = (0)$, which yields y = 0. The statements about dimensions are easily obtained.

Finally, Theorem 29.33 yields the strong form of the Witt decomposition in which W is anistropic. Given any matrix $A \in M_n(K)$, we say that A is definite if $x^{\top}Ax \neq 0$ for all $x \in K^n$.

Theorem 29.34. Let φ be an ϵ -Hermitian form on E which is nondegenerate and satisfies property (T).

- (1) Any two totally isotropic maximal spaces of finite dimension have the same dimension.
- (2) For any totally isotropic maximal subspace U of finite dimension $r \geq 1$, there is another totally isotropic maximal subspace U' of dimension r such that $U \cap U' = (0)$, and $U \oplus U'$ is nondegenerate. Furthermore, if $D = (U \oplus U')^{\perp}$, then (U, U', D) is a Witt decomposition of E; that is, there are no nonzero isotropic vectors in D (D is anisotropic).
- (3) If E has finite dimension $n \ge 1$ and there is some nonzero isotropic vector for φ (E is not anisotropic), then E has a nontrivial Witt decomposition (U, U', D) as in (2). There is a basis of E such that
 - (a) if φ is alternating ($\epsilon = -1$ and $\lambda = \overline{\lambda}$ for all $\lambda \in K$), then n = 2m and φ is represented by a matrix of the form

$$\begin{pmatrix} 0 & I_m \\ -I_m & 0 \end{pmatrix}$$

(b) if φ is symmetric ($\epsilon = +1$ and $\lambda = \overline{\lambda}$ for all $\lambda \in K$), then φ is represented by a matrix of the form

$$\begin{pmatrix} 0 & I_r & 0 \\ I_r & 0 & 0 \\ 0 & 0 & P \end{pmatrix},$$

where either n = 2r and P does not occur, or n > 2r and P is a definite symmetric matrix.

(c) if φ is ϵ -Hermitian (the involutive automorphism $\lambda \mapsto \overline{\lambda}$ is not the identity), then φ is represented by a matrix of the form

$$\begin{pmatrix} 0 & I_r & 0 \\ \epsilon I_r & 0 & 0 \\ 0 & 0 & P \end{pmatrix},$$

where either n=2r and P does not occur, or n>2r and P is a definite matrix such that $P^*=\epsilon P$.