Progress Report

Mon 10 Apr

Radioactive Element Detection

Develop a data-driven approach to detect the radioactive elements

Metode

- ± 8 elements
- each element:

129 23 3 0 8 10 0
3 0 8 10 0
0 8 10 0
8 10 0 1
10 0 1
0
1
0
0
1
7
1
0
-

- EDA
- Data Labelling
- Data cleaning: baseline removing
- Transforming data

- Extract features
 - spectral analysis
 - o peak counts?
 - o pulse shape?
 - time-dependent count rate?

- Decision tree classifier
- Random forest classifier
- and more...

Metode (2)

→ Model Training → Model Evaluation → Deployment

- Split data
 - 80% Training
 - 20% Testing
- Train w/ ML models
- Cross-validation?

- accuracy: ±0.66
- precision
- recall
- F1-score

test using new data

```
import pandas as pd

# Load the new data
new_data = pd.read_csv("CS137 d.csv")

import numpy as np

# assume the new data is stored in a dataframe called `new_data' counts = new_data['Cacahan'].values.reshape(-1, 1)
counts = scaler.transform(np.hstack([counts, np.zeros((counts.s) # now we can use the model to make predictions
predictions = rf.predict(counts)
predictions

from scipy.stats import mode

# get the most frequent prediction from the output array
prediction = mode(predictions)[0][0]

print(prediction)
```