PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-171567

(43)Date of publication of application: 30.06.1997

(51)Int.Cl.

G06T 13/00 G06T 17/40

G06T 3/00

(21)Application number: 07-330899

(71)Applicant: SEGA ENTERP LTD

(22)Date of filing:

19.12.1995

(72)Inventor: TAKANO TAKESHI

(54) SYSTEM AND METHOD FOR GENERATING PICTURE AND DEVICE AND METHOD FOR REPRODUCING PICTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce labor for generating a picture in an absolute coordinate system and also to reduce the number of polygons while smoothly displaying a curved surface.

SOLUTION: A system is provided with an instruction input means 3a capable of inputting the instruction of an operator, an execution editing means 3b executing the editing and generation of the picture in a view-point coordinate system based on instruction contents and a transforming means 3c transforming the picture expressed by the view-point coordinate system into the picture of the absolute coordinate system, etc. Besides, a curvature calculating means 3e calculating the curvature of a course provided in the absolute coordinate system and a control means 3g deciding the length of the polygon in accordance with the course curvature are provided so that the number of polygons are reduced while smoothly displaying a course curved part.

LEGAL STATUS

[Date of request for examination]

04.11.1997

[Date of sending the examiner's decision of rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3136975

[Date of registration]

08.12.2000

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-171567

(43)公開日 平成9年(1997)6月30日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ	•		技術表示箇所
G06T	13/00			G06F	15/62	340	
	17/40					350K	
	3/00				15/66	3 4 0	

		審查請求	未蘭求 蘭求項の数16 OL (全 23 頁)
(21)出願番号	特顧平7-330899	(71)出顧人	000132471
•			株式会社セガ・エンタープライゼス
(22)出顧日	平成7年(1995)12月19日		東京都大田区羽田1丁目2番12号
		(72)発明者	高野 豪
	•		東京都大田区羽田1丁目2番12号 株式会
			社セガ・エンタープライゼス内
		(74)代理人	弁理士 稲葉 良幸 (外2名)
			•

(54) 【発明の名称】 画像作成システム、画像作成方法、画像再生装置、および画像再生方法

(57)【要約】

【課題】 絶対座標系上における画像作成の労力を軽減 するとともに、曲面を滑らかに表示しながらポリゴン数 を削減する。

【解決手段】 オペレータの指示を入力可能な指示入力 手段3a、指示内容に基づき視点座標系上の画像に対し て編集および作成を行う実行編集手段3b、視点座標系 で表された画像を絶対座標系の画像に変換する変換手段 3 c 等を設ける。絶対座標系上に設けられたコースの曲 率を算出する曲率算出手段3 e 、コースの曲率に応じて ポリゴンの長さを決定する制御手段3gを設けることに よって、コース湾曲部を滑らかに表示しながらポリゴン 数を削減する。

1

【特許請求の範囲】

【請求項1】 画像作成の指示を入力可能な指示入力手

指示入力手段に入力された指示に従い、視点座標で表さ れた画像を編集する編集手段と、

視点座標系上の上記画像を表示する表示手段と、

視点座標系上の上記画像を絶対座標系上の画像に変換す る座標変換手段とを備えた画像作成システム。

【請求項2】 上記視点座標系の原点は、上記絶対座標 系上の予め定められた軌道上を移動可能である請求項 1 10 記載の画像作成システム。

【請求項3】 上記編集手段は、所定形状の平面画像を 掃引することによって立体画像を生成可能な請求項1記 載の画像作成システム。

【請求項4】 上記絶対座標系上の画像は、背景画像、 当該背景画像中の静止物体、および、当該背景画像中を 移動可能なキャラクタを含む請求項1乃至請求項3のい ずれかに記載の画像作成システム。

【請求項5】 上記指示入力手段には、上記キャラクタ の動作内容を指示入力可能であるとともに、

上記編集手段は、指示入力された動作内容を表すデータ

上記表示手段は、指示入力された動作内容に従い上記キ ャラクタを動作させる請求項4記載の画像作成システ

【請求項6】 予め定められた軌道に沿ってポリゴンを 発生させるポリゴン発生手段と、

上記軌道のうち、予め定められた湾曲よりも急な湾曲の 部分については、ポリゴンを上記長手方向に亘って分割 するように上記ポリゴン発生手段を制御する制御手段を 30 置手段とを備えた画像再生装置。 備えた画像作成システム。

【請求項7】 予め定められた軌道に沿ってポリゴンを 発生させるポリゴン発生手段と、

上記軌道の曲率を算出する曲率算出手段と、

上記軌道のうち、曲率の累積値が所定値を超えた部分に ついては、上記軌道の長手方向に亘ってポリゴンを分割 するように上記ポリゴン発生手段を制御する制御手段と を備えた画像作成システム。

【請求項8】 上記制御手段は、上記軌道の長手方向の ポリゴンの長さが予め定められた最大長よりも短くなる 40 を配置する画像再生方法。 ようにポリゴン発生手段を制御する請求項6または請求 項7のいずれかに記載の画像作成システム。

【請求項9】 画像作成の指示を入力可能な指示入力手 段と、

指示入力手段に入力された指示に従い、視点座標で表さ れた画像を編集する編集手段と、

視点座標系上の上記画像を絶対座標系上の画像に変換す る座標変換手段と、上記絶対座標系上の予め定められた 軌道に沿ってポリゴンを発生させるポリゴン発生手段

上記軌道の曲率を算出する曲率算出手段と、

上記軌道のうち、曲率の累積値が所定値を超えた部分に ついては、ボリゴンを上記軌道の長手方向に亘って分割 するように上記ポリゴン発生手段を制御する制御手段

視点座標系上の上記画像、および、上記ポリゴンによっ て構成された画像を表示する表示手段とを備えた画像作 成システム。

【請求項10】 画像作成を指示し、

当該指示に従い、視点座標で表された画像を編集し、 視点座標系上の上記画像を表示し、

視点座標系上の上記画像を絶対座標系上の画像に変換す る画像作成方法。

【請求項11】 上記視点座標系の原点は、上記絶対座 標系上の予め定められた軌道上を移動可能である請求項 10記載の画像作成方法。

【請求項12】 予め定められた軌道を長手方向に亘っ て仮想的に区分するとともに、各区分の曲率を順に算出 し、

20 算出された曲率の累計が所定値を超えた場合には、新た なポリゴンを生成し、

当該累計が所定値を超えない場合であっても、予め定め られた数の区分に亘って一つのポリゴンが生成された場 合には、新たなポリゴンを生成する画像作成方法。

【請求項13】 第1画像上に第2画像を重ねた画像を 再生可能な画像再生装置であって、

第1画像および第2画像を記憶可能な記憶手段と、

第1画像上に配置可能な第2画像の数を算出し、当該算 出結果に従い、第1画像上に第2画像を配置する画像配

【請求項14】 上記画像配置手段は、第1画像の全長 の値を第2画像の全長の値で割った結果得られた商を、 第1画像上に配置可能な第2画像の数とする請求項13 記載の画像再生装置。

【請求項15】 上記第1画像は建築物を表し、上記第 2画像は窓を表す請求項13または請求項14のいずれ かに記載の画像再生装置。

【請求項16】 第1画像上に配置可能な第2画像の数 を算出し、当該算出結果に従い、第1画像上に第2画像

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、画像作成システ ム、画像作成方法、画像再生装置、および画像再生方法 に関し、詳しくは3次元画像モデルを作成する画像作成 システム、画像作成方法、画像再生装置、および画像再 生方法に関する。

[0002]

【従来の技術】コンピュータ技術の進歩に伴い、3次元 50 グラフィックス技術を用いたビデオゲーム機が使用され

るようになってきた。このようなビデオゲーム機におい ては、ゲームの背景画像は3次元座標系のポリゴンデー タとして表現され、所定の視点座標から見た背景画像が 2次元座標データとしてディスプレイ上に表示される。 そして、ゲームの進行に伴い、この視点座標は移動し、 順次異なった角度から捉えた背景画像がディスプレイ上 に表示される。すなわち、絶対座標で表されたポリゴン データは、3次元の視点座標系へと座標変換された後、 さらに2次元のスクリーン座標系へと透視変換される。 そして、スクリーン座標系上の2次元画像に対してクリ ッピングおよびテクスチャマッピングが行われた後、こ の画像がディスプレイに表示される。

【0003】例えば、森林の中に設けられたコース上を 車両が走行しながらエネミー(敵)を打ち落とすゲーム においては、森林は絶対座標系におけるポリゴンデータ として表現され、との絶対座標系における車両の位置に 視点座標が設定される。そして、車両の走行とともに、 視点座標は移動し、車両(視点座標)から見た森林がデ ィスプレイ上に表示される。また、車両がコースの所定 位置を通過すると、コース両脇には複数のエネミーが出 現する。とれらのエネミーは、ビデオゲーム機に備え付 けられたジョイスティックの操作によって打ち落とすこ とができる。

【0004】上述の背景データを作成可能なシステムと して、ワークステーション等からなる画像作成システム が従来より用いられている。背景画像を絶対座標系で表 された背景データを作成する処理はいわゆるモデリング と呼ばれているものであって、以下の手順によって行わ れる。まず、図12に示すように、背景のマップ全体、 例えば森林全体は複数のセクタに区切られる。そして、 コースを含むセクタについて、絶対座標系のポリゴンデ ータが作成される。背景のマップのうちディスプレイに 表示される部分は、視点座標の位置する車両の通過する 部分、すなわち、コースが敷かれたセクタのみである。 したがって、コースが敷かれたセクタをポリゴンデータ として作成すれば良い。このようにして作成されたポリ ゴンデータは背景データとしてビデオゲーム機内のメモ リに蓄えられる。

【0005】また、コースの湾曲部分を滑らかに表示す るために、コースを表すポリゴンは、図15の(A)に 40 示されるように、その進行方向に亘って所定距離毎に分 割されている。ポリゴンの分割密度は、カーブが最もき つい湾曲部分1501の曲率によって決定され、曲率が 大きい程ポリゴン密度は大きくなる(ポリゴン数は多く なる)。また、ポリゴンの分割密度は、コースの進行方 向に亘って均一であり、曲率が大きな湾曲部を有するコ ース全体のポリゴン数は極めて多くなる。

【0006】さらに、ゲームの臨場感を高めるために は、背景中に建物等の物体を複数種類用意することが望 ましい。例えば、窓を有する建物を背景中に表示する場 50 ゲーム機のメモリを浪費せざるを得なかった。

合には、窓が配置された建物を表すポリゴンおよびテク スチャを、表示に必要な種類だけ用意する必要があっ tc.

[0007]

【発明が解決しようとする課題】しかしながら従来の画 像作成システムおよび画像再生装置は以下の課題を抱え ていた。

【0008】第1に、3次元画像の作成処理(モデリン グ) に多大の時間および労力を必要としていた。上述し 10 たように、モデリングによって作成しようとする背景デ ータは絶対座標系によって表現されている。ところが、 ディスプレイ上に表示される画像は、背景データを視点 座標系に変換した後に、さらにスクリーン座標系に透視 変換したものである。したがって、所望の背景データが 作成されたか否かを確認するためには、絶対座標系で表 された背景データに対して座標変換を行い、座標変換後 の背景データをディスプレイに表示しなければならな い。すなわち、従来の画像作成システムにあっては、モ デリングが行われる座標系とディスプレイに表示される 座標系とは異なるため、モデリングおよび表示確認作業 20 を同時に行うことができなかった。従って、試行錯誤を 繰り返しながらモデリング処理を行わざるを得ず、多大 の時間および労力を必要としていた。

【0009】また、コースの両脇に木を配置したような 場合において、コースの位置を変更した場合には木の位 置も同様に変更しなければならない。ところが、木の位 置を表すデータはコースの位置を表すデータとは別個に 管理されていたため、それぞれの位置の変更作業を別個 に行わなければならず、煩雑な処理を必要としていた。 【0010】第2に、曲面を滑らかに表示しながらポリ ゴン数を削減することができなかった。例えば、コース 等の湾曲部分を滑らかに表示するためには、ポリゴンを 細かく分割しなけらばならない。ところが、ポリゴンを 細かく分割すると、ポリゴン数が増大し、ビデオゲーム 機のプロセッサに過度の負担がかかる。この結果、処理 速度が低下するという問題が生じる。また、同時に表示 し得るポリゴン数が制限されている場合には、コースを 表示するために多くのポリゴンが費やされるため、キャ ラクタを構成するポリゴンの一部が欠落するという不都 合が生じていた。

【0011】第3に、ゲーム機等の画像再生装置のメモ リを有効に使用することができなかった。従来のゲーム 機は、予め窓が配置された建物全体のポリゴンおよびテ クスチャをメモリ内に有していた。このため、窓のみが 他と相違する建物を表示する場合であっても、この窓を 含む建物全体のポリゴンおよびテクスチャをゲーム機の メモリ内に用意する必要があった。したがって、種々の 建物を背景中に表示しようとした場合には、これらの建 物の全てを表すポリゴンおよびテクスチャを必要とし、

10

【0012】本発明は、以上の課題に鑑みてなされたも のであり、本発明の第1の目的は、画像作成を容易に行 うことが可能な画像作成システムおよび画像作成方法を 提供することにある。また、本発明の第2の目的は、ポ リゴン数を削減可能な画像作成システムおよび画像作成 方法を提供することにある。さらに、本発明の第3の目 的はメモリを有効利用可能な画像再生装置および画像再 生方法を提供することにある。

[0013]

【課題を解決するための手段】請求項1記載の発明は、 上記第1の課題を解決するためのものであって、画像作 成の指示を入力可能な指示入力手段と、指示入力手段に 入力された指示に従い、視点座標で表された画像を編集 する編集手段と、視点座標系上の上記画像を表示する表 示手段と、視点座標系上の上記画像を絶対座標系上の画 像に変換する座標変換手段とを備えた画像作成システム である。

【0014】請求項2記載の発明は、上記第1の課題を 解決するためのものであって、上記視点座標系の原点 は、上記絶対座標系上の予め定められた軌道上を移動可 20 能である請求項1記載の画像作成システムである。

【0015】請求項3記載の発明は、上記第1の課題を 解決するためのものであって、上記編集手段は、所定形 状の平面画像を掃引することによって立体画像を生成可 能な請求項1記載の画像作成システムである。

【0016】請求項4記載の発明は、上記第1の課題を 解決するためのものであって、上記絶対座標系上の画像 は、背景画像、当該背景画像中の静止物体、および、当 該背景画像中を移動可能なキャラクタを含む請求項1乃 至請求項3のいずれかに記載の画像作成システムであ

【0017】請求項5記載の発明は、上記第1の課題を 解決するためのものであって、上記指示入力手段には、 上記キャラクタの動作内容を指示入力可能であるととも に、上記編集手段は、指示入力された動作内容を表すデ ータを生成し、上記表示手段は、指示入力された動作内 容に従い上記キャラクタを動作させる請求項4記載の画 像作成システムである。

【0018】請求項6記載の発明は、上記第2の課題を 解決するためのものであって、予め定められた軌道に沿 40 ってポリゴンを発生させるポリゴン発生手段と、上記軌 道のうち、予め定められた湾曲よりも急な湾曲の部分に ついては、ポリゴンを上記長手方向に亘って分割するよ うに上記ポリゴン発生手段を制御する制御手段を備えた 画像作成システムである。

【0019】請求項7記載の発明は、上記第2の課題を 解決するためのものであって、予め定められた軌道に沿 ってポリゴンを発生させるポリゴン発生手段と、上記軌 道の曲率を算出する曲率算出手段と、上記軌道のうち、 曲率の累積値が所定値を超えた部分については、上記軌 50 第1画像の全長を第2画像の全長で割った結果得られた

道の長手方向に亘ってポリゴンを分割するように上記ポ リゴン発生手段を制御する制御手段とを備えた画像作成

システムである。 【0020】請求項8記載の発明は、上記第2の課題を

解決するためのものであって、上記制御手段は、上記軌 道の長手方向のポリゴンの長さが予め定められた最大長 よりも短くなるようにポリゴン発生手段を制御する請求 項6または請求項7のいずれかに記載の画像作成システ ムである。。

【0021】請求項9記載の発明は、上記第1および第 2の課題を解決するためのものであって、画像作成の指 示を入力可能な指示入力手段と、指示入力手段に入力さ れた指示に従い、視点座標で表された画像を編集する編 集手段と、視点座標系上の上記画像を絶対座標系上の画 像に変換する座標変換手段と、上記絶対座標系上の予め 定められた軌道に沿ってポリゴンを発生させるポリゴン 発生手段と、上記軌道の曲率を算出する曲率算出手段 と、上記軌道のうち、曲率の累積値が所定値を超えた部 分については、ポリゴンを上記軌道の長手方向に亘って 分割するように上記ポリゴン発生手段を制御する制御手 段と、視点座標系上の上記画像、および、上記ポリゴン によって構成された画像を表示する表示手段とを備えた 画像作成システムである。

【0022】請求項10記載の発明は、上記第1の課題 を解決するためのものであって、画像作成を指示し、当 該指示に従い、視点座標で表された画像を編集し、視点 座標系上の上記画像を表示し、視点座標系上の上記画像 を絶対座標系上の画像に変換する画像作成方法である。 【0023】請求項11記載の発明は、上記第1の課題 30 を解決するためのものであって、上記視点座標系の原点 は、上記絶対座標系上の予め定められた軌道上を移動可 能である請求項10記載の画像作成方法である。

【0024】請求項12記載の発明は、上記第2の課題 を解決するためのものであって、予め定められた軌道を 長手方向に亘って仮想的に区分するとともに、各区分の 曲率を順に算出し、算出された曲率の累計が所定値を超 えた場合には、新たなポリゴンを生成し、当該累計が所 定値を超えない場合であっても、予め定められた数の区 分に亘って一つのポリゴンが生成された場合には、新た なポリゴンを生成する画像作成方法である。

【0025】請求項13記載の発明は、上記第3の課題 を解決するためのもので、第1画像上に第2画像を重ね た画像を再生可能な画像再生装置であって、第1画像お よび第2画像を記憶可能な記憶手段と、第1画像上に配 置可能な第2画像の数を算出し、当該算出結果に従い、 第1画像上に第2画像を配置する画像配置手段とを備え た画像再生装置である。

【0026】請求項14記載の発明は、上記第3の課題 を解決するためのものであって、上記画像配置手段は、

商を、第1画像上に配置可能な第2画像の数とする請求 項13記載の画像再生装置である。。

【0027】請求項15記載の発明は、上記第3の課題 を解決するためのものであって、上記第1画像は建築物 を表し、上記第2画像は窓を表す請求項13または請求 項14のいずれかに記載の画像再生装置。

【0028】請求項16記載の発明は、上記第3の課題 を解決するためのものであって、第1画像上に配置可能 な第2画像の数を算出し、当該算出結果に従い、第1画 像上に第2画像を配置する画像再生方法である。

[0029]

【発明の実施の形態】

(画像作成システムの全体構成)図1は本発明の一実施 形態に係る画像作成システムの外観図である。この画像 作成システム1は本体1a、ディスプレイ1b、マウス 1 c、通信系1 dを備えて構成されている。本体1 a は いわゆるワークステーション等によって構成されてお り、3次元画像のモデリング等の種々の処理を行う。デ ィスプレイ1bはいわゆるCRT型のものであって、作 を表示可能である。マウス1 c は、ディスプレイ1 b に 表示されたメニューを指示することによって、所望のコ マンドを本体1 a に入力する機器である。すなわち、ユ ーザはディスプレイ1bの表示を見ながらマウス1cを 操作することによって、対話的にモデリングを行うこと ができる。通信系1 dは、他のワークステーション等と のデータの通信を行うなものである。このように通信系 1 dを設けることによって、モデリングの分散処理を行 うことも可能である。

のブロック図である。との図に示されるように、本体1 aは、CPU1e、RAM1f、ROM1g、ビデオR AM1h、DMA1i、エンコーダ1j、ハードディス ク1k、光磁気ディスク1m、I/F1p、I/F1 t、通信I/Fltを含んでいる。そして、この本体1 aには、ディスプレイ1b、キーボード1n、マウス1 c、ジョイスティックlsが接続されている。

【0031】CPUleは、3次元画像のモデリング、 および、本体la全体の制御処理を実行する回路であ る。RAM1fは、モデリング処理時のワークメモリ、 オペレーティングシステムプログラムのワークメモリ等 として使用される。例えば、ゲームの背景画像を表す座 標データはこのROM1fに一時蓄えられ、この座標デ ータに対して各種座標変換がCPUleにより行われ

【0032】ROM1gには、CPU1eのイニシャル プログラムローダ(IPL)のプログラムデータ等が書 き込まれている。すなわち、本体1aの電源立ち上げ時 には、IPLの処理がCPUleによって実行され、ハ ードディスク1kから所定のオペレーティングシステム 50 は、ディスプレイ1b、ビデオRAM1h、DMA1

プログラムがCPUleによって読み込まれる。 【0033】ビデオRAM1hは、表示データを格納す るためのものである。このビデオRAM1h上の表示デ ータを直接書き換えることによって、ディスプレイ1b 上に表示される画像を変更することができる。DMA (Direct Memory Access) liはビデオRAMlh上の 表示データをエンコーダ1 jへ直接転送することができ る回路である。エンコーダ 1 j は転送された表示データ に同期信号を付加し、ディスプレイlbに出力する。と 10 れにより、ディスプレイ1 b上には、3次元画像の編集 時の画像等が表示される(図7参照)。オペレータは、 ディスプレイ1 b に表示された画面を見ながら3次元画 像の作成を行うことができる。

【0034】ハードディスク1kには、オペレーティン グシステムプログラム、画像作成用プログラム、背景デ ータ等の3次元画像データが書き込まれている。また、 光磁気ディスク1mには、保存用の3次元画像データ等 が保存される。キーボード1nは、3次元画像作成時に おける各種コマンドを本体 1 a に入力するための機器で 成された画像、モデリング処理における各種コマンド等 20 ある。このようなコマンド入力は、上述したマウス1 c を用いて行うことも可能である。また、本体 1 a には 1 **/F1pを介してジョイスティック1sが接続されてい** る。このジョイスティック1sは、例えば、3次元座標 における視点の位置を移動させる場合に使用される。す なわち、オペレータがジョイスティック1sを操作する ことによって、3次元画像に対する視点の位置が移動 し、移動後の視点から見た3次元画像(例えば背景画 像)がディスプレイ1 bに表示される。また、このジョ イスティック1 s は、背景画像上におけるエネミー(敵 【0030】図2は、図1で示された画像作成システム 30 キャラクタ)を設定する際においても使用される。

【0035】通信 I / F 1 t は、通信系 1 d に対してデ ータの送受信を行う回路であり、通信系 1 d の通信方式 に対応した信号の入出力を行うことができる。通信方式 として、イーサネット、RS-232C等のなかから任 意の方式を使用可能である。内部バス1uは、アドレス バス、データバス、および、コントロールバスから構成 され、CPUle、RAMlf、ROMlg等の間で各 種データの受け渡しを行う。

【0036】図3は、画像作成システムを機能ブロック 40 図で表したものである。この図において、指示入力手段 3 a は、キーボード1 n、マウス1 c、ジョイスティッ ク1 s 等によって構成されたものであって、オペレータ の指示を入力可能である。編集手段3 bは、CPU1 e、RAM1f、ROM1gによって構成され、指示入 力手段3 b から入力された指示内容に基づき視点座標系 上の画像(背景データ、物体データ、エネミーデータ) に対して編集および作成を実行可能である。表示手段3 dは、編集手段3bによって作成された画像を2次元デ ィスプレイ上に表示するものである。 との表示手段3 d

i、エンコーダlj等によって実現可能である。座標変 換手段3 cは、CPUle、RAMlf、ROMlgに よって構成され、視点座標で表された画像を絶対座標で 表す機能を備えている。したがって、オペレータは、視 点座標系上において背景画像等を生成することができる ため、ゲーム実行時の画面を想定した画像作成ができ る。これにより、効率の良い画像作成を行うことが可能

【0037】曲率算出手段3e、ポリゴン発生手段3 f、制御手段3gはCPUle、RAMlf、ROMl gによって構成される。曲率算出手段3 e は、絶対座標 系上に設けられたコースの曲率(曲率半径の逆数)を算 出する。制御手段3gはコースの曲率に応じてポリゴン のサイズ(コース長手方向のサイズ)を決定する。との ようにして決定されたポリゴンのサイズに従い、ポリゴ ン発生手段3 f は背景画像および物体のポリゴンを生成 する。すなわち、コースの曲率が大きい(曲率半径が小 さい) 湾曲部分においてはポリゴンは細かく分割され、 コースの曲率が小さい直線部分においてはポリゴンは長 くなる。これにより、コースの湾曲部分をポリゴンによ 20 って滑らかに表現できるとともに、全体のポリゴン数を 削減することが可能となる。

【0038】(ゲーム機の構成)図4に、ゲーム機4の ブロック図を示す。この図に示されたゲーム機4は、画 像作成システムによってそれぞれ作成されたエネミーデ ータ、背景データ、物体データに基づくゲーム画面を再 生可能なものである。

【0039】との図に示されるように、ゲーム機4は、 ゲーム機本体4 a、 3 Dモデルデータ4 b、プログラム データ4c、RAM4d、ジョイスティック4e、I/ 30 F4f、CPU4g、座標変換回路4h、エネミー発生 回路4i、サウンド回路4j、ポリゴン回路4k、テク スチャマッピング4m、フレームバッファ4m、スピー カ4 s、ディスプレイ4 tを備えて構成されている。

【0040】画像作成システム1の本体1aからは、エ ネミーデータ、背景データ、物体データが、例えばRO Mボードの形態としてゲーム機器本体4aに供給され る。ここで物体データは、森林中の木のように、背景画 像中の物体を表すデータである。エネミーデータ、背景 データ、物体データはゲーム機本体4 a 内部において、 3 Dモデルデータ4 bとして保存される。プログラムデ ータ4cは、ゲームプログラム等のアプリケーションプ ログラムである。このプログラムデータ4cは、上述の ROMボードによって供給される。RAM4dは、CP U4gのワークメモリとして使用される。

【0041】ジョイスティック4 eは I / F 4 f を介し て内部バス4uに接続されている。このジョイスティッ ク4 eは、ディスプレイ4 t上に表示された照準を移動 させるために使用される。例えば、プレイヤーがジョイ

する。そして、プレイヤーが発射スイッチ(未図示)を

押圧すると、ディスプレイ4 t 上のエネミーは打ち落と される。

10

【0042】CPU4gは、プログラムデータ4cに従 いゲーム処理を実行するとともに、ゲーム機本体4 a 全 体の制御を行う。エネミー発生回路4iは、エネミーを 所定のタイミングで発生させる回路である。後述するよ うに、エネミーデータは、コースの位置に対応して設定 されている。したがって、視点がコースの所定位置を通 10 過する毎に、エネミー発生回路によって3 Dモデルデー タ4 bからエネミーデータが読み出される。

【0043】座標変換回路4hは、背景データ、物体デ ータ、および、エネミー発生回路4 i によって読み出さ れたエネミーデータに対する座標変換を行う。すなわ ち、3次元座標系である絶対座標系でそれぞれ表された 背景データ、物体データ、エネミーデータを視点座標系 のデータに変換する。絶対座標系から視点座標系への変 換は、視点が原点となり、かつ、視線がZ軸の正方向を 向くように、背景データ等の座標を変換する(図8参 照)。座標変換にはアフィン変換が用いられる。さら に、座標変換回路4hは、視点座標系で表された背景デ ータ等を、2次元座標系であるスクリーン座標系に投影 する(図9参照)。

【0044】ポリゴン回路4kは、スクリーン座標系に 投影された背景データ等に基づき、ポリゴンを発生させ る。テクスチャマッピング4mの回路は、ポリゴンにテ クスチャマッピングの処理を施し、例えば木を表すポリ ゴンに葉を表す模様を付す。このようにして生成された 映像データはフレームバッファ4nに蓄えられた後、垂 直同期に同期して読み出される。読み出された映像デー タはD/A変換された後、同期信号が付されてディスプ レイ4 t に出力される。サウンド回路4 j は、ゲームに 応じた効果音を発生させる回路である。すなわち、サウ ンド回路4jは、PCM方式あるいはFM方式に従い音 声信号を生成し、この音声信号をスピーカ4aに出力す る。

【0045】とのゲーム機4のディスプレイ4tに表示 されるゲーム画面の一例を図5、図6に示す。これらの 図に示されるように、背景となる森林、平原上にはコー スレール5aが敷かれており、このコースレール5a上 をキャラクタ5 bを乗せたトロッコ5 cが滑走する。コ ースレール5a脇の予め定められた位置においてエネミ ー5dが出現し、キャラクタ5bに対して攻撃を仕掛け てくる。画面上には標的5eが表示され、この標的5e はプレイヤーがジョイスティック4cを操作することに よって移動可能である。標的5 eがエネミー5 dに重な り合った際に、プレイヤーがジョイスティック4 cの近 傍の発射スイッチを押したとする。すると、エネミー5 dは倒れ、所定の得点がゲーム得点に加算される。この スティック4tを操作し、照準をエネミーに合わせたと 50 エネミー5dの動作はエネミーデータとして画像作成シ

ステムから供給されたものである。また、ゲーム画面中 の背景、物体等の画像は背景データ、物体データとして 画像作成システムから供給されたものである。

【0046】(画像作成システムにおける座標変換)図7に、画像作成システムにおける表示画面の一例を示す。との表示画面は、背景画像等が表示されるウィンドウ7a、時間経過に伴う視点の移動を制御するウィンドウ7b、各種コマンド等を入力するウィンドウ7c等によって構成されている。オペレータはウィンドウ7cをマウスカーソルによってクリックすると、背景画像の所望のコース位置をウィンドウ7a上に表示することができる。ウィンドウ7bにおける"PLAY"がクリックされた場合には、所定速度で移動する視点から見たコースが表示される。

【0047】すなわち、ウィンドウ7aに表示されたコースは時間とともに変化する。また、"FORWARD"がクリックされた場合には、"PLAY"時における速度よりも高速に視点がコース上を移動し、"REVERSE"がクリックされた場合には視点は逆方向に移動する。さらに、"STOP"がクリックされた場合には、視点はコースの所定位置において停止し、当該位置におけるコースがウィンドウ7aに表示される。このように、オペレータは所望のコース位置をウィンドウ7a上に表示しながら、コース等を含む背景画像を生成および編集することが可能である。

【0048】上記ウィンドウ7aに表示された背景画像は視点座標系上の背景データによって表されており、視点座標系上において背景データの生成および編集が行われる。完成された背景データは、CPUleによって絶対座標系の背景データに座標変換され、ハードディスク1kに蓄えられる。このように、視点座標系上の背景データに対して編集等を行うことによって、ゲーム実行時にディスプレイ4t(図4)に表示された画像を想定しながら背景画像を生成することが可能となる。

【0049】図8に絶対座標系および視点座標系の関係を示す。この図において、絶対座標系はX,Y,Z軸によって表され、視点座標系はx,y,z軸によって表されている。視点座標系の原点O,は視点に相当し、視点座標系のz軸の正方向は視線に一致しているため、視点の移動に伴い絶対座標系上における原点O,の位置が移動し、視線の変化に伴い絶対座標系のX,Y,Z軸に対するx,y,z軸の角度が変化する。

【0050】視点座標系における点Pの座標を(x,,y,,z,)とおくと、絶対座標系における点Pの座標(X,,Y,,Z,)は以下の式によって表される。 【0051】[X, Y, Z, 1] = [x, y, z,

ここで、Tはアフィン変換マトリクスを意味し、一般的 には以下の式によって表される。

[0052]

1] T₄T,T,

【数1】

12

【0053】とのマトリクスのうち、係数Tdは平行移動の成分を表し、係数Trは回転移動の成分を表し、係数Tsはスケーリング(拡大縮小)の成分を表している。

【0054】絶対座標系における点Pの座標(X_s 、 Y_s 、 Z_s)から視点座標系における点Pの座標(x_s 、 y_s 、 z_s)を求める場合には、マトリクス T_d 、 T_r 、 T_s を逆マトリクスを用いれば良い。すなわち、絶対座標系における点Pの座標(X_s , Y_s , Z_s)は以下の式によって求められる。

[0055] [x, y, z, 1] = [X, Y, Z, 1] $T_d^{-1}T_r^{-1}T_s^{-1}$

図9、図10に視点座標系からスクリーン座標系への透視変換の概念図を示す。視点座標系において、物体9 a と視点(原点)O.との間にはスクリーン座標系9 bが設けられている。このスクリーン座標系9 bは u v軸によって表された2次元座標系であって、視点座標系の x y 平面に平行な2次元平面より構成されている。視点O.2を中心として物体9 a をスクリーン座標系9 b に投影することによって表示画像9 c が得られる。この表示画像9 c は視点O.2から物体9 a を見た際に得られる画像に相当し、画像作成システム1の上記ウィンドウ7 a またはゲーム機4のディスプレイ4 t に表示される。

【0056】(背景データ、物体データ作成用コマンド)本画像作成システムにおいては、背景データおよび物体データの作成のために種々のコマンドが用意されて50いる。以下に、コマンドの一例を示す。なお、"-"で

始まる文字列は画像作成システムに直接入力可能なコマ ンドを表し、〔〕内は変数を表している。

- [0057]
- (1) Sweeping mode
- s [cross-section file] (2) Sweep & attach bases from ground
- b [cross-section file] [bottom height] [exec t imes from start&end]
- (3) Pillar building mode
- -p [object file] [source height] [bottom heigh] t] [ground height]
- (4) Calculate bank from Y-slope
- c b [bank weight]
- (5) Set start-end offset & step
- -o [start offset] [end offset] [execution(defau lt 0 0 1)]
- (6) Set start-end point number & step by relative -r [offet] [start point No.] [end point No.] [s tep]
- (7) Set total texture coordination range
- u v [U-range] [V-range]
- (8) Set texture coordination step
- -UV [U-step] [V-step]
- (9) Auto mapping mode
- -am [U-scale] [V-scale]
- (10) Set tex coordination offset
- t o [U-offset] [V-offset]
- (11) Set rotation weight
- r w [x y z] (default 1.0 1.0 1.0)
- (12) Set scale weight
- -sw [xyz] (default 1.0 1.0 1.0)
- (13) Skip by degree of control curve
- d s [threshold degree] [max skip times]

上記(1)のコマンド (Sweeping mode) はコースの掃引、 すなわち予め定められたコースのある範囲を所定の断面 形状にするためのものである。例えば、コースのある範 囲にトンネルを作成するような場合に(1)のコマンドが 使用される。コースの断面形状は[cross-section file] によって指定可能である。したがって、コース上にトン ネルを作成する場合には、トンネルの断面を表す[cross 40 -sect file]を用意すれば良い。

【0058】上記(2)のコマンド (Sweep & attach base s from ground) は、例えばコース上に橋を作成する場 合等に用いられる。橋の断面形状は[cross-section fil e]によって指定され、地表に対するコースの高さは[bot tom height]によって指定される。また、掃引する範囲 は[exec times from start&end]によって指定される。 絶対座標系上におけるコースの位置のみを予め決定して おくことにより、コース上の位置は時間の関数によって

14

で移動した場合には、コースの位置は視点の移動に要す る時間によって特定することができる。

【0059】上記(3)のコマンド (Pillar building mod e) は、柱、建物等の物体を作成するためのものであ る。(4)のコマンド (Calculate bank from Y-slope) は、コースの傾きを算出する際に使用される。また、 (5)のコマンド (Set start-end offset & step)、(6) のコマンド (Set start-end point number & step by r elative) はコースの範囲を指定するためのものであ

10 る。コースの位置は、[start point No.]、[end point No.] 等の数値によって指定される。

【0060】上記(7)のコマンド(Set total texture c oordination range)、(9)のコマンド (Auto mapping m ode)、および、(10)のコマンド (Set tex coordinatio n offset) はテクスチャマッピングに関するものであ る。例えば、(7)のコマンドは、スクリーン座標系上の 背景画像においてテクスチャマッピングを行う範囲を指 定するためのものである。スクリーン座標系上の座標 は、U軸およびV軸の各座標値によって指定される。

20 【0061】上記(11)のコマンド (Set rotation weigh t)、(12)のコマンド (Set scale weight) は、物体 (例えば木)の傾きおよび大きさを指定する際に使用さ れる。なお、xyzの各座標値を指定しない場合には、 デフォルト値として(1.0 1.0 1.0)が指定される。 【0062】上記(13)のコマンド (Skip by degree of

control curve) は、コースのポリゴン数削減を行うた めのコマンドである。ポリゴン数削減は、コースの曲率 が所定値[threshold degree]を超えた場合に行われる。 なお、変数[max skip times]は、コースの直線部分にお 30 けるポリゴンの最大長を指定するためのものである。と のポリゴン数削減のアルゴリズムについては後述する。 【0063】(エネミーデータ)エネミーデータは、コ ース上におけるエネミーの出現位置データ、コースに対 するエネミーの相対位置データ、エネミー移動速度デー タ、エネミーライフタイムデータ、エネミー移動方向デ ータ等により構成される。画像作成システムのディスプ レイ1 b 上には例えば図14に示されるような画面が表 示され、オペレータはこの画面を見ながらエネミー14 bの出現位置等を指定することが可能である。すなわ ち、オペレータがジョイスティック1 s を操作すること によって画面上のエネミー14 bを所望の位置に移動さ せると、CPUleは画面上のエネミー14bの位置等 に基づきエネミーデータを算出する。このようにして、 オペレータはゲーム画面を見ながらエネミーデータを作 成することができるため、エネミーデータの作成を効率

【0064】(画像作成システムの動作)続いて、画像 作成システムの動作を図1~図21を参照しながら説明 する。

表現可能である。すなわち、視点がコース上を一定速度 50 【0065】(1)画像作成システムの動作の概要

良く行うととが可能である。

10

図16は本画像作成システムの動作の概要を説明するた めのフローチャートである。先ず、オペレータは画像作 成装置を用いて絶対座標系上におけるコースを作成する (S101)。コースは、図11に示されるように、絶 対座標系のXZ平面上における軌道を表しており、ゲー ム中のトロッコ5c (図5、図6)の走行経路となるも のである。すなわち、ゲーム実行中における視点座標系 の原点はコース上を移動する。

【0066】続いて、オペレータは背景データの作成を 行う(S102)。上述したように、背景データはコー ス上から見た背景画像を表すデータであって、例えば、 森、トンネル、橋等を表すデータから構成される。 図7 の画面中のウィンドウ7aには、作成中の背景画像が表 示され、オペレータはこの画面を見ながら所定のコマン ドを指示することによって背景データの作成および編集 を行うことができる。また、オペレータはウィンドウフ aを見ながら、物体画像の配置を行う。ウィンドウ7a 中の矩形の枠は木の物体画像を示しており、この枠をコ ースの所定位置に配置することによって物体画像の位置 等を指定することができる。なお、この枠の大きさおよ び向きは自由に設定可能であり、所望の大きさの木を所 望の位置に配置することができる。このようにして指定 された物体画像の位置等のデータは背景データに含まれ る。

【0067】本実施形態によれば、ウィンドウ7a上に は視点座標系上の背景画像が表示されるため、ゲーム実 行時にディスプレイ4 t に表示されるゲーム画面と同様 の画面を確認しながら背景データの作成を行うことがで きる。СРИ1 еはウィンドウ7 aに表示された背景画 像、すなわち視点座標系上の背景画像を絶対座標系上の 画像へと変換する。

【0068】同様に、オペレータはディスプレイ1bを 見ながら、物体データの生成を行う(S103)。例え ば、木の幹の部分、枝の部分等を複数のポリゴンによっ て表現することによって、木を表す物体データを作成す ることができる。なお、ウィンドウ7 a に木等を表す物 体画像を表示しながら物体データを作成してもよい。作 成された物体データは、ゲーム実行時において背景画像 中の指定された位置に配置される。

【0069】このようにして背景データおよび物体デー タの作成が行われた後、オペレータはウィンドウ7 a を 見ながら作成された背景画像および物体画像を確認する (S104)。ウィンドウ7aに表示された背景画像お よび物体画像は視点座標系上の画像であるため、オペレ ータはゲーム実行時の画面を容易に想定することがで き、画像作成を効率良く行うことができる。

【0070】作成されたコースデータ、背景データ、物 体データを修正する必要があるとオペレータが判断した 場合(S105でNO)には、S101~S105の処 ータ、物体データが作成されたとオペレータが判断した 場合(S105でYES)にはS106以降の処理が実

【0071】S106において、オペレータはエネミー データの作成を行う。オペレータは、図14に示される 画面を見ながらエネミー14bをコース上の所望の位置 に自由に配置することができる。すなわち、オペレータ はジョイスティック1 sを操作しながら、コース上にお けるエネミー14bの位置、向き、出現時間等を表すエ ネミーデータを作成する。ディスプレイ1bに表示され た画面14 aは、視点座標系上の画像、すなわちゲーム 実行時の画像であるため、オペレータはゲーム実行時の 画面を想定しながらエネミーデータを作成することがで きる。かかる処理を繰り返すことによって、所望のエネ ミーデータの作成が完了すると(S107でYES)、 すべての処理が終了する。以上の処理によって作成され たコースデータ、背景データ、物体データ、エネミーデ ータは、ROM等の形態によってゲーム機4(図4参 照)に提供される。

【0072】(2)背景データの作成

図17、図18に、上述の背景データ作成(S102) のサブルーチンを詳述する。オペレータはディスプレイ 1 b に表示された画面(図7)を参照しながら、コース データのファイル名、パラメータ等を画像作成システム 1aに入力する(S201)。すなわち、パラメータ等 として、断面の形状(cross-section file)、絶対座標 系のXZ平面からコースまでの高さ(bottom heigh t) 、コースの範囲 (exec times from start & end)、 トンネルの断面形状を表すパラメータ (cross-section file)、掃引用のパラメータ(Sweeping mode)、建物 作成用のパラメータ (Pillar building mode)、ポリゴ ン発生に関するパラメータ (Set total texture coord ination range, Set texture coordination step, Auto mapping mode, Set tex coordination offset, Set rot ation weight. Set scale weight. Skip by degree of control curve)、およびポリゴン数削減に関するパラ メータ (Skip by degree of control curve) がある。 【0073】例えば、木等の物体をコース上に配置しよ うとする場合には、オペレータはマウス1c、ジョイス ティック1s等を操作することによってウィンドウ7a 上の矩形の枠7 dを所望の位置に移動する。この矩形の 枠7 dは木等の物体画像の外形を表しており、枠7 dを 所望の大きさに拡大または縮小することにより、任意の 大きさの物体を背景画像上に配置するよう、画像作成シ ステムに指示することができる。

【0074】かかる入力処理の後、CPUleは、入力 されたファイル名に対応するコースデータ、背景データ をハードディスク1kから読み出すとともに、コース位 置を表す変数Nを初期化する(S202)。そして、C 理が繰り返される。一方、所望のコースデータ、背景デ 50 PUleは、変数Nが所定範囲のコースの最終位置Nma xに達しか否かを判断する(S203)。このとき、変 数Nは"0"であるため、判断の結果はNOとなり、S 204以降の処理が実行される。

【0075】S204において、CPU1eは、コース 上の変数Nで表された位置における接線および法線を計 算する。これらの接線および法線は、後述の座標変換処 理(S211)において使用される。

【0076】CPUleは、S201において入力され たバラメータに従い、変数Nで表されたコース位置にお ける物体、またはコース断面の複製処理を行う(S20 10 5)。さらに、変数Nで表されたコース位置においてコ ースの土台作成、掃引を行うか否かを判断し、上述のS 201において土台作成、掃引を行うように指示されて いる場合(S206でYES)には、変数Nで表された コース位置における土台のテクスチャ座標、掃引処理後 のコース等のテクスチャ座標を生成する(S207)。 なお、ここでいう「掃引処理」とは、所定形状の断面の 移動軌跡をもとにコース、トンネル等の三次元画像を生 成する処理をいうものとする。

【0077】次に、CPUleは変数Nで表されたコー 20 ス位置における各点の座標を、入力されたパラメータ等 に従い、任意の座標へと変換する(S208)。例え ば、CPUleは、木を表す画像に対して拡大、縮小、 回転等の座標変換を行い、オペレータの指示通りの物体 をコース上に配置する。さらに、変数Nで表されたコー ス位置において、コースの土台、柱等の画像を作成する 必要がある場合(S209でYES)には、コースの土 台、柱等の画像を変形させることによって土台、柱等を 背景上の地面に接地させる(S210)。

【0078】続いて、CPUleは、変数Nで表された 30 コース位置の各点の座標を視点座標系の座標へと変換す る(S211)。また、コースの土台作成、所定断面の 掃引処理を行う必要がある場合(S212でYES)に は、CPUleは、現地点(変数Nで表されたコース位 置)の土台断面および前地点(変数N-1で表されたコ ース位置)の土台断面の間において掃引処理を行う(S 213)。そして、СР U1 e は、この結果得られた三 次元画像である土台等を構成するテクスチャの座標を生 成する(S214)。

【0079】以上の処理の後、CPUleは、変数Nを 40 インクリメントし(S215)、S203の処理に戻 る。このようにして、変数Nがコース最終位置Nmaxに 達するまで、すなわち指定された範囲のコースにおける 処理が終了するまで、上述のS202~S215までの 処理が繰り返し実行される。変数Nがコース最終位置N maxに達すると(S203でYES)、CPU1eはコ ース、物体等を含む背景画像を表示する(S216)。 【0080】なお、上述のパラメータ入力処理(S20 1) において、分割されたコースデータを指定し、他の 分割されたコースデータにリンクさせることが可能であ 50 相当する。CPUleは指定されたコースデータをハー

る。また、既に設計済みのコースデータを編集し、これ を新たなコースデータとして使用することによって、コ ースデータを設計するのに要する労力および時間を軽減 することができる。

【0081】(3)物体データの作成

図19に物体データ作成のサブルーチンを示す。 このサ ブルーチンは上述したメインフローチャート(図16) 中のS103を詳述したものである。

【0082】同図のフローチャートにおいて、オペレー タはキーボード1nを用いて物体データが格納されてい る処理ファイル名を画像作成システムに入力する(S3 01)。すると、CPUleは指示されたファイル名に 対応するファイルをハードディスク1kから読み出す (S302)。続いて、オペレータは、基となる物体 (プリミティブ)を指定する(S303)。例えば、木 を作成しようとする場合には、木の幹に相当する円筒の プリミティブ、枝葉を表す楕円のプリミティブを指定す る。さらに、オペレータはディスプレイ1bを見ながら それぞれのプリミティブを結合させ(S304)、所望 の3次元モデルを作成する(S305)。

【0083】CPUleはこの3次元モデルに基づいて ポリゴンを生成し(S306)、木を複数のポリゴンに よって表現する。また、СРИ1еは、各ポリゴンに対 してテクスチャマッピング (レンダリング) を施すこと によって、木の模様をポリゴンに貼り付ける(S30 7)。このようにして作成された物体データは所定のフ ァイル名が付された後、ハードディスク1kに蓄えられ

【0084】なお、本実施形態にあっては、物体データ 作成時に、建物の各面に配置すべき窓の種類を指定する 窓指定データ、窓を除いた建物のポリゴン、窓のポリゴ ン等を作成することにより、ゲーム実行時において、建 物のポリゴンに最適な個数の窓のポリゴンを自動的に配 置することができる。すなわち、建物のポリゴンに配置 すべき窓のポリゴンの個数および位置を指定しなくと も、ゲーム機において窓のポリゴンの個数および位置が 自動的に算出される。したがって、物体データ作成時に おいては、建物の各面に配置すべき窓の種類を指定する 窓指定データ、窓を除いた建物のポリゴン、窓のポリゴ ン等を作成しておけば足りる。

【0085】(4)エネミーデータの作成 図20にエネミーデータ作成のサブルーチンを示す。と のサブルーチンは上述したメインフローチャート(図1 6) 中のS106を詳述したものであって、背景データ および物体データが作成された後に実行されるものであ る。

【0086】先ず、オペレータは作成済みのコースデー タを画像作成システムに指示する。本実施形態において は、このコースデータは絶対座標系上のレールの軌跡に

る。画像作成装置本体 1 は、算出された曲率 Γ を累積曲 率Rに加算する(S505)。この時点においては、累 積曲率Rはクリアされた直後であるため、加算後の累積 曲率Rの値はrとなる。

20

ドディスク1kから読み出し(S401)、読み出され たコースをディスプレイ1b上に表示する(S40 2)。オペレータがコース上の所望の箇所を画像作成シ ステムに指示すると(S403)、CPU1bは指示さ れた箇所の背景データおよび物体データをハードディス ク1kから読み出し、これらのデータを視点座標系上の データへと座標変換する。座標変換された背景データお よび物体データは図14に示されるようにディスプレイ 1 b 上に表示される。

【0092】次に、画像作成装置本体1は、累積曲率R が下限累積曲率R、よりも小さいか否かを判断する(S 506)。累積曲率Rが下限累積曲率R、よりも小さい 場合(S506でYES)、すなわち、コースの湾曲が ゆるやかである場合には、S507の処理が実行され る。S507において、画像作成装置本体1は、ポリゴ ン長Nが最大連続区間Nmaxより短いか否かを判断し、 判断の結果がYESであれば、ポリゴンを作成すること なく(S508)、ポリゴン長Nの値をインクリメント する(S513)。これに伴い、画像作成装置本体1は コース上における処理座標点を移動させ(S514)、 処理座標点が指定されたコースの終了ポイントであるか 否かを判断する(S515)。処理開始時点において は、処理座標点の位置はコース上における指定された範 囲の開始点に位置しているため、S515の判断結果は

【0087】オペレータはジョイスティック1sを操作 10 することによって、指定されたコースポイント上におけ るエネミー14b(図14参照)の位置および向きを設 定する(S404)。すなわち、オペレータはディスプ レイ1bに表示された背景画像上においてエネミー14 bを所望の位置に移動するとともに、エネミー14bの 向きを設定する。さらに、オペレータは、エネミー14 bの速度を入力するとともに(S405)、移動方向を 入力する(S406)。これらの速度および移動方向 は、エネミー毎に設定可能である。

> 【0093】S504において、画像作成装置本体1 は、コース上の新たな処理座標点における曲率rを算出 する。この曲率rは累積曲率Rに加算され(S50 5)、加算後の累積曲率Rが下限累積曲率R、より小さ いか否かが判断される(S506)。累積曲率Rが下限 累積曲率RLよりも大きい場合、すなわち、コースの湾 曲が急である場合(S506でNO)には、コース上に おける現在の処理対象点の断面を新たに生成し(S51 30 0)、当該処理対象点を中心とした座標系によって、生 成後の断面を表す(S510)。そして、画像作成装置 本体1は、新たに生成された断面と、前回生成された断 面とを結ぶポリゴンを生成する(S511)。すなわ ち、ポリゴン長Nの長さのポリゴンが新たに生成され る。この後、画像作成装置本体1は、累積曲率Rおよび ポリゴン長Nの値をクリアし(S512)、S513以 降の処理を実行する。

し実行される。

【0088】次に、オペレータはエネミー14bが表示 20 NOとなる。したがって、S504以降の処理が繰り返 されている時間を表すライフタイムの入力(S40 7)、エネミー14b出現時における効果音を指示する (S408)。 とのように、オペレータはゲーム実行時 の画面を見ながらエネミーの配置等を設定できるため、 座標データのみによってエネミーを配置する場合に比べ て作業効率を髙めることができる。

【0094】とのようにして、画像作成装置本体1は、

【0089】(5)ポリゴン数削減

コース上における処理座標点を順次移動させながら(S 514)、ポリゴンの生成をするか否かを判断する(S 506、S507)。指定されたコースの終了ポイント まで処理座標点が移動すると(S515でYES)、画 像作成装置本体1は処理を図17のフローチャートに戻 す。

図21にポリゴン削減処理のフローチャートを示す。こ の処理は、上述の背景データ作成処理(図17、図1 8) においてなされるものである。

【0095】以上説明したように、コースの湾曲が急な 場合(S506でNO)には、ポリゴンが細分化される ため、コースの湾曲部を滑らかに表現することができ る。一方、コースの湾曲が緩やかな場合(S506でY ES)には、比較的に長い(最大連続区間N max)ポリ め、曲率 r が大きい程、コースの湾曲は急であると言え 50 ゴンが生成される。したがって、本実施形態に係る画像

【0090】先ず、オペレータは下限累積曲率R、をキ ーボードln等から画像作成装置本体laに入力する (S501)。この下限累積曲率R、は、ポリゴンを作 成するか否かの閾値となるものである。すなわち、コー スの累積曲率Rが曲率R、よりも大きい場合(コースが 急に湾曲している場合)には、コースを構成するポリゴ ンは細分化される。さらにオペレータは1つのポリゴン の最大長を表す最大連続区間数Nmaxをキーボード1n 等から画像作成装置本体1aに入力する(S502)。 コースの曲率が小さい場合(コースが直線であるような 40 場合)であったとしても、ここで指定された最大連続区 間Nmaxを超える長さのポリゴンが生成されることはな い。次に、画像作成装置本体1は、累積曲率R、ポリゴ ン長Nの値をクリアする(S503)。ここで、ポリゴ ン長Nは、生成しようとするポリゴンの長さ(区間数) を表す変数である。

は、コースのうちの処理対象となる地点の曲率 Γ を算出 する。 この曲率 r は曲率半径の逆数によって表されるた

【0091】S504において、画像作成装置本体1

作成システムによれば、コースの湾曲を滑らかに表示し ながらも、コース全体のポリゴン数を削減することが可 能となる(図15の(C)参照)。

【0096】(ゲーム機における動作)本実施形態に係 る画像作成システムによって作成されたエネミーデー タ、背景データ、物体データは、例えばR OMボードの 形態としてゲーム機本体4 a に供給される(図4参 照)。

【0097】以下、図4、図22、図23を参照しなが ら本実施形態に係るゲーム機(画像再生装置)の作用 を、建物および窓の物体データの再生処理を中心に説明

【0098】図23のフローチャートにおいて、先ず、 CPU4gはゲーム機本体4aの初期化を行う(S60 1)。初期化処理としては、RAM4d等のクリア、ゲ ームプログラムを表すプログラムデータ4 cの読み出 し、3Dモデルデータ(エネミーデータ、背景データ、 物体データ)の読み出し等がある。

【0099】垂直同期信号による割り込みが発生すると (S602 TYES), CPU4 g tt S603~S61 1以降の処理を実行する。すなわち、S603~S61 1の処理は垂直同期信号の周期(NTSCであれば1/ 60秒) 毎に実行される。S603において、CPU4 gは、ジョイスティックの状態の検出、エネミーと弾丸 との衝突判定、エネミーの動作決定等のゲーム処理を実 行するとともに(S603)、三次元空間上における視 点座標を算出する(S604)。

【0100】次に、CPU4gは、視点座標から捉えた 画像のうち、建物を表す画像を物体データに基づき生成 する(S605、S606)。S605において、CP 30 U4gは、物体データの一部である、建物の各面毎に配 置すべき窓の種類を表す窓指定データ、建物のポリゴ ン、窓のポリゴンに基づき、建物の各面に貼り付けるべ き窓の個数および位置を算出する。図23に示されるよ うに、建物の壁の幅を"L"、窓の幅を"a"とする と、建物の壁に配置可能な窓の個数は"L/a"の商の 値となる。同図に示された建物の壁には、4個の窓を等 間隔で配置可能である。なお、各窓の間に隙間ができる よう、実際の窓の幅aに隙間の寸法αを加えた値a'

 $(a' = a + \alpha)$ を用いて上式を計算しても良い。 さら 40 に、高層建物の壁に窓を配置する場合には、壁の幅方向 のみならず、壁の高さ方向に配置可能な窓の個数を算出 しても良い。

【0101】そして、CPU4gは、上記窓指定データ によって指定された建物の壁に、S605において算出 された個数の窓のポリゴンを配置する(S606)。と のようにして、ゲーム実行時に、建物の壁に最適な数の 窓のポリゴンが配置される。

【0102】S607において、CPU4gは、背景デ

画像を生成し(S607)、これらの画像および上述の 建物の画像を視点座標系の画像へと座標変換する(S6 08)。この後、CPU4gは各ポリゴンについてZソ ートアルゴリズム等を用いて隠面処理を行うとともに (S609)、各ポリゴンにテクスチャを貼り付ける等 のレンダリング処理を行う。上述の窓のポリゴンには窓 指定データによって指定されたテクスチャが貼り付けら れる。レンダリング処理がなされた画像はフレームバッ ファ4nに蓄えられた後、ディスプレイ4tに表示され 10 る(S611)。この後、CPU4gは、S602に戻 り、1/60秒毎にS603~S611の処理を繰り返 し実行する。

【0103】以上、説明したように、本実施形態に係る ゲーム機においては、窓指定データを用いて壁に貼り付 ける窓の種類を指定することによって、壁に最適な数の 窓が自動的に貼り付けられる。窓および壁のポリゴンが ゲーム機において組み合わせられるため、予め窓が配置 された壁のポリゴンを複数用意する必要がなくなる。し たがって、多くの種類の建物をより少ないデータ数で表 20 現することができ、ゲーム機のメモリを有効に使用する ことが可能となる。なお、窓が配置された建物に限ら ず、他の物体に本実施形態に係るゲーム機を適用すると とができることは言うまでもない。例えば、窓が配置さ れた乗り物(バス等)、建物が配置された街、道路が配 置された街等、所定の画像が規則的に配置された物体の 全てに本実施形態に係るゲーム機を適用することができ る。

【0104】(他の実施形態)本発明は、上述した実施 形態に限定されることなく、本発明の趣旨を逸脱しない 範囲で変更実施可能である。例えば、背景データの生成 とエネミーデータの生成とを別個のハードウェアによっ て行っても良い。これにより、分散処理が可能となり、 複数のオペレータによって作業を行うことにより、短時 間で画像作成を完了することができる。但し、この場合 には、両ハードウェアにおいて共通のコースデータを使 用する必要がある。

[0105]

【発明の効果】本発明によれば以下の効果を得ることが できる。

【0106】第1に、3次元画像の作成処理を短時間か つ容易に行うことが可能となる。上述したように、本発 明にあっては、ディスプレイ上には視点座標系の画像が 表示され、オペレータは対話形式で当該画像の編集を行 うことができる。そして、視点座標系の画像は絶対座標 系の画像に変換され、この画像のデータはゲーム機に供 給される。ゲーム機においては、ゲームの進行に応じて 絶対座標系の画像は視点座標系の画像に変換された後、 ディスプレイに表示される。すなわち、本発明に係る画 像作成システムおよび画像作成方法によれば、ゲーム画 ータ、エネミーデータ、物体データのそれぞれに基づく 50 面表示時における座標系と同一の視点座標系上において

画像を作成することができる。従って、所望の画像が作 成されたか否かの確認のために、作成された画像を視点 座標系の画像に変換した後に表示するというような煩雑 な作業は一切不要となる。

【0107】また、視点座標の原点(視点)が絶対座標 系上の予め定められたコース(軌道)を移動するような 場合には、視点から見える画像のみを作成すれば良いた め、画像データ全体の容量を削減することができる。さ らに、コースの両脇に木の画像を配置するような場合に は、コースに対する画像の相対位置が画像作成システム 10 ングを施す前のコースおよび背景画像を表す図である。 に入力される。よって、コースの位置の変更に伴い、木 の位置も変更されるため、画像作成作業を容易に行うと とができる。

【0108】第2に、曲面を滑らかに表示しながらポリ ゴン数を削減することが可能となる。本発明によれば、 コースの湾曲が急な場合には、ポリゴンが細分化される ため、コースの湾曲部を滑らかに表現することができ る。一方、コースの湾曲が緩やかな場合には、比較的に 長いポリゴンが生成される。したがって、コースの湾曲 を滑らかに表示しながらも、コース全体のポリゴン数を 20 ブルーチンを表すフローチャートである。 削減することが可能となる。

【0109】第3に、ゲーム機等の画像再生装置のメモ リを有効に使用することが可能となる。本発明によれ ば、壁に配置すべき窓の種類を指定することによって、 壁に最適な数の窓が自動的に貼り付けられる。窓および 壁のポリゴンはゲーム機において組み合わせられるた め、予め窓が配置された壁のポリゴンを複数用意する必 要がなくなる。したがって、多くの種類の建物をより少 ないデータ数で表現することができ、ゲーム機のメモリ を有効に使用することが可能となる。

【図面の簡単な説明】

【図1】本発明の一実施形態に係る画像作成システムの 概要図である。

【図2】本発明の一実施形態に係る画像作成装置のブロ ック図である。

【図3】本発明の一実施形態に係る画像作成装置の機能 ブロック図である。

【図4】本発明の一実施形態に係るゲーム機のブロック 図である。

【図5】本発明の一実施形態に係るゲーム画面の一例を 40 表す図である。

【図6】本発明の一実施形態に係るゲーム画面の一例を 表す図である。

【図7】本発明の一実施形態に係る画像作成装置の操作 持における画面を表す図である。

【図8】本発明の一実施形態に係る絶対座標系および視 点座標系を説明するための図である。

【図9】本発明の一実施形態に係る透視変換を説明する ための図である。

【図10】本発明の一実施形態に係るスクリーン座標系 を説明するための図である。

【図11】本発明の一実施形態に係るコースおよび絶対 座標系を表す図である。

【図12】従来の画像作成システムにおけるコースおよ び絶対座標系を表す図である。

【図13】本発明の一実施形態に係るテクスチャマッピ

【図14】本発明の一実施形態に係るコース、背景およ びエネミーを表す図である。

【図15】本発明の一実施形態に係るポリゴン削減アル ゴリズムを説明するための図である。

【図16】本発明の一実施形態に係る画像作成システム の動作の概要を表すフローチャートである。

【図17】本発明の一実施形態に係る背景データ作成サ ブルーチンを表すフローチャートである。

【図18】本発明の一実施形態に係る背景データ作成サ

【図19】本発明の一実施形態に係る物体データ作成サ ブルーチンを表すフローチャートである。

【図20】本発明の一実施形態に係るエネミーデータ作 成サブルーチンを表すフローチャートである。

【図21】本発明の一実施形態に係るポリゴン削減サブ ルーチンを表すフローチャートである。

【図22】本発明の一実施形態に係るゲーム機の作用を 説明するための図である。

【図23】本発明の一実施形態に係るゲーム機の作用を 30 表すフローチャートである。

【符号の説明】

1a 画像作成装置本体(編集手段、座標変換手段、曲 率算出手段、ポリゴン発生手段)

1b ディスプレイ

3 a 指示入力手段

3 b 編集手段

3 c 座標変換手段

3 d 表示手段

3 e 曲率算出手段

3 f ポリゴン発生手段

3g 制御手段

ゲーム機 (画像再生装置)

4 d RAM (記憶手段)

4g CPU(画像配置手段)

5a コース(軌道)

5d エネミー (キャラクタ)

特開平9-171567

【図4】

SIO3

S301

S302

S303

S304

S305

S306

S307

【図17】

【図18】

. •

【図21】

