

(1). Scegliere due numeri primi \rightarrow p = 3, q = 5

Numero primo = Numero che si divide solamente per sé stesso e per 1

- (2). Calcoli il prodotto "n = p * q" \rightarrow 3 * 5 = 15
- (3). Calcolare Eulero "f = $\phi(n)$ " = (p 1)(q 1) = (3 1)(5 1) = 8

Trovare "e" \rightarrow Inverso di e (mod f) \rightarrow Questo garantisce sicurezza

(4). Scegliere "e" compreso tra 1 e "f" (8) coprimo con "f" (8)

Numero "e" coprimo con 8 \rightarrow e = 3 (Non ha divisori comuni con f = 8)

Coprimi ightarrow Non hanno divisori comuni

Esempio: 8, 9 (non hanno divisori comuni)

 $9 \rightarrow \text{Divisori: } 3, 9$

 $8 \rightarrow \text{Divisori: } 2, 4, 8$

(5). Trovare "d * e \equiv 1 mod f" \rightarrow $\boxed{\text{'d}}$ * 3 \equiv 1 mod 8" $\boxed{}$ = Troviamo "d"

C'è un numero d tale che il resto della divisione (d * e) / f è 1?

$$(d * 3) / 8 = 1$$
? Inverso $(d) = 1$
Inverso $(mod 8) di 3 \rightarrow (1 * 8) = 8 e 9 (mod 8) = 1$

Innauso

Di seguito alcuni esempi:

- l'inverso (mod 7) di 5 è 3 perché $3 \times 5 = 15$ e
- l'inverso (mod 7) di 3 è 5 perché 3 x 5 = 15 e
- l'inverso (mod 7) di 6 è 6 perché 6 x 6 = 36 e
- l'inverso (mod 43) di 11 è 4 perché 11 x 4 = 44

15(mod 7) = 1 15(mod 7) = 1

 $36 \pmod{7} = 1$ $44 \pmod{43} = 1$

MODULO -> DIVISIONE IMORA 8 mad 2 = 0 8 $\mod 3 = 2 \iff (3.2) + 2$ 3 mod 2 = 1 => (1.2)+1 1 MORSO -> DÀ ROSTO1. Dato un messaggio m (0 < m < n) 1. Cifratura: calcolare (n, e) = Chiave pubblica = (8, 3)
(n, d) = Chiave privata = (8, 1) 2. Decifratura: calcolare (6) Tra $0 < m < 8 \rightarrow c = (m)^3 \mod 8 \rightarrow 8 \mod 8 = 0$ \rightarrow m = (c)^1 mod 8 \rightarrow 2 mod 8 = 2 555 PI COMPUST MODULO -> (4 mad 8) = 4 4 % 3 (0.8) + 4DIVISIONS ROSIN > (10 mod 8) = 2 > ropulo 10%8 (1.8)+2 avosteme Ri -> (8 mod 8) -> 1 3 % 3 (1 - 8) +1 enorse Rosno $\longrightarrow (18 \text{ mod } 8) \rightarrow (8.2) + 2$

,

 $c = m^e \mod n$

 $m = c^d \mod n$

(1). Scegliere due numeri primi \rightarrow p = 3, q = 11

Numero primo = Numero che si divide solamente per sé stesso e per 1

- (2). Calcoli il prodotto "n = p * q" \rightarrow 3 * 11 = 33
- (3). Calcolare Eulero "f = $\phi(n)$ " = (p 1)(q 1) = (3 1)(11 1) = 20 Trovare "e" \rightarrow Inverso di e (mod 20)
- (4). Scegliere "e" compreso tra 1 e "f" (20) coprimo con "f" (20) ightarrow 7
- (5). Trovare "d * e \equiv 1 mod f" \rightarrow "d * 7 \equiv 1 mod 20" = Troviamo "d"

(d * 7) / 20 = 1? Inverso (d) = 3 Inverso (mod 20) di 7
$$\rightarrow$$
 (3 * 7) = 21 e 21 (mod 20) = 1 (Resto fa "1" \rightarrow d=3)

(6).

Dato un messaggio m \rightarrow (0 < m < 20) \rightarrow 12

- Cifratura: Calcolare \rightarrow c = 12⁷ mod 20 = 8
- Decifratura: Calcolare \rightarrow m = c^d mod n = (8^3) mod 20 = 12

Termini:

- n → Modulo dell'RSA
- e → Esponente pubblico
- d \rightarrow Esponente privato

Sostituisci numeri e poi applica questo algoritmo così....