Data Regeneration

Test Data Generation from Sample Population using Data Mining methods*

Supervisor: dr. Kiss, Attila

Written by: Fazekas, Bálint

Motivation

- Legal use of a truthful dataset
- Generation of large datasets based on a small sample
- Simulate databases
- Recreate, and further expand a dataset

Sample dataset | Regenerated dataset

Defining the problem

Data regeneration:

"Upon <u>observing</u> a given <u>sample dataset</u>, we would like to <u>identify</u> smaller <u>sub-clusters</u>, and based on the <u>statistical</u> <u>properties</u> (such as the mean and the distribution) of these clusters we want to <u>regenerate a similar datase</u>t with possibly different number of data points."

Clustering methods [1]

- Hierarchical methods:
 - Agglomerative
 - Divisive
 - **Similarity measures**:
 - Single-link
 - Complete-link
 - Average-link

[1] Rokach, Lior, and Oded Maimon. "CLUSTERING METHODS."

Clustering methods [1]

- Partitioning methods:
 - Divide space of the dataset into smaller ranges
 - Attempts to minimize the error of a centroid of a cluster

Clustering methods [1]

- Density based methods:
 - Considers the distances between the individual data points.
 - Creates a chain of data points that will become a cluster

Clustering methods

Which approach is better?

None, all have strengths and weaknesses.

To solve the "data regeneration" problem, both approaches are needed.

- Point: $p \in \mathbb{R}^n$, where $n \in \mathbb{N}$, and n > 0. A point only has position.
- Vector: similar to a point, but also has magnitude and direction.

We are *vectorizing* the dataset so we can:

- Calculate distance
- Centroid
- Distribution

 Covariate (bivariate) distribution: it is possible for a dataset with data points of higher dimensions, to have different distributions in each dimensions.

Normal distribution:

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Centroid:

The "mean" of a set of points (with any number of dimensions)

Normal distribution:

$$s_x = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Centroid:

The "mean" of a set of points (with any number of dimensions)

$$\bar{v} = \frac{Vec(\sum_{i=1}^{n} a_i, \sum_{i=1}^{n} b_i, ..., \sum_{i=1}^{n} z_i)}{n}$$

Clustering Algorithms

<u>K-means:</u> only needs the "k" number of clusters to create, given a dataset.

- 1st phase: placing "k" number of points, the markers of a cluster
- 2nd phase: fine-adjusting the position of the markers

Elbow method

- Attempts to find the correct number of clusters for the kmeans algorithm
- Calculates the average difference of squares between the data points and the markers
- Has to run the algorithm many times with increasing number of "k"

K-means algorithm

- Problems with the k-means algorithm:
 - Can <u>not</u> identify clusters which have a concave shape!
 - What should be the "k" parameter?
 - Might not find the correct centroids
 - ⇒ Possibly won't give an intuitive result (set of sub-clusters)

DBSCAN algorithm

- (Agglomerative) Density based algorithm.
- Needs a <u>minimum distance</u> and a <u>minimum number of</u> <u>points</u> as parameters.

• Only one phase; iterates through all the points, while

creating clusters.

Problems with DBSCAN

- What should be the minimum distance between points?
 - How should it be determined? ×
- What should be the minimum number of points in a cluster? (What do we consider as a cluster, and what becomes noise?)

Heuristics are needed in order to attempt the assumption of these parameters.

For now, we assume that both are correctly set.

Problems with DBSCAN

How do we analyze the result clusters?

Original dataset clustered by DBSCAN

Regenerated dataset only using DBSCAN (50x data points)

Hybrid algorithm

- The DBSCAN is able to find the clusters correctly, in an "intuitive" fashion.
 - But it is not able to find a "good" *mean* to regenerate the data.
- The k-means is able to partition any dataset into "k" regions.
 - But neighboring clusters might interfere to find a good mean

 Proposal: cluster the original dataset with the DBSCAN, and apply the k-means algorithm to the resulting subclusters!

Hybrid algorithm

 Clustering a convex shaped cluster (blob) using the kmeans algorithm will not "ruin" the regeneration of a subcluster.

 Clustering a concave shaped cluster will only result in a more detailed (sub-clustered) cluster.

Results of the hybrid algorithm

 Data regeneration with the hybrid algorithm – reducing the original number of data points.

 Data regeneration with the hybrid algorithm – increasing the number of data points 50 times.

~ 5,000 data points in the original dataset

Results of the hybrid algorithm

 Data regeneration with the hybrid algorithm – reducing the original number of data points.

 Data regeneration with the hybrid algorithm – increasing the number of data points 50 times.

~ 169,000 data points in the original dataset

Speed of the hybrid algorithm

Speed of the hybrid algorithm

Further ideas and enhancements

- Extend the algorithm to n > 2 dimensions.
- Find a metric to numerically represent non-numerical data, such as *e-mail address*, *texts*, *etc*.
- Find a way to correctly assume the "good" parameters of the DBSCAN algorithm.

Thank You for your attention