Chapter 5: Relations

CS1231 Discrete Structures

Wong Tin Lok

National University of Singapore

2022/23 Semester 2

Professionals in any discipline need to know the foundations of their field. So if you're a database professional, you need to know the relational model, because the relational model is the foundation (or a huge part of the foundation, at any rate) of the database field in particular.

Date (2009)

Plan

Start using sets to represent mathematical objects.

- relations representing predicates
 - ordered tuples and Cartesian products
 - composition
 - inverse
- graphs representing graphs
 - directed graphs
 - undirected graphs

How one can represent a predicate by a set

belongs to		
Student ID	name	
001R	Gates	
012B	Brin	
062E	Bezos	
126N	Ма	
254E	Zuckerberg	

```
{ (001R, Gates ),
 (012B, Brin ),
 (062E, Bezos ),
 (126N, Ma ),
 (254E, Zuckerberg) }
```

Ordered pairs and Cartesian products

Definition 5.1.1

An *ordered pair* is an expression of the form (x, y). Let (x_1, y_1) and (x_2, y_2) be ordered pairs. Then $(x_1, y_1) = (x_2, y_2)$ if $x_1 = x_2$ and $y_1 = y_2$.

read as "A cross B"

(a, 1) - (b, 1)

Example 5.1.2

(1)
$$(1,2) \neq (2,1)$$
, although $\{1,2\} = \{2,1\}$.
(2) $(3,0.5) = (\sqrt{9},\frac{1}{2})$.

Let A, B be sets. The Cartesian product of A and B, denoted $A \times B$, is defined to be

$$\{(x,y): x \in A \text{ and } y \in B\}.$$

$$\{(x,y): x \in A \text{ and } y \in B\}.$$

Example 5.1.4 $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$ $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$

Predicates as sets

Definition 5.1.5

Let A, B be sets.

- (1) A *relation* from A to B is a subset of $A \times B$.
- (2) Let R be a relation from A to B and $(x, y) \in A \times B$. Then we may write

$$x R y$$
 for $(x, y) \in R$ and $x R y$ for $(x, y) \notin R$.

We read "x R y" as "x is R-related to y" or simply "x is related to y".

Example 5.1.6

Let
$$\Gamma=\{A,B,\dots,Z,0,1,2,\dots,9\}$$
 and $\Phi=\{A,B,\dots,Z,a,b,\dots,z\}.$ Then
$$\left\{\begin{array}{cc} (001R,\ Gates &),\\ (012B,\ Brin &),\\ (062E,\ Bezos &), \end{array}\right.$$

(126N. Ma

(254E, Zuckerberg) }

is a relation from Γ^* to Φ^* .

Arrow diagrams for binary relations

Example 5.1.7

Let $A = \{0, 1, 2\}$ and $B = \{1, 2, 3, 4\}$. Define the relation R from A to B by setting $x R y \Leftrightarrow x < y$.

Then 0 R 1 and 0 R 2, but 2 R 1. Thus

$$R = \{(0,1), (0,2), (0,3), (0,4), \\ (1,2), (1,3), (1,4), (2,3), (2,4)\}.$$

Definition 5.1.8 (arrow diagrams)

An arrow from x to y indicates x is related to y.

How one can represent a predicate of higher arity by a set

teaching			
module	department	faculty	instructor
CS3234	CS	Computing	Turing
MA2001	Mathematics	Science	Gauss
MU2109	Music	Arts	Mozart
PC2130	Physics	Science	Newton
PL3103	Psychology	Arts	Freud

```
 \left\{ \begin{array}{lll} \text{(CS3234, CS,} & \text{Computing, Turing ),} \\ \text{(MA2001, Mathematics, Science,} & \text{Gauss ),} \\ \text{(MU2109, Music,} & \text{Arts,} & \text{Mozart ),} \\ \text{(PC2130, Physics,} & \text{Science,} & \text{Newton),} \\ \text{(PL3103, Psychology,} & \text{Arts,} & \text{Freud )} \end{array} \right\}
```

Ordered *n*-tuples and Cartesian products Definition 5.1.10

Let $n \in \mathbb{Z}_{\geq 2}$.

- (1) An expression of the form (x_1, x_2, \dots, x_n) is called an *ordered n-tuple*.
- (2) Ordered *n*-tuples are defined recursively by setting, for all objects x_1, x_2, \dots, x_{n+1} ,

Exercise 5.1.11

 $(x_1, x_2, \ldots, x_{n+1}) = ((x_1, x_2, \ldots, x_n), x_{n+1}).$

Ø 5a Prove by induction on n that for all (x_1, x_2, \dots, x_n) and (y_1, y_2, \dots, y_n) ,

 $(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2 \text{ and } \dots \text{ and } x_n = y_n.$

Definition 5.1.13 Let A_1, A_2, \ldots, A_n be sets. The *Cartesian product* of A_1, A_2, \ldots, A_n , denoted

 $A_1 \times A_2 \times \ldots \times A_n$, is defined to be

 $\{(x_1, x_2, \dots, x_n) : x_1 \in A_1 \text{ and } x_2 \in A_2 \text{ and } \dots \text{ and } x_n \in A_n\}.$

If A is a set, then $A^n = A \times A \times \dots \times A$. n-many A's Example 5.1.14

 $\{0,1\} \times \{0,1\} \times \{a,b\} = \{(0,0,a),(0,0,b),(0,1,a),(0,1,b),(1,0,a),(1,0,b),(1,1,a),(1,$

Let A_1, A_2, \ldots, A_n be sets.

Definition 5.1.15

A *n*-ary relation over A_1, A_2, \ldots, A_n is a subset of $A_1 \times A_2 \times \ldots \times A_n$.

Example 5.1.16

Let $\Gamma = \{A, B, \dots, Z, 0, 1, 2, \dots, 9\}$ and $\Phi = \{A, B, \dots, Z, a, b, \dots, z\}$. Then $\{ (CS3234, CS, Computing, Turing), (MA2001, Mathematics, Science, Gauss), \\ (MU2109, Music, Arts, Mozart), (PC2130, Physics, Science, Newton), \\ (PL3103, Psychology, Arts, Freud) \}.$

is a 4-ary relation over Γ^* , Φ^* , Φ^* , Φ^* .

A fictitious miniature university database and its representation (Figure 5.1)

identity	
Student ID	name
001R	Gates
012B	Brin
062E	Bezos
126N	Ma
254E	Zuckerberg

$SN = \{$	(001R,	Gates),
	(012B,),
	(062E,	Bezos),
	(126N,	Ma),
	(254E,	Zuckerberg	()
			. ,

is enrolled in		
Student ID	module	
126N	CS3234	
254E	CS3234	
001R	MA2001	
012B	MA2001	
062E	MA2001	
126N	MA2001	
012B	MU2109	
001R	PC2130	
062E	PL3103	
254E	PL3103	

$SM = \{$	(126N, CS3234),
,	(254E, CS3234),
	(001R, MA2001),
	(012B, MA2001),
	(062E, MA2001),
	(126N, MA2001),
	(012B, MU2109),
	(001R, PC2130),
	(062E, PL3103),
	(254E, PL3103) }

```
        progress

        Student ID
        faculty
        year

        062E
        Arts
        1

        254E
        Arts
        2

        012B
        Science
        2

        001R
        Science
        1

        126N
        Science
        3
```

```
SFY = \left\{ \begin{array}{ll} (062\mathsf{E}, \; \mathsf{Arts}, & 1), \\ (254\mathsf{E}, \; \mathsf{Arts}, & 2), \\ (012\mathsf{B}, \; \mathsf{Science}, \; 2), \\ (001\mathsf{R}, \; \mathsf{Science}, \; 1), \\ (126\mathsf{N}, \; \mathsf{Science}, \; 3) \end{array} \right\}
```

```
teaching
module
            department
                            faculty
                                          instructor
CS3234
            CS
                            Computing
                                           Turing
MA2001
            Mathematics
                            Science
                                          Gauss
MU2109
            Music
                            Arts
                                          Mozart
PC2130
            Physics
                            Science
                                          Newton
PL 3103
            Psychology
                            Arts
                                          Freud
```

```
\begin{split} \textit{MDFI} &= \left\{ \begin{array}{lll} \text{(CS3234, CS, Computing, Turing ),} \\ \text{(MA2001, Mathematics, Science, Gauss ),} \\ \text{(MU2109, Music, Arts, Mozart),} \\ \text{(PC2130, Physics, Science, Newton),} \\ \text{(PL3103, Psychology, Arts, Freud )} \end{array} \right\} \end{split}
```

The set {SM, SN, SFY, MDFI} represents the relational database.

Composition: the teacher of the father of . . . These must be equal.

Definition 5.2.1

Let R be a relation from A to B, and S be a relation from Bto C. Then $S \circ R$ is the relation from A to C defined by

to C. Then
$$S \circ R$$
 is the relation from A to C defined by $S \circ R = \{(x, z) \in A \times C : (x, y) \in R \text{ and } (y, z) \in S \text{ for some } y \in B\}.$

We read $S \circ R$ as "S composed with R" or "S circle R".

Example 5.2.4

Define relations R from $\mathbb{Q}_{\geq 0}$ to $\mathbb{Z}_{\geq 0}$ and S from $\mathbb{Z}_{\geq 0}$ to \mathbb{R} by:

$$R = \{(x, y) \in \mathbb{Q}_{\geqslant 0} \times \mathbb{Z}_{\geqslant 0} : \lfloor x \rfloor = y\},$$

 $S = \{(y, z) \in \mathbb{Z}_{\geqslant 0} \times \mathbb{R} : y = z^2\}.$

- ▶ $(4.8,2) \in S \circ R$ because $4 \in \mathbb{Z}_{\geq 0}$ such that $(4.8,4) \in R$ and $(4,2) \in S$.
- ▶ $(5/2, -\sqrt{2}) \in S \circ R$ because $2 \in \mathbb{Z}_{\geq 0}$ such that $(5/2, 2) \in R$ and $(2, -\sqrt{2}) \in S$.

In general, we have $S \circ R = \{(x, z) \in \mathbb{Q}_{\geq 0} \times \mathbb{R} : |x| = z^2\}.$

 $\mathbb{Z}_{\geqslant 0}$

Inverse: from parents to children, and back

Definition 5.2.5

Let R be a relation from A to B. Then the *inverse of* R is the relation R^{-1} from B to A defined by

$$R^{-1} = \{(y, x) \in B \times A : (x, y) \in R\}.$$

Example 5.2.6

Let R be a relation from A to B where

$$A = \{0, 1, 2\},$$
 $B = \{1, 2, 3, 4\},$
 $R = \{(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4)\}.$

Then
$$R^{-1} = \{(1,0), (2,0), (3,0), (4,0), (2,1), (3,1), (4,1), (3,2), (4,2)\}.$$

Composition interacts with inversion

Proposition 5.2.7

Let R be a relation from A to B, and S be a relation from *B* to *C*. Then $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Proof

Both
$$(S \circ R)^{-1}$$
 and $R^{-1} \circ S^{-1}$ are relations from C to A . For all $(z,x) \in C \times A$,

$$(z,x) \in (S \circ R)^{-1} \quad \Leftrightarrow \quad (x,z) \in S \circ R$$

$$\Leftrightarrow$$
 $(x,y) \in R$ and $(y,z) \in S$ for some $y \in B$ by the definition of composition;

$$(x,y) \in \mathcal{H}$$
 and $(y,z) \in \mathcal{G}$ for some $y \in \mathcal{B}$

$$\Leftrightarrow$$
 $(y,x) \in R^{-1}$ and $(z,y) \in S^{-1}$ for some $y \in B$ by the definition of inverses;

$$\Leftrightarrow$$
 $(z,x) \in R^{-1} \circ S^{-1}$

So
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
.

by the definition of composition.

Real-life example. Peter is Mary's parent's elder sibling.

Mary is Peter's younger sibling's child.

Commutativity of relation composition

Exercise 5.2.8

Let $A = \{0, 1, 2\}$. Define two relations R, S from A to A by:

$$R = \{(x, y) \in A^2 : x < y\}$$
 and $S = \{(0, 1), (1, 2), (2, 0)\}.$

Is $R \circ S = S \circ R$? Prove that your answer is correct.

Summary

Let A, B, C be sets.

Definition 5.1.5. R is a *relation* from A to $B \Leftrightarrow R \subseteq A \times B$. Sometimes we write x R y for $(x, y) \in R$.

Let R be a relation from A to B and S be a relation from B to C.

Definitions 5.2.1 and 5.2.5. For all $x \in A$, all $y \in B$ and all $z \in C$,

$$(x,z) \in S \circ R \qquad \Leftrightarrow \qquad \exists y \in B \ ((x,y) \in R \land (y,z) \in S)$$
or
$$x (S \circ R) z \qquad \Leftrightarrow \qquad \exists y \in B \ (x R \ y \land y S \ z);$$

$$(y,x) \in R^{-1} \qquad \Leftrightarrow \qquad (x,y) \in R$$
or
$$y R^{-1} x \qquad \Leftrightarrow \qquad x R \ y.$$

Proposition 5.2.7. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Representing directed graphs using sets Definition 5.3.1 and Remark 5.3.2

Arrow diagram. An arrow from x to y indicates x is related to y.

> edge from M to F

loop

A (binary) relation on a set A is a relation from A to A, i.e., a subset of $A \times A$.

Definition 5.3.5

A directed graph is an ordered pair (V, D) where V is a set and D is $(B \mathcal{I} P)$

- a binary relation on V. In the case when (V, D) is a directed graph,
- (1) the *vertices* or the *nodes* are the elements of V;
 - (2) the *edges* are the elements of D; (3) an edge from x to y is the element $(x, y) \in D$:
- (4) a *loop* is an edge from a vertex to itself;
- (5) a drawing of (V, D) is an arrow diagram for D as a relation on A. Examples 5.3.6 and 5.3.4

Let $V = \{B, P, F, M, K, N\},\$

 $D = \{(B, P), (P, B), (F, M), (M, F), (B, B), (P, P), (F, F), (M, M), (K, K), (N, N)\}.$

Then (V, D) is a directed graph. The figure above is a drawing of (V, D).

Representing undirected graphs using sets

Drawing. A line between x and y indicates an edge between x and y.

edge

between

M and F

loop

 $\bigcirc B - P \bigcirc$

Definition 5.3.7

An *undirected graph* is an ordered pair (V, E) where V is a set and E is a set all of whose elements are of the form $\{x, y\}$ with $x, y \in V$. In the case when (V, E) is an undirected graph,

- (1) the *vertices* or the *nodes* are the elements of V;
- (2) the *edges* are the elements of E;
- (3) an edge *between* x *and* y is the element $\{x, y\} \in E$;
- (4) a *loop* is an edge between a vertex and itself.

Examples 5.3.6 and 5.3.4

Let $V = \{B, P, F, M, K, N\}$, and

 $E = \{\{B,P\}, \{P,B\}, \{F,M\}, \{M,F\}, \{B,B\}, \{P,P\}, \{F,F\}, \{M,M\}, \{K,K\}, \{N,N\}\}.$

Then (V, E) is an undirected graph. The figure above is a drawing of (V, E).