

A207

Swedish Patent No. 123-138

Translated from Swedish by the Ralph McElroy Co., Custom Division
2102 Rio Grande, Austin, Texas 78705 USA

S W E D E N

PENT NO. 123-138

Description published
by the Royal Patent and
Registration Office

CLASS 5 a:41

Granted on September 9, 1948

Term of Patent from Jan. 30, 1945

Published on November 9, 1948

Application No. 767/1945 on January 30, 1945. Supplement: one drawing.

SVENSKA SKIFFEROLJEAKTIEBOLAGET, ÖREBRO

A process in the gasification of oil-bearing shale rock in situ while supplying heat through channels bored in the shale rock.

Inventor: F. Ljungström

The invention refers to a process of producing shale oil, based on the heating of the shale rock without prior quarrying of the shale, in which process the oil-bearing gases produced by the heating are removed from the rock through channels bored in it. During condensation through cooling, those portions of the gases that constitute the shale oil are then separated from said gases.

When heating a shale rock and during degasification of gas-forming substances that are present in the rock a certain quantity of material is transported away, which material in a gaseous state thus leaves the rock in a manner similar to that occurring in degasification of pit coal or wood, for example, and in all such cases a more or less porous structure of the original material remains. The remaining material, provided it consists of coke or charcoal, has because of its porous structure extraordinarily large surface area within reach of the gas. It is now known that the shale coke also, that is in this case the degasified shale rock, has a porous structure with very large surface area within reach of gases. The shale coke unlike ordinary coke or

charcoal has at the same time a very high ash content, that is a residue of incombustible components, and with regard to Swedish conditions this amounts to about 70% of the original weight of the shale. The shale-coke contents include various iron compounds, for example, and quite a few other components that in contact with different gases are suited as catalysts for influencing reactions in the gases.

In direct degasification of shale rock during continuing production of shale oil very large volumes of heated and degasified shale rock are created, mainly consisting of shale coke which remains unmoved in its various strata but which through the degasification has become transformed into one large porous mass that allows gases to move in all directions. If thus approximately 15 m³ of rock mass is used for each m³ of oil, then, for example, a porous shale rock of 300,000 m³ is formed during one year in the production of 20,000 m³ of shale oil. During the actual gasification procedure of the shale oil a slowly progressing heat front is arranged in the shale rock where both instruments for heating (electric heating elements) and outlet channels for removal of the gases are gradually put into action.

The object of the invention is to use the large porous shale-coke mass formed in this manner as a catalyst for initiation of certain desired chemical reactions within the same, all with the intent of producing various substances with the co-operation of the catalyst in question. The gas channels mentioned are utilized in this process, after they have finished serving as outlets for the shale-oil gases, also for supply of gases to the shale rock. At the same time other such channels can be used as outlets for the synthesis products that have been produced within the shale rock with the co-operation of the shale coke catalyst. A portion of the channels thus forms inlets to the shale coke, and other channels serve as outlets from the same, at which gases that are inserted into the rock under pressure in one place can be led away from the same in another place. Gases then come into contact with the surfaces of the

catalyst and are affected by these in a manner determined by the chemical and physical conditions at hand.

The invention will be more thoroughly described below with reference to the design for implementation of the process shown in the example on the enclosed drawing, at which time other qualities characteristic of the invention also will be indicated.

Figure 1 shows more or less schematically a shale rock, arranged for production of shale oil, in vertical section.

Figure 2 shows a diagram indicating the temperature distribution within the shale rock.

10 on the drawing indicates a number of heating elements that are installed at regular intervals in the shale rock 12, on which is overlaid a stratum of limestone 14 and possibly a layer of soil 16. A number of exhaust channels 18 are connected to gas outlets 20, drilled through limestone and shale. The heating elements 10 and the exhaust channels 18 are synchronously arranged in rows one after another at an angle with the plane of the drawing. The gas outlets 20 belonging to such a row are connected to a manifold 24 via the connecting pipes 21 and shut-off and control valves, respectively, 22, 23. A larger manifold 25 for a number of manifolds 24 unites these in turn with a condenser 26 and a spray tower 27 in which the shale-oil gases are cooled in a standard manner and separated from condensable oil components to the greatest possible extent. The condenser 26 which can also consist of or include, respectively, equipment for other chemical treatment of shale-oil gases, for example, separation of sulfur or other by-products in these, includes a pipe 28 connected to a storage tank for the oil 30. A pipe 32 from the tower washer 27 also leads to this tank. From a branch pipe 34 some of the uncondensed gases can also be led off through a pipe 36 into which is installed a valve 38, to be used for fuel or other purposes. Another portion of the gases flows through a compressor 40.

In a section of the shale rock, bordered at a right angle to the plane of the drawing by the plane through the lines 42, 44, the pyrolysis, that is the new formation of shale gases occurring through heat supply, is considered to be finished. The heat supply to the elements 10 has consequently been interrupted here. For the moment, a section of the shale rock, bordered by the lines 44-46, is extracted instead. The heat wave is accordingly assumed to move in the direction of the arrows 48. The line 50 in Figure 2 represents the temperature distribution in the two sections. At line 44 the temperature can reach a value between 350 and 400°C, preferably 380°C. During the process according to the invention the temperature falls in the direction towards line 42.

While the channels 20 in section 44-46 serve as outlets for the shale gases extracted in this section, at least one row of such channels, that is situated at the rear edge of the section 42-44, as seen in the direction of the path of the heat according to the arrows 48, and which has been given the designation 52 on the drawing, has been connected to the back-pressure side of the compressor via a manifold 54. In the gas channels 52 the gases coming from the pipe 34 are thus forced to flow back to the already degasified shale rock in the area between the lines 42 and 44. Some of these gases flowing back can be led off through an outlet 56 and a manifold 58 from the outlet channel 60 in this area, in order to be utilized or recycled, respectively, to the pipe 34 after suitable treatment by condensation or washing or other processes. Possibly, the channels 60 can be connected to the junction pipe 24. During continued flow within the porous strata of the shale rock in the direction of the arrows 48 the rest of the gases can contact shale rock within the sections 44-46 where shale rock heating is in progress and where during the pyrolysis shale gases are consequently led off through the gas channels 20. By obtaining a sufficiently high pressure increase in the gases after the compressor 40 these can thus be made to flow in a circuit with two different branches, partly a circuit connected to the passages 56, 34 and the section 42-44 in the shale rock, partly a circuit including passages 18, 34 and both

sections 42-44 and 44-46 within the shale rock. According to the invention, such gases which through cooling, condensation and washing are freed from the oil are thus made to flow through the shale rock where they among other things can contribute to more expeditious transport of oil gases from the shale rock to the condenser installation by the flushing effect that such gases will produce. However, besides this flushing effect another effect is also referred to according to the invention. In all oil production with degasification directly in the shale rock some losses always arise through gas leakage within the rock up towards the ground surface, because of the overpressure that prevails in the rock during degasification. Cracks exist here and there in the rock, and the overlaid limestone is in itself not completely leak-free. A smaller portion of the produced oil gases will therefore gradually leak out through leakage in cracks in the ground on top of the shale rock. Already desgasified shale rock is filled by a compressor with gases where the oil has already been extracted according to the invention. The leakage that still results in connection therewith will in this way consist of leaking gases that do not contain any oil. Owing to this the advantage is gained according to the invention that oil losses through leakage in the ground surface are reduced.

When extracting oil from shale it can be assumed that depending on the temperatures and pressures at which the pyrolysis takes place, as well as depending on the rate at which the shale is heated, the pyrolysis is carried out under conditions regulated by physical and chemical conditions, so that different substances are formed in a quantitatively balanced ratio to one another. As an example it can thus be assumed that 20% of the formed pyrolysis gas consists of hydrogen, a certain portion of said gas of methane and other closely related hydrocarbons, and that finally the oil-forming hydrocarbons will amount to a smaller portion of the total gas volume because of their higher molecular weight.

The actual pyrolysis process is of such a complicated nature that at present it cannot be explained in a satisfactory way, but the practical result indicates that a certain ratio between the different hydrocarbons always is present. As can be seen from above, the gas returned through pipe 34 to the shale rock is proportionately richer in hydrogen and light hydrocarbons than the original pyrolysis gas from which the heavier hydrocarbons have been extracted. In the presence of the large porous mass of shale rock as a contact substance and where pyrolysis progresses slowly within very large volumes, the surplus of hydrogen and lighter hydrocarbons in the recycled gas will according to the invention affect the pyrolysis in the direction that an equilibrium strives to be reinstated similar to the composition of the pyrolysis gas originally extracted. This condition could probably most closely be compared to hydrogenation, but, according to the invention, the very high pressure under which such a hydrogenation is normally carried out are replaced, in this case with an enormous contact surface area in the catalyst, which makes it possible to achieve an approach to equilibrium ratio between the different reactions during pyrolysis in a reasonable time. More coal is then bound to the hydrogen added through the reintroduction, through which the carbon remaining in the coke is diminished to the advantage of a quantitative increase in the oil-forming gases.

According to the invention the gases from which the oil has been extracted first pass through a porous rock mass where the oil has already been driven off. In this process the said gases are preheated, after they during the passage through the condenser and spray tower have been cooled to a low temperature that in practice remains about 0° or lower. The already degasified shale rock and the waste heat that has been left behind in this hot rock after the pyrolysis are thus partly utilized for preheating the circulation gas participating in the pyrolysis. Since the heat content of such a gas is relatively low, the quantity of gas that is circulated can according to the invention and depending on the circumstances be selected so that its volume amounts to one or several times the volume of the gas newly formed in the pyrolysis. In this way the mechanism of reaction which

has been indicated above is facilitated in such a manner that equilibrium in the different reactions does not have to be nearly achieved because of the large surplus of lighter hydrocarbons and hydrogen, that is available in the pyrolysis. Through this richer gas circulation the condition also emerges that such hydrocarbons that are in the border area for the gasification more easily can be led away from the shale rock by means of the richer gas circulation. The heaviest hydrocarbons that without circulating gas remain and are coked in the rock, will probably therefore wholly or partially be forced to move along with the general gas flow by means of gas circulation. According to the invention new possibilities are thus created by introduction of a circulating gas in already heated shale rock to obtain a richer production of the coveted pyrolytic liquid hydrocarbons. Finally it is conceivable that the large rock body of hot shale coke through which the circulation gas flows on its way to the pyrolysis area in the shale rock because of its enormous dimensions and with that associated catalytic activity to a certain extent directly allows a hydrogenation of hydrocarbons closely related to the coke, that have remained in the same, through which the loss of residue in the form of coke is reduced.

Instead of the pyrolysis gases according to above other gases, for example producer gas, can be considered for accomplishment of different desired chemical reactions with assistance from the porous hot shale.

Patent claims: [for clarification, retyped from original text.]

Translation of the claims of Swedish Patent Specification 123-138
Svenska Skifferoljeaktiebolaget, Örebro, Sweden.

1. A process in the gasification of oil-bearing shale rocks *in situ* while supplying heat through channels bored in the rock, characterized in that when a shale portion has been degasified by means of pyrolysis and has become porous gases are introduced in said portion, while it is still warm, through other channels bored in the shale rock than the heat supplying channels, and that said gases are of such kind that they in the meanwhile are subjected to chemical reactions without combustion, the shale rock acting as a catalyst.

2. A process as claimed in claim 1, characterized in that at least a part of the gas formed during the pyrolysis is recycled into the shale portion after that its oil-bearing constituents has [sic;have] been removed by condensation or washing with cooling.

3. A process as claimed in claim 1, characterized by that the introduced gas by means of a compressor is caused to flow through a portion of already degasified warm shale rock to be introduced in another rock portion wherein oil is being recovered.

4. A process as claimed in any of the claims 1 to 3, characterized by that a part of the recycled gas is discharged from the shale rock before it has reached the zone, wherein the degasification of shale is taking place, while another part is passed also through this zone.

5. A process as claimed in any of the preceding claims, characterized by that the gases are introduced into the shale rock through the channels serving as gas outlets during the pyrolysis.

1123
PATENT N° 123138

SVERIGE

BESKRIVNING
OFFENTLIGGJORD AV KUNGL
PATENT- OCH REGISTRERINGSVERKET

INS. DEN 5. 1945, NR 767. 1945

KLASS 5 a:41

BEVILJAT DEN 7 SEPTEMBER 1948
PATENTID FRAN DEN 30 JAN 1945
PUBLICERAT DEN 7 NOVEMBER 1948

Härtill en ritning.

SVENSKA SKIFFEROLJELÄRFTHE BOLAGET, ÖREBRO (3)

**Sätt vid förgasning av oljeförande skifferberg in situ under tillförande
av värme genom i skifferberget upptagna kanaler.**

Uppfinnare: E. Ljungström

Uppfinningen handar om ett sätt att framställa skifferolja, baserat på uppvärmingen av skifferberget utan föregående intabytning av skiffer, varvid de genom uppvärmeningen framkallade oljeförande gaserna avlägsnas ur berget genom i delsamma anbragta kanaler. Ur gaserna franskipas därpå sadanta delar av desammina, vilka utgöra skifferoljan, under avs kylning genom kondensering.

Vid uppvärmeningen av ett skifferberg sker vid avgasningen av däri beinhängda gasbildande substanser en bolittransport av en viss mettalaungd, som alltså i gastorm avgas ur berget på liknande sätt som t ex vid avgassning av stenkol eller ved, och i samtidigt dessa till kvarstar en mer eller mindre porös skelettmönster av det ursprungliga materialet. Det kvarblivande materialet, därest det består av kolos eller trakol, har genom sin porösa struktur utomordentligen storlek för gasen att komma utifrån. Det har nu visat sig, att även skifferkoksen, d. v. s. i detta fall det avgasade skifferberget, har en porös struktur med mycket stora ytor, att komma utifrån för gaser. Samtidigt har skifferkoksen i motsats till den vanliga koksen eller trakoleten en mycket stor askhall, d. v. s. rest av icke brannbara beständsdelar och speciellt för svenska forhållanden uppgår till omkring 70 % av den ursprungliga skiffervikten. Skifferkoksen innehåller bl. a. t. ex. olika järnsöneringar och en hel del andra beständsdelar, som i kontakt med olika gaser är agnade att i egenskap av katalysator påverka reaktioner i gaserna.

Vid direkt avgasning av skifferberget uppstår under fortgående framställning av skifferolja mycket stora volymer av uppvärmt och avgasat skifferberg bestående huvudsakligen av skifferkoks, som ligger kvar orubbat i sinna ofära lager, men som genom avgasningen blivit ombildat till en enda porös massa framsläplig för gaser i alla riktningar. Därest sådana för varje m³ olja åtgår omkring 15 m³ bergmassa, bildas t. ex. under ett års tid vid framställning av 20000 m³ skifferolja ett poröst skifferberg om 300000 m³. Under själva

förgasningsprocedturen av skifferoljan anordnas inom skifferberget en långsamt framåtrückande värmefront, där såväl organ för uppvärmeningen (elektriska varmeelement) som avloppskanaler för gasernas avledning successivt sätts i verksamhet.

Uppfinningen avser att använda den på så sätt utbildade stora porösa skifferkoksmassan som en katalysator för inleddet av vissa omisskända kemiska reaktioner inom densamma, till med avsikt att framställa olika substanser under medverkan av katalysatorn ifråga. Harvid utnyttjas de nämnda gaskvarterna, sedan de sätts att bortläggas som avlopp för skifferoljetränen, även för tillförsel av gaser till skifferberget. Samtidigt kunna andra dyrtaliga kanaler användas för avlopp av syntesprodukter framställda inom skifferberget under medverkan av den av skifferkoksen bildade katalysatorn. En del kanaler bildar sätteres tilllopp till skifferkoksen och andra kanaler avlopp från densamma, varvid gaser, som under tryck nedförs i berget på ett ställe, kunna avföras ur delsamma på ett annat ställe. Gaser kommer härunder i kontakt med katalysatorns ytor och påverkas av desammina på sadant sätt, som betingas av forhanden varande kemiska och fysikaliska forhållanden.

Uppfinningen skall nedan närmare beskrivas under hanvisning till å bifogade ritning som exempelvisade utformingsform för sätets genombörande, varvid även ytterligare uppföringen känneleknande egenskaper skola angivs.

Fig. 1 visar mer eller mindre schematiskt ett delbergs inrättat för framställning av skifferolja, sett i vertikalsektion.

Fig. 2 visar ett diagram angivande temperaturfordelningen inom skifferberget.

A ritningen betecknar 10 ett antal varmeelement, som är anbragta på jämna mellanrum i skifferberget 12, på vilket är överlagrat ett lager av kalksten 14 samt eventuellt ett jordlager 16. Ett antal avgaskanaler 18 står i förbindelse med genom kalk och skiffer ned-

Erla 1945. 10. 12. 1948

varrade gasavlopp 20. Värmeelementen 10 och avgaskanalerne 18 åro samtidigt anordnade i rader efter varandra i vinkel med ritningsplanet. Gasavloppen 20 tillhörande en dylik rad aro över torrlundetörer 21 och avstängnings- resp. regleringsventiler 22, 23 anslutna till en samlingskanal 24. En storre samlingskanal 25 för ett tiotal samlingskanaler 24 förenar dessa i sin tur med en kondensor 26 och ett tvättorn 27, vari skifffergaserna på kant sätt nedkylas och i möjligaste mån sefras från kondenserbara oljebeständsdelar. Kondensorn 26, vilken även kan utgöras av resp. omfatta apparatur för annan kemisk behandling av skifffergaser, t. ex. avskiljning av svavel eller andra biprodukter i dessa, genom en ledning 28 ansluten till en uppflödningsbehållare 30 för oljan. I denna behållare mynnar även en ledning 32 från tvättornet 27. Från en grönledning 34 kommer en del av de icke kondenserade gaserna avsföras genom en ledning 36, i vilken är insatt en ventil 38, för att användas som bränsle eller för andra ändamål. En annan del av gaterna genomströmmar en kompressoranordning 40.

I en sektion av skifferberget begränsad vindratt mot ritningsplanet av plan genom linjerna 42, 44 antages pyrolysen, d. v. s. en undervärmeförsel förstgående nybildning av offergaser vara avslutad. Värmetillseln 10 elementen 10 har här alltså avbrutits. I allt utvinnnes för øgonblicket en sektion av offferberget, begränsad av linjerna 44-46. Omvägen förutsattes alltså vända i riktningen av pilarna 48, och som i ritningen givits teckningen 52, anslutis till kompressorsens trycksida via en samlingskanal 54. I gaskanalerna 52 bringas sålunda de från ledning 44 kommande gaterna att återströmma till sedan avgasade skifferberget inom området mellan linjerna 42 och 44. En del av dessa återströmmande gater kan nu avledas genom utlopp 56 och en samlingskanal 58 från kanalen 60 inom detta område, för att efterlämplig behandling genom kondensation i tvättning eller andra processer nyttiggöras, resp. återledas till ledningen 34. Eventuellt kan kanalerna 60 vara kopplade med dungsledningew 24. Resten av gaterna kommer under fortsatt strömning inom skifferbergets porösa lagringar i pilarnas 48 riktning inna i kontakt med skifferberg inom sek-

tionen 44-46 där uppflödningen av oljan i berget pågår och där också skiffergasen förr der pyrolyser avledas genom rösteledningar. Genom Astadkontinuitet av tillflödet till trykstegring hos gaserna efter kompressen 40 kommer dessa sättes föregå till strömmen i ett kretslopp med två enskilda förgreningar, den en krets ansluten till passagerna 50-54 samt sektionen 42-44, detta beror på att delen av krets innehållande passagerna 48-54 och förgreningarna 42-44 och 44-46 men inte är berget. Sådant gaser vilka genom nedfallning, kondensation och tvättning beträfs till oljan bringas sättes enligt uppförningen av genomströmning skifferberget, där de bl. a. kommer bidraga till en främjare transport av oljegaser från skifferberget till kondensoren länggången genom den spolykunta, snydvika gater kommer till presten. Vid sidan av dem spolyverket avses emellertid enligt uppförningen även en annan verkan. Vid allt oljeftrenställning med avgasning direkt i skifferberget uppkommer alltid på grund av det övertvärde som råder i berget vid avgasningen en del oljefluster genom gaslackage inom berget upp mot markytan. Sprickor finnas här och var inom berget och det överlagrade lockberget är i sig själv icke fullständigt till. En minnes del av de framställda oljegaserna kommer därfor att så smärtingom locka ut genom lackagen i sprickor i marken runt omkring skifferberget. Enligt uppförningen tythes redan avgasat skifferberg med tillhjälp av en kompressor med gaser där oljan redan utvinnits. Det lackerade som därvid allt fortfarande uppstår kommer på så sätt att besta av lackande gater, som också innehålla nagon olja. Hergenom vinnes enligt uppförningen den fördelen, att oljefluster genom lackage i markytan undvikas.

Vid oljeutvinning in i skiffer kan det intagas, att beroende på de temperaturer och tryck, varunder pyrolysen förfärt, avvensom beroende på den hastighet med vilken uppvärmingen av skiffern genomföres, pyrolysen genomföres under av de fysikaliskt och kemiskt betingelserna i en glödande torrlund under så att oljika substanser inföldas i ett kvantitativt balansförhållande till varandra. Samma kan som exempel antagas att 79% av den utbildade pyrolysgasen införs av väte, en viss del av densamma nyttjas till andra mindre delade kolvalenter till sättet de oljefullt innehållande kolvalenter på grund av sin stora molekylärta vikt kommer till uppsättning till en mindre del av den totala gassvolymen.

Själva pyrolysprocessen är av en så komplicerad natur, att man ej kan närmare ange tillräcksläggande förhållande inom delen praktiskt resultatet tyder på att en dylik viss proportion mellan de olika kolvalenterna alltid rörligger. Den genom ledningen 34 till skifferberget återledda gasen är såsom av avmässande längre prövning visat riklig på vete och fritt från kolvalenter inom dess inspräng-

Trenel
Svensk

1

situ *

charac

means

in sei

bored

said g

ted to

eating

2.

least :

into th

been re

3.

the int

through

introdu

4.

rized b

shale r

tion of

through

5.

I pyrolysgasen framkommer de fyra gaser
som utvärmer. Namnet är skiftebergat
så att pyrolysa mass i samband med aterstabilisering
av gasen kommer enligt upplägget till
stället av valgas och lättare kolvatens
aterutfordra gasen att påverka pyrolysen i den
riktning att en balans skapas mellan aterstabilisering
och den ursprungliga utvärme pyrolysgasen
samt omställning. Detta förhållande förde till
att komma till ståt vid en hydriering, även om
upplägget ersattes de mycket låga
tryck, under vilka sådan hydriering brukar ge
räntor, i detta fall med en olantlig, kontinuer-
lig katalysator, som möjliggör all mom-
entring till uppnå ett nöjande till ett han-
serat förhållande mellan de olika reaktionerna
vid pyrolysen. Därvid binder mer kol vid
det genom aterutvärmen tillfördla valet, var-
igenom i kökens kvävbindande kol minskas
till förmån för en kvantitativ ökning av de
objebildande gaseerna.

Enligt upptäckningen passerar de gaser, om vilka oljan utsyrningsvis först genom en porös bergsmassa, där oljeavdriftnings redan är fullbordad. Härunder förvarmes sådala gaser, sedan de under passagen genom kondensator och tvätttorn nedskivts till en låg temperatur, som i praktiken faller sig omkring 0° eller lägre. Det redan avgasade skifteberget och den spyllvatten som i detta varma berg kvarstår minskar efter pyrolysen, utnyttjas salinida delvis för förvarning av den vid pyrolysen medverkande cirkulationsgasen. Emedan en sådan gas' varmeninnehåll är relativt lågt, kan enligt upptäckningen den kvantitet gas, som cirkuleras beroende på omständigheterna väljas så, att dess volym uppgrädd till en åtta gånger den vid pyrolysen nybildade gasens volym. Härigenom underlättas det reaktionstidloppet, som här ovan antyts på sa sätt att ett balansstörhållande inom de olika reaktionerna icke behöver närnelsevis uppnås på grund av det stora överskottet av lättrare kolväten och vete, som vid pyrolysen finnas tillgängliga. Genom denna rikligare gascirkulation inträder även det förhållandet, att sadana kolväten, som ligga på gränsområdet för begasningen, lättrare kunnat avtoras ur skifteberget med tillhjälps av den rikligare gascirkulationen. De tyngsta kolvatena, som ut in cirkulerande gas kvarstår och forkokas i berget, torde därför med tillhjälps av gascirkulation heller eller delvis bringas att medfölja den allmänna gasströmmingen. Enligt upptäckningen skapas således genom införande av en cirkulerande gas inom redan uppvärmt skifte-

{

Detta revärmer på hörn och är en del av den primitiva bestyrkande genom för denna värmeintervall. Inkluderat i bestyrkan är följande kolvalen: *Z. Styrigen*, *Z. der Tinkus*, *Z. der Kastanien* och *Z. der Krokos*, vilket tillför en lösning i form av en färggrupp av vacker lösningssalter, som är svartvitt märkta med en vit linje, och därmed kan de sättas ihop med en vit linje. Dessa salter är dock inte direkt i viss riktning med en hydroxylgrupp, men kolsyra och vatten är dock med i dessa salter, som är västligat i densamma värgeton. Testosteron är i form av en del av bestyrkan.

I stället för pyrolysgaserna enligt ovan nämnda gaser, t. ex. generatörsgas somma i fraktor, används kommet av olika önskade kemiska reaktioner under medverkan av den potenta varma skiftern.

Patentanspruch:

1. Sätt vid forsgasning av oljeförande skifferberg *in situ* under tillförande av varme genom i skifferberget upptagna kanaler, kan nötecknats därav, att sedan ett skifferparti genom pyrolys avgasats och blivit porös, gaser intonas i detta parti, medan det annat är varmt, genom andra i skifferberget upptagna kanaler än värmelättförsökkanalerna och all dessa gaser är av sadan art, att de kan undanflytta för kemiska reaktioner utan förbränning med skifferberget. Låtsigförändringar som katalysator.

2. Sall enligt patentanspråket 1 kanneförminal darav att i skifferpartiet återfinnes åtminstone en del av den under pyrolysen bildade gasen, sedan den genom kondensation eller tvättning under avkyllning berövats sina ofjörande beständsdelar.

3. Sått enligt patentanspråket 1, kanneleeras
naturgassar, att den införda gassen genom en
kompressoranordning bringas till strömmar ge-
nom ett parti av redan avgasat varmt skifte-
berg för att därifrån intas i annat bergsparti,
där oglestyrningen pågår.

I Sift enligt patentanspråken 1-3, kan
nutecknat därav, att en del av den återinför-
da gasen utläges från skifteberget innan den
matt den zon, i vilken avgassing av skifte pâ-
gar, medan en annan del får passera även den-
sa zon.

5. Sålt enligt något av de föregående patientanspraken, kännetecknat därav, att gärna införas i skifferberget genom kamaret, som under pyrolysen tjaostgjordes som gas-
avlopp.

Fig. 1

Fig. 2

Translation of the claims of Swedish Patent Specification 125,158
Svenska Skifferoljeaktiebolaget, Rörö, Sweden.

1. A process in the gasification of oil-bearing shale rocks ~~in situ~~ while supplying heat through channels bored in the rock, characterized in that when a shale portion has been degasified by means of pyrolysis and has become porous gases are introduced in said portion, while it is still warm, through other channels bored in the shale rock than the heat supplying channels, and that said gases are of such kind that they in the meanwhile are subjected to chemical reactions without combustion, the shale rock acting as a catalyst.

2. A process as claimed in claim 1, characterized in that at least a part of the gas formed during the pyrolysis is recycled into the shale portion after that its oil-bearing constituents have been removed by condensation or washing with cooling.

3. A process as claimed in claim 1, characterized by that the introduced gas by means of a compressor is caused to flow through a portion of already degasified warm shale rock to be introduced in another rock portion wherein oil is being recovered.

4. A process as claimed in any of the claims 1 to 3, characterized by that a part of the recycled gas is discharged from the shale rock before it has reached the zone, wherein the degasification of shale is taking place, while another part is passed also through this zone.

5. A process as claimed in any of the preceding claims, characterized by that the gases are introduced into the shale rock through the channels serving as gas outlets during the pyrolysis.