Topics in Modern Geometry

Solutions to problem sheet 3

Warm-up problems

1. Verify that the maps $\phi_i : U_i \to \mathbb{A}^n$ and $\psi_i : \mathbb{A}^n \to U_i$ (as defined in lectures for the standard affine open sets $U_i \subset \mathbb{P}^n$) are well-defined, bijective and are inverse to each other.

The map ϕ_i is well-defined on \mathbb{P}^n since

$$\phi_i(p) = \left(\frac{p_0}{p_i}, \dots, \frac{p_{i-1}}{p_i}, \frac{p_{i+1}}{p_i}, \dots, \frac{p_n}{p_i}\right) = \left(\frac{\lambda p_0}{\lambda p_i}, \dots, \frac{\lambda p_{i-1}}{\lambda p_i}, \frac{\lambda p_{i+1}}{\lambda p_i}, \dots, \frac{\lambda p_n}{\lambda p_i}\right) = \phi_i(\lambda p)$$

where $p_i \neq 0$ for all $p \in \mathbb{P}^n$ and $\lambda \in \mathbb{C}^{\times}$. The map ψ_i is well-defined since

$$\psi_i(a_1,\ldots,a_n)=(a_1:\ldots:a_{i-1}:1:a_{i+1}:\ldots:a_n)\neq(0:\ldots:0)$$

for any $a \in \mathbb{A}^n$.

The map ϕ_i is injective since $\phi_i(p) = \phi_i(p')$ if and only if $p_j = \frac{p_i}{p_i'} p_j'$ for all j, where $\frac{p_i}{p_i'} \in \mathbb{C}^{\times}$, and surjective since $\phi_i(a_1 : \ldots, a_{i-1} : 1 : a_i : \ldots : a_n) = (a_1, \ldots, a_n)$ for any $a \in \mathbb{A}^n$.

The map ψ_i is injective since $\phi_i(a) = \phi_i(a')$ if and only if $a_j = a'_j$ for all j, and surjective since $\psi_i\left(\frac{p_0}{p_i}, \dots, \frac{p_{i-1}}{p_i}, \frac{p_{i+1}}{p_i}, \dots, \frac{p_n}{p_i}\right) = (p_0: \dots: p_{i-1}: p_i: p_{i+1}: \dots: p_n)$ for any $p \in \mathbb{P}^n$.

They are inverse, since clearly $\phi_i(\psi_i(a)) = a$ and, for $p \in U_i$, rescaling coordinates by $p_i \in \mathbb{C}^{\times}$ gives

$$\psi_i(\phi_i(p)) = \left(\frac{p_0}{p_i} : \dots : \frac{p_{i-1}}{p_i} : 1 : \frac{p_{i+1}}{p_i} : \dots : \frac{p_n}{p_i}\right) = p.$$

2. Consider $z \in \mathbb{C}$ as the point $(z:1) \in \mathbb{P}^1$ and ∞ as the point $(1:0) \in \mathbb{P}^1$. Extend the usual addition and multiplication on \mathbb{C} to \mathbb{P}^1 by setting $z + \infty = \infty$ if $z \neq \infty$, $z \cdot \infty = \infty$ if $z \neq 0$, $\infty^{-1} = 0$ and $0^{-1} = \infty$. Write down formulae for x + y, xy and x^{-1} in terms of the homogeneous coordinates $x = (x_0: x_1)$ and $y = (y_0: y_1)$.

We can write

$$(x_0:x_1) + (y_0:y_1) = \left(\frac{x_0}{x_1}:1\right) + \left(\frac{y_0}{y_1}:1\right) = \left(\frac{x_0}{x_1} + \frac{y_0}{y_1}:1\right) = (x_0y_1 + x_1y_0:x_1y_1)$$

$$(x_0:x_1)(y_0:y_1) = \left(\frac{x_0}{x_1}:1\right)\left(\frac{y_0}{y_1}:1\right) = \left(\frac{x_0y_0}{x_1y_1}:1\right) = (x_0y_0:x_1y_1)$$

$$(x_0:x_1)^{-1} = \left(\frac{x_0}{x_1}:1\right)^{-1} = \left(\frac{x_1}{x_0}:1\right) = (x_1:x_0)$$

Note x + y is defined as long as we don't have x = y = (1:0) and xy is defined as long as we don't have x = (0:1) and y = (1:0), or vice versa.

3. Which of the following ideals are homogeneous?

$$\langle x+y^2\rangle \subset \mathbb{C}[x,y], \quad \langle x^3+2y^2z,z^2+3xy\rangle \subset \mathbb{C}[x,y,z], \quad \langle t+yz,x^4+yz,t\rangle \subset \mathbb{C}[x,y,z,t]$$

The first one isn't, since $x+y^2 \in \langle x+y^2 \rangle$, but $x,y^2 \notin \langle x+y^2 \rangle$.

The second one is by exercise 5.

The last one is, since $\langle t + yz, x^4 + yz, t \rangle = \langle yz, x^4, t \rangle$ and we use exercise 5 again.

Assessed problems

4. (5 marks) Show that an ideal $I \subset \mathbb{C}[x_0, \ldots, x_n]$ is homogeneous if and only if there is a finite generating set $I = \langle f_1, \ldots, f_k \rangle$ where each f_i is homogeneous.

Suppose $I \subset \mathbb{C}[x_0, \ldots, x_n]$ is a homogeneous ideal. We can find a finite generating set $I = \langle f_1, \ldots, f_k \rangle$, since $\mathbb{C}[x_0, \ldots, x_n]$ is Noetherian. Since I is homogeneous we can write f_i as a sum of homogeneous parts $f_i = \sum_{j=1}^{d_i} f_{ij}$ with $f_{ij} \in I$ for all i, j. Now let $J = \langle f_{ij} : \forall i, \forall j \rangle$. Clearly $I \subseteq J$ since $f_i \in J$ for all i, j, and $J \subseteq I$ since $f_{ij} \in I$ for all i, j, so I = J. Therefore I is generated by the polynomials f_{ij} , which are a finite homogeneous generating set.

Conversely suppose $I=\langle f_1,\ldots,f_k\rangle$ has a finite homogeneous generating set. Then any $g\in I$ can be written as $g=\sum_{i=1}^kg_if_i$ for some $g_i\in\mathbb{C}[x_0,\ldots,x_n]$. Now write $g_i=\sum_{j=1}^{d_i}g_{ij}$ as a sum of homogeneous terms. Then $g=\sum_{i,j}g_{ij}f_i$ is an expression for g where each term $g_{ij}f_i$ is homogeneous and $g_{ij}f_i\in I$. Therefore I is a homogeneous ideal.

5. (5 marks) Suppose that $X \subset \mathbb{A}^n$ is an affine algebraic variety. Prove that the projective closure $\widetilde{X} \subset \mathbb{P}^n$ is equal to $\overline{X} \subset \mathbb{P}^n$, the Zariski closure of $X \subset \mathbb{P}^n$, where we think of X as a subset of \mathbb{P}^n in the 0th standard affine chart $X \subset (\mathbb{A}^n \cong U_0) \subset \mathbb{P}^n$.

The Zariski closure \overline{X} is by definition the smallest Zariski closed subset of \mathbb{P}^n which contains X. Since $X \subset \widetilde{X}$ and \widetilde{X} is Zariski closed it follows that $\overline{X} \subseteq \widetilde{X}$.

Now suppose there is a point $p \in \widetilde{X} \setminus \overline{X}$. It follows that there is a polynomial $f \in \mathbb{C}[x_0, \dots, x_n]$ such that f(q) = 0 for all $q \in X$, but $f(p) \neq 0$. But now $p \notin X = \widetilde{X} \cap U_0$ so $p = (0: p_1: \dots: p_n)$. Now let deg f = d and write $f = \sum_{i=0}^d x_0^{d-i} f_i$ where $f_i \in \mathbb{C}[x_1, \dots, x_n]$ is homogeneous of degree i. It follows that $f_d(p) \neq 0$ and that f_d is a nonzero polynomial. But now, setting $f_{(0)} = f(1, x_1, \dots, x_n)$, we still have $f_{(0)}(q) = 0$ for all $q \in X$ and therefore $f_{(0)} \in \mathbb{I}(X)$. Since deg $f = \deg f_{(0)} = d$ it follows that $f = \widehat{f_{(0)}} \in \mathbb{I}(\widetilde{X})$. But now $f \in \mathbb{I}(\widetilde{X})$ and $f(p) \neq 0$ implies that $p \notin \widetilde{X}$, which is a contradiction.

6. (5 marks) Show that the product variety $X = \mathbb{P}^1 \times \mathbb{P}^1$ is isomorphic to the quadric hypersurface $Y = \mathbb{V}(z_0 z_3 - z_1 z_2) \subset \mathbb{P}^3$ under the morphism $\phi \colon X \to Y$

$$\phi((x_0:x_1)\times(y_0:y_1))=(x_0y_0:x_0y_1:x_1y_0:x_1y_1)$$

and describe the inverse morphism $\psi \colon Y \to X$. (The map ϕ is usually called the Segre embedding of $\mathbb{P}^1 \times \mathbb{P}^1$.)

First we remark that ϕ is well-defined. Note that

$$\phi((\lambda x_0:\lambda x_1)\times(\mu y_0:\mu y_1))=\phi((x_0:x_1)\times(y_0:y_1))$$

for all $\lambda, \mu \in \mathbb{C}^{\times}$ and that no point of $X = \mathbb{P}^1 \times \mathbb{P}^1$ is sent to (0:0:0:0). Now we check that ϕ is a morphism. Note that at any point of X at least one x coordinate and at least one y coordinate is nonzero. Assume that $x_0, y_0 \neq 0$. Then

$$\phi((x_0:x_1)\times(y_0:y_1)) = \left(1:\frac{y_1}{y_0}:\frac{x_1}{x_0}:\frac{x_1y_1}{x_0y_0}\right)$$

is an expression for ϕ in terms of rational functions on X which is regular for all points with $x_0, y_0 \neq 0$ in X. We proceed similarly for the other cases, in which $x_1 \neq 0$ or $y_1 \neq 0$. Thus ϕ is a morphism. Moreover, the image of ϕ is clearly contained in $Y \subset \mathbb{P}^3$ since $(x_0y_0)(x_1y_1) - (x_0y_1)(x_1y_0) = 0$.

To show that ϕ is an isomorphism we only need to write down an inverse map $\psi \colon Y \to X$ and check that it is a morphism. Let

$$\psi(z_0:z_1:z_2:z_3) = \begin{cases} (1:z_2z_0^{-1}) \times (1:z_1z_0^{-1}) & \text{if } z_0 \neq 0\\ (1:z_3z_1^{-1}) \times (z_0z_1^{-1}:1) & \text{if } z_1 \neq 0\\ (z_0z_2^{-1}:1) \times (1:z_3z_2^{-1}) & \text{if } z_2 \neq 0\\ (z_1z_3^{-1}:1) \times (z_2z_3^{-1}:1) & \text{if } z_3 \neq 0 \end{cases}$$

This is clearly well-defined and defines a morphism in each of the affine charts $Y \cap \{z_i \neq 0\}$, and these all agree with each other by the identity $z_0 z_3 = z_1 z_2$. Therefore we have that ψ is a morphism.

Finally we check that it is an inverse. If $x_0, y_0 \neq 0$ we see that

$$\psi\phi\big((x_0:x_1)\times(y_0:y_1)\big)=\psi(x_0y_0:x_0y_1:x_1y_0:x_1y_1)=(1:x_1x_0^{-1})\times(1:y_1y_0^{-1})=(x_0:x_1)\times(y_0:y_1)$$

and we can proceed similarly if one of $x_1 \neq 0$ or $y_1 \neq 0$ instead. If $z_0 \neq 0$ then we see that

$$\phi\psi(z_0:z_1:z_2:z_3)=\phi((1:z_2z_0^{-1})\times(1:z_1z_0^{-1}))=(1:z_1z_0^{-1}:z_2z_0^{-1}:z_1z_2z_0^{-2})=(z_0:z_1:z_2:z_3)$$

and we can proceed similarly if one of the other $z_i \neq 0$ instead.

Additional problems

7. Let $I = \langle x_2 - x_1^2, x_3 - x_1 x_2 \rangle$, let \widetilde{I} be the homogenisation of I with respect to x_0 , and let $I' = \langle x_0 x_2 - x_1^2, x_0 x_3 - x_1 x_2 \rangle$ be the ideal obtained by the homogenisation of the generators. Show that $I' \subseteq \widetilde{I}$. (*Hint*: consider the polynomial $x_1 x_3 - x_2^2$.)

Since $x_1x_3 - x_2^2 = x_1(x_3 - x_1x_2) - x_2(x_2 - x_1^2) \in I$ it follows that $x_1x_3 - x_2^2 \in \widetilde{I}$ (since it is already a homogeneous polynomial). However if $x_1x_3 - x_2^2 \in I'$ then we would have to have $\alpha, \beta \in \mathbb{C}$ such that $x_1x_3 - x_2^2 = \alpha(x_0x_3 - x_1x_2) + \beta(x_0x_2 - x_1^2) \in I'$ which is clearly impossible. Therefore $I' \subsetneq \widetilde{I}$.

8. Prove that any irreducible factor of a homogeneous polynomial is homogeneous.

Suppose $f \in \mathbb{C}[x_0, \ldots, x_n]$ is homogeneous and that f factors as f = gh. We will show that g and h are both homogeneous. Let $g = \sum_{i=d_1}^{d_2} g_i$ be a representation of g where g_{d_1} is the nonzero homogeneous part containing all the terms of least degree in g, and g_{d_2} is the nonzero homogeneous part containing all the terms of highest degree in g. Write $h = \sum_{i=e_1}^{e_2} h_i$ similarly. Now the degree $d_1 + e_1$ part of f is the nonzero term $g_{d_1}h_{e_1}$ and the degree $d_2 + e_2$ part of f is the nonzero term $g_{d_2}h_{e_2}$. Since f is homogeneous we must have $d_1 + e_1 = d_2 + e_2$ and since $d_1 \leq d_2$ and $e_1 \leq e_2$ this implies that $d_1 = d_2$ and $e_1 = e_2$. In other words, g and g are homogeneous.

9. Prove that a regular function on \mathbb{P}^1 is constant. (*Hint*: Suppose $f \in \mathbb{C}(\mathbb{P}^1)$ is a regular function. Show that the restriction to $U_0 \simeq \mathbb{A}^1$ must be a polynomial $f|_{U_0} = p(\frac{x_1}{x_0})$. Now what does $f|_{U_1}$ look like?)

Pick a regular function $f \in \mathbb{C}(\mathbb{P}^1)$. If we restrict f to the affine chart U_0 and let $t = \frac{x_1}{x_0}$ be the coordinate on $U_0 \cong \mathbb{A}^1$, then we get that f is regular for all $t \in \mathbb{A}^1$ so we must have that $f(t) \in \mathbb{C}[t]$ is a polynomial in t. Now if we restrict to the affine chart U_1 , the coordinate on U_1 is given by $\frac{x_0}{x_1} = \frac{1}{t}$ and we must also have that $f \in \mathbb{C}[\frac{1}{t}]$. But now $f \in \mathbb{C}[t] \cap \mathbb{C}[\frac{1}{t}] = \mathbb{C}$, so f must be constant.

10. Show that the rational map $\phi \colon \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ given by $\phi(x : y : z) = (yz : zx : xy)$ is birational. What is ϕ^{-1} ? What is the locus where ϕ is an isomorphism? What is the locus where ϕ is defined? (The map ϕ is usually called the *Cremona transformation*.)

We have that $\phi(x:y:z)=(yz:zx:xy)=\left(\frac{1}{x}:\frac{1}{y}:\frac{1}{z}\right)$, so clearly $\phi^2=\mathrm{id}_{\mathbb{P}^2}$. We have that $\phi=\phi^{-1}$, so ϕ is a rational map with a rational inverse and is therefore is biratonal.

Note that $\phi\phi(x:y:z) = \phi(yz:zx:xy) = (x^2yz:xy^2z:xyz^2)$, and this gives back (x:y:z) as long as $xyz \neq 0$. Therefore ϕ is an isomorphism for the locus $\mathbb{P}^2 \setminus \mathbb{V}(xyz)$.

Along one of the coordinate lines, say $\mathbb{V}(x)$, we have that $\phi(0:y:z)=(yz:0:0)$ which gives the point (1:0:0) as long as $yz \neq 0$. So ϕ is defined, but not injective, on points (0:y:z) with $yz \neq 0$. Similarly for $\mathbb{V}(y)$ and $\mathbb{V}(z)$. Therefore the locus where ϕ is defined is $\mathbb{P}^2 \setminus \{(1:0:0), (0:1:0), (0:0:1)\}$.

For one of the coordinate points, e.g. (1:0:0), since $\phi = \phi^{-1}$ we see that $\phi^{-1}(1:0:0)$ contains all of the points (0:y:z) with $yz \neq 0$, so ϕ cannot be defined at this point. Similarly for (0:1:0) and (0:0:1).