Data Structures and Algorithms

COSC 336 Assignment 2

Instructions.

- 1. Submit by the date and time indicated on Blackboard.
- 2. This is a team assignment. Work in teams of 2-3 students. Submit on Blackboard one assignment per team, with the names of all students making the team.
- 3. For editing your homework. I recommend that you use Latex and Overleaf, see the template files posted on the Blackboard: assignment-template.tex and assignment-template.pdf.
- 4. If a problem has more questions, write down your answers in the same order as the order of questions. In principle, this should help you.

Exercise 1.

- a Find a Θ evaluation for the function $(4n+1)8^{\log(n^2)}$. (Hint: $8^{\log(n^2)}$ can be written in a simpler way.)
- b Give an example of two functions $t_1(n)$ and $t_2(n)$ that satisfy the relations: $t_1(n) = \Theta(n^2)$, $t_2(n) = \Theta(n^2)$ and $t_1(n) t_2(n) = o(n^2)$.
- c Give an example of a function $t_1(n)$ such that $t_1(n) = \Theta(t_1(2n))$.
- d Give an example of a function $t_2(n)$ such that $t_2(n) = o(t_2(2n))$.

(Note: For (b), (c), (d), seek your examples among polynomials, logarithms, exponentials, factorial.)

Exercise 2. Fill the table from Exercise 3-2, page 61 (3-rd edition) in the textbook (also attached below), except row c, as asked in the exercise. For example the entry on the first cell in the top row is "yes" because $\log^k n = O(n^{\epsilon})$. (Note: in row c all the entries are "no", because $n^{\sin n}$ oscillates.)

3-2 Relative asymptotic growths

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω , or Θ of B. Assume that $k \ge 1, \epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

			•				
A	B	0	0	Ω	ω	Θ	
$\log^k n$	n^{ϵ}						
n^k	c^n						1
$-\sqrt{n}$	$n^{\sin n}$						1
2^n	$2^{n/2}$						1
$n^{\lg c}$	$C^{\lg n}$						4
$\lg(n!)$	$\lg(n^n)$						
	$ \frac{\frac{\lg^k n}{n^k}}{\frac{\sqrt{n}}{2^n}} $ $ \frac{1g^k n}{\sqrt{n}} $ $ \frac{1g^k n}{\sqrt{n}} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

. 41 . 4...

Exercise 3. For each of the following program fragments give a $\Theta(\cdot)$ estimation of the running time as a function of n.

```
(a) sum = 0;
   for (int i = 0; i < n * n; i++) {
         for(int j =0; j < n/2; j++)
   }
(b) sum = 0;
    for (int i = 0; i < n; i++) {
   sum++;}
   for(int j = 0; j < n/2; j++){
         sum++;}
(c) sum = 0;
    for (int i = 0; i < n * n; i++) {
         for(int j = 0; j < n * n; j++)
               sum++
   }
(d) sum = 0;
    for (int i = 1; i < n; i = 2*i)
               sum++
(e) sum = 0;
    for (int i = 0; i < n; i++) {
         for(int j = 1; j < n * n; j = 2*j)
               sum++
   }
```

Exercise 4. (a) Compute the sum $S_1 = 500 + 501 + 502 + 503 + \ldots + 999$ (the sum of all integers from 500 to 999). Do not use a program.

- (b) Compute the sum $S_2 = 1 + 3 + 5 + \ldots + 999$ (the sum of all odd integers from 1 to 999). Do not use a program.
- (c) A group of 30 persons need to form a committee of 3 persons. How many such committees are possible?
- (d) Let C_n be the number of committees of 4 persons selected from a group of n persons. Is the estimation $C_n = o(n^3)$ correct? Justify your answer. (Hint: use the formula that gives the number of committees as a function of n.)

Exercise 5. Find a $\Theta(\cdot)$ evaluation for the sum

$$S = 1\sqrt{1} + 2\sqrt{2} + \ldots + n\sqrt{n}.$$

In other words, find a function f such that $S = \Theta(f(n))$.

Show the work for both the upper bound and the lower bound. You can use the technique with integrals, or the method with bounding the terms of the sum.