

Published on Commercial Buildings Energy Modeling Guidelines & Procedures (MGP) (http://www.comnet.org/mgp)

6.10 On-Site Power Generation

Building projects may incorporate other on-site electricity generation equipment, such as cogeneration plants or fuel cells that make electricity and produce heat. Projects may also include wind turbines. These systems may be modeled in various ways and the building descriptors described below should be considered an example of one set. In all cases, the baseline building will be modeled without on-site generation equipment. If there is no thermal link between the power generation equipment and building equipment (such as heat recovery from CHP), on-site power generation can be modeled in a separate process, otherwise, it needs to be linked to the building simulation.

6.10.1 Photovoltaic Systems

Candidate buildings may have photovoltaic (PV) systems and the energy generated by these systems may offset the power used by HVAC, lighting, and other building systems. Since most PV systems work under a net metering arrangement whereby the utility grid is used as a storage battery, accepting excess energy when it is available and providing power back to the building at night and other times when the PV system is not generating, the simulation of PV systems need to be on an hourly time step so that it can be aligned with the building loads and the utility rate structure.

This section describes one set of building descriptors for specifying a PV system. This set of building descriptors is based on the five-parameter model $^{\perp}$. Other models may be used for PV systems. The inputs apply only to the proposed design, as the baseline building is modeled without a PV system.

Configuration

This set of building descriptors addresses the overall layout and design of the PV system, including the orientation and slope of the collectors, how they are wired together, and how they are linked to an inverter that converts DC power to AC and synchronizes it with the grid.

PV System Name

Applicability All PV systems

Definition A unique identifier that can be used to reference the PV system and associate it with the construction documents

Units Text, unique

Input Restrictions The name should provide a link to the construction documents.

Baseline Rules None (PV not modeled for the baseline building)

Number of Modules in a String

Applicability All PV systems

Definition This is the number of modules in a series string. Modules in series increase voltage which is often needed in order to match

output voltage with the inverter requirements; modules in parallel increase current.

Units Numeric: integer Input Restrictions As designed

Baseline Rules None (PV not modeled for the baseline building)

Number of Strings

Applicability All PV systems

Definition This is the number of strings of modules in parallel. Modules in series increase voltage; modules in parallel increase current.

Units Numeric: integer Input Restrictions As designed

Baseline Rules None (PV not modeled for the baseline building)

Collector Area

Applicability All PV systems

Definition The area of the collector module.

Units Square feet (ft²)

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Slope

Applicability All PV systems

Definition The slope of the collector modules relative to the horizontal.

Units Degrees (°)

Input Restrictions As designed

Baseline Rules None (PV not modeled for the baseline building)

Azimuth

Applicability All PV systems

Definition The orientation of the collector modules relative to due North. An azimuth of 180° faces due south; 90° faces east, etc.

Units Degrees (°)
Input Restrictions As designed

Baseline Rules None (PV not modeled for the baseline building)

PV Mounting Height

Applicability All PV systems

Definition The height of the collectors above the ground.

Units Feet (ft)
Input Restrictions As designed.

Baseline Rules None (PV not modeled for the baseline building)

Shading

Shading of PV systems results in significant reduction of production and must be accounted for in an acceptable manner. A method is implied in the following building descriptors that is consistent with the NSHP Calculator². With this method, the area around the solar system is divided into 22.5° cones and the height and distance to shading objects is entered for each quadrant. Other methods may be used, including use of the building shade inputs (see *building site characteristics* under *project data*)

Shading Azimuth

Applicability All PV systems

Definition A quadrant where the height and distance of shading objects is specified.

Units List: ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW

Input Restrictions As estimated from existing surrounding buildings and shading structures

Baseline Rules None (PV not modeled for the baseline building)

Shading Object Height

Applicability All PV systems

Definition The height of the building or shading object in the 22.5° cone

Units Feet (ft)

Baseline Rules None (PV not modeled for the baseline building)

Shading Object Distance

Applicability All PV systems

Definition The horizontal distance from the shading object to the collectors

Units Feet (ft)

Input Restrictions As estimated from existing surrounding buildings and shading structures

Baseline Rules None (PV not modeled for the baseline building)

Collector Performance

The collector performance can be characterized by the following five variables that are available from PV array manufacturers: the open-circuit voltage, the short-circuit current, the voltage and current at the maximum power-point, and the temperature coefficient of the open-circuit voltage. These are described below.

Short-circuit Current

Applicability All PV systems

Definition I_{sc} - current measured with zero voltage

Units Amps

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Open-circuit Voltage

Applicability All PV systems

Definition V_{oc} - voltage measured with an open circuit

Units Volts

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Maximum Power-Point Voltage and Current

Applicability All PV systems

 $Definition \hspace{1cm} I_{mp}, \hspace{1cm} V_{mp} \hspace{0.1cm} \text{- current and voltage at the maximum power-point condition. These parameters are typically reported at Standard}$

Test Conditions of 1000 W/m2 and a cell temperature of 25°C.

Units Amps and Volts

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Open-circuit Temperature Coefficient

Applicability All PV systems

Definition V_{oc} - temperature coefficient at open-circuit voltage

Units I/C

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Short-circuit Temperature Coefficient

Applicability All PV systems

 $V_{\rm oc}$ - temperature coefficient at short-circuit current. This is supplied the manufacturer.

Units V/C

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

Normal Operating Cell Temperature (NOCT)

Applicability All PV systems

Definition The normal operating cell temperature, typically between 45°C and 55°C

Units Degrees Celsius (°C)

Input Restrictions From manufacturer's specification

Baseline Rules None (PV not modeled for the baseline building)

6.10.2 Wind Systems

Wind systems produce electricity and their output depends on the availability of wind at the project site. Wind speed and direction is contained on the climate file used for the building simulation. The building descriptors below assume that the wind turbine is free to pivot to face the wind.

System Name

Applicability All wind systems

Definition A unique identifier that makes a link to the construction documents

Units Text, unique Input Restrictions None

Baseline Rules None (Wind not modeled for the baseline building)

Rated Output

Applicability All wind systems

Definition The rated output of the wind turbine at a given design condition, e.g. wind speed

Units Kilowatts (kW)

Input Restrictions As specified by the manufacturer

Baseline Rules None (Wind not modeled for the baseline building)

Rate Wind Speed

Applicability All wind systems

Definition The wind speed at which the rated output is measured

Units Miles per hour (mph)

Input Restrictions As specified by the manufacturer

Baseline Rules None (Wind not modeled for the baseline building)

Cut-in Wind Speed

Applicability All wind systems

Definition The wind speed above which the system will produce useful power

Units Miles per hour (mph)

Input Restrictions As specified by the manufacturer

Baseline Rules None (Wind not modeled for the baseline building)

Part Load Performance

De Soto, W., S.A. Klein, and W.A. Beckman, "Improvement and validation of a model for photovoltaic array performance", Solar Energy, Volume 80, Issue 1, January 2006, Pages 78-88

^{2.} More information is available at http://www.gosolarcalifornia.ca.gov/nshp/ [1].

Applicability All wind systems

Definition The rated capacity gives the power production at one wind speed. The part load performance will generally be a curve that

gives the output for wind speeds that are greater or lower than the rated wind speed.

Units Data structure

Input Restrictions As specified by the manufacturer

Baseline Rules None (Wind not modeled for the baseline building)

6.10.3 Cogeneration and Fuel Cells

System Name

Applicability All cogeneration systems

Definition A unique identifier that makes a link to the construction documents

Units Text, unique Input Restrictions None

Baseline Rules Not applicable

Rated Output

Applicability All cogeneration systems

Definition The rated electric power that the cogenerator can produce

Units Kilowatts (kW)

Input Restrictions None

Baseline Rules Not applicable

Rated Efficiency

Applicability All cogeneration systems

Definition The efficiency of converting a fuel to electricity

Units Unitless
Input Restrictions None

Baseline Rules Not applicable

Heat Production Rate

Applicability All cogeneration systems

Definition The rate of heat production at the rated output

Units Btu/h
Input Restrictions None

Baseline Rules Not applicable

Heat Temperature

Applicability All cogeneration systems

Definition The temperature of the water produced

Units Degrees Fahrenheit (°F)

Input Restrictions None

Baseline Rules Not applicable

Modulation

Applicability All cogeneration systems

Definition The capability of the cogeneration system to modulate output with corresponding modulation of input energy and waste

heat

Units Data structure
Input Restrictions None

Baseline Rules Not applicable

Schedule

Applicability All cogeneration systems

Definition A schedule that indicates when the cogeneration system will operate and perhaps at what capacity (if there is a means for

modulation)

Units Data structure: schedule, on/off or fractional

Input Restrictions None

Baseline Rules Not applicable © 2010-2014 New Buildings Institute

Source URL: http://www.comnet.org/mgp/content/610-site-power-generation

Links:

[1] http://www.gosolarcalifornia.ca.gov/nshp/