Computational aspects of modular parametrizations of elliptic curves

Hao Chen

University of Washington Ph.D. defense

Advisor: William Stein

April 26, 2016

Part I: Critical subgroups of elliptic curves

Definition

An elliptic curve over $\mathbb Q$ is a nonsingular projective curve $E\subseteq \mathbb P^2$ with defining equation

$$y^2z = x^3 + Axz^2 + Bz^3,$$

where $A, B \in \mathbb{Q}$ and $4A^3 + 27B^2 \neq 0$.

Theorem (Mordell-Weil)

 $E(\mathbb{Q})$ is a finitely generated abelian group, i.e.,

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \oplus T$$
,

for some r > 0 and T finite.

r is called the rank. T is the torsion subgroup.

The BSD conjecture

There is an entire function L(E, s) called the L-function of E.

The rank part of the Birch and Swinnerton-Dyer (BSD) conjecture is

$$rank(E(\mathbb{Q})) = ord_{s=1} L(E, s).$$

- ord_{s=1} L(E, s) is called the analytic rank, denoted by $r_{an}(E)$.
- The BSD conjecture is open when $r_{an}(E) > 1$.
- The proof of rank BSD for $r_{an}(E) \le 1$ uses Heegner points.

Modular curves

Let $N \ge 1$ be an integer, consider the group

$$\Gamma_0(N) = \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in SL_2(\mathbb{Z}) : N \ {
m divides} \ c
ight\}.$$

Let $\mathcal{H}^* := \{z \in \mathbb{C} : im(z) > 0\} \cup \mathbb{Q} \cup \infty$. Then $\Gamma_0(N)$ acts on \mathcal{H}^* .

Definition

 $X_0(N) = \Gamma_0(N) \backslash \mathcal{H}^*$ is the modular curve of level N.

• $X_0(N)$ is a nonsingular projective curve.

The modularity theorem

The Modularity Theorem (Breuil, Conrad, Diamond, Taylor) states the existence of an integer N>1 and a surjective morphism $\varphi:X_0(N)\to E$ defined over $\mathbb Q$.

The smallest such N is called the conductor of E.

Let
$$\omega = \varphi^*(\frac{dx}{y})$$
. Then

$$\omega = cf(z)\mathrm{d}z$$

where f is the modular form attached to E.

We assume E is optimal. Then φ is unique up to sign.

Motivation: find rational points on E

Idea: use φ to find rational points on E from special points on $X_0(N)$.

- Rational points on $X_0(N)$ usually cusps, so only get torsion points.
- Heegner points. Great for $r_{an}(E) = 1$. Always torsion when $r_{an}(E) \ge 2$.
- Ramification points probably always torsion when $r_{an}(E)$ is even.
- Others??

Up to now, there is no known construction of points of infinite order on elliptic curves with analytic rank at least 2!

The critical subgroup $E_{crit}(\mathbb{Q})$

Observation: if K is a number field and $P \in E(K)$, then we can "trace down to \mathbb{Q} ". That is, The point $tr(P) := \sum_{\sigma: \mathbb{Q}(P) \to \bar{\mathbb{Q}}} P^{\sigma}$ is in $E(\mathbb{Q})$.

Definition (Mazur, Swinnerton-Dyer)

The <u>critical subgroup</u> of E, denoted by $E_{crit}(\mathbb{Q})$, is the group generated by traces of images of ramification points of φ .

Question (Mazur and Swinnerton-Dyer, 1974)

Is there an elliptic curve E/\mathbb{Q} with $r_{an}(E) \geq 2$ and $rank(E_{crit}(\mathbb{Q})) > 0$?

Theorem (C.)

For all elliptic curves E of rank 2 and conductor N < 1000, the rank of $E_{crit}(\mathbb{Q})$ is 0.

To prove this, we compute $E_{crit}(\mathbb{Q})$ for each curve.

Critical *j*-polynomial

To help compute $E_{crit}(\mathbb{Q})$, we make the following definition.

Definition

The critical j-polynomial of E is

$$F_{E,j}(x) = \prod_{z \in Y_0(N)} (x - j(z))^{mult_{Ram(\varphi)}(z)}.$$

We have $F_{E,j}(x) \in \mathbb{Q}[x]$ and deg $F_{E,j} \leq 2g - 2$.

For $h \in \mathbb{Q}(X_0(N))$, can define $F_{E,h}(x)$.

Example

$$F_{44a,j}(x) = H_{-44}(x)^2$$
. $F_{37a,j}(x) = H_{-148}(x)$. $F_{37b,j}(x) = H_{-16}(x)^2$.

Here H_d is the Hilbert class polynomial of disc d.

Computing $F_{E,j}$

Idea: use the fact that $Ram(\varphi) = Div(\omega)$. Take two rational functions $r := (j-1728)\frac{\omega}{dj}, \ u := \frac{1}{j} \text{ on } X_0(N).$

Proposition (C.)

For $T \gg 0$, let $P(x,y) = f_n(y)x^n + \cdots + f_1(y)x + f_0(y)$ be an irreducible polynomial over \mathbb{Q} , such that $P(u,rj^T) = 0$. Then

$$F_{E,j}(x) = P\left(\frac{1}{x}, 0\right) \cdot x^A (x - 1728)^B$$

where A, B are explicitly computable.

Hence, it suffices to compute the polynomial P, which can be done using linear algebra, given the q-expansions of r and u.

The critical subgroup $E_{crit}(\mathbb{Q})$

Theorem (C.)

Suppose the analytic rank of E is at least 2, and assume at least one of the following holds:

- (1) $F_{E,j} = \prod_{m=1}^k H_{D_m}^{s_i} \cdot F_0$, where $\mathbb{Q}(\sqrt{D_m}) \neq \mathbb{Q}(\sqrt{D_n})$ for all $m \neq n$, and F_0 is irreducible.
- (2) $F_{E,h}$ is irreducible for some non-constant function $h \in \mathbb{Q}(X_0(N))$.

Then $rank(E_{crit}(\mathbb{Q})) = 0$. In other words, the critical subgroup does not contain points of infinite order.

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\mbox{ (I)}$

Ε	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
389a	32	j	$H_{-19}(x)^2(x^{60}+\cdots)$
433a	35	j	$x^{68}+\cdots$
446d	55	j	$x^{108} + \cdots$
563a	47	j	$H_{-43}(x)^2(x^{90}-\cdots)$
571b	47	j	$H_{-67}(x)^2(x^{90}-\cdots)$
643a	53	j	$H_{-19}(x)^2(x^{102}-\cdots)$
664a	81	$\frac{\eta_4 \eta_8^2 \eta_{332}^5}{\eta_{166} \eta_{664}^6 \eta_2}$	$x^{160}-\cdots$
655a	65	j	$x^{128}-\cdots$
681c	75	j	$x^{148}-\cdots$
707a	67	j	$x^{132}-\cdots$

Critical polynomials for elliptic curves of rank 2 and conductor $<1000\mbox{ (II)}$

Ε	$g(X_0(N))$	h	Factorization of $F_{E,h}(x)$
709a	58	j	$x^{114} - \cdots$
718b	89	j	$H_{-52}(x)^2(x^{172}-\cdots)$
794a	98	j	$H_{-4}(x)^2(x^{192}-\cdots)$
817a	71	j	$x^{140}-\cdots$
916c	113	j	$H_{-12}(x)^8(x^{216}+\cdots)$
944e	115	$\frac{\eta_{16}^4 \eta_4^2}{\eta_8^6}$	$x^{224}-\cdots^1$
997b	82	j	$H_{-27}(x)^2(x^{160}-\cdots)$
997c	82	j	$x^{162}-\cdots$

¹Here 4 of the critical points are cusps, so deg F = 2g - 6.

Discussion

Future work:

- Compute $E_{crit}(\mathbb{Q})$ for E = 5077a. Current method will take roughly 230 days (parallel computation using 64 cpus).
- Prove there are infinitely many elliptic curves with rank 2 such that the critical subgroup is torsion.

Part II: *q*-expansion of newforms at all cusps

Why study q-expansion of newforms at all cusps? (The theory of expansion at the cusp ∞ is well known).

- It gives a direct way to compute the critical subgroup.
- ullet It gives information about the ramification of arphi at cusps.
- It is useful in computing the Galois representation attached to modular forms.

Modular forms

Let f be a function $f: \mathcal{H} \to \mathbb{C}$, $\alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{Z})$, and let $k \in \mathbb{Z}$. The weight-k action of α on f is defined by

$$f|[\alpha]_k(z):=(cz+d)^{-k}f(\alpha z).$$

Definition

A **modular form** of weight k and level N is a holomorphic function $f: \mathcal{H} \to \mathbb{C}$ s.t.

- (1) $f(z) = f|[\alpha]_k(z), \forall \alpha \in \Gamma_0(N).$
- (2) f has holomorphic extension to all cusps of $X_0(N)$.

Cusp forms = modular forms that are zero at all cusps.

Modular forms have q-expansions: $f(q) = \sum_{n>0} a_n q^n$, $q = exp(2\pi iz)$.

Newforms and Twists

Let $S_k(N)$ denote the space of cusp forms.

- $S_k(N)$ decomposes in to a direct sum of the old subspace and the new subspace.
- The new subspace has a basis of simultaneous eigenforms for certain operators (Hecke operators). These eigenforms are called newforms.

Also, modular forms attached to elliptic curves over $\mathbb Q$ are newforms. We will focus on newforms from now.

Fourier expansion

Let $f \in S_k(N)$ be a newform and let $\mathfrak{c} = \left[\frac{a}{c}\right] \in X_0(N)$ be a cusp. Goal: compute the expansion of f at \mathfrak{c} . Denote the expansion by $f_{\mathfrak{c}}(q)$.

Theorem (C.)

Let $c' = \frac{N}{c}$. Then

$$f_{\left[\frac{a}{c}\right]}(q) = \frac{w(f)}{\varphi(c')} \sum_{\chi: \mathsf{cond}(\chi) \mid c'} \chi(-a) R(f, \chi)(q)$$

Here $R(f,\chi)(q)$ is certain power series in q, and it can be computed knowing the twist $f \otimes \chi$ and the pseudo-eigenvalue $w(f \otimes \chi)$.

Examples (I)

Example

Let $E = \mathbf{50a}$ and let $f = f_E$. Let $\mathfrak{c} = \left[\frac{1}{10}\right]$, write $\alpha_0 = 0$ and

$$x^4 + x^3 + x^2 - x + \frac{1}{5} = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)(x - \alpha_4).$$

Then

$$f_{\mathfrak{c}}(q) = \sum_{n \geq 1} \alpha_{\bar{n}} a_n(f) q^n.$$

where $\bar{n} = n \mod 5 \in \{0, 1, 2, 3, 4\}.$

Examples (II)

Example

Let E=48a and let $\mathfrak{c}=\left[\frac{1}{12}\right]$. We computed that

$$f_{c}(q) = -2iq^{2} + 2iq^{6} + O(q^{7}).$$

Since the first coefficient vanishes, we conclude that the modular parametrization $\varphi: X_0(48) \to E$ is ramified at the cusp \mathfrak{c} .

Example

Let E = 98a and $\mathfrak{c} = \left[\frac{1}{14}\right]$. We computed numerically that

$$f_{c}(q) = (-0.755 - 0.172i) q + (0.441 - 0.916i) q^{2} + (1.392 + 1.110i) q^{3} + (0.696 - 0.555i) q^{4} + (1.510 - 0.344i) q^{6} - 3.023iq^{7} + O(q^{8})$$

We can use this to deduce that $F_{E,j}$ is not integral at the prime 13.

Twist of newforms

Let f be a newform on $\Gamma_0(N)$ and χ be a Dirichlet character of modulus N. Then there is a newform $f \otimes \chi$, called the twist of f by χ , on some other group $\Gamma_1(N')$, defined uniquely by

$$a_p(f \otimes \chi) = a_p(f)\chi(p)$$
, for almost all primes p .

Pseudo-eigenvalue

The Atkin-Lehner involution W_N : Let f be a newform on $\Gamma_1(N)$. Then

$$f|W_N=w(f)\bar{f}$$

where w(f) has absolute value 1, and

$$\bar{f} = \sum \overline{a_n(f)} q^n$$
.

The number w(f) is called the pseudo-eigenvalue of f.

Algorithm for identifying $f \otimes \chi$

Lemma (Li)

Suppose f is a newform on $\Gamma_0(N)$. Then the level of $f \otimes \chi$ divides $lcm(N, cond(\chi)^2)$.

The following lemma is a small modification of the Sturm bound argument.

Lemma (C.)

For every $N \ge 1$, there exists an integer B such that: if g_1 , g_2 are two newforms of levels N_1 , N_2 , both dividing N and

$$a_n(g_1) = a_n(g_2)$$
, for all $1 \le n \le B$ such that $\gcd(n, N) = 1$,

then $g_1 = g_2$.

Computing the pseudo-eigenvalue

Recall that modular symbols are linear combinations of $\{\alpha, \beta\}$, $\alpha, \beta \in \mathbb{Q} \cup \infty$, and we can integrate a modular symbol against a modular form via

$$\langle f, \{\alpha, \beta\} \rangle := \int_{\alpha}^{\beta} f dz.$$

Lemma (C.)

There exists a weight-k modular symbol M such that $W_N(M) = N^{k/2-1}M^*$. Moreover, if $\langle f, M \rangle \neq 0$, then

$$w(f) = \frac{\langle f, M \rangle}{\langle f, M \rangle}.$$

Part III: Chow-Heegner points

Motivation: construct rational points on elliptic curves (again).

E,F: two non-isogeneous elliptic curves of same conductor N. φ,ψ : modular parametrisations of E,F.

The Chow-Heegner point associated to the pair (E, F) is

$$P_{E,F} = \sum \varphi(\psi^*(Q)), \forall Q \in F(\mathbb{C})$$

Facts: (1) $P_{E,F}$ is independent of the choice of Q;

(2)
$$P_{E,F} \in E(\mathbb{Q})$$
.

Even index of Chow-Heegner points

Fact: $P_{E,F}$ is torsion when $r_{an}(E) \ge 2$. What else can be done? When E has rank 1, numerical evidence suggests that

$$i_{E,F} := [E(\mathbb{Q})/tors : \mathbb{Z}P_{E,F}]$$

is always even, when it is finite.

Theorem (C.)

If

$$\sigma_0(N) > \log_2(\#E[2](\mathbb{Q}) \cdot F[2](\mathbb{Q})) + 2,$$

then $P_{E,F} \in 2E(\mathbb{Q})$.

In particular, if N is divisible by 7 distinct primes , then $P_{E,F} \in 2E(\mathbb{Q})$.

Computing Chow-Heegner points: previous work

There exist numerical algorithms to compute Chow-Heegner points.

- Darmon, Daub, Lichtenstein and Rotger using (complex and p-adic) iterated integrals.
- Stein using complex integration to lift points via modular parametrization.

We have developed an algebraic algorithm to compute the Chow-Heegner points, again using q-expansions.

Example

Example

E = 89a and F = 89b. Let

$$G_1(x) = x^4 + \frac{13}{4}x^3 + \frac{17}{4}x^2 + \frac{21}{4}x + \frac{9}{2} = \prod (x - a_i)$$

and

$$b_i = -\frac{8}{9}a_i^3 - \frac{20}{9}a_i^2 - \frac{28}{9}a_i - \frac{10}{3}.$$

Then $(a_i, b_i) \in E$

$$P_{E,F} = \sum_{i=1}^4 P_i.$$

We obtain $P_{E,F} = (\frac{3}{4}, -\frac{15}{8})$.

Future work

- Compute Chow-Heegner points for curves of different conductors.
- Prove that 2 divides $i_{E,F}$ without assumptions on N.
- Verify the numerical data of Chow-Heegner points in Stein's table and extend the table.