

GABARITO QUÍMICA

Questão 1

O gráfico a seguir apresenta a taxa de liberação de calor para uma reação química. Ao final da reação é formado 1 mol de produto.

- a. **Determine** a quantidade de produto formada até 4 minutos de reação.
- b. Determine o calor liberado até 11 minutos de reação.

Questão 2

A técnica de calorimetria exploratória diferencial pode ser aplicada para determinar a entalpia de desnaturação uma proteína. Uma amostra contendo 1 g da proteína e uma amostra de alumínio são colocadas no equipamento. O alumínio recebe uma taxa constante de calor de forma que sua temperatura varia $1\,\mathrm{K}\,\mathrm{s}^{-1}$. A taxa de calor fornecida à proteína varia de forma que a temperatura da proteína e do alumínio permanecem iguais em todo o processo. O termograma a seguir apresenta a taxa de calor fornecida à proteína em função de sua temperatura.

- a. Classifique a desnaturação como endotérmica ou exotérmica.
- b. Compare a capacidade calorífica da proteína antes e após a desnaturação.
- c. Estime a variação de entalpia da desnaturação.

Questão 3

Uma massa de óxido de ferro(II), FeO, é aquecida até 1273 K e, em seguida, exposta a uma mistura gasosa de monóxido de carbono e hidrogênio. O óxido é reduzido ao metal sem qualquer fornecimento adicional de energia. O sistema perde 4,2 kJ de calor para a vizinhança por mol de óxido reduzido.

- a. Apresente as equações balanceadas para as reações químicas do processo.
- b. **Determine** a menor razão possível entre as pressões parciais de monóxido de carbono e hidrogênio para que a reação seja auto-sustentável.

Dados em $1273\mathrm{K}$	$\mathrm{FeO}\left(\mathrm{s}\right)$	$H_2O(g)$	CO(g)	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-265	-250	-112	-394

Questão 4

A ustulação da blenda de zinco é conduzida em $1350\,\mathrm{K}$ em um reator do tipo leito fluidizado. Sulfeto de zinco, ZnS, e quantidade estequiométrica de ar são adicionados em fluxo contínuo a $77\,^{\circ}\mathrm{C}$. Nessa temperatura, a reação libera $460\,\mathrm{kJ}$ de calor por mol de sulfeto reduzido, formando óxido de zinco e dióxido de enxofre.

- a. Verifique se a reação é auto-sustentável.
- b. Determine maior a fração mássica possível da impureza sílica, SiO_2 , na blenda para que a reação seja auto-sustentável.

${\rm Dados\ em\ 1350K}$	SiO(s)	ZnS(s)	$O_2(g)$	$N_2(g)$
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	80	60	40	30

Questão 5

A temperatura adiabática de chama é a temperatura que resulta de uma combustão completa em pressão constante que ocorre sem qualquer transferência de calor para a vizinhança.

Considere a combustão do octano, C_8H_{18} , em 25 °C.

- a. Determine a temperatura adiabática de chama da combustão com quantidade estequiométrica de oxigênio.
- b. Determine a temperatura adiabática de chama da combustão com quantidade estequiométrica de ar.
- c. Determine a temperatura adiabática de chama da combustão com 300% de excesso de ar.

Dados em $25^{\circ}\mathrm{C}$	$C_8H_{18}(l)$	$O_2(g)$	$N_2(g)$	$H_2O(g)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-250			-242	394
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$		30	30	44	45

Questão 6

Uma mistura de metano e ar na proporção 1 : 15, em 25 °C e 1 atm, entra em combustão em um reservatório adiabático, consumindo completamente o metano. O processo ocorre sob pressão constante e os produtos formados permanecem em fase gasosa.

- a. Determine a fração molar de vapor d'água no reservatório ao final da reação.
- b. **Determine** a temperatura final do sistema.

Dados em $25^{\circ}\mathrm{C}$	$\mathrm{CH}_4(l)$	$O_2(g)$	$N_2(g)$	$\mathrm{H_2O}\left(\mathrm{g}\right)$	$CO_2(g)$
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/\frac{{ m cal}}{{ m mol}}$	-94			-58	-18
Entalpia padrão, $(H_{1700\mathrm{K}}^{\circ}-H_{298\mathrm{K}}^{\circ})/\frac{\mathrm{cal}}{\mathrm{mol}}$		11,5	10,9	13,7	17,6
Entalpia padrão, $(H_{2000\mathrm{K}}^{\circ}-H_{298\mathrm{K}}^{\circ})/\frac{\mathrm{cal}}{\mathrm{mol}}$		14,1	13,4	17,3	21,9

Questão 7

Monóxido de carbono em $473\,\mathrm{K}$ é queimado com 90% de excesso de ar em $773\,\mathrm{K}$ e $1\,\mathrm{atm}$. Os produtos da combustão abandonam a câmara de reação a $1273\,\mathrm{K}$.

- a. ${\bf Determine}$ o calor liberado por mol de monóxido de carbono formado.
- b. Determine a maior temperatura possível para os produtos de combustão ao final da reação.

Dados em 25 °C	$O_2(g)$	$N_2(g)$	$CO_2(g)$	CO(g)
Entalpia padrão de formação, $\Delta H_{ m f}^{\circ}/{{ m kJ}\over m mol}$			-394	-112
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	30	30	40	30

Questão 8

Um carro comum possui quatro cilindros, que totalizam um volume de $1,6\,\mathrm{L}$ e um consumo de combustível de $9,5\,\mathrm{L}$ por $100\,\mathrm{km}$ quando viaja a $80\,\mathrm{km}\,\mathrm{h}^{-1}$. Cada cilindro sofre 20 ciclos de queima por segundo. O combustível, 2,2,4-trimetilpentano, C_8H_{18} , gaseificado e ar são introduzidos a $390\,\mathrm{K}$ no cilindro quando seu volume é máximo, até que a pressão atinja $1\,\mathrm{atm}$. Na combustão, 10% do carbono é convertido em monóxido de carbono e o restante em dióxido de carbono. Ao final do ciclo, o cilindro se expande novamente até o volume máximo, sob pressão final de $20\,\mathrm{atm}$.

- a. **Determine** a vazão de entrada de ar no motor.
- b. **Determine** a composição dos produtos de combustão.
- c. Determine a temperatura dos produtos de combustão imediatamente após o final da reação.
- d. **Determine** a temperatura de saída dos gases de exaustão.

Dados em 25 °C	$\mathrm{C_8H_{18}(g)}$	$O_2(g)$	$N_2(g)$	$\mathrm{H_{2}O}\left(\mathrm{g}\right)$	$\mathrm{CO}_2(\mathbf{g})$	CO(g)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-187			-242	-394	-112
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$		30	30	40	40	30

Questão 9

Uma amostra de 18 g de água líquida super-resfriada em $-20\,^{\circ}\mathrm{C}$ sob 1 atm é abruptamente convertida em gelo mantendo a temperatura constante.

- a. **Determine** a variação de entropia do sistema.
- b. **Determine** a variação de entropia da vizinhança.
- c. **Determine** a variação de entropia do universo.

Dados em 0 °C	$H_2O(l)$	$H_2O(s)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-286	-292
Capacidade calorífica isobárica, $C_P/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	75	38

Questão 10

Uma amostra de 71 g de cloro, inicialmente a $300\,\mathrm{K}$ e $100\,\mathrm{atm}$ se expande contra uma pressão externa constante de 1 atm até o estado de equilíbrio. Como resultado da expansão, 10% da massa de gás é condensada.

O cloro líquido funde em -35 °C e sua densidade é $1,6 \,\mathrm{g\,cm^{-3}}$.

- a. Determine a variação de energia interna do sistema.
- b. **Determine** a variação de entropia do sistema.

Dados em $-35^{\circ}\mathrm{C}$	$\mathrm{Cl}_2(l)$	$\mathrm{Cl}_2(\mathrm{g})$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-20	
Capacidade calorífica isovolumétrica, $C_V/rac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$		30