

WHAT IS CLAIMED IS:

- 1 1. A method for determining existence of a loss-of-signal (LOS)
2 condition for an input data stream, the method comprising:
3 comparing signal strength of a plurality of data bits of the input data stream to
4 a signal strength threshold level and generating an indication thereof;
5 determining a count value according to the indication; and
6 generating a loss-of-signal indication according to the count value.
- 1 2. The method as recited in claim 1 further comprising sampling the input
2 data stream to obtain the plurality of data bits, the sampling rate being below a data
3 rate of the input data stream.
- 1 3. The method as recited in claim 1 further comprising sampling the input
2 data stream to obtain the plurality of data bits at a sampling rate equal to or higher
3 than a data rate of the input data stream.
- 1 4. The method as recited in claim 1 wherein asserting the loss-of-signal
2 indication comprises comparing the count value to a threshold count level.
- 1 5. The method as recited in claim 4 wherein the threshold count level is
2 programmable.
- 1 6. The method as recited in claim 4 wherein the threshold count varies
2 according to an indication of the signal strength threshold level.
- 1 7. The method as recited in claim 4 wherein the threshold count varies to
2 provide hysteresis in generating the loss-of-signal indication.
- 1 8. The method as recited in claim 7 wherein the threshold count increases
2 when the loss-of-signal indication is asserted.

1 9. The method as recited in claim 1 wherein the comparing further
2 comprises:

3 latching a first value in a register when the signal strength of a data bit of the
4 input data stream is above the signal strength threshold level and
5 latching a second value in the register when the signal strength of the
6 data bit is below the signal strength threshold level.

1 10. The method as recited in claim 9 further comprising:
2 supplying the data bit to an amplifier, which is coupled to supply the data bit
3 to the register; and
4 supplying an offset to the amplifier, the offset being at a level to cause the
5 register to store the first value when the signal strength of the data bit
6 is above the signal strength threshold level and to store the second
7 value when the signal strength of the data bit is below the signal
8 strength threshold level.

1 11. The method as recited in claim 10 further
2 supplying a digital value indicative of the offset to at least one digital to
3 analog converter (DAC); and
4 supplying as the offset an output from the at least one DAC.

1 12. The method as recited in claim 10 wherein first portion of the digital
2 signal is supplied to a first DAC and a second portion to a second DAC, the offset
3 being formed from outputs of the first and second DACs.

1 13. The method as recited in claim 12 wherein at least a portion of the
2 digital signal supplied to the first and second DACs overlap.

1 14. The method as recited in claim 9 wherein the register is clocked at a
2 rate below a data rate of the input data stream.

1 15. The method as recited in claim 14 further comprising decimating an
2 output of the register and supplying the decimated output as a count control signal to a
3 counter to determine the count value.

1 16. The method as recited in claim 15 wherein the count value is the
2 number of data bits having a signal strength above the signal strength threshold level.

1 17. The method as recited in claim 15 wherein the decimating comprises:
2 supplying an output of the register to a one-to-transition converter;
3 dividing an output of the one-to-transition converter;
4 supplying the divided output to a transition-to-one converter; and
5 supplying an output of the transition-to-one converter as the count control
6 signal.

1 18. The method as recited in claim 1 wherein the comparing is for a
2 predetermined number of data bits.

1 19. The method as recited in claim 1 wherein the comparing is performed
2 for each of four phases of a clock before a decision is made that a loss of signal
3 condition exists.

1 20. The method as recited in claim 1 wherein the comparing is performed
2 for at least one phase of a clock before a decision is made that a loss of signal
3 condition exists.

1 21. The method as recited in claim 1 wherein the comparing is repeated for
2 a signal strength threshold for both ones and zeros before a decision is made that a
3 loss of signal condition exists.

1 22. The method as recited in claim 21 wherin the determining for both
2 ones and zeros is repeated for each of for four phases of a clock before a decision is
3 made that a loss of signal condition exists.

1 23. The method as recited in claim 1 wherein the signal strength threshold
2 level is programmable via a communication port on the integrated circuit.

1 24. The method as recited in claim 1 further comprising calibrating the
2 signal strength threshold level each time prior to determining whether the signal
3 strength of a predetermined number of data bits is above or below the signal strength
4 threshold level.

1 25. The method further comprising 24 further comprising calibrating the
2 signal strength threshold for ones before testing for ones and calibrating the signal
3 strength threshold for zeros before testing for zeros.

1 26. The method further comprising 24 wherein the signal strength
2 threshold for zeros is generated by negating the signal strength threshold generated for
3 ones.

1 27. The method as recited in claim 1 wherein the signal strength threshold
2 level is defined by an analog signal on an input terminal.

1 28. A method for determining existence of a loss-of-signal condition, the
2 method comprising:
3 determining for a plurality of data bits of the input data stream whether a
4 signal strength of each of the data bits is above or below a signal
5 threshold level; and
6 determining that a loss of signal condition exists if a predetermined number of
7 the data bits have signal strength below a count threshold level.

1 29. A method for determining existence of a loss-of-signal (LOS)
2 condition comprising:
3 sampling input data;
4 comparing a magnitude of the sampled input data to a threshold signal strength
5 level; and

6 asserting a LOS indication if a number of samples, over a predetermined time
7 period, having a signal strength less than the threshold signal strength
8 level, is more than a predetermined value.

1 30. An integrated circuit for receiving input data and generating a loss-of-
2 signal (LOS) indication associated therewith, comprising:

3 a sample circuit coupled to sample the input data and store a first value when
4 signal strength magnitude of the sampled input data is above a signal
5 strength threshold level and store a second value when signal strength
6 magnitude of the input data is below the signal strength threshold
7 level; and

8 a counter circuit coupled to count according to an output of the sample circuit.

1 31. The integrated circuit as recited in claim 30 further comprising a
2 comparison circuit coupled to compare an output of the counter circuit and a threshold
3 count value and generate the loss-of-signal indication according to the comparison.

1 32. The integrated circuit as recited in claim 31 wherein the threshold
2 count value varies according to an indication of the signal strength threshold level.

1 33. The integrated circuit as recited in claim 31 wherein the threshold
2 count varies to provide hysteresis in generating the loss-of-signal indication.

1 34. The integrated circuit as recited in claim 33 wherein the threshold
2 count increases when the loss-of-signal indication is asserted.

1 35. The integrated circuit as recited in claim 30 wherein the sample circuit
2 includes an amplifier, the amplifier being coupled to receive an offset, the offset
3 being at a level to cause the sample circuit to store the first value when the signal
4 strength magnitude of the input signal is above the signal strength threshold level and
5 to store the second value when the signal strength magnitude of the input signal is
6 below the signal strength threshold level.

1 36. The integrated circuit as recited in claim 35 further comprising
2 a digital control block coupled to supply a digital value of the offset signal;
3 and
4 and at least one digital to analog converter coupled to the digital value of the
5 offset signal and to the amplifier.

1 37. The integrated circuit as recited in 30 further comprising:
2 a decimator circuit coupled to the sample circuit, an output of the decimator
3 circuit coupled as a count control signal for the counter circuit.

1 38. The integrated circuit as recited in claim 37 wherein the decimator
2 circuit comprises:
3 a one-to-transition converter circuit;
4 a divide by n circuit coupled to the one-to-transition converter circuit;
5 a transition-to-one converter coupled to receive an output of the divide by n
6 circuit and coupled to supply an output of the transition to one
7 converter as the count control signal.

1 39. The integrated circuit as recited in claim 37 further comprising a
2 multiple clock phase generator circuit coupled to supply to the register circuit and the
3 decimator circuit one of a plurality of phases of a clock.

1 40. The integrated circuit as recited in claim 30 wherein the signal strength
2 threshold level is programmable.

1 41. The integrated circuit as recited in claim 30 wherein the signal strength
2 threshold level is programmable via a serial communications port on the integrated
3 circuit.

1 42. An apparatus detecting a loss-of-signal (LOS) condition comprising:
2 means for determining for a plurality of data bits of an input data stream
3 whether a signal strength magnitude of each of the data bits is above or
4 below a signal threshold level; and

means for determining that a loss of signal condition exists if a predetermined number of the data bits have signal strength below a threshold level.

43. An apparatus detecting a loss-of-signal (LOS) condition comprising:
means for sampling an input data stream;
means for comparing signal strength magnitude of the sampled input data
stream to a threshold signal strength level; and
means for asserting a LOS indication if a number of samples having signal
strength less than the threshold signal strength level is less than a
predetermined value.