Posición e Intensidad Lumínica de Saturno y sus satélites

Angela María Ramírez Rosales Universidad de Los Andes Noviembre, 2015

Observaciones

- El 15 de Septiembre (7pm), clima a favor de nosotros.
- El 14 de Octubre (7:30pm), cielo nublado, luego despejado.

Posición de las Lunas

Se observó que en dos días diferentes, las lunas cambiaron de posición con respecto a Saturno.

Diámetro del disco:

d = 168pixeles-132pixeles = 36pixeles

Diámetro del disco:

d = 168pixeles-132pixeles = 36pixeles

Radio:

r = diámetro/2 = 18pixeles

Diámetro del disco:

d = 168pixeles-132pixeles = 36pixeles

Radio:

r = diámetro/2 = 18pixeles

Área:

 $a = \pi^* r^2 = 1000 pixeles^2$

Diámetro del disco:

d = 168pixeles-132pixeles = 36pixeles

Radio:

r = diámetro/2 = 18pixeles

Área:

 $a = \pi^* r^2 = 1000 pixeles^2$

 $I = 20000 \text{ fotones/pixel}^2$

Diámetro del disco:

d = 168pixeles-132pixeles = 36pixeles

Radio:

r = diámetro/2 = 18pixeles

Área:

 $a = \pi^* r^2 = 1000 pixeles^2$

Intensidad promedio:

 $I = 20000 \text{ fotones/pixel}^2$

Intensidad Total:

#fotones = I_{promedio}* #pixeles

= 20 millones fotones

Intensidad Lumínica de Rea (183)

Diámetro del disco:

d = 27pixeles-17pixeles = 10pixeles

Radio:

r = diámetro/2 = 5pixeles

Área:

 $a = \pi^* r^2 = 78 \text{ pixeles}^2$

Intensidad:

 $I_{promedio} = 400 \text{ fotones/pixel}^2$

 $I_{ruido} = 350 \text{ fotones/pixel}^2$

 $I_{\text{neta}} = 50 \text{ fotones/pixel}^2$

Intensidad Total:

#fotones = I_{promedio}* #pixeles

= 390 fotones

Intensidad Lumínica de Rea (183)

Diámetro del disco:

d = 27pixeles-17pixeles = 10pixeles

Radio:

r = diámetro/2 = 5pixeles

Área:

 $a = \pi^* r^2 = 78 \text{ pixeles}^2$

Intensidad:

 $I_{promedio} = 400 \text{ fotones/pixel}^2$

 $I_{ruido} = 350 \text{ fotones/pixel}^2$

 $I_{\text{neta}} = 50 \text{ fotones/pixel}^2$

Intensidad Total:

#fotones = I_{promedio}* #pixeles

= 390 fotones

Error

Cálculos:

Dado que la intensidad lumínica es directamente proporcional al área (cuadrado del radio):

```
(Luz<sub>Saturno</sub>/Luz<sub>Rea</sub>) = (Área<sub>Saturno</sub>/Área<sub>Rea</sub>) = 51200
(Diámetro<sub>Saturno</sub>/Diámetro<sub>Rea</sub>) = 226
<u>Lo que significa que Rea sería el 0.44% del tamaño de Saturno.</u>
```

Datos Reales:

Saturno tiene un diámetro de 120500km, y albedo de 0.47. Rea tiene un diámetro de 1525km, y albedo de 0.95 (Refleja casi toda la luz). Entonces (Diámetro $_{\rm Saturno}$ /Diámetro $_{\rm Rea}$) = 80

Error:

El error absoluto fue de 146, y el relativo de 182.5%.

Conclusiones

- Es difícil planear las fechas para tomar las fotos por el clima de Bogotá.
- Los satélites de Saturno se están moviendo (cambio de posición).
- Los cálculos realizados tienen muchos errores experimentales (aproximaciones).
- La ubicación de Saturno (la hora) y los parámetros generales de la cámara afectan la calidad de la foto (aumenta el ruido).

Referencias

- https://es.wikipedia.org/wiki/Saturno_(planeta)
- https://es.wikipedia.org/wiki/Rea_(satélite)
- https://es.wikipedia.org/wiki/Albedo

¡Gracias por su atención!