Tester aparatów telefonicznych

AVT-5056

Naprawić aparat telefoniczny nie jest łatwo, zwłaszcza gdy mamy aparat nowego typu, w którym stosowane jest wybieranie tonowe. Prezentowany układ będzie pomocny właśnie przy naprawach. Uzupełni zarówno wyposażenie pracowni młodego elektronika jak i warsztatu serwisowego.

Tester powstał w celu usprawnienia naprawy aparatów telefonicznych CA z wybieraniem tonowym. Umożliwia on sprawdzenie głównych obwodów aparatu telefonicznego bez podłączania go do linii telefonicznej, a mianowicie:

- wybierania tonowego,
- dzwonka,
- obwodów rozmownych.

W układzie zastosowano scalony odbiornik kodu DTMF typu MT8870 oraz mikrokontroler ST6225. Oprogramowanie dla mikrokontrolera zostało napisane (w zasadzie narysowane) za pomocą znanego Czytelnikom EP programu ST6-Realizer. Scalony dekoder DTMF typu MT8870 został opracowany kilka lat temu przez kanadyjską firmę Mitel. Układ ten integruje w swoim wnętrzu wszystkie bloki funkcjonalne, niezbędne do prawidłowego zdekodowania sygnałów DTMF przesyłanych linią telefoniczną.

Opis układu

Tester został wykonany na jednostronnej płytce drukowanej, na której umieszczone są wszystkie elementy układu. Jego schemat przedstawiono na rys. 1. Zawiera on następujące bloki funkcjonalne:

- układ liniowy,
- odbiornik DTMF,
- procesor ST6225,

- wyświetlacz LCD (alfanumeryczny),
- wyświetlacz LED (jedna cyfra),zasilacz +5VDC/+12VDC/24VAC.
- Zadaniem *układu liniowego* jest zasilanie aparatu telefonicznego z linii, tak jak odbywa się to po dołączeniu aparatu do centrali automatycznej, a także wysyłanie sygnału dzwonienia do badanego aparatu.

Zadaniem odbiornika DTMF jak sama nazwa wskazuje - jest odebranie sygnału DTMF pochodzącego z aparatu telefonicznego z wybieraniem tonowym.

Mikrokontroler ST62T25 jest "sercem" układu odpowiedzialnym za poprawną pracę testera. Na wyświetlaczu alfanumerycznym LCD wyświetlane są komunikaty o stanie pracy układu. Zamiast wyświetlacza alfanumerycznego można zastosować opcjonalnie wyświetlacz LED.

Zasilacz dostarcza napięć zasilających tester: +5V dla części cyfrowej, +12V dla układu linio-

Tab. 1. Składowe częstotliwości sygnałów DTMF przypisane poszczególnym przyciskom klawiatury.								
Częstotliwość [Hz]	1209	1336	1477					
697	1	2	3					
770	4	5	6					
852	7	8	9					
941	*	0	#					

Rys. 1. Schemat blokowy testera.

wego oraz napięcie dla obwodu wywołania 24VAC.

W układzie testera można wyróżnić dwie grupy bloków funkcjonalnych:

- telefoniczne, to jest blok liniowy i odbiornik DTMF,
- cyfrowe, to jest mikroprocesor, wyświetlacz LCD (LED), zasilacz.

Na **rys. 2** przedstawiono schemat elektryczny kompletnego testera.

Do komunikacji pomiędzy procesorem a układem dekodera DTMF wykorzystano sześć wyprowadzeń mikrokontrolera. Dane z wyprowadzeń dekodera Q1...Q4 podane są na wejścia PB6, PB7, PC4, PC5 skonfigurowane jako pull-up. Sygnały sterujące STD i TOE dekodera podane są na wejścia PC6 (pull-up) i PB5, skonfigurowane jako wyjście push-pull.

Kolejnych siedem wyprowadzeń PA0...PA6 skonfigurowanych jest jako wyjścia push-pull. Służą one do sterowania alfanumerycznym wyświetlaczem LCD lub jednocyfrowym wyświetlaczem LED. Przyciski sterujące P1 (zew) i P2 (praca) są dołączone do wejść PB2 i PB3 skonfigurowanych jako wejścia z rezystorem podciągającym (pull-up). Diody sygnalizacyjne D1 i D2 są sterowane z wyprowadzeń PB0 i PB1 (wyjścia push-pull). Transoptory OPT1 i OPT2, wchodzące w skład obwodu liniowego, są połączone z wyprowadzeniami PB4 i PC7 skonfigurowanymi jako wejścia pull-up. Przekaźnik podający napięcie zewu (24VAC) na testowany aparat sterowany jest z wyjścia PA7 (push-pull) za pośrednictwem tranzystora T1. Do sprzęgnięcia odbiornika DTMF

z obwodem liniowym został użyty transformator telefoniczny 1:1 600Ω . W opisywanym układzie procesor i dekoder korzystają z oddzielnych rezonatorów kwarcowych, 8MHz dla mikrokontrolera i 3,579MHz dla dekodera.

Działanie układu

Opis działania testera omówimy w dwóch częściach, oddzielnie dla części "telefonicznej" i "cyfrowej".

Część telefoniczna

Głównym zadaniem części telefonicznej jest symulacja centrali telefonicznej, a właściwie niektórych jej obwodów takich jak: obwód wywołania, zasilania aparatu, odbioru sygnałów wybierania tonowego. Aby aparat telefoniczny można było poddać testowaniu musi być odpowiednio zasilony, tzw. napięciem z linii. W naszym układzie jest to realizowane poprzez następujący obwód: +12V, rezystor bocznikujący transoptor OPT2, styki przekaźnika PK1, złącze śrubowe, żyła A linii, aparat telefoniczny (testowany), żyła B linii, złącze śrubowe, styki przekaźnika PK1, rezystor bocznikujący transoptor OPT1, rezystor RX, transformator 600Ω , masa układu. Po podniesieniu słuchawki w wymienionym obwodzie popłynie prąd zasilający wewnętrzne układy aparatu powodując zadziałanie diod transoptorów OPT1 i OPT2.

Zadziałanie transoptorów spowoduje podanie sygnałów do procesora, informujących o podniesieniu słuchawki. Wysyłanie sygnału wywołania do badanego aparatu następuje w wyniku zadziałania przekaźnika PK1, który podłącza aparat do źródła napięcia przemiennego.

Zgodnie z normą obwody wywołania nie powinny zadziałać przy napięciu niższym niż 16V/ 25Hz, a powinny pracować poprawnie przy napięciu od 40V do 90V/25Hz lub 50Hz. W naszym układzie, ze względów bezpieczeństwa, napięcie wywołania zostało celowo obniżone do wartości 24V/50Hz. Przy tym napięciu powinien zadziałać obwód wywołania w większości aparatów telefonicznych. Wysyłanie sygnału wywołania następuje po naciśnięciu przycisku P2 (ZEW) i tylko wtedy, jeżeli słuchawka aparatu nie jest podniesiona. Wysyłanie sygnału jest przerywane w chwili podniesienia słuchawki. Odbiór sygnałów DTMF jest jednym z najważniejszych zadań testera. Opis tych sygnałów, generowanych przez aparat telefoniczny po wciśnięciu każdego przycisku, zestawiono tab. 1.

WYKAZ ELEMENTÓW

Rezystory

R1, R2, R6, R7, R15: $3.9k\Omega$

R3, R4: 100kΩ

R5: 300kΩ

R8...R14: 560Ω (opcjonalnie)

R16, R17: 820Ω R18, R19: 100Ω

POT1: $10k\Omega$

Kondensatory

C1: 1000µF/40V

C2: 220µF/40V

C3, C4, C7...C9: 100nF

C5, C6: 30pF

C10: 1µF

Półprzewodniki –

D1, D2: LED dowolne

M1: mostek 1,5A

LCD: Wyświetlacz LCD 1X16

T1: BC237

US1: MT8870

US2 ST62T25C: zaprogramowany

US3: 7805

OPT1, OPT2: CNY17F-4

Różne

PK1 AZ850-5

TR1 1:1 600Ω

X1: 3,589MHz

X2: 8,000MHz

P1, P2: przyciski miniaturowe

Złącza śrubowe ARK 1x2 (3 szt.)

Gniazdo gold-pin 1x16

Listwa gold-pin 1x16

Każdemu przyciskowi przyporządkowano sygnały o dwóch częstotliwościach, jedna z wiersza a druga z kolumny tablicy. Tolerancja generowanych częstotliwości nie powinna być większa niż±1,5%. Czas trwania sygnału wysyłanego z aparatu oraz przerwy pomiędzy poszczególnymi sygna-

łami powinien być nie krótszy niż 55ms. W tabeli prawdy (tab. 2) podano stany na poszczególnych wyprowadzeniach układu dekodera MT8870 po prawidłowym zde-

kodowaniu sygnału.

Wyprowadzenia Q1...Q4 są trójstanowymi wyprowadzeniami danych z układu dekodera. Dane te pojawiają się na wyjściu po prawidłowym zdekodowaniu sygnału DTMF przez układ. Czyli wówczas, gdy zostaną spełnione wymagania dotyczące czasu trwania, amplitudy i składowych częstotliwościowych sygnału DTMF.

Niski poziom na wejściu sterującym TOE powoduje wprowa-

Tab. 2. Tablica prawdy dla układu MT8870.									
Sygnał wejściowy		INH	EST	Q4	Q3	Q2	Q1		
Dowolny	L	Χ	Н	Ζ	Z	Z	Z		
1	Н	Χ	Н	0	0	0	1		
2	Н	Χ	Н	0	0	1	0		
3	Н	Χ	Н	0	0	1	1		
4	Н	Χ	Н	0	1	0	0		
5	Н	Χ	Н	0	1	0	1		
6	Н	Χ	Н	0	1	1	0		
7	Н	Χ	Н	0	1	1	1		
8	Н	Χ	Н	1	0	0	0		
9	Н	Χ	Н	1	0	0	1		
0	Н	Χ	Н	1	0	1	0		
*	Н	Χ	Н	1	0	1	1		
#	Н	Χ	Н	1	1	0	0		
Α	Н	L	Н	1	1	0	1		
В	Н	L	Н	1	1	1	0		
С	Н	L	Н	1	1	1	1		
D	Н	L	Н	0	0	0	0		
А	Н	Н	L	Wartość nie jest określona (podtrzymanie poprzedniej danej)					
В	Н	Н	L						
С	Н	Н	L						
D	Н	Н	L						

Tester aparatów telefonicznych

dzenie wyjść danych Q1...Q4 w stan wysokiej impedancji. W standardzie DTMF mamy możliwość zakodowania aż 16 znaków, lecz zazwyczaj wykorzystanych jest 12. Układ MT8870 ma możliwość zdekodowania wszystkich 16 znaków. Aby wejść w ten tryb pracy należy na wejście INH podać odpowiedni poziom napięcia i tak dla: INH="H" - tryb

pracy 12 znaków, INH="L" - tryb pracy 16 znaków.

Po poprawnym zdekodowaniu sygnału wejściowego DTMF, na wyjściu STD pojawia się poziom wysoki. Wyjście to najczęściej jest stosowane do informowania współdziałającego z dekoderem mikrokontrolera. Pozwala to na bieżące śledzenie pracy dekodera. Opis działania programu mikro-

kontrolera współpracującego z dekoderem przedstawimy w kolejnej części.

Krzysztof Górski, AVT krzysztof.gorski@ep.com.pl

Wzory płytek drukowanych w formacie PDF są dostępne w Internecie pod adresem: http://www.ep.com.pl/?pdf/marzec02.htm oraz na płycie CD-EP03/2002B w katalogu PCB.