CURSO ESPECIALIZADO

PELIGROSIDAD SÍSMICA

Método Determinista (DSHA)

Organizado por:

SESIÓN 5: Reproducción del terremoto del 1746 de Lima Mw 9.0

DOCENTE DEL CURSO

Mag. Ing. Jorge Trujillo

EVALUAR EL GRAN TERREMOTO DE LIMA DE 1746, MW 9.0 IMPLEMENTANDO EL METODO DETERMINISTA (DSHA) CON ARGIS PRO

Acorde a Pérez (2005), "El gran terremoto que destruyó Lima y asoló su puerto de El Callao en 1746. Fue el movimiento sísmico más destructivo que sopórtala capital del Perú durante la época colonial y originó una profunda y dramática crisis."

Carcelén et al (2020):

"El 28 de octubre de 1746 a las 10:30 de la noche ⁴, Lima fue sacudida por un terremoto que dejó unas 1300 personas muertas ⁵ mientras que en El Callao el número fue mayor, unos 3800 muertos ², ya que el sismo fue seguido por un tsunami, con olas de entre 10 y 24 metros ⁶. En total se puede hablar de la pérdida del 8% de la población total de Lima y Callao, que se calcu laba en unos 65 000 habitantes en esos años ⁴. Se calcula la fuerza sísmica en 8.4° en la escala Richter. La severidad del terremoto fue tal, que la intensidad en la escala Mercalli Modificada se ha estimado en X-XI, lo que indica un grado de destrucción altísimo.

Respecto a los daños se requirió la reconstrucción de «las fortificaciones y población de El Callao, al igual que los dos edificios más significativos de la capital: el palacio virreinal y la catedral. Los principales hospitales, conventos y templos sufrieron derrumbes y grandes destrozos, únicamente permaneció ilesa la iglesia de San Francisco y la de Santo Domingo sufrió daños menores» ⁷."

2.Petit-Breuilh M. Desastres naturales y ocupación del territorio en Hispanoamérica. Huelva: Universidad de Huelva; 2004.

4. Walker C. The Upper Classes and Their Upper Stories: Architecture and the Aftermath of the Lima Earthquake of 1746. Hispanic American Historical Review. 2003; 83(1): 53-82.

5. Pérez-Mallaína P. Retrato de una ciudad en crisis: la sociedad limeña ante el movimiento sísmico de 1746. Lima: Pontificia Universidad Católica del Perú - Instituto Riva-Agüero; 2001.

6. Jiménez C. et al. Seismic Source of 1746 Callao Earthquake from Tsunami Numerical Modeling, Journal of Disaster Research. 2013; 8 (2): 270.

7. Pérez-Mallaína P. », » ®, ® §, § ­, ¹,¹ ²,² ³,³ ß,ß Þ,Þ þ,þ ×,× Ú,ú û,û û,û Ù,ù ù,ù ¨,¨ Ü,Ü ü,Ü ü,Ü ý,ý ý,ý ý,ý ý,ý ý,ý ý,ý ý,ú û,û û

INDECI - DIPRE (2017) CEPIG

Escenario sísmico para Lima Metropolitana y Callao: Sismo 8.8Mw

INDECI - DIPRE CEPIG

Fuente: Villegas-Lanza et al., 2016

Parámetros sísmicos	IGP (2017)	USGS	Jiménez (2016)	Final	
Magnitud (Mw)	8.8		9.0	8.8	
Profundidad (km)	35	Hayes et al (2018)		Hayes et al (2018)	
Intensidad Max	VIII			N/A	
Latitud			-11.35°	-11.35°	
Longitud			-77.28°	-77.28°	
Azimut (Strike)		Hayes et al (2018)		Hayes et al (2018)	
Buzamiento (dip)		Hayes et al (2018)		Hayes et al (2018)	
Mecanismo focal	Inversa		Inversa	Inversa	

OBJETIVO PRINCIPAL

Reproducir el terremoto de Lima del 1746 de 9.0 Mw implementando el método determinista (DSHA) en un SIG con la aplicación ArcGIS Pro

Fuente sísmica

El escenario sísmico es el terremoto de Lima del 1746 con epicentro en las coordenada aproximada de longitud 77.28° y latitud de -11.35°, con emplazamiento en todo el Perú. La magnitud máxima es de Mw. 9.0. Haciendo uso de las relaciones alternativas de subducción de Hayes et al (2017), que a partir de la magnitud se obtiene la longitud y ancho del plano de ruptura. Este terremoto generó un gran tsunami de dos ola de las cuales la más grande fue de 25m. Además este terremoto genero un desplazamiento de aproximadamente 10m (Jiménez, 2016).

Deformación inicial del fondo marino

Fuente: Bruno et al (2013)

Mapa de inundación del tsunami en el Callao y Miraflores (altura máxima de ola, 25m)

Fuente: Jiménez (2013)

Mecanismo focal del terremoto del Lima, 1746. En proyección esterográfica

Fuente: Jiménez (2016)

FLUJOGRAMA DEL PROCESO DE MODELAMIENTO DEL PLANO DE RUPTURA

PLANO DE RUPTURA

EFECTO DE SITIO

Ck= C1*CI+C2*CII+C3*CIII+C4*CIV

Coeficientes de efecto de sitio

Coeficientes para efecto de sitio							
Periodo	CH	C1	C2	С3	C4		
PGA	0.293	1.111	1.344	1.355	1.42		

Fuente: Zhao et al., 2006

Fuente: Elaboración propia

ACELERACIÓN SÍSMICA

 $Log(y) = aMwi + bxij - log(rij) + e(h-hc)\delta h + FR + SI + SS + SSLlog(xij) + Ck + \xi ij + nij$

rij=xij+cexp(dMwi)

Tabla del modelo GMPE de Zhao et al (2006)

Coeficientes del modelo GMPE de Zhao et al (2006)								
Periodo (seg)	а	b	С	d	е	SR	Ss	SSL
PGA	1.101	-0.00564	0.0055	1.08	0.01412	0.251	2.607	-0.528

Fuente: Zhao et al (2006)

RESULTADO DE ARCGIS PRO

PELIGROSIDAD SÍSMICA

Métodos DETERMINISTA

El movimiento sísmico se debe a UN ESCENARIO SÍSMICO CONCRETO, relacionado con la ocurrencia de **un único terremoto.**

Resultado: en un punto concreto Espectro de respuesta especifico (SRS)

Métodos PROBABILISTA

Probabilidad de que un cierto valor del parámetro de movimiento sea excedido en un emplazamiento específico durante un determinado periodo de tiempo.

$$P(y > Y, t) = \tau \iiint P(y > Y, t | m, r, \varepsilon) \cdot p(m) \cdot p(r) \cdot p(\varepsilon) \ dm \ dr \ d\varepsilon$$

Resultado en un punto concreto: Espectro de peligrosidad uniforme (UHS)

