Orbital Energies

(-)Orbital Energies

- Sc to Zn: 3d electrons added effectively screens 4s electrons
- Ga to Kr: 4p electrons ineffective screen for 4s
- 2s and 2p: Successive electrons added do not screen each other very well

Orbital Energy Variation

Orbital Energy $\sim Z_{eff}^2/n^2$

Down the group (-)orbital energy decreases- n² dominates

(-)Orbital Energies (generally!!!)

Trends: Bonding between elements (Non-metals)

The Effect of Orbital Size and Energy Mismatch

- When two different elements combine, the size of interacting AO's and energies will differ
- Size of AO's determine strength of bonds as well as the nature
- When orbital energies are closely matched, equal sharing of electrons lead to "covalent" bond
- However, large difference of energies between Aos can still give rise to strong bonds
- In extreme cases an electron transfer can give rise to an "ionic" bond

Size mismatch between orbitals

Molecule	H ₂	HLi	HNa	НК	HRb	HCs
Bond strength kJ/mol	436	238	186	175	167	175

Generally, if two similar valance orbital of approximately same energy combine, the smaller the orbital, the stronger the bond

π-Bonding

 π -bonds are more susceptible to size of orbitals

2p-2p overlap	barrier	2p-3p overlap	barrier	3p-3p overlap	barrier
			149		
$H_2C=CH_2$	274	$H_2C=SiH_2$	149	$H_2Si=SiH_2$	105
H ₂ C=NH	265	H ₂ C=PH	180	H ₂ Si=PH	120
HN=NH	251	HN=PH	185	HP=PH	14

The rapid fall-off in strength of the π -bonding accounts for the fact that it is often preferred between period 2 elements

Recall: Bond Strength Variation Across Period

N₂ has enough electrons to fill all bonding MO while only one anti-bonding MO is filled

Bond strengths, measured in the gas phase of the period 2 heteronuclear diatomics

While the bond strengths follow the same the same trend for homonuclear diatomics, the nature of bonding substantially changes

Covalent vs Ionic: Orbital Energy Differences

Orbital energy differences affects not only the strength but also the nature of the bonds

Recall:

Covalent vs Ionic

- The fractional charges are + 0.7 and 0.7 on Li and F
- It require approximately 577 kJmol⁻¹ (about 6 eV) to break Li-F bond
- However, it produces Li and F atoms in gas phase

The C-F Bond

Covalent vs Ionic

Orbital Energy and Bond type

Van Arkel Diagram

