Electric Fields & Gauss' Law

- We have seen how the force between two or more particles can be expressed via Coulomb's Law:

$$ec{F}_{12}=rac{1}{4\pi\epsilon_0}rac{q_1q_2}{r^2}\hat{r}$$
 or $ec{F}_{1,\mathrm{net}}=\sum_i F_{1i}$

[give brief example with three charges]

- Can use this to find the force given q1 and qi.
- Magnitude and sign of q1 will change answer.
- We want some way to express the force at a given point p for any charge q at p
- We can eliminate q1 from the calculation:

Electric field due to charge q2

$$\frac{\vec{F}}{q_1} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{r^2} \hat{r} = \vec{E}(\vec{r})$$

- Direction of E-field does not depend on the sign of q1:

$$\begin{array}{ccc} & & & & & & & \\ \vec{F}(r) = -\frac{1}{4\pi\epsilon_0}\frac{eq_2}{r^2}\hat{r} & & & \vec{F}(r) = \frac{1}{4\pi\epsilon_0}\frac{eq_2}{r^2}\hat{r} \\ & & & \vec{F}(r) = \frac{1}{4\pi\epsilon_0}\frac{eq_2}{r^2}\hat{r} \\ & & & & & \\ \hline \frac{\vec{F}(r)}{-e} = \vec{E}(r) = \frac{1}{4\pi\epsilon_0}\frac{q_2}{r^2}\hat{r} \end{array}$$

35

- Electric field (or any field) is <u>defined at each point</u> in space.

Temperature (Scalar, just a number)

Wind speed (Vector, num. + direction)

A point or arrow at every location

- We can always calculate the force from the E-field:

$$\vec{F} = q \cdot \vec{E}(\vec{r})$$

- The direction of the electric field is such that the E-field points in the same direction as the force if q is positive.

Since E-field is in same direction as F when g is positive:

Electric field points away from positive charges and toward negative charges

"Out of the positive, in to the negative"

37

Ex. What about electric field due to many charges?

What is the magnitude and direction of E at p?

- Can use superposition principle since E=F/q.
- Do easy stuff first

$$E_{q_1}$$
 in x-direction only: $E_{q_1}(p) = rac{kq_1}{b^2}\hat{x}$

$$E_{q_3}$$
 in y-direction only: $E_{q_3}(p)=rac{kq_3}{a^2}\hat{y}$

- E-field from q2 must be calculated at point p, and then decomposed into x/y components

$$|E_{q_2}(p)| = \frac{kq_2}{a^2 + b^2}$$
 $\tan \theta = \frac{a}{b}$ $\theta = \arctan \frac{a}{b}$

$$\tan \theta = \frac{a}{b}$$

$$\Rightarrow$$

$$\theta = \arctan \frac{a}{b}$$

$$E_{q_2}(p) = \frac{kq_2}{a^2 + b^2} \cos\theta \hat{x} + \frac{kq_2}{a^2 + b^2} \sin\theta \hat{y}$$

- Add all up components

$$E_{q_2}(p) = \left[\frac{kq_1}{b^2} + \frac{kq_2}{a^2 + b^2} \cos \theta \right] \hat{x} + \left[\frac{kq_3}{a^2} + \frac{kq_2}{a^2 + b^2} \sin \theta \right] \hat{y}$$

- find angle

$$E_y \quad \tan \psi = \frac{E_y}{E_x}$$

- Electric field tells us something about a point charge or charge distribution
- The electric field can be represented graphically

39

- Force on negative charges is in opposite direction of E-field

- Lets look at E-field from more than one charge:

- Electric field points outward everywhere except in the middle of the two charges
- +4 charges pushes strongly on a test charge in the middle, but eventually +1 wins since

$$\vec{E} \propto 1/r^2$$

- There exists an equilibrium point in between the two charges where E=0 (near +1)
- There is always an equilibrium point between two charges with the same sign.

41

- (+) charges are sources of E-field, (-) charges are sinks; Think of E-field as a fluid.

2 rivers in Switzerland

Ex. Electric field from a charged disc:

A thin disc with radius R=10cm, and a hole in the middle with r=4cm, has a total charge Q=7nC. What is the electric field on the z-axis at point P as distance of h=30cm from the from the center of the disc?

- First, this is a continuous charge distribution -> we must find the charge density $\ensuremath{\sigma}$

$$\sigma = \frac{Q}{A} = \frac{Q}{\pi \left(R^2 - r^2\right)}$$

- We must add up the electric field from all infinitesimal charge elements dQ:

$$E = \frac{kQ}{d^2} \to dE = \frac{kdQ}{d^2} = \frac{k\sigma dA}{d^2}$$

recall:
$$Q = \sigma A \rightarrow dQ = \sigma dA$$

- Looking at the figure, we see that this example has some symmetry. Lets use it.
- Since we can rotate the disc around the z-axis and not change the problem, this tells use that there can be no net force in any direction but the z-direction.

$$dE_z = \frac{k\sigma dA\cos\theta}{d^2} = \frac{kh\sigma dA}{d^3} \quad \text{since} \quad \cos\theta = h/d$$

- Since the problem circular, express the area in terms of polar coordinates:

$$dA = x dx d\phi$$

- express distance d in terms of h and x:

$$dE_z = \frac{kh\sigma dA}{\left(x^2 + h^2\right)^{3/2}}$$

- Write out integral noting that there is no ϕ dependence in the problem

$$E_z = \int_0^{2\pi} d\phi \int_r^R \frac{kh\sigma x}{(h^2 + x^2)^{3/2}} dx$$

- can be further simplified:

$$E_z = 2\pi k h \sigma \int_r^R \frac{x}{(h^2 + x^2)^{3/2}} dx$$

- solving integral:

$$E_z = 2\pi k h \sigma \left[\frac{1}{\sqrt{r^2 + h^2}} - \frac{1}{\sqrt{R^2 + h^2}} \right]$$

- Replace σ with Q/A:

$$E_z = \frac{2kQh}{R^2 - r^2} \left[\frac{1}{\sqrt{r^2 + h^2}} - \frac{1}{\sqrt{R^2 + h^2}} \right]$$

- Finally, plug in numerical values

$$R = 0.1 \text{ m}$$

 $r = 0.04 \text{ m}$
 $Q = 7 \times 10^{-9} \text{ C}$
 $h = 0.3 \text{ m}$
 $k = 9 \times 10^9 \text{ C}^2/\text{N} - \text{m}^2$

$$E_z = 630 \frac{\text{N}}{\text{C}}$$

43

Electric Dipoles:

- Let us consider two charges, one with charge +q and the other -q, separated by a distance d
- What happens far away?
 - Total charge is zero
 - Arrows do not point in or out far away.
- E-field from point charge: 1/r^2
 - Since zero net charge, E-field should fall off faster than 1/r^2
 - E-field from dipole: 1/r^3
 - Can be calculated for the two axes with symmetry (see textbook).
- Dipoles are everywhere: H20, antennas,... (remember water movie)

- Easy to create dipole with conductors by induction:

Electric Dipole in E-field:

- (+) charge will experience force in direction of E-field
- (-) charge will experience force opposite of E-field
- E-field produces a torque on the dipole.
- Dipole rotates clockwise (in this example)
- Dipole wants to align with the E-field

- Torque reverses direction if dipole goes past alignment.
- recall that torque $\, \vec{\tau} = \vec{r} \times \vec{F} \,$ or $\, \tau = |r||F|\sin \theta \,$
- also $\vec{F}=q\vec{E}$ so $\vec{ au}=q\vec{r} imes\vec{E}$
- define "electric dipole moment": $\vec{p}=q\vec{d}$
- dipole moment always points from -q to +q
- torque on dipole: $\vec{\tau} = \vec{p} \times \vec{E} ~~{
 m or}~ \tau = |p||E|\sin\theta$

