### Possible plan

- I) Problem Linearization.
- II) Iterative solvers and preconditionning.
- III) Practical computation.
  - i) Getting rid of  $B^{-1}$  and Changing the resolution.
  - ii) Usual but inconsistent strategy.
  - iii) Consistent strategy.
- IV) Equivalence conditions.
  (peut-on demontrer ces conditions dans un cadre general?)

### Possible plan

- IV) A quantitative illustration of the inconsistant strategy on a simple example.
  - (a-t-on une idee quantitative de l'erreur commise?) (comportement de cette erreur en passant à un vrai modele physique?) (comportement de cette erreur en changeant de
  - (comportement de cette erreur en changeant de preconditionneur/d'espace?)
- V) Application of the consistent strategy to a physical model. (quel modele utiliser? Pour convaincre qui?)

#### Code Multi

- Compute  $J = J_o + J_b$ .
- Uses Lanczos in model space and PlanczosIF in control space.
- Allow to vary :  $var(\sigma^b)$ ,  $\sigma^o$ ,  $L_b$ ,  $N_{obs}$ , inner/outer iterations, preconditionning (Ritz vector, Spectral method, none).

### Code Multi



# Outputs of the code( $L_b = 0.005$ , $N_{obs} = 128$ )



# Outputs of the code( $L_b = 0.001, N_{obs} = 128$ )



# Outputs of the code( $L_b = 0.005$ , $N_{obs} = 2048$ )



- Réorthogonalisation.
- $\bullet$   $\Delta J$  en fonction des paramètres.
- Coder la méthode usuelle pour comparer.