Claims

1. A method for treating a mammalian disease
 2 characterized by abnormal cell mitosis, said method

3 comprising administering to a mammal a cell-mitosis-

4 inhibiting compound of the formula below, said compound

5 being administered in an amount sufficient to inhibit cell

6 mitosis:

7

$$R_{e}$$

$$Z'$$

$$R_{o}$$

$$R_{e}$$

$$R_{f}$$

$$R_{g}$$

$$R_{h}$$

$$R_{h}$$

$$R_{h}$$

$$R_{m}$$

8 wherein:

9 I. R_a-R_o are defined as follows:

10 A) each R_a , R_b , R_c , R_d , R_e , R_f , R_i , R_j , R_k , R_1 ,

11 R_m , R_o , independently is $-R_1$, $-OR_1$,

```
12
                              -OCOR_1, -SR_1, -F, -NHR_2, -Br, or -I; and R_q
  13
                              is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
  14
                              -I, or -C≡CH;
  15
        or
  16
                       B)
                             each R_a, R_b, R_c, R_f, R_k, R_1, R_o,
  17
                             independently is -R_1, -OR_1, -OCOR_1, -SR_1,
  18
                             -F, -NHR<sub>2</sub>, -Br, or -I; and each R_d, R_e, R_i,
  19
                             R_i, R_m, independently is =0, -R_1, -OR_1,
 20
                             -\text{OCOR}_1, -\text{SR}_1, -\text{F}, -\text{NHR}_2, -\text{Br} or -\text{I}; and R_q
 21
                             is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2,
 22
                             -Br, -I, or -C≡CH;
 23
       and
 24
                Z' is defined as follows:
         II.
 25
 26
 27
                            Z' is X, where X is >COR_1, >CC-R_1,
                      A)
 28
 29
 30
31
      or
32
                           Z' is =C-X'- or -X'-C=, where R_n R_n R_n
                     B)
33
34
35
                           is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
36
                           and X' is X, as defined above; or X' is
37
                           >C=0;
38
     and
        III. Z" is defined as follows:
39
40
41
42
                           Z^{"} is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
                     A)
43
44
45
                           >C=0, >C-(CH_2)_nOR_2,
```

```
46
                                                                                                            R_1 R_1 R_1 R_1 R_1 R_2 R_3 R_4 R_4 R_5 R_5
         47
        48
        49
        50
        51
                                                                                                          R_1 O R_1 OH CH_2 C-NH(CH_2)_n-CR_2, C-NH(CH_2)_n-CHR_2,
       52
       53
      54
      55
                                                                                                         R_1 OH | >C-NH(CH<sub>2</sub>)<sub>n</sub>-CH-OR<sub>2</sub>,
      56
      57
     58
     59
     60
    61
                                                                                                        62
    63
    64
   65
   66
                                                                                                        >C-(CH<sub>2</sub>)<sub>n</sub>-NHC-OR<sub>2</sub>,
   67
                                                                                                      ^{R_1} OH ^{R} OH ^{|} OH ^{|} OH ^{|} ^{|} >C-(CH<sub>2</sub>)<sub>n</sub>-NH-COR<sub>2</sub>, or
   68
  69
  70
  71
                                                                                                      >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
  72
 73
                      or
 74
                                                                                                     Z" is -Y-CH- or -CH-Y- where Rp
                                                                              B)
 75
 76
77
                                                                                                     is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
78
                     and
                                                      provided that when each R_b, R_c, R_d, R_e, R_i, R_j, R_k,
79
                              IV.
08
                                                      R_1, R_m and R_o is H;
81
                                                      R<sub>f</sub> is -CH<sub>3</sub>;
```

R_g is -OH;
Z' is >COH; and

L'' is >CH₂;
then R_a is not -H;
where, in each formula set forth above, each R₁ and R₂
independently is -H, or substituted or unsubstituted alkyl,
alkenyl or alkynl group of 1-6 carbons.

2. A method for treating a mammalian disease
 2 characterized by abnormal cell mitosis, said method

3 comprising administering to a mammal a cell-mitosis-

4 inhibiting compound of the formula below, said compound

5 being administered in an amount sufficient to inhibit cell

6 mitosis:

```
8
           wherein:
       9
             I.
                    R_a-R_k are defined as follows:
    . 10
                          A)
                                each Ra, Rb, Rc, Rd, Rg, Rh, Ri, Rk
                                independently is -R_1, -OR_1, -OCOR_1, -SR_1,
      11
      12
                               -F, -NHR<sub>2</sub>, -Br, or -I; and R_e is -R_1, -OR<sub>1</sub>,
      13
                               -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I or -C = CH;
      14
           or
      15
                          B)
                               each Ra, Rb, Rc, Rd, Rk, independently is
                               -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br, or
      16
                               -I; and each R_{eq}, R_{h}, R_{i}, independently is
      17
                               =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F, -Br, or
      18
                               -I; and R_e is =0, -R_1, -OR_1, -OCOR_1, -SR_1,
      19
      20
                               -F, -Br, -I or -C≡CH;
           and
      21
     22
             II.
                   Z' is defined as follows:
     23
     24
                               Z' is X, where X is >COR_1, >CC-R_1,
     25
                         A)
                               O OH OH
| | |
>CC-OR<sub>1</sub>, >CC-R<sub>1</sub>, >C-C-OR<sub>1</sub>;
     26
     27
     28
     29
           or
30
                         B)
     31
     32
                               is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I,
     33
     34
                               and X' is X, as defined above;
     35
                               or X' is also >C=O;
     36
           and
     37
             III. Z" is defined as follows:
     38
     39
                               Z" is Y, where Y is -0-, -N-, >CHR_1,
      40
                          A)
```

```
41
              42
              43
                                                                                                                                                                                                       >C=0, >C-(CH_2)_nOR_2,
              44
              45
              46
            47
            48
           49
          50
                                                                                                                                                                                                  R_1 OH R_1 OH R_1 OH R_2 OH R_3 OH R_4 OH R_2 R_4 OH R_4 R_5 R_5 OH R_5 R_6 R_7 OH R_2 R_7 R_8 R_8 R_1 OH R_2 R_1 OH R_2 R_3 R_4 R_5 R
          51
         52
                                                                                                                                                                                                R_1 OH | >C-NH(CH<sub>2</sub>)<sub>n</sub>-CH-OR<sub>2</sub>,
         53
         54
        55
       56
                                                                                                                                                                                                57
      58
      59
                                                                                                                                                                                                      R_1
      60
     61
                                                                                                                                                                                               \dot{C}-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>,
    62
                                                                                                                                                                                             63
    64
                                                                                                                                                                                           R_1 OH R OH | OH 
    65
   66
   67
  68
                                                                                                                                                                                                  R_1
  69
  70
                                                                                                                                                                                            >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
 71
                                        or
72
                                                                                                                                                                                           Z" is -Y-CH- or -CH-Y-, where R_p is
                                                                                                                                                  B)
73
74
75
                                                                                                                                                                                          -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
```

- 76 where, in each formula set forth above, each R_1 and R_2
- 77 independently is -H, or substituted or unsubstituted alkyl,
- 78 alkenyl or alkynl group of 1-6 carbons.
 - 3. A method for treating a mammalian disease
 - 2 characterized by abnormal cell mitosis, said method
 - 3 comprising administering to a mammal a cell-mitosis-
 - 4 inhibiting compound of the formula below, said compound
 - 5 being administered in an amount sufficient to inhibit cell
 - 6 mitosis:

$$R_{a}$$
 R_{b}
 R_{c}
 R_{i}
 R_{k}
 R_{j}
 R_{m}

8 wherein:

9

I. R_a-R_o are defined as follows:

10 A) each R_a , R_b , R_c , R_d , R_e , R_f , R_i , R_j , R_k , R_1 , R_m , R_o independently is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, or -I; and R_g is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, -I or -C = CH;

```
15
       or
                              each R_a, R_b, R_c, R_f, R_k, R_1, independently
 16
                        B)
                               is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
 17
                              or -I; and each R_d, R_e, R_i, R_i, R_m, R_o
 18
                              independently is =0, -R_1, -OR_1, -OCOR_1,
 19
                              -SR_1, -F, -NHR_2, -Br, or -I; and R_q is =0,
 20
                              -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I
21
22
                              or -C≡CH;
23
      and
                 Z is defined as follows:
24
         II.
25
26
                              Z is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
27
                       A)
28
                              R_1
>C=0, >C-(CH<sub>2</sub>)<sub>n</sub>OR<sub>2</sub>,
29
30
                              31
3.2
33
34
                              35
36
                              \begin{matrix} \mathbf{R_1} & \mathbf{OH} \\ \mid & \mid \\ > \mathbf{C-(CH_2)_n-CH-OR_2,} \end{matrix} 
37
38
39
40
                             R_1 O R_1 OH |  OH |  C-NH(CH<sub>2</sub>)<sub>n</sub>-CR<sub>2</sub>, >C-NH(CH<sub>2</sub>)<sub>n</sub>-CHR<sub>2</sub>,
41
42
43
                             44
45
                             46
47
48
```

```
49
                                                                                                                                      R_1
    50
   51
                                                                                                                                 >\dot{C}-NH(CH_2)_n-R_2,
  52
  53
  54
  55
 56
                                                                                                                              R_1 OH R OH CH_2 OH CH_2 OH CH_2 OH CH_2 OH CH_2 OF 
 57
 58
 59
 60
                                                                                                                              >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
 61
 62
                           or
                                                                                                                            Z is -Y-CH- or -CH-Y-, where \textbf{R}_n , \textbf{R}_n , \textbf{R}_n
63
                                                                                                 B)
64
65
                                                                                                                             is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
66
                         where, in each formula set forth above, each R_1 and R_2
67
                         independently is -H, or substituted or unsubstituted alkyl,
68
69
                         alkenyl or alkynl group of 1-6 carbons.
```

4. A method for treating a mammalian disease characterized by abnormal cell mitosis, said method comprising administering to a mammal a cell-mitosis-inhibiting compound of the formula below, said compound being administered in an amount sufficient to inhibit cell mitosis:

$$R_{a}$$
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}

```
7
      wherein:
  8
               R_a - R_k are defined as follows:
         I.
  9
                      A)
                            each R_a, R_b, R_c, R_d, R_g, R_h, R_i, R_k
10
                            independently is -R_1, -OR_1, -OCOR_1, -SR_1,
11
                            -F, -NHR<sub>1</sub>, -Br, or -I; and R_e is -R<sub>1</sub>, -OR<sub>1</sub>,
12
                            -OCOR_1, -SR_1, -F, -NHR_1, -Br, -I or -C = CH;
13
      or
14
                     B)
                            each R_a, R_b, R_c, R_d, independently is -R_1,
15
                            -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br, or -I
16
                           and each R_g, R_h, R_i, R_k independently is
17
                           =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br
18
                           or -I; and R_e is =0, -R_1, -OR_1, -OCOR_1,
19
                           -SR_1, -F, -NHR_1, -Br, -I or -C \equiv CH;
20
     and
       II.
              Z is defined as follows:
21
```

```
22
                       23
                                                                                                                                                                                       A) Z is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
                       24
                    25
                    26
                                                                                                                                                                                                                                     >C=0, >C-(CH<sub>2</sub>)<sub>n</sub>OR<sub>2</sub>,
                    27
                   28
                                                                                                                                                                                                                                  29
                 30
                 31
                32
              33
              34
                                                                                                                                                                                                                             R_1 O R_1 OH CH_2 C-NH(CH_2) C-NH(
              35
            36
           37
           38
                                                                                                                                                                                                                            >C-NH(CH<sub>2</sub>)<sub>n</sub>-CH-OR<sub>2</sub>,
          39
         40
                                                                                                                                                                                                                          R_1 R_1 R_1 R_1 R_1 R_2 R_3 R_4 R_4 R_5 R_5
         41
        42
       43
       44
      45
                                                                                                                                                                                                                        >C-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>, >C(CH<sub>2</sub>)<sub>n</sub>NHCR<sub>2</sub>,
      46

\begin{vmatrix}
R_1 & O \\
 & I \\
 & >C-(CH_2)_n-NHC-OR_2,
\end{vmatrix}

      47
      48
    49
    50
   51
  52
  53
 54
                                                                                                                                                                                                                   >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
55
                                            or
56
                                                                                                                                                                                            Z is -Y-CH- or -CH-Y-, where R_n
                                                                                                                                                                  B)
57
58
                                                                                                                                                                                                                                                                                                           - 25 -
```

is $-R_1$, $-OR_1$, $-SR_1$, -F, $-NHR_2$, -Br or -I; 60 where, in each formula set forth above, each R_1 and R_2 61 independently is -H, or substituted or unsubstituted alkyl, 62 alkenyl or alkynl group of 1-6 carbons.

5. A method for treating a mammalian disease characterized by abnormal cell mitosis, said method comprising administering to a mammal a cell-mitosis-inhibiting compound of the formula below, said compound being administered in an amount sufficient to inhibit cell mitosis:

 R_a R_a

8 wherein:

9

I. R_a-R_o are defined as follows:

10 A) each R_a , R_b , R_c , R_d , R_e , R_f , R_g , R_h , R_j , R_k ,

11 R_1 , R_m , R_n , R_o independently is $-R_1$, $-OR_1$,

12 $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, or -I; and R_i 13 is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br,

14 -I or $-C\equiv CH$;

or

```
15
       or
  16
                            each R_a, R_d, R_f, R_j, R_m, R_n, R_o
                      B)
  17
                            independently is -R_1, -OR_1, -OCR_1, -SR_1,
 18
                           -F, -NHR<sub>2</sub>, -Br, or -I; and each R_b, R_c R_e,
 19
                           R_g, R_h, R_k, R_l independently is =0,
 20
                           -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br or
 21
                           -I; and R_i is =0, -R_1, -OR_1, -OCOR_1, -SR_1,
 22
                           -F, -Br, -I or -C≡CH;
 23
      or
 24
                           each R_a, R_b, R_c, R_d, R_f, R_j, R_m, R_n, R_o
                     C)
 25
                           independently is -R_1, -OR_1, OCR_1, -SR_1, -F,
 26
                           -NHR2, -Br, -I and each R_e, R_g, R_h, R_k, R_1
27
                           independently is =0, -R_1, -OR_1, -OCOR_1,
28
                          -SR_1, -F, -NHR_1, -Br or -I; and R_i is =0,
29
                          -R_1, -OR_1, -OCOR_1, -SR_1, -F, -Br, -I or
30
                          -C≡CH;
31
              Z is defined as follows:
32
33
34
                          Z is X, where X is >COR_1, >CC-R_1, >CC-OR_1,
                    A)
35
36
37
                          >CC-R_1, >CC-OR;
38
```

39 Z is =C-X'- or -X'-C=, where R_p R_p R_p B) 40 41 42 is $-R_1$, $-OR_1$, $-SR_1$, -F, $-NHR_2$, -Br or -I; 43 and X' is X, as defined above; 44 or X' is >C=0; where, in each formula set forth above, each R_1 and R_2 45 independently is -H, or substituted or unsubstituted alkyl, 46 alkenyl or alkynl group of 1-6 carbons; and the bond 47 indicated by C...C is absent or, in combination with the C-C 48 49 bond, is the unit HC=CH.

6. A method for treating a mammalian disease characterized by abnormal cell mitosis, said method comprising administering to a mammal a cell-mitosis-inhibiting compound of the formula below, said compound being administered in an amount sufficient to inhibit cell mitosis:

$$R_a$$
 R_b
 R_c
 R_c

or

```
wherein:
 8
               R_a-R_o are defined as follows:
 9
        I.
                           each R_a, R_b, R_c, R_e, R_q, R_h, R_h, R_k, R_1, R_m, R_n,
10
                     A)
                          R_0 independently is -R_1, -OR_1, -OCOR_1,
11
                          -SR_1, -F, -NHR_2, -Br, or -I; and R_i is -R_1,
12
                          -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I or
13
14
                          -C≡CH;
15
     or
                          each Ra, Re, R1, Rm, Rn, Ro independently
                    B)
16
                          is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
17
                          -I and each R_b, R_c, R_a, R_h is =0, -R_1,
18
                          -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br or -I;
19
                          and R_i is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F,
20
                          -NHR_1, -Br, -I or -C \equiv CH;
21
22
     or
                    C)
                          each R_a, R_b, R_c, R_e, R_k, R_m, R_n, R_o
23
24
                          independently is -R_1, -OR_1, -OCOR_1, -SR_1,
25
                          -F, -NHR<sub>2</sub>, -Br, -I, and each R_h, R_i
                          independently is =0, -R_1, -OR_1, -OCOR_1,
26
27
                          -SR_1, -F, -NHR_1, -Br or -I; and R_i is =0,
                          -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br, -I
28
29
                          or -C≡CH;
30
     and
              Z is defined as follows:
31
32
33
                          Z is X, where X is >COR_1, >CC-R_1, >CC-OR_1,
34
                    A)
35
                            OH
                                      OH
36
37
                          >CC-R_1, >CC-OR;
```

Z is =C-X'- or -X'-C=, where R_p R_p R_p 39 B) 40 41 is $-R_1$, $-OR_1$, $-SR_1$, -F, $-NHR_2$, -Br or -I, 42 43 and X' is X, as defined above; 44 or X' is =0; 45 where, in each formula set forth above, each R1 and R2 46 independently is -H, or substituted or unsubstituted alkyl, alkenyl or alkynl group of 1-6 carbons; and the bond 47 indicated by C...C is absent or, in combination with the C-C 48 49 bond is the unit HC=CH.

7. A compound of the general formula below, said compound being a cell-mitosis-inhibiting compound:

 R_a R_b R_c R_l R_k R_j R_m

```
wherein:
  4
  5
         I.
                Ra-Ro are defined as follows:
                              each R_a, R_b, R_c, R_d, R_e, R_f, R_i, R_i, R_j, R_k, R_l,
  6
                       (A)
                             R_m, R_o, independently is -R_1, -OR_1,
 7
                              -OCOR_1, -SR_1, -F, -NHR_2, -Br, or -I; and R_{cr}
 8
                              is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
 9
10
                              -I or -C≡CH;
11
      or
                             each R_a, R_b, R_c, R_f, R_k, R_1, R_o, is -R_1,
12
                       (B)
                             -OR_1, -OCOR_1 -SR_1, -F, -NHR_2, -Br, or -I;
13
14
                             and each R<sub>d</sub>, R<sub>e</sub>, R<sub>i</sub>, R<sub>j</sub>, R<sub>m</sub>, independently
15
                             is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2,
16
                             -Br or \cdotI; and R_q is =0, -R_1, -OR_1, -OCOR_1,
17
                             -SR_1, -F, -NHR_2, -Br, -I or -C \equiv CH;
18
      and
19
        II.
                Z' is defined as follows:
20
21
                             Z' is X, where X is >COR_1, >CC-R_1,
                      A)
22
23
24
25
26
      or
                             Z' is =C-X'- or -X'-C=, where \mathbf{R}_n \mid \mathbf{R}_n \mid \mathbf{R}_n
27
                      B)
28
29
30
                             is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
                             or X' is X, as defined above; or
31
                             X' is >C=0;
32
33
      and
```

III. Z" is defined as follows:

```
35
  36
                                  Z'' is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
  37
 38
 39
 40
                                  >C=0, >C-(CH<sub>2</sub>)<sub>n</sub>OR<sub>2</sub>,
 41
                                 42
 43
                                 44
 45
 46
 47
                                 48
 49
50
                                  R_1
 51
52
                                 >\dot{C}-NH(CH_2)_n-\dot{C}H-OR_2,
53
                                R_1 0 R_1 1 | R_1 | >C-NH(CH<sub>2</sub>)<sub>n</sub>-C-OR<sub>2</sub>, >C-NH(CH<sub>2</sub>)<sub>n</sub>-OR<sub>2</sub>
54
55
56
57
                                >C-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>, >C(CH<sub>2</sub>)<sub>n</sub>NHCR<sub>2</sub>,
58
59
60
                                >\dot{C}-(CH_2)_n-NHC-OR_2
61
62
                                                                              OH
63
                                >C-(CH_2)_n-NH-CHR_2, >C-(CH_2)_n-NH-COR_2, or
64
65
66
                                >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
67
68
      or
69
                                Z" is -Y-CH- or -CH-Y- where R_p
                         B)
70
71
                                              - 32 -
```

```
72
                               is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
  73
        provided that when:
  74
                        3)
                               each R_b, R_c, R_d, R_e, R_j R_k, R_l, R_m, is -H;
  75
                               R<sub>f</sub> is -CH<sub>3</sub>;
  76
  77
  78
                              R_{q} is -OH, -OCCH<sub>3</sub>;
  79
                              R_i is -H, -OH, or =0;
  80
                              Ro is -H or -Br;
  81
                              Z' is >COH; and
                              Z" is >CH2 or -OH; then
  82
  83
                              Ra is not -F, -Br, -OH or -H;
 84
       and
                              each R_b, R_c, R_d, R_e, R_i, R_j R_k, R_1,
 85
                        4)
 86
                              R_m, is -H;
 87
                              R<sub>f</sub> is -CH<sub>3</sub>;
 88
                              Rq is -OH; and
 89
                              Z" is >CH2; then
 90
 91
 92
                              Z' is not >COCH<sub>3</sub> or >COCCH<sub>3</sub>; and
 93
                              each Ra, Ro independently or together are
 94
                              not -OCH3 or -H;
 95
       and
                              each R_c, R_e, R_j, R_k, R_l, R_m, R_o is -H;
 96
                       5)
 97
                              R_a is -H or -OCH<sub>3</sub>;
 98
                              R<sub>b</sub> is -H or -CH<sub>3</sub>;
 99
                              R<sub>d</sub> is -OH;
100
                              R_f is -CH_3;
101
                              R_a is =0;
102
                             R_i is -OH, =0 or -C=CH; and
103
                              Z" is >CH2; then
104
105
                              Z' is not >COH; >COCCH3, or -H;
106
```

where, in each formula set forth above, each R_1 and R_2 independently is -H, or substituted or unsubstituted alkyl, alkenyl or alkynl group of 1-6 carbons.

8. A compound of the general formula below, said
 compound being a cell-mitosis-inhibiting compound:

3

4 wherein:

5 I. R_a-R_k are defined as follows: 6 each R_a , R_b , R_c , R_d , R_g , R_h , R_i , R_k 7 independently is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, 8 -F, -NHR₂, -Br, or -I; and R_e is -R₁, -OR₁, 9 $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, -I or -C = CH; 10 or 11 each R_a , R_b , R_c , R_d , R_k , is $-R_1$, $-OR_1$, B) 12 $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, or -I; and 13 each R_g , R_h , R_i , independently is =0,

```
-R_1, -OR_1, -OCOR_1, -SR_1, -F, -Br, or -I;
 14
                            and R_e is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F,
 15
                            -Br, -I or -C≡CH;
16
17
      and
18
         I.
                Z' is defined as follows:
19
20
                            \mathbf{Z'} is \mathbf{X}, where \mathbf{X} is \mathbf{>}\mathbf{COR}_1, \mathbf{>}\mathbf{C}_2\mathbf{C-R}_1,
                      A)
21
                            22
23
24
25
      or
                           26
                     B)
27
28
29
                            is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I,
30
                            and X' is X, as defined above;
31
                            or X' is also >C=O;
32
      and
33
        II.
               Z" is defined as follows:
34
35
                           Z" is Y, where Y is -O-, -N-, >CHR_1,
36
                     A)
37
38
                           >C=0, >C-(CH_2)_nOR_2,
39
40

\begin{vmatrix}
R_1 & O & R_1 & O \\
 & I & I & I \\
 & > C - (CH_2)_n - CR_2, & > C - (CH_2)_n - C - OR_2,
\end{vmatrix}

41
42
                           43
44
45
46
47
48
```

```
49
  50
 51
                                                                                                52
 53
 54
 55
                                                                                                | >C-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>,
 56
 57
                                                                                               58
 59
 60
                                                                                               R_1 OH R OH | OH
61
62
63
                                                                                              R_1
|
>C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
64
65
66
67
                    or
                                                                                          Z" is -Y-CH- or -CH-Y-, where R_p is R_p R_p
68
                                                                         B)
69
70
                                                                                              -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
71
72
                   where, in each formula set forth above, each R_1 and R_2
73
                    independently is -H, or substituted or unsubstituted alkyl,
74
                   alkenyl or alkynl group of 1-6 carbons.
```

9. A compound of the general formula below, said compound being a cell-mitosis-inhibiting compound:

$$R_a$$
 R_b
 R_c
 R_i
 R_k
 R_j
 R_k
 R_j
 R_k
 R_j

3 wherein:

```
4
              R_a-R_o are defined as follows:
  5
                             each R_a, R_b, R_c, R_d, R_e, R_f, R_i, R_i, R_j, R_k, R_1,
                      A)
  6
                             R_m, R_o independently is -R_1, -OR_1, -OCOR_1,
  7
                             -SR_1, -F, -NHR_2, -Br, or -I; and R_q is -R_1,
  8
                             -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I or
  9
                             -C≡CH;
 10
      or
11
                      B)
                            each R_a, R_b, R_c, R_f, R_k, R_1, independently
12
                            is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
13
                            or -I; and each R_d, R_e, R_i, R_j, R_m, R_o
14
                            independently is =0, -R_1, -OR_1, -OCOR_1,
15
                            -SR_1, -F, -NHR_2, -Br, -I; and R_g is =0,
16
                            -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I
17
                            or -C≡CH;
18
      and
19
               Z is defined as follows:
20
21
22
                            Z is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
                     A)
23
24
                            >C=0, >C-(CH<sub>2</sub>)<sub>n</sub>OR<sub>2</sub>,
25
```

```
26
                                                                                                                                                                            27
       28
      29
                                                                                                                                                                           >C-(CH<sub>2</sub>)<sub>n</sub>-CHR<sub>2</sub>,
      30
      31
      32
                                                                                                                                                                                   R_1
                                                                                                                                                                           33
     34
                                                                                                                                                                          35
     36
     37
                                                                                                                                                                               R_1
   38
   39
                                                                                                                                                                          >\dot{C}-NH(CH_2)_n-\dot{C}H-OR_2,
   40
                                                                                                                                                                        41
   42
   43
   44
                                                                                                                                                                              R_1
   45
                                                                                                                                                                        | >C-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>,
   46
  47
                                                                                                                                                                        48
  49
 50
                                                                                                                                                                       ^{\mathrm{R}_1} OH ^{\mathrm{R}} OH ^{\mathrm{CH}_2} OH ^{\mathrm{CH}_2} ^{\mathrm{C}} ^{\mathrm{CH}_2} ^{\mathrm{C}} ^{\mathrm{CH}_2} ^{\mathrm{C}} ^{\mathrm{CH}_2} ^{\mathrm{C}} ^{\mathrm{C}}
 51
 52
 53
 54
 55
                                                                                                                                                                        >C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
 56
57
                                   or
                                                                                                                                                                      Z is -Y-CH- or -CH-Y-, where \mathbf{R}_n \mid \mid \mathbf{R}_n \mid \mathbf{R}_n
58
                                                                                                                                  B)
59
60
                                                                                                                                                                        is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I;
61
                                                                                                                                                                                                                                              - 38 -
```

- 62 where, in each formula set forth above, each R₁ and R₂
 63 independently is -H, or substituted or unsubstituted alkyl,
 64 alkenyl or alkynl group of 1-6 carbons.
 - 1 10. A compound of the general formula below, said 2 compound being a cell-mitosis-inhibiting compound:

$$R_{a}$$
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}
 R_{b}

4 wherein: 5 R_a-R_k are defined as follows: I. each R_a , R_b , R_c , R_d , R_q , R_h , R_i , R_k 6 independently is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, 7 8 -F, -NHR₁, -Br, or -I; and R_e is -R₁, -OR₁, 9 $-OCOR_1$, $-SR_1$, -F, $-NHR_1$, -Br, -I or -C = CH; 10 or 11 B) each R_a , R_b , R_c , R_d , independently is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_1$, -Br, or -I; 12 and each R_q, R_h, R_i, R_k independently is 13 =0, $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_1$, -Br14 or -I; and R_e is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, 15 16 -F, -NHR₁, -Br, -I or -C \equiv CH; 17 II. Z is defined as follows:

or

```
18
     19
                                                                                                1) Z is Y, where Y is -O-, -N-, >CHR<sub>1</sub>,
- 20
     21
                                                                                                                         ^{R_1}_{|} >C=O, >C-(CH<sub>2</sub>)_{n}OR<sub>2</sub>,
    22
    23
                                                                                                                         24
    25
    26
    27
    28
   29
   30
                                                                                                                        R_1 OH R_1 OH R_1 OH R_2 OH R_3 OH R_4 OH R_4 OH R_5 OH R
   31
   32
  33
                                                                                                                       34
  35
                                                                                                                       36
  37
  38
                                                                                                                           \begin{bmatrix} R_1 & & & 0 \\ & & & & \end{bmatrix}
  39
  40
                                                                                                                       >C-NH(CH<sub>2</sub>)<sub>n</sub>-R<sub>2</sub>, >C(CH<sub>2</sub>)<sub>n</sub>NHCR<sub>2</sub>
  41
 42
                                                                                                                      | \begin{matrix} R_1 & O \\ | & | \\ > C - (CH_2)_n - NHC - OR_2, \end{matrix}
 43
  44
                                                                                                                     45
 46
 47
                                                                                                                     R_1
|
>C-(CH<sub>2</sub>)<sub>n</sub>-NH-CH<sub>2</sub>OR<sub>2</sub>, where n is 0-6;
 48
 49
 50
```

4

wherein:

52 Z is -Y-CH- or -CH-Y-, where R_n 53
54 R_n R_n 55
is -R₁, -OR₁, -SR₁, -F,
56 -NHR₂, -Br or -I;
57 where, in each formula set forth above, each R_1 and R_2

57 where, in each formula set forth above, each k₁ and k₂
58 independently is -H, or substituted or unsubstituted alkyl,
59 alkenyl or alkynl group of 1-6 carbons.

1 11. A compound of the general formula below, said compound being a cell-mitosis-inhibiting compound:

5 I. R_a-R_o are defined as follows:

6 A) each R_a , R_b , R_c , R_d , R_e , R_f , R_g , R_h , R_j , R_k ,
7 R_1 , R_m , R_n , R_0 independently is $-R_1$, $-OR_1$,
8 $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br, or -I; and R_i 9 is $-R_1$, $-OR_1$, $-OCOR_1$, $-SR_1$, -F, $-NHR_2$, -Br,
10 -I or -C = CH;

```
11
       or
 12
                             each R_a, R_d, R_f, R_j, R_m, R_n, R_o
                      B)
                             independently is -R_1, -OR_1, -OCR_1, -SR_1,
 13
 14
                            -F, -NHR<sub>2</sub>, -Br, -I; and each R_b, R_c, R_e,
 15
                            R_g, R_h, R_k, R_1 independently is =0, -R_1,
 16
                            -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br or -I;
 17
                            and R_i is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F,
 18
                            -NHR<sub>1</sub>, -Br, -I or -C≡CH;
 19
      or
 20
                            each R_a, R_b, R_c, R_d, R_f, R_j, R_m, R_n, R_o
                      C)
 21
                            independently is -R_1, -OR_1, OCR_1, -SR_1, -F,
22
                            -NHR<sub>2</sub>, -Br, -I; and each R_e, R_g, R_h, R_k, R_1
23
                            independently is =0, -R_1, -OR_1, -OCOR_1,
24
                            -SR_1, -F, -NHR_1, -Br or -I; and R_i is =0,
25
                           -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br, -I
26
                           or -C≡CH;
27
     and
28
               Z is defined as follows:
        I.
29
30
31
                           Z is X, where X is >COR_1, >CC-R_1, >CC-OR_1,
                     1)
32
                                       OH
33
34
                           >CC-R<sub>1</sub>, >CC-OR; or
```

Z is =C-X'- or -X'-C=, where R_p R_p R_p 35 36 37 is $-R_1$, $-OR_1$, $-SR_1$, -F, $-NHR_2$, -Br or -I; 38 and X' is X, as defined above; 39 40 or X' is >C=0; 41 where, in each formula set forth above, each R1 and R2 42 independently is -H, or substituted or unsubstituted alkyl, 43 alkenyl or alkynl group of 1-6 carbons; and the bond 44 indicated by Cooc is absent or, in combination with the C-C 45 bond is the unit HC=CH.

12. A compound of the general formula below, said
 2 compound being a cell-mitosis-inhibiting compound:

3

$$R_a$$
 R_b
 R_c
 R_e
 R_g
 R_i
 R_i
 R_i

4 wherein:

```
5
          I.
                 R<sub>a</sub>-R<sub>o</sub> are defined as follows:
   6
                             each R_a, R_b, R_c, R_e, R_q, R_h, R_h, R_k, R_1, R_m, R_n,
                       A)
   7
                             R_o independently is -R_1, -OR_1, OCOR_1, -SR_1,
   8
                             -F, -NHR<sub>2</sub>, -Br, or -I; and R_i is -R_1, -OR<sub>1</sub>,
   9
                             -OCOR_1, -SR_1, -F, -NHR_2, -Br, -I or -C \equiv CH;
 10
       or
 11
                             each Ra, Re, R1, Rm, Rn, Ro independently
                       B)
 12
                             is -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_2, -Br,
 13
                             -I; and each R_b, R_c, R_q, R_h is =0, -R_1,
 14
                             -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br or -I;
 15
                            and R_i is =0, -R_1, -OR_1, -OCOR_1, -SR_1, -F,
 16
                            -NHR_1, -Br, -I or -C \equiv CH;
 17
      or
 18
                            each R_a, R_b, R_c, R_e, R_k, R_m, R_n, R_o
                      C)
 19
                            independently is -R_1, -OR_1, OCOR_1, -SR_1,
 20
                            -F, -NHR<sub>2</sub>, -Br, -I; and each R_q, R_h
 21
                            independently is =0, -R_1, -OR_1, -OCOR_1,
22
                            -SR_1, -F, -NHR_1, -Br or -I; and R_i is =0,
23
                            -R_1, -OR_1, -OCOR_1, -SR_1, -F, -NHR_1, -Br, -I
24
                            or -C≡CH;
25
      and
26
        II.
               Z is defined as follows:
27
28
29
                            Z is X, where X is >COR_1, >CC-R_1, >CC-OR_1,
                     A)
30
                              OH
                                        OH
31
32
                           >CC-R_1, >CC-OR;
33
     or
34
                           Z is =C-X'- or -X'-C=, where R_p
R_p
R_p
                     B)
35
36
```

```
37
                         is -R_1, -OR_1, -SR_1, -F, -NHR_2, -Br or -I,
                        and X' is X, as defined above;
 38
                        or X' is =0;
. 39
      where, in each formula set forth above, each R1 and R2
 40
 41
      independently is -H, or substituted or unsubstituted alkyl,
 42
      alkenyl or alkynl group of 1-6 carbons; and the bond
      indicated by C•••C is absent or, in combination with the C-C
 43
     bond is the unit HC=CH.
 44
  1
                   The method of claim 1, wherein said
  2
     cell-mitosis-inhibiting composition is 2-methoxyestradiol.
  1
                   The method of claim 1, wherein said
  2
     cell-mitosis-inhibiting composition is 2-fluoroestradiol.
                   The method of claim 1, wherein said
  1
  2
     cell-mitosis-inhibiting composition is 2-bromoestradiol.
  1
                   The method of claim 1, wherein said
  2
     cell-mitosis-inhibiting composition is 2-methoxyestrone.
  1
                  The method of claim 1, wherein said cell-
  2
     mitosis-inhibiting composition is 17-ethynylestradiol.
  1
                  The method of claims 1 or 2 wherein said
  2
     compound is further characterized in that
                       Z' is =C-X'- or -X'-C=; and R_n R_n R_n R_n R_n R_n
  3
  4
  5
  6
                  B) Z' is X; and Z" is -Y-CH- or -CH-Y-; or R_p R_p
  7
  8
  9
 10
```

7 8 9

10

```
Z' is =C-X'- or -X'-C=; and Z'' is Y.
12
13
                                R_n
14
```

- 19. The method of claims 3 or 4 wherein said 1 2 compound is further characterized in that Z is 3 -Y-CH- or -CH-Y-. 4 R_n 5 R_n
- 1 The method of claims 5 or 6 wherein said 2 compound is further characterized in that Z is =C-X'-or-X'-C=.3 4 5 R_{p}
- 1 The compound of claims 7 or 8, wherein said 2 compound is further characterized in that 3 A)

- C) Z' is =C-X'- or -X'-C=; and Z'' is Y. $R_n \qquad R_n$ 12 13 14
- 1 The compound of claims 9 or 10, wherein said 2 compound is further characterized in that Z is -Y-CH- or -CH-Y-. 5 R_n R_n

- 1 23. The compound of claims 11 or 12, wherein said
- 2 compound is further characterized in that Z is
- 3 =C-X'- or -X'-C=.
- 5 R_p R_p
- 1 24. The method of any one of claims 1-6, wherein at
- 2 least one of $R_a \rightarrow R_p$ is -OCH₃.
- 1 25. The compound of any one of claims 7-12, wherein
- 2 at least one of $R_a \rightarrow R_p$ is $-OCH_3$.