Software Information

General information

TESPy Version: 0.4.3-005 - Grassmann's Graph

Commit: 84386adc@dev

CoolProp version: 6.4.0

Python version: 3.8.0 (default, Oct 28 2019, 16:14:01) [GCC 8.3.0]

Documentation generated: May 17, 2021

Parameter highlighting

Variable component parameters: italic
Specified input parameter: bold
Results of simulation: normalfont

Equations are displayed for input parameters only.

1 Connections in design mode

1.1 Connection specifications and results

Table 1: Connection specifications and results

label	m in kg/s (1)	p in bar (2)	h in ^{kJ} / _{kg}	T in °C (3)	s in ^{kJ} / _{kgK}	x in - (4)	Td_bp in °C (5
	22.000	100 0000	2 2 2 2 4 2		2.020=	1.00	
1	38.969	100.0000	3,002.40	371.0	6.0697	-1.00	
2	38.969	100.0000	3,002.40	371.0	6.0697	-1.00	
3	38.969	33.6100	2,804.82	240.7	6.1443	-1.00	
4	36.012	33.6100	$2,\!804.82$	240.7	6.1443	-1.00	
5	36.012	18.5800	2,707.54	208.7	6.1810	0.95	
6	33.524	18.5800	2,707.54	208.7	6.1810	0.95	
7	33.524	17.1000	$3,\!189.77$	371.0	7.1106	-1.00	
8	33.524	7.9800	3,015.17	280.3	7.1616	-1.00	
9	31.041	7.9800	$3,\!015.17$	280.3	7.1616	-1.00	
10	31.041	2.7300	2,797.89	166.4	7.2068	-1.00	
11	29.273	2.7300	2,797.89	166.4	7.2068	-1.00	
12	29.273	0.9600	2,623.62	98.5	7.2393	0.98	
13	27.676	0.9600	2,623.62	98.5	7.2393	0.98	
14	27.676	0.2900	2,461.05	68.3	7.3042	0.93	
15	26.568	0.2900	2,461.05	68.3	7.3042	0.93	
16	26.568	0.0800	2,348.06	41.5	7.5023	0.91	
17	31.041	0.0800	2,040.95	41.5	6.5263	0.78	
18	31.041	0.0800	173.84	41.5	0.5925	0.00	
19	31.041	14.7550	175.95	41.7	0.5945	-1.00	
20	31.041	14.7550	185.97	44.1	0.6262	-1.00	
21	31.041	9.9975	265.88	63.3	0.8722	-1.00	
22	31.041	9.9975	277.34	66.1	0.9061	-1.00	
23	31.041	8.7012	392.25	93.5	1.2323	-1.00	
$\frac{25}{24}$	31.041	8.7012	398.73	95.0	1.2499	-1.00	
25	31.041	7.9800	526.89	125.3	1.5846	-1.00	
$\frac{26}{26}$	38.969	7.9800	720.41	170.3	2.0446	0.00	
31	38.969	103.5600	1,016.11	235.2	2.6433	-1.00	
32					$\frac{2.0433}{3.3638}$	-1.00	-2.
32 33	38.969	103.4200	1,410.39	311.5			-2.
	78.680	103.4200	1,422.74	313.5	3.3849	0.00	
34	78.680	103.4200	2,070.94	313.5	4.4898	0.50	
35	38.969	103.4200	2,719.14	313.5	5.5948	1.00	
36	2.957	33.6100	2,804.82	240.7	6.1443	-1.00	
39	2.957	18.5800	914.90	208.7	2.4605	0.01	
40	2.489	18.5800	2,707.54	208.7	6.1810	0.95	
41	5.445	18.5800	1,734.16	208.7	4.1608	0.44	
44	5.445	7.9800	777.12	170.3	2.1725	0.03	
45	2.483	7.9800	3,015.17	280.3	7.1616	-1.00	
46	1.768	2.7300	2,797.89	166.4	7.2068	-1.00	
47	1.768	2.7300	547.81	130.3	1.6382	0.00	
48	1.768	2.7300	433.92	103.5	1.3461	-1.00	
49	1.768	0.9600	433.92	98.5	1.3470	0.01	
50	1.596	0.9600	2,623.62	98.5	7.2393	0.98	
51	3.364	0.9600	$1,\!472.90$	98.5	4.1428	0.47	
52	3.364	0.9600	412.71	98.5	1.2899	-0.00	
53	3.364	0.9600	307.02	73.3	0.9954	-1.00	
54	3.364	0.2900	307.02	68.3	0.9961	0.01	

Continued on next page

Table 1: Connection specifications and results

	m in kg/s (1)	p in bar (2)	h in kJ/kg	T in °C (3)	s in ^{kJ} / _{kgK}	x in - (4)	Td_bp in °C (5)
label	, , ,	-	,	, ,	,	,	-
55	1.108	0.2900	2,461.05	68.3	7.3042	0.93	-
56	4.472	0.2900	840.68	68.3	2.5589	0.24	-
57	4.472	0.2900	286.02	68.3	0.9345	-0.00	-
58	4.472	0.2900	216.49	51.7	0.7258	-1.00	-
59	4.472	0.0800	216.49	41.5	0.7280	0.02	-
60	2,132.083	1.0663	153.03	36.5	0.5255	-1.00	-
61	2,132.083	1.0663	153.03	36.5	0.5255	-1.00	-
62	2,132.083	1.0130	125.82	30.0	0.4367	-1.00	-
63	2,132.083	1.1848	125.85	30.0	0.4367	-1.00	-
64	$11,\!691.521$	1.0130	424.44	25.0	3.8806	-1.00	-
65	$11,\!691.521$	1.0135	424.51	25.1	3.8807	-1.00	-
66	$11,\!691.521$	1.0130	429.47	30.0	3.8973	-1.00	-
67	405.389	23.3040	761.43	390.0	1.6201	-inf	-
68	405.389	23.3040	761.43	390.0	1.6201	-inf	-
69	353.337	23.3040	761.43	390.0	1.6201	-inf	-
70	353.337	22.7530	730.18	377.7	1.5726	-inf	-
71	353.337	21.1670	585.85	318.5	1.3406	-inf	-
72	353.337	20.3400	542.36	299.8	1.2661	-inf	-
73	52.052	23.3040	761.43	390.0	1.6201	-inf	-
74	52.052	20.3400	450.85	259.2	1.1005	-inf	-
75	405.389	20.3400	530.61	294.7	1.2455	-inf	-
76	405.389	41.0240	534.80	296.3	1.2484	-inf	-
27	38.969	125.0000	738.98	173.1	2.0571	-1.00	-
28	38.969	125.0000	754.98	176.8	2.0928	-1.00	-
29	38.969	112.0000	872.71	203.7	2.3501	-1.00	-
30	38.969	112.0000	882.11	205.8	2.3698	-1.00	-
37	2.957	33.6100	1,038.69	240.2	2.7042	0.00	-
38	2.957	33.6100	914.90	213.7	2.4566	-1.00	-
42	5.445	18.5800	891.63	208.7	2.4122	0.00	-
43	5.445	18.5800	777.12	183.1	2.1681	-1.00	-

1.2 Equations applied

$$0 = \dot{m} - \dot{m}_{\rm spec} \tag{1}$$

$$0 = p - p_{\text{spec}} \tag{2}$$

$$0 = T(p,h) - T_{\text{spec}} \tag{3}$$

$$0 = h - h\left(p, x_{\text{spec}}\right) \tag{4}$$

$$0 = \Delta T_{\text{spec}} - T_{\text{sat}} (p) \tag{5}$$

1.3 Specified fluids

Table 2: Specified fluids

	TVP1 (6)	air (7)	water (8)
label			
1	0.000	0.000	1.000
62	0.000	0.000	1.000
64	0.000	1.000	0.000
67	1.000	0.000	0.000

1.4 Equations applied

$$0 = x_{\text{TVP1}} - x_{\text{TVP1,spec}} \tag{6}$$

$$0 = x_{\text{air}} - x_{\text{air,spec}} \tag{7}$$

$$0 = x_{\text{water}} - x_{\text{water,spec}} \tag{8}$$

1.5 Referenced mass flow

Table 3: Specified reference values for mass flow

	reference	factor in -	delta in kg/s
label			
0	67	0.1284	0

1.6 Equation applied

$$0 = value - value_{ref} \cdot factor + delta$$
 (9)

2 Components in design mode

2.1 Components of type HeatExchanger

2.1.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$\tag{10}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1,2]$$
(11)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(12)

2.1.2 Specifications and results

Table 4: Parameters of components of type HeatExchanger

	Q	ttd_u	ttd_l (13)	pr1 (14)	pr2 (15)
label					
Superheater	-11,038,645.89	19.00	64.21	0.98	0.97
Reheater	-16,165,997.53	19.00	50.50	0.87	0.92
Low pressure preheater 1 subcooling	-310,958.68	24.21	10.00	1.00	1.00
Low pressure preheater 2 subcooling	-355,547.41	32.41	10.00	1.00	1.00
Low pressure preheater 3 subcooling	-201,352.32	35.32	10.00	1.00	1.00
Economizer	-15,364,788.65	7.00	64.59	0.96	1.00
Evaporator	-51,000,483.02	64.21	5.00	0.93	1.00
Cooling tower	-58,008,902.88	6.51	4.93	0.95	1.00
High pressure preheater 1 subcooling	-623,547.56	31.90	10.00	1.00	1.00
High pressure preheater 2 subcooling	-366,012.28	34.45	10.00	1.00	1.00

2.1.3 Equations applied

$$0 = ttd_{l} - T_{\text{out},1} + T_{\text{in},2} \tag{13}$$

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{14}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{15}$$

2.2 Components of type CycleCloser

2.2.1 Mandatory constraints

$$0 = p_{\text{in},i} - p_{\text{out},i} \ \forall i \in [1]$$

$$0 = h_{\text{in},i} - h_{\text{out},i} \,\forall i \in [1] \tag{17}$$

2.3 Components of type Turbine

2.3.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
(19)

2.3.2 Specifications and results

Table 5: Parameters of components of type Turbine

label	P	eta_s (20)	pr
HP turbine 1	-7,699,459.42	0.84	0.34
HP turbine 2	-3,503,353.54	0.85	0.55
LP turbine 1	-5,853,157.76	0.86	0.47
LP turbine 2	-6,744,442.54	0.92	0.34
LP turbine 3	-5,101,417.76	0.94	0.35
LP turbine 4	-4,499,249.42	0.88	0.30
LP turbine 5	-3,001,919.77	0.64	0.28

2.3.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) + (h_{\text{out,s}} - h_{\text{in}}) \cdot \eta_{s}$$
(20)

2.4 Components of type Splitter

2.4.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (21)

$$0 = x_{fl,\text{in}} - x_{fl,\text{out},j} \ \forall fl \in \text{network fluids}, \ \forall j \in \text{outlets}$$
 (22)

$$0 = h_{in} - h_{\text{out},j} \ \forall j \in \text{outlets}$$
 (23)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(24)

2.5 Components of type Merge

2.5.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
 (25)

$$0 = \sum_{i} \dot{m}_{\text{in},i} \cdot x_{fl,\text{in},i} - \dot{m}_{\text{out}} \cdot x_{fl,\text{out}} \,\forall fl \in \text{network fluids}, \,\forall i \in \text{inlets}$$
 (26)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \dot{m}_{\text{out}} \cdot h_{\text{out}} \ \forall i \in \text{inlets}$$
 (27)

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(28)

2.6 Components of type Condenser

2.6.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1,2]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1,2]$$
(30)

$$0 = \dot{m}_{\text{in},1} \cdot (h_{\text{out},1} - h_{\text{in},1}) + \dot{m}_{\text{in},2} \cdot (h_{\text{out},2} - h_{\text{in},2})$$
(31)

2.6.2 Specifications and results

Table 6: Parameters of components of type Condenser

	Q	ttd_u (32)	ttd_l	pr1 (33)	pr2 (34)
label					
Condenser	-57,956,348.47	5.00	11.51	1.00	0.90
Low pressure preheater 1	$-2,\!480,\!570.42$	5.00	24.21	1.00	0.68
Low pressure preheater 2	-3,566,757.71	5.00	32.41	1.00	0.87
Low pressure preheater 3	-3,978,057.22	5.00	35.32	1.00	0.92
High pressure preheater 1	-4,587,816.13	5.00	31.90	1.00	0.90
High pressure preheater 2	-5,221,925.04	5.00	34.45	1.00	0.92

2.6.3 Equations applied

$$0 = ttd_{u} - T_{sat}(p_{in,1}) + T_{out,2}$$
(32)

$$0 = p_{\text{in},1} \cdot pr1 - p_{\text{out},1} \tag{33}$$

$$0 = p_{\text{in},2} \cdot pr2 - p_{\text{out},2} \tag{34}$$

2.7 Components of type Pump

2.7.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$(35)$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(36)

2.7.2 Specifications and results

Table 7: Parameters of components of type Pump

	P	eta_s (37)	pr
label			
Condenser pump	65,605.65	0.70	184.44
Feedwater pump	723,827.94	0.70	15.66
Cooling water pump	$52,\!554.42$	0.70	1.17
HTF pump	1,700,238.56	0.60	2.02

2.7.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{s} + (h_{\text{out,s}} - h_{\text{in}})$$
(37)

2.8 Components of type Drum

2.8.1 Mandatory constraints

$$0 = \sum \dot{m}_{\text{in},i} - \sum \dot{m}_{\text{out},j} \ \forall i \in \text{inlets}, \forall j \in \text{outlets}$$
(38)

$$0 = x_{fl,\text{in},1} - x_{fl,\text{out},j} \,\forall fl \in \text{network fluids}, \,\forall j \in \text{outlets}$$
(39)

$$0 = \sum_{i} (\dot{m}_{\text{in},i} \cdot h_{\text{in},i}) - \sum_{j} (\dot{m}_{\text{out},j} \cdot h_{\text{out},j}) \ \forall i \in \text{inlets } \forall j \in \text{outlets}$$

$$(40)$$

$$0 = p_{\text{in},1} - p_{\text{in},i} \ \forall i \in \text{inlets} \setminus \{1\}$$

$$0 = p_{\text{in},1} - p_{\text{out},j} \ \forall j \in \text{outlets}$$
(41)

$$0 = h_{\text{out},1} - h (p_{\text{out},1}, x = 0)$$

$$0 = h_{\text{out},2} - h (p_{\text{out},2}, x = 1)$$
(42)

2.9 Components of type Valve

2.9.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{43}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(44)

$$0 = h_{\text{in},i} - h_{\text{out},i} \ \forall i \in [1] \tag{45}$$

2.9.2 Specifications and results

Table 8: Parameters of components of type Valve

	pr	zeta
label		
Valve 1	0.55	116,509,403.93
Valve 2	0.43	9,926,543.49
Valve 3	0.35	7,513,567.89
Valve 4	0.30	288,942.73
Valve 5	0.28	8,013.54

2.10 Components of type Compressor

2.10.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \ \forall i \in [1]$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \,\forall fl \in \text{network fluids}, \,\forall i \in [1]$$
(47)

2.10.2 Specifications and results

Table 9: Parameters of components of type Compressor

	P	eta_s (48)	pr
label			
Cooling tower fan	822,719.88	0.60	1.00

2.10.3 Equations applied

$$0 = -(h_{\text{out}} - h_{\text{in}}) \cdot \eta_{\text{s}} + (h_{\text{out,s}} - h_{\text{in}})$$
(48)

2.11 Components of type ParabolicTrough

2.11.1 Mandatory constraints

$$0 = \dot{m}_{\text{in},i} - \dot{m}_{\text{out},i} \,\forall i \in [1] \tag{49}$$

$$0 = x_{fl,\text{in},i} - x_{fl,\text{out},i} \ \forall fl \in \text{network fluids}, \ \forall i \in [1]$$
 (50)

2.11.2 Specifications and results

Table 10: Parameters of components of type ParabolicTrough

	Q	pr	zeta	energy_group (51)
label				
Parabolic trough	91,869,676.53	0.57	10,127.07	True

Table 11: Parametergroup energy_group

	Е	eta_opt	aoi	doc	c_1	c_2	iam_1	iam_2	A	Tamb
label										
Parabolic trough	1,000.00	0.73	0.00	0.95	0.00	0.00	1.00	1.00	151,993.96	25.00

2.11.3 Equations applied

$$0 = \dot{m}_{\rm in} \cdot (h_{\rm out} - h_{\rm in})$$

$$- A \cdot \left[E \cdot \eta_{\rm opt} \cdot doc^{1.5} \cdot iam \right]$$

$$- c_1 \cdot (T_{\rm m} - T_{\rm amb}) - c_2 \cdot (T_{\rm m} - T_{\rm amb})^2$$

$$T_{\rm m} = \frac{T_{\rm out} + T_{\rm in}}{2}$$

$$iam = 1 - iam_1 \cdot |aoi| - iam_2 \cdot aoi^2$$

$$(51)$$

3 Busses in design mode

3.1 Bus "total output power"

This bus is used for postprocessing only.

Table 12: Results overview for bus total output power

	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$
label					
HP turbine 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-7,699,459.42	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-7,468,475.64	0.97
HP turbine 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-3,503,353.54	$\dot{E}_{ m comp} \cdot \eta$	-3,398,252.93	0.97
LP turbine 1	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-5,853,157.76	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-5,677,563.03	0.97
LP turbine 2	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-6,744,442.54	$\dot{E}_{\mathrm{comp}} \cdot \eta$	$-6,\!542,\!109.27$	0.97
LP turbine 3	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$-5,\!101,\!417.76$	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-4,948,375.22	0.97
LP turbine 4	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-4,499,249.42	$\dot{E}_{\mathrm{comp}} \cdot \eta$	-4,364,271.94	0.97
LP turbine 5	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	-3,001,919.77	$E_{\mathrm{comp}} \cdot \eta$	-2,911,862.18	0.97
Feedwater pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	723,827.94	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	761,924.15	0.95
Condenser pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$65,\!605.65$	$rac{\dot{E}_{ m comp}}{\eta}$	69,058.58	0.95
HTF pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	1,700,238.56	$rac{\dot{E}_{ m comp}}{\eta}$	1,789,724.80	0.95
Cooling water pump	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	$52,\!554.42$	$rac{\dot{E}_{ m comp}}{\eta}$	55,320.44	0.95
Cooling tower fan	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	822,719.88	$\frac{\dot{E}_{\mathrm{comp}}}{\eta}$	866,020.92	0.95
total	<u>-</u>	-33,038,053.77	-	-31,768,861.31	

3.2 Bus "heat input"

This bus is used for postprocessing only.

Table 13: Results overview for bus heat input

	$\dot{E}_{ m comp}$	$\dot{E}_{ m comp,result}$	$\dot{E}_{ m bus}$	$\dot{E}_{ m bus,result}$	$\eta_{ m result}$			
label								
Parabolic trough	$\dot{m}_{ m in} \cdot (h_{ m out} - h_{ m in})$	91,869,676.53	$\frac{\dot{E}_{\text{comp}}}{\eta}$	91,869,676.53	1.00			
total	-	$91,\!869,\!676.53$, -	$91,\!869,\!676.53$	-			