개인 소비 패턴 분석 및 합리적 지출 클러스터링 대시보드

20252739 김현민

1. 주제 및 선정 동기

주제: 대학생 개인 소비 패턴 분석 및 합리적 지출 클러스터링 대시보드

선정 동기: 최근 조사에 따르면 한국 대학생의 월평균 생활비 지출은 약 59만 2천 원에 달하며, 이는 5년 전에 비해 월평균 약 22만 6천 원이 상승한 수치이다. 이처럼 재정 관리는 대학생들에게 매우 현실적이고 중요한 문제이며, 본 프로젝트는 자신의 지출 습관 개선에 즉시 적용될 수 있을 것으로 기대된다.

2. 프로젝트 요약 및 목표

목표: 개인의 금융 거래 데이터를 Python 기반의 데이터 분석 기술(Pandas, Scikit-learn)과 웹 시각화 도구(Streamlit)를 활용하여 사용자 친화적인 대시보드를 구축하는 것을 목표로 한다.

핵심: K-Means 클러스터링 기법을 적용하여 지출 내역을 객관적인 소비 패턴(클러스터)으로 분류하고, 이를 시각화하여 데이터 기반의 재정 관리를 지원하는데 중점을 둔다.

주요 특징:

- 데이터 전처리 자동화(Regex 기반 카테고리 분류)
- * Scikit-learn을 이용한 K-Means 클러스터링 및 최적 K결정
- PCA 기반의 2차워 클러스터 시각화
- Streamlit을 활용한 인터랙티브 대시보드 구현

3. 문제 정의 및 해결 방안

3.1. 문제 정의

- 잠재적 소비 성향 인식의 난제: 단순 통계만으로는 파악하기 어려운 복합적인 소비 패턴(예: 충동적, 고정적, 사치적 지출 등)을 정량적이고 객관적으로 파악하는 방법이 없다.
- 데이터 정제 및 구조화의 기술적 복잡성: 금융 거래 내역의 'Description' 필드는 비정형 텍스트를 포함하며, 이를 수치적 변수로 변환하고 카테고리를 부여하는 과정이 높은 기술적 장벽이 된다.
- 분석 결과의 활용 및 접근성 부족: 비전문가인 사용자가 Python 스크립트가 아닌 웹 환경에서 직관적이고 인터랙티브하게 결과를 탐색하고 활용할 수 있는 사용자 인터페이스(UI) 구축 능력이 부족하다.

3.2. 해결 방안

- 데이터 정제 및 특징 공학을 통한 구조화: Pandas를 활용하여 데이터를 정제하고, 정규표 현식(Regex)을 통해 비정형의 Description 필드를 표준 Category로 변환한다. 이후 거래 금액, 빈도, 카테고리별 지출 비율 등의 패턴을 포착하는 특징 벡터를 생성하여 K-Means 입력 데이터로 활용한다.
- 비지도 학습을 통한 객관적 패턴 발견: Scikit-learn의 K-Means 클러스터링을 적용하여 지

출 내역들을 행동적 유사성에 따라 자동 군집화하고, 최적의 클러스터 개수(K)를 결정하는 Elbow Method와 Silhouette Score를 함께 사용한다.

• Streamlit 기반의 직관적 시각화 구현: Streamlit을 활용하여 인터랙티브 대시보드를 구축한다. 특히, PCA를 통해 2차원으로 축소된 클러스터 분포를 시각적으로 제공하고, 각 클러스터의 특성을 자동 요약하는 텍스트 기능을 추가한다.

4. 기술 구현

4.1. 시스템 개요 및 데이터 흐름

- 1. **데이터 획득**: 개인 금융 거래 내역 CSV 파일을 입력으로 받으며, 입력 데이터는 최소 한 Date, Description, Amount, In/Out 필드를 포함해야 한다.
- 2. 전처리 및 특징 공학: Pandas와NumPy를 사용하여 정규표현식으로 비정형Description을 15개 내외의 표준 Category로 분류하고, 지출 패턴을 정량화하는 특징 벡터를 생성한다.
- 3. 모델링 및 분석: Scikit-learn K-Means 클러스터링 알고리즘을 특징 벡터에 적용하여 소비 패턴을 군집화하고, PCA를 적용하여 특징 벡터의 차원을 2차원으로 축소한다
- 4. 시각화 및 출력: Streamlit을 활용하여 통합 대시보드를 구현하며, Plotly와 Seaborn 을 사용하여 클러스터 분포 및 카테고리별 트렌드를 인터랙티브하게 시각화한다.

4.2. 필요한 기술 요소

분류	주요 라이브러리/도구	핵심 역할 및 적용 지점
데이터 처리	Pandas, NumPy	CSV 파일 처리, 데이터 정규화, 특징 공학을 통한 패턴 변수 생성
기계 학습	Scikit-learn (K-Means, PCA)	비지도 학습 모델 구현, 최적 K값 결정, 차원 축소를 통한 시각화 준비
시각화	Plotly, Seaborn	클러스터 분포, 카테고리별 비 율 등 인터랙티브 차트 생성
웹 인터페이스	Streamlit	분석 결과를 통합하는 대시보 드 형태의 사용자 인터페이스 구축 및 배포

5. 사용자 인터페이스 (UI)

Streamlit을 기반으로 구현되며, 다음 세 가지 핵심 시각화 결과를 포함한다.

1. **클러스터 분포 시각화**: 다차원 특징을 PCA를 통해 2차원 평면에 투영하여, 지출 내역들이 색깔별로 어떻게 군집되어 있는지를 인터랙티브하게 보여준다.

- 2. 클러스터별 특성 요약 테이블: 각 클러스터의 평균 지출 금액, 거래 빈도, 가장 높은 비중을 차지하는 카테고리 등을 수치 및 텍스트로 요약하여 제공한다.
- 3. 지출 트렌드 분석: 전체 지출 내역에 대한 월별 또는 카테고리별 지출 추이를 막대 그래프 또는 선 그래프로 시각화한다.

6. 구현 방법 및 단계별 계획

단계 1: 데이터 확보 및 구조화

• 핵심 작업: 개인 금융 거래 데이터를 CSV 형식으로 통합하고, Pandas를 이용하여 데이터를 불러오고 초기 결측치 및 오류를 처리한다. 정규표현식(Regex)을 사용하여 Description필드 의 비정형 텍스트를 식비, 교통비, 취미 등 15개 내외의 표준 카테고리로 변환하는 분류 로직을 구축한다. 이 과정은 데이터 품질을 결정하는 기초 단계이다.

단계 2: K-Means 모델 구축

• 핵심 작업: 클러스터링의 성능을 높이기 위해 금액, 빈도, 카테고리별 비율 등 핵심 패턴을 포착할 수 있는 특징 벡터를 생성한다. Scikit-learn을 사용하여 K-Means 모델을 훈련시키고, 군집 분석의 기본인 Elbow Method 및 Silhouette Score를 시각화하여 가장 의미 있는 클러스터 개수를 결정한다. 이후 PCA를 적용하여 다차원 데이터를 2차원으로 축소하여시각화 준비를 완료한다.

단계 3: Streamlit 대시보드 구현 및 시각화

• 핵심 작업: Streamlit을 기반으로 프론트엔드 인터페이스를 설계하고 구현한다. Plotly를 사용하여 PCA 기반의 2D 클러스터 산점도를 인터랙티브하게 표시한다. 각 클러스터에 대해평균 금액, 주요 거래 시간, 최빈 카테고리 등 정량적 특성을 추출하여, 사용자가 클러스터의 의미를 즉각적으로 파악할 수 있는 요약 텍스트 또는 테이블 형태로 제공한다.

단계 4: 통합, 테스트 및 문서화

• 핵심 작업: 데이터 입력부터 최종 대시보드 출력까지 전체 파이프라인의 통합 테스트를 수행하고 최적화를 진행한다. 최종 코드는 Git Repository에 업로드하고, 프로젝트 개요, 설치및 사용법, 분석 결과를 포함하는 상세한 README 파일을 작성한다.

7. 기대 효과

월평균 59만 2천 원의 생활비를 관리하는 대학생들에게, 자신의 지출 습관을 객관적인 클러스터로 정의하는 도구를 제공하여, 데이터 기반의 합리적인 재정 계획 수립과 실질적인 통제력을 얻게한다.