

nstructor: Muhammad Adeel Tahir	EE1005 – Digital Logic Design
	O# 4

Quiz# 1 **Roll Number** Name: Section: CS - N Total 40 Marks Total Time: 40 mins Marking (do not fill these) Marks: Obtained Marks

- Questions must be solved in the space provided for them, incase answers are not in the respective fields, they will not be
- Use extra rough sheets or spaces provided for your rough works, do not make a mess on the solution areas.
- MCQ questions must not have any cutting whatsoever, if more than one option is marked, it will be marked as incorrect.
- Only use permeant ink pen for marking your answers, answers written with pencils will not be checked.

Multiple Choice Questions: Circle the correct option or options (if more than one is correct) for the following questions. Once marked, any cutting will lead to 0 mark for the MCQ. [10 marks]

, , ,								
1. The given hexadecim a) (35.684) ₈	al number (18 b) (36.246) ₈		uivalent to: c) (34.340)	8	d) (35.599) ₈			
2. The octal number (65 ⁻⁴ a) (1A9.2A)16	1 .124) ₈ is equ b) (1B0.10)1		c) (1A8.A3)16	d) (1B0.B0)1	6		
3. Binary subtraction of a) 100010	101101 – 001 b) 010110	011 = ?	c) 110101		d) 101100			
4. The binary number 10	00110101000	1101111 can	be written i	n hexadecin	nal as			
(a) AD467 ₁₆	(a) AD467 ₁₆ b) 8C46F ₁₆		c) 8D46F ₁₆		(d) AE46F ₁₆	(d) AE46F ₁₆		
5. On subtracting (01011 a) 0111001	0)2 from (10 ° b) 1100101	11001)2 usin	g 2's compl c) 0110110		et d) 1000011	_		
6, On addition of +38 an a) 11110001	d -20 using 2 b) 10000111		ent, we get _ c) 010010		– d) 11010101	1		
7. An overflow occurs in a) MSD position	b) LSD posit	ion	c) Middle p	osition	d) Signed Bit	(MSD L	SD , D refers to	digit)
8. The advantage of 2's a a) Only one arithmetic operation by No arithmetic operation	eration is requ	ired	b) Two arit		tions are require perations are rec			
9. For arithmetic operatia) 1's complement is used		2's compleme	ent c)	10's comple	ment	d) 9's c	omplement	
10. The excess-3 code for a) 100011001010		n by 10001010011	1 c)	0101100101	11	d) 0101	110101101	
Answer Box (mark the c	orrect letter i	.e a,b,c,d in	SEQUENCE)				
For Rough Work Only	1							

Question 1: Convert the decimal number 97.7₁₀ into a number with the same value represented in the following bases. The exact value requires an infinite repeating part in the fractional part of the number. Show the steps of your derivation. (a) binary (b) octal (c) hexadecimal (d) base 3 (e) base 5 [1+1+1+1+1+3 = 8 marks] (a) Binary (d) Base 3 (b) Octal (e) Base 5 Convert (64^{1/3})₅ to Hexadecimal. (if possible) (c) Hexadecimal [3 marks] Question 2: Add the following numbers in binary using both 1's and then 2's complement to represent negative numbers. Use a [2 + 2 = 4 marks]word length of 6 bits (including sign) and indicate if an overflow occurs a) (-10) + (-11) 2's complement: 1's Complement:

Question 3: One of the For credit to be given, y 1. 100110110100 2. 100100111000	e following bit patterns is valid BCD (bina you must give a correct reason.	ary-coded decimal), but the other	one is not, Which one is not valid? [2 marks]
Which one is valid? Why is the other one n	ot valid:		
Question 4: Find the	[4 marks]		
a) <u>00000000</u> 9's Complement:	10's Complement:	b) <u>5274630</u> 9's Complement:	10's Complement
Question 5 : Add the si space.	gned numbers: 01000100, 00011011, 00	0001110, and 00010010 and write	your final answer in the provided [2 marks]
Working: (Show deci BINARY WORKING	mal and binary working side by side)	DECIMAL WORKING	
Final Answer: (In	Binary):	(In Decimal):	
		l	
Question 6: Add the fo		(4) 04400444 + 04040044	[2 + 2 = 4 marks]
(c) 00010110 + 00010	JIUI	(d) 01100111 + 01010011	

Question 7 Gray code conversions. Attempt the following parts ca	refully. [1+1+2 =4 marks]
(a) Convert the binary number 11000110 to Gray code	(b) Convert the Gray code 10101111 to binary.
(c) The ten-bit Gray code for (353) ₁₀ is 0111010001. Explain briefly but precisely why it cannot be true that 0111010100 is the ten-bit Gray code for (354) ₁₀ . Also calculate gray code for 354 ₁₀ Gray Code for (354) ₁₀ :	Explanation:

Question 8: Construct a 6-2-2-1 weighted code for decimal digits. What are all possible combinations through which the 9823₁₀ can be constructed using the weight in 6-2-2-1?

[4 + 3 = 7 marks]

Decimal	6	2	1	1

Different Combinations to represent 9823 ₁₀	

FOR ROUGH WORK ONLY (will not be checked):