Test Plan: STEM Moiré GPA

Alexandre Pofelski macid: pofelska github: slimpotatoes

October 16, 2017

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes

2 Symbols, Abbreviations and Acronyms

symbol	description
Т	Test

Contents

1	Revision History				
2					
3					
	3.1 Purpose	. 1			
	3.2 Scope				
	3.3 Overview of Document				
4	Plan	1			
	4.1 Software Description	. 1			
	4.2 Test Team	. 1			
	4.3 Automated Testing Approach	. 1			
	4.4 Verification Tools				
	4.5 Non-Testing Based Verification	. 2			
5	System Test Description	2			
	5.1 Tests for Functional Requirements	. 2			
	5.1.1 Input Verification test	. 2			
	5.1.2 Output Result test	. 3			
	5.2 Tests for Nonfunctional Requirements	. 6			
	5.2.1 Area of Testing 1	. 6			
	5.3 Traceability Between Test Cases and Requirements	. 6			
6	Unit Testing Plan				
7	Appendix	7			
	7.1 Symbolic Parameters	. 7			
	7.2 Usability Survey Questions?	. 7			

List of Tables

List of Figures

3 General Information

3.1 Purpose

The purpose of the document is to provide the plan for testing STEM Moiré GPA software.

3.2 Scope

3.3 Overview of Document

4 Plan

4.1 Software Description

STEM Moiré GPA software is converting STEM Moiré hologram into deformation maps. Details on the goal and the requirements of STEM Moiré GPA are provided in the Problem Statement and the SRS documents. Acronyms, symbols and terminologies used in the following document are the same as the ones in the SRS document.

4.2 Test Team

The author is the only member of the test team.

4.3 Automated Testing Approach

While interesting to implement, the automatic testing is not approached in STEM Moiré GPA program.

- 4.4 Verification Tools
- 4.5 Non-Testing Based Verification
- 5 System Test Description
- 5.1 Tests for Functional Requirements
- 5.1.1 Input Verification test

Test R2 in IM1

Test 1 Format-SMH

- * Type: Dynamical
- \star Initial State: Waiting for $I_{SMH_{exp}}$ user input
- \star Input: Various $I_{SMH_{exp}}$ improper format
- \star Output: Error message $Err_{I_{SMH_{exp}}}$ should match: "Invalid STEM Moiré hologram format"

Test R6 in IM2

Test 2 Existence-Mask

- ★ Type: Functional
- \star Initial State: Waiting for M user input on $\widetilde{I}_{SMH_{exp}}$
- * Input: $M = \emptyset$
- \star Output: Error message Err_M should match: "No Mask found"

Test 3 Format-Mask

- ★ Type: Functional
- \star Initial State: Waiting for M user input on $\widetilde{I}_{SMH_{exp}}$
- \star Input: M improper format
- \star Output: Error message Err_M should match: "Improper mask format"

Test R9 in IM3

Test 4 Existence-U

- * Type: Functional
- * Initial State: Waiting for U user input on $P_{\Delta \overrightarrow{g_i}^{Mexp}}$
- \star Input: $U=\emptyset$
- \star Output: Error message Err_U should match: "No reference in phase image found"

Test 5 Format-U

- ★ Type: Functional
- * Initial State: Waiting for U user input on $P_{\Delta \overrightarrow{g_i}^{Mexp}}$
- \star Input: U improper format
- \star Output: Error message Err_U should match: "Improper reference in phase image format"

5.1.2 Output Result test

Test R3

Test 6 bla

- * Type: Functional
- \star Initial State:
- ★ Input:
- * Expected output
- ★ Output:

Test R7 in IM2

Test 7 Phase-Extraction-No-Strain

- ★ Type: Functional
- ⋆ Initial State:
- \star Input: $I_{SMH_{exp}}=e^{2i\pi gx}$, Mask M of one pixel at $g\overrightarrow{u_x}$ in $\widetilde{I}_{SMH_{exp}}$
- * Expected output $P_{\Delta \overrightarrow{g_j}^{M_{exp}}} = 0$, $\Delta \overrightarrow{g_j}^{M_{exp}} = \overrightarrow{0}$,
- \star Test output: $P_{\Delta \overrightarrow{q_j}}^{M_{exp}} t$, $\Delta \overrightarrow{g_j}^{M_{exp}} t$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{P_{\Delta \overrightarrow{g_j}} M_{exp}}(\vec{r}) = |P_{\Delta \overrightarrow{g_j}} M_{exp}|^t(\vec{r})|$$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{\Delta \overrightarrow{q_j}^{M_{exp}}}(\vec{r}) = |\Delta \overrightarrow{g_j}^{M_{exp}}^t(\vec{r})|$$

Test 8 Phase-Extraction-Known-Strain

- ★ Type: Functional
- ★ Initial State:
- * Input: $I_{SMH_{exp}} = e^{2i\pi(g+K(x))x}$, Mask M centred on $g\overline{u}_x$ in $\widetilde{I}_{SMH_{exp}}$ and with the minimum radius to include K(x).
- * Expected output $P_{\Delta \overrightarrow{g_j}^{M_{exp}}} = K(x)x$, $\Delta \overrightarrow{g_j}^{M_{exp}} = K(x)\overrightarrow{u_x}$,
- \star Test output: $P_{\Delta \overrightarrow{g_j}^{Mexp}}{}^t,$ $\Delta \overrightarrow{g_j}^{Mexp}{}^t$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{P_{\Delta \overrightarrow{g_j}} M_{exp}}(\vec{r}) = |P_{\Delta \overrightarrow{g_j}} M_{exp}(\vec{r}) - P_{\Delta \overrightarrow{g_j}} M_{exp}(\vec{r})|$$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{\Delta \overrightarrow{g_j}^{M_{exp}}}(\vec{r}) = |\Delta \overrightarrow{g_j}^{M_{exp}}{}^t(\vec{r}) - \Delta \overrightarrow{g_j}^{M_{exp}}(\vec{r})|$$

Test 9 Phase-Extraction-Mask

- * Type: Functional
- \star Initial State:
- * Input: $I_{SMH_{exp}} = e^{2i\pi(g+K(x))x}$, Mask M centred on $g\overrightarrow{u_x}$ in $\widetilde{I}_{SMH_{exp}}$ with different radius ϵ .

- $\star \text{ Expected output } P_{\Delta \overrightarrow{g_j}^{M_{exp}}} = K(x)x, \, \Delta \overrightarrow{g_j}^{M_{exp}} = K(x)\overrightarrow{u_x},$
- \star Test output: $P_{\Delta \overrightarrow{g_j}^{M_{exp}}}{}^t,\,\Delta \overrightarrow{g_j}^{M_{exp}}{}^t$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{P_{\Delta \overrightarrow{g_j}} M_{exp}}(\vec{r}, \epsilon) = |P_{\Delta \overrightarrow{g_j}} M_{exp}{}^t(\vec{r}, \epsilon) - P_{\Delta \overrightarrow{g_j}} M_{exp}(\vec{r})|$$

$$- \ \forall \vec{r} \in \mathbb{I}, \ E_{\Delta \overrightarrow{g_j}^{Mexp}}(\vec{r}, \epsilon) = |\Delta \overrightarrow{g_j}^{Mexp}(\vec{r}, \epsilon) - \Delta \overrightarrow{g_j}^{Mexp}(\vec{r})|$$

Test R10

Test 10 bla

- \star Type: Functional
- \star Initial State:
- ★ Input:
- ★ Expected output
- ★ Output:

Test R11

Test 11 bla

- \star Type: Functional
- ★ Initial State:
- ★ Input:
- \star Expected output
- ★ Output:

Test R12

Test $12 \underline{bla}$

- ★ Type: Functional
- \star Initial State:
- ★ Input:
- \star Expected output
- ★ Output:

5.2 Tests for Nonfunctional Requirements

5.2.1 Area of Testing1

Test NR1

Test 13 \underline{bla}

- ★ Type: Functional
- ★ Initial State:
- ★ Input:
- \star Expected output
- \star Output:

5.3 Traceability Between Test Cases and Requirements

6 Unit Testing Plan

7 Appendix

This is where you can place additional information.

7.1 Symbolic Parameters

The definition of the test cases will call for SYMBOLIC_CONSTANTS. Their values are defined in this section for easy maintenance.

7.2 Usability Survey Questions?

This is a section that would be appropriate for some teams.