Задача В. Перестроение доказательства

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В данной задаче требуется проверить доказательство выражения в гильбертовском варианте интуиционистского исчисления высказываний и перестроить его в доказательство в натуральном выводе.

Формат входных данных

На вход дается доказательство утверждения в соответствии со следующей грамматикой:

```
⟨Контекст⟩ 'І-' ⟨Выражение⟩ '\n' ⟨Строка⟩*
      ⟨Файл⟩
  (Контекст)
                    ⟨Выражение⟩ [', '⟨Выражение⟩]*
    (Строка)
               ::=
                    ⟨Выражение⟩ '\n'
                    «Выражение» '&' «Выражение»
(Выражение)
               ::=
                    ⟨Выражение⟩ '|' ⟨Выражение⟩
                    ⟨Выражение⟩ '->' ⟨Выражение⟩
                    '!' (Выражение)
                    '(' (Выражение) ')'
                    (Переменная)
                    (A'...'Z') \{A'...'Z' | O'...'9' | V''\}^*
(Переменная)
```

Операторы '&' и '|' левоассоциативны. Оператор '->' правоассоциативен. Операторы в порядке уменьшения приоритета: '!', '&', '|', '->'.

Имена переменных не содержат пробелов. Между символами одного оператора нет пробелов ('->' и '|-'). В остальных местах пробелы могут присутствовать. Символы табуляции и возврата каретки должны трактоваться как пробелы.

Формат выходных данных

Если входное доказательство неверно, выведите:

- ullet если строка n доказательства не следует из предыдущих, выведите «Proof is incorrect at line n»;
- если последняя строка доказательства отличается от доказываемого утверждения из первой строки, выведите «The proof does not prove the required expression».

Иначе выведите доказательство. Каждая строка доказательства — узел дерева, пустых строк быть не должно (кроме последней строки). Дочерние узлы указываются перед родительским узлом. В начале строки — уровень узла в квадратных скобках, потом через пробел — формула, в конце строки — обозначение правила, также через пробел и в квадратных скобках. Для обозначения лжи используйте комбинацию «_|_»: подчёркивание (ASCII 95), вертикальная черта (ASCII 124), подчёркивание (ASCII 95). В остальном следуйте формату из примеров.

Доказанное во входном файле высказывание должно быть заключением самого верхнего правила. В данном высказывании отрицание термов ($\neg \varphi$) передавайте как ($\varphi \to \bot$). В доказательстве вы можете пользоваться следующими правилами. Посылки правил должны идти в указанном порядке, переставлять их нельзя — однако, гипотезы в контексте могут быть произвольно переставлены.

Математическая логика, y2019 СПб, ИТМО,

Обозначение	Посылки	Заключение
Ax		$\Gamma, \varphi \vdash \varphi$
E->	$\Gamma \vdash \varphi \rightarrow \psi, \Gamma \vdash \varphi$	$\Gamma \vdash \psi$
I->	$\Gamma, \varphi \vdash \psi$	$\Gamma \vdash \varphi \to \psi$
1&	$\Gamma \vdash \varphi, \ \Gamma \vdash \psi$	$\Gamma \vdash \varphi \& \psi$
E1&	$\Gamma \vdash \varphi \& \psi$	$\Gamma \vdash \varphi$
Er&	$\Gamma \vdash \varphi \& \psi$	$\Gamma \vdash \psi$
Ill	$\Gamma \vdash \varphi$	$\Gamma \vdash \varphi \lor \psi$
Ir	$\Gamma \vdash \psi$	$\Gamma \vdash \varphi \lor \psi$
Εl	$\Gamma, \varphi \vdash \rho, \ \Gamma, \psi \vdash \rho, \ \Gamma \vdash \varphi \lor \psi$	$\Gamma \vdash \rho$
E_ _	$\Gamma \vdash \bot$	$\Gamma \vdash \varphi$

Примеры

стандартный ввод	стандартный вывод	
A - A -> A	[3] A,A,A -A [Ax]	
A->A->A	[2] A,A -A->A [I->]	
A	[1] A -A->A->A [I->]	
A->A	[1] A -A [Ax]	
	[O] A -A->A [E->]	
A, C - B'	Proof is incorrect at line 2	
В'		

Замечание

Рассмотрим доказательство $A \to A$ (гильбертовский стиль). Входной файл, соответствующий доказательству, мог бы быть таким:

Поскольку утверждение может быть доказано следующим натуральным выводом:

$$A \vdash A \\ \vdash A \to A$$

То, соответственно, текст ниже будет корректным ответом на задачу.

[O]
$$|-A->A$$
 [I->]