

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Metodi numerici per equazioni differenziali ordinarie Lezione 6.2a

Differenze finite in avanti, all'indietro e centrate

Equazioni Differenziali Ordinarie (EDO)

$$y'(x) = f(x, y(x))$$

- Metodi numerici per la risoluzione numerica di EDO
 - ✓ Processo di discretizzazione (nodi equispaziati)
 - ✓ Rapporto incrementale e sviluppi di Taylor
 - ✓ Differenze finite in avanti, all'indietro e centrate
 - ✓ Metodi di Eulero

 $y_k = y(x_k)$

Quadro generale di un metodo numerico per EDO

Problema di Cauchy

$$\begin{cases} y'(x) = f(x, y(x)) & \forall x \in I \\ y(x_0) = y_0 & x_0 \in I \end{cases}$$

Problema numerico

> Costruire soluzione numerica $\{u_k\}$ che approssima $y(x_k)$ nei nodi x_k $\{u_0,u_1,\ldots,u_k,\ldots,u_n\}$ $\{x_0,x_1,\ldots,x_k,\ldots,x_n\}$

$$u_k \simeq y_k = y(x_k)$$

ightharpoonup Processo di generazione dell'insieme dei nodi $\{x_k\}$

Ipotesi di nodi equispaziati

$$x_{k+1} = x_k + h$$
 $k \ge 0, h > 0$

ightharpoonup Per costruire la funzione $G(u_{k-1},u_k,u_{k+1})$, ricordiamo che

$$y'(x_k) \approx G(y_{k-1}, y_k, y_{k+1})$$

 \triangleright Obiettivo: approssimare la derivata $y'(x_k)$ in un nodo x_k

Si utilizza la definizione di derivata come limite del <u>rapporto incrementale</u>

$$y'(x) = \frac{dy}{dx} = \lim_{h \to 0} \frac{y(x+h) - y(h)}{h}$$

 \blacktriangleright Sviluppo in serie di Taylor della funzione y(x)

ightharpoonup Sviluppo in serie di Taylor <u>in avanti</u> della funzione y(x)

2° ordine
$$y(x+h) = y(x) + y'(x)h + \frac{y''(\xi)}{2}h^2$$

$$\xi \in (x,x+h)$$
 Resto dello sviluppo

> Specificando lo sviluppo per $x=x_k$ e ricordando $x_{k+1}=x_k+h$

$$y_{k+1} = y_k + y'(x_k)h + \frac{y''(\xi_k)}{2}h^2$$
 $\xi_k \in (x_k, x_{k+1})$

(DF in avanti)
Differenza Finita
in avanti

$$y'(x_k) = \frac{y_{k+1} - y_k}{h} + \underbrace{\frac{y''(\xi_k)}{2}h}_{O(h)}$$

(DF in avanti)
Differenza Finita
in avanti

$$y'(x_k) = \frac{y_{k+1} - y_k}{h} + O(h)$$

> Calcolare la derivata prima $y'(x_k)$ con le DF in avanti equivale a sostituire $y'(x_k)$ con il coeff. angolare della retta tra x_k, x_{k+1}

