The scatterplot on the right shows the relationship between percentage of white residents and percentage
of households with a female head in all 50 US States and the District of Columbia (DC). Which of the below
best describes the two points marked as DC and Hawaii?



- Hawaii is not an outlier, and DC is not a leverage point.
- OC and Hawaii should both be excluded from a simple linear regression analysis.
- Neither DC nor Hawaii appear to be leverage points.
- Hawaii has higher leverage and is more influential than DC.

The scatterplot below shows the relationship between socioeconomic status measured as the percentage
of children in a neighborhood receiving reduced-fee lunches at school (lunch) and bike helmet use
measured as the percentage of bike riders in the neighborhood wearing helmets (helmet). The equation of
the regression line is

$$helmet = 47.49 - 0.54$$
  $lunch$ 

and the  $\mathbb{R}^2$  is 72%. Which of the following is **true**?



- The correlation coefficient is 0.85.
- 72% of the percentage of children receiving reduced-fee lunches at school can be accurately predicted by the model.
- Decreasing the percentage of children receiving reduced-fee lunches at school by 5% will increase the percentage of bike riders wearing helmets in that neighborhood by 2.7%.
- Neighborhoods where no students receive reduced-fee lunches are expected on average to have 47.49% of bike riders wearing helmets.

3. The model below is for predicting the heart weight (in g) of cats from their gender (female and male). The coefficients are estimated using a dataset of 144 domestic cats. Which of the following is **false**?

|             | Estimate | Std. Error | t value | Pr(>  t ) |
|-------------|----------|------------|---------|-----------|
| (Intercept) | 9.20     | 0.33       | 28.31   | 0.00      |
| sex:male    | 2.12     | 0.40       | 5.35    | 0.00      |

- Female cats on average are expected to have hearts that weigh 2.12 grams less than those of male cats.
- If the regression equation is written  $\hat{y} = b_0 + b_1 x$ , then plugging in x = 0 would give you the predicted heart weight for a female cat.
- The expected heart weight for male cats is, on average, 11.32 grams.
- The intercept is meaningless.



For a categorical explanatory variable like we have here (gender), a value of 0 for the explanatory variable corresponds to the baseline level.

| 4. | Determine if I or II is higher, or if they are equal:       |
|----|-------------------------------------------------------------|
|    |                                                             |
|    | The uncertainty associated with the slope estimate when     |
|    | I. there is a lot of scatter around the regression line     |
|    | II. there is very little scatter around the regression line |
|    | O I is higher                                               |
|    | II is higher                                                |

## Incorrect

) I and II are equal

This question refers to the following learning objective(s):

- Calculate a confidence interval for the slope as

$$b_1 \pm t_{df}^{\star} SE_{b_1}$$
,

where df=n-2 and  $t_{df}^{\star}$  is the critical score associated with the given confidence level at the desired degrees of freedom.

- Note that the standard error of the slope estimate  $SE_{b_1}\,$  can be found on the regression output.

## Question 5

Which of the following is **not** supported by information provided in the model outputs above?

| 0 | The F-test for the significance of the model overall suggests that at least one of the slope coefficients is significantly different than 0.                 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | The sample size is 252.                                                                                                                                      |
| • | Wrist circumference is the most significant predictor of body fat percentage since the slope associated with this variable has the highest magnitude.        |
| 0 | All else held constant, people with wider hips tend to have lower body fat percentages.                                                                      |
| 0 | All else held constant, for each additional cm the forearm circumference is higher, body fat percentage is expected to be higher by 0.483 percentage points. |

## ✓ Correct

This question refers to the following learning objective:

Determine whether an explanatory variable is a significant predictor for the response variable using the t-test and the associated p-value in the regression output.

| 6. | Do these data provide convincing evidence that age and body fat percentage are significantly <b>positively</b> associated? Why or why not? Use quantitative information based on the model output to support your answer, and make sure to note the p-value you use to make this decision.                        |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Yes, the p-value for testing for a positive correlation between age and body fat percentage is 0.039 / 2 = 0.0195. Since the p-value is small we reject the null hypothesis of no relationship.                                                                                                                   |
|    | Yes, the p-value for testing for a positive correlation between age and body fat percentage is 0.000. Since the p-value is small we reject the null hypothesis of no relationship.                                                                                                                                |
|    | Yes, the p-value for testing for a positive correlation between age and body fat percentage is 2e\$^{-16}\$. Since the p-value is small we reject the null hypothesis of no relationship.                                                                                                                         |
|    | Yes, the p-value for testing for a positive correlation between age and body fat percentage is 0.039. Since the p-value is small we reject the null hypothesis of no relationship.                                                                                                                                |
|    | ✓ Correct This question refers to the following learning objective:                                                                                                                                                                                                                                               |
|    | Determine whether an explanatory variable is a significant predictor for the response variable using the t-test and the associated p-value in the regression output.                                                                                                                                              |
| 7. | Construct a 95% confidence interval for the slope of abdomen circumference and interpret it in context of the data.                                                                                                                                                                                               |
|    | <ul> <li>(0.745, 1.009); All else held constant, for each additional cm in abdomen circumference, body fat<br/>percentage is expected to be higher by 0.745 to 1.009 percentage points.</li> </ul>                                                                                                                |
|    | (-0.00539, 1.75); All else held constant, for each additional cm in abdomen circumference, body fat percentage is expected to change by -0.00539 to 1.75 percentage points.                                                                                                                                       |
|    | (0.00539, 0.88239); All else held constant, for each additional cm in abdomen circumference, body fat percentage is expected to be higher by 0.00539 to 0.88239 percentage points.                                                                                                                                |
|    | (0.745, 1.009); All else held constant, for each additional percentage point increase in body fat, abdomen circumference is expected to be higher by 0.745 to 1.009 cm.                                                                                                                                           |
|    | ✓ Correct                                                                                                                                                                                                                                                                                                         |
|    | We recall that this confidence interval is supposed to capture $\beta_{abdomen}$ , ie the impact of increasing abdomen circumference by 1 cm on the response of body fat percentage.                                                                                                                              |
|    | This question refers to the following learning objective:                                                                                                                                                                                                                                                         |
|    | Calculate a confidence interval for the slope as $b_1\pm t_{df}^*SE_{b_1}$ where $df=n-2$ and $t_{df}^*$ is the critical score associated with the given confidence level at the desired degrees of freedom. Note that the standard error of the slope estimate $SE_{b_1}$ can be found on the regression output. |

| 8. | rand       | sical activity in the US. The CDC monitors the physical activity level of Americans. A recent survey on a dom sample of $23,129$ Americans yielded a $95\%$ confidence interval of $61.1\%$ to $62.9\%$ for the portion of Americans who walk for at least $10$ minutes per day. Which of the following is the <b>correct</b> rpretation of this confidence interval? |
|----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | $\bigcirc$ | 61.1% to $62.9%$ of the time Americans walk for at least $10$ minutes per day.                                                                                                                                                                                                                                                                                        |
|    | $\bigcirc$ | 95% of the time the true proportion of Americans who walk for at least $10$ minutes per day is between $61.1%$ to $62.9%.$                                                                                                                                                                                                                                            |
|    | 0          | Between $61.1\%$ and $62.9\%$ of random samples of $23,129$ Americans are expected to yield confidence intervals that contain the true proportion of Americans who walk for at least $10$ minutes per day.                                                                                                                                                            |
|    | $\bigcirc$ | 95% of random samples of $23,129$ Americans will yield confidence intervals between $61.1%$ and $62.9$ %.                                                                                                                                                                                                                                                             |
|    | •          | None of these.                                                                                                                                                                                                                                                                                                                                                        |
|    |            | ✓ Correct                                                                                                                                                                                                                                                                                                                                                             |