Clustering

OPTICS- Ordering Points to Identify the Clustering Structure

- Density-based Clustering
- Discover Clusters of arbitrary shapes
- Discover Clusters of varying densities
- Dense regions= Clusters
- Outlier points = Noise

OPTICS- Definitions and notations

MinPts = Number of points required to form

the cluster

$$N_{\varepsilon}(p)$$
 = Neighbourhood of ε

Core point = if atleast MinPts points are within a distance of $\boldsymbol{\varepsilon}$ to the point

p directly reachable from q if:

- 1) $p \in N_{Fps}(q)$
 - 2) $|N_{Eps}(q)| \ge MinPts$

Eps = 6mm

MinPts = 5

Core_Distance(p) = 3mm

Core points = p,r

Reachability_Distance(q,p) = 7mm

Reachability_Distance(r,p) = 3mm

 $ext{core-dist}_{arepsilon, MinPts}(p) \ = \left\{ egin{align*} ext{UNDEFINED} \ ext{MinPts-th smallest distance in } N_{arepsilon}(p) \end{array}
ight.$

if $|N_{\varepsilon}(p)| < MinPts$ otherwise

otherwise

 $\text{if } |N_{\varepsilon}(p)| < \mathit{MinPts}$

 $ext{reachability-dist}_{arepsilon, MinPts}(o, p) = \left\{ egin{align*} ext{UNDEFINED} \ ext{max}(ext{core-dist}_{arepsilon, MinPts}(p), ext{dist}(p, o)) \end{array}
ight.$

OPTICS - Implementation

OPTICS creates an ordering of data points along with storing the core-distance & reachability distance for objects

Select an arbitrary p from data: if it is not processed then-

- Retrieve Nε(p) & find core-dist, reachability-dist
 - If p is core point then- iteratively collect its density reachable points wrt ε & MinPts
 - If new points are directly density reachable, sort them by reachability-dist
 - find Nε and core-dist, add to "order"
 list along with reachability-dist
 - If p is not core point then- add p to "order"
 list and process next data point

After all the points are processed the core-dist and reachability-dist are plotted in a "Reachability Plot"

OPTICS vs Other Clustering Algorithms

OPTICS- Summary

OPTICS is a density based algorithm that uses "core-distance" and "reachability distance" concepts to <u>order</u> data points into clusters

- Resistant to noise
- Resistant to arbitrary shapes and varying densities
- Relatively insensitive to parameter settings
- Higher Space Complexity than DBSCAN
- Requires more computational power than DBSCAN
- Interpretation of results is subjective

Reference materials

- [1] Mihael Ankerst; Markus M. Breunig; Hans-Peter Kriegel; Jörg Sander (1999). *OPTICS: Ordering Points To Identify the Clustering Structure*. ACM SIGMOD international conference on Management of data. ACM Press. pp. 49–60.
- [2] Martin Ester; Hans-Peter Kriegel; Jörg Sander; Xiaowei Xu (1996). Evangelos Simoudis; Jiawei Han; Usama M. Fayyad (eds.). *A density-based algorithm for discovering clusters in large spatial databases with noise*. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press. pp. 226–231.
- [3] Wikipedia contributors. "OPTICS algorithm." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 27 Jul. 2020.
- [4] https://medium.com/@xzz201920/optics-d80b41fd042a