Proposition 1. Preservation of conditional dependence. Let x_A, x_B, x_C be any latent or observed random variables in $p(\mathbf{x})$ with graph structure G, and let $\tilde{x}_A, \tilde{x}_B, \tilde{x}_C$ denote the corresponding random variables in the inverse model $\tilde{p}(\mathbf{x})$ with graph structure \tilde{G} , constructed via the algorithm above.

with graph structure \widetilde{G} , constructed via the algorithm above. Then if \widetilde{x}_A and \widetilde{x}_B are conditionally independent given \widetilde{x}_C in the inverse model \widetilde{G} , they were also conditionally independent in the original model G; that is,

$$\tilde{x}_A \perp \!\!\! \perp \tilde{x}_B | \tilde{x}_C \quad \Rightarrow \quad x_A \perp \!\!\! \perp x_B | x_C.$$