

Lecture «Robot Dynamics»: Kinematics 3

151-0851-00 V

lecture: CAB G11 Tuesday 10:15 – 12:00, every week

exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

Marco Hutter, Roland Siegwart, and Thomas Stastny

19.09.2017	Intro and Outline	Course Introduction; Recapitulation Position, Linear Velocity			
26.09.2017	Kinematics 1	Rotation and Angular Velocity; Rigid Body Formulation, Transformation	26.09.2017	Exercise 1a	Kinematics Modeling the ABB arm
03.10.2017	Kinematics 2	Kinematics of Systems of Bodies; Jacobians	03.10.2017	Exercise 1b	Differential Kinematics of the ABB arm
10.10.2017	Kinematics 3	Kinematic Control Methods: Inverse Differential Kinematics, Inverse Kinematics; Rotation Error; Multi-task Control	10.10.2017	Exercise 1c	Kinematic Control of the ABB Arm
17.10.2017	Dynamics L1	Multi-body Dynamics	17.10.2017	Exercise 2a	Dynamic Modeling of the ABB Arm
24.10.2017	Dynamics L2	Floating Base Dynamics	24.10.2017		
31.10.2017	Dynamics L3	Dynamic Model Based Control Methods	31.10.2017	Exercise 2b	Dynamic Control Methods Applied to the ABB arm
07.11.2017	Legged Robot	Dynamic Modeling of Legged Robots & Control	07.11.2017	Exercise 3	Legged robot
14.11.2017	Case Studies 1	Legged Robotics Case Study	14.11.2017		
21.11.2017	Rotorcraft	Dynamic Modeling of Rotorcraft & Control	21.11.2017	Exercise 4	Modeling and Control of Multicopter
28.11.2017	Case Studies 2	Rotor Craft Case Study	28.11.2017		
05.12.2017	Fixed-wing	Dynamic Modeling of Fixed-wing & Control	05.12.2017	Exercise 5	Fixed-wing Control and Simulation
12.12.2017	Case Studies 3	Fixed-wing Case Study (Solar-powered UAVs - AtlantikSolar, Vertical Take-off and Landing UAVs – Wingtra)			
19.12.2017	Summery and Outlook	Summery; Wrap-up; Exam			

Multi-body Kinematics Intro

- Machines are built and controlled to
 - achieve extremely accurate positions,
 - independent of the load the robot carries
 - Very stiff structure
 - Play-free gears and transmissions
 - High-accurate joint sensors
 - ➤ End-effector accuracy +/- 0.02mm!
- Large variety of robot arms

Robot Dynamics - Kinematics 3

HumorOn.com

Fixed Base vs. Floating Base Robot

- Base frame is rigidly connected to ground
 - Often indicated as CS 0

- Base frame is free floating
 - Often indicated as CS B (base)
 - 6 unactuated DOFs!

Classical Serial Kinematic Linkages

Generalized robot arm

- n_j joints
 - revolute (1DOF)
 - prismatic (1DOF)
- $n_l = n_j + 1$ links
 - n_j moving links
 - 1 fixed link

Configuration Parameters

Generalized coordinates

Generalized coordinates

A set of scalar parameters **q** that describe the robot's configuration

- Must be complete
- (Must be independent)=> minimal coordinates
- Is not unique

$$\mathbf{q} = \begin{pmatrix} q_1 \\ \vdots \\ q_{n_j} \end{pmatrix} \in \mathbb{R}^{n_j}$$

Degrees of Freedom

Nr of minimal coordinates

End-effector Configuration Parameters

- End-effector configuration parameters
 - \blacksquare A set of m parameters that completely specify the end-effector position and orientation with respect to ${\cal I}$

$$oldsymbol{\chi}_e = egin{pmatrix} oldsymbol{\chi}_{eP} \ oldsymbol{\chi}_{eR} \end{pmatrix} = egin{pmatrix} \chi_1 \ dots \ \chi_m \end{pmatrix} \in \mathbb{R}^m$$

- Operational space coordinates
 - the m₀ configuration parameters are independent => m₀ number of degrees of freedom of end-effector

$$\chi_o = \begin{pmatrix} \chi_{o_P} \\ \chi_{o_R} \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \vdots \\ \chi_{m_0} \end{pmatrix}$$

End-effector Configuration Parameters

Example

- Most general robot arm:
 - q =

$$m_o$$
=

•
$$\chi_e$$
=

$$\chi_o$$
=

- SCARA robot arm
 - q =

$$m_o$$
=

•
$$\chi_e$$
=

$$\chi_o$$
=

- q =
- *m_e*=

$$m_o$$
=

• χ_e =

$$\chi_o =$$

End-effector Configuration Parameters Example

- Most general robot arm:
 - $\bullet \mathbf{q} = (q_1...q_{n_i})$
 - $m_e = 6$ $m_o = 6$

$$m_0 = 6$$

- $\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$ $\chi_o = (x, y, z, \alpha_x, \beta_y, \gamma_z)$
- SCARA robot arm

•
$$\mathbf{q} = (\alpha, \beta, \gamma, \zeta)$$

•
$$m_e$$
= 6

$$m_o = 4$$

•
$$\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$$
 $\chi_o = (x, y, z, \gamma_z)$

•
$$\mathbf{q} = (q_1, q_2, q_3, q_4)$$

•
$$m_e$$
= 6 m_o = 4

$$m_o = 2$$

•
$$\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$$
 $\chi_o =$

End-effector Configuration Parameters Example

- Most general robot arm:
 - $\bullet \mathbf{q} = (q_1...q_{n_i})$
 - $m_e = 6$ $m_o = 6$

$$m_0 = 6$$

- $\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$ $\chi_o = (x, y, z, \alpha_x, \beta_y, \gamma_z)$
- SCARA robot arm
 - $\mathbf{q} = (\alpha, \beta, \gamma, \zeta)$
 - m_e = 6

$$m_o = 4$$

• $\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$ $\chi_o = (x, y, z, \gamma_z)$

- **q** = (q_1, q_2, q_3, q_4)
- m_e = 6 m_o = 4

$$m_o = 4$$

• $\chi_e = (x, y, z, \alpha_x, \beta_y, \gamma_z)$ $\chi_o =$

End-effector Configuration ParametersSimple example

- Planar robot arm
 - 3 revolute joints
 - 1 end-effector (gripper) <= don't consider this for the moment

What are the joint coordinates (generalized coordinates)?

What are the end-effector parameters?

Configuration Space ⇔ Joint Space

Joint Coordinates

Operational Coordinates

Configuration Space ⇔ Joint Space

Joint Coordinates

Operational Coordinates

Operational Space

Forward Kinematics

End-effector configuration as a function of generalized coordinates

$$\boldsymbol{\chi}_{e} = \boldsymbol{\chi}_{e}\left(\mathbf{q}\right) \in \mathbb{R}^{n_{e}}$$

For multi-body system, use transformation matrices

$$\mathbf{T}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) = \mathbf{T}_{\mathcal{I}0} \cdot \left(\prod_{k=1}^{n_j} \mathbf{T}_{k-1,k}(q_k) \right) \cdot \mathbf{T}_{n_j\mathcal{E}} = \begin{bmatrix} \mathbf{C}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) & \mathcal{I}\mathbf{r}_{IE}(\mathbf{q}) \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}$$

Forward Kinematics

Simple example

 What is the end-effector configuration as a function of generalized coordinates?

$$\begin{split} \mathbf{T}_{IE} &= \mathbf{T}_{I0} \cdot \mathbf{T}_{01} \cdot \mathbf{T}_{12} \cdot \mathbf{T}_{23} \cdot \mathbf{T}_{3E} \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{c}_{1} & 0 & s_{1} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{1} & 0 & c_{1} & l_{0} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{c}_{2} & 0 & s_{2} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{2} & 0 & c_{2} & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{2} & 0 & c_{2} & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{2} & 0 & c_{2} & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{3} & 0 & c_{3} & l_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_{2} & 0 & c_{2} & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0$$

$$\boldsymbol{\chi}_{eR}\left(\mathbf{q}\right) = \chi_{eR}\left(\mathbf{q}\right) = q_1 + q_2 + q_3$$

Forward Differential Kinematics

Analytical Jacobian

• Forward Kinematics
$$\chi_e = \begin{pmatrix} \chi_{e_p} \\ \chi_{e_R} \end{pmatrix} = \chi_e(\mathbf{q})$$

$$\mathbf{T}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) = \mathbf{T}_{\mathcal{I}0} \cdot \left(\prod_{k=1}^{n_j} \mathbf{T}_{k-1,k}(q_k) \right) \cdot \mathbf{T}_{n_j\mathcal{E}} = \begin{bmatrix} \mathbf{C}_{\mathcal{I}\mathcal{E}}(\mathbf{q}) & & \mathbf{I}^{\mathbf{r}_{IE}}(\mathbf{q}) \\ \mathbf{0}_{1\times 3} & & 1 \end{bmatrix}$$

Forward **Differential** Kinematics

Forward Differential Kinematics

Analytical Jacobian

- Forward **Differential** Kinematics
 - $\chi_e + \delta \chi_e = \chi_e \left(\mathbf{q} + \delta \mathbf{q} \right) = \chi_e \left(\mathbf{q} \right) + \frac{\partial \chi_e \left(\mathbf{q} \right)}{\partial \mathbf{q}} \delta \mathbf{q} + O \left(\delta \mathbf{q}^2 \right)$ Analytic: $\delta \boldsymbol{\chi}_{e} \approx \frac{\partial \boldsymbol{\chi}_{e} \left(\mathbf{q} \right)}{\partial \mathbf{q}} \delta \mathbf{q} = \mathbf{J}_{eA} \left(\mathbf{q} \right) \delta \mathbf{q} \quad \text{with } \mathbf{J}_{eA} = \frac{\partial \boldsymbol{\chi}_{e}}{\partial \mathbf{q}} = \begin{bmatrix} \frac{\partial \chi_{1}}{\partial q_{1}} & \cdots & \frac{\partial \chi_{1}}{\partial q_{n_{j}}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \chi_{m}}{\partial q_{1}} & \cdots & \frac{\partial \chi_{m}}{\partial q_{m}} \end{bmatrix}$

$$\dot{\boldsymbol{\chi}}_{e} = \mathbf{J}_{eA}\left(\mathbf{q}\right)\dot{\mathbf{q}}$$
 with $\mathbf{J}_{eA}\left(\mathbf{q}\right) \in \mathbb{R}^{m_{e} \times n_{j}}$

Analytical Jacobian

Planar robot arm

Given (from last example)

$$\boldsymbol{\chi}_{eP}(\mathbf{q}) = \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) + l_3 \sin(q_1 + q_2 + q_3) \\ l_0 + l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) + l_3 \cos(q_1 + q_2 + q_3) \end{pmatrix}$$

$$\boldsymbol{\chi}_{eR}\left(\mathbf{q}\right) = \chi_{eR}\left(\mathbf{q}\right) = q_1 + q_2 + q_3$$

Determine the analytical Jacobian

Analytical Jacobian

Planar robot arm

Given (from last example)

$$\chi_{eP}(\mathbf{q}) = \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} l_1 \sin(q_1) + l_2 \sin(q_1 + q_2) + l_3 \sin(q_1 + q_2 + q_3) \\ l_0 + l_1 \cos(q_1) + l_2 \cos(q_1 + q_2) + l_3 \cos(q_1 + q_2 + q_3) \end{pmatrix}$$

$$\boldsymbol{\chi}_{eR}\left(\mathbf{q}\right) = \chi_{eR}\left(\mathbf{q}\right) = q_1 + q_2 + q_3$$

Determine the analytical Jacobian

$$\mathbf{J}_{eAP}\left(\mathbf{q}\right) = \frac{\partial \boldsymbol{\chi}_{eP}}{\partial \mathbf{q}} = \begin{bmatrix} l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} & l_{2}c_{12} + l_{3}c_{213} & l_{3}c_{213} \\ -l_{1}s_{1} - l_{2}s_{12} - l_{3}s_{123} & -l_{2}s_{12} - l_{3}s_{213} & -l_{3}s_{213} \end{bmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\mathbf{J}_{eAR}\left(\mathbf{q}\right) = \frac{\partial \boldsymbol{\chi}_{eR}}{\partial \mathbf{q}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \in \mathbb{R}^{1 \times 3}$$

Forward Differential Kinematics

Forward Differential Kinematics

$$\dot{oldsymbol{\chi}}_{e} = \mathbf{J}_{eA}\left(\mathbf{q}\right)\dot{\mathbf{q}} \quad ext{with } \mathbf{J}_{eA}\left(\mathbf{q}
ight) \in \mathbb{R}^{m_{e} imes n_{j}}$$

Depending on parameterization!!

• Geometric:
$$\mathbf{w}_e = \begin{pmatrix} \mathbf{v}_e \\ \boldsymbol{\omega}_e \end{pmatrix} = \mathbf{J}_{e0} \left(\mathbf{q} \right) \dot{\mathbf{q}}$$
 with $\mathbf{J}_{e0} \left(\mathbf{q} \right) \in \mathbb{R}^{6 \times n_j}$

Independent of parameterization

$$\mathbf{w}_{e} = \mathbf{E}_{e}\left(oldsymbol{\chi}_{e}
ight)\dot{oldsymbol{\chi}}_{e}$$

$$oldsymbol{\mathbf{J}}_{e0}\left(\mathbf{q}
ight) = \mathbf{E}_{e}\left(oldsymbol{\chi}
ight)\mathbf{J}_{eA}\left(\mathbf{q}
ight)$$

• Algebra:
$$\mathbf{w}_C = \begin{pmatrix} \mathbf{v}_C \\ \boldsymbol{\omega}_\mathcal{C} \end{pmatrix} = \mathbf{w}_B + \mathbf{w}_{BC}$$
 $\mathbf{J}_C \dot{\mathbf{q}} = \mathbf{J}_B \dot{\mathbf{q}} + \mathbf{J}_{BC} \dot{\mathbf{q}}$ $\mathbf{J}_C = {}_{\mathcal{A}} \mathbf{J}_B + {}_{\mathcal{A}} \mathbf{J}_{BC}$

Velocity in Moving Bodies

Definitions

 \mathbf{v}_P : the absolute velocity of P

 $\mathbf{a}_P = \dot{\mathbf{v}}_P$: the absolute acceleration of P

 $\Omega_{\mathcal{B}} = \omega_{\mathcal{AB}}$: (absolute) angular velocity of body \mathcal{B}

 $\Psi_{\mathcal{B}} = \dot{\Omega}_{\mathcal{B}}$: (absolute) angular acceleration of body ${\mathcal{B}}$

- Remember the difference:
 - Velocity
 - Time derivative of coordinates:

Vector Differentiation in Moving Frame

Euler differentiation rule

Vector Differentiation in Moving Frame

Euler differentiation rule

- For non-moving reference frames: $A^{\mathbf{v}_P} = A^{\dot{\mathbf{r}}_{AP}}$
- For moving reference frames: $\mathbf{v}_P \neq \dot{\mathbf{r}}_{AP}$
- Vector differentiation in moving frames (A = inertial/reference frame):

$$\mathbf{\mathcal{B}}\mathbf{v}_{P} = \mathbf{C}_{\mathcal{B}\mathcal{A}} \cdot \frac{d}{dt} \left(\mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\mathbf{r}_{AP} \right) \\
= \mathbf{C}_{\mathcal{B}\mathcal{A}} \cdot \left(\mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \dot{\mathbf{C}}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\mathbf{r}_{AP} \right) \\
= \mathbf{C}_{\mathcal{B}\mathcal{A}} \cdot \left(\mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \left[\mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \right]_{\times} \cdot \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\mathbf{r}_{AP} \right) \\
= \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \mathbf{C}_{\mathcal{B}\mathcal{A}} \cdot \left[\mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \right]_{\times} \cdot \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot \mathbf{\mathcal{B}}\mathbf{r}_{AP} \\
= \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \mathbf{\mathcal{B}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \times \mathbf{\mathcal{B}}\mathbf{r}_{AP} \\
= \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \mathbf{\mathcal{B}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \times \mathbf{\mathcal{B}}\mathbf{r}_{AP}$$

$$[\mathbf{\mathcal{B}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}}]_{\times} = \mathbf{C}_{\mathcal{B}\mathcal{A}} \cdot \left[\mathcal{A}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \right]_{\times} \cdot \mathbf{C}_{\mathcal{A}\mathcal{B}} \\
= \mathbf{\mathcal{B}}\dot{\mathbf{r}}_{AP} + \mathbf{\mathcal{B}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}} \times \mathbf{\mathcal{B}}\mathbf{r}_{AP}$$

Velocity in Moving BodiesRigid body formulation

- Apply transformation rule as learned before
- Differentiate with respect to time
- Substitute
- Rigid body formulation

Velocity in Moving Bodies

Rigid body formulation

Apply transformation rule as learned before

$$_{\mathcal{A}}\mathbf{r}_{AP} = _{\mathcal{A}}\mathbf{r}_{AB} + _{\mathcal{A}}\mathbf{r}_{BP} = _{\mathcal{A}}\mathbf{r}_{AB} + \mathbf{C}_{\mathcal{A}\mathcal{B}} \cdot _{\mathcal{B}}\mathbf{r}_{BP}$$

Differentiate with respect to time

$$_{\mathcal{A}}\dot{\mathbf{r}}_{AP} = _{\mathcal{A}}\dot{\mathbf{r}}_{AB} + \mathbf{C}_{\mathcal{AB}}\cdot_{\mathcal{B}}\dot{\mathbf{r}}_{BP} + \dot{\mathbf{C}}_{\mathcal{AB}}\cdot_{\mathcal{B}}\mathbf{r}_{BP}$$

- Substitute $\dot{\mathbf{C}}_{\mathcal{A}\mathcal{B}} = \left[_{\mathcal{A}}\boldsymbol{\omega}_{\mathcal{A}\mathcal{B}}\right]_{\times} \cdot \mathbf{C}_{\mathcal{A}\mathcal{B}}$
- Rigid body formulation

$$A\dot{\mathbf{r}}_{AP} = A\dot{\mathbf{r}}_{AB} + [A\boldsymbol{\omega}_{AB}]_{\times} \cdot \mathbf{C}_{AB} \cdot B\mathbf{r}_{BP}$$
$$= A\dot{\mathbf{r}}_{AB} + A\boldsymbol{\omega}_{AB} \times A\mathbf{r}_{BP}$$

$$\mathbf{v}_P = \mathbf{v}_B + \mathbf{\Omega} \times \mathbf{r}_{BP}$$

Geometric Jacobian Derivation

- Rigid body formulation at a single element
- Apply this to all bodies
- Angular velocity propagation

...get the end-effector velocity

Geometric Jacobian Derivation

Rigid body formulation at a single element

$$\dot{\mathbf{r}}_{Ik} = \dot{\mathbf{r}}_{I(k-1)} + \boldsymbol{\omega}_{\mathcal{I}(k-1)} \times \mathbf{r}_{(k-1)k}$$

Apply this to all bodies

$$\dot{\mathbf{r}}_{IE} = \sum_{k=1}^n \boldsymbol{\omega}_{\mathcal{I},k} imes \mathbf{r}_{k(k+1)}$$

Angular velocity propagation

$$egin{aligned} oldsymbol{\omega}_{\mathcal{I}(k)} &= oldsymbol{\omega}_{\mathcal{I}(k-1)} + oldsymbol{\omega}_{(k-1)k} \ & ext{with} \quad oldsymbol{\omega}_{(k-1)k} &= \mathbf{n}_k \dot{q}_k \end{aligned} egin{aligned} oldsymbol{\omega}_{\mathcal{I}k} &= \sum_{i=1}^k \mathbf{n}_i \dot{q}_i \end{aligned}$$

...get the end-effector velocity

$$\dot{\mathbf{r}}_{IE} = \sum_{k=1}^{n} \left\{ \sum_{i=1}^{k} (\mathbf{n}_i \dot{q}_i) \times \mathbf{r}_{k(k+1)} \right\} = \sum_{k=1}^{n} \mathbf{n}_k \dot{q}_k \times \mathbf{r}_{k(n+1)}$$

Geometric Jacobian Derivation

• Position Jacobian $\dot{\mathbf{r}}_{IE} = \sum_{k=1}^{n} \mathbf{n}_k \dot{q}_k \times \mathbf{r}_{k(n+1)}$

$$\dot{\mathbf{r}}_{IE} = \underbrace{\begin{bmatrix} \mathbf{n}_1 \times \mathbf{r}_{1(n+1)} & \mathbf{n}_2 \times \mathbf{r}_{2(n+1)} & \dots & \mathbf{n}_n \times \mathbf{r}_{n(n+1)} \end{bmatrix}}_{\mathbf{J}_{e0_P}} \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \vdots \\ \dot{q}_n \end{pmatrix}$$

• Rotation Jacobian from $\omega_{\mathcal{I}k} = \sum_{i=1}^n \mathbf{n}_i \dot{q}_i$

$$oldsymbol{\omega}_{\mathcal{I}\mathcal{E}} = \sum_{i=1}^n \mathbf{n}_i \dot{q}_i = \underbrace{\begin{bmatrix} \mathbf{n}_1 & \mathbf{n}_2 & \dots & \mathbf{n}_n \end{bmatrix}}_{\mathbf{J}_{e0_R}} egin{pmatrix} \dot{q}_1 \ \dot{q}_2 \ \vdots \ \dot{q}_n \end{pmatrix}$$

$$\mathbf{\mathcal{I}J}_{e0} = \begin{bmatrix} \mathbf{\mathcal{I}J}_{e0_P} \\ \mathbf{\mathcal{I}J}_{e0_R} \end{bmatrix} = \begin{bmatrix} \mathbf{\mathcal{I}n}_1 \times \mathbf{\mathcal{I}r}_{1(n+1)} & \mathbf{\mathcal{I}n}_2 \times \mathbf{\mathcal{I}r}_{2(n+1)} & \dots & \mathbf{\mathcal{I}n}_n \times \mathbf{\mathcal{I}r}_{n(n+1)} \\ \mathbf{\mathcal{I}n}_1 & \mathbf{\mathcal{I}n}_2 & \dots & \mathbf{\mathcal{I}n}_n \end{bmatrix} \quad \begin{bmatrix} \mathbf{\mathcal{I}n}_k = \mathbf{C}_{\mathcal{I}(k-1)} \cdot (k-1)\mathbf{n}_k \\ \mathbf{\mathcal{I}n}_k = \mathbf{\mathcal{I}}_{n(n+1)} \cdot (k-1)\mathbf{\mathcal{I}n}_k \end{bmatrix}$$

Geometric Jacobian

Planar robot arm

Preparation: determine the rotation matrices

$$\mathbf{C}_{\mathcal{I}1} = \begin{bmatrix} c_1 & 0 & s_1 \\ 0 & 1 & 0 \\ -s_1 & 0 & c_1 \end{bmatrix} \qquad \mathbf{C}_{\mathcal{I}2} = \mathbf{C}_{\mathcal{I}1} \cdot \begin{bmatrix} c_2 & 0 & s_2 \\ 0 & 1 & 0 \\ -s_2 & 0 & c_2 \end{bmatrix} = \begin{bmatrix} c_{12} & 0 & s_{12} \\ 0 & 1 & 0 \\ -s_{12} & 0 & c_{12} \end{bmatrix} \qquad \mathbf{C}_{\mathcal{I}3} = \dots$$

- Determine the rotation axes
 - Locally $_0\mathbf{n}_1 = {}_1\mathbf{n}_2 = {}_2\mathbf{n}_3 = \mathbf{e}_y$ Inertial frame $_{\mathcal{I}}\mathbf{n}_2 = \mathbf{C}_{I1}\cdot{}_1\mathbf{n}_2 = \mathbf{e}_y$

$$\mathcal{I}\mathbf{n}_1 = {}_0\mathbf{n}_1 = \mathbf{e}_y$$

$$\mathcal{I}\mathbf{n}_2 = \mathbf{C}_{I1} \cdot {}_1\mathbf{n}_2 = \mathbf{e}_y$$

$$\mathcal{I}\mathbf{n}_3 = \mathbf{C}_{I2} \cdot {}_2\mathbf{n}_3 = \mathbf{e}_y$$

Determine the position vectors

Get the Jacobian

$$\begin{split} \mathbf{\mathcal{I}J_{c0_{P}}} &= \begin{bmatrix} \mathbf{\mathcal{I}n_{1}} \times \mathbf{\mathcal{I}r_{1E}} & \mathbf{\mathcal{I}n_{2}} \times \mathbf{\mathcal{I}r_{2E}} & \mathbf{\mathcal{I}n_{3}} \times \mathbf{\mathcal{I}r_{3E}} \end{bmatrix} & \mathbf{\mathcal{I}J_{c0_{R}}} &= \begin{bmatrix} \mathbf{\mathcal{I}n_{1}} & \mathbf{\mathcal{I}n_{2}} & \mathbf{\mathcal{I}n_{3}} \end{bmatrix} \\ &= \begin{bmatrix} l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} & l_{2}c_{12} + l_{3}c_{123} & l_{3}c_{123} \\ 0 & 0 & 0 \\ -l_{1}s_{1} - l_{2}s_{12} - l_{3}c_{123} & -l_{2}s_{12} - l_{3}s_{123} & -l_{3}s_{123} \end{bmatrix} & \mathbf{\mathcal{I}J_{c0_{R}}} &= \begin{bmatrix} \mathbf{\mathcal{I}n_{1}} & \mathbf{\mathcal{I}n_{2}} & \mathbf{\mathcal{I}n_{3}} \end{bmatrix} \\ &= \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \end{split}$$

Recapitulation

Analytical and Kinematic Jacobian

Analytical Jacobian

$$\dot{oldsymbol{\chi}}_{e}=\mathbf{J}_{eA}\left(\mathbf{q}
ight)\dot{\mathbf{q}}_{eA}$$

$$\mathbf{J}_{e0}\left(\mathbf{q}
ight)=\mathbf{E}_{e}\left(oldsymbol{\chi}
ight)\mathbf{J}_{eA}\left(\mathbf{q}
ight)$$
 -

- Relates time-derivatives of config. parameters to generalized velocities
- Depending on selected parameterization $\Delta \chi \Leftrightarrow \Delta q$ (mainly rotation) in 3D Note: there exist no "rotation angle"
- Mainly used for numeric algorithms

Geometric (or basic) Jacobian

$$\mathbf{w}_{e} = \begin{pmatrix} \mathbf{v}_{e} \\ \boldsymbol{\omega}_{e} \end{pmatrix} = \mathbf{J}_{e0} \left(\mathbf{q} \right) \dot{\mathbf{q}}$$

- Relates end-effector velocity to generalized velocities
- Unique for every robot
- Used in most cases

Importance of Jacobian

- Kinematics (mapping of changes from joint to task space)
 - Inverse kinematics control
 - Resolve redundancy problems
 - Express contact constraints
- Statics (and later also dynamics)
 - Principle of virtual work
 - Variations in work must cancel for all virtual displacement
 - Internal forces of ideal joint don't contribute

$$\delta W = \sum_{i} \mathbf{f}_{i} \mathbf{x}_{i} = \mathbf{\tau}^{T} \delta \mathbf{q} + (-\mathbf{F}_{E})^{T} \delta \mathbf{x}_{E}$$
$$= \mathbf{\tau}^{T} \delta \mathbf{q} + (-\mathbf{F}_{E})^{T} \mathbf{J} \delta \mathbf{q} = 0 \quad \forall \delta \mathbf{q}$$

➤ Dual problem from principle of virtual work

Floating Base Kinematics

151-0851-00 V

lecture: CAB G11 Tuesday 10:15 – 12:00, every week

exercise: HG E1.2 Wednesday 8:15 – 10:00, according to schedule (about every 2nd week)

office hour: LEE H303 Friday 12.15 – 13.00

Marco Hutter, Roland Siegwart, and Thomas Stastny

Floating Base Systems Kinematics

Generalized coordinates

$$\mathbf{q} = \begin{pmatrix} \mathbf{q}_b \\ \mathbf{q}_j \end{pmatrix}$$
 with $\mathbf{q}_b = \begin{pmatrix} \mathbf{q}_{b_P} \\ \mathbf{q}_{b_R} \end{pmatrix} \in \mathbb{R}^3 \times SO(3)$

- Generalized velocities and accelerations?
 - Time derivatives $\dot{\mathbf{q}}, \ddot{\mathbf{q}}$ depend on parameterization

$$\bullet \ \, \text{Often} \quad \mathbf{u} = \begin{pmatrix} {}_{I}\mathbf{v}_B \\ {}_{\mathbb{B}}\boldsymbol{\omega}_{IB} \\ \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_{n_j} \end{pmatrix} \in \mathbb{R}^{6+n_j} = \mathbb{R}^{n_u} \qquad \dot{\mathbf{u}} = \begin{pmatrix} {}_{I}\mathbf{a}_B \\ {}_{\mathbb{B}}\boldsymbol{\psi}_{IB} \\ \ddot{\varphi}_1 \\ \vdots \\ \ddot{\varphi}_{n_j} \end{pmatrix} \in \mathbb{R}^{6+n_j}$$

• Linear mapping $\mathbf{u} = \mathbf{E}_{fb} \cdot \dot{\mathbf{q}}$, with $\mathbf{E}_{fb} = \begin{bmatrix} \mathbb{I}_{3 \times 3} & 0 & 0 \\ 0 & \mathbf{E}_{\boldsymbol{\chi}_R} & 0 \\ 0 & 0 & \mathbb{I}_{n_j \times n_j} \end{bmatrix}$

(a) Quadruped

Floating Base Systems

Differential kinematics

Position of an arbitrary point on the robot

$$_{\mathcal{I}}\mathbf{r}_{IQ}(\mathbf{q}) = \mathbf{r}_{IB}(\mathbf{q}) + \mathbf{C}_{\mathcal{I}\mathcal{B}}(\mathbf{q}) \cdot \mathbf{r}_{BQ}(\mathbf{q})$$

$$_{\mathcal{I}}\mathbf{r}_{IB}(\mathbf{q}_b) \cdot \mathbf{C}_{\mathcal{I}\mathcal{B}}(\mathbf{q}_b) \cdot \mathbf{r}_{BQ}(\mathbf{q}_j)$$

Velocity of this point

$$\mathcal{I}\mathbf{v}_{Q} = \mathcal{I}\mathbf{v}_{B} + \dot{\mathbf{C}}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\mathbf{r}_{BQ} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\dot{\mathbf{r}}_{BQ}
= \mathcal{I}\mathbf{v}_{B} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot [\mathbf{g}\boldsymbol{\omega}_{\mathcal{I}\mathcal{B}}]_{\times} \cdot \mathbf{g}\mathbf{r}_{BQ} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\dot{\mathbf{r}}_{BQ}
= \mathcal{I}\mathbf{v}_{B} - \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot [\mathbf{g}\mathbf{r}_{BQ}]_{\times} \cdot \mathbf{g}\boldsymbol{\omega}_{\mathcal{I}\mathcal{B}} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\dot{\mathbf{r}}_{BQ}
= \mathcal{I}\mathbf{v}_{B} - \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot [\mathbf{g}\mathbf{r}_{BQ}]_{\times} \cdot \mathbf{g}\boldsymbol{\omega}_{\mathcal{I}\mathcal{B}} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\dot{\mathbf{r}}_{BQ}
= \mathcal{I}\mathbf{v}_{B} - \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot [\mathbf{g}\mathbf{r}_{BQ}]_{\times} \cdot \mathbf{g}\boldsymbol{\omega}_{\mathcal{I}\mathcal{B}} + \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\mathbf{J}_{P_{q_{j}}}(\mathbf{q}_{j}) \cdot \dot{\mathbf{q}}_{j}
= \begin{bmatrix} \mathbb{I}_{3\times3} & -\mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot [\mathbf{g}\mathbf{r}_{BQ}]_{\times} & \mathbf{C}_{\mathcal{I}\mathcal{B}} \cdot \mathbf{g}\mathbf{J}_{P_{q_{j}}}(\mathbf{q}_{j}) \end{bmatrix} \cdot \mathbf{u} \quad \text{with} \quad \mathbf{u} = \begin{pmatrix} \mathbf{I}\mathbf{v}_{B} \\ \mathbf{g}\boldsymbol{\omega}_{IB} \\ \dot{\varphi}_{1} \\ \vdots \\ \dot{\varphi}_{n_{j}} \end{pmatrix}$$

(a) Quadruped

(b) Humanoid

Contact Constraints

• A contact point C_i is not allowed to move:

Constraint as a function of generalized coordinates:

Stack of constraints

Contact Constraints

• A contact point C_i is not allowed to move:

$$_{\mathcal{I}}\mathbf{r}_{IC_{i}} = const, \quad _{\mathcal{I}}\dot{\mathbf{r}}_{IC_{i}} = _{\mathcal{I}}\ddot{\mathbf{r}}_{IC_{i}} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$$

Constraint as a function of generalized coordinates:

$$_{\mathcal{I}}\mathbf{J}_{C_{i}}\mathbf{u}=\mathbf{0},\qquad _{\mathcal{I}}\mathbf{J}_{C_{i}}\dot{\mathbf{u}}+_{\mathcal{I}}\dot{\mathbf{J}}_{C_{i}}\mathbf{u}=\mathbf{0}$$

Stack of constraints

$$\mathbf{J}_c = egin{bmatrix} \mathbf{J}_{C_1} \ dots \ \mathbf{J}_{C_{n_c}} \end{bmatrix} \in \mathbb{R}^{3n_c imes n_n}$$

Contact Constraint Wheeled vehicle simple example

- Contact constraints
 - Point on wheel
 - Jacobian
 - Contact constraints

Contact Constraint

Wheeled vehicle simple example

- Contact constraints
 - Point on wheel ${}_{\mathcal{I}}\mathbf{r}_{IP} = \begin{pmatrix} x + r\sin(\varphi) \\ r + r\cos(\varphi) \\ 0 \end{pmatrix}$
 - Jacobian $_{\mathcal{I}}\mathbf{J}_{P} = \begin{bmatrix} 1 & r\cos(\varphi) \\ 0 & -r\sin(\varphi) \\ 0 & 0 \end{bmatrix}$
 - Contact constraints

$$_{\mathcal{I}}\dot{\mathbf{r}}_{IP}\big|_{\varphi=\pi} = _{\mathcal{I}}\mathbf{J}_{P}\big|_{\varphi=\pi}\dot{\mathbf{q}} = \begin{bmatrix} 1 & -r \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{pmatrix} \dot{x} \\ \dot{\varphi} \end{pmatrix} = \mathbf{0}$$

=> Rolling condition $\dot{x} - r\dot{\phi} = 0$

$$\mathbf{q} = \begin{pmatrix} x \\ \varphi \end{pmatrix}$$
 Un-actuated base Actuated joints

Properties of Contact Jacobian

- Contact Jacobian tells us, how a system can move.
 - Separate stacked Jacobian $\mathbf{J}_c = \begin{bmatrix} \mathbf{J}_{c,b} \end{bmatrix} \mathbf{J}_{c,j} \end{bmatrix} = \begin{bmatrix} \frac{\partial \mathbf{r}_c}{\partial \mathbf{q}_b} & \frac{\partial \mathbf{r}_c}{\partial \mathbf{q}_j} \end{bmatrix} \in \mathbb{R}^{n_c \times (n_b + n_j)}$

relation between base motion and constraints

- Base is fully controllable if $[rank(\mathbf{J}_{c,b}) = 6]$
- Nr of kinematic constraints for joint actuators: $rank(\mathbf{J}_c)$ $rank(\mathbf{J}_{c,b})$
- Generalized coordinates DON'T correspond to the degrees of freedom
 - Contact constraints!
- Minimal coordinates (= correspond to degrees of freedom)
 - Require to switch the set of coordinates depending on contact state (=> never used)

Quadrupedal Robot with Point Feet

Floating base system with 12 actuated joint and 6 base coordinates (18DoF)

Total constraints

Internal constraints

Uncontrollable DoFs

Quadrupedal Robot with Point Feet

Floating base system with 12 actuated joint and 6 base coordinates (18DoF)

Total constraints

Internal constraints

Uncontrollable DoFs

Outlook

- Exercise TOMORROW
 - Differential Kinematics
 - Use it as extended office hour!
- Next Lecture
 - Script Section 2.9 (Kinematic Control Methods)
 - Inverse Kinematics
 - Inverse Differential Kinematics

