PSALTer results panel

 $\iiint \left(\frac{1}{6}\left(6\ \mathcal{A}^{\alpha\beta\chi}\ \sigma_{\alpha\beta\chi}+6\ f^{\alpha\beta}\ \tau\left(\Delta+\mathcal{K}\right)_{\alpha\beta}-3\ r_{.}\ \partial_{\beta}\mathcal{A}_{_{\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\alpha}\mathcal{A}_{_{\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\alpha}\mathcal{A}_{_{\alpha}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\beta}\mathcal{A}_{_{\alpha\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\beta}\mathcal{A}_{_{\alpha\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\alpha}\mathcal{A}_{_{\alpha}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\beta}\mathcal{A}_{_{\alpha\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha}}^{}-3\ r_{.}\ \partial_{\alpha}\mathcal{A}_{_{\alpha\beta}}^{}\partial^{\dot{\beta}}\mathcal{A}_{_{\alpha\beta}}^{}-3\ r_{.}\ \partial_{\alpha}\mathcal{A}_{_{\alpha\beta}}^{\phantom{\alpha\beta$ $\partial_{\theta}\mathcal{R}_{_{i}\ \kappa}^{\ \kappa}\partial^{\theta}\mathcal{R}_{_{\alpha}}^{\alpha i} + 4t_{.} \\ \mathcal{R}_{_{i\theta\alpha}}\partial^{\theta}f^{\alpha i} + 2t_{.} \\ \partial_{\alpha}f_{_{i\theta}}\partial^{\theta}f^{\alpha i} - t_{.} \\ \partial_{\alpha}f_{_{\theta}i}\partial^{\theta}f^{\alpha i} - t_{.} \\ \partial_{\theta}f_{_{\alpha}i}\partial^{\theta}f^{\alpha i} - t_{.} \\ \partial_{\theta}f_{_{\alpha}i}\partial^{\theta}f^{\alpha$

Wave operator

	${}^{0,^{+}}\mathcal{A}^{\parallel}$	$0.^{+}f^{\parallel}$	$0.^+f^{\perp}$	${}^{0}\overline{\mathcal{A}}^{\parallel}$										
${}^{0,^{+}}\mathcal{A}^{\parallel}$ †	0	0	0	0										
^{0,+} f [∥] †		0	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
${}^{0}\mathcal{A}^{\parallel}$ †	0	0	0	$k^2 r. + t.$	$\overset{1^{+}}{\cdot}\mathcal{A}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}^{\perp}{}_{\alpha\beta}$	$1^+f^{\parallel}_{\alpha\beta}$	${}^{1}\mathcal{A}^{\parallel}{}_{\alpha}$	$^1\mathcal{F}^{\scriptscriptstyle\perp}_{lpha}$	$ f _{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2r_1 + r_1) + \frac{2t_2}{3}$			0	0	0	0			
				$^{1^{+}}_{\cdot}\mathcal{A}^{\scriptscriptstyle \perp}\dagger^{^{lphaeta}}$	$\frac{\sqrt{2} t.}{3}$	t. 2 3	$\frac{i k t.}{3}$	0	0	0	0			
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$-\frac{1}{3} i \sqrt{2} kt.$	$-\frac{1}{3}ikt$.	3	0	0	0	0			
				$^{1}\mathcal{A}^{\parallel}$ † lpha	0	0	0	$\frac{1}{2}k^2(r_1+2r_2)$	0	0	0			
				$^{1}\mathcal{F}^{\perp}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$^{1}f^{\parallel}\dagger^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	$2^+_{\cdot}f^{\parallel}_{\alpha\beta}$	$^{2}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$
											$^{2\overset{+}{.}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$-\frac{3k^2r}{2}$	0	0
											$2.^{+}f^{\parallel} \uparrow^{\alpha\beta}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0

Saturated propagator

	$^{0,+}\sigma^{\parallel}$	$0.^+\tau^{\parallel}$	$0.^+\tau^{\perp}$	$0^{-}\sigma^{\parallel}$										
$0.^+\sigma^{\parallel}$ †	0	0	0	0										
$0.^{+}\tau^{\parallel}$ †	0	0	0	0										
$0.^+\tau^{\perp}$ †	0	0	0	0										
⁰⁻ σ †	0	0	0	$\frac{1}{k^2 r. + t.}$	$1.^{+}\sigma^{\parallel}{}_{\alpha\beta}$	$\overset{1}{\cdot}^{+}\sigma^{\!\scriptscriptstyle\perp}{}_{\alpha\beta}$	$\overset{1^{+}}{\cdot}\tau^{\parallel}{}_{\alpha\beta}$	$\frac{1}{2}\sigma^{\parallel}_{\alpha}$	$\frac{1}{2}\sigma_{\alpha}^{\perp}$	1 ⁻ τ" _α	$1^{-}\tau^{\perp}_{\alpha}$			
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	$\frac{1}{k^2(2r.+r.)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r.+r.)\atop 3}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r.+r.)}$	0	0	0	0			
							$\frac{i(3k^2(2r.+r.)+2t.)}{k(1+k^2)^2(2r.+r.)t.}$	0	0	0	0			
				1^+ τ^{\parallel} $\dagger^{\alpha\beta}$	$\frac{i \sqrt{2}}{k (1+k^2) (2r.+r.)}$	$-\frac{i(3k^2(2r.+r.)+2t.)}{k(1+k^2)^2(2r.+r.)t.}$	$\frac{3k^2(2r.+r.)+2t.}{(1+k^2)^2(2r.+r.)t.}$	0	0	0	0			
				$\frac{1}{2}\sigma^{\parallel} + \alpha$	0	0	0	$\frac{2}{k^2 (r_1 + 2r_1)}$	0	0	0			
				$\frac{1}{2}\sigma^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0			
				$1 \tau^{\parallel} +^{\alpha}$	0	0	0	0	0	0	0			
				$\frac{1}{2}\tau^{\perp} \uparrow^{\alpha}$	0	0	0	0	0	0	0	2. ⁺ σ αβ	$2.^{+}\tau^{\parallel}_{\alpha\beta}$	$2 \sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^+}\sigma^{\parallel}$ † $^{\alpha\beta}$	$-\frac{2}{3 k^2 r}$	0	0
											$\overset{2^+}{\cdot}\tau^{\parallel} {\dagger}^{\alpha\beta}$	0	0	0
										2	$2^{-}\sigma^{\parallel} \uparrow^{\alpha\beta\chi}$	0	0	0
_														<u></u>

Source constraints

Spin-parity form	Covariant form	Multiplicities
$0^+_{\cdot} \tau^{\perp} == 0$	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
$0^+_{\cdot} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\ \alpha}$	1
0^+ $\sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\ \alpha}^{\alpha\ \beta}=0$	1
$1 \tau^{\perp \alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3
$1 r \alpha = 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$1^{-}\sigma^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}==0$	3
$\bar{l} k 1^+ \sigma^{\perp}^{\alpha\beta} + 1^+ \tau^{\parallel}^{\alpha\beta} = $	$0 \ \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2 \ \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} == \partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2 \ \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3
$2 \sigma^{ \alpha\beta\chi } == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ $	5
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{ \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \partial^{$	
$2^+_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\gamma \delta} = 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\gamma \delta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\gamma \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau $	5
Total expected gaug	ge generators:	25

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{t}{r} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

Massless particle

Pole residue:	$-\frac{2}{r_{.3}}$ +	$\frac{7}{2r.+r.}$	$-\frac{24}{r_{.3}^{2}+2r_{.5}^{2}}>0$	
Polarisations:	2			

Unitarity conditions

 $r. < 0 \&\&t. > 0 \&\&((r. < 0 \&\&(r. < -\frac{3}{2} || r. > -2r.)) || (r. > 0 \&\& -2r. < r. < -\frac{3}{2}))$