Oficina d'Accés a la Universitat

Proves d'accés a la universitat

Tecnologia i enginyeria

Sèrie 3

Qualificació		TR
Exercici 1		
Exercici 2		
Exercici 3		
Exercici 4		
Exercici 5		
Exercici 6		
Suma de notes parcials		
Qualificació final		

Etiqueta de l'estudiant	
	Ubicació del tribunal
	Número del tribunal

Etiqueta de qualificació

Etiqueta de correcció

Responeu a QUATRE dels sis exercicis següents. Cada exercici val 2,5 punts. En el cas que respongueu a més exercicis, només es valoraran els quatre primers.

Podeu utilitzar les pàgines en blanc (pàgines 14 i 15) per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici si necessiteu més espai. En aquest últim cas, cal que ho indiqueu clarament al final de l'exercici corresponent.

Exercici 1

Indiqueu la resposta correcta de cada qüestió. **Responeu en la taula de la pàgina 3**. En el cas que no indiqueu les respostes a la taula, les qüestions es consideraran no contestades.

[En cada qüestió només es pot triar UNA resposta. Qüestió ben contestada: 0,5 punts; qüestió mal contestada: –0,16 punts; qüestió no contestada: 0 punts.]

Qüestió 1

Una pantalla de projecció té una massa m=3 kg a la part inferior per a mantenir-la sempre tibada. Un motor reductor és l'encarregat d'enrotllar la pantalla, de longitud h=1,5 m, en el corró de diàmetre d=250 mm, que es troba articulat amb el sostre, en un temps t=3 s. Quina és l'energia mecànica necessària per a enrotllar tota la pantalla?

- *a*) 44,13 J
- **b**) 73,55 J
- c) 22,07 J
- d) 14,71 J

Qüestió 2

Un inventor ha construït una màquina tèrmica que funciona entre dues fonts tèrmiques, una de 270 °C i una altra de 610 °C. Quina de les afirmacions següents és certa?

- a) El rendiment de la màquina proposada sempre estarà per sobre del 40 %.
- b) El rendiment de la màquina proposada no podrà superar mai el 38,5 %.
- c) Perquè una màquina tèrmica funcioni, el focus fred sempre s'ha de trobar per sota de 0 °C.
- *d*) Perquè una màquina tèrmica funcioni, el focus calent sempre s'ha de trobar per sobre de 700 °C.

Qüestió 3

La figura mostra les corbes tensió-deformació obtingudes en assajos de tracció utilitzant una proveta d'acer d'alta resistència i una proveta d'un aliatge de bronze. A partir de l'observació d'aquesta figura, es pot afirmar que

- a) l'acer és més fràgil que el bronze.
- b) el bronze té un límit elàstic més gran que l'acer.
- c) l'acer és més dúctil que el bronze.
- *d*) els dos materials s'han deformat el mateix abans de trencar la proveta.

Qüestió 4

El conductor d'un cotxe híbrid pot decidir si utilitza com a combustible gasolina o gas liquat del petroli (GLP). Quan utilitza gasolina, el consum és de 6,1 litres per cada 100 km i emet 2,23 kg de $\rm CO_2$ per cada litre consumit. En canvi, quan utilitza GLP, el consum és de 7 litres per cada 100 km i emet 1,647 kg de $\rm CO_2$ per cada litre consumit. Segons el tipus de combustible utilitzat, quina és la diferència en la petjada de carboni quan el cotxe recorre 50 km?

- *a*) 6,802 kg de CO₂
- **b**) 5,765 kg de CO₂
- c) 1,037 kg de CO₂
- **d**) 2,074 kg de CO₂

Qüestió 5

Una estufa elèctrica es comporta com una resistència $R = 25 \Omega$. Se sap que quan està connectada a una font de tensió alterna sinusoidal dissipa una potència activa P = 100 W. Quin és, aproximadament, **el valor màxim** de la tensió d'alimentació?

- a) 4 V
- **b**) 50 V
- *c*) 71 V
- **d)** 100 V

Taula de respostes:

Espai de resposta per a l'estudiant				
Qüestió 1	а	<i>b</i> \Box	<i>c</i>	<i>d</i> [
Qüestió 2	a 🗌	<i>b</i> \Box	<i>c</i>	d 🗌
Qüestió 3	a 🗌	<i>b</i> 🗌	<i>c</i>	d 🗌
Qüestió 4	а	b 🗌	<i>c</i> _	d [
Qüestió 5	а	<i>b</i>	<i>c</i>	d \Box

Espai per a la correcció	
Puntuació de la qüestió 1	
Puntuació de la qüestió 2	
Puntuació de la qüestió 3	
Puntuació de la qüestió 4	
Puntuació de la qüestió 5	
Total de l'exercici 1	

[2,5 punts en total]

La figura de la dreta mostra un marcador electrònic de dues xifres en què cada xifra està composta per set segments, que s'illuminen per a formar els números del 0 al 9. Per a una aplicació concreta, es necessita que el marcador pugui mostrar números del 00 al 15. Per fer-ho, el sistema rep el número que s'ha de mostrar codificat en numeració binària (qua-

tre entrades d'un bit). Dissenyeu el control de l'encesa del segment del mig de la segona xifra (marcat en negre a la figura) utilitzant les variables d'estat següents:

primer dígit binari (el de més a l'esquerra):
$$a = \begin{cases} 1 \\ 0 \end{cases}$$
;

segon dígit binari:
$$b = \begin{cases} 1 \\ 0 \end{cases}$$
; tercer dígit binari: $c = \begin{cases} 1 \\ 0 \end{cases}$; quart dígit binari: $d = \begin{cases} 1 \\ 0 \end{cases}$;

segment:
$$s = \begin{cases} 1 : encès \\ 0 : apagat \end{cases}$$

Nota: Les xifres del marcador s'escriuen com es mostra a continuació:

Per fer-ho:

a) Elaboreu la taula de veritat del sistema.

[1 punt]

a	b	с	d	S
		1		
	 	1		
	: 	 		
	 - 			
	 - 	 		
	: 	 		
	! !	 	 	
	! ! !	 		
	 			

b)	Determineu la funció lògica entre aquestes variables i, si escau, simplifiqueu-la. [1 punt]
c)	Dibuixeu el diagrama de portes lògiques equivalent. [0,5 punts]

[2,5 punts en total]

Una cistella de bàsquet és solidària a una barra homogènia OC de longitud 4l. La massa total del conjunt és m = 100 kg i el seu centre d'inèrcia es troba al punt G. La barra està articulada al sostre en el punt O. Per a plegar i desplegar la cistella s'utilitza un mecanisme de tambor. Un cable amb un extrem fix a la barra s'enrotlla al tambor seguint el recorregut que es mostra a la figura. El rendiment del motor és $\eta = 0.8$.

S'estudia la maniobra de plegat de la cistella en el tram en què l'angle entre el sostre i la barra passa de $\varphi_1 = 45^\circ$ a $\varphi_2 = 15^\circ$. En aquest tram, la velocitat angular de la barra és constant i té un valor $\omega = 0,1745$ rad/s en sentit antihorari. Determineu:

a) L'energia mecànica necessària per a fer la maniobra, $E_{\rm mec}$. [1 punt]

b) L'energia consumida pel motor per a fer la maniobra, $E_{\rm mot}$. [0,5 punts]

c) La velocitat vertical del centre d'inèrcia quan φ = 30°, ν_{vert} [0,5 punts]

d) La potència que consumeix el motor en la posició anterior, $P_{\rm mot}$. [0,5 punts]

[2,5 punts en total]

Les planxes elèctriques incorporen un element calefactor que s'escalfa (resistència) i un interruptor en sèrie. Aquest interruptor, accionat per un sensor de temperatura, s'obre quan la planxa arriba a la temperatura desitjada.

Es vol construir la resistència d'una planxa elèctrica amb fil de constantà de resistivitat $\rho = 4.9 \times 10^{-7} \,\Omega$ m. La planxa ha de subministrar una potència $P = 2.2 \,\mathrm{kW}$ quan es connecta a la xarxa a una tensió $U = 230 \,\mathrm{V}$.

a) Determineu el valor de la resistència necessària, *R*. [0,5 punts]

El catàleg del fabricant ofereix bobines de fils de longitud $l=1\,\mathrm{m}$ dels diàmetres d següents:

Bobina	B1	B2	В3	B4	В5
d (mm)	0,04	0,08	0,12	0,16	0,2

b) Per a aquestes bobines, dibuixeu, tot indicant de manera aproximada les escales, la funció que descriu el valor de la resistència de les cinc bobines, R_b , en funció del diàmetre del seu fil, d.

[1 punt]

c)	Quina bobina cal escollir si es vol utilitzar el màxim de longitud del fil que conté? Quina quantitat de fil seria necessària? [1 punt]

[2,5 punts en total]

La figura mostra una persona amb els braços estirats sostenint dos pesos (un a l'extrem de cada braç). També inclou l'esquema simplificat d'un dels braços per a fer-ne l'anàlisi estàtica. El punt O representa l'articulació de l'espatlla i $F_{\rm m}$ és la força que fa el múscul deltoide. El múscul està inserit al punt Q i la seva línia d'acció forma un angle θ = 20° respecte a l'horitzontal. El sistema està en equilibri. La massa del braç és $m_{\rm b}$ = 5 kg i el seu centre d'inèrcia es troba al punt G; el pes té una massa $m_{\rm p}$ = 2 kg i el seu centre d'inèrcia és el punt P.

a) Dibuixeu el diagrama de cos lliure del braç. [0,5 punts]

<i>b</i>)	Determineu la força que fa el múscul, $F_{\rm m}$. [1 punt]
<i>c</i>)	Determineu les forces a l'articulació O. [1 punt]

[2,5 punts en total]

Diàriament, una caldera alimentada amb gas propà obté vapor d'aigua sec a una temperatura T_2 = 125 °C a partir d'una massa d'aigua m_a = 1500 kg a T_1 = 80 °C. En aquest procés, consumeix m_p = 90 kg de gas propà de poder calorífic p_c = 12,83 kW h/kg, que té un factor d'emissió FE = 2,94 kg de CO_2 per cada kilogram de gas. La calor específica de l'aigua és $c_{\rm e_a}$ = 4,197 kJ/(kg °C) i la del vapor és $c_{\rm e_a}$ = 2,155 kJ/(kg °C). La calor latent de vaporització és $L_{\rm v}$ = 2 257 kJ/kg. Considereu que el canvi d'estat es produeix a T_c = 100 °C. Determineu:

a) L'energia útil diària necessària per a obtenir el vapor sec, E_{dia} . [1 punt]

b) L'energia que consumeix **diàriament** la caldera, $E_{\rm cons}$, i el rendiment de la instal·lació, η . [1 punt]

c) L'emissió anual de gasos amb efecte hivernacle, $m_{\rm CO_2}$. [0,5 punts]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

[Pàgina per a fer esquemes, esborranys, etc., o per a acabar de respondre a algun exercici.]

Etiqueta de l'estudiant	

