D2L RNN Notes

Recurrent Neural Network

- RNN is a type of model architecture that aims to process **sequential** data (any length of input)
- Application
 - Text Classification
 - Machine Translation
 - Language Model
 - Text Summary
 - o Time Series Problem
 - o ...

Vanilla RNN

• The classic RNN architecture, may encounter gradient vanishing & gradient explosion

GRU

- Introducing the Reset Gate and Update Gate
 - Reset: $\mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r) \in (0,1)$ (decides what to remember/forget from the last hidden state for current **candidate hidden state**)
 - Update: $\mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z) \in (0,1)$ (decides what to update to **new/current hidden state**)
- Candidate hidden state: $\tilde{\mathbf{H}}_t = anh(\mathbf{X}_t\mathbf{W}_{xh} + (\mathbf{R}_t\odot\mathbf{H}_{t-1})\,\mathbf{W}_{hh} + \mathbf{b}_h)$
- Result Hidden State: $\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t$

LSTM

- σ FC layer with activation fuction
- Elementwise operator
- Copy

- Similar to GRU, but with 3 gates and separates memory & hidden state
- 3 gates
 - Input Gate: $\mathbf{I}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xi} + \mathbf{H}_{t-1} \mathbf{W}_{hi} + \mathbf{b}_i) \in (0,1)$ (decides what to input/use from current candidate memory cell)
 - Forget Gate: $\mathbf{F}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xf} + \mathbf{H}_{t-1} \mathbf{W}_{hf} + \mathbf{b}_f) \in (0,1)$ (decides what to remember/forget from **previous memory cell**)
 - Output Gate: $\mathbf{O}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xo} + \mathbf{H}_{t-1} \mathbf{W}_{ho} + \mathbf{b}_o) \in (0,1)$ (decides what to output to **current hidden state**)
- \mathbf{H}_t vs \mathbf{C}_t
 - \bullet $\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t)$
 - ullet is guaranteed to be $\in (-1,1)$, while ${f C}_t$ is not
 - \circ kind of storing more information inside \mathbf{C}_t to partially prevent *gradient vanishing
- Candidate Memory Cell: $ilde{\mathbf{C}}_t = anh(\mathbf{X}_t\mathbf{W}_{xc} + \mathbf{H}_{t-1}\mathbf{W}_{hc} + \mathbf{b}_c)$
- Result Memory Cell: $\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \tilde{\mathbf{C}}_t$
- Result Hidden State: $\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t)$

Perplexity

- Loss for language models, describes the loss of a sentence by taking the **exponential of average cross entropy of the tokens** in the sentence.
- $\exp\left(-\frac{1}{n}\sum_{t=1}^n \log P(x_t \mid x_{t-1},\ldots,x_1)\right)$

Gradient Clipping

- $\mathbf{g} \leftarrow \min\left(1, \frac{\theta}{\|\mathbf{g}\|}\right) \mathbf{g}$
- Projects ${\bf g}$ to a circle with radius of $\,\theta$, preventing the gradients to be too large and increase the robustness of the parameters

Bidirectional RNN

• Aims to provide RNN the ability to model information from the future (instead of only from previous), commonly used in NMT's encoder

Multilayer RNN

- Aims to make the model more complex and increase its expressivity
- A hidden state $\mathbf{H}_{i}^{(j)}$ is passed both to the next layer (*up*) and next timestep (*right*)

BackProp Through Time

• TODO