```
In [129]:
import numpy as np
import pandas as pd
df = pd.read csv('C:\\Users\\niran\\Downloads\\PBI3.csv')
print df.head()
                            NAME OF STUDENT Roll No. Company select 1 \
  Master Serial No.
0
               788 Rutuja Shrinivas Abdagire T31501 QUANTIPHI
                    Ankita Santosh Adchule T31502
1
               789
                                                           Fiserv
2
               790
                      Sakshi Vinod Bajoriya T31503
                                                          CAPGEMINI
3
               791
                      Saurabh Digambar Bathe T31504
                                                         CAPGEMINI
4
               792
                      Vishakha Arjun Bhujbal T31505
                                                           Yardi
 Company select 2 Company select 3 SSCScore SSCBoard SSCPassing HSCScore \setminus
                                                   2013
0
            NaN
                           NaN 85.00 SSC
                                                              78.30
1
             NaN
                            NaN
                                    79.82
                                             SSC
                                                        2013
                                                                 74.62
                                             SSC
                                    89.27
                                                                 75.54
            Wipro
2
                            NaN
                                                        2013
                                             SSC
SSC
3
             NaN
                             NaN
                                    80.18
                                                         2013
                                                                 74.62
                                   88.91
                                                                72.46
4
             NaN
                             NaN
                                                        2013
  ... TE SEM 1 Percentage TE SEM 2 Percentage BE SEM 1 Percentage \
0 ...
                  66.62
                                      66.62
                                                         68.376
1
                   67.32
                                      63.45
                                                         74.008
  . . .
2
  . . .
                   64.68
                                      71.10
                                                         82.016
                   74.98
                                      67.41
                                                         74.360
3
  . . .
                                      67.76
                                                        75.592
4
                  60.02
  . . .
  Aggregate(CGPA) Aggregate(Percentage) LiveBacklog DeadBacklog YD \
                                       0
                                                   0 0
5 0
0
            7.73
                                 68.05
1
            7.54
                                 66.31
                                                0
                                                               0
2
            7.54
                                66.31
                                               0
            8.19
                                72.10
                                               0
                                                           1 0
                                68.12
                                               0
                                                               Ω
            7.74
                                                           4
4
  Gender Placed
0 FEMALE
          1
1 FEMALE
2 FEMALE
              1
3
  MALE
              1
4 FEMALE
              1
[5 rows x 33 columns]
```

In [130]:

df.describe().T

Out[130]:

	4		-4-1	!	25%	50%	750/	
	count	mean	std	min	25%	50%	75%	max
Master Serial No.	72.0	824.138889	21.502247	788.000	805.7500	824.500	842.2500	862.000
SSCScore	72.0	79.589861	16.667460	8.400	77.3675	84.280	87.2000	93.820
SSCPassing	72.0	2012.833333	0.375293	2012.000	2013.0000	2013.000	2013.0000	2013.000
HSCScore	72.0	72.752083	7.331878	56.000	66.5025	74.075	78.3900	85.000
HSCPassing	72.0	2015.000000	0.000000	2015.000	2015.0000	2015.000	2015.0000	2015.000
FE SEM 1 SGPA	60.0	7.827500	1.062438	5.750	6.9800	7.880	8.6800	9.640
FE SEM 2 SGPA	60.0	7.459500	1.119590	5.450	6.6125	7.680	8.2500	9.600
SE SEM 1 SGPA	71.0	7.066338	1.056496	4.710	6.3600	7.080	7.7800	9.360
SE SEM 2 SGPA	72.0	7.051944	1.339858	2.960	6.4200	7.120	8.0050	9.400
TE SEM 1 SGPA	72.0	7.247917	1.160371	3.600	6.8000	7.410	8.0400	9.130
TE SEM 2 SGPA	72.0	7.138472	1.369569	2.210	6.5675	7.370	8.0800	8.730
BE SEM 1 SGPA	72.0	8.100972	0.948655	4.040	7.7700	8.360	8.6125	9.320
FE SEM 1 Percentage	60.0	68.880333	9.351842	50.570	61.4250	69.345	76.3800	84.830

FE SEM 2 Percentage	coûunt	65.6 4ก็อิลิก ี	9.849 7312	48. 600	58. 12959/0	67 508%	72. 5/95%	84 r489
SE SEM 1 Percentage	71.0	62.183239	9.296854	41.450	55.9850	62.300	68.4650	82.370
SE SEM 2 Percentage	72.0	62.057917	11.790868	26.050	56.4950	62.660	70.4450	82.720
TE SEM 1 Percentage	72.0	63.780694	10.212042	31.680	59.8425	65.205	70.7500	80.340
TE SEM 2 Percentage	72.0	62.847917	12.050049	19.450	57.7975	64.855	71.1000	76.820
BE SEM 1 Percentage	72.0	71.288556	8.348167	35.552	68.3760	73.568	75.7900	82.016
Aggregate(CGPA)	72.0	7.382500	1.021318	4.180	6.8075	7.530	8.1125	9.110
Aggregate(Percentage)	72.0	64.961250	8.991905	36.750	59.9100	66.260	71.3950	80.190
LiveBacklog	72.0	0.500000	1.727980	0.000	0.0000	0.000	0.0000	10.000
DeadBacklog	72.0	2.652778	2.988993	0.000	0.0000	2.000	4.0000	11.000
YD	72.0	0.138889	0.348257	0.000	0.0000	0.000	0.0000	1.000
Placed	72.0	0.777778	0.418657	0.000	1.0000	1.000	1.0000	1.000

In [131]:

```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 72 entries, 0 to 71
Data columns (total 33 columns):
                        72 non-null int64
Master Serial No.
NAME OF STUDENT
                         72 non-null object
Roll No.
                        72 non-null object
Company select 1
                        56 non-null object
                        13 non-null object
Company select 2
Company select 3
                        4 non-null object
SSCScore
                        72 non-null float64
SSCBoard
                        72 non-null object
SSCPassing
                         72 non-null int64
HSCScore
                         72 non-null float64
                        72 non-null object
HSCBoard
                        72 non-null int64
HSCPassing
FE SEM 1 SGPA
                       60 non-null float64
FE SEM 2 SGPA
                        60 non-null float64
SE SEM 1 SGPA
                         71 non-null float64
                        72 non-null float64
SE SEM 2 SGPA
TE SEM 1 SGPA
                        72 non-null float64
TE SEM 2 SGPA
                        72 non-null float64
BE SEM 1 SGPA
                        72 non-null float64
FE SEM 1 Percentage
                        60 non-null float64
                         60 non-null float64
FE SEM 2 Percentage
SE SEM 1 Percentage
                         71 non-null float64
                        72 non-null float64
SE SEM 2 Percentage
TE SEM 1 Percentage
                         72 non-null float64
TE SEM 2 Percentage
                         72 non-null float64
BE SEM 1 Percentage
                         72 non-null float64
Aggregate(CGPA)
                         72 non-null float64
Aggregate (Percentage)
                         72 non-null float64
LiveBacklog
                         72 non-null int64
DeadBacklog
                         72 non-null int64
YD
                         72 non-null int64
Gender
                         72 non-null object
Placed
                         72 non-null int64
dtypes: float64(18), int64(7), object(8)
memory usage: 18.6+ KB
```

In [132]:

```
df.describe(include=['object'])
```

Out[132]:

	NAME OF STUDENT	Roll No.	Company select 1	Company select 2	Company select 3	SSCBoard	HSCBoard	Gender
count	72	72	56	13	4	72	72	72
unique	72	72	22	7	3	3	3	2

top	NAMS® OFF STIL® ENT Shinde	Roll T31 5 62	Company , sele ct 1	Company select 2	Company select 3	SSCBeard	HSCBoard	FERNALEE	
freq	1	1	10	6	2	64	57	47	

In [133]:

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline

placedcounts=df['Placed'].value_counts()
print("Placed count is:",placedcounts[1])
total = placedcounts[0]+placedcounts[1]
print("Total count is:",total)
# Using matplotlib pie chart and label the pie chart
plt.pie(placedcounts,labels=['placed','not placed']);
```

('Placed count is:', 56)
('Total count is:', 72)

In [134]:

```
placeddf = df[df['Placed']==1]
notplaceddf =df[df['Placed']==0]
```

In [135]:

```
fig = plt.figure(figsize=(20,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)

# Tell pointplot to plot on ax1 with the ax argument (satisfaction level)
sns.distplot(placeddf['Aggregate(CGPA)'],ax = ax1);
# Tell the factorplot to plot on ax2 with the ax argument (satisfaction level)
sns.distplot(notplaceddf['Aggregate(CGPA)'],ax = ax2);
```


In [136]:

```
fig = plt.figure(figsize=(20,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
```

```
# Tell pointplot to plot on ax1 with the ax argument
sns.distplot(placeddf['LiveBacklog'], kde=True,ax=ax1);

# Tell the factorplot to plot on ax2 with the ax argument
sns.distplot(notplaceddf['LiveBacklog'], kde=True,ax=ax2);
```


In [137]:

```
# Create a figure instance, and the two subplots
fig = plt.figure(figsize=(20,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
sns.distplot(placeddf['SSCScore'], kde=True,ax=ax1);
sns.distplot(notplaceddf['SSCScore'], kde=True,ax=ax2);
```


In [138]:

```
# Create a figure instance, and the two subplots
fig = plt.figure(figsize=(20,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
sns.distplot(placeddf['BE SEM 1 Percentage'], kde=True,ax=ax1);
sns.distplot(notplaceddf['BE SEM 1 Percentage'], kde=True,ax=ax2);
```


In [139]:

```
fig = plt.figure(figsize=(10,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)

# Do the value counts of work accident
placedYDcounts = placeddf['YD'].value_counts()
notplacedYDcounts = notplaceddf['YD'].value_counts()

# plot each pie chart in a separate subplot
ax1.pie(placedYDcounts,labels=placedYDcounts.index);
ax2.pie(notplacedYDcounts,labels=notplacedYDcounts.index);
```


In [140]:

```
# create a figure with two subplots
fig = plt.figure(figsize=(10,10))
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)

placedGendercounts = placeddf['Gender'].value_counts()
notplacedGendercounts = notplaceddf['Gender'].value_counts()

# plot each pie chart in a separate subplot
ax1.pie(placedGendercounts,labels=placedGendercounts.index);
ax2.pie(notplacedGendercounts,labels=notplacedGendercounts.index);
```


In [141]:

```
df.drop(['Company select 2','Company select 3'],inplace = True, axis = 1)
```

In [142]:

```
df.drop(['Master Serial No.','NAME OF STUDENT','Roll No.'],inplace = True, axis = 1)
```

In [143]:

JE :-- ()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 72 entries, 0 to 71
Data columns (total 28 columns):
Company select 1
                       56 non-null object
SSCScore
                        72 non-null float64
                        72 non-null object
SSCBoard
                         72 non-null int64
SSCPassing
                        72 non-null float64
HSCScore
HSCBoard
                        72 non-null object
HSCPassing
                       72 non-null int64
                       60 non-null float64
FE SEM 1 SGPA
FE SEM 2 SGPA
                        60 non-null float64
SE SEM 1 SGPA
                        71 non-null float64
                       72 non-null float64
SE SEM 2 SGPA
                       72 non-null float64
TE SEM 1 SGPA
TE SEM 2 SGPA
                       72 non-null float64
BE SEM 1 SGPA
                        72 non-null float64
FE SEM 1 Percentage
                        60 non-null float64
                        60 non-null float64
FE SEM 2 Percentage
SE SEM 1 Percentage
                       71 non-null float64
SE SEM 2 Percentage
                       72 non-null float64
                        72 non-null float64
TE SEM 1 Percentage
TE SEM 2 Percentage
                         72 non-null float64
BE SEM 1 Percentage
                         72 non-null float64
                        72 non-null float64
Aggregate(CGPA)
                        72 non-null float64
Aggregate (Percentage)
LiveBacklog
                        72 non-null int64
DeadBacklog
                         72 non-null int64
YD
                         72 non-null int64
                         72 non-null object
Gender
Placed
                         72 non-null int64
dtypes: float64(18), int64(6), object(4)
memory usage: 15.8+ KB
In [144]:
df.SSCBoard = df.SSCBoard.map({'SSC':0,'CBSE':1, 'ICSE':2})
df.HSCBoard = df.HSCBoard.map({'HSC':0,'CBSE':1,'MSBTE':2})
In [145]:
df.drop(['Company select 1'],inplace = True, axis = 1)
In [146]:
df.Gender = df.Gender.map({'MALE':0,'FEMALE':1})
In [147]:
df = df.drop(['SSCPassing','HSCPassing'],axis=1)
In [148]:
df = df.fillna(df.mean())
In [149]:
# X = df[['SSCScore', 'HSCScore', 'SSCBoard', 'FE SEM 1 SGPA']]
\# X = X.fillna(X.mean())
# X.isnull()
In [150]:
# X = df.drop(['Placed'],axis=1)
y = df['Placed']
print X.head()
print(len(X))
```

aI.lnIo()

```
SSCScore HSCScore SSCBoard FE SEM 1 SGPA
Ω
    85.00 78.30 0
    79.82 74.62 0
89.27 75.54 0
80.18 74.62 0
88.91 72.46 0
                             0
                                          8.08
1
2
                                          7.80
                                         8.40
3
                                         8.68
4
72
In [172]:
import numpy as np
from sklearn.model_selection import train_test_split
\begin{tabular}{ll} \textbf{from sklearn import} & preprocessing, neighbors, svm \\ \end{tabular}
from sklearn.metrics import accuracy score
X_train, X_test, y_train,y_test= train_test_split(X,y,test_size=0.2)
print(len(y train) + len(y test))
72
In [173]:
from sklearn.metrics import accuracy_score, log_loss
from sklearn.ensemble import RandomForestClassifier
from sklearn import tree
randomclf = RandomForestClassifier()
randomclf.fit(X_train, y_train)
pred = randomclf.predict(X_test)
accuracy = accuracy_score(pred, y_test)
print "Accuracy Random Forest - ",accuracy
In [174]:
clf = svm.SVC()
# Fit the svm object with train data
clf.fit(X train,y train)
Out[174]:
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision function shape='ovr', degree=3, gamma='auto deprecated',
  kernel='rbf', max_iter=-1, probability=False, random_state=None,
 shrinking=True, tol=0.001, verbose=False)
In [175]:
pred = clf.predict(X test)
accuracy = accuracy score(pred, y test)
```

print "Accuracy using SVC classifier - ",accuracy

Accuracy using SVC classifier - 0.9333333333333333