Nan_Mudhalvan

Phase 3: <u>Development Part 1 - Loading and</u> <u>Preprocessing the Dataset</u>

Team Details

Team name: Dynamite coders

Problem Statement: Predicting IMDb Scores

Dataset Link:

https://www.kaggle.com/datasets/luiscorter/netflix-original-films-imdb-scores

Introduction:

In this phase, we embark on the journey of building the IMDb score prediction model. The first step is to acquire the movie dataset and prepare it for analysis. This involves data loading, cleaning, and feature engineering, setting the foundation for model training and development.

Step 1: Data Loading

- **Data Sources:** Identify and retrieve the movie dataset from the chosen sources, including IMDb, genre databases, premiere date records, and language information.
- Data Formats: Ensure that the data is available in suitable formats for analysis, such as CSV, JSON, or databases. If necessary, convert and unify data from multiple sources.

• **Data Inspection:** Begin by inspecting the dataset to gain a preliminary understanding of its structure, the nature of the features, and the quality of the data.

```
data = pd.read_csv("/content/NetflixOriginals.csv",encoding = "ISO-8859-1")
dataDate = data.copy()
data.head()
```

output:

	Title	Genre	Premiere	Runtime	IMDB Score	Language
0	Enter the Anime	Documentary	August 5, 2019	58	2.5	English/Japanese
1	Dark Forces	Thriller	August 21, 2020	81	2.6	Spanish
2	The App	Science fiction/Drama	December 26, 2019	79	2.6	Italian
3	The Open House	Horror thriller	January 19, 2018	94	3.2	English
4	Kaali Khuhi	Mystery	October 30, 2020	90	3.4	Hindi

data.describe().T

output:

	count	mean	std	min	25%	50%	75%	max
Runtime	584.0	93.577055	27.761683	4.0	86.0	97.00	108.0	209.0
IMDB Score	584.0	6.271747	0.979256	2.5	5.7	6.35	7.0	9.0

Step 2: Data Cleaning

 Duplicate Removal: Check for and remove any duplicate records from the dataset, ensuring that each movie is represented only once.

```
data.info()
```

output:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 584 entries, 0 to 583
Data columns (total 6 columns):
               Non-Null Count Dtype
    Column
   Title
             584 non-null object
   Genre
              584 non-null
                              object
   Premiere 584 non-null Runtime 584 non-null
                               object
                              int64
   IMDB Score 584 non-null
                               float64
   Language 584 non-null
                               object
dtypes: float64(1), int64(1), object(4)
memory usage: 27.5+ KB
```

• **Handling Missing Values:** Address missing values in the dataset by imputing, removing, or using appropriate techniques to fill in the gaps. Missing values in essential features like IMDb scores may require special attention.

```
data.isnull().values.any()
output:
```

False

• **Outlier Detection:** Identify outliers in the data that could skew predictions and determine the appropriate action for handling them, which might include trimming, transformation, or additional feature engineering.

```
data.isnull().sum()
output:
Title 0 Genre 0 Premiere 0 Runtime 0 IMDB Score 0 Language 0 dtype: int64
```

Step 3: Feature Engineering

 Feature Selection: Review the available features and select the most relevant ones for IMDb score prediction. Consider factors like genre, premiere date, runtime, and language.

```
dataDate["Premiere"] = dataDate["Premiere"].apply(lambda x: "".join(x for x in
x.replace(".",",")))
dataDate["PremiereDate"] = dataDate["Premiere"].apply(lambda x: datetime.strptime(x,
"%B %d, %Y").date())
dataDate["Year"] = dataDate["Premiere"].apply(lambda x: "".join(x for x in
x.replace(",","").split()[-1]))
```

#Convert object to date
dataDate["PremiereDate"] = pd.to_datetime(dataDate["PremiereDate"])
dataDate

output:

	Title	Genre	Premier e	Runtim e	IMD B Score	Language	PremiereDat e	Yea r
0	Enter the Anime	Documentar y	August 5, 2019	58	2.5	English/Japanese	2019-08-05	201 9
1	Dark Forces	Thriller	August 21, 2020	81	2.6	Spanish	2020-08-21	202
2	The App	Science fiction/Dram a	Decembe r 26, 2019	79	2.6	Italian	2019-12-26	201
3	The Open House	Horror thriller	January 19, 2018	94	3.2	English	2018-01-19	201 8
4	Kaali Khuhi	Mystery	October 30, 2020	90	3.4	Hindi	2020-10-30	202
57 9	Taylor Swift: Reputation Stadium Tour	Concert Film	Decembe r 31, 2018	125	8.4	English	2018-12-31	201
58 0	Winter on Fire: Ukraine's Fight for Freedom	Documentar y	October 9, 2015	91	8.4	English/Ukranian/Russi an	2015-10-09	201 5
58 1	Springsteen on Broadway	One-man show	Decembe r 16, 2018	153	8.5	English	2018-12-16	201
58 2	Emicida: AmarElo - It's All For Yesterday	Documentar y	Decembe r 8, 2020	89	8.6	Portuguese	2020-12-08	202
58 3	David Attenboroug h: A Life on Our Planet	Documentar y	October 4, 2020	83	9.0	English	2020-10-04	202

584 rows x 8 columns

- Deriving New Features: Create new features that could enhance the model's predictive power. For example, you might derive features like the release month from the premiere date or the number of genres associated with a movie.
- Encoding Categorical Data: If the dataset includes categorical data (e.g., movie genres or languages), encode it into numerical form using techniques like one-hot encoding.

```
data[data["Runtime"]>=120]["Language"].value_counts()
output:
```

English	48
Hindi	11
Korean	3
Japanese	2
Marathi	2
Spanish	2
English/Japanese	1
Indonesian	1
Khmer/English/French	1
Portuguese	1
English/Korean	1
English/Akan	1
Name: Language, dtype:	int64

Step 4: Data Splitting

- Training, Validation, and Testing Sets: Divide the dataset into three subsets: training, validation, and testing data. The split ratios should be chosen based on the size of the dataset and can often follow the 70-15-15 rule.
- Randomization: Randomly shuffle the data before splitting to ensure that the subsets are representative of the overall dataset and avoid bias.

```
from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x_sc,y, test_size=0.2, random_state=0)
```

Step 6: Data Preprocessing Documentation

 Documentation: Create detailed documentation that records all data cleaning and preprocessing steps. This documentation is crucial for transparency and repeatability.

Link for the notebook:

https://colab.research.google.com/drive/16F qPTs5wxYh poFeqyEYgtmHJMy5c-y?usp=sharing

Conclusion:

In this part of Phase 3, we have set the stage for building the IMDb score prediction model. The dataset is now cleaned, features are engineered, and the data is split for model training and validation. The next part of Phase 3 will focus on selecting and training the machine learning algorithm for IMDb score prediction.