Geometria B - Prova intermedia

Università degli Studi di Trento Corso di Laurea in Matematica A.A. 2016/2017 16 gennaio 2017

Lo studente svolga gli esercizi n. 1 e n. 4. Svolga inoltre <u>soltanto uno</u> tra gli esercizi n. 2 e n. 3. **Ogni risposta deve essere adeguatamente motivata**. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Attenzione. Il testo è composto da due pagine (la seconda pagina è sul retro di questo foglio).

Esercizio 1. Sia \mathbb{R} la retta reale, sia $\mathcal{P}(\mathbb{R})$ l'insieme delle parti di \mathbb{R} e sia η la topologia su \mathbb{R} avente come una base la seguente famiglia \mathcal{B} di sottoinsiemi:

$$\mathcal{B} := \{ [a, b) \in \mathcal{P}(\mathbb{R}) \mid a, b \in \mathbb{R}, a < b \}.$$

- (1a) Si calcoli la chiusura, la parte interna e la frontiera di [0,1] in (\mathbb{R},η) .
- (1b) Si dica se la funzione $f:(\mathbb{R},\eta) \longrightarrow (\mathbb{R},\eta)$ definita ponendo f(x):=-x è continua.
- (1c) Sia (\mathbb{R}^2, ξ) il prodotto topologico di (\mathbb{R}, η) con se stesso e sia $\Delta^* := \{(x, y) \in \mathbb{R}^2 \mid y = -x\}$. Si dimostri che la topologia indotta da ξ su Δ^* è quella discreta.
- (1d) Si calcoli la componente connessa di 0 in (\mathbb{R}, η) .
- (1e) Si dica se il sottoinsieme [0,1] di (\mathbb{R},η) è compatto.

SOLUZIONE: (1a) Gli insiemi $(-\infty,0) = \bigcup_{n\geq 1} [-n,0)$ e $(1,+\infty) = \bigcup_{n\geq 2} [1+\frac{1}{n},n)$ sono due aperti di η . Poiché $\mathbb{R}\setminus[0,1]=(-\infty,0)\cup(\underline{1,+\infty})$, si ha che [0,1] è chiuso in (\mathbb{R},η) e quindi coincide con la sua chiusura in (\mathbb{R},η) , ovvero [0,1]=[0,1].

Osserviamo che, dato $x \in \mathbb{R}$, la famiglia $\mathcal{V}(x) := \{[x,y)\}_{y>x}$ è un sistema fondamentale di intorni di x in (\mathbb{R}, η) . Dimostriamolo. Sia $U \in \mathcal{N}_{\eta}(x)$ e sia $A \in \eta$ tale che $x \in A \subset U$. Poiché A è uguale all'unione di intervalli del tipo [a,b), esistono $z,y \in \mathbb{R}$ con z < y tali che $x \in [z,y) \subset A$. Segue che $[x.y) \subset A \subset U$. Dunque $\mathcal{V}(x)$ è un sistema fondamentale di intorni di x in (\mathbb{R}, η) .

Calcoliamo la parte interna $\operatorname{Int}([0,1])$ e la frontiera $\operatorname{Fr}([0,1])$ di [0,1] in (\mathbb{R},η) . Si osservi che 1 non è un punto interno di [0,1] in quanto, per ogni $[1,y) \in \mathcal{V}(1)$ (cioè per ogni y > 1), $\underline{[1,y)} \not\subset [0,1]$. Poiché [0,1) è un aperto di η , segue che $\operatorname{Int}([0,1]) = [0,1)$, e quindi $\operatorname{Fr}([0,1]) = [0,1] \setminus \operatorname{Int}([0,1]) = \{1\}$.

- (1b) f non è continua in quanto $[0,1) \in \eta$, mentre $f^{-1}([0,1)) = (-1,0] \notin \eta$ (infatti 0 non è un punto interno di (-1,0]).
- (1c) È sufficiente osservare che, per ogni $x \in \mathbb{R}$, $[x, x+1) \times [-x, -x+1) \in \xi$ e quindi $\Delta^* \cap ([x, x+1) \times [-x, -x+1)) = \{(x, -x)\}$ è un aperto della topologia indotta da ξ su Δ^* . Dunque ogni singoletto di Δ^* è un aperto della topologia indotta da ξ su Δ^* .
- (1d) Proviamo che la componente connessa $\mathcal{C}(0)$ di 0 coincide col singoletto $\{0\}$. Supponiamo per assurdo che $\mathcal{C}(0)$ contenga un punto x diverso da 0. Sia x > 0. Allora $\mathcal{C}(0) \cap (-\infty, x)$

e $\mathcal{C}(0) \cap [x, +\infty)$ sono due aperti non vuoti (il primo contiene 0, il secondo x) e disgiunti di $\mathcal{C}(0)$ che ricoprono $\mathcal{C}(0)$. Ciò è assurdo in quanto $\mathcal{C}(0)$ è un sottoinsieme connesso di (\mathbb{R}, η) . Se x < 0 si procede in modo simile.

Esercizio 2. Sia \mathbb{S}^1 la circonferenza di \mathbb{R}^2 di raggio 1 centrata nell'origine e sia I l'intervallo chiuso [0,1] di \mathbb{R} . Dotiamo \mathbb{S}^1 e I con le rispettive topologie euclidee, e $\mathbb{S}^1 \times I$ con la topologia prodotto. Definiamo la relazione di equivalenza \mathcal{R} su $\mathbb{S}^1 \times I$ ponendo:

$$(p,t) \mathcal{R}(q,s)$$
 se e soltanto se $(p,t)=(q,s)$ oppure $t=s=0.$

Si dimostri che lo spazio topologico quoziente $(\mathbb{S}^1 \times I)/\mathcal{R}$ di $\mathbb{S}^1 \times I$ modulo \mathcal{R} è omeomorfo al disco chiuso \mathbb{D}^2 di raggio 1 centrata nell'origine dotato della topologia euclidea.

SOLUZIONE: Sia $\pi: \mathbb{S}^1 \times I \to (\mathbb{S}^1 \times I)/\mathcal{R}$ la proiezione naturale al quoziente e sia $f: \mathbb{S}^1 \times I \to \mathbb{D}^2$ l'applicazione continua e surgettiva definita ponendo f(p,t) := pt (si osservi che se scriviamo il punto $p \in \mathbb{S}^1$ in coordinate, cioè p = (x,y), allora f(p,t) assume la forma polinomiale f((x,y),t) = (tx,ty), in particolare f è continua). Indichiamo con \mathcal{R}_f la relazione di equivalenza su $\mathbb{S}^1 \times I$ indotta da f, cioè quella avente per classi di equivalenza le fibre di f. Osserviamo che:

$$[(p,0)]_{\mathcal{R}}=\mathbb{S}^1\times\{0\}=f^{-1}(f(p,0))=[(p,0)]_{\mathcal{R}_f}\quad\text{per ogni }p\in\mathbb{S}^1$$

е

$$[(p,t)]_{\mathcal{R}} = \{(p,t)\} = f^{-1}(f(p,t)) = [(p,t)]_{\mathcal{R}_f} \text{ per ogni } (p,t) \in \mathbb{S}^1 \times (0,1].$$

In altre parole si ha: $\mathcal{R} = \mathcal{R}_f$. Esiste quindi una applicazione $g: (\mathbb{S}^1 \times I)/\mathcal{R} \to \mathbb{D}^2$ continua e bigettiva tale che $g \circ \pi = f$. Poiché $(\mathbb{S}^1 \times I)/\mathcal{R}$ è compatto e \mathbb{D}^2 è Hausdorff, g è anche chiusa. Dunque g è un omeomorfismo.

Esercizio 3. Si dimostri che uno spazio topologico X è connesso se e soltanto se ogni sottoinsieme non vuoto e proprio di X ha frontiera non vuota.

SOLUZIONE: Sia X connesso. Supponiamo per assurdo che esista un sottoinsieme non vuoto e proprio S di X tale che $Fr(S) = \emptyset$. Il fatto che $Fr(S) = \emptyset$ equivale a dire che ogni punto di X è o interno a S o esterno a S. Poiché i punti di S non possono essere esterni a S, segue che ogni punto di S è interno a S, ovvero S è aperto. Similmente si dimostra che anche $X \setminus S$ è aperto. Dunque S è un sottoinsieme non vuoto, proprio, aperto e chiuso di X, e quindi X è sconnesso contro l'ipotesi.

Supponiamo viceversa che X sia sconnesso. Allora esiste un sottoinsieme non vuoto, proprio, aperto e chiuso S di X. Sia $x \in X$. Se $x \in S$ allora x è interno a S e quindi x non è di frontiera per S. Se $x \notin S$ allora x è esterno a S e quindi ancora una volta x non è di frontiera per S. Segue che la frontiera di S è vuota.

Esercizio 4. Sia S lo spazio topologico ottenuto come quoziente di un disco con due buchi rispetto alle identificazioni indicate nella figura seguente.

Consideriamo inoltre lo spazio topologico T ottenuto come quoziente di un disco con tre buchi rispetto alle identificazioni indicate nella figura seguente.

- (4a) Si dimostri che S è una superficie topologica compatta e la si classifichi.
- (4b) Si dimostri che T è uguale alla somma connessa tra S e un toro.