```
Partial Order: \forall x, y, z \in A: Reflexive: x\mathcal{R}x, Anti-symmetric: x\mathcal{R}y, y\mathcal{R}x \implies x = y, Transitive: x\mathcal{R}y, y\mathcal{R}z \implies x\mathcal{R}z.
Total Order: \forall x, y \in A, x \mathcal{R} y \vee y \mathcal{R} x
Equivalence Relation: \forall x, y, z \in A: Reflexive: x\mathcal{R}x, Symmetric: x\mathcal{R}y = y\mathcal{R}x, Transitive: x\mathcal{R}y, y\mathcal{R}z \implies x\mathcal{R}z.
```

Equivalence Class: $[x] := \{y \in A : x \sim y\}$

Induction: (i) P_1 is true. (ii) Assume P_n is true for some $n \in \mathbb{N}$. Prove P_{n+1} is true. Then, P_n is true $\forall n \in \mathbb{N}$.

Ordered Fields: A field with a partial order (\leq) s.t.: (i) If $x, y, z \in \mathbb{F}$, $x < y \implies x + z < x + y$, (ii) $x, y \in \mathbb{F}$, $x, y > 0 \implies xy > 0$ **Algebraic Number:** a is algebraic if it solves $c_n x^n + \cdots + c_1 x + c_0 = 0$ for some $n \in \mathbb{N}$, $c_0, c_n \in \mathbb{Z}$, $c_n \neq 0$ (e.g. $\sqrt[n]{2}$. **Note:** $\mathbb{Q} \subset \{algebraic\ numbers\})$

Rational Zeros Theorem: Suppose $c_0, \dots, c_n \in \mathbb{Z}$, $r \in \mathbb{Q}$ satisfies $c_n r^n + \dots + c_1 r + c_0 = 0$ for some $n \in \mathbb{N}$, $c_n \neq 0$. Let $r=\frac{c}{d}, c, d \in \mathbb{Z}, d \neq 0$, be coprime. Then c, d divides c_0, c_n .

LUBP: Given $A \subseteq \mathbb{E}$ where \mathbb{E} is an ordered set, $\exists \sup A \in \mathbb{E} \iff A \neq \emptyset$, $A \subseteq \mathbb{E}$, A is bounded above. $\sup A := \alpha$, $\exists \alpha, \beta \in \mathbb{E}$ s.t. $\forall a \in A, \ a \leq \alpha \leq \beta.$

GLBP: Given $A \subseteq \mathbb{E}$ where \mathbb{E} is an ordered set, $\exists \inf A \in \mathbb{E} \iff A \neq \emptyset, A \subseteq \mathbb{E}, A$ is bounded below. $\inf A := \alpha, \exists \alpha, \beta \in \mathbb{E}$ s.t. $\forall a \in A, \ \beta \le \alpha \le a.$

Archemedian Property: If $y \in \mathbb{R}$, x > 0, then $\exists n \in \mathbb{N}$ s.t. $n \cdot x > y$. Put $x = 1 : \exists n \in \mathbb{N}$ s.t. n > y. Put $y = 1 : \exists n \in \mathbb{N}$ s.t. $n \cdot x > 1 \leadsto 0 < \frac{1}{n} < x$.

Density of \mathbb{Q} in \mathbb{R} : $\forall x, y \in \mathbb{R} : x < y, \exists p \in \mathbb{Q} : x < p < y$

Sequence: A function $f: \mathbb{N} \to \mathbb{R} \iff n \mapsto f(n) \iff n \mapsto f_n \text{ e.g. } (1, \frac{1}{2}, \frac{1}{3}, \cdots), \ x_n = \frac{1}{n} \ \forall n \in \mathbb{N}, \ \{x_n : n \in \mathbb{N}\}, \ (x_n)_{n=1}^{\infty}, \$ **Convergent:** A sequence (x_n) converges to $x \in \mathbb{R}$ if: $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n > N, |x_n - x| < \varepsilon$. We write $(x_n) \to x$ as $n \to \infty$ or $\lim_{n\to\infty} x_n := x$, where x is the **limit** of (x_n) .

Divergent: A sequence that does not **converge**.

Absolute Value: $|x| = \{x \text{ if } x \ge 0\}, \{-x \text{ if } x < 0\} \implies |x| \ge 0.$ (i) $|xy| = |x||y|, (ii) |x-y| \le z \iff z \le x-y \le z \iff y-z \le z \iff z \le x-y \le \le x$ $x \leq y + z$

Triangle Inequality: $|x+y| \le |x| + |y| \implies |x-y| = |x+(-z+z)-y| \le |x-z| + |z-y| \ \forall x,y,z \in \mathbb{R}$.

Unique Limits: $x_n \to x$, $x_n \to y \implies x = y$. $|x - y| = |x + (-x + x) - y| \le |x_n - x| + |x_n - y| = \varepsilon$ if $|x_n - x|, |x_n - y| \le \frac{\varepsilon}{2}$.

Algebraic Limit Theorem: $x_n \to x, y_n \to y \implies (i) \ ax_n \to ax, \ (ii) \ x_n \pm y_n \to x \pm y, \ (iii) \ x_n \cdot y_n \to x \cdot y \ (iv) \ \frac{x_n}{y_n} \to \frac{x}{y}, y \neq 0$

\subseteq defines a Partial (not Total) Order on $\mathcal{P}(A)$:

Reflexive: $B \in \mathcal{P}(A)$. $B = B \implies B \subseteq B$.

Anti-symmetric: $B, C \in \mathcal{P}(A)$. $(B \subset C) \land (C \subset B) \implies B = C$.

Transitivity: $B, C, D \in \mathcal{P}(A) : B \subset C \subset D.$ $x \in B \implies x \in C \implies x \in D \implies B \subset D.$

 $\mathcal{P}(A)$ is not a Total Order: $A = \{a,b\} \implies \mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}. \{a\} \subset \{b\} \text{ and } \{b\} \subset \{a\}$

 $(2+\sqrt{3})^{\frac{1}{3}}$ is irrational: Assume $(2+\sqrt{3})^{\frac{1}{3}}$ is rational. Then

 $x = (2 + \sqrt{3})^{\frac{1}{3}} \implies x^3 = 2 + \sqrt{3} \implies (x^3 - 2)^2 = (\sqrt{3})^2 \implies x^6 - 4x^3 + 4 = 3 \implies x^6 - 4x^3 + 1 = 0 \text{ but } \pm 1 \text{ does not solve the equation}$ so $(2+\sqrt{3})^{\frac{1}{3}}$ is irrational.

Show sup $\{A := \{p \in \mathbb{Q} : p < r\}\} = r$ where $r \in \mathbb{R}$: r is an upper bound for A and $A \neq \emptyset$ by the Archemedian Property (applied to -r). So $\sup A$ exists in \mathbb{R} . By definition, $\sup A \leq r$. Assume by contradiction $\sup A < r$. By the density of \mathbb{Q} in \mathbb{R} , $\exists q \in \mathbb{Q} : \sup A < q < r \implies q \in A \text{ which is a contradiction.}$

Prove $(1+x)^n \ge 1 + nx \forall n \in \mathbb{N}$: (i) $P_1: 1+x \ge 1+x$

(ii) Assume P_n is true for some $n \in \mathbb{N}$

$$(1+x)^{n+1} = (1+x)^n (1+x) \ge (1+nx)(1+x)$$

$$\ge 1 + nx + x + nx^2$$

$$\ge 1 + (n+1)x \ge 1 + (n+1)x + nx^2$$

$$(1+x)^{n+1} \ge 1 + (n+1)x$$

Define $x\mathcal{R}y: x-y=2k, \ k\in\mathbb{Z}$. Prove it's an equivalence relation. How many unique classes?

Reflexive: $x \in \mathbb{Z}, x - x = 0 = 2 \cdot 0, 0 \in \mathbb{Z} \implies x\mathcal{R}x$.

Symmetric: $x, y \in \mathbb{Z} : x\mathcal{R}y \implies \exists k \in \mathbb{Z} : x - y = 2 \cdot k$. Then $y - x = -(x - y) = -(2 \cdot k) = -k$, $-k \in \mathbb{Z} \implies y\mathcal{R}x$.

Transitive: $x, y, z \in \mathbb{Z} : x\mathcal{R}y \wedge y\mathcal{R}z \implies \exists k_1, k_2 \in \mathbb{Z} : x - y = 2k_1 \wedge y - z = 2k_2$. Then

 $x-z=x+(-y+y)-z=(x-y)+(x-z)=2k_1+2k_2=2(k_1+k_2), k_1,k_2\in\mathbb{Z} \implies x\mathcal{R}z.$

There are exactly 2 unique **Equivalence Classes**:

 $[1] := \{x \in \mathbb{Z} : x\mathcal{R}1\}. \ x \in [1] \implies \exists k \in \mathbb{Z} : x-1=2k \iff x=2k+1 \implies x \text{ is odd.}$

 $[2] := \{x \in \mathbb{Z} : x\mathcal{R}2\}. \ x \in [2] \implies \exists k \in \mathbb{Z} : x-2=2k \iff x=2(k+1) \implies x \text{ is even.}$

Prove $\sqrt{n+1} - \sqrt{n-1}$ is irrational $\forall n \in \mathbb{N}$: Assume $\sqrt{n+1} - \sqrt{n-1}$ is rational. Then $x = \sqrt{n+1} - \sqrt{n-1} \implies x + \sqrt{n-1} = \sqrt{n+1} \implies x^2 + 2(\sqrt{n-1})x + (n-1) = n+1 \implies x^2 - 2 = -2(\sqrt{n-1})x \implies x + \sqrt{n-1} = \sqrt{n+1} \implies x + \sqrt{n-1} = \sqrt{n-1} = \sqrt{n-1} \implies x + \sqrt{n-1} = \sqrt{n-1} =$ $x^4 - 4x^2 + 4 = 4x^2(n-1) \implies x^4 - 4nx^2 + 4 = 0$ but $\pm 1, \pm 2, \pm 4$ don't solve the equation so $\sqrt{n+1} - \sqrt{n-1}$ is irrational.

 $Y := \{mx + b : x \in X, m, b \in \mathbb{R}^+\}$. Prove $\sup Y = m \sup X + b$: From (a), $\sup Y \le m \sup X + b$. Let $z \in \mathbb{R} : z < m \sup X + b$. Since $m > 0, z - b < m \sup X \iff \frac{z - b}{m} < \sup X$. By definition, $\frac{z - b}{m}$ is not an upper bound for $X \implies \exists x \in X : \frac{z - b}{m} < x \implies z < mx + b \in Y$. Therefore, z is not an upper bound for Y.

Show $x_n = \frac{\sqrt{n+1}}{\sqrt{n+1}} \forall n \in \mathbb{N}$ converges (to 1):

$$\begin{split} \left| \frac{\sqrt{n}+1}{\sqrt{n+1}} - 1 \right| &= \left| \frac{\sqrt{n}+1-\sqrt{n+1}}{\sqrt{n+1}} \right| \\ &\leq \frac{\left| \sqrt{n}-\sqrt{n+1} \right|}{\sqrt{n+1}} + \frac{1}{\sqrt{n+1}} \\ &= \frac{1}{(\sqrt{n+1}+\sqrt{n})\sqrt{n+1}} + \frac{1}{\sqrt{n+1}} \\ &\leq \frac{1}{n+1} + \frac{1}{\sqrt{n+1}} \\ &\leq \frac{2}{\sqrt{n}} < \varepsilon \\ &n > \frac{4}{\varepsilon^2} \end{split}$$

Prove $\lim \frac{2n-1}{3n+2} = \frac{2}{3}$

$$\left| \frac{2n-1}{3n+2} - \frac{2}{3} \right| < \varepsilon$$

$$\left| \frac{6n-3 - (6n+4)}{3(3n+2)} \right| < \varepsilon$$

$$\left| \frac{-7}{3(3n+2)} \right| < \varepsilon$$

$$\frac{7}{3(3n+2)} < \varepsilon$$

$$\frac{7}{9n+6} < \varepsilon$$

$$n > \frac{7 - 6\varepsilon}{9\epsilon}$$

note: $\left| \frac{-7}{3(3n+2)} \right| \le \frac{7}{3(3n+2)}$

Let $\varepsilon > 0$. Let $N \ge \frac{7-6\varepsilon}{9\epsilon}$. Then $\forall n > N$, we have

$$n > \frac{7 - 6\varepsilon}{9\epsilon} \implies \left| \frac{2n - 1}{3n + 2} - \frac{2}{3} \right| < \varepsilon$$

Prove $\lim \frac{n+6}{n^2-6} = 0$

$$\left| \frac{n+6}{n^2-6} - 0 \right| < \varepsilon$$

$$\left| \frac{n+6}{n^2-6} \right| < \varepsilon$$

Note that when $n \ge 6$, we have that $|n+6| \le 2n$, $|n^2-6| \ge \frac{1}{2}n^2$.

$$\begin{split} \left| \frac{n+6}{n^2-6} \right| & \leq \frac{2n}{\frac{1}{2}n^2} < \varepsilon \\ & \frac{4n}{n^2} < \varepsilon \\ & \frac{4}{n} < \varepsilon \\ & n > \max{\{\frac{4}{\varepsilon}, 6\}} \end{split}$$

Let $\varepsilon > 0$. Let $N \ge \max\{\frac{4}{\varepsilon}, 6\}$. Then $\forall n > N$, we have

$$n > \max\left\{\frac{4}{\varepsilon}, 6\right\} \implies \left|\frac{n+6}{n^2-6}\right| \le \frac{2n}{\frac{1}{2}n^2} < \varepsilon$$

Prove $\sup (A_1 \cup A_2) = \max \{ \sup A_1, \sup A_2 \} \implies \sup \left(\bigcup_{k=1}^n A_k \right) = \max_{k=1,\dots,n} \{ \sup A_k \}$: By **LUBP** of \mathbb{R} , $\sup A_{1,2}$ exist $\implies A_1 \cup A_2 \implies \sup (A_1 \cup A_2) \implies \sup (A_1 \cup A_2) \le \max \{ \sup A_1, \sup A_2 \}$. $\iff \sup A_i \le \sup (A_1 \cup A_2), i = 1, 2$. Then, $\sup \left(\bigcup_{k=1}^n A_k \right) \le \sum_{k=1}^n A_k$

 $\max_{k=1,\dots,n} \{\sup A_k\}. \iff \max_{k=1,\dots,n} \{\sup A_k\} \le \sup \left(\bigcup_{k=1}^n A_k\right), k=1,\dots,n.$