Dæmi 1 - Einingarampur

Spennan yfir 2 F þétti er gefin sem $v_c(t) = 10r(t) - 20r(t-1) + 10r(t-1)$ þar sem r(t) = tu(t) er einingarrampfallið. Rissið upp strauminn, aflið og geymda orku, sem fall af tíma. Merkið ása og sýnið hæstu gildi á öllum gröfum.

Höfn
$$\Gamma(t) = t \cdot u(t)$$

$$r'(t) = (1) \cdot u(t) + t \cdot (s(t)) = 0 \quad \forall t \quad soo \quad \underline{r'(t)} = u(t)$$

$$N_{n} \vee N_{n} (t) = 10 r(t) - 20 r(t-1) + 10 r(t-1) = \frac{10 (r(t) - r(t-1))}{10 (t-1)} = \begin{cases} 0 & t < 0 \\ 10t & 0 \le t \le 1 \end{cases}$$

Höfum
$$i_{\varepsilon}(t) = C \frac{dN_{\varepsilon}}{dt} = C \frac{d}{dt} \left(10 \left[r(t) - r(t-1) \right] \right)$$

$$= 10 C \left[r'(t) - r'(t-1) \right] = 10 C \left[N(t) - N(t-1) \right]$$

$$N'' \in C = 2F$$
 Svo $i_c(t) = 20[u(t) - u(t-1)] = \begin{cases} 20.0 \le t \le 1 \\ 0 \text{ anners} \end{cases}$

$$\dot{u}_c(t) = 20 \left[u(t) - u(t-1)\right] A$$

[w]

$$w_c = \frac{1}{2} c v_c^2 = v_c^2 = 100 t^2 (1(t) - 1(t-1)) J$$

Dæmi2 – Jafngildisrýmd og -span

Finnið jafngildisrým
d $C_{\rm eq}$ milli póla a og b.

Het
$$C_1 | C_2 = C_1 + C_2$$
 a $C_1 \perp C_2 = \frac{C_1 C_2}{C_1 + C_2}$
with temporal rather properties.

Gildi

Finnið nú jafngildisspan $L_{\rm eq}$ milli póla a og b.

Dæmi 3 – Jafngildisspan

Finnið jafngildisspan $L_{\rm eq}$ milli póla a og b.

Breyta	Gildi
L_1	3 H
L_2	$6\mathrm{H}$
L_3	$4\mathrm{H}$
L_4	$5\mathrm{H}$

Hér er Leg = L, 1 (L2 11 (L3 1 L4 I) =
$$\frac{33}{5}$$
 H