

Εισαγωγικό Μάθημα στις Τηλεπικοινωνίες Επαναληπτικές Έννοιες

Τυχαίες Διαδικασίες Φασματική Περιγραφή Θεωρία Πιθανοτήτων

Αθανάσιος Δ. Παναγόπουλος Καθηγητής ΕΜΠ

Τυχαίες Διαδικασίες Ι

Μια τυχαία διαδικασία είναι μια συλλογή από χρονικές συναρτήσεις ή σήματα που αντιστοιχούν σε αποτελέσματα τυχαίων πειραμάτων. Για κάθε αποτέλεσμα, υπάρχει μια ντετερμινιστική συνάρτηση που καλείται συνάρτηση δείγμα (sample function) ή μια πραγματοποίηση αυτής (realization).

ΔΕΝ ΟΡΙΖΟΝΤΑΙ ΜΟΝΟ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ

Τυχαίες Διαδικασίες

Κατηγορίες Τυχαίων Διαδικασιών

- Συνεχείς τυχαίες διαδικασίες: συνεχείς ως προς τι τιμές που μπορούν να λάβουν και ως προς το χρόνο.
 - π.χ. Θόρυβος στα τηλεπικοινωνιακά συστήματα
- **Συνεχείς τυχαίες ακολουθίες:** συνεχείς ως προς τις τιμές αλλά σε συγκεκριμένες χρονικές στιγμές.
 - π.χ. Θόρυβος στα δείγματα που λαμβάνει ο δέκτης
- **Διακριτές τυχαίες διαδικασίες:** διακριτές τυχαίες τιμές ως προς το συνεχή χρόνο.
 - π.χ. έξοδος κυκλώματος περιοριστή πλάτους σε είσοδο συνεχή τυχαία διαδικασία.
- Διακριτές τυχαίες ακολουθίες: διακριτές τιμές σε συγκεκριμένες χρονικές στιγμές
 - π.χ. ρίψη ζαριού σε ομοιόμορφα κατανεμημένες χρονικές στιγμές.

Περιγραφή Τυχαίων Διαδικασιών

(Ensemble Average : Το σύνολο των χρονικών συναρτήσεων μπορεί κάποιος να παρατηρήσει.)

Για αναλυτική περιγραφή της τυχαίας διαδικασίας πρέπει να γνωρίζουμε την:

joint pdf

$$f_{\mathbf{x}(t_1),\mathbf{x}(t_2),...,\mathbf{x}(t_N)}(x_1,x_2,...,x_N;t_1,t_2,...,t_N)$$

Οι πιο σημαντικές pdf είναι της πρώτης τάξης και της δεύτερης.

$$f_{\mathbf{x}(t)}(x;t)$$
 $f_{\mathbf{x}(t_1)\mathbf{x}(t_2)}(x_1, x_2; t_1, t_2)$

Παραδείγματα Τυχαίων Διαδικασιών

6

Κατηγοριοποίηση Τυχαίων Διαδικασιών

Βασισμένοι αν οι στατιστικές τους ιδιότητες αλλάζουν με το χρόνο: η διαδικασία μπορεί να κατηγοριοποιηθεί είτε μη στάσιμη (non stationary) είτε στάσιμη (stationary).

Αυστηρά Στάσιμη Τυχαία Διαδικασία: η joint pdf οποιαδήποτε τάξης (οποιουδήποτε πεπερασμένου συνόλου δειγμάτων) εξαρτάται από τις αποστάσεις μεταξύ των δειγμάτων (από τις σχετικές τους θέσεις) και όχι από τις ακριβείς χρονικές στιγμές.

Στάσιμη Ν-ιοστής τάξης Τυχαία Διαδικασία: η joint pdf νιοστής τάξης δεν εξαρτάται από την χρονική ολίσθηση αλλά εξαρτάται από την χρονική απόσταση (χρονικές διαφορές - time spacings):

$$f_{\mathbf{x}(t_1),\mathbf{x}(t_2),...\mathbf{x}(t_N)}(x_1,x_2,...,x_N;t_1,t_2,...,t_N) = f_{\mathbf{x}(t_1+t),\mathbf{x}(t_2+t),...\mathbf{x}(t_N+t)}(x_1,x_2,...,x_N;t_1+t,t_2+t,...,t_N+t)$$

Στασιμότητα

$$f_{\mathbf{x}(t_1)}(x, t_1) = f_{\mathbf{x}(t_1+t)}(x; t_1+t) = f_{\mathbf{x}(t)}(x)$$
 $\pi \rho \acute{\omega} \tau \eta \varsigma$

$$f_{\mathbf{x}(t_1),\mathbf{x}(t_2)}(x_1,x_2;t_1,t_2) = f_{\mathbf{x}(t_1+t),\mathbf{x}(t_2+t)}(x_1,x_2;t_1+t,t_2+t)$$
$$= f_{\mathbf{x}(t_1),\mathbf{x}(t_2)}(x_1,x_2;\tau), \quad \tau = t_2-t_1. \quad \text{και δεύτερης τάξης}$$

Στατιστικοί Μέσοι - Από κοινού ροπές

N random variables $\mathbf{x}(t_1), \mathbf{x}(t_2), \dots \mathbf{x}(t_N)$

$$E\{\mathbf{x}^{k_1}(t_1), \mathbf{x}^{k_2}(t_2), \dots \mathbf{x}^{k_N}(t_N)\} = \int_{x_1 = -\infty}^{\infty} \dots \int_{x_N = -\infty}^{\infty} x_1^{k_1} x_2^{k_2} \dots x_N^{k_N} f_{\mathbf{x}(t_1), \mathbf{x}(t_2), \dots \mathbf{x}(t_N)}(x_1, x_2, \dots, x_N; t_1, t_2, \dots, t_N)$$

$$dx_1 dx_2 \dots dx_N,$$
Για όλους του ακέραιους

L > 1 N/ > 1

$$k_j \ge 1$$
 $N \ge 1$

Πρώτης και Δεύτερης τάξης ροπές:

$$E\{\mathbf{x}(t)\}, E\{\mathbf{x}^{2}(t)\}\ E\{\mathbf{x}(t_{1})\mathbf{x}(t_{2})\}$$

Μέση Τιμής (mean value) Μέση Τετραγωνική Τιμή (Mean Square Value) Αυτοσυσχέτιση (Auto- correlation)

ΣΗΜΜΥ ΕΜΠ

Στατιστικοί Μέσοι - Από κοινού ροπές

Η μέση τιμή της διαδικασίας σε μια χρονική στιγμή τ είναι:

$$m_{\mathbf{x}}(t) = E\{\mathbf{x}(t)\} = \int_{-\infty}^{\infty} x f_{\mathbf{x}(t)}(x;t) dx.$$

Ο μέσος όρος είναι δια μέσου του συνόλου των πραγματοποιήσεων των διαδικασιών και εάν pdf μεταβάλλεται με το χρόνο τότε η μέση τιμή είναι ντετερμινιστική συνάρτηση του χρόνου.

Εάν η διαδικασία είναι στάσιμη τότε η μέση τιμή είναι ανεξάρτητη του χρόνου:

$$m_{\mathbf{x}} = E\{\mathbf{x}(t)\} = \int_{-\infty}^{\infty} x f_{\mathbf{x}}(x) dx.$$

Στατιστικοί Μέσοι - Από κοινού ροπές

Ορισμοί:

$$\begin{split} \mathsf{MSV_x}(t) &= E\{\mathbf{x}^2(t)\} = \int_{-\infty}^{\infty} x^2 f_{\mathbf{x}(t)}(x;t) \mathrm{d}x \text{ (non-stationary)}, \\ \mathsf{MSV_x} &= E\{\mathbf{x}^2(t)\} = \int_{-\infty}^{\infty} x^2 f_{\mathbf{x}}(x) \mathrm{d}x \text{ (stationary)}. \end{split}$$

Η δεύτερη κεντρική ροπή (μεταβλητότητα- variance) δίνεται:

$$\begin{split} \sigma_{\mathbf{x}}^2(t) &= E\left\{[\mathbf{x}(t) - m_{\mathbf{x}}(t)]^2\right\} = \mathsf{MSV}_{\mathbf{x}}(t) - m_{\mathbf{x}}^2(t) \text{ (non-stationary)}, \\ \sigma_{\mathbf{x}}^2 &= E\left\{[\mathbf{x}(t) - m_{\mathbf{x}}]^2\right\} = \mathsf{MSV}_{\mathbf{x}} - m_{\mathbf{x}}^2 \text{ (stationary)}. \end{split}$$

Συσχέτιση

Η συνάρτηση αυτοσυσχέτισης περιγράφει απολύτως τη φασματική πυκνότητα ισχύος της τυχαίας διαδικασίας.

Ορίζεται ως η συσχέτιση μεταξύ δύο τυχαίων μεταβλητών $x_1 = x(t_1) \& x_2 = x(t_2)$:

$$R_{\mathbf{x}}(t_1, t_2) = E\{\mathbf{x}(t_1)\mathbf{x}(t_2)\}\$$

$$= \int_{x_1 = -\infty}^{\infty} \int_{x_2 = -\infty}^{\infty} x_1 x_2 f_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; t_1, t_2) dx_1 dx_2$$

Για μια στάσιμη διαδικασία:

$$E\{\mathbf{x}(t)\} = m_{\mathbf{x}}$$

$$\begin{split} R_{\mathbf{x}}(\tau) &= E\{\mathbf{x}(t)\mathbf{x}(t+\tau)\} \\ &= \int_{x_1 = -\infty}^{\infty} \int_{x_2 = -\infty}^{\infty} x_1 x_2 f_{\mathbf{x}_1, \mathbf{x}_2}(x_1, x_2; \tau) \mathrm{d}x_1 \mathrm{d}x_2. \end{split}$$

Στάσιμη Διαδικασία με την Ευρεία Έννοια Wide-sense stationarity (WSS):

$$E\{\mathbf{x}(t)\} = m_{\mathbf{x}}$$
 $R_{\mathbf{x}}(t_1, t_2) = R_{\mathbf{x}}(\tau) \ \tau = t_2 - t_1$

Υπολογισμοί Συσχέτισης

Ο συντελεστής συσχέτισης :
$$\rho(X,Y) = \frac{Cov[X,Y]}{\sqrt{Var[X] \cdot Var[Y]}}$$

$$\sqrt{Var[X]} = \text{standard deviation} = \text{std}(X) = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - mean(X))^2}$$

Τυπική Απόκλιση

$$\sqrt{Var[X]}$$
 = standard deviation=std(X)= $\sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - mean(X))^2}$

$$mean(X) = \frac{1}{N} \sum_{i=1}^{N} X_i$$
 Μέση Τιμή

$$cov(X,Y) = \frac{1}{N} \sum_{i=1}^{N} (X_i - mean(X))(Y_i - mean(Y))$$

$$cov(X, X) = var(X)$$

Ιδιότητες της Συνάρτησης Αυτοσυσχέτισης

1.
$$R_{\mathbf{x}}(\tau) = R_{\mathbf{x}}(-\tau)$$

Άρτια συνάρτηση συναρτήσει της χρονικής διαφοράς τ γιατί για το ίδιο σύνολο τιμών εγκάρσιως των δειγμάτων βγαίνει ανεξάρτητα από την κατεύθυνση.

2.
$$|R_{\mathbf{x}}(\tau)| \leq R_{\mathbf{x}}(0)$$

Το μέγιστο συμβαίνει πάντα στο τ =0, αν και υπάρχουν τιμές του τ που δίνουν την ίδια τιμή. Η τιμή στο $R_x(0)$ είναι η μέση τετραγωνική τιμή της τυχαίας διαδικασίας.

- 3. Ένα για κάποιο τ_0 έχουμε $R_x(\tau_0)=R_x(0)$, τότε για όλου τους ακέραιους $K_x(k\tau_0)=R_x(0)$. Περιοδικό ως προς το τ_0 .
- 4. Εάν η μέση τιμή είναι διάφορη του μηδενός, τότε η συνάρτηση αυτοσυσχέτισης έχεις ένα σταθερό όρο ίσο με το τετράγωνο της μέσης τιμής.
- 5. Η συνάρτηση της αυτοσυσχέτισης δεν μπορεί να έχει τυχαίο σχήμα. Ο περιορισμός αυτός ξεκινάει από το ο Μ/Σ Fourier της πρέπει να είναι μεγαλύτερος ή ίσος του μηδενός.

Φασματική Πυκνότητα Ισχύος μιας Τυχαίας Διαδικασίας

Παίρνοντας το M/Σ Fourier των τυχαίων διαδικασιών δεν κερδίζουμε τίποτα και δε δουλεύει.

Υπολογισμός Συνάρτησης Αυτοσυσχέτισης

timelag(X,t)= χρονική ολίσθηση κάτα t στη χρονοσειρά των δεδομένων X_{i-t}

$$autocorr(X,t) = \frac{\text{cov}[X, \text{timelag}(X,t)]}{std[X] \cdot std[\text{timelag}(X,t)]}$$

$$autocorr(X,t) = \frac{\sum_{i=1}^{N} (X_i - mean(X))(X_{i-t} - mean(X))}{\sum_{i=1}^{N} (X_i - mean(X))^2}$$

Φασματική Πυκνότητα Ισχύος μιας Τυχαίας Διαδικασίας

- Χρειάζεται να καθοριστεί πως η μέση ισχύς της τυχαίας διαδικασίας κατανέμεται στη συχνότητα.
- Ορίζουμε τη περιορισμένη/truncated διαδικασία:

$$\mathbf{x}_T(t) = \left\{ egin{array}{ll} \mathbf{x}(t), & -T \leq t \leq T \\ 0, & ext{otherwise} \end{array}
ight.$$

> 'Εστω ο M/Σ Fourier της truncated process:

$$\mathbf{X}_T(f) = \int_{-\infty}^{\infty} \mathbf{x}_T(t) e^{-j2\pi f t} dt.$$

Μέση τιμή της ενέργειας πάνω στο χρόνο 2T:

$$\mathbf{P} = \frac{1}{2T} \int_{-T}^{T} \mathbf{x}_{T}^{2}(t) dt = \frac{1}{2T} \int_{-\infty}^{\infty} |\mathbf{X}_{T}(f)|^{2} df \quad \text{(watts)}.$$

Φασματική Πυκνότητα Ισχύος μιας Τυχαίας Διαδικασίας

Εύρεση της μέσης τιμής της P

$$E\{\mathbf{P}\} = E\left\{\frac{1}{2T}\int_{-T}^{T}\mathbf{x}_{T}^{2}(t)\mathrm{d}t\right\} = E\left\{\frac{1}{2T}\int_{-\infty}^{\infty}\left|\mathbf{X}_{T}(f)\right|^{2}\mathrm{d}f\right\}$$

Παίρνοντας το όριο στο άπειρο

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left\{\mathbf{x}_{T}^{2}(t)\right\} \mathrm{d}t = \lim_{T \to \infty} \frac{1}{2T} \int_{-\infty}^{\infty} E\left\{\left|\mathbf{X}_{T}(f)\right|^{2}\right\} \mathrm{d}f$$

> Έχουμε

$$\mathsf{MSV}_{\mathbf{x}} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left\{\mathbf{x}_{T}^{2}(t)\right\} dt$$
$$= \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{E\left\{|\mathbf{X}_{T}(f)|^{2}\right\}}{2T} df \quad \text{(watts)}.$$

Φασματική Πυκνότητα Ισχύος/Αυτοσυσχέτιση

$$S_{\mathbf{x}}(f) = \lim_{T \to \infty} \frac{E\left\{ |\mathbf{X}_{T}(f)|^{2} \right\}}{2T}$$
 (watts/Hz),

$$R_{\mathbf{x}}(\tau) \longleftrightarrow S_{\mathbf{x}}(f) = \int_{\tau=-\infty}^{\infty} R_{\mathbf{x}}(\tau) e^{-j2\pi f \tau} d\tau.$$

Βασικές Ιδιότητες Μ/Σ Fourier

Aν $g(t) \Leftrightarrow G(f)$, τότε $G(t) \Leftrightarrow g(-f)$.

Aν
$$g(t) \Leftrightarrow G(f)$$
, τότε $g(t-t_0) \Leftrightarrow G(f) \cdot \exp(-j2\pi f \cdot t_0)$.

Av
$$g(t) \Leftrightarrow G(f)$$
, τότε $\exp(j2\pi f_c t)g(t) \Leftrightarrow G(f - f_c)$.

An
$$g_1(t)\Leftrightarrow G_1(f),$$

$$\kappa\alpha\iota \ g_2(t)\Leftrightarrow G_2(f) \ \text{tóte} \ g_1(t)\otimes g_2(t)\Leftrightarrow G_1(f)\cdot G_2(f)$$

$$\kappa\alpha\iota \ g_1(t)\cdot g_2(t)\Leftrightarrow G_1(f)\otimes G_2(f).$$

Εύρος Ζώνης Σήματος

Σήμα Βασικής Ζώνης vs. Ζωνοπερατά Σήματα:

Δίλημμα Εύρους Ζώνης:

- Τα σήματα πεπερασμένου εύρους ζώνης δε είναι πραγματοποιήσιμα!
- Τα πραγματοποιήσιμα σήματα έχουν άπειρο εύρος ζώνης!

Εύρος Ζώνης Σήματος

Διαφορετικοί Ορισμοί του Εύρους Ζώνης:

- α). Εύρος Ζώνης Μισής Ισχύος
- b). Ισοδύναμο Εύρος Ζώνης Θορύβου
- c). Από μηδέν σε μηδέν εύρος ζώνης.

- d) Κλασματικό περιεχόμενο ισχύος εύρους ζώνης
- e) Φραγμένη φασματική πυκνότητα ισχύος
- f) Απόλυτο εύρος ζώνης

Χρονικοί Μέσοι Όροι/ Εργοδικότητα

- Μια διαδικασία που μια οποιαδήποτε realization/μέλος του συνόλου μπορεί να θεωρηθεί ως αντιπροσωπευτική ονομάζεται Εργοδική.
- Μια διαδικασία όπου κάθε realization/μέλος του συνόλου έχει την ίδια στατιστική συμπεριφορά με όλο το σύνολο ονομάζεται Εργοδική.
- Όλοι οι χρονικοί μέσοι ενός μέλος του συνόλου των διαδικασιών είναι ίδιο με το μέσο όρο του συνόλου:

$$E\{\mathbf{x}^{n}(t)\} = \int_{-\infty}^{\infty} x^{n} f_{\mathbf{x}}(x) dx$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} [\mathbf{x}_{k}(t, \omega_{k})]^{n} dt, \ \forall \ n, \ k.$$

- Για μια εργοδική διαδικασία: Το να μετρήσεις διάφορες στατιστικούς μέσους είναι αρκετό να κοιτάς μόνο μια realization της διαδικασίας και να βρεις τον αντίστοιχο χρονικό μέσο.
- Για να είναι μια διαδικασία εργοδική, πρέπει να είναι Στάσιμη. Το αντίθετο δεν ισχύει.

Παραδείγματα Τυχαίων Διαδικασιών

Παράδειγμα 1:

$$\mathbf{x}(t) = A\cos(2\pi f_0 t + \mathbf{\Theta})$$

Θ τυχαία μεταβλητή ομοιόμορφα κατανεμημένη στο [0,2π]

Παράδειγμα 2:

$$\mathbf{x}(t) = \mathbf{x}$$

x τυχαία μεταβλητή ομοιόμορφα κατανεμημένη στο [-A,A], A>0

Παράδειγμα 3:

$$\mathbf{x}(t) = A\cos(2\pi f_0 t + \mathbf{\Theta})$$

Α τυχαία μεταβλητή μηδενικής μέσης τιμής, με variance $\sigma_{\mathbf{A}}^2$, και Θ τυχαία μεταβλητή ομοιόμορφα κατανεμημένη στο [0,2π] Α, Θ στατιστικά ανεξάρτητες.

Στοχαστικές Διαδικασίες- Στασιμότητα

Εάν η $R_{XX}(\tau)$ είναι στενή, τα δείγματα της $\{X(t)\}$ αποσυσχετίζονται γρήγορα καθώς μεγαλώνει η μεταξύ τους απόσταση.

Η $R_{\!X\!X}(au)$ σχετίζεται με το ρυθμό μεταβολής της $\{X(t)\}$ και, επομένως, και με το "φάσμα" της $\{X(t)\}$.

Τυχαίες Διαδικασίες & Γραμμικά Συστήματα

Αυτοσυσχέτιση/ Ρυθμός Μεταβολής

- Εάν η R_x(τ) πέφτει γρήγορα με το τ, τότε η τυχαία διαδικασία x(t) αλλάζει γρήγορα με το χρόνο.
- Αντιστρόφως, εάν η αυτοσυσχέτιση πέφτει αργά με το χρόνο, τα δείγματα είναι πολύ συσχετισμένα στο χρόνο.
- Συνεπώς η αυτοσυσχέτιση είναι ένα μέτρο του ρυθμού μεταβολής της τυχαίας διαδικασίας x(t) και σχετίζεται και από την απόκριση συχνότητας.
- ightharpoonup Για παράδειγμα ένα ημίτονο $\sin(2\pi f\cdot t)$ μεταβάλλεται γρήγορα για μεγάλες συχνότητες και αργά για μικρές συχνότητες.

Θερμικός Θόρυβος στα Συστήματα Επικοινωνιών

- Μια φυσική πηγή θορύβου είναι ο θερμικός θόρυβος του οποίου το πλάτος μπορείς να μοντελοποιηθεί σας Gaussian τυχαία διαδικασία με μέση τιμή μηδέν.
- Η αυτοσυσχέτιση και η Φασματική πυκνότητα ισχύος μπορούν να μοντελοποιηθούν ως:

$$R_{w}(\tau) = \frac{k \cdot T_{noise}}{R_{noise}} \cdot \frac{1}{t_{0}} \cdot \exp\left(-\frac{|\tau|}{t_{0}}\right)$$

$$S_{w}(f) = \frac{2k \cdot T_{noise}}{R_{n}} \cdot \frac{1}{1 + (2\pi f \cdot t_{0})^{2}}$$

ν Όπου $k = 1.38 \times 10^{-23}$ joule/ 0 K is Boltzmann's constant, R_{n} είναι η αντίσταση σε (Ohms); T_{noise} είναι η θερμοκρασία σε βαθμούς Kelvin; and t_{0} είναι ο στατιστικός μέσος των χρονικών διαστημάτων μεταξύ της σύγκρουσης των ηλεκτρονίων και είναι της τάξης picoseconds).

Θερμικός Θόρυβος

Θερμικός Θόρυβος

Ή φασματική πυκνότητα ισχύος θορύβου PSD μπορεί να θεωρηθεί επίπεδη (flat) σταθερή πάνω στη ζώνη συχνοτήτων frequency range of 0 to 1000GHz

Αν το θεωρήσουμε σταθερό ως το ∞:

$$S_w(f) = \frac{N_0}{2} (W/Hz)$$

όπου $N_0 = 4 k T_{noise} R_n$ είναι σταθερό.

Ο Θόρυβος που είναι σταθερός σε ολόκληρη περιοχή συχνοτήτων είναι ο γνωστός
 Λευκός Θόρυβος

Η συνάρτηση αυτοσυσχέτισης του λευκού θορύβου είναι : $R_{_{w}}(\tau) = \frac{N_{_{0}}}{2} \cdot \delta(\tau)$

Επειδή $R_{_{\!\scriptscriptstyle W}}(\tau)\!=\!0$ γ ι α au au0 για 2 οποιαδήποτε δείγματα λευκού θορύβου

ανεξαρτήτως πόσο κοντά είναι στο χρόνο, θεωρούνται ασυσχέτιστα.

Εάν ο θόρυβος είναι άσπρος white και Γκαουσιανός (Gaussian) τα δείγματα θορύβου είναι και ανεξάρτητα (independent).

Θερμικός Θόρυβος (Gaussian)

Θερμικός Θόρυβος ή Θόρυβος Johnson

Αν n(t) είναι η στιγμιαία τάση στα άκρα ενός αγωγού με αντίσταση R_n (εξαιτίας της κίνησης των ηλεκτρονίων), μπορεί να θεωρηθεί τυχαία διαδικασία και τα δείγματα αυτής είναι τυχαίες μεταβλητές που ακολουθούν

Gaussian κατανομή με μέση τιμή 0 και pdf

$$\sigma^2 = \mathbf{E}\left\{x^2\right\} = V_n^2 = 4kT_{noise}R_n \cdot \mathbf{B}$$

 $f_n(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}$

όπου

και Β το εύρος ζώνης συχνοτήτων λειτουργίας.

Ισχύς Θορύβου
$$P_n\left(au
ight) = rac{V_n^2}{R_n} = 4kT_{noise} \cdot B$$

Band Limited / White Noise

$$E[X(t)^{2}] = \int_{-W}^{W} \frac{N_{0}}{2} df = N_{0}W$$

$$R_X(\tau) = \frac{N_0 \sin(2\pi W \tau)}{2\pi \tau} = N_0 W \operatorname{sinc}(2W\tau)$$

For any t, the samples $X(t \pm \frac{n}{2W})$ for n = 0, 1, 2, ... are uncorrelated

Γραμμικά Συστήματα - Ετεροσυσχέτιση/Υπέρθεση

$$R_{X}(\tau) = R_{X_{1}}(\tau) + R_{X_{2}}(\tau) + R_{X_{1}X_{2}}(\tau) + R_{X_{2}X_{1}}(\tau)$$

$$R_{Y}(\tau) = R_{Y_{1}}(\tau) + R_{Y_{2}}(\tau) + R_{Y_{1}Y_{2}}(\tau) + R_{Y_{2}Y_{1}}(\tau)$$

$$S_{Y}(f) = |H(f)|^{2} \left[S_{X_{1}}(f) + S_{X_{2}}(f) + S_{X_{1}X_{2}}(f) + S_{X_{2}X_{1}}(f) \right]$$

Αν $X_1(t)$, $X_2(t)$ στατιστικά ασυσχέτιστες διαδικασίες με μηδενική μέση τιμή ισχύει:

$$R_{X}(\tau) = R_{X_{1}}(\tau) + R_{X_{2}}(\tau)$$

$$S_{X}(f) = S_{X_{1}}(f) + S_{X_{2}}(f)$$

Ασυσχέτιστες vs. Ανεξάρτητες

$$X,Y$$
 ασυσχέτιστες τότε $\rho(X,Y) = 0$
$$\rho(X,Y) = \frac{Cov[X,Y]}{\sqrt{Var[X] \cdot Var[Y]}} = 0$$

$$Cov[X,Y] = 0 \Leftrightarrow E[X \cdot Y] - E[X]E[Y] = 0 \Leftrightarrow E[X \cdot Y] = E[X]E[Y]$$
 Uncorrelated

$$Eάν ρ(X,Y) ≠ 0, τότε X, Y συσχετισμένες.$$
 Correlated

X, Υ ανεξάρτητες: όταν η από κοινού (joint) συνάρτηση πυκνότητας πιθανότητας είναι το γινόμενο των περιθώριων (marginal) κατανομών \Rightarrow

$$f_{XY}(x,y) = f_X(x) \cdot f_Y(y) \Leftrightarrow f_{X/Y}(x / y) = f_X(x) \qquad \text{Independent}$$

Ασυσχέτιστες vs. Ανεξάρτητες

- -Εάν Χ,Υ ανεξάρτητες είναι ΠΑΝΤΑ ασυσχέτιστες
- -Εάν Χ, Υ είναι ασυσχέτιστες μπορεί να είναι εξαρτημένες.
- Εάν Χ, Υ είναι ασυσχετιστες μηδενικός συντελεστής συσχέτισης- είναι και ανεξάρτητες μόνο όταν η απο κοινού κατανομή τους είναι η bivariate Gaussian.

Θόρυβος + Επιθυμητό Σήμα

Προσθετικός Θόρυβος: (θερμικός)

Το λαμβανόμενο σήμα
$$r(t) = s(t) + n(t)$$

Πολλαπλασιαστικός Θόρυβος:

Το λαμβανόμενο σήμα $r(t) = s(t) \times \alpha(t)$

Ο παράγοντας *a(t)* χαρακτηρίζει την τυχαία μεταβολή του καναλιού και η επίδραση του είναι συνήθως πολύ μεγαλύτερη από αυτή του προσθετικού θορύβου. Τέτοιες περιπτώσεις είναι οι διαλείψεις λόγω της διάδοσης των σημάτων στα διάφορα μέσα.

Ασύρματες, Ενσύρματες, Δορυφορικές, Οπτικές, Κινητές...

Παραγωγή/Στατιστικός Χαρακτηρισμός Δειγμάτων Θορύβου

$$r(t) = s(t) + n(t)$$

$$s(t) + r(t)$$

$$n \sim G(0, \sigma_n^2)$$

$$n(t)$$

Υλοποίηση/Gaussian Noise

PYTHON

import numpy as np
import matplotlib.pyplot as plt
np.random.randn(1000)
plt.plot(x)
plt.show()

MATLAB

N=1000 Rv_noise=randn(1,N) plot (Rv_noise (1:500))

Παράδειγμα Επίδρασης LTI/white noise

(WSS) white noise process, $\mathbf{x}(t)$, of zero-mean

power spectral density $N_0/2$

$$H(f) = \frac{R}{R + j2\pi fL} = \frac{1}{1 + j2\pi fL/R}.$$

$$S_{\mathbf{y}}(f) = \frac{N_0}{2} \frac{1}{1 + \left(\frac{2\pi L}{R}\right)^2 f^2} \longleftrightarrow R_{\mathbf{y}}(\tau) = \frac{N_0 R}{4L} e^{-(R/L)|\tau|}.$$

Ομοιόμορφη Κατανομή

$$f_{\mathbf{X}}(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{otherwise} \end{cases}$$

$$F_X(x) = \begin{cases} 0, & x < a \\ \frac{x - a}{b - a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

Pdf = **probability density function**

cdf=cumulative density function

Εκθετική Κατανομή

$$f_{\mathbf{X}}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \alpha \lambda \lambda \circ 0 \end{cases} \qquad F_{\mathbf{X}} = P(\mathbf{X} \le x) = \begin{cases} 0, & x < 0 \\ \int_{0}^{x} \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$

Normal Distribution/Κανονική Κατανομή

$$f_{\mathbf{x}}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} \qquad F_{X}(x) = P[X \le x] = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(z-\mu)^2}{2\pi\sigma^2}} dz$$

Normal Distribution/Κανονική Κατανομή

$$F_X(x) = P[X \le x] = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(z-\mu)^2}{2\pi\sigma^2}} dz$$

$$X \sim N(\mu, \sigma^2)$$

$$X - \mu \sim N(0, \sigma^2)$$

$$\frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$F_X(x) = P[X \le x] = \int_{-\infty}^{\frac{x-\mu}{\sigma}} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{y^2}{2}\sigma} dy =$$

$$= \Phi\left(\frac{x-\mu}{\sigma}\right)$$

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du \qquad Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$$

$$Q(x) = 1 - \Phi(x) = \Phi(-x)$$

$$Q(-x) = 1 - Q(x) = \Phi(x)$$

$$Q(x) \le \frac{1}{2}e^{-x^{2}/2}$$

$$Q(\infty) = 0$$
$$Q(-\infty) = 1$$
$$Q(0) = \frac{1}{2}$$

$$X \sim N(\mu, \sigma^2)$$

$$\Pr\{X > x\} = Q\left(\frac{x - \mu}{\sigma}\right)$$

$$\Pr\{X>\mu+a\}=\Pr\{X<\mu-a\}=Q\left(\frac{a}{\sigma}\right)$$

Error Function

$$\operatorname{erf}(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-x^{2}} dx = 1 - 2Q(z\sqrt{2})$$

$$\operatorname{erfc}(z) = 1 - \operatorname{erf}(z)$$

$$\operatorname{erf}(\infty) = 1$$

$$\operatorname{erf}(0) = 0$$

Q-Function Table

z	Q(z)	z	Q(z)
0.0	0.50000	2.0	0.02275
0.1	0.46017	2.1	0.01786
0.2	0.42074	2.2	0.01390
0.3	0.38209	2.3	0.01072
0.4	0.34458	2.4	0.00820
0.5	0.30854	2.5	0.00621
0.6	0.27425	2.6	0.00466
0.7	0.24196	2.7	0.00347
0.8	0.21186	2.8	0.00256
0.9	0.18406	2.9	0.00187
1.0	0.15866	3.0	0.00135
1.1	0.13567	3.1	0.00097
1.2	0.11507	3.2	0.00069
1.3	0.09680	3.3	0.00048
1.4	0.08076	3.4	0.00034
1.5	0.06681	3.5	0.00023
1.6	0.05480	3.6	0.00016
1.7	0.04457	3.7	0.00011
1.8	0.03593	3.8	0.00007
1.9	0.02872	3.9	0.00005

The definition of Q function is:

$$Q(z) = \int_{z}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-y^2/2} dy$$

Όρια για την Q(x)

> Όριο Chernoff-Rubin (ἀνω ὁριο της Q)

$$Q(x) \le \exp\left(-\frac{x^2}{2}\right)$$

Όπως όλα τα άνω όρια χρησιμοποιείται για τη μελέτη της χειρότερης περίπτωσης (worst case) στα τηλεπικοινωνιακά συστήματα.

> Βελτιωμένο όριο

$$Q(x) \le \frac{1}{2} \exp\left(-\frac{x^2}{2}\right)$$

Όρια για την Q(x)

Q&A

