Chapter 1: The Real And Complex Number Systems

Author: Meng-Gen Tsai Email: plover@gmail.com

Integers

Exercise 1.1. Prove that there is no largest prime. (A proof was known to Euclid.)

There are many proofs of this result. We provide some of them.

Proof (Due to Euclid). If p_1, p_2, \ldots, p_t were all primes, then write

$$n = p_1 p_2 \cdots p_t + 1$$

and there were a prime number p dividing n. p can not be any of p_i for $1 \le i \le t$; otherwise p would divide the difference $n - p_1 p_2 \cdots p_t = 1$. That is, $p \ne p_i$ for $1 \le i \le t$, contrary to the assumption. \square

Supplement (Due to Euclid). Show that k[x], with k a field, has infinitely many irreducible polynomials.

Proof (Due to Euclid). If f_1, f_2, \ldots, f_t were all irreducible polynomials, then write

$$g = f_1 f_2 \cdots f_t + 1 \in k[x]$$

and there were an irreducible polynomial f dividing g (since $\deg g = \deg f_1 + \deg f_2 + \cdots + \deg f_t \geq 1$). f can not be any of $c_i f_i$ for $1 \leq i \leq t$ and $c_i \in k - \{0\}$; otherwise f would divide the difference $g - f_1 f_2 \cdots f_t = 1$. That is, $f \neq c_i f_i$ for $1 \leq i \leq t$ and $c_i \in k - \{0\}$, contrary to the assumption. \square

Proof (Unique factorization theorem). Given N.

(1) Show that $\sum_{n \leq N} \frac{1}{n} \leq \prod_{p \leq N} \left(1 - \frac{1}{p}\right)^{-1}$. By the unique factorization theorem on $n \leq N$,

$$\sum_{n \le N} \frac{1}{n} \le \prod_{p \le N} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \prod_{p \le N} \left(1 - \frac{1}{p} \right)^{-1}.$$

(2) By (1) and the fact that $\sum \frac{1}{n}$ diverges, there are infinitely many primes.

Proof (Due to Eckford Cohen).

(1) $ord_p n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \left[\frac{n}{p^3}\right] + \cdots$. For any $k = 1, 2, \dots, n$, we can express k as $k = p^s t$ where $s = \operatorname{ord}_p k$ is a non-negative integer and (t, p) = 1. There are $\left[\frac{n}{p^a}\right]$ numbers such that $p^a \mid k$ for $a = 1, 2, \dots$ Therefore, there are

$$\left[\frac{n}{p^a}\right] - \left[\frac{n}{p^{a+1}}\right]$$

numbers such that $\operatorname{ord}_{p}k = a$ for $a = 1, 2, \ldots$ Hence,

$$\operatorname{ord}_{p} n! = \left(\left[\frac{n}{p} \right] - \left[\frac{n}{p^{2}} \right] \right) + 2 \left(\left[\frac{n}{p^{2}} \right] - \left[\frac{n}{p^{3}} \right] \right) + 3 \left(\left[\frac{n}{p^{3}} \right] - \left[\frac{n}{p^{4}} \right] \right) + \cdots$$
$$= \left[\frac{n}{p} \right] + \left[\frac{n}{p^{2}} \right] + \left[\frac{n}{p^{3}} \right] + \cdots$$

(2) $ord_p n! \le \frac{n}{p-1}$ and that $n!^{\frac{1}{n}} \le \prod_{p|n!} p^{\frac{1}{p-1}}$.

$$\operatorname{ord}_{p} n! = \left[\frac{n}{p}\right] + \left[\frac{n}{p^{2}}\right] + \left[\frac{n}{p^{3}}\right] + \cdots$$

$$\leq \frac{n}{p} + \frac{n}{p^{2}} + \frac{n}{p^{3}} + \cdots$$

$$= \frac{\frac{n}{p}}{1 - \frac{1}{p}}$$

$$= \frac{n}{p - 1}.$$

Thus,

$$n! = \prod_{p|n!} p^{\operatorname{ord}_p n!} \le \prod_{p|n!} p^{\frac{n}{p-1}} = \left(\prod_{p|n!} p^{\frac{1}{p-1}}\right)^n,$$

or

$$n!^{\frac{1}{n}} \le \prod_{p|n!} p^{\frac{1}{p-1}}.$$

- (3) $(n!)^2 \ge n^n$. Write $(n!)^2 = \prod_{k=1}^n k \prod_{k=1}^n (n+1-k) = \prod_{k=1}^n k(n+1-k)$, and $n^n = \prod_{k=1}^n n$. It suffices to show that $k(n+1-k) \ge n$ for each $1 \le k \le n$. Notice that $k(n+1-k) n = (n-k)(k-1) \ge 0$ for $1 \le k \le n$. The inequality holds.
- (4) By (3)(4), $\prod_{p|n!} p^{\frac{1}{p-1}} \geq \sqrt{n}$. Assume that there are finitely many primes, the value $\prod_{p|n!} p^{\frac{1}{p-1}}$ is a finite number whenever the value of n. However, $\sqrt{n} \to \infty$ as $n \to \infty$, which leads to a contradiction. Hence there are infinitely many primes.

Proof (Formula for $\phi(n)$). If p_1, p_2, \ldots, p_t were all primes, then let $n = p_1 p_2 \cdots p_t$ and all numbers between 2 and n are NOT relatively prime to n. Thus, $\phi(n) = 1$ by the definition of ϕ . By the formula for ϕ ,

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_t}\right)$$

$$1 = (p_1p_2\cdots p_t)\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_t}\right)$$

$$= (p_1 - 1)(p_2 - 1)\cdots(p_t - 1) > 1,$$

which is a contradiction (since 3 is a prime). Hence there are infinitely many primes. \Box

Exercise 1.2. If n is a positive integer, prove the algebraic identity

$$a^{n} - b^{n} = (a - b) \sum_{k=0}^{n-1} a^{k} b^{n-1-k}.$$

Proof.

(1)

$$\begin{split} (a-b)\sum_{k=0}^{n-1}a^kb^{n-1-k} &= a\sum_{k=0}^{n-1}a^kb^{n-1-k} - b\sum_{k=0}^{n-1}a^kb^{n-1-k} \\ &= \sum_{k=0}^{n-1}a^{k+1}b^{n-1-k} - \sum_{k=0}^{n-1}a^kb^{n-k}. \end{split}$$

(2) Arrange summation index:

$$\sum_{k=0}^{n-1} a^{k+1} b^{n-1-k} = \sum_{k=1}^{n} a^k b^{n-k} = a^n + \sum_{k=1}^{n-1} a^k b^{n-k},$$
$$\sum_{k=0}^{n-1} a^k b^{n-k} = b^n + \sum_{k=1}^{n-1} a^k b^{n-k}.$$

(3) By (1)(2),

$$(a-b)\sum_{k=0}^{n-1} a^k b^{n-1-k} = \left(a^n + \sum_{k=1}^{n-1} a^k b^{n-k}\right) - \left(b^n + \sum_{k=1}^{n-1} a^k b^{n-k}\right)$$
$$= a^n - b^n.$$

Supplement. Some exercises without proof.

- (1) Let x be a nilpotent element of A. Show that 1+x is a unit of A. Deduce that the sum of a nilpotent element and a unit is a unit. (Exercise 1.1 in Atiyah and Macdonald, Introduction to Commutative Algebra.)
- (2) Prove that $1^k + 2^k + \cdots + (p-1)^k \equiv 0$ (p) if $p-1 \nmid k$ and -1(p) if $p-1 \mid k$. (Exercise 4.11 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)
- (3) Use the existence of a primitive root to give another proof of Wilson's theorem $(p-1)! \equiv -1$ (p). (Exercise 4.12 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)
- (4) Suppose n and F are integers and n, F > 0. Show that

$$B_n(Fx) = F^{n-1} \sum_{a=0}^{F-1} B_n \left(x + \frac{a}{F} \right).$$

where $B_n(x)$ are Bernoulli polynomials. (Exercise 15.19 in Kenneth Ireland and Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition)

- (5) Exercise 1.3.
- (6) Exercise 1.4.

Exercise 1.3. If $2^n - 1$ is a prime, prove that n is prime. A prime of the form $2^p - 1$, where p is prime, is called a Mersenne prime.

It suffices to prove that: If $a^n - 1$ is a prime, show that a = 2 and that n is a prime. Primes of the form $2^p - 1$ are called Mersenne primes. For example, $2^3 - 1 = 7$ and $2^5 - 1 = 31$. It is not known if there are infinitely many Mersenne primes.

Proof.

- (1) n is a prime. Assume n were not prime, say n = rs for some r, s > 1. By Exercise 1.2, $a^{rs} 1 = (a^s 1)(\sum_{k=0}^{r-1} a^{sk})$. $a^s 1 = 1$ since $a^s 1 < a^{rs} 1$ and $a^{rs} 1$ is a prime. Hence s = 1 and (a = 2), which is absurd.
- (2) a = 2. If a is odd, then $a^p 1 > 2$ is even, which is not a prime. If a > 2 is even, $a^p 1 = (a 1)(\sum_{k=0}^{p-1} a^k)$. Both a 1 > 1 and $\sum_{k=0}^{p-1} a^k > 1$, which is absurd.

By (1)(2), a=2 and that n is a prime if a^n-1 is a prime. \square

Exercise 1.6. Prove that every nonempty set of positive integers contains a smallest member. This is called the well-ordering principle.

Proof. Use mathematical induction to establish that the well-ordering principle.

- (1) Given a set S of positive integers, let P(n) be the proposition 'If $m \in S$ for some $m \leq n$, then S has a least element'. Want to show P(n) is true for all $n \in \mathbb{N}$.
 - (a) P(1) is true. For $m \in S$ with $m \le n = 1$, or m = 1 by the minimality of $1 \in \mathbb{N}$, S has a least element 1 (m itself) in \mathbb{N} .
 - (b) Suppose P(n) is true. If $n+1 \in S$, then there are only two possible cases.
 - (i) There is a positive integer $m \in S$ less than n+1. So $n \geq m \in S$. Since P(n) is true, S has a least element.
 - (ii) There is no positive integer $m \in S$ less than n+1. In this case n+1 is the least element in S.

In any cases (i)(ii), S has a least element, or P(n+1) is true.

By mathematical induction, P(n) is true for all $n \in \mathbb{N}$.

(2) Show that the well-ordering principle holds. Let T be a nonempty subset of \mathbb{N} , so there exists a positive integer $k \in T$. Notice that P(k) is true by (1), thus T has a least element since $k \leq k$.

Supplement. Show that the well-ordering principle implies the principle of mathematical induction.

Proof. Suppose that

- (1) P(n) be a proposition defined for each $n \in \mathbb{N}$,
- (2) P(1) is true,
- (3) $[P(n) \Rightarrow P(n+1)]$ is true.

Consider the set

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\} \subseteq \mathbb{N}.$$

Want to show S is empty, or the principle of mathematical induction holds. If S were nonempty, by the well-ordering principle S has a smallest element m. m cannot be 1 by (2). Say m > 1. Therefore, $m - 1 \in \mathbb{N}$ and P(m - 1) is true by the minimality of m. By (3), P((m - 1) + 1) = P(m) is true, which is absurd.

Rational and irrational numbers

Exercise 1.11. Given any real x > 0, prove that there is an irrational number between 0 and x.

Proof. There are only two possible cases: x is rational, or x is irrational.

- (1) x is rational. Pick $y = \frac{x}{\sqrt{89}} \in (0, x) \subseteq \mathbb{R}$. y is irrational.
- (2) x is irrational. Pick $y = \frac{x}{\sqrt{64}} \in (0, x) \subseteq \mathbb{R}$. y is irrational.

Proof (Exercise 4.12). Pick

$$y = \lim_{m \to \infty} \left[\lim_{n \to \infty} \cos^{2n}(m!\pi x)\right] \cdot \frac{x}{\sqrt{89}} + \left(1 - \lim_{m \to \infty} \left[\lim_{n \to \infty} \cos^{2n}(m!\pi x)\right]\right) \cdot \frac{x}{\sqrt{64}}.$$

- (1) x is rational. $y = \frac{x}{\sqrt{89}} \in (0, x) \subseteq \mathbb{R}$ is irrational.
- (2) x is irrational. $y = \frac{x}{\sqrt{64}} \in (0, x) \subseteq \mathbb{R}$ is irrational.

Upper bounds

Inequalities

Exercise 1.23. Prove Lagrange's identity for real numbers:

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 = \left(\sum_{k=1}^{n} a_k\right)^2 \left(\sum_{k=1}^{n} b_k\right)^2 - \sum_{1 \le k < j \le n} (a_k b_j - a_j b_k)^2.$$

Note that this identity implies the Cauchy-Schwarz inequality.

Proof. Put $(a_k, b_k, A_k, B_k) \mapsto (a_k, b_k, a_k, b_k)$ in the following generalization (Binet-Cauchy identity). \square

Generalization (Binet-Cauchy identity).

$$\sum_{1 \le k < j \le n} (a_k b_j - a_j b_k) (A_k B_j - A_j B_k)$$

$$= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{k=1}^n b_k B_k\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{k=1}^n b_k A_k\right).$$

Proof.

$$\sum_{1 \leq k < j \leq n} (a_k b_j - a_j b_k) (A_k B_j - A_j B_k)$$

$$= \sum_{1 \leq k < j \leq n} (a_k b_j A_k B_j + a_j b_k A_j B_k) - \sum_{1 \leq k < j \leq n} (a_k b_j A_j B_k - a_j b_k A_k B_j)$$

$$= \sum_{1 \leq k < j \leq n} (a_k A_k b_j B_j + a_j A_j b_k B_k) - \sum_{1 \leq k < j \leq n} (a_k B_k b_j A_j + a_j B_j b_k A_k)$$

$$= \sum_{1 \leq k \neq j \leq n} a_k A_k b_j B_j - \sum_{1 \leq k \neq j \leq n} a_k B_k b_j A_j$$

$$= \sum_{1 \leq k, j \leq n} a_k A_k b_j B_j - \sum_{1 \leq k, j \leq n} a_k B_k b_j A_j$$
(since $a_k A_k b_j B_j - a_k B_k b_j A_j = 0$ as $k = j$)
$$= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{j=1}^n b_j B_j\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{j=1}^n b_j A_j\right)$$

$$= \left(\sum_{k=1}^n a_k A_k\right) \left(\sum_{k=1}^n b_k B_k\right) - \left(\sum_{k=1}^n a_k B_k\right) \left(\sum_{k=1}^n b_k A_k\right).$$

Supplement ($\mathbb{Z}[i]$). As n = 2, $(a_1^2 + a_2^2)(b_1^2 + b_2^2) = (a_1b_1 + a_2b_2)^2 + (a_1b_2 - a_2b_1)^2$.

Define $N: \mathbb{Z}[i] \to \mathbb{Z}$ by $N(a+bi) = a^2 + b^2$.

- (1) Verify that for all $\alpha, \beta \in \mathbb{Z}[i]$, $N(\alpha\beta) = N(\alpha)N(\beta)$, either by direct computation or using the fact that N(a+bi) = (a+bi)(a-bi). Conclude that if $\alpha \mid \gamma$ in $\mathbb{Z}[i]$, then $N(\alpha) \mid N(\gamma)$ in \mathbb{Z} .
- (2) Let $\alpha \in \mathbb{Z}[i]$. Show that α is a unit iff $N(\alpha) = 1$. Conclude that the only unit are ± 1 and $\pm i$.
- (3) Let $\alpha \in \mathbb{Z}[i]$. Show that if $N(\alpha)$ is a prime in \mathbb{Z} then α is irreducible in $\mathbb{Z}[i]$. Show that the same conclusion holds if $N(\alpha) = p^2$, where p is a prime in \mathbb{Z} , $p \equiv 3 \pmod{4}$.
- (4) Show that 1-i is irreducible in \mathbb{Z} and that $2=u(1-i)^2$ for some unit u.

- (5) Show that every nonzero, non-unit Gaussian integer α is a product of irreducible elements, by induction on $N(\alpha)$.
- (6) Use the unique factorization in $\mathbb{Z}[i]$ to prove that every prime $p \equiv 1 \pmod{4}$ is a sum of two squares.
- (7) Describe all irreducible elements in $\mathbb{Z}[i]$.

Complex numbers

Exercise 1.48. Prove Lagrange's identity for complex numbers:

$$\left| \sum_{k=1}^{n} a_k b_k \right|^2 = \sum_{k=1}^{n} |a_k|^2 \sum_{k=1}^{n} |b_k|^2 - \sum_{1 \le k < j \le n} \left| a_k \overline{b_j} - a_j \overline{b_k} \right|^2.$$

Proof. Put $(a_k, b_k, A_k, B_k) \mapsto (a_k, \overline{b_k}, \overline{a_k}, b_k)$ in the generalization to Exercise 1.23 (Binet-Cauchy identity) and use the identity $|z| = z\overline{z}$.