CLAIMS

WE CLAIM:

provide clamping pressure; and

2

4

6

2

2

2

A middle ear prosthesis comprising:
a piston adapted to extend through an oval window when implanted in a human ear;
a pair of jaws for engaging an ossicle when implanted in a human ear;
a spring coupled to the jaws for biasing the jaws toward one another to

means for operatively connecting the jaws to the piston.

- 2. The middle ear prosthesis of claim 1 further comprising a swivel joint coupling the spring to the pair of jaws.
- 3. The middle ear prosthesis of claim 2 wherein the swivel joint is surrounded by an elastomer.
- 4. The middle ear prosthesis of claim 1 wherein each of the jaws comprises a body having a semi-cylindrical inner surface.

5. The middle ear prosthesis of claim 4 wherein the spring comprises a pair of flexible support arms each operatively coupled to an associated one of the jaws.

2

2

2

2

2

2

- 6. The middle ear prosthesis of claim 5 wherein each support arm has one end received in an opening in the associated jaw and another end coupled to the piston.
- 7. The middle ear prosthesis of claim 1 wherein each support arm has one end surrounding the body of the associated jaw and another end coupled to the piston.
- 8. The middle ear prosthesis of claim 1 wherein the spring is integrally formed between the pair of jaws and is of a flexible material different from a material of the jaws.
- 9. The middle ear prosthesis of claim 8 wherein the connecting means comprises a wire operatively connected to one of the jaws and to the piston.
- 10. The middle ear prosthesis of claim 9 further comprising a second wire connected to the other jaw so that the wires can be squeezed together to open the jaws.

The middle ear prosthesis of claim 1 further comprising a spacer to 11. temporarily hold the jaws in an open position until implanting in a human ear is completed. 2 The middle ear prosthesis of claim 1 wherein the spring is of a 12. 2 biocompatible material. 13. The middle ear prosthesis of claim 1 wherein the spring is of a 2 material selected from titanium or stainless steel. The middle ear prosthesis of claim 1 wherein the piston is of a 14. 2 biocompatible material. 15. The middle ear prosthesis of claim 1 wherein the piston is of a 2 material selected from titanium or PTFE. 16. The middle ear prosthesis of claim 1 wherein the jaws are of a 2 bioactive material. 17. The middle ear prosthesis of claim 1 wherein the jaws are of 2 hydroxylapatite.

	18. A self crimping ossicular prosthesis comprising:			
2	a piston adapted to extend through an oval window when implanted in a			
	human ear;			
4	a pair of jaws of a bioactive material each comprising a body having a semi-			
	cylindrical inner surface for engaging opposite sides of an ossicle when implanted in a			
6	human ear, to anchor to the ossicle;			
	a pair of flexible support arms each operatively coupled to an associated one			
8	of the jaws and to the piston for biasing the jaws toward one another to provide clamping			
	pressure.			
•				
	19. The self crimping ossicular prosthesis of claim 18 wherein each			
2	support arm has one end received in an opening in the associated jaw to provide a swive			
	joint and another end coupled to the piston.			
	20. The self crimping ossicular prosthesis of claim 19 wherein the swivel			
2	joint is surrounded by an elastomer.			
	21. The self crimping ossicular prosthesis of claim 18 wherein each			
2	support arm has one end surrounding the body of the associated jaw and another end coupled			

to the piston.

22. The self crimping ossicular prosthesis of claim 18 further comprising a spacer to temporarily hold the jaws in an open position until implanting in a human ear is completed.

2

2

2

2

2

- 23. The self crimping ossicular prosthesis of claim 18 wherein the support arms are of a material selected from titanium or stainless steel.
- 24. The self crimping ossicular prosthesis of claim 18 wherein the piston is of a biocompatible material.
- 25. The self crimping ossicular prosthesis of claim 18 wherein the piston is of a material selected from titanium or PTFE.
- 26. The self crimping ossicular prosthesis of claim 18 wherein the jaws are of hydroxylapatite.

	27. A self crimping ossicular prosthesis comprising:			
2	a piston adapted to extend through an oval window when implanted in a			
	human ear;			
4	a pair of jaws of a bioactive material each comprising a body having a semi-			
	cylindrical inner surface for engaging opposite sides of an ossicle when implanted in a			
6	human ear, to anchor to the ossicle;			
	a spring element of a flexible material, different from the pair of jaws,			
8	integrally coupled to the jaws for biasing the jaws toward one another to provide clamping			
	pressure; and			
10	a support arm operatively coupled to one of the jaws and to the piston.			
	28. The self crimping ossicular prosthesis of claim 27 wherein the jaws			
2	are spaced apart with the semi-cylindrical inner surfaces facing one another, and the spring			
	element is connected between the pair of bodies to define a substantially "C" shaped			
4	attachment mechanism.			
	29. The self crimping ossicular prosthesis of claim 27 further comprising			
2	a second arm connected to the other jaw so that the arms can be squeezed together to open			
	the jaws.			

20	A 10 ' '			
30.	A self crimping	OSSICILIAT	nrosthesis	comprising.
		Obbiculai	PIOGUIOSIS	COMPRISING.

a pair of jaws of a bioactive material each comprising a body having a semicylindrical inner surface for engaging opposite sides of an ossicle when implanted in a human ear, to anchor to the ossicle;

2

4

6

8

2

2

2

a spring element of a flexible material, different from the pair of jaws, operatively coupled to the jaws for biasing the jaws toward one another to provide clamping pressure; and

an actuator element operatively coupled to the spring element.

- 31. The self crimping ossicular prosthesis of claim 30 wherein the actuator element comprises a piston adapted to extend through an oval window when implanted in a human ear.
- 32. The self crimping ossicular prosthesis of claim 30 wherein the actuator element comprises a transducer element.
- 33. The self crimping ossicular prosthesis of claim 32 wherein the transducer element comprises one of a coil or a magnet of an electromagnetic actuator; or a piezoelectric element.