

Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction

Jinjie LI, Liang HAN*, Haoyang YU, Yuheng LIN, Qingdong LI, Zhang REN

Jinjie LI

(Previously)

School of Automation Science and Electrical Engineering Beihang University

Open Source!
Scan here!

Table of Contents

- Introduction
- System overview
- 3 Methodology
- 4 Experiments
- Conclusion

Introduction

Downwash effect?

> CFD simulation for a DJI Phantom 3 quadrotor

> Downwash in Swarm Robotics

Introduction

Downwash effect

- Caused by other quadrotors
- Difficult to describe

Neural Network

Control Problem

- 1. No prediction
- 2. No constraints

Model Predictive Control

System Overview

System Overview

Nonlinear MPC

Nonlinear Least Square Cost

Linear Constraints

$$egin{aligned} oldsymbol{x}_0 &= oldsymbol{x}_{ ext{init}}, \ oldsymbol{u}_k &\in \left[oldsymbol{u}_{ ext{min}}, oldsymbol{u}_{ ext{max}}
ight], \end{aligned}$$

$$egin{aligned} \min_{oldsymbol{u}_k} \left(\overline{oldsymbol{x}}_N^T oldsymbol{Q}_N \overline{oldsymbol{x}}_N + \sum_{k=0}^{N-1} \left(\overline{oldsymbol{x}}_k^T oldsymbol{Q} \overline{oldsymbol{x}}_k + \overline{oldsymbol{u}}_k^T oldsymbol{R} \overline{oldsymbol{u}}_k
ight)
ight) \ oldsymbol{q}_e &= oldsymbol{q} \circ oldsymbol{q}_r^{-1} \ \overline{oldsymbol{q}}_k^T oldsymbol{Q}_q \overline{oldsymbol{q}}_k = \left\| \operatorname{sgn}(q_{ew}) \cdot \mathcal{V}(oldsymbol{q}_e)
ight\|_{oldsymbol{Q}}^2 &= \mathcal{V}(oldsymbol{q}_e)^T oldsymbol{Q}_q \mathcal{V}(oldsymbol{q}_e), \end{aligned}$$

State: p, v, q

Input: ω + Collective Thrust

Nonlinear Model

$$\begin{array}{c|c}
\mathbf{p}_{rela} \\
\mathbf{v}_{rela}
\end{array}$$

$$\begin{array}{c|c}
\mathbf{f}_{res} \\
\hline
 \mathbf{p} = I \\
I \dot{\mathbf{v}} = I \\
B \dot{\mathbf{q}} = I / 2 \cdot I \\
\mathbf{q} \circ \mathcal{V}^* \begin{pmatrix} B \omega \end{pmatrix}$$
Least Square Cost

Control Frequency: 50~60Hz

Nonlinear MPC

Nonlinear Least Square Cost

Linear Constraints

$$egin{aligned} oldsymbol{x}_0 &= oldsymbol{x}_{ ext{init}}, \ oldsymbol{u}_k &\in \left[oldsymbol{u}_{ ext{min}}, oldsymbol{u}_{ ext{max}}
ight], \end{aligned}$$

$$egin{aligned} \min_{oldsymbol{u}_k} \left(\overline{oldsymbol{x}}_N^T oldsymbol{Q}_N \overline{oldsymbol{x}}_N + \sum_{k=0}^{N-1} \left(\overline{oldsymbol{x}}_k^T oldsymbol{Q} \overline{oldsymbol{x}}_k + \overline{oldsymbol{u}}_k^T oldsymbol{R} \overline{oldsymbol{u}}_k
ight) \\ oldsymbol{q}_e &= oldsymbol{q} \circ oldsymbol{q}_r^{-1} \ & oldsymbol{\overline{q}}_k^T oldsymbol{Q}_q \overline{oldsymbol{q}}_k = \left\| \operatorname{sgn}(q_{ew}) \cdot \mathcal{V}(oldsymbol{q}_e)
ight\|_{oldsymbol{Q}}^2 = \mathcal{V}(oldsymbol{q}_e)^T oldsymbol{Q}_q \mathcal{V}(oldsymbol{q}_e), \end{aligned}$$

State: p, v, q

Input: ω + Collective Thrust

Nonlinear Model

$$\begin{cases}
^{I} \dot{\boldsymbol{p}} = ^{I} \boldsymbol{v} \\
^{I} \dot{\boldsymbol{v}} = _{B}^{I} \boldsymbol{R}(\boldsymbol{q}) \cdot ^{B} \boldsymbol{f}_{u} / m + ^{I} \boldsymbol{g} \\
^{B} \dot{\boldsymbol{q}} = 1 / 2 \cdot _{I}^{B} \boldsymbol{q} \circ \boldsymbol{\mathcal{V}}^{*} \begin{pmatrix} ^{B} \boldsymbol{\omega} \end{pmatrix}
\end{cases}$$

Control Frequency: 50~60Hz

Collection of Disturbance Data

Total Data Number: 57,000 x 2

Training for Disturbance Network

Training Parameters

Layers	Initialization	Activation Function
6-128-64-128-3	normal	ReLU
Epoch	Learning Rate	Loss Function
20,000	1e-4	Mean Squared Error

Training Process when $\gamma = 4$

Network Downwash Prediction NMPC (NDP-NMPC)

$$\begin{cases} {}^{I}\dot{\boldsymbol{p}} = {}^{I}\boldsymbol{v} \\ {}^{I}\dot{\boldsymbol{v}} = {}^{I}_{B}\boldsymbol{R}(\boldsymbol{q}) \cdot {}^{B}\boldsymbol{f}_{u} / m + {}^{I}\boldsymbol{g} \\ {}^{B}\boldsymbol{\dot{q}} = 1 / 2 \cdot {}^{B}_{I}\boldsymbol{q} \circ \mathcal{V}^{*} \left({}^{B}\boldsymbol{\omega} \right) \end{cases}$$

$$\begin{cases} {}^{I}\dot{\boldsymbol{p}} = {}^{I}\boldsymbol{v} & \text{Disturbance Force} \\ {}^{I}\dot{\boldsymbol{v}} = \left({}^{I}_{B}\boldsymbol{R}(\boldsymbol{q}) \cdot {}^{B}\boldsymbol{f}_{u} + {}^{I}\boldsymbol{f}_{d} \right) / m + {}^{I}\boldsymbol{g} \\ {}^{B}\dot{\boldsymbol{q}} = 1 / 2 \cdot {}^{B}_{I}\boldsymbol{q} \circ \mathcal{V}^{*} \left({}^{B}\boldsymbol{\omega} \right) \end{cases}$$

System Identification

Rotor Parameters

Inertial Parameters (Bifilar Pendulum)

Parameter(s)	Value(s)	Unit
$\overline{}$	0.1372	m
lpha	45	deg
m	1.5344	kg
g	9.81	m/s^2
I_{xx}	0.0094	$kg \cdot m^2$
I_{yy}	0.0134	$ ext{kg} \cdot ext{m}^2$
I_{zz}	0.0145	$ ext{kg} \cdot ext{m}^2$
k_q	3.7611 E-4	$N \cdot m/kRPM^2$
$k_t^{'}$	2.8158 E-2	$N/kRPM^2$
$[\Omega_{\min},\Omega_{\max}]$	[2.6, 24.0]	kRPM
thrust/weight	4.3100	_
flight time	705	S

Flight Experiment --- Baseline

Flight Experiment --- NDP-NMPC

Comparison of Results

Conclusion

Nonlinear MPC for Quadrotors in Close-Proximity Flight with Neural Network Downwash Prediction

Jinjie LI, Liang HAN*, Haoyang YU, Yuheng LIN, Qingdong LI, Zhang REN

- Problem: downwash effect in two quadrotors
- Method: neural network + Nonlinear Model Predictive Control (NMPC)
- Achievement: two quadrotors, 0.5m close-proximity flight

Future Work

- Extend to more drones (Graph Neural Network, etc....)
- Considering closed-loop disturbance estimation
- More extensive comparison with other control methods

Thanks for listening!

Scan here and try simulation!

Learn more about my research!

About me now: Doctoral Student, University of Tokyo, Supervised by Dr. Moju ZHAO, who created the DRAGON robot \rightarrow

Homepage: https://jinjie.li/