Московский физико-технический университет Факультет радиотехники и кибернетики

Вопрос по выбору на основе лабораторной работы № 3.3.4 (Общая физика: электричество и магнетизм)

Эффект Холла в полупроводниках

Работу выполнил: **Милославов Глеб, группа Б01-103**

г. Долгопрудный 2022 год **Цель работы:** Измерение подвижности и концентрации носителей заряда в полупроводниках.

Оборудование: Электромагнит с источником питания, батарейка, амперметр, реостат, цифровой вольтметр, милливеберметр, образцы легированного германия.

1 Теоретическая справка

Суть эффекта Холла состоит в следующем. Пусть через однородную пластину металла вдоль оси x течет ток I (рис. 1).

Рис. 1: Образец с током в магнитном поле

Если эту пластину поместить в магнитное поле, направленное по оси у, то между гранями А и Б появляется разность потенциалов.

В самом деле, на электрон (для простоты рассматриваем один тип носителей), движущийся со средней скоростью $\langle \vec{v} \rangle$ в электромагнитном поле, действует сила Лоренца:

$$\vec{F}_{\scriptscriptstyle \rm II} = -e\vec{E} - e\langle \vec{v} \rangle \times \vec{B},$$

где e- абсолютный заряд электрона, \vec{E} - напряженность электрического поля, \vec{B} - индукция магнитного поля.

В проекции на ось z получаем

$$F_B = e|\langle v_x \rangle|B.$$

Под действием этой силы электроны отклоняются к грани B, заряжая ее отрицательно. На грани A накапливаются нескомпенсированные положительные заряды. Это приводит к возникновению электрического поля E_z , направленного от A к B, которое действует на электроны с силой $F_E = eE_z$. В установившемся режиме $F_E = F_B$, поэтому накопление электрических зарядов на боковых гранях пластины прекращается. Отсюда

$$E_z = |\langle v_x \rangle| B.$$

С этим полем связана разность потенциалов

$$U_{AB} = E_z l = |\langle v_x \rangle| B l.$$

В этом и состоит эффект Холла.

Замечая, что сила тока

$$I = ne|\langle v_x \rangle| la,$$

найдем ЭДС Холла:

$$\mathscr{E}_X = U_{AB} = \frac{IB}{nea} = R_X \frac{IB}{a} \tag{1}$$

Константа $R_X = \frac{1}{ne}$ называется постоянной Холла.

2 Экспериментальная установка.

Схема экспериментальной установки показана на рис. 2.

Рис. 2: Схема установки для исследования эффекта Холла в полупроводниках

В зазоре электромагнита (рис. 1а) создаётся постоянное магнитное поле, величину которого можно менять с помощью регуляторов источника питания. Ток измеряется амперметром источника питания A_1 . Разъем K_1 позволяет менять направление тока в обмотках электромагнита.

Образец из легированного германия, смонтированный в специальном держателе (рис. 16), подключается к батарее. При замыкании ключа K_2 вдоль длинной

стороны образца течет ток, величина которого регулируется реостатом R и измеряется миллиамперметром A_2 .

В образце с током, помещённом в зазор электромагнита, между контактами 3 и 4 возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра.

Контакты 3 и 4 вследствие неточности подпайки не всегда лежат на одной эквипотенциали, и тогда напряжение между ними связано не только с эффектом Холла, но и с омическим падением напряжения, вызванным протеканием основного тока через образец.

Измеряемая разность потенциалов при одном направлении магнитного поля равна сумме ЭДС Холла и омического падения напряжения, а при другом их разности. В этом случае ЭДС Холла \mathcal{E}_X может быть определена как половина алгебраической разности показаний вольтметра, полученных для двух противоположных направлений магнитного поля в зазоре.

Можно исключить влияние омического падения напряжения иначе, если при каждом токе через образец измерять напряжение между точками 3 и 4 в отсутствие магнитного поля. При фиксированном токе через образец это дополнительное к ЭДС Холла напряжение U_0 остается неизменным. От него следует (с учетом зна-ка) отсчитывать величину ЭДС Холла:

$$\mathscr{E}_X = U_{34} \pm U_0$$

.

При таком способе измерения нет необходимости проводить повторные измерения с противоположным направлением магнитного поля.

По знаку \mathscr{E}_X можно определить характер проводимости - электронный или дырочный. Для этого необходимо знать направление тока в образце и направление магнитного поля.

Измерив ток I в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля, можно, зная параметры образца, рассчитать проводимость материала образца по формуле:

$$\sigma = \frac{IL_{35}}{U_{35}al} \tag{2}$$

где L_{35} - расстояние между контактами 3 и 5, a - толщина образца, l - его ширина.

3 Выполнение работы

3.1 Градуировка электромагнита

Свяжем силу тока и индукцию поля в электромагните с помошщью градуировки, воспользовавщись милливеберметром. Внесём данные в таблицу:

I, A	Ф1, мВб	Ф2, мВб ДФ, мВ		В, Тл	
0,3	1,5	3,4	1,9	0,26	
0,6	1,6	4,9	3,3	0,46	
0,9	1,6	6,5	4, 9	0,68	
1,2	1,7	7,9	6,2	0,86	
1,5	1,7	8,9	7,2	1,00	
1,8	1,7	9,5	7,8	1,08	
2,1	0,1	8,4	8,3	1,1 5	

Рис. 3: Данные градуировки

Погрешности прямых измерений: $\sigma_I=0.05~\mathrm{A}$ и $\sigma_\Phi=0.05~\mathrm{mB}$ б Посчитаем погрешности косвенных измерений:

$$\sigma_B = B \cdot \frac{\sigma_{\Delta\Phi}}{\Delta\Phi} = B \cdot \frac{\sqrt{\sigma_{\Phi_1}^2 + \sigma_{\Phi_2}^2}}{\Delta\Phi} = B \cdot \frac{0.05\sqrt{2}}{\Delta\Phi} = \frac{0.05\sqrt{2}}{SN} \approx 0.01 \text{ Тл}$$

Построим график по полученным данным:

Рис. 4: Кривая зависимости B(I)

3.2 Измерение ЭДС Холла

Снимем прямые измерения при разных токах через образец I и разных токах через электромагнит I_m , внесём их в таблицу:

I, MKA	12,5	20	30	40	50	60	70	80	90	100
lm, A	U34, мкВ									
0	-7	-11	-19	-26	-33	-42	-50	-57	-63	-72
0,3	-20	-30	-47	-62	-78	-96	-112	-128	-144	-161
0,6	-30	-49	-73	-100	-127	-151	-178	-202	-227	-259
0,9	-40	-66	-100	-134	-170	-203	-239	-273	-309	-345
1,2	-50	-81	-122	-165	-209	-251	-293	-332	-374	-420
1,5	-56	-93	-139	-186	-236	-283	-331	-377	-424	-476
1,8	-60	-100	-150	-200	-253	-303	-355	-405	-457	-510
2,1	-63	-109	-158	-212	-267	-319	-373	-424	-478	-530

Рис. 5: Измерение ЭДС Холла для разных I и I_m

Построим график для $\mathscr{E}_X(B) = U_{34} - U_0$ и для каждой зависимости при I = const проведём линейную аппроксимацию:

Рис. 6: График для ЭДС Холла и его линейная аппроксимация

Видно, что точки ложатся на прямые с достаточно высокой точностью

3.3 Определение постоянной Холла

Внесём значения $k = d\mathcal{E}_X/dB$ в таблицу:

I, A	12,5	20	30	40	50	60	70	80	90	100
k , мк B/T л	48,5	89,7	124,4	165,9	209,6	249,4	291,1	331,1	373,5	413,1
σ_k , мк B/T л	0,6	4,6	0,8	2,4	3,4	3,2	4,4	4,4	5,1	8,4

По этим данным построим график и аппроксимируем его линейно:

Рис. 7: График k(I) и его линейная аппроксимация

Видно, что точки с высокой точностью ложатся на прямую, причём коэффициент наклона аппроксимирующей прямой равен $b=4,23\pm0,03~{\rm B/(Tn\cdot A)}.$ Посчитаем величину постоянной Холла:

$$R_X = b \cdot a = -(6.35 \pm 0.05) \cdot 10^{-3} \text{ м}^3/\text{K}$$
л

где a=1,5 мм — толщина образца, знак минус говорит об электронной проводимости образца.

3.4 Расчёт параметров полупроводника

Занесём в таблицу параметры проводника, силу тока I_{35} и напряжение U_{35} в отстутствие магнитного поля.

Рассчитаем концентрацию носителей тока в образце n, проводимость материала σ_0 , удельное сопротивление ρ_0 , подвижность носителей тока (электронов) μ :

$$n = \frac{1}{R_X q_e} = (9.83 \pm 0.07) \cdot 10^{20} \frac{1}{\text{M}^3}$$

$$\sigma_0 = \frac{IL_{35}}{U_{35}al} = 71.3 \pm 0.2 \frac{1}{\text{OM} \cdot \text{M}}$$

$$\rho_0 = \frac{1}{\sigma_0} = 1.403 \pm 0.004 \text{ OM} \cdot \text{cM}$$

$$\mu = \frac{\sigma_0}{nq_e} = 4528 \pm 35 \frac{\text{cM}^2}{\text{B} \cdot \text{c}}$$

I, MA	0,1
U35, MB	1,649
L35, мм	3
a, mm	1,5
l, mm	1,7

Рис. 8: Параметры образца

4 Вывод

В работе было посчитано ЭДС Холла у германия, получена близкая к линейной зависимость этой величины от индукции магнитного поля, пронизывающая образец. Была определена постоянная Холла для германия:

$$R_X = -(6.35 \pm 0.05) \cdot 10^{-3} \text{ м}^3/\text{K}$$
л

а также и другие параметры диэлектрика:

$$n_e = (9.83 \pm 0.07) \cdot 10^{20} \frac{1}{\text{M}^3}$$
; $\sigma_0 = 71.3 \pm 0.2 \frac{1}{\text{OM} \cdot \text{M}}$
 $\rho_0 = 1.403 \pm 0.004 \text{ OM} \cdot \text{cm}$; $\mu = 4528 \pm 35 \frac{\text{cM}^2}{\text{B} \cdot \text{c}}$

Сравнивая μ с табличным значением подвижности электронов $\mu_e = 3.8 \cdot 10^3 \, \frac{\text{см}^2}{\text{B·c}}$, получаем отклонение в $\varepsilon = 18\%$, что может быть связано с наличием примесей в образце или вкладом неосновных носителей тока. Также сравним полученную концентрацию носителей тока и концентрацию всех частиц в германие:

$$n = \frac{N}{V} = \frac{N_A \cdot \nu}{V} = \frac{N_A \cdot \rho V}{V \cdot M} = \frac{N_A \cdot \rho}{M} \approx 4.5 \cdot 10^{28} \frac{1}{M^2}$$

Видно, что концентрация частиц вещества на несколько порядков превосходит концентрацию носителей тока в полупроводнике.