多维随机变量函数的期望及条件期望

一、作业 (提交时间: Nov. 27, 2023)

1.[128-8] 已知二维随机变量 (X,Y) 的联合分布列如下

X	0	1	2
0	0.25	0.1	0.3
1	0.15	0.15	0.05

定义 $Z = \max(X, Y)$. 计算:

- (1) X、Y 的期望 $\mathbb{E}[X]$ 、 $\mathbb{E}[Y]$;
- (2) X^2 、 Y^2 的期望 $\mathbb{E}[X^2]$ 、 $\mathbb{E}[Y^2]$;
- (3) Z 的期望 $\mathbb{E}[Z]$.

2.[b153-3] 从数字 $0,1,\ldots,n$ 中任取两个不同的数字, 求这两个数字之差的绝对值的数学期望. 3.[b155-8] 设 X 与 Y 均为区间 (0,1) 上独立的随机变量, 试证:

$$\mathbb{E}(|X - Y|^{\alpha}) = \frac{2}{(\alpha + 1)(\alpha + 2)}, \alpha > 0.$$

4.[b180-11] 设 X 与 Y 相互独立,分别服从参数为 λ_1 、 λ_2 的泊松分布,试求 $\mathbb{E}(X|X+Y=n)$. 5.[b181-12] 已知二维随机变量 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} x+y, & 0 < x, y < 1 \\ 0, & \text{其他} \end{cases}$$

试求 $\mathbb{E}(X|Y=0.5)$.

6.[b183-17] 设随机变量 $X \sim \mathcal{N}(\mu, 1), Y \sim \mathcal{N}(0, 1),$ 且 X 与 Y 相互独立, 令

$$I = \begin{cases} 1, & Y < X \\ 0, & X \le Y \end{cases}$$

试证明:

- (1) $\mathbb{E}(I|X=x) = \Phi(x);$
- (2) $\mathbb{E}[\Phi(X)] = P(Y < X);$
- (3) $\mathbb{E}[\Phi(X)] = \Phi(\mu/\sqrt{2}).$

二、练习

1. [128-9] 已知二维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & \text{ 其他} \end{cases}$$

定义 $Z = \min(X, Y)$. 计算:

- (1) X、Y 的期望 $\mathbb{E}[X]$ 、 $\mathbb{E}[Y]$;
- (2) X^2 、 Y^2 和 XY 的期望 $\mathbb{E}[X^2]$ 、 $\mathbb{E}[Y^2]$ 、 $\mathbb{E}[XY]$;
- (3) Z 的期望 $\mathbb{E}[Z]$.

2.[b153-4] 设在区间 (0,1) 上任取 n 个点, 求相距最远的两点间的距离的数学期望.

3.[b155-9] 设 X 与 Y 是独立同分布的随机变量, 且

$$P(X = i) = \frac{1}{m}, i = 1, 2, 3, \dots$$

试证:

$$\mathbb{E}(|X - Y|) = \frac{(m-1)(m+1)}{3m}$$

4.[b181-13] 已知二维随机变量 (X,Y) 的联合密度函数为

$$p(x,y) = \begin{cases} 24(1-x)y, & 0 < y < x < 1, \\ 0, & \text{ 其他} \end{cases}$$

试在 0 < y < 1 时, 求 $\mathbb{E}(X|Y = y)$.

5.[b182-16] 设 X 与 Y 是相互独立的随机变量, 且都服从参数为 λ 的指数分布. 令

$$Z = \begin{cases} 3X + 1, & X \ge Y \\ 6Y, & X < Y \end{cases}$$

分别利用多维随机变量函数的期望的定义及重期望的公式求 $\mathbb{E}(Z)$.

6.[b158-17] 某商店经销某种商品,每周进货量 X 与顾客对该商品的需求量 Y 是相互独立的随机变量,且都服从区间 (10,20) 上的均匀分布.商店每售出一件该商品可获利润 1000 元;若需求量超过了进货量,可从其他商店调货,但这时每售出一件该商品只获利润 500 元.试求商店经销该商品每周的平均利润.

三、加强

- 1. [144-1.14] 从甲地到乙地的旅游车上载有 20 位旅客. 旅游车自甲地开出,沿途有 10 个车站. 设每位旅客在各个车站下车是等可能的,如果到达一个车站没有旅客下车就不停车. 以 X 表示停车次数,求 $\mathbb{E}(X)$.
- 2. [145-1.16] 游客乘电梯从底层到电视塔顶层观光. 电梯于每个整点的第 5 分钟、25 分钟和 55 分中从底层起行,假设一游客在早八点的第 X 分钟到达底层候梯处,且 X 在 [0,60] 上均匀分布,求游客等候时间的数学期望.
- 3. [149-2.6] 设两个相互独立的随机变量 X 和 Y 的方差分别为 4 和 2,求随机变量 3X-2Y 的方差.
- 4. [152-2.14] 设一次试验成功的概率是 p,进行 100 次独立重复的试验. 当 p =? 时,成功的标准差最大,并求其最大值.

多维随机变量函数的方差、协方差及相关系数

一、作业(提交时间: Nov. 27, 2023)

1.[132-1] 已知二维随机变量 (X,Y) 的联合分布列如下

X	-1	0	2
-1	$\frac{1}{6}$	$\frac{1}{12}$	0
0	$\frac{1}{4}$	0	0
1	$\frac{1}{12}$	$\frac{1}{4}$	$\frac{1}{6}$

- (1) 计算 Cov(X,Y) 与 $\sigma(X-2Y)$;
- (2) 计算相关系数 $\rho(X,Y)$.

2.[134-3] 已知二维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} 2 - x - y, & 0 < x, y < 1, \\ 0, & \sharp \text{id} \end{cases}$$

试求协方差 Cov(X,Y) 与相关系数 $\rho(X,Y)$.

3.[b160-21] 抛掷一枚骰子两次, 求其两次点数之和与点数之差的协方差.

4.[b161-24] 设 X 与 Y 是相互独立的随机变量, 且都服从参数为 λ 的泊松分布. 令

$$U = 2X + Y, \qquad V = 2X - Y$$

试求相关系数 $\rho(U,V)$.

5.[b167-37] 设 a 为区间 (0,1) 上的一个定点,随机变量 X 是服从 (0,1) 上的均匀分布,Y 表示点 X 到 a 的距离.问 a 取何值时 X 与 Y 不相关.

二、练习

1. [135-4] 已知二维随机变量 (X,Y) 的联合密度函数为

$$f(x,y) = \begin{cases} \frac{16}{5}(x^2 + \frac{xy}{2}), & 0 < y < x < 1\\ 0, & \text{其他} \end{cases}$$

试求协方差 Cov(X,Y) 与相关系数 $\rho(X,Y)$.

2.[b160-23] 重复抛掷一枚硬币 n 次, 以 X 与 Y 分别表示正面向上和反面向上的次数, 试求协方差 $\mathrm{Cov}(X,Y)$ 与相关系数 $\rho(X,Y)$.

3.[b163-30] 设 X 与 Y 是相互独立的随机变量, 且都服从参数为 λ 的指数分布. 令

$$U = 4X - 3Y, \qquad V = 3X + Y$$

试求相关系数 $\rho(U,V)$.

4.[b164-31] 设 X_1 与 X_2 是相互独立的随机变量, 且都服从正态分布 $\mathcal{N}(\mu,\sigma^2)$. 令

$$U = aX_1 + bX_2, \qquad V = aX_1 - bX_2$$

其中 a, b 为非零常数, 试求相关系数 $\rho(U, V)$.

5.[b164-33] 设二维随机变量 (X,Y) 服从区间 $D = \{(x,y): 0 < x < 1, 0 < x < y < 1\}$ 上的均匀分布, 求协方差 Cov(X,Y) 与相关系数 $\rho(X,Y)$.

三、加强

1. [158-3.7] 将一枚硬币重复投掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,求 X 和 Y 的相关系数.

2. [160-3.12] 设随机变量 X 的概率密度为

$$f(x) = \frac{1}{2}e^{-|x|}, \quad x \in (-\infty, +\infty)$$

求

- 求 X 的期望和方差;
- $\bar{x} X \pi |X|$ 的协方差, 并回答 $X \pi |X|$ 是否不相关?
- 问 *X* 和 |*X*| 是否独立? 为什么?
- 3. [164-3.19] 设 (X,Y) 的协方差矩阵为

$$Cov(X,Y) = \begin{pmatrix} 1 & -1 \\ -1 & 9 \end{pmatrix}$$

求 ρ_{XY} .