Ensemble learning

Ensembles

Voting classifiers

When do ensembles work?

Ensemble learning (1/2)

- No free launch theorem
 - There is no machine learning algorithm that is **always** superior to others
- Which algorithm should we pick, then?
 - Each technique learns a different model
 - Each model makes its "unique" mistakes
- Idea → Combine several models into a better one
 - Single models make different mistakes and have a partial knowledge
 - The majority of them is less likely to make the same mistake
 - Thus, their combination can yield better decisions

Ensemble learning (2/2)

 Ensemble → A set of models whose individual predictions are combined in some way to make a better prediction

Voting classifiers (1/2)

In theory...

- Suppose you have **n** binary classifiers
- Assume they are individually correct only p = 51% of the time
- What is the probability that the majority of them is right?

$$\Pr(\text{voting}) = \sum_{k=\lfloor n/2\rfloor+1}^{n} \binom{n}{k} p^k (1-p)^{n-k}$$
$$= 1 - \sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{k} p^k (1-p)^{n-k}$$

n	1	1.000	10.000
Pr(voting)	51%	75%	97%

• Reality check → This is only true if the classifiers are independent !!!

Voting classifiers (2/2)

A first attempt...

- A way to get diverse classifiers is to train them using different algorithms
- This increases the chance they will make different types of errors
- Their predictions are then aggregated by selecting the "most voted" class

When do ensembles work?

- An ensemble is more accurate than its members only if
 - Accuracy → The members are better than guessing
 - Diversity → The members make different types of errors on new data
- How to make an ensemble work ?
 - Use "simple models" for the individual members
 - Train the members in "different ways"
 - The goal is to make them as independent from one another as possible
- Problem → We only have one training set
 - Ensembles methods provide strategies to circumvent this obstacle !!!

Ensemble methods

Training the ensemble
Structuring the ensemble
Combining the ensemble

Ensemble methods

- Ensemble methods address the following questions
 - 1) How to train the ensemble ?
 - Bootstrapping
 - Feature sampling
 - Diversified learning
 - 2) How to structure the ensemble?
 - Parallel
 - Cascading
 - Hierarchical
 - 3) How to combine the ensemble?
 - Static rule
 - Stacking
 - End-to-end training

Training the ensemble (1/3)

1) Subsampling the training set

- Multiple hypotheses are generated by training individual models on different datasets obtained by resampling a common training set
- Used in → bagging, random forests

Training the ensemble (2/3)

2) Subsampling the input features

- Multiple hypotheses are generated by training individual models on different (e.g., randomly generated) subsets of the input features
- Used in → random forests

Training the ensemble (3/3)

3) Modifying the learning conditions

- Multiple hypotheses are generated by training individual models in different learning conditions (e.g., random initializations, modified data, ...)
- Used in → voting classifiers, boosting, neural networks

Structuring the ensemble (1/2)

1) Parallel structure

- The individual models are invoked independently
- Used in → voting classifiers, bagging, random forest, boosting

Structuring the ensemble (2/2)

2) Cascading or hierarchical structure

- The individual models are invoked in a sequential or tree-based fashion
- Used in → stacking, neural networks

Combining the ensemble (1/3)

1) Static combination rule

- The rule only depends on the type of output produced by the members: voting (for labels), averaging (for estimates), or board count (for ranks)
- Used in → voting classifiers, bagging, random forests

Combining the ensemble (2/3)

2) Stacked generalization

- The member predictions serve as input features for the blender, which undergoes a separate training to learn how to combine its inputs
- Used in → boosting, stacking

Combining the ensemble (3/3)

3) End-to-end training

- The ensemble and the blender are trained jointly by minimizing a cost function through an iterative method (e.g., gradient descent)
- Used in → neural networks

Tree-based ensembles

Random forest

Boosting

One-hot stacking

Decision trees (1/3)

- A decision tree is a prediction model defined by
 - ... a hierarchy of simple binary rules
 - ... an outcome for each sequence of binary decisions

Decision trees (2/3)

- Decision trees are nonlinear models
 - They yield a constant piecewise function

Prediction of a regression tree

Decision boundary of a classification tree

Decision trees (3/3)

- Important limitations (can be fixed via ensemble learning)
 - Trees do not tend to be as accurate as other approaches
 - A small change in the training set can result in a completely different tree
 - Trees tend to quickly over-fit to the training data
 - Some patterns are hard to learn with trees

Random forest (1/3)

- A random forest is an ensemble of trees
 - Training → Bootstrapping + Feature sampling
 - Structure → Parallel trees
 - Combination → Static rule

Random forest (2/3)

- The individual trees are grown big
 - Each tree has high variance and low bias
 - Their combination yields a variance reduction

Random forest (3/3)

- Random forest generalizes better than a single tree
 - Decision trees are highly sensible to over-fitting
 - Random forests tend to have lower variance

Random forest

Boosting (1/3)

- Boosting is a way to build an ensemble of trees
 - Training → Residual fitting
 - Structure → Parallel trees
 - Combination → Weighted average

Boosting (2/3)

- Residual fitting → Iteration 1
 - The tree $h_1(x^{(n)})$ is fitted to the original labels $y^{(n)}$

Giovanni Chierchia ESIEE Paris 25

Boosting (2/3)

- Residual fitting → Iteration 2
 - The tree $h_2(x^{(n)})$ is fitted to the residuals $y^{(n)} h_1(x^{(n)})$

Boosting (2/3)

- Residual fitting → Iteration 3
 - The tree $h_3(x^{(n)})$ is fitted to the residuals $y^{(n)} h_1(x^{(n)}) h_2(x^{(n)})$

Boosting (3/3)

- The individual trees are grown small
 - Each tree has low variance and high bias
 - Their combination yields a bias reduction

One-hot stacking (1/2)

- One-hot stacking is a way to build a hybrid ensemble
 - Training → Boosting + One-hot encoding
 - Structure → Parallel trees + Linear model
 - Combination → Stacking

One-hot stacking (2/2)

- The stacked linear model is fed with...
 - ... the one-hot encoded leaves of each tree in the ensemble
 - ... and not directly the ensemble tree predictions
 - Remark → This works with binary classification trees

Stacked generalization

Variant 1. No splitting

Variant 2. Hold-out splitting

Variant 3. K-fold splitting

General idea

- Stacking → Multiple models are combined by another model
 - Regression → Stacking works directly on predictions
 - Classification → Stacking works on class probabilities

Simple stacking

1) No splitting

- All data is used for training the ensemble
- All the ensemble predictions are used for training the blender
- Drawback → Prone to overfitting due to information leakage

Hold-out stacking

2) Hold-out splitting

- A fraction of data is used for training the ensemble
- The remaining data are used for training the blender
- Drawback → Blender is trained on a small portion of data

K-fold stacking

3) K-fold splitting

- Data in K-1 folds are used for training the ensemble
- Unused data are fed to the trained models to gather predictions
- Repeat K times. All the predictions are used to train the blender
- The ensemble is eventually retrained on the whole data

Logistic stacking

Boolean algebra
Logic gates
Stack of logic gates

Boolean algebra (1/2)

- Let's consider the following problem
 - Assume the inputs x₁ and x₂ are binary values
 - □ Let f_{θ} be a logistic model with parameters $\theta = [w_0, w_1, w_2]$
 - □ By varying θ , which boolean functions can be reproduced by f_{θ} ?

X 1	X 2	у	
0	0	?	
0	1	?	
1	0	?	
1	1	?	

Boolean algebra (2/2)

- Why do we bother with Boolean algebra?
 - □ Boolean functions represent some data grouped into 2 classes
 - □ They help us analyze the classification capacity of different models

Logic gates (1/2)

$x_1 AND x_2$

$$y = g(-30+20x_1+20x_2)$$

X 1	X 2	у
0	0	g(-30) ≈ 0
0	1	g(-10) ≈ 0
1	0	g(-10) ≈ 0
1	1	g(10) ≈ 1

x₁ OR x₂

$$y = g(-10 + 20x_1 + 20x_2)$$

X 1	X 2	у
0	0	g(-10) ≈ 0
0	1	g(10) ≈ 1
1	0	g(10) ≈ 1
1	1	g(30) ≈ 1

Logic gates (2/2)

$x_1 AND x_2$

x₁ OR x₂

$$x_1 + x_2 - 0.5 = 0$$

Stack of logic gates (1/2)

- Can we reproduce more complex Boolean functions?
 - Logistic model can represent elementary gates (AND, OR, NOT).
 - □ Hence, any function can be represented by a network of logistic models.

x_1 XNOR $x_2 = (x_1 \text{ AND } x_2) \text{ OR } (x_1 \text{ NOR } x_2)$

X 1	X 2	a ₁	a ₂	у
0	0	0	1	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

Stack of logic gates (2/2)

Stack of logistic classifiers

- A stack of logistic classifiers yields a nonlinear model
 - □ Ensemble → The input is transformed into (learned) features
 - □ Blender → The features are used for linear classification (or regression)

Two-layer neural networks

Hidden layer

Output layer

Forward propagation

Two-layer neural networks

- A neural network consists of units organized in layers
 - □ Feed-forward → Special case when connections don't form cycles
 - □ Two-layer network → The simplest instance of a feed-forward network

Hidden layer (1/3)

The hidden layer is formed by many "parallel" units

Hidden layer (2/3)

Hidden layer → Linear model W⁽¹⁾ + Non-linearity g⁽¹⁾

$$\mathbf{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_Q \end{bmatrix} \qquad \mathbf{W}^{(1)} = \begin{bmatrix} -\mathbf{w}_1^\top - \\ \vdots \\ -\mathbf{w}_M^\top - \end{bmatrix} \qquad \mathbf{g}^{(1)}(\mathbf{z}) = \begin{bmatrix} 1 \\ g(z_1) \\ \vdots \\ g(z_M) \end{bmatrix}$$

$$\mathbf{a} = \mathbf{g}^{(1)} \left(\mathbf{W}^{(1)} \mathbf{x} \right)$$

Hidden layer (3/3)

Different choices for the function g⁽¹⁾ are possible

Output layer (1/2)

The output layer is either a regressor or a classifier

Output layer (2/2)

Output layer → Linear model W⁽²⁾ + Softmax/Identity g⁽²⁾

$$\mathbf{W}^{(2)} = \begin{bmatrix} -\mathbf{w}_1^\top - \\ \vdots \\ -\mathbf{w}_K^\top - \end{bmatrix} \qquad \mathbf{g}^{(2)}(\mathbf{z}) = \begin{bmatrix} \sigma_1(\mathbf{z}) \\ \vdots \\ \sigma_K(\mathbf{z}) \end{bmatrix}$$

$$y = g^{(2)}(W^{(2)}a)$$

Forward propagation (1/2)

- Neural network with 2 layers
 - □ Hidden layer → The input is transformed into (learned) features
 - □ Output layer → The features are used for regression or classification

$$f_{\theta}(\mathbf{x}) = \mathbf{g}^{(2)}(\mathbf{W}^{(2)}\mathbf{g}^{(1)}(\mathbf{W}^{(1)}\mathbf{x}))$$

Forward propagation (2/2)

- The non-linearity of g⁽¹⁾ is essential for neural networks
 - Otherwise, the network behaves like a linear regressor/classifier

$$g^{(1)}(z) = z \qquad \Rightarrow \qquad f_{\theta}(x) = g^{(2)}(W^{(2)}W^{(1)}x) = g^{(2)}(Wx) \qquad \longrightarrow \qquad \text{linear}$$

This behaves like a linear model !!!

(with more parameters than strictly necessary)

Neural network training

Cost function

Practical advice

Hyper-parameters

Cost function for neural networks (1/3)

- Our goal is to learn the prediction f_θ from training data
 - □ This amounts to finding the "right values" for parameters $\theta = (W^{(1)}, W^{(2)})$

Cost function for neural networks (2/3)

- How to choose the "right values" for parameters θ?
 - □ We select θ such that the model f_θ is fitted to the training data

$$\widehat{\theta} = \arg\min_{\theta} \sum_{n=1}^{N} C\Big(f_{\theta}(\mathbf{x}^{(n)}), \mathbf{y}^{(n)}\Big)$$
Prediction Output
$$\mathbf{Cost function}$$

Cost function for neural networks (3/3)

Euclidean distance for regression

$$C(f_{\theta}(\mathbf{x}), \mathbf{y}) = ||f_{\theta}(\mathbf{x}) - \mathbf{y}||^2$$

Cross-entropy for classification

$$C(f_{\theta}(\mathbf{x}), \mathbf{y}) = -\mathbf{y}^{\top} \log (f_{\theta}(\mathbf{x}))$$

One-hot encoding

Gradient descent (1/2)

- How to minimize the cost J(θ) on the training set?
 - We find the optimal **0** through **gradient descent**

Gradient descent (2/2)

- The neural network parameters are randomly initialized
 - If the parameters were initialized to zero, each neuron in the hidden layer would perform the same computation...
 - ... so even after multiple iterations of gradient descent, each neuron in the layer would be computing the same thing as other neurons.
 - □ Recall → Random initialization introduces diversity in the ensemble.

Why neural networks?

Neural networks can learn a hierarchical representation

Practical advice (1/3)

- Advice -> Track the cost function during training
 - □ Compute **J(θ**[ʲ]) at each iteration **i** and save/plot its value
 - □ The shape of $J(\theta^{[0]}),...,J(\theta^{[i]})$ will tell you about the step-size

Practical advice (2/3)

- Advice → Normalize data at the network's input
 - 1) Subtract the mean across every individual feature in the data
 - 2) Divide each feature by its standard deviation (after mean subtraction)

Practical advice (3/3)

Advice → Train an ensemble of networks

1) Same model, different initialization.

Use cross-validation to determine the best hyper-parameters, then train several models with the same hyper-parameters, but with different random initialization.

2) Top models discovered during cross-validation.

Use cross-validation to determine the best hyper-parameters, then pick the models having the best-performing sets of hyper-parameters.

3) Different checkpoints of a single model.

If training is very expensive, take different checkpoints of a single network over time. For example, pick a network after a fixed number of epochs. Alternatively, start with a large step-size and a decaying schedule, train the network for a fixed time, and restart with a large step-size after saving the network. Another way is to maintain a running average of network parameters during training.

Conclusion

Algorithms for supervised learning Nonlinear models
Practical advice

Algorithms for supervised learning

Linear models

- Linear regression
- Logistic regression
- Support vector machine

Nonlinear models

- Linear/logistic regression with polynomial features
- SVM with nonlinear kernels (polynomial, Gaussian, ...)
- Decision trees
- Ensemble methods
- Neural networks

Nonlinear models

- How to get better performance out of machine learning?
 - More data for training
 - More complexity in nonlinear models

Deep learning

- Big neural nets
- Custom layers
- GPUs

Medium neural nets

- Dropout & Batch norm.
- Convolutional nets
- Data augmentation
- Recurrent nets

Traditional methods

- Linear models
- SVM & kernels
- Tree ensembles
- Small neural nets
- ...

Practical advice

- Q (features) >> N (examples) → Q = 10'000 & N < 10'000
 - Risk of over-fitting
 - Use linear models with regularization
- Q << N & N intermediate → Q < 1'000 & N < 100'000
 - Use "light" nonlinear models: SVM, ensembles, small-medium nets
- Q << N & N large → Q < 10'000 & N > 100'000
 - If you have a GPU, use deep neural networks
 - Otherwise, learning will be too slow. If this is the case, manually create or add more features, and use light nonlinear models