NF 02 2009 / 2010

Catherine MARQUE

SUJETS DE TP

Université de Technologie de Compiègne

TP NF02

TP 1 - Simulation de portes logiques	1
TP 2 - Analyse de circuits séquentiels	. 11
TP 3 – Outil de développement pour microcontrôleur HCS12	. 17
TP 4 – Carte à microcontrôleur HCS12, modes d'adressage	. 43
TP 5 – Sous-programmes	. 49
TP 6 – Interruption	. 53

TP 1 – Câblage et test de portes logiques

Partie 1 : Câblage sur simulateur logique

Exercice n°1

- Écrivez la table de vérité de la fonction NAND et de la fonction NOR :

E1	E2	NAND	NOR
0	0		
0	1		
1	0		
1	1		

- Déterminez le schéma de câblage d'une fonction NOR à partir de 4 portes NAND.
- Effectuez le câblage sur les Simulateurs logiques à partir du composant MM74C00N.

Exercice n°2

1- Câblage d'une bascule D

- En câblant le composant MM74C74N et en vous appuyant sur les 2 tables de vérité (Annexe 5 et Annexe 2) de la bascule D, vérifiez le fonctionnement du Preset et du Clear. Quel état fautil imposer sur Preset et Clear afin de pouvoir utiliser l'horloge et l'entrée Data ?
- Vérifiez également la recopie du signal de D vers Q sur front d'horloge.

Note : pour la génération de l'horloge, on utilisera un interrupteur manuel.

2- Réalisation d'un compteur 2 bits

On souhaite réaliser un compteur 2 bits, c'est à dire un compteur ayant comme entrée une horloge et un reset et comme sortie un compteur qui suit la séquence suivante à chaque front montant d'horloge :

S1-S2: 00 01 10 11 00 01 10 11 ...

Pour cela, on utilise 2 bascules D, chaque bascule générant 1 bit du compteur. Voici le schéma sur lequel on se base (page suivante) :

.../...

Pour que S1 et S2 suivent la séquence de comptage décrite ci-dessus, il reste à déterminer le bloc de logique combinatoire qui va relier les sorties S1 et S2 (c'est à dire Q1 et Q2) aux entrées D1 et D2.

Complétez la table de vérité suivante en se basant sur les propriétés de la bascule D (la bascule D a une fonction mémoire puisque l'information en entrée se retrouve en sortie après un coup d'horloge).

Temps	Q1	Q2	D1	D2
t	0	0		
t+1	0	1		
t+2	1	0		
t+3	1	1		

Ecrivez l'équation logiques reliant D1 à Q1 et Q2. D1 = ?Faites de même avec celle reliant D2 à Q1 et Q2. D2 = ?

Réalisez le circuit sur la plaquette en utilisant les composants indiqués en annexe (ex : MM74C74N, 74C86N, CD4069CN) et vérifiez son fonctionnement.

<u>Remarque</u> : pour simplifier le câblage on connectera directement les pattes clear et preset sur un niveau haut.

ANNEXES

Annexe1

Bascule JK

- Pour J = K = 0, le signal d'horloge est sans effet, il y a conservation du dernier état logique pris par Q et /Q : il n'y a jamais de basculement.
- Pour J = K = 1, le système bascule à chaque front d'horloge (montant ou descendant selon les modèles).
- Pour J différent de K, la sortie Q recopie l'entrée J et la sortie /Q recopie l'entrée K à chaque front d'horloge.
- On utilise cette bascule pour faire des compteurs. On compte jusqu'à 2ⁿn avec n bascules à la suite et on compte dans l'ordre croissant avec des bascules à front descendant et dans l'ordre décroissant avec des bascules à front montant.

ℚ

Symbole de la

bascule D.

Table de vérité :

J	K	Q _{n+1}
0	0	Q _n
0	1	0
1	0	1
1	1	/Q _n

Annexe2

Bascule D (Delay)

La bascule D (pour Delay) est une bascule JK à laquelle on a ajouté un inverseur entre les entrées J et K. Il y a donc une seule entrée, qui est notée D (pour Donnée ou *Data*). La table de vérité est la table de vérité d'une JK, limitée aux deux lignes J = 0, K = 1 et J = 1, K = 0.

Sa fonction est donc "mémoire" puisque l'information en entrée se retrouve en sortie après un "coup d'horloge" (un front).

Table de vérité :

D	Ck	Q _{n+1}	$\overline{Q}_{\rm n+1}$
0	/	0	1
1	/	1	0
Х	0	Q _n	\overline{Q}_{n}

Annexe 3 – Composant 74C86N Connection Diagram

Pin Assignments for DIP and SOIC

Top View

Truth Table

Inp	uts	Output
A	В	Y
L	L	L
L	н	н
н	L	н
н	Н	L

H = HIGH Level L = LOW Level

Annexe 4 – Composant MM74C00N

MM74C00

Annexe 5- Composant MM74C74M

Connection Diagram

Truth Table

Preset	Clear	Qn	Q _n
0	0	0	0
0	1	1	0
1	0	0	1
1	1	Q _n (Note 1)	Q _n (Note 1)

Note 1: No change in output from previous state.

Note: A logic "0" on clear sets Q to logic "0". A logic "0" on preset sets Q to logic "1".

Top View

Annexe 6 – Composant CD4069CN Connection Diagram

Pin Assignments for SOIC and DIP

PARTIE 2: Simulation sur ordinateur

I - Test d'une porte NAND

1. Activer le programme

Lancez « Designworks Professional 4 »

Validez simulation NF02 \rightarrow puis cliquez sur bouton create.

2. Les fenêtres de travail

Fenêtre **circuit (1)**: réalisation du schéma.

Fenêtre **timing (2)**: dans laquelle apparaitront les **chronogrammes** correspondant aux fils

nommés.

Fenêtre **librairie**(3): dans laquelle se situent les **composants**.

FONCTION DES ICONES

Icones schéma

<u>lcones timing</u>

3. Aller chercher un composant

Dans la fenêtre librairie:

ALL LIBRAIRIES \rightarrow Simulation gates \rightarrow NAND-3

double-clic sur NAND-3

Déplacez le composant à l'endroit désiré dans la fenêtre circuit Cliquez pour le fixer

Barre d'espace pour revenir au mode de base.(flèche)

Refaites de la même façon pour les autres composants.

All Librairies \rightarrow simulation I/O \rightarrow binary switch

 \rightarrow " \rightarrow Clock

" \rightarrow " \rightarrow binary probe

" → discretes → res (résistance)

" → pseudo-devices → plus 5V

Pour modifier l'orientation d'un composant :

cliquez sur bouton gauche de la souris en pointant sur le composant → choix.

Réalisez la disposition indiquée sur la figure ci-dessus.

Pour certains composants comme switches, claviers etc... Il faut maintenir la touche **shift** enfoncée, pointer sur le composant, puis cliquer et maintenir pour sélectionner et déplacer.

4. Ajouter des fils

Soit : . cliquez sur l'icône +. (icône schéma : fils de liaison)

- . cliquez une fois au point de départ.
- . cliquez une fois pour changer de direction.
- . cliquez une fois pour arrêter .
- . actionnez barre d'espace pour revenir au mode de base.

Soit : directement avec la flèche placée sur l'entrée ou la sortie du composant, cliquez, maintenez et déplacez.

5. Nommer les liaisons

Une liaison nommée pourra être visualisée sur le chronogramme.

- . cliquez sur l'icône $A \rightarrow$ un crayon apparaît .
- . pointez le fils et cliquez \rightarrow SIG x apparaît.
- . donnez un nom puis <return> (il doit apparaître dans la fenêtre timing).

Nommez les fils comme indiqué ci-dessus.(e1,e2,e3,s0).

6. Démarrer et stopper le défilement du chronogramme

cliquez sur les icônes de défilement (ou voir le menu Simulation). stop......pas à pas......pause.....vitesse variable....rapide.

Nota : si le montage présente des états indéfinis (X), activez l'icône d'effacement. S'ils persistent revoir le schéma : fils mal connectés par exemple ...

<u>II – SIMULATION DES FONCTIONS CÂBLÉES EN PARTIE 1</u>

A) La porte NOR

. Dans File → close design (sans sauver les modifications).
 . Dans File → New
 Design → OK
 NF02 Simulation → create.

Réalisez le circuit et testez-le avec deux switches (binary switches) aux entrées et une sonde (binary probe) à la sortie.

B) Le compteur 2 bits

Réalisez le compteur 2 bits à l'aide de 2 bascules D, une porte logique xor, une horloge et des + 5 V sur les Presets et Clears.

```
Bascules D:
```

All Librairies \rightarrow 74LS_C \rightarrow 74LS74(AN,AD)A

Porte Xor:

All Librairies \rightarrow simulation Logic \rightarrow X0R-2

TP 2 - Analyse de circuits séquentiels

Partie 1 : Analyse d'une Unité Arithmétique et Logique

Le timing n'étant pas nécessaire dans cet exemple, réduisez sa fenêtre.

1. Pour trouver le composant

.soit : bibliothèque ---->74LS_c ---->74LS181(N,Dw)A

.soit : choisissez **ALL LIBRAIRIES :** dans la fenêtre **Filter ,** entrez 181, s'il existe une liste s'affiche.

2. Pour les entrées et les sorties

On dispose

. d'une simulation de **claviers hexadécimaux** (16 chiffres donc 4 sorties binaires).

Bibliothèque---->simulation I/O ---->hex keyboard à mettre sur A, B et S.

. d'afficheurs hexadécimaux (4 bits).

Simulation I/O----> **hex display** à mettre sur F (un point sur l'afficheur indique le LSB).

. de **binary switches (interrupteurs)** pour les entrées de contrôle Cn et M , de **binary probe (points de test)** pour les sorties A=B, Cn +4, G et P.

3. Travail à effectuer

Faire les connexions et tester tout d'abord la fonction 1001 sur S0 -S3 avec M=0 et Cn=1 puis 0.

Suivant le temps, tester d'autres fonctions de l'UAL, en particulier des fonctions logiques.

SN54/74LS181

FUNCTION TABLE

М	MODE SELEC INPUTS		т	ACTIVE LOW INPUTS & OUTPUTS		1	Æ HIGH INPUTS OUTPUTS
s ₃	s ₂	s ₁	s ₀	LOGIC (M = H)	ARITHMETIC** (M = L) (C _n = L)	LOGIC (M = H)	ARITHMETIC** (M = L) (C _n = H)
L	L	L	L	A	A minus 1	Ā	A
L	L	L	Н	AB	A <u>B</u> minus 1	<u>A</u> + B	A + <u>B</u>
L	L	Н	L	A + B	AB minus 1	AB	A + B
L	L	Н	Н	Logical 1 minus 1		<u>Log</u> ical 0 m	inus 1
L	Н	L	L	<u>A</u> + B	A plus (A + B)_	<u>A</u> B	A plus AB
L	Н	L	Н	В	AB plus (A + B)	В	(A + B) plus AB
L	Н	Н	L	A⊕B	A minus B minus 1	A⊕B	A minus B minus 1
L	Н	Н	Н	<u>A</u> + B	A + B	<u>A</u> B	AB minus 1
Н	L	L	L	AB	A plus (A + B)	A + B	A plus AB
Н	L	L	Н	A⊕B	A_plus B	A⊕B	A plus B
Н	L	Н	L	В	AB plus (A + B)	В	(A + B) plus AB
Н	L	Н	Н	A + B	A + B	AB	AB minus 1
Н	Н	L	L	Logical 0.	A plus A*	Logical 1	A plus A*
Н	Н	L	Н	AB	AB plus A	A + B	(A + <u>B</u>) plus A
Н	Н	Н	L	AB	AB plus A	A + B	(A + B) Plus A
Н	Н	Н	Н	Α	A	Α	A minus 1

L = LOW Voltage Level

H = HIGH Voltage Level

^{*}Each bit is shifted to the next more significant position

^{**}Arithmetic operations expressed in 2s complement notation

TP 2

Partie 2 : Analyse de circuits séquentiels

Pour ce qui suit, s'il y a un problème, activer l'icône timing qui efface les états indéfinis (X).

1. Étude d'une bascule JK : 7476

- . Placer le composant, des switches sur les entées J, K, CLR, PR , des points tests sur les sorties Q et Q' ,et une horloge sur CLK .
- . Nommer les lignes CLK, CLR et Q pour les faire apparaître sur le timing.
- . Vérifier la table de vérité et observer les valeurs de Q et Q 'pour PR=CLR=0.

2. Étude des compteurs 74LS160-74LS161

Fermer l'ancien circuit sans sauvegarde et ouvrir un nouveau circuit. Conserver la fenêtre timing.

- . Placer le composant 74160, une horloge sur l'entrée CLK, des switches sur P, T, LOAD et CLR, un clavier hexadécimal sur les entrées A-D, un afficheur hexa sur les sorties QA et QD, et un point test sur RCO.
- . Tester le fonctionnement global du circuit. Indiquer le rôle de RCO. Vérifier du LOAD et du CLR, quelle est la fonction prioritaire si on les active simultanément.
- . Remplacer le 74160 par un 74161
 - supprimer le circuit 74160
 - aller chercher le circuit 161
 - le replacer au même endroit que précédemment
 - actionner, si nécessaire, l'icône qui efface les états indéfinis X.
- . Tester le fonctionnement de ce nouveau circuit.
- . Indiquer les différences de fonctionnement observées par rapport au circuit précédent.

3. Test du synchronisme de CLR: 74LS161 et 74LS163

. Réaliser le schéma suivant, en conservant pour l'instant le 74LS161.

Rappel: pour l'orientation des composants: menu options--->orientation.

- . Faire l'analyse du circuit et le faire fonctionner . Le CLR est-il synchrone dans ce cas ?
- . Remplacer le 74LS161 par un **74LS163** (penser à initialiser les états indéfinis). Quel est le nouveau cycle du compteur ? Qu'en déduire quant à l'interêt d' un CLR synchrone dans un circuit de ce type.

4. Étude d'un registre à décalage : le circuit 74LS194.

- . Fermer l'ancien circuit sans sauvegarde et ouvrir un nouveau circuit. Conserver la fenêtre timing.
- . Placer le composant 74LS194 ,une horloge sur l'entrée CLK, des switches sur S1, S0, SL (SLSER sur le schéma), SR (SRSER sur le schéma) et CLR, un clavier hexadécimal sur les entrées A ... D et un afficheur hexa sur les sorties QA ... QD.
- . Nommer les lignes CLK, QA ... QD.
- . Ajuster la taille de la fenêtre timing si nécessaire, pour ne voir que les cinq lignes du chronogramme.

. Tester l'ensemble des fonctions de la table de vérité. Visualiser en particulier les décalages en ne changeant l'état des entrées série que pendant une ou deux périodes d'horloge.

	INF		OUT	PUTS		
PRESET	CLEAR	CLOCK	J	K	a	ā
L	н	×	×	×	н.	L
н	L	×	X	, X	L	н
L	L	×	×	X	н•	H.
н	н	+	L	L	00	\bar{a}_0
н	н	ţ	н	L	н	L
н	н.	ţ	L	н	L	н
н	н	† "	н	н	TOG	GLE
. н	H	H	×	×	Q ₀	$\bar{\alpha}_0$

CIRCUIT JK 7476

CLR	LOAD	Τ.	P	Action on the Rising Clock Edge (J
L	x	×	×	RESET (Clear)
·H	L	×	×	LOAD (Pn → Qn)
н	н	н	н	COUNT (Increment)
н	н	L	×	NO CHANGE (Hold)
н	н	×	L	NO CHANGE (Hold)

CIRCUITS COMPTEURS 74160-74163

	INPUTS							OUTPUTS					
CLEAR	MODE		21.224	SEI	SERIAL		PARALLEL		L			_	_
	SI	so	CLOCK	LEFT	RIGHT	A	8	С	D	QA	αg	oc.	αD
L	x	x	×	х	×	×	×	×	×	· L	L	L	L
н	See	note	L	x	×	×	x	×	×	QAO	080	OC0	apo
н	н	H.	t	×	×		6	c	đ		ь	c	d
н	L	Ĥ	1	×	н	×	×	×	×	н	QAn	α_{Bn}	QCn
н	L	н	t	×	L	×	×	×	×	L	OAn		Q _{Cn}
н .	н	L	t	н	×	x	×	x	×	QBn	QCn		H
н	н	L	1	L	×	×	×	×	×	QBn			·L
н	L	L	x	X	×	x	×	×	×				000

- H high level (steady state)
- L = low level (steady state)
- X = irrelevant (any input, including transitions)
- 1 = transition from low to high level
- a, b, c, d = the level of steady-state input/at inputs A, B, C, or D, respectively.
- QAO, QBO, QCO, QDO the level of QA. QB, QC, or QD, respectively, before the indicated steady-state input conditions were established.
- QAn, QBn, QCn, QDn = the level of QA, QB, QC, respectively, before the mostrecent 1 transition of the clock.

CIRCUIT REGISTRE A DECALAGE 74194

TP 3 – Outil de développement pour microcontrôleur HCS12

Objectifs:

- maîtriser l'environnement de développement CodeWarrior
- charger un projet, compiler les sources et utiliser le débogueur

Les TPs 3 à 6 s'inscrivent dans l'étude du microcontrôleur HCS12. Ils permettront d'étudier le système suivant :

TP3: CodeWarrior

TP6 : interruption via le port parallèle

TP5: clavier et afficheur

TP4 : sous-programme

I. Outil CodeWarrior

L'outil CodeWarrior est un outil complet qui permet l'édition de texte, l'assemblage et le test (débogage).

1.1 Lancement de l'outil

- Double-cliquez sur l'icône CodeWarrior du bureau.
- Une fenêtre s'ouvre avec une barre principale de menus suivante :

1.2 Ouverture d'un projet de base

- Cliquez sur menu File \rightarrow Open et choisissez le fichier projet *Projet_asm.mcp*.

Une autre fenêtre s'ouvre de type suivant :

La cible (*target*) est ici une carte inDART-HCS12 du constructeur Softec. Elle permet une interface d'émulation et de contrôle de la carte à microcontrôleur HCS12 : on parle alors de mode BDM (*background debug mode*).

1.3 Édition du fichier source main.asm

- Dans la fenêtre Projet et l'ongle Files, développez les dossiers.
- Repérez le fichier main.asm et double-cliquez dessus.
- La déclaration INCLUDE 'mc9s12dp256.inc' permet d'inclure le fichier « mc9s12dp256.inc » où sont reportées les équivalences entre symboles et adresses physiques de mémoire. La valeur de registres, d'emplacement des ports sont donc spécifiés dans ce fichier « include »
 - Une allocation mémoire des données est faite par la ligne : temp_byte DS.B 1 La directive DS.B 1 réserve un octet en mémoire.
- Toutes le code qui suit l'instruction ORG XXXX sera placé en XXXX dans la mémoire du microcontrôleur
 - La variable temp_byte sera donc placée en \$2000 dans la mémoire
 - L'instruction MOVB #1, temp_byte sera placée en \$1000 dans la mémoire et les instructions suivantes (NOP et BRA) seront placées à la suite dans la mémoire
 - Ici le point de démarrage du programme est indiqué par Entry
 - Donc le programme *main.asm* débute à l'adresse \$1000

Pour écrire des commentaires dans le programme, il faut commencer le texte de commentaire par le caractère « ; ».

Description du programme :

Instructions:

MOVB #1,temp_byte:

La valeur 1 va être écrite dans la variable temp_byte (en \$2000).

NOP

L'instruction NOP n'a pas d'effet; elle dure un cycle d'horloge.

BRA Entry

C'est un branchement non conditionnel vers l'étiquette « Entry ».

En raison du branchement « BRA Entry », le programme va exécuter une boucle infinie. À l'intérieur de cette boucle, on va écrire la valeur 1 dans temp_byte.

1.4 Génération de l'exécutable

- Dans le menu de la fenêtre principale, cliquez sur Project → Make, ou tapez sur la touche F7 du clavier.
- Si rien de particulier ne se passe à l'écran, c'est que le programme a été compilé sans erreur. Dans le cas contraire une liste d'erreur est affichée.

1.5 Lancement du débogueur

- Dans le menu de la fenêtre principale, cliquez sur Project → Debug, ou tapez sur la touche F5 du clavier. Pour la configuration MCU, choisissez le modèle inDART-HCS12 et le « device » MC9S12DP256B.

Le débogueur se met en route, se connecte à la carte Softec puis à la carte HCS12 pour charger le programme en mémoire. Le processus est relativement long : attendez la fin du processus avant de poursuivre.

1.6 Contrôle de l'exécution

L'exécution peut être contrôlée par l'emploi de la barre d'outils :

귝	[F10]	Step Over	Avance d'une ligne de programme sans rentrer dans les fonctions			
3	[F11]	Single Step	Avance d'une ligne de programme en rentrant dans les fonctions			
	[MAJ+F11]	Step Out	Finir la fonction en cours			
4	[CTRL+F11]	Assembly Step	Exécuter une instruction assembleur			
-	[F5]	Start / Continue	Exécuter le programme			
T	[F6]	Halt	Arrêter l'exécution			
⊕	[CTRL+R]	Reset Target	Redémarrer le programme			

1.7 Test du programme, vérification de l'état de la mémoire

Les fenêtres Memory et Register représentent l'état respectif de la mémoire et des registres. Pour la mémoire, la colonne de gauche représente les adresses. Les autres colonnes représentent des données. Par défaut, le contenu de la mémoire est présenté en hexadécimal, mais un menu contextuel (bouton droit) permet de choisir d'autres formats d'affichage.

Pour effectuer un test du programme :

Etape 1 : on effectue un RESET pour se placer au début du programme :

Etape 2 : on se place en \$2000 dans la mémoire, c'est là où a été placé la variable temp_byte :

- Sélectionnez la fenêtre Memory
- Bouton droit puis « Adress... »
- Choisissez la valeur 2000.

Etape 3: on écrit la valeur « FF » dans temp_byte:

- Dans la fenêtre Memory, double cliquez sur le premier octet de données (les données de la mémoire sont affichées en valeurs hexadécimales)
- Indiquez la valeur « FF » et validez.

Etape 4 : On exécute le programme en mode pas à pas

- Vérifiez que la valeur en \$2000 passe de « FF » à « 01 »
- Lancez plusieurs fois le mode pas à pas
- Vérifiez que le BRA Entry effectue le bon branchement
- Observez l'évolution du registre PC

1.8 Placement de point d'arrêt

- Pour utiliser un point d'arrêt :

Sélectionnez la fenêtre « Source ». Avec le menu contextuel (bouton droit), placez un point d'arrêt (Set Breakpoint) sur la ligne souhaitée.

Le point d'arrêt se matérialise par une flèche.

Lancez le programme et vérifiez qu'il s'arrête uniquement sur le point d'arrêt (par exemple en observant le contenu du registre PC).

- Pour retirer un point d'arrêt :

Sélectionnez la ligne où se trouve le point d'arrêt, puis Bouton droit et delete Breakpoint

II. Création et modification de programmes

Programme n°1:

Remplacez dans *main.asm* le programme actuel (placé après l'étiquette Entry) par le programme suivant :

Charger le registre A avec la valeur hexadécimale 1F Ecrire la valeur hexadécimale 2F à l'adresse 2000 Charger le registre B avec le contenu à l'adresse 2000 Effectuer un 'MUL'

Note: Avant une valeur numérique il est possible de placer un # ou un \$

- Si vous avez un #, le nombre indiqué représente une valeur
- Si vous n'avez pas de #, le nombre indiqué représente une adresse
- Si vous avez un \$, le nombre indiqué est en hexadécimal
- Si vous n'avez pas de \$, le nombre indiqué est en décimal

Compilez le programme, puis exécutez-le en mode pas à pas.

- Quelle est la valeur de D à chaque nouvelle ligne exécutée ?
- Quelle est la relation entre A,B et D?

Utilisez la calculatrice Windows en mode scientifique pour vérifier MUL.

- Comment fonctionne l'instruction MUL?

Programme n°2:

Ecrivez maintenant le programme suivant (attention à respecter les tabulations).

ORG \$1500 NumX ds.b 1 ORG \$1000 Entry: INC NumX LDAB #1

```
Boucle:
DEC NumX
BEQ Fin
LDAA NumX
MUL
BRA Boucle
Fin:
STAB NumX
BGND
```

Compilez-le. Chargez le programme dans le microcontrôleur, puis écrivez la valeur 5 sur l'octet situé en 1500 (donc dans NumX). Exécutez le programme en mode pas à pas en observant l'évolution des registres A et B (vous pourrez notamment noter la valeur de B à chaque passage sur l'instruction BRA Boucle).

- Quelle instruction modifie le flag 'Z' testé à l'instruction **BEQ Fin** ? (voir note ci-dessous)
- Quel est le but de ce programme ?

<u>Question</u>: Cette fonction peut être optimisée. Réorganisez le programme notamment en passant de 2 branchements (BRA et BEQ) à un seul branchement.

Il est ainsi possible de réduire la taille du programme de 2 lignes. Vérifiez que le résultat obtenu est identique à celui de la fonction initiale.

<u>Note</u>: Fonctionnement du branchement conditionnel BEQ (Branch if equal)

- L'instruction BEQ effectue un branchement uniquement lorsque le drapeau 'Z' vaud 1.
- Le drapeau 'Z' est le drapeau 'Zéro' qui est activé par certaines instructions. Exemple :
 - Si le registre A vaut 10, CMPA #\$10 active le drapeau 'Z'
 - Si le registre A vaut 1, **DECA** active le drapeau Z car A passe à 0
- L'instruction contraire de BEQ est l'instruction BNE (Branch if not equal)

Question supplémentaire :

On ne souhaite plus utiliser NumX, mais uniquement des registres. En utilisant A, B et D refaites la même fonction.

Vous pourrez sauvegarder A dans la pile avec PSHA et le récupérer de la pile avec PULA.

Note: Pour initialiser la pile, effectuez l'instruction LDS #\$3000 en début de programme.

Annexe

Directive assembleur

Il existe des directives qui permettent à l'assembleur certaines opérations autres que les instructions du HCS12. Les principales directives sont listées ci-après (pour plus d'informations, consultez le guide assembleur disponible sur la rubrique TP du site).

Directive	Description
ORG	Définit le début d'une section en mémoire
EQU	Assigne un nom à une expression (adresse)
DC.B ou FCB	Définit une variable constante en octet (byte)
DCB	Définit un bloc constant
DS.B ou RMB	Définit un espace mémoire en octet (byte)
ABSENTRY	Définit un point d'entrée de début de programme
INCLUDE	Inclut du texte à partir d'un fichier
END	Fin de programme utilisateur

Appendix A. Instruction Reference

A.1 Introduction

This appendix provides quick references for the instruction set, opcode map, and encoding.

Figure A-1. Programming Model

S12CPUV2 Reference Manual

A.2 Stack and Memory Layout

SP +9

SP +7

SP +5

SP +3

SP +1

SP -1

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS ODD BEFORE INTERRUPT

SP +8	RTN _{LO}		
SP +6	Y _{LO}	RTN _{HI}	
SP +4	X _{LO}	Y _{HI}	
SP +2	А	X _{HI}	
SP	CCR	В	
SP -2			

STACK UPON ENTRY TO SERVICE ROUTINE IF SP WAS EVEN BEFORE INTERRUPT

SP +9			SP +10
SP +7	RTN _{HI}	RTN _{LO}	SP +8
SP +5	Y _{HI}	Y _{LO}	SP +6
SP +4	X _{HI}	X _{LO}	SP +4
SP +1	В	А	SP +2
SP -1		CCR	SP

A.3 Interrupt Vector Locations

\$FFFE, \$FFFF	Power-On (POR) or External Reset
\$FFFC, \$FFFD	Clock Monitor Reset
\$FFFA, \$FFFB	Computer Operating Properly (COP Watchdog Reset
\$FFF8, \$FFF9	Unimplemented Opcode Trap
\$FFF6, \$FFF7	Software Interrupt Instruction (SWI)
\$FFF4, \$FFF5	XIRQ
\$FFF2, \$FFF3	IRQ
\$FFC0-\$FFF1 (M68HC12)	Device-Specific Interrupt Sources
\$FF00-\$FFF1 (HCS12)	Device-Specific Interrupt Sources

Reference Manual S12CPUV2

A.4 Notation Used in Instruction Set Summary

```
CPU Register Notation
            Accumulator A — A or a
                                             Index Register Y — Y or y
            Accumulator B — B or b
                                             Stack Pointer — SP, sp, or s
            Accumulator D — D or d
                                             Program Counter — PC, pc, or p
            Index Register X — X or x
                                             Condition Code Register — CCR or c
Explanation of Italic Expressions in Source Form Column
       abc — A or B or CCR
   abcdxys — A or B or CCR or D or X or Y or SP. Some assemblers also allow T2 or T3.
       abd — A or B or D
    abdxys — A or B or D or X or Y or SP
      dxys — D or X or Y or SP
     msk8 — 8-bit mask, some assemblers require # symbol before value
      opr8i — 8-bit immediate value
     opr16i — 16-bit immediate value
     opr8a — 8-bit address used with direct address mode
    opr16a — 16-bit address value
oprx0_xysp — Indexed addressing postbyte code:
               oprx3,-xys Predecrement X or Y or SP by 1 . . . 8
                oprx3,+xys Preincrement X or Y or SP by 1 . . . 8
                oprx3,xys- Postdecrement X or Y or SP by 1 . . . 8
                oprx3,xys+ Postincrement X or Y or SP by 1 . . . 8
                oprx5,xysp 5-bit constant offset from X or Y or SP or PC
               abd,xysp Accumulator A or B or D offset from X or Y or SP or PC
     oprx3 — Any positive integer 1 . . . 8 for pre/post increment/decrement
     oprx5 — Any integer in the range -16 . . . +15
     oprx9 — Any integer in the range -256 . . . +255
    oprx16 — Any integer in the range -32,768 . . . 65,535
      page — 8-bit value for PPAGE, some assemblers require # symbol before this value
       rel8 — Label of branch destination within –128 to +127 locations
       rel9 — Label of branch destination within -256 to +255 locations
      rel16 — Any label within 64K memory space
   trapnum — Any 8-bit integer in the range $30-$39 or $40-$FF
       xys — X or Y or SP
      xysp — X or Y or SP or PC
```

Operators

- + Addition
- Subtraction
- Logical AND
- + Logical OR (inclusive)

Continued on next page

S12CPUV2 Reference Manual

Operators (continued)

- ⊕ Logical exclusive OR
- × Multiplication
- ÷ Division
- M Negation. One's complement (invert each bit of M)
- : Concatenate

Example: A : B means the 16-bit value formed by concatenating 8-bit accumulator A with 8-bit accumulator B.

A is in the high-order position.

- → Transfer
 - Example: (A) \Rightarrow M means the content of accumulator A is transferred to memory location M.
- ⇔ Exchange

Example: $D \Leftrightarrow X$ means exchange the contents of D with those of X.

Address Mode Notation

- INH Inherent; no operands in object code
- IMM Immediate; operand in object code
- DIR Direct; operand is the lower byte of an address from \$0000 to \$00FF
- EXT Operand is a 16-bit address
- REL Two's complement relative offset; for branch instructions
- IDX Indexed (no extension bytes); includes:

5-bit constant offset from X, Y, SP, or PC

Pre/post increment/decrement by 1 . . . 8

Accumulator A, B, or D offset

- IDX1 9-bit signed offset from X, Y, SP, or PC; 1 extension byte
- IDX2 16-bit signed offset from X, Y, SP, or PC; 2 extension bytes
- [IDX2] Indexed-indirect; 16-bit offset from X, Y, SP, or PC
- [D, IDX] Indexed-indirect; accumulator D offset from X, Y, SP, or PC

Machine Coding

- dd 8-bit direct address \$0000 to \$00FF. (High byte assumed to be \$00).
- ee High-order byte of a 16-bit constant offset for indexed addressing.
- eb Exchange/Transfer post-byte. See Table A-5 on page 405.
- ££ Low-order eight bits of a 9-bit signed constant offset for indexed addressing, or low-order byte of a 16-bit constant offset for indexed addressing.
- hh High-order byte of a 16-bit extended address.
- ii 8-bit immediate data value.
- jj High-order byte of a 16-bit immediate data value.
- kk Low-order byte of a 16-bit immediate data value.
- 1b Loop primitive (DBNE) post-byte. See Table A-6 on page 406.
- 11 Low-order byte of a 16-bit extended address.

- mm 8-bit immediate mask value for bit manipulation instructions. Set bits indicate bits to be affected.
- pg Program page (bank) number used in CALL instruction.
- qq High-order byte of a 16-bit relative offset for long branches.
- tn Trap number \$30-\$39 or \$40-\$FF.
- Signed relative offset \$80 (-128) to \$7F (+127).
 Offset relative to the byte following the relative offset byte, or low-order byte of a 16-bit relative offset for long branches.
- xb Indexed addressing post-byte. See **Table A-3** on page 403 and **Table A-4** on page 404.

Access Detail

Each code letter except (,), and comma equals one CPU cycle. Uppercase = 16-bit operation and lowercase = 8-bit operation. For complex sequences see the *CPU12 Reference Manual* (CPU12RM/AD) for more detailed information.

- f Free cycle, CPU doesn't use bus
- g Read PPAGE internally
- Read indirect pointer (indexed indirect)
- i Read indirect PPAGE value (CALL indirect only)
- n Write PPAGE internally
- Optional program word fetch (P) if instruction is misaligned and has an odd number of bytes of object code — otherwise, appears as a free cycle (f); Page 2 prebyte treated as a separate 1-byte instruction
- P Program word fetch (always an aligned-word read)
- r 8-bit data read
- R 16-bit data read
- s 8-bit stack write
- s 16-bit stack write
- w 8-bit data write
- w 16-bit data write
- u 8-bit stack read
- ∪ 16-bit stack read
- ∨ 16-bit vector fetch (always an aligned-word read)
- t 8-bit conditional read (or free cycle)
- x 8-bit conditional write (or free cycle)
- () Indicate a microcode loop
 - , Indicates where an interrupt could be honored

Special Cases

PPP/P — Short branch, PPP if branch taken, P if not

OPPP/OPO — Long branch, OPPP if branch taken, OPO if not

Instruction Reference

Condition Codes Columns

- — Status bit not affected by operation.
- 0 Status bit cleared by operation.
- 1 Status bit set by operation.
- Δ Status bit affected by operation.
- fl Status bit may be cleared or remain set, but is not set by operation.
- 1 Status bit may be set or remain cleared, but is not cleared by operation.
- ? Status bit may be changed by operation but the final state is not defined.
- ! Status bit used for a special purpose.

Reference Manual S12CPUV2

Table A-1. Instruction Set Summary (Sheet 1 of 14)

		Addr.	Machine	Access Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC12	SXHI	NZVC
ABA	$(A) + (B) \Rightarrow A$ Add Accumulators A and B	INH	18 06	00 00	Δ-	ΔΔΔΔ
ABX	(B) + (X) \Rightarrow X Translates to LEAX B,X	IDX	1A E5	Pf PP ¹		
ABY	$(B) + (Y) \Rightarrow Y$ Translates to LEAY B,Y	IDX	19 ED	Pf PP ¹		
ADCA #opr8i ADCA opr8a ADCA opr16a ADCA oprx0_xysp ADCA oprx9,xysp ADCA oprx16,xysp ADCA [D,xysp] ADCA [0,xysp] ADCA [oprx16,xysp]	(A) + (M) + C \Rightarrow A Add with Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	89 ii 99 dd B9 hh 11 A9 xb A9 xb ff A9 xb ee ff A9 xb ee ff	P P rPf rfp rP0 rOP rPf rfp rP0 rP0 frPP frPP flfrpf flfrfp flprpf flprfp	Δ-	ΔΔΔΔ
ADCB #opr8i ADCB opr8a ADCB opr16a ADCB oprx0_xysp ADCB oprx9,xysp ADCB oprx16,xysp ADCB [D,xysp] ADCB [D,xysp] ADCB [oprx16,xysp]	(B) + (M) + C \Rightarrow B Add with Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C9 ii D9 dd F9 hh 11 E9 xb E9 xb ff E9 xb ee ff E9 xb E9 xb	P P rPf rfp rP0 rOP rPf rfp rP0 rP0 frPP frPP flfrpf flfrfp flprpf flprfp	1	ΔΔΔΔ
ADDA #opr8i ADDA opr8a ADDA opr16a ADDA oprx0_xysp ADDA oprx9,xysp ADDA oprx16,xysp ADDA [D,xysp] ADDA [Oprx16,xysp]	$(A) + (M) \Rightarrow A$ Add without Carry to A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8B ii 9B dd BB hh 11 AB xb AB xb ff AB xb ee ff AB xb	P P rPf rfp rP0 rOP rPf rfp rP0 rP0 frPP frPP flfrpf flfrfp flprpf flprfp	1	ΔΔΔΔ
ADDB #opr8i ADDB opr8a ADDB opr16a ADDB oprx0_xysp ADDB oprx9,xysp ADDB oprx16,xysp ADDB [D,xysp] ADDB [D,xysp] ADDB [oprx16,xysp]	$ (B) + (M) \Rightarrow B $ Add without Carry to B	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CB ii DB dd FB hh ll EB xb EB xb ff EB xb ee ff EB xb	P P rPf rfP rP0 rOP rPf rfP rPo rPO frPP frPP flfrpf flfrfp flprpf flprfp	Δ-	ΔΔΔΔ
ADDD #opr16i ADDD opr8a ADDD opr16a ADDD opr00_xysp ADDD oprx0_xysp ADDD oprx16,xysp ADDD [D,xysp] ADDD [D,xysp] ADDD [oprx16,xysp]	(A:B) + (M:M+1) \Rightarrow A:B Add 16-Bit to D (A:B)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C3 jj kk D3 dd F3 hh l1 E3 xb E3 xb ff E3 xb ee ff E3 xb ee ff	PO OP RPf RfP RPO ROP RPf RfP RPO RPO FRPP fRPP fifRPF fifRfP fipRPF fipRfP		ΔΔΔΔ
ANDA #opr8i ANDA opr16a ANDA opr16a ANDA oprx0_xysp ANDA oprx16,xysp ANDA oprx16,xysp ANDA [D,xysp] ANDA [oprx16,xysp]	(A) ● (M) ⇒ A Logical AND A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	84 ii 94 dd B4 hh 11 A4 xb A4 xb ff A4 xb ee ff A4 xb	P P rpf rfp rp0 rOP rpf rfp rp0 rp0 frpp frpp flfrpf flfrfp flprpf flprfp		ΔΔ0-
ANDB #opr8i ANDB opr8a ANDB opr16a ANDB oprx0_xysp ANDB oprx9,xysp ANDB oprx16,xysp ANDB [D,xysp] ANDB [oprx16,xysp] ANDB [oprx16,xysp] ANDCC #opr8i	(B) • (M) \Rightarrow B Logical AND B with Memory (CCR) • (M) \Rightarrow CCR	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C4 ii D4 dd F4 hh 11 E4 xb E4 xb ff E4 xb ee ff E4 xb E4 xb ee ff	fIfrPf fIfrfP fIPrPf fIPrfP		ΔΔ0-
ANDB [D,xysp] ANDB [oprx16,xysp]		⇒ CCR CCR with Memory	[D,IDX] [IDX2] ⇒ CCR IMM	[D,IDX]		

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

S12CPUV2 Reference Manual

Table A-1. Instruction Set Summary (Sheet 2 of 14)

0	Onorreitore	Addr.	Machine	Access Detail	6 V III	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC12	SXHI	NZVC
ASL opr16a		EXT	78 hh 11	rPwO rOPv		ΔΔΔΔ
ASL oprx0_xysp ASL oprx9,xysp	-0	IDX IDX1	68 xb 68 xb ff	rPw rPv rPwO rPOv		
ASL oprx9,xysp ASL oprx16,xysp	C b7 b0	IDX1	68 xb ii 68 xb ee ff	frPwP frPPv		
ASL [D,xysp]	Arithmetic Shift Left	[D,IDX]	68 xb	fIfrPw fIfrPv		
ASL [oprx16,xysp]		[IDX2]	68 xb ee ff	fIPrPw fIPrPv		
ASLA	Arithmetic Shift Left Accumulator A	INH	48	0 0	1	
ASLB	Arithmetic Shift Left Accumulator B	INH	58	0 0		
ASLD	C b7 A b0 b7 B b0 Arithmetic Shift Left Double	INH	59	0		ΔΔΔΔ
ASR opr16a		EXT	77 hh 11	rPwO rOPv		ΔΔΔΔ
ASR oprx0_xysp		IDX	67 xb	rPw rPv	1	
ASR oprx9,xysp	b7 b0 C	IDX1	67 xb ff	rPwO rPOv		
ASR oprx16,xysp ASR [D,xysp]	Arithmetic Shift Right	IDX2 [D,IDX]	67 xb ee ff 67 xb	frPwP frPPv fIfrPw fIfrPv		
ASR [oprx16,xysp]	Antimede Shift Night	[IDX2]	67 xb ee ff	fIPrPw fIPrPv		
ASRA	Arithmetic Shift Right Accumulator A	INH	47	0 0		
ASRB	Arithmetic Shift Right Accumulator B	INH	57	0 0	1	
BCC rel8	Branch if Carry Clear (if C = 0)	REL	24 rr	PPP/P ¹ PPP/P ¹		
BCLR opr8a, msk8	$(M) \bullet (\overline{mm}) \Rightarrow M$	DIR	4D dd mm	rPwO rPOv		ΔΔ0-
BCLR opr16a, msk8	Clear Bit(s) in Memory	EXT	1D hh 11 mm	rPwP rPPv	1	
BCLR oprx0_xysp, msk8		IDX	OD xb mm	rPwO rPOv		
BCLR oprx9,xysp, msk8 BCLR oprx16,xysp, msk8		IDX1 IDX2	0D xb ff mm 0D xb ee ff mm	rPwP rPwF frPwPO frPwOF		
BCS rel8	Branch if Carry Set (if C = 1)	REL	25 rr	PPP/P ¹ PPP/P ¹		
BEQ rel8	Branch if Equal (if Z = 1)	REL	27 rr	PPP/P ¹ PPP/P ¹		
BGE rel8	Branch if Greater Than or Equal	REL	2C rr	PPP/P ¹ PPP/P ¹		
BGL 1610	(if N ⊕ V = 0) (signed)	KLL	20 11	PPP/P		
BGND	Place CPU in Background Mode see CPU12 Reference Manual	INH	00	VfPPP VfPPP		
BGT rel8	Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	2E rr	PPP/P ¹ PPP/P ¹		
BHI rel8	Branch if Higher (if C + Z = 0) (unsigned)	REL	22 rr	PPP/P ¹ PPP/P ¹		
BHS rel8	Branch if Higher or Same (if C = 0) (unsigned) same function as BCC	REL	24 rr	PPP/P ¹ PPP/P ¹		
BITA #opr8i	(A) • (M)	IMM	85 ii	P I		ΔΔ0-
BITA opr8a	Logical AND A with Memory	DIR	95 dd	rPf rfI	1	
BITA opr16a	Does not change Accumulator or Memory	EXT	B5 hh 11	rPO rOF	1	
BITA oprx0_xysp BITA oprx9,xysp		IDX IDX1	A5 xb A5 xb ff	rPf rfF	1	
BITA oprx16,xysp		IDX1	A5 xb ff A5 xb ee ff	frPP frPF		
BITA [D,xysp]		[D,IDX]	A5 xb	fIfrPf fIfrF		
BITA [oprx16,xysp]		[IDX2]	A5 xb ee ff	fIPrPf fIPrfI	1	
BITB #opr8i	(B) • (M)	IMM	C5 ii	P I		ΔΔ0-
BITB opr8a	Logical AND B with Memory	DIR	D5 dd	rPf rfI	1	
BITB opr16a	Does not change Accumulator or Memory	EXT	F5 hh 11	rPO rOE	1	
BITB oprx0_xysp		IDX	E5 xb	rPf rfI		
BITB oprx9,xysp BITB oprx16,xysp		IDX1 IDX2	E5 xb ff E5 xb ee ff	rPO rPO frPP frPP		
BITB [D,xysp]		[D,IDX]	E5 xb ee ii	fifrpf fifrfi	1	
BITB [oprx16,xysp]		[IDX2]	E5 xb ee ff	fIPrPf fIPrfi	1	
BLE rel8	Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	2F rr	PPP/P ¹ PPP/P ¹		
BLO rel8	Branch if Lower	REL	25 rr	PPP/P ¹ PPP/P ¹		
	(if C = 1) (unsigned) same function as BCS					

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

Reference Manual S12CPUV2

Table A-1. Instruction Set Summary (Sheet 3 of 14)

Source Form	Operation	Addr.	Machine	Access Detail	SXHI	NZVC
Source I offit	Ореганоп	Mode	Coding (hex)	HCS12 M68HC1	2 3 7 11 1	NZVO
BLS rel8	Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	23 rr	PPP/P PPP/P	1	
BLT rel8	Branch if Less Than (if N \oplus V = 1) (signed)	REL	2D rr	PPP/P PPP/P	1	
BMI rel8	Branch if Minus (if N = 1)	REL	2B rr	PPP/P ¹ PPP/F	1	
BNE rel8	Branch if Not Equal (if Z = 0)	REL	26 rr	PPP/P ¹ PPP/P	1	
BPL rel8	Branch if Plus (if N = 0)	REL	2A rr	PPP/P ¹ PPP/F	1	
BRA rel8	Branch Always (if 1 = 1)	REL	20 rr	PPP PP	P	
BRCLR opr8a, msk8, rel8 BRCLR opr16a, msk8, rel8 BRCLR oprx0_xysp, msk8, rel8 BRCLR oprx9,xysp, msk8, rel8 BRCLR oprx16,xysp, msk8, rel8	Branch if (M) • (mm) = 0 (if All Selected Bit(s) Clear)	DIR EXT IDX IDX1 IDX2	4F dd mm rr 1F hh 11 mm rr 0F xb mm rr 0F xb ff mm rr 0F xb ee ff mm rr	rPPP rPP rfppp rfpp rppp rpp rfppp rffpp prfppp frpffpp	P P	
BRN rel8	Branch Never (if 1 = 0)	REL	21 rr	P	P	
BRSET opr8, msk8, rel8 BRSET opr16a, msk8, rel8 BRSET oprx0_xysp, msk8, rel8 BRSET oprx9,xysp, msk8, rel8 BRSET oprx16,xysp, msk8, rel8	Branch if (M) ● (mm) = 0 (if All Selected Bit(s) Set)	DIR EXT IDX IDX1 IDX2	4E dd mm rr 1E hh 11 mm rr 0E xb mm rr 0E xb ff mm rr 0E xb ee ff mm rr	rPPP rPP rfPPP rfPP rPPP rPP rfPPP rffPP PrfPPP frPffPP	P P	
BSET opr8, msk8 BSET opr16a, msk8 BSET oprx0_xysp, msk8 BSET oprx9,xysp, msk8 BSET oprx16,xysp, msk8 BSR rel8	$(M) + (mm) \Rightarrow M$ Set Bit(s) in Memory $(SP) - 2 \Rightarrow SP; RTN_H:RTN_I \Rightarrow M_{(SP)}:M_{(SP+1)}$	DIR EXT IDX IDX1 IDX2 REL	4C dd mm 1C hh 11 mm 0C xb mm 0C xb ff mm 0C xb ee ff mm	rPwO rPo rPwP rPp rPwO rPo rPwP rPw frPwO frPwO	w w P P	ΔΔ0-
BOK 1610	(SP) - 2 ⇒ SP, KTNH, KTNL ⇒ W(SP).W(SP+1) Subroutine address ⇒ PC Branch to Subroutine	KEL	O/ Pr	2555		
BVC rel8	Branch if Overflow Bit Clear (if V = 0)	REL	28 rr	PPP/P ¹ PPP/F	1	
BVS rel8	Branch if Overflow Bit Set (if V = 1)	REL	29 rr	PPP/P ¹ PPP/P	1	
CALL opr16a, page CALL oprx0_xysp, page CALL oprx9,xysp, page CALL oprx16,xysp, page CALL [D,xysp] CALL [Oprx16, xysp]	$\begin{split} &(SP)-2 \Rightarrow SP; RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)} \\ &(SP)-1 \Rightarrow SP; (PPG) \Rightarrow M_{(SP)}; \\ &pg \Rightarrow PPAGE \ register; Program \ address \Rightarrow PC \\ &Call \ subroutine \ in \ extended \ memory \\ &(Program \ may \ be \ located \ on \ another \\ &expansion \ memory \ page.) \\ &Indirect \ modes \ get \ program \ address \\ ∧ \ new \ pg \ value \ based \ on \ pointer. \end{split}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	4A hh 11 pg 4B xb pg 4B xb ff pg 4B xb ee ff pg 4B xb 4B xb ee ff	gnSsPPP gnfSsPP gnSsPPP gnfSsPP gnSsPPP gnfSsPP fgnSsPPP fgnfSsPP flignSsPPP flignSsPP flignSsPPP flignSsPP	P P P	
СВА	(A) – (B) Compare 8-Bit Accumulators	INH	18 17	00 0	0	ΔΔΔΔ
CLC	0 ⇒ C Translates to ANDCC #\$FE	IMM	10 FE	P	P	0
CLI	0 ⇒ I Translates to ANDCC #\$EF (enables I-bit interrupts)	IMM	10 EF	Р	0	
CLR opr16a CLR oprx0_xysp CLR oprx9,xysp CLR [D,xysp] CLR [D,xysp] CLR [oprx16,xysp] CLRA CLRB	$0 \Rightarrow M$ Clear Memory Location $0 \Rightarrow A$ Clear Accumulator A $0 \Rightarrow B$ Clear Accumulator B $0 \Rightarrow V$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	79 hh 11 69 xb 69 xb ff 69 xb ee ff 69 xb ee ff 69 xb ee ff 87 C7	0	w D P	0100
	Translates to ANDCC #\$FD					

Note 1. PPP/P indicates this instruction takes three cycles to refill the instruction queue if the branch is taken and one program fetch cycle if the branch is not taken.

S12CPUV2 Reference Manual

Instruction Reference

Table A-1. Instruction Set Summary (Sheet 4 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
CMPA #opr8i CMPA opr8a CMPA opr16a	(A) – (M) Compare Accumulator A with Memory	IMM DIR EXT IDX	81 ii 91 dd B1 hh 11 A1 xb	P P rPf rfP rOP		ΔΔΔΔ
CMPA oprx0_xysp CMPA oprx9,xysp CMPA oprx16,xysp CMPA [D,xysp] CMPA [oprx16,xysp]		IDX IDX1 IDX2 [D,IDX] [IDX2]	Al xb ff Al xb ee ff Al xb Al xb	rPf rfp rP0 rP0 frPp frpp fifrpf fifrfp fiprpf fiprfp		
CMPB #opr8i CMPB opr8a CMPB opr16a CMPB oprx0_xysp CMPB oprx9_xysp CMPB oprx16_xysp CMPB [D,xysp]	(B) – (M) Compare Accumulator B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	C1 ii D1 dd F1 hh 11 E1 xb E1 xb ff E1 xb ee ff E1 xb	P P P P P P P P P P P P P P P P P P P		ΔΔΔΔ
CMPB [oprx16,xysp] COM opr16a COM oprx0_xysp COM oprx9,xysp COM oprx16,xysp COM [D,xysp] COM [oprx16,xysp] COMA COMB	$(\overline{M}) \Rightarrow M \ \ equivalent \ to \ \$FF - (M) \Rightarrow M$ 1's Complement Memory Location $(\overline{A}) \Rightarrow A \qquad \text{Complement Accumulator A}$ $(\overline{B}) \Rightarrow B \qquad \text{Complement Accumulator B}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	E1 xb ee ff 71 hh 11 61 xb 61 xb ff 61 xb ee ff 61 xb 61 xb ee ff 41 51	fIPrPf fIPrfP rPwO rOPw rPw rPw rPwO rPow frPwP frPpw fifrPw fifrPw fIPrPw fIPrPw O O O O		ΔΔ01
CPD #opr16i CPD opr8a CPD opr16a CPD oprx0_xysp CPD oprx9_xysp CPD oprx16,xysp CPD [D,xysp] CPD [0,xysp] CPD [0,xysp]	(A:B) – (M:M+1) Compare D to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8C jj kk 9C dd BC hh 11 AC xb AC xb ff AC xb ee ff AC xb AC xb ee ff	PO OP RPf Rfp RPO ROP RPf Rfp RPO RPO fRPP fRPP fifRPf fifRfp fiprpf fiprfp		ΔΔΔΔ
CPS #opr16i CPS opr8a CPS opr16a CPS oprx0_xysp CPS oprx9,xysp CPS oprx16,xysp CPS [D,xysp] CPS [Opx16,xysp] CPS [Opx16,xysp]	(SP) – (M:M+1) Compare SP to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8F jj kk 9F dd BF hh 11 AF xb AF xb ff AF xb ee ff AF xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPO fRPP fRPP fifRPF fifRfP fipRPF fipRfP		ΔΔΔΔ
CPX #opr16i CPX opr8a CPX opr16a CPX opr0_xysp CPX oprx9_xysp CPX oprx9,xysp CPX ppx16,xysp CPX [D,xysp] CPX [oprx16,xysp]	(X) – (M:M+1) Compare X to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8E jj kk 9E dd BE hh 11 AE xb AE xb ff AE xb ee ff AE xb	PO OP RPf Rfp RPO ROP RPf Rfp RPO RPO fRPP fRPP flfrpf flfrfp flprpf flprfp		ΔΔΔΔ
CPY #opr16i CPY opr8a CPY opr16a CPY oprx0_xysp CPY oprx9,xysp CPY oprx16,xysp CPY [D,xysp] CPY [oprx16,xysp]	(Y) – (M:M+1) Compare Y to Memory (16-Bit)	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8D jj kk 9D dd BD hh 11 AD xb AD xb ff AD xb ee ff AD xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPPO fRPP fRPP fifRPf fifrfp fiprpf fiprfp		ΔΔΔΔ
DAA	Adjust Sum to BCD Decimal Adjust Accumulator A	INH	18 07	OfO OfO		ΔΔ?Δ
DBEQ abdxys, rel9	(cntr) – 1⇒ cntr if (cntr) = 0, then Branch else Continue to next instruction Decrement Counter and Branch if = 0 (cntr = A, B, D, X, Y, or SP)	REL (9-bit)	04 lb rr	PPP (branch) PPP PPO (no branch)		

Reference Manual S12CPUV2

Table A-1. Instruction Set Summary (Sheet 5 of 14)

Source Form	Operation	Addr.	Machine	Access	s Detail	SXHI	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SYHI	NZVC
DBNE abdxys, rel9	(cntr) − 1 ⇒ cntr If (cntr) not = 0, then Branch; else Continue to next instruction	REL (9-bit)	04 lb rr	PPP (branch) PPO (no branch)	PPP		
	Decrement Counter and Branch if $\neq 0$ (cntr = A, B, D, X, Y, or SP)						
DEC opr16a	(M) – \$01 ⇒ M	EXT	73 hh 11	rPwO	rOPw		ΔΔΔ-
DEC oprx0_xysp DEC oprx9,xysp	Decrement Memory Location	IDX IDX1	63 xb 63 xb ff	rPw rPwO	rPw rPOw		
DEC oprx16,xysp		IDX2	63 xb ee ff	frPwP	frPPw		
DEC [D,xysp]		[D,IDX]	63 xb	fIfrPw	fIfrPw		
DEC [oprx16,xysp] DECA	(A) – \$01 ⇒ A Decrement A	[IDX2] INH	63 xb ee ff 43	fIPrPw O	fIPrPw O		
DECB	$(B) - \$01 \Rightarrow B$ Decrement B	INH	53	0	0		
DES	(SP) – \$0001 ⇒ SP Translates to LEAS –1,SP	IDX	1B 9F	Pf	PP^1		
DEX	(X) – \$0001 ⇒ X Decrement Index Register X	INH	09	0	0		-Δ
DEY	(Y) – \$0001 ⇒ Y Decrement Index Register Y	INH	03	0	0		-Δ
EDIV	$(Y:D) \div (X) \Rightarrow Y \text{ Remainder} \Rightarrow D$	INH	11	fffffffff	ffffffffff		ΔΔΔΔ
LDIV	32 by 16 Bit ⇒ 16 Bit Divide (unsigned)	IIVI I	11	11111111111	11111111110		
EDIVS	$(Y:D) + (X) \Rightarrow Y$ Remainder $\Rightarrow D$ 32 by 16 Bit \Rightarrow 16 Bit Divide (signed)	INH	18 14	Offfffffffo	Offfffffffo		ΔΔΔΔ
EMACS opr16a ²	$(M_{(X)}:M_{(X+1)}) \times (M_{(Y)}:M_{(Y+1)}) + (M-M+3) \Rightarrow M-M+3$	Special	18 12 hh 11	ORROfffRRfWWP	ORROfffRRfWWP		ΔΔΔΔ
	16 by 16 Bit ⇒ 32 Bit Multiply and Accumulate (signed)						
EMAXD oprx0_xysp	$MAX((D), (M:M+1)) \Rightarrow D$	IDX	18 1A xb	ORPf	ORfP		ΔΔΔΔ
EMAXD oprx9,xysp EMAXD oprx16,xysp	MAX of 2 Unsigned 16-Bit Values	IDX1 IDX2	18 1A xb ff 18 1A xb ee ff	ORPO OfRPP	ORPO OfRPP		
EMAXD [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1A xb	OfIfRPf	OfIfRfP		
EMAXD [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1A xb ee ff	OfIPRPf	OfIPRfP		
EMAXM oprx0_xysp	$MAX((D), (M:M+1)) \Rightarrow M:M+1$	IDX	18 1E xb	ORPW	ORPW		ΔΔΔΔ
EMAXM oprx9,xysp EMAXM oprx16,xysp	MAX of 2 Unsigned 16-Bit Values	IDX1 IDX2	18 1E xb ff 18 1E xb ee ff	ORPWO OfRPWP	ORPWO OfRPWP		
EMAXM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1E xb	OfffRPW	OfIfRPW		
EMAXM [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1E xb ee ff	OfIPRPW	OfIPRPW		
EMIND oprx0_xysp	$MIN((D), (M:M+1)) \Rightarrow D$	IDX	18 1B xb	ORPf	ORfP		ΔΔΔΔ
EMIND oprx9,xysp EMIND oprx16,xysp	MIN of 2 Unsigned 16-Bit Values	IDX1 IDX2	18 1B xb ff 18 1B xb ee ff	ORPO OfRPP	ORPO OfRPP		
EMIND [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1B xb ee 11	OfifRPf	OfIfRfP		
EMIND [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1B xb ee ff	OfIPRPf	OfIPRfP		
EMINM oprx0_xysp	$MIN((D), (M:M+1)) \Rightarrow M:M+1$	IDX	18 1F xb	ORPW	ORPW		ΔΔΔΔ
EMINM oprx9,xysp EMINM oprx16,xysp	MIN of 2 Unsigned 16-Bit Values	IDX1 IDX2	18 1F xb ff 18 1F xb ee ff	ORPWO OfRPWP	ORPWO OfRPWP		
EMINM [D,xysp]	N, Z, V and C status bits reflect result of	[D,IDX]	18 1F xb	OfIfRPW	OfIfRPW		
EMINM [oprx16,xysp]	internal compare ((D) – (M:M+1))	[IDX2]	18 1F xb ee ff	OfIPRPW	OfIPRPW		
EMUL	$(D) \times (Y) \Rightarrow Y:D$ 16 by 16 Bit Multiply (unsigned)	INH	13	ffO	ffO		$\Delta \Delta - \Delta$
EMULS	$(D) \times (Y) \Rightarrow Y:D$	INH	18 13	OfO	OfO		ΔΔ-Δ
	16 by 16 Bit Multiply (signed)			(if followed by pa	age 2 instruction)		
EORA #opr8i	$(A) \oplus (M) \Rightarrow A$	IMM	88 ii	P	P		ΔΔ0-
EORA opr8a	Exclusive-OR A with Memory	DIR	98 dd	rPf	rfP		
EORA opr16a		EXT	B8 hh 11 A8 xb	rPO	rOP		
EORA oprx0_xysp EORA oprx9,xysp		IDX IDX1	A8 xb A8 xb ff	rPf rPO	rfP rPO		
EORA oprx16,xysp		IDX2	A8 xb ee ff	frPP	frPP		
EORA [D,xysp]		[D,IDX]	A8 xb	fIfrPf	fIfrfP		
EORA [oprx16,xysp]		[IDX2]	A8 xb ee ff	fIPrPf	fIPrfP		

- Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.
 opr16a is an extended address specification. Both X and Y point to source operands.

Table A-1. Instruction Set Summary (Sheet 6 of 14)

		Addr.	Machine	Access Detail		
Source Form	Operation	Mode	Coding (hex)	HCS12 M68HC1	2 SXHI	NZVC
EORB #opr8i	$(B) \oplus (M) \Rightarrow B$	IMM	C8 ii	Р	P	ΔΔ0-
EORB opr8a	Exclusive-OR B with Memory	DIR	D8 dd	rPf rf	1	
EORB opr16a		EXT	F8 hh 11	rPO rC	1	
EORB oprx0_xysp		IDX	E8 xb	rPf rf	1	
EORB oprx9,xysp		IDX1 IDX2	E8 xb ff	rPO rF frPP frF	I	
EORB oprx16,xysp EORB [D,xysp]		[D,IDX]	E8 xb ee ff E8 xb	fIfrPf fIfrf	1	
EORB [oprx16,xysp]		[D,IDX]	E8 xb ee ff	fIPrPf fIPrf	I	
	$(M:M+1)+[(B)\times((M+2:M+3)-(M:M+1))] \Rightarrow D$	IDX	18 3F xb	ORREFEEFE ORREFEEFE		ΔΔ-Δ
ETBL oprx0_xysp	(M.M+1)+ [(B)×((M+2.M+3) − (M.M+1))] ⇒ D 16-Bit Table Lookup and Interpolate	IDX	18 3F XD	ORRIIIIIP ORRIIIII		?
	Initialize B, and index before ETBL.					undefined
	<ea> points at first table entry (M:M+1)</ea>				l in r	IC12
	and B is fractional part of lookup value					
	(no indirect addr. modes or extensions allowed)					
EXG abcdxys,abcdxys	$(r1) \Leftrightarrow (r2)$ (if r1 and r2 same size) or	INH	B7 eb	P	P	
	$\$00:(r1) \Rightarrow r2 \text{ (if } r1=8-\text{bit; } r2=16-\text{bit) } or$					
	$(r1_{low}) \Leftrightarrow (r2)$ (if r1=16-bit; r2=8-bit)					
	r1 and r2 may be					
	A, B, CCR, D, X, Y, or SP					
FDIV	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$	INH	18 11	Offfffffffo Offfffffff	0	-ΔΔΔ
	16 by 16 Bit Fractional Divide					
IBEQ abdxys, rel9	(cntr) + 1⇒ cntr	REL	04 lb rr	PPP (branch) PF	P	
	If (cntr) = 0, then Branch	(9-bit)		PPO (no		
	else Continue to next instruction			branch)		
	Increment Counter and Branch if = 0					
	(cntr = A, B, D, X, Y, or SP)					
IBNE abdxys, rel9	(cntr) + 1⇒ cntr	REL	04 lb rr	PPP (branch) PF	P	
	if (cntr) not = 0, then Branch; else Continue to next instruction	(9-bit)		PPO (no		
	eise Continue to next instruction			branch)		
	Increment Counter and Branch if ≠ 0					
	(cntr = A, B, D, X, Y, or SP)					
IDIV	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$	INH	18 10	Offffffffff Offfffffff	0	-Δ0Δ
	16 by 16 Bit Integer Divide (unsigned)					
IDIVS	$(D) \div (X) \Rightarrow X$; Remainder $\Rightarrow D$	INH	18 15	Offfffffff Offfffffff	0	ΔΔΔΔ
	16 by 16 Bit Integer Divide (signed)					
INC opr16a	(M) + \$01 ⇒ M	EXT	72 hh 11	rPwO rOF	w	ΔΔΔ-
INC oprx0_xysp	Increment Memory Byte	IDX	62 xb	rPw rF	w	
INC oprx9,xysp		IDX1	62 xb ff	rPwO rPO	w	
INC oprx16,xysp		IDX2	62 xb ee ff	frPwP frPF	I	
INC [D,xysp]		[D,IDX]	62 xb	fIfrPw fIfrP	I	
INC [oprx16,xysp]	(1) 201	[IDX2]	62 xb ee ff	fIPrPw fIPrP	1	
INCA	$(A) + \$01 \Rightarrow A$ Increment Acc. A	INH	42		0	
INCB	(B) + \$01 ⇒ B Increment Acc. B	INH	52		0	
INS	(SP) + \$0001 ⇒ SP Translates to LEAS 1,SP	IDX	1B 81	Pf PF)+	
INX	(X) + \$0001 ⇒ X	INH	08	0	0	-Δ
IIIVA	Increment Index Register X	l livii i	08	0	٠	-Δ
INY	(Y) + \$0001 ⇒ Y	INH	02	0	0	-Δ
""	Increment Index Register Y	I IINIII		ľ	~ -	
JMP opr16a	Routine address ⇒ PC	EXT	06 hh 11	PPP PF	P	
JMP oprx0_xysp		IDX	05 xb	PPP PF	I	
JMP oprx9,xysp	Jump	IDX1	05 xb ff	PPP PF	1	
JMP oprx16,xysp		IDX2	05 xb ee ff	fPPP fPF	P	
JMP [D,xysp]		[D,IDX]	05 xb	fIfPPP fIfPP		
JMP [oprx16,xysp]		[IDX2]	05 xb ee ff	fIfPPP fIfPP	P	
	requirements, the program word fetch is performed twice to the		during this instruction	1		

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 7 of 14)

0	Occupation	Addr.	Machine	Acce	ss Detail	еуші	NZVC
Source Form	Operation	Mode	Coding (hex)	HCS12	M68HC12	SXHI	NZVC
JSR opr8a	$(SP) - 2 \Rightarrow SP;$	DIR	17 dd	SPPP	PPPS		
JSR opr16a JSR oprx0_xysp	$RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)};$ Subroutine address \Rightarrow PC	EXT IDX	16 hh 11 15 xb	SPPP PPPS	PPPS PPPS		
JSR oprx0_xysp JSR oprx9,xysp	Subroutine address ⇒ PC	IDX	15 xb 15 xb ff	PPPS	PPPS		
JSR oprx16,xysp	Jump to Subroutine	IDX2	15 xb ee ff	fPPPS	fPPPS		
JSR [D,xysp]	·	[D,IDX]	15 xb	fIfPPPS	fIfPPPS		
JSR [oprx16,xysp]		[IDX2]	15 xb ee ff	fIfPPPS	fIfPPPS		
LBCC rel16	Long Branch if Carry Clear (if C = 0)	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBCS rel16	Long Branch if Carry Set (if C = 1)	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBEQ rel16	Long Branch if Equal (if Z = 1)	REL	18 27 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGE rel16	Long Branch Greater Than or Equal (if N \oplus V = 0) (signed)	REL	18 2C qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBGT rel16	Long Branch if Greater Than (if $Z + (N \oplus V) = 0$) (signed)	REL	18 2E qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHI rel16	Long Branch if Higher (if C + Z = 0) (unsigned)	REL	18 22 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBHS rel16	Long Branch if Higher or Same (if C = 0) (unsigned)	REL	18 24 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
	same function as LBCC						
LBLE rel16	Long Branch if Less Than or Equal (if $Z + (N \oplus V) = 1$) (signed)	REL	18 2F qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLO rel16	Long Branch if Lower (if C = 1) (unsigned) same function as LBCS	REL	18 25 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLS rel16	Long Branch if Lower or Same (if C + Z = 1) (unsigned)	REL	18 23 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBLT rel16	Long Branch if Less Than (if N ⊕ V = 1) (signed)		18 2D qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBMI rel16	Long Branch if Minus (if N = 1)	REL	18 2B qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBNE rel16	Long Branch if Not Equal (if Z = 0)	REL	18 26 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBPL rel16	Long Branch if Plus (if N = 0)	REL	18 2A qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBRA rel16	Long Branch Always (if 1=1)	REL	18 20 qq rr	OPPP	OPPP		
LBRN rel16	Long Branch Never (if 1 = 0)	REL	18 21 qq rr	OPO	OPO		
LBVC rel16	Long Branch if Overflow Bit Clear (if V=0)	REL	18 28 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LBVS rel16	Long Branch if Overflow Bit Set (if V = 1)	REL	18 29 qq rr	OPPP/OPO ¹	OPPP/OPO ¹		
LDAA #opr8i	(M) ⇒ A	IMM	86 ii	P	P		ΔΔ0-
LDAA opr8a	Load Accumulator A	DIR	96 dd	rPf	rfP		
LDAA opr16a		EXT	B6 hh 11	rPO	rOP		
LDAA oprx0_xysp LDAA oprx9,xysp		IDX IDX1	A6 xb A6 xb ff	rPf rPO	rfP rPO		
LDAA oprx16,xysp		IDX1	A6 xb ee ff	frPP	frPP		
LDAA [D,xysp]		[D,IDX]	A6 xb	fIfrPf	fIfrfP		
LDAA [oprx16,xysp]		[IDX2]	A6 xb ee ff	fIPrPf	fIPrfP		
LDAB #opr8i	$(M) \Rightarrow B$	IMM	C6 ii	P	P		ΔΔ0-
LDAB opr8a	Load Accumulator B	DIR	D6 dd	rPf	rfP		
LDAB opr16a		EXT	F6 hh 11	rPO	rOP		
LDAB oprx0_xysp		IDX	E6 xb	rPf	rfP		
LDAB oprx9,xysp		IDX1	E6 xb ff	rPO	rPO		
LDAB oprx16,xysp LDAB [D,xysp]		IDX2 [D,IDX]	E6 xb ee ff E6 xb	frPP	frPP fIfrfP		
LDAB [D,xysp] LDAB [oprx16,xysp]		[IDX2]	E6 xb ee ff	fIfrPf fIPrPf	fIPrfP		
LDD #opr16i	(M:M+1) ⇒ A:B	IMM	CC jj kk	PO	OP		ΔΔ0-
LDD opr8a	Load Double Accumulator D (A:B)	DIR	DC dd	RPf	RfP		
LDD opr16a		EXT	FC hh 11	RPO	ROP		
LDD oprx0_xysp		IDX	EC xb	RPf	RfP		
LDD oprx9,xysp		IDX1	EC xb ff	RPO	RPO		
LDD (D. vuon)		IDX2	EC xb ee ff	fRPP	fRPP		
LDD [D,xysp]		[D,IDX]	EC xb EC xb ee ff	fIfRPf fIPRPf	fIfRfP fIPRfP		
LDD [oprx16,xysp]	this instruction takes four evales to refill the instruction queue	[IDX2]					

Note 1. OPPP/OPO indicates this instruction takes four cycles to refill the instruction queue if the branch is taken and three cycles if the branch is not taken.

Table A-1. Instruction Set Summary (Sheet 8 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
LDS #opr16i LDS opr8a LDS opr16a LDS oprx0_xysp LDS oprx9,xysp LDS oprx16,xysp LDS [D,xysp]	(M:M+1) ⇒ SP Load Stack Pointer	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	CF jj kk DF dd FF hh 11 EF xb EF xb ff EF xb ee ff EF xb	PO OP RPf RfP RPO ROP RPf RfP RPO RPO fRPP fRPP fifRPf fifRfP		ΔΔ0-
LDS [oprx16,xysp] LDX #opr16i	(M:M+1) ⇒ X	[IDX2]	EF xb ee ff CE jj kk	fIPRPf fIPRFP		ΔΔ0-
LDX opr8a LDX opr16a LDX oprx0_xysp LDX oprx9,xysp LDX oprx16,xysp LDX [D,xysp] LDX [oprx16,xysp]	Load Index Register X	DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	DE dd FE hh ll EE xb EE xb ff EE xb ee ff EE xb EE xb ee ff	RPf RfP RPO ROP RPf RfP RPO RPO fRPP fRPP fifRPf fifRfP fIPRPf fIPRFP		
LDY #opr16i LDY opr8a LDY opr16a LDY oprx0_xysp LDY oprx9,xysp LDY oprx16,xysp LDY [D,xysp] LDY [oprx16,xysp]	(M:M+1) ⇒ Y Load Index Register Y	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	CD jj kk DD dd FD hh ll ED xb ED xb ff ED xb ee ff ED xb ED xb ee ff	PO OP RPf RfP RPO ROP RPF RfP RPO RPO fRPP fRPP fifRPf fifrfp fIPRPf fIPRFP		ΔΔ0-
LEAS oprx0_xysp LEAS oprx9,xysp LEAS oprx16,xysp	Effective Address ⇒ SP Load Effective Address into SP	IDX IDX1 IDX2	1B xb ff 1B xb ee ff	Pf Pp ¹ PO PO PP PP		
LEAX oprx0_xysp LEAX oprx9,xysp LEAX oprx16,xysp	Effective Address ⇒ X Load Effective Address into X	IDX IDX1 IDX2	1A xb 1A xb ff 1A xb ee ff	Pf Pp¹ PO PO PP PP		
LEAY oprx0_xysp LEAY oprx9,xysp LEAY oprx16,xysp	Effective Address ⇒ Y Load Effective Address into Y	IDX IDX1 IDX2	19 xb 19 xb ff 19 xb ee ff	Pf PP ¹ PO PO PP PP		
LSL opr16a LSL oprx0_xysp LSL oprx9,xysp LSL oprx16,xysp LSL [D,xysp] LSL [oprx16,xysp] LSLA	C b7 b0 Logical Shift Left same function as ASL Logical Shift Accumulator A to Left	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	78 hh 11 68 xb 68 xb ff 68 xb ee ff 68 xb 68 xb ee ff 48	rPwO rOPw rPw rPw rPwO rPow frPpw frPpw fifrpw fifrpw fiPrPw fiPrPw 0 0		ΔΔΔΔ
LSLD	Logical Shift Accumulator B to Left C b7 A b0 b7 B b0 Logical Shift Left D Accumulator same function as ASLD	INH	59	0 0		ΔΔΔΔ
LSR opr16a LSR oprx0_xysp LSR oprx9.xysp LSR oprx16,xysp LSR [D,xysp] LSR [oprx16,xysp] LSRA LSRB	0 b7 b0 C Logical Shift Right Logical Shift Accumulator A to Right Logical Shift Accumulator B to Right	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	74 hh 11 64 xb 64 xb ff 64 xb ee ff 64 xb 64 xb ee ff 44 54	rPwO rOPw rPw rPw rPwO rPOw frPwP frPPw fifrPw fifrPw fiPrPw 0 0 0 0 0		Ο Δ Δ Δ
LSRD	0 → D D D D D D D D D D D D D D D D D D	INH	49	0 0		Ο Δ Δ Δ
MAXA oprx0_xysp MAXA oprx9,xysp MAXA oprx16,xysp MAXA [D,xysp] MAXA [oprx16,xysp]	MAX((A), (M)) ⇒ A MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 18 xb 18 18 xb ff 18 18 xb ee ff 18 18 xb 18 18 xb	OrPf OrfP OrPO OrPO OfrPP OfrPP OfIfrPf OfIfrfP OfIPrPf OfIPrfP		ΔΔΔΔ

Note 1. Due to internal CPU requirements, the program word fetch is performed twice to the same address during this instruction.

Table A-1. Instruction Set Summary (Sheet 9 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	M68HC12	SXHI	NZVC
MAXM oprx0_xysp MAXM oprx9,xysp MAXM oprx16,xysp MAXM [D,xysp] MAXM [oprx16,xysp]	MAX((A), (M)) ⇒ M MAX of 2 Unsigned 8-Bit Values N, Z, V and C status bits reflect result of internal compare ((A) – (M)).	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1C xb 18 1C xb ff 18 1C xb ee ff 18 1C xb 18 1C xb ee ff	OrPW OrPwO OfrPwP OfIfrPw OfIPrPw	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw		ΔΔΔΔ
MEM	$\begin{array}{l} \mu \ (\text{grade}) \Rightarrow M_{(Y)}; \\ (X) + 4 \Rightarrow X; \ (Y) + 1 \Rightarrow Y; \ A \ unchanged \\ \text{if } (A) < P1 \ or \ (A) > P2 \ then \ \mu = 0, \ else \\ \mu = MIN[((A) - P1) \times S1, \ (P2 - (A)) \times S2, \ FF] \\ \text{where:} \\ A = \text{current crisp input value;} \\ X \ points \ at \ 4-byte \ data \ structure \ that \ describes \ a \ trapezoidal \ membership \ function \ (P1, P2, S1, S2); \\ Y \ points \ at \ fuzzy \ input \ (RAM \ location). \\ \text{See } \ CPU12 \ Reference \ Manual \ for \ special \ cases. \\ \end{array}$	Special	01	RREOW	RRfOw	?-	????
MINA oprx0_xysp MINA oprx9,xysp MINA oprx16,xysp MINA [D,xysp] MINA [oprx16,xysp]	$\begin{split} & \text{MIN}((A), (M)) \Rightarrow A \\ & \text{MIN of 2 Unsigned 8-Bit Values} \\ & \text{N, Z, V and C status bits reflect result of} \\ & \text{internal compare } ((A) - (M)). \end{split}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 19 xb 18 19 xb ff 18 19 xb ee ff 18 19 xb 18 19 xb ee ff	OrPf OrPO OfrPP OfIfrPf OfIPrPf	OrfP OrPO OfrPP OfIfrfP OfIPrfP		ΔΔΔΔ
MINM oprx0_xysp MINM oprx9,xysp MINM oprx16,xysp MINM [D,xysp] MINM [oprx16,xysp]	$\begin{split} & \text{MIN}((A), (M)) \Longrightarrow M \\ & \text{MIN of 2 Unsigned 8-Bit Values} \\ & \text{N, Z, V and C status bits reflect result of internal compare } ((A) - (M)). \end{split}$	IDX IDX1 IDX2 [D,IDX] [IDX2]	18 1D xb 18 1D xb ff 18 1D xb ee ff 18 1D xb 18 1D xb ee ff	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw	OrPw OrPwO OfrPwP OfIfrPw OfIPrPw		ΔΔΔΔ
MOVB #opr8, opr16a ¹ MOVB #opr8i, oprx0_xysp ¹ MOVB opr16a, opr16a ¹ MOVB opr16a, oprx0_xysp ¹ MOVB oprx0_xysp, opr16a ¹ MOVB oprx0_xysp, oprx0_xysp ¹	$(M_1) \Rightarrow M_2$ Memory to Memory Byte-Move (8-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 OC hh 11 hh 11 18 O9 xb hh 11 18 OD xb hh 11	OPwP OPwO OrPwPO OPrPw OrPwP OrPwO	OPwP OPwO OrPwPO OPrPw OrPwP OrPwO		
MOVW #oprx16, opr16a ¹ MOVW #opr16i, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW opr16a, oprx0_xysp ¹ MOVW oprx0_xysp, opr16a ¹ MOVW oprx0_xysp, oprx0_xysp ¹	(M:M+1 ₁) ⇒ M:M+1 ₂ Memory to Memory Word-Move (16-Bit)	IMM-EXT IMM-IDX EXT-EXT EXT-IDX IDX-EXT IDX-IDX	18 04 hh 11 hh 11	OPWPO OPPW ORPWPO OPRPW ORPWP ORPWO	OPWPO OPPW ORPWPO OPRPW ORPWP ORPWO		
MUL	$(A) \times (B) \Rightarrow A:B$ 8 by 8 Unsigned Multiply	INH	12	0	ffO		Δ
NEG opr16a NEG oprx0_xysp NEG oprx9,xysp NEG oprx16,xysp NEG [D,xysp] NEG [oprx16,xysp] NEGA	$\begin{array}{l} 0-(M)\Rightarrow M \ equivalent \ to \ (\overline{M})+1\Rightarrow M \\ Two's \ Complement \ Negate \\ \\ 0-(A)\Rightarrow A \ equivalent \ to \ (\overline{A})+1\Rightarrow A \\ Negate \ Accumulator \ A \\ 0-(B)\Rightarrow B \ equivalent \ to \ (\overline{B})+1\Rightarrow B \\ Negate \ Accumulator \ B \\ \end{array}$	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH	70 hh 11 60 xb 60 xb ff 60 xb ee ff 60 xb 60 xb ee ff 40 50	rPwO rPw rPwO frPwP fifrPw filrrPw O O	rOPw rPw rPOw frPPw fIfrPw fIPrPw O		ΔΔΔΔ
NOP	No Operation	INH	A7	0	0		
ORAA #opr8i ORAA opr8a ORAA opr16a ORAA oprx0_xysp ORAA oprx9_xysp ORAA oprx16_xysp ORAA [D,xysp] ORAA [D,xysp]	(A) + (M) ⇒ A Logical OR A with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	8A ii 9A dd BA hh 11 AA xb AA xb ff AA xb ee ff AA xb ee ff	P rPf rP0 rPf rP0 frPp fIfrPf fIPrPf	rfP rOP rfP rPO frPP fIfrfP fIPrfP		ΔΔ0-

Note 1. The first operand in the source code statement specifies the source for the move.

Table A-1. Instruction Set Summary (Sheet 10 of 14)

		1		Access Detail		
Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail HCS12 M68HC12	ѕхні	NZVC
ORAB #opr8i ORAB opr8a ORAB opr16a ORAB oprx0_xysp ORAB oprx9,xysp ORAB oprx16,xysp ORAB [D,xysp]	(B) + (M) ⇒ B Logical OR B with Memory	IMM DIR EXT IDX IDX1 IDX2 [D,IDX]	CA ii DA dd FA hh ll EA xb EA xb ff EA xb ee ff EA xb	P P rPf rfp rP0 rOP rPf rfp rP0 rP0 frPP frPP flfrpf flfrfp		ΔΔ0-
ORAB [oprx16,xysp]		[IDX2]	EA xb ee ff	fIPrPf fIPrfP		
ORCC #opr8i	$(CCR) + M \Rightarrow CCR$ Logical OR CCR with Memory	IMM	14 ii	P P	1 – 11 11	$ \uparrow \uparrow$
PSHA	$(SP) - 1 \Rightarrow SP; (A) \Rightarrow M_{(SP)}$ Push Accumulator A onto Stack	INH	36	Os Os		
PSHB	$(SP) - 1 \Rightarrow SP; (B) \Rightarrow M_{(SP)}$ Push Accumulator B onto Stack	Push Accumulator B onto Stack		Os Os		
PSHC	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$ INH 39 Os Push CCR onto Stack		Os Os			
PSHD	$(SP) - 2 \Rightarrow SP; (A:B) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push D Accumulator onto Stack	INH	3В	os os		
PSHX	$(SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register X onto Stack	INH	34	OS OS		
PSHY	$(SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}$ Push Index Register Y onto Stack	INH	35	os os		
PULA	$(M_{(SP)}) \Rightarrow A; (SP) + 1 \Rightarrow SP$ Pull Accumulator A from Stack	INH	32	ufO ufO		
PULB	$(M_{(SP)}) \Rightarrow B; (SP) + 1 \Rightarrow SP$ Pull Accumulator B from Stack	INH	33	ufO ufO		
PULC	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$ Pull CCR from Stack	INH	38	ufO ufO	$\Delta \Downarrow \Delta \Delta$	ΔΔΔΔ
PULD	$(M_{(SP)};M_{(SP+1)}) \Rightarrow A:B; (SP) + 2 \Rightarrow SP$ Pull D from Stack	INH	3A	UfO UfO		
PULX	$(M_{(SP)}:M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 2 \Rightarrow SP$ Pull Index Register X from Stack	INH	30	UfO UfO		
PULY	$(M_{(SP)};M_{(SP+1)}) \Rightarrow Y_H;Y_L; (SP) + 2 \Rightarrow SP$ Pull Index Register Y from Stack	INH	31	UfO UfO		
REV	MIN-MAX rule evaluation Find smallest rule input (MIN). Store to rule outputs unless fuzzy output is already larger (MAX). For rule weights see REVW.	Special	18 3A	Orf(t,tx)O Orf(t,tx)O (exit + re-entry replaces comma above if interrupted) ff + Orf(t, ff + Orf(t,	?-	??∆?
	Each rule input is an 8-bit offset from the base address in Y. Each rule output is an 8-bit offset from the base address in Y. \$FE separates rule inputs from rule outputs. \$FF terminates the rule list.					
	REV may be interrupted.					ļ
REVW	MIN-MAX rule evaluation Find smallest rule input (MIN), Store to rule outputs unless fuzzy output is already larger (MAX).	Special	18 3B	ORf(t,Tx)O ORf(t,Tx)O (loop to read weight if enabled) (r,RfRf) (r,RfRf) (exit + re-entry replaces comma	?-	??Δ!
	Rule weights supported, optional.			above if interrupted)		
	Each rule input is the 16-bit address of a fuzzy input. Each rule output is the 16-bit address of a fuzzy output. The value \$FFFE separates rule inputs from rule outputs. \$FFFF terminates the rule list.			fffff + ORf(t, ffff + ORf(t,		
	REVW may be interrupted.					
	I .		1	1		

Table A-1. Instruction Set Summary (Sheet 11 of 14)

Source Form	Operation	Addr.	Machine	1	ess Detail	ѕхні	NZVC
	.,	Mode	Coding (hex)	HCS12	M68HC12		
ROL opr16a ROL oprx0_xysp ROL oprx9,xysp ROL oprx16,xysp	C b7 b0 Rotate Memory Left through Carry	IDX IDX1 IDX2	75 hh 11 65 xb 65 xb ff 65 xb ee ff	rPwO rPw rPwO frPwP	rOPw rPw rPOw frPPw		ΔΔΔΔ
ROL [D,xysp] ROL [oprx16,xysp] ROLA	Rotate A Left through Carry	[D,IDX] [IDX2] INH	65 xb 65 xb ee ff 45	fIfrPw fIPrPw O	fIfrPw fIPrPw O		
ROLB	Rotate B Left through Carry	INH	55	0	0		
ROR opr16a ROR oprx0_xysp ROR oprx9.xysp ROR oprx16,xysp ROR [D,xysp] ROR [oprx16,xysp] RORA RORB	b7 b0 C Rotate Memory Right through Carry Rotate A Right through Carry Rotate B Right through Carry	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	76 hh 11 66 xb 66 xb ff 66 xb ee ff 66 xb 66 xb ee ff 46 56	rPwO rPw rPwO frPwP fIfrPw fIPrPw O O	rOPw rPw rPOw frPPw fIfrPw fIPrPP O O		ΔΔΔΔ
RTC	$ \begin{array}{l} (M_{(SP)}) \Rightarrow PPAGE; (SP) + 1 \Rightarrow SP; \\ (M_{(SP)} : M_{(SP+1)}) \Rightarrow PC_H : PC_L; \\ (SP) + 2 \Rightarrow SP \\ Return from Call \end{array} $	INH	0A	uUnfPPP	uUnPPP		
RTI	$(M_{(SP)}) \Rightarrow CCR; (SP) + 1 \Rightarrow SP$	INH	0B	uUUUUPPP	uUUUUPPP	Δ↓ΔΔ	ΔΔΔΔ
	$\begin{array}{l} (M_{(SP)},M_{(SP+1)}) \Rightarrow B:A; (SP) + 2 \Rightarrow SP \\ (M_{(SP)},M_{(SP+1)}) \Rightarrow X_H:X_L; (SP) + 4 \Rightarrow SP \\ (M_{(SP)},M_{(SP+1)}) \Rightarrow PC_H:PC_L; (SP) - 2 \Rightarrow SP \\ (M_{(SP)},M_{(SP+1)}) \Rightarrow Y_H:Y_L; (SP) + 4 \Rightarrow SP \\ Return from Interrupt \end{array}$			(with inte	errupt pending) uUUUU£V£PPP		
RTS	$ \begin{array}{l} (M_{(SP)}:M_{(SP+1)}) \Longrightarrow PC_H:PC_L; \\ (SP)+2 \Longrightarrow SP \\ \text{Return from Subroutine} \end{array} $	INH	3D	UfPPP	UfPPP		
SBA	$(A) - (B) \Rightarrow A$ Subtract B from A	INH	18 16	00	00		ΔΔΔΔ
SBCA #opr8i SBCA opr8a SBCA opr16a SBCA oprx0_xysp SBCA oprx16,xysp SBCA [D,xysp] SBCA [oprx16,xysp]	(A) – (M) – C ⇒ A Subtract with Borrow from A	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	82 ii 92 dd B2 hh 11 A2 xb A2 xb ff A2 xb ee ff A2 xb ee ff A2 xb ee ff	P rPf rPO rPf rPO frPP fIfrPf fIPrPf	P rfP rOP rfP rPO frPP flfrfP		ΔΔΔΔ
SBCB #opr8i SBCB opr8a SBCB opr16a SBCB oprx0_xysp SBCB oprx9,xysp SBCB oprx16,xysp SBCB [D,xysp] SBCB [oprx16,xysp]	$\begin{array}{l} (B)-(M)-C \Rightarrow B \\ \text{Subtract with Borrow from B} \end{array}$	IMM DIR EXT IDX IDX1 IDX2 [D,IDX] [IDX2]	C2 ii D2 dd F2 hh 11 E2 xb E2 xb ff E2 xb ee ff E2 xb ee ff	P rPf rP0 rPf rP0 frPP fIfrPf fIPrPf	p rfp rOP rfp rPO frpp fIfrfp		ΔΔΔΔ
SEC	1 ⇒ C Translates to ORCC #\$01	IMM	14 01	Р	Р		1
SEI	1 ⇒ I; (inhibit I interrupts) Translates to ORCC #\$10	IMM	14 10	P	Р	1	
SEV	1 ⇒ V Translates to ORCC #\$02	IMM	14 02	Р	Р		1-
SEX abc,dxys	\$00:(r1) ⇒ r2 if r1, bit 7 is 0 or \$FF:(r1) ⇒ r2 if r1, bit 7 is 1 Sign Extend 8-bit r1 to 16-bit r2 r1 may be A, B, or CCR r2 may be D, X, Y, or SP Alternate mnemonic for TFR r1, r2	INH	B7 eb	P	Р		

Instruction Reference

Table A-1. Instruction Set Summary (Sheet 12 of 14)

Source Form	Operation	Addr. Mode	Machine Coding (hex)	Access Detail	MCOLICAG	ѕхні	NZVC
STAA opr8a	$(A) \Rightarrow M$	DIR	5A dd	HCS12	M68HC12		ΔΔ0-
STAA opr16a	Store Accumulator A to Memory	EXT	7A hh 11	PwO	wOP		
STAA oprx0_xysp	· · · · · · · · · · · · · · · · · · ·	IDX	6A xb	Pw	Pw		
STAA oprx9,xysp		IDX1	6A xb ff	PwO	PwO		
STAA oprx16,xysp		IDX2	6A xb ee ff	PwP	PwP		
STAA [D,xysp]		[D,IDX]	6A xb	PIfw	PIfPw		
STAA [oprx16,xysp]		[IDX2]	6A xb ee ff	PIPw	PIPPw		
STAB opr8a STAB opr16a	(B) ⇒ M Store Accumulator B to Memory	DIR EXT	5B dd 7B hh 11	Pw PwO	Pw		ΔΔ0-
STAB oprx0_xysp	Store Accumulator B to Memory	IDX	6B xb	PwO Pw	wOP Pw		
STAB oprx9,xysp		IDX1	6B xb ff	PwO	PwO		
STAB oprx16,xysp		IDX1	6B xb ee ff	PwP	PwP		
STAB [D,xysp]		[D,IDX]	6B xb	PIfw	PIfPw		
STAB [oprx16,xysp]		[IDX2]	6B xb ee ff	PIPw	PIPPw		
STD opr8a	$(A) \Rightarrow M, (B) \Rightarrow M+1$	DIR	5C dd	PW	PW		ΔΔ0-
STD opr16a	Store Double Accumulator	EXT	7C hh 11	PWO	WOP		
STD oprx0_xysp		IDX	6C xb	PW	PW		
STD oprx9,xysp		IDX1	6C xb ff	PWO	PWO		
STD oprx16,xysp		IDX2	6C xb ee ff	PWP	PWP		
STD [D,xysp]		[D,IDX]	6C xb	PIfW	PIfPW		
STD [oprx16,xysp]	(00)	[IDX2]	6C xb ee ff	PIPW	PIPPW		
STOP	$(SP) - 2 \Rightarrow SP;$	INH	18 3E	(entering STOP)			
	$\begin{array}{l} RTN_H:RTN_L \Longrightarrow M_{(SP)}: M_{(SP+1)}; \\ (SP) - 2 \Longrightarrow SP; \; (Y_H:Y_L) \Longrightarrow M_{(SP)}: M_{(SP+1)}; \\ (SP) : M_{(SP)}: M_{(SP+1)}; \end{array}$				OSSSfSs		
	$I(SP) - 2 \Rightarrow SP; (X_H:X_I) \Rightarrow M_{(SP)}:M_{(SP+1)};$			(exiting STOP)			
	$(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)};$			fVfPPP	fVfPPP		
	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)};$			(continue)		İ	
	STOP All Clocks			ff	fo		
	Registers stacked to allow quicker recovery by interrupt.						
	If S control bit = 1, the STOP instruction is disabled and acts			(if STOP disabled)			
	like a two-cycle NOP.			00	00		
STS opr8a	$(SP_H:SP_L) \Rightarrow M:M+1$	DIR	5F dd	PW	PW		ΔΔ0-
STS opr16a	Store Stack Pointer	EXT	7F hh 11	PWO	WOP		
STS oprx0_xysp		IDX	6F xb	PW	PW		
STS oprx9,xysp		IDX1	6F xb ff	PWO	PWO		
STS oprx16,xysp		IDX2 [D,IDX]	6F xb ee ff 6F xb	PWP	PWP		
STS [D,xysp] STS [oprx16,xysp]		[IDX2]	6F xb ee ff	PIfW PIPW	PIfPW PIPPW		
STX opr8a	$(X_H:X_L) \Rightarrow M:M+1$	DIR	5E dd	PW	PW		ΔΔ0-
STX opr16a	Store Index Register X	EXT	7E hh 11	PWO	WOP		
STX oprx0 xysp	- In the manning state of	IDX	6E xb	PW	PW		
STX oprx9,xysp		IDX1	6E xb ff	PWO	PWO		
STX oprx16,xysp		IDX2	6E xb ee ff	PWP	PWP		
STX [D,xysp]		[D,IDX]	6E xb	PIfW	PIfPW		
STX [oprx16,xysp]		[IDX2]	6E xb ee ff	PIPW	PIPPW		
STY opr8a	$(Y_H:Y_L) \Rightarrow M:M+1$	DIR	5D dd	PW	PW		ΔΔ0-
STY opr16a	Store Index Register Y	EXT	7D hh 11	PWO	WOP		
STY oprx0_xysp		IDX IDX1	6D xb 6D xb ff	PW PWO	PW PWO		
STY oprx9,xysp STY oprx16,xysp		IDX1	6D xb ff 6D xb ee ff	PWD	PWO		
STY [D,xysp]		[D,IDX]	6D xb ee 11	PIfW	PIfPW		
STY [oprx16,xysp]		[IDX2]	6D xb ee ff	PIPW	PIPPW		
SUBA #opr8i	$(A) - (M) \Rightarrow A$	IMM	80 ii	P	P		ΔΔΔΔ
SUBA opr8a	Subtract Memory from Accumulator A	DIR	90 dd	rPf	rfP		[
SUBA opr16a		EXT	B0 hh 11	rPO	rOP		
SUBA oprx0_xysp		IDX	A0 xb	rPf	rfP		
SUBA oprx9,xysp		IDX1	A0 xb ff	rPO	rPO		
SUBA oprx16,xysp		IDX2	A0 xb ee ff	frPP	frPP		
SUBA [D,xysp]		[D,IDX]	A0 xb	fIfrPf	fIfrfP		
SUBA [oprx16,xysp]		[IDX2]	A0 xb ee ff	fIPrPf	fIPrfP		1

Table A-1. Instruction Set Summary (Sheet 13 of 14)

Source Form	Operation	Addr.	Machine	Access Det	ail	SXHI	NZVC
Source i oilii	Ореганоп	Mode	Coding (hex)	HCS12	M68HC12	JAIII	11270
SUBB #opr8i	$(B) - (M) \Rightarrow B$	IMM	CO ii	P	P		ΔΔΔΔ
SUBB opr8a	Subtract Memory from Accumulator B	DIR	D0 dd	rPf	rfP		
SUBB opr16a SUBB oprx0_xysp		EXT IDX	F0 hh 11 E0 xb	rPO rPf	rOP rfP		
SUBB oprx9,xysp		IDX1	E0 xb ff	rPO	rPO		
SUBB oprx16.xysp		IDX1	E0 xb ee ff	frPP	frPP		
SUBB [D,xysp]		[D,IDX]	E0 xb	fIfrPf	fIfrfP		
SUBB [oprx16,xysp]		[IDX2]	E0 xb ee ff	fIPrPf	fIPrfP		
SUBD #opr16i	(D) − (M:M+1) ⇒ D	IMM	83 jj kk	PO	OP		ΔΔΔΔ
SUBD opr8a	Subtract Memory from D (A:B)	DIR	93 dd	RPf	RfP		
SUBD opr16a		EXT	B3 hh 11	RPO	ROP		
SUBD oprx0_xysp		IDX	A3 xb	RPf	RfP		
SUBD oprx9,xysp		IDX1	A3 xb ff	RPO	RPO		
SUBD oprx16,xysp		IDX2	A3 xb ee ff A3 xb	fRPP	fRPP		
SUBD [D,xysp] SUBD [oprx16,xysp]		[D,IDX] [IDX2]	A3 xb ee ff	fIfRPf fIPRPf	fIfRfP fIPRfP		
SWI	(SP) − 2 ⇒ SP:	INH	3F	VSPSSPSsP*	VSPSSPSsP*	1	
0111	$RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)};$		J.	(for Reset		'	
	$(SP) - 2 \Rightarrow SP; (Y_H:Y_I) \Rightarrow M_{(SP)}:M_{(SP+1)};$			1	,	, , ,	
	$I(SP) - 2 \Rightarrow SP: (X_{u}:X_{v}) \Rightarrow M_{(SP)}:M_{(SP)+1}$			VfPPP	VfPPP	11-1	
	$(SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)};$						
	$(SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}$						
	1 ⇒ I; (SWI Vector) ⇒ PC						
*The ODI Leter the OW/Let	Software Interrupt		 	 			l
	icrocode sequence for hardware interrupts and unimplemented o						
TAB	(A) ⇒ B Transfer A to B	INH	18 OE	00	00		ΔΔ0-
TAP	(A) ⇒ CCR	INH	B7 02	P	P	ΔΨΔΔ	ΔΔΔΔ
174	Translates to TFR A , CCR	"""	D, 02	-	-		
TBA	(B) ⇒ A	INH	18 OF	00	00		ΔΔ0-
	Transfer B to A						
TBEQ abdxys,rel9	If (cntr) = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
	else Continue to next instruction	(9-bit)		PPO (no			
	Test Counter and Branch if Zero			branch)			
	(cntr = A, B, D, X,Y, or SP)						
TBL oprx0_xysp	$(M) + [(B) \times ((M+1) - (M))] \Rightarrow A$	IDX	18 3D xb	ORfffP	OrrffffP		ΔΔ-Δ
TEE OPING_NYOP	8-Bit Table Lookup and Interpolate	l IDA	10 35 85		0111111		?
						C Bit is u	undefined
	Initialize B, and index before TBL.						IC12
	<ea> points at first 8-bit table entry (M) and B is fractional part</ea>						I
	of lookup value.						
	(no indirect addressing modes or extensions allowed)						
TBNE abdxys,rel9	If (cntr) not = 0, then Branch;	REL	04 lb rr	PPP (branch)	PPP		
•	else Continue to next instruction	(9-bit)		PPO (no			
				branch)			
	Test Counter and Branch if Not Zero (cntr = A, B, D, X,Y, or SP)						
TFR abcdxys,abcdxys	$(r1) \Rightarrow r2 \text{ or}$	INH	B7 eb	P	P		
TT K abcuxys,abcuxys	$\$00:(r1) \Rightarrow r2 \text{ or}$	IINIII	B/ ED	P	Р		
	$(r1[7:0]) \Rightarrow r2$					`	or
						$\Delta \downarrow \Delta \Delta$	ΔΔΔΔ
	Transfer Register to Register						
	r1 and r2 may be A, B, CCR, D, X, Y, or SP						
TDA	(CCR) ⇒ A	INH	B7 20	P	P		
TPA	Translates to TFR CCR ,A	IINII	B / 20	P	P		1

Table A-1. Instruction Set Summary (Sheet 14 of 14)

		Addr Machine Access Detail				
Source Form	Operation	Addr. Mode	Machine Coding (hex)	HCS12 M68HC12	SXHI	NZVC
TRAP trapnum	$ \begin{aligned} &(SP)-2\Rightarrow SP;\\ &RTN_H:RTN_L\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(Y_H:Y_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(X_H:X_L)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-2\Rightarrow SP;\;(B:A)\Rightarrow M_{(SP)}:M_{(SP+1)};\\ &(SP)-1\Rightarrow SP;\;(CCR)\Rightarrow M_{(SP)}\\ &1\Rightarrow I;\;(TRAP\;Vector)\Rightarrow PC \end{aligned} $	INH	18 tn tn = \$30-\$39 or \$40-\$FF	OVSPSSPSsP OfVSPSSPSsP	1	
	Unimplemented opcode trap					
TST opr16a TST oprx0_xysp TST oprx9_xysp TST oprx16,xysp TST [D,xysp] TST [oprx16,xysp] TSTA TSTB	(M) – 0 Test Memory for Zero or Minus (A) – 0 Test A for Zero or Minus (B) – 0 Test B for Zero or Minus	EXT IDX IDX1 IDX2 [D,IDX] [IDX2] INH INH	F7 hh 11 E7 xb E7 xb ff E7 xb ee ff E7 xb ee ff E7 xb ee ff 97 D7	rPO rOP rPf rfp rPO rPO frPP frPP flfrPf flfrfp flPrPf flPrfp O O		ΔΔΟΟ
TSX	(SP) ⇒ X Translates to TFR SP,X	INH	B7 75	P P		
TSY	$(SP) \Rightarrow Y$ Translates to TFR SP,Y	INH	B7 76	P P		
TXS	$(X) \Rightarrow SP$ Translates to TFR X,SP	INH	B7 57	P P		
TYS	(Y) ⇒ SP Translates to TFR Y,SP	INH	В7 67	P P		
WAI	$ \begin{array}{l} (SP) - 2 \Rightarrow SP; \\ RTN_H:RTN_L \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (Y_H:Y_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (X_H:X_L) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 2 \Rightarrow SP; (B:A) \Rightarrow M_{(SP)}:M_{(SP+1)}; \\ (SP) - 1 \Rightarrow SP; (CCR) \Rightarrow M_{(SP)}; \\ WAIT for interrupt \\ \end{array} $	INH	3E	OSSSSsf OSSSfSsf (after interrupt) fVfPPP VfPPP	1	 or or
WAV	$\sum_{i=1}^{B} S_i F_i \Rightarrow \text{Y:D} \text{and} \sum_{i=1}^{B} F_i \Rightarrow \text{X}$ Calculate Sum of Products and Sum of Weights for Weighted Average Calculation Initialize B, X, and Y before WAV. B specifies number of elements. X points at first element in S_i list. Y points at first element in F_i list. All S_i and F_i elements are 8-bits. If interrupted, six extra bytes of stack used for intermediate values	Special	18 3C	Of(frr,ffff)O Off(frr,fffff)O (add if interrupt) SSS + UUUrr, SSSf + UUUrr	?-	? \(? ? \)
wavr	see WAV	Special	3C	UUUrr,fffff UUUrrffffff (frr,ffff)0 (frr,fffff)0	?-	?∆??
pseudo- instruction	Resume executing an interrupted WAV instruction (recover intermediate results from stack rather than initializing them to zero)			(exit + re-entry replaces comma above if interrupted) SSS + UUUrr, SSSf + UUUrr	-	
XGDX	$(D) \Leftrightarrow (X)$ Translates to EXG D, X	INH	B7 C5	P P		
XGDY	$(D) \Leftrightarrow (Y)$ Translates to EXG D, Y	INH	B7 C6	P P		

Instruction Reference

Table A-4. Indexed Addressing Mode Summary

Postbyte Code (xb)	Operand Syntax	Comments
rr0nnnn	,r n,r –n,r	5-bit constant offset n = -16 to +15 rr can specify X, Y, SP, or PC
111rr0zs	n,r –n,r	Constant offset (9- or 16-bit signed) z- 0 = 9-bit with sign in LSB of postbyte (s) 1 = 16-bit if z = s = 1, 16-bit offset indexed-indirect (see below) rr can specify X, Y, SP, or PC
rr1pnnnn	n,-r n,+r n,r- n,r+	Auto predecrement, preincrement, postdecrement, or postincrement; $p = pre-(0)$ or post-(1), $n = -8$ to -1 , +1 to +8 rr can specify X, Y, or SP (PC not a valid choice)
111rr1aa	A,r B,r D,r	Accumulator offset (unsigned 8-bit or 16-bit) aa - 00 = A 01 = B 10 = D (16-bit) 11 = see accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC
111rr011	[n,r]	16-bit offset indexed-indirect rr can specify X, Y, SP, or PC
111rr111	[D,r]	Accumulator D offset indexed-indirect rr can specify X, Y, SP, or PC

Table A-8. Hexadecimal to ASCII Conversion

Hex	ASCII	Hex	ASCII	Hex	ASCII	Hex	ASCII
\$00	NUL	\$20	SP space	\$40	@	\$60	grave
\$01	SOH	\$21	!	\$41	Α	\$61	а
\$02	STX	\$22	" quote	\$42	В	\$62	b
\$03	ETX	\$23	#	\$43	С	\$63	С
\$04	EOT	\$24	\$	\$44	D	\$64	d
\$05	ENQ	\$25	%	\$45	Е	\$65	е
\$06	ACK	\$26	&	\$46	F	\$66	f
\$07	BEL beep	\$27	ʻapost.	\$47	G	\$67	g
\$08	BS <i>back</i> sp	\$28	(\$48	Н	\$68	h
\$09	HT tab	\$29)	\$49	I	\$69	i
\$0A	LF linefeed	\$2A	*	\$4A	J	\$6A	j
\$0B	VT	\$2B	+	\$4B	K	\$6B	k
\$0C	FF	\$2C	, comma	\$4C	L	\$6C	1
\$0D	CR return	\$2D	- dash	\$4D	М	\$6D	m
\$0E	SO	\$2E	. period	\$4E	N	\$6E	n
\$0F	SI	\$2F	/	\$4F	0	\$6F	o
\$10	DLE	\$30	0	\$50	Р	\$70	р
\$11	DC1	\$31	1	\$51	Q	\$71	q
\$12	DC2	\$32	2	\$52	R	\$72	r
\$13	DC3	\$33	3	\$53	S	\$73	s
\$14	DC4	\$34	4	\$54	T	\$74	t
\$15	NAK	\$35	5	\$55	U	\$75	u
\$16	SYN	\$36	6	\$56	V	\$76	V
\$17	ETB	\$37	7	\$57	W	\$77	w
\$18	CAN	\$38	8	\$58	Χ	\$78	x
\$19	EM	\$39	9	\$59	Υ	\$79	у
\$1A	SUB	\$3A	:	\$5A	Z	\$7A	z
\$1B	ESCAPE	\$3B	,	\$5B	[\$7B	{
\$1C	FS	\$3C	<	\$5C	\	\$7C	
\$1D	GS	\$3D	=	\$5D]	\$7D	}
\$1E	RS	\$3E	>	\$5E	۸	\$7E	~
\$1F	US	\$3F	?	\$5F	_ under	\$7F	DEL delete

TP 4 – Carte à microcontrôleur HCS12, modes d'adressage

Objectifs:

- utiliser une carte à microcontrôleur
- analyser une partie du schéma de la carte (cf. annexe)
- tester les différents modes d'adressage du microcontrôleur sous environnement CodeWarrior

1 Carte CML12SDP256

1.1 La carte

Les caractéristiques on chip (sur le microcontrôleur) principales sont les suivantes :

- 12 ko RAM,
- 256 ko flash EEPROM,
- 4 ko EEPROM,
- 89 canaux d'entrées-sorties numériques,
- bus externe multiplexé (adresses et données),
- 2 ports série asynchrones (SCI),
- 3 ports série synchrones (SPI),
- 2 convertisseurs analogiques-numériques 10 bits à 8 entrées,
- timer 16 bits,
- horloge réglable de 4 à 24 MHz.

Le microcontrôleur peut adresser en externe 256 Ko de RAM (circuits U4 et U5 du schéma).

Analysez le décodage d'adresse réalisé par le circuit U9 pour accéder aux parties hautes et basses des mots mémoire 16 bits (feuille 2/2, repère B6) : ses entrées sont A0, LSTRB (indicateur d'adresse impaire) et ECLK (horloge) ; ses sorties sont CS0 et CS1.

Le circuit U10 permet de générer la commande d'écriture ou lecture de la mémoire : ses entrées sont RW (read/write du HCS12) et ECLK (horloge) ; ses sorties sont WE (write enable) et OE (output enable).

1.2 Le plan mémoire

L'espace mémoire adressable par le microcontrôleur de 64 ko est organisé selon le tableau suivant.

Adresses	Type de mémoire	Application
\$0000 - \$0FFF	registres HCS12 / EEPROM 4 ko	accès aux registres du HCS12
\$1000 - \$3FFF	RAM 12 ko	mémoire utilisateur
\$4000 - \$FEFF	flash EEPROM ou RAM	mémoire flash
\$FF00 - \$FFFF	EEPROM	Vecteurs d'interruption, BDM

Cette organisation correspond au mode normal puce seule (normal single chip) et à la configuration du microcontrôleur au reset.

2. Modes d'adressage

2.1 Mode d'adressage inhérent (INH)

Ce mode se reconnait par l'absence d'opérande. Il ne nécessite pas d'accéder à la mémoire externe par les bus d'adresses et de données.

Exemple: INX

Description : l'instruction incrémente le registre X de 1.

2.2 Mode d'adressage immédiat (IMM)

L'opérande de l'instruction utilise une donnée numérique (constante) : le nombre est écrit en le précédant du signe #.

Exemple: LDAA #\$22

Description: l'instruction charge le nombre hexadécimal \$22 dans le registre A.

2.3 Mode d'adressage direct (DIR)

Ce mode est utilisé pour accéder à une donnée dont l'adresse tient sur 1 octet.

Exemple: SUBA \$20

Description : l'instruction soustrait le contenu de l'adresse \$20 du contenu du registre A et place

le résultat dans A.

2.4 Mode d'adressage étendu (EXT)

Ce mode est utilisé pour accéder à une donnée dont l'adresse tient sur 2 octets.

Exemple: ADDD \$1030

Description : l'instruction additionne le contenu des adresses \$1030 : \$1031 au contenu du registre D et place le résultat dans D : dans cette opération, le registre B (partie basse de D) est additionné au contenu de l'adresse \$1031 (partie basse du mot mémoire).

2.5 Mode d'adressage indexé (IDX)

Pour réaliser des programmes de boucles, les registres d'index (X ou Y), de programme PC ou de pile S sont souvent utilisés dans les instructions.

L'adresse effective est calculée en additionnant deux parties : le registre de base et le déplacement. Le déplacement est signé avec 3 formats possibles : 5, 9 ou 16 bits.

Avec les registres X et Y, on peut également utiliser la pré-décrémentation, la post-décrémentation, la pré-incrémentation ou la post-incrémentation. L'incrément ou le décrément est un nombre de 1 à 8 ; le déplacement est alors nul.

Exemple : ADDA \$10,X avec X = \$3000

Description : l'instruction extrait le contenu de l'adresse \$3010, l'additionne au contenu du registre A et place le résultat dans A.

L'adresse effective peut aussi être calculée par indirection avec un registre D ou une adresse mémoire 16 bits : on additionne alors le registre de base avec le déplacement spécifié par le contenu 16 bits. L'utilisation des crochets est obligatoire pour l'écriture de l'opérande.

Exemple: LDAA [D,X] avec D = \$2035, X = \$1000, (\$3035) = \$20, (\$3036) = \$02

Description: l'instruction calcule l'adresse \$1000 + \$2035 soit \$3035, extrait les contenus des adresses \$3035 et \$3036 (soit \$2002), extrait le contenu de l'adresse \$2002 et le place dans le registre A.

2.6 Mode d'adressage relatif (REL)

Ce mode est utilisé dans les instructions de branchement conditionnel (Bcc) ou inconditionnel (JMP). Il permet le changement du registre de programme PC.

Exemple:

\$2000 BNE SUITE \$2002 STAA \$C000

... \$2012 SUITE: INX

Description : l'instruction BNE exécute le branchement si le bit Z du registre d'état est à 0. Le registre PC initialement à \$2002 est additionné d'un déplacement relatif qui est ici \$10 (il remplace le label SUITE) : sa nouvelle valeur est \$2012. Si le bit Z vaut 1, la valeur de PC est inchangée : l'instruction située en \$2002 est exécutée.

3. Travail à réaliser

- a Programme de copie de mémoire :
- précharger une mémoire d'adresse \$1500 avec la valeur \$0A
- effectuer une 1ère boucle qui charge une zone mémoire d'adresses \$1500 à \$1600 avec la valeur \$0A
- effectuer une deuxième boucle à la suite qui effectue la recopie de la zone mémoire d'adresse \$1500 à \$1600 dans la zone mémoire d'adresse \$1800 à \$1900

Indiquez en commentaires les modes d'adressage utilisés.

b - Test:

Une fois le programme de copie de mémoire effectué, demander à votre chargé de TP une feuille de test à compléter et à lui rendre en fin de séance concernant les différents modes d'adressages du HCS12 (polycopié de TP autorisé).

TP 5 – Sous-programmes

Objectifs:

- utiliser un clavier connecté au port H du HCS12
- développer et tester des sous-programmes sous environnement CodeWarrior

1. Clavier

1.1 Description

Le clavier est constitué de 16 touches réparties en matrice de quatre colonnes (reliées aux broches PTH4 à PTH7) et quatre lignes (reliées aux broches PTH0 à PTH3).

Des résistances R internes au port H permettent de fixer le niveau des lignes PTH4 à PTH7 à 0 V au repos.

1.2 Principe de décodage

L'activation d'une ligne à 1 provoque un niveau 1 sur une colonne si une touche de la colonne est appuyée. Dans le cas contraire, les colonnes ont un niveau 0 du fait de la connexion des résistances à la masse.

Par exemple, si PTH0 est mis à 1, la broche PTH5 sera à 1 si on appuie sur la touche « 2 ».

Un procédé de décodage consiste à :

- mettre à 1 la ligne PTH0,
- lire l'état des 4 colonnes,
- si aucune colonne n'est à 1, répéter les 2 actions précédentes avec la ligne suivante.

Le procédé s'arrête pour la colonne et la ligne visitées à 1. Un compteur peut être inséré dans la boucle pour représenter un numéro de touche de 0 à 15 : ce numéro servira d'index à un tableau _CHAINE contenant les 16 symboles des touches (code ASCII).

2 Port d'entrée/sortie H

2.1 Registre de direction des données

Les broches du port H peuvent être configurés en entrée ou en sortie selon le registre de direction des données DDRH. Le fil PTHi sera en entrée si le bit b_i de DDRH est à 0 ; il sera en

2.2 Résistance de relèvement ou d'abaissement

Les résistances qui complètent le clavier sur la figure précédente peuvent être internes au microcontrôleur. Si la résistance est reliée à la masse, on parle de résistance d'abaissement (pull-down en anglais) ; si elle est reliée à l'alimentation V_{CC} , on parle de résistance de relèvement (pull-up en anglais). Deux registres sont à initialiser pour mettre en oeuvre ces résistances : PERH (autorisation) et PPSH (polarité). On donne ci-dessous les spécifications du constructeur.

Address Offset: \$_24 Port H Pull Device Enable Register (PERH)

	Bit 7	6	5	4	3	2	. 1	Bit 0
Read: Write:	PERH7	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
Reset:	0	0	0	0	0	0	0	0

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERH[7:0] — Pull Device Enable Port H

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.

Address Offset: \$ 25 Port H Polarity Select Register (PPSH)

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
Reset:	0	0	0	0	0	0	0	0

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

PPSH[7:0] - Polarity Select Port H

- 1 = Rising edge on the associated port H pin sets the associated flag bit in the PIFH register. A pull-down device is connected to the associated port H pin, if enabled by the associated bit in register PERH and if the port is used as input.
- 0 = Falling edge on the associated port H pin sets the associated flag bit in the PIFH register. A pull-up device is connected to the associated port H pin, if enabled by the associated bit in register PERH and if the port is used as input.

3 Travail à réaliser

On ouvrira sous CodeWarrior un projet *Projet_asm.mcp* (cf. TP n°3). On remplacera dans le projet le fichier *main.asm* par le fichier source *main_clavier.asm*. Ce fichier est accessible dans le dossier FichiersAssembleur (on copiera ce dossier du lecteur Y: dans le lecteur Z:).

On inclura dans *main_clavier.asm* les sous-programmes suivants.

3.1 Programme principal

Le programme principal se présente comme suit :

jsr INITKEY ; initialisation du clavier

jsr GETKEY ; saisie d'une touche du clavier et stockage dans l'accumulateur A jsr LCD_OUT ; affichage à l'écran LCD du caractère stocké dans l'accumulateur A

BGND ; sortie du programme principal

Le sous-programme LCD_OUT n'est pas à réaliser.

3.2 Sous-programme INITKEY d'initialisation

Le sous-programme INITKEY doit configurer le port H, avec PTH0 à PTH3 en sortie (ligne) et PTH4 à PTH7 en entrée (colonne). Les entrées seront configurées avec des résistances d'abaissement à zéro de manière à avoir 0 V au repos en entrée.

3.3 Sous-programme GETKEY de saisie de caractère

Le sous-programme GETKEY sert à indiquer l'appui d'une touche par l'utilisateur. Il envoie un niveau 1 sur les 4 lignes et teste l'appui d'une touche sur les 4 colonnes. S'il n'y a pas de touches appuyée, le sous programme reboucle au début de GETKEY. S'il y a une touche appuyée, le sous programme appelle le sous-programme FINDKEY, puis rend la main au programme principal.

Lorsque l'on écrit dans le port H, il faut effectuer une pause de 1 milliseconde avant de lire à nouveau les valeurs du port H modifiée par l'appui éventuel sur une touche.

On pourra appeler le sous-programme DELAY_1MS existant pour cela.

Il est conseillé de tester le programme bloc par bloc au fur et à mesure de sa création. Pour tester le sous-programme GETKEY, on pourra dans une première étape remplacer l'appel au sous-programme FINDKEY par le stockage d'un caractère quelconque dans l'accumulateur A.

3.4 Sous-programme FINDKEY de décodage de la touche appuyée

La fonction FINDKEY a pour but de récupérer le caractère correspondant à la touche du clavier qui a été appuyée. Cette valeur de caractère est récupérée à partir de la variable _CHAINE et doit être stockée dans l'accumulateur A avant le retour au programme principal.

La variable _CHAINE contient l'adresse du début de la chaîne de caractère "*0#D789C456B123A" qui est écrite dans la mémoire. Pour accéder à un caractère de la chaîne, il va falloir ajouter un « offset » à cette adresse de début de chaîne (exemple : si l'offset vaut 7, le caractère désigné dans la chaîne de caractère est « C », situé à l'adresse _CHAINE + 7).

Le stockage dans l'accumulateur A du caractère sélectionné permet son affichage à l'écran. En effet, la fonction LCD_OUT affiche un caractère sauvegardé dans l'accumulateur A.

Pour calculer cet offset, il est possible de procéder ainsi :

- Mise à 0 de l'offset,
- Si la touche appuyée est située :

```
en colonne n^{\circ} 1 alors offset = offset + 0
```

en colonne n° 2 alors offset = offset + 1

en colonne n° 3 alors offset = offset + 2 en colonne n° 4 alors offset = offset + 3

puis

```
en ligne n^{\circ} 1 alors offset = offset + 12
```

en ligne n° 2 alors offset = offset + 8

en ligne n° 3 alors offset = offset + 4

en ligne n° 4 alors offset = offset + 0

La fonction FINDKEY devra comporter une boucle permettant les opérations suivantes :

- o allumer séparément une à une les 4 lignes,
- o déterminer la colonne qui est passée à l'état 1 (s'il y en a une),
- o mettre à jour l'offset.

Après écriture du programme, compilez le puis lancez le débogueur.

Pour exécuter le programme, utilisez la touche F5 (Start/Continue). Au final, on doit obtenir le fonctionnement suivant : l'appui sur une touche doit provoquer l'affichage du caractère correspondant sur l'afficheur LCD. On pourra aussi vérifier le contenu ASCII de l'accumulateur A (fenêtre *register*).

TP 6 – Interruption

Objectifs:

- déclencher par interruption une action sur le port P du HCS12
- tester des programmes d'interruption logicielle ou matérielle

1. Test des interruptions logicielles

Un programme peut être interrompu par des interruptions (*exceptions*) de type logiciel (*software interrupt*). Ces interruptions provoquent la fin de l'exécution d'un programme en cours : elles peuvent être dues à des erreurs d'exécution d'une instruction, ou bien déclenchées volontairement par des instructions de type TRAP ou SWI (*software interrupt*). Ces interruptions sont non masquables et ont lieu indépendamment de la valeur du bit X ou I du registre d'état. Elles sont moins prioritaires que les interruptions de type *reset*. Lors de l'entrée dans une interruption, le microcontrôleur sauvegarde les registres (X, Y, D, SP, CCR ...) dans la pile et les restaure en quittant l'interruption.

Travail à effectuer:

On souhaite tester une interruption logicielle. Dans le programme principal :

- o Ecrire #\$1234 dans X, #\$5678 dans Y et #\$9009 dans D
- o Ecrire l'instruction SWI qui permettra de lancer une interruption logicielle

Dans la fonction SWI ISR:

- o Ecrire un NOP (instruction qui fait attendre un cycle d'horloge au microcontrôleur)
- o Ecrire l'instruction RTI (Quel est son rôle ?)

En fin de programme:

o Initialiser le vecteur d'interruption *Vswi* avec l'adresse de la fonction d'interruption que l'on souhaite exécuter (fonction *SWI_ISR*). Prendre comme modèle le réglage du vecteur d'interruption *Vreset* qui exécute *Entry* comme modèle.

Test du programme

Compilez et chargez le programme dans le microcontrôleur. Placez un point d'arrêt sur le NOP de la fonction SWI_ISR. Lancez le programme.

Lorsque le programme s'arrête sur le point d'arrêt, quel est l'état de la pile (située en \$3FFE dans la mémoire) ? Écrivez en commentaire dans le programme les différents éléments dans la pile.

2. Réglages du port P

Dans la suite du TP, on souhaite contrôler une roue (programme Nf02Prj.exe qui se trouve dans le répertoire TP6_Executable). Le contrôle de la roue se fait par l'intermédiaire du port P du HCS12. Les caractéristiques du port P sont les suivantes :

PTP0 à PTP2 : valeur de la vitesse est disponible sur 3 bits

PTP3 reçoit un front descendant pour signifier le passage d'un quart de tour de roue,

- le HCS12 envoie une valeur de consigne (4 bits) en sortie PTP4 à PTP7 :

PTP4: incrémentation de vitesse de 1 unité (PTP4 = 1) ou vitesse uniforme (PTP4 = 0),

PTP5: décrémentation de vitesse de 1 unité (PTP5 = 1) ou vitesse uniforme (PTP5 = 0),

PTP6: multiplication par deux de l'incrément ou décrément de vitesse (PTP6 = 1),

PTP7: marche (PTP7 = 0) ou arrêt (PTP7 = 1) de la roue.

Travail à effectuer

Réglage des registres

Initialisation du port P (port de communication avec la roue) (réglez DDRP, PERP et PPSP)

o PTP0 à PTP3 sont des entrées, PTP4 à PTP7 des sorties

o Front montant (donc résistance en « Pull Down ») pour PTP0 à PTP2, Front descendant pour PTP3

3. Interruption matérielle

2.1 Test de l'interruption IRQ

Les interruptions matérielles sont provoquées par des évènements extérieurs. On distingue les interruptions de type masquables (contrôlées par un bit d'un registre particulier) et celles de type non masquables. Ici, nous prenons l'exemple simulé d'un système à microcontrôleur HCS12 qui gère la vitesse de rotation d'une grande roue de fête foraine. On va démarrer la roue grâce à l'interrupteur.

Une entrée IRQ est reliée à un interrupteur à 2 positions (en face avant) : elle est à 1 au repos (position basse de l'interrupteur). Le basculement de l'interrupteur en position haute fait passer IRQ à 0 ; ce front descendant doit conduire à l'exécution d'un programme d'interruption IRQ_ISR (adresse \$1600) avec le plus haut niveau de priorité. Le programme IRQ_ISR doit démarrer la roue.

Travail à effectuer

Réglage du Vecteur d'interruption

On souhaite qu'une interruption générée par l'IRQ (Virq) conduise à l'exécution de la fonction IRQ_ISR (même principe que le vecteur d'interruption Vswi fait en 1^{ère} partie).

Réglage des registres (ne pas oublier CLI et SEI)

Attention, il faut désactiver les interruptions le temps de la modification des registres (SEI pour désactiver les interruptions - CLI pour les réactiver).

Initialisation de l'interruption par IRQ par utilisation de l'interrupteur :

l'IRQ sera détectée sur front descendant ; la broche IRQ est connectée à un circuit logique qui est l'interrupteur de la face avant (réglez INTCR).

Réglages supplémentaires du microcontrôleur (notamment la priorité des interruptions) :

o #\$F2 dans HPRIO, #\$90 dans PUCR, #\$FC dans DDRE

Programmation de la mise en route de la roue sur l'interrupteur

Après le réglage des registres, activez le bit du port P qui permet de bloquer la roue.

Dans le programme qui gère l'interruption sur IRQ, modifiez PTP pour mettre en route la roue.

Exécutez le programme NF02Prj.exe qui affiche la roue.

Compilez et exécutez le programme assembleur et vérifiez que la roue est à l'arrêt.

Déclenchez une interruption matérielle (par l'interrupteur) et vérifiez que la roue se met en route.

2.2 Test de l'interruption sur le port P

Description

La communication entre le PC et le port P microcontrôleur est assurée via le port parallèle.

Création d'un profil de vitesse

En tournant, la roue va générer des fronts descendants sur PTP3 tous les quarts de tour. Ces fronts permettent de contrôler la roue par les interruptions. La roue va effectuer le suivi d'une consigne de vitesse qui évolue de la manière suivante :

Tour 1 à 2 : accélérer jusqu'à la vitesse 4 par pas de 2

Tour 3 : ralentir d'un pas de 1 Tour 4 : accélérer d'un pas de 1

Tours 5 à 6 : ralentir jusqu'à l'arrêt par pas de 2

Le programme d'interruption PTP_ISR (adresse \$1400) doit ainsi générer une consigne sur les sorties PTP4 à PTP6 comme indiquée sur la figure ci-dessous : l'envoi de consigne consiste à comparer le nombre N de quart de tour à des valeurs spécifiques et à mettre sur PTP4 à PTP6 les valeurs demandées.

Travail à effectuer

Réglage du Vecteur d'interruption

Réglez le vecteur d'interruption pour qu'une interruption générée par le port P (*Vportp*) conduise à l'exécution de la fonction *PTP_ISR* (même principe que le vecteur d'interruption *Vswi*).

Réglage des registres (ne pas oublier CLI et SEI)

Initialisation de l'interruption sur le bit 3 du port P (régler PIEP)

o Autorisez les interruptions sur PTP3.

Programmation du profil de roue

La rotation de la roue génère une interruptions sur PTP3 tout les ¼ de tours, la fonction d'interruption du port P sera donc appelée automatiquement tous les ¼ de tours.

Via la fonction d'interruption du port P, contrôlez la rotation de la roue pour qu'elle exécute le profil de vitesse indiqué dans l'énoncé (attention aux remarques qui suivent !!).

Remarques:

Les registres sont réinitialisés à chaque fin d'interruption. Dans la fonction d'interruption du port

P, le compteur qui s'incrémente à chaque appel d'interruption doit donc être une variable mémoire.

Pour réinitialiser l'interruption sur le bit 3 du port P, activez le bit concerné sur PIFP en fin d'interruption. Ecrire 1 sur le bit 3 de PIFP permet de réinitialiser l'interruption sur le bit 3 du port P.

Annexes

Address:\$001F Highest Priority I Interrupt Register (HPRIO)

	Bit 7	6	5	4	3	2	1	Sit 0
Read: Write:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1	0
Reset:	1	1	1	1	0	0	1	0

Read: anytime

Write: only if I mask in CCR = 1

PSEL7 - PSEL1 - Highest priority I interrupt select bits

The state of these bits determines which I bit maskable interrupt will be promoted to highest priority (of the I bit maskable interrupts). To promote an interrupt, the user writes the least significant byte of the associated interrupt vector address to this register. If an unimplemented vector address or a non I bit masked vector address (value higher than \$F2) is written, IRQ (\$FFF2) will be the default highest priority interrupt.

IRQ Control Register (INTCR) _1E Bit 7 6 5 2 Bit 0 0 0 0 0 0 0 IRQE IRQEN Unimplemented Witte 0 n o. o. 0 О

Read: see individual bit descriptions below

Write: see individual bit descriptions below

IRQE - IRQ Select Edge Sensitive Only

Special modes: read or write anytime

Normal and Emulation modes: read anytime, write once

- 1 IRQ configured to respond only to falling edges. Falling edges on the IRQ pin will be detected anytime IRQE - 1 and will be cleared only upon a reset or the servicing of the IRQ interrupt.
- 0 IRQ configured for low level recognition.

IRQEN - External IRQ Enable

Normal, Emulation, and Special modes: read or write anytime

- 1 External IRQ pin is connected to interrupt logic.
- 0 External IRQ pin is disconnected from interrupt logic.

Address:	Base +	\$DC	Pullup Control Register (PUCR)					
	BIT 7	6	5	4	3	2	1	BIT 0
Read:	PUPKE	0	0	PUPEE	0	0	PUPBE	DIIDAE
Write:	FOFRE			POPEE			FUFBE	FUFAE

This register is used to select pull resistors for the pins associated with the core ports. Pull resistors are assigned on a per-port basis and apply to any pin in the corresponding port that is currently configured as an input. The polarity of these pull resistors is determined by chip integration. Please refer to the specific device User's Guide to determine the polarity of these resistors.

This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these accesses will be echoed externally.

NOTE: These bits have no effect when the associated pin(s) are outputs. (The pull resistors are inactive.)

PUPKE - Pull-Up Port K Enable

- 1 Enable pull resistors for Port K input pins.
- 0 Port K pull resistors are disabled.

PUPEE — Pull-Up Port E Enable

- 1 Enable pull resistors for Port E input pins bits 7, 4-0.
- 0 Port E pull resistors on bits 7, 4-0 are disabled.

NOTE: Bits 5 and 6 of Port E have pull resistors which are only enabled during reset.

This bit has no effect on these pins.

PUPBE — Pull-Up Port B Enable

- 1 Enable pull resistors for all Port B input pins.
- 0 Port B pull resistors are disabled.

PUPAE - Pull-Up Port A Enable

1 – Enable pull resistors for all Port A input pins.

Address Offset: \$ 1A Port P Data Direction Register (DDRP)

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	DDRP7	DORP6	DDRP5	DDRP4	DORP3	DDRP2	DORP1	DORPO
Reset	- 0	- 0	- 5	0	- 0	- 0	- 0	0

DDRP[7:0] - Data Direction Port P

- 1 = Associated pin is configured as output.
- 0 = Associated pin is configured as input.

Address Offset: \$_1C Port P Pull Device Enable Register (PERP)

	Blt 7	6	5	4	3	2	1	Bit 0
Read: Write:	PERP7	PERP6	PERPS	PERP4	PERP3	PERP2	PERP1	PERP0
Reset		- 0			0		- 0	0

This register configures whether a pull-up or a pull-down device is activated, if the port is used as input. This bit has no effect if the port is used as output. Out of reset no pull device is enabled.

PERP[7:0] - Pull Device Enable Port P

- 1 = Either a pull-up or pull-down device is enabled.
- 0 = Pull-up or pull-down device is disabled.

Address Offset: \$ 1D Port P Polarity Select Register (PPSP)

	Blt 7	6	5	4	3	2	1	Bit 0
Read: Write:	PP\$P7	PPSP6	PPSP5	PPSP4	PPSP3	PP\$P2	PPSP1	PP\$P0
Reset:	0	0	0	0	0	0	0	0

This register serves a dual purpose by selecting the polarity of the active interrupt edge as well as selecting a pull-up or pull-down device if enabled.

PPSP[7:0] - Polarity Select Port P

- 1 = Rising edge on the associated port P pin sets the associated flag bit in the PIFP register.A pull-down device is connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is used as input.
- 0 = Falling edge on the associated port P pin sets the associated flag bit in the PIFP register. A pull-up device is connected to the associated port P pin, if enabled by the associated bit in register PERP and if the port is used as input.

Address Offset: \$_1E Port P Interrupt Enable Register (PIEP)

	Blt 7	6	5	4	3	2	1	Bit 0
Read: Write:	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0
Reset	0	0	0	0	0	0	0	0

This register disables or enables on a per pin basis the edge sensitive external interrupt associated with port P.

PIEP[7:0] - Interrupt Enable Port P

- 1 = Interrupt is enabled.
- 0 = Interrupt is disabled (interrupt flag masked).

Address Offset: \$ 1F Port P Interrupt Flag Register (PIFP)

		_							
	Blt 7	6	5	4	3	2	1	Bit 0	
Read: Write:	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0	
Reset	0	0	В	0	0	0	0	0	•

Each flag is set by an active edge on the associated input pin. This could be a rising or a falling edge based on the state of the PPSP register. To clear this flag, write "1" to the corresponding bit in the PIFP register. Writing a "0" has no effect.

PIFP[7:0] - Interrupt Flags Port P

1 = Active edge on the associated bit has occurred (an interrupt will occur if the associated enable bit is set)

Writing a "1" clears the associated flag.

0 = No active edge pending.

Writing a "0" has no effect.