LOGIC IN COMPUTER SCIENCE

LICS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

October 14, 2019

Kiel University
Dependable Systems Group

Decision-SAT

Definition

Given a formula in CNF, the **decision-SAT-problem** is to decide whether there exists a satisfying substitution for the variables

Decision-SAT

Definition

Given a formula in CNF, the **decision-SAT-problem** is to decide whether there exists a satisfying substitution for the variables

Theorem (Cook)

SAT ∈ NPC

Proof. omitted

Definition

3 – SAT is the restriction of SAT to 3 literals per clause

Definition

3 – SAT is the restriction of SAT to 3 literals per clause

Theorem

 $3 - SAT \in NPC$

Definition

3 – SAT is the restriction of SAT to 3 literals per clause

Theorem

 $3 - SAT \in NPC$

Proof:

O polynomial-time verifier can check the satisfiability

Definition

3 – SAT is the restriction of SAT to 3 literals per clause

Theorem

 $3 - SAT \in NPC$

- Opolynomial-time verifier can check the satisfiability
- reduction-plan: SAT $\leq_v 3$ SAT

Proof of $3 - SAT \in NPC$

Given
$$C_i = \bigvee_{i \in [k]} y_i$$
 in F with $y_i \in \{x_i, \overline{x}_i\}$ and $a_i = \bigvee_{j=i+1}^n y_j$

$$\bigcirc f: \Sigma^* \to \Sigma^*; F \mapsto F_3$$
 with

Proof of $3 - SAT \in NPC$

Given
$$C_i = \bigvee_{i \in [k]} y_i$$
 in F with $y_i \in \{x_i, \overline{x}_i\}$ and $a_i = \bigvee_{j=i+1}^n y_j$

- $\bigcirc f: \Sigma^* \to \Sigma^*; F \mapsto F_3 \text{ with }$
- $\bigcirc F_3 = \bigwedge_{i \in [n]} C_3^i$

Proof of $3 - SAT \in NPC$

Given
$$C_i = \bigvee_{i \in [k]} y_i$$
 in F with $y_i \in \{x_i, \overline{x}_i\}$ and $a_i = \bigvee_{j=i+1}^n y_j$

- $f: \Sigma^* \to \Sigma^*; F \mapsto F_3$ with
- $\bigcirc F_3 = \bigwedge_{i \in [n]} C_3^i$
- $\bigcirc C_3^i = (y_1 \lor y_2 \lor a_1) \land \left(\bigwedge_{\ell \in [k-3]} (\overline{a}_{\ell} \lor y_{\ell+1} \lor a_{\ell+1}) \right) \land (\overline{a}_{k-3} \lor y_{k-1} \lor y_k)$

Definition

G = (V, E) undirected graph, a $k \in \mathbb{N}$, decide whether G has a clique on k nodes, i.e. k of G's nodes form a complete subgraph.

Definition

G = (V, E) undirected graph, a $k \in \mathbb{N}$, decide whether G has a clique on k nodes, i.e. k of G's nodes form a complete subgraph.

Theorem

 $Clique \in NPC$

Definition

G = (V, E) undirected graph, a $k \in \mathbb{N}$, decide whether G has a clique on k nodes, i.e. k of G's nodes form a complete subgraph.

Theorem

 $Clique \in NPC$

○ plan: $3 - SAT \le_p Clique$

Definition

G = (V, E) undirected graph, a $k \in \mathbb{N}$, decide whether G has a clique on k nodes, i.e. k of G's nodes form a complete subgraph.

Theorem

 $Clique \in NPC$

- plan: $3 SAT \le_p Clique$
- \bigcirc x_1, \ldots, x_n boolean variables, $C = (C_1, \ldots, C_m)$ with $C_i = z_i^{(1)} \lor z_i^{(2)} \lor z_i^{(3)}$ for the literals $z_i^{(j)}$

Definition

G = (V, E) undirected graph, a $k \in \mathbb{N}$, decide whether G has a clique on k nodes, i.e. k of G's nodes form a complete subgraph.

Theorem

$Clique \in NPC$

- plan: $3 SAT \le_p Clique$
- \bigcirc x_1, \ldots, x_n boolean variables, $C = (C_1, \ldots, C_m)$ with $C_i = z_i^{(1)} \lor z_i^{(2)} \lor z_i^{(3)}$ for the literals $z_i^{(j)}$
- G := (V, E) with $V = [m] \times [3]$ and $E = \{\{(i, j), (k, \ell)\} | i \neq k \land z_i^{(j)} \neq \overline{z}_{\iota}^{(\ell)}\}$

Hamilton path

Definition

G = (V, E) undirected graph, decide whether there exists a Hamilton path in G, i.e. a path visiting all nodes extactly once

Hamilton path

Definition

G = (V, E) undirected graph, decide whether there exists a Hamilton path in G, i.e. a path visiting all nodes extactly once

Theorem

 $HamiltonPath \in NPC$

Travelling Salesman Problem

Definition

Consider n cities which are connected via streets. Taking a street s costs toll c(s) for a cost-function c. Is there a path for a travelling salesman visiting all cities with costs at most m?

Travelling Salesman Problem

Definition

Consider n cities which are connected via streets. Taking a street s costs toll c(s) for a cost-function c. Is there a path for a travelling salesman visiting all cities with costs at most m?

Theorem

 $TSP \in NPC$

Definition

G = (V, E) undirected graph, $f : V \rightarrow [k]$ valid coloring function iff $f(u) \neq f(v)$ for all $\{u, v\} \in E$; decide whether such an f exists for a given k or not.

Definition

G = (V, E) undirected graph, $f : V \rightarrow [k]$ valid coloring function iff $f(u) \neq f(v)$ for all $\{u, v\} \in E$; decide whether such an f exists for a given k or not.

Theorem

 $GraphColouring \in NPC$

Definition

G = (V, E) undirected graph, $f : V \rightarrow [k]$ valid coloring function iff $f(u) \neq f(v)$ for all $\{u, v\} \in E$; decide whether such an f exists for a given k or not.

Theorem

 $GraphColouring \in NPC$

○ plan: $3 - SAT \le_p graph-colouring$

Definition

G = (V, E) undirected graph, $f : V \rightarrow [k]$ valid coloring function iff $f(u) \neq f(v)$ for all $\{u, v\} \in E$; decide whether such an f exists for a given k or not.

Theorem

GraphColouring ∈ NPC

- plan: $3 SAT \le_p graph-colouring$
- given $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$

Definition

G = (V, E) undirected graph, $f : V \rightarrow [k]$ valid coloring function iff $f(u) \neq f(v)$ for all $\{u, v\} \in E$; decide whether such an f exists for a given k or not.

Theorem

GraphColouring ∈ NPC

- plan: $3 SAT \le_p graph-colouring$
- \bigcirc given $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$
- $V = \{v_1, \dots, v_n, x_1, \dots, x_n, \overline{x}_1, \dots, \overline{x}_n, C_1, \dots, C_m\} \text{ and }$ $E = \{(v_i, v_j) | i \neq j\} \cup \{(v_i, x_j), (v_i, \overline{x}_i) | i \neq j\} \cup \{(x_i, \overline{x}_i) | i \in [n]\} \cup \{(x_i, C_i) | x_i \notin C_i\} \cup \{(\overline{x}_i, C_i) | \overline{x}_i \notin C_i\}$

Easy Instances

Lemma

2-Colouring is in P, i.e. find a 2-colouring in polynomial time

Lemma

2 – SAT is in P, i.e. find a satisfying substitution in polynomial time

Knapsack-Problem, Rucksack-Problem

Definition

Consider k goods with values a_1, \ldots, a_k and weight g_1, \ldots, g_k , decide whether there exists a $M \subseteq [k]$ with $\sum_{i \in M} g_i \leq G$ and $\sum_{i \in M} a_i \geq A$ for given $A, G \in \mathbb{N}$

Knapsack-Problem, Rucksack-Problem

Definition

Consider k goods with values a_1, \ldots, a_k and weight g_1, \ldots, g_k , decide whether there exists a $M \subseteq [k]$ with $\sum_{i \in M} g_i \leq G$ and $\sum_{i \in M} a_i \geq A$ for given $A, G \in \mathbb{N}$

Theorem

 $RSP \in NPC$

 \bigcirc plan: 3 − SAT \leq_p RSP

- plan: $3 SAT \le_p RSP$
- given: $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$

Proof of RSP ∈ NPC

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, \dots, x_n\}, C = \{C_1, \dots, C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)

Proof of RSP ∈ NPC

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, \dots, x_n\}, C = \{C_1, \dots, C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)
- $\bigcirc A := \underbrace{4 \dots 4}_{m \text{ times}} \underbrace{1 \dots 1}_{n \text{ times}}$

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)
- $\bigcirc \ A := \underbrace{4 \dots 4}_{1 \dots 1} \underbrace{1 \dots 1}_{1 \dots 1}$

$$\bigcirc \ a_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n \text{ with}$$

$$\alpha_j = \begin{cases} 1 & \text{if } x_i \in C_j, \\ 0 & \text{if } x_i \notin C_j \end{cases}$$

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)

$$\bigcirc$$
 $A := \underbrace{4 \dots 4}_{1 \dots 1} \underbrace{1 \dots 1}_{1 \dots 1}$

$$\bigcirc a_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n \text{ with}$$

$$\int 1 \quad \text{if } x_i \in C_j,$$

$$\alpha_j = \begin{cases} 1 & \text{if } x_i \in C_j, \\ 0 & \text{if } x_i \notin C_j \end{cases}$$

$$0 b_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n \text{ with }$$

$$1 \text{ if } \overline{x}_i \in C_j,$$

$$\alpha_j = \begin{cases} 1 & \text{if } \overline{x}_i \in C_j, \\ 0 & \text{if } \overline{x}_i \notin C_j \end{cases}$$

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, ..., x_n\}, C = \{C_1, ..., C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)

$$\bigcirc$$
 $A := \underbrace{4 \dots 4}_{1 \dots 1} \underbrace{1 \dots 1}_{1 \dots 1}$

$$0 \quad a_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n \text{ with}$$

$$0 \quad \text{if } x_i \in C_j,$$

$$\alpha_j = \begin{cases} 1 & \text{if } x_i \in C_j, \\ 0 & \text{if } x_i \notin C_j \end{cases}$$

$$\bigcirc b_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n \text{ with}$$

$$\alpha_j = \begin{cases} 1 & \text{if } \overline{x}_i \in C_j, \\ 0 & \text{if } \overline{x}_i \notin C_j \end{cases}$$

$$c_j = 0_1 \dots 0_{j-1} 1_j 0_{j+1} \dots 0_m 0_1 \dots 0_n$$

- plan: $3 SAT \le_p RSP$
- \bigcirc given: $X = \{x_1, \dots, x_n\}, C = \{C_1, \dots, C_m\}$
- \bigcirc w.l.o.g. A = G, $a_i = g_i$ (this problem NPC \Rightarrow general, too)

$$\bigcirc$$
 $A := \underbrace{4 \dots 4}_{1 \dots 1} \underbrace{1 \dots 1}_{1 \dots 1}$

$$\alpha_j = \begin{cases} 1 & \text{if } x_i \in C_j, \\ 0 & \text{if } x_i \notin C_j \end{cases}$$

$$b_i = \alpha_1 \dots \alpha_m 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_n$$
 with

$$\alpha_j = \begin{cases} 1 & \text{if } \overline{x}_i \in C_j, \\ 0 & \text{if } \overline{x}_i \notin C_j \end{cases}$$

$$c_i = 0_1 \dots 0_{i-1} 1_i 0_{i+1} \dots 0_m 0_1 \dots 0_n$$

$$\bigcirc d_j = 2c_j$$

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Theorem

Partition ∈ NPC

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Theorem

Partition ∈ NPC

Proof:

 \bigcirc plan: RSP \leq_p Partition

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Theorem

Partition ∈ NPC

- \bigcirc plan: RSP ≤_p Partition
- \bigcirc $I = (a_1, \ldots, a_n, a_1, \ldots, a_n, A, A)$ RSP-instance

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Theorem

Partition ∈ NPC

- plan: RSP \leq_p Partition
- \bigcirc $I = (a_1, \dots, a_n, a_1, \dots, a_n, A, A)$ RSP-instance
- $\circ S := \sum_{i \in [n]} a_i, a_{n+1} := S A + 1, a_{n+2} := A + 1$

Definition

Given $I = \{a_1, \dots, a_n\} \subseteq \mathbb{N}$ decide whether there exists $T \subseteq [n]$ with $\sum_{i \in T} a_i = \sum_{i \in [n] \setminus T} a_i$

Theorem

Partition ∈ NPC

- plan: RSP \leq_p Partition
- \bigcirc $I = (a_1, \dots, a_n, a_1, \dots, a_n, A, A)$ RSP-instance
- \circ $S := \sum_{i \in [n]} a_i, a_{n+1} := S A + 1, a_{n+2} := A + 1$
- \bigcirc Partition-instance (a_1, \ldots, a_{n+2})

Binpacking-Problem

Definition

Given $a_1, \ldots, a_n, b, k \in \mathbb{N}$ decide whether there exists $\dot{\bigcup}_{i \in J[k]} I_i = [n]$ with $\sum_{i \in I_i} a_i \leq b$

Binpacking-Problem

Definition

Given $a_1, \ldots, a_n, b, k \in \mathbb{N}$ decide whether there exists $\dot{\bigcup}_{i \in [[k]} I_i = [n]$ with $\sum_{i \in I_i} a_i \leq b$

Theorem

Binpacking ∈ NPC

P-Problems on Graphs

Lemma

Determining the minimal-spanning-tree or the shortest-path-tree in a given undirected graph is in P

P-Problems on Graphs

Lemma

Determining the minimal-spanning-tree or the shortest-path-tree in a given undirected graph is in P

Proof:

 $\, \bigcirc \,$ the Kruskal- resp. the Dijkstra-algorithm solve the problem

NP-Problems on Graphs

Definition

Given an undirected graph G = (V, E), find a minimal

- \bigcirc vertex cover, i.e. find $C \subseteq V$ such that
 - $\forall \{u,v\} \in E: \{u,v\} \cap C \neq \emptyset$
- set cover, i.e. find $C \subseteq E$ such that $\forall v \in V \exists e \in C : v \in e$

NP-Problems on Graphs

Definition

Given an undirected graph G = (V, E), find a minimal

- vertex cover, i.e. find $C \subseteq V$ such that $\forall \{u, v\} \in E : \{u, v\} \cap C \neq \emptyset$
- \bigcirc set cover, i.e. find $C \subseteq E$ such that $\forall v \in V \exists e \in C : v \in e$

VertexCover, SetCover, Clique, IndependentSet (complement of Clique) are in NPC

