Discrete Curvature Computation Work Report

MinliangLIN

November 9, 2018

Outline

1 fxzlib of curvature

2 problems

What is curvature?

- A number indicating how blend a curve is, which lays on surface
- How fast does a curve leave the tagent plane?

Motivation

controlling the direction and size of quadrangulation

What is curvature

 \blacksquare A quadratic form of tagent vector X^TBX

What is curvature

- \blacksquare A quadratic form of tagent vector X^TBX
- \blacksquare B is a linear map / tensor from dX to dN

What is curvature

- lacksquare A quadratic form of tagent vector X^TBX
- lacksquare B is a **linear map / tensor** from dX to dN
- lacktriangle mean curvature $\kappa_H = tr(B)/2$

- lacktriangle multiply by normal vector $\mathbf{K}(\mathbf{x}) = \kappa_H \mathbf{n}$
- $\int \int_{\mathcal{A}_M} \mathbf{K}(\mathbf{x}) dA = \frac{1}{2} \sum_{j \in N_1(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{x}_i \mathbf{x}_j)$

- lacktriangle multiply by normal vector $\mathbf{K}(\mathbf{x}) = \kappa_H \mathbf{n}$

- lacktriangle multiply by normal vector $\mathbf{K}(\mathbf{x}) = \kappa_H \mathbf{n}$

- lacktriangle multiply by normal vector $\mathbf{K}(\mathbf{x}) = \kappa_H \mathbf{n}$
- $\int \int_{\mathcal{A}_M} \mathbf{K}(\mathbf{x}) dA = \frac{1}{2} \sum_{j \in N_1(i)} (\cot \alpha_{ij} + \cot \beta_{ij}) (\mathbf{x}_i \mathbf{x}_j)$

How to get the tensor/matrix of vertex?

$$\blacksquare B = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

- sampling along different direction
- least square fitting the data constrain to mean curvature

How to get the tensor/matrix of vertex?

$$\blacksquare B = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

- sampling along different direction
- least square fitting the data constrain to mean curvature

$$E(a,b,c) = \sum_{j} w_{j} (\mathbf{d}_{i,j}^{T} B \mathbf{d}_{i,j} - \kappa_{i,j}^{N})^{2} \ s.t. \ a + c = 2\kappa_{H}, \ \underline{ac} = b^{2} \underline{\kappa_{G}}$$

Problems

- Some pontential trouble makers
 - **1** Hard constrain of κ_H is replaced by soft constrain.
 - w_j s are not used
 - 3 Area of computating κ_H is just barycenter area, and cotangents of obtuse angles are not handled, which may cause some negative weight of summation of κ_H .
 - [MDSB03] states that "the curvature values computed from the lesast squares are often less accurate in practice".
 - **5** We compute curvature of facet as the average of vertex with uniform weight

result is bad when tessellation is irregular

result is bad when tessellation is irregular

result is bad when tessellation is irregular

reflection

result is bad when tessellation is irregular

result is bad when tessellation is irregular

result is bad when tessellation is irregular

burst

result is bad when tessellation is irregular

spreading

Ask more questions

- Pipeline:
 - $weight1*principal_curvature + weight2*feature_line \rightarrow constrain \rightarrow metric \rightarrow frame_field \rightarrow quad$
- How to reduce weight of bad *principal_curvature*?
 - conflict with feature
 - 2 "flat/sphere like" region current solution: $weight = min(|e^{|pc_1-pc_2|}-1|,100)$, still fail on the previous big triangle.
 - 3 other solution: subdivide or other way to change the bad tessellation.

Ask more questions

- Pipeline:
 - $weight1*principal_curvature + weight2*feature_line \rightarrow constrain \rightarrow metric \rightarrow frame_field \rightarrow quad$
- How to reduce weight of bad *principal_curvature*?
 - conflict with feature
 - 2 "flat/sphere like" region current solution: $weight = min(|e^{|pc_1-pc_2|}-1|,100)$, still fail on the previous big triangle.
 - 3 other solution: subdivide or other way to change the bad tessellation.
- what is the difference between *metric* and *frame_field*?

Other burst

Reference

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H Barr, *Discrete differential-geometry operators for triangulated 2-manifolds*, Visualization and mathematics III, Springer, 2003, pp. 35–57.