Basic Analysis 2015 — Solutions of Tutorials

Section 3.1

Tutorial 3.1.1.

1. Prove from the definitions that (a)
$$2 + x + x^2 \to 8$$
 as $x \to 2$, (b) $\frac{1}{x-2} \to -\frac{2}{3}$ as $x \to \frac{1}{2}$, (c) $\lim_{x \to 1^-} \sqrt{1-x} = 0$.

Proof. (a) Let $f(x) = 2 + x + x^2$. Then

$$|f(x) - 8| = |2 + x + x^2 - 8| = |x^2 + x - 6|$$

$$= |(x - 2)(x + 3)| = |x - 2| |x - 2 + 5|$$

$$\le |x - 2|(|x - 2| + 5).$$

For $|x - 2| \le 1$ it follows that

$$|f(x) - 8| \le |x - 2|(1 + 5) = 6|x - 2|. \tag{1}$$

Now let $\varepsilon > 0$ and put

$$\delta = \min\left\{1, \frac{\varepsilon}{6}\right\}.$$

For $0 < |x - a| < \delta$ it follows from (1) that

$$|f(x) - 2| \le 6|x - 2| < 6\delta \le 6\frac{\varepsilon}{6} = \varepsilon.$$

Hence $2 + x + x^2 \rightarrow 8$ as $x \rightarrow 2$.

(b) Let
$$g(x) = \frac{1}{x-2}$$
. Then

$$\left| g(x) + \frac{2}{3} \right| = \left| \frac{3 + 2(x - 2)}{3(x - 2)} \right| = \left| \frac{2x - 1}{3(x - 2)} \right|$$
$$= \frac{2}{3} \frac{|x - \frac{1}{2}|}{|x - 2|}$$

and

$$|x-2| = \left| \left(x - \frac{1}{2} \right) - \frac{3}{2} \right| \ge \frac{3}{2} - \left| x - \frac{1}{2} \right|.$$

For $|x - \frac{1}{2}| \le \frac{1}{2}$ it follows that $|x - 2| \ge \frac{3}{2} - \frac{1}{2} = 1$. Now let $\varepsilon > 0$ and put

$$\delta = \min\left\{\frac{1}{2}, \varepsilon\right\}.$$

For $0 < |x - a| < \delta$ it follows that

$$\left| g(x) + \frac{2}{3} \right| \le \frac{2}{3} \left| x - \frac{1}{2} \right| < \frac{2}{3} \varepsilon < \varepsilon.$$

Hence
$$\frac{1}{x-2} \rightarrow -\frac{2}{3}$$
 as $x \rightarrow \frac{1}{2}$.

(c) Let $h(x) = \sqrt{1-x}$. Let $\varepsilon > 0$ and put $\delta = \min\{1, \varepsilon^2\}$. Then it follows for $x \in (1-\delta, 1)$ that

$$|h(x)| = \sqrt{1-x} < \sqrt{\delta} \le \varepsilon.$$

Hence
$$\lim_{x \to 1^-} \sqrt{1-x} = 0$$
.

2. By negating the definition of limit of a function show that the statement $f(x) \neq L$ as $x \rightarrow a$ is equivalent to the

 $\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \text{ with } 0 < |x - a| < \delta \text{ such that } |f(x) - L| \ge \varepsilon.$

Proof. This follows immediately from the following, where X is a set and A(x) is a statement for each $x \in X$:

$$\neg(\forall\,x\in X\ A(x))\Leftrightarrow \exists\,x\in X\ \neg A(x),$$

$$\neg(\exists \ x \in X \ A(x)) \Leftrightarrow \forall \ x \in X \ \neg A(x).$$

3. For $x \in \mathbb{R} \setminus \{0\}$ let $f(x) = \sin \frac{1}{x}$. Prove that f does not tend to any limit as $x \to 0$.

Proof. Let $\varepsilon = \frac{1}{2}$ and let $\delta > 0$. Then there is $n \in \mathbb{N}$ such that $n > \frac{1}{2\pi\delta}$.

Putting $x = \frac{1}{2\pi n}$ we have $x \in (0, \delta)$, and putting $y = \frac{1}{\pi \left(2n + \frac{1}{2}\right)}$ we have $y \in (0, \delta)$.

Then

$$f(y) - f(x) = \sin\left(\pi\left(2n + \frac{1}{2}\right)\right) - \sin(2\pi n) = 1 - 0 = 1,$$

and for each $L \in \mathbb{R}$ we have

$$2\varepsilon = 1 = |f(y) - f(x)| = |(f(y) - L) - (f(x) - L)|$$

$$\leq |f(y) - L| + |f(x) - L|,$$

so that $|f(y) - L| \ge \varepsilon$ or $|f(x) - L| \ge \varepsilon$. By Question 2 of this tutorial, it follows that f does not tend to any limit as $x \to 0$.

4. Let $f(x) = x - \lfloor x \rfloor$. For each integer n, find $\lim_{x \to n^-} f(x)$ and $\lim_{x \to n^+} f(x)$ if they exist.

Proof. For $x \in (n-1, n)$, $x - \lfloor x \rfloor = x - (n-1)$.

Let $\varepsilon > 0$ and put $\delta = \min\{1, \varepsilon\}$. Then $x \in (n - \delta, n)$ shows that $x \in (n - 1, n)$, and therefore

$$|x - |x| - 1| = |x - (n - 1) - 1| = n - x < \delta,$$

so that $\lim_{x \to \infty} f(x) = 1$.

For $x \in (n, n + 1)$, x - |x| = x - n.

Let $\varepsilon > 0$ and put $\delta = \min\{1, \varepsilon\}$. Then $x \in (n, n + \delta)$ shows that $x \in (n, n + 1)$, and therefore

$$|x - \lfloor x \rfloor| = x - n < \delta,$$

so that $\lim_{x \to n^+} f(x) = 0$.