Introduction to Algorithms

Meng-Tsung Tsai

12/10/2019

Linear Programming

Your farm can produce two popular products:

strawberry milk and strawberry yogurt.

The following table shows the amount of ingredients needed to produce each product.

milk	sugar	strawberry	product
2 units -	- 2 units	+ 5 units =	1 liter of S-milk
1 unit -	7 units	+ 6 units =	= 1 liter of S-yogurt

Every day in your farm you can gather [1] 5 units of milk, [2] 14 units of sugar, and [3] 15 units of strawberry.

The price of strawberry milk is \$200/liter, and the price of strawberry yogurt is \$250/liter.

Devise a plan to produce strawberry milk and yogurt so that:

- (1) the amount of used ingredients \leq the capacity that your farm can produce.
- (2) the profit is maximized.

Every day in your farm you can gather [1] 5 units of milk, [2] 14 units of sugar, and [3] 15 units of strawberry.

The price of strawberry milk is \$200/liter, and the price of strawberry yogurt is \$250/liter.

Suppose that your plan is to produce X liters of S-milk and Y liters of S-yogurt every day.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

[3]
$$5 X + 6 Y \le 15$$

[4]
$$X \ge 0, Y \ge 0$$
.

```
milk sugar strawberry product

2 units + 2 units + 5 units = 1 liter of S-milk

1 unit + 7 units + 6 units = 1 liter of S-yogurt
```

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

[3]
$$5 X + 6 Y \le 15$$

In the grayed region (feasible region), every point represents a feasible solution.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

[1]
$$2 X + Y \le 5$$

[2] $2 X + 7 Y \le 14$

$$[3]$$
 5 X + 6 Y \leq 15

[4] $X \ge 0, Y \ge 0$.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

[3]
$$5 X + 6 Y \le 15$$

[4] $X \ge 0, Y \ge 0$.

If we draw the lines: 200X+250Y = z for every z, some of them touches the feasible region.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

$$[3]$$
 5 X + 6 Y \leq 15

[4] $X \ge 0, Y \ge 0$.

The line ℓ : 200X+250Y=z so that z is maximized and ℓ touches the feasible region is our target.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

$$[3]$$
 5 X + 6 Y \leq 15

[4] $X \ge 0, Y \ge 0$.

Such an optimal line ℓ must touch a vertex or an edge. In the latter case, it still touches some vertex.

Then, the problem can be formulated as maximizing 200 X + 250 Y subject to

$$[1] 2 X + Y \le 5$$

$$[2] 2 X + 7 Y \le 14$$

[3]
$$5 X + 6 Y \le 15$$

[4] $X \ge 0, Y \ge 0$.

Such an optimal line ℓ must touch a vertex or an edge. In the latter case, it still touches some vertex.

$$200X+250Y = 0$$
 $200X+250Y = 1000$ $(15/7, 5/7)$

Solution: Pick a vertex in the feasible region that maximizes the objective function.

It is the problem of optimizing a linear objective function subject to a set of linear constraints. Equivalently, we can use the following form to represent all the problem instances.

maximize $\sum_{1 \leq j \leq n} c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j 's, a_{ij} 's, and b_i 's are constants.

It is the problem of optimizing a linear objective function subject to a set of linear constraints. Equivalently, we can use the following form to represent all the problem instances.

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

In contrast, to minimize an objective function $\sum_{1 \le j \le n} d_j x_j$, one can rewrite it as maximizing $\sum_{1 \le j \le n} -d_j x_j$.

It is the problem of optimizing a linear objective function subject to a set of linear constraints. Equivalently, we can use the following form to represent all the problem instances.

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

To add a constraint that $\sum_{1 \leq j \leq n} d_j x_j \geq e_i$, one can add an alternative constraint $-\sum_{1 \leq j \leq n} d_j x_j \leq -e_i$.

It is the problem of optimizing a linear objective function subject to a set of linear constraints. Equivalently, we can use the following form to represent all the problem instances.

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

To add a constraint that $\sum_{1 \le j \le n} d_j x_j = e_i$, one can add two alternative constraints $\sum_{1 \le j \le n} d_j x_j \le e_i$ and $-\sum_{1 \le j \le n} d_j x_j \le -e_i$.

It is the problem of optimizing a linear objective function subject to a set of linear constraints. Equivalently, we can use the following form to represent all the problem instances.

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

There are software packages can solve LP.

Algorithms for LP

	simplex	ellipsoid method	interior-point method
analytically	exponential- time in the worst case	polynomial-time	polynomial-time
in practice	fast in practice	slow in practice	fast for large n, m

GLPK (GNU Linear Programming Kit) contains the implementations of the above algorithms.

Linear Programming in Low Dimensions

LP in low dimensions

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j 's, a_{ij} 's, and b_i 's are constants, and n = O(1).

maximize cx

subject to $a_i x \le b_i$ for i = 1, 2, ..., m

where c, ai's, and bi's are constants.

maximize cx

subject to $a_i x \le b_i$ for i = 1, 2, ..., m

where c, a_i's, and b_i's are constants.

feasible region (the intersection)

maximize cx

subject to $a_i x \le b_i$ for i = 1, 2, ..., m

where c, ai's, and bi's are constants.

feasible region (the intersection)

maximize $c_1x_1+c_2x_2$

subject to $a_{i1}x_1 + a_{i2}x_2 \le b_i$ for i = 1, 2, ..., m

where c₁, c₂, a_{i1}'s, a_{i2}'s, and b_i's are constants.

maximize $c_1x_1+c_2x_2$

subject to $a_{i1}x_1 + a_{i2}x_2 \le b_i$ for i = 1, 2, ..., m

where c_1 , c_2 , a_{i1} 's, a_{i2} 's, and b_i 's are constants.

feasible region (the intersection)

Can the intersection be found in O(m) time?

The intersection cannot be found in O(m) time in comparison-based model

Otherwise, the upper hull in the primal plane can be found in O(m) time, where m denotes # of points in the primal plane.

If we ignore a constraint H whose halfspace contains v', then v' = v.

objective function c^Tx

objective function c^Tx

If we ignore a constraint H' whose hyperplane doesn't contains v', then $v' \neq v$.

objective function c^Tx

However, in this case, we know that the optimal vertex v is on the hyperplane described by H'.

If v is on some hyperplane h

If v is on some hyperplane h

objective function c^Tx

We then project other constraints and the objective function onto h, and solve LP in 1-D case.

If v is on some hyperplane h

We then project other constraints and the objective function onto h, and solve LP in 1-D case.

Pseudocode

```
LP(m, d, c) { // Given an LP of m constraints in d dimension,
return a point v so that c<sup>T</sup>v is maximized.
  H \leftarrow a randomly picked constraint;
  if((v' \leftarrow LP(m-1, d, c))) contained in the halfspace of H){
     return v';
  }else{
     h \leftarrow the hyperplane described by H;
     return LP(m-1, d-1, c); // the m-1 constraints and the
     objective function are projected on h
```

The optimal vertex v is the intersection point of d hyperplanes. Hence, the else-case happens with probability d/m.

Running time

Let T(d, m) denotes the expected running time of LP(m, d, c).

$$T(d,m) \leq \begin{cases} O(m) & \text{if } d = 1\\ O(d) & \text{if } m = 1\\ T(d,m-1) + O(d) + \frac{d}{m}O(dm) + \frac{d}{m}T(d-1,m-1) & \text{otherwise} \end{cases}$$

By the substitution method, one can show that T(d, m) = O(d!m).

There are some degenerate cases not covered in the slides. If interested, please refer to "Small-Dimensional Linear Programming and Convex Hulls Made Easy" by R. Seidel.

Algorithms for LP

	simplex	ellipsoid method	interior-point method	Seidel's algorithm
analytically	exponential- time in the worst case	polynomial- time	polynomial- time	expected linear time for $n = O(1)$
in practice	fast in practice	slow in practice	fast for large n, m	fast for small dimension

Convex Sets

Convex Sets

We say a point w is a convex combination of points u and v if:

 $w = \alpha u + (1-\alpha)v$ for some real number α in [0, 1].

Let P be a point set in \mathbb{R}^d . We say P is a convex set if:

for any two points u, v in P, if w is a convex combination of u and v, then w is in P.

Convex Sets

We say a point w is a convex combination of points u and v if:

 $w = \alpha u + (1-\alpha)v$ for some real number α in [0, 1].

Let P be a point set in \mathbb{R}^d . We say P is a convex set if:

for any two points u, v in P, if w is a convex combination of u and v, then w is in P.

What is a linear combination?

Intersection of Convex Sets

Intersection of Convex Sets

The intersection of convex sets is a convex set.

Halfspace is a convex set

Halfspace is a convex set

The intersection of halfspaces is a convex set. The feasible region of LP is the intersection of halfspaces, and thus the feasible region is a convex set, a polyhedron.

Algebraic view

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where cj's, aij's, and bi's are constants.

Algebraic view

 $maximize \ \textstyle \sum_{1 \leq j \leq n} \ c_j x_j$

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

If x and y both satisfy the m constraints, we have:

(1)
$$\alpha \sum_{1 \le j \le n} a_{ij} x_j \le \alpha b_i$$
 for $i = 1, 2, ..., m$
(2) $(1-\alpha) \sum_{1 \le j \le n} a_{ij} y_j \le (1-\alpha) b_i$ for $i = 1, 2, ..., m$

$$\Rightarrow \sum_{1 \le j \le n} a_{ij} (\alpha x_j + (1 - \alpha) y_j) \le b_i$$

(any convex combination of x and y is a feasible solution)

Algebraic view

maximize $\sum_{1 \leq j \leq n} c_j x_j$

Does the same argument applies to any linear combination? Why?

subject to $\sum_{1 \le j \le n} a_{ij} x_j \le b_i$ for i = 1, 2, ..., m

where c_j's, a_{ij}'s, and b_i's are constants.

If x and y both satisfy the m constraints, we have:

(1)
$$\alpha \sum_{1 \le j \le n} a_{ij} x_j \le \alpha b_i$$
 for $i = 1, 2, ..., m$
(2) $(1-\alpha) \sum_{1 \le j \le n} a_{ij} y_j \le (1-\alpha) b_i$ for $i = 1, 2, ..., m$

$$\Rightarrow \sum_{1 \le j \le n} a_{ij} (\alpha x_j + (1 - \alpha) y_j) \le b_i$$

(any convex combination of x and y is a feasible solution)

Any convex set is connected

Any convex set is connected

If it is not connected, find a point u in a connected subset and find a point v in another connected subset, and inspect the points that are convex combinatons of u and v, which forms a path from u to $v \rightarrow \leftarrow$.

Linear Decision Trees

Linear decision trees

$$b(x) < 0 \ b(x) = 0 \ b(x) > 0$$

$$b(\mathbf{x}) < 0 \ b(\mathbf{x}) = 0 \ b(\mathbf{x}) > 0 \ c(\mathbf{x}) < 0 \ c(\mathbf{x}) = 0 \ c(\mathbf{x}) > 0 \ d(\mathbf{x}) < 0 \ d(\mathbf{x}) = 0 \ d(\mathbf{x}) > 0$$

$$d(\mathbf{x}) < 0 \ d(\mathbf{x}) = 0 \ d(\mathbf{x}) > 0$$

Linear decision trees Input: $x = (x_1, x_2, ..., x_n).$ a(x) $= a_0 + a_1 x_1 + ... + a_n x_n$ $\mathbf{a}(\mathbf{x}) < 0$ $a(\mathbf{x}) = 0$ $a(\mathbf{x}) > 0$ $b(\mathbf{x})$ $c(\mathbf{x})$ $d(\mathbf{x})$ $= b_0 + b_1 x_1 + \dots + b_n x_n$ $= c_0 + c_1 x_1 + \dots + c_n x_n$ $= d_0 + d_1 x_1 + \dots + d_n x_n$ $b(\mathbf{x}) < 0 \ b(\mathbf{x}) = 0 \ b(\mathbf{x}) > 0 \ c(\mathbf{x}) < 0 \ c(\mathbf{x}) = 0 \ c(\mathbf{x}) > 0 \ d(\mathbf{x}) < 0 \ d(\mathbf{x}) = 0 \ d(\mathbf{x}) > 0$ By setting $(a_i, a_j) = (1, -1)$ and other a_k 's as 0 for each node, it becomes a comparison-based decision tree.

Element Uniqueness Problem

Input: n real numbers s₁, s₂, ..., s_n

Output: 'No', if $s_i = s_j$ for some $i \neq j$, or 'Yes' otherwise.

This problem has a lower bound $\Omega(n \log n)$ in the linear decision trees model, and also in the comparison-based model.

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

Recall that all the points (inputs) that can reach the leaf node z form a convex set.

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

All the points (inputs) that can reach the leaf node z shall return a unified answer, either "Yes" or "No".

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

Let x and y be two different inputs (points) so that the coordinates of x is a permutation of {1, 2, ..., n} and those of y is another permutation of {1, 2, ..., n}.

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

Let $x = (x_1, x_2, ..., x_n)$ and $y = (y_1, y_2, ..., y_n)$. Then, there exist i, j so that $x_i < x_j$ and $y_i > y_j$. Thus, any path that connects x and y pass a point z $(..., z_i, ..., z_j, ...)$ with $z_i=z_j$.

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

For input x and y, ALGO_T returns "Yes", but for input z, ALGO_T returns "No". \Rightarrow x and y are disconnected. \Rightarrow x and y are contained in different leaf nodes.

Let T be any linear decision tree that solves the element uniqueness problem, and represent the input $(s_1, s_2, ..., s_n)$ by a point in \mathbb{R}^n .

For any T, T has $\Omega(n!)$ leaves \Rightarrow T has depth $\Omega(n \log_3 n)$ \Rightarrow for some input, ALGO_T requires $\Omega(n \log n)$ time. This lower bound is tight because sorting runs in O(n log n) time.