

Massive Data Computing Lab @ HIT

算法设计与分析-入门篇

第六讲搜索策略

哈尔滨工业大学 王宏志

wangzh@hit.edu.cn

http://homepage.hit.edu.cn/pages/wang/

提纲

- 6.1 暴力美学:搜索漫谈
- 6.2 深度优先与广度优先
- 6.3 搜索的优化

布尔表达式可满足性问题

- 问题的定义
 - 输入: n个布尔变量x₁, x₂,, x_n 关于x₁, x₂,, x_n的k个析取布尔式
 - 一输出:是否存在一个x1,x2,...,xn的一种赋值 使得所有k个布尔斯取式皆为真

- 把问题表示为树
 - 一通过不断地为赋值集合分类来建立树 (叫三个变量(x1, x2, x3)为例)

• 问题的定义

-输入:具有8个编号小方块的魔方

2	3	
5	1	4
6	8	7

- 输出:移动系列,经过这些移动,魔方达此下状

态

1	2	3
8		4
7	6	5

• 转换为树搜索问题

Hamiltonian环问题

- 问题定义
 - -输入:具有n个专点的连通图G=(V,E)
 - 输出: G中是否具有Hamiltonian环

沿着G的n条边经过每个专点一次, 并回到起始专点的环称为G的一个 Hamiltonian环.

有Hamiltonian环 图:

无Hamiltonian环 图:

提纲

- 6.1 暴力美学: 搜索漫谈
- 6.2 深度优先与广度优先
- 6.3 搜索的优化

Breadth-First Search

• 算法

- 1. 构造由根组成的队列Q;
- 2. If Q的第一个元素x是目标专点 Then 停止;
- 3.从Q中删除x,把x的所有多节点加入Q的末尾;
- 4. If Q室 Then 夹处 Else goto 2.

· 例: 求解8-Puzzle问题

Depth-First Search

• 算法

- 1. 构造一个由根构成的单元素核S;
- 2. If Top(S)是目标专点 Then 停止;
- 3. Pop(S), 把Top(S)的所有多专点压入栈顶;
- 4. If S室 Then 夫政 Else goto 2.

•例1. 求解子集合和问题

输入: S={7, 5, 1, 2, 10}

输出: 是否存在S'_S, 使得Sum(S')=9

· 例2. 求解Hamiltonian环问题

提纲

- 6.1 暴力美学: 搜索漫谈
- 6.2 深度优先与广度优先
- 6.3 搜索的优化

• 基本思想

- -在深度优先搜索过程中,我们经常遇到多个 节点可以扩展的情况,首先扩展哪个?
- -爬山策略使用贪心方法确定搜索的方向,是 优化的保度优先搜索策略
- 一爬山策略使用启发式测度来排序节点扩展 的顺序

- · 用8-Puzzle问题来说明爬山策略的思想
 - 一启发式测度函数: f(n)=W(n), W(n)是专点n中处于错误位置的方块数.
 - -侧此,此果专点n此下,则f(n)=3,因为方块1、2、8 处于错误位置。

2	8	3
1		4
7	6	5

• 爬山佐算法

- 1. 构造由根组成的单元素核S;
- 2. If Top(S)是目标专点 Then 停止;
- 3. Pop(S);
- 4. S的子节点按照其启发测度由大到 小的顺序压入S;
- 5. If S空 Then 夫政 Else goto 2.

Best-First 搜索策略

•基本思想

- 结合保度优先和广度优先的优点
- •根据一个评价函数,在目前产生的所有 节点中这样具有最小评价函数值的节 点进行扩展.
- ·具有全局优化观念,而爬山策略仅具有局部 优化观念.

· Best-First 搜索算法

- 1.使用评价函数构造一个堆H, 首先构造由根组成的单元素堆;
 - 2. If H的根r是目标专点 Then 停止;
 - 3. 从H中删除r, 把r的子节点插入H;
 - 4. If H空 Then 失败 Else goto 2.
- · 8-Puzzle问题实例

分支界限

- 基本思想
 - 一上述方法很难用于求解优化问题
 - 一分支界限策略可以有效地求解组合优化问题
 - 发现优化解的一个界限
 - 一缩小解空间,提高水解的效率
- 举例说明分支界限策略的原理

· 多阶段图搜索问题

-输入:多阶段图

-输出:从Vo到V3的最短路径

- · 分支界限策略的原理
 - 一产生分支的机制(使用前面的任意一种策略)
 - 一产生一个界限(可以通过发现可能解)
 - -进行分支界限搜索,即剪除不可能产生优化 解的分支.