

Contents lists available at ScienceDirect

# Finite Fields and Their Applications



www.elsevier.com/locate/ffa

# On isogeny graphs of supersingular elliptic curves over finite fields



Gora Adj<sup>a</sup>, Omran Ahmadi<sup>b,\*</sup>, Alfred Menezes<sup>a</sup>

a Department of Combinatorics & Optimization, University of Waterloo, Canada

#### ARTICLE INFO

#### Article history:

Received 4 February 2018 Received in revised form 17 October

Accepted 20 October 2018 Available online 5 November 2018 Communicated by Neal Koblitz

## MSC:

11G20

11G15

14G15

14H5294A60

#### Keywords:

Supersingular elliptic curves over finite fields

Isogeny graphs

#### ABSTRACT

We study the isogeny graphs of supersingular elliptic curves over finite fields, with an emphasis on the vertices corresponding to elliptic curves of j-invariant 0 and 1728.

© 2018 Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $\mathbb{F}_q$  be the finite field of order q and characteristic p>3, and let  $\overline{\mathbb{F}}_q$  denote its algebraic closure. Let  $\ell$  be a prime different from p. The isogeny graph  $\mathcal{H}_{\ell}(\overline{\mathbb{F}}_q)$  is a di-

E-mail addresses: gora.adj@gmail.com (G. Adj), oahmadid@ipm.ir (O. Ahmadi), ajmeneze@uwaterloo.ca (A. Menezes).

<sup>&</sup>lt;sup>b</sup> Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

<sup>\*</sup> Corresponding author.

rected graph whose vertices are the  $\overline{\mathbb{F}}_q$ -isomorphism classes of elliptic curves defined over  $\mathbb{F}_q$ , and whose directed arcs represent degree- $\ell$   $\overline{\mathbb{F}}_q$ -isogenies (up to a certain equivalence) between elliptic curves in the isomorphism classes. See [10] and [15] for summaries of the theory behind isogeny graphs and for applications in computational number theory.

Every supersingular elliptic curve defined over  $\overline{\mathbb{F}}_p$  is isomorphic to one defined over  $\mathbb{F}_{p^2}$ . Pizer [12] showed that the subgraph  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$  of  $\mathcal{H}_{\ell}(\overline{\mathbb{F}}_{p^2})$  induced by the vertices corresponding to isomorphism classes of supersingular elliptic curves over  $\mathbb{F}_{p^2}$  is an expander graph (and consequently is connected). This property of  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$  was exploited by Charles, Goren and Lauter [2] who proposed a cryptographic hash function whose security is based on the intractability of computing directed paths of a certain length between two vertices in  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$ . In 2011, Jao and De Feo [8] (see also [4]) presented a key agreement scheme whose security is also based on the intractability of this problem for small  $\ell$  (typically  $\ell = 2, 3$ ). There have also been proposals for related signature schemes [19,6] and an undeniable signature scheme [9].

In this paper, we study the supersingular isogeny graph  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  whose vertices are (representatives of) the  $\mathbb{F}_{p^2}$ -isomorphism classes of supersingular elliptic curves defined over  $\mathbb{F}_{p^2}$ , and whose directed arcs represent degree- $\ell$   $\mathbb{F}_{p^2}$ -isogenies between the elliptic curves. Observe that the difference between the definitions of  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  and  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$  is that the isomorphisms and isogenies in the former are defined over  $\mathbb{F}_{p^2}$  itself. This difference necessitates a careful treatment of the vertices corresponding to supersingular elliptic curves having j-invariant equal to 0 and 1728. We note that the security of the aforementioned cryptographic schemes relies on the difficulty of constructing certain directed paths in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ . On the other hand, [2] and [4] state that security is based on the hardness of constructing certain directed paths in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ . Thus, it is worthwhile to study the differences between  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  and  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ . We also note that Delfs and Galbraith [3] studied supersingular isogeny graphs  $\mathcal{G}_{\ell}(\mathbb{F}_p)$ , where the vertices are  $\mathbb{F}_p$ -isomorphism classes of supersingular elliptic curves defined over  $\mathbb{F}_p$  and the arcs are equivalence classes of degree- $\ell$   $\mathbb{F}_p$ -isogenies. They observed that the graphs  $\mathcal{G}_{\ell}(\mathbb{F}_p)$  have similar 'volcano' structures as the ordinary subgraphs of  $\mathcal{H}_{\ell}(\overline{\mathbb{F}}_p)$  [5].

The remainder of the paper is organized as follows. In §2 we provide a concise summary of the relevant background on elliptic curves and isogenies between them. Standard references for the material in §2 are the books by Silverman [14] and Washington [17]. The supersingular isogeny graph  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  is defined in §3. In §4, we completely describe the three small subgraphs of  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  whose vertices correspond to supersingular elliptic curves E over  $\mathbb{F}_{p^2}$  with  $t=p^2+1-\#E(\mathbb{F}_{p^2})\in\{0,-p,p\}$ ; see Fig. 1. In §5, we study the two large subgraphs of  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$  whose vertices correspond to supersingular elliptic curves E over  $\mathbb{F}_{p^2}$  with  $t=p^2+1-\#E(\mathbb{F}_{p^2})\in\{-2p,2p\}$ , and make some observations about the number of loops at the vertices corresponding to elliptic curves with j-invariant equal to 0 or 1728. We make some concluding remarks in §6.

#### 2. Elliptic curves

In the remainder of this paper, p will denote a prime greater than 3. Let  $k = \mathbb{F}_q$  be the finite field of order q and characteristic p, and let  $\overline{k} = \bigcup_{n \geq 1} \mathbb{F}_{q^n}$  denote its algebraic closure. Let  $\sigma: \alpha \mapsto \alpha^q$  denote the q-power Frobenius map. An elliptic curve E over k is defined by a Weierstrass equation  $E/k: Y^2 = X^3 + aX + b$  where  $a, b \in k$  and  $4a^3 + 27b^2 \neq 0$ . The j-invariant of E is  $j(E) = 1728 \cdot 4a^3/(4a^3 + 27b^2)$ . One can easily check that j(E) = 0 if and only if a = 0, and j(E) = 1728 if and only if b = 0. For any extension K of k, the set of K-rational points on E is  $E(K) = \{(x,y) \in K \times K: y^2 = x^3 + ax + b\} \cup \{\infty\}$ , where  $\infty$  is the point at infinity; we write  $E = E(\overline{k})$ . The chord-and-tangent addition law transforms E(K) into an abelian group. For any  $n \geq 2$  with  $p \nmid n$ , the group of n-torsion points on E is isomorphic to  $\mathbb{Z}_n \oplus \mathbb{Z}_n$ . In particular, if n is prime then E has exactly n+1 distinct order-n subgroups.

#### 2.1. Isomorphisms and automorphisms

Two elliptic curves  $E/k: Y^2 = X^3 + aX + b$  and  $E'/k: Y^2 = X^3 + a'X + b'$  are isomorphic over the extension field K/k if there exists  $u \in K^*$  such that  $a' = u^4a$  and  $b' = u^6b$ . If such a u exists, then the corresponding isomorphism  $f: E \to E'$  is defined by  $(x,y) \mapsto (u^2x,u^3y)$ . If E and E' are isomorphic over K, then j(E) = j(E'). Conversely, if j(E) = j(E'), then E and E' are isomorphic over  $\overline{k}$ . Elliptic curves  $E_1/k$ ,  $E_2/k$  that are isomorphic over  $\mathbb{F}_{q^d}$  for some d > 1, but are not isomorphic over any smaller extension of  $\mathbb{F}_q$ , are said to be degree-d twists of each other. In particular, a degree-E (quadratic) twist of  $E_1/k: Y^2 = X^3 + aX + b$  is  $E_2/k: Y^2 = X^3 + c^2aX + c^3b$  where  $e \in E$  is a non-square, and E is a E in E is a non-square, and E in E

$$E_j: Y^2 = X^3 + \frac{3j}{1728 - j}X + \frac{2j}{1728 - j} \tag{1}$$

is an elliptic curve with  $j(E_j) = j$ . Also,  $E: Y^2 = X^3 + 1$  has j(E) = 0 and  $Y^2 = X^3 + X$  has j(E) = 1728.

An automorphism of E/k is an isomorphism from E to itself. The group of all automorphisms of E that are defined over K is denoted by  $\operatorname{Aut}_K(E)$ . If  $j(E) \neq 0, 1728$ , then  $\operatorname{Aut}_{\overline{k}}(E)$  has order 2 with generator  $(x,y) \mapsto (x,-y)$ . If j(E)=1728, then  $\operatorname{Aut}_{\overline{k}}$  is cyclic of order 4 with generator  $\psi:(x,y)\mapsto (-x,iy)$  where  $i\in\overline{k}$  is a primitive fourth root of unity. If j(E)=0, then  $\operatorname{Aut}_{\overline{k}}$  is cyclic of order 6 with generator  $\rho:(x,y)\mapsto (\eta x,-y)$  where  $\eta\in\overline{k}$  is a primitive third root of unity.

### 2.2. Isogenies

Let E, E' be elliptic curves defined over  $k = \mathbb{F}_q$ . An isogeny  $\phi : E \to E'$  is a non-constant rational map defined over  $\overline{k}$  with  $\phi(\infty) = \infty$ . An endomorphism on E is an

isogeny from E to itself; the zero map  $P \mapsto \infty$  is also considered to be an endomorphism on E. If the field of definition of  $\phi$  is the extension K of k, then  $\phi$  is called a K-isogeny. If such an isogeny exists, then E and E' are said to be K-isogenous. Tate's theorem asserts that for finite K, E and E' are K-isogenous if and only if #E(K) = #E'(K).

An isogeny  $\phi$  is a morphism, is surjective, is a group homomorphism, and has finite kernel. Every K-isogeny  $\phi$  can be represented as  $\phi = (r_1(X), r_2(X) \cdot Y)$  where  $r_1, r_2 \in K(X)$  (see p. 51 of [17]). Let  $r_1(X) = p_1(X)/q_1(X)$ , where  $p_1, q_1 \in K[X]$  with  $\gcd(p_1, q_1) = 1$ . Then the degree of  $\phi$  is max(deg  $p_1$ , deg  $q_1$ ). Also,  $\phi$  is said to be separable if  $r'_1(X) \neq 0$ ; otherwise it is inseparable. In fact,  $\phi$  is separable if and only if  $\# \text{Ker } \phi = \deg \phi$ . Note that all isogenies of prime degree  $\ell \neq p$  are separable.

For every  $m \geq 1$ , the multiplication-by-m map  $[m]: E \to E$  is a k-isogeny of degree  $m^2$ . Every degree-m isogeny  $\phi: E \to E'$  has a unique dual isogeny  $\hat{\phi}: E' \to E$  satisfying  $\hat{\phi} \circ \phi = [m]$  and  $\phi \circ \hat{\phi} = [m]$ . If  $\phi$  is a K-isogeny, then so is  $\hat{\phi}$ . We have  $\deg \hat{\phi} = \deg \phi$  and  $\hat{\phi} = \phi$ . If E'' is an elliptic curve defined over k and  $\psi: E' \to E''$  is an isogeny, then  $\widehat{\psi \circ \phi} = \widehat{\phi} \circ \widehat{\psi}$ .

### 2.3. Vélu's formula

Let E be an elliptic curve defined over  $k = \mathbb{F}_q$ . Let  $\ell \neq p$  be a prime, and let G be an order- $\ell$  subgroup of E. Let  $G^* = G \setminus \{\infty\}$ . Then there exists an elliptic curve E' over  $\overline{k}$  and a degree- $\ell$  isogeny  $\phi: E \to E'$  with Ker  $\phi = G$ . The elliptic curve E' and the isogeny  $\phi$  are both defined over  $K = \mathbb{F}_{q^t}$  where t is the smallest positive integer such that G is  $\sigma^t$ -invariant, i.e.,  $\{\sigma^t(P): P \in G\} = G$  where  $\sigma$  is the q-power Frobenius map (so  $\sigma(P) = (x^q, y^q)$  if P = (x, y) and  $\sigma(\infty) = \infty$ ). Furthermore,  $\phi$  is unique in the following sense: if E'' is an elliptic curve defined over K and  $\psi: E \to E''$  is a degree- $\ell$  K-isogeny with Ker  $\psi = G$ , then there exists an isomorphism  $f: E' \to E''$  defined over K such that  $\psi = f \circ \phi$ .

Given the Weierstrass equation  $Y^2 = X^3 + aX + b$  for E/k and an order- $\ell$  subgroup G of E, Vélu's formula yields an elliptic curve E' defined over K and a degree- $\ell$  K-isogeny  $\phi: E \to E'$  with Ker  $\phi = G$ .

Suppose first that  $\ell=2$  and  $G=\{\infty,(\alpha,0)\}$ . Then the Weierstrass equation for E' is

$$E': Y^2 = X^3 - (4a + 15\alpha^2)X + (8b - 14\alpha^3),$$
(2)

and the isogeny  $\phi$  is given by

$$\phi = \left(X + \frac{3\alpha^2 + a}{X - \alpha}, Y - \frac{(3\alpha^2 + a)Y}{(X - \alpha)^2}\right). \tag{3}$$

Suppose now that  $\ell$  is an odd prime. For  $Q=(x_Q,y_Q)\in G^*$ , define

$$t_Q = 3x_Q^2 + a$$
,  $u_Q = 2y_Q^2$ ,  $w_Q = u_Q + t_Q x_Q$ .

Furthermore, define

$$t = \sum_{Q \in G^*} t_Q, \quad w = \sum_{Q \in G^*} w_Q,$$

and

$$r(X) = X + \sum_{Q \in G^*} \left( \frac{t_Q}{X - x_Q} + \frac{u_Q}{(X - x_Q)^2} \right). \tag{4}$$

Then the Weierstrass equation for E' is

$$E': Y^2 = X^3 + (a - 5t)X + (b - 7w), (5)$$

and the isogeny  $\phi$  is given by

$$\phi = (r(X), r'(X)Y). \tag{6}$$

We will henceforth denote the Vélu-generated elliptic curve E' by  $E^G$ .

#### 2.4. Modular polynomials

Let  $\ell$  be a prime. The modular polynomial  $\Phi_{\ell}(X,Y) \in \mathbb{Z}[X,Y]$  is a symmetric polynomial of the form  $\Phi_{\ell}(X,Y) = X^{\ell+1} + Y^{\ell+1} - X^{\ell}Y^{\ell} + \sum c_{ij}X^{i}Y^{j}$ , where the sum is over pairs of integers (i,j) with  $0 \le i,j \le \ell$  and  $i+j < 2\ell$ . Modular polynomials have the following remarkable property.

**Theorem 1.** Suppose that the characteristic of  $k = \mathbb{F}_q$  is different from  $\ell$ . Let E/k be an elliptic curve with j(E) = j. Let  $G_1, G_2, \ldots, G_{\ell+1}$  be the order- $\ell$  subgroups of E. Let  $j_i = j(E^{G_i})$ . Then the (possibly repeated) roots of  $\Phi_{\ell}(j,Y)$  in  $\overline{k}$  are precisely  $j_1, j_2, \ldots, j_{\ell+1}$ .

### 2.5. Supersingular elliptic curves

Hasse's theorem states that if E is defined over  $\mathbb{F}_q$ , then  $\#E(\mathbb{F}_q) = q+1-t$  where  $|t| \leq 2\sqrt{q}$ . The integer t is called the trace of the q-power Frobenius map  $\sigma$  since the characteristic polynomial of  $\sigma$  acting on E is  $Z^2 - tZ + q$ . If  $p \mid t$ , then E is called supersingular; otherwise it is said to be ordinary. Every supersingular elliptic curve E over  $\overline{\mathbb{F}}_q$  is isomorphic to one defined over  $\mathbb{F}_{p^2}$ ; in particular,  $j(E) \in \mathbb{F}_{p^2}$ . Henceforth, we shall assume that  $q = p^2$  (and p > 3).

Supersingularity of an elliptic curve depends only on its j-invariant. We say that  $j \in \mathbb{F}_{p^2}$  is supersingular if there exists a supersingular elliptic curve  $E/\mathbb{F}_{p^2}$  with j(E)=j; if this is the case, then all elliptic curves with j-invariant equal to j are supersingular. Note that j=0 is supersingular if and only if  $p\equiv 2\pmod 3$ , and j=1728 is supersingular if and only if  $p\equiv 3\pmod 4$ .

Schoof [13, Theorem 4.6] determined the number of isomorphism classes of elliptic curves over a finite field. In particular, the number of isomorphism classes of supersingular elliptic curves E over  $\mathbb{F}_{p^2}$  with  $\#E(\mathbb{F}_{p^2}) = p^2 + 1 - t$  is

$$N(t) = \begin{cases} \left(p + 6 - 4\left(\frac{-3}{p}\right) - 3\left(\frac{-1}{p}\right)\right)/12, & \text{if } t = \pm 2p, \\ 1 - \left(\frac{-3}{p}\right), & \text{if } t = \pm p, \\ 1 - \left(\frac{-1}{p}\right), & \text{if } t = 0, \end{cases}$$
(7)

where  $\left(\frac{\cdot}{p}\right)$  is the Legendre symbol. It follows that the total number of isomorphism classes of supersingular elliptic curves over  $\mathbb{F}_{p^2}$  is  $\lfloor p/6 \rfloor + \epsilon$ , where  $\epsilon = 0, 6, 3, 9$  if  $p \equiv 1, 5, 7, 11 \pmod{12}$  respectively. Furthermore, if t = 0, -p or p then  $E(\mathbb{F}_{p^2})$  is cyclic [13, Lemma 4.8].

#### 3. Supersingular isogeny graphs

Let  $k = \mathbb{F}_q$  where  $q = p^2$ , and let  $\ell \neq p$  be a prime. Recall that  $\sigma$  is the q-th power Frobenius map. The supersingular isogeny graph  $\mathcal{G}_{\ell}(k)$  is a directed graph whose vertex set  $V_{\ell}(k)$  consists of representatives (chosen below) of the k-isomorphism classes of supersingular elliptic curves defined over k. The (directed) arcs of  $\mathcal{G}_{\ell}(k)$  are defined as follows. Let  $E_1 \in V_{\ell}(k)$ , and let G be a  $\sigma$ -invariant order- $\ell$  subgroup of  $E_1$ . Let  $\phi: E_1 \to E_1^G$  be the Vélu isogeny with kernel G (recall that  $E_1^G$  and  $\phi$  are both defined over k), and let  $E_2$  be the representative of the k-isomorphism class of elliptic curves containing  $E_1^G$ . Then  $(E_1, E_2)$  is an arc; we call  $E_1$  the tail and  $E_2$  the head of the arc. Note that  $\mathcal{G}_{\ell}(k)$  can have multiple arcs (more than one arc  $(E_1, E_2)$ ) and loops (arcs of the form  $(E_1, E_1)$ ).

**Remark 1.** The definition of arcs is independent of the choice of isogeny with kernel G. This is because, as noted in §2.3, if  $\phi': E_1 \to E_2'$  is any degree- $\ell$  isogeny with kernel G where both  $E_2'$  and  $\phi'$  are defined over k, then  $E_2'$  and  $E_1^G$  are isomorphic over k and consequently  $\phi$  and  $\phi'$  yield the same arc  $(E_1, E_2)$ .

Remark 2. The definition of  $\mathcal{G}_{\ell}(k)$  is independent of the choice of representatives. Indeed, let  $f: E'_1 \to E_1$  be a k-isomorphism of elliptic curves, and suppose that  $E'_1$  was chosen as a representative instead of  $E_1$ . Let  $\psi = \phi \circ f$ . Then Ker  $\psi = f^{-1}(G)$ , and thus the  $\sigma$ -invariant order- $\ell$  subgroup  $f^{-1}(G)$  of  $E'_1$  yields the arc  $(E'_1, E_2)$ . The claim now follows since  $f^{-1}$  yields a one-to-one correspondence between the  $\sigma$ -invariant order- $\ell$  subgroups of  $E_1$  and  $E'_1$ .

A consequence of Tate's theorem is that the graph  $\mathcal{G}_{\ell}(k)$  can be partitioned into subgraphs whose vertices are the k-isomorphism classes of supersingular elliptic curves E/k with trace  $t=p^2+1-\#E(k)\in\{0,-p,p,-2p,2p\}$ ; we denote these subgraphs by

 $\mathcal{G}_{\ell}(k,t)$ . There are two such subgraphs  $(t=\pm 2p)$  when  $p\equiv 1\pmod{12}$ , four subgraphs  $(t=\pm p,\pm 2p)$  when  $p\equiv 5\pmod{12}$ , three subgraphs  $(t=0,\pm 2p)$  when  $p\equiv 7\pmod{12}$ , and five subgraphs  $(t=0,\pm 2p)$  when  $p\equiv 1\pmod{12}$ . These subgraphs are further studied in §4 and §5. We first fix the representatives of the k-isomorphism classes of supersingular elliptic curves over k.

Suppose that  $p \equiv 3 \pmod 4$ , and let w be a generator of  $k^*$ . Munuera and Tena [11] showed that the representatives of the four isomorphism classes of elliptic curves E/k with j(E) = 1728 can be taken to be

$$E_{1728,w^i}: Y^2 = X^3 + w^i X \text{ for } i \in [0,3].$$
 (8)

Of these curves,  $E_{1728,w}$  and  $E_{1728,w^3}$  have  $p^2 + 1$   $\mathbb{F}_{p^2}$ -rational points, and so we choose them as the vertices of  $\mathcal{G}_{\ell}(k,0)$ . Furthermore,  $\#E_{1728,1}(\mathbb{F}_{p^2}) = p^2 + 1 + 2p$  and  $\#E_{1728,w^2}(\mathbb{F}_{p^2}) = p^2 + 1 - 2p$ ; hence, we select  $E_{1728,1}$  and  $E_{1728,w^2}$  as the vertices of  $\mathcal{G}_{\ell}(k,-2p)$  and  $\mathcal{G}_{\ell}(k,2p)$ , respectively.

Suppose that  $p \equiv 2 \pmod{3}$ , and let w be a generator of  $k^*$ . Munuera and Tena [11] also showed that the representatives of the six isomorphism classes of elliptic curves E/k with j(E) = 0 can be taken to be

$$E_{0,w^i}: Y^2 = X^3 + w^i \text{ for } i \in [0,5].$$
 (9)

Of these curves,  $E_{0,w}$  and  $E_{0,w^5}$  have  $p^2+1+p$   $\mathbb{F}_{p^2}$ -rational points, and so we choose them as the vertices of  $\mathcal{G}_\ell(k,-p)$ . Similarly,  $E_{0,w^2}$  and  $E_{0,w^4}$  have  $p^2+1-p$   $\mathbb{F}_{p^2}$ -rational points, and so we choose them as the vertices of  $\mathcal{G}_\ell(k,p)$ . Finally,  $\#E_{0,1}(\mathbb{F}_{p^2})=p^2+1+2p$  and  $\#E_{0,w^3}(\mathbb{F}_{p^2})=p^2+1-2p$ ; hence, we select  $E_{0,1}$  and  $E_{0,w^3}$  as the vertices of  $\mathcal{G}_\ell(k,-2p)$  and  $\mathcal{G}_\ell(k,2p)$ , respectively.

If  $j \neq 0, 1728$  is supersingular, then  $E_j$  (defined in (1)) and a quadratic twist  $\tilde{E}_j$  are representatives of the two isomorphism classes of elliptic curves with j-invariant equal to j. Furthermore,  $\#E_j(\mathbb{F}_{p^2}) \in \{p^2 + 1 - 2p, p^2 + 1 + 2p\}$  and  $\#\tilde{E}_j(\mathbb{F}_{p^2}) = 2p^2 + 2 - \#E_j(\mathbb{F}_{p^2})$ . We select  $E_j$  as a vertex in either  $\mathcal{G}_\ell(k, -2p)$  or  $\mathcal{G}_\ell(k, 2p)$  depending on whether  $\#E_j(\mathbb{F}_{p^2}) = p^2 + 1 + 2p$  or  $p^2 + 1 - 2p$ , and  $\tilde{E}_j$  as a vertex in the other graph.

# 4. The subgraphs $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},0)$ and $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}\pm p)$

For a supersingular elliptic curve E defined over a finite field  $\mathbb{F}_q$  of characteristic > 3, we denote by  $\operatorname{End}(E)$  the ring of endomorphisms of E defined over  $\mathbb{F}_q$  and by  $K = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$  the corresponding endomorphism algebra. We will use the following classical result of Waterhouse [18] (see also Theorem 2.1 in [3]) to describe the arcs in the subgraphs  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 0)$  and  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2} \pm p)$  as depicted in Fig. 1.

**Theorem 2.** Let E be a supersingular elliptic curve defined over  $\mathbb{F}_q = \mathbb{F}_{p^n}$  with p > 3, and let  $t = q + 1 - \#E(\mathbb{F}_q)$ . Then one of the following holds:



Fig. 1. The small subgraphs of  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ ,  $p \equiv 11 \pmod{12}$ .

- (i) n is even and  $t = \pm 2\sqrt{q}$ ;
- (ii) n is even,  $p \equiv 2 \pmod{3}$  and  $t = \pm \sqrt{q}$ ;
- (iii) n is even,  $p \equiv 3 \pmod{4}$  and t = 0;
- (iv) n is odd and t = 0.

Let  $\sigma$  be the q-power Frobenius endomorphism of E. In case (i), K is a quaternion algebra over  $\mathbb{Q}$ ,  $\sigma$  is a rational integer, and  $\operatorname{End}(E)$  is a maximal order in K. In cases (ii), (iii) and (iv),  $K = \mathbb{Q}(\sigma)$  is an imaginary quadratic number field and  $\operatorname{End}(E)$  is an order in K with conductor coprime to p.

### 4.1. The subgraph $\mathcal{G}_{\ell}(\mathbb{F}_{n^2},0)$

Let  $q=p^2$  where  $p\equiv 3\pmod 4$ , w is a generator of  $\mathbb{F}_q^*$ , and  $\ell\neq p$  is a prime. The graph  $\mathcal{G}_\ell(\mathbb{F}_{p^2},0)$  has two vertices,  $E_{1728,w}$  and  $E_{1728,w^3}$ ; to ease the notation we will call them  $E_w$  and  $E_{w^3}$  in this section.

**Theorem 3.** Let p > 3 and  $\ell$  be primes with  $p \equiv 3 \pmod{4}$  and  $\ell \neq p$ .

- (i)  $\mathcal{G}_2(\mathbb{F}_{p^2},0)$  has exactly two arcs, one loop at each of its two vertices.
- (ii) If  $\ell \equiv 3 \pmod{4}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 0)$  has no arcs.
- (iii) If  $\ell \equiv 1 \pmod{4}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 0)$  has exactly four arcs, two loops at each of its two vertices.

**Proof.** We describe the arcs originating at  $E_w$ . Notice that these arcs are exactly the degree- $\ell$  endomorphisms of  $E_w$ , i.e., the non-unit factors of  $\ell$  in  $\operatorname{End}(E_w)$ . The case  $E_{w^3}$  case is similar.

Since t = 0, by Theorem 2,  $\operatorname{End}(E_w)$  is an order in  $K = \mathbb{Q}(\sigma)$  with conductor c coprime to p. The characteristic polynomial of the  $p^2$ -power Frobenius map  $\sigma$  is  $Z^2 + p^2$ , and so we have  $K = \mathbb{Q}(\sqrt{-p^2}) = \mathbb{Q}(i)$  whose maximal order is  $\mathbb{Z}[i]$ , the Gaussian integers. Since  $\sigma$  and multiplication by integers are in  $\operatorname{End}(E_w)$ , we have

$$\mathbb{Z}[\sigma] = \mathbb{Z}[ip] \subseteq \operatorname{End}(E_w) \subseteq \mathbb{Z}[i].$$

Thus, the conductor c of  $\operatorname{End}(E_w)$  divides the conductor p of  $\mathbb{Z}[\sigma]$ , whence c=1 and  $\operatorname{End}(E_w)=\mathbb{Z}[i]$ . We have the following cases.

- (i) If  $\ell = 2$ , then  $\ell$  factors as  $2 = i(i-1)^2$ . Hence, since  $\mathbb{Z}[i]$  is a unique factorization domain, there is a unique degree- $\ell$  endomorphism of  $E_w$ .
- (ii) If  $\ell \equiv 3 \pmod{4}$ , then  $\ell$  is prime in  $\mathbb{Z}[i]$ . Thus, there are no degree- $\ell$  endomorphisms.
- (iii) If  $\ell \equiv 1 \pmod{4}$ , then  $\ell$  splits as  $\ell = \alpha \overline{\alpha}$  for some Gaussian prime  $\alpha$ . Hence, there are exactly two degree- $\ell$  endomorphisms of  $E_w$ .  $\square$

# 4.2. The subgraphs $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, \pm p)$

Let  $q=p^2$  where  $p\equiv 2\pmod 3$ , w is a generator of  $\mathbb{F}_q^*$ , and  $\ell\neq p$  is a prime. The graph  $\mathcal{G}_\ell(\mathbb{F}_{p^2},-p)$  has two vertices,  $E_{0,w}$  and  $E_{0,w^5}$ ; to ease the notation we will call them  $E_w$  and  $E_{w^5}$  in this section.

**Theorem 4.** Let p > 3 and  $\ell$  be primes with  $p \equiv 2 \pmod{3}$  and  $\ell \neq p$ .

- (i)  $\mathcal{G}_3(\mathbb{F}_{p^2}, -p)$  has exactly two arcs, one loop at each of its two vertices.
- (ii) If  $\ell \equiv 2 \pmod{3}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -p)$  has no arcs.
- (iii) If  $\ell \equiv 1 \pmod{3}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -p)$  has exactly four arcs, two loops at each of its two vertices.

**Proof.** We describe the arcs originating at  $E_w$ . Notice that these arcs are exactly the degree- $\ell$  endomorphisms of  $E_w$ , i.e., the non-unit factors of  $\ell$  in  $\operatorname{End}(E_w)$ . The  $E_{w^5}$  case is similar.

Since t = -p, by Theorem 2,  $\operatorname{End}(E_w)$  is an order in  $K = \mathbb{Q}(\sigma)$  with conductor c coprime to p. The characteristic polynomial of the  $p^2$ -power Frobenius map  $\sigma$  is  $Z^2 + pZ + p^2$ , and thus we have  $K = \mathbb{Q}(\sqrt{-3})$ . Hence, the maximal order of K is Eisentein integers  $\mathbb{Z}[\lambda]$  where  $\lambda = (-1 + \sqrt{3})/2$ . Since  $\sigma$  and multiplication by integers are in  $\operatorname{End}(E_w)$ , we have

$$\mathbb{Z}[\sigma] = \mathbb{Z}[\lambda p] \subseteq \operatorname{End}(E_w) \subseteq \mathbb{Z}[\lambda].$$

Thus, the conductor c of  $\operatorname{End}(E_w)$  divides the conductor p of  $\mathbb{Z}[\sigma]$ , whence c=1 and  $\operatorname{End}(E_w)=\mathbb{Z}[\lambda]$ . We have the following cases.

- (i) If  $\ell = 3$ , then  $\ell$  factors as  $3 = -\lambda^2 (1 \lambda)^2$ . Hence, since  $\mathbb{Z}[\lambda]$  is a unique factorization domain, there is a unique degree- $\ell$  endomorphism of  $E_w$ .
- (ii) If  $\ell \equiv 2 \pmod{3}$ , then  $\ell$  is prime in  $\mathbb{Z}[\lambda]$ . Thus there are no degree- $\ell$  endomorphisms.
- (iii) If  $\ell \equiv 1 \pmod{3}$ , then  $\ell$  splits as  $\ell = \alpha \overline{\alpha}$  for some Eisentein prime  $\alpha$ . Hence, there are exactly two degree- $\ell$  endomorphisms of  $E_w$ .  $\square$

The proof of Theorem 5 is similar to that of Theorem 4.

**Theorem 5.** Let p > 3 and  $\ell$  be primes with  $p \equiv 2 \pmod{3}$  and  $\ell \neq p$ .

- (i)  $\mathcal{G}_3(\mathbb{F}_{p^2},p)$  has exactly two arcs, one loop at each of its two vertices.
- (ii) If  $\ell \equiv 2 \pmod{3}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{n^2}, p)$  has no arcs.
- (iii) If  $\ell \equiv 1 \pmod{3}$ , then  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, p)$  has exactly four arcs, two loops at each of its two vertices.

# 5. The subgraphs $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, \pm 2p)$

As noted in §3, the vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  have distinct j-invariants. Moreover, there is a one-to-one correspondence between the vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and the vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 2p)$ ; namely, if E is a vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  then the chosen quadratic twist  $\tilde{E}$  is a vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 2p)$ . Now, the characteristic polynomial of the q-power Frobenius map  $\sigma$  acting on any vertex E in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  is  $Z^2 + 2pZ + p^2 = (Z+p)^2$ , so  $(\sigma + [p])^2 = 0$ . Since nonzero endomorphisms are surjective, we must have  $\sigma + [p] = 0$ . Hence  $\sigma = [-p]$  and all order- $\ell$  subgroups of E are  $\sigma$ -invariant. It follows that every vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  has outdegree  $\ell + 1$ . Similarly, every vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 2p)$  has outdegree  $\ell + 1$ .

By Theorem 1, the *j*-invariants of the heads of arcs with tail E in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  are precisely the roots of  $\Phi_{\ell}(j(E), Y)$  (all  $\ell+1$  of which lie in  $\mathbb{F}_{p^2}$ ). These roots are also the *j*-invariants of the heads of arcs with tail  $\tilde{E}$  in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 2p)$ . Hence the directed graphs  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, 2p)$  are isomorphic.

Sutherland [15] defines the isogeny graph  $\mathcal{H}_{\ell}(\overline{\mathbb{F}}_{p^2})$  to have vertex set  $\overline{\mathbb{F}}_{p^2}$  and arcs  $(j_1, j_2)$  present with multiplicity equal to the multiplicity of  $j_2$  as a root of  $\Phi_{\ell}(j_1, Y)$  in  $\overline{\mathbb{F}}_{p^2}$ . The following folklore result shows that  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$ , the supersingular component of  $\mathcal{H}_{\ell}(\overline{\mathbb{F}}_{p^2})$ , is isomorphic to  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ .

**Theorem 6.**  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$  are isomorphic.

**Proof.** Recall that every supersingular elliptic curves over  $\overline{\mathbb{F}}_{p^2}$  is isomorphic to one defined over  $\mathbb{F}_{p^2}$ . Hence the map  $\beta: E \mapsto j(E)$  is a bijection between the vertex sets of  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$ . Now, let  $(E_1, E_2)$  be an arc of multiplicity  $c \geq 0$  in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ . By Theorem 1,  $j(E_2)$  is a root of multiplicity c of  $\Phi_{\ell}(j(E_1), Y)$ . Hence  $(j(E_1), j(E_2))$  is an arc of multiplicity c in  $\mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$ . Thus,  $\beta$  preserves arcs and  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p) \cong \mathcal{G}_{\ell}(\overline{\mathbb{F}}_{p^2})$ .  $\square$ 

#### 5.1. Indegree

Suppose that p is prime and let E be a vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ . Then all automorphisms of E are defined over  $\mathbb{F}_{p^2}$ ; we denote the group of all automorphisms of E by  $\operatorname{Aut}(E)$ . Recall from §2.1 that  $\#\operatorname{Aut}(E) = 4,6$  or 2 depending on whether j(E) = 1728, j(E) = 0 or  $j(E) \neq 0,1728$ .

Let  $\ell \neq p$  be a prime. Let  $E_1, E_2$  be two vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ , and let  $\phi_1, \phi_2 : E_1 \to E_2$  be two degree- $\ell$   $\mathbb{F}_{p^2}$ -isogenies. We say that  $\phi_1$  and  $\phi_2$  are equivalent if they have the same kernel, or, equivalently, if there exists  $\rho_2 \in \operatorname{Aut}(E_2)$  such that  $\phi_2 = \rho_2 \circ \phi_1$ . Thus, the arcs  $(E_1, E_2)$  in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  can be seen as the classes of equivalent degree- $\ell$   $\mathbb{F}_{p^2}$ -isogenies from  $E_1$  to  $E_2$ . We define  $\phi_1$  and  $\phi_2$  to be automorphic if there exists  $\rho_1 \in \operatorname{Aut}(E_1)$  such that  $\phi_2$  and  $\phi_1 \circ \rho_1$  are equivalent. Hence, if  $\phi_1$  and  $\phi_2$  are automorphic then there exist  $\rho_1 \in \operatorname{Aut}(E_1)$  and  $\rho_2 \in \operatorname{Aut}(E_2)$  such that  $\phi_2 = \rho_2 \circ \phi_1 \circ \rho_1$ . Since  $\hat{\phi}_2 = \rho_1^{-1} \circ \hat{\phi}_1 \circ \rho_2^{-1}$ , it follows that the duals of automorphic isogenies are automorphic.

**Theorem 7.** Let E be a vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and let  $n = \#\operatorname{Aut}(E)/2$ . Let a and b denote the number of arcs  $(E, E_{1728})$  and arcs  $(E, E_0)$  in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ , respectively. Then the indegree of E is  $(\ell + a + 2b + 1)/n$ .

**Proof.** Let  $E_1$ ,  $E_2$  be two vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ , and let  $\operatorname{Aut}(E_i) = \langle \rho_i \rangle$  and  $n_i = \#\operatorname{Aut}(E_i)/2$  for i = 1, 2. Let  $\phi : E_1 \to E_2$  be a degree- $\ell \mathbb{F}_{p^2}$ -isogeny.

Suppose first that the kernel of  $\phi$  is not an eigenspace of  $\rho_1$ . Consider the set

$$\mathcal{A} = \{ \rho_2^j \circ \phi \circ \rho_1^i : 0 \le i < 2n_1, \ 0 \le j < 2n_2 \}$$

of isogenies automorphic to  $\phi$ . Since  $\rho_i^{n_i} = -1$  for  $i \in \{1, 2\}$ , we have

$$\mathcal{A} = \{ \rho_2^j \circ \phi \circ \rho_1^i : 0 \le i < n_1, \ 0 \le j < 2n_2 \}.$$

One can check that if  $(i,j) \neq (i',j')$  where  $0 \leq i,i' < n_1$  and  $0 \leq j,j' < 2n_2$ , then  $\rho_2^j \circ \phi \circ \rho_1^i = \rho_2^{j'} \circ \phi \circ \rho_1^{i'}$  implies that the kernel of  $\phi$  is an eigenspace of  $\rho_1$ . Hence the set  $\mathcal{A}$  has size exactly  $2n_1n_2$  and the isogenies in  $\mathcal{A}$  can be partitioned into  $n_1$  classes of equivalent isogenies, each class comprised of  $2n_2$  isogenies. Similarly, the set

$$\hat{\mathcal{A}} = \{ \rho_1^i \circ \hat{\phi} \circ \rho_2^j : 0 \le i < 2n_1, \ 0 \le j < 2n_2 \}$$

of dual isogenies can be partitioned into  $n_2$  classes of equivalent isogenies, each class comprised of  $2n_1$  isogenies. Consequently,  $\phi$  generates  $n_1$  different arcs  $(E_1, E_2)$  and  $\hat{\phi}$  generates  $n_2$  different arcs  $(E_2, E_1)$ . Because duals of automorphic isogenies are automorphic, if there is another degree- $\ell$   $\mathbb{F}_{p^2}$ -isogeny  $\psi$  from  $E_1$  to  $E_2$  not automorphic to  $\phi$ , then  $\psi$  (resp.  $\hat{\psi}$ ) generates a set of  $n_1$  (resp.  $n_2$ ) arcs  $(E_1, E_2)$  (resp.  $(E_2, E_1)$ ) disjoint from those generated by  $\phi$  (resp.  $\hat{\phi}$ ). Therefore, the number  $r_{\text{out}}$  of arcs  $(E_1, E_2)$  generated by isogenies whose kernels are not eigenspaces of  $\rho_1$  and the number  $r_{\text{in}}$  of arcs

 $(E_2, E_1)$  generated by their duals are multiples of  $n_1$  and  $n_2$ , respectively. Moreover, we have

$$r_{\rm in} = \frac{n_2 \cdot r_{\rm out}}{n_1}.\tag{10}$$

Suppose now that the kernel of  $\phi$  is an eigenspace of  $\rho_1$ . This scenario occurs only if  $E_1$  has j-invariant 1728 or 0. Suppose  $E_1$  has j-invariant 1728, and let  $\rho_1$  be the automorphism  $(x,y)\mapsto (-x,iy)$  where  $i\in\mathbb{F}_{p^2}$  satisfies  $i^2=-1$ . Denote by G the kernel of  $\phi$ , and let  $\phi':E_1\to E_1^G$  denote the Vélu isogeny. By (5),  $E_1^G$  has equation  $Y^2=X^3+aX-7w$  for some  $a\in\mathbb{F}_{p^2}$  and  $w=\sum_{Q\in G^*}(5x_Q^3+3x_Q)$ . Since  $\rho_1(G)=G$ , if  $(x,y)\in G$  then  $(-x,iy)\in G$ . Hence w=0 and we conclude that  $E_1^G$  is isomorphic to  $E_1$  over  $\mathbb{F}_{p^2}$ , i.e.,  $E_2=E_1$ . A similar argument using the automorphism  $(x,y)\mapsto (\eta x,-y)$  with  $\eta\in\mathbb{F}_{p^2}$  satisfying  $\eta^2+\eta+1=0$  shows that we also have  $E_2=E_1$  when the j-invariant of  $E_1$  is 0. Thus, if the kernel of  $\phi$  is an eigenspace of  $\rho_1$ , the arcs generated by  $\phi$  are loops at  $E_1$ . Therefore, we can generalize (10) to the total number  $t_{\text{out}}$  of arcs  $(E_1,E_2)$  and the total number  $t_{\text{in}}$  of arcs  $(E_2,E_1)$  and obtain

$$t_{\rm in} = \frac{n_2 \cdot t_{\rm out}}{n_1}.\tag{11}$$

Now, let E be a vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  and  $n = \#\mathrm{Aut}(E)/2$ . Denote by  $E_j$  the vertex in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  having j-invariant  $j \in \mathbb{F}_{p^2}$ . Let a be the number of arcs  $(E, E_{1728})$  and b the number of arcs  $(E, E_0)$ . Note that the number of arcs  $(E, E_j)$ ,  $j \notin \{0, 1728\}$ , is  $c = \ell - a - b + 1$ . From (11) we have

$$indegree(E) = \frac{c}{n} + \frac{2a}{n} + \frac{3b}{n},$$

whence

$$indegree(E) = \frac{\ell + a + 2b + 1}{n}. \quad \Box$$

#### 5.2. Loops

Let  $E_{1728}$  and  $E_0$  denote the vertices in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  with j-invariants 1728 and 0. In §5.2.1 and §5.2.2 we investigate the number of loops at  $E_{1728}$  and  $E_0$  in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ . In particular, we determine upper bounds on p for which  $E_0$  and  $E_{1728}$  have unexpected loops, i.e., loops not arising from eigenspaces of the primitive automorphisms of  $E_0$  and  $E_{1728}$ .

#### 5.2.1. $E_{1728}$ loops

We begin by noting that

$$\Phi_2(X, 1728) = (X - 1728)(X - 287496)^2.$$

Since  $287496-1728=2^3\cdot 3^6\cdot 7^2$ , we see that 1728 is a triple root of  $\Phi_2(X,1728)$  in  $\mathbb{Z}_p[X]$  if p=7 and a single root if p>7. Hence the number of loops at  $E_{1728}$  in  $\mathcal{G}_2(\mathbb{F}_{p^2},-2p)$  is three if p=7 and one if p>7 (and  $p\equiv 3\pmod 4$ ).

**Lemma 8.** Let  $p \equiv 3 \pmod{4}$  be a prime, and let  $\ell \neq p$  be an odd prime. Then the number of loops at  $E_{1728}$  is even. Moreover, if  $\ell \equiv 1 \pmod{4}$  then there are at least two loops at  $E_{1728}$ .

**Proof.** Let  $\rho$  denote the automorphism  $(x,y) \mapsto (-x,iy)$  of  $E_{1728}$  where  $i \in \mathbb{F}_{p^2}$  satisfies  $i^2 = -1$ . Since  $\# \operatorname{Aut}(E_{1728})/2 = 2$  we have from the first part of the proof of Theorem 7 that the number of loops at  $E_{1728}$  generated by isogenies whose kernels are not eigenspaces of  $\rho$  is even.

The characteristic polynomial  $Z^2+1$  of  $\rho$  splits modulo  $\ell$  if and only if  $\ell \equiv 1 \pmod 4$ . Hence, if  $\ell \equiv 3 \pmod 4$  then all the loops at  $E_{1728}$  are generated by isogenies whose kernels are not eigenspaces of  $\rho$  and thus the number of loops is even. Now suppose that  $\ell \equiv 1 \pmod 4$ . The eigenspaces of  $\rho$  modulo  $\ell$  are two different order- $\ell$  subgroups of  $E_{1728}$ . The second part of the proof of Theorem 7 shows that the arcs generated by these subgroups are loops at  $E_{1728}$ .  $\square$ 

Let p be a prime and let  $B_{p,\infty}$  denote the quaternion algebra over  $\mathbb{Q}$  ramified at p and  $\infty$  with trace Tr and norm N. From [7, Lemma 2.1.1], we have the following result.

**Lemma 9.** Let R be a maximal order of  $B_{p,\infty}$ , and let  $K_1, K_2$  be distinct imaginary quadratic subfields of  $B_{p,\infty}$ . Furthermore, suppose that there exist  $k_i \in R$ , i = 1, 2, such that  $\{1, k_i\}$  is a  $\mathbb{Q}$ -basis for  $K_i$ . Then  $p \leq 4N(k_1)N(k_2)$ .

**Theorem 10.** Let  $\ell$  be a fixed prime, and let  $p \equiv 3 \pmod{4}$  be a prime distinct from  $\ell$ . Suppose that  $E_{1728}$  has at least one loop in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  when  $\ell \equiv 3 \pmod{4}$ , and at least three loops when  $\ell \equiv 1 \pmod{4}$ . Then  $p < 4\ell$ .

**Proof.** Let  $\operatorname{End}(E_{1728})$  be the endomorphism ring of  $E_{1728}$ . It is known that  $\operatorname{End}(E_{1728})$  is a maximal order in  $B_{p,\infty}$  [18]. Since  $\operatorname{End}(E_{1728})$  contains the order-4 automorphism  $\rho:(x,y)\mapsto (-x,iy)$ , where  $i\in\mathbb{F}_{p^2}$  satisfies  $i^2=-1$ , we have  $\mathbb{Q}(\rho)=\mathbb{Q}(\sqrt{-1})\subset\operatorname{End}(E_{1728})$ . Suppose that  $E_{1728}$  has a loop in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},-2p)$ , whence there exists  $\alpha\in\operatorname{End}(E_{1728})$  such that  $\operatorname{N}(\alpha)=\ell$ . If  $\ell\equiv 3\pmod 4$ , then  $\alpha\notin\mathbb{Q}(\rho)$  since  $\ell$  is prime in  $\mathbb{Z}[\rho]$ . On the other hand, if  $\ell\equiv 1\pmod 4$ , then  $\ell$  splits uniquely in  $\mathbb{Z}[\rho]$  up to multiplication by units as  $\ell=\delta\bar{\delta}$ . If  $E_{1728}$  has at least three loops in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},-2p)$ , then we can further assume that  $\alpha\neq u\delta$  for all units  $u\in\mathbb{Z}[\rho]$  and again we conclude that  $\alpha\notin\mathbb{Q}(\rho)$ .

Every element  $b \in B_{p,\infty}$  satisfies  $b^2 - \text{Tr}(b)b + \text{N}(b) = 0$ . Now, let  $\gamma = 2\alpha - \text{Tr}(\alpha)$ . Since  $\text{Tr}(\gamma) = 0$ , we have  $\gamma^2 = -\text{N}(\gamma) < 0$ . Hence  $\mathbb{Q}(\alpha) = \mathbb{Q}(\gamma)$  is an imaginary quadratic field different from  $\mathbb{Q}(\rho)$ . Considering the bases  $\{1, \rho\}$ ,  $\{1, \alpha\}$  for  $\mathbb{Q}(\rho)$ ,  $\mathbb{Q}(\alpha)$ , respectively, Lemma 9 yields  $p \leq 4\ell$ , and as p is a prime number, we conclude that p < 4l.  $\square$ 

5.2.2.  $E_0$  loops We have

$$\Phi_2(X,0) = (X - 2^4 \cdot 3^3 \cdot 5^3)^3,$$

whence 0 is a triple root of  $\Phi_2(X,0)$  in  $\mathbb{Z}_p[X]$  if p=5 and not a root if p>5. Hence the number of loops at  $E_0$  in  $\mathcal{G}_2(\mathbb{F}_{p^2},-2p)$  is three if p=5 and zero if p>5 (and  $p\equiv 2\pmod 3$ ). Similarly, since

$$\Phi_3(X,0) = X(X - 2^{15} \cdot 3 \cdot 5^3)^3,$$

we conclude that the number of loops at  $E_0$  in  $\mathcal{G}_3(\mathbb{F}_{p^2}, -2p)$  is four if p = 5 and one if p > 5 (and  $p \equiv 2 \pmod{3}$ ).

**Lemma 11.** Let  $p \equiv 2 \pmod{3}$  be a prime, and let  $\ell \neq 3$ , p be an odd prime. If  $\ell \equiv 2 \pmod{3}$ , then the number of loops at  $E_0$  is  $\equiv 0 \pmod{3}$ . If  $\ell \equiv 1 \pmod{3}$ , then the number of loops at  $E_0$  is  $\equiv 2 \pmod{3}$ .

**Proof.** Similar to the proof of Lemma 8.  $\square$ 

**Theorem 12.** Let  $\ell$  be a fixed prime. Let  $p \equiv 2 \pmod{3}$ ,  $p \neq \ell$ , be a prime for which  $E_0$  has at least one loop in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$  if  $\ell \equiv 2 \pmod{3}$  or at least three loops if  $\ell \equiv 1 \pmod{3}$ . Then  $p < 4\ell$ .

**Proof.** Similar to the proof of Theorem 10.  $\square$ 

For primes  $\ell \equiv 1 \pmod 4$  (resp.  $\ell \equiv 3 \pmod 4$ ), let  $p_{1728}^1(\ell)$  (resp.  $p_{1728}^3(\ell)$ ) denote the largest prime  $p \equiv 3 \pmod 4$ ,  $p \neq \ell$ , for which  $E_{1728}$  has at least three loops (resp. at least one loop) in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ . Similarly, for odd primes  $\ell \equiv 1 \pmod 3$  (resp.  $\ell \equiv 2 \pmod 3$ ), let  $p_0^1(\ell)$  (resp.  $p_0^2(\ell)$ ) denote the largest prime  $p \equiv 2 \pmod 3$ ,  $p \neq \ell$ , for which  $E_0$  has at least three loops (resp. at least one loop) in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2}, -2p)$ . Table 1 lists  $p_{1728}^1(\ell)$ ,  $p_{1728}^3(\ell)$ ,  $p_0^1(\ell)$ ,  $p_0^2(\ell)$  for all primes  $\ell \leq 283$ . These values were obtained by factoring the relevant values of the modular polynomial  $\Phi_{\ell}$ ; the modular polynomials were obtained from Sutherland's database [1,16]. For example,  $p_{1728}^3(\ell)$  is the largest prime factor of  $\Phi_{\ell}(1728, 1728)$  that is congruent to 3 modulo 4. Table 1 indicates that the bounds  $p_{1728}^1(\ell) < 4\ell$  and  $p_{1728}^3(\ell) < 4\ell$  are tight, and suggests a tighter upper bound of  $3\ell$  for  $p_0^1(\ell)$  and  $p_0^2(\ell)$ .

#### 6. Concluding remarks

We defined the supersingular isogeny graph  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2})$ , and described the arcs of its small subgraphs  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},0)$  and  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},\pm p)$ . We also investigated the existence of loops at vertices  $E_0$  and  $E_{1728}$  in the large subgraph  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},-2p)$ , and determined upper bounds on primes p for which  $E_0$  and  $E_{1728}$  have unexpected loops in  $\mathcal{G}_{\ell}(\mathbb{F}_{p^2},-2p)$ .

Table 1 The values  $p_{1728}^1(\ell), \, p_{1728}^3(\ell), \, p_0^1(\ell), \, p_0^2(\ell)$  for all odd primes  $\ell \leq 283$ .

| $\ell$             | 3   | 5   | 7   | 11  | 13  | 17  | 19  | 23  | 29   | 31   | 37   | 41   | 43   | 47   | 53   |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|------|
| $p^1_{1728}(\ell)$ | _   | 19  | _   | _   | 47  | 67  | _   | _   | 107  | _    | 139  | 163  | _    | _    | 211  |
| $p_{1728}^3(\ell)$ | 11  | _   | 23  | _   | _   | _   | 71  | 83  | _    | 107  | _    | _    | 167  | 179  | _    |
| $p_0^1(\ell)$      | _   | _   | 17  | _   | 23  | _   | 53  | _   | _    | 89   | 107  | _    | 113  | _    | _    |
| $p_0^2(\ell)$      | _   | 11  | _   | _   | _   | 47  | _   | 53  | 83   | _    | _    | 107  | _    | 137  | 131  |
| $\ell$             | 59  | 61  | 67  | 71  | 73  | 79  | 83  | 89  | 97   | 101  | 103  | 107  | 109  | 113  | 127  |
| $p_{1728}^1(\ell)$ | -   | 239 | _   | _   | 283 | _   | _   | 347 | 383  | 379  | -    | _    | 431  | 443  | _    |
| $p_{1728}^3(\ell)$ | 227 | _   | 263 | 239 | _   | 311 | 331 | _   | _    | _    | 383  | 419  | _    | _    | 503  |
| $p_0^1(\ell)$      | _   | 179 | 197 | _   | 191 | 233 | _   | _   | 263  | _    | 293  | _    | 311  | _    | 353  |
| $p_0^2(\ell)$      | 173 | _   | _   | 197 | _   | _   | 233 | 263 | -    | 251  | _    | 317  | _    | 311  | _    |
| $\ell$             | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173  | 179  | 181  | 191  | 193  | 197  | 199  |
| $p^1_{1728}(\ell)$ | -   | 547 | -   | 587 | -   | 619 | -   | -   | 691  | -    | 719  | -    | 743  | 787  | _    |
| $p_{1728}^3(\ell)$ | 523 | _   | 547 | _   | 599 | _   | 647 | 659 | _    | 691  | _    | 751  | _    | _    | 787  |
| $p_0^1(\ell)$      | _   | _   | 401 | _   | 449 | 467 | 461 | _   | _    | _    | 491  | _    | 563  | _    | 593  |
| $p_0^2(\ell)$      | 389 | 383 | _   | 443 | _   | _   | _   | 449 | 503  | 521  | _    | 569  | _    | 587  | _    |
| $\ell$             | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257  | 263  | 269  | 271  | 277  | 281  | 283  |
| $p_{1728}^1(\ell)$ | -   | -   | -   | 911 | 919 | -   | 947 | -   | 1019 | -    | 1063 | _    | 1103 | 1123 | _    |
| $p_{1728}^3(\ell)$ | 839 | 887 | 907 | _   | _   | 947 | _   | 991 | _    | 1051 | _    | 1039 | _    | _    | 1123 |
| $p_0^1(\ell)$      | 617 | 653 | _   | 683 | _   | _   | 719 | _   | _    | _    | _    | 809  | 827  | _    | 821  |
| $p_0^2(\ell)$      | _   | _   | 677 | _   | 683 | 701 | _   | 701 | 743  | 773  | 743  | _    | _    | 839  | _    |

#### Acknowledgments

We are grateful the anonymous referees for their comments, one of which led to simplified proofs of Theorems 3 and 4, and another which yielded tighter bounds in Theorems 10 and 12.

#### References

- R. Bröker, K. Lauter, A. Sutherland, Modular polynomials via isogeny volcanoes, Math. Comput. 278 (2012) 1201–1231.
- [2] D. Charles, E. Goren, K. Lauter, Cryptographic hash functions from expander graphs, J. Cryptol. 22 (2009) 93–113.
- [3] C. Delfs, S. Galbraith, Computing isogenies between supersingular elliptic curves over  $\mathbb{F}_p$ , Des. Codes Cryptogr. 78 (2016) 425–440.
- [4] L. De Feo, D. Jao, J. Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Math. Cryptol. 8 (2014) 209–247.
- [5] M. Fouquet, F. Morain, Isogeny volcanoes and the SEA algorithm, in: Algorithmic Number Theory, ANTS 2002, in: LNCS, vol. 2369, 2002, pp. 276–291.
- [6] S. Galbraith, C. Petit, J. Silva, Identification protocols and signature schemes based on supersingular isogeny problems, in: Advances in Cryptology, ASIACRYPT 2017, in: LNCS, vol. 10624, 2017, pp. 3–33.
- [7] E. Goren, C. Lauter, Class invariants for quartic CM fields, Ann. Inst. Fourier 57 (2007) 457-480.
- [8] D. Jao, L. De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, in: Post-Quantum Cryptography, PQCrypto 2011, in: LNCS, vol. 7071, 2011, pp. 19–34.
- [9] D. Jao, V. Soukharev, Isogeny-based quantum-resistant undeniable signatures, in: Post-Quantum Cryptography, PQCrypto 2014, in: LNCS, vol. 8772, 2014, pp. 160-179.
- [10] D. Kohel, Endomorphism Rings of Elliptic Curves over Finite Fields, Ph.D. thesis, UC Berkeley, 1996.
- [11] C. Munuera, J. Tena, An algorithm to compute the number of points on elliptic curves of j-invariant 0 or 1728 over a finite fields, Rend. Circ. Mat. Palermo, Ser. II XLII (1993) 106–116.
- [12] A. Pizer, Ramanujan graphs and Hecke operators, Bull. Am. Math. Soc. 23 (1990) 127–137.
- [13] R. Schoof, Nonsingular plane cubic curves over finite fields, J. Comb. Theory, Ser. A 46 (1987) 183–211.
- [14] J. Silverman, The Arithmetic of Elliptic Curves, second edition, Springer, 2009.
- [15] A. Sutherland, Isogeny volcanoes, in: Algorithmic Number Theory, ANTS 2013, in: MSP Open Book Series, vol. 1, 2013, pp. 507–530.
- [16] A. Sutherland, Modular polynomials, math.mit.edu/~drew/ClassicalModPolys.html.
- [17] L. Washington, Elliptic Curves: Number Theory and Cryptography, second edition, Chapman & Hall/CRC, 2008.
- [18] W. Waterhouse, Abelian varieties over finite fields, Ann. Sci. Éc. Norm. Supér. 2 (1969) 521–560.
- [19] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, V. Soukharev, A post-quantum digital signature scheme based on supersingular isogenies, in: Financial Cryptography and Data Security, FC 2017, in: LNCS, vol. 10322, 2018, pp. 163–181.