Lista 7 [AD-UFPE-2019]

Antonio Fernandes 28 de maio de 2019

Conte?do

Apresenta??o	1
Quest?o 1	1
a) An?lise descritiva de todas as vari?veis da base de dados	1
b) Modelo de regress?o	7
Resultado da regress?o	8
Capacidade explicativa do modelo	8
Ajuste do modelo	8
c) Modelo de regress?o com mais de uma VI	11
Resultados do modelo	12
Capacidade explicativa do modelo	12
Comparando resultados dos modelos	12

Apresenta??o

Este documento apresenta as respostas da lista de exerc?cios 7 da disciplina de An?lise de dados.

O link est? dispon?vel no GitHub: https://github.com/alvesat/AD_7

A lista envolve a execu??
o de diversos modelos de regress?o linear multivariada envolvendo um banco de dados espec?
ficos.

Quest?o 1

O primeiro passo para responder a quest?o? abrir o banco de dados contendo os dados necess?rios. ? importante verificar que os dados est?o no formato .dta, que ? o formato relacionado ao software Stata. Devido a isso, teremos que abrir o pacote haven e executar o comando para abrir o banco.

library(haven)

Warning: package 'haven' was built under R version 3.5.3

fair <- read_dta("~/Dados/Listas/AD_7/DATA_L7/fair.dta")</pre>

a) An?lise descritiva de todas as vari?veis da base de dados

Vamos verificar o nome das vari?veis presentes no banco

names(fair)

```
## [1] "YEAR" "VOTE" "PARTY" "PERSON" "DURATION" "WAR" ## [7] "GROWTH" "INFLATION" "GOODNEWS"
```

Podemos observar que o banco apresenta 9 vari?veis: Year, Vote, Party, Person, Duration, War, Growth, Inflation e Good news.

Um outro passo envolvendo o processo de descri??o das vari?veis ? identificar a estrutura de cada vari?vel:

str(fair)

```
## Classes 'tbl df', 'tbl' and 'data.frame':
                                               32 obs. of 9 variables:
              : num 1880 1884 1888 1892 1896 ...
    ..- attr(*, "format.stata")= chr "%8.0g"
              : num 50.2 49.8 50.4 48.3 47.8 ...
##
   $ VOTE
    ..- attr(*, "format.stata")= chr "%9.0g"
              : num -1 -1 1 -1 1 -1 -1 -1 1 ...
##
   $ PARTY
##
    ..- attr(*, "format.stata")= chr "%8.0g"
             : num 0 0 1 1 0 1 0 0 1 1 ...
##
   $ PERSON
    ..- attr(*, "format.stata")= chr "%8.0g"
   $ DURATION : num 1.75 2 0 0 0 0 1 1.25 1.5 0 ...
##
##
    ..- attr(*, "format.stata")= chr "%9.0g"
             : num 0000000000...
##
   $ WAR
    ..- attr(*, "format.stata")= chr "%8.0g"
##
              : num 3.88 1.59 -5.55 2.76 -10.02 ...
##
   $ GROWTH
##
    ..- attr(*, "format.stata")= chr "%9.0g"
##
   $ INFLATION: num 1.974 1.055 0.604 2.274 3.41 ...
    ..- attr(*, "format.stata")= chr "%9.0g"
##
##
   $ GOODNEWS : num 9 2 3 7 6 7 5 8 8 3 ...
    ..- attr(*, "format.stata")= chr "%8.0g"
```

? poss?vel identificar que todas as vari?veis presentes no banco s?o n?mericas e que o banco possui 32 observa??es. Agora vamos fazer uma an?lise descritiva de cada vari?vel:

Year

A vari?vel ano apresenta os anos relacionados as outras vari?veis. Por meio do comando fivenum, podemos obter um sum?rio da vari?vel (valores min?mos, 1? quartil, mediana, 3? quartil e valor m?ximo). No caso dessa vari?vel, o importante ? verificarmos o come?o da an?lise e o m?ximo.

```
fivenum(fair$YEAR)
```

```
## [1] 1880 1910 1942 1974 2004
```

Em rela?? o a vari?vel Year, percebemos que o primeiro ano do banco? 1880 e o ano final do banco? 2004.

Vote

fivenum(fair\$VOTE)

```
## [1] 36.1190 49.2720 52.0260 56.3815 62.4580
```

Em rela??
o a vari?vel vote, a vari?vel representa a porcentagem de votos recebidas pelo partido do incumbente. Observando os valores obtidos do comando fivenum, o valor m?
nimo da vari?vel foi de 36.12, o 1? quartil ? de 49.27, a mediana ? de 52.03, o 3? ? de 56.38 e o valor m?
ximo ? de 62.46. Podemos analisar a vari?vel vote por meio de um histograma:

hist(fair\$VOTE)

Histogram of fair\$VOTE

Com o histograma, verificamos que os valores est?o mais concentrados entre 45 e 55, ou seja, no centro da distribui??o.

Party

A vari?vel party? bin?ria, apresentando como valores -1 e 1.

ftable(fair\$PARTY)

```
## -1 1
##
## 18 14
```

Com o comando ftable, podemos fazer uma tabela de frequ?ncia da vari?vel party e identificar que das 32 observa??es do banco, 18 s?o do valor -1 e 14 s?o do valor 1.

Person

A vari?vel person tamb?m? bin?ria, apresentando como valores 1 e 0.

ftable(fair\$PERSON)

0 1 ## ## 13 19

O resultado mostra que 13 observa??es apresentam o valor 0 e 19 observa??es apresentam o valor 1.

Duration

A vari?vel duration apresenta os valores de 2 a 0. Com o comando fivenum? poss?vel obter uma an?lise descritiva das vari?vel:

fivenum(fair\$DURATION)

```
## [1] 0.00 0.00 1.00 1.25 2.00
```

O valor m?
nimo e do primeiro quartil ? 0, a mediana ? 1, o 3? quartil ? 1.25 e o valor m?
ximo da distribui??
o ? 2.

hist(fair\$DURATION)

Histogram of fair\$DURATION

Pelo histograma, vemos que a maior parte das observ??es s?o 0 e 1 (25)

War

A vari?vel war ? uma vari?vel bin?ria que ? melhor observada por meio do comando ftable:

ftable(fair\$WAR)

0 1 ## ## 29 3

? poss?vel verificar que 29 casos possuem valor 0 e 3 casos apresentam valor 1

Growth

A vari?vel growth cont?m informa??es acerca da varia??o de crescimento do PIB por ano:

fivenum(fair\$GROWTH)

[1] -14.557 -1.923 2.245 4.095 11.677

A descri??o por meio do comando fivenum mostra que o valor minimo da distribui??o foi uma contra??o de 14.56 no PIB, enquanto que o 1? quartil apresenta um valor de -1.92, a mediana ? de 2.24, o 3? quartil ? 4.1 e o valor m?ximo da distrbui??o ? de 11.68. Por meio de um histograma ? poss?vel uma melhor visualiza??o da distribui??o.

hist(fair\$GROWTH)

Histogram of fair\$GROWTH

Com o histograma, percebemos que boa parte da distribui??o est? localizada no centro, com casos entre -5 e 5. Com um box plot, podemos identificar a presen?a ou n?o de outliers na distribui??o.

boxplot(fair\$GROWTH)

Por meio do Boxplot, podemos verificar que existem dois valores que s?o outliers: -14.55 e -11.46.

Inflation

Vamos verificar as estat?sticas principais da vari?vel inflation:

fivenum(fair\$INFLATION)

[1] 0.0000 1.3545 2.1590 3.3715 7.9260

O valor m?nimo da distribui??
o ? 0, o 1? quartil ? 1.35, a mediana ? de 2.16, o 3? quartil ? de 3.38 e o valor m?ximo ? de 7.93.

Goodnews

Abaixo vemos os cinco valores da vari?vel goodnews

fivenum(fair\$GOODNEWS)

[1] 0.0 3.5 5.0 7.5 10.0

hist(fair\$GOODNEWS)

Histogram of fair\$GOODNEWS

O histograma mostra que a distribui??o dos valores? bem balanceada.

b) Modelo de regress?o

Para executar o modelo, com a vari?vel Vote como VD e Growth como VI, vamos utilizar o seguinte comando:

```
Linear <- lm(VOTE ~ GROWTH, data = fair)
summary(Linear)</pre>
```

```
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
   -8.2487 -3.3330 -0.4282
##
                            3.1425
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 51.8598
                             0.8817
                                     58.821 < 2e-16 ***
                             0.1607
## GROWTH
                 0.6536
                                      4.068 0.000316 ***
```

```
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.955 on 30 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3341
## F-statistic: 16.55 on 1 and 30 DF, p-value: 0.0003165
```

Resultado da regress?o

Como ? poss?vel observar no resultado, a varia??o de uma unidade na VI (Growth) leva a um aumento de 0.65 na VD (Votes). Nesse caso, o modelo de regress?o utilizado ? bivariado, dado a presen?a de apenas duas vari?veis no modelo.

Em rela??
o aos res?duos do modelo, o valor m?nimo ? de -8.25, o 1? quartil ? de -3.33, a mediana ? de -0.423, o 3? quartil ? de 3.14 e o valor m?ximo ? de 9.72.

Quando a VI assume o valor de 0, espera-se que o valor da VD seja de 51.86 (Valor do intercepto). J? em rela??o a VI, al?m do valor do coeficiente, o erro padr?o foi de 0.16, o teste-f que testa a hip?tese nula de que n?o h? rela??o entre as vari?veis apresentou um p-valor menor que 0.001. Ou seja, rejeita-se a hip?tese nula de que n?o h? rela??o entre as vari?veis.

Capacidade explicativa do modelo

No que se refere a capacidade explicativa do modelo, o R? ajustado foi de 0.33, significando que o modelo consegue explicar 33% da vari?ncia da vari?vel dependente. O erro padr?o do res?duo foi de 4.955.

Ajuste do modelo

J? no tocante ao ajuste, podemos analisar alguns gr?ficos e verificar a adequabilidade do modelo:

```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.5.3
```

O gr?fico abaixo apresenta o tamanho do res?duo por meio to tamanho do ponto e cor (quanto mais vermelho mais longe e quanto mais verde menor o res?duo). O tamanho do res?duo? a distancia entre o ponto e a linha de regress?o.

```
fair$predicted <- predict(Linear)
fair$residuals <- residuals(Linear)
ggplot(fair, aes(x = GROWTH, y = VOTE)) +
    geom_smooth(method = "lm", se = FALSE, color = "lightgrey") +
    geom_segment(aes(xend = GROWTH, yend = predicted), alpha = .2) +
    geom_point(aes(color = abs(residuals), size = abs(residuals))) +
    scale_color_continuous(low = "green", high = "red") +
    guides(color = FALSE, size = FALSE) +
    geom_point(aes(y = predicted), shape = 1) +
    theme_bw()</pre>
```


Podemos por meio do gr?fico observar a distribui??
o dos res?duos do modelo. Por meio do gr?fico de res?duos, ? poss?vel verificar a adequabilidade dos dados. Dado que o res?duo ? aquela parte do modelo que n?o ? explicada, espera-se que este n?o possua nem um padr?o. Em suma, a distribui??o do res?duo deve ser aleat?ria.

```
plot(Linear, which=1, col=c("blue"))
```


Quando observamos o gr?fico, ? poss?vel verificar uma certa concentra??o de observa??es na parte um pouco a direita do centro do gr?fico, o que pode apresentar uma n?o normalidade dos dados. Por isso ser? executado um gr?fico de quantis (quantile-quantile plot). Caso os res?duos sigam uma linha no gr?fico, ? uma boa indica??o de uma distribui??o normal.

plot(Linear, which=2, col=c("red"))

Observa-se que os res?duos seguem a linha da regress?o de maneira bastante alinhada.

Com base nessas an?lises, ? poss?vel concluir que o modelo ? adequado.

c) Modelo de regress?o com mais de uma VI

Para executar o modelo de regress?o com VOTES como VD com Growth e Goodnews como VI, executamos o seguinte comando:

```
Linear_2 <- lm(VOTE ~ GROWTH + GOODNEWS, data = fair)
summary(Linear)</pre>
```

```
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
##
## Residuals:
##
                1Q Median
                                 3Q
                                        Max
   -8.2487 -3.3330 -0.4282
##
                            3.1425
                                     9.7286
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                51.8598
                             0.8817
                                     58.821 < 2e-16 ***
##
  (Intercept)
## GROWTH
                 0.6536
                             0.1607
                                      4.068 0.000316 ***
##
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.955 on 30 degrees of freedom
## Multiple R-squared: 0.3555, Adjusted R-squared: 0.3341
## F-statistic: 16.55 on 1 and 30 DF, p-value: 0.0003165
```

Resultados do modelo

A vari?vel adicionada ao modelo ? a de GoodNews, relacionada a quantidade de not?cias boas na ?rea economica.

Ao an?lisar o modelo, percebemos que ambas as vari?veis independentes apresentam um efeito sobre a vari?vel dependente. Entretanto, a vair?vel Growth apresenta um P-valor menor que 0.001 enquanto que a v?riavel Goodnews s? apresenta um efeito significativo sobre a VD quando consideramos um P-valor menor que 0.05. Mesmo assim, ambas as vari?veis est?o abaixo do patamar de 0.05, permitindo rejeitar a hip?tese nula de que n?o h? rela??o entre as vari?veis. Observando o coeficiente da vari?vel Gwroth, podemos interpretar que, o aumento de 1% na varia??o do PIB leva a um aumento de 0.57 na VD (mantendo todo o resto constante). J? em rela??o a GOODNEWS, o aumento em 25% de not?cias economicas positivas, leva ao aumento de 0.71 na VD (mantendo todo o resto constante).

Os valores do res?duo mostram um res?duo m?nimo de -8.3125, com o 1? quartil igual a -3.9191, Mediana de 0.4876, 3? quartil de 3.05 e valor m?ximo de 9.68.

Capacidade explicativa do modelo

No que se refere a capacidade explicativa, o modelo apresenta um R? ajustado de 0.43, significando uma explica??o de 43% de varia??o na VD. O erro padr?o do res?duo foi de 4.596.

RMSE

Para analisar o RMSE (Raiz quadrada do erro m?dio) ser? necess?rio primeiro abrir o pacote sjstats

```
library("sjstats")
```

```
## Warning: package 'sjstats' was built under R version 3.5.3
```

Assim? poss?vel verificar o valor da RMSE:

```
rmse(Linear)
```

```
## [1] 4.797286
```

O RMSE ? calculado para mensurar a diferen?a entre os valores preditos pelo modelo e os valores observados. Tamb?m ? conhecido como erro padr?o do modelo e ? calculado elevando ao quadrado cada erro do modelo, somando-os, dividindo pelo n?mero de casos e obtendo a raiz quadrada. Nesse caso, o valor obtido foi de 4.37.O RMSE tem a mesma unidade que a VD e quanto menor, melhor.

Comparando resultados dos modelos

Para poder comparar os resultados desse modelo com o anterior, ? necess?rio padronizar os coeficientes de ambos os modelos. Para isso ser? utilizado o pacote lm.beta:

```
library('lm.beta')
## Warning: package 'lm.beta' was built under R version 3.5.2
lm.beta(Linear)
##
## Call:
## lm(formula = VOTE ~ GROWTH, data = fair)
## Standardized Coefficients::
## (Intercept)
                    GROWTH
     0.0000000
                 0.5962706
lm.beta(Linear_2)
##
## Call:
## lm(formula = VOTE ~ GROWTH + GOODNEWS, data = fair)
##
## Standardized Coefficients::
## (Intercept)
                    GROWTH
                              GOODNEWS
     0.0000000
                 0.5227285
                             0.3373268
```

Por meio dos coeficientes padronizados, ? poss?vel comparar os modelos. No primeiro modelo executado, verifica-se que para o aumento de 1 desvio padr?o da VI Growth, espera-se o aumento de .60 desvio padr?o na VD.

J? no segundo modelo, o aumento de 1 desvio padr?o da VI Growth leva a um aumento de 0.52 desvio padr?o na VD. Ou seja, houve uma redu??o no efeito da VI Growth do modelo 1 para o modelo 2.

Ajuste do modelo

Para verificar o ajuste do modelo, ser? analisado os residuos graficamente.

```
plot(Linear_2, which=2, col=c("red"))
```


 ${\cal O}$ gr?fico Q-Q mostra um ajuste adequado do modelo dado a tend?ncia dos pontos em rela??
o a linha de regress?o.

```
plot(Linear_2, which=1, col=c("blue"))
```


J? o gr?fico dos res?duos apresenta valores tanto acima quanto abaixo da linha, representando tamb?m um bom ajuste do modelo.

Por fim, o teste de Shapiro permite verificar a normalidade da distribui??o:

```
res <- residuals(Linear_2)
shapiro.test(res)

##
## Shapiro-Wilk normality test
##
## data: res
## W = 0.97866, p-value = 0.7598</pre>
```

Os resultados do teste apontam um p-valor de 0.76, levando a n?o rejeitar a hip?tese nula de que os dados testados n?o est?o normalmente distribu?dos.