Name:	

10.	(5 points)	Mark each	of the follo	owing sta	tements	as true	or false,	and	provide a	a correct	- and
	brief - exp	planation for	the validi	ty of eacl	h of your	answer	s:				

(a) The purpose of step_size_fn is to allow step sizes to increase with iteration index k, so that sgd and gd can converge faster.

 \bigcirc True $\sqrt{$ False

Solution: The purpose of step_size_fn is to allow step sizes to get smaller, so that sgd converges.

(b) If $\theta = \text{thO}$ were luckily at a local **minimum** of the objective function, then the output of gradient descent gd would always be θ , independent of num_steps.

 $\sqrt{\text{True}}$ \bigcirc False

Solution: At a local minimum, $dJ(th) = dJ/d\theta = 0$, so for gd the update rule th = th - step_size_fn(k) * dJ(th) would reduce to th = th

(c) If $\theta = \text{th0}$ were luckily at a local **maximum** of the objective function, then the output of gradient descent gd would always be θ , independent of num_steps.

 $\sqrt{\text{True}}$ \bigcirc False

Solution: At a local maximum, $dJ(th) = dJ/d\theta = 0$, so for gd the update rule th = th - step_size_fn(k) * dJ(th) would reduce to th = th

(d) If $\theta = \text{th0}$ were luckily at a local **minimum** of the objective function, then the output of stochastic gradient descent sgd would always be θ , independent of num_steps.

 \bigcirc True $\sqrt{$ False

Solution: For SGD, the update rule

th = th - step_size_fn(k) * dJ(Xj, yj, th) means that the gradient is dependent on which datapoint is chosen. In general, this gradient will be nonzero for some datapoints, even if the gradient is zero when averaged over all datapoints.

(e) The gradient produced by dJ is a d-dimensional vector which points in the direction which maximizes the objective function.

 $\sqrt{\text{True}}$ \bigcirc False

Solution: $dJ/d\theta$ points θ in the direction of increasing J.