

National University of Computer & Emerging Sciences, Karachi Fall-2022 Department of Computer Science

Mid Term-1

26th September 2022, 10:00 AM - 11:00 AM

Course Code: CS2009	Course Name: Design and Analysis of Algorithm	
Instructor Name / Names: Dr. Muhammad Atif Tahir, Dr. Farrukh Saleem, Dr. Waheed Ahmed, Anum Hamid, Aqsa Zahid and Sohail Afzal		
Student Roll No:		Section:

Instructions:

- Return the question paper
- Read each question completely before answering it. There are 6 questions on 2 pages
- In case of any ambiguity, you may make assumption. But your assumption should not contradict any statement in the question paper

Time: 60 minutes. Max Marks: 12.5

Question # 1 [0.5*3 = 1.5 marks]

Solve the following recurrences using **Master's Method.** Give argument, if the recurrence cannot be solved using Master's Method. [See appendix for Master's method 4th case if required]

a)
$$T(n) = 2 T \left(\frac{n}{2}\right) + \sqrt{n}$$

b) $T(n) = 5T \left(\frac{n}{2}\right) + 2^{\log_2 n}$
c) $T(n) = 8T \left(\frac{n}{2}\right) + n^3 \log^3 n$

Question # 2 [0.25*2 + 1.5*2 = 3.5 marks]

Part 2A) Write the recurrence relation for the following Algorithm statements (don't solve them)

- a) Algorithm A solves problems by dividing them into five sub problems of half the size, recursively solving each sub problem, and then combining the solutions in $O(n^2)$ time.
- b) Algorithm B solves problems of size n by dividing them into nine sub problems of size n/3, recursively solving each sub problem, and then combining the solutions in linear time.

Part 2B) Compute the time complexity of the following recurrence relations by using **Iterative Method** or **Recurrence-Tree Method**. [See appendix for formulas if required]

a)
$$T(n) = 2T\left(\frac{n}{2}\right) + nlogn$$
, Assume $T(1) = 1$
b) $T(n) = 2T(n-1) + n^2$, Assume $T(1) = 1$

Question # 3 [1.5 mark]

Consider following pseudo code to find maximum number from array and prove given loop invariant:

```
AlgorithmComputing the maximum of the elements of an arrayRequire: Array A of length nM \leftarrow A[0]for i \leftarrow 1 \dots n-1 doif M < A[i] thenM \leftarrow A[i]end ifend forreturn M
```

Question # 4 [1 mark]

Apply Substitution Guess & Test method on given recurrence relation to identify if given guess is true:

$$T(n) = T(n-2) + n^2$$
 Guess $T(n) = O(n^3)$

Question # 5 [2+1.5=3.5 marks]

Part 5A) Given a sorted array arr[] and a number x, Modify the below AlgoS to find the 'first' occurrence of the number x.

Part 5B) Dry run the algorithm which you modified, to show the steps to search for the first occurrence of number x = 2 in the array $arr[] = \{1, 2, 2, 3, 3\}$

```
AlgoS (arr, x, low, high)

if high >= low

mid = (low + high) / 2

if x == arr[mid]

return mid

else if x > arr[mid]

return AlgoS (arr, x, mid + 1, high)

else

return AlgoS (arr, x, low, mid - 1)

return -1
```

Question # 6 [1 + 0.5 = 1.5 marks]

- a) Apply below algorithm for SomeMethod(A,1,7,4), where $A = \{3,-1,-1,10,-3,-2,-4\}$. Clearly show the values of left sum and right sum for each iteration.
- b) What is the time complexity of 'SomeMethod'.

Appendix

Masters Theorem 4th Case

If
$$f(n) \in \Theta(n^{\log_b a} \log^k n)$$
 for some $k \geq 0$ then
$$T(n) \in \Theta(n^{\log_b a} \log^{k+1} n)$$

$$\sum_{k=0}^{\infty} ar^{k} = \frac{a}{1-r} \text{ (if r<1)}$$
$$\sum_{k=0}^{n} 2^{k} = 2^{k+1} - 1$$