Math 164: Optimization Barzilai-Borwein Method

Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015

online discussions on piazza.com

Main features of the Barzilai-Borwein (BB) method

- The BB method was published in a 8-page paper in 1988
- It is a gradient method with modified step sizes, which are motivated by Newton's method but not involves any Hessian
- At nearly no extra cost, the method often significantly improves the performance of a standard gradient method
- The method is used along with non-monotone line search as a safeguard

¹J. Barzilai and J. Borwein. Two-point step size gradient method. IMA J. Numerical Analysis 8, 141–148, 1988.

Motivation of the BB method

Let
$$\boldsymbol{g}^{(k)} = \nabla f(\boldsymbol{x}^{(k)})$$
 and $\boldsymbol{F}^{(k)} = \nabla^2 f(\boldsymbol{x}^{(k)})$.

- gradient method: $x^{(k+1)} = x^{(k)} \alpha_k g^{(k)}$
 - choice of α_k : fixed, exact line search, or fixed initial + line search
 - pros: simple
 - cons: no use of 2nd order information, sometimes zig-zag
- Newton's method: $x^{(k+1)} = x^{(k)} (F^{(k)})^{-1}g^{(k)}$
 - pros: 2nd-order information, 1-step for quadratic function, fast convergence near solution
 - cons: forming and computing $({m F}^{(k)})^{-1}$ is expensive, need modifications if ${m F}^{(k)} \not\succ 0$

The BB method chooses α_k so that $\alpha_k {m g}^{(k)}$ approximates $({m F}^{(k)})^{-1} {m g}^{(k)}$ without computing ${m F}^{(k)}$

Derive the BB method

Consider

$$\underset{\boldsymbol{x}}{\text{minimize }} f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x},$$

where $A \succ 0$ is symmetric. Gradient is $g^{(k)} = Ax^{(k)} - b$. Hessian is A.

- Newton step: $d_{\mathrm{newton}}^{(k)} = -A^{-1}g^{(k)}$
- Goal: choose α_k so that $-\alpha_k {m g}^{(k)} = -(\alpha_k^{-1}I)^{-1}{m g}^{(k)}$ approximates $-{m A}^{-1}{m g}^{(k)}$
- Define: $s^{(k-1)}:=m{x}^{(k)}-m{x}^{(k-1)}$ and $m{y}^{(k-1)}:=m{g}^{(k)}-m{g}^{(k-1)}.$ Then $m{A}$ satisfies:

$$\mathbf{A}\mathbf{s}^{(k-1)} = \mathbf{y}^{(k-1)}.$$

- Therefore, given $oldsymbol{s}^{(k-1)}$ and $oldsymbol{y}^{(k-1)}$, how about choose $lpha_k$ so that

$$(\alpha_k^{-1}I)\boldsymbol{s}^{(k-1)} \approx \boldsymbol{y}^{(k-1)}$$

Goal:

$$(\alpha_k^{-1}I)\boldsymbol{s}^{(k-1)} \approx \boldsymbol{y}^{(k-1)}.$$

- BB method:
 - Least-squares problem: (let $\beta = \alpha^{-1}$)

$$\alpha_k^{-1} = \underset{\beta}{\arg\min} \frac{1}{2} \| s^{(k-1)} \beta - y^{(k-1)} \|^2 \implies \alpha_k^{1} = \frac{(s^{(k-1)})^T s^{(k-1)}}{(s^{(k-1)})^T y^{(k-1)}}$$

Alternative Least-squares problem:

$$\alpha_k = \underset{\alpha}{\arg\min} \frac{1}{2} \| \boldsymbol{s}^{(k-1)} - \boldsymbol{y}^{(k-1)} \alpha \|^2 \implies \alpha_k^2 = \frac{(\boldsymbol{s}^{(k-1)})^T \boldsymbol{y}^{(k-1)}}{(\boldsymbol{y}^{(k-1)})^T \boldsymbol{y}^{(k-1)}}$$

• α_k^1 and α_k^2 are called the BB step sizes.

Apply the BB method

- Since ${\pmb x}^{(k-1)}$ and ${\pmb g}^{(k-1)}$ and thus ${\pmb s}^{(k-1)}$ and ${\pmb y}^{(k-1)}$ are unavailable at k=0, we apply the standard gradient descent at k=0 and start BB at k=1
- We can use either α_k^1 or α_k^2 or alternate between them
- We can fix $\alpha_k=\alpha_k^1$ or $\alpha_k=\alpha_k^2$ for a few consecutive steps
- It performs very well on minimizing quadratic and many other functions
- However, f_k and $\|\nabla f_k\|$ are **not** monotonic!

Steepest descent versus BB on quadratic programming

Model:

$$\underset{\boldsymbol{x}}{\text{minimize }} f(\boldsymbol{x}) := \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \mathbf{b}^T \boldsymbol{x}.$$

Gradient iteration

$$\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^{(k)} - \alpha_k (\boldsymbol{A} \boldsymbol{x}^{(k)} - \mathbf{b}).$$

• Steepest descent selects α_k as $\arg\min_{\alpha} f(\boldsymbol{x}^{(k)} - \alpha_k (\boldsymbol{A} \boldsymbol{x}^{(k)} - \mathbf{b}))$

$$\alpha_k = \frac{(\boldsymbol{r}^k)^T \boldsymbol{r}^{(k)}}{(\boldsymbol{r}^k)^T \boldsymbol{A} \boldsymbol{r}^{(k)}}$$

where $oldsymbol{r}^{(k)} := oldsymbol{b} - oldsymbol{A} oldsymbol{x}^{(k)}.$

• **BB** selects α_k as

$$\alpha_k^1 = \frac{(s^{(k-1)})^T s^{(k-1)}}{(s^{(k-1)})^T y^{(k-1)}}$$

Numerical example

- Set symmetric matrix ${\pmb A}$ to have the condition number $\frac{\lambda_{\max}({\pmb A})}{\lambda_{\min}({\pmb A})} = 50.$
- Stopping criterion:

$$\|\boldsymbol{r}^{(k)}\| < 10^{-8}$$

- Steepest descent stops in 90 iterations
- **BB** stops in 10 iterations

Properties of Barzilai-Borwein

- For quadratic functions, it has R-linear convergence²
- For 2D quadratic function, it has Q-superlinear convergence³
- No convergence guarantee for smooth convex problems. On these problems, we pair up BB with non-monotone line search.

BB on Laplace2: $\min \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + \frac{h^2}{4} \sum_{ijk} u_{ijk}^4$

²Dai and Liao [2002]

³Barzilai and Borwein [1988], Dai [2013]

Nonmonotone line search

- Some growth in the function value is permitted
- Sometimes improve the likelihood of finding a global optimum
- Improve convergence speed when a monotone scheme is forced to creep along the bottom of a narrow curved valley
- Early nonmonotone line search method⁴ developed for Newton's methods

$$f(\boldsymbol{x}^{(k)} + \alpha \boldsymbol{d}^{(k)}) \leq \max_{0 \leq j \leq m_k} f(\boldsymbol{x}^{k-j}) + c_1 \alpha \nabla f_k^T \boldsymbol{d}^{(k)}$$

However, it may still kill R-linear convergence. **Example**: $x \in \mathbb{R}$,

minimize
$$f(x) = \frac{1}{2}x^2$$
, $x^0 \neq 0$, $d^{(k)} = -x^{(k)}$.

$$\alpha_k = \begin{cases} 1 - 2^{-k}, & k = i^2 \text{ for some integer } i, \\ 2, & \text{otherwise}, \end{cases}$$

converges R-linear but fails to satisfy the condition for k large.

⁴Grippo, Lampariello, and Lucidi [1986]

Zhang-Hager nonmonotone line search⁵

- 1. initialize $0 < c_1 < c_2 < 1$, $C_0 \leftarrow f(\boldsymbol{x}^0)$, $Q_0 \leftarrow 1$, $\eta < 1$, $k \leftarrow 0$
- 2. while not converged do
- 3a. compute α_k satisfying the modified Wolfe conditions OR
- 3b. find α_k by backtracking, to satisfy the modified Armijo condition:

sufficient decrease:
$$f(\boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}) \leq C_k + c_1 \alpha_k \nabla f_k^T \boldsymbol{d}^{(k)}$$

- 4. $\boldsymbol{x}^{k+1} \leftarrow \boldsymbol{x}^{(k)} + \alpha_k \boldsymbol{d}^{(k)}$
- 5. $Q_{k+1} \leftarrow \eta Q_k + 1, C_{k+1} \leftarrow (\eta Q_k C_k + f(\boldsymbol{x}^{k+1})) / Q_{k+1}.$

Comments:

- If $\eta = 1$, then $C_k = \frac{1}{k+1} \sum_{j=0}^k f_j$.
- Since $\eta < 1$, C_k is a weighted sum of all past f_j , more weights on recent f_j .

⁵Zhang and Hager [2004]

Convergence (advanced topic)

The results below are left to the reader as an exercise.

If $f \in C^1$ and bounded below, $\nabla f_k^T d^{(k)} < 0$, then

- $f_k \leq C_k \leq \frac{1}{k+1} \sum_{j=0}^{(k)} f_j$
- there exists α_k satisfying the modified Wolfe or Armijo conditions

In addition, if ∇f is Lipschitz with constant L, then

• $\alpha_k > C \frac{|\nabla f_k^T d^{(k)}|}{\|d^{(k)}\|}$ for some constant depending on c_1, c_2, L and the backing factor

Furthermore, if for all sufficiently large k, we have uniform bounds

$$\nabla f_k^T d^{(k)} \le -c_3 \|\nabla f_k\|^2$$
 and $\|d^{(k)}\| \le c_4 \|\nabla f_k\|$

then

•
$$\lim_{k\to\infty} \nabla f_k = 0$$

Once again, pairing with non-monotone linear search, Barzilai-Borwein gradient methods work every well on general unconstrained differentiable problems.

References:

- Yu-Hong Dai and Li-Zhi Liao. R-linear convergence of the Barzilai and Borwein gradient method. *IMA Journal of Numerical Analysis*, 22(1):1–10, 2002.
- J. Barzilai and J.M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1):141-148, 1988.
- Yu-Hong Dai. A new analysis on the barzilai-borwein gradient method. *Journal of the Operations Research Society of China*, pages 1–12, 2013.
- Luigi Grippo, Francesco Lampariello, and Stephano Lucidi. A nonmonotone line search technique for Newton's method. SIAM Journal on Numerical Analysis, 23(4): 707–716. 1986.
- Hongchao Zhang and William W Hager. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 14(4): 1043–1056, 2004.