Analysis of Algorithms

Initially prepared by Dr. İlyas Çiçekli; improved by various Bilkent CS202 instructors.

Algorithm

- An *algorithm* is a set of instructions to be followed to solve a problem.
 - There can be more than one solution (more than one algorithm) to solve a given problem.
 - An algorithm can be implemented using different prog. languages on different platforms.
- Once we have a correct algorithm for the problem, we have to determine the efficiency of that algorithm.
 - How much *time* that algorithm requires.
 - How much *space* that algorithm requires.
- We will focus on
 - How to estimate the time required for an algorithm
 - How to reduce the time required

Analysis of Algorithms

- How do we compare the time efficiency of two algorithms that solve the same problem?
- We should employ mathematical techniques that analyze algorithms independently of *specific implementations, computers, or data*.
- To analyze algorithms:
 - First, we start counting the number of significant operations in a particular solution to assess its efficiency.
 - Then, we will express the efficiency of algorithms using growth functions.

Analysis of Algorithms

- Simple instructions (+,-,*,/,=,if,call) take 1 step <,>
- Loops and subroutine calls are *not* simple operations (function)
 - They depend on size of data and the subroutine
 - "sort" is *not* a single step operation
 - Complex Operations (matrix addition, array resizing) are not single step
- We assume infinite memory
- We do not include the time required to read the input

Consecutive statements

```
count = count + 1;
sum = sum + count;
1
```

Total
$$cost = 1 + 1$$

→ The time required for this algorithm is constant

Don't forget: We assume that each simple operation takes one unit of time

assign + addition 2 op.

Times

<u>If-else statements</u>

```
Times
if (n < 0) {
    absval = -n
    cout << absval;</pre>
else
    absval = n;
Total Cost \leq 1 + \max(2,1)
              1 for if comparison
```

Single loop statements

```
Times
i = 1;
sum = 0;
while (i <= n) {
    i = i + 1;
    sum = sum + i;
}</pre>

    n
sum = sum + i;
n
```

Total cost =
$$1 + 1 + (n + 1) + n + n$$

The time required for this algorithm is proportional to n

Nested loop statements

```
Times
i = 1;
sum = 0;
                                     n+1
while (i \le n) {
                                      n
     j=1;
                                   n * (n+1)
     while (j \le n) {
                                                      start from inside
                                     n * n
          sum = sum + i;
          \dot{j} = \dot{j} + 1;
                                     n * n
     i = i + 1;
                                      n
```

Total cost =
$$1 + 1 + (n + 1) + n + n * (n + 1) + n * n + n * n + n$$

 \rightarrow The time required for this algorithm is proportional to n^2

Algorithm Growth Rates

- We measure the time requirement of an algorithm as a function of the *problem size*.
- The most important thing is to learn how quickly the time requirement of an algorithm grows as a function of the problem size.
- An algorithm's proportional time requirement is known as *growth rate*.
- We can compare the efficiency of two algorithms by comparing their growth rates.

Order-of-Magnitude Analysis and Big-O Notation

- If Algorithm A requires time at most proportional to f(n), it is said to be **order f(n)**, and it is denoted as O(f(n))
- **f(n)** is called the algorithm's **growth-rate function**
- Since the capital O is used in the notation, this notation is called the **Big-O notation**

Big-O Notation

Definition:

T(n) = O(f(n)) if there are positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ when $n \ge n_0$

- Algorithm A is order of f(n) if it requires no more than $c \cdot f(n)$ time units to solve a problem of size $n \ge n_0$
 - There may exist many values of c and n_0
- More informally, $c \cdot f(n)$ is an upper bound on T(n)

O-notation: Asymptotic upper bound

T(n) = O(f(n)) if \exists positive constants c, n_0 such that $0 \le T(n) \le cf(n)$, $\forall n \ge n_0$

Asymptotic running times of algorithms are usually defined by functions whose domain are $N=\{0, 1, 2, ...\}$ (natural numbers)

12

Big-O Notation

- Big-O definition implies: constant n_0 beyond which it is satisfied
- We do not care about small values of n

Example

Show that
$$2n^2 = O(n^3)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that:

$$0 \le 2n^2 \le cn^3$$
 for all $n \ge n_0$

Choose
$$c = 2$$
 and $n_0 = 1$
 $2n^2 \le 2n^3$ for all $n \ge 1$

Or, choose
$$c = 1$$
 and $n_0 = 2$
 $2n^2 \le n^3$ for all $n \ge 2$

14

Example

Show that
$$2n^2 + n = O(n^2)$$

We need to find two positive constants: \mathbf{c} and $\mathbf{n_0}$ such that:

$$0 \le 2n^2 + n \le cn^2$$
 for all $n \ge n_0$
 $2 + (1/n) \le c$ for all $n \ge n_0$

Choose c = 3 and $n_0 = 1$

 \rightarrow $2n^2 + n \le 3n^2$ for all $n \ge 1$

15

Example

- Show that $f(n) = n^2 3 \cdot n + 10$ is order of $O(n^2)$
 - Show that there exist constants c and n_0 that satisfy the condition

Try
$$c = 3$$
 and $n_0 = 2$

True or False?

$$10^9 n^2 = O(n^2)$$

True

or bigger

Choose
$$c = 10^9$$
 and $n_0 = 1$
 $0 \le 10^9 n^2 \le 10^9 n^2$ for $n \ge 1$

$$100n^{1.9999} = O(n^2)$$

True

Choose
$$c = 100$$
 and $n_0 = 1$
 $0 \le 100n^{1.9999} \le 100n^2$ for $n \ge 1$

False

$$10^{-9} n^{2.0001} \le cn^2 \text{ for } n \ge n_0$$

 $10^{-9} n^{0.0001} \le c \text{ for } n \ge n_0$
Contradiction

A Comparison of Growth-Rate Functions

A Comparison of Growth-Rate Functions

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu \mathrm{s}$	$0.033~\mu { m s}$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu \mathrm{s}$	$0.02~\mu \mathrm{s}$	$0.086~\mu { m s}$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005~\mu { m s}$	$0.03~\mu \mathrm{s}$	$0.147~\mu { m s}$	$0.9~\mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005~\mu s$	$0.04~\mu \mathrm{s}$	$0.213~\mu s$	$1.6~\mu s$	18.3 min	원:
50	$0.006~\mu { m s}$	$0.05~\mu \mathrm{s}$	$0.282~\mu { m s}$	$2.5~\mu s$	13 days	
100	$0.007~\mu s$	$0.1~\mu s$	$0.644~\mu s$	$10 \mu s$	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010~\mu { m s}$	$1.00~\mu s$	$9.966~\mu s$	1 ms	141	
10,000	$0.013~\mu { m s}$	$10~\mu s$	$130 \mu s$	100 ms		
100,000	$0.017~\mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020~\mu { m s}$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu s$	0.01 sec	0.23 sec	1.16 days		
100,000,000	$0.027~\mu { m s}$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030~\mu \mathrm{s}$	1 sec	29.90 sec	31.7 years		

A Comparison of Growth-Rate Functions

- Any algorithm with n! complexity is useless for $n \ge 20$
- Algorithms with 2^n running time is impractical for n>=40
- Algorithms with n^2 running time is usable up to n=10,000
 - But not useful for n>1,000,000
- Linear time (n) and n log n algorithms remain practical even for one billion items
- Algorithms with log n complexity is practical for any value of n

Properties of Growth-Rate Functions

- 1. We can ignore the low-order terms
 - If an algorithm is $O(n^3+4n^2+3n)$, it is also $O(n^3)$
 - Use only the highest-order term to determine its grow rate
- 2. We can ignore a multiplicative constant in the highest-order term
 - If an algorithm is $O(5n^3)$, it is also $O(n^3)$
- 3. O(f(n)) + O(g(n)) = O(f(n) + g(n))
 - If an algorithm is $O(n^3) + O(4n^2)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$
 - Similar rules hold for multiplication

Some Useful Mathematical Equalities

$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n*(n+1)}{2} \approx \frac{n^{2}}{2}$$

$$\sum_{i=1}^{n} i^{2} = 1 + 4 + \dots + n^{2} = \frac{n * (n+1) * (2n+1)}{6} \approx \frac{n^{3}}{3}$$

$$\sum_{i=0}^{n-1} 2^{i} = 0 + 1 + 2 + \dots + 2^{n-1} = 2^{n} - 1$$

Growth-Rate Functions

Remember our previous examples

```
Times
i = 1;
sum = 0;
while (i <= n) {
    i = i + 1;
    sum = sum + i;
    n

Total cost = 1 + 1 + (n + 1) + n + n = 3 * n + 3
```

- → The time required for this algorithm is proportional to n
- \rightarrow The growth-rate of this algorithm is proportional to O(n)

Growth-Rate Functions

Total cost = 1 + 1 + (n + 1) + n + n * (n + 1) + n * n + n * n + nTotal cost = $3 * n^2 + 4 * n + 3$

- \rightarrow The time required for this algorithm is proportional to n^2
- \rightarrow The growth-rate of this algorithm is proportional to $O(n^2)$

What to Analyze

- Worst-case performance
 - It is an upper bound for any input
 - Its use is more common than the others
- Best-case performance
 - This is useless! Why?

- Average-case performance
 - It is valid if you can figure out what the "average" input is
 - It is computed considering all possible inputs and their distribution
 - It is usually difficult to compute

Consider the sequential search algorithm

```
int sequentialSearch(const int a[], int item, int n) {
  for (int i = 0; i < n; i++)
      if (a[i] == item)
         return i;
  return -1;
}</pre>
```

Worst-case:

- If the item is in the last location of the array or
- *If it is not found in the array*

Best-case:

- If the item is in the first location of the array

Average-case:

- How can we compute it?

How to find the growth-rate of C++ codes?

Some Examples

Solved on the Board.

What about recursive functions?

Consider the problem of Hanoi towers

```
void hanoi(int n, char source, char dest, char spare) {
   if (n > 0) {
      hanoi(n - 1, source, spare, dest);
      move from source to dest
      hanoi(n - 1, spare, dest, source);
   }
   http://www.cut-the-knot.org/recurrence/hanoi.shtml
```

How do we find the growth-rate of the recursive hanoi function?

- First write a recurrence equation for the hanoi function
- Then solve the recurrence equation
 - There are many methods to solve recurrence equations
 - We will learn a simple one known as repeated substitutions

Let's first write a recurrence equation for the hanoi function

function
$$T(n) = 2 \cdot T(n-1) + \Theta(1)$$
.

We will then solve it by using repeated substitutions

$$T(n) = 2 \cdot [2 \cdot T(n-2) + \Theta(1)] + \Theta(1)$$

$$= 2 \cdot [2 \cdot [2 \cdot T(n-3) + \Theta(1)] + \Theta(1)] + \Theta(1)$$

$$\vdots$$

$$= 2^{k} \cdot T(n-k) + \sum_{i=0}^{k-1} 2^{i} \cdot \Theta(1)$$

$$\vdots$$

$$= 2^{n} \cdot T(n-n) + \sum_{i=0}^{n-1} 2^{i} \cdot \Theta(1)$$

$$= 2^{n} \cdot T(0) + [2^{n} - 1] \cdot \Theta(1)$$

$$= \Theta(2^{n})$$

 $T(0) = \Theta(1)$

More examples

- Factorial function
- Binary search
- Merge sort *later*