

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Point Cloud Occupancy Grid Mapping

Deep Inverse Sensor Models

Bastian Lampe

Institute for Automotive Engineering

Excursus: Hough Transformation

Geometric approach

Figure 1: An example: (a) input image; (b) edge detection.

Source: Bin Yu et. al., Lane boundary detection using a multiresolution Hough transform,

<u>Proceedings of International Conference on Image Processing</u>, **1997**

Images: pixabay, wixmp

Deep Learning-based approach

Source: Hussam Ullah Khan et. Al., Lane detection using lane boundary marker network with road geometry constraints, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020

Approach

 Supervised learning requires labeled training data, i.e. measurement and occupancy grid map

Images: pixabay, wixmp, ieee

Approach

- Deep Inverse Sensor Models are trained to derive occupancy information from measurements
 - Supervised learning requires labeled training data, i.e. measurement and occupancy grid map
 - Occupancy Grid Maps are hard to label by hand → Other approaches, e.g.:
 - Cross-modal training: E.g. use geometric ISM with lidar measurements to create label grid maps for radar measurements

Fig. 2. Illustration of the lidar detections a.1 and the corresponding ray ILM b.1, the radar detections a.2, the intermediate and final ray IRM b.2.1, b.2 and the deep IRM b.3 (best viewed in color with zoom)

Images: pixabay, arxiv

Approach

- Deep Inverse Sensor Models are trained to derive occupancy information from measurements
 - Supervised learning requires labeled training data, i.e. measurement and occupancy grid map
 - Occupancy Grid Maps are hard to label by hand → Other approaches, e.g.:
 - Cross-modal training: E.g. use geometric ISM with lidar measurements to create label grid maps for rada measurements
 - Training Data Augmentation: Fuse sequential grid maps to generate dense label grid maps

Images: pixabay, ieee

Approach

- Supervised learning requires labeled training data, i.e. measurement and occupancy grid map
- Occupancy Grid Maps are hard to label by hand → Other approaches, e.g.:
 - Cross-modal training: E.g. use geometric ISM with lidar measurements to create label grid maps for radar measurements
 - Training Data Augmentation: Fuse sequential grid maps to generate dense label grid maps
 - Synthetic training data: Use simulation with sensor models to generate measurement data and corresponding label occupancy grid maps

Images: pixabay, ieee

Sources: Bauer et al. 2020, Wirges et al. 2018, van Kempen et al. 2021

Synthetic Training Data

- Simulation with complex urban scenarios, including a lot of vehicle types and pedestrians.
- Textures include material properties, e.g. reflectivity.
- Physically-based sensor model uses ray tracing and material properties to simulate sensor data

Virtual "high-definition" lidar detects material

that caused reflection

Input Point Cloud

HD Material Point Cloud

Synthetic Training Data

- Simulation with complex urban scenarios, including a lot of vehicle types and pedestrians.
- Textures include material properties, e.g. reflectivity.
- Physically-based sensor model uses ray tracing and material properties to simulate sensor data

RWTH AACHEN UNIVERSITY

- Virtual "high-definition" lidar detects material that caused reflection
- Occupancy grid map is derived from material classes
- Object positions are inserted into grid map

Input Point Cloud

HD Material Point Cloud

Label Occupancy Grid Map

RWTHAACHEN UNIVERSITY

Synthetic Training Data

Challenges

- Support domain shift
 - Close reality gap (difference between real and synthetic data)
 - Create diverse training data (world model, vehicles, pedestrians, obstacles, ...)
- Find suitable data representation and neural network architecture

Input Point Cloud

HD Material Point Cloud

Label Occupancy Grid Map

RWTHAACHEN UNIVERSITY

Network Architecture

- Do not re-invent the wheel → Literature Review!
- Adapt architectures that have shown to perform well on similar tasks

Network Architecture

- Do not re-invent the wheel → Literature Review!
- Adapt architectures that have shown to perform well on similar tasks
- How to measure performance? Find a suitable loss function.

Evidence for the singletons in the FOD $e_A \geq 1, A \in \Theta$ can be converted to parameters of a Dirichlet PDF and to a subjective opinion (\boldsymbol{b}, u) with the number of classes $K = |\Theta|$ and the Dirichlet strength $S = \sum_{A \in \Theta} \alpha_A$:

$$\alpha_A = e_A + 1, \quad A \in \Theta$$

$$b_A = \frac{e_A}{S} \qquad \Theta = \{F, O\}$$

$$u = \frac{K}{S}$$

