

Mahindra University Hyderabad

École Centrale School of Engineering Minor II

Program: B.Tech. Branch: Computation & Mathematics Year: Second Semester: Spring Subject: Computer Organization (MA 2211)

Date: 20/04/2024 Time Duration: 1.5 Hours Start Time: 10: 00 AM Max. Marks: 20

Instructions:

1) All questions are compulsory.

- 2) Please start each answer on a separate page and ensure you clearly number the responses. Also, make sure to address all parts of each question together and in the correct order.
- 3) It is essential to provide an explanation of each step. Correct outcomes without any description will not be evaluated.
- Q 01: Please select the correct option for the following questions and provide a proper explanation for the choice. Any correct choice without a valid justification will not be accepted. $[01 \times 08]$
 - A) What is the primary motivation for using Boolean algebra to simplify logic expressions?
 - i) It may make it easier to understand the overall function of the circuit
 - ii) It may reduce the number of gates
 - iii) It may reduce the number of inputs required
 - iv) All of the above
 - B) What is the Boolean expression for the following truth table?

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

$$i) Y = \overline{A} \overline{B} + A B$$

ii)
$$Y = A \overline{B} + \overline{A} B$$

iii)
$$Y = \overline{A} \overline{B} + A \overline{B}$$

iv)
$$Y = AB + \overline{A}\overline{B}$$

- C) If $(B2F8)_{16} = (?)_{10}$. What will be the value of "Question Mark"?
 - i) 51246
- ii) 45817
- iii) 32678
- iv) None of these
- D) In a half adder, the carry output is high if the inputs are:
 - i) 1, 1
- ii) 0, 0
- iii) 0, 1
- iv) 1, 0

E) The output of the logic circuit given below represents _____ gate.

i) OR

ii) NOR

iii) AND

iv) NAND

F) To which of the following logic gates is this combination of logic gates equivalent?

i) NOR

ii) NAND

iii) AND

iv) OR

- G) One of De Morgan's theorems states that $\overline{(A+B)}=\overline{A}\cdot\overline{B}$. Simply stated, this means that logically, there is no difference between:
 - i) A NOR and an AND gate with inverted inputs
 - ii) A NAND and an OR gate with inverted inputs
 - iii) An AND and a NOR gate with inverted inputs
 - iv) A NOR and a NAND gate with inverted inputs
- (H) The total number of minterms for three Boolean variables (α, β, γ) are:
 - i) 0.
- ii) 2
- iii) 4
- iv) 8
- v) None of these
- Q 02: Multiply $(11010.1110)_2$ by $(1011.1101)_2$. Also, divide the octal number $(2276)_8$ by $(102)_8$. Show the calculation part. [03]
- Q 03: Explain the Half Adder, including its design and logic diagram, with the help of a relevant example. [04]
- Q 04: Write the truth table and the simplified Boolean expression with four inputs and one output for the following instances. Finally, design the combinational circuit for them. $[02.50 \times 02]$
 - i) The output is 1 when the binary value of the inputs is less than or equal to five.
 - ii) The output is 1 when the binary value of the inputs is greater than or equal to 10.