UFC/DC SA (CK0191) 2018.1

General concepts Origins

olution

Generalities

time-invariant

Transforms

Fourier transforms

Numerical

Picard-Lindelö

Ordinary differential equations Stochastic algorithms

Francesco Corona

Department of Computer Science Federal University of Ceará, Fortaleza

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Origins Definitions

Solution

Linear and time-invarian

General line

Fourier transforms

Laplace transforms

Numerical integration

Picard-Lindelö heorem

General concepts

Ordinary differential equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Origins

Solution

Generalities
Linear and
time-invariant

ransforms Courier transforms

Numerica integratio

Picard-Lindel

Ordinary differential equations

Ordinary differential equations are equations in some unknown quantity

• The unknown quantity is a function

The equations involve the derivatives of the unknown function

We provide some general background on ODEs

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Origins Definitions

Solution

Generalities
Linear and
time-invariant

Transforms
Fourier transfe

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindel theorem

${\bf General\ concepts}$

Interrelated changing entities are commonplace in systems modelling

• Changing entities are called variables

The rate of change of one variable with respect to another is a **derivative**

Relations among variables and their derivatives are differential equations

We are interested in knowing how the variables are related

UFC/DC SA (CK0191) 2018.1

General concepts

Origins

olution

Linear and

time-invariar

General III

 Γ ransform

Fourier transform

Laplace transforms

ntogratio

Picard-Lindel

Origins
General concepts

7

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins

C-1--+:---

Generalities

time-invarian

General linea

integration

Picard-Lindelö theorem

Origins (cont.)

When organic matter dies its composition changes, with time

- C¹⁴ lost by radiation is not replaced
- \rightarrow [C¹⁴] and [C¹²]/[C¹⁴] change

The changing entities of this problem are $[C^{14}]$ and time t

• The changing entities are related to each other

The relation between them requires the use of derivatives

• The relation is a differential equation

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Origins

Colution

C-----

Linear and time-invariant

Transforms

Fourier transforms

- Dupinee viiiio

integration

Picard-Lindel

Origins

Example

Consider the problem of determining the age of a bonfire

→ From the remains of charcoal

We know a few things, from common sense and notions

- Charcoal is burned wood
- Wood is organic matter
- Organic matter is C
- C has two isotopes
- \sim C¹⁴ and C¹²

In living organisms, the $[C^{12}]/[C^{14}]$ ratio is constant

- C¹⁴ is radioactive
- C¹² is stable

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Definitions

Generalities

Generalities Linear and

General linea

Transform

Fourier transforms Laplace transform

Numerical integration

Picard-Lindelö

Origins (cont.)

Let t be the time elapsed since the wood was chopped off its tree

Let x(t) be the amount of C^{14} in the dead chops/charcoal

 \bullet At any time t

The instantaneous rate at which C^{14} decomposes is $\frac{dx(t)}{dt}$

UFC/DC SA (CK0191) 2018.1

General concepts

Origins

Definitions

olution

Linear and

time-invarian

General line

Transforms

Fourier transforms

Laplace transform

Numerical

Diama Tin

Origins (cont.)

We assume that the rate of decomposition varies linearly with x(t)

$$\rightsquigarrow \frac{\mathrm{d}x(t)}{\mathrm{d}t} = -kx(t)$$

- k > 0, proportionality constant
- - sign, [C¹⁴] is decreasing

Instantaneous rate of decomposition of C^{14} is k-times the amount of C^{14}

• According to this relationship (a differential equation)

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definitions

Solution

Generalities

time-invarian

Transforms

Fourier transform

Laplace transfor

Numerical

Picard-Lindelö theorem

Origins (cont.)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -kx(t)$$

Next task, try to determine a functionality between x and time t, x(t)

We multiply both sides of the differential equation by dt/x(t)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} \frac{\mathrm{d}t}{x(t)} = -kx(t) \frac{\mathrm{d}t}{x(t)}$$

$$\Rightarrow \frac{\mathrm{d}x(t)}{x(t)} = -k\mathrm{d}t$$

By integration,

$$\leadsto \quad \log \big[x(t) \big] = -kt + c$$

c is an arbitrary constant

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept Origins

Definitions

Solution

Linear and

time-invariant

Transforms

aplace transform

integratio:

Picard-Lindel

Origins (cont.)

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = -kx(t)$$

For instance, let us suppose that k = 0.01 and let t be measured in years

- ightharpoonup For $x(t)|_{t_1}=200$ [units], we have $\mathrm{d}x(t)/\mathrm{d}t|_{t_1}=2$ [units/year]
- \rightarrow For $x(t)|_{t_2} = 50$ [units], we have $\mathrm{d}x(t)/\mathrm{d}t|_{t_2} = 1/2$ [units/year]

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins
Definitions

Generalities

time-invariant

Transforms

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindel theorem

Origins (cont.)

$$\log\left[x(t)\right] = -kt + c$$

By the definition of logarithm, we get

$$\rightarrow$$
 $x(t) = e^{(-kt+c)} = e^c e^{(-kt)} = Ae^{(-kt)}$

This is nearly the answer we are after¹

• We need values for A and k

 $^{^{1}}$ A relation between the variable quantity x and the variable time t.

UFC/DC SA (CK0191) 2018.1

General concepts Origins

Definitions

Definitions

Solution

Generalities

time-invarian

General lines

Transforms

Lanlace transforms

Numerical

ntegratio

theorem

Origins (cont.)

$$x(t) = Ae^{(-kt)}$$

At time t = 0, by substitution, we know we had x(t = 0) = A units of C¹⁴

From chemistry, we know $\sim 99,876\%$ of A is still present after 10 years

• For t = 10, we have x(t = 10) = 0.99876A

Thus,

$$0.99876A = Ae^{(-10k)}$$

$$0.99876 = e^{(-10k)}$$

$$\log(0.99876) = -10k$$

$$-0.00124 = -10k$$

$$\rightarrow$$
 $k = 0.000124$

Or

equations UFC/DC SA (CK0191) 2018.1

Ordinary

differential

General concept

Definitions

Solution

Generalities

time-invarian

Transforms

Fourier transform

Numerical integration

Picard-Lindelöf theorem

Origins (cont.)

By chemical analysis of charcoal, we can measure $[C^{14}]/[C^{12}]$

• Living wood (known) and bonfire (measured)

At time t (now), 85.5% of $[\mathrm{C}^{14}]$ had decomposed

 \rightarrow 14.5% remained (0.145A)

$$0.145A = Ae^{-0.000124t}$$

$$0.145 = e^{-0.000124t}$$

$$\log(0.145) = -0.000124t$$

$$\leadsto \quad t = 15573$$

-1.9310 = -0.000124t

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept Origins

Definitions

Solution

Generalitie

time-invariant

General linea

Iransiorms

Laplace transfor

integratio

Picard-Lindel

Origins (cont.)

For k = 0.000124

$$\Rightarrow \quad x(t) = Ae^{-0.000124t}$$

We need to determine the value of A

• The initial amount of C^{14}

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins Definitions

olution

Generalities Linear and

time-invaria

Transfe

Fourier transform

Numerical integration

Picard-Lindel

Definitions

General concepts

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

olution

Linear and

time-invarian

Transform

Lanlace transform

Jumonicol

ntegratio

theorem

Definitions

In calculus, we studied methods for differentiating elementary functions

Example

Consider the function $y(x) = \log(x)$

We have the successive derivatives

$$\frac{\mathrm{d}}{\mathrm{d}x}y(x) = \frac{1}{x} = y'$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x}y(x) = \frac{-1}{x^2} = y''$$

$$\frac{\mathrm{d}^3}{\mathrm{d}x}y(x) = \frac{2}{x^3} = y'''$$

$$\cdots = \cdots$$

The equations involve variables and their derivatives

 \bullet One independent variable x

They are called ordinary differential equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definitions

Doration

Linear and

General line

Fourier transform

Laplace transform

Numerical

Picard-Lindelöf theorem

Definitions (cont.)

Example

Consider the function

$$z(x,y) = x^3 - 3xy + 2y^2$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Definitions

Solution

Linear and

Tuenefeur

Fourier transform

Lapiace transi

Picard-Lindel

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins Definitions

Solution

Generalities Linear and

time-invarian General lines

Transfor

Laplace transforms

ntegration
Picard-Linde

Definitions (cont.)

The partial derivatives with respect to x and y

$$\frac{\partial}{\partial x}z(x,y) = 3x^2 - 3y$$
$$\frac{\partial}{\partial y}z(x,y) = -3x + 4y$$
$$\frac{\partial^2}{\partial x^2}z(x,y) = 6x$$
$$\frac{\partial^2}{\partial y^2}z(x,y) = 4$$

The equations involves variables and their derivatives

• Two independent variables x and y

They are called partial differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

Solution

Linear and

time-invarian

Transforms

Fourier transform

Laplace transform

ntegration

theorem

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definitions

Solution

Generalities

time-invarian

T----

Fourier transform

Numerical

Numerical integration

Picard-Lindelö theorem

Definitions (cont.)

Habits

Common custom in writing differential equations uses f(x) for y(x) or y

For example,

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) + x \cdot [f(x)]^2 = 0 \quad \Leftrightarrow \quad \begin{cases} \frac{\mathrm{d}}{\mathrm{d}x}y(x) &= x \cdot [y(x)]^2 = 0\\ \frac{\mathrm{d}}{\mathrm{d}x}y &= xy^2 = 0\\ y' &= xy = 0 \end{cases}$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept Origins

Definitions Solution

Solution

Linear and

time-invariant

Transforms

Courier transforms Laplace transforms

Numerica

Picard-Lindelö

Definitions (cont.)

Definition

Ordinary differential equation

Let f(x) be a function of x defined over some interval, $\mathcal{I}: a < x < b$

By ordinary differential equation, we mean an equation involving x, the function f(x) and one or more of the derivatives of f(x)

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

G 1

Definitions

Solution

Generalities

time-invariant

Transforms
Fourier transform

Laplace transform

Numerical integration

Picard-Lindelö theorem

Definitions (cont.)

Definition

Order of a differential equation

The order of a differential equation is the order of the highest derivative involved in the equation

UFC/DC SA (CK0191) 2018.1

Solution

Solution

Ordinary differential equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Solution

Solution

Consider the algebraic equation

$$x^2 - 2x - 3 = 0$$

If x is replaced by 3, the equality holds true

• We say that x = 3 is a solution

We mean that x = 3 satisfies the equation

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Solution

Solution (cont.)

Consider the differetial equation

$$x^{2}y'' + 2xy' + y = \log(x) + 3x + 1$$
, with $x > 0$

Function $f(x) = \log(x) + x$ is a solution of the differential equation (x > 0)

f(x) and its first and second derivatives can be substituted in y, y' and y''

• The equality will hold true

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Solution

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Definitions

Solution

Lincor and

time-invarian

General line

Transforms

Laplace transform

Numerical

Picard-Lindeletheorem

Solution (cont.)

Two things are worth noting

Values of x for which function f(x) is defined had been clearly specified

- Though they would have been tacitly assumed
- $\log(x)$ is undefined for $x \leq 0$

We specified the interval in which the differential equation makes sense

• Redundant, because of the presence of $\log(x)$

Ordinary differential equations

UFC/DC SA (CK0191)

General concept

Definitions

Generalities

Linear and time-invariant

General linea

Fourier transfor

ourier transform aplace transform

Numerical

Picard-Lindelö

Generalities Solution

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Definitions

Generalities

Generalities

Concept linear

Transforms

Fourier transform

Numerical integration

Picard-Lindelö

Explicit solution

Definition

Explicit solution

Let y = f(x) define y as a function of x over an interval, $\mathcal{I}: a < x < b$

We say that function f(x) is an **explicit solution** of an ordinary differential equation involving x, f(x) and derivatives, if it satisfies the equation $\forall x \in \mathcal{I}$

Function f(x) is a solution of the differential equation

$$F[x, y, y', \cdots, y^{(n)}] = 0,$$

$$F[x, f(x), f'(x), \dots, f(x)^{(n)}] = 0$$
, for every x in \mathcal{I}

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Deminions

Generalities

time-invariant

Cransforms

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindel

Explicit solution (cont.)

We can replace y by f(x), y' by f'(x), y'' by f''(x), ..., $y^{(n)}$ by $f^{(n)}(x)$

 \rightarrow The differential equation reduces to an identity in x

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

Solution

Generalities

time-invariant

General linea

Transforms

Lanlace transform

ntogratio

Picard-Lindelö theorem Explicit solution (cont.)

Habits

We use expressions like 'solve' or 'find a solution' of a differential equation

 \leadsto 'Find a function which is solution of the differential expression'

We may refer to a certain equation as the solution of a differential equation

We mean, the function defined by the equation is the solution

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

deneral concept

Definitions

Solution

Generalities

time-invariant

Transforms

Fourier transfo

Numerical

Numerical integration

Picard-Lindelö theorem

Explicit solution (cont.)

Example

Equation $y = \sqrt{-(1+x^2)}$ does not define a (real) function

Meaningless to say that it is a solution of the differential equation x+yy'=0

Though, by formal substitution, we obtain an identity

$$\rightarrow y = \sqrt{-(1+x^2)}$$

$$y' = -x\sqrt{-(1+x^2)}$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

eneral concepts

Definitions

Solution

Generalities

time-invariant

ransforms

ourier transforms aplace transforms

integratio

Picard-Lindel

Explicit solution (cont.)

Remark

An equation that does not define a function, cannot be a solution

• You may still show that the differential equation is satisfied

A function

Suppose that to each element of an independent variable x on a set E (the set must be specified) there corresponds one and only one (real) value of a dependent variables y

We say that the dependent variable y is a function of the independent variable x on the set E

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concer

Origins Definitions

Generalities

Linear and time-invariant

Transforms

Fourier transforms Laplace transform

Numerical integration

Picard-Lindel theorem

Explicit solution (cont.)

Example

Consider the function

$$y = x^2$$
, with $-\infty < x < \infty$

Verify that it is a solution to the differential equation

$$(y'')^3 + (y')^2 - y - 3x^2 - 8 = 0$$

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Solution

Generalities

time-invariant

General linea

_

Transform

Laplace transform

ntegratio

theorem

Explicit solution (cont.)

Together with $y = f(x) = x^2$, we have y' = f'(x) = 2x and y'' = f''(x) = 2

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

0.1.0

Generalities

Linear and time-invariant

eneral linear

ransiorins Fourier transforms

aplace transform

integratio

Picard-Lindelöi theorem

Explicit solution (cont.)

$$\underbrace{(y'')}_{f''(x)=2}^{3} + \underbrace{(y')}_{f(x)=2x}^{2} - \underbrace{y}_{f(x)=x^{2}}^{3} - 3x^{2} - 8 = 0$$

Substituting these values, we obtain

$$\underbrace{8 + (4x^2 - x^2) - 3x^2 - 8}_{F[x,f(x),f'(x),f''(x)]} = 0$$

LHS is zero, $y = x^2$ is an explicit solution

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Origins

Generalities

Linear and

General lines

Transforms

Fourier transform

Numerical

integration

Picard-Lindelöf theorem

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

eneral concep

Origins

Solution

Generalities

time-invariant

General linear

Fourier transforms

Fourier transforms

Numerical

Picard-Lindelö theorem

Explicit solution (cont.)

Example

Consider function

$$y = \log(x) + c$$
, with $x > 0$

Verify that it is a solution to the differential equation

$$y' = 1/x$$

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Definitions

Solution

Generalities Linear and

time-invariant

General lines

Tunnafanna

...

ntegratio

theorem

Explicit solution (cont.)

Together with $y = f(x) = \log(x) + c$, we have y' = f'(x) = 1/x, for x > 0

By substitution of these values, we obtain an identity in the variable x

•
$$y = \log(x) + c$$
 is a solution of $y' = 1/x$, for all $x > 0$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

C-1---

Generalities

time-invarian

Fourier transfor

Picard-Lindelö

Implicit solution

We can test if an implicit solution defined by f(x, y) = 0 is a solution

• The procedure is much more involved

Not always easy to solve the equation f(x, y) = 0 for y in terms of x

Suppose that it can be shown that an implicit function y=g(x) satisfies a given differential equation over an interval $\mathcal{I}: a < x < b$

• Relation f(x,y) = 0 is an implicit solution of the differential equation

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Solution

Generalities

time-invariant

Transform

Courier transforms

umerical

Picard-Lindelö

Explicit solution (cont.)

Example

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

C-1.....

Generalities

time-invariant

Transform

Fourier transforms Laplace transforms

Numerical ntegration

Picard-Lindel

Implicit solution (cont.)

Implicit function

The relation f(x, y) = 0 defines y as an implicit function of x over the interval $\mathcal{I}: a < x < b$, if there exists a function y = g(x) defined over \mathcal{I}

$$\rightarrow f[x, g(x)] = 0$$
, for every $x \in \mathcal{I}$

UFC/DC SA (CK0191) 2018.1

General concepts Origins

Solution

Generalities

Linear and time-invariant

General linear

Transforms

Lanlace transforms

Numerical

Picard-Lindele theorem Implicit solution (cont.)

Consider the relationship

$$x^2 + y^2 - 25 = 0$$

Does it define a function?

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Definitions

C-1--4:---

Generalities

Linear and

General lines

Transforms

rourier transforms

Numerical

Picard-Lindelöf theorem

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

Solution

Generalities Linear and

time-invariant

Fransforms

Fourier transforms

Numerica integration

Picard-Lindelö

Implicit solution (cont.)

Let x > +5 or x < -5

- \bullet The formula will not determine a value of y
- (If x = 7, no y can satisfy the relation)

Let $-5 \le x \le +5$

- We solve the relation for y
- $y = \pm \sqrt{25 x^2}$

It does not uniquely define y(x)

$$y = +\sqrt{25 - x^2}, \quad (x \in [-5, +5])$$

$$y = -\sqrt{25 - x^2}, \quad (x \in [-5, +5])$$

$$y = +\sqrt{25 - x^2}, \quad (x \in [-5, 0])$$

$$y = -\sqrt{25 - x^2}, \quad (x \in (0, +5))$$

Each formula defines a proper function

• We can *choose* any of them

Ordinary differential equations

UFC/DC SA (CK0191)

seneral concept Origins

Solution

Generalities

time-invariant

General linear

Fourier transforms

Numerical

Picard-Lindel theorem

Implicit solution (cont.)

Example

Consider the relationship

$$x^2 + y^2 - 3xy = 0$$

Does it define a function?

If it does, for what values of x will it uniquely determine a value of y?

It is not easy to solve the relation for y in terms of x

UFC/DC SA (CK0191) 2018.1

General concepts Origins

Definitions

Generalities

time-invariant

General lines

Fransforms

Mumorical

ntegration

theorem

Implicit solution (cont.)

Definition

Implicit solution

A relation f(x, y) = 0 is an **implicit solution** of the differential equation

$$F[x, y, y', y'', \dots, y^{(n)}] = 0, \text{ with } x \in \mathcal{I} = (a, b)$$

i

- 1. f(x,y) defines y as an implicit function of x on \mathcal{I} (there exists a function y = g(x) defined over \mathcal{I} such that f[x,g(x)] = 0 for every $x \in \mathcal{I}$)
- 2. g(x) satisfies the differential equation

$$F[x, g(x), g(x)', g(x)'', \cdots, g(x)^{(n)}] = 0$$
, for every $x \in \mathcal{I} = (a, b)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins

Definitions

Solution

Generalities

time-invariant

General line

Laplace transform

Numerical

Picard-Lindelö

Implicit solution (cont.)

Function $f(x,y) = x^2 + y^2 - 25$ defines y as an implicit function of $x \in \mathcal{I}$

 \rightarrow There is a function g(x) defined on \mathcal{I} such that

$$f[x, g(x)] = 0, \forall x \in \mathcal{I}$$

Specifically, let $g(x) = y = \sqrt{25 - x^2}$ for $-5 \le x \le +5$

Then,
$$f(x, y) = f[x, g(x)] = x^2 + \underbrace{[\sqrt{25 - x^2}]}_{y}^2 - 25 = 0$$
 is satisfied

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Solution

Generalities

time-invarian

Transform

Fourier transforms

Numerica

Picard-Lindelö

Implicit solution (cont.)

Example

Consider the relation

$$f(x,y) = x^2 + y^2 - 25 = 0$$

Check whether f(x, y) = 0 is an implicit solution of the differential equation

$$F(x, y, y') = yy' + x = 0$$
, with $\mathcal{I} : -5 < x < 5$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Solution

Generalities

Linear and

General lines

Tueneferm

Fourier transforms

Numerical

Picard-Linde

Implicit solution (cont.)

By substituting g(x) for y and g'(x) for y' in F(x, y, y') = yy' + x = 0

$$\rightarrow f[x, g(x), g'(x)] = \sqrt{25 - x^2} \left(-\frac{x}{\sqrt{25 - x^2}} \right) + x = 0$$

UFC/DC SA (CK0191) 2018.1

General concepts

Definition

Solution

Generalities

time-invariant

General linea

Transforms

Laplace transfor

ntegratio

theorem

General solution

In calculus, we studied methods for integrating elementary functions

• It was the same as solving simple differential equations

$$\rightsquigarrow$$
 $y'(x) = f(x)$

G

equations UFC/DC SA (CK0191) 2018.1

Ordinary

differential

a 1

Origins

Definitions

Solution

Generalities

time-invariant

Transforms

Fourier transform

Numerical

Numerical

Picard-Lindelö heorem

General solution (cont.)

If $y''(x) = e^x$, then its solution by double integration

$$\rightarrow$$
 $y(x) = e^x + c_1 x + c_2$

 c_1 and c_2 can take any numerical values

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Definition

Solution Generalities

Linear and time-invarian

Francforme

Fourier transforms

integrati

Picard-Linde

General solution (cont.)

Example

Consider the differential equation

$$y'(x) = e^x$$

Its solution, by integration

$$\rightarrow y(x) = e^x + c$$

c can take any arbitrary numerical value

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

2018.1

Origins

Solutio

Generalities

time-invarian

Transform

Numerical

Picard-Lindel

General solution (cont.)

If $y'''(x) = e^x$, then its solution by triple integration

$$y(x) = e^x + c_1 x^2 + c_2 x + c_3$$

 $c_1,\ c_2$ and c_3 can take any numerical values

UFC/DC SA (CK0191) 2018.1

General concepts

Origins

Definition

Generalities

Linear and

time-invarian

Transform

NT.....! 1

ntegratio

Picard-Lindelö theorem

General solution (cont.)

Two important (yet false) conjectures seem to stem from this example

If a differential equation has a solution, it has infinitely many solutions

 \rightarrow As many as there are values of c

If a differential equation is first order, then there is only one constant

- → If it is second order, two constants
- → If it is third order, three constants

~→ ..

If a differential equation is n-th order, the solution has n constants

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definitions

. . .

Generalities

time-invariant

Fourier transform

Laplace transfo

Numerical

Picard-Lindelö theorem

General solution (cont.)

Example

Consider the first-order differential equation

$$|y'| + 1 = 0$$

Consider the second-order differential equation

$$|y''| + 1 = 0$$

Both differential equations have no solution

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Definitio

Solution

Generalities

time-invarian

General lines

ansiorms

Laplace transfor

integrati

Picard-Lindel

General solution (cont.)

Example

Consider the first-order differential equation

$$(y')^2 + y^2 = 0$$

Consider the second-order differential equation

$$(y'')^2 + y^2 = 0$$

Both differential equations admit only one solution

$$\rightsquigarrow y(x) = 0$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conc

Deminions

Generalities

Linear and

General linear

Fourier transforms

Numerical integration

Picard-Linde

General solution (cont.)

Example

Consider the first-order differential equation

$$xy' = 1$$

The equation has no solution if $x \in \mathcal{I} = (-1, +1)$

The differential equation can be formally solved

$$y(x) = \log|x| + c$$

The function is discontinuous at the origin x = 0

• Not okay in \mathcal{I}

UFC/DC SA (CK0191) 2018.1

General concepts Origins

Generalities

Linear and

time-invarian

Transforms

Lanlace transform

Laplace transfor

integratio

Picard-Lindelö theorem

General solution (cont.)

If x < 0, we have $y(x) = \log(-x) + c_1$

• This is a valid solution in x < 0

If x > 0, we have $y(x) = \log(x) + c_2$

• This is a valid solution in x > 0

There is no valid solution at x = 0

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Solution

Generalities Linear and time-invarian

.....

Laplace transform

Numerical integration

Picard-Lindelö theorem

General solution (cont.)

The examples warn that not all differential equations have a solution

• Also, the number of constants is not the order of the equation

The conjectures are true for a large class of differential equations

Consider a solution that contains n constants c_1, c_2, \ldots, c_n

- → It is called a n-parameter family of solutions
- $\rightarrow c_1, c_2, \dots, c_n$ are thus the **parameters**

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Definitio

Solution

Generalities

time-invariant

Transforms

Fourier transforms

integratio

Picard-Lindelö

General solution (cont.)

Example

Consider the first-order differential equation

$$(y' - y)(y' - 2y) = 0$$

The solution to this differential equation

$$(y - c_1 e^x)(y - c_2 e^2 x) = 0$$

• Two arbitrary constants (not one)

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Solutio

Generalities

time-invariant

General linear

Transforn

Fourier transform

Numerical

Picard-Lindel

General solution (cont.)

$\operatorname{Definition}$

Consider the family of functions in the (n + 1) variables x, c_1, c_2, \ldots, c_n

$$y = f(x, c_1, c_2, \dots, c_n)$$

Such functions are called a n-parameter family of solutions of the n-order differential equation

$$F[x, y, y', \cdots, y^{(n)}] = 0$$

if for each choice of a set of values c_1, c_2, \ldots, c_n the resulting function f(x) (a function of x alone) is such that

$$F[x, f(x), f'(x), \cdots, f^{(n)}(x)] = 0$$

UFC/DC SA (CK0191) 2018.1

General concepts

D-fi-iti---

Generalities

Linear and

Conoral lines

T....

Fourier transform

Laplace transforms

umericai

Picard-Lindel theorem

General solution (cont.)

Example

Consider the functions

$$y = f(x, c_1, c_2) = 3 + 2x + c_1 e^x + c_2 e^{2x}$$

A 2-parameter family of solutions of second-order differential equation

$$F[x, y, y', y''] = y'' - 3y' + 2y - 4x = 0$$

Let a, b be any two values of c_1, c_2

Then, as a function of only x

$$y = f(x) = 3 + 2x + ae^x + be^{2x}$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins

.

Generalities

time-invarian

Transforms

Fourier transform

Laplace trans

Numerical

Picard-Lindelöf :heorem

General solution (cont.)

We now discuss the inverse problem of finding a differential equation

 \rightarrow Given that its *n*-parameter family solutions is known

The family will contain the requisite number of n arbitrary constants

- The *n*-order equation does not contain them
- The constants need be eliminated (not easy)

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Definitions

Solution

Generalities

time-invariant

aneforme

Courier transforms

Numerica integration

Picard-Lindel

General solution (cont.)

The first and second derivatives of y = f(x)

$$y' = f'(x) = 2 + ae^{x} + 2be^{2x}$$

 $y'' = f''(x) = ae^{x} + 4be^{2x}$

Substituting the values of f, f' and f'' for y, y' and y'', we get

$$F(x,f,f',f'') = ae^x + 4be^{2x} - 6 - 3ae^x - 6be^{2x} + 4x + 6 + 2ae^x + 2be^{2x} - 4x = 0$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Solution

Generalities

time-invariant

Transfor

Fourier transforms

Laplace transforms

Numerical integration

Picard-Lindelö theorem

General solution (cont.)

Example

Find a differential equation for the 1-parameter family of solutions ${\cal P}$

This family has one constant

$$y(x) = c\cos(x) + x$$

We seek a first-order equation

By differentiating the family of solutions, we obtain

$$y' = -c\sin(x) + 1$$

UFC/DC SA (CK0191) 2018.1

General concepts Origins

Definition

Solution Generalities

Linear and

time-invariant

1 Talistorius

Laplace transform

Numerica

Picard-Lindele theorem

General solution (cont.)

$$y' = -c\sin(x) + 1$$

This differential equation still contains the constant

• It is not the searched one

We eliminate it by the following multiplications

To be completed as exercise?

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

.

Origins

Definitions

.....

Generalities

time-invariant

Transforms

Fourier transform

integration

Picard-Lindelö theorem

General solution (cont.)

Consider the second order differential equation of a forced spring

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}x(t)}{\mathrm{d}} + \nu^2 x(t) = w(t)$$

 γ and ν are constants

Force w(t) is some given function (may/may not depend on time)

- Position x(t) is the dependent variable
- \bullet Time t is the independent variable

The equation is called inhomogeneous, because of the forcing term

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Definitions

Generalities

Linear and time-invariant

Γransforms

ourier transforms aplace transforms

Numerica. integratio

Picard-Lindelö theorem

General solution (cont.)

Example

Find a differential equation for the 2-parameter family of solutions

$$y = c_1 e^x + c_2 e^{-x}$$

First-order equation

To be completed as exercise?

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

eneral concep

Definitions

Generalities

Linear and time-invariant

General line

Transforms
Fourier transforms

Numerical

Picard-Lindel theorem

General solution

The solution to the differential equation is defined as ${\bf particular\ solution}$

- It satisfies the ordinary differential equation
- Does not contain arbitrary constants

A general solution contains every possible particular solutions

• Parameterised by some free constants

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Definitions

Generalities

Linear and

time-invarian

T....

Fourier transform

Laplace transio

ntegration

Picard-Lindelö theorem

General solution (cont.)

To solve the equation, we tie together general solution and initial conditions

We need to know the spring position $x(t_0)$ and velocity $dx(t_0)/dt$

• At some fixed initial time t_0

Given the initial conditions, there is a unique solution to the equation

• (provided that w(t) is continuous)

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Definitions

Solution Generalities

Linear and time-invariant

ansforms

urier transforms

Numerica. integratio

Picard-Lindelö theorem

General solution (cont.)

It is common to omit dependencies of x and w on t

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}x(t) + \gamma \frac{\mathrm{d}}{\mathrm{d}t}x(t) + \nu^2 x(t) = w(t)$$

Time derivatives are often denoted using dot (Newtonian) notation

$$\ddot{x}(t) + \gamma \dot{x}(t) + \nu^2 x(t) = w(t)$$

$$\Rightarrow \ddot{x}(t) = d^2x(t)/dt$$

$$\rightarrow \dot{x}(t) = \mathrm{d}x(t)/\mathrm{d}t$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Definitions

Generalities

time-invariant

Picard-Lindali

General solution (cont.)

Differential equations of arbitrary order n can almost always be converted

Vector differential equations of order one

Ordinary differential equations

UFC/DC SA (CK0191)

2018.1

Origins Definitions

Solution

Generalities

time-invariant

Transfor

Fourier transforms

Numerical

Picard-Lindel

General solution (cont.)

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}x(t) + \gamma \frac{\mathrm{d}}{\mathrm{d}}x(t) + \nu^2 x(t) = w(t)$$

For the spring model, we can define the state variable $\mathbf{x}(t)$

$$\rightarrow$$
 $\mathbf{x}(t) = [x_1(t), x_2(t)] = [x(t), dx(t)/dt]$

We re-write the original equation as a first-order equation

$$\underbrace{\begin{bmatrix} \mathrm{d}x_1(t)/\mathrm{d}t \\ \mathrm{d}x_2(t)/\mathrm{d}t \end{bmatrix}}_{\mathrm{d}\mathbf{x}(t)/\mathrm{d}t} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\nu^2 & -\gamma \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}}_{\mathbf{f}[\mathbf{x}(t)]} + \underbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}_{\mathbf{L}} w(t)$$

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

Solution

Generalities

Linear and

General lines

Transforms

Laplace transforms

Numerical

Picard-Lindel

General solution (cont.)

The more general form

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{f} \big[\mathbf{x}(t), t \big] + \mathbf{L} \big[\mathbf{x}(t), t \big] \mathbf{w}(t)$$

- The vector values function $\mathbf{x}(t) \in \mathcal{R}^n$ is called the state of the system
- The vector valued function $\mathbf{w}(t) \in \mathcal{R}^s$ is the forcing (input) function

It is possible to absorb the second term in the RHS into the first one

We get,

$$ightharpoonup rac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{f} \big[\mathbf{x}(t), t\big]$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Definitions

.....

Generalities

time-invarian

Fourier transform

Laplace transfo

Numerical integration

Picard-Lindelöf heorem

General solution (cont.)

The spring model is a special case of linear differential equation

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{L}(t)\mathbf{w}(t)$$

It is an important class of differential equations

→ We can actually solve these equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept Origins

Solution

Generalities

Linear and time-invariant

ransforms

aplace transform

integratio

Picard-Lindel theorem

General solution (cont.)

The first-order vector representation of a n-order differential equation

 \rightarrow The state-space representation

We develop the theory and solution methods for first-order equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Solution

Linear and time-invarian

General l

Fourier transform

Jumerical

Picard-Lindelö

Linear and time-invariant Solution

UFC/DC SA (CK0191)

General concepts

Origins

Definitions

orution

Linear and

time-invaria

m c

Fourier transfor

Laplace transforms

ntogratio

Picard-Lindel theorem

Linear and time-invariant

Consider a scalar linear homogeneous differential equation

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = fx(t), \quad \text{given } x(0)$$

f is a constant (time-independent) scalar

The equation can be solved by variable separation

$$\Rightarrow \frac{\mathrm{d}x(t)}{x(t)} = f\mathrm{d}t$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definitions

Generalities

Generalities

time-invariant

.....

Fourier transform

Laplace transfor

Numerical

Picard-Lindelö theorem

Linear and time-invariant (cont.)

Another way of solving the equation consists of integrating both sides

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = fx(t), \quad \text{given } x(0)$$

Integrating from 0 to t, we get $\int_0^t dx/dt = x(t) - x(0)$

$$\rightarrow$$
 $x(t) = x(0) + \int_0^t d\tau f x(\tau)$

We can now substitute the RHS of the equation for x(t) in the integral

$$x(t) = x(0) + \int_0^t d\tau f \left[x(0) + \int_0^\tau d\tau f x(\tau) \right]$$

= $x(0) + f x(0) \int_0^\tau d\tau + \int_0^t \int_0^t d\tau^2 f x(\tau)$
= $x(0) + f x(0) t \int_0^t \int_0^t d\tau f^2 x(\tau)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Solution

Ceneralities Linear and

eneral linear

ansforms

aplace transform

integratio

Picard-Lindelö theorem

Linear and time-invariant (cont.)

$$\frac{\mathrm{d}x(t)}{x(t)} = f\mathrm{d}t$$

We integrate the LHS from x(0) to x(t) and the RHS from 0 to t

We get.

$$\ln[x(t)] - \ln[x(0)] = ft \quad \leadsto \quad x(t) = x(0)e^{(ft)}$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

C-1....

Generalities Linear and

General lin

Fourier transforms

Numerical

Picard-Lindelö

Linear and time-invariant (cont.)

The same procedure can be performed again on the last integral

$$x(t) = x(0) + fx(0)t \int_0^t \int_0^t d\tau^2 f^2 \Big[x(0) + \int_0^\tau d\tau f x(\tau) \Big]$$

= $x(0) + fx(0)t + f^2 x(0) \int_0^t \int_0^t d\tau^2 + \int_0^t \int_0^t f^3 x(\tau) d\tau^3$

It is easy to repeat the same procedure

$$x(t) = x(0) + fx(0)t + f^{2}x(0)\frac{t^{2}}{2} + f^{3}x(0)\frac{t^{3}}{6} + \cdots$$

$$\Rightarrow = \underbrace{\left(1 + ft + \frac{f^{2}t^{2}}{2!} + \frac{f^{3}t^{3}}{3!} + \cdots\right)}_{e^{(ft)}}x(0)$$

As the Taylor expansion of $e^{(ft)}$ converges, we have

$$\rightarrow$$
 $x(t) = e^{(ft)}x(0)$

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

501411011

Linear and

time-invarian

Transforms

rourier transform Lanlace transform

Numerical

integration

Picard-Lindelö heorem Linear and time-invariant (cont.)

The multivariate generalisation of homogeneous linear differential equations

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{F}\mathbf{x}(t), \quad \text{given } \mathbf{x}(0)$$

 ${f F}$ is a constant (time-independent) matrix

We cannot use variable separation

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concer

Origins

Solution

Generalities

time-invariant

General linea

Laplace transfe

Numerical integration

Picard-Lindelö: theorem

Linear and time-invariant (cont.)

The matrix exponential can be evaluated analytically

- Taylor series expansion
- Laplace transform
- Fourier transform
- Cayley-Hamilton
- ...

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce Origins

Solution

Generalities Linear and

me-invariant

ransforms

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindel

Linear and time-invariant (cont.)

We can use the expansion-based type solution

$$\mathbf{x}(t) = \underbrace{\left(\mathbf{I} + \mathbf{F}t + \frac{\mathbf{F}^2 t^2}{2!} + \frac{\mathbf{F}^3 t^3}{3!} + \cdots\right)}_{e(\mathbf{F}t)} \mathbf{x}(0)$$

The series (always) converges [To the matrix exponential $e^{(\mathbf{F}t)}$]

$$\rightarrow$$
 $\mathbf{x}(t) = e^{(\mathbf{F}t)}\mathbf{x}(0)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Origins Definitions

Generalities

time-invariant

Fransforms

Fourier transforms

Numerical integration

Picard-Lindelö

Linear and time-invariant (cont.) $\,$

Consider the linear differential equation, with inhomogeneous term

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{F}\mathbf{x}(t) + \mathbf{L}\mathbf{w}(t), \text{ given } \mathbf{x}(0)$$

 ${\bf F}$ and ${\bf L}$ are constant (time-independent) matrices

These equations can be solved using the integrating factor method

UFC/DC SA (CK0191) 2018.1

General concepts

Generalities

Linear and

ime-invarian

General linea

Transforms

T -- 1- -- t----f----

Laplace transfor

integration

Picard-Lindel
theorem

Linear and time-invariant (cont.)

We first move $\mathbf{F}\mathbf{x}(t)$ to the LHS and then we multiply by $e^{(-\mathbf{F}t)}$

$$\rightarrow$$
 $e^{(-\mathbf{F}t)} \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} - e^{(-\mathbf{F}t)} \mathbf{F} \mathbf{x}(t) = e^{(-\mathbf{F}t)} \mathbf{L}(t) \mathbf{w}(t)$

From the definition of matrix exponential, we derive

$$ightsquigarrow rac{\mathrm{d}}{\mathrm{d}t} \left[e^{\left(-\mathbf{F}t
ight)}\right] = -e^{\left(-\mathbf{F}t
ight)}\mathbf{F}$$

We have,

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left[e^{(-\mathbf{F}t)} \mathbf{x}(t) \right] = e^{(-\mathbf{F}t)} \frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} - e^{(-\mathbf{F}t)} \mathbf{F} \mathbf{x}(t)$$

ourier transforms

Ordinary

differential

equations

UFC/DC

SA (CK0191)

Numerica integratio

Linear and

Picard-Lindelöi

Linear and time-invariant (cont.)

Thus, we can re-write

$$\rightarrow \frac{\mathrm{d}}{\mathrm{d}t} [e^{(-\mathbf{F}t)}\mathbf{x}(t)] = e^{(-\mathbf{F}t)}\mathbf{L}(t)\mathbf{w}(t)$$

By integrating between t_0 and t, we get

$$\rightarrow$$
 $e^{(-\mathbf{F}t)}\mathbf{x}(t) - e^{(-\mathbf{F}t_0)}\mathbf{x}(t_0) = \int_{t_0}^t d\tau e^{(-\mathbf{F}\tau)}\mathbf{L}(\tau)\mathbf{w}(\tau)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins

Colution

Generalities Linear and

time-invariant

P.....

Fourier transform

integration

Picard-Lindelöf heorem

Linear and time-invariant (cont.)

The complete solution

$$\rightarrow$$
 $\mathbf{x}(t) = e^{\left[-\mathbf{F}(t-t_0)\right]}\mathbf{x}(t_0) + \int_{t_0}^t d\tau e^{\left[\mathbf{F}(t-\tau)\right]}\mathbf{L}(\tau)\mathbf{w}(\tau)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins Definitions

Generalities

Linear and time-invariant

General linear Transforms

> Fourier transforms Laplace transforms

Numerical ntegration

Picard-Lindelö

General linear Solution

UFC/DC SA (CK0191) 2018.1

General concepts

Generalities

Linear and time-invariant

General linear

Cransforms

Fourier transform

Jumonical

integration

Picard-Lindelö theorem

General linear

Consider the general time-varying linear differential equations

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{F}(t)\mathbf{x}(t), \quad \text{given } \mathbf{x}(t_0)$$

• The solution in terms of matrix exponential is not valid

We can still formulate the implicit solution

$$\rightarrow$$
 $\mathbf{x}(t) = \mathbf{\Psi}(t, t_0)\mathbf{x}(t_0)$

• $\Psi(t, t_0)$ is the **transition matrix**

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concep

Origins

Definitions

Solution

Linear and

time-invariant

General linear

Fourier transform

Laplace transform

Numerical

Picard-Lindelö

General linear (cont.)

Consider the inhomogeneous case

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{F}(t)\mathbf{x}(t) + \mathbf{L}(t)\mathbf{w}(t), \quad \text{given } \mathbf{x}(t_0)$$

The solution is analogous to the time-invariante case

• The integrating factor is $\Psi(t_0, t)$

We obtain the solution,

$$\rightarrow \mathbf{x}(t) = \mathbf{\Psi}(t, t_0)\mathbf{x}(t_0) + \int_{t_0}^t \mathrm{d}\tau \mathbf{\Psi}(t, \tau) \mathbf{L}(\tau) \mathbf{w}(\tau)$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

501111011

Linear and

time-invariant General linear

Transforms

Fourier transfors Laplace transfor

Numerical

Picard-Linde

General linear (cont.)

The properties that define the transition matrix $\Psi(t, t_0)$

$$\partial \mathbf{\Psi}(\tau, t) / \partial \tau = \mathbf{F}(\tau) \mathbf{\Psi}(\tau, t)$$

$$\partial \mathbf{\Psi}(\tau, t) / \partial t = -\mathbf{\Psi}(\tau, t) \mathbf{F}(t)$$

$$\Psi(\tau,t) = \Psi(\tau,s)\Psi(s,t)$$

$$\mathbf{\Psi}(t,\tau) = \mathbf{\Psi}^{-1}(\tau,t)$$

$$\Psi(t,t) = \mathbf{I}$$

Given the transition matrix, we can build the solution

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

C-1.....

Generalities

time-invariant

General linear

Transforms

Fourier transforms Laplace transforms

Numerical

Picard-Lindelö

Transforms

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

. . .

Generalities

time-invariant

Fransform:

Fourier transforms

Laplace transforms

Numerical

Picard-Lindel theorem

Fourier transforms

Transforms

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Generalities

time-invariant

Transforms

Fourier transforms

Numerical integration

Picard-Lindelö: heorem

Fourier transforms (cont.)

The main usefulness comes from the following property

$$\rightarrow$$
 $\mathcal{F}[d^n g(t)/dt^n] = (i\omega)^n \mathcal{F}[h(t)]$

• Differentiation transformed into multiplication by $(i\omega)$

Also convolution can be transformed into multiplication

$$ightarrow \mathcal{F}\big[g(t)\star h(t)\big] = \mathcal{F}\big[g(t)\big]\mathcal{F}\big[h(t)\big]$$

• This is known as the convolution theorem²

$$g(t) \star (t) = \int_{-\infty}^{\infty} d\tau g(t-\tau)h(\tau).$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Definitions

Solution

Linear and time-invariant

Praneforme

Fourier transforms

Numerical

Picard-Lindel

Fourier transforms

Useful for solving inhomogeneous linear time-invariant differential equations

The Fourier transform of a function g(t)

$$ightarrow G(i\omega) = \mathcal{F}[g(t)] = \int_{-\infty}^{\infty} \mathrm{d}t g(t) e^{(-i\omega t)}$$

The corresponding inverse transform

$$\rightarrow g(t) = \mathcal{F}^{-1} \left[G(i\omega) \right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega G(i\omega) e^{(-i\omega t)}$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

eneral concep

Origins Definitions

Solution

Generalities Linear and

General linear

Fourier transfe

Numerical ntegration

Picard-Lindelö theorem

Fourier transforms (cont.)

The above properties require that the initial conditions are zero

Not an actual restriction

 $^{^2}$ Convolution is defined as

UFC/DC SA (CK0191) 2018.1

General concepts

Origins

Definitions

Solution

Linear and

time-invarian

General line

Fourier transforms

integration

theorem

Fourier transforms (cont.)

Consider the spring model

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + \gamma \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \nu^2 = w(t)$$

By taking the Fourier transform, we get

$$\rightarrow$$
 $(i\omega)^2 X(i\omega) + \gamma(i\omega)X(i\omega) + \nu^2 X(i\omega) = W(i\omega)$

- $X(i\omega)$ is the Fourier transform of x(t)
- $W(i\omega)$ is the Fourier transform of w(t)

Fourier transforms (cont.)

UFC/DC SA (CK0191) 2018.1

Ordinary

differential

equations

General concepts

Origins

Definitions

Solution

Generalities

time-invariant

Fourier transforms

Laplace transform

Numerical

Picard-Lindelö theorem For a general w(t), we note that the RHS is a product

$$\frac{W(i\omega)}{(i\omega)^2 + \gamma(i\omega) + \nu^2} = \frac{1}{(i\omega)^2 + \gamma(i\omega) + \nu^2} W(i\omega) = H(i\omega) W(i\omega)$$

This product can be converted into a convolution

We compute the impulse response function

$$h(t) = \mathcal{F}^{-1} \left[\frac{1}{(i\omega)^2 + \gamma(i\omega) + \nu^2} \right]$$
$$= b^{-1} e^{(-at)} \sin(bt) u(t)$$

- \rightarrow We have $a = \gamma/2$ and $b = \sqrt{\nu^2 \gamma^2/4}$
- $\rightarrow u(t)$, the Heaviside step function

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General cond

Definitions

Solution

Linear and time-invariant

n. e

Fourier transforms

Numerical

Picard-Linde theorem

Fourier transforms (cont.)

$$(i\omega)^2 X(i\omega) + \gamma(i\omega)X(i\omega) + \nu^2 X(i\omega) = W(i\omega)$$

We first solve for $X(i\omega)$, we get

$$X(i\omega) = \frac{W(i\omega)}{(i\omega)^2 + \gamma(i\omega)\nu^2}$$

We take the inverse-transform, we get

$$\Rightarrow$$
 $x(t) = \mathcal{F}^{-1} \left[\frac{W(i\omega)}{(i\omega)^2 + \gamma(i\omega) + \nu^2} \right]$

This is the solution

Ordinary differential equations

UFC/DC SA (CK0191)

2018.1

Origins Definitions

Solution

Generalities

time-invariant

Transform

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindel theorem

Fourier transforms (cont.)

Then, we get the full solution

$$\Rightarrow$$
 $x(t) = \int_{-\infty}^{\infty} d\tau h(t - \tau) w(\tau)$

We construct x(t) by feeding the signal w(t) through a linear system

• (a filter) with impulse responses h(t)

UFC/DC SA (CK0191) 2018.1

General concepts

D 6 ...

Definitions

olution

Generalities

time-invaria

General lines

Transforms

Fourier transforms

ntegration

theorem

Fourier transforms (cont.)

We can use the Fourier transform for general LTI equations

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{F}\mathbf{x}(t) + \mathbf{L}\mathbf{w}(t)$$

By taking the Fourier transform, we get

$$\rightarrow$$
 $(i\omega)\mathbf{X}(i\omega) = \mathbf{F}\mathbf{X}(i\omega) + \mathbf{L}\mathbf{W}(i\omega)$

By solving for $\mathbf{X}(i\omega)$, we get

$$\rightarrow$$
 $\mathbf{X}(i\omega) = [(i\omega)\mathbf{I} - \mathbf{F}]^{-1}\mathbf{LW}(i\omega)$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Definition

DOTAGION

Linear and

time-invariant

Fourier transform

Laplace transforms

Numerical

Picard-Lindelö theorem

Laplace transforms

Transforms

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Definitions

Solution

Linear and time-invariant

ransforms

Fourier transforms

Numerical integration

Picard-Lindelö theorem

Fourier transforms (cont.)

$$\mathbf{X}(i\omega) = \left[(i\omega)\mathbf{I} - \mathbf{F} \right]^{-1} \mathbf{L} \mathbf{W}(i\omega)$$

We compare it with the solution

$$\mathbf{x}(t) = \mathbf{\Psi}(t, t_0)\mathbf{x}(t_0) + \int_{t_0}^t \mathrm{d}\tau \mathbf{\Psi}(t, \tau)\mathbf{L}(\tau)\mathbf{w}(\tau)$$

We obtain the useful identify

$$\rightarrow$$
 $\mathcal{F}^{-1}\left\{\left[(i\omega)\mathbf{I} - \mathbf{F}\right]^{-1}\right\} = e^{(\mathbf{F}t)}u(t)$

This is a valid way of computing matrix exponentials

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept:

Origins

Solution

Generalities

General linear

Fourier transforms Laplace transforms

Numerical integration

Picard-Lindelö theorem

Laplace transforms

Another transform commonly used for solving LTI equations

The **Laplace transform** of a function f(t)

$$ightharpoonup F(s) = \mathcal{L}[f(t)](s) = \int_0^\infty \mathrm{d}t f(t) e^{(-st)}, \quad \text{for } t \ge 0$$

The corresponding inverse transform

$$\rightarrow$$
 $f(t) = \mathcal{L}^{-1}[F(s)](t)$

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

Generalities

time-invariant

m .

Fourier transforms

Laplace transform

Numerical integration

Picard-Lindelö

Numerical integration

Ordinary differential equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Origins

Generalities

Linear and

General linear

Transforms

Fourier transforms

Numerical integration

Picard-Lindelö theorem

Numerical integration (cont.)

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}[\mathbf{x}(t), t]$$

We integrate the equation from t to $t + \Delta t$

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \int_{t}^{t + \Delta t} d\tau \mathbf{f} \left[\mathbf{x}(\tau), \tau \right]$$

We generate the solution at time steps $t_0, t_1 = t_0 + \Delta t, t_2 = t_0 + 2\Delta t, \cdots$

• We must know how to calculate the integral

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conc

Definitions

Generalities

Linear and time-invariant

ransforms

Fourier transforms

Numerical integration

> Picard-Lindelö theorem

Numerical integration

Consider the nonlinear differential equation

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}\big[\mathbf{x}(t), t\big], \quad \text{given } \mathbf{x}(t_0)$$

We cannot derive an analytical solution

- \leadsto We resort to a numerical solution
- → An approximation

Ordinary differential equations Numerical integration (cont.)

UFC/DC SA (CK0191) 2018.1

General concept Origins

Solution

Generalities Linear and

General linea

Transform

Laplace transform

Numerical integration

Picard-Lindelö theorem $\mathbf{x}(t_0 + \Delta t) = \mathbf{x}(t_0) + \int_{t_0}^{t_0 + \Delta t} d\tau \mathbf{f} \left[\mathbf{x}(\tau), \tau \right]$ $\mathbf{x}(t_0 + 2\Delta t) = \mathbf{x}(t_0) + \int_{t_0 + \Delta t}^{t_0 + 2\Delta t} d\tau \mathbf{f} \left[\mathbf{x}(\tau), \tau \right]$ $\mathbf{x}(t_0 + 3\Delta t) = \mathbf{x}(t_0) + \int_{t_0 + 2\Delta t}^{t_0 + 3\Delta t} d\tau \mathbf{f} \left[\mathbf{x}(\tau), \tau \right]$ $\dots = \dots$

Different approximations of the integral lead to different numerical methods

UFC/DC SA (CK0191)

Numerical integration

Numerical integration (cont.)

Euler's method

Use the integral approximation

$$\int_{t}^{t+\Delta\tau} d\tau \mathbf{f} \left[\mathbf{x}(\tau), \tau \right] \approx \mathbf{f} \left[\mathbf{x}(t), t \right] \Delta t$$

Start from $\hat{\mathbf{x}}(t_0) = \mathbf{x}(t_0)$ and divide the integration interval $[t_0, t]$

$$\rightarrow$$
 n steps, $t_0 < t_1 < \cdots < t_n = t$

$$\rightarrow \Delta t = t_{k+1} - t_k$$

At each step k, we approximate the solution

$$\rightarrow$$
 $\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}[\hat{\mathbf{x}}(t_k), t_k] \Delta t$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Numerical integration

Numerical integration (cont.)

We can improve this approximation by using a trapezoidal approximation

$$\int_{t}^{t+\Delta t} d\tau \mathbf{f}[\mathbf{x}(\tau), \tau] \approx \frac{\Delta t}{2} \{ \mathbf{f}[\mathbf{x}(t), t] + \mathbf{f}[\mathbf{x}(t+\Delta t), t+\Delta t] \}$$

The resulting approximation integration rule

$$\rightarrow \mathbf{x}(t_{k+1}) \approx \mathbf{x}(t_k) + \frac{\Delta t}{2} \{ \mathbf{f} \big[\mathbf{x}(t_k), t_k \big] + \mathbf{f} \big[\mathbf{x}(t_{k+1}), t_{k+1} \big] \}$$

This is an implicit recursion rule $[\mathbf{x}(t_{k+1})]$ appears also on the RHS

- We must solve a nonlinear system of equation to use this rule
- (At each iteration step, heavy for large x)

Ordinary differential equations

UFC/DC SA (CK0191)

Numerical integration

Numerical integration (cont.)

The global order of a numerical method

It is defined to be the smallest exponent p such that if we numerically solve an ODE using $n = 1/\Delta t$ steps of length Δt , there is a constant K such that

$$\rightsquigarrow |\hat{\mathbf{x}}(t_n) - \mathbf{x}(t_n)| \le K(\Delta t)^p$$

 $\hat{\mathbf{x}}(t_n)$ is the approximation of $\mathbf{x}(t_n)$, the true solution

The error of integrating over $1/\Delta t$ steps is proportional to Δt

• The first discarded term is order $(\Delta t)^2$

Thus, the Euler method is order p = 1

Ordinary differential equations

UFC/DC SA (CK0191)

Numerical integration

Numerical integration (cont.)

Heun's method

Replace the the RHS of the solution with its Euler's approximation

Start from $\hat{\mathbf{x}}(t_0) = \mathbf{x}(t_0)$ and divide the integration interval $[t_0, t]$

$$\rightarrow$$
 n steps, $t_0 < t_1 < \cdots < t_n = t$

$$\rightarrow$$
 $\Delta t = t_{k+1} - t_k$

At each step k, we approximate the solution

$$\rightarrow$$
 $\tilde{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \mathbf{f}[\hat{\mathbf{x}}(t_k), t_k] \Delta t$

$$\Rightarrow \hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \frac{\Delta t}{2} \{ \mathbf{f} [\hat{\mathbf{x}}(t_k), t_k] + \mathbf{f} [\tilde{\mathbf{x}}(t_{k+1}), t_{k+1}] \}$$

The method has global order p=2

UFC/DC SA (CK0191) 2018.1

Numerical integration

Numerical integration (cont.)

Another useful class of methods are the Runge-Kutta methods

• We consider the classical 4-th order case

integration

Numerical integration (cont.)

UFC/DC SA (CK0191)

Ordinary

differential

equations

Numerical

Runge-Kutta method (4-th order)

Start from $\hat{\mathbf{x}}(t_0) = \mathbf{x}(t_0)$ and divide the integration interval $[t_0, t]$

$$\rightarrow$$
 n steps, $t_0 < t_1 < \cdots < t_n = t$

$$\rightarrow \Delta t = t_{k+1} - t_k$$

At each step k, we approximate the solution

$$\Delta \mathbf{x}_k^1 = \mathbf{f} \big[\hat{\mathbf{x}}(t_k), t_k \big] \Delta t$$

$$\Delta \mathbf{x}_k^2 = \mathbf{f} \left[\hat{\mathbf{x}}(t_k) + \frac{\Delta \mathbf{x}_k^1}{2}, t_k + \frac{\Delta t}{2} \right] \Delta t$$

$$\Delta \mathbf{x}_{k}^{3} = \mathbf{f} \left[\hat{\mathbf{x}}(t_{k}) + \frac{\Delta \mathbf{x}_{k}^{2}}{2}, t_{k} + \frac{\Delta t}{2} \right] \Delta t$$
$$\Delta \mathbf{x}_{k}^{4} = \mathbf{f} \left[\hat{\mathbf{x}}(t_{k}) + \Delta \mathbf{x}_{k}^{3}, t_{k} + \Delta t \right] \Delta t$$

$$\hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \frac{1}{6}(\Delta \mathbf{x}_k^1 + 2\Delta \mathbf{x}_k^2 + 2\Delta \mathbf{x}_k^3 + \Delta \mathbf{x}_k^4)$$

$$\Rightarrow \hat{\mathbf{x}}(t_{k+1}) = \hat{\mathbf{x}}(t_k) + \frac{1}{6}(\Delta \mathbf{x}_k^1 + 2\Delta \mathbf{x}_k^2 + 2\Delta \mathbf{x}_k^3 + \Delta \mathbf{x}_k^4)$$

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Numerical integration

Numerical integration (cont.)

The method can be derived by writing the Taylor expansion for the solution

· Select coefficient so that lower-order terms cancel out

The method has global order p=4

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

Numerical integration

Numerical integration (cont.)

There is a wide class of methods for integrating ordinary differential forms

The methods that we have overviewed have fixed step length

• There exists various variable step size methods

UFC/DC SA (CK0191) 2018.1

General concepts
Origins

olution

Linear and

General linea

 Γ ransforms

Fourier transforms Lanlace transforms

. .

ntegratio

Picard-Lindelöf theorem

Picard-Lindelöf theorem

Ordinary differential equations

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concept

Definitions

Solution

Generalities Linear and

General lines

Fourier transform

Numerical

Picard-Lindelöf theorem

Picard-Lindelöf theorem (cont.)

Picard's algorithm

Start with an initial guess $\varphi_0(t) = \mathbf{x}_0$

Then, compute the approximations $\varphi_1 t, \varphi_2(t), \varphi_3(t), \ldots$

$$ightarrow \qquad \varphi_{n+1}(t) = \mathbf{x}_0 + \int_{t_0}^t \mathrm{d}\tau \mathbf{f} \big[\varphi_n(t), t \big]$$

• Same recursion used for linear differential equations

The procedure converges to the unique (around $t = t_0$) solution

$$\underset{n\to\infty}{\swarrow} \lim \varphi_n(t) = \mathbf{x}(t)$$

 $\mathbf{f}(\mathbf{x},t)$ must be continuous in \mathbf{x} and t, and Lipschitz continuous in \mathbf{x}

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General concepts

Dofinitions

Solution

Linear and

General linea

ourier transforms

Numerical integration

Picard-Lindelöf theorem

Picard-Lindelöf theorem

It is important to know whether a solution to a ODE exists and is unique

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{f}\big[\mathbf{x}(t), t\big]$$

• Function $\mathbf{f}(\mathbf{x}(t), t)$ is given

We consider a general equation

Suppose that function $f \mapsto \mathbf{f}[\mathbf{x}(t), t]$ is integrable in the Reimann sense

• We can integrate both sides of the equation from t_0 to t

$$\rightarrow$$
 $\mathbf{x}(t) = \mathbf{x}_0 + \int_{t_0}^t d\tau \mathbf{f} [\mathbf{x}(\tau), \tau]$

The identity can be used to find approximate solutions

Picard's iteration

Ordinary differential equations

UFC/DC SA (CK0191) 2018.1

General conce

Definitions

Generalities

Generalities

time-invariai

General lines

Fourier transform

Numerical

Picard-Lindelöf

Picard-Lindelöf theorem (cont.)

The Picard-Lindelöf theorem

Under the above continuity conditions, the differential equation has a solution and that solution is unique in a certain interval around $t = t_0$