Consider a triangle with vertices

$$\mathbf{A} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -4 \\ 5 \end{pmatrix}, \ \mathbf{C} = \begin{pmatrix} -6 \\ 0 \end{pmatrix} \tag{1}$$

1 Vectors

parameters	values	description	
m ₁	$\begin{pmatrix} -9\\1 \end{pmatrix}$	AB	
m ₂	$\begin{pmatrix} -2 \\ 5 \end{pmatrix}$	ВС	
m ₃	$\begin{pmatrix} 11 \\ 4 \end{pmatrix}$	CA	
A - B	5.38	length of AB	
B-C	9.06	length of BC	
C - A	11.70	length of CA	
	3	non collinear	
n ₁	$\begin{pmatrix} 1 \\ 9 \end{pmatrix}$	AB	
c_1	10		
n ₂	$\begin{pmatrix} -5 \\ 2 \end{pmatrix}$	ВС	
c_2	-2		
n ₃	$\begin{pmatrix} 4 \\ -11 \end{pmatrix}$	CA	
c_3	-4		
Area	23.5	Area of Triangle	
∠A	26.32°		
∠B	105.46°	Angles	
∠C	48.22°		

TABLE 1: Vectors.

Fig. 1: triangle plotted using python

2 Median

parameters	value	description		
D	$\begin{pmatrix} -5 \\ 2.5 \end{pmatrix}$	BC midpoint		
E	$\begin{pmatrix} -0.5\\2 \end{pmatrix}$	CA midpoint		
F	$\begin{pmatrix} 0.5 \\ 4.5 \end{pmatrix}$	AB midpoint		
m ₄	$\begin{pmatrix} -10 \\ -1.5 \end{pmatrix}$	AD		
n ₄	$\begin{pmatrix} -1.5\\10 \end{pmatrix}$			
C4	32.5			
m ₅	$\begin{pmatrix} 3.5 \\ -3 \end{pmatrix}$	BE		
n ₅	$\begin{pmatrix} -3\\3.5 \end{pmatrix}$			
<i>c</i> ₅	-5.5			
m ₆	$\begin{pmatrix} 6.5 \\ 4.5 \end{pmatrix}$	ar.		
n ₆	$\begin{pmatrix} 4.5 \\ -6.5 \end{pmatrix}$	CF		
c_6	27			
G	$\begin{pmatrix} -1.67 \\ 3 \end{pmatrix}$	Centroid		
$\begin{array}{c} \underline{BG} \\ \underline{GE} \\ \underline{CG} \\ \underline{GF} \\ \underline{AG} \\ \underline{GD} \end{array}$	2	Division ratio by G		
$ \begin{array}{c cccc} $	2	collinear		
$ \operatorname{rank}\begin{pmatrix} 1 & 1 & 1 \\ \mathbf{C} & \mathbf{F} & \mathbf{G} \end{pmatrix} $				

TABLE 2: Median.

Fig. 2: medians plotted using python

Fig. 3: altitudes plotted using python

4 Perpendicular Bisector

description

value

parameters

3 ALTITUDE

			parameters	, arac	description
			m ₁₀	$\begin{pmatrix} -5 \\ 2 \end{pmatrix}$	A.D.
			n ₁₀	$\begin{pmatrix} -2 \\ -5 \end{pmatrix}$	AD_1
parameters	value	description	c_{10}	-2.5	
$\mathbf{D_1}$	$\begin{pmatrix} -3.10 \\ 7.24 \end{pmatrix}$	Foot of altitude from A	m ₁₁	$\begin{pmatrix} -4 \\ 11 \end{pmatrix}$	DE
E ₁	(-2.63, 1.23)	Foot of altitude from B	n ₁₁	$\left(-11\right)$	BE_1
F ₁	(-5.43)	Foot of altitude from C	••••	(-4)	
F 1	(5.16)	root of attitude from C	c_{11}	-2.5	
\mathbf{m}_7	$\begin{pmatrix} -8.10 \\ 3.24 \end{pmatrix}$	AD_1	m ₁₂	$\begin{pmatrix} -1 \\ -9 \end{pmatrix}$	CF_1
n ₇	$\binom{3.24}{8.10}$		n ₁₂	$\begin{pmatrix} 9 \\ -1 \end{pmatrix}$	
c_7	48.62		c_{12}	0	
m ₈	$\begin{pmatrix} 1.37 \\ -3.77 \end{pmatrix}$	D.F.	O	$\begin{pmatrix} 0.05 \\ 0.48 \end{pmatrix}$	Circumcentre
n ₈	$\begin{pmatrix} -3.77 \\ -1.37 \end{pmatrix}$	BE_1	O - A O - B	6.07	
c_8	8.23		O - C	6.07	OA = OB = OC = R
m ₉	(0.57)		R		
IIIy	(5.16)	CF_1	∠BOC	52.65°	$\angle BOC = 2\angle BAC$
n ₉	(5.16)		∠BAC	26.32°	ZDOC = ZZDAC
119	(-0.57)		∠AOC	149.08°	$\angle AOC = 2\angle ABC$
<i>C</i> 9	-30.95		∠ABC	105.46°	ZAUC = ZZADC
Н	(-5.11)	Orthocentre	∠AOB	263.57°	$\angle AOB = 2\angle BCA$
11	(8.04)	Orthocontro	∠BCA	48.22°	

TABLE 3: Altitude.

TABLE 4: Perpendicular Bisector.

Fig. 4: perpendicular bisectors plotted using python

5 Angle Bisector

parameters	value	description	
parameters	(1.93)	description	
m ₁₃	$\binom{1.93}{0.23}$		
	(-0.23)	- AI	
n ₁₃	$\begin{pmatrix} 0.23 \\ -1.93 \end{pmatrix}$		
c ₁₃	-6.58		
	(0.62)		
m ₁₄	(-1.04)	D.	
	(1.04)	— BI	
m ₁₄	(0.62)		
c ₁₄	-1.04		
m	(-1.31)		
m ₁₅	(-1.27)	_	
n	(1.27)	CI	
n ₁₅	(-1.31)		
c_{15}	-7.62		
I	(-2.84)	Incentre	
	(3.06)	1110011110	
\mathbf{D}_3	(-4.50)	Point of contact with BC	
<u> </u>	(3.73)		
$\mathbf{E_3}$	(-2.22)	Point of contact with AC	
	(1.37)		
$\mathbf{F_3}$	(-2.64)	Point of contact with AB	
	(4.85)		
I - D ₃			
I - E ₃	1.80	$ID_3 = IE_3 = IF_3 = r$	
$ \mathbf{I} - \mathbf{F}_3 $	1.00	12, 12, 11,	
r			
∠BAI	13.16°	$\angle BAI = \angle CAI$	
∠CAI			
∠ABI	52.73°	$\angle ABI = \angle CBI$	
∠CBI			
∠ACI	24.11°	$\angle ACI = \angle BCI$	
∠BCI			

TABLE 5: Angle Bisectors.

Fig. 5: Angle bisectors plotted using python