Arithmetic Properties of Polynomial Specializations over Finite Fields

Paul Pollack Dartmouth College

September 30, 2007

Two examples from rational number theory:

Twin Prime Conjecture. There are infinitely many pairs of primes p, p + 2.

Conjecture (Erdős). Asymptotically half of all positive integers n satisfy

$$P(n) > P(n+1),$$

where P(n) is the largest prime factor of n.

Hypothesis H (Schinzel, 1958). Suppose that $f_1(T), \ldots, f_r(T)$ are irreducible polynomials in $\mathbf{Z}[T]$ and that there is no prime p for which the congruence

$$f_1(n)f_2(n)\cdots f_r(n)\equiv 0\pmod{p}$$

holds for every integer n. Then there are infinitely many positive integers n for which

$$f_1(n),\ldots,f_r(n)$$

are simultaneously prime.

An analogue of Schinzel's Hypothesis H for polynomials with \mathbf{F}_q coefficients. Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbf{F}_q[T]$ and that there is no prime π of $\mathbf{F}_q[T]$ for which the map

$$h(T) \mapsto f_1(h(T)) \cdots f_r(h(T)) \pmod{\pi}$$

is identically zero. Then there are infinitely many substitutions

$$T \mapsto h(T)$$

which preserve the simultaneous irreducibility of the f_i .

Example: "Twin prime" pairs: take $f_1(T) := T$ and $f_2(T) := T + 1$.

Capelli's Theorem. Let F be any field. The binomial $T^m - a$ is reducible over F if and only if either of the following holds:

- there is a prime l dividing m for which a is an lth power in F,
- 4 divides m and $a = -4b^4$ for some b in F.

Example: The cubes in $\mathbf{F}_7 = \mathbf{Z}/7\mathbf{Z}$ are -1,0,1. So by Capelli's theorem,

$$T^{3^k} - 2$$

is irreducible over \mathbf{F}_7 for $k = 0, 1, 2, 3, \dots$

Similarly, $T^{3^k} - 3$ is always irreducible. Hence:

$$T^{3^k} - 2$$
, $T^{3^k} - 3$

is a pair of prime polynomials over ${f F_7}$ differing by 1 for every k.

Twin Prime Theorem (Hall). If q > 3, then there are infinitely many monic twin prime pairs f, f + 1 in $\mathbf{F}_q[T]$.

Theorem (Extended Twin Prime Theorem). If q > 2, and if α is any nonzero element of \mathbf{F}_q , then there are infinitely many monic twin prime pairs $P, P + \alpha$.

Theorem (P, 2006). Suppose f_1, \ldots, f_r are irreducible polynomials in $\mathbf{F}_q[T]$. Then there are infinitely many substitutions

$$T \mapsto h(T)$$

which leave the f_i simultaneously irreducible provided q is sufficiently large, depending only on r and the degrees of the f_i .

Example: The single polynomial $T^2 + 1$ (so that $r = 1, \deg f_1 = 2$):

Corollary. There are infinitely many prime polynomials of the form $h^2 + 1$ over every \mathbf{F}_q for which $q \equiv 3 \pmod{4}$.

A quantitative Hypothesis H for polynomials with \mathbf{F}_q coefficients. Let $f_1(T), \ldots, f_r(T)$ be nonassociated polynomials over \mathbf{F}_q satisfying the conditions of Hypothesis H. Then

$$\#\{h(T): h \ monic, \ \deg h = n,$$
 and $f_1(h(T)), \ldots, f_r(h(T))$ are all prime $\} \sim$ $\mathfrak{S}(f_1, \ldots, f_r) \frac{1}{\prod_{i=1}^r \deg f_i} \frac{q^n}{n^r}$ as $n \to \infty$.

Here the local factor $\mathfrak{S}(f_1,\ldots,f_r)$ is defined by

$$\mathfrak{S}(f_1,\ldots,f_r) := \prod_{\substack{n=1 \ \pi \ monic \ prime \ of \ \mathbf{F}_q[T]}} \frac{1-\omega(\pi)/q^n}{(1-1/q^n)^r},$$

where

$$\omega(\pi) := \\ \#\{a \bmod \pi : f_1(a) \cdots f_r(a) \equiv 0 \pmod \pi\}.$$

Theorem (P, 2006). Let n be a positive integer. Let $f_1(T), \ldots, f_r(T)$ be pairwise nonassociated irreducible polynomials over \mathbf{F}_q with the degree of the product $f_1 \cdots f_r$ bounded by B.

The number of univariate monic polynomials h of degree n for which all of $f_1(h(T)), \ldots, f_r(h(T))$ are irreducible over \mathbf{F}_q is

$$q^{n}/n^{r} + O_{n,B}(q^{n-1/2})$$

provided gcd(q, 2n) = 1.

Gaps between primes

Conjecture. Fix $\lambda > 0$. Suppose h and N tend to infinity in such a way that $h \sim \lambda \log N$. Then

$$\frac{1}{N} \# \{ n \le N : \pi(n+h) - \pi(n) = k \} \to e^{-\lambda} \frac{\lambda^k}{k!}$$
 for every fixed integer $k = 0, 1, 2, \dots$

Gallagher has shown that this follows from a uniform version of the prime k-tuples conjecture.

Polynomial prime gaps

For a prime p and an integer a, let \overline{a} denote the residue class of a in $\mathbf{Z}/p\mathbf{Z} = \mathbf{F}_p$.

For each prime p and each integer $h \geq 0$, define

$$I(p;h) := \{ \overline{a_0} + \overline{a_1}T + \dots + \overline{a_j}T^j : \\ 0 \le a_0, \dots, a_j$$

Let $P_k(p;h,n)$ be the number of polynomials A(T) of degree n over \mathbf{F}_p for which the translated "interval" A+I(p;h) contains exactly k primes.

Conjecture. Fix $\lambda > 0$. Suppose h and n tend to infinity in such a way that $h \sim \lambda n$. Then

$$rac{1}{p^n}P_k(p;h,n)
ightarrow e^{-\lambda}rac{\lambda^k}{k!} \quad (as \ n
ightarrow \infty) \qquad (1)$$

for each fixed k = 0, 1, 2, 3, ..., uniformly in the prime p.

Theorem. Fix $\lambda > 0$. Suppose h and n tend t00 infinity in such a way that $h \sim \lambda n$. Then for each fixed integer $k \geq 0$,

$$\frac{1}{p^n}P_k(p;h,n) \to e^{-\lambda}\frac{\lambda^k}{k!},$$

if both n and p tend to infinity, with p tending to infinity faster than any power of n^{n^2} .

Other factorization types

Recall:

If f(T) is irreducible over \mathbf{F}_q , then the number of proportion of monic polynomials h(T) of degree n for which f(h(T)) is irreducible is roughly 1/n (provided q is large compared to n and $\gcd(q,2n)=1$).

Where does 1/n come from?

Answer: 1/n is the proportion of n-cycles in the symmetric group on n letters.

Definition. If F(T) is a polynomial over a given field, the factorization type of F(T) is the partition of deg F(T) given by the unordered list of the degrees of the irreducible factors of F(T).

Question: If f(T) is irreducible over \mathbf{F}_q , what proportion of monic polynomials h(T) of degree n correspond to a given possible factorization type of f(h(T)) (partition of $n \deg f(T)$)?

Observe: Every irreducible polynomial dividing f(h(T)) has degree a multiple of deg f(T). So the factorization type of f(h(T)) has the form deg $f(T) \times \lambda$, where λ is a partition of n.

Definition. If λ is a partition of the positive integer n, define $T(\lambda)$ to be the proportion of permutations on n letters with cycle type λ .

Theorem. Let n be a positive integer and let $\lambda_1, \ldots, \lambda_r$ be partitions of the integer n. Let $f_1(T), \ldots, f_r(T)$ be nonassociate irreducible polynomials over \mathbf{F}_q of respective degrees d_1, \ldots, d_r , with $\sum_{i=1}^r d_i \leq B$.

The number of univariate monic polynomials h of degree n for which $f_i(h(T))$ has factorization type $d_i \times \lambda_i$ for every $1 \le i \le r$ is

$$q^n \prod_{i=1}^r T(\lambda_i) + O((nB)n!^B q^{n-1/2}),$$

provided gcd(q, 2n) = 1. Here the implied constant is absolute.

Application: smooth values of polynomials

Theorem (Dickman). Fix u > 0. The number of $n \le x$ which are $x^{1/u}$ -smooth is asymptotic to $\rho(u)x$, where ρ is the (unique) continuous solution of the differential-delay equation

$$u\rho'(u) = -\rho(u-1)$$
 satisfying
$$\rho(u) = 1 \text{ for } 0 \le u \le 1.$$

Conjecture (Martin). Let F be an arbitrary but fixed nonzero integer-valued polynomial and let d_1, \ldots, d_K be the degrees of the nonassociate irreducible factors of F. Then for each U > 0, the asymptotic formula

$$\Psi(F; x, x^{1/u}) \sim x \rho(d_1 u) \cdots \rho(d_K u)$$

holds as $x \to \infty$, uniformly for $0 < u \le U$.

Some progress on this conjecture has been made by Martin under the assumption of a uniform version of Hypothesis H.

Theorem. Fix $B,U \geq 1$. Let F(T) be a non-constant polynomial over \mathbf{F}_q of degree at most B. Let K be the number of distinct monic irreducible factors of F, and let d_1,\ldots,d_K be the degrees of these factors. If $n \geq BU$ and (q,2n)=1, then

$$\Psi(F; n, n/u) \sim q^n \rho(d_1 u) \cdots \rho(d_K u),$$

for $0 < u \le U$, if both n and q/n^{4nB} tend to infinity.

Other applications

- Perfect polynomials
- Brun's constant for polynomials
- Sums of prime cubes