This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Edouard Ritz, et al.

Filed:

Herewith

For:

VIDEO APPARATUS, NOTABLY VIDEO DECODER,

AND PROCESS FOR MEMORY CONTROL IN SUCH AN

APPARATUS

CLAIM OF PRIORITY UNDER 35 USC 119

Hon. Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

The Applicants hereby claim the priority under 35 USC 119 and under the International Convention for the Protection of Industrial Property, of French Patent Application Number 01400628.2, filed March 9, 2001, a copy of which is attached herewith.

Respectfully Submitted, Edouard Ritz, et al.

Kuniyuki Akiyama, Attorney

Registration No. 43,314 Tel. No. (609) 734-9404

Pate: <u>Heb.</u> 2

Thomson Multimedia Licensing Inc.

Patent Operations

Two Independence Way

P.O. Box 5312

Princeton, New Jersey 08540

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

01400628.2

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets

R C van Dijk

DEN HAAG, DEN THE HAGUE, LA HAYE, LE

29/01/02

Europäisches **Patentamt**

Eur pean **Patent Office**

Office européen des brevets

Blatt 2 der Besch inigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

01400628.2

Application no.: Demande n*:

Anmeldetag: Date of filing: Date de dépôt:

09/03/01

Anmelder: Applicant(s): Demandeur(s):

Thomson multimedia Digital France

92100 Boulogne Billancourt

FRANCE

Bezeichnung der Erfindung: Title of the invention: Titre de l'invention:

Video apparatus, notably video decoder, and process for memory control in such an apparatus

In Anspruch genommene Prioriät(en) / Priority(ies) claimed / Priorité(s) revendiquée(s)

Staat:

Aktenzeichen:

State: Pays: Date:

Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

HO4N5/445, GO6F13/28

Am Anmeldetag benannte Vertragstaaten:
Contracting states designated at date of filing: AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR
Etats contractants désignés lors du depôt:

Bemerkungen: Remarks: Remarques:

10

15

20

25

30

The invention relates to a video apparatus, notably a video decoder, and to a process for memory control in such an apparatus.

It is known to provide a video apparatus with a decoder circuit, for instance a MPEG decoder, in order to generate a video signal usable by a display, for instance as a CVBS signal or as a RGB signals, from a video digital stream. Such a decoder circuit uses a so-called Video RAM (random-access-memory) to retain data which are processed, for instance to decompress a MPEG stream.

Generally, a video apparatus also comprises an OSD circuit (OSD stands for On-Screen Display) to generate and send to the display images to be superimposed on the video sequence output by the decoder circuit; these images are often menus with graphics.

The OSD circuit also needs RAM to generate and process the graphics, i.e. the OSD images.

The invention seeks to provide a video apparatus with a decoder circuit and an OSD circuit with memory architecture with reduced memory size and thus also proposes a process to control this memory architecture according to the mode of operation of the video apparatus.

The invention proposes a video apparatus with a digital decoder using a first memory and with an OSD circuit using a second memory, wherein the digital decoder and the second memory are linked via a bus in order to realise DMA transfers between the first memory and the second memory.

Preferably, the second memory is used by a CPU. Possibly the first memory is a Video RAM and wherein the second memory is a CPU RAM.

The invention also proposes a process for controlling a video apparatus with a digital decoder using a first memory and with an OSD circuit using a second memory, with the step of realising a DMA transfer between the first memory and the second m mory.

The invention also proposes a process for controlling a video apparatus with a digital discoder using a first memory and with an OSD circuit using a second memory with the following steps:

- issuing a request for the OSD circuit to use more than a given size in the second memory,
- realising a DMA transfer from the second memory to the first memory

The following further steps ar also possible:

- issuing a request for the QSD circuit to use data in the first memory,
- copying via a DMA transfer data from the second memory to the first memory;
- realising a DMA transfer of the requested data from the first memory to the second memory.
- The invention will now be explained with reference to figure 1 representing a video apparatus according to the invention. The video apparatus of figure 1 is a satellite decoder 2. Only the parts which are necessary for understanding the invention have be n represented.
 - An antenna 3 receives a signal representing at least one video sequence from a satellite. An input pin of the decoder 2 receives the signal transmitted by the antenna 3 to forward it to a digital front-end 4 comprising notably a tuner and a demodulator. From the antenna signal, the digital front-end generates a MPEG stream which is converted to a CVBS signal by a MPEG decoder 6. To decompress the MPEG str am, the MPEG decoder 6 is connected via a data bus to a video RAM 8.
- On the other hand, the satellite decoder 2 also has an OSD circuit 12 for generating, upon instructions from a CPU 14, images (called graphics hereafter) to be superimposed on the CVBS signal. The graphics to be displayed are coded in RGB on a Scart connector with a fast blanking signal FB indicating when points of the graphics have to be displayed.
- The CPU 14 and the OSD circuit 12 share a RAM, called CPU RAM 10, via a common data bus 16. The MPEG decoder 6 is also connected on this common bus 16.
 - The Video RAM 8 and the CPU RAM 10 can exchange data on the common bus 16 through the MPEG decoder 6 by DMA (DMA stands for Direct Memory Access). The DMA is controlled by the CPU 14 thanks to a DMA address bus between the CPU RAM 10 and the CPU 14. It should be noted however that the Video RAM 8 is not directly accessible from the CPU 14.

The system has to cope with three different memory sizes available for OSD d pending on the configuration (mode of operation):

- Configuration 1 : Video displayed
- When moving pictures are displayed, the desirable RAM minimum size available for OSD should allow to store 262144 pixels in CLUT4 (Colour Lock-Up Table where 1 pixel = 4 bits) mode, which requires 131072 bytes memory space.
 - Configuration 2 : Still pictures displayed

25

30

Printed:29-01-2002

5

10

15

20

25

30

When still pictures are displayed, the RAM size available for OSD can be extended to 996148 pixels in CLUT4 mode, which requires 448074 bytes memory space.

- Configuration 3: no video nor still pictures

When no moving pictures and still pictures are displayed, all video RAM should preferably become available for OSD, which represents 1.9 MB memory space approximately.

Th CPU RAM 10 has a 2MB (Mega Bytes) capacity.

The Software occupies 1.25 MB in CPU RAM 10, until the scheduler has started. 750 KB are then left available for the system and the OSD buffer pools. A 150 KB system pool is sufficient to insure a robust and efficient functioning of the software. It then remains around 600 KB in CPU RAM 10 for the OSD pool.

When video is running (configuration 1), 112 KB of free memory space are available in Video RAM 8. Configuration 2 leaves 457 KB of available memory in Video RAM 8, whereas when no video and still pictures are running (configuration 3), almost the entire Video RAM 8 becomes available, which represents around 1.9 MB.

In configuration 1 and 2, the 600 KB available memory in CPU RAM 10 are sufficient to cover the preferable OSD sizes stated above.

Configuration 3 demands 1.9 MB of memory, which is more than the 600 KB available in RAM CPU 10. In configuration 3, RAM CPU 10 contains both the buffers displayed in the buffers currently used in RAM CPU, which represents 2*207360 = 414720 bytes (2 full screen buffers in CLUT4 mode, one displayed, one being used). The other buffers are stored in RAM Video 8. When a buffer is no more displayed or used, it is flushed to Video RAM 8 via a DMA transfer. When a buffer stored in Video RAM 8 has to be displayed or comes in use, it is loaded in the CPU RAM by a DMA transfer. With this mechanism, the Video RAM 8 plays the role of a cache memory for the CPU RAM 10.

- 4 different states have thus been defined depending on the OSD configuration :
 - State 1 : Video (Video running)
 - State 2 : Still (still picture running)
 - State 3 : OSD RAM CPU (Only OSD running within the limits of 622080 bytes allocated)
 - State 4 : OSD RAM Video (Only OSD running with more than 622080 bytes allocated)

10

15

20

25

30

States 1, 2, and 3 correspond to the normal memory mapping, where all the OSD buffers are located in CPU RAM. State 4 correspond to the memory mapping where all the Video RAM is available for OSD buffers.

States 1, 2 and 3 are managed the same way by the driver of the OSD circuit 12, since all OSD buffers allocated will be placed in RAM CPU 10. Direct transitions between state 1, 2 and state 4 can't happen, because in state 4, the Video RAM is used for the OSD and isn't available for still pictures or video. A transition to state 3 is compulsory before going to state 4. Therefore, the only time the OSD driver has to deal with Video RAM 8 concerns the transitions between state 3 and state 4.

Transition from state 3 to state 4 happens when the application asks the driver to create a new display by calling an OSD_credisplay function and when the total size allocated in CPU RAM 10 for the OSD displays (after the OSD_credisplay call) overflows the 622080 bytes available in CPU RAM 10. In this case, Video RAM 8 shall be activated. A pool of 1.9 MB shall then be created in Video RAM, all the OSD buffers stored in CPU RAM shall be transferred in RAM Video, the display descriptors updated accordingly, and the buffers displayed and the working buffer shall stay in CPU RAM.

Transition to state 4 to state 3 happens when the application asks the driver to free a display by calling a OSD_free_display function and when the total size allocated for the OSD displays (after the OSD_free_display call) becomes inferior to 498074 bytes (corresponding to the size needed in still picture mode). In this case, Video RAM 8 shall be deactivated and shall not be used anymore by the OSD driver. All the OSD buffers in Video RAM 8 shall then be transferred in CPU RAM 10, the display descriptor updated accordingly, and the pool in Video RAM 8 shall be deleted.

When in state 4, the Video RAM 8 are used as a cache for the OSD. The management of OSD regions and buffers use the same structures as the one already in use. The only difference is that the buffer address stored in the OSD buffer control blocks in CPU RAM 10 correspond to Video Ram 8 address in state 4, whereas the correspond to CPU RAM address in state 1, 2 and 3. To help management the Video RAM 8 as cache, an internal array of structure is used, which contains the buffer ID, the address in CPU RAM 10, the address in Video RAM 8, the size and a pointer to the buffer descriptor, for each of the 16 display buffers and the buffers currently drawn.

09-03-2001

Before drawing or displaying an OSD buffer placed in Video RAM 8, the driver will first have to transfir it from Video RAM 8 to CPU RAM 10. When a displayed buffer or the currently drawn buffer isn't used anymore and is replaced by another one, the driving as to flush it in Video RAM (i.e. transfer it from CPU RAM 10 to Video RAM 8). In both cases, the array structure will be updated correspondingly.

Claims

अभिदेश कर्ने । (1) करी

- 1. Video apparatus with a digital decoder (6) using a first memory (8) and with an OSD circuit (12) using a second memory (10), characterised in that the digital decoder (6) and the second memory (10) are linked
- characterised in that the digital decoder (6) and the second memory (10) are linked via a bus in order to realise DMA transfers between the first memory (8) and the second memory (10).
- 2. Video apparatus according to claim 1, wherein the second memory (10) is used by a CPU (14).
- 3. Video apparatus according to claim 1 or 2, wherein the first memory is a Video RAM (8) and wherein the second memory is a CPU RAM (10)
 - 4. Process for controlling a videocapparatus with a digital decoder (6) using a first m mory (8) and with an OSD circuit (42) using a second memory (10), characterised by the step of realising a DMA transfer between the first memory (8) and the second memory (10).
- 5. Process for controlling a video apparatus with a digital decoder (6) using a first memory (8) and with an OSD circuit (12) using a second memory (10) characterised by the following steps:
 - issuing a request for the OSD circuit (12) to use more than a given size in the second memory (10),
 - realising a DMA transfer from the second memory (10) to the first memory (8)
 - 6. Process according to claim 5, with the further steps of :
 - issuing a request for the OSD circuit (12) to use data in the first memory (8),
 - copying via a DMA transfer data from the second memory (10) to the first memory (8);
- realising a DMA transfer of the requested data from the first memory (8) to the second memory (10).

1.7

20

Abstract .

Vide apparatus, notably video decoder, and process for memory control in such an apparatus

- The invention concerns a video apparatus with a digital decoder (6) using a first memory (8) and with an OSD circuit (12) using a second memory (10), wherein the digital decoder (6) and the second memory (10) are linked via a bus in order to realise DMA transfers between the first memory (8) and the second memory (10).
 - A process for controlling a video apparatus with a digital decoder (6) using a first memory (8) and with an OSD circuit (12) using a second memory (10) is proposed to have the following steps:
 - issuing a request for the OSD circuit (12) to use more than a given size in the second memory (10),
 - realising a DMA transfer from the second memory (10) to the first memory (8)

n english in gestigen Lauren neue ingeleer Lauren Mestr III (1971) in ers

Robert Barrier

THE STATE OF THE S

B. Galler

) និងក្នុង ព្រះស្រី

Fig. 1

10

15

7

Printed:29-01-2002

A / A SPEC

175 F

01400623

09-03-