## The System:

The system was not a conventional inverted pendulum, but it was such that it steered a horizontal balancing rod in the presence of gravity to control the vertical pendulum rod. The overall system contained both the right half plane poles (unstable) and zeroes (non-minimum phase). The friction effects were neglected and the overall model was as follows:



Fig: Model of the Plant

## **Linearized Model:**

The linearized model of the plant can be written in the form of state-space equations as:

$$m_1 \ddot{x}(t) + m_1 l_0 \ddot{\theta}(t) - m_1 g \theta(t) = F(t)$$
  
$$m_1 l_0 \ddot{x}(t) + J_0 \ddot{\theta}(t) - (m_1 l_0 + m_2 l_c) g \theta(t) - m_1 g x(t) = 0$$

Here F(t) was the input signal and we had two outputs  $\Theta$  and x.

## **System Parameters:**

The values for the parameters were as given in the table below:

| $m_1$          | 0.213 kg                 |
|----------------|--------------------------|
| m <sub>2</sub> | 1.785 kg                 |
| I <sub>0</sub> | 0.330 m                  |
| J <sub>0</sub> | 0.0246 kg-m <sup>2</sup> |
| I <sub>c</sub> | 0.071 m                  |