Formelsammlung	
Ayham Alhalaibi Signale und Systeme	
29. November 2021	

nhaltsverzeichnis	

Signale im Zeitbereich

Signalcharakterisierung

1. Kontinuierlich

Diskret

- 2. Deterministisch Stochastisch Deterministische Signale sind mathematisch beschreibbar, im gegensatz zu stochastischen Signalen die dem Zufall unterworfen sind
- 3. Periodisch

Aperiodisch

periodisch wenn, $x(t) = x(t + T_p)$ gilt. T_p heißt Grundperiode.

4. Gerade

Ungerade:

Zerlegung des Signals:

- gerader Anteil:

$$x_G = \frac{1}{2} [x(t) + x(t-1)]$$

- ungerader Anteil:

$$x_U = \frac{1}{2} [x(t) - x(-t)]$$

- 5. Energiesignal

Leistungssignal

Energie:

$$E_x = \int_{t=-\infty}^{+\infty} |x(t)|^2 dt$$

Leistung:

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt$$

6. Korrelation

Die Korrelationsfunktion ist eine Maß für die Ähnlichkeit zweier deterministischer Energiesignale.

Korrelationsfunktion

$$r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t) \cdot y(t+\tau) dt$$

7. Transformation

Signale könnenn modifiziert werden durch Verändern der unabhängigen Variablen:

• Zeitverschiebung

- Zeitdehnung und Stauchung
- Zeitumkehr

$$x_2(t) = x_1(-at+b)$$

das Argument von $x_1(\tau)$ stellt eine Abbildung $t \to$ τ dar, daher bewirkt

- +b/-b (b>0) eine Verschiebung von $x_1(\tau)$ nach links / rechts
- eine Multiplikation mit a / Division durch a (a > 1) eine Stauchung / Streckung von $x_1(\tau)$
- Multiplikation mit -1 eine Spiegelung an der Ordinatenachse

Die Reihenfolge der Schritte ist nicht EGAL: erst Verschieben um b, dann Skalieren/Invertieren

1.2Elementarsignale

• Sprungfunktion ε

$$\varepsilon(t) = \begin{cases} 0 & \text{für } t < 0 \\ 1 & \text{für } t \ge 0 \end{cases}$$

• Dirac δ

$$\int_{t=-\infty}^{\infty} \delta(t)dt = 1$$

Eigenschaften:

- Höhe unendlich
- Fläche = 1

– Zusammenhang mit Sprungfunktion
$$\int_{\tau=-\infty}^t \delta(\tau) d\tau = \varepsilon(t) \text{ bzw. } \frac{d}{dt} \varepsilon(t) = \delta(t)$$

$$\delta(t - t_0) \cdot y(t) = \delta(t - t_0) \cdot y(t_0)$$

- Zeitskalierung: $\delta(at) = \frac{1}{|a|}\delta(t)$
- Dreieckimpuls Λ

$$\Lambda(t) = \begin{cases} 0 & \text{für } |t| > 1\\ 1 & \text{für } |t| \le 1 \end{cases}$$

• Rechteckfunktion rect

$$rect(t) = \begin{cases} 1 & \text{für } |t| \leq \frac{1}{2} \\ 0 & \text{für } |t| > \frac{1}{2} \end{cases}$$

Darstellbar durch: $rect(t) = \varepsilon \cdot (t + \frac{1}{2}) - \varepsilon \cdot (t - \frac{1}{2})$

• Komplexe Exponentialfunktion

$$\Lambda(t) = \begin{cases} 0 & \text{für } |t| > 1 \\ 1 & \text{für } |t| \le 1 \end{cases}$$

2 Systeme

2.1 Eigenschaften

1. Speicher

 \bullet Frei: wird durch eine xy-Kennlinie vollständig beschrieben

z.B.
$$y(t) = \frac{R_1}{R_1 + R_2} \cdot x(t)$$

• behaftet: Bei diesen Systemen ist keine vollständige Beschreibung durch eine xy-Kennline möglich

z.B.
$$y(t) = x(t) + 2x(t-1)$$

2. Kausalität

Ausgangssignal hängt nur vom aktuellen und vorherigen Eingangssignal ab $\,$

Kausal: z.B.
$$y(t) = \int_{t-5}^{t} x(\tau)d\tau$$

Akausal: z.B.
$$y(t) = x(t+1) - x(t-1)$$

Speicherfreiheit & Kausalität: Aus Speicherfreiheit folgt Kausalität, aber nicht umgekehrt.

3. Stabilität

(Bounded Input \rightarrow Bounded Output)

BIBO Stabilität: kleines/beschränktes Eingangssignal \rightarrow kleine/beschränkte Antwort.

anschaulich:

stabil, Kugel kehrt in definierten Zustand zurück

instabil, selbst kleine Auslenkung führt zu ungebremstem Runterrollen

z.B. für stabiles System

$$y(t) = 50 \cdot x^3(t)$$

z.B. für instabiles System

$$y(t) = e^t \cdot x(t)$$

4. Zeitinvariant \leftrightarrow Zeitvariant

- invariant: Systeme ändern sich **nicht** bei einer Zeitverschiebung.
- \bullet variant: Verschobenes Eingangssignal \rightarrow verschobenes Ausgangssignal

5. Liniarität

Ein System ist linear, wenn das Superpositionsprinzip gilt: Linearkombination von Eingangssignalen ruft entsprechende Linearkombination der Ausgangssignale hervor

Bedeutung Liniarität

eine Verdopplung der Eingangsgröße (z.B. Spannung) führt auch zu einer Verdopplung der Ausgangsgröße.

2.2 LTI-Systeme (Linear time-invariant Systems)

2.2.1 Ein-/Ausgangsbeziehung

- Addition
- Multiplikation
- Differentiation
- Integration
- Zeitverschiebung(Verzögerung)

2.2.2 Faltung

Aus der Impulsantwort eines LTI-Systems und dem Eingangssignal lässt sich das Ausgangssignal durch Faltung bestimmen:

$$y(t) = x(t) * h(t) \rightarrow (*)$$
 Faltung Operator

$$y(t) = \int_{-\infty}^{+\infty} x(\tau) \cdot h(t - \tau) d\tau$$

• Der Dirac-Impuls ist das neutrale Element der Faltung

$$x(t) * \delta(t) = x(t)$$

• Eine Faltung mit einem verschobenen Dirac-Impuls führt zur Verschiebung des Signals:

$$x(t) * \delta(t - a) = x(t - a)$$

Rechenregeln

- $x_1(t) * x_2(t) = x_2(t) * x_1(t)$
- $x_1(t) * [x_2(t) * x_3(t)] = [x_1(t) * x_2(t)] * x_3(t)$
- $x_1(t) * [x_2(t) + x_3(t)] = x_1(t) * x_2(t) + x_1(t) * x_3(t)$

2.2.3 Frequenzgang & Übertragungsfunktion

• Frequenzgang

$$\underline{H}(\omega) = \frac{\underline{Y}(\omega)}{\underline{X}(\omega)} = \frac{\underline{U}_2(\omega)}{\underline{U}_1(\omega)}$$

• Amplitudengang

$$A(\omega) = |\underline{H}(\omega)| = \frac{|\underline{Y}(\omega)|}{|\underline{X}(\omega)|} \begin{cases} > 1 & \text{Verstärkung} \\ < 1 & \text{Dämpfung} \end{cases}$$

Phasengang

$$\varphi_H(\omega) = \arg\{\underline{H}(\omega)\} = \varphi_Y(\omega) - \varphi_X(\omega)$$
$$\varphi_H = \arctan(\frac{\Im \mathfrak{m}}{\Re e})$$

• Eigenfunktion

$$y(t) = \lambda \cdot x(t) \begin{cases} x(t) : & \text{Eigenfunktion} \\ \lambda : & \text{Eigenwert}(\lambda \in \mathbb{C}) \end{cases}$$

jede komplexe Exponentialfunktion $x(t) = e^{st}$ ist Eigenfunktion jedes beliebigen LTI-Systems S:

$$y(t) = S\left\{e^{st}\right\} = \lambda \cdot e^{st}$$

Eigenwert kann wie folgt berechnet werden:

$$\lambda = \underline{H}(s) = \int_{-\infty}^{+\infty} h(\tau) e^{-st} d\tau$$

• Erweiterung der komplexen Wechselstromrechnung

Die harmonische Exponentialfunktion $e^{j\omega t}$ ist ein sonderfall von e^{st} mit $s=j\omega$

$$\sigma \triangleq Amplitude \begin{cases} \sigma \leq 0 & \text{exponentiell abklingend} \\ \sigma = 0 & \text{konstante Amplitude} \\ \sigma \geq 0 & \text{exponentiell zunehmend} \end{cases}$$

$$\omega \triangleq Rotation \begin{cases} \omega \leq 0 & \text{Zeiger rotiert mit UZS} \\ \omega = 0 & \text{Zeiger rotiert nicht} \\ \omega \geq 0 & \text{Zeiger rotiert gegen UZS} \end{cases}$$

Komplexe Übertragungsfunktion

$$\underline{\underline{H}}(s) = \frac{\underline{Y}(s)}{\underline{X}(s)} = \frac{\underline{U_2}(s)}{\underline{U_1}(s)} = \frac{\text{komplexer Zeiger des Ausgangssignals}}{\text{komplexer Zeiger des Eingangssignals}}$$

Die Übertragungsfunktion hängt von der komplexen Frequenz $s = \sigma + j\omega$ ab.

3 Zweitore - Vierpoltheorie

3.1 Zweitorgleichungen

• Admittanzform/ Admittanzmatrix \mathbf{Y} :

$$\begin{array}{l} \underline{I}_1 = \underline{Y}_{11} \cdot \underline{U}_1 + \underline{Y}_{12} \cdot \underline{U}_2 \\ \underline{I}_2 = \underline{Y}_{21} \cdot \underline{U}_1 + \underline{Y}_{22} \cdot \underline{U}_2 \end{array} \right\} \; \begin{pmatrix} \underline{I}_1 \\ \underline{I}_2 \end{pmatrix} = \underline{\mathbf{Y}} \cdot \begin{pmatrix} \underline{U}_1 \\ \underline{U}_2 \end{pmatrix}$$

• Impedanzform/ Impedanzmatrix **Z**:

$$\begin{array}{l} \underline{U}_1 = \underline{Z}_{11} \cdot \underline{I}_1 + \underline{Z}_{12} \cdot \underline{I}_2 \\ U_2 = \underline{Z}_{21} \cdot \underline{I}_1 + \underline{Z}_{22} \cdot \underline{I}_2 \end{array} \right\} \, \left(\underline{\underline{U}}_1 \right) = \underline{\mathbf{Z}} \cdot \left(\underline{\underline{I}}_1 \right) \\ \end{array}$$

• Hybridform 1/ Reihenparallelmatrix **H**:

$$\begin{array}{l} \underline{U}_1 = \underline{H}_{11} \cdot \underline{I}_1 + \underline{H}_{12} \cdot \underline{U}_2 \\ \underline{I}_2 = \underline{H}_{21} \cdot \underline{I}_1 + \underline{H}_{22} \cdot \underline{U}_2 \end{array} \right\} \; \left(\underline{\underline{U}}_1 \\ \underline{I}_2 \right) = \underline{\mathbf{H}} \cdot \left(\underline{\underline{I}}_1 \\ \underline{U}_2 \right) \end{array}$$

• Hybridform 2/ Parallelreihenmatrix C:

$$\begin{array}{l} \underline{I}_1 = \underline{C}_{11} \cdot \underline{U}_1 + \underline{C}_{12} \cdot \underline{I}_2 \\ \underline{U}_2 = \underline{C}_{21} \cdot \underline{U}_1 + \underline{C}_{22} \cdot \underline{I}_2 \end{array} \right\} \; \left(\underline{\underline{I}}_1 \\ \underline{U}_2 \right) = \underline{\mathbf{C}} \cdot \left(\underline{\underline{U}}_1 \right) \\ \end{array}$$

• Kettenform/ Kettenmatrix A:

$$\begin{array}{l} \underline{U}_1 = \underline{A}_{11} \cdot \underline{U}_2 + \underline{A}_{12} \cdot -\underline{I}_2 \\ \underline{I}_1 = \underline{A}_{21} \cdot \underline{U}_2 + \underline{A}_{22} \cdot -\underline{I}_2 \end{array} \right\} \; \left(\underline{\underline{U}}_1 \\ \left(\underline{\underline{I}}_2 \right) = \underline{\mathbf{A}} \cdot \left(\underline{\underline{U}}_2 \right) \end{array}$$

• Kettenform rückwärts/ Kettenmatrix B:

$$\begin{array}{l} \underline{U}_2 = \underline{B}_{11} \cdot \underline{U}_1 + \underline{B}_{12} \cdot -\underline{I}_1 \\ \underline{I}_2 = \underline{B}_{21} \cdot \underline{U}_1 + \underline{B}_{22} \cdot -\underline{I}_1 \end{array} \right\} \; \left(\underline{\underline{U}}_2 \right) = \underline{\mathbf{B}} \cdot \left(\underline{\underline{U}}_1 \right) \\ \end{array}$$

3.1.1 Parameterumrechnung

Z

V

Н

A

$$Z \begin{bmatrix} \underline{Z}_{11} \, \underline{Z}_{12} \\ \underline{Z}_{21} \, \underline{Z}_{22} \end{bmatrix} \begin{bmatrix} \underline{Y}_{22} & \underline{-Y}_{12} \\ \det \underline{Y} & \det \underline{Y} \end{bmatrix} \begin{bmatrix} \frac{\det \underline{H}}{\underline{H}_{22}} & \underline{H}_{12} \\ \underline{H}_{22} & \underline{H}_{22} \\ \underline{-H}_{21} & \underline{1} \\ \underline{H}_{22} & \underline{H}_{22} \end{bmatrix} \begin{bmatrix} \underline{A}_{11} & \det \underline{A} \\ \underline{A}_{21} & \underline{A}_{21} \\ \underline{1} & \underline{A}_{22} \\ \underline{A}_{21} & \underline{A}_{21} \end{bmatrix}$$

$$Y \begin{bmatrix} \underline{Z}_{22} & -\underline{Z}_{12} \\ \det \underline{Z} & \det \underline{Z} \end{bmatrix} \begin{bmatrix} \underline{Y}_{11} \, \underline{Y}_{12} \\ \underline{-Z}_{21} & \underline{Z}_{11} \\ \det \underline{Z} & \det \underline{Z} \end{bmatrix} \begin{bmatrix} \underline{Y}_{11} \, \underline{Y}_{12} \\ \underline{Y}_{21} \, \underline{Y}_{22} \end{bmatrix} \begin{bmatrix} \underline{1} & -\underline{H}_{12} \\ \underline{H}_{11} & \underline{H}_{11} \\ \underline{H}_{21} & \det \underline{H} \\ \underline{H}_{11} \end{bmatrix} \begin{bmatrix} \underline{A}_{22} & -\det \underline{A} \\ \underline{A}_{12} & \underline{A}_{12} \\ -1 & \underline{A}_{11} \\ \underline{A}_{12} \end{bmatrix}$$

$$H \begin{bmatrix} \frac{\det \underline{Z}}{\underline{Z}_{22}} & \underline{Z}_{12} \\ \underline{Z}_{22} & \underline{Z}_{22} \\ \underline{-\underline{Z}_{21}} & \underline{1} \\ \underline{Z}_{22} & \underline{Z}_{22} \end{bmatrix} \begin{bmatrix} \underline{1} & \underline{-\underline{Y}_{12}} \\ \underline{Y}_{11} & \underline{Y}_{11} \\ \underline{Y}_{11} & \underline{Y}_{11} \end{bmatrix} \begin{bmatrix} \underline{H}_{11} & \underline{H}_{12} \\ \underline{H}_{21} & \underline{H}_{22} \end{bmatrix} \begin{bmatrix} \underline{A}_{12} & \det \underline{A} \\ \underline{A}_{22} & \underline{A}_{22} \\ \underline{-1} & \underline{A}_{21} \\ \underline{A}_{22} & \underline{A}_{22} \end{bmatrix}$$

$$A \begin{bmatrix} \frac{Z_{11}}{Z_{21}} & \frac{\det \mathbf{Z}}{Z_{21}} \\ \frac{1}{Z_{21}} & \frac{Z_{22}}{Z_{21}} \end{bmatrix} \begin{bmatrix} \frac{-\underline{Y}_{22}}{\underline{Y}_{21}} & \frac{-1}{\underline{Y}_{21}} \\ -\det \mathbf{Y} & -\underline{Y}_{11} \\ \underline{Y}_{21} & \underline{Y}_{21} \end{bmatrix} \begin{bmatrix} \frac{-\det \mathbf{H}}{\underline{H}_{21}} & \frac{-\underline{H}_{11}}{\underline{H}_{21}} \\ \frac{-\underline{H}_{22}}{\underline{H}_{21}} & \frac{-1}{\underline{H}_{21}} \end{bmatrix} \begin{bmatrix} \underline{A}_{11} & \underline{A}_{12} \\ \underline{A}_{21} & \underline{A}_{22} \end{bmatrix}$$

3.2 Zusammenschalten von Zweitoren

• Reihenschaltung:

$$[\underline{Z}] = [\underline{Z}_1] + [\underline{Z}_2]$$

• Parallelschaltung:

$$[\underline{Y}] = [\underline{Y}_1] + [\underline{Y}_2]$$

• Kettenschaltung:

BEACHTE:

Im Allgemeinen gilt $\rightarrow [\underline{A}_1] \cdot [\underline{A}_2] \neq [\underline{A}_2] \cdot [\underline{A}_1]$

• Reihen-Parallelschaltung:

$$[\underline{H}] = [\underline{H}_1] \cdot [\underline{H}_2]$$

• Parallel-Reihenschaltung:

$\overline{3.3}$ Matrizen elementarer Zweitore

 \boldsymbol{Z}

ne

 \underline{Y}

 \underline{H}

 $\underline{\boldsymbol{c}}$

 \underline{A}

 $\begin{pmatrix} \underline{Y} & -\underline{Y} \\ -Y & Y \end{pmatrix} \qquad \begin{pmatrix} \underline{Z} & 1 \\ -1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -1 \\ 1 & \underline{Z} \end{pmatrix}$

$$\begin{pmatrix} \underline{Z} & \underline{Z} \\ \underline{Z} & \underline{Z} \end{pmatrix}$$

 $\begin{pmatrix} 0 & 1 \\ -1 & \underline{Y} \end{pmatrix} \qquad \qquad \begin{pmatrix} \underline{Y} & -1 \\ 1 & 0 \end{pmatrix}$

 $\frac{1}{\underline{Z}_1 + \underline{Z}_2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} \underline{Z}_1 + \underline{Z}_2 & -1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 \\ -1 & \underline{Z}_1 + \underline{Z}_2 \end{pmatrix} \qquad \begin{pmatrix} -1 & -(\underline{Z}_1 + \underline{Z}_2) \\ 0 & -1 \end{pmatrix}$

idealer Übertrager

 $\ddot{u} = \frac{w_1}{w_2}$

 $\begin{pmatrix} 0 & \ddot{u} \\ -\ddot{u} & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & -\frac{1}{\ddot{u}} \\ \frac{1}{\ddot{z}} & 0 \end{pmatrix}$

ne

$$\begin{bmatrix} \underline{Z}_1 & \underline{Z}_3 \end{bmatrix}$$
 $\begin{bmatrix} \underline{Z}_3 & \underline{Z}_1 \cdot \underline{Z}_3 \\ \underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3 \end{bmatrix}$

$$\begin{bmatrix} \underline{Z}_1 + \underline{Z}_2 & \underline{Z}_2 \\ \underline{Z}_2 & \underline{Z}_2 + \underline{Z}_3 \end{bmatrix} \qquad \begin{bmatrix} \underline{\underline{Z}_1(\underline{Z}_2 + \underline{Z}_3)} & \underline{\underline{Z}_1 \cdot \underline{Z}_3} \\ \underline{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3} & \underline{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3} \end{bmatrix} \qquad \begin{bmatrix} \underline{\underline{Z}_1 + \underline{Z}_2} & \underline{\underline{Z}_2 - \underline{Z}_1} \\ \underline{\underline{Z}_1 \cdot \underline{Z}_3} & \underline{\underline{Z}_3(\underline{Z}_1 + \underline{Z}_2)} \\ \underline{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3} \end{bmatrix} \qquad \begin{bmatrix} \underline{\underline{Z}_1 + \underline{Z}_2} & \underline{\underline{Z}_2 - \underline{Z}_1} \\ \underline{\underline{Z}_2 - \underline{Z}_1} & \underline{\underline{Z}_1 + \underline{Z}_2} \end{bmatrix}$$

$$\overline{Z}_{2}$$
 \overline{Z}_{2} \overline{Z}_{1}

[<u>Y</u>]

$$\frac{Z_2 + Z_3}{\underline{K}} \qquad \frac{-Z_2}{\underline{K}}$$

$$\frac{-Z_2}{\underline{Z}_1 + Z_2}$$

$$\begin{bmatrix} \frac{\underline{Z}_2 + \underline{Z}_3}{\underline{K}} & \frac{-\underline{Z}_2}{\underline{K}} \\ \frac{-\underline{Z}_2}{K} & \underline{Z}_1 + \underline{Z}_2 \\ \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} & -\frac{1}{\underline{Z}_2} \\ -\frac{1}{\underline{Z}_2} & \frac{1}{\underline{Z}_2} + \frac{1}{\underline{Z}_3} \end{bmatrix} \qquad \begin{bmatrix} \frac{\underline{Y}_1 + \underline{Y}_2}{2} & \frac{\underline{Y}_2 - \underline{Y}_1}{2} \\ \frac{\underline{Y}_2 - \underline{Y}_1}{2} & \frac{\underline{Y}_1 + \underline{Y}_2}{2} \end{bmatrix}$$

$$\begin{bmatrix} \underline{Y}_{1} + \underline{Y}_{2} & \underline{Y}_{2} - \underline{Y}_{1} \\ Y_{2} - Y_{1} & Y_{1} + Y_{2} \end{bmatrix}$$

$$\begin{bmatrix} \underline{K} \\ \underline{Z}_2 + \underline{Z}_3 \end{bmatrix} \quad \underline{\underline{Z}}_2 + \underline{Z}_3 \\ \underline{\underline{Z}}_2 + \underline{Z}_3 \end{bmatrix}$$

$$\underline{\underline{-\underline{Z}}}_2 \quad \underline{1} \\ \underline{Z}_2 + \underline{Z}_3 \end{bmatrix}$$

$$\begin{bmatrix} \underline{\underline{K}} & \underline{\underline{Z}}_2 \\ \underline{\underline{Z}}_2 + \underline{Z}_3 & \underline{\underline{Z}}_2 + \underline{Z}_3 \\ \underline{-\underline{Z}}_2 & \underline{\underline{I}}_2 + \underline{Z}_3 \end{bmatrix} \qquad \begin{bmatrix} \underline{\underline{Z}}_1 \cdot \underline{Z}_2 & \underline{\underline{Z}}_1 + \underline{Z}_2 \\ \underline{\underline{Z}}_1 + \underline{Z}_2 & \underline{\underline{Z}}_1 + \underline{Z}_2 \end{bmatrix}$$

$$\begin{bmatrix} \underline{\mathbf{C}} \end{bmatrix} \quad \begin{bmatrix} \frac{1}{\underline{Z}_1 + \underline{Z}_2} & \frac{-\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} \\ \frac{\underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} & \underline{Z}_3 + \frac{\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_1 + \underline{Z}_2} \end{bmatrix} \quad \begin{bmatrix} \frac{\underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3}{\underline{Z}_1 (\underline{Z}_2 + \underline{Z}_3)} & \frac{-\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} \\ \frac{\underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} & \frac{\underline{Z}_2 \cdot \underline{Z}_3}{\underline{Z}_2 + \underline{Z}_3} \end{bmatrix}$$

$$\begin{bmatrix} \underline{Z}_1 + \underline{Z}_2 + \underline{Z}_3 & \underline{-\underline{Z}_3} \\ \underline{Z}_1 (\underline{Z}_2 + \underline{Z}_3) & \underline{Z}_2 + \underline{Z}_3 \end{bmatrix}$$

$$\underline{\underline{Z}_3}$$

$$\underline{Z}_2 + \underline{Z}_3$$

$$\underline{Z}_2 + \underline{Z}_3$$

$$\left[\begin{array}{ccc} \underline{\mathbf{A}} \end{array} \right] \begin{bmatrix} 1 + \frac{\underline{Z}_1}{\underline{Z}_2} & \underline{Z}_1 + \underline{Z}_3 + \frac{\underline{Z}_1 \cdot \underline{Z}_3}{\underline{Z}_2} \\ \frac{1}{\underline{Z}_2} & 1 + \frac{\underline{Z}_3}{\underline{Z}_2} \end{array} \end{bmatrix} \begin{bmatrix} 1 + \frac{\underline{Z}_2}{\underline{Z}_3} & \underline{Z}_2 \\ \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_3} + \frac{\underline{Z}_2}{\underline{Z}_1 \cdot \underline{Z}_3} & 1 + \frac{\underline{Z}_2}{\underline{Z}_1} \end{bmatrix} \begin{bmatrix} \frac{\underline{Z}_1 + \underline{Z}_2}{\underline{Z}_2 - \underline{Z}_1} & \frac{2\underline{Z}_1 \cdot \underline{Z}_2}{\underline{Z}_2 - \underline{Z}_1} \\ \frac{2}{Z_2 - Z_1} & \frac{\underline{Z}_1 + \underline{Z}_2}{Z_2 - Z_1} \end{bmatrix}$$

$$\begin{bmatrix} 1 + \frac{Z_2}{Z_3} & Z_2 \\ \frac{1}{Z} + \frac{1}{Z} + \frac{Z_2}{Z_3} & 1 + \frac{Z_2}{Z_3} \end{bmatrix}$$

$$\begin{bmatrix} \underline{\underline{Z}}_1 + \underline{Z}_2 & \underline{Z}_1 \cdot \underline{Z}_2 \\ \underline{Z}_2 - \underline{Z}_1 & \underline{Z}_2 - \underline{Z}_1 \\ \\ \underline{2}_{\underline{Z}_2 - \underline{Z}_1} & \underline{Z}_1 + \underline{Z}_2 \\ \underline{Z}_2 - \underline{Z}_1 \end{bmatrix}$$

3.3.1 Trennverstärker

Ersatzschaltbild eines idealen Trennverstärkers:

$$A = \begin{pmatrix} \frac{1}{v_U} & 0\\ 0 & 0 \end{pmatrix}$$

$$\underline{A}_e = \begin{pmatrix} \underline{A}_{11} & \underline{A}_{12} \\ \underline{A}_{21} & \underline{A}_{22} \end{pmatrix} \cdot \begin{pmatrix} \underline{1} & 0 \\ v_U & 0 \end{pmatrix} = \begin{pmatrix} \underline{\underline{A}}_{11} & 0 \\ \underline{\underline{A}}_{21} & 0 \\ \underline{\underline{v}}_U & 0 \end{pmatrix}$$

3.3.2 Torbedingungen

Die Torbedingungen werden durch:

- idealen Übertrager
- Kurzschlussschleife
- Parallelschaltung längssymmetrischer Zweitore

erfüllt.

für die das Zusammenschalten von Zweitoren müssen diese Bedingungen eingehalten werden.

3.4 Zweitor Eigenschaften:

• Reziprozität (Umkehrbarkeit)

Z	$Z_{12} = Z_{21}$
Y	$Y_{12} = Y_{21}$
A	$\det[A] = 1$
Н	$H_{12} = -H_{21}$

Ein umkehrbares (reziprokes) Zweitor wird nur durch drei Parameter beschrieben:

(RLCM-Zweitor)ist immer umkehrbar.

Gegenbeispiel: idealer Transistor

• Rückwirkungsfreiheit

$$Z_{12} = Y_{12} = H_{12} = \det[A] = 0$$

Ein rückwirkungsfreies Zweitor ist nicht reziprok und wird nur durch drei Parameter beschrieben.

Beispiele: idealer Verstärker, idealer Transistor, gesteuerte Quellen

• Symmetrie

Z	$Z_{11} = Z_{22}$
Y	$Y_{11} = Y_{22}$
A	$A_{11} = A_{22}$
H	$\det[H] = 1$

Ein umkehrbares und symmetrisches Zweitor wird durch zwei Parameter beschrieben.

3.5 Zweitorersatzschaltung

3.5.1 gesteuerte Quellen

Ideal

VCVS: Spannungsgesteurte Spannungsquelle CCVS: Stromgesteurte Spannungsquelle

VCCS: Spannungsgesteurte Stromquelle

CCCS: Stromgesteurte Stromquelle

VCCS: $\underline{I} = \beta \cdot \underline{I}_1$ CCCS: $\underline{I} = Y_T \cdot \underline{U}_1$

Andere Matrizen sind nicht definiert. Ideale (gesteuerte) Quellen lassen sich nicht ineinander umwandeln!

Linear

3.5.2 Ersatzschaltbilder

• T-Ersatzschaltbild für Z-Matrix für $Z_{12} \neq Z_{21}$ ergänzt um eine gesteuerte Quelle.

• II-Ersatzschaltbild für Y-Matrix für $Y_{12} \neq Y_{21}$ ergänzt um eine gesteuerte Quelle.

• Hybrid-Ersatzschaltbild für H-Matrix

3.6 Beschaltete Zweitore

3.6.1 Eingangsimpedanz

$$\begin{split} & \boldsymbol{Z} \to \underline{Z}_{e1} = \underline{Z}_{11} - \frac{\underline{Z}_{12}\underline{Z}_{21}}{\underline{Z}_{22} + \underline{Z}_{V}} \\ & \boldsymbol{Y} \to \underline{Y}_{e1} = \underline{Y}_{11} - \frac{\underline{Y}_{12}\underline{Y}_{21}}{\underline{Y}_{22} + \underline{Y}_{V}} \\ & \boldsymbol{A} \to \underline{Z}_{e1} = \frac{\underline{A}_{11}\underline{Z}_{V} + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_{V} + \underline{A}_{22}} \\ & \boldsymbol{H} \to \underline{Z}_{e1} = \underline{H}_{11} - \frac{\underline{H}_{12}\underline{H}_{21}}{\underline{H}_{22} + \underline{Y}_{V}} \\ & \boldsymbol{C} \to \underline{Y}_{e1} = \underline{C}_{11} - \frac{\underline{C}_{12}\underline{C}_{21}}{\underline{C}_{22} + \underline{Z}_{V}} \end{split}$$

3.6.2 Ausgangsimpedanz

$$\begin{split} & \boldsymbol{Z} \to \underline{Z}_{e2} = \underline{Z}_{22} - \frac{\underline{Z}_{12}\underline{Z}_{21}}{\underline{Z}_{11} + \underline{Z}_{i}} \\ & \boldsymbol{Y} \to \underline{Y}_{e2} = \underline{Y}_{22} - \frac{\underline{Y}_{12}\underline{Y}_{21}}{\underline{Y}_{11} + \underline{Y}_{i}} \\ & \boldsymbol{A} \to \underline{Z}_{e2} = \frac{\underline{A}_{22}\underline{Z}_{i} + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_{i} + \underline{A}_{11}} \\ & \boldsymbol{H} \to \underline{Z}_{e2} = \underline{H}_{22} - \frac{\underline{H}_{12}\underline{H}_{21}}{\underline{H}_{11} + \underline{Y}_{i}} \\ & \boldsymbol{C} \to \underline{Y}_{e2} = \underline{C}_{22} - \frac{\underline{C}_{12}\underline{C}_{21}}{\underline{C}_{11} + \underline{Z}_{i}} \end{split}$$

3.6.3 Ersatzquelle

$$\begin{split} \boldsymbol{Z} & \rightarrow \underline{U}_{qe} = \frac{\underline{U}_q \underline{Z}_{21}}{\underline{Z}_{11} + \underline{Z}_i} \\ \boldsymbol{Y} & \rightarrow \underline{I}_{qe} = \frac{-\underline{I}_q \underline{Y}_{21}}{\underline{Y}_{11} + \underline{Y}_i} \\ \boldsymbol{A} & \rightarrow \underline{U}_{qe} = \frac{\underline{U}_q}{\underline{Z}_i \underline{A}_{21} + \underline{A}_{11}} \\ \boldsymbol{H} & \rightarrow \underline{I}_{qe} = \frac{-\underline{U}_q \underline{H}_{21}}{\underline{H}_{11} + \underline{Z}_i} \\ \boldsymbol{C} & \rightarrow \underline{U}_{qe} = \frac{\underline{I}_q \underline{C}_{21}}{\underline{C}_{11} + \underline{Y}_i} \end{split}$$

3.6.4 Wellenwiderstand

Beschaltet man den Ausgang eines Zweitors mit \underline{Z}_{w2} , so liegt am Eingang die Impedanz \underline{Z}_{w1} .

$$\underline{Z}_{w1} = \frac{\underline{A}_{11}\underline{Z}_{w2} + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_{w2} + \underline{A}_{22}}$$

Beschaltet man den Eingang eines Zweitors mit \underline{Z}_{w1} , so liegt am Ausgang die Impedanz \underline{Z}_{w2} .

$$\underline{Z}_{w2} = \frac{\underline{A}_{22}\underline{Z}_{w1} + \underline{A}_{12}}{\underline{A}_{21}\underline{Z}_{w1} + \underline{A}_{11}}$$

Lösung des obigen Gleichungssystems

$$\underline{Z} \qquad \sqrt{\frac{Z_{11} \det Z}{Z_{22}}} \qquad \sqrt{\frac{Z_{22} \det Z}{Z_{11}}}$$

$$\underline{Y} \qquad \sqrt{\frac{Y_{22}}{Y_{11} \det Y}} \qquad \sqrt{\frac{Y_{11}}{Y_{22} \det Y}}$$

$$\underline{A} \qquad \sqrt{\frac{A_{11} \cdot A_{12}}{A_{21} \cdot A_{22}}} \qquad \sqrt{\frac{A_{22} \cdot A_{12}}{A_{21} \cdot A_{11}}}$$

$$\underline{H} \qquad \sqrt{\frac{H_{11} \det H}{H_{22}}} \qquad \sqrt{\frac{H_{11}}{H_{22} \det H}}$$

$$\underline{C} \qquad \sqrt{\frac{C_{22}}{C_{11} \det C}} \qquad \sqrt{\frac{C_{11} \det C}{C_{11}}}$$
Für symmetrische Zweitore gilt $\underline{Z}_{w1} = \underline{Z}_{w2}$

Alternatives:

Messtechnisch(Leerlauf und Kurzschluss)

$$\begin{split} & \underline{Z}_{01} = \frac{\underline{A}_{11} \cdot \infty + \underline{A}_{12}}{\underline{A}_{21} \cdot \infty + \underline{A}_{22}} \\ & \underline{Z}_{k1} = \frac{\underline{A}_{11} \cdot 0 + \underline{A}_{12}}{\underline{A}_{21} \cdot 0 + \underline{A}_{22}} \end{split} \right\} \, \underline{Z}_{w1} = \sqrt{\underline{Z}_{k1} \cdot \underline{Z}_{01}} = A(Z_{w1}) \end{split}$$

3.6.5 Scheinleistungsanpassung

Wiederholung GE2 Kapitel 2.7.8

Beschaltet man ein Zweitor mit seinen Wellenwiderständen, so liegt Scheinleistungsanpassung vor.

3.6.6 Kettenwiderstand

Schaltet man eine große Zahl gleicher Zweitore in Kette, so nähert sich der Eingangswiderstand einem Grenzwert, dem Kettenwiderstand $\underline{\mathbf{Z}}_{\mathbf{K}}$.

$$\underline{Z}_K = \underline{Z}_{11} - \frac{\underline{Z}_{12}\underline{Z}_{21}}{\underline{Z}_{22} + \underline{Z}_K}$$

Lösung der obigen Gleichung:

$$\underline{Z}_K = \frac{1}{2}(\underline{Z}_{11} - \underline{Z}_{22} \pm \sqrt{(\underline{Z}_{11} - \underline{Z}_{22})^2 + 4 \cdot \det \underline{Z}})$$

Für symmetrische Zweitore entspricht der Kettenwiderstand dem Wellenwiderstand.

Signaldarstellung im Frequenzund Bildbereich

Harmonische Synthese 4.1

Die Überlagerung von Sinusschwingungen zu einem periodischen, nichtsinusförmigen Signal nennt man harmonische Synthese.

4.1.1Reelle Fourierreihe

• mit sin und cos:

$$f(t) = a_0 \sum_{k=1}^{\infty} [a_k \cdot \cos(k\omega_1 t) b_k \cdot \sin(k\omega_1 t)]$$

• mit Amplitude und Phase:

$$f(t) = A_0 + \sum_{k=1}^{\infty} [A_k \cdot \cos(k\omega_1 t + \varphi_k)]$$
$$= A_0 + \sum_{k=1}^{\infty} [A_k \cdot \sin(k\omega_1 t + \varphi_k - \frac{\pi}{2})]$$

Koeffizienten

$$A_0 = \frac{1}{T} \int_{t_0}^{T+t_0} f(t)dt$$

$$a_k = \frac{2}{T} \int_{t_0}^{T+t_0} f(t) \cdot \cos(k\omega_1 t) dt$$
$$b_k = \frac{2}{T} \int_{t_0}^{T+t_0} f(t) \cdot \sin(k\omega_1 t) dt$$

Komplexe Fourierreihe

$$f(t) = \sum_{k=-\infty}^{\infty} \underline{c}_k \cdot e^{j\omega_1 kt}$$

$$\underline{c}_k = \frac{1}{T} \int_{t_0}^{T+t_0} f(t) \cdot e^{-j\omega_1 k t} dt \qquad = \frac{1}{2} \left(a_k - j b_k \right)$$

Symmetrieeigenschaften 4.1.3

- Gerade Funktionen symmetrisch zur v-Achse alle sin-teile verschwinden

 - $-A_{0} = \frac{2}{T} \int_{0}^{\frac{T}{2}} y(t) dt$ $-a_{k} = \frac{4}{T} \int_{0}^{\frac{T}{2}} y(t) \cdot \cos(k\omega_{1}t) dt$ $-b_{k} = 0$
- Ungerade Funktionen symmetrisch zum Ursprung alle cos-teile und Gleichanteil verschwinden
 - $-A_0=0$

 - $-a_k = 0$ $-b_k = \frac{4}{T} \int_0^{\frac{T}{2}} y(t) \cdot \sin(k\omega_1 t) dt$

4.1.4 Halbwellensymmetrie

Halbwellensymmetrie gilt wenn:

$$y(t) = -y(t \pm T/2)$$

Die Fourier-Reihe einer Zeitfunktion mit HWS enthält stets nur Terme mit ungeraden Ordnungszahlen. $k = 1, 3, 5, \ldots, \infty$

im Allgemeinen

Koeffizienten:

$$A_0 = 0, \ a_{2k} = 0, \ b_{2k} = 0$$

$$a_{2k-1} = \frac{4}{T} \int_0^{\frac{T}{2}} y(t) \cdot \cos((2k-1)\omega_1 t) dt$$

$$b_{2k-1} = \frac{4}{T} \int_0^{\frac{T}{2}} y(t) \cdot \sin((2k-1)\omega_1 t) dt$$

gerade Halbwellensymmetrie

$$A_0 = 0, \ b_k = 0, \ a_{2k} = 0$$
$$a_{2k-1} = \frac{8}{T} \int_0^{\frac{T}{4}} y(t) \cdot \cos((2k-1)\omega_1 t) dt$$

ungerade Halbwellensymmetrie

$$A_0 = 0, \ a_k = 0, \ b_{2k} = 0$$
$$b_{2k-1} = \frac{8}{T} \int_0^{\frac{T}{4}} y(t) \cdot \sin((2k-1)\omega_1 t) dt$$

Verschiebungssatz