Name: Syeda Saba Hussain Batch: DS2311
Internship#0523

Answers to PFA file 2,3

21)

d) Both a and b

a) $\beta_0, \beta_1, \dots, \beta_r$ are the regression coefficients:

This statement is true. In linear regression, β_0 is the intercept, and β_1, \dots, β_r are the coefficients corresponding to the predictors x_1, \dots, x_r , respectively.

b) Linear regression is about determining the best-predicted weights by using the method of ordinary least squares (OLS):

This statement is true. Linear regression aims to find the best-fitting linear relationship between the dependent variable y and the independent variables x_1, \ldots, x_r by minimizing the sum of the squared differences between observed and predicted values using OLS.

c) E is the random interval:

This statement is unclear and doesn't relate to the standard terminology of linear regression. E denotes the error term or residual in regression models, representing the difference between observed and predicted values. It is not referred to as a "random interval."

d) Both a and b:

Given that statements a) and b) are true based on standard linear regression concepts

22)

d) The value R^2 = 1, which corresponds to SSR = 0

In linear regression:

 R^2 (R-squared) is a statistical measure that represents the proportion of the variance for the dependent variable that's explained by independent variables in a regression model.

SSR stands for the Sum of Squared Residuals, which measures the total sum of the squared differences between the observed values and the values predicted by the model.

A perfect fit in linear regression would mean that the model explains all the variance in the dependent variable, implying that the Sum of Squared Residuals (SSR) is 0 because there's no discrepancy between observed and predicted values.

23)

b) β_0

In simple linear regression, the point where the estimated regression line crosses the y-axis (i.e., the intercept) is represented by the coefficient β_0 .

24)

d) The top-left plot

25)

d) d, b, e, a, c

26)

The optional parameters for Linear Regression in scikit-learn are:

b) fit_intercept

- Determines whether to calculate the intercept (constant term) for the model.
- Set to True by default, meaning an intercept is included.
- Set to False if your data is already centered or you specifically don't want an intercept.

c) normalize

- Specifies whether to normalize the input features (X) before fitting the model.
- Set to False by default.
- Normalizing can sometimes improve model performance, especially when features have different scales.

d) copy_X

- Controls whether to create a copy of the input features (X) before fitting the model.
- Set to True by default to prevent modification of the original data.
- Set to False if you want to avoid the overhead of copying and are sure you won't modify X.

e) n_jobs

- Specifies the number of processor cores to use for parallel computation.
- Set to 1 by default, meaning a single core is used.
- Set to -1 to use all available cores for potentially faster fitting, especially for large datasets.

c) Polynomial regression

Polynomial regression is an extension of multiple linear regression but allows for modelling relationships between variables as polynomial equations. This involves transforming the original features x into polynomial features, which include not only the original features but also their powers.

28)

C) You need more detailed results.

This is true. Statsmodels often provide more detailed statistical results, including p-values, confidence intervals, and other statistical metrics that provide deeper insights into the data and model.

29)

b) Numpy

30)

b) Seaborn

41)

d) Collinearity

42)

b) Random Forest

It is an ensemble learning method that combines multiple decision trees in order to improve the predictive performance and control over-fitting. It uses bagging to create an ensemble of decision trees where each tree is trained on a random subset of the data.

43)	4	J)
-----	---	---	---

c) Decision Trees are prone to overfit: This is correct.

One of the significant disadvantages of decision trees is that they can easily overfit the training data, especially when they are deep or complex.

44)

c) Training data

Machine learning algorithms learn from the training data to build a model that can make predictions or decisions without being explicitly programmed to do so.

45)

c) Anomaly detection

46)

a) Support Vector

47)

d) Both a and b

- a) Statistical learning theory- It focuses on understanding the principles of learning from a statistical perspective, including concepts like bias-variance tradeoff, regularization, and empirical risk minimization.
- b) Computational learning theory- It is concerned with the efficiency and computational aspects of learning algorithms, such as time complexity, sample complexity, and the feasibility of learning certain functions.

48)

c) Both a and b

49)

c) 3

In radial basis function (RBF) neural networks, there are typically three types of layers:

Input Layer: This layer receives the input data.

Hidden Layer: This layer contains the radial basis functions that transform the input into a higher-dimensional space.

Output Layer: This layer produces the network's output based on the transformations performed by the hidden layer.

50)

d) KMeans