King Saud University / College of Sciences / Department of Mathematics Semester 441 / MATH-244 / Quiz-2

Name: ID: Signature:

Question 1 [Marks: 1.5]: Let P_2 denote the vector space of polynomials with degree ≤ 2 . Given the ordered basis $S = \{2 + 3t, 1 - t + t^2, 1 + t + 3t^2\}$ of P_2 . If $p \in P_2$ with coordinate vector

(a) $p = 6 + 5t - 4t^2$ (b) $p = 4 - 5t - 4t^2$ (c) $p = 3 + 2t - 4t^2$ (d) $p = 3 + 3t - 4t^2$

Note: Choose the correct answers to all the 6 questions. Calculators are not allowed!

 $[2 -2]^T$, then the polynomial p is equal to:

Max. Marks: 10

Max. Time: 35 Min.

Question 2 [Marks: 2]: Let $E = \{u_1, u_2, u_3\}$ and $F = \{(1,0,0,1), (-1,1,0,1), (0,0,1,1)\}$ be two ordered bases for a vector subspace for the Euclidean space \mathbb{R}^4 . If ${}_FP_E = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ is the				
			If $_{F}P_{E} =$	$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ is the
transition matrix from E to F , then the vector u_3 is equal to:				
(a) $(4, 1, 1, -1)$	(b) (4, 1, 2, -1)	c) (-1, 2, 1,	,4) ((d) $(-1, 1, 1, 4)$.
(a) (4, 1, 1, -1) Question 3 [Marks: 1.5]: I	For the matrix $A = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 1 & 4 & 0 \\ 0 & 3 \end{bmatrix}$, which	of the following
statements is true?				
(a) $nullity(A) = 3$	(b) $nullity(\mathbf{A}) = 2$	(c) $rank(A) =$	= 0 (d) rank(A) = 3.
Question 4 [Marks: 1.5]: If u and v are linearly independent vectors in a real inner product space				
(V, <, >) with $ u = 3$ and $ v = 2$, then which of the following statements is true?				
 (a) The number < u, v > is less than 5. (b) The number < u, v > less than 6. (c) The number < u, v > is equal to 6. (d) The number < u, v > is equal to 5. 				
Question 5 [Marks: 2]: If $G = \{u, v, w\}$ is an orthogonal set of non-zero vectors in the Euclidean space \mathbb{R}^3 , then which of the following statements is true?				
 (a) span(G) is a proper subset (b) G is an orthogonal basis f (c) The set G is normal in the (d) The set G is linearly dependent 	for \mathbb{R}^3 . e space \mathbb{R}^3 .			
Question 6 [Marks: 1.5]: If	f the Gram-Schmidt or	hogonalization a	lgorithm is a	applied on the set
$\{(0, 1, 1, 0), (1, 0, 0, 1)\}$ of vorthogonal sets is obtained?	vectors in the Euclide	ean space \mathbb{R}^4 , the	hen which	of the following
(a) {(1,0,	, 0, 0), (0, 1, 0, 0)}	(b) {(0,	1, 1, 0), (1, 0,	, 0, 0)}
(c) $[(1,0)$,0,0),(0,1,0,0)} ,0,1),(0,1,1,0)} ====	(d) {(1,	0,0,1),(0,0,	,1,0)}.
	===	===		