Eleventh Assignment, Solutions Adapted from Andrew Cotton and George Lee

Problem 1

- (a) We start with a few observations:
- Any element $a \in K$ is algebraic and is the root of the monic irreducible $X a \in K[X]$. From our work in the last assignment, we thus have that $\{p \in K[X] \mid p(a) = 0\}$ is the ideal generated by X a. That is, p(a) = 0 if and only if $(X a) \mid p$.
- That is, p(a) = 0 if and only if $(X a) \mid p$. • Given $f_1, \ldots, f_k \in K[X]$, $(\sum_{i=1}^k f_i)' = \sum_{i=1}^k f_i'$. Also, given polynomials $\alpha = aX^i$ and $\beta = bX^j$, notice that $(\alpha\beta)' = (i+j)abX^{i+j} = \alpha\beta' + \alpha'\beta$. Then suppose we have two general polynomials $q = \sum_{i=0}^m a_i X^i$ and $r = \sum_{j=0}^n b_j X^j$. Write $\alpha_i = a_i X^i$ for $i = 0, 1, \ldots, m$ and $\beta_j = b_i X^j$ for $j = 0, 1, \ldots, n$; then

$$(pq)' = \left(\sum_{i,j} \alpha_i \beta_j\right)' = \sum_{i,j} (\alpha_i \beta_j)' = \sum_{i,j} (\alpha_i \beta_j' + \alpha_i' \beta_j)$$
$$= \sum_{i,j} \alpha_i \beta_j' + \sum_{i,j} \alpha_i' \beta_j = pq' + pq',$$

the "product rule" of differentiation.

- Using the above result and induction, or using the binomial theorem, we find that for $n \ge 1$, $(X-a)^n$ has formal derivative $n(X-a)^{n-1}$.
- Suppose $p \in K[X] \{0\}$ and $a \in K$. Let N be the largest nonnegative integer less than or equal to deg p such that $(X-a)^n \mid p$. One must exist because $(X-a)^0 \mid p$. Then for m > N, $(X-a)^m \not\mid p$, while $(X-a)^m \mid p$ for m < N. Hence p has a root of order exactly n at a for n = N but not for $n \neq N$ that is, this n exists and is uniquely determined.
- If $p \in K[X]$ and $n = \deg p > 0$, we claim that p' is nonzero. Indeed, write $p = \sum_{i=0}^{n} a_i X^i$ where $a_n \neq 0$. Then $p' = \sum_{i=0}^{n-1} (i+1)a_{i+1}X^i$. Because $\operatorname{char}(K) = 0$, $n \neq 0$ so the coefficient na_n of X^{n-1} is nonzero. Therefore, $p' \neq 0$. Observe that this claim is *not* necessarily true if K has some nonzero characteristic κ , because then X^{κ} has positive degree but formal derivative 0.

We now prove that if $p \in K[X]$ vanishes to order exactly n > 0 at $a \in K$, then p' is a nonzero polynomial that vanishes to order exactly n-1. Write $p = (X-a)^n r$ for some nonzero polynomial $r \in K[X]$ that does not vanish at a. Writing $q = (X-a)^n$, we have

$$p' = q'r + qr'$$

$$= n(X - a)^{n-1}r + (X - a)^n r'$$

$$= (X - a)^{n-1} \underbrace{(nr + (X - a)r')}_{}.$$

X-a divides (X-a)r'. But because $\operatorname{char}(K)=0,\ n\neq 0$, so $(nr)(a)=nr(a)\neq 0$. It follows that X-a does not divide nr or the underbraced quantity. Furthermore, as argued in the fifth initial observation, $p'\neq 0$. Hence p' is nonzero and vanishes to order exactly n-1 at a, as claimed.

Now, if a polynomial q vanishes to order exactly n > 0 at a, then $(X-a)^n$ and thus X-a divides q, so q(a)=0. So suppose that p vanishes to order exactly $n \geq 0$. If n=0 then $(X-a) \not\mid p$ so that $p^{(n)}(a)=p(a) \neq 0$, as needed. Otherwise suppose that n>0. Then by induction on k, $p^{(k)}$ vanishes to order exactly n-k at a for $k=0,1,\ldots,n$. Thus, $p(a)=p'(a)=p^{(2)}(a)=\cdots=p^{(n-1)}(a)=0$. However, $p^{(n)}$ is nonzero and vanishes to order exactly 0, implying that $(X-a) \not\mid p^{(n)}$ and $p^{(n)}(a) \neq 0$.

To prove the other direction of the claim, suppose that $p(a) = p'(a) = \cdots = p^{(n-1)}(a) = 0$ but $p^{(n)}(a) \neq 0$. Then p must be nonzero because otherwise $p^{(n)}(a) = 0$. From our final initial observation, it vanishes to order exactly m for some nonnegative integer m. But from the previous paragraph, m is then the smallest nonnegative integer such that $p^{(m)}(a) \neq 0$; so it must equal n, as desired.

(b) Suppose we have a field K and an extension field L of K. Let d_1 be the greatest common divisor of $p,q \in K[X]$ when viewed as polynomials in K[X]; and let d_2 be their greatest common divisor when viewed as polynomials in L[X]. Then there exist $r, s \in K[X] \subset L[X]$ such that $pr + qs = d_1$; so since (in L[X]) we know $d_2 \mid pr, d_2 \mid qs$ we know that $d_2 \mid d_1$. As a corollary, if $d_1 = 1$ then d_2 must be constant; so if p,q are relatively prime in K[X] then they must be relatively prime in L[X].

If p is a constant polynomial the desired result is trivially true. Otherwise, since p' is nonzero and has degree one less than p, $p \not\mid p'$; then since p is irreducible, p and p' are relatively prime in K[X]. Then calling the given extension field L, from our first paragraph p and p' are also relatively prime in L[X].

But if p has a root of order at least 2 at a, from part (a) we know that p'(a) = 0. Then X - a divides both p and p' in L[X], so they are *not* relatively prime—a contradiction. Therefore p only has simple zeroes.

This proof fails if $\operatorname{char}(K) \neq 0$. Indeed, here is a sketch of several counterexamples to the desired result if we omit this requirement. Suppose that $\operatorname{char}(K) = \kappa$ and that there exists $b \in K$ such that $c^{\kappa} \neq b$ for all $c \in K$. (Note that κ must be prime (why?). Also, although $\mathbb{Z}/\kappa\mathbb{Z}$ does not have this property (why?), certain extension fields of it would (can you find one?).) We leave it up to the reader to then prove that $X^{\kappa} - b$ is irreducible in K[X]. But then consider any splitting field of $X^{\kappa} - b$ where this polynomial has root c. Then $(X - c)^{\kappa} = X^{\kappa} - c^{\kappa} = X^{\kappa} - b$, because all the intermediate terms in the expansion of $(X - c)^{\kappa}$ have coefficients divisible by κ and are thus 0. Therefore, $X^{\kappa} - b$ does not have only simple roots.

Problem 2

(a) First, $K[\alpha, \beta]$ contains both $K[\alpha]$ and β , so it contains $(K[\alpha])[\beta]$. And $(K[\alpha])[\beta]$ contains K, α , and β , so it contains $K[\alpha, \beta]$. Therefore $K[\alpha, \beta] = (K[\alpha])[\beta]$, and similarly

$$K[\alpha_1, \dots, \alpha_n] = (((K[\alpha_1]) [\alpha_2]) \cdots [\alpha_{n-1}]) [\alpha_n]$$

(which we could also write $K[\alpha_1][\alpha_2]\cdots[\alpha_n]$).

Now suppose the theorem is true when $L = K[\alpha, \beta]$. Then if L is any finite extension of K, write $L = K[\alpha_1, \alpha_2, \ldots, \alpha_n]$ for some $\alpha_i \in L$. If $n \leq 2$ we are clearly done; otherwise (using induction) suppose the claim is true for all smaller n. Writing $K' = K[\alpha_1, \ldots, \alpha_{n-2}]$, we have $L = K'[\alpha_{n-1}, \alpha_n] = K'[\beta]$ for some $\beta \in L$. Then $L = K[\alpha_1, \ldots, \alpha_{n-2}, \beta]$; so by the induction hypothesis, we are done.

- (b) Simply take the splitting field of p and consider the irreducible factors of q of degree 2 or more in this splitting field. Take the splitting field of one of these, and repeat until q splits.
- (c) Because K has characteristic zero, it has infinitely many elements since $\mathbb N$ injects into K.

From Problem 1, all the β_j are distinct so that $\beta - \beta_j \neq 0$ for $2 \leq j \leq s$. Then there are finitely many values of the form $(\alpha_i - \alpha)(\beta - \beta_j)^{-1}$ (where $1 \leq i \leq r$, $2 \leq j \leq s$); so since K is infinite, there is some element in K not of this form. Let c be such an element; by construction,

 $\alpha_i + c\beta_j \neq \alpha + c\beta$ for $1 \leq i \leq r$, $2 \leq j \leq s$.

(d) Write $p = \sum_{i=0}^{n} k_i X^i$ for $k_i \in K$. Then $\tilde{p} = \sum_{i=0}^{n} k_i (\zeta - cX)^i$. But

$$k_i(\zeta - cX)^i = \sum_{j=0}^i \binom{i}{j} k_i \zeta^{i-j} (-c)^j X^j.$$

(Here, $\binom{i}{j}$ is the unit 1 added to itself $\binom{i}{j}$ times.) But $k_i \in K \subset K[\zeta]$; $\zeta^{i-j} \in K[\zeta]$; and $c \in K[\zeta] \Longrightarrow (-c)^j \in K[\zeta]$. Thus each $k_i(\zeta - cX)^i$ expands to some polynomial in $K[\zeta][X]$; so adding all such terms, \tilde{p} is in $K[\zeta][X]$ as well.

Next, \tilde{p} and q cannot be relatively prime in $K[\zeta][X]$ because as explained in (b), that would imply they are also relatively prime in E[X]. But this is impossible because in E[X] we have $\tilde{p}(\beta) = q(\beta) = 0$ so that $X - \beta$ is a common divisor of both \tilde{p} and q in E[X].

Now suppose that r is the greatest common divisor of \tilde{p} and q in $K[\zeta][X]$; we already know that $(X - \beta) \mid r$ in E[X]. Since \tilde{p} and q split into linear factors over E[X], so does r. So if r isn't a constant multiple of $X - \beta$ in $K[\zeta][X]$, then $(X - \beta_j) \mid r$ in E[X] for some other $\beta_j \neq \beta$. But then $0 = \tilde{p}(\beta_j) = p(\zeta - c\beta_j)$, so $\zeta - c\beta_j = \alpha_i$ for some α_i ; and by the choice of c, this is impossible.

Therefore r is a constant multiple of $X - \beta$, and $X - \beta$ is the greatest common divisor of \tilde{p} and q in $K[\zeta][X]$.

- (e) Since $X \beta$ must be in $K[\zeta][X]$ from part (d), β must be in $K[\zeta]$. Therefore $K[\zeta]$ contains K, β , and also $\zeta c\beta = \alpha$ so $K[\zeta] \supset K[\alpha, \beta]$. Conversely, $K[\alpha, \beta]$ contains both K and $\alpha + c\beta = \zeta$ so $K[\alpha, \beta] \supset K[\zeta]$. Therefore $K[\zeta] = K[\alpha, \beta]$, as desired.
- (f) We used that $\operatorname{char}(K) = 0$ in part (c); the proof there fails because K might be finite if it has nonzero characteristic. As a conterexample, let $K = \mathbb{Z}_5$; $L = K[\sqrt[4]{2}]$; $p = q = X^4 2$; and $\alpha = \beta = \sqrt[4]{2}$. (The polynomial $X^4 2$ is irreducible in \mathbb{Z}_5 because it has no roots and thus no linear factors; and some algebra shows we can't split it into a product of two quadratics $(X^2 + aX + b)(X^2 + cX + d)$.) Then

$$(\alpha, \alpha_2, \alpha_3, \alpha_4) = (\beta, \beta_2, \beta_3, \beta_4) = (\sqrt[4]{2}, 2\sqrt[4]{2}, 3\sqrt[4]{2}, 4\sqrt[4]{2}); \text{ and}$$

$$\alpha + 0 \cdot \beta = 1 \cdot \sqrt[4]{2} = \alpha_1 + 0 \cdot \beta_2,$$

$$\alpha + 1 \cdot \beta = 2 \cdot \sqrt[4]{2} = \alpha_3 + 1 \cdot \beta_4,$$

$$\alpha + 2 \cdot \beta = 3 \cdot \sqrt[4]{2} = \alpha_2 + 2 \cdot \beta_3,$$

$$\alpha + 3 \cdot \beta = 4 \cdot \sqrt[4]{2} = \alpha_2 + 3 \cdot \beta_4,$$

$$\alpha + 4 \cdot \beta = 0 \cdot \sqrt[4]{2} = \alpha_2 + 4 \cdot \beta_2.$$

Also, we used that char(K) = 0 in problem 1, as noted there.

Problem 3

(a) Define $f: V^* \times W \to \operatorname{Hom}(V, W)$ by $f(\phi, w)(v) = \langle \phi, v \rangle w$. $f(\phi, w)$ is indeed a linear map from V to W since it is the composition of the two linear maps $v \mapsto \langle \phi, v \rangle$ (from V to K) and $k \mapsto kw$ (from K to W).

f is clearly canonical. Fix $v \in V$. Then fixing $w, \phi \mapsto f(\phi, w)(v)$ is the composition of the linear maps $\phi \mapsto \langle \phi, v \rangle$ (from V^* to K) and $k \mapsto kw$ (from K to W). Fixing $\phi, w \mapsto f(\phi, w) = \langle \phi, v \rangle w$ is clearly linear. Therefore, $(\phi, w) \mapsto f(\phi, w)(v)$ is bilinear for all v, which in turn implies that f is bilinear.

Therefore, there exists a unique linear map $\psi: V^* \otimes W \to \operatorname{Hom}(V, W)$ corresponding to f; this is the canonical map we are looking for. It is nonzero because some $\phi \in V^*$ is nonzero, so that $f(\phi, w)$ and hence ψ are nonzero as well. (Also observe that $\psi(\phi \otimes w) = f(\phi, w)$ is the function $v \mapsto \langle \phi, v \rangle w$ for any $(\phi, w) \in V^* \times W$; we use this fact later.)

(b) The canonical map above is always injective; but it is an isomorphism if and only if V and W are not both infinite dimensional.

First we prove that ψ as given in part (a) is injective. Suppose that $\psi(a) = 0$ for some $a \in V^* \otimes W$. Pick bases for V^* and W and look at the corresponding basis for $V^* \otimes W$. We can thus write a as the sum $\sum_{i=1}^{m} \phi_i \otimes w_i$ where $\phi_i \in V^*$ and each w_i is in the basis of W; assume without loss of generality that the w_i are distinct (because otherwise we could combine the corresponding ϕ_i).

Then $\psi(a) = \sum_{i=1}^{m} \psi(\phi_i \otimes w_i)$ is the map $v \mapsto \sum_{i=1}^{m} \langle \phi_i, v \rangle w_i$. For $\psi(a)(v)$ to equal 0 we then must have $\langle \phi_i, v \rangle = 0$ for all i. But because this is true for all $v \in V$, we must have $\phi_i = 0$ for all i; and therefore a = 0.

Thus, $Ker(\psi) = \{0\}$ and ψ is indeed injective.

Because ψ is an injective homomorphism, to prove it is an isomorphism it suffices to prove that ψ is surjective — that is, any $g \in \text{Hom}(V,W)$ is in its image. Fix such a g. First suppose that V is finite dimensional with basis $\{v_1,v_2,\ldots,v_k\}$; let $\{v_1^*,v_2^*,\ldots,v_k^*\}$ be the corresponding dual basis. Since $v_j^*(v)$ is the " v_j -projection of v" — the coefficient of v_j when v is written as a linear combination of the v_i — we have $v = \sum_{i=1}^k \langle v_i^*,v\rangle v_i$. Then consider

$$a = \sum_{i=1}^{k} v_i^* \otimes g(v_i)$$

in $V^* \otimes W$. For any $v \in V$ we have

$$\psi(a)(v) = \sum_{i=1}^{k} \langle v_i^*, v \rangle g(v_i) = g\left(\sum_{i=1}^{k} \langle v_i^*, v \rangle v_i\right) = g(v),$$

and $\psi(a) = g$, as desired.

Next suppose that W is finite dimensional with basis $\{w_1, w_2, \ldots, w_k\}$ and corresponding dual basis $\{w_1^*, w_2^*, \ldots, w_k^*\}$. Again suppose $g \in \text{Hom}(V, W)$. For each i, the map $w_i^* \circ g$ is a composition of two homomorphisms and hence is a member of V^* . Then setting

$$a = \sum_{i=1}^{k} (w_i^* \circ g) \otimes w_i$$

in $V^* \otimes W$, for any $v \in V$ we have

$$\psi(a)(v) = \sum_{i=1}^{k} (w_i^* \circ g)(v) w_i = \sum_{i=1}^{k} \langle w_i^*, g(v) \rangle w_i = g(v).$$

Hence, $\psi(a) = g$, as desired.

Therefore, if either V or W is finite dimensional then ψ is an isomorphism. Now suppose instead that V and W are both infinite dimensional with bases $\{v_{\alpha} \mid \alpha \in A\}$ and $\{w_{\beta} \mid \beta \in B\}$ respectively; let $\{v_1, v_2, \ldots\}$ and $\{w_1, w_2, \ldots\}$ be countable subsets of these bases. Then consider the homomorphism $g \in \text{Hom}(V, W)$ that maps v_i to w_i for all $i \in \mathbb{N}$; and that maps all other v_{α} to, say, 0.

Now given any $a \in V^* \otimes W$, we can write $a = \sum_{i=1}^k \kappa_i \otimes \lambda_i$ for $(\kappa_i, \lambda_i) \in V^* \times W$. Regardless of the choice of $v \in V$, the value

$$\psi(a)(v) = \sum_{i=1}^{k} \langle \kappa_i, v \rangle \lambda_i$$

always lies in the span of the finitely many λ_i . But since $\{w_1, w_2, \dots\}$ is infinite dimensional, at least one w_j is not in this span. So then $\psi(a)(v_j) \neq w_j$ so we cannot have $\psi(a) = g$ (since $g(v_j) = w_j$). Therefore g is not in the image of ψ ; ψ is not surjective; and it is not an isomorphism.