

무인이동체 원천기술개발사업단

2024년도 무인이동체 원천기술개발사업 통합기술워크숍

탐지 및 인식(센서기술) 연구단

2024.09.27

1세부 : 서울대학교

2세부(총괄) : 세종대학교

3세부: 한밭대학교

I 1 탐지 및 인식(센서기술) 연구단 총괄 개요

무인이동체용 전방위 탐지 경량 레이다 및 신호처리기술 개발

- ▶ 전방위 탐지를 위한 경량 배열 안테나
- ▶ 전방위 탐지용 레이다 신호처리기술
- ▶ 전방위 탐지용 레이다 다중 채널 CMOS RF 송수신기

연구단

3세부

2세부

무인이동체 탐지성능 향상을 위한 3차원센서 융복합 기술 개발

- 3차원 센서 융복합 신호처리 알고리즘
- > 3차원 융복합센서 (LiDAR+RADAR+Camera)
- ▶ 장애물 탐지인식 알고리즘
- 이종/다수 융복합센서 범용성 확보

무인이동체 임무장비 성능향상 기술개발

- ▶ 분광카메라 탑재 성능시험/개선
- ▶ 분광영상처리 및 검출가스 분석기술
- ▶ 광학계 최적화 및 분광 성능 향상
- ▶ 무인이동체 탑재용 분광카메라 성능향상

I 2 탐지 및 인식(센서기술) 연구단 - 1세부 추진체계

I 2 탐지 및 인식(센서기술) 연구단 – 2세부 추진체계

I 2 탐지 및 인식(센서기술) 연구단 - 3세부 추진체계

[총괄]

- 체계 종합 수행
- 인터페이스 총괄 - 지상 시험 장비

무인이동체 탑재용 분광카메라 성능향상

- MWIR/LWIR 비축비구면 미러 가공 최적화
- 광기계 및 마운트 구조물 가공
- 광분배기 등 제작
- 광모듈 조립/평가
- 지상 시험 테스트

한국기초과학지원연구원 KOREA BASIC SCIENCE INSTITUTE

분광카메라 탑재 성능시험/개선

- MWIR/LWIR 비축비구면 미러 피니싱 공정 개발
- Lab scale 성능 평가
- 광분배기 제작

서울대학교

분광영상처리 및 검출가스 분석기술개발

- 분광영상 데이터서비스 구축
- 분광영상보정기술 개발
- 분광영상 전처리기술 개발
- 분광영상 기반 가스 검출 및 분석 기술 개발

TOPINS

광학계 최적화 및 분광 성능향상

- MWIR/LWIR 비축비구면 미러 설계 업그레이드
- MWIR/LWIR 전자부 모듈 개발
- 센서 구동 전자부 설계/개발

한 발 대 학 교

무인이동체 탑재용 분광카메라 성능향상

- MWIR/LWIR 비축비구면 미러 가공 최적화
- 광기계 및 마운트 구조물 가공
- 광분배기 등 제작
- 광모듈 조립/평가
- 지상 시험 테스트
- 센서 모듈 광학 특성 정의
- 센서 모듈 기계부 설계
- 광기계/센서 모듈 조립 공정 작성

- 미러 가공 최적화 - 검교정 시험 환경 정의
- 환경 시험 정의
- 임무 성능평가 시험 정의

1. MWIR 센서 (냄각)

2. LWIR 센서 (비냉각)

- EGSE 인터페이스 정의 - 센서 모듈 시험 환경 정의

KISI 한국기초과학지원연구원 KOREA BASIC SCIENCE INSTITUTE

분광카메라 탑재 성능시험/개선

- MWIR/LWIR 비축비구면 미러 피니싱 공정 개발
- 필터 검증 및 성능 테스트
- Lab scale 성능 평가
- S/W user-interface 개념 정의

(智)서울대학교

분광영상처리 및 검출가스 분석기술 개발

- 분광영상데이터베이스구축
- 분광영상 보정기술 개발
- 분광영상 전처리기술 개발
- 분광영상 기반가스검출 및 분석 기술개발

광학계 최적화 및 분광 성능향상

- MWIR/LWIR 비축비구면 미러 설계 업그레이드
- MWIR/LWIR 전자부 모듈 개발
- 센서 구동 전자부 설계/개발

무인이동체 원천기술개발사업단

무인이동체용 전방위 탐지 경량레이다 및 신호처리기술 개발

탐지 및 인식(센서기술) 연구단 1세부 과제

2024.09.27

서울대학교

Contents

1 연구 개요

2 연구개발 내용 및 계획

무인이동체 원천기술개발사업단

연구 개요

- A. 연구개발개요
- B. 추진체계

I 1 연구개요

A. 연구개발개요

무인이동체용 전방위 탐지 경량 레이다 및 신호처리기술 개발 고주파수 RF 송수신기

- ▶ 레이다 다중 채널 CMOS RF 송수신기
 - 경량화를 위한 고주파수 다중 채널 IC 구현
 - 낮은 기준 LO 주파수 급전을 위한 고체배기 내장

고해상도를 위한 MIMO Array 최적화 알고리즘

- ▶ 안테나 2D Array 최적화 알고리즘
 - Genetic Algorithm을 통한 2D Array Geometry
 - 최적의 높은 각도 해상도 안테나 배열 생성

8TX 16RX TDM MIMO 구조 RADAR System

- ▶ TD(Time Division) MIMO 레이다 시스템
 - FPGA를 이용한 고속 레이다 신호 처리
 - 실시간 탐지 플랫폼 개발

I 2 탐지 및 인식(센서기술) 연구단 - 1세부 추진체계

B. 추진체계

무인이동체 원천기술개발사업단

연구개발 내용 및 계획

- A. 연구성과
- B. 통합실증계획
- C. 향후계획

- 28-nm CMOS 공정을 이용한 칩상 급전기 내장 94 GHz 송신칩 신규 설계 및 검증
 - 1. 단일채널 송신칩
 - 2. 칩상 급전기를 이용한 94 GHz 출력신호 송신
 - 3. 고체배기를 내장하여 다수의 칩을 낮은 기준 LO 주파수(3.92 GHz)로 급전
 - 4. 선형화 회로 내장을 통한 높은 포화 전력 확보
 - 5. 소모 전력: 158 mW
 - 6. 최대 출력 전력: 15 dBm
 - 7. 칩 크기: 2000 um X 620 um

<송신칩 다이어그램 및 사진>

<송신기 출력 전력 측정 결과>

- 28-nm CMOS 공정을 이용한 칩상 급전기 내장 94 GHz 수신칩 신규 설계 및 검증
 - 1. 4 채널 수신칩
 - 2. 칩상 급전기를 이용한 94 GHz 안테나 직접 급전 고체배기를 내장하여
 - 3. 고체배기를 내장하여 다수의 칩을 낮은 기준 LO주파수(3.92 GHz)로 급전
 - 4. 24 체배기 + 저잡음 증폭기 + 하향 변환기 + TIA + 출력 스위치 구조
 - 5. 변환 이득 : 32.5 dB (@ 94 GHz)
 - 6. 대역폭: 91.8 ~ 98.1 GHz
 - 7. 소모 전력 : 277 mW
 - 8. 칩 크기 : 6040 um X 915 um

<수신기 다이어그램 및 칩 사진>

<4채널 수신기 변환 이득 측정 결과>

1단계와 송수신 IC 와 성능 비교

Conversion Gain (dB)

Frequency (GHz)

- 칩상 급전기를 이용한 안테나 일체화 패키징
 - 1. 단일 채널 송신칩 안테나 일체화 패키징
 - 2. 칩상 급전기를 이용하여 안테나 기판의 bottom ground slot을 통해 급전
 - 3. 안테나의 중앙 급전 구조로 주파수에 따른 빔 tilt 최소화

15

- 칩상 급전기를 이용한 4 채널 안테나 일체화 패키징
 - 1. 칩상 급전기를 이용하여 안테나 기판의 bottom ground slot을 통해 급전
 - 2. 중앙 안테나 급전 구조 → 급전선이 없음
 - 3. 4채널 안테나 동위상 구동
 - 4. 광대역 구동시에도 빔 tilt가 없음

- 8 TX 16 RX MIMO FMCW 레이다 안테나 배열 최적화
 - 1. Genetic Algorithm을 통한 2D Array Geometry
 - 2. FoV 내의 Max Sidelobe Level(SLL)을 최소화하기 위한 Algorithm
 - 3. TX & RX 위치를 Binary Number로 할당하여 Thinned Array 생성
 - 4. 최적의 높은 각도 해상도 안테나 배열
 - 5. Azimuth 각도 해상도 : 1.2°
 - 6. Elevation 각도 해상도 : 2.4°

<8 TX 16 RX 2D Physical Array>

<8 TX 16 RX 2D 128 채널 Virtual Array>

- 8 TX 16 RX MIMO FMCW 레이다 시스템 하드웨어
 - Baseband Board PLL / ADC / Op-Amp / MUX
 - 1. PLL Board : LO Signal 생성 (Chirp Time : 200 us, 대역폭 : 1 GHz (체배 후)
 - 2. ADC Board: 데이터 수집 및 신호처리 (12 Bit / 5 MSPS / 8 채널 ADC)
 - 3. Op-Amp Board : 8 채널 IF Signal에 18 dB 증폭
 - 4. MUX: 16 to 8 채널 스위칭
 - RF Board
 - 1. 8 TX : SP6T RF Switch를 사용하여 순차적으로 LO Signal 입력
 - 2. 16 RX : LO Signal이 모든 칩에 동시에 입력

18

(참조) 1단계 4Tx 20Rx

Ⅲ A 연구성과

- 8 TX 16 RX MIMO FMCW 레이다 시스템 신호처리
 - TD(Time Division) MIMO 레이다 시스템
 - · 4 GHz FMCW 파형 형성 PLL 주파수 합성기 모듈 구현
 - · TX Switching을 통한 128개의 가상 배열 형성하여 각도 해상도를 개선
 - | 시분할 Switching 방식 RX Signal Acquisition
 - · 8 채널 데이터 획득 모듈
 - · 적은 수의 ADC와 FPGA의 Resource로 Data 수집 가능
 - · 한 개의 수신칩의 4 채널 Signal을 Reference Data는 지속적으로 샘플링
 - · 고정 샘플링 채널 데이터를 기준으로 시분할 수신채널 위상 보정

- 8 TX 16 RX MIMO FMCW 레이다 시스템 신호처리
 - 1. FPGA를 이용한 고속 레이다 신호 처리
 - 2. 단일 기준 CLK을 이용한 ADC & PLL 위상 동기화
 - 3. TD MIMO를 위한 Tx 스위칭 및 시분할 데이터 획득 제어
 - 4. FFT 기반의 2D DOA & Real-Time Detection Platform
 - 5. CA-CFAR Algorithm

<Radar system Processing Flow>

1. 무인이동체용 전방위 탐지 경량레이다 및 신호처리기술 개발

8 TX 16 RX MIMO FMCW 4D 레이다 시스템 신호처리

- - · Peak Detection을 위한 Algorithm
 - · Target에 대한 Threshold를 유동적으로 변화

- ✓ Angle FFT & Real-Time Detection Platform
 - · 실시간 탐지를 위한 Platform 개발
 - ・Range & Azimuth & Elevation Estimation 가능

<Two Target(3m, 15° & 5 m -3°) 탐지 환경>

< Two Target(3m, 15° & 5 m -3°) 탐지 결과 >

8 TX 16 RX MIMO FMCW 4D 레이다 시스템 신호처리

- 각도 해상도 탐지 테스트
 - 1. 이론적 azimuth 3-dB beamwidth 1.2°
 - azimuth 1.7°의 간격의 두 표적을 명확히 분리함을 확인
 - 3. 이론적 elevation 3-dB beamwidth 2.4°
 - 4. azimuth 3.8° 간격의 두 표적을 명확히 분리함을 확인

< 7 m, Azimuth 1.7° 간격의 Two Target 탐지 결과>

<3 m, Elevation 3.9° 간격의 Two Target 탐지 결과>

Ⅱ B 통합실증 계획 세부내용

- 드론 실장을 위한 소형화, 경량화 및 해상도 개선 설계 계획
 - 1. 소형화, 경량화 → 개발 RFIC를 활용한 송수신 복합 배열 MIMO Radar 시스템 설계
 - 2. 해상도 개선 설계 → 채널 수 확장 3-dB 빔폭 기준, Azimuth 0.75° Elevation 1.5° 해상도 구현
 - 3. 개발 목표 : 레이다 전폭 및 전고 15 mm X 8 mm

Ⅱ B 통합실증 계획 세부내용

- 실시간 탐지 소프트웨어 개발 및 테스트
 - 1. 실시간 및 전방위 탐지를 위한 고속 각도 추정 기법 개발
 - 2. 고해상도 4D 이미징 처리를 통한 전방위 탐지 기능 구현
 - 3. 미션 컴퓨터 내 소프트웨어 탑재 및 실증 수행 테스트

<4D 레이더 시뮬레이션 예시>

<드론 레이다 시스템 실장 예시>

Ⅱ C 향후계획

- 1. 레이다 소형화 및 경량화
- 2. 각도 해상도 개선
- 3. 미션 컴퓨터 내 소프트웨어 탑재 및 인터페이스 개발
- 4. 드론 레이다 실장 후 실시간 탐지 실험 예정

무인이동체 원천기술개발사업단

연구 과제 성과 도출을 위해 최선을 다하겠습니다.

감사합니다

1세부 : 서울대학교

2세부(총괄) : 세종대학교

3세부 : 한밭대학교