EXPERIMENT NUMBER: 10

EXPERIMENT NAME: Design of a mod 16 synchronous up counter using JK FFs.

AIM: To design a mod 16 synchronous up counter using JK FFs and verify its state diagram.

APPARATUS REQUIRED:

S1. No.	COMPONENT	SPECIFICATION	QUANTITY
1.	AND GATE	IC 7408	1
2.	JK Flip-flop	IC 7473/IC 7476	2
3.	IC TRAINER KIT	-	1
4.	CONNECTING WIRES	-	AS REQUIRED

THEORY:

.

STATE DIAGRAM:

STATE TABLE:

Present State Next State				Excitation table of JK flip-flop											
QA	QB	Qc	\mathbf{Q}_{D}	Qan	Q _{BN}	Qcn	Q _{DN}	JA	KA	J _B	K _B	Jc	Kc	$\mathbf{J}_{ extsf{D}}$	K _D
0	О	0	0	0	0	0	1	0	Х	0	Х	0	Х	1	Х
0	0	0	1	0	0	1	0	0	Х	0	Х	1	Х	Х	1
0	0	1	0	0	0	1	1	0	X	0	Х	Х	0	1	Х
0	0	1	1	0	1	0	0	0	X	1	Х	Х	1	Х	1
0	1	0	0	0	1	0	1	0	Х	Х	0	0	Х	1	Х
0	1	0	1	0	1	1	0	0	Х	Х	0	1	Х	Х	1
0	1	1	0	0	1	1	1	0	Х	Х	0	Х	0	1	Х
0	1	1	1	1	0	0	0	1	Х	Х	1	Χ	1	Х	1
1	0	0	0	1	0	0	1	Х	0	0	Х	0	Х	1	Х
1	0	0	1	1	0	1	0	Х	0	0	Х	1	Х	Х	1
1	0	1	0	1	0	1	1	Х	0	0	Х	Х	0	1	Х
1	0	1	1	1	1	0	0	Х	0	1	Х	Х	1	Х	1
1	1	0	0	1	1	0	1	Х	0	Х	0	0	X	1	Х
1	1	0	1	1	1	1	0	Х	0	Х	0	1	Х	Х	1
1	1	1	0	1	1	1	1	X	0	Х	0	Χ	0	1	Х
1	1	1	1	0	0	0	0	Х	1	Х	1	Х	1	Х	1

K-Map for J_A:

$Q_A Q_B^{Q_C^{Q_D}}$	D			
$Q_A Q_B$	00	01	11	10
00	0	o	o	0
01	0	0	1	0
11	Х	X	x	X
10	X	X	X	X

K-Map for K_A:

$Q_A Q_B^{Q_C Q}$	D			
V _A V _B	00	01	11	10
00	X	x	x	x
01	X	X	X	x
11	0	0	1	0
10	0	0	0	0

K-Map for J_B :

$Q_AQ_B^{Q_CQ}$	D			
Q _A Q _B	00	01	11	10
00	0	0	1	0
01	X	x	х	х
11	X	X	х	х
10	0	0	1	0

K-Map for K_B :

$Q_AQ_B^{Q_CQ}$	D			
Q_AQ_B	00	01	11	10
00	X	x	X	х
01	0	0	1	0
11	0	0	1	0
10	0	х	x	Х

K-Map for J_C:

K-Map	for	K _C :

$Q_A Q_B^{Q_C Q}$	D			
V _A V _B	00	01	11	10
00	0	1	X	x
01	0	1	х	х
11	0	1	х	х
10	0	1	x	х

$Q_A Q_B^{Q_C}Q$	D			
AAAB	00	01	11	10
00	X	X	1	0
01	X	х	1	0
11	Х	х	1	0
10	X	×	1	0

K-Map for J_D :

K-Map for K_D :

$Q_A Q_B^{Q_C Q}$	D				$Q_{c}^{Q_{c}Q_{c}}$	D		
QAQB	00	01	11	10	$Q_A Q_B$	00	01	_
00	1	X	X	1	00	X	1	
01	1	X	X	1	01	X	1	
11	1	X	X	1	11	X	1	
10	1	X	X	1	10	x	1	

11

1

1

1

1

10

X

Х

Х

X

CIRCUIT DIAGRAM OF A MOD 16 SYNCHRONOUS UP COUNTER USING JK FFS:

DESIGN PROCEDURE:

- 1. Truth table of the 4 bit binary to gray code converter is prepared.
- 2. K-maps for all the output variables (A, B, C and D) are drawn.
- 3. Simplified expressions for the output variables are obtained using manual simplification.
- 4. Circuit diagram is drawn as per the simplified expressions of the output variables obtained in step 3.

PRACTICAL PROCEDURE:

- 1. ICs are placed properly on the bread board of the IC trainer kit.
- 2. Connections are made as per the designed circuit diagram.
- 3. Power supply to the board is turned ON.
- 4. Circuit is verified as per the truth table of the circuit.

Student's observation and conclusion:

A MOD 16 Synchronous UP Counter (also known as Parallel Counter) was constructed using JK Flip-Flop. A constant input (1) is provided while the clock is toggled. D is assumed to be the Least Significant Bit (LSB) while A is assumed to be the Most Significant Bit (MSB).

Toggling the clock from ON (1) to OFF (0) to ON (1) changes the result. The obtained result cycles through the various stages in accordance to the theory.

In this case, the initial result is 0000. Toggling the clock has the same effect as "adding" one. So, result changes to 0001.

CONVERSIONS:

• 0000-0001

• 0001-0010

• 0010-0011

• 0011-0100

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Pishabh

Student's observation and conclusion:

A MOD 16 Synchronous UP Counter (also known as Parallel Counter) was constructed using JK Flip-Flop. A constant input (1) is provided while the clock is toggled. D is assumed to be the Least Significant Bit (LSB) while A is assumed to be the Most Significant Bit (MSB).

Toggling the clock from ON (1) to OFF (0) to ON (1) changes the result. The obtained result cycles through the various stages in accordance to the theory.

Conversions:

- 0100-0101
- 0101-0110
- 0110-0111
- 0111-1000

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Rishabh

Student's observation and conclusion:

A MOD 16 Synchronous UP Counter (also known as Parallel Counter) was constructed using JK Flip-Flop. A constant input (1) is provided while the clock is toggled. D is assumed to be the Least Significant Bit (LSB) while A is assumed to be the Most Significant Bit (MSB).

Toggling the clock from ON (1) to OFF (0) to ON (1) changes the result. The obtained result cycles through the various stages in accordance to the theory.

Conversions:

• 1000-1001

1001-1010

• 1010-1011

• 1011-1100

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Pinhabh

Student's observation and conclusion:

A MOD 16 Synchronous UP Counter (also known as Parallel Counter) was constructed using JK Flip-Flop. A constant input (1) is provided while the clock is toggled. D is assumed to be the Least Significant Bit (LSB) while A is assumed to be the Most Significant Bit (MSB).

Toggling the clock from ON (1) to OFF (0) to ON (1) changes the result. The obtained result cycles through the various stages in accordance to the theory.

Conversions:

- 1100-1101
- 1101-1110
- 1110-1111
- 1111-0000 (CONTINUES THE FIRST CASE AGAIN.)

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Pinhabh

Student's observation and conclusion:

- •This is a timing diagram of a 4-bit synchronous counter.
- •It counts sequentially on every clock pulse the resulting outputs count upwards from 0 (0000) to 15 (1111).
- •Therefore, this type of counter is also known as a 4-bit Synchronous Up Counter.
- •From the timing diagram it is evident that the first flip flop toggle on every clock pulse.
- •Then the synchronous counter follows a predetermined sequence of states in response to the common clock signal, advancing one state for each pulse.

THIS 4-BIT SYNCHRONOUS COUNTER COUNTS SEQUENTIALLY ON EVERY CLOCK PULSE THE RESULTING OUTPUTS COUNT UPWARDS FROM 1 (0000) TO 16 (1111). THEREFORE, THIS TYPE OF COUNTER IS ALSO KNOWN AS A 4-BIT SYNCHRONOUS UP COUNTER.

Name: Rishabh Chauhan

Reg. No.: 201900307

Digital Signature: Rishabh