Práctico 5

AUTOVALORES Y AUTOVECTORES

Ejercicios resueltos.

(1) (a) Para cada una de las siguientes matrices, hallar sus autovalores reales, y para cada autovalor, dar una descripción paramétrica del autoespacio asociado sobre \mathbb{R} .

$$A = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix}, \quad \lambda \in \mathbb{R},$$

$$D = \begin{bmatrix} 3 & -5 \\ 1 & -1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}, \quad 0 \le \theta < 2\pi.$$

(b) Calcular los autovalores complejos de las matrices D y E del item anterior y para cada autovalor, dar una descripción paramétrica del autoespacio asociado sobre \mathbb{C} .

Solución: (a) En cada caso debemos encontrar el polinomio característico y las raíces reales del mismo, que serán los autovalores. Luego debemos ver los autoespacios correspondientes.

$$\chi_A(x) = \begin{vmatrix} x \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix} \end{vmatrix} = \begin{vmatrix} x - 1 & 0 \\ -1 & x + 2 \end{vmatrix}$$
$$= (x - 1)(x + 2)$$

Luego la matriz A tiene autovalores 1 y -2.

Para calcular el autoespacio del autovalor 1 debemos resolver el sistema de ecuaciones (1 Id - A)X = 0, esto es:

$$\begin{bmatrix} 1-1 & 0 \\ -1 & 1+2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -1 & 3 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_2} \begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}.$$

Luego el conjunto solución es $\{(x,y) \in \mathbb{R}^2 \mid x - 3y = 0\} = \{y(3,1) \mid y \in \mathbb{R}\}$. Por lo tanto $V_1 = \{t(3,1) : t \in \mathbb{R}\}$.

Para calcular el autoespacio del autovalor -2 debemos resolver el sistema de ecuaciones $(-2 \operatorname{Id} -A)X = 0$, esto es:

$$\begin{bmatrix} -2-1 & 0 \\ -1 & -2+2 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ -1 & 0 \end{bmatrix} \xrightarrow{F_1 \to F_2} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Luego el conjunto solución del sistema es $\{(x,y) \in \mathbb{R}^2 \mid x=0\} = \{y(0,1) \mid y \in \mathbb{R}\}.$ Por lo tanto $V_{-2} = \{t(0,1) : t \in \mathbb{R}\}.$

$$\chi_B(x) = \begin{vmatrix} x \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{bmatrix} = \begin{vmatrix} x - 2 & 0 & 0 \\ 1 & x - 1 & 1 \\ 0 & 0 & x - 2 \end{vmatrix}$$
$$= (x - 2) \begin{vmatrix} x - 1 & 1 \\ 0 & x - 2 \end{vmatrix} = (x - 1)(x - 2)^2.$$

Luego la matriz \boldsymbol{B} tiene autovalores 1 y 2.

Para calcular el autoespacio del autovalor 1 debemos resolver el sistema de ecuaciones (Id - B)X = 0, esto es:

$$\begin{bmatrix} 1-2 & 0 & 0 \\ 1 & 1-1 & 1 \\ 0 & 0 & 1-2 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ -1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2-F_1} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 \leftrightarrow F_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

El conjunto solución es $\{(x, y, z) \in \mathbb{R}^3 \mid x = z = 0\} = \{y(0, 1, 0) \mid y \in \mathbb{R}\}$. Por lo tanto $V_1 = \{t(0, 1, 0) : t \in \mathbb{R}\}$.

Para calcular el autoespacio del autovalor 2 debemos resolver el sistema de ecuaciones $(2 \operatorname{Id} - B)X = 0$, esto es:

$$\begin{bmatrix} 2-2 & 0 & 0 \\ 1 & 2-1 & 1 \\ 0 & 0 & 2-2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{F_2 \leftrightarrow F_3} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Las sols. son $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\} = \{x(1, 0, -1) + y(0, 1, -1) : x, y \in \mathbb{R}\}.$ Por lo tanto $V_2 = \{t(1, 0, -1) + s(0, 1, -1) : t, s \in \mathbb{R}\}.$

$$\chi_C(x) = \begin{vmatrix} x - \lambda & 0 & 0 \\ -1 & x - \lambda & 0 \\ 0 & -1 & x - \lambda \end{vmatrix}$$
$$= (x - \lambda)^3$$

Luego la matriz C tiene un solo autovalor (de multiplicidad 3): λ . Para calcular el autoespacio asociado a λ debemos resolver el sistema de ecuaciones ($\lambda \operatorname{Id} - C$)X = 0, esto es:

$$\begin{bmatrix} \lambda - \lambda & 0 & 0 \\ -1 & \lambda - \lambda & 0 \\ 0 & -1 & \lambda - \lambda \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

Las soluciones son $\{(x, y, z) \in \mathbb{R}^3 \mid x = y = 0\} = \{z(0, 0, 1) \mid z \in \mathbb{R}\}$. Por lo tanto $V_{\lambda} = \{t(0, 0, 1) : t \in \mathbb{R}\}$.

$$\chi_D(x) = \begin{vmatrix} x - 3 & 5 \\ -1 & x + 1 \end{vmatrix}$$
$$= (x - 3)(x + 1) + 5 = x^2 - 2x + 2.$$

El polinomio $\chi_D(x)=x^2-2x+2$ tiene como raíces a $\frac{2\pm\sqrt{4-8}}{2}=\frac{2\pm2i}{2}=1\pm i$, es decir, no tiene raíces reales. Por lo tanto la matriz D no tiene autovalores reales y, por consiguiente, no tiene autovectores reales.

Para hallar el autoespacio asociado sobre $\mathbb C$ al autovalor 1+i debemos rewsolver el sistema $((1+i)\operatorname{Id} - D)X = 0$, así:

$$\begin{bmatrix} (1+i)-3 & 5 \\ -1 & (1+i)+1 \end{bmatrix} = \begin{bmatrix} -2+i & 5 \\ -1 & 2+i \end{bmatrix} \xrightarrow{F_1-(-2+i)F_2} \begin{bmatrix} 0 & 0 \\ 1 & -2-i \end{bmatrix}$$

Las soluciones son $\{(x,y) \in \mathbb{C}^2 \mid x - (2+i)y = 0\} = \{y(2+i,1) \mid y \in \mathbb{C}\}$. Por lo tanto $V_{1+i} = \{t(2+i,1) : t \in \mathbb{C}\}$.

Comentario: Al hacer $F_1 - (-2 + i)F_2$, no hace falta que hagamos ninguna cuenta mental, nos tiene que quedar si o si una fila nula, porque justamente 1+i es autovalor, por lo que (1+i) ld -D no es invertible.

Para calcular el autoespacio del autovalor 1-i debemos resolver la ecuación $((1-i)\operatorname{Id} - D)X = 0$, esto es:

$$\begin{bmatrix} (1-i)-3 & 5 \\ -1 & (1-i)+1 \end{bmatrix} = \begin{bmatrix} -2-i & 5 \\ -1 & 2-i \end{bmatrix} \xrightarrow{F_1+(2+i)F_2} \begin{bmatrix} 0 & 0 \\ 1 & -2+i \end{bmatrix}$$

Luego el conjunto solución es $\{(x,y) \in \mathbb{C}^2 \mid x + (-2+i)y = 0\} = \{y(2-i,1) \mid y \in \mathbb{C}\}.$ Por lo tanto $V_{1-i} = \{t(2-i,1) : t \in \mathbb{C}\}.$

También se puede calcular V_{1-i} de otra manera. Por el ejercicio (4d), como D es real, si $Dv = \lambda v$, entonces conjugando en ambos miembros obtenemos $D\bar{v} = \bar{\lambda}\bar{v}$, por lo que los autovectores de 1-i=1+i se obtienen conjugando los autovectores de 1+i, como podemos observar al calcular V_{1-i} y ver que el autovector generador (2-i,1) es el conjugado de (2+i,1).

$$\chi_{E_{\theta}}(x) = \begin{vmatrix} x \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} = \begin{vmatrix} x - 1 & 0 & 0 \\ 0 & x - \cos \theta & -\sin \theta \\ 0 & \sin \theta & x - \cos \theta \end{vmatrix}$$
$$= (x - 1) \begin{vmatrix} x - \cos \theta & -\sin \theta \\ \sin \theta & x - \cos \theta \end{vmatrix} = (x - 1) \left((x - \cos \theta)^2 + \sin^2 \theta \right)$$
$$= (x - 1)(x^2 - 2x\cos \theta + 1)$$

El polinomio $\chi_{E_{\theta}}(x) = (1-x)(x^2-2x\cos\theta+1)$ tiene como raíces a 1 y $\frac{2\cos\theta\pm\sqrt{4\cos^2\theta-4}}{2} = \frac{2\cos\theta\pm\sqrt{-4\sin^2\theta}}{2} = \cos\theta\pm i \sin\theta$.

Si $\theta = 0$ o $\theta = \pi$, entonces sen $\theta = 0$ y los autovalores de E_{θ} son 1 y cos θ (reales). En este caso tenemos dos subcasos: 1) $\theta = 0$ y aquí sen $(\theta) = 0$ y cos $(\theta) = 1$, 2) $\theta = \pi$ y aquí sen $(\theta) = 0$ y cos $(\theta) = -1$.

En el caso 1) ($\theta = 0$) la matriz E_{θ} es la identidad y por lo tanto el 1 es el único autovalor (de multiplicidad 3) y $V_1 = \mathbb{R}^3$.

En el caso 2) ($\theta = \pi$) la matriz es

$$E_{\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

y por lo tanto los dos autovalores, 1 y -1 tienen como autoespacios $V_1 = \{t(1,0,0): t \in \mathbb{R}\}$ y $V_{-1} = \{t(0,1,0) + s(0,0,1): t,s \in \mathbb{R}\}$, respectivamente.

El caso remanente es cuando $\theta \neq 0$, π , entonces E_{θ} tiene un solo autovalor real, el 1 y dos autovalores complejos conjugados. Calculemos el autoespacio asociado (sobre \mathbb{R} , como pide el ejercicio) al autovalor 1, debemos resolver el sistema de ecuaciones (Id $-E_{\theta}$)X=0, esto es:

$$\begin{bmatrix} 1-1 & 0 & 0 \\ 0 & 1-\cos\theta & -\sin\theta \\ 0 & \sin\theta & 1-\cos\theta \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1-\cos\theta & -\sin\theta \\ 0 & \sin\theta & 1-\cos\theta \end{bmatrix}$$

Notar que $\begin{vmatrix} 1-\cos\theta & -\sin\theta \\ \sin\theta & 1-\cos\theta \end{vmatrix} = (1^2-2\cos\theta+1)$, y como 1 no es autovalor de esta matriz en este caso (pues los autovalores son $\cos\theta\pm i\sin\theta$), por el Ejercicio 2 sabemos que es invertible (esta circunstancia fortuita es por la estructura en bloques de la matriz E_{θ}).

Por lo tanto podemos reducir la matriz del sistema a

$$(**) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Luego las soluciones son $\{(x, y, z) \in \mathbb{R}^3 \mid y = z = 0\} = \{x(1, 0, 0) \mid x \in \mathbb{R}\}$. Por lo tanto $V_1 = \{t(1, 0, 0) : t \in \mathbb{R}\}$.

Para calcular el autoespacio con autovalor $\cos\theta\pm i \sin\theta$ debemos resolver la ecuación (($\cos\theta\pm i \sin\theta$) Id $-E_{\theta}$)X=0. Como $\theta\neq0$, π , tenemos que $\sin\theta\neq0$ y que $\cos\theta\pm i \sin\theta\neq1$, entonces :

$$\begin{bmatrix} \cos\theta \pm i \sec\theta - 1 & 0 & 0 \\ 0 & \pm i \sec\theta & -\sec\theta \\ 0 & \sec\theta & \pm i \sec\theta \end{bmatrix} \xrightarrow{\frac{1}{(\cos\theta \pm i \sec\theta - 1)}F_1}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \pm i \sec\theta & -\sec\theta \\ 0 & \sec\theta & \pm i \sec\theta \end{bmatrix} \xrightarrow{\frac{1}{\sin\theta}F_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & \pm i \end{bmatrix}$$

Las soluciones son los $(x, y, z) \in \mathbb{C}^3$ tales que x = 0 e $y \pm iz = 0$, es decir x = 0 e $y = \mp iz$. Así, $V_{\cos\theta+i\sin\theta} = \{t(0, -i, 1) : t \in \mathbb{C}\}$ y $V_{\cos\theta-i\sin\theta} = \{t(0, i, 1) : t \in \mathbb{C}\}$.

(2) Probar que una matriz $A \in \mathbb{K}^{n \times n}$ es invertible si y sólo si 0 no es autovalor de A.

Solución: Notar que $\det(0 \operatorname{Id} - A) = (-1)^n \det A$.

Sabemos que los autovalores de A son las raíces del polinomio característico de A, $\chi_A(x) = \det(x \operatorname{Id} - A)$. Entonces, A es invertible si y sólo si $\det A \neq 0$, si y sólo si $\det(0 \operatorname{Id} - A) \neq 0$, si y sólo si 0 no es autovalor de A.

Manera alternativa: Sabemos del práctico 3 que A es invertible si y sólo no existe $v \neq 0$ tal que Av = 0. Notemos que $0 = 0 \cdot v$, por lo tanto A es invertible si y sólo si no existe $v \neq 0$ tal que $Av = 0 \cdot v$ si y sólo si 0 no es autovalor de A.

(3) Probar que A y A^t tienen el mismo polinomio característico. Deducir que tienen los mismos autovalores. Mostrar que no necesariamente tienen los mismos autovectores.

Solución: $\chi_{A^t}(x) = \det(x \operatorname{Id} - A^t) = \det((x \operatorname{Id})^t - A^t) = \det((x \operatorname{Id} - A)^t) = \det(x \operatorname{Id} - A) = \chi_A(x)$, como se quería demostrar.

Hemos usado, la definición del característico, que x ld es diagonal, que la traspuesta de la resta es la resta de las traspuestas, y que el determinante de la traspuesta es igual a la matriz de la traspuesta.

Como $\chi_A(x) = \chi_{A^t}(x)$, entonces sus raíces (que son los autovalores) deben ser iguales. Por lo tanto los autovalores de A coinciden con los de A^t .

Para ver que no necesariamente tienen los mismos autovectores, tomemos como ejemplo la matriz $A = \begin{bmatrix} 1 & 0 \\ 1 & -2 \end{bmatrix}$ del Ejercicio 1. Vimos que v = (0,1) era autovector

de A. Pero no es autovector de A^t pues $A^t v = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ el cual no es múltiplo de v pues su primera coordenada es no nula. Luego A y A^t no tienen los mismos autovectores.

- (4) Sea $A \in \mathbb{K}^{n \times n}$ y $k \in \mathbb{N}_0$.
 - (a) Probar que si λ es autovalor de A con autovector v entonces λ^k es autovalor de A^k con autovector v. ¿Qué puede decir de los autovalores de una matriz nilpotente?

(b) Sea $p(x) = a_0 + a_1x + \cdots + a_nx^n$ un polinomio, $n \ge 1$, $a_i \in \mathbb{K}$, $a_n \ne 0$. Sea p(A) la matriz $n \times n$ definida por

$$p(A) = a_0 \operatorname{Id}_n + a_1 A + \cdots + a_n A^n.$$

Probar que si λ es autovalor de A con autovector v entonces $p(\lambda)$ es autovalor de p(A) con autovector v.

- (c) Sea $\overset{\frown}{A}$ una matriz invertible. Si λ es autovalor de A de autovector v entonces $\frac{1}{\lambda}$ es autovalor de A^{-1} con autovector v.
- (d) Mostrar que si A es una matriz real y $\lambda \in \mathbb{C}$ es autovalor de A, entonces $\bar{\lambda}$ también es autovalor de A.

Solución:

(a) Sea λ autovalor de A con autovector v, es decir $Av = \lambda v$.

Probemos que, para todo $k \in \mathbb{N}_0$, λ^k es autovalor de A^k de autovector v. Si k = 0, vale pues 1 es autovalor de $A^0 = \operatorname{Id} y v$ es autovector (todo $v \in \mathbb{R}^3$ es autovector de Id).

Si $k \in \mathbb{N}$, procedemos por inducción. Si k=1 vale lo que queremos probar. Paso inductivo: asumimos que vale $A^{k-1}v = \lambda^{k-1}v$. Ahora, $A^kv = A(A^{k-1}v) = A(\lambda^{k-1})v = \lambda^{k-1}(Av) = \lambda^k v$, como queríamos probar. Por inducción, vale el enunciado.

Notar que si A es nilpotente, existe $k \in \mathbb{N}$ tal que $A^k = 0$, por lo que si λ es un autovalor de A resulta que $\lambda^k = 0$, de donde λ sólo puede ser 0. Por otro lado, efectivamente 0 es autovalor pues una matriz nilpotente no puede ser invertible (pues si lo fuera $0 = A^k$ también sería invertible) y esto dice, por Ejercicio 2, que 0 es autovalor de A.

(b) Sea $p(x) = a_0 + a_1 x + \cdots + a_n x^m$ un polinomio (m no necesariamente es el n del tamaño de la matriz como está puesto en el enunciado). Podemos escribir $p(A) = \sum_{i=0}^{m} a_i A^i$. Entonces

$$p(A)v = \left(\sum_{i=0}^m a_i A^i\right)v = \sum_{i=0}^m a_i (A^i v) = \sum_{i=0}^m a_i \lambda^i v = p(\lambda)v,$$

de donde $p(\lambda)$ es autovalor de p(A) con autovector v.

- (c) Sea A invertible y λ autovalor de A de autovector v. Como A es invertible, por el Ejercicio 2 tenemos que $\lambda \neq 0$. Así, podemos multiplicar a izquierda por $\frac{1}{\lambda}$ y por A^{-1} y obtener $\frac{1}{\lambda}v = A^{-1}v$, de donde $\frac{1}{\lambda}$ es autovalor de A^{-1} con autovector v.
- (d) Sea $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$ autovalor de A, de autovector v. Entonces, conjugando a ambos lados en la igualdad $Av = \lambda v$ tenemos que $\overline{Av} = \overline{\lambda v}$, o equivalentemente (usando que en general $\overline{AB} = \overline{AB}$ (pruebese si se quiere usando la definición de producto de matrices y que $\overline{z+w} = \overline{z}+\overline{w}$ y $\overline{zw} = \overline{zw}$) $\overline{Av} = \overline{\lambda v}$. Pero como A es real, se tiene que $\overline{A} = A$, de donde $\overline{\lambda}$ es autovalor de A, de autovector \overline{v} . Esto nos dice que los autovectores asociados a $\overline{\lambda}$ son los conjugados de los autovectores asociados a λ , como hemos visto ya en el Ejercicio 1.
- (5) Sea $A \in \mathbb{K}^{2\times 2}$.
 - (a) Probar que el polinomio característico de A es $\chi_A(x) = x^2 \text{Tr}(A)x + \text{det}(A)$.
 - (b) Si A no es invertible, probar que los autovalores de A son 0 y Tr(A).

Solución: Sea
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
.

(a)
$$\chi_{A}(x) = \det(x \operatorname{Id} - A) = \det \begin{bmatrix} x - a & -b \\ -c & x - d \end{bmatrix}$$
$$= (x - a)(x - d) - bc = x^{2} - (a + d)x + (ad - bc)$$
$$= x^{2} - \operatorname{Tr}(A)x + \det(A).$$

- (b) Si A no invertible, entonces $\det(A) = 0$ y por lo tanto, por (a), $\chi_A(x) = x^2 \operatorname{Tr}(A)x = x(x \operatorname{Tr}(A))$. Luego los autovalores de A son 0 y $\operatorname{Tr}(A)$.
- (6) Probar que dos matrices semejantes (ver definición en Práctico 4, Ejercicio 7) tienen el mismo polinomio característico. Deducir que tienen los mismos autovalores.

Si B es semejante a A, $B = PAP^{-1}$ para alguna matriz P invertible. Entonces,

$$\chi_B(x) = \det(x \operatorname{Id} - PAP^{-1})$$
= $\det(Px \operatorname{Id} P^{-1} - PAP^{-1})$
= $\det(P(x \operatorname{Id} - A)P^{-1})$
= $\det(P(x \operatorname{Id} - A) \det(P^{-1})$
= $\det(P(\det P)^{-1} \det(x \operatorname{Id} - A))$
= $\det(P(\det P)^{-1} \det(x \operatorname{Id} - A))$
= $\det(x \operatorname{Id} - A) = \chi_A(x)$,

por lo tanto A y B tienen el mismo polinomio característico y por lo tanto los mismos autovalores.

Hemos usado que $Px \operatorname{Id} P^{-1} = PP^{-1}x \operatorname{Id} = x \operatorname{Id}$ (pues $x \operatorname{Id}$ conmuta con cualquier matriz, en particular con P^{-1}), la distributiva, la propiedad de producto de los determinantes y la del determinante de la inevrsa.

(7) ⓐ Dado un polinomio mónico con coeficientes en \mathbb{K} , $p(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + x^n$, se define su *matriz compañera* por

$$C(p) = \begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}.$$

Probar que el polinomio característico de C(p) es p.

Solución:
$$\chi_{C(p)}(x) = \det(x \operatorname{Id} - C(p)) = \begin{vmatrix} x & 0 & \cdots & 0 & a_0 \\ -1 & x & \cdots & 0 & a_1 \\ 0 & -1 & \cdots & 0 & a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & x + a_{n-1} \end{vmatrix} = x^n + a_{n-1}x^{n-1} +$$

 $\cdots + a_1x + a_0$ (Por el Ejercicio (15b) del Práctico 4, ver en las soluciones), que es justamente p(x). Por lo tanto el polinomio característico de la matriz compañera asociada a un polinomio p es exactamente p.

Ejercicios de repaso. Si ya hizo los ejercicios anteriores continue con la siguiente guía. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

(8) Repetir el Ejercicio 1 con las siguientes matrices.

$$A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix},$$

$$C = \begin{bmatrix} 4 & 4 & -12 \\ 1 & -1 & 1 \\ 5 & 3 & -11 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 1 & 0 & 0 \\ -1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & -1 \end{bmatrix},$$

Solución:
$$\chi_A(x) = \begin{vmatrix} x-2 & -3 \\ 1 & x-1 \end{vmatrix} = (x-2)(x-1) + 3 = x^2 - 3x + 5.$$

Por Bhaskara, las raíces de este polinomio son $\frac{3\pm\sqrt{9-20}}{2}=\frac{3\pm i\sqrt{11}}{2}$, las cuales son complejas. Por lo tanto A no tiene autovalores reales, y sus autovalores complejos (conjugados) son $\frac{3\pm i\sqrt{11}}{2}$.

Para calcular el autoespacio sobre $\mathbb C$ asociado a $\frac{3\pm i\sqrt{11}}{2}$ resolvemos el sistema $((\frac{3\pm i\sqrt{11}}{2})\operatorname{Id} -A)X=0$:

$$\begin{bmatrix} \frac{3\pm i\sqrt{11}}{2} - 2 & -3 \\ 1 & \frac{3\pm i\sqrt{11}}{2} - 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 \\ 1 & \frac{1\pm i\sqrt{11}}{2} \end{bmatrix}.$$

(Le restamos un múltiplo adecuado de la segunda fila a la primera, como la matriz no es invertible, sabemos que nos quedará la primer fila nula). Entonces,

$$V_{\frac{3+i\sqrt{11}}{2}} = \left\{ (x,y) \in \mathbb{C}^2 \mid x + \frac{1+i\sqrt{11}}{2}y = 0 \right\} = \left\{ y \left(-\frac{1+i\sqrt{11}}{2}, 1 \right) \mid y \in \mathbb{C} \right\},$$

$$V_{\frac{3-i\sqrt{11}}{2}} = \left\{ y \left(\frac{-1+i\sqrt{11}}{2}, 1 \right) \mid y \in \mathbb{C} \right\}.$$

$$\chi_B(x) = \begin{vmatrix} x+9 & -4 & -4 \\ 8 & x-3 & -4 \\ 16 & -8 & x-7 \end{vmatrix} \stackrel{F_2-F_1}{=} \begin{vmatrix} x+9 & -4 & -4 \\ -x-1 & x+1 & 0 \\ -2-2x & 0 & x+1 \end{vmatrix} \stackrel{C_1+C_2}{=} \begin{vmatrix} x-3 & -4 & -4 \\ 0 & x+1 & 0 \\ 0 & 0 & x+1 \end{vmatrix} =$$

$$= (x-3)(x+1)^2.$$

Luego los autovalores son 3 y -1.

Cálculo de V_3 : debemos resolver (3 Id - B)X = 0: Tenemos $3 \text{ Id} - B = \begin{bmatrix} 12 & -4 & -4 \\ 8 & 0 & -4 \\ 16 & -8 & -4 \end{bmatrix}$.

Para trabajar más comodamente, dividimos por 4 todas las entradas de la matriz, (no cambia el cálculo pues $(3 \operatorname{Id} - B)X = 0 \iff \frac{1}{4}(3 \operatorname{Id} - B)X = 0)$. Reducimos entonces

$$\begin{bmatrix} 3 & -1 & -1 \\ 2 & 0 & -1 \\ 4 & -2 & -1 \end{bmatrix} \xrightarrow{F_3 - 2F_2} \begin{bmatrix} 3 & -1 & -1 \\ 2 & 0 & -1 \\ 0 & -2 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -\frac{1}{2} \end{bmatrix}, \text{ luego } V_3 = \{z(\frac{1}{2}, \frac{1}{2}, 1) \mid z \in \mathbb{R}\}.$$

Cálculo de V_{-1} . Debemos resolver $(-\operatorname{Id} -B)X = 0$:

$$\begin{bmatrix} 8 & -4 & -4 \\ 8 & -4 & -4 \\ 16 & -8 & -8 \end{bmatrix} \stackrel{F_2 - F_1}{=} \begin{bmatrix} 8 & -4 & -4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{1}{=} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},$$

luego
$$V_{-1} = \{ y(\frac{1}{2}, 1, 0) + z(\frac{1}{2}, 0, 1) \mid y, z \in \mathbb{R} \}.$$

$$\chi_{\mathcal{C}}(x) = \begin{vmatrix} x - 4 & -4 & 12 \\ -1 & x + 1 & -1 \\ -5 & -3 & x + 11 \end{vmatrix} \stackrel{F_1 + (x - 4)F_2}{=} \begin{vmatrix} 0 & -4 + (x - 4)(x + 1) & 16 - x \\ -1 & x + 1 & -1 \\ 0 & -8 - 5x & x + 16 \end{vmatrix} \\
= (-4 + (x - 4)(x + 1))(x + 16) + (8 + 5x)(16 - x) \\
= x^3 + 8x^2 + 16x \\
= x(x^2 + 8x + 16) \\
= x(x + 4)^2$$

Luego los autovalores de C son 0 y -4.

Cálculo de V_0 : debemos resolver -CX = 0.

$$\begin{bmatrix} -4 & -4 & 12 \\ -1 & 1 & -1 \\ -5 & -3 & 11 \end{bmatrix} \stackrel{F_3 - F_2}{=} \begin{bmatrix} 1 & 1 & -3 \\ -1 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$F_{2} + F_{1} \begin{bmatrix} 1 & 1 & -3 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$F_{3} - F_{2} + F_{1} \begin{bmatrix} 1 & 1 & -3 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{bmatrix}$$
$$F_{3} - F_{2} + F_{1} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$$

Luego $V_0 = \{z(1, 2, 1) \mid z \in \mathbb{R}\}.$

Cálculo de V_{-4} :

$$\begin{bmatrix} -8 & -4 & 12 \\ -1 & -3 & -1 \\ -5 & -3 & 7 \end{bmatrix} \stackrel{F_1-8F_2}{=} \begin{bmatrix} 0 & 20 & 20 \\ 1 & 3 & 1 \\ 0 & 12 & 12 \end{bmatrix} \stackrel{F_1-\frac{20}{12}F_3}{=} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix},$$

de donde $V_{-4} = \{z(2, -1, 1) \mid z \in \mathbb{R}\}.$

$$\chi_D(x) = \begin{vmatrix} x-2 & -1 & 0 & 0 \\ 1 & x-4 & 0 & 0 \\ 0 & 0 & x-1 & -1 \\ 0 & 0 & -3 & x+1 \end{vmatrix} = \begin{vmatrix} x-2 & -1 \\ 1 & x-4 \end{vmatrix} \begin{vmatrix} x-1 & -1 \\ -3 & x+1 \end{vmatrix}$$
$$= (x^2 - 6x + 9)(x^2 - 4) = (x-3)^2(x+2)(x-2)$$

Luego los autovalores de D son 3, 2 y -2.

Cálculo de
$$V_{-2}$$
:
$$(-2\operatorname{Id} - D) = \begin{bmatrix} -4 & -1 & 0 & 0 \\ 1 & -6 & 0 & 0 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & -3 & -1 \end{bmatrix}. \text{ Como } \chi_D(x) \text{ es producto de los polinomios característicos de las matrices que forman los bloques diagonales y } -2 \text{ es raíz sólo}$$

del característico de la de abajo, sabemos que la matriz de arriba será invertible, por lo que podemos aplicar op. elementales por filas a $(-2 \operatorname{Id} - D)$ y llegar

a
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -3 & -1 \\ 0 & 0 & -3 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix}. \text{ Luego } V_{-2} = \{w(0, 0, -\frac{1}{3}, 1) \mid w \in \mathbb{R}\}.$$

Cálculo de V_2 : análogamente al razonamiento de arriba, sabemos que pode-

mos reducir
$$2 \operatorname{Id} - D$$
 a $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -3 & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. Por lo tanto $V_2 = \{w(0,0,1,1) \mid w \in \mathbb{R}\}$.

Cálculo de
$$V_3$$
: podemos reducir $3 \operatorname{Id} - D$ a
$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
. Luego $V_3 = \{y(1,1,0,0) \mid y \in \mathbb{R}\}$.

- (9) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Sea A una matriz que satisface $2A + Id = -A^2$. Entonces A es invertible.
 - (b) Existe una única matriz $A \in \mathbb{R}^{2\times 2}$ tal que (1, 1) es autovector de autovalor 2, y (-2, 1) es autovector de autovalor 1.
 - (c) Sean A y B matrices que tienen la misma traza, el mismo determinante y el mismo polinomio característico. Entonces A y B son semejantes.

Solución:

- (a) Verdadero. Supongamos que A no es invertible. Entonces, por Ejercicio 2, 0 es autovalor de A. Por Ejercicio (4d), debe ser que $2 \cdot 0 + 1 + 0^2 = 1$ es autovalor de la matriz $2A + Id + A^2 = 0$, lo cual es absurdo.
- (b) Verdadero. Sea $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Si (1, 1) es autovector de autovalor 2, quiere decir que $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, es decir que $\begin{cases} a+b=2 \\ c+d=2 \end{cases}$.

Por otro lado, si (-2,1) es autovector de autovalor 1, resulta $\begin{bmatrix} -2a+b\\-2c+d \end{bmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix}$, de donde $\begin{cases} -2a+b=-2\\-2c+d=1 \end{cases}$

Se nos plantea entonces un sistema de 4 ecuaciones con 4 incógnitas el cual resolvemos reduciendo la matriz ampliada:

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 2 \\ -2 & 1 & 0 & 0 & -2 \\ 0 & 0 & -2 & 1 & 1 \end{bmatrix} \xrightarrow{F_3 + 2F_1} \begin{bmatrix} 1 & 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 3 & 0 & 0 & 2 \\ 0 & 0 & 0 & 3 & 5 \end{bmatrix} \xrightarrow{\frac{1}{3}F_3} \xrightarrow{\frac{1}{3}F_4} \begin{bmatrix} 1 & 0 & 0 & 0 & \frac{4}{3} \\ F_1 - F_3 & 0 & 0 & 0 & \frac{4}{3} \\ F_2 - F_4 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & \frac{2}{3} \\ 0 & 0 & 0 & 1 & \frac{2}{3} \end{bmatrix}.$$
Por lo tanto $A = \frac{1}{3} \begin{bmatrix} 4 & 2 \\ 1 & 5 \end{bmatrix}$.

- (c) Falso. Sean A la matriz nula 2×2 y $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Es claro que $\operatorname{Tr} A = \operatorname{Tr} B = \operatorname{Tr} A$ $\det A = \det B = 0$ y ambos tienen sólo al autovalor 0 (pues son triangulares superiores con diagonal 0) pero no son semejantes. En efecto, si $PAP^{-1} = 0$, entonces $A = P^{-1}0P = 0$, es decir que la única matriz semejante a la matriz nula es ella misma, con lo que $A \cup B$ no son semejantes.
- (10) Usando autovalores, dar otra prueba de que si A es nilpotente entonces $Id_n A$ es invertible (Ejercicio 9b Práctico 3).

Solución: Queremos ver que $Id_n - A$ es invertible. Para ello, veamos que 0 no es autovalor (Ejercicio 2). Sabemos que el único autovalor de A al ser nilpotente es el 0, y el único autovalor de Id_n es el 1, entonces el único autovalor de $Id_n - A$ es el 1. Como 0 no es autovalor, $Id_n - A$ es invertible.

(11) ⓐ Sean $A, B \in \mathbb{K}^{n \times n}$. El objetivo de este ejercicio es probar que $AB \setminus BA$ tienen el mismo polinomio característico.

(a) Probar que $\begin{bmatrix} Id_n & -A \\ 0 & Id_n \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix} \begin{bmatrix} Id_n & -A \\ 0 & Id_n \end{bmatrix}.$

(b) Deducir que $\chi_{AB}(x) = \bar{\chi}_{BA}(x)$ para todo $x \in \mathbb{K}$, es decir que AB y BA tienen el mismo polinomio característico.

Solución:

(a) Por la multiplicación en bloques que vimos en el Práctico 4 Ejercicio 17, tenemos

que
$$\begin{bmatrix} \operatorname{Id}_n & -A \\ 0 & \operatorname{Id}_n \end{bmatrix} \begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ B & 0 \end{bmatrix}$$
.

Por otro lado, $\begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix} \begin{bmatrix} \operatorname{Id}_n & -A \\ 0 & \operatorname{Id}_n \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ B & -AB + BA \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ B & 0 \end{bmatrix}$.

Por lo tanto ambas multiplicaciones nos dieron igual.

(b) Notar que $\det\begin{bmatrix} \mathrm{Id}_n & -A \\ 0 & \mathrm{Id}_n \end{bmatrix} = \det(\mathrm{Id}_n) \det(\mathrm{Id}_n) = 1$ (Ejercicio 17b Práctico 4), por lo que la matriz es invertible. Entonces, multiplicando a derecha por la inversa de la matriz en la igualdad de (a), tenemos que $\begin{bmatrix} AB & 0 \\ B & 0 \end{bmatrix}$ y $\begin{bmatrix} 0 & 0 \\ B & BA \end{bmatrix}$ son matrices semejantes (ojo, AB y BA no son semejantes en general, aunque sí cuando alguna de ellas es invertible), por lo que tienen el mismo polinomio característico (por Ejercicio 6).

Luego $\begin{vmatrix} x \operatorname{Id}_n - AB & 0 \\ -B & x \operatorname{Id}_n \end{vmatrix} = \begin{vmatrix} x \operatorname{Id}_n & 0 \\ -B & x \operatorname{Id}_n - BA \end{vmatrix}$. Calculando estos determinantes (Ej 17c Pr 4) resulta $\det(x \operatorname{Id}_n - AB) \det(x \operatorname{Id}_n) = \det(x \operatorname{Id}_n) \det(x \operatorname{Id}_n - BA)$.

Si $x \neq 0$, entonces $det(x \operatorname{Id}_n) \neq 0$, por lo que podemos dividir en ambos lados por este escalar y obtener $\det(x \operatorname{Id}_n - AB) = \det(x \operatorname{Id}_n - BA)$, es decir $\chi_{AB}(x) = \chi_{BA}(x)$ para todo $x \neq 0$.

Si x = 0, entonces $\chi_{AB}(0) = \det(-AB)$ y $\chi_{BA}(0) = \det(-BA)$. Por propiedades del producto de los determinantes y sacando $(-1)^n$ como escalar fuera del determinante, resulta $\chi_{AB}(0) = \chi_{BA}(0)$ también.

Por lo tanto $\chi_{AB}(x) = \chi_{BA}(x)$ (o sea que también tienen los mismos autovalores).

(12) ⓐ Sea $A \in \mathbb{C}^{n \times n}$, $\chi_A(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$ y sean $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ son los autovalores de A (posiblemente repetidos), entonces se cumple que:

(a)
$$(-1)^n \det(A) = a_0 = (-1)^n \lambda_1 \cdots \lambda_n$$
. En particular, $\det A = \prod_{i=1}^k \lambda_i$.

(b)
$$\operatorname{Tr}(A) = -a_{n-1} = \lambda_1 + \cdots + \lambda_n$$
. En particular, $\operatorname{Tr} A = \sum_{i=1}^k \lambda_i$.

Solución: Ver la ayuda que está dada en el práctico.

(13) ⓐ Sea $A \in \mathbb{C}^{n \times n}$ tal que $\operatorname{Tr} A = 0, \operatorname{Tr} A^2 = 0, \dots, \operatorname{Tr} A^n = 0$. Probar que el único autovalor de A es el 0.

Solución: Sea $A \in \mathbb{C}^{n \times n}$. Debe poseer al menos un autovalor, pues por el Teorema Fundamental del Álgebra todo polinomio tiene raíces en \mathbb{C} , en particular $\det(x \operatorname{Id} - A)$. Queremos probar que el único autovalor de A es el 0. Supongamos que existen autovalores no nulos. Sean $\lambda_1, \ldots, \lambda_r$ los r autovalores no nulos de A distintos (notar que $n \leq r$). Entonces $\operatorname{Tr} A = \sum_{i=1}^r n_i \lambda_i$ donde n_i es la multiplicidad (el grado de $(x - \lambda_i)$ en $\chi_A(x)$) de λ_i como raíz del polinomio característico (por ejemplo, si $A = \operatorname{Id}_n$, entonces el único autovalor es 1, con multiplicidad n).

A su vez, sabemos que para todo $k \in \mathbb{N}$, los autovalores de A^k son los de A elevados a la k, por lo que $\operatorname{Tr} A^k = \sum_{i=1}^r n_i \lambda_i^k$ (los λ_i^k podrían repetirse, pero eso no modifica la igualdad, sus multiplicidades se sumarían en ese caso).

Por hipótesis, $0 = \operatorname{Tr} A = \operatorname{Tr} A^2 = \cdots = \operatorname{Tr} A^r$ (pues $\operatorname{Tr} A^k = 0$ para todo $k \le n$ y r es $\le n$). Luego tenemos el siguiente sistema

$$\begin{bmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_r^2 \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1^r & \lambda_2^r & \cdots & \lambda_r^r \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ \vdots \\ n_r \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

La matriz de la izquierda es invertible, pues

$$\begin{vmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \lambda_1^2 & \lambda_2^2 & \cdots & \lambda_r^2 \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1^r & \lambda_2^r & \cdots & \lambda_r^r \end{vmatrix} \stackrel{(*)}{=} \lambda_1 \lambda_2 \cdots \lambda_r \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_r \\ \vdots & \vdots & \cdots & \vdots \\ \lambda_1^{r-1} & \lambda_2^{r-1} & \cdots & \lambda_r^{r-1} \end{vmatrix} = \lambda_1 \cdots \lambda_r \prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i),$$

y este número es no nulo pues los λ_i son no nulos y distintos porque así los asumimos. Al ser una matriz invertible, la única solución del sistema es $n_1 = \cdots = n_r = 0$, por lo que la multiplicidad como raíces del polinomio característico es 0, luego no hay autovalores distintos del nulo y así el único autovalor de A es el 0.

(*) Hemos usado que el determinante es lineal en cada columna, sacando afuera el factor λ_i que multiplicaba a la columna C_i y luego hemos usado el determinante de la matriz de Vandermonde del Práctico 4 Ejercicio 6.