CSE 101 – Oct 16, 2019 (Week 3)

Notes provided by Ben Sihota bsihota@ucsc.edu

Recall

Show if $a, b \in \mathbb{R}$, b > 0, then

$$(n+a)^b = \Theta(n^b)$$

$$\lim_{n \to \infty} \left(\frac{(n+a)^b}{n^b}\right) = \lim_{n \to \infty} \left(\left(\frac{n+a}{n}\right)^b\right) = \lim_{n \to \infty} \left(\left(1 + \frac{a}{n}\right)^b\right)$$
$$= \lim_{n \to \infty} \left(\left(1 + \frac{a}{n}\right)\right)^b = 1^b = 1 \in (0, \infty)$$
$$\therefore (n+a)^b = \Theta(n^b)$$

Exercise 9-C

P(n) is polynomial, with degree $k \ge 0$, then $P(n) = \Theta(n^k)$

We have:

$$P(n) = a_k n^k + a_{k_1} n^k - 1 + \dots + a_1 * n + a_0$$

So

$$\frac{P(n)}{n^k} = a_k + \frac{a_{k-1}}{n} + \dots + \frac{a_1}{n^{k-1}} + \frac{a_0}{n^k}$$

Since $0 < a_k < \infty$, : we have $P(n) = \Theta(n^k)$

Exercise 9-D

If $\alpha, \beta \in \mathbb{R}$, then

$$n^{\alpha} = \begin{cases} o(n^{\beta}) & \text{if } \alpha < \beta \\ \Theta(n^{\beta}) & \text{if } \alpha = \beta \\ \omega(n^{\beta}) & \text{if } \alpha > \beta \end{cases}$$

$$\frac{n^{\alpha}}{n^{\beta}} = n^{\alpha - \beta} \Rightarrow \begin{cases} 0 & \text{if } \alpha < \beta \\ 1 & \text{if } \alpha = \beta \\ \infty & \text{if } \alpha > \beta \end{cases}$$

Exercise 9-B

If $a, b \in \mathbb{R}^+$, then

$$a^{n} = \begin{cases} o(b^{n}) & \text{if } a < b \\ \Theta(b^{n}) & \text{if } a = b \\ \omega(b^{n}) & \text{if } a > b \end{cases}$$

Why?

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \Rightarrow \text{ (as } n \to \infty) \begin{cases} 0 & \text{if } a < b \\ 1 & \text{if } a = b \\ \infty & \text{if } \alpha > \beta \end{cases}$$

Example (from last night's HW)

$$f(n) + o(f(n)) = \Theta(f(n))$$

Proof Let
$$h(n) = o(f(n))$$
. Then $\lim_{n \to \infty} (\frac{h(n)}{f(n)}) = 0$

So

$$\lim_{n \to \infty} \left(\frac{f(n) + h(n)}{f(n)} \right) = \lim_{n \to \infty} \left(1 + \frac{h(n)}{f(n)} \right) = 1 \in (0, \infty)$$

$$\therefore f(n) + h(n) = \Theta(f(n))$$

Handout on common functions

• Read floor and ceiling functions

Logarithms: Let a, b > 1

$$\log_a x$$
 is inverse of $\exp_a(x) = a^x$

i.e.
$$a^{\log_a(x)} = x$$
 and $\log_a(a^x) = x$

$$\therefore x = a^{\log_a(x)} = (b^{\log_b(a)})^{\log_a(x)} = b^{\log_b(a) * \log_a(x)}$$

$$\log_b(x) = log_b(a) * log_a(x)$$

$$\log_b(n = const * log_a(n))$$

$$\Rightarrow : \log_b(n) = \Theta(\log_a(n)) \Leftarrow$$

Also

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

Also

$$a^{\log_b(x)} = a^{\log_a(x) * \log_b(a)} = (a^{\log_a(x)})^{\log_b(a)}$$
$$\therefore a^{\log_b(x)} = x^{\log_b(a)}$$

Stirling's Formula

Let $n \in \mathbb{Z}^+$. then

$$n! = \sqrt{2\pi n} * (\frac{n}{e})^n * (1 + \Theta(\frac{1}{n}))$$

Corollary

- 1. $n! = o(n^n)$
- 2. $\log(n!) = \Theta(n \log n)$

Induction handout

Goal: Prove statements of the form

$$\forall n \geq n_0 : P(n)$$

where P(n) is a propositional function of n

Domino analogy

$$n_0$$
 n_0+1 n $n+1$