

MATEMÁTICA DISCRETA 2

Aula 17 Grupos

Cristiane Loesch

O conceito de grupo é, seguramente, uma das ideias centrais da Matemática. Certamente existem poucos ramos matemáticos nos quais os grupos não sejam empregados implicitamente ou explicitamente. Teoria quântica, estrutura atômica e molecular e cristalografia são apenas algumas das áreas das ciências nas quais a ideia de grupo como uma medida de simetria tem sido utilizada com grande importância.

FONTE: Vieira; Alves (2009)

UNDER CONSTRUCTION!

Na aula passada

Na aula passada

iniciamos os estudo das

estruturas algébricas.

estruturas algébricas.

Antes de prosseguir

yamos rever alguns ok ?!

vamos rever alguns conceitos, ok ?!

principais conceitos,

Fonte: Paiva, C. R. (2010)

EXERCÍCIO – aula passada

Seja $\langle G, * \rangle$ um grupo com $x, y \in G$. Prove que (x*y)' = x'*y'

Propriedades:

1) Comutativa

$$x*y=y*x$$
 , $\forall x,y \in A$

2) Associativa

$$(x*y)*z=x*(y*z)$$
, $\forall x,y,z\in A$

3) Elemento Neutro

$$x*e=e*x=x$$
 , $\forall x \in A$

4) Elemento invertível ou simetrizável x*y=y*x=e, $\forall x,y\in A$

Dado um conjunto não-vazio A dotado de uma operação binária $A \times A \rightarrow A$ denotada por (A,*) que satisfaz a(s) propriedade(s):

do fechamento

→ Grupóide

- do fechamento → Grupóide
- do fechamento e associativa → Semi-grupo

- do fechamento ———— Grupóide
- do fechamento e associativa ————————Semi-grupo
- do fechamento, associativa e elemento neutro Monóide

- do fechamento → Grupóide

- do fechamento, associativa, elemento neutro e elemento invertível Grupo

Dado um conjunto não-vazio A dotado de uma operação binária $A \times A \rightarrow A$ denotada por (A,*) que satisfaz a(s) propriedade(s):

- do fechamento
 → Grupóide
- do fechamento e associativa → Semi-grupo
- do fechamento, associativa e elemento neutro ————— Monóide

• do fechamento, associativa, elemento neutro e elemento invertível — Grupo

<u>Obs:</u> estruturas algébricas que satisfazem a propriedade comutativa recebem a característica "extra" de Abeliano.

Exemplo: Monóide Abeliano

CARACTERÍSTICAS DE GRUPOS

• Grupo Abeliano ou Comutativo Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.

CARACTERÍSTICAS DE GRUPOS

Grupo Abeliano ou Comutativo
 Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.

CARACTERÍSTICAS DE GRUPOS

- Grupo Abeliano ou Comutativo
 Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.
- Grupo Aditivo
 Quando a operação binária considerada sobre ele é a adição. Nesses grupos, denota-se a operação pelo sinal "+" de adição.

CARACTERÍSTICAS DE GRUPOS

- Grupo Abeliano ou Comutativo
 Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.
- Grupo Aditivo
 Quando a operação binária considerada sobre ele é a adição. Nesses grupos, denota-se a operação pelo sinal "+" de adição.
- Grupo Multiplicativo Quando a operação binária considerada sobre ele é a multiplicação. Nesses grupos, denota-se a operação pelo sinal "·" de multiplicação ou apenas por justaposição.

PROPRIEDADES DE GRUPOS

- 1. $e \in G$, e é único (e = elemento neutro)
- 2. $\forall a$ ∈ G , \exists um único inverso
- 3. $\forall a,b \in G \Rightarrow (a*b)^{-1} = b^{-1}*a^{-1}$
- 4. $\forall a \in G \Rightarrow (a^{-1})^{-1} = a$
- 5. $\forall a,b,c \in G: a*b=a*c \Rightarrow b=c$ (LEI DO CANCELAMENTO)

$$\forall a,b,c \in G$$
, se $a*b=a*c$ ou $b*a=c*a \rightarrow b=c$

$$\forall a,b,c \in G$$
, se $a*b=a*c$ ou $b*a=c*a \rightarrow b=c$

EXEMPLO:
$$G = \langle GL_2 \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

$$\forall a,b,c \in G$$
, se $a*b=a*c$ ou $b*a=c*a \rightarrow b=c$

EXEMPLO:
$$G = \langle GL_2 \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

$$A \cdot B = C \cdot B = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

Propriedade do Cancelamento

$$\forall a,b,c \in G$$
, se $a*b=a*c$ ou $b*a=c*a \rightarrow b=c$

EXEMPLO:
$$G = \langle GL_{2}, \cdot \rangle \longrightarrow A \cdot B = C \cdot B$$
 ?

$$A = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix}$$

 $A \cdot B = C \cdot B = \begin{pmatrix} 4 & 1 \\ 5 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$ Propriedade do Cancelamento

EXEMPLO:
$$\mathbb{Z}$$
, + $b*a=c*a \rightarrow b=c$?

$$a+b=b+c \longrightarrow 3+b=5+3 \longrightarrow b=5$$

Propriedade do Cancelamento

EXEMPLO:
$$\mathbb{Z}$$
, + $b*a=c*a \rightarrow b=c$?

$$a+b=b+c \longrightarrow 3+b=5+3 \longrightarrow b=5$$
Propriedade do

EXEMPLO:
$$\mathbb{Z}$$
, $b*a=c*a \rightarrow b=c$?

$$4 \cdot 0 = 6 \cdot 0 \longrightarrow 4 \neq 6$$

Propriedade do X Cancelamento

Cancelamento

CARACTERÍSTICAS DE GRUPOS

- Grupo Abeliano ou Comutativo Quando o Grupo satisfaz a propriedade comutativa da operação binária em questão.
- Grupo Aditivo
 Quando a operação binária considerada sobre ele é a adição. Nesses grupos, denota-se a operação pelo sinal "+" de adição.
- Grupo Multiplicativo Quando a operação binária considerada sobre ele é a multiplicação. Nesses grupos, denota-se a operação pelo sinal "·" de multiplicação ou apenas por justaposição.
- Grupo Finito
 Grupo no qual o conjunto G é finito. O número de elementos de G, nesse caso, é chamado de ordem do grupo G.

Grupos Finitos e Infinitos

Um grupo finito é um grupo (G, *) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

Grupos Finitos e Infinitos

Um grupo finito é um grupo (G, *) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

$$G = \{-i, -1, i, 1\}$$

$$G = \{1,2,3\}$$

$$H = \{1, 2, 3, ...\}$$

Grupos Finitos e Infinitos

Um grupo finito é um grupo (G, *) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

$$G = \{-i, -1, i, 1\}$$
 \longrightarrow $o(G) = 4$
 $G = \{1, 2, 3\}$
 $H = \{1, 2, 3, ...\}$

Grupos Finitos e Infinitos

Um grupo finito é um grupo (G, *) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

$$G = \{-i, -1, i, 1\}$$
 \longrightarrow $o(G) = 4$
 $G = \{1, 2, 3\}$ \longrightarrow $o(G) = 3$
 $H = \{1, 2, 3, ...\}$

Grupos Finitos e Infinitos

Um grupo finito é um grupo (G, *) em que o número de elementos de G é a ordem do grupo (o(G)). Caso contrário, diz-se que o grupo é infinito e que sua ordem é infinita.

$$G = \{-i, -1, i, 1\} \longrightarrow o(G) = 4$$

$$G = \{1, 2, 3\} \longrightarrow o(G) = 3$$

$$H = \{1, 2, 3, ...\} \longrightarrow o(G) = grupo infinito$$

EXEMPLO: Tabela de Cayley

Considere o conjunto $G = \{-1,1\}$ e a operação binária usual. Será que (G, \cdot) é um grupo finito?

EXEMPLO: Tabela de Cayley

Considere o conjunto $G = \{-1,1\}$ e a operação binária usual. Será que (G, \cdot) é um grupo finito?

1º) construir a tabela operatória

EXEMPLO: Tabela de Cayley

Considere o conjunto $G = \{-1,1\}$ e a operação binária usual. Será que (G, \cdot) é um grupo finito?

1º) construir a tabela operatória

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

a) Fechamento

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

a) Fechamento

Todos os elementos resultantes da operação multiplicação pertencem a G => G é fechado

EXEMPLO: Tabela de Cayley

- 2°) Verificar as propriedades
- a) Fechamento 🗸

b) Associativa

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

a) Fechamento 🗸

b) Associativa

$$\begin{array}{l} -1\cdot(-1\cdot(-1)) = (-1\cdot(-1))\cdot(-1) \\ -1\cdot(-1\cdot1) = (-1\cdot(-1))\cdot1 \\ -1\cdot(1\cdot(-1)) = (-1\cdot1)\cdot(-1) \\ -1\cdot(1\cdot1) = (-1\cdot1)\cdot1 \\ 1\cdot(-1\cdot(-1)) = (1\cdot(-1))\cdot(-1) \\ 1\cdot(-1\cdot1) = (1\cdot(-1))\cdot1 \\ 1\cdot(1\cdot(-1)) = (1\cdot1)\cdot(-1) \\ 1\cdot(1\cdot1) = (1\cdot1)\cdot1 \end{array}$$

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa

$-1\cdot(-1\cdot(-1))=(-1\cdot(-1))\cdot(-1)$
$-1 \cdot (-1 \cdot 1) = (-1 \cdot (-1)) \cdot 1$
$-1 \cdot (1 \cdot (-1)) = (-1 \cdot 1) \cdot (-1)$
$-1 \cdot (1 \cdot 1) = (-1 \cdot 1) \cdot 1$
$1 \cdot (-1 \cdot (-1)) = (1 \cdot (-1)) \cdot (-1)$
$1 \cdot (-1 \cdot 1) = (1 \cdot (-1)) \cdot 1$
$1 \cdot (1 \cdot (-1)) = (1 \cdot 1) \cdot (-1)$
$1 \cdot (1 \cdot 1) = (1 \cdot 1) \cdot 1$

Além disso, o conjunto *G* é formado por números inteiros e a associatividade é válida para o produto de números inteiros, por restrição, é válida, também, para *G*.

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

a) Fechamento 🗸

b) Associativa 🧹

c) Elemento Neutro

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa 🗸

c) Elemento Neutro

O elemento neutro na multiplicação é o 1

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa

c) Elemento Neutro

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa

c) Elemento Neutro

d) Elemento Invertível 🗸

$$-1 \cdot (-1) = 1$$

1 é o elemento neutro da multiplicação. O inverso de 1 é 1.

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

c) Elemento Neutro

Logo,

G é grupo em relação à multiplicação.

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

c) Elemento Neutro 🗸

d) Elemento Invertível 🗸

Observe, também, que existe simetria dos elementos da tabela em relação à diagonal principal.

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

c) Elemento Neutro 🗸

d) Elemento Invertível 🗸

Observe, também, que existe simetria dos elementos da tabela em relação à diagonal principal. Logo, existe comutatividade da operação sobre G.

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa 🧹

c) Elemento Neutro

d) Elemento Invertível 🗸

e) Comutativa

EXEMPLO: Tabela de Cayley

2°) Verificar as propriedades

b) Associativa 🗸

c) Elemento Neutro

d) Elemento Invertível 🗸

e) Comutativa

 (G, \cdot) é um Grupo Abeliano Finito de ordem 2

• Possíveis maneiras de se ordenar os elementos do conjunto sem repetir nenhum e usando todos

<u>Definição:</u>

Seja A um conjunto. Uma permutação sobre A é uma bijeção de A em si mesmo.

$$A = \{1,2,3,4,5\} \qquad f: A \to A$$
$$f = \{(1,2),(2,4),(3,1),(4,3),(5,5)\}$$

Representação:

- \rightarrow Por letras minúsculas gregas (π, σ, τ)
- → Número de permutações: n!
- \rightarrow Conjunto de todas as permutações: $|S_n| = n!$

<u>Propriedades</u>

$$\forall \pi, \sigma, \tau \in S_n, \pi \circ \sigma \in S_n$$

$$\forall \pi, \sigma, \tau \in S_n, \pi \circ (\sigma \circ \tau) = (\pi \circ \sigma) \circ \tau$$

$$\forall \pi \in S_n, \pi \circ \iota = \iota \circ \pi = \pi$$

$$\forall \pi \in S_n, \pi^{-1} \in S_n e \pi \circ \pi^{-1} = \pi^{-1} \circ \pi = \iota$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO: Seja a permutação S₅ a seguir:

$$\pi = \{(1,2),(2,4),(3,1),(4,3),(5,5)\}$$

- a) expresse-a na forma de tabela:
- b) expresse-a na forma de quadro:
- c) expresse-a na forma de ciclos:

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO:
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

X	$\pi(x)$
1	2
2	4
3	1
4	3
5	5

c) Ciclos

b) Quadro

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO:
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

10	
X	$\pi(x)$
1	2
2	4
3	1
4	3
5	5

c) Ciclos

b) Quadro

$$\pi = \{ 1 \quad 2 \quad 3 \quad 4 \quad 5 \}$$

$$2 \quad 4 \quad 1 \quad 3 \quad 5$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO:
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

22	
X	$\pi(x)$
1	2
2	4
3	1
4	3
5	5

c) Ciclos $\pi = (1,2,3,4)(5)$

b) Quadro

$$\pi = \{ \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{matrix} \}$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO:
$$\pi = \{(1,2), (2,4), (3,1), (4,3), (5,5)\}$$

a) Tabela:

2	
Х	$\pi(x)$
1	2
2	4
3	1
4	3
5	5
	·

b) Quadro

$$\pi = \{ \begin{matrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{matrix} \}$$

c) Ciclos $\pi = (1,2,3,4)(5)$

$$\pi(1)=2$$

$$\pi(2)=4$$
 $\pi(5)=5$

$$\pi(4) = 3$$

$$\pi(3) = 1$$

FORMAS DE REPRESENTAÇÃO DA PERMUTAÇÃO:

EXEMPLO:

$$\pi = \begin{cases} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 7 & 5 & 6 & 3 & 8 & 1 & 4 & 9 \end{cases} \in S_9$$

Ciclos:

Grafos:

INVERSA:

$$\pi(k)=j$$
 \rightarrow se j segue k em um ciclo π , $\pi^{-1}(j)=k$ \rightarrow k segue j em um ciclo π^{-1}

EXEMPLO:

$$\pi = (1,2,7,9,8)(5,6,3)(4) \in S_9$$

$$\pi^{-1}$$
=(8,9,7,2,1)(3,6,5)(4)

GRUPOS DE PERMUTAÇÃO

Seja A um conjunto não vazio. Denotaremos por $P(A) = \{f : A \rightarrow A, f \text{ \'e bijetora}\}$ Então, $(P(A), \circ, i_A)$ é um grupo em que a operação \circ é a composição de funções e o elemento neutro é a função identidade de A, denotado i_A .

O grupo $(P(A), \circ, i_A)$ é chamado grupo das permutação de A.

GRUPOS DE PERMUTAÇÃO

EXEMPLO: $S_3(P)$, $P=\{1,2,3\}$, operação composição de funções

 $S_3 = \{f_0, f_1, f_2, f_3, f_4, f_5, f_6\}$

$$f_0 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

$$f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

GRUPOS DE PERMUTAÇÃO

EXEMPLO: $S_3(P)$, $P=\{1,2,3\}$

0	f_0	f_1	f_2	f_3	f_4	f_5
f_0	f_0	f_1	f_2	f_3	f_4	f_5
f_1	f_1	f_2	f_0	f_4	f_5	f_3
f_2	f_2	f_0	f_1	f_5	f_3	f_4
f_3	f_3	f_5	f_4	f_0	f_2	f_1
f_4	f_4	f_3	f_5	f_1	f_0	f_2
f_5	f_5	f_4	f_3	f_2	f_1	f_0

GRUPOS DE PERMUTAÇÃO

EXEMPLO: $S = \{1,2,3\}$, f, $g \in S_3$, calcule $(f \circ g)$ e $(g \circ f)$, dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

Verifique se é comutativa.

GRUPOS DE PERMUTAÇÃO

EXEMPLO: $S = \{1,2,3\}$, f, $g \in S_3$, calcule $(f \circ g)$ e $(g \circ f)$, dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

$$f \circ g(1) = f(g(1)) = f(2) = 1$$

GRUPOS DE PERMUTAÇÃO

EXEMPLO:
$$S = \{1,2,3\}$$
, f , $g \in S_3$, calcule $(f \circ g)$ e $(g \circ f)$, dados:

$$f: \begin{cases} f(1)=2 \\ f(2)=1 \\ f(3)=3 \end{cases} \qquad g: \begin{cases} g(1)=2 \\ g(2)=3 \\ g(3)=1 \end{cases}$$

$$f \circ g(1) = f(g(1)) = f(2) = 1$$
 $\neq g \circ f(1) = g(f(1)) = g(2) = 3$
 $f \circ g(2) = f(g(2)) = f(3) = 3$ $\neq g \circ f(2) = g(f(2)) = g(1) = 2$
 $f \circ g(3) = f(g(3)) = f(1) = 2$ $\neq g \circ f(3) = g(f(3)) = g(3) = 1$
 $f \circ g \neq g \circ f$ page 6 grupo comutative

não é grupo comutativo

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

EXEMPLO: Em S_4 calcule $(f \circ g)$ e $(g \circ f)$, dados:

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \quad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

Verifique se é comutativa.

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f(g(1))=$$

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f(g(1))=f(1)=3$$
 $f(g(3))=f(4)=4$

$$f(g(2))=f(3)=2$$
 $f(g(4))=f(2)=1$

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \quad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g(f(1)) = g(3) = 4 \qquad g(f(3)) = g(2) = 3$$
$$g(f(2)) = g(1) = 1 \qquad g(f(4)) = g(4) = 2$$

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$

GRUPOS DE PERMUTAÇÃO

Outra notação:
$$f = \begin{bmatrix} 1 & 2 & \dots & n \\ f(1) & f(2) & \dots & f(n) \end{bmatrix}$$

$$f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix} \qquad g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix}$$

$$f \circ g = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} \qquad g \circ f = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{bmatrix}$$

$$f \circ g \neq g \circ f \qquad \text{não \'e grupo comutativo}$$