Soft-margin SVM and Kernels

Machine Learning - Prof. Dr. Stephan Günnemann

Leonardo Freiherr von Lerchenfeld

December 16, 2017

Contents

1	Soft-margin SVM	2
	1.1 Problem 1	
	1.2 Problem 2	4
2	Kernels	6
	2.1 Problem 3	4
3	Gaussian kernel	6
	3.1 Problem 4	4
	3.2 Problem 5	•
	3.3 Problem 6	•
4	Kernelized k-nearest neighbors	•
	4.1 Problem 7	•

1 Soft-margin SVM

1.1 Problem 1

For a linearly separable dataset, a hard-margin SVM can be applied. Soft-margin SVM might find a large margin, because it also optimizes the margin. If the datapoints of class - and class + have in general a large distance to each other, but there is a single datapoint from class - very close to the datapoints from class +, then it is very likely that this particular point will not be correctly labeled.

1.2 Problem 2

From $\alpha_i = C - \mu_i$ and dual feasibility $\alpha_i \geq 0$, we get

$$0 < \alpha_i < C$$

Therefore, we need to ensure that C > 0

If C=0, then $\forall i \ \alpha_i=0$

If C < 0, then dual feasibility does not hold anymore.

2 Kernels

2.1 Problem 3

To show that for $c \ge 0$ and $d \in \mathbb{N}^+$ the function $K(x,y) = (x^Ty + c)^d$ is a valid kernel, we use **Techniques for constructing new kernels**: Given valid kernels K_1 , K_2 and any positive constant $\alpha \ge 0$, the following new kernels will also be valid:

$$K(x,y) = K_1(x,y)K_2(x,y)$$
 (1)

$$K(x,y) = K_1(x,y) + \alpha \tag{2}$$

While (1) is given (from the Practical Session), (2) has to be proven. Let Φ_1 denote a feature map of K_1 . Then, using the feature map $\Phi: x \mapsto [\Phi_1(x), \sqrt{\alpha}]^T$, we have

$$\langle \Phi(x), \Phi(y) \rangle = \langle \Phi_1(x), \Phi_1(y) \rangle + \alpha = K_1(x, y) + \alpha = K(x, y)$$

Let's start the show

$$K(x,y) = (x^T y + c)^d$$
$$= \prod_{i=1}^d x^T y + c$$

Using Rule (1) we have to prove that $x^Ty + c$ is a valid kernel. We know that x^Ty is the linear kernel and a valid kernel as discussed in the lecture. Rule (2) states that adding a positive constant is valid. Hence, $K(x,y) = (x^Ty + c)^d$ is a valid kernel.

3 Gaussian kernel

3.1 Problem 4

We cannot directly apply $\Phi_{\infty}(x)$ to data, because an infinite feature space requires infinite storage space.

3.2 Problem 5

Taylor series of
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} = 1 + \sum_{n=1}^{\infty} \frac{z^n}{n!}$$

$$\Phi_{\infty}(x) = \exp\left(-\frac{x^2}{2\sigma^2}\right) \left\{1, \frac{x}{\sigma}, \frac{1}{\sqrt{2}}(\frac{x}{\sigma})^2, \dots, \frac{1}{\sqrt{i!}}(\frac{x}{\sigma})^i, \dots\right\}$$

$$K(x, y) = \Phi_{\infty}(x)^T \Phi_{\infty}(y)$$

$$= \langle \exp\left(-\frac{x^2}{2\sigma^2}\right) \left\{1, \frac{x}{\sigma}, \frac{1}{\sqrt{2}}(\frac{x}{\sigma})^2, \dots, \frac{1}{\sqrt{i!}}(\frac{x}{\sigma})^i, \dots\right\},$$

$$\exp\left(-\frac{y^2}{2\sigma^2}\right) \left\{1, \frac{y}{\sigma}, \frac{1}{\sqrt{2}}(\frac{y}{\sigma})^2, \dots, \frac{1}{\sqrt{i!}}(\frac{y}{\sigma})^i, \dots\right\}\rangle$$

$$= \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \sum_{i=0}^{\infty} \frac{1}{i!} \left(\frac{xy}{\sigma^2}\right)^i$$

$$= \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right) \exp\left(\frac{xy}{\sigma^2}\right)$$

$$= \exp\left(-\frac{(x - y)^2}{2\sigma^2}\right)$$

As the chapter suggests, we have a Gaussian kernel, where overfitting occurs with a too little variance σ .

3.3 Problem 6

Yes, any finite set can be linearly separated in the feature space. However, when we have outliers, then we must set σ very small, which comes at the cost of generality.

4 Kernelized k-nearest neighbors

4.1 Problem 7

The distance to sample in feature space is given by

$$d(x,y) = ||\Phi(x) - \Phi(y)||_2$$

As we are not interested in the absolute values of the distance, but on the relative values, we can take the squared distance

$$d(x, x^{s_i})^2 = (\Phi(x) - \Phi(x^{s_i}))^T (\Phi(x) - \Phi(x^{s_i}))$$

$$= \Phi(x)^T \Phi(x) - 2(\Phi(x) - \Phi(x^{s_i})) + \Phi(x^{s_i})^T \Phi(x^{s_i})$$

$$= K(x, x) - 2K(x, x^{s_i}) + K(x^{s_i}, x^{s_i})$$