THE SOUTH AFRICAN MATHEMATICS OLYMPIAD SENIOR SECOND ROUND 2018

Solutions

1. Answer 820

$$2018 - (1000 + 100) - (\sqrt{100})^2 + 2 = 2018 - 1100 - 100 + 2 = 820.$$

2. Answer 012

From left to right, the first pile has six blocks, the second four blocks, and the third two blocks. The total number of blocks is 6 + 4 + 2 = 12.

3. **Answer 009**

The two smaller numbers must be positive, different, and as small as possible, that is, 1 and 2. The largest number is therefore 12 - 1 - 2 = 9.

4. Answer 031

The numbers of problems solved on the five days are 1, 2, 4, 8, 16, and the total number of problems solved is 1 + 2 + 4 + 8 + 16 = 31, which can also be found from the formula $2^5 - 1$.

5. **Answer 052**

The area of a square with perimeter P is $(\frac{1}{4}P)^2 = \frac{1}{16}P^2$, and the area of a circle with circumference P is $\pi(\frac{P}{2\pi})^2 = \frac{1}{4\pi}P^2$. The ratio of the areas is therefore $\frac{16}{4\pi} = \frac{4}{\pi}$, so the area of the circle is $\frac{4}{\pi}(13\pi) = 52$.

6. Answer 006

If the child's age is x, then $x+3=(x-3)^2$, giving $x^2-7x+6=0$, which has solutions x=6 or x=1. [The answer x=1 is not valid, because then x+3=4 and $x-3=-2\neq \sqrt{4}$. Remember that square roots cannot be negative, and $\sqrt{4}=+2$.]

7. Answer 968

If the original triangle has base b and height h, then $\frac{1}{2}bh = 800$. The new triangle has base $1.1 \times b$ and height $1.1 \times h$, so its area is $\frac{1}{2}(1.1b)(1.1h) = 1.21 \times \frac{1}{2}bh = 1.21 \times 800 = 968$.

8. Answer 960

There are ten such numbers from 51 to 141, so $51+61+\cdots+131+141=10\times\frac{1}{2}(51+141)=5\times192=960$, using the formula for the sum of an arithmetic series. [Otherwise simply add them.]

9. **Answer 100**

Since $AB\parallel CD$, it follows that $A\widehat{B}C = 180^{\circ} - 110^{\circ} = 70^{\circ}$, so $A\widehat{B}D = 70^{\circ} - 30^{\circ} = 40^{\circ}$.

Then $B\widehat{A}D=A\widehat{B}D=40^\circ$ also, since AD=BD, and finally $A\widehat{D}B=180^\circ-(40^\circ+40^\circ)=100^\circ.$

10. **Answer 032**

If the larger number is n, then the smaller is n-8, so 4(n-8)=3n, giving n=32.

11. **Answer 477**

From 25 to 99 there are 99 - 25 + 1 = 75 numbers with two digits each, and from 100 to 208 there are 208 - 100 + 1 = 109 numbers with three digits each. The total number of digits is therefore $2 \times 75 + 3 \times 109 = 477$.

12. **Answer 061**

If Thembi has k keyrings, then k-1 must be positive and divisible by 2, 3, 4, 5. The smallest value of k-1 is the LCM of 2, 3, 4, 5, which is 60, so k=61.

13. **Answer 401**

The sum of any two sides of a triangle must be greater than the remaining side, so if the unknown side is s cm, then 150 + s > 200. The smallest integer value is therefore s = 51, and the minimum perimeter is 200 + 150 + 51 = 401.

14. **Answer 009**

If the tens and units digits of the number are T and U, then the number is 10T + U, which is equal to $T \times U + T + U$. Therefore 9T = TU, so U = 9 (since $T \neq 0$), and T can have any value from 1 to 9. [If T = 0, then it is not a 2-digit number.]

15. **Answer 270**

Since the paths are straight lines, the pairs of angles A_1 and A_2 , B_1 and B_2 , and D_1 and D_2 are supplementary angles. Considering the sum of all the angles of the three quadrilaterals XACD, AYBC and CBZD, we have the following:

$$x + \angle A + y + \angle B + z + \angle D + 3 \times \angle C = 3 \times 360^{\circ}$$

$$\therefore x + 180^{\circ} + y + 180^{\circ} + z + 180^{\circ} + 3 \times 90^{\circ} = 3 \times 360^{\circ}$$

$$\therefore x + y + z = 270^{\circ}$$

A much easier, shorter solution is to consider the special case of respectively moving Y to H, X to I, and Z to J, from which it immediately follows that $x+y+z=3\times 90^\circ=270^\circ$. One can use this simplified method because the sum of the marked angles is clearly independent of the positions of X, Y and Z. (This strategy holds provided a part of all the indicated paths remain on the respective surfaces containing the three quadrilaterals XACD, AYBC and CBZD. For example, moving X to C, Y to the corner directly below C, and Z to J would not be valid, since no part of the path XDZ would then still lie on the rectangular surface containing quadrilateral XACD.)

16. **Answer 039**

If
$$g(x) = f(x) - 5 = ax^7 + bx^3 + cx$$
, then $g(x)$ involves only odd powers of x , so $g(-x) = -g(x)$. Therefore $f(7) = g(7) + 5 = -g(-7) + 5 = -[f(-7) - 5] + 5 = -[-29 - 5] + 5 = 39$.

17. **Answer 048**

The horizontal distance between A and B is 11 - 3 = 8, so the vertical distance between them is $8\sqrt{35}$, since they lie on a line of gradient $\sqrt{35}$. By Pythagoras' theorem, $AB^2 = 8^2(1+35) = 8^2 \times 6^2$, so AB = 48.

18. **Answer 003**

We are given that 2a + b = 15, so b = 15 - 2a. Considering the possible values of a

from 1 to 9, we must eliminate:

a = 1 and a = 2 because b > 9,

a = 5 because b = a,

a = 6 because 636 is divisible by 4,

a = 8 and a = 9 because b < 0.

This leaves the three numbers 393, 474, and 717.

19. **Answer 004**

The sequence S_k contains 2019 if 2019 = 1 + mk for some m, that is, if k is a factor of 2018, so we need all the factors of 2018. Clearly 2018 = 2 × 1009, and (not so easily) 1009 is prime. (You need to test for divisibility by all primes up to 31, that is, less than $\sqrt{1009}$). Thus the four factors of 2018 are 1, 2, 1009, and 2018.

20. **Answer 010**

The sum of the roots of the equation is -a, so a must also be an integer. For rational roots, the discriminant $a^2 - 24a$ must be a perfect square, say $a^2 - 24a = d^2$, and we complete the square to give $(a-12)^2 = d^2 + 12^2$. The Pythagorean triples including 12 are $3 \times (3,4,5)$, $4 \times (3,4,5)$, (5,12,13), and (12,35,37), so $a-12 = \pm 15, \pm 20$, ± 13 , ± 37 or ± 12 (in the case that d=0). This gives 10 values of a for which the equation has rational roots, and a quick check shows that in all 10 of these cases the roots are indeed integers.

21. Answer 018

In square metres, let x be the area covered by three layers of carpet, and z the area covered by exactly one layer. Then x + 24 + z = 140 and 3x + 2(24) + z = 200. These equations simplify to x + z = 116 and 3x + z = 152, so 2x = 36 and x = 18. Alternatively, as with finding the number of elements in the union of three sets, it is possible to use a Venn diagram or the Principle of Inclusion and Exclusion.

22. **Answer 027**

The series ends after at most four games, and we can list the sequences of game winners leading to an overall series win for A:

AA (probability $\frac{1}{4}$);

ABA, BAA (probability $\frac{1}{8}$ each);

ABBA, BABA, BBAA (probability $\frac{1}{16}$ each).

Thus the probability of a series win for A is $\frac{1}{4} + \frac{2}{8} + \frac{3}{16} = \frac{11}{16}$, and 11 + 16 = 27.

23. Answer **021**

Since $YE \times ME = TTT = T \times 3 \times 37$, we know that one of the factors (say YE) is divisible by 3 and the other factor ME is divisible by 37, so ME = 37 or 74. If ME = 74, then E = 4, so YE = 24 or 54 or 84, which are all too large, since $74 \times 24 > 1000$. Thus ME = 37 and YE can only be 27, since 57 and 87 are too large. Therefore the equation is $27 \times 37 = 999$ and E + M + T + Y = 7 + 3 + 9 + 2 = 21.

24. **Answer 200**

Firstly $tan(A\widehat{B}E) = \frac{EA}{AB} = \frac{1}{2}$, so

$$\tan(E\widehat{B}F) = \tan(45^{\circ} - \alpha) = \frac{1 - \frac{1}{2}}{1 + 1 \cdot \frac{1}{2}} = \frac{1}{3}.$$

For convenience, let $x=20\sqrt{3}$. Then $\triangle ABC$ has area $2x^2$ and $\triangle ABE$ has area x^2 . By Pythagoras' theorem, $BE=x\sqrt{5}$, so $EF=\frac{1}{3}x\sqrt{5}$ and the area of $\triangle BEF$ is $\frac{5}{6}x^2$. Finally, the area of $\triangle CEF$ equals $2x^2-x^2-\frac{5}{6}x^2=\frac{1}{6}x^2=200$.

The fact that $\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{3}) = 45^{\circ}$ can be proved in other ways, for example, by joining the points (2;1) and (1;3) to the origin and to each other to form an isosceles right-angled triangle. This breaks the right angle xOy into the angles $\tan^{-1}(\frac{1}{2})$, 45° , and $\tan^{-1}(\frac{1}{3})$.

Alternatively, drop a perpendicular from F to AC to intersect it at D. Then $\triangle CFA|||\triangle CBA$ and $\triangle EFD|||\triangle BEA$. Therefore, if we let FD=y, then CD=y

and
$$DE = 2y$$
. Hence $CE = 3y = 20\sqrt{3}y$ and so $y = \frac{20}{\sqrt{3}}$. Thus, area of

$$\triangle CFE = \frac{1}{2} \times 20\sqrt{3} \times \frac{20}{\sqrt{3}} = 200.$$

25. Answer 970

Firstly, let $a = (\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, so we must estimate a^3 . If $b = 5 - 2\sqrt{6}$, then a + b = 10 and ab = 1, so

$$1000 = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + 3ab(a+b) + b^3 = a^3 + 30 + b^3.$$

It follows that $a^3 = 970 - b^3 = 970 - a^{-3}$, which is just less than 970.

Alternatively, instead of trying to compute $(\sqrt{3} + \sqrt{2})^6$ directly, we compute something slightly larger and easier to compute, because many terms cancel. Namely, using the binomial theorem, we compute $(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6 = 2[27 + 15(18 + 12) + 8] = 970$. Since $0 < \sqrt{3} - \sqrt{2} < 1$, 970 is the smallest integer larger than $(\sqrt{3} + \sqrt{2})^6$.

Equations: tan $(A\widehat{B}E) = \frac{EA}{AB} = \frac{1}{2}$, so dat

$$\operatorname{tan}(E\widehat{B}F) = \operatorname{tan}(45^{\circ} - \alpha) = \frac{\frac{1}{2} - \frac{1}{2}}{1 + 1 \cdot \frac{1}{2}} = \frac{1}{3}.$$

Geriefshalwe last ons $x = 20\sqrt{3}$. Dan is $\triangle ABC$ se oppervlakte $2x^2$ en $\triangle ABE$ se oppervlakte x^2 . Uit Pythagoras se stelling is $BE = x\sqrt{5}$, sodat $EF = \frac{1}{3}x\sqrt{5}$ en die oppervlakte van $\triangle BEF$ is $\frac{5}{6}x^2$. Die oppervlakte van $\triangle CEF$ is dan gelyk aan $2x^2$ and $2x^2$

 $2x^2 - x^2 - \frac{5}{6}x^2 = \frac{1}{6}x^2 = 200$. Die feit $\tan^{-1}(\frac{1}{2}) + \tan^{-1}(\frac{1}{3}) = 45^{\circ}$ kan op ander maniere bewys word, bv. deur die punte (2;1) en (1;3) met die oorsprong en met mekaar te verbind om 'n gelykbenige reghoekige driehoek te vorm. Nou is die regte hoek xOy opgebreek in die hoeke tan⁻¹ $(\frac{1}{2}), 45^{\circ}$, en $\tan^{-1}(\frac{1}{3})$.

Alternatiewelik, kan ons 'n loodlyn vanaf F op AC trek om AC in D te sny. Dan is $\triangle CFA|||\triangle CBA$ en $\triangle EFD|||\triangle BEA$. As FD = y, dan is CD = y en

DE = 2y. Dus is $CE = 3y = 20\sqrt{3}y$ en $y = \frac{20}{\sqrt{3}}$ en die oppervlakte van

$$\triangle CFE = \frac{1}{2} \times 20\sqrt{3} \times \frac{20}{\sqrt{3}} = 200.$$

is a + b = 10 en a + b = 1, sodat

25. Antwoord 970 Eerstens, last $a = (\sqrt{3} + \sqrt{2})^2 = 5 + 2\sqrt{6}$, en nou kan ons a^3 skat. As $b = 5 - 2\sqrt{6}$,

$$10000 = (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + 3ab(a+b) + b^3 = a^3 + 30 + b^3.$$

Dit volg nou dat $a^3 = 970 - b^3 = 970 - a^{-3}$, wat net kleiner is as 970. Alternatiewelik, kan ons iets makliker en net groter as $(\sqrt{3} + \sqrt{2})^6$ probeer bereken, waar meer terme kan uitkanselleer. Deur die binomiaalstelling te gebruik, bereken ons dan $(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6 = 2[27 + 15(18 + 12) + 8] = 970$. Omdat

ons dan $(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6 = 2[27 + 15(18 + 12) + 8] = 970$. Omdat $(\sqrt{3} + \sqrt{2})^6 + (\sqrt{3} - \sqrt{2})^6 + (\sqrt{3} + \sqrt{2})^6$.

18. Antwoord 003

Uit 2a + b = 15 het ons b = 15 - 2a. Uit die moontlike waardes van a tot 9,

moet ons sekere waardes elimineer:

0 < 0 and 0 < 0, where 0 < 0 is 0 < 0.

a = b, want b = a,

a = 6, want 636 is deelbaar deur 4,

a = 8 on a = 8 and b = 0.

Dit laat die drie getalle, naamlik 393, 474, en 717.

19. Antwoord 004

Die ry S_k bevat 2019 as 2019 = 1 + mk vir sommige m, i.e., as k 'n faktor van 2018 is, en gevolglik benodig ons al die faktore van 2018. Ons weet dat 2018 = 2×1009 , en (dalk nie so maklik nie) dat 1009 priem is. (Jy moet vir deelbaarheid deur alle priemgetalle toets tot by 31, m.a.w. kleiner as $\sqrt{1009}$). Dus is die vier faktore van 2018 gelyk aan 1, 2, 1009 en 2018.

20. Antwoord 010

Die som van die wortels van die vergelyking is -a, sodat a ook 'n heelgetal moet wees. Vir rasionale wortels is die diskriminant $a^2 - 24a$ 'n volkome vierkant, $a^2 - 24a$ 'n volkome vierkant, $a^2 - 24a = 24a$ 'n volkome vierkant, $a^2 - 24a = 24a$ one dat 12 insluit, is $a \times (a, a, b)$, $a \times (a, a, b)$

21. Antwoord 018

Laat x die oppervlakte, in vierkante meter, wees van die deel wat deur slegs een laag mat drie lae mat. Laat z die oppervlakte wees van die deel wat deur slegs een laag mat bedek word. Dan is x + 24 + z = 140 en 3x + 2(24) + z = 200. Hierdie vergelykings

vereenvoudig as x + z = 116 en 3x + z = 152, sodat 2x = 36 en x = 18. Alternatiewelik, soos ons die aantal elemente vind in die vereniging van drie versamelings is dit moontlik om 'n Venn diagram te gebruik of the Beginsel van Insluiting en Uitsluiting.

720 broowthA .22

Die reeks eindig na 'n maksimum van vier spelle, en ons kan dan 'n lys maak van

die spelwenners wat lei tot 'n totale reeksoorwinning vir A:

AA (waarskynlikheid $\frac{1}{4}$);

ABA, BAA (waarskynlikheid $\frac{1}{8}$ each);

ABBA, BABA, BBAA (waarskynlikheid $\frac{1}{16}$ elk. Dus is die waarskynlikheid van 'n reeksoorwinning vir A gelyk aan $\frac{1}{4} + \frac{2}{8} + \frac{3}{16} = \frac{11}{16}$.

.72 = 31 + 11 na

23. Antwoord 021

Omdat $YE \times ME = TTT = T \times 3 \times 37$, weet one dat een van die faktore (bv. YE) deelbaar is deur 3 en die ander faktor ME deelbaar is deur 37, sodat ME = 37 of 74. As ME = 74, dan is E = 4, en YE = 24 of 54 of 84, wat almal te groot is, want $74 \times 24 > 1000$. Dus is ME = 37 en YE kan slegs 27 wees omdat 57 en 87 albei te groot is. Die vergelyking is dan $27 \times 37 = 999$ en E + M + T + Y = 7 + 3 + 9 + 2 = 21. groot is. Die vergelyking is dan $27 \times 37 = 999$ en E + M + T + Y = 7 + 3 + 9 + 2 = 21.

174 broowta 4177

Vanaf 25 tot 99 is daar 99 - 25 + 1 = 75 getalle met twee syfers elk, en vanaf 100 tot 208 is daar 208 - 100 + 1 = 109 getalle met drie syfers elk. Die totale aantal syfers is dus $2 \times 75 + 3 \times 109 = 477$.

12. Antwoord 061

Thembi het k sleutelringe, en k-1 is positief en deelbaar deur 2, 3, 4, 5. Die kleinste waarde van k-1 is die KGV van 2, 3, 4, 5, wat gelyk is aan 60, en dus is k=61.

13. Antwoord 401

Die som van enige twee sye van 'n driehoek moet groter wees as die derde sy en as die onbekende sy s cm is, is 150 + s > 200. Die kleinste heelgetalwaarde is dan s = 51, en die kleinste omtrek is 200 + 150 + 51 = 401.

14. Antwoord 009

As die tiene- en enesyfers van die getal onderskeidelik T en U is, is die getal 10T+U, wat gelyk is aan $T \times U + T + U$. Dan is 9T = TU, sodat U = 9 (omdat $T \neq 0$), en T kan enige waarde van 1 tot 9 hê. [As T = 0, dan is dit nie 'n 2-syfergetal nie.]

ots broowing .dl

en
$$A_2$$
, B_1 en B_2 , en D_1 en D_2 supplementêre hoeke.
Beskou die som van al die hoeke van die drie vierhoeke $XACD$, $AYBC$ en $CBZD$. Dan het ons die volgende:

Aangesien die paaie reguit lyne is, is die pare hoeke A_1

$$^{\circ}088 \times 8 = 0.2 \times 8 + 0.2 + x + 0.81 + y + 0.81 + x = 0.088 \times 8 = 0.09 \times 8 + 0.081 + x + 0.081 + y + 0.081 + x = 0.072 = x + y + x = 0.072$$

In Veel makliker en korter oplossing is om die spesiale geval te beskou waar respektiewelik Y na H, X na I, en Z na J geskuif word, waaruit dit dan onmiddellik volg dat $x + y + z = 3 \times 90^\circ = 270^\circ$. Ons kan hierdie vereenvoudigde metode gebruik want die som van die aangeduide hoeke is duidelik onafhanklik van die posisies van X, Y en Z. (Hierdie strategie werk mits 'n gedeelte van alle aangeduide paaie op die onderskeie vlakke bly wat die drie vierhoeke X ACD, AY BC and CB ZD bevat. Byvoorbeeld, om X na C, Y na die hoekpunt direk onder C, en Z na J te skuif sal nie geldig wees nie, aangesien geen gedeelte van die pad X DZ dan meer op die reghoekige vlak sal lê wat die vierhoek X ACD bevat nie.)

16. Antwoord 039

As $g(x) = f(x) - 5 = ax^7 + bx^3 + cx$, dan bevat g(x) slegs onewe magte van x, en is g(-x) = -g(x). Dus f(7) = g(7) + 5 = -g(-7) + 5 = -g(-7) = 39.

840 broowta .71

Die horisontale afstand tussen A en B is 11-3=8, sodat die vertikale afstand tussen hulle gelyk is aan $8\sqrt{35}$, omdat hulle op 'n lyn met helling $\sqrt{35}$ lê. Volgens die stelling van Pythagoras is $AB^2=8^2(1+35)=8^2\times 6^2$, sodat AB=48.

SENIOB LMEEDE BONDLE 5018 DIE SNID-VEBIKVVNSE MISKNNDE OFIWLIVDE

sgnissolqO

1. Antwoord 820

$$2028 = 2 + 001 - 0011 - 8102 = 2 + 2(\overline{001})^{2} + 2 = 2018 - 1100 - 1001 + 2001 = 200.$$

2. Antwoord 012

Van links na regs is daar onderskeidelik ses blokkies, vier blokkies en twee blokkies op elke stapel. Die totale aantal blokkies is 6+4+2=12.

3. Antwoord 009

Die twee kleiner getalle moet positief, verskillend en so klein as moontlik wees, i.e., I en 2. Die grootste getal is dus 12 - 1 - 2 = 9.

180 broowth . $^{\downarrow}$

Die hoeveelheid wat gedurende die vyf dae opgelos word, is 1, 2, 4, 8, 16, en die totale hoeveelheid probleme wat opgelos is, is 1 + 2 + 4 + 8 + 16 = 31, wat ook deur die formule $2^5 - 1$ verkry kan word.

5. Antwoord 052

Die oppervlakte van 'n vierkant met omtrek P is $(\frac{1}{4}P)^2 = \frac{1}{16}P^2$ en die oppervlakte van 'n sirkel met omtrek P is $\pi(\frac{P}{2\pi})^2 = \frac{1}{4\pi}P^2$. Die verhouding van die oppervlaktes is dus $\frac{16}{4\pi} = \frac{4}{\pi}$, en dus is die oppervlakte van die sirkel $\frac{4}{\pi}(13\pi) = 52$.

6. Antwoord 006

As die kind se ouderdom x is, is $x+3=(x-3)^2$, sodat $x^2-7x+6=0$, met oplossings x=6 of x=1. [Die antwoord x=1 is nie geldig nie, omdat ons dan het dat x+3=4 en $x-3=-2 \neq \sqrt{4}$. Onthou dat vierkantwortels nie negatief kan wees nie, en $\sqrt{4}=+2$.]

889 broowinA .7

As die oorspronklike driehoek basis b het en hoogte h, dan is $\frac{1}{2}bh = 800$. Die nuwe driehoek se basis is $1.1 \times b$ en die hoogte is $1.1 \times h$, en dus is die oppervlakte $\frac{1}{2}[1.1b](1.1h) = 1.21 \times \frac{1}{2}bh = 1.21 \times 800 = 968$.

8. Antwoord 960

Van 51 tot 141 is daar tien sulke getalle, en is $51+61+\dots+131+141=10\times \frac{1}{2}(51+141)=5\times 192=960,$ deur die formule vir die som van 'n rekenkundige reeks te gebruik. [Andersins kan dit eenvoudig net bymekaar getel word.]

9. Antwoord 100

 $AB\parallel CD$, en dus volg dit dat $A\widehat{B}C=180^\circ-110^\circ=70^\circ$, sodat $A\widehat{B}D=70^\circ-30^\circ=40^\circ$. Dan is $B\widehat{A}D=A\widehat{B}D=40^\circ$, omdat AD=BD, en dus is $A\widehat{D}B=180^\circ-(40^\circ+40^\circ)=100^\circ$.

10. Antwoord 032

Last die groter getal n wees sodat die kleiner een dan gelyk is aan n-8, met 4(n-8)=3n, wat n=32 gee.