Lecture 12

Goals

- Be able to determine bandwidth efficiency and energy efficiency of orthogonal signals.
- Be able to synthesize different types of orthogonal signals.

Orthogonal Signals

• A set of signals $\{\varphi_i(t): 0 \le t \le T, 0 \le i \le M-1\}$ are said to be orthogonal (over the interval [0, T]) if

$$\int_0^T \varphi_i(t)\varphi_j(t)dt = 0, \quad i \neq j.$$

• In most cases the signals will have the same energy and it is convenient to normalize the signals to unit energy. A set of signals $\{\varphi_i(t): 0 \le t \le T, 1 \le i \le M\}$ are said to be orthonormal (over the interval [0,T]) if

$$\int_0^T \varphi_i(t)\varphi_j(t)dt = \begin{cases} 0, & i \neq j \\ 1, & i = j. \end{cases}$$

Orthogonal Signals

The set of orthogonal signals can be described by

$$s_0(t) = \sqrt{E}\varphi_0(t) \int_{S_1^2(t)}^2 dt = E$$

$$s_1(t) = \sqrt{E}\varphi_1(t)$$

$$s_2(t) = \sqrt{E}\varphi_2(t)$$

$$s_{M-1}(t) = \sqrt{E}\varphi_{M-1}(t)$$

- Clearly we need N = M orthonormal signals to represent M orthogonal signals.
- Orthonormal signals are also equal energy signals (namely energy 1).

Orthogonal Signals Demodulation

= (rct), sict) dt movimum this
= (rct), sict) dt - 1 (rct) sict) dt

Correlation vs. Filtering

- Assume $\varphi_i^*(t)$ is time limited to the interval [0, T].
- The receiver needs to compute ∫ r(t)φ_i*(t)dt.
 A filter with input r(t) and impulse response h(t) = φ_i*(T t) sampled at time T has output

$$r_i = \int h(T-t)r(t)dt = \int \varphi_i^*(T-(T-t))r(t)dt$$

= $\int \varphi_i^*(t)r(t)dt$

 So either a correlator whereby the received signal is correlated with the orthonormal signal can be used to obtain r_i OR a matched filter with impulse reponse $h(t) = \varphi_i^*(T-t)$ which is sampled at time t = T can be used to obtain r_i .

Correlation vs. Filtering

Orthogonal Modulation Performance

- Suppose signal i is transmitted $(0 \le i \le M 1)$.
- The output of these filters is given by

$$r_m = \left\{ egin{array}{ll} n_{oise} & {
m along} \\ \eta_m, & m
eq i \\ \sqrt{E} + \eta_m, & m = i \\ {
m signal} & {
m plus} & {
m noise} \end{array}
ight.$$

where $\{\eta_m, m = 0, 1, 2, ..., M - 1\}$ is a sequence of independent, identically distributed Gaussian random variables with mean zero and variance $N_0/2$.

• If M=4 and $r=(r_0,...,r_3)=(0.6,-.3,\overbrace{1.2}^{\text{longet}}-...,1)$ then the decision is that signal s_2 was sent because $r_2=\max(r_i,i=0,...,3)$

Simulation M = 8 (s_0 sent, $E_b/N_0 = 3$ dB)

Simulation M = 8 (s_0 sent, $E_b/N_0 = 3$ dB)

Simulation M = 8 (s_0 sent, $E_b/N_0 = 6$ dB)

Simulation M = 8 (s_0 sent, $E_b/N_0 = 6$ dB)

Simulation M = 64 (so sent, $E_b/N_0 = 3dB$)

Simulation M = 64 (s_0 sent, $E_b/N_0 = 3$ dB)

Simulation M = 256 (s_0 sent, $E_b/N_0 = 3$ dB)

Simulation M = 256 (s_0 sent, $E_b/N_0 = 3$ dB)

Error Probability

N= M

To determine the probability of error we need to determine the probability that the filter output corresponding to the signal present is smaller than one of the other filter outputs. $\gamma_2 = \sqrt{\epsilon_1 + \epsilon_2}$

$$P_{e,0} = P\{r_0 < \max(r_1, ..., r_{M-1}) | s_0 \text{ transmitted} \}$$

$$= 1 - P\{r_1 < r_0, r_2 < r_0, r_3 < r_0, ..., r_{M-1} < r_0 | s_0 \text{trans} \}$$

$$= 1 - P\{\eta_1 < \sqrt{E} + \eta_0, \eta_2 < \sqrt{E} + \eta_0, ..., \eta_{M-1} < \sqrt{E} + \eta_0 \}$$

$$= 1 - E[P\{\eta_1 < \sqrt{E} + \eta_0, \eta_2 < \sqrt{E} + \eta_0, ..., \eta_{M-1} < \sqrt{E} + \eta_0 \}]$$

$$= 1 - \int P\{\eta_1 < \sqrt{E} + x, \eta_2 < \sqrt{E} + x, ..., \eta_{M-1} < \sqrt{E} + x | \eta_0 = x \} f_{\eta_0}(x) dx$$

$$= 1 - \int P\{\eta_1 < \sqrt{E} + x, \eta_2 < \sqrt{E} + x, ..., \eta_{M-1} < \sqrt{E} + x | \eta_0 = x \} f_{\eta_0}(x) dx$$

$$= 1 - \int P\{\eta_1 < \sqrt{E} + x, \eta_2 < \sqrt{E} + x, ..., \eta_{M-1} < \sqrt{E} + x \} f_{\eta_0}(x) dx$$

Error Probability

$$P_{e,0} = 1 - \int_{-\infty}^{\infty} \Phi^{M-1}(\frac{\sqrt{E} + x}{\sqrt{N_0/2}}) f_{\eta_0}(x) dx$$

$$= 1 - \int_{-\infty}^{\infty} \Phi^{M-1}(\frac{\sqrt{E} + x}{\sqrt{N_0/2}}) \frac{1}{\sqrt{\pi N_0}} \exp\{-\frac{x^2}{N_0}\} dx \qquad y^2 = \frac{x^2}{N_0}$$
identify
$$= 1 - \int_{-\infty}^{\infty} \Phi^{M-1}(\sqrt{2E/N_0} + y) \frac{1}{\sqrt{2\pi}} \exp\{-\frac{y^2}{2}\} dy \qquad y = \frac{x}{\sqrt{2E/N_0}}$$

$$= (M-1) \int_{-\infty}^{\infty} \Phi^{M-2}(\sqrt{2E/N_0} + y) \frac{1}{\sqrt{2\pi}} e^{-(y+\sqrt{2E/N_0})^2/2} \Phi(y) dy$$

$$= \frac{M-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(z - \sqrt{\frac{2E}{N_0}}) \Phi^{M-2}(z) e^{-z^2/2} dz$$

Error Probability

 $\Phi(u)$ is the distribution function of a zero mean, variance 1, Gaussian random variable given by

$$\Phi(u) = \frac{1}{2\pi} \int_{-\infty}^{u} e^{-x^2/2} dx.$$

The last step in the derivation is obtained by using the integration by parts formula.

$$\int u dv = uv - \int v du$$
 where $u = \Phi^{M-1}(\sqrt{2E/N_0} + y)$ and $dv = \frac{1}{\sqrt{2\pi}} \exp\{-y^2/2\} dy$.

Performance of Orthogonal Signals

$$P_{e,s} = \frac{M-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(u - \sqrt{\frac{2E}{N_0}}) \Phi_{-\infty}^{M-2}(u) e^{-u^2/2} du$$

- The formula for $P_{e,s}$ can be interpreted as the expected value of a conditional probability where
 - we condition on one of the incorrect correlator outputs being a value (say u),
 - the correct output being less than u and
 - M-2 incorrect correlator outputs also being less than u.
- Since there are M-1 possible incorrect outputs we need to multiply this by M-1.

Energy per information bit

Normally a communication engineer is more concerned with the energy transmitted per bit rather than the energy transmitted per signal, E. If we let E_b be the energy transmitted per bit then these are related as follows

 $E_b = \frac{E \text{ jours/signed}}{\log_2 M} \frac{\log_2 M \text{ bit/signed}}{\log_2 M} \frac{\log_2 M \text{ bit/signed}}{M232} \frac{\log_2 M}{\log_2 M}$

Symbol Error Probability

$$P_{e,s} = \frac{M-1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(u - \sqrt{\frac{2|E_b|\log_2(M)}{N_0}}) \Phi^{M-2}(u) e^{-u^2/2} du$$

As $M \to \infty$ the symbol error probability of orthogonal signal sets approaches 1 or 0.

$$\lim_{M\to\infty} P_{e,s} = \begin{cases} 1 & E_b/N_0 < \ln(2) \\ 0 & E_b/N_0 > \ln(2) \end{cases}$$

$$\Rightarrow \text{Arbitrary small error pub} \quad (\longrightarrow \circ) \text{ if we make } n \text{ large}$$
as long as
$$\frac{E_b}{N_0} > |_{n(2)} = 2.69 \quad (-1.59 \text{ dB})$$

The rate of communications (bits/dimension) as $M \to \infty$ goes to 0.

$$\lim_{M\to\infty}\frac{\log_2(M)}{M}=0$$

That is, orthogonal signals for very large M achieves Shannon's fundamental limit of performance at the point where the <u>rate is zero</u>. That is at a <u>bandwidth efficiency of zero</u>, orthogonal signals have arbitrarily small error probability provided $E_b/N_0 > \ln(2)$.

Bounds on Performance of Orthogonal Signals

The symbol error probability can be upper bounded as

$$P_{e,s} \leq \left\{ \begin{array}{l} 1, & \frac{E}{N_0} \leq \ln M \\ \exp\left\{-\left(\sqrt{\frac{E}{N_0}} - \sqrt{\ln M}\right)^2\right\}, & \ln M \leq \frac{E}{N_0} \leq 4 \ln M \\ \exp\{-(\frac{E}{2N_0} - \ln M)\}, & \frac{E}{N_0} \geq 4 \ln M. \end{array} \right.$$

Energy per information bit

The bound on the symbol error probability can be expressed in terms of the energy transmitted per bit as

$$P_{e,s} \leq \left\{ \begin{array}{l} 1, & \frac{E_b}{N_0} \leq \ln 2 \\ \exp_2 \left\{ -\log_2 M \left(\sqrt{\frac{E_b}{N_0}} - \sqrt{\ln 2} \right)^2 \right\}, & \ln 2 \leq \frac{E_b}{N_0} \leq 4 \ln 2 \\ \exp_2 \left\{ -\log_2 M \left(\frac{E_b}{2N_0} - \ln 2 \right) \right\}, & \frac{E_b}{N_0} \geq 4 \ln 2 \end{array} \right.$$

where $\exp_2\{x\}$ denotes 2^x . Note that as $M \to \infty$, $P_e \to 0$ if $\frac{E_b}{N_0} > \ln 2 = -1.59$ dB.

Symbol Error Probability for Orthogonal Signals

Bit error probability

- So far we have examined the symbol error probability for orthogonal signals; the probability of deciding the wrong symbol or signal.
- Usually the number of such signals is a power of 2, e.g. 4, 8, 16, 32,
- If so then each transmission of a signal is carrying $k = \log_2 M$ bits of information.
- In this case a communication engineer is usually interested in the bit error probability as opposed to the symbol error probability.

Bit error probability

- Assume signal 0 is transmitted corresponding to the data bits being (000...00).
- If an error occurs and the demodulator chooses one of the incorrect signals than each of the incorrect signals has the same probability.
- Thus the signal corresponding to data bits being (000...01) has the same probability as an error to a signal corresponding to data bits (111...11).
- If signal 0 is transmitted then there will be M/2 other signals that will cause a bit error in any particular bit. Thus

$$P_{e,b} = \frac{M}{2(M-1)} P_{e,s} = \frac{2^{k-1}}{2^k - 1} P_{e,s}.$$

Red line (dashed) corresponds to a symbol error and a bit error for the first bit, green line (solid) corresponds to no error (symbol or bit). Blue line (dotted) corresponds to a symbol error but not a bit error (for the first bit).

Bit error probability

- Consider the case of 8 signals transmitting 3 bits of information.
- Suppose that the bits 000 are mapped to signal s₀ and 111 are mapped to s₇.
- Then if signal s₀ is transmitted the receiver will either decide correctly or decide incorrectly.
- All the incorrect signals are equally likely to be chosen given an error is made. That is, the probability of the receiver deciding signal s_i given s_0 was transmitted is $P_{e,s}/(M-1)$ for all $i \neq 0$.
- If the receiver decides incorrectly then it has decided one of $s_1, ..., s_7$.
- If it decides s₁ then that will be mapped into bits 001 and one bit error will occur.
- If it decides s₂ then that will be mapped into bits 010 and again one bit error will occur.
- If it decides s₇ then that will be mapped to 111 and three bit errors will occur.

29 / 58

Bit error probability

 Let a_i be the number of bit errors that occur when we decide signal s_i.

• Then the bit error probability is

Bit Error Probability for Orthogonal Signals

Asymptotic Error Probability of Orthogonal Signal Sets

• As $M \to \infty$ the symbol error probability of orthogonal signal sets approaches 1 or 0.

$$\lim_{M \to \infty} P_{e,s} = \left\{ \begin{array}{ll} 1 & E_b/N_0 < \ln(2) \\ 0 & E_b/N_0 > \ln(2) \end{array} \right. \quad \lim_{M \to \infty} P_{e,b} = \left\{ \begin{array}{ll} 1/2 & E_b/N_0 < \ln(2) \\ 0 & E_b/N_0 > \ln(2) \end{array} \right.$$

• The rate of communications (bits/dimension) as $M \to \infty$ goes to 0.

$$\lim_{M\to\infty}\frac{\log_2(M)}{M}=0$$

• That is, orthogonal signals for very large M achieves Shannon's fundamental limit of performance at the point where the rate is zero. That is at a bandwidth efficiency of zero, orthogonal signals have arbitrarily small error probability provided $E_b/N_0 > \ln(2)$.

Orthogonal Signal Sets

- Below we define several different orthogonal signal sets.
- We will define the bandwidth of a signal set as the minimum difference in carrier frequencies between two such signal sets so that any signal from one set is orthogonal to any signal from the other set.
- We will assume that the double frequency terms are negligible relative to the baseband frequency term.

Review of Integrals of Trig Functions

$$\rho = \int_{0}^{T} \sin(2\pi f_{1}t) \sin(2\pi f_{0}t) dt$$

$$= \frac{1}{2} \int_{0}^{T} \cos(2\pi (f_{1} - f_{0})t) - \cos(2\pi (f_{0} + f_{1})t) dt$$

$$= \frac{T}{2} \left[\frac{\sin(2\pi (f_{1} - f_{0})T)}{2\pi (f_{1} - f_{0})T} - \frac{\sin(2\pi (f_{0} + f_{1})T)}{2\pi (f_{0} + f_{1})T} \right]$$

$$= \frac{T}{2} \frac{\sin(2\pi (f_{1} - f_{0})T)}{2\pi (f_{1} - f_{0})T}$$

This integral will be zero if $2\pi(f_1 - f_0)T = \pi, 2\pi, 3\pi, ...$ The minimum frequency spacing is $f_1 - f_0 = 1/(2T)$.

Review of Integrals of Trig Functions

$$\rho = \int_{0}^{T} \sin(2\pi f_{1}t + \theta) \sin(2\pi f_{0}t) dt$$

$$= \frac{1}{2} \int_{0}^{T} \cos(2\pi (f_{1} - f_{0})t + \theta) - \cos(2\pi (f_{0} + f_{1})t + \theta) dt$$

$$= \frac{T}{2} \left[\frac{\sin(2\pi (f_{1} - f_{0})T + \theta)}{2\pi (f_{1} - f_{0})T} - \frac{\sin(2\pi (f_{0} + f_{1})T + \theta)}{2\pi (f_{0} + f_{1})T} \right]$$

$$= \frac{T}{2} \left[\frac{\sin(2\pi (f_{1} - f_{0})T + \theta)}{2\pi (f_{1} - f_{0})T} - \frac{\sin(\theta)}{2\pi (f_{1} - f_{0})T} \right]$$

This integral will be zero if $2\pi(f_1 - f_0)T = 2\pi, 4\pi, 6\pi, ...$ The minimum frequency spacing is $f_1 - f_0 = 1/(T)$.

Review of Integrals of Trig Functions

$$\rho = \int_{0}^{T} \cos(2\pi f_{1}t) \sin(2\pi f_{0}t) dt$$

$$= \frac{1}{2} \int_{0}^{T} \sin(2\pi (f_{1} + f_{0})t) - \sin(2\pi (f_{1} - f_{0})t) dt$$

$$= \frac{T}{2} \left[\frac{\cos(2\pi (f_{1} - f_{0})T) - 1}{2\pi (f_{1} - f_{0})T} - \frac{\cos(2\pi (f_{0} + f_{1})T) - 1}{2\pi (f_{0} + f_{1})T} \right]$$

$$= \frac{T}{2} \left[\frac{\cos(2\pi (f_{1} - f_{0})T) - 1}{2\pi (f_{1} - f_{0})T} \right]$$

This integral will be zero if $2\pi(f_1 - f_0)T = 2\pi, 4\pi, 6\pi, ...$ The minimum frequency spacing is $f_1 - f_0 = 1/(T)$.

Review of Integrals of Trig Functions

$$\rho = \int_{0}^{T} \cos(2\pi f_{1}t + \theta) \sin(2\pi f_{0}t) dt
= \frac{1}{2} \int_{0}^{T} \sin(2\pi (f_{1} + f_{0})t + \theta) - \sin(2\pi (f_{1} - f_{0})t + \theta) dt
= \frac{T}{2} \left[\frac{\cos(2\pi (f_{1} - f_{0})T + \theta) - \cos(\theta)}{2\pi (f_{1} - f_{0})T} - \frac{\cos(2\pi (f_{0} + f_{1})T + \theta) - \cos(\theta)}{2\pi (f_{0} + f_{1})T} \right]
= \frac{T}{2} \left[\frac{\cos(2\pi (f_{1} - f_{0})T + \theta)}{2\pi (f_{1} - f_{0})T} - \frac{\cos(\theta)}{2\pi (f_{1} - f_{0})T} \right]$$

This integral will be zero if $2\pi(f_1 - f_0)T = 2\pi, 4\pi, 6\pi, ...$ The minimum frequency spacing is $f_1 - f_0 = 1/(T)$.

$$\varphi_i(t) = \begin{cases} \sqrt{\frac{2N}{T}} \sin(2\pi f_0 t), & \frac{iT}{N} \leq t < (i+1)T/N \\ 0, & \text{elsewhere} \end{cases}$$

$$i = 0, 1, \dots, N,$$

It is clear that $\varphi_i(t)$ and $\varphi_i(t)$ are orthogonal in time (they do not overlap in time) if

N dimension in bordwidth N/27 time T

A. Time-orthogonal: frequency multiplexing

The duration of these signals is T/N. For othogonality of $\varphi_i^{(0)}(t)$ and $f_1 - f_0 = \frac{1}{2(T/N)} = \left(\frac{N}{2T}\right)^{\frac{N}{2T}} \text{ in time } T$ $\varphi_i^{(1)}(t)$ we need

$$f_1 - f_0 = \frac{1}{2(T/N)} = \left(\frac{N}{2T}\right)^{N}$$
 in time ?

Thus the bandwidth of this signal set is $W = \left[\frac{(n+1)N}{2T} - \frac{nN}{2T}\right] = \left(\frac{N}{2T}\right)$

A. Time-orthogonal: frequency multiplexing

B. Time-orthogonal quadrature-phase

$$\varphi_{2i}(t) = \begin{cases} \sqrt{\frac{2N}{T}} \sin(2\pi f_0 t), & \frac{2iT}{N} \le t < \frac{2(i+1)T}{N} \\ 0, & \text{elsewhere} \end{cases}$$

$$\varphi_{2i+1}(t) = \begin{cases} \sqrt{\frac{2N}{T}} \cos(2\pi f_0 t), & \frac{2iT}{N} \le t < \frac{2(i+1)T}{N} \\ 0 & \text{elsewhere} \end{cases}$$

$$i = 0, 1, \dots, \frac{N}{2} - 1, \quad N \text{ even}, \quad f_0 = n \frac{N}{2T},$$

Duration = T/(2N).

$$W = \left[\frac{(n+1)N}{2T} - \frac{nN}{2T}\right] = \frac{N}{2T}$$

C. Frequency-orthogonal

$$\varphi_{i}(t) = \sqrt{\frac{2E}{T}} \sin[2\pi(f_{0} + \frac{i}{2T})t], \qquad 0 \le t \le T$$

$$i = 0, 1, \dots, N - 1, \quad f_{0} = \frac{nN}{2T}.$$

$$W = \left[\frac{(n+1)N}{2T} - \frac{nN}{2T}\right]$$
$$= \frac{N}{2T}$$

D. Frequency-orthogonal quadrature-phase

$$\varphi_{2i}(t) = \sqrt{\frac{2E}{T}} \sin[2\pi(f_0 + \frac{i}{T}), t] \qquad 0 \le t < T$$

$$\varphi_{2i+1}(t) = \sqrt{\frac{2E}{T}} \cos[2\pi(f_0 + \frac{i}{T})t], \qquad 0 \le t \le T$$

$$f_0 = \frac{nN}{2T}.$$

$$W = \left[\frac{(n+1)N}{2T} - \frac{nN}{2T}\right]$$
$$= \frac{N}{2T}$$

D. Frequency-orthogonal quadrature-phase

Example $(f_c = 1, T = 3)$

E. Hadamard-Walsh Construction

The last construction of orthogonal signals is done via the Hadamard Matrix. The Hadamard matrix is an N by N matrix with components either +1 or -1 such that every pair of distinct rows are orthogonal. We show how to construct a Hadamard when the number of signals is a power of 2 (which is often the case).

Begin with a two by two matrix

$$H_2 = \begin{bmatrix} +1 & +1 & -1 \\ +1 & -1 & -1 \\ \end{pmatrix} \psi_1 \qquad \qquad \xi \psi_o(n) \psi_1(n) = 0$$

Then use the recursion

$$H_{2^{l}} = \begin{bmatrix} +H_{2^{(l-1)}} & +H_{2^{(l-1)}} \\ +H_{2^{(l-1)}} & -H_{2^{(l-1)}} \end{bmatrix}.$$

E. Hadamard-Walsh Construction

Now it is easy to check that distinct rows in these matrices are orthogonal. The i-th modulated signal is then obtained by using a single (arbitrary) waveform N times in nonoverlapping time intervals and multiplying by the j-th repetition of the waveform by the jth component of the i-th row of the matrix.

E. Hadamard-Walsh Construction

Example (N = 4):

$$H_{4} = \begin{bmatrix} \frac{H_{2}}{H_{2}} & \frac{H_{2}}{-H_{2}} \\ \frac{H_{2}}{H_{2}} & -\frac{H_{2}}{-H_{2}} \end{bmatrix}$$

$$= \begin{bmatrix} +1 & +1 & +1 & +1 \\ +1 & -1 & +1 & -1 \\ +1 & -1 & -1 & +1 \end{bmatrix}$$

E. Hadamard-Walsh Construction, M = 8

E. Hadamard-Walsh Construction, M = 8

Processing of Hadamard Generated Orthogonal Signals

Let

$$X_i = \int_{iT/N}^{(i+1)T/N} r(t)dt, \quad i = 0, 1, ..., N-1.$$

Then the correlations of r(t) and $\varphi_i(t)$ for i = 0, 1, ..., 7 can be calculated from $X_0, X_1, ..., X_7$.

Processing of Hadamard Generated Orthogonal Signals

Processing of Hadamard Generated Orthogonal Signals

Bandwidth of Orthogonal Signals

If we define bandwidth of M signals as minimum frequency separation between two such signal sets such that any signal from one signal set is orthogonal to every signal from a frequency adjacent signal set then for all of these examples of M orthogonal signals the bandwidth is

$$W = \frac{M}{2T}$$
. $\frac{N}{WT} = 2$ dininsion Hz

Orthogonal Signals in Bandwidth W, Time T.

There are N = 2WT orthogonal signals in bandwidth W and time duration T.

Equivalently, the bandwidth efficiency of a modulation technique (in bits/second/Hz) can be computed from the rate (in bits/dimension) by multiplying by 2.

R/W(bits/second/Hz) = \mathcal{R} (bits/dimension) × (2 dimensions/second/Hz)

Capacity

The bandwidth of a set of M orthogonal signals is W = M/(2T). If we transmit $\log_2(M)$ bits in T seconds then the data rate is $R = \log_2(M)/T$. The bandwidth efficiency is

$$R/W = \frac{\log_2(M)/T}{M/2T} = \frac{2\log_2(M)}{M}$$

M	R/W			
2	1.00000000			
4	1.00000000			
8	0.75000000			
16	0.50000000			
32	0.31250000			
64	0.18750000			
128	0.10937500			
256	0.06250000			
512	0.03515625			
1024	0.01953125			

Lecture Notes 12 32 APSk

Capacity vs. Orthogonal Signals $@P_{e,b} = 0.001$

o opt rec: find singal object to rec signal

Craim de (r, s1) opt rec it all signal have the same energy is fine signal with max correlation max (ret), sict) · MPSK, 2AM, ostrograd there is a known formula Pe,s Pe,b · For other medulation scheme B,s, Pe,b is hard to calculate DE(Sirsj) Union band Pes ≤ M ≥ R(S; → sg) pairwish Oppor $\rightarrow P_{2}(S_{i} \rightarrow S_{j}) = Q(\frac{d_{i}(S_{i}, S_{j})}{\sigma})$

· Uray nothogral	Signal Nove			
		6 1 01		
Peis, Pen	\rightarrow 0 as $M \rightarrow d$	H 76 - 1/10		
		= - 1.59 NB		
but gote (bit/second	Signal hore $\longrightarrow 0$ as $M \rightarrow 0$ $) \rightarrow 0$ as $M \rightarrow 0$			
B (bits/ sound)	= ≥ <u>y</u>			
· R (bits/second)	\downarrow			
	bits/ climesion			