### Outline of the course



## CS 188: Artificial Intelligence

**Probability** 



Instructors: Stuart Russell and Dawn Song

University of California, Berkeley

### Uncertainty

- The real world is rife with uncertainty!
  - E.g., if I leave for SFO 60 minutes before my flight, will I be there in time?
- Problems:
  - partial observability (road state, other drivers' plans, etc.)
  - noisy sensors (radio traffic reports, Google maps)
  - immense complexity of modelling and predicting traffic, security line, etc.
  - lack of knowledge of world dynamics (will tire burst? need COVID test?)
- Probabilistic assertions summarize effects of ignorance and laziness
- Combine probability theory + utility theory -> decision theory
  - Maximize expected utility:  $a^* = argmax_a \sum_s P(s \mid a) U(s)$

#### Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
  - On the ghost: red
  - 1 or 2 away: orange
  - 3 or 4 away: yellow
  - 5+ away: green



Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))

| P(red   3) | P(orange   3) | P(yellow   3) | P(green   3) |
|------------|---------------|---------------|--------------|
| 0.05       | 0.15          | 0.5           | 0.3          |

## Video of Demo Ghostbusters – No probability



## Basic laws of probability

- Begin with a set  $\Omega$  of possible worlds
  - E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}



- A *probability model* assigns a number  $P(\omega)$  to each world  $\omega$ 
  - E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6.
- These numbers must satisfy
  - $0 \le P(\omega) \le 1$



#### Basic laws contd.

- An *event* is any subset of  $\Omega$ 
  - E.g., "roll < 4" is the set {1,2,3}
  - E.g., "roll is odd" is the set {1,3,5}





- The probability of an event is the sum of probabilities over its worlds
  - $P(A) = \sum_{\omega \in A} P(\omega)$
  - E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

 De Finetti (1931): anyone who bets according to probabilities that violate these laws can be forced to lose money on every set of bets

#### Random Variables

- A random variable (usually denoted by a capital letter) is some aspect of the world about which we (may) be uncertain
- Formally a **deterministic function** of  $\omega$
- The range of a random variable is the set of possible values
  - Odd = Is the dice roll an odd number? → {true, false}
    - e.g. *Odd*(1)=true, *Odd*(6) = false
    - often write the event Odd=true as odd, Odd=false as ¬odd
  - $\blacksquare$  T = Is it hot or cold? → {hot, cold}
  - D = How long will it take to get to the airport?  $\rightarrow$  [0,  $\infty$ )
  - $L_{Ghost}$  = Where is the ghost?  $\rightarrow$  {(0,0), (0,1), ...}
- The *probability distribution* of a random variable X gives the probability for each value x in its range (probability of the event X=x)
  - $P(X=x) = \sum_{\{\omega: X(\omega)=x\}} P(\omega)$
  - P(x) for short (when unambiguous)
  - P(X) refers to the entire distribution (think of it as a vector or table)



## **Probability Distributions**

- Associate a probability with each value; sums to 1
  - Temperature:

P(T)

| Т    | Р   |
|------|-----|
| hot  | 0.5 |
| cold | 0.5 |



Weather:

P(W)

| W      | Р   |
|--------|-----|
| sun    | 0.6 |
| rain   | 0.1 |
| fog    | 0.3 |
| meteor | 0.0 |



Joint distribution

P(T,W)

|           |        | Temperature |      |
|-----------|--------|-------------|------|
|           |        | hot cold    |      |
| We        | sun    | 0.45        | 0.15 |
|           | rain   | 0.02        | 0.08 |
| ath<br>er | fog    | 0.03        | 0.27 |
| 0,        | meteor | 0.00        | 0.00 |

## Making possible worlds

- In many cases we
  - begin with random variables and their domains
  - construct possible worlds as assignments of values to all variables
- E.g., two dice rolls Roll<sub>1</sub> and Roll<sub>2</sub>
  - How many possible worlds?
  - What are their probabilities?
- Size of distribution for n variables with range size d?
- For all but the smallest distributions, cannot write out by hand!

#### Probabilities of events

- Recall that the probability of an event is the sum of probabilities of its worlds:
  - $P(A) = \sum_{\omega \in A} P(\omega)$
- So, given a joint distribution over all variables, can compute any event probability!
  - Probability that it's hot AND sunny?
  - Probability that it's hot?
  - Probability that it's hot OR not foggy?

Joint distribution

P(T,W)

|    |        | Temperature |      |
|----|--------|-------------|------|
|    |        | hot cold    |      |
| We | sun    | 0.45        | 0.15 |
|    | rain   | 0.02        | 80.0 |
| er | fog    | 0.03        | 0.27 |
| 01 | meteor | 0.00        | 0.00 |

### Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Collapse a dimension by adding

$$P(X=x) = \sum_{y} P(X=x, Y=y)$$



|           |        | Temperature |      |      |      |
|-----------|--------|-------------|------|------|------|
|           |        | hot         | cold |      |      |
|           | sun    | 0.45        | 0.15 | 0.60 |      |
| We<br>ath | rain   | 0.02        | 0.08 | 0.10 | D(M) |
| er        | fog    | 0.03        | 0.27 | 0.30 | P(W) |
|           | meteor | 0.00        | 0.00 | 0.00 |      |
|           |        | 0.50        | 0.50 |      | •    |
| P(T)      |        |             |      |      |      |

#### **Conditional Probabilities**

- A simple relation between joint and conditional probabilities
  - In fact, this is taken as the definition of a conditional probability

$$P(a \mid b) = \frac{P(a, b)}{P(b)}$$



|           |        | Temperature |      |
|-----------|--------|-------------|------|
|           |        | hot         | cold |
|           | sun    | 0.45        | 0.15 |
| We<br>ath | rain   | 0.02        | 0.08 |
| er        | fog    | 0.03        | 0.27 |
|           | meteor | 0.00        | 0.00 |

$$P(W=s \mid T=c) = \frac{P(W=s, T=c)}{P(T=c)} = 0.15/0.50 = 0.3$$

$$= P(W=s, T=c) + P(W=r, T=c) + P(W=f, T=c) + P(W=m, T=c)$$

$$= 0.15 + 0.08 + 0.27 + 0.00 = 0.50$$

#### **Conditional Distributions**

Distributions for one set of variables given another set

|           |        | Temperature |      |
|-----------|--------|-------------|------|
|           |        | hot         | cold |
| sur       | sun    | 0.45        | 0.15 |
| We<br>ath | rain   | 0.02        | 0.08 |
| er        | fog    | 0.03        | 0.27 |
| 5         | meteor | 0.00        | 0.00 |



## Normalizing a distribution

(Dictionary) To bring or restore to a normal condition

Procedure:

• Multiply each entry by  $\alpha = 1/(\text{sum over all entries})$ 

P(W,T)

|           |        | Temperature |      |
|-----------|--------|-------------|------|
|           |        | hot cold    |      |
|           | sun    | 0.45        | 0.15 |
| We<br>ath | rain   | 0.02        | 0.08 |
| er        | fog    | 0.03        | 0.27 |
|           | meteor | 0.00        | 0.00 |



All entries sum to ONE

#### The Product Rule

Sometimes have conditional distributions but want the joint

$$P(a \mid b) P(b) = P(a, b)$$
  $P(a \mid b) = \frac{P(a, b)}{P(b)}$ 



## The Product Rule: Example









P(W, T)

|           |        | Temperature |      |
|-----------|--------|-------------|------|
|           |        | hot cold    |      |
| We<br>ath | sun    | 0.45        | 0.15 |
|           | rain   | 0.02        | 0.08 |
| er        | fog    | 0.03        | 0.27 |
| 0         | meteor | 0.00        | 0.00 |

#### The Chain Rule

- A joint distribution can be written as a product of conditional distributions by repeated application of the product rule:
- $P(x_1, x_2, x_3) = P(x_3 \mid x_1, x_2) P(x_1, x_2) = P(x_3 \mid x_1, x_2) P(x_2 \mid x_1) P(x_1)$
- $P(x_1, x_2, ..., x_n) = \prod_i P(x_i \mid x_1, ..., x_{i-1})$

#### Probabilistic Inference

- Probabilistic inference: compute a desired probability from a probability model
  - Typically for a *query variable* given *evidence*
  - E.g., P(airport on time | no accidents) = 0.90
  - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
  - P(airport on time | no accidents, 5 a.m.) = 0.95
  - P(airport on time | no accidents, 5 a.m., raining) = 0.80
  - Observing new evidence causes beliefs to be updated



#### General case:

Evidence variables: E<sub>1</sub>, ..., E<sub>k</sub> = e<sub>1</sub>, ..., e<sub>k</sub>
 Query\* variable: Q
 Hidden variables: H<sub>1</sub>, ..., H<sub>r</sub>
 All variables

\* Works fine with multiple query variables, too

We want:

$$P(Q \mid e_1, ..., e_k)$$

Probability model  $P(X_1, ..., X_n)$  is given

Step 1: Select the entries consistent with the evidence

0.05

0.25

0.2

0.01

-3

Step 2: Sum out H from model to get joint of Query and evidence

Step 3: Normalize



$$P(Q \mid e_1, ..., e_k) = \alpha$$

$$P(Q, e_1, ..., e_k)$$

$$P(Q,e_1,\ldots,e_k)$$

$$P(Q, e_1, ..., e_k) = \sum_{h_1, ..., h_r} P(Q, h_1, ..., h_r) e_k X_1, ..., X_n$$

P(W)?

| Season | Temp | Weather | Р    |
|--------|------|---------|------|
| summer | hot  | sun     | 0.35 |
| summer | hot  | rain    | 0.01 |
| summer | hot  | fog     | 0.01 |
| summer | hot  | meteor  | 0.00 |
| summer | cold | sun     | 0.10 |
| summer | cold | rain    | 0.05 |
| summer | cold | fog     | 0.09 |
| summer | cold | meteor  | 0.00 |
| winter | hot  | sun     | 0.10 |
| winter | hot  | rain    | 0.01 |
| winter | hot  | fog     | 0.02 |
| winter | hot  | meteor  | 0.00 |
| winter | cold | sun     | 0.15 |
| winter | cold | rain    | 0.20 |
| winter | cold | fog     | 0.18 |
| winter | cold | meteor  | 0.00 |

P(W)?

P(W | winter)?

| Season | Temp | Weather | Р    |
|--------|------|---------|------|
| summer | hot  | sun     | 0.35 |
| summer | hot  | rain    | 0.01 |
| summer | hot  | fog     | 0.01 |
| summer | hot  | meteor  | 0.00 |
| summer | cold | sun     | 0.10 |
| summer | cold | rain    | 0.05 |
| summer | cold | fog     | 0.09 |
| summer | cold | meteor  | 0.00 |
| winter | hot  | sun     | 0.10 |
| winter | hot  | rain    | 0.01 |
| winter | hot  | fog     | 0.02 |
| winter | hot  | meteor  | 0.00 |
| winter | cold | sun     | 0.15 |
| winter | cold | rain    | 0.20 |
| winter | cold | fog     | 0.18 |
| winter | cold | meteor  | 0.00 |

P(W)?

P(W | winter)?

P(W | winter, hot)?

| Season | Temp | Weather | Р    |
|--------|------|---------|------|
| summer | hot  | sun     | 0.35 |
| summer | hot  | rain    | 0.01 |
| summer | hot  | fog     | 0.01 |
| summer | hot  | meteor  | 0.00 |
| summer | cold | sun     | 0.10 |
| summer | cold | rain    | 0.05 |
| summer | cold | fog     | 0.09 |
| summer | cold | meteor  | 0.00 |
| winter | hot  | sun     | 0.10 |
| winter | hot  | rain    | 0.01 |
| winter | hot  | fog     | 0.02 |
| winter | hot  | meteor  | 0.00 |
| winter | cold | sun     | 0.15 |
| winter | cold | rain    | 0.20 |
| winter | cold | fog     | 0.18 |
| winter | cold | meteor  | 0.00 |

- Obvious problems:
  - Worst-case time complexity  $O(d^n)$
  - Space complexity  $O(d^n)$  to store the joint distribution
  - $\bullet$   $O(d^n)$  data points to estimate the entries in the joint distribution

## Bayes Rule



## Bayes' Rule

Write the product rule both ways:

$$P(a | b) P(b) = P(a, b) = P(b | a) P(a)$$

Dividing left and right expressions, we get:

$$P(a \mid b) = \frac{P(b \mid a) P(a)}{P(b)}$$

- Why is this at all helpful?
  - Lets us build one conditional from its reverse
  - Often one conditional is tricky but the other one is simple
  - Describes an "update" step from prior P(a) to posterior  $P(a \mid b)$
  - Foundation of many systems we'll see later (e.g. ASR, MT)

• In the running for most important AI equation!





## Inference with Bayes' Rule

Example: Diagnostic probability from causal probability:

$$P(cause \mid effect) = \frac{P(effect \mid cause) P(cause)}{P(effect)}$$

- Example:
  - M: meningitis, S: stiff neck

$$P(s \mid m) = 0.8$$
  
 $P(m) = 0.0001$   
 $P(s) = 0.01$  Example givens

$$P(m \mid s) = \frac{P(s \mid m) P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.01}$$

- Note: posterior probability of meningitis still very small: 0.008 (80x bigger why?)
- Note: you should still get stiff necks checked out! Why?

### Next time

- Independence
- Conditional independence
- Bayes nets