第六章增长曲线模型预测技术

- 增长曲线外推预测技术主要是用来进行曲线 拟合和预测
- 假设已经搜集到一组历史数据,在坐标系上描点如图:

- 分析数据的增长特征,找到合适的拟合曲线
- 根据历史数据,估计出曲线的参数,建 立预测方程
- 根据预测方程,进行预测

一、增长曲线模型的基本类型和特征

1、多项式曲线

$$y_t = a_0 + a_1 t + a_2 t^2 + \dots + a_m t^m$$

 $a_0: t = 0$ 时初始值

a₁:增长速率

*a*₂:加速度

 a_3 :加速度的变化率

若
$$y_t = a_0 + a_1 t$$

$$\frac{dy_t}{dt} = a_1$$

一阶差分: $u_t^{(1)} = y_t - y_{t-1} = a_0 + a_1 t - a_0 - a_1 (t-1) = a_1$

规律:增长曲线为一次曲线,则一阶差分为常量

若
$$y_t = a_0 + a_1 t + a_2 t^2$$

$$\frac{d^2 y_t}{dt^2} = 2a_2$$

$$u_t^{(1)} = y_t - y_{t-1} = a_0 + a_1 t + a_2 t^2 - \left[a_0 + a_1 (t-1) + a_2 (t-1)^2\right]$$

$$= a_1 - a_2 + 2a_2 t$$

$$u_{t-1}^{(1)} = a_1 - a_2 + 2a_2 (t-1)$$
 二阶差分: $u_t^{(2)} = u_t^{(1)} - u_{t-1}^{(1)} = 2a_2$

规律:增长曲线为二次曲线,则二阶差分为常量

2、简单指数型增长曲线

$$y_t = ab^t$$

a > 0

$$y_{t} = ab^{t}$$

$$\lg y_{t} = \lg a + \lg b \cdot t$$

$$\frac{u_{t}^{(1)}}{y_{t-1}} = \frac{ab^{t} - ab^{t-1}}{ab^{t-1}} = \frac{ab^{t-1}(b-1)}{ab^{t-1}} = b-1$$

3、修正指数型增长曲线

$$y_t = k + ab^t$$

$$y_{t} = k + ab^{t}$$

$$u_{t} = y_{t} - y_{t-1} = ab^{t-1}(b-1)$$

$$\lg u_{t} = \lg a(b-1) + (t-1) \cdot \lg b$$

4、双指数曲线 $y_t = a \cdot b^t \cdot c^{t^2}$

$$y_{t} = a \cdot b^{t} \cdot c^{t^{2}}$$

$$\lg y_t = \lg a + \lg b \cdot t + \lg c \cdot t^2$$

求导:
$$\frac{y_t'}{y_t} = \lg b + 2\lg c \cdot t = \frac{u_t}{y_t}$$

5、龚珀资(Gompertz)曲线

$$y_t = k \cdot a^{b^t}$$
 $a > 0$ $b > 0$
考虑 $k > 0$
 $y_t' = k \cdot a^{b^t} \cdot b^t \cdot \ln a \cdot \ln b$
 $y_t'' = k \cdot a^{b^t} \cdot b^t \cdot \ln a \cdot (\ln b)^2 \cdot (b^t \ln a + 1)$
 $a > 1$ 无拐点
 $0 < a < 1$ 拐点为 $(\frac{\ln \left[-(\ln a)^{-1} \right]}{\ln b}, \frac{k}{e})$

(1) a > 1 b > 1

 $t \to -\infty$ $b^t \to 0$ $a^{b^t} \to 1$ $y_t \to k$ ∴以k为渐近线 $y_t' > 0$ y_t 增大

 $y''_t > 0$ $\exists 1: y'_t - y'_{t-1} > 0$ $\exists 1: y_t - y_{t-1} - y_{t-1} + y_{t-2} > 0$

即: $y_t + y_{t-2} > 2y_{t-1}$ 曲线为下凸

(2) a > 1 0 < b < 1 $t \to +\infty$ $b^t \to 0$ $a^{b^t} \to 1$ $y_t \to k$ ∴以k为下渐近线 $y_t' < 0$ y_t 減小 $y_t'' > 0$ 曲线下凸

(3) 0 < a < 1 0 < b < 1 $t \to +\infty \quad b^{t} \to 0 \quad a^{b^{t}} \to 1 \quad y_{t} \to k \quad \text{以k为渐近线}$ $t \to -\infty \quad b^{t} \to +\infty \quad a^{b^{t}} \to 0 \quad y_{t} \to o \quad \text{以o为渐近线}$ $y'_{t} > 0 \quad y_{t} \text{ 增大}$ $y''_{t} \quad t \in (-\infty, \text{拐点}) \quad y''_{t} > 0 \quad \text{曲线下凸}$ $t \in (\text{拐点}, +\infty) \quad y''_{t} < 0 \quad \text{曲线上凸}$

(4) $0 < a < 1 \ b > 1$ $t \to +\infty \quad b^{t} \to +\infty \quad a^{b^{t}} \to 0 \quad y_{t} \to o \quad \text{以o为渐近线}$ $t \to -\infty \quad b^{t} \to 0 \quad a^{b^{t}} \to 1 \quad y_{t} \to k \quad \text{以k为渐近线}$ $y'_{t} < 0 \quad y_{t} | x_{t} | x_{t}$ $y''_{t} \quad t \in (-\infty, \text{拐点}) \quad y''_{t} < 0 \quad \text{曲线上凸}$ $t \in (\text{拐点}, +\infty) \quad y''_{t} > 0 \quad \text{曲线下凸}$

规律:
$$\lg y_t = \lg k + \lg a \cdot b^t$$

$$\frac{y'(t)}{y_t} = \lg a \cdot b^t \cdot \ln b = \frac{u_t}{y_t}$$

$$\lg \frac{u_t}{y_t} = \cdots \quad t$$

6、逻辑(Logistic)曲线

$$y_{t} = \frac{k}{1 + ae^{-bt}}$$

以o,k为渐近线

初始阶段发展缓慢,接着急剧增长,接着平稳发展,直至饱和

求导:
$$y'_t = \frac{kabe^{-bt}}{(1+ae^{-bt})^2}$$
两边除以 y_t^2
$$\frac{y'_t}{y_t^2} = \frac{1}{k}abe^{-bt} = \frac{u_t}{y_t^2}$$
取对数
$$\lg \frac{u_t}{y_t^2} = \lg \frac{ab}{k} - b \cdot (\lg e) \cdot t$$

二、曲线模型的识别方法

- 1、图示法: 主观性强
- 2、残差平方和最小:不一定最好,如多项式曲线
- 3、增长特征法
 - (1) 计算序列的滑动平均值,消除随机干扰

$$\overline{y}_t = \frac{\sum_{i=t-p}^{t+p} y_i}{2p+1}$$

(2) 计算序列的平均增长

$$\overline{u}_{t} = \frac{\sum_{i=-p}^{p} i \overline{y}_{t+i}}{\sum_{i=-p}^{p} i^{2}}$$

例:
$$p = 1$$
 $\overline{u}_t = \frac{-\overline{y}_{t-1} + \overline{y}_{t+1}}{2}$

$$p = 2$$
 $\overline{u}_t = \frac{-2\overline{y}_{t-2} - \overline{y}_{t-1} + \overline{y}_{t+1} + 2\overline{y}_{t+2}}{2^2 + 1 + 1 + 2^2}$

$$p = 3$$
 $\overline{u}_t = \frac{-3\overline{y}_{t-3} - 2\overline{y}_{t-2} - \overline{y}_{t-1} + \overline{y}_{t+1} + 2\overline{y}_{t+2} + 3\overline{y}_{t+3}}{28}$

(3) 计算样本序列的增长特征,判断曲线类型 167页

	146 LC ## 6T ## 8.4	IN _C play To C C L	
曲线类型的识别	增长特征依时	样本序列的 平均增长特征	
	间变化的性质		
直线	基本一样	14,	
二次抛物线	线性变化	tel :	
三次抛物线	线性变化	<u>u</u> , (2)	
指数曲线	大致一样	$\frac{\overline{u}}{y_i}$	
双指数曲线(对数抛物线	线性变化	$\frac{\overline{u}_i}{y_i}$	
修正指数曲线	线性变化	lgu,	
龚珀资曲线	线性变化	$l_{\mathbf{g}} = \frac{u_t}{y_t}$	
逻辑曲线	线性变化	$\lg \frac{\overline{u_{\ell}}}{\overline{y_{\ell}^2}}$	

• 例:已知一组历史数据,请根据数据特点选择合适的增长曲线进行拟和。

年份 t	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982
产量ッ (箱)	164	193	255	279	512	606	766	838	941	1055	1088	1044

解: 分析数据增长特征如下

	$\overline{y}_t = \frac{y_{t-1}}{y_t}$	$\frac{1}{u_{t}} + \frac{y}{u_{t}} = \frac{y}{3}$	$\frac{\overline{y}_{t}\overline{y}_{t-1} + \overline{y}_{t}}{2}$	<u>t+1</u>			
(1) t	(2) y,	(<u>3</u>)	$\frac{(4)}{u_i}$	$\frac{(5)}{u_i/y_i}$	(6) lgu _t	$lg\overline{u}_i/\overline{y}_i$	(8) $\lg \overline{u}_t / \overline{y}_t^2$
1	164	_	_	_	_	_	
2	193	204	_		_	_	_
3	255	242.3	72.35	0.299	1.859	0. 524	-1.912
4	279	348.7	113.7	0.320	2- 048	-0.495	-3.037
5	512	465.7	139.7	0.300	2-145	0. 523	-3.191
6	606	628	135.5	0.216	2- 132	-0.666	- 3.464
7	766	736. 7	110.2	0.150	2-042	-0.842	-3.691
8	838	848.3	104	0.123	2.017	-0.910	-3.839
9	941	944.7	89. 9	0.115	1.954	-0.939	-3.915
10	1055	1028	58.8	0.057	1.769	-1.244	-4.256
11	1088	1062. 3	-	_	_	_	_
12	1044	_		_	_	_	<u></u>

分别计算 $\frac{\overline{u}_t}{\overline{y}_t}$ 、 $\lg \frac{\overline{u}_t}{\overline{y}_t}$ 、 $\lg \frac{\overline{u}_t}{\overline{y}_t^2}$ 和时间t的线性相关系数,得到

 $\frac{\overline{u}_t}{\overline{y}_t}$ 和时间t的线性相关系数为 r=-0.9162

 $1g\frac{\overline{u}_t}{\overline{y}_t}$ 和时间t的线性相关系数为 r=-0.9152

 $1g\frac{\overline{u}_t}{\overline{y}_t^2}$ 和时间t的线性相关系数为 r=-0.764

因此选择双指数曲线。

三、增长曲线模型的参数估计

- 1、线性回归:多项式曲线,简单指数曲线,双指数曲线
- 2、三和法: 若有m个参数

将整个序列分为m个相等的时间周期,对每一个时间周期的数据求和以估计参数。

例:170页,已知某产品总销售额数据如下表,请预测1998年的销售额

年 限	1988	1989	1990	1991	1992
ż	0	1	2	3	4
总销售额 (万元)	2 239	2 760	3 206	3 417	3 200
年 限	1993	1994	1995	1996	1997
ı	5	6	7	8	9
总销售额 (万元)	3 308	4 182	4 381	5 610	6 510

解: 绘制散点图如下:

假设
$$y = ka^{b^t}$$
 , $\lg y = \lg k + b^t \cdot \lg a$

$$\begin{split} \lg 2239 &= \lg k + b^0 \cdot \lg a \\ \lg 2760 &= \lg k + b^1 \cdot \lg a \\ \lg 3206 &= \lg k + b^2 \cdot \lg a \\ \\ \lg 3417 &= \lg k + b^3 \cdot \lg a \\ \lg 3200 &= \lg k + b^4 \cdot \lg a \\ \lg 3200 &= \lg k + b^4 \cdot \lg a \\ \lg 3308 &= \lg k + b^5 \cdot \lg a \\ \\ \lg 4182 &= \lg k + b^6 \cdot \lg a \\ \lg 4381 &= \lg k + b^7 \cdot \lg a \\ \lg 5610 &= \lg k + b^8 \cdot \lg a \\ \lg 6510 &= \lg k + b^9 \cdot \lg a \\ \end{split} | \lg (2239 \times 2760 \times 3206) = 3\lg k + \lg a \cdot (b^0 + b^1 + b^2) \\ \lg 3200 &= 3 \lg k + \lg a \cdot b^3 (b^0 + b^1 + b^2) \\ \lg 3308 &= \lg k + b^5 \cdot \lg a \\ \lg 4182 &= \lg k + b^6 \cdot \lg a \\ \lg 4381 &= \lg k + b^7 \cdot \lg a \\ \lg 6510 &= \lg k + b^8 \cdot \lg a \\ \lg 6510 &= \lg k + b^9 \cdot \lg a \\ \end{split} | \lg (4182 \times 4381 \times 5610 \times 6510) = 4 \lg k + \lg a \cdot b^6 (b^0 + b^1 + b^2 + b^3) \\ \end{split}$$

$$k = 2041.73$$
 $a = 1.253$ $b = 1.2$
 $\hat{y} = 2041.73 \times (1.253)^{1.2^t}$
 1998 年 $t = 10$ $y = 8250.6$

3、三点法

假定曲线通过已知的三个点(始、中、终),且相邻的两点间时间距离相等,代入方程,求解参数。

例:以逻辑曲线的参数估计为例,假设间隔时间为n

$$y_{t} = \frac{k}{1 + ae^{-bt}}$$

$$\begin{cases} y_{0} = \frac{k}{1 + a} \\ y_{1} = \frac{k}{1 + ae^{-nb}} \\ y_{2} = \frac{k}{1 + ae^{-2nb}} \end{cases}$$

$$y_v = \frac{k}{1+a}$$

$$(10.3 - 11)$$

$$y_1 = \frac{k}{1 + ae^{-ab}}$$

$$(10.3 - 12)$$

$$y_2 = \frac{k}{1 + ae^{-2\pi b}}$$

$$(10.3 - 13)$$

由(10.3-11)确定参数值 a

$$a = \frac{k - y_0}{y_0}$$

(10.3 - 14)

又由 (10.3-12) 得

$$y_1 (1+ae^{-i\theta}) = k$$

从而有

$$e^{-a} = \frac{k - y_1}{ay_1}$$

(10.3 - 15)

$$b = [\ln a + \ln y_1 - \ln (k - y_1)] / n$$

$$= [\ln (k - y_0) - \ln y_0 + \ln y_1 - \ln (k - y_1)] / n$$
(10.3-16)

最后由(10.3-13)得到

$$y_2 \left[1 + \frac{(k - y_1)^2}{\frac{k - y_0}{y_0} \cdot y_1^2}\right] = k$$

化简上式得到一个关于 k 的二次方程, 求出 k 的两个根, 取其较合理者代人(10.3-14) 与(10.3-16) 即得 a, b 的估计值。

4、参数估计的优选法: $y_t = ka^{b^t}$

用优选法确定k,将方程线性化: $\lg \lg \frac{y_t}{k} = \lg \lg a + \lg b \cdot t$

记
$$Y_t = \lg \lg \frac{y_t}{k}, A = \lg \lg a, B = \lg b, 则有 Y_t = A + Bt.$$

优选标准: 使预测值与实测值之差的平方和最小。

步骤: (1) $k'_0 \le k \le k''_0$

(2)
$$k_1 = (k_0'' - k_0') \times 0.618 + k_0'$$
 Q_1

$$k_2 = (k_0'' - k_0') \times 0.382 + k_0'$$
 Q_2

$$k_0'$$

$$k_1 = (k_0'' - k_0') \times 0.382 + k_0'$$
 Q_2

$$k_0'$$

(3) 若
$$Q_1 > Q_2$$
 区间缩小为 $[k'_0, k_1]$ 若 $Q_1 < Q_2$ 区间缩小为 $[k_2, k''_0]$

四、预测实例 173页