

EE207 ELECTRICAL CIRCUITS AND LOGIC DESIGN LABORATORY EXPERIMENT – 2 Decoders and Multiplexers

PRELAB ASSIGMENT

NAME:MELİSA

SURNAME:SUBAŞI

ID:22829169256

SECTION:1

LAB GROUP:2

Preliminary Work:

a)Read the document "An_Introduction_to_VHDL".

I read it.

b) Research into case-when, if-elsif and for loop structures in VHDL. Give a short example for each structure and explain how they work?

CASE-WHEN:

The VHDL Case Statement works exactly the way that a switch statement in C works. Given an input, the statement looks at each possible condition to find one that the input signal satisfies. They are useful to check one input signal against many combinations.

IF-ELSE IF:

An if else statement in programming is a conditional statement that runs a different set of statements depending on whether an expression is true or false. Which means it is n Boolean type statement.

FOR LOOP:

The For-Loop allows you to iterate over a fixed range of integers or enumerated items. The item belonging to the current iteration will be available within the loop through an implicitly declared constant.

c) Draw block diagram of a 3x8 decoder, obtain truth table.

S0	S1	S2	E	D0	D1	D2	D 3	D4	D 5	D6	D7
Х	Х	X	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	1
0	0	1	1	0	0	0	0	0	0	1	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	1	0	0	0
1	0	0	1	0	0	0	1	0	0	0	0
1	0	1	1	0	0	1	0	0	0	0	0
1	1	0	1	0	1	0	0	0	0	0	0
1	1	1	1	1	0	0	0	0	0	0	0

d) Draw block diagram of a 1x8 demultiplexer (demux), obtain truth table.

S2	S1	S0	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0
0	0	0	0	0	0	0	0	0	0	D
0	0	1	0	0	0	0	0	0	D	0
0	1	0	0	0	0	0	0	D	0	0
0	1	1	0	0	0	0	D	0	0	0
1	0	0	0	0	0	D	0	0	0	0
1	0	1	0	0	D	0	0	0	0	0
1	1	0	0	D	0	0	0	0	0	0
1	1	1	D	0	0	0	0	0	0	0

e) Draw block diagram of a 8x1 multiplexer (mux), obtain truth table .

50	S1	52	D0	D1	D2	D3	D4	D5	D6	D7	Y
0	0	0	0	X	X	X	X	Х	Х	X	0
0	0	0	1	X	X	X	X	Х	Х	X	1
0	0	1	Х	0	Х	Х	Х	X	Х	Х	0
0	0	1	Х	1	Х	X	X	X	Х	Х	1
0	1	0	Х	Х	0	Х	X	Х	Х	X	0
0	1	0	Х	Х	1	Х	Х	Х	Х	Х	1
0	1	1	Х	Х	Х	0	X	Х	Х	X	0
0	1	1	Х	Х	Х	1	Х	Х	Х	Х	1
1	0	0	Х	Х	Х	Х	0	X	X	X	0
1	0	0	Х	Х	X	х	1	Х	Х	X	1
1	0	1	Х	Х	Х	Х	Х	0	Х	Х	0
1	0	1	Х	Х	X	X	X	1	Х	X	1
1	1	0	Х	Х	Х	X	Х	Х	0	Х	0
1	1	0	Х	X	Х	X	X	X	1	X	1
1	1	1	Х	Х	Х	Х	Х	Х	Х	0	0
1	1	1	×	Х	X	X	X	×	Х	1	1

f) Draw block diagram of a 8x3 priority encoder, obtain truth table.

	Digital Inputs									Binary Output			
D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Q ₂	Q ₁	Q ₀			
0	0	0	0	0	0	0	1	0	0	0			
0	0	0	0	0	0	1	X	0	0	1			
0	0	0	0	0	1	Х	X	0	1	0			
0	0	0	0	1	Х	Х	Х	0	1	1			
0	0	0	1	Х	Х	Х	Х	1	0	0			
0	0	1	Х	Х	Х	Х	Х	1	0	1			
0	1	Х	Х	Х	Х	Х	Х	1	1	0			
1	Х	X	Х	X	Х	Х	X	1	1	1			