

Center for Industrial Mathematics (ZeTeM)

Mathematics / Computer science

Faculty 03

Operator Learning and DeepONets

<u>Janek Gödeke</u>, Nick Heilenkötter, Tom Freudenberg Heidelberg, 08.11.2023

Yesterday: PINNs for Single PDE

Poisson equation:

Task: Learn
$$u$$
 for **fixed** $u_0 \in \mathbb{R}$ and $f: \Omega \to \mathbb{R}$

$$\Delta u(x) = f(x)$$
 on $\Omega \subset \mathbb{R}^2$,
 $u(x) = u_0$ for $x \in \partial \Omega$.

Yesterday: PINNs for Single PDE

Poisson equation:

Universität

$$\Delta u(x) = f(x)$$
 on $\Omega \subset \mathbb{R}^2$,
 $u(x) = u_0$ for $x \in \partial \Omega$.

Figure: Learned solution for f = 1 and $u_0 = 0$

Task: Learn u for **fixed** $u_0 \in \mathbb{R}$ and $f: \Omega \to \mathbb{R}$

Yesterday: PINNs for Single PDE

Poisson equation:

Universität

$$\Delta u(x) = f(x)$$
 on $\Omega \subset \mathbb{R}^2$,
 $u(x) = u_0$ for $x \in \partial \Omega$.

Figure: Learned solution for f = 1 and $u_0 = 0$

Task: Learn u for **fixed** $u_0 \in \mathbb{R}$ and $f: \Omega \to \mathbb{R}$

Neural network u_{θ}

$$u_{\theta}:\Omega\longrightarrow\mathbb{R}$$

$$u_{\theta}(x) \approx u(x)$$

This Morning: PINNs for Multiple PDEs

Wave equation:

$$\partial_t^2 u = \mathbf{c}^2 \partial_x^2 u \quad \text{on } I_x \times I_t \subset \mathbb{R}^2,$$
 $u = 0 \quad \text{on } \partial I_x \times I_t$
 $\partial_t u(\cdot, 0) = 0 \quad \text{on } I_x$
 $u(x, 0) = f(x) \quad \text{for } x \in I_x.$

Task: Learn u_c for all $c \in I_c$ fixed $f:I_x \to \mathbb{R}$

This Morning: PINNs for Multiple PDEs

Wave equation:

$$\partial_t^2 u = \mathbf{c}^2 \partial_x^2 u \quad \text{on } I_X \times I_t \subset \mathbb{R}^2,$$

$$u = 0 \quad \text{on } \partial I_X \times I_t$$

$$\partial_t u(\cdot, 0) = 0 \quad \text{on } I_X$$

$$u(x, 0) = f(x) \quad \text{for } x \in I_X.$$

Task: Learn u_c for all $c \in I_c$ fixed $f:I_x \to \mathbb{R}$

Function to be learned

$$l_X \times l_t \times l_c \longrightarrow \mathbb{R}$$

 $(x, t, c) \longmapsto u_c(x, t)$

This Morning: PINNs for Multiple PDEs

Wave equation:

$$\begin{split} \partial_t^2 u &= \mathbf{c}^2 \partial_x^2 u &\quad \text{on } I_x \times I_t \subset \mathbb{R}^2, \\ u &= 0 &\quad \text{on } \partial I_x \times I_t \\ \partial_t u(\cdot, 0) &= 0 &\quad \text{on } I_x \\ u(x, 0) &= f(x) &\quad \text{for } x \in I_x. \end{split}$$

Task: Learn u_c for all $c \in I_c$ fixed $f:I_x \to \mathbb{R}$

Function to be learned

$$l_X \times l_t \times l_c \longrightarrow \mathbb{R}$$

 $(x, t, c) \longmapsto u_c(x, t)$

Neural network u_{θ}

$$u_{\theta}: I_{x} \times I_{t} \times I_{c} \longrightarrow \mathbb{R}$$

 $u_{\theta}(x, t, c) \approx u_{c}(x, t)$

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_x \times I_t \subset \mathbb{R}^2$, $u = 0$ on $\partial_x \times I_t$ $\partial_t u(\cdot, 0) = 0$ on I_x for $x \in I_x$.

Task: Learn u_f for fixed $c \in I_c$ many $f: I_x \to \mathbb{R}$

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_X \times I_t \subset \mathbb{R}^2$,
 $u = 0$ on $\partial I_X \times I_t$
 $\partial_t u(\cdot, 0) = 0$ on I_X
 $u(x, 0) = f(x)$ for $x \in I_X$.

Task: Learn u_f for fixed $c \in I_c$ many $f: I_X \to \mathbb{R}$

Operator to be learned

$$I_{x} \times I_{t} \times F \longrightarrow \mathbb{R}$$

$$(x, t, f) \longmapsto u_{f}(x, t)$$

F set of functions, e.g. in $C(I_X, \mathbb{R})$

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_x \times I_t \subset \mathbb{R}^2$,
 $u = 0$ on $\partial I_x \times I_t$
 $\partial_t u(\cdot, 0) = 0$ on I_x
 $u(x, 0) = f(x)$ for $x \in I_x$.

Task: Learn u_f for fixed $c \in I_c$ many $f: I_X \to \mathbb{R}$

Operator to be learned

$$I_{\mathsf{x}} \times I_{\mathsf{t}} \times \begin{subarray}{c} F \longrightarrow \mathbb{R} \\ (x,t,f) \longmapsto u_{\mathsf{f}}(x,t) \end{subarray}$$

F set of functions, e.g. in $C(I_x, \mathbb{R})$

Problem: Input of NNs must be from \mathbb{R}^d

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_x \times I_t \subset \mathbb{R}^2$, $u = 0$ on $\partial_x I_t \times I_t$ on $I_x \times I_t$ on $I_x \times I_t = 0$ on $I_x \times I_t =$

Task: Learn u_f for fixed $c \in I_c$ many $f: I_X \to \mathbb{R}$

Operator to be learned

$$I_{\mathsf{x}} \times I_{\mathsf{t}} \times \begin{subarray}{c} F \longrightarrow \mathbb{R} \\ (x,t,f) \longmapsto u_{\mathsf{f}}(x,t) \end{subarray}$$

 \digamma set of functions, e.g. in $C(I_X, \mathbb{R})$

Problem: Input of NNs must be from \mathbb{R}^d

→ PINNs not applicable

Operator Learning

Why Operator Learning?

Classical Parameter-Identification

Given: Solution *u* of PDE

Task: Find underlying parameters *f*

- Iterative algorithms: Solve many similar PDEs
- Classical PDE solver like FDM or FEM: Time-consuming
- Replace by trained NN
- Less time-consuming

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_x \times I_t \subset \mathbb{R}^2$,
 $u = 0$ on $\partial I_x \times I_t$
 $\partial_t u(\cdot, 0) = 0$ on I_x
 $u(x, 0) = f(x)$ for $x \in I_x$.

Operator to be learned

$$I_X \times I_t \times \stackrel{\mathbf{F}}{\longrightarrow} \mathbb{R}$$

 $(x, t, f) \longmapsto u_f(x, t)$

Wave equation:

$$\partial_t^2 u = c^2 \partial_x^2 u$$
 on $I_x \times I_t \subset \mathbb{R}^2$,
 $u = 0$ on $\partial I_x \times I_t$
 $\partial_t u(\cdot, 0) = 0$ on I_x
 $u(x, 0) = f(x)$ for $x \in I_x$.

Operator to be learned

$$l_X \times l_t \times F \longrightarrow \mathbb{R}$$

 $(x, t, f) \longmapsto u_f(x, t)$

Sample f at $y_1, ..., y_m$

$$u_{\theta}: I_{x} \times I_{t} \times \mathbb{R}^{m} \longrightarrow \mathbb{R}$$

$$u_{\theta}\left(x, t, \begin{pmatrix} f(y_{1}) \\ \vdots \\ f(y_{m}) \end{pmatrix}\right) \approx u_{f}(x, t)$$

Universität Bremen

- Note: $y_1, ..., y_m$ are fixed
- Free evaluation of u_t at (x, t)

Universität

Bremen

- Note: $y_1, ..., y_m$ are fixed
- Free evaluation of u_f at (x, t)

Problematic:

- Many $f(y_i)$ -inputs versus (x, t)
 - → Imbalance

DeepONets

Universität

Bremen

DeepONets¹ - Divide and Conquer

¹Lu, Jin, Karniadakis, *Learning Nonlinear Operators (...)*, 2019

DeepONets - Interpretation

Trunk Net:
$$(x, t) \mapsto (b_1(x, t), ..., b_p(x, y))^T$$

Branch Net:
$$(f(y_1), ..., f(y_m))^T \mapsto (c_1(f), ..., c_p(f))^T$$

DeepONet:
$$(x, t, f(y_1), ..., f(y_m))^T \mapsto \sum_k c_k(f)b_k(x, t)$$

DeepONets - Interpretation

Trunk Net: $(x, t) \mapsto (b_1(x, t), ..., b_p(x, y))^T$

• Learns "basis" functions for solutions $u_f(x, t)$

Branch Net: $(f(y_1), ..., f(y_m))^T \mapsto (c_1(f), ..., c_p(f))^T$

DeepONet: $(x, t, f(y_1), ..., f(y_m))^T \mapsto \sum_k c_k(t)b_k(x, t)$

DeepONets - Interpretation

Trunk Net: $(x, t) \mapsto (b_1(x, t), ..., b_p(x, y))^T$

• Learns "basis" functions for solutions $u_f(x, t)$

Branch Net: $(f(y_1), ..., f(y_m))^T \mapsto (c_1(f), ..., c_p(f))^T$

- Receives finite info about parameter function f
- Learns coefficients of u_f w.r.t. trunk net basis b_k

DeepONet: $(x, t, f(y_1), ..., f(y_m))^T \mapsto \sum_k c_k(t)b_k(x, t)$

Enough Info for Branch Net

• Sufficiently many sampling points $y_1, ..., y_m$ in domain of f

- E.g. band-limited functions f
 - → Sample with Shannon-Nyquist rate² (2 · bandwidth)⁻¹

²Shannon, Communication in the Presence of Noise, 1949

Inspired by Universal Approximation Theorem³ Simplified version

Theorem

Let $K \subset C([0,1]^d,\mathbb{R})$ be compact. Consider a continuous operator

$$G: [0,1]^n \times K \rightarrow \mathbb{R}.$$

For all $\varepsilon > 0$ there exist sampling points $y_1, ..., y_m \in [0, 1]^d$ and a

• branch net $\varphi_b : \mathbb{R}^m \to \mathbb{R}^p$ • trunk net $\varphi_t : [0, 1]^n \to \mathbb{R}^p$ such that

$$|G(x, t) - \langle \varphi_b(f(y_1), ..., f(y_m)), \varphi_t(x) \rangle| < \varepsilon$$
 for all $f \in K, x \in [0, 1]^n$.

³ T. Chen, H. Chen, *Universal Approximation to Nonlinear Operators (...)*, 1995

Training of DeepONets

a) Data-driven

Universität

Denotation: "DeepONet"

b) Physics-informed

Denotation: "Physics-Informed DeepONet" (PI-DeepONet)

Faculty 03 Mathematics / Computer science

Training of DeepONets

a) Data-driven

Denotation: "DeepONet"

b) Physics-informed

Denotation: "Physics-Informed DeepONet" (PI-DeepONet)

TORCHPHYSICS: Provides both + combination

Operator Learning and DeepONets <u>Janek Gödeke</u>, Nick Heilenkötter, Tom Freudenberg Faculty 03 Mathematics / Computer science

DeepONets for Inverse Problems

Learning the inverse Operator

Universität

Bremen

- Switch the roles of f and u
- Straightforward to implement

DeepONets for Inverse Problems

Learning the inverse Operator

- Switch the roles of f and u
- Straightforward to implement

$\begin{array}{c|c} x & & \text{trunk net} \\ \hline u(y_1) & & \\ \vdots & & \\ u(y_m) & & \\ \end{array} \approx f(x)$

Tikhonov scheme

- Learn forward operator, mapping (x, t, f) to $u_f(x, t)$
- Use in classical Tikhonov scheme:

$$\min_{f \in F} \frac{1}{2} \| u_{\theta}(\cdot, \cdot, f) - u^{\delta} \|_{L^{2}}^{2} + \frac{\alpha}{2} \| f \|_{L^{2}}^{2}$$

More robust to noise

Alternative Operator Learning Approaches

General Approach

Universität

- Sampling points $y_1, ..., y_m$ for functions f
- Sampling points $z_1, ..., z_r$ for u
- Map sampled f to sampled u

Fourier Neural Operators (FNO)⁴

Needs a fixed grid for both f and u

Universität

- Inspired by the convolution theorem: $(\kappa * g)(x) = \mathcal{F}^{-1}(\mathcal{F}(\kappa) \cdot \mathcal{F}(g))(x)$
- Exploits strength of Fourier transformation

⁴ Li et al, Neural operator: Graph kernel network for partial differential equations, 2020

Model Reduction and NNs for Parametric PDEs⁵

- Utilizes principal component analysis (PCA) for input f and output u
- Learn mapping $\phi_{\theta}: \mathbb{R}^{d_F} \to \mathbb{R}^{d_U}$

⁵ Bhattacharya et al, *Model reduction and neural networks for parametric PDEs*, 2020

Model Reduction and NNs for Parametric PDEs⁵

- Utilizes principal component analysis (PCA) for input f and output u
- Learn mapping $\phi_{\theta}: \mathbb{R}^{d_F} \to \mathbb{R}^{d_U}$
- Usually PCA-basis only known on fixed grid
- Basis function have not to be learned

⁵ Bhattacharya et al, *Model reduction and neural networks for parametric PDEs*, 2020

Performance of different approaches⁶

Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

• Forward problem: map f o u

⁶ Nganyu Tanyu et al, Deep Learning Methods for Partial Differential Equations (...), 2023

Performance of different approaches⁶

Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

• Forward problem: map $f \rightarrow u$

⁶ Nganyu Tanyu et al, *Deep Learning Methods for Partial Differential Equations (...)*, 2023

Faculty 03
Mathematics / Computer

D-1 12 | Evaluation

Performance of different approaches⁶

• Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

	Hei. L	Evaluation
	error	time [s]
DeepONet	0.029	0.001
FNO	0.011	0.017
PCA	0.025	0.611

Forward problem: map f → u

⁶ Nganyu Tanyu et al, *Deep Learning Methods for Partial Differential Equations (...)*, 2023

Performance of different approaches⁶

Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

• Inverse problem: map $u \to f$

⁶ Nganyu Tanyu et al, Deep Learning Methods for Partial Differential Equations (...), 2023

Performance of different approaches⁶

Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

• Inverse problem: map $u \to f$

⁶ Nganyu Tanyu et al, *Deep Learning Methods for Partial Differential Equations (...)*, 2023

Performance of different approaches⁶

• Consider Darcy flow equation

$$-\nabla \cdot (f \nabla u) = 1, \quad \text{in } (0,1)^2$$
$$u = 0, \quad \text{on } \partial (0,1)^2$$

	∣ Rei. L°	Evaluation
	error	time [s]
DeepONet	0.222	0.001
FNO	0.149	0.016
PCA	0.099	0.154

• Inverse problem: map $u \rightarrow f$

⁶ Nganyu Tanyu et al, *Deep Learning Methods for Partial Differential Equations (...)*, 2023

Comparison to Other Python Libraries

Faculty 03 Mathematics / Computer science

Other Open-Source Python Libraries

...implementing physics-informed learning

- 1) DEEPXDE⁷
 - Developed by L. Lu, supervised by G. Karniadakis, Brown University, USA
 - Available on GitHub

⁷ Lu et al., DeepXDE: A Deep Learning Library for Solving Differential Equations, 2021

Faculty 03 Mathematics / Computer science

Other Open-Source Python Libraries

...implementing physics-informed learning

- 1) DEEPXDE7
 - Developed by L. Lu, supervised by G. Karniadakis, Brown University, USA
 - Available on GitHub
- 2) NVIDIA Modulus
 - ©2021-2022, NVIDIA Corporation
 - Available on GitHub

⁷ Lu et al., DeepXDE: A Deep Learning Library for Solving Differential Equations, 2021

Comparison

General information

Universität

- TORCHPHYSICS, MODULUS based on PyTorch
- DEEPXDE mainly on TensorFlow, also supports PyTorch, JAX, PaddlePaddle
- pip-installable
- Share similar structure/building blocks, like Domain, Conditions, etc. (different names)

Faculty 03 Mathematics / Computer science

Comparison Domains and sampling

Universität Bremen

	TorchPhysics	DEEPXDE	Modulus
Domain operations	✓	✓	✓
\cup, \cap, \setminus	Cartesian product		
Time-dependent	✓	Х	Х
domains			
STL geometry	✓	×	✓
Grid sampling	✓	✓	X
Random sampling	✓	✓	✓
Adaptive sampling	✓	✓	(✔)
(e.g. loss-dependent)			Manually

Faculty 03 Mathematics / Computer science

Comparison Pre-Implemented Methods

Universität Bremen

	TorchPhysics	DEEPXDE	Modulus
PINN	✓	✓	✓
		Extensions	
DeepRitz	✓	Manually	Manually
(PI)DeepONet	✓	✓	✓
		Extensions	
FNO	X	Fourier-	✓
		DeepONet	
PINO	Х	X	✓