Machine Learning para Inteligencia Artificial

Máxima Verosimilitud

Universidad ORT Uruguay

26 de Marzo, 2025

La función de verosimilitud

- $\blacksquare \text{ Datos } T = \{z_1, \dots, z_N\}$
- Suponemos muestra iid de una distribución $p(z; \theta)$ parametrizada con θ
- \blacksquare La "probabilidad" de observar T es

$$p(T;\theta) = p(z_1;\theta) \cdot p(z_2;\theta) \cdots p(z_N;\theta)$$

- Para T dado, la verosimilitud de un parámetro θ es $L(\theta) = p(T; \theta)$
- La función de verosimilitud es $\theta \mapsto L(\theta)$
- El principio de máxima verosimilitud:

$$\widehat{ heta} := rg \max_{ heta} \mathit{L}(heta)$$

Menos el log de la verosimilitud

■ Es más sencillo trabajar con (menos) el logaritmo de la verosimilitud

$$\ell(\theta) := -\ln L(\theta) = -\sum_{i=1}^{N} \ln p(z_i, \theta)$$

Entonces, de forma equivalente tenemos

$$\widehat{\theta} = rg \max_{\theta} L(\theta) = rg \min_{\theta} \ell(\theta)$$

Notar que $\widehat{\theta}$ depende de T

Ejemplo

Consideremos nuevamente la densidad

$$p(z;\theta) = \frac{1}{2}(1+\theta z) - 1 \le z \le 1$$

El parámetro θ también varía entre -1 y 1.

La función de verosimilitud es

$$L(\theta) = \frac{1}{2^N} \prod_{i=1}^N (1 + \theta z_i)$$

que es un polinomio de grado N en θ .

lacksquare L'(heta)=0 no tiene solución analítica (raíz de un polinomio de grado N-1)

Ejemplo: la muestra

En este ejemplo la muestra (de tamaño N=50) simulada con $\theta=0.4$:

-0.81	-0.97	0.22	0.19	0.32	0.66	0.21	0.97	0.80	-0.51
-0.01	-0.57	-0.33	0.51	0.60	-0.82	0.10	0.24	0.59	0.73
-0.63	-0.48	-0.35	0.91	-0.67	0.74	0.23	-0.09	-0.02	0.63
0.19	-0.58	0.49	0.81	0.92	0.60	-0.29	0.46	0.81	0.46
0.41	-0.07	0.11	0.11	0.39	-0.09	0.46	0.55	0.41	0.70

Ejemplo: la verosimilitud

Ejemplo: la verosimilitud

Proportional Search

Dado un intervalo [a, b]

Subdividimos [a, b] utilizando una proporción $\rho \in [0, 1/2]$:

$$x = a + \rho (b - a)$$
 e $y = b - \rho (b - a)$

- \blacksquare Si descartamos la parte superior, nos queda el intervalo [a, y]
- \blacksquare Si descartamos la parte inferior, nos queda el intervalo [x, b]

Proportional Search

- 1. Inicializar a y b que encierren al mínimo de la función $\ell(\theta)$ Elegir proporción $\rho \in [0,1/2]$ Elegir tolerancia $\tau > 0$
- 2. Subdividir $x \leftarrow a + \rho(b-a)$ e $y \leftarrow b \rho(b-a)$
- 3. Evaluar la función $\ell(x)$ y $\ell(y)$
- 4. Si $\ell(x) < \ell(y)$:
 - 4.1 $\hat{\theta} \leftarrow x$
 - 4.2 Reasignamos las variables $a \leftarrow a, b \leftarrow y$
- 5. Si $\ell(x) \geqslant \ell(y)$:
 - 5.1 $\hat{\theta} \leftarrow v$
 - 5.2 Reasignamos las variables $a \leftarrow x$, $b \leftarrow b$
- 6. Repetir desde 2. hasta que $|b-a| \le \tau$. Devolver $\hat{\theta}$.

Descenso por Gradiente (derivada)

- 1. Inicializar θ Elegir tasa de aprendizaje $\alpha>0$ Elegir tolerancia $\tau>0$
- 2. Calcular la derivada $\ell'(\theta)$
- 3. Actualizar el parámetro:

$$\theta \leftarrow \theta - \alpha \, \ell'(\theta)$$

4. Repetir desde 2. hasta que $|\ell'(\theta)| \leq \tau$ y devolver θ

Descenso por Gradiente Estocástico

Denotando $\ell_i(\theta) := -\ln p(z_i; \theta)$ tenemos que $\ell(\theta) = \sum_{i=1}^N \ell_i(\theta)$.

- 1. Inicializar θ Elegir tasa de aprendizaje $\alpha>0$ Elegir número de épocas E
- 2. Para cada época e = 1, ..., E repetir:
 - 2.1 Ordenar aleatoriamente los datos
 - 2.2 Para cada dato z_i en el orden realizado en el paso 2.1 repetir:
 - 2.2.1 Calcular la derivada $\ell_i'(\theta)$
 - 2.2.2 Actualizar el parámetro: $\theta \leftarrow \theta \alpha \ell_i'(\theta)$
- 3. Devolver θ

Bibliografía

Everitt, Brian. Introduction to optimization methods and their application in statistics. (2012) Springer.