Введение в машинную арифметику

Материал относится к курсу численного моделирования, посвящен представлению чисел в памяти компьютера и реализации арифметических операций с ними.

Представление 8-битных целых чисел в процессоре

Привычные нам числа в десятичной системе в процессоре представляются в двоичной системе. Рассмотрим на примере числа 100:

$$100_{10} = 1*10^2 + 0*10^1 + 0*10^2 = 2^6 + 2^5 + 2^2 = 110010_2$$

В памяти компьютера 8-битное число представляется собственно 8-ю битами, то есть 1 байтом. Биты нумеруются справа налево - от 0 до 7. Представим биты в виде ячеек и получим следующую запись:

№ бита	7	6	5	4	3	2	1	0
Значение	0	1	1	0	0	1	0	0

Рассмотрим теперь число $200=2^7+2^6+2^3$. Заметим, что все степени двоек увеличились на 1, так как 200=100*2.

Запишем то, как выглядит 8-битное число в памяти компьютера:

№ бита	7	6	5	4	3	2	1	0
Значение	1	1	0	0	1	0	0	0

Отметим следующую особенность:

- Умножение на 2 смещает все единицы влево
- Деление на 2 смещает все единицы вправо

Потери и переполнения

Рассмотрим число $255=2^8-1=\sum_{i=0}^7 2^i.$ В Представление в памяти:

№ бита	7	6	5	4	3	2	1	0
Значение	1	1	1	1	1	1	1	1

Если к числу прибавить единицу, то в представлении памяти останутся только 0. Единица, которая могла бы быть в 8-м бите, сохраняется в специальном флаге процессора, однако в дальнейших вычислениях не используется.

№ бита		7	6	5	4	3	2	1	0
Значение	1	0	0	0	0	0	0	0	0

Получается, что в 8-битном представлении 255+1=0

$$100 + 200 = [2^8 +]2^5 + 2^3 + 2^2 = 44$$

Представление неотрицательных целых чисел в процессоре

Название типа	Размер	Значение				
Byte (unsigned char, unsigned byte)	8 бит	0255				
Word (unsigned short)	16 бит	065535				
Dword (unsigned, unsigned int, unsigned long)	32 бита	04294967295				
Qword (unsigned long, unsigned long long)	64 бит	$02^{64}-1$				

Сегодня часто используется представление, максимально соответствующая архитектуре процессора - как правило, это 64 бита.

Представление отрицательных чисел в процессоре

Число -100 неотличимо от числа 256 - 100 = 156.

$$256 - 100 = 128 + 16 + 8 + 4 = 2^7 + 2^4 + 2^3 + 2^2 = [1|0|0|1|1|1|0|0]_2$$

Рассмотрим более интересный вариант:

$$-128 - 1 = 127[-256] = \sum_{i=0}^{6} 2^i = [0|1|1|1|1|1|1|1]_2$$

Как видно, появляется необходимость **разделять**, является число положительным или отрицательным.

Правило

Число является отрицательным, если в нем единица в самом старшем разряде. легко увидеть, что 127 - максимальное положительное число, которое можно так представить, а -128 это минимальное отрицательное.

При попытке отнять от -128 единицу, мы получим 127, то есть перейдем от минимального числа к максимального ("закольцуемся")

$$-100-100=-200=56[-256]=2^5+2^4+2^3=[0|0|1|1|1|0|0|0]_2$$

Название типа	Размер	Значение							
Char (byte)	8 бит	-128127							
Short	16 бит	-3276832767							
Int (long)	32 бита	-21474836482147483647							
Long (long long)	64 бит	$-2^{63} \cdot \cdot 2^{63} - 1$							

Представление чисел с плавающей точкой в процессоре (IEEE 754)

Числа с плавающей точкой тоже представляются в памяти компьютера как двоичные.

Например, это число имеет точное выражение в двоичной системе:

$$4.57815 = 4 + 1/2 + 1/16 + 1/64 = 2^2 + 2^{-1} + 2^{-4} + 2^{-6} = 2^2(1 + 2^{-3} + 2^{-6} + 2^{-8})$$

За скобками оказывается двойка в степени, которая называется **порядок**, а в скобках - последовательность, характеризующая **мантиссу**

	3	3-й байт					2-й байт							1-й байт							0-й байт									
Знак числа	Знак порядка		Пор	ояд	ιок											M	ан	тис	ca											

Экспонента - это сочетание знака порядка и самого порядка. Если имеем знак 1, то экспонента равна сложению порядка и 127. В нашем случае это 127 + 2 = 129.

Итак, запись числа 4.57815:[0|1000000|00100101000000000000000]

Нормальная число = (1 - 2 x 3нак) x 2 ^ (Экспонента - Сдвиг) x 1.Мантисса

Типы чисел с плавающей точкой

Название типа	Размер, бит	Экспонента, бит	Мантисса, бит	Значения					
Float (single)	32	8	23	$-3.40282*10^{38}3.40282*10^{38}$					
Double (float)	64	11	52	$-1.79679*10^{308}1.79679*10^{308}$					
Extended (long double)	80	15	63	$-1.18973*10^{4932}1.18973*10^{4932}$					
Quadruple (float128)	128	15	112	$-1.18973 * 10^{4932} 1.18973 * 10^{4932}$					

Чем больше длина мантиссы, тем точнее представление числа (больше двоичных знаков после точки).

Наиболее распространенными являются Single и Double. Тип Extended гораздо реже поддерживается в языках программирования и аппаратных режимах работы процессора. Хотя скорость работы с этим типом сильно не отличается от скорости работы с Float на большинстве операций.

Quadruple не поддерживается современными процессорами, практических нужд его использовать нет.

Проблемы с точностью

Возьмем число $1/3=2^{-2}(1+2^{-2}+2^{-4}+2^{-6}\dots)$. Как видно, точно записать его в таком виде не представляется возможным, учитывая, что мы имеем конечное число бит.

Даже число 0.1 не имеет точного выражения в виде числа с плавающей точкой.

К таким числам возможно только приближенное представление.

Специальные числа с плавающей точкой

Знак	Экспонента	Мантисса	Значение
0	00000000	0000	+0
1	00000000	0000	-0
0/1	00000000	$\neq 0$	Денормализованное число
0	00000000	0000	$+\infty$
1	11111111	0000	$-\infty$
	11111111	$\neq 0$	NaN (not a number)
	прочее		Нормальное число

- Как видно, нули имеют знак, так как первый бит может быть как 1, так и 0.
- NaN не число, то есть что-то, что не может быть результатом математической операции.

Специальные числа: нули и бесконечности

Числа с плавающей точкой кардинально отличаются от целых чисел тем, что при их переполнении не происходит обнуления значащих битов и "закольцовывания" результатов. Если результат не может быть выражен как число с плавающей точкой, то в него записывается $+\infty$ или $-\infty$. Приведем несколько примеров:

$$\begin{array}{l} 10^{20}*10^{20}=+\infty \\ ln(\pm 0)=-\infty \\ \sqrt{+\infty}=+\infty \\ 1/\pm 10^{-39}=\pm \infty \quad (single) \\ 1/\pm 10^{-309}=\pm \infty \quad (double) \\ +\infty>0 \qquad -\infty<0 \\ x-x=+0 \\ x/\pm 0=\pm \infty, x>0 \qquad x/\pm 0=\mp \infty, x<0 \\ +0*x=-0, x<0, x\neq -\infty \\ +0*-0=-0 \qquad -0*-0=+0 \qquad +0=-0 \\ \pm \infty+x=\pm \infty, x\neq -\infty \\ \pm \infty*x=\pm \infty, x<0 \\ \pm \infty*x=\mp \infty, x<0 \end{array}$$

Специальные числа: NaN

$$log(x) = NaN, x < 0$$

$$\sqrt{x} = NaN, x < 0$$

$$0/0 = NaN$$

$$\infty - \infty = NaN$$

$$0*\infty = NaN$$

$$\infty/\infty = NaN$$

$$0*NaN = NaN$$

$$NaN/\infty = NaN$$

Денормализованные числа

Деномализованное число = $1 - (2 \times 3 \text{ нак}) * 2^{(-Cдвиг)} * 0.Мантисса$

Как видно, у них нет единицы в мантиссе, как было у нормального числа.

Если изобразить нормальные числа рисками:

[нужна картинка]

То вычитая соседние нормальные числа друг из друга, эта разность не будет выражаться в нормальном числе (получится 0).

Поэтому вводится специальный тип денормализованных чисел таким образом, чтобы:

$$a = b \Leftrightarrow a - b = 0$$

Ошибки округления чисел с плавающей точкой

Проблема не в точности самих чисел - она вполне достаточна для величин в физике.

Гарантируется корректное округление всех операций и библиотечных функций во всех значащих битах (в single и double, но не extended). Тем не менее (1):

$$1 + 2^{-23} = 1.00000011920928955078125$$

$$1 + 2^{-24} \approx 1$$
 (single)

Из-за этих погрешностей нарушаются привычные законы арифметики:

- Ассоциативность: $(x + y) + z \neq x + (y + z)$
- Дистрибутивность: $(x + y) * z \neq x * z + y * z$
- $x/y \neq x * (1/y)$
- $(a+b)-(a+c) \neq b-c$. Если a+b и a+c большие, а их разность маленькая, то из-за ошибок округления равенство не будет выполнено. Пример (1) является частным случаем.
- ullet x+y=x,y
 eq 0 и такое может происходить.

Контроль ошибки округления

Контроль возможен, потому что в процессоре гарантируется корректность значащих битов, последний бит округляется в правильную сторону.

Контроль ошибки суммы:

$$c = a + b$$

$$e = (c - a) - b$$

Таким образом "получаем обратно" младшие биты мантиссы, которые обусловлены разницей c-a. Если из этого вычесть b, то "вернем" биты, которые были в b и не попали в c. Таким образом получим точное значение ошибки округления. Иногда может быть, что e=0, а если это не так, то ошибку можно учесть.

см. Kahan summation - алгоритм, предназначенный для суммирования n чисел. При суммировании массива можно учесть ошибки сложения предыдущих элементов.

Контроль ошибки произведения

см. fused multiply-add - специальная инструкция процессора, которая позволяет сразу выполнить сложение и умножение, гарантируя корректность всех значащих битов результата.

$$a = a + b * c$$

Использование такой операции позволяет оценить ошибку произведения b st c

Бывают и другие контроли ошибкок.

Прочие виды чисел

Такие виды непосредственно в процессоре не реализованы, но эмулируются специализированными библиотеками, хоть и с потерей по времени

- Double-double: сумма большого и маленького числа
- Decimal: десятичный актуален в финансовых расчетах, где важно округление десятичных разрядов, а не двоичных
- Bignum: "резиновые числа" количество значащих битов не ограничено (хотя все же имеется некоторый барьер размера числа). Можно считать числами произвольной точности
- Rational: рациональные числа полезны для алгебраических расчетов. Числитель и знаменатель представлены целыми числами
- Fixed-point: числа с фиксированной точкой, целые числа, которые трактуются так, что между какими-то двумя соседними битами была поставлена точка. Актуальны в приложениях, где порядки участвующих в расчетах числах известны и не очень отличаются