

PLENARY EXERCISES - TMA4145

Week 41, Wednesday 11. October 2023

Assume $G: \mathbb{R}^n \to \mathbb{R}^n$ is Lipschitz continuous with Lipschitz constant L, and that for every $x, y \in \mathbb{R}^n$

$$\langle G(x) - G(y), x - y \rangle \leq 0.$$

1. Show that that G has a unique fixed point x^* and that the iteration

$$x_{n+1} = (1 - \lambda)x_n + \lambda G(x_n),$$

converges to x^* for all sufficiently small $\lambda > 0$.

Hint:

- **1.** Consider the map $T: \mathbb{R}^n \to \mathbb{R}^n$ given by $T(x) = (1 \lambda)x + \lambda G(x)$.
- **2.** Show that any fixed point of *T* is also a fixed point of *G*.
- **3.** It is benefical to consider $|T(x) T(y)|^2$ when showing that it is a contraction.

1

Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ be such that

1. Assume there exists $0 < c_1 < 0$ such that

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| \le c_1 < 1.$$

Show that *A* is a contraction for $\|\cdot\|_{\infty}$.

2. Assume there exists $0 < c_2 < 0$ such that

$$\max_{1 \le j \le n} \sum_{i=1}^{n} |a_{i,j}| \le c_2 < 1.$$

Show that *A* is a contraction for $\|\cdot\|_1$.

3. Show that neither cases necessarily gives that *A* is a contraction for $\|\cdot\|_2$.

Hint:

- **1.** For matrix multiplication we have $(Av)_i = \sum_{j=1}^n a_{i,j} v_j$.
- **2.** For problem 3, you might consider 2×2 matrices.

Let $g \in C([0,1])$ be such that $||g||_{\infty} \le 1/2$.

1. Show that there exists a unique $f \in C[0,1]$ with $||f||_{\infty} \le 1$ such that

$$f=\frac{1}{4}f*f+g$$

where

$$f*h(x) = \int_0^x f(y)h(x-y) dy.$$

Hint:

- **1.** Show $K = \{ f \in C([0,1]) : ||f||_{\infty} \le 1 \}$ is a closed subset.
- 2. Show that

$$f * h(x) = \int_0^x f(y)h(x-y) dy$$

is a contraction on K.

3. It might be benefical to add 0 in a clever way for hint 2.

We denote the space of bounded continuous functions on $\ensuremath{\mathbb{R}}$ by

$$C_b(\mathbb{R}) := \{ f \in C(\mathbb{R}) : ||f||_{\infty} < \infty \}.$$

1. Show that $(C_b(\mathbb{R}), \|\cdot\|_{\infty})$ is a complete metric space.

Hint:

- **1.** $d_{\infty}(f,g) = \|f g\|_{\infty} = \sup_{x \in \mathbb{R}} |f(x) g(x)|.$
- **2.** You may use that the uniform limit of a sequence of continuous functions is continuous.
- **3.** The strategy for proving completeness: 1) find a suitable candidate for the limit. 2) show that the limit is in C_b . 3) Show that the limit converges to the candidate.