Lecturer: Set up MATLAB

In [17]:

clear all
format compact

Worksheet 3

To accompany Chapter 2 Elementary Signals

We will step through this worksheet in class.

You are expected to have at least watched the video presentation of <u>Chapter 2 (https://cpjobling.github.io/eg-247-textbook/elementary_signals/index)</u> of the <u>notes (https://cpjobling.github.io/eg-247-textbook)</u> before coming to the first class. If you haven't watch it afterwards!

TurningPoint Mobile Polling Setup

We will be using TurningPoint mobile response system polling in this session.

There are two ways to participate:

1. Use a web browser

This option always works providing you have a mobile web browser.

Browse to: https://ttpoll.eu (https://ttpoll.eu).

https://ttpoll.eu (https://ttpoll.eu)

2. Install and open the TurningPoint app

Browse to: TurningPoint app (https://www.turningtechnologies.com/turningpoint-app/)

https://goo.gl/MEjxu7 (https://goo.gl/MEjxu7)

Use the links to the App stores at the bottom of that page or follow these links: <u>App Store</u> (https://itunes.apple.com/us/app/responseware/id300028504?mt=8), <u>Google Play</u> (<a href="https://play.google.com/store/apps/details?id=com.turningTech.Responseware&feature=search_result#?t=W251bGwsMSwyLDEsImNvbS50dXJuaW5nVGVjaC5SZXNwb25zZXdhcmUiXQ...).

We will be using the same session ID as for the first part of this week's session.

When prompted: enter the session ID

Today's Session ID

EG2470001

The rest of the session will be anonymous and scored by teams.

Elementary Signals

Consider this circuit:

Q1: What happens **before** t = 0?

- 1. v_{out} = undefined
- 2. $v_{\text{out}} = 0$
- 3. $v_{\rm out} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\rm out} = \infty$

-> Open Poll

Q2: What happens after t = 0?

- 1. $v_{\text{out}} = \text{undefined}$
- 2. $v_{\text{out}} = 0$
- 3. $v_{\rm out} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\rm out} = \infty$

-> Open Poll

Q3: What happens at t = 0?

- 1. v_{out} = undefined
- 2. $v_{\text{out}} = 0$
- 3. $v_{\rm out} = V_s$
- 4. $v_{\text{out}} = 1/2$
- 5. $v_{\rm out} = \infty$

-> Open Poll

Q4: What does the response of $V_{
m out}$ look like? Circle the picture you think is correct on your handout.

1:

The Unit Step Function

$$u_0(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

In Matlab

In Matlab, we use the heaviside function (Named after Oliver Heaviside (http://en.wikipedia.org/wiki/Oliver Heaviside)).

In [16]:

```
syms t
ezplot(heaviside(t),[-1,1])
heaviside(0)
```

ans = 0.5000

See: heaviside function.m (matlab/heaviside function.m)

Note that, so it can be plotted, Matlab defines the *heaviside function* slightly differently from the mathematically ideal unit step:

$$heaviside(t) = \begin{cases} 0 & t < 0 \\ 1/2 & t = 0 \\ 1 & t > 0 \end{cases}$$

Circuit Revisited

Consider the network shown below, where the switch is closed at time t = T.

Express the output voltage v_{out} as a function of the unit step function, and sketch the appropriate waveform.

Simple Signal Operations

Amplitude Scaling

Sketch $Au_0(t)$ and $-Au_0(t)$

ime Reversal	
Sketch $u_0(-t)$	
Time Delay and Advance	
Sketch $u_0(t-T)$ and $u_0(t+T)$	

worksheet3

25/01/2019

Examples

Example 1

Which of these signals represents $-Au_0(t+T)$?

-> Open Poll

Example 2

What is represented by

$$1. -Au_0(t+T)$$

2.
$$-Au_0(-t+T)$$

3.
$$-Au_0(-t-T)$$

4.
$$-Au_0(t-T)$$

-> Open Poll

Synthesis of Signals from Unit Step

Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses.

Synthesize Rectangular Pulse

Synthesize Square Wave

Synthesize Symmetric Triangular Pulse

The Ramp Function

In the circuit shown above i_s is a constant current source and the switch is closed at time t=0.

Show that the voltage across the capacitor can be represented as

$$v_C(t) = \frac{i_s}{C} t u_0(t)$$

and sketch the wave form.

The unit ramp function is defined as

 $u_1(t) = \int_{-\infty}^t u_0(\tau) d\tau$

so

$$u_1(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

and

$$u_0(t) = \frac{d}{dt}u_1(t)$$

Note

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

$$u_{n-1} = \frac{1}{n} \frac{d}{dt} u_n(t)$$

Details are given in equations 1.26—1.29 in the textbook.

The Dirac Delta Function

In the circuit shown above, the switch is closed at time t=0 and $i_L(t)=0$ for t<0. Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$.

Notes

To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called $\delta(t)$ or the *dirac delta* function (named after <u>Paul Dirac</u>). (http://en.wikipedia.org/wiki/Paul Dirac)).

The delta function

The unit impulse or the delta function, denoted as $\delta(t)$, is the derivative of the unit step.

This function is tricky because $u_0(t)$ is discontinuous at t=0 but it must have the properties

$$\int_{-\infty}^{t} \delta(\tau) d\tau = u_0(t)$$

and

$$\delta(t) = 0$$
 for all $t \neq 0$.

Important properties of the delta function

See the accompanying notes (index).

Examples

Example 3

Evaluate the following expressions

$$3t^4\delta(t-1)$$

$$\int_{-\infty}^{\infty} t \delta(t-2) dt$$

25/01/2019	worksheet3	
	2 ,	
	$t^2\delta'(t-3)$	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Fya	mple 4	
LXG		

(1) Express the voltage waveform $\upsilon(t)$ shown above as a sum of unit step functions for the time interval -1 < t < 7 s

Using the result of part (1), compute the derivative of v(t) and sketch its waveform.

Lab Work

In the first lab, on Thursday, we will solve further elemetary signals problems using MATLAB and Simulink following the procedure given between pages 1-17 and 1-22 of the Karris. We will also explore the heaviside and dirac functions.

Answers to in-class questions

Mathematically

Q1. $v_{\text{out}} = 0$ when $-\infty < t < 0$ (answer 2)

Q2. $v_{\text{out}} = V_s$ when $0 < t < \infty$ (answer 3)

Q3. $v_{\rm out} = {\rm undefined}$ when t=0 (answer 1)

 $V_{
m out}$ jumps from 0 to V_{s} instantanously when the switch is closed. We call this a discontinuous signal!

Q4: The correct image is:

Example 1: Answer 3.

Example 2: Answer 2.