Loan Approval Prediction Report

Project Title:

Building a Prediction Model for Banking Loan Approval

Problem Statement:

Banks often struggle to approve the right loan applicants despite rigorous screening. The goal of this project is to develop a machine learning model to accurately predict whether a loan should be **approved (1)** or **rejected (0)**.

Dataset Description:

The dataset contains various applicant-related attributes. Key variables include:

Feature Description

APP_ID Application ID

CIBIL_SCORE_VALUE Credit Score: 0 = Bad, 1 = OK, 2 = Good

NEW_CUST New to Credit: Yes/No

EMPLOYMENT_TYPE 1 = Salaried, 0 = Self-employed

AGE Age of applicant

SEX Gender: M/F

NO_OF_DEPENDENTS Number of dependents

MARITAL_Status Marital status: 1 = Married, 0 = Not Married

EDU_QUA Education: 1 = Educated, 0 = Not educated

P_RESTYPE Residence type: 1 = Own, 0 = Rented

EMPLOYEE_TYPE 0 = Private, 1 = Temp, 2 = Govt

MON_IN_OCC Months in current occupation

ASSET_LOAN_RATIO Asset to loan value ratio

TENURE Loan tenure in months (12 to 48)

STATUS Target variable: 1 = Approved, 0 = Rejected

Data Preprocessing:

- Encoded categorical variables using Label Encoding.
- Filled missing values.
- Split data into 70% training and 30% testing sets.

Model: Random Forest Classifier

Evaluation Results:

Accuracy: 0.6473684210526316

Classification Report:

Accuracy: 0.6473684210526316				
Classification Report:				
	precision	recall	f1-score	support
	0.60	0.00	0.74	2474
0	0.68	0.82	0.74	2474
1	0.56	0.36	0.44	1516
accuracy			0.65	3990
macro avg	0.62	0.59	0.59	3990
weighted avg	0.63	0.65	0.63	3990

Confusion Matrix:

Predicted Rejected Predicted Approved

Actual Rejected 2039 435

Actual Approved 972 544

The model performs better at identifying rejections than approvals. Class imbalance may be a contributing factor.

Google Colab Code:

Loan Approval Prediction - Random Forest Classifier

Step 1: Import Libraries

import pandas as pd

```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
# Step 2: Load Dataset
from google.colab import files
uploaded = files.upload()
df = pd.read_csv('your_dataset.csv')
# Step 3: Preprocessing
label_encoders = {}
for column in df.columns:
  if df[column].dtype == object:
    le = LabelEncoder()
    df[column] = le.fit_transform(df[column].astype(str))
    label_encoders[column] = le
X = df.drop(columns=['APP_ID', 'STATUS'])
y = df['STATUS']
# Step 4: Split the Data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Step 5: Train the Model
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
```

```
# Step 6: Predictions
y_pred = model.predict(X_test)

# Step 7: Evaluation
print("Accuracy:", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))

# Step 8: Confusion Matrix
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(6,4))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=["Rejected", "Approved"],
yticklabels=["Rejected", "Approved"])
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
```

Conclusion:

We built a Random Forest model with 64.7% accuracy for predicting loan approvals. Future improvements include handling class imbalance and model tuning for better recall of approved loans.

Confusion Matrix Plot (Output):

```
Confusion Matrix:
[[2039 435]
[ 972 544]]
```