

Nivelación 2015 Matemáticas 9°

Germán Avendaño Ramírez *

Nombre:	Curso:	Fecha:	

Exponentes y radicales

Para los ejercicios 1-3, evalúe la expresión numérica

1.
$$4^{-3}$$

2.
$$(3^2 \cdot 3^{-3})^{-1}$$

3.
$$\left(\frac{3^{-1}}{3^2}\right)^{-1}$$

Para los ejercicios 4–9, simplifique y exprese el resultado final usando exponentes positivos solamente

4.
$$(x^{-3}y^4)^{-2}$$

7.
$$(-5x^{-3})(2x^6)$$

5.
$$\left(\frac{4a^{-2}}{3b^{-2}}\right)^{-2}$$

8.
$$\frac{a^{-1}b^{-2}}{a^4b^{-5}}$$

6.
$$\left(\frac{6x^{-2}}{2x^4}\right)^{-2}$$

9.
$$\frac{-12x^3}{6x^5}$$

Para los ejercicios 10–11, exprese como una fracción simple usando solamente exponentes positivos

10.
$$x^{-2} + y^{-1}$$

11.
$$2x^{-1} + 3y^{-2}$$

Para los ejercicios 12–17, exprese el radical en su forma más simple. Suponga que las variables representan números reales positivos.

12. $\sqrt{54}$

16. $\frac{\sqrt[3]{2}}{\sqrt[3]{6}}$

- 13. $\sqrt[3]{56}$
- 14. $\frac{3}{4}\sqrt{150}$
- 15. $\frac{4\sqrt{3}}{\sqrt{6}}$

17.
$$\sqrt{\frac{3x^3}{7}}$$

Para los ejercicios 18–21, use la propiedad distributiva para simplificar cada expresión

18.
$$3\sqrt{45} - 2\sqrt{20} - \sqrt{80}$$

19.
$$4\sqrt[3]{24} + 3\sqrt[3]{3} - 2\sqrt[3]{81}$$

20.
$$3\sqrt{24} - \frac{2\sqrt{54}}{5} + \frac{\sqrt{96}}{4}$$

21.
$$-2\sqrt{12x} + 3\sqrt{27x} - 5\sqrt{48x}$$

Para los ejercicios 22–26, multiplique y simplifique. Suponga que las variables representan número s reales no negativos

- 22. $(3\sqrt{48})(4\sqrt{5})$
- 23. $(\sqrt{6xy})(\sqrt{10x})$
- 24. $3\sqrt{2}(4\sqrt{6}-2\sqrt{7})$
- 25. $(2\sqrt{5} \sqrt{3})(2\sqrt{5} + \sqrt{3})$
- 26. $(2\sqrt{a} + \sqrt{b})(3\sqrt{a} 4\sqrt{b})$

Para los ejercicios 27–28, racionalice el denominador y simplifique

27.
$$\frac{4}{\sqrt{7}-1}$$

28.
$$\frac{3}{2\sqrt{3}+3\sqrt{5}}$$

Para los ejercicios 29-32, resuelva la ecuación

29.
$$\sqrt{7x-3}=4$$

31.
$$\sqrt[3]{2x-1}=3$$

30.
$$\sqrt{2x} = x - 4$$

32.
$$\sqrt{x^2+3x-6}=x$$

33. La ecuación $T=2\pi\sqrt{\frac{L}{32}}$ es usada para describir el movimiento de un péndulo, donde T representa el período del péndulo en segundos y L representa la longitud del péndulo en pies. Encuentre la longitud de un péndulo, aproximando a la décima más cercana de pie, si el período es de 2.4 segundos.

Para los ejercicios 34–37, simplifique

$$34. 4^{\frac{5}{2}}$$

36.
$$(27)^{-\frac{2}{3}}$$

35.
$$\left(\frac{8}{27}\right)^{\frac{2}{3}}$$

$$37. 9^{\frac{3}{2}}$$

Para los ejercicios 38–39, escriba la expresión usando exponente racionales positivos

38.
$$\sqrt[5]{x^3y}$$

39.
$$6\sqrt[4]{y^2}$$

^{*}Lic. Mat. U.D., M.Sc. U.N.

Para los ejercicios 40–42, exprese el resultado final usando exponentes positivos

40.
$$(4x^{\frac{1}{2}})(5x^{\frac{1}{5}})$$

42.
$$(x^{\frac{4}{5}})^{-\frac{1}{2}}$$

41.
$$\left(\frac{x^3}{y^4}\right)^{-\frac{1}{3}}$$

Para los ejercicios 43–44, realice la operación indicada y exprese la respuesta en su forma radical más simple

43.
$$\sqrt[4]{3}\sqrt{3}$$

44.
$$\frac{\sqrt[3]{5}}{\sqrt[4]{5}}$$

Para los ejercicios 45–46, escriba el número en notación científica

- 45. 540 000 000
- 46. 0.000000032

Para los ejercicios 47–48, escriba el número en notación decimal ordinaria

47.
$$(1.4)(10^{-6})$$

48.
$$(4.12)(10^7)$$

Para los problemas 49–52, use la notación científica y la propiedad de los exponentes para ayudar en el cálculo

- 49. (0.00002)(0.0003)
- 50. (0.000015)(400 000)
- 51. $\frac{(0.00042)(0.0004)}{0.006}$
- 52. $\sqrt[3]{0.000000008}$

Ecuación de primer grado

Determine si los pares ordenados son soluciones de las ecuaciones dadas en 53-55

53.
$$4x + y = 6$$
; (1,2), (6,0), (-1,10)

54.
$$3x + 2y = 12$$
; (2,3), (-2,9), (3,2)

55.
$$2x + 3y = -6$$
; $(0,-2)$, $(-3,0)$, $(1,2)$

Para 56–57, complete la tabla de valores para la ecuación y haga la gráfica

56.
$$y = 2x - 5$$

57.
$$y = \frac{3x - 4}{2}$$

En los ejercicios 58–59, grafique cada ecuación encontrando los intercepto en el ejex y y

58.
$$2x - y$$
)6

59.
$$x - 2y = 4$$

Resuelva el problema 60

- 60. Una empresa de mudanzas de apartamentos cobra de acuerdo a la ecuación c=75h+150, donde c representa el dinero en dólares y h representa el número de horas para hacer el trasteo.
 - a) Complete la tabla

- b) Haciendo que el eje horizontal sea h y el eje vertical c, grafique la ecuación c=75h+150 para valores no negativos de h
- c) Use la gráfica para aproximar los valores de c cuando h=1.5 y 3.5

Ecuación cuadrática

Para los problemas 61–62, realice las operaciones indicadas y exprese las respuestas en la forma standard de un número complejo

61.
$$(-7+3i)+(9-5i)$$

62.
$$(6-3i)-(-2+5i)$$

Para los problemas 63–64, escriba la expresión en término de i y simplifique

63.
$$\sqrt{-8}$$

64.
$$3\sqrt{-16}$$

Para los ejercicios 65–69, realice la operación indicada y simplifique

65.
$$\sqrt{-2}\sqrt{-6}$$

66.
$$\frac{\sqrt{-42}}{\sqrt{-6}}$$

67.
$$5i(3-6i)$$

68.
$$(-2-3i)(4-8i)$$

69.
$$\frac{4+3i}{6-2i}$$

70. Efectúe $\frac{3+4i}{2i}$

Para los problemas 71-72, resuelva la ecuación cuadrática factorizando

- 71. $x^2 + 8x = 0$
- 72. $x^2 3x 28 = 0$

Para los problemas 73-74, resuelva la ecuación cuadrática

- 73. $2x^2 = 90$
- 74. $(2x+3)^2 = 24$

Para los problemas 75-76, use el método de "completar el cuadrado" para solucionar la ecuación cuadrática

- 75. $y^2 + 18y 10 = 0$ 76. $x^2 10x + 1 = 0$

Para los ejercicios 77–78, use la fórmula cuadrática para solucionar la ecuación.

- 77. $x^2 + 6x + 4 = 0$
- $78. \ 3x^2 2x + 4 = 0$

Para los ejercicios 79-88, solucione la ecuación

- 79. $x^2 17x = 0$
- $85. \ 2a^2 + 4a 5 = 0$
- 80. $(2x-1)^2 = -64$
- 86. $x^2 + 4x + 9 = 0$
- 81. $x^2 + 2x 9 = 0$
- 82. $4\sqrt{x} = x 5$
- $87. \ \frac{3}{x} + \frac{2}{x+3} = 1$
- 83. $n^2 10n = 200$
- 84. $x^2 x + 3 = 0$
- 88. $\frac{3}{n-2} = \frac{n+5}{4}$

Para los problemas 89-91, platee una ecuación para resolverlos

- 89. Encuentre dos números cuya suma es 6 y cuyo producto es 2
- 90. Naidú viajó 270 millas en una hora más de lo que le tomó a Liseth viajar 260 millas. Liseth condujo a 7 millas por hora más rápido que Naidú. ¿Qué tan rápido viajaron cada una?

91. Encuentre dos números pares consecutivos cuya suma de sus cuadrados es 164.

Sistemas de ecuaciones de primer grado

Solucione los ejercicios 92-93, usando el método de sustitución.

- 92. $\begin{cases} 3x y = 16 \\ 5x + 7y = -34 \end{cases}$ 93. $\begin{cases} 2x 3y = 12 \\ 3x + 5y = -20 \end{cases}$

Solucione los ejercicios 94-95, usando el método de eliminación por adición

- 94. $\begin{cases} 4x 3y = 34 \\ 3x + 2y = 0 \end{cases}$ 95. $\begin{cases} 2x y + 3z = -19 \\ 3x + 2y 4z = 21 \\ 5x 4y z = -8 \end{cases}$

Solucione 96–97, usando el método que prefiera

- 96. $\begin{cases} 4x + 7y = -15 \\ 3x 2y = 25 \end{cases}$ 97. $\begin{cases} x + 4y = 3 \\ 3x 2y \end{cases}$

Platee un sistema de ecuaciones y solucione 98-100

- 98. Antonio tiene un total de \$4200 de deuda en dos tarjetas de crédito. Una tarjeta tiene un interés mensual del 1% y la otra del 1.5%. Encuentre la deuda de cada tarjeta si paga \$57 en interés por mes
- 99. ¿Cuántas tazas de leche al 1% de concentración deben ser mezcladas con leche al $4\,\%$ para obtener $10\,$ tazas de mezcla de leche al 2%?
- 100. La medida del ángulo más grande de un triángulo es dos veces la medida del ángulo más pequeño. La suma de las medidas del ángulo más grande y el más pequeño es dos veces la medida del ángulo restante. Encuentre las medidas de los ángulos del triángulo.