Jméno: **Aleš Urbánek** Login: **xurbana00**

Architektura navrženého obvodu (na úrovni RTL) Schéma obvodu

Popis funkce

Obvod je ve stavu WAIT_FOR_START_BIT, kde čeká na první výskyt start bitu, přrpne se do stavu WAIT_FOR_FIRST_BIT a tam čeká 24 ticků CLK, aby se čtení zarovnalo na MIDBIT. Potom se přepne do READ_DATA_BITS a postupně po 16 tick CLK načte 8 bitů dat, zakončených 9. stop bitem (přejde od stavu WAIT_FOR_STOP_BIT), ty pomocí demultiplexoru postupně uloží do registrů a z těch jsou poté data na DOUT a přejde do stavu DATA_VALID, kdy jsou data na portu DOUT potvrzena '1' na portu DOUT_VLD.

Návrh automatu (Finite State Machine) Schéma automatu

Legenda:

Stavy automatu: WAIT_FOR_START_BIT

WAIT_FOR_FIRST_BIT READ_DATA_BITS WAIT_FOR_STOP_BIT

DATA_VALID

Vstupní signály: DATA_IN / DATA_READ / COUNTER

Moorovy výstupy: RECEIVE_ENABLE VALID COUNTER_ENABLE

Popis funkce

Výchozí stav automatu je WAIT_FOR_START_BIT, kde čeká na příchod start bitu, potom přejde do stavu WAIT_FOR_FIRST_BIT, kde čeká 24 ticků CLK aby byl v pozici MIDBIT a přejde do stavu READ_DATA_BITS, kde čte příchozí data a jakmile přečte 8 bitů přechází do stavu WAIT_FOR_STOP_BIT, kde počká 8 ticků CLK na příchod stop bitu a přejde do stavu DATA_VALID, kde ve kterém je nastaveno DOUT_VLD na '1' pro potvrzení platnosti dat a při dalším ticku hodin se vrací do výchozího stavu WAIT_FOR_START_BIT.

Snímek obrazovky ze simulací

