

А.В. НЕФЕДОВ
В.И. ГОРДЕЕВА

ОТЕЧЕСТВЕННЫЕ
ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
И ИХ ЗАРУБЕЖНЫЕ
АНАЛОГИ

А. В. НЕФЕДОВ
В. И. ГОРДЕЕВА

ОТЕЧЕСТВЕННЫЕ
ПОЛУПРОВОДНИКОВЫЕ
ПРИБОРЫ
И ИХ ЗАРУБЕЖНЫЕ
АНАЛОГИ

МОСКВА
«ЭНЕРГИЯ»
1978

ББК 38.852
Н58
УДК 621.382.2/3(03)

Нефедов А. В., Гордеева В. И.
Н58 Отечественные полупроводниковые приборы и
их зарубежные аналоги.— М.: Энергия, 1978—
208 с., ил.

95 к.

В справочнике приведены сведения об отечественных полупроводниковых приборах (транзисторах и диодах) и их зарубежных аналогах. Даны электрические параметры приборов, их конструктивное оформление, условные буквенные и графические обозначения.

Справочник рассчитан на широкий круг читателей, занимающихся разработкой аппаратуры, а также эксплуатацией и ремонтом импортной радиоаппаратуры.

Н $\frac{30405-222}{051(01)-78}$ 110-78

ББК 38.852
6Ф0.3

© Издательство «Энергия», 1978

СОДЕРЖАНИЕ

Предисловие	5
Раздел первый. Системы обозначений и классификация отечественных и зарубежных полупроводниковых приборов	6
1-1. Условные обозначения и классификация отечественных полупроводниковых приборов	6
1-2. Условные обозначения и классификация зарубежных полупроводниковых приборов	8
1-3. Графические обозначения полупроводниковых приборов	12
Раздел второй. Параметры, характеристики, режимы работы и применение полупроводниковых приборов	15
2-1. Максимальные и максимально допустимые параметры	16
2-2. Мощность рассеяния	16
2-3. Пробивные (максимальные) и максимально допустимые напряжения	16
2-4. Максимальные токи	17
2-5. Тепловые параметры	18
2-6. Коэффициент усиления тока	19
2-7. Емкости переходов и постоянная времени коллектора	20
2-8. Шумы транзисторов	20
2-9. Параметры четырехполюсника	21
2-10. Частотные свойства транзисторов	22
2-11. Обратные токи переходов	22
2-12. Области работы и вольт-амперные характеристики транзисторов	23
2-13. Импульсный и ключевой режим работы	23
2-14. Технология изготовления	25
2-15. Конструкции корпусов	27
2-16. Герметизация пластмассой	29
2-17. Надежность	30
2-18. Области применения транзисторов	30
2-19. Высокочастотные транзисторы	33
Раздел третий. Отечественные и зарубежные транзисторы	36
3-1. О взаимозаменяемости транзисторов и диодов	36
3-2. Условные буквенные обозначения параметров биполярных транзисторов	37

3-3. Отечественные транзисторы и их зарубежные аналоги	41
3-4. Габаритные чертежи корпусов отечественных и зарубежных транзисторов	130
Раздел четвертый. Отечественные и зарубежные диоды	146
4-1. Условные буквенные обозначения параметров диодов	146
4-2. Отечественные диоды и их зарубежные аналоги	147
4-3. Габаритные чертежи корпусов отечественных и зарубежных диодов	177
Приложение 1. Зарубежные транзисторы и их отечественные аналоги	187
Приложение 2. Зарубежные диоды и их отечественные аналоги	199

ПРЕДИСЛОВИЕ

Советский Союз осуществляет широкий международный обмен научно-технической информацией, патентами и лицензиями по различным областям науки и техники. Изучение зарубежных технических новшеств и усовершенствований, в частности, в области радиотехники и радиоэлектроники, творческое применение и использование рациональных решений необходимы при создании высококачественной радиоэлектронной аппаратуры.

Полупроводниковые приборы успешно применяются в современной радиоэлектронной аппаратуре. Непрерывно расширяется номенклатура приборов, области применения, улучшаются их характеристики и параметры, повышается надежность.

Несомненно, что зарубежная информация (книги, журналы, каталоги, справочники) о применении полупроводниковых приборов привлекает внимание широкого круга как специалистов, занимающихся разработкой, созданием и модернизацией радиоэлектронной аппаратуры, так и радиолюбителей. В зарубежной литературе встречаются оригинальные схемы и узлы различных радиоэлектронных устройств на полупроводниковых приборах. Возможности их воспроизведения связаны с подбором отечественных полупроводниковых приборов, тождественных по назначению, характеристикам и параметрам соответствующим зарубежным приборам.

В нашей стране находится в эксплуатации значительный ассортимент импортной радиоэлектронной аппаратуры на полупроводниковых приборах (радиоприемники, телевизоры, магнитофоны, различного рода измерительная аппаратура, приборы автоматики и др.). При ее ремонте требуется замена зарубежных полупроводниковых приборов аналогичными отечественными приборами.

В связи с этим возникают вопросы взаимозаменяемости полупроводниковых приборов, выпускаемых отечественной промышленностью и за рубежом.

В настоящем справочнике, составленном на основе изучения отечественной и зарубежной информации о параметрах, характеристиках и применении полупроводниковых приборов, и личного опыта авторов рассматриваются вопросы, связанные с взаимозаменяемостью отечественных и зарубежных транзисторов и диодов.

Представленные в справочнике отечественные полупроводниковые приборы предназначены для применения в радиоэлектронной аппаратуре широкого применения. Сведения об их параметрах взяты из технических условий, стандартов и справочников.

Предисловие, разд. 1—3 написаны А. В. Нефедовым, а разд. 4 В. И. Гордеевой.

Отзывы и замечания о справочнике авторы просят направлять по адресу: 113114, Москва, М-114, Шлюзовая наб., 10, издательство «Энергия».

Авторы

РАЗДЕЛ ПЕРВЫЙ

СИСТЕМЫ ОБОЗНАЧЕНИЙ И КЛАССИФИКАЦИЯ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

1-1. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И КЛАССИФИКАЦИЯ ОТЕЧЕСТВЕННЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

По ГОСТ 10862-72 обозначения полупроводниковых приборов состоят из шести элементов.

Четвертый, пятый и шестой элементы определяют порядковый номер разработки и деления технологического типа на параметрические группы с обозначением его от 01 до 999. Для стабилитронов и стабисторов четвертый и пятый элементы определяют напряжение стабилизации, а шестой элемент — последовательность разработки с обозначением от А до Я.

Первый элемент

Исходный материал	Условное обозначение
Германий или его соединения	Г или 1
Кремний или его соединения	К или 2
Соединения галлия	А или 3

Второй элемент

Подкласс приборов	Условное обозначение
Выпрямительные, универсальные, импульсные диоды	Д
Транзисторы (за исключением полевых)	Т
Транзисторы полевые	П
Барикапы	В
СВЧ диоды	А
Тиристоры диодные	Н
Тиристоры триодные	У
Туннельные и обращенные диоды	И
Стабилитроны и стабисторы	С
Выпрямительные столбы и блоки	Ц
Диоды излучающие	Л
Генераторы шума	Г
Приборы с объемным эффектом (приборы Ганна)	З
Стабилизаторы тока	К

Третий элемент

Назначение прибора	Обозначение
Диоды выпрямительные:	
малой мощности ($I < 0,3 \text{ A}$)	1
средней мощности ($I = 0,3 \div 10 \text{ A}$)	2
Диоды универсальные ($I_p < 1000 \text{ МГц}$)	4
Диоды импульсные:	
$t_{\text{вос}} > 150 \text{ нс}$	5
$t_{\text{вос}} = 30 \div 150 \text{ нс}$	6
$t_{\text{вос}} = 5 \div 30 \text{ нс}$	7
$t_{\text{вос}} = 1 \div 5 \text{ нс}$	8
$t_{\text{вос}} < 1 \text{ нс}$	9
СВЧ диоды:	
смесительные	1
декекторные	2
параметрические	4
регулирующие (переключательные, ограничительные и модуляторные)	5
умножительные	6
генераторные	7
Диодные тиристоры:	
малой мощности ($I < 0,3 \text{ A}$)	1
средней мощности ($I = 0,3 \div 10 \text{ A}$)	2
Триодные тиристоры незапираемые:	
малой мощности ($I < 0,3 \text{ A}$)	1
средней мощности ($I = 0,3 \div 10 \text{ A}$)	2
Триодные тиристоры запираемые:	
малой мощности ($I < 0,3 \text{ A}$)	3
средней мощности ($I = 0,3 \div 10 \text{ A}$)	4
Триодные тиристоры симметричные незапираемые:	
малой мощности ($I < 0,3 \text{ A}$)	5
средней мощности ($I = 0,3 \div 10 \text{ A}$)	6
Туннельные диоды:	
усилительные	1
генераторные	2
переключательные	3
обращенные	4
Варикапы:	
подстроечные	1
умножительные (варакторы)	2
Стабилитроны и стабисторы мощностью $P < 0,3 \text{ Вт}$ с напряжением стабилизации:	
менее 10 В	1
10—99 В	2
100—199 В	3
Стабилитроны и стабисторы мощностью $P = 0,3 \div 5 \text{ Вт}$ с напряжением стабилизации:	
менее 10 В	4
10—99 В	5
100—199 В	6
Стабилитроны и стабисторы мощностью $P = 5 \div 25 \text{ Вт}$ с напряжением стабилизации:	
менее 10 В	7

Назначение прибора	Обозначение
10—99 В	8
100—199 В	9
Выпрямительные столбы малой мощности ($I < 0,3$ А)	1
Выпрямительные столбы средней мощности ($I = 0,3—10$ А)	2
Выпрямительные блоки малой мощности ($I < 0,3$ А)	3
Выпрямительные блоки средней мощности ($I = 0,3—10$ А)	4
Транзисторы малой мощности ($P < 0,3$ Вт):	
с частотой $f_{\text{гр}} < 3$ МГц	1
с частотой $f_{\text{гр}} = 3 \div 30$ МГц	2
с частотой $f_{\text{гр}} > 30$ МГц	3
Транзисторы средней мощности ($P = 0,3+1,5$ Вт):	
с частотой $f_{\text{гр}} < 3$ МГц	4
с частотой $f_{\text{гр}} = 3 \div 30$ МГц	5
с частотой $f_{\text{гр}} > 30$ МГц	6
Транзисторы большой мощности ($P > 1,5$ Вт):	
с частотой $f_{\text{гр}} < 3$ МГц	7
с частотой $f_{\text{гр}} = 3 \div 30$ МГц	8
с частотой $f_{\text{гр}} > 30$ МГц	9

1-2. УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И КЛАССИФИКАЦИЯ ЗАРУБЕЖНЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

За рубежом существуют различные системы обозначений полупроводниковых приборов.

Наиболее распространенной является система обозначений, принятая объединенным техническим советом по электронным приборам США — система JEDEC. Согласно этой системе приборы обозначаются индексом, в котором первая цифра показывает количество $p-n$ переходов, а именно: 1 — диод; 2 — транзистор; 3 — тетрод.

За цифрой следуют буква N и серийный номер, под которым приборы регистрируются ассоциацией предприятий электронной промышленности (EIA).

За номером могут следовать одна или несколько букв, указывающие на разбивку приборов одного типа по различным параметрам или характеристикам.

Необходимо отметить, что приборы, имеющие серийные номера, следующие друг за другом, необязательно относятся к одной группе, т. е. могут значительно отличаться по своим параметрам и характеристикам.

Фирма-изготовитель, приборы которой по своим параметрам подобны приборам, зарегистрированным EIA, может поставлять приборы с обозначением, принятым по системе JEDEC.

В Европе кроме JEDEC широко используется система, по которой обозначения полупроводниковым приборам присваиваются организацией Association International Pro Electron. По этой системе приборы, предназначенные для широкого применения (бытовой техники), обозначаются двумя буквами и тремя цифрами, а приборы для промышленной (профессиональной) и специальной аппаратуры обозначаются тремя буквами и двумя цифрами. Для приборов широкого применения после двух букв следует трехзначный порядковый номер от 100 до 999. Для приборов, предназначенных для применения в промышленной и специальной аппаратуре, третьим знаком является буква, начиная от Z в обратном алфавитном порядке: Y, X и т. д., за которой следует порядковый номер от 10 до 99.

Если в одном корпусе имеется несколько одинаковых приборов, то обозначение производится в соответствии с кодом (маркировкой) для дискретных приборов. При наличии в одном корпусе нескольких разных приборов в качестве второй буквы обозначения используется буква G. К основному обозначению может добавляться буква, указывающая на отличие прибора от основного типа по каким-либо параметрам или корпусу.

По указанной системе первая буква обозначает код исходного материала:

- A — приборы, использующие материал с шириной запрещенной зоны от 0,6 до 1,0 эВ (например, германий);
- B — приборы, использующие материал с шириной запрещенной зоны от 1,0 до 1,3 эВ (например, кремний);
- C — приборы, использующие материал с шириной запрещенной зоны, равной или более 1,3 эВ (например, арсенид галлия);
- D — приборы, использующие материал с шириной запрещенной зоны менее 0,6 эВ (например, антимонид индия);
- R — приборы, использующие другие полупроводниковые материалы.

Вторая буква обозначает класс приборов (функциональное назначение):

- A — диод детекторный, быстродействующий, смесительный;
- B — диод с переменной емкостью;
- C — транзистор низкочастотный, маломощный ($R_{thja} > 15^\circ \text{C/Bt}$);
- D — транзистор низкочастотный, мощный ($R_{thja} < 15^\circ \text{C/Bt}$);
- E — диод туннельный;
- F — транзистор высокочастотный, маломощный ($R_{thja} > 15^\circ \text{C/Bt}$);
- G — сложные приборы (в одном корпусе несколько различных приборов);
- H — измеритель напряженности поля;
- K — генератор Холла;
- L — транзистор высокочастотный, мощный ($R_{thja} < 15^\circ \text{C/Bt}$);
- M — модулятор и умножитель Холла;
- P — светочувствительные приборы (фотодиод, фототранзистор);
- Q — излучающий прибор;
- R — прибор, работающий в области пробоя;
- S — переключающий транзистор, маломощный;
- T — регулирующие и переключающие приборы, мощные (управляемые выпрямители и т. п.) ($R_{thja} < 15^\circ \text{C/Bt}$);
- U — транзистор переключающий, мощный;
- X — диод умножительный;
- Y — диод выпрямительный, мощный;
- Z — стабилитрон.

Для некоторых типов приборов, таких как стабилитроны, мощные диоды и тиристоры, возможна дополнительная классификация, согласно которой к основному пятизначному обозначению через дефис или дробь добавляется дополнительный код.

Например, для стабилитронов дополнительный код содержит сведения о номинальном напряжении и его допусках в процентах.

Первая буква указывает допуск: А — 1%; В — 2%; С — 5%; D — 10%; Е — 15%.

После буквы в дополнительном коде следует номинальное напряжение в вольтах. Если оно выражается не целым числом, то вместо запятой ставится буква V.

Для выпрямительных диодов дополнительный код указывает максимальную амплитуду обратного напряжения.

Для тиристоров дополнительный код указывает меньшее из значений максимального напряжения включения или максимальной амплитуды обратного напряжения. В конце дополнительного обозначения может стоять буква R, указывающая на соединение анода с корпусом. Соединение катода с корпусом и симметричное исполнение выводов в коде не указывается.

Система Pro Electron широко применяется в ФРГ, Франции, Италии, ВНР, ПНР и других странах.

Она заменила собой старую европейскую систему, по которой после начальной буквы О следовали буквы, указывающие основной класс приборов: А — диод; AP — фотодиод; AZ — стабилитрон; С — транзистор; CR — фототранзистор; RP — фотопроводящий элемент.

По существующей в настоящее время в Японии системе стандартных обозначений можно определить, является ли прибор диодом или транзистором, назначение прибора, тип проводимости. Тип полупроводникового материала в этой системе не учитывается. Условное обозначение состоит из пяти элементов.

Первый элемент (арабская цифра) обозначает вид полупроводникового прибора:

0 — фотодиод, фототранзистор;

1 — диод;

2 — транзистор;

3 — четырехслойный прибор.

Второй элемент указывает на то, что данный прибор является полупроводниковым.

Третий элемент определяет подкласс приборов:

А — транзистор $p-n-p$, высокочастотный;

В — транзистор $p-n-p$, низкочастотный;

С — транзистор $n-p-n$, высокочастотный;

Д — транзистор $n-p-n$, низкочастотный;

Е — прибор с четырехслойной $p-n-p-n$ структурой;

Г — прибор с четырехслойной $n-p-n-p$ структурой;

Н — однопереходный транзистор;

І — полевой транзистор с p -каналом;

К — полевой транзистор с n -каналом;

М — симметричный тиристор.

В случае фототранзисторов и фотодиодов третий элемент маркировки отсутствует.

Четвертый элемент обозначает регистрационный номер и начинается с 11.

Пятый элемент отражает усовершенствование (А — первое усовершенствование, В — второе).

После маркировки могут быть дополнительные индексы (N, M, S), показывающие отношение к требованиям специальных стандартов.

В основе нового обозначения приборов ПНР лежит система Pro Electron. Дополнительно ставится буква Р перед тремя цифрами для приборов широкого применения и буквы YР перед двумя цифрами для приборов промышленного назначения (например, BUYP53). Вместо буквы Y могут стоять буквы Z, X, W (например, BZXP21-B4V7 — стабилитрон промышленного назначения с номинальным значением напряжения стабилизации 4,7 В±2%). Для новых приборов широкого применения принято после букв ставить цифры от 600 до 699, для приборов промышленного назначения — от 1 до 99.

У полупроводниковых приборов ЧССР первые буквы маркировки G и K, а у приборов ГДР — буквы G и S показывают тип исходного материала (германий и кремний соответственно), остальная часть кода соответствует системе Pro Electron.

Кроме вышеуказанных систем стандартных обозначений изготавливатели приборов широко используют свои внутренние (фирменные) обозначения. В этом случае за основу буквенного обозначения чаще всего берется принцип сокращенного названия фирмы, коды материала и применения.

Фирма NEC маркирует свои приборы следующим образом:

AD — лавинно-пролетный диод; GD — диод Ганна; RD — полупроводниковый стабилитрон; SD — полупроводниковый диод; SL — светодиод; SV — варактор, VD — варистор; V — новый полупроводниковый прибор.

Следует отметить, что фирменные обозначения достаточно многочисленны.

Цветной код. Для маркировки малогабаритных полупроводниковых диодов вместо цифровых и буквенных обозначений часто используется цветной код.

По этой системе установлено следующее обозначение цифр и букв:

Цифры	Цвет	Буква
0	Черный	—
1	Коричневый	A
2	Красный	B
3	Оранжевый	C
4	Желтый	D
5	Зеленый	E
6	Синий (голубой)	F
7	Фиолетовый	G
8	Серый	H
9	Белый	J

При использовании цветного кода в обозначении диодов первая цифра и буква N опускаются. Следующий за буквой N типовой номер, состоящий из двух, трех или четырех цифр, обозначается цветными полосками по указанным ниже правилам:

а) номера, состоящие из двух цифр, обозначаются первой чер-

ной полоской и последующими второй и третьей цветными полосками, указывающими соответствующие цифры. Если в обозначении используется буква, она указывается четвертой полоской;

б) номера из трех цифр обозначаются тремя цветными полосками, указывающими соответствующие цифры, четвертая полоска обозначает букву;

в) типовой номер, состоящий из четырех цифр, обозначается четырьмя цветными полосками и пятой черной полоской. Если в этом случае требуется обозначить букву после цифр, то ее обозначают пятой цветной полоской (вместо черной);

г) для обозначения полярности цветные полоски либо смещаются ближе к катоду, либо первая полоска от катода делается двойной ширины;

д) тип полупроводникового диода читается по цветным полоскам от катода.

1-3. ГРАФИЧЕСКИЕ ОБОЗНАЧЕНИЯ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

Ниже приводятся графические обозначения полупроводниковых приборов, принятые за рубежом, а также в соответствии с ГОСТ 2730-73.

Обозначение	Наименование
	Выпрямительный диод
	Туннельный диод
	Обращенный диод
	Односторонний стабилитрон
	Двусторонний стабилитрон
	Варикап
	Двунаправленный диод
	Диодный тиристор (диистор)

Обозначение	Наименование
	Диодный симметричный тиристор
	Триодный незапираемый тиристор с управлением по аноду
	Триодный запираемый тиристор с управлением по аноду
	Триодный запираемый тиристор с управлением по катоду
	Транзистор типа <i>n-p-n</i>
	Транзистор типа <i>p-n-p</i>
	Лавинный транзистор типа <i>n-p-n</i>
	Однопереходный транзистор с <i>n</i> -базой
	Однопереходный транзистор с <i>p</i> -базой
	Транзистор двухэмиттерный типа <i>p-n-p</i>

Обозначение	Наименование
	Полевой транзистор с <i>p-n</i> -переходом и каналом <i>n</i> -типа
	Полевой транзистор с <i>p-n</i> -переходом и каналом <i>p</i> -типа
	Полевой транзистор с изолированным затвором обогащенного типа с <i>p</i> -каналом
	Полевой транзистор с изолированным затвором обогащенного типа с <i>n</i> -каналом
	Полевой транзистор с изолированным затвором обедненного типа с <i>p</i> -каналом
	Полевой транзистор с изолированным затвором обедненного типа с <i>n</i> -каналом
	Полевой транзистор с изолированным затвором обогащенного типа с <i>n</i> -каналом и с внутренним соединением подложки и истока
	Полевой транзистор с двумя изолированными затворами обедненного типа с <i>n</i> -каналом

РАЗДЕЛ ВТОРОЙ

ПАРАМЕТРЫ, ХАРАКТЕРИСТИКИ, РЕЖИМЫ РАБОТЫ И ПРИМЕНЕНИЕ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ

В справочники, стандарты или технические условия на полупроводниковые приборы включается необходимый минимум параметров (нормы на их значения, режимы измерений), вольт-амперные характеристики, зависимости параметров от режима и температуры, которые нужны для детального расчета схем.

Значения параметров даже в пределах одного типа прибора являются случайными величинами. Для некоторых из параметров устанавливается граничное (предельное) значение (норма) и возможное отклонение (разброс). Нормы на разброс устанавливаются расчетом или путем статистической проверки.

В зависимости от технологии и качества изготовления приборы имеют различные диапазоны разброса параметров. Наименьшим разбросом параметров обладают планарные приборы, наибольшим — сплавные. Для многих параметров ($K_{ш}$, $I_{КБО}$, C_k , r_b , C_k , $U_{КЭнас}$ и др.) устанавливается одностороннее ограничение (по минимуму или максимуму).

Для некоторых параметров, как правило, предусматривается двустороннее ограничение ($h_{21\alpha}$, $h_{21\beta}$, $U_{ст}$).

Параметры полупроводниковых приборов зависят от режима их работы (тока, напряжения, частоты сигнала, температуры), а также изменяются во времени.

В процессе старения приборов ухудшаются их электрические свойства (увеличиваются обратные токи, уменьшаются коэффициент усиления и предельные напряжения переходов). Поэтому, если к транзисторам предъявляются требования к долговременной стабильности свойств, то они не должны подвергаться воздействию больших и длительных электрических нагрузок.

Параметры полупроводниковых приборов гарантируются для нормальной температуры и других значений (отрицательной и положительной). Зависимости параметров от температуры являются, как правило, нелинейными.

Необходимо отметить, что вследствие постоянного совершенствования конструкций и технологий изготовления приборов происходят изменения средних значений параметров. Некоторое количество образцов приборов имеет параметры лучшие, чем записанные в технических условиях и справочниках.

В разных странах существуют региональные унифицированные стандарты на параметры и характеристики приборов, методику их измерений и контроля их качества, которые могут существенно отличаться от международных стандартов.

2-1. МАКСИМАЛЬНЫЕ И МАКСИМАЛЬНО ДОПУСТИМЫЕ ПАРАМЕТРЫ

Максимальные (предельные) параметры определяют такие режимы, при которых работа прибора недопустима, так как он при этом может выйти из строя или происходят необратимые изменения его свойств.

Максимально допустимые (предельно допустимые) параметры — это такие параметры, в пределах которых гарантируется стабильная и надежная работа данного прибора. Эти параметры имеют запасы по отношению к максимальным. Необходимые запасы устанавливаются в результате длительных испытаний на надежность, с учетом погрешности измерения, нестабильности в процессе испытаний, возможности случайных колебаний технологического процесса.

2-2. МОЩНОСТЬ РАССЕЯНИЯ

Мощность рассеяния определяется физическими свойствами полупроводникового материала, технологическими, геометрическими, конструктивными и тепловыми характеристиками прибора.

В тепловом равновесии рассеиваемая мощность расходуется на нагревание и определяет температуру перехода при заданной температуре окружающей среды T_A или температуре корпуса T_C . Максимальная мощность ограничивается максимальной температурой перехода, зависит от теплового сопротивления, от T_A (или T_C) и линейно уменьшается с ростом окружающей температуры (или температуры корпуса).

Различают максимальную допустимую мощность рассеяния в стационарном (установившемся) и импульсном режимах. В последнем случае она зависит от формы, длительности, частоты и скважности импульсов.

2-3. ПРОБИВНЫЕ (МАКСИМАЛЬНЫЕ) И МАКСИМАЛЬНО ДОПУСТИМЫЕ НАПРЯЖЕНИЯ

Максимальное напряжение, которое может выдерживать диод или транзистор, ограничивается явлением пробоя. Механизм пробоя определяется типом исходного материала, типом проводимости, мощностью прибора, внешними условиями и другими причинами.

Вероятность возникновения теплового пробоя существенно зависит от теплового сопротивления прибора, внешних условий, схемы включения, условий во входной цепи, рабочего тока и напряжения на приборе. Тепловой пробой может быть устранен обеспечением тепловой стабильности режима работы прибора.

Характер электрического пробоя определяется свойствами электронно-дырочного перехода. Значение пробивного напряжения определяется удельным сопротивлением исходного материала; оно обычно ниже теоретического из-за наличия дефектов в исходном материале и явления поверхностного пробоя.

Явление смыкания (прокола) чаще возникает у транзисторов, полученных методом выплавления. У транзисторов с неоднородной базой это явление практически не наблюдается.

Транзисторы характеризуются пробивными напряжениями переходов U_{KBO} проб, U_{EBO} проб и напряжением пробоя между коллектором и эмиттером. Последнее зависит от сопротивления $R_{B\bar{E}}$ между базой и эмиттером и напряжения смещения. Значение напряжения между коллектором и эмиттером для произвольной схемы ($U_{K\bar{E}R}$ проб, $U_{K\bar{E}K}$ проб, $U_{K\bar{E}V}$ проб) лежит между значениями напряжений $U_{K\bar{E}O}$ проб и U_{KBO} проб. Напряжение пробоя $U_{K\bar{E}O}$ проб является наименьшим из всех возможных напряжений пробоя между коллектором и эмиттером и соответствует наихудшим условиям на входе, т. е. при обрыве цепи базы ($R_{B\bar{E}} = \infty$). Транзисторы с большими коэффициентами усиления при одном и том же U_{KBO} проб имеют меньшее значение напряжения пробоя между коллектором и эмиттером. Для обеспечения стабильной работы транзисторов рабочее напряжение между коллектором и эмиттером выбирают меньше $U_{K\bar{E}O}$ проб.

Напряжение $U_{K\bar{E}K}$ проб используется для расчета схем с трансформатором или резонансным контуром на входе, а напряжение U_{EBO} проб необходимо для расчета напряжения запирания переключающих или усилительных схем при работе с отсечкой коллекторного тока.

Напряжения пробоя переходов устанавливаются при определенном уровне тока (например, для маломощных транзисторов напряжение U_{KBO} проб устанавливается при токах от 1 до 200 мА).

Максимально допустимые напряжения устанавливаются по наименьшим из измеренных значений пробивных напряжений с некоторым запасом для обеспечения надежной работы приборов.

При определенных условиях (при больших напряжениях и токах, даже если они не превышают предельных значений) может возникать второй пробой. Поэтому изготовители приборов определяют для них область безопасной работы, исключающие этот вид пробоя. Кроме того, созданы транзисторы, обладающие повышенной стойкостью ко второму пробою (например, транзисторы с гометаксиальной базой, с балластными сопротивлениями в цепях эмиттеров). Кроме технологических мероприятий существуют схемные решения, уменьшающие вероятность возникновения второго пробоя. Наибольшей склонностью ко второму пробою обладают транзисторы, работающие с индуктивной нагрузкой в ключевом режиме (при запирании).

2-4. МАКСИМАЛЬНЫЕ ТОКИ

Значение максимального тока через полупроводниковый прибор определяется допустимой мощностью рассеяния в приборе, уменьшением коэффициента усиления транзистора при увеличении тока I_K (например, при $h_{21\bar{E}} < 10$), значением критического тока, при котором происходит второй пробой, значением $r_{K\bar{E} nas}$ транзистора и U_{pr} диода.

Поэтому для увеличения максимального тока стараются уменьшить $r_{K\bar{E} nas}$ и U_{pr} , увеличить мощность рассеяния (т. е. уменьшить тепловое сопротивление, увеличить допустимую температуру перехода), повысить стойкость прибора ко второму пробою, уменьшить спад коэффициента усиления при увеличении тока I_K .

Максимально допустимый ток определяется через максимальный ток с учетом коэффициентов запаса, определяемых соответствующими методиками.

Максимальный ток базы транзистора ограничивается сопротивлением вывода и контактов базы. Ограничение по максимальному току коллектора, как правило, наступает раньше, чем достигается максимальный ток базы.

Максимально допустимый ток через выпрямительный диод приходится выбирать с очень большим запасом по сравнению с максимальным (разрушающим) током. Дело в том, что при включении выпрямителя через диоды за первые несколько периодов проходят большие импульсы тока, заряжающего конденсаторы фильтра. Например, при среднем выпрямленном токе 300—500 мА импульсы тока могут достигать 3—5 А. При подборе аналогов следует иметь в виду, что некоторые зарубежные фирмы выбирают запасы по предельному току значительно меньшие, чем это принято в СССР (соответственно даются и более узкие диапазоны температуры внешней среды или корпуса). Поэтому могут быть случаи, когда аналогичный по току отечественный выпрямительный диод имеет габариты много большие, чем зарубежный.

2-5. ТЕПЛОВЫЕ ПАРАМЕТРЫ

К тепловым параметрам приборов относятся: максимальная и минимальная температура перехода, тепловые сопротивления, тепловые постоянные времени и теплоемкости.

Они определяют стойкость работы полупроводниковых приборов при изменении температуры, максимальные мощности, токи и напряжения, допустимые диапазоны температуры окружающей среды, при которых обеспечивается надежная работа. В частности, параметры R_{th} , t_{th} , C_{th} позволяют определить нагрев транзистора или диода в рабочем режиме.

Величина T_{Jmax} зависит от типа исходного материала, степени легирования, состояния поверхности и других технологических факторов. Для германиевых приборов $T_{Jmax}=70\div120^\circ\text{C}$, для кремниевых $150\div200^\circ\text{C}$.

Приводимые в справочниках величины T_{Jmax} определяются экспериментально или рассчитываются и имеют определенный запас по сравнению со значением температуры, при которой наступает разрушение прибора. Диапазон температуры окружающей среды для кремниевых приборов примерно $-60\div+125^\circ\text{C}$, для германиевых приборов $-60\div+70^\circ\text{C}$.

Измерение T_J прямыми методами сложно, поэтому используются косвенные методы, при которых она оценивается по величине какого-либо термочувствительного параметра. Например, термочувствительными параметрами диодов являются обратный ток I_R и прямое падение U_F , а транзисторов I_{KBO} , $I_{ЭБО}$ прямое падение $U_{ЭБ}$ или $U_{KБ}$, $h_{21\Theta}$, входное сопротивление. Измерение температуры рабочих областей полупроводниковых приборов проводят и другими методами, например методом регистрации инфракрасного излучения.

Теплообмен между переходом и окружающей средой принято характеризовать тепловым сопротивлением прибора. Тепловое сопротивление — сопротивление элементов конструкции распространению тепла от перехода к корпусу и теплоотводу — определяется кон-

структурой прибора и теплопроводностью ее элементов, системой охлаждения корпуса.

Тепловое сопротивление переход — среда необходимо при расчете допустимой мощности рассеяния маломощных диодов и транзисторов, обычно работающих без теплоотвода, а тепловое сопротивление переход-корпус — при расчете режима работы мощных приборов при наличии внешнего радиатора. Обычно $R_{thja} \gg R_{thje}$. Тепло от кристалла с переходами к корпусу или радиатору отводится за счет теплопроводности, а от корпуса в окружающее пространство — конвекцией и излучением.

Для охлаждения корпуса мощного прибора вместо радиатора может использоваться поток жидкости или газа.

При использовании радиатора нагрев полупроводникового прибора зависит от качества теплового контакта корпуса с радиатором.

Для уменьшения контактного сопротивления применяются специальные смазки (например, кремнийорганические) и пасты, заполняющие пустоты между контактирующими поверхностями, а также прокладки из мягких, легко деформируемых металлов: свинца, индия, меди.

Значения тепловых постоянных времени τ_{thje} и τ_{thca} используются для расчета теплового режима приборов в динамическом режиме и характеризуют скорость нарастания температуры отдельных участков объема полупроводникового прибора, когда температура перехода значительно изменяется за период действия импульсной мощности. Величина τ_{thje} определяется по переходным тепловым характеристикам нагревания или остывания приборов и зависит от типа материала и конструкции приборов. Величина τ_{thca} зависит от способа отвода тепла от прибора. Величина τ_{thja} характеризует время установления теплового режима диодов и транзисторов без теплоотвода.

Значения теплоемкостей C_{thje} и C_{thca} необходимы при определении тепловых режимов в случае работы приборов при малых длительностях импульсов. Они определяются экспериментальным путем.

Для зарубежных приборов часто указывается максимальная температура хранения T_{stg} , которая является предельной температурой перехода данного прибора.

2-6. КОЭФФИЦИЕНТ УСИЛЕНИЯ ТОКА

Коэффициент усиления $h_{21\beta}$ транзисторов зависит от тока коллектора; с увеличением токов I_β , I_K он сначала возрастает, а затем уменьшается. В зависимости от технологии изготовления максимум кривой $h_{21\beta} = \Phi(I_\beta)$ может быть резким или размытым. Например, максимум этой кривой у меза-транзисторов достигается при токах на 1—2 порядка больших, чем у сплавных транзисторов. После прохождения максимума величина $h_{21\beta}$ падает приблизительно обратно пропорционально величине I_β . В мощных транзисторах этот спад происходит более резко, чем в маломощных. Особенно резкий спад происходит у сплавных кремниевых $p-n-p$ транзисторов. Поэтому такие транзисторы не удалось создать на большие рабочие токи.

У сплавных приборов $h_{21\beta}$ растет с увеличением напряжения на коллекторе; у диффузионных приборов обычно $h_{21\beta}$ слабо зависит

от U_K (эта зависимость наблюдается лишь при малых напряжениях на коллекторе).

С ростом температуры величина $h_{21\Theta}$ обычно возрастает.

2-7. ЕМКОСТИ ПЕРЕХОДОВ И ПОСТОЯННАЯ ВРЕМЕНИ КОЛЛЕКТОРА

Емкости переходов влияют на частотные и импульсные характеристики полупроводниковых приборов.

Обычно в технических условиях на прибор даются зависимости значений емкостей от напряжений, приложенных к переходам; с увеличением напряжения емкость уменьшается.

Параметр $\tau_k(r_b' C_k)$ характеризует внутреннюю обратную связь в транзисторе и определяет максимальную частоту генерации и коэффициент усиления по мощности на высокой частоте. Кроме того, чем меньше его значение, тем выше стабильность работы транзистора в усилителе. По величинам τ_k и C_k может быть определено сопротивление базы, необходимое для расчета схем.

2-8. ШУМЫ ТРАНЗИСТОРОВ

Собственные шумы транзисторов ограничивают чувствительность усилителей. Источниками их являются тепловые шумы, дробовые шумы эмиттерного и коллекторного переходов, избыточные шумы, шумы случайного перераспределения тока между коллектором и базой.

Тепловые шумы транзистора практически определяются омическим сопротивлением базовой области. Дробовые шумы обусловлены флюктуациями носителей заряда через прибор (возникают при прохождении тока через эмиттерный и коллекторный переходы).

Избыточные шумы (фликкер-шумы) — специфические шумы, возникающие вследствие изменения состояния поверхности кристалла полупроводника во времени. Они пропорциональны протекающему току и проявляются на низких частотах: в диапазоне звуковых и инфразвуковых частот. Избыточные шумы могут сильно колебаться даже для транзисторов одного типа, так как зависят от факторов, связанных с технологией. Избыточные шумы больше у $n-p-n$ транзисторов, чем у $p-n-p$ транзисторов. Транзисторы с большими или нестабильными значениями I_{KBO} имеют повышенные избыточные шумы. С ростом частоты доля избыточных шумов уменьшается и шумы транзисторов определяются в основном дробовыми и тепловыми составляющими.

Шумовые свойства транзистора характеризуются чаще всего коэффициентом шума. Он определяется экспериментально или рассчитывается на основе анализа отдельных источников шумов. Считать коэффициент шума для области избыточных шумов невозможно, поэтому его определяют экспериментально.

Коэффициент шума является сложной функцией многих переменных: импеданса источника сигнала, параметров режима, параметров транзисторов ($h_{21\Theta}$, I_{KBO} , C_a , $f_{h21\Theta}$, r_b) и рабочей частоты. При заданных токе I_Θ и сопротивлении генератора R_g имеется область частот, где величина $K_\text{ш}$ не зависит от частоты (область «белого» шу-

ма). Минимальное значение $K_{\text{ш}}$ достигается при оптимальном токе $\mathcal{E}I$. Увеличение $K_{\text{ш}}$ при росте I_K происходит медленно при малых значениях последнего. При больших токах величина $K_{\text{ш}}$ растет почти пропорционально I_K . С ростом значения U_K величина $K_{\text{ш}}$ почти не меняется, пока избыточные шумы малы по сравнению с дробовыми и тепловыми. В дальнейшем из-за увеличения избыточных шумов $K_{\text{ш}}$ возрастает. Таким образом, чтобы свести шумы к минимуму, выбирают оптимальный режим работы транзистора.

На средних и высоких частотах минимальный $K_{\text{ш}}$ будут иметь транзисторы с малыми значениями r_b и $I_{\text{КБО}}$ и высокими значениями h_{212} и $f_{\text{НЧ216}}$.

Измерения параметра $K_{\text{ш}}$ производятся обычно при некоторой стандартной величине R_g . Коэффициент шума увеличивается с ростом температуры.

2-9. ПАРАМЕТРЫ ЧЕТЫРЕХПОЛЮСНИКА

Для анализа работы транзистора в усилительном режиме используются метод эквивалентных схем замещения и метод четырехполюсника.

Для первого метода основные расчетные соотношения схемы усилителя выражаются через параметры, отражающие физические процессы в транзисторе (диффузия, модуляция ширины запирающего слоя, зарядные емкости, последовательные сопротивления и др.), с учетом особенностей конструкции, паразитных емкостей и индуктивностей выводов для рабочего интервала частот. Для различных областей применения и диапазонов рабочих частот эти схемы видоизменяются. В зависимости от расположения пассивных элементов получаются Т- и П-образные схемы замещения.

Метод четырехполюсника позволяет производить расчет усилителя с помощью матриц без составления эквивалентной схемы транзистора. Параметры четырехполюсника, характеризующие усилительные свойства транзистора, определяются при этом экспериментальным путем. Существуют три системы параметров, однозначно определяющих свойства транзисторов: Z , h и Y -параметры. Каждая из них имеет свои преимущества и недостатки. Выбор той или иной системы параметров определяется удобством анализа и расчета каждой конкретной схемы.

Для расчета низкочастотных схем наибольшее распространение получили Z и h -параметры, для расчета высокочастотных схем Y и S -параметры.

Для устранения нестабильности работы транзистора в усилительном режиме, связанной с внутренней обратной связью, используются схемные методы нейтрализации и демпфирования входных и выходных проводимостей. С помощью внешних схемных элементов стараются уменьшить коэффициенты, описывающие обратную связь (h_{12} , Y_{12}). У ряда современных транзисторов уменьшение действия обратной связи достигается технологическим путем.

Измерение параметра Y_{116} позволяет оценить сопротивление базы, которое, в свою очередь, определяет усилительные и частотные свойства транзисторов, а также высокочастотные шумы токораспределения (у транзисторов с малым сопротивлением r_b малый и уровень шумов). Вообще порядок сопротивления r_b зависит от конст-

рукции и типа транзистора и лежит между несколькими единицами сма (у мощных приборов) иическими сотнями ом.

В качестве параметров, описывающих транзистор как четырехполюсник для СВЧ диапазона, получили распространение S -параметры. При этом S_{11} и S_{22} — коэффициенты отражения соответственно от входа и выхода четырехполюсника при нагрузке на волновое сопротивление (входные и выходные импедансы), а S_{12} и S_{21} — вносимые коэффициенты обратной и прямой передач. Они используются для расчета схем от 100 МГц до нескольких гигагерц (на этих частотах трудно осуществить условие короткого замыкания при измерении Y -параметров).

Кроме того, S -параметры имеют ряд преимуществ с точки зрения обеспечения устойчивости в процессе измерения, но определяются только для данной рабочей точки и на фиксированной частоте.

Типовые (нормализованные) зависимости параметров четырехполюсника от режима и температуры могут приводиться в справочниках или технических условиях.

2-10. ЧАСТОТНЫЕ СВОЙСТВА ТРАНЗИСТОРОВ

Для схем замещения и параметров четырехполюсника имеется ряд характеристических частот. Практическое значение имеют частоты, связанные с параметрами h_{216} , h_{213} и Y_{213} , а также частота генерации f_{\max} , описывающая область частот, в которой транзистор может быть в принципе применен как генератор колебаний (на этой частоте $K_{ur} = 1$). Кроме того, f_{\max} используется для оценки величины K_{ur} на других частотах.

Модули величин h_{216} , h_{213} и Y_{213} падают с ростом частоты, поэтому вводятся характеристические частоты, на которых коэффициенты передачи по току падают в $\sqrt{2}$ раз (до 0,707) относительно их значения на низкой частоте (соответствующие частоты f_{h216} , f_{h213} и f_{Y213}).

Употребляется также частота f_{gr} ; на этой частоте модуль h_{213} достигает значения, равного единице.

Частота f_{h216} для характеристики транзисторов используется обычно в диапазоне до 20 МГц, а f_{gr} — на частотах выше 20 МГц.

Имеются формулы, связывающие частоты f_{h216} , f_{h213} и f_{gr} . В частности, $f_{gr} = k f_{h216}$, где $k = 0,65 \div 0,82$ для различных типов транзисторов; для бездрейфовых (сплавных) транзисторов обычно принимают $k = 0,82$. Частота $f_{h213} = (1 - h_{216}) f_{h215}$ для бездрейфового транзистора. Величина f_{h216} зависит от режима и температуры. Максимум зависимости f_{h216} от тока эмиттера обычно совпадает с максимумом зависимости параметра h_{213} от тока. При больших токах предельная частота падает, при работе на малых токах частотные свойства транзисторов также ухудшаются.

2-11. ОБРАТНЫЕ ТОКИ ПЕРЕХОДОВ

Обратные токи и их зависимость от приложенных напряжений и от температуры учитываются при расчете режима работы диодов и транзисторов.

Абсолютное значение обратного тока через переход зависит от свойств материала, технологии изготовления и рабочей температуры.

Обратный ток экспоненциально возрастает с ростом температуры. Считается, что $I_{\text{КБО}}$ или $I_{\text{обр}}$ примерно удваивается с ростом температуры в германиевых приборах на $8-10^{\circ}\text{C}$, в кремниевых — на 10°C . Приблизительно значение $I_{\text{КБО}}$ изменяется на $6-8\%$ при изменении температуры на 1°C у германиевых приборов и на $8-10\%$ — у кремниевых приборов.

Обратные токи обычно определяются для отечественных приборов при максимальных значениях обратного напряжения. Большие значения обратных токов переходов свидетельствуют о недостаточно хорошем качестве приборов.

2-12. ОБЛАСТИ РАБОТЫ И ВОЛЬТ-АМПЕРНЫЕ ХАРАКТЕРИСТИКИ ТРАНЗИСТОРОВ

Для транзисторов принято различать четыре области работы: отсечки, усиления, насыщения и умножения, а также три схемы включения: с общим эмиттером (ОЭ), с общей базой (ОБ) и общим коллектором (ОК). Кроме прямого включения транзисторы могут работать и в инверсном включении. В режиме инверсного включения в отличие от прямого эмиттер смещен в обратном направлении, а коллектор — в прямом. Транзистор работает при этом в активной области, но его усиительные свойства хуже (например, $h_{216}=0,1 \div -0,8$). Дрейфовые (диффузионные) транзисторы редко используются в таком включении, так как из-за асимметрии конструкции инверсное усиление мало. Инверсный режим может иметь место во времена переходных процессов в импульсных схемах.

Вольт-амперные характеристики, приводимые в справочниках, дают информацию о работе транзисторов во всех областях и режимах работы на большом и малом сигналах при различных допустимых сочетаниях токов и напряжений. По ним можно определить ряд основных параметров транзистора, выбрать рациональное положение рабочей точки, рассчитать нелинейные искажения, цепи смещения и стабилизации режима. Для анализа режимов и расчета схем обычно широко используются два семейства характеристик: семейства входных и выходных характеристик для схем ОБ и ОЭ. При необходимости по этим характеристикам можно построить переходные характеристики (прямые и обратные). По входным характеристикам определяются параметры h_{116} и h_{118} . По выходным характеристикам можно определить такие параметры как h_{226} , Y_{226} , h_{218} , Y_{218} , Y_{216} в зависимости от режима.

Наклон начального участка выходных характеристик определяется величину $r_{\text{КЭ нас}}$. Кроме того, на выходных характеристиках указывают обычно область безопасной работы транзисторов.

2-13. ИМПУЛЬСНЫЙ И КЛЮЧЕВОЙ РЕЖИМ РАБОТЫ

Рабочие токи, напряжения или мощности при работе в таких режимах могут значительно превышать номинальное значение, установленное для режима постоянного тока.

Для переключательных транзисторов в справочниках задаются импульсные значения максимально допустимых параметров или задаются графики, позволяющие определить величину P_i в зависимо-

сти от соотношения $t_{\text{и}}$, скважности Q и частоты. Величина $P_{\text{и}}$ на фронте или спаде импульса может достигать значений, превосходящих значения $P_{K\max}$. Величина $I_{K,\text{имах}}$ обычно определяется экспериментально для заданной длительности импульса.

Время переключения транзистора состоит из суммы времени включения и времени выключения. В свою очередь время включения состоит из суммы времени задержки включения и времени нарастания, а время выключения — из времени задержки выключения (времени рассасывания) и времени спада. Время переключения определяется как свойствами самого транзистора, так и выбранной схемой включения транзистора и параметрами управляющего сигнала. Оно является функцией частоты $f_{\text{гр}}$ и эмиттерного и коллекторного токов. Получить высокое быстродействие при большом токе затруднительно.

Для современных транзисторов с $f_{\text{гр}} > 100 \text{ МГц}$ основной вклад в задержку включения вносит значение емкости C_a . Кремниевые транзисторы имеют большие величины $t_{\text{зд}}$, чем германиевые. Время задержки может быть уменьшено путем увеличения мощности включающего сигнала. Для времени нарастания влияние емкости C_a неизначительно, но играют роль величины $f_{\text{гр}}$ и входного тока.

На длительность фронта и спада значительное влияние оказывает емкость коллектора C_K .

Время рассасывания зависит от конкретной схемы включения и режима измерения. При больших степенях насыщения (или больших запирающих токах) и при существенных отклонениях режима использования от указанного в справочнике время рассасывания может значительно отличаться от его номинальной величины. При увеличении степени (глубины) насыщения $t_{\text{вкл}}$ уменьшается, а $t_{\text{выкл}}$ возрастает.

Для зарубежных приборов чаще приводятся времена $t_{\text{вкл}}$ и $t_{\text{выкл}}$, для отечественных приборов эти параметры приводятся реже, только для некоторых типов транзисторов, используемых близко к достижимому ими пределу быстродействия. Эти времена определяются для конкретной (типовской) электрической схемы, зависят от элементов внешних цепей (сопротивления нагрузки, сопротивления входной цепи, реактивных сопротивлений и т. п.) и используются как справочные или рекламные сведения.

В качестве типового режима измерения, определяющего отношение составляющих входных токов (I_{B1} и I_{B2}) и тока коллектора на границе насыщения I_{Knac} , для отечественных транзисторов принято $I_{B1} = I_{B2} = 0,1I_{Knac}$, что является более близким к реальным условиям работы импульсных транзисторов в схемах, чем у зарубежных, у которых принято при измерении $I_{B1} = I_{B2} = I_{Knac}$.

Работа транзистора в режиме насыщения характеризуется также остаточным напряжением между коллектором и эмиттером или сопротивлением насыщения $r_{K\Theta \text{ нас}}$. Параметр $r_{K\Theta \text{ нас}}$ удобнее при сравнении транзисторов чем $U_{K\Theta \text{ нас}}$, так как первый слабо зависит от тока. Величина $U_{K\Theta \text{ нас}}$ зависит от геометрических и физических параметров транзистора, поэтому его уменьшают выбором определенной геометрии структуры, а также за счет создания конструкции с эпитаксиальными слоями. С увеличением степени насыщения (3—5 и выше) значение $U_{K\Theta \text{ нас}}$ почти не меняется. С ростом температуры оно несколько увеличивается.

Ключевые транзисторы (в отличие от усилительных) обычно имеют малые остаточные напряжения ($U_{\text{КЭ нас}}$, $U_{\text{БЭ нас}}$), высокие значения $U_{\text{КБО проб}}$, $U_{\text{ЭБО проб}}$, I_{Kmax} и малые времена переключения. Для транзисторов, предназначенных для работы в ключевом режиме, нет необходимости иметь большие значения $h_{21\beta}$.

В общем случае мощность, выделяемая транзистором в ключевом режиме, состоит из суммы мощности, выделяющейся на коллекторном переходе в режиме насыщения $P_{\text{вкл}}$, мощности в режиме отсечки $P_{\text{выкл}}$, мощности, выделяющейся в процессе перехода транзистора из одного режима в другой, и мощности, выделяющейся в цепи базы на управление $P_{\text{упр}}$. При небольших рабочих частотах ($f < 1 \text{ кГц}$) основной составляющей, определяющей тепловые потери в транзисторе, является мощность $P_{\text{вкл}}$. Мощностью $P_{\text{пер}}$ ограничивается предельная частота работы транзистора.

2-14. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ

Современный уровень электрических параметров полупроводниковых приборов обусловливается прогрессом технологии их изготовления, связанным с разработкой эффективных методов эпитаксиального выращивания, техникой изготовления фотошаблонов, проведением процессов фотолитографии и диффузии примесей, совершенствованием стабилизирующих и защитных покрытий кристаллов.

Для изготовления переходов полупроводниковых приборов используются следующие основные технологические методы: вытягивание из расплава, электрохимические, электроформовки, сплавления, диффузии и ионного внедрения примесей. Первые три метода в настоящее время практически не применяются.

Метод сплавления находит применение лишь при изготовлении низкочастотных маломощных и мощных германиевых транзисторов и кремниевых диодов.

Сплавные транзисторы имеют невысокий частотный предел (примерно до 10–15 МГц), достаточно высокие напряжения $U_{\text{КБО проб}}$ и $U_{\text{ЭБО проб}}$, причем близкие по значению, малые напряжения насыщения, но большие емкости $C_{\text{к}}$ (из-за большой площади перехода коллектор — база), большой разброс параметров вследствие плохой воспроизводимости процесса сплавления. Метод сплавления отличается простотой технологии.

С помощью диффузионных методов на германии и кремнии получают транзисторы со структурами $p-n-p$ и $n-p-n$. Например, на германии с помощью двойной односторонней диффузии технологически легче получать $p-n-p$ транзисторы, а на кремнии $n-p-n$ транзисторы. Это находит свое отражение в количестве типов соответствующих транзисторов. При двойной односторонней диффузии (базовая область создается путем диффузионного легирования) транзисторы имеют высокую частоту, но повышенное сопротивление насыщения $r_{\text{КЭ нас}}$ и большое значение $U_{\text{КЭ нас}}$. Транзисторы, изготовленные с помощью двусторонней диффузии (у них диффузионные эмиттер и коллектор) имеют малые $r_{\text{КЭ нас}}$, но и малую предельную частоту.

Среди методов изготовления транзисторных структур имеется большое количество и комбинированных — таких как сплавление и диффузия или сочетание различных вариантов диффузии. В ком-

Синтез с методом сплавления были созданы диффузионно-сплавные и сплавно-диффузионные приборы. Например, базовая область — диффузионная, а коллектор и эмиттер — сплавные. Диффузионно-сплавные транзисторы имеют большое значение $U_{\text{КЭ нас}}$ и малые пробивные напряжения переходов $U_{\text{КБО}} \text{ проб}$ и $U_{\text{ЭБО}} \text{ проб}$, но у них более высокая рабочая частота, чем у сплавных приборов. Транзисторы с большими рабочими токами (до десятков ампер) и частотой несколько десятков мегагерц получают методом сплавления — диффузии, так как этот метод позволяет создавать приборы, превосходящие сплавные по частоте.

В настоящее время наибольшие рабочие токи, кроме сплавных германиевых транзисторов, имеют кремниевые транзисторы, изготовленные с помощью двусторонней диффузии.

Разновидностью сплавно-диффузионных и диффузионных являются транзисторы, изготовленные в виде мезаструктуры. Они изготавливаются на частоты около 800—1000 МГц и характеризуются малыми значениями емкости C_r и сопротивления базы. Основная масса мощных кремниевых транзисторов, изготовленных с помощью двойной односторонней диффузии, представляет собой мезапланарные приборы. Необходимо отметить, что в отличие от метода сплавления принципы получения диффузионных структур более подходят для групповой технологии.

Наряду с методами одинарной и двойной диффузии применяются методы тройной диффузии (преимущественно для изготовления меза- и планарных транзисторов), например для создания высоковольтных транзисторов.

Мощные приборы с двойной диффузией и охранным кольцом (для снижения утечки) обладают высокой линейностью $h_{21\varnothing}$, малым $U_{\text{КЭ нас}}$. У приборов с тройной диффузией — большая область безопасной работы, выше пробивные напряжения, но ниже усиление, меньше $f_{\text{гр}}$.

Современные полупроводниковые приборы изготавливаются, как правило, по планарной технологии, являющейся модификацией диффузионной технологии. Основным преимуществом планарной технологии является обеспечение точных размеров переходов и их защита от воздействия внешней среды и загрязнений. В планарной структуре границы переходов находятся под защитным слоем двуокиси кремния, в связи с чем устраняются многие проблемы, связанные с поверхностными явлениями. В германиевых планарных транзисторах также используются покрытия из двуокиси кремния. В качестве дополнительного пассивирующего слоя в планарных приборах может использоваться нитрид кремния, что увеличивает стабильность транзисторов и возможность его работы при более высоких температурах. Кроме указанных преимуществ, планарные приборы более стабильны во времени, имеют малые обратные токи, большое усиление при малых токах, однородность параметров и возможность одновременного изготовления в одном технологическом процессе большого числа структур.

В настоящее время имеются планарные транзисторы (например, отечественные КТ104, КТ201, КТ203, КТ208, КТ209, КТ501), которые позволяют заменять в схемах сплавные транзисторы как германьевые, так и кремниевые.

Для улучшения параметров мезапланарных и планарных транзисторов используют методы встречной диффузии и эпитаксиального

выращивания. С помощью эпитаксиальной технологии реализуется двухслойная структура коллектора: низкоомная исходная пластина и выращенный тонкий высокоомный слой. Для маломощных транзисторов эпитаксиальное выращивание практически полностью заменило встречную диффузию. В настоящее время метод эпитаксиального выращивания считается более перспективным, чем метод обратной эпитаксии (обращенного эпитаксиального наращивания) и метод встречной диффузии. Применение эпитаксиальных пленок улучшает три параметра диффузионных транзисторов: повышает пробивное напряжение коллекторного перехода, уменьшает сопротивление тела коллектора ($r_{\text{КЭ нас}}$) и емкость C_{K} . Кроме того, эпитаксиальные приборы имеют более слабую зависимость коэффициента усиления от тока эмиттера.

Для создания современных СВЧ транзисторов используется технология ионного легирования (ионной имплантации примесей). Этот метод позволил получить сопротивление базы много меньшее, чем при диффузионном методе, и сверхтонкий базовый слой (глубина залегания всех переходов менее 1 мкм). Для получения больших мощностей на высоких частотах используются такие структуры, как гребенчатая, многоэмиттерная, матричная и т. п. Для малосигнальных СВЧ транзисторов оптимальной является гребенчатая (полосковая) геометрия. В современных мощных транзисторах имеются встроенные эмиттерные резисторы (диффузионные или тонкопленочные) для выравнивания распределения тока между отдельными участками эмиттерного перехода.

2-15. КОНСТРУКЦИИ КОРПУСОВ

Корпус прибора должен защищать кристалл от воздействия внешних факторов, хорошо отводить тепло, обеспечивать надежное и удобное крепление прибора в аппаратуре.

Различие в конструктивном оформлении приборов обусловлено максимальными мощностью рассеяния и током, частотными свойствами, особенностями технологии изготовления и условиями эксплуатации.

Существуют цельностеклянные, металлокстеклянные, металлические конструкции с проходным изолятором, металлокерамические, керамические с компаундной (пластмассовой) герметизацией и пластмассовые корпуса различной формы и размеров. Выпускаются также бескорпусные приборы.

Корпуса обычно состоят из ножки (фланца) и баллона (колпачка), герметично соединяемых друг с другом электроконтактной сваркой, холодной сваркой или пайкой. Наружные металлические детали корпуса в зависимости от типа прибора могут иметь металлическое покрытие (золочение, никелирование и др.) или лакокрасочное покрытие. Наличие строгой цилиндрической формы поверхности баллона (колпачка) допускает возможность применения радиаторов, позволяющих увеличить мощность рассеяния приборов.

Выводы корпусов могут иметь одностороннее или двустороннее расположение, располагаться с той стороны, которой прибор прижимается к теплоотводу или шасси (направлены вниз), например в корпусах ТОЗ; могут располагаться со стороны, противоположной контактирующей (обычно в мощных приборах), например, в корпусах ТО60, ТО63, КТ23, а также иметь радиальное расположение (обычно у ВЧ и СВЧ транзисторов).

Кристалл прибора одним из своих электродов (базы, эмиттера или коллектора) может быть электрически связан с корпусом или полностью изолирован от него. Для улучшения теплоотвода с одновременной электрической изоляцией кристалла от корпуса часто используется держатель из бериллиевой керамики, напаиваемый на фланец корпуса. Окись бериллия является хорошим изолятором и в то же время обладает высокой теплопроводностью.

Отвод тепла от кристалла определяется теплофизическими свойствами материала корпуса. Так как у транзисторов отвод тепла обычно осуществляется через область коллектора, связанного электрически с корпусом, а работа прибора чаще всего предпочтительна в схеме с общим эмиттером, то корпус прибора изолируется от шасси с помощью прокладки. Имеются конструкции, где отвод тепла осуществляется через коллектор, электрически изолированный от корпуса (например, корпус ТО60). Иногда для улучшения отвода тепла в транзисторах малой и средней мощности внутренний объем корпуса заполняется теплоотводящим наполнителем. Фланцевые корпуса обеспечивают лучший отвод тепла, чем корпуса с монтажным винтом.

В различных странах проведены стандартизация и унификация конструкций корпусов полупроводниковых приборов. Это дает возможность, в частности, стандартизировать теплоотводы (радиаторы) для приборов. По габаритно-присоединительным размерам конструкции корпусов с учетом международной стандартизации должны отвечать рекомендациям МЭК и СЭВ. В нашей стране имеется ряд корпусов транзисторов, соответствующих этим рекомендациям, например металлокерамический корпус КТ21 (аналогичные зарубежные корпуса имеют обозначение ТО18, ТО72) с двумя или тремя изолированными выводами для транзисторов с рабочей частотой до 1,5 ГГц.

Металлокерамический корпус КТ22 (зарубежное обозначение ТО5) предназначен для транзисторов малой и средней мощности (до 5 Вт). Металлический корпус КТ23 (зарубежное обозначение ТО60) имеет три изолированных вывода и крепящий болт и предназначен для мощных ВЧ и СВЧ транзисторов.

Металлокерамический корпус КТ24 (зарубежное обозначение ТО63, МТ50) предназначен для транзисторов большой мощности (до 200 Вт) с двумя (для низкочастотных транзисторов) или тремя изолированными от корпуса выводами (для высокочастотных транзисторов).

Зарубежный корпус типа ТО3 обычно используется для работы на частотах до 100—150 МГц, корпус типа ТО60 — до 500 МГц, для работы на более высоких частотах используются другие, специальные конструкции (коаксиальные корпуса, ТО117 и др.).

На высоких частотах на электрические параметры приборов начинают влиять междуэлектродные емкости, емкости электродов относительно корпуса и индуктивности выводов. Для работы на высоких частотах (более 1 ГГц) индуктивность выводов должна быть менее 1 нГ.

В отличие от низкочастотных приборов у высокочастотных выводы делаются короткими, толстыми и широкими и далеко расположены друг от друга. Были разработаны коаксиальный корпус и различные модификации полоскового корпуса. Например, у коаксиального корпуса индуктивность общего вывода составляет 0,1 нГ;

у керамического полоскового корпуса типа L-5 индуктивность эмиттерного вывода 0,275 нГ.

Для ВЧ и СВЧ транзисторов существуют два способа монтажа кристалла в корпус: для схем с общим эмиттером и общей базой. Наилучшие результаты работы усилительных транзисторов в полосковых корпусах получены в схеме ОБ, так как при этом получаются высокие $K_{ур}$ и достигается лучшая стабильность усилителя. Транзисторы, включаемые по схеме ОЭ, являются оптимальными для генераторов, при этом паразитные параметры корпуса оказываются включенными в цепь обратной связи.

Бескорпусные приборы в виде кристаллов (пластин) с шариковыми, балочными, проволочными или ленточными выводами применяются в составе гибридных интегральных схем. При этом осуществляется герметизация всей интегральной схемы.

2-16. ГЕРМЕТИЗАЦИЯ ПЛАСТМАССОЙ

Разработка полупроводниковых приборов в пластмассовом корпусе позволила снизить их стоимость по сравнению с аналогичными по электрическим параметрам приборами в обычном металлокстеклянном корпусе. Это произошло за счет автоматизации и механизации некоторых операций монтажа и сборки приборов, а также за счет снижения некоторых требований к приборам, например, у приборов, в пластмассовом корпусе более узкий рабочий диапазон температур.

Технологические процессы изготовления этих приборов не отличаются от аналогичных процессов изготовления приборов в обычном корпусе, только вместо ножки здесь используется центральный (или коллекторный) вывод и вместо металлического корпуса используется заливка всей структуры полимерами. Герметизация полимерами, используемая как для маломощных, так и для мощных приборов, осуществляется либо с образованием монолитной конструкции (герметизирующий материал контактирует с кристаллом), созданной путем погружения в жидкий полимер, заливкой в формах, литьем, опрессовкой или формовкой, либо капсульной конструкции, при которой контакт кристалла с герметизирующим материалом отсутствует. В качестве заливочных компаундов (полимеров) используются эпоксидная или фенольная смолы, кремнийорганические материалы с различными наполнителями.

Чтобы выводы не «вращались» в заливке, их часто делают ленточными, иногда часть вывода, находящаяся в пластмассе и используемая как кристаллодержатель, сплющивается.

Стабильность параметров и надежность приборов, герметизированных полимерами, связаны с различными серьезными проблемами и определяются теми изменениями, которые происходят на поверхности кристаллов и обусловлены наличием примесей в полимерном материале, проникновением влаги через выводы и полимер на поверхность кристалла, внутренними напряжениями, возникающими в герметизирующем слое, адгезией пластмассы с материалом выводов, наличием электрохимии контактов при проникновении влаги. Состав материала корпуса и метод герметизации оказываются наиболее важными факторами, связанными с их надежностью. Дефекты пластмассового корпуса могут вызвать большие токи утечки, электрохимические процессы разрушения (металлизации и выводов), термо-

механические (разрушения из-за различия коэффициентов расширения пластмассы и металлических выводов).

В принципе пластмассовые приборы имеют более высокую механическую прочность, вибро- и ударопрочность, чем приборы в металлокстеклянном корпусе. Однако пластмассовое покрытие недостаточно герметично, кроме того, в ряде случаев при использовании приборов в РЭА требуется дополнительная магнитная и электрическая экранировка их корпуса.

За рубежом наиболее часто используются пластмассовые корпуса транзисторов типов R67, TO92, TO98, X55.

2-17. НАДЕЖНОСТЬ

Надежность работы полупроводниковых приборов определяется не только их собственной (производственной) надежностью, определяемой по результатам испытаний на долговечность и срок службы (в различных условиях окружающей среды и электрических нагрузок), но и условиями и режимами эксплуатации.

В технических условиях на прибор предусмотрен целый комплекс мероприятий для обеспечения высокой производственной надежности.

При эксплуатации реальные режимы работы приборов, как правило, ниже испытательных, поэтому эксплуатационная надежность обычно выше производственной. Данные об эксплуатационной надежности накапливаются при эксплуатации аппаратуры и учитываются при ее доработке или усовершенствовании.

2-18. ОБЛАСТИ ПРИМЕНЕНИЯ ТРАНЗИСТОРОВ

Полупроводниковые приборы разрабатываются и совершенствуются исходя из перспективности и общих тенденций развития радиоэлектронной аппаратуры, с учетом особенностей конкретных классов схем, в которых предполагается их использование.

В настоящее время полупроводниковые приборы исчисляются сотнями и тысячами наименований. Предназначенные для различных областей применения, они открывают возможность создания принципиально новых радиотехнических устройств, существенно расширяют и улучшают функции и возможности РЭА.

По виду выполняемой функции (целевому назначению) и специфики инженерных расчетов схем транзисторы можно разделить на усилительные, переключательные и генераторные.

Общими для расчетов усилителей на транзисторах (постоянного тока, низкой частоты, промежуточной частоты, высокой частоты и др.) являются входное и выходное сопротивления каскада, соотношения, определяющие усиление, частотные свойства, режимы работы, температурная стабильность и прочие показатели.

В соответствии с назначением различают каскады предварительного усиления (напряжения, тока или мощности), предназначенные для получения максимального усиления (обычно по резисторной или трансформаторной схемам), и каскады усиления мощности, обеспечивающие на заданной нагрузке необходимую (выходную) мощ-

ность при минимальных нелинейных искажениях и минимальной мощности потребления от источника питания. В многокаскадных усилителях с отрицательной обратной связью имеют место фазовые сдвиги между входными и выходными токами, поэтому для устойчивой работы транзисторы выбирают исходя из условия $f_b \leq 0,3f_{h21}$ (f_b — верхняя рабочая частота усилителя), при малой обратной связи $f_b \leq f_{h21}$. Усилители с мощным выходным каскадом имеют два варианта: бестрансформаторный (с выходной мощностью не более 5—10 Вт) и трансформаторный (на десятки и сотни ватт). При выходной мощности около 0,1—1 Вт каскады выполняются однотактными с режимом работы в классе А; при больших значениях мощности — двухтактными с режимом работы в классах А, АВ или В.

В схемах с дополнительной симметрией — на транзисторах $p-n-p$ и $n-p-n$ приборы должны быть с одинаковыми параметрами и характеристиками. Требуется подбор пар последовательно включенных транзисторов по h_{213} и h_{4213} с разбросом не более 10—15%. Для этой цели разработаны специальные (комплементарные) транзисторы.

В каскадах предварительного усиления величина U_{K3} в рабочей точке мала (несколько вольт) и выбирается из соображений получения малого напряжения шумов или неискаженной формы сигнала на выходе.

В усилителях, имеющих хорошую температурную и режимную стабилизацию, замена транзистора на однотипный с более высоким значением h_{213} не приводит к значительному увеличению тока коллектора в рабочей точке.

В транзисторных генераторах наиболее предпочтительными являются режимы класса В и С (реже АВ). При расчете транзисторного генератора с внешним возбуждением по заданным выходной мощности и величине f_b выбирают тип транзистора и проверяют пригодность его по величинам P_K , f_{gr} и предельно допустимым параметрам ($U_{KBO\ max}$, $U_{EBO\ max}$, $I_K\ max$) для заданного угла отсечки коллекторного тока. Для расчета генераторов необходимо знать также значения C_K , r'_6 , C_K , f_{max} . Следует учитывать, что чем выше частота генерируемых колебаний, тем меньше величина K_{ur} . Для получения $K_{ur} \geq 5-7$ дБ необходимо, чтобы величина f_b была в несколько раз ниже частоты f_{h216} (в 4—10 раз).

В каскадах усиления и генерации мощности величина U_{K3} выбирается достаточно большой для получения максимального к. п. д. и малых нелинейных искажений.

Транзисторы некоторых типов используются в специфических классах схем и характеризуются рядом особенностей режима и условий работы. Такие транзисторы образуют своеобразный класс приборов, например транзисторы для схем АРУ, для УПЧ, для работы в микроамперном диапазоне токов, для работы в ВЧ и СВЧ диапазонах, лавинные транзисторы, сдвоенные, составные, двухэмиттерные и т. п. Есть узлы, где требуются высоковольтные транзисторы. Кроме того, разработаны транзисторы универсального назначения. Они обладают таким сочетанием параметров и характеристик и удовлетворяют такому числу различных требований, что их можно использовать в РЭА вместо ряда специализированных транзисторов.

Для схем с автоматической регулировкой усиления (АРУ) разработаны специальные транзисторы, обладающие регулируемым усилением при увеличении рабочего тока (прямая АРУ). Уменьшение усиления таких транзисторов на высокой частоте происходит за счет спада f_{rp} при увеличении тока эмиттера и уменьшении напряжения на коллекторе. В связи с этим они имеют резкую зависимость K_{ur} от тока. Для зарубежных транзисторов, предназначенных для АРУ, часто указывается глубина регулировки усиления. Обычные транзисторы имеют достаточно слабую зависимость усиления от электрического режима.

Жесткие требования к экономичности РЭА в целом ряде специальных применений обусловили необходимость создания кремниевых транзисторов, способных нормально работать при токах около нескольких единиц и десятков микроампер. Германиевые транзисторы вследствие большого значения обратного тока коллектора для этой цели непригодны. Такие приборы имеют малые значения I_{KBO} и большое усиление. Однако при работе в микрорежиме ухудшаются частотные свойства транзисторов. Кроме того, при малых токах обычно усиливается зависимость параметров от температуры, снижается крутизна и затрудняется стабилизация режима.

Реализация высокого усиления по мощности в высокочастотных усилителях связана с уменьшением паразитной обратной связи, обусловленной проходной проводимостью транзистора Y_{12} . В настоящее время разработаны транзисторы, у которых для снижения емкости обратной связи в структуру введен интегральный экран (экран Фардя), представляющий собой сочетание диффузионного экрана и дополнительного экранирующего диода. Применение интегрального экрана позволяет снизить емкость между коллекторным и базовым выводами в 2,5–4 раза (емкость C_{123} снижается до значения не более 0,3 пФ) и обеспечивает получение высокого усиления без применения схем нейтрализации.

Лавинные транзисторы предназначены для работы в режиме электрического пробоя коллекторного перехода. В зависимости от схемы включения они могут иметь управляемые S-образные (со стороны коллектора или эмиттера) и N-образные (со стороны базы) вольт-амперные характеристики. Использование обычных транзисторов в этом режиме принципиально возможно, но при этом не обеспечиваются необходимое быстродействие, амплитуда импульсов, стабильность и надежность. Например, одной из причин, снижающих эффективность использования обычных высокочастотных транзисторов в лавинном режиме, является значительное снижение частоты f_{rp} при росте коллекторного тока.

Лавинные транзисторы имеют следующие основные параметры: напряжение лавинного пробоя коллекторного перехода $U_{KBO\text{проб}}$, напряжение пробоя при отключенной базе $U_{K\bar{E}\text{ проб}}$, напряжение $U'_{K\bar{E}\text{ проб}}$ в максимуме вольт-амперной характеристики, зависящее от сопротивления $R_{B\bar{E}}$ и управляющего тока, максимальный ток разряда и время нарастания лавинного импульса. Область лавинного режима лежит между напряжениями $U_{KBO\text{ проб}}$ и $U'_{K\bar{E}\text{ проб}}$. Лавинные транзисторы применяются в релаксационных генераторах в ждущем или автоколебательном режимах.

С помощью лавинных транзисторов можно формировать на низкойомной нагрузке (50—70 Ом) амплитуды импульсов 10—15 В и выше при малом времени нарастания (менее 1 нс) переднего фронта.

Отечественной промышленностью выпускается лавинный транзистор типа ГТ338А—ГТ338В, а за рубежом ASZ23, NS1110—NS1116, 2SA411, 2SA252 и ECL1239, 2N3033—2N3035, PADT51, SYL3013, 2N5236, 2N5271, RT1110—RT1116.

Следует также отметить транзисторы, предназначенные для использования при инверсном включении, которое применяется в модуляторах для стабильных усилителей постоянного тока, построенных по схеме модуляция — демодуляция, в схемах управления реверсивными двигателями, в логических схемах, амплитудных детекторах и других схемах. В некоторых схемах, например автомобильного зажигания и строчной развертки телевизоров, транзистор при запирании может переходить в режим инверсного включения при работе на комплексную нагрузку.

Разработаны специальные модуляторные транзисторы, в основу которых положены две транзисторные структуры, так называемые двухэмиттерные транзисторы, имеющие лучшие параметры инверсного включения.

Для работы в выходных каскадах УНЧ радиовещательных приемников, высококачественных магнитофонов, радиол, телевизоров разработаны германиевые и кремниевые транзисторы разного типа проводимости. Они обладают слабой зависимостью усиления от тока и высоким значением частоты $f_{h21\alpha}$, что позволяет улучшить акустические показатели устройств в широком диапазоне звуковых частот. В свою очередь, это позволило упростить схемы усилителей, уменьшить число применяемых транзисторов, повысить надежность и снизить себестоимость устройства. Зависимость коэффициента усиления $h_{21\beta}$ от тока характеризуется коэффициентом линейности — отношением коэффициентов усиления при двух значениях тока эмиттера.

2-19. ВЫСОКОЧАСТОТНЫЕ ТРАНЗИСТОРЫ

К транзисторам, предназначенным для работы на высоких и сверхвысоких частотах, предъявляется ряд дополнительных требований. Они должны иметь малые емкости между электродами, создающие паразитную обратную связь и малую индуктивность общего вывода. Кроме того, для получения максимального $K_{УР}$ они должны иметь высокую частоту $f_{гр}$, малые значения $r_b' C_k$, C_k и $U_{КЭ нас}$. При создании высокочастотных приборов вызывает затруднения воспроизводимость одинаковых по параметрам приборов одного типа.

В принципе высокочастотные транзисторы могут работать и как усилители, и как генераторы; однако, транзистор, хороший как усилитель мощности, не обязательно будет хорош для генератора и, наоборот.

Высокочастотные мощные транзисторы характеризуются такими параметрами, как $P_{вых}$, к. п. д. и $I_{кр}$ (критический ток определяет условную границу, при которой получаются удовлетворительные частотные свойства транзистора). Факторы, определяющие усиление и ширину полосы транзисторных усилителей, могут быть найдены

только в комбинации свойств транзистора и схемы, в которой он используется. Кроме того, параметр $K_{УР}$ зависит от условий определения входной и выходной мощностей, поэтому имеется несколько коэффициентов, характеризующих усиление транзистора. В качестве обобщенной характеристики усилительных свойств транзисторов используется U -функция (максимальный $K_{УР}$ при обратной связи, нейтрализованной внешней схемой).

Для получения высокого к. п. д. рабочая точка транзисторов периодически оказывается вблизи области насыщения. Высокочастотное напряжение насыщения (оно больше статического) определяет также значение выходной мощности на высокой частоте. Следует отметить, что использование транзисторов с большими пробивными напряжениями для низковольтных устройств является нецелесообразным, так как они имеют большие напряжения насыщения.

Работа мощных приборов при больших значениях $P_{\text{вых}}$ обеспечивается лишь при снижении электрического и теплового режимов. Обычно величина $P_{\text{вых}}$ указывается в справочниках для уровня, соответствующего надежной работе, и не превышает в режиме непрерывных колебаний 50% P_{max} . На высоких частотах выходная мощность изменяется пропорционально $1/f^2$. Она монотонно возрастает до определенных пределов с ростом входной мощности и напряжения источника питания E_k .

Высокочастотные транзисторы, используемые в качестве усилителя мощности, должны иметь пробивное напряжение коллекторного перехода в 2—3 раза больше E_k . В схемах генераторов при расстройке коллекторной цепи пиковое значение напряжения на коллекторе может достигать 3—4 E_k и более, особенно на нижнем участке рабочего диапазона частот.

Обычно высокочастотные мощные транзисторы работают ненадежно в режимах короткого замыкания и холостого хода и могут отказывать при рассогласовании нагрузки на выходе. Например, транзистор 2N5178 обеспечивает мощность около 50 Вт на частоте 500 МГц лишь в тщательно настраиваемом узкополосном усилителе и даже при слабом нарушении согласования возможен отказ.

В настоящее время имеются высокочастотные транзисторы, которые могут работать при всех условиях рассогласования и нагрузочного импеданса. Разработаны также приборы для специальных областей применения, в которых требуются различные значения рабочего напряжения (12; 13,5; 24; 28 В и др.) с различным уровнем широкополосности, с большой линейностью и т. п.

Для передачи информации с помощью кабелей (например, в кабельных телевизионных системах) разработаны специальные широкополосные линейные транзисторы, работающие в классе А или АВ, при котором обеспечивается малый уровень искажений, вызываемых перекрестной модуляцией. Они имеют слабую зависимость коэффициента усиления от тока, малую емкость C_k и применяются на частотах много меньших, чем максимальная рабочая частота. Для стабилизации температурного режима в корпусе транзистора монтируют схему температурной стабилизации с диодом-датчиком температуры. Нелинейность таких транзисторов характеризуется коэффициентом интермодуляционных искажений. При сравнительной оценке линейности транзисторов могут использоваться зависимости $S_{21}(I_k)$ и $S_{21}(U_k)$.

Транзисторы для линейных широкополосных усилителей, работающих в режиме одной боковой полосы, характеризуются отдаваемой мощностью в пике огибающей (P_{RER}).

Мощные высокочастотные транзисторы могут использоваться в импульсном режиме и выходная мощность может быть повышена путем увеличения рабочих напряжений. Например, транзистор MSC1330 имеет в непрерывном режиме выходную мощность 30 Вт на частоте 1,3 ГГц при $E_k=28$ В, а в импульсном режиме ($t_i=10$ мкс) при $E_k=40$ В — уже 70 Вт на той же частоте.

Современные мощные высокочастотные транзисторы имеют сложные геометрические и технологические структуры (полосковые, многоэмиттерные, многоэлементные). В этих структурах весьма вероятно развитие второго пробоя. Последний чаще всего проявляется при работе или испытаниях транзисторов в статическом режиме.

Среди возможных причин отказов высокочастотных и сверхвысокочастотных усилительных транзисторов можно назвать возникновение генерации за счет паразитных реактивностей схемы, перегрузку при переходных процессах и действие статического электричества.

РАЗДЕЛ ТРЕТИЙ

ОТЕЧЕСТВЕННЫЕ И ЗАРУБЕЖНЫЕ ТРАНЗИСТОРЫ

3-1. О ВЗАИМОЗАМЕНЯЕМОСТИ ТРАНЗИСТОРОВ И ДИОДОВ

Полная аналогичность (эквивалентность) отечественных и зарубежных полупроводниковых приборов предполагает совпадение их по функциональному назначению, электрическим параметрам и характеристикам, конструктивному оформлению, габаритным и присоединительным размерам, массе, форме и расположению выводов, методам герметизации, электрической связи выводов с корпусом, надежности и стабильности.

Принципы и методы определения наиболее вероятного значения величин и установления норм и допусков электрических параметров, принятые в разных странах, неодинаковы. Очевидно, что в ряде случаев нормы, устанавливаемые на параметры, могут в большой степени отличаться от реальных их значений.

Режимы, условия, методы проведения различных видов электрических, механических и климатических испытаний, нормы на параметры — критерии годности при испытаниях, методы измерений, от которых в общем зависят устанавливаемые параметры, многообразны и не универсальны. Кроме того, значения параметров приборов зависят не только от режима работы и температуры, но и изменяются со временем (дрейф параметров во время работы и при хранении). В настоящее время существуют международные стандарты и рекомендации различных международных комиссий, способствующие регламентированию терминологии, технических требований, классификации, методов измерения параметров и других свойств приборов. Однако в отдельных странах имеются свои особенности в стандартизации параметров и свойств приборов.

Эксплуатационные свойства транзисторов описываются большим числом параметров, поэтому практическая полная тождественность отечественных и зарубежных транзисторов недостижима и не во всех случаях необходима. Целесообразнее говорить о частичной (неполной, ограниченной) или приближенной их эквивалентности. Подбор аналогов должен проводиться с учетом конкретной электрической схемы, а не только путем формального сравнения всех параметров приборов. При воспроизведении технических показателей схемы (узла, каскада) должны удовлетворяться прежде всего требования к выходным параметрам. Поэтому не все параметры транзисторов будут одинаково важными, а только те, по которым должна быть обеспечена взаимозаменяемость.

Таким образом, наличие конкретной схемы приводит к сокращению числа рассматриваемых параметров и упрощению решения задачи по подбору приборов за счет выявления требований к выход-

ным параметрам и определения реального режима работы приборов. При анализе комплекса выходных параметров их условно можно разделить на целевые (требуется наилучшее сочетание их значений) и второстепенные параметры (значения могут меняться в широких пределах).

Взаимозаменяемость отечественных и зарубежных приборов будет зависеть не только от их свойств, условий эксплуатации и режимов применения, но и от рационально разработанной схемы, учитывающей номинальный разброс параметров и не требующей специального подбора приборов. При замене зарубежного прибора отечественным, даже лучшим по параметрам, может потребоваться подстройка схемы, чтобы не ухудшилась работа каскада и не возникла паразитная генерация.

Подбор аналогов должен осуществляться сравнением электрических параметров отечественных и зарубежных приборов из справочников, стандартов или технических условий на эти приборы, где указывается основное (целевое) назначение приборов, технология изготовления, структура, предельные (предельно допустимые) параметры, данные об электрических параметрах и их изменениях от режима и температуры, тип корпуса и другие сведения.

Следует отметить, что к зарубежной рекламной информации о новых приборах следует относиться критически, с достаточной долей осторожности, так как обычно рекламируемые параметры соответствуют единичным образцам приборов с максимально достигнутыми рекордными величинами. В процессе серийного производства эти параметры в среднем оказываются хуже рекламных.

Полупроводниковые приборы, изготавливаемые в едином технологическом процессе, иногда разделяются по каким-либо параметрам на группы и собираются в различных корпусах. Например, транзисторы BC107—BC109 имеют металлокерамический корпус Т018, приборы с таким же сочетанием параметров BC147—BC149, BC207—BC209, PBC107—PBC109 имеют соответственно корпуса MM12, R0110, Т098. Многие приборы в металлокерамическом корпусе имеют эквиваленты в пластмассовом корпусе.

Некоторые фирмы выпускают свои приборы по лицензиям других фирм или стран, присваивают им новые номера, иногда меняя нормы на параметры.

Унификация и стандартизация отечественных полупроводниковых приборов и их корпусов позволила устраниТЬ излишнее многообразие типов приборов, выпускаемых нашей промышленностью.

Следует отметить, что взаимозаменяемость по присоединительным и габаритным размерам отечественных и зарубежных приборов, которая определяет возможность замены приборов при соблюдении условий сопряжения с панельками, подставками, теплоотводами, изоляционными прокладками, экранами, с отверстиями в шасси (плате), может не выполняться.

3-2. УСЛОВНЫЕ БУКВЕННЫЕ ОБОЗНАЧЕНИЯ ПАРАМЕТРОВ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

Буквенные обозначения параметров транзисторов, соответствующие публикации МЭК 148 и рекомендации по стандартизации СЭВ РС 3233-71, принятые за рубежом и стандартизованные ГОСТ 20003-74, приводятся ниже.

Буквенное обозначение параметров		Термин и определение
отечественное	зарубежное	
$I_{КБО}$	I_{CBO}	Обратный ток коллекторного перехода при разомкнутом выводе эмиттера
$I_{ЭБО}$	I_{EBO}	Обратный ток эмиттерного перехода при разомкнутом выводе коллектора
$I_{КЭО}$	I_{CEO}	Обратный ток между коллектором и эмиттером при разомкнутом выводе базы
$I_{КЭR}$	I_{CER}	Обратный ток между коллектором и эмиттером при заданном сопротивлении в цепи базы — эмиттер
$I_{КЭК}$	I_{CES}	Обратный ток между коллектором и эмиттером при короткозамкнутых выводах базы и эмиттера
$I_{КЭV}$	I_{CEV}	Обратный ток между коллектором и эмиттером при запирающем напряжении (смещении) в цепи база — эмиттер
$I_{КЭХ}$	I_{CEX}	Обратный ток между коллектором и эмиттером при заданных условиях в цепи база — эмиттер
I_{kp}		Критический ток
$U_{КБО}$ проб	$U_{(BR)} CBO$	Пробивное напряжение между коллектором и базой при разомкнутой цепи эмиттера
$U_{ЭБО}$ проб	$U_{(BR)} EBO$	Пробивное напряжение между эмиттером и базой при разомкнутой цепи коллектора
$U_{КЭО}$ проб	$U_{(BR)} CEO$	Пробивное напряжение между коллектором и эмиттером при разомкнутой цепи базы ($R_{B\bar{E}} = \infty$)
$U_{КЭO}$ гр	$U_{(L)} CEO$	Граничное напряжение между коллектором и эмиттером при разомкнутой цепи базы и заданном токе эмиттера
$U_{КЭR}$ проб	$U_{(BR)} CER$	Пробивное напряжение между коллектором и эмиттером при заданном (конечном) сопротивлении в цепи база — эмиттер
$U_{КЭK}$ проб	$U_{(BR)} CES$	Пробивное напряжение между коллектором и эмиттером при короткозамкнутых выводах базы и эмиттера ($R_{B\bar{E}} = 0$)
$U_{КЭV}$ проб	$U_{(BR)} CEV$	Пробивное напряжение между коллектором и эмиттером при запирающем напряжении в цепи база — эмиттер
$U_{КЭХ}$ проб	$U_{(BR)} CEX$	Пробивное напряжение между коллектором и эмиттером при заданных условиях в цепи база — эмиттер
$U_{смк}$	U_{pt}	Напряжение смыкания
$U_{КЭ}$ нас	U_{CEsat}	Напряжение насыщения между коллектором и эмиттером
$U_{B\bar{E}}$ нас	U_{BEsat}	Напряжение насыщения между базой и эмиттером
$U_{ЭБ}$ пл	U_{EBfl}	Плавающее напряжение между эмиттером и базой
$U_{КБ}$ так	$U_{CB} \text{ так}$	Максимально допустимое постоянное напряжение между коллектором и базой

Буквенное обозначение параметров		Термин и определение
отечественное	зарубежное	
$U_{K\Theta}$ max	U_{CE} max	Максимально допустимое постоянное напряжение между коллектором и эмиттером
$U_{\Theta B}$ max	U_{EB} max	Максимально допустимое постоянное напряжение между эмиттером и базой
$U_{K\Theta}$, i max	U_{CEM} max	Максимально допустимое импульсное напряжение между коллектором и эмиттером
U_{KB} , i max	U_{CBM} max	Максимально допустимое импульсное напряжение между коллектором и базой
$U_{\Theta B}$, i max	U_{EBM} max	Максимально допустимое импульсное напряжение между эмиттером и базой
P_K max	P_C max	Максимально допустимая постоянная мощность рассеяния коллектора
P_K ср max	—	Максимально допустимая средняя мощность рассеяния коллектора
P_i max	P_{RM} max	Максимально допустимая импульсная мощность рассеяния
P	P_{tot}	Суммарное значение постоянной мощности рассеяния
P_{cp}	—	Средняя мощность рассеяния
P_n	P_{RM}	Импульсная мощность рассеяния
P_K	P_C	Постоянная мощность рассеяния коллектора
$P_{вых}$	P_{out}	Выходная мощность
$P_{вх}$	P_{in}	Входная мощность
I_K max	I_C max	Максимально допустимый постоянный ток коллектора
I_Θ max	I_E max	Максимально допустимый постоянный ток эмиттера
I_B max	I_{Bmax}	Максимально допустимый постоянный ток базы
I_K , i max	I_{CMI} max	Максимально допустимый импульсный ток коллектора
I_Θ , i max	I_{EMI} max	Максимально допустимый импульсный ток эмиттера
h_{113} ; h_{11b}	h_{11e} , h_{11b} h_{ie} , h_{ib}	Входное сопротивление в режиме малого сигнала соответственно для схем с общим эмиттером и с общей базой
h_{213} , h_{21b}	h_{21e} , h_{21b} h_{fe} , h_{fb} β_o , α	Коэффициент передачи тока (коэффициент усиления) в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
h_{123} , h_{12b}	h_{12e} , h_{12b} h_{re} , h_{rb}	Коэффициент обратной связи по напряжению в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
h_{223} , h_{22b}	h_{22e} , h_{22b} h_{oe} , h_{ob}	Выходная полная проводимость в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
$ h_{213} $	$ h_{21e} $	Модуль коэффициента передачи тока на высокой частоте
$h_{11\Theta}$	h_{11E} , h_{IE}	Входное сопротивление в режиме большого сигнала в схеме с общим эмиттером

Буквенное обозначение параметров		Термин и определение
отечественное	зарубежное	
$h_{21\Theta}$	h_{21E} hFE, B	Статический коэффициент передачи тока (коэффициент усиления) в схеме с общим эмиттером
$Y_{11\Theta}, Y_{11b}$	Y_{11e}, Y_{11b} Y_{ie}, Y_{ib}	Входная полная проводимость в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
$Y_{12\Theta}, Y_{12b}$	Y_{12e}, Y_{12b} Y_{re}, Y_{rb}	Полная проводимость обратной передачи в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
$Y_{21\Theta}, Y_{21b}$	Y_{21e}, Y_{21b} Y_{fe}, Y_{fb}	Полная проводимость прямой передачи в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
$Y_{22\Theta}, Y_{22b}$	Y_{22e}, Y_{22b} Y_{oe}, Y_{ob}	Выходная полная проводимость в режиме малого сигнала соответственно для схем с общим эмиттером и общей базой
$Y_{21\Theta}$	Y_{21E}	Статическая крутизна прямой передачи в схеме с общим эмиттером
$C_{11\Theta}, C_{11b}$	C_{11e}, C_{11b} C_{ie}, C_{ib}	Выходная емкость соответственно в схемах с общим эмиттером и общей базой
$C_{22\Theta}, C_{22b}$	C_{22e}, C_{22b} C_{oe}, C_{ob}	Выходная емкость соответственно в схемах с общим эмиттером и общей базой
C_K	C_c	Емкость коллекторного перехода
C_Θ	C_e	Емкость эмиттерного перехода
r'_Θ	r'_{bb}, r'_b	Сопротивление базы
$\tau_K (r'_\Theta C_K)$	$r'_{bb} C_c$	Постоянная времени цепи обратной связи
$S_{11\Theta}$	S_{11e}	Коэффициент отражения входной цепи в схеме с общим эмиттером
$S_{12\Theta}$	S_{12e}	Коэффициент обратной передачи напряжения в схеме с общим эмиттером
$S_{21\Theta}$	S_{21e}	Коэффициент прямой передачи напряжения в схеме с обратным эмиттером
$S_{22\Theta}$	S_{22e}	Коэффициент отражения выходной цепи в схеме с общим эмиттером
$f_{h21\Theta}$	f_{h21e}	Предельная частота коэффициента передачи тока в схеме с общим эмиттером
$f_{h21\Theta}$	f_{hfe}, f_β	Предельная частота коэффициента передачи тока в схеме с общей базой
f_{h21b}	f_{h21b}	
	f_{fb}, f_α	
f_{gr}	f_T	Границчная частота коэффициента передачи тока в схеме с общим эмиттером
f_{max}	f_{max}	Максимальная частота генерации
$K_\text{ш}$	F, NF	Коэффициент шума
$t_{\text{зд}}$	t_d	Время задержки
$t_{\text{ир}}$	t_r	Время нарастания
$t_{\text{рас}}$	t_s	Время рассасывания

Буквенное обозначение параметров		Термин и определение
отечественное	зарубежное	
$t_{\text{сп}}$	t_f	Время спада
$t_{\text{вкл}}$	t_{on}	Время включения
$t_{\text{выкл}}$	t_{off}	Время выключения
$r_{\text{КЭ нас}}$	r_{CEsat}	Сопротивление насыщения
K_yP	G_P	Коэффициент усиления по мощности
—	G_{pt}	Номинальный коэффициент усиления по мощности
—	G_{pa}	Номинальный коэффициент усиления по мощности при согласованной нагрузке
—	$G_{pa \text{ max}}$	Максимальный номинальный коэффициент усиления по мощности при одновременном согласовании входа и выхода
$\theta_{\text{кор}}$	$T_C; T_{case}$	Температура корпуса
$\theta_{\text{окр}}$	$T_A; T_{amb}$	Температура окружающей среды
$\theta_{\text{пер}}$	T_J	Температура перехода
—	T_{stg}	Температура хранения
$R_{\text{пер-окр}}$	R_{thja}, θ_{J-A}	Тепловое сопротивление от перехода к окружающей среде
$R_{\text{пер-кор}}$	R_{thjc}, θ_{J-C}	Тепловое сопротивление от перехода к корпусу

3-3. ОТЕЧЕСТВЕННЫЕ ТРАНЗИСТОРЫ И ИХ ЗАРУБЕЖНЫЕ АНАЛОГИ

При подборе аналогов к советским транзисторам учитывались основное назначение приборов, электрические параметры и характеристики, а также их конструктивно-технологические особенности.

Для отечественных транзисторов приводятся несколько приближенных зарубежных аналогов, отличающихся по электрическим параметрам не более чем в два раза. По параметрам и технологии изготовления транзисторов в дальнейшем тексте и таблицах приняты следующие сокращения: С — сплавные; Д — диффузионные; МД — микросплавные диффузионные; СД — сплавно-диффузионные; К — конверсионные; М — меза; П — планарные; ПЭ — планарно-эпитаксиальные; t_{pk} — время переключения; Ge — германий; Si — кремний; $P_{\text{КТmax}}$ — максимальная мощность рассеяния на приборе с теплоотводом.

В таблицах для мощности рассеяния в скобках указана температура окружающей среды, а также мощность рассеяния с теплоотводом. Параметры приводятся для температуры окружающей среды, равной 25°C.

Режим измерений параметров h_{21a} , $h_{21\Theta}$, $I_{\text{КБО}}$, C_k , $K_{\text{ш}}$ указан цифрами в скобках.

Для параметров f_{gr} , f_{h21a} , $f_{h21\Theta}$, $I_{\text{КБО}}$, h_{21a} , $h_{21\Theta}$, C_k , $r_{\text{КЭ нас}}$, $K_{\text{ш}}$, $t_{\text{рас}}$, $t_{\text{выкл}}$, r_b , C_k приводятся знаки \geqslant (больше) или \leqslant (меньше); если они отсутствуют, то указывается типовое значение параметра.

Транзисторы малой и средней мощностей

Условное обозначение	Материал, структура, технология	P_K max, $P_{K,t}$ max, $P_{K,i}$ max, мВт	f_{gr} , f_{h216} , f_{h213} , МГц	U_{KBO} проб, U_{KER} проб, U_{KEO} проб, В	U_{EB} проб, В	I_K max, $I_{K,i}$ max, мА
1	2	3	4	5	6	7
ГТ109А	Ge, $p-n-p$, С	30	$\geq 1^*$	10 (18 имп.)	—	20
ГТ109Б	Ge, $p-n-p$, С	30	$\geq 1^*$	10 (18 имп.)	—	20
ГТ109В	Ge, $p-n-p$, С	30	$\geq 1^*$	10 (18 имп.)	—	20
ГТ109Г	Ge, $p-n-p$, С	30	$\geq 1^*$	10 (18 имп.)	—	20
ГТ109Д	Ge, $p-n-p$, С	30	$\geq 3^*$	10 (18 имп.)	—	20
ГТ109Е	Ge, $p-n-p$, С	30	$\geq 5^*$	10 (18 имп.)	—	20
ГТ109Ж	Ge, $p-n-p$, С	30	—	10 (18 имп.)	—	20
ГТ109И	Ge, $p-n-p$, С	30	$\geq 1^*$	10 (18 имп.)	—	20
2N77	Ge, $p-n-p$, С	35	8,7*	25	—	15
2N105	Ge, $p-n-p$, С	35	0,75*	25	—	15
OC1044	Ge, $p-n-p$, С	83	$>7,5^*$	15	12	5 (10*)
OC1045	Ge, $p-n-p$, С	83	$>3^*$	15	12	5 (10*)
2SA49	Ge, $p-n-p$, С	60	9*	18	12	5
2SA52	Ge, $p-n-p$, С	60	7*	18	12	5
2SA53	Ge, $p-n-p$, С	60	5*	18	12	5
2SB90	Ge, $p-n-p$, С	40	1	18	12	50
2SB97	Ge, $p-n-p$, С	40	—	18	12	50
OC57	Ge, $p-n-p$, С	20	$\geq 0,01$	7	7	50
OC58	Ge, $p-n-p$, С	20	$>0,01$	7	7	50
OC59	Ge, $p-n-p$, С	20	2,2*	7	7	5
OC60	Ge, $p-n-p$, С	20	—	7	7	5
2SB302	Ge, $p-n-p$, С	40	12*	10	5	2
2SA255	Ge, $p-n-p$, С	55	5*	12	0,5	10
2SA254	Ge, $p-n-p$, С	55	10*	12	0,5	10
2N139	Ge, $p-n-p$, С	35	13*	16	0,5	15
2N218	Ge, $p-n-p$, С	35	13*	16	0,5	15
GC100	Ge, $p-n-p$, С	30	$\geq 1^*$	15	10	15
GC101	Ge, $p-n-p$, С	30	$\geq 1^*$	15	10	15
П127	Ge, $p-n-p$, С	30	$\geq 1^*$	5*	—	6
П127А	Ge, $p-n-p$, С	30	$\geq 1^*$	5*	—	6
П128	Ge, $p-n-p$, С	30	$\geq 5^*$	5*	—	6
2N175	Ge, $p-n-p$, С	20	0,85*	10	10	2
2N220	Ge, $p-n-p$, С	20	0,85*	10	10	2
AC160	Ge, $p-n-p$, С	30	2*	10*	10	10
ГТ115А	Ge, $p-n-p$, С	50	$\geq 1^*$	20	20	30
ГТ115Б	Ge, $p-n-p$, С	50	$\geq 1^*$	30	20	30
ГТ115В	Ge, $p-n-p$, С	50	$\geq 1^*$	20	20	30
ГТ115Г	Ge, $p-n-p$, С	50	$\geq 1^*$	30	20	30
ГТ115Д	Ge, $p-n-p$, С	50	$\geq 1^*$	20	20	30
2N591	Ge, $p-n-p$, С	50	0,7*	32	—	20
2SB39	Ge, $p-n-p$, С	50	0,85	10	10	2
2N107	Ge, $p-n-p$, С	50	1*	12	—	10
AC107	Ge, $p-n-p$, С	80	2*	15	5	10
TG5	Ge, $p-n-p$, С	75	$\geq 0,6$	30	10	10
TG5Е	Ge, $p-n-p$, С	75	$\geq 0,6$	15	10	10
2SB303	Ge, $p-n-p$, С	50	1	30	25	50
2N503	Ge, $p-n-p$, С	50	$\geq 0,6^*$	40	—	100
2N535А	Ge, $p-n-p$, С	50	2*	20	20	20
2N535В	Ge, $p-n-p$, С	50	2*	20	20	20
2N536	Ge, $p-n-p$, С	50	2*	20	20	30
AC122	Ge, $p-n-p$, С	60	1,2	30	12	50
2SB261	Ge, $p-n-p$, С	65	2,5	20	2,5	30

I_{KBO} , мкА	$h_{21\alpha}, h_{21\beta}$	$C_K, C_{12\alpha}^*,$ пФ	$r_{K\beta}$ наст., Ом	K_{sh} , дБ	$r'_6, C_{K,pc}$ t_{pac}^* $t_{vycl, nc}^{**}$ $r_6^{***},$ Ом	Корпус
8	9	10	11	12	13	14
и средней частоты						
≤ 5 (5 В)	20—50 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 5 (5 В)	35—80 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 5 (5 В)	60—130 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 5 (5 В)	110—250 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 2 (1,2 В)	20—70 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 2 (1,2 В)	50—100 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 1 (1,5 В)	≥ 100 (1,5 В)	—	—	≤ 12 (1 кГц)	≤ 5000	1
≤ 5 (5 В)	20—80 (5 В; 1 мА)	—	—	≤ 12 (1 кГц)	≤ 5000	1
10	55 (4 В; 0,7 мА)	40	—	—	—	TO2
5	55 (4 В; 0,7 мА)	17	—	—	—	TO2
≤ 10 (15 В)	45—225 (6 В; 1 мА)	≤ 14	—	—	$\leq 250^{***}$	TO1
≤ 10 (15 В)	25—125 (5 В; 1 мА)	≤ 14	—	—	$\leq 200^{***}$	TO1
≤ 12 (18 В)	30—200 (6 В; 1 мА)	$\leq 12,5$ (6 В)	—	—	$\leq 160^{***}$	TO1
≤ 12 (18 В)	25—170 (6 В; 1 мА)	$\leq 12,5$ (6 В)	—	—	—	TO1
≤ 12 (18 В)	20—130 (6 В; 1 мА)	$\leq 12,5$ (6 В)	—	—	—	TO1
≤ 14 (18 В)	150 (6 В; 1 мА)	12 (6 В)	—	10 (1 кГц)	—	TO1
14	70 (6 В; 1 мА)	12	—	7	—	TO19
—	35 (0,5 В; 0,25 мА)	60	—	—	—	R19
—	55 (0,5 В; 0,25 мА)	60	—	—	—	R19
3	80 (0,5 В; 0,25 мА)	60	—	—	—	R19
1,5	75 (2 В; 3,8 мА)	—	—	—	—	R19
6	80 (6 В; 1 мА)	10	—	—	—	TO1
10	50 (6 В; 1 мА)	10	—	—	—	R18
10	80 (6 В; 1 мА)	10	—	—	—	R18
10	48 (9 В; 1 мА)	9,5	—	—	—	TO40
10	48 (9 В; 1 мА)	9,5	—	—	—	TO1
≤ 15 (6 В)	18—224 (6 В; 2 мА)	—	—	≤ 25 (1 кГц)	—	A1
≤ 15 (6 В)	18—224 (6 В; 2 мА)	—	—	≤ 10 (1 кГц)	—	A1
≤ 3 (5 В)	20—100 (5 В; 0,5 мА)	—	—	≤ 10 (1 кГц)	—	2
≤ 3 (5 В)	20—170 (5 В; 0,5 мА)	—	—	≤ 5 (1 кГц)	—	2
≤ 3 (5 В)	20—200 (5 В; 0,5 мА)	—	—	≤ 5 (1 кГц)	—	2
12	65 (4 В; 0,5 мА)	36	—	—	—	TO40
12	65 (4 В; 0,5 мА)	36	—	6	—	TO1
0,8 (12 В)	35—250 (4 В; 0,3 мА)	—	—	≤ 5	—	R60
≤ 40 (20 В)	20—80 (1 В; 25 мА)	—	—	—	—	3а
≤ 40 (30 В)	20—80 (1 В; 25 мА)	—	—	—	—	3а
≤ 40 (20 В)	60—150 (1 В; 25 мА)	—	—	—	—	3а
≤ 40 (30 В)	60—150 (1 В; 25 мА)	—	—	—	—	3а
≤ 40 (20 В)	125—250 (1 В; 25 мА)	—	—	—	—	3а
7	70 (12 В; 2 мА)	—	—	—	—	TO1
10	65 (4 В; 0,5 мА)	40	—	8	—	TO1
10	19 (5 В; 1 мА)	40	—	—	—	R31
3	60 (5 В; 0,3 мА)	14	—	—	—	R9
—	25—80 (2 В; 3 мА)	—	≤ 10	—	—	TO18
14 (20 В)	25—80 (2 В; 3 мА)	—	≤ 10	—	—	TO18
≤ 125	100 (6 В; 1 мА)	—	—	—	—	TO22
10	≥ 250 (0,5 В; 10 мА)	—	—	—	—	TO23
10	100 (5 В; 1 мА)	—	—	—	—	TO23
15	90 (6 В; 2 мА)	—	—	—	—	R60
12	45 (6 В; 1 мА)	—	—	—	—	R18

1	2	3	4	5	6	7
2SB262	Ge, p-n-p, C	65	3	20	2,5	30
МГТ108А	Ge, p-n-p, C	75	$\geq 0,5^*$	10 (18 ИМП.)	5	50
МГТ108Б	Ge, p-n-p, C	75	$\geq 1^*$	10 (18 ИМП.)	5	50
МГТ108В	Ge, p-n-p, C	75	$\geq 1^*$	10 (18 ИМП.)	5	50
МГТ108Г	Ge, p-n-p, C	75	$\geq 1^*$	10 (18 ИМП.)	5	50
МГТ108Д	Ge, p-n-p, C	75	$\geq 1^*$	10 (18 ИМП.)	5	50
NKT11	Ge, p-n-p, C	75	$\geq 1^*$	18	12	100
AC150	Ge, p-n-p, C	60	1*	30	12	50
NKT73	Ge, p-n-p, C	75	$\geq 2,5$	15	10	10
2SB443A	Ge, p-n-p, C	100	2,5	18	12	10
2SB497	Ge, p-n-p, C	65	3	20	2,5	30
2SB335	Ge, p-n-p, C	83	1	20	10	60
2SB336	Ge, p-n-p, C	83	1	20	10	60
2SB400	Ge, p-n-p, C	100	1*	20	—	40
2N205	Ge, p-n-p, C	75	0,78	30	12	50
2N207	Ge, p-n-p, C	85	2	12	12	20
2N130	Ge, p-n-p, C	85	0,7	25	12	10
2SB57	Ge, p-n-p, C	100	1*,0	30	10	100
2N131	Ge, p-n-p, C	85	0,8	25	12	50
2N131A	Ge, p-n-p, C	100	0,8	30*	12	100
2N132	Ge, p-n-p, C	85	1	30*	12	100
2N133	Ge, p-n-p, C	85	0,8	30*	12	100
2N132A	Ge, p-n-p, C	100	1	24*	12	100
2N265	Ge, p-n-p, C	75	1,5*	25	—	50
2N207A	Ge, p-n-p, C	85	2	12	12	20
2N207B	Ge, p-n-p, C	85	2	12	12	20
2SB443B	Ge, p-n-p, C	100	3,5*	18	12	10
2SB444A	Ge, p-n-p, C	100	2,5*	18	12	10
2SB444B	Ge, p-n-p, C	100	3,5*	18	12	10
AC170	Ge, p-n-p, C	90	1,2*	32	10	100
AC171	Ge, p-n-p, C	90	1,2*	32	10	100
GC116	Ge, p-n-p, C	115	0,75	20	10	150
GC117	Ge, p-n-p, C	115	$\geq 1,2$	20	10	150
GC118	Ge, p-n-p, C	115	$\geq 1,2$	20	10	150
TG2	Ge, p-n-p, C	75	$\geq 0,6$	15	10	10
TG3 A	Ge, p-n-p, C	75	≥ 1	15	10	10
TG3 F	Ge, p-n-p, C	75	≥ 2	15	10	10
TG4	Ge, p-n-p, C	75	$\geq 0,6$	15	10	10
2SB47	Ge, p-n-p, C	80	1	25	12	50
2SB54	Ge, p-n-p, C	80	1	25	12	50
МП139	Ge, p-n-p, C	150	$\geq 0,5^*$	15*	5	20 (150*)
МП139Б	Ge, p-n-p, C	150	$\geq 0,5^*$	15*	5	20 (150*)
МП140	Ge, p-n-p, C	150	$\geq 1^*$	15*	5	20 (150*)
МП140А	Ge, p-n-p, C	150	$\geq 1^*$	30*	5	20 (150*)
МП141	Ge, p-n-p, C	150	$\geq 1^*$	15*	5	20 (150*)
МП141А	Ge, p-n-p, C	150	$\geq 1^*$	15*	5	20 (150*)
2N331	Ge, p-n-p, C	200	$\geq 0,4^*$	30	12	200
OC70	Ge, p-n-p, C	125	0,45*	30	—	10
OC1070	Ge, p-n-p, C	125	0,015**	32	10	10 (50*)
OC1071	Ge, p-n-p, C	125	0,010**	32	10	10 (50*)
OC1072	Ge, p-n-p, C	125	0,35*	32	10	50 (125*)
OC1075	Ge, p-n-p, C	125	0,35	32	10	10 (50*)
OC76	Ge, p-n-p, C	125	0,35	32	10	125
OC71	Ge, p-n-p, C	125	0,5*	30	—	10
2SB170	Ge, p-n-p, C	125	0,3	30	—	10
SFT351	Ge, p-n-p, C	200	$\geq 0,6$	32	20	150
SFT352	Ge, p-n-p, C	200	$\geq 0,8$	32	20	150
SFT353	Ge, p-n-p, C	200	≥ 1	32	20	150
SFT303	Ge, p-n-p, C	150	$\geq 1,5$	18	12	100
AC540	Ge, p-n-p, C	150	0,5	24	—	10 (50*)

Продолжение

8	9	10	11	12	13	14
12	90 (6 B; 1 mA)	—	—	—	—	R18
>10 (5 B)	20—50 (5 B; 1 mA)	—	—	—	≤5000	4
>10 (5 B)	35—80 (5 B; 1 mA)	—	—	—	≤5000	4
>10 (5 B)	60—130 (5 B; 1 mA)	—	—	—	≤5000	4
>10 (5 B)	110—250 (5 B; 1 mA)	—	—	—	≤5000	4
>10 (5 B)	30—120 (5 B; 1 mA)	—	—	≤6 (1 кГц)	≤5000	4
5	≥90 (4,5 B; 1 mA)	—	—	—	≤5000	4
5,5 (30 B)	55—140 (6 B; 2 mA)	—	—	≤5	—	TO1
5	≥40 (4,5 B; 1 mA)	11	—	—	—	TO1
10	110 (6 B; 1 mA)	—	—	—	—	TO1
6	90 (6 B; 1 mA)	—	—	—	—	R18
10	70 (6 B; 1 mA)	—	—	—	—	R18
10	80 (1 B; 60 mA)	—	—	—	—	R18
15	100 (6 B; 1 mA)	—	—	—	—	TO1
10	47 (5 B; 1 mA)	35	—	—	—	TO1
15	100 (5 B; 1 mA)	40	—	—	—	TO5
12	24 (6 B; 1 mA)	40	—	—	—	T05
15	65 (6 B; 1 mA)	—	—	—	—	R55
12	50 (6 B; 1 mA)	—	—	—	—	T05
15	45 (6 B; 1 mA)	—	—	—	—	OV16
15	90 (6 B; 1 mA)	—	—	—	—	T05
15	50 (6 B; 1 mA)	—	—	—	—	T05
15	90 (6 B; 1 mA)	—	—	—	—	OV16
16	115 (5 B; 1 mA)	40	—	—	—	R32
15	100 (5 B; 1 mA)	40	—	—	—	T05
10	100 (5 B; 1 mA)	40	—	—	—	T05
10	190 (6 B; 1 mA)	—	—	—	—	TO1
7	120 (6 B; 1 mA)	—	—	—	—	TO1
7	190 (6 B; 2 mA)	—	—	—	—	TO1
10	125 (6 B; 2 mA)	21	—	—	—	R60
10	200 (6 B; 2 mA)	21	—	—	—	R60
≤18 (15 B)	18—224 (6 B; 2 mA)	—	—	≤20 (1 кГц)	—	A1
≤18 (15 B)	45—224 (6 B; 2 mA)	—	—	≤10 (1 кГц)	—	A1
≤18 (15 B)	45—224 (6 B; 2 mA)	—	—	≤5 (1 кГц)	—	A1
≤15 (6 B)	20—80 (2 B; 3 mA)	—	—	≤15	—	TO18
≤15 (6 B)	75—130 (2 B; 3 mA)	—	—	≤8	—	TO18
≤10 (6 B)	80—250 (6 B; 1 mA)	—	—	≤7	—	TO18
≤10 (6 B)	20—50 (2 B; 0,5 mA)	35 (6 B)	—	≤11	—	TO18
≤14 (25 B)	60—250 (1,5 B; 0,5 mA)	35 (6 B)	—	—	≤5 (1 кГц)	TO1
≤14 (25 B)	80—300 (6 B; 1 mA)	35 (6 B)	—	—	10 (1 кГц)	TO1
≤15 (5 B)	≥12 (5 B; 1 mA)	—	≤50 (5 B)	—	—	2
≤15 (5 B)	20—60 (5 B; 1 mA)	—	≤50 (5 B)	—	≤12 (1 кГц)	2
≤15 (5 B)	20—40 (5 B; 1 mA)	—	≤50 (5 B)	—	—	2
≤15 (5 B)	20—40 (5 B; 1 mA)	—	≤50 (5 B)	—	—	2
≤15 (5 B)	30—60 (5 B; 1 mA)	—	≤50 (5 B)	—	—	2
≤15 (5 B)	50—100 (5 B; 1 mA)	—	≤50 (5 B)	—	—	2
≤10 (30 B)	30—70 (6 B; 1 mA)	—	≤50 (6 B)	—	≤20 (1 кГц)	TO1
≤5	30 (2 B; 0,5 mA)	—	—	—	—	R9
≤12 (4,5 B)	20—40 (2 B; 0,5 mA)	—	—	—	≤15 (1 кГц)	TO1
≤12 (4,5 B)	30—75 (2 B; 4 mA)	—	—	—	≤15 (1 кГц)	TO1
≤10 (10 B)	45—120 (2 B; 10 mA)	—	—	—	≤15 (1 кГц)	TO1
≤12 (4,5 B)	65—130 (2 B; 3 mA)	—	—	—	≤15 (1 кГц)	TO1
10	45 (5,4 B; 10 mA)	—	—	—	—	R8
5	47 (2 B; 3 mA)	—	—	—	—	R9
12	30 (2 B; 0,5 mA)	—	—	—	—	TO1
≤15 (10 B)	20—44 (6 B; 1 mA)	40 (6 B)	—	—	≤8 (1 кГц)	TO1
≤15 (10 B)	40—66 (6 B; 1 mA)	40 (6 B)	—	—	≤8 (1 кГц)	TO1
≤15 (10 B)	60—250 (6 B; 2 mA)	40 (6 B)	—	—	≤8 (1 кГц)	TO1
≤10 (18 B)	15—70 (6 B; 1 mA)	≤150 (6 B)	—	—	6 (1 кГц)	TO1
≤20 (24 B)	30—70 (3 B; 2 mA)	—	—	—	≤10 (1 кГц)	TO58

1	2	3	4	5	6	7
AC541	Ge, p-n-p, C	150	0,5	24	—	10 (50*)
AC542	Ge, p-n-p, C	150	0,5	24	—	10 (50*)
EFT306	Ge, p-n-p, C	150	2,5	15	9	100
EFT307	Ge, p-n-p, C	150	5,7	15	9	100
2N283	Ge, p-n-p, C	125	0,5*	32	—	10
OC75	Ge, p-n-p, C	125	0,75*	30	—	50
2SB171	Ge, p-n-p, C	125	0,5*	30	—	10
2SB173	Ge, p-n-p, C	125	0,5*	20	—	10
2SB175	Ge, p-n-p, C	125	0,6*	30	—	10
2N368	Ge, p-n-p, C	150	>0,4*	30	10	75
2N237	Ge, p-n-p, C	150	0,5*	45	—	20
2N405	Ge, p-n-p, C	150	0,65*	20	2,5	35
2N406	Ge, p-n-p, C	150	0,65*	20	2,5	35
2N104	Ge, p-n-p, C	150	0,7*	30	12	50
2N215	Ge, p-n-p, C	150	0,7*	30	12	50
2SB120	Ge, p-n-p, C	150	0,7*	32	2,5	20
2SB32	Ge, p-n-p, C	150	0,8*	20	2,5	50
2N45	Ge, p-n-p, C	150	1*	45	15	50
2N45A	Ge, p-n-p, C	150	1*	45	5	10
2N273	Ge, p-n-p, C	150	1*	20	10	10
2SB33	Ge, p-n-p, C	150	1*	20	2,5	50
2SB37	Ge, p-n-p, C	150	1*	30	12	50
2SB60	Ge, p-n-p, C	150	1*	20	2,5	50
2SB61	Ge, p-n-p, C	150	1*	30	12	50
2N369	Ge, p-n-p, C	150	1,3*	30	10	50
2N44A	Ge, p-n-p, C	155	1*	25**	—	50
2N2428	Ge, p-n-p, C	165	>1,2*	32	10	30
2SB439	Ge, p-n-p, C	150	2*	30	12	150
2SB440	Ge, p-n-p, C	150	2*	30	12	150
2N1413	Ge, p-n-p, C	200	>0,8*	35	10	200*
2N1414	Ge, p-n-p, C	200	>1*	35	10	200*
2N1415	Ge, p-n-p, C	200	>1,3*	35	10	200*
МП20А	Ge, p-n-p, C	150	>2*	30	30	300*
МП20Б	Ge, p-n-p, C	150	>1,5*	30	30	300*
МП21В	Ge, p-n-p, C	150	>1,5*	40	40	300*
МП21Г	Ge, p-n-p, C	150	>1*	60	40	300*
МП21Д	Ge, p-n-p, C	150	>1*	50	40	300*
МП21Е	Ge, p-n-p, C	150	>0,7*	70	40	300*
2N59	Ge, p-n-p, C	180	1,8*	25	20	200
2N59A	Ge, p-n-p, C	180	1,8*	40	20	200
2N59B	Ge, p-n-p, C	180	1,8*	50	20	200
2N59C	Ge, p-n-p, C	180	1,8*	60	20	200
2N60	Ge, p-n-p, C	180	1,5*	25	20	200
2N60A	Ge, p-n-p, C	180	1,5*	40	20	200
2N60B	Ge, p-n-p, C	180	1,5*	50	20	200
2N60C	Ge, p-n-p, C	180	1,5*	60	20	200
2N61	Ge, p-n-p, C	180	1*	25	20	200
2N61A	Ge, p-n-p, C	180	1*	40	20	200
2N61B	Ge, p-n-p, C	180	1*	50	20	200
2N61C	Ge, p-n-p, C	180	1*	60	20	200
2N65	Ge, p-n-p, C	125	1	20	16	100
2N109	Ge, p-n-p, C	165	1	35	12	150
AC125	Ge, p-n-p, C	210 (500*)	>1,3	32	10	100
EFT331	Ge, p-n-p, C	130 (45°C)	1,3	32	12	250
EFT332	Ge, p-n-p, C	130 (45°C)	1,6	32	12	250
EFT333	Ge, p-n-p, C	130 (45°C)	2	32	12	250
EFT341	Ge, p-n-p, C	130 (45°C)	1,3	48	20	250
EFT342	Ge, p-n-p, C	130 (45°C)	1,6	48	20	250
EFT343	Ge, p-n-p, C	130 (45°C)	2	48	20	250
GC507	Ge, p-n-p, C	125	>0,3	32	10	125 (250*)

Продолжение

8	9	10	11	12	13	14
≤ 20 (24 B)	50—100 (3 B; 2 mA)	—	—	≤ 10 (1 кГц)	—	TO58
≤ 20 (24 B)	80—200 (3 B; 2 mA)	—	—	≤ 10 (1 кГц)	—	TO58
≤ 15 (15 B)	15—70 (6 B; 1 mA)	30	—	—	—	TO1
≤ 15 (15 B)	25—120 (6 B; 1 mA)	30	—	—	—	TO1
4,5	40 (10 B; 0,5 mA)	—	—	—	—	R8
5	90 (2 B; 3 mA)	—	—	—	—	R9
12	50 (2 B; 3 mA)	—	—	—	—	TO1
12	50 (6 B; 1 mA)	—	—	—	—	TO1
12	90 (2 B; 3 mA)	—	—	—	—	TO1
15	49 (5 B; 1 mA)	—	—	—	—	TO5
10	50 (6 B; 1 mA)	—	—	—	—	TO22
14	35 (6 B; 1 mA)	40	—	—	—	TO40
14	35 (6 B; 1 mA)	40	—	—	—	TO1
10	44 (6 B; 1 mA)	40	—	—	—	TO40
10	44 (6 B; 1 mA)	40	—	—	—	TO1
6,5	70 (12 B; 2 mA)	—	—	—	—	TO1
14	40 (6 B; 1 mA)	—	—	—	—	TO1
10	12 (5 B; 1 mA)	—	—	—	—	TO29
15	15 (5 B; 1 mA)	40	—	—	—	TO29
10	20 (0,25 B)	40	—	—	—	TO5
14	80 (6 B; 1 mA)	—	—	—	—	TO1
14	80 (6 B; 1 mA)	45	—	—	—	TO1
14	65 (6 B; 1 mA)	—	—	—	—	TO1
10	85 (6 B; 1 mA)	40	—	—	—	TO1
—	95 (5 B; 1 mA)	—	—	—	—	OV9
8	31 (5 B; 1 mA)	40	—	—	—	R32
10	120 (5 B; 2 mA)	—	—	—	—	TO1
≤ 14 (12 B)	70—270 (6 B; 1 mA)	—	—	7 (1 кГц)	—	TO1
≤ 14 (12 B)	70—270 (6 B; 1 mA)	—	—	5 (1 кГц)	—	TO1
≤ 12 (30 B)	20—41 (5 B; 1 mA)	≤ 40 (5 B)	≤ 35	6 (1 кГц)	—	TO5
≤ 12 (30 B)	30—64 (5 B; 1 mA)	≤ 40 (5 B)	≤ 37	6 (1 кГц)	—	TO5
≤ 12 (30 B)	44—88 (5 B; 1 mA)	≤ 40 (5 B)	≤ 40	6 (1 кГц)	—	TO5
≤ 50 (30 B)	50—150 (5 B; 25 mA)	—	≤ 1	—	—	2
≤ 50 (30 B)	80—200 (5 B; 25 mA)	—	≤ 1	—	—	2
≤ 50 (40 B)	20—100 (5 B; 25 mA)	—	≤ 1	—	—	2
≤ 50 (60 B)	20—80 (5 B; 25 mA)	—	≤ 1	—	—	2
≤ 50 (50 B)	60—200 (5 B; 25 mA)	—	≤ 1	—	—	2
≤ 50 (70 B)	30—150 (5 B; 25 mA)	—	≤ 1	—	—	2
15 (20 B)	90* (100 mA)	40	—	—	—	TO5
15 (20 B)	90* (100 mA)	40	—	—	—	TO5
15 (20 B)	90* (100 mA)	40	—	—	—	TO5
15 (20 B)	90* (100 mA)	40	—	—	—	TO5
15 (20 B)	65* (100 mA)	40	—	—	—	TO5
15 (20 B)	65* (100 mA)	40	—	—	—	TO5
15 (20 B)	65* (100 mA)	40	—	—	—	TO5
15 (20 B)	65* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
15 (20 B)	45* (100 mA)	40	—	—	—	TO5
10	75 (5 B; 1 mA)	35	—	—	—	OV4
14 (25 B)	65 (1 B; 50 mA)	60	—	—	—	TO40
≤ 10 (10 B)	80—170 (5 B; 2 mA)	≤ 50 (5 B)	—	≤ 10	—	TO1
≤ 15 (32 B)	17—45*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (32 B)	35—65*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (32 B)	55—200*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (48 B)	17—45*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (48 B)	35—65*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (48 B)	55—200*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 10 (6 B)	45—120*(6 B; 10 mA)	—	$\leq 1,8$	≤ 15 (1 кГц)	—	A6

1	2	3	4	5	6	7
GC508	Ge, <i>p-n-p</i> , C	125	$\geq 0,3$	32	10	125 (250*)
GC509	Ge, <i>p-n-p</i> , C	125	$\geq 0,3$	60	10	125 (250*)
GC515	Ge, <i>p-n-p</i> , C	125	0,3*	32	10	125 (250*)
GC516	Ge, <i>p-n-p</i> , C	125	0,3*	32	10	125 (250*)
GC517	Ge, <i>p-n-p</i> , C	125	0,4*	32	10	125 (250*)
GC518	Ge, <i>p-n-p</i> , C	125	0,7*	32	10	125 (250*)
GC519	Ge, <i>p-n-p</i> , C	125	0,7*	32	10	125 (250*)
GCN55	Ge, <i>p-n-p</i> , C	125	0,3	32	10	125 (250*)
GCN56	Ge, <i>p-n-p</i> , C	125	0,3	60	10	125 (250*)
SFT223	Ge, <i>p-n-p</i> , C	225	3,2	30	15	250
AC182	Ge, <i>p-n-p</i> , C	200	4	32	10	150
SFT251	Ge, <i>p-n-p</i> , C	225	1,3*	30	15	150
SFT252	Ge, <i>p-n-p</i> , C	225	2*	30	15	150
SFT253	Ge, <i>p-n-p</i> , C	225	3	30	15	150
GC121	Ge, <i>p-n-p</i> , C	120	0,012**	25	10	250
GC122	Ge, <i>p-n-p</i> , C	120	0,012**	35	15	250
GC123	Ge, <i>p-n-p</i> , C	120	0,012**	70	15	250
TG50	Ge, <i>p-n-p</i> , C	175	$\geq 0,5$	30	10	150
TG51	Ge, <i>p-n-p</i> , C	175	$\geq 0,5$	60	10	150
TG52	Ge, <i>p-n-p</i> , C	175	$\geq 0,5$	30	10	150
TG53	Ge, <i>p-n-p</i> , C	175	$\geq 0,5$	15	10	150
TG55	Ge, <i>p-n-p</i> , C	175	$\geq 0,5$	30	10	150
2N653	Ge, <i>p-n-p</i> , C	200	1,5*	30	25	250
2N654	Ge, <i>p-n-p</i> , C	200	2*	30	25	250
2N655	Ge, <i>p-n-p</i> , C	200	2,5*	30	25	250
2N1175	Ge, <i>p-n-p</i> , C	200	$\geq 1,5^*$	30	25	250
2N1924	Ge, <i>p-n-p</i> , C	225	$\geq 1^*$	60	25	500*
2N1925	Ge, <i>p-n-p</i> , C	225	$\geq 1,3^*$	60	25	500*
2N1926	Ge, <i>p-n-p</i> , C	225	$\geq 1,5^*$	60	25	500*
AC121	Ge, <i>p-n-p</i> , C	300	1,5	20	10	300
OC1074	Ge, <i>p-n-p</i> , C	125	1,5	20	6	300
OC1077	Ge, <i>p-n-p</i> , C	125	$\geq 0,35^*$	60	10	125 (250*)
OC1079	Ge, <i>p-n-p</i> , C	125	$\geq 0,008^{**}$	26*	6	300 (600*)
SFT321	Ge, <i>p-n-p</i> , C	200	$\geq 0,6$	32	20	250
SFT322	Ge, <i>p-n-p</i> , C	200	$\geq 0,8$	32	20	250
SFT323	Ge, <i>p-n-p</i> , C	200	≥ 1	32	20	250
T241	Ge, <i>p-n-p</i> , C	150	$\geq 0,7$	32	15	250
T242	Ge, <i>p-n-p</i> , C	150	$\geq 0,7$	45	20	250
T243	Ge, <i>p-n-p</i> , C	150	$\geq 0,7$	60	25	250
2N1303	Ge, <i>p-n-p</i> , C	150	≥ 3	30	25	300*
AC126	Ge, <i>p-n-p</i> , C	500*	$\geq 1,7$	32	10	100 (200*)
AC132	Ge, <i>p-n-p</i> , C	500*	2	32	10	100 (200*)
EFT311	Ge, <i>p-n-p</i> , C	130 (45° C)	1,3	18	9	250
EFT312	Ge, <i>p-n-p</i> , C	130 (45° C)	1,6	18	9	250
EFT313	Ge, <i>p-n-p</i> , C	130 (45° C)	2	18	9	250
EFT321	Ge, <i>p-n-p</i> , C	130 (45° C)	—	24	12	250
EFT322	Ge, <i>p-n-p</i> , C	130 (45° C)	—	24	12	250
EFT323	Ge, <i>p-n-p</i> , C	130 (45° C)	—	24	12	250
МП25	Ge, <i>p-n-p</i> , C	200	$\geq 0,2^*$	40	40	300*
МП25А	Ge, <i>p-n-p</i> , C	200	$\geq 0,2^*$	40	40	400*
МП25Б	Ge, <i>p-n-p</i> , C	200	$\geq 0,5^*$	40	40	400*
МП26	Ge, <i>p-n-p</i> , C	200	$\geq 0,2^*$	70	70	300*
МП26А	Ge, <i>p-n-p</i> , C	200	$\geq 0,2^*$	70	70	400*
МП26Б	Ge, <i>p-n-p</i> , C	200	$\geq 0,5^*$	70	70	400*
2N43	Ge, <i>p-n-p</i> , C	240	$\geq 0,5^*$	45	5	300*
2N44	Ge, <i>p-n-p</i> , C	240	$\geq 0,5^*$	45	5	300*
AC116	Ge, <i>p-n-p</i> , C	225 (45 °C)	0,015**	30	12	200
ACY24	Ge, <i>p-n-p</i> , C	530*	—	70	30	300
OC77	Ge, <i>p-n-p</i> , C	125	$\geq 0,35^*$	60	10	250

Продолжение

8	9	10	11	12	13	14
≤ 10 (6 B)	65—220*(6 B; 10 mA)	—	$\leq 1,8$	—	—	A6
≤ 10 (6 B)	$\geq 45^*$ (6 B; 10 mA)	—	$\leq 1,8$	—	—	A6
≤ 10 (6 B)	20—40 (6 B; 1 mA)	—	$\leq 2,5$	≤ 12 (1 кГц)	—	A6
≤ 10 (6 B)	30—60 (6 B; 1 mA)	—	$\leq 2,5$	≤ 12 (1 кГц)	—	A6
≤ 10 (6 B)	50—100 (6 B; 1 mA)	—	$\leq 1,8$	≤ 12 (1 кГц)	—	A6
≤ 10 (6 B)	75—150 (6 B; 1 mA)	—	$\leq 1,8$	≤ 12 (1 кГц)	—	A6
≤ 10 (6 B)	125—250 (6 B; 1 mA)	—	$\leq 1,8$	≤ 12 (1 кГц)	—	A6
≤ 10 (6 B)	50—250*(6 B; 10 mA)	—	≤ 2	—	—	A6
≤ 10 (6 B)	50—250*(6 B; 10 mA)	—	≤ 2	—	—	A6
≤ 15 (30 B)	60—160*(1 B; 100 mA)	25 (6 B)	$\leq 3,5$	—	—	TO5
15	110 (6 B; 1 mA)	—	—	—	—	R134
15	30 (6 B; 1 mA)	25 (6 B)	—	≤ 15 (1 кГц)	—	T05
15	50 (6 B; 1 mA)	25 (6 B)	—	≤ 15 (1 кГц)	—	T05
15	80 (6 B; 1 mA)	25 (6 B)	—	≤ 15 (1 кГц)	—	T05
≤ 18 (15 B)	$\geq 28^*$ (0,5 B; 100 mA)	—	—	≤ 20 (1 кГц)	—	A2
≤ 18 (15 B)	$\geq 18^*$ (0,5 B; 100 mA)	—	—	—	—	A2
≤ 18 (15 B)	$\geq 18^*$ (0,5 B; 100 mA)	—	—	—	—	A2
≤ 20 (12 B)	30—120*(6 B; 10 mA)	—	$\leq 1,5$	—	—	TO5
≤ 20 (12 B)	15—120*(0,7 B; 250mA)	—	—	—	—	TO5
≤ 20 (12 B)	15—120*(0,7 B; 250mA)	—	—	—	—	TO5
≤ 20 (12 B)	30—120 (6 B; 10 mA)	—	$\leq 1,5$	—	—	TO5
≤ 20 (12 B)	30—120 (6 B; 10 mA)	—	$\leq 1,5$	—	—	TO5
≤ 15 (25 B)	30—70 (6 B; 1 mA)	10 (6 B)	—	10 (1 кГц)	—	TO5
≤ 15 (25 B)	50—125 (6 B; 1 mA)	10 (6 B)	—	10 (1 кГц)	—	TO5
≤ 15 (25 B)	100—250 (6 B; 1 mA)	10 (6 B)	—	10 (1 кГц)	—	TO5
≤ 15 (25 B)	70—140*(1 B; 20 mA)	10 (6 B)	—	—	—	TO5
≤ 10 (45 B)	34—65*(1 B; 20 mA)	≤ 30 (5 B)	$\leq 5,5$	—	—	TO5
≤ 10 (45 B)	53—90*(1 B; 20 mA)	≤ 30 (5 B)	$\leq 5,5$	—	—	TO5
≤ 10 (45 B)	72—121*(1 B; 20 mA)	≤ 30 (5 B)	$\leq 5,5$	—	—	TO5
≤ 25 (20 B)	30—250*(0,5 B;	≤ 40 (5 B)	≤ 3	—	—	TO1
	100 mA)					
≤ 20 (9 B)	60*(6 B; 5 mA)	—	≤ 2	≤ 30 (1 кГц)	—	TO1
≤ 10 (10 B)	$\geq 45^*$ (5,4; 10 mA)	—	≤ 3	—	—	TO1
≤ 20 (12 B)	35—110*(6 B; 50 mA)	—	≤ 2	≤ 15 (1 кГц)	—	TO1
≤ 15 (10 B)	20—44*(1 B; 100 mA)	40 (6 B)	—	—	—	TO1
≤ 15 (10 B)	40—66*(1 B; 100 mA)	40 (6 B)	—	—	—	TO1
≤ 15 (10 B)	60—150*(1 B; 100 mA)	40 (6 B)	—	—	—	TO1
≤ 15 (32 B)	20—110*(1 B; 100 mA)	25 (6 B)	—	—	—	TO1
≤ 15 (45 B)	20—110*(1 B; 100 mA)	25 (6 B)	—	—	—	TO1
≤ 15 (60 B)	20—110*(1 B; 100 mA)	25 (6 B)	—	—	—	TO1
—	$\geq 10^*$ (0,35 B; 200 mA)	—	—	—	—	TO39
≤ 200 (32 B)	≥ 100 (5 B; 2 mA)	—	—	—	—	TO1
	135*(20 mA)	—	—	—	—	TO1
≤ 15 (18 B)	17—45*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (18 B)	35—65*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (18 B)	55—200*(1 B; 100 mA)	32 (6 B)	$\leq 3,5$	—	—	TO1
≤ 15 (24 B)	17—45*(1 B; 100 mA)	32 (6 B)	—	—	—	TO1
≤ 15 (24 B)	35—65*(1 B; 100 mA)	32 (6 B)	—	—	—	TO1
≤ 15 (24 B)	55—200*(1 B; 100 mA)	32 (6 B)	—	—	—	TO1
≤ 75 (40 B)	13—25 (20 B; 2,5 mA)	≤ 20 (20 B)	$\leq 2,2$	—	$t_{\text{ПК}} \leq 1500^*$	2
≤ 75 (40 B)	20—50 (20 B; 2,5 mA)	≤ 20 (20 B)	≤ 2	—	$t_{\text{ПК}} \leq 1500^*$	2
≤ 75 (40 B)	30—80 (20 B; 2,5 mA)	≤ 20 (20 B)	$\leq 1,8$	—	$t_{\text{ПК}} \leq 1500^*$	2
≤ 75 (70 B)	13—25 (35 B; 1,5 mA)	≤ 15 (35 B)	$\leq 2,2$	—	$t_{\text{ПК}} \leq 1500^*$	2
≤ 75 (70 B)	20—50 (35 B; 1,5 mA)	≤ 15 (35 B)	≤ 2	—	$t_{\text{ПК}} \leq 1500^*$	2
≤ 75 (70 B)	30—80 (35 B; 1,5 mA)	≤ 15 (35 B)	$\leq 1,8$	—	$t_{\text{ПК}} \leq 1500^*$	2
16 (45 B)	≥ 30 (5 B; 1 mA)	60 (5 B)	—	≤ 24 (1 кГц)	—	R32
16 (45 B)	25 (5 B; 1 mA)	60 (5 B)	—	≤ 24 (1 кГц)	—	R32
≤ 8 (6 B)	55—140 (6 B; 4 mA)	—	—	—	—	X9
≤ 12 (25B)	50*(5 B; 30 mA)	—	—	—	—	TO18
10	≥ 45 (5,4 B; 10 mA)	—	—	—	—	R8

1	2	3	4	5	6	7
2SB172	Ge, <i>p-n-p</i> , C	125	1*	32	10	125
2SB176	Ge, <i>p-n-p</i> , C	125	1,4*	32	10	125
MA909	Ge, <i>p-n-p</i> , C	150	0,6*	75	35	200
MA910	Ge, <i>p-n-p</i> , C	150	0,6*	90	45	200
2SB136	Ge, <i>p-n-p</i> , C	150	0,8*	25	12	150
2SB136A	Ge, <i>p-n-p</i> , C	150	0,8*	60	12	300
2N186A	Ge, <i>p-n-p</i> , C	200	0,8*	25	5	200
2N189	Ge, <i>p-n-p</i> , C	200	0,8*	25	5	200
2N190	Ge, <i>p-n-p</i> , C	200	1*	25*	—	200
2N191	Ge, <i>p-n-p</i> , C	200	1,2*	25*	—	200
GC112	Ge, <i>p-n-p</i> , C	120	$\geq 0,3$	80*	10	150
GS112	Ge, <i>p-n-p</i> , C	120	—	20	10	200
2SB263	Ge, <i>p-n-p</i> , C	200	1,5*	20	2,5	150
2SB201	Ge, <i>p-n-p</i> , C	160	$\geq 0,2*$	35	12	140(400*)
2SB200	Ge, <i>p-n-p</i> , C	210	0,5*	32	12	400*
MΠ42	Ge, <i>p-n-p</i> , C	200	$\geq 2^*$	15	—	150*
MΠ42A	Ge, <i>p-n-p</i> , C	200	$\geq 1,5^*$	15	—	150*
MΠ42B	Ge, <i>p-n-p</i> , C	200	$\geq 1^*$	15	—	150*
ASY26	Ge, <i>p-n-p</i> , C	150	≥ 4	30	20	200(300*)
2N404	Ge, <i>p-n-p</i> , C	150	$\geq 4^*$	25	12	150
MM404	Ge, <i>p-n-p</i> , C	150	$\geq 4^*$	25	12	150
ASY70	Ge, <i>p-n-p</i> , C	250(900*)	1,5	32	16	300
OC1076	Ge, <i>p-n-p</i> , C	125	$\geq 0,35^*$	32	10	125(250*)
ASX11	Ge, <i>p-n-p</i> , C	150	$\geq 4,5^*$	30	18	250
ASX12	Ge, <i>p-n-p</i> , C	150	$\geq 5,5^*$	21	12	250
AF266	Ge, <i>p-n-p</i> , C	125	4,5	18	—	100
AT270	Ge, <i>p-n-p</i> , C	430*	4	40	—	250
AT275	Ge, <i>p-n-p</i> , C	430*	4	25	—	250
2N1353	Ge, <i>p-n-p</i> , C	200	3,5*	15	10	200
2N1354	Ge, <i>p-n-p</i> , C	200	4,5*	30	20	200
ASY31	Ge, <i>p-n-p</i> , C	125	$\geq 4^*$	25	20	200
2N123	Ge, <i>p-n-p</i> , C	150	8*	20	10	125
2N581	Ge, <i>p-n-p</i> , C	150	8*	18	10	100
2N1681	Ge, <i>p-n-p</i> , C	180	$\geq 5^*$	30	20	200
GS109	Ge, <i>p-n-p</i> , C	100	—	20	10	50
GS111	Ge, <i>p-n-p</i> , C	100	—	20	10	50
ASY33	Ge, <i>p-n-p</i> , C	150	≥ 2	30	20	200
ASY34	Ge, <i>p-n-p</i> , C	150	≥ 2	15	10	200
ASY35	Ge, <i>p-n-p</i> , C	150	≥ 2	30	20	200
2SB40	Ge, <i>p-n-p</i> , C	80	$\geq 0,7^*$	40	12	100
MΠ35	Ge, <i>n-p-n</i> , C	150	$\geq 0,5^*$	15	—	20 (150*)
MΠ36A	Ge, <i>n-p-n</i> , C	150	$\geq 1^*$	15	—	20 (150*)
MΠ37	Ge, <i>n-p-n</i> , C	150	$\geq 1^*$	15	—	20 (150*)
MΠ37A	Ge, <i>n-p-n</i> , C	150	$\geq 1^*$	30	—	20 (150*)
MΠ37B	Ge, <i>n-p-n</i> , C	150	$\geq 1^*$	30	—	20 (150*)
MΠ38	Ge, <i>n-p-n</i> , C	150	$\geq 2^*$	15	—	20 (150*)
MΠ38A	Ge, <i>n-p-n</i> , C	150	$\geq 2^*$	15	—	20 (150*)
2N193	Ge, <i>n-p-n</i> , C	150	3*	18	5	50

Продолжение

8	9	10	11	12	13	14
12	50* (1B; 100 mA)	—	—	—	—	TO1
12	100*(1B; 100 mA)	—	—	—	—	TO1
50	≥ 20 (0,25B; 5 mA)	—	—	—	—	TO5
50	≥ 20 (0,25B; 5 mA)	—	—	—	—	TO5
10	120* (1,5 B; 50 mA)	—	—	—	—	TO1
10	120* (1,5B; 50 mA)	—	—	—	—	TO1
16	24* (1B; 100mA)	40	—	—	—	R32
16	32 (5B; 1 mA)	60	—	—	—	R32
16	42 (5 B; 1 mA)	40	—	—	—	R32
16	67 (5B; 1 mA)	40	—	—	—	R32
≤ 18 (15 B)	≥ 10 (5 B; 2 mA)	—	—	≤ 25 (1 кГц)	$\leq 900^*$	A1
≤ 15 (15 B)	$\geq 28 \div 140^*(0,5B;$ 0,2 A)	—	≤ 1	≤ 25 (1 кГц)	$\leq 900^*$	A1
14 (12 B)	60 (6B; 1 mA)	—	—	20	—	TO1
≤ 30 (12 B)	40—300*(1B; 0,15A)	—	$\leq 1,3$	—	1400*	TO5
≤ 40 (12 B)	30—150*(1B; 0,15A)	—	—	—	—	R10
—	20—35* (1B; 10 mA)	—	≤ 20	—	$t_{\text{ПК}} \leq 2000^*$	2
—	30—50* (1B; 10mA)	—	≤ 20	—	$t_{\text{ПК}} \leq 1500^*$	2
—	45—100* (1 B; 10mA)	—	≤ 20	—	$t_{\text{ПК}} \leq 1000^*$	2
≤ 7 (30 B)	$\geq 30^*(1 B; 10 mA)$	≤ 16 (5 B)	≤ 10	—	$\leq 1350^*$	TO5
≤ 5 (12 B)	$\geq 40^*(0,25B; 20 mA)$	≤ 20 (6 B)	≤ 13	—	$t_{\text{ПК}} \leq 500^*$	TO5
≤ 5 (12 B)	135 (6B; 1 mA)	≤ 20 (6 B)	≤ 13	—	$t_{\text{ПК}} \leq 490^*$	TO18
≤ 10 (10 B)	47 (0,5 B; 2 mA)	≤ 40 (5 B)	≤ 3	—	$t_{\text{ПК}} \leq 2500^*$	TO1
≤ 10 (10 B)	$\geq 45^*(5,4 B; 10 mA)$	—	≤ 3	—	—	TO1
≤ 10 (30 B)	35—80*(0,5B;10mA)	—	≤ 32	—	$t_{\text{ПК}} \leq 260^*$	TO5
≤ 10 (24 B)	50—120*(0,5B; 10mA)	—	≤ 30	—	$t_{\text{ПК}} \leq 220^*$	TO5
≤ 3 (18 B)	50—150 (1,5 B; 10mA)	≤ 18 (6B)	—	—	—	TO18
≤ 20 (40 B)	25—130*(0,5 B; 10 mA)	≤ 20	—	—	—	TO1
≤ 20 (25 B)	25—130* (0,5 B; 10mA)	≤ 20	—	—	—	TO5
6	70* (1 B; 10 mA)	12	4	—	$t_{\text{ПК}} \leq 1580^*$	TO5
6	70* (1 B; 10 mA)	12	4	—	$t_{\text{ПК}} \leq 1660^*$	TO5
3	$\geq 30^*(20 mA)$	16	—	—	—	R9
6	75* (1 B; 10 mA)	14	≤ 20	—	900*	R32
20	30* (0,3 B; 20 mA)	12	—	—	—	TO5
25	75 (0,25 B; 10 mA)	≤ 20	10	—	950*	TO5
≤ 15 (15 B)	28—140* (0,5 B; 50 mA)	≤ 15 (6 B)	≤ 10	≤ 25 (1 кГц)	1,5* мкс	A1
≤ 15 (15 B)	28—140* (0,5 B; 50 mA)	≤ 15 (6 B)	—	—	1,5* мкс	A1
—	20—200* (1B;10 mA)	≤ 18 (5 B)	≤ 4	—	—	TO5
—	20—200* (1B; 10 mA)	≤ 35 (5 B)	≤ 5	—	$\leq 2700^{**}$	TO5
—	30—300*(1B; 10 mA)	≤ 20 (5 B)	≤ 4	—	$\leq 2500^{**}$	TO5
≤ 10 (12 B)	43—200*(1B; 0,1 A)	—	$\leq 2,5$	—	600*	TO1
≤ 30 (5 B)	13—125 (5 B; 1 mA)	—	—	≤ 10 (1 кГц)	$\leq 220^{***}$	2
≤ 30 (5 B)	15—45 (5 B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
≤ 30 (5 B)	15—30 (5 B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
≤ 30 (5 B)	15—30 (5 B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
≤ 30 (5 B)	25—50 (5 B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
≤ 30 (5 B)	25—55 (5 B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
≤ 30 (5 B)	45—100(5B; 1 mA)	—	—	$\leq 220^{***}$	$\leq 220^{***}$	2
50	7,5 (6B; 1 mA)	11	—	—	—	TO22

Условное обозначение	Материал, структура, технология	$P_K \text{ max}^*$ $P_{K,t} \text{ max},$ $P_{K,i} \text{ max},$ мВт	$f_{\text{гр}}^*$ f_{h216}^* f_{h219}^* МГц	$U_{\text{КБОпроб.}}^*$ $U_{\text{КЭРпроб.}}^*$ $U_{\text{КЭО проб.}}^*$ В	$U_{\text{ЭБ проб.}}^*$ В	$I_K \text{ max}^*$ $I_K^* \text{ и max}$ мА
1	2	3	4	5	6	7
2N444	Ge, n-p-n, C	100	$\geq 0,5^*$	15	10	50
2N444A	Ge, n-p-n, C	150	$\geq 0,5^*$	15	10	50
2N445	Ge, n-p-n, C	150	$\geq 2^*$	15	10	50
2N445A	Ge, n-p-n, C	150	$\geq 2^*$	30	10	50
2SD75	Ge, n-p-n, C	150	4*	25	12	100
2SD75A	Ge, n-p-n, C	150	4*	45	12	100
T321N	Ge, n-p-n, C	150	0,8*	32	12	150
T322N	Ge, n-p-n, C	150	$\geq 1^*$	32	12	150
T323N	Ge, n-p-n, C	150	$\geq 1,2^*$	32	12	150
AC183	Ge, n-p-n, C	250	≥ 2	32	20	150
GC525	Ge, n-p-n, C	130 (45° С)	1,2	15	10	125 (250*)
GC526	Ge, n-p-n, C	130 (45° С)	1,2	32	10	125 (250*)
GC527	Ge, n-p-n, C	130 (45° С)	1,4	32	10	125 (250*)
101NU70	Ge, n-p-n, C	30	$\geq 0,2^*$	10	—	100*
102NU70	Ge, n-p-n, C	50	$\geq 0,5^*$	20	—	100*
103NU70	Ge, n-p-n, C	50	$\geq 0,5^*$	20	—	100*
104NU70	Ge, n-p-n, C	50	$\geq 0,5^*$	20	—	100*
105NU70	Ge, n-p-n, C	125	$\geq 0,6^*$	32	10	10 (50*)
106NU70	Ge, n-p-n, C	125	$\geq 0,8^*$	32	10	10 (50*)
107NU70	Ge, n-p-n, C	125	$\geq 1^*$	32	10	10 (50*)
152NU70	Ge, n-p-n, C	50	$\geq 2,5^*$	10	5	5 (10*)
153NU70	Ge, n-p-n, C	50	$\geq 1^*$	10	5	5 (10*)
154NU70	Ge, n-p-n, C	50	$\geq 2,5^*$	10	5	5 (10*)
155NU70	Ge, n-p-n, C	83	$\geq 3^*$	15	8	10 (20*)
2SD31	Ge, n-p-n, C	125	—	25	10	125
2SD32	Ge, n-p-n, C	125	—	25	10	125
2SD33	Ge, n-p-n, C	150	2*	20	2,5	50
2SD37	Ge, n-p-n, C	150	2*	30	12	50
2SD195	Ge, n-p-n, C	150	$\geq 2,5^{**}$	20	15	50
2N94	Ge, p-n-p, C	150	≥ 2	20	—	100
П29	Ge, p-n-p, C	30 (60° С)	$\geq 5^*$	10*	12 (имп.)	100*
П29А	Ge, p-n-p, C	30 (60° С)	$\geq 5^*$	10*	12 (имп.)	100*
П30	Ge, p-n-p, C	30 (60° С)	$\geq 10^*$	10*	12 (имп.)	100*
OC41	Ge, p-n-p, C	83	4	16	—	50
OC42	Ge, p-n-p, C	83	7	16	—	50
AFY15	Ge, p-n-p, C	65	16	22	8	50
AF260	Ge, p-n-p, C	75	5	15	—	10
AF261	Ge, p-n-p, C	75	12	15	—	10
2SA50	Ge, p-n-p, C	55	9*	18	12	24
KT201А	Si, n-p-n, ПЭ	150 (90° С)	≥ 10	20	20	20 (100*)
KT201Б	Si, n-p-n, ПЭ	150 (90° С)	≥ 10	20	20	20 (100*)
KT201В	Si, n-p-n, ПЭ	150 (90° С)	≥ 10	10	10	20 (100*)
KT201Г	Si, n-p-n, ПЭ	150 (90° С)	≥ 10	10	10	20 (100*)
KT201Д	Si, n-p-n, ПЭ	150 (90° С)	≥ 10	10	10	20 (100*)
2N2617	Si, n-p-n, C	250	≥ 1	25	10	100
2N2432	Si, n-p-n, ПЭ	300	≥ 20	30	25	100
2N2432А	Si, n-p-n, ПЭ	300	≥ 20	45	18	100
2N4138	Si, n-p-n, ПЭ	300	≥ 20	30	15	100
KT104А	Si, p-n-p, ПЭ	150 (60° С)	$\geq 5^*$	30	10	50
KT104Б	Si, p-n-p, ПЭ	150 (60° С)	$\geq 5^*$	15	10	50

$I_{\text{КБО}}$, мА	h_{219}, h_{213}	$C_K, C_{129}^*, \text{nF}$	$r_{\text{КЭ нас}}, \text{Ом}$	$K_{\text{ш}}, \text{дБ}$	$r'_6, C_K, \text{пс}$ $t_{\text{рас}}^*$ $t_{\text{выкл}}^{**}, \text{нс}$ $r'_6, \text{Ом}$	Кор- пус
8	9	10	11	12	13	14
2	15 (4,5 В; 1 мА)	13	—	—	—	TO5
4	≥ 15 (4,5 В; 1 мА)	—	—	—	—	TO5
2	35 (4,5 В; 1 мА)	13	—	—	—	TO5
4	35 (5 В; 1 мА)	—	—	—	—	TO5
14 (25В)	40 (6 В; 1 мА)	42	—	≤ 15	—	TO1
10	40 (6 В; 1 мА)	42	—	≤ 20	—	TO1
≤ 15 (10 В)	20—44 (6 В; 1 мА)	45 (6 В)	—	—	—	TO1
≤ 15 (10 В)	32—85 (6 В; 1 мА)	45 (6 В)	—	—	—	TO1
≤ 15 (10 В)	55—200 (6 В; 1 мА)	45 (6 В)	—	—	—	TO1
≤ 20 (10 В)	50—250 (6 В; 2 мА)	80 (6 В)	—	$\leq 10(1 \text{ кГц})$	—	TO1A
≤ 12 (6 В)	20—150 (6 В; 1 мА)	—	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 12 (6 В)	20—150 (6 В; 1 мА)	—	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 12 (6 В)	50—150 (6 В; 1 мА)	—	—	$\leq 6(1 \text{ кГц})$	—	A6
≤ 20 (5 В)	≥ 6 (5 В; 1 мА)	—	—	—	—	A6
≤ 15 (5 В)	12—20 (5 В; 1 мА)	—	—	—	—	A6
≤ 10 (5 В)	≥ 20 (5 В; 1 мА)	—	—	—	—	A6
≤ 10 (5 В)	≥ 20 (5 В; 1 мА)	—	—	$\leq 15(1 \text{ кГц})$	—	A6
≤ 12 (4,5 В)	20—40 (5 В; 0,5 мА)	—	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 12 (4,5 В)	30—75 (2 В; 3 мА)	—	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 12 (4,5 В)	65—130 (2 В; 3 мА)	—	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 10 (5 В)—	20—100 (5 В; 0,5 мА)	≤ 26 (6 В)	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 10 (5 В)	10—40 (5 В; 0,5 мА)	≤ 26 (6 В)	—	$\leq 10(1 \text{ кГц})$	—	A6
≤ 10 (5 В)	20—100 (5 В; 0,5 мА)	≤ 26 (6 В)	—	$\leq 20(1 \text{ кГц})$	—	A6
≤ 2 (2 В)	25—125 (6 В; 1 мА)	≤ 14 (6 В)	—	—	200***	A6
15	50* (1 В; 2 мА)	—	—	—	—	TO1
15	90* (1 В; 2 мА)	—	—	—	—	TO1
14	60 (6 В; 1 мА)	—	—	—	—	TO1
14	60 (6 В; 1 мА)	30	—	—	—	TO1
14	70* (1 В; 50 мА)	—	—	—	—	TO1
50	50* (6 В; 1 мА)	100	—	—	—	TO22
≤ 4 (12 В)	20—50 (0,5 В; 20 мА)	≤ 20 (6 В)	≤ 10	—	≤ 6000	2
≤ 4 (12 В)	40—100 (0,5 В; 20 мА)	≤ 20 (6 В)	≤ 10	—	≤ 6000	2
≤ 4 (12 В)	80—180 (0,5 В; 20 мА)	≤ 20 (6 В)	≤ 10	—	≤ 6000	2
—	35 (50 мА)	—	—	—	—	R8
1 (6 В)	30—250 (6 В; 0,5 мА)	—	—	—	—	R8
≤ 3 (15 В)	25—150 (6 В; 1 мА)	≤ 14 (6 В)	—	—	—	TO18
≤ 3 (15 В)	50—150 (6 В; 1 мА)	≤ 14 (6 В)	—	—	—	TO18
≤ 3 (12 В)	30—150* (1 В; 24 мА)	—	≤ 8	—	100*	TO1
≤ 1 (20 В)	20—60 (1 В; 5 мА)	≤ 20 (5 В)	—	—	—	5
≤ 1 (20 В)	30—90 (1 В; 5 мА)	≤ 20 (5 В)	—	—	—	5
≤ 1 (10 В)	30—90 (1 В; 5 мА)	≤ 20 (5 В)	—	—	—	5
≤ 1 (10 В)	70—210 (1 В; 5 мА)	≤ 20 (5 В)	—	—	—	5
≤ 1 (10 В)	30—90 (1 В; 5 мА)	≤ 20 (5 В)	—	$\leq 15(1 \text{ кГц})$	—	5
0,1	≥ 25 (6 В; 1 мА)	80	—	—	—	R8
$\leq 0,01$ (20В)	≥ 50 * (5 В; 1 мА)	≤ 12	≤ 15	—	—	TO18
$\leq 0,01$ (40В)	≥ 50 (5 В; 1 мА)	≤ 12	≤ 15	—	—	TO18
$\leq 0,01$ (20В)	≥ 50 (5 В; 1 мА)	≤ 12	≤ 15	—	—	TO46
≤ 1 (30 В)	9—36 (5 В; 1 мА)	≤ 50 (5 В)	≤ 50	—	—	6
≤ 1 (15 В)	20—80 (5 В; 1 мА)	≤ 50 (5 В)	≤ 50	—	—	6

1	2	3	4	5	6	7
KT104В	Si, p-n-p, ПЭ	150 (60° С)	>5*	15	10	50
KT104Г	Si, p-n-p, ПЭ	150 (60° С)	>5*	30	10	50
BSZ10	Si, p-n-p, С	250	>0,3*	25	20	50
BSZ11	Si, p-n-p, С	250	>1*	25	20	50
2N1643	Si, p-n-p, С	250	0,7*	25	20	50
2N1024	Si, p-n-p, С	250	>1*	18	18	100
OC200	Si, p-n-p, С	250	>0,45	30	20	50 (100*)
OC 201	Si, p-n-p, С	250	>2	25	20	50 (100*)
OC202	Si, p-n-p, С	250	>1,4	15	10	50 (100*)
2N1220	Si, p-n-p, С	250	>2*	30	20	100
2N1222	Si, p-n-p, С	250	>2*	30	10	100
2N1223	Si, p-n-p, С	250	2*	40	10	100
2N1027	Si, p-n-p, С	250	>4*	18	18	100
2N1219	Si, p-n-p, С	250	>5*	30	20	100
2N1221	Si, p-n-p, С	250	>5*	30	10	100
2N1028	Si, p-n-p, С	250	6	18	12	100
KT203А	Si, p-n-p, ПЭ	150 (75 °C)	>5*	60*	30	10 (50*)
KT203Б	Si, p-n-p, ПЭ	150 (75 °C)	>5*	30*	15	10 (50*)
KT203 В	Si, p-n-p, ПЭ	150 (75 °C)	>5*	15*	10	10 (50*)
BSZ12	Si, p-n-p, С	250	1*	60	30	50
2N943	Si, p-n-p, С	250	>1*	40	40	50
2N944	Si, p-n-p, С	250	>1*	40	40	50
2N2274	Si, p-n-p, С	150	>6	25	25	50
2N2275	Si, p-n-p, С	150	>6	25	25	50
2N2276	Si, p-n-p, С	150	>6	15	15	50
2N2277	Si, p-n-p, С	150	>6	15	15	50
2N923	Si, p-n-p, С	150	>0,8	40	40	50
2N924	Si, p-n-p, С	150	>0,8	40	40	50
2N2372	Si, p-n-p, С	150	1	15	15	50
2N2373	Si, p-n-p, С	150	1	15	15	50
OC203	Si, p-n-p, С	250	>0,3*	60	30	50 (100*)
KT208А	Si, p-n-p, ПЭ	200 (60° С)	>5	15*	10	300 (500*)
KT208Б	Si, p-n-p, ПЭ	200 (60° С)	>5	15*	10	300 (500*)
KT208В	Si, p-n-p, ПЭ	200 (60° С)	>5	15*	10	300 (500*)
KT208Г	Si, p-n-p, ПЭ	200 (60° С)	>5	30*	10	300 (500*)
KT208Д	Si, p-n-p, ПЭ	200 (60° С)	>5	30*	10	300 (500*)
KT208Е	Si, p-n-p, ПЭ	200 (60° С)	>5	30*	10	300 (500*)
KT208Ж	Si, p-n-p, ПЭ	200 (60° С)	>5	45*	20	300 (500*)
KT208И	Si, p-n-p, ПЭ	200 (60° С)	>5	45*	20	300 (500*)
KT208К	Si, p-n-p, ПЭ	200 (60° С)	>5	45*	20	300 (500*)
KT208Л	Si, p-n-p, ПЭ	200 (60° С)	>5	60*	20	300 (500*)
KT208М	Si, p-n-p, ПЭ	200 (60° С)	>5	60*	20	300 (500*)
BCY10	Si, p-n-p, С	300 (415*)	1,5	32	12	250 (500*)
BCY11	Si, p-n-p, С	300 (415*)	1,5	60	12	250 (500*)
BCY12	Si, p-n-p, С	300 (415*)	2	32	12	250 (500*)
SFT307	Si, p-n-p, С	150	>4	18	12	100
SFT308	Si, p-n-p, С	150	>7	18	12	100
EFT308	Si, p-n-p, С	150	10,3	15	9	100
BCY90	Si, p-n-p, ПЭ	350	15	40	20	50 (100*)
BCY91	Si, p-n-p, ПЭ	350	15	40	20	50 (100*)
BCY92	Si, p-n-p, ПЭ	350	15	40	20	50 (100*)
BCY93	Si, p-n-p, ПЭ	350	15	70	30	50 (100*)
BCY94	Si, p-n-p, ПЭ	350	15	70	30	50 (100*)
BCY95	Si, p-n-p, ПЭ	350	15	70	30	50 (100*)
TCH98	Si, p-n-p, ПЭ	350	15	40	20	50 (100*)
TCH99	Si, p-n-p, ПЭ	350	15	70	30	50 (100*)
OC206	Si, p-n-p, С	300	>0,85	32	12	250
OC204	Si, p-n-p, С	300	>0,45	32	12	250
OC207	Si, p-n-p, С	300	>0,45	50	12	250
OC205	Si, p-n-p, С	300	>0,45	60	30	250
BCY30	Si, p-n-p, С	250	>0,25	64	45	50 (150*)
BCY31	Si, p-n-p, С	250	>0,25	64	45	50 (150*)

Продолжение

8	9	10	11	12	13	14
≤ 1 (15 B)	40—160 (5 B; 1 mA)	≤ 50 (5 B)	≤ 50	—	—	6
≤ 1 (30 B)	15—60 (5 B; 1 mA)	≤ 50 (5 B)	≤ 50	—	—	6
$\leq 0,1$ (10 B)	15—60 (6 B; 1 mA)	≤ 80 (6 B)	≤ 47	8 (1кГц)	—	TO18
$\leq 0,1$ (10 B)	25—60 (6 B; 1 mA)	≤ 80 (6 B)	≤ 47	6 (1кГц)	—	TO18
0,001	18 (6 B; 1 mA)	50	—	—	—	TO5
0,025	15 (6 B; 1 mA)	7	—	—	—	TO5
0,5	15—60 (6 B; 1 mA)	—	$\leq 27,5$	—	—	R8
0,5	20—80 (6 B; 1 mA)	—	$\leq 27,5$	—	—	R8
0,5	40—120 (6 B; 1 mA)	—	$\leq 27,5$	—	—	R8
0,1	≥ 9 (0,25 B; 5 mA)	≤ 18	—	—	—	TO5
0,1	≥ 9 (6 B; 1 mA)	≤ 18	—	—	—	TO5
0,1	≥ 6 (6 B; 1 mA)	≤ 18	—	—	—	TO5
0,025	30 (6 B; 1 mA)	7	—	—	—	TO5
0,1	≥ 18 (0,25 B; 5 mA)	≤ 15	—	—	—	TO5
0,1	≥ 18 (6 B; 1 mA)	≤ 15	—	—	—	TO5
0,025	≥ 9 (6 B; 1 mA)	7	—	—	—	TO5
≤ 1 (60 B)	≥ 9 (5 B; 1 mA)	≤ 10 (5 B)	—	—	—	18
≤ 1 (30 B)	30—150 (5 B; 1 mA)	≤ 10 (5 B)	≤ 50	—	—	18
≤ 1 (15 B)	30—200 (5 B; 1 mA)	≤ 10 (5 B)	≤ 25	—	—	18
$\leq 0,1$ (10 B)	≥ 10 (5 B; 1 mA)	≤ 80 (6 B)	≤ 47	8(1 кГц)	—	TO18
≤ 100 (40 B)	≥ 10 (6 B; 1 mA)	≤ 14 (6 B)	—	—	—	TO18
≤ 100 (40 B)	≥ 10 (6 B; 1 mA)	≤ 14 (6 B)	—	—	—	TO18
0,003 (10 B)	$\geq 10^*$ (0,5 B; 5 mA)	9	—	—	—	TO18
0,003 (10 B)	$\geq 10^*$ (0,5 B; 5 mA)	9	—	—	—	TO18
0,003 (10B)	$\geq 10^*$ (0,5 B; 5 mA)	9	—	—	—	TO18
50	21 (6 B; 1 mA)	≤ 20	—	—	—	TO18
50	47 (6 B; 1 mA)	≤ 20	—	—	—	TO18
50	≥ 15 (4 B; 25 mA)	15	—	—	—	TO18
50	≥ 20 (4 B; 25 mA)	15	—	—	—	TO18
1,5	10—60 (6 B; 1 mA)	—	$\leq 2,75$	—	—	R8
≤ 1 (20 B)	20—60* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	40—120* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	80—240* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	≤ 4 (1 кГц)	—	20
≤ 1 (20 B)	20—60* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	40—120* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	80—240* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	≤ 4 (1 кГц)	—	20
≤ 1 (20 B)	20—60* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	40—120* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	≤ 4 (1 кГц)	—	20
≤ 1 (20 B)	20—60* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	80—240* (1B; 30mA)	≤ 50 (10 B)	$\leq 1,3$	≤ 4 (1 кГц)	—	20
≤ 1 (20 B)	20—60* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
≤ 1 (20 B)	40—120* (1B; 30 mA)	≤ 50 (10 B)	$\leq 1,3$	—	—	20
$\leq 0,02$ (6 B)	$\geq 12^*$ (2 B; 30 mA)	90 (6 B)	≤ 4	≤ 20 (1 кГц)	—	R8
$\leq 0,02$ (6 B)	$\geq 12^*$ (2 B; 30 mA)	90 (6 B)	≤ 4	≤ 20 (1 кГц)	—	R8
$\leq 0,02$ (6 B)	$\geq 12^*$ (2 B; 30 mA)	90 (6 B)	≤ 4	≤ 20 (1 кГц)	—	R8
≤ 10 (18 B)	25—120 (6 B; 1 mA)	≤ 11 (6 B)	—	6 (1 кГц)	—	TO1
≤ 10 (18 B)	40—180 (6 B; 1 mA)	≤ 11 (6 B)	—	6 (1 кГц)	—	TO1
≤ 15 (15 B)	40—160 (6 B; 1 mA)	≤ 12 (6 B)	—	—	—	TO1
$\leq 0,002$ (15B)	10—35 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO18
$\leq 0,002$ (15B)	25—60 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO18
$\leq 0,002$ (15B)	40—100 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO18
0,002(15B)	10—35 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO18
0,002(15B)	25—60 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO18
$\leq 0,002$ (15B)	40—100 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO18
$\leq 0,002$ (15B)	≥ 80 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO18
$\leq 0,002$ (15B)	≥ 80 (6 B; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO18
0,5	$\geq 16^*$ (1 B; 150 mA)	—	$\leq 2,75$	—	—	R8
0,5	10—30*(1B; 150 mA)	—	$\leq 2,75$	—	—	R8
0,5	12—70*(1B; 150 mA)	—	$\leq 2,75$	—	—	R8
0,5	10—50*(1B; 150 mA)	—	$\leq 2,75$	—	—	R8
$\leq 0,05$ (6 B)	10—35*(4,5B; 20mA)	≤ 60 (6 B)	$\leq 27,5$	≤ 20 (1кГц)	—	TO5
$\leq 0,05$ (6 B)	15—60*(4,5B; 20mA)	≤ 60 (6 B)	$\leq 27,5$	≤ 20 (1кГц)	—	TO5

1	2	3	4	5	6	7
BCY32	Si, p-n-p, С	250	$\geq 0,25$	64	32	50 (150*)
BCY33	Si, p-n-p, С	250	$\geq 0,4$	32	16	50 (150*)
BCY34	Si, p-n-p, С	250	$\geq 0,6$	32	16	50 (150*)
KT209А	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	15*	10	300 (500*)
KT209Б	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	15*	10	300 (500*)
KT209В	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	15*	10	300 (500*)
KT209Г	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	30*	10	300 (500*)
KT209Д	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	30*	10	300 (500*)
KT209Е	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	30*	10	300 (500*)
KT209Ж	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	45*	20	300 (500*)
KT209И	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	45*	20	300 (500*)
KT209К	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	45*	20	300 (500*)
KT209Л	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	60*	20	300 (500*)
KT209М	Si, p-n-p, ПЭ	200 (35° С)	≥ 5	60*	20	300 (500*)
MPS404	Si, p-n-p, ПЭ	310	$\geq 4*$	25	12	150
MPS404А	Si, p-n-p, ПЭ	310	$\geq 4*$	40	25	150
KT501А	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	15*	10	300 (500*)
KT501Б	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	15*	10	300 (500*)
KT501В	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	15*	10	300 (500*)
KT501Г	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	30*	10	300 (500*)
KT501Д	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	30*	10	300 (500*)
KT501Е	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	30*	10	300 (500*)
KT501Ж	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	45*	20	300 (500*)
KT501И	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	45*	20	300 (500*)
KT501К	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	45*	20	300 (500*)
KT501Л	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	60*	20	300 (500*)
KT501М	Si, p-n-p, ПЭ	350 (35° С)	≥ 5	60*	20	300 (500*)
BCY38	Si, p-n-p, ПЭ	410	$\geq 0,45$	32	12	250 (500*)
BCY39	Si, p-n-p, ПЭ	410	$\geq 0,45$	64	12	250 (500*)
BCY40	Si, p-n-p, ПЭ	410	$\geq 0,85$	32	12	250 (500*)
BCY54	Si, p-n-p, ПЭ	410	$\geq 0,45$	50	12	250 (500*)
SFT124	Si, p-n-p, С	350	$\geq 0,6$	24	12	500
SFT125	Si, p-n-p, С	350	$\geq 0,8$	24	12	500
SFT130	Si, p-n-p, С	550	$\geq 0,6$	24	12	500
SFT131	Si, p-n-p, С	550	$\geq 0,8$	24	12	500
T143	Ge, p-n-p, С	350	$\geq 0,6$	45	25	500
T144	Ge, p-n-p, С	350	$\geq 0,8$	45	25	500
T145	Ge, p-n-p, С	550	$\geq 0,6$	45	25	500
T146	Ge, p-n-p, С	550	$\geq 0,8$	45	25	500
BCY90В	Si, p-n-p, ПЭ	400	15	40	20	50 (150*)
BCY91В	Si, p-n-p, ПЭ	400	15	40	20	50 (150*)
BCY92В	Si, p-n-p, ПЭ	400	15	40	20	50 (150*)
BCY93В	Si, p-n-p, ПЭ	400	15	70	30	50 (150*)
BCY94В	Si, p-n-p, ПЭ	400	15	70	30	50 (150*)
BCY95В	Si, p-n-p, ПЭ	400	15	70	30	50 (150*)
TCH98В	Si, p-n-p, ПЭ	400	15	40	20	50 (150*)
TCH99В	Si, p-n-p, ПЭ	400	15	70	30	50 (150*)

Маломощные транзисторы высокой

ГТ310А	Ge, p-n-p, СД	20 (30° С)	≥ 160	12	—	10
ГТ310Б	Ge, p-n-p, СД	20 (30° С)	≥ 160	12	—	10
ГТ310В	Ge, p-n-p, СД	20 (30° С)	≥ 120	12	—	10
ГТ310Г	Ge, p-n-p, СД	20 (30° С)	≥ 120	12	—	10
ГТ310Д	Ge, p-n-p, СД	20 (30° С)	≥ 80	12	—	10
ГТ310Е	Ge, p-n-p, СД	20 (30° С)	≥ 80	12	—	10
2N128	Ge, p-n-p, Д	25	≥ 28	10	10	5
2SA107	Ge, p-n-p, Д	35	20	6	—	10
2SA106	Ge, p-n-p, Д	35	30	6	—	10
2SA105	Ge, p-n-p, Д	35	75	6	—	10

Продолжение

8	9	10	11	12	13	14
$\leq 0,05$ (6 В)	20—70*(4,5В; 20mA)	≤ 60 (6 В)	$\leq 27,5$	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 0,05$ (6 В)	10—35*(4В; 20 mA)	≤ 60 (6 В)	$\leq 27,5$	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 0,05$ (6 В)	15—60*(4,5В; 20mA)	≤ 60 (6 В)	$\leq 27,5$	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 1^*(15 \text{ В})$	20—60*(1В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 1^*(15 \text{ В})$	40—120*(1В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 1^*(15 \text{ В})$	80—240*(1В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 5(1 \text{ кГц})$	—	14
$\leq 1^*(30 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\geq 1^*(30 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 5(1 \text{ кГц})$	—	14
$\leq 1^*(30 \text{ В})$	80—240*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 5(1 \text{ кГц})$	—	14
$\leq 1^*(45 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 1^*(45 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 1^*(45 \text{ В})$	80—160*(1В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 5(1 \text{ кГц})$	—	14
$\leq 1^*(60 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 1^*(60 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	14
$\leq 0,1(10 \text{ В})$	30—400*(0,15 В; 12 mA)	≤ 20 (6 В)	≤ 12	—	155*	TO92
0,1	30—400*(0,15 В; 12 mA)	≤ 20 (6 В)	≤ 12	—	155*	TO92
$\leq 1^*(15 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(15 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(15 \text{ В})$	80—240*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 4(1 \text{ кГц})$	—	20
$\leq 1^*(30 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(30 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(30 \text{ В})$	80—240*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 4(1 \text{ кГц})$	—	20
$\leq 1^*(45 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(45 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(45 \text{ В})$	80—240*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	$\leq 4(1 \text{ кГц})$	—	20
$\leq 1^*(60 \text{ В})$	20—60*(1 В; 30 mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 1^*(60 \text{ В})$	40—120*(1В; 30mA)	≤ 50 (10 В)	$\leq 1,3$	—	—	20
$\leq 0,001(6\text{B})$	$\geq 12^*(1 \text{ В}; 150 \text{ mA})$	≤ 150 (6 В)	≤ 7	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 0,001(6\text{B})$	$\geq 12^*(1 \text{ В}; 150 \text{ mA})$	≤ 150 (6 В)	≤ 7	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 0,001(6\text{B})$	$\geq 22^*(1 \text{ В}; 150 \text{ mA})$	≤ 150 (6 В)	≤ 7	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 0,001(6\text{B})$	$\geq 22^*(1 \text{ В}; 150 \text{ mA})$	≤ 150 (6 В)	≤ 7	$\leq 20(1 \text{ кГц})$	—	TO5
$\leq 20(24 \text{ B})$	20—40*(1В; 250mA)	—	—	—	—	R13
$\leq 20(24 \text{ B})$	40—150*(1В; 250mA)	—	—	—	—	R13
$\leq 20(24 \text{ B})$	20—44*(1В; 250mA)	—	≤ 1	—	—	R13
$\leq 20(24 \text{ B})$	40—150*(1В; 250mA)	—	≤ 1	—	—	R13
$\leq 20(45 \text{ B})$	20—44*(1В; 250mA)	—	≤ 1	$5(1 \text{ кГц})$	—	R13
$\leq 20(45 \text{ B})$	40—80*(1В; 250mA)	—	≤ 1	$5(1 \text{ кГц})$	—	R13
$\leq 20(45 \text{ B})$	20—44*(1В; 250mA)	—	≤ 1	$5(1 \text{ кГц})$	—	R13
$\leq 20(45 \text{ B})$	40—80*(1В; 250mA)	—	≤ 1	$5(1 \text{ кГц})$	—	R13
$\leq 0,002(15\text{B})$	10—35(6В; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO5
$\leq 0,002(15\text{B})$	25—60(6В; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO5
$\leq 0,002(15\text{B})$	40—100(6В; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO5
$\leq 0,002(15\text{B})$	10—35 (6 В; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO5
$\leq 0,002(15\text{B})$	25—60 (6 В; 1 mA)	4	≤ 10	4 (1 кГц)	—	TO5
$\leq 0,002(15\text{B})$	40—100 (6 В; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO5
$\leq 0,002(15\text{B})$	≥ 80 (6 В; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO5
$\leq 0,002(15\text{B})$	≥ 80 (6 В; 1 mA)	4	≤ 10	4 (1 кГц)	200*	TO5

и сверхвысокой частоты

≤ 5 (6 В)	20—70*(5 В; 1 mA)	≤ 4 (5 В)	—	$\leq 3(1,6 \text{ МГц})$	≤ 300	7
≤ 5 (6 В)	60—180*(5 В; 1 mA)	≤ 4 (5 В)	—	$\leq 3(1,6 \text{ МГц})$	≤ 300	7
≤ 5 (6 В)	20—70*(5 В; 1 mA)	≤ 5 (5 В)	—	$\leq 4(1,6 \text{ МГц})$	≤ 300	7
≤ 5 (6 В)	60—180*(5 В; 1 mA)	≤ 5 (5 В)	—	$\leq 4(1,6 \text{ МГц})$	≤ 300	7
≤ 5 (6 В)	20—70*(5 В; 1 mA)	≤ 5 (5 В)	—	$\leq 4(1,6 \text{ МГц})$	≤ 500	7
≤ 5 (6 В)	60—180*(5 В; 1mA)	≤ 5 (5 В)	—	$\leq 4(1,6 \text{ МГц})$	≤ 500	7
≤ 3 (3 В)	≥ 19 (3В; 0,5 mA)	≤ 5	3,5	—	—	TO24
10	40 (3 В; 1 mA)	—	—	—	—	TO44
10	50 (3 В; 1 mA)	—	—	—	—	TO44
10	50 (3 В; 1 mA)	—	—	—	—	TO44

1	2	3	4	5	6	7
2SA116	Ge, <i>p-n-p</i> , Δ	50	120*	30	—	—
2SA117	Ge, <i>p-n-p</i> , Δ	50	110*	30	—	—
2SA118	Ge, <i>p-n-p</i> , Δ	50	100*	30	—	—
2SA260	Ge, <i>p-n-p</i> , Δ	40	200	20	0,4	5
2N503	Ge, <i>p-n-p</i> , СД	25 (45 °C)	≥168	20	0,5	50
ГТ322А	Ge, <i>p-n-p</i> , СД	50	≥80	25	0,25	10
ГТ322Б	Ge, <i>p-n-p</i> , СД	50	≥80	25	0,25	10
ГТ322В	Ge, <i>p-n-p</i> , СД	50	≥80	25	0,25	10
2SA338	Ge, <i>p-n-p</i> , Δ	50	20	20	0,5	5
2SA321	Ge, <i>p-n-p</i> , Δ	50	25	20	0,5	10
2SA322	Ge, <i>p-n-p</i> , Δ	50	30	20	0,5	10
2SA339	Ge, <i>p-n-p</i> , Δ	50	30	20	0,5	5
2SA219	Ge, <i>p-n-p</i> , Δ	50	40	20	0,5	10
2SA221	Ge, <i>p-n-p</i> , Δ	50	50	20	0,5	10
2SA223	Ge, <i>p-n-p</i> , Δ	50	64	20	0,5	10
2SA259	Ge, <i>p-n-p</i> , Δ	55	30	20	0,5	10
2SA258	Ge, <i>p-n-p</i> , Δ	55	40	20	0,5	10
2SA257	Ge, <i>p-n-p</i> , Δ	55	50	20	0,5	10
2SA256	Ge, <i>p-n-p</i> , Δ	55	60	20	0,5	10
2SA101	Ge, <i>p-n-p</i> , Δ	60	15	40	0,5	10
2SA102	Ge, <i>p-n-p</i> , Δ	60	25	40	0,5	10
2SA103	Ge, <i>p-n-p</i> , Δ	60	35	40	0,5	10
2SA104	Ge, <i>p-n-p</i> , Δ	60	50	40	0,5	10
2SA340	Ge, <i>p-n-p</i> , СД	63	70	20	0,5	10
2SA341	Ge, <i>p-n-p</i> , СД	63	70	20	0,5	10
2SA342	Ge, <i>p-n-p</i> , СД	63	100	20	0,5	10
2N990	Ge, <i>p-n-p</i> , Δ	67	≥44	20	1	10
2N991	Ge, <i>p-n-p</i> , Δ	67	≥44	20	1	10
2N993	Ge, <i>p-n-p</i> , Δ	67	≥44	20	1	10
AF271	Ge, <i>p-n-p</i> , СД	55	30	20	0,5	10
AF272	Ge, <i>p-n-p</i> , СД	55	35	20	0,5	10
AF275	Ge, <i>p-n-p</i> , СД	55	35	20	0,5	10
OC169	Ge, <i>p-n-p</i> , СД	50 (45 °C)	30	20	0,4	10
GF514	Ge, <i>p-n-p</i> , СД	60	75	32	0,5	10
GF515	Ge, <i>p-n-p</i> , СД	60	45	32	0,5	10
GF516	Ge, <i>p-n-p</i> , СД	60	45	32	0,5	10
GF517	Ge, <i>p-n-p</i> , СД	60	50	20	0,5	10
GFY50	Ge, <i>p-n-p</i> , СД	50	≥30	20	1	10
2N987	Ge, <i>p-n-p</i> , СД	86	100	40	1	10
AF426	Ge, <i>p-n-p</i> , СД	50	≥40	20	1	10
AF427	Ge, <i>p-n-p</i> , СД	50	≥40	20	1	10
AF428	Ge, <i>p-n-p</i> , СД	50	≥40	20	1	10
AF429	Ge, <i>p-n-p</i> , СД	50	≥30	20	1	10
AF430	Ge, <i>p-n-p</i> , СД	50	≥30	15	1	10
2SA72	Ge, <i>p-n-p</i> , СД	55	40*	18	0,5	5
2SA73	Ge, <i>p-n-p</i> , СД	55	35*	18	0,5	5
2SA92	Ge, <i>p-n-p</i> , СД	55	50*	18	0,5	5
2SA93	Ge, <i>p-n-p</i> , СД	55	45*	18	0,5	5
2SA58	Ge, <i>p-n-p</i> , СД	55	75*	18	0,5	5
2SA60	Ge, <i>p-n-p</i> , СД	55	55*	18	0,5	5
2SA236	Ge, <i>p-n-p</i> , СД	55	35*	18	0,5	5
2SA237	Ge, <i>p-n-p</i> , СД	55	35*	18	0,5	5
2SA285	Ge, <i>p-n-p</i> , Δ	50	≥25*	18	0,5	5
2SA286	Ge, <i>p-n-p</i> , Δ	50	≥30*	18	0,5	5
2SA287	Ge, <i>p-n-p</i> , Δ	50	60	18	0,5	5
П417	Ge, <i>p-n-p</i> , ДС	50	$f_{\max} \geq 200$	8*	0,7	10

Продолжение

8	9	10	11	12	13	14
10	1,5 (12 В; 12 мА)	2	—	—	—	TO44
10	1,5 (12 В; 12 мА)	2	—	—	—	TO44
10	1,5 (12 В; 12 мА)	2	—	—	—	TO44
15	10 (6 В; 2 мА)	1,5	—	—	—	TO17
100	45 (10 В; 2 мА)	≤2	—	—	≤120	TO9
≤4 (25 В)	30—100 (5 В; 1 мА)	≤1,8 (5 В)	—	≤4 (1,6 МГц)	≤50	8а
≤4 (25 В)	50—120 (5 В; 1 мА)	≤1,8 (5 В)	—	≤4 (1,6 МГц)	≤100	8а
≤4 (25 В)	20—120 (5 В; 1 мА)	≤2,5 (5 В)	—	≤4 (1,6 МГц)	≤200	8а
16	30 (6 В; 1 мА)	2,5	—	—	—	R18
12	40 (6 В; 1 мА)	3	—	—	—	TO44
12	40 (6 В; 1 мА)	3	—	—	—	TO44
16	60 (6 В; 1 мА)	2,5	—	—	—	R18
12	50 (6 В; 1 мА)	2,5	—	—	—	TO44
12	75 (6 В; 1 мА)	2,5	—	—	—	TO44
12	50 (6 В; 1 мА)	2,5	—	—	—	TO44
10	45 (6 В; 1 мА)	2,2	—	—	—	R18
10	45 (6 В; 1 мА)	2,2	—	—	—	R18
10	75 (6 В; 1 мА)	≤3	—	—	—	R18
16	30 (6 В; 1 мА)	4	—	—	—	TO1
16	40 (6 В; 1 мА)	4	—	—	—	TO1
16	50 (6 В; 1 мА)	4	—	—	—	TO72
16	100 (6 В; 1 мА)	4	—	—	—	TO1
13	100 (6 В; 1 мА)	1,5	—	—	—	TO72
13	100 (6 В; 1 мА)	1,5	—	—	—	TO72
8	≥40 (6 В; 1 мА)	≤4	—	—	—	TO72
8	≥40 (6 В; 1 мА)	≤4	—	—	—	TO72
8	≥40 (6 В; 1 мА)	≤2,5	—	—	—	TO72
≤10 (20 В)	≥20 (6 В; 1 мА)	≤3,5 (6 В)	—	—	—	TO18
≤10 (20 В)	≥40 (6 В; 1 мА)	≤3,5 (6 В)	—	—	—	TO18
≤10 (20 В)	≥20—300 (6 В; 1 мА)	≤3,5 (6 В)	—	—	—	TO18
≤13 (6 В)	≥20—300 (6 В; 1 мА)	—	—	≤8 (450 кГц)	—	TO7
≤8 (6 В)	140 (6 В; 1 мА)	≤5 (6 В)	—	8,5 (100 МГц)	≤24	TO72
≤8 (6 В)	140 (6 В; 1 мА)	≤5 (6 В)	—	2 (1 МГц)	≤24	TO72
≤8 (6 В)	140 (6 В; 1 мА)	≤5 (6 В)	—	2 (1 МГц)	≤60	TO72
≤13 (6 В)	100 (6 В; 1 мА)	≤5 (6 В)	—	2 (1 МГц)	≤100	TO72
≤16 (6 В)	20—420 (6 В; 1 мА)	≤5 (6 В)	—	≤8 (1 МГц)	—	TO7
8	100 (6 В; 1 мА)	14	—	—	—	R38
—	30—300 (6 В; 1 мА)	4 (6 В)	—	3 (0,5 МГц)	—	TO18
—	30—300 (6 В; 1 мА)	4,5 (6 В)	—	3 (0,5 МГц)	—	TO18
—	30—300 (6 В; 1 мА)	≤8 (6 В)	—	3 (0,5 МГц)	—	TO18
—	30—300 (6 В; 1 мА)	≤10 (6 В)	—	3 (0,5 МГц)	—	TO18
—	20—300 (6 В; 1 мА)	≤12 (6 В)	—	3 (0,5 МГц)	—	TO18
≤12 (18 В)	≥20 (6 В; 1 мА)	1,9 (6 В)	—	—	40***	TO44
≤12 (18 В)	≥20 (6 В; 1 мА)	2 (4,5 В)	—	—	—	TO44
≤12 (18 В)	70 (4,5 В; 1 мА)	2 (4,5 В)	—	—	—	TO44
≤12 (18 В)	49 (4,5 В; 1 мА)	2 (4,5 В)	—	—	—	TO44
≤12 (18 В)	80 (9 В; 1 мА)	1,9 (6 В)	—	—	—	TO44
≤12 (18 В)	70 (6 В; 1 мА)	1,9 (6 В)	—	—	—	TO44
≤12 (18 В)	50 (6 В; 1 мА)	≤2,5 (6 В)	—	—	—	TO44
≤12 (18 В)	50 (6 В; 1 мА)	≤3,5 (6 В)	—	—	—	TO44
≤15 (18 В)	18—300 (6 В; 1 мА)	2 (6 В)	—	—	—	TO44
≤15 (18 В)	44—146 (6 В; 1 мА)	2 (6 В)	—	—	—	TO44
≤15 (18 В)	44—146 (6 В; 1 мА)	2 (6 В)	—	—	—	TO44
≤3 (10 В)	24—100 (5 В; 5 мА)	≤5 (5 В)	—	—	≤400	9

1	2	3	4	5	6	7
П417А	Ge, <i>p-n-p</i> , DC	50	$f_{\max} \geq 200$	8*	0,7	10
П417Б	Ge, <i>p-n-p</i> , DC	50	$f_{\max} \geq 200$	8*	0,7	10
2N1726	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 100$	20	1	50
2N1727	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 100$	20	0,5	50
2N1728	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 100$	20	0,5	50
2N1864	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 50$	20	0,5	50
2N1746	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 100$	20	0,5	50
2N1747	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 180$	20	0,5	50
2N1752	Ge, <i>p-n-p</i> , MD	60	$f_{\max} \geq 50$	12	0,5	50
2N1785	Ge, <i>p-n-p</i> , M	45	$f_{\max} \geq 50$	10	1	50
2N1786	Ge, <i>p-n-p</i> , M	45	$f_{\max} \geq 50$	10	0,5	50
2N1787	Ge, <i>p-n-p</i> , M	45	$f_{\max} \geq 50$	15	0,5	50
2N1865	Ge, <i>p-n-p</i> , M	60	$f_{\max} \geq 180$	20	0,5	50
ГТ309А	Ge, <i>p-n-p</i> , СД	75	≥ 120	10*	1,5	10
ГТ309Б	Ge, <i>p-n-p</i> , СД	75	≥ 120	10*	1,5	10
ГТ309В	Ge, <i>p-n-p</i> , СД	75	≥ 80	10*	1,5	10
ГТ309Г	Ge, <i>p-n-p</i> , СД	75	≥ 80	10*	1,5	10
ГТ309Д	Ge, <i>p-n-p</i> , СД	75	≥ 80	10*	1,5	10
ГТ309Е	Ge, <i>p-n-p</i> , СД	75	≥ 80	10*	1,5	10
AF178	Ge, <i>p-n-p</i> , СД	75	180	25	0,5	10
2SA234	Ge, <i>p-n-p</i> , M	80	120*	20	0,5	10
2SA235	Ge, <i>p-n-p</i> , M	80	135*	20	0,5	10
OC170	Ge, <i>p-n-p</i> , СД	80	75	20	0,5	10
OC171	Ge, <i>p-n-p</i> , СД	80	75	20	0,5	10
2SA272	Ge, <i>p-n-p</i> , D	80	20	9	0,5	10
2SA269	Ge, <i>p-n-p</i> , D	80	30	20	0,5	10
2SA271	Ge, <i>p-n-p</i> , D	80	30	9	0,5	10
2SA268	Ge, <i>p-n-p</i> , D	80	40	20	0,5	10
2SA267	Ge, <i>p-n-p</i> , D	80	50	20	0,5	10
2SA270	Ge, <i>p-n-p</i> , D	80	50	9	0,5	10
2SA266	Ge, <i>p-n-p</i> , D	80	60	20	0,5	10
2SA400	Ge, <i>p-n-p</i> , D	80	70	20	0,5	10
AFZ11	Ge, <i>p-n-p</i> , СД	83	140	20	0,5	10
2SA343	Ge, <i>p-n-p</i> , СД	83	150*	20	0,4	5
GF126	Ge, <i>p-n-p</i> , СД	83	≥ 40	25	0,5	10
GF128	Ge, <i>p-n-p</i> , СД	83	≥ 100	25	0,5	10
GF130	Ge, <i>p-n-p</i> , СД	83	$\geq 27,5$	25	0,5	10
2SA69	Ge, <i>p-n-p</i> , СД	100	70	20	0,5	10
2SA70	Ge, <i>p-n-p</i> , СД	100	70	20	0,5	10
2SA71	Ge, <i>p-n-p</i> , СД	100	100	20	0,5	10

Продолжение

8	9	10	11	12	13	14
≤ 3 (10 B)	65—200 (5 B; 5 mA)	≤ 5 (5 B)	—	—	≤ 400	9
≤ 3 (10 B)	75—250 (5 B; 5 mA)	≤ 6 (5 B)	—	—	≤ 400	9
10	≥ 50 (6 B; 1 mA)	$\leq 2,5$	—	—	≤ 100	TO9
10	≥ 20 (6 B; 1 mA)	$\leq 2,5$	—	—	—	TO9
10	≥ 40 (6 B; 1 mA)	$\leq 2,5$	—	—	—	TO9
10	≥ 10 (6 B; 1 mA)	$\leq 2,5$	—	—	≤ 100	TO9
10	60 (6 B; 1 mA)	≤ 3	—	—	≤ 100	TO9
10	60 (6 B; 1 mA)	≤ 3	—	—	—	TO9
10	≥ 30 (6 B; 1 mA)	≤ 3	—	—	—	TO9
10	≥ 40 (6 B; 1 mA)	≤ 3	—	—	≤ 100	TO9
10	≥ 15 (6 B; 1 mA)	≤ 3	—	—	≤ 100	TO9
10	≥ 25 (6 B; 1 mA)	≤ 3	—	—	≤ 100	TO9
10	70 (6 B; 1 mA)	≤ 3	—	—	—	TO9
≤ 5 (5 B)	20—70 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	—	≤ 500	13
≤ 5 (5 B)	60—180 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	(1,6 МГц) ≤ 6	≤ 500	13
≤ 5 (5 B)	20—70 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	(1,6 МГц) ≤ 6	≤ 1000	13
≤ 5 (5 B)	60—180 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	—	≤ 1000	13
≤ 5 (5 B)	20—70 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	—	≤ 1000	13
≤ 5 (5 B)	60—180 (5 B; 1 mA)	$\leq 7,5$ (5 B)	—	—	≤ 1000	13
50	≥ 20 (12 B; 1 mA)	$\leq 7,5$	—	—	—	TO12
≤ 15 (20 B)	30—135 (6 B; 1 mA)	≤ 3 (6 B)	—	—	—	TO44
≤ 15 (20 B)	30—135 (6 B; 1 mA)	≤ 3 (6 B)	—	—	—	TO44
8	150 (6 B; 1 mA)	5	—	—	—	TO7
8	150 (6 B; 1 mA)	2,5	—	—	—	TO7
10	45 (6 B; 1 mA)	3	—	—	—	TO1
10	45 (6 B; 1 mA)	2,2	—	—	—	TO1
10	60 (6 B; 1 mA)	3,0	—	—	—	TO1
10	45 (6 B; 1 mA)	2,2	—	—	—	TO1
10	60 (6 B; 1 mA)	2,2	—	—	—	TO1
10	75 (6 B; 1 mA)	3	—	—	—	TO1
10	75 (6 B; 1 mA)	2,2	—	—	—	TO1
10	70 (6 B; 1 mA)	2,3	—	—	—	TO1
50	70 (6 B; 1 mA)	2	—	—	—	TO72
12	100 (6 B; 1 mA)	1,5	—	—	—	TO7
$\leq 7,5$ (6 B)	—	—	—	—	—	A3
$\leq 7,5$ (6 B)	—	—	—	—	—	A3
$\leq 7,5$ (6 B)	—	—	—	—	—	A3
13	150 (6 B; 1 mA)	4	—	—	—	TO7
13	150 (6 B; 1 mA)	3,5	—	—	—	TO7
13	150 (6 B; 1 mA)	2,5	—	—	—	TO7

1	2	3	4	5	6	7
ГТ305А	Ge, p-n-p, Δ	75	≥140	15	1,5	40 (100*)
ГТ305Б	Ge, p-n-p, Δ	75	≥160	15	1,5	40 (100*)
ГТ305В	Ge, p-n-p, Δ	75	≥160	15	0,5	40 (100*)
AFY13	Ge, p-n-p, Δ	60 (45 °C)	50	25	0,7	50
AFY29	Ge, p-n-p, Δ	60 (45 °C)	35	25	0,7	50
2N2199	Ge, p-n-p, Δ	75	≥120	15	0,5	100
2N2200	Ge, p-n-p, Δ	75	≥120	15	0,5	100
2SA246	Ge, p-n-p, M	100	155	30	0,5	30
2N2273	Ge, p-n-p, M	100	≥200	25	1	100
2N1499В	Ge, p-n-p, СД	75	≥150	30	2	100
2N501	Ge, p-n-p, МД	60	120	15	2	50
2N1499А	Ge, p-n-p, МД	60	110	20	0,5	100
2N499А	Ge, p-n-p, МД	60	≥120	30	0,5	50
2N1748	Ge, p-n-p, МД	60	132	25	1	50
2N1745	Ge, p-n-p, МД	80	200	20	0,5	50
2N979	Ge, p-n-p, МД	60	≥100	20	2	100
2N980	Ge, p-n-p, МД	60	100	20	2	100
2N1500	Ge, p-n-p, МД	60	175	15	2	50
2N1754	Ge, p-n-p, МД	50	150	13	—	50
П422	Ge, p-n-p, СД	100	≥50	10*	—	20
П423	Ge, p-n-p, СД	100	≥100	10*	—	20
2SA109	Ge, p-n-p, Δ	80	30*	20	—	10
2SA110	Ge, p-n-p, Δ	80	30*	20	—	20
2SA111	Ge, p-n-p, Δ	80	20*	20	—	20
2SA112	Ge, p-n-p, Δ	80	20*	20	—	20
2SA354	Ge, p-n-p, Δ	80	30	25	0,5	10
2SA355	Ge, p-n-p, Δ	80	30	25	0,5	10
2N1524	Ge, p-n-p, Δ	80	33	24	0,5	10
2N1526	Ge, p-n-p, Δ	80	33	25	0,5	10
2SA350	Ge, p-n-p, Δ	80	45*	20	0,5	10
2SA351	Ge, p-n-p, Δ	80	45*	25	0,5	10
2SA352	Ge, p-n-p, Δ	80	45*	25	0,5	10
2SA108	Ge, p-n-p, Δ	80	45	25	0,5	10
SFT316	Ge, p-n-p, Δ	120	70	20	0,5	10
SFT354	Ge, p-n-p, Δ	120	87	20	0,5	10
SFT357	Ge, p-n-p, Δ	120	85	20	0,5	10
SFT163	Ge, p-n-p, Δ	120	≥120	15	0,5	10
SFT358	Ge, p-n-p, Δ	120	110	20	0,5	10
П416	Ge, p-n-p, Δ	100 (360**)	≥40	12*	—	25 (120*)
П416А	Ge, p-n-p, Δ	100 (360**)	≥60	12*	—	25 (120*)
П416Б	Ge, p-n-p, Δ	100 (360**)	≥80	12*	—	25 (120*)
2N602	Ge, p-n-p, Δ	120	20	20	1	—
2N603	Ge, p-n-p, Δ	120	40	30	1	—
2N604	Ge, p-n-p, Δ	120	60	30	2	—
2SA279	Ge, p-n-p, СД	120	80	30	0,5	30
SFT319	Ge, p-n-p, Δ	150	20	20	0,5	10
SFT320	Ge, p-n-p, Δ	150	35	20	0,5	10
П401	Ge, p-n-p, СД	100	≥30	10*	1	20
П402	Ge, p-n-p, СД	100	≥50	10*	1	20
П403	Ge, p-n-p, СД	100	≥100	10*	1	20
П403А	Ge, p-n-p, СД	100	≥80	10*	1	20
T358Н	Ge, p-n-p, Δ	120	≥85	32	1	10
EFT317	Ge, p-n-p, СД	150	40	20	0,5	10
EFT319	Ge, p-n-p, СД	150	35	20	0,5	10

Продолжение

8	9	10	11	12	13	14
—	25—80*(1 B; 10 mA)	≤7 (5 B)	≤50	—	≤200	13
—	60—180*(1B; 10 mA)	≤7(5 B)	≤50	—	≤3000*	13
≤4 (15 B)	40—120*(5 B; 5 mA)	≤5,5 (5 B)	—	(1,6 МГц)	≤300	13
2,5 (6 B)	125*(6 B; 1 mA)	—	—	7	—	TO18
3 (6 B)	83*(6 B; 1 mA;	—	—	—	—	TO18
5	≥20 (10 B; 3 mA)	≤2,8	—	—	—	TO9
5	70 (10 B; 3 mA)	≤2,8	—	—	—	TO9
30 (30 B)	70 (6 B; 5 mA)	2,5	—	—	—	TO44
≤100	≥20*(10 B; 1 mA)	3,5	—	—	—	TO18
3	≥40*(0,3 B; 10 mA)	≤3	≤15	—	120*	TO9
≤100	30*(1 B; 10 mA)	5	≤20	—	—	TO1
25	50*(0,5 B; 40 mA)	1,5	≤25	—	—	TO9
5	20—80 (9 B; 1 mA)	≤2,5	—	—	≤250	TO1
10	70 (6 B; 1 mA)	1,3	—	—	—	TO9
10	60*(6 B; 1 mA)	1,5	—	—	—	TO9
≤3	≥30*(0,3 B; 10 mA)	≤3	≤20	—	—	TO18
≤5	≥30*(0,3 B; 10 mA)	≤3	≤20	—	—	TO18
≤5	≥20*(0,5 B; 10 mA)	≤3	≤20	—	—	TO9
≤5	≥20*(0,5 B; 10 mA)	≤3	≤20	—	—	TO9
≤5 (5 B)	24—100 (5 B; 1 mA)	10 (5 B)	—	(1,6 МГц)	≤1000	10
≤5 (5 B)	24—100 (5 B; 1 mA)	10 (5 B)	—	(1,6 МГц)	≤500	10
20	60 (9 B; 1 mA;	1,7	—	—	—	TO44
20	60 (9 B; 1 mA)	1,7	—	—	—	TO44
20	40 (9 B; 1 mA)	1,7	—	—	—	TO44
20	45 (9 B; 1 mA)	1,7	—	—	—	TO44
10	70 (9 B; 1 mA)	2,5	—	—	—	TO1
10	90 (9 B; 1 mA)	2,5	—	—	—	TO1
16	≥17 (6 B; 1 mA)	3,6	—	—	—	TO1
16	≥27 (5,7 B; 1 mA)	—	—	—	—	TO1
≤5 (12 B)	50—200 (9 B; 1 mA)	3,2	—	—	—	TO1
10	70 (9 B; 1 mA)	3,2	—	—	—	TO1
10	75 (9 B; 1 mA)	3,2	—	—	—	TO1
20	70 (9 B; 1 mA)	1,7	—	—	—	TO44
15	120 (6 B; 1 mA)	1,8	—	—	—	TO44
15	120 (6 B; 1 mA)	1,8	—	—	—	TO44
15	120 (6 B; 1 mA)	1,8	—	—	—	TO44
15	≥70 (12 B; 5 mA)	≤3	—	—	—	TO44
15	120 (6 B; 1 mA)	1,8	—	—	—	TO44
≤3 (10 B)	20—80 (5 B; 5 mA)	≤8 (5 B)	≤40	—	≤500 ≤1000*	10
≤3 (10 B)	60—120(5 B; 5 mA)	≤8 (5 B)	≤40	—	≤500 ≤1000*	10
≤3 (10 B)	90—250 (5 B; 5 mA)	≤8 (5 B)	≤40	—	≤500 ≤1000*	10
8	≥20 (1 B; 0,5 mA)	4	—	—	—	TO5
8	≥30 (1 B; 0,5 mA)	3	—	—	—	TO5
8	≥40 (1 B; 0,5 mA)	3	—	—	—	TO5
6	100 (2 B; 10 mA)	3,5	—	—	—	TO7
15	50 (9 B; 1 mA)	2,5	—	—	—	TO1
15	80 (9 B; 1 mA)	2,5	—	—	—	TO1
≤10 (5 B)	16—300 (5 B; 5 mA)	≤15 (5 B)	—	—	≤3500	10
≤5 (5 B)	16—250 (5 B; 5 mA)	≤10 (5 B)	—	—	≤1000	10
≤5 (5 B)	30—100 (5 B; 5 mA)	≤10 (5 B)	—	—	≤500	10
≤5 (5 B)	16—200 (5 B; 5 mA)	10 (5 B)	—	—	≤500	10
≤15 (15 B)	60—350 (6 B; 1 mA)	≤30 (6 B)	—	—	—	TO1
≤20 (15 B)	35—220 (9 B; 1 mA)	2,5 (9 B)	—	—	—	TO1
≤20 (15 B)	20—500 (9 B; 1 mA)	2,5 (9 B)	—	—	—	TO1

1	2	3	4	5	6	7
EFT320	Ge, <i>p-n-p</i> , СД	150	35	20	0,5	10
T316H	Ge, <i>p-n-p</i> , Д	120	≥50	32	1	10
T354H	Ge, <i>p-n-p</i> , Д	120	≥60	32	1	10
T317	Ge, <i>p-n-p</i> , Д	150	≥25	20	0,5	10
T319	Ge, <i>p-n-p</i> , Д	150	≥15	20	0,5	10
T320	Ge, <i>p-n-p</i> , Д	150	≥20	20	0,5	10
T357H	Ge, <i>p-n-p</i> , Д	120	≥70	20	0,5	10
2N2089	Ge, <i>p-n-p</i> , СД	100	≥44	20	1	11
ГТ308A	Ge, <i>p-n-p</i> , СД	150 (360**)	≥90	20	3	50 (120*)
ГТ308B	Ge, <i>p-n-p</i> , СД	150 (360**)	≥120	20	3	50 (120*)
ГТ308B	Ge, <i>p-n-p</i> , СД	150 (360**)	≥120	20	3	50 (120*)
2N1854	Ge, <i>p-n-p</i> , Д	150	≥40	18	2	100
2N794	Ge, <i>p-n-p</i> , М	150	≥25	13	1	100
2N795	Ge, <i>p-n-p</i> , М	150	≥35	13	4	100
2N796	Ge, <i>p-n-p</i> , М	150	≥50	13	4	100
2N1300	Ge, <i>p-n-p</i> , М	150	≥25	13	1	100
2N1301	Ge, <i>p-n-p</i> , М	150	≥35	13	4	100
2N1683	Ge, <i>p-n-p</i> , М	150	≥50	13	4	100
2N2048	Ge, <i>p-n-p</i> , СД	150	≥150	20	2	100
2N2400	Ge, <i>p-n-p</i> , СД	150	150	30	2,5	100
2SA412	Ge, <i>p-n-p</i> , М	150	≥25	13	1	100
ГТ321A	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	40**	4	200 (2 А*)
ГТ321Б	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	40**	4	200 (2 А*)
ГТ321В	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	40**	4	200 (2 А*)
ГТ321Г	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	30**	2,5	200 (2 А*)
ГТ321Д	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	30**	2,5	200 (2 А*)
ГТ321Е	Ge, <i>p-n-p</i> , К	160(20**Вт)	≥60	30**	2,5	200 (2 А*)
2N1204	Ge, <i>p-n-p</i> , М	200	≥110	20	4	500
2N1204A	Ge, <i>p-n-p</i> , М	200	≥110	20	4	500
2N1494	Ge, <i>p-n-p</i> , М	400	≥110	20	4	500
2N1494A	Ge, <i>p-n-p</i> , СД	400	≥110	20	4	500
2SA78	Ge, <i>p-n-p</i> , СД	125	≥25*	40	2	400
2N1384	Ge, <i>p-n-p</i> , СД	240	35*	30	1	500
ГТ320A	Ge, <i>p-n-p</i> , Д	200	≥80	20	3	150 (300*)
ГТ320B	Ge, <i>p-n-p</i> , Д	200	≥120	20	3	150 (300*)
ГТ320B	Ge, <i>p-n-p</i> , Д	200	≥160	20	3	150 (300*)
2N711	Ge, <i>p-n-p</i> , М	150	≥150	12	1	50
2N711A	Ge, <i>p-n-p</i> , М	150	≥110	15	1,5	100
2N711B	Ge, <i>p-n-p</i> , М	150	≥120	18	2	100
2N705	Ge, <i>p-n-p</i> , М	150	300	15	3,5	50
2N710	Ge, <i>p-n-p</i> , М	150	300	15	2	50
2N883	Ge, <i>p-n-p</i> , Д	300	≥100	25	3	250
2N2635	Ge, <i>p-n-p</i> , М	150	≥150	30	2,5	100
ГТ313A	Ge, <i>p-n-p</i> , СД	100	≥300	15	0,7	30
ГТ313B	Ge, <i>p-n-p</i> , СД	100	≥450	15	0,7	30
ГТ313B	Ge, <i>p-n-p</i> , СД	100	≥350	15	0,7	30
2N502A	Ge, <i>p-n-p</i> , СД	75	≥150	30	0,5	50

Продолжение

8	9	10	11	12	13	14
<20 (15 B)	35—220 (9 B; 1 mA)	2,5 (9 B)	—	—	—	TO1
<15 (5 B)	40—350 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<15 (5 B)	40—350 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<15 (5 B)	35—200 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<15 (5 B)	20—350 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<15 (5 B)	35—200 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<15 (5 B)	60—350 (6 B; 1 mA)	<5 (6 B)	—	—	—	TO1
<8 (15 B)	>40 (6 B; 1 mA)	<4 (6 B)	—	—	—	TO7
<2 (5 B)	20—75*(1 B; 10 mA)	<8 (5 B)	<30	—	<400 <1000*	10
<2 (5 B)	50—120*(1 B; 10 mA)	<8 (5 B)	<24	—	<400 <1000*	10
<2 (5 B)	80—200*(1 B; 10 mA)	<8 (5 B)	<24	8(1,6 МГц)	<500 <1000*	10
4,2	>40 (0,5 B; 2 mA)	<12	—	—	—	TO5
<3 (6 B)	>30*(0,3 B; 10 mA)	<12 (6 B)	—	—	140*	TO18
<3 (6 B)	>30*(0,3 B; 10 mA)	<12 (6 B)	—	—	120*	TO18
<3 (6 B)	>50*(0,3 B; 10 mA)	<12 (6 B)	—	—	80*	TO18
<3 (6 B)	>30*(0,3 B; 10 mA)	<12 (6 B)	—	—	140*	TO5
<3 (6 B)	>30*(0,3 B; 10 mA)	<12 (6 B)	—	—	120*	TO5
<3 (6 B)	>50*(0,3 B; 10 mA)	<12 (6 B)	—	—	<440*	TO5
5	>50*(0,5 B; 10 mA)	<3	<4	—	—	TO9
3	>40*(0,5 B; 50 mA)	<3	<4	—	<120*	TO9
3	>30*(0,5 B; 10 mA)	<4	<22	—	—	TO13
<3 (6 B)	>30*(3 B; 10 mA)	<12	—	—	60*	TO1
<500 (60 B)	20—60*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	600 1000*	10
<500 (60 B)	40—120*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	<600 <1000*	10
<500 (60 B)	80—200*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	<600 <1000*	10
<500 (45 B)	20—60*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	<600 <1000*	10
<500 (45 B)	40—120*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	<600 <1000*	10
<500 (45 B)	80—200*(3 B; 0,5 A)	<80 (10 B)	<3,5	—	<600 <1000*	10
7	>15*(1,5 B; 0,4 A)	8	<2,5	—	—	TO39
7	>25*(0,5 B; 0,2 A)	8	<2	—	—	TO39
7	>15*(1,5 B; 0,4 A)	8	<2	—	—	TO31
7	>25*(0,5 B; 0,2 A)	8	<2	—	—	TO31
<8 (2 B)	30—150*(1 B; 0,4 A)	—	<6	—	85*	TO44
50	50*(0,5 B; 0,2 A)	—	<6	—	<250*	TO11
<10 (20 B)	20—80*(1 B; 10 mA)	8 (5 B)	<8,5	—	<500 <400*	10
<10 (20 B)	50—160*(1 B; 10 mA)	8 (5 B)	<8,5	—	<500 <500*	10
<10 (20 B)	80—250*(1 B; 10 mA)	8 (5 B)	<8,5	—	<600 <600*	10
<100 (12 B)	>20*(0,5 B; 10 mA)	<6 (5 B)	<50	—	<120*	TO18
<100 (14 B)	25—150*(0,5 B; 10 mA)	<6 (5 B)	<11	—	<100*	TO18
<20 (15 B)	30—150*(0,5 B; 10 mA)	<5 (10 B)	<9	—	<200*	TO18
<3 (5 B)	>25*(0,3 B; 10 mA)	<5 (10 B)	<30	—	<100*	TO18
<3 (5 B)	>25*(0,5 B; 10 mA)	<5 (10 B)	<50	—	<100*	TO18
<100 (25 B)	>30*(1 B; 0,2 A)	<8 (10 B)	<2,5	—	<70*	TO5
<5 (20 B)	>30*(0,5 B; 10 mA)	<5 (5 B)	<8	—	<185*	TO18
<5 (12 B)	20—250 (5 B; 5 mA)	<2,5 (5 B)	<4,6	—	<75	II
<5 (12 B)	20—250 (5 B; 5 mA)	<2,5 (5 B)	<4,6	—	<40	II
<5 (10 B)	30—170 (5 B; 5 mA)	<2,5 (5 B)	<4,6	—	<75	II
<5 (10 B)	>15*(10 B; 2 mA)	<1,6 (10 B)	—	<7 (200 МГц)	<50	TO9

1	2	3	4	5	6	7
2N502B	Ge, <i>p-n-p</i> , СД	75	150	30	0,5	50
2N1742	Ge, <i>p-n-p</i> , СД	60	—	20	0,5	50
2N1743	Ge, <i>p-n-p</i> , СД	60	—	20	0,5	50
AFY11	Ge, <i>p-n-p</i> , М	185 (560*)	≥200	30	1	70
GF501	Ge, <i>p-n-p</i> , М	300	≥300	24	0,5	100
GF502	Ge, <i>p-n-p</i> , М	300	≥300	24	0,5	100
GF503	Ge, <i>p-n-p</i> , М	300	≥300	24	0,5	100
GF504	Ge, <i>p-n-p</i> , М	300	≥300	28	0,5	100
2N700	Ge, <i>p-n-p</i> , М	75	≥500	25	0,2	50
2N741	Ge, <i>p-n-p</i> , М	150	≥360	15	1	100
2N741A	Ge, <i>p-n-p</i> , М	150	≥300	20	1	100
2SA440	Ge, <i>p-n-p</i> , М	60	350	20	0,4	5
2SA229	Ge, <i>p-n-p</i> , М	75	400	20	0,2	5
2SA230	Ge, <i>p-n-p</i> , М	75	400	20	0,2	5
ГТ328А	Ge, <i>p-n-p</i> , ПЭ	50 (55°C)	≥400	15*	0,25	10
ГТ328Б	Ge, <i>p-n-p</i> , ПЭ	50 (55°C)	≥300	15*	0,25	10
ГТ328В	Ge, <i>p-n-p</i> , ПЭ	50 (55°C)	≥300	15*	0,25	10
2N3127	Ge, <i>p-n-p</i> , М	100	≥400	25	0,75	50
2N3279	Ge, <i>p-n-p</i> , М	100	≥400	30	1	50
2N3280	Ge, <i>p-n-p</i> , М	100	≥400	30	1	50
2N3281	Ge, <i>p-n-p</i> , М	100	≥300	30	0,5	50
2N3282	Ge, <i>p-n-p</i> , М	100	≥300	30	0,5	50
AF106	Ge, <i>p-n-p</i> , М	60	220	25	0,3	10
AF106А	Ge, <i>p-n-p</i> , М	60	220	25	0,3	10
AF109R	Ge, <i>p-n-p</i> , М	60	—	20	0,3	10
AFY12	Ge, <i>p-n-p</i> , М	60 (45°C)	230	25	0,5	10
AF200	Ge, <i>p-n-p</i> , М	80 (55°C)	—	25	0,3	10
AF201	Ge, <i>p-n-p</i> , М	80 (55°C)	—	25	0,3	10
AF202	Ge, <i>p-n-p</i> , М	80 (55°)	—	25	0,3	30
AF253	Ge, <i>p-n-p</i> , П	90 (45°C)	550	20	0,3	10
AF256	Ge, <i>p-n-p</i> , П	90 (45°C)	≥170	25	0,3	10
GF505	Ge, <i>p-n-p</i> , М	60 (45°C)	≥170	24	0,3	10
GF506	Ge, <i>p-n-p</i> , М	60 (45°C)	≥170	24	0,3	10
2N3283	Ge, <i>p-n-p</i> , М	100	≥250	25	0,5	50
2N3284	Ge, <i>p-n-p</i> , М	100	≥250	25	0,5	50
2N3286	Ge, <i>p-n-p</i> , М	100	≥250	25	0,5	50
ГТ346А	Ge, <i>p-n-p</i> , ПЭ	40 (55°C)	≥700	15*	0,3	10
ГТ346Б	Ge, <i>p-n-p</i> , ПЭ	40 (55°C)	≥550	15*	0,3	10
AF139	Ge, <i>p-n-p</i> , М	60 (45°C)	550	20	0,3	10

Продолжение

8	9	10	11	12	13	14
≤5 (10 B)	20–80* (10 B; 2 mA)	≤1,6 (10 B)	—	≤7 (200 МГц)	≤50	TO9
≤10 (10 B)	≥10* (10 B; 2 mA)	≤1,5	—	≤5,5 (200 МГц)	—	TO9
≤10 (10 B)	≥10* (10 B; 2 mA)	≤1,5	—	≤12 (200 МГц)	—	TO9
≤18 (15 B)	≥25 (6 B; 2 mA)	≤2,8 (10 B)	—	6 (200 МГц)	≤40	TO5
≤18 (15 B)	≥10* (9 B; 10 mA)	2,1 (9 B)	—	—	≤56	TO18
≤18 (15 B)	≥10* (9 B; 10 mA)	≤3,5 (9 B)	—	—	≤70	TO18
≤18 (15 B)	≥10* (9 B; 10 mA)	≤3,5 (9 B)	—	—	≤50	TO18
≤18 (15 B)	≥10* (9 B; 10 mA)	≤3,5 (9 B)	—	—	≤70	TO18
≤2 (6 B)	≥4 (6 B; 2 mA)	≤1,5 (6 B)	—	≤10 (70 МГц)	—	TO72
3	≥10 (6 B; 5 mA)	6	—	7 (30 МГц)	—	TO18
3	≥10 (6 B; 5 mA)	6	—	7 (30 МГц)	—	TO18
≤20 (20 B)	80 (6 B; 2 mA)	1,7 (6 B)	—	—	40	R146
≤10 (12 B)	10 (6 B; 2 mA)	≤1,5 (6 B)	—	—	≤150	TO17
≤10 (12 B)	10 (6 B; 2 mA)	≤1,5 (6 B)	—	—	≤150	TO17
≤10 (15 B)	20–200* (5 B; 3 mA)	≤1,5 (5 B)	—	≤7 (180 МГц)	≤5	8a
≤10 (15 B)	40–200* (5 B; 3 mA)	≤1,5 (5 B)	—	≤7 (180 МГц)	≤10	8a
≤10 (15 B)	10–70* (5 B; 3 mA)	≤1,5 (5 B)	—	≤7 (180 МГц)	≤10	8a
≤3 (10 B)	20–100* (10 B; 3 mA)	≤1,2 (10 B)	≤60	≤5 (200 МГц)	≤12	TO72
≤5 (10 B)	10–70* (10 B; 3 mA)	≤1 (10 B)	≤60	≤3,5 (200 МГц)	≤10	TO72
≤5 (10 B)	10–70* (10 B; 3 mA)	≤1,2 (10 B)	≤60	≤3,5 (200 МГц)	≤10	TO72
≤5 (10 B)	10–100* (10 B; 3 mA)	≤1,2 (10 B)	≤60	≤5 (200 МГц)	≤15	R96
≤5 (10 B)	10–100* (10 B; 3 mA)	≤1,2 (10 B)	≤60	≤5 (200 МГц)	≤15	R96
≤10 (12 B)	70* (6 B; 2 mA)	—	—	≤7,5 (200 МГц)	6	TO72
≤10 (12 B)	≥10 (12 B; 1 mA)	—	—	5,5 (200 МГц)	—	TO72
≤8 (20 B)	55* (6 B; 2 mA)	—	—	≤4,8 (200 МГц)	—	TO72
≤3 (12 B)	≥30 (12 B; 1 mA)	—	—	≤7 (200 МГц)	5	TO72
≤10 (12 B)	≥30* (10 B; 3 mA)	—	—	—	6	TO72
≤10 (12 B)	≥20* (10 B; 3 mA)	—	—	—	6	TO72
≤10 (12 B)	≥20* (10 B; 3 mA)	—	—	—	6	TO72
≤5 (12 B)	≥10* (12 B; 2 mA)	—	—	4	—	MM12
0,5 (12 B)	28* (12 B; 1 mA)	—	—	5,5	—	MM12
≤10 (12 B)	≥25 (12 B; 1 mA)	≤0,8 (12 B)	—	≤7,5 (200 МГц)	≤15	TO72
≤10 (12 B)	≥10 (12 B; 1 mA)	≤0,8 (12 B)	—	≤7,5 (200 МГц)	≤15	TO72
≤10 (10 B)	10–200* (10 B; 3 mA)	≤1,5 (10 B)	—	≤5 (200 МГц)	≤25	TO72
≤10 (10 B)	10–200* (10 B; 3 mA)	≤1,5 (10 B)	—	≤6 (200 МГц)	≤25	TO72
≤10 (10 B)	10–200* (10 B; 3 mA)	≤1,5 (10 B)	—	5 (200 МГц)	≤25	TO72
≤10 (15 B)	≥10* (10 B; 2 mA)	≤1,3 (5 B)	—	≤8 (800 МГц)	≤3	18
≤10 (15 B)	≥10* (10 B; 2 mA)	≤1,3 (5 B)	—	—	≤5,5	18
≤8 (20 B)	≥10* (12 B; 1,5 mA)	≤1,5 (12 B)	—	≤8,2 (800 МГц)	≤8	TO72

1	2	3	4	5	6	7
AF239	Ge, <i>p-n-p</i> , М	60 (45°C)	≥600	20	0,3	15
AF239S	Ge, <i>p-n-p</i> , М	60 (45°C)	780	20	0,3	15
AF240	Ge, <i>p-n-p</i> , М	60 (45°C)	500	20*	0,3	10
AF251	Ge, <i>p-n-p</i> , П	90 (45°C)	750	20	0,3	10
AF252	Ge, <i>p-n-p</i> , П	90 (45°C)	650	20	0,3	10
2SA422	Ge, <i>p-n-p</i> , М	50	≥500	20	0,4	5
GF507	Ge, <i>p-n-p</i> , М	60 (45°C)	≥250	20	0,3	10
GF145	Ge, <i>p-n-p</i> , М	60	650	20	0,3	10
GF147	Ge, <i>p-n-p</i> , М	60	650	20	0,3	10
2N3399	Ge, <i>p-n-p</i> , М	80	≥400	20	0,5	10
ГТ376А	Ge, <i>p-n-p</i> , ПЭ	35 (85°C)	≥1020	7**	0,25	10
2N2415	Ge, <i>p-n-p</i> , ПЭ	75	≥500	10**	0,3	20
2N2416	Ge, <i>p-n-p</i> , ПЭ	75	≥400	10**	0,30	20
2N3267	Ge, <i>p-n-p</i> , ПЭ	75	≥900	15	0,2	20
2N700А	Ge, <i>p-n-p</i> , М	75	≥1000	25	0,2	50
2N2360	Ge, <i>p-n-p</i> , МД	60	1600	20	0,5	—
2N2361	Ge, <i>p-n-p</i> , МД	60	1600	20	0,5	—
ГТ311Е	Ge, <i>n-p-n</i> , П	150	≥250	12	2	50 (55°C)
ГТ311Ж	Ge, <i>n-p-n</i> , П	150	≥300	12	2	50 (55°C)
ГТ311И	Ge, <i>n-p-n</i> , П	150	≥450	12	1,5	50 (55°C)
2N797	Ge, <i>n-p-n</i> , М	150	≥600	20	4	150
ГТ330Д	Ge, <i>n-p-n</i> , П	50 (45°C)	≥500	10 (20 имп.)	1,5	20
ГТ330Ж	Ge, <i>n-p-n</i> , П	50 (45°C)	≥1000	10 (20 имп.)	1,5	20
ГТ330И	Ge, <i>n-p-n</i> , П	50 (45°C)	≥500	10 (20 имп.)	1,5	20

¹ С таким типом проводимости (*n-p-n*) и таким же сочетанием параметров зисторы другого типа проводимости (*p-n-p*):

AF279	Ge, <i>p-n-p</i> , М	60	780	20*	0,3	10
AF280	Ge, <i>p-n-p</i> , М	60	500	20*	0,3	10
ГТ329А	Ge, <i>n-p-n</i> , П	50 (40°C)	≥1200	10	0,5	20
ГТ329Б	Ge, <i>n-p-n</i> , П	50 (40°C)	≥1680	10	0,5	20
ГТ329В	Ge, <i>n-p-n</i> , П	50 (40°C)	≥990	10	0,5	20
ГТ329Г	Ge, <i>n-p-n</i> , П	50 (40°C)	≥690	10	0,5	20

¹ С таким типом проводимости (*n-p-n*) и таким же сочетанием параметров логичные транзисторы другого типа проводимости (*p-n-p*):

Продолжение

8	9	10	11	12	13	14
≤ 8 (20 B)	$\geq 15^*$ (12 B; 1,5 mA)	—	—	≤ 6 (800 МГц)	≤ 5	TO72
$\leq 8^*$ (20 B)	—	—	—	≤ 5 (800 МГц)	—	TO72
$\leq 8^*$ (20 B)	$\geq 10^*$ (10 B; 2 mA)	—	—	6,5 (800 МГц)	—	TO72
≤ 5 (12 B)	30 (12 B; 2 mA)	0,38*	—	4,8	—	MM12
≤ 5 (12 B)	≥ 10 (12 B; 2 mA)	0,38*	—	5,2	—	MM12
≤ 30 (20 B)	25 (12 B; 2 mA)	$\leq 1,2$	—	—	2,2	TO17
≤ 8 (20 B)	$\geq 11^*$ (12 B; 1,5 mA)	0,4 (12 B)	—	≤ 9 (800 МГц)	≤ 5	TO72
≤ 8 (20 B)	$\geq 10^*$ (12 B; 1,5 mA)	1,1 (12 B)	—	≤ 9 (800 МГц)	15	A4
≤ 8 (20 B)	$\geq 10^*$ (10 B; 2 mA)	1,2 (10 B)	—	≤ 6 (800 МГц)	15	A4
8	$\geq 10^*$ (12 B; 1,5 mA)	<2	—	—	—	TO72
≤ 5 (7 B)	10–150*	$\leq 1,2$ (5 B)	—	$\leq 3,5$ (180 МГц)	≤ 15	8a
≤ 5 (10 B)	5 B; 2 mA,					
	10–200*	≤ 2 (6 B)	—	≤ 3 (200 МГц)	≤ 8	TO72
≤ 5 (10 B)	(6 B; 2 mA)					
	8–200*	≤ 2 (6 B)	—	≤ 4 (200 МГц)	≤ 10	TO72
5	(6 B; 2 mA)					
	≥ 15 (6 B; 3 mA)	$\leq 1,7$	—	—	—	TO72
≤ 2 (6 B)	4–50 (6 B; 2 mA)	$\leq 1,4$ (6 B)	—	≤ 10 (70 МГц)	—	TO17
≤ 10	33* (10 B; 2 mA)	—	—	$\leq 5,5$ (200 МГц)	—	TO12
≤ 10	33* (10 B; 2 mA)	—	—	≤ 12 (200 МГц)	—	TO12
≤ 10 (12 B)	15–80*	$\leq 2,5$ (5 B)	≤ 20	—	≤ 75 ; $\leq 50^*$	11
≤ 10 (12 B)	(3 B; 15 mA)					
	50–200*	$\leq 2,5$ (5 B)	≤ 20	—	≤ 100 ; $\leq 50^*$	11
≤ 10 (10 B)	(3 B; 15 mA)					
	100–300*	$\leq 2,5$ (5 B)	≤ 20	—	≤ 100 ; $\leq 50^*$	11
≤ 1 (10 B)	(3 B; 15 mA)					
	40–75*	≤ 4 (5 B)	≤ 14	—	$\leq 80^{**}$	TO18
≤ 8 (10 B)	(0,25 B; 10 mA)					
	30–400*	≤ 3 (5 B)	≤ 15	≤ 8 (400 МГц)	≤ 30 ; $\leq 50^*$	12
≤ 5 (10 B)	(5 B; 5 mA)					
	30–400*	≤ 3 (5 B)	≤ 15	—	≤ 50 ; $\leq 50^*$	12
≤ 5 (10 B)	(5 B; 5 mA)					
	10–400*	≤ 3 (5 B)	≤ 15	≤ 8 (400 МГц)	≤ 30 ; $\leq 50^*$	12
	(5 B; 5 mA)					

за рубежом германевые транзисторы не выпускались. Рекомендуемые транзисторы

< 15* (20 B)	45* (5 B; 5 mA)	0,42 (10 B)	-	<5 (800 МГц) 7	-	TO50
<15* (20 B)	$\geq 10^*$ (10 B; 2 mA)	0,42 (10 B)	-	(800 МГц)	-	TO50
≤ 5 (10 B)	$15-300^*$ (5 B; 5 mA)	≤ 2 (5 B)	-	≤ 4 (400 МГц)	≤ 15	12
≤ 5 (10 B)	$15-300^*$ (5 B; 5 mA)	≤ 3 (5 B)	-	≤ 6 (400 МГц)	≤ 30	12
≤ 5 (10 B)	$15-300^*$ (5 B; 5 mA)	≤ 3 (5 B)	-	≤ 6 (400 МГц)	≤ 20	12
≤ 5 (10 B)	$15-300^*$ (5 B; 5 mA)	≤ 2 (5 B)	-	≤ 5 (400 МГц)	≤ 15	12

за рубежом германиевые транзисторы не выпускались. Рекомендуемые ана-

1	2	3	4	5	6	7
2N5043	Ge, <i>p-n-p</i> , ПЭ	30 (100° C)	≥1500	15	0,7	30
2N5044	Ge, <i>p-n-p</i> , ПЭ	30 (100° C)	≥1000	15	0,7	30
ГТ341А	Ge, <i>n-p-n</i> ¹ , П	35 (60° C)	≥1500	10	0,3	10
ГТ341Б	Ge, <i>n-p-n</i> , П	35 (60° C)	≥1950	10	0,3	10
ГТ341В	Ge, <i>n-p-n</i> , П	35 (60° C)	≥1500	10	0,5	10

¹ С таким типом проводимости (*n-p-n*) и таким же сочетанием параметров логичные транзисторы другого типа проводимости (*p-n-p*):

T1X3024	Ge, <i>p-n-p</i> , М	75	≥1500	15	0,3	50
T1XM101	Ge, <i>p-n-p</i> , ПЭ	75	≥1500	15	0,3	50
T1XM104	Ge, <i>p-n-p</i> , ПЭ	40	≥1400	15	0,3	20
2N2999	Ge, <i>p-n-p</i> , ПЭ	75	≥1400	15	0,2	20
ГТ362А	Ge, <i>n-p-n</i> ¹ , П	40	≥2400	5 (55° C)	0,2	10
ГТ362Б	Ge, <i>n-p-n</i> , П	40	≥2400	5 (55° C)	0,2	10

¹ С таким типом проводимости (*n-p-n*) и таким же сочетанием параметров логичные транзисторы другого типа проводимости (*p-n-p*):

T1XM103	Ge, <i>p-n-p</i> , ПЭ	40	≥1800	15	0,3	20
П307	Si, <i>n-p-n</i> , П	250	≥20	80* (70° C)	3	30 (120*)
П307А	Si, <i>n-p-n</i> , П	250	≥20	80*	3	30 (120*)
П307Б	Si, <i>n-p-n</i> , П	250	≥20	80*	3	15 (120*)
П307В	Si, <i>n-p-n</i> , П	250	≥20	60*	3	30 (120*)
П307Г	Si, <i>n-p-n</i> , П	250	≥20	80*	3	15 (120*)
П308	Si, <i>n-p-n</i> , П	250	≥20	120*	3	30 (120*)
П309	Si, <i>n-p-n</i> , П	250	≥20	120*	3	30 (120*)
2N754	Si, <i>n-p-n</i> , П	300	≥30	60	3	50
2N755	Si, <i>n-p-n</i> , П	300	≥30	100	3	50
2SC727 BFY80	Si, <i>n-p-n</i> , Д Si, <i>n-p-n</i> , Д	350 260 (45 °C)	20 ≥50	100 100	3 7	100 50 (200*)
BC285	Si, <i>n-p-n</i> , Д	360	80	120	5	100
BSX21	Si, <i>n-p-n</i> , ПЭ	300	≥60	120	5	100 (250*)
2N844	Si, <i>n-p-n</i> , М	300	≥50*	60	3	50

Продолжение

8	9	10	11	12	13	14
≤6 (10 В)	15—150* (5 В; 3 мА)	≤1 (5 В)	—	≤2,5 (400 МГц)	—	TO72
≤6 (10 В)	15—150* (5 В; 3 мА)	≤1 (5 В)	—	≤3,5 (400 МГц)	—	TO72
≤5 (10 В)	15—300* (5 В; 5 мА)	≤1 (5 В)	—	≤4,5 (1 ГГц)	≤10	12
≤5 (10 В)	15—300* (5 В; 5 мА)	≤1 (5 В)	—	≤5,5 (1 ГГц)	≤10	12
≤5 (10 В)	15—300* (5 В; 5 мА)	≤1 (5 В)	—	≤5,5 (1 ГГц)	≤10	12

за рубежом германиевые транзисторы не выпускались. Рекомендуемые ана-

≤6 (10 В)	25—250* (5 В; 3 мА)	≤3 (5 В)	—	≤5 (1 ГГц)	≤3	U26
≤6 (10 В)	70 (5 В; 2 мА)	≤3	—	≤2,6 (200 МГц)	—	TO72
—	—	≤1	—	5,5 (1,5 ГГц)	—	X60
≤100 (15 В)	100* (6 В; 3 мА)	1,7	—	≤7 (1 ГГц)	—	TO72
≤5 (5 В)	10—200* (3 В; 5 мА)	≤1 (5 В)	—	≤4,5 (2,25 ГГц)	≤10	12
≤5 (5 В)	10—250* (3 В; 5 мА)	≤1 (5 В)	—	≤5,5 (2,25 ГГц)	≤20	12

за рубежом германиевые транзисторы не выпускались. Рекомендуемые ана-

—	—	≤1	—	≤7 (3 ГГц)	—	X60
≤20 (20 В)	16—50* (20 В; 10 мА)	—	≤150	—	—	2
≤20 (20 В)	30—90* (20 В; 10 мА)	—	≤200	—	—	2
≤20 (20 В)	50—150* (20 В; 10 мА)	—	≤330	—	—	2
≤20 (60 В)	50—150* (20 В; 10 мА)	—	≤250	—	—	2
≤20 (80 В)	16—50* (20 В; 10 мА)	—	≤250	—	—	2
≤20 (120 В)	30—90* (20 В; 10 мА)	—	≤330	—	—	2
≤20 (120 В)	16—50* (20 В; 10 мА)	—	≤200	—	—	2
≤1 (60 В)	20—80* (10 В; 5 мА)	≤10 (10 В)	≤80	—	—	TO18
I (100 В)	20—80* (10 В; 5 мА)	≤10 (10 В)	≤80	—	—	TO18
≤1 (30 В)	90* (4 В; 10 мА)	10 (6 В)	10	—	—	TO18
≤0,1 (75 В)	≥30 (10 В; 2 мА)	—	—	—	—	TO18
0,1	≥30 (30 В; 5 мА)	4	—	—	—	TO18
≤0,2 (90 В)	82* (1 В; 10 мА)	≤4,5 (10 В)	≤175	—	—	TO18
≤1 (60 В)	≤40* (10 В; 5 мА)	≤10 (10 В)	≤80	—	—	TO18

1	2	3	4	5	6	7
2N845	Si, n-p-n, M	300	≥50*	100	3	50
2N734	Si, n-p-n, П	500	≥30	80	5	50
2N735	Si, n-p-n, П	500	≥30	80	5	50
2N738	Si, n-p-n, П	500	≥30	125	5	50
2N739	Si, n-p-n, П	500	—	125	5	50
2T3531	Si, n-p-n, П	250	≥100	115**	5	30
2T3532	Si, n-p-n, П	250	≥100	90**	5	30
KT301	Si, n-p-n, П	150 (60° C)	≥20	20	3	10
KT301А	Si, n-p-n, П	150 (60° C)	≥20	20	3	10
KT301Б	Si, n-p-n, П	150 (60° C)	≥20	30	3	10
KT301В	Si, n-p-n, П	150 (60° C)	≥20	30	3	10
KT301Г	Si, n-p-n, П	150 (60° C)	≥30	20	3	10
KT301Д	Si, n-p-n, П	150 (60° C)	≥30	20	3	10
KT301Е	Si, n-p-n, П	150 (60° C)	≥30	20	3	10
KT301Ж	Si, n-p-n, П	150 (60° C)	≥30	20	3	10
2N1390	Si, n-p-n, П	300	30	20	2	50
2N1387	Si, n-p-n, П	300	50	30	3	50
2N842	Si, n-p-n, М	300	≥30*	45	2	50
2N843	Si, n-p-n, М	300	≥30*	45	2	50
KT358А	Si, n-p-n, ПЭ	100 (50° C)	≥80	15	4	30 (60*)
KT358Б	Si, n-p-n, ПЭ	100 (50° C)	≥120	30	4	30 (60*)
KT358В	Si, n-p-n, ПЭ	100 (50° C)	≥120	15	4	30 (60*)
2SC401	Si, n-p-n, ПЭ	100	170	50	5	100
2SC402	Si, n-p-n, ПЭ	100	170	50	3	100
2SC403	Si, n-p-n, ПЭ	100	170	50	3	100
2SC404	Si, n-p-n, ПЭ	100	170	50	3	50
2SC828	Si, n-p-n, ПЭ	150	150	30	5	50
2SC828А	Si, n-p-n, ПЭ	150	150	45	5	50
2SC829	Si, n-p-n, ПЭ	150	230	30	5	30
2N3709	Si, n-p-n, П	250	80	30	6	30
2N3710	Si, n-p-n, П	250	80	30	6	30
KT312А	Si, n-p-n, ПЭ	225	≥80	20	4	30 (60*)
KT312Б	Si, n-p-n, ПЭ	225	≥120	35	4	30 (60*)
KT312В	Si, n-p-n, ПЭ	225	≥120	20	4	30 (60*)
BCV56	Si, n-p-n, П	300	85	45	5	100
BCI01	Si, n-p-n, П	300	≥30	40	7	40
SF131A-F	Si, n-p-n, П	300	≥200	20	5	50
SF132A-F	Si, n-p-n, П	300	≥200	40	5	50
2N702	Si, n-p-n, М	300	≥70	25	5	50
2N703	Si, n-p-n, М	300	≥70	25	5	50
2SC33	Si, n-p-n, ПЭ	150	≥125	45	3	50
2SC281	Si, n-p-n, М	200	≥100	30	5	100
2SC105	Si, n-p-n, ПЭ	250	≥100	30	5	80
2N780	Si, n-p-n, ПЭ	300	≥60	45	5	50

Продолжение

8	9	10	11	12	13	14
≤ 1 (100 B)	$\geq 40^*$ (10 B; 5 mA)	≤ 10 (10 B)	≤ 80	—	—	TO18
1	20–50 (5 B; 10 mA)	≤ 10 (5 B)	≤ 100	—	—	TO18
—	40–100 (5 B; 10 mA)	≤ 10 (5 B)	≤ 100	—	—	TO18
—	20–50 (5 B; 10 mA)	≤ 10 (5 B)	≤ 100	—	—	TO18
—	40–100 (5 B; 10 mA)	≤ 10 (5 B)	≤ 100	—	—	TO18
$\leq 0,1$	30–80	≤ 4	—	—	—	TO5
$\leq 0,1$	30–80	≤ 4	—	—	—	TO5
≤ 10 (20 B)	20–60 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
≤ 10 (20 B)	40–120 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
≤ 10 (30 B)	10–32 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 4500	36
≤ 10 (30 B)	20–60 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 4500	36
≤ 10 (20 B)	10–32 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
≤ 10 (20 B)	20–60 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
≤ 10 (20 B)	40–120 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
≤ 10 (20 B)	80–300 (10 B; 3 mA)	≤ 10 (10 B)	≤ 300	—	≤ 2000	36
0,8	≥ 15 (5 B; 10 mA)	7	—	—	—	TO5
0,1	30 (5 B; 10 mA)	4	—	—	—	TO5
≤ 1 (45 B)	20–55* (5 B; 10 mA)	≤ 10 (10 B)	≤ 120	—	10*	TO18
≤ 1 (45 B)	45–150* (5 B; 10 mA)	≤ 10 (10 B)	≤ 120	—	10*	TO18
≤ 10 (15 B)	10–100* (5,5 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	14
≤ 10 (30 B)	25–100* (5,5 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	14
≤ 10 (15 B)	50–280* (5,5 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	14
0,2	90 (3 B; 1 mA)	2,5	—	—	—	U37
0,2	90 (3 B; 1 mA)	2,5	—	—	—	U37
0,2	60 (3 B; 1 mA)	2,2	—	—	—	U37
0,2	90 (3 B; 1 mA)	2,2	—	—	—	U37
1	$\geq 65^*$ (5 B; 20 mA)	5	—	—	—	TO92
1	$\geq 65^*$ (5 B; 20 mA)	5	—	—	—	TO92
10	≥ 40 (10 B; 1 mA)	1,3	—	—	—	TO92
$\leq 0,1$ (20 B)	45–165 (5 B; 1 mA)	—	≤ 100	—	—	TO92
$\leq 0,1$ (20 B)	90–330 (5 B; 1 mA)	—	≤ 100	—	—	TO92
≤ 10 (20 B)	10–100* (2 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	15a
≤ 10 (35 B)	25–100* (2 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	15a
≤ 10 (20 B)	50–280* (2 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 500	15a
0,1	≥ 100 (5 B; 2 mA)	4,5	≤ 8	—	—	TO18
$\leq 0,02$ (45 B)	30–120* (1,5 B; 10 mA)	≤ 8 (5 B)	≤ 60	—	—	TO18
$\leq 0,1$ (20 B)	18–1120* (1 B; 10 mA)	≤ 5 (10 B)	≤ 50	7 (1 кГц)	≤ 300	A4
$\leq 0,1$ (40 B)	18–1120* (1 B; 10 mA)	≤ 5 (10 B)	≤ 50	7 (1 кГц)	≤ 300	A4
$\leq 0,5$ (10 B)	20–60* (5 B; 10 mA)	≤ 6 (5 B)	≤ 50	—	—	TO18
$\leq 0,5$ (10 B)	40–100* (5 B; 10 mA)	≤ 6 (5 B)	≤ 50	—	—	TO18
$\leq 0,1$ (20 B)	25–125* (10 B; 5 mA)	≤ 6 (10 B)	—	—	—	TO5
$\leq 0,1$ (20 B)	60–320* (6 B; 10 mA)	≤ 10	—	—	—	TO1
$\leq 0,005$ (15 B)	60* (1 B; 10 mA)	≤ 6 (10 B)	—	—	—	TO18
0,01	≥ 35 (5 B; 0,5 mA)	≤ 4	—	—	—	TO18

1	2	3	4	5	6	7
BCY42	Si, n-p-n, ПЭ	300	≥100	40	5	100
BCY43	Si, n-p-n, ПЭ	300	≥100	40	5	100
B8Y73	Si, n-p-n, ПЭ	300	145	25	5	100
2SC282	Si, n-p-n, М	350	≥100	30	5	100
2N728	Si, n-p-n, ПЭ	300	≥100	15	3	20
2N729	Si, n-p-n, ПЭ	300	≥100	30	3	20
BF240	Si, n-p-n, ПЭ	300	≥90	15	4	100
KT315А	Si, n-p-n, ПЭ	150 (250**)	≥250	25*	6	100
KT315В	Si, n-p-n, ПЭ	150 (250**)	≥250	20*	6	100
KT315В	Si, n-p-n, ПЭ	150 (250**)	≥250	40*	6	100
KT315Г	Si, n-p-n, ПЭ	150 (250**)	≥250	35*	6	100
KT315Д	Si, n-p-n, ПЭ	150 (250**)	≥250	40*	6	100
KT315Е	Si, n-p-n, ПЭ	150 (250**)	≥250	35*	6	100
KT315Ж	Si, n-p-n, ПЭ	100	≥150	15*	6	50
KT315И	Si, n-p-n, ПЭ	100	≥150	60*	6	50
2SC641	Si, n-p-n, ПЭ	100	≥200	40	5	100
2SC633	Si, n-p-n, ПЭ	180	140	25	6	100
2SC634	Si, n-p-n, ПЭ	180	140	40	6	100
2N2711	Si, n-p-n, П	200	120	18	5	100
2N2712	Si, n-p-n, П	200	120	18	5	100
2N3397	Si, n-p-n, ПЭ	200	120	25	5	100
BFP719	Si, n-p-n, ПЭ	150	≥250	15**	5	100
BFP720	Si, n-p-n, ПЭ	150	≥250	15**	5	100
BFP721	Si, n-p-n, ПЭ	150	≥250	30**	5	100
BFP722	Si, n-p-n, ПЭ	150	≥250	25**	5	100
KT339А	Si, n-p-n, ПЭ	250 (55° С)	≥300	40	4	25
KT339Б	Si, n-p-n, ПЭ	250 (55° С)	≥250	25	4	25
KT339В	Si, n-p-n, ПЭ	250 (55° С)	≥450	40	4	25
KT339Г	Si, n-p-n, ПЭ	250 (55° С)	≥250	40	4	25
KT339Д	Si, n-p-n, ПЭ	250 (55° С)	≥250	40	4	25
BF173	Si, n-p-n, ПЭ	260 (45° С)	550	40	4	25
BF199	Si, n-p-n, ПЭ	500	500	40	4	25
KF173	Si, n-p-n, ПЭ	260	≥400	40	4	25
BF306	Si, n-p-n, ПЭ	250	500	40	4	25
BF208	Si, n-p-n, ПЭ	200	≥350	40	4	25
BF197	Si, n-p-n, ПЭ	320	550	40	4	25
BF223	Si, n-p-n, ПЭ	330	750	35	4	40
BF 311	Si, n-p-n, ПЭ	320	750	35	4	40
BFJ70	Si, n-p-n, ПЭ	175	≥550	40	3,5	25
Б273	Si, n-p-n, ПЭ	260 (45° С)	550	40	4	25
MPS-H37	Si, n-p-n, ПЭ	310	≥300	40**	5	—
2SC563	Si, n-p-n, ПЭ	145	—	40	4	25

Продолжение

8	9	10	11	12	13	14
0,025	$\geq 45^*$ (5 B; 1 mA)	≤ 6	—	—	—	TO18
0,025	$\geq 75^*$ (5 B; 1 mA)	≤ 6	—	—	—	TO18
$\leq 0,1$ (20 B)	$\geq 35^*$ (1 B; 1 mA)	6 (10 B)	≤ 5	—	—	TO18
$\leq 0,1$ (20 B)	60—320* (6 B; 10 mA)	10	—	—	600*	TO1
≤ 5 (15 B)	20—200* (6B; 10mA)	≤ 12 (10 B)	≤ 70	—	—	TO18
≤ 5 (30 B)	20—200* (6 B; 10 mA)	≤ 12 (10 B)	≤ 70	—	—	TO18
$\leq 0,5$ (15 B)	$\geq 35^*$ (4,5 B; 2 mA)	≤ 4 (10 B)	≤ 100	—	—	TO18
≤ 1 (10 B)	2 0—90* (10 B; 1 mA)	≤ 7 (10 B)	≤ 20	—	≤ 300	16
≤ 1 (10 B)	50—350* (10 B; 1 mA)	≤ 7 (10 B)	≤ 20	—	≤ 500	16
≤ 1 (10 B)	20—90* (10 B; 1 mA)	≤ 7 (10 B)	≤ 20	—	≤ 500	16
≤ 1 (10 B)	50—350* (10 B; 1 mA)	≤ 7 (10 B)	≤ 50	—	≤ 500	16
≤ 1 (10 B)	20—90* (10 B; 1 mA)	≤ 7 (10 B)	≤ 50	—	≤ 1000	16
≤ 1 (10 B)	50—350* (10 B; 1 mA)	≤ 7 (10 B)	≤ 50	—	≤ 1000	16
≤ 1 (10 B)	30—250* (10 B; 1 mA)	10 (10 B)	≤ 25	—	{ ≤ 1000 $\leq 250^*$	16
≤ 1 (10 B)	$\geq 30^*$ (10 B; 1 mA)	—	—	—	—	16
$\leq 0,25$	35—200* (1 B; 10 mA)	6	—	—	30*	MM12
0,2	90* (3 B; 1 mA)	4,5	—	—	—	U37
0,2	90* (3 B; 1 mA)	4,5	—	—	—	U37
$\leq 0,5$ (18 B)	30—90* (4,5 B; 2 mA)	≤ 12 (10 B)	≤ 20	2,8 (10 кГц)	—	R67
$\leq 0,5$ (18 B)	75—225* (4,5 B; 2 mA)	≤ 12 (10 B)	≤ 20	2,8 (10 кГц)	—	R67
0,1	45—500* (4,5 B; 2 mA)	≤ 10	≤ 20	—	—	TO98
—	20—90* (10 B; 1 mA)	≤ 7 (10 B)	—	—	≤ 300	MM10
—	50—350* (10 B; 1 mA)	≤ 7 (10 B)	—	—	≤ 500	MM10
—	20—90* (10 B; 1 mA)	≤ 7 (10 B)	—	—	≤ 500	MM10
—	50—350* (10 B; 1 mA)	≤ 7 (10 B)	—	—	≤ 500	MM10
≤ 1 (40 B)	$\geq 25^*$ (10 B; 7 mA)	≤ 2 (5 B)	—	—	≤ 25	86
≤ 1 (25 B)	$\geq 15^*$ (10 B; 7 mA)	≤ 2 (5 B)	—	—	≤ 25	86
≤ 1 (40 B)	$\geq 25^*$ (10 B; 7 mA)	≤ 2 (5 B)	—	—	≤ 50	86
≤ 1 (40 B)	$\geq 40^*$ (10 B; 7 mA)	≤ 2 (5 B)	—	—	≤ 100	86
≤ 1 (40 B)	$\geq 15^*$ (10 B; 7 mA)	≤ 2 (5 B)	—	—	≤ 150	86
—	$\geq 38^*$ (10 B; 7 mA)	0,23*	—	—	—	TO72
$\leq 0,1$ (30 B)	$\geq 40^*$ (10 B; 7 mA)	0,33*	—	—	—	TO92
—	—	$\leq 0,35^*$	—	—	—	TO72
$\leq 0,1$ (20 B)	$\geq 37^*$ (10 B; 7 mA)	$\leq 0,35^*$	—	—	—	TO72
$\leq 0,1$ (20 B)	$\geq 40^*$ (10 B; 7 mA)	$\leq 0,3^*$	—	—	—	TO72
$\leq 0,05$ (20 B)	87* (10 B; 7 mA)	0,32*	—	—	—	MM10
$\leq 0,05$ (20 B)	79* (10 B; 15 mA)	0,3*	—	—	—	MM10
$\leq 0,05$ (20 B)	79* (10 B; 15 mA)	0,3*	—	—	—	TO92
$\leq 0,045$ (20 B)	—	0,27*	—	—	—	TO72
$\leq 0,5$ (35 B)	$\geq 25^*$ (10 B; 5 mA)	0,23*	≤ 50	—	—	TO72
—	$\geq 38^*$ (10 B; 7 mA)	0,23*	—	—	—	TO92

1	2	3	4	5	6	7
KT375A	Si, <i>n-p-n</i> , ПЭ	200 (400**)	≥ 250	60	5	100 (200*)
KT375Б	Si, <i>n-p-n</i> , ПЭ	200 (400*)	≥ 250	30	5	100 (200*)
BCI70A	Si, <i>n-p-n</i> , ПЭ	200	100	20**	5	100
BCI70B	Si, <i>n-p-n</i> , ПЭ	200	100	20**	5	100
2N3903	Si, <i>n-p-n</i> , ПЭ	310	≥ 250	60	6	200
2N3904	Si, <i>n-p-n</i> , ПЭ	310	≥ 300	60	6	200
2N5219	Si, <i>n-p-n</i> , ПЭ	310	≥ 150	20	3	100
2N5223	Si, <i>n-p-n</i> , ПЭ	310	≥ 150	25	3	100
MPS706	Si, <i>n-p-n</i> , ПЭ	310	≥ 200	25	3	—
MPS706A	Si, <i>n-p-n</i> , ПЭ	310	≥ 200	25	5	—
2SC370	Si, <i>n-p-n</i> , ПЭ	200	≥ 80	30	4	100
2SC371	Si, <i>n-p-n</i> , ПЭ	200	≥ 80	30	4	100
2SC372	Si, <i>n-p-n</i> , ПЭ	200	≥ 80	30	4	100
BSW88A	Si, <i>n-p-n</i> , ПЭ	300 (45° С)	≥ 200	35	5	100
BSX80	Si, <i>n-p-n</i> , ПЭ	230	≥ 200	35	5	200
BSX81A	Si, <i>n-p-n</i> , ПЭ	300	≥ 200	35	5	100
SF215	Si, <i>n-p-n</i> , П	200	≥ 100	20	5	100
SF216	Si, <i>n-p-n</i> , П	200	≥ 100	40	5	100
SS216	Si, <i>n-p-n</i> , ПЭ	200	≥ 250	20	5	100 (200*)
SS218	Si, <i>n-p-n</i> , ПЭ	200	350	20	5	100 (200*)
SS219	Si, <i>n-p-n</i> , ПЭ	200	350	20	5	100 (200*)
2SC712	Si, <i>n-p-n</i> , ПЭ	200	150	30	4	100
2N3605	Si, <i>n-p-n</i> , ПЭ	200	300	18	5	200
2N3606	Si, <i>n-p-n</i> , ПЭ	200	300	18	5	200
2N3607	Si, <i>n-p-n</i> , ПЭ	200	300	18	5	200
2SC620	Si, <i>n-p-n</i> , ПЭ	250	200	50	5	200
KT350A	Si, <i>p-n-p</i> , ПЭ	200 (30° С)	≥ 100	15*	4	600*
2N978	Si, <i>p-n-p</i> , ПЭ	330	≥ 40	30	5	600
MPS6562	Si, <i>p-n-p</i> , ПЭ	500	≥ 60	25	4	600
MPS6563	Si, <i>p-n-p</i> , ПЭ	500	≥ 60	20	4	600
KT351A	Si, <i>p-n-p</i> , ПЭ	200 (30° С)	≥ 200	15*	4	400*
KT351Б	Si, <i>p-n-p</i> , ПЭ	200 (30° С)	≥ 200	15*	4	400*
2N2696	Si, <i>p-n-p</i> , ПЭ	360	≥ 100	25	4	500
BC192	Si, <i>p-n-p</i> , ПЭ	400	≥ 100	25	5	500
BSV49A	Si, <i>p-n-p</i> , ПЭ	400	200	30	5	500
2N3121	Si, <i>p-n-p</i> , ПЭ	360	≥ 130	45	4	500
2N5221	Si, <i>p-n-p</i> , ПЭ	310	≥ 100	15	3	500
BFW89	Si, <i>p-n-p</i> , П	300	≥ 100	40	5	500

Продолжение

8	9	10	11	12	13	14
≤ 1 (60 B)	10—100* (2 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 300	17
≤ 1 (30 B)	50—280* (2 B; 20 mA)	≤ 5 (10 B)	≤ 40	—	≤ 300	17
$\leq 0,1$ (15 B)	$\geq 30^*$ (1 B; 30 mA)	≤ 4 (10 B)	≤ 14	≤ 10 (1 кГц)	—	X64
$\leq 0,1$ (15 B)	$\geq 60^*$ (1 B; 30 mA)	≤ 4 (10 B)	≤ 14	≤ 10 (1 кГц)	—	X64
≤ 10 (60 B)	50—150* (1 B; 10 mA)	$\leq 4,5$ (5 B)	≤ 20	≤ 6 (1 кГц)	$\leq 175^*$	TO92
≤ 10 (60 B)	100—300* (1 B; 10 mA)	$\leq 4,5$ (5 B)	≤ 20	≤ 5 (1 кГц)	$\leq 200^*$	TO92
≤ 10	≥ 35 (10 B; 2 mA)	≤ 4 (10 B)	≤ 70	—	—	TO92
$\leq 0,1$ (10 B)	50—800 (10 B; 2 mA)	≤ 4 (10 B)	≤ 70	—	—	TO92
$\leq 0,5$ (15 B)	$\leq 20^*$ (1 B; 10 mA)	≤ 6 (10 B)	≤ 60	—	50***	TO92
$\leq 0,5$ (15 B)	20—60* (1 B; 10 mA)	≤ 6 (10 B)	≤ 60	—	50***	TO92
$\leq 0,5$ (18 B)	25—50* (12 B; 2 mA)	$\leq 3,5$ (10 B)	—	—	50***	R67
$\leq 0,5$ (18 B)	40—140 (12 B; 2 mA)	$\leq 3,5$ (10 B)	—	—	50***	R67
$\leq 0,5$ (18 B)	40—240 (12 B; 2 mA)	$\leq 3,5$ (10 B)	—	—	50**	R67
$\leq 0,05$ (25 B)	100—300* (1 B; 10 mA)	—	—	—	$\leq 800^{**}$	X73
$\leq 0,05$ (20 B)	80* (1 B; 10 mA)	—	—	—	$\leq 80^{**}$	MM11
$\leq 0,05$ (25 B)	100—300* (1 B; 10 mA)	≤ 6	—	—	800***	MM11
$\leq 0,1$ (20 B)	28—560 (6 B; 2 mA)	$\leq 4,3$ (10 B)	—	8 (100 МГц)	85	A5
$\leq 0,1$ (20 B)	28—560 (6 B; 2 mA)	$\leq 4,3$ (10 B)	—	8 (100 МГц)	85	A5
$\leq 0,1$ (20 B)	18—280* (0,5 B; 30 mA)	2,6 (6 B)	≤ 15	—	280**	A5
$\leq 0,1$ (20 B)	18—280* (0,5 B; 30 mA)	2,6 (6 B)	≤ 15	—	$\leq 60^{**}$	A5
$\leq 0,1$ (20 B)	18—280* (0,5 B; 30 mA)	—	≤ 15	—	30**	A5
≤ 1	35—500* (6 B; 10 mA)	2,5	—	—	—	TO92
0,5	$\geq 30^*$ (1 B; 10 mA)	≤ 6	≤ 25	—	$\leq 20^*$	R67
0,5	$\geq 30^*$ (1 B; 10 mA)	≤ 6	≤ 25	—	$\leq 35^*$	R67
≤ 1	$\leq 30^*$ (1 B; 10 mA)	≤ 6	≤ 25	—	$\leq 45^*$	R67
≤ 1	35—300* (6 B; 10 mA)	7	—	—	100	TO92
≤ 1 (10 B)	20—200* (1 B; 0,5 A)	≤ 70 (5 B)	≤ 2	—	—	18
≤ 5 (10 B)	15—60* (10 B; 0,15 A)	≤ 45 (10 B)	≤ 10	—	—	TO18
0,1 (20 B)	50—200* (1 B; 0,5 A)	≤ 30 (10 B)	≤ 1	—	—	TO92
0,1 (20 B)	50—200* (1 B; 0,35 A)	≤ 30 (10 B)	$\leq 1,3$	—	—	TO92
≤ 1 (10 B)	20—80* (1 B; 0,3 A)	≤ 20 (5 B)	$\leq 1,5$	—	—	18
≤ 1 (10 B)	50—200* (1 B; 0,3 A)	≤ 20 (5 B)	$\leq 2,5$	—	—	18
$\leq 0,025$ (10 B)	$\geq 20^*$ (2 B; 0,3 A)	≤ 20 (10 B)	≤ 5	—	$\leq 170^{**}$	TO18
$\leq 0,1$ (20 B)	60—180* (5 B; 50 mA)	≤ 12 (10 B)	≤ 5	—	—	TO92
0,025	80* (25 B; 0,15 A)	8	—	—	—	TO18
0,01	$\geq 15^*$ (2 B; 0,3 A)	≤ 10	≤ 5	—	$\leq 100^{**}$	TO18
$\leq 0,01$ (10 B)	30—60 (10 B; 50 mA)	≤ 15 (5 B)	$\leq 3,3$	—	—	TO92
0,5	80—320* (0,15 A)	18	$\leq 2,6$	—	$\leq 250^*$	MM10

1	2	3	4	5	6	7
BFW90	Si, p-n-p, П	300	≥100	40	5	500
BFW91	Si, p-n-p, П	300	≥100	20	5	500
BSJ36	Si, n-p-n, ПЭ	360	≥100	40	5	500
BC226	Si, p-n-p, ПЭ	300	≥200	30	4	600
BC226A	Si, p-n-p, ПЭ	300	≥200	40	5	600
BC216	Si, p-n-p, ПЭ	300	200	30	4	600
BC216A	Si, p-n-p, ПЭ	300	≥200	40	5	600
MPS3638	Si, p-n-p, ПЭ	310	≥100	25	4	500
MPS3638A	Si, p-n-p, ПЭ	310	≥150	25	4	500
2N5354	Si, p-n-p, ПЭ	260 (55° C)	250	25	4	300 (700*)
2N5365	Si, p-n-p, ПЭ	360	250	40	4	300 (500*)
2N5366	Si, p-n-p, ПЭ	360	250	40	4	300 (500*)
2SA467	Si, p-n-p, ПЭ	300	≥100	40	5	400
KT352A	Si, p-n-p, ПЭ	200 (30° C)	≥200	15*	4	200*
KT352Б	Si, p-n-p, ПЭ	200 (30° C)	≥200	15*	4	200*
BSY72	Si, p-n-p, ПЭ	350	≥200	25	5	200
2N869	Si, p-n-p, ПЭ	360	≥100	25	5	—
2N995	Si, p-n-p, ПЭ	360	≥100	20	4	—
2N996	Si, p-n-p, ПЭ	360	≥100	15	4	200
2N2411	Si, p-n-p, ПЭ	300	200	15	5	100
2N2412	Si, p-n-p, ПЭ	300	200	15	4	100
2SA500	Si, p-n-p, ПЭ	250	≥100	30	5	100
2N3248	Si, p-n-p, ПЭ	360	≥250	15	5	200
2N3249	Si, p-n-p, ПЭ	360	≥300	15	5	100
2SA559	Si, p-n-p, ПЭ	350	—	20	5	200
KT345A	Si, p-n-p, ПЭ	100 (45° C)	≥350	20*	4	200 (300*)
KT345B	Si, p-n-p, ПЭ	100 (45° C)	≥350	20*	4	200 (300*)
KT345B	Si, p-n-p, ПЭ	100 (45° C)	≥350	20*	4	200 (300*)
2N3702	Si, p-n-p, ПЭ	300	≥100	40	5	200 (600*)
2N5447	Si, p-n-p, ПЭ	300	≥100	40	5	200
2SA568	Si, p-n-p, ПЭ	200	120	35	4	300
BC513	Si, p-n-p, ПЭ	300	≥200	30	5	200
KT361A	Si, n-p-n, ПЭ	150 (35° C)	≥250	25*	4	50
KT361Б	Si, p-n-p, ПЭ	150 (35° C)	≥250	20*	4	50
KT361В	Si, p-n-p, ПЭ	150 (35° C)	≥250	40*	4	50
KT361Г	Si, p-n-p, ПЭ	150 (35° C)	≥250	35*	4	50

Продолжение

8	9	10	11	12	13	14
0,5	40—120* (0,15 A)	18	<2,6	—	<250*	MM10
0,5 ≤0,015 (25 B) ≤0,1 (20 B)	≥40* (0,15 A) 85* (10 B; 0,15 A) 90 (1 B; 0,15 A)	18 ≤8 (10 B) 5 (10 B)	<2,6 ≤3,3 ≤3,3	— ≤25 (1 кГц)	250* ≤100**	MM10 TO18
≤0,05 (20 B) ≤0,1 (20 B)	90* (1 B; 0,15 A) ≥20*	5 (10 B) 5 (10 B)	<3,3 ≤3,3	— —	—	TO18
≤0,05 (20 B) ≤0,1 (25 B)	90* (1 B; 0,15 A) ≥20*	5 (10 B)	<3,3	—	—	TO18
≤0,1 (25 B)	90* (2 B; 0,3 A) ≥20*	≤20 (10 B)	<3,3	—	<140*	TO92
≤0,1 (25 B)	90* (2 B; 0,3 A) ≥20*	≤10 (10 B)	<3,3	—	<140*	TO92
≤0,1 (25 B)	90* (5 B; 0,3 A) ≥20*	≤8 (5 B)	<3,3	—	—	TO98
≤0,1 (40 B)	90* (5 B; 0,3 A) ≥40*	≤8 (10 B)	<3,3	—	—	TO98
≤0,1 (40 B)	90* (5 B; 0,3 A) ≥40*	≤8 (10 B)	<3,3	—	—	TO98
≤0,1 (20 B)	40—240* (1 B; 0,1 A)	≤15 (10 B)	<2,5	—	—	R67
≤1 (10 B)	25—120* (1 B; 0,2 A)	≤15 (5 B)	<3	—	<150*	18
≤1 (10 B)	70—300* (1 B; 0,2 A)	≤15 (5 B)	<3	—	<150*	18
≤0,5 (25 B)	≥50* (1 B; 50 мА)	≤6 (10 B)	<25	≤6 (1кГц)	<350*	TO18
≤0,1 (15 B)	20—120* (5 B; 10 мА)	≤9 (10 B)	<100	—	—	TO18
≤0,05 (15 B)	≥50* (1 B; 50 мА)	≤10 (10 B)	<10	—	—	TO18
≤10 (15 B)	≥35* (1 B; 20 мА)	≤10 (10 B)	<5	—	—	TO18
0,01* (25 B)	20—60* (0,5 B; 10 мА)	≤5 (5 B)	<5	—	<90*	TO18
0,01* (25 B)	40—120* (0,5 B; 10 мА)	≤5 (5 B)	<5	—	<90*	TO18
≤0,5 (15 B)	30—200* (1 B; 10 мА)	≤7 (10 B)	<40	—	250*	TO18
≥0,05* (10 B)	≥25* (1 B; 0,1 A)	≤8	<4	—	<60*	TO18
≤0,05* (10 B)	≥35* (1 B; 0,1 A)	≤8	<4,5	—	<60*	TO18
≤0,5 (10 B)	50* (1 B; 10 мА)	—	<3	—	90*	TO18
≤1 (20 B)	≥20* (1 B; 100 мА)	≤15 (5 B)	<3	—	<70*	29
≤1 (20 B)	≥50* (1 B; 100 мА)	≤15 (5 B)	<3	—	<70*	29
≤1 (20 B)	≥70* (1 B; 100 мА)	≤15 (5 B)	<3	—	<70*	29
≤0,1 (20 B)	60—300* (5 B; 50 мА)	≤12 (10 B)	<5	—	<290*	TO92
≤0,1 (20 B)	60—300* (5 B; 50 мА)	≤12 (10 B)	<5	—	—	X55
1	35—300* (2 B; 0,15 A)	10	—	—	—	TO92
0,15 ≤1 (10 B)	≥80 (5 B; 2 мА) 20—90* (10 B; 1 мА)	5 ≤9 (10 B)	— ≤20	—	— ≤500	X55 16
≤1 (10 B)	50—350* (10 B; 1 мА)	≤9 (10 B)	<20	—	≤500	18
≤1 (10 B)	20—90* (10 B; 1 мА)	≤7 (10 B)	<20	—	≤1000	16
≤1 (10 B)	50—350* (10 B; 1 мА)	≤7 (10 B)	<20	—	≤500	18

1	2	3	4	5	6	7
KT361Д	Si, <i>p-n-p</i> , ПЭ	150 (35° C)	≥250	40*	4	50
KT361Е	Si, <i>p-n-p</i> , ПЭ	150 (35° C)	≥250	35*	4	50
BC250A	Si, <i>p-n-p</i> , ПЭ	300	180	20	5	100
BC250B	Si, <i>p-n-p</i> , ПЭ	300	180	20	5	100
2N3905	Si, <i>p-n-p</i> , ПЭ	310	≥200	40	5	200
2N3906	Si, <i>p-n-p</i> , ПЭ	310	≥250	40	5	200
BSW20	Si, <i>p-n-p</i> , ПЭ	300	≥150	35	5	100
2SA555	Si, <i>p-n-p</i> , ПЭ	200	200	50	5	200
2SA556	Si, <i>p-n-p</i> , ПЭ	200	200	35	5	200
BCW62A	Si, <i>p-n-p</i> , ПЭ	225	≥200	60	5	200
BCW63A	Si, <i>p-n-p</i> , ПЭ	225	≥200	45	5	200
BCW57	Si, <i>p-n-p</i> , П	200 (50° C)	150	50	6	200
BCW58	Si, <i>p-n-p</i> , П	200 (50° C)	150	30	5	200
BC157	Si, <i>p-n-p</i> , П	250	150	30	5	200
BC557	Si, <i>p-n-p</i> , П	300	150	50	5	200
2N4125	Si, <i>p-n-p</i> , ПЭ	310	≥200	30	4	200
KT340А	Si, <i>n-p-n</i> , ПЭ	150 (85° C)	≥300	15*	5	50
KT340Б	Si, <i>n-p-n</i> , ПЭ	150 (85° C)	≥300	20*	5	50 (75*)
KT340В	Si, <i>n-p-n</i> , ПЭ	150 (85° C)	≥300	15*	5	50 (200*)
KT340Д	Si, <i>n-p-n</i> , ПЭ	150 (85° C)	≥300	15*	5	50
BSX38A	Si, <i>n-p-n</i> , ПЭ	300	≥200	35	5	100
BSY38	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	5	100 (200*)
BSY39	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	5	100 (200*)
2N743	Si, <i>n-p-n</i> , ПЭ	300	≥300	20	5	200*
2N744	Si, <i>n-p-n</i> , ПЭ	300	≥300	20	5	200*
BSY26	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	5	100 (200*)
BSY27	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	5	100 (200*)
BSY95	Si, <i>n-p-n</i> , ПЭ	150	≥200	20	—	100 (200*)
BSY95A	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	—	100 (200*)
2N834	Si, <i>n-p-n</i> , ПЭ	300	≥350	40	5	200*
2N835	Si, <i>n-p-n</i> , ПЭ	300	≥300	25	3	200*
2N2242	Si, <i>n-p-n</i> , ПЭ	360	≥250	20*	5	225
2N706A	Si, <i>n-p-n</i> , ПЭ	300	≥200	25	5	—
2N753	Si, <i>n-p-n</i> , ПЭ	300	≥200	25	5	50
BSX53A	Si, <i>n-p-n</i> , ПЭ	130 (45° C)	≥200	35	5	100
SS106	Si, <i>n-p-n</i> , ПЭ	300	≥200	25	5	200
SS108	Si, <i>n-p-n</i> , ПЭ	300	≥300	40	5	200
SS109	Si, <i>n-p-n</i> , ПЭ	300	≥200	20	5	200

Продолжение

8	9	10	11	12	13	14
≤ 1 (10 B)	20—90* (10 B; 1 mA)	≤ 7 (10 B)	≤ 50	—	≤ 250	16
≤ 1 (10 B)	50—350* (10 B; 1 mA)	≤ 7 (10 B)	≤ 50	—	≤ 1000	16
$\leq 0,1$ (15 B)	35—100* (10 B; 1 mA)	3 (10 B)	≤ 14	—	—	TO92
$\leq 0,1$ (15 B)	80—250* (10 B; 1 mA)	3 (10 B)	≤ 14	—	—	TO92
≤ 10 (40 B)	50—150 (10 B; 1 mA)	$\leq 4,5$ (5 B)	≤ 25	≤ 5 (1 кГц)	$\leq 200^*$	TO92
≤ 10 (40 B)	100—300 (10 B; 1 mA)	$\leq 4,5$ (5 B)	≤ 25	≤ 4 (1 кГц)	$\leq 225^*$	TO92
$\leq 0,02$ (25 B)	50—300* (1 B; 10 mA)	≤ 7 (10 B)	≤ 18	—	$\leq 800^{**}$	TO92
≤ 1 (10 B)	80* (1 B; 10 mA)	5,5 (6 B)	—	—	—	X20
$\leq 0,015$ (30 B)	100—300 (5 B; 2 mA)	≤ 5 (10 B)	≤ 6	≤ 10 (1 кГц)	—	X20 U94
$\leq 0,01$ (30 B)	100—300 (5 B; 2 mA)	≤ 5 (10 B)	≤ 6	≤ 10 (1 кГц)	—	U94
10	≥ 125 (5 B; 2 mA)	—	≤ 75	—	—	MM13
10	≥ 125 (5 B; 2 mA)	—	≤ 75	—	—	MM13
$\leq 0,05$	75—260 (5 B; 2 mA)	—	7,5	—	—	MM10
—	75—260 (5 B; 2 mA)	—	7,5	—	—	TO92
0,05 (20 B)	50—150* (1 B; 2 mA)	$\leq 4,5$ (5 B)	≤ 8	5 (1 кГц)	140*	TO92
≤ 1 (15 B)	100—300* (1 B; 10 mA)	$\leq 3,7$ (5 B)	—	—	≤ 60	18
≤ 1 (20 B)	$\geq 100^*$ (1 B; 10 mA)	$\leq 3,7$ (5 B)	≤ 6	—	$\leq 15^*$	18
≤ 1 (15 B)	$\geq 35^*$ (2 B; 0,2 A)	$\leq 3,7$ (5 B)	≤ 2	—	$\leq 15^*$	18
≤ 1 (15 B)	$\geq 40^*$ (2 B; 0,2 A)	$\leq 3,7$ (5 B)	—	—	≤ 150	18
$\leq 0,020$ (25 B)	100—300* (1 B; 10 mA)	≤ 5 (10 B)	—	—	$\leq 800^{**}$	TO18
$\leq 0,1$ (20 B)	15—45* (1 B; 0,1 A)	≤ 5 (5 B)	≤ 6	—	$\leq 16^*$	TO18
$\leq 0,1$ (20 B)	200* (0,5 B; 50 mA)	≤ 5 (5 B)	≤ 6	—	$\leq 16^*$	TO18
$\leq 1^*$ (20 B)	$\geq 10^*$ (1 B; 0,1 A)	≤ 5 (5 B)	≤ 10	—	$\leq 14^*$	TO18
$\leq 1^*$ (20 B)	$\geq 20^*$ (1 B; 0,1 A)	≤ 5 (5 B)	≤ 10	—	$\leq 18^*$	TO18
0,025	20—60* (1 B; 10 mA)	≤ 6	≤ 35	—	$\leq 130^{**}$	TO18
0,025	40—120* (1 B; 10 mA)	≤ 6	≤ 35	—	$\leq 130^{**}$	TO18
0,05	50—200* (10 mA)	≤ 6	≤ 35	—	$\leq 50^*$	TO18
0,05 (16 B)	50—200* (10 mA)	—	≤ 35	—	$\leq 50^*$	TO18
$\leq 0,5$ (20 B)	$\geq 25^*$ (1 B; 10 mA)	≤ 4 (10 B)	≤ 25	—	$\leq 25^*$	TO18
$\leq 0,5$ (20 B)	40—120* (1 B; 10 mA)	≤ 4 (10 B)	≤ 30	—	$\leq 35^*$	TO18
$\leq 0,1$ (20 B)	20—60* (1 B; 10 mA)	≤ 6	—	—	—	TO18
$\leq 0,5$ (15 B)	20—60* (1 B; 10 mA)	≤ 5 (5 B)	≤ 60	—	$\leq 25^*$	TO18
$\leq 0,5$ (15 B)	40—120* (1 B; 10 mA)	≤ 5 (5 B)	≤ 60	—	$\leq 35^*$	TO18
$\leq 0,013$ (25 B)	100—300* (1 B; 10 mA)	—	—	—	$\leq 800^{**}$	TO18
$\leq 0,05$ (15 B)	18—560* (1 B; 10 mA)	≤ 5 (10 B)	≤ 50	—	$\leq 75^{**}$	TO18
$\leq 0,05$ (20 B)	18—560* (1 B; 10 mA)	≤ 5 (10 B)	≤ 50	—	$\leq 75^{**}$	TO18
$\leq 0,05$ (15 B)	18—560* (1 B; 10 mA)	≤ 5 (10 B)	≤ 5	—	$\leq 75^{**}$	TO18

1	2	3	4	5	6	7
2SC67	Si, n-p-n, ПЭ	360	≥200	40	5	200
2SC68	Si, n-p-n, ПЭ	360	≥300	40	5	200
2N784A	Si, n-p-n, ПЭ	360	≥300	40	5	200
2N919	Si, n-p-n, ПЭ	360	≥200	25	5	200
2N920	Si, n-p-n, ПЭ	360	≥200	25	5	200
BSYP62	Si, n-p-n, ПЭ	360	≥200	25	5	200
BSYP63	Si, n-p-n, ПЭ	360	≥300	40	5	200
BSXP87	Si, n-p-n, ПЭ	360	≥300	40	5	200
2N708	Si, n-p-n, ПЭ	360	≥300	40	5	—
BSJ63	Si, n-p-n, ПЭ	360	≥300	40	5	—
BC218	Si, n-p-n, П	300	≥200	30	4	—
BC218А	Si, n-p-n, П	360	≥200	45	5	—
BSX51	Si, n-p-n, ПЭ	300	≥150	25	5	200
BSX52	Si, n-p-n, ПЭ	360	≥150	25	5	200
BFX44	Si, n-p-n, ПЭ	360	≥300	40	4	125 (250*)
KT306А	Si, n-p-n, ПЭ	150 (90° С)	≥300	15	4	30 (50*)
KT306Б	Si, n-p-n, ПЭ	150 (90° С)	≥500	15	4	30 (50*)
KT306В	Si, n-p-n, ПЭ	150 (90° С)	≥300	15	4	30 (50*)
KT306Г	Si, n-p-n, ПЭ	150 (90° С)	≥500	15	4	30 (50*)
KT306Д	Si, n-p-n, ПЭ	150 (90° С)	≥200	15	4	30 (50*)
BSX66	Si, n-p-n, ПЭ	300	≥200	30	5	100
BSX67	Si, n-p-n, ПЭ	300	≥200	30	5	100
2SC170	Si, n-p-n, ПЭ	110	250	25	3	50
2SC171	Si, n-p-n, ПЭ	200	250	25	3	50
2SC172	Si, n-p-n, ПЭ	300	350	25	3	50
2SC400	Si, n-p-n, ПЭ	250	300	30	5	100
2SC601	Si, n-p-n, ПЭ	300	≥500	40	5	100
KT316А	Si, n-p-n, ПЭ	150 (90° С)	≥600	10*	4	30 (50*)
KT316Б	Si, n-p-n, ПЭ	150 (90° С)	≥800	10*	4	30 (50*)
KT316В	Si, n-p-n, ПЭ	150 (90° С)	≥800	10*	4	30 (50*)
KT316Г	Si, n-p-n, ПЭ	150 (90° С)	≥600	10*	4	30 (50*)
KT316Д	Si, n-p-n, ПЭ	150 (90° С)	≥800	10*	4	30 (50*)
2N3010	Si, n-p-n, ПЭ	300	≥600	11	4	50
2N709	Si, n-p-n, ПЭ	300	≥600	15	4	200*
2N2475	Si, n-p-n, П	300	≥600	15	5	90*
ZT2475	Si, n-p-n, П	300	≥600	15	5	90*
2N2784	Si, n-p-n, ПЭ	300	1000	15	4	—
2SC40	Si, n-p-n, М	250	750	25	3	50
2N709А	Si, n-p-n, ПЭ	300	≥800	15	4	200*
MM1748	Si, n-p-n, ПЭ	300	≥600	15	4	100

Продолжение

8	9	10	11	12	13	14
$\leq 0,1$ (15 B)	$\geq 30^*$ (1 B; 10 mA) 30–200* (1 B; 10 mA)	4,5 (10 B) ≤ 25	≤ 25	—	$\leq 20^*$ $\leq 20^*$	TO18 TO18
$\leq 0,1$ (15 B)	25–150* (1 B; 10 mA) 20–60* (1 B; 10 mA)	$\leq 3,5$ (10 B) ≤ 7 (5 B)	≤ 19 ≤ 20	—	$\leq 15^*$	TO18
—	40–120* (1 B; 10 mA)	≤ 7 (5 B)	≤ 20	—	$\leq 25^*$	TO18
—	$\geq 20^*$ (1 B; 10 mA) 30–120* (1 B; 10 mA) 30–120* (1 B; 10 mA)	≤ 6 (10 B) ≤ 6 (10 B) ≤ 6 (10 B)	≤ 60 ≤ 40 $\leq 3,5$	—	$\leq 75^{**}$ $\leq 75^{**}$	TO18 TO18
$\leq 0,025$ (25 B)	30–120* (1 B; 10 mA)	≤ 6 (10 B)	≤ 40	—	$\leq 25^*$	TO18
$\leq 0,025$ (20 B)	$\geq 30^*$ (1 B; 10 mA)	≤ 6 (10 B)	≤ 40	—	$\leq 70^{**}$	TO18
$\leq 0,1$ (20 B)	$\geq 50^*$ (5 B; 10 mA) $\geq 50^*$ (5 B; 10 mA)	≤ 4 (10 B) ≤ 4 (10 B)	≤ 100 ≤ 100	—	—	TO18 TO18
$\leq 0,05$ (30 B)	75–225* (4,5 B; 2 mA) 180–540* (4,5 B; 2 mA)	≤ 8 (5 B)	≤ 6	—	$\leq 200^*$	TO18
$\leq 0,5$ (25 B)	$\geq 20^*$ (1 B; 0,1 A) 20–60* (1 B; 10 mA)	≤ 4 (5 B) ≤ 5 (5 B)	≤ 6 ≤ 30	—	≤ 40 ; $\leq 30^*$ $\leq 30^*$	TO18 156
$\leq 0,5$ (15 B)	40–120* (1 B; 10 mA)	≤ 5 (5 B)	≤ 30	—	$\leq 30^*$	156
$\leq 0,5$ (15 B)	20–100* (1 B; 10 mA)	≤ 5 (5 B)	—	—	≤ 500	156
$\leq 0,5$ (15 B)	40–200* (1 B; 10 mA)	≤ 5 (5 B)	—	—	≤ 500	156
$\leq 0,5$ (15 B)	30–150* (1 B; 10 mA)	≤ 5 (5 B)	—	—	≤ 300	156
0,01	$\geq 40^*$ (10 mA)	≤ 5	—	—	$\leq 100^*$	TO18
0,01	$\geq 60^*$ (10 mA)	≤ 5	—	—	$\leq 100^*$	TO18
$\leq 0,5$	60* (6 B; 10 mA)	5	—	—	—	TO18
$\leq 0,5$ (20 B)	60* (6 B; 10 mA)	5 (6 B)	≤ 20	—	—	TO18
$\leq 0,1$ (20 B)	60* (6 B; 10 mA)	5 (6 B)	≤ 20	—	—	TO18
$\leq 0,5$ (15 B)	$\geq 30^*$ (10 B; 10 mA)	≤ 6 (10 B)	≤ 50	—	200*	TO18
0,1	$\geq 40^*$ (1 B; 10 mA)	≤ 4	≤ 25	—	$\leq 13^*$	TO18
$\leq 0,5$ (10 B)	20–60* (1 B; 10 mA); 40–120* (1 B; 10 mA)	≤ 3 (5 B)	≤ 40	—	$\leq 10^*$	15
$\leq 0,5$ (10 B)	40–120* (1 B; 10 mA)	≤ 3 (5 B)	≤ 40	—	$\leq 10^*$	18
$\leq 0,5$ (10 B)	40–120* (1 B; 10 mA)	≤ 3 (5 B)	≤ 40	—	$\leq 15^*$	18
$\leq 0,5$ (10 B)	20–100* (1 B; 10 mA)	≤ 3 (5 B)	≤ 40	—	≤ 150	18
$\leq 0,5$ (10 B)	60–300* (1 B; 10 mA)	≤ 3 (5 B)	≤ 40	—	≤ 150	18
≤ 10 (15 B)	25–125* (0,4 B; 10 mA)	≤ 3 (5 B)	≤ 25	—	$\leq 6^*$	TO18
$\leq 0,05$ (5 B)	20–120* (0,5 B; 10 mA)	≤ 3 (5 B)	≤ 100	—	$\leq 6^*$	TO18
$\leq 0,05$ (5 B)	30–150* (0,35 B; 10 mA)	≤ 3 (5 B)	≤ 25	—	$\leq 6^*$	R64
$\leq 0,05$ (5 B)	40–150* (0,4 B; 20 mA)	≤ 2 (5 B)	≤ 20	—	$\leq 6^*$	R64
0,005 (5 B)	40–120* (0,5 B; 10 mA)	≤ 3	87	—	5*	TO18
0,1	50 (6 B; 1 mA) 30–90* (0,5 B; 10 mA)	2,3 ≤ 3 (5 B)	— ≤ 100	—	— $\leq 6^*$	TO18 TO18
$\leq 0,05$ (5 B)	20–120* (0,5 B; 10 mA)	≤ 3 (5 B)	≤ 100	—	$\leq 6^*$	TO52

1	2	3	4	5	6	7
КТ342А	Si, n-p-n, ПЭ	250	≥250	30*	5	50 (300*)
КТ342Б	Si, n-p-n, ПЭ	250	≥300	25*	5	50 (300*)
КТ342В	Si, n-p-n, ПЭ	250	≥300	10*	5	50 (300*)
КТ342Г	Si, n-p-n, ПЭ	250	≥250	60*	5	50 (300*)
2N929	Si, n-p-n, П	300	≥50	45	5	30 (60*)
2N930	Si, n-p-n, П	300	≥50	45	5	30 (60*)
BC456	Si, n-p-n, ПЭ	300	250	45	5	100 (200*)
BC457	Si, n-p-n, ПЭ	300	350	25	5	100 (200*)
BC107А	Si, n-p-n, ПЭ	300	≥150	50	6	100 (200*)
BC107В	Si, n-p-n, ПЭ	300	≥150	50	6	100 (200*)
EC108А	Si, n-p-n, ПЭ	300	≥150	30	5	100 (200*)
EC108В	Si, n-p-n, ПЭ	300	≥150	30	5	100 (200*)
BC108С	Si, n-p-n, ПЭ	300	≥150	30	5	100 (200*)
EC109В	Si, n-p-n, ПЭ	300	≥150	30	5	50
BC109С	Si, n-p-n, ПЭ	300	≥150	30	5	50
2N915	Si, n-p-n, ПЭ	360	≥250	70	5	—
2N916	Si, n-p-n, ПЭ	360	≥300	45	5	—
BCY58А	Si, n-p-n, ПЭ	300	300	32*	7	200
BCY58В	Si, n-p-n, ПЭ	300	300	32*-	7	200
BCY58С	Si, n-p-n, ПЭ	300	300	32*	7	200
BCY58Д	Si, n-p-n, ПЭ	300	300	32*	7	200
KC507	Si, n-p-n, ПЭ	300	>150	45	5	100 (200*)
KC508	Si, n-p-n, ПЭ	300	>150	20	5	100 (200*)
KC509	Si, n-p-n, ПЭ	300	>150	20	5	100 (200*)
BC527	Si, n-p-n, ПЭ	300	150	45	5	50
BC528	Si, n-p-n, ПЭ	300	150	20	5	50
BFJ93	Si, n-p-n, ПЭ	300	≥30	50	5	100
BC234	Si, n-p-n, П	300	≥200	30	4	—
BC234А	Si, n-p-n, П	300	≥200	45	5	—
BC235	Si, n-p-n, П	300	≥200	30	4	—
BC235А	Si, n-p-n, П	300	≥200	45	5	—
BC213	Si, n-p-n, П	300	100	30	5	50
BC214	Si, n-p-n, П	300	100	30	5	50

Продолжение

8	9	10	11	12	13	14
$\leq 0,05$ (25B)	100—250* (5 В; 1 мА)	≤ 8 (5 В)	≤ 10		≤ 200	18
$\leq 0,05$ (20B)	200—500* (5 В; 1 мА)	≤ 8 (5 В)	≤ 10	—	≤ 300	18
$\leq 0,05$ (10B)	400—1000* (5 В; 1 мА)	≤ 8 (5 В)	≤ 10	—	≤ 700	18
$\leq 0,05$ (25B)	50—125* (5 В; 1 мА)	≤ 8 (5 В)	≤ 20	—	≤ 200	18
$\leq 0,01$ (45B)	$\geq 60^*$ (5 В; 0,5 мА)	≤ 8 (5 В)	≤ 100	≤ 4 (1 кГц)		TO18
$\leq 0,01$ (45B)	$\geq 150^*$ (5 В; 0,5 мА)	≤ 8 (5 В)	≤ 100	≤ 3 (1 кГц)	—	TO18
$\leq 0,1$ (20B)	100—450* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 2	≤ 5 (1 кГц)	—	TO18
$\leq 0,1$ (20B)	200—800* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 2	≤ 5 (1 кГц)	—	TO18
$\leq 0,015^*$ (50B)	120—220* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 10 (1 кГц)	—	TO18
$\leq 0,015^*$ (50B)	180—460* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (30B)	120—220* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (30B)	180—460* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (30B)	380—800* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (30B)	380—800* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 4 (1 кГц)	—	TO18
$\leq 0,015$ (30B)	380—800* (5 В; 2 мА)	≤ 6 (10 В)	≤ 20	≤ 4 (1 кГц)	—	TO18
$\leq 0,01$ (60B)	50—200* (5 В; 10 мА)	$\leq 3,5$ (10 В)	≤ 100	—	—	TO18
$\leq 0,01$ (30B)	50—200* (1 В; 10 мА)	≤ 6 (5 В)	≤ 50	—	≤ 300	TO18
$\leq 0,01$ (32B)	125—250* (5 В; 2 мА)	≤ 6 (10 В)	≤ 6	≤ 6 (1 кГц)	$\leq 800^{**}$	TO18
$\leq 0,01$ (32B)	175—350* (5 В; 2 мА)	≤ 6 (10 В)	≤ 6	—	—	TO18
$\leq 0,01$ (32B)	250—500* (5 В; 2 мА)	≤ 6 (10 В)	≤ 6	—	—	TO18
$\leq 0,01$ (32B)	350—700* (5 В; 2 мА)	≤ 6 (10 В)	≤ 6	—	—	TO18
$\leq 0,015$ (45B)	125—500 (5 В; 2 мА)	$\leq 4,5$ (10 В)	25	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (20B)	125—500 (5 В; 2 мА)	$\leq 4,5$ (10 В)	25	≤ 10 (1 кГц)	—	TO18
$\leq 0,015$ (20B)	240—900 (5 В; 2 мА)	$\leq 4,5$ (10 В)	25	≤ 4 (1 кГц)	—	TO18
—	100—900 (5 В; 2 мА)	$\leq 4,5$ (10 В)	—	10 (1 кГц)	—	TO18
—	100—900 (5 В; 2 мА)	$\leq 4,5$ (10 В)	—	10 (1 кГц)	—	TO18
$\leq 0,01$ (45B)	150—600 (5 В; 1 мА)	6 (5 В)	≤ 14	≤ 4 (1 кГц)	—	TO18
$\leq 0,1$ (20B)	90—180* (5 В; 10 мА)	≤ 4 (10 В)	≤ 100	—	—	TO18
$\leq 0,05$ (30B)	90—180* (5 В; 10 мА)	≤ 4 (10 В)	≤ 100	—	—	TO18
$\leq 0,1$ (20B)	150—400* (5 В; 10 мА)	≤ 4 (10 В)	≤ 100	—	—	TO18
$\leq 0,05$ (30B)	150—400* (5 В; 10 мА)	≤ 4 (10 В)	≤ 100	—	—	TO18
$\leq 0,05$ (5B)	$\geq 200^*$ (5 В; 2 мА)	2,7 (5 В)	30	2,5 (1 кГц)	—	TO18
$\leq 0,05$ (5B)	$\geq 200^*$ (5 В; 2 мА)	2,7 (5 В)	30	≤ 3 (1 кГц)	—	TO18

1	2	3	4	5	6	7
BCY69	Si, <i>n-p-n</i> , П	300	≥150	20	5	100
SF136	Si, <i>n-p-n</i> , ПЭ	300	≥300	20	5	200
SF137	Si, <i>n-p-n</i> , ПЭ	300	≥300	40	5	200
KT373А	Si, <i>n-p-n</i> , ПЭ	150 (55° C)	≥300	30* (85° C)	5	50 (200*)
KT373Б	Si, <i>n-p-n</i> , ПЭ	150 (55° C)	≥300	25* (85° C)	5	50 (200*)
KT373В	Si, <i>n-p-n</i> , ПЭ	150 (55° C)	≥300	10* (85° C)	5	50 (200*)
KT373Г	Si, <i>n-p-n</i> , ПЭ	150 (55° C)	≥300	60* (85° C)	5	50 (200*)
PBC107A-B	Si, <i>n-p-n</i> , ПЭ	200	≥150	45	5	100
PBC1108A-C	Si, <i>n-p-n</i> , ПЭ	200	≥150	20	5	100
PBC109B-C	Si, <i>n-p-n</i> , ПЭ	200	≥150	20	5	100
BC167A	Si, <i>n-p-n</i> , ПЭ	300	≥150	50	6	100 (200*)
BC167B	Si, <i>n-p-n</i> , ПЭ	300	≥150	50	6	100 (200*)
BC168A	Si, <i>n-p-n</i> , ПЭ	300	≥150	20**	5	100 (200*)
BC168B	Si, <i>n-p-n</i> , ПЭ	300	≥150	20**	5	100 (200*)
EC168C	Si, <i>n-p-n</i> , ПЭ	300	≥150	20**	5	100 (200*)
BC169B	Si, <i>n-p-n</i> , ПЭ	300	≥150	20**	5	50
BC169C	Si, <i>n-p-n</i> , ПЭ	300	≥150	20*	5	50
BC171A	Si, <i>n-p-n</i> , ПЭ	300	≥150	45*	6	100 (200*)
BC171B	Si, <i>n-p-n</i> , ПЭ	300	≥150	45*	6	100 (200*)
BC172A	Si, <i>n-p-n</i> , ПЭ	300	≥150	25*	5	100 (200*)
BC172B	Si, <i>n-p-n</i> , ПЭ	300	≥150	25**	5	100 (200*)
BC172C	Si, <i>n-p-n</i> , ПЭ	300	≥150	25**	5	100 (200*)
BC173B	Si, <i>n-p-n</i> , ПЭ	300	≥150	25**	5	100 (200*)
BC173C	Si, <i>n-p-n</i> , ПЭ	300	≥150	25**	5	100 (200*)
BCP627A-C	Si, <i>n-p-n</i> , ПЭ	220	≥150	45	5	50
BCP628A-C	Si, <i>n-p-n</i> , ПЭ	220	≥150	20	5	50
2N3711	Si, <i>n-p-n</i> , П	250	80	30	6	30
2N3390	Si, <i>n-p-n</i> , П	360	120	25	5	100
2N3391	Si, <i>n-p-n</i> , П	360	120	25	5	100
2N3392	Si, <i>n-p-n</i> , П	360	120	25	5	100
2N3393	Si, <i>n-p-n</i> , П	360	120	25	5	100
2N3394	Si, <i>n-p-n</i> , П	360	120	25	5	100
BCW47	Si, <i>n-p-n</i> , ПЭ	150 (50° C)	300	50	6	100 (200*)

Продолжение

8	9	10	11	12	13	14
$\leq 0,015$ (20 B)	$\geq 450^*$ (5 B; 2 mA)	≤ 8 (5 B)	≤ 25	≤ 5 (1 кГц)	—	TO18
$\leq 0,1$ (20 B)	18–1120* (1 B; 10 mA)	≤ 5 (10 B)	≤ 30	7,8 (1 кГц)	≤ 300	A4
$\leq 0,1$ (40 B)	18–1120* (1 B; 10 mA)	≤ 5 (10 B)	≤ 30	6,8 (1 кГц)	≤ 130	A4
$\leq 0,05$ (25 B)	100–250* (5 B; 1 mA)	≤ 8 (5 B)	≤ 10	—	≤ 200	14
$\leq 0,05$ (20 B)	200–600* (5 B; 1 mA)	≤ 8 (5 B)	≤ 10	—	≤ 300	14
$\leq 0,05$ (10 B)	500–1000* (5 B; 1 mA)	≤ 8 (5 B)	≤ 10	—	≤ 700	14
$\leq 0,05$ (20 B)	50–125* (5 B; 1 mA)	≤ 8 (5 B)	≤ 20	—	≤ 200	14
$\leq 0,1$ (45 B)	125–500 (5 B; 2 mA)	≤ 6 (10 B)	—	≤ 6 (1 кГц)	—	TO98
$\leq 0,1$ (20 B)	125–500 (5 B; 2 mA)	≤ 6 (10 B)	—	≤ 6 (1 кГц)	—	TO98
$\leq 0,1$ (20 B)	240–900 (5 B; 2 mA)	≤ 6 (10 B)	—	≤ 4 (1 кГц)	—	TO98
0,002 (20 B)	110–220* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
0,002 (20 B)	200–450* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
0,002 (20 B)	110–220* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
0,002 (20 B)	200–450* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
0,002 (20 B)	420–800* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
0,002 (20 B)	200–450* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 4 (1 кГц)	—	TO92
0,002 (20 B)	420–800* (5 B; 2 mA)	$\leq 4,5$ (10 B)	≤ 20	≤ 4 (1 кГц)	—	TO92
$\leq 0,015$ (45 B)	170* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
$\leq 0,015$ (45 B)	290* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
$\leq 0,015$ (20 B)	170* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
$\leq 0,015$ (20 B)	290* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
$\leq 0,015$ (20 B)	500* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 10 (1 кГц)	—	TO92
$\leq 0,015$ (20 B)	290* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 4 (1 кГц)	—	TO92
$\leq 0,015$ (20 B)	500* (5 B; 2 mA)	≤ 6 (10 B)	≤ 20	≤ 4 (1 кГц)	—	TO92
—	100–900 (5 B; 2 mA)	≤ 6 (10 B)	—	≤ 10 (1 кГц)	—	TO92
—	100–900 (5 B; 2 mA)	≤ 6 (10 B)	—	≤ 10 (1 кГц)	—	TO92
$\leq 0,1$ (20 B)	180–660* (5 B; 1 mA)	—	≤ 100	—	—	TO92
$\leq 0,1$ (25 B)	400–800* (4,5 B; 2 mA)	≤ 10 (10 B)	—	—	—	TO98
$\leq 0,1$ (25 B)	250–500* (4,5 B; 2 mA)	≤ 10 (10 B)	—	—	—	TO98
$\leq 0,1$ (25 B)	150–300* (4,5 B; 2 mA)	≤ 10 (10 B)	—	—	—	TO93
$\leq 0,1$ (25 B)	90–180* (4,5 B; 2 mA)	≤ 10 (10 B)	—	—	—	TO93
$\leq 0,1$ (25 B)	55–110* (4,5 B; 2 mA)	≤ 10 (10 B)	—	—	—	TO93
$\leq 0,1$ (20 B)	110–450* (5 B; 2 mA)	2,5 (10 B)	≤ 25	—	—	MM13

1	2	3	4	5	6	7
BCW48	Si, <i>n-p-n</i> , ПЭ	150 (50° C)	300	30	5	100 (200*)
BCW49	Si, <i>n-p-n</i> , ПЭ	150 (50° C)	300	30	5	100 (200*)
BC147A	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	50*	6	100 (200*)
BC148A	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	30*	5	100 (200*)
BC147B	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	50*	6	100 (200*)
BC148B	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	30*	5	100 (200*)
BC149B	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	30*	5	50
BC148C	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	30*	5	100 (200*)
BC149C	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	≥150	30*	5	50
BC237A—B	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	250	50*	5	100
BC238A—C	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	250	30*	5	100
BC239B—C	Si, <i>n-p-n</i> , ПЭ	220 (55° C)	300	30*	5	50
BC382B—C	Si, <i>n-p-n</i> , П	300	≥150	50	6	100
BC383B—C	Si, <i>n-p-n</i> , П	300	≥150	45	6	100
BC547A—B	Si, <i>n-p-n</i> , П	300	300	50	6	200*
BC548A—C	Si, <i>n-p-n</i> , П	300	300	30	5	200*
BC549B—C	Si, <i>n-p-n</i> , П	300	300	30	5	200*
KC147	Si, <i>n-p-n</i> , ПЭ	200	≥150	45	5	100 (200*)
KC148	Si, <i>n-p-n</i> , ПЭ	200	≥150	20	5	100 (200*)
KC149	Si, <i>n-p-n</i> , ПЭ	200	≥150	20	5	100 (200*)
KT325A	Si, <i>n-p-n</i> , ПЭ	225 (85° C)	≥800	15**	4	60
KT325B	Si, <i>n-p-n</i> , ПЭ	225 (85° C)	≥800	15**	4	60
KT325B	Si, <i>n-p-n</i> , ПЭ	225 (85° C)	≥1000	15**	4	60
2N2615	Si, <i>n-p-n</i> , П	300	≥800	30	3	—
2N2615	Si, <i>n-p-n</i> , П	300	≥900	30	3	50
2SC609	Si, <i>n-p-n</i> , ПЭ	200	1200	25	3	20
2SC618	Si, <i>n-p-n</i> , ПЭ	150	800	25	4	25
2SC618A	Si, <i>n-p-n</i> , ПЭ	150	800	25	4	25
2N2703	Si, <i>n-p-n</i> , ПЭ	200	≥700	20**	3	—
2SC612	Si, <i>n-p-n</i> , ПЭ	180	≥1000	35	2	20
2SC253	Si, <i>n-p-n</i> , ПЭ	200	≥600	30	3	30
KT357A	Si, <i>p-n-p</i> , ПЭ	100 (50° C)	≥300	6* (85° C)	3,5	40
KT357B	Si, <i>p-n-p</i> , ПЭ	100 (50° C)	≥300	6* (85° C)	3,5	40
KT357B	Si, <i>p-n-p</i> , ПЭ	100 (50° C)	≥300	20* (85° C)	3,5	40
KT357Г	Si, <i>p-n-p</i> , ПЭ	100 (50° C)	≥300	20* (85° C)	3,5	40

Продолжение

8	9	10	11	12	13	14
$\leq 0,1$ (20 В)	110—800* (5 В; 2 мА)	2,5 (10 В)	≤ 25	—	—	MM13
$\leq 0,1$ (20 В)	200—800* (5 В; 2 мА)	2,5 (10 В)	≤ 25	≤ 4 (1 кГц)	—	MM13
$\leq 0,015^*$ (50 В)	120—220* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 10 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	120—220* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 10 (1 кГц)	—	MM10
$\leq 0,015^*$ (50 В)	180—460* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 10 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	180—460* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 10 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	180—460* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	380—800 (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 10 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	380—800 (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 10	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	120—460* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 20	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (50 В)	120—460* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 20	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	120—800* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 20	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	180—800* (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 20	≤ 4 (1 кГц)	—	MM10
$\leq 0,015^*$ (30 В)	240—900 (5 В; 2 мА)	≤ 5 (10 В)	≤ 25	≤ 6 (1 кГц)	—	X55
$\leq 0,015$ (30 В)	240—900 (5 В; 2 мА)	≤ 5 (10 В)	≤ 25	≤ 6 (1 кГц)	—	X55
$\leq 0,015$ (30 В)	125—500* (5 В; 2 мА)	—	≤ 6	—	—	TO92
—	125—900* (5 В; 2 мА)	—	≤ 6	—	—	TO92
—	240—900* (5 В; 2 мА)	—	≤ 6	—	—	TO92
$\leq 0,015$ (45 В)	125—500 (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 25	≤ 10 (1 кГц)	—	MM10
$\leq 0,015$ (20 В)	125—500 (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 25	≤ 10 (1 кГц)	—	MM10
$\leq 0,015$ (20 В)	240—900 (5 В; 2 мА)	$\leq 4,5$ (10 В)	≤ 25	≤ 4 (1 кГц)	—	MM10
$\leq 0,5$ (15 В)	30—90* (5 В; 10 мА)	$\leq 2,5$ (5 В)	—	—	125	19
$\leq 0,5$ (15 В)	70—210* (5 В; 10 мА)	$\leq 2,5$ (5 В)	—	—	125	19
$\leq 0,5$ (15 В)	160—400* (5 В; 10 мА)	$\leq 2,5$ (5 В)	—	—	125	19
—	20* (1 В; 3 мА)	2,8	—	—	—	TO18
—	50* (1 В; 3 мА)	2,4	—	—	—	TO18
$\leq 0,1$ (12 В)	90 (6 В; 2 мА)	1,4 (6 В)	—	—	—	TO72
$\leq 0,1$ (12 В)	50 (6 В; 2 мА)	1,3 (6 В)	—	≤ 6 (70 мГц)	—	TO72
$\leq 0,1$ (12 В)	50 (6 В; 2 мА)	1,3 (6 В)	—	$\leq 3,5$ (70 мГц)	—	TO72
$\leq 0,01$ (15 В)	30—200* (2 В; 2 мА)	≤ 1 (15 В)	—	≤ 6 (60 мГц)	≤ 33	TO72
≤ 1 (10 В)	40—160 (10 В; 2 мА)	$\leq 1,5$ (10 В)	—	≤ 5 (70 мГц)	—	TO72
≤ 1 (15 В)	20—120 (6 В; 5 мА)	1,5 (6 В)	—	≤ 6 (70 мГц)	—	TO72
≤ 5 (6 В)	20—100* (0,5 В; 10 мА)	≤ 7 (5 В)	≤ 30	—	$\leq 150^*$	14
≤ 5 (6 В)	60—300* (0,5 В; 10 мА)	≤ 7 (5 В)	≤ 30	—	$\leq 250^*$	14
≤ 5 (20 В)	20—100* (0,5 В; 10 мА)	≤ 7 (5 В)	≤ 30	—	$\leq 150^*$	14
≤ 5 (20 В)	60—300* (0,5 В; 10 мА)	≤ 7 (5 В)	≤ 30	—	$\leq 250^*$	14

1	2	3	4	5	6	7
2N5228	Si, <i>p-n-p</i> , ПЭ	310	≥300	5	3	50
MPS3639	Si, <i>p-n-p</i> , ПЭ	200	≥300	6	4	80
2SA495	Si, <i>p-n-p</i> , ПЭ	200	≥100	35	5	100
2SA495G	Si, <i>p-n-p</i> , ПЭ	200	≥100	35	5	100
2SA628	Si, <i>p-n-p</i> , ПЭ	150	100	30	4	100
KT343A	Si, <i>p-n-p</i> , ПЭ	150 (75° C)	≥300	17* (85° C)	4	50 (150*)
KT343Б	Si, <i>p-n-p</i> , ПЭ	150 (75° C)	≥300	17*	4	50 (150*)
KT343В	Si, <i>p-n-p</i> , ПЭ	150 (75° C)	≥300	9*	4	50 (150*)
BSW19	Si, <i>p-n-p</i> , ПЭ	300	≥150	35	5	100
2T3841	Si, <i>p-n-p</i> , ПЭ	300	≥300	15	4	200
BSY40	Si, <i>p-n-p</i> , ПЭ	300	210	25	5	100 (140*)
BSY41	Si, <i>p-n-p</i> , ПЭ	300	230	25	5	100 (140*)
2N3545	Si, <i>p-n-p</i> , ПЭ	360	≥250	20	5	200
BSW21	Si, <i>p-n-p</i> , ПЭ	300	300	25	5	200
KT349A	Si, <i>p-n-p</i> , ПЭ	200 (30° C)	≥300	15* (85° C)	4	40*
KT349Б	Si, <i>p-n-p</i> , ПЭ	200 (30° C)	≥300	15* (85° C)	4	40*
KT349В	Si, <i>p-n-p</i> , ПЭ	200 (30° C)	≥300	15* (85° C)	4	40*
BC178A	Si, <i>p-n-p</i> , ПЭ	300	150	25**	5	100
2N726	Si, <i>p-n-p</i> , ПЭ	300	≥140	25	5	50
2N727	Si, <i>p-n-p</i> , ПЭ	300	≥140	25	5	50
2SA494G	Si, <i>p-n-p</i> , ПЭ	200	≥100	35	5	80
BC158A	Si, <i>p-n-p</i> , ПЭ	230 (45° C)	150	30	5	100
KT347A	Si, <i>p-n-p</i> , ПЭ	150 (55° C)	≥500	15* (85° C)	4	50 (110*)
KT347Б	Si, <i>p-n-p</i> , ПЭ	150 (55° C)	≥500	9*	4	50 (110*)
KT347В	Si, <i>p-n-p</i> , ПЭ	150 (55° C)	≥500	6*	4	50 (110*)
2N2894	Si, <i>p-n-p</i> , ПЭ	360	≥400	12	4	200
2N869A	Si, <i>p-n-p</i> , ПЭ	360	≥400	25	5	200
2N3012	Si, <i>p-n-p</i> , ПЭ	360	≥400	12	4	200
2N3209	Si, <i>p-n-p</i> , ПЭ	360	≥400	20	4	200
KSY81	Si, <i>p-n-p</i> , ПЭ	360	≥400	12	4	200
2N5056	Si, <i>p-n-p</i> , ПЭ	360	≥600	15	4,5	100
2N3576	Si, <i>p-n-p</i> , ПЭ	360	≥400	20	5	200
MPS3640	Si, <i>p-n-p</i> , ПЭ	310	≥500	12	4	80

Продолжение

8	9	10	11	12	13	14
$\leq 0,1$ (4 B)	$\geq 30^\circ$ (0,3 B; 10 mA)	≤ 5 (5 B)	≤ 40	—	$\leq 90^*$	TO92
≤ 100 (6 B)	30—120* (0,3; 10 mA)	$\leq 3,5$ (5 B)	≤ 16	—	$\geq 20^*$	TO92
$\leq 0,5$ (15 B)	40—400* (1B; 10 mA)	≤ 7 (10 B)	≤ 40	—	$\geq 300^*$	R67
$\leq 0,5$ (15 B)	40—240* (1B; 10 mA)	≤ 7 (10 B)	—	—	—	R67
1	55—500* (6 B; 1mA)	3,5	30	—	{ $\begin{array}{l} 60 \\ 100^* \end{array}$	TO92
≤ 1 (10 B)	$\geq 30^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 10^*$	18
≤ 1 (10 B)	$\geq 50^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 20^*$	18
≤ 1 (7 B)	$\geq 30^*$ (0,3B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 10^*$	18
0,02 (25 B)	40—300* (1 B; 10 mA)	≤ 7 (10 B)	≤ 18	—	$\leq 800^{**}$	TO18
0,005	30—250	≤ 6	—	—	—	TO18
$\leq 0,01$ (25 B)	25—60* (0,5 B; 10 mA)	—	≤ 20	—	$\leq 90^*$	TO18
$\leq 0,01$ (25 B)	50—200* (0,5 B; 10 mA)	—	≤ 20	—	$\leq 90^*$	TO18
$\leq 0,01$ (10 B)	40—120* (1 B; 10 mA)	≤ 8	≤ 20	—	$\leq 40^*$	TO18
0,5	130* (4,5 B; 2 mA)	4	—	—	—	TO18
≤ 1 (10 B)	20—80* (1 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	—	18
≤ 1 (10 B)	40—160* (1 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	—	18
≤ 1 (10 B)	120—300* (1 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	—	18
$\leq 0,1$ (20 B)	125—260 (5 B; 2 mA)	4 (10 B)	≤ 30	≤ 10 (1 кГц)	—	TO18
≤ 1 (25 B)	15—45* (1 B; 10 mA)	≤ 5 (5 B)	≤ 60	—	—	TO18
≤ 1 (25 B)	30—120* (1B; 10 mA)	≤ 5 (5 B)	≤ 60	—	—	TO18
$\leq 0,1$ (15 B)	70—400 (6 B; 0,1 mA)	≤ 7 (10 B)	≤ 40	—	—	R67
0,002(20B)	125—260 (5 B; 2 mA)	4,5	—	—	—	MM10
≤ 1 (15 B)	30—400* (0,3B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 25^*$	18
≤ 1 (9 B)	30—400* (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 25^*$	18
≤ 1 (6B)	50—400* (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 30	—	$\leq 40^*$	18
$\leq 0,08$ (6 B)	$\geq 30^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 15	—	$\leq 90^{**}$	TO18
≤ 10 (25 B)	$\geq 30^*$ (0,3 B; 10 mA)	≤ 5 (5 B)	≤ 15	—	$\leq 80^{**}$	TO18
≤ 10 (12 B)	$\geq 25^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 15	—	$\leq 75^{**}$	TO18
$\leq 0,08^*$ (10B)	$\geq 25^*$ (0,3 B; 10 mA)	≤ 5 (5 B)	≤ 15	—	$\leq 90^{**}$	TO18
≤ 10 (12 B)	$\geq 30^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 7	—	$\leq 90^{**}$	TO18
$\leq 0,05^*$ (10 B)	$\geq 20^*$ (0,3 B; 10 mA)	4,5	≤ 13	—	$\leq 30^*$	TO18
$\leq 0,01^*$ (15 B)	40—120* (0,5 B; 10 mA)	$\leq 4,5$	≤ 15	—	$\leq 30^*$	TO18
$\leq 0,1$ (12 B)	30—120* (0,3B; 10 mA)	$\leq 3,5$ (5 B)	≤ 20	—	$\leq 20^*$	TO92

1	2	3	4	5	6	7
KT337A	Si, <i>p-n-p</i> , ПЭ	150 (60° C)	>500	6* (85° C)	4	30
KT337Б	Si, <i>p-n-p</i> , ПЭ	150 (60° C)	>600	6* (85° C)	4	30
KT337В	Si, <i>p-n-p</i> , ПЭ	150 (60° C)	>600	6* (85° C)	4	30
2N3304	Si, <i>p-n-p</i> , ПЭ	300	>500	6	4	—
2N4207	Si, <i>p-n-p</i> , ПЭ	300	>650	6	4,5	50
2N4208	Si, <i>p-n-p</i> , ПЭ	300	>700	12	4,5	50
2N3451	Si, <i>p-n-p</i> , ПЭ	300	>500	6	4	—
KT326A	Si, <i>p-n-p</i> , ПЭ	200 (30° C)	>400	15*	4	50
KT326Б	Si, <i>p-n-p</i> , ПЭ	200 (30° C)	>400	15*	4	50
BFY19	Si, <i>p-n-p</i> , П	300	>400	30	3	100
2SA522	Si, <i>p-n-p</i> , ПЭ	250	>100	25	5	100
BFX12	Si, <i>p-n-p</i> , ПЭ	300	>150	20	—	100 (140*)
BFX13	Si, <i>p-n-p</i> , ПЭ	300	>150	20	—	100 (140*)
2N4034	Si, <i>p-n-p</i> , ПЭ	360	>400	40	5	100
KT363A	Si, <i>p-n-p</i> , ПЭ	150 (45° C)	>1200	15*	4	30 (50*)
KT363Б	Si, <i>p-n-p</i> , ПЭ	150 (45° C)	>1500	12*	4	30 (50*)
2N4260	Si, <i>p-n-p</i> , ПЭ	200	>1200	15	4,5	30
2N4261	Si, <i>p-n-p</i> , ПЭ	200	>1500	15	4,5	30
MPSL07	Si, <i>p-n-p</i> , ПЭ	310	>1000	6	4,5	80
MPSL08	Si, <i>p-n-p</i> , ПЭ	310	>1200	12	4,5	80
2N3546	Si, <i>n-p-n</i> , ПЭ	360	>700	15	4,5	100
KT355A	Si, <i>n-p-n</i> , ПЭ	225 (85° C)	>1500	15*	4	30 (60*)
2N5851	Si, <i>n-p-n</i> , ПЭ	500	>800	30	4,5	100
2N5852	Si, <i>n-p-n</i> , ПЭ	550	>1100	30	4,5	100
2SC1044	Si, <i>n-p-n</i> , ПЭ	250	1000	45	3	30
2N5842	Si, <i>n-p-n</i> , ПЭ	350*	>1700	20	3	100
BFX89	Si, <i>n-p-n</i> , ПЭ	200	1200	15*	2,5	25 (50*)
BFY66	Si, <i>n-p-n</i> , ПЭ	175 (45° C)	>600	30	3	—
2T3674	Si, <i>n-p-n</i> , ПЭ	150	>1000	25	5	25
KT372A	Si, <i>n-p-n</i> , ПЭ	50 (100° C)	>2400	15* (125° C)	3	10
KT372Б	Si, <i>n-p-n</i> , ПЭ	50 (100° C)	>3000	15* (125° C)	3	10
KT372В	Si, <i>n-p-n</i> , ПЭ	50 (100° C)	>2400	15 (125° C)	3	10
BFR34	Si, <i>n-p-n</i> , ПЭ	200	4500	20	3,5	30

Продолжение

8	9	10	11	12	13	14
≤ 1 (6 B)	$\geq 30^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 20	—	$\leq 25^*$	18
≤ 1 (6 B)	$\geq 50^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 20	—	$\leq 28^*$	18
≤ 1 (6 B)	$\geq 70^*$ (0,3 B; 10 mA)	≤ 6 (5 B)	≤ 20	—	$\leq 28^*$	18
$\leq 0,01$ (3 B)	$30-120^*$ (0,3 B; 10 mA)	$\leq 3,5$ (5B)	≤ 16	—	$\leq 30^*$	TO18
$\leq 0,01^*$ (3 B)	$\geq 50^*$ (0,3 B; 10 mA)	≤ 3	≤ 15	—	$\leq 15^*$	TO18
$0,01^*$ (6 B)	$\geq 30^*$ (0,3 B, 10 mA)	3	≤ 15	—	$\leq 20^*$	TO18
$\leq 0,01^*$ (3 B)	$30-120^*$ (0,3 B; 10 mA)	—	≤ 16	—	$\leq 60^*$	TO18
$\leq 0,5$ (20 B)	$20-70^*$ (2 B; 10mA)	≤ 5 (5 B)	≤ 30	—	≤ 450	20
$\leq 0,5$ (20 B)	$45-160^*$ (2 B; 10 mA)	≤ 5 (5 B)	≤ 30	—	≤ 450	20
10	110* (9B; 10 mA)	4	—	—	—	TO18
$\leq 0,1$ (15 B)	$35-200^*$ (10 B; 10 mA)	≤ 7 (10 B)	—	—	—	TO18
0,01	$20-60^*$ (0,35 B; 10 mA)	—	≤ 25	—	—	TO18
0,01	$50-250^*$ (0,35B; 10 mA)	—	≤ 25	—	—	TO18
0,015*	$\geq 50^*$ (10 B; 1 mA)	≤ 4	≤ 130	—	$\leq 140^*$	TO18
$\leq 0,5$ (15 B)	$20-70^*$ (5 B; 5 mA)	≤ 2 (5 B)	≤ 35	—	{ $\begin{array}{l} \leq 50 \\ \leq 10^* \end{array}$ }	18
$\leq 0,5$ (15 B)	$40-120^*$ (5 B; 5 mA)	≤ 2 (5 B)	≤ 35	—	{ $\begin{array}{l} \leq 75 \\ \leq 5^* \end{array}$ }	18
≤ 10 (15 B)	$30-150^*$ (1 B; 10 mA)	$\leq 2,5$ (4 B)	≤ 35	—	{ $\begin{array}{l} \leq 35 \\ t_{np} \leq 1,2^* \end{array}$ }	TO72
≤ 10 (15 B)	$30-150^*$ (1 B; 10 mA)	$\leq 2,5$ (4 B)	≤ 35	—	{ $\begin{array}{l} \leq 60 \\ t_{np} \leq 1,2^* \end{array}$ }	TO72
0,01	$\geq 30^*$ (3 B; 10 mA)	1,9	15	—	$\leq 40^{**}$	TO92
0,01	$\geq 30^*$ (3 B; 10 mA)	1,9	15	—	$\leq 40^{**}$	TO92
$\leq 0,01$ (10 B)	$30-120^*$ (1 B; 10 mA)	≤ 6 (10 B)	≤ 15	—	$\leq 20^*$	TO18
$\leq 0,5$ (15 B)	$80-300^*$ (5 B; 10 mA)	≤ 2 (5 B)	—	≤ 8 (100 МГц)	≤ 60	21
≤ 1 (15 B)	$\geq 40^*$ (1 B; 10 mA)	$\leq 1,5$ (4 B)	≤ 20	$2,5$ (200 МГц)	≤ 20	TO72
≤ 1 (15 B)	$\geq 40^*$ (1 B; 10 mA)	$\leq 1,5$ (4 B)	≤ 20	$2,5$ (200 МГц)	≤ 20	TO72
$\leq 0,1$ (30 B)	$40-200^*$ (6 B; 6 mA)	0,6 (6 B)	—	≤ 4 (200 МГц)	—	TO72
0,02	$\geq 25^*$ (4 B; 25 mA)	1,5	—	≤ 4 (200 МГц)	≤ 40	TO72
$\leq 0,01$ (15 B)	$20-125^*$ (1 B; 25 mA)	$\leq 1,7$ (10 B)	—	≤ 4 (200 МГц)	—	TO72
$\leq 0,010$ (15 B)	—	—	—	≤ 6 (60 МГц)	—	TO18
$\leq 0,01$	≥ 20	$\leq 1,5$	—	≤ 5	—	TO72
$\leq 0,5$ (15 B)	$\geq 10^*$ (5 B; 10 mA)	≤ 1 (5 B)	—	$\leq 3,5$ (1000 МГц)	—	22
$\leq 0,5$ (15 B)	$\geq 10^*$ (5 B; 10 mA)	≤ 1 (5 B)	—	$\leq 5,5$ (1000 МГц)	—	22
$\leq 0,5$ (15 B)	$\geq 10^*$ (5 B; 10 mA)	≤ 1 (5 B)	—	$\leq 5,5$ (1000 МГц)	—	22
$\leq 0,05$ (10 B)	$\geq 25^*$ (6 B; 10 mA)	0,75 (10 B)	—	$2,5$ (800 МГц)	—	TO50

1	2	3	4	5	6	7
BFR34A	Si, <i>n-p-n</i> , ПЭ	200	3300	20	3,5	30
2SC1090	Si, <i>n-p-n</i> , ПЭ	300	3000	20	3	50
2N5652	Si, <i>n-p-n</i> , ПЭ	250	3000	20	3	30
Транзисторы средней мощности низкой,						
ГТ402Д	Ge, <i>p-n-p</i> , С	300; 600	$\geq 1^*$	25*	—	500
ГТ402Е	Ge, <i>p-n-p</i> , С	300; 600	$\geq 1^*$	25*	—	500
ГТ402ЖК	Ge, <i>p-n-p</i> , С	300; 600	$\geq 1^*$	40*	—	500
ГТ402И	Ge, <i>p-n-p</i> , С	300; 600	$\geq 1^*$	40*	—	500
AC128	Ge, <i>p-n-p</i> , С	1000*	≥ 1	32	10	1000
AC188	Ge, <i>p-n-p</i> , С	1000*	≥ 1	25	10	1000
AC152	Ge, <i>p-n-p</i> , С	300 (900*)	1,5	32	10	500
ACY33	Ge, <i>p-n-p</i> , С	300 (1100*)	≥ 1	32	10	1000
AC117	Ge, <i>p-n-p</i> , С	1100*	10** кГц	32	10	1000
AC138	Ge, <i>p-n-p</i> , С	220	1,5*	32	10	1200
AC124	Ge, <i>p-n-p</i> , С	1000*	11** кГц	45	10	1000
AC184	Ge, <i>p-n-p</i> , С	270	2,5	45	10	500 (1000*)
AC139	Ge, <i>p-n-p</i> , С	220	1,5*	32	10	1000
AC142	Ge, <i>p-n-p</i> , С	220	1,5*	32	10	1200
SFT325	Ge, <i>p-n-p</i> , С	200	2	32	12	500
GC500	Ge, <i>p-n-p</i> , С	550	$\geq 0,5$	24	10	300 (600*)
GC501	Ge, <i>p-n-p</i> , С	550	≥ 1	24	10	300 (600*)
GC502	Ge, <i>p-n-p</i> , С	550	≥ 1	32	20	300 (600*)
ГТ405А	Ge, <i>p-n-p</i> , С	600	$\geq 1^*$	25*	—	500
ГТ405Б	Ge, <i>p-n-p</i> , С	600	$\geq 1^*$	25*	—	500
ГТ405В	Ge, <i>p-n-p</i> , С	600	$\geq 1^*$	40*	—	500
ГТ405Г	Ge, <i>p-n-p</i> , С	600	$\geq 1^*$	40*	—	500

Германиевые транзисторы в пластмассовом корпусе с таким сочетанием для замены, такие же, как

ГТ403А	Ge, <i>p-n-p</i> , С	4000*	$\geq 8^{**}$ кГц	45	20	1250
ГТ403Б	Ge, <i>p-n-p</i> , С	4000*	$\geq 8^{**}$ кГц	45	20	1250
ГТ403В	Ge, <i>p-n-p</i> , С	5000*	$\geq 8^{**}$ кГц	60	20	1250
ГТ403Г	Ge, <i>p-n-p</i> , С	4000*	$\geq 6^{**}$ кГц	60	20	1250
ГТ403Д	Ge, <i>p-n-p</i> , С	4000*	$\geq 6^{**}$ кГц	60	30	1250
ГТ403Е	Ge, <i>p-n-p</i> , С	5000*	$\geq 8^{**}$ кГц	60	20	1250
ГТ403Ж	Ge, <i>p-n-p</i> , С	4000*	$\geq 8^{**}$ кГц	80	20	1250

Продолжение

8	9	10	11	12	13/	14
$\leq 0,05$ (10 В)	$\geq 25^*$ (6 В; 10 мА)	0,75 (10 В)	—	3 (800 МГц)	—	TO50
$\leq 0,5$ (10 В)	30—300* (5 В; 10 мА)	0,9 (5 В)	—	$\leq 4,5$ (1000 МГц)	—	U78
$\leq 0,1$ (10 В)	30—300* (10 В; 10 мА)	0,6 (10 В)	—	$\leq 2,5$ (500 МГц)	—	TO72
средней и высоких частот						
≤ 25 (10 В)	30—80* (1 В; 3 мА)	—	≤ 5	—	—	23
≤ 25 (10 В)	60—150* (1 В; 3 мА)	—	≤ 5	—	—	23
≤ 25 (10 В)	30—80* (1 В; 3 мА)	—	≤ 5	—	—	23
≤ 25 (10 В)	60—150* (1 В; 3 мА)	—	≤ 5	—	—	23
≤ 10 (10 В)	55—175* (50 мА)	100 (5 В)	—	—	—	TO1
≤ 200 (25 В)	$\geq 70^*$ (10 В; 5 мА)	≤ 110 (5 В)	—	—	—	TO1
≤ 25 (32 В)	114 (0,5 В; 2 мА)	≤ 40 (5 В)	≤ 8	—	—	TO1
≤ 10 (10 В)	97* (50 мА)	≤ 100 (5 В)	≤ 10	—	—	TO1
≤ 6 (6 В)	60—400* (2 В; 150 мА)	—	—	—	—	X9
≤ 15 (10 В)	30—250 (6 В; 5 мА)	—	—	—	—	TO1
≤ 8 (45 В)	60—170* (2 В; 150 мА)	—	—	—	—	TO1
≤ 10 (10 В)	50—250* (1 В; 300 мА)	40 (6 В)	—	—	—	R134
≤ 14 (12 В)	40—160* (0,4 А)	—	—	—	—	TO1
≤ 14 (12 В)	40—160* (0,4 А)	—	—	—	—	TO1
≤ 25	150 (6 В; 5 мА)	—	—	—	—	X47
≤ 16 (6 В)	50* (300 мА)	—	$\leq 0,8$	≤ 15 (1 кГц)	—	A6
≤ 16 (6 В)	95* (300 мА)	—	$\leq 0,8$	≤ 15 (1 кГц)	—	A6
≤ 16 (6 В)	95* (300 мА)	—	$\leq 0,8$	—	—	A6
≤ 25 (10 В)	30—80* (1 В; 3 мА)	—	—	—	—	24
≤ 25 (10 В)	60—150* (1 В; 3 мА)	—	—	—	—	24
≤ 25 (10 В)	30—80* (1 В; 3 мА)	—	—	—	—	24
≤ 25 (10 В)	60—150* (1 В; 3 мА)	—	—	—	—	24

параметров за рубежом не выпускаются. Зарубежные приборы, рекомендуемые для транзисторов типа ГТ402.

≤ 50 (45 В)	20—60* (5 В; 0,1 А)	—	≤ 1	—	—	25
≤ 50 (45 В)	50—150* (5 В; 0,1 А)	—	≤ 1	—	—	25
≤ 50 (60 В)	20—60* (5 В; 0,1 А)	—	≤ 1	—	—	25
≤ 50 (60 В)	50—150* (5 В; 0,1 А)	—	≤ 1	—	—	25
≤ 50 (60 В)	50—150* (5 В; 0,1 А)	—	≤ 1	—	—	25
≤ 50 (60 В)	$\geq 30^*$ (0,45 А)	—	≤ 1	—	—	25
≤ 50 (80 В)	20—60* (5 В; 0,1 А)	—	≤ 1	—	—	25

1	2	3	4	5	6	7
ГТ403И	Ge, $p-n-p$, C	4000*	$\geq 8^{**}$ кГц	80	20	1250
ГТ403Ю	Ge, $p-n-p$, C	4000*	$\geq 8^{**}$ кГц	45	20	1250
ASY76	Ge, $p-n-p$, C	500	$\geq 0,5$	40	10	500 (1000*)
ASY77	Ge, $p-n-p$, C	500	$\geq 0,5$	60	10	500 (1000*)
ASY80	Ge, $p-n-p$, C	500	$\geq 0,7$	40	20	500 (1000*)
AD164	Ge, $p-n-p$, C	6000* (45°C)	11** кГц	25	20	500 (1000*)
AD152	Ge, $p-n-p$, C	6000*	11** кГц	45	12	1000
AD155	Ge, $p-n-p$, C	6000*	11** кГц	25	20	1000
AD169	Ge, $p-n-p$, C	6000*	11** кГц	45	20	1000
GC510К	Ge, $p-n-p$, C	1000*	$\geq 10^{**}$ кГц	32	10	1000 (2000*)
GC512К	Ge, $p-n-p$, C	1000*	$\geq 10^{**}$ кГц	25	10	1000 (2000*)
3NU72	Ge, $p-n-p$, C	4000*	$\geq 0,10$	24	8	1500
3NU72	Ge, $p-n-p$, C	4000*	$\geq 0,10$	32	10	1500
4NU72	Ge, $p-n-p$, C	4000*	$\geq 0,10$	48	15	1500
5NU72	Ge, $p-n-p$, C	4000*	$\geq 0,10$	60	20	1500
ADP665	Ge, $p-n-p$, C	3200*	$\geq 0,1$	30	10	1500
ADP666	Ge, $p-n-p$, C	3200*	$\geq 0,1$	60	10	1500
ГТ404А	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	25*	—	500
ГТ404Б	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	25*	—	500
ГТ404В	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	40*	—	500
ГТ404Г	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	40*	—	500
ГТ404Д	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	25*	—	500
ГТ404Е	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	25*	—	500
ГТ404Ж	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	40*	—	500
ГТ404И	Ge, $n-p-n$, C	300; 600	$\geq 1^*$	40*	—	500
AC127	Ge, $n-p-n$, C	240 (340*)	$\geq 1,5$	32	10	500
AC187	Ge, $n-p-n$, C	1000*	—	25	10	1000
AC176	Ge, $n-p-n$, C	1000*	$\geq 1^*$	32	10	1000
AC181	Ge, $n-p-n$, C	300	$\geq 2^*$	32	20	1000
AC141	Ge, $n-p-n$, C	220 (720*)	3*	32	10	1200
AC141Б	Ge, $n-p-n$, C	220 (720*)	3*	25	10	1200
SFT377	Ge, $n-p-n$, C	250	≥ 1	16**	10	600
2SD127	Ge, $n-p-n$, C	250	—	23	—	500
2SD127А	Ge, $n-p-n$, C	250	—	23	—	500
2SD128	Ge, $n-p-n$, C	250	—	32	—	500
2SD128А	Ge, $n-p-n$, C	250	—	32	—	500
2SD72	Ge, $n-p-n$, C	720	0,75	25	6	600
GD607	Ge, $n-p-n$, C	4000*	≥ 1	32	10	1 A (2 A*)
GD608	Ge, $n-p-n$, C	4000*	≥ 1	25	10	1 A (2*)
GD609	Ge, $n-p-n$, C	4000*	≥ 1	20	10	1 A (2*)
AC185	Ge, $n-p-n$, C	270 (1250*)	≥ 2	32	20	500 (1000*)
П605	Ge, $p-n-p$, K	3000*	—	45	1	1500*

Продолжение

8	9	10	11	12	13	14
≤ 50 (80 B)	$\geq 30^*$ (0,45 B)	—	≤ 1	—	—	25
≤ 50 (45 B)	30—60* (5B; 0,1 A)	—	≤ 1	—	—	25
≤ 40 (40 B)	$\geq 45^*$ (6 B; 10 mA)	≤ 60 (5B)	≤ 1	≤ 15 (1 кГц)	—	TO5
≤ 40 (60 B)	$\geq 45^*$ (6 B; 10 mA)	≤ 60 (5B)	≤ 1	≤ 15 (1 кГц)	—	TO5
≤ 40 (40 B)	$\geq 50^*$ (0,3 A)	≤ 60 (5B)	≤ 1	≤ 15 (1 кГц)	—	TO5
≤ 30 (25 B)	80—320* (1B; 0,5 A)	—	—	—	—	MDII
≤ 30 (45 B)	40—160* (1 B; 0,5 A)	—	—	—	—	MDII
≤ 30 (25 B)	65—320* (1 B; 0,5 A)	—	—	—	—	MDII
≤ 30 (45 B)	40—160* (1 B; 0,5 B)	—	—	—	—	MDII
≤ 10 (10 B)	60—175* (0,3 A)	85 (6 B)	$\leq 0,6$	—	—	A7
≤ 15 (10 B)	$\geq 25^*$ (0,3 A)	85 (6 B)	$\leq 0,6$	—	—	A7
≤ 35 (6B)	$\geq 10^*$ (1,5 A)	—	$\leq 0,2$	—	—	SOT9
≤ 35 (6 B)	$\geq 10^*$ (1,5 A)	—	$\leq 0,2$	—	—	SOT9
≤ 35 (6 B)	$\geq 10^*$ (1,5 A)	—	$\leq 0,2$	—	—	SOT9
≤ 35 (6 B)	$\geq 10^*$ (1,5 A) 20—120*	—	$\leq 0,2$	—	—	SOT9
—	(6 B; 0,1 A)	—	—	—	—	TO66
—	20—120*	—	—	—	—	TO66
—	(6 B; 0,1 A)	—	—	—	—	TO66
≤ 25 (10 B)	30—80* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	60—150* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	30—80* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	60—150* (1B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	30—80* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	60—150* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	30—80* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 25 (10 B)	60—150* (1 B; 3 mA)	—	≤ 6	—	—	23
≤ 15 (10 B)	100* (20 mA)	70 (5 B)	—	≤ 10 (1 кГц)	—	TO1
≤ 100 (25 B)	≥ 70 (10 B; 5 mA)	≤ 180 (5 B)	—	—	—	TO1
≤ 500 (32 B)	35* (50 mA)	≤ 100 (5 B)	$\leq 5,5$	—	—	TO1
≤ 20 (10 B)	50—250* (1 B; 0,6 A)	80 (6 B)	0,3	≤ 10 (1 кГц)	—	R134
≤ 14 (10 B)	40—160* (0,4 A)	—	—	—	—	TO1
≤ 14 (10 B)	30—250 (6 B; 1 mA)	—	—	—	—	TO1
10	50* (1 B; 0,3 A)	—	—	—	—	TO1
20	82* (1B; 0,20 mA)	—	—	—	—	TO1
20	$\geq 46^*$ (1 B; 0,5 A)	—	—	—	—	TO1
20	82* (1 B; 20 mA)	—	—	—	—	TO1
20	46* (1 B; 0,5 A)	—	—	—	—	TO1
50	80* (1 B; 0,2 A)	—	—	—	—	TO1
≤ 35 (10 B)	30—180* (50 mA)	—	—	—	—	SOT9
≤ 35 (10 B)	100—500* (50 mA)	—	—	—	—	SOT9
≤ 35 (10 B)	30—500* (50 mA)	—	—	—	—	SOT9
≤ 20 (10 B)	50—250* (1B; 0,3 A)	80 (6 B)	—	—	—	TO11
≤ 2000 (45 B)	20—60* (3 B; 0,5 A)	≤ 30 (20 B)	≤ 40	—	≤ 500 $\leq 3000*$	26

1	2	3	4	5	6	7
П1605А	Ge, <i>p-n-p</i> , К	3000*	—	45	0,5	1500*
П1606	Ge, <i>p-n-p</i> , К	1250*	≥30	35	1	1500*
П1606А	Ge, <i>p-n-p</i> , К	1250*	≥30	35	0,5	1500*
2SA416	Ge, <i>p-n-p</i> , СД	6000*	≥90	70	1,5	700
П1607	Ge, <i>p-n-p</i> , К	1500* (40° С)	≥60	30	1,5	300(600*)
П1607А	Ge, <i>p-n-p</i> , К	1500* (40° С)	≥60	30	1,5	300(600*)
П1608	Ge, <i>p-n-p</i> , К	1500(40° С)	≥90	30	1,5	300(600*)
П1608А	Ge, <i>p-n-p</i> , К	1500(40° С)	≥90	30	1,5	300(600*)
П1609	Ge, <i>p-n-p</i> , К	1500(40° С)	≥120	30	1,5	300(600*)
П1609А	Ge, <i>p-n-p</i> , К	1500(40° С)	≥120	30	1,5	300(600*)
AUY10	Ge, <i>p-n-p</i> , СД	4500*	120	70	—	700
2SA374	Ge, <i>p-n-p</i> , СД	1500*	300	34	0,5	300
KT601А	Si, <i>n-p-n</i> , П	250(500*)	≥40	100*	2	30
2SC64	Si, <i>n-p-n</i> , М	600	≥20	130	3	50
2N735А	Si, <i>n-p-n</i> , ПЭ	500*	≥60	80	6	50
KT605А	Si, <i>n-p-n</i> , П	400	≥40	300	5	200
KT605Б	Si, <i>n-p-n</i> , П	400	≥40	300	5	200
2SC1056	Si, <i>n-p-n</i> , М	475	150	260	5	100
BC100	Si, <i>n-p-n</i> , М	590	10	350	7	150
KT618А	Si, <i>n-p-n</i> , П	500	≥40	300	5	100
2SC505	Si, <i>n-p-n</i> , П	600	≥20	300	3	100
2SC506	Si, <i>n-p-n</i> , П	600	≥20	200	3	100
MJ420	Si, <i>n-p-n</i> , П	800(2500*)	≥15	275	6	100(500*)
BF179C	Si, <i>n-p-n</i> , П	700	120	250	5	50
BFP179C	Si, <i>n-p-n</i> , П	600	≥75	250	5	50
KT603А	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	30*(70° С)	3	300(600*)
KT603Б	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	30*	3	300(600*)
KT603В	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	15*	3	300(600*)
KT603Г	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	15*	3	300(600*)
KT603Д	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	10*	3	300(600*)
KT603Е	Si, <i>n-p-n</i> , ПЭ	500(50° С)	≥200	10*	3	300(600*)
2N5188	Si, <i>n-p-n</i> , ПЭ	800(4000*)	≥250	60	5	—
2N696	Si, <i>n-p-n</i> , П	600	≥40	60	5	500*
2N697	Si, <i>n-p-n</i> , П	600	≥50	60	5	500*

Продолжение

8	9	10	11	12	13	14
≤ 2000 (45 B)	40—120* (3 B; 0,5 A)	$\leq 30(20 B)$	≤ 40	—	{ ≤ 500 $\leq 4000^*$	26
≤ 2000 (35 B)	20—60*(3 B; 0,5 A)	$\leq 30(20 B)$	≤ 40	—	{ ≤ 500 $\leq 3000^*$	26
≤ 2000 600	40—120* (3 B; 0,5 A) 40—100*	$\leq 30(20 B)$ —	≤ 40 —	—	{ ≤ 500 $\leq 4000^*$ 600*	26
≤ 300 (30 B)	(10 B; 0,6 A) 20—80*	$\leq 50(10 B)$	≤ 10	—	{ ≤ 500 $\leq 3000^*$	26
≤ 300 (30 B)	(3 B; 0,25 A) 60—200*	$\leq 50(10 B)$	≤ 10	—	{ ≤ 500 $\leq 3000^*$	26
≤ 300 (30 B)	(3 B; 0,25 A) 40—120*	$\leq 50(10 B)$	≤ 10	—	{ ≤ 500 $\leq 3000^*$	26
≤ 300 (30 B)	(3 B; 0,25 A) 80—240*	$\leq 50(10 B)$	≤ 10	—	{ ≥ 500 $\geq 3000^*$	26
≤ 300 (30 B)	(3 B; 0,25 A) 40—120*	$\leq 50(10 B)$	≤ 10	—	{ ≥ 500 $\geq 3000^*$	26
≤ 300 (30 B)	(3 B; 0,25 A) 80—240*	$\leq 50(10 B)$	≤ 10	—	{ ≥ 500 $\geq 3000^*$	26
2000 12	$\geq 40^*(10 B; 0,6 A)$ 100*	— 13	—	—	—	TO3 TO5
—	(2 B; 0,15 A) $\geq 16^*$	$\leq 15(20 B)$	—	—	≤ 600	27
1,5	(20 B; 10 mA) 20*(20 B; 5 mA)	≤ 10	—	—	—	TO5
$\leq 0,005$ (50 B)	30—100* (5 B; 5 mA)	$\leq 10(5 B)$	≤ 100	—	—	TO18
$\leq 50^*$ (250 B)	10—40*	$\leq 7(40 B)$	≤ 400	—	≤ 250	28
$\leq 50^*$ (250 B)	(40 B; 20 mA) 30—120*	$\leq 7(40 B)$	≤ 400	—	≤ 250	28
≤ 1	(40 B; 20 mA) $\geq 20^*$	≤ 10	—	—	—	TO5
0,06	(10 B; 10 mA) 40*(20 B; 10 mA)	— ≤ 160	—	—	$\leq 500^*$	TO5
—	$\geq 30^*(40 B; 1 mA)$	$\leq 7(40 B)$	—	—	—	19
$\leq 2(100 B)$	30—150*	$\leq 15(50 B)$	≤ 20	—	—	TO39
$\leq 2(100 B)$	(5 B; 50 mA) 30—150*	$\leq 15(50 B)$	≤ 20	—	—	TO39
≤ 100 (275 B)	(5 B; 50 mA) $\geq 15^*(20 B; 1 mA)$	$\leq 12(20 B)$	≤ 170	—	—	TO5
$\leq 1 mA$ (260 B)	$\geq 20^*(15 B; 20 mA)$ $\geq 20^*(15 B; 20 mA)$ 10—80*	$\leq 3,5^*$ (20 B) $\leq 3,5^*$ (20 B)	≤ 75	—	≤ 100	TO39
$\leq 10(30 B)$	(2 B; 0,15 A) $\geq 60^*$	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 10(30 B)$	(2 B; 0,15 A) 10—80*	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 5(15 B)$	(2 B; 0,15 A) $\geq 60^*$	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 5(15 B)$	(2 B; 0,15 A) 20—80*	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 1(10 B)$	(2 B; 0,15 A) 60—200*	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 1(10 B)$	(2 B; 0,15 A) 25*	$\leq 15(10 B)$	≤ 7	—	{ ≤ 400 $\leq 100^*$	28
$\leq 0,5(30 B)$	(0,5 B; 0,15 A) 20—60*	$\leq 10(10 B)$	$\leq 3,3$	—	$\leq 35^*$	TO39
$\leq 1(30 B)$	(10 B; 0,15 A) 40—120*	$\leq 35(10 B)$	≤ 10	—	—	TO5
$\leq 1(30 B)$	(10 B; 0,15 A)	$\leq 35(10 B)$	≤ 10	—	—	TO5

1	2	3	4	5	6	7
2N1958	Si, <i>n-p-n</i> , ПЭ	600(2000*)	≥ 100	60	5	500
2N1959	Si, <i>n-p-n</i> , ПЭ	600(2000*)	≥ 100	60	5	500
2N2237	Si, <i>n-p-n</i> , ПЭ	600	≥ 100	40	6	500
2SC796	Si, <i>n-p-n</i> , ПЭ	500	230	40	2	500
KT616A	Si, <i>n-p-n</i> , ПЭ	300	≥ 200	20*	4	400(600*)
KT616B	Si, <i>n-p-n</i> , ПЭ	300	≥ 200	20*	4	400(600*)
BSW41	Si, <i>n-p-n</i> , ПЭ	325(1000*)	≥ 250	30*	5	300(500*)
BSX89	Si, <i>n-p-n</i> , ПЭ	300	≥ 200	25	5	500
2SC395A	Si, <i>n-p-n</i> , ПЭ	250	≥ 200	20	5	400
2N3210	Si, <i>n-p-n</i> , ПЭ	360	≥ 300	40	5	500
BSY17	Si, <i>n-p-n</i> , ПЭ	350	≥ 280	20	5	200
BSY18	Si, <i>n-p-n</i> , ПЭ	350	≥ 280	20	5	200
BSY62	Si, <i>n-p-n</i> , ПЭ	350	≥ 280	25	5	200
2SC131	Si, <i>n-p-n</i> , ПЭ	350	350	40	5	300
2SC132	Si, <i>n-p-n</i> , ПЭ	350	350	20	5	300
2SC133	Si, <i>n-p-n</i> , ПЭ	350	350	20	5	300
2SC134	Si, <i>n-p-n</i> , ПЭ	350	350	40	5	300
2SC135	Si, <i>n-p-n</i> , ПЭ	350	350	20	5	300
2SC137	Si, <i>n-p-n</i> , ПЭ	350(1200*)	350	25	5	300
KSY21	Si, <i>n-p-n</i> , ПЭ	360	≥ 300	40	5	500
2N914	Si, <i>n-p-n</i> , ПЭ	360	≥ 300	40	5	150(500*)
KSY62	Si, <i>n-p-n</i> , ПЭ	350	≥ 200	25	5	200
KSY63	Si, <i>n-p-n</i> , ПЭ	350	≥ 300	40	5	200(500*)
KT617A	Si, <i>n-p-n</i> , ПЭ	500	≥ 150	30	4	400(600*)
KF507	Si, <i>n-p-n</i> , ПЭ	800	≥ 50	40	5	500
SF21	Si, <i>n-p-n</i> , ПЭ	600	≥ 60	20	5	500
SF22	Si, <i>n-p-n</i> , ПЭ	600	≥ 60	33	5	500
SF126A+F	Si, <i>n-p-n</i> , ПЭ	600	≥ 60	33	7	500
2SC482	Si, <i>n-p-n</i> , ПЭ	600	≥ 50	40	5	600
2N2236	Si, <i>n-p-n</i> , П	600	≥ 50	40	5	500
2N1838	Si, <i>n-p-n</i> , М	600	≥ 90	45	5	500
2N1839	Si, <i>n-p-n</i> , М	600	≥ 90	45	4,5	500
2N1840	Si, <i>n-p-n</i> , М	600	≥ 90	25	5	500
2SC188	Si, <i>n-p-n</i> , П	600	150	40	3	500
KT608A	Si, <i>n-p-n</i> , ПЭ	500	≥ 200	60	4	400(800*)
KT608Б	Si, <i>n-p-n</i> , ПЭ	500	≥ 200	60	4	400(800*)
BFY50	Si, <i>n-p-n</i> , ПЭ	800	≥ 60	80	6	1000*
BFY51	Si, <i>n-p-n</i> , ПЭ	800	≥ 50	60	6	1000*
BFY52	Si, <i>n-p-n</i> , ПЭ	800	≥ 50	40	6	1000*
BSX59	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000*
BSX60	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000*
BSX61	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000*
2N2218	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	60	5	800

Продолжение

8	9	10	11	12	13	14
$\leq 0,5(30\text{ B})$	$\geq 20^*(10\text{ B}; 0,15\text{ A})$	$\leq 18(10\text{ B})$	≤ 3	—	$\leq 25^*$	TO5
$\leq 0,5(30\text{ B})$	$40-120^*$	$\leq 18(10\text{ B})$	≤ 3	—	$\leq 25^*$	TO5
0,08	$(10\text{ B}; 0,15\text{ A})$	≤ 35	$\leq 2,5$	—	$\leq 600^{**}$	TO5
5	$40-125^*$			—	—	TO5
	$(1\text{ B}; 0,1\text{ A})$			—	—	TO5
50	$50(20\text{ B}; 15\text{ mA})$	5	—	—	—	TO5
$\leq 15(10\text{ B})$	$\geq 40^*(1\text{ B}; 0,5\text{ A})$	$\leq 15(10\text{ B})$	$\leq 1,2$	—	$\leq 50^*$	18
$\leq 15(10\text{ B})$	$\geq 25^*(1\text{ B}; 0,5\text{ A})$	$\leq 15(10\text{ B})$	$\leq 1,2$	—	$\leq 15^*$	18
$\leq 0,5(30\text{ B})$	$\geq 15^*(1\text{ B}, 0,5\text{ A})$	$\leq 8(10\text{ B})$	$\leq 1,4$	—	$\leq 110^{**}$	TO18
$\leq 0,5(15\text{ B})$	$\geq 20^*(10\text{ B}, 10\text{ mA})$	$2,5(10\text{ B})$	≤ 60	—	$t_{\text{пк}} \leq 75^*$	TO18
$\leq 0,1(20\text{ B})$	$20-300^*$	$\leq 6(10\text{ B})$	≤ 25	—	$\leq 50^*$	TO18
	$(1\text{ B}; 10\text{ mA})$			—	—	TO18
$\leq 0,01$	$30-120^*$	$\leq 6(10\text{ B})$	$\leq 3,75$	—	$\leq 20^*$	TO18
(20 B)	$(1\text{ B}; 10\text{ mA})$			—	—	TO18
$\leq 1(20\text{ B})$	$\geq 10^*(1\text{ B}; 0,1\text{ A})$	$\leq 5(5\text{ B})$	≤ 28	—	$\leq 14^*$	TO18
$\leq 1(20\text{ B})$	$\geq 20^*(1\text{ B}; 0,1\text{ A})$	$\leq 5(5\text{ B})$	≤ 28	—	$\leq 18^*$	TO18
$\leq 0,5$	$30-300^*$	$\leq 5(5\text{ B})$	≤ 60	—	$\leq 25^*$	TO18
(15 B)	$(1\text{ B}; 10\text{ mA})$			—	—	TO18
0,05(10 B)	$60^*(1\text{ B}; 10\text{ mA})$	≤ 4	≤ 7	—	20^*	TO18
0,05(10 B)	$60^*(1\text{ B}; 10\text{ mA})$	≤ 4	≤ 7	—	20^*	TO18
0,05(10 B)	$60^*(1\text{ B}; 10\text{ mA})$	≤ 4	≤ 8	—	20^*	TO18
$\leq 0,02$	$60^*(1\text{ B}; 10\text{ mA})$	≤ 4	≤ 3	—	100^*	TO18
(10 B)	$60^*(1\text{ B}; 10\text{ mA})$			—	—	TO18
$\leq 0,02$	$60^*(1\text{ B}; 10\text{ mA})$	≤ 4	≤ 5	—	100^*	TO18
(10 B)	$50^*(1\text{ B}; 10\text{ mA})$	4	≤ 7	—	20^*	TO18
$\leq 1(40\text{ B})$	$\geq 10^*(5\text{ B}; 0,5\text{ A})$	$\leq 6(10\text{ B})$	$\leq 3,5$	—	20^*	TO18
$\leq 0,025$	$\geq 10^*(5\text{ B}; 0,5\text{ A})$	$\leq 6(10\text{ B})$	$\leq 3,5$	—	$\leq 40^{**}$	TO18
(20 B)	$20-300^*$	$\leq 5(5\text{ B})$	≤ 60	—	$\leq 25^*$	TO18
$\leq 0,5$	$(1\text{ B}; 10\text{ mA})$			—	—	TO18
0,025	$30-120^*$	$\leq 6(5\text{ B})$	≤ 25	—	$\leq 25^*$	TO18
(20 B)	$(1\text{ B}; 10\text{ mA})$			—	—	TO18
$\leq 5(30\text{ B})$	$\geq 30^*(2\text{ B}; 0,4\text{ A})$	$\leq 15(10\text{ B})$	≤ 7	—	≤ 120	19
$\leq 0,5(30\text{ B})$	$\geq 20^*(10\text{ B}; 0,5\text{ A})$	$\leq 25(10\text{ B})$	≤ 10	6(2 МГц)	—	TO5
$\leq 1(20\text{ B})$	—	—	≤ 20	—	—	TO5
$\leq 0,1(33\text{ B})$	—	—	≤ 20	—	—	TO5
$\leq 0,1(33\text{ B})$	$18-1120^*$	$\leq 20(10\text{ B})$	$\leq 3,3$	4,5(1 кГц)	≤ 550	TO5
1	$\geq 30^*(2\text{ B}; 50\text{ mA})$	15	—	—	—	TO39
0,05	$\geq 15^*(1\text{ B}; 0,15\text{ A})$	≤ 35	—	—	—	TO5
$\leq 1,5(30\text{ B})$	$40-150^*$	$\leq 27(10\text{ B})$	≤ 14	—	170^*	TO5
	$(10\text{ B}; 0,1\text{ A})$			—	—	TO5
$\leq 1,5(30\text{ B})$	$\geq 12^*(10\text{ B}; 0,1\text{ A})$	$\leq 27(10\text{ B})$	≤ 14	—	78^*	TO5
—	$\geq 10^*(10\text{ B}; 0,15\text{ A})$	$\leq 27(10\text{ B})$	≤ 9	—	—	TO5
1	$50^*(6\text{ B}; 50\text{ mA})$	9	—	—	—	TO5
$\leq 10(60\text{ B})$	$20-80^*$	$\leq 15(10\text{ B})$	$\leq 2,5$	—	$\leq 120^*$	28
	$(5\text{ B}; 0,2\text{ A})$			—	—	28
	$40-160^*$	$\leq 15(10\text{ B})$	$\leq 2,5$	—	$\leq 120^*$	28
	$(5\text{ B}; 0,2\text{ A})$			—	—	28
$\leq 0,05$	$30^*(10\text{ B}; 0,15\text{ A})$	$\leq 12(10\text{ B})$	≤ 10	—	300^*	TO39
(60 B)	$\geq 40^*(10\text{ B}; 0,15\text{ A})$	$\leq 12(10\text{ B})$	≤ 15	—	300^*	TO39
$\leq 0,05$	$\geq 60^*(10\text{ B}; 0,15\text{ A})$	$\leq 12(10\text{ B})$	≤ 15	—	300^*	TO39
(30 B)	$30-90^*$	$\leq 10(10\text{ B})$	$\leq 2,4$	—	$\leq 60^{**}$	TO39
$\leq 0,5(40\text{ B})$	$(1\text{ B}; 0,5\text{ A})$			—	$\leq 70^{**}$	TO39
$\leq 0,5(40\text{ B})$	$30-90^*$	$\leq 10(10\text{ B})$	$\leq 2,6$	—	$\leq 100^{**}$	TO39
$\leq 0,5(40\text{ B})$	$(1\text{ B}; 0,5\text{ A})$			—	≤ 150	TO39
$\leq 10(60\text{ B})$	$30-90^*$	$\leq 10(10\text{ B})$	$\leq 2,6$	—	$\leq 225^*$	TO39
	$(10\text{ B}; 0,15\text{ A})$			—	—	TO39

1	2	3	4	5	6	7
2N2218A	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	75	6	800
2N3053	Si, <i>n-p-n</i> , П	1000	≥ 100	60	5	700*
2N2224	Si, <i>n-p-n</i> , ПЭ	800	≥ 160	65	5	500
2N2195	Si, <i>n-p-n</i> , ПЭ	600	≥ 50	45	5	1000
2N2410	Si, <i>n-p-n</i> , ПЭ	800	≥ 200	60	5	800
2N2958	Si, <i>n-p-n</i> , ПЭ	600	≥ 250	60	5	600
2N2217	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	60	5	800
2N3299	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	60	5	500
2N2194	Si, <i>n-p-n</i> , ПЭ	800	≥ 50	60	5	100
2N2194A	Si, <i>n-p-n</i> , ПЭ	800	≥ 50	60	5	100
BSY34	Si, <i>n-p-n</i> , ПЭ	800(2600*)	≥ 250	60	5	600
BSY58	Si, <i>n-p-n</i> , ПЭ	800(2600*)	≥ 250	50	5	600
KSY34	Si, <i>n-p-n</i> , ПЭ	800(2600*)	≥ 250	60	5	600
SF23	Si, <i>n-p-n</i> , ПЭ	600	≥ 60	66	5	500
SS120	Si, <i>n-p-n</i> , ПЭ	600	—	60	5	700
SS125	Si, <i>n-p-n</i> , ПЭ	600	≥ 30	30	5	600
SS126	Si, <i>n-p-n</i> , ПЭ	600	≥ 30	60	5	600
BSXP59	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000
BSXP60	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000
BSXP61	Si, <i>n-p-n</i> , ПЭ	800	≥ 250	70	5	1000
2N3724	Si, <i>n-p-n</i> , ПЭ	800	≥ 300	50	6	500
2N3722	Si, <i>n-p-n</i> , ПЭ	800	≥ 300	80	6	500
KT604А	Si, <i>n-p-n</i> , П	800(3000*)	≥ 40	300	5	200
KT604Б	Si, <i>n-p-n</i> , П	800(3000*)	≥ 40	300	5	200
BF258	Si, <i>n-p-n</i> , ПЭ	800(5000*)	90	250	5	100
BF259	Si, <i>n-p-n</i> , ПЭ	800(5000*)	90	300	5	100
BF337	Si, <i>n-p-n</i> , П	3000*	≥ 80	250	5	100(200*)
BF338	Si, <i>n-p-n</i> , П	3000*	≥ 80	300	5	100(200*)
2N3742	Si, <i>n-p-n</i> , ПЭ	1000 (5000*)	≥ 30	300	7	50
2N4926	Si, <i>n-p-n</i> , П	1000 (5000*)	≥ 30	200	7	50
2N4927	Si, <i>n-p-n</i> , П	1000 (5000*)	≥ 30	250	7	50
KT611А	Si, <i>n-p-n</i> , П	800(3000*)	≥ 60	200	3	100
KT611Б	Si, <i>n-p-n</i> , П	800(3000*)	≥ 60	200	3	100
KT611В	Si, <i>n-p-n</i> , П	800(3000*)	≥ 60	180	3	100
KT611Г	Si, <i>n-p-n</i> , П	800(3000*)	≥ 60	180	3	100

Продолжение

8	9	10	11	12	13	14
≤ 10 (75 B)	40—120* (10 B; 0,15 A) 50—250* (10 B; 0,15 A)	≤ 8 (10 B) ≤ 15 (10 B)	≤ 2 ≤ 9	—	{ ≤ 150 $\leq 225*$	TO39
≤ 100 (60 B)	(10 B; 0,15 A) 40—120* (1 B; 0,1 A)	≤ 8 (10 B)	$\leq 2,6$	—	—	TO5
$\leq 0,01$ (50 B)	(1 B; 0,1 A)	≥ 20 (10 B)	$\leq 2,3$	—	$\leq 150*$	TO5
$\leq 0,1$ (30 B)	$\geq 20*$ (10 B; 0,15 A)	≤ 11 (10 B)	≤ 3	—	$\leq 40*$	TO5
$\leq 0,3$ (30 B)	30—120* (10 B; 0,15 A)	≤ 8 (10 B)	$\leq 3,3$	—	$\leq 300*$	TO5
≤ 10 (60 B)	40—120* (10 B—0,15 A)	≤ 8 (10 B)	$\leq 2,7$	—	$\leq 150**$	TO5
≤ 10 (60 B)	20—60* (10 B; 0,15 A)	≤ 8 (10 B)	≤ 3	—	$\leq 150**$	TO5
≤ 10 (60 B)	40—120* (10 B; 0,15 A)	≤ 6 (10 B)	$\leq 1,7$	—	$\leq 95**$	TO39
$\leq 0,01$ (30 B)	20—60* (10 B; 0,15 A)	≤ 20 (10 B)	$\leq 2,7$	—	$\leq 150*$	TO5
$\leq 0,01$ (30 B)	(10 B; 0,15 A)	≤ 20 (10 B)	$\leq 1,7$	—	$\leq 150*$	TO5
$\leq 0,07$ (50 B)	$\geq 25*$ (1 B; 0,1 A)	≤ 6 (10 B)	$\leq 1,7$	—	$\leq 110**$	TO39
$\leq 0,12$ (50 B)	$\geq 17*$ (1 B; 0,1 A)	≤ 6 (10 B)	$\leq 1,7$	—	$\leq 95*$	TO5
$\leq 0,07$ (50 B)	$\geq 25*$ (1 B; 0,1 A)	≤ 6 (10 B)	≤ 2	—	$\leq 100**$	TO5
$\leq 0,1$ (66 B)	—	—	≤ 20	—	—	TO5
$\leq 0,025$ (20 B)	—	—	≤ 15	—	$\leq 100**$	TO5
$\leq 0,025$ (40 B)	—	—	≤ 15	—	—	TO5
—	$\geq 25*$ (1 B; 0,5 A)	≤ 10 (10 B)	≤ 2	—	$\leq 60**$	TO39
—	$\geq 25*$ (1 B; 0,5 A)	≤ 10 (10 B)	≤ 2	—	$\leq 70**$	TO39
—	$\geq 25*$ (1 B; 0,5 A)	≤ 10 (10 B)	≤ 4	—	$\leq 100**$	TO39
$\leq 1,7$ (40 B)	60—150* (1 B; 0,10 A)	≤ 8 (10 B)	≤ 2	—	$\leq 60**$	TO39
$\leq 0,5*$ (40 B)	40—150* (1 B; 0,1 A)	≤ 10 (10 B)	$\leq 2,5$	—	$\leq 85*$	TO5
≤ 50 (250 B)	10—40* (40 B; 20 mA)	≤ 7 (40 B)	≤ 400	—	—	30a
≤ 50 (250 B)	30—120* (40 B; 20 mA)	≤ 7 (40 B)	≤ 400	—	—	30a
$\leq 0,05$ (200 B)	$\geq 25*$ (10 B; 30 mA)	5,5(30 B)	≤ 33	—	—	TO39
$\leq 0,05$ (250 B)	$\geq 25*$ (10 B; 30 mA)	5,5(30 B)	≤ 33	—	—	TO39
$\leq 100**$ (200 B)	$> 20^*$ (10 B; 30 mA)	—	—	—	—	TO39
$\leq 100**$ (250 B)	$> 20^*$ (10 B; 30 mA)	—	—	—	—	TO39
$\leq 0,2$ (200 B)	20—200* (10 B; 30 mA)	≤ 6 (10 B)	≤ 100	—	—	TO5
$\leq 0,1$ (100 B)	20—200* (10 B; 30 mA)	≤ 6 (20 B)	≤ 100	—	—	TO39
$\leq 0,1$ (150 B)	20—200* (10 B; 30 mA)	≤ 6 (20 B)	≤ 100	—	—	TO39
—	10—40* (40 B; 20 mA)	≤ 5 (40 B)	≤ 400	—	≤ 200	30a
—	30—120* (40 B; 20 mA)	≤ 5 (40 B)	≤ 400	—	≤ 200	30a
—	10—40* (40 B; 20 mA)	≤ 5 (40 B)	≤ 400	—	≤ 200	30a
—	30—120* (40 B; 20 mA)	≤ 5 (40 B)	≤ 400	—	≤ 200	30a

1	2	3	4	5	6	7
BF257	Si, n-p-n, П	670(5000*)	90	160	5	100(200*)
BF179B	Si, n-p-n, П	600(65° C)	120	220	5	50
BF336	Si, n-p-n, П	3000*	≥80	185	5	100(200*)
2N3114	Si, n-p-n, ПЭ	800(5000*)	≥40	150	5	200
2N3712	Si, n-p-n, ПЭ	1000 (5000*)	≥40	150	5	200
2N4924	Si, n-p-n, П	1000 (5000*)	≥100	100	5	200
2N4925	Si, n-p-n, П	1000 (5000*)	≥100	150	5	200
BF111	Si, n-p-n, П	3000*	100	200*	5	80
BF178	Si, n-p-n, П	3000*	100	160	5	50
BFY45	Si, n-p-n, П	800(2500*)	130	140*	5	30
BFY65	Si, n-p-n, ПЭ	565(1300*)	≥50	100	7	100(200*)
BF114	Si, n-p-n, П	590(45° C)	≥100	160	5	50
KF504	Si, n-p-n, ПЭ	700(2500*)	≥90	170	5	50
BF305	Si, n-p-n, П	800	100	160	5	50
BFP177	Si, n-p-n, П	600	≥75	100	5	50
BFP178	Si, n-p-n, П	600	≥75	160	5	50
BFP179A	Si, n-p-n, П	600	≥75	160	5	50
BFP179B	Si, n-p-n, П	600	≥75	220	5	50
BF186	Si, n-p-n, П	2750*	120	165	5	60
BFJ98	Si, n-p-n, П	800(3000*)	≥40	150	6	100
BF291	Si, n-p-n, П	800(3000*)	≥40	150	6	—
BF137	Si, n-p-n, ПЭ	680	95	160	5	100
2SC65	Si, n-p-n, М	600	110	150	2	50
2SC66	Si, n-p-n, М	600	110	150	2	50
BF140A	Si, n-p-n, П	800(2500*)	≥40	150	3	40
KT602A	Si, n-p-n, П	850(2800*)	≥150	120	5	75(500*)
KT602Б	Si, n-p-n, П	850(2800*)	≥150	120	5	75(500*)
KT602В	Si, n-p-n, П	850(2800*)	≥150	80	5	75(500*)
KT602Г	Si, n-p-n, П	850(2800*)	≥150	80	5	75(500*)
BF177	Si, n-p-n, П	600(65° C)	120	100	5	50
2N1893	Si, n-p-n, П	800(3000*)	≥50	120	7	500
2N698	Si, n-p-n, П	800(3000*)	≥40	120	7	—
2N699	Si, n-p-n, П	600(2000*)	≥50	120	5	—
KF503	Si, n-p-n, ПЭ	700(2500*)	≥90	100	5	50
BFW45	Si, n-p-n, П	800	≥80	165	5	50(100*)
SF121A-F	Si, n-p-n, П	600	≥60	20	5	100(300*)
SF122A-F	Si, n-p-n, П	600	≥60	33	5	100(300*)

Продолжение

8	9	10	11	12	13	14
$\leq 0,05$ (100 B)	$\geq 25^*(10 \text{ B}; 30 \text{ mA})$	5,5(30 B)	≤ 33	—	—	TO39
—	$\geq 20^*(15 \text{ B}; 20 \text{ mA})$	—	—	—	≤ 100	TO5
—	$\geq 20^*(10 \text{ B}; 30 \text{ mA})$	—	—	—	≤ 100	TO5
$\leq 0,01$ (100 B)	30—120*	$\leq 9(20 \text{ B})$	≤ 20	—	—	TO5
$\leq 0,1(75 \text{ B})$	(10 B; 30 mA)	$\leq 9(20 \text{ B})$	≤ 40	—	≤ 100	TO5
$\leq 0,1(50 \text{ B})$	30—150*	$\leq 9(20 \text{ B})$	≤ 40	—	—	TO5
$\leq 0,1(50 \text{ B})$	$\geq 35^*(10 \text{ B}; 10 \text{ mA})$	$\leq 10(20 \text{ B})$	≤ 25	—	—	TO39
$\leq 0,1(75 \text{ B})$	$\geq 35^*(10 \text{ B}; 10 \text{ mA})$	$\leq 10(20 \text{ B})$	≤ 25	—	—	TO39
$\leq 0,2^*$ (160 B)	20*(20 B; 60 mA)	—	330	—	100	TO39
$\leq 0,2^*$ (160 B)	$\geq 20^*(20 \text{ B}; 30 \text{ mA})$	—	50	—	100	TO39
$\leq 0,1^*$ (140 B)	$\geq 40^*(10 \text{ B}; 10 \text{ mA})$	$\leq 3,5(10 \text{ B})$	—	—	—	TO39
$\leq 0,1(75 \text{ B})$	$\geq 30^*(2 \text{ B}; 15 \text{ mA})$	$\leq 8(10 \text{ B})$	≤ 450	—	—	TO39
$\leq 50(100 \text{ B})$	$\geq 25^*(10 \text{ B}; 30 \text{ mA})$	—	—	—	—	TO5
$\leq 0,1(140 \text{ B})$	70*(10 B; 10 mA)	$\leq 3,5(10 \text{ B})$	70	—	≤ 150	TO5
—	$\geq 30^*$	3,5*	—	—	—	TO39
—	$\geq 20^*(10 \text{ B}; 15 \text{ mA})$	3,5*	—	—	—	TO39
—	$\geq 20^*(20 \text{ B}; 30 \text{ mA})$	3,5*	—	—	—	TO39
—	$\geq 20^*(15 \text{ B}; 20 \text{ mA})$	3,5*	—	—	—	TO39
—	$\geq 20^*(15 \text{ B}; 20 \text{ mA})$	3,5*	—	—	—	TO39
$\leq 0,01$ (100 B)	$\geq 20^*(20 \text{ B}; 40 \text{ mA})$	—	≤ 500	—	30	TO1
$\leq 0,01$ (100 B)	90*(10 B; 10 mA)	—	≤ 40	—	—	TO5
$\leq 0,01$ (100 B)	90*(10 B; 10 mA)	$\leq 3,5(20 \text{ B})$	12	—	—	TO5
0,01	$\geq 25^*$	2	—	—	—	TO39
≤ 10 (150 B)	(10 B; 30 mA)	≤ 10	—	—	—	TO5
≤ 10 (150 B)	30*(20 B; 5 mA)	≤ 10	—	—	—	TO5
$\leq 1(100 \text{ B})$	55*(20 B; 5 mA)	≤ 10	—	—	—	TO5
$\leq 1(100 \text{ B})$	≥ 15	$\leq 3(50 \text{ B})$	25	—	≤ 150	TO5
≤ 70 (120 B)	(10 B; 10 mA)	$\leq 4(50 \text{ B})$	≤ 60	—	≤ 300	30a
≤ 70 (120 B)	$\geq 50^*$	$\leq 4(50 \text{ B})$	≤ 60	—	≤ 300	30a
$\leq 70(80 \text{ B})$	(10 B; 10 mA)	$\leq 4(50 \text{ B})$	≤ 60	—	≤ 300	30a
$\leq 70(80 \text{ B})$	15—80*	$\leq 4(50 \text{ B})$	≤ 60	—	≤ 300	30a
$\leq 70(80 \text{ B})$	(10 B; 10 mA)	$\leq 4(50 \text{ B})$	≤ 60	—	≤ 300	30a
$\leq 0,2^*$ (100 B)	$\geq 20^*$	—	66	—	≤ 100	TO39
≤ 100 (120 B)	(10 B; 15 mA)	$\leq 15(10 \text{ B})$	≤ 33	—	—	TO5
≤ 100 (120 B)	$\geq 35^*$	(10 B; 10 mA)	$\leq 15(10 \text{ B})$	≤ 24	—	TO5
≤ 100 (120 B)	$\geq 25(5 \text{ B}; 10 \text{ mA})$	$\leq 15(10 \text{ B})$	≤ 24	—	—	TO5
≤ 100 (120 B)	$\geq 45(5 \text{ B}; 10 \text{ mA})$	$\leq 20(10 \text{ B})$	$\leq 3,3$	—	—	TO5
$\leq 0,5$ (50 B)	80*(10 B; 30 mA)	$\leq 3,5$	15	—	≤ 150	TO5
—	20—120*	(10 B)	4	—	30	TO39
$\leq 1(20 \text{ B})$	(20 B; 50 mA)	$\geq 15^*$	$\leq 26(10 \text{ B})$	≤ 20	—	520
$\leq 1(33 \text{ B})$	(6 B; 2 mA)	$\leq 26(10 \text{ B})$	≤ 20	—	520	TO5
	18—1120*	(2 B; 50 mA)	$\leq 26(10 \text{ B})$	≤ 20	—	520

1	2	3	4	5	6	7
SF123A-F	Si, <i>n-p-n</i> , П	600	≥60	66	5	100 (300*)
SF150	Si, <i>n-p-n</i> , П	680 (3750*)	≥80	140	5	50
BFJ57	Si, <i>n-p-n</i> , П	800 (3000*)	≥40	125	5	—
BF290	Si, <i>n-p-n</i> , П	800 (3000*)	≥40	120	5	—
SFT187	Si, <i>n-p-n</i> , П	800 (2500*)	≥70	135	3	—
2N1565	Si, <i>n-p-n</i> , П	600 (1200*)	≥60	80	5	50
2N1566	Si, <i>n-p-n</i> , П	600 (1200*)	≥60	80	5	50
2N1566A	Si, <i>n-p-n</i> , П	600 (1200*)	≥100	80	5	100
MM3000	Si, <i>n-p-n</i> , ПЭ	1000 (5000*)	≥150	100	5	200
MM3001	Si, <i>n-p-n</i> , ПЭ	1000 (5000*)	≥150	150	5	200
2SC249	Si, <i>n-p-n</i> , П	500	170	70	5	70
2SC247	Si, <i>n-p-n</i> , П	600	150	100	3	100
KT626A	Si, <i>p-n-p</i> , ПЭ	6500* (60 °C)	≥75	45	4	500 (1500*)
KT626Б	Si, <i>p-n-p</i> , ПЭ	6500* (60 °C)	≥75	60	4	500 (1500*)
KT626В	Si, <i>p-n-p</i> , ПЭ	6500* (60 °C)	≥45	80	4	500 (1500*)
BD136	Si, <i>p-n-p</i> , ПЭ	8000*	≥75	45	5	1000 (1500*)
BD138	Si, <i>p-n-p</i> , ПЭ	8000*	≥75	60	5	1000 (1500*)
BD140	Si, <i>p-n-p</i> , ПЭ	8000*	≥75	100	5	1000 (1500*)
MPS-U51	Si, <i>p-n-p</i> , ПЭ	8000*	≥50	40	5	2000*
MPS-U51A	Si, <i>p-n-p</i> , ПЭ	8000*	≥50	50	5	2000*
MPS-U55	Si, <i>p-n-p</i> , ПЭ	1000*	≥50	60	4	2000*
MPS-U56	Si, <i>p-n-p</i> , ПЭ	1000*	≥50	80	4	2000*
D41D1	Si, <i>p-n-p</i> , ПЭ	6250*	150	45*	5	1000 (1500*)
D41D4	Si, <i>p-n-p</i> , ПЭ	6250*	150	60*	5	1000 (1500*)
D41D7	Si, <i>p-n-p</i> , ПЭ	6250*	150	75*	5	1000 (1500*)

Продолжение

8	9	10	11	12	13	14
≤1 (66 B)	18—1120* (2B; 50 mA)	20	≤20		520	T05
≤0,1 (140 B)	28—140* (10 B; 5 mA)	≤8,5 (10 B)	≤170		≤30	T05
≤100 (125 B)	90* (10 B; 10 mA)	≤12 (20 B)	≤40		—	T05
≤0,1 (75 B)	90* (10 B; 10 mA)	2,6 (50 B)	12	—	—	T05
—	≥25* (10 B; 30 mA)	≤3 (50 B)	≤10	—	—	T05
≤1 (40 B)	40—100 (5 B; 5 mA)	≤10 (5 B)	≤100	—	—	T05
≤1 (40 B)	80—260 (5 B; 5 mA)	≤10 (5 B)	≤100	—	—	T05
≤0,5 (40 B)	60—200* (5 B; 5 mA)	≤6 (5 B)	≤60	—	—	T05
≤1 (50 B)	≥20* (10 B; 10 mA)	≤7 (20 B)	—	—	—	T039
≤1 (75 B)	≥20* (10 B; 10 mA)	≤7 (20 B)	—	—	—	T039
≤1 (30 B)	60 (6 B; 2,5 mA)	2,7 (6 B)	—	—	—	T039
≤1 (30 B)	60 (6 B; 2 mA)	3 (6 B)	—	—	—	T039
≤0,01 (30 B)	40—260* (2 B; 0,15 A)	≤150 (10 B)	≤2	—	≤500	31
≤0,15 (30 B)	30—100* (2 B; 0,15 A)	≤150 (10 B)	≤2	—	≤500	31
≤1 (80 B)	15—45* (2 B; 0,15 A)	≤150 (10 B)	≤10	—	≤500	31
≤0,1 (30 B)	40—250* (2 B; 0,15 B)	—	≤1	—	—	TO126
≤0,1 (30 B)	40—160* (2 B; 0,15 A)	—	≤1	—	—	TO126
≤0,1 (30 B)	40—160* (2 B; 0,15 A)	—	≤1	—	—	TO126
≤0,1 (30 B)	≥60* (1 B; 0,10 A)	≤30 (10 B)	≤0,7	—	—	X81
≤0,1 (40 B)	≥60* (1 B; 0,1 A)	≤30 (10 B)	≤0,7	—	—	X81
≤0,1 (40 B)	≥50* (1 B; 0,25 A)	≤15 (10 B)	≤2	—	—	X81
≤0,1 (60 B)	≥50* (1 B; 0,25 A)	≤15 (10 B)	≤2	—	—	X81
≤0,1 (45 B)	50—150* (2 B; 0,1 A)	10 (10 B)	≤1	—	75*	X51
≤0,1 (60 B)	50—150* (2 B; 0,1 A)	10 (10 B)	≤1	—	75*	X51
≤0,1 (75 B)	50—150* (2 B; 0,1 A)	10 (10 B)	≤2	—	75*	X51

Транзисторы большой мощности низкой, средней и высокой частот

Условное обозначение	Материал, структура, технология	R_{KT} max, Вт	f_{gr}	U_{KBO} проб.	U_{KBO} проб, В	I_K max, $I_{K, \text{max}}$, А
			f_{h216}^*	$U_{KERprob}^*$		
1	2	3	4	5	6	7
П201Э	Ge, $p-n-p$, С	10	$\geq 0,1^*$	45	—	1,5
П201АЭ	Ge, $p-n-p$, С	10	$\geq 0,2^*$	45	—	1,5
П202Э	Ge, $p-n-p$, С	10	$\geq 0,1^*$	70	—	2
П203Э	Ge, $p-n-p$, С	10	$\geq 0,2^*$	70	—	2
2SB481	Ge, $p-n-p$, С	6	0,015**	32	10	1
2SB130	Ge, $p-n-p$, С	6	—	32	10	1,5
2SB180A	Ge, $p-n-p$, С	12	0,013**	40	12	0,5
2SB181A	Ge, $p-n-p$, С	12	0,013**	60	12	0,5
GD617	Ge, $p-n-p$, С	4 (60°C)	1	32	10	1
GD618	Ge, $p-n-p$, С	4 (60°C)	1	40	10	1
GD619	Ge, $p-n-p$, С	4 (60°C)	1	50	10	1
OC30	Ge, $p-n-p$, С	4	$\geq 0,15$	32	10	1,4
2SB367	Ge, $p-n-p$, С	6,6	$0,5^*$	30	12	1,5
2SB368	Ge, $p-n-p$, С	6,6	0,5*	45	12	1,5
2SB473	Ge, $p-n-p$, С	4,3	0,01**	32	6	1
2SB456	Ge, $p-n-p$, С	13	—	80	30	1
2SB466	Ge, $p-n-p$, С	12	0,013**	40	12	0,5
2SB467	Ge, $p-n-p$, С	12	0,013**	60	12	0,5
2SB448	Ge, $p-n-p$, С	13	$\geq 0,01^{**}$	32	10	1
ADP670	Ge, $p-n-p$, С	10	$\geq 0,1$	30	10	1,5
ADP671	Ge, $p-n-p$, С	10	$\geq 0,1$	20	10	1,5
ADP672	Ge, $p-n-p$, С	10	$\geq 0,1$	60	10	1,5
П213	Ge, $p-n-p$, С	11,5 (45°C)	$\geq 0,2$	45	15	5
П213А	Ge, $p-n-p$, С	10	$\geq 0,2$	45	10	5
П213Б	Ge, $p-n-p$, С	10	$\geq 0,2$	45	10	5
П214	Ge, $p-n-p$, С	10	$\geq 0,2$	60	15	5
П214А	Ge, $p-n-p$, С	10	$\geq 0,2$	60	15	5
П214Б	Ge, $p-n-p$, С	11,5	$\geq 0,2$	60	15	5
П214В	Ge, $p-n-p$, С	10	$\geq 0,2$	60	10	5
П214Г	Ge, $p-n-p$, С	10	$\geq 0,2$	60	10	5
П215	Ge, $p-n-p$, С	10	$\geq 0,2$	80	15	5
2N2835	Ge, $p-n-p$, С	16	—	32	10	1
AUY18	Ge, $p-n-p$, С	11 (45°C)	0,3	64	20	8
AD1202	Ge, $p-n-p$, С	8,1	0,2	45	10	1,5 (3*)
AD1203	Ge, $p-n-p$, С	8,1	0,2	60	10	1,5 (3*)
2N2659	Ge, $p-n-p$, С	15	$\geq 0,28$	50	20	3
2N2660	Ge, $p-n-p$, С	15	$\geq 0,28$	70	20	3

$I_{\text{КБО}}$, мА	$\mu_{21\Theta}$	C_K , пФ	$r_{\text{КЭ нас}}$, Ом	$r_6 C_K$, пс	$t_{\text{рас}}$, мкс	Корпус
8	9	10	11	12	13	14
$\leq 0,4$ (20 В)	≥ 20 (10 В; 0,2 А)	—	$\leq 1,25$	—	—	32
$\leq 0,4$ (20 В)	≥ 40 (10 В; 0,2 А)	—	$\leq 1,25$	—	—	32
$\leq 0,4$ (30 В)	≥ 20 (10 В; 0,2 А)	—	$\leq 1,25$	—	—	32
$\leq 0,4$ (30 В)	$\leq 0,1$ 30—110 (1 А) 20 (1 В; 1,5 А)	—	$\leq 1,25$	—	—	MD9 MD11
$\leq 0,5$ (30 В)	70 (1,5 В; 0,5 А)	—	—	—	—	TO8
$\leq 0,2$ (30 В)	70 (1,5 В; 0,5 А)	—	—	—	—	TO8
$\leq 0,025$ (10 В)	40—230 (0,5 А)	—	$\leq 0,6$	—	—	SOT9
$\leq 0,025$ (10 В)	100—300 (0,5 А)	—	$\leq 0,6$	—	—	SOT9
$\leq 0,025$ (10 В)	40—360 (0,5 А)	—	$\leq 0,6$	—	—	SOT9
0,035 (6 В)	18—110 (6 В; 0,1 А)	—	≤ 1	—	—	MD11
$\leq 0,07$ (12 В)	50—80 (1,5 В; 0,5 А)	—	—	—	—	TO66
$\leq 0,07$ (12 В)	50—80 (1,5 В; 0,5 А)	—	—	—	—	TO66
0,015	40—180 (0,5 А)	—	—	—	—	MD9
$\leq 0,1$ (80 В)	80 (1 В; 0,3 А)	—	0,2	—	—	TO8
$\leq 0,5$ (30 В)	70 (1,5 В; 0,5 А)	—	—	—	—	MD10
$\leq 0,2$ (30 В)	70 (1,5 В; 0,5 А)	—	—	—	—	MD10
≤ 1	30—110 (1 А)	—	—	—	—	MD11
—	30—200 (6 В; 0,3 А)	—	—	—	—	TO3
—	30—200 (6 В; 0,3 А)	—	—	—	—	TO3
$\leq 0,15$ (45 В)	20—50 (5 В; 1 А)	—	$\leq 0,16$	—	—	33
≤ 1 (45 В)	≥ 20 (5 В; 0,2 А)	—	—	—	—	33
≤ 1 (45 В)	≥ 40 (5 В; 0,2 А)	—	$\leq 1,25$	—	—	33
$\leq 0,3$ (60 В)	20—60 (5 В; 0,2 А)	—	$\leq 0,3$	—	—	33
$\leq 0,3$ (60 В)	50—150 (5 В; 0,2 А)	—	$\leq 0,3$	—	—	33
$\leq 0,15$ (45 В)	20—150 (5 В; 0,2 А)	—	$\leq 0,3$	—	—	33
$\leq 1,5$ (60 В)	≥ 20 (5 В; 0,2 А)	—	$\leq 1,25$	—	—	33
$\leq 1,5$ (60 В)	≥ 20 (5 В; 0,2 А)	—	$\leq 1,25$	—	—	33
$\leq 0,3$ (80 В)	20—150 (5 В; 0,2 А)	—	$\leq 0,3$	—	—	33
≤ 1 (64 В)	≥ 30 (1 А)	—	≤ 10	—	—	MD17
$\leq 0,1$ (14 В)	75 (0,5 В; 0,5 А)	—	$\leq 0,04$	—	—	TO8
$\leq 0,1$ (14 В)	35 (7 В; 0,3 А)	—	$\leq 0,25$	—	—	TO3
$\leq 0,125$	30—90 (0,5 В; 0,5 А)	—	$\leq 0,4$	—	—	R122
0,125	30—90 (0,5 В; 0,5 А)	—	$\leq 0,4$	—	—	R122

1	2	3	4	5	6	7
2N2661	Ge, <i>p-n-p</i> , C	15	$\geq 0,28$	90	20	3
2N2665	Ge, <i>p-n-p</i> , C	15	$\geq 0,3$	50	20	3
2N2666	Ge, <i>p-n-p</i> , C	15	$\geq 0,3$	70	20	3
2N2667	Ge, <i>p-n-p</i> , C	15	$\geq 0,3$	90	20	3
AD139	Ge, <i>p-n-p</i> , C	11	0,010**	32	10	3,5
AD263	Ge, <i>p-n-p</i> , C	10	—	60	—	4
AD262	Ge, <i>p-n-p</i> , C	10 (60°C)	0,450	35	10	4
AD431	Ge, <i>p-n-p</i> , C	6	—	32	—	2 (3*)
AD436	Ge, <i>p-n-p</i> , C	6	—	40	—	3 (3,5*)
AD438	Ge, <i>p-n-p</i> , C	6	—	60	—	3 (3,5*)
AD439	Ge, <i>p-n-p</i> , C	7	—	80	—	3 (3,5*)
AD457	Ge, <i>p-n-p</i> , C	7	—	60	—	5
AD465	Ge, <i>p-n-p</i> , C	7	—	40	—	6
AD467	Ge, <i>p-n-p</i> , C	7	—	60	—	6
AD469	Ge, <i>p-n-p</i> , C	7	—	80	—	6
5NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	60	20	3,5
6NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	70	25	3,5
7NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	80	30	3,5
GD160	Ge, <i>p-n-p</i> , C	5,3	$\geq 0,25$	20	10	3
GD170	Ge, <i>p-n-p</i> , C	5,3	$\geq 0,25$	33	10	3
GD175	Ge, <i>p-n-p</i> , C	5,3	$\geq 0,25$	50	10	3
GD180	Ge, <i>p-n-p</i> , C	5,3	$\geq 0,25$	66	10	3
GD240A-D	Ge, <i>p-n-p</i> , C	10 (45°C)	$\geq 0,35$	30	10	3
GD241A-D	Ge, <i>p-n-p</i> , C	10 (45°C)	$\geq 0,35$	40	10	3
GD242A-D	Ge, <i>p-n-p</i> , C	10 (45°C)	$\geq 0,35$	50	10	3
GD243A-C	Ge, <i>p-n-p</i> , C	10 (45°C)	$\geq 0,3$	65	10	3
GD244A-C	Ge, <i>p-n-p</i> , C	10 (45°C)	$\geq 0,3$	75	10	3
ГТ703А	Ge, <i>p-n-p</i> , C	15 (40°C)	$\geq 0,010**$	20*	10	3,5
ГТ703Б	Ge, <i>p-n-p</i> , C	15 (40°C)	$\geq 0,01**$	20*	10	3,5
ГТ703В	Ge, <i>p-n-p</i> , C	15 (40°C)	$\geq 0,01**$	30*	10	3,5
ГТ703Г	Ge, <i>p-n-p</i> , C	15 (40°C)	$\geq 0,01**$	30*	10	3,5
ГТ703Д	Ge, <i>p-n-p</i> , C	15 (40°C)	$\geq 0,01**$	40*	10	3,5
AD148	Ge, <i>p-n-p</i> , C	13,5	$\geq 0,012**$	32	10	3,5
AD149	Ge, <i>p-n-p</i> , C	27,5	$\geq 0,007**$	50	20	3,5
AD150	Ge, <i>p-n-p</i> , C	27,5	$\geq 0,012**$	32	10	3,5
AD162	Ge, <i>p-n-p</i> , C	6	1,5	32	10	3
ADY27	Ge, <i>p-n-p</i> , C	27,5 (45°C)	0,012**	32	10	3,5
OC26	Ge, <i>p-n-p</i> , C	22,5 (45°C)	$\geq 0,003**$	40	10	3,5
OC1016	Ge, <i>p-n-p</i> , C	13,75	$\geq 0,003**$	32	10	1,5 (3*)
SFT212	Ge, <i>p-n-p</i> , C	30	$\geq 0,2$	30	10	3
SFT213	Ge, <i>p-n-p</i> , C	30	$\geq 0,2$	40	20	3
AD301	Ge, <i>p-n-p</i> , C	30	$\geq 0,2$	30	10	3
OC27	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	32	10	3,5
2NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	24	8	3,5
3NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	32	10	3,5
4NU73	Ge, <i>p-n-p</i> , C	12,5	$\geq 0,15$	48	15	3,5

Продолжение

8	9	10	11	12	13	14
0,125	30—90 (0,5 B; 0,5 A)	—	≤0,4	—	—	R122
0,125	50—150 (0,5 B; 0,5 A)	—	≤0,4	—	—	R122
0,125	50—150 (0,5 B; 0,5 A)	—	≤0,4	—	—	R122
0,125	50—150 (0,5 B; 0,5 A)	—	≤0,4	—	—	R122
≤0,025 (0,5 B)	30—110 (0,5 B; 1 A)	—	—	—	—	MD11
≤0,1 (0,5 B)	20 (2 B; 1,5 A)	—	—	—	—	SOT9
≤0,1 (0,5 B)	30 (2 B; 1,5 A)	—	0,2	—	—	SOT9
≤0,3 (32 B)	30—150 (1 B; 2 A)	—	≤0,27	—	—	TO3
≤0,3 (40 B)	15—60 (1 B; 2 A)	—	≤0,2	—	—	TO3
≤0,3 (60 B)	15—40 (1 B; 2 A)	—	≤0,2	—	—	TO3
≤0,3 (80 B)	15—50 (1 B; 2 A)	—	≤0,2	—	—	TO3
≤0,3 (60 B)	20—60 (1,5 B; 2 A)	—	≤0,2	—	—	TO3
≤0,3 (40 B)	20—90 (1,5 B; 2 A)	—	≤0,16	—	—	TO3
≤0,3 (40 B)	20—50 (1,5 B; 2 A)	—	≤0,16	—	—	TO3
≤0,3 (80 B)	20—60 (1,5 B; 2 A)	—	≤0,16	—	—	TO3
≤0,1 (6 B)	≥10 (1 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (1 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (1 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (1 A)	—	≤0,13	—	—	TO3
≤0,050 (6 B)	≥30 (6 B; 0,2 A)	—	≤0,2	—	—	SOT9
≤0,05 (6 B)	≥30 (6 B; 0,2 A)	—	≤0,2	—	—	SOT9
≤0,05 (6 B)	18—90 (2 B; 1,5 A)	—	≤0,2	—	—	SOT9
≤0,05 (6 B)	18—90 (6 B; 0,2 A)	—	≤0,2	—	—	SOT9
≤0,1 (6 B)	18—140 (2 B; 2 A)	—	0,08	—	—	SOT9
≤0,1 (6 B)	18—140 (2 B; 2 A)	—	0,08	—	≤8	SOT9
≤0,1 (6 B)	18—90 (2 B; 2 A)	—	0,08	—	≤10	SOT9
≤0,1 (6 B)	18—90 (2 B; 2 A)	—	0,08	—	≤10	SOT9
≤0,5 (20 B)	30—70 (1 B; 50 mA)	—	≤0,2	—	—	SOT9
≤0,5 (20 B)	50—100 (1 B; 50 mA)	—	≤0,2	—	—	34
≤0,5 (30 B)	50—100 (1 B; 50 mA)	—	≤0,2	—	—	34
≤0,5 (30 B)	30—70*	—	≤0,2	—	—	34
≤0,5 (30 B)	(1 B; 50 mA)	—	—	—	—	34
≤0,5 (30 B)	50—100 (1 B; 50 mA)	—	≤0,2	—	—	34
≤0,5 (30 B)	20—45 (1 B; 50 mA)	—	≤0,2	—	—	34
0,12 (10 B)	51 (1 B; 50 mA)	—	≤0,2	—	—	MD23
≤1* (32 B)	50 (1 B; 50 mA)	—	≤0,2	—	—	TO3
≤1* (32 B)	82 (1 B; 50 mA)	—	≤0,2	—	—	TO3
≤0,2 (32 B)	74—300 (1 B; 50 mA)	—	—	—	—	MD17
≤0,5* (32 B)	50 (1 B; 50 mA)	—	≤0,2	—	—	TO3
≤0,1 (0,5 B)	20—75 (14 B; 30 mA)	—	≤0,25	—	—	TO3
≤0,1 (14 B)	40 (14 B; 30 mA)	—	≤0,25	—	—	TO3
≤1 (30 B)	20—150 (2 B; 2 A)	—	≤0,13	—	—	TO3
≤1 (40 B)	20—150 (2 B; 2 A)	—	≤0,13	—	—	TO3
≤1 (30 B)	20—150 (2 B; 2 A)	—	≤0,4	—	—	TO3
≤0,1 (6 B)	60—180 (6 B; 0,1 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (3 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (3 A)	—	≤0,13	—	—	TO3
≤0,1 (6 B)	≥10 (3 A)	—	≤0,13	—	—	TO3

1	2	3	4	5	6	7
2N2836	Ge, p-n-p, C	30	0,5	55	20	3,5
П216	Ge, p-n-p, C	30	>0,2*	40	15	7,5
П216А	Ge, p-n-p, C	30	>0,2*	40	15	7,5
П216Б	Ge, p-n-p, C	24	>0,2*	35	15	7,5
П216В	Ge, p-n-p, C	24	>0,2*	35	15	7,5
П216Г	Ge, p-n-p, C	24	>0,2*	50	15	7,5
П216Д	Ge, p-n-p, C	24	>0,2*	50	15	7,5
П217	Ge, p-n-p, C	30	>0,2*	60	15	7,5
П217А	Ge, p-n-p, C	30	>0,2*	50	15	7,5
П217Б	Ge, p-n-p, C	30	>0,2*	50	15	7,5
П217В	Ge, p-n-p, C	24	>0,2	50	15	7,5
П217Г	Ge, p-n-p, C	24	>0,2	50	15	7,5
ASZ15	Ge, p-n-p, C	30 (45°C)	0,2	100	40	8
ASZ16	Ge, p-n-p, C	30 (45°C)	0,25	60	20	8
ASZ17	Ge, p-n-p, C	30 (45°C)	0,22	60	20	8
ASZ18	Ge, p-n-p, C	30 (45°C)	0,22	100	40	8
2N178	Ge, p-n-p, C	40	0,005**	30	20	3
2N554	Ge, p-n-p, C	40	0,005**	15	15	3
2N555	Ge, p-n-p, C	40	0,005**	30	15	3
AD130	Ge, p-n-p, C	30	0,35	32	10	3
AD131	Ge, p-n-p, C	30	0,35	64	20	3
AD132	Ge, p-n-p, C	30	0,35	80	20	3
AD163	Ge, p-n-p, C	30	0,35	100	20	3
AUY19	Ge, p-n-p, C	30 (45°C)	0,35	64	20	3
AUY20	Ge, p-n-p, C	30 (45°C)	0,35	80	20	3
ASZ1015	Ge, p-n-p, C	22,5	0,25*	80	40	6
ASZ1016	Ge, p-n-p, C	22,5	0,25*	60	20	6
ASZ1017	Ge, p-n-p, C	22,5	0,25*	60	20	6
ASZ1018	Ge, p-n-p, C	22,5	0,25*	80	40	6
AD138	Ge, p-n-p, C	30	0,0055**	40	10	8
AUY28	Ge, p-n-p, C	30	0,25	90	25	6
AD302	Ge, p-n-p, C	45	>0,2	40	20	3
AD303	Ge, p-n-p, C	45	>0,2	60	30	3
SFT214	Ge, p-n-p, C	45	>0,2	60	30	3
SFT238	Ge, p-n-p, C	45	>0,25	40	20	6
SFT239	Ge, p-n-p, C	45	>0,25	60	30	6
SFT240	Ge, p-n-p, C	45	>0,25	80	40	6
SFT250	Ge, p-n-p, C	45	>0,2	80	40	3
AD304	Ge, p-n-p, C	45	>0,2	80	40	3
AD312	Ge, p-n-p, C	45	>0,25	40	20	6
AD313	Ge, p-n-p, C	45	>0,25	60	30	6
AD314	Ge, p-n-p, C	45	>0,25	80	40	6
AD542	Ge, p-n-p, C	20	—	80	—	8 (10*)
EFT212	Ge, p-n-p, C	30	>0,2	30	7,5	3
EFT213	Ge, p-n-p, C	30	>0,2	40	20	3
EFT214	Ge, p-n-p, C	30	>0,2	60	30	3
EFT250	Ge, p-n-p, C	30	—	80	40	3
OC25	Ge, p-n-p, C	22,5 (45°C)	0,25	40	—	4
II210B	Ge, p-n-p, C	45	>0,1*	65	25	12
II210B	Ge, p-n-p, C	45	>0,1*	45	25	12
AUY21	Ge, p-n-p, C	36 (45°C)	0,3	65	20	10
AUY22	Ge, p-n-p, C	36 (45°C)	0,3	80	25	8
2N456	Ge, p-n-p, C	50	—	40	20	5

Продолжение

8	9	10	11	12	13	14
$\leq 2,5$ (65 B)	30—100 (1 A)	—	$\leq 0,13$	—	—	TO3
$\leq 0,5$ (40 B)	≥ 18 (0,75 B; 4 A)	—	$\leq 0,2$	—	—	33
$\leq 0,5$ (40 B)	20—80 (5 B; 1 A)	—	$\leq 0,2$	—	—	33
$\leq 1,5$ (35 B)	≥ 10 (3 B; 2 A)	—	$\leq 0,25$	—	—	33
≤ 2 (35 B)	≥ 30 (3 B; 2 A)	—	$\leq 0,25$	—	—	33
$\leq 2,5$ (50 B)	≥ 5 (3 B; 2 A)	—	—	—	—	33
≤ 2 (50 B)	15—30 (3 B; 2 A)	—	$\leq 0,25$	—	—	33
$\leq 0,5$ (60 B)	≥ 16 (0,75 B; 4 A)	—	$\leq 0,25$	—	—	33
$\leq 0,5$ (60 B)	20—60 (5 B; 1 A)	—	$\leq 0,25$	—	—	33
$\leq 0,5$ (60 B)	≥ 20 (5 B; 1 A)	—	$\leq 0,25$	—	—	33
≤ 3 (60 B)	15—40 (3 B; 2 A)	—	$\leq 0,15$	—	—	33
≤ 3 (50 B)	—	—	$\leq 0,25$	—	—	33
≤ 3 (100 B)	20—55 (1 B; 1 A)	190 (5 B)	$\leq 0,04$	—	10	TO3
≤ 3 (60 B)	45—130 (1 B; 1 A)	190 (5 B)	$\leq 0,04$	—	10	TO3
≤ 3 (60 B)	25—75 (1 B; 1 A)	190 (5 B)	$\leq 0,04$	—	10	TO3
≤ 3 (100 B)	30—110 (1 B; 1 A)	190 (5 B)	$\leq 0,04$	—	10	TO3
≤ 3 (30 B)	15—45 (0,2 B; 0,5 A)	—	0,2	—	—	TO3
≤ 10 (15 B)	50 (2 B; 0,5 A)	—	0,2	—	—	TO3
≤ 20 (30 B)	50 (2 B; 0,5 A)	—	0,2	—	—	TO3
≤ 15 (32 B)	20—100 (1 B; 1 A)	≤ 200 (6 B)	$\leq 0,33$	—	≤ 15	TO3
≤ 15 (64 B)	20—100 (1 B; 1 A)	≤ 200 (6 B)	$\leq 0,33$	—	≤ 15	TO3
≤ 15 (80 B)	20—100 (1 B; 1 A)	≤ 200 (6 B)	$\leq 0,33$	—	≤ 15	TO3
≤ 15 (100 B)	≥ 10 (1 B; 3 A)	≤ 200 (6 B)	$\leq 0,33$	—	≤ 15	TO3
$\leq 0,5^*$ (64 B)	17 (1 B; 3 A)	≤ 200 (6 B)	$\leq 0,33$	—	≤ 15	TO3
$\leq 0,5^*$ (80 B)	17 (1 B; 3 A)	≤ 200 (6 B)	$\leq 0,33$	—	15	TO3
$\leq 0,1$ (0,5 B)	20—55 (1 B; 1 A)	160 (12 B)	$\leq 0,17$	—	15	TO3
$\leq 0,1$ (0,5 B)	45—130 (1 B; 1 A)	160 (12 B)	$\leq 0,17$	—	15	TO3
$\leq 0,1$ (0,5 B)	25—75 (1 B; 1 A)	160 (12 B)	$\leq 0,17$	—	15	TO3
$\leq 0,1$ (0,5 B)	30—110 (1 B; 1 A)	160 (12 B)	$\leq 0,17$	—	15	TO3
$\leq 0,1$ (15 B)	42 (1,5 B; 5 A)	—	—	—	—	TO3
$\leq 0,050$ (6 B)	33 (1,5 B; 5 A)	—	$\leq 0,04$	—	$\leq 15^*$	TO3
≤ 1 (40 B)	20—150 (2 B; 2 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (60 B)	20—150 (2 B; 2 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (60 B)	20—150 (2 B; 2 A)	—	$\leq 0,13$	—	—	TO3
≤ 1 (40 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (60 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (80 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (80 B)	20—150 (2 B; 2 A)	—	$\leq 0,13$	—	—	TO3
≤ 1 (80 B)	20—150 (2 B; 2 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (40 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (60 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (80 B)	20—80 (2 B; 5 A)	—	$\leq 0,07$	—	—	TO3
≤ 1 (80 B)	20—150 (2 B; 2 A)	—	$\leq 0,13$	—	—	TO3
≤ 1 (40 B)	20—150 (2 B; 2 A)	≤ 220 (5 B)	$\leq 0,13$	—	—	TO3
≤ 1 (60 B)	20—150 (2 B; 2 A)	≤ 220 (5 B)	$\leq 0,13$	—	—	TO3
≤ 1 (80 B)	20—150 (2 B; 2 A)	≤ 220 (5 B)	$\leq 0,13$	—	—	TO3
—	16—80 (1 A)	—	—	—	—	TO3
≤ 15 (45 B)	≥ 10 (2 B; 5 A)	—	—	—	—	35
≤ 15 (35 B)	≥ 10 (2 B; 5 A)	—	—	—	—	35
≤ 1 (65 B)	$\geq 12,5$ (0,5 B; 5 A)	—	$\leq 0,04$	—	≤ 15	TO41
≤ 1 (80 B)	$\geq 12,5$ (0,5 B; 5 A)	—	$\leq 0,045$	—	≤ 15	TO41
2.	10—30 (1,5 B; 5 A)	—	$\leq 0,2$	—	—	TO3

1	2	3	4	5	6	7
2N457	Ge, p-n-p, C	50	—	60	25	5
2N458	Ge, p-n-p, C	50	—	80	25	5
AD142	Ge, p-n-p, C	30 (55°C)	0,45	80	10	10
AD143	Ge, p-n-p, C	30 (55°C)	0,45	40	10	10
AD145	Ge, p-n-p, C	30 (55°C)	0,45	20	10	10
AUY21A	Ge, p-n-p, C	36	0,3	65	20	10
AUY22A	Ge, p-n-p, C	36	0,3	80	20	10
AD325	Ge, p-n-p, C	45	0,4	100	40	10
AD545	Ge, p-n-p, C	20	—	60	—	15
6NU74	Ge, p-n-p, C	50	≥0,15	90	15	15
7NU74	Ge, p-n-p, C	50	≥0,15	90	15	15
OC28	Ge, p-n-p, C	30 (45°C)	0,25	80	—	8 (10*)
OC35	Ge, p-n-p, C	30 (45°C)	0,25	60	—	8 (10*)
ГТ701А	Ge, p-n-p, C	50	≥0,06*	55*(140 имп.)	15	12
2N2137А	Ge, p-n-p, C	70	≥0,012**	30	15	—
2N2142А	Ge, p-n-p, C	70	≥0,012**	30	15	—
2N2138А	Ge, p-n-p, C	70	≥0,012**	45	25	—
2N2143А	Ge, p-n-p, C	70	≥0,012**	45	25	—
2N3611	Ge, p-n-p, C	77	≥0,3	40	20	7 (15*)
2N3613	Ge, p-n-p, C	77	≥0,3	40	20	7 (15*)
2N5887	Ge, p-n-p, C	57	≥0,250	20	20	7
2N5888	Ge, p-n-p, C	57	≥0,25	30	20	7
2N5889	Ge, p-n-p, C	57	≥0,25	30	20	7
2N5890	Ge, p-n-p, C	57	≥0,25	45	20	7
2N5891	Ge, p-n-p, C	57	≥0,25	60	20	7
2NU74	Ge, p-n-p, C	50	≥0,15	50	10	15
3NU74	Ge, p-n-p, C	50	≥0,15	50	10	15
4NU74	Ge, p-n-p, C	50	≥0,15	60	15	15
5NU74	Ge, p-n-p, C	50	≥0,15	60	15	15
ГТ705А	Ge, n-p-n, C	15 (40°C)	≥0,010**	20*	10	3,5
ГТ705Б	Ge, n-p-n, C	15 (40°C)	≥0,01**	20*	10	3,5
ГТ705В	Ge, n-p-n, C	15 (40°C)	≥0,01**	30*	10	3,5
ГТ705Г	Ge, n-p-n, C	15 (40°C)	≥0,01**	30*	10	3,5
ГТ705Д	Ge, n-p-n, C	15 (40°C)	≥0,01**	20*	10	3,5
AD161	Ge, n-p-n, C	4 (75°C)	≥0,020**	32	10	1 (3,5*)
2N1218	Ge, n-p-n, C	20	≥0,007**	45	15	3
2N1292	Ge, n-p-n, C	25	—	35	15	3
2N1321	Ge, n-p-n, C	25	—	35	15	3
2N1329	Ge, n-p-n, C	25	—	35	15	3
2N4077	Ge, n-p-n, C	7,5	≥1	32	10	1
2N326	Ge, n-p-n, C	7	≥0,15	35	—	2
ГТ905А	Ge, p-n-p, СД	6 (30°C)	≥60	75	0,4	3 (7*)
ГТ905Б	Ge, p-n-p, СД	6 (30°C)	≥60	60	0,4	3 (7*)
2N2147	Ge, p-n-p, СД	12,5	≥3	75	1,5	5
2N2148	Ge, p-n-p, СД	12,5	≥2	60	1,5	5
2N3732	Ge, p-n-p, Д	3 (55°C)	≥1	100	0,5	3
ГТ810А	Ge, p-n-p, ДС	15 (27,5°C)	≥15	200	1,4	10
AU107	Ge, p-n-p, ДС	30 (30°C)	2	200	2	10

Продолжение

8	9	10	11	12	13	14
2	10—30 (1,5 B; 5A)	—	≤0,2	—	—	TO3
2	10—30 (1,5 B; 5A)	—	≤0,2	—	—	TO3
—	30—170 (2 B; 1 A)	—	—	—	—	TO3
—	30—170 (2 B; 1 A)	—	—	—	—	TO3
≤0,16(0,5B)	30 (2 B; 1 A)	—	—	—	—	TO3
≤1 (65 B)	12,5—60(0,5 B; 5A)	—	—	—	—	TO3
≤1 (80 B)	12,5—60(0,5 B; 5A)	—	—	—	—	TO3
≤3 (100 B)	20—150 (2 B; 2 A)	—	≤0,07	—	—	TO3
≤4 (60 B)	≥10 (3 B; 15 A)	—	≤0,07	—	—	TO3
≤1 (6 B)	20—60 (10 A)	—	≤0,1	—	—	TO3
≤1 (6 B)	50—150 (10 A)	—	≤0,1	—	—	TO3
—	20—55 (1 A)	—	—	—	—	TO3
—	25—75 (1 A)	—	—	—	—	TO3
≤6 (60 B)	≥10 (2 B; 5 A)	—	—	—	—	35
≤2 (30 B)	15—22 (2 B; 2 A)	—	≤0,25	—	—	TO3
≤2 (30 B)	25—33 (2 B; 2 A)	—	≤0,25	—	—	TO3
≤2 (45 B)	15—22 (2 B; 2 A)	—	≤0,25	—	—	TO3
≤2 (45 B)	25—33 (2 B; 2 A)	—	≤0,25	—	—	TO3
≤5 (40 B)	≥20 (2 B; 7 A)	—	≤0,05	—	—	TO3
—	≥30 (2 B; 7 A)	—	≤0,05	—	—	TO3
≤1 (15 B)	≥10 (2 B; 3 A)	—	≤0,06	—	—	TO66
≤1 (25 B)	≥10 (2 B; 3 A)	—	≤0,06	—	—	TO66
≤1 (25 B)	≥15 (2 B; 3 A)	—	≤0,06	—	—	TO66
≤1 (35 B)	≥15 (2 B; 3 A)	—	≤0,06	—	—	TO66
≤1 (45 B)	≥15 (2 B; 3 A)	—	≤0,06	—	—	TO66
≤1 (6 B)	20—60 (10 A)	—	≤0,1	—	—	TO3
≤1 (6 B)	50—130 (10 A)	—	≤0,1	—	—	TO3
≤1 (6 B)	20—60 (10 A)	—	≤0,1	—	—	TO3
≤1 (6 B)	50—130 (10 A)	—	≤0,1	—	—	TO3
≤0,5 (20 B)	30—70 (1 B; 50 mA)	—	≤0,6	—	—	34
≤0,5 (20 B)	50—100 (1B; 50 mA)	—	≤0,6	—	—	34
≤0,5 (30 B)	30—70 (1 B; 50 mA)	—	≤0,6	—	—	34
≤0,5 (30 B)	50—100 (1B; 50 mA)	—	≤0,6	—	—	34
≤0,5 (20 B)	90—250 (1B; 50 mA)	—	≤0,6	—	—	34
≤0,5 (32 B)	74—300 (1B; 50 MA)	150 (5 B)	≤0,6	—	—	MD17
0,1	30—120 (1,5 B; 1 A)	—	≤1	—	—	TO3
—	30 (2 B; 0,5 A)	—	≤1	—	—	TO3
—	30 (2 B; 0,5 A)	—	≤1	—	—	TO10
0,025	75—300 (0,5 A)	—	≤0,6	—	—	TO13
0,3	15—60 (1 B; 1 A)	—	≤1,2	—	—	MD6
0,3	15—60 (1 B; 1 A)	—	≤1,2	—	—	TO3
≤2 (75 B)	35—100 (10 B; 3 A)	≤200 (30 B)	≤0,17	≤300	≤4	36
≤2 (60 B)	35—100 (70 B; 3 A)	≤200 (30 B)	≤0,17	≤300	≤4	36
≤1 (40 B)	75 (2 B; 4 A)	—	≤0,12	—	—	TO3
≤1 (40 B)	40 (2 B; 4 A)	—	≤0,15	—	—	TO3
0,2	35—500 (4 B; 0,7 A)	—	≤0,35	—	—	TO3
≤20 (300 B)	≥15 (10 B; 5 A)	—	≤0,07	—	≤5	33
≤5 (200 B)	≥10 (1,3 B; 6 A)	≤250 (5 B)	≤2,5	—	—	3TO

1	2	3	4	5	6	7
2N3730	Ge, <i>p-n-p</i> , Д	10 (55°C)	>1	200	0,5	10
2SB468	Ge, <i>p-n-p</i> , Д	10	—	200	1,5	10
AU103	Ge, <i>p-n-p</i> , ДС	10	15	155	4	10
AU104	Ge, <i>p-n-p</i> , ДС	15	15	185	4	12
AU113	Ge, <i>p-n-p</i> , Д	5 (55°C)	—	250	3	10
ГТ806А	Ge, <i>p-n-p</i> , ДС	30	≥10*	75	1,5	15
ГТ806Б	Ge, <i>p-n-p</i> , ДС	30	≥10*	100	1,5	15
ГТ806В	Ge, <i>p-n-p</i> , ДС	30	≥10*	120	1,5	15
ГТ806Г	Ge, <i>p-n-p</i> , ДС	30	≥10*	50	1,5	15
ГТ806Д	Ge, <i>p-n-p</i> , ДС	30	≥10*	140	1,5	15
AU108	Ge, <i>p-n-p</i> , ДС	30 (30°C)	2	100	2	10
AL100	Ge, <i>p-n-p</i> , ДС	30 (55°C)	4	130	2	10
AL102	Ge, <i>p-n-p</i> , ДС	30 (55°C)	4	130	2	6
AL103	Ge, <i>p-n-p</i> , ДС	30 (55°C)	3	100	1,5	6
2SB361	Ge, <i>p-n-p</i> , Д	40	≥5*	80	1	7
2SB362	Ge, <i>p-n-p</i> , Д	40	≥5*	100	1	7
AU110	Ge, <i>p-n-p</i> , ДС	30	2	160	2	10
AU138	Ge, <i>p-n-p</i> , Д	30 (55°C)	2,5	130	2	10
AUY35	Ge, <i>p-n-p</i> , Д	15	2,5	70	2	10
КТ801А	Si, <i>n-p-p</i> , СД	5 (55°C)	≥10	80* (55°C)	2,5	2
КТ801Б	Si, <i>n-p-p</i> , СД	5 (55°C)	≥10	60*	2,5	2
2N4237	Si, <i>n-p-p</i> , Д	6	≥1	50	6	1 (3*)
2N4238	Si, <i>n-p-p</i> , Д	6	≥1	80	6	1 (3*)
2N4239	Si, <i>n-p-p</i> , СД	6	≥1	100	6	1 (3*)
BSX62	Si, <i>n-p-p</i> , ПЭ	5	≥30	60*	5	3
BSX63	Si, <i>n-p-p</i> , ПЭ	5	≥30	80*	5	3
KU601	Si, <i>n-p-p</i> , М	10	≥9	60	3	2
KU602	Si, <i>n-p-p</i> , М	10	≥9	120	3	2
KU611	Si, <i>n-p-p</i> , М	10	≥9	60	3	2
KU612	Si, <i>n-p-p</i> , М	10	≥9	120	3	2
2N1700	Si, <i>n-p-p</i> , Д	5	1,2	60	6	0,75
2N2890	Si, <i>n-p-p</i> , ПЭ	5	≥30	100	5	2
2N2891	Si, <i>n-p-p</i> , ПЭ	5	≥30	100	5	2
П701	Si, <i>n-p-p</i> , ДС	10 (50°C)	≥20*	40	2 (80°C)	0,5
П701А	Si, <i>n-p-p</i> , ДС	10 (50°C)	≥20*	60	2 (80°C)	0,5
П701Б	Si, <i>n-p-p</i> , ДС	10 (50°C)	≥20*	35	2 (80°C)	0,5
2N1714	Si, <i>n-p-p</i> , Д	10 (100°C)	≥16	90	6	0,75
2N1716	Si, <i>n-p-p</i> , Д	10 (100°C)	≥16	90	6	0,75
2SC525	Si, <i>n-p-p</i> , П	10	≥20	70	5	1,5
2SC893	Si, <i>n-p-p</i> , М	12	≥20	100	6	0,5
КТ807А	Si, <i>n-p-p</i> , МП	10 (70°C)	≥5	100*	4	0,5 (1,5*)
КТ807Б	Si, <i>n-p-p</i> , МП	10 (70°C)	≥5	100*	4	0,5 (1,5*)
MPS-U01	Si, <i>n-p-p</i> , ПЭ	8	≥50	40	5	2

Продолжение

8	9	10	11	12	13	14
0,2	10—200 (4 B; 50 mA)	—	<0,88	—	—	TO3
—	14—130 (1,5 B; 4 A)	—	—	—	$t_{\text{нр}} \leq 2,5$	TO3
≤ 10 (155 B)	≥ 15 (1 B; 10 A)	—	$\leq 0,07$	—	≤ 3	TO3
≤ 10 (185 B)	≥ 14 (1 B; 12 A)	—	$\leq 0,07$	—	≤ 3	TO3
$\leq 1,8$ 200 B)	14—80 (1,3 B; 6 A)	—	$\leq 0,06$	—	—	TO3
—	10—100 (10 A)	—	$\leq 0,04$	—	—	37
—	10—100 (10 A)	—	$\leq 0,04$	—	—	37
—	10—100 (10 A)	—	$\leq 0,04$	—	—	37
—	10—100 (10 A)	—	$\leq 0,04$	—	—	37
—	10—100 (10 A)	—	$\leq 0,04$	—	—	37
≤ 5 (100 B)	≥ 10 (1,3 B; 6 A)	250 (5 B)	$\leq 2,5$	—	—	TO3
≤ 1 (40 B)	40—250 (2 B; 1 A)	—	$\leq 0,1$	—	—	TO3
≤ 1 (40 B)	40—250 (2 B; 1 A)	—	$\leq 0,1$	—	—	TO3
≤ 1 (40 B)	40—250 (2 B; 1 A)	—	—	—	—	TO3
$\leq 0,3$ (40 B)	50—135 (2 B; 1 A)	—	—	—	—	TO3
$\leq 0,3$ (40 B)	50—110 (2 B; 5 A)	—	—	—	—	TO3
≤ 1 (40 B)	20—90 (2 B; 1 A)	—	$\leq 0,1$	—	—	TO3
≤ 3 (130 B)	30—190 (1 B; 5 A)	—	$\leq 0,04$	—	—	TO3
$\leq 0,10$ (0,5 B)	35—260 (1 B; 5 A)	—	$\leq 0,045$	—	—	TO3
$\leq 10^*$ (80 B)	15—50 (5 B; 1 A)	—	≤ 2	—	—	306
$\leq 10^*$ (60 B)	20—100 (5 B; 1 A)	—	≤ 2	—	—	306
$\leq 0,1$ (50 B)	≥ 15 (1 B; 1 A)	≤ 100 (10 B)	$\leq 0,6$	—	0,350	TO5
$\leq 0,1$ (80 B)	≥ 15 (1 B; 1 A)	≤ 100 (10 B)	$\leq 0,6$	—	0,350	TO5
$\leq 0,1$ (100 B)	≥ 15 (1 B; 1 A)	≤ 100 (10 B)	$\leq 0,6$	—	0,350	TO5
$\leq 0,1$ (60 B)	≥ 25 (5 B; 2 A)	≤ 70 (10 B)	$\leq 0,4$	—	1,5	TO39
$\leq 0,1$ (60 B)	≥ 25 (5 B; 2 A)	≤ 70 (10 B)	$\leq 0,4$	—	—	TO39
$\leq 0,3$ (60 B)	≥ 20 (6 B; 0,2 A)	250 (12 B)	$\leq 1,4$	—	—	TO3
$\leq 0,3$ (120 B)	≥ 20 (6 B; 0,2 A)	250 (12 B)	$\leq 1,4$	—	—	TO3
$\leq 0,3$ (60 B)	≥ 20 (6 B; 0,2 A)	250 (12 B)	≤ 14	—	—	SOT9
$\leq 0,3$ (120 B)	≥ 20 (6 B; 0,2 A)	250 (12 B)	≤ 14	—	—	SOT9
$\leq 0,3$ (30 B)	≥ 20 (6 B; 0,2 A)	250 (12 B)	≤ 14	—	—	TO5
$\leq 0,1$ (60 B)	≥ 30 (2 B; 1 A)	—	$\leq 0,37$	—	—	TO5
$\leq 0,1$ (60 B)	≥ 50 (2 B; 1 A)	—	$\leq 0,37$	—	—	TO5
$\leq 0,1$ (40 B)	10—40 (10 B; 0,5 A)	—	≤ 14	—	—	38
$\leq 0,1$ (60 B)	15—60 (10 B; 0,2 A)	—	—	—	—	38
$\leq 0,1$ (35 B)	30—100 (10 B; 0,2 A)	—	—	—	—	38
$\leq 0,05$ (90 B)	20—60 (5 B; 0,2 A)	≤ 50 (10 B)	≤ 10	—	—	TO5
$\leq 0,05$ (90 B)	40—120 (5 B; 0,2 A)	≤ 50 (10 B)	≤ 10	—	—	TO5
$\leq 0,001$ (30 B)	30—150 (2 B; 0,2 A)	≤ 50 (10 B)	≤ 3	—	3	MD29
$\leq 0,001$ (30 B)	50—370 (4 B; 50 mA)	—	≤ 2	—	—	MD29
$\leq 5^*$ (100 B)	15—45 (5 B; 0,5 A)	—	≤ 2	—	—	39
$\leq 5^*$ (100 B)	30—100 (5 B; 0,5 A)	—	≤ 2	—	—	39
$\leq 0,1$ MKA (40 B)	≥ 50 (1 B; 1 A)	≤ 20 (10 B)	$\leq 0,5$	—	—	N81

1	2	3	4	5	6	7
MPS-U01A	Si, n-p-n, ПЭ	8	≥50	50	5	2
MPS-U05	Si, n-p-n, ПЭ	10	≥50	60	4	2
MPS-U06	Si, n-p-n, ПЭ	10	≥50	80	4	2
MPS-U07	Si, n-p-n, ПЭ	10	≥50	100	4	2
KT704A	Si, n-p-n, МП	15 (50°C)	≥3	500* (1000 нмп.)	4	2,5 (4*)
KT704Б	Si, n-p-n, МП	15 (50°C)	≥3	400* (700 нмп.)	4	2,5 (4*)
KT704B	Si, n-p-n, МП	15 (50°C)	≥3	400* (500 нмп.)	4	2,5 (4*)
BDY93	Si, n-p-n, Д	30 (50°C)	8	350** (750 нмп.)	6	3 (6*)
BDY94	Si, n-p-n, Д	30 (50°C)	8	300** (750 нмп.)	6	3 (6*)
BDY95	Si, n-p-n, Д	30 (50°C)	8	250** (600 нмп.)	6	3 (6*)
BU126	Si, n-p-n, Д	30 (50°C)	8	300** (750 нмп.)	6	3 (6*)
BU132	Si, n-p-n, Д	15 (97°C)	8	600** (800 нмп.)	5	1 (2*)
BU133	Si, n-p-n, Д	30 (50°C)	8	250** (750 нмп.)	6	3 (6*)
2N3585	Si, n-p-n, Д	35	≥10	500	6	2 (5*)
2N4240	Si, n-p-n, Д	35	≥10	500	6	2 (5*)
KT805A	Si, n-p-n, МП	30 (50°C)	≥20	(160 нмп.)	5	5 (8*)
KT805Б	Si, n-p-n, МП	30 (50°C)	≥20	(135 нмп.)	5	5 (8*)
2N3441	Si, n-p-n, Д	25	1	160	7	3 (4*)
2N3054	Si, n-p-n, П	25	≥0,8	90	7	4
2N3766	Si, n-p-n, Д	20	≥10	80	6	4
2N3767	Si, n-p-n, Д	20	≥10	100	6	4
BD109	Si, n-p-n, ПЭ	18,5 (45°C)	≥30	60	5	3
BD148	Si, n-p-n, Д	31 (45°C)	1	60*	7	4
BD149	Si, n-p-n, Д	31 (45°C)	1	80*	7	4
BDX25	Si, n-p-n, П	34 (45°C)	30	130	5	5 (10*)
BDY12	Si, n-p-n, ПЭ	26 (45°C)	≥30	60	5	3
BDY13	Si, n-p-n, ПЭ	26 (45°C)	≥30	80	5	3
BDY72	Si, n-p-n, МП	25	≥0,8	150	7	3
BDY78	Si, n-p-n, М	25	≥8	90	7	4
BDY79	Si, n-p-n, М	25	≥8	150	7	4
II702	Si, n-p-n, МП	40 (50°C)	≥4	60*	3	2
II702A	Si, n-p-n, МП	40 (50°C)	≥4	30*	3	2
2N4231	Si, n-p-n, Д	35	≥4	50	5	3 (5*)
2N4232	Si, n-p-n, Д	35	≥4	70	5	3 (5*)
2N4233	Si, n-p-n, Д	35	≥4	90	5	3 (5*)
2N4910	Si, n-p-n, Д	25	≥3	40	5	1 (4*)
2N4911	Si, n-p-n, Д	25	≥3	60	5	1 (4*)
2N4912	Si, n-p-n, Д	25	≥3	80	5	1 (4*)
BUY43	Si, n-p-n, Д	31 (45°C)	1	40*	7	4
BUY46	Si, n-p-n, Д	31 (45°C)	0,8	55*	7	4

Продолжение

8	9	10	11	12	13	14
$\leq 0,1$ мКА (40 В)	≥ 50 (1 В; 1 А)	≤ 20 (10 В)	$\leq 0,5$	—	—	X81
$\leq 0,1$ мКА (40 В)	55 (1 В; 0,5 А)	≤ 12 (10 В)	$\leq 1,6$	—	—	X81
$\leq 0,1$ мКА (60 В)	55 (1 В; 0,5 А)	≤ 12 (10 В)	$\leq 1,6$	—	—	X81
$\leq 0,1$ мКА (80 В)	30 (1 В; 0,5 А)	≤ 12 (10 В)	$\leq 1,6$	—	—	X81
$\leq 5^{**}$ (1000 В)	10—100 (15 В; 1 А)	≤ 50 (20 В)	$\leq 2,5$	—	—	40
$\leq 5^{**}$ (700 В)	10—100 (15 В; 1 А)	≤ 50 (20 В)	$\leq 2,5$	—	—	40
$\leq 0,5^{**}$ (500 В)	≥ 10 (15 В; 1 А)	≤ 50 (20 В)	$\leq 2,5$	—	—	40
$\leq 0,5^{**}$ (750 В)	15—60 (5 В; 1 А)	85 (10 В)	≤ 1	—	≤ 3	TO3
$\leq 0,5^{**}$ (750 В)	25—80 (5 В; 1 А)	85 (10 В)	≤ 1	—	$\leq 3,5$	TO3
$\leq 0,5^{**}$ (600 В)	25—80 (5 В; 1 А)	85 (10 В)	≤ 1	—	$\leq 3,5$	TO3
$\leq 0,5^{**}$ (750 В)	15—60 (5 В; 1 А)	85 (10 В)	≤ 4	—	1,2	TO3
$\leq 0,25^{*}$ (800 В)	25—80 (10 В; 0,25 А)	—	≤ 20	—	—	TO3
$\leq 0,5^{**}$ (750 В)	15—80 (5 В; 1 А)	85 (10 В)	≤ 4	—	2	TO3
$\leq 1^{*}$ (450 В)	8—80 (2 В; 1 А)	—	$\leq 0,75$	—	≤ 4	TO66
$\leq 2^{*}$ (450)	10—100 (2 В; 0,75 А)	—	$\leq 1,3$	—	≤ 6	TO3
—	≥ 15 (10 В; 2 А)	—	$\leq 0,5$	—	—	37
—	≥ 15 (10 В; 2 А)	—	≤ 1	—	—	37
$\leq 0,1^{*}$ (140 В)	20—80 (4 В; 0,5 А)	—	≤ 2	—	—	TO66
$\leq 0,1^{*}$ (60 В)	25—100 (5 В; 0,5 А)	—	≤ 2	—	—	TO66
$\leq 0,1$ (80 В)	≥ 20 (10 В; 1 А)	≤ 50 (10 В)	$\leq 2,5$	—	—	TO66
$\leq 0,1$ (100 В)	≥ 20 (10 В; 1 А)	—	$\leq 2,5$	—	—	TO66
$\leq 0,1$ (60 В)	40 (5 В; 2 А)	≤ 70 (10 В)	$\leq 0,375$	—	$\leq 1,5^{*}$	MD6
$\leq 2^{*}$ (60 В)	≥ 15 (1,5 В; 2 А)	—	$\leq 0,65$	—	—	MD17
$\leq 2^{*}$ (60 В)	≥ 15 (1,5 В; 2 А)	—	$\leq 0,65$	—	—	MD17
$\leq 0,1$ (130 В)	≥ 20 (2 В; 3 А)	70 (10 В)	$\leq 0,5$	—	—	MD17
$\leq 0,1$ (60 В)	≥ 25 (5 В; 2 А)	≤ 70 (10 В)	$\leq 0,4$	—	$\leq 1,5^{*}$	MD17
$\leq 0,1$ (80 В)	≥ 25 (5 В; 2 А)	≤ 70 (10 В)	$\leq 0,4$	—	—	MD17
$\leq 1^{*}$ (130 В)	60—180 (4 В; 0,5 А)	—	≤ 2	—	—	TO66
≤ 1 (90 В)	25—100 (4 В; 0,5 А)	—	≤ 1	—	—	TO66
≤ 1 (150 В)	25—100 (4 В; 0,5 А)	—	≤ 1	—	—	TO66
≤ 5 (70 В)	≥ 25 (10 В; 1,1 А)	—	$\leq 2,5$	—	—	37
≤ 5 (70 В)	≥ 10 (10 В; 1,1 А)	—	≤ 4	—	—	37
$\leq 0,05$	25—100 (2 В; 1,5 А)	≤ 200 (10 В)	$\leq 0,46$	—	0,45	TO66
$\leq 0,05$	25—100 (2 В; 1,5 А)	≤ 200 (10 В)	$\leq 0,46$	—	—	TO66
$\leq 0,05$	25—100 (2 В; 1,5 А)	≤ 200 (10 В)	$\leq 0,46$	—	—	TO66
$\leq 0,1$	≥ 10 (1 В; 1 А)	≤ 100 (10 В)	$\leq 0,6$	—	0,35	TO66
$\leq 0,1$	≥ 10 (10 В; 1 А)	≤ 100 (10 В)	$\leq 0,6$	—	—	TO66
$\leq 0,1$	≥ 10 (10 В; 1 А)	≤ 100 (10 В)	$\leq 0,6$	—	—	TO66
$\leq 1^{*}$ (50 В)	≥ 25 (1,5 В; 0,5 А)	—	$\leq 0,55$	—	—	MD17
≤ 1 (90 В)	≥ 40 (1,5 В; 0,5 А)	—	≤ 2	—	—	MD17

1	2	3	4	5	6	7
2N1701	Si, n-p-n, Д	25	1*	60	6	1
2SD146	Si, n-p-n, Д	20	1,4*	40	5	1
2SD147	Si, n-p-n, Д	20	1,4*	60	5	1
2SD148	Si, n-p-n, Д	20	1,2*	70	5	2
KT809A	Si, n-p-n, МП	40 (50°C)	≥5,25	400* (100°C) 300*	4	3 (5*)
2N3584	Si, n-p-n, Д	35	≥15		6	2 (5*)
2N3738	Si, n-p-n, Д	20	≥10	250	6	3
2N3739	Si, n-p-n, Д	20	≥10	325	6	3
BLY49	Si, n-p-n, Д	40	≥15	250	8	3 (5*)
BLY49A	Si, n-p-n, Д	40	≥15	250	8	3 (5*)
BLY50	Si, n-p-n, Д	40	≥15	250	8	3 (5*)
BLY50A	Si, n-p-n, Д	40	≥15	250	8	3 (5*)
BU120	Si, n-p-n, М	50 (75°C)	10	400	6	4 (6*)
BD216	Si, n-p-n, Д	21,5 (75°C)	≥10	300	6	1
BU129	Si, n-p-n, Д	25	10	400	—	—
BD253	Si, n-p-n, Д	50	≥15	350	8	3 (6*)
2SC825	Si, n-p-n, Д	30	15	300	6	2
2SC779	Si, n-p-n, М	25	≥10	300	6	2
KT808A	Si, n-p-n, МП	50 (50°C)	≥7	120* (250 ИМП.)	4	10
2N4913	Si, n-p-n, Д	87,5	≥4	40	5	5 (15*)
2N4914	Si, n-p-n, Д	87,5	≥4	60	5	5 (15*)
2N4915	Si, n-p-n, Д	87,5	≥4	80	5	5 (15*)
BLY47	Si, n-p-n, М	40	≥15	100	8	3 (5*)
BLY47A	Si, n-p-n, М	40	≥15	100	8	3 (5*)
BLY48	Si, n-p-n, М	40	≥15	100	8	3 (5*)
BLY48A	Si, n-p-n, М	40	≥15	100	8	3 (5*)
2N5427	Si, n-p-n, Д	40	≥30	80	6	7
2N5429	Si, n-p-n, Д	40	≥30	100	6	7
BUY55	Si, n-p-n, Д	60 (75°C)	≥10	150	6	10 (15*)
KU605	Si, n-p-n, М	50 (80°C)	12	200	5	10
KU606	Si, n-p-n, М	50 (80°C)	12	120	5	8
KU607	Si, n-p-n, М	70	≥9	210	5	10
KUY12	Si, n-p-n, Д	70	≥9	210	5	10
KD602	Si, n-p-n, Д	35	≥0,5	110	5	10
BDY24	Si, n-p-n, Д	87,5	≥10	100	10	6
BDY25	Si, n-p-n, Д	87,5	≥10	200	10	6
KT802A	Si, n-p-n, П	50	≥10	150 (100°C)	3 (6 ИМП.)	5
2N5050	Si, n-p-n, Д	40	≥10	125	6	2
2N5051	Si, n-p-n, Д	40	≥10	150	6	2
2N5052	Si, n-p-n, Д	40	≥10	200	6	2

Продолжение

8	9	10	11	12	13	14
$\leq 0,1$ (30 B)	20—80 (4 B; 0,3 A)	175 (40 B)	≤ 5	—	—	TO8
$\leq 0,02$ (30 B)	30—150 (4 B; 0,5 A)	—	≤ 6	—	—	MD10
$\leq 0,02$ (30 B)	20—150 (4 B; 0,5 A)	—	≤ 6	—	—	MD10
$\leq 0,02$ (30 B)	35 (4 B; 2 A)	—	$\leq 0,5$	—	2,5	MD10
$\leq 3^*$ (400B)	15—100 (5 B; 2 A)	≤ 150 (20 B)	$\leq 0,75$	—	—	37
$\leq 1^*$ (300B)	25—100 (10 B; 1 A)	≤ 120 (10 B)	$\leq 0,75$	—	4	TO66
$\leq 0,1$ (250 B)	25 (10 B; 0,25 A)	≤ 20 (100 B)	≤ 10	—	—	TO66
$\leq 0,1$ (325 B)	25 (10 B; 0,25 A)	≤ 20 (100 B)	≤ 10	—	—	TO66
$\leq 0,05$ (40 B)	30—100 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO3
$\leq 0,05$ (40 B)	30—100 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO66
$\leq 0,05$ (40 B)	60—200 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO3
$\leq 0,05$ (40 B)	60—200 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO66
—	≥ 10 (10 B; 2 A)	—	$\leq 0,7$	—	—	TO3
—	40—150 (10 B; 0,1 A)	—	$\leq 0,7$	—	—	MD17
—	≥ 20 (1,5 B; 1,5 A)	—	$\leq 0,6$	—	—	TO3
≤ 2 (350 B)	≥ 15 (4 B; 1 A)	—	$\leq 1,2$	—	2	TO3
$\leq 0,02$ (10 B)	75 (10 B; 0,5 A)	—	0,8	—	—	TO66
$\leq 0,1$ (200 B)	30—200 (10 B; 0,1 A)	≤ 80 (10 B)	≤ 2	—	≤ 4	TO66
$\leq 3^*$ (120B)	10—50 (3 B; 6 A)	≤ 500 (100 B)	$\leq 0,4$	—	≤ 2	37
$\leq 1^{**}$ (40B)	≥ 7 (2 B; 5 A)	50 (40 B)	$\leq 0,3$	—	$1,2^*$	TO3
$\leq 1^{**}$ (60B)	≥ 7 (2 B; 5 A)	50 (40 B)	$\leq 0,3$	—	$1,2^*$	TO3
$\leq 1^{**}$ (80B)	≥ 7 (2 B; 5 A)	50 (40 B)	$\leq 0,3$	—	$1,2^*$	TO3
$\leq 0,05$ (40 B)	30—100 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO3
$\leq 0,05$ (40 B)	30—100 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO66
$\leq 0,05$ (40 B)	60—200 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO3
$\leq 0,05$ (40 B)	60—200 (10 B; 1 A)	≤ 200 (20 B)	$\leq 0,75$	—	$\leq 1,55$	TO66
$\leq 0,01$ (80 B)	≥ 20 (2 B; 5 A)	≤ 250 (10 B)	$\leq 0,35$	—	≤ 2	TO66
$\leq 0,01$ (100 B)	≥ 20 (2 B; 5 A)	≤ 250 (10 B)	$\leq 0,35$	—	≤ 2	TO66
≤ 1 (150 B)	≥ 8 (1,5 B; 7 A)	≤ 200 (10 B)	$\leq 0,2$	—	$1,2$	TO3
≤ 1 (50 B)	≥ 5 (10 B; 0,5 A)	≤ 750 (10 B)	$\leq 0,2$	—	≤ 1	TO3
≤ 1 (50 B)	≥ 5 (10 B; 0,5 A)	≤ 750 (10 B)	$\leq 0,35$	—	$t_{\text{up}} \leq 1,5$	TO3
≤ 1 (150 B)	≥ 10 (1,7 B; 5 A)	500 (10 B)	$\leq 0,3$	—	≤ 1	TO3
≤ 1 (150 B)	≥ 10 (1,7 B; 8 A)	—	$\leq 0,2$	—	≤ 1	TO3
—	15—50 (10 B; 0,5 A)	—	—	—	—	TO3
—	15—180 (4 B; 2 A)	—	$\leq 0,3$	—	—	TO3
≤ 60 (150 B)	15—180 (4 B; 2 A)	—	$\leq 0,3$	—	—	37
$\leq 0,5^*$ (125 B)	≥ 5 (5 B; 2 A)	≤ 250 (10 B)	$\leq 2,5$	—	$\leq 3,5$	TO66
$\leq 0,5^*$ (150 B)	≥ 5 (5 B; 2 A)	≤ 250 (10 B)	$\leq 2,5$	—	$\leq 3,5$	TO66
$\leq 0,5^*$ (200 B)	≥ 5 (5 B; 2 A)	≤ 250 (10 B)	$\leq 2,5$	—	$\leq 3,5$	TO66

1	2	3	4	5	6	7
BUYP52	Si, <i>n-p-n</i> , П	50	≥10	120	5	5
BUYP53	Si, <i>n-p-n</i> , П	50	≥10	80	5	5
BUYP54	Si, <i>n-p-n</i> , П	50	≥10	40	5	5
2SC41	Si, <i>n-p-n</i> , М	50	≥10*	150	6	5
2SC42	Si, <i>n-p-n</i> , М	50	≥8*	150	6	5
2SC43	Si, <i>n-p-n</i> , М	50	≥8*	100	6	5
BU123	Si, <i>n-p-n</i> , Д	50	10	180	8	5
2SC508	Si, <i>n-p-n</i> , Д	20	25	180	5	4
2SC519A	Si, <i>n-p-n</i> , Д	50	≥5	130	5	7
2SC520A	Si, <i>n-p-n</i> , Д	50	≥5	100	5	7
KT803A	Si, <i>n-p-n</i> , МП	60 (50°C)	≥20	60* (100°C)	4	10
2N3054A	Si, <i>n-p-n</i> , Д	75	≥3	60	7	4 (10*)
2N5067	Si, <i>n-p-n</i> , Д	87,5	≥4	40	5	5
2N5068	Si, <i>n-p-n</i> , Д	87,5	≥4	60	5	5
2N5069	Si, <i>n-p-n</i> , Д	87,5	≥4	80	5	5
KD601	Si, <i>n-p-n</i> , ПЭ	35 (45°C)	≥10	40	5	10
2N1702	Si, <i>n-p-n</i> , Д	75	1	60	6	5
BDY23	Si, <i>n-p-n</i> , П	87,5	≥10	60	10	6
MJ480	Si, <i>n-p-n</i> , Д	87,5	≥4	40	5	4 (7*)
MJ481	Si, <i>n-p-n</i> , Д	87,5	≥4	60	5	4 (7*)
2SC44	Si, <i>n-p-n</i> , М	50	≥8*	50	6	5
2SC793	Si, <i>n-p-n</i> , Д	60	9	80	5	7
2SC521A	Si, <i>n-p-n</i> , Д	50	≥5	70	5	7
2SC493	Si, <i>n-p-n</i> , М	50	10	80	5	5
KT908A	Si, <i>n-p-n</i> , МП	50 (50°C)	≥30	100* (100°C)	5	10
KT908B	Si, <i>n-p-n</i> , МП	50 (50°C)	≥30	60*	5	10
BDY90	Si, <i>n-p-n</i> , П	40 (75°C)	70	120	6	10 (15*)
BDY91	Si, <i>n-p-n</i> , П	40 (75°C)	70	100	5	10 (15*)
BDY92	Si, <i>n-p-n</i> , П	40 (75°C)	70	80	5	10 (15*)
2N4301	Si, <i>n-p-n</i> , ПЭ	50 (100°C)	≥40	100	8	10 (20*)
2N5313	Si, <i>n-p-n</i> , П	50 (100°C)	≥30	80	6	10
2N5315	Si, <i>n-p-n</i> , П	50 (100°C)	≥30	100	6	10
2N5317	Si, <i>n-p-n</i> , П	50 (100°C)	≥30	80	6	10
2N5319	Si, <i>n-p-n</i> , П	50 (100°C)	≥30	100	6	10
2SD47	Si, <i>n-p-n</i> , М	50	20	100	6	5
SDT3207	Si, <i>n-p-n</i> , ПЭ	50	≥30	80	6	10
SDT3208	Si, <i>n-p-n</i> , ПЭ	50	≥30	100	6	10
SDT7012	Si, <i>n-p-n</i> , П	50	≥15	80	5	10
SDT7013	Si, <i>n-p-n</i> , П	50	≥15	100	5	10
2N2811	Si, <i>n-p-n</i> , П	70	≥15	80	8	10
2N2813	Si, <i>n-p-n</i> , П	70	≥15	100	8	10

Продолжение

8	9	10	11	12	13	14
—	≥ 10 (5 B; 0,5 A)	—	$\leq 0,7$	—	—	TO3
—	≥ 20 (5 B; 0,5 A)	—	$\leq 0,7$	—	—	TO3
—	≥ 20 (5 B; 0,5 A)	≤ 350 (20 B)	$\leq 0,7$	—	—	TO3
≤ 60 (150B)	12—92 (10 B; 1 A)	≤ 350 (20 B)	2	—	—	TO3
≤ 60 (150B)	4—185 (10 B; 1 A)	≤ 350 (20 B)	2	—	—	TO3
≤ 60 (100B)	4—185 (10 B; 1 A)	≤ 350 (20 B)	2	—	—	TO3
—	25—250 (5 B; 1 A)	—	$\leq 0,7$	—	—	TO3
$\leq 0,12$ (50B)	≥ 20 (5 B; 4 A)	—	$\leq 0,5$	—	—	TO66
≤ 1 (50 B)	≥ 30 (5 B; 1 A)	≤ 250 (50 B)	$\leq 0,4$	—	3	TO3
≤ 1 (50 B)	≥ 30 (5 B; 1 A)	≤ 250 (50 B)	$\leq 0,4$	—	3	TO3
$\leq 5^*$ (70 B)	10—70 (10 B; 5 A)	≤ 250 (20 B)	$\leq 0,5$	—	$\leq 0,19^*$	37
$\leq 0,5^*$ (30B)	≥ 5 (4 B; 3 A)	60 (10 B)	≤ 2	—	0,3	TO66
≤ 1 (40 B)	≥ 7 (2 B; 5 A)	60 (20 B)	$\leq 0,3$	—	0,25	TO3
≤ 1 (60 B)	≥ 7 (2 B; 5 A)	60 (20 B)	$\leq 0,3$	—	0,25	TO3
≤ 1 (80 B)	≥ 7 (2 B; 5 A)	60 (20 B)	—	—	0,25	TO3
$\leq 10^{**}$ (24 B)	—	—	$\leq 0,24$	—	—	TO3
$\leq 0,2$ (30 B)	15—60 (4 B; 0,8 A)	200 (40 B)	≤ 4	—	—	MD6
—	15—180 (4 B; 2 A)	—	$\leq 0,5$	—	—	TO3
≤ 1 (40 B)	≥ 10 (2 B; 3 A)	≤ 200 (10 B)	$\leq 0,4$	—	—	TO3
≤ 1 (60 B)	≥ 10 (2 B; 3 A)	≤ 200 (10 B)	$\leq 0,4$	—	—	TO3
≤ 60 (50 B)	4—185 (10 B; 1 A)	≤ 350 (20 B)	—	—	—	TO3
≤ 1 (30 B)	30—200 (5 B; 1 A)	—	$\leq 0,46$	—	—	TO3
≤ 1 (50 B)	≥ 30 (5 B; 1 A)	≤ 250 (50 B)	$\leq 0,4$	—	3	TO3
10	20—200 (5 B; 1 A)	—	$\leq 0,5$	—	—	TO3
≤ 25 (100 B)	8—60 (2 B; 10 A)	≤ 400 (25 B)	$\leq 0,15$	—	—	37
≤ 25 (100 B)	≥ 20 (4 B; 4 A)	≤ 400 (30 B)	$\leq 0,25$	—	—	37
3	30—120 (5 A)	—	$\leq 0,1$	—	1,3	TO3
3	30—120 (5 A)	—	$\leq 0,1$	—	1,3	TO3
3	30—120 (5 A)	—	$\leq 0,1$	—	1,3	TO3
$\leq 0,01^*$ (90 B)	≥ 15 (4 B; 10 A)	—	$\leq 0,1$	—	1,5*	TO61
—	30—90 (5 B; 10 A)	≤ 500	$\leq 0,15$	—	—	TO61
—	30—90 (5 B; 10 A)	≤ 500	$\leq 0,15$	—	—	TO61
—	30—90 (5 B; 5 A)	≤ 500	$\leq 0,15$	—	—	TO61
—	30—90 (5 B; 5 A)	≤ 500	$\leq 0,15$	—	—	TO61
15	12—184 (10 B; 1 A)	—	0,6	—	—	TO3
—	30—90 (5 B; 5 A)	—	—	—	—	TO61
—	30—90 (5 B; 5 A)	—	—	—	—	TO61
—	20—60 (5 B; 5 A)	—	—	—	—	TO61
—	20—60 (5 B; 5 A)	—	—	—	—	TO61
0,1	20—60 (5 B; 5 A)	≤ 350	$\leq 0,15$	—	—	MT29
0,1	20—60 (5 B; 5 A)	≤ 350	$\leq 0,15$	—	—	MT29

Условное обозначение	Материал, структура, технология	$P_{\text{К max.}}$, Вт	$P_{\text{К имах.}}$, Вт	$f_{\text{гр.}}$, МГц	$U_{\text{КБО проб.}}$, В	$U_{\text{КЭР проб.}}$, В	$I_{\text{К max.}}$, А	$I_{\text{КБО}}$, мА
1	2	3	4	5	6	7	8	

СВЧ транзисторы

KT610A	Si, <i>n-p-n</i> , ПЭ	1,5 (50°C)	>1000	20	4	0,3	<0,5 (20 В)
KT610Б	Si, <i>n-p-n</i> , ПЭ	1,5 (50°C)	>700	20	4	0,3	<0,5 (20 В)
2N6135	Si, <i>n-p-n</i> , ПЭ	2,5	>1100	35	3,5	0,25	<10 (18 В)
BFW16	Si, <i>n-p-n</i> , ПЭ	1,5	>1000	40	2	0,15 (0,3*)	<1 (20 В)
KT606A	Si, <i>n-p-n</i> , ПЭ	2,5 (40°C)	>350	60	4	0,4 (0,8*)	<1,5 (60 В)
KT606Б	Si, <i>n-p-n</i> , ПЭ	2,5 (40°C))	>300	60	4	0,4 (0,8*)	<1,5 (60 В)
2N5090	Si, <i>n-p-n</i> , ПЭ	5 (75°C)	>500	55	3,5	0,4	<0,1 (55 В)
RFD401	Si, <i>n-p-n</i> , ПЭ	—	—	—	—	—	—
KT904A	Si, <i>n-p-n</i> , ПЭ	5 (40°C)	>350	60	4	0,8 (1,5*)	<15* (60 В)
KT904Б	Si, <i>n-p-n</i> , ПЭ	5 (40°C)	>300	60	4	0,8 (1,5*)	<15* (60 В)
2N3375	Si, <i>n-p-n</i> , ПЭ	11,6	500	65	4	0,5 (1,5*)	<0,1 (30 В)
RFD421	Si, <i>n-p-n</i> , ПЭ	—	—	—	—	—	—
MM3375	Si, <i>n-p-n</i> , ПЭ	11,6	—	65	4	1,5	<0,1 (65 В)
2SC598	Si, <i>n-p-n</i> , ПЭ	10	>300	65	4	1,5	<0,1 (30 В)
2SC549	Si, <i>n-p-n</i> , ПЭ	10	500	65	4	1,5	<0,1** (30 В)
2SC542	Si, <i>n-p-n</i> , ПЭ	11,6	450	65	4	1,5	<0,005 (30 В)
2SC635	Si, <i>n-p-n</i> , ПЭ	10	>300	65	4	1,5	<0,003 (18 В)
KT907A	Si, <i>n-p-n</i> , ПЭ	13,5	>350	60*	4	1 (3*)	<3* (60 В)
KT907Б	Si, <i>n-p-n</i> , ПЭ	13,5	>300	60*	4	1 (3*)	<3* (60 В)
2N3733	Si, <i>n-p-n</i> , ПЭ	23	>250	65	4	3*	<0,5 (65 В)
2N4440	Si, <i>n-p-n</i> , ПЭ	11,6	>400	65	4	1,5	<0,1 (65 В)
MSA7505	Si, <i>n-p-n</i> , ПЭ	—	—	—	—	—	—
2SC553	Si, <i>n-p-n</i> , ПЭ	20	>200	65	4	3	<0,25** (30 В)
2SC543	Si, <i>n-p-n</i> , ПЭ	23	400	65	4	3	<0,012 (30 В)
KT920A	Si, <i>n-p-n</i> , ПЭ	5 (50°C)	>400	36	4	0,5 (1*)	<2* (36 В)
KT920Б	Si, <i>n-p-n</i> , ПЭ	10 (50°C)	>400	36	4	1 (2*)	<4* (36 В)

$R_{21\Theta}$	$C_K, \text{ пФ}$	$r_6' C_K, \text{ пС;}$ r_6, Ω_M	$P_{\text{РЕХ}}^*$ $P_{PEP}, \text{ Вт}$	$K_{YD}, \text{ дБ}$	$K, \text{ п. д., \%}$	$I_{\text{раб}}, \text{ МГц}$	$E_K,$ В	Корпус
9	10	11	12	13	14	15	16	17

средней и большой мощности

50—300 (10 В; 0,15 А)	$\leq 4,1$ (10 В)	≤ 55	—	—	—	—	—	41
20—300 (10 В; 0,15 А)	$\leq 4,1$ (10 В)	≤ 22	—	—	—	—	—	41
25—300 (18 В; 80 мА)	≤ 3 (30 В)	≤ 20	—	—	—	—	—	X110
≥ 25 (5В; 0,15А)	—	—	—	—	—	—	—	TO39
≥ 15 (10 В; 0,10 А)	≤ 10 (28 В)	≤ 10	$\geq 0,8$	≥ 4	—	400	28	42
≥ 15 (10В, 0,1 А)	≤ 10 (28 В)	≤ 12	$\geq 0,6$	≥ 3	—	400	28	42
10—200 (5В; 0,05 А)	$\leq 3,5$ (30 В)	—	$\geq 1,2$	7,8	≥ 45	400	28	TO60
—	—	—	1,2	8	—	400	28	TO60
—	≤ 12 (28 В)	≤ 15	≥ 3	≥ 4	—	400	28	42
—	≤ 12 (28 В)	≤ 20	$\geq 2,5$	≥ 3	—	400	28	42
≥ 10 (5 В; 0,25 В)	≤ 10 (30 В)	$10^*\{$	≥ 3 $\geq 7,5$	$\geq 4,8$ $\geq 5,6$	≥ 40 ≥ 65	400 { 100 {	28 28	TO60
—	—	—	5	5	—	400	28	TO60
—	≤ 10 (30 В)	— {	3 8	4,8 —	—	400 { 100 {	28 28	TO60
≥ 20 (10 В; 0,5 А)	≤ 10 (10 В)	— {	3,5 8	5,4 —	—	400 { 175 {	28 28	TO60
—	≤ 10 (30 В)	—	3	—	—	400	28	TO60
25 (4 В; 0,5 А)	7 (30 В)	— {	6 3,5	7,8 —	—	175 { 400 {	28	TO60
≥ 15 (10 В; 0,5 А)	10 (18 В)	10^*	4	6	—	175	18	TO60
—	≤ 20 (30 В)	≤ 15	≥ 8	3,5	≥ 45	400	28	42
—	≤ 20 (30В)	≤ 25	≥ 6	2,5	≥ 45	400	28	42
≥ 5 (5 В; 1 А)	≤ 20 (30В)	$6,5^*\{$	≥ 10 $14,5$	≥ 4 $5,8$	≥ 45 ≥ 60	400 260	28 28	TO60
≥ 3 (5В; 1,35 А)	≤ 10 (30 В)	$10^*\{$	≥ 5 $6,5$	$\geq 4,8$ $5,7$	≥ 45 ≥ 55	400 225	28 28	TO60
—	—	—	≥ 10	4,2	—	400	28	TO60
—	≤ 20 (30В)	—	10	—	—	400	28	TO60
25 (4В; 1 А)	14 (30 В)	— {	14,5 6	6 —	—	175 400	28 28	TO60
—	≤ 15 (10В)	≤ 20	≥ 2	$\geq 8,2$	≥ 55	175	12,6	43
—	≤ 25 (10 В)	≤ 20	≥ 5	$\geq 7,8$	≥ 55	175	12,6	43

1	2	3	4	5	6	7	8
KT920B	Si, <i>n-p-n</i> , ПЭ	25 (50° C)	≥400	36	4	3 (7*)	≤7,5* (36 В)
KT920Г	Si, <i>n-p-n</i> , ПЭ	25 (50° C)	≥350	36	4	3 (7*)	≥7,5* (36 В)
2N5995	Si, <i>n-p-n</i> , ПЭ	10,7 (75° C)	—	36	3,5	1,5	≤5 (36 В)
2N5996	Si, <i>n-p-n</i> , ПЭ	35,7 (75° C)	—	36	3,5	5	≤15 (36 В)
2N6080	Si, <i>n-p-n</i> , ПЭ	12	—	36	4	1	≤0,25 (15 В)
2N6081	Si, <i>n-p-n</i> , ПЭ	31	—	36	4	2,5	≤0,5 (15 В)
BLY63	Si, <i>n-p-n</i> , ПЭ	17	—	36	4	5	0,1
BLW18	Si, <i>n-p-n</i> , ПЭ	20	≥420	36	4	2*	—
BLY88A	Si, <i>n-p-n</i> , ПЭ	32	700	36	4	2,5 (7,5)*	—
KT922А	Si, <i>n-p-n</i> , ПЭ	8 (40° C)	≥300	65*	4	0,8 (1,5*)	≤5* (65 В)
KT922Б	Si, <i>n-p-n</i> , ПЭ	20 (40° C)	≥300	65*	4	1,5 (4,5*)	≤20* (65 В)
KT922В	Si, <i>n-p-n</i> , ПЭ	40 (40° C)	≥300	65*	4	3 (9*)	≤40* (65 В)
KT922Г	Si, <i>n-p-n</i> , ПЭ	20 (40° C)	≥300	65*	4	1,5 (4,5*)	≤20 (65 В)
KT922Д	Si, <i>n-p-n</i> , ПЭ	40 (40° C)	≥250	65*	4	3 (9*)	≤40 (65 В)
2N5641	Si, <i>n-p-n</i> , ПЭ	15	≥300	65	4	1	≤1 (30 В)
2N5642	Si, <i>n-p-n</i> , ПЭ	30	≥250	65	4	3	≤1 (30 В)
2N5643	Si, <i>n-p-n</i> , ПЭ	60	≥200	65	4	5	≤1 (30 В)
BLW24	Si, <i>n-p-n</i> , ПЭ	25	≥300	60	4	2*	—
2N4128	Si, <i>n-p-n</i> , ПЭ	40	≥200	60	4	4	1
2N4127	Si, <i>n-p-n</i> , ПЭ	25	≥300	60	4	2	0,5
KT909А	Si, <i>n-p-n</i> , ПЭ	27	≥350	60*	3,5	2 (4*)	≤30* (28 В)
KT909Б	Si, <i>n-p-n</i> , ПЭ	54	≥500	60*	3,5	4 (8*)	≤60* (28 В)
KT909В	Si, <i>n-p-n</i> , ПЭ	27	≥300	60*	3,5	2 (4*)	≤35* (28 В)
KT909Г	Si, <i>n-p-n</i> , ПЭ	54	≥450	60*	3,5	4 (8*)	≤60* (28 В)
2N5177	Si, <i>n-p-n</i> , ПЭ	40	500	60	3,5	4	10
2N5178	Si, <i>n-p-n</i> , ПЭ	70	500	60	3,5	8	20
PT6670	Si, <i>n-p-n</i> , ПЭ	30	—	55	—	4	—
PT6680	Si, <i>n-p-n</i> , ПЭ	20	—	60	—	3	—
KT913А	Si, <i>n-p-n</i> , ПЭ	4,7 (55° C)	≥900	55	3,5	0,5 (1*)	≤25* (55 В)
KT913Б	Si, <i>n-p-n</i> , ПЭ	8 (55° C)	≥900	55	3,5	1 (2*)	≤50 (55 В)
KT913В	Si, <i>n-p-n</i> , ПЭ	12 (55° C)	≥900	55	3,5	1 (2*)	≤50 (55 В)
2N4430	Si, <i>n-p-n</i> , ПЭ	10	600	55	3,5	1	2

Продолжение

9	10	11	12	13	14	15	16	17
—	≤ 75 (10 B)	≤ 20	≥ 20	$\geq 8,2$	≥ 55	175	12,6	43
—	≤ 75 (10 B)	≤ 20	≥ 15	≥ 7	≥ 55	175	12,6	43
—	≤ 80 (12 B)	—	≥ 7	$\geq 9,7$	≥ 65	175	12,5	MT78
—	≤ 100 (12 B)	—	≥ 15	$\geq 4,5$	≥ 75	175	12,5	MT78
≥ 5 (5 B; 0,25 A)	≤ 20 (15 B)	—	4	≥ 12	≥ 50	175	12,5	MT72
≥ 5 (5 B; 0,5 A)	≤ 85 (15 B)	—	15	$\geq 6,3$	≥ 50	175	12,5	MT72
10—120 (5 B; 0,25 A) 40 (5 B; 0,5 A)	—	—	15	4,7	≥ 70	175	13	TO117
≤ 18 (13 B)	—	—	≥ 5	≥ 10	≥ 60	175	11,5	TO117
≥ 5 (5 B; 0,5 A)	≤ 30 (15 B)	—	≥ 15	$\geq 7,5$	≥ 65	175	13,5	MT72
—	≤ 15 (28 B)	≤ 20	≥ 5	≥ 10	≥ 50	175	28	43
—	≤ 35 (28 B)	≤ 20	≥ 20	≥ 8	≥ 50	175	28	43
—	≤ 65 (28 B)	≤ 25	≥ 40	≥ 10	≥ 50	175	28	43
—	≤ 35 (28 B)	≤ 20	≥ 17	$\geq 5,8$	≥ 50	175	28	43
—	≤ 65 (28 B)	≤ 25	≥ 35	≥ 10	≥ 50	175	28	43
≥ 5 (5 B; 0,1 A)	≤ 15 (30 B)	—	7	$\geq 8,4$	≥ 60	175	28	MT71
≥ 5 (5 B; 0,2 A)	≤ 35 (30 B)	—	20	$\geq 8,2$	≥ 60	175	28	MT72
≥ 5 (5 B; 0,5 A)	≤ 65 (30 B)	—	40	$\geq 7,6$	≥ 60	175	28	MT72
≥ 5 (5 B; 2 A)	≤ 25 (25 B)	—	≥ 17	8	≥ 60	175	28	TO117
10—80 (5 B; 0,2 A)	—	—	24	6	—	175	25	MT59
10—80 (5 B; 0,2 A)	—	—	13,5	7,5	—	175	25	MT59
—	≤ 30 (28 B)	≤ 20	20	—	≥ 45	500	28	44
—	≤ 60 (28 B)	≤ 20	40	—	≥ 45	500	28	44
—	≤ 35 (28 B)	≤ 30	15	—	≥ 40	500	28	44
—	≤ 60 (28 B)	≤ 30	30	—	≥ 40	500	28	44
10—150 (5 B; 0,1 A)	—	—	25	5	60	500	28	MD36
10—150 (5 B; 0,2 A)	—	—	50	4	60	500	28	MD36
—	—	—	20	5	60	500	28	TO129
—	—	—	10	7	50	500	28	TO129
≥ 10 (10 B; 0,5 A)	≤ 7 (28 B)	≤ 18	≥ 3	≥ 3	≥ 40	1000	28	41
≥ 10 (10 B; 0,5 A)	≤ 12 (28 B)	≤ 15	≥ 5	≥ 3	≥ 40	1000	28	41
≥ 10 (10 B; 0,5 A)	≤ 14 (28 B)	≤ 15	≥ 10	≥ 3	≥ 50	1000	28	41
20—200 (5 B; 0,1 A)	—	—	2,5	5	≥ 35	1000	28	TO129

1	2	3	4	5	6	7	8
2N4431	Si, n-p-n, ПЭ	18	600	55	3,5	2	4
RFD410	Si, n-p-n, ПЭ	—	—	—	—	—	—
RFD420	Si, n-p-n, ПЭ	—	—	—	—	—	—
2SC978	Si, n-p-n, ПЭ	18	1300	55	3,5	1,2	0,5
BLX92	Si, n-p-n, ПЭ	6	1200	65	4	0,7 (2*)	—
BLX93	Si, n-p-n, ПЭ	12,5	1200	65	4	1 (3*)	—
NE1010E ⁺ 28	Si, n-p-n, ПЭ	25	—	50	3,5	2,5	≤ 1 (28 В)
2SC977	Si, n-p-n, ПЭ	10	1300	55	3,5	0,6	0,3
2N5764	Si, n-p-n, ПЭ	10	—	55	3,5	0,75	5
2N5765	Si, n-p-n, ПЭ	19	—	55	3,5	1,5	7,5
KT911A	Si, n-p-n, ПЭ	3	≥ 1000	55	3	0,4	≤ 5 (55 В)
KT911Б	Si, n-p-n, ПЭ	3	≥ 800	55	3	0,4	≤ 5 (55 В)
KT911В	Si, n-p-n, ПЭ	3	≥ 1000	40	3	0,4	≤ 5 (40 В)
KT911Г	Si, n-p-n, ПЭ	3	≥ 800	40	3	0,4	≤ 5 (40 В)
2N4429	Si, n-p-n, ПЭ	5	≥ 700	55	3,5	0,425	1
2N4976	Si, n-p-n, ПЭ	5	1000	55	3,5	0,4	5
2N5481	Si, n-p-n, ПЭ	5	—	50	3	0,4	2
2SC976	Si, n-p-n, ПЭ	5	1300	55	3,5	0,4	$\leq 0,1$ (28 В)
KT902A	Si, n-p-n, Д	30 (50°C)	≥ 35	65	5	5	≤ 10 (70 В)
2SC101A	Si, n-p-n, М	35	20	70	5	5	1
BD121	Si, n-p-n, Д	45	60	60	6	5	0,1
BD123	Si, n-p-n, Д	45	60	90	6	5	0,1
2SD68	Si, n-p-n, М	50	40	60	5	5	10 (60 В)
KT912А	Si, n-p-n, П	30 (85°C)	≥ 90	70	5	20	$\leq 50^*$ (70 В)
KT912Б	Si, n-p-n, П	30 (85°C)	≥ 90	70	5	20	$\leq 50^*$ (70 В)
2N5070	Si, n-p-n, ПЭ	70	≥ 100	65	4	3,3 (10*)	≤ 10 (60 В)
2N6093	Si, n-p-n, ПЭ	83,3	≥ 90	70	3,5	10	$\leq 30^*$ (60 В)
40675	Si, n-p-n, ПЭ	100 (50°C)	—	65	3,5	10 (30*)	$\leq 30^*$ (60 В)
KT903A	Si, n-p-n, МП	30 (60*)	≥ 120	60	4	3 (5*)	$\leq 10^*$ (70 В)
KT903Б	Si, n-p-n, МП	30 (60*)	≥ 120	60	4	3 (5*)	$\leq 10^*$ (70 В)
2N2947	Si, n-p-n, ПЭ	25	≥ 100	60	3	1,5	≤ 1 (50 В)
2N2948	Si, n-p-n, ПЭ	25	≥ 100	40	—	1,5	≤ 1 (30 В)
2SC517	Si, n-p-n, ПЭ	10	≥ 150	60*	4	2	$\leq 0,01$ (30 В)

Продолжение

9	10	11	12	13	14	15	16	17
20—200 (5 B; 0,1 A)	—	—	5	5,2	≥35	1000	28	TO129
—	—	—	2,5	5,2	—	1000	28	TO129
—	—	—	5	5	—	1000	28	TO129
10—180 (28 B; 50 mA) ≥10 (5 B; 0,1 A)	—	—	≥5	4	≥60	1000	28	MT83
10—35 (5 B; 0,1 A)	—	—	5	5,2	—	1000	28	MT84
20—180 (10 B; 0,5 A)	≤8 (28 B)	—	10	6	—	1000	28	TO128
10—180 (28 I; 50 mA) ≥20 (5 B; 0,1 A)	—	—	≥2,5	≥5	≥30	1000	28	MT83
≥20 (5 B; 0,1 A)	—	—	3	6	40	1000	28	MT77
—	≤10 (28 B)	≤25	≥1	≥4	—	1800	28	45
—	≤10 (28 E)	≤25	≥1	≥4	—	1000	28	45
—	≤10 (28 B)	≤50	≥0,8	≥3	—	1800	28	45
—	≤10 (28 B)	≤100	≥0,8	≥3	—	1000	28	45
20—200 (5 B; 50 mA)	—	—	1	5	≥35	1000	28	MT59
20—250 (5B; 50 mA)	—	—	1	5	≥25	2000	28	TO129
20—250 (5 B; 50 mA)	—	—	1	6	≥25	2000	28	MT74
10 (28B; 20 mA)	—	—	1	5,2	≥30	1000	28	MT83
≥15 (10 B; 2 A)	≤300 (10 B)	—	20	≥7	—	10	27	37
30 (10 B; 0,5 A)	—	—	—	—	—	—	—	TO66
15 (10 B; 0,1 A)	—	—	—	—	—	—	—	TO3
15 (10 B; 0,1 A)	—	—	—	—	—	—	—	TO3
60 (5 B; 1 A)	—	—	—	—	—	—	—	TO3
10—50 (10 B; 5 A)	—	—	≥70*	≥10	≥50	30	27	46
20—100 (10 B; 5 A)	—	—	≥70*	≥10	≥50	30	27	46
10—100 (5 B; 3A)	≤85 (30 B)	—	≥25*	≥13	≥40	30	28	TO60
≥20 (6 B; 5 A)	≤250 (30 B)	—	75*	≥13	≥40	30	28	MT67
—	≤250 (30 B)	—	≥75*	≥13	≥40	30	28	MT67
15—70 (10 B; 2 A)	≤180 (30 B)	—	≥10	≥4,8	—	50	30	37
40—180 (10 B; 2A)	≤180 (30 B)	—	≥10	≥4,8	—	50	30	37
6—60 (2 B; 0,4 A)	≤60 (25 B)	—	15	7	≥60	50	25	TO3
2,5—100 (2 B; 0,4 A)	≤60 (25 B)	—	15	7	≥60	30	25	TO3
10—140 (5 B; 0,5 A)	≤50 (10 B)	—	6	7,8	—	50	24	TO37

3-4. Габаритные чертежи корпусов отечественных и зарубежных транзисторов

РАЗДЕЛ ЧЕТВЕРТЫЙ

ОТЕЧЕСТВЕННЫЕ И ЗАРУБЕЖНЫЕ ДИОДЫ

4-1. Условные буквенные обозначения параметров диодов

Буквенное обозначение параметров		Термин
отечественные	зарубежные	
$U_{\text{пр}}$	U_F	Постоянное прямое напряжение
$U_{\text{обр}}$	U_R	Постоянное обратное напряжение
$I_{\text{пр}}$	I_F	Постоянный прямой ток
$I_{\text{обр}}$	I_R	Постоянный обратный ток
C_d	C_{tot}	Общая емкость диода
$t_{\text{вос}}$	t_{rr}	Время восстановления обратного сопротивления
$U_{\text{обрmax}}$	$U_{R\text{max}}$	Максимально допустимое постоянное обратное напряжение
$I_{\text{прmax}}$	$I_{F\text{max}}$	Максимально допустимый постоянный прямой ток
$\Delta U_{\text{ст}}$	ΔU_z	Допускаемый разброс значения напряжения стабилизации от номинального значения
$U_{\text{ст}}$	U_z	Напряжение стабилизации
$I_{\text{ст}}$	I_z	Ток стабилизации
P_{max}	P_{max}	Максимально допустимая рассеиваемая мощность стабилитрона
$r_{\text{ст}}$	r_z	Дифференциальное сопротивление стабилитрона
ТКН	$\alpha_{UZ} (S_Z)$	Температурный коэффициент напряжения стабилизации

4.2. Отечественные диоды и их зарубежные аналоги

Выпрямительные диоды

Обозначение прибора	$U_{\text{обр max}}$, В	$I_{\text{пр.ср.такм}}$, мА	$U_{\text{пр}}$, В	$I_{\text{пр}}$, мА	$I_{\text{обр}}$ при $U_{\text{обр max}}$, мкА	$t_{\text{окр}} = 25^{\circ}\text{C}$	$I_{\text{обр}}$, мкА	$U_{\text{обр}}$, В	$t_{\text{окр}}$, $^{\circ}\text{C}$	* $t_{\text{макс.}}$, $^{\circ}\text{C}$	Материал	Корпус
1	2	3	4	5	6	7	8	9	10	11	12	

Выпрямительные диоды малой мощности

D9B	30	20	1	10	250	800	20	60	60	Ge	1
GD72E3	25	20	1	2	—	100	10	25	60A	Ge	F65
GD72E4	25	20	1	2	—	20	10	25	60A	Ge	F65
GD72E5	25	20	1	2	—	11	10	25	60A	Ge	F65
OA90	20	10	1,5	10	—	650	20	60	75A	Ge	A1
IN87T	25	30	1,0	5	—	200	25	25	90	Ge	D07
AAZ10	25	30	1,5	10	—	—	—	—	—	Ge	D07
GPM2NA	30	15	0,46	1,2	—	1000	30	25	—	Ge	—
IN295X	30	20	1	4,5	—	385	24	25	85	Ge	D07
AA137	30	12	1,3	20	—	50	10	25	100J	Ge	A1
Д102	50	30	2	2	10	100	50	100	100	Si	4
IN210	47	27	1	3,5	0,1	10	47	100	150A	Si	Cl
IN388	47	27	1	3,5	0,1	10	47	100	150A	Si	D07
IN1844	47	30	1	4,5	—	—	—	—	150A	Si	Cl2
BA179	50	25	0,9	1	—	10	50	70	100A	Si	L8
CA50	50	35	1	15	—	0,5	10	55	150A	Si	C18
CB50	50	35	1	15	—	2	10	55	150A	Si	C18
616C	52	30	1	3	—	40	40	125	150A	Si	C3
IN211	56	23	1	2,7	—	50	56	100	150A	Si	Cl
IN389	56	23	1	2,7	—	50	56	100	150A	Si	D07
Д101	75	30	2	2	10	150	75	100	100	Si	4
618С	75	25	1	1,5	—	40	68	125	150A	Si	C3
IN213	82	16	1	1,5	1	50	82	100	150A	Si	Cl
IN391	82	16	1	1,5	1	50	82	100	150A	Si	D07
PD133	85	30	1	10	—	40	60	100	150	Si	A2
IN212	68	19	1	2	1	50	68	100	150A	Si	Cl
D2D	75	16	1	4,5	250	1000	50	60	60	Ge	17
SD11F	75	15	1	5	—	500	50	25	85	Ge	M236
IN74	75	22	1,5	15	—	50	10	25	70A	Ge	M4
AA113P	60	10	1,4	20	500	120	30	25	100J	Ge	A1
КД103А	75	100	1	50	—	50	75	125	125	Si	3
IN483	70	100	1,1	100	—	30	60	150	200A	Si	A1
BA128	75	75	1	50	—	100	50	100	125A	Si	D07
MT462A	70	150	1	100	—	30	60	150	175A	Si	A60
GSM53	80	100	1,1	100	—	30	60	150	150	Si	A2
Д223А	100	50	1	50	1	50	100	120	120	Si	4
СА100	100	35	1	15	—	0,5	10	55	150A	Si	C18
С3100	100	35	1	15	—	2	10	55	150A	Si	C18
Д223Б	150	50	1	50	1	50	150	100	100	Si	4
14Р2	150	40	1	1	—	100	—	125	125A	Si	D07
AD150	150	40	1	1	—	100	150	150	170A	Si	D07
IN458	150	55	1	7	—	5	125	150	200	Si	A1
IN5209	150	55	1	7	—	5	125	150	200S	Si	D035
MT458	150	50	1	7	—	5	125	150	175A	Si	A60

* А — окр. среды; С — корпуса; J — перехода; S — хранение.

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
AE 150	150	60	1	10	—	100	150	150	170A	Si	D07
BAW32B	150	60	1	10	—	20	150	125	125J	Si	D07
24J2	150	60	1,3	60	—	20	150	125	125J	Si	D07
Д207	200	100	1	100	100	200	200	100	100	Si	5
ITT3003	200	100	1	100	—	5	175	150A	175A	Si	D035
IN485	180	100	1,1	100	—	30	175	150	200A	Si	D07
HSP1001	175	120	1	100	—	5	150	150	175A	Si	A1
TMD45	200	75	1	100	—	30	200	100	150A	Si	A21
ZS21	200	100	1,5	100	—	5	200	100	150A	Si	C1
BA147/220	220	100	1	50	—	75	150	100	150J	Si	D07
JN486	225	100	1,1	100	—	50	225	150	200A	Si	D07
КД102А	250	100	1	50	0,1	50	250	100	100	Si	3
0102	270	125	1	100	0,1(200)	—	—	—	150J	Si	C18
0112	270	125	1	100	0,1(200)	—	—	—	150J	Si	C18
КД104А	300	10	1	10	3	100	300	70	70	Si	3
IN219	270	7,5	4	3	5	100	270	100	150A	Si	C1
IN1632	270	3,8	6	1,5	—	33	156	100	25A	Si	M204
HGR30	300	1	1,1	1	10	50	300	100	175A	Si	A196
IN354	325	15	1	20	—	20	300	125	—	Si	C12
IN220	330	7	4	2	—	100	330	100	150A	Si	C1
IN1849	330	7,5	4	3	—	—	—	—	150A	Si	C12
Д208	300	100	1	100	100	200	300	100	100	Si	5
BA147/300	300	100	1	50	3	100	200	100	150J	Si	D07
DR699	300	100	1	50	1(200)	—	—	—	150J	Si	D07
IN487	300	100	1,1	100	—	50	300	150	200A	Si	D07
ZS22	300	100	1,5	100	—	5	300	100	150A	Si	C1
Д226В	300	300	1	300	100	300	200	80	80	Si	6
DT230H1	250	250	1,1	250	1	100	250	100	200	Si	D035
MC51	300	200	0,9	30	0,1	5	300	100	150A	Si	D07
IN487A	300	200	1	100	0,1	25	300	150	200A	Si	D07
ZC53	300	200	1,1	200	0,5	5	300	100	150A	Si	C1
BAW14	300	200	1,2	200	0,1	10	300	100	175	Si	D035
BAW14TF24	300	200	1,2	200	0,1	10	300	100	150	Si	D035
TF24	300	200	1,2	200	0,1	10	300	100	175	Si	D035
ZS123	300	250	1,1	250	5	50	300	100	100A	Si	D07
0502	300	250	1,2	250	5	—	—	—	125	Si	A1
MC030	300	200	1	400	0,2	15	300	150	175A	Si	A2
MC030A	300	200	1	400	—	5	300	150	175A	Si	A2
PS632	320	200	1	200	—	50	300	150	200	Si	D014
PS633	320	200	1	200	—	25	300	150	200	Si	D014
BAY21	350	200	1	100	—	25	300	100	150J	Si	D07
Д209	400	100	1	100	100	200	400	100	100	Si	5
IN488	380	100	1,1	100	0,25	50	380	150	200A	Si	D07
DR698	400	100	1	50	1(300)	—	—	—	—	Si	D07
DR695	400	100	1	100	—	50	300	100	—	Si	D07
PD910	400	100	1	100	—	10	400	25	200	Si	A188
ZS24	400	100	1,5	100	—	5	400	100	150A	Si	C1
Д7Ж	(400)	300	0,5	300	100	1000	130	70	70	Ge	5
IN533	400	300	2	300	15	—	—	—	150A	Si	D03
P4H5	400	300	1	300	10	500	400	100	175	Si	M343
IN443	400	300	1,5	300	1,5	—	—	—	165A	Si	D02
IN604	400	300	1,5	400	1,5	—	—	—	170S	Si	D01
S106	400	300	1,2	300	100	—	—	—	100S	Si	A54
COD1554	400	250	1,1	400	10	—	—	—	100	Si	A52
S19	400	250	1,2	400	1,5	—	—	—	150A	Si	A54
S219	400	250	1,3	400	100	—	—	—	—	Si	A54
M70B	400	250	1,2	—	10	—	—	—	175	Si	A3
CER70B	400	250	1,2	250	10	200	400	100	150A	Si	D027
Д210	500	100	1	100	100	200	500	100	100	Si	5
PD911	500	100	1	100	—	10	500	25	200S	Si	A188
IS206	450	100	1,2	100	—	10	400	25	150	Si	A1
IN873	500	100	0,6	100	—	20	500	—	200S	Si	A1

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
S205	500	100	1,2	150	—	100	500	—	—	SI	A54
P2K5	500	100	1	100	—	500	500	100	175	SI	M343
Д211	600	100	1	100	100	200	600	100	100	SI	5
PD912	600	100	1	100	—	10	600	25	200S	SI	A188
IN874	600	100	0,6	100	—	20	600	—	200S	SI	A1
10R6B	600	100	2	100	—	500	600	150	175	SI	—
PS2415	600	100	2	5	—	5	600	—	—	SI	C15
S206	600	100	1,2	150	—	100	600	—	—	SI	A54
1S1224	600	100	1,5	100	—	5	600	25	100J	SI	—
1S2352	600	100	1,5	100	—	5	600	—	100	SI	—
P2M5	600	100	1	100	10	500	600	100	175	SI	M343
1N2373	600	100	3	100	70	—	—	—	150	SI	A1
КД105Б	600	300	1	300	100	300	450	85	85	SI	7
BAY89	600	250	1	100	—	30	500	100	150	SI	D07
COD1556	600	250	1,1	400	10	—	—	—	100	SI	A52
M71B	600	250	1,2	—	10	—	—	—	175	SI	A3
CER71B	600	250	1,2	250	—	200	600	100	150	SI	D027
IN535	600	300	2	300	20	—	—	—	150	SI	D03
IN1257	600	300	1	300	—	500	600	125	165A	SI	A53
1S2310	600	300	1,2	500	10	—	—	—	125J	SI	—
P4M5	600	300	1	300	10	500	600	100	175	SI	M343
IN445	600	300	1,5	300	2	—	—	—	150A	SI	D02
IN606	600	300	1,5	200	25	—	—	—	170S	SI	D01
IN606A	600	300	1,5	400	2,5	—	—	—	170S	SI	D01
МД217	800	100	1	100	75	150	800	100	100	SI	5
MR80	800	100	1	100	—	10	800	100	150	SI	Z3
PD914	800	100	1	100	—	10	800	25	200S	SI	A188
IN876	800	100	0,6	100	—	20	800	—	200S	SI	A1
PS2416	800	100	2	5	10	—	—	—	—	SI	C15
S208	800	100	1,2	150	100	—	—	—	—	SI	A54
1N1407	800	0,125	5	0,12	10	100	800	150	150	SI	A53
КД105Г	800	300	1	300	100	300	600	85	85	SI	7
0507	800	250	1,2	250	5	—	—	—	125	SI	A1
IN1259	800	270	1	270	—	500	800	125	165A	SI	A53
IN2505	800	300	1,5	200	20	200	800	150	150A	SI	A6
S28	800	300	1,2	500	500	—	800	—	—	SI	A54
BY157	800	300	1,2	300	1	50	800	25	125A	SI	D029
S234	800	250	1,3	400	200	—	—	—	65A	SI	A54
M72B	800	250	1,2	—	10	—	—	—	175	SI	A3
CER72C	800	250	1,2	250	10	200	800	100	150A	SI	D027
IN560	800	250	1,8	250	15	380	800	125	140A	SI	D03
МД218	1000	100	1	100	75	150	1000	100	100	SI	5
PD915	900	100	1	100	0,05	10	900	25	200S	SI	A188
MR90	900	100	1	100	—	10	900	100	150	SI	Z3
MR100	1000	100	1	100	—	10	1000	100	150	SI	Z3
PD116	1000	100	1	50	—	10	1000	25	200S	SI	A188
PD916	1000	100	1	100	—	10	1000	25	200S	SI	A188
IN365	1000	100	2	200	—	250	1000	100	150C	SI	D02
IN878	1000	100	0,6	100	—	20	1000	—	200S	SI	A1
IN3282	1000	100	2,5	100	—	10	1000	100	150A	SI	D07
10R10B	1000	100	2	100	—	500	900	150	175	SI	—
100D10	1000	100	3	100	—	10	1000	100	150A	SI	D07
100K10	1000	100	3	100	—	10	1000	100	150A	SI	D07
PS2417	1000	100	2	5	10	—	—	—	—	SI	C15
S210	1000	100	1,2	150	100	—	—	—	—	SI	A54
IS1225A	1000	100	1,5	100	5	—	—	—	100J	SI	—
IS2354	1000	100	1,5	100	5	—	—	—	100	SI	—
VB10	1000	100	5	100	—	5	1000	100	150A	SI	A1
VG1	1000	100	5	100	—	40	1000	100	150A	SI	A1
EZ100	1000	100	9	100	2	100	1000	100	125A	SI	A3
IN2374	1000	100	3	100	—	—	—	—	100A	SI	A1

Выпрямительные диоды средней мощности

Обозначение прибора	1	$U_{\text{обртак}}, \text{ В}$	$I_{\text{пр.сртак}}, \text{ A}$	$U_{\text{пр}}, \text{ В}$	$I_{\text{пр}}, \text{ A}$	$I_{\text{обр}} \text{ при } U_{\text{обртак}}, \text{ A}$	$t_{\text{окр}} = 25^\circ\text{C}, \text{ мА}$	$I_{\text{обр}}, \text{ мА}$	$U_{\text{обр}}, \text{ В}$	$t_{\text{окр}}, {}^\circ\text{C}$	$t_{\text{макс}}, {}^\circ\text{C}$	Материал	Корпус
КД204В	50	600	1,4	600	50	0,500	50	85	85	Si	8		
ZS30A	50	500	1,1	500	—	0,015	50	100	160A	Si	A44		
ZS30B	50	500	1,1	500	—	0,050	50	100	160A	Si	A44		
A2A4	50	475	1,2	500	—	0,500	50	150	175	Si	A84		
IN1251	50	500	1	500	—	0,500	50	125	165	Si	A53		
IN2080	50	500	0,75	500	350	—	—	—	150	Si	A53		
BR205	50	500	1,1	500	5	—	—	—	150	Si	M533		
КД202Б	35	3,5	0,9	3,5	800	0,800	50	120	130	Si	9		
1S442	20	3	3	1,5	—	—	—	—	150	Si	4		
Д305	50	10	0,35	10A	2,5	20	50	70	70	Ge	10		
UT5105	50	7,5	1	5	—	0,3	50	100	175A	Si	S277		
MS5	50	7,5	1	7,5	—	—	—	—	150	Si	D04		
ZR20	50	8,0	1,2	5	—	0,2	50	100	150	Si	S235		
ZR200	50	8	1,2	5	5	0,2	50	100	150A	Si	S61		
PAO5	50	8	1	2	—	0,1	50	100	150	Si	M542		
E5A3	50	8	1,3	8	—	1	50	150	175	Si	D04		
IN2793	50	8	1,25	15	—	5	50	150	150C	Si	D05		
UT6105	50	9	1	6	—	0,3	50	100	175A	Si	S277		
IN2246	50	10	0,6	10	—	1	50	150	150	Si	D04		
IN2246A	50	10	0,6	10	—	0,5	50	150	150	Si	D04		
IN2247	50	10	0,6	10	—	1	50	150	200	Si	35		
IN2247A	50	10	0,6	10	—	0,5	50	150	150	Si	35		
Д229В	100	0,4	1	0,4	0,2	0,5	100	85	85	Si	11		
IN667	100	0,4	1	0,4	0,2	0,2	150	100	175	Si	D07		
AM410	100	0,4	1,2	0,4	—	0,3	100	150	150	Si	D07		
BYX60—100	100	0,4	1,15	0,4	—	0,05	100	100	125	Si	D07		
M14	100	0,4	1	0,4	—	—	100	150	150	Si	D07		
PS410	100	0,4	1,5	0,5	—	0,5	100	150	200	Si	A60		
IP644	100	0,4	1,0	0,4	—	—	—	—	150	Si	A1		
K2B5	100	0,4	2,0	0,4	—	0,5	100	100	150	Si	—		
P5D5	100	0,4	1,0	0,4	—	0,5	100	100	175	Si	M343		
IN324	100	0,4	2,0	0,65	—	0,3	100	100	200	Si	D02		
IN324A	100	0,4	0,6	0,65	—	0,01	100	100	200	Si	D02		
AM12	100	0,4	1,25	0,4	—	0,3	100	150	125	Si	D04		
MT14	100	0,4	1,2	0,4	—	0,1	100	150	200	Si	D07		
IN339	100	0,4	2,0	0,8	—	0,1	100	150	175	Si	D04		
IN348	100	0,4	2,0	0,8	—	0,5	100	150	175	Si	D04		
SG105	100	0,45	1,1	0,5	—	0,3	100	150	150	Si	C42		
Д229Ж	100	0,7	1	0,7	0,2	0,5	100	85	85	Si	11		
5Е1	100	0,7	1	0,5	—	0,2	100	125	125	Si	A35		
IN1487	100	0,75	0,55	0,25	—	0,4	100	125	140	Si	D03		
JN2073	100	0,75	—	—	—	0,25	100	100	—	Si	A53		
IN2104	100	0,75	1,2	0,75	0,3	—	—	—	200	Si	A53		
IN3238	100	0,75	2,2	0,75	—	0,5	100	150	—	Si	A1		
A3B1	100	0,75	—	—	—	0,5	100	150	175	Si	A84		
A3B5	100	0,75	—	—	—	0,5	100	150	175	Si	A84		
A3B9	100	0,75	0,5	—	—	0,5	100	150	175	Si	A84		
B3B1	100	0,75	0,5	—	—	0,5	100	150	175	Si	A1		
B3B5	100	0,75	0,5	—	—	0,5	100	150	175	Si	A1		
B3B9	100	0,75	0,5	—	—	0,5	100	150	175	Si	A1		

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
BR41	100	0,75	1,1	0,75	—	—	—	—	150	Si	M533
COD1531	100	0,75	1,1	0,8	—	—	—	—	150	Si	A52
MB258	100	0,75	1	0,4	—	0,06	100	100	175	Si	A60
MB270	100	0,75	1,2	0,5	—	0,075	100	100	175	Si	A60
S91A	100	0,75	0,9	1,2	—	1,4	—	100	—	Si	A54
TS1	100	0,75	1,2	0,75	—	—	—	—	125	Si	A1
UT112	100	0,75	1,2	0,5	—	0,75	100	100	—	Si	A146
XS10	100	0,75	—	—	—	—	—	—	—	Si	A54
ZS171	100	0,75	1,2	0,75	—	0,15	100	100	150	Si	A52
ZR61	100	0,75	1,1	0,75	—	0,15	100	100	150	Si	A42
7E1	100	0,75	1,1	0,75	—	0,05	110	100	175	Si	D027
7J1	100	0,75	1,1	0,75	—	—	—	—	175	Si	D015
IN440B	100	0,75	1,5	0,75	—	100	100	150	165	Si	D03
IN537	100	0,75	1,0	0,5	—	0,2	100	150	150	Si	D03
IN1081A	100	0,75	1,0	1,0	—	—	—	—	—	Si	F22
IN1645	100	0,75	0,5	0,25	—	0,4	100	150	165	Si	A53
IN2091	100	0,75	0,5	0,5	—	0,25	100	85	100	Si	M21
IN2610	100	0,75	1,1	0,5	—	0,5	100	150	175	Si	A31
IN4364	100	0,75	1,1	0,75	—	0,3	100	175	175	Si	D03
IS031	100	0,75	1,25	—	—	—	—	—	150	Si	A89
IS40	100	0,75	1,2	1,0	—	0,25	—	—	150	Si	D01
IS100	100	0,75	1,0	—	—	—	—	—	150	Si	—
A3B3	100	0,75	1,1	0,5	—	0,3	100	150	175	Si	A89
A100	100	0,75	1	0,75	—	—	—	—	100	Si	A84
D100	100	0,75	1	0,75	—	—	—	—	175	Si	A50
DK751	100	0,75	1,2	0,75	—	0,1	100	100	175	Si	D027
H100	100	0,75	1	0,75	—	—	—	—	175	Si	D03
M68	100	0,75	1,2	—	—	—	—	—	175	Si	A3
P100A	100	0,75	1	1	—	—	—	—	150	Si	D029
SD91A	100	0,75	1,3	1,2	—	0,5	100	100	125	Si	D03
SM10	100	0,75	1,1	0,5	—	—	—	—	175	Si	A84
SWISS	100	0,75	1,1	0,75	—	—	—	—	120	Si	—
TK10	100	0,75	1,1	0,5	—	0,3	100	150	175	Si	A84
IN289	100	0,75	1,2	0,5	—	0,4	100	100	125	Si	—
CER68	100	0,75	1,2	0,75	—	0,2	100	100	150	Si	D027
MR1337-2	100	0,75	1,1	1	—	25	100	25	—	Si	A31
S81	100	0,75	1,2	1,2	0,02	—	100	—	—	Si	A54
IN1556	100	0,75	1,4	0,6	—	1	100	100	150	Si	D02
AM010	100	0,75	1	25	—	0,3	100	150	150	Si	D07
КД208А	100	1,5	1	1	0,05	0,2	100	85	85	Si	7
IN2289	100	1,5	0,6	1,5	—	0,5	100	150	150	Si	35
IN2289A	100	1,5	0,6	1,5	—	0,1	100	150	150	Si	D04
IN2290A	100	1,5	0,6	1,5	—	0,1	100	150	150	Si	D04
IN2638	100	1,5	1,3	1,5	—	0,3	—	100	165	Si	M124
IS020	100	1,5	1,25	5	—	0,05	100	100	150	Si	A89
A7B1	100	1,5	0,5	—	—	0,5	100	150	175	Si	A84
A7B5	100	1,5	0,5	—	—	0,5	100	150	175	Si	A84
A7B9	100	1,5	0,5	—	—	0,5	100	150	175	Si	A84
A121-1т	100	1,5	1,1	1	—	—	—	—	150	Si	M531
A132-1т	100	1,5	1,1	1	—	—	—	—	150	Si	M532
A168-1т	100	1,5	1,1	1	—	—	—	—	125	Si	M575
B7B1	100	1,5	0,5	—	—	0,5	100	150	175	Si	A1
B7B5	100	1,5	0,5	—	—	0,5	100	150	175	Si	A1
B7B9	100	1,5	0,5	—	—	0,5	100	150	175	Si	A1
BR81Д	100	1,5	1,1	1	—	—	—	—	150	Si	M536
COD15314	100	1,5	1,1	0,8	—	—	—	—	150	Si	M45
M1B1	100	1,5	0,5	—	—	5	50	150	175	Si	A1
M1B5	100	1,5	0,5	—	—	5	100	150	175	Si	A1
M1B9	100	1,5	0,5	—	—	5	100	150	175	Si	A1
MB236	100	1,5	1	0,8	—	0,015	100	100	175	Si	A60
SA1M1	100	1,5	2	10	—	0,3	100	150	150	Si	D027
S11	100	1,5	1	1,5	—	—	—	—	150	Si	A1

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
ZR11	100	1,5	1	1,5	—	0,2	100	100	150	Si	A6
ZR11T	100	1,5	1	1,5	—	0,2	100	100	150	Si	S164
ZS271	100	1,5	1,2	1,5	—	0,15	100	100	150	Si	A52
ZL103M	100	1,5	1,34	7,5	—	0,11	100	100	195	Si	S33
IN4817	100	1,5	1,3	1,5	—	0,25	100	40	170	Si	D027
S2A10	100	1,5	1,05	1,5	—	1,6	100	25	150	Si	A56
S2H1	100	1,5	—	—	—	0,3	50	150	170	Si	D027
B40C2000— 1500Sit	100	1,5	1	1,1	—	—	—	—	125	Si	M673
IS1071	100	1,5	1	1,5	—	0,1	100	150	150	Si	A52
1.5E1	100	1,5	1,1	1,5	—	0,05	110	100	175	Si	D027
1.5J1	100	1,5	1,1	1,5	—	0,05	110	100	175	Si	D015
P100B	100	1,5	1	1	—	—	—	—	170	Si	D027
P150B	100	1,5	1	1	—	—	—	—	150	—	D027
S1.5—01	100	1,5	1	1,5	0,01	—	100	25	125	—	—
SE1.5SS	100	1,5	1,1	1,5	—	—	—	—	120	Si	M99
IN1563	100	1,5	1,2	0,5	—	0,5	100	100	175	Si	C12
IN2391	100	1,5	1,2	1,5	—	0,3	100	150	150	Si	A32
IN2400	100	1,5	1,2	1,5	—	0,3	100	150	150	—	C8
IN2409	100	1,5	1,2	1,5	—	0,3	100	150	150	—	C9
IN2418	100	1,5	1,2	1,5	—	0,3	100	150	150	—	8
IS1849	100	1,5	0,9	0,75	—	—	—	—	120	—	M594
IN5392	100	1,5	1,4	1,5	—	—	0,3	100	170	—	D015
IN2847	100	1,5	0,65	0,5	—	0,4	100	150	165	Si	S35
CTN100	100	1,5	1	—	—	—	—	—	175	Si	M594
CTP100	100	1,5	1	—	—	—	—	—	175	Si	M594
VB100	100	1,5	1	—	—	—	—	—	175	Si	M594
1N1115	100	1,5	0,65	1,5	—	0,4	100	150	170	Si	D04
1N1053	100	1,5	1,5	1,5	1	—	—	100	150	—	Si
1N1085	100	1,5	1,5	1,5	2	—	—	—	100	150	—
1N1450	100	1,5	1,4	2,4	—	5	100	25	190	Si	S41
1N1617	100	1,5	1,2	1,5	—	5	100	25	100	Si	A52
IWSI	100	1,5	1,5	5	—	1,5	100	125	125	Si	A19
1N1446	100	1,5	1,3	1,8	—	2	100	25	175	Si	S41
KД202Г	70	3,5	0,9	3,5	0,8	0,8	100	120	130	Si	9
1S444	60	3,0	1,5	3	—	—	—	—	110	Si	S4
Д304	100	5	0,3	5	2	10	50	70	70	Ge	10
1N1613	100	5	1,5	10	—	—	—	—	175	Si	D04
1N2290	100	5	0,6	5	—	0,5	100	150	150	Si	S35
500R1B	100	5	2	5	—	1	100	150	175	Si	—
5BR1	100	5	—	—	—	—	—	—	125	—	M530
5PM1	100	5	2	5	—	0,05	100	150	150	Si	M585
PE10	100	5	1	2,5	—	—	—	—	—	—	M40
S5A1	100	5	1,1	5	1	—	100	—	150	Si	A1
1N1059	100	5	1,5	5	1	—	100	—	170	Si	S67
1N1065	100	5	1,5	5	1	—	100	—	170	Si	S66
1N1071	100	5	1,5	5	1	—	100	—	170	Si	S68
1N1089	100	5	1,5	5	2	—	100	—	170	Si	F22
1N1089A	100	5	1,5	5	—	5	100	100	—	Si	F73
10F5	100	5	1,1	13	—	10	100	25	175J	Si	S41
SJ103E, K	100	5	1	0,75	—	0,3	100	150	150A	Si	D04
VRE100X	100	5	1,5	10	2	5	100	150	150	Si	M249
VRF100X	100	5	1,5	10	2	5	100	150	150	Si	M249
VRG100X	100	5	1,5	10	2	5	100	150	150	Si	M249
ESP5100	100	5	1,2	3	—	0,011	100	150	150C	Si	A3
366B	100	5	1,1	5	—	10	100	180	180J	Si	S27
1N1613A	100	5	1,1	6	—	0,5	100	150	190J	Si	D04
E3B3	100	5	1,3	5	—	1	100	150	175J	Si	D04
Д242	100	10	1,2	10	3	3	100	100	125	Si	10
1N2248	100	10	0,6	10	—	1	100	150	150	Si	D04
1N2248A	100	10	0,6	10	—	0,5	100	150	150	Si	D04
1N2249	100	10	0,6	10	—	1	100	150	150	Si	S35

Продолжение

1	2	3	3	5	6	7	8	9	10	11	12
1N2249A	100	10	0,6	10	—	0,5	100	150	150	Si	S35
BR101A	100	10	1,2	5	0,01	—	110	150	150	Si	M538
DD4521	100	10	1	10	0,01	—	100	25	150	Si	S19
G1010	100	10	1,1	10	—	3	100	125	150A	Si	D04
MA231	100	10	—	—	—	4,5	125	125	150	Si	S74
P1010	100	10	1,1	10	—	3	100	125	150	Si	S95
SJ104E, K	100	10	1	0,75	—	1,5	100	200	200C	Si	D04
10PM1	100	10	2	10	—	32	100	150	150J	Si	M586
IN1621	100	10	1,2	10	—	5	10	25	100A	Si	S43
IS240	100	10	1,5	30	—	0,05	100	100	175S	Si	S61
R611	100	10	1,3	10	—	0,2	100	160	160C	Si	M249
S420	100	10	1,5	30	—	0,05	100	100	175A	Si	S24
IS161	100	10	1,6	50	—	6	100	175	175	Si	S103
IIRIS	100	10	1,6	50	6	—	100	175	175J	Si	S103
SA1AN12	100	10	0,47	10	—	2	100	—	150J	Si	D04
D1010	100	10	—	—	—	0,3	100	125	125B	Si	S4
S1AN12	100	10	0,5	9,5	—	2	—	125	150J	Si	D04
367B	100	10	1,2	10	—	10	100	180	180C	Si	S27
IN249	100	10	1,5	25	—	5	100	150	175S	Si	D05
40109	100	10	0,6	10	—	2	100	150	175C	Si	D04
E6B3	100	10	1,3	10	—	1	100	150	175	Si	D04
F2B3	100	10	1,3	30	—	1	100	150	175J	Si	D05
Д303	150	3	0,35	3	1	4	50	70	70	Ge	10
UR215	150	2	1	2	—	0,05	150	100	—	Si	A146
IN2350	150	3	1,1	1	—	—	—	—	150A	Si	S19
IS1660	150	3	1,2	3	—	1	150	150	150J	Si	S336
3C15	150	3	1,1	6	—	0,5	150	150	190	Si	D04
КД204Б	200	0,35	1,4	0,6	0,1	1	200	85	85	Si	8
1N531	200	0,3	2	0,3	0,07	—	200	—	150	Si	D03
B80C300	200	0,3	1,1	1	0,1	—	—	—	125	Si	M671
1N1703	200	0,3	1,7	1	—	0,3	200	100	125	Si	A53
P4F5	200	0,3	1,0	0,3	—	0,5	200	100	175	Si	M343
1N441	200	0,3	1,5	0,3	—	0,75	—	200	165	Si	D02
1N602	200	0,3	1,5	0,2	0,25	—	—	200	170S	Si	D01
1N602A	200	0,3	1,5	0,4	0,01	—	—	200	170S	Si	D01
КД205Г	200	0,5	1	0,5	0,1	0,2	200	85	85	Si	12
A2C4	200	0,475	1,2	0,5	0,01	0,5	200	150	175	Si	A84
1NI253	200	0,5	1	0,5	—	0,5	200	125	165	Si	A53
1N2082	200	0,5	0,75	0,5	0,350	—	200	—	150A	Si	A53
1N3228	200	0,5	3,3	0,5	—	0,5	200	150	—	Si	A1
BR22	200	0,5	1,1	0,5	0,05	—	200	—	150	Si	M533
COD15524	200	0,5	1,1	0,4	10	—	200	—	100	Si	M45
D25C	200	0,5	1,2	0,5	—	0,15	200	125	150	Si	A100
J200	200	0,5	1,1	0,5	—	—	—	—	175	Si	D07
MB259	200	0,5	1	0,2	1 мкА	0,06	200	100	175	Si	A60
MT020A	200	0,5	1	0,5	0,25	5	200	150	175	Si	A60
S17	200	0,5	1,2	0,8	0,100	—	200	—	150	Si	A54
S17A	200	0,5	1,2	0,8	0,05	—	200	—	—	Si	A54
PS120	200	0,5	1,5	0,5	—	0,5	200	150	200A	Si	A47
1N5215	200	0,5	1,2	1	—	0,2	200	75	175	Si	A31
1S1221	200	0,5	0,95	0,5	0,03	—	200	25	120	Si	—
S2E20	200	0,5	0,95	0,5	0,03	—	200	—	120	Si	—
.5E2	200	0,5	1,1	0,5	—	0,05	220	100	175	Si	A185
.5J2	200	0,5	1,1	0,5	—	0,05	220	100	175	Si	D027
20AS	200	0,5	1,15	0,5	0,01	—	200	—	100A	Si	D03
M69C	200	0,5	1,2	—	0,01	—	—	—	175	Si	A3
P6F5	200	0,5	1,0	0,5	0,01	0,5	200	100	175	Si	M343
SE05S	200	0,5	1,1	0,5	0,01	—	200	—	120J	Si	M98
SW05S	200	0,5	1,1	0,5	0,01	—	200	—	120	Si	A221
1N1709	200	0,5	1,3	1	—	0,4	200	150	125A	Si	A53

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
SD1Z	200	0,5	1	1,5	—	—	—	—	100	Si	A221
1S1942	200	0,5	1,2	0,5	—	0,4	200	125	125J	Si	A1
1S312	200	0,5	1,1	1	0,010	—	200	25	150	Si	T01
DD003	200	0,5	0,82	0,5	—	0,01	200	100	100A	Si	A3
IN3748	200	0,5	1,5	0,5	5	—	200	—	150A	Si	A1
CER69C	200	0,5	1,2	0,5	—	0,2	200	100	150A	Si	D027
1T502	200	0,5	1,2	0,3	—	0,25	200	100	100A	Si	A3
2T502	200	0,5	1,2	0,3	—	0,25	200	100	100A	Si	D01
3T502	200	0,5	1,2	0,3	—	0,25	200	100	100A	Si	D013
4T502	200	0,5	1,2	0,3	—	0,25	200	100	100A	Si	D07
ERD200	200	0,5	1,2	0,3	—	0,25	200	100	100A	Si	M163
IN551	200	0,5	1,5	0,5	1	—	200	—	150A	Si	D04
1N1031	200	0,5	1,5	0,5	0,200	—	200	—	150A	Si	A73
20S5	200	0,5	1,3	1,8A	—	2	200	25	175J	Si	S41
S101	200	0,5	1,0	0,8	0,100	—	200	—	—	Si	A54
S222	200	0,5	1,0	0,8	—	0,3	200	150	—	Si	A54
S252	200	0,5	1,2	0,8	—	0,5	200	100	—	Si	A54
TKF20	200	0,5	1,1	1,0	—	0,5	200	100	—	Si	A84
IN3082	200	0,5	1,0	0,75	—	0,2	200	150	200A	Si	A84
IN3545	200	0,6	1	0,5	—	0,75	200	175	200A	Si	A1
КД205Л	200	0,7	1	0,7	0,1	0,2	200	85	85	Si	I2
5Е2	200	0,6	1	0,5	—	0,2	200	125	125J	Si	A35
5MA2	200	0,625	0,92	0,63	—	0,2	200	100	140J	Si	F29
1N1483	200	0,75	0,55	0,25	—	0,3	200	125	140	Si	D03
1N2069A	200	0,75	1,2	0,5	—	0,2	200	100	100A	Si	A1
1N2105	200	0,75	1,2	0,75	0,3	—	200	—	200	Si	A53
1N3239	200	0,75	2,2	0,75	—	0,5	200	150	—	Si	A1
1N3656	200	0,75	1,2	0,5	—	0,3	200	100	200	Si	A60
75R2B	200	0,75	2	0,75	—	0,5	200	100	175	Si	—
A3C1	200	0,75	0,5	—	1 мкА	0,5	200	150	175A	Si	A84
A3C5	200	0,75	0,5	—	5 мкА	0,5	200	150	175A	Si	A84
A3C9	200	0,75	0,5	—	—	0,5	200	150	175A	Si	A84
B3C1	200	0,75	0,5	—	—	0,5	200	150	175A	Si	A1
B3C5	200	0,75	0,5	—	0,005	0,5	200	150	175A	Si	A1
B3C9	200	0,75	0,5	—	0,010	0,5	200	150	175A	Si	A1
BR42	200	0,75	1,1	0,75	0,005	—	—	—	150	Si	M533
COD1532	200	0,75	1,1	0,8	1 мкА	—	200	—	150	Si	A52
MB260	200	0,75	1	0,4	1 мкА	0,06	200	100	175	Si	A60
MB271	200	0,75	1,2	0,5	2 мкА	75	200	100	175A	Si	A60
PT520	200	0,75	1,5	0,5	—	0,5	200	100	125A	Si	D02
S92A	200	0,75	0,9	1,2	0,950	—	200	—	—	Si	A54
TS2	200	0,75	1,2	0,75	5 мкА	—	—	—	125	Si	A1
UPI2069	200	0,75	1,2	0,5	10 мкА	0,2	200	100	100	Si	A1
UPI2069A	200	0,75	1	0,5	5 мкА	0,5	200	100	100	Si	A1
UT113	200	0,75	1,2	0,5	2 мкА	75	200	100	—	Si	A146
X517	200	0,75	—	—	—	0,1	200	—	—	Si	A54
X5172	200	0,75	1,2	0,75	5 мкА	150	200	100	150A	Si	A52
ZR62	200	0,75	1,1	0,75	10 мкА	0,15	200	100	150A	Si	A42
• 7Е2	200	0,75	1,1	0,75	2 мкА	0,05	220	100	175	Si	D027
• 7J2	200	0,75	1,1	0,75	2 мкА	0,05	220	100	175	Si	D015
IN441B	200	0,75	1,5	0,75	—	—	200	150	165A	Si	D03
IN538	200	0,75	1	0,5	0,010	0,2	200	150	150A	Si	D03
IN1082A	200	0,75	1	1	0,010	—	200	—	—	Si	F22
IN1647	200	0,75	0,5	0,25	—	0,3	200	150	165	Si	A53
IN2092	200	0,75	0,5	0,5	—	0,25	200	85A	100A	Si	M21
IN2611	200	0,75	1,1	0,5	0,010	0,5	200	150	175A	Si	A31
IN4365	200	0,75	1,1	0,75	1 мкА	0,3	200	175	175	Si	D03
IS032	200	0,75	1,25	—	2 мкА	—	200	—	150A	Si	A89
IS41	200	0,75	1,2	1	5 мкА	0,25	200	150	150	Si	D01
IS101	200	0,75	1,0	—	10 мкА	—	200	—	150A	Si	A89
2G8	200	0,75	1,1	0,75	—	—	200	—	150A	Si	D03
A3C3	200	0,75	1,1	0,5	10 мкА	0,3	200	150	175A	Si	A84

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
D200	200	0,75	1	0,75	5 мкА	—	200	—	175	Si	A50
DK752	200	0,75	1,2	0,75	10 мкА	0,100	200	100	175A	Si	D027
H200	200	0,75	1	0,75	5 мкА	—	200	—	175	Si	D03
M69	200	0,75	1,2	—	0,010	—	—	—	175	Si	A3
P200A	200	0,75	1	1	0,010	—	200	—	150	Si	D029
SD92A	200	0,75	1,3	1,2	—	0,5	200	100	125	Si	D03
SM20	200	0,75	1,1	0,5	0,010	—	200	—	175	Si	A84
SW1S	200	0,75	1,1	0,75	—	—	—	—	120	Si	—
TK20	200	0,75	1,1	0,5	—	0,3	200	150	175C	Si	A84
1N1440	200	0,75	1	0,75	—	1	200	55	150A	Si	A1
IN2482	200	0,75	1,2	0,75	—	1	200	55	150A	Si	A3
IN3277	200	0,75	1,2	0,75	0,005	—	200	—	150A	Si	A1
IN2860	200	0,75	1,2	0,5	—	0,4	200	100	125A	Si	—
IN3193	200	0,75	1,2	0,5	0,005	0,2	200	75	100A	Si	A50
IN3253	260	0,75	1,2	0,750	0,005	0,2	200	75	100A	Si	—
IN3639	200	0,75	1,2	0,75	—	0,2	200	75	100A	Si	D013
CER69	200	0,75	1,2	0,75	0,01	0,2	200	100	150A	Si	D027
IN1557	200	0,75	1,4	0,6	—	1	200	160 A	150	Si	D02
Д243Б	200	5	1,5	5	3	3	200	100	125	Si	10
IN2230	200	5	0,6	1,5	—	0,5	200	150	150	Si	D04
IN2230A	200	5	0,6	5	—	0,35	200	150	150	Si	D04
IN2231	200	5	0,6	1,5	—	0,500	200	150	150	Si	S35
IN2231A	200	5	0,6	5	—	0,35	200	150	150	Si	S35
IS751	200	5	0,75	5	5	—	200	25	85J	Ge	C63
5PM2	200	5	2	5	—	50 мкА	200	150	150	Si	M585
PE20	200	5	1	2,5	0,005	—	200	—	—	Si	M40
S5A2	200	5	1,1	5	0,01	—	200	—	150C	Si	A1
IN1061	200	5	1,5	5	1	—	200	—	170C	Si	S66
IN1067	200	5	1,5	5	1	—	200	—	170C	Si	S68
IN1073	200	5	1,5	5	1	—	200	—	170C	Si	S68
IN1090	200	5	1,5	5	2	—	200	—	170C	Si	F22
SJ203E, K	200	5	1	0,75	0,01	0,3	200	150	150A	Si	D04
ESP5200	200	5	1,2	3	10 мкА	0,9	200	150	150C	Si	A3
366D	200	5	1,1	5	—	10	200	180	180J	Si	S27
1N1614A	200	5	1,1	6,0	—	0,5	200	150	190J	Si	D04
E3C3	200	5	1,3	5	10 мкА	1	200	150	175	Si	D04
F1C3	200	5	1,3	30	—	1	200	150	175J	Si	D05
Д243	200	10	1,2	10	3	3	100	200	125	Si	I43
IN2786	200	10	1,2	10	—	10	200	150	150A	Si	D05
IN2250	200	10	0,6	10	—	1	200	150	150	Si	D04
IN2250A	200	10	0,6	10	—	0,5	200	150	150	Si	D04
IN2251	200	10	0,6	10	—	1	200	150	150	Si	S35
IN2251A	200	10	0,6	10	—	0,5	200	150	150	Si	S35
BR102A	200	10	1,2	5	10 мкА	—	220	—	150	Si	M538
DD4523	200	10	1	10	10 мкА	—	200	25	150	Si	S19
G2010	200	10	1,1	10	—	5	200	125	150A	Si	D04
MA232	200	10	—	—	—	4,5	125	125	150	Si	S74
MA240	200	10	—	—	—	4,5	300	125	150	Si	M38
P2010	200	10	1,1	10	—	3	200	125	150	Si	S95
SJ204E, K	200	10	1	0,75	10 мкА	1,5	200	200	200C	Si	D04
10PM2	200	10	2	10	—	25	200	150	150J	Si	M586
62R2	200	10	1,1	10	—	6	200	150	150	Si	D04
IN1622	200	10	1,2	10	—	5	200	25	100A	Si	S43
IN4436	200	10	1	10	—	0,2	200	180	160C	Si	M249
IS421	200	10	1,5	30	—	0,05	200	100	175S	Si	S61
R602	200	10	1,3	10	—	0,2	200	160	160C	Si	M249
R612	200	10	1,3	10	—	0,2	200	160	160C	Si	M249
S421	200	10	1,5	30	—	0,05	200	100	175A	Si	S24
IS162	200	10	1,6	50	—	5	200	175	175	Si	S103
11R2S	200	10	1,6	50	—	5	200	175	175J	Si	S103
S2AN12	200	10	0,5	9,5	—	2	—	125	150J	Si	D04
367D	200	10	1,2	10	—	10	200	180	180J	Si	S27

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
1N250	200	10	1,5	25	—	5	200	150	175S	Si	D05
40110	200	10	0,6	10	—	1,5	200	150	175C	Si	D04
E6C3	200	10	1,3	10	—	1	200	150	175	Si	D04
F2C3	200	10	1,3	30	—	1	200	150	175J	Si	D05
КД205В	300	0,5	1	0,5	0,1	0,2	300	85	85	Si	12
IN1254	300	0,5	1	0,5	—	0,5	300	125	165A	Si	A53
IN2083	300	0,5	0,75	0,5	0,350	—	300	—	150A	Si	A53
C0D15534	300	0,5	1,1	0,4	10 мкА	—	300	—	100	Si	M45
MB261	300	0,5	1	0,2	—	0,06	300	100	175A	Si	A60
MT030	300	0,5	1	0,5	0,200	15	300	150	175A	Si	A60
MT030A	300	0,5	1	0,5	—	5	300	150	175A	Si	A60
S3I	300	0,5	1,2	0,8	0,100	—	300	—	—	Si	A54
PS130	300	0,5	1,5	0,5	—	0,5	300	150	200A	Si	A47
. E3	300	0,5	1,1	0,5	—	0,050	300	100	175	Si	D027
. J3	300	0,5	1,1	0,5	—	0,050	300	100	175	Si	D015
30AS	300	0,5	1,15	0,5	10 мкА	—	300	—	100A	Si	D03
P6G5	300	0,5	1	0,5	—	0,5	300	100	175	Si	M343
IN1710	300	0,5	1,3	1	—	0,4	300	150	125A	Si	A53
1S313	300	0,5	1,1	1	10 мкА	—	300	25	150	Si	T01
1T503	300	0,5	1,2	0,3	10 мкА	0,25	300	100	100A	Si	A3
2T503	300	0,5	1,2	0,3	10 мкА	0,25	300	100	100A	Si	D01
3T503	300	0,5	1,2	0,3	10 мкА	0,25	300	100	100A	Si	D013
4T503	300	0,5	1,2	0,3	10 мкА	0,25	300	100	100A	Si	D07
ERD300	300	0,5	1,2	0,3	10 мкА	0,25	300	100	100A	Si	M166
IN552	200	0,5	1,5	0,5	1,5	—	300	—	150A	Si	D04
IN1032	300	0,5	1,5	0,5	0,200	—	300	—	150A	Si	A73
IN1083	300	0,5	1,5	0,5	2	—	300	—	150A	Si	F22
IS559	300	0,5	1,1	0,5	50 мкА	—	300	—	150A	Si	C42
30S5	300	0,5	1,3	1,8	—	2	300	25	175J	Si	S41
S223	300	0,5	1	0,8	2	0,300	300	150	—	Si	A54
S253	300	0,5	1,2	0,8	—	0,5	300	100	—	Si	A54
Д229К	300	0,7	1	0,7	0,2	0,5	300	85	85	Si	11
A2D1	300	0,6	0,5	—	1 мкА	0,5	300	150	175A	Si	A84
A2D5	300	0,6	0,5	—	5 мкА	0,5	300	150	175A	Si	A84
A2D9	300	0,6	0,5	—	10 мкА	0,5	300	150	175A	Si	A84
B2D1	300	0,6	0,5	—	1 мкА	0,5	300	150	175A	Si	A1
B2D5	300	0,6	0,5	—	5 мкА	0,5	300	150	175A	Si	A1
B2D9	300	0,6	0,5	—	10 мкА	0,5	300	150	175A	Si	A1
ER31	300	0,6	1,25	0,5	—	75 мкА	300	100	150A	Si	A3
IN1694	300	0,6	0,6	0,25	—	0,5	300	100	115A	Si	D03
IS148	300	0,6	1,2	0,6	30 мкА	0,25	300	100	120S	Si	A50
P7G5	300	0,6	1	0,6	—	0,5	300	100	175	Si	M343
SD93	300	0,6	1,5	0,9	—	1	300	100	125A	Si	D03
SM230	300	0,6	1,2	0,95	10 мкА	—	300	—	150	Si	A84
IN1489	300	0,75	0,55	0,25	—	0,3	300	125	140A	Si	D03
IN2106	300	0,75	1,2	0,75	0,300	—	300	—	200	Si	A53
A3D1	300	0,75	0,5	—	1 мкА	0,5	300	150	175A	Si	A84
A3D5	300	0,75	0,5	—	5 мкА	0,5	300	150	175A	Si	A84
A3D9	300	0,75	0,5	—	10 мкА	0,5	300	150	175A	Si	A84
B3D1	300	0,75	0,5	—	1 мкА	0,5	300	150	175A	Si	A1
B3D5	300	0,75	0,5	—	5 мкА	0,5	300	150	175A	Si	A1
B3D9	300	0,75	0,5	—	10 мкА	0,5	300	150	175A	Si	A1
C0D1533	300	0,75	1,1	0,8	1 мкА	—	300	—	150	Si	A52
MB253	300	0,75	1	0,4	0,2	15	300	100	175A	Si	A60
MB262	300	0,75	1	0,4	1 мкА	0,06	300	100	175A	Si	A60
MB272	300	0,75	1,2	0,5	2 мкА	75 мкА	300	100	175A	Si	A60
PT530	300	0,75	1,5	0,5	—	0,5	300	100	125A	Si	D02
S93A	300	0,75	0,9	1,2	0,600	—	300	—	—	Si	A54
UT114	300	0,75	1,2	0,5	2 мкА	75 мкА	300	100	—	Si	A146
UT212	300	0,75	1	0,4	0,2	15	300	100	175A	Si	A146
ZR63	300	0,75	1,1	0,75	10 мкА	0,15	300	100	150A	Si	A12
. E3	300	0,75	1,1	0,75	2 мкА	50 мкА	300	100	175	Si	D027
. J3	300	0,75	1,1	0,75	2 мкА	50 мкА	300	100	175	Si	D015

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
1N442B	300	0,75	1,5	0,75	1 мкА	200	300	150	165A	Si	D03
1N539	300	0,75	1	0,5	10 мкА	0,2	300	150A	150A	Si	D03
1N1083A	300	0,75	1	1	10 мкА	—	300	—	—	Si	F22
1N1649	300	0,75	0,5	0,25	—	0,3	300	150A	165A	Si	A53
1N2093	300	0,75	0,5	0,5	—	0,25	300	85	100A	Si	M21
1N2612	300	0,75	1,1	0,5	10 мкА	0,5	300	150	175A	Si	A31
1N4366	300	0,75	1,1	0,75	1 мкА	0,3	300	175	175	Si	D03
IS42	300	0,75	1,2	1,2	5 мкА	0,25	300	150	150J	Si	D01
3G8	300	0,75	1,1	0,75	1 мкА	—	300	—	150A	Si	D03
A3D3	300	0,75	1,1	0,5	10 мкА	0,3	300	150	175A	Si	A84
A300	300	0,75	1,0	0,75	5 мкА	—	300	—	100	Si	A50
DK753	300	0,75	1,2	0,75	10 мкА	0,1	300	100	175A	Si	D027
H300	300	0,75	1,0	0,75	5 мкА	—	300	—	175	Si	D03
SD93A	300	0,75	1,3	1,2	—	0,5	300	100	125A	Si	D03
SM30	300	0,75	1,1	0,5	10 мкА	—	300	—	175	Si	A84
TK30	300	0,75	1,1	0,5	—	0,3	300	150	175C	Si	A84
1N1441	300	0,75	1	0,75	—	1	300	55	150A	Si	A1
DI646	300	0,75	1,2	1,2	0,200	15	300	100	150A	Si	A1
MR1337-4	300	0,75	1,1	1	—	25	300	25	175A	Si	A31
S26	300	0,75	1,2	1,2	0,200	—	300	—	—	Si	A54
S83	300	0,75	1,2	1,2	20 мкА	—	300	—	—	Si	A54
1N1558	300	0,75	1,4	0,6	—	1	300	100	150	Si	D02
AM030	300	0,75	1	25	—	0,3	300	150	150A	Si	D07
D245B	300	5	1,5	5	3	3	300	100	125	Si	10
1N2232	300	5	0,6	1,5	—	0,5	300	150	150	Si	D04
1N2232A	300	5	0,6	5	—	0,35	300	150	150	Si	D04
1N2233	300	5	0,6	1,5	—	0,5	300	150	150	Si	S35
1N2233A	300	5	0,6	5	—	0,35	300	150	150	Si	S35
BY118	300	5	1,2	14	0,100	—	300	—	150J	Si	C50
S5A3	300	5	1,1	5	1	—	300	—	150C	Si	A1
1N1062	300	5	1,5	5	1	—	300	—	170C	Si	S67
1N1068	300	5	1,5	5	1	—	300	—	170C	Si	S66
1N1074	300	5	1,5	5	1	—	300	—	170C	Si	S68
1N1091	300	5	1,5	5	2	—	300	—	170C	Si	F22
30F5	300	5	1,1	13	—	10	300	25	175	Si	S41
ESP5300	300	5	1,2	3	10 мкА	0,9	300	150	150C	Si	A3
366F	300	5	1,1	5	—	10	300	180	180J	Si	S27
E3E3	300	5	1,3	5	10 мкА	1	300	150	175	Si	D04
F1E3	300	5	1,3	30	—	1	300	150	175J	Si	D05
SL3	300	5	1,1	5	5 мкА	—	300	—	175C	Si	D04
D245	300	10	1,2	10	3	3	300	100	125	Si	10
1N2252	300	10	0,6	10	—	1	300	150	150	Si	D04
1N2252A	300	10	0,6	10	—	0,5	300	150	150	Si	D04
1N2253	300	10	0,6	10	—	1	300	150	150	Si	S35
1N2253A	300	10	0,6	10	—	0,5	300	150	150	Si	S35
G3010	300	10	1,1	10	—	3	300	125	150A	Si	D04
P3010	300	10	1,1	10	—	3	300	125	150A	Si	S95
SJ304E, К	300	10	1	0,75	—	1,5	300	200	200C	Si	D04
1N1623	300	10	1,2	10	—	5	300	25	100A	Si	S43
IS163	300	10	1,6	50	—	3	300	175	175	Si	S103
1IR3S	300	10	1,6	50	3	—	300	175	175J	Si	S103
BYX42/300	300	10	1,4	15	—	0,2	200	125	175J	Si	D04
D3010	300	10	1,5	10	—	0,3	300	125	125B	Si	S4
S3AN12	300	10	0,5	9,5	—	2	—	125	150J	Si	D04
367F	300	10	1,2	10	—	10	300	180	180J	Si	S27
1N2023	300	10	1,5	25	—	5	300	150	175C	Si	D05
40111	300	10	0,6	10	75 мкА	1,5	300	150	175C	Si	D04
BYY67	300	10	0,8	10	—	2	300	125	125C	Si	S72
BYY68	300	10	0,8	10	—	2	300	125	125C	Si	S72
E6E3	300	10	1,3	10	10 мкА	1	300	150	175	Si	D04
F2E3	300	10	1,3	30	—	1	300	150	175J	Si	D05

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
Д229Е	400	0,4	1	0,4	0,2	0,5	400	85	85	Si	11
1N647	400	0,4	1	0,4	—	0,02	400	100	150A	Si	A1
1N673	400	0,4	1	0,25	1	—	300	—	200	Si	A87
IS113	400	0,4	1	0,4	0,2	0,01A	400	100	150A	Si	A1
AM440	400	0,4	1,2	0,4	—	0,3	400	150	150A	Si	D07
BYX60-400	400	0,4	1,2	0,4	0,500	5	400	100A	125A	Si	D07
	400	0,4	1	0,4	10 мкА	—	400	125	150C	Si	D07
	400	0,4	1,5	0,5	—	0,5	400	150	200A	Si	A60
1P647	400	0,4	1	0,4	5	—	400	—	150J	Si	A1
4D4	400	0,4	1,3	1	—	0,3	400	100	150A	Si	A52
F5H5	400	0,4	1	0,4	10 мкА	0,5	400	100	175	Si	M343
AM42	400	0,4	1,25	0,4	—	0,3	400	150	125A	Si	D04
MT144	400	0,4	1,2	0,4	—	0,1	100	150	200A	Si	D07
S102	400	0,4	1,2	0,65	—	0,100	400	100	—	Si	A54
1N255	400	0,4	1,5	0,5	10 мкА	—	350	—	135A	Si	S11
1N332	400	0,4	2	0,8	—	0,2	400	150	175B	Si	D04
1N341	400	0,4	2	0,8	—	0,5	400	150	175B	Si	D04
КД205В	400	0,5	1	0,5	0,1	0,2	400	85	85	Si	12
A2E4	400	0,5	1,2	0,5	10 мкА	0,5	400	150	175	Si	A84
MA215	400	0,5	1	0,5	12 мкА	—	400	—	70A	Si	C18
1N1255	400	0,5	1	0,5	—	0,5	400	125	165A	Si	A53
1N2084	400	0,5	0,75	0,5	0,35	—	400	—	150A	Si	A53
BR24	400	0,5	1,1	0,5	5 мкА	—	440	—	150	Si	M533
С0D15544	400	0,5	1,1	0,4	10 мкА	—	400	—	100	Si	M45
D45C	400	0,5	1,2	0,5	—	0,15	400	125	150A	Si	A100
J400	400	0,5	1,1	0,5	5 мкА	—	400	25	175A	Si	D07
M1263	400	0,5	1	0,2	1 мкА	0,06	400	100	175A	Si	A60
MT040	400	0,5	1	0,5	0,2 мкА	0,015	400	150	175	Si	A60
MT040A	400	0,5	1	0,5	25 мкА	5	400	150	175A	Si	A60
S16	400	0,5	1,2	0,8	0,100	—	400	—	150A	Si	A54
S16A	400	0,5	1,2	0,8	50 мкА	—	400	—	—	Si	A54
S235	400	0,5	1,2	0,8	0,150	—	400	—	—	Si	A54
PS140	400	0,5	1,5	0,5	—	0,5	400	150	200A	Si	A47
1N5216	400	0,5	1,2	1,0	—	0,2	400	75	175A	Si	A31
.5E4	400	0,5	1,1	0,5	2 мкА	50 мкА	440	100	175	Si	D027
.5J4	400	0,5	1,1	0,5	2 мкА	50 мкА	440	100	175	Si	D015
40AS	400	0,5	1,15	0,5	10 мкА	—	400	—	100A	Si	D03
M70C	400	0,5	1,2	—	10 мкА	—	—	—	175	Si	A3
P6H5	400	0,5	1	0,5	10 мкА	0,5	400	100	175	Si	M343
SE05A	400	0,5	1,1	0,5	10 мкА	—	400	—	120	Si	M98
SW05A	400	0,5	1,1	0,5	10 мкА	—	400	—	120	Si	A221
1N1711	400	0,5	1,1	0,5	—	0,4	400	150	125A	Si	A53
DD056	400	0,5	1	1	1	—	400	—	—	Si	A3
SD1	400	0,5	1	1,5	10 мкА	—	400	—	100S	Si	A221
1S1943	400	0,5	1,2	0,5	—	0,4	400	125	125J	Si	A1
1S314	400	0,5	1,1	1	10 мкА	—	400	—	150	Si	T01
1S1230	400	0,5	1,1	1	10 мкА	—	400	—	150	Si	D01
DD006	400	0,5	0,82	0,5	—	0,01	400	100	100A	Si	A3
1N1763	400	0,5	3	0,5	0,100	1	400	100	100A	Si	A53
IN3749	400	0,5	1,5	0,5	5 мкА	—	400	—	150A	Si	A1
CER70C	400	0,5	1,2	0,5	10 мкА	0,2	400	100	150A	Si	D027
IT504	400	0,5	1,2	0,3	10 мкА	0,25	400	100	100A	Si	A3
2T504	400	0,5	1,2	0,3	10 мкА	0,25	400	100	100A	Si	D01
.3T504	400	0,5	1,2	0,3	10 мкА	0,25	400	100	100A	Si	D013
4T504	400	0,5	1,2	0,3	10 мкА	0,25	400	100	100A	Si	D07
ERD400	400	0,5	1,2	0,3	10 мкА	0,25	400	100	100A	Si	M166
1N553	400	0,5	1,5	0,5	2	—	400	—	150A	Si	D04
1N1033	400	0,5	1,5	0,5	0,200	—	400	—	150A	Si	A73
1N1084	400	0,5	1,5	0,5	2	—	400	—	150A	Si	F22
IN1169A	400	0,5	1,2	0,8	0,100	—	400	25	150	Si	D02
40S5	400	0,5	1,3	1,8	—	2	400	25	175J	Si	S41

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
EG100	400	0,5	1	0,5	10	—	400	—	125A	Si	D029
S100	400	0,5	1	0,8	0,100	—	400	—	—	Si	A54
S105	400	0,5	1,2	0,55	25 мкА	—	400	—	—	Si	A54
S108	400	0,5	2	0,65	0,250	—	400	—	—	Si	A54
S224	400	0,5	1	0,8	2 мкА	0,300	400	150	—	Si	A54
S254	400	0,5	1,2	0,8	—	0,500	400	100	—	Si	A54
TKF40	400	0,5	1,1	1	10 мкА	0,5	400	100	175A	Si	A84
1N3083	400	0,5	1	0,75	—	0,2	400	150	200A	Si	A84
Д229J1	400	0,7	1	0,7	0,2	0,5	400	120	130	Si	9
1N3547	400	0,6	1	0,5	0,2 мкА	0,75	400	175	200A	Si	A1
A2E1	400	0,6	0,5	—	1 мкА	0,5	400	150	175A	Si	A84
A2E5	400	0,6	0,5	—	5 мкА	0,5	400	150	175A	Si	A84
A2E9	400	0,6	0,5	—	10 мкА	0,5	400	150	175A	Si	A84
B2E1	400	0,6	0,5	—	1 мкА	0,5	400	150	150A	Si	A1
B2E5	400	0,6	0,5	—	5 мкА	0,5	400	150	150A	Si	A1
B2E9	400	0,6	0,5	—	10 мкА	0,5	400	150	175A	Si	A1
ER41	400	0,6	1,25	0,5	—	75 мкА	400	100	150A	Si	A3
S5M2	400	0,6	—	—	1 мкА	0,05	400	125	125	Si	D014
S16B	400	0,6	1,2	0,95	10 мкА	—	400	—	—	Si	A54
MB254	400	0,75	1	0,4	0,2	15 мкА	400	100	175A	Si	A60
MB264	400	0,75	1	0,4	1 мкА	0,06	400	100	175A	Si	A60
MB273	400	0,75	1,2	0,5	2 мкА	75 мкА	400	100	175A	Si	A60
PT540	400	0,75	1,5	0,5	—	0,5	400	100	125A	Si	D02
TS4	400	0,75	1,2	0,75	5 мкА	—	—	—	125	Si	A1
UPI2070	400	0,75	1,2	0,5	10 мкА	0,200	400	100	100A	Si.	A1
UPI2070A	400	0,75	1	0,5	5 мкА	0,5	400	100	100A	Si.	A1
UT115	400	0,75	1,2	0,5	2 мкА	75 мкА	400	100	—	Si	A146
UT213	400	0,75	1	0,4	0,200	15	400	100	175A	Si	A146
ZS174	400	0,75	1,2	0,75	5 мкА	150 мкА	400	100	150A	Si	A52
ZR64	400	0,75	1,1	0,75	10 мкА	0,15	400	100	150A	Si	A42
7E4	400	0,75	1,1	0,75	2 мкА	50 мкА	440	100	175	Si	D027
7J4	400	0,75	1,1	0,75	2 мкА	50 мкА	440	100	175	Si	D015
1N443B	400	0,75	1,5	0,75	1,5 мкА	0,200	400	150	165A	Si	D03
1N540	400	0,75	1	0,5	10 мкА	0,2	400	150	150A	Si	D03
1N1651	400	0,75	0,5	0,25	—	0,3	400	150	165A	Si	A53
1N2094	400	0,75	0,5	0,5	—	0,25	400	85	100A	Si	M21
1N2613	400	0,75	1,1	0,5	10 мкА	0,5	400	150	175A	Si	A31
1N4367	400	0,75	1,1	0,75	1 мкА	0,3	400	175	175	Si	D03
1S034	400	0,75	1	—	10 мкА	—	400	—	150A	Si	A89
IS43	400	0,75	1,2	1	5 мкА	0,25	400	150	150	Si	D01
IS103	400	0,75	1	—	10 мкА	—	400	—	150A	Si	A89
4G8	400	0,75	1,1	0,75	1,5	—	400	—	150A	Si	D03
A3E3	400	0,75	1,1	0,5	10 мкА	0,3	400	150	175A	Si	A84
A400	400	0,75	1	0,75	5 мкА	—	400	—	100	Si	A3
D400	400	0,75	1	0,75	5 мкА	—	400	—	175	Si	A50
DK754	400	0,75	1,2	0,75	10 мкА	0,100	400	100	175A	Si	D027
H400	400	0,75	1	0,75	5 мкА	—	400	—	175	Si	D03
P400A	400	0,75	1	1	10 мкА	—	400	—	150	Si	D029
S1A	400	0,75	1,1	0,75	10 мкА	—	400	—	120	Si	A6
SD94A	400	0,75	1,3	1,2	—	0,4	400	100	125A	Si	D03
SD500	400	0,75	1,2	0,5	—	0,7	500	100	125A	Si	A6
SM40	400	0,75	1,1	0,5	10 мкА	—	400	—	175	Si	A84
TK40	400	0,75	1,1	0,5	—	0,3	400	150	175C	Si	A84
1N2483	400	0,75	1,2	0,75	—	1	400	55	150A	Si	A3
1N2487	400	0,75	1	—	1	—	400	—	150	Si	A6
1N3278	400	0,75	1,2	0,75	5 мкА	—	400	—	150A	Si	A1
1N2862	400	0,75	1,2	0,5	—	0,3	400	100	125A	Si	D01
1N3194	400	0,75	1,2	0,5	5 мкА	0,2	400	75	100A	Si	A50
1N3254	400	0,75	1,2	0,5	5 мкА	0,2	400	75	100A	Si	A50
1N3640	400	0,75	1,2	0,75	—	0,2	400	75	100A	Si	D013
CER70	400	0,75	1,2	0,75	10 мкА	0,2	400	100	150A	Si	D027

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
D1647	400	0,75	1,2	1,2	0,2	15	400	100	150A	Si	A1
MR1337-5	400	0,75	1,1	1	—	25	400	25	175A	Si	A31
S84	400	0,75	1,2	1,2	20 мкА	—	400	—	—	Si	A54
1N1559	400	0,75	1,4	0,6	—	1	400	100	150	Si	D02
Д246Б	400	5	1,5	5	3	3	400	100	125	Si	10
1N2234	400	5	0,6	1,5	—	0,5	400	150	150	Si	D04
1N2234A	400	5	0,6	5	—	0,35	400	150	150	Si	D04
1N2235	400	5	0,6	1,5	—	0,5	400	150	150	Si	S35
S243	400	0,6	1,2	0,95	0,100	—	400	—	—	Si	A54
1N1695	400	0,6	0,6	0,25	—	0,5	400	100	115A	Si	D03
1S149	400	0,6	1,2	0,6	30 мкА	0,25	400	100	120S	Si	A50
5D4	400	0,6	1,2	3	—	0,050	400	100	150S	Si	A1
P7H5	400	0,6	1	0,6	10 мкА	0,5	400	100	175	Si	M343
SD94	400	0,6	1,5	0,9	—	0,8	400	100	125A	Si	D03
SM240	400	0,6	1,2	0,95	10 мкА	—	400	—	150	Si	A84
CY40	400	0,6	1,15	0,6	—	—	400	—	150	Si	A31
5MA4	400	0,625	0,92	0,63	—	0,2	400	100	140J	Si	F29
BY158	400	0,650	1,3	0,65	10 мкА	0,100	400	60	130A	Si	D029
1N1490	400	0,75	0,55	0,25	—	0,3	400	125	140A	Si	D03
1N2070	400	0,75	1,2	0,5	10 мкА	0,2	400	100	100A	Si	A1
1N2070A	400	0,75	1	0,5	5 мкА	0,5	400	100	100A	Si	A1
1N2107	400	0,75	1,2	0,5	10 мкА	0,3	400	100	200A	Si	A60
1N3240	400	0,75	2,2	0,75	—	0,5	400	150	—	Si	A1
1N3657	400	0,75	1,2	0,5	10 мкА	0,3	400	100	200A	Si	A60
A3E1	400	0,75	0,5	—	1 мкА	0,5	400	150	175A	Si	A84
A3E5	400	0,75	0,5	—	5 мкА	0,5	400	150	175A	Si	A84
A3E9	400	0,75	0,5	—	10 мкА	0,5	400	150	175A	Si	A84
B3E1	400	0,75	0,5	—	1 мкА	0,5	400	150	175A	Si	A1
B3E5	400	0,75	0,5	—	5 мкА	0,5	400	150	175A	Si	A1
B3E9	400	0,75	0,5	—	10 мкА	0,5	400	150	175A	Si	A1
BR44	400	0,75	1,1	0,75	5 мкА	—	440	—	150	Si	M533
CD1534	400	0,75	1,1	0,8	1 мкА	—	400	—	150	Si	A52
DD236	400	0,75	1	0,75	—	1	400	25	100A	Si	D03
DD266	400	0,75	1	0,3	—	50 мкА	400	100	—	Si	D03
ED3004A	400	0,75	—	—	10 мкА	30 мкА	400	100	100A	Si	A1
1N2235A	400	5	0,6	5	—	0,35	400	150	150J	Si	S35
SKN5/04	400	5	1	10	—	—	—	—	190A	Si	S352
5PM4	400	5	2	5	—	50 мкА	400	150	150	Si	M585
PE40	400	5	1	2,5	5 мкА	—	400	—	—	Si	M40
S5A4	400	5	1,1	5	1 мкА	—	400	—	150C	Si	A1
1N1063	400	5	1,5	5	1	—	400	—	170C	Si	S67
1N1069	400	5	1,5	5	1	—	400	—	170C	Si	S66
1N1075	400	5	1,5	5	1	—	400	—	170C	Si	S68
1N1093	400	5	1,5	5	2	—	400	—	170C	Si	F22
1N1092A	400	5	1,5	5	—	5	400	100	—	Si	F73
-OF5	400	5	1,1	13	—	10 мкА	400	25	175J	Si	S41
VRE400X	400	5	1,5	10	—	5	400	150	150	Si	M249
VRF400X	400	5	1,5	10	2	5	400	150	150	Si	M249
VRG400X	400	5	1,5	10	2	5	400	150	150	Si	M249
ESP5400	400	5	1,2	3	10 мкА	0,900	400	150	150C	Si	A3
366H	400	5	1,1	5	—	10	400	180	180J	Si	S27
1N1615A	400	5	1,1	6	—	0,5	400	150	190J	Si	D04
E3G3	400	5	1,3	5	10 мкА	1	400	150	175	Si	D04
F1G3	400	5	1,3	30	—	1	400	150	175J	Si	D05
Д246	400	10	1,2	10	3	3	400	100	125	Si	10
1N2254	400	10	0,6	10	—	1	400	150	150	Si	D04
1N2254A	400	10	0,6	10	—	0,5	400	150	150	Si	D04
1N2255	400	10	0,6	10	—	1	400	150	150	Si	S35
1N2255A	400	10	0,6	10	—	0,5	400	150	150	Si	S35
BR104A	400	10	1,2	5	10 мкА	—	440	—	150	Si	M538
DD4526	400	10	1	10	10 мкА	—	400	25	150	Si	S19

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
G4HZ	400	10	1,1	10	—	3	400	125	150C	Si	D04
G4010	400	10	1,1	10	—	3	400	125	150A	Si	D04
P4HZ	400	10	1,1	10	—	3	400	125	125C	Si	S95
P4010	400	10	1,1	10	—	3	400	125	150A	Si	S95
SJ404E, K	400	10	1	0,75	10 мкА	1,5	400	200	200C	Si	D04
10PM4	400	10	2	10	—	13	400	150	150J	Si	M586
64R2	400	10	1,1	10	—	3	400	150	150C	Si	D04
1N1624	400	10	1,2	10	—	5	400	25	100A	Si	S43
1N4437	400	10	1	10	—	0,2	400	160	160C	Si	M249
IS423	400	10	1,5	30	—	50 мкА	400	100	175S	Si	S61
R604	400	10	1,3	10	—	0,2	400	160	160C	Si	M249
R614	400	10	1,3	10	—	0,2	400	160	160C	Si	M249
S423	400	10	1,5	30	—	50 мкА	400	100	175A	Si	S24
IS164	400	10	1,6	50	—	2	400	175	175	Si	S103
1IR4S	400	10	1,6	50	—	—	400	175	175J	Si	S103
SA4AN12	400	10	0,470	10	—	2	400	—	150J	Si	D04
D4010	400	10	1,5	10	—	0,3	400	125	125B	Si	S4C
S4AN12	400	10	0,5	9,5	—	2	—	125	150J	Si	D04
367H	400	10	1,2	10	—	10	400	180	180J	Si	S27
1N2025	400	10	1,5	25	—	5	400	150	175C	Si	D05
40112	400	10	0,6	10	75 мкА	1	400	150	175C	Si	D04
E6G3	400	10	1,3	10	10 мкА	1	400	150	175	Si	D04
F2G3	400	10	1,3	30	—	1	400	150	175J	Si	D05
KД205E	500	0,3	1	0,3	0,1	0,2	500	85	85	Si	73
COD1555	500	0,25	1,1	0,4	10 мкА	—	500	—	100	Si	A52
S19A	500	0,25	1,2	0,4	1,5	—	500	—	—	Si	A54
M500B	500	0,25	1,2	0,4	10 мкА	—	—	—	175	Si	A3
CER500B	500	0,25	1,2	0,25	10 мкА	0,2	500	100	150A	Si	D027
1N320	500	0,25	2	0,4	—	—	—	—	200	Si	D02
1N534	500	0,3	2	0,3	17 мкА	—	500	—	150A	Si	D03
1N1706	500	0,3	1,7	1	—	0,3	500	100	125A	Si	A53
P4K5	500	0,3	1	0,3	10 мкА	0,5	500	100	175	Si	M343
1N444	500	0,3	1,5	0,3	1,7	—	500	—	150A	Si	D02
1N605	500	0,3	1,5	0,2	25 мкА	—	500	—	170S	Si	D01
1N605A	500	0,3	1,5	0,4	2 мкА	—	500	—	170S	Si	D01
1N1256	500	0,32	1	0,32	—	0,5	500	125	165A	Si	A53
KД205A	500	0,5	1	0,5	0,1	0,2	500	85	85	Si	12
A2F4	500	0,475	1,2	0,5	1 мкА	0,5	500	150	175	Si	A84
1N2085	500	0,5	0,75	0,5	0,35	—	500	—	150A	Si	A53
1N3184	500	0,5	1	0,25	0,3	0,02	500	100	150A	Si	M82
1N3229	500	0,5	3,3	0,5	—	0,5	500	150	—	Si	A1
COD15554	500	0,5	1,1	0,4	10 мкА	—	500	—	100	Si	M45
MB265	500	0,5	1	0,2	1 мкА	0,06	500	100	175A	Si	A60
MT050	500	0,5	1	0,5	—	15	500	150	175A	Si	A60
MT050A	500	0,5	1	0,5	—	5	500	150	175A	Si	A60
S15	500	0,5	1,2	0,8	15 мкА	—	500	—	—	Si	A54
S18A	500	0,5	1,2	0,8	50 мкА	—	500	—	—	Si	A54
PS150	500	0,5	1,5	0,5	—	0,5	500	150	200A	Si	A47
5E5	500	0,5	1,1	0,5	2 мкА	50 мкА	550	100	175	Si	D027
5J5	500	0,5	1,1	0,5	2 мкА	50 мкА	550	100	175	Si	D015
50AS	500	0,5	1,15	0,5	10 мкА	—	500	—	100A	Si	D03
M500C	500	0,5	1,2	—	10 мкА	—	—	—	175	Si	A3
P6K5	500	0,5	—	0,5	10 мкА	0,5	500	100	175	Si	M343
1N1712	500	0,5	1,3	1	—	0,4	500	150	125A	Si	A53
1S315	500	0,5	1,1	1	10 мкА	—	500	25	150	Si	T01
1S1231	500	0,5	1,1	1	10 мкА	—	500	25	150	Si	D01
1N1764	500	0,5	3	0,5	0,100	1	500	100	100A	Si	A53
CER500C	500	0,5	1,2	0,5	10 мкА	0,2	500	100	150A	Si	D027
S18	500	0,5	1,2	0,8	0,100	—	500	—	—	Si	A54
1T505	500	0,5	1,2	0,3	10 мкА	0,25	500	100	100A	Si	A3
2T505	500	0,5	1,2	0,3	10 мкА	0,25	500	100	100A	Si	D01

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
3T505	500	0,5	1,2	0,3	10 мкА	0,25	500	100	100A	Si	D013
4T505	500	0,5	1,2	0,3	10 мкА	0,25	500	100	100A	Si	D07
ERD500	500	0,5	1,2	0,3	10 мкА	0,25	500	100	100A	Si	M166
1N554	500	0,5	1,5	0,5	3,5 мкА	—	500	—	150A	Si	D04
1S558	500	0,5	1,1	0,5	0,050	—	500	—	150A	Si	C42
50M	500	0,5	1,5	—	—	2	500	—	150	Si	F22
50S5	500	0,5	1,3	1,8	—	2	500	25	175J	Si	S41
EG100H	500	0,5	1	0,5	10 мА	—	500	—	125A	Si	D029
S255	500	0,5	1,2	0,8	—	0,500	500	100	—	Si	A54
Д247Б	500	5	1,5	5	3	3	500	100	125K	Si	10
1N2236	500	5	0,6	1,5	—	0,5	500	150	150	Si	D04
1N2237	500	5	0,6	1,5	—	0,5	500	150	150	Si	S35
1N2237A	500	5	0,6	5	0,350	—	500	150	150	Si	S35
S5A5	500	5	1,1	5	1 мкА	—	500	—	500	Si	A1
50F5	500	5	1,1	13	—	10	500	25	175J	Si	S41
50LF	500	5	1,5	5	—	5	500	100	—	Si	F73
366K	500	5	1,1	5	—	10	500	180	180J	Si	S27
407K	500	5	1,1	5	—	2	500	175	175J	Si	D04
E3N3	500	5	1,3	5	10 мкА	1	500	150	175J	Si	D04
F1H3	500	5	1,3	30	—	1	500	150	175J	Si	D05
КД206Б	500	10	1,2	1	0,7	1,5	500	125	125	Si	13
1N2256	500	10	0,5	10	—	1	500	150	150	Si	D04
1N2256A	500	10	0,6	10	—	0,5	500	150	150	Si	D04
1N2257	500	10	0,6	10	—	0,5	500	150	150	Si	S35
G5010	500	10	1,1	10	—	3	500	125	150A	Si	D04
P5010	500	10	1,1	10	—	3	500	125	150A	Si	S95
50J2P	500	10	1,3	10	2,5	—	500	—	—	Si	S43
1S165	500	10	1,6	50	—	2	500	175	175	Si	S103
SA5AN12	500	10	0,47	10	—	2	500	—	150J	Si	D04
D5010	500	10	1,5	10	—	0,3	500	125	125B	Si	S4
S5AN12	500	10	0,5	9,5	—	2	—	125	150J	Si	D04
367K	500	10	1,2	10	—	10	500	180	180J	Si	S27
408K	500	10	1,2	10	—	2	500	175	175J	Si	D04
40113	500	10	0,6	10	75 мкА	0,85	500	150	175C	Si	D04
E6H3	500	10	1,3	10	10 мкА	1	500	150	175J	Si	D04
F2H3	500	10	1,3	30	—	1	500	150	175J	Si	D05
TR501	500	10	1,5	25	—	5	500	150	175C	Si	D05
КД205Ж	600	0,5	1	0,5	0,1	0,2	600	85	85	Si	12
1N2086	600	0,5	0,75	0,5	0,35	—	600	—	150	Si	A53
BR26	600	0,5	1,1	0,5	5 мкА	—	660	—	150	Si	M533
COD15564	600	0,5	1,1	0,4	10 мкА	—	600	—	100	Si	M45
Д65С	600	0,5	1,2	0,5	—	0,15	600	125	150A	Si	A100
J600	600	0,5	1,1	0,5	5 мкА	—	600	25	175A	Si	D07
MB267	600	0,5	1	0,2	1 мкА	0,06	600	100	175A	Si	A60
MT060	600	0,5	1	0,5	0,2	25	600	150	175A	Si	A60
MT060A	600	0,5	1	0,5	—	5	600	150	175A	Si	A60
S23A	600	0,5	1,2	1,2	0,050	—	600	—	—	Si	A54
S30	600	0,5	1,2	0,8	1	—	600	—	150A	Si	A54
PS160	600	0,5	1,5	0,5	—	0,5	600	150	200A	Si	A47
1N5217	600	0,5	1,2	1	—	0,2	600	75	175A	Si	A31
S2E60	600	0,5	0,95	0,5	30 мкА	—	600	—	120	Si	A185
5E6	600	0,5	1,1	0,5	2 мкА	0,050	660	100	175	Si	D027
5J6	600	0,5	1,1	0,5	2 мкА	0,050	660	100	175	Si	D015
60AS	600	0,5	1,15	0,5	10 мкА	—	600	—	100A	Si	D03
P6M5	600	0,5	1	0,5	10 мкА	0,5	600	100	175	Si	M343
SE05B	600	0,5	1,1	0,5	10 мкА	—	600	—	130A	Si	M98
SW05B	600	0,5	1,1	0,5	10 мкА	—	600	—	120	Si	A221
SD1A	600	0,5	1	1,5	0,010	—	600	—	100S	Si	A221
1S1944	600	0,5	1,2	0,5	—	0,4	600	125	125J	Si	A1
1S1232	600	0,5	1,1	1	0,010	—	600	25	150	Si	D01

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12	
1N3750	600	0,5	1,5	0,5	5 мкА	—	600	—	150A	Si	A1	
40808	600	0,5	1,2	1	5 мкА	0,2	600	150	175A	Si	D026	
CER71C	600	0,5	1,2	0,5	0,010	0,2	600	100	150A	Si	D027	
1T506	600	0,5	1,2	0,3	0,010	0,25	600	100	100A	Si	A3	
2T506	600	0,5	1,2	0,3	0,010	0,25	600	100	100A	Si	D01	
3T506	600	0,5	1,2	0,3	0,010	0,25	600	100	100A	Si	D013	
4T506	600	0,5	1,2	0,3	0,010	0,25	600	100	100A	Si	D07	
ERD600	600	0,5	1,2	0,3	0,010	0,25	600	100	100A	Si	M166	
1N555	600	0,5	1,5	0,5	5 мкА	—	600	—	150A	Si	D04	
60M	600	0,5	1,5	—	—	2	600	—	150	Si	F22	
60S5	600	0,5	1,3	1,8	—	—	2	600	—	175J	Si	S41
S256	600	0,5	1,2	0,8	—	0,5	600	100	—	Si	A54	
Д248Б	600	5	1,5	5	3	3	600	100	125	Si	10	
1N1616	600	5	1,5	10	—	—	—	—	175A	Si	D04	
1N2238	600	5	0,6	1,5	—	0,5	600	150	150	Si	D04	
1N2238A	600	5	0,6	5	—	0,35	600	150	150	Si	D04	
1N2239	600	5	0,6	1,5	—	0,5	600	150	150	Si	S35	
1N2239A	600	5	0,6	5	—	0,35	600	150	150	Si	S35	
G65HZ	600	5	1,2	5	—	3	600	125	—	Si	S19	
5PM6	600	5	2	5	—	0,050	600	150	150J	Si	M585	
PE60	600	5	1	2,5	5 мкА	—	600	—	—	Si	M40	
S5A6	600	5	1,1	5	1	—	600	—	150C	Si	A1	
S20-06	600	5	1,1	60	0,050	—	600	—	150	Si	S19	
60F5	600	5	1,1	13	—	10	600	25	175J	Si	S41	
60LF	600	5	1,5	5	—	5	600	100	—	Si	F73	
SJ603E, K	600	5	1	0,75	0,010	0,3	600	150	150A	Si	D04	
366M	600	5	1,1	5	—	10	600	180	180J	Si	S27	
1N1616A	600	5	1,1	6	—	0,5	600	150	190J	Si	D04	
407M	600	5	1,1	5	—	2	600	175	175J	Si	D04	
E3K3	600	5	1,3	5	10	1	600	150	175	Si	D04	
F1K3	600	5	1,3	30	—	1	600	150	175J	Si	D05	
MR60	600	5	1	4,5	20	—	—	—	185B	Si	D04	
KД206В	600	10	1,2	1	0,7	1,5	600	125	125	Si	13	
1N2258	600	10	0,6	10	—	1	600	150	150	Si	D04	
1N2258A	600	10	0,6	10	—	0,5	600	150	150	Si	D04	
1N2259	600	10	0,6	10	—	1	600	150	150	Si	S35	
1N2259A	600	10	0,6	10	—	0,5	600	150	150	Si	S35	
BR106A	600	10	1,2	5	10 мкА	—	650	—	150	Si	M538	
G6NZ	600	10	1,1	10	—	3	600	125	150C	Si	D04	
G601u	600	10	1,1	10	—	3	600	125	150A	Si	D04	
P6HZ	600	10	1,1	10	—	3	600	125	125C	Si	S95	
P6010	600	10	1,1	10	—	3	600	125	150A	Si	S95	
SJ604E, K	600	10	1	0,75	10 мкА	1,5	600	200	200C	Si	D04	
10PM6	600	10	2	10	—	8	600	150	150J	Si	M586	
0601	600	10	1,4	30	0,100	—	300	—	150J	Si	S87	
66R2	600	10	1,1	10	—	2	600	150	150C	Si	D04	
66R2S	600	10	1,1	10	—	2	600	150	150C	Si	D04	
1N4438	600	10	1	10	—	0,2	600	160	160C	Si	M249	

Продолжение

1	2	3	4	5	6	7	8	9	10	11	12
1S425	600	10	1,5	30	—	50 мкА	600	100	175S	Si	S6I
R606	600	10	1,3	10	—	0,200	600	160	160C	Si	M249
R616	600	10	1,3	10	—	0,200	600	160	160C	Si	M249
S425	600	10	1,5	30	—	50 мкА	600	100	175A	Si	S24
1S166	600	10	1,6	50	—	1,5	600	175	175	Si	S103
SA6AN12	600	10	0,47	10	—	2	600	—	150	Si	D04
BYX42/600	600	10	1,4	15	—	0,2	400	125	175J	Si	D04
D6010	600	10	1,5	1,5	—	0,3	600	125	125B	Si	S4
S6AN12	600	10	0,5	9,5	—	2	—	125	150J	Si	D04
367M	600	10	1,2	10	—	10	600	180	180J	Si	S27
408M	600	10	1,2	10	—	2	600	175	175J	Si	D04
40114	600	10	0,6	10	0,075	0,75	600	150	175C	Si	D04
E6K3	600	10	1,3	10	10 мкА	1	600	150	175	Si	D04
F2K3	600	10	1,3	30	—	1	600	150	175J	Si	D05
КД205И	700	0,3	1	0,3	0,1	0,2	700	85	85	Si	12
B250C300	700	0,3	1,1	1	0,1	—	—	—	125J	Si	M671
1N2878	700	0,250	2	0,25	0,5	—	700	—	150S	Si	M122
1N2879	700	0,250	2	0,25	0,5	—	700	—	150S	Si	A83
1N1258	700	0,28	1	0,28	—	0,5	700	125	165A	Si	A53
КД203Г	700	10	1	10	1,5	1,5	1000	100	100	Si	10
S7AN12	700	10	0,5	9,5	—	2	—	125	150J	Si	D04
408P	700	10	1,2	10	—	2	700	175	175J	Si	D04
E6M3	700	10	1,3	10	10 мкА	1	700	150	175	Si	D04
F2M3	700	10	1,3	300	—	1	700	150	175J	Si	D05
КД210Б	800	10	1	10	1,5	1,5	800	100	125	Si	14
1N2260	800	10	0,6	10	—	5	800	150	150	Si	D04
1N2260A	800	10	0,6	10	—	0,5	800	150	150	Si	D04
1N2261	800	10	0,6	10	—	0,5	800	150	150	Si	S35
BR108A	800	10	1,2	5	10 мкА	—	850	—	150	Si	M538
G8HZ	800	10	1,1	10	—	3	800	125	150C	Si	D04
G8010	800	10	1,1	10	—	3	800	125	150A	Si	D04
P8HZ	800	10	1,1	10	—	3	800	125	125C	Si	S95
P8010	800	10	1,1	10	—	3	800	125	150A	Si	S95
10PM8	800	10	2	10	—	7	800	150	150J	Si	M586
68R2	800	10	1,1	10	—	1	800	150	150J	Si	D04
68R2S	800	10	1,1	10	—	1	800	150	150C	Si	D04
1N4439	800	10	1,2	10	—	1	800	100	160A	Si	M249
1S427	800	10	1,5	30	—	0,05	800	100	175S	Si	S6I
S427	800	10	1,5	30	—	50 мкА	800	100	175A	Si	S24
1S544	800	10	1,6	50	—	1,4	800	175	175	Si	S103
SA8AN12	800	10	0,47	10	—	2	800	—	150J	Si	D04
D8010	800	10	1,5	10	—	0,3	800	125	125	Si	S4
S8AN12	800	10	0,5	9,5	—	2	—	125	150	Si	D04
408S	800	10	1,2	10	—	2	800	175	175J	Si	D04
40115	800	10	0,6	10	0,075	0,65	800	150	175C	Si	D04
E6N3	800	10	1,3	10	10 мкА	1	800	150	175	Si	D04
F2N3	800	10	1,3	10	—	1	800	150	175J	Si	D05

Импульсные диоды

Обозначение прибора	$U_{\text{обр тах}}^*$, В	$t_{\text{вос, нс}}$	$I_{\text{пр}}^*$, мА	$U_{\text{обр}}^*$, В	$I_{\text{обр}}^*$, мА	C_{Δ}^* , пФ	$I_{\text{обр}}^*$ при $U_{\text{обр тах}}^*$, мкА	$U_{\text{пп}}^*$, В	$I_{\text{пр тах}}^*$, мА	$t_{\text{пр тах}}^*$, °С	Материал	Корпус
1	2	3	4	5	6	7	8	9	10	11	12	13
КД503В	10	50	10	10	2	6 (0—0,05 В)	1	1,3 (10 мА)	10	70	Si	15
CG84Н	12	40	10	10	2,4 (0 В)	38	0,6 (40 мА)	—	—	—	Ge	A1
МД3Б	10	150	20	10	2,5 (5 В)	150	1,2 (3 мА)	—	7	55	Ge	1
1N4008	12	70	10	1	3 (0 В)	100	0,5 (10 мА)	—	—	90	Ge	D07
КД521Д	12	4	10	10	10 (0 В)	1	1 (50 мА)	—	50	125	Si	16
Q12-200	12	3	10	1	—	—	0,65 (10 мА)	—	—	75A	Si	D07
Q12-200А	12	3	10	1	—	—	0,6 (10 мА)	—	—	75A	—	D07
Q12-200В	12	3	10	1	—	—	—	0,8 (20 мА)	—	75A	—	D07
Q12-200С	12	3	10	1	—	—	—	0,9 (30 мА)	—	75A	—	D07
Q12-200Д	12	3	10	1	—	—	—	1 (50 мА)	—	75A	—	D07
Q12-200Т	12	3	10	1	—	—	—	1 (150 мА)	—	75A	—	D07
Q12-300	12	3	10	1	—	—	—	1 (10 мА)	—	75A	—	D07
Q12-300А	12	3	10	1	—	—	—	1 (20 мА)	—	75A	—	D07
Q12-300В	12	3	10	1	—	—	—	1 (30 мА)	—	75A	—	D07
КД512А	15	1	10	10	2	≤1 (5 В)	5	1 (10 мА)	20 (200)	100	Si	15
ZS140	15	2	10	5	—	2 (0 В)	1	0,9 (10 мА)	250	175A	Si	D07
МД3А	15	100	20	10	1	1 (5 В)	100	— (5 мА)	12	70	Ge	1
SFD121	15	75	10	—	—	—	10	0,8 (10 мА)	30	85C	Ge	D07
0A92	15	100	5	10	—	0,5 (0 В)	2,5	0,6 (3 мА)	10A	75A	Ge	A3
Д18	20	100	50	1	—	0,5 (3 В)	50	1 (20 мА)	16	60	Ge	22
1S307	20	100	2	—	0,2	(0 В)	25	0,75 (75 мА)	100	90A	Ge	A1
CGD309	20	100	50	1,5	—	—	—	1 (0,3 мА)	—	90A	Ge	A1
T16	20	100	10	—	10	—	—	1 (5 мА)	25	100	Ge	D016
Д130	20	300	500	20	—	15 (20 В)	20	0,6 (500 мА)	500	70	—	22
1N695	20	300	5	20	—	—	0,02 мА	1 (100 мА)	100	75A	Ge	D07
IN996	20	300	5	10	0,5	—	15	0,8 (40 мА)	50	100	Ge	D07
1N770	20	300	5	10	—	—	15	0,5 (15 мА)	40	90	Ge	D07

Продолжение

166

1	2	3	4	5	6	7	8	9	10	11	12	13
KД503А	30	10	10	10	2	5 (0 В)	4	1 (10 мА)	20	125	Si	15
IN4147	30	10	10	—	1	6 (0 В)	5	1 (30 мА)	—	150	Si	D07
IN5720	30	10	10	—	10	6 (0 В)	0,5	1 (50 мА)	—	200	Si	D035
HD4101	30	10	10	—	1	0,6 (0 В)	20	1 (10 мА)	30	90A	Ge	D07
HMG4147	30	10	10	10	1	6 (0 В)	10	1 (30 мА)	—	—	Si	M208
HS1395	30	10	10	—	10	6 (0 В)	50	1,1 (10 мА)	75	175A	Si	D07
SG9150	30	10	10	—	10	10 (0 В)	1	1 (10 мА)	—	150J	Si	D035
Д311	30	50	50	10	1	1,5 (5 В)	100	0,4 (10 мА)	40	70	Ge	22
AAV32	30	50	10	1	—	1,5 (0 В)	70	1 (110 мА)	110	85	Ge	D07
КД521Г	30	4	10	10	2	10 (0 В)	1	1 (50 мА)	50	125	Si	16
IN904	30	4	10	5	—	1 (0 В)	0,1	1 (10 мА)	—	150	Si	A1
IN905A	30	4	10	5	—	1 (0 В)	0,1	1 (20 мА)	300	175A	Si	A1
IN905AM	30	4	10	5	—	1 (0 В)	0,1	1 (20 мА)	—	—	Si	A2
IN905M	30	4	10	5	—	1 (0 В)	0,1	1 (10 мА)	—	—	Si	A2
IN906A	30	4	10	5	—	2,5 (0 В)	0,1	1 (20 мА)	300	175	Si	A1
IN906AM	30	4	10	5	—	2,5 (0 В)	0,1	1 (20 мА)	—	—	Si	A2
IN906M	30	4	10	5	—	2,5 (0 В)	0,1	1 (10 мА)	—	—	Si	A2
IN907	30	4	10	5	—	2,5 (0 В)	0,1	1 (10 мА)	—	150S	Si	A1
IN3067	30	4	10	1	—	4 (0 В)	0,1	1 (5 мА)	—	200S	Si	D07
IS1219	30	4	10	—	10	—	0,1	0,8 (10 мА)	100	175	Si	D07
IS1220	30	4	10	—	10	—	0,1	1 (100 мА)	300	175	Si	D07
IS1473	30	4	10	—	10	—	0,1	0,8 (10 мА)	100	125	Si	D07
BAV54-30	30	4	10	6	6	4 (0 В)	—	1 (10 мА)	200	200J	Si	D035
BAW63A	30	4	10	5	—	4 (0 В)	0,1	0,9 (10 мА)	—	175J	Si	M470
GP330	30	4	10	6	1	3	0,05	1 (300 мА)	250	175	Si	D035
HDS9010	30	4	10	—	10	3 (0 В)	0,1	1 (10 мА)	75	175A	Si	A1
HMG904	30	4	10	5	1	1 (0 В)	0,1	1 (10 мА)	—	—	Si	M208
HMG904A	30	4	10	5	1	1 (0 В)	0,1	1 (20 мА)	—	—	Si	M208
HMG907	30	4	10	5	1	2,5 (0 В)	0,1	1 (10 мА)	—	—	Si	M208
HMG907A	30	4	10	5	1	2,5 (0 В)	0,1	1 (20 мА)	—	—	Si	M208
HMG3596	30	4	10	10	1	1 (0 В)	0,1	1 (30 мА)	—	—	Si	M208
HS9010	30	4	10	—	10	3 (0 В)	0,1	1 (10 мА)	75	—	Si	D07

MC53	30	4	10	6	1	4 (0 B)	0,1	1 (20 mA)	—	—	Si	M409
MC905	30	4	10	5	1	1 (0 B)	0,1	1 (10 mA)	—	175	A2	A2
MC905A	30	4	10	5	1	1 (0 B)	0,1	1 (20 mA)	—	175A	A2	A2
MC906	30	4	10	5	1	2,5 (0 B)	0,1	1 (10 mA)	—	175A	A2	A2
MC906A	30	4	10	5	1	2,5 (0 B)	0,1	1 (20 mA)	—	175A	A2	A2
MC5321	30	4	10	6	—	4 (0 B)	1	1 (30 mA)	100	125	Si	A243
MGD72	30	4	10	—	10	4 (0 B)	0,2	1 (30 mA)	220	200J	Si	D035
SFD43	30	4	10	6	—	4 (0 B)	0,2	1,1 (10 mA)	150	200S	Si	—
SFD83	30	4	10	6	—	4 (0 B)	0,2	1,1 (10 mA)	75	175S	Si	D07
KД509А	50	4	10	10	2	4 (0—0,05 B)	5	1,1 (100 mA)	100	120	Si	15
IN903A	50	4	10	5	1	1 (0 B)	0,1	1 (20 mA)	300	175A	Si	A1
IN903AM	50	4	10	5	—	1 (0 B)	0,1	1 (20 mA)	—	—	Si	A2
IN903M	50	4	10	5	—	1 (0 B)	0,1	1 (10 mA)	—	—	Si	A2
IN908A	50	4	10	5	1	2,5 (0 B)	0,1	1 (20 mA)	300	175A	Si	A1
IN908AM	50	4	10	5	—	2,5 (0 B)	0,1	1 (20 mA)	—	—	Si	A2
IN3064	50	4	10	—	10	2 (0 B)	0,1	1 (10 mA)	75	200S	Si	A1
IN3600	50	4	200	—	200	2,5 (0 B)	0,1	1 (200 mA)	—	150A	Si	D07
IN3873	50	4	10	—	10	4 (0 B)	0,1	0,95 (150 mA)	150	175A	Si	D07
IN3873HR	50	4	10	—	10	4 (0 B)	5	1,1 (150 mA)	150	175A	Si	D07
IN3954	50	4	10	—	200	3,2 (0 B)	0,1	1 (200 mA)	—	—	Si	D07
IN4306	50	4	10	—	10	2 (0 B)	0,05	1 (50 mA)	75	150A	Si	M117
IN4307	50	4	10	—	10	2 (0 B)	0,05	1 (50 mA)	75	150A	Si	M118
IN4454	50	4	10	—	10	2 (0 B)	0,1	1 (10 mA)	75	200S	Si	A1
IN4532	50	4	10	—	10	2 (0 B)	0,1	1 (10 mA)	75	150A	Si	A1
BAX13	50	4	10	6	10	3 (0 B)	25 HA	0,7 (2 mA)	75	200J	Si	A257
BAX13A	50	4	10	6	1	3 (0 B)	0,025	0,7 (2 mA)	75	200J	Si	D035
BAX80	50	4	10	6	1	4 (0 B)	0,03	1 (10 mA)	150	200J	Si	D035
BAY38	50	4	10	1	1	2 (0 B)	0,05	1 (50 mA)	115	175	Si	D07
BAY63	50	4	10	—	10	4 (0 B)	0,1	1 (100 mA)	115	200J	Si	D07
BAY71	50	4	10	—	10	2 (0 B)	0,1	1 (20 mA)	75	175A	Si	D07
BAY74	50	4	200	—	200	3 (0 B)	0,1	1 (200 mA)	200	175A	Si	D07
BSA71	50	4	10	5	1	2 (0 B)	0,1	1 (30 mA)	100	150A	Si	A1
FD100	50	4	10	—	10	2 (0 B)	0,1	1 (10 mA)	75	175A	Si	D07
GP350	50	4	10	6	1	3 (0 B)	0,05	1 (300 mA)	250	175	Si	D035

Продолжение

168

1	2	3	4	5	6	7	8	9	10	11	12	13
HDS9009	50	4	10	—	10	2 (0 В)	0,1	1 (20 мА)	75	175A	Si	A1
HMG-3600	50	4	200	—	200	2,5 (0 В)	0,1	1 (200 мА)	—	—	Si	M208
HMG-3873	50	4	10	10	1	4 (0 В)	0,1	0,85 (20 мА)	—	—	Si	M208
HMG-3954	50	4	200	—	200	3,2 (0 В)	0,1	1 (200 мА)	—	—	Si	M208
HMG-4150	50	4	200	—	200	2,5 (0 В)	0,1	1 (200 мА)	—	—	Si	M208
HMG-4322	50	4	200	—	200	1,5 (0 В)	0,1	1 (200 мА)	—	—	Si	M208
HS9009	50	4	10	—	10	2 (0 В)	0,1	1 (20 мА)	75	175A	Si	D07
1TT44	50	4	10	6	1	4 (0 В)	0,1	1 (10 мА)	75	200J	—	A1
MA4303	50	4	10	5	—	1,5 (0 В)	0,03	1 (10 мА)	50	200A	Si	A2
MA4304	50	4	10	5	—	1,5 (0 В)	0,03	1 (10 мА)	50	200A	Si	A2
MA4305	50	4	10	5	1	1,5 (0 В)	0,03	1 (10 мА)	50	200A	Si	A2
MA4306	50	4	10	5	1	1,5 (0 В)	0,025	1 (10 мА)	50	200A	Si	A2
MC58	50	4	10	6	1	4 (0 В)	0,05	1 (150 мА)	—	—	Si	M409
MC103	50	4	10	6	1	—	—	1 (10 мА)	—	—	Si	A1
MC903	50	4	10	5	1	1 (0 В)	0,1	1 (10 мА)	—	175A	Si	A2
MC903A	50	4	10	5	1	1 (0 В)	0,1	1 (20 мА)	—	175A	Si	A2
MC908	50	4	10	5	1	2,5 (0 В)	0,1	1 (10 мА)	—	175A	Si	A2
MC908A	50	4	10	5	1	2,5 (0 В)	0,1	1 (20 мА)	—	175A	Si	A2
MHD616	50	4	10	—	10	2 (0 В)	0,1	0,85 (10 мА)	150	200	Si	A1
SG5100	50	4	10	6	1	4 (0 В)	0,25	1 (400 мА)	250	175A	Si	D07
SG5250	50	4	10	6	3	6 (0 В)	0,025	0,9 (100 мА)	200	175A	Si	D07
TMD50	50	4	10	6	3	4 (0 В)	0,5	1 (10 мА)	20	150S	Si	A2
USA55191/1	50	4	10	6	—	5 (0 В)	—	1 (10 мА)	50	150	Si	M273
Д220	50	500	30	30	0,2	15 (5 В)	—	1,5 (50 мА)	50	100	—	4
IN3121	50	500	30	35	—	4 (0 В)	150	1,1 (150 мА)	110	60A	Ge	A1
26P1	50	500	30	35	0,75	—	50	2 (20 мА)	—	—	Ge	D07
HMG626A	50	500	30	35	—	—	0,1	1,5 (10 мА)	—	—	Si	M208
RPX50	50	500	1	30	—	—	—	1,5 (1 мА)	1A	150	—	A31
КД521Б	60	4	10	10	2	10 (0 В)	1	1 (50 мА)	50	125	Si	16

BAW63	60	4	10	5	—	1 (0 В)	1	0,9 (10 mA)	—	175J	Si	M470
GP360	60	4	10	6	1	3 (0 В)	0,05	1 (300 mA)	250	175	Si	D035
LDD5	60	4	10	5	1	3 (0 В)	0,05	1 (50 mA)	75	150J	Si	M401
LDD10	60	4	10	6	1	3 (0 В)	0,05	1 (50 mA)	75	150J	Si	M401
LDD15	60	4	10	6	1	3 (0 В)	0,05	1 (50 mA)	75	150J	Si	M401
LDD50	60	4	10	6	1	3 (0 В)	0,1	1 (50 mA)	75	150J	Si	M401
MC59	60	4	10	6	1	2,5 (0 В)	0,1	1 (200 mA)	—	—	Si	M409
MT705	60	4	10	6	1	3,5 (0 В)	0,1	1 (100 mA)	200	175A	Si	A60
MC55	60	3	10	6	1	6 (0 В)	0,1	1 (200 mA)	—	—	Si	M409
MCPD521A	60	3	10	—	0,2	6 (0 В)	0,1	1 (200 mA)	—	150A	Si	M411
MCPD521B	60	3	10	—	0,2	6 (0 В)	0,1	1 (200 mA)	—	150A	Si	M411
MCPD521C	60	3	10	—	0,2	6 (0 В)	0,1	1 (200 mA)	—	150A	Si	M277
Д219А	70	500	30	30	0,4	15 (5 В)	1	1 (50 mA)	500	100	Si	4
DR482	70	400	25	35	—	—	15	1 (100 mA)	—	—	Ge	D07
IN192	70	500	30	35	0,7	1 (0 В)	250	1 (5 mA)	30	90	Ge	A1
DR500	70	500	5	40	—	—	12	1 (20 mA)	—	—	Ge	D07
SG221	70	500	20	40	—	2 (0 В)	0,25	1,5 (30 mA)	55	150A	Si	A1
Д312А	75	500	50	10	1	3 (5 В)	100	0,5 (10 mA)	500	60	Ge	22
AAZ15	75	350	10	0	100	2 (0 В)	25	0,45 (10 mA)	—	85J	Ge	D07
1N627A	75	500	30	35	—	—	0,1	1,5 (10 mA)	—	—	Si	D07
1N777	75	500	30	40	—	10	1,25	1 (100 mA)	—	90A	Ge	D07
PD127	75	500	5	40	—	2	5	1 (100 mA)	60	200A	Si	A2
КД521А	75	4	10	10	2	10 (0 В)	1	1 (50 mA)	500	125	Si	16
IN914A	75	4	10	6	1	2 (0 В)	0,025	1 (20 mA)	75	150A	Si	A60
IN914B	75	4	10	6	1	4 (0 В)	0,025	1 (100 mA)	75	150A	Si	A1
1N914M	75	4	10	6	—	—	0,025	1 (10 mA)	—	—	Si	—
1N916A	75	4	10	6	1	2 (0 В)	0,025	1 (20 mA)	75	150A	Si	D07
1N916B	75	4	10	6	1	2 (0 В)	0,025	1 (30 mA)	150	200S	Si	D07
IN3063	75	4	10	1	10	2 (0 В)	0,1	0,85 (10 mA)	—	200S	Si	D07
IN3064	75	4	10	1	10	2 (0 В)	0,1	1 (10 mA)	—	200S	Si	D07
1N3064M	75	4	10	1	10	2 (0 В)	0,1	1 (10 mA)	—	200S	Si	A2
IN3065	75	4	10	1	10	1,5 (0 В)	0,1	1 (20 mA)	—	200S	Si	D07
IN3604	75	4	10	—	10	2 (0 В)	0,05	1 (50 mA)	—	200S	Si	D07
IN3606	75	4	10	—	10	2 (0 В)	0,05	0,55 (0,1 mA)	—	200S	Si	D07

Продолжение

170

1	2	3	4	5	6	7	8	9	10	11	12	13
1N3607	75	4	10	—	10	2 (0 B)	0,05	1 (50 mA)	—	200S	Si	M50
1N4148	75	4	10	6	1	4 (0 B)	0,025	1 (10 mA)	—	200S	Si	D035
1N4149	75	4	10	6	1	2 (0 B)	0,025	1 (10 mA)	—	200S	Si	D035
1N5151	75	4	10	—	10	2 (0 B)	0,05	1 (50 mA)	—	200S	Si	D035
1N4153	75	4	10	—	10	2 (0 B)	0,05	0,88 (20 mA)	—	200S	Si	D035
1N4305	75	4	10	—	10	2 (0 B)	0,1	0,85 (10 mA)	—	200S	Si	D035
1N4446	75	4	10	6	—	4 (0 B)	0,025	1 (20 mA)	—	200S	Si	D035
1N4447	75	4	10	6	—	2 (0 B)	0,025	1 (20 mA)	—	200S	Si	D035
1N4448	75	4	10	6	—	4 (0 B)	0,025	1 (100 mA)	—	200S	Si	D035
1N4449	75	4	10	6	—	2 (0 B)	0,025	1 (30 mA)	—	200S	Si	D035
1N4454	75	4	10	—	10	2 (0 B)	0,1	1 (10 mA)	—	200S	Si	D035
1N4531	75	4	10	6	1	4 (0 B)	0,025	1 (10 mA)	—	200S	Si	Ale
1N5318	75	4	10	—	10	2,5 (0 B)	0,1	1 (200 mA)	125	150A	Si	D034
BAW62	75	4	10	1	1	2 (0 B)	0,025	1 (100 mA)	100	200J	Si	D035
BAX91C/TF102	75	4	10	—	10	3 (0 B)	0,1	1 (10 mA)	50	175A	Si	D035
BAX95TF600	75	4	10	—	10	3 (0 B)	0,1	1 (200 mA)	200	175	Si	D035
FD600	75	4	200	—	200	2,5 (0 B)	0,1	0,62 (1 mA)	200	150A	Si	D07
FDN600	75	4	10	—	10	2,5 (0 B)	0,1	1 (200 mA)	125	150A	Si	D034
HMG3064	75	4	10	10	1	2 (0 B)	0,1	1 (10 mA)	—	—	Si	M208
HMG3598	75	4	10	10	1	2 (0 B)	0,1	0,85 (10 mA)	—	—	Si	M208
HMG4319	75	4	10	6	1	1 (0 B)	0,1	1 (100 mA)	—	—	Si	M208
HS9501	75	4	10	—	10	4 (0 B)	0,1	—	350	200A	Si	A1
HS9504	75	4	10	—	10	4 (0 B)	0,1	—	250	200A	Si	A1
HS9507	75	4	10	—	10	4 (0 B)	0,1	—	150	200A	Si	A1
ITT33	75	4	10	6	1	4 (0 B)	0,05	1 (10 mA)	75	200J	—	A1
MA4307	75	4	10	5	1	2 (0 B)	0,05	1 (30 mA)	100	200J	Si	A2
MA4308	75	4	10	5	1	2 (0 B)	0,05	1 (30 mA)	125	200J	Si	A2
MC52	75	4	10	6	1	2 (0 B)	0,1	1 (10 mA)	—	—	Si	M409
MC433	75	4	10	—	10	2 (0 B)	0,05	1 (50 mA)	—	175A	Si	A2

MGD73	75	4	10	6	—	2 (0 B)	0,4	1 (10 mA)	200	200J	Si	D035
MHD611	75	4	10	6	1	4 (0 B)	0,025	1 (20 mA)	150	200	Si	A1
MHD612	75	4	10	6	1	4 (0 B)	0,025	1 (100 mA)	150	200	Si	A1
MHD614	75	4	10	6	1	2 (0 B)	0,025	1 (20 mA)	150	200	Si	A1
MHD615	75	4	10	6	1	2 (0 B)	0,025	1 (30 mA)	150	200	Si	A1
MMC1001	75	4	10	6	1	2 (0 B)	0,05	0,92 (70 mA)	—	200S	Si	A188
MMC1002	75	4	10	6	1	2 (0 B)	0,05	0,95 (70 mA)	—	200S	Si	A188
MMC1003	75	4	10	6	100	2 (0 B)	0,05	1 (70 mA)	—	200S	Si	A188
MMC1004	75	4	10	6	1	3 (0 B)	0,05	1 (150 mA)	—	200S	Si	A188
MMC1005	75	4	10	6	1	3 (0 B)	0,05	1 (70 mA)	—	200S	Si	A188
MMC1006	75	4	10	6	1	4 (0 B)	0,05	1 (70 mA)	—	200S	Si	A188
MMC1007	75	4	10	6	1	4 (0 B)	0,05	1,5 (150 mA)	—	200S	Si	A188
SG5200	75	4	10	6	1	4 (0 B)	0,25	1 (400 mA)	250	175A	Si	D07
SG5260	75	4	10	6	3	6 (0 B)	0,025	0,9 (100 mA)	200	175A	Si	D07
TH4148	75	4	10	—	10	4 (0 B)	0,250	1 (10 mA)	200	175S	Si	M639
TMD914	75	4	10	6	3	4 (0 B)	5	1 (10 mA)	20	150S	Si	A2
TMD916	75	4	10	6	3	4 (0 B)	5	1 (10 mA)	20	150S	Si	—
Д220Б	100	500	30	30	0,4	15 (5 B)	1	1,5 (50 mA)	500	100	Si	4
1N662	100	500	5	40	—	3 (0 B)	1	1 (10 mA)	40	150A	Si	A1
1N662A	100	500	5	10	—	—	—	1 (100 mA)	—	—	Si	A16
1N663	100	500	5	40	—	3 (0 B)	5	1 (100 mA)	—	150A	Si	A1
1N663	100	500	5	—	—	3 (0 B)	0,025	1 (100 mA)	100	150A	Si	A1
1N844	100	500	30	35	—	—	0,1	1 (200 mA)	—	—	Si	A1
HMG662	100	500	5	40	—	3 (0 B)	0,02	1 (10 mA)	—	—	Si	M208
HMG662A	100	500	5	40	—	—	1	1 (100 mA)	—	—	Si	M208
HMG663	100	500	5	40	—	3 (0 B)	5	1 (100 mA)	—	150A	Si	A1
1N663	100	500	5	40	—	3 (0 B)	0,025	1 (100 mA)	100	150A	Si	A1
1N844	100	500	30	35	—	—	0,1	1 (200 mA)	—	—	Si	A1
DR402	100	500	30	35	—	—	—	5 (20 mA)	—	—	Ge	D07
HMG662	100	500	5	40	—	3 (0 B)	0,02	1 (10 mA)	—	—	Si	M208
HMG662A	100	500	5	40	—	—	1	1 (100 mA)	—	—	Si	M208
HMG663	100	500	5	40	—	—	5	1 (100 mA)	—	—	Si	M208
HMG844	100	500	30	35	—	—	0,1	1 (200 mA)	—	175A	Si	A2
PDI26	100	500	5	40	—	2 (0 B)	0,02	1 (10 mA)	30	150A	Si	A 2
RPX100	100	500	1	30	—	—	3	1 (1,5 mA)	1A	150A	Si	A 31

Стабилитроны

Наименование прибора	ΔU_{CT} , %	U_{CT} , В	I_{CT} , мА	P_{max} , мВт	R_{CT} , Ом	I_{CT} , мА	$\alpha_{CT} \cdot 10^{-2} \text \%/\text{ }^{\circ}\text{C}$, мВт/ $^{\circ}\text{C}$	t_{max}	Корпус
1	2	3	4	5	6	7	8	9	10
KC133A	10	3,3	10	300	180	3	11	125	17
IN5518B	5	3,3	20	400	26	—	—	175A	D07
IN5518B	5	3,3	20	400	26	—	7	200A	D014
IN5518C	2	3,3	20	400	16	—	—	175A	D07
IN5518D	1	3,3	20	400	26	—	—	175A	D07
IS2033	10	3,3	5	400	150	—	7	150A	A1
IS2033A	5	3,3	5	400	120	—	7	150A	A1
IS7033	10	3,3	5	400	150	—	7	150A	A1
IS7033A	5	3,3	5	400	100	—	7	175A	A1
IS7033B	15	3,3	5	400	200	—	7	150A	A1
2A44	10	3,3	10	400	80	—	7	200J	A159
5508	5	3,3	5	400	80	—	6,5	125A	A1
BZX46C3V3	5	3,3	20	400	28	—	6	175J	D035
BZX55C3V3	5	3,3	5	400	75	—	6,3	150A	D035
BZX83C3V3	5	3,3	5	400	90	—	6	175J	D035
BZY85B3V3	2	3,3	5	400	80	—	6,5	150J	D07
BZY88C3V3	5	3,3	5	400	85	—	—	150J	D07
C6102	10	3,3	5	400	60	—	—	175	M185
C6102A	5	3,3	5	400	60	—	—	175	M185
HS7033	5	3,3	5	400	—	—	—	175A	D07
KS033A	5	3,3	5	400	100	—	10	150A	D07
KS033B	10	3,3	5	400	150	—	2	150A	D07
LR33H	5	3,3	5	400	100	—	6,6	150S	D07
MZC3.3A10	—	3,3	15	400	47	—	7	175J	M468
Z5A3.3	1	3,3	5	400	80	—	7	200J	A1
Z5B3.3	5	3,3	5	400	80	—	7	200J	A1
Z5C3.3	10	3,3	5	400	80	—	7	200J	A1
Z5D3.3	15	3,3	5	400	80	—	7	200J	A1
ZF3.3	5	3,3	5	400	80	—	6	150J	D07
ZG3.3	10	3,3	5	400	100	—	6,5	150J	D07
ZP3.3	5	3,3	5	400	80	—	5,5	150J	D07
KC139A	10	3,9	10	300	180	3	10	125	17
1N1927, A, B	1	3,9	5	200	11	—	6	150A	A82
IN4622	5	3,9	0,25	250	1600	—	—	200A	D014
IN4686	5	3,9	0,05	250	—	—	—	200A	D014
1103	1	3,9	10	250	60	—	5	150J	C18
BZY85C3V9	5	3,9	5	250	85	—	—	150J	D07
HS2039	5	3,9	5	250	—	—	—	175A	D07
HS2039A	5	3,9	5	250	100	—	7	150A	D07
HS2039B	10	3,9	5	250	110	—	8	150A	D07
MGLA39A, B	—	3,9	20	250	15	—	4,9	150	A2
MR39C-H	—	3,9	5	250	90	—	—	250	D07
MZ4622	—	3,9	0,25	250	1,6	—	—	200J	D07
PD6004, A	—	3,9	10	250	50	—	—	150	A109
PD6045	5	3,9	10	250	42	—	—	150	A2
KC147A	10	4,7	10	300	160	3	—	100	17
IN4624	5	4,7	0,25	250	1500	—	—	200	D014
IN4688	5	4,7	0,25	250	—	—	—	200A	D014
1104	10	4,7	10	250	45	—	2	150J	C18
BZY83C4V7	5	4,7	5	250	90	—	1	150J	C1
BZY83D4V7	10	4,7	5	250	90	—	—	150J	C1
BZY85C4V7	5	4,7	5	250	70	—	1	150J	A171
GLA47A, B	—	4,7	10	250	10	—	1,8	175	D07
HS2047	5	4,7	5	250	—	—	—	175A	D07
KS2047A	5	4,7	5	250	85	—	5	150A	D07
KS2047B	10	4,7	5	250	90	—	6	150A	D07

Продолжение табл. 22

1	2	3	4	5	6	7	8	9	10
LAC2002	10	4,7	10	250	15	—	—	—	M520
MR47C-H	5	4,7	5	250	80	—	—	250	D07
MZ4A	10	4,7	25	250	25	—	1	150J	D07
MZ4624	—	4,7	0,25	250	1,500	—	—	200J	D07
PD6006, A	—	4,7	10	250	45	—	—	150	A109
PD6047	5	4,7	10	250	32	—	—	150	A2
PD6202	10	4,7	10	250	15	—	—	—	A109
OAZ240	5	4,7	1	278	370	—	20	150J	A24
BZY56	5	4,7	1	280	370	—	—	150J	A3
OAZ200	5	4,7	1	300	420	—	4,2	150J	C1
Z1D4,7	—	4,7	—	300	75	—	—	150J	C29
KC156A	10	5,6	10	300	160	3	—5÷+5	100	17
Z1550	5	5,6	5	300	45	—	—	150S	C29
Z1555	5	5,6	5,5	300	40	—	—	150S	C29
Z1560	5	5,6	6	300	37	—	—	150S	C29
Z1565	5	5,6	6,5	300	33	—	—	150S	C29
Z1570	5	5,6	7	300	30	—	—	150S	C29
Z1A5,6	1	5,6	5	320	—	—	6	150A	C29
Z1B5,6	5	5,6	5	320	40	—	6	150A	C29
Z1C5,6	10	5,6	5	320	40	—	6	150A	C29
Z1D5,6	15	5,6	5	320	40	—	6	150A	C29
KC168B	0,5	6,8	10	150	120	3	±5	100	18
1N1984	10	6,8	5	150	7	—	3	150	C1
1N1984A	5	6,8	5	150	7	—	3	150	C1
1N1984B	1	6,8	5	150	7	—	3	150	C1
653C3	5	6,8	5	150	4	—	4,1	150A	C3
AZ6,8	5	6,8	5	150	20	—	—	170A	D07
BZ6,8	5	6,8	5	150	—	—	—	170A	D07
Z6,8	5	6,8	5	150	—	—	—	150A	C18
ZZ6,8	5	6,8	5	150	60	—	—	150A	C18
KC168A	10	6,8	10	300	120	3	—6÷+6	100	17
1N710, A	—	6,8	25	250	4,7	3,8	—	175A	D07
1N4099	5	6,8	0,25	250	200	—	—	200J	D07
1106	10	6,8	10	250	8	—	3	150J	C18
BLVA168	7	6,8	0,25	250	350	—	—	150A	A9
BLVA168A	3	6,8	0,25	250	350	—	—	150A	A9
BLVA168B	2	6,8	0,25	250	350	—	—	150A	A9
BLVA168C	1	6,8	0,25	250	350	—	—	150A	A9
BLVA468	7	6,8	0,25	250	—	—	—	150A	A9
BLVA468A	3	6,8	0,25	250	—	—	—	150A	A9
BLVA468B	2	6,8	0,25	250	—	—	—	150A	A9
BLVA468C	1	6,8	0,25	250	—	—	—	150A	A9
BZX58C6V8	5	6,8	10	250	7	—	3	150A	D07
BZY83C6V8	5	6,8	5	250	8	—	7	150J	C1
BZY83D6V8	10	6,8	5	250	15	—	7	150J	C1
BZY85C6V8	5	6,8	5	250	8	—	7	150J	A171
KS2068A	5	6,8	5	250	15	—	6	150A	D07
KC2068B	10	6,8	5	250	40	—	6	150A	D07
MZ6A	10	6,8	15	250	8	—	3	150A	D07
PD6010, A	—	6,8	5	250	25	—	—	150	A109
PD6051	5	6,8	10	250	4	—	—	150	A2
PD6206	10	6,8	1	250	50	—	—	—	A109
OAZ244	5	6,8	1	278	5	—	27	150J	A24
BZY60	5	6,8	1	280	5	—	—	150J	A3
MC6010, A	—	6,8	10	300	14	—	—	175	A2
Z1A6,8	1	6,8	5	320	8	—	7	150A	C29
Z1B6,8	5	6,8	5	320	8	—	7	150A	C29
Z1C6,8	10	6,8	5	320	8	—	7	150A	C29
Z1D6,8	15	6,8	5	320	8	—	7	150A	C29
LDZ70/6A8	5	6,8	20	360	5	—	—	150J	M401
KC170A	0,35	7	10	150	90	3	+1	100	18
653C4	5	7	5	150	5	—	4,2	150A	C3

Продолжение

1	2	3	4	5	6	7	8	9	10
KC175A	0,5	7,5	5	150	70	3	+4	100	18
BZX84C7V5	5	7,5	5	110	20	—	5,3	125	M500
9607	5	7,5	1	120	100	—	4	150	C29
AZ7,5	5	7,5	5	150	15	—	—	170A	D07
BZ7,5	5	7,5	5	150	35	—	—	170A	D07
Z7,5	5	7,5	5	150	40	—	—	150A	C18
ZZ7,5	5	7,5	5	150	40	—	—	150A	C18
KC182A	0,6	8,2	5	150	30	3	+5	100	18
1N1985	10	8,2	5	150	15	—	6	150	C1
1N1985A	5	8,2	5	150	15	—	6	150	C1
1N1985B	1	8,2	5	150	15	—	6	150	C1
AZ8,2	5	8,2	5	150	20	—	—	170A	D07
BZ8,2	5	8,2	5	150	50	—	—	170A	D07
LZ8,2	10	8,2	5	150	40	—	—	170A	D07
Z8,2	5	8,2	5	150	40	—	—	150A	C18
ZZ8,2	5	8,2	5	150	40	—	—	150A	C18
2CM190A	—	9	5	125	22	1	+8	125	19
KS77	5	9	5	57	35	—	—	125A	D07
KS77B	5	9	5	57	35	—	—	100A	D07
KS78	5	9	5	57	35	—	—	125A	D07
KS78B	5	9	5	57	35	—	—	100A	D07
654C9	5	9	5	150	12	—	5,2	150A	C3
Д818А	20	9	10	300	100	3	+2,3	100	17
1N764-3	5	9	10	250	12	—	5	150	D07
1S334	7	9	10	250	20	—	7	150J	A1
1S472	10	9	15	250	15	—	5,5	150J	D07
HR9,0	5	9	5	250	20	—	—	175A	D07
MZ1009	7	9	10	250	—	—	6	175J	D07
SV131	5	9	10	250	15	—	5,7	150	D07
SVM91	5	9	7,5	250	75	—	1	100R	D07
SVM905	5	9	7,5	250	75	—	0,5	100R	D07
SVM9010	5	9	7,5	250	50	—	0,1	100R	D07
SVM9011	5	9	7,5	250	20	—	0,1	100R	D07
SVM9020	5	9	7,5	250	50	—	0,2	100R	D07
SVM9021	5	9	7,5	250	20	—	0,2	100R	D07
SZ9	7	9	5	250	20	—	0,75	150J	C1
KC191A	0,6	9,1	5	150	30	3	+6	100	18
BZX84C9V1	5	9,1	5	110	20	—	6,5	125J	M500
AZ9,1	5	9,1	5	150	20	—	—	170A	D07
BZ9,1	5	9,1	5	150	60	—	—	170A	D07
Z9,1	5	9,1	5	150	40	—	—	150A	C18
ZZ9,1	5	9,1	5	150	40	—	—	150A	C18
KC196A	5	9,6	10	200	70	3	+0,5	100	20
BLVA195	5	9,6	0,25	250	500	—	3,8	150A	A9
BLVA195A	2	9,5	0,25	250	500	—	3,8	150A	A9
BLVA195B	1	9,5	0,25	250	500	—	3,8	150A	A9
BLVA195C	1	9,5	0,25	250	500	—	3,8	150A	A9
BLVA495	5	9,5	0,25	250	350	—	3,8	150A	A9
BLVA495A	2	9,5	0,25	250	350	—	3,8	150A	A9
BLVA495B	1	9,5	0,25	250	350	—	3,8	150A	A9
BLVA495C	1	9,5	0,25	250	350	—	3,8	150A	A9
SV132	5	9,5	10	250	15	—	3,7	150	D07
KC210B	0,7	10	5	150	35	3	+7	100	18
BZX84C10	5	10	5	110	25	—	—	125J	M500
IN1986	10	10	5	150	22	—	6,5	150	C1
1N1986A	5	10	5	150	22	—	6,5	150	C1

Продолжение

1	2	3	4	5	6	7	8	9	10
IN1986B 655C9 AZ10 Z10	1 5 5 5	10 10 10 10	5 5 5 5	150 150 150 150	22 15 25 50	— — — —	6,5 5,2 — —	150 150A 170A 150A	C1 C3 D07 C18
ZZ10 Д811 IS473 1111	5 — 10 10	10 10—12 11 11	5 5 15 5	150 280 250 250	60 — 20 30	— — — —	+9,5 6,5 7	150A 100 150J 150J	C18 21 D07 C18
BZX59C11 BZX69C11 BZY83C11 BZY85C11	5 5 5 5	11 11 11 11	5 5 5 5	250 250 250 250	18 40 20 20	— — — —	7 6 8 8	150A 175A 150J 150J	D07 D07 C1 A17I
HR11 HS2110 KS2110A KS2110B	5 5 5 10	11 11 11 11	5 5 5 5	250 250 250 250	30 — 40 60	— — — —	— — 8 8	175A 175A 150A 150A	D07 D07 D07 D07
PD6056 SV134 SZ11 MC6015, A	5 5 6 —	11 11 11 11	5 5 5 10	250 250 250 300	11 50 35 23	— — — —	— 6,3 8,2 —	150 150 150J 175	A2 D07 C1 A2
Z1A11 Z1B11 Z1C11 KC2110Ж	1 5 10 0,6	11 11 11 11	5 5 5 4	320 320 320 125	20 20 20 200	— — — 0,5	8 8 8 +9,2	150A 150A 150A 125	C29 C29 C29 4
RZZ11 BZX84C11 AZX84C11 AZ11	5 5 5 5	11 11 11 11	5 5 5 5	80 110 110 150	100 30 30 30	— — — —	— — — —	125A 125J 125J 170A	C18 M500 M500 D07
Z11 ZZ11 KC213Б AZ13	5 5 0,9 5	11 11 13 13	5 5 5 5	150 150 150 150	55 70 45 45	— — 3 —	— — +8 —	150A 150A 100 170A	C18 C18 18 C18
Z13 ZZ13 KC215ЖК IN1988	5 5 0,8 10	13 13 15 15	5 5 2 1	150 150 125 150	70 90 300 50	— — 0,5 —	— — 10 8,8	150A 150A 125 150	C18 C18 4 C1
IN1988A IN1988B AZ15 Z15	5 1 10 5	15 15 15 15	1 1 5 5	150 150 150 150	50 50 55 110	— — — —	8,8 8,8 — —	150 150 170A 150A	C1 C1 D07 C18
ZZ15 2C218Ж RZ18 RZZ18	10 1 5 10	15 18 18 18	5 2 2 5	150 125 80 80	130 300 160 210	— 0,5 — —	— 10 — —	150A 125 150A 150A	C18 4 C18 C18
IN1989 IN1989A IN1989B KC222ЖК RZ22	10 5 1 1,1 5	18 18 18 22 22	1 1 1 2 2	150 150 150 125 80	70 70 70 300 320	— — — 0,5 —	9,2 9,2 9,2 10 —	150 150 150 125 150A	C1 C1 C1 4 C18

Продолжение

1	2	3	4	5	6	7	8	9	10
RZZ22	10	22	5	80	340	—	—	150A	C18
IN1990	10	22	1	150	100	—	9,4	150	C1
IN1990A	5	22	1	150	100	—	9,4	150	C1
IN1990B	1	22	1	150	100	—	9,4	150	C1
AZ22	10	22	5	150	100	—	—	170A	D07
Z22	5	22	2	150	320	—	—	150A	C18
ZZ22	10	22	5	150	340	—	—	150A	C18

Стабилитроны средней мощности

KC433A	10	3,3	30	1	180	3	—10	100	17
VZ33CH	5	3,3	50	1	14	—	7,3	150	D013
Z4A3.3	1	3,3	100	1	4	—	9	150J	A1
Z4B3.3	5	3,3	100	1	4	—	9	150J	A1
Z4C3.3	10	3,3	100	1	4	—	9	150J	A1
Z4D3.3	15	3,3	100	1	4	—	9	150J	A1
7708	5	3,3	100	1,1	7	—	6,5	125A	A1
KC439A	10	3,9	30	1	180	3	—10	100	17
VZ39CH	5	3,9	50	1	12	—	4,5	150	D013
Z4A3.9	1	3,9	100	1	4	—	6	150J	Alef
Z4B3.9	5	3,9	100	1	4	—	6	150J	Alef
Z4C3.9	10	3,9	100	1	4	—	6	150J	Alef
KC447A	10	4,7	30	1	180	3	—8÷+3	100	17
BZX29C4V7	5	4,7	50	1	8	—	2	175J	A1
BZX85C4V7	5	4,7	45	1	13	—	1	150A	D015
VZ47CH	5	4,7	50	1	10	—	1,5	150	D013
Z4A4.7	1	4,7	4	1	4	—	6	150J	A1
Z4B4.7	5	4,7	100	1	4	—	6	150J	A1
Z4C4.7	10	4,7	100	1	4	—	6	150J	A1
Z4D4.7	15	4,7	100	1	4	—	6	150J	A1
Z4.7	—	4,7	53	1	8	—	2	175	D027
ZEC4.7	20	4,7	40	1	11	—	0	165	D03
ZM4.7	—	4,7	53	1	8	—	2	175	D041
KC456A	10	5,6	30	1	145	3	5	100	17
IN1520, A	—	5,6	35	1	10	3	3	200S	D03
IN1765	10	5,6	100	1	1,2	—	—	175A	D013
IN1765A	5	5,6	100	1	1,2	—	—	175A	D013
IN3827	10	5,6	45	1	5	—	2	175A	A31
IN3827A	5	5,6	45	1	5	—	2	175A	A31
IN3827A	5	5,6	45	1	5	—	4	175A	A31
IN4655	5	5,6	45	1	600	—	4	200A	D015
IN4734	10	5,6	45	1	5	—	—	200A	A1
IN4734A	5	5,6	45	1	5	—	—	200A	A1
BZX29C5V6	5	5,6	50	1	5	—	2	175J	A1
BZX85C5V6	5	5,6	45	1	7	—	3	150A	D015
CZ5.6	—	5,6	60	1	10	—	2	175	D015
FPZ5V6	—	5,6	43	1	400	—	3	—	A31
VZ56CH	5	5,6	50	1	8	—	1,5	150	D013

4-3. Габаритные чертежи корпусов отечественных и зарубежных диодов

KC168, KC170, KC175, KC182, KC191

R4

KCM 190

KA516

Д18,
Д311,
Д10,
Д12

Полярность
указана
цветным
кодом

M4**M21****M38****M40****M45****M82****M98****M99****M117****M118****M122****M124****M139**

ПРИЛОЖЕНИЕ 1

Зарубежные транзисторы и их отечественные аналоги

Зарубежный тип транзистора	Приближенный отечественный аналог	Стр.	Зарубежный тип транзистора	Приближенный отечественный аналог	Стр.
1	2	3	1	2	3
AC107	ГТ115А	42	AD302	П216	112
AC116	МП25А	48	AD303	П217	112
AC117	ГТ402И	94	AD304	П217	112
AC121	МП20А	48	AD312	П216	112
AC122	ГТ115Г	42	AD313	П217	112
AC124	ГТ402И	94	AD314	П217, ГТ701А	112
AC125	МП20Б	46	AD325	П217, ГТ701А	112
AC126	МП20Б	48	AD431	П213	110
AC127	ГТ404Б	96	AD436	П213	110
AC128	ГТ402И	94	AD438	П214А	110
AC132	МП20Б, ГТ402Е	48	AD439	П215	110
AC138	ГТ402И	94	AD457	П214А	110
AC139	ГТ402И	94	AD465	П213Б	110
AC141	ГТ404Б	96	AD467	П214А	110
AC141В	ГТ404Б	96	AD469	П215	110
AC142	ГТ402И	94	AD542	П217, ГТ701А	112
AC150	МГТ108Д	44	AD545	П210Б	114
AC152	ГТ402И	94	AD1202	П213Б	108
AC160	П28	42	AD1203	П214Б	108
AC170	МГТ108Г	44	ADP665	ГТ403Б	96
AC171	МГТ108Г	44	ADP666	ГТ403Г	96
AC176	ГТ404А	96	ADP670	П201АЭ	108
AC181	ГТ404Б	96	ADP671	П201АЭ	108
AC182	МП20Б	48	ADP672	П202Э	108
AC183	МП36А, МП38А	52	ADY27	ГТ703В	110
AC184	ГТ402И	94	AF106	ГТ328Б	66
AC185	ГТ404Г	96	AF106А	ГТ328В	66
AC187	ГТ404Б	96	AF109Р	ГТ328А	66
AC188	ГТ402Е	94	AF139	ГТ346Б	66
AC540	МП39В	44	AF178	ГТ309Б	60
AC541	МП39В	46	AF200	ГТ328А	66
AC542	МП39Б, МП41А	46	AF201	ГТ328А	66
ACY24	МП26Б	48	AF202	ГТ328А	66
ACY33	ГТ402И	94	AF239	ГТ346А	68
AD130	П217	112	AF239S	ГТ346А	68
AD131	П217	112	AF240	ГТ346Б	68
AD132	П217	112	AF251	ГТ346А	68
AD138	П216	112	AF252	ГТ346А	68
AD139	П213	110	AF253	ГТ328А	66
AD142	П210Б	114	AF256	ГТ328Б	66
AD143	П210В	114	AF260	П29А	52
AD145	П210В, П216В	114	AF261	П30	52
AD148	ГТ703В	110	AF266	МП42Б, МП20А	50
AD149	ГТ703В	110	AF271	ГТ322В	58
AD150	ГТ703Г	110	AF272	ГТ322В	58
AD152	ГТ403Б	96	AF275	ГТ322Б	58
AD155	ГТ403Е	96	AF279	ГТ330Ж	68
AD161	ГТ705Д	114	AF280	ГТ330И	68
AD162	ГТ703Г	110	AF426	ГТ322Б	58
AD163	П217	112	AF427	ГТ322Б	58
AD164	ГТ403Б	96	AF428	ГТ322Б	58
AD169	ГТ403Е	96	AF429	ГТ322Б	58
AD262	П213	110	AF430	ГТ322В	58
AD263	П214А	110	AFY11	ГТ313А	66
AD301	ГТ703Г	110	AFY12	ГТ328Б	66

Продолжение

1	2	3	1	2	3
AFY13	ГТ305В	62	BC157	KT361Г	80
AFY15	П30	52	BC158А	KT349В	90
AFY29	ГТ305Б	62	BC167А	KT373А	86
AFZ11	ГТ309Б	60	BC167В	KT373Б	86
AL100	ГТ806В	116	BC168А	KT373А	86
AL102	ГТ806В	116	BC168В	KT373Б	86
AL103	ГТ806Б	116	BC168С	KT373В	86
ASX11	МП42Б	50	BC169В	KT373Б	86
ASX12	МП42Б	50	BC169С	KT373В	86
ASY26	МП42А, МП20А	50	BC170А	KT375Б	76
ASY31	МП42А	50	BC170В	KT375Б	76
ASY33	МП42А, МП20А	50	BC171А	KT373А	86
ASY34	МП42А, МП20А	50	BC171В	KT373Б	86
ASY35	МП42Б, МП20А	50	BC172А	KT373А	86
ASY70	МП42	50	BC172В	KT373Б	86
ASY76	ГТ403Б	96	EC172C	KT373В	86
ASY77	ГТ403Г	96	BC173В	KT373Б	86
ASY80	ГТ403Б	96	BC173С	KT373В	86
ASZ15	П217А, ГТ701А	112	BC178А	KT349В	90
ASZ16	П217А	112	BC192	KT351Б	76
ASZ17	П217А	112	BC213	KT342Б	84
ASZ18	П217В, ГТ701А	112	BC214	KT342Б	84
ASZ1015	П217В	112	BC216	KT351А	78
ASZ1016	П217В	112	BC216А	KT351А	78
ASZ1017	П217В	112	BC218	KT340Б	82
ASZ1018	П217В	112	BC218А	KT340Б	82
AT270	МП42Б, МП20А	50	BC226	KT351Б	78
AT275	МП42Б, МП20А	50	BC226А	KT351Б	78
AU103	ГТ810А	116	BC234	KT342А	84
AU104	ГТ810А	116	BC234А	KT342А	84
AU107	ГТ810А	114	BC235	KT342Б	84
AU108	ГТ806Б	116	BC235А	KT342Б	84
AU110	ГТ806Д	116	BC237А	KT373А	88
AU113	ГТ810А	116	BC237В	KT373Б	88
AUY10	П608А, ГТ905А	98	BC238А	KT373А	88
AUY18	П214А	108	BC238В	KT373Б	88
AUY19	П217	112	BC238С	KT373В	88
AUY20	П217	112	BC239В	KT373Б	88
AUY21	П210Б	112	BC239С	KT373Б	88
AUY21A	П210Б	114	BC250А	KT361А	80
AUY22	П210Б	112	BC250В	KT361Б	80
AUY22A	П210Б	114	BC285	П308	70
AUY28	П217	112	BC382В—С	KT373Б, В	88
AUY35	ГТ806А	116	EC383В—С	KT373Б, В	88
AUY38	ГТ806В	116	BC466	KT342Б	84
BC100	КТ605А	98	BC457	KT342Б	84
BC101	КТ312А	72	BC513	KT345А	78
BC107A	КТ342А	84	BC527	KT342Б, КТ342В	84
BC107B	КТ342Б	84	BC528	KT342Б	84
BC108A	КТ342А	84	BC547А	KT373А	88
BC108B	КТ342Б	84	BC547В	KT373Б	88
BC108C	КТ342В	84	BC548А	KT373А	88
BC109B	КТ342Б	84	BC548В	KT373Б	88
BC109C	КТ342В	84	BC548С	KT373В	88
BC147A	КТ373А	88	BC549В	KT373В	88
BC147B	КТ373Б	88	BC549С	KT373В	88
BC148A	КТ373А	88	BC557	KT361Г	80
BC148B	КТ373Б	88	BCP627А	KT373А	86
BC148C	КТ373В	88	BCP627В	KT373Б	86
BC149B	КТ373Б	88	BCP627С	KT373В	86
BC149C	КТ373В	88	BCP628А	KT373А	86

Продолжение

1	2	3	1	2	3
BCP628B	KT373Б	86	BDY90	KT908A	122
BCP628C	KT373В	86	BDY91	KT908A	122
BCW47	KT373А	86	BDY92	KT908А, KT908Б	122
BCW48	KT373Б, KT373В	88	BDY93	KT704А, KT704Б	118
BCW49	KT373Г, KT373В	88	BDY94	KT704Б	118
BCW57	KT361Г	88	BDY95	KT704Б	118
BCW58	KT361Е	80	BF111	KT611А	104
BCW62A	KT361Г	80	BF114	KT611Г	104
BCW63A	KT361Г	80	BF137	KT611Г	102
BCY10	KT208Е	54	BF140A	KT611B	102
BCY11	KT208Л	54	BF173	KT339В	74
BCY12	KT208Д	54	BF177	KT602А	104
ECY30	KT208Л	54	BF178	KT611Г	104
BCY31	KT208М	54	BF179В	KT611Б	104
BCY32	KT208М	54	BF179С	KT618А	98
BCY33	KT208Г	56	BF186	KT611Г	104
BCY34	KT208Г	56	BF197	KT339Г	74
BCY38	KT501Д	56	BF199	KT339Г	74
BCY39	KT501М	56	BF208	KT339А	74
BCY40	KT501Д	56	BF223	KT339В	74
BCY42	KT312Б	74	BF240	KT312В	74
BCY43	KT312В	74	BF257	KT611Г	104
BCY54	KT501К	56	BF258	KT604Б	102
BCY56	KT312В	72	BF259	KT604Б	102
BCY58A	KT342А	84	BF273	KT339А	74
BCY58B	KT342Б	84	BF290	KT602Б	106
BCY58C	KT342Б	84	BF291	KT611Г	102
BCY58Д	KT342В	84	BF305	KT611Г	104
BCY69	KT342В	84	BF306	KT339В	74
BCY90	KT208Е	54	BF311	KT339В	74
BCY90B	KT501Г	56	BF336	KT611Г	104
BCY91	KT208Е	54	BF337	KT604Б	102
BCY91B	KT501Г	56	BF338	KT604Б	102
BCY92	KT208Е	54	BFJ57	KT602Б	106
BCY92B	KT501Д	56	BFJ70	KT339В	74
BCY93	KT208К	54	BFJ93	KT342Б	84
BCY93B	KT501Л	56	BFJ98	KT611Г	106
BCY94	KT208К	54	BFP177	KT611В	104
BCY94B	KT501Л	56	BFP178	KT611Г	104
BCY95	KT208К	54	BFP179А	KT611Г	104
BCY95B	KT501М	56	BFP179В	KT611Б	124
BDI09	KT805Б	118	BFP179С	KT618А	104
BDI21	KT902А	128	BFP719	KT315А	76
BDI23	KT902А, KT805Б	128	BFP720	KT315Б	78
BDI36	KT626А	106	BFP721	KT315В	78
BDI38	KT626Б	106	BFP722	KT315Г	92
BDI40	KT626В	106	BFR34	KT372Б	92
BDI48	KT805Б	118	BFR34А	KT372Б	82
BDI49	KT805Б	118	BFW16	KT610А	124
BD216	KT809А	120	BFW45	KT602Б, KT611Г	104
BD253	KT809А	120	BFW89	KT351Б	76
BDX25	KT805А, KT808А	118	BFW90	KT351Б	78
BDY12	KT805Б	118	BFW91	KT351Б	78
BDY13	KT805Б	118	BFX12	KT326А	92
BDY23	KT803А	120	BFX13	KT326Б	92
BDY24	KT808А	120	BFX44	KT340В	82
BDY25	KT808А	120	BFX89	KT355А	92
BDY72	KT805А	118	BFY19	KT326Б	92
BDY78	KT805Б	118	BFY45	KT611Г	104
BDY79	KT805А	118	BFY50	KT608А	100
			BFY51	KT608Б	100

Продолжение

1	2	3	1	2	3
BFY52	KT608Б	100	BSYP63	KT340В	82
BFY65	KT611Г	102	BSZ10	KT104Б	54
BFY66	KT355А	92	BSZ11	KT104Б	54
PFY80	П308, KT601A	70	BSZ12	KT203А	54
BLW18	KT920Б	126	BU120	KT809А	120
BLW24	KT922Г	126	BU123	KT802А	122
BLX92	KT913А	128	BU126	KT704А, KT704Б	118
BLX93	KT913Б	128	BU129	KT809А	120
BLY47	KT808А	120	BU132	KT704А	118
BLY47A	KT808А	120	BU133	KT704Б	118
BLY48	KT808А	120	BUY43	П702	118
BLY48A	KT808А	120	BUY46	П702	118
BLY49	KT809А	120	BUY55	KT808А	120
BLY49A	KT809А	120	BUYP52	KT802А	122
BLY50	KT809А	120	BUYP53	KT802А, KT803А	122
BLY50A	KT809А	120	BUYP54	KT802А, KT803А	122
BLY63	KT920Г	126	D41D1	KT626А	106
BLY88A	KT920Г	126	D41D4	KT626Б	106
BSJ36	KT351Б	78	D41D7	KT626В	106
BSJ63	KT340Б	82	EFT212	П216	112
BSV49A	KT351Б	76	EFT213	П216	112
BSW19	KT343Б	90	EFT214	П217	112
BSW20	KT361Г	80	EFT250	П217	112
BSW21	KT343Б	90	EFT306	МП40	46
BSW41	KT616А	100	EFT307	МП40	46
BSW88A	KT375Б	76	EFT308	KT208Б	54
BSX21	П308	70	EFT311	МП20А	48
BSX38A	KT340А	80	EFT312	МП20А	48
BSX51	KT340В	82	EFT313	МП20Б	48
BSX52	KT340В	82	EFT317	П401	62
BSX53A	KT340А	80	EFT319	П401	62
BSX59	KT608Б	100	EFT320	П401	64
BSX60	KT608Б	100	EFT321	МП20А	48
BSX61	KT608Б	100	EFT322	МП20А	48
BSX62	KT801Б	116	EFT323	МП20Б	48
ESX63	KT801А	116	EFT331	МП20А	46
BSX66	KT306Д, KT306А	82	EFT332	МП20А	46
BSX67	KT306Д, KT306А	82	EFT333	МП20Б	46
BSX80	KT375Б	76	EFT341	МП21Д	46
BSX81A	KT375Б	76	EFT342	МП21Д	46
BSX89	KT616А	100	EFT343	МП21Д	46
BSXP59	KT608А	102	GC100	ГТ109А	42
BSXP60	KT608А	102	GC101	ГТ109А	42
BSXP61	KT608А	102	GC112	МП26А	50
BSXP87	KT340В	82	GC115	МГТ108Д	44
BSY17	KT616Б	100	GC117	МГТ108Д	44
BSY18	KT616Б	100	GC118	МГТ108Д	44
BSY26	KT340В	80	GC121	МП20А, МП39Б	48
BSY27	KT340В	80	GC122	МП20А	48
BSY34	KT608А	102	GC123	МП21Г	48
BSY38	KT340В	80	GC500	ГТ402Д	94
BSY39	KT340Б	80	GC501	ГТ402Е	94
BSY40	KT343А	90	GC502	ГТ402И	94
BSY41	KT343Б	90	GC507	МП20А	46
BSY58	KT608А	102	GC508	МП20Б	48
BSY62	KT616Б	100	GC509	МП21Г	48
BSY72	KT352А	78	GC510К	ГТ403Е	96
BSY73	KT312Б	74	GC512К	ГТ403Е	96
BSY95	KT340В	80	GC515	МП20А	48
BSY95A	KT340В	80	GC516	МП20А	48
BSYP62	KT340В	82	GC517	МП20Б	48

Продолжение

1	2	3	1	2	3
GC518	МП20Б	48	KU602	KT801А	116
GC519	МП20Б	48	KU605	KT808А	120
GC525	МП36А, МП35А	52	KU606	KT808А	120
GC526	МП36А, МП37А	52	KU607	KT808А	120
GC527	МП36А, МП38А	52	KU611	KT801Б	116
GCN55	МП20А	48	KU612	KT801А	116
GCN56	МП21Г	48	KUY12	KT808А	120
GD160	П213Б, ГТ703Б	110	MA909	МП26А	50
GD170	П213Б, ГТ703Г	110	MA910	МП26А	50
GD175	П213Б, ГТ703Д	110	MJ420	KT618А	98
GD180	П214А, ГТ703Д	110	MJ480	KT803А	122
GD240А—D	П213, ГТ703Б	110	MJ481	KT803А	122
GD241А—D	П213, ГТ703В	110	MM404	МП42Б	122
GD242А—D	П214А, ГТ703Д	110	MM1748	KT316А	82
GD243А—C	П214А, ГТ703Д	110	MM3000	KT602А	106
GD244А—C	П215	110	MM3001	KT602Б, KT611В	106
GD607	ГТ404Г	96	MM3375	KT904Б	124
GD608	ГТ404Б	96	MPS404	KT209Е	56
GD609	ГТ404Б	96	MPS404А	KT209К	56
GD617	П201АЭ	108	MPS706	KT375Б	76
GD618	П201АЭ	108	MPS706А	KT375Б	76
GD619	П203Э	108	MPS3638	KT351А	78
GF126	ГТ309Г	60	MPS3638А	KT351А	78
GF128	ГТ309Б	60	MPS3639	KT357А	90
GF130	ГТ309Д	60	MPS3640	KT347Б	90
GF145	ГТ346А	68	MPS6562	KT350А	76
GF147	ГТ346А	68	MPS6563	KT350А	76
GF501	ГТ313Б	66	MPS—H37	KT339А	74
GF502	ГТ313А	66	MPSL07	KT363А	92
GF503	ГТ313Б	66	MPSL08	KT363А	92
GF504	ГТ313А	66	MPSU01	KT807Б	116
GF505	ГТ328Б	66	MPSU01А	KT807Б	118
GF506	ГТ328Б	66	MPSU05	KT807Б	118
GF507	ГТ346Б	68	MPSU06	KT807Б	118
GF514	ГТ322А, ГТ313Б	58	MPSU07	KT807А	118
GF515	ГТ322А	58	MPS—U51	KT626А	106
GF516	ГТ322А	58	MPS—U51А	KT626А	106
GF517	ГТ322Б	58	MPS—U55	KT626Б	106
GFY50	ГТ322Б	58	MPS—U56	KT626Б	106
GS109	МП42А	50	MSA7505	KT907А	124
GS111	МП42Б	50	NE1010Е-28	KT913В	128
GS112	МП25А	50	NKT11	МГТ108Г	44
KC147	КТ373А, КТ373Б	88	NKT73	МГТ108Б	44
KC148	КТ373А, КТ373Б	88	OC25	П216	112
KC149	КТ373Б, КТ373В	88	OC26	ГТ703Д	110
KC507	КТ342Б	84	OC27	ГТ703Г	110
KC508	КТ342Б	84	OC28	П217	114
KC509	КТ342Б	84	OC30	П201Э	108
KD601	КТ803А	122	OC35	П217	114
KD602	КТ808А	120	OC41	П229	52
KF173	КТ339В	74	OC42	П29А	52
KF503	КТ602Б	104	OC57	ГТ109А	42
KF504	КТ611Г	104	OC58	ГТ109Б	42
KF507	КТ617А	100	OC59	ГТ109В	42
KSY21	КТ616В	100	OC60	ГТ109В	42
KSY34	КТ608А	102	OC70	МП40А	44
KSY62	КТ616Б	100	OC71	МП40А	44
KSY63	КТ616Б	100	OC75	МП40А, МП41А	46
KSY81	КТ347Б	90	OC76	МП40А	44
KU601	КТ801Б	116	OC77	МП26Б	48
			OC169	ГТ322Б	58

Продолжение

1	2	3	1	2	3
OC170	ГТ322Б, ГТ309Г	60	SF215	КТ375Б, КТ373А,	
OC171	ГТ309Г	60		КТ373Б	76
OC200	КТ104Г	54	SF216	КТ375А, КТ373А,	
OC201	КТ104Б	54		КТ373Б	76
OC202	КТ104В	54	SFT124	КТ501Е	56
OC203	КТ203А	54	SFT125	КТ501Е	56
OC204	КТ208Г	54	SFT130	КТ501Е	56
OC205	КТ208Л	54	SFT131	КТ501Е	56
OC206	КТ208Г	54	SFT163	П423	62
OC207	КТ208Ж	54	SFT187	КТ602А	106
OC1016	ГТ703В	110	SFT212	ГТ703Г	110
OC1044	ГТ109Е	42	SFT213	ГТ703Г	110
OC1045	ГТ109Д	42	SFT214	П217	112
OC1070	МП40А	44	SFT223	МП20Б	48
OC1071	МП40А, МП39В	44	SFT251	МП20А, МП39Б	48
OC1072	МП41А, МП39Б	44	SFT252	МП20А, МП39Б	48
OC1074	МП20А	48	SFT253	МП20А, МП39Б	48
OC1075	МП41А, МП39Б	44	SFT306	МП39Б	44
OC1076	МП42Б, МП20А	50	SFT307	КТ208В	54
OC1077	МП21Г	48	SFT308	КТ208В	54
OC1079	МП20А	48	SFT316	П423	62
PBC107A	КТ373А	86	SFT319	П416	62
PBC107B	КТ373Б	86	SFT320	П416	62
PBC108A	КТ373А	86	SFT321	МП20А	48
PBC108B	КТ373Б	86	SFT322	МП20Б	48
PBC108C	КТ373В	86	SFT323	МП20Б	48
PBC109B	КТ373Б	86	SFT325	ГТ402И	94
PBC109C	КТ373В	86	SFT338	П216	112
PT6670	КТ909Г	126	SFT239	П217	112
PT6680	КТ909В	126	SFT240	П217	112
RFD401	КТ606Б	124	SFT250	П217, ГТ701А	112
RFD410	КТ913А	128	SFT351	МП39Б	44
RFD420	КТ913Б	128	SFT352	МП39Б	44
RFD421	КТ904А	124	SFT353	МП39Б	44
SDT3207	КТ908Б	122	SFT354	П422	62
SDT3208	КТ908А	122	SFT357	П422	62
SDT7012	КТ958Б	122	SFT358	П423	62
SDT7013	КТ908А	122	SFT377	ГТ404Ж	96
SF21	КТ617А	100	SS106	КТ340В	80
SF22	КТ617А	100	SS108	КТ340В	80
SF23	КТ608А	102	SS109	КТ340В	80
SF121A—F	КТ602В	104	SS120	КТ608А	102
SF122A—F	КТ602Г	104	SS125	КТ608А	102
SF123A—F	КТ602Г	106	SS126	КТ608А	102
SF126	КТ617А	100	SS216	КТ375Б, КТ340В	76
SF131A—F	КТ312А—КТ312Б, КТ342А—КТ342Б	72	SS218	КТ375Б, КТ340В	76
SF132A—F	КТ312А—КТ312Б, КТ342А—КТ342Б	72	SS219	КТ375Б, КТ340В	76
			T143	КТ501К	56
SF136	КТ342А—КТ342Г	86			
SF137	КТ342А—КТ342Г	86	T144	КТ501К	56
SF150	КТ602А, КТ611Г	106	T145	КТ501К	56

Продолжение

1	2	3	1	2	3
T146	КТ501К	54	2SA117	ГТ310Д	58
T241	МП20А	48	2SA118	ГТ310Д	58
T242	МП21В	48	2SA219	ГТ322В	58
T243	МП21Г	48	2SA221	ГТ322Б	58
T316Н	П402, П416А	64	2SA223	ГТ322В	58
T317	П401	64	2SA229	ГТ313А	66
T319	П401	64	2SA230	ГТ313А	66
T320	П401	64	2SA234	ГТ309Б	60
T321Н	МП38, МП37А	52	2SA235	ГТ309Б	60
T322Н	МП37Б	52	2SA236	ГТ322В	58
T323Н	МП38А	52	2SA237	ГТ322В	58
T354Н	П403, П416А	64	2SA246	ГТ305В	62
T357Н	П403А	64	2SA254	ГТ109Е	42
T358Н	П403	62	2SA255	ГТ109Д	42
TCH98	КТ208Е	54	2SA256	ГТ322Б	58
TCI198В	КТ501К	56	2SA257	ГТ322В	58
TCH99	КТ208К	54	2SA258	ГТ322В	58
TCH99В	КТ501М	56	2SA259	ГТ322В	58
TG2	МГТ108А	44	2SA260	ГТ310А	58
TG3A	МГТ108В	44	2SA266	ГТ309Г	60
TG3F	МГТ108Г	44	2SA267	ГТ309Г	60
TG4	МГТ108А	44	2SA268	ГТ309Д	60
TG5	ГТ115Б	42	2SA269	ГТ309Д	60
TG5E	ГТ115А, П27	42	2SA270	ГТ309Г	60
TG50	МП20А	48	2SA271	ГТ309Г	60
TG51	МП21Г	48	2SA272	ГТ309А	60
TG52	МП20А	48	2SA279	ГТ305Б, П416Б	62
TG53	МП20А	48	2SA285	ГТ322Б	58
TG55	МП20А	48	2SA286	ГТ322Б	58
TIXM101	ГТ341А	70	2SA287	ГТ322Б	58
TIXM103	ГТ362А	70	2SA321	ГТ322В	58
TIXM104	ГТ341В	70	2SA322	ГТ522В	58
TIX3024	ГТ341Б	70	2SA338	ГТ322В	58
ZT2475	КТ316Б	82	2SA339	ГТ322Б	58
2SA49	ГТ109Е	42	2SA340	ГТ322Б	58
2SA50	П30	52	2SA341	ГТ322Б	58
2SA52	ГТ109Е	42	2SA342	ГТ322Б	58
2SA53	ГТ109Д	42	2SA343	ГТ309Б	60
2SA58	ГТ322Б	58	2SA350	П422	62
2SA60	ГТ322Б	58	2SA351	П422	62
2SA69	ГТ309Е	60	2SA352	П422	62
2SA70	ГТ309Е	60	2SA354	П422	62
2SA71	ГТ309Е	60	2SA355	П422	62
2SA72	ГТ322В	58	2SA374	П609А	98
2SA73	ГТ322В	58	2SA400	ГТ309Г	60
2SA78	ГТ321Д	58	2SA412	ГТ308Б	64
2SA92	ГТ322Б	58	2SA416	П605А	98
2SA93	ГТ322В	58	2SA422	ГТ346Б	68
2SA101	ГТ322В	58	2SA440	ГТ313А	66
2SA102	ГТ322В	58	2SA467	КТ351Б	78
2SA103	ГТ322В	58	2SA494G	КТ349В	90
2SA104	ГТ322Б	58	2SA495	КТ357Г	90
2SA105	ГТ310Е	56	2SA495Q	КТ357Г	90
2SA106	ГТ310Е	56	2SA500	КТ352А	78
2SA107	ГТ310Д	56	2SA522	КТ326Б	92
2SA108	П422	62	2SA555	КТ361Г	80
2SA109	П422	62	2SA556	КТ361Б	80
2SA110	П422	62	2SA559	КТ352А	78
2SA111	П422	62	2SA568	КТ345В	78
2SA112	П422	62	2SA628	КТ357Г	90
2SA116	ГТ310В	58	2SB32	МП39А	46

Продолжение

1	2	3	1	2	3
2SB33	МП41А	46	2SC68	КТ340В	82
2SB37	МП41А	46	2SC101А	КТ902А	128
2SB39	ГТ115А	42	2SC105	КТ312Б	72
2SB40	МП42Б	50	2SC131	КТ616Б	100
2SB47	МГТ108Д, Г	44	2SC132	КТ616Б	100
2SB54	МГТ108Д, Г	44	2SC133	КТ616Б	100
2SB57	МГТ108Б	44	2SC134	КТ616А	100
2SB60	МП41А	46	2SC135	КТ616А	100
2SB61	МП41А	46	2SC137	КТ616Б	100
2SB90	ГТ109Г	42	2SC170	КТ306Д	82
2SB97	ГТ109В	42	2SC171	КТ306Д	82
2SB120	МП41А	46	2SC172	КТ306Д	82
2SB130	П201АЭ	108	2SC188	КТ617А	100
2SB136	МП25А, МП20Б	50	2SC247	КТ602Г	106
2SB136A	МП25А, МП20Б	50	2SC249	КТ602Б	106
2SB170	МП39А, МП40А	44	2SC253	КТ325А	88
2SB171	МП40А	46	2SC281	КТ312В	72
2SB172	МП20А, МП25Б	50	2SC282	КТ312В	74
2SB173	МП39А	46	2SC370	КТ375Б	76
2SB175	МП41А	46	2SC371	КТ375Б	76
2SB176	МП25Б, МП20Б	50	2SC372	КТ375Б	76
2SB180A	П201АЭ	108	2SC395А	КТ616А	100
2SB181A	П202Э	108	2SC400	КТ306В	82
2SB200	МП25Б, МП20А	50	2SC401	КТ358В	72
2SB201	МП25Б, МП20А	50	2SC402	КТ358В	72
2SB261	ГТ115А	42	2SC403	КТ358Б	72
2SB262	ГТ115В	42	2SC404	КТ358В	72
2SB263	МП25Б	50	2SC482	КТ617А	100
2SB302	ГТ109Е	42	2SC493	КТ803А	122
2SB303	ГТ115Г	42	2SC505	КТ618А	98
2SB335	МГТ108В	44	2SC506	КТ618А	98
2SB336	МГТ108В	44	2SC508	КТ802А	122
2SB361	ГТ806А	114	2SC517	КТ903А	128
2SB362	ГТ806Б	114	2SC519А	КТ802А	122
2SB367	П201АЭ	108	2SC520А	КТ802А	122
2SB368	П201АЭ	108	2SC521А	КТ803А	122
2SB400	МГТ108Г	44	2SC525	Г701А	116
2SB439	МП41А, МП39Б	46	2SC543	КТ907Б	124
2SB440	МП41А, МП39Б	46	2SC549	КТ904Б	124
2SB443A	МГТ108Г	44	2SC553	КТ907Б	124
2SB443B	МГТ108Г	44	2SC563	КТ339Г	74
2SB444A	МГТ108Г	44	2SC598	КТ904А	124
2SB444B	МГТ108Г	44	2SC601	КТ306Б	82
2SB448	П201АЭ	108	2SC612	КТ325В	88
2SB456	П202Э	108	2SC618	КТ325А	88
2SB466	П201АЭ	108	2SC618А	КТ325А	88
2SB467	П202Э	108	2SC620	КТ375А	76
2SB468	ГТ810А	116	2SC633	КТ315Б	74
2SB473	П201АЭ	108	2SC634	КТ315Г	74
2SB481	П201АЭ	108	2SC635	КТ904Б	124
2SB497	МГТ108Б	44	2SC641	КТ315Г	74
2SC33	КТ312Б	72	2SC642	КТ904А	124
2SC40	КТ316Г	82	2SC712	КТ375Б	76
2SC41	КТ802А	122	2SC727	Г307Б	70
2SC42	КТ802А	122	2SC779	КТ809А	120
2SC43	КТ802А	122	2SC793	КТ803А	122
2SC44	КТ803А	122	2SC796	КТ603А	100
2SC64	КТ601А	98	2SC809	КТ325В	88
2SC65	КТ611Б	104	2SC825	КТ809А	120
2SC66	КТ611Г	104	2SC828	КТ358Б	72
2SC67	КТ340В	82	2SC828А	КТ358В	72

Продолжение

1	2	3	1	2	3
2SC829	КТ358Б	72	2N59	МП20А, МП20Б	46
2SC893	П701А	116	2N59А	МП20А, МП40Б	46
2SC976	КТ91Г	128	2N59В	МП21Д	46
2SC977	КТ913А	128	2N59С	МП21Д	46
2SC978	КТ913Б	128	2N60	МП20Б	46
2SC1044	КТ355А	92	2N60А	МП21В	46
2SC1056	КТ605Б	98	2N60В	МП21Д	46
2SC1090	КТ372А	94	2N60С	МП21Г	46
2SD31	МП35	52	2N61	МП20А	46
2SD32	МП38А	52	2N61А	МП20В	46
2SD33	МП38А	52	2N61В	МП21Д	46
2SD37	МП37А	52	2N61С	МП21Г	46
2SD47	КТ908А	122	2N65	МП20А	46
2SD68	КТ902А	128	2N77	ГТ109Б	42
2SD72	ГТ404И	96	2N94	МП38	52
2SD75	МП38, МП36А	52	2N104	МП40А	46
2SD75A	МП37А, МП36А	52	2N105	ГТ109Б	42
2SD127	ГТ404Е	96	2N107	ГТ115А	42
2SD127А	ГТ404Е	96	2N109	МП20Б	46
2SD128	ГТ404И	96	2N123	МП42Б	50
2SD128А	ГТ404И	96	2N128	ГТ310Д	56
2SD146	П702А	120	2N130	МГТ108А	44
2SD147	П702	120	2N131	МГТ108Б	44
2SD148	П702	120	2N131А	МГТ108Б	44
2SD195	МП38А	52	2N132	МГТ108В	44
2T353I	П308, КТ602А	72	2N132А	МГТ108В	44
2T353Z	П308, КТ602А	72	2N133	МГТ108Б	44
2T3674	КТ355А	92	2N139	ГТ109Е	42
2T3841	КТ343А	96	2N175	П27	42
2NU72	ГТ403Б	96	2N178	П216Б	112
3NU72	ГТ403Б	96	2N186А	МП25Б, МП20А	50
4NU72	ГТ403Б	96	2N189	МП25А	50
5NU72	ГТ403Е	96	2N190	МП25А	50
2NU73	ГТ703Б	110	2N191	МП25Б	50
3NU73	ГТ703Г	110	2N193	МП38	50
4NU73	ГТ703Д	110	2N206	МГТ108А	44
5NU73	П213	110	2N207	МГТ108Г	44
6NU73	П215	110	2N207А	МГТ108Г	44
7NU73	П215	110	2N207В	МГТ108Г	44
101NU70	МП35	52	2N215	МП40А	46
102NU70	МП35	52	2N218	ГТ109Е	42
103NU70	МП37	52	2N220	П27А	46
104NU70	МП36А	52	2N237	МП40А	44
105NU70	МП36А	52	2N265	МГТ108Г	46
106NU70	МП36А, МП37А	52	2N273	МП39А	46
107NU70	МП36А, МП38А	52	2N283	МП40А	46
152NU70	МП36А, МП38	52	2N326	ГТ705В	114
153NU70	МП36А	52	2N331	МП39Б	44
154NU70	МП36А, МП38	52	2N368	МП40А	46
155NU70	МП38А	52	2N369	МП41А	46
2NU74	ГТ701А, П210А	114	2N404	МП42Е	50
3NU74	ГТ701А, П210А	114	2N405	МП39А	46
4NU74	ГТ701А, П210А	114	2N406	МП39А	46
5NU74	ГТ701А, П210А	114	2N444	МП35	52
6NU74	П210Б, ГТ701А	114	2N444А	МП35	52
7NU74	П210Б, ГТ701А	114	2N445	МП138	52
2N43	МП25Б	48	2N445А	МП37	52
2N44	МП25Б	48	2N456	П210В	112
2N44A	МП40А	46	2N457	П210Б	114
2N45	МП40А	46	2N458	П210Б	114
2N45A	МП40А	46	2N499А	ГТ305А	62

Продолжение

1	2	3	1	2	3
2N501	ГТ305А	62	2N844	П307В, КТ601А	70
2N502A	ГТ313А	64	2N845	П308, КТ601А	72
2N502B	ГТ313А	66	2N869	КТ352А	78
2N503	ГТ310Б	58	2N869А	КТ347А	90
2N506	ГТ115Б	42	2N914	КТ616Б	100
2N535A	ГТ115В	42	2N915	КТ342Г	84
2N535B	ГТ115В	42	2N916	КТ342А	84
2N536	ГТ115Г	42	2N919	КТ340В	82
2N554	П1216В	112	2N920	КТ340В	82
2N555	П1216В	112	2N923	КТ203Б	54
2N581	МП142А	50	2N924	КТ203Б	54
2N591	ГТ115Г	42	2N929	КТ342А	84
2N602	П1416	62	2N930	КТ342А	84
2N603	П1416	62	2N943	КТ203Б	54
2N604	П1416А	62	2N944	КТ203Б	54
2N653	МП120А	48	2N978	КТ350А	76
2N654	МП120А	48	2N979	ГТ305А	62
2N655	МП120Б	48	2N980	ГТ305А	62
2N696	КТ603А	98	2N987	ГТ322Б	58
2N697	КТ603Б	98	2N990	ГТ322Б	58
2N698	КТ602А	104	2N991	ГТ322Б	58
2N699	КТ602Б	104	2N993	ГТ322Б	58
2N700	ГТ313Б, ГТ376А	66	2N995	КТ352А	78
2N700A	ГТ376А	68	2N996	КТ352А	78
2N702	КТ312А	72	2N1024	КТ104Б	54
2N703	КТ312В	72	2N1027	КТ104Б	54
2N705	ГТ320В	64	2N1028	КТ104А	54
2N706A	КТ340В	80	2N1175	МП120Б	48
2N708	КТ340В	82	2N1204	ГТ321Г	64
2N709	КТ316Б	82	2N1204А	ГТ321Г	64
2N709A	КТ316Б	82	2N1218	ГТ705Г	114
2N710	ГТ320В	64	2N1219	КТ104Г	54
2N711	ГТ320В	64	2N1220	КТ104А	54
2N711A	ГТ320Б	64	2N1221	КТ104Г	54
2N711B	ГТ320В	64	2N1222	КТ104А	54
2N726	КТ349А	90	2N1223	КТ104А	54
2N727	КТ349 Б	90	2N1292	ГТ705Б	114
2N728	КТ312В	74	2N1300	ГТ308А	64
2N729	КТ312Б	74	2N1301	ГТ308А	64
2N734	П307, КТ601А	72	2N1303	МП120А	48
2N735	П307А, КТ601А	72	2N1321	ГТ705Б	114
2N735A	КТ601А, П307А	98	2N1329	ГТ705Б	114
2N738	П309, КТ602А	72	2N1353	МП142Б	50
2N739	П308, КТ602Б	72	2N1354	МП142Б	50
2N741	ГТ313В	66	2N1384	ГТ321Д	64
2N741A	ГТ313А	66	2N1387	КТ301Б	72
2N743	ГТ340В	80	2N1390	КТ301	72
2N744	КТ340В	80	2N1413	МП39Б, МП120А	46
2N753	КТ340В	80	2N1414	МП39Б, МП120А	46
2N754	П307В	70	2N1415	МП39Б, МП120А	46
2N755	П308	70	2N1494	ГТ321Г	64
2N780	КТ312Б	72	2N1494А	ГТ321Г	64
2N784A	КТ340В	82	2N1499А	ГТ305А	62
2N794	ГТ308А	64	2N1499В	ГТ305Б	62
2N795	ГТ308А	64	2N1500	ГТ305А	62
2N796	ГТ308Б	64	2N1524	П1422	62
2N797	ГТ311И	68	2N1526	П1422	62
2N834	КТ340В	80	2N1565	КТ602Г	106
2N835	КТ340В	80	2N1566	КТ602Г	106
2N842	КТ301Д	72	2N1566А	КТ602Б	106
2N843	КТ301В, КТ301Ж	72	2N1643	КТ104А	54

Продолжение

1	2	3	1	2	3
2N1681	МП42Б	50	2N2372	КТ201В	54
2N1683	ГТ308Б	64	2N2373	КТ201В	54
2N1700	КТ801Б	116	2N2400	ГТ308Б	64
2N1701	П702	121	2N2410	КТ608Б	102
2N1702	КТ803А	122	2N2411	КТ352А	78
2N1714	П701А	116	2N2412	КТ352А	78
2N1716	П701А	116	2N2415	ГТ376А	68
2N1726	П417А	60	2N2416	ГТ376А	68
2N1727	П417	60	2N2428	МП41А	46
2N1728	П417А	60	2N2432	КТ201В	52
2N1742	ГТ313Б	66	2N2432А	КТ201В	52
2N1743	ГТ313А	66	2N2475	КТ316Б	82
2N1745	ГТ305Б	62	2N2615	КТ325А	88
2N1746	П417	60	2N2616	КТ325Б	88
2N1747	П417	60	2N2617	КТ201А	52
2N1748	ГТ305В	62	2N2635	ГТ320В	64
2N1752	П417	60	2N2659	П214А	103
2N1754	ГТ305А	62	2N2660	П215	108
2N1785	П417А	60	2N2661	П215	110
2N1786	П417	60	2N2665	П214А	110
2N1787	П417	60	2N2666	П214А	110
2N1838	КТ617А	100	2N2667	П215	110
2N1839	КТ617А	100	2N2696	КТ351А	76
2N1840	КТ617А	100	2N2708	КТ325Б	88
2N1854	ГТ308Б	64	2N2711	КТ315Ж	74
2N1864	П417	60	2N2712	КТ315Б	74
2N1865	П417Б	60	2N2784	КТ316Б	82
2N1893	КТ602Б	104	2N2811	КТ908Б	122
2N1924	МП21Г	48	2N2813	КТ908А	122
2N1925	МП21Г	48	2N2835	П213	108
2N1926	МП21Д	48	2N2836	ГТ703Д	112
2N1958	КТ603А	100	2N2890	КТ801А	116
2N1959	КТ603Б	100	2N2891	КТ801А	116
2N2048	ГТ308Б	64	2N2894	КТ347Б	90
2N2048A	ГТ308Б	64	2N2947	КТ903А	128
2N2089	П403,	64	2N2948	КТ903А	128
2N2137A	ГТ701А	114	2N2958	КТ608Б	102
2N2138A	ГТ701А	114	2N2999	ГТ341В	70
2N2142A	ГТ701А	114	2N3010	КТ316Б	82
2N2143A	ГТ701А	114	2N3012	КТ347Б	90
2N2147	ГТ905А	114	2N3053	КТ608Б	102
2N2148	ГТ905В	114	2N3054	КТ805Б	118
2N2194	КТ608А	102	2N3054А	КТ803А	122
2N2194A	КТ608А	102	2N3114	КТ611Г	104
2N2195	КТ608А	102	2N3121	КТ351А	76
2N2199	ГТ305А	62	2N3127	ГТ328А, ГТ376А	66
2N2200	ГТ305Б	62	2N3209	КТ347А	90
2N2217	КТ608Б	102	2N3210	КТ616Б	100
2N2218	КТ608Б	100	2N3248	КТ352А	78
2N2218A	КТ608Б	102	2N3249	КТ352Б	78
2N2224	КТ608Б	102	2N3267	ГТ376А	68
2N2236	КТ617А	100	2N3279	ГТ328А	66
2N2237	КТ603Б	100	2N3280	ГТ328А	66
2N2242	КТ340В	80	2N3281	ГТ328Б	66
2N2273	ГТ305Б	62	2N3282	ГТ328В	66
2N2274	КТ203Б	54	2N3283	ГТ328А	66
2N2275	КТ203Б	54	2N3284	ГТ328Б	66
2N2276	КТ203В	54	2N3286	ГТ328Б	66
2N2277	КТ203В	54	2N3299	КТ608Б	102
2N2360	ГТ376А	68	2N3304	КТ337А	92
2N2361	ГТ376А	68	2N3375	КТ904А	124

Продолжение

1	2	3	1	2	3
2N3390	KT373B	86	2N4910	П702A	118
2N3391	KT373Б	86	2N4911	И1702	118
2N3392	KT373A	86	2N4912	И702	118
2N3393	KT373A	86	2N4913	KT808A	120
2N3394	KT373Г	86	2N4914	KT808A	120
2N3397	KT315Е	74	2N4915	KT808A	120
2N3399	ГТ346Б	68	2N4924	КТ611Г	104
2N3441	KT805A	118	2N4925	КТ611Г	104
2N3451	KT337A	92	2N4926	КТ604Б	102
2N3545	KT434Б	90	2N4927	КТ604Б	102
2N3546	KT363A	92	2N4976	КТ911А	128
2N3576	KT347A	90	2N5043	ГТ329Б	70
2N3584	KT809A	120	2N5044	ГТ329А	70
2N3585	KT704A, KT704Б	118	2N5050	КТ802A	120
2N3605	KT375Б	76	2N5051	КТ802A	120
2N3606	KT375Б	76	2N5052	КТ802A	120
2N3607	KT375Б	76	2N5056	КТ347Б	90
2N3611	ГТ701A	112	2N5067	КТ803A	122
2N3613	ГТ701A	112	2N5068	КТ803A	122
2N3702	КТ345Б	78	2N5069	КТ803A	122
2N3709	KT358A, KT373A	72	2N5070	КТ912A	128
2N3710	KT358Б, KT373A	72	2N5090	КТ606A	124
2N3711	KT373Б	86	2N5177	КТ909A	126
2N3712	КТ611Г	104	2N5178	КТ909Б	126
2N3722	KT608Б	102	2N5188	КТ603Б	98
2N3724	KT608Б	102	2N5219	КТ375Б	76
2N3730	ГТ810A	116	2N5221	КТ351A	76
2N3732	ГТ905A	114	2N5223	КТ375Б	76
2N3733	KT907A	124	2N5228	КТ357A	90
2N3738	KT809A	120	2N5313	КТ908A	122
2N3739	KT809A	120	2N5315	КТ908A	122
2N3742	KT604Б	102	2N5317	КТ908A	122
2N3766	KT805Б	118	2N5319	КТ908A	122
2N3767	KT805Б	118	2N5354	КТ351A	78
2N3883	ГТ320Б	64	2N5365	КТ351A	78
2N3903	KT375A	76	2N5366	КТ351Б	78
2N3904	KT375A, KT375Б	76	2N5427	КТ808A	120
2N3905	КТ361Г	80	2N5429	КТ808A	120
2N3906	КТ361Г	80	2N5447	КТ345Б	70
2N4034	KT326Б, KT347A	92	2N5481	КТ911A	128
2N4077	ГТ705Д	114	2N5641	КТ922A	126
2N4125	KT361Б	80	2N5642	КТ922Б	126
2N4127	KT922Г	126	2N5643	КТ922В	126
2N4128	KT922Д	126	2N5652	КТ372В	94
2N4138	KT201Б	52	2N5764	КТ913A	128
2N4207	KT337Б	92	2N5765	КТ913Б	128
2N4208	KT337Б	92	2N5842	КТ355A	92
2N4231	ГТ702	118	2N5851	КТ355A	92
2N4232	ГТ702	118	2N5852	КТ355A	92
2N4233	ГТ702	118	2N5887	ГТ701A, П216	114
2N4237	KT801A	116	2N5888	ГТ701A, П216	114
2N4238	KT801Б	116	2N5889	ГТ701A, П216	114
2N4239	KT801A	116	2N5890	ГТ701A, П216Г	114
2N4240	KT704A, KT704Б	118	2N5891	ГТ701A, П217	114
2N4260	KT363A	92	2N5995	КТ920Г	126
2N4261	KT363Б	92	2N5996	КТ920Г	126
2N4301	KT908A	122	2N6080	КТ920Б	126
2N4429	KT911Б	128	2N6081	КТ920Г	126
2N4430	KT913A	126	2N6093	КТ912Б	128
2N4431	KT913Б	128	2N6135	КТ610A	124
2N4440	KT907Б	124	40675	КТ912Б	128

ПРИЛОЖЕНИЕ 2

Зарубежные диоды и их отечественные аналоги

Зарубежный тип диода	Приближенный отечественный аналог	Стр.	Зарубежный тип диода	Приближенный отечественный аналог	Стр.
1	2	3	1	2	3
0102	КД102А	148	1N555	КД205Ж	163
0112	КД102А	148	1N560	КД105Г	149
0502	Д226В	148	1N602	КД204Б	153
0507	КД105Г	149	1N602А	КД204Б	153
0604	КД206В	163	1N604	Д7Ж	148
10PM2	Д243	155	1N605	КД205Е	161
10PM4	Д246	161	1N605А	КД205Е	161
10PM6	КД206В	163	1N606А	КД105В	149
11R2S	Д243	155	1N627	Д312А	169
11R3S	Д245	157	1N647	Д229Е	158
11R4S	Д246	161	1N662	Д220Б	171
1N74	Д101	147	1N622А	Д220Б	171
1N87T	Д9В	147	1N663	Д220Б	171
1N210	Д102	147	1N667	Д229В	150
1N211	Д102	147	1N673	Д229Е	158
1N212	Д101	147	1N695	Д310	165
1N213	Д101	147	1N873	Д210	148
1N219	КД104А	148	1N874	Д211	149
1N220	КД104А	148	1N876	МД217	149
1N250	Д243	156	1N878	МД218	149
1N295Х	Д9В	147	1N770	Д310	165
1N320	КД205Е	161	1N777	Д312А	169
1N324	Д229В	150	1N844	Д220Б	171
1N332	Д229Е	158	1N903А	КД509А	167
1N339	Д229В	150	1N903АМ	КД509А	167
1N341	Д229Е	158	1N904	КД521Г	166
1N348	Д229В	150	1N905А	КД521Г	166
1N354	КД104А	148	1N903М	КД509Г	167
1N365	МД218	149	1N905АМ	КД521Г	166
1N388	Д102	147	1N905М	КД521Г	166
1N391	Д101	147	1N906АМ	КД521Г	166
1N440В	Д229Ж	151	1N906А	КД521Г	166
1N441	КД204Б	153	1N906М	КД521Г	166
1N441В	КД205Л	154	1N907	КД521Г	166
1N442В	Д229К	157	1N908А	КД509А	167
1N443	Д7Ж	148	1N908АМ	КД509А	167
1N444	КД205Е	161	1N914А	КД521А	169
1N445	КД105В	149	1N914В	КД521А	169
1N458	Д223Б	147	1N914М	КД521А	169
1N483	КД103А	147	1N916А	КД521А	169
1N485	Д207	148	1N916В	КД521А	169
1N486	Д207	148	1N996	Д310	165
1N487А	Д226В	148	1N1031	КД205Г	154
1N488	Д209	148	1N1032	КД205В	156
1N531	КД204Б	153	1N1033	КД205Б	158
1N533	КД205Б	158	1N1053	КД208А	152
1N534	КД205Е	161	1N1059	Д304	152
1N535	КД105В	148	1N1061	Д243Б	155
1N537	Д229Ж	151	1N1062	Д245Б	157
1N538	КД205Л	154	1N1063	Д246Б	160
1N539	Д229К	157	1N1067	Д243Б	155
1N540	Д229Л	159	1N1068	Д245Б	157
1N551	КД205Г	154	1N1069	Д246Б	160
1N552	КД205В	156	1N1073	Д243Б	155
1N553	КД205Б	158	1N1075	КД246Б	160
1N554	КД205А	162	1N1081А	Д229Ж	151

Продолжение

1	2	3	1	2	3
1N1082A	КД205Л	154	1N1927	KC139А	172
1N1083	КД205В	156	1N1984	KC168В	173
1N1083A	Д229К	157	1N1984А	KC168В	173
1N1084	КД205Б	158	1N1984В	KC168В	173
1N1085	КД208А	152	1N1985	KC182А	174
1N1090	Д243Б	155	1N1985А	KC182А	174
1N1091	Д245Б	157	1N1985В	KC182А	174
1N1092	Д246Б	160	1N1986	KC210Б	174
1N1092A	Д246Б	160	1N1986А	KC210Б	174
1N1115	КД208А	152	1N1986В	KC210Б	174
1N1169A	КД205Б	158	1N1988	KC215Ж	175
1N1251	КД204В	150	1N1988А	KC215Ж	175
1N1253	КД205Г	153	1N1988В	KC215Ж	175
1N1254	КД205В	156	1N1989	KC218Ж	175
1N1255	КД205Б	158	1N1989А	KC218Ж	175
1N1256	КД205Е	161	1N1989В	KC218Ж	175
1N1257	КД105В	149	1N1990	KC222Ж	176
1N1258	КД205И	164	1N1990А	KC222Ж	176
1N1259	КД105Г	149	1N1990В	KC222Ж	176
1N1407	МД217	149	1N2023	Д245	157
1N1440	КД205Л	155	1N2025	Д246	161
1N1441	Д229К	157	1N2069А	КД205Л	154
1N1446	КД208А	152	1N2070	Д229Л	160
1N1450	КД208А	152	1N2070А	Д229Л	160
1N1487	Д229Ж	150	1N2073	Д229Ж	150
1N1488	КД205Л	154	1N2080	КД204В	150
1N1489	Д229К	156	1N2082	КД205Г	153
1N1490	Д229Л	160	1N2083	КД205В	156
1N1520A	КС456А	176	1N2084	КД205Б	158
1N1557	КД205Л	155	1N2085	КД205А	161
1N1558	Д229К	157	1N2086	КД205Ж	162
1N1559	Д229Л	158	1N2091	Д229Ж	151
1N1563	КД208А	152	1N2092	КД205Л	154
1N1613	Д304	152	1N2093	Д229К	157
1N1613A	Д304	152	1N2094	Д229Л	159
1N1614A	Д243Б	155	1N2104	Д229Ж	150
1N1615A	Д246Б	160	1N2105	КД205Л	154
1N1616	Д248Б	163	1N2106	Д229К	154
1N1617	КД208А	152	1N2107	Д229К	160
1N1616A	Д248Б	160	1N2230	Д243Б	155
1N1621	Д242	153	1N2230А	Д243Б	155
1N1623	Д245	157	1N2231	Д243Б	155
1N1624	Д246	161	1N2232	Д245Б	157
1N1632	КД104А	148	1N2232А	Д245Б	157
1N1645	Д229Ж	151	1N2233А	Д245Б	157
1N1647	КД205Л	154	1N2234	Д246Б	160
1N1649	Д229К	157	1N2234А	Д246Б	160
1N1651	Д229Л	159	1N2235	Д246Б	160
1N1694	Д229К	160	1N2235А	Д246Б	160
1N1695	Д229Л	153	1N2236	Д247Б	162
1N1703	КД204Б	161	1N2237	Д247Б	162
1N1706	КД205Е	153	1N2237А	Д247Б	162
1N1709	КД205Г	156	1N2238	Д248Б	163
1N1710	КД205В	158	1N2238А	Д248Б	163
1N1711	КД205В	161	1N2239	Д248Б	163
1N1712	КД205А	158	1N2239А	Д248Б	163
1N1764	КД205А	176	1N2246	Д305	150
1N1765	КС456А	176	1N2246А	Д305	150
1N1765A	КС456А	176	1N2247	Д305	150
1N1844	Д102	147	1N2247А	Д305	150
1N1849	КД104А	148	1N2248	Д242	152

Продолжение

1	2	3	1	2	3
1N2248A	Д242	152	1N3193	КД205Л	155
1N2249	Д242	152	1N3194	Д229Л	159
1N2249А	Д242	152	1N3228	КД205Г	153
1N2250	Д243	155	1N3229	КД205А	161
1N2250А	Д243	155	1N3238	Д229Ж	150
1N2251	Д243	155	1N3239	КД205Л	154
1N2251А	Д243	155	1N3253	КД205Л	155
1N2252	Д245	157	1N3254	Д229Л	159
1N2252А	Д245	157	1N3270	Д246Б	160
1N2253	Д245	157	1N3277	КД205Л	155
1N2253А	Д245	157	1N3278	Д229Л	159
1N2254	Д246	160	1N3282	МД218	149
1N2254А	Д246	160	1N3547	Д229Л	159
1N2255	Д246	160	1N3545	КД205Г	154
1N2255А	Д246	160	1N3600	КД509А	167
1N2256	КД206Б	162	1N3604	КД521А	170
1N2256А	КД206Б	162	1N3606	КД521А	170
1N2257	КД206Б	162	1N3607	КД521А	170
1N2257А	КД206Б	162	1N3639	КД205Л	155
1N2258	КД206В	163	1N3640	Д229Л	159
1N2258А	КД206В	163	1N3657	Д246Б	160
1N2259	КД206В	163	1N3659	КД205Л	154
1N2259А	КД206В	163	1N3748	КД205Г	150
1N2260	КД210Б	164	1N3749	КД205Б	158
1N2260А	КД210Б	164	1N3750	КД205Ж	163
1N2261	КД210Б	164	1N3827	КС456А	176
1N2289	КД208А	151	1N3827А	КС456А	176
1N2289А	КД208А	151	1N3873	КД509А	167
1N2290	Д304	152	1N3873Н	КД509А	167
1N2350	Д303	152	1N3954	КД509А	167
1N2373	Д211	149	1N4008	МД3Б	165
1N2374	МД218	149	1N4099	КС168А	173
1N2391	КД208А	152	1N4147	КД503А	166
1N2400	КД208А	152	1N4149	КД521А	170
1N2409	КД208А	152	1N4148	КД521А	170
1N2418	КД208А	152	1N4305	КД521А	170
1N2482	КД205Л	155	1N4364	Д229Ж	151
1N2483	Д229Л	159	1N4365	КД205Л	154
1N2487	Д229Л	159	1N4366	Д229К	157
1N2505	КД105Г	149	1N4367	Д229Л	159
1N2610	Д229Ж	151	1N4437	Д246	161
1N2611	КД205Л	154	1N4438	КД206В	163
1N2613	Д229Л	159	1N4439	КД210Б	164
1N2638	КД208А	151	1N4446	КД521А	170
1N2786	Д243	155	1N4447	КД521А	170
1N2793	Д305	150	1N4448	КД521А	170
1N2847	КД208А	152	1N4449	КД521А	170
1N2859	Д229Ж	151	1N4454	КД521А	170
1N2860	КД205Л	155	1N4531	КД521А	170
1N2862	Д229Л	159	1N4622	КС139А	172
1N2878	КД205И	164	1N4624	КС147А	172
1N2879	КД205И	164	1N4655	КС456А	176
1N3063	КД521А	169	1N4686	КС139А	172
1N3064М	КД521А	169	1N4688	КС147А	172
1N3064	КД521А	167	1N4734	КС456А	176
1N3065	КД521А	169	1N4817	КД208А	152
1N3067	КД521Г	166	1N5209	Д223Б	147
1N3082	КД205Г	154	1N5216	КД205Б	158
1N3083	КД205Б	159	1N5217	КД205Ж	162
1N3121	Д220	168	1N5318	КД521А	170
1N3184	КД205А	161	1N5392	КД208А	152

Продолжение

1	2	3	1	2	3
IN4153	КД521А	170	366Д	Д243Б	155
IN5151	КД521А	170	367В	Д242	153
IN5720	КД503А	166	616С	Д102	147
IP644	Д229В	150	618С	Д101	147
IP647	Д229Е	158	30AS	КД205В	156
IT502	КД205Г	154	30F5	Д245Б	157
IT506	КД205Ж	163	30S5	КД205В	156
IS032	КД205Л	154	366М	Д248Б	163
IS034	Д229Л	159	366F	Д245Б	157
IS41	КД205Л	154	366Н	Д246Б	160
IS43	Д229Л	159	366К	Д247Б	162
IS101	КД205Л	154	367Д	Д243	155
IS103	Д229Л	159	367Н	Д246	161
IS113	Д229Е	158	11R4S	Д246	161
IS148	Д229К	156	367К	КД206Б	162
IS162	Д243	155	367М	КД206В	164
IS163	Д245	157	3T504	КД205Б	158
IS164	Д246	161	3T505	КД205А	162
IS165	КД206Б	162	40109	Д242	153
IS307	Д18	165	40110	Д243	156
IS313	КД205В	156	40111	Д245	157
IS314	КД205Б	158	40112	Д246	161
IS315	КД205А	161	40113	КД206Б	162
IS421	Д243	155	40114	КД206В	164
IS423	Д246	161	40115	КД210Б	164
IS427	КД210Б	164	407К	Д247Б	162
IS473	Д811	175	407М	Д248Б	163
IS544	КД210Б	164	408М	КД205Ж	163
IS558	КД205А	162	408К	КД206Б	162
IS559	КД205В	156	408М	КД206З	164
IS1219	КД521Г	166	408Р	КД203Г	164
IS1220	КД521Г	166	408S	КД210Б	164
IS1230	КД205Б	158	40AS	КД205Б	158
IS1231	КД205А	161	40S5	КД205Б	158
IS1232	КД205Ж	162	4Д4	Д229Е	158
IS1473	КД521Г	166	4G8	Д229Л	159
IS1763	КД205Б	166	4T503	КД205В	156
IS1943	КД205Б	158	4T504	КД205Б	158
IS1944	КД205Ж	162	4T505	КД205А	162
IT504	КД205Б	158	4T506	КД205Ж	163
IT505	КД205А	161	50AS	КД205А	161
2T502	КД205Г	154	50J2Р	КД206Б	162
2T504	КД205Б	158	50F5	Д247Б	162
2T505	КД205А	161	50J2Р	КД206Б	162
2T506	КД205Ж	163	-5J3	КД205В	156
3C15	Д303	153	-5J4	КД205Б	158
3T502	КД205Г	154	50LF	Д247Б	162
4T502	КД205Г	154	50M	КД205А	162
.7J2	КД205Л	154	50S5	КД205А	162
.7E1	Д229Ж	151	5Д4	Д246Б	154
.7J1	Д229Ж	151	-5E3	КД205В	156
10F5	Д304	152	-5E4	КД205Б	158
10R6B	Д211	149	-5E5	КД205А	161
10R10B	МД218	149	-5E6	КД205Ж	162
14P2	Д223Б	147	-5J6	КД205Ж	162
20S5	КД205Г	154	5MA4	Д246Б	154
24J2	Д223Б	148	5PM4	Д246Б	160
75R2B	КД205Л	154	5E1	Д299Ж	151
100D10	МД218	149	5E2	КД205Г	153
100K10	МД218	149	5MA2	КД205Л	154
2G8	КД205Л	154	5PM6	Д248Б	163

Продолжение

1	2	3	1	2	3
6 0AS	КД205Ж	162	В3В9	Д229Ж	150
6 0F5	Д248Б	163	В3С1	КД205Л	154
6 0LF	Д248Б	163	В3Е1	Д246Б	160
6 0M	КД205Ж	163	В3Е5	Д246Б	160
6 0S5	КД205Ж	163	В3Е9	Д246Б	160
6 2R2	Д243	155	В80С300	КД204Б	153
6 4R2	Д246	161	В250С300	КД205И	164
6 54C9	КСМ190А	161	ВА128	КД103А	147
66R2	КД206В	163	ВА147/220	Д207	148
66R25	КД206В	163	ВА147/300	Д208	148
68R2	КД210Б	164	ВА179	Д102	147
68R2S	КД210Б	164	ВАW14	Д226В	148
·7E3	Д229К	156	ВАW14 TF24	Д226В	148
·7E4	Д229Л	159	ВАW62	КД521А	170
·7J3	Д229К	156	ВАW63А	КД521Г	166
·7J4	Д229Л	159	ВАХ63А	КД521Г	166
A106	Д229Ж	151	ВАХ80	КД509А	167
A121-1t	КД208А	151	ВАХ91С/ТЕ102	КД521А	170
A132-1t	КД208А	151	ВАХ95/TF600	КД521А	170
A168-1t	КД208А	151	ВАY21	Д226В	148
A2A4	КД204В	151	ВАY38	КД509А	167
A2C4	КД205Г	153	ВАY63	КД509А	167
A2D1	Д229К	156	ВАY74	КД509А	167
A2D5	Д229К	156	ВАY89	КД105В	149
A2D9	Д229К	156	BLVA168	KC168А	173
A2E1	Д229Л	159	BLVA168В	KC168А	173
A2E3	Д229Л	159	BLVA168С	KC168А	173
A2E4	КД205Б	158	BLVA468	KC168А	173
A2E5	Д229Л	159	BLVA468А	KC168А	173
A2E9	Д229Л	159	BLVA468В	KC168А	173
A2F4	КД205А	161	BLVA468С	KC168А	173
A3C1	КД205Л	154	BSA71	КД509А	167
A3C3	КД205Л	154	BR22	КД205Г	153
A3C5	КД205Л	154	BR24	КД205Б	158
A3C9	КД205Л	154	BR41	Д229Ж	151
A3D1	Д229К	156	BR42	КД205Л	154
A3D3	Д229К	157	BR44	Д246Б	160
A3D5	Д229К	157	BR81Д	КД208А	151
A3D9	Д229К	157	BR101А	Д242	153
A3E1	Д246Б	160	BR102А	Д243	155
A3E5	Д246Б	160	BR104А	Д246	160
A3E9	Д246Б	160	BR101А	Д242	153
A300	Д229К	157	BR106А	КД206В	163
AA113Р	Д101	147	BR205	КД204В	150
AA137	Д9В	147	BYY67	Д245	157
AAY32	311	166	BYY68	Д245	157
АД150	Д223В	147	BY118	Д245Б	157
AE150	Д223Б	148	BY157	КД105Г	157
AAZ15	Д312А	169	BYX42/300	Д245	157
AM12	Д229В	150	BYX42/600	КД206В	163
AM42	Д229Е	158	BYX60—400	Д229Е	158
AM030	Д229К	157	BZ346С3V3	KC133А	172
AM410	Д229В	150	BZX55С3V3	KC133А	172
AZ6..8	KC168В	173	BZY56	KC147А	172
B2D1	Д229К	156	BZX83С3V3	KC133А	172
B2D5	Д229К	156	BZY85B3V3	KC133А	172
B2D9	Д229К	156	BZY83C4V7	KC147А	172
B2E1	Д229Л	159	BZY83D4V7	KC147А	172
B2E5	Д229Л	159	BZY85C4V7	KC147А	172
B2E9	Д229Л	159	BZX29C4V7	KC447А	176
B3B5	Д229Ж	150	BZX85C4V7	KC447А	176

Продолжение

1	2	3	1	2	3
BZX29C5V6	KC456A	176	F2H3	KД206Б	162
C4010	Д246	160	F1K3	Д248Б	163
CA50	Д102	147	F2M3	КД203Г	164
CA100	Д223А	147	F2N3	КД210Б	164
CB50	Д102	147	FD600	КД521А	170
CB100	Д223А	147	FDN600	КД521А	170
CER69	КД205Л	155	FPZ5V6	КС456А	176
CER69C	КД205Г	154	G651IZ	Д248Б	163
CER70	КД105В	149	G1010	Д242	153
CER71B	КД105В	149	G3010	Д245	157
CER72C	КД105Г	149	G4010	Д246	161
CER500B	КД205Е	161	HDS9003	КД509А	168
GD72E3	Д9В	147	HDS901	КД521Г	166
GD72E4	Д9В	147	HMG844	Д220Б	171
GD72E5	Д9В	147	HMG662	Д220Б	171
GPM2NA	Д2В	147	HMG662А	Д220Б	171
G1010	Д242	153	HMG663	Д220Б	171
CG84Н	КД503В	165	HMG904	КД521Г	166
COD1531	Д229Ж	151	HMG904А	КД521Г	166
COD1555	КД205Е	161	HMG907	КД521Г	166
COD1556	Д7Ж	148	HMG907А	КД521Г	166
CTN100	КД208А	152	HMG3596	КД521Г	166
CTP100	КД208А	152	HMG4322	КД509А	168
CY40	Д246Б	160	HMG626А	Д220	168
D2D	Д101	147	HMG4150	КД509А	168
D25C	КД205Г	153	HMG4319	КД521А	170
D100	Д229Ж	151	HMG3064	КД521А	170
DD003	КД205Г	154	HMG3598	КД521А	168
DD006	КД205Б	158	HMG3600	КД509А	168
DD056	КД205Б	158	HMG2873	КД509А	168
DD236	Д246Б	157	HR9	Д818А	174
DD266	Д246Б	160	HS2039	КС139А	172
DD4521	Д242	153	HS7033	КС133А	172
DD4526	Д246	160	HS9010	КД521Г	166
DK751	Д229Ж	151	HS9501	КД521А	170
DK752	КД205Л	155	HS9504	КД521А	170
DT230H1	Д225В	148	HS9507	КД521А	170
DR698	Д209	148	JЕ2	КД205Л	154
DR695	Д209	148	HS033А	КС133А	172
DR699	Д208	148	HS033Б	КС133А	172
E3B3	Д304	152	LAC2002	КС147А	173
E3E3	Д245Б	157	LDD5	КД521Б	169
E3H3	Д247Б	157	LDD10	КД521Б	169
E3K3	Д248Б	163	LDD15	КД521Б	169
E5A3	Д305	150	LDD50	КД521Б	169
E6B3	Д242	153	LR33H	КС133А	172
E6E3	Д245	157	M14	Д229В	150
E6M3	КД203Г	164	M1B1	КД208А	151
E6N3	КД210Б	164	M1B5	КД208А	151
EG100	КП205Б	158	M1B9	КД208А	151
ERD600	КД205Ж	163	M4HZ	Д229Е	158
ERD400	КД205Б	158	M500B	КД205Е	161
ESP5100	Д304	152	M500C	КД205А	161
ESP5300	Д245Б	157	M68	Д229Ж	151
F0100	КД509А	168	M69С	КД205Л	154
F1E3	Д245Б	157	M69С	КД205Г	153
F2B3	Д242	153	M70B	Д7Ж	148

Продолжение

1	2	3	1	2	3
M70C	КД205Б	158	MMC1001	КД521А	171
M71B	КД105В	149	MMC1002	КД521А	171
M72B	КД105Г	149	MMC1003	КД521А	171
MA215	КД205Б	158	MMC1004	КД521А	171
MA231	Д242	153	MMC1005	КД521А	171
MA232	Д243	155	MMC1007	КД521А	171
MA240	Д243	155	MR47С-Н	KC147A	173
MA4303	КД509А	168	MR80	МД217	149
MA4304	КД509А	168	MR90	МД218	149
MA4305	КД509А	168	MR100	МД218	149
MA4306	КД509А	168	MR1337-2	Д229Ж	151
MA4307	КД521А	170	MR1337-4	Д229К	157
MA4308	КД521А	170	MR1337-5	Д229Л	160
MB236	КД208А	151	MS5	Д305	150
MB253	Д229К	156	MT020А	КД205Г	153
MB254	Д229Л	159	MT030	КД205В	156
MB258	Д229Ж	151	MT030А	КД205В	156
MB259	КД205Г	153	MT040	КД205Б	158
MB260	КД205Л	154	MT040А	КД205Б	158
MB261	КД205В	156	MT050	КД205А	161
MB262	Д229К	156	MT050А	КД205А	161
MB263	КД205Б	158	MT060	КД205Ж	162
MB264	Д229Л	159	MT060А	КД205Ж	162
MB265	КД205А	161	MT14	Д229В	150
MB267	КД205Ж	162	MT44	Д229Е	158
MB270	Д229Ж	151	MT458	Д223Б	147
MB271	КД205Л	154	MT462А	КД103А	147
MB272	Д229К	156	MT705	КД521Б	169
MB273	Д229Л	159	MZ4А	KC147A	173
MC030	Д226В	148	MZ6А	KC168A	173
MC030A	Д226В	148	MZ1009	Д818А	174
MC51	Д226В	148	MZ4622	KC139A	172
MC52	КД521А	170	MZ4624	KC147A	172
MC53	КД521Г	167	MZC3	KC133A	172
MC55	КД521Б	169	P2K5	Д210	149
MC58	КД509А	168	P2M5	Д211	149
MC59	КД521Б	169	P4F5	КД204Б	153
MC108	КД509А	168	P4H5	Д7Ж	148
MC433	КД521А	170	P4HZ	Д246Б	161
MC903	КД509А	168	P6HZ	КД206В	163
MC903A	КД509А	168	P8HZ	КД210Б	164
MC905	КД521Г	167	P4K5	КД205Е	161
MC905A	КД521Г	167	P4M5	КД105В	149
MC906	КД521Г	167	P5D5	Д229В	150
MC906A	КД521Г	167	P5D5	Д229Е	158
MC908	КД509А	168	P6F5	КД205Г	153
MC908A	КД509А	168	P6K5	КД205А	161
MC5321	КД521Г	168	P6M5	КД205Ж	162
MC6010A	КД168А	173	P7G5	Д229К	156
MC6015A	Д811	175	P7H5	Д246Б	160
MCPD521A	КД521Б	169	P100A	Д229Ж	151
MCPD521B	КД521Б	169	P100B	КД208А	152
MCPD521C	КД521Б	169	P150B	КД208А	152
MGD73	КД521А	171	P400A	Д229Л	159
MGLA39A, В	KC139A	171	P200A	КД205Л	155
MHD611	КД521А	171	P665	КД205В	156
MHD612	КД521А	171	P1010	Д242	153
MHD614	КД521А	171	P2010	Д243	155
MHD615	КД521А	171	P3010	Д245	157
MHD616	КД509А	168	P5010	КД206Б	162
MK39С-Н	KC139A	172	P8010	КД210Б	164

Продолжение

1	2	3	1	2	3
PA05	Д305	150	R616	КД206В	164
PD116	МД218	149	RZ18	КС218Ж	175
PDI26	Д220Б	171	RZ22	КС222Ж	175
PD127	Д312А	169	RZZ11	КС211Ж	175
PD133	Д101	147	S1,5—0,1	КД208А	152
PD910	Д209	148	S2A—12	Д243	155
PD911	Д210	148	S2E60	КД205Ж	162
PD912	Д211	149	S5A1	Д304	152
PD914	МД217	149	S5A2	Д243Б	155
PD916	МД218	149	S5A3	Д245Б	157
PD915	МД218	149	S5A6	Д248Б	163
PD6004A	КС139А	172	S5AN12	КД206Б	162
PD5006A	КС147А	173	S6AN12	КД206В	164
PD6010	КД206В	164	S7AN12	КД203Г	164
PD6010A	КС168А	173	S8AN12	КД210Б	164
PD6045	КС139А	172	S15	КД205А	161
PD6047	КС147А	173	S18	КД205А	161
PD6051	КС168А	173	S18A	КД205А	161
PD6056	Д811	175	S19	Д7Ж	148
PD6202	КС147А	173	S20-06	Д248Б	163
PD6206	КС168	173	S23A	КД205Ж	162
PE10	Д304	152	S26	Д229К	157
PE20	Д243Б	155	S28	КД105Г	149
PE40	Д246Б	160	S30	КД205Ж	162
PE60	Д248Б	163	S31	КД205В	156
PT520	КД205Л	154	S83	Д229К	157
PS120	КД205Г	153	S92А	КД205Л	154
PS130	КД205В	156	S101	КД205Г	154
PS140	КД205Б	158	S106	Д7Ж	148
PS150	КД205А	161	S205	Д210	149
PS160	КД205Ж	162	S206	Д211	149
PS440	Д229Е	158	S208	МД217	149
PS632	Д226В	148	S210	МД218	149
PS633	Д226В	148	S219	Д7Ж	148
PS2415	Д211	149	S222	КД205Г	154
PS2416	МД217	149	S223	КД205В	156
PS2417	МД218	149	S234	КД105Г	149
PT530	Д229К	156	S252	КД205Г	154
PT540	Д229Л	159	S253	КД205В	156
G6HZ	КД206В	163	S256	КД105Ж	163
G8HZ	КД210Б	164	S125	КД206В	164
G6010	КД206В	163	S427	КД210Б	164
G8010	КД210Б	164	S65250	КД509А	168
Q12-200С	КД521Д	165	S2E20	КД205Г	153
Q12-200	КД521Д	165	S17	КД205Г	153
Q12-200Т	КД521Д	165	SJ104Е, К	Д242	153
Q12-300	КД521Д	165	SD11	Д101	147
Q12-300А	КД521Д	165	SD1A	КД205Ж	162
Q12-300В	КД521Д	165	SD17Z	КД205Г	154
GP330	КД521Г	165	SD91A	Д229Ж	151
GP350	КД509А	167	SD92A	КД205Л	155
GP360	КД521Б	169	SE05B	КД205Ж	162
QS5100	КД509А	167	SD93	Д229К	157
PX50	Д220	168	SJ103Е, К	Д304	152
PX100	Д220Б	171	SJ204Е, К	Д243	155
R421	Д243	155	SFD43	КД521Г	167
R602	Д243	155	SFD83	КД521Г	167
R604	Д246	161	SE05S	КД205Г	153
R606	КД206В	164	SE1.5SS	КД208А	152
R612	Д243	155	SV134	Д811	175
R614	Д246	161	SVM9021	Д818А	174

Продолжение

1	2	3	1	2	3
SG5200	КД521А	171	Z1C5,6	KC156А	173
SG5260	КД521А	171	Z1C11	Д811	175
SG203Е, К	Д243Б	155	Z1D6,8	KC168А	173
SM20	КД205Л	155	Z1C6,8	KC168А	173
SM230	Д229К	156	Z4A3,3	KC433А	176
SL3	Д245Б	157	Z4A3,9	KC439А	176
SW05B	КД205Ж	162	Z4A4,7	KC447А	176
SW05S	КД205Г	153	Z4B3,9	KC439А	176
SW1SS	КД205Л	155	Z4B4,7	KC447А	176
SW1S	Д229Ж	151	Z4C3,3	KC433А	176
SV13I	Д818А	174	Z4C3,9	KC439А	176
SVM905	Д818А	174	Z4C4,7	KC447А	176
SVM91	Д818А	174	Z4Д3,3	KC433А	170
SVM9010	Д818А	174	Z5Д3,3	KC133А	172
SVM9011	Д818А	174	Z5A3,3	KC133А	172
SVM9020	Д818А	174	Z5B3,3	KC133А	172
SZ9	Д818А	174	Z5C3,3	KC133А	172
SZ11	Д811	175	Z7,5	KC170А	174
TF24	Д226В	148	Z9,1	KC191А	174
TK20	КД205Л	155	Z10	KC210Б	174
TK40	Д229Л	159	Z11	KC211Ж	175
TMD45	Д207	148	Z15	KC215Ж	175
TS1	Д229Ж	151	Z22	KC222Ж	175
TS2	КД205Л	154	ZS24	Д209	148
TS+	Д229Л	159	ZC53	Д226В	148
UPI2069	КД205Л	154	ZS123	Д226В	148
UPI2070	Д229Л	159	ZF3,3	KC133А	172
UPI2070A	Д229Л	159	ZG3,3	KC133А	172
UR215	Д303	153	ZP3,3	KC133А	172
UT112	Д229Ж	151	ZR11	КД208А	152
UT113	КД205Л	154	ZR11Т	KД208А	152
UT114	Д229К	156	ZR20	Д305	150
UT115	Д229Л	159	ZR61	Д229Ж	151
UT212	Д229К	156	ZR62	КД205Л	154
UT213	Д229Л	159	ZR63	Д229К	156
URE100Х	Д304	152	ZR200	Д305	150
URF100X	Д304	152	ZS30А	KД204В	150
URG100X	Д304	152	ZS30В	KД204В	150
XSI0	Д229Ж	151	ZS21	Д207	148
XSI7	КД205Л	154	ZS22	Д208	148
Z1550	KC156А	173	ZS24	Д209	148
Z1555	KC156А	173	ZS140	KД512А	165
Z1560	KC156А	173	ZS171	Д229Ж	151
Z1565	KC156А	173	ZS172	КД205Л	154
Z1570	KC156А	173	ZS271	KД208А	152
ZIA5,6	KC156А	173	ZZ7,5	KC175А	174
ZIA6,8	KC168А	173	ZZ10	KC210Б	175
ZIA11	Д811	175	ZZ13	KC213Б	175
ZIB5,6	KC156А	173	ZZ22	KC222Ж	176
ZIB6,8	KC168А	173	ZZ15	KC215Ж	175
ZIB11	Д811	175			

**АНАТОЛИЙ ВЛАДИМИРОВИЧ НЕФЕДОВ
ВАЛЕНТИНА ИВАНОВНА ГОРДЕЕВА**

**Отечественные полупроводниковые приборы
и их зарубежные аналоги**

Редактор Н. Н. Горюнов

Редактор издательства И. Н. Суслова

Обложка художника Н. Т. Ярешко

Технический редактор Н. А. Галанчева

Корректор З. Б. Драновская

ИБ № 21

Сдано в набор 28.10.77. Подписано к печати 17.05.78. Т-10359.
Формат 84×108 $\frac{1}{2}$. Бумага типографская № 1 $\frac{1}{2}$. Гарн. шрифта
литературная. Печать высокая. Усл. печ. л. 10,92. Уч.-изд. л.
17,59. Тираж 120 000 экз. Зак. № 341. Цена 95 коп.

Издательство «Энергия», Москва, М-114, Шлюзовая наб., 10

Владimirская типография Союзполиграфпрома
при Государственном комитете Совета Министров СССР
по делам издательств, полиграфии и книжной торговли
600000, гор. Владимир, Октябрьский проспект, д. 7

95 κ.