

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 02148561 A

(43) Date of publication of application: 07 . 06 . 90

(51) Int. CI H01J 61/88

(21) Application number: 01098984 (71) Applicant: PHILIPS GLOEILAMPENFAB:NV
(22) Date of filing: 20 . 04 . 89 (72) Inventor: FISCHER HANNS E HOERSTER HORST

(54) HIGH PRESSURE MERCURY VAPOR DISCHARGE LAMP

(57) Abstract:

PURPOSE: To enhance color rendering properties and extend life by specifying the amount of mercury, mercury vapor pressure, tube wall load, and the μ mol/ mm³ of at least one of halogen Cl. Br, or l.

CONSTITUTION: The amount of mercury, memory vapor pressure, tube wall load, and the µmol/mm³ of at least one of halogen Cl, Br, or I are specified. The amount of

mercury is 0.2mg/mm³ or more, the mercury vapor pressure is 200bar or more, the tube wall load is 1w/mm² or more, and at least one of halogen Cl, Br, or I is between 10-6 and 10-4μmol. Further the upper limit of the mercury vapor pressure, although affected by the strength of container material, is actually about 400bar. The amount of mercury is between 0.2 and 0.35mg/mm³, and the mercury vapor pressure is between 200 and 350bar.

COPYRIGHT: (C)1990,JPO

®日本国特許庁(JP)

① 特許出願公開

② 公開特許公報(A) 平2-148561

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成2年(1990)6月7日

H 01 J 61/88

C 8943-5C

審査請求 未請求 請求項の数 3 (全5頁)

匈発明の名称 高圧水銀蒸気放電ランプ

②特 願 平1-98984

②出 願 平1(1989)4月20日

優先権主張 301988年4月21日30西ドイツ(DE)30P3813421.7

@発 明 者 ハンス・エルンスト・ ドイツ連邦共和国5190 シユトルベルク アウフ デ へ

フイツシヤー ーエ82

⑫発 明 者 ホルスト・ホルスター ドイツ連邦共和国5106 レトゲン フォーゲルザンクシュ

トラーセ11

の出 願 人 エヌ・ベー・フィリツ オランダ国5621 ベーアー アインドーフエン フルーネ

プス・フルーイランペ パウツウエツハ1

ンフアプリケン

⑩代 理 人 弁理士 杉村 暁秀 外1名

明 細 書

- 1.発明の名称 高圧水銀蒸気放電ランプ
- 2.特許請求の範囲
 - 1. タングステン電極と、実質的に水銀、希ガスおよび動作状態における遊離ハロゲンより成る封入物とを有する、高温に耐えることのできる材料より成る容器を有する高圧水銀蒸気放電ランプにおいて、水銀の量は0.2 mm²より多く、水銀蒸気圧は200 バールよりも高く、管壁負荷は1 w/mm²よりも大きく、またハロゲンC1、Brまたは1の少なくとも1つが10-4と10-4 μ mol / mm²の間で存することを特徴とする高圧水銀蒸気放電ランプ。
 - 水銀の量は0.2 と0.35 mg/mm³ の間にあり、 動作時の水銀蒸気圧は200 と350 パールの間 にある請求項1記載の高圧水銀蒸気放電ランプ。
 - 3. ランプは脊放射線を阻止するフィルタで取 囲まれた請求項1または2記載の高圧水銀蒸 気放電ランプ。

3.発明の詳細な説明

(産業上の利用分野)

本発明は、タングステン電極と、実質的に水銀、 希ガスおよび動作状態における遊離ハロゲンより 成る封入物とを有する、高温に耐えることのでき る材料より成る容器を有する高圧水銀蒸気放電ラ ンプに関するものである。

(従来の技術)

ドイツ国特許公告公報第1489417 号より知られた超高圧水銀蒸気放電ランプは、55 mm² の容積を有する細長い石英ガラス容器を有している。この容器には希ガスと6.5 wの水銀が封入され、これは0.12 mg/mm² の水銀量に相当する。水銀蒸気とは約120 パールになることができる。このラかをは約14.5 w/mm² のパワー密度を有する。奔命をは14.5 w/mm² のパワー密度を有する。奔命を却されるだけでなく更に mm² 当たり5・10-4から5・10-2 g・atoms のパロゲンの少なくとも1つが容器に入れられる。

このようなランプは約120 パールの水銀蒸気圧

で高い輝度を生じるが、典型的な水銀スペクトル を生じ、このスペクトルは、連続スペクトルに重 畳され且つ小さな赤部分を有する。

(発明が解決しようとする課題)

本発明は、高い輝度と十分な光出力だけでなく 更に改良された演色性と長い寿命も有する冒頭記 載の種類の高圧水銀蒸気放電ランプを供すること をその目的とするものである。

の動作圧力では、可視放射の連続部分は明らかに 50%の上にある。その結果、放射された光スペク トルの赤部分も増される。

この高い水銀葱気圧を達成するために、容器は高い壁温(約1000℃)を有せねばならない。その上、ランプ容器は、できるだけこの高温に耐えるようにできるだけ小さく選ばれる。高い温度と小さな容器は、少なくとも1w/m²の高い管壁負荷によって反映される。容器は石英ガラスかまたは酸化アルミニウムより成るのが有効である。

水銀蒸気圧の上限は容器の材料の強度に左右されるが、実際上は約400 バールである。水銀の量は0.2 と0.35 m/m³ の間にあり、水銀蒸気圧は200 と350 バールの間にある。

電極の非常に小さな寸法は、電極から蒸発した タングステンによる容器壁の黒化の増加をきたす おそれがある。けれども、このような容器の黒化 は絶対に避けねばならない、というのは、さもな ければ壁温が熱放射の吸収の増加のために寿命中 に高くなり、ランプ容器の破裂をきたすからであ (課題を解決するための手段)

本発明は、冒頭に記載した種類の高圧水銀落気放電ランプにおいて、水銀の量は0.2 mg/mm³ より多く、水銀落気圧は200 バールよりも高く、管壁負荷は1 w/mm³ よりも大きく、またハロゲンCI、Brまたは I の少なくとも 1 つが10⁻゚と10⁻゚μ mol /mm³ の間で存するようにすることにより前記の目的を達成したものである。

略々150 パールの水銀蒸気圧迄は高圧水銀ランプの光出力と演色特性は実質上一定である、というのは、本質的に、電子と水銀原子の再結合に基因する水銀の線放射(line radiation)と連続放射部分とが放出されるからである。驚くべきことは、より高い水銀蒸気圧では光出力と演色評価数が著しく増加することがわかったが、これは連続部分の猛烈な増加によるものである。200 パールよりも大きな高い圧力では、準分子状態(guasimolecular state)よりの連続放射のほかに、実際の束縛分子状態(bound molecule state)の帯放射も寄与するものと考えられる。約300 パール

る。タングステンの輸送によるこのような容器壁の黒化を避ける手段として、本発明の高圧水銀蒸気放電ランプは、ハロゲンCI、Brまたは「の少なくとも1つの少量を有する。これ等のハロゲンはタングステン輸送サイクルを生じ、これにより、蒸発したタングステンは電極に戻される。

本発明の高圧水銀蒸気放電ランプでは、使用されるハロゲンは臭素(Br)であるのが有効で、この臭素は、約0.1 ミリバールの封入圧力でCHzBrzの形でランプに入れられる。この化合物は、ランプが点灯すると同時に分解される。

本発明の高圧水銀蒸気放電ランプは金属ハロゲン化物を含まない。その理由は、放射の連続部分の増加には非常に大きな金属ハロゲンと輸送速度の必要とするので、大きなタングステン輸送速度のために電極の極めて速い腐食が生じることになるからである。例えば英国特許明細想第1109135 号に記載されたような高負荷メタルハライドランプにはしたがって数100 時間の寿命しか得られないのが典型であるが、本発明のランプでは、実質上一

定の出力(Δ くく 2 %)と実質上不変の色座標(5000時間の間 Δ x、 Δ y < 0.05)を有する5000時間以上の寿命を得ることができる。この場合くは効率、x および y は色座標である。

本発明のランプは8000 k よりも大きな色温度を有する。色温度と演色性は、本発明の放電ランプにおいて、ランプを、骨放射を阻止するフィルタで取囲むことにより更に改良することができる。

 の演色評価数を有する白色光の放射を得ることが できる。

(実施例)

以下に図面を参照して本発明を実施例で説明する。

第1図に示した高圧水級蒸気放電ランプ1は石 英ガラスの長円形のランプ容器2を有する。この 容器両端には円筒状石英部分3および4が続き、 これ等の部分内にはモリブデン箔5および6が真 空気密にシールされている。モリブデン箔5と6 の内端はタングステンの電極ピン7と8に連結され、これ等の電極ピンはタングステンの電極9と 10を支持している。モリブデン箔5と6の外端は、 外部に延在するモリブデンの電流供給ワイヤ11と 12に連結されている。

第2図に示した高圧水銀蒸気放電ランプは第1 図に示したランプと同様に構成されている。もっとも、ランプ容器14は円筒状である。ランプ13は 石英ガラスの外部容器15で取囲まれ、この外部容器はその内側を干渉フィルタ16で被覆されている。

この干渉フィルタ16は、ランプ13で放出された育い放射を減らす役をする。

幾つかの実際的な具体例のデータを示すと次の 通りである。

1/1

1.8 mの壁厚を有する第1図の長円形ランプ容器において、内部寸法および動作データは、

5 2	Kav.C. Neb	り伝わるひ切作ナータは、
	長さ	7 100
	直径	2.5 mm
	容器容積	23 mm²
	電極ギャップ	1.2 mm
	封入水银	Hg 6 mm (0.261 mg/mm ²)
	ハロゲン	CH ₂ Br ₂ 5 · 10 ⁻⁶ µ mol
		(βr/mm ³ 10 -5 μ mol)
	動作圧力	約 200 bar
	電力	50W
	動作電圧	76 V
	光出力	58 1m/w
	質壁負荷	1.30W/mm *

14 2

1.7 mの壁厚を有する第1図の長方形ランプ容器において、内部寸法および動作データは、

きみ	5 mm
直径	2.5 mm
容器容積	16.5 mm ³
位極ギャップ	1.0 500
封入水银	Hg 4 mg (0.243 mg/mm ³)
ハロゲン	CH ₂ Br ₂ 5 - 10 - 4 µ mol/mm ²
動作圧力	≱勺 220 bar
電力	4 O W
動作電圧	80 V
光出力	56 lm/w
管壁負荷	1.30W/mms *

₩ 3

外部容器なしの、1.3 mmの壁厚を有する第2図の円筒状ランプ容器。内部寸法および動作データは、

長さ	4 ma
直径	1.5 mm

特開平2-148561(4)

容器容積 7 mm³ 電極ギャップ 1.0 mm

封入水銀 Hg 2.5 mg (0.357 mg/mm³) ハロゲン CH₂Br 5 · 10⁻⁴ μ mol/mm³

動作圧力 300 bar

電力 30₩

動作電圧 92V

光出力 60 lm/w

管壁負荷 1.36W/mm *

以上述べたランプは8000 k よりも高い色温度を有する。けれども、演色性は、低い動作圧力を有するランプにくらべて著しく改良される。例えば、演色評価数Raは、前述の3つのランプに対しては51.5、55.2および61.6であるが、これに対し100パールの動作圧力の同様のランプでは32.7の演色評価数しか得られなかった。

第3図には、桝2のランプで放出された光スペクトルが波長に対する強さ「としてブロットされている。この図より、可視放射の連続部分・

ドランプでは数100 時間の寿命が得られるが、本 発明のランプは5000時間以上の動作時間の後でも 実質上何等の変化も示さない。 (continuum part) は約50%にあることがわかる。

第2図に示したランプでは、干渉フィルタ16は 例えば2r0 *で変成された二酸化チタンと非晶質二 酸化珪素の層の交互の連続より成る。実際の具体 例では、使用されたフィルタは第4図に被長人の 関数として示された透過度下。を有した。この場 合次のような光学技術データが見出された。

フィルタ無し: 色温度:8580k

演色評価数:55.2

光出力:561m/w

フィルタ有り: 色温度:5500k

演色評価数:69.7

光出力:481m/w

このことから、干渉フィルタによって、色温度 が著しく低波されるだけでなく更に演色評価数も 著しく改良されたことがわかる。

匹敵し得る高負荷メタルハライドランプに対し、本発明のランプは光学技術データの極めて高い不 変性すなわち動作時の間の殆ど変わらない光出力 と非常に長い寿命を有する。高負荷メタルハライ

4. 図面の簡単な説明

第1図は本発明の高圧水銀蒸気放電ランプの一 実施例を示す略線図、

第2図は別の実施例を示す略線図、

第3図は200 パールよりも大きな水銀蒸気圧に ある高圧水銀蒸気放電ランプの放射光スペクトル、 第4図は第2図に示したランプに使用されたフィルタの透過スペクトルを示す。

- 2, 14…ランプ容器
- 3, 4 … 円筒状石英部分
- 5. 6…モリプデン箱
- 7, 8…電極ピン
- 9,10…電極
- 15…外部容器
- 16…干渉フィルタ。

