# MACHINE LEARNING IN BIOINFORMATICS

# FROM LINEAR REGRESSION TO KERNEL REGRESSION

Philipp Benner philipp.benner@bam.de

S.3 - eScience Federal Institute for Materials Research and Testing (BAM)

June 25, 2023

### **MOTIVATION**

- Solid understanding of linear regression allows us to understand many aspects of complex models, including neural networks
- Many models can be derived from linear regression, including polynomial, kernel, and logistic regression, as well as neural networks
- We start from a Bayesian perspective and show how to derive the linear regression model and a method for parameter estimation with a specific focus on model assumptions

### **BAYES THEOREM**

Bayes theorem:

$$\operatorname{pr}(H \,|\, X) = \frac{\operatorname{pr}(X \,|\, H) \operatorname{pr}(H)}{\operatorname{pr}(X)}$$

where pr(H|X) is the posterior distribution of a hypothesis H given observed data X, pr(X|H) the likelihood, pr(H) the prior distribution, and pr(X) the marginal likelihood

- *H* is our hypothesis and can take many forms, e.g.
  - ▶ In case of the spam classifier we had H = 'spam'
  - ► H can also refer to the parameter of a distribution, e.g. when we want to estimate the mean of a normal distribution
- In any case, probabilities depend on our model assumptions and therefore are a subjective choice

Let **Y** be the dependent variable (response variable) and **X** the independent variable (covariate, or predictor):



We assume the following model

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$

where f is a linear function that models the expectation  $\mathbb{E}[Y | X]$ , and  $\epsilon$  is a noise term (e.g.  $\epsilon \sim \text{Normal}(O, \sigma^2)$ )

Let **Y** be the dependent variable (response variable) and **X** the independent variable (covariate, or predictor):



We assume the following model

$$\mathbf{Y} = f(\mathbf{X}) + \epsilon$$

where f is a linear function that models the expectation  $\mathbb{E}[Y | X]$ , and  $\epsilon$  is a noise term (e.g.  $\epsilon \sim \text{Normal}(O, \sigma^2)$ )

- We can also write  $\mathbf{Y} \sim \text{Normal}(f(\mathbf{X}), \sigma^2)$
- We assume no distribution for X
- $\blacksquare$  We assume f is a linear function, i.e.

$$f(x) = ax + b$$

- How can we generate data  $(x_i, y_i)_i$  with this model?
  - For  $i = 1, \ldots, n$ :
    - $\blacksquare$  Select some value for  $x_i$
    - Draw  $\epsilon_i$  from Normal(0, $\sigma^2$ )
    - Compute  $y_i = f(x_i) + \epsilon_i$

### **LINEAR REGRESSION - PARAMETER ESTIMATION**

- In the Bayesian framework, parameters are estimated using the posterior distribution
- We want to know the probability of our hypothesis or parameters  $\theta = (a, b)$  given a set of n observations  $x = (x_i)_{i=1}^n$  and  $y = (x_i)_{i=1}^n$
- An estimate  $\hat{\theta}$  of our parameters  $\theta$  can be computed as the maximum a posterior (MAP) estimate

$$\hat{\theta} = \underset{\theta}{\operatorname{arg\,max}} \operatorname{pr}(\theta \,|\, \mathbf{X}, \mathbf{y})$$

- There are other choices, for instance the *posterior* expectation, which all have their justifications
- We use the MAP for linear regression, because it leads to a computationally simple solution

### **LINEAR REGRESSION - PARAMETER ESTIMATION**

■ For a flat prior, the MAP is equivalent to the maximum likelihood estimate (MLE), i.e.

$$\begin{split} \hat{\theta} &= \underset{\theta}{\text{arg max}} & \operatorname{pr}(\theta \,|\, x, y) \\ &= \underset{\theta}{\text{arg max}} & \frac{\operatorname{pr}(x, y \,|\, \theta) \operatorname{pr}(\theta)}{\operatorname{pr}(x, y)} \\ &= \underset{\theta}{\text{arg max}} & \operatorname{pr}(x, y \,|\, \theta) \operatorname{pr}(\theta) \\ &= \underset{\theta}{\text{arg max}} & \operatorname{pr}(x, y \,|\, \theta) \end{split}$$

assuming  $pr(\theta)$  is constant<sup>1</sup>

■ This result is not specific to linear regression models

<sup>&</sup>lt;sup>1</sup>A uniform prior  $pr(\theta)$  is called *improper prior* when  $\theta$  is a continuous variable, because  $pr(\theta)$  does not integrate to one

# LINEAR REGRESSION - PARAMETER ESTIMATION

Furthermore, we have

$$\hat{\theta} = \underset{\theta}{\operatorname{arg \, max \, pr}(x, y \mid \theta)}$$

$$= \underset{\theta}{\operatorname{arg \, max \, pr}(y \mid x, \theta)} \operatorname{pr}(x \mid \theta)$$

$$= \underset{\theta}{\operatorname{arg \, max \, pr}(y \mid x, \theta)}$$

- In the last step we took advantage of the fact that the distribution of our covariates x does not depend on the parameters  $\theta$ , which are the slope and intercept of the linear function
- In fact, we do not have do assume a particular distribution for our covariates!

### **LINEAR REGRESSION - OLS**

Plugging in our normal distribution we arrive at

$$\begin{split} \hat{\theta} &= \arg\max_{\theta} \Pr(y_1 \dots y_n \,|\, X_1, \dots, X_n, \theta) \\ &= \arg\max_{\theta} \prod_{i=1}^n \Pr(y_i \,|\, X_i, \theta) \\ &= \arg\max_{\theta} \sum_{i=1}^n \log \Pr(y_i \,|\, X_i, \theta) \\ &= \arg\max_{\theta} \sum_{i=1}^n \log \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(y_i - f(X_i))^2}{2\sigma^2}\right\} \\ &= \arg\max_{\theta} \sum_{i=1}^n -(y_i - f(X_i))^2 \end{split}$$

# **LINEAR REGRESSION - OLS**

■ The estimate

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$= \arg\min_{\theta} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

is called the ordinary least squares (OLS) estimate

- It minimizes the squared error between our prediction  $\hat{y}_i$  and our observations  $y_i$
- In other words, it minimizes the squared residuals  $\epsilon_i = y_i f(x_i)$

### LINEAR REGRESSION - GENERALIZATION

For generalizing linear regression to multiple predictors, we first define

$$X = \begin{bmatrix} 1 \\ \tilde{X} \end{bmatrix}$$
,  $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ 

i.e. x is a vector where the first component is always 1

■ This definition allows to write

$$f(x) = b + a\tilde{x}$$

$$= \theta_1 + \theta_2 \tilde{x}$$

$$= \begin{bmatrix} 1 \\ \tilde{x} \end{bmatrix}^{\top} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$$

$$= x^{\top} \theta$$

### LINEAR REGRESSION - GENERALIZATION

Adding additional predictors is now very simple

$$X = \begin{bmatrix} 1 \\ X^{(2)} \\ \vdots \\ X^{(p)} \end{bmatrix}, \qquad \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix}$$

- The number of predictors / features is given by p, where the first predictor is  $(1, 1, ..., 1)^{\top}$
- It follows that

$$f(x) = x^{\top} \theta$$
  
=  $\theta_1 + x^{(2)} \theta_2 + \dots + x^{(p)} \theta_p$ 

### **LINEAR REGRESSION - NOTATION**

- $\blacksquare$  In general, we have n observations and p predictors
- For the *i*th observation  $(x_i, y_i)$ ,  $y_i$  is a scalar and  $x_i$  a vector

$$X_i = (1, X_i^{(2)}, \dots, X_i^{(p)})^{\top}$$

We define the matrix

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \dots & x_1^{(p)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ x_n^{(1)} & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(2)} & \dots & x_1^{(p)} \\ 1 & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix}$$

### **LINEAR REGRESSION - NOTATION**

■ This notation allows us to write linear regression as

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_1^{(2)} & \dots & x_1^{(p)} \\ 1 & x_2^{(2)} & \dots & x_2^{(p)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_n^{(2)} & \dots & x_n^{(p)} \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_p \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

Or in matrix notation simply as

$$y = X\theta + \epsilon$$

### Data matrix X

For a data matrix  $X \in \mathbb{R}^{n \times p}$ , rows will always correspond to observations and columns correspond to features. The first column is the vector  $(1, 1, \dots, 1)^{\top}$ . We always assume that X has full rank, i.e.  $\operatorname{rank}(X) = \min(n, p)$ 

### **LINEAR REGRESSION - OLS**

If n > p and  $X^TX$  has full rank we can use ordinary least squared (OLS) to estimate  $\theta$ :

$$\hat{\theta} = \mathop{\arg\min}_{\theta} \left\| \epsilon \right\|_{\mathbf{2}}^{2} = \mathop{\arg\min}_{\theta} \left\| \mathbf{y} - \mathbf{X} \theta \right\|_{\mathbf{2}}^{2}$$

Differentiation with respect to  $\theta$  and solving for the roots leads to:

$$\Rightarrow \hat{\theta} = (X^{\top}X)^{-1}X^{\top}y$$
$$= X^{\top}y \qquad \text{if } X^{\top}X = I$$

 $X(X^{T}X)^{-1}X^{T}$  is called a projection matrix...

# **LINEAR REGRESSION - OLS PROJECTION**

Let  $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$ , where  $v_i$  denotes the *i*th column of X

$$\hat{\theta} = \arg\min_{\theta} \|\mathbf{y} - \mathbf{X}\theta\|_{2}^{2}$$



 $X(X^{\top}X)^{-1}X^{\top}y$  projects y onto the plane defined by the columns of X

<sup>&</sup>lt;sup>1</sup>[Hastie et al., 2009]

# **LINEAR REGRESSION - OLS PROJECTION**

Let  $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$ , where  $v_i$  denotes the *i*th column of X

$$\hat{\theta} = \arg\min_{\theta} \|y - X\theta\|_2^2$$

$$\mathbb{R}^n \ (n=3, p=2)$$



If y is already inside the plane, we obtain  $\epsilon = 0$ 

<sup>&</sup>lt;sup>1</sup>[Hastie et al., 2009]

# **LINEAR REGRESSION - OLS PROJECTION**

Let  $X\theta = v_1\theta_1 + v_2\theta_2 + \dots v_p\theta_p$ , where  $v_i$  denotes the ith column of X

$$\hat{\theta} = \operatorname*{arg\,min}_{\theta} \| \mathbf{y} - \mathbf{X} \boldsymbol{\theta} \|_{2}^{2}$$



If  $p \ge n$  then  $\epsilon = 0$  and for p > n we have infinitely many solutions (assuming  $v_i$  are pairwise independent)

<sup>&</sup>lt;sup>1</sup>[Hastie et al., 2009]

■ For p > n the OLS estimate

$$\hat{\theta} = \arg\min_{\theta} \|y - X\theta\|_2^2$$

has infinitely many solution  $\hat{\theta}$  such that  $\left\| y - X \hat{\theta} \right\|_{2}^{2} = 0!$ 

■ For p > n the OLS estimate

$$\hat{\theta} = \arg\min_{\theta} \|y - X\theta\|_2^2$$

has infinitely many solution  $\hat{\theta}$  such that  $\left\| y - X \hat{\theta} \right\|_{2}^{2} = 0!$ 

■ Which one should we choose?

■ For p > n the OLS estimate

$$\hat{\theta} = \arg\min_{\theta} \|y - X\theta\|_2^2$$

has infinitely many solution  $\hat{\theta}$  such that  $\|y - X\hat{\theta}\|_{2}^{2} = 0!$ 

- Which one should we choose?
- Remember our initial model

$$y = X\theta + \epsilon$$

and yet the estimate  $\hat{\theta}$  satisfies  $y = X\hat{\theta}$ 

■ For p > n the OLS estimate

$$\hat{\theta} = \arg\min_{\theta} \|y - X\theta\|_2^2$$

has infinitely many solution  $\hat{\theta}$  such that  $\|y - X\hat{\theta}\|_2^2 = 0!$ 

- Which one should we choose?
- Remember our initial model

$$y = X\theta + \epsilon$$

and yet the estimate  $\hat{\theta}$  satisfies  $y = X\hat{\theta}$ 

■ Either  $\epsilon = \mathbf{0}$  or  $\hat{\theta}$  contains all the noise

For instance, we could take that  $\theta$  with minimal length, i.e. the minimum  $\ell_2$ -norm solution<sup>2</sup>

$$\underset{\theta}{\arg\min} \ \|\theta\|_2^2$$
 subject to  $X\theta=y$ 

The solution is almost equivalent to the standard OLS solution, i.e.

$$\hat{\theta} = (X^{\top}X)^{+}X^{\top}y$$

where  $(X^{T}X)^{+}$  Moore-Penrose pseudoinverse<sup>3</sup> of  $X^{T}X$ .

<sup>&</sup>lt;sup>2</sup>Common practice for training neural networks

<sup>&</sup>lt;sup>3</sup>The Moore-Penrose pseudoinverse of a matrix X is computed as follows: Let  $X = S\Sigma V^{\top}$  be the singular value decomposition of X, where  $\Sigma$  is a diagonal matrix containing the singular values.  $X^+ = S\Sigma^+ V^{\top}$  where  $\Sigma^+$  contains the reciprocal of all non-zero singular values.

### **LINEAR REGRESSION - RIDGE REGRESSION**

# **Ridge Regression**

The ridge regression estimate is defined as

$$\hat{\theta}(\lambda) = \underset{\theta}{\arg\min} \ \|X\theta - y\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

where  $\lambda$  is called the *regularization strength* or *penalty*. Note that  $\|\theta\|_2^2 = \sum_{i=2}^n \theta_i^2$ , i.e.  $\theta_1$  is not constrained

■ There exists an analytical solution to the ridge estimate:

$$\hat{\theta}(\lambda) = (X^{\top}X + \lambda I)^{-1}X^{\top}y$$

■ In the overparameterized case, for  $\lambda > 0$  we obtain  $\|\epsilon\|_2^2 > 0$ 

<sup>&</sup>lt;sup>3</sup>Convex optimization: [Boyd and Vandenberghe, 2004]

### **LINEAR REGRESSION - RIDGE REGRESSION**

- For  $\lambda \to \infty$  the estimate  $\lambda \hat{\theta}(\lambda)$  converges to the componentwise regression estimator
- For  $\lambda \to 0$  the estimate  $\hat{\theta}(\lambda)$  converges to the minimum  $\ell_2$ -norm OLS solution<sup>4</sup>
- The penalty  $\lambda \|\theta\|_2^2$  can be interpreted as a Gaussian prior
- **Ridge regression is useful when** n < p **and**  $n \ge p$

 $<sup>^4</sup>$ A +  $\lambda I$  is invertible even for very small  $\lambda$ . In numerics, A +  $\lambda I$  is also used as a trick to ensure that a matrix is positive-definite.

# POLYNOMIAL REGRESSION

■ How can we change linear regression to model non-linear relations between **X** and **Y**?



# REGRESSION IN FEATURE SPACE

Polynomial regression

$$\mathbf{Y} = \theta_1 + \theta_2 \mathbf{X} + \theta_3 \mathbf{X}^2 + \theta_4 \mathbf{X}^3 + \dots + \epsilon,$$

More generally, we write

$$\mathbf{Y} = \phi(\mathbf{X})\theta + \epsilon \,,$$

where  $\phi: \mathbb{R}^p \to \mathbb{R}^{p'}$  is a feature map that maps points in p-dimensional input space into a p'-dimensional feature space, e.g.

$$\phi(\mathbf{X}) = (\mathbf{1}, \mathbf{X}, \mathbf{X}^2, \mathbf{X}^3, \dots)$$

Basically linear (or ridge) regression in p'-dimensional feature space, but non-linear in input space

- What if we do not know the exact set of features for our data?
- Can we simply test a large amount of possible features?
- $\blacksquare$  Can we have more features than observations, i.e.  $n \le p$ ?

Ridge regression in feature space:

$$\hat{\theta}(\lambda) = \underset{\theta}{\arg\min} \ \|\phi(\mathbf{X})\theta - \mathbf{y}\|_{2}^{2} + \lambda \|\theta\|_{2}^{2}$$

where  $\phi$  is applied to each row of X, i.e.  $\phi(X) \in \mathbb{R}^{n \times p'}$ .

Computationally expensive if  $p'\gg p$  and  $n\gg$  1, assuming X is not sparse.

Reformulate the ridge regression estimate

$$\hat{\theta}(\lambda) = \mathop{\arg\min}_{\theta} \ \|\phi(\mathbf{X})\theta - \mathbf{y}\|_{\mathbf{2}}^{2} + \lambda \, \|\theta\|_{\mathbf{2}}^{2}$$

using kernels. Let  $\theta = \phi(X)^{\top} \eta$ , where  $\eta \in \mathbb{R}^n$  is a new parameter vector and  $\theta \in \text{span}(\phi(x_1), \dots, \phi(x_n)) \subset \mathbb{R}^p$ . It follows that

$$\hat{\eta}(\lambda) = \underset{\eta}{\operatorname{arg\,min}} \ \left\| \phi(X)\phi(X)^{\top}\eta - y \right\|_{2}^{2} + \lambda \left\| \phi(X)^{\top}\eta \right\|_{2}^{2}$$
$$= \underset{\eta}{\operatorname{arg\,min}} \ \left\| K\eta - y \right\|_{2}^{2} + \lambda \eta^{\top}K\eta$$

where  $K = \phi(X)\phi(X)^{\top} \in \mathbb{R}^{n \times n}$  is the kernel matrix.

### **Definition: Kernel function**

A function  $\kappa: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$  is called a *kernel* if there exists a feature map  $\phi: \mathcal{X} \to \mathcal{F}$  such that

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j)$$

 $K = (\kappa(x_i, x_j))_{x_i \in \mathcal{X}, x_i \in \mathcal{X}}$  is called the kernel matrix.

- lacktriangle  $\mathcal X$  can be an arbitrary space, for instance DNA sequences
- $\kappa(x_i, x_j)$  is interpreted as a similarity measure in feature space
- Evaluating  $\kappa(x_i, x_j)$  does not always require to explicitly compute  $\phi(x)$
- Not having to map data into feature space is called the kernel trick

### **EXAMPLE KERNELS**

Linear kernel

$$\kappa(\mathbf{x}_i, \mathbf{x}_i) = \mathbf{x}_i^{\top} \mathbf{x}_i$$
, where  $\phi(\mathbf{x}) = \mathbf{x}$ 

■ Polynomial kernel

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^{\top} \mathbf{x}_j + \mathbf{1})^d$$

where d > 0 is the degree. For  $\mathcal{X} = \mathbb{R}^2$  and d = 2

$$\phi(\mathbf{x}) = (1, \sqrt{2}\mathbf{x}_1, \sqrt{2}\mathbf{x}_2, \mathbf{x}_1^2, \mathbf{x}_2^2, \sqrt{2}\mathbf{x}_1\mathbf{x}_2)^{\top}$$

■ Radial basis function (RBF) kernel

$$\kappa(\mathbf{X}_i, \mathbf{X}_j) = \exp\left(-\frac{\left\|\mathbf{X}_i - \mathbf{X}_j\right\|_2^2}{2\sigma^2}\right)$$

where the feature space has infinite dimensions

### **PREDICTIONS**

Let  $x_{\text{new}}$  denote the position where we would like to compute a prediction  $\hat{y}$ 

■ Linear Regression

$$\hat{\mathbf{y}} = \phi(\mathbf{x}_{\mathsf{new}})^{\top} \hat{\theta}$$

Kernel Regression

$$\hat{\mathbf{y}} = \sum_{i=1}^{n} \kappa(\mathbf{x}_i, \mathbf{x}_{\text{new}}) \hat{\eta}_i = \phi(\mathbf{x}_{\text{new}})^{\top} \phi(\mathbf{X})^{\top} \hat{\eta}$$

which requires the full training set  $X = (x_i)_i \in \mathbb{R}^{n \times p}$ , where we simply used the definition  $\theta = \phi(X)^{\top} \eta$  to replace  $\hat{\theta}$  in the prediction of the linear regression model

26 3.

# PARAMETERS AND HYPERPARAMETERS

- lacktriangle We call heta and  $\eta$  the parameters of a (kernel) regression model
- The parameters of a kernel function (e.g.  $\sigma^2$  for the RBF kernel) or the regularization strength  $\lambda$  are also parameters of the model, but one step further up the hierarchy
- We call the parameters of a kernel function and the regularization strength <a href="https://hyperparameters">hyperparameters</a>
- In a Bayesian setting, the parameters control the likelihood function, whereas the hyperparameters parametrize the prior distribution

### **KERNEL REGRESSION - PROS AND CONS**

#### Pros:

- Computationally efficient regression for high-dimensional feature spaces for moderate data sets
- Implicit regularization, i.e. only as many parameters as data points (but equivalent to minimum  $\ell_2$ -norm solution of standard regression)

#### Cons:

- Kernel matrix grows quadratically with number of samples
- $m{\theta} \in \mathbb{R}^p \leadsto \eta \in \mathbb{R}^n$ , which creates dependencies between features
- Interpretation of parameters in feature space requires computation of  $\phi(\mathbf{X})^{\top}\eta$
- $\blacksquare$  For infinite feature spaces  $\phi$  cannot be computed
- No feature selection possible ( $\ell_1$  penalty)

28

Kernel matrix grows quadratically with the number of data points, which prevents kernel methods to be applied to large data sets.

Basic idea<sup>5</sup>: Define a mapping  $\xi:\mathcal{X}\to\mathbb{R}^q$  with  $q\ll p$  such that

$$\kappa(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^{\top} \phi(\mathbf{x}_j) \approx \xi(\mathbf{x}_i)^{\top} \xi(\mathbf{x}_j)$$

Regression can then be performed in  $\mathbb{R}^q$  after explicitly mapping each data point to the reduced feature space.

How do we compute  $\xi$ ?

<sup>&</sup>lt;sup>5</sup>[Rahimi et al., 2007]

#### Bochner's theorem

A continuous shift-invariant kernel  $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$  with  $\kappa(x_i, x_j) = \kappa(x_i - x_j)$  is positive definite iff there exists a non-negative measure  $\mu$  such that

$$\kappa(\mathbf{x}_i - \mathbf{x}_j) = \int_{\mathbb{R}^d} \exp\left(i\omega^\top(\mathbf{x}_i - \mathbf{x}_j)\right) d\mu(\omega)$$
  
=  $\mathbb{E}_{\omega} \exp(i\omega^\top(\mathbf{x}_i - \mathbf{x}_j)) = \mathbb{E}_{\omega} \exp(i\omega^\top\mathbf{x}_i) \exp(i\omega^\top\mathbf{x}_j)^*$ .

I.e. the kernel  $\kappa$  is the (inverse) Fourier transform of  $\mu$ .

When both  $\kappa$  and  $\mu$  are real-valued then

$$\kappa(\mathbf{x}_i - \mathbf{x}_j) = \mathbb{E}_{\omega} \cos(\omega^{\top}(\mathbf{x}_i - \mathbf{x}_j))$$

 $<sup>^{5}</sup>x^{*}$  is the complex conjugate of x and remember that  $exp(ix)^{*} = exp(-ix)$ 

# Monte Carlo approximation

Let  $\mu$  be a distribution and  $\omega$  a random variable with distribution  $\mu$ . From the law of large numbers it follows that

$$\mathbb{E}_{\omega} f(\omega) = \int f(\mathbf{x}) \mathrm{d}\mu(\mathbf{x}) pprox \frac{1}{q} \sum_{j=k}^{q} f(\omega_k)$$

where  $\omega_1, \dots \omega_q$  are independent samples from  $\mu$ .

Monte Carlo approximation of the Fourier integral

$$\begin{aligned} \omega_k &\overset{i.i.d.}{\sim} \mu \\ \kappa(\mathbf{x}_i, \mathbf{x}_j) &\approx \frac{1}{q} \sum_{k=1}^q \exp(i\omega_k^\top (\mathbf{x}_i - \mathbf{x}_j)) = \xi(\mathbf{x}_j)^* \xi(\mathbf{x}_i) \\ \text{where } \xi(\mathbf{x}) &= \frac{1}{\sqrt{q}} \left( \exp(i\omega_1^\top \mathbf{x}), \dots, \exp(i\omega_q^\top \mathbf{x}) \right)^\top. \end{aligned}$$

In practice: We know the kernel  $\kappa$  and must derive the measure  $\mu$ . Afterwards, we can approximate  $\kappa$  by drawing q samples  $\omega_k$  from  $\mu$  and map x into feature space using

$$\xi(\mathbf{x}) = \frac{1}{\sqrt{q}} \left( \exp(i\omega_{\mathbf{q}}^{\top} \mathbf{x}), \dots, \exp(i\omega_{\mathbf{q}}^{\top} \mathbf{x}) \right)^{\top}.$$

The measure  $\mu$  is given by the Fourier transform of  $\kappa$  with density

$$f_{\mu}(\omega) = \int_{\mathbb{R}^d} \exp\left(-i\omega^{\top}\delta\right) \kappa(\delta) d\delta$$
, where  $\delta = x_i - x_j$ 

Example: Radial basis function (RBF) kernel (infinite dimensional feature space)

$$\kappa(\mathbf{X}_i, \mathbf{X}_j) = \exp\left(-\frac{\left\|\mathbf{X}_i - \mathbf{X}_j\right\|_2^2}{2\sigma^2}\right)$$

The measure  $\mu$  is given by a spherical normal distribution  $(\Sigma = \sigma^2 I)$  with density

$$f_{\mu}(\omega) = rac{1}{(2\pi\sigma^2)^{d/2}} \exp\left(-rac{\|\omega\|_2^2}{2\sigma^2}
ight)$$

Since  $\kappa$  and  $\mu$  are real, we have

$$\xi(\mathbf{x}) = \frac{1}{\sqrt{q}} \left( \cos(\omega_1^\top \mathbf{x}), \sin(\omega_1^\top \mathbf{x}), \dots, \cos(\omega_q^\top \mathbf{x}), \sin(\omega_q^\top \mathbf{x}) \right)^\top$$

 $<sup>^{5}</sup>$ cos $(x_i - x_i) = cos(x_i) cos(x_i) + sin(x_i) sin(x_i)$ 





- Kernel regression is not identical to linear regression with random Fourier features
- As many parameters as random Fourier features
- Regularization must be used to prevent overfitting

# GUIDE TO KERNEL REGRESSION



<sup>&</sup>lt;sup>5</sup>The complexity of kernel regression can be reduced by computing approximate solutions with batch gradient descent

### REFERENCES



HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. (2009).

THE ELEMENTS OF STATISTICAL LEARNING: DATA MINING, INFERENCE, AND PREDICTION.

Springer Science & Business Media.

RAHIMI, A., RECHT, B., ET AL. (2007).

RANDOM FEATURES FOR LARGE-SCALE KERNEL MACHINES.
In NIPS, volume 3, page 5. Citeseer.