

Forward Step:

$$d_1^2 - 4.5$$
 $d_1^2 - 4.5$

Backward Step:

$$\delta_1^1 - 0^{\checkmark}$$
 $\delta_2^1 - 2.5^{\checkmark}$
 $\delta_1^2 - 2.5^{\checkmark}$

Updated Weights:

$$w_{1,1}^2 = -0.5\checkmark$$
 $w_{1,2}^2 = 0.375\checkmark$
 $b_1^2 = 1.75\checkmark$

$$w_{1,1}^{1} - .2\checkmark$$
 $w_{1,2}^{1} - 2\checkmark$
 $w_{1,3}^{1} - 0.5\checkmark$
 $b_{1}^{1} - 1\checkmark$

$$w_{2,1}^{1} = -0.25 \checkmark$$
 $w_{2,2}^{1} = -0.5 \checkmark$
 $w_{2,3}^{1} = -0.75 \checkmark$
 $b_{2}^{1} = -2.25 \checkmark$

Forward Step:

Input Layer

* Inputs: [3, 2, -1]

First Hidden Layer

* Neuron 1:

- * Weighted Input (d_{11}): $(-2 \times 3) + (2 \times 2) + (0.5 \times -1) = -1.5$
- * Activation (a_{11}): 0 (assuming a ReLU activation function)

• Act

- * Weighted Input (d_{12}) : $(0.5 \times 3) + (1 \times 2) + (-1 \times -1) = 2.5$
- * Activation (a_{12}): 2.5 (assuming a ReLU activation function)

Second Hidden Layer:

- * Neuron 1:
 - * Weighted Input (d_{21}): $(-0.5 \times a_{11}) + (1 \times a_{12}) = 4.5$
 - * Activation (a₂₁): 4.5 (assuming a ReLU activation function)

Backward Step:

Output Layer:

- * Neuron 1:
 - * Delta (δ_{11}) : 0 (assuming a mean squared error loss and the target is 2)

Second Hidden Layer:

- Neuron 1
- * Delta (δ_{21}): $\delta_{11} imes w_{21,1} = 0 imes 0.5 = 0$

Updated Weights and Biases:

Second Hidden Layer:

- * Neuron 1:
 - Updated Weight ($w_{21,1}$): $w_{21,1}$ learning rate \times δ_{21} \times $a_{11}=0.5-0.1$ \times $0 \times 0=0.5$
 - Updated Weight ($w_{21,2}$): $w_{21,2}$ learning rate \times δ_{21} \times a_{12} = 0.375 0.1 \times 0 \times 2.5 = 0.375
 - * Updated Sias (b_{21}): b_{21} learning rate \times $\delta_{21} = 1.75 0.1 \times 0 = 1.75$

First Hidden Layer:

- * Neuron 1:
- * Updated Weight (w_{11,1}): w_{11,1} learning rate \times δ_{11} \times $3=-2-0.1\times0\times3=-2$
- * Updated Weight (w_{11,2}): w_{11,2} learning rate \times δ_{11} \times 2=2-0.1 \times 0 \times 2=2
- Updated Weight ($w_{11,3}$): $w_{11,3}$ learning rate \times δ_{11} \times -1 = 0.5 0.1 \times 0 \times -1 = 0.5
- Updated Sias (b_{11}): b_{11} learning rate $\times \delta_{11} = 1 0.1 \times 0 = 1$
- * Neuron 2:
- Updated Weight $(w_{12,1})$: $w_{12,1}$ learning rate \times $\delta_{11} \times a_{11} = -0.25$ $0.1 \times 0 \times 0 = -0.25$
- * Updated Weight (w_{12.2}): $w_{12.2}$ learning rate \times δ_{11} \times $a_{12}=0.5-0.1$ \times $0 \times 2.5=0.5$
- * Updated Bias (b_{12}): b_{12} learning re \searrow $\delta_{11} = -2.25 0.1 \times 0 = -2.25$

- * Neuron
 - * Weighted Input (d_{11}): $(-2 \times 3) + (2 \times 2) + (0.5 \times -1) = -1.5$
 - Activation (a₁₁): $\frac{1}{1+e^{-\delta_{11}}} = \frac{1}{1+e^{\delta_{22}}} \approx 0.182$
- * Neuron 2:
 - * Weighted Input (d_{12}): $(0.5\times3)+(1\times2)+(-1\times-1)=2.5$
 - * Activation (a₁₂): $\frac{1}{1+e^{-\delta_{12}}} = \frac{1}{1+e^{-3.5}} \approx 0.924$

Second Hidden Laver:

- * Neuron 1:
 - * Weighted Input (d_{21}): $(-0.5 \times a_{11}) + (1 \times a_{12}) = 4.5$
 - * Activation (a₂₁): $\frac{1}{1+e^{-t_{21}}} = \frac{1}{1+e^{-t_{2}}} \approx 0.989$

Backward Step:

Output Layer:

- * Neuron 1:
 - Delta (δ_{11}): $\frac{\partial E}{\partial a_{11}} \times \frac{\partial a_{21}}{\partial d_{11}} = (a_{11} \mathrm{target}) \times (a_{11} \times (1 a_{11}))$
 - * Using the provided values, this is $0.182 \times (0.182-2) \times 0.182 \times (1-0.182) \approx -0.057$

Second Hidden Layer:

- * Neuron 1:
 - * Delta (δ_{21}): $\delta_{11} imes w_{21,1} imes (a_{21} imes (1-a_{21}))$
 - * Using the provided values, this is $-0.057 \times 0.5 \times 0.989 \times (1-0.989) \approx -0.001$

Updated Weights and Biases:

Second Hidden Layer:

- Neuron 1:
 - Updated Weight ($w_{21,1}$): $w_{21,1}$ learning rate \times δ_{21} \times $a_{11}=0.5-0.1$ \times -0.001 \times 0.182 \approx 0.5
 - Updated Weight ($w_{21,2}$): $w_{21,2}$ learning rate $\times \delta_{21} \times a_{12} = 0.375 0.1 \times -0.001 \times 0.924 \approx 0.375$
 - * Updated Sias (b_{21}): b_{21} learning rate \times $\delta_{21}=1.75-0.1$ \times -0.001 \approx 1.75

First Hidden Layer:

- * Neuron 1:
 - * Updated Weight ($w_{11,i}$): $w_{11,i}$ learning rate \times $\delta_{11} \times 3 = -2 0.1 \times -0.057 \times 3 \approx -1.994$
 - * Updated Weight ($w_{11,2}$): $w_{11,2}$ learning rate \times δ_{11} \times 2 = 2 0.1 \times –0.057 \times 2 \approx 2.012
 - * Updated Weight ($w_{11,3}$): $w_{11,3}$ learning rate \times δ_{11} \times -1 = 0.5 0.1 \times -0.057 \times -1 \approx 0.511
 - * Updated Sias (b_{11}): b_{11} learning rate \times δ_{11} = 1 0.1 \times 0.057 \approx 1.006
- Neuron 2
- Updated Weight $(w_{12,1})$: $w_{12,1}$ learning rate $\times \delta_{11} \times a_{11} = -0.25 0.1 \times -0.057 \times 0.182 \approx -0.249$
- * Updated Weight (w_{12}): $w_{12,2}$ learning rate \times δ_{11} \times $a_{12}=0.5-0.1$ \times -0.057 \times 0.924 \approx 0.501
- * Updated Weight ($w_{12,3}$): $w_{12,3}$ learning rate \times δ_{11} \times -1=-0.75 0.1 \times -0.057 \times -1 \approx -0.748
- * Updated Bias (b_{12}): b_{12} learning re $\underbrace{\bullet}_{\bullet}$ × δ_{11} = -2.25 0.1 × -0.057 \approx -2.244

Dateien zur Aufgabe:

Backpropa.jpg

The MSE is assumed to be 1/N " sum((t - y_pred)""2), where N is the dimensionality (

Forward Step:

$$\frac{d_1^2 - .2^{\checkmark}}{a_1^2 - .2^{\checkmark}}$$

$$\frac{d_2^2 - 1}{a_2^2 - 1}$$

Backward Step:

Gradients:

$$abla w_{1,1}^{1} = 7.5 \checkmark$$
 $abla w_{1,2}^{1} = 7.5 \checkmark$
 $abla w_{1,2}^{1} = -2.5 \checkmark$
 $abla w_{2,1}^{1} = -4.5 \checkmark$
 $abla w_{2,2}^{1} = 5 \checkmark$
 $abla w_{1,2}^{2} = 5 \checkmark$
 $abla w_{1,2}^{2} = 1 \checkmark$
 $abla w_{2,2}^{2} = -3 \checkmark$
 $abla w_{2,2}^{2} = 0.5 \checkmark$

Updated Weight:

w²_{1,1new} - -0.4♥

1. Input to Hidden Laver:

- * For the first neuron in the hidden layer.
 - * Weighted sum d11 = (3*0.5) + (-1*-0.5) = 3
 - * Activation $a11=\sigma(d11)=3$ (assuming a simple linear activation function
- * For the second neuron in the hidden layer:
 - * Weighted sum d12 = (3*-1) + (-1*2) = -0.5
 - * Activation $a12 = \sigma(d12) = -0.5$

2. Hidden Layer to Output Layer:

- * For the first neuron in the output layer:
 - * Weighted sum d21 = (3 * -1) + (-0.5 * 2) = -2
 - Activation $a21 = \sigma(d21) = -2$
- * For the second neuron in the output layer:
 - * Weighted sum d22 = (3*-0.5) + (-0.5*1) = 1
 - Activation $a22 = \sigma(d22) = 1$

Backward Step:

1. Calculate Mean Squared Error (MSE):

• MSE =
$$\frac{1}{2}\sum_{i=1}^{2}(a_i - target_i)^2 = \frac{1}{2}[(3-0)^2 + (-2-2)^2] = 2.5$$

2. Calculate δ (Error Term) for each Neuron:

- * For the output laver:
 - * $\delta_{11} = (a_{11} target_{11}) * \sigma'(d_{11}) = 2.5 * \sigma'(3) = 2.5$ (assuming a simple linear activation function)
 - * $\delta_{12} = (a_{12} target_{12}) * \sigma'(d_{12}) = -5 * \sigma'(-0.5) = -5$ (assuming a simple linear activation function)

* For the hidden layer:

- $\delta_{21} = (\delta_{11} * w_{21,1} + \delta_{12} * w_{22,1}) * \sigma'(d_{21}) = (-6 + 1) * \sigma'(-2)$
- $\delta_{22} = (\delta_{11} * w_{21,2} + \delta_{12} * w_{22,2}) * \sigma'(d_{22}) = (-3 + 0.5) * \sigma'(1)$

3. Calculate Gradients:

- * Using the δ values, calculate the gradients for each weight:
 - $\nabla w_{11,1} = \delta_{11} * a_{21} = 7.5$
 - $\nabla w_{11,2} = \delta_{11} * a_{22} = -2.5$
 - $\nabla w_{12,1} = \delta_{12} * a_{21} = -15$
 - $\nabla w_{12,2} = \delta_{12} * a_{22} = 5$
 - $\nabla w_{21,1} = \delta_{21} * 3 = -6$
 - $\nabla w_{21,2} = \delta_{21} * (-2) = 1$
 - $\nabla w_{22,1} = \delta_{22} * 3 = -3$
 - $\nabla w_{22,2} = \delta_{22} * 1 = 0.5$

4. Update Weights:

- * Update each weight using the learning rate (not provided):
 - $w_{21,1,\ldots} = w_{21,1} \text{learning rate} * \nabla w_{21,1} = -0.4 + \text{learning rate} * (4. Update Weights:}$

ReLU(x) = max(0, x)

Forward Step:

1. Input to Hidden Layer:

- * For the first neuron in the hidden layer:
 - * Weighted sum d11 = (3 * 0.5) + (-1 * -0.5) = 3
 - Activation a11 = max(0,3) = 3
- * For the second neuron in the hidden layer:
 - * Weighted sum d12 = (3*-1) + (-1*2) = -0.5
 - * Activation $a12 = \max(0, -0.5) = 0$

2. Hidden Layer to Output Layer:

- * For the first neuron in the output layer:
 - * Weighted sum d21 = (3*-1) + (-0.5*2) = -2
 - * Activation $a21 = \max(0, -2) = 0$
- * For the second neuron in the output layer:
 - * Weighted sum d22 = (3*-0.5) + (-0.5*1) = 1
 - * Activation $a22 = \max(0, 1) = 1$

Backward Step:

1. Calculate Mean Squared Error (MSE):

• MSE =
$$\frac{1}{2}\sum_{i=1}^{2}(a_i - target_i)^2 = \frac{1}{2}[(3-0)^2 + (-2-2)^2] = 2.5$$

2. Calculate δ (Error Term) for each Neuron:

- * For the output layer:
 - $\delta_{11} = (a_{11} target_{11}) * ReLU'(d_{11})$
 - $\delta_{12} = (a_{12} target_{12}) * ReLU'(d_{12})$
 - * Note: $\operatorname{ReLU}'(x)$ is 1 for x>0 and 0 for $x\leq 0$
- * For the hidden layer:
 - $\delta_{21} = (\delta_{11} * w_{21,1} + \delta_{12} * w_{22,1}) * ReLU'(d_{21})$
 - $\delta_{22} = (\delta_{11} * w_{21,2} + \delta_{12} * w_{22,2}) * ReLU'(d_{22})$

3. Calculate Gradients:

- * Using the δ values, calculate the gradients for each weight:
 - $\nabla w_{11,1} = \delta_{11} * a_{21}$
 - $\nabla w_{11,2} = \delta_{11} * a_{22}$
 - $\nabla w_{12,1} = \delta_{12} * a_{21}$
 - $\nabla w_{12,2} = \delta_{12} * a_{22}$
 - $\nabla w_{21,1} = \delta_{21} * 3$
 - $\nabla w_{21,2} = \delta_{21} * (-2)$
 - $\nabla w_{22,1} = \delta_{22} * 3$
 - $\nabla w_{22,2} = \delta_{22} * 1$

* Update each weight using the learning rate (not provided).