(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 26.04.2006 Bulletin 2006/17
- (21) Application number: 01948636.4
- (22) Date of filing: 22.06.2001

- (51) Int Cl.: **A61B** 5/00 (2006.01)
- (86) International application number: PCT/US2001/020014
- (87) International publication number: WO 2002/000111 (03.01.2002 Gazette 2002/01)

(54) SYSTEM FOR MONITORING HEALTH, WELLNESS AND FITNESS

SYSTEM FÜR DIE UEBERWACHUNG DER GESUNDHEIT, DES WOHLBEFINDENS UND DER KONDITION

SYSTEME DE SURVEILLANCE DE LA SANTE, DU BIEN-ETRE ET DE LA CONDITION PHYSIQUE

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

- (30) Priority: 23.06.2000 US 602537
- (43) Date of publication of application: 19.03.2003 Bulletin 2003/12
- (73) Proprietor: **Bodymedia**, **Inc.** Pittsburgh, PA 15222 (US)
- (72) Inventors:
 - TELLER, Eric Pittsburgh, PA 15207 (US)
 - STIVORIC, John, M. Pittsburgh, PA 15201 (US)
 - KASABACH, Christopher, D. Pittsburgh, PA 15217 (US)

- PACIONE, Christopher, D. Pittsburgh, PA 15212 (US)
- MOSS, John, L.
 Monroeville, PA 15146 (US)
- LIDEN, Craig, B.
 Sewickley, PA 15143 (US)
- MCCORMACK, Margaret, A. Arlington, MA 02474 (US)
- (74) Representative: Findlay, Alice Rosemary
 Lloyd Wise
 Commonwealth House,
 1-19 New Oxford Street
 London WC1A 1LW (GB)
- (56) References cited:

WO-A-00/11578 WO-A-00/26882 WO-A-00/52604 US-A- 5 741 217

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

TECHNICAL FIELD

[0001] The present invention relates to a system for monitoring health, wellness and fitness, and in particular, to a system for collecting, using a sensor device, and storing at a remote site data relating to an individual's physiological state, lifestyle, and various contextual parameters, and making such data and analytical information based on such data available to the individual, preferably over an electronic network.

BACKGROUND ART

[0002] Research has shown that a large number of the top health problems in society are either caused in whole or in part by an unhealthy lifestyle. More and more, our society requires people to lead fast-paced, achievement-oriented lifestyles that often result in poor eating habits, high stress levels, lack of exercise, poor sleep habits and the inability to find the time to center the mind and relax. Recognizing this fact, people are becoming increasingly interested in establishing a healthier lifestyle.

[0003] Traditional medicine, embodied in the form of an HMO or similar organizations, does not have the time, the training, or the reimbursement mechanism to address the needs of those individuals interested in a healthier lifestyle. There have been several attempts to meet the needs of these individuals, including a perfusion of fitness programs and exercise equipment, dietary plans, self-help books, alternative therapies, and most recently, a plethora of health information web sites on the Internet. Each of these attempts are targeted to empower the individual to take charge and get healthy. Each of these attempts, however, addresses only part of the needs of individuals seeking a healthier lifestyle and ignores many of the real barriers that most individuals face when trying to adopt a healthier lifestyle. These barriers include the fact that the individual is often left to himself or herself to find motivation, to implement a plan for achieving a healthier lifestyle, to monitor progress, and to brainstorm solutions when problems arise; the fact that existing programs are directed to only certain aspects of a healthier lifestyle, and rarely come as a complete package; and the fact that recommendations are often not targeted to the unique characteristics of the individual or his life circumstances.

[0004] WO02/26882 describes a monitoring device including a sensor that generates signals corresponding to at least one physical or environmental condition relating to the person, a processor that processes the signals to determine a characteristic of the condition, and a transmitter that transmits a message to a telecommunication service provider in response to the determined characteristic of the physical or environmental condition.

DISCLOSURE OF INVENTION

30

35

45

50

[0005] The present invention provides an apparatus for monitoring and reporting human physiological Information, comprising a sensor device housing adapted to be placed in proximity with an individual's body, a processor supported by said sensor device housing, said processor being in electrical communication with at least two sensors selected from the group consisting of physiological sensors and contextual sensors, at least one of said at least two sensors being a physiological sensor, said at least two sensors being adapted to generate data indicative of at least a first parameter of said individual, said first parameter being physiological, and a second parameter of said individual, and means in electrical communication with said processor for providing information to said individual, characterized in that said processor is adapted to derive physiological state information from at least a portion of said data indicative of at least a first parameter and at least a portion of said data indicative of at least a second parameter.

[0006] A system is disclosed for detecting, monitoring and reporting human physiological information. The system includes a sensor device adapted to be placed in contact with an individual's upper arm. The sensor device includes at least one of an accelerometer, a GSR sensor and a heat flux sensor and is adapted to generate data indicative of at least one of activity, skin response, and heat flow of the individual wearing the sensor device. The sensor device may also be adapted to generate derived data from at least a portion of the data indicative of at least one of activity, galvanic skin response and heat flow. The sensor device may include a computer housing and a flexible wing body having first and second wings adapted to wrap around a portion of the individual's arm. The sensor device may also be adapted to provide audible, visible or tactile feedback to the wearer.

[0007] The system also includes a central monitoring unit located remove from the sensor device. The central monitoring unit generates analytical status data from at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and analytical status data that has previously been generated. The central monitoring unit may also be adapted to generate derived data from the data indicative of at least one of activity, galvanic skin response and heat flow. The central monitoring unit also includes a data storage device for retrievably storing the data it receives and generates. The disclosed system also includes means for establishing electronic communication between the sensor device and the central monitoring unit. Also included in the system is a means for transmitting the

data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data to a recipient, such as the individual or a third party authorized by the individual.

[0008] The central monitoring unit may be adapted to generate one or more web pages containing the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data. The web pages generated by the central monitoring unit are accessible by the recipient over an electronic network, such as the Internet. Alternatively, the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and/or the analytical status data may be transmitted to the recipient in a physical form such as mail or facsimile.

[0009] The system may also obtain life activities data of the individual and may use such life activities data when generating the analytical status data. Furthermore, the sensor device may also be adapted to generate data indicative of one or more contextual parameters of the individual. The system may then use the data indicative of one or more contextual parameters when generating the analytical status data.

[0010] Also disclosed is a system for monitoring the degree to which an individual has followed a suggested routine. The system includes a sensor device as described above. Also included is a means for transmitting the data that is generated by the sensor device to a central monitoring unit remote from the sensor device and means for providing life activities data of the individual to the central monitoring unit. The central monitoring unit is adapted to generate and provide feedback to a recipient relating to the degree to which the individual has followed the suggested routine. The feedback is generated from at least a portion of at least one of the data indicative of at least one of activity, galvanic skin response and heat flow, the derived data, and the life activities data.

[0011] The suggested routine may include a plurality of categories, wherein the feedback is generated and provided with respect to each of the categories. Examples of the categories include nutrition, activity level, mind centering, sleep, and daily activities. The feedback may be provided in graphical form and may be contained in one or more web pages generated by the central monitoring unit. Alternatively, the feedback may be transmitted to the recipient in a physical form.

BRIEF DESCRIPTION OF THE DRAWINGS

10

25

35

40

45

50

55

[0012] Further features and advantages of the present invention will be apparent upon consideration of the following detailed description of the present invention, taken in conjunction with the following drawings, in which like reference characters refer to like parts, and in which:

Fig. 1 is a diagram of an embodiment of a system for monitoring physiological data and lifestyle over an electronic network according to the present invention;

Fig. 2 is a block diagram of an embodiment of the sensor device shown in Fig. 1;

Fig. 3 is a block diagram of an embodiment of the central monitoring unit shown in Fig. 1;

Fig. 4 is a block diagram of an alternate embodiment of the central monitoring unit shown in Fig. 1;

Fig. 5 is a representation of a preferred embodiment of the Health Manager web page according to an aspect of the present invention;

Fig. 6 is a representation of a preferred embodiment of the nutrition web page according to an aspect of the present invention:

Fig. 7 is a representation of a preferred embodiment of the activity level web page according to an aspect of the present invention;

Fig. 8 is a representation of a preferred embodiment of the mind centering web page according to an aspect of the present invention;

Fig. 9 is a representation of a preferred embodiment of the sleep web page according to an aspect of the present invention;

Fig. 10 is a representation of a preferred embodiment of the daily activities web page according to an aspect of the present invention;

Fig. 11 is a representation of a preferred embodiment of the Health Index web page according to an aspect of the present invention;

Fig. 12 is a front view of a specific embodiment of the sensor device shown in Fig. 1;

Fig. 13 is a back view of a specific embodiment of the sensor device shown in Fig. 1;

Fig. 14 is a side view of a specific embodiment of the sensor device shown in Fig. 1;

Fig. 15 is a bottom view of a specific embodiment of the sensor device shown in Fig. 1;

Figs. 16 and 17 are front perspective views of a specific embodiment of the sensor device shown in Fig. 1;

Fig. 18 is an exploded side perspective view of a specific embodiment of the sensor device shown in Fig. 1;

Fig. 19 is a side view of the sensor device shown in Figs. 12 through 18 inserted into a battery recharger unit; and Fig. 20 is a block diagram illustrating all of the components either mounted on or coupled to the printed circuit board forming a part of the sensor device shown in Figs. 12 through 18.

BEST MODE FOR CARRYING OUT THE INVENTION

[0013] In general, according to the present invention, data relating to the physiological state, the lifestyle and certain contextual parameters of an individual is collected and transmitted, either subsequently or in real-time, to a site, preferably remote from the individual, where it is stored for later manipulation and presentation to a recipient, preferably over an electronic network such as the Internet. Contextual parameters as used herein means parameters relating to the environment, surroundings and location of the individual, including, but not limited to, air quality, sound quality, ambient temperature, global positioning and the like. Referring to Fig. 1, located at user location 5 is sensor device 10 adapted to be placed in proximity with at least a portion of the human body. Sensor device 10 is preferably worn by an individual user on his or her body, for example as part of a garment such as a form fitting shirt, or as part of an arm band or the like. Sensor device 10, includes one or more sensors, which are adapted to generate signals in response to physiological characteristics of an individual, and a microprocessor. Proximity as used herein means that the sensors of sensor device 10 are separated from the individual's body by a material or the like, or a distance such that the capabilities of the sensors are not impeded.

[0014] Sensor device 10 generates data indicative of various physiological parameters of an individual, such as the individual's heart rate, pulse rate, beat-to-beat heart variability, EKG or ECG, respiration rate, skin temperature, core body temperature, heat flow off the body, galvanic skin response or GSR, EMG, EEG, EOG, blood pressure, body fat, hydration level, activity level, oxygen consumption, glucose or blood sugar level, body position, pressure on muscles or bones, and UV radiation exposure and absorption. In certain cases, the data indicative of the various physiological parameters is the signal or signals themselves generated by the one or more sensors and in certain other cases the data is calculated by the microprocessor based on the signal or signals generated by the one or more sensors. Methods for generating data indicative of various physiological parameters and sensors to be used therefor are well known. Table 1 provides several examples of such well known methods and shows the parameter in question, the method used, the sensor device used, and the signal that is generated. Table 1 also provides an indication as to whether further processing based on the generated signal is required to generate the data.

Table 1

Parameter	Method	Sensor	Signal	Further Processing
Heart Rate	EKG	2 Electrodes	DC Voltage	Yes
Pulse Rate	BVP	LED Emitter and Optical Sensor	Change in Resistance	Yes
Beat-to-Beat Variability	Heart Rate	2 Electrodes	DC Voltage	Yes
EKG	Skin Surface Potentials	3-10 Electrodes	DC Voltage	No
Respiration Rate	Chest Volume Change	Strain Gauge	Change in Resistance	Yes
Skin Temperature	Surface Temperature Probe	Thermistors	Change in Resistance	Yes
Core Temperature	Esophageal or Rectal Probe	Thermistors	Change in Resistance	Yes
Heat Flow	Heat Flux	Thermopile	DC Voltage	Yes
Galvanic Skin Response	Skin Conductance	2 Electrodes	Change in Resistance	No
EMG	Skin Surface Potentials	3 Electrodes	DC Voltage	No
EEG	Skin Surface Potentials	Multiple Electrodes	DC Voltage	Yes
EOG	Eye Movement	Thin Film Piezoelectric Sensors	DC Voltage	Yes

Table continued

5

Parameter	Method	Sensor	Signal	Further Processing
Blood Pressure	Non-Invasive Korotkuff Sounds	Electronic Sphygromarometer	Change in Resistance	Yes
Body Fat	Body Impedance	2 Active Electrodes	Change in Impedance	Yes
Activity in Interpreted G Shocks per Minute	Body Movement	Accelerometer	DC Voltage, Capacitance Changes	Yes
Oxygen Consumption	Oxygen Uptake	Electro-chemical	DC Voltage Change	Yes
Glucose Level	Non-Invasive	Electro-chemical	DC Voltage Change	Yes
Body Position (e.g. supine, erect, sitting)	N/A	Mercury Switch Array	DC Voltage Change	Yes
Muscle Pressure	N/A	Thin Film Piezoelectric Sensors	DC Voltage Change	Yes
UV Radiation Absorption	N/A	UV Sensitive Photo Cells	DC Voltage Change	Yes

[0015] The types of data listed in Table 1 are intended to be examples of the types of data that can be generated by sensor device 10. It is to be understood that other types of data relating to other parameters can be generated by sensor device 10 without departing from the scope of the present invention.

[0016] The microprocessor of sensor device 10 may be programmed to summarize and analyze the data. For example, the microprocessor can be programmed to calculate an average, minimum or maximum heart rate or respiration rate over a defined period of time, such as ten minutes. Sensor device 10 may be able to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. The microprocessor of sensor device 10 is programmed to derive such information using known methods based on the data indicative of one or more physiological parameters. Table 2 provides examples of the type of information that can be derived, and indicates some of the types of data that can be used therefor.

Table 2

Derived Information	Data Used			
Ovulation	Skin temperature, core temperature, oxygen consumption			
Sleep onset/wake	Beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, core temperature, heat flow, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption			
Calories burned	Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption			
Basal metabolic rate	Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption			
Basal temperature	Skin temperature, core temperature			
Activity level	Heart rate, pulse rate, respiration rate, heat flow, activity, oxygen consumption			

Table continued

5

10

15

20

35

50

Derived Information	Data Used	
Stress level	EKG, beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, heat flow, galvanic skin response, EMG, EEG, blood pressure, activity, oxygen consumption	
Relaxation level	EKG, beat-to-beat variability, heart rate, pulse rate, respiration rate, skin temperature, heat flow, galvanic skin response, EMG, EEG, blood pressure, activity, oxygen consumption	
Maximum oxygen consumption rate	EKG, heart rate, pulse rate, respiration rate, heat flow, blood pressure, activity, oxygen consumption	
Rise time or the time it takes to rise from a resting rate to 85% of a target maximum	Heart rate, pulse rate, heat flow, oxygen consumption	
Time in zone or the time heart rate was above 85% of a target maximum	Heart rate, pulse rate, heat flow, oxygen consumption	
Recovery time or the time it takes heart rate to return to a resting rate after heart rate was above 85% of a target maximum	Heart rate, pulse rate, heat flow, oxygen consumption	

[0017] Additionally, sensor device 10 may also generate data indicative of various contextual parameters relating to the environment surrounding the individual. For example, sensor device 10 can generate data indicative of the air quality, sound level/quality, light quality or ambient temperature near the individual, or even the global positioning of the individual. Sensor device 10 may include one or more sensors for generating signals in response to contextual characteristics relating to the environment surrounding the individual, the signals ultimately being used to generate the type of data described above. Such sensors are well known, as are methods for generating contextual parametric data such as air quality, sound level/quality, ambient temperature and global positioning.

[0018] Fig. 2 is a block diagram of an embodiment of sensor device 10. Sensor device 10 includes at least one sensor 12 and microprocessor 20. Depending upon the nature of the signal generated by sensor 12, the signal can be sent through one or more of amplifier 14, conditioning circuit 16, and analog-to-digital converter 18, before being sent to microprocessor 20. For example, where sensor 12 generates an analog signal in need of amplification and filtering, that signal can be sent to amplifier 14, and then on to conditioning circuit 16, which may, for example, be a band pass filter. The amplified and conditioned analog signal can then be transferred to analog-to-digital converter 18, where it is converted to a digital signal. The digital signal is then sent to microprocessor 20. Alternatively, if sensor 12 generates a digital signal, that signal can be sent directly to microprocessor 20.

[0019] A digital signal or signals representing certain physiological and/or contextual characteristics of the individual user may be used by microprocessor 20 to calculate or generate data indicative of physiological and/or contextual parameters of the individual user. Microprocessor 20 is programmed to derive information relating to at lease one aspect of the individual's physiological state. It should be understood that microprocessor 20 may also comprise other forms of processors or processing devices, such as a microcontroller, or any other device that can be programmed to perform the functionality described herein.

[0020] The data indicative of physiological and/or contextual parameters can, according to one embodiment of the present invention, be sent to memory 22, such as flash memory, where it is stored until uploaded in the manner to be described below. Although memory 22 is shown in Fig. 2 as a discrete element, it will be appreciated that it may also be part of microprocessor 20. Sensor device 10 also includes input/output circuitry 24, which is adapted to output and receive as input certain data signals in the manners to be described herein. Thus, memory 22 of the sensor device 10 will build up, over time, a store of data relating to the individual user's body and/or environment. That data is periodically uploaded from sensor device 10 and sent to remote central monitoring unit 30, as shown in Fig. 1, where it is stored in a database for subsequent processing and presentation to the user, preferably through a local or global electronic network such as the Internet. This uploading of data can be an automatic process that is initiated by sensor device 10 periodically or upon the happening of an event such as the detection by sensor device 10 of a heart rate below a certain level, or can be initiated by the individual user or some third party authorized by the user, preferably according to some periodic schedule, such as every day at 10:00 p.m. Alternatively, rather than storing data in memory 22, sensor device 10 may continuously upload data in real time.

[0021] The uploading of data from sensor device 10 to central monitoring unit 30 for storage can be accomplished in various ways. In one embodiment, the data collected by sensor device 10 is uploaded by first transferring the data to personal computer 35 shown in Fig. 1 by means of physical connection 40, which, for example, may be a serial connection such as an RS232 or USB port. This physical connection may also be accomplished by using a cradle, not shown, that is electronically coupled to personal computer 35 into which sensor device 10 can be inserted, as is common with many commercially available personal digital assistants. The uploading of data could be initiated by then pressing a button on the cradle or could be initiated automatically upon insertion of sensor device 10. The data collected by sensor device 10 may be uploaded by first transferring the data to personal computer 35 by means of short-range wireless transmission, such as infrared or RF transmission, as indicated at 45.

[0022] Once the data is received by personal computer 35, it is optionally compressed and encrypted by any one of a variety of well known methods and then sent out over a local or global electronic network, preferably the Internet, to central monitoring unit 30. It should be noted that personal computer 35 can be replaced by any computing device that has access to and that can transmit and receive data through the electronic network, such as, for example, a personal digital assistant such as the Palm VII sold by Palm, Inc., or the Blackberry 2-way pager sold by Research in Motion, Inc. [0023] Alternatively, the data collected by sensor device 10, after being encrypted and, optionally, compressed by microprocessor 20, may be transferred to wireless device 50, such as a 2-way pager or cellular phone, for subsequent long distance wireless transmission to local telco site 55 using a wireless protocol such as e-mail or as ASCII or binary data. Local telco site 55 includes tower 60 that receives the wireless transmission from wireless device 50 and computer 65 connected to tower 60. According to the preferred embodiment, computer 65 has access to the relevant electronic network, such as the Internet, and is used to transmit the data received in the form of the wireless transmission to the central monitoring unit 30 over the Internet. Although wireless device 50 is shown in Fig. 1 as a discrete device coupled to sensor device 10, it or a device having the same or similar functionality may be embedded as part of sensor device 10. [0024] Sensor device 10 may be provided with a button to be used to time stamp events such as time to bed, wake time, and time of meals. These time stamps are stored in sensor device 10 and are uploaded to central monitoring unit 30 with the rest of the data as described above. The time stamps may include a digitally recorded voice message that, after being uploaded to central monitoring unit 30, are translated using voice recognition technology into text or some other information format that can be used by central monitoring unit 30.

[0025] In addition to using sensor device 10 to automatically collect physiological data relating to an individual user, a kiosk could be adapted to collect such data by, for example, weighing the individual, providing a sensing device similar to sensor device 10 on which an individual places his or her hand or another part of his or her body, or by scanning the individual's body using, for example, laser technology or an iStat blood analyzer. The kiosk would be provided with processing capability as described herein and access to the relevant electronic network, and would thus be adapted to send the collected data to the central monitoring unit 30 through the electronic network. A desktop sensing device, again similar to sensor device 10, on which an individual places his or her hand or another part of his or her body may also be provided. For example, such a desktop sensing device could be a blood pressure monitor in which an individual places his or her arm. An individual might also wear a ring having a sensor device 10 incorporated therein. A base, not shown, could then be provided which is adapted to be coupled to the ring. The desktop sensing device or the base just described may then be coupled to a computer such as personal computer 35 by means of a physical or short range wireless connection so that the collected data could be uploaded to central monitoring unit 30 over the relative electronic network in the manner described above. A mobile device such as, for example, a personal digital assistant, might also be provided with a sensor device 10 incorporated therein. Such a sensor device 10 would be adapted to collect data when mobile device is placed in proximity with the individual's body, such as by holding the device in the palm of one's hand, and upload the collected data to central monitoring unit 30 in any of the ways described herein.

30

35

50

[0026] Furthermore, in addition to collecting data by automatically sensing such data in the manners described above, individuals can also manually provide data relating to various life activities that is ultimately transferred to and stored at central monitoring unit 30. An individual user can access a web site maintained by central monitoring unit 30 and can directly input information relating to life activities by entering text freely, by responding to questions posed by the web site, or by clicking through dialog boxes provided by the web site. Central monitoring unit 30 can also be adapted to periodically send electronic mail messages containing questions designed to elicit information relating to life activities to personal computer 35 or to some other device that can receive electronic mail, such as a personal digital assistant, a pager, or a cellular phone. The individual would then provide data relating to life activities to central monitoring unit 30 by responding to the appropriate electronic mail message with the relevant data. Central monitoring unit 30 may also be adapted to place a telephone call to an individual user in which certain questions would be posed to the individual user. The user could respond to the questions by entering information using a telephone keypad, or by voice, in which case conventional voice recognition technology would be used by central monitoring unit 30 to receive and process the response. The telephone call may also be initiated by the user, in which case the user could speak to a person directly or enter information using the keypad or by voice/voice recognition technology. Central monitoring unit 30 may also be given access to a source of information controlled by the user, for example the user's electronic calendar such as that

provided with the Outlook product sold by Microsoft Corporation of Redmond, Washington, from which it could automatically collect information. The data relating to life activities may relate to the eating, sleep, exercise, mind centering or relaxation, and/or daily living habits, patterns and/or activities of the individual. Thus, sample questions may include: What did you have for lunch today? What time did you go to sleep last night? What time did you wake up this morning? How long did you run on the treadmill today?

[0027] Feedback may also be provided to a user directly through sensor device 10 in a visual form, for example through an LED or LCD or by constructing sensor device 10, at least in part, of a thermochromatic plastic, in the form of an acoustic signal or in the form of tactile feedback such as vibration. Such feedback may be a reminder or an alert to eat a meal or take medication or a supplement such as a vitamin, to engage in an activity such as exercise or meditation, or to drink water when a state of dehydration is detected. Additionally, a reminder or alert can be issued in the event that a particular physiological parameter such as ovulation has been detected, a level of calories burned during a workout has been achieved or a high heart rate or respiration rate has been encountered.

[0028] As will be apparent to those of skill in the art, it may be possible to "download" data from central monitoring unit 30 to sensor device 10. The flow of data in such a download process would be substantially the reverse of that described above with respect to the upload of data from sensor device 10. Thus, it is possible that the firmware of microprocessor 20 of sensor device 10 can be updated or altered remotely, i.e., the microprocessor can be reprogrammed, by downloading new firmware to sensor device 10 from central monitoring unit 30 for such parameters as timing and sample rates of sensor device 10. Also, the reminders/alerts provided by sensor device 10 may be set by the user using the web site maintained by central monitoring unit 30 and subsequently downloaded to the sensor device 10.

[0029] Referring to Fig. 3, a block diagram of an embodiment of central monitoring unit 30 is shown. Central monitoring unit 30 includes CSU/DSU 70 which is connected to router 75, the main function of which is to take data requests or traffic, both incoming and outgoing, and direct such requests and traffic for processing or viewing on the web site maintained by central monitoring unit 30. Connected to router 75 is firewall 80. The main purpose of firewall 80 is to protect the remainder of central monitoring unit 30 from unauthorized or malicious intrusions. Switch 85, connected to firewall 80, is used to direct data flow between middleware servers 95a through 95c and database server 110. Load balancer 90 is provided to spread the workload of incoming requests among the identically configured middleware servers 95a through 95c. Load balancer 90, a suitable example of which is the F5 ServerIron product sold by Foundry Networks, Inc. of San Jose, California, analyzes the availability of each middleware server 95a through 95c, and the amount of system resources being used in each middleware server 95a through 95c, in order to spread tasks among them appropriately.

30

35

50

[0030] Central monitoring unit 30 includes network storage device 100, such as a storage area network or SAN, which acts as the central repository for data. In particular, network storage device 100 comprises a database that stores all data gathered for each individual user in the manners described above. An example of a suitable network storage device 100 is the Symmetrix product sold by EMC Corporation of Hopkinton, Massachusetts. Although only one network storage device 100 is shown in Fig. 3, it will be understood that multiple network storage devices of various capacities could be used depending on the data storage needs of central monitoring unit 30. Central monitoring unit 30 also includes database server 110 which is coupled to network storage device 100. Database server 110 is made up of two main components: a large scale multiprocessor server and an enterprise type software server component such as the 8/8i component sold by Oracle Corporation of Redwood City, California, or the 506 7 component sold by Microsoft Corporation of Redmond, Washington. The primary functions of database server 110 are that of providing access upon request to the data stored in network storage device 100, and populating network storage device 100 with new data. Coupled to network storage device 100 is controller 115, which typically comprises a desktop personal computer, for managing the data stored in network storage device 100.

[0031] Middleware servers 95a through 95c, a suitable example of which is the 22OR Dual Processor sold by Sun Microsystems, Inc. of Palo Alto, California, each contain software for generating and maintaining the corporate or home web page or pages of the web site maintained by central monitoring unit 30. As is known in the art, a web page refers to a block or blocks of data available on the World-Wide Web comprising a file or files written in Hypertext Markup Language or HTML, and a web site commonly refers to any computer on the Internet running a World-Wide Web server process. The corporate or home web page or pages are the opening or landing web page or pages that are accessible by all members of the general public that visit the site by using the appropriate uniform resource locator or URL. As is known in the art, URLs are the form of address used on the World-Wide Web and provide a standard way of specifying the location of an object, typically a web page, on the Internet. Middleware servers 95a through 95c also each contain software for generating and maintaining the web pages of the web site of central monitoring unit 30 that can only be accessed by individuals that register and become members of central monitoring unit 30. The member users will be those individuals who wish to have their data stored at central monitoring unit 30. Access by such member users is controlled using passwords for security purposes. Preferred embodiments of those web pages are described in detail below and are generated using collected data that is stored in the database of network storage device 100.

[0032] Middleware servers 95a through 95c also contain software for requesting data from and writing data to network

storage device 100 through database server 110. When an individual user desires to initiate a session with the central monitoring unit 30 for the purpose of entering data into the database of network storage device 100, viewing his or her data stored in the database of network storage device 100, or both, the user visits the home web page of central monitoring unit 30 using a browser program such as Internet Explorer distributed by Microsoft Corporation of Redmond, Washington, and logs in as a registered user. Load balancer 90 assigns the user to one of the middleware servers 95a through 95c, identified as the chosen middleware server. A user will preferably be assigned to a chosen middleware server for each entire session. The chosen middleware server authenticates the user using any one of many well known methods, to ensure that only the true user is permitted to access the information in the database. A member user may also grant access to his or her data to a third party such as a health care provider or a personal trainer. Each authorized third party may be given a separate password and may view the member user's data using a conventional browser. It is therefore possible for both the user and the third party to be the recipient of the data.

[0033] When the user is authenticated, the chosen middleware server requests, through database server 110, the individual user's data from network storage device 100 for a predetermined time period. The predetermined time period is preferably thirty days. The requested data, once received from network storage device 100, is temporarily stored by the chosen middleware server in cache memory. The cached data is used by the chosen middleware server as the basis for presenting information, in the form of web pages, to the user again through the user's browser. Each middleware server 95a through 95c is provided with appropriate software for generating such web pages, including software for manipulating and performing calculations utilizing the data to put the data in appropriate format for presentation to the user. Once the user ends his or her session, the data is discarded from cache. When the user initiates a new session, the process for obtaining and caching data for that user as described above is repeated. This caching system thus ideally requires that only one call to the network storage device 100 be made per session, thereby reducing the traffic that database server 110 must handle. Should a request from a user during a particular session require data that is outside of a predetermined time period of cached data already retrieved, a separate call to network storage device 100 may be performed by the chosen middleware server. The predetermined time period should be chosen, however, such that such additional calls are minimized. Cached data may also be saved in cache memory so that it can be reused when a user starts a new session, thus eliminating the need to initiate a new call to network storage device 100.

[0034] As described in connection with Table 2, the microprocessor of sensor device 10 may be programmed to derive information relating to an individual's physiological state based on the data indicative of one or more physiological parameters. Central monitoring unit 30, and preferably middleware servers 95a through 95c, may also be similarly programmed to derive such information based on the data indicative of one or more physiological parameters.

30

35

50

[0035] It is also contemplated that a user will input additional data during a session, for example, information relating to the user's eating or sleeping habits. This additional data is preferably stored by the chosen middleware server in a cache during the duration of the user's session. When the user ends the session, this additional new data stored in a cache is transferred by the chosen middleware server to database server 110 for population in network storage device 100. Alternatively, in addition to being stored in a cache for potential use during a session, the input data may also be immediately transferred to database server 110 for population in network storage device 100, as part of a write-through cache system which is well known in the art.

[0036] Data collected by sensor device 10 shown in Fig. 1 is periodically uploaded to central monitoring unit 30. Either by long distance wireless transmission or through personal computer 35, a connection to central monitoring unit 30 is made through an electronic network, preferably the Internet. In particular, connection is made to load balancer 90 through CSU/DSU 70, router 75, firewall 80 and switch 85. Load balancer 90 then chooses one of the middleware servers 95a through 95c to handle the upload of data, hereafter called the chosen middleware server. The chosen middleware server authenticates the user using any one of many well known methods. If authentication is successful, the data is uploaded to the chosen middleware server as described above, and is ultimately transferred to database server 110 for population in the network storage device 100.

[0037] Referring to Fig. 4, an alternate embodiment of central monitoring unit 30 is shown. In addition to the elements shown and described with respect to Fig. 3, the embodiment of the central monitoring unit 30 shown in Fig. 4 includes a mirror network storage device 120 which is a redundant backup of network storage device 100. Coupled to mirror network storage device 120 is controller 122. Data from network storage device 100 is periodically copied to mirror network storage device 120 for data redundancy purposes.

[0038] Third parties such as insurance companies or research institutions may be given access, possibly for a fee, to certain of the information stored in mirror network storage device 120. Preferably, in order to maintain the confidentiality of the individual users who supply data to central monitoring unit 30, these third parties are not given access to such user's individual database records, but rather are only given access to the data stored in mirror network storage device 120 in aggregate form. Such third parties may be able to access the information stored in mirror network storage device 120 through the Internet using a conventional browser program. Requests from third parties may come in through CSU/DSU 70, router 75, firewall 80 and switch 85. In the embodiment shown in Fig. 4, a separate load balancer 130 is provided for spreading tasks relating to the accessing and presentation of data from mirror drive array 120 among

identically configured middleware servers 135a through 135c. Middleware servers 135a through 135c each contain software for enabling the third parties to, using a browser, formulate queries for information from mirror network storage device 120 through separate database server 125. Middleware servers 135a through 135c also contain software for presenting the information obtained from mirror network storage device 120 to the third parties over the Internet in the form of web pages. In addition, the third parties can choose from a series of prepared reports that have information packaged along subject matter lines, such as various demographic categories.

[0039] As will be apparent to one of skill in the art, instead of giving these third parties access to the backup data stored in mirror network storage device 120, the third parties may be given access to the data stored in network storage device 100. Also, instead of providing load balancer 130 and middleware servers 135a through 135c, the same functionality, although at a sacrificed level of performance, could be provided by load balancer 90 and middleware servers 95a through 95c.

[0040] When an individual user first becomes a registered user or member, that user completes a detailed survey. The purposes of the survey are to: identify unique characteristics/circumstances for each user that they might need to address in order to maximize the likelihood that they will implement and maintain a healthy lifestyle as suggested by central monitoring unit 30; gather baseline data which will be used to set initial goals for the individual user and facilitate the calculation and display of certain graphical data output such as the Health Index pistons; identify unique user characteristics and circumstances that will help central monitoring unit 30 customize the type of content provided to the user in the Health Manager's Daily Dose; and identify unique user characteristics and circumstances that the Health Manager can guide the user to address as possible barriers to a healthy lifestyle through the problem-solving function of the Health Manager.

[0041] The specific information to be surveyed may include: key individual temperamental characteristics, including activity level, regularity of eating, sleeping, and bowel habits, initial response to situations, adaptability, persistence, threshold of responsiveness, intensity of reaction, and quality of mood; the user's level of independent functioning, i.e., self-organization and management, socialization, memory, and academic achievement skills; the user's ability to focus and sustain attention, including the user's level of arousal, cognitive tempo, ability to filter distractions, vigilance, and self-monitoring; the user's current health status including current weight, height, and blood pressure, most recent general physician visit, gynecological exam, and other applicable physician/healthcare contacts, current medications and supplements, allergies, and a review of current symptoms and/or health-related behaviors; the user's past health history, i.e., illnesses/surgeries, family history, and social stress events, such as divorce or loss of a job, that have required adjustment by the individual; the user's beliefs, values and opinions about health priorities, their ability to alter their behavior and, what might contribute to stress in their life, and how they manage it; the user's degree of self-awareness, empathy, empowerment, and self-esteem, and the user's current daily routines for eating, sleeping, exercise, relaxation and completing activities of daily living; and the user's perception of the temperamental characteristics of two key persons in their life, for example, their spouse, a friend, a co-worker, or their boss, and whether there are clashes present in their relationships that might interfere with a healthy lifestyle or contribute to stress.

30

35

50

[0042] Each member user will have access, through the home web page of central monitoring unit 30, to a series of web pages customized for that user, referred to as the Health Manager. The opening Health Manager web page 150 is shown in Fig. 5. The Health Manager web pages are the main workspace area for the member user. The Health Manager web pages comprise a utility through which central monitoring unit 30 provides various types and forms of data, commonly referred to as analytical status data, to the user that is generated from the data it collects or generates, namely one or more of: the data indicative of various physiological parameters generated by sensor device 10; the data derived from the data indicative of various physiological parameters; the data indicative of various contextual parameters generated by sensor device 10; and the data input by the user. Analytical status data is characterized by the application of certain utilities or algorithms to convert one or more of the data indicative of various physiological parameters generated by sensor device 10, the data derived from the data indicative of various physiological parameters, the data indicative of various contextual parameters generated by sensor device 10, and the data input by the user into calculated health, wellness and lifestyle indicators. For example, based on data input by the user relating to the foods he or she has eaten, things such as calories and amounts of proteins, fats, carbohydrates, and certain vitamins can be calculated. As another example, skin temperature, heart rate, respiration rate; heat flow and/or GSR can be used to provide an indicator to the user of his or her stress level over a desired time period. As still another example, skin temperature, heat flow, beat-tobeat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, oxygen consumption, ambient sound and body movement or motion as detected by a device such as an accelerometer can be used to provide indicators to the user of his or her sleep patterns over a desired time period. [0043] Located on the opening Health Manager web page 150 is Health Index 155. Health Index 155 is a graphical utility used to measure and provide feedback to member users regarding their performance and the degree to which they have succeeded in reaching a healthy daily routine suggested by central monitoring unit 30. Health Index 155 thus provides an indication for the member user to track his or her progress. Health Index 155 includes six categories relating to the user's health and lifestyle: Nutrition, Activity Level, Mind Centering, Sleep, Daily Activities and How You Feel. The

Nutrition category relates to what, when and how much a person eats and drinks. The Activity Level category relates to how much a person moves around. The Mind Centering category relates to the quality and quantity of time a person spends engaging in some activity that allows the body to achieve a state of profound relaxation while the mind becomes highly alert and focused. The Sleep category relates to the quality and quantity of a person's sleep. The Daily Activities category relates to the daily responsibilities and health risks people encounter. Finally, the How You Feel category relates to the general perception that a person has about how they feel on a particular day. Each category has an associated level indicator or piston that indicates, preferably on a scale ranging from poor to excellent, how the user is performing with respect to that category.

[0044] When each member user completes the initial survey described above, a profile is generated that provides the user with a summary of his or her relevant characteristics and life circumstances. A plan and/or set of goals is provided in the form of a suggested healthy daily routine. The suggested healthy daily routine may include any combination of specific suggestions for incorporating proper nutrition, exercise, mind centering, sleep, and selected activities of daily living in the user's life. Prototype schedules may be offered as guides for how these suggested activities can be incorporated into the user's life. The user may periodically retake the survey, and based on the results, the items discussed above will be adjusted accordingly.

[0045] The Nutrition category is calculated from both data input by the user and sensed by sensor device 10. The data input by the user comprises the time and duration of breakfast, lunch, dinner and any snacks, and the foods eaten, the supplements such as vitamins that are taken, and the water and other liquids consumed during a relevant, preselected time period. Based upon this data and on stored data relating to known properties of various foods, central monitoring unit 30 calculates well known nutritional food values such as calories and amounts of proteins, fats, carbohydrates, vitamins, etc., consumed.

[0046] The Nutrition Health Index piston level is preferably determined with respect to the following suggested healthy daily routine: eat at least three meals; eat a varied diet consisting of 6 - 11 servings of bread, pasta, cereal, and rice, 2 - 4 servings fruit, 3 - 5 servings of vegetables, 2 - 3 servings of fish, meat, poultry, dry beans, eggs, and nuts, and 2 - 3 servings of milk, yogurt and cheese; and drink 8 or more 8 ounce glasses of water. This routine may be adjusted based on information about the user, such as sex, age, height and/or weight. Certain nutritional targets may also be set by the user or for the user, relating to daily calories, protein, fiber, fat, carbohydrates, and/or water consumption and percentages of total consumption. Parameters utilized in the calculation of the relevant piston level include the number of meals per day, the number of glasses of water, and the types and amounts of food eaten each day as input by the user.

[0047] Nutritional information is presented to the user through nutrition web page 160 as shown in Fig. 6. The preferred nutritional web page 160 includes nutritional fact charts 165 and 170 which illustrate actual and target nutritional facts, respectively as pie charts, and nutritional intake charts 175 and 180 which show total actual nutritional intake and target nutritional intake, respectively as pie charts. Nutritional fact charts 165 and 170 preferably show a percentage breakdown of items such as carbohydrates, protein and fat, and nutritional intake charts 175 and 180 are preferably broken down to show components such as total and target calories, fat, carbohydrates, protein, and vitamins. Web page 160 also includes meal and water consumption tracking 185 with time entries, hyperlinks 190 which allow the user to directly access nutrition-related news items and articles, suggestions for refining or improving daily routine with respect to nutrition and affiliate advertising elsewhere on the network, and calendar 195 for choosing between views having variable and selectable time periods. The items shown at 190 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.

[0048] The Activity Level category of Health Index 155 is designed to help users monitor how and when they move around during the day and utilizes both data input by the user and data sensed by sensor device 10. The data input by the user may include details regarding the user's daily activities, for example the fact that the user worked at a desk from 8 a.m. to 5 p.m. and then took an aerobics class from 6 p.m. to 7 p.m. Relevant data sensed by sensor device 10 may include heart rate, movement as sensed by a device such as an accelerometer, heat flow, respiration rate, calories burned, GSR and hydration level, which may be derived by sensor device 60 or central monitoring unit 30. Calories burned may be calculated in a variety of manners, including: the multiplication of the type of exercise input by the user by the duration of exercise input by the user; sensed motion multiplied by time of motion multiplied by a filter constant; or sensed heat flux multiplied by time multiplied by a filter constant.

[0049] The Activity Level Health Index piston level is preferably determined with respect to a suggested healthy daily routine that includes: exercising aerobically for a pre-set time period, preferably 20 minutes, or engaging in a vigorous lifestyle activity for a pre-set time period, preferably one hour, and burning at least a minimum target number of calories, preferably 205 calories, through the aerobic exercise and/or lifestyle activity. The minimum target number of calories may be set according to information about the user, such as sex, age, height and/or weight. Parameters utilized in the calculation of the relevant piston level include the amount of time spent exercising aerobically or engaging in a vigorous lifestyle activity as input by the user and/or sensed by sensor device 10, and the number of calories burned above precalculated energy expenditure parameters.

50

[0050] Information regarding the individual user's movement is presented to the user through activity level web page

200 shown in Fig. 7, which may include activity graph 205 in the form of a bar graph, for monitoring the individual user's activities in one of three categories: high, medium and low intensity with respect to a pre-selected unit of time. Activity percentage chart 210, in the form or a pie chart, may also be provided for showing the percentage of a pre-selected time period, such as one day, that the user spent in each category. Activity level web page 200 may also include calorie section 215 for displaying items such as total calories burned, daily target calories burned, total caloric intake, and duration of aerobic activity. Finally, activity level web page 200 may include at least one hyperlink 220 to allow a user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to activity level and affiliate advertising elsewhere on the network. Activity level web page 200 may be viewed in a variety of formats, and may include user-selectable graphs and charts such as a bar graph, pie chart, or both, as selectable by Activity level check boxes 225. Activity level calendar 230 is provided for selecting among views having variable and selectable time periods. The items shown at 220 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.

[0051] The Mind Centering category of Health Index 155 is designed to help users monitor the parameters relating to time spent engaging in certain activities which allow the body to achieve a state of profound relaxation while the mind becomes focused, and is based upon both data input by the user and data sensed by the sensor device 10. In particular, a user may input the beginning and end times of relaxation activities such as yoga or meditation. The quality of those activities as determined by the depth of a mind centering event can be measured by monitoring parameters including skin temperature, heart rate, respiration rate, and heat flow as sensed by sensor device 10. Percent change in GSR as derived either by sensor device 10 or central monitoring unit 30 may also be utilized.

[0052] The Mind Centering Health Index piston level is preferably calculated with respect to a suggested healthy daily routine that includes participating each day in an activity that allows the body to achieve profound relaxation while the mind stays highly focused for at least fifteen minutes. Parameters utilized in the calculation of the relevant piston level include the amount of time spent in a mind centering activity, and the percent change in skin temperature, heart rate, respiration rate, heat flow or GSR as sensed by sensor device 10 compared to a baseline which is an indication of the depth or quality of the mind centering activity.

[0053] Information regarding the time spent on self-reflection and relaxation is presented to the user through mind centering web page 250 shown in Fig. 8. For each mind centering activity, referred to as a session, the preferred mind centering web page 250 includes the time spent during the session, shown at 255, the target time, shown at 260, comparison section 265 showing target and actual depth of mind centering, or focus, and a histogram 270 that shows the overall level of stress derived from such things as skin temperature, heart rate, respiration rate, heat flow and/or GSR. In comparison section 265, the human figure outline showing target focus is solid, and the human figure outline showing actual focus ranges from fuzzy to solid depending on the level of focus. The preferred mind centering web page may also include an indication of the total time spent on mind centering activities, shown at 275, hyperlinks 280 which allow the user to directly access relevant news items and articles, suggestions for refining or improving daily routine with respect to mind centering and affiliate advertising, and a calendar 285 for choosing among views having variable and selectable time periods. The items shown at 280 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.

30

35

50

55

[0054] The Sleep category of Health Index 155 is designed to help users monitor their sleep patterns and the quality of their sleep. It is intended to help users learn about the importance of sleep in their healthy lifestyle and the relationship of sleep to circadian rhythms, being the normal daily variations in body functions. The Sleep category is based upon both data input by the user and data sensed by sensor device 10. The data input by the user for each relevant time interval includes the times the user went to sleep and woke up and a rating of the quality of sleep. As noted in Table 2, the data from sensor device 10 that is relevant includes skin temperature, heat flow, beat-to-beat heart variability, heart rate, pulse rate, respiration rate, core temperature, galvanic skin response, EMG, EEG, EOG, blood pressure, and oxygen consumption. Also relevant is ambient sound and body movement or motion as detected by a device such as an accelerometer. This data can then be used to calculate or derive sleep onset and wake time, sleep interruptions, and the quality and depth of sleep.

[0055] The Sleep Health Index piston level is determined with respect to a healthy daily routine including getting a minimum amount, preferably eight hours, of sleep each night and having a predictable bed time and wake time. The specific parameters which determine the piston level calculation include the number of hours of sleep per night and the bed time and wake time as sensed by sensor device 10 or as input by the user, and the quality of the sleep as rated by the user or derived from other data.

[0056] Information regarding sleep is presented to the user through sleep web page 290 shown in Fig. 9. Sleep web page 290 includes a sleep duration indicator 295, based on either data from sensor device 10 or on data input by the user, together with user sleep time indicator 300 and wake time indicator 305. A quality of sleep rating 310 input by the user may also be utilized and displayed. If more than a one day time interval is being displayed on sleep web page 290, then sleep duration indicator 295 is calculated and displayed as a cumulative value, and sleep time indicator 300, wake time indicator 305 and quality of sleep rating 310 are calculated and illustrated as averages. Sleep web page 290 also

includes a user-selectable sleep graph 315 which calculates and displays one sleep related parameter over a preselected time interval. For illustrative purposes, Fig. 9 shows heat flow over a one-day period, which tends to be lower during sleeping hours and higher during waking hours. From this information, a person's bio-rhythms can be derived. Sleep graph 315 may also include a graphical representation of data from an accelerometer incorporated in sensor device 10 which monitors the movement of the body. The sleep web page 290 may also include hyperlinks 320 which allow the user to directly access sleep related news items and articles, suggestions for refining or improving daily routine with respect to sleep and affiliate advertising available elsewhere on the network, and a sleep calendar 325 for choosing a relevant time interval. The items shown at 320 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.

[0057] The Activities of Daily Living category of Health Index 155 is designed to help users monitor certain health and safety related activities and risks and is based entirely on data input by the user. The Activities of Daily Living category is divided into four sub-categories: personal hygiene, which allows the user to monitor activities such as brushing and flossing his or her teeth and showering; health maintenance, that tracks whether the user is taking prescribed medication or supplements and allows the user to monitor tobacco and alcohol consumption and automobile safety such as seat belt use; personal time, that allows the user to monitor time spent socially with family and friends, leisure, and mind centering activities; and responsibilities, that allows the user to monitor certain work and financial activities such as paying bills and household chores.

10

30

35

50

[0058] The Activities of Daily Living Health Index piston level is preferably determined with respect to the healthy daily routine described below. With respect to personal hygiene, the routine requires that the users shower or bathe each day, brush and floss teeth each day, and maintain regular bowel habits. With respect to health maintenance, the routine requires that the user take medications and vitamins and/or supplements, use a seat belt, refrain from smoking, drink moderately, and monitor health each day with the Health Manager. With respect to personal time, the routine requires the users to spend at least one hour of quality time each day with family and/or friends, restrict work time to a maximum of nine hours a day, spend some time on a leisure or play activity each day, and engage in a mind stimulating activity. With respect to responsibilities, the routine requires the users to do household chores, pay bills, be on time for work, and keep appointments. The piston level is calculated based on the degree to which the user completes a list of daily activities as determined by information input by the user.

[0059] Information relating to these activities is presented to the user through daily activities web page 330 shown in Fig. 10. In preferred daily activities web page 330, activities chart 335, selectable for one or more of the sub-categories, shows whether the user has done what is required by the daily routine. A colored or shaded box indicates that the user has done the required activity, and an empty, non-colored or shaded box indicates that the user has not done the activity. Activities chart 335 can be created and viewed in selectable time intervals. For illustrative purposes, Fig. 10 shows the personal hygiene and personal time sub-categories for a particular week. In addition, daily activities web page 330 may include daily activity hyperlinks 340 which allow the user to directly access relevant news items and articles, suggestions for improving or refining daily routine with respect to activities of daily living and affiliate advertising, and a daily activities calendar 345 for selecting a relevant time interval. The items shown at 340 may be selected and customized based on information learned about the individual in the survey and on their performance as measured by the Health Index.

[0060] The How You Feel category of Health Index 155 is designed to allow users to monitor their perception of how they felt on a particular day, and is based on information, essentially a subjective rating, that is input directly by the user. A user provides a rating, preferably on a scale of 1 to 5, with respect to the following nine subject areas: mental sharpness; emotional and psychological well being; energy level; ability to cope with life stresses; appearance; physical well being; self-control; motivation; and comfort in relating to others. Those ratings are averaged and used to calculate the relevant piston level.

[0061] Referring to Fig. 11, Health Index web page 350 is shown. Health Index web page 350 enables users to view the performance of their Health Index over a user selectable time interval including any number of consecutive or non-consecutive days. Using Health Index selector buttons 360, the user can select to view the Health Index piston levels for one category, or can view a side-by-side comparison of the Health Index piston levels for two or more categories. For example, a user might want to just turn on Sleep to see if their overall sleep rating improved over the previous month, much in the same way they view the performance of their favorite stock. Alternatively, Sleep and Activity Level might be simultaneously displayed in order to compare and evaluate Sleep ratings with corresponding Activity Level ratings to determine if any day-to-day correlations exist. Nutrition ratings might be displayed with How You Feel for a pre-selected time interval to determine if any correlation exists between daily eating habits and how they felt during that interval. For illustrative purposes, Fig. 11 illustrates a comparison of Sleep and Activity Level piston levels for the week of June 10 through June 16. Health Index web page 350 also includes tracking calculator 365 that displays access information and statistics such as the total number of days the user has logged in and used the Health Manager, the percentage of days the user has used the Health Manager since becoming a subscriber, and percentage of time the user has used the sensor device 10 to gather data.

[0062] Referring again to Fig. 5, opening Health Manager web page 150 may include a plurality of user selectable

category summaries 156a through 156f, one corresponding to each of the Health Index 155 categories. Each category summary 156a through 156f presents a pre-selected filtered subset of the data associated with the corresponding category. Nutrition category summary 156a displays daily target and actual caloric intake. Activity Level category summary 156b displays daily target and actual calories burned. Mind Centering category summary 156c displays target and actual depth of mind centering or focus. Sleep category summary 156d displays target sleep, actual sleep, and a sleep quality rating. Daily Activities category summary 156e displays a target and actual score based on the percentage of suggested daily activities that are completed. The How You Feel category summary 156f shows a target and actual rating for the day. [0063] Opening Health Manager web page 150 also may include Daily Dose section 157 which provides, on a daily time interval basis, information to the user, including, but not limited to, hyperlinks to news items and articles, commentary and reminders to the user based on tendencies, such as poor nutritional habits, determined from the initial survey. The commentary for Daily Dose 157 may, for example, be a factual statement that drinking 8 glasses of water a day can reduce the risk of colon cancer by as much as 32%, accompanied by a suggestion to keep a cup of water by your computer or on your desk at work and refill often. Opening Health Manager web page 150 also may include a Problem Solver section 158 that actively evaluates the user's performance in each of the categories of Health Index 155 and presents suggestions for improvement. For example, if the system detects that a user's Sleep levels have been low, which suggest that the user has been having trouble sleeping, Problem Solver 158 can provide suggestions for way to improve sleep. Problem Solver 158 also may include the capability of user questions regarding improvements in performance. Opening Health Manager web page 150 may also include a Daily Data section 159 that launches an input dialog box. The input dialog box facilitates input by the user of the various data required by the Health Manager. As is known in the art, data entry may be in the form of selection from pre-defined lists or general free form text input. Finally, opening Health Manager web page 150 may include Body Stats section 161 which may provide information regarding the user's height, weight, body measurements, body mass index or BMI, and vital signs such as heart rate, blood pressure or any of the identified physiological parameters.

[0064] Referring to Figs. 12-17, a specific embodiment of sensor device 10 is shown which is in the form of an armband adapted to be worn by an individual on his or her upper arm, between the shoulder and the elbow. The specific embodiment of sensor device 10 shown in Figs. 12-17 will, for convenience, be referred to as armband sensor device 400. Armband sensor device 400 includes computer housing 405, flexible wing body 410, and, as shown in Fig. 17, elastic strap 415. Computer housing 405 and flexible wing body 410 are preferably made of a flexible urethane material or an elastomeric material such as rubber or a rubber-silicone blend by a molding process. Flexible wing body 410 includes first and second wings 418 each having a thru-hole 420 located near the ends 425 thereof. First and second wings 418 are adapted to wrap around a portion of the wearer's upper arm.

30

35

50

[0065] Elastic strap 415 is used to removably affix armband sensor device 400 to the individual's upper arm. As seen in Fig. 17, bottom surface 426 of elastic strap 415 is provided with velcro loops 416 along a portion thereof. Each end 427 of elastic strap 415 is provided with velcro hook patch 428 on bottom surface 426 and pull tab 429 on top surface 430. A portion of each pull tab 429 extends beyond the edge of each end 427.

[0066] In order to wear armband sensor device 400, a user inserts each end 427 of elastic strap 415 into a respective thru-hole 420 of flexible wing body 410. The user then places his arm through the loop created by elastic strap 415, flexible wing body 410 and computer housing 405. By pulling each pull tab 429 and engaging velcro hook patches 428 with velcro loops 416 at a desired position along bottom surface 426 of elastic strap 415, the user can adjust elastic strap 415 to fit comfortably. Since velcro hook patches 428 can be engaged with velcro loops 416 at almost any position along bottom surface 426, armband sensor device 400 can be adjusted to fit arms of various sizes. Also, elastic strap 415 may be provided in various lengths to accommodate a wider range of arm sizes. As will be apparent to one of skill in the art, other means of fastening and adjusting the size of elastic strap may be used, including, but not limited to, snaps, buttons, or buckles. It is also possible to use two elastic straps that fasten by one of several conventional means including velcro, snaps, buttons, buckles or the like, or merely a single elastic strap affixed to wings 418.

[0067] Alternatively, instead of providing thru-holes 420 in wings 418, loops having the shape of the letter D, not shown, may be attached to ends 425 of wings 418 by one of several conventional means. For example, a pin, not shown, may be inserted through ends 425, wherein the pin engages each end of each loop. In this configuration, the D-shaped loops would serve as connecting points for elastic strap 415, effectively creating a thru-hole between each end 425 of each wing 418 and each loop.

[0068] As shown in Fig. 18, which is an exploded view of armband sensor device 400, computer housing 405 includes a top portion 435 and a bottom portion 440. Contained within computer housing 405 are printed circuit board or PCB 445, rechargeable battery 450, preferably a lithium ion battery, and vibrating motor 455 for providing tactile feedback to the wearer, such as those used in pagers, suitable examples of which are the Model 12342 and 12343 motors sold by MG Motors Ltd. of the United Kingdom.

[0069] Top portion 435 and bottom portion 440 of computer housing 405 sealingly mate along groove 436 into which O-ring 437 is fit, and may be affixed to one another by screws, not shown, which pass through screw holes 438a and stiffeners 438b of bottom portion 440 and apertures 439 in PCB 445 and into threaded receiving stiffeners 451 of top

portion 435. Alternately, top portion 435 and bottom portion 440 may be snap fit together or affixed to one another with an adhesive. Preferably, the assembled computer housing 405 is sufficiently water resistant to permit armband sensor device 400 to be worn while swimming without adversely affecting the performance thereof.

[0070] As can be seen in Figure 13, bottom portion 440 includes, on a bottom side thereof, a raised platform 430. Affixed to raised platform 430 is heat flow or flux sensor 460, a suitable example of which is the micro-foil heat flux sensor sold by RdF Corporation of Hudson, New Hampshire. Heat flux sensor 460 functions as a self-generating thermopile transducer, and preferably includes a carrier made of a polyamide film. Bottom portion 440 may include on a top side thereof, that is on a side opposite the side to which heat flux sensor 460 is affixed, a heat sink, not shown, made of a suitable metallic material such as aluminum. Also affixed to raised platform 430 are GSR sensors 465, preferably comprising electrodes formed of a material such as conductive carbonized rubber, gold or stainless steel. Although two GSR sensors 465 are shown in Fig. 13, it will be appreciated by one of skill in the art that the number of GSR sensors 465 and the placement thereof on raised platform 430 can vary as long as the individual GSR sensors 465, i.e., the electrodes, are electrically isolated from one another. By being affixed to raised platform 430, heat flux sensor 460 and GSR sensors 465 are adapted to be in contact with the wearer's skin when armband sensor device 400 is worn. Bottom portion 440 of computer housing 405 may also be provided with a removable and replaceable soft foam fabric pad, not shown, on a portion of the surface thereof that does not include raised platform 430 and screw holes 438a. The soft foam fabric is intended to contact the wearer's skin and make armband sensor device 400 more comfortable to wear.

[0071] Electrical coupling between heat flux sensor 460, GSR sensors 465, and PCB 445 may be accomplished in one of various known methods. For example, suitable wiring, not shown, may be molded into bottom portion 440 of computer housing 405 and then electrically connected, such as by soldering, to appropriate input locations on PCB 445 and to heat flux sensor 460 and GSR sensors 465. Alternatively, rather than molding wiring into bottom portion 440, thru-holes may be provided in bottom portion 440 through which appropriate wiring may pass. The thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405.

[0072] Rather than being affixed to raised platform 430 as shown in Fig. 13, one or both of heat flux sensor 460 and GSR sensors 465 may be affixed to the inner portion 466 of flexible wing body 410 on either or both of wings 418 so as to be in contact with the wearer's skin when armband sensor device 400 is worn. In such a configuration, electrical coupling between heat flux sensor 460 and GSR sensors 465, whichever the case may be, and the PCB 445 may be accomplished through suitable wiring, not shown, molded into flexible wing body 410 that passes through one or more thru-holes in computer housing 405 and that is electrically connected, such as by soldering, to appropriate input locations on PCB 445. Again, the thru-holes would preferably be provided with a water tight seal to maintain the integrity of computer housing 405. Alternatively, rather than providing thru-holes in computer housing 405 through which the wiring passes, the wiring may be captured in computer housing 405 during an overmolding process, described below, and ultimately soldered to appropriate input locations on PCB 445.

30

35

50

[0073] As shown in Figs. 12, 16, 17 and 18, computer housing 405 includes a button 470 that is coupled to and adapted to activate a momentary switch 585 on PCB 445. Button 470 may be used to activate armband sensor device 400 for use, to mark the time an event occurred or to request system status information such as battery level and memory capacity. When button 470 is depressed, momentary switch 585 closes a circuit and a signal is sent to processing unit 490 on PCB 445. Depending on the time interval for which button 470 is depressed, the generated signal triggers one of the events just described. Computer housing 405 also includes LEDs 475, which may be used to indicate battery level or memory capacity or to provide visual feedback to the wearer. Rather than LEDs 475, computer housing 405 may also include a liquid crystal display or LCD to provide battery level, memory capacity or visual feedback information to the wearer. Battery level, memory capacity or feedback information may also be given to the user tactily or audibly.

[0074] Armband sensor device 400 may be adapted to be activated for use, that is collecting data, when either of GSR sensors 465 or heat flux sensor 460 senses a particular condition that indicates that armband sensor device 400 has been placed in contact with the user's skin. Also, armband sensor device 400 may be adapted to be activated for use when one or more of heat flux sensor 460, GSR sensors 465, accelerometer 495 or 550, or any other device in communication with armband sensor device 400, alone or in combination, sense a particular condition or conditions that indicate that the armband sensor device 400 has been placed in contact with the user's skin for use. At other times, armband sensor device 400 would be deactivated, thus preserving battery power.

[0075] Computer housing 405 is adapted to be coupled to a battery recharger unit 480 shown in Fig. 19 for the purpose of recharging rechargeable battery 450. Computer housing 405 includes recharger contacts 485, shown in Figs. 12, 15, 16 and 17, that are coupled to rechargeable battery 450. Recharger contracts 485 may be made of a material such as brass, gold or stainless steel, and are adapted to mate with and be electrically coupled to electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The electrical contacts provided in battery recharger unit 480 may be coupled to recharging circuit 481a provided inside battery recharger unit 480. In this configuration, recharging circuit 481 would be coupled to a wall outlet, such as by way of wiring including a suitable plug that is attached or is attachable to battery recharger unit 480. Alternatively, electrical contacts 480 may be coupled to wiring that is attached to or is attachable to battery recharger unit 480 that in turn is coupled to recharging circuit 481b

external to battery recharger unit 480. The wiring in this configuration would also include a plug, not shown, adapted to be plugged into a conventional wall outlet.

[0076] Also provided inside battery recharger unit 480 is RF transceiver 483 adapted to receive signals from and transmit signals to RF transceiver 565 provided in computer housing 405 and shown in Fig. 20. RF transceiver 483 is adapted to be coupled, for example by a suitable cable, to a serial port, such as an RS 232 port or a USB port, of a device such as personal computer 35 shown in Fig. 1. Thus, data may be uploaded from and downloaded to armband sensor device 400 using RF transceiver 483 and RF transceiver 565. It will be appreciated that although RF transceivers 483 and 565 are shown in Figs. 19 and 20, other forms of wireless transceivers may be used, such as infrared transceivers. Alternatively, computer housing 405 may be provided with additional electrical contacts, not shown, that would be adapted to mate with and be electrically coupled to additional electrical contacts, not shown, provided in battery recharger unit 480 when armband sensor device 400 is placed therein. The additional electrical contacts in the computer housing 405 would be coupled to the processing unit 490 and the additional electrical contacts provided in battery recharger unit 480 would be coupled to a suitable cable that in turn would be coupled to a serial port, such as an RS R32 port or a USB port, of a device such as personal computer 35. This configuration thus provides an alternate method for uploading of data from and downloading of data to armband sensor device 400 using a physical connection.

[0077] Fig. 20 is a schematic diagram that shows the system architecture of armband sensor device 400, and in particular each of the components that is either on or coupled to PCB 445.

[0078] As shown in Fig. 17, PCB 445 includes processing unit 490, which may be a microprocessor, a microcontroller, or any other processing device that can be adapted to perform the functionality described herein. Processing unit 490 is adapted to provide all of the functionality described in connection with microprocessor 20 shown in Fig. 2. A suitable example of processing unit 490 is the Dragonball EZ sold by Motorola, Inc. of Schaumburg, Illinois. PCB 445 also has thereon a two-axis accelerometer 495, a suitable example of which is the Model ADXL210 accelerometer sold by Analog Devices, Inc. of Norwood, Massachusetts. Two-axis accelerometer 495 is preferably mounted on PCB 445 at an angle such that its sensing axes are offset at an angle substantially equal to 45 degrees from the longitudinal axis of PCB 445 and thus the longitudinal axis of the wearer's arm when armband sensor device 400 is worn. The longitudinal axis of the wearer's arm refers to the axis defined by a straight line drawn from the wearer's shoulder to the wearer's elbow. The output signals of two-axis accelerometer 495 are passed through buffers 500 and input into analog to digital converter 505 that in turn is coupled to processing unit 490. GSR sensors 465 are coupled to amplifier 510 on PCB 445. Amplifier 510 provides amplification and low pass filtering functionality, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Massachusetts. The amplified and filtered signal output by amplifier 510 is input into amp/offset 515 to provide further gain and to remove any bias voltage and into filter/conditioning circuit 520, which in turn are each coupled to analog to digital converter 505. Heat flux sensor 460 is coupled to differential input amplifier 525, such as the Model INA amplifier sold by Burr-Brown Corporation of Tucson, Arizona, and the resulting amplified signal is passed through filter circuit 530, buffer 535 and amplifier 540 before being input to analog to digital converter 505. Amplifier 540 is configured to provide further gain and low pass filtering, a suitable example of which is the Model AD8544 amplifier sold by Analog Devices, Inc. of Norwood, Massachusetts. PCB 445 also includes thereon a battery monitor 545 that monitors the remaining power level of rechargeable battery 450. Battery monitor 545 preferably comprises a voltage divider with a low pass filter to provide average battery voltage. When a user depresses button 470 in the manner adapted for requesting battery level, processing unit 490 checks the output of battery monitor 545 and provides an indication thereof to the user, preferably through LEDs 475, but also possibly through vibrating motor 455 or ringer 575. An LCD may also be used.

30

35

50

55

[0079] PCB 445 may include three-axis accelerometer 550 instead of or in addition to two-axis accelerometer 495. The three-axis accelerometer outputs a signal to processing unit 490. A suitable example of three-axis accelerometer is the μ PAM product sold by I.M. Systems, Inc. of Scottsdale, Arizona. Three-axis accelerometer 550 is preferably tilted in the manner described with respect to two-axis accelerometer 495.

[0080] PCB 445 also includes RF receiver 555 that is coupled to processing unit 490. RF receiver 555 may be used to receive signals that are output by another device capable of wireless transmission, shown in Fig. 20 as wireless device 558, worn by or located near the individual wearing armband sensor device 400. Located near as used herein means within the transmission range of wireless device 558. For example, wireless device 558 may be a chest mounted heart rate monitor such as the Tempo product sold by Polar Electro of Oulu, Finland. Using such a heart rate monitor, data indicative of the wearer's heart rate can be collected by armband sensor device 400. Antenna 560 and RF transceiver 565 are coupled to processing unit 490 and are provided for purposes of uploading data to central monitoring unit 30 and receiving data downloaded from central monitoring unit 30. RF transceiver 565 and RF receiver 555 may, for example, employ Bluetooth technology as the wireless transmission protocol. Also, other forms of wireless transmission may be used, such as infrared transmission.

[0081] Vibrating motor 455 is coupled to processing unit 490 through vibrator driver 570 and provides tactile feedback to the wearer. Similarly, ringer 575, a suitable example of which is the Model SMT916A ringer sold by Projects Unlimited, Inc. of Dayton, Ohio, is coupled to processing unit 490 through ringer driver 580, a suitable example of which is the

Model NMBTA14 CTI darlington transistor driver sold by Motorola, Inc. of Schaumburg, Illinois, and provides audible feedback to the wearer. Feedback may include, for example, celebratory, cautionary and other threshold or event driven messages, such as when a wearer reaches a level of calories burned during a workout.

[0082] Also provided on PCB 445 and coupled to processing unit 490 is momentary switch 585. Momentary switch 585 is also coupled to button 470 for activating momentary switch 585. LEDs 475, used to provide various types of feedback information to the wearer, are coupled to processing unit 490 through LED latch/driver 590.

[0083] Oscillator 595 is provided on PCB 445 and supplies the system clock to processing unit 490. Reset circuit 600, accessible and triggerable through a pin-hole in the side of computer housing 405, is coupled to processing unit 490 and enables processing unit 490 to be reset to a standard initial setting.

[0084] Rechargeable battery 450, which is the main power source for the armband sensor device 400, is coupled to processing unit 490 through voltage regulator 605. Finally, memory functionality is provided for armband sensor device 400 by SRAM 610, which stores data relating to the wearer of armband sensor device 400, and flash memory 615, which stores program and configuration data, provided on PCB 445. SRAM 610 and flash memory 615 are coupled to processing unit 490 and each preferably have at least 512K of memory.

[0085] In manufacturing and assembling armband sensor device 400, top portion 435 of computer housing 405 is preferably formed first, such as by a conventional molding process, and flexible wing body 410 is then overmolded on top of top portion 435. That is, top portion 435 is placed into an appropriately shaped mold, i.e., one that, when top portion 435 is placed therein, has a remaining cavity shaped according to the desired shape of flexible wing body 410, and flexible wing body 410 is molded on top of top portion 435. As a result, flexible wing body 410 and top portion 435 will merge or bond together, forming a single unit. Alternatively, top portion 435 of computer housing 405 and flexible wing body 410 may be formed together, such as by molding in a single mold, to form a single unit. The single unit however formed may then be turned over such that the underside of top portion 435 is facing upwards, and the contents of computer housing 405 can be placed into top portion 435, and top portion 435 and bottom portion 440 can be affixed to one another. As still another alternative, flexible wing body 410 may be separately formed, such as by a conventional molding process, and computer housing 405, and in particular top portion 435 of computer housing 405, may be affixed to flexible wing body 410 by one of several known methods, such as by an adhesive, by snap-fitting, or by screwing the two pieces together. Then, the remainder of computer housing 405 would be assembled as described above. It will be appreciated that rather than assembling the remainder of computer housing 405 after top portion 435 has been affixed to flexible wing body 410, the computer housing 405 could be assembled first and then affixed to flexible wing body 410. [0086] The terms and expressions which have been employed herein are used as terms of description and not as limitation, and there is no intention in the use of such terms and expressions of excluding equivalents of the features shown and described or portions thereof, it being recognized that various modifications are possible within the scope of the invention claimed. Although particular embodiments of the present invention have been illustrated in the foregoing detailed description, it is to be further understood that the present invention is not to be limited to just the embodiments

Claims

30

35

40 1. An apparatus for monitoring and reporting human physiological information, comprising a sensor device housing adapted to be placed in proximity with an individual's body, a processor supported by said sensor device housing, said processor being in electrical communication with at least two sensors selected from the group consisting of physiological sensors and contextual sensors, at least one of said at least two sensors being a physiological sensor, said at least two sensors being adapted to generate data indicative of at least a first parameter of said individual, said first parameter being physiological, and a second parameter of said individual, and means in electrical communication with said processor for providing information to said individual, characterized in that said processor is adapted to derive physiological state information from at least a portion of said data indicative of at least a first parameter and at least a portion of said data indicative of at least a second parameter.

disclosed, but that they are capable ofnumerous rearrangements, modifications and substitutions.

- An apparatus according to claim 1, wherein at least two of said at least two sensors are physiological sensors and wherein said second parameter is physiological.
 - 3. An apparatus according to claim 1 or 2, further comprising:

a central monitoring unit remote from said sensor device housing, said central monitoring unit including a data storage device, said central monitoring unit receiving said derived data from said processor and retrievably storing said derived data in said data storage device; and means for transmitting said derived data from said central monitoring unit to a recipient.

- 4. An apparatus according to claim 3, said central monitoring unit being adapted to generate analytical status data from said derived data, said means for transmitting also transmitting said analytical status data to said recipient.
- 5. An apparatus according to either claim 3 or claim 4 further comprising means for transferring said derived data from said sensor device to said central monitoring unit.

5

10

15

20

25

30

35

- 6. An apparatus according to claim 5, further comprising a rechargeable battery supported by said sensor device housing and a first wireless transceiver in electrical communication with said processor, said sensor device housing being adapted to be placed in a battery recharger unit for recharging said rechargeable battery, said battery recharger unit further comprising a second wireless transceiver, said first and second wireless transceivers being in communication with one another and forming at least a part of said means for transferring.
- 7. An apparatus according to any one of claims 3 to 6, wherein said central monitoring unit is adapted to generate one or more web pages containing said derived data and wherein said means for transmitting makes said web pages accessible by said recipient over the Internet.
- 8. An apparatus according to any preceding claim, said at least two sensors being chosen from the group consisting of a heart beat sensor, a pulse rate sensor, an EKG sensor, a respiration rate sensor, a skin temperature sensor, a core temperature sensor, a heat flux sensor, a GSR sensor, an EMG sensor, an EEG sensor, a blood pressure sensor, a body impedance sensor, a motion sensor, an oxygen consumption sensor, a glucose level sensor, a body position sensor, a muscle pressure sensor, and a UV radiation absorption sensor.
- 9. An apparatus according to any one of claims 1 to 7, said at least two sensors being chosen from the group consisting of a motion sensor adapted to generate data indicative of motion, a GSR sensor adapted to generate data indicative of the resistance of said individual's skin to electric current, a heat flux sensor adapted to generate data indicative of heat flow, a skin temperature sensor adapted to generate data indicative of a temperature of said individual's skin, and a heart beat sensor adapted to generate data indicative of said individual's heart beat, said data indicative of at least a first physiological parameter and a second physiological parameter comprising at least two of said data indicative of motion, said data indicative of resistance of said individual's skin to electric current, said data indicative of heat flow, said data indicative of a temperature of said individual's skin, and said data indicative of said individual's heart beat.
- **10.** An apparatus according to claim 8 or 9, said motion sensor being selected from the group consisting of an accelerometer, a body position sensor, and a global positioning sensor.
- 11. An apparatus according to any one of claims 8 to 10, wherein said derived data comprises data relating to calories burned and is based on at least said data indicative of motion and said data indicative of heat flow.
- 12. An apparatus according to claim 11, wherein said derived data is also based on said data indicative of resistance of said individual's skin to electric current.
 - 13. An apparatus according to any preceding claim, further comprising one or more contextual sensors in electrical communication with said processor, said one or more contextual sensors adapted to generate data indicative of one or more contextual parameters associated with said individual, and wherein said derived data is also generated from selected portions of said data indicative of one or more contextual parameters.
 - **14.** An apparatus according to claim 13, said one or more contextual sensors comprising an ambient temperature sensor, said data indicative of one or more contextual parameters comprising an ambient temperature.
- 15. An apparatus according to any one of claims 3 to 7 or 8 to 14 as dependent on any one of claims 3 to 7, further comprising means for obtaining life activities data of said individual, said life activities data being retrievably stored in said data storage device, wherein said analytical status data is also generated from selected portions of said life activities data.
- 16. An apparatus according to claim 15, said means for obtaining comprising means for enabling said individual to input said life activities data and transmit said life activities data to said central monitoring unit.
 - 17. An apparatus according to either claim 15 or claim 16, wherein said central monitoring unit is adapted to generate

and provide feedback relating to the degree to which said individual has followed a suggested routine, said feedback being generated from at least a portion of said data indicative of at least a first parameter and a second parameter, said derived data and said life activities data.

5 18. An apparatus according to claim 17, wherein said routine comprises one or more categories and said feedback is generated and provided with respect to said one or more categories.

10

20

30

35

40

- 19. An apparatus according to claim 18, wherein said one or more categories include at least one of nutrition, activity level, mind centering, sleep, and daily activities.
- 20. An apparatus according to claim 19, wherein said nutrition category includes information relating to one or more of calories consumed, proteins consumed, fats consumed, carbohydrates consumed, vitamins consumed, water consumed, fiber consumed, types of foods consumed and quantity of foods consumed.
- 21. An apparatus according to either claim 19 or claim 20, wherein said activity level category includes information relating to one or more of actual calories burned, target calories burned, duration of exercise activities, duration of vigorous lifestyle activities, duration of resting activities, and duration of sleep.
 - 22. An apparatus according to any one of claims 19 to 21, wherein said mind centering category includes information relating to one or more of the duration of relaxation activities, the quality of relaxation activities, stress level, and a change in one or more of skin temperature, heart rate, respiration rate, heat flow and GSR.
 - 23. An apparatus according to any one of claims 19 to 22, wherein said sleep category includes information relating to one or more of sleep onset, wake time, sleep interruptions, sleep amount, and sleep quality.
 - 24. An apparatus according to any one of claims 19 to 23, wherein said daily activities category includes information relating to one or more of bathing habits, dental hygiene habits, bowel habits, the taking of medication, the taking of vitamins or supplements, smoking habits, drinking habits, time spent with family or friends, time spend in leisure activities, performance of household chores, payment of bills, and work and appointment punctuality.
 - 25. An apparatus according to any one of claims 17 to 24, wherein said central monitoring unit is adapted to generate one or more web pages containing said feedback, said web pages being accessible over the Internet.
 - **26.** An apparatus according to any of claims 3 to 7 or 8 to 14 as dependent on any one of claims 3 to 7 or 15 to 25, wherein said central monitoring unit is adapted to generate and provide feedback to a recipient relating to management of an aspect of at least one of said individual's health and said individual's lifestyle.
 - 27. An apparatus according to claim 26, said feedback being generated from at least a portion of said data indicative of at least a first parameter and a second parameter and said derived data.
 - 28. An apparatus according to any one of claims 15 to 27, wherein said central monitoring unit is adapted to generate and provide feedback to a recipient relating to management of an aspect of at least one of said individual's health and said individual's lifestyle.
- 45 **29.** An apparatus according to claim 26, said feedback being generated from at least a portion of said data indicative of at least a first parameter and a second parameter, said derived data and said life activities data.
 - **30.** An apparatus according to any one of claims 26 to 29, said aspect of at least one of said individual's health and said individual's lifestyle relating to the taking of medication.
 - **31.** An apparatus according to any one of claims 26 to 30, said aspect of at least one of said individual's health and said individual's lifestyle relating to a heart rate of said individual.
- **32.** An apparatus according to any one of claims 26 to 31, said aspect of at least one of said individual's health and said individual's lifestyle relating to a hydration level of said individual.
 - **33.** An apparatus according to any one of claims 26 to 32, said aspect of at least one of said individual's health and said individual's lifestyle relating to an activity level of said individual.

- **34.** An apparatus according to claim 33, wherein said feedback includes information relating to one or more of actual calories burned, target calories burned, duration non-resting activities, duration of resting activities, and a body position of said individual.
- 35. An apparatus according to any one of claims 26 to 34, said aspect of at least one of said individual's health and said individual's lifestyle relating to said individual's weight.

10

15

20

30

35

45

50

- **36.** An apparatus according to claim 35, wherein said feedback includes information relating to one or more of calories consumed, proteins consumed, fats consumed, carbohydrates consumed, vitamins consumed, water consumed, fiber consumed, types of foods consumed, quantity of foods consumed, actual calories burned, target calories burned, duration of exercise activities, duration of vigorous lifestyle activities, duration of resting activities, and duration of sleep.
- 37. An apparatus according to claim 35, wherein said feedback includes information relating to a rate of caloric burn.
- **38.** An apparatus according to any one of claims 26 to 37, said aspect of at least one of said individual's health and said individual's lifestyle relating to said individual's sleep activities.
- **39.** An apparatus according to claim 38, wherein said feedback includes information relating to one or more of sleep onset, wake time, sleep interruptions, sleep amount, and sleep quality.
- **40.** An apparatus according to any one of claims 26 to 39, said aspect of at least one of said individual's health and said individual's lifestyle relating to said individual's glucose levels.
- 41. An apparatus according to any one of claims 26 to 40, said aspect of at least one of said individual's health and said individual's lifestyle relating to said individual's fitness level.
 - **42.** An apparatus according to any of claims 26 to 41, said central monitoring unit being connected to an electronic network and having access to information from a third party source over said electronic network, said feedback including said information from a third party source.
 - **43.** An apparatus according to any of claims 3 to 7 or 8 to 14 as dependent on any one of claims 3 to 7 or 15 to 41, said central monitoring unit being connected to an electronic network and having access to information from a third party source over said electronic network, said central monitoring unit making said information from a third party source available to said recipient.
 - 44. An apparatus according to any of claims 26 to 43, said feedback including suggestions for modifying said individual's behavior.
- 45. An apparatus according to claim any preceding claim, further comprising a memory in electrical communication with said processor for storing at least one of said data indicative of a first parameter, said data indicative of a second parameter and said derived data.
 - **46.** An apparatus according to any preceding claim, further comprising a flexible body supporting said sensor device housing, said flexible body having first and second members adapted to wrap around a portion of said individual's body.
 - 47. An apparatus according to claim 46, further comprising wrapping means coupled to said flexible body for maintaining contact between said sensor device housing and said individual's body.
 - **48.** An apparatus according to either claim 46 or claim 47, said flexible body supporting at least one of said at least two sensors.
 - **49.** An apparatus according to any one of claims 1 to 46, further comprising wrapping means coupled to said sensor device housing for maintaining contact between said sensor device housing and said individual's body.
 - **50.** An apparatus according to either claim 47 or claim 49, said wrapping means supporting at least one of said at least two sensors.

- 51. An apparatus according to either claim 47 or claim 49, said sensor device housing supporting at least one of said at least two sensors.
- 52. An apparatus according to any one of claims 1 to 45, said sensor device housing supporting said at least two sensors.
- **53.** An apparatus according to any one of claims 1 to 51, at least one of said sensors being located separately from said sensor device housing.
- 54. An apparatus according to claim 53, further comprising a wireless communications device in electrical communication with said processor, said at least one separately located sensor generating said data indicative of a first parameter, said data indicative of a first parameter being wirelessly received by said wireless communications device.
 - 55. An apparatus according to any preceding claim, further comprising a wireless receiving device in electrical communication with said processor for receiving data from a wireless device.
 - 56. An apparatus according to claim 55, wherein said wireless device comprises a heart beat monitor, said data received from said wireless device comprises data indicative of a heart beat of said individual, and said derived data is also generated from at least a portion of said data indicative of heart beat.
- 57. An apparatus according to any one of claims 1 to 54, further comprising an electronic device separate from said sensor device housing, said electronic device being in electrical communication with said processor.
 - **58.** An apparatus according to claim 57, further comprising a wireless communications device in electrical communication with said processor, said electronic device being in wireless communication with said processor through said wireless communications device.
 - **59.** An apparatus according to any preceding claim, wherein said derived data comprises data relating to at least one of calories burned, sleep onset and wake, stress level and relaxation level.

Patentansprüche

5

15

25

30

35

40

- Vorrichtung zur Überwachung und Meldung menschlicher physiologischer Informationen, die folgende Dinge umfasst:
 - ein Gehäuse für eine Sensorvorrichtung, das derart angepasst ist, dass es in der Nähe des Körpers einer Person angeordnet werden kann,
 - einen vom Gehäuse für die Sensorvorrichtung getragenen Prozessor, der elektrisch mit mindestens zwei Sensoren kommuniziert, die aus der Gruppe, bestehend aus physiologischen Sensoren und Kontext-Sensoren, ausgewählt wurden, wobei wenigstens einer der mindestens zwei Sensoren ein physiologischer Sensor ist und die mindestens zwei Sensoren derart angepasst sind, dass sie Daten erzeugen, die auf mindestens einen ersten Parameter der Person, welcher physiologischer Natur ist, und auf einen zweiten Parameter der Person schließen lassen.
 - Mittel, die elektrisch mit dem Prozessor kommunizieren, um der Person Informationen zur Verfügung zu stellen,
 - dadurch gekennzeichnet, dass der Prozessor derart angepasst ist, dass er aus mindestens einem Teil der Daten, die für wenigstens einen ersten Parameter symptomatisch sind, und aus mindestens einem Teil der Daten, die für wenigstens einen zweiten Parameter symptomatisch sind, Informationen über den physiologischen Zustand ableitet.
- Vorrichtung nach Anspruch 1, bei der wenigstens zwei der mindestens zwei Sensoren physiologische Sensoren sind und der zweite Parameter physiologischer Natur ist.
 - 3. Vorrichtung nach Anspruch 1 oder 2, die weiterhin umfasst:
- eine vom Gehäuse für die Sensorvorrichtung entfernt liegende zentrale Überwachungseinheit, welche einen Datenspeicher enthält und die abgeleiteten Daten vom Prozessor empfängt und diese abgeleiteten Daten abrufbar im Datenspeicher speichert; und
 - Mittel zur Übertragung der abgeleiteten Daten von der zentralen Überwachungseinheit an einen Empfänger.

- 4. Vorrichtung nach Anspruch 3, wobei die zentrale Überwachungseinheit derart angepasst ist, dass sie analytische Zustandsdaten aus den abgeleiteten Daten erstellt, wobei die Übertragungsmittel ebenfalls die analytischen Zustandsdaten an den Empfänger übertragen.
- Vorrichtung nach Anspruch 3 oder 4, die weiterhin Mittel zur Übertragung der aus der Sensorvorrichtung abgeleiteten Daten an die zentrale Überwachungseinheit umfasst.

10

20

25

30

35

40

45

50

55

- 6. Vorrichtung nach Anspruch 5, die weiterhin eine vom Gehäuse für die Sensorvorrichtung getragene wiederaufladbare Batterie und einen ersten elektrisch mit dem Prozessor kommunizierenden Funk-Transceiver umfasst, wobei das Gehäuse für die Sensorvorrichtung derart angepasst ist, dass es zum Aufladen der wiederaufladbaren Batterie in einem Batterieladegerät angeordnet werden kann, welches außerdem einen zweiten Funk-Transceiver umfasst, wobei der erste und der zweite Funk-Transceiver miteinander kommunizieren und mindestens einen Teil der Übertragungsmittel bilden.
- 7. Vorrichtung nach einem der Ansprüche 3 bis 6, bei der die zentrale Überwachungseinheit derart angepasst ist, dass sie eine oder mehrere Webseiten erstellt, welche die abgeleiteten Daten enthalten, und bei der die Übertragungsmittel dem Empfänger die Webseiten über das Internet zugänglich machen.
 - 8. Vorrichtung nach einem der vorstehenden Ansprüche, wobei die mindestens zwei Sensoren aus der Gruppe ausgewählt werden, die aus einem Herzschlagsensor, einem Pulsfrequenzsensor, einem EKG-Sensor, einem Atemfrequenzsensor, einem Hauttemperatursensor, einem Kerntemperatursensor, einem Wärmeflusssensor, einem GSR-Sensor, einem EMG-Sensor, einem EEG-Sensor, einem Blutdrucksensor, einem Körperimpedanzsensor, einem Bewegungssensor, einem Sauerstoffverbrauchssensor, einem Glukosespiegelsensor, einem Körperhaltungssensor, einem Muskeldrucksensor und einem Sensor für UV-Strahlungsabsorption besteht.
 - 9. Vorrichtung nach einem der Ansprüche 1 bis 7, wobei die mindestens zwei Sensoren aus der Gruppe ausgewählt werden, welche sich zusammensetzt aus:
 - einem derart angepassten Bewegungssensor, dass er die Bewegung anzeigende Daten erzeugt,
 - einem derart angepassten GSR-Sensor, dass er den Hautwiderstand der Person gegenüber elektrischem Strom anzeigende Daten erzeugt,
 - einem derart angepassten Wärmeflusssensor, dass er den Wärmefluss anzeigende Daten erzeugt,
 - einem derart angepassten Hauttemperatursensor, dass er die Hauttemperatur der Person anzeigende Daten erzeugt, und
 - einem derart angepassten Herzschlagsensor, dass er den Herzschlag der Person anzeigende Daten erzeugt,

wobei die Daten, welche für mindestens einen ersten physiologischen Parameter und einen zweiten physiologischen Parameter symptomatisch sind, mindestens zwei Datensätze der die Bewegung anzeigenden Daten, der den Hautwiderstand der Person gegenüber elektrischem Strom anzeigenden Daten, der den Wärmefluss anzeigenden Daten, der die Hauttemperatur der Person anzeigenden Daten und der den Herzschlag der Person anzeigenden Daten umfassen.

- 10. Vorrichtung nach Anspruch 8 oder 9, wobei der Bewegungssensor aus der Gruppe ausgewählt wird, die aus einem Accelerometer, einem Körperpositionssensor und einem globalen Positionierungssensor/GPS-Sensor besteht.
- 11. Vorrichtung nach einem der Ansprüche 8 bis 10, bei der die abgeleiteten Daten Daten umfassen, die verbrannte Kalorien betreffen und die auf mindestens den die Bewegung und den Wärmefluss anzeigenden Daten basieren.
- 12. Vorrichtung nach Anspruch 11, bei der die abgeleiteten Daten ebenfalls auf den den Hautwiderstand der Person gegenüber elektrischem Strom anzeigenden Daten basieren.
 - 13. Vorrichtung nach einem der vorstehenden Ansprüche, welche außerdem einen oder mehrere elektrisch mit dem Prozessor kommunizierende(n) Kontext-Sensor(en) umfasst, welche(r) derart angepasst ist bzw. sind, dass er/sie Daten erzeugt bzw. erzeugen, die für einen oder mehrere in Zusammenhang mit der Person stehende Kontext-Parameter symptomatisch sind, und wobei die abgeleiteten Daten ebenfalls aus ausgewählten Teilen der für einen oder mehrere Kontext-Parameter symptomatischen Daten erstellt werden.
 - 14. Vorrichtung nach Anspruch 13, wobei der/die Kontext-Sensor(en) einen Umgebungstemperatursensor umfasst bzw.

umfassen und wobei die für einen oder mehrere Kontext-Parameter symptomatischen Daten eine Umgebungstemperatur beinhalten.

15. Vorrichtung nach einem der Ansprüche 3 bis 7 oder 8 bis 14 gemäß Abhängigkeit von irgendeinem der Ansprüche 3 bis 7, die ferner Mittel zur Erfassung von Daten über die Lebensaktivitäten der Person umfasst, wobei die Daten über die Lebensaktivitäten abrufbar im Datenspeicher gespeichert werden und die analytischen Zustandsdaten ebenfalls aus ausgewählten Teilen der Daten über die Lebensaktivitäten erstellt werden.

5

10

15

20

35

40

45

- 16. Vorrichtung nach Anspruch 15, wobei die Erfassungsmittel Hilfsmittel umfassen, die der Person ermöglichen, die Daten über die Lebensaktivitäten einzugeben und diese Daten an die zentrale Überwachungseinheit zu übertragen.
 - 17. Vorrichtung nach Anspruch 15 oder Anspruch 16, bei der die zentrale Überwachungseinheit derart angepasst ist, dass sie einen Informationsrückfluss bezogen auf den Grad, in dem die Person eine empfohlene Übungsfolge befolgt hat, erstellt und bereitstellt, wobei der Informationsrückfluss aus mindestens einem Teil der für mindestens einen ersten Parameter und einen zweiten Parameter symptomatischen Daten, der abgeleiteten Daten und der Daten über die Lebensaktivitäten erstellt wird.
 - **18.** Vorrichtung nach Anspruch 17, bei der die Übungsfolge eine oder mehrere Kategorien umfasst und der Informationsrückfluss in Bezug auf die eine bzw. mehrere Kategorie(n) erstellt und bereitgestellt wird.
 - 19. Vorrichtung nach Anspruch 18, bei der die eine bzw. mehrere Kategorie(n) mindestens eine der Kategorien Ernährung, Aktivitätsgrad, Geisteskonzentration, Schlaf und Tagesaktivitäten enthält bzw. enthalten.
- 20. Vorrichtung nach Anspruch 19, bei der die Kategorie Ernährung Informationen über eines oder mehrere der folgenden Merkmale enthält: konsumierte Kalorien, konsumierte Proteine, konsumierte Fette, konsumierte Kohlenhydrate, konsumierte Vitamine, konsumiertes Wasser, konsumierte Ballaststoffe, konsumierte Sorten von Nahrungsmitteln und konsumierte Menge an Nahrungsmitteln.
- 21. Vorrichtung nach Anspruch 19 oder Anspruch 20, bei der die Kategorie Aktivitätsgrad Informationen über eines oder mehrere der folgenden Merkmale enthält: momentan verbrannte Kalorien, verbrannte Zielkalorien, Dauer von Sport-/Trainingsaktivitäten, Dauer von intensiven Lifestyle-Aktivitäten, Dauer von Ruhephasen und Schlafdauer.
 - 22. Vorrichtung nach einem der Ansprüche 19 bis 21, bei der die Kategorie Geisteskonzentration/Meditation Informationen über eines oder mehrere der folgenden Merkmale enthält: Dauer von Entspannungsaktivitäten, Qualität von Entspannungsaktivitäten, Stress-Pegel und eine Änderung bei einem oder mehreren der Merkmale Hauttemperatur, Herzfrequenz, Atemfrequenz, Wärmefluss und GSR [galvanischer Hautreflex].
 - 23. Vorrichtung nach einem der Ansprüche 19 bis 22, bei der die Kategorie Schlaf Informationen über eines oder mehrere der folgenden Merkmale enthält:
 - Schlafbeginn, Wachzeit, Schlafunterbrechungen, Schlafmenge und Schlafqualität.
 - 24. Vorrichtung nach einem der Ansprüche 19 bis 23, bei der die Kategorie Tagesaktivitäten Informationen über eines oder mehrere der folgenden Merkmale enthält:
 - Badegewohnheiten, Zahnpflegegewohnheiten, Stuhlgangverhalten, Einnahme von Arzneimitteln, Einnahme von Vitaminen oder Ergänzungsmitteln, Rauchgewohnheiten, Trinkgewohnheiten, mit der Familie oder Freunden verbrachte Zeit, mit Freizeitaktivitäten verbrachte Zeit, Verrichtung von Hausarbeiten, Bezahlung von Rechnungen sowie Pünktlichkeit bei Arbeit und Terminen.
 - 25. Vorrichtung nach einem der Ansprüche 17 bis 24, bei der die zentrale Überwachungseinheit derart angepasst ist, dass sie eine oder mehrere den Informationsrückfluss enthaltende Webseiten erstellt, welche über das Internet zugänglich sind.
- 26. Vorrichtung nach einem der Ansprüche 3 bis 7 oder 8 bis 14 gemäß Abhängigkeit von irgendeinem der Ansprüche 3 bis 7 oder 15 bis 25, bei der die zentrale Überwachungseinheit derart angepasst ist, dass sie einen Informationsrückfluss zur Behandlung eines Aspektes von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person erstellt und einem Empfänger zur Verfügung stellt.

- 27. Vorrichtung nach Anspruch 26, bei welcher der Informationsrückfluss aus mindestens einem Teil der Daten, die für mindestens einen ersten Parameter und einen zweiten Parameter symptomatisch sind, sowie aus den abgeleiteten Daten erstellt wird.
- 28. Vorrichtung nach einem der Ansprüche 15 bis 27, bei der die zentrale Überwachungseinheit derart angepasst ist, dass sie einen Informationsrückfluss zur Behandlung eines Aspektes von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person erstellt und einem Empfänger zur Verfügung stellt.
- 29. Vorrichtung nach Anspruch 26, bei welcher der Informationsrückfluss aus mindestens einem Teil der Daten, die für mindestens einen ersten Parameter und einen zweiten Parameter symptomatisch sind, sowie aus den abgeleiteten Daten und den Daten über die Lebensaktivitäten erstellt wird.

15

20

30

40

50

- **30.** Vorrichtung nach einem der Ansprüche 26 bis 29, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person die Einnahme von Arzneimitteln betrifft.
- 31. Vorrichtung nach einem der Ansprüche 26 bis 30, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person die Herzfrequenz der Person betrifft.
- **32.** Vorrichtung nach einem der Ansprüche 26 bis 31, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person den Hydratationsspiegel der Person betrifft.
 - 33. Vorrichtung nach einem der Ansprüche 26 bis 32, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person den Aktivitätsgrad der Person betrifft.
- 25 34. Vorrichtung nach Anspruch 33, bei welcher der Informationsrückfluss Informationen beinhaltet, die eines oder mehrere der folgenden Merkmale betreffen:
 - momentan verbrannte Kalorien, verbrannte Zielkalorien, Dauer von Aktivitäten, Dauer von Ruhephasen und Körperstellung der Person.
 - **35.** Vorrichtung nach einem der Ansprüche 26 bis 34, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person das Gewicht der Person betrifft.
- **36.** Vorrichtung nach Anspruch 35, bei welcher der Informationsrückfluss Informationen beinhaltet, die eines oder mehrere der folgenden Merkmale betreffen:
 - konsumierte Kalorien, konsumierte Proteine, konsumierte Fette, konsumierte Kohlenhydrate, konsumierte Vitamine, konsumiertes Wasser, konsumierte Ballaststoffe, konsumierte Sorten von Nahrungsmitteln, konsumierte Menge an Nahrungsmitteln, momentan verbrannte Kalorien, verbrannte Zielkalorien, Dauer von Sport-/Trainingsaktivitäten, Dauer von intensiven Lifestyle-Aktivitäten, Dauer von Ruhephasen und Schlafdauer enthält.
 - **37.** Vorrichtung nach Anspruch 35, bei welcher der Informationsrückfluss Informationen über die Rate der Kalorienverbrennung enthält.
- 45 **38.** Vorrichtung nach einem der Ansprüche 26 bis 37, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person das Schlafverhalten der Person betrifft.
 - **39.** Vorrichtung nach Anspruch 38, bei welcher der Informationsrückfluss Informationen beinhaltet, die eines oder mehrere der folgenden Merkmale betreffen:
 - Schlafbeginn, Wachzeit, Schlafunterbrechungen, Schlafmenge und Schlafqualität.
 - **40.** Vorrichtung nach einem der Ansprüche 26 bis 39, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person den Glukosespiegel der Person betrifft.
 - **41.** Vorrichtung nach einem der Ansprüche 26 bis 40, wobei der Aspekt von mindestens einem der Merkmale Gesundheit der Person und Lebensstil der Person das Fitness-Niveau [die Kondition] der Person betrifft.

- **42.** Vorrichtung nach einem der Ansprüche 26 bis 41, bei der die zentrale Überwachungseinheit an ein elektronisches Netzwerk angeschlossen ist und über dieses Zugang zu Informationen aus einer Fremdquelle besitzt, wobei der Informationsrückfluss die Informationen aus der Fremdquelle enthält.
- 43. Vorrichtung nach einem der Ansprüche 3 bis 7 oder 8 bis 14 gemäß Abhängigkeit von irgendeinem der Ansprüche 3 bis 7 oder 15 bis 41, bei der die zentrale Überwachungseinheit an ein elektronisches Netzwerk angeschlossen ist und über dieses Zugang zu Informationen aus einer Fremdquelle besitzt, wobei die zentrale Überwachungseinheit die Informationen aus der Fremdquelle dem Empfänger zur Verfügung stellt.
- 44. Vorrichtung nach einem der Ansprüche 26 bis 43, wobei der Informationsrückfluss Empfehlungen zur Änderung des Verhaltens der Person enthält.

15

20

30

35

45

- **45.** Vorrichtung nach einem der vorstehenden Ansprüche, welche ferner einen elektrisch mit dem Prozessor kommunizierenden Speicher zum Speichern von mindestens einem Datensatz der für einen ersten Parameter symptomatischen Daten, der für einen zweiten Parameter symptomatischen Daten sowie der abgeleiteten Daten umfasst.
- **46.** Vorrichtung nach einem der vorstehenden Ansprüche, die darüber hinaus einen biegsamen, das Gehäuse für die Sensorvorrichtung tragenden Mantel umfasst, welcher erste und zweite Elemente besitzt, die derart angepasst sind, dass sie einen Teil des Körpers der Person umhüllen.
- 47. Vorrichtung nach Anspruch 46, die ferner mit dem biegsamen Mantel verbundene Umhüllungsmittel beinhaltet, um den Kontakt zwischen dem Gehäuse für die Sensorvorrichtung und dem Körper der Person aufrechtzuerhalten.
- **48.** Vorrichtung nach Anspruch 46 oder Anspruch 47, wobei der biegsame Mantel wenigstens einen der mindestens zwei Sensoren trägt.
 - **49.** Vorrichtung nach einem der Ansprüche 1 bis 46, die überdies mit dem Gehäuse für die Sensorvorrichtung verbundene Umhüllungsmittel beinhaltet, um den Kontakt zwischen dem Gehäuse für die Sensorvorrichtung und dem Körper der Person aufrechtzuerhalten.
 - **50.** Vorrichtung nach Anspruch 47 oder Anspruch 49, wobei die Umhüllungsmittel wenigstens einen der mindestens zwei Sensoren tragen.
 - 51. Vorrichtung nach Anspruch 47 oder Anspruch 49, wobei das Gehäuse für die Sensorvorrichtung wenigstens einen der mindestens zwei Sensoren trägt.
 - **52.** Vorrichtung nach einem der Ansprüche 1 bis 45, wobei das Gehäuse für die Sensorvorrichtung die mindestens zwei Sensoren trägt.
- 40 53. Vorrichtung nach einem der Ansprüche 1 bis 51, wobei wenigstens einer der Sensoren getrennt vom Gehäuse für die Sensorvorrichtung angeordnet ist.
 - **54.** Vorrichtung nach Anspruch 53, die zusätzlich eine elektrisch mit dem Prozessor kommunizierende Funkeinrichtung umfasst, wobei der wenigstens eine getrennt angeordnete Sensor die für einen ersten Parameter symptomatischen Daten erzeugt und die für einen ersten Parameter symptomatischen Daten von der Funkeinrichtung drahtlos empfangen werden.
 - **55.** Vorrichtung nach einem der vorstehenden Ansprüche, die außerdem eine elektrisch mit dem Prozessor kommunizierende Funkempfangseinrichtung besitzt, um die Daten von der Funkeinrichtung zu empfangen.
 - **56.** Vorrichtung nach Anspruch 55, bei der die Funkeinrichtung einen Herzschlag-Monitor umfasst, wobei die von der Funkeinrichtung empfangenen Daten den Herzschlag der Person anzeigende Daten umfassen und die abgeleiteten Daten auch aus mindestens einem Teil der den Herzschlag anzeigenden Daten erstellt werden.
- 55 57. Vorrichtung nach einem der Ansprüche 1 bis 54, die ferner ein vom Gehäuse für die Sensorvorrichtung getrenntes elektronisches Bauelement umfasst, welches elektrisch mit dem Prozessor kommuniziert.
 - 58. Vorrichtung nach Anspruch 57, die überdies eine elektrisch mit dem Prozessor kommunizierende Funkeinrichtung

beinhaltet, wobei das elektronische Bauelement über die Funkeinrichtung drahtlos mit dem Prozessor kommuniziert.

59. Vorrichtung nach einem der vorstehenden Ansprüche, bei der die abgeleiteten Daten Daten umfassen, die sich auf mindestens eines der folgenden Merkmale beziehen: verbrannte Kalorien, Schlafbeginn und Erwachen, Stress-Pegel sowie Entspannungspegel.

Revendications

5

20

25

30

35

50

- 1. Appareil permettant de surveiller et rapporter des informations physiologiques humaines, comprenant un boîtier de dispositif formant capteur conçu pour être placé à proximité du corps d'un individu, un processeur supporté par ledit boîtier de dispositif formant capteur, ledit processeur étant en communication électrique avec au moins deux capteurs choisis dans le groupe composé de capteurs physiologiques et capteurs contextuels, au moins l'un desdits au moins deux capteurs étant un capteur physiologique, lesdits au moins deux capteurs étant conçus pour générer des données indiquant au moins un premier paramètre dudit individu, ledit premier paramètre étant physiologique, et un deuxième paramètre dudit individu, et des moyens en communication électrique avec ledit processeur pour fournir des informations audit individu, caractérisé en ce que ledit processeur est conçu pour déduire des informations d'état physiologique à partir d'au moins une partie desdites données indiquant au moins un premier paramètre et au moins une partie desdites données indiquant au moins un premier paramètre et au moins une partie desdites données indiquant au moins un deuxième paramètre.
 - 2. Appareil selon la revendication 1, dans lequel au moins deux desdits au moins deux capteurs sont des capteurs physiologiques et dans lequel ledit deuxième paramètre est physiologique.
 - 3. Appareil selon la revendication 1 ou 2, comprenant en outre :
 - une unité centrale de surveillance éloignée dudit boîtier de dispositif formant capteur, ladite unité centrale de surveillance comportant un dispositif de stockage de données, ladite unité centrale de surveillance recevant lesdites données déduites dudit processeur et stockant de manière à pouvoir récupérer lesdites données déduites dans ledit dispositif de stockage de données ; et
 - des moyens permettant de transmettre lesdites données déduites de ladite unité centrale de surveillance à un destinataire.
 - 4. Appareil selon la revendication 3, ladite unité centrale de surveillance étant conçue pour générer les données de statut analytique provenant desdites données déduites, lesdits moyens permettant la transmission transmettant également lesdites données de statut analytique audit destinataire.
 - 5. Appareil selon la revendication 3 ou 4, comprenant en outre des moyens permettant de transférer lesdites données déduites dudit dispositif formant capteur à ladite unité centrale de surveillance.
- 40 6. Appareil selon la revendication 5, comprenant en outre une batterie rechargeable supportée par ledit boîtier de dispositif formant capteur et un premier émetteur-récepteur sans fil en communication électrique avec ledit processeur, ledit boîtier de dispositif formant capteur étant conçu pour être placé dans une unité formant chargeur de batterie permettant de recharger ladite batterie rechargeable, ladite unité formant chargeur de batterie comprenant en outre un deuxième émetteur-récepteur sans fil, lesdits premier et deuxième émetteurs-récepteurs sans fil étant en communication l'un avec l'autre et formant au moins une partie desdits moyens de transfert.
 - 7. Appareil selon l'une quelconque des revendications 3 à 6, dans lequel ladite unité centrale de surveillance est conçue pour générer une ou plusieurs pages web contenant lesdites données déduites et dans lequel lesdits moyens de transmission rendent lesdites pages web accessibles par ledit destinataire sur Internet.
 - 8. Appareil selon l'une quelconque des revendications précédentes, lesdites au moins deux capteurs étant choisis dans le groupe composé de : un capteur de battements du coeur, un capteur de fréquence du pouls, un capteur ECG, un capteur de rythme respiratoire, un capteur de température cutanée, un capteur de température profonde du corps, un capteur de flux de chaleur, un capteur de GSR, un capteur EMG, un capteur EEG, un capteur de tension artérielle, un capteur d'impédance de corps, un capteur de mouvement, un capteur de consommation d'oxygène, un capteur de taux de glucose, un capteur de position de corps, un capteur de pression sur les muscles et un capteur d'absorption de rayonnements UV.

9. Appareil selon l'une quelconque des revendications 1 à 7, lesdits au moins deux capteurs étant choisis dans le groupe composé d'un capteur de mouvement conçu pour générer des données indiquant un mouvement, d'un capteur de GSR conçu pour générer des données indiquant la résistance de la peau dudit individu au courant électrique, d'un capteur de flux de chaleur conçu pour générer des données indiquant un écoulement de chaleur, d'un capteur de température cutanée conçu pour générer des données indiquant une température de la peau dudit individu et d'un capteur de battements du coeur conçu pour générer des données indiquant les battements du coeur dudit individu, lesdites données indiquant au moins un premier paramètre physiologique et un deuxième paramètre physiologique comprenant au moins deux desdites données indiquant le mouvement, desdites données indiquant la résistance de la peau dudit individu au courant électrique, desdites données indiquant l'écoulement de chaleur, desdites données indiquant la température de la peau dudit individu et desdites données indiquant les battements du coeur dudit individu.

5

10

15

25

30

35

45

50

- 10. Appareil selon la revendication 8 ou 9, ledit capteur de mouvement étant choisi dans le groupe composé d'un accéléromètre, d'un capteur de position de corps et d'un capteur de positionnement global.
- **11.** Appareil selon l'une quelconque des revendications 8 à 10, dans lequel lesdites données déduites comprennent des données liées aux calories brûlées et sont fondées sur au moins lesdites données indiquant le mouvement et lesdites données indiquant l'écoulement de chaleur.
- 20 12. Appareil selon la revendication 11, dans lequel lesdites données déduites sont également fondées sur lesdites données indiquant la résistance de la peau dudit individu au courant électrique.
 - 13. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un ou plusieurs capteurs contextuels en communication électrique avec ledit processeur, lesdits un ou plusieurs capteurs contextuels étant conçus pour générer des données indiquant un ou plusieurs paramètres contextuels associés audit individu, et dans lequel lesdites données déduites sont également générées à partir de parties choisies desdites données indiquant un ou plusieurs paramètres contextuels.
 - 14. Appareil selon la revendication 13, lesdits un ou plusieurs capteurs contextuels comprenant un capteur de température ambiante, lesdites données indiquant un ou plusieurs paramètres contextuels comprenant une température ambiante.
 - 15. Appareil selon l'une quelconque des revendications 3 à 7 ou 8 à 14 dépendant de l'une quelconque des revendications 3 à 7, comprenant en outre des moyens permettant d'obtenir des données sur les activités de la vie dudit individu, lesdites données sur les activités de la vie pouvant être stockées de manière à pouvoir être récupérées dans ledit dispositif de stockage de données, dans lequel lesdites données de statut analytique sont également générées à partir des parties choisies desdites données sur les activités de la vie.
- 16. Appareil selon la revendication 15, lesdits moyens d'obtention comprenant des moyens permettant d'autoriser ledit individu à entrer lesdites données sur les activités de la vie et à transmettre lesdites données sur les activités de la vie à ladite unité centrale de surveillance.
 - 17. Appareil selon l'une quelconque des revendications 15 ou 16, dans lequel ladite unité centrale de surveillance est adaptée pour générer et fournir un retour lié au degré selon lequel ledit individu a suivi un programme suggéré, ledit retour étant généré à partir d'au moins une partie desdites données indiquant au moins un premier paramètre et un deuxième paramètre, desdites données déduites et desdites données sur les activités de la vie.
 - **18.** Appareil selon la revendication 17, dans lequel ledit programme comprend une ou plusieurs catégories et ledit retour est généré et fourni en fonction desdites une ou plusieurs catégories.
 - 19. Appareil selon la revendication 18, dans lequel lesdites une ou plusieurs catégories comportent au moins un élément parmi la nutrition, le niveau d'activité, la concentration mentale, le sommeil et les activités quotidiennes.
- **20.** Appareil selon la revendication 19, dans lequel ladite catégorie de nutrition comporte des informations liées à un ou plusieurs des éléments suivants :

calories consommées, protéines consommées, lipides consommés, glucides consommés, vitamines consommées, eau consommée, fibres consommées, types d'aliments consommés et quantité d'aliments consommée.

21. Appareil selon l'une quelconque des revendications 19 ou 20, dans lequel ladite catégorie de niveau d'activité comporte des informations liées à un ou plusieurs des éléments suivants : nombre réel de calories brûlées, nombre cible de calories brûlées, durée des activités d'exercice, durée des activités de style de vie vigoureuses, durée des activités de repos et durée du sommeil.

5

10

25

30

35

40

- 22. Appareil selon l'une quelconque des revendications 19 à 21, dans lequel ladite catégorie de concentration mentale comporte des informations liées à un ou plusieurs des éléments suivants : durée des activités de relaxation, qualité des activités de relaxation, niveau de stress et changement d'un ou plusieurs des éléments suivants : température cutanée, fréquence cardiaque, rythme respiratoire, écoulement de chaleur et GSR.
- 23. Appareil selon l'une quelconque des revendications 19 à 22, dans lequel ladite catégorie de sommeil comporte des informations liées à un ou plusieurs des éléments suivants : début du sommeil, heure de réveil, interruptions de sommeil, quantité de sommeil et qualité du sommeil.
- 24. Appareil selon l'une quelconque des revendications 19 à 23, dans lequel ladite catégorie d'activités quotidiennes comporte des informations liées à une ou plusieurs des habitudes suivantes : habitudes de bain, habitudes d'hygiène dentaire, habitudes intestinales, prise de médicaments, prise de vitamines ou de compléments alimentaires, habitudes de consommation de cigarettes, habitudes de consommation de boissons, temps passé en famille ou avec les amis, temps passé dans les activités de loisir, exécution des tâches ménagères, paiement des factures, ponctualité au travail et dans les rendez-vous.
 - 25. Appareil selon l'une quelconque des revendications 17 à 24, dans lequel ladite unité centrale de surveillance est conçue pour générer une ou plusieurs pages web contenant ledit retour, lesdites pages web étant accessibles par Internet.
 - 26. Appareil selon l'une quelconque des revendications 3 à 7 ou 8 à 14 dépendant de l'une quelconque des revendications 3 à 7 ou 15 à 25, dans lequel ladite unité centrale de surveillance est conçue pour générer et fournir un retour à un destinataire lié à la gestion d'un aspect d'au moins un desdits éléments suivants : la santé dudit individu et le style de vie dudit individu.
 - 27. Appareil selon la revendication 26, ledit retour étant généré à partir d'au moins une partie desdites données indiquant au moins un premier paramètre et un deuxième paramètre et desdites données déduites.
 - 28. Appareil selon l'une quelconque des revendications 15 à 27, dans lequel ladite unité centrale de surveillance est conçue pour générer et fournir un retour à un destinataire lié à la gestion d'un aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu.
 - 29. Appareil selon la revendication 26, ledit retour étant généré à partir d'au moins une partie desdites données indiquant au moins un premier paramètre et un deuxième paramètre, desdites données déduites et desdites données sur les activités de la vie.
 - **30.** Appareil selon l'une quelconque des revendications 26 à 29, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié à la prise de médicaments.
- 45 **31.** Appareil selon l'une quelconque des revendications 26 à 30, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié à une fréquence cardiaque dudit individu.
 - **32.** Appareil selon l'une quelconque des revendications 26 à 31, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié à un taux d'hydratation dudit individu.
 - **33.** Appareil selon l'une quelconque des revendications 26 à 32, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié à un niveau d'activité dudit individu.
- 34. Appareil selon la revendication 33, dans lequel ledit retour comporte des informations liées à un ou plusieurs des éléments suivants : nombre réel de calories brûlées, nombre cible de calories brûlées, durée des activités de non-repos, durée des activités de repos et une position du corps dudit individu.
 - 35. Appareil selon l'une quelconque des revendications 26 à 34, ledit aspect d'au moins un des éléments suivants : la

santé dudit individu et le style de vie dudit individu étant lié au poids dudit individu.

5

20

30

40

- **36.** Appareil selon la revendication 35, dans lequel le retour comporte des informations liées à un ou plusieurs des éléments suivants : nombre de calories consommées, protéines consommées, lipides consommés, glucides consommés, vitamines consommées, eau consommée, fibres consommées, types d'aliments consommés, quantité d'aliments consommée, nombre réel de calories brûlées, nombre cible de calories brûlées, durée des activités d'exercice, durée des activités de style de vie vigoureuses, durée des activités de repos et durée du sommeil.
- **37.** Appareil selon la revendication 35, dans lequel ledit retour comporte des informations liées à un taux de brûlage de calories.
 - **38.** Appareil selon l'une quelconque des revendications 26 à 37, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié aux activités de sommeil dudit individu.
- 39. Appareil selon la revendication 38, dans lequel ledit retour comporte des informations liées à un ou plusieurs des éléments suivants : début du sommeil, heure de réveil, interruptions de sommeil, quantité de sommeil et qualité du sommeil.
 - **40.** Appareil selon l'une quelconque des revendications 26 à 39, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié au taux de glucose dudit individu.
 - 41. Appareil selon l'une quelconque des revendications 26 à 40, ledit aspect d'au moins un des éléments suivants : la santé dudit individu et le style de vie dudit individu étant lié au niveau de condition physique dudit individu.
- 42. Appareil selon l'une quelconque des revendications 26 à 41, ladite unité centrale de surveillance étant connectée à un réseau électronique et ayant accès aux informations à partir d'une tierce source sur ledit réseau électronique, ledit retour comportant lesdites informations provenant d'une tierce source.
 - **43.** Appareil selon l'une quelconque des revendications 3 à 7 ou 8 à 14, dépendant de l'une quelconque des revendications 3 à 7 ou 15 à 41, ladite unité de surveillance étant connectée à un réseau électronique et ayant accès aux informations provenant d'une tierce source sur ledit réseau électronique, ladite unité centrale de surveillance rendant disponibles lesdites informations provenant d'une tierce source pour ledit destinataire.
- **44.** Appareil selon l'une quelconque des revendications 26 à 43, ledit retour comportant des suggestions pour modifier le comportement dudit individu.
 - **45.** Appareil selon l'une quelconque des revendications précédentes, comprenant en outre une mémoire en communication électrique avec ledit processeur pour stocker au moins l'une desdites données indiquant un premier paramètre, desdites données indiquant un deuxième paramètre et desdites données déduites.
 - **46.** Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un corps flexible supportant ledit boîtier de dispositif formant capteur, ledit corps flexible ayant des premier et deuxième éléments adaptés pour s'enrouler autour d'une partie du corps dudit individu.
- 45 47. Appareil selon la revendication 46, comprenant en outre des moyens d'enroulement couplés audit corps flexible pour maintenir un contact entre ledit boîtier de dispositif formant capteur et le corps dudit individu.
 - **48.** Appareil selon la revendication 46 ou la revendication 47, ledit corps flexible supportant au moins l'un desdits au moins deux capteurs.
 - **49.** Appareil selon l'une quelconque des revendications 1 à 46, comprenant en outre des moyens d'enroulement couplés audit boîtier de dispositif formant capteur pour maintenir un contact entre ledit boîtier de dispositif formant capteur et le corps dudit individu.
- 55 **50.** Appareil selon la revendication 47 ou la revendication 49, lesdits moyens d'enroulement supportant au moins l'un desdits au moins deux capteurs.
 - 51. Appareil selon la revendication 47 ou la revendication 49, ledit boîtier de dispositif formant capteur supportant au

moins l'un desdits au moins deux capteurs.

5

15

20

25

35

40

45

50

- **52.** Appareil selon l'une quelconque des revendications 1 à 45, ledit boîtier de dispositif formant capteur supportant lesdits au moins deux capteurs.
- **53.** Appareil selon l'une quelconque des revendications 1 à 51, au moins l'un desdits capteurs étant disposé à distance dudit boîtier de dispositif formant capteur.
- 54. Appareil selon la revendication 53, comprenant en outre un dispositif de communication sans fil en communication électrique avec ledit processeur, ledit au moins un capteur disposé séparément générant lesdites données indiquant un premier paramètre, lesdites données indiquant un premier paramètre étant reçues sans fil par ledit dispositif de communication sans fil.
 - 55. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre un dispositif de réception sans fil en communication électrique avec ledit processeur pour recevoir des données d'un dispositif sans fil.
 - 56. Appareil selon la revendication 55, dans lequel ledit dispositif sans fil comprend un moniteur de battements du coeur, lesdites données reçues dudit dispositif sans fil comprenant des données indiquant les battements du coeur dudit individu, et lesdites données déduites étant également générées à partir d'au moins une partie desdites données indiquant les battements du coeur.
 - **57.** Appareil selon l'une quelconque des revendications 1 à 54, comprenant en outre un dispositif électronique séparé dudit boîtier de dispositif formant capteur, ledit dispositif électronique étant en communication électrique avec ledit processeur.
 - **58.** Appareil selon la revendication 57, comprenant en outre un dispositif de communication sans fil en communication électrique avec ledit processeur, ledit dispositif électronique étant en communication sans fil avec ledit processeur par le biais dudit dispositif de communication sans fil.
- 59. Appareil selon l'une quelconque des revendications précédentes, dans lequel lesdites données déduites comprennent des données liées à au moins l'un des éléments suivants : nombre de calories brûlées, début du sommeil et réveil, niveau de stress et niveau de relaxation.

31

32

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 11

FIG. 14

FIG. 15

FIG. 17

FIG. 19

