Simplifications & Formes Normales

Simplifications et formes normales

- Si $\varepsilon \notin L$, on n'a pas besoin de production de la forme $A \rightarrow \varepsilon$
- Toutes les productions peuvent être de la forme $A \rightarrow BC \mid a (A,B,C \in N \text{ et } a \in T)$

(Forme Normale de Chomsky)

■ Toutes les productions peuvent être de la forme $A \rightarrow a\alpha$ ($a \in T$ et $\alpha \in N^*$)

(Forme Normale de Greibach)

■ Supprimer les règles de renommage (productions de la forme $A \rightarrow B$)

Suppression des e-productions

Règles de la forme $A \rightarrow \varepsilon$

Suppression des e-productions

- Observation: si ε∈L(G), il sera impossible de supprimer toutes les ε-productions de G; Si ε∉L(G), aucune règle de la forme A→ε n'est utile.
- Principe:
 - Pour chaque variable A, déterminer si $A \rightarrow *\varepsilon$. Si c'est le cas, on dit que A est «effaçable»
 - Remplacer toute production de la forme $B \rightarrow X_1 X_2 ... X_n$ par toutes les productions où on a effacé les variables X_i effaçables sans ajouter $B \rightarrow \epsilon$, même si tous les X_i sont effaçables

Variables effaçables

■ Une variable A est effaçable si $A \rightarrow *\varepsilon$

• L'ensemble des variables effaçables de G est $Eff(G)=\{X\in \mathbb{N}: X\to *\epsilon\}$

SSI

$$X \rightarrow \varepsilon \in R$$

ou

 $X \rightarrow X_1 X_2 ... X_n \in R$ pour $X_i \in Eff(G)$ 0<i<n+1

Variables effaçables

Construction inductive:

```
Base: Eff_0(G)=\{X: X \rightarrow \varepsilon \in R\}
```

Induction:

```
Eff<sub>i</sub>(G) = Eff<sub>i-1</sub>(G)\cup{Y:Y\rightarrow Z<sub>1</sub>Z<sub>2</sub>...Z<sub>n</sub> \inR pour Z<sub>k</sub> \in Eff<sub>i-1</sub>(G) 0\cdotk\cdotn+1}
```

On s'arrête dès que $Eff_i(G) = Eff_{i-1}(G)$

S \rightarrow aAb|AB|a A \rightarrow ϵ |AAB B \rightarrow AC|b C \rightarrow ϵ |aba

```
Initialisation: variables de la forme A \rightarrow \varepsilon:
Eff<sub>0</sub>(G)={A,C}
```

```
variables de la forme A \rightarrow \alpha, \alpha \in (Eff_0(G))^*

Eff_1(G)=\{A,C\}\cup \{B\}

variables de la forme A \rightarrow \alpha, \alpha \in (Eff_1(G))^*

Eff_2(G)=\{B,A,C\}\cup \{S\}
```

Toutes les variables sont effaçables et $\varepsilon \in L(G)$

Supprimer les e-productions

- On construit un nouvel ensemble de règles R'.
- $X \rightarrow X_1 X_2 ... X_n \in \mathbb{R}$, $X_i \in (\mathbb{N} \cup \mathbb{T})$, remplacée par

$$X \rightarrow \alpha_1 \alpha_2 ... \alpha_n$$

Si $X_i \notin Eff(G)$, alors $\alpha_i = X_i$

Si $X_i \in Eff(G)$, alors $\alpha_i = X_i$ et $\alpha_i = \epsilon$

Les α_i sont non tous nuls

(sauf lorsque toutes les variables sont effacées)

- S-aAb AB a ab AB
- A→X AAB AB AB AA
- $B \rightarrow AC|b|A|C$
- $-C \rightarrow \times aba$

■ Dans G, $S \rightarrow \varepsilon$; si on veut engendrer le même langage, on ajoute $S \rightarrow \varepsilon$

- Eff(G)={B,A,C,S}
- En retirant les ϵ -productions, on obtiendra $L\setminus\{\epsilon\}$

Suppression des renommages

Règles de la forme $X \rightarrow Y$ pour $X, Y \in N$

Les variables de renommage

```
Les variables en lesquelles X peut être renommée sont : Ren(X)=\{Z\in N: X\to^*Z\}
```

Construction inductive, pour chaque variable X, calculer Ren(X)

Base: $Ren_0(X)=\{X\}$

Induction:

Ren_i(X)=Ren_{i-1}(X) \cup {Z:Y \rightarrow Z \in R pour Y \in Ren_{i-1}(X)} On s'arrête dès que Ren_i(X) = Ren_{i-1}(X)

Supprimer les règles de renommage : pour chaque $Y \in Ren(X)$ et chaque règle $Y \rightarrow \alpha$ qui n'est pas renommage, remplacer $X \rightarrow Y$ par $X \rightarrow \alpha$

Exemple $Ren_i(X)=Ren_{i-1}(X)$ $\cup \{Z:Y\rightarrow Z\in R, Y\in Ren_{i-1}(X)\}$

- $\blacksquare Ren_0(S)=\{S\}$
- Ren₁(S)={Z:S \rightarrow Z∈R} \cup {S}={S,A,B} C
- Ren₂(S)={Z: $Y \rightarrow Z \in R, Y \in \{S, A, B\}\} \cup \{S, A, B\} = \{S, A, B, C\}$
- Ren₀(A)={A}
- Ren₁(A)={Z: $A \rightarrow Z \in R$ } \cup {A} = {A,B}
- Ren₂(A)={Z: $Y \rightarrow Z \in R, Y \in \{A,B\}\} \cup \{A,B\} = \{A,B,C\}$
- Ren₀(B)={B}
- Ren₁(B)={Z: $B \rightarrow Z \in R$ } \cup {B} = {A,B,C}
- Ren₂(B)={Z: $Y \rightarrow Z \in R, Y \in \{A,B,C\}\} \cup \{A,B\} = \{A,B,C\}$
- Ren₀(C)={C}
- Ren₁(C)={Z: $C \rightarrow Z \in R$ } \cup {C}={C}

- $S \rightarrow ab|aAb|A|B|AB|a$ $A \rightarrow A|AA|AB|B|AAB$
- $B \rightarrow A|C|AC|b$
- $C \rightarrow aba$

- Ren(S)= $\{S,A,B,C\}$
- Ren(A)= $\{A,B,C\}$
- \blacksquare Ren(B)={A,B,C}
- Ren(C)={C}

- $S \rightarrow ab | aAb | X | B | AB | a$
- A >X AA AB & AAB
- B-X & ACIb
- $C \rightarrow aba$
- (·S→ab|aAb|AB|a| AA|AB|AAB|AC|b|aba
- ·A→AA|AB|AAB|AC|b|aba }
 ·B→AA|AB|AAB|AC|b|aba }
- $\cdot c \rightarrow aba$

- A et B sont identiques
- On peut remonter $C \rightarrow aba$ (·S→ab|aAb|AA|a|AA|AC|b|aba
- $A \rightarrow AA |AAA|AC|b|aba$

- $\begin{cases} \cdot S \rightarrow ab|aAb|AA|a|AAA|Aaba|b|aba \\ \cdot A \rightarrow AA|AAA|Aaba|b|aba \end{cases}$

Conclusion

Tout langage algébrique ne contenant pas le mot vide peut être engendré par une grammaire sans symbole inutile ni ϵ -production, ni règle de renommage.

Formes normales

■ On peut mettre toutes les productions sous la forme $A \rightarrow BC|a$ avec $A,B,C \in N$ et $a \in T$ (FNC)

Forme normale de Chomsky

Forme normale de Chomsky

- Théorème: Toute grammaire algébrique sans renommage ni ϵ -production est équivalente à une grammaire dont les productions sont de la forme
 - $X\rightarrow a$, pour $a\in T$ et $X\rightarrow YZ$, pour $Y,Z\in N$
- Il faut coder un arbre d'arité finie quelconque en un arbre binaire.
- Si une règle est de la forme $X \rightarrow \alpha_1 \alpha_2 ... \alpha_n$ on regroupe les variables du membre droit en deux paquets en introduisant des productions supplémentaires

Démonstration

Dans chaque production où a est dans le membre droit : $X\rightarrow aY$ ou $X\rightarrow Ya$

On remplace a par C_a : avec $C_a \rightarrow a$; $X \rightarrow C_a Y$ ou $X \rightarrow Y C_a$ Les règles sont de la forme (G sans règle de renommage)

$$X \rightarrow \alpha_1 \alpha_2 ... \alpha_n$$
 $\alpha_i \in N$
 $X \rightarrow a$ $a \in T$

Démonstration (2)

 On introduit de nouvelles variables pour obtenir à partir de

$$\begin{array}{c} X \rightarrow \alpha_1 \underbrace{\alpha_2 \ldots \alpha_{n-1} \alpha_n} \\ Y_1 \rightarrow \alpha_2 \underbrace{\alpha_3 \ldots \alpha_{n-1} \alpha_n} \\ Y_2 \rightarrow \alpha_3 \ldots \alpha_{n-1} \alpha_n \end{array}$$

 $Y_{n-2} \rightarrow \alpha_{n-1} \alpha_n$

■ A présent toutes les règles sont de la forme

$$X \rightarrow \alpha \beta$$
 $\alpha, \beta \in N \text{ ou } X \rightarrow \alpha$ $\alpha \in T$

La grammaire ETF

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T^*F|F$$

$$F \rightarrow (E)|a$$

Ren(E)={E,T,F}

Ren(T)={T,F}

Ren(F)={F}

hypothèse de mise sous FNC: pas de règle de renommage On supprime les règles de renommage

$$E \rightarrow E + T$$

$$E \rightarrow E + T \mid T^*F \mid (E) \mid a$$

$$T \rightarrow T^*F$$

$$T \rightarrow T^*F |(E)|a$$

$$F \rightarrow (E)|a$$

$$F \rightarrow (E)|a$$

On peut maintenant mettre cette grammaire sous FNC

$$E \rightarrow (E)$$

$$E \rightarrow a$$

$$C_{()}$$

$$(C_1) \rightarrow)$$

$$C_{\star} \rightarrow^{\star}$$

$$C_{+} \rightarrow +$$

$$E \rightarrow EX_1$$
 et $X_1 \rightarrow C_+$ T

$$E \rightarrow TX_2$$
 et $X_2 \rightarrow C_*$ F

$$E \rightarrow C_1 X_3 \text{ et } X_3 \rightarrow E C_1$$

$$E \rightarrow a$$

$$E \rightarrow EX_1 | TX_2 | C_1 X_3 | a$$

$$X_1 \rightarrow C_+ T$$

$$X_2 \rightarrow C_*F$$

$$X_3 \rightarrow EC_1$$

$$T \rightarrow T^*F$$
 $T \rightarrow (E)$
 $T \rightarrow a$

$$T \rightarrow TY_1 \text{ et } Y_1 \rightarrow C_*F$$
 $T \rightarrow C_(Y_2 \text{ et } Y_2 \rightarrow E C_)$
 $T \rightarrow a$

$$T \rightarrow TY_1 | C_1Y_2 | a$$

$$Y_1 \rightarrow C_*F$$

$$Y_2 \rightarrow E C_1$$

$$F\rightarrow (E)$$

 $F\rightarrow a$

$$F \rightarrow C_(Z_1 \text{ et } Z_1 \rightarrow EC_)$$

 $F \rightarrow a$

$$E\rightarrow E+T|T$$

 $T\rightarrow T^*F|F$
 $F\rightarrow (E)|a$

$$C_{(} \rightarrow (C_{)} \rightarrow) C_{*} \rightarrow * C_{+} \rightarrow +$$

$$E \rightarrow EX_{1} | TX2 | C_{(}X_{3} | a$$

$$X_{1} \rightarrow C_{+} T$$

$$X_{2} \rightarrow C_{*} F$$

$$X_{3} \rightarrow EC_{)}$$

$$T \rightarrow TY_{1} | C_{(}Y_{2} | a$$

$$Y_{1} \rightarrow C_{*} F$$

$$Y_{2} \rightarrow E C_{)}$$

$$F \rightarrow C_{(}Z_{1}$$

$$Z_{1} \rightarrow EC_{)}$$

$$F \rightarrow a$$

$$E\rightarrow E+T|T$$

 $T\rightarrow T^*F|F$
 $F\rightarrow (E)|a$

On peut supprimer les variables identiques (ayant les mêmes règles)

$$C_{()}$$
 (
 $C_{)}$ \rightarrow)
 C_{*} \rightarrow *
 C_{+} \rightarrow +
 $E \rightarrow EX_{1} \mid TX_{2} \mid C_{()}X_{3} \mid a$
 $X_{1} \rightarrow C_{+}T$
 $X_{2} \rightarrow C_{*}F$
 $X_{3} \rightarrow EC_{)}$
 $T \rightarrow TX_{2} \mid C_{()}X_{3} \mid a$
 $F \rightarrow C_{()}X_{3}$
 $F \rightarrow a$

Suppression de la récursivité gauche

Pour la forme normale de Greibach on a besoin de la suppression de la récursivité gauche

Suppression récursivité gauche

Lemme: Pour toute grammaire algébrique, il existe une grammaire algébrique équivalente sans récursivité gauche i.e. sans règle de la forme

$$A \rightarrow A\alpha$$
 $\alpha \in (N \cup T)^*$

- Transformer la récursivité gauche en récursivité droite.
- On suppose que G ne contient que des règles de la forme $A \rightarrow A\alpha \mid \beta$ avec $\alpha,\beta \in (N \cup T)^*$ où β ne commence pas par A.
- On peut dériver β , $\beta\alpha$, $\beta\alpha\alpha$, $\beta\alpha\alpha\alpha$, $\beta\alpha\alpha\alpha\alpha$, ...
- Ainsi, ce couple de règles se dérive en $\beta\alpha^*$
- Qu'on peut engendrer par les règles sans récursivité gauche
 - $A \rightarrow \beta | \beta X$
 - $X \rightarrow \alpha | \alpha X$

Plus généralement

- On remplace toute règle de la forme $A \rightarrow A\alpha_1 |A\alpha_2| ... |A\alpha_n|\beta_1|\beta_2| ... |\beta_m|$
- Qui engendre une expression de la forme

$$(\beta_1 + \beta_2 + ... + \beta_m)(\alpha_1 + \alpha_2 + ... + \alpha_n)^*$$

- Par les règles
 - $A \rightarrow \beta_1 |\beta_2| ... |\beta_m| \beta_1 B |\beta_2 B| ... |\beta_m B|$
 - $B \rightarrow \alpha_1 |\alpha_2| ... |\alpha_n| \alpha_1 B |\alpha_2 B| ... |\alpha_n B|$

■ $E \rightarrow EX_1 | TX_2 | C_1 X_3 | a$

$$A \rightarrow A\alpha_1 |A\alpha_2| ... |A\alpha_n| \beta_1 |\beta_2| ... |\beta_m|$$

- est transformée en
 - $E \rightarrow TX_2 | C_1X_3 | a | TX_2B | C_1X_3B | aB$
 - $B \rightarrow X_1 | X_1 B$

$$\begin{array}{l} A \rightarrow \beta_1 |\beta_2| ... |\beta_m|\beta_1 B |\beta_2 B| ... |\beta_m B \\ B \rightarrow \alpha_1 |\alpha_2| ... |\alpha_n|\alpha_1 B |\alpha_2 B| ... |\alpha_n B \end{array}$$

Forme normale de Greibach

Théorème

Théorème: Toute grammaire algébrique, sans renommage ni ϵ -production est équivalente à une grammaire dont toutes les productions sont de la forme

$$X \rightarrow a\gamma$$
, $\gamma \in (N \cup T)^*$ et $a \in T$

- On cherche
- ·à supprimer la récursivité gauche des règles, i.e.
- à éviter des règles de la forme $A \rightarrow A\alpha$, $\alpha \in (N \cup T)^*$
- •à faire commencer toute règle par un terminal.
- pour faciliter l'analyse d'une chaîne de caractères

Mise sous FNG (1)

- 1. On fixe un ordre sur les variables de $G: N=(A_1, A_2,..., A_n)$ et on dit que la grammaire est montante si toute règle est de la forme $A_j \rightarrow A_k v$ avec j<k ou $A_j \rightarrow av$ avec a $\in T$
- 2. On suppose les variables de G ordonnées et ses règles de la forme
 - $A \rightarrow A_{i1} A_{i2}... A_{in}$ to tous les $A_{ij} \in \mathbb{N}$ ou $A \rightarrow b$ to $b \in \mathbb{T}$

Mise sous FNG (2)

- 3. On pose i =1. Tant que i < n, on considère les productions P de la forme $A_i \rightarrow \alpha$:
 - Si i>1, on remplace toutes les occurrences de A_k , k<i dans les productions $A_i \rightarrow A_k \alpha$ avec k<i et $\alpha \in V^*$
 - Soit P est montante OK
 - Soit P récursive gauche
 - on retire la réc. gauche en ajoutant un nouveau non-terminal numéroté à la suite de ceux de N' et on incrémente n de 1
- 4. pour i de n-1 à 1 on substitue dans les $A_i \rightarrow A_j \alpha$ avec j>i les A_j par leurs parties droites.

$$A_{1} \rightarrow A_{2} A_{2} | 0$$

$$A_{2} \rightarrow A_{1} A_{2} | 1$$

$$A_{2} \rightarrow A_{2} A_{2} A_{2} | 0 A_{2} | 1$$

$$A_{2} \rightarrow 0 A_{2} | 1 | 0 A_{2} A_{3} | 1 A_{3}$$

$$A_{3} \rightarrow A_{2} A_{2} | A_{2} A_{2} A_{3}$$

$$A_{3} \rightarrow 0 A_{2} A_{2} | 0 A_{2} A_{2} A_{3}$$

$$| 1 A_{2} | 1 A_{2} A_{3}$$

$$| 0 A_{2} A_{3} A_{2} | 0 A_{2} A_{3} A_{2} A_{3}$$

$$| 1 A_{3} A_{2} | 1 A_{3} A_{2} A_{3}$$

$$| 1 A_{3} A_{2} | 1 A_{3} A_{2} A_{3}$$

 A_1 montante. On passe à A_2 On copie le membre droit de A₁ à la place de A_1 dans $A_2 \rightarrow A_1$ v: A₂ est récursive gauche, on la transforme grâce au lemme: On copie le membre droit de A2 à la place de A_2 dans $A_3 \rightarrow A_2 v$: A₃ est sous FNG A_2 est sous FNG On copie le membre droit de A2 à la place de A_2 dans $A_1 \rightarrow A_2$ v:

 $A_1 \rightarrow 0A_2A_2|1A_2|0A_2A_3A_2|1A_3A_2|0$

FNG