CLUSTERING

CLUSTERING ALGORITHMS

K-means and its variants

Hierarchical clustering

Density-based clustering

UNSUPERVISED MEASURES: COHESION AND SEPARATION

- A proximity graph-based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

UNSUPERVISED MEASURES: SILHOUETTE COEFFICIENT

- Silhouette coefficient combines ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate a = average distance of i to the points in its cluster
 - Calculate $b = \min$ (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = (b - a) / \max(a,b)$$

- Value can vary between I and I
- Typically ranges between 0 and 1.
- The closer to I the better.

Can calculate the average silhouette coefficient for a cluster or a clustering

MEASURING CLUSTER VALIDITY VIA CORRELATION

- Two matrices
 - Proximity Matrix
 - Ideal Similarity Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High magnitude of correlation indicates that points that belong to the same cluster are close to each other.
 - Correlation may be positive or negative depending on whether the similarity matrix is a similarity or dissimilarity matrix
- Not a good measure for some density or contiguity based clusters.

MEASURING CLUSTER VALIDITY VIA CORRELATION

 Correlation of ideal similarity and proximity matrices for the K-means clusterings (partition cluster) of the following wellclustered data set.

Corr = 0.9235

MEASURING CLUSTER VALIDITY VIA CORRELATION

Correlation of ideal similarity and proximity matrices for the K-means clusterings of the following random data set.

30
40
40
50
60
70
80
90
100
20
40
60
80
100
Similarity
Points

K-means

JUDGING A CLUSTERING VISUALLY BY ITS SIMILARITY MATRIX

Order the similarity matrix with respect to cluster labels and inspect visually.

JUDGING A CLUSTERING VISUALLY BY ITS SIMILARITY MATRIX

Clusters in random data are not so crisp

DBSCAN (density based clustering)

Correlation may be not a good measure for some density-based clusters.

JUDGING A CLUSTERING VISUALLY BY ITS SIMILARITY MATRIX

DBSCAN

DETERMINING THE CORRECT NUMBER OF CLUSTERS

- SSE is good for comparing two clusterings or two clusters
- SSE can also be used to estimate the number of clusters

Elbow: after that point, the values of s Do not change dramastically

DETERMINING THE CORRECT NUMBER OF CLUSTERS

SSE curve for a more complicated data set

SSE of clusters found using K-means

ASSESSING THE SIGNIFICANCE OF CLUSTER VALIDITY MEASURES

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value, 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "atypical" a clustering result is, the more likely it represents valid structure in the data
 - Compare the value of an index obtained from the given data with those resulting from random data.
 - If the value of the index is unlikely, then the cluster results are valid

Ocurre/base on the corr dates

STATISTICAL FRAMEWORK FOR SSE

Example

Compare SSE of three cohesive clusters against three clusters in random data

$$SSE = 0.005$$

Histogram shows SSE of three clusters in 500 sets of random data points of size 100 distributed over the range 0.2 - 0.8 for x and y values

80

Corr = -0.9235

Corr = -0.5810

Correlation is negative because it is calculated between a distance matrix and the ideal similarity matrix. Higher magnitude is better.

Histogram of correlation for 500 random data sets of size 100 with x and y values of points between 0.2 and 0.8.

OTHER CLUSTER METHODS

- I. Partitioning Methods
- K-mean
- 2. Hierarchical Methods
- 3. Density-Based Methods
- 4. Grid-Based Methods
- 5. Model-Based Methods
- 6. Clustering High-Dimensional Data
- 7. Constraint-Based Clustering
- 8. Outlier Analysis

SUMMARY

STING: A STATISTICAL INFORMATION GRID APPROACH

- Wang, Yang and Muntz (VLDB'97)
- The spatial area is divided into rectangular cells
- There are several levels of cells corresponding to different levels of resolution

THE STING CLUSTERING METHOD

- Each cell at a high level is partitioned into a number of smaller cells in the next lower level
- Statistical info of each cell is calculated and stored beforehand and is used to answer queries
- Parameters of higher level cells can be easily calculated from parameters of lower level cell

(i-1)st layer

count, mean, s, min, max
type of distribution—normal, uniform, etc.

- Use a top-down approach to answer spatial data queries
- Start from a pre-selected layer—typically with a small number of cells
- For each cell in the current level compute the confidence interval

COMMENTS ON STING

- Remove the irrelevant cells from further consideration
- When finish examining the current layer, proceed to the next lower level
- Repeat this process until the bottom layer is reached
- Advantages:
 - Query-independent, easy to parallelize, incremental update
 - ullet O(K), where K is the number of grid cells at the lowest level
- Disadvantages:
 - All the cluster boundaries are either horizontal or vertical, and no diagonal boundary is detected

WAVE CLUSTER: CLUSTERING BY WAVELET ANALYSIS

- Sheikholeslami, Chatterjee, and Zhang
- A multi-resolution clustering approach which applies wavelet transform to the feature space
- How to apply wavelet transform to find clusters
 - Summarizes the data by imposing a multidimensional grid structure onto data space
 - These multidimensional spatial data objects are represented in a n-dimensional feature space
 - Apply wavelet transform on feature space to find the dense regions in the feature space
 - Apply wavelet transform multiple times which result in clusters at different scales from fine

Figure 7.16 A sample of two-dimensional feature space. From [SCZ98].

WAVELET TRANSFORM

- Wavelet transform: A signal processing technique that decomposes a signal into different frequency sub-band (can be applied to n-dimensional signals)
- Data are transformed to preserve relative distance between objects at different levels of resolution
- Allows natural clusters to become more distinguishable

THE WAVECLUSTER ALGORITHM

- Input parameters
 - # of grid cells for each dimension
 - the wavelet, and the # of applications of wavelet transform
- Why is wavelet transformation useful for clustering?
 - Use hat-shape filters to emphasize region where points cluster, but simultaneously suppress weaker information in their boundary
 - Effective removal of outliers, multi-resolution, cost effective
- Major features:
 - Complexity O(N)
 - Detect arbitrary shaped clusters at different scales
 - Not sensitive to noise, not sensitive to input order
 - Only applicable to low dimensional data
- Both grid-based and density-based

h)

QUANTIZATION & TRANSFORMATION

- First, quantize data into m-D grid structure, then wavelet transform
 - a) scale I: high resolution
 - b) scale 2: medium resolution
 - c) scale 3: low resolution

Figure 1: A sample 2-dimensional feature space.

OTHER CLUSTER METHODS

- I. Partitioning Methods
- 2. Hierarchical Methods
- 3. Density-Based Methods
- 4. Grid-Based Methods (sting; wave)
- 5. Model-Based Methods
- 6. Clustering High-Dimensional Data
- 7. Constraint-Based Clustering
- 8. Outlier Analysis

MODEL-BASED CLUSTERING

- What is model-based clustering?
 - Attempt to optimize the fit between the given data and some mathematical model
 - Based on the assumption: Data are generated by a mixture of underlying probability distribution
- Typical methods
 - Statistical approach
 - EM (Expectation maximization), AutoClass
 - Machine learning approach
 - COBWEB, CLASSIT
 - Neural network approach
 - SOM (Self-Organizing Feature Map)

EM — EXPECTATION MAXIMIZATION

- EM A popular iterative refinement algorithm
- An extension to k-means
 - Assign each object to a cluster according to a weight (prob. distribution)
 - New means are computed based on weighted measures
- General idea
 - Starts with an initial estimate of the parameter vector
 - Iteratively rescores the patterns against the mixture density produced by the parameter vector
 - The rescored patterns are used to update the parameter updates
 - Patterns belonging to the same cluster, if they are placed by their scores in a particular component
- Algorithm converges fast but may not be in global optima

N(5. 6)

THE EM (EXPECTATION MAXIMIZATION) ALGORITHM

- Initially, randomly assign k cluster centers
- Iteratively refine the clusters based on two steps
 - Expectation step: assign each data point X_i to cluster C_i with the following probability

$$P(X_i \in C_k) = p(C_k|X_i) = \frac{p(C_k)p(X_i|C_k)}{p(X_i)},$$

- Maximization step:
 - Estimation of model parameters

$$m_k = \frac{1}{N} \sum_{i=1}^{N} \frac{X_i P(X_i \in C_k)}{\sum_i P(X_i \in C_i)}$$
.

CONCEPTUAL CLUSTERING

- Conceptual clustering
 - A form of clustering in machine learning
 - Produces a classification scheme for a set of unlabeled objects
 - Finds characteristic description for each concept (class)

COBWEB

- A popular a simple method of incremental conceptual learning
- Creates a hierarchical clustering in the form of a classification tree
- Each node refers to a concept and contains a probabilistic description of that concept

COBWEB CLUSTERING METHOD

MORE ON CONCEPTUAL CLUSTERING

- Limitations of COBWEB
 - The assumption that the attributes are independent of each other is often too strong because correlation may exist
 - Not suitable for clustering large database data skewed tree and expensive probability distributions
- CLASSIT
 - an extension of COBWEB for incremental clustering of continuous data
 - suffers similar problems as COBWEB
- AutoClass (Cheeseman and Stutz, 1996)
 - Uses Bayesian statistical analysis to estimate the number of clusters
 - Popular in industry

NEURAL NETWORK APPROACH

- Neural network approaches
 - Represent each cluster as an exemplar, acting as a "prototype" of the cluster
 - New objects are distributed to the cluster whose exemplar is the most similar according to some distance measure
- Typical methods
 - SOM (Soft-Organizing feature Map)
 - Competitive learning
 - Involves a hierarchical architecture of several units (neurons)
 - Neurons compete in a "winner-takes-all" fashion for the object currently being presented

SELF-ORGANIZING FEATURE MAP (SOM)

- SOMs, also called topological ordered maps, or Kohonen Self-Organizing Feature Map (KSOMs)
- It maps all the points in a high-dimensional source space into a 2 to 3-d target space, s.t., the distance and proximity relationship (i.e., topology) are preserved as much as possible
- Similar to k-means: cluster centers tend to lie in a low-dimensional manifold in the feature space
- Clustering is performed by having several units competing for the current object
 - The unit whose weight vector is closest to the current object wins
 - The winner and its neighbors learn by having their weights adjusted
- SOMs are believed to resemble processing that can occur in the brain
- Useful for visualizing high-dimensional data in 2- or 3-D space

WEB DOCUMENT CLUSTERING USING SOM

- The result of SOM clustering of 12088 Web articles
- The picture on the right: drilling down on the keyword "mining"
- Based on websom.hut.fiWeb page

SUMMARY

CHAPTER 6. CLUSTER ANALYSIS

- I. Partitioning Methods
- 2. Hierarchical Methods
- 3. Density-Based Methods
- 4. Grid-Based Methods
- 5. Model-Based Methods
- 6. Clustering High-Dimensional Data
- 7. Constraint-Based Clustering
- 8. Outlier Analysis

CLUSTERING HIGH-DIMENSIONAL DATA

- Clustering high-dimensional data
 - Many applications: text documents, DNA micro-array data
 - Major challenges:
 - Many irrelevant dimensions may mask clusters
 - Distance measure becomes meaningless—due to equi-distance
 - Clusters may exist only in some subspaces
- Methods
 - Feature transformation: only effective if most dimensions are relevant
 - PCA & SVD useful only when features are highly correlated/redundant
 - Feature selection: wrapper or filter approaches
 - useful to find a subspace where the data have nice clusters
 - Subspace-clustering: find clusters in all the possible subspaces

(GRAPHS ADAPTED FROM PARSONS ET AL. KDD EXPLORATIONS 200

- Data in only one dimension is relatively packed
- Adding a dimension "stretch" the points across that dimension, making them further apart
- Adding more dimensions will make the points further apart—high dimensional data is extremely sparse

DATA MINING: CONCEPTS AND TECHNIQUES equi-distance

Distance measure becomes meaningless-

(b) 6 Objects in One Unit Bin

(c) 4 Objects in One Unit Bin

WHY SUBSPACE CLUSTERING?

(ADAPTED FROM PARSONS ET AL. SIGKDD EXPLORATIONS 2004)

39

- Clusters may exist only in some subspaces
- Subspace-clustering: find clusters in all the subspaces

CLIQUE (CLUSTERING IN QUEST)

- Agrawai, Genrke, Gunopulos, Kagnavan (SIGMOD 98)
- Automatically identifying subspaces of a high dimensional data space that allow better clustering than original space
- CLIQUE can be considered as both density-based and grid-based
 - It partitions each dimension into the same number of equal length interval
 - It partitions an m-dimensional data space into non-overlapping rectangular units
 - A unit is dense if the fraction of total data points contained in the unit exceeds the input model parameter

CLIQUE: THE MAJOR STEPS

- Partition the data space and find the number of points that lie inside each cell of the partition.
- Identify the subspaces that contain clusters using the Apriori principle
- Identify clusters
 - Determine dense units in all subspaces of interests
 - Determine connected dense units in all subspaces of interests.
- Generate minimal description for the clusters
 - Determine maximal regions that cover a cluster of connected dense units for each cluster
 - Determination of minimal cover for each cluster

STRENGTH AND WEAKNESS OF CLIQUE

Strength

- automatically finds subspaces of the highest dimensionality such that high density clusters exist in those subspaces
- insensitive to the order of records in input and does not presume some canonical data distribution
- scales linearly with the size of input and has good scalability as the number of dimensions in the data increases

Weakness

The accuracy of the clustering result may be degraded at the expense of simplicity of the method

FREQUENT PATTERIN-BASED APPROACH

- Clustering high-dimensional space (e.g., clustering text documents, microarray data)
 - Projected subspace-clustering: which dimensions to be projected on?
 - CLIQUE, ProClus
 - Feature extraction: costly and may not be effective?
 - Using frequent patterns as "features"
 - "Frequent" are inherent features
 - Mining freq. patterns may not be so expensive
- Typical methods
 - Frequent-term-based document clustering
 - Clustering by pattern similarity in micro-array data (pClustering)

CLUSTERING)

- Right: The micro-array "raw" data shows
 - 3 genes and their values in a multidimensional space
 - Difficult to find their patterns
- Bottom: Some subsets of dimensions form nice shift and scaling patterns

- Microarray data analysis may need to
 - Clustering on thousands of dimensions (attributes)
 - Discovery of both shift and scaling patterns
- Clustering with Euclidean distance measure? cannot find shift patterns
- Clustering on derived attribute $A_{ij} = a_i a_j$? introduces N(N-1) dimensions
- Bi-cluster using transformed mean-squared residue score matrix (I, I)

$$H(IJ) = \frac{1}{|I||J|} \sum_{i \in I, j \in J} (d_{ij} - d_{iJ} - d_{Ij} + d_{IJ})^{2}$$

$$d_{ij} = \frac{1}{|J|} \sum_{i \in J} d_{ij} \qquad d_{Ij} = \frac{1}{|I|} \sum_{i \in I} d_{ij} \qquad d_{IJ} = \frac{1}{|I||J|} \sum_{i \in I, j \in J} d_{ij}$$

$$d_{IJ} = \frac{1}{|I||J|} \sum_{i \in I, j \in J} d_{ij}$$

- A submatrix is a δ -cluster if $H(I, J) \leq \delta$ for some $\delta > 0$
- Problems with bi-cluster
 - No downward closure property,
 - Due to averaging, it may contain outliers but still within δ -threshold

Given object x, y in O and features a, b in T, pCluster is a 2 by 2 matrix

$$pScore(\begin{bmatrix} d_{xa} d_{xb} \\ d_{ya} \end{bmatrix}) = |(d_{xa} - d_{xb}) - (d_{ya} - d_{yb})|$$

- $pScore(\begin{bmatrix} d_{xa} d_{xb} \\ d_{ya} d \end{bmatrix}) = |(d_{xa} d_{xb}) (d_{ya} d_{yb})|$ A pair (O,T) is in δ -pCluster of for any 2 by 2 matrix X in (O,T), pScore(X) \leq δ for some $\delta > 0$
- Properties of δ -pCluster
 - Downward closure
 - Clusters are more homogeneous than bi-cluster (thus the name: pair-wise Cluster)
- Pattern-growth algorithm has been developed for efficient mining
- For scaling patterns, one can observe, taking logarithmic on to the pScore form

$$\frac{\partial \text{vill lead}}{d_{xb} / d_{yb}} < \delta$$

CHAPTER 6. CLUSTER ANALYSIS

- I. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering

11. Outlier Analysis

WHY CONSTRAINT-BASED CLUSTER ANALYSIS?

- Need user feedback: Users know their applications the best
- Less parameters but more user-desired constraints, e.g., an ATM allocation problem: obstacle & desired clusters

ANALYSIS

- Clustering in applications: desirable to have user-guided (i.e. constrained) cluster analysis
- Different constraints in cluster analysis:
 - Constraints on individual objects (do selection first)
 - Cluster on houses worth over \$300K
 - Constraints on distance or similarity functions
 - Weighted functions, obstacles (e.g., rivers, lakes)
 - Constraints on the selection of clustering parameters
 - # of clusters, MinPts, etc.
 - User-specified constraints
 - Contain at least 500 valued customers and 5000 ordinary ones

CLUSTERING WITH OBSTACLE OBJECTS

- Means may locate the ATM center in the middle of a lake
- Visibility graph and shortest path
- Triangulation and micro-clustering
- Two kinds of join indices (shortestpaths) worth pre-computation
 - VV index: indices for any pair of obstacle vertices
- MV index: indices for any pair of

 DATA MINING: CONCEPTS AND TECHNIQUE O-cluster and obstacle indices

OBJECTS

Taking obstacles into account

CLUSTERING WITH USER-SPECIFIED CONSTRAINTS

- Example: Locating k delivery centers, each serving at least meaning valued customers and n ordinary ones
- Proposed approach
 - Find an initial "solution" by partitioning the data set into k groups and satisfying user-constraints
 - Iteratively refine the solution by micro-clustering relocation (e.g., moving δ μ -clusters from cluster C_i to C_j) and "deadlock" handling (break the microclusters when necessary)
 - Efficiency is improved by micro-clustering
- How to handle more complicated constraints?
 - E.g., having approximately same number of valued customers

CHAPTER 7. CLUSTER ANALYSIS

- I. What is Cluster Analysis?
- 2. Types of Data in Cluster Analysis
- 3. A Categorization of Major Clustering Methods
- 4. Partitioning Methods
- 5. Hierarchical Methods
- 6. Density-Based Methods
- 7. Grid-Based Methods
- 8. Model-Based Methods
- 9. Clustering High-Dimensional Data
- 10. Constraint-Based Clustering
- 11. Outlier Analysis

WHAT IS OUTLIER DISCOVERY?

- The set of objects are considerably dissimilar from the remainder of the data
- Example: Sports: Michael Jordon, Wayne Gretzky, ...
- Problem: Define and find outliers in large data sets
- Applications:
 - Credit card fraud detection
 - Telecom fraud detection
 - Customer segmentation

STATISTICAL APPROACHES

- **Data Values**
- Assume a model underlying distribution that generates data set (e.g. normal distribution)
- Use discordancy tests depending on
 - data distribution
 - distribution parameter (e.g., mean, variance)
 - number of expected outliers
- Drawbacks
 - most tests are for single attribute

APPROACH

- Introduced to counter the main limitations imposed by statistical methods
 - We need multi-dimensional analysis without knowing data distribution
- Distance-based outlier: A DB(p, D)-outlier is an object O in a dataset T such that at least a fraction p of the objects in T lies at a distance greater than D from O
- Algorithms for mining distance-based outliers
 - Index-based algorithm
 - Nested-loop algorithm

OUTLIER DETECTION

- Distance-based outlier detection based on global distance distribution
- It encounters difficulties to identify outliers if data is not uniformly distributed
- Ex. C₁ contains 400 loosely distributed points, C₂ has 100 tightly condensed points, 2 outlier points o₁, o₂
- Distance-based method cannot identify o₂ as an outlier

- Local outlier factor (LOF)
 - Assume outlier is not crisp
 - Each point has a LOF

SUMMARY

APPROACH

- objects in a group
- Objects that "deviate" from this description are considered outliers
- Sequential exception technique
 - simulates the way in which humans can distinguish unusual objects from among a series of supposedly like objects
- OLAP data cube technique
 - uses data cubes to identify regions of anomalies in large