Derbir Libre d'amalyse.

Excercice 18

11.
$$y' - 2y = con(x) + 2 sin(x)$$
 (L).

$$(=)$$
 $y' = 2y (=) \frac{y'}{y} = 2$

Danc la solution de H est
$$y = c.e^{2x}$$

on cherche une solution particulière de (L).
Soit
$$y(x) = C(x) e^{2x}$$
 une solution de (L)
donc $y'(x) = 2y(x) = cos(x) + 2 sin(x)$
alors: $C'(x) e^{2x} + 2e^{x}C(x) - 2c(x)e^{x} = cos(x) + 2 sin(x)$

done
$$y'(x) - 2y_{x}(x) = cos(x) + 2 sin(x)$$

alons:
$$C'(x) e^{2x} + 2e^{x}C(x) - 2c(x)e^{x} = cas(x) + 2sin(x)$$

$$(=)$$
 $C'(x)e^{2x} = cos(x) + 2 sin(x)$

$$C'(x) = (cos(x) + 2 sin(x))e^{-2x}$$

$$\langle = \rangle$$
 $C(x) = \int (cos(x) + 2 sin(x)) e^{-2x}$

$$c = c = \int 2 \sin(x) e^{-2x} + \int \cos(x) e^{-2x}$$

$$C(x) = T + J$$

Le calcul de I par Intégrale par partie 8

commençant par:
$$I = \int e^{-2x} cos(x) dx$$

$$(=) T = -\frac{e^{-1x} \operatorname{con}(r)}{2} - \int \frac{e^{-2x} \operatorname{sim}(x)}{2} dx$$

la farme TT(x)= q(x) ex tel que q (x) = ax+6. (p aly de 1er degré) Alons Tr(x)-2x Tr(x) = -(2x-1)ex <=> (a ml + 0 x + 6) e" - 2x (ax + 6).e" = -(1 -1) e" (=) ((a-2b)x + 2a x1 + a+b) ex = - (2x-1) ex $\begin{cases}
a - 2b = -2 \\
a + 6 = 1
\end{cases}$ $\begin{cases}
a = 0 \\
b = 1
\end{cases}$ d'ail TITCX) = e2 finalement les solutions de (L1) dons is sonte y = 9. . T(x) = Ke2 + e2 $3 - xy' + 2y = \frac{x}{1+x^2} \left(L_t \right)$ $(l_1) = y' + \frac{2}{x} y = \frac{1}{1+x^2}$ On pases y1+ 2 y 20: (H2) $y' = -\frac{2}{x}y = -\frac{2}{x}$ g, est sol de (H1) (=> y = mach has Keik = K/xi KER

Soit
$$y_{0}(x) = K(y) \cdot \frac{1}{x}$$
, solution de (L_{2})

Alban, $y_{0}'(x) + \frac{2}{x}$, $y_{0}(x) = \frac{1}{1+x^{2}}$
 $= K'(x) \cdot \frac{1}{x^{2}} + K(x) \cdot \frac{-2x}{x^{2}} + \frac{2}{x} \cdot K(x) \cdot \frac{1}{x^{2}} = \frac{1}{1+x^{2}}$
 $= K'(x) - \frac{2}{x^{3}}$, $K(x) + \frac{2}{x^{3}}$, $K(x) = \frac{1}{1+x^{2}}$
 $= K'(x) = \frac{x^{2}}{1+x^{2}}$
 $= K'(x) = \frac{1}{1+x^{2}}$

Alons $y = y_{0} + y_{0}(x) = \frac{1}{x^{2}} - \frac{1}{x^{2}}$

Alons $y = y_{0} + y_{0}(x) = \frac{1}{x^{2}} - \frac{1}{x^{2}}$
 $= \frac{1}{1+x^{2}}$

Alons $y = y_{0} + y_{0}(x) = \frac{1}{x^{2}} - \frac{1}{1+x^{2}}$
 $= \frac{1}{1+$

5- y"-2y'+5y = -4x e con(x)+ 7e mins() L'équation conactérutique est $\pi^2 = 2+5 = 0$ $\delta = (i ll)'(10)$ $\pi_1 = 1+2i$ $\pi_2 = 1-2i$ y(x) = ne room (10) - 4 e' mi(2x) 4, 26 Q On cherche une solution particulière de l'équation, y'- 2y' + Sy = - Ve- " corce) + 7e- rin (x) on trave e rinx comme ralution On cherche de la même foçan à resonaire y"-2y'+5y = -le' si (2z) et on trave ze car(2x) comme solution finalement, les volutions de l'équations y(w)= ze con(2x) + e'sin x + A excon(2x)+ tte sin(x) Excercice & $\frac{1}{2}\int_{x}^{x} \beta'(t) dt = \frac{1}{2}\left(\int_{x}^{x} \beta(t) dt\right)^{t}$ On pose y(x)= f f(4) It and y(x) est to dérivable sur long sollient : = = = = = (41 let 11) = ((let 11) f(x) · On a si y(x) => (Sf(t) ff) = 0 => f=0

On pose a z sup (b(x))

d'ai y est non nulle sur Ja, + so [z [(9)) 2 - 2 + 4 9' $= \frac{\left(\frac{y'}{y}\right)' - \frac{u}{x} \left(\frac{y'}{y}\right)}{x} = 0$ pose X = y/ d' cen $X^{2} - \frac{4}{x} \times \frac{t}{x} = 0$ d'ai X2 2 = 50 = 2 2 (equ. Roma) $\theta' \text{ air } y(x) = \Omega e^{1-\sqrt{2} \ln(x)} = \Omega e^{\ln(x^{2+\sqrt{2}})}$ $= \Omega e^{1} \times 2^{2+\sqrt{2}}, \quad \Omega \in \mathbb{R}$ $\theta = y' \quad \text{ an transe}$ $\theta(x) = (2-\sqrt{2}) \quad \Omega \times (2+\sqrt{2}), \quad \Omega \in \mathbb{R}$ Excercice 3, Sm= Ex Un t, 2 E VK 1_ La suite (Sn) des sommes particulier défine par Sn = \bigin U est une suite croissante puisque (Un) une suite de terme positife Sm - Sm-1 = Um >0 . La suite (t,). La suite (tm) de sommes particuliers défini par t = E V est une suite oraginante puisoque (t/) une suite de terme positif bn-bn-1 = 1 50

2. Les suites (Sm) et (tm) sont orainantes de plus il existe a ER tel que Sm & tm + x On a si la série EV converge, alors la suite (t.) converge sont T sa limite et majorée par T+ a La suite (S.n.) est craissante et majorée par T+ a danc elle converge et ainsi la série EU converge danc elle converge et ainsi la série EU converge Inversement, si la série EUx diverge, alors la suite tend vers (or) et il ent est de miême pour la suite (tn) et ainsi la série EVx diverge. 3. On suppose que Un équivalent à Un quand m tend vers l'infim on pase por l'hypothèse V E > 0 il existe Ko tel que A K>KO UK -1/2E (1-E) VK (UK ((4+E) VK On fixe E <1 si ε Uk converge donc ε (1-ε) V converge donc ε V_K converge également Si ε U_K diverge donc ε (1+ε) V_K diverge donc ε V_K diverge 4. On suppose que EUn diverge

On a = + (Sn) croissante, Jane 1 décroissante

+ Sm > 0 dane 1 > 0 Sm

+ him 1 = 0 (coor on suppose que EUn divey

Donc, ense basant sur le critère de Leibez la série alternée É E1" converge. Excercice 4.

1 - On a la série de terme générale Un= 1 neN
est équivalente à la série determe générale Un-1 1
et an a E y est convergente d'après hieneron, k'i d'air la révire de terme générale la est auri convergente Octenmention of une suite (xn) telle que $V_n = x_n - x_n$ On a pour $m \in \mathbb{N}^+$, $V_n = \frac{1}{u_{m-1}} = \frac{\alpha}{(2m-1)(2n-1)} = \frac{\alpha}{(2m-1)} = \frac{1}{(2m-1)}$ $a = \frac{1}{x - \frac{1}{2}} (2m-1) \times \frac{1}{4m^2-1} = -\frac{1}{2}$ et b = li (2m-1) × 1 = 1 d'air Um = 1 2 (2m+1) = 2 (2m+1) avec $|x_n| = \frac{1}{2(!n-!)}$ et $|x_n| = \frac{1}{2(!n+1)}$. En déduit le calcule de la ronne & Un On a $U_m = x_{m-1} - x_m$ $\stackrel{\neq}{=} U_m = \stackrel{\neq}{=} (x_{m-1} - x_m)$ Alors $\sum_{n=1}^{\infty} U_n = x_0 = \left| \frac{1}{2} \right|$ et on a $\lim_{n \to \infty} x_n = 0$


```
Excercice 5:
 Pour mell. Um = 5° xin dx et Vm = (-1) 2m+1
1) - a - Calculer Us
       Vo = f^ 1+x1 bx = Conde cx) = II
                   Axers OfT (x1+1
                                0 5 1 51
                                 O \ xtm \ xin
  puisque O < 1 donc.
                   0 & SI xind dx & Si xinda a
  et on as
                \int_{-\infty}^{\infty} x^{2n} dx = \int_{-\infty}^{\infty} \frac{x^{2n-1}}{x^{2n-1}} = \frac{1}{x^{2n-1}} 
   Le Mel @ on conclut que e
    Vm E EN: 0 & ST XEN & Tenta
      (=) O < Un < 1 / 2 n+1
2) - a. On pose ?
     Um + Unen = M xilmi) dx + M xim dx
 = \int_{0}^{1} \frac{x^{(m+1)} + x^{(m)}}{1 + x^{(m)}} dx = \int_{0}^{1} \frac{(1+x^{(k)}) x^{(k)}}{1 + x^{(k)}} dx = \int_{0}^{1} x^{(m)} dx
  = [xquel ] = | 1 - 1
```

b) - On a =
$$\sum_{K=3}^{m} V_K = \sum_{K=3}^{m} \frac{(-1)^k}{2k+1} = \sum_{K=9}^{m} (-1)^k U_K$$

$$= \sum_{K=3}^{m} (-1)^k U_{K+1} + \sum_{K=9}^{m} (-1)^k U_K$$

con passe $\int_{K} K' = K+1$

$$\sum_{K=9}^{m} (-1)^k U_K$$

$$= \sum_{K=3}^{m} (-1)^k U_K$$

$$= \sum_{K=3}^{m}$$