Ao LIU

Ph.D. in Computer Science

Cambridge, MA

Summary

Interests Machine Learning (Recommendation Systems, Learning to Rank, Algorithm Design, etc.),
Differential Privacy, Computational Social Choice, and Quantum Computation

Experiences 1+ years of industry experience in machine learning (personalized recommendation)

Hands-on experience in recommendation systems, LLM, and theoretical computer science

Academia Published more than 25 papers and received more than 250 citations to date. Reviewers for 50+ papers on top AI conferences or journals

Education

01/2018 – 05/2023 Ph.D. in Computer Science, Rensselaer Polytechnic Institute (RPI) Troy, NY

Thesis: Group Decision Makings from Partial Preferences [Link]

08/2015 – 05/2018 M.Eng. in Material Physics, Rensselaer Polytechnic Institute (RPI) Troy, NY

08/2010 – 05/2014 B.S. in Mathematics and Physics, Tsinghua University Beijing, China

Minor in Computer Technology, and in Academic Talent Program

Experience

07/2023 – Present Software Engineer at Google Core ML Mountain View, CA

Design and Research More Efficient Transformers for Recommendation Systems

05/2022 – 08/2022 Research Intern at Google Core ML Mountain View, CA Project: A More Accurate Position Bias Estimator for Unbiased Learning to Rank

• Significant accuracy improvement (~8%) v.s. the sate-of-art without extra computational resources

- Proposed a more accurate model for position bias in recommendation systems.

- Designed a new machine learning framework based on the proposed position bias model and two-tower model. (user-modeling, algorithm design, statistics)

- Implemented a data pipeline to extract the required features from data. (C/C++)

- Implemented the machine learning framework, tested on public dataset, and integrated it into Google codebase. (*Python, TensorFlow, GoogleTest*)

07/2016 - 03/2018 Visiting Scholar at MIT-IBM Watson AI Lab

Project: Certifiably Robust Interpretation via Rényi Differential Privacy

O Significant robustness improvement (~12%) plus accuracy improvement v.s. the sate-of-art

- Yes! we improved both robustness and accuracy at the same time! Note that accuracy and robustness are trade-offs in machine learning.

- Theoretically connected Rényi differential privacy and interpretation robustness.

- Designed a new robust algorithm to interpret neural networks for image classifications.

- Implemented the proposed robust algorithm and tested it on VOC2007 dataset for various properties, including robustness, accuracy, and computational efficiency. (*PyTorch*, *TorchRay*, *TensorFlow*)

O Delivered one academic paper on top AI journal and two patents

Skills

Implementation Programming languages: Python, C/C++, MATLAB

Tools and platforms: TensorFlow, PyTorch, TorchRay, LATEX, GoogleTest

Design/ Theory User-modeling, Algorithm design, Statistics, Time/Sample-complexity analysis, Markov chain Mount-Carlo (MCMC), Differential privacy analysis, Robustness analysis, Model identifiability.

Review Services

Journal Information Sciences, TMLR, ACM ToIS, Sankhya B

Conference NeurIPS (20,21,22&23), ICML (22,23&24), ICLR (23&24), AAAI (21&22), IJCAI-22

TMLR	Smoothed Differential Privacy [PDF] <u>Ao Liu</u> , Yu-Xiang Wang, and Lirong Xia
UAI-23	Accelerating Voting by Quantum Computation [PDF] <u>Ao Liu</u> , Qishen Han, Lirong Xia, and Nengkun Yu
AIJ	Certifiably Robust Interpretation via Rényi Differential Privacy [Link] [ArXiv] <u>Ao Liu</u> , Xiaoyu Chen, Sijia Liu, Lirong Xia, and Chuang Gan Also in proceedings of AAAI-23 Journal Track (oral presentation)
AAAI-23 (oral)	Differentially Private Condorcet Voting [PDF] Zhechen Li, <u>Ao Liu</u> , Lirong Xia, Yongzhi Cao, and Hanpin Wang
AAAI-22	The Semi-Random Likelihood of Doctrinal Paradoxes [PDF] $\underline{Ao\ Liu}$, and Lirong Xia
IJCAI-22 (oral)	Learning Mixtures of Random Utility Models with Features from Incomplete Preferences [PDF] Zhibing Zhao, <u>Ao Liu</u> , and Lirong Xia
JAIR	Learning to Design Fair and Private Voting Rules [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
UAI-20 (oral)	How Private Are Commonly-Used Voting Rules? [PDF] Farhad Mohsin, <u>Ao Liu</u> , Pin-Yu Chen, Francesca Rossi, and Lirong Xia
ETRA-20 Adjunct	Let It Snow: Adding Pixel Noise to Protect the Users Identity [Link] Brendan John, <u>Ao Liu</u> , Lirong Xia, Sanjeev Koppal, and Eakta Jain
AAAI-19 (oral)	Near-Neighbor Methods in Random Preference Completion [PDF] <u>Ao Liu</u> , Qiong Wu, Zhenming Liu, and Lirong Xia
AAAI-19 (oral)	Learning Plackett-Luce Mixture from Partial Preferences [PDF] <u>Ao Liu</u> , Zhibing Zhao, Chao Liao, Pinyan Lu, and Lirong Xia
ETRA-19 (oral)	Differential Privacy for Eye-Tracking Data [PDF] <u>Ao Liu</u> , L. Xia, A. Duchowski, R. Bailey, K. Holmqvist, and E. Jain
US Patent	Certifiably Robust Interpretation [PDF] <u>Ao Liu</u> , Sijia Liu, Bo Wu, Lirong Xia, Qi Cheng Li, and Chuang Gan
US Patent	Interpretation Maps with Guaranteed Robustness [PDF] <u>Ao Liu</u> , Sijia Liu, Abhishek Bhandwaldar, Chuang Gan, Lirong Xia, and Qi Cheng Li
	Awards and Teaching
09/2019 - 05/2022	RPI-IBM AI Horizon Scholarship 3-year scholarship supported by Rensselaer-IBM Artificial Intelligence Research Collaboration
09/2016 - 05/2017	RPI Presidential Graduate Research Fellowship A One-Year Fellowship for Outstanding Graduate Students [Certificate]
Spring 2023	Teaching Assistant of CSCI 4150: Introduction to AI Instructor: Lirong Xia
04/2021	Guest Lecture at CSCI 4967/6967: Economics and Computation Topic: The Semi-Random Likelihood of Doctrinal Paradoxes

Spring 2023 Teaching Assistant of MATH 1020: Calculus II

Instructor: David A. Schmidt

Selected Publications