ProgSet 3

CS 124: Data Structures and Algorithms

Due: Thursday, April 18, 2024 Denny Cao and Ossimi Ziv

§1 Number Partition

Input : A sequence of n numbers $A = \{a_1, a_2, \dots, a_n\}$

Output: A sequence of n numbers $S = \{s_1, s_2, \dots, s_n\}$ of signs $s_i \in \{+1, -1\}$

such that the residual sum of the numbers in A is minimized.

Computational Problem: Number Partition

Claim 1.1 — Number Partition can be solved in pseudo-polynomial time.

Proof. Suppose the sequence of terms in A sum up to some number b. Then each of the numbers in A has at most $\log b$ bits. We will show there exists a dynamic programming algorithm that solves the Number Partition problem that takes time polynomial nb:

- Subproblems: Let D[i,j] be whether it is possible for A[0,i] to sum up to j.
- **Recurrence:** The recurrence relation is given by:

$$D[i,j] = (D[i-1, j+a_i] \vee D[i-1, |j-a_i|])$$

Our recurrence is correct because if $D[i-1, j+a_i]$ is true, then we can subtract a_i from $j+a_i$ (which is obtainable with the first i-1 elements) to get j. Similarly, if $D[i-1, |j-a_i|]$ is true, then either we can add a_i to the $j-a_i$ (which is obtainable with the first i-1 elements) to get j or subtract a_i-j (which is obtainable with the first i-1 elements) from a_i to get j. In doing so, we obtain every possible sum of the first i elements of A.

- **Topological Order:** We solve the subproblems in increasing order of i and j.
- Base Case: D[0,0] = True and D[i,j] = False for all other i,j.
- Original: The original problem is to find the smallest j such that D[n, j] is true, or:

$$\min\{j: D[n, j] == \mathtt{True}, j \in [b]\}$$

• **Time Complexity:** The time complexity of this algorithm is O(nb). This is because for each subproblem we check if b sums are possible (The maximum sum is b). When checking if a sum is possible, we take O(1) time to check 2 previous subproblems. Thus, the total time complexity is O(nb) to fill the table. Iterating to find the smallest j such that D[n, j] is true takes O(b) time. Therefore, the total time complexity is O(nb) + O(b) = O(nb).

Therefore, the Number Partition problem can be solved in pseudo-polynomial time.

§2 Karmarkar-Karp

§2.1 Implementation Correctness

Claim 2.1 — Our implementation of Karmarkar-Karp is correct.

Proof. We implement KK by using a python heap-queue as a stand-in for a min-heap. We initialize this min-heap with all the values from A but turned negative. Afterwards, we pop the head twice, and set the popped value to negative. Afterwards we push the negative of the difference of the two elements back onto the heap. We continue this in a loop while the size of the heap is larger than one, when it is just 1, we return that final value.

The correctness of this implementation follows directly from the definition of KK. Our negative value min heap functions as a max-heap, as the largest values will be the smallest negative, and our min-heap correctly has the head as the smallest element. KK instructs we pop the two largest elements and push their difference, which is exactly what we do. In storing the negative of the negative of the largest elements, we are storing the largest elements per requirements. This process will continue until the final differences remains, and we return that value as our residue. So our implementation is correct.

§2.2 Runtime

Claim 2.2 — Karmarkar-Karp can be implemented in $O(n \log n)$ time

Proof. The algorithm suggests that we are given a list of numbers, A, we select the two largest elements, a_i , and a_j , difference them, replace the larger of the two by the absolute value of their difference, and replace the smaller with 0. Repeat this until there is only one number left. To analyze the time complexity of a potential implementation, we can split the problem into steps:

- Sorting: To make it convenient to find the two largest elements, we can create a max-heap. Building this structure will take O(n) time given that A has n elements.
- Selecting: Actually extracting the two largest elements involves running extract-max twice from our max-heap. Each of these extractions and restructuring of the heap afterwards will take $O(\log n)$ time.
- Comparison: Comparing the two values and computing their difference involves basic arithmetic and can be done in constant time given the problem definition.
- **Inserting**: Inserting both the absolute value of the difference back into the heap takes $O(\log n)$ time.

Every time we replace one of the elements with zeros, we are one step closer to the algorithm terminating, going from n steps left to 1 step left. (given that it ends when the two max's are a number and zero). So the number of iterations of the [select, compare, insert loop] that we have to do is n-1. As a result, our time complexity is $O(n*(\log n+1+1))+O(n)=O(n\log n+n)+O(n)=O(n\log n)$.

Therefore we have shown it is possible to implement the Karmarkar-Karp algorithm in $O(n \log n)$.

§3 Experimental Data

§3.1 Residue Results

We run each algorithm on 50 random inputs of size 100 of numbers between 1 and 10^{12} . The following table lists the obtained residues and the bottom provides statistics regarding the distribution of the data.

Trial	KK	Repeated Random	Hill Climbing	Simulated Annealing	Repeated Random PP	Hill Climbing PP	Simulated Annealing PP
1	244473	87970267	479660689	617418391	139	809	619
2	84884	388599116	64090022	26767974	206	100	366
3	258684	346452394	266278248	420919554	164	384	396
4	6174	167827416	474556064	120672690	138	300	488
5	483295	64315015	19701433	177241003	25	1331	395
6	40663	155202693	78025915	867005015	237	1149	375
7	168632	116734588	65383618	119895416	340	172	190
8	51501	56079063	447848611	86428589	159	511	81
9	775712	100676834	73848338	276347990	112	764	266
10	171145	136885643	623360859	415262813	61	341	11
11	58008	393328788	37014528	19382122	434	1224	150
12	24280	361491808	484961426	205644234	368	148	92
13	10974	49271278	302736382	245593308	82	1002	410
14	172136	207342100	470097020	60624376	126	86	486
15	3585	340416893	116651015	14812321	159	275	47
16	33432	865642540	410532980	160613914	126	622	1096
17	143	329411	967433737	372864795	201	163	221
18	962140	181581092	261866056	127447726	490	722	80
19	554006	117974366	1240920932	178452762	24	376	2
20	112412	6489336	794041684	2783760	56	234	34
21	170727	237001175	225618415	389633141	299	1487	313
22	279936	28828900	309463910	41130106	402	498	918
23	296606	26365600	16537204	551501002	284	2744	204
24	27017	175579403	192076169	1046123043	291	347	89
25	113370	328204226	32709020	94885590	104	552	4
26	244482	391954306	182539024	114982318	338	282	196
27	80211	352541825	11880739	583763855	59	339	1053
28	970955	287546935	186366763	61247253	17	115	317
29	38954	152866070	1183412312	72222452	76	114	1600
30	62896	1442073504	26836576	335548102	106	474	72
30 31	78064	116357704	316750910	74219914	46	486	42
32	247097			95842399	327	637	9
33		112957413	103576333		291		
	28387	440802925	232817921	108422899		811	171
34	82046	49821758	932563088	517656356	230	150	520
35	889934	122909990	16343172	6650736	180	410	292
36	431656	116959242	169087112	172472186	132	1004	154
37	89536	883338848	383142950	71602650	80	1578	306
38	5762	120802670	10515672	535112268	174	594	38
39	28200	24722356	92789004	47446672	18	288	40
40	84184	973345298	103593130	375220032	192	386	178
41	1108778	588007418	248459030	386999234	200	538	88
42	766812	515115316	35200062	382247548	12	80	190
43	29498	695616536	40575632	118055214	372	174	388
44	327435	295223941	885184889	51363879	181	17	95
45	778858	534048582	316890746	133753228	136	158	114
46	144740	383922936	343537194	96599956	16	188	126
47	101282	401792774	7321098	495829530	64	92	18
48	20738	273147518	176867886	67728960	398	492	500
49	249682	613769208	150446866	326700622	300	1250	412
50	202743	863633311	28468689	476212423	83	215	155
Mean	243937.30	313877366.58	292811621.46	246947046.42	181.10	544.26	288.14
Min	143	329411	7321098	2783760	12	17	2
Max	1108778	1442073504	1240920932	1046123043	490	2744	1600
Std Deviation	296087.0937	297119884.2	311699136.2	231103092.6	125.799849	506.885319	315.726245
25%	39381.25	116451925	64413421	72721817.5	80.5	177.5	82.75
50%	112891	222171637.5	189221466	147183571	159	385	190
75%	274623	392985167.5	403685472.5	385811312.5	289.25	700.75	393.25

Table 1: Experimental Data

§3.2 Timing

Trial	KK	Repeated Random	Hill Climbing	Simulated Annealing	Repeated Random PP	Hill Climbing PP	Simulated Annealing PP
1	5.29E-05	0.17540407	0.07839704	0.13006902	2.28987408	2.21262527	3.347615
2	3.93E-05	0.17427373	0.07609701	0.12669206	2.29126692	2.35132694	3.38014102
3	3.89E-05	0.17631197	0.07664824	0.12858868	2.28913736	2.51783299	3.69098592
4	4.41E-05	0.17306495	0.07654309	0.12646294	2.30573201	2.17773008	3.34503436
5	3.81E-05	0.17174292	0.07670498	0.12639809	2.3586812	2.14093184	3.3778429
6	3.67E-05	0.17232108	0.07682395	0.12759781	2.27806211	2.18601823	3.68913484
7	3.70E-05	0.17067599	0.07574797	0.12511396	2.30559301	2.21349382	3.41671705
8	4.03E-05	0.17109489	0.076612	0.12643695	2.33348298	2.30946302	3.42526102
9	4.20E-05	0.17145491	0.07709503	0.12631178	2.32563829	2.35571694	3.43559384
10	4.60E-05	0.16894388	0.07536793	0.1242702	2.28250694	2.33226371	3.65103698
11	3.70E-05	0.16936684	0.07628918	0.125453	2.30748296	2.29763293	3.42228818
12	3.72E-05	0.17246294	0.07819104	0.12659597	2.26848793	2.13310814	3.41908193
13	3.70E-05	0.16926575	0.07616615	0.12893987	2.3469131	2.20960689	3.40671635
14	3.62E-05	0.17219377	0.0782702	0.13370776	2.3095212	2.23313475	3.58830214
15	3.79E-05	0.17466617	0.07780695	0.12521815	2.31600213	2.20623899	3.43248391
16	4.29E-05	0.16876602	0.07674217	0.12565875	2.33569789	2.26488996	3.42939615
17	3.60E-05	0.16964293	0.0780921	0.12467909	2.37793612	2.46837783	3.64588094
18	4.91E-05	0.18189812	0.07779098	0.12800097	2.300565	2.42687583	3.41397309
19	3.89E-05	0.17286301	0.07741523	0.12814164	2.35048127	2.25900507	3.51661491
20	4.20E-05	0.17370105	0.077564	0.12845588	2.29587722	2.23238778	3.41408515
21	3.91E-05	0.17202902	0.07681012	0.12824488	2.3612771	2.22989678	3.41864705
22	4.01E-05	0.17349887	0.07902527	0.12722683	2.32172608	2.28568792	3.61887002
23	3.89E-05	0.17483902	0.07818794	0.12813807	2.34055805	2.29791212	3.49329782
24	4.39E-05	0.17403302	0.07726002	0.12870598	2.30363488	2.24057078	3.51497793
25	4.58E-05	0.17300105	0.07860303	0.12996578	2.31218934	2.29513168	3.43592191
26	3.81E-05	0.17419171	0.07731628	0.12783003	2.30007291	2.24052501	3.57271791
27	3.72E-05	0.17415171	0.07769608	0.12801909	2.36652088	2.34660006	3.51849699
28	3.81E-05	0.17570114	0.07828522	0.13051009	2.41483092	2.38253498	3.49378514
29	3.70E-05	0.17576114	0.07783604	0.12846327	2.3593688	2.41654706	3.4488802
30	4.03E-05	0.17640185	0.07856321	0.12936497	2.3164928	2.36144209	3.44335413
31	3.81E-05	0.17440391	0.07901907	0.12957406	2.35207391	2.23148489	3.648772
32	3.72E-05	0.17465901	0.07751989	0.12820816	2.30580187	2.28986406	3.46296
33	3.79E-05	0.17542815	0.07750392	0.13928699	2.31818175	2.24462414	3.49628091
34	3.79E-05	0.17551398	0.07751083	0.13925033	2.33022594	2.29789996	3.46237397
35	4.79E-05	0.17393112	0.07775784	0.12674403	2.34067893	2.27311087	3.65385008
36	3.91E-05	0.17436695	0.07797503	0.12988281	2.34572411	2.38500476	3.48577499
37	4.72E-05	0.17605805	0.07854819	0.12885594	2.32972217	2.24011087	3.43393517
38	3.70E-05	0.17748594	0.0775671	0.12820387	2.38292694	2.27854991	3.43331003
39	3.91E-05	0.17555809	0.0783968	0.12812901	2.34181404	2.29153085	3.55212402
40	3.91E-05	0.17554688	0.0777328	0.12854385	2.32558513	2.37445211	3.62642884
41	3.89E-05	0.17428303	0.078022	0.12878609	2.37403584	2.32890224	3.4269309
42	3.72E-05	0.17426303	0.07738686	0.12879014	2.34025502	2.18840003	3.53366876
43	3.89E-05	0.17490602	0.07949018	0.13073897	2.32471585	2.39597297	3.67679119
44	3.79E-05	0.17490002	0.07945018	0.1300211	2.35176897	2.2420032	3.45233774
45	3.79E-05	0.17412138	0.07721972	0.1300211	2.35584211	2.24205089	3.454391
46	3.89E-05	0.17412138	0.07721372	0.1277833	2.35742378	2.35651994	3.5206573
47	4.03E-05	0.17622185	0.07761312	0.1277633	2.32881999	2.48536611	3.81021714
48	4.60E-05	0.17662787	0.07871103	0.129246	2.35728216	2.33584094	3.41722393
49	4.00E-05 4.01E-05	0.17489409	0.07787681	0.12824512	2.38670683	2.31936407	3.52481675
50	4.12E-05	0.17499692	0.07933378	0.13204503	2.35906982	2.34447622	3.47601008
Mean	0.0000401	0.1739333	0.0776301	0.1283464	2.3314853	2.2954208	3.4991198
	1	1	1	1 0			

Table 2: Time Data for Each Trial

§4 Discussion

When plotted as a scatter plot using a log scale for the y-axis, we begin to see "striations" of algorithms using standard interpretation for a solution, using Karmarkar-Karp, and algorithms using prepartition interpretation for a solution. Karmarkar-Karp throughout all trials is bounded above by residues obtained through standard solution algorithms and bounded below by residues obtained through prepartition solution algorithms.

The most significant difference between standard algorithms and prepartition algorithms lies within the initial random solution. We observe this through the behavior of Repeated Random for both standard and prepartition interpretations. Repeated Random improves upon the initial random solution by generating a new random solution and replacing if the residue is less. We can conclude that, on average, the standard solution will produce a worse solution as with even the best random solution out of 25,000 iterations, of around 3 orders of magnitude greater residue for the standard algorithm.

We also observe that the neighbors of the random solution does not matter a significant amount through how close the result of Hill Climb and Simulated Annealing for both standard and prepartition interpretations are to the Repeated Random residues, where Hill Climb shows that picking better neighbors each time will not yield a significant improvement, and walking to random neighbors to avoid local minimums does not either.

In terms of run time, Karmarkar-Kar is the fastest of all the algorithms and prepartition algorithms are the slowest. This makes sense as the prepartition algorithms call Karmarkar-Kar in order to obtain the residue of neighbors/random solutions 25,000 times (The amount we set max_iter).

Hill Climbing algorithms are the fastest for both interpretations, with Repeated Random being the slowest for standard solution algorithms and Simulated Annealing being the slowest for prepartition algorithms.

From the results, it is evident that KK is a much more efficient algorithm than the random selectors, having a median three orders of magnitude lower. It's noteworthy that the mean is triple the median for KK, and observing the graph we see that the variance is very large, with the spread going from 2000 to 5,000,000. This variance and sparsity among the points is significantly emphasized in KK.

Among the three randomized algorithms, All through roughly had the same mean but simulated annealing had a considerably better median. This can be observed on the graph as a significant portion of its data points are spread lower than the other two.

It is also evident that results get exponentially better when we pre-partition. By doing so and moving away from totally random solutions, we can see that we consistently get far smaller values. The results are also orders of magnitude better than KK, demonstrating the merit of arbitrary group selecting and not a binary sign assignment.

§5 Using Karmarkar-Karp as a starting point

§5.1 Algorithmic Improvements

Using KK as a starting point for the standard random algorithms (not prepartitioned) we'd expect to get varying levels of improvement depending on the algorithm, and we can verify these expectations empirically.

- Repeated Random: Using the starting point from KK in the repeated random algorithm will provide a strong lower bound for the quality of the solution generated. Any random improvement will further the quality of this bound. The random nature of the algorithm would be equally likely to *improve* on this regardless of the starting point, but as we can observe empirically by comparing the performance of the two algorithms, merely feeding in the KK solution as a baseline will greatly increase the quality of the random result.
- Hill Climbing: This case is relatively similar to the previous. Setting KK as our starting point in Hill Climbing will definitely allow us to refine the solution further per the nature of the hill climbing algorithm selecting the best possible neighbor. That said, it couuld potentially trap us in a local minimum residue that isn't the global minimum. Even still, already having a strong starting point will provide a

good jumping off point and any improvement will be even closer to ideal as opposed to starting in a random assortment. We can again observe empirically that KK far surpasses hill climbing in quality given the latter's random start.

- Simulated Annealing: Again given the already strong solution from KK, the exploration involved in not picking an always better neighbor will allow for ideal use of this jumping off point. The original random starting point has a good chance to be too far away to explore ideal possibilities fully before temperature allows exploration. With KK's decent residue, conditions are well suited for the simulated annealing to explore neighboring solutions and quickly approach the a good minimum residue. Empirical results support that KK is more efficient than simulated annealing and thus its starting point would benefit the algorithms performance.
- Effect on Prepartition: Using KK to start for the prepartition will create a binary assignment to two sign groups among which the elements will be split. This is in essence the same as creating a P array such that the numbers are all 1 or 2. Consequently, the selection of neighbors will vary than if we had pre-partitioned normally where the group assignment is variable 1...N. The swaps would be between two selected sets of elements as opposed to the potential to affect multiple groups. This would limit exploration and be worse than normal pre-partitioning given the fixed sets created by KK limiting move freedom.

Empirically, this is supported, given that all the prepartitioned random algorithms performed significantly better than KK.

§5.2 Runtime Improvements

There's no reason to believe given our implementation and data that KK as a starting point would affect runtime in anyway. The algorithms' loops only terminate when a counter reaches max-iter, thus, given that we do not have any conditions to terminate otherwise, a different starting point will not change this algorithm iterating through its entire loop.