· Si n'est impair alors il peut s'écrire sous la forme 24+1 avec K un entier relatif. D'où $u_{n+1} = n - u_n = 2K + 1 - \frac{2K + 1}{2} = K + 1 = \frac{n+1}{2}$ C Par conséquent un+4 = 1+4 C'est exactement P. Exercice 10 Il semble que, pour n dans IN, $\Delta_n = (-1)^{n+1}$ Démontrons cette hypothèse par récurrence, en posant, pour n dans IN la propriété ?: Do = (-1) 1+1 Initialisation. Par définition de Dn, $\Delta = F \times F - F^2$ D = -1 La propriété ? est vérifiée. Hérédité. Fixons n dans IN tel que P soit vrais. Par définition de An, il vient que: An+4 = Fn+4 n+3 - Fn+2 IP s'ensuit que Δ_{n+4} = F_{n+4} × (F_{n+2} + F_{n+4}) - (F_{n+4} + F_n)² Dn+4 = Fn+4 Fn+2 - 2Fn Fn+4 - Fn D'où Dn+1 = Fn+1 (Fn+1+Fn)-2FnFn+1-F2 En développant puis en factorisant par F, on a : $\Delta_{n+1} = F_{n+1}^2 - F_n \left(F_n + F_{n+1} \right)$ En identifiant l'expression de Fins: $\Delta_{n+1} = F_{n+1}^2 - F_n F_{n+2}$

Done, $\Delta_{n+1} = -1 \times \Delta_n = (-1)^{n+2}$