

# TEORIA DELLA COMPLESSITA'

Linguaggi NP-completi: SUBSET-SUM e HAMPATH

30 maggio 2023

## NP - completezza

Vogliamo definire quando un linguaggio B è uno dei linguaggi «più difficili» della classe NP.

Abbiamo visto un modo per definire quando B è «più difficile» di A, ovvero quando A è di difficoltà «minore o uguale» a B:

$$A \leq_p B$$

Quindi B è uno dei linguaggi «più difficili» della classe NP.....

#### Definizione

Un linguaggio B è *NP-completo* se soddisfa le seguenti due condizioni:

- 1. B appartiene a NP
- 2. Per ogni linguaggio A in NP,  $A \leq_{p} B$  (ovvero B è NP-hard)

## Provare la NP – completezza

Una possibile strategia per provare che un linguaggio C è NP-completo:

- 1. Mostrare che  $C \in NP$
- 2. Scegliere un linguaggio B che sia NP-completo
- 3. Definire una riduzione di tempo polinomiale di B in C.

Proveremo che alcuni linguaggi sono NP-completi mostrando una riduzione di tempo polinomiale da 3SAT che utilizza la tecnica di "riduzione mediante progettazione di componenti" o "gadgets".

Occorre prima dimostrare che 3SAT è NP-completo.

## Problemi NP – completi

- > SAT (Cook-Levin)
- > SAT<sub>CNF</sub> (senza dimostrazione)
- 3SAT (cenni)
- CLIQUE (da 3SAT)
- CLIQUE (da 3SAT coi gadget)
- VERTEX-COVER (da 3SAT coi gadget)
- SUBSET-SUM (da 3SAT)
- HAMPATH (da 3SAT coi gadget)
- UHAMPATH (da HAMPATH)

SUBSET-SUM: Dato un insieme finito S di numeri interi e un numero intero t, esiste un sottoinsieme S' di S tale che la somma dei suoi numeri sia uguale a t?

$$SUBSET$$
- $SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\} \text{ ed esiste } S' \subseteq S \text{ tale che } \sum_{s \in S'} s = t\}$ 

Esempio:  $\langle \{4, 11, 16, 21, 27\}, 25 \rangle \in SUBSET$ -SUM perché 4 + 21 = 25.

# 3SAT ≤<sub>p</sub> SUBSET-SUM

- Sia  $\phi$  una formula 3*CNF* con variabili  $x_1, \ldots x_\ell$  e clausole  $c_1, \ldots, c_k$ .
- Associamo a φ un insieme S di numeri e un numero t tali che φ è soddisfacibile se e solo se ⟨S, t⟩ ∈ SUBSET-SUM. I numeri in S e il numero t sono espressi nella notazione decimale ordinaria.
- Inoltre  $\langle S, t \rangle$  può essere costruita in tempo polinomiale nella lunghezza di  $\langle \phi \rangle$ .

# $3SAT \leq_p SUBSET-SUM$ : Esempio

| $\phi = (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$ |                       |                |                |                       |                |       |       |       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|----------------|-----------------------|----------------|-------|-------|-------|--|--|--|--|
|                                                                                                                                                                                              |                       | \              | /ariab         | oili                  | Clausole       |       |       |       |  |  |  |  |
|                                                                                                                                                                                              |                       | $\mathbf{x_1}$ | $\mathbf{x_2}$ | <b>X</b> <sub>3</sub> | $\mathbf{C_1}$ | $C_2$ | $C^3$ | $C_4$ |  |  |  |  |
| _ [                                                                                                                                                                                          | Numero                | 1              | 2              | 3                     | 1              | 2     | 3     | 4     |  |  |  |  |
| , x                                                                                                                                                                                          | <i>y</i> 1            | 1              | 0              | 0                     | 0              | 1     | 1     | 0     |  |  |  |  |
| $\sim$                                                                                                                                                                                       | <i>z</i> <sub>1</sub> | 1              | 0              | 0                     | 1              | 0     | 0     | 1     |  |  |  |  |
| × 2                                                                                                                                                                                          | У2                    | 0              | 1              | 0                     | 1              | 1     | 0     | 0     |  |  |  |  |
| $\sim$ X <sup>2</sup>                                                                                                                                                                        | z <sub>2</sub>        | 0              | 1              | 0                     | 0              | 0     | 1     | 1     |  |  |  |  |
| ×                                                                                                                                                                                            | <i>у</i> з            | 0              | 0              | 1                     | 0              | 1     | 1     | 0     |  |  |  |  |
| ~X <sub>3</sub> X <sub>3</sub>                                                                                                                                                               | z <sub>3</sub>        | 0              | 0              | 1                     | 1              | 0     | 0     | 1     |  |  |  |  |
| ſ                                                                                                                                                                                            | g <sub>1</sub>        | 0              | 0              | 0                     | 1              | 0     | 0     | 0     |  |  |  |  |
| ا ت                                                                                                                                                                                          | $h_1$                 | 0              | 0              | 0                     | 1              | 0     | 0     | 0     |  |  |  |  |
| ۸ [                                                                                                                                                                                          | g <sub>2</sub>        | 0              | 0              | 0                     | 0              | 1     | 0     | 0     |  |  |  |  |
| رک                                                                                                                                                                                           | h <sub>2</sub>        | 0              | 0              | 0                     | 0              | 1     | 0     | 0     |  |  |  |  |
| [                                                                                                                                                                                            | <b>g</b> 3            | 0              | 0              | 0                     | 0              | 0     | 1     | 0     |  |  |  |  |
| ပ္                                                                                                                                                                                           | h <sub>3</sub>        | 0              | 0              | 0                     | 0              | 0     | 1     | 0     |  |  |  |  |
| _ [                                                                                                                                                                                          | g <sub>4</sub>        | 0              | 0              | 0                     | 0              | 0     | 0     | 1     |  |  |  |  |
| <b>o</b> 4                                                                                                                                                                                   | h <sub>4</sub>        | 0              | 0              | 0                     | 0              | 0     | 0     | 1     |  |  |  |  |
| [                                                                                                                                                                                            | t                     | 1              | 1              | 1                     | 3              | 3     | 3     | 3     |  |  |  |  |

 $S = \{y_1, z_1, y_2, z_2, y_3, z_3, g_1, h_1, g_2, h_2, g_3, h_3, g_4, h_4\}$ t = 1113333 Variabili:  $x_1$ ,  $x_2$ ,  $x_3$ ,  $\ell = 3$ Clausole:  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ k = 4

x<sub>1</sub>
~x<sub>1</sub>
x<sub>2</sub>
~x<sub>2</sub>
x<sub>3</sub>
~x<sub>3</sub>



 $S = \{y_1, z_1, y_2, z_2, y_3, z_3, g_1, h_1, g_2, h_2, g_3, h_3, g_4, h_4\}$ t = 1113333 Variabili:  $x_1, x_2, x_3, \ell = 3$ 

Clausole:  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ 

k = 4

$$\phi = (\overline{x_1} \vee (\overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

|           |                         |                       | \       | /ariab | ili                   |       |       |       |            |                                                                      |
|-----------|-------------------------|-----------------------|---------|--------|-----------------------|-------|-------|-------|------------|----------------------------------------------------------------------|
|           |                         |                       | $x_{1}$ | $X_2$  | <b>X</b> <sub>3</sub> | $C_1$ | $C_2$ | $C_3$ | $C_4$      |                                                                      |
|           |                         | Numero                | 1       | 2      | 3                     | 1     | 2     | 3     | 4          |                                                                      |
|           | 1 X                     | У1                    | 1       | 0      | 0                     | 0     | 1     | 1     | 0          | $X_1$                                                                |
|           | $\overset{\sim}{x_1}$   | <i>z</i> <sub>1</sub> | 1       | 0      | 0                     | 1     | 0     | 0     | 1          | $\left[ \begin{array}{c} 1 \\ \sim \mathbf{x_1} \end{array} \right]$ |
| <u>:=</u> | <b>x</b>                | <i>y</i> 2            | 0       | 1      | 0                     |       | 1     | 0     | 0          | $X_2$                                                                |
| Variabili | $\sim X_3 X_3 \sim X_2$ | <b>z</b> <sub>2</sub> | 0       | 1      | 0                     | 0     | 0     | 1     | 1          | $\sim x_2$                                                           |
| ari       | <b>×</b> 3              | У3                    | 0       | 0      | 1                     | 2     | 1     | 1     | 0          | $\mathbf{x}_3$                                                       |
| >         | ~×3                     | <i>z</i> <sub>3</sub> | 0       | 0      | 1                     | (1)   | 0     | 0     | 1          | <b> </b>                                                             |
|           | .                       | g <sub>1</sub>        | 0       | 0      | 0                     | 1     | 0     | 0     | 0          |                                                                      |
| đ)        | $C_1$                   | $h_1$                 | 0 0 0   |        | 0                     | 1     | 0     | 0     | 0          |                                                                      |
| sole      | 7                       | g <sub>2</sub>        | 0       | 0      | 0                     | 0     | 1     | 0     | 0          |                                                                      |
| Clausole  | 2                       | h <sub>2</sub>        | 0       | 0      | 0                     | 0     | 1     | 0     | 0          |                                                                      |
| $\Box$    |                         | <i>g</i> 3            | 0       | 0      | 0                     | 0     | 0     | 1     | 0          |                                                                      |
|           | ပိ                      | h <sub>3</sub>        | 0       | 0      | 0                     | 0     | 0     | 1     | 0          |                                                                      |
|           |                         | g <sub>4</sub>        | 0       | 0      | 0                     | 0     | 0     | 0     | 1          |                                                                      |
|           | $C_{4}$                 | h <sub>4</sub>        | 0       | 0      | 0                     | 0     | 0     | 0     | 1          |                                                                      |
|           |                         | t                     | 1       | 1      | 1                     | 3     | 3     | 3     | 3          |                                                                      |
|           |                         | C (                   |         |        | 1-                    | 1-    |       |       | <i>L</i> ) |                                                                      |

 $S = \{y_1, z_1, y_2, z_2, y_3, z_3, g_1, h_1, g_2, h_2, g_3, h_3, g_4, h_4\}$ t = 1113333

$$\phi = (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

Assegnamento di verità alle variabili:

$$x_1 = 0$$
  
 $x_2 = 1$   
 $x_3 = 1$ 

$$\phi = (\overline{x_1} \lor (\overline{x_2}) \lor \overline{x_3}) \land (x_1 \lor (\overline{x_2}) \lor (\overline{x_3})) \land (x_1 \lor \overline{x_2} \lor (\overline{x_3})) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$$

$$C_1 \qquad C_2 \qquad C_3 \qquad C_4$$

```
x_1 = 0 allora si seleziona z_1

x_2 = 1 allora si seleziona y_2

x_3 = 1 allora si seleziona y_3
```

$$\phi = (\overline{x_1} \vee (\overline{x_2} \vee \overline{x_3}) \wedge (x_1 \vee (\overline{x_2} \vee (\overline{x_3})) \wedge (x_1 \vee \overline{x_2} \vee (\overline{x_3})) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

|   |                       | $\mathbf{x}_{1}$ | $\mathbf{x}_2$ | <b>X</b> <sub>3</sub> | $C_1$ | $C_2$ | $C_3$ | $C_4$ |                         |
|---|-----------------------|------------------|----------------|-----------------------|-------|-------|-------|-------|-------------------------|
|   | Numero                | 1                | 2              | 3                     | 1     | 2     | 3     | 4     |                         |
| П | <i>y</i> 1            | 1                | 0              | 0                     | 0     | 1     | 1     | 0     | $X_1$                   |
|   | <i>z</i> <sub>1</sub> | 1                | 0              | 0                     | 1     | 0     | 0     | (1)   | ~x <sub>1</sub>         |
|   | <i>y</i> 2            | 0                | 1              | 0                     |       | (1)   | 0     | 0     | X <sub>2</sub>          |
| Ш | Z <sub>2</sub>        | 0                | 1              | 0                     | 0     | 0     | 1     | 1     | ~X <sub>2</sub>         |
|   | <i>y</i> 3            | 0                | 0              | 1                     | 0     | 1     | 1     | 0     | <b>X</b> <sub>3</sub>   |
|   | <i>z</i> 3            | 0                | 0              | 1                     | 1     | 0     | 0     | 1     | ~ <b>x</b> <sub>3</sub> |
| П | g <sub>1</sub>        | 0                | 0              | 0                     |       | 0     | 0     | 0     | ]                       |
|   | $h_1$                 | 0                | 0              | 0                     | 1     | 0     | 0     | 0     |                         |
|   | g <sub>2</sub>        | 0                | 0              | 0                     | 0     | 1     | 0     | 0     | <u> </u>                |
|   | h <sub>2</sub>        | 0                | 0              | 0                     | 0     | (1)   | 0     | 0     |                         |
| Щ | g <sub>3</sub>        |                  | 0              |                       | 0     | Ō     | (1)   | 0     |                         |
|   | h <sub>3</sub>        | 0                | 0              | 0                     | 0     | 0     | (1)   | 0     |                         |
|   | <b>g</b> 4            | 0                | 0              | 0                     | 0     | 0     | 0     | (1)   |                         |
| Ü | h <sub>4</sub>        | 0                | 0              | 0                     | 0     | 0     | 0     | 1     |                         |
|   | t                     | 1                | 1              | 1                     | 3     | 3     | 3     | 3     |                         |
|   |                       |                  |                |                       |       |       |       |       | _                       |

Assegnamento

 $x_1 = 0$  seleziono  $z_1$  $x_2 = 1$  seleziono  $y_2$ 

 $x_3 = 1$  seleziono  $y_3$ 

 $S = \{y_1, z_1, y_2, z_2, y_3, z_3, g_1, h_1, g_2, h_2, g_3, h_3, g_4, h_4\}$ t = 1113333

# 3SAT ≤<sub>D</sub> SUBSET-SUM

- Sia  $\phi$  soddisfacibile e sia  $\tau$  un assegnamento che soddisfa  $\phi$ . Consideriamo il sottoinsieme S' di S che contiene  $y_i$  se  $\tau$  assegna a  $x_i$  valore 1,  $z_i$  altrimenti.
- Se sommiamo ciò che abbiamo scelto fino ad ora, otteniamo un 1 in ciascuna delle prime ℓ cifre perché abbiamo selezionato y<sub>i</sub> o z<sub>i</sub> per ciascun i.
- Inoltre, ciascuna delle ultime k cifre è un numero da 1 a 3 perché ciascuna clausola è soddisfatta e quindi contiene da 1 a 3 letterali veri.
- Quindi scegliamo un numero sufficiente di  $g_j$ ,  $h_j$  da aggiungere a S' per portar ciascuna delle ultime k cifre fino a 3 e ottenere  $\sum_{s \in S'} s = t$ .

# 3SAT ≤<sub>D</sub> SUBSET-SUM

• Viceversa supponiamo che esista un sottoinsieme S' di S tale che  $\sum_{s \in S'} s = t$ .

#### Due osservazioni:

- Tutte le cifre negli elementi di S sono 0 o 1.
- Ciascuna colonna nella tabella che descrive S contiene al più cinque 1.
- Quindi, sommando elementi di un sottoinsieme di S non si verifica mai un "riporto" nella colonna successiva.

# $3SAT \leq_{p} SUBSET-SUM$ : Esempio

$$\phi = (\overline{x_1} \vee x_2 \vee \overline{x_3}) \wedge (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \overline{x_2} \vee x_3) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_3})$$

|           |                       | $\ell$ Variabili |   |   |         |   |   | k Clausole |         |   |         |   |         |   |     |
|-----------|-----------------------|------------------|---|---|---------|---|---|------------|---------|---|---------|---|---------|---|-----|
| İ         | Numero                | 1                |   | 2 |         | 3 |   | 1          |         | 2 | I       | 3 | I       | 4 |     |
| <u> </u>  | У1                    | 1                | T | 0 | Τ       | 0 | Γ | 0          | Т       | 1 | T       | 1 | Τ       | 0 | Ī   |
|           | <i>z</i> <sub>1</sub> | 1                | П | 0 | Τ       | 0 |   | 1          | T       | 0 | T       | 0 | Т       | 1 |     |
|           | <i>y</i> 2            | 0                | П | 1 | Т       | 0 |   | 1          | T       | 1 | T       | 0 | Т       | 0 |     |
| Variabili | <i>z</i> <sub>2</sub> | 0                |   | 1 |         | 0 |   | 0          |         | 0 |         | 1 | T       | 1 |     |
| ⁄ari      | <i>y</i> 3            | 0                | П | 0 | Π       | 1 |   | 0          |         | 1 | T       | 1 | П       | 0 |     |
| >         | <i>z</i> <sub>3</sub> | 0                |   | 0 | floor   | 1 |   | 1          | floor   | 0 |         | 0 |         | 1 |     |
|           | g <sub>1</sub>        | 0                | Т | 0 | Τ       | 0 | Γ | 1          | Т       | 0 | T       | 0 | Τ       | 0 | T   |
| <u>ө</u>  | $h_1$                 | 0                | Т | 0 | T       | 0 | Ī | 1          | T       | 0 | T       | 0 | Т       | 0 |     |
| SO        | g <sub>2</sub>        | 0                | П | 0 | T       | 0 | Ī | 0          | T       | 1 | T       | 0 | T       | 0 |     |
| Clausole  | h <sub>2</sub>        | 0                | Т | 0 | T       | 0 |   | 0          | T       | 1 | T       | 0 | Т       | 0 |     |
| C         | <i>g</i> <sub>3</sub> | 0                |   | 0 | T       | 0 |   | 0          |         | 0 |         | 1 |         | 0 |     |
|           | h <sub>3</sub>        | 0                | П | 0 | Π       | 0 |   | 0          |         | 0 | T       | 1 | П       | 0 |     |
|           | g <sub>4</sub>        | 0                |   | 0 |         | 0 |   | 0          |         | 0 |         | 0 |         | 1 |     |
|           | h <sub>4</sub>        | 0                |   | 0 | $\prod$ | 0 |   | 0          | $\prod$ | 0 | $\prod$ | 0 | $\prod$ | 1 |     |
|           | t                     | 1                | I | 1 | Ι       | 1 | Γ | 3          | I       | 3 | I       | 3 | Ι       | 3 | T   |
|           |                       |                  |   |   |         |   |   |            |         |   |         | 1 |         |   | į . |

# 3SAT ≤<sub>D</sub> SUBSET-SUM

- Sia S' un sottoinsieme di S tale che  $\sum_{s \in S'} s = t$ .
- Per ogni i,  $1 \le i \le \ell$ , S' deve contenere  $y_i$  o  $z_i$  ma non entrambi.
- Sia τ l'assegnamento definito come segue: per ogni i,
   1 ≤ i ≤ ℓ, assegniamo a x<sub>i</sub> valore 1 se S' contiene y<sub>i</sub>, valore 0 se S' contiene z<sub>i</sub>.
- Questo assegnamento au soddisfa  $\phi$ .

- Infatti, poiché le ultime k cifre di t sono uguali a 3, in ciascuna delle k colonne finali, la somma è sempre 3.
- Per ogni j, con 1 ≤ j ≤ k, almeno un 1 nella colonna c<sub>j</sub> deve venire da qualche y<sub>i</sub> o z<sub>i</sub> nel sottoinsieme S' perché da g<sub>j</sub> ed h<sub>j</sub> può venire al più 2.

# 3SAT ≤<sub>D</sub> SUBSET-SUM

- Per ogni j nella colonna cj vi deve essere una cifra uguale a 1 corrispondente a un yi o zi in S'.
- Se è y<sub>i</sub>, allora x<sub>i</sub> è presente in c<sub>j</sub> e gli viene assegnato 1, quindi c<sub>i</sub> è soddisfatta.
- Se è  $z_i$ , allora  $\overline{x_i}$  è presente in  $c_j$  e a  $x_i$  viene assegnato 0, quindi  $c_i$  è soddisfatta.
- Pertanto  $\phi$  è soddisfatta.
- Infine, la riduzione può essere effettuata in tempo polinomiale.



## **HAMPATH**

Un cammino Hamiltoniano in un grafo orientato è un cammino (orientato) che passa per ogni vertice del grafo una e una sola volta.

Consideriamo il problema di stabilire se un grafo orientato contiene un cammino Hamiltoniano che collega due nodi specificati.

Questo si può formulare come un problema di decisione, a cui corrisponde un linguaggio associato, il linguaggio HAMPATH.

 $HAMPATH = \{\langle G, s, t \rangle \mid G \text{ è un grafo orientato}$ e ha un cammino Hamiltoniano da s a  $t\}$ 

## HAMPATH è NP-completo

#### Teorema

HAMPATH è NP-completo.

#### Dimostrazione.

Abbiamo già provato che HAMPATH è in NP. Per concludere la prova, basta provare che  $3SAT \leq_P HAMPATH$ .

In realtà la dimostrazione è parecchio complicata. Quest'anno:

non sarà in programma!

## **UHAMPATH**

È possibile definire una "versione non orientata" del problema del cammino Hamiltoniano.

 Un cammino Hamiltoniano in un grafo non orientato è un cammino che passa per ogni vertice del grafo una e una sola volta.

 $UHAMPATH = \{\langle G, s, t \rangle \mid G \text{ è un grafo non orientato}$  e ha un cammino Hamiltoniano da s a  $t\}$ 

Per mostrare che *UHAMPATH* è *NP*-completo, definiamo una riduzione di tempo polinomiale da *HAMPATH* a *UHAMPATH*.

## **UHAMPATH**

#### Teorema

 $UHAMPATH \in NP$ 

#### Dimostrazione.

Un algoritmo N che verifica UHAMPATH in tempo polinomiale: N = "Sull'input  $\langle \langle G, s, t \rangle, c \rangle$ , dove G = (V, E) è un grafo non orientato:

- 1 Verifica se  $c = (u_1, \dots, u_{|V|})$  è una sequenza di |V| vertici di G, altrimenti rifiuta.
- 2 Verifica se i nodi della sequenza sono distinti,  $u_1 = s$ ,  $u_{|V|} = t$  e, per ogni i con  $2 \le i \le n$ , se  $(u_{i-1}, u_i) \in E$ , accetta in caso affermativo; altrimenti rifiuta."

 $\exists c : \langle \langle G, s, t \rangle, c \rangle \in L(N)$  se e solo se  $\langle G, s, t \rangle \in UHAMPATH$ .  $\square$ 

## UHAMPATH è NP-completo

Teorema UHAMPATH è NP-completo.

#### Dimostrazione

Abbiamo provato che *UHAMPATH* è in *NP*.

Per concludere la prova, dimostriamo che  $HAMPATH \leq_P UHAMPATH$ .

## HAMPATH si riduce in tempo polinomiale a UHAMPATH

- La riduzione di tempo polinomiale associa a un grafo orientato G = (V, E) con vertici s e t un grafo non orientato G' = (V', E') con vertici s' e t'.
- Il grafo G ha un cammino Hamiltoniano da s a t se e solo se
   G' ha un cammino Hamiltoniano da s' a t'.
- Inoltre G' può essere costruito a partire da G in tempo polinomiale.

# $HAMPATH \leq_{p} UHAMPATH$

## cammino Hamiltoniano in un grafo non orientato

Dato grafo non orientato G' = (V', E') e due vertici s', t', esiste un cammino Hamiltoniano in G' da s' a t'?

Fatto. HAMPATH  $\leq_{P}$  UHAMPATH.

Dim. Dato un grafo orientato G = (V, E) con n vertici, costruiamo un grafo non orientato G' con 3(n-2) + 2 vertici.





(autore slide: Kevin Wayne)

# $HAMPATH \leq_{D} UHAMPATH$

#### Costruzione di G':

- Ogni vertice u di G, diverso da s e t è rimpiazzato da tre vertici u<sup>in</sup>, u<sup>mid</sup> e u<sup>out</sup> in G'.
- I vertici s e t sono sostituiti con i vertici  $s^{out}$  e  $t^{in}$  in G'.
- Per ogni  $u \in V \setminus \{s, t\}$ ,  $(u^{in}, u^{mid})$  e  $(u^{mid}, u^{out})$  sono in E'.
- Se  $(u, v) \in E$  allora  $(u^{out}, v^{in}) \in E'$ .

# $HAMPATH \leq_{p} UHAMPATH$

#### Costruzione di *G'*:

- Ogni vertice u di G, diverso da s e t è rimpiazzato da tre vertici u<sup>in</sup>, u<sup>mid</sup> e u<sup>out</sup> in G'.
- I vertici s e t sono sostituiti con i vertici  $s^{out}$  e  $t^{in}$  in G'.
- Per ogni  $u \in V \setminus \{s, t\}$ ,  $(u^{in}, u^{mid})$  e  $(u^{mid}, u^{out})$  sono in E'.
- Se  $(u, v) \in E$  allora  $(u^{out}, v^{in}) \in E'$ .

```
Esempio: G = (V,E)
V = {s, 1, 2, t}
E = { (s,1), (1,2), (1,t), (2,1), (2,s), (2,t)}
```

# $HAMPATH \leq_{D} UHAMPATH$

- Dimostriamo che G ha un cammino Hamiltoniano da s a t se e solo se G' ha un cammino Hamiltoniano da s<sup>out</sup> a t<sup>in</sup>.
- Se G ha un cammino Hamiltoniano P da s a t:

$$P = s, u_1, u_2, \dots, u_k, t$$

allora P':

$$P' = s^{out}, u_1^{in}, u_1^{mid}, u_1^{out}, u_2^{in}, u_2^{mid}, u_2^{out}, \dots, u_k^{in}, u_k^{mid}, u_k^{out}, t^{in}$$

è un cammino Hamiltoniano in G' da  $s^{out}$  a  $t^{in}$ .

## HAMPATH si riduce in tempo polinomiale a UHAMPATH

Viceversa se G' ha un cammino Hamiltoniano P' da s<sup>out</sup> a t<sup>in</sup>,
 è facile vedere che P' deve essere della forma

$$P' = s^{out}, u_1^{in}, u_1^{mid}, u_1^{out}, u_2^{in}, u_2^{mid}, u_2^{out}, \dots, u_k^{in}, u_k^{mid}, u_k^{out}, t^{in}$$

- La prova è per induzione su k. Infatti P' ha come primo vertice s<sup>out</sup> il quale è connesso solo a vertici della forma u<sup>in</sup><sub>i</sub>.
   Quindi il secondo vertice è u<sup>in</sup><sub>i</sub> per qualche i. I vertici successivi devono essere u<sup>mid</sup><sub>i</sub>, u<sup>out</sup><sub>i</sub> perché u<sup>mid</sup><sub>i</sub> è connesso solo a u<sup>in</sup><sub>i</sub> e u<sup>out</sup><sub>i</sub>.
- Ma se P' ha la forma suddetta allora

$$P = s, u_1, u_2, \dots, u_k, t$$

è un cammino Hamiltoniano da s a t.

## Linguaggi NP – completi

- > SAT (Teorema di Cook-Levin: senza dimostrazione)
- > SAT<sub>CNF</sub> (senza dimostrazione)
- > 3SAT (cenni)
- CLIQUE (da 3SAT coi gadget)
- VERTEX-COVER (da 3SAT coi gadget)
- > SUBSET-SUM (da 3SAT coi gadget)
- > HAMPATH (da 3SAT coi gadget: senza dimostrazione)
- > UHAMPATH (da HAMPATH)

## Teoria della complessità: argomenti trattati

- Definizione di complessità di tempo
- La complessità di tempo dipende dal modello di calcolo; useremo decisori e modelli polinomialmente equivalenti
- La complessità di tempo dipende dalla codifica utilizzata: useremo codifica in binario o polinomialmente correlata
- TIME (f(n)) = insieme dei linguaggi decisi in tempo O(f(n))
- La classe P = U TIME( n<sup>k</sup>) e sua robustezza
  - $k \ge 0$
- La classe EXPTIME
- Algoritmi di verifica e la classe NP
- Il concetto di riduzione polinomiale
- Il concetto di NP-completezza
- Linguaggi NP-completi

# Classi di complessità



# The Extended Chomsky Hierarchy



## Contenuto del corso

#### MODELLI DI COMPUTAZIONE:

AUTOMI FINITI DETERMINISTICI E NON DETERMINISTICI.
ESPRESSIONI REGOLARI. PROPRIETÀ DI CHIUSURA DEI LINGUAGGI REGOLARI. TEOREMA
DI KLEENE. PUMPING LEMMA PER I LINGUAGGI REGOLARI.

MACCHINA DI TURING DETERMINISTICA A NASTRO SINGOLO. IL LINGUAGGIO RICONOSCIUTO DA UNA MACCHINA DI TURING. VARIANTI DI MACCHINE DI TURING E LORO EQUIVALENZA.

- IL CONCETTO DI COMPUTABILITÀ: FUNZIONI CALCOLABILI, LINGUAGGI DECIDIBILI E LINGUAGGI TURING RICONOSCIBILI. LINGUAGGI DECIDIBILI E LINGUAGGI INDECIDIBILI. IL PROBLEMA DELLA FERMATA. RIDUZIONI. TEOREMA DI RICE.
- IL CONCETTO DI COMPLESSITÀ: MISURE DI COMPLESSITÀ: COMPLESSITÀ IN TEMPO DETERMINISTICO E NON DETERMINISTICO. RELAZIONI DI COMPLESSITÀ TRA VARIANTI DI MACCHINE DI TURING. LA CLASSE P. LA CLASSE NP. RIDUCIBILITÀ IN TEMPO POLINOMIALE. DEFINIZIONE DI NP-COMPLETEZZA. RIDUZIONI POLINOMIALI. ESEMPI DI LINGUAGGI NP-COMPLETI.

# Fine

## Esercizio (svolto)

La seguente affermazione è vera?

"Comunque prendo due linguaggi NP-completi A e B, si ha:

$$A \le_p B$$
 e  $B \le_p A$ ."

Cioè, i linguaggi NP-completi hanno tutti «uguale difficoltà».

#### Vero o Falso? Perché? (1)

Per ognuna delle seguenti affermazioni, dire se è vera o falsa, giustificando (brevemente) la risposta citando i risultati utilizzati. Siano A, B, C linguaggi su un alfabeto Sigma.

- 1. Se A ≤m B e B è decidibile, allora A è decidibile
- 2. Se A ≤m B e A è decidibile, allora B è decidibile
- 3. Se A ≤m B e B ≤m C allora C è indecidibile
- 4. 3SAT è indecidibile (svolto)
- 5. A<sub>TM</sub> è riconoscibile, ma non decidibile

## Vero o Falso? Perché? (2)

- Siano A, B due linguaggi. Dire se le seguenti affermazioni sono vere o false, giustificando la risposta. Occorre fornire la definizione di A<sub>TM</sub>. La valutazione dipende dal livello di precisione e rigore formale della risposta.
  - (a) Se  $A_{TM} \leq_m A$  e  $A \leq_m B$  allora B è indecidibile.
  - (b) Se  $B \leq_m A$  e  $A \leq_m A_{TM}$  allora B è indecidibile.