Attention

Attention

Visual attention

SQuAD1

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 Sep 13, 2018	nlnet (single model) Microsoft Research Asia	74.238	77.022
2 Sep 17, 2018	Unet (ensemble) Fudan University & Liulishuo Lab	71.553	75.011
2 Aug 15, 2018	Reinforced Mnemonic Reader + Answer Verifier (single model) NUDT https://arxiv.org/abs/1808.05759	71.699	74.238
2 Aug 28, 2018	SLQA+ (single model) Alibaba DAMO NLP http://www.aclweb.org/anthology/P18-1158	71.451	74.422
3 Sep 14, 2018	SAN (ensemble model) Microsoft Business Applications Research Group https://arxiv.org/abs/1712.03556	71.282	73.658

SQuAD2

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar & Jia et al. '18)	86.831	89.452
1 [Jul 22, 2019]	XLNet + DAAF + Verifier (ensemble) PINGAN Omni-Sinitic	88.592	90.859
2 [Jul 19, 2019]	XLNet + SG-Net Verifier (ensemble) Shanghai Jiao Tong University & CloudWalk	88.050	90.645
3 [Jul 23, 2019]	XLNet + SG-Net Verifier (single model) Shanghai Jiao Tong University & CloudWalk	87.046	89.899
3 Mar 20, 2019	BERT + DAE + AoA (ensemble) Joint Laboratory of HIT and iFLYTEK Research	87.147	89.474
3 [Jul 20, 2019]	RoBERTa (single model) Facebook Al	86.820	89.795
4 (Mar 15, 2019)	BERT + ConvLSTM + MTL + Verifier (ensemble) Layer 6 Al	86.730	89.286
5 Mar 05, 2019	BERT + N-Gram Masking + Synthetic Self-Training (ensemble) Google Al Language https://github.com/google-research/bert	86.673	89.147

Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention $N \times$ **Forward** Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Output Input Embedding Embedding Inputs Outputs (shifted right)

Multi-Head Attention Transformer

Scaled Dot-Product Attention

The Illustrated Transformer

http://jalammar.github.io/illustrated-transformer/

Transformer

Transformer

Self-attention

Queries, Keys and Values

Self attention

Transformer formula

Multi-headed attention

Positional encoding

Positional encoding

- It should output a unique encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- Our model should generalize to longer sentences without any efforts. Its values should be bounded.
- It must be deterministic.

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

Positional encoding

Encoder - decoder

Decoding time step: 1 2 3 4 5 6 OUTPUT

Bidirectional Encoder Representations from Transformers (**BERT**)

1 - Semi-supervised training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

2 - Supervised training on a specific task with a labeled dataset.

Bidirectional Encoder Representations from Transformers (**BERT**)

ChatGPT

Examples **Bolded**: open sourced

GPT-x, Gopher, Falcon, LLaMa, Pythia, Bloom, StableLM

Dolly-v2, Falcon-Instruct

InstructGPT, ChatGPT, Claude, **StableVicuna**