Отчет по лабораторной работе №4 **Методы стохастической оптимизации**

Аксенова Валерия, Шустров Андрей

Описание методов:

Имитация отжига (simulated annealing) - метод реализован в классическом виде с оптимизацией досрочной остановки, если результат перестает обновляться. В качестве гиперпараметров принимаются следующие аргументы – начальная температура, температура остановки, коэффициент охлаждения и количество итераций, сделанных на каждом значении температуры.

Эволюционная стратегия с адаптацией матрицы ковариации (CMA-ES) – стандартная реализация. При инициализации алгоритма задается размер шага, размер популяции для обучения, а также ограничение на количество итераций. Ключевым преимуществом алгоритма является его способность адаптировать форму распределения поиска к ландшафту целевой функции путем обновления матрицы ковариации, что позволяет эффективно оптимизировать сложные мультимодальные функции.

Исследование:

Для исследования из предыдущих лабораторных были взяты наиболее интересные функции: Розенброка, Химмельблау, Букина и Растригина, а также датасет *California_housing* из *scikit-learn*.

Имитация отжига:

Для сравнения эффективности были выбраны одни из наиболее интересных, по предыдущим лабораторным работам, методов: BFGS, SR1 и алгоритм Нельдера-Мида. Реализации взяты из библиотеки *SciPy*. Метриками для сравнения являются: количество итераций алгоритма, количество вычислений исходной функции и ее производных и абсолютное отклонение от оптимума.

ROSENBROCK	Итераций	Оценок функции	Ошибка
Simulated Annealing	224 000	448 001	225.928039
BFGS	458	1 800	0.000000
SR1	269	807	0.000000
Nelder-Mead	376	699	0.000000

HIMMEBLAU	Итераций	Оценок функции	Ошибка
Simulated Annealing	213 000	426 001	0.000001
BFGS	48	162	0.000000
SR1	57	138	0.000000
Nelder-Mead	64	125	0.000000

RASTRIGIN	Итераций	Оценок функции	Ошибка
Simulated Annealing	213 000	426 001	0.000001
BFGS	12	51	3.800814
SR1	31	90	1.902843
Nelder-Mead	59	117	0.951422

CALIFORNIA HOUSING	Итераций	Оценок функции	Ошибка
Simulated Annealing	199 000	398 001	0.002516
BFGS	16	180	0.000321
SR1	21	210	0.000321
Nelder–Mead	1 000	1 435	1.065544

Во всех задачах отжиг оказался существенно медленнее и менее точным, чем градиентные и квазиньютоновские методы. Для функции Розенброка метод отжига не сошелся вовсе. В гладких непрерывных задачах с небольшим числом переменных отжиг уступает по эффективности и точности методам, использующим градиентную информацию.

Эволюционная стратегия с адаптацией матрицы ковариации: Rosenbrock

σ	Размер популяции	Ошибка	Вычислений функции	Итераций
0.1	default	0.072746	6 000	1 000
0.1	10	0.000000	6 160	616
0.1	20	0.000000	8 640	432
0.3	default	0.518334	6 000	1 000
0.3	10	0.000000	7 500	750
0.3	20	0.000000	4 720	236
0.5	default	0.000000	4 722	787
0.5	10	0.000000	6 890	689
0.5	20	0.000000	9 800	490

Himmelblau

σ	Размер популяции	Ошибка	Вычислений функции	Итераций	
0.1	default	0.000000	918	153	
0.1	10	0.000000	1 330	133	
0.1	20	0.000000	1 980	99	
0.3	default	0.000000	870	145	
0.3	10	0.000000	1 190	119	
0.3	20	0.000000	1 940	97	
0.5	default	0.000000	930	155	
0.5	10	0.000000	1 250	125	
0.5	20	0.000000	1 960	98	

Rastrigin

σ	Размер популяции	Ошибка	Вычислений функции	Итераций
0.1	default	0.000000	924	154
0.1	10	0.000000	1 180	118
0.1	20	0.000000	1 940	97
0.3	default	0.000000	870	145
0.3	10	0.000000	1 160	116
0.3	20	0.000000	1 920	96
0.5	default	0.000000	876	146
0.5	10	0.000000	1 230	123
0.5	20	0.000000	1 880	94

California housing

Culty of this Housing				
σ	Размер популяции	Ошибка	Вычислений функции	Итераций
0.1	default	0.000337	10 000	1 000
0.1	10	0.000339	10 000	1 000
0.1	20	0.000321	3 100	155
0.3	default	0.001034	8 950	895
0.3	10	0.000443	7 510	751
0.3	20	0.000321	3 080	154
0.5	default	0.000334	9 900	990
0.5	10	0.000321	2 440	244
0.5	20	0.000321	2 780	139

Для функции Розенброка оказались наиболее эффективны маленькие популяции: они обеспечивают надежный выход в оптимум быстрее, несмотря на то что на каждом шаге выполняется чуть больше проверок. Для Химмельблау и Растригина любая комбинация параметров всё же сходится к идеальному решению, и здесь главный выигрыш даёт увеличение размера популяции — оно сокращает число шагов, хотя и требует больше функций за итерацию. В задаче California housing наилучший баланс между скоростью и точностью достигается при умеренных настройках смещения и относительно небольшой популяции: это позволяет быстро приблизиться к минимуму, не тратя лишних вычислительных ресурсов.

Задача ОпеМах с помощью Генетического алгоритма

Постановка задачи:

Задача OneMax — это классическая задача в области стохастической оптимизации, которая часто используется для иллюстрации работы генетических алгоритмов (ΓA). Суть задачи заключается ϵ максимизации количества единиц ϵ бинарной строке фиксированной длины.

Задача оптимизации:

Пусть дана бинарная строка. Наша *цель* – найти решение, которое бы давало максимальную сумму цифр этого списка:

$$fitness = \sum_{i=0}^{N-1} individ[i]$$

Здесь N – длина списка. Очевидно, лучший, наиболее приспособленный индивид, должен состоять из всех единиц.

Описание методов:

1. **Оценка приспособленности (фитнес-функция)** oneMaxFitness(individual):

Возвращает количество единиц в бинарной строке — это и есть мера "приспособленности". Чем больше единиц, тем лучше решение.

2. Инициализация популяции:

individual Creator() — создает одного индивидуума с бинарной строкой длины ONE_MAX_LENGTH.

populationCreator(n) — формирует начальную популяцию из n таких индивидуумов.

3. **Отбор (селекция)** selTournament(population, p_len):

Применяется турнирный отбор: из трех случайно выбранных особей побеждает та, у которой максимальная приспособленность. . Это позволяет сохранить давление отбора и увеличить шансы лучших решений на размножение.

4. **Скрещивание (кроссовер)** def cxOnePoint(child1, child2):

Используется одноточечное скрещивание: случайно выбирается точка разреза, после которой потомки обмениваются хвостами хромосом..

Скрещивание выполняется с заданной вероятностью $P_CROSSOVER$.

5. **Mymauus** mutFlipBit(mutant, indpb=0.01):

Мутация инвертирует каждый бит хромосомы с небольшой вероятностью (обычно обратно пропорциональной длине хромосомы). Это обеспечивает генетическое разнообразие и позволяет алгоритму выходить из

это обеспечивает генетическое разнообразие и позволяет алгоритм локальных минимумов.

6. Клонирование:

Перед изменением отобранных особей выполняется их глубокое копирование (clone), чтобы избежать побочных эффектов при скрещивании или мутации:

7. Цикл эволюции:

Главный цикл работает до тех пор, пока не найдено оптимальное решение (все единицы) или не достигнуто максимальное число поколений. На каждой итерации:

- Отбираются родители
- Проводится скрещивание и мутация
- Пересчитываются значения приспособленности
- Обновляется популяция
- Сохраняется статистика (макс. и среднее значение фитнеса в поколении)

Результаты:

Поколение 50: Макс приспособ. = 100, Средняя приспособ. = 98.525 Лучший индивидуум = 1 1 1 1 1 1 1 ...

Задача *OneMax* наглядно показывает, как работает генетический алгоритм. Несмотря на простую фитнес-функцию, алгоритм демонстрирует *основные принципы* эволюционного подхода:

- отбор лучших решений
- сочетание хороших признаков через скрещивание
- внесение случайности через мутацию

 ΓA нашел оптимальное решение за ограниченное число поколений, что подтверждает его эффективность даже при случайной инициализации.

