

Instituto de Ciências e Tecnologia - Campus de Sorocaba

Disciplina: Sistemas de Controle II

Docente: Prof. Dr. Rafael dos Santos Data: 10/06/2024 RA: 211270121

Discente: Cesar Augusto Mendes Cordeiro da Silva

Lista 8 - PA11.5

PA11.7 O Radisson Diamond usa flutuadores e estabilizadores para amortecer o efeito das ondas que batem no navio, como mostrado na figura PA11.7 (a). O diagrama de blocos do sistema de controle rolagem do navio é mostrado na Figura PA11.7 (b) abaixo. Determine de realimentação K_2 e K_3 de modo que as raízes características sejam S = -15 e $S = -2 \pm j2$. Represente graficamente a saída de rolagem Φ(t) para a perturbação em degrau unitário.

Ao invés de perturbar com degrau, use as funções degrau para gerar um perturbação do tipo impulso, com amplitude de 10. Gere Φ(t) apenas no simulink.

a) procedimento para realização no espaço de estados (se for o caso);

I - IV) Script no matlab

A = [-10, 1, 0; -16, 0, 1; 0, 0, 0];

B = [0; 0; 120];

C = [1, 0, 0];

D = 0;

b) viabilidade do controle, por meio da controlabilidade do sistema;

V e VIII) Script no matlab É controlável rank(ctrb(A, B) = 3

c) escolha dos pólos em malha fechada;

Enunciado

d) comentários sobre a viabilidade do projeto na prática (saturação, esforços de controle, fuga da zona de pequenos sinais, etc.);

As variáveis do sistema se comportam como um sistema de primeira ordem com bom desempenho, sem sobressinal e com tempo de acomodação de 2,15s até atender o RP.

Isso torna o controlador adequado para sistemas de amortecimento de um automóvel, garantindo uma posição desejada sem oscilações com uma velocidade adequada.

A simulação no simulink condiz com a situação em código.

Figura para comparação da resposta ao impulso no simulink

e) justificativa do tipo de controle utilizado.