

معمد الحسن الثانم للزراعة والبيصرة

Institut Agronomique et Vétérinaire Hassan II

Projet de Fin d'Etudes pour l'obtention du diplôme d'Ingénieur d'état en Agronomie Option Data Science en Agriculture

Évaluation des performances de modèles d'apprentissage profond pour prédire la composition chimique de fourrage à partir de données de spectroscopie en proche infrarouge

Présenté et soutenu publiquement par :

DSSAM Abdelali

Devant le jury composé de :

Pr. HAMOUDA Allal Président IAV HASSAN II

Pr. BENSIALI Saloua Rapporteuse IAV HASSAN II

Dr. LESNOFF Matthieu Co-Rapporteur CIRAD

Pr. EL AAYADI Soufiane Examinateur IAV HASSAN II

31 Juillet 2025

PLAN

1 Introduction

2 Méthodologie

Résultats et discussion

4 Conclusion et recommandations

1 INTRODUCTION

INTRODUCTION

Contexte général

1234

Problématique

Objectifs

Qualité des Fourrages

Résilience des systèmes d'élevage

Contexte général

234

Problématique

Objectifs

Spectroscopie en proche infrarouge (NIRS)

Non-destructive

Rapidité d'analyse

234

Contexte général

Problématique

Objectifs

Données spectrales en agronomie

Haute dimensionnalité

700 variables (longueurs d'onde)

Forte colinéarité

Forte hétérogénéité

- Graminées
- Herbacées
- Légumineuses
- Arbustes

234

Contexte général

Problématique

Objectifs

Approches de Modélisation en chimiométrique

Approches de l'apprentissage profond

kNN-LWPLSR

CNN, CAE ...

Sur un jeu de données réel, hétérogène et de taille limitée, les nouvelles architectures de Deep Learning peuvent-elles surpasser une méthode chimiométrique locale comme le kNN-LWPLSR?

234

Contexte général

Problématique

Objectifs

Objectifs spécifiques

☐ Développer et optimiser les modèles de référence, le PLSR et le kNN-LWPLSR

☐ Établir un protocole expérimental commun pour comparer les performances prédictives des différents modèles

☐ Mettre en œuvre trois stratégies de Deep Learning distinctes et adaptées à la problématique

☐ Analyser les performances à l'aide de métriques standards

2 Méthodologie

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Jeu de données

Les absorbances

(déjà prétraités)

Variables explicatives

700 longueurs d'ondes

 Normalisation Standard Variante (SNV)

• Lissage et dérivation seconde de Savitzky-Golay.

Les absorbances

Méthodologie	3
--------------	---

Données Protocole Experimental

Métriques d'évaluation

Modèles retenus

Variables à prédire

Variable	Unité	Nom
СР	%MS	Matière azotée totale (Nx6.25)
NDF	%MS	Neutral Detergent Fiber (Méthode Van Soest)
ADF	%MS	Acid Detergent Fiber (Méthode Van Soest)
ADL	%MS	Acid Detergent Lignin (Méthode Van Soest)
CF	%MS	Cellulose brute de Weende

DMDCell %MS Digestibilité enzymatique in-vitro de la matière sèche (Méthode pepsine-cellulase Aufrère)

Les Variables à predire

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Qualité de la partition des données

Pour les spectres X

Superposition des spectres pour un échantillon de 50 observations des ensembles d'entrainement et de test

Métriques d'évaluation

Modèles retenus

Qualité de la partition des données

Projections des ensembles d'entraînement et de test sur différents plans des composantes principales pour la variable ADF

test

Entraînement

test

Entraînement

Entraînement

test

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Pour les variables à prédire

Comparaison des histogrammes de fréquence entre les ensembles d'entraînement et de test pour la variable ADF

2 Méthodologie

3 4

Données Protocole Experimental Métriques d'évaluation Modèles retenus

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Erreur quadratique moyenne de prédiction (RMSEP)

$$\mathbf{RMSEP} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

- \hat{y}_i représente la valeur prédite
- y_i représente la valeur réelle
- *n* est le nombre total d'échantillons dans l'ensemble de test

Une valeur faible de RMSE indique une meilleure capacité prédictive du modèle

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Erreur relative (RE) (RMSEP normalisée)

$$RE = \frac{RMSEP}{\mu}$$

 μ est la moyenne des valeurs observées y_i

Une valeur faible de RE indique une meilleure capacité prédictive du modèle

Protocole Experimental

Métriques d'évaluation

Modèles retenus

Rapport de performance de la prédiction (RPD)

$$RPD = \frac{\sigma_y}{RMSEP}$$

• σ_y est l'écart-type des valeurs observées y_i

Une valeur élevée de RPD indique une meilleure capacité prédictive du modèle

Cadre Experimental

Métriques d'évaluation

Modèles retenus

Chimiométrie

Apprentissage profond

Modélisation locale

Approche convolutive directe

Architecture multi-échelles

Extraction de caractéristiques non-supervisée

2 Méthodologie

34

Données Cadre Experimental

Métriques d'évaluation

Modèles retenus

Cadre Experimental

Métriques d'évaluation

Modèles retenus

kNN-LWPLSR

PLSR

Crée un seul modèle linéaire pour toutes les données

LWPLSR

Pour chaque nouvelle observation

Construit un modèle en donnant plus de poids aux échantillons similaires (proches)

kNN-LWPLSR

Pour chaque nouvelle observation

Sélectionne uniquement un voisinage de k plus proches voisins (kNN)

Construit un modèle LWPLSR sur ce voisinage

Architecture simplifiée du modèle 1D-CNN

Cadre Experimental

Métriques d'évaluation

Modèles retenus

1D-CNN

Deux variantes

1D-CNN_v1E

- Un seul grand filtre de la taille du spectre (700)
- Plusieurs couches denses pour la régression

1D-CNN_v1D

- Plusieurs filtre de petite taille
- Une seule couche dense pour la régression

IPA

Plusieurs branches de convolution opérant en parallèle

Résultats et discussion

Résultats Discussion

RMSEP

Comparaison de l'erreur quadratique moyenne de prédiction

Résultats Discussion

RPD

Comparaison des RPD de différents modèles

Comparaison des performances avec l'erreur relative

Résultats

Discussion

Le Verdict : Le kNN-LWPLSR s'impose

Le kNN-LWPLSR est le plus performant pour la plupart des variables

Modélisation locale

Hétérogénéité du jeu de données

Résultats

Discussion

Le potentiel du Deep Learning

Le 1D-CNN_v1E est le meilleur pour l'ADL et la DMDCell

Informations spectrales globales

Résultats Verdict Limites **Discussion**

Analyse des limites (Ex: CAE + MLR)

La régression linéaire est une approche excessivement simple

(b) Échantillon 249.

Exemple de deux spectres original (en bleu) et reconstruit (en rouge) de l'ensemble du test

4 Conclusion et Recommandations

Conclusion

Recommandations

Le kNN-LWPLSR s'avère le modèle le plus performant pour la majorité des variables

Le modèle 1D-CNN_v1E s'adapte mieux pour deux variables

Tous les modèles non-linéaires ont surpassé la référence linéaire PLSR

Conclusion **Recommandations**

Pistes d'amélioration

Architectures de bout en bout

Agrégation des modèles (ensembling)

Merci de votre aimable attention

معمد الحسن الثانى للزراعة والبيصرة

Institut Agronomique et Vétérinaire Hassan II

Projet de Fin d'Etudes pour l'obtention du diplôme d'Ingénieur d'état en Agronomie Option Data Science en Agriculture

Évaluation des performances de modèles d'apprentissage profond pour prédire la composition chimique de fourrage à partir de données de spectroscopie en proche infrarouge

Présenté et soutenu publiquement par :

DSSAM Abdelali

Devant le jury composé de :

Pr. HAMOUDA Allal Président IAV HASSAN II

Pr. BENSIALI Saloua Rapporteuse IAV HASSAN II

Dr. LESNOFF Matthieu Co-Rapporteur CIRAD

Pr. EL AAYADI Soufiane Examinateur IAV HASSAN II

31 Juillet 2025