

Relatório de Estágio

CNPEM - Centro Nacional de Pesquisa em Energia e Materiais

LNLS - Laboratório Nacional de Luz Síncroton

Gustavo **CIOTTO PINTON** Campinas, 17 de fevereiro de 2016

1 Netwok Time Protocol - NTPv4

1.1 Introdução

O protocolo NTP implementa diversas soluções que permitem a sincronização dos relógios dos computadores pertencentes a uma determinada rede. O protocolo utiliza diversas métricas, descritas nas próximas seções, a fim de determinar quais são as fontes mais seguras e consistentes para obter a melhor sincronização e uma maior precisão. Somadas a essas estatísticas, o NTP faz uso de algoritmos de seleção, cluster e combinação que garantem, por sua vez, a determinação dos servidores mais confiáveis a partir de um número finito de amostras provindas de tais fontes.

A troca de mensagens é feita através de pacotes UDP, sendo que o protocolo suporta tanto o IPv4 quanto o IPv6. Apesar do fato de que o protocolo UDP não oferece garantias de entrega e correção de eventuais erros ou duplicatas, o NTPv4 implementa mecanismos, tais como o *On-Wire protocol*, capazes de verificar a consistência dos dados contidos nos pacotes recebidos e, assim, agir corretamente em casos de perdas ou pacotes repetidos.

Neste relatório, serão discutidas as características da versão 4 do NTP, especificadas no RFC5905. Esta versão aprimora alguns aspectos da versão 3 (NTPv3) e adiciona algumas outras funcionalidades, como, por exemplo, a descoberta dinâmica de servidores (automatic server discovery), sincronização rápida na inicialização da rede ou depois de falhas (burst mode) e uso da criptografia Public-key.

1.2 Características do Protocolo

O primeiro aspecto importante do protocolo NTPv4 é a organização dos nós de uma rede. O NTP provê 3 tipos diferentes de variantes e 6 modos de associação, que identificam a função de cada nó que compõe um comunicação. As variantes NTP são, portanto:

- i. server/client: um cliente envia pacotes a um servidor requisitando sincronização, que responde utilizando o endereço contido nos respectivos pacotes. Nesta variante, servidores fornecem sincronização aos clientes, mas não aceitam sincronizações vindas dos clientes. As associações entre os nós nesta variante são persistentes, ou seja, são criadas na inicialização do serviço e nunca são destruídas.
- ii. symmetric: neste tipo de variante, um nó se comporta tanto como servidor como cliente, isto é, ele recebe e envia informações de sincronização ao outro nó. Associações deste tipo podem ser persistentes, conforme explicado no item anterior, ou temporárias, isto é, podem ser criadas a partir do recebimento de um pacote e eliminadas após um certo intervalo ou ocorrência de erro. No primeiro caso, adota-se uma associação ativa, enquanto que na segunda, adota-se uma passiva.
- iii. broadcast: nesta variante, um servidor broadcast persistente envia pacotes que podem ser recebidos por diversos clientes. Quando um cliente recebe um pacote deste tipo, uma associação temporária do tipo broadcast client é criada e o cliente recebe sincronização até o fim de um intervalo ou ocorrência de um erro.

O protocolo oferece ainda uma funcionalidade que permite aos clientes descobrirem servidores disponíveis na rede para sincronização. Tal mecanismo é chamado de *Dynamic Server Discovery*, que provê dois tipos especiais de associação: *manycast server* e *manycast client*. Um cliente *manycast* persistente envia pacotes para endereços de *broadcast* ou *multicast* e, caso um *manycast server* receba tais pacotes, ele envia uma resposta a determinado cliente, que, por sua vez, mobiliza uma associação temporária com o respectivo servidor. A fim de descobrir os servidores mais próximos, os clientes enviam pacotes com TTL crescentes, até que o número mínimo de servidores descobertos seja atingido.

O segundo aspecto importante é a implementação dos processos que são executados em um sistema a fim de garantir as funcionalidades apresentadas acima. Cada nó da rede utiliza dois processos dedicados para cada servidor que provê sincronização, além de 3 outros dedicados para escolha dos melhores candidatos e ajuste do relógio. A figura 1 esquematiza a relação entre tais processos. As flechas representam trocas de dados entre processos ou algoritmos.

Figura 1: Implementação dos processos executados por um nó da rede.

Cada componente é, portanto, responsável por uma funcionalidade específica oferecida pelo NTP. Temos, assim:

- i. Remote servers: servidores que fornecem sincronização aos nós da rede. Tais servidores podem pertencer à mesma rede às quais os clientes estão inseridos ou podem ser disponibilizados via Internet por organismos responsáveis por gerenciar e garantir que os relógios apresentem tempos consistentes.
 - A fim de diferenciar os diversos servidores utilizados em relação ao seu grau de importância e confiabilidade, o protocolo NTP atribui um nível a cada server, chamado de stratum. Tal atributo vale 1 para servidores primários, 2 para servidores secundários e assim sucessivamente. À medida que o valor de stratum aumenta, a precisão diminui, dependendo do estado da rede. O valor máximo deste atributo é 15 e, portanto, são permitidos até 15 níveis hierárquicos. O valor 0 é reservado pelo protocolo para mensagens de controle e transmissão de estado entre nós. Tais mensagens são chamadas de pacotes Kiss-o'-Death.
- ii. Peer/poll processes: quando um pacote transmitido por um servidor chega em um nó, o peer process é chamado. Tal processo então verifica se o pacote é consistente (On-Wire protocol, proteção contra perdas e duplicatas) e calcula algumas estatísticas usadas pelos demais processos. Tais estatíticas consistem em:
 - offset (θ): deslocamento de tempo do relógio do servidor em relação ao relógio do sistema;
 - $delay(\delta)$: tempo que o pacote necessita para percorrer toda a rede entre cliente e servidor;
 - dispersion (ϵ): erro máximo inerente à medida do relógio do sistema;
 - jitter (ψ) : raiz do valor quadrático médio dos offsets mais recentes.

O poll process é responsável, por sua vez, por enviar pacotes aos servidores a cada intervalo de 2^{τ} segundos. τ varia de 4 a 17, resultando, assim, em intervalos de 16 segundos a 36 horas. O valor de τ pode variar durante a execução, sendo modificado pelo algoritmo regulador do relógio, que será discutido posteriormente.

- iii. System process: inclui algoritmos de seleção, clusterização e combinação que utilizam as diversas estatísticas obtidas de cada servidor para determinar os candidatos mais precisos e confiáveis à sincronização do relógio do sistema. As funções de cada algoritmo são, respectivamente:
 - determinar bons candidatos, isto é, determinar quais servidores possuem informações de sincronismo efetivamente importantes;
 - determinar os melhores candidatos dentro do conjunto de servidores julgados importantes no passo anterior;
 - computar estatísticas baseadas nos dados recolhidos dos servidores presentes no subconjunto escolhido pelo algoritmo de clusterição.
- iv. Clock discipline process: responsável por controlar o tempo e frequência do relógio do sistema;
- v. *Clock-adjust process*: roda a cada segundo para comunicar aos demais processos os resultados das correções realizadas no relógio do sistema.

1.3 Exemplo

A rede representada pela figura 2 foi proposta a fim de testar o funcionamento do protocolo NTP. As setas determinam as relações entre os nós e as direções representam quais nós fornecem e/ou recebem sincronização. Todos os computadores pertencem à mesma rede, isto é, assume-se que há um *router* ligando esses nós e responsável pela comunicação com a Internet.

Figura 2: Topologia da rede de teste.

Têm-se, portanto, conforme a subseção anterior:

- associações cliente/servidor entre remote servers e servers, e entre servers e clients;
- associações simétricas ativas entre servers.

A fim de eliminar a necessidade de implementar essa rede fisicamente, utilizou-se o software virtualbox. Cada máquina presente na figura, com exceção dos remote servers, foi substituída por uma máquina virtual, cujo sistema operacional é o Linux Debian 8.2.0 i386. A escolha deste sistema foi baseada nas características previstas para as máquinas que comporão a infraestrutura do Sirius. Além disso, como pretende-se isolar completamente a rede, isto é, eliminar qualquer comunicação com a Internet, os remote servers serão substituídos pelos respectivos servidores. Dessa maneira, tais servidores utilizarão seus próprios relógios como fonte primária de sincronismo.

Foi adotado que a rede teria endereço 10.0.0.0/24, os servidores possuiriam endereços do tipo 10.0.0.10x, sendo x o dígito que caracteriza o servidor (1, 2 ou 3), e 10.0.0.0y1 para os clientes, sendo y o equivalente de x.

Após a configuração de rede das respectivas máquinas virtuais, a instalação do NTP pode prosseguir. Inicialmente, é necessário fazer a instalação do pacote ntp através do comando

```
$ sudo apt-get install ntp
```

Estão incluídos neste pacote, os programas ntpd, ntpq e ntpqc. ntpd, ou $NTP\ Daemon$, roda continuamente no sistema e é responsável pela troca de mensagens com os diversos servidores ou clientes, de acordo com as configurações, enquanto que ntpq e ntpqc (o q refere-se a query) são utilizados para verificar o estado das variáveis e alterar configurações do daemon.

Quando é iniciado, o *daemon* retira as suas configurações do arquivo /etc/ntp.conf. Cada nó da rede deve, portanto, configurar esse arquivo de acordo com as funções que desempenha.

A configuração dos clientes é simples: basta adicionarmos a linha

```
server 10.0.0.10y iburst
```

ao arquivo de configurações. A opção iburst é uma otimização fornecida pelo protocolo que agiliza a sincronização inicial. Essa opção faz com que o intervalo de envio de pacotes seja reduzido e a quantidade de pacotes enviados seja aumentada caso o servidor não esteja acessível.

Para o server 2, é necessário adicionarmos as duas linhas seguintes.

```
peer 10.0.0.101
peer 10.0.0.103
```

Essas duas linhas criam associações simétricas ativas entre o server 2 e os outros servidores. Dessa maneira, eles poderão trocar informações de sincronização entre si.

Para os servidores 1 e 3, além das duas linhas contendo a opção peer, é necessário também adicionar as duas linhas abaixo:

```
server 127.127.0.0
fudge 127.127.0.0 stratum 1
```

A primeira opção configura o relógio local do sistema como uma fonte de sincronização, enquanto que a segunda aumenta a sua hierarquia. Se o atributo stratum vale 1, logo a prioridade do respectivo servidor torna-se máxima.

Para iniciar o daemon, basta executar o comando abaixo em cada máquina.

```
$ sudo /etc/init.d/ntp restart
```

Os sistemas levam alguns minutos para se sincronizarem. Para verificar o estado das conexões e da sincronização, utiliza-se o programa ntpq através do comando

```
$ ntpq -p
```

A opção –p lista todos os nós utilizados para sincronização do relógio local. Para o Server 1, espera-se uma saída parecida com a figura 3 (não há garantias que seja idêntica, visto que os algoritmos que determinam as fontes que serão utilizadas para sincronização são baseados em fatores que podem variar dependendo do estado da rede).

Figura 3: Resultado do comando ntpg -p no Server 1.

1.4 Aplicação ao projeto Sirius

2 EPICS Archiver Appliance

2.1 Introdução

O EPICS Archiver Appliance, desenvolvido pelo instituto americano National Accelerator Laboratory (SLAC), é capaz de monitorar e arquivar um grande número de váriaveis, as chamadas PVs, geradas por servidores EPICS presentes na rede. O sistema fornence também opções de configuração de um largo conjunto de parâmetros referentes ao armazenamento e monitoramento. Uma appliance é composta basicamente por quatro módulos distintos, sendo eles:

- Management: provê as ferramentas necessárias para a gerência da appliance. Permite, por exemplo, adicionar ou remover PVs à lista de variáveis a serem arquivadas;
- Engine: realiza a integração entre os módulos;
- Data Retrieval: módulo responsável por recuperar os dados das PVs arquivadas;
- ETL: responsável por extrair os dados e tranformá-los a fim de que as aplicações possam processá-los posteriormente;

A figura 4 esquematiza o modo de funcionamento do EPICS Archiver Appliance.

Figura 4: Modo de funcionamento de uma appliance

O instituto desenvolvedor da aplicação sugere que cada módulo seja lançada em sua própria instância *Tomcat*. Em adição, ele propõe a divisão da unidade de armazenamento em 3 outras unidades, de acordo com a frequência que os dados são salvos. Essas unidades são divididas *short-term*, *medium-term* e *long-term storage*, cujas frequências de armazenamento são, respectivamente, a cada hora, diária e anual. Essas configurações podem ser modificadas através da modificação de arquivos específicos, explicados nas próximas subseções.

2.2 Instalação

Esta subseção é dedicada às etapas necessárias para a instalação do EPICS Archiver Appliance.

2.2.1 Instalação das dependências

A aplicação necessita, além da própria base de bibliotecas EPICS, da instalação do java-jdk 8 e de servidores MySQL e $Apache\ Tomcat$.

i. Instalação do EPICS: é necessário inicialmente fazer o download e compilar as bibliotecas EPICS. Escolha um diretório de acordo com sua preferência (referenciado nesse documento por \$EPICS_DIR) e execute os comandos abaixo. Alguns erros podem ocorrer na execução do comando make, resultantes da falta de algumas bibliotecas no sistema. Faça as respectivas instalações e repita o processo.

```
$ cd $EPICS_DIR
$ wget http://www.aps.anl.gov/epics/download/base/baseR3.14.12.5.tar.gz
$ tar -xvzf baseR3.14.12.5.tar.gz
$ rm baseR3.14.12.5.tar.gz
$ cd base-3.14.12.5
$ make
```

Adicione as seguintes variáveis de ambiente ao arquivo .bashrc do seu usuário (geralmente encontrado em /home/user/). Esse arquivo de configuração é consultado toda vez que um usuário executa um novo shell.

```
export PATH=$EPICS_DIR/base-3.14.12.5/bin/linux-x86_64:$PATH
export EPICS_BASE=$EPICS_DIR/base-3.14.12.5
export EPICS_HOST_ARCH=linux-x86_64
```

Enfim, atualize a sessão com

```
$ source /home/user/.bashrc
```

Para testar a instalação, use o comando caget com alguma variável disponível na sua rede.

```
$ caget variavel
```

ii. Instalação do Java 8: execute o comando abaixo para instalar o Java Development Kit.

```
$ sudo apt-get install openjdk-8-jdk
```

O EPICS Archiver Appliance necessita de duas variáveis de ambiente referentes ao *Java*. Adicione-as no arquivo *.bashrc*, após as variáveis de ambiente EPICS.

```
export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64"
export JRE_HOME="/usr/lib/jvm/java-8-openjdk-amd64/jre"
```

iii. **Instalação do MySQL Server**: para instalar um servidor *MySQL*, basta executar o comando abaixo. Durante o processo de instalação, será requisitada a senha para o usuário *root* do servidor.

```
$ sudo apt-get install mysql-server
```

iv. Instalação do Apache Tomcat: defina um diretório onde os arquivos serão instalados e execute os comandos abaixo. Esse diretório será referenciado pela variável de ambiente \$TOMCAT_DIR.

```
$ cd $TOMCAT_DIR
$ wget http://ftp.unicamp.br/pub/apache/tomcat/tomcat-8/v8.0.32/bin/apache-tomcat
    -8.0.32.tar.gz
$ tar -xvzf apache-tomcat-8.0.32.tar.gz
$ rm apache-tomcat-8.0.32.tar.gz
$ cd apache-tomcat-8.0.32/
```

Defina a variável de ambiente \$CATALINA_HOME, responsável por referenciar o diretório apachetomcat-8.0.32/ recém criado. Adicione a seguinte linha no arquivo .bashrc logo abaixo das variáveis de ambiente adicionadas na instalação do Java.

```
export CATALINA_HOME = $TOMCAT_DIR/apache-tomcat-8.0.32
```

2.2.2 Instalação do EPICS Archiver Appliance

Tendo instalado todas as dependências, é necessário ainda configurar alguns parâmetros e instalar os pacotes referentes ao arquivador. Para tal, crie uma pasta onde serão instalados os pacotes. Esse diretório será referenciado por \$INSTALL_DIR neste documento.

i. Crie uma pasta e faça o download dos pacotes do arquivador, segundo os comandos abaixo.

```
$ mkdir $INSTALL_DIR/epics-archiver-appliance/
$ cd $INSTALL_DIR/epics-archiver-appliance/
$ wget
https://github.com/slacmshankar/epicsarchiverap/releases/download/v0.0.1
    _SNAPSHOT_26-January-2016/archappl_v0.0.1_SNAPSHOT_26-January-2016T18-03-47.
    tar.gz
$ tar -xvzf archappl_v0.0.1_SNAPSHOT_26-January-2016T18-03-47.tar.gz
$ rm archappl_v0.0.1_SNAPSHOT_26-January-2016T18-03-47.tar.gz
```

Nesta pasta estão os arquivos .war usados para lançar os módulos e alguns scripts sugeridos pelo desenvolvedor para auxiliar na instalação.

ii. Crie uma pasta onde as instâncias *Tomcat* de cada módulo serão armazenadas e crie o arquivo *lnls_appliances.xml*. Vamos chamar essa pasta de epics-appliances/.

```
$ mkdir $INSTALL_DIR/epics-appliances/
$ nano $INSTALL_DIR/epics-appliances/lnls_appliances.xml
```

Copie as seguintes linhas para esse arquivo:

Esse arquivo especifica os endereços e portas de cada um dos quatro módulos, bem como o nome da appliance (lnls_epics_appliance). Os números das portas foram escolhidos aleatoriamente, mas, por sugestão do desenvolver, deve-se adotar uma sequência crescente a partir da porta do módulo mgmt, que, no nosso caso, vale 11995. <data_retrieval_url> é o endereço que deverá ser utilizado a fim de enviar e obter requisões HTTP e JSON, conforme figura 4 e <cluster_inetport> é a combinação TCPIP address:port usado para a comunicação entre as appliances. Por fim, adicione as váriaveis de ambiente ao arquivo .bashrc.

```
export ARCHAPPL_APPLIANCES=$INSTALL_DIR/epics-appliances/lnls_appliances.xml
export ARCHAPPL_MYIDENTITY="lnls_epics_appliance"
```

O desenvolvedor sugere também trocar a porta padrão usada pelo *Apache Tomcat* pela porta usada pelo módulo mgmt, isto é, 11995, e comentar as linhas sobre o uso do conector AJP. Para isso, siga a sequência abaixo.

Execute o script disponibilizado pelo desenvolvedor para criar as 4 instâncias do Apache Tomcat.

```
$ source /home/user/.bashrc
$ cd $INSTALL_DIR/epics-archiver-appliance/install_scripts
$ ./deployMultipleTomcats.py $INSTALL_DIR/epics-appliances
```

Serão criadas 4 pastas dentro de \$INSTALL_DIR/epics-appliances, uma para cada módulo.

iii. É possível também alteração as configurações de *log*. O desenvolvedor sugere que sejam executados os seguintes comandos:

```
$ nano $CATALINA_HOME/lib/log4j.properties

### Arquivo log4j.properties

# Set root logger level and its only appender to A1.
log4j.rootLogger=ERROR, A1
log4j.logger.config.org.epics.archiverappliance=INFO
log4j.logger.org.apache.http=ERROR

# A1 is set to be a DailyRollingFileAppender
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=arch.log
log4j.appender.A1.DatePattern='.'yyyy-MM-dd

# A1 uses PatternLayout.
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%-4r [%t] %-5p %c %x - %m%n
```

iv. O próximo passo é definir o arquivo policies.py. Esse arquivo especifica as regras de armazenagem que serão utilizadas pelo arquivador. O arquivo fornecido pelo desenvolver define, por exemplo, três modalidades de armazenamento, que foram exemplificadas na subseção Introdução. É possível ajustar neste arquivo parâmetros que alteram a taxa de armazenamento de uma PV dependendo de sua taxa de aquisição, por exemplo. Para um primeiro instante vamos usar esse arquivo fornecido, que está disponível na pasta WEB-INF/classes dentro do arquivo mgmt.war em \$INSTALL_DIR/epics-archiver-appliance/. Copie-o para \$INSTALL_DIR/epics-appliances/ e renomeie-o para lnls_policies.xml. Enfim, defina variáveis de ambiente usada por este arquivo.

```
export ARCHAPPL_POLICIES=$INSTALL_DIR/epics-appliances/lnls_policies.py
export ARCHAPPL_SHORT_TERM_FOLDER=$INSTALL_DIR/epics-storage
export ARCHAPPL_MEDIUM_TERM_FOLDER=$INSTALL_DIR/epics-storage
export ARCHAPPL_LONG_TERM_FOLDER=$INSTALL_DIR/epics-storage
```

As três últimas variáveis devem ser corretamente configuradas de acordo com a disponibilidade de equipamentos, por exemplo. No nosso caso, um único diretório é usado para os três tipos de armazenamento, sendo ele epics-storage/.

v. A próxima etapa é a criação de tabelas usadas pelo EPICS Archiver Appliance. Vamos criar uma base chamada lnls_appliance_database e o usuário lnls_user, com todos os direitos de acesso a ela. No nosso caso, a senha do usuário é appl.

```
$ mysql -u root -p
>> CREATE DATABASE lnls_appliance_database;
>> GRANT ALL ON lnls_appliance_database.* TO 'lnls_user'@localhost IDENTIFIED BY
'appl';
```

Acesse o servidor mysql com esse usuário e execute o script de criação das tabelas disponibilizado pelo desenvolvedor:

```
$ mysql -u lnls_user -p
>> USE lnls_appliance_database
>> source
$INSTALL_DIR/epics-archiver-appliance/install_scripts/archappl_mysql.sql
```

vi. É necessário fazer o download do conector MySQL usado pelo Apache Tomcat.

```
$ wget
https://dev.mysql.com/get/Downloads/Connector-J/mysql-connector-java-5.1.38.tar.
gz
```

Abra este arquivo e extraia mysql-connector-java-5.1.38-bin.jar para o diretório \$CATALINA_HOME/lib/. Abra o arquivo conf/context.xml e adicione dentro de <Context>:

```
$ nano $CATALINA HOME/conf/context.xml
<Context ...>
                  name="jdbc/archappl"
        <Resource
              auth="Container"
              type="javax.sql.DataSource"
              factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"
              username="lnls_user"
              password="app1"
              testWhileIdle="true"
              testOnBorrow="true"
              testOnReturn="false"
              validationQuery="SELECT_1"
              validationInterval="30000"
              timeBetweenEvictionRunsMillis="30000"
              maxActive="10"
              minIdle="2"
              maxWait="10000"
              initialSize="2"
              removeAbandonedTimeout="60"
              removeAbandoned="true"
              logAbandoned="true"
              minEvictableIdleTimeMillis="30000"
              jmxEnabled="true"
              driverClassName="com.mysql.jdbc.Driver"
              url="jdbc:mysql://localhost:3306/lnls_appliance_database"
         />
</Context>
```

vii. É necessário copiar e extrair todos os arquivos .war presentes em epics-archiver-appliance/para os respectivos diretórios webapps/. Para tal, definimos:

```
export DEPLOY_DIR=$INSTALL_DIR/epics-appliances
export WARSRC_DIR=$INSTALL_DIR/epics-archiver-appliance
```

E executamos:

```
$ source /home/user/.bashrc

pushd ${DEPLOY_DIR}/mgmt/webapps && rm -rf mgmt*; cp ${WARSRC_DIR}/mgmt.war .;
    mkdir mgmt; cd mgmt; jar xf ../mgmt.war; popd;

pushd ${DEPLOY_DIR}/engine/webapps && rm -rf engine*; cp ${WARSRC_DIR}/engine.war
    .; mkdir engine; cd engine; jar xf ../engine.war; popd;

pushd ${DEPLOY_DIR}/et1/webapps && rm -rf et1*; cp ${WARSRC_DIR}/et1.war .; mkdir
    et1; cd et1; jar xf ../et1.war; popd;
```

```
pushd ${DEPLOY_DIR}/retrieval/webapps && rm -rf retrieval*; cp ${WARSRC_DIR}/
    retrieval.war .; mkdir retrieval; cd retrieval; jar xf ../retrieval.war; popd;
```

viii. Enfim, lance os 4 *Tomcats*:

```
$ source /home/user/.bashrc

$ export CATALINA_BASE=${DEPLOY_DIR}/mgmt;${CATALINA_HOME}/bin/catalina.sh start
$ export CATALINA_BASE=${DEPLOY_DIR}/engine;${CATALINA_HOME}/bin/catalina.sh start
$ export CATALINA_BASE=${DEPLOY_DIR}/etl;${CATALINA_HOME}/bin/catalina.sh start
$ export CATALINA_BASE=${DEPLOY_DIR}/retrieval; ${CATALINA_HOME}/bin/catalina.sh start
```

ix. O arquivador é acessado através da URL

http://localhost:11995/mgmt/ui/index.html

Referências bibliográficas

Netwok Time Protocol - NTP

 \bullet shash