#### In [1]:

import pandas as pd
from utils.gerar\_score import Score

#### In [2]:

df\_features = pd.read\_excel("C:\\Users\\DELL\\Google Drive\\2021-2\\TCC\\Dataset\\DADOS
\_SCORE\_21\_09\_refatoracao.xlsx", sheet\_name="Planilha2")

#### In [3]:

df\_features\_dh = pd.read\_excel("C:\\Users\\DELL\\Google Drive\\2021-2\\TCC\\Dataset\\DA
DOS\_SCORE\_21\_09\_Pablo.xlsx",sheet\_name="Planilha2")

#### In [4]:

df = pd.read\_excel("C:\\Users\\DELL\\Google Drive\\2021-2\\TCC\\Dataset\\dados tratados
missing 5.xlsx")

#### In [5]:

df.head()

#### Out[5]:

| IN031  | IN101                             | IN049                                                       | IN019                                                                               | IN023                                                                                                           | IN024                                                                                                                                   | IN055                                                                                                                                                          | IN056                                                                                                                                                                                  | IN057                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Código<br>do<br>Prestador                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|-----------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29.49  | 129.76                            | 27.52                                                       | 505.21                                                                              | 91.53                                                                                                           | 14.56                                                                                                                                   | 57.19                                                                                                                                                          | 14.12                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31062000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 42.86  | 92.39                             | 28.12                                                       | 268.67                                                                              | 96.83                                                                                                           | 3.47                                                                                                                                    | 84.09                                                                                                                                                          | 3.02                                                                                                                                                                                   | 100.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31062000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 49.62  | 102.38                            | 30.76                                                       | 162.33                                                                              | 98.98                                                                                                           | 98.98                                                                                                                                   | 69.54                                                                                                                                                          | 69.54                                                                                                                                                                                  | 100.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31003011                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 170.89 | 26.44                             | 89.86                                                       | 453.06                                                                              | 99.88                                                                                                           | 99.42                                                                                                                                   | 99.70                                                                                                                                                          | 65.20                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31004011                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 34.90  | 102.62                            | 22.28                                                       | 319.54                                                                              | 73.69                                                                                                           | 15.01                                                                                                                                   | 34.46                                                                                                                                                          | 6.22                                                                                                                                                                                   | 100.0                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31062000                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | 29.49<br>42.86<br>49.62<br>170.89 | 29.49 129.76<br>42.86 92.39<br>49.62 102.38<br>170.89 26.44 | 29.49 129.76 27.52<br>42.86 92.39 28.12<br>49.62 102.38 30.76<br>170.89 26.44 89.86 | 29.49 129.76 27.52 505.21<br>42.86 92.39 28.12 268.67<br>49.62 102.38 30.76 162.33<br>170.89 26.44 89.86 453.06 | 29.49 129.76 27.52 505.21 91.53<br>42.86 92.39 28.12 268.67 96.83<br>49.62 102.38 30.76 162.33 98.98<br>170.89 26.44 89.86 453.06 99.88 | 29.49 129.76 27.52 505.21 91.53 14.56<br>42.86 92.39 28.12 268.67 96.83 3.47<br>49.62 102.38 30.76 162.33 98.98 98.98<br>170.89 26.44 89.86 453.06 99.88 99.42 | 29.49 129.76 27.52 505.21 91.53 14.56 57.19<br>42.86 92.39 28.12 268.67 96.83 3.47 84.09<br>49.62 102.38 30.76 162.33 98.98 98.98 69.54<br>170.89 26.44 89.86 453.06 99.88 99.42 99.70 | 29.49       129.76       27.52       505.21       91.53       14.56       57.19       14.12         42.86       92.39       28.12       268.67       96.83       3.47       84.09       3.02         49.62       102.38       30.76       162.33       98.98       98.98       69.54       69.54         170.89       26.44       89.86       453.06       99.88       99.42       99.70       65.20 | 29.49       129.76       27.52       505.21       91.53       14.56       57.19       14.12       100.0         42.86       92.39       28.12       268.67       96.83       3.47       84.09       3.02       100.0         49.62       102.38       30.76       162.33       98.98       98.98       69.54       69.54       100.0         170.89       26.44       89.86       453.06       99.88       99.42       99.70       65.20       0.0 | 29.49       129.76       27.52       505.21       91.53       14.56       57.19       14.12       100.0          42.86       92.39       28.12       268.67       96.83       3.47       84.09       3.02       100.0          49.62       102.38       30.76       162.33       98.98       98.98       69.54       69.54       100.0          170.89       26.44       89.86       453.06       99.88       99.42       99.70       65.20       0.0 |

5 rows × 41 columns

## In [6]:

```
df_features.head()
```

## Out[6]:

|   | Variavel | Grupo      | Sentido |
|---|----------|------------|---------|
| 0 | IN002    | Eficiencia | 0       |
| 1 | Tarifa   | Eficiencia | 0       |
| 2 | IN031    | Eficiencia | 1       |
| 3 | IN101    | Eficiencia | 0       |
| 4 | IN049    | Eficiencia | 1       |

## In [7]:

```
import os
if os.path.exists("Scores.xlsx") == True:
    os.remove("Scores.xlsx")
```

### In [8]:

score=Score(df,df\_features,delta=0.05,normalizar\_score=True,save\_excel=True,rotacao='ob
limin',verbose=True)



#### Fatores sem inverter:

|       | 0         | 1         | 2         | 3         |
|-------|-----------|-----------|-----------|-----------|
| IN019 | -0.072208 | -0.029852 | -0.067511 | 0.218481  |
| IN023 | 0.176908  | 0.061442  | 0.299937  | -0.162899 |
| IN024 | 0.996467  | 0.184250  | 0.337369  | 0.089012  |
| IN055 | 0.405126  | 0.181441  | 0.999115  | 0.022015  |
| IN056 | 0.921024  | 0.193546  | 0.537581  | 0.190905  |
| IN057 | -0.348934 | -0.413651 | -0.209399 | 0.308624  |
| IN075 | 0.157036  | 0.769318  | 0.155459  | -0.186445 |
| IN076 | 0.105186  | 0.635669  | 0.040958  | -0.076182 |
| IN084 | 0.151533  | 0.868852  | 0.165677  | -0.212363 |
| IN046 | 0.450530  | -0.027558 | 0.138461  | 0.431661  |

#### Fatores invertidos:

|       | 0         | 1         | 2         | 3         |
|-------|-----------|-----------|-----------|-----------|
| IN019 | -0.072208 | -0.029852 | -0.067511 | 0.218481  |
| IN023 | 0.176908  | 0.061442  | 0.299937  | -0.162899 |
| IN024 | 0.996467  | 0.184250  | 0.337369  | 0.089012  |
| IN055 | 0.405126  | 0.181441  | 0.999115  | 0.022015  |
| IN056 | 0.921024  | 0.193546  | 0.537581  | 0.190905  |
| IN057 | 0.348934  | 0.413651  | 0.209399  | -0.308624 |
| IN075 | -0.157036 | -0.769318 | -0.155459 | 0.186445  |
| IN076 | -0.105186 | -0.635669 | -0.040958 | 0.076182  |
| IN084 | -0.151533 | -0.868852 | -0.165677 | 0.212363  |
| IN046 | 0.450530  | -0.027558 | 0.138461  | 0.431661  |



#### Fatores sem inverter:

|                    | 0         | 1         |
|--------------------|-----------|-----------|
| IN015              | 0.328208  | -0.067787 |
| qtde_n_micromedida | 0.295635  | 0.117749  |
| IN009              | -0.811023 | -0.462929 |
| IN013              | 0.434437  | 0.615631  |

#### Fatores invertidos:

|                    | 0         | Τ.        |
|--------------------|-----------|-----------|
| IN015              | 0.328208  | -0.067787 |
| qtde_n_micromedida | -0.295635 | -0.117749 |
| IN009              | 0.811023  | 0.462929  |
| IN013              | -0.434437 | -0.615631 |



```
Fatores sem inverter:
             0
                                          3
                       1
       0.135409 0.067393 0.057510 0.415375
Tarifa 0.997474 -0.085826 -0.262117 0.264884
IN031 -0.344991 -0.109734 0.529849 -0.196519
IN101
       0.882679 -0.061726 -0.438679 0.396572
       0.067729 -0.042709 -0.063119 0.382322
IN049
IN029
      -0.312895 -0.068800 0.998782 -0.180534
IN058 -0.081143 0.997662 -0.071810 0.043477
Fatores invertidos:
                       1
                                2
                                          3
IN002
       0.135409 0.067393 0.057510 0.415375
Tarifa 0.997474 -0.085826 -0.262117 0.264884
       0.344991 0.109734 -0.529849 0.196519
IN031
IN101
     0.882679 -0.061726 -0.438679 0.396572
IN049 -0.067729 0.042709 0.063119 -0.382322
       0.312895 0.068800 -0.998782 0.180534
IN029
IN058
       0.081143 -0.997662 0.071810 -0.043477
------ Scores ------
    Efetividade Eficacia Eficiencia Score_Medio
0
       0.278768 0.479107 0.748444
                                          0.502
1
       0.434799 0.481388
                           0.415645
                                          0.444
2
       0.869300 0.570610
                           0.396414
                                          0.612
3
       0.448986 0.001145
                           0.068606
                                          0.173
4
       0.133093 0.515938
                           0.270161
                                          0.306
                     . . .
                                            . . .
807
       0.492997 0.739941
                            0.154548
                                          0.462
808
       0.476946 0.690504
                           0.517146
                                          0.562
809
       0.789010 0.628349
                           0.679416
                                          0.699
810
       0.784191 0.755610
                            0.073622
                                          0.538
811
       0.156908 0.502135
                            0.206158
                                          0.288
```

[812 rows x 4 columns]

### Comparação com anterior

#### In [9]:

```
cidades = ['Rio Doce', 'Bom Sucesso', 'Uberaba', 'Mantena', 'Papagaios', 'Lagoa da Prata', 'C
armópolis de Minas', 'Patrocínio', 'Monte Carmelo',
'Machado', 'Itaguara', 'São José da Varginha', 'Sacramento', 'Japaraíba', 'Arantina', 'Caraí'
,'São Sebastião do Maranhão','Setubinha',
'São João da Ponte', 'Presidente Bernardes', 'São José do Jacuri', 'Guaraciaba', 'Luisburg
o', 'Serra Azul de Minas', 'Icaraí de Minas',
'Gonçalves', 'Santo Antônio do Retiro', 'Ladainha']
cidades1=["Uberlândia",
"Araporã",
"Divinópolis",
"Pará de Minas",
"Itabirito",
"Caeté",
"Cabeceira Grande",
"Florestal",
"Monjolos",
"Pratinha"]
cidades2=["Nova Serrana"]
munic = []
for i in cidades1:
    munic.append(df[df['Nome_Município']==i].index[0])
#munic
```

#### In [10]:

```
\label{thm:linear_excel} $$ df_score=pd.read_excel("C:\Users\DELL\Google Drive\2021-2\TCC\Codigos\Versão Final\Scores.xlsx")
```

#### In [11]:

```
score_filtred=df_score.iloc[munic]
score_filtred.insert(0, 'Ranking', range(1, 1 + len(score_filtred)))

###POR CONCEITO - TABELA SCORE FINAL E MUNICIPIO
ordenado = score_filtred.sort_values('Score_Medio', ascending=False)
ordenado.insert(0, 'Rank_media', range(1, 1 + len(ordenado)))
ordenado.sort_index(ascending=True, inplace=True)
#ordenado
```

#### In [12]:

```
pd.set_option('display.float_format', '{:.8f}'.format)
```

#### In [13]:

```
##Só pra ajudar na visualização
score_mun=df["Nome_Município"]
a=score_mun.iloc[munic]
show=ordenado

ordenado = score_filtred.sort_values('Score_Medio', ascending=False)
ordenado.insert(1, 'Rank_calculado', range(1, 1 + len(ordenado)))
ordenado.sort_index(ascending=True, inplace=True)

difs = list(score_filtred.Ranking-ordenado.Rank_calculado)
show.insert(0,"Cidade",a)
show.insert(3,"Diferença",difs)
show.sort_values('Ranking')
```

#### Out[13]:

|     | Cidade              | Rank_media | Ranking | Diferença | Efetividade | Eficacia   | Eficiencia | Score       |
|-----|---------------------|------------|---------|-----------|-------------|------------|------------|-------------|
| 750 | Uberlândia          | 1          | 1       | 0         | 0.98127489  | 0.84754721 | 0.97129324 | 0.93        |
| 35  | Araporã             | 6          | 2       | -4        | 0.76076715  | 0.15953985 | 0.94607451 | 0.62        |
| 229 | Divinópolis         | 3          | 3       | 0         | 0.96180584  | 0.64732484 | 0.80028762 | 0.80        |
| 501 | Pará de<br>Minas    | 2          | 4       | 2         | 0.97968370  | 0.86364084 | 0.70032103 | 0.84        |
| 333 | Itabirito           | 4          | 5       | 1         | 0.94576406  | 0.71639026 | 0.49714648 | 0.72        |
| 100 | Caeté               | 5          | 6       | 1         | 0.78065648  | 0.85795361 | 0.52225679 | 0.72        |
| 94  | Cabeceira<br>Grande | 9          | 7       | -2        | 0.13964795  | 0.67031711 | 0.21439685 | 0.34        |
| 268 | Florestal           | 7          | 8       | 1         | 0.52342766  | 0.44099085 | 0.49658500 | 0.48        |
| 446 | Monjolos            | 8          | 9       | 1         | 0.36740781  | 0.35840833 | 0.32238180 | 0.34        |
| 565 | Pratinha            | 10         | 10      | 0         | 0.20887140  | 0.02779472 | 0.29973652 | 0.17        |
| 4   |                     |            |         |           |             |            |            | <b>&gt;</b> |

## Análise Descritiva

### In [14]:

```
import matplotlib.pyplot as plt
import seaborn as sns
import scipy
from matplotlib import pyplot
from numpy import median
import numpy as np
```

#### In [15]:

```
## Adicionando scores no dataset
df['Score']=df_score["Score_Medio"]
df['Score_Eficacia']=df_score["Eficacia"]
df['Score_Efetividade']=df_score["Efetividade"]
df['Score_Eficiencia']=df_score["Eficiencia"]
#print(df.columns.values)
# #df
```

#### Melhores e piores colocados

## In [16]:

```
df_aux= df.loc[:, ['Nome_Município','Score_Efetividade','Score_Eficiencia','Score_Efica
cia','Score','Natureza jurídica']]
df_aux.nlargest(10,'Score')
```

#### Out[16]:

|     | Nome_Município           | Score_Efetividade | Score_Eficiencia | Score_Eficacia | Score      | N                          |
|-----|--------------------------|-------------------|------------------|----------------|------------|----------------------------|
| 361 | Jacutinga                | 0.98302145        | 1.00000000       | 0.92590327     | 0.97000000 | Admin<br>públic            |
| 750 | Uberlândia               | 0.98127489        | 0.97129324       | 0.84754721     | 0.93300000 | Α                          |
| 191 | Coqueiral                | 0.96857120        | 0.82915670       | 0.92657718     | 0.90800000 | Α                          |
| 243 | Elói Mendes              | 0.92898565        | 0.85619021       | 0.93891614     | 0.90800000 | Α                          |
| 415 | Mantena                  | 0.97563544        | 0.87506393       | 0.87236005     | 0.90800000 | Α                          |
| 449 | Monte Alegre de<br>Minas | 0.97487513        | 0.85263853       | 0.89341999     | 0.90700000 | Admin<br>públic            |
| 542 | Pirajuba                 | 0.89342264        | 0.98439806       | 0.83976216     | 0.90600000 | Socie<br>ed<br>mi<br>admin |
| 114 | Campo do Meio            | 0.95617319        | 0.81306161       | 0.93723755     | 0.90200000 | Α                          |
| 603 | Sacramento               | 0.97139919        | 0.91684370       | 0.79340073     | 0.89400000 | Α                          |
| 175 | Conceição das<br>Alagoas | 0.97572384        | 0.92077929       | 0.77997203     | 0.89200000 | Admin<br>públic            |
| 4   |                          |                   |                  |                |            | <b>&gt;</b>                |

### In [17]:

```
pd.set_option('display.float_format', lambda x: '%.6f' % x)
df_aux.nsmallest (10,'Score')
```

### Out[17]:

|     | Nome_Município           | Score_Efetividade | Score_Eficiencia | Score_Eficacia | Score    | Nat<br>ju                            |
|-----|--------------------------|-------------------|------------------|----------------|----------|--------------------------------------|
| 341 | Itambé do Mato<br>Dentro | 0.000000          | 0.000000         | 0.000673       | 0.000000 | Administ pública                     |
| 133 | Caranaíba                | 0.000161          | 0.010882         | 0.000040       | 0.004000 | Administ pública                     |
| 33  | Arantina                 | 0.023654          | 0.004695         | 0.000206       | 0.010000 | Socieda<br>ecor<br>mista<br>administ |
| 573 | Queluzito                | 0.051924          | 0.056053         | 0.000038       | 0.036000 | Administ pública                     |
| 396 | Lamim                    | 0.019293          | 0.092817         | 0.000012       | 0.037000 | Administ<br>pública                  |
| 594 | Rio Preto                | 0.133437          | 0.002824         | 0.000010       | 0.045000 | Administ<br>pública                  |
| 9   | Aiuruoca                 | 0.246633          | 0.000005         | 0.000669       | 0.082000 | Administ pública                     |
| 662 | São João da<br>Lagoa     | 0.120434          | 0.114405         | 0.011283       | 0.082000 | Administ pública                     |
| 199 | Coronel Pacheco          | 0.248631          | 0.001214         | 0.000671       | 0.084000 | Administ<br>pública                  |
| 153 | Catas Altas              | 0.119297          | 0.134142         | 0.003248       | 0.086000 | Administ pública                     |

Boxplot Tipo de serviço

#### In [18]:

```
df_aux=df.loc[:,["Tipo de serviço",'Score']]
fig, b2 = plt.subplots(1,1, figsize=(7,7))
b2 = sns.boxplot(x="Tipo de serviço", y="Score", palette='Set2', data=df_aux)

b2.set_xlabel("Tipo de serviço", fontsize=12, labelpad=12)
b2.set_ylabel("Score Médio", fontsize=12, labelpad=12)
b2.set_yticks(np.arange(0.0, 1.1, 0.1))

b2.set_title("Com Esgoto")
plt.show()
```



#### Boxplot Grau de urbanização

#### In [19]:

#### Out[19]:

Text(0, 0.5, 'Score Médio')



#### **Boxplot Abrangência**

#### In [20]:

```
df_aux=df.loc[:, ['Score','Abrangência']]
violins = sns.violinplot(x="Abrangência", y="Score", data=df_aux,widths=0.45, palette=
'Blues')
```



#### Natureza juridica (Mediana)

#### In [21]:

df\_aux=df.loc[:, ['Score','Natureza jurídica']]
order=df\_aux.groupby(["Natureza jurídica"])["Score"].median().sort\_values().index
p=sns.barplot(x='Score', y='Natureza jurídica', data=df\_aux, estimator=np.median, order
=order)



#### In [22]:

```
df_aux=df.loc[:, ['Score', 'Prestador2']]
fig, b2 = plt.subplots(1,1, figsize=(10, 7))
b2 = sns.boxplot(x="Prestador2", y="Score", palette='Set2', data=df_aux)

b2.set_xlabel("Prestador", fontsize=12, labelpad=12)
b2.set_ylabel("Score Médio", fontsize=12, labelpad=12)
plt.show()
```



#### In [23]:

```
from joypy import joyplot
df_aux=df.loc[:, ['Score_Efetividade','Score_Eficiencia','Score_Eficacia','Prestador2'
]]
# df_aux=df_aux.melt(id_vars=["prestador2"],
#
          var_name="Tipo_Score",
          value_name="Scores")
#
# df_aux["Merge"]=df_aux["prestador2"]+" "+df_aux["Tipo_Score"]
plt.figure()
ax, fig = joyplot(
    data=df_aux,
    by='Prestador2',
    column=['Score_Eficiencia','Score_Eficacia','Score_Efetividade'],
    color=['#686de0'#azul
           ,"#f37b2d"#Laranja
             '#eb4d4b' #vermelho
          ],
    legend=True,
    alpha=0.9,
    figsize=(12, 8),
    ylim='own',
    overlap=0
plt.title('Scores EEE', fontsize=20)
plt.show()
```

<Figure size 432x288 with 0 Axes>



<Figure size 432x288 with 0 Axes>

#### Mesoregião (Mediana)

#### In [24]:

```
df_aux=df.loc[:, ['Score','Nome_Mesorregião']]
order=df_aux.groupby(["Nome_Mesorregião"])["Score"].median().sort_values().index
p=sns.barplot(x='Score', y='Nome_Mesorregião', data=df_aux, estimator=np.median, order=
order)
```



#### In [25]:

```
df_aux=df.loc[:, ['Score','Nome_Mesorregião']]
#df_aux.groupby('NV08Meso')['Score'].median()
df_aux=df_aux.groupby(df_aux.Nome_Mesorregião)[['Score']].median()
df_aux.sort_values('Score')
```

#### Out[25]:

| Score |
|-------|
|       |

| Nome_Mesorregião                 |          |
|----------------------------------|----------|
| Norte de Minas                   | 0.439000 |
| Vale do Rio Doce                 | 0.442000 |
| Metropolitana de Belo Horizonte  | 0.460500 |
| Campo das Vertentes              | 0.467500 |
| Vale do Mucuri                   | 0.484000 |
| Zona da Mata                     | 0.487000 |
| Jequitinhonha                    | 0.532000 |
| Sul/Sudoeste de Minas            | 0.552500 |
| Central Mineira                  | 0.555000 |
| Noroeste de Minas                | 0.576500 |
| Oeste de Minas                   | 0.609000 |
| Triângulo Mineiro/Alto Paranaíba | 0.630000 |

```
In [26]:
```

```
import shapefile as shp
from unidecode import unidecode
import geopandas as gpd
import folium
from folium import plugins
import json
import branca.colormap as cmp
import shapely.geometry
import plotly.express as px
```

#### In [27]:

```
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo_json_data = json.load(file)
```

#### In [28]:

```
df_media = pd.DataFrame( {'name': df['Nome_Município'], 'Score':df['Score'],'Score_Efic
acia':df['Score Eficiencia'],
                           'Score Efetividade':df['Score Efetividade'],'Score Eficienci
a':df['Score_Eficiencia'],
                          'Score Eficiencia':df['Score Eficiencia']})
df_MG = df_media[~df_media.duplicated(subset=['name'], keep='first')]
#df_MG.loc[:, 'Cidade'] = df_MG.loc[:, 'Cidade'].str.upper()
df MG['Quantil'] = np.where(df MG.Score<=0.25, "(0-25)%",</pre>
                            np.where((df_MG.Score>0.25)&(df_MG.Score<=0.5), "(25-50)%",
                                      np.where((df_MG.Score>0.5)&(df_MG.Score<=0.75), "</pre>
(50-75)%", "(75-100)%")
                                     )
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo json data = json.load(file)
geo df = gpd.GeoDataFrame.from features(geo json data["features"]).merge(df MG, on="nam
e").set index("name")
#geo df
```

#### In [29]:

```
# import plotly.io as pio
# pio.renderers.default = 'browser'
```

## **Mapa Score**

#### In [30]:

```
df_media = pd.DataFrame( {'name': df['Nome_Município'], 'Score':round(df['Score'],4),'S
core_Eficacia':round(df['Score_Eficacia'],4),
                           'Score_Efetividade':round(df['Score_Efetividade'],4),'Score_E
ficiencia':round(df['Score Eficiencia'],4),
                           'Nome Mesorregião':df['Nome_Mesorregião']})
df_MG = df_media[~df_media.duplicated(subset=['name'], keep='first')]
#df_MG.loc[:, 'Cidade'] = df_MG.loc[:, 'Cidade'].str.upper()
df_MG['Quantil'] = np.where(df_MG.Score<=0.25, "(0-25)%",</pre>
                            np.where((df MG.Score>0.25)&(df MG.Score<=0.5), "(25-50)%",
                                     np.where((df MG.Score>0.5)&(df MG.Score<=0.75),
(50-75)%", "(75-100)%")
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo_json_data = json.load(file)
geo_df = gpd.GeoDataFrame.from_features(geo_json_data["features"]).merge(df_MG, on="nam
e").set_index("name")
fig = px.choropleth_mapbox(geo_df,
                           geojson=geo_df.geometry,
                           locations=geo df.index,
                           color="Quantil",
                           category orders= {'Quantil':["(0-25)%","(25-50)%","(50-75)%"
, "(75-100)%"]},
                           color_discrete_sequence=["#922B21", "#E67E22", "#F4D03F"," #
52BE80"],
                           center={"lat": -19.84164, "lon": -43.98651}.
                           mapbox_style="open-street-map",
                           zoom=6,
                           #hover name='name',
                           hover_data=['Quantil','Score','Score_Eficacia','Score_Efetiv
idade', 'Score Eficiencia'],
                           title="Score"
                          )
fig.show()
```

## Score



# Mapa eficiencia

#### In [31]:

```
df_media = pd.DataFrame( {'name': df['Nome_Município'], 'Score':round(df['Score'],4),'S
core_Eficacia':round(df['Score_Eficacia'],4),
                           'Score_Efetividade':round(df['Score_Efetividade'],4),'Score_E
ficiencia':round(df['Score Eficiencia'],4),
                           'Nome Mesorregião':df['Nome_Mesorregião']})
df_MG = df_media[~df_media.duplicated(subset=['name'], keep='first')]
#df_MG.loc[:, 'Cidade'] = df_MG.loc[:, 'Cidade'].str.upper()
df_MG['Quantil'] = np.where(df_MG.Score_Eficiencia<=0.25, "(0-25)%",</pre>
                            np.where((df MG.Score Eficiencia>0.25)&(df MG.Score Eficien
cia<=0.5), "(25-50)%",
                                      np.where((df MG.Score Eficiencia>0.5)&(df MG.Score
_Eficiencia<=0.75), "(50-75)%", "(75-100)%")
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo json data = json.load(file)
geo_df = gpd.GeoDataFrame.from_features(geo_json_data["features"]).merge(df_MG, on="nam
e").set_index("name")
fig = px.choropleth mapbox(geo df,
                           geojson=geo df.geometry,
                           locations=geo_df.index,
                           color="Quantil",
                           category_orders= {'Quantil':["(0-25)%","(25-50)%","(50-75)%"
, "(75-100)%"]},
                           color discrete sequence=["#922B21", "#E67E22", "#F4D03F"," #
52BE80"],
                           center={"lat": -19.84164, "lon": -43.98651},
                           mapbox_style="open-street-map",
                           zoom=6,
                           #hover_name='name',
                           hover data=['Quantil','Score','Score Eficacia','Score Efetiv
idade', 'Score Eficiencia'],
                           title="Score Eficiencia"
fig.show()
```

## Score\_Eficiencia



# Mapa Efetividade

#### In [32]:

```
df_media = pd.DataFrame( {'name': df['Nome_Município'], 'Score':round(df['Score'],4),'S
core_Eficacia':round(df['Score_Eficacia'],4),
                           'Score_Efetividade':round(df['Score_Efetividade'],4),'Score_E
ficiencia':round(df['Score Eficiencia'],4),
                           'Nome Mesorregião':df['Nome_Mesorregião']})
df_MG = df_media[~df_media.duplicated(subset=['name'], keep='first')]
#df_MG.loc[:, 'Cidade'] = df_MG.loc[:, 'Cidade'].str.upper()
df MG['Quantil'] = np.where(df_MG.Score_Efetividade<=0.25, "(0-25)%",</pre>
                            np.where((df MG.Score Efetividade>0.25)&(df MG.Score Efetiv
idade<=0.5), "(25-50)%",
                                     np.where((df MG.Score Efetividade>0.5)&(df MG.Scor
e_Efetividade<=0.75), "(50-75)%", "(75-100)%")
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo json data = json.load(file)
geo_df = gpd.GeoDataFrame.from_features(geo_json_data["features"]).merge(df_MG, on="nam
e").set_index("name")
fig = px.choropleth_mapbox(geo_df,
                           geojson=geo df.geometry,
                           locations=geo_df.index,
                           color="Quantil",
                           category_orders= {'Quantil':["(0-25)%","(25-50)%","(50-75)%"
, "(75-100)%"]},
                           color discrete sequence=["#922B21", "#E67E22", "#F4D03F"," #
52BE80"],
                           center={"lat": -19.84164, "lon": -43.98651},
                           mapbox_style="open-street-map",
                           zoom=6,
                           #hover_name='name',
                           hover data=['Quantil','Score','Score Eficacia','Score Efetiv
idade','Score_Eficiencia'],
                           title="Score Efetividade"
fig.show()
```

## Score\_Efetividade



# **Mapa Eficacia**

#### In [33]:

```
df_media = pd.DataFrame( {'name': df['Nome_Município'], 'Score':round(df['Score'],4),'S
core_Eficacia':round(df['Score_Eficacia'],4),
                           'Score_Efetividade':round(df['Score_Efetividade'],4),'Score_E
ficiencia':round(df['Score Eficiencia'],4),
                           'Nome Mesorregião':df['Nome_Mesorregião']})
df_MG = df_media[~df_media.duplicated(subset=['name'], keep='first')]
#df_MG.loc[:, 'Cidade'] = df_MG.loc[:, 'Cidade'].str.upper()
df MG['Quantil'] = np.where(df_MG.Score_Efetividade<=0.25, "(0-25)%",</pre>
                            np.where((df MG.Score Efetividade>0.25)&(df MG.Score Efetiv
idade<=0.5), "(25-50)%",
                                     np.where((df MG.Score Efetividade>0.5)&(df MG.Scor
e_Efetividade<=0.75), "(50-75)%", "(75-100)%")
with open("C:/Users/DELL/Google Drive/2021-2/TCC/geojs-31-mun.json", encoding="utf8") a
s file:
    geo json data = json.load(file)
geo_df = gpd.GeoDataFrame.from_features(geo_json_data["features"]).merge(df_MG, on="nam
e").set_index("name")
fig = px.choropleth_mapbox(geo_df,
                           geojson=geo df.geometry,
                           locations=geo_df.index,
                           color="Quantil",
                           category_orders= {'Quantil':["(0-25)%","(25-50)%","(50-75)%"
, "(75-100)%"]},
                           color discrete sequence=["#922B21", "#E67E22", "#F4D03F"," #
52BE80"],
                           center={"lat": -19.84164, "lon": -43.98651},
                           mapbox_style="open-street-map",
                           zoom=6,
                           #hover_name='name',
                           hover data=['Quantil','Score','Score Eficacia','Score Efetiv
idade','Score_Eficiencia'],
                           title="Score Eficacia"
fig.show()
```

## Score\_Eficacia

