

DATA SCIENCE MATH SKILLS COURSE

ANSWERS BY JHONATAS SILVA

WEEK 2 – Quizz 1

3	Find the point-slope form of the equa	tion of the line that goes between	nA =	(1.1)) and $B =$	(5.3)

1/1 ponto

- y = \begin {align}\frac12 x \end {align}
- $y -1 = \lambda \{align\}$
- y 1 =\begin {align} \frac12(x-1)\end {align}
- y-3 =\begin {align}\frac12(x-1)\end {align}

✓ Correto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$

In this case, the slope $m = \lceil \{align\} \rceil = \frac{3-1}{5-1} = \frac{2}{n}$

We can choose either A or B for the point on the line, but in neither case do we get this chosen answer.

4. Which of the following points is on the line with equation:

1/1 ponto

- y-1=2(x-2)?
- \bigcirc (0,0)
- \bigcirc (3, 2)
- \bigcirc (2,1)
- \bigcirc (2,3)

✓ Corret

If we plug in 1 for y and 2 for x in the equation of the line, we make a true statement, 0 = 0, so this point lies on the line.

5. Suppose that a line ℓ has slope 2 and goes through the point (-1,0). What is the y-intercept of ℓ ?

1/1 ponto

- 2
- \bigcirc 0
- \bigcirc 1
- \bigcirc -1

✓ Correte

Recall that the y-intercept of ℓ is the y-coordinate of where ℓ hits the y-axis.

Since $(-1,0) \in \ell$, the point on ℓ with x=0 is obtained by running one unit from (-1,0) while rising two units.

This gives y=2 as the y-intercept.

Week 2 - Quizz 2

Parabéns! Você foi aprovado!

PARA SER APROVADO 75% ou mais

83.33%

Practice quiz on Types of Functions

NÚMERO TOTAL DE PONTOS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function f:A o B?

1/1 ponto

- $\bigcap f(1) = 4, f(2) = 4, \text{ and } f(10) = 4.$
- $\bigcirc \ f(a) = 4a$, for each $a \in A$
- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- f(1) = 5, f(2) = 8, and f(10) = 40.

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A.$ In this case, unfortunately, $f(1) = 5 \notin B$.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y = \{+, -\}$ and $Z = \{H, S\}$

0 / 1 ponto

Suppose that $T:A\to Y$ is the function which gives T(a)=+ if person a tests positive and T(a) = - if they test negative.

Suppose that D:A o Z is the function which gives D(a)=H does not actually have VBS and D(a) = S if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- $\bigcirc T(a) = + \text{ and } D(a) = S$
- $lefter{}{}$ $T(a) = \operatorname{and} D(a) = H$
- $\bigcirc T(a) = \text{ and } D(a) = S$
- $\bigcirc T(a) = + \text{ and } D(a) = H$

Incorreto

This pair of function values corresponds to a false negative.

3	Consider the function $g: \mathbb{R} \to \mathbb{R}$ defined by $g(x) = x^2 - 1$. Which of the following points are not on the graph of g ?
	\bigcirc $(-1,0)$
	\bigcirc (1,0)
	\odot $(2,-1)$
	$\bigcirc \ (0,-1)$
	\checkmark Correto Recall that the graph of g consists of all points (x,y) such that $y=g(x)$. Here $g(2)=3 eq -1$,
	so the point $(2,-1)$ is \emph{not} on the graph of g .
4.	Let the point $A=(2,4)$. Which of the following graphs does not contain the point A ?
	\bigcirc The graph of $f(x)=2x$
	\bigcirc The graph of $s(x)=x^2$
	\bigcirc The graph of $g(x)=x+2$
	lacktriangledown The graph of $h(x)=x-1$
	\checkmark Correto The graph of h consists of all points (x,y) such that $y=h(x)$. Here $h(2)=1 eq 4$, so the point
	(2,4) is <i>not</i> on the graph of h .
5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?
	lacktriangledown b is a strictly decreasing function
	igcirc h is a strictly increasing function
	$\bigcirc \ \ h$ is neither a strictly increasing function nor a strictly decreasing function.
	All statements are correct
	✓ Correto
	A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$
	Cinco the graph of h is a line with negative slape, this is in fact true!
	Since the graph of h is a line with negative slope, this is in fact true!
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$
	Which of the following is a possible value for $f(3.7)$?
	Which of the following is a possible value for $f(3.7)$?
	● 17○ -3
	● 17○ -3○ 14.7
	 ● 17 ○ -3 ○ 14.7 ○ 3
	 ● 17 ○ -3 ○ 14.7 ○ 3

Continue aprendendo

пота 100%

NO	Graded quiz on Cartesian Plane and Types of Function NOTA DO ENVIO MAIS RECENTE 100%		
1.	Which of the following points in the Cartesian Plane have positive x -coordinate and negative y -coordinate?		
	$\bigcirc (-4,5)$ $\bigcirc (7,-1)$ $\bigcirc (0,0)$ $\bigcirc (5,7)$		
	\checkmark Correto		
2.	Which of the following points is in the first quadrant of the Cartesian Plane? $ \bigcirc \ (-5,1) \\ \bigcirc \ (-4,-7) \\ \Large \odot \ (7,11) \\ \bigcirc \ (5,-1) $		
	Correto The first quadrant is defined to be all points in the Cartesian plane whose coordinates are both positive.		
3.	Let A,B,C,D be points in the Cartesian Plane, and let the set $S=\{B,C,D\}$ Suppose that the distances from A to B,C,D are $5.3,2.1$, and 11.75 , respectively. Which of the following points is the nearest neighbor to the point A in the set S ?		
	 ○ A ○ B ⑥ C ○ D 		
	\checkmark Correto $ \hbox{The distance from A to C is 2.1 and that is smaller than the distance from A to any other element of S.} $		

4. Find the distance between the points A=(2,2) and B=(-1,-2).

1/1 ponto

- O 25
- 5
- 0 1
- \bigcirc -25
 - / Corret

Recall that the distance between points (a,b) and (c,d) is $\sqrt{(c-a)^2+(d-b)^2}$

In this case we have:

$$\sqrt{(-1-2)^2 + (-2-2)^2} = \sqrt{(-3)^2 + (-4)^2} = \sqrt{25} = 5$$

5. Find the slope of the line segment between the points A=(0,1) and B=(1,0).

1/1 ponto

- \bigcirc 1
- $\bigcirc \sqrt{2}$
- \bigcirc 0
 - ✓ Correto

The slope of this line segment is $\left(\frac{0-1}{1-0} = -1\right) = -1$

6. Find the point-slope form of the equation of the line with slope -2 that goes through the point (5,4).

1/1 ponto

- y 5 = -2(x 4)
- \bigcirc (5,4)
- y 4 = 2(x 5)
- y-4=-2(x-5)

✓ Correto

The point-slope form for the equation of a line with slope m that goes through the point (x_0,y_0) is $y-y_0=m(x-x_0)$.

In this case, the slope m=-2 is given and the point (5,4) on the line is given.

7. Which of the following equations is for a line with the same slope as y=-3x+2?

1/1 ponto

- y = -3x 8
- 0 y = 5x + 2
- $\bigcirc y = 8x 3$
- $\bigcirc y = 5x$

The slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis.

This line has slope m=-3 which is the same slope as the given line.

8. Which of the following equations is for a line with the same y-intercept as y=-3x+2?

1/1 ponto

- y = 8x 3
- $\bigcirc y = 5x$
- y = -3x 8

The the slope-intercept formula for a line is y=mx+b, where m is the slope and b is the y-coordinate of the point where the line hits the y-axis. This line has a y-intercept of 2 which is the same as the given line.

9. How many lines contain both the point A=(1,1) and the point B=(2,2)?

1/1 ponto

- \bigcirc 2
- O None
- o infinitely many
- 1

The line with equation y=x is the one and only line that meets the stated requirements.

0. Suppose that we have two sets, $A=\{a,b\}$ and $Z=\{x,y\}$. How many diff $A o Z$ are possible?	erent functions $F:$ 1/1 ponto
O 1	
There are infinitely many	
○ There are none	
\checkmark Correto $ ext{A function } F: A o Z ext{ is a rule which assigns an element } F(a) \in Z $	to each element $a \in A.$
There are two elements in A ; namely, a and b . For each of these elements assignment choices we could make: x and y .	ents, there are two
Here are the four possible functions:	
F(a)=x, F(b)=y , OR	
F(a)=y, F(b)=x , OR	
F(a)=x, F(b)=x, OR	
F(a) = y, F(b) = y.	
$^{1}\cdot$ How many graphs contain both the point $A=(0,0)$ and the point $B=(1$	1) 1/1 ponto
O 2	
2 Infinitely many	
Infinitely many1	contain both A and B
Infinitely many1None	
Infinitely many $\bigcirc 1$ $\bigcirc \text{ None}$ $\checkmark \text{ Correto}$ $\text{ The graphs of } f(x) = x, g(x) = x^2, h(x) = x^3, s(x) = x^4, \dots \text{ all}$ $12. \text{ Suppose that } g: \mathbb{R} \to \mathbb{R} is a continuous function whose graph intersects the suppose of the su$	
 Infinitely many 1 None ✓ correto The graphs of $f(x) = x, g(x) = x^2, h(x) = x^3, s(x) = x^4, \ldots$ all 12. Suppose that $g: \mathbb{R} \to \mathbb{R}$ is a continuous function whose graph intersects to once. Which of the following statements is true? g is strictly decreasing. 	

The function g fails the horizontal line test, so it can neither be strictly increasing nor strictly

13.	Find the slope of the line segment between the points $A=(1,1)$ and $B=(5,3)$.

1/1 ponto

\odot	\begin	{align}\frac1	12\end	(align
---------	--------	---------------	--------	--------

O 2

O 4

 $\bigcirc \sqrt{20}$

The slope of this line segment is \begin {align}\frac{3-1}{5-1} = \frac12\end {align}, where 3-1 is the rise and 5-1 is the run.