#### Introduction to Classification

LING 570 Fei Xia

#### Outline

What is a classification problem?

How to solve a classification problem?

Case study

# What is a classification problem?

#### An example: text classification task

Task: given an article, predict its category.

- Categories:
  - Politics, sports, entertainment, travel, ...
  - Spam or not spam

 What kind of information is useful to solve the problem?

#### Classification task

- Task:
  - C is a finite set of labels (a.k.a. categories, classes)
  - Given a x, decide its category y ∈ C.
- Instance: (x, y)
  - x: the thing to be labeled/classified
  - $-y \in C$ .
- Data: a set of instances
  - Labeled data: y is known
  - Unlabeled data: y is unknown
- Training data, test data

#### More examples

Audience targeting

- Sentiment detection
  - Good vs. Bad
  - 5-star system: 1, 2, 3, 4, 5

### POS tagging

- Task: given a sentence, predict the tag of each word in the sentence.
- Is it a classification problem?
- Categories: noun, verb, adjective, ...
- What information is useful?
- What are the differences between the text classification task and POS tagging?
  - → Sequence labeling problem

#### Tokenization / Word segmentation

- Task: given a string, break it into words.
- Categories:
  - NB (no break), B (with break)
  - B (beginning), I (inside), E (end)
  - B1 (1<sup>st</sup> char), B2 (2<sup>nd</sup> char), B3 (3<sup>rd</sup> char), I, E, S
- Ex: c1 c2 || c3 c4 c5
  - c1/NB c2/B c3/NB c4/NB c5/B
  - c1/B c2/E c3/B c4/I c5/E
  - C1/B1 c2/E c3/B1 c4/B2 c5/E
- Relation to POS tagging?

# How to solve a classification problem?

#### Two stages

- Training stage
  - Learner: Training data → classifier
- Testing stage
  - Decoder: Test data \* classifier → classification results
- Others:
  - Preprocessing stage
  - Postprocessing stage
  - Evaluation

#### Training, test, and evaluation



#### How to represent x?

The number of possible values for x could be infinite.

Representing x as a feature vector:

$$x = \langle v_1, v_2, ..., v_n \rangle$$
  
 $x = \langle f_1 = v_1, f_2 = v_2, ..., f_n = v_n \rangle$ 

What is a good feature?

#### An example

Task: text classification

Categories: sports, entertainment, living, politics, ...

doc1 debate immigration lies caravan German ...

doc2 suspension Dolphins receiver ...

doc3 song filmmakers charts Oscar ....

# Training data: attribute-value table (Input to the training stage)

|                       | f <sub>1</sub> | $f_2$ | ••• | f <sub>K</sub> | Target         |  |
|-----------------------|----------------|-------|-----|----------------|----------------|--|
| X <sub>1</sub>        | 0              | 1     | 2.5 | -1000          | $c_2$          |  |
| <b>X</b> <sub>2</sub> | 2.5            | 0     | 0   | 20             | C <sub>1</sub> |  |
| <b>X</b> <sub>3</sub> |                |       |     |                |                |  |
|                       |                |       |     |                |                |  |
| X <sub>n</sub>        |                |       |     |                |                |  |

#### A classifier

It is the output of the training stage.

- Narrow definition:
  - f(x) = y, x is input,  $y \in C$
- More general definition:
  - $f(x) = \{(c_i, score_i)\}, c_i \in C.$

### Test stage

- Input: test data and a classifier
- Output: a decision matrix.

|                | X <sub>1</sub> | <b>X</b> <sub>2</sub> | <b>X</b> <sub>3</sub> |  |
|----------------|----------------|-----------------------|-----------------------|--|
| C <sub>1</sub> | 0.1            | 0.4                   | 0                     |  |
| c <sub>2</sub> | 0.9            | 0                     | 0                     |  |
| C <sub>3</sub> | 0              | 0.1                   | 0.4                   |  |
| C <sub>4</sub> | 0              | 0.5                   | 0.6                   |  |

#### **Evaluation**

| Gold   | +  | -  |
|--------|----|----|
| System |    |    |
| +      | TP | FP |
| _      | FN | TN |

- Precision = TP/(TP+FP)
- Recall = TP/(TP+FN)
- F-score = 2PR/(P+R)
- Accuracy=(TP+TN)/(TP+TN+FP+FN)
- F-score or Accuracy?
- Why F-score?

#### An Example

| Gold   | + | -  |
|--------|---|----|
| System |   |    |
| +      | 1 | 4  |
| _      | 5 | 90 |

- Accuracy=91%
- Precision = 1/5
- Recall = 1/6
- F-score =  $\frac{2*1/5*1/6}{1/5+1/6} = 2/11$

# Steps for solving a classification task

- Prepare the data
  - Convert the task into a classification problem (optional)
  - Split data into training/dev/test
  - Convert the data into attribute-value table
- Training
- Testing
- Postprocessing (optional): convert the label sequence to something else
- Evaluation

## Important subtasks (for you)

- Convert the problem into a classification task
- Converting the data into attribute-value table
  - Define feature types
  - Feature selection
  - Convert an instance into a feature vector
- Select a classification algorithm

#### Classification algorithms

- Decision Tree (DT)
- K nearest neighbor (kNN)
- Naïve Bayes (NB)
- Maximum Entropy (MaxEnt)\*
- Support vector machine (SVM)\*\*
- Conditional random field (CRF)\*\*
- •
- → Will be covered in LING572

# More about attribute-value table

#### Attribute-value table

|                       | f <sub>1</sub> | $f_2$ |     | f <sub>K</sub> | Target         |  |
|-----------------------|----------------|-------|-----|----------------|----------------|--|
| X <sub>1</sub>        | 0              | 1     | 2.5 | -1000          | C <sub>2</sub> |  |
| $x_2$                 | 2.5            | 0     | 0   | 20             | C <sub>1</sub> |  |
| <b>X</b> <sub>3</sub> |                |       |     |                |                |  |
|                       |                |       |     |                |                |  |
| X <sub>n</sub>        |                |       |     |                |                |  |

# Binary features vs. real-valued features

- Some ML methods can use real-valued features, others cannot.
- Very often, we convert real-valued features into binary ones.
  - temp 69
  - Use one threshold: IsTempBelow60 0
  - Use multiple thresholds:
    - TempBelow0 0 TempBet0And50 0 TempBet51And80 1 TempAbove81 0

#### Feature templates vs. Features

- A feature template: CurWord
- Corresponding features
  - CurWord=Mary
  - CurWord=the
  - CurWord=book
  - CurWord=buy
  - **—** ...
- One feature template corresponds to many features

# Feature templates vs features (cont)

curWord book

can be seen as a shorthand of

```
curWord=the 0 curWord=a 0 curWord=Mary 0 ..... curWord=book 1 ...
```

### An example

#### Mary will come tomorrow

|            | W <sub>-1</sub> | W <sub>0</sub> | W <sub>-1</sub> W <sub>0</sub> | W <sub>+1</sub> | у  |
|------------|-----------------|----------------|--------------------------------|-----------------|----|
| x1         | <s></s>         | Mary           | <s> Mary</s>                   | will            | PN |
| x2         | Mary            | will           | Mary will                      | come            | V  |
| <b>x</b> 3 | will            | come           | will come                      | tomorrow        | V  |

This can be seen as a shorthand of a much bigger table.

#### Attribute-value table

It is a very sparse matrix.

 In practice, it is often represented in a dense format.

```
- Ex: x1=<f1=0, f2=0, f3=1, f4=0, f5=1, f6=0> x1 f3 1 f5 1
```

# Case study

### Case study (I)

- The NE tagging task
  - Ex: John visited New York last Friday.
    - → [person John] visited [location New York] [time last Friday]
- Is it a classification problem?
  - John/person-B visited/O New/location-B York/location-I last/time-B Friday/time-I
- What is x? What is y?
- What features could be useful?

### Case study (II)

Task: identify tables in a document

What is x? What is y?

What features are useful?

### An example

Table 4: Performance on the development set (the span number in the gold standard is 447)

| Features                | System   | Classification | Exact match Partial mat |        |        | tob   |        |        |
|-------------------------|----------|----------------|-------------------------|--------|--------|-------|--------|--------|
| reatures                | System   |                | <del></del>             |        |        |       |        |        |
|                         | span num | accuracy       | prec                    | recall | fscore | prec  | recall | fscore |
| Regex templates         | 269      | N/A            | 68.40                   | 41.16  | 51.40  | 99.26 | 59.73  | 74.58  |
| $F_1$                   | 130      | 81.50          | 68.46                   | 19.91  | 30.85  | 97.69 | 28.41  | 44.02  |
| $F_2$                   | 405      | 93.28          | 58.27                   | 52.80  | 55.40  | 95.56 | 86.58  | 90.85  |
| $F_1 + F_3$             | 180      | 80.26          | 61.67                   | 24.83  | 35.40  | 81.11 | 32.66  | 46.57  |
| $F_1 + F_2$             | 420      | 94.42          | 63.09                   | 59.28  | 61.13  | 93.81 | 88.14  | 90.88  |
| $F_2 + F_3$             | 339      | 92.68          | 75.81                   | 57.49  | 65.39  | 93.21 | 70.69  | 80.40  |
| $F_2 + F_4$             | 456      | 96.91          | 80.92                   | 82.55  | 81.73  | 93.64 | 95.53  | 94.57  |
| $F_1 + F_2 + F_3$       | 370      | 93.39          | 75.14                   | 62.20  | 68.05  | 93.51 | 77.40  | 84.70  |
| $F_1 + F_2 + F_4$       | 444      | 97.00          | 84.68                   | 84.11  | 84.40  | 95.95 | 95.30  | 95.62  |
| $F_2 + F_3 + F_4$       | 431      | 97.79          | 86.77                   | 83.67  | 85.19  | 97.68 | 94.18  | 95.90  |
| $F_1 + F_2 + F_3 + F_4$ | 431      | 98.00          | 90.02                   | 86.80  | 88.38  | 97.22 | 93.74  | 95.44  |

Table 5: Performance on the test set (the span number in the gold standard is 843)

| Features                | System   | Classification | Exact match |        |                 | Partial match |        |        |
|-------------------------|----------|----------------|-------------|--------|-----------------|---------------|--------|--------|
|                         | span num | accuracy       | prec        | recall | $_{\rm fscore}$ | prec          | recall | fscore |
| Regex templates         | 587      | N/A            | 74.95       | 52.19  | 61.54           | 98.64         | 68.68  | 80.98  |
| $F_2$                   | 719      | 92.45          | 57.02       | 48.64  | 52.50           | 94.02         | 80.19  | 86.56  |
| $F_2 + F_4$             | 849      | 95.66          | 75.50       | 76.04  | 75.77           | 93.76         | 94.42  | 94.09  |
| $F_2 + F_3 + F_4$       | 831      | 95.95          | 77.14       | 76.04  | 76.58           | 95.19         | 93.83  | 94.50  |
| $F_1 + F_2 + F_3 + F_4$ | 830      | 96.83          | 82.29       | 81.02  | 81.65           | 96.51         | 95.02  | 95.76  |

However, when we ran the same algorithm on the IGT data, the accuracy was only 50.2%.<sup>10</sup> In contrast, a heuristic approach that predicts the language ID according to the language names occurring in the document yields an accuracy of 65.6%.

Because the language name associated with an

for ODIN's data: bootstrapping NLP tools (specifically taggers), and providing search over ODIN's data (as a kind of large-scale multi-lingual search).

#### 3.1 IGT for bootstrapping NLP tools

Since the target line in ICT data does not come with

### Case study (III)

- Task: Co-reference task
  - Ex: John called Mary on Monday. She was not at home. He left a message on her answer machine.

What is x? What is y?

What features are useful?

### Summary

- Important concepts
  - Instance: (x,y)
  - Labeled vs. unlabeled data
  - Training data vs. test data
  - Training stage vs. test stage
  - Learner vs. decoder
  - Classifier
  - Accuracy vs. precision / recall / f-score

### Summary (cont)

Attribute-value table vs. decision matrix

Feature vs. Feature template

- Binary features vs. real-valued features
- Number of features can be huge
- Representation of attribute-value table