Numeración de Punto Flotante

01

Mario R. Rosenberger

2020 Facultad de Ciencias Exactas Químicas y Naturales Universidad Nacional de Misiones

Sistema de numeración posicional

Algoritmo: combinación de operaciones fundamentales realizada con números cualesquiera que dan origen a otros números.

Teorema Fundamental de la Numeración.

Considérese un sistema de numeración posicional de base (natural) x, x > 1, entonces, cualquier otro natural N puede expresarse, de manera única, en la forma:

$$N = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + ... + a_2 x^2 + a_1 x^1 + a_0 x^0$$
 siendo, a_n , a_{n-1} , a_{n-2} ,..., a_2 , a_1 , a_0 símbolos del sistema.

la expresión del número N es $a_n a_{n-1} a_{n-2} ... a_2 a_1 a_0$

Los números decimales.

$$d_{2} d_{1} d_{0} = d_{2} * 10_{(10)}^{2} + d_{1} * 10_{(10)}^{1} + d_{0} * 10_{(10)}^{0}$$

$$735 = 7 * 10_{(10)}^{2} + 3 * 10_{(10)}^{1} + 5 * 10_{(10)}^{0}$$

Los números binarios (diádicos)

$$b_{n} b_{n-1} \dots b_{1} b_{0} = b_{n} * 10_{(2)}^{n} + b_{n-1} * 10_{(2)}^{n-1} + \dots + b_{1} * 10_{(2)}^{1} + b_{0} * 10_{(2)}^{0} = 10 = 1010 = 20 = 10100 = 6$$

$$b_{n} b_{n-1} \dots b_{1} b_{0} = b_{n} * 2_{(10)}^{n} + b_{n-1} * 2_{(10)}^{n-1} + \dots + b_{1} * 2_{(10)}^{1} + b_{0} * 2_{(10)}^{0} = 1011011111_{(2)} = 1 * 2_{(10)}^{9} + 0 * 2_{(10)}^{8} + 1 * 2_{(10)}^{7} + 1 * 2_{(10)}^{6} + 0 * 2_{(10)}^{5} + 1 * 2_{(10)}^{4} + 1 * 2_{(10)}^{3} + 1 * 2_{(10)}^{2} + 1 * 2_{(10)}^{1} + 1 * 2_{(10)}^{0} = 101101111_{(2)}^{2} = 1 * 2_{(10)}^{2} + 1 * 2_{(10)}^{2} + 1 * 2_{(10)}^{2} = 1 * 2_{(10)}^{2} + 1 * 2_{(10)}^{2} = 1 *$$

BaseForm[735, 2]

Números Romanos...

BCD, código binario decimal

0101 0000 = 50

0001 0001 0010 = 112

)ECIMAL	BINARIO		_
1	1	11	1011
2	10	12	1100
3	11	13	1101
4	100	14	1110
5	101	15	1111
6	110	16	10000
7	111	17	10001
8	1000	18	10010
9	1001	19	10011
10	1010	20	10100

_	_
1	2
2	4
3	8
4	16
5	32
_	

Sistema de numeración posicional

Números no enteros.

Los números

$$d_0 d_{-1} d_{-2} = d_0 * 10_{(10)}^0 + d_{-1} * 10_{(10)}^{-1} + d_{-2} * 10_{(10)}^{-2}$$

$$3.25 = 3 * 10_{(10)}^0 + 2 * 10_{(10)}^{-1} + 5 * 10_{(10)}^{-2}$$

Los números binarios (diádicos)

$$b_{1} * 2_{(10)}^{1} + b_{0} * 2_{(10)}^{0} + b_{-1} * 2_{(10)}^{-1}$$

$$11.01_{(2)} = 1 * 2_{(10)}^{1} + 1 * 2_{(10)}^{0} + 0 * 2_{(10)}^{-1} + 1 * 2_{(10)}^{-2}$$

n	2^n	2^n
0	1	1.
-1	1 10	0.1
-2	100	0.01
-3	1000	0.001
-4	10000	0.0001
-5	1 100 000	0.00001
-6	1 000 000	$\textbf{1.}\times\textbf{10}^{-6}$

n	2^n	2^n
0	1	1.
-1	1 2	0.5
-2	<u>1</u> 4	0.25
-3	<u>1</u> 8	0.125
-4	1 16	0.0625
-5	<u>1</u> 32	0.03125
-6	<u>1</u> 64	0.015625

16

32

Números enteros.

Figura 1.6 Esquema de una palabra de 16 bits para un número entero.

 $525_{10} = 1015_8 = 1000001101_2$, y su almacenamiento quedaría de la siguiente forma:

 $-26_{10} = -11010_2$ y su almacenamiento en una palabra de 16 bits quedaría así:

Números de coma flotante.

$$x = m * b^e$$

$$12,57 = 0,1257 * 10^2$$

$$-0.0486 = -0.486 * 10^{-1} \rightarrow -0.0486 * 10^{0}$$

b: base

e: exponente, o característica

Números de coma flotante.

m: mantisa

$$x = m * b^e$$

$$x = \pm (0.1b_2b_3)_2 \times 2^{\pm k}$$

$$0.000 \times 2^0 = 0 \qquad \quad 0.000 \times 2^1 = 0$$

$$0.001 \times 2^0 = \frac{1}{8}$$
 $0.001 \times 2^1 = \frac{1}{4}$

$$0.010 \times 2^0 = \frac{2}{8}$$
 $0.010 \times 2^1 = \frac{2}{4}$

$$0.011 \times 2^0 = \frac{3}{8}$$
 $0.011 \times 2^1 = \frac{3}{4}$

$$0.100 \times 2^0 = \frac{4}{8}$$
 $0.100 \times 2^1 = \frac{4}{4}$

$$0.101 \times 2^0 = \frac{5}{8}$$
 $0.101 \times 2^1 = \frac{5}{4}$

$$0.110 \times 2^0 = \frac{6}{8} \qquad 0.110 \times 2^1 = \frac{6}{4}$$

$$0.111 \times 2^0 = \frac{7}{8}$$
 $0.111 \times 2^1 = \frac{7}{4}$ $0.111 \times 2^{-1} = \frac{7}{16}$

$$0.000 \times 2^{-1} = 0$$

$$0.001 \times 2^{-1} = \frac{1}{16}$$

$$0.010 \times 2^{-1} = \frac{2}{16}$$

$$0.011 \times 2^{-1} = \frac{3}{16}$$

$$0.100 \times 2^{-1} = \frac{4}{16}$$

$$0.101 \times 2^{-1} = \frac{5}{16}$$

$$0.110 \times 2^{-1} = \frac{6}{16}$$

$$0.111 \times 2^{-1} = \frac{7}{16}$$

$$0 \quad \frac{1}{16} \quad \frac{1}{8} \quad \frac{3}{16} \quad \frac{1}{4} \quad \frac{5}{16} \quad \frac{3}{8} \quad \frac{7}{16} \quad \frac{1}{2} \qquad \frac{5}{8} \qquad \frac{3}{4} \qquad \frac{7}{8} \qquad 1 \qquad \qquad \frac{5}{4}$$

Números de coma flotante.

Causas graves de errores en la computación con NPF. $m * b^e$

$$3.0 = .3000 \times 10^{1}$$

 $7956000 = .7956 \times 10^{7}$
 $-0.0000025211 = -.2521 \times 10^{-5}$

Sumas de números muy distintos en magnitud

sumar 0.002 a 600 en la computadora decimal imaginaria.

$$0.002 = .2000 \times 10^{-2}$$

$$600 = .6000 \times 10^{3}$$

si se tiene una computadora Decimal que tiene 4 cifras en la mantisa y 2 lugar para el exponente con signo

$$\begin{array}{c} + 0000002 \times 10^{3} \\ - 6000000 \times 10^{3} \\ \hline - 6000002 \times 10^{3} \end{array}$$

Resta de números casi iguales

a a restar 0.2144 de 0.2145.

$$- \frac{.2145 \times 10^{0}}{.2144 \times 10^{0}}$$
$$- \frac{.0001 \times 10^{0}}{.0001 \times 10^{0}}$$

el resultado se almacena como $.1000 \times 10^{-3}$.

Causas graves de errores en la computación con NPF. $m * b^e$

Overflow

al multiplicar 0.5000×10^8 por 0.2000×10^9 , se tiene

$$\times \frac{0.5000 \times 10^8}{0.2000 \times 10^9}$$
$$0.1000 \times 10^{17}$$

si se tiene una computadora Decimal que tiene 4 cifras en la mantisa y 2 lugar para el exponente con signo.

Underflow

$$(0.3000 \times 10^{-5}) \times (0.02000 \times 10^{-3}) = 0.006 \times 10^{-8} = 0.6000 \times 10^{-10}$$

Algunas veces es salvable.

$$A = 0.3000 \times 10^{-5}$$
, $B = 0.0200 \times 10^{-3}$, $C = 0.4000 \times 10^{7}$,

$$C = 0.4000 \times 10^{7}$$

$$X = A * B * C$$

$$X = A * C * B$$

A por C y se obtiene 0.1200×10^2 .

Causas graves de errores en la computación con NPF. $m * b^e$

Division entre un numero muy pequeño

$$X = A - B / C$$

$$A = 0.1120 \times 10^9 = 112000000$$

$$B = 0.1000 \times 10^6 = 100000$$

$$C = 0.900 \times 10^{-3} = 0.0009$$

si se tiene una computadora Decimal que tiene 4 cifras en la mantisa y 2 lugar para el exponente con signo.

Si el cálculo se realiza en la computadora decimal de cuatro dígitos, el cociente B / C es 0.1111×10^9 , y X es 0.0009×10^9 o, después de ser normalizado, $X = 0.9000 \times 10^6$. Nótese que sólo hay un dígito significativo.

Vamos a imaginar ahora que se cometió un pequeño error de redondeo al calcular C en algún paso previo y resultó un valor $C^* = 0.9001 \times 10^{-3}$ ($EA = 0.0001 \times 10^{-3}$; $ER = 10^{-4}$ y ERP = 0.01%).

Si se calcula B / C^* se obtiene como cociente 0.1110×10^9 y $X^* = 0.1000 \times 10^7$. El valor correcto de X es 0.9000×10^6 .

Causas graves de errores en la computación con NPF. $m * b^e$

Error de discretización

si se tiene una computadora Decimal que tiene 4 cifras en la mantisa y 2 lugar para el exponente con signo.

Dado que un número específico no se puede almacenar exactamente como número binario de punto flotante, el error generado se conoce como error de discretización (error de cuantificación), ya que los números expresados exactamente por la máquina (números máquina) no forman un conjunto continuo sino discreto.

Errores de salida

Tiene que ver con la cantidad de dígitos que usa el programa para dar un resultado en la pantalla.

Fin del bloque

- 1.- Chapra, S. C. y Canale, R. P. *Métodos numéricos para ingenieros*. 5ta. edición. McGraw-Hill. (2002).
- 2.- D. Kincaid, N. Cheney, Métodos numéricos y computación, Addison-Wesley. (2015)
- 3.- Burden, R. L. Y Faires, J. D. *Análisis Numérico*. 6ta. Ed. Thomson International. Méjico.(1998).
- 4,- Nieves Hurtado y Dominguez Sanchez, Métodos numéricos Aplicados a la ingeniería. Cecsa. 2014.

