成都信息工程大学 工程实践中心实验报告

XXXXXX 课程实验报告

实验地点	· XXX	

实 验名 称	<u>X</u>	XX	指导教师	XXX	时间	XXX
姓名	XXX	班 级	XXX	学 号		XXX
座位号	XXX	同组者姓名		评 分		

一、实验目的

XXXXXX

二、实验器材

XXXXXX

- 三、实验内容与预习(写出实验内容,根据实验内容设计实验电路、写出详细设计过程等。 注意:建议这部分内容采用手写,以下的设计过程可以参照。)
- 设计一个计数译码型流水灯的逻辑电路。
 若采用同步时序电路,以8位流水灯为例,首先写出状态转换真值表:

CP		现态			次态	
脉冲顺序	Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	0	1
1	0 🚽	2			1	0
2	0				1	1
3	0			元////	0	0
4	1	0	0	1	0	1
5	1	0	1	1	1	0
6	1	1	0	1	1	1
7	1	. 1	1	0	0	0

画出卡诺图:

可得状态方程:

$$\begin{cases} Q_2^{n+1} = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n \overline{Q_0^n} + Q_2^n \overline{Q_1^n} = \overline{Q_2^n} Q_1^n Q_0^n + Q_2^n (\overline{Q_1^n} + \overline{Q_0^n}) \\ Q_1^{n+1} = \overline{Q_1^n} Q_0^n \\ Q_0^{n+1} = \overline{Q_0^n} \end{cases}$$

由JK触发器的特性方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

 $\begin{cases} J_2 = Q_1^n Q_0^n, & K_2 = Q_1^n Q_0^n \\ J_1 = Q_0^n, & K_1 = Q_0^n \\ J_0 = 1, & K_0 = 1 \end{cases}$

设计电路如图

3......

- 四、实验步骤及实验结果记录(Quartus II 电路图、Quartus II 仿真结果、开发板数据记录、数据分析、实验结论)(注意:这一部分的内容可以采用截图,但是注意图片的清晰度,以下的图片不够清晰。)
- 1. 计数译码型

在 Quartus II中画出原理图如下图所示:

(2),

仿真波形图如下图所示:

(3)、数据记录

T		输	λ			输出										
	СР	Q_2	Q_1	Q_0	$\overline{Y_0}$	\overline{Y}_1	\overline{Y}_2	$\overline{Y_3}$	\overline{Y}_4	\overline{Y}_5	$\overline{Y_6}$	$\overline{Y_7}$				
Ì	0	0	0	0		01111111										
	1	0	0	1				1011	1111							
	2	0	1	0		11011111										
	3	0	1	1												
	4	1	0	0												
	5	1	0	1		-		1111	1011	•						
	6	1	1	0				1111	1101							
	7	1	1	1				1111	1110							
	8	0	0	0		01111111										
	9	0	0	1		10111111										

(4) 实验结论

通过上述的真值表可以看出这是一个计数译码型逻辑电路,通过外部时钟的控制可以实现 8 个 LED 灯 7 亮 1 灭的流水灯特效。

2.	0	0	0	0	0	0	0	0	0	0	0	0	0	
3.	0	0	0	0	0	0	0	0	0	0	0	0	0	0

五、心得体会、意见及建议(本次实验总结、对实验过程的意见及建议)

XXXXXXXXXX