2025 年北京市大学生程序设计竞赛 暨"小米杯"全国邀请赛

正式赛

题目列表

A	删除 01 串
В	疲配
C	砝码
D	最近公共祖先
E	布置 WAP
F	腐蚀与膨胀
G	萤火虫难题
Н	矩阵除法
I	最小 LCM
J	四舍五入
K	最小生成树

本试题册共 11 题, 11 页。 如果您的试题册不完整,请立即通知志愿者。

2025年4月20日

承办方

命题方

题目 A. 删除 01 串

给定一个长度为 n 的仅由 0 和 1 组成的字符串 s , 你可以进行任意次(可以是 0 次)以下操作:

• 选择一个首尾不同的子串,并删除这个子串。

例如,对于 s=0001110,子串 001 的第一个字符和最后一个字符不同。选择该子串并删除后,原 串变为 0110。

进行任意次操作后,字符串 s 的字典序 † 最小是多少?

[†] 对于两个字符串 s 和 t ,设两字符串第一个不同的位置为 i 。若 s_i 是 0 且 t_i 是 1 ,则称 s 的字 典序小于 t 的字典序。若这样的 i 不存在,则称长度较小的字符串字典序更小。空字符串的字典序小于任意其它字符串。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 10^5)$ 。每组测试数据的格式如下。

第一行包含一个整数 n $(1 \le n \le 10^6)$,表示字符串的长度。

第二行包含一个长度为 n 的字符串 s , 其中的字符仅有 0 和 1 。

在每个测试文件内,保证所有测试数据的 n 之和不超过 10^6 。

输出格式

对于每组数据,输出一行字符串,代表可以通过操作得到的字典序最小的字符串。特别地,当答案是空字符串时,请输出"empty"。

standard input	standard output
4	empty
2	0
01	empty
4	11
0010	
5	
10011	
5	
11011	

题目 B. 疲配

何山老翁孁垂雪? 担负樵苏清晓发。 城门在望来路长, 樵重身羸如疲鳖。

——宋·吕南公

给定一个二分图,其中左右两侧各包含 n 个顶点。图中每条边均有一个颜色,颜色可以用一个整数表示,范围在 1 到 k 之间。

对于任意颜色子集 $S \subseteq \{1,2,\ldots,k\}$,我们称它为好的,当且仅当存在一组完美匹配,使得该匹配使用的边的 颜色恰好为 S 。具体来说,所寻找的完美匹配需要满足以下两个条件:

- 1. 匹配中的所有边颜色均来自 S;
- 2. 对于 S 中的任一颜色 c,匹配中至少存在一条边的颜色为 c。

现在,你可以修改至多一条边的颜色为这条边原来颜色的相邻颜色。对于每个颜色子集,你想知道是否存在一种修改方案,使得修改后这个颜色子集是好的。称颜色 x 和颜色 y 相邻,当且仅当 |x-y|=1 或 |x-y|=k-1。请对每个颜色子集 S 输出相应的判定结果。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 50)$ 。每组测试数据的格式如下。第一行三个整数 $n,m,k~(1 \le n \le 50,1 \le m \le n^2,1 \le k \le 10)$,分别代表二分图的点数、边数和颜色数量。

接下来 m 行,每行三个整数 u,v,c $(1 \le u,v \le n,1 \le c \le k)$,表示有一条边连接左部第 u 个点和右部第 v 个点,其颜色为 c 。保证图中不存在重边。

在每个测试文件内,保证所有测试数据的 2^k 之和不超过 2048 。

输出格式

对于每组数据,输出一行 2^k 个字符。第 i 个字符代表如下颜色集合 S 的答案: 对于 $j \in [1,k]$,如果 i-1 的二进制表示中从低到高第 j 位为 1 ,则 $j \in S$,否则 $j \notin S$ 。对于这个集合 S ,如果至多修改一条边为其相邻颜色后存在合法的完美匹配,则输出 "1",否则输出 "0"。

standard input	standard output
2	0101
3 5 2	00010111
1 2 1	
2 1 1	
3 3 2	
3 2 1	
1 3 1	
5 12 3	
1 2 1	
1 3 2	
1 5 1	
2 4 3	
2 3 2	
2 2 3	
3 1 3	
3 5 1	
4 2 2	
4 4 1	
5 3 3	
5 5 1	

题目 C. 砝码

Link 有 m 个砝码,每个砝码的重量都是一个正整数。

已知 Link 可以用这些砝码称出 1 到 n 中的所有整数重量(砝码仅能放在天平的同一边),Link 手上最重的砝码至少有多重?

注意: Link 手上的砝码能否表示出 n+1 或更大的重量是未知的。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 2 \times 10^5)$ 。每组测试数据的格式如下。

第一行包含两个整数 n 和 m $(1 \le n, m \le 10^9)$,表示砝码能表示的已知最大重量和砝码的数量。

输出格式

对于每组数据,输出一行一个整数,表示 Link 手上最重的砝码的重量的最小值。如果不可能用 m 个砝码表示出 1 到 n 中的所有重量,请输出 "-1"。

standard input	standard output
2	13
40 6	-1
16 4	

题目 D. 最近公共祖先

给定两棵包含 n 个点的树 S 和 T ,节点的编号均为 1 到 n ,根节点均为 1 号点。计算有多少个二元组 (x,y) 满足 x < y 且 $LCA_S(x,y) = LCA_T(x,y)$ 。

 † LCA $_S(x,y)$ 代表树 S 中 x 和 y 两点的最近公共祖先,即一个离根最远的节点 z ,满足其同时是 x 和 y 的祖先。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 2 \times 10^4)$ 。每组测试数据的格式如下。

第一行一个整数 n $(2 \le n \le 2 \times 10^5)$,表示树的节点数。

接下来 n-1 行,每行包含两个整数 $u_{S,i}$ 和 $v_{S,i}$ $(1 \le u_{S,i}, v_{S,i} \le n)$,表示树 S 上的一条边。接下来 n-1 行,每行包含两个整数 $u_{T,i}$ 和 $v_{T,i}$ $(1 \le u_{T,i}, v_{T,i} \le n)$,表示树 T 上的一条边。在每个测试文件内,保证所有测试数据的 n 之和不超过 2×10^5 。

输出格式

对于每组数据、输出一行一个整数、表示满足条件的二元组的数量。

standard input	standard output
4	1
2	2
1 2	2
2 1	12
3	
1 2	
1 3	
1 2	
2 3	
3	
1 3	
2 3	
1 2	
1 3	
7	
1 2	
1 3	
2 4	
2 5	
3 6	
3 7	
1 2	
1 4	
2 5	
2 3	
4 6	
4 7	

题目 E. 布置 WAP

平面上有 n 台设备,第 i 台设备位于点 (x_i, y_i) 。此外,平面上有一条无限长的光纤,其所在直线的方程为 ax + by + c = 0。

你拥有一台无线接入点(WAP),你可以在光纤上的任意位置部署WAP,使其连接到光纤。你的目标是最小化WAP到最远设备的距离。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 10^4)$ 。每组测试数据的格式如下。

第一行包含一个整数 $n (1 \le n \le 10^5)$,表示设备的数量。

接下来 n 行,每行两个整数 x_i 和 y_i ($|x_i|, |y_i| \le 10^4$) ,表示设备的位置。

最后一行包含三个整数 a,b 和 c (|a|, |b|, $|c| \le 10^4$, a 和 b 不同时为 0),描述光纤所在直线的方程。在每个测试文件内,保证所有测试数据的 n 之和不超过 10^5 。

输出格式

对于每组数据,输出一行一个浮点数,表示 WAP 到最远设备的距离的最小值。

当你的输出与标准答案的绝对误差或相对误差不超过 10-6 时, 你的输出将会被判定为正确。

具体地说,令你的答案为 a ,标准答案为 b 。你的答案被认为是正确的当且仅当 $\frac{|a-b|}{\max(1,|b|)} \le 10^{-6}$ 。

standard input	standard output
3	0.707106781186547524
4	1.000000114514
0 0	2.236067977499789696
0 1	
1 0	
1 1	
1 -1 0	
3	
0 1	
0 2	
0 3	
1 0 0	
3	
-1 1	
0 1	
1 1	
0 1 1	

题目 F. 腐蚀与膨胀

腐蚀和膨胀是数字图像处理中的两个基本操作,分别用于缩小或扩展二值图像中的白色区域。 现在给定一个 $n \times n$ 的 01 矩阵 A 和一个操作序列。操作序列中包含以下两种操作:

- 0 k, 将所有位置的值根据以下规则进行更新: 如果某个位置的切比雪夫距离小于等于 k 的范围内存在一个值为 0 的位置, 则该位置的值变为 0。形式化地, 对于位置 (x_a, y_a) ,如果存在位置 (x_b, y_b) 使得 $\max(|x_a x_b|, |y_a y_b|) \le k$ 且 $A(x_b, y_b) = 0$,则更新 $A(x_a, y_a) = 0$ 。
- 1 k, 将所有位置的值根据以下规则进行更新: 如果某个位置的切比雪夫距离小于等于 k 的范围内存在一个值为 1 的位置, 则该位置的值变为 1。形式化地, 对于位置 (x_a, y_a) ,如果存在位置 (x_b, y_b) 使得 $\max(|x_a x_b|, |y_a y_b|) \le k$ 且 $A(x_b, y_b) = 1$,则更新 $A(x_a, y_a) = 1$ 。

注意:每次操作的所有更改是同时进行的。

你需要根据操作序列对矩阵 A 进行一系列操作,并输出最后一个操作完成后的矩阵。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T\ (1 \le T \le 100)$ 。每组测试数据的格式如下。

第一行包含两个整数 n 和 q ($1 \le n \le 500, 1 \le q \le 10^6$),分别表示方阵 A 的边长和操作数量。

接下来 n 行, 第 i 行包含一个长度为 n 的 01 串, 表示矩阵 A 的第 i 行。

接下来 q 行, 每行包含两个整数 op, k $(op \in \{0,1\}, 1 \le k \le n)$, 表示一个操作。

在每个测试文件内,保证所有测试数据的 n 之和不超过 500 ,保证所有测试数据的 q 之和不超过 10^6 。

输出格式

对于每组数据,输出 n 行,第 i 行包含一个长度为 n 的 01 串,表示最后一个操作完成后的矩阵的 第 i 行。

standard input	standard output
2	00000
5 3	00000
00001	11100
00000	11100
00000	11100
11000	000011
11000	000011
0 1	000011
1 3	000111
0 1	111111
6 2	111111
000000	
000001	
000011	
000111	
001111	
011111	
1 2	
0 2	

题目 G. 萤火虫难题

这天,小 L 来到了郊外,发现了一种新奇的萤火虫,它们五颜六色、亮度各异,喜欢排成一列栖息在路边。小 L 盯上了它们,想要捉走其中一些。

路边共有 n 只萤火虫排成一列,第 i 只萤火虫的亮度为 w_i ,颜色为 c_i 。小 L 想从中捉走一些(不必连续),并按它们在路边的顺序排成一列。最终的萤火虫序列需要满足:

- 1. 相邻的萤火虫颜色不同。
- 2. 相邻的萤火虫亮度不互质。

现在,小L想知道他最多能捉多少萤火虫,你能帮帮他吗?

输入格式

每个测试文件仅有一组测试数据。

第一行包含一个整数 $n (1 \le n \le 5 \times 10^5)$, 表示萤火虫个数。

第二行包含 n 个正整数 w_1, w_2, \ldots, w_n $(1 \le w_i \le 5 \times 10^5)$,表示第 i 只萤火虫的亮度。

第三行包含 n 个正整数 c_1, c_2, \ldots, c_n $(1 \le c_i \le 5 \times 10^5)$,表示第 i 只萤火虫的颜色。

输出格式

输出一行一个整数,表示小 L 最多能捉的萤火虫个数。

样例

standard input	standard output
6	3
6 6 6 6 6 6	
1 1 2 2 3 3	
10	7
2 3 6 10 8 9 6 3 2 10	
1 2 3 2 3 2 4 5 2 1	

备注

在样例的第一组测试数据中: 所有萤火虫的亮度都是一样的, 任意的方案都满足"不互质"的要求。要使相邻萤火虫的颜色不同, 一种最优的方案是选择第 1,3,5 只萤火虫。

在样例的第一组测试数据中:一种最优的方案是选择第 1,3,4,5,7,9,10 只萤火虫。

题目 H. 矩阵除法

对于 $n \times m$ 的 01 矩阵 A 和 $m \times p$ 的 01 矩阵 B ,定义它们的乘积为一个 $n \times p$ 的 01 矩阵 C 。其中, $C_{i,j} = \bigoplus_{k=1}^m A_{i,k} \& B_{k,j}$ [†] 。

现在,Link 希望进行乘法的逆运算——除法。给定 $n\times m$ 的 01 矩阵 A 和 $n\times p$ 的 01 矩阵 C ,你需要找到一个 $m\times p$ 的矩阵 B ,使得 A 与 B 的乘积恰好等于 C 。

 $^\dagger\oplus$ 表示按位异或运算,& 表示按位与运算。例如: $(0011)_2\oplus(0101)_2=(0110)_2$, $(0011)_2$ & $(0101)_2=(0001)_2$ 。

输入格式

每个测试文件仅有一组测试数据。

第一行包含三个整数 n, m, p $(1 \le n, m, p \le 1000)$ 。

接下来 n 行, 第 i 行包含 m 个整数 $A_{i,1}, A_{i,2}, \cdots, A_{i,m}$ $(A_{i,j} \in \{0,1\})$,表示矩阵 A 的元素。

接下来 n 行, 第 i 行包含 p 个整数 $C_{i,1}, C_{i,2}, \cdots, C_{i,p}$ $(C_{i,j} \in \{0,1\})$, 表示矩阵 C 的元素。

输出格式

如果不存在满足条件的矩阵 B , 请输出 "No"。

如果存在满足条件的矩阵 B ,请在第一行输出 "Yes" ,然后输出 m 行,每行 p 个整数 $B_{i,1}, B_{i,2}, \cdots, B_{i,p}$ ($B_{i,j} \in \{0,1\}$) ,表示你找到的 B 矩阵 。

如果存在多个满足条件的矩阵 B, 你可以输出任何一个。

standard input	standard output
3 2 3	Yes
1 0	0 0 0
1 1	0 1 0
1 0	
0 0 0	
0 1 0	
0 0 0	
3 2 3	No
1 0	
1 1	
1 0	
1 0 0	
0 1 0	
0 0 1	

题目 I. 最小 LCM

给定三个正整数 a,b,k ,求 LCM(a+x,b+y) [†] 的最小值,其中 x 和 y 都是不大于 k 的非负整数。
[†] LCM(a,b) 表示 a 和 b 的最小公倍数。例如 LCM(5,7)=35 ,LCM(10,6)=30 。

输入格式

每个测试文件包含多组测试数据。第一行包含测试数据的组数 $T~(1 \le T \le 10^4)$ 。每组测试数据的格式如下。

第一行包含三个整数 $a, b, k \ (1 \le a, b, k \le 10^{14})$ 。

在每个测试文件内,保证至多有 1 组测试数据满足 $\max(a,b) > 10^5$ 。

输出格式

对于每组数据,输出一行一个整数,表示你的答案。

standard input	standard output
6	8
3 8 4	14
13 7 4	1
1 1 1	10
4 9 2	101
2 101 100	49999999999990000000000000
99999999999 1000000000000 1	

题目 J. 四舍五入

根据鸽巢原理,至少有一个屋子有两个人。

——炸鸡块君

对于一个整数 x, 你可以进行以下操作任意次:

选择一个不超过 m 的进制 k , 将 x 写作 k 进制的形式, 然后 "四舍五人" 使得 x 的最低位为 0 。形式化地说, 在一次操作中, 你可以选择一个整数 k ($2 \le k \le m$), 然后令 x 变为 f(x,k) , 其中:

$$f(x,k) = \begin{cases} \left\lfloor \frac{x}{k} \right\rfloor \cdot k & x \bmod k < \frac{k}{2} \\ \left\lceil \frac{x}{k} \right\rceil \cdot k & x \bmod k \ge \frac{k}{2} \end{cases}$$

请问,要将x变为y,至少需要几次操作?对于一个固定的m,你需要回答多个询问。

输入格式

每个测试文件仅有一组测试数据。

第一行包含两个整数 q 和 m $(1 \le q \le 10^5, 2 \le m \le 10^5)$,分别表示询问的数量和最大可用的进制。接下来 q 行,每行两个整数 x 和 y $(0 \le x, y \le 10^5, x \ne y)$,表示一个询问的初始数值和目标数值。

输出格式

对于每个询问,输出一行一个整数,表示将 x 变为 y 所需要的最小操作次数。如果 x 不能通过操作 变为 y ,请输出 "-1"。

样例

standard input	standard output
5 10	2
4 10	-1
3 11	5
11 3	2
5 0	23
1 72	

备注

对于样例的第 1 个询问,一种最优的操作方案为: $4 \xrightarrow{k=5} 5 \xrightarrow{k=10} 10$ 。

对于样例的第 3 个询问,一种最优的操作方案为: $11 \xrightarrow{k=8} 8 \xrightarrow{k=6} 6 \xrightarrow{k=5} 5 \xrightarrow{k=4} 4 \xrightarrow{k=3} 3$ 。

对于样例的第 4 个询问,一种最优的操作方案为: 5 $\xrightarrow{k=4}$ 4 $\xrightarrow{k=10}$ 0 。

2025 年北京市大学生程序设计竞赛暨"小米杯"全国邀请赛 - 正式赛北京,小米科技园,2025/04/20

题目 K. 最小生成树

所有边排序 并查集寻找祖先 不同就合并 ——最小生

——炸鸡块君

给定整数 n,k,求有多少种不同的 n 个节点的无向连通图满足:

- 图中没有自环,且任意两个点之间至多有一条边。
- 所有边的边权为 [1,k] 之间的整数。
- 对于图中的每条边,都至少存在一棵最小生成树包含该边。

两张图不同当且仅当存在一对节点 (u,v), 使得一张图中 u,v 之间有边而另一张没有, 或是两图中 u,v 之间的边权不同。

请计算满足条件的图的数量,对998244353取模。

输入格式

每个测试文件仅有一组测试数据。

第一行包含两个正整数 n 和 k $(1 \le n \le 5 \times 10^4, 1 \le k \le 10)$ 。

输出格式

一行一个整数,表示答案对998244353取模的结果。

standard input	standard output
3 1	4
4 2	377
235 7	928998036