Note: Your TA may not get to all the problems. This is totally fine, the discussion worksheets are not designed to be finished in an hour. The discussion worksheet is also a resource you can use to practice, reinforce, and build upon concepts discussed in lecture, readings, and the homework.

Philosophy of analyzing randomized algorithms. The first step is to always identify a *bad event*. I.e. identify when your randomness makes your algorithm fail. We will review some techniques from class using the following problem as our "test bed".

Let G be a bipartite graph with n left vertices, and n right vertices on $n^2 - n + 1$ edges.

- Prove that G always has a perfect matching.
- Give a polynomial in n time algorithm to find this perfect matching.

We will analyze the following algorithm BlindMatching:

- Let π and σ be independent and uniformly random permutations of [n].
- If $\{\boldsymbol{\pi}(1), \boldsymbol{\sigma}(1)\}, \{\boldsymbol{\pi}(2), \boldsymbol{\sigma}(2)\}, \dots, \{\boldsymbol{\pi}(n), \boldsymbol{\sigma}(n)\}\$ is a valid matching output it.
- Else output failed.

Union Bound. Suppose X_1, \ldots, X_n are (not necessarily independent) $\{0, 1\}$ valued random variables, then

$$\Pr[X_1 + \dots + X_n \ge 1] \le \Pr[X_1 = 1] + \Pr[X_2 = 1] + \dots + \Pr[X_n = 1].$$

Now we analyze our algorithm using union bound. An output $M = (\{\pi(1), \sigma(1)\}, \dots, \{\pi(n), \sigma(n)\})$ is a valid perfect matching exactly when all edges of the form $\{\pi(i), \sigma(i)\}$ are present in G. A "bad event" happens if any of those pairs are not edges in G.

Let X_i be the indicator of the event that $\{\pi(i), \sigma(i)\}$ is not present in our graph.

- 1. What is the probability that $X_i = 1$?
- 2. Use the union bound to upper bound the probability that M is not a valid perfect matching.
- 3. Conclude that G has a valid perfect matching.

The upper bound obtained on the probability of our bad event, i.e. of M not being a valid perfect matching, is fairly high. In light of this, we introduce the technique of *amplification*.

Amplification. The philosophy of amplification is that if we have a randomized algorithm that fails with probability p, we can repeat the algorithm many times and aggregate the output of all the runs to produce a new output such that the failure probability of the randomized algorithm is significantly smaller. Now consider the following algorithm SpamBlindMatching.

- Run BlindMatching independently T times.
- If at least one of the runs outputted a valid perfect matching, return the output of such a run.
- Else output failed.
- 1. What is the failure probability of SpamBlindMatching?
- 2. How large should we set T if we want a failure probability of δ ?

Now we switch gears and turn our attention to concentration phenomena and its usefulness in analyzing randomized algorithms.

Markov's inequality. Let X be a nonnegative valued random variable, then for every $t \ge 0$:

$$\Pr[\mathbf{X} \ge t\mathbf{E}[\mathbf{X}]] \le \frac{1}{t}.$$

DIS 13

- 1. Markov's inequality is *false* for random variables that can take on negative values! Give an example.
- 2. Give a tight example for Markov's inequality. In particular, given μ and t, construct a random variable X such that $\mu = \mathbf{E}[X]$ and $\Pr[X \ge t\mu] = \frac{1}{t}$.

Chebyshev's inequality. Let X be any random variable with well-defined variance¹, then

$$\Pr\left[|X - \mathbf{E}[X]| > t\sqrt{\operatorname{Var}[X]}\right] \le \frac{1}{t^2}.$$

To see the above inequality in action, consider the following problem:

Let B be a bag with n balls, k of which are red and n-k of which are blue. We do not have knowledge of k and wish to estimate k from ℓ independent samples (with replacement) drawn from B.

Let X be the number of red balls sampled.

- 1. What is $\mathbf{E}[X]$?
- 2. What is Var[X]?
- 3. Choose a value for ℓ and give an algorithm that takes in n and X and outputs a number \widetilde{k} such that $\widetilde{k} \in [k \varepsilon \sqrt{k}, k + \varepsilon \sqrt{k}]$ with probability at least 1δ .

Solution:

- 1. The probability that a random (u, v) pair is not an edge where u is a left vertex and v is a right vertex is $\frac{1}{n} \frac{1}{n^2}$.
- 2. By union bounding over all n edges chosen, the probability that M is not a perfect matching is at most $1 \frac{1}{n}$.
- 3. The previous part implies that M has at least $\frac{1}{n}$ probability of being a perfect matching, which means a perfect matching exists in G.
- 4. The failure probability of SpamBlindMatching is bounded by $\left(1 \frac{1}{n}\right)^T$.
- 5. Setting $T = n \ln(1/\delta)$ works because $\left(1 \frac{1}{n}\right)^n \le \frac{1}{e}$.
- 6. Uniform ± 1 has expected value 0 but half chance of exceeding 0.
- 7. Consider the random variable that is $t\mu$ with probability 1/t and 0 with probability (t-1)/t.
- 8. $\mathbf{E}[X] = \frac{k}{n}\ell$.
- 9. Defining X_i as the random variable that the *i*-th sample is red, and using independence of the X_i we have

$$\mathbf{Var}[\boldsymbol{X}] = \mathbf{Var}[\boldsymbol{X}_1 + \dots + \boldsymbol{X}_\ell] = \mathbf{Var}[\boldsymbol{X}_1] + \dots + \mathbf{Var}[\boldsymbol{X}_\ell] = \ell \frac{k}{n} \left(1 - \frac{k}{n} \right).$$

10. The algorithm is to output $\frac{n}{\ell} X$. $\mathbf{E} \left[\frac{n}{\ell} X \right] = k$ and $\mathbf{Var} \left[\frac{n}{\ell} X \right] = \frac{kn}{\ell} \left(1 - \frac{k}{n} \right) \leq \frac{kn}{\ell}$. This quantity deviates from k by $\frac{1}{\sqrt{\delta}} \sqrt{\frac{kn}{\ell}}$ with probability at most δ . We wish to choose ℓ so that $\frac{1}{\sqrt{\delta}} \sqrt{\frac{kn}{\ell}} < \varepsilon$. This happens when $\ell = \frac{n}{\varepsilon^2 \delta}$.

 $^{^{1}}$ In this course, all random variables will have well-defined variance