Laboratory no. 6

1 Theoretical aspects

- Dead time systems
- Gain margin, phase margin (on Nyquist and Bode)

2 Aims

Stability analysis of negative feedback control systems.

The gain margin m_k and phase margin γ_k for negative feedback control systems with dead time

3 Stability analysis using frequency response

3.1 For simplicity it is considered a rigid negative feedback control structure:

where
$$H_d(s) = kH(s)$$
; $H_{des}(s) = H_d(s)$; $H_o(s) = \frac{H_d(s)}{1 + H_d(s)}$

- 3.2 Relations for math quatities used in stability analysis
 - Cutting frequency, (ω_t) from relation: $|H(j\omega_t)|=1$;
 - Frequency at $-\pi$, $(\omega_{-\pi})$ from relation $\angle H(j\omega_{-\pi}) = -\pi$;
 - Gain margin, $m_k^{d\beta} = |H(j\omega_{-\pi})|^{d\beta}$;
 - Phase margin, $\gamma_k = \pi + \angle H(j\omega_c)$;
- **3.3** Simplified Nyquist criterion:

 ${\gamma_k \geq 0 \brace m_k^{d\beta} \leq 0}$ equivalent with the statement « The critical point (-1,0*j) left on the left side of Nyquist diagram of the open loop transfer function»

4 Problems

4.1 Analyze the stability of the negative feedback structure (use simplified Nyquist, drawNyquist diagram in Matlab)

$$u(t) \longrightarrow k \longrightarrow H(s) \xrightarrow{y(t)}, \text{ where } k \ge 0 \text{ i } H(s) = \frac{600}{(s+2)(s+300)} e^{-\tau_m s}$$

- a) Draw Bode of the open loop transfer function (use asymptotes, check the result using Bode from Matlab);
- b) Aproximate frequency at $-\pi$ and ω_t ;
- c) Compute frequency at $-\pi$ and ω_t and compare to the results obtained at previous point.
- d) Indicate on Bode the phase and gain margin;
- e) Compute the two margins.
- f) Finally, analyze the stability of the closed loop system.

Nr.	k	T _m	Nyquist	Но	Bode
1	2.55	0.85	Nyquist Diagram 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5	UNSTABLE	Bode Dagram 10 10 10 10 10 10 10 10 10 1
2	2.45	0.8	Nyquist Diagram 2.5 2 1.5 1.5 1.5 1.5 2 2.5 1.5 1	I UNSTABLE	Bode Dagram (Ge) 10 10 10 10 10 Frequency (rad/sec)
3	2.35	0.75	Nyquist Diagram 2.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5	UNSTABLE	Bode Diagram (ga) appropriate of the control of th
4	2.25	0.7	Nyquist Diagram 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	UNSTABLE	Bode Diagram (Geo.) 10 10 10 10 10 10 10 10 10 1

9	1.75	0.45			
			Nyquist Diagram		Bode Diagram 5
			sex Armadeum Aves		-5
			-1 -0.5 0 0.5 1 1.5 2	STABLE	90 -180 -180 -17 -17 -17 -17 -17 -17 -17 -17 -17 -17
10	1.65	0.4	Real Axis	0)	Frequency (rad/sec)
	1.03	0.4	Nyquist Diagram 1 0.5 -0.5 -1 -0.5 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1	STABLE	Bode Dagram 5 (Geophystal Control of the Control
11	1 55	0.35	Real Axis	0)	Frequency (rad/sec)
11	1.55		Nyquist Diagram 1 0.5 -0.5 -0.5 Real Axis	STABLE	Bode Diagram 5 (B) Population of the control of t
12	1.45	0.3	Nyquist Diagram		Bode Diagram
			0.5 0.5 0 Real Axis	STABLE	(69) 990 -5 -5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

4.2 Analyze the stability of the next closed loop system, using the same steps as in the previous problem

$$u(t) \longrightarrow k \longrightarrow H(s) \xrightarrow{y(t)}, \text{ with } k \ge 0 \text{ i } H(s) = \frac{600}{s(s+2)(s+300)}e^{-\tau_m s}$$