Chapter 21

Reductions and NP

CS 473: Fundamental Algorithms, Fall 2011 November 15, 2011

21.1 Reductions Continued

21.1.1 Polynomial Time Reduction

21.1.1.1 Karp reduction

A **polynomial time reduction** from a decision problem X to a decision problem Y is an algorithm A that has the following properties:

- (A) given an instance I_X of X, A produces an instance I_Y of Y
- (B) \mathcal{A} runs in time polynomial in $|I_X|$. This implies that $|I_Y|$ (size of I_Y) is polynomial in $|I_X|$
- (C) Answer to I_X YES iff answer to I_Y is YES.

Notation: $X \leq_P Y$ if X reduces to Y

Proposition 21.1.1 If $X \leq_P Y$ then a polynomial time algorithm for Y implies a polynomial time algorithm for X.

Such a reduction is called a *Karp reduction*. Most reductions we will need are Karp reductions.

21.1.2 A More General Reduction

21.1.2.1 Turing Reduction

Definition 21.1.2 (Turing reduction.) Problem X polynomial time reduces to Y if there is an algorithm A for X that has the following properties:

(A) on any given instance I_X of X, A uses polynomial in $|I_X|$ "steps"

- (B) a step is either a standard computation step, or
- (C) a sub-routine call to an algorithm that solves Y.

This is a Turing reduction.

Note: In making sub-routine call to algorithm to solve Y, \mathcal{A} can only ask questions of size polynomial in $|I_X|$. Why?

21.1.2.2 Comparing reductions

(A) Karp reduction:

(B) Turing reduction:

Turing reduction

- (A) Algorithm to solve X can call solver for Y many times.
- (B) Conceptually, every call to the solver of Y takes constant time.

21.1.2.3 Example of Turing Reduction

Input Collection of arcs on a circle.

Goal Compute the maximum number of non-overlapping arcs.

Reduced to the following problem:?

Input Collection of intervals on the line.

Goal Compute the maximum number of non-overlapping intervals.

How? Used algorithm for interval problem multiple times.

21.1.2.4 Turing vs Karp Reductions

- (A) Turing reductions more general than Karp reductions.
- (B) Turing reduction useful in obtaining algorithms via reductions.
- (C) Karp reduction is simpler and easier to use to prove hardness of problems.
- (D) Perhaps surprisingly, Karp reductions, although limited, suffice for most known NP-Completeness proofs.

21.1.3 The Satisfiability Problem (SAT)

21.1.3.1 Propositional Formulas

Definition 21.1.3 Consider a set of boolean variables $x_1, x_2, \ldots x_n$.

- (A) A literal is either a boolean variable x_i or its negation $\neg x_i$.
- (B) A clause is a disjunction of literals. For example, $x_1 \lor x_2 \lor \neg x_4$ is a clause.
- (C) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
 - (A) $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is a CNF formula.
- (D) A formula φ is a **3CNF**:

A CNF formula such that every clause has **exactly** 3 literals.

(A) $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3 \lor x_1)$ is a 3CNF formula, but $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is not.

21.1.3.2 Satisfiability

Problem: **SAT**

Instance: A CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ .

Question: Is there a truth assignment to the variable of φ such that φ

evaluates to true?

21.1.3.3 Satisfiability

SAT

Given a CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

Example 21.1.4 $(x_1 \lor x_2 \lor \neg x_4) \land (x_2 \lor \neg x_3) \land x_5$ is satisfiable; take $x_1, x_2, \dots x_5$ to be all true

$$(x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2) \wedge (x_1 \vee x_2)$$
 is not satisfiable

3SAT

Given a 3CNF formula φ , is there a truth assignment to variables such that φ evaluates to true?

(More on **2SAT** in a bit...)

21.1.3.4 Importance of SAT and 3SAT

- (A) **SAT** and **3SAT** are basic constraint satisfaction problems.
- (B) Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
- (C) Arise naturally in many applications involving hardware and software verification and correctness.
- (D) As we will see, it is a fundamental problem in theory of NP-Completeness.

21.1.4 SAT and 3SAT 21.1.4.1 SAT \leq_P 3SAT

How **SAT** is different from **3SAT**?

In **SAT** clauses might have arbitrary length: $1, 2, 3, \ldots$ variables:

$$\Big(x \vee y \vee z \vee w \vee u\Big) \wedge \Big(\neg x \vee \neg y \vee \neg z \vee w \vee u\Big) \wedge \Big(\neg x\Big)$$

In **3SAT** every clause must have *exactly* 3 different literals.

To reduce from an instance of **SAT** to an instance of **3SAT**, we must make all clauses to have exactly 3 variables...

Basic idea

- (A) Pad short clauses so they have 3 literals.
- (B) Break long clauses into shorter clauses.
- (C) Repeat the above till we have a 3CNF.

21.1.4.2 3SAT \leq_P SAT

- (A) 3SAT \leq_P SAT.
- (B) Because...

A **3SAT** instance is also an instance of **SAT**.

21.1.4.3 SAT \leq_P 3SAT

Claim 21.1.5 SAT \leq_P 3SAT.

Given φ a **SAT** formula we create a **3SAT** formula φ' such that

- (A) φ is satisfiable iff φ' is satisfiable
- (B) φ' can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3, replace it with several clauses of length exactly 3

21.1.5 SAT \leq_P 3SAT

21.1.5.1 A clause with a single literal

Reduction Ideas

Challenge: Some of the clauses in φ may have less or more than 3 literals. For each clause with < 3 or > 3 literals, we will construct a set of logically equivalent clauses.

(A) Case clause with one literal: Let c be a clause with a single literal (i.e., $c = \ell$). Let u, v be new variables. Consider

$$c' = (\ell \lor u \lor v) \land (\ell \lor u \lor \neg v)$$
$$\land (\ell \lor \neg u \lor v) \land (\ell \lor \neg u \lor \neg v).$$

Observe that c' is satisfiable iff c is satisfiable

21.1.6 SAT \leq_P 3SAT

21.1.6.1 A clause with two literals

Reduction Ideas: 2 and more literals

(A) Case clause with 2 literals: Let $c = \ell_1 \vee \ell_2$. Let u be a new variable. Consider

$$c' = \left(\ell_1 \vee \ell_2 \vee u\right) \wedge \left(\ell_1 \vee \ell_2 \vee \neg u\right).$$

Again c is satisfiable iff c' is satisfiable

21.1.6.2 Breaking a clause

Lemma 21.1.6 For any boolean formulas X and Y and z a new boolean variable. Then

$$X \vee Y$$
 is satisfiable

if and only if, z can be assigned a value such that

$$(X \lor z) \land (Y \lor \neg z)$$
 is satisfiable

(with the same assignment to the variables appearing in X and Y).

21.1.7 SAT \leq_P 3SAT (contd)

21.1.7.1 Clauses with more than 3 literals

Let $c = \ell_1 \vee \cdots \vee \ell_k$. Let $u_1, \ldots u_{k-3}$ be new variables. Consider

$$c' = \left(\ell_1 \vee \ell_2 \vee u_1\right) \wedge \left(\ell_3 \vee \neg u_1 \vee u_2\right)$$

$$\wedge \left(\ell_4 \vee \neg u_2 \vee u_3\right) \wedge$$

$$\cdots \wedge \left(\ell_{k-2} \vee \neg u_{k-4} \vee u_{k-3}\right) \wedge \left(\ell_{k-1} \vee \ell_k \vee \neg u_{k-3}\right).$$

Claim 21.1.7 c is satisfiable iff c' is satisfiable.

Another way to see it — reduce size of clause by one:

$$c' = (\ell_1 \vee \ell_2 \ldots \vee \ell_{k-2} \vee u_{k-3}) \wedge (\ell_{k-1} \vee \ell_k \vee \neg u_{k-3}).$$

21.1.7.2 An Example

Example 21.1.8

$$\varphi = \left(\neg x_1 \lor \neg x_4\right) \land \left(x_1 \lor \neg x_2 \lor \neg x_3\right)$$
$$\land \left(\neg x_2 \lor \neg x_3 \lor x_4 \lor x_1\right) \land \left(x_1\right).$$

Equivalent form:

$$\psi = (\neg x_1 \lor \neg x_4 \lor z) \land (\neg x_1 \lor \neg x_4 \lor \neg z)$$

$$\land (x_1 \lor \neg x_2 \lor \neg x_3)$$

$$\land (\neg x_2 \lor \neg x_3 \lor y_1) \land (x_4 \lor x_1 \lor \neg y_1)$$

$$\land (x_1 \lor u \lor v) \land (x_1 \lor u \lor \neg v)$$

$$\land (x_1 \lor \neg u \lor v) \land (x_1 \lor \neg u \lor \neg v).$$

21.1.8 Overall Reduction Algorithm

21.1.8.1 Reduction from SAT to 3SAT

Correctness (informal)

 φ is satisfiable iff ψ is satisfiable because for each clause c, the new 3CNF formula c' is logically equivalent to c.

21.1.8.2 What about **2SAT**?

2SAT can be solved in polynomial time! (In fact, linear time!)

No known polynomial time reduction from **SAT** (or **3SAT**) to **2SAT**. If there was, then **SAT** and **3SAT** would be solvable in polynomial time.

Why the reduction from **3SAT** to **2SAT** fails?

Consider a clause $(x \lor y \lor z)$. We need to reduce it to a collection of 2CNF clauses. Introduce a face variable α , and rewrite this as

```
(x \vee y \vee \alpha) \wedge (\neg \alpha \vee z) \qquad \text{(bad! clause with 3 vars)} or (x \vee \alpha) \wedge (\neg \alpha \vee y \vee z) \qquad \text{(bad! clause with 3 vars)}.
```

(In animal farm language: **2SAT** good, **3SAT** bad.)

21.1.8.3 What about **2SAT**?

A challenging exercise: Given a **2SAT** formula show to compute its satisfying assignment...

(Hint: Create a graph with two vertices for each variable (for a variable x there would be two vertices with labels x = 0 and x = 1). For ever 2CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.

Now compute the strong connected components in this graph, and continue from there...)

21.1.9 3SAT and Independent Set

21.1.9.1 Independent Set

Problem: Independent Set

```
Instance: A graph G, integer k
Question: Is there an independent set in G of size k?
```

21.1.9.2 **3SAT** \leq_P Independent Set

The reduction 3SAT \leq_P Independent Set

Input: Given a 3CNF formula φ

Goal: Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

 G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although **3SAT** is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only **3CNF** formulas – reduction would not work for other kinds of boolean formulas.

21.1.9.3 Interpreting 3SAT

There are two ways to think about **3SAT**

- (A) Find a way to assign 0/1 (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- (B) Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in *conflict*, i.e., you pick x_i and $\neg x_i$ We will take the second view of **3SAT** to construct the reduction.

Figure 21.1: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

21.1.9.4 The Reduction

- (A) G_{φ} will have one vertex for each literal in a clause
- (B) Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- (C) Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- (D) Take k to be the number of clauses

21.1.9.5 Correctness

Proposition 21.1.9 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof:

- \Rightarrow Let a be the truth assignment satisfying φ
 - (A) Pick one of the vertices, corresponding to true literals under a, from each triangle. This is an independent set of the appropriate size

21.1.9.6 Correctness (contd)

Proposition 21.1.10 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof:

- \Leftarrow Let S be an independent set of size k
 - (A) S must contain exactly one vertex from each clause
 - (B) S cannot contain vertices labeled by conflicting clauses
 - (C) Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause

8

21.1.9.7 Transitivity of Reductions

Lemma 21.1.11 $X \leq_P Y$ and $Y \leq_P Z$ implies that $X \leq_P Z$.

Note: $X \leq_P Y$ does not imply that $Y \leq_P X$ and hence it is very important to know the FROM and TO in a reduction.

To prove $X \leq_P Y$ you need to show a reduction FROM X TO Y In other words show that an algorithm for Y implies an algorithm for X.

21.2 Definition of NP

21.2.0.8 Recap ...

Problems

- (A) Independent Set
- (B) Vertex Cover
- (C) Set Cover
- (D) **SAT**
- (E) 3SAT

Relationship

3SAT
$$\leq_P$$
 Independent Set $\overset{\leq_P}{\geq_P}$ Vertex Cover \leq_P Set Cover 3SAT \leq_P SAT \leq_P 3SAT

21.3 Preliminaries

21.3.1 Problems and Algorithms

21.3.1.1 Problems and Algorithms: Formal Approach

Decision Problems

- (A) Problem Instance: Binary string s, with size |s|
- (B) Problem: A set X of strings on which the answer should be "yes"; we call these YES instances of X. Strings not in X are NO instances of X.

Definition 21.3.1 (A) A is an algorithm for problem X if A(s) = "yes" iff $s \in X$

(B) A is said to have a polynomial running time if there is a polynomial $p(\cdot)$ such that for every string s, A(s) terminates in at most O(p(|s|)) steps

21.3.1.2 Polynomial Time

Definition 21.3.2 Polynomial time (denoted P) is the class of all (decision) problems that have an algorithm that solves it in polynomial time

Example 21.3.3 j2-¿ Problems in P include

- (A) Is there a shortest path from s to t of length $\leq k$ in G?
- (B) Is there a flow of value $\geq k$ in network G?
- (C) Is there an assignment to variables to satisfy given linear constraints?

21.3.1.3 Efficiency Hypothesis

A problem X has an efficient algorithm iff $X \in P$, that is X has a polynomial time algorithm. Justifications:

- (A) Robustness of definition to variations in machines.
- (B) A sound theoretical definition.
- (C) Most known polynomial time algorithms for "natural" problems have small polynomial running times.

21.3.1.4 Problems with no known polynomial time algorithms

Problems

- (A) Independent Set
- (B) Vertex Cover
- (C) Set Cover
- (D) **SAT**
- (E) 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are like above.

Question: What is common to above problems?

21.3.1.5 Efficient Checkability

Above problems share the following feature:

For any YES instance I_X of X there is a proof/certificate/solution that is of length $poly(|I_X|)$ such that given a proof one can efficiently check that I_X is indeed a YES instance Examples:

- (A) **SAT** formula φ : proof is a satisfying assignment
- (B) Independent Set in graph G and k: a subset S of vertices

21.3.2 Certifiers/Verifiers

21.3.2.1 Certifiers

Definition 21.3.4 An algorithm $C(\cdot, \cdot)$ is a certifier for problem X if for every $s \in X$ there is some string t such that C(s, t) = "yes", and conversely, if for some s and t, C(s, t) = "yes" then $s \in X$.

The string t is called a certificate or proof for s

Efficient Certifier

C is an efficient certifier for problem X if there is a polynomial $p(\cdot)$ such that for every string $s, s \in X$ iff there is a string t with $|t| \leq p(|s|)$, C(s,t) = "yes" and C runs in polynomial time

21.3.2.2 Example: Independent Set

- (A) Problem: Does G = (V, E) have an independent set of size $\geq k$?
 - (A) Certificate: Set $S \subseteq V$
 - (B) Certifier: Check $|S| \geq k$ and no pair of vertices in S is connected by an edge

21.3.3 Examples

21.3.3.1 Example: Vertex Cover

- (A) Problem: Does G have a vertex cover of size $\leq k$?
 - (A) Certificate: $S \subseteq V$
 - (B) Certifier: Check $|S| \leq k$ and that for every edge at least one endpoint is in S

21.3.3.2 Example: **SAT**

- (A) Problem: Does formula φ have a satisfying truth assignment?
 - (A) Certificate: Assignment a of 0/1 values to each variable
 - (B) Certifier: Check each clause under a and say "yes" if all clauses are true

21.3.3.3 Example: Composites

- (A) *Problem:* Is number s a composite?
 - (A) Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$
 - (B) Certifier: Check that t divides s (Euclid's algorithm)

21.4 *NP*

21.4.1 Definition

21.4.1.1 Nondeterministic Polynomial Time

Definition 21.4.1 Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers

Example 21.4.2 i2- δ Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, Composites are all examples of problems in NP

21.4.1.2 Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example: **SAT** formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

21.4.2 Intractability

21.4.2.1 *P* versus *NP*

Proposition 21.4.3 $P \subseteq NP$

For a problem in P no need for a certificate!

Proof: Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier

- (A) Certifier C on input s, t, runs A(s) and returns the answer
- (B) C runs in polynomial time
- (C) If $s \in X$ then for every t, C(s,t) = "yes"
- (D) If $s \notin X$ then for every t, C(s,t) = "no"

21.4.2.2 Exponential Time

Definition 21.4.4 Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\text{poly}(|s|)})$

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

21.4.2.3 NP versus EXP

Proposition 21.4.5 $NP \subseteq EXP$

Proof: Let $X \in NP$ with certifier C. Need to design an exponential time algorithm for X

- (A) For every t, with $|t| \leq p(|s|)$ run C(s,t); answer "yes" if any one of these calls returns "yes"
- (B) The above algorithm correctly solves X (exercise)
- (C) Algorithm runs in $O(q(|s| + |p(s)|)2^{p(|s|)})$, where q is the running time of C

21.4.2.4 Examples

- (A) **SAT**: try all possible truth assignment to variables.
- (B) **Independent Set**: try all possible subsets of vertices.
- (C) **Vertex Cover**: try all possible subsets of vertices.

21.4.2.5 Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$

Big Question

Is there are problem in NP that does not belong to P? Is P = NP?

21.4.3 If $P = NP \dots$

21.4.3.1 Or: If pigs could fly then life would be sweet.

- (A) Many important optimization problems can be solved efficiently.
- (B) The RSA cryptosystem can be broken.
- (C) No security on the web.
- (D) No e-commerce . . .
- (E) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

21.4.3.2 *P* versus *NP*

Status

Relationship between P and NP remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!