Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	M3215	К работе допущен
Студент <u>Гаджи</u>	<u>ев С. И., Адмайкин П. Г.</u>	Работа выполнена
Преподаватель	Тимофеева Э. И.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №1.04

"Исследование равноускоренного вращательного движения. Маятник Обербека."

1. Цель работы.

- 1) Проверка основного закона динамики вращения.
- 2) Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Задачи, решаемые при выполнении работы.

- 1) Измерение времени падения груза при разной массе груза и разном положении утяжелителей на крестовине.
- 2) Расчёт ускорения груза, углового ускорения крестовины и момента силы натяжения нити
- 3) Расчёт момента инерции крестовины с утяжелителями и момента силы трения.
- 4) Исследование зависимости момента силы натяжения нити от углового ускорения. Проверка основного закона динамики вращения.
- 5) Исследование зависимости момента инерции от положения масс относительно оси вращения. Проверка теоремы Штейнера.

3. Объект исследования.

- 1) Связь момента силы в натяжении нити с угловым ускорением вала.
- 2) Связь момента инерции с квадратом расстояния до оси вращения.

4. Метод экспериментального исследования.

Проведение множественных наблюдений для измерения времени, в течение которого каретка падает с фиксированной высоты, при вариации массы груза в каретке и изменении положения утяжелителей относительно оси вращения.

5. Рабочие формулы и исходные данные.

1)
$$ma = mg - T$$

 $a = \frac{2h}{t^2}$,
2) $\epsilon = \frac{2a}{d}$,

$$T = m(g - a).$$

$$M = \frac{md}{2}(g - a).$$

$$I_{\varepsilon} = M - M_{\mathrm{Tp}}$$

6)
$$I_{\varepsilon} = M - M_{\text{TP}},$$

7) $I = I_0 + 4m_{\text{yr}}R^2,$

8)
$$M = M_{\rm Tp} + I_{\varepsilon}$$
.

$$R = l_1 + (n-1)l_0 + \frac{1}{2}b,$$

$$\Delta \langle t \rangle_{\text{CJ}} = t_s \left(a_{\text{AOB}}, N \right) \sqrt{\frac{\sum_{i=1}^n (t_{1i} - \langle t_1 \rangle)^2}{N(N-1)}}$$

$$\Delta_{\varepsilon} = \sqrt{\left(\frac{\partial \varepsilon}{\partial \mathbf{a}} \cdot \Delta_{a}\right)^{2} + \left(\frac{\partial \varepsilon}{\partial \mathbf{d}} \cdot \Delta_{d}\right)^{2}}$$

$$\Delta_a = \sqrt{\left(\frac{\partial a}{\partial h} \cdot \Delta_h\right)^2 + \left(\frac{\partial a}{\partial t} \cdot \Delta_t\right)^2}$$

13)
$$\Delta_{M} = \sqrt{\left(\frac{\partial M}{\partial \mathbf{m}} \cdot \Delta_{m}\right)^{2} + \left(\frac{\partial M}{\partial \mathbf{d}} \cdot \Delta_{d}\right)^{2} + \left(\frac{\partial M}{\partial \mathbf{a}} \cdot \Delta_{a}\right)^{2}}$$

14)
$$\bar{t} = \frac{1}{N} \sum_{i=1}^{N} t_i$$

$$\Delta_{z} = \sqrt{\left(\frac{\partial f}{\partial x_{1}} \Delta_{x_{1}}\right)^{2} + \left(\frac{\partial f}{\partial x_{2}} \Delta_{x_{2}}\right)^{2} + \dots + \left(\frac{\partial f}{\partial x_{n}} \Delta_{x_{n}}\right)^{2}}$$
15)

15)
$$b = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

$$17) \ a = \overline{y} - b\overline{x}$$

$$d_i = y_i - (a + bx_i)$$
$$D = \Sigma(x_i - \bar{x})^2$$

$$\Delta b = t_{a,N} \cdot \sqrt{\frac{\sum d_i^2}{D(n-2)}}$$

18, 19, 20)
$$S_{m_{yT}} = \sqrt{\frac{1}{D} \cdot \frac{\sum M_i - (M_{Tp} + I_0 \cdot R_i^2)}{n - 2}}$$
21)

$$S_{i_0} = \sqrt{\left(\frac{1}{n} + \frac{Rcp^2}{D}\right) \cdot \frac{\Sigma d_i^2}{n-2}}$$
22)

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Цифровой секундомер	Электронный	0–11 c	0,01 c
2	Линейка направляющей	Измерительный	0–700 мм	0,5 см

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Схема измерительного стенда

- 1) m груз
- 2) Ст ступица
- 3) Бл блок
- 4) Кр крестовина
- 5) Сп спицы
- 6) $m_{\rm vr}$ груз-утяжелитель
- 7) R расстояние утяжелителей от оси вращения крестовины
- 8) $m\vec{p}$ векторная сумма силы тяжести
- 9) \vec{T} сила натяжения нити
- 10) h расстояние, пройденное грузом за время t от начала движения
- 11) d диаметр ступицы

Рис. 2. Стенд лаборатории механики (общий вид)

- 1) Основание
- 2) Рукоятка сцепления крестовин
- 3) Устройства принудительного трения
- 4) Поперечина
- 5) Груз крестовины
- 6) Трубчатая направляющая
- 7) Передняя крестовина
- 8) Задняя крестовина
- 9) Шайбы каретки
- 10) Каретка
- 11) Система передних стоек

Рисунок 3. Определение расстояние от центра груза-утяжелителя до оси вращения.

- 1) *0* ось вращения
- 2) C центр утяжелителя
- 3) l_1 расстояние от оси вращения до первой риски

- 4) l_0 расстояние между соседними рисками
- 5) b размер утяжелителя вдоль спицы

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1: Протокол измерений времени падения груза при разной массе груза и разном положении утяжелителей на крестовине (измерения также представлены в приложении).

NA			Положение у	•		•	
Масса груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
	5.20	6.21	7.57	7.94	10.22	10.43	t_1
m1	5.17	6.03	7.29	8.52	8.52	10.39	t_2
mt1	4.88	5.93	7.20	8.15	10.40	10,51	t_3
	5.08	6.06	7.35	8.20	9.71	10.41	t_cp
	3.88	4.47	4.83	5.47	6.06	7.10	t_1
<i>m</i> 2	3.66	4.24	5.06	5.58	6.61	7.12	t_2
1112	3.85	4.34	4.93	5.49	6.49	7.39	t_3
	3.80	4.35	4.94	5.51	6.39	7.20	t_cp
	3.03	3.64	4.10	4.41	5.15	6.00	t_1
<i>m</i> 3	3.06	3.42	4.07	4.45	5.18	5.45	t_2
III.5	2.98	3.34	3.75	4.51	5.09	5.78	t_3
	3.02	3.47	3.97	4.46	5.14	5.74	t_cp
m4	2.86	2.98	3.46	3.99	4.66	4.80	t_1
	2.73	3.10	3.51	4.00	4.23	4.69	t_2
	2.65	2.95	3.47	3.75	4.64	4.93	t_3
	2.75	3.01	3.48	3.91	4.51	4.81	t_cp

Где $m_1 = 0.267$ кг, $m_2 = 0.487$ кг, $m_3 = 0.707$ кг, $m_4 = 0.927$ кг.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2: ускорение груза $a \text{ м/c}^2$.

<u></u>		<u> </u>					
Масса груза, г	Положение утяжелителей						
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
<i>m</i> 1	0.054	0.038	0.026	0.021	0.015	0.013	
m2	0.097	0.074	0.057	0.046	0.034	0.027	
<i>m</i> 3	0.153	0.116	0.089	0.070	0.053	0.042	
<i>m</i> 4	0.186	0.155	0.116	0.091	0.069	0.061	

Таблица 3: угловое ускорение крестовины ε рад/ c^2 .

Масса груза, г	Положение утяжелителей						
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
<i>m</i> 1	2.356	1.659	1.126	0.905	0.645	0.562	
<i>m</i> 2	4.223	3.217	2.494	2.002	1.492	1.173	
<i>m</i> 3	6.659	5.065	3.856	3.065	2.304	1.845	
<i>m</i> 4	8.068	6.718	5.026	3.975	2.993	2.635	

Таблица 4: момент силы натяжения нити M $H_{\rm M}$.

Масса груза, г	Положение утяжелителей						
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска	
<i>m</i> 1	0.060	0.060	0.060	0.060	0.060	0.060	
m2	0.109	0.109	0.109	0.109	0.109	0.109	
<i>m</i> 3	0.157	0.157	0.158	0.158	0.158	0.159	
<i>m</i> 4	0.205	0.206	0.206	0.207	0.207	0.208	

Таблица 5: данные для нахождения зависимостей $M(\varepsilon)$ и $I(R^2)$.

N_рисок	Rм	R^2 M^2	<i>I</i> кг · м ²	$M_{\mathrm{тр}}$ Нм
Риска 1	0.077	0.006	0.0245	0.002
Риска 2	0.102	0.010	0.0285	0.014
Риска 3	0.127	0.016	0.0373	0.017
Риска 4	0.152	0.023	0.0476	0.015
Риска 5	0.177	0.031	0.0624	0.018
Риска 6	0.202	0.041	0.0711	0.023

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Таблица 6: значения погрешностей для первых значений a, ε, M .

1) $\Delta(t)$ сл = 0.5325. Формула её расчёта:

$$\Delta \langle t \rangle_{\text{ca}} = t_s(\alpha_{\text{дов}}, N) \sqrt{\frac{\sum_{\ell=1}^{N} (t_{1\ell} - \langle t_1 \rangle)^2}{N(N-1)}}$$

2) $\Delta t = 0.5326$. Формула её расчёта:

$$\Delta t = \sqrt{(\Delta \langle t \rangle_{\text{сл}})^2 + (\frac{2}{3} \Delta t_{\text{пр}})^2}$$

3) ∆а = 0.0114. Формула её расчёта:

$$\Delta_a = \sqrt{(\frac{\partial a}{\partial h} \cdot \Delta_h)^2 + (\frac{\partial a}{\partial t} \cdot \Delta_t)^2} = \sqrt{(\frac{2}{t^2} \cdot \Delta_h)^2 + (-\frac{4h}{t^3} \cdot \Delta_t)^2}$$

4) $\Delta \varepsilon = 0.4943$. Формула её расчёта:

$$\Delta_{\varepsilon} = \sqrt{(\frac{\partial \varepsilon}{\partial a} \cdot \Delta_a)^2 + (\frac{\partial \varepsilon}{\partial d} \cdot \Delta_d)^2} = \sqrt{(\frac{2}{d} \cdot \Delta_a)^2 + (-\frac{2a}{d^2} \cdot \Delta_d)^2}$$

5) $\Delta M = 0.0004$. Формула её расчёта:

$$\Delta_M = \sqrt{(\frac{\partial M}{\partial m} \cdot \Delta_m)^2 + (\frac{\partial M}{\partial d} \cdot \Delta_d)^2 + (\frac{\partial M}{\partial a} \cdot \Delta_a)^2} = \sqrt{(\frac{d(g-a)}{2} \cdot \Delta_m)^2 + (\frac{m(g-a)}{2} \cdot \Delta_d)^2 + (-\frac{md}{2} \cdot \Delta_a)^2}$$

Погрешности						
a =	$0.0114 \text{ m/}c^2$					
ε =	0.4943 рад/c ²					
M =	0.0004 Нм					

6) D = 0.011. Формула её расчёта:

$$D = \sum (x_i - \overline{x})^2$$

7) Sm_yт = 0.0398. Формула её расчёта:

$$S_{m_{\text{yT}}} = \sqrt{\frac{1}{D} \cdot \frac{\Sigma M_i - \left(M_{\text{TP}} + I_0 \cdot R_i^2\right)}{n - 2}}$$

8) SI_0 = 0.002. Формула её расчёта:

$$S_{i_0} = \sqrt{\left(\frac{1}{n} + \frac{Rcp^2}{D}\right) \cdot \frac{\Sigma d_i^2}{n-2}}$$

9) Δm_ут = 0.0796. Формула её расчёта:

$$\Delta m_{
m yT} = 2 \cdot S_{m_{
m yT}}$$

 $10)\Delta I_0 = 0.004$. Формула её расчёта:

$$\Delta I_0 = 2 \cdot S_{i_0}$$

11. Графики (перечень графиков, которые составляют Приложение 2).

График 1: точки зависимости M(ε) и графики аппроксимации $M=M_{\mathrm{Tp}}+Iε$.

График 2: точки зависимости $I(R^2)$ и график аппроксимации $I=i_0+4m_{\rm vr}R^2$.

12. Окончательные результаты.

Зависимость *M*(ε) линейна, все коэффициенты были ранее представлены в: Таблица№5 (Пункт 9), График№1 (Пункт 10).

Зависимость $I(R^2)$ линейна $\Delta I_0 = 0.009 \pm 0.003$ кг*м^2 m у $m = 0.416 \pm 0.079$ кг

13. Выводы и анализ результатов работы.

Вывод: С помощью маятника Обербека мы установили, что момент вращения и угловое ускорение имеют прямую зависимость. Это соответствие было подтверждено графиком №2, который демонстрирует, что момент инерции тела зависит от расстояния утяжелителей до оси вращения, и угловой коэффициент этого графика соответствует массе тела. Ошибки в измерениях в основном происходили из-за человеческого вмешательства и точности секундомера.

Agnavirus 1 1.04 Tagnueb 29.09.2023

Приложение

Таблица 1: Протокол измерений времени надения груза-при разной массе груза и разном положении утажелителей на крестовине

Macca	Положение утяжелителей								
груза, г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска			
	11 5,2	6,21	7,59	9 7,94	10,22	10,43			
	12 5,17	6,03	7,29	8,52	8,52	10,39			
m_1	t3 4,88	5,93	7,20	8,15	10,4	10,51			
	$t_{\rm ep}$								
m_2	3,88	4,47	4,63	5,47	6,06	7,10			
	3,66	4,24	5,06	5,58	6,61	7,12			
	3,85	4,34	4,93	5,49	6,49	7,39			
	3,03	3,64	4,10	4,41	5,15	6,0			
	3,06	3,42	4,07	4,45	5,18	5,45			
1113	2,98	3,34	3,75	4,51	5,09	5,78			
m_4	2,86	2,95	3,46	3,99	4,66	4,5			
	2,73	3,10	3,51	4,00	4,23	4,69			
	2,65	2,95	3,47	3,75	4,64	4,93			