공공 데이터를 활용한 머신러닝 실습

- 데이터 셋 : 버섯과 관련된 데이터
 - https://archive.ics.uci.edu/ml/datasets.php (https://archive.ics.uci.edu/ml/datasets.php)
- 머신러닝 사용모델: 랜덤 포레스트

1-1 머신러닝 모델 만들기

- 대표적 모델 중의 하나인 랜덤 포레스트 모델 사용
- 2001년에 레오 브라이만(Leo Breiman)이 제안한 머신러닝 알고리즘.
- 다수의 결정 트리를 만들고, 만들어진 의사결정트리를 기반으로 결과를 유도하므로 높은 정밀도를 자랑.

1-2 데이터 준비

- mushroom:
 - 8,124 종류의 버섯과 특징과 독이 있는지가 적혀 있는 데이터 세트.
 - 버섯의 특징을 기반으로 독의 유무를 판정하기 위한 것.
- link: https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data)

 (https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data)
- 데이터 다운로드

In [24]: ▶

```
import urllib.request as req
local = "mushroom.csv"
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data"
req.urlretrieve(url, local)
print("다운로드 완료")
```

다운로드 완료

- 한줄 한줄이 버섯 한 종류를 나타냄.
- 쉼표로 구분된 열은 23개, 23개의 특징이 알파벳으로 기록이 되어 있음.
- 가장 왼쪽열은 독의 유무 독이 있으면 p(poisonous), 식용이면 e(edible)
- 두 번째 열은 버섯의 머리 모양 b(벨형태), c(원뿔 형태), x(볼록한 형태), f(평평한 형태), k(혹 형태), s(오목한 형태)
- 네 번째 열은 버섯의 머리 색, n(갈색), b(황갈색) 등
 - 설명은 UCI 사이트에서 확인 가능

In [25]: ▶

모델 만들기

import pandas as pd
from sklearn import metrics
from sklearn.model_selection import train_test_split

```
# 데이터 읽기
mush = pd.read_csv("mushroom.csv", header=None)
mush
```

Out[26]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	p	Х	s	n	t	р	f	С	n	k	е	е	s	s	w	w	р	w	0	р	k	s	ι
1	е	X	s	у	t	а	f	С	b	k	е	С	s	s	w	w	р	w	0	р	n	n	ć
2	е	b	s	w	t	ı	f	С	b	n	е	С	s	s	w	w	p	w	0	р	n	n	m
3	p	Х	у	W	t	р	f	С	n	n	е	е	s	s	w	w	p	w	0	р	k	s	ι
4	е	х	s	g	f	n	f	w	b	k	t	е	s	s	w	w	p	w	0	е	n	а	ć
8119	е	k	s	n	f	n	а	С	b	у	е	?	s	s	0	0	р	О	0	р	b	С	
8120	е	X	s	n	f	n	а	С	b	у	е	?	s	s	0	0	р	n	0	р	b	٧	
8121	е	f	s	n	f	n	а	С	b	n	е	?	s	s	0	0	p	О	0	р	b	С	
8122	р	k	у	n	f	у	f	С	n	b	t	?	s	k	w	w	p	w	0	е	W	٧	
8123	е	X	s	n	f	n	а	С	b	у	е	?	s	s	0	0	p	О	0	р	0	С	

8124 rows × 23 columns

4

기호를 숫자로 변경

In [27]: ▶

```
from sklearn import preprocessing
encoder_le = preprocessing.LabelEncoder()
mush['label'] = encoder_le.fit_transform(mush.iloc[:, 0]) # 1열의 값을 변경하여 label을 만든다.
mush
```

Out [27]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	р	х	s	n	t	р	f	С	n	k	е	е	s	s	w	w	р	W	0	р	k	s	ι
1	е	х	s	у	t	а	f	С	b	k	е	С	s	s	w	w	р	w	О	р	n	n	ć
2	е	b	s	w	t	I	f	С	b	n	е	С	s	s	W	W	p	W	0	р	n	n	rr
3	р	х	у	w	t	p	f	С	n	n	е	е	s	s	W	W	p	W	0	р	k	s	ι
4	е	X	s	g	f	n	f	W	b	k	t	е	s	s	W	W	p	w	0	е	n	а	Ę
8119	е	k	s	n	f	n	а	С	b	у	е	?	s	s	0	0	p	0	0	р	b	С	
8120	е	Х	s	n	f	n	а	С	b	у	е	?	s	s	0	0	p	n	0	р	b	٧	
8121	е	f	s	n	f	n	а	С	b	n	е	?	s	s	0	0	р	0	0	р	b	С	
8122	р	k	у	n	f	у	f	С	n	b	t	?	s	k	W	W	p	W	0	е	W	٧	
8123	е	х	s	n	f	n	а	С	b	у	е	?	s	s	0	0	p	0	0	р	0	С	

8124 rows × 24 columns

◀

2열부터 나머지 열을 숫자로 변경

In [28]:

```
for i in range(1,23,1):
    mush['col' + str(i)] = encoder_le.fit_transform(mush.iloc[:, i]) # 각 열의 값을 변경하여 featur
mush
```

Out[28]:

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
0	р	х	s	n	t	р	f	С	n	k	е	е	s	s	w	W	р	W	0	р	k	s	ι
1	е	х	s	у	t	а	f	С	b	k	е	С	s	s	w	w	р	W	0	р	n	n	ξ
2	е	b	s	w	t	I	f	С	b	n	е	С	s	s	w	W	р	W	0	р	n	n	m
3	р	х	у	w	t	p	f	С	n	n	е	е	s	s	w	W	р	W	0	р	k	s	ι
4	е	х	s	g	f	n	f	W	b	k	t	е	s	s	W	W	р	W	0	е	n	а	ć
8119	е	k	s	n	f	n	а	С	b	У	е	?	s	s	Ο	0	р	0	0	р	b	С	
8120	е	X	s	n	f	n	а	С	b	У	е	?	s	s	Ο	0	р	n	0	р	b	٧	
8121	е	f	s	n	f	n	а	С	b	n	е	?	s	s	0	0	р	0	0	р	b	С	
8122	р	k	у	n	f	у	f	С	n	b	t	?	s	k	w	w	р	W	0	е	w	٧	
8123	е	х	s	n	f	n	а	С	b	У	е	?	s	s	0	0	р	0	0	р	0	С	

8124 rows × 46 columns

4

```
In [29]:
                                                                                                    H
col_all = list(range(0,23,1))
col_all
```

Out[29]:

[0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11,

12,

13, 14,

15, 16,

17,

18, 19,

20,

21, 22]

기존의 정보 열을 삭제

In [30]: ▶

```
mush.drop(col_all, axis=1)
```

Out[30]:

	label	col1	col2	col3	col4	col5	col6	col7	col8	col9	col10	col11	col12	col13	С
0	1	5	2	4	1	6	1	0	1	4	0	3	2	2	
1	0	5	2	9	1	0	1	0	0	4	0	2	2	2	
2	0	0	2	8	1	3	1	0	0	5	0	2	2	2	
3	1	5	3	8	1	6	1	0	1	5	0	3	2	2	
4	0	5	2	3	0	5	1	1	0	4	1	3	2	2	
8119	0	3	2	4	0	5	0	0	0	11	0	0	2	2	
8120	0	5	2	4	0	5	0	0	0	11	0	0	2	2	
8121	0	2	2	4	0	5	0	0	0	5	0	0	2	2	
8122	1	3	3	4	0	8	1	0	1	0	1	0	2	1	
8123	0	5	2	4	0	5	0	0	0	11	0	0	2	2	

8124 rows × 23 columns

```
←
```

```
In [31]:
```

```
X = mush.loc[: , "col1":"col7"] # 모든 행, col1~col7까지 선택
y = mush['label'] # 예측하고자 하는 열 선택
print(X.shape, y.shape)
```

(8124, 7) (8124,)

모델을 위해 사용하는 데이터

- 6093행 학습시키는 데이터 행의 수
- 2031행 만들어진 모델로 확인해 보는 데이터 수

```
In [32]: ▶
```

```
### 학습 데이터와 테스트 데이터 나누기
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)
```

```
(6093, 7) (6093,)
(2031, 7) (2031,)
```

1-3 모델 선택 및 학습

```
In [33]:
                                                                                              H
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
In [34]:
### 모델 선택 및 학습
model = RandomForestClassifier()
model.fit(X_train, y_train)
Out [34]:
RandomForestClassifier()
In [35]:
                                                                                              M
### 새로운 데이터로 예측해 보기
predict = model.predict(X_test)
predict
Out [35]:
array([1, 0, 0, ..., 1, 0, 0])
In [19]:
                                                                                              H
print( len(predict), len(y_test) )
2031 2031
In [20]:
                                                                                              H
y_test.values
Out[20]:
array([1, 0, 0, ..., 1, 0, 0])
1-4 정확도 확인
In [22]:
                                                                                              M
# 얼마나 적중했을까?
import numpy as np
np.mean( predict==y_test.values )
```

Out[22]:

0.9945839487936977

Summary

- 6100여개 데이터를 이용하여 예측할 수 있는 머신러닝 모델을 만들었다.
- 2031여개 데이터를 이용하여 예측을 수행하였다.
- 정확도는 99%의 정확도를 확인할 수 있다.

In []:	M