Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

~	Congra	atulations! You passed!	em
	~	1 / 1 points	
		notation would you use to denote the 3rd layer's activations when the input is a example from the 8th minibatch?	
	0	$a^{[3]\{8\}(7)}$	
	Corr	ect	
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
		$a^{[8]\{7\}(3)}$	
	×	0 / 1 points	
	2. Which	of these statements about mini-batch gradient descent do you agree with?	
		One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient descent.	
	0	Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient	

This should not be selected

descent.

You should implement mini-batch gradient descent without an explicit forloop over different mini-batches, so that the algorithm processes all mini-Optimization algorithms he same time (vectorization).

9/10 points (90.00%)

Quiz, 10 questions

~	1 / 1 points			
3. Vhy is petwee	the best mini-batch size usually not 1 and not m, but instead something in- en?			
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
Corre	ect			
Corre	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Corre				
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			
Un-selected is correct				
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Un-selected is correct				
~	1 / 1 points			

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

Quiz, 10 questions

Which of the following do you agree with?

	If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.			
	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.			
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.			
Correct				
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.			

1/1 points

5.

9/10 points (90.00%)

Suppose the temperature in Casablanca over the first three days of January are the

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions
$$ext{Jan 1st: } heta_1 = 10^oC$$

Jan 2nd: $\theta_2 10^{o} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with eta=0.5 to track the temperature: $v_0=0$, $v_t=eta v_{t-1}+(1-eta) heta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2=7.5$$
, $v_2^{corrected}=10\,$

Correct

$$igcup v_2=10$$
, $v_2^{corrected}=7.5$

$$v_2=10$$
, $v_2^{corrected}=10$

$$igcup v_2=7.5$$
, $v_2^{corrected}=7.5$

1/1 points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$igcap lpha = rac{1}{1+2*t} lpha_0$$

$$lpha = 0.95^t lpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$lpha=e^tlpha_0$$

Correct

points

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Optimization algorithms

9/10 points (90.00%)

Quiz, 10 questions

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent

1/1 points 9.

O+::	Suppose batch gradient descent in a deep network is taking excessively long to fi	nd a
Optimizati Quiz, 10 questions	Suppose batch gradient descent in a deep network is taking excessively long to find $G(W^{[1]},b^{[1]},,W^{[L]},b^{[L]})$. Which of the following techniques could help find	9/10 points (90.00%)
	parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	
	Try initializing all the weights to zero	
	Un-selected is correct	
	Try using Adam	
	Correct	
	Try mini-batch gradient descent	
	Correct	
	Try better random initialization for the weights	
	Correct	
	Try tuning the learning rate $lpha$	
	Correct	
	1 / 1 points	
	10. Which of the following statements about Adam is False?	
	Adam should be used with batch gradient computations, not with minibatches.	
	Correct	
	Adam combines the advantages of RMSProp and momentum	

Optimizations	The learning rate hyperparameter $lpha$ in Adam usually needs to be to the algorithms $ \qquad \qquad \text{We usually use "default" values for the hyperparameters eta_1, eta_2 and Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)}$	9/10 points (90.00%)