裝订銭

姓名:

院系:_____

班级___

大连理工大学

学号: 课程名称: <u>数学物理方程</u> 试卷: <u>C</u> 考试形式: <u>闭卷</u>

授课院(系): 数学科学学院 考试日期: 2020年月号试卷共6页

	1	1	111	四	五	六			总分
标准分	10	40	15	12	13	10			100
得 分									

一、 (10分) 简要解释惠更斯原理。

- 二、 (共40分, 每题10分) 计算题.
- 1.求函数 $f(t) = e^{-|t-2|}$ 在实数轴上的傅立叶变换。

2.求函数 $f(t) = \sin(t)$ 在实数轴上的傅立叶逆变换。

3.求函数 $f(t) = t^5 + 3t$ 在正实轴上的 Laplace 变换。

4. 求
$$F(p) = \frac{3}{p^2 + 2p + 3}$$
 的拉普拉斯逆变换。

三、 (15 分) 解答题.

利用分离变量法求下述方程的解 $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, x \in (0,1), t > 0$

其中 u 满足初值 $u|_{t=0} = x(1-x), x \in [0,1]$,与边值 $u|_{x=0} = u|_{x=1} = 0, t > 0$

四、解释题(12分)

一均匀细杆长为 20 米,一端固定,另一端沿杆的轴线方向被拉长 0.1 米静止,突然放手任其振动,试建立该运动方程与定解条件(每一步需要说明理由)。

C-4

五、解答题(13分)

求下述方程的解:
$$\frac{\partial^2 u}{\partial t^2} - 7 \frac{\partial^2 u}{\partial t \partial x} + 10 \frac{\partial^2 u}{\partial x^2} = 0, t \in (-\infty, +\infty), x > 0$$

其中边值为 $u|_{x=0} = t^2, \frac{\partial u}{\partial x}|_{x=0} = 1$

六、证明题(10分)。

证明调和函数方程解的唯一性: $\Delta u=0, (x,y,z)\in B_1\subset R^3$,其中边值为 $u|_{x^2+y^2+z^2=1}=2z$