Simulation 7

Ishan Bajaj

Closed-loop Block Diagram

 G_c : controller

 G_p : plant

 G_d : disturbance

 G_v : valve

 G_m : measurement device

Process reaction curve method

- Process reaction curve method developed by Cohen and Coon
- Based on the observation that response of most processes have sigmoid shape to step change in input

•
$$G_{PRC} = \frac{Y_m}{U} = G_v G_p G_m \approx \frac{Ke^{-t}d^s}{\tau s + 1}$$

•
$$K = \frac{output \ at \ steady \ state}{input \ at \ steady \ state} = \frac{B}{A}$$
, $\tau = \frac{B}{M}$

- *M* is the slope of the sigmoidal response at inflection point
- t_d : time elapsed until the system responded
- Using Matlab function step plots the step response

Finding Inflection Point

Partial fraction expansion

- Use residue function in Matlab to find partial fraction expansion of G_{PRC}
- Usage of residue function

$$Figure G = \frac{b(s)}{a(s)} = \frac{-4s+8}{s^2+6s+8}$$

- \rightarrow b=[-4 8];
- \triangleright a=[1 6 8];
- \triangleright [r, p] = residue(b, a);
- $\Rightarrow \frac{b(s)}{a(s)} = \frac{r(1)}{s p(1)} + \frac{r(2)}{s p(2)} + \cdots$

Inverse Laplace

•
$$y = r(1)e^{p(1)t} + r(2)e^{p(2)t} + \cdots$$

Finding inflection point

$$\bullet \frac{dy}{dt} = r(1)p(1)e^{p(1)t} + r(2)p(2)e^{p(2)t} + \cdots$$

$$\frac{dy}{dt} = r(1)p(1)e^{p(1)t} + r(2)p(2)e^{p(2)t} + \cdots
\frac{d^2y}{dt^2} = r(1)p(1)^2e^{p(1)t} + r(2)p(2)^2e^{p(2)t} + \cdots = 0$$

Finding equation of the line

$$\bullet y^l - y(t^*) = \frac{dy}{dt}|_{t^*}(t - t^*)$$

Cohen-Coon Controller Settings

P Controller

•
$$K_C = \frac{1}{K} \frac{\tau}{t_d} \left(1 + \frac{t_d}{3\tau} \right)$$

PI Controller

$$\bullet \quad K_c = \frac{1}{K} \frac{\tau}{t_d} \left(0.9 + \frac{t_d}{12\tau} \right)$$

$$\bullet \quad \tau_I = \frac{t_d \left(30 + \frac{3t_d}{\tau}\right)}{\left(9 + \frac{20t_d}{\tau}\right)}$$

PID Controller

$$\bullet \quad K_C = \frac{1}{K} \frac{\tau}{t_d} \left(\frac{4}{3} + \frac{t_d}{4\tau} \right)$$

•
$$\tau_{I} = \frac{t_{d}\left(32 + \frac{6t_{d}}{\tau}\right)}{\left(13 + \frac{8t_{d}}{\tau}\right)}$$
• $\tau_{D} = t_{d} \frac{4}{11 + \frac{2t_{d}}{\tau}}$

$$\bullet \quad \tau_D = t_d \frac{4}{11 + \frac{2t_d}{\tau}}$$

Bode plot

- $\bullet G_{ol} = G_c G_v G_p G_m$
- Three options
 - \triangleright Use of Matlab functions zpk, bode (specify G_{ol})
 - \blacktriangleright controlSystemDesigner (**specify** $G_vG_pG_m$)
 - \triangleright Substitute $s = j\omega$ in G_{ol} , find analytical function of $|G_{ol}(j\omega)|$ and $\phi(G_{ol}(j\omega))$