Teorie množin

Ladislav Láska

9. března 2010

Obsah

1	Fori	mální jazyk
	1.1	Základní součásti jazyka
	1.2	Formule
2	Axi	omy teorie množin
	2.1	Průnik a rozdíl množin
	2.2	Disjunkní množina
	2.3	Russelův paradox
	2.4	Axiom dvojce
		2.4.1 Rovnost množin
		2.4.2 Uspořádaná dvojce, k-tice
	2.5	Axiom sumy
		2.5.1 Neuspořádané k -tice
		2.5.2 Průnik
	2.6	Schéma axiomu nahrazení
		2.6.1 Binární relace
		2.6.2 Funkce
	2.7	Uspořádání
	2.8	Ordinály

1 Formální jazyk

1.1 Základní součásti jazyka

- 1. proměnné
- 2. binární predikátový symbol \in
- 3. binární predikátový symbol =
- 4. logické spojky $\neg \land \lor \Rightarrow \Leftrightarrow$
- 5. kvantifikátory $(\forall x)$, $(\exists x)$
- 6. pomocné symboly závorky

1.2 **Formule**

- 1. Nechť x, y jsou prvky množiny, pak $(x \in y)$ a (x = y) jsou atomické formule.
- 2. Nechť výrazy φ , ψ jsou formule, potom: $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Rightarrow \psi$, $\varphi \Leftrightarrow \psi$ jsou formule.

Tedy toho hodne chybi

2 Axiomy teorie množin

2.1 Průnik a rozdíl množin

Definice Pro množiny a,b po řadě průnikem a rozdílem nazýváme množinu:

$$a \cup b = \{x : x \in a \land x \in b\} \tag{1}$$

$$a \setminus b = \{x : x \in a \land x \notin b\} \tag{2}$$

Existuje množina a (Axiom existence), podle vydělení pro formuli $x \neq x$ existuje a podle extenziability je jediná množina $\{x \in a : a \neq x\}$.

Definice Ø je jediná množina y splňující:

$$(\forall x)(x \notin y) \tag{3}$$

A nazýváme jí **prázdná množina**.

2.2 Disjunkní množina

Definice Říkáme, že množina a,b jsou disjunkní, že je-li $a \cup b = 0$.

Lemma

- 1. $\neg(\exists y)(y \in \emptyset)$
- 2. $(\forall x)(\emptyset \subset x)$
- 3. $x \subset \emptyset \Leftrightarrow x = 0$

Lemma

$$(\forall a)a = \{x : x \in a \land x = x\} \tag{1}$$

2.3 Russelův paradox

Věta

$$\neg(\exists z)(\forall x)(x \in z) \tag{1}$$

Důkaz Sporem: nechť z je taková množina. Pak mějme formuli $\varphi(x)$ $x \neq x$. Potom podle axiomu vydělení pro tuto formuli máme $t = \{x \in z : x \notin x\}$, tedy t je množina. Protože t je množina a z je množina všech množin. Protože $t \in z$, $t \in t \Leftrightarrow t \notin t$. Tedy neexistuje množina všech množin.

2.4 Axiom dvojce

$$(\forall a)(\forall b)(\exists z)(\forall x)(x \in z \Leftrightarrow (x = a \lor x = b)) \tag{1}$$

Definice Jsou-li a, b množiny, pak množinu se stávající z prvků a, b nazveme **neuspořádanou dvojcí** množin a, b a značíme $\{a, b\}$. Pro $a \neq b$ říkáme, že $\{a, b\}$ dvouprvková, jinak jednoprvková.

2.4.1 Rovnost množin

Lemma

- 1. $\{x\} = \{y\} \Leftrightarrow x = y$
- 2. $\{x\} = \{x, y\} \Leftrightarrow x = y$
- 3. $\{x,y\} = \{u,v\} \Leftrightarrow (x = u \land y = v) \lor (x = v \land y = u)$

2.4.2 Uspořádaná dvojce, k-tice

Uspořádaná dvojce množina,b je množina, která má prvky $\{\{a\},\{a,b\}\}$. Značíme jí < a,b>.

Lemma

$$\langle x, y \rangle = \langle u, v \rangle \Leftrightarrow (x = u \land y = v)$$
 (1)

Definice Jsou-li dány množiny $a_1, a_2, ..., a_k$, pak uspořádanou k - tici definujeme jako:

$$\langle a_1 \rangle = a_1$$
, a dál indukcí (2)

$$\langle a_1, a_2, ..., a_k \rangle = \langle \langle a_1, ..., a_{k-1} \rangle, a_k \rangle$$
 (3)

Lemma

$$\langle a_1, ..., a_k \rangle = \langle b_1, ..., b_k \rangle$$
 (4)

$$\Leftrightarrow$$
 (5)

$$(a_1 = b_1) \wedge \dots \wedge (a_k = b_k) \tag{6}$$

2.5 Axiom sumy

$$(\forall a)(\exists z)(\forall x)(x \in z \Leftrightarrow (\exists y)(x \in y \land y \in a)) \tag{1}$$

Značení

$$\bigcup a = \{x : (\exists y)(y \in a \land x \in y)\}$$
 (2)

Značení Nechť $a = \{b, c\}$. Pak $\bigcup a = b \cup c$

2.5.1 Neuspořádané k-tice

Značení Neuspořádaná k-tice je:

$$\{a, b, c\} = \{a, b\} \cup \{c\} \tag{1}$$

2.5.2 Průnik

Definice Pro neprázdnou množinu a lze analogicky definovat

$$\bigcap a = \{x : (\forall y)(y \in a \Rightarrow x \in y)\}$$
 (1)

Pro neprázdnou a existuje $\bigcap a$:

$$a \neq 0 \quad (\exists x)x \in a, \quad x = x_0 \tag{2}$$

$$a = 0 \quad \bigcap a$$
 není definovaný (3)

2.6 Schéma axiomu nahrazení

Je-li $\psi(u,v)$ formule, která neobsahuje volně proměnné z,w, potom formule:

$$(\forall u)(\forall v)(\forall w)(\psi(u,v) \land \psi(u,w) \Rightarrow v = w) \Rightarrow \tag{1}$$

$$(\forall a)(\exists z)(\forall v)(v \in z \Leftrightarrow (\exists u)(u \in a \land \psi(u, v))) \tag{2}$$

je axiom teorie množin.

Pozorování Pro jedno $u, \psi(u, v)$ platí pro nejvýše jedno v. To je analogie k funkci.

Definice Nechť a, b jsou množiny. **Kartézský součin** $a \times b$ je množina:

$$a \times b = \{ \langle x, y \rangle : x \in a \land y \in b \}$$
 (3)

Důkaz $a \times b$ je množina. Zvolme a zafixujme $y \in b$ a nechť $\psi(x, v)$ je formule $v = \langle x, y \rangle$. Je-li:

$$\psi(x,v) \land \psi(x,w) \Rightarrow v = \langle x,y \rangle \land w = \langle x,y \rangle \Rightarrow v = w \tag{4}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli ψ .

$$M_y = \{ \langle x, y \rangle : x \in a \}$$
 (5)

je množina podle nahrazení pro ψ pro každé y.

Nechť navíc $\psi(y,v)$ je formule $v=M_y$. Je-li:

$$\overline{\psi}(y,v) \wedge \overline{\psi}(y,w) \Rightarrow v = M_y \wedge w = M_y \Rightarrow v = w \tag{6}$$

Tedy je splněn předpoklad axiomu nahrazení (1) pro formuli $\overline{\psi}$. Navíc tedy

$$D = \{M_y : y \in b\} \text{ je množina} \tag{7}$$

2.6.1 Binární relace

Definice Binární relace je množina R, jejímiž prvky jsou uspořádané dvojce.

$$\operatorname{dom}(R) = \{x : (\exists y) < x, y > \in R\} \text{ je definiční obork } \operatorname{rng}(R) = \{y : (\exists x) < x, y > \in R\} \text{ je obor hodnot}$$

$$\tag{1}$$

Protože R je množina, dom(R) i rng(R) jsou množiny.

Definice Je-li R relace, definujeme:

$$R^{-1} = \{ \langle x, y \rangle : \langle y, x \rangle \in R \}$$
 (2)

Pro každou relaci R, R^{-1} je relace a $(R_{-1})^{-1} = R$.

Definice Jsou-li R, S relace, pak

$$R \circ S = \{ \langle x, z \rangle : (\exists y) \langle x, y \rangle \in R \land \langle y, z \rangle \in S \}$$
 (3)

Definice Jsou-li R, S, T relace, pak

$$(T \circ S) \circ R = T \circ (S \circ R) \tag{4}$$

2.6.2 Funkce

Množina f se nazývá **funkce**, pokud f je relace a platí:

$$(\forall x \in \text{dom}(f))((y \in \text{rng}(f) \land y \in \text{rng}(f) \land \langle x, y \rangle \in f \land \langle x, y' \rangle \in f) \Rightarrow y = y') \quad (1)$$

Značení $f: A \to B$ znamená: f je funkce, $A = \text{dom}(f), B \supset \text{rng}(f)$. Je-li $C \subseteq A$, pak $f\Gamma C = f \cap (C \times B)$ nazýváme x zůžením funkce f na množinu C.

$$f'C = \operatorname{rng}(f\Gamma C) = \{f(x) : x \in C\}$$
 (2)

Funkce $f: A \to B$ se nazývá **prostá**, pokud f^{-1} je funkce.

Funkce $f: A \to B$ se nazývá **surjektivní** ("na"), jestliže $B = \operatorname{rng}(f)$

Funkce f se nazývá **bijekce** je-li **surjektivní** a současně **prostá**.

2.7 Uspořádání

Definice Ostře uspořádaná množina je uspořádaná dvojce $\langle a, r \rangle$, kde a je množina a r je relace, $r \subseteq a \times a$. Přičemž r splňuje:

$$\forall x, y, z \in a : \langle x, y \rangle \in r \land \langle y, z \rangle \in r \Rightarrow \langle x, z \rangle \in r \text{ tranzitivita}$$
 (1)

$$\forall x \in a: \ \ \not < x, x > \in r$$
 antireflexivita (2)

Pro zjednodušení místo $\langle x, y \rangle \in r$ píšeme xry.

Definice Ostré uspořádání r nazveme **lineárním**, pokud

$$\forall x, y \in a: \quad x = y \lor xry \lor yrx \tag{3}$$

Definice Jsou-li R, S relace a a, b množiny, pak řekneme, že < a, R > je izomorfní s < b, S >, pokud existuje bijekce $f: a \to b$ taková, že

$$\forall x, y \in a: \langle x, y \rangle \in \mathbb{R} \Leftrightarrow \langle f(x), f(y) \rangle \in S \tag{4}$$

a zobrazení f se nazývá **izomorfismus**.

Definice Mějme uspořádanou množinu < a, r >. Je-li $m \subset a$, pak řekneme, že $x \in a$ je **r-nejmenší** prvek množiny m, jestliže platí:

$$x \in m \land (\forall Y)(y \in m \Rightarrow (xry \lor y = x)) \tag{5}$$

Je-li $m \subseteq a, x \in a$, řekneme, že x je **minimální** prvek množiny m, jestliže platí

$$x \in m \land (\forall y)(y \in m \Rightarrow \not (yrx)) \tag{6}$$

Definice Řekneme, že uspořádání r na množině a je **dobré** (množina < a, r > je dobře uspořádaná) jesltiže r je ostré uspořádání množiny a a každá neprázdná podmnožina a má r-nejmenší prvek.

Pozorování Je-li < a, r > dobře uspořádaná, pak je r lineární uspořádání. $x, y \in a \{x,y\} \subseteq a \ a \{x,y\}$ má r-nejmenší prvek. Je-li to x, pak $xry \lor x = y$. Pokud je to y, pak $yrx \lor y = x$.

Značení Nechť $\langle a, r \rangle$ je uspořádaná množina a $x \in a$. Označme $\langle (\leftarrow, x), r \rangle$ jako:

$$(\leftarrow, x) = \{ y \in a : yrx \} \tag{7}$$

Lemma 1 Je-li < a, r > dobře uspořádaná množina, pak pro každé $x \in a < a, r >$ není izomorfní s $< (\leftarrow, x), r >$

Důkaz Sporem: Předpokládejme, že existuje izomorfismus $f: \langle a, r \rangle \rightarrow \langle (\leftarrow, x), r \rangle$. Definujme $m = \{y \in a : f(y) \neq y\}$. $x \neq (\leftarrow, x)$, tedy $f(x) \neq x \Rightarrow m \neq \emptyset$. $\langle a, r \rangle$ je tedy dobře uspořádaná, tedy musí existovat t r-nejmenší prvek množiny m. Máme pro všechna zrt, platí že f(z) = z.

- 1. f(t)rt ale f(t)rt máme $f(t) \neq t$, f(f(t)) = f(t), spor: f není prosté.
- 2. trf(t): kdykoliv $zrt \Rightarrow f(z)rt$, protože f(z) = z. Navíc kdykoliv $trz \Rightarrow f(t)rf(z)$ protože f je izomorfismus. Tedy trf(t), $t \in (\leftarrow, x) \Rightarrow t \neq rng(f)$, tedy f není zobrazení **na**, což je **spor**.

Lemma 2 Jsou-li < a, r>, < b, s> dvě dobře uspořádané množiny, které jsou izomorfní, pak mezi nimi existuje **jediný** izomorfismus.

Důkaz Sporem: Nechť $f,g:a\to b$ jsou dva různé izomorfismy. Tedy existuje nějaké $x\in a: f(x)\neq g(x)$. Tedy množina $m=\{t\in a: f(t)\neq g(t)\}$ je neprázdná (obsahuje x) a < a,r> je dobře uspořádaná, tedy existuje nejmenší prvek t množiny m. Zřejmě platí, že kdykoliv yrt, pak f(y)=g(y).

- 1. f(t)sg(t). Pokud trz, protože g je izomorfismus, musí platit, že g(t)sg(z). Pokud zrt, pak $f(z) = g(z) \Rightarrow f(z)sf(t) \Rightarrow g(z)sf(t) \Rightarrow g(t) \neq f(t)$. Tedy $f(t) \notin rng(g)$, tedy není **na**.
- 2. g(t)sf(t) analogicky.

Věta Nechť < a, R > a < b, S > dvě dobře uspořádané množiny. Potom nastává právě jedna z následujícíh možností:

- 1. $\langle a, R \rangle \cong \langle b, S \rangle$ (je izomorfní)
- 2. $\exists y \in b : \langle a, R \rangle \cong \langle (\leftarrow, y), S \rangle$
- 3. $\exists x \in a : \langle (\leftarrow, x), R \rangle \cong \langle b, S \rangle$

Důkaz Položme

$$f = \{ \langle v, w \rangle : v \in a \land w \in b \land \langle (\leftarrow, v), R \rangle \cong \langle (\leftarrow, w), S \rangle \}$$
 (8)

1. f je zobrazení: nechť $\langle v, w \rangle \in f, \langle v, w_1 \rangle \in f$. Máme:

$$<(\leftarrow, w), S) \cong <(\leftarrow, v), R> \cong <(\leftarrow, w_1), S>$$
 (9)

tedy

$$\langle (\leftarrow, w), S \rangle \cong \langle (\leftarrow, w_1), S \rangle$$
 (10)

a podle Lemma 1 $w = w_1$.

2. f je prosté:

$$< v, w > \in f, < v_1, w > \in f$$
 (11)

$$<(\leftarrow, R> \cong <(\leftarrow, w), S> \cong <(\leftarrow, v), R>$$
 (12)

a podle Lemma 1 $v = v_1$

3. f zachovává uspořádání:

$$< v, w > \in f, < v_1, w_1 > \in f$$
 (13)

Nechť vRv_1 . Máme $<(\leftarrow, v_1), R>\cong<(\leftarrow, w_1), S>$. Nechť $g:<(\leftarrow, v_1), R>\to<(\leftarrow, w_1), S>$ je izomorfismus. Je $vRv_1, g(v)$ protože g je izomorfismus:

$$<(\leftarrow, v), R> \cong <(\leftarrow, g(v)), S>$$
 (14)

z definice f. Podle Lemma 2 existuje izomorfismus jediný, ktedy $w = g(v)Sw_1$. Analogicky: pokud wSw_1 , potom vRv_1 .

Zřejmě platí, že pokud $< v, w > \in f$, pak $f\Gamma(\leftarrow, v)$ je izomorfismus mezi $< (\leftarrow, v), R >$ a $< (\leftarrow, w), S >$. Položme:

$$m = \{ v \in a : \forall w \in b \quad \langle v, w \rangle \notin f \} o = \{ w \in b : \forall v \in a \quad \langle v, w \rangle \notin f \}$$
 (15)

Můžou nastat případy:

- (a) $m = o = \emptyset$. Nastal případ, že $\langle a, R \rangle \cong \langle b, S \rangle$ podle f.
- (b) $m=\emptyset\neq o$. Množina < b,S> je dobře uspořádaná, tedy existuje $y\in b,y$ je S-nejmenší prvek množiny o. V tom případě f je izomorfismus mezi < a,R> a $<(\leftarrow,y),S>$.
- (c) $m \neq \emptyset = o$. Existuje x R-nejmenší prvek množiny m a $<(\leftarrow,x), R>\cong(b,S)$ a f je hledaný izomorfismus.
- (d) $m \neq \emptyset \neq o$, což je ale ve sporu s definicemi o a m.

2.8 Ordinály

Definice Množina x se nazývá **tranzitivní**, pokud platí

$$\forall y : y \in x \Rightarrow y \subseteq x \tag{1}$$

Definice Množina x je **ordinál**, pokud x je tranzitivní a dobře uspořádaná relací \in .

Příklad 0 je ordinál

 $\{0, \{0\}, \{\{0\}\}\}\$ je tranzitivní, ale náležení neuspořádává - není ordinál.

 $\{0, \{0\}, \{0, \{0\}, \{0, \{0\}\}\}\}\}\$ je ordinál, obvykle se značí 4.