DC sample questions for practice	

Question	
No	Question
	Token based algorithms require 2 or more successive rounds of message exchanges
1	among the sites
	a TRUE
	b FALSE
 2 3 	Synchronization delay is a. The time interval a request waits for its CS execution to be over after its request
	messages have been sent out.
	b. The time required after a site leaves the CS and before the next site enters the CS.
	c.The rate at which the system executes requests for the CS.
	d. None of the above
3	The response time is
	a. The rate at which the system executes requests for the CS.
3	b. The time required after a site leaves the CS and before the next site enters the CS.
3	c. The time interval a request waits for its CS execution to be over after its request
	messages have been sent out. d. None of the above
	System Throughput is
	a. The rate at which the system executes requests for the CS.
4	b. The time required after a site leaves the CS and before the next site enters the CS.
4	c. The time interval a request waits for its CS execution to be over after its request
	messages have been sent out.
	d. None of the above
5	Lamport's algorithm for mutual exclusion requires
	a. 4(n-1) messages per CS invocation
	b. (n-1) messages per CS invocation
	c. n messages per CS invocation
	d. 3(n-1)messages per CS invocation
6	Ricart and Agrawala's algorithm for mutual exclusion requires
	a. (n-1) messages per CS invocation
	b. n messages per CS invocation
	c. 2(n-1) messages per CS invocation d. None of the above
	u. None of the above

In which algorithm the execution of a CS requires \sqrt{N} REQUEST, \sqrt{N} REPLY and \sqrt{N} RELEASE messages in

a. Ring Algorithm

7

8

- b. Maekawa algorithm
- c. Lamport's algorithm
- d.Ricart and Agrawala's algorithm

A failed message from Si to Sj indicates that

- a. Si cannot grant Sj's request because it has currently granted permission to a site with a higher priority request.
- b.Si would like to find out from Sj, if it has succeeded in locking all sites in its request set.
- c. Si is returning the permission to Sj.
- d. None of the above
- 9 A yield message from Si to Sj indicates that

- a. Si cannot grant Sj's request because it has currently granted permission to a site with a higher priority request.
- b.Si would like to find out from Sj, if it has succeeded in locking all sites in its request set.
- c. Si is returning the permission to Sj.
- d. None of the above

An inquire message from Si to Sj indicates that

- a. Si cannot grant Sj's request because it has currently granted permission to a site with a higher priority request.
- b.Si would like to find out from Sj, if it has succeeded in locking all sites in its request set.
- c. Si is returning the permission to Sj.
- d. None of the above

10

11

12

13

Communication in distributed systems is based on

- a) High level message passing
- b) Low level message passing
- c) Middleware message passing
- d) Layered protocol

In distributed systems which of the following models are used for communication

- a) Message -oriented RPC
- b) Remote Procedure call
- c) Data Streaming
- d) All of the above

Parameter Marshaling means

- a) Sending parameters into a message
- b) Receiving parameters into a message
- c) Packing parameters into a message
- d) None of the above

A remote procedure call is

- a) inter-process communication
- b) a single process
- 14 c) a single thread
 - d) a single stream

An RPC application requires

- a) specific protocol for client server communication
 - b) a client program

c) a server program

16

17

18

19

20

21

d) all of the mentioned

The local operating system on the server machine passes the incoming packets to the

- a) Server stub
- b) client stub
- c) client operating system
- d) none of the above

Which RPC is useful when a reply will be returned but client is not prepared to wait for it and do nothing in meantime.

- a) Synchronous RPC
- b) Asynchronous RPC
- c) One way RPC
- d) Deferred RPC

There are number of services that form part of DCE(Distributed Computing Environment) itself. Which service provides a transparent way of accessing any file in the system in the same way worldwide.

- a) Directory Service
- b) Security Service
- c) Distributed File Service
- d) Distributed time Service

Language-level objects, from which proxy and skeletons are automatically generated. Depends on the particular language are called as

- a) Transient objects
- b) Compile time objects
- c) Runtime objects
- d) Persistent Objects

A client binds to a distributed object: an implementation of the object's interface, called a______, is loaded into the client's address space.

- a) Skeleton
- b) Proxy
- c) Client stub
- d) Server Stub
- The data stores in client centric consistency models have

- a) No simultaneous updates
- b) Very strong consistency models
- c) Inconsistencies that can not be hidden
- d) None of the above

Eventual consistency essentially requires only that updates are guaranteed to propagate to all replicas

22

- a) True
- b) False

Eventual consistent data store provides better performance when no of replicas accessed is limited to

23

- a) 2ⁿo. of clients
- b) 2ⁿo. of clients-1
- c) One
- d) Both a and b

If a process has seen a value of X at time t, then it will never see an older version of X at a later time. This consistency model is

24

- a) Monotonic writes
- b) Monotonic reads
- c) Monotonic writes and reads
- d) None of the above

A write operation is always completed before a successive read operation by the same process, no matter where that read operation takes place. This consistency model is

25

- a) Read after writes
- b) Writes after reads
- c) Read your writes
- d) Writes your reads

In writes follow reads consistency models, the updates are propagated as a result of previous read operations

26

- a) True
- b) False
- c) Selectively true
- d) Selectively false

If no updates take place for a long time, all replicas will gradually become consistent. This form of consistency is called

27

- a) Local consistency
- b) Strict local consistency
- c) Eventual consistency

In toke	en based algorithm for mutual exclusion, which of the following statement is true
a)	A unique token is shared among all sites
b)	A site is allowed to enter its CS if it possesses the token
	Sequence numbers are used instead of time stamps
d)	All of the above
Which	algorithm uses heuristic approach to select a site for sending token request message
a)	Suzuki kasami algorithm
,	Raymond's algorithm
	Maekawa's algorithm
d)	Singhal's algorithm
Synchi	ronization delay for raymonds's tree based method is
a)	log N
,	2T
	$(T.\log N)/2$
d)	T.log N
Suzuki	kasami broadcast algorithm requires messages per CS invocation
a)	
,	√N
,	2(N-1)
d)	N/2
Raymo	ond's algorithm is prone to deadlocks
a)	True
b)	False
Design	n issue in Suzuki kasami algorithm is
a)	Outdated requests
b)	Current requests
c)	Outstanding requests
d)	All of the above

Which algorithm requires N/2 messages per CS execution

- a) Lamport's algorithm
- b) Suzuki kasami algorithm

28

29

30

31

32

33

34

- c) Maekawa's algorithm
- d) Singhal's algorithm
- In Raymond's tree based method, the holder variable of root site points to

- a) Left sub tree
- b) Right sub treec) Root
- d) Root site does not have holder variable