# Phonetic rhythm in *-ization*\*

Juliet Stanton, NYU • Keio x ICU-LINC Colloquium Series • February 10/11, 2021

### 1 Introduction

- **Commonly assumed**: stress is the manifestation of linguistic rhythm (Liberman & Prince 1977).
- Rhythm implies alternation, or the timed succession of weak and strong beats.
- In English, rhythmic alternation can be found at the phrase level.
  - (1) Rhythmic alternation within a phrase (Hayes 1995:28)

- Rhythmic alternation is also found at the word level.
  - (2) Rhythmic alternation within a word (Hayes 1995:29)

- Alternation implies distance: weak and strong beats are separated in time.
- Question: how do we measure rhythmic distance?
- The way in which rhythmic distance is measured differs in foot-based and foot-free approaches to stress.
- Distance, in recent foot-based approaches to stress (e.g. Kager 1999):
  - > Constraints like PARSESYL requires syllables to be parsed into feet.
- > Constraints on foot form (e.g. IAMB, TROCHEE) and alignment (e.g. ALLFTLEFT) regulate distance between stresses.
- \*Thanks to A. Albright, D. Steriade, and audiences at NYU, AMP 2020, Berkeley, and Cornell.

- Distance, in recent foot-free approaches to stress (e.g. Gordon 2002):
- > Constraints like \*LAPSE and \*CLASH directly regulate the distance between stressed and stressless syllables.
  - (3) \*LAPSE assign one \* for each sequence of two adjacent stressless syllables.
  - (4) \*CLASH: assign one \* for each sequence of two adjacent stressed syllables.
- > These constraints are often referred to as *rhythmic* constraints.
- These approaches are superficially different, but share something fundamental: they calculate distance over units of formal structure (syllables and feet).
- **This talk** explores an alternative: rhythm is calculated not over units of formal structure, but over duration, in a more direct way.

### **Outline**

- Evidence for this alternative: suffixal stress in American English -ization (see also Stanton 2019 for similar evidence from -ative).
  - In -ization, stress on the inner suffix is variable.
  - Claim: this variability is, at least in part, governed by rhythm.
- In -*ization*, inner suffix stress becomes more likely as its distance from the rightmost stem stress increases.
  - Words like *federalization* more likely to bear -ize stress than words like *realization* (distance measurable in syllables, duration, or segments).
- Words like baptization more likely to bear -ize stress than words like realization (distance measurable in duration or segments).
- **Main point**: the metric of distance speakers use references duration in a more direct way than is generally assumed by theories of stress.

# 2 Stress in -ization

• Our interest: words ending in -ization vary in whether or not -ize bears stress.

(5) Stress on -ize- is variable (Data source: OED)

a. Stressed -ize-: solarization, lemmatization

b. Stressless -ize-: fascization, functionalization

c. Variable: relativization, serialization

• Necessary to first review more general properties of stress in *-ization* to answer a few questions: what factors favor/disfavor stress on *-ize*?

# 2.1 Background

• It is useful to separate words that end in *-ization* into two domains: the stem (pre-*ization* material) and the suffixal domain (*-ization*).

(6) Division of *-ization* forms into stem and suffixal domains

- We need just a few assumptions, for now, to illustrate why -ization stress varies.
- Stress on -ize is compelled by a suffix-specific constraint, STRESS-ize.
  - (7) STRESS-*ize*: assign one \* if the suffix -*ize* does not bear stress.
- Stressing -ize and -ate violates \*CLASH; -ize destressing can thus be seen as
  a clash-avoidance strategy.
- Preference for -izátion (vs. -ízation) due to \*LAPSER (Gordon 2002).
  - (8) \*LAPSER: assign one \* if neither of the final two syllables is stressed.
- \*LAPSER ≫ STRESS<sub>-ize</sub> explains why it's -ize stress that varies.

|     | sérial-ize-ate-ion | *LapseR | *CLASH | STRESS_ize |
|-----|--------------------|---------|--------|------------|
| (9) | 🖙 a. sèrialìzátion |         | *      |            |
| ()) | b. sèrializátion   |         |        | *          |
|     | c. sérialìzation   | *!      |        |            |

## 2.2 Rhythmic effects in -ization stress

• The question: can we predict when -ize is more or less likely to bear stress?

- Corpus study conducted to see if rhythmic factors are implicated in *-ization* stress (cf. Stanton 2019:7.2): all *-ization* forms in the OED as of 2/19 (n=773).
- Inner suffix counted as "stressed" if -ize transcribed as [aiz].
- Inner suffix counted as "stressless" if -ize transcribed as [a] or [1].
- Variable cases are assigned to the "stressed" category (doesn't affect results).
- Results (10) demonstrate a rhythmic effect in *-ization* stress: *-ize* stress is more frequent when it resolves a lapse than when it creates a clash.<sup>1</sup>

|      | Effect of -ize stress | Stressed -ize  | Stressless -ize | % stressed |
|------|-----------------------|----------------|-----------------|------------|
|      | *CLASH                | còncrètìzátion | mètronòmizátion | 64.1%      |
|      | violation             | (n=59)         | (n=33)          | (59/92)    |
| (10) | *LAPSE                | chànnelìzátion | dichòtimizátion | 94.3%      |
|      | satisfaction          | (n=529)        | (n=32)          | (529/561)  |
|      | *EXTLAPSE             | fèderalìzátion | cùlturalizátion | 98.5%      |
|      | satisfaction          | (n=202)        | (n=3)           | (202/205)  |

- A logistic regression finds a significant difference between the \*CLASH and \*LAPSE contexts, as well as the \*LAPSE and \*EXTLAPSE contexts.
- Factors not included in the model:
- > Derivative (-ization) and base (-ize) frequency:  $\chi^2$  (2) = 1.51, p = .47
- > Identity of final segment (/s/ vs. others):  $\chi^2$  (1) = .00, p = .99
- A detailed look at the data shows variance within some rhythmic categories.
- In the \*CLASH context, rate of -ize stress varies with interstress material.<sup>2</sup>

|      | Interstress seg(s). | Stressed ize           | Stressless ize         | % stressed |
|------|---------------------|------------------------|------------------------|------------|
|      | Congrant (D)        | xè <b>n</b> ìzátion    | rèa <b>l</b> izátion   | 53.1%      |
|      | Sonorant (R)        | (n=17)                 | (n=15)                 | (17/32)    |
| (11) | Obstruent (O)       | stỳlò <b>p</b> ìzátion | fà <b>sc</b> izátion   | 60.7%      |
|      |                     | (n=17)                 | (n=11)                 | (17/28)    |
|      | Cluster (CC)        | bà <b>pt</b> ìzátion   | òbjè <b>ct</b> izátion | 76.9%      |
|      | Cluster (CC)        | (n=20)                 | (n=6)                  | (20/26)    |

 The rate of -ize stress does not vary noticeably within the \*LAPSE and \*EXT-LAPSE resolution contexts; the numbers are close to ceiling.

<sup>&</sup>lt;sup>1</sup>Numbers in (10) adds up to more than 773 because some stems have two stress patterns, e.g. *multimer-ization* can be 202-?10 or 020-?10. In such cases, variants are counted as separate stems.

<sup>&</sup>lt;sup>2</sup>A logistic regression finds that neither the R vs. O nor the O vs. CC comparisons are significant. In addition, there are 6 cases where a vowel-final stem takes *-ization* (e.g *Maoization*). In 5/6, *-ize* is reported to at least variably bear a stress. Because the number of such forms is small, and it is possible that there are additional constraints on ÝV hiatus, I do not include these forms here.

### 2.3 Hypothesis

- **Hypothesis**: -*ize* stress is sensitive to duration. The longer the distance between the rightmost stem stress and -*ize*, the more likely -*ize* is to be stressed.
- Analytically: -ize stress is governed by a phonetic version of \*CLASH.
- If this is correct: as the number of syllables between the rightmost stem stress and *-ize* increases, so should the duration (expected given (10)).
  - (12) Different interstress durations (in black) in -ization forms
    - a.  $\dot{V}$  C<sub>0</sub> -izátion (*fascization*): shortest

 $\hat{\mathbf{V}}$   $\boldsymbol{C}_0$   $\hat{i}z$ átion

b.  $\dot{V} C_0 V C_0$  -izátion (*channelization*): longer

c.  $\grave{V} C_0 V C_0 V C_0$  -izátion (*federalization*): longest

 $\hat{\mathbf{V}}$   $\boldsymbol{C_0V}$   $\boldsymbol{C_0V}$   $\boldsymbol{C_0}$  izátion

- > Seems obvious: more syllables should mean more duration.
- > However, Nespor & Vogel (1989:102) hint at the existence of lapse compression in English, so this prediction should be verified.
- Given (11), we might also expect for clashes with sonorants to be shorter than those with obstruents, which might be shorter than those with clusters.
  - (13) Different clash lengths in -ization forms (clash is in black)
    - a.  $\hat{V}$  R -izátion (xenization: shortest

**V R** *ìzátion* 

**V O** *ìzátion* 

**V CC** *ìzátion* 

• We need to know whether or not trends in the dictionary data correlate with trends in duration, and whether or not speakers' preferences match these trends.

# 3 Experimental support

- To test the hypothesis, I conducted a forced-choice task (-*izátion* vs. -*izátion*; Section 4.2) and a production task (Section 4.3).
- Overall: both sets of results converge on the same conclusion. Speakers are sensitive to duration and use this when producing or judging an *-ization* form.

Table 1: -ization items, by rhythmic profile and interstress C(s)

| *C ( 10)         | *I ( 10)         | *EI ( 10)                               |
|------------------|------------------|-----------------------------------------|
| *CLASH (n=10)    | *LAPSE (n=10)    | *EXTLAPSE (n=10)                        |
| Interstress C(s) | Interstress C(s) | Interstress C(s)                        |
| Pràgueizátion    | Ègyptizátion     | Pròvidenceizátion                       |
| [g]              | [dʒ], [pt]       | [v], [d], [ns]                          |
| Quebècizátion    | Wyòmingizátion   | Sènegalizátion                          |
| [k]              | [m], [ŋ]         | [n], [g], [l]                           |
| Chàdizátion      | Cùbanizátion     | Ìndianàpolisizátion                     |
| [d]              | [b], [n]         | [n], [p], [l]                           |
| Ròmeizátion      | Bròoklynizátion  | Antàrcticanizátion                      |
| [m]              | [kl], [n]        | $[\mathfrak{I}(k)\mathfrak{t}],[k],[n]$ |
| Japànizátion     | Àustinizátion    | Blòomingtonizátion                      |
| [n]              | [st], [n]        | [m], [ŋt], [n]                          |
| Brònxizátion     | Tèxasizátion     | Mèxicanizátion                          |
| [ŋks]            | [ks], [s]        | [ks], [k], [n]                          |
| Vermòntizátion   | Phòenixizátion   | Mìchiganizátion                         |
| [nt]             | [n], [ks]        | $[\int], [g], [n]$                      |
| Frànceizátion    | Alàskanizátion   | Òberlinizátion                          |
| [ns]             | [sk], [n]        | [b], [ɪl], [n]                          |
| Bàsqueizátion    | Rùssianizátion   | Màdisonizátion                          |
| [k]              | [ʃ], [n]         | [d], [s], [n]                           |
| Mìnskizátion     | Ìcelandizátion   | Ròchesterizátion                        |
| [nsk]            | [sl], [nd]       | [tʃ], [st], [ɪ]                         |

# 3.1 Items and acoustic analysis

- For the experiment, I recorded one speaker producing -izátion and -izátion variants of forms that ended in -ization, all placenames or demonyms (Table 1).
  - Ten items where -*ize* stress would violate \*CLASH, and ten where -*ize* stress would satisfy \*LAPSE, and ten where -*ize* stress would satisfy \*EXTLAPSE.
  - Within categories, segmentals following the rightmost stem stress differed.
- Durational properties of these forms are in line with the predictions above.
- Distance from the rightmost stem stress to the -ize suffix is shortest in the \*CLASH context, longer in \*LAPSE, and longest in \*EXTLAPSE (Fig. 1).<sup>3</sup>
- Sonorants between two stresses are shorter than obstruents (though not by much), which are shorter than clusters (Fig. 2).
- First part of the hypothesis is plausible: broad trends discovered in the dictionary study correlate with properties of the productions.

<sup>&</sup>lt;sup>3</sup>Figure 3 and all other plots were produced with R's ggplot2 (Wickham 2016).

Figure 1: Interstress duration by the number of interstress syllables



Figure 2: Interstress duration by the type of interstress consonant(s)



#### 3.2 Forced-choice task

### 3.2.1 Design

- Stimuli were created from the forms in Table 1, differing only in suffixal stress (examples: *Quebècizátion-Quebècizátion, Mèxicanizátion-Mèxicanizátion*).
- Participants were told they were helping a travel company pronounce words in new slogans (*Prepare for the Quebecization of your vacation!*).
- Participants heard a recording of the placename (e.g. *Quebec*). They chose between two possible pronunciations of the derivative (e.g. *Quebecization*).<sup>4</sup>

### 3.2.2 Participants

• Fifty participants recruited using Mechanical Turk. All indicated that they are native U.S. speakers of English. None were excluded; all were compensated.

#### 3.2.3 Results

- Patterns in the data suggest that the hypothesis is correct.
  - Distinctions among rhythmic categories are what we would expect, given the dictionary data and acoustic results.
    - > For the \*CLASH context (Quebecization), 34.9% prefer -ize stress.
  - > For the \*LAPSE context (Austinization), 39.4% prefer -ize stress.
  - > For the \*EXTLAPSE context (*Mexicanization*), 40.2% prefer -ize stress.
  - The positive correlation between *-ize* stress and interstress duration is also expected: the worse the clash, the more likely *-ize* destressing (Figure 3).
- Interestingly, the statistics indicate that only duration (and *not* rhythmic category) played a role in participants' responses.
- The best-fit mixed-effects logistic regression model finds a significant effect for duration and for the identity of the final segment (/s/ vs. others).<sup>5</sup>

(14) Model with duration as fixed effect

| Factor      | Coefficient | z value | Significant?    |
|-------------|-------------|---------|-----------------|
| (Intercept) | -0.70       | _       |                 |
| Duration    | 1.21        | 2.36    | Yes $(p < .05)$ |
| Final /s/   | 0.32        | 2.17    | Yes $(p < .05)$ |

<sup>&</sup>lt;sup>4</sup>The order of stressed and stressless *-ization* was randomized by item and participant; item order was randomized by participant. Experiments were made with Experigen (Becker & Levine 2013).

<sup>&</sup>lt;sup>5</sup>All models were fitted using the glmer function of R's lme4 (Bates & Maechler 2011) and include a random intercept for participant. Significance values are from lmerTest (Kuznetsova et al. 2016).



Figure 3: Preference for -ize stress by interstress duration

- As with the corpus data, frequency of the *-ization* derivative and its *-ize* base don't play a role in speaker responses ( $\chi^2$  (2) = 4.37, p = .11).
- Adding a predictor for rhythmic category does not improve the fit of the model ( $\chi^2$  (2) = .16, p = .93), nor does adding an interaction.
- ((14) also has a lower AIC/BIC than a model with rhythmic context.)
- What we can take away from these results:
- Phonetic rhythmic information plays a role in speakers' judgments about whether or not to destress -ize in -ization.
- It's the *duration* between the last stem stress and -ize that matters. The rhythmic category the form belongs to (\*CLASH, \*LAPSE, \*EXTLAPSE) only matters insofar as these categories are shorthand for duration.

### 3.3 Production study

#### 3.3.1 Design

• Stimuli were identical to those in the forced-choice task.

- Participants were told they were helping a travel company pronounce words in new slogans (*Prepare for the Quebecization of your vacation!*).
- Participants heard a recording of the placename (e.g. *Quebec*). After this, they pronounced the slogan aloud.

### 3.3.2 Participants

- Fifty-seven participants were recruited over Craiglist, Facebook, and Twitter<sup>6</sup>. All but one indicated that they were native speakers of English from the U.S.
  - One speaker was excluded for being a native speaker of Canadian English.
  - Six additional speakers were excluded; while they claimed to be monolingual speakers of English from the U.S., I don't think they were being truthful.
- The experiment took place over the Zoom webconferencing platform. Participants were recorded to the Cloud and compensated for their time.

#### 3.3.3 Results

- Most productions (992/1495) did not involve rhythmic modification of the item (e.g. *Quebècizátion*). I'll refer to these as the 'default' productions.
- I grouped non-default productions into four categories: addition, deletion, stress shift, and -ize stress. Ultimately, we're interested in deletion/-ize stress.
- Note that a single form can belong to more than one category: it's possible to exhibit e.g. deletion and -ize stress at the same time (e.g. *Ìndianàpolìzátion*).

#### Addition

- Addition: material is added to either stem or suffixal domain.
  - Examples: Franceizization (suffix doubled), Romanization (demonym).
  - The 61 items exhibiting addition were not evenly distributed (15) by rhythmic context; most (51/61) additions happened in the \*CLASH context.

(15) Addition by rhythmic context

| _ | redución of inference |                 |                            |            |  |  |  |
|---|-----------------------|-----------------|----------------------------|------------|--|--|--|
|   | Rhythmic context      | No addition     | Addition                   | % addition |  |  |  |
| _ | *CLASH                | Bronxization    | Bronx <b>in</b> ization    | 10.3%      |  |  |  |
|   | CLASH                 | (n=445)         | (n=51)                     | (51/496)   |  |  |  |
| _ | *LAPSE                | Egyptization    | Egypt <b>iz</b> ization    | 1.8%       |  |  |  |
|   | LAPSE                 | (n=491)         | (n=9)                      | (9/500)    |  |  |  |
| _ | *EXTLAPSE             | Michiganization | Michigan <b>if</b> ication | .002%      |  |  |  |
|   | DATLAPSE              | (n=1)           | (n=498)                    | (1/499)    |  |  |  |
|   |                       |                 |                            |            |  |  |  |

<sup>&</sup>lt;sup>6</sup>Thanks to Lisa Davidson for posting my ad to her Twitter account.

- This is independently interesting, for rhythmic reasons.
- Addition doesn't make sense, from a rhythmic perspective: it takes a form that could exhibit perfect alternation and gives it a lapse.
- Rhythmic distribution suggests a sensitivity to the length of a stress lapse.
- The suggestion: lapse creation is okay, but lapse elongation is not.
- Within the \*CLASH context, addition is likely not rhythmically conditioned: *Romanization* (an existing demonym) is the most frequent error.

#### Stress shift

- Stress shift: stress in the *-ization* stem is realized differently than in isolation.
  - Example: Egyptizátion, instead of Ègyptizátion.
  - The 101 tokens exhibiting stress shift are concentrated in four items: *Egyptization, Icelandization, Rochesterization*, and *Japanization* (16).

(16) Rates of stress shift by item

| Item             | No stress shift | Stress shift | % stress shift |
|------------------|-----------------|--------------|----------------|
| Egyptization     | 17              | 33           | 66%            |
| Japanization     | 27              | 23           | 46%            |
| Icelandization   | 35              | 15           | 30%            |
| Rochesterization | 38              | 12           | 24%            |
| Senegal          | 46              | 4            | 8%             |
| Quebec           | 46              | 3            | 6%             |
| Providence       | 48              | 2            | 4%             |
| Vermont          | 48              | 2            | 4%             |
| Antarctica       | 49              | 1            | 2%             |
| Austin           | 49              | 1            | 2%             |
| Mexico           | 48              | 1            | 2%             |
| Michigan         | 49              | 1            | 2%             |
| Oberlin          | 49              | 1            | 2%             |
| Phoenix          | 49              | 1            | 2%             |

- Why these items?
- > Jàpanizátion: existence of -ize base with this stress.
- > Egỳptizátion and Ìcelàndizátion: relative (Egyptian, Icelandic) with this stress (see Steriade 1999, Stanton & Steriade in prep on these effects).
- $\Rightarrow$  Rochèsterizátion: secondary stress in that position, for some speakers.
- Stress shift is interesting but orthogonal; it's not governed by rhythm.

#### Deletion and -ize stress

- Deletion: deletion of stem or suffixal material.
- Examples: *Madonization* (stem deletion), *Madisonation* (suffix deletion).
- Deletion was relatively frequent (160/1495 items, or 10.7%).
- -ize stress: pronunciation of -ize as [aiz].
- Most frequent change, occurring in 243/1495 (16.3%) of the tokens.
- Most speakers were either consistent -ize stressers (n=2) or consistent nonstressers (n=33), with fewer (n=15) showing variation.
- Deletion and -ize stress are part of a conspiracy: both reduce the amount of material between the rightmost stem stress and the suffixal stress.
- In an OT analysis, we can view the variation between them as variation in the ranking of MAX (17) and \*CLASH.
  - (17) MAX: assign one \* for each input segment that lacks an output correspondent.

|      | Màdison-iz-at-ion    | *EXTLAPSE | *CLASH | MAX |
|------|----------------------|-----------|--------|-----|
| (18) | a. Màdison-ìz-át-ion |           | *      |     |
| (10) | ■ b. Màdon-iz-át-ion |           | 1      | **  |
|      | c. Màdison-iz-átion  | *!        |        |     |

- If \*CLASH  $\gg$  MAX, we get deletion; if the reverse, we get -ize stress.
- Because of their similarity, I'll refer to these together as *rhythmic repair*.
- Rhythmic repair is distributed unevenly across rhythmic contexts.
- In the \*CLASH context (Quebecization): 8.5% of tokens exhibit it.
- In the \*LAPSE context (Austinization): 15.3% of tokens exhibit it.
- In the \*EXTLAPSE context (Mexicanization): 23.8% of tokens exhibit it.
- It also tracks duration: the longer the distance from the rightmost stem stress to the rightmost stem boundary, the more likely rhythmic repair (Figure 4).
- As with the forced-choice task, the statistics indicate that duration is a better model of participants' behavior than rhythmic context.
- The best-fit model finds significant effects for duration, identity of the final segment, frequency of the base, and frequency of the derivative.



Figure 4: Rhythmic repair by interstress duration

(19) Model with duration as fixed effect

| Factor           | Coefficient | z value | Significant?     |
|------------------|-------------|---------|------------------|
| (Intercept)      | -4.93       | _       |                  |
| Duration         | 10.00       | 9.34    | Yes $(p < .001)$ |
| Final /s/        | 1.61        | 6.98    | Yes $(p < .001)$ |
| Derivative Freq. | -0.80       | -3.27   | Yes $(p < .01)$  |
| Base Freq.       | 0.60        | 2.81    | Yes $(p < .01)$  |

- Adding a predictor to this model for rhythmic context does not result in an improvement of fit ( $\chi^2$  (2) = 3.25, p = .20), nor does adding an interaction.
- ((19) also has a lower AIC/BIC than a model with rhythmic context.)

#### 3.4 Interim conclusions

- Conclusion: -ize stress in -ization forms is rhythmically conditioned.
- **Importantly**: rhythmic constraints must be defined in a more fine-grained way than is typically assumed in theories of stress.

- Sources of evidence for these conclusions:
  - Dictionary data (from the OED) that demonstrates rhythmic effects, both across and within rhythmic categories.
  - Results from a forced-choice task, which show that participants' judgments are influenced by duration and not categorical rhythmic information.
- Results from a production study, which show the same.

# 4 Towards an analysis

- Results from Section 3 support the hypothesis: the longer the distance between the rightmost stem stress and -ize, the more likely -ize is to be stressed.
- Analytically speaking: these results support the addition of phonetic rhythmic constraints, defined over duration, to Con.
- But how should these constraints should be defined, and what kinds of representations do they evaluate?
  - Concrete definition: constraints evaluate milliseconds (Stanton 2019).
  - Abstract def.: constraints evaluate normalized duration, segment type...
- Results from a second judgment task suggest a more abstract definition is appropriate; I sketch a possible one, based on these results, in Section 4.2.

### 4.1 Another forced-choice task

• The second forced-choice task used half of the *-ization* items from the original task (Table 2). It was in all other ways identical.

Table 2: Experiment 1 items, by rhythmic profile and interstress C(s)

| *CLASH (n=5)     | *LAPSE (n=5)     | *EXTLAPSE (n=5)                        |
|------------------|------------------|----------------------------------------|
| Interstress C(s) | Interstress C(s) | Interstress C(s)                       |
| Quebècizátion    | Ègyptizátion     | Ròchesterizátion                       |
| [k]              | [dʒ], [pt]       | $[t \int]$ , $[st]$ , $[\mathfrak{1}]$ |
| Chàdizátion      | Cùbanizátion     | Sènegalizátion                         |
| [d]              | [b], [n]         | [n], [g], [l]                          |
| Ròmeizátion      | Àustinizátion    | Ìndianàpolisizátion                    |
| [m]              | [st], [n]        | [n], [p], [l]                          |
| Brònxizátion     | Tèxasizátion     | Antàrcticanizátion                     |
| [ŋks]            | [ks], [s]        | [x(k)t], [k], [n]                      |
| Bàsqueizátion    | Phòenixizátion   | Mèxicanizátion                         |
| [sk]             | [n], [ks]        | [ks], [k], [n]                         |

Figure 5: Preference for -ize stress by duration (faceted by speech rate)



Figure 6: Preference for -ize stress by speech rate



- For this experiment, two versions of each item were used.
- First version: both forms presented at the normal speech rate.
- Second version: forms slowed by 20% (Praat Vocal Toolkit, Corretge 2012).
- **The prediction:** if phonetic \*CLASH is defined in terms of milliseconds, we should find a stronger preference for -*ize* stress in the slowed items.
- The results are clear, and do not support this prediction.
- First, a sanity check: does the result from Experiment 1 replicate?
- > Yes: duration is a significant predictor of *-ize* stress (20). Trend is visible in both the normal and slowed forms (Fig. 5).

(20) Model with duration as a fixed effect

| Factor      | Coefficient | z value | Significant?    |
|-------------|-------------|---------|-----------------|
| (Intercept) | -0.66       | _       |                 |
| Duration    | 0.99        | 2.26    | Yes $(p < .05)$ |

- > Adding rhythmic context doesn't improve fit ( $\chi^2$  (2) = 4.58, p = .1), nor does adding base/derivative frequency or identity of the final segment.<sup>7</sup>
- Unsurprisingly, item type (slowed vs. not slowed) is not a significant predictor; adding it to the model also does not improve fit ( $\chi^2$  (1) = .72).
- The takeaway: phonetic rhythmic constraints likely assess violations at a more abstract level than raw duration.

## 4.2 Defining phonetic rhythmic constraints

- Results of the above experiment limit the hypothesis space as to how phonetic rhythmic constraints are defined, but the hypothesis space is still large.
- A possibility: each segment is associated with an idealized duration, stored as milliseconds. Rhythmic constraints reference idealized duration.
- Another possibility: segments are split up into durational categories. Rhythmic constraints reference durational categories.
- For the sake of analysis, I'll pursue this second possibility, though further work is necessary to verify that this is the correct way to go.

<sup>&</sup>lt;sup>7</sup>As is true for the preceding models, the AIC/BIC for (20) are lower than the AIC/BIC for an otherwise equivalent model that includes rhythmic context.

### 4.2.1 Defining phonetic \*CLASH

- For the purposes of this talk, I'll define phonetic \*CLASH as the following.
- (21) \*CLASH: for each pair of stressed vowels  $\acute{V}_1$  and  $\acute{V}_2$ , assign a base violation score of 1. For each segment between  $\acute{V}_1$  and  $\acute{V}_2$ , multiply the violation score by 1/x, where x is valued according to (a-b).
  - a. Sonorant consonants = 2
  - b. Obstruent consonants = 3
- For Quebècizátion, violation score is 2/3 (1/3 (k) + 1/3 (z)).
- For  $T \approx xasiz = xa$

### 4.2.2 Defining phonetic \*LAPSE

- In addition to phonetic \*CLASH, we should also consider the possibility that phonetic \*LAPSE plays a role in speakers' judgments.
  - Argued in Stanton (2019) that phonetic \*LAPSE is active in English.
  - For *Tèxasizátion* vs. *Mèxicanizátion*, possible that the preference for more -*ize* stress on the latter is due to phonetic \*LAPSE.
  - (22) \*LAPSE: for each pair of stressed vowels  $\acute{V}_1$  and  $\acute{V}_2$ , assign a base violation score of 1. For each segment between  $\acute{V}_1$  and  $\acute{V}_2$ , multiply the violation score by x, where x is valued according to (a-b).
    - a. Sonorant consonants = 2
    - b. Obstruent consonants = 3
- For *Quebècizátion*, violation score is 6 (3 (k) + 3 (k)).
- for Texasization, it's 30 (3 (k) \* 3 (s) \* 3 (s) + 3 (z)).

#### 4.2.3 Analysis

- Where is the evidence that we need to define these constraints with reference to the identity of segments, rather than just the number of segments?
  - Sporadic evidence that R vs. O matters: in the \*LAPSE context, for example, *Texasization* has a higher rate of *-ize* stress (48%) than *Austinization* (40%).
- Evidence is more consistent for *-ative*, where the segmentals of experimental stimuli were more tightly controlled. See (Stanton, 2019).
- What's important here is the idea: the strength of violation is correlated with the distance between two stresses. These precise formulations can be revised.

- To demonstrate how a partial analysis of these data could work, I consider four items and their realizations from the forced-choice task: *Quebècizátion*, *Frànceizátion*, *Tèxasizátion*, and *Mexicanizátion*.
- For an analysis of these results, I include the following constraints:
- (23) STRESS-*ize*: assign one \* if the suffix -*ize* doesn't bear stress.
- (24) \*CLASH: as in (21).
- (25) .\*LAPSE: as in (22).
- I used the Maxent grammar tool (Hayes et al. 2009) to find weights for the above constraints, given the candidates and violation scores in Table 3.

Table 3: Candidates and violations fed to the Maxent grammar tool

|                   | STRESS-ize | *CLASH | *LAPSE |
|-------------------|------------|--------|--------|
| a. Quebècìzátion  |            | 2/3    | 6      |
| b. Quebècizátion  | 1          | 1/9    | 9      |
| c. Frànceìzátion  |            | 1/2    | 9      |
| d. Frànceizátion  | 1          | 1/18   | 18     |
| e. Tèxasìzátion   |            | 10/27  | 12     |
| f. Tèxasizátion   | 1          | 1/81   | 81     |
| g. Mèxicanìzátion |            | 19/54  | 57     |
| h. Mèxicanizátion | 1          | 1/162  | 162    |

• The tool finds the weights in (26), and makes the predictions in (27).

| (26) | Constraint | Weight |
|------|------------|--------|
|      | *CLASH     | 2.52   |
|      | STRESS-ize | 0.574  |
|      | *Lapse     | 0.006  |

|      | Form           | Rate of -ize stress |          |
|------|----------------|---------------------|----------|
| (27) | FOIIII         | Predicted           | Observed |
|      | Quebècìzátion  | 31%                 | 30%      |
|      | Frànceìzátion  | 38%                 | 40%      |
|      | Tèxasìzátion   | 52%                 | 48%      |
|      | Mèxicanìzátion | 58%                 | 60%      |

• **The main takeaway**: phonetic versions of \*CLASH and \*LAPSE play a role in judgments of -*ize* stress. Rhythm drives variation.

# 5 Discussion

- **In short**: gradient, phonetically informed versions of \*LAPSE and \*CLASH are necessary to account for the full range of rhythmic effects in English.
- Supporting evidence: stress in English words ending in *-ization* (and *-ative*, Stanton 2019, which shows similar effects).
- Why have we focused on this small slice of the lexicon?
- > Words ending in -ative and -ization are perhaps the two corners of the English lexicon where evidence for phonetic rhythm is most easily available.
- > Clashes and lapses are in principle allowed in these forms: -ative and -ization are largely stress-preserving (Stanton & Steriade in prep).
- > Both of the inner suffixes, -ate and -ize, have stressed and stressless forms. Their realization can depend on rhythmic context.
- Words in *-ative* and *-ization* are infrequent; must be the case that evidence for phonetic rhythm is more widespread in English than we've seen here.
  - One potential source of evidence: English post-tonic syncope (Hooper 1978, Polgárdi 2015), i.e. *separate* (v.) vs. *separate* (adj.).
  - Another source: the English rhythm rule (Hayes 1986, Beames 2020).

### 5.1 Conclusion

- These results add to a growing base of evidence that rhythmic constraints pay greater attention to duration than is commonly assumed. A couple of examples:
- Secondary stress in Russian compounds
- > Gouskova & Roon (2013): the further away the secondary stress from the primary stress (counting by syllables), the more acceptable the compound.
- > Additional work (done by me in 2018) found that replacing the number of syllables with the duration of the interstress interval improves model fit.
- Secondary stress in Finnish
- > Karvonen (2008): for long odd-parity words, secondary stress on antepenult if words ends in -ia (érgonòmia), penult otherwise (kólesteròli).
- > Potentially understandable as an effect of phonetic \*LAPSER: maybe stress wants to be a consistent distance from the edge, and -ia is short.
- All work discussed here is consistent with a broader view in which stress placement is directly informed by phonetics (e.g. Lunden 2013, 2014; Ryan 2014).

### References

- Bates, Douglas & Martin Maechler (2011). Package 'lme4'. R.
- Beames, Samantha (2020). Experimental Evidence for the Rhythm Rule in English. B.A. thesis, New York University.
- Becker, Michael & Jonathan Levine (2013). Experigen an online experiment platform. Available at http://becker.phonologist.org/experigen.
- Corretge, Ramon (2012). Praat Vocal Toolkit. http://www.praatvocaltoolkit.com/index.html. Gordon, Matt (2002). A factorial typology of quantity insensitive stress. <u>Natural Language</u> and Linguistic Theory 20, 491–552.
- Gouskova, Maria & Kevin Roon (2013). Gradient clash, faithfulness, and sonority sequencing effects in Russian compound stress. Laboratory Phonology 4, 383–434.
- Hayes, Bruce (1986). Assimilation as Spreading in Toba Batak. <u>Linguistic Inquiry</u> 17, 467–499.
- Hayes, Bruce (1995). Metrical Stress Theory: Principles and Case Studies. The University of Chicago Press, Chicago/London.
- Hayes, Bruce, Colin Wilson & Ben George (2009). Maxent grammar tool. Software package.
- Hooper, Joan B. (1978). Constraints on schwa-deletion in american english. Fisiak, Jacek (ed.), Recent developments in historical phonology, Mouton, The Hague, 183–207.
- Kager, René (1999). Optimality Theory. Cambridge University Press, Cambridge.
- Karvonen, Daniel (2008). Explaining nonfinality: Evidence from Finnish. Proceedings of the 26th West Coast Conference on Formal Linguistics, Cascadilla Proceedings Project, Somerville, MA, 306–314.
- Kuznetsova, Alexandra, Per Bruun Brockhoff & Rune Haubo Bojesen Christensen (2016). Package 'Imertest'. R.
- Liberman, Mark & Alan Prince (1977). On stress and linguistic rhythm. <u>Linguistic Inquiry</u> 8, 249–336.
- Lunden, Anya (2013). Renanalyzing final consonant extrametricality. <u>The Journal of Comparative Germanic Linguistics</u> 16, 1–31.
- Lunden, Anya (2014). Motivating stress system asymmetries. Invited talk at the Conference on Stress and Accent, University of Leiden.
- Nespor, Marina & Irene Vogel (1989). On clashes and lapses. Phonology 6, 69–116.
- Polgárdi, Krisztina (2015). Syncope, syllabic consonant formation, and the distribution of stressed vowels in English. Journal of Linguistics 51, 383–423.
- Ryan, Kevin M. (2014). Onsets contribute to syllable weight: Statistical evidence from stress and meter. Language 90, 309–341.
- Stanton, Juliet (2019). Phonetic lapse in American English -ative. Glossa 4, 1–37.
- Stanton, Juliet & Donca Steriade (in prep). English stress and the cycle. Ms., NYU and MIT
- Steriade, Donca (1999). Lexical Conservatism. <u>Linguistics in the Morning Calm</u>, <u>Selected Papers from SICOL 1997</u>, <u>Linguistic Society of Korea</u>, <u>Hanshin Publishing House</u>, 157–179.
- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Spring-Verlag, New York.