TEÓRIA ČÍSEL

<u>Prvočíslo</u> – každé prirodzené číslo, ktoré má práve dvoch celočíselných deliteľov a to jednotku a seba samého.

$$\{2, 3, 5, 7, 11, 13, 17, 19, 23, \dots\}$$

<u>Zložené číslo</u> – každé prirodzené číslo, ktoré má aspoň troch deliteľov, vrátane čísla 1.

<u>Prvočíselný rozklad</u> – každé prirodzené číslo vieme zapísať ako súčin prvočísiel.

napr.
$$24 = 3.8 = 2^3.3$$

všeobecne: n =
$$p_1^{\alpha_1}.p_2^{\alpha_2}.p_3^{\alpha_3}....p_k^{\alpha_k}$$
, $k \in \mathbb{N}$
$$\alpha_k \in \mathbb{N};$$

$$p_k - prvočísla$$

Základná veta aritmetiky – každé zložené číslo sa dá zapísať ako súčin prvočísel.

Najväčší spoločný deliteľ (NSD): D(a,b)

• NSD(a,b) je najväčšie možné číslo, ktoré delí aj číslo "a" a aj číslo "b".

napr. NSD(16,24) je 8.

- vieme ho určiť pomocou:
 - **výpis všetkých deliteľov** (určenie najväčšieho spoločného)

napr.
$$24 \rightarrow 1,2,3,4,6,8,12,24$$

 $16 \rightarrow 1,2,4,8,16$
NSD(16,24) = 8

• pomocou prvočíselného rozkladu

napr.
$$24 = 2^3.3^1$$

 $16 = 2^4.3^0$
NSD(16,24) = 2^3 . $3^0 = 8$

V prvočíselnom rozklade NSD(a,b) sa nachádza každé číslo z prvočíselých rozkladov umocnené na nižší exponent.

• Euklidov algoritmus

napr. NSD(210,63)

$$210 - 63 = 147$$

 $147 - 63 = 84$
 $84 - 63 = 21$
 $63 - 21 = 42$
 $42 - 21 = 21$
 $21 - 21 = 0$

Ak dostanem nakonci nulu, NSD je posledné odrátané číslo.

MO 3: TEÓRIA ČÍSEL

Najmenší spoločný násobok (n)

• je také najmenšie prirodzené číslo, ktoré je deliteľné aj číslom "a" aj číslom "b".

napr. n(12,8) = 24

- vieme ho určiť pomocou:
 - prvočíselného rozkladu
 - bude sa tam vyskytovať každé prvočíslo umocnené na väčší exponent)

napr.
$$12 = 2^{2}.3^{1}$$

 $8 = 2^{3}.3^{0}$
 $n(12.8) = 2^{3}.3^{1} = 8.3 = 24$

 \rightarrow platí: a.b = D(a,b).n(a,b)

Pomocou prvočíselného rozkladu vieme určiť aj **počet deliteľov** daného čísla n.

napr.
$$n = 72$$

 $72 = 3^2$. 2^3
 $(3+1)(2+1) = 12$ delitel'ov
 $n(72) = \{1,2,3,4,6,8,9,12,18,24,36,72\}$
 $2^0.3^0 = 1$ $2^0.3^1 = 3$ $2^0.3^2 = 9$
 $2^1.3^0 = 2$ $2^1.3^1 = 6$ $2^1.3^2 = 18$
 $2^2.3^0 = 4$ $2^2.3^1 = 12$ $2^2.3^2 = 36$
 $2^3.3^0 = 8$ $2^3.3^1 = 24$ $2^3.3^2 = 72$

• všeobecne, ak n = $p_1^{\alpha_1}.p_2^{\alpha_2}.p_3^{\alpha_3}....p_k^{\alpha_k}$, potom počet deliteľov je: $(\alpha_1+1)(\alpha_2+2)...(\alpha_k+1)$

napr. Koľko deliteľov má číslo 610 a číslo 1825?

$$610 = 2.305 = 61.2.5$$

 $(1+1)(1+1)(1+1) = 8$ delitel'ov
 $1825 = 5.365 = 73.5^2$
 $(1+1)(2+1) = 6$ delitel'ov

Súdelitel'nost':

• Čísla a, b sú **súdeliteľ né** práve vtedy, keď majú nejakého spoločného deliteľ a rôzneho od 1.

napr. 4,6; 9,12

• Nesúdeliteľné čísla sú také, ktoré okrem 1 nemajú žiadneho spoločného deliteľa.

napr. 3,7; 2,3

MO 3: TEÓRIA ČÍSEL

Kritéria delitel'nosti:

<u>Číslo "a" je deliteľné:</u>

- 2 ⇔ je párne; t.j. jeho posledná cifra je 0,2,4,6,8
- 3 ⇔ jeho ciferný súčet je deliteľný tromi
- **4** ⇔ jeho posledné dvojčíslie je deliteľné štyrmi
- 5 ⇔ jeho posledná cifra je 0 alebo 5
- 6 ⇔ číslo je deliteľné 2 a 3
- 8 ⇔ jeho posledné trojčíslie je deliteľné 8
- 9 ⇔ jeho ciferný súčet je deliteľný 9
- **10** ⇔ číslo sa končí na 0
- 11 ⇔ rozdiel súčtu párnych cifier a nepárnych cifier je násobok 11 (myslíme pozície)

napr.
$$1242579$$

 $1+4+5+9=19$
 $2+2+7=11$
 $19-11=8 \Rightarrow \text{ nie je delitel'né}$

• Pre každé zložené prirodzené číslo M platí, že jeho najmenší deliteľ rôzny od 1 je prvočíslo neprevyšujúce číslo \sqrt{M} , t.j., ak je M zložené číslo, musí mať prvočíselného deliteľ a v intervale $(1,\sqrt{M})$.

• $a,b \in N$

a/b ak
$$\exists$$
 c \in N; b = c.a

• deliteľnosť čísla číslom 7:

$$n = 10k + z; z \in \{0,...,9\}$$

 $7/n \Leftrightarrow 7/(k+5z)$
napr.
 $875 = 10.87 + 5$
 $7/875 \Leftrightarrow 7/(87 + 25) \Leftrightarrow 7/112 \Leftrightarrow 7/(11 + 10) \Leftrightarrow 7/21$
 $112 = 10.11 + 2$