Accident Analysis: Predicting Traffic Accident Duration

By Chase, Pablo, Victor, Ming, Hanson,

Kenneth, Swayam

Introduction

What specific factors significantly influenced the duration of traffic accidents across various cities?

13 DECEMBER 2023 CHASE HERTEL

Dataset

US Accidents (2016 - 2023): A Countrywide Traffic Accident Dataset from Kaggle

Contains car accident information from across 49 U.S. states, The data originates from sources such as traffic cameras, sensors, and government agencies, offering a comprehensive overview of approximately 7.7 million recorded accidents. These incidents were gathered through multiple APIs that stream real-time traffic event data.

Weather, time, and location-based features are some of the most important attributes and make up some of total 46 columns

13 DECEMBER 2023 CHASE HERTEL

Accident Patterns and Duration Analysis

Insights

Methods

Recommendations

13 DECEMBER 2023 CHASE HERTEL

Houston

Worst traffic in Texas, and ranked 2nd in the US for worst traffic

Dataset

Trained on historical logged accidents data in Houston, TX

Prediction

Predict accident duration in seconds using logged data

Home of one of the largest interchanges in the world

Insight

Predict accident duration as soon as accident data is initially logged for city and public usage

13 DECEMBER 2023 VICTOR

Houston

Decision Tree Random Forest

MLP

```
from sklearn.tree import DecisionTreeClassifier
best_dt = DecisionTreeClassifier(
    criterion='entropy',
    max_depth=40,
    max_features='log2',
    min_samples_leaf=12,
    min_samples_split=7
)
best_dt.fit(X_train, y_train)
```

```
from sklearn.ensemble import RandomForestClassifier
best_rf = RandomForestClassifier(
    max_depth=30,
    max_features='sqrt',
    min_samples_leaf=1,
    min_samples_split=13,
    n_estimators=67
)
best_rf.fit(X_train, y_train)
```

from sklearn.neural_network import MLPClassifier
best_mlp = MLPClassifier(
 hidden_layer_sizes=(50,),
 activation='tanh',
 solver='adam',
 verbose=1
)
best_mlp.fit(X_train, y_train)

Score: 0.24

Accuracy: 0.36

Score: 0.27

Accuracy: 0.55

Score: 0.26

Accuracy: 0.36

13 DECEMBER 2023 VICTOR

Houston

Severity of Accidents

Missing Data

Missing end longitude and latitude, however those are key features in predicting accident duration

No Missing Data

13 DECEMBER 2023 VICTOR

Los Angeles

- 1. One of the largest cities in the states(high population density)
- 2. Very car-dependent (city is structured around cars)
- 3. Attracts lots of people (e.g. tourism)
- 4. Poor road infrastructure (due to rapid growth)

EDA

Feature Engineering

```
# Converting Duration to categorys

# 15 mins or Less = 0

# 15 - 30mins = 1

# 30 mins - 1hr = 2

# 1 - 3hr = 3

# 3hr - 6hr = 4

# rest of day = 5

la['ETA'] = 0

la.loc[la['Accident_Duration'] <= 900, 'ETA'] = 0

la.loc[(la['Accident_Duration'] <= 1800) & (la['Accident_Duration'] > 900), 'ETA'] = 1

la.loc[(la['Accident_Duration'] <= 3600) & (la['Accident_Duration'] > 1800), 'ETA'] = 2

la.loc[(la['Accident_Duration'] <= 10800) & (la['Accident_Duration'] > 3600), 'ETA'] = 3

la.loc[(la['Accident_Duration'] <= 21600) & (la['Accident_Duration'] > 10800), 'ETA'] = 4

la.loc[la['Accident_Duration'] > 21600, 'ETA'] = 5
```

```
# Get the decimal points of latitude and Longtitude so it can be more sensitive to the model for Location
la['Lat_Decimal'] = la.Start_Lat.astype(str).str.extract('\.(.*)').astype(int)
la['Lng_Decimal'] = la.Start_Lng.astype(str).str.extract('\.(.*)').astype(int)
```

Lat_Decimal	Lng_Decimal
98748	137558
928959000000008	388271
989342	258482
4945	270073
30895	217926

Feature Importance

- Distance plays a large role in predicting accident duration
- Latitude, Longitude, Temperature, Wind Chill, Humidity, and Pressure plays a relatively significant role as well.
- Day and Severity doesn't contribute as much as I thought (expecting more congestion and delays due to certain days and severity of accidents)
- Try including these features only?

Results

- Best score is 63% from DecisionTreeClassifier.
- Potential future algorithm to consider is LSTM or RNN for Regression

Charlotte, North Carolina

One of the top 5 cities with most accidents in the US

Past 2 years have seen 39000+ reported traffic accidents

Above average rush-hour traffic travel times

According to surveys, Charlotte ranks in top 10 worst public transportation systems

13 DECEMBER 2023 PABLO ROA

EDA and Data Cleaning

Accidents in dataset: 39150

13 DECEMBER 2023 PABLO ROA

Feature Engineering

```
1 target_column = 'Accident_Duration'
2 numeric_columns = df.select_dtypes(include=['number'])
3 correlation_matrix = numeric_columns.corr()
4 correlations = correlation_matrix[target_column].drop(target_column)
5 sorted_features = correlations.abs().sort_values(ascending=False)
6 print(sorted_features)
```

blocked	0.254254
Distance(mi)	0.243359
Traffic_Signal	0.223407
Severity	0.221620
delays	0.145592
Humidity(%)	0.096498
Start_Time	0.066515
Crossing	0.065914
Wind_Speed(mph)	0.059779
	0.010000

- 0.2

-0.0

- -0.1

Features that I chose = ['Junction', 'blocked', 'Distance(mi)', 'Temperature(F)', 'Traffic_Signal', 'delays', 'Start_Time', 'Humidity(%)', 'Pressure(in)', 'Crossing', 'Wind_Speed(mph)']

13 DECEMBER 2023 PABLO ROA

Feature Engineering

Model Performance

Orlando


```
df = df.drop(df[df["Distance(mi)"]>10].index)
df = df.drop(df[df["Pressure(in)"]<29].index)
df = df.drop(df[df["Wind_Speed(mph)"]>40].index)
df = df.drop(df[df["Precipitation(in)"]>2].index)
```

Drop Outliers

- -0.3

Random Forest

Neural Network

```
rf_params = {'max_depth': randint(1,20), 'min_samples_split'
rf = RandomForestRegressor()
rf_random = RandomizedSearchCV(estimator=rf, param_distribut
rf_random.fit(X_train_std,y_train)
best_params = rf_random.best_params_
best_rf = RandomForestRegressor(**best_params)
best_rf.fit(X_train_std, y_train)
```

```
def build_nn_model():
    model = Sequential()
    model.add(Dense(128, activation='relu', input_shape=(X_train_std.shape[1],)))
    model.add(Dense(64, activation='relu'))
    model.add(Dense(1))
    model.compile(optimizer='adam', loss='mean_squared_error')
    return model
```

rmse: 2661.35

r2: 0.34

rmse: 2731.53

r2: 0.30

Miami, Florida

Most traffic accidents out of any city in the US
Past 2 years have seen 85,000+ reported traffic accidents
High tourism

Lots of congestion at peak hours

Workflow

Procedure	Details
1. Exploratory Data Analysis	Understanding data, distributions, correlation coefficients with target variable
2. Wrangling/Cleaning	Removing NAs, nonsensical data, replacing outliers with 3+ z-score
3. Feature Engineering	Creating features from description text (Regex), discretization, creating day of week/hour features, one hot/binary encoding of non-numeric data, Lasso Regression and Decision Tree Regressors to identify salient variables/relative feature importance
4. Model Testing	Baseline linear regression, random forest, XGBoost, MLP regressor (neural network), mse, r square score, accuracy within 10%

Feature Importance

Model Performance

Real World Application of Models

- Using our models raw estimates of accident durations could be computed for different cities
- Useful for web mapping service creators such as Google and Apple to increase accuracy of arrival time
- Emergency Service organizations would be able to analyze whether certain areas have accident durations that are longer than expected
- Drivers, commuters, etc can be notified of accidents and projected accident duration to plan accordingly

General Limitations of Models

- Less than ideal model performance can be adjusted by training on a greater sample size of accidents
- Training/testing and hyperparameter tuning on more data would require much greater computational power and time which can be accomplished using distributed computing
- For most of the feature importance tables for Random Forests the distance feature dominated
- This can be adjusted by finding datasets with more detailed information geographic and driver information to add other important features

Want to make a presentation like this one?

Start with a fully customizable template, create a beautiful deck in minutes, then easily share it with anyone.

Create a presentation (It's free)