FEUP-IART T2-4C

Gustavo Speranzi Tosi Tavares

MIEIC
FEUP
Porto, Portugal
up201700129@fe.up.pt

Daniel Gazola Bradaschia MIEIC FEUP Porto, Portugal up201700494@fe.up.pt

Abstract

Como o sucesso de uma equipe depende do desempenho de seus individuos, a avaliação do desempenho de um jogador tornou-se um tópico de pesquisa essecial para uma equipe. Neste artigo, avaliamos diferentes algoritmos de aprendizado de máquina, usando dados de aproximadamente 20.000 jogos de 11 ligas europeias durante um período de 8 temporadas, bem como, classificações de jogadores da FIFA, a fim de previr o desempenho de um jogador, assim como explorar os resultados dos algoritmos utilizados.

Keywords— Sports analytics \cdot Data mining \cdot Player valuation \cdot Supervised Learning \cdot Regression

I. INTRODUÇÃO

Neste trabalho tem como proposito, a aplicação de conceitos de aprendizagem supervisionada do tipo regressivo, fazendo uso de uma extensa base de dados de futebol da liga européia. Pretende-se assim, prever o desempenho de um jogador, fazendo uso dos dados disponibiliados.

II. DESCRIÇÃO DO PROBLEMA

A. Análise do Problema

Assim como explicado anteriormente, o tema tem como intuito fazer uso de ferramentas de Machine Learning para analisar uma quantidade extensa de dados através do dataset fornecido e por fim fazer previsões precisas do desempenho de um jogador, mas fazendo uso da múltiplos algoritmos da biblioteca Machine Learning scikit-learn, sendo os algoritmos escolhidos: Árvores de Decisão, SGDRegressor, K-Nearest, Redes Neuronais.

B. Explicação do Dataset

O dataset fornecido foi da liga de futebol européia de Hugo Mathien, onde é disponibilizado dados sobre temporadas da liga européia entre 2008 e 2016, com informações detalhadas sobre 10000+ jogadores e 250000+ partidas, fazendo uso também de informações da série de jogo FIFA.

III. ABORDAGEM

A. Ferramentas

Na implementação do projeto, utilizamos da linguagem Python, as bibliotecas NumPy, pandas, Matplotlib, Machine Learning scikit-learn e as plataformas IPython e Jupyter Notebook.

B. Desenvolvimento

A Aplicação pode ser dividida em duas estapas:

- Configuração dos dados
- Aplicação dos algoritmos

1) Configuração dos dados

Nesta etapa, destina-se a leitura da base de dados, o préprocessamento e a transformação dos dados.

Após o código se conectar a base de dados através da linha de comando.

```
with sqlite3.connect('../soccer/database.sqlite') as con:
Player_Attributes = pd.read_sql_query("SELECT * from
Player_Attributes", con)
```

A etapa seguinte é efetuar a limpeza dos dados, inicialmente através de remover colunas irrelevantes, como data, ids e o overall rating, que é nosso objetivo final a aplicação ou que apresentem valores nulos através da seguinte passagem.

```
Player_Attributes.dropna(inplace=True)
Player_Attributes.drop(['id', 'player_fifa_api_id', 'player_api_id', 'date'], axis = 1, inplace = True)
overall_rating = Player_Attributes['overall_rating']
features = Player_Attributes.drop('overall_rating', axis = 1)
```

Em seguida, é necessário que as colunas com valores não númericos (prefered foot, attacking work rate e defensive work rate), decidimos converter seus valores em valores numéricos através da seguinte linha, mas outra opção seria elimina-las junto as categorias anteriores.

```
features = pd.get_dummies(features)
```

Finalmente, para encerrar essa etapa, fazemos uso do MinMaxScaler para uniformizar os dados, com o intuito de aumentar a precisão adquirida dos valores.

```
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
scaled_features = min_max_scaler.fit_transform(features)
```

2) Aplicação dos algoritmos

Nesta etapa que iremos aplicar os 4 diferentes algoritmos selecionados sobre os dados configurados na etapa anterior e

efetuar a previsão através fazendo uso dos sets de treino e teste através do código a seguir. Relembrando que os algoritmos em

```
reg1 = tree.DecisionTreeClassifier()
reg2 = linear_model.SGDRegressor()
reg3 = KNeighborsRegressor(n neighbors=2)
reg4 = MLPRegressor(random_state=1, max_iter=500)
regs = {reg1:"DecisionTree", reg2:"SGDRegressor",
reg3:"KNeighbors", reg4:"NeuralNetwork"}
for key in regs:
  t0 = time()
  X_train, X_test, y_train, y_test =
train_test_split(scaled_features, overall_rating, test_size=0.25,
random_state=0)
  print ("----")
  print (regs[key])
  print ("-----")
  t1 = time()
  key.fit(X_train, y_train)
  print ("Time taken to train the model: {}".format(time()-t1))
  t2 = time()
  pred\_test = key.predict(X\_test)
  pred_train = key.predict(X_train)
  print ("Time taken to predict the model: {}".format(time()-
t2))
  t3 = time()
  print ("r2 score of this model on testing set is:
{}".format(r2_score(y_test, pred_test)))
  print ("r2 score of this model on training set is:
{}".format(r2_score(y_train, pred_train)))
```

IV. EXPERIMENTAÇÃO

A. Comparação dos algoritmos

Nesta primeira experiência efetuamos a comparação dos algoritmos de acordo com sua precisão dos resultados e o tempo necessário para efetuar os cálculos.

DecisionTree

Time taken to train the model: 7.420112371444702 Time taken to predict the model: 0.21271991729736328 r2 score of this model on testing set is: 0.9497573508853848 r2 score of this model on training set is: 0.9988644730721816

SGDRegressor

Time taken to train the n

Time taken to train the model: 2.0376570224761963 Time taken to predict the model: 0.015960216522216797 r2 score of this model on testing set is: 0.8429320134680672 r2 score of this model on training set is: 0.8445771303753988

KNeighbors

Time taken to train the model: 12.83634877204895 Time taken to predict the model: 722.3275904655457 questão são Árvores de Decisão, SGDRegressor, K-Nearest, Redes Neuronais.

r2 score of this model on testing set is: 0.9557633414780853 r2 score of this model on training set is: 0.9891838192633062

NeuralNetwork

Time taken to train the model: 853.534113407135 Time taken to predict the model: 5.250151634216309 r2 score of this model on testing set is: 0.9559526964416791 r2 score of this model on training set is: 0.9579127454206207

B. Precisão

Em seguida pode-se avaliar um gráfico de acordo com o algoritmo SGDRegressor, que revela a precisão dos resultados de acordo com os resultados reais.

C. RSME

Em seguida foi efetuado testes de RSME para o algoritmo de K-Nearest, de acordo com o valor k que simboliza o número de vizinhos próximos. Os cálculos param após a décima iteração, pois o RSME passa a se estabilizar em seguida.

```
RMSE value for k= 1 is: 1.4371127607135425

RMSE value for k= 2 is: 1.4674191600658149

RMSE value for k= 3 is: 1.5371942246708927

RMSE value for k= 4 is: 1.5919015401176657

RMSE value for k= 5 is: 1.6410105998357583

RMSE value for k= 6 is: 1.6891998468890845

RMSE value for k= 7 is: 1.7266537186638116

RMSE value for k= 8 is: 1.7586972550592932

RMSE value for k= 9 is: 1.7860959172709656

RMSE value for k= 10 is: 1.8086762098454865
```


V. CONCLUSÃO

No âmbito da matéria de inteligência artificial o projeto cumpriu o objetivo de criar modelos de regressão, fazendo uso de algoritmos de aprendizagem supervisionada e um dataset específico.

O trabalho foi finalizado com sucesso, mas com consciência que mais poderia ter sido feito em relação as experiências feitas quanto a demonstração mais detalhada dos resultados.

Participação

• Daniel Gazola Bradaschia 60%

Gustavo Speranzini Tosi Tavares 40%

REFERENCIAS

- [1] Efezino Erome-Utunedi https://nycdatascience.com/blog/student-works/analyzing-predicting-european-soccer-match-outcomes/
- Prakhar Rati https://www.kaggle.com/prakharrathi25/european-soccer-regression-analysis/notebook
- [3] Hugo Mathien https://www.kaggle.com/prakharrathi25/european-soccer-regression-analysis/notebook