18.19기 정규세션 ToBigs 18기강의자 표술빈

Ensemble

앙상블

D t nts

```
Unit 01 | Introduction
Unit 02 | Ensemble
Unit 03 | Voting
Unit 04 | Bagging
Unit 05 | Boosting
```

Unit 01 - Introduction

No Free Lunch Theorem (NFLT)

"We have dubbed the associated results "No Free Lunch" theorems because they demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems." - \[\cdot \] No Free Lunch Theorems for Optimization(1997)_ (William Macready)

Additive Error Model

$$y = F^*(X) + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

f(x)는 동일한 데이터에 대해 항상 동일한 값을 도출한다. 다만, $\varepsilon($ 노이즈)가 어떻게 주어지는가에 따라 데이터셋이 달라진다.

f의 추정 함수인 \hat{f} 를 기반으로 각 데이터셋의 정답 \mathbf{y} 를 추정한 값을 $\hat{f}(\mathbf{x})$ 라고 한다.

여러 $\hat{f}(\mathbf{x})$ 들의 기댓값을 의미한다.

Additive Error Model (참고)

$$y = F^*(X) + \epsilon, \qquad \epsilon \sim N(0, \sigma^2)$$

Notation	Description
$y = f(\mathbf{x}) + \varepsilon$	데이터
f	데이터를 잘 설명하는 정답 함수 (정답 매커니즘)
ε	데이터에 내재된 사람이 컨트롤 불가한 자연 발생적인 변동성
$\varepsilon \sim N(0, \sigma^2)$	변동성이 정규분포(평균=0, 분산= σ^2)를 따른다고 가정
ĥ	정답 함수 f 를 추정하는 함수 (학습 모형)
$\hat{f}(\mathbf{x})$	학습 모형 (\hat{f}) 을 통해 추정한 값
$\bar{f}(\mathbf{x}) = \mathbb{E}[\hat{f}(\mathbf{x})]$	여러 $\hat{f}(\mathbf{x})$ 들의 기댓값
$f(\mathbf{x}) - \bar{f}(\mathbf{x})$	$\hat{f}(\mathbf{x})$ 의 편향: 정답과 추정치의 기댓값 간의 차이
$\mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^2\right]$	$\hat{f}(\mathbf{x})$ 의 분산: 추정치의 개별 값들과 추정치의 기댓값 간의 차이를 제곱한 것의 기댓값

$$\overline{F}(X) = E(\widehat{F_D}(X))$$

Bias-Variance Decomposition

Calculate Error (MSE)

$$Err(X_0) = E[y - \widehat{F}(X)|X = X_0]^2$$

$$= E[F^*(X_0) + \epsilon - \widehat{F}(X_0)]^2$$

$$= E[F^*(X_0) - \widehat{F}(X_0)]^2 + \sigma^2$$

$$= E[F^*(X_0) - \overline{F}(X_0) + \overline{F}(X_0) - \widehat{F}(X_0)]^2 + \sigma^2$$

$$= [F^*(X_0) - \overline{F}(X_0)]^2 + [\overline{F}(X_0) - \widehat{F}(X_0)]^2 + \sigma^2$$

$$= bias^2 + varinace + \sigma^2$$

Bias-Variance Decomposition (참고)

Calculate Error (MSE) 노이즈의 분산 유도과정

$$\begin{split} \mathbb{E}\left[\left(y-\hat{f}(\mathbf{x})\right)^2\right] &= \mathbb{E}\left[\left(f(\mathbf{x})+\frac{\varepsilon}{\varepsilon}-\hat{f}(\mathbf{x})\right)^2\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2+\frac{\varepsilon}{\varepsilon}^2+2\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)\varepsilon\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\mathbb{E}\left[\varepsilon^2\right]+2*\mathbb{E}\left[f(\mathbf{x})-\hat{f}(\mathbf{x})\right]*\mathbb{E}\left[\varepsilon\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\mathbb{E}\left[\varepsilon^2\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\mathbb{E}\left[\varepsilon^2\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\sigma^2 \end{split}$$

$$\begin{split} \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\mathbb{E}\left[\varepsilon^2\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\mathbb{E}\left[\varepsilon^2\right] \\ &= \mathbb{E}\left[\left(f(\mathbf{x})-\hat{f}(\mathbf{x})\right)^2\right]+\sigma^2 \end{split}$$

$$\begin{split} \mathbb{E}\left[\varepsilon^2\right] &= Var(\varepsilon)+\mathbb{E}\left[\varepsilon\right]^2\mathbb{O}II, \\ \mathbb{E}\left[\varepsilon^2\right] &= Var(\varepsilon)+\mathbb{E}\left[\varepsilon\right]^2\mathbb{O}II. \end{split}$$

Bias-Variance Decomposition (참고)

Calculate Error (MSE) : 편향의 제곱과 분산 분해 유도

$$\mathbb{E}\left[\left(f(\mathbf{x}) - \hat{f}(\mathbf{x})\right)^{2}\right] = \mathbb{E}\left[\left(f(\mathbf{x}) - \bar{f}(\mathbf{x}) + \bar{f}(\mathbf{x}) - \hat{f}(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2} - \left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2} + 2\left(f(\mathbf{x}) - \bar{f}(\mathbf{x})\right)\left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)\right]$$

$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right] - \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right] + 2 * \mathbb{E}\left[f(\mathbf{x}) - \bar{f}(\mathbf{x})\right] * \mathbb{E}\left[\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right] = \mathbf{0}$$

$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right] - \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(f(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right] - \mathbb{E}\left[\left(\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right)^{2}\right]$$

$$= \mathbb{E}\left[\hat{f}(\mathbf{x}) - \bar{f}(\mathbf{x})\right] - \mathbb{E}\left[\hat{f}(\mathbf{x})\right] - \mathbb{E}\left[\hat{f}(\mathbf{x})\right] + \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] - \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] - \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] - \mathbb{E}\left[\hat{f}(\mathbf{x})\right] = \mathbb{E}\left[\hat{f}(\mathbf{x})\right] =$$

Bias-Variance Decomposition (참고)

- ✓ Bias: difference between predicted value and expected value
 - Low Bias: Accurately estimate the function
 - High Bias: Imply a poor match
- ✓ Variance: when the model takes into account the fluctuations in the data
 - Low Variance: Estimated function doesn't change much
 - High Bias: Imply a weak match
- ❖ High Bias + Low Variance: Logistic Regression, LDA, KNN
- **❖** Low Bias + High Variance: ANN, SVM, DT
- ❖ Low Bias + Low Variance: Best Model!!, Except 과적합

Unit 02 | Ensemble

Unit 02 - Ensemble

Unit 02 | Ensemble

Ensemble

- Regression -> average
- Classification -> Majority vote

Unit 02 | Ensemble

앙상블 학습을 통한 분류는 여러 개의 분류기(Classifier)를 생성하고 그 예측을 결합함으로서 더 정확한 최종예측을 도출 하는 기법이다.

Unit 03 - Voting

최종 예측 값 Voting ↑পাক 예측 예측 Decsion Tree Decsion Tree Decsion Tree Sampling Data Sampling Data Sampling Data Set #1 Set #2 Set #3

Voting 방식

Bagging 방식

Voting

✓ Hard voting: out of multiple outputs produced by the classifiers, the majority output is chosen
to be the final result of the model

✓ Soft voting: Sums the predicted probabilities for class labels and returns the final classification with the largest sum probability.

Voting

Unit 04 - Bagging

Why do we learn Ensemble?

- In order to reduce variance, we should use Ensemble model based on 'Bagging' strategy
- In order to reduce bias, we should use Ensemble model based on 'Boosting' strategy

Independent instance selection

Model guided instance selection

Bagging (Bootstrap Aggregating)

The objective is to create several subsets of data from training sample chosen randomly with replacement
in order to reduce the variance.

$$y = f(x) + \epsilon$$

Bootstrap

OOB ERROR : Bootstrap에 포함되지 않은 데이터를 예측값과 비교해서 나온 값의 차이

Bagging (Bootstrap Aggregating)

Bagging (Bootstrap Aggregating)

- Bootstrap set의 크기가 N이라고 할 때 한 번의 추출과정에서 어떤 한 샘플이 추출되지 않을 확률 = $\frac{N-1}{N}$
- N회 복원추출 진행했을 때 그 샘플이 추출되지 않았을 확률 $=\left(1-rac{1}{N}
 ight)^{N}$

$$p = \left(1 - \frac{1}{N}\right)^N \to \lim_{N \to \infty} \left(1 - \frac{1}{N}\right)^N \to e^{-1} = 0.368 = 36.8\%$$

Out Of Bag data (OOB)

$$1-p=1-0.368=63.2\%$$

Sampled more than once in bootstrap

Random Forest

- A specialized bagging for DT (base learner)
 - 1) Based on Bagging Ensemble
 - 2) Randomly choose variables

Randomly select 'm' variables

- Random Forest Algorithm Procedures
 - 1. Select random 'K' data points from the training set
 - 2. Build the Decision Trees associated with the selected data points (subsets)
 - 3. Choose the number of 'N' for Decision Trees that you want to build
 - 4. Repeat Step1 and Step2
 - 5. For new data points, find the predictions of each decision tree, and assign the new data points to the category that wins the majority votes

Random Forest 특징

- Able to use on both classification and regression tasks
- Handle 'Missing Values' well
- Each tree (base learner) in random forest may overfit the data because 'pruning' is not conducted
- Prevents overfitting problem
- Variable Importance --→ Not suggest which variables to select
- Difficult to interpret the results (Black-Box Model)
- Too slow when the number of data size is large

Random Forest의 중요 Parameters

- Decision Tree의 개수
 - Forest가 작으면 테스트 시간 감소 but 일반화 능력 하락
 - Forest가 크다면 테스트 시간 증가 but 일반화 능력 상승

Tree의 최대 깊이

- Root Node부터 Terminal Node까지 최대 몇 개의 Node를 거칠 것인지 결정
- Node 분할 함수 (split function)
 - 전체 데이터 셋에서 몇 개의 특징(feature)선택
 - 큰 중요도 점수를 가지는 변수를 높은 순위로 올리는 방식을 선택하는 것이 일반적

Unit 05 - Boosting

Boosting: An iterative procedure to adaptively change distribution of training data by focusing more on previously mis-classified records.

Sequential learning process unlike 'Bagging' (parallel learning)

AdaBoost (Adaptive Boosting)

Weak learner, performing only slightly better than random guessing, could be boosted in to arbitrarily accurate strong learner

- https://www.youtube.com/watch?v=HZg8_wZPZGU

- AdaBoost
- Gradient Booting Machine(GBM)
- XGBoost
- •LightGBM

Stump (약분류기)

Forest of Stumps

Random Forest

AdaBoost

AdaBoost (Adaptive Boosting)

- ✓ 약한 학습기, stump 형태
- ✓ 오답에 대해서 가중치를 높게 부여
- ✓ 각 stump의 error는 다음 stump의 결과에 영향을 줌

Algorithm 2 Adaboost

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for
$$t = 1$$
 to T do

Train a model h_t using distribution D_t .

Calculate
$$\epsilon_t = P_{D_t}(h_t(x) \neq y)$$

If
$$\epsilon_t \geq 0.5$$
 break

Set
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Update
$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

AdaBoost (Adaptive Boosting)

```
Algorithm 2 Adaboost
  Input: Required ensemble size T
  Input: Training set S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}, where y_i \in \{-1, +1\}
  Define a uniform distribution D_1(i) over elements of S.
  for t = 1 to T do
    Train a model h_t using distribution D_t. \longrightarrow 비복원 추출을 기본 하지만 복원도 가능
    Calculate \epsilon_t = P_{D_t}(h_t(x) \neq y)
    Update D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}
    where Z_t is a normalization factor so that D_{t+1} is a valid distribution.
  end for
  For a new testing point (x', y'),
  H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)
```

AdaBoost (Adaptive Boosting)

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon}{\epsilon} \right)$$

$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

$$y_i h_t(x_i) = \begin{cases} 1 & \text{if } y_i = h_t(x_i) \\ -1 & \text{if } y_i \neq h_t(x_i) \end{cases}$$

Algorithm 2 Adaboost

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for
$$t = 1$$
 to T do

Train a model h_t using distribution D_t .

Calculate
$$\epsilon_t = P_{D_t}(h_t(x) \neq y)$$

If $\epsilon_t \geq 0.5$ break

Set
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Update
$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

AdaBoost (Adaptive Boosting)

$\exp(-\alpha_t y_i h_t(x_i))$	성능 좋은 분류기 $(lpha_t\gg 0)$	그저 그런(?) 분류기 $(\alpha_t \approx 0)$
$y_i = h_t(x_i)$ $[y_i h_t(x_i) = 1]$	≈ 0	< 1
$y_i \neq h_t(x_i)$ $[y_i h_t(x_i) = -1]$	» 1	> 1

$$H(x') = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

Algorithm 2 Adaboost

Input: Required ensemble size T

Input: Training set $S = \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$, where $y_i \in \{-1, +1\}$

Define a uniform distribution $D_1(i)$ over elements of S.

for
$$t = 1$$
 to T do

Train a model h_t using distribution D_t .

Calculate
$$\epsilon_t = P_{D_t}(h_t(x) \neq y)$$

If $\epsilon_t \geq 0.5$ break

Set
$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right)$$

Update
$$D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$

where Z_t is a normalization factor so that D_{t+1} is a valid distribution.

end for

For a new testing point (x', y'),

$$H(x') = sign\left(\sum_{t=1}^{T} \alpha_t h_t(x')\right)$$

- ✓ AdaBoost: update weights on Dataset by sampling
- ✓ GBM: update 'y' not Dataset
- Understand the concept of 'Residual Fitting'

GBM (Gradient Boosting Machine) (참고)

$$L = MSE = \frac{1}{2}(y_i - f(x_i)^2)$$

Gradient =
$$\frac{\partial L}{\partial f(x_i)} = f(x_i) - y_i$$

$$Residual = y_i - f(x_i)$$

Residual = Negative Gradient

GBM = Gradient Descent + Boosting

GBM (Gradient Boosting Machine) (참고)

Input: training set $\{(x_i, y_i)\}_{i=1}^n$, a differentiable loss function L(y, F(x)), number of iterations M. Algorithm:

1. Initialize model with a constant value:

$$F_0(x) = rg \min_{\gamma} \sum_{i=1}^n L(y_i, \gamma).$$

New model fitting -> Loss function down!!

- 2. For m = 1 to M:
 - 1. Compute so-called *pseudo-residuals*:

$$r_{im} = -iggl[rac{\partial L(y_i, F(x_i))}{\partial F(x_i)}iggr]_{F(x) = F_{m-1}(x)} \quad ext{for } i = 1, \dots, n.$$

- 2. Fit a base learner (or weak learner, e.g. tree) closed under scaling $h_m(x)$ to pseudo-residuals, i.e. train it using the training set $\{(x_i, r_{im})\}_{i=1}^n$.
- 3. Compute multiplier γ_m by solving the following one-dimensional optimization problem:

$$\gamma_m = rg \min_{\gamma} \sum_{i=1}^n L\left(y_i, F_{m-1}(x_i) + \gamma h_m(x_i)
ight).$$

4. Update the model:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x).$$

3. Output $F_M(x)$.

Height (m)	Favorite Color	Gender	Weight (kg)
1.6	Blue	Male	88
1.6	Green	Female	76
1.5	Blue	Female	56
1.8	Red	Male	73
1.5	Green	Male	77
1.4	Blue	Female	57

Height (m)	Favorite Color	Gender		Residual
1.6	Blue	Male	88	16.8
1.6	Green	Female	76	4.8
1.5	Blue	Female	56	-15.2
1.8	Red	Male	73	1.8
1.5	Green	Male	77	5.8
1.4	Blue	Female	57	-14.2

Height (m)	Favorite Color	Gender	Weight (kg)	Residual
1.6	Blue	Male	88	15.1
1.6	Green	Female	76	4.3
1.5	Blue	Female	56	-13.7
1.8	Red	Male	73	1.4
1.5	Green	Male	77	5.4
1.4	Blue	Female	57	-12.7

1.6	Blue	Male	15.1
1.6	Green	Female	4.3
1.5	Blue	Female	-13.7
1.8	Red	Male	1.4
1.5	Green	Male	5.4
1.4	Blue	Female	-12.7

Boosting

• • •

XGBoost (eXtreme Gradient Boosting)

- → An optimized distributed gradient boosting model designed to be highly efficient, flexible and portable.
- Optimization
 - 1. Parallelziation
 - 2. Tree Pruning
- Algorithm
 - 1. Regularization
 - 2. Built-in Cross Validation
 - 3. Sparsity Awareness
- Hardware Optimization

Light GBM (Light Gradient Boosting Machine)

Gradient-based One-Side Sampling (GOSS)


```
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
     preds \leftarrow models.predict(I)
     g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
     sorted \leftarrow GetSortedIndices(abs(g))
     topSet \leftarrow sorted[1:topN]
     randSet \leftarrow RandomPick(sorted[topN:len(I)],
     randN)
     usedSet \leftarrow topSet + randSet
     w[randSet] \times = fact \triangleright Assign weight fact to the
     small gradient data.
     newModel \leftarrow L(I[usedSet], -g[usedSet],
     w[usedSet])
     models.append(newModel)
```

Boosting

- Parallel processing
- Pruning types
- Regularization
- Sparsity awareness
- Built-in CV
- Complex hyperparameters

- Leaf wise tree growth
- GOSS
- Overfitting (low # of data)

- Handle categorical variables well
- Slower than LGBM (training)
- Low performance (most variables are numeric, not categoric)

Conclusion

- ✓ Ensemble = "Diversity"
- ✓ Voting (Hard Voting vs Soft Voting)
- ✓ Bagging (Random Forest)
- ✓ Boosting (AdaBoost, GBM, XGB, LightGBM, CatBoost)

과제

Assignment

- Dacon,kaggle 코드 리뷰!
- 본인이 직접 선택해서 앙상블 기법을 이용한 코드를 리뷰해주시면 됩니다!
- Ex: Random forest, Xgboost 그외 모든 ensemble model
- 채점 기준은 다음과 같습니다.
 - 상세한 코드 리뷰 (앙상블 기법, 파라미터 튜닝 중점적으로)
 - 코드 자체의 완성도 및 대회의 난이도
- 앞서 배운 강의의 다양한 모델과 기법들을 활용해서 리뷰해주세요!
- 코드 가져온 링크도 반드시 첨부해주세요! 채점할 때 사용합니다.
- Baseline Model은 안됩니다!
- ✓ 코드리뷰는 꼭 git이 아니라도 Notion, tistory, 기술블로그 모든 형태 가능합니다!

과제

Assignment

- ✓ (예시)
- √ https://dacon.io/competitions/official/235930/codeshare
- √ https://dacon.io/competitions/official/236035/codeshare
- ✓ (코드리뷰 예시)
- ✓ https://tensorflow.blog/%ED%8C%8C%EC%9D%B4%EC%8D%AC-
 %EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D/2-3-6-%EA%B2%B0%EC%A0%95%ED%8A%B8%EB%A6%AC%EC%9D%98-%EC%95%99%EC%83%81%EB%B8%94/
- https://lsjsj92.tistory.com/558

Reference

https://velog.io/@jiselectric/Ensemble-Learning-Voting-and-Bagging-at6219ae

https://www.shutterstock.com/ko/image-vector/voting-ballot-box-icon-election-vote-1342666166

https://blog.naver.com/PostView.nhn?blogId=ckdgus1433&logNo=221588139765

https://huidea.tistory.com/35

https://lsjsj92.tistory.com/559

https://www.javatpoint.com/machine-learning-random-forest-algorithm

https://community.alteryx.com/t5/image/serverpage/image-id/33046iB8743F7094DB9C87/image-size/large?v=

1.0&px=999

https://michael-fuchs-python.netlify.app/2020/03/26/ensemble-modeling-boosting/

https://injo.tistory.com/31

https://www.analyticsvidhya.com/blog/2021/09/adaboost-algorithm-a-complete-guide-for-beginners/

https://3months.tistory.com/368

https://koalaverse.github.io/machine-learning-in-R/gradient-boosting-machines.html

https://www.youtube.com/channel/UCPq01cgCcEwhXl7BvcwlQyg

https://www.youtube.com/watch?v=3CC4N4z3GJc

https://bkshin.tistory.com/entry/%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-15-Gradient-Boost

https://statinknu.tistory.com/33

https://wyatt37.tistory.com/5

Q&A

들어주셔서 감사합니다.