MATH 4070 R Session 1: Simple Linear Regression

Whitney Huang

8/27/2024

${\bf Contents}$

Session Objectives	2
Example: Maximum Heart Rate vs. Age	2
Load the dataset	2
Examine the data before fitting models	3
Plot the data before fitting models	3
Simple linear regression	4
Let R do all the work $\ \ldots \ \ldots$	6
Residual Analysis	6
Understanding Sampling Distributions and Confident Intervals via simulation	Ć
Generate data in R	Ć
Plot the first few simulated datasets	10
Estimate the β_0 , β_1 , and σ^2 for each simulated dataset	10
Assess the estimation perfromance	10
Sampling distribution	12
CI's for all the simulated datasets	12
Confidence Intervals for Maximum Heart Rate Example	13
eta_1	13
$Y_h X_h=40$	14
Check	15
Hypothesis Tests for β_1	15
ANOVA	16
Fitting a simple linear regression	16
ANOVA Table	16

Session Objectives

- To gain experience with R, a programming language and free software environment for statistical computing and graphics.
- To perform simple linear regression using R

Example: Maximum Heart Rate vs. Age

The maximum heart rate (HR_{max}) of a person is often said to be related to age (Age) by the equation:

$$HR_{max} = 220 - Age$$

Let's use a dataset to assess this statement.

Load the dataset

There are several ways to load a dataset into R:

• Importing Data over the Internet

```
dat <- read.csv('http://whitneyhuang83.github.io/STAT8010/Data/maxHeartRate.csv', header = T)</pre>
```

• Read the dataset from you computer

```
dat <- read.csv('maxHeartRate.csv', header = T)</pre>
```

• If the dataset is not too big, you can type the data into R

Let's take a look at the data

dat

```
##
      age maxHeartRate
## 1
       18
                     202
## 2
       23
                     186
## 3
        25
                     187
## 4
        35
                     180
## 5
        65
                     156
## 6
        54
                     169
## 7
                     174
        34
## 8
        56
                     172
## 9
        72
                     153
## 10
       19
                     199
## 11
       23
                     193
## 12
       42
                     174
## 13
       18
                     198
## 14
       39
                     183
## 15
       37
                     178
```

Examine the data before fitting models

```
summary(dat)
##
                      maxHeartRate
         age
                            :153.0
##
           :18.00
                     Min.
##
    1st Qu.:23.00
                     1st Qu.:173.0
    Median :35.00
                     Median :180.0
##
           :37.33
##
    Mean
                     Mean
                            :180.3
##
    3rd Qu.:48.00
                     3rd Qu.:190.0
           :72.00
                            :202.0
##
    Max.
                     Max.
var(dat$age); var(dat$maxHeartRate)
## [1] 305.8095
## [1] 214.0667
cov(dat$age, dat$maxHeartRate)
## [1] -243.9524
cor(dat$age, dat$maxHeartRate)
## [1] -0.9534656
```

Plot the data before fitting models

This is what the scatterplot would look like by default. Put predictor (age) to the first argument and response (maxHeartRate) to the second argument.

plot(dat\$age, dat\$maxHeartRate)

Let's make the plot look nicer (type ?plot to learn more).

Question: Describe the direction, strength, and the form of the relationship.

Simple linear regression

Let's do the calculations to figure out the regression coefficients as well as the standard deviation of the random error.

• Slope:
$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

```
X <- dat$age; Y <- dat$maxHeartRate
Y_diff <- Y - mean(Y)
X_diff <- X - mean(X)
beta_1 <- sum(Y_diff * X_diff) / sum((X_diff)^2)
beta_1</pre>
```

[1] -0.7977266

• Intercept: $\hat{\beta}_0 = \bar{y} - \bar{x}\hat{\beta}_1$

```
beta_0 <- mean(Y) - mean(X) * beta_1
beta_0</pre>
```

[1] 210.0485

• Fitted values: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

```
Y_hat <- beta_0 + beta_1 * X
Y_hat</pre>
```

```
## [1] 195.6894 191.7007 190.1053 182.1280 158.1962 166.9712 182.9258 165.3758
## [9] 152.6121 194.8917 191.7007 176.5439 195.6894 178.9371 180.5326
```

•
$$\hat{\sigma}$$
: $\hat{\sigma}^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$

```
sigma2 <- sum((Y - Y_hat)^2) / (length(Y) - 2)
sqrt(sigma2)</pre>
```

[1] 4.577799

Add the fitted regression line to the scatterplot

Let R do all the work

```
fit <- lm(maxHeartRate ~ age, data = dat)</pre>
summary(fit)
##
## Call:
## lm(formula = maxHeartRate ~ age, data = dat)
##
## Residuals:
##
       Min
                1Q Median
                                       Max
## -8.9258 -2.5383 0.3879 3.1867 6.6242
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.04846 2.86694 73.27 < 2e-16 ***
                            0.06996 -11.40 3.85e-08 ***
## age
               -0.79773
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 4.578 on 13 degrees of freedom
## Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
## F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
  • Regression coefficients
fit$coefficients
## (Intercept)
## 210.0484584 -0.7977266
  • Fitted values
fit$fitted.values
                            3
                                     4
                                              5
                                                                 7
                   2
                                                        6
## 195.6894 191.7007 190.1053 182.1280 158.1962 166.9712 182.9258 165.3758
                  10
                           11
                                    12
                                             13
                                                       14
## 152.6121 194.8917 191.7007 176.5439 195.6894 178.9371 180.5326
  • \hat{\sigma}
summary(fit)$sigma
## [1] 4.577799
```

Residual Analysis

```
par(las = 1, mar = c(4.1, 4.1, 1.1, 1.1))
plot(age, fit$residuals, pch = 16, ylab = "Residuals", ylim = c(-11, 11))
abline(h = 0, col = "red", lty = 2)
```



```
res <- fit$residuals
# histogram
hist(res, las = 1)
rug(res)</pre>
```



```
# QQ plot
qqnorm(res, pch = 16, las = 1)
qqline(res)
```


Understanding Sampling Distributions and Confident Intervals via simulation

Simulate the "data" $\{x_i, y_i\}_{i=1}^n$ where $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $\varepsilon \sim N(0, \sigma^2)$. Repeat this process N times. Here we set $\beta_0 = 3$, $\beta_1 = 1.5$, $\sigma^2 = 1$, n = 30, N = 100.

Generate data in R

```
set.seed(12)
n = 30; beta0 = 3; beta1 = 1.5; N = 100; sigma2 = 1
x <- 3 + 5 * runif(n)
set.seed(123)
y <- replicate(N, beta0 + beta1 * x + rnorm(n, mean = 0, sd = sqrt(sigma2)))
dim(y)</pre>
```

[1] 30 100

Plot the first few simulated datasets

```
par(mfrow = c(2, 1), mar = c(3.5, 3.5, 0.8, 0.6))
for (i in 1:2){
  plot(x, y[, i], pch = 16, las = 1, ylab = "y")
  abline(3, 1.5, col = "blue", lwd = 1.5)
}
```


Estimate the β_0 , β_1 , and σ^2 for each simulated dataset

```
beta0_hat <- beta1_hat <- sigma2_hat <- se_beta1 <- numeric(N)
for (i in 1:100){
  Fit <- lm(lm(y[, i] ~ x))
  beta0_hat[i] <- summary(Fit)[["coefficients"]][, 1][1]
  beta1_hat[i] <- summary(Fit)[["coefficients"]][, 1][2]
  se_beta1[i] <- summary(Fit)[["coefficients"]][, 2][2]
  sigma2_hat[i] <- summary(Fit)[["sigma"]]^2
}</pre>
```

Assess the estimation perfromance

```
boxplot(beta0_hat, las = 1, main = expression(hat(beta[0])))
abline(h = beta0, col = "blue", lwd = 1.5)
```



```
boxplot(beta1_hat, las = 1, main = expression(hat(beta[1])))
abline(h = beta1, col = "blue", lwd = 1.5)
```


boxplot(sigma2_hat, las = 1, main = expression(paste("Boxplot of ", hat(sigma)^2)))
abline(h = sigma2, col = "blue", lwd = 1.5)

Sampling distribution

CI's for all the simulated datasets

Confidence Intervals for Maximum Heart Rate Example

-0.948872 -0.6465811

 β_1

age

```
Y_h|X_h = 40
```

```
Age_new = data.frame(Age = 40)
hat_Y <- fit$coefficients[1] + fit$coefficients[2] * 40
hat_Y
## (Intercept)
      178.1394
##
predict(fit, Age_new, interval = "confidence", level = 0.9)
## Warning: 'newdata' had 1 row but variables found have 15 rows
##
           fit
                    lwr
                             upr
## 1
     195.6894 192.5083 198.8705
     191.7007 188.9557 194.4458
     190.1053 187.5137 192.6969
## 4 182.1280 180.0149 184.2411
## 5 158.1962 154.1798 162.2127
     166.9712 164.0309 169.9116
## 6
     182.9258 180.7922 185.0593
## 7
## 8 165.3758 162.2564 168.4952
## 9 152.6121 147.8341 157.3902
## 10 194.8917 191.8028 197.9805
## 11 191.7007 188.9557 194.4458
## 12 176.5439 174.3723 178.7155
## 13 195.6894 192.5083 198.8705
## 14 178.9371 176.8337 181.0405
## 15 180.5326 178.4390 182.6262
predict(fit, Age_new, interval = "predict", level = 0.9)
## Warning: 'newdata' had 1 row but variables found have 15 rows
##
           fit
                    lwr
                             upr
## 1 195.6894 186.9806 204.3981
     191.7007 183.1416 200.2599
## 3 190.1053 181.5941 198.6164
## 4 182.1280 173.7502 190.5059
## 5
     158.1962 149.1489 167.2436
## 6 166.9712 158.3475 175.5950
     182.9258 174.5427 191.3088
## 8 165.3758 156.6894 174.0622
     152.6121 143.2019 162.0224
## 10 194.8917 186.2162 203.5672
## 11 191.7007 183.1416 200.2599
## 12 176.5439 168.1512 184.9367
## 13 195.6894 186.9806 204.3981
## 14 178.9371 170.5617 187.3125
## 15 180.5326 172.1596 188.9055
```

Check

```
sd <- sqrt((sum(fit$residuals^2) / 13))
ME <- qt(1 - 0.1 / 2, 13) * sd * sqrt(1 + 1 / 15 + (40 - mean(age))^(2) / sum((age - mean(age))^2))
c(hat_Y - ME, hat_Y + ME)

## (Intercept) (Intercept)
## 169.7600 186.5188</pre>
```

Hypothesis Tests for β_1

```
H_0: \beta_1 = -1 \text{ vs. } H_a: \beta_1 \neq -1 \text{ with } \alpha = 0.05
```

```
beta1_null <- -1
t_star <- (beta1_hat - beta1_null) / se_beta1
p_value <- 2 * pt(t_star, 13, lower.tail = F)
p_value</pre>
```

```
## age
## 0.01262031
```


Test statistic

ANOVA

Fitting a simple linear regression

```
summary(fit)
##
## Call:
## lm(formula = maxHeartRate ~ age, data = dat)
## Residuals:
       Min
               1Q Median
                                3Q
## -8.9258 -2.5383 0.3879 3.1867 6.6242
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 210.04846
                            2.86694
                                    73.27 < 2e-16 ***
                            0.06996 -11.40 3.85e-08 ***
               -0.79773
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.578 on 13 degrees of freedom
## Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
## F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08
R.sq <- summary(fit)[["r.squared"]]</pre>
r <- cor(dat$age, dat$maxHeartRate)</pre>
r^2; R.sq
## [1] 0.9090967
## [1] 0.9090967
```

ANOVA Table

```
anova(fit)
```