Собрать компьютеры

Опубликовал

sobody

Автор или источник

sobopedia

Предмет

Теория Вероятностей (/Subjects/Details?id=1)

Тема

Случайные события (/Topics/Details?id=5)

Раздел

Условная вероятность, формула Байеса, формула полной вероятности и независимость событий (/SubTopics/Details?id=32)

Дата публикации

07.09.2019

Дата последней правки

18.09.2019

Последний вносивший правки

sobody

Рейтинг

Условие

Вам поручили собрать 3 компьютера, каждый из которых **имеет уникальный номер: 1, 2 или 3**. Для каждого компьютера необходимо выбрать корпус, процессор и видеокарту. У вас есть 5 видеокарт: 3 видеокарты компании V_1 и 2 видеокарты фирмы V_2 . Также, в наличии у вас имеются 9 процессоров: по 3 процессора от компаний P_1 , P_2 и P_3 соответственно. Наконец, у вас есть 10 различных корпусов. Вы очень хотите пораньше уйти домой, поэтому выбираете соответствующие компоненты случайным образом и с равной вероятностью (например, вы можете с равной вероятностью вставить в первый компьютер один из 9 процессоров). При этом **следует учитывать**, что процессоры и видеокарты от одних и тех же производителей (фирм и компаний) ничем не отличаются между собой.

Подсказка: при решении через классическое определение вероятности следует учитывать, что все способы должны быть равновероятными.

- 1. Вычислите вероятность того, что во всех компьютерах будут стоять одинаковые видеокарты?
- 2. Посчитайте вероятность того, что будет хотя бы одна пара компьютеров, в которых стоят разные видеокарты?
- 3. Определите вероятность того, что по крайней мере в двух компьютерах будут стоять одинаковые процессоры.

- 4. Найдите вероятность того, что хотя бы на одном компьютере будет стоять процессор P_1 .
- 5. Найдите вероятность того, что в компьютере под номером 1 будут одновременно стоять видеокарта V_1 и процессор P_1 .
- 6. На компьютер номер 1 установлена операционная система W и он будет работать хорошо, только если если вы установите на него видеокарту V_1 и процессор P_1 . Компьютер номер 2 работает на системе L и не дает сбоев лишь в случае, если на нем установлены видеокарта V_2 и процессор P_2 . На компьютере номер 3 забыли установить систему, поэтому он не будет работать независимо от типа процессора и видеокарты. Вычислите вероятность того, что хотя бы один компьютер будет работать.
- 7. В предыдущем пункте найдите вероятность того, что компьютер номер 1 будет работать, при условии, что по крайней мере один компьютер работает.

Решение

1. Обозначим искомое событие через A. Чтобы во всех компьютерах стояли одинаковые видеокарты, необходимо, чтобы все везде стояла видеокарта V_1 . Обозначим через $S^i_{V_1}$ событие - в компьютере под номером i стоит видеокарта V_1 . Теперь рассчитаем искомую вероятность:

$$P(A) = P(S_{V_1}^1 \cap S_{V_1}^2 \cap S_{V_1}^3) = P(S_{V_1}^1) P(S_{V_1}^2 | S_{V_1}^1) P(S_{V_1}^3 | S_{V_1}^2 \cap S_{V_1}^1) = rac{3}{5} rac{2}{4} rac{1}{3} = rac{1}{10}$$

Этот пункт можно решить и через классическое определение вероятности:

$$P(A) = \frac{1}{C_5^3} = \frac{1}{10}$$

Или таким образом:

$$P(A) = \frac{3 * 2 * 1}{5 * 4 * 3} = \frac{1}{10}$$

- 2. Очевидно, что в данном случае необходимо найти вероятность события A. Пользуясь свойствами вероятности имеем $P(\overline{A})=1-P(A)=1-\frac{1}{10}=\frac{9}{10}$.
- 3. Обозначим искомое событие через B. Найдем вероятность события B, воспользовавшись тем, что его можно представить в качестве объединения равновероятных попарно несовместных событий:

$$egin{aligned} P(\overline{B}) &= P\left(\left(S_{P_1}^1 \cap S_{P_2}^2 \cap S_{P_3}^3
ight) \cup \dots \cup \left(S_{P_3}^1 \cap S_{P_2}^2 \cap S_{P_1}^3
ight)
ight) = \ &= P(S_{P_1}^1 \cap S_{P_2}^2 \cap S_{P_3}^3) + \dots + P(S_{P_3}^1 \cap S_{P_2}^2 \cap S_{P_1}^3) = 3! P(S_{P_1}^1 \cap S_{P_2}^2 \cap S_{P_3}^3) = \ &= 6P(S_{P_1}^1) P(S_{P_2}^2 | S_{P_1}^1) P(S_{P_3}^3 | S_{P_1}^1 \cap S_{P_2}^2) = 6rac{3}{9}rac{3}{8}rac{3}{7} = rac{9}{28} \end{aligned}$$

Откуда получаем вероятность искомого события:

$$P(B) = 1 - P(\overline{B}) = 1 - \frac{9}{28} = \frac{19}{28}$$

Данный пункт нетрудно решить и с использованием классического подхода, Действительно, на событие \overline{B} приходится 9*6*3 способов, поскольку сначала выбирается один из 9 процессоров, затем один из 6 процессоров другой марки, а в конце один из 3 процессоров оставшейся фирмы. В итоге получаем ту же

вероятность:

$$P(B) = 1 - \frac{9*6*3}{9*8*7} = \frac{19}{28}$$

Отметим, что в данном случае нам пришлось искусственно помыслить, что даже процессоры одной марки различаются между собой.

4. Введем событие $S_{P_1}^i$ - в компьютере под номером i стоит процессор P_1 . Через S_{V_1} и S_{P_1} обозначим события, в соответствии с которыми хотя бы в одном компьютере стоит видеокарта и процессор V_1 и P_1 соответственно.

Пользуясь введенными событиями рассчитаем искомую вероятность:

$$\begin{split} P(S_{P_1}) &= P(S_{P_1}^1 \cup S_{P_1}^2 \cup S_{P_1}^3) = 1 - P(\overline{S_{P_1}^1 \cup S_{P_1}^2 \cup S_{P_1}^3}) = 1 - P(\overline{S_{P_1}^1} \cap \overline{S_{P_1}^2} \cap \overline{S_{P_1}^3}) = \\ &= 1 - P(\overline{S_{P_1}^1}) P(\overline{S_{P_1}^2} | \overline{S_{P_1}^1}) P(\overline{S_{P_1}^3} | \overline{S_{P_1}^1} \cap \overline{S_{P_1}^2}) = 1 - \frac{6}{9} \frac{5}{8} \frac{4}{7} = \frac{16}{21} \end{split}$$

Отметим, что, например, $P(\overline{S_{P_1}^2}|\overline{S_{P_1}^1})=\frac{5}{8}$, так как, исходя из условия $\overline{S_{P_1}^1}$, осталось 3 процессоров другого вида.

Тот же ответ можно получить, используя формулу включений и исключений:

$$\begin{split} P(S_{P_{1}}) &= P(S_{P_{1}}^{1} \cup S_{P_{1}}^{2} \cup S_{P_{1}}^{3}) = P(S_{P_{1}}^{1}) + P(S_{P_{1}}^{2}) + P(S_{P_{1}}^{3}) - \\ &- P(S_{P_{1}}^{1} \cap P(S_{P_{1}}^{2})) - P(S_{P_{1}}^{1} \cap S_{P_{1}}^{3}) - P(S_{P_{1}}^{2} \cap S_{P_{1}}^{3}) + \\ &+ P(S_{P_{1}}^{3} \cap S_{P_{1}}^{2} \cap S_{P_{1}}^{3}) = \\ &= P(S_{P_{1}}^{1}) + P(S_{P_{1}}^{2}) + P(S_{P_{1}}^{3}) - \\ &- P(S_{P_{1}}^{1}) P(S_{P_{1}}^{2} | S_{P_{1}}^{1}) - P(S_{P_{1}}^{1}) P(S_{P_{1}}^{3} | S_{P_{1}}^{2}) - P(S_{P_{1}}^{2}) P(S_{P_{1}}^{3} | S_{P_{1}}^{2}) + \\ &+ P(S_{P_{1}}^{1}) P(S_{P_{1}}^{2} | S_{P_{1}}^{1}) P(S_{P_{1}}^{3} | S_{P_{1}}^{2} \cap S_{P_{1}}^{3}) = \\ &= \frac{3}{9} + \frac{3}{9} + \frac{3}{9} - \\ &- \frac{3}{9} * \frac{2}{8} - \frac{3}{9} * \frac{2}{8} - \frac{3}{9} * \frac{2}{8} + \\ &+ \frac{3}{9} * \frac{2}{8} * \frac{1}{7} = \frac{16}{21} \end{split}$$

Пользуясь классическим определением вероятности можно получить еще одно решение. Рассмотрим три случая. Во-первых, можно разместить один процессор P_1 , для чего сначала выбираем номер компьютера одним из C_3^1 способов, а затем выбираем один из процессоров P_1 одним из A_3^1 способов, в результате чего на каждый из этих способов остается по 6*5 способов разместить процессоры P_2 и P_3 на оставшихся позициях. Во-вторых, действуя по аналогии можно разместить $C_3^2A_3^2*6$ способами два процессора P_1 . Наконец, сделать так, чтобы на всех компьютерах стоял процессор P_1 можно $C_3^3A_3^3*1$ способами. В итоге получаем:

$$P(S_{P_1}) = rac{C_3^1 A_3^1 * 6 * 5 + C_3^2 A_3^2 * 6 + C_3^3 A_3^3 * 1}{A_9^3} = rac{16}{21}$$

5. Пользуясь независимостью событий $S^1_{V_1}$ и $S^1_{P_1}$, получаем:

$$P\left(S_{P_1}^1\cap S_{V_1}^1
ight)=P\left(S_{P_1}^1
ight)P\left(S_{V_1}^1
ight)=rac{3}{9}rac{3}{5}=rac{1}{5}$$

Отметим, что по аналогии также нетрудно рассчитать следующую вероятность:

$$P\left(S_{P_{2}}^{2}\cap S_{V_{2}}^{2}
ight)=P\left(S_{P_{2}}^{2}
ight)P\left(S_{V_{2}}^{2}
ight)=rac{3}{9}rac{2}{5}=rac{2}{15}$$

6. Рассчитаем вероятность искомого события:

$$egin{split} P\left((S_{P_1}^1\cap S_{V_1}^1)\cup (S_{P_2}^2\cap S_{V_2}^2)
ight) = \ &= P(S_{P_1}^1\cap S_{V_1}^1) + (S_{P_2}^2\cap S_{V_2}^2) - P\left((S_{P_1}^1\cap S_{V_1}^1)\cap (S_{P_2}^2\cap S_{V_2}^2)
ight) = \ &= rac{1}{5} + rac{2}{15} - P(S_{P_1}^1\cap S_{V_1}^1)P\left((S_{P_2}^2\cap S_{V_2}^2)|(S_{P_1}^1\cap S_{V_1}^1)
ight) = \ &= rac{1}{5} + rac{2}{15} - rac{1}{5}igg(rac{3}{8}rac{2}{4}igg) = rac{71}{240} \end{split}$$

7. Воспользуемся формулой условной вероятности:

$$egin{split} P\left(S_{P_1}^1\cap S_{V_1}^1|(S_{P_1}^1\cap S_{V_1}^1)\cup (S_{P_2}^2\cap S_{V_2}^2)
ight)&=rac{P\left(\left(S_{P_1}^1\cap S_{V_1}^1
ight)\cap \left((S_{P_1}^1\cap S_{V_1}^1)\cup (S_{P_2}^2\cap S_{V_2}^2)
ight)
ight)}{P\left(\left(S_{P_1}^1\cap S_{V_1}^1
ight)\cup (S_{P_2}^2\cap S_{V_2}^2)
ight)}&=rac{P\left(S_{P_1}^1\cap S_{V_1}^1
ight)}{rac{71}{240}}&=rac{rac{1}{5}}{rac{71}{240}}&=rac{48}{71} \end{split}$$

Показать решение

Пожалуйста, войдите или зарегистрируйтесь, чтобы оценивать задачи, добавлять их в избранные и совершать некоторые другие, дополнительные действия.

© 2018 - 2022 Sobopedia