Лабораторная работа 2.

Для случайной величины, распределенной по нормальному закону с параметрами (a, σ^2) , выполнить следующие действия.

- 1. Задать параметры распределения $X \sim N(a, \sigma^2)$.
- 2. Построить график $F_X(x)$, используя функцию normcdf.
- 3. При n=100 построить выборку из генеральной совокупности X.
- 4. По построенной выборке построить график эмпирической функции распределения $F_n(x)$, используя при построении встроенную функцию [a,b]=stairs(x,y) для построения кусочно-постоянной функции. Учесть при построении, что $F_n(x)$ изменяется на 1/n в каждой следующей точке выборки.
- 5. Построить доверительную полосу надежности $\gamma = 0.95$; $u(\gamma) = 1.36$ (см. пособие стр. 92-96).
- 6. На этом же графике построить $F_n(x)$ и $F_X(x)$. Убедится, что функция распределения попадает (?) в доверительную полосу.
- 7. На основе критерия Колмогорова (если сможете, и на основе критерия Смирнова) провести проверку гипотез при $n=10^4$ и $n=10^6$ (см. пособие стр. 96-97).

Аналогично для $X \sim U(a, b)$ — равномерно распределенной на [a, b]случайной величины.

Лабораторная работа 3.

Для тех же случайных величин построить график гистограммы и проверить гипотезу о виде распределения по критерию хи-квадрат (см. пособие, начиная со стр. 123).

Лабораторная работа 4.

О сравнении качества оценок.

Для трех распределений $X \sim N(a,\sigma^2)$, $X \sim U\left(a-\frac{\delta}{2},a+\frac{\delta}{2}\right)$ и распределения Лапласа или двойного показательного – " $a+Exp_{\lambda}-Exp_{\lambda}$ " сравнить следующие оценки параметра а – математического ожидания и медианы всех распределений, \overline{X}_n - выборочного среднего, med_n

- выборочной медианы и полусуммы минимума и максимума вариационного ряда. Все оценки не смещены. Сравнивать оценки нужно с точки зрения квадратичного риска (см. формулу 13.2). При n=100 — объем выборки, m=100 — количество выборок, построить 100 оценок каждого вида и сравнить их выборочные среднеквадратичные отклонения, повторить при n=10000, m=100. Желательно сравнить с теоретическими среднеквадратичными отклонениями.