Cryptography Protocols

Thierry Sans

Let us consider confidentiality, integrity and availability

Design of a cryptography protocol

The hypothesis on the system

- What is the network model? bandwidth, latency, reliability, message ordering, synchronous vs asynchronous
- What trusted setup is assumed?
 pre-shared keys, key generation
- How powerful are the parties vs. attacker?
 computing power, source of randomness
- Which adversary model is considered? outsider vs insider, passive vs active, man-in-the-middle, man-at-the-end, corruption
- What kinds of failures are tolerated?
 crash faults, byzantine faults
- What exact security properties are being claimed? confidentiality, integrity, authentication, non-repudiation, forward secrecy

Example 1- Interactive Protocol

Example 2 - Distribution Centre

Example 3 - Asynchronous Messaging

Replay attacks

Interactive Protocol

System Hypothesis

- Synchronous communication channel
- Each participant share a unique symmetric key with each other
- Mallory can read, modify and forge message send over the network

Goals

 When two participant exchange a message, the system should protect the confidentiality and integrity of the message

Using Authenticated Encryption

Problem: replay attack

Counter replay attacks

√ Storage-based solution

- Store the message entirely (log), or ID or encryption nonce and check whether the same message has been replayed
- Problem: this solution can be expensive

√ Protocol-based solution

- Add a nonce in the interaction and verify that the nonce is sent back
- → The nonce should be random enough that is does not repeat itself over time

Double Nonce Protocol

Are we secure yet?

Two major issues:

- I. **Key distribution**If A I, A 2 ... A 5 want to talk, then (n x (n-I) / 2) keys must be exchanged physically using a secure channel
- 2. Does not ensure **Perfect-Forward Secrecy**If somehow Mallory is able to compromise one of the participant at some point in time, she can decrypt all previous communications between Alice and Bob

Session Keys

Interactive Protocol

System Hypothesis

- Synchronous communication channel
- Each participant has a public key pair and everybody knows everyone's public keys
- Mallory can read, modify and forge message send over the network

Goals

 When two participant exchange a message, the system should protect the confidentiality, integrity and perfect forward secrecy of the messages

[broken] Key Wrapping

[broken] Key Derivation using Long-Term Keys

 $k = ECDH(sk_A, pk_B, N_A, N_B) = ECDH(sk_B, pk_A, N_A, N_B)$

[broken] Key Derivation using Short-Term Keys

 $k = ECDH(sk_A, pk_B) = ECDH(sk_B, pk_A)$