```
#' # the three output rasters are returned in a list of length 3
#' terrain
#'}

**The image of the content of the conten
```


R-GIS bridges for Statistical Geocomputing

Jannes Muenchow

Where to find the slides & code

https://github.com/giscience-fsu/daad_summerschool

R/GIS BRIDGES

RASAGIS

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.html
)
- Package rgdal for importing and exporting geodata

http://r-spatial.org//2016/11/29/openeo.html

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.html
)
- Package rgdal for importing and exporting geodata
- Packages sp and sf for vector geodata

Data: Rikken, M.G.J & Van Rijn, R.P.G. (1993).

- More than 100 geo-related R packages (https://cran.r-project.org/web/views/Spatial.html
)
- Package rgdal for importing and exporting geodata
- Packages sp and sf for vector geodata
- Package raster for raster geodata

Data: http://www.worldclim.org/.

Interactive map handling

 Interactive visualization through mapview (based on leaflet)

Defining a GIS as a system for the analysis, manipulation and visualization of geographical data (Longley, Goodchild, Maguire, and Rhind 2011), one could argue that R has become a GIS

But what about...

(digitizing)

(Geodatabase-functionality and topology rules)

http://www.unioneag.org

Computationally demanding operations

Computationally demanding operations

Missing geoalgorithms

- Catchment area
- Catchment slope
- Saga Wetness Index
- Lidar processing
- ...

SAGA wetness index (Mt. Mongón)

Interface

R has been designed from the beginning as an interactive interface to other software packages (Chambers, 2016).

R-GIS bridges

RSAGA

rgrass7

GIS interfaces

http://www.geocomputation.org/2000/GC009/Gc009.htm


```
🕸 GRASS GIS 7.2.1 Ebenen-Manager
Datei Einstellungen Raster Vektor Bildverarbeitung 3D raster Datenbank Temporal Hilfe
            Rterm (64-bit)
                                                                   R is a collaborative project with many contributors.
Type 'contributors()' for more information and
 'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
During startup - Warning messages:
1: Setting LC CTYPE=de DE.cp1252 failed
2: Setting LC COLLATE=de DE.cp1252 failed
3: Setting LC TIME=de DE.cp1252 failed
4: Setting LC MONETARY=de DE.cp1252 failed
> library("rgrass7")
Loading required package: sp
Loading required package: XML
GRASS GIS interface loaded with GRASS version: GRASS 7.2.1 (2017)
and location: newLocation
```

GIS-R bridges – QGIS & ArcGIS

https://www.r-bloggers.com/combining-arcgis-and-r-clustering-toolbox/

R-GIS BRIDGES

Why (R)QGIS?

- One of the most-widely used Desktop GIS
- Unified interface
- Quite user-friendly

QGIS – Python API

Python tunnel via reticulate

Python tunnel via reticulate (open_app())

Example

```
library("RQGIS")
get_usage("saga:sagawetnessindex")
   ALGORITHM: Saga wetness index
          DEM <ParameterRaster>
          SUCTION <ParameterNumber>
          AREA_TYPE <ParameterSelection>
          SLOPE_TYPE <ParameterSelection>
          SLOPE_MIN <ParameterNumber>
          SLOPE_OFF <ParameterNumber>
          SLOPE_WEIGHT <ParameterNumber>
          AREA <OutputRaster>
          SLOPE <OutputRaster>
          AREA_MOD <OutputRaster>
          TWI <OutputRaster>
open_help("saga:sagawetnessindex")
```

Most notable features of RQGIS

- Access to native QGIS geoalgorithms
- Access to hundreds of further geoalgorithms, especially SAGA- and GRASS-geoalgorithms but also other third-party providers
- R users can stay in their environment without having to touch Python
- Support of R named arguments and automatic retrieval of default values
- Data conversions

(R)SAGA

- First SAGA release in 2004
- Also open-source
- Started out with a focus on raster processing
- >600 geoalgorithms
- Documentation improvable

RSAGA

RSAGA interface

 The RSAGA package provides R geocomputing functions that make use of the command line interface of SAGA GIS, saga_cmd.exe, to execute SAGA GIS modules.

RSAGA structure

Geoprocessing environment

 List data structure with information on working directory, location of SAGA GIS binaries, etc.

Geoprocessor (using SAGA GIS)

Workhorse that calls SAGA GIS and provides low-level access to all SAGA GIS modules

User-level interface functions (using SAGA GIS):

e.g., rsaga.local.morphometry, rsaga.hillshade

Local and focal functions (written in R):

e.g., multi.focal.function, grid.predict

Utility functions (written in R):

e.g., pick.from.ascii.grid

The R-GRASS interface

- First released in 1984
- In the beginning developed by the US Army (1982 – 1995), also with a focus on raster processing
- Since 1997 developed by scientists/user community
- >500 geoalgorithms
- Great documentation
- Uses SQLite as a geodatabase in the background

rgrass7

The R-Grass interface

"GRASS is a very large but very simple system – it is run as a collection of separate programs built using shared libraries of core functions. There is then no GRASS 'program', just a script setting environment variables needed by the component programs" (Bivand et al. 2008: 99).

If you want to know more...

- Bridges to GIS software
- RQGIS R Journal paper

R-GIS EXAMPLES

Study area – Mount Mongón

Source: Google Earth.

Lomas – scientific context

- Highly endemic and strongly endangered vegetation formation just living of fog
- Altitudinal gradient
- Influence of ENSO
- Spatial prediction map of species richness to delineate conservation areas

Austral summer

Austral winter

Non-linear Poisson model

Predictors:

- Altitude
- catchment slope
- catchment area
- SAGA wetness index
- Curvatures
- solar radiation
- etc.

Spatial prediction of plant species diversity

Muenchow et al. (2013): Predictive mapping of species richness and plant species' distributions.

Landslide susceptibility

Brenning et al. (2015): Landslide susceptibility near highways.

Rock glaciers/permafrost

Computation of direct and diffuse incoming solar radiation

Azócar et al. (2017): Permafrost distribution modeling.

Geomarketing

 Unioning postal code with municipality layers

Further applications

- Soil classes and mapping (e.g., Brungard et al. 2015)
- Stream networks (e.g., Hengl et al. 2010)
- Climatology (rainfall prediction; e.g., Hengl et al. 2010)
- Archeology (e.g., Borck 2016)
- Socio-demography(population index prediction; e.g., Bajat et al. 2012)

• ...

COMPARING R/GIS BRIDGES

RQGIS vs. RSAGA/rgrass7

- Unified interface to SAGA, GRASS and further 3rdparty providers
- User-friendly
 - open_help()
 - R named arguments
 - Automatic retrieval of default values
 - On-the-fly import/export of spatial objects (run_qgis)
 - Automatic data conversions (e.g., asc, tif, etc.)

But:

- QGIS does not provide access to all SAGA and GRASS functionalities
- RSAGA has special geocomputing functions (written in R)
- QGIS establishes a new GRASS session for each call and barely supports the GRASS geodatabase

Wrap-up

We can use R as a GIS

Data: Rikken, M.G.J & Van Rijn, R.P.G. (1993).

Wrap-up

- We can use R as a GIS
- Geoprocessing is (often) better done with the help of a GIS

Wrap-up

- We can use R as a GIS
- Geoprocessing is (often) better done with the help of a GIS
- R-GIS bridges combine the best of two worlds
- RQGIS, RSAGA, rgrass7 are all great

Literature

- Bivand, R., 2014. Geocomputation and open source software: components and software stacks, in: Abrahart, R.J., See, L. (Eds.), GeoComputation. CRC Press, Boca Raton, FL.
- Bivand, R., Pebesma, E., Gomez-Rubio, V., 2013. Applied Spatial Data Analysis with R., 2nd ed, Use R! Springer Verlag, New York.
- Brenning, A., 2008. Statistical geocomputing combining R and SAGA: The example of landslide susceptibility analysis with generalized additive models, in: SAGA Seconds Out (= Hamburger Beitraege Zur Physischen Geographie Und Landschaftsoekologie, Vol. 19). J. Boehner, T. Blaschke, L. Montanarella, pp. 23–32.
- Chambers, J.M., 2016. Extending R, The R series. CRC Press, Boca Raton London New York.
- Graser, A., Olaya, V., 2015. Processing: A python framework for the seamless integration of geoprocessing tools in QGIS. ISPRS International Journal of Geo-Information 4, 2219–2245.
- Lovelace, R., Nowosad, J., Muenchow, J., 2019. Geocomputation with R, The R Series. CRC Press. https://geocompr.robinlovelace.net/
- Muenchow, J., Bräuning, A., Rodríguez, E.F., Wehrden, H. von, 2013. Predictive mapping of species richness and plant species' distributions of a Peruvian fog oasis along an altitudinal gradient. Biotropica 45, 557–566.
- Muenchow, J., Schratz, P., Brenning, A., 2017. RQGIS: Integrating R with QGIS for statistical geocomputing. The R Journal 9, 2, 409–428. https://journal.r-project.org/archive/2017/RJ-2017-067/RJ-2017-067.pdf
- Neteler, M., Mitasova, H., 2008. Open source GIS: a GRASS GIS approach, 3. ed. ed. Springer, New York, NY.
- Wickham, H., 2015. Advanced R, The R Series. CRC Press, Boca Raton, FL.
- Zuur, A.F., Ieno, E., Walker, N., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R, Statistics for biology and health. Springer, New York, NY.

