1

Assignment 13

Surbhi Agarwal

Abstract—This document illustrates properties of subspaces of a vectorspace.

1 Problem

For arbitrary subspaces, U, V and W of a finite dimensional vectorspace, which of the following hold:

- 1) $U \cap (V + W) \subset (U \cap V) + (U \cap W)$
- 2) $U \cap (V + W) \supset (U \cap V) + (U \cap W)$
- 3) $(U \cap V) + W \subset (U + W) \cap (V + W)$
- 4) $(U \cap V) + W \supset (U + W) \cap (V + W)$

2 Solution

1.
$$U \cap (V + W) \subset (U \cap V) + (U \cap W)$$
 False.

Counter Example:
Let $\mathbf{u}_1 = (\mathbf{v}_1 + \mathbf{w}_1) \in U \cap (V + W)$ such that
 $(\mathbf{v}_1 + \mathbf{w}_1) \in U, \mathbf{v}_1 \in V, \mathbf{w}_1 \in W$

But since $\mathbf{w}_1 \notin V$, hence $\mathbf{v}_1 + \mathbf{w}_1 \notin V$

$$\Rightarrow (\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap V)$$
Also, $\mathbf{v}_1, \mathbf{w}_1 \notin U \Rightarrow \mathbf{v}_1, \mathbf{w}_1 \notin (U \cap V)$

And since $\mathbf{v}_1 \notin W$, hence $\mathbf{v}_1 + \mathbf{w}_1 \notin W$

$$\Rightarrow (\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap W)$$
Also, $\mathbf{v}_1, \mathbf{w}_1 \notin U \Rightarrow \mathbf{v}_1, \mathbf{w}_1 \notin (U \cap W)$
Therefore, $(\mathbf{v}_1 + \mathbf{w}_1) \notin (U \cap V) + (U \cap W)$

There exists an element in LHS that does not belong to RHS.
$$\therefore U \cap (V + W) \subsetneq (U \cap V) + (U \cap W)$$
2. $U \cap (V + W) \supset (U \cap V) + (U \cap W)$
such that $\mathbf{u}_1 \in U \cap V$
and $\mathbf{u}_2 \in U \cap W$

$$\Rightarrow \mathbf{u}_1 \in U, V \text{ and } \mathbf{u}_2 \in U, W$$
Since $\mathbf{u}_1 \in V, \mathbf{u}_2 \in W$

$$\Rightarrow (\mathbf{u}_1 + \mathbf{u}_2) \in (V + W)$$
And since $\mathbf{u}_1, \mathbf{u}_2 \in U$

$$\Rightarrow (\mathbf{u}_1 + \mathbf{u}_2) \in U$$

$$\Rightarrow (\mathbf{u}_1 + \mathbf{u}_2) \in U$$

$$\therefore (\mathbf{u}_1 + \mathbf{u}_2) \in U \cap (V + W)$$

	So, $(\mathbf{u}_1 + \mathbf{u}_2) \in (U \cap V) + (U \cap W) \implies (\mathbf{u}_1 + \mathbf{u}_2) \in U \cap (V + W)$ Hence, $U \cap (V + W) \supset (U \cap V) + (U \cap W)$ The given option is true.
$3. (U \cap V) + W \subset (U + W) \cap (V + W)$	Let $(\mathbf{u}_1 + \mathbf{w}_1) \in (U \cap V) + W$, such that $\mathbf{u}_1 \in (U \cap V)$ and $\mathbf{w}_1 \in W$ Since, $\mathbf{u}_1 \in (U \cap V)$, $\Longrightarrow \mathbf{u}_1 \in U, V$ Now, since $\mathbf{u}_1 \in U, \mathbf{w}_1 \in W$ $(\mathbf{u}_1 + \mathbf{w}_1) \in (U + W)$ And since, $\mathbf{u}_1 \in V, \mathbf{w}_1 \in W$ $(\mathbf{u}_1 + \mathbf{w}_1) \in (V + W)$ $\therefore (\mathbf{u}_1 + \mathbf{w}_1) \in (U + W) \cap (V + W)$ Hence, $(\mathbf{u}_1 + \mathbf{w}_1) \in (U \cap V) + W \Longrightarrow (\mathbf{u}_1 + \mathbf{w}_1) \in (U + W) \cap (V + W)$ $(U \cap V) + W \subset (U + W) \cap (V + W)$ The given option is true.
$4. \ (U \cap V) + W \supset (U + W) \cap (V + W)$	False. Counter Example: Let $\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{w}_1 \in U$ $\mathbf{v}_1 \in V, \mathbf{w}_1 \in W$ Then, since $\mathbf{v}_1 + \mathbf{w}_1 \in U \implies \mathbf{v}_1 + \mathbf{w}_1 \in U + W$ And since, $\mathbf{v}_1 \in V, \mathbf{w}_1 \in W \implies \mathbf{v}_1 + \mathbf{w}_1 \in V + W$ $\therefore \mathbf{v}_1 + \mathbf{w}_1 \in (U + W) \cap (V + W)$ Now, since $\mathbf{w}_1 \notin V \implies \mathbf{v}_1 + \mathbf{w}_1 \notin V$ $\implies \mathbf{v}_1 + \mathbf{w}_1 \notin U \cap V$ Also, $\mathbf{v}_1 \notin U \implies \mathbf{v}_1 \notin (U \cap V)$ And since, $\mathbf{v}_1 \notin W \implies \mathbf{v}_1 + \mathbf{w}_1 \notin W$ $\implies \mathbf{v}_1 + \mathbf{w}_1 \notin (U \cap V) + W$ There exists an element in RHS that does not exist in LHS $\therefore (U \cap V) + W \not\supset (U + W) \cap (V + W)$

TABLE 1: Proving properties of subspaces of a vectorspace