CHAPTER 26

IPv6 Addressing

Exercises

7. As discussed in the solution to Exercise 6, the best way is to apply different masks (starting from the longest one) to each address to find a match with the beginning address in a block. The prefix lengths are 10, 9, 8, 7, 6, 5, 4, and 3 as shown in Table 26.1. In other words, in each case, we need to only 1 to 8 tests.

a.

```
(0::0) AND (/10) = 0000::/10 → Not a defined block

(0::0) AND (/9) = 0000::/9 → Not a defined block

(0::0) AND (/10) = 0000::/8 → IPv4 compatible
```

In this case, all bits are 0's, the address is an **unspecified address** in this block.

b.

In this case, since the last 32 bits are all 0's and the previous 16 bits are all 1's, the address is a mapped address for an IP address 0.0.0.0

c.

```
(582F:1234::2222) AND (/10)
                                    5800:/10
                                                          Not a defined block
(582F:1234::2222) AND (/9)
                                    5800:/9
                                                          Not a defined block
                                                          Not a defined block
(582F:1234::2222) AND (/8)
                                    5800:/8
                                                          Not a defined block
(582F:1234::2222) AND (/7)
                                    5800:/7
                                                          Not a defined block
(582F:1234::2222) AND (/6)
                                    5800:/6
(582F:1234::2222) AND (/5)
                                                          Not a defined block
                                    5800:/5
                                                          Not a defined block
(582F:1234::2222) AND (/4)
                                    5000:/4
(582F:1234::2222) AND (/4)
                                    4000:/3
                                                          Reserved
```

d.

```
4821::14:22 AND (/10)
                                     4800::/10
                                                              Not a defined block
4821::14:22 AND (/9)
                                     4800::/9
                                                        \rightarrow
                                                              Not a defined block
                                                              Not a defined block
4821::14:22 AND (/7)
                                     4800::/7
4821::14:22 AND (/6)
                                     4800::/6
                                                       \rightarrow
                                                              Not a defined block
4821::14:22 AND (/5)
                                     4800::/5
                                                              Not a defined block
4821::14:22 AND (/4)
                                     4000::/4
                                                              Not a defined block
4821::14:22 AND (/3)
                                                              Global Unicast
                                     2000::/3
```

9. We change the seventh bits from 0 to 1 and insert four extra hexadecimal digits (FF-FE) after the sixth digits:

```
F5 - A9 - 23 - 12 - 7A - B2
F7 - A9 - 23 - FF - FE - 12 - 7A - B2
```

The resulting preface address in IPv6 is F7A9:23FF:FE12:7AB2.

- 11. We assume the subnet identifiers start from $(0001)_{16}$, but they can also start from $(0000)_{16}$.
 - a. The block for the third subnet is 2000:1110:1287:0003/64.

- **b.** We change the IEEE address to EUI address: F7A9:23FF:FE14:7AD2.
- **c.** We add the interface to the block prefix to get the IPv6 address of the station as **2000:1110:1287:0003:F7A9:23FF:FE14:7AD2**.
- 13. The address is ::1111:129.6.12.34/128.
- **15.** The information given cannot belong to a *link local address* because the address starts with 0's instead of 1's.