NOMBRE COMPLETO: Ing. Hilaría Adima Vásquez Durán

NAO ID: 3033

FECHA: 2 de agosto de 2024

NOMBRE DE LA TRAYECTORIA EN LA QUE ESTÁS ENROLADO: DATA ANALYST CORE

Título del Reto: Programación R al elaborar reportes estadísticos

SPRINT 1 DESARROLLO R1

Crea un conjunto de programas en R para explorar los datos de Rossmann Pharma a través de tablas con resúmenes estadísticos y visualizaciones que cumplan con las siguientes directrices:

EJERCICIO 3

Diseña un programa ("histogram_avg_sales_customer.R") que construya el histograma de frecuencias de la variable avg_sales_customer como se ha definido antes (sales/customers), junto con la el promedio intervalos que define la regla empírica débil para encontrar el 95% de los datos alrededor del promedio, restringiendo el análisis para España y Francia. El resultado de este script deberá ser una figura denominada "histogram avg sales customer.png".

Desarrollo del ejercicio

Carga las bibliotecas necesarias para la manipulación de datos (tidyverse), la lectura de archivos Excel (readxl) y la manipulación de fechas (lubridate).

```
'``{r}
library(tidyverse)
library(readxl)
library(lubridate)
'``
```

```
> library(tidyverse)

    Attaching core tidyverse packages -

                                                                     tidyverse 2.0.0 —

√ dplyr 1.1.4

                    √ readr
                                  2.1.5
√ forcats 1.0.0 √ stringr 1.5.1

√ ggplot2 3.5.1 √ tibble 3.2.1

✓ lubridate 1.9.3 ✓ tidyr
                                  1.3.1
√ purrr 1.0.2
— Conflicts —
                                                                tidyverse conflicts() —
X dplyr::filter() masks stats::filter()
X dplyr::lag() masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to
become errors
> library(readxl)
> library(lubridate)
```

#Establecer El Directorio De Trabajo A La Ruta Especificada En

DATA PATH

```
DATA_PATH <- "/Users/Usuario/Desktop/Help ME"
setwd(DATA_PATH)
cat("Directorio de trabajo establecido a:", DATA_PATH, "\n")</pre>
```

CARGAR LOS DATOS

```
#Leer los datos de ventas SALES_DATA <- 'sales.csv' sales <-
read.csv2(SALES_DATA, sep=";", header=T) cat("Datos de ventas
leídos correctamente. Número de filas:",

# Leer los datos de tiendas STORES_INFO_DATA <-
'stores_info.xlsx' stores <- read_excel(STORES_INFO_DATA,</pre>
```

Programación 2

```
sheet = "data") cat("Datos de tiendas leídos correctamente.
Número de filas:"
```

Leer el archivo stores_info.xlsx que contiene información sobre las tiendas, desde la hoja

llamada "data", e imprime un mensaje confirmando que los datos se leyeron correctamente y muestra el número de filas.

```
# Leer los datos de tiendas
STORES_INFO_DATA <- 'stores_info.xlsx'
stores <- read_excel(STORES_INFO_DATA, sheet = "data")
cat("Datos de tiendas leídos correctamente. Número de filas:"</pre>
```

```
> DATA_PATH <- "/Users/Usuario/Desktop/Help ME"
> setwd(DATA_PATH)
> cat("Directorio de trabajo establecido a:", DATA_PATH, "\n")
Directorio de trabajo establecido a: /Users/Usuario/Desktop/Help ME
> # Leer los datos de ventas
> SALES_DATA <- 'sales.csv'
> sales <- read.csv2(SALES_DATA, sep=";", header=T)
$s correctamente. Número de filas:", nrow(sales), "
cat("Datos de ventas leídos correctamente. Número de filas:", nrow(sales), "$
Datos de ventas leídos correctamente. Número de filas: 1017209
> # Leer los datos de tiendas
> STORES_INFO_DATA <- 'stores_info.xlsx'
> stores <- read_excel(STORES_INFO_DATA, sheet = "data")</pre>
```

Unión de los datos de ventas (sales) con la información de las tiendas (stores) usando la columna store

```
sales_all <- sales %>% left_join(stores, by=c("store")) cat("Tablas de ventas y tiendas unidas correctamente. Número d
```

```
>
> sales_all <- sales %>% left_join(stores, by=c("store"))
> cat("Tablas de ventas y tiendas unidas correctamente. Número de filas:", nro$
Tablas de ventas y tiendas unidas correctamente. Número de filas: 1017209
>
```

#Convierte la columna date a un objeto de fecha y confirma esta acción con un mensaje.

```
sales_all$date <- ymd(sales_all$date)
cat("Columna de fecha convertida a tipo Date.\n")</pre>
```

Filtrar los datos para incluir solo los registros de España y Francia, y se imprime un mensaje confirmando el número de filas después del filtrado.

```
sales_all <- sales_all %>% filter(country %in% c("spain", "fra
cat("Datos filtrados para España y Francia. Número de filas:"

> sales_all$date <- ymd(sales_all$date)
> cat("Columna de fecha convertida a tipo Date.\n")
Columna de fecha convertida a tipo Date.
> sales_all <- sales_all %>% filter(country %in% c("spain", "france"))
> cat("Datos filtrados para España y Francia. Número de filas:", nrow(sales_al$
Datos filtrados para España y Francia. Número de filas: 1008915
```

Calcula la variable avg_sales_customer (ventas promedio por cliente) solo para los registros donde el número de clientes es mayor que cero, y luego filtra cualquier valor NA resultante. Se imprime un mensaje confirmando el número de filas válidas.

```
#sales_all <- sales_all %>% mutate(avg_sales_customer =
ifelse(customers > 0, sales / c
filter(!is.na(avg_sales_customer))
cat("Variable avg_sales_customer calculada y filtrada. Número

> sales_all <- sales_all %>%
+ mutate(avg_sales_customer = ifelse(customers > 0, sales / customers, NA)) $
+ filter(!is.na(avg_sales_customer))
> cat("Variable avg_sales_customer calculada y filtrada. Número de filas válid$
Variable avg_sales_customer calculada y filtrada. Número de filas válidas: 836130
```

Calcular y muestra el promedio y la desviación estándar de

avg sales customer, ignorando los valores NA.

```
# mean_avg_sales <- mean(sales_all$avg_sales_customer, na.rm =
T std_dev_avg_sales <- sd(sales_all$avg_sales_customer, na.rm
= cat("Promedio de avg_sales_customer:", mean_avg_sales, "\n")
cat("Desviación estándar de avg_sales_customer:", std_dev_avg_

> mean_avg_sales <- mean(sales_all$avg_sales_customer, na.rm = TRUE)
> std_dev_avg_sales <- sd(sales_all$avg_sales_customer, na.rm = TRUE)
> cat("Promedio de avg_sales_customer:", mean_avg_sales, "\n")
Promedio de avg_sales_customer: 9.545958
> cat("Desviación estándar de avg_sales_customer:", std_dev_avg_sales, "\n")
Desviación estándar de avg_sales_customer: 2.142609
> |
```

Calcular y mostrar los límites inferior y superior del intervalo del 95% para

avg sales customer.

```
interval_lower <- mean_avg_sales - 2 * std_dev_avg_sales
interval_upper <- mean_avg_sales + 2 * std_dev_avg_sales
cat("Intervalo inferior (95%):", interval_lower, "\n")
cat("Intervalo superior (95%):", interval_upper, "\n")</pre>
```

```
> interval_lower <- mean_avg_sales - 2 * std_dev_avg_sales
> interval_upper <- mean_avg_sales + 2 * std_dev_avg_sales
> cat("Intervalo inferior (95%):", interval_lower, "\n")
Intervalo inferior (95%): 5.260741
> cat("Intervalo superior (95%):", interval_upper, "\n")
Intervalo superior (95%): 13.83118
```

#Crear un histograma de avg_sales_customer usando ggplot2 , añadiendo líneas verticales para el promedio y los límites del intervalo del 95%. Luego, muestra el histograma en la consola y confirma esta acción con un mensaje.

```
> histogram_plot <- ggplot(sales_all, aes(x = avg_sales_customer)) +
+ geom_histogram(color = "black", fill = "white", bins = 30) +
+ geom_vline(xintercept = mean_avg_sales, linetype = "dashed", color = "blue$
+ geom_vline(xintercept = interval_lower, linetype = "dashed", color = "red"$
+ geom_vline(xintercept = interval_upper, linetype = "dashed", color = "red"$
+ labs(title = "Histograma de Ventas Promedio por Cliente",
+ x = "Ventas Promedio por Cliente",
+ y = "Frecuencia") +
+ theme_minimal()
> 
> # Mostrar el histograma en la consola
> print(histogram_plot)
> cat("Histograma creado y mostrado en consola.\n")
Histograma creado y mostrado en consola.\n")
We a Configuración para en la consola
> \text{Vindow}
```


#Histograma como un archivo PNG y se confirma esta acción con un mensaje.

```
ggsave("histogram_avg_sales_customer.png", plot = histogram_pl
cat("La figura 'histogram_avg_sales_customer.png'
```

> ggsave("histogram_avg_sales_customer.png", plot = histogram_plot)
Saving 10.1 x 10.1 in image
> cat("La figura 'histogram_avg_sales_customer.png' ha sido guardada exitosame\$
La figura 'histogram_avg_sales_customer.png' ha sido guardada exitosament\$
> cat("La figura 'histogram_avg_sales_customer.png' ha sido creada exitosament\$
La figura 'histogram_avg_sales_customer.png' ha sido creada exitosament\$

La figura 'histogram_avg_sales_customer.png' ha sido creada exitosament\$

| Configuracion | Configuracion

