HAETAE, a Post-Quantum Signature Scheme

Jung Hee Cheon^{1,2}, **Hyeongmin Choe**¹, Julien Devevey³, Tim Güneysu⁴, Dongyeon Hong², Markus Krausz⁴, Georg Land⁴, Junbum Shin², Damien Stehlé², MinJune Yi¹

 1 Seoul National University, 2 CryptoLab Inc., 3 École Normale Supérieure de Lyon, 4 Ruhr Universität Bochum,

Korea University July 24, 2023

Table of Contents

1. Brief Introduction to HAETAE:

- HAETAE Intro
- HAETAE Recap

2. Security Proof:

- Security Sketch
- Underlying ID Protocol

3. HAETAE Details:

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

1. Brief Introduction to HAETAE:

- HAETAE Intro
- HAETAE Recap

2. Security Proof:

- Security Sketch
- Underlying ID Protocol

3. HAFTAF Details

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

HAETAE Intro

- Digital signature scheme, submitted to KpqC competition and NIST Round 4.
- Secure against quantum attacks
 - based on lattice hard problems, MLWE and MSIS
 - follows Fiat-Shamir with aborts framework, secure in QROM
- Goal:

Push Fiat-Shamir Signatures to the Limits!

Scheme	LvI.	Sig.	vk	ConstT.	Maskable
Falcon-512	1	666B	897B	✓ [Por19]	✗ [Pre23]
Dilithium-2	2	2,420B	1,312B	√ [DKL+18]	√ [MGTF19]
HAETAE-120	2	1,463B	992B	√	✓

Table: NIST security level, signature size, verification key size, and implementation security, with respect to constant-time and masking of selected signature schemes.

HAETAE Intro

- Simple but short
 - simpler than Falcon¹ & shorter than Dilithium¹
 - optimal rejection rate with simple rejection condition
- Design rationale: We combine the recent approaches,
 - Fiat-Shamir with Aborts framework
 - Bimodal rejection sampling
 - randomness sampling from **Hyperball** distribution

with the NEW techniques,

- secret key rejection sampling: efficient and easily maskable
- verification key truncation: in bimodal setting
- signature compression: in hyperball setting
- discretized hyperball sampling: a fixed-point implementation

¹NIST 2022 PQC signature standards

1. Brief Introduction to HAETAE:

- HAETAE Intro
- HAETAE Recap

2. Security Proof

- Security Sketch
- Underlying ID Protocol

3. HAFTAF Details

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

HAETAE Recap: Sign

- In "Fiat-Shamir with Aborts" signatures, the signing procedure is given as:
 - 1 $\mathbf{y} \leftarrow Q_0$

b=0: unimodal setting.

2 $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$ 3 $\mathbf{z} \leftarrow \mathbf{y} + (-1)^b c\mathbf{s}$

 $b \leftarrow U(\{0,1\})$: bimodal setting

- 4 with probability $\min\left(1,\frac{P(c,\mathbf{z})}{M\cdot Q(c,\mathbf{z})}\right)$, return $\sigma=(c,\mathbf{z})$
- 5 if it is not returned, go to step 1

where Q is the probability distribution of (c, \mathbf{z}) output from 3.

- Rejection sampling:
 - Assume that the Rényi divergence between P and Q are bounded by M>0, i.e., $R_{\infty}(P\|Q)\leq M$ for some M>0.
 - Then, the distribution Q of the signature (output from 3) turns into a distribution P at the end.

• Rejection sampling guarantees that if $R_{\infty}(P||Q) \leq M < \infty$, the following two games are indistinguishable:

\mathcal{A}^{real} :	\mathcal{A}^{ideal} :
1: $\mathbf{x} \leftarrow Q$	1: $\mathbf{x} \leftarrow P$
2: Return \mathbf{x} with probability $\frac{P(\mathbf{x})}{M \cdot Q(\mathbf{x})}$	2: Return ${f x}$ with probability ${1\over M}$
3: Else repeat 1–2	3: Else repeat 1–2

- In HAETAE, we use the uniform hyperballs for those distributions
 - $Q_0 = U(\mathcal{HB}_0(B))$ and thus $Q = U(\mathcal{HB}_{-cs}(B) \cup \mathcal{HB}_{cs}(B))$
 - $-P = U(\mathcal{HB}_0(B'))$

Distribution of Q and P for HAETAE.

• Rejection sampling guarantees that if $R_{\infty}(P||Q) \leq M < \infty$, the following two games are indistinguishable:

\mathcal{A}^{real} :	\mathcal{A}^{ideal} :
1: $\mathbf{x} \leftarrow Q$	1: $\mathbf{x} \leftarrow P$
2: Return \mathbf{x} with probability $\frac{P(\mathbf{x})}{M \cdot Q(\mathbf{x})}$	2: Return $\mathbf x$ with probability $\frac{1}{M}$
3: Else repeat 1–2	3: Else repeat 1–2

- In HAETAE, we use the uniform hyperballs for those distributions
 - $Q_0 = U(\mathcal{HB}_0(B))$ and thus $Q = \frac{1}{2}\chi_{\mathcal{HB}_{-cs}(B)} + \frac{1}{2}\chi_{\mathcal{HB}_{cs}(B)}$
 - $-P = U(\mathcal{HB}_0(B'))$

Distribution of Q and P for HAETAE.

Distribution of Q and P for HAETAE.

Remark 1. The purple hyperball should be included in every *green-HAETAE-eyes* $\mathcal{HB}_{-cs}(B) \cup \mathcal{HB}_{cs}(B)$ for the perfect rejection. Therefore, we have a constraint on B and B' that if $\|cs\| < S$, then $B' < \sqrt{B^2 - S^2}$.

Remark 2. The expected run time (expected number of rejections +1) is M.

In "Fiat-Shamir with Aborts" signatures, the signing procedure is given as:

- 1 $\mathbf{y} \leftarrow Q_0$
- 2 $c \leftarrow H(\mathbf{A}\mathbf{y}, m)$

b=0: unimodal setting,

3 $\mathbf{z} \leftarrow \mathbf{y} + (-1)^b c\mathbf{s}$

- $b \leftarrow U(\{0,1\})$: bimodal setting
- 4 with probability $\min\left(1, \frac{P(c, \mathbf{z})}{M \cdot Q(c, \mathbf{z})}\right)$, return $\sigma = (c, \mathbf{z})$,

where Q is the probability distribution of (c, \mathbf{z}) .

Remark 3. The distributions should be easy to implement since it is related to the signatures, for e.g. uniform distributions.

In HAETAE, the probability can be represented as

- 0: if $\|\mathbf{z}\| > B'$,
- 1/2: else if $\|\mathbf{z} c\mathbf{s}\| < B$ and $\|\mathbf{z} + c\mathbf{s}\| < B$,
- 1: otherwise.

HAETAE Recap: High-level description (w.o. compression)

```
\mathsf{Key}\mathsf{Gen}(1^{\lambda})
```

```
1: \mathbf{A}_{\text{gen}} \leftarrow \mathcal{R}_q^{k \times (\ell-1)} and (\mathbf{s}_{\text{gen}}, \mathbf{e}_{\text{gen}}) \leftarrow S_{\eta}^{\ell-1} \times S_{\eta}^k
2: \mathbf{b} = \mathbf{A}_{\text{gen}} \cdot \mathbf{s}_{\text{gen}} + \mathbf{e}_{\text{gen}} \in \mathcal{R}_q^k
```

2.
$$\mathbf{b} - \mathbf{A}_{gen} \cdot \mathbf{S}_{gen} + \mathbf{e}_{gen} \in \mathcal{N}_q$$

3:
$$\mathbf{A} = (-2\mathbf{b} + q\mathbf{j}|\ 2\mathbf{A}_{gen}|\ 2\mathbf{Id}_k) \bmod 2q$$

4:
$$\mathbf{s} = (1, \mathbf{s}_{\mathsf{gen}}, \mathbf{e}_{\mathsf{gen}})$$

5: **if** $f(\mathbf{s}) > nS^2/\tau^2$, then restart

5: If
$$f(\mathbf{s}) > nS^2/\tau^2$$
, then res

6: Return
$$sk = s$$
, $vk = (A, b)$

$$\frac{\mathsf{Sign}(\mathsf{sk}, M)}{1: \ \mathbf{v} \leftarrow U(\mathcal{HB}_0(B))}$$

2:
$$c = H(\mathbf{A}[\mathbf{y}], M) \in \mathcal{R}_2$$

3:
$$\mathbf{z} = \mathbf{y} + (-1)^b c \cdot \mathbf{s}$$
 for $b \leftarrow U(\{0, 1\})$

4: if
$$\|\mathbf{z}\|_2 \ge B'$$
, then restart

5: if
$$\|2\mathbf{z} - \mathbf{y}\|_2 < B$$
, then restart with probability $1/2$

6: Return
$$\sigma = (c, |\mathbf{z}|)$$

$$\underline{\mathsf{Verify}(\mathsf{vk}, M, \sigma = (c, \mathbf{z}))}$$

1:
$$\mathbf{w} = \mathbf{Az} - qc\mathbf{i}$$

2: Return (
$$c = H(\mathbf{w}, M)$$
) \land ($\|\mathbf{z}\|_2 < B''$)

 $\triangleright \mathsf{sk} \mathsf{ rejection}$ $\triangleright \mathsf{As} = q\mathbf{j} \mod 2q$

▷ hyperball sampling

⊳ signature rejection

1. Brief Introduction to HAETAE

- HAETAE Intro
- HAETAE Recap

2. Security Proof:

- Security Sketch
- Underlying ID Protocol

3. HAFTAF Details

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

Proof Sketch

- In the ROM, we have a well-known reduction from (S)UF-CMA security to standard MSIS and MLWE problems using the forking lemma.
 - The use of the forking lemma makes the reduction non-tight and non-applicable to the QROM proof.
- To make this reduction tight, the line of works introduced a problem that can be viewed as a "convolution" of lattice and hash, e.g., SelfTargetMSIS.
- In both ROM and QROM, UF-CMA security can be reduced to UF-NMA.
- Then, the UF-NMA security is reduced to the hardness of the "convolution" problem.

Proof Sketch

- In both ROM and QROM, UF-CMA security can be reduced to UF-NMA.
 - Specifically, we follow [DFPS23].
 - It requires the zero-knowledge property of the underlying identification protocol along with a high enough commitment min-entropy.

Theorem ([DFPS23], Theorem 10: UF-CMA to UF-NMA)

Assuming that a hash function H is modeled as a random oracle, the underlying ID protocol Σ is Honest-Verifier Zero-Knowledge (HVZK), and the commitment message of the prover has enough min-entropy, then for any quantum adversary $\mathcal A$ against UF-CMA security of FS(Σ , H) there exists a UF-NMA adversary $\mathcal B$ having a similar run-time with $\mathcal A$ and bounding the advantage of $\mathcal A$ by the advantage of $\mathcal B$ plus some additive constants.

1. Brief Introduction to HAETAE

- HAETAE Intro
- HAETAE Recap

2. Security Proof:

- Security Sketch
- Underlying ID Protocol

3. HAFTAF Details

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

Underlying Identification Protocol

Underlying Identification Protocol

Zero-Knowlege Property

• (Statistical) Honest-Verifier Zero-Knowledge (HVZK) requires the existence of an efficient simulator Sim, that outputs the transcripts $(\mathbf{w}, c, \cdots, \mathbf{w}', c', \mathbf{z}')$ such that the distribution of the transcripts has a negligible statistical distance from an honestly generated transcript.

Zero-Knowlege Property

To prove this property, we introduce a simulator $Sim(\mathbf{A}, \mathbf{b}, c)$:

- 1 $\mathbf{y} \leftarrow U(\mathcal{HB}_0(B))$
- 2 $\mathbf{w} \leftarrow \mathbf{A}\mathbf{y} qc\mathbf{j}$
- $\mathbf{z} \leftarrow \mathbf{y}$
- $\tilde{\mathbf{w}} \leftarrow U(\mathcal{R}_{2q})$
- **5** Return $(\mathbf{w}, c, \mathbf{z})$ with probability $p(\mathbf{z}) = \frac{1}{2} \chi_{\mathcal{HB}_0(B')}$, else $(\tilde{\mathbf{w}}, c, \bot)$ (i.e. reject).

In fact, this is identical to the case of $\mathsf{sk} = 0$, except that \mathbf{w} is sampled differently. It is random over \mathcal{R}_{2q} thanks to decision-MLWE $_{n,k,\ell,2q,\mathsf{Proj}(\mathcal{HB}_0(B))}$ (Proj: a projection map outputting only the first nk coordinates).

Additionally, note that,

- run time: the expected number of rejections does not depend on sk,
- ullet each (aborted) pair $(\tilde{\mathbf{w}},c)$: the same as before,
- ullet the final distribution of ${f z}$: uniform in the centered B'-hyperball.

Commitment Min-entropy

- The other condition requiring for the reduction is that the commitments of the protocol have a large min-entropy, at least 256 bits of entropy.
- The min-entropy of the commitments is given as

$$-\log_2\left[\max_{(\mathbf{w},\mathbf{z})}\left[\Pr_{\mathbf{y}}\left[(\mathbf{A}\mathbf{y},\mathbf{y}+(-1)^b c\mathbf{s})=(\mathbf{w},\mathbf{z})\right]\right]\right],$$

for any $(pk, sk) \leftarrow KeyGen$ and $y \leftarrow U(\mathcal{HB}_0(B))$.

ullet We easily obtain at least 256 bits of min-entropy in all of our parameter sets.

1. Brief Introduction to HAETAE

- HAETAE Intro
- HAETAE Recap

2. Security Proof:

- Security Sketch
- Underlying ID Protocol

3. HAETAE Details:

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

Secret Key Sampling

As the MSIS bound is given as

$$\|\mathbf{z}\| = \|\mathbf{y} + (-1)^b c\mathbf{s}\| \le \|\mathbf{y}\| + \|c\mathbf{s}\|,$$

we should compute a tight bound for ||cs|| to achieve efficiency.

- 1) An easy bound is $\eta \cdot \tau$, where $\mathbf{s} \in S_{\eta}$ and $\tau = \mathsf{wt}(c)$.
 - This is very easy to compute but gives a much larger bound than the real value. The huge gap between the real value and the computed bound gives inefficiency in choosing the parameters.
 - It is well-known that

$$||c\mathbf{s}|| = ||\mathsf{rot}(\mathbf{s}) \cdot \vec{c}|| \le \sigma_{\mathsf{max}}(\mathsf{rot}(\mathbf{s})) \cdot ||\vec{c}||,$$

holds over the real numbers, where $\mathsf{rot}(s)$ is the rotational matrix of \vec{s} .

Secret Key Sampling

2) The new bound also has a gap with the actual values since we are dealing with the integer vectors, not the real values. It can be represented as:

$$\begin{split} \|c\mathbf{s}\|^2/\|c\|^2 &= \tfrac{1}{n\tau} \sum_i |c(\omega_i)|^2 \cdot \|\mathbf{s}(\omega_i)\|^2 \\ &\leq \tfrac{1}{n\tau} \sum_i |c(\omega_i)|^2 \cdot \max_i (\|\mathbf{s}(\omega_i)\|^2) = \sigma_{\mathsf{max}}(\mathsf{rot}(\mathbf{s}))^2, \end{split}$$

3) With the k-largest rot(s) instead of the maximum rot(s), we can bound it more tightly with the similar computation cost, as $\|cs\|^2/\|c\|^2 \le f(s)/n$ with

$$f(\mathbf{s}) = \tau \cdot \sum_{i=1}^{m} \max_{j}^{i-\mathsf{th}} \|\mathbf{s}(\omega_j)\|_2^2 + r \cdot \max_{j}^{(m+1)-\mathsf{th}} \|\mathbf{s}(\omega_j)\|_2^2.$$

After all, what we do is reject sk = s if $f(s) > \frac{nS^2}{\tau^2}$ (i.e. the bound for ||cs|| exceeds S). The value S is taken to have 10% to 25% of accepting probability.

1. Brief Introduction to HAETAE

- HAETAE Intro
- HAETAE Recap

2. Security Proof.

- Security Sketch
- Underlying ID Protocol

3. HAETAE Details:

- Secret Key Rejection Sampling
- Uniform Hyperball Sampling

Uniform Hyperball Sampling

For sampling y, we need to uniformly sample from a n-dimensional hyperball with radius B, i.e., $\mathcal{HB}_0(B)=\{(y_1,\cdots,y_n): \sum_i y_i^2 \leq B^2\}.$

- Known method:
 - 1 $y_i \leftarrow \mathcal{N}(0,1)$ for $i = 1, \dots, n+2$
 - $L \leftarrow \|(y_1, \cdots, y_{n+2})^\top\|_2$
 - $\mathbf{3} \ \mathbf{y} \leftarrow B/L \cdot (y_1, \cdots, y_n)$
 - f 4 return f y
- Problem:
 - The floating point arithmetic is not secure.
 - The fixed point arithmetic has an inherent error and also introduces rounding errors, thus inaccurate near the boundary.
 - ullet E.g. the computed value of $y\in\mathcal{HB}_0(B)$ may not be in the hyperball.

Uniform Hyperball Sampling

• So we use a discretized hyperball as,

$$\mathcal{HB}_0(B) \cap (\frac{1}{N}\mathbb{Z})^n = \frac{1}{N} (\mathcal{HB}_0(BN) \cap \mathbb{Z}^n),$$

and all the aforementioned analysis is done with this distribution.

- e.g. M is computed using this distribution, not the continuous hyperball uniform distribution.
- Also, to deal with the inaccuracy near the boundary, we sample in a larger radius and then reject them to the BN-hyperball:
 - 1 $\mathbf{y} \leftarrow \mathcal{HB}_0(BN + \epsilon)$,
 - if $|\mathbf{y}| \leq BN$, output $|\mathbf{y}|/N$, else restart,

resulting in a uniform sample in $\mathcal{HB}_0(B) \cap (\frac{1}{N}\mathbb{Z})^n$.

• The continuous Gaussian used for the sampling $\mathcal{HB}_0(BN+\epsilon)$ is replaced by a high-precision discrete Gaussian scaled up by a factor of 2^{72} . The resulting effect on the rejection in 2 is set to be negligible.

Thanks!

Any question?

References I

[DFPS23] Julien Devevey, Pouria Fallahpour, Alain Passelègue, and Damien Stehlé.

A detailed analysis of fiat-shamir with aborts.

Cryptology ePrint Archive, Paper 2023/245, 2023.

https://eprint.iacr.org/2023/245.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS-Dilithium: A lattice-based digital signature scheme.

IACR TCHES, 2018(1):238-268, 2018.

https://tches.iacr.org/index.php/TCHES/article/view/839.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.

Masking Dilithium - efficient implementation and side-channel evaluation.

In Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, editors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg, June 2019.

[Por19] Thomas Pornin.

New efficient, constant-time implementations of falcon.

Cryptology ePrint Archive, Paper 2019/893, 2019.

References II

[Pre23] Thomas Prest.

A key-recovery attack against mitaka in the t-probing model.

Cryptology ePrint Archive, Report 2023/157, 2023.

https://eprint.iacr.org/2023/157.