

. F16.	SS SUBCLASS	
APPROVED O.G. FIG.	6Y CLASS	DRAFISHAH
A		8

CDRI	10122345 12222227 122222222	VTITCRASQ	ASISCRSSOSLL	ATLSCRASQS	ATINCRSSOSVL
framework 1	8 T T T T T T T T T T T T T T T T T T T	SPSSLSASVGDR	SPLSLPVTPGEP	SPATLSLSPGER	SPDSLAVSLGER
	9 5 7 7 7	VKIDIQMTQ	VK2DIVMTQ	VR3DIVLTQ	VK4DIVMTQ

				O	CDR	RI									£τ	ra	amewor	MC)r]	, X	~					S	DR		H H
	D	28 78 19 19 19	F	28		3.0	3.1	32	33	₹8	35	9 8	7 8	38	3 8	ΟĐ	ΙĐ	242	εÐ	_{もも}	SÐ	97	L D	8 b	6 b	05	25 25	23	₽S
Vk 5	I	ı	ı	ტ	Н	Ŋ	ഗ	×	긲	Ø	Z	≯	Ø	Õ	X	щ	Ŋ	X	A	д	K	L.		ĭI	ΙX	A A	<i>Q</i>	S	H
Vk6H	耳	Ø	ı	N C	Ŋ	⊱	Z	×	Ы	Д	3	\succ	П	Ø	×	Д	Ö	Ø	ഗ	д	Ŏ	<u>Ч</u> .	 П	Н		IJ	υ U	S	以
Vk7	l	l	ļ	S S	W	ഗ	ഗ	⊱	П	Ø	M	⊱	O	O	X	Д	Ç	Ŏ	ď	Д	出	긔	 Д	Н) ∀	G 7	Ø,	S S	以
Vk 8 Y		ഗ	ഗ	SN	Z	又	Z	\Rightarrow	Ы	Ø	3	\Rightarrow	Ø	Ø	又	Д	Ç	Ø	വ	Д	X	 Н	 	Н	Λ	W 7	A K	ST	지

F/G. 2A

o 0.G. FIG.	CLASS SUBCLASS	
APPROVED	};	DRAFISHAR

IJ	띴	RII	_	ĺ									47	fra	ame	ework	J.C.		Ж										
•	55	95	25 95	85	65	09	T9	62	63	₹9	59	99	L9	89	69	07	TL	7.3 7.3	DL C/	SL	94	LL	87	64	08	18	28	٤8	
7.7	Ø	Ω	Ŋ	>	щ	ഗ	以	ſτι	വ	ഗ	ß	O	Ŋ	U	[-		[<u>F</u> '	H	L H	H	S	ß	니	Q	Д	田		됴	
1K2 A	Ø	Ŋ	Ω	\gt	щ	Д	異	ſτι	ഗ	Ŋ	S	Ŋ	Ŋ	C	[Д	E4	I	L K	H	ν. Ω	民	>	口	Ø	口	Д	\gt	
183 A T	Þ	E	Ŋ	>	Д	Ø	ĸ	ſτι	ഗ	Ŋ	Ŋ	\mathcal{O}	Ŋ	Ŋ	E	Д	[Ti	H	ij	H	ν. Ω	ß	П	曰	Д	闰	Ω	ഥ	
7 4 E	闰	ഗ	വ	>	Ω_{1}	Д	14	ſτι	ഗ	\mathcal{O}	Ŋ	O	ß	G	<u>[</u>	Д	ĹŢ,	ΙL	ļ	H	S	ß	口	Ø	Ø	团	О	\gt	

١				•	'	F				-						١				1		-			
tramework 3	am m	ē	9	띴	(*)	_	디	CDRIII	빎	н						Ţ	Гa	me)M	tramework		4			
	58	98	78	88	68	06	16	76	88	₽ 6	56	96	۷6	86	66	001	TOT	TOS	EOI	₹0T	SOT	90 T	LOI	80 T	60 T
VR1 TYYC	E	>-	>	C	O	O	二二	7	E	₽	Д	பு	E	ַ נַדַּין.	CD	O		E	K	,					E
Vk2 V Y Y	>	\succ		\mathcal{O}	Ø	\circ	Η Х	\Rightarrow	\vdash	\vdash	Д	Д	E	ſτι	Ŋ	Ø	Ŋ	\vdash	×	>	团	Н	×	異	H
Vk3 VYY	>	\succ	\Rightarrow	\mathcal{O}	\circ	Ø	ĭ H K	⊱	⊱	\vdash	Д	Д	\vdash	ĮΤΙ	Ŋ	Ø	G FJ	E	×	\gt	团	Н	X	α	Н
VK4 VYYCQQHYT	>	>-	×	ر ا	Ø	Ø	田	×	E	\vdash	Д	Д	E	ſщ	Ω	Ø	GTKV	E	×	>	团	Н	X	区	E

10.G. FIG.	CLASS SUBCLASS	
APPROVED	≯ .ea	DRAFTSHAW

	128	Н	\triangleright	L
	E	Z	Ω	ı
Н	D	ഗ	Ŋ	1
CDR	72	Ŋ	Ŋ	A
S	97	ß	H	Д
	25	Ŋ	Ŋ	Ω
	57	Ŋ	H	Ŋ
	23	$\dot{\mathcal{O}}$	\mathcal{O}	\mathcal{O}
	22	Ŋ	S	Ŋ
	Z Z	Н	Н	Н
	20	E	H	α
	6 T	\gt	Н	Ø
	8 T	召	Ŋ	\vdash
	LΙ	Ø	O	Ø
	9 T	Ŋ	Ç	Ω
·I	SI	Д.	Д	Д
,\	ÐΤ	Ø	ഗ	R
Z	EI	ෆ	\mathcal{O}	\gt
ewor	IS	ഗ	ഗ	ഗ
ame	TI	>	\gt	>
ц	OΤ	1	1	I
41	6	ഗ	ഗ	Ŋ
	8	д	Ø	Д
	L	Д	Д	Д
	9	Ø	Ø	Ø
	5	Ħ	. [-	[-
	D	니	口	Ц
	S & C	>	Ø	口
	2	က	ഗ	\Rightarrow
	JT	Ø	Ø	ഗ
		7	22	738

1			1						١			l		۱								-							
			딩	CDRI	·H							£	rai	шe	amework	ĭ		. 2				-		CD	띴	H			
_	58	62 0 E I E A	3I	A	32	εε	34	35	98	75	38	38	ОÐ	ΙĐ	24	εÐ	カヤ	Sħ	9 b	ΔĐ	8 F	6 b	TS 0S	25	23	ħS.	99	95	L S
VA1 GSN	ט	ഗ	Z	1	>-	>	ഗ	M	×	Ø	Q	П	д	Ŋ	H	A	<u>Д</u>	X L	L L	 П	Н	⊢	Q	N N	Ŏ	民	ը,	Ŋ	Ŋ
VA2 GGYN	Ŋ	\mathcal{O}	\Rightarrow	Z	\Rightarrow	>	ഗ	3	≯	Ø	Ø	田	д	Ŋ	×	Ø	Д	X —	니	Σ	Н	۲ ۲	\ D	S S	Z	<u>~</u>	ር	S	Ŋ
VA3 G D K	Ç	Д	X	1	⊱₁	Ø	ഗ	Z	\Rightarrow	Ø	Ŏ	X	Д	ഗ	Ø	ø	Д	>	I	>	H	Ι	П	D S	D	民	<u>Д</u>	ω,	ט

FIG. 2C

VED O.G. FIG.	SKAIL LINE
APPROVED VO	DRAFTSHAH

	1, -			
	٤٧	1	>	X
	98	H	×	⊱
	8 2		О	О
1	₽8	A.	K	Ø
	83	田	团	团
	28		Д	П
1	18	闭	闰	团
	08	വ	ø	Þ
	64	Ø	Ø	Ŏ
	87	ᄀ	Н	\vdash
	LL	ෆ	\mathcal{Q}	Ω
m	9 L	E	ഗ	Ŋ
Į.	SL	Н	Н	Н
ework	ÐΔ	Ø	H	\vdash
8	٤L	ū	Ы	Ы
[e]	27	വ	Ŋ	\vdash
fram	TΔ	A	Ø	Ø
Y	07	വ	Н	\vdash
1	69	⊟	Z	Z
•	89	\mathcal{Q}	\mathcal{O}	\mathcal{Q}
	۷9	വ	S	ഗ
	99	X	X	Z
	9	ß	S	Ŋ
	₽9	G	Ŋ	\mathcal{O}
	٤9	Ŋ	Ø	Ŋ
	29	ĮΤι	ſτι	ſτι
	τ9	異	異	ሺ
	09	Ω	Z	田
	69	Д	S	ρ,
	て9 て9 09 65 85	>	>	Н
	•	VA1 VPDR	$v\lambda.2$ V S N R	VA3 I
		3	Z Z	3

									I		1				1	ĺ			۱		ſ
				CD	DR	RII	H						Ŧ	ത	le V	mework	X	4			
	88	68	06	16	76	66	₹ 6	56	96	L6	86	66	00T	TOT	IOS	T03	₽OI	SOT	90T	A	LOT
$v\lambda_1$	C	O	Ø	H	₹	T	H	Д	Д	>	Гц	Ŋ	Ŋ	r	H	又	H	E	>	ᆈ	Ŋ
$v\lambda 2$	U	Q	Ø	耳	\succ	H	\vdash	Д	$\Omega_{\mathbf{i}}$	>	ĮΤί	Ŋ	Ŋ	r	\vdash	×	H	⊱	\gt	口	Ö
Vλ3	\mathcal{O}	Ø	Ø	耳	\Rightarrow	H	\vdash	Д	Д	>	ĮΉ	Ŋ	\mathcal{O}	Ŋ	H	- 1	ıП	\vdash	>	j	Ö

FIG. 2D

APPROVED BY DRAFTSMAH

	- 1-											44	fra	am a	ewo	Or	노	-1					Ì				1		1
	I	7	1234		S	9	L	8	6	OΤ	ΤŢ	ZI	EΤ	ÐΙ	SI	9 T	LI	81	6 T	20	22	23	72	52	97	7	82	67	30
VH1A Q V Q L	Ø	>	Ø	II.	>	Ø	S	Ŋ	A	臼	>	*	X	Д Д	U	S	S	>	K	>	SC	X	A	S	C	Ö	H	[L	S
VH1B Q V Q L	α	>	Ø	П	>	Ø	ഗ	Ö	A	回	>	X	×	<u>д</u>	ט	Ø	S	Y	K	>	S	X	A	S	G	, X		ر آينا	H
VH2	Q	>	DOOD	H	×	臼	Ø	Ö	ρı	A	Ä	>	×	Д	E	O)	H	1	H	그	C E		L.	ß	Q.	Et _i	S	니	S
VH3	EI.	>	VOL	H	>	田	ß	O	U	U	H	>	Ø	<u>д</u>	<u>ပ</u>	<u>ი</u>	S	L H	저	니	S	A	A 1	S	O	[II	Ē	E4	S
VH4	O [‡]	>	Ö	,	Ø	回	Ø	Ŋ	Д	U	H	>	×	ρį	S	田	- E	디	S	L.	T C		>	S	C)	(D	S	H	S
VH5	臼	>	Ø	ы	>	Ø	S	Ö	K	ы	>	×	×	<u>д</u>	G	田	S	Li.	×	H	S	C K	S S	S	C)	≯	S	ഥ	[-
VH6	Ø	>	QVQL	니	Q	Ø	S	Ç	Д	U	H	>	×	ρι	S	O	E	니	S	H	E	CA	H	S	Ö	D C	S	>	ß

				S	CDRI	ы							fr	am	je	ework	ൂ	l	7						-	8	쬬	II	$ _{\bowtie}$			
	[3 J	A	B	31 A B 32 33 34 34	33	34	35	9ε	3 2	3.8	3 6	0 Þ	ΙĐ	2 P	εħ	もも	Sħ	9 Đ	LĐ	8 Þ	6 b	05	TS	SS	A	В	C	53	ÞS	55	95	۷5
VH1A S	S	1		-YAI	K	Η	S	M	\rangle	召	Ø	A	д	Ŋ	Q	Ŋ	H	田	3	Σ	r D	ധ	H	Н	Ъ	1	1	Н	ſτι	r	E	A
VH1B	ഗ	1	ı	M Y Y	×	Σ	出	3	>	R	Q	K	Д	Q	Q	Q	Ц	团	3	\mathbf{z}	Ŋ	3	H	Z	ρι	-	1	Z	വ	ტ.	Ü	H
VH2	E	S	ש	SGVGV	C	>	O	3	Н	ĸ	Q	Д	Д	Q	×	K	H	团	3	H	Ø	H	Н	Д	i	1	i	3	Ω	Ω	Ω	Ж
VH3	ഗ	ı	I	×	Ø	A M	Ø	3	>	PG.	Ø	K	Ω	Ch	×	Ŋ	H	团	3	>	S	K	H	Ŋ	Ŋ	I	1	S	G	Ö	S	Ħ
VH4	ഗ	ŀ	ı	×	MAA	3	ß	3	Н	民	Ø	Д	Д	Q	×	Q	H	闰	3	Н	r	≯	Н	≯	ı	i	ı	⊱	ß	Ŋ	S)	E
VH5	വ	- 1	1		Y W	Н	ധ	3	>	8	Ø	M	Дı	വ	×	വ	니	曰	Z	Σ	Q	H	Н	≯	д	1	ı	Ŋ	Ω	ß	Ω	T
											1	١		1	1	l	١		ĺ													

FIG. 2E

F1G.	SUBCLASS	
<u>c5</u>	CLASS	
APPROVED	≽ ©	DRAFISMAR

VH6 S N S A A	လ	Z	S	A	<	3	z	3	Н	2	0	S	<u>d</u>	G		U		H H	3		U	A	E	\rangle	122			S S	X X		
				[GUN		$ _{\perp}$					11	11	11		11	11	, , ,						11	1 1	.	' 				i
	<u> </u> 8	6	Ю	8 9 0 I S	3 2		J D	5	9	乙乙	8	6	0					1 5	9	<i>11</i> 1	% 8 S 0	7 O	۔ا					١		S	\neg
	S	S	9	99955	_ [_ 1	ı			7	7	7	· <u>/</u>							8	₹	E		.8	8		·
VH1A NYAQK	Z	\succ	Ø	Ø	×	ĮΤι	Ø	ტ	24	>	<u>-</u>	Н		A	D	田	S	E	S	E	A	Y	M	田田	LS		S	I	RS	田	
VH1B NYAQK	Z	\Rightarrow	æ	Ø	×	[z,	Q	Ç	K	>	[]	Σ	[-	R L	Д		S	Н	S	. T	A	Ϋ́	M	田田	LS		S	L R	~ Ω	闩	
VH2	×	\Rightarrow	YYST		ഗ	L	×	[pc;	ъ	[-	Н	Ŋ	X _	Ω	[-	<u>က</u>	区	Z	Ø	>	> I	1 L	Ţ	T T	Z		Σ	ОР	>	
VH3	×	\succ	YYAD		ഗ	>	¥	ტ	α	Ĺц	E	Н	S	24	<u>Д</u>	Z	S	X Z	Z		H	>-	L L	0	N		S I	口	RA	田	
VH4	Z	>-	Z	щ	ഗ	႕	×	ഗ	PK	>	E	Н	Ŋ	>	Д	E	ß	X	Z	Q	ĮΉ	S J	I I	ス I	LS		S		T A	A 1	
VH5	pc,	R Y	വ പ	Д	S	ſτι	Ø	Ŋ	Ø	>	E	Н	S	A	Д	×	ß	Н	ß	E	Ø	7	L L	N O	⊘ 1	S	S	니	K À	S	
9НЛ	Ω	×	DYAV		വ	>	X	ഗ	民	H	EH	Н	Z	<u>Д</u>	Д	<u></u>	ß	×	Z	Ø	[I]	က -	\ ☐	O	L A	Z	S	\ 	면 E	田田	

		, ,	fr	an	je	δ	framework	\sim	~						C	R	RILI	H						fr	g	amework	MO	Ϋ́		4
•	98	۲8	88	68	06	16	76	٤6	₹ 6	96	96	۷6	86	66	00T	A	В	Э	TOT	TOS	EOT	DOT	SOT	20T 90T	801	60T	OII	III	IIS	EII
VH1A D T A V	Ω	E	æ	>	×	> +	Ŋ	Ø	民	M	Q	Ŋ	Ω	ტ	Įτι	≯	Ø	Σ	Д	7	3	r G	Ø	D D	T	Λ,	H	>	ß	ഗ
VH1B	Ω	Ħ	AV	>	\Rightarrow	×	O	Ø	異	3	Ŋ	O	Д	O	Ĺτ	\Rightarrow	Ø	Ξ	Д	×	M	<u>ن</u>	Ø	G T	L.	> 1	<u>E</u>		ß	വ
VH2	Ω	H	AT	H	\Rightarrow	\Rightarrow	Ö	K	異	Z	O	Ŋ	Д	Ŋ	ſτι	⊱	K	\mathbf{Z}	Д	7	3	<u>က</u>	Ø	G F	LI.	> 7	E-1	>	Ŋ	ß
VH3	Ω	Ħ	TAV		\succ	×	\mathcal{O}	Ø	α	Ŋ	Ŋ	Ŋ	Ω	Ŋ	ĮΤι	⊱	K	Σ	Ω	7	M	O	Ø	G T	ij	> 1	H	>	ഗ	ഗ
VH4	Ω	듼	Ø	DTAVY	\succ	\Rightarrow	\mathcal{O}	æ	異	3	Ω	Ŋ	Ω	Ŋ	ſτι	\Rightarrow	Z,	\mathbf{z}	Д	>+	3	r S	Ø	₽ E	L.	>	EH		Ŋ	S

FIG. 2F

APPROVED	APPROVED C. C. FIG.
β¥	CLASS SUBCLASS
DRAFTSKAN	

Ŋ	V.
S	V.
> S	\sim
E	E
LVT	\triangleright
니	Ë
H	E
Ŋ	S S A L A L L C C C M A C .
Õ	C
Ŋ	ט
D M	13
≻	>
DY	\subset
Σ	≽
A M	A
\succ	>
ſτι	Ţ
D G F	M A A H C C C C M
О	\subset
\mathcal{O}	ני
\mathcal{O}	ני
M G	3
民	Ω
C A	A
\mathcal{O}	۵ ۲ ۲
\succ	>
\Rightarrow	>
Ξ	1
Ø	Ø
⊱	E
Ω	\subset
10	10
H5	THE
>	>

F/G. 2G

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
A S S L Q S G V P S R F S G S G S S S A SanDI.
CGTGGTACCA GCAGAAACCA GGTAAAGCAC CGAAACTATT AATTTATGCA GCACCATGGT CGTCTTTGGT CCATTTCGTG GCTTTGATAA TTAAATACGT
Y Q Q K P G K A P K L SexAI
TCGTGTGACC ATTACCTGCA GAGCGAGCCA GGGCATTAGC AGCTATCTGG AGCACACTGG TAATGGACGT CTCGCTCGGT CCCGTAATCG TCGATAGACC
C PstI
CAGA TGACCCA GTCT ACTGGGT
.D I Q M T Q S P S S L S A S V G D ECORV ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
APPROVED O. G. FIG. ORAFISMAN

GCTCTGGATC

CGTTTTAGCG GCAAAATCGC

GCCAGCAGCT TGCAAAGCGG GGTCCCGTCC CGGTCGTCGA ACGTTTCGCC CCAGGGCAGG

G. FIG.	CLASS SUBCLASS	
APPROVED D.G. F.	8Y 01.A	DRAFISHAN

لتا		~~~~~~ GAAGACTTTG CTTCTGAAAC	G Q MscI	CTTTGGCCAG GAAACCGGTC		
Д	∨ ₩	~~~ GAC CTG	D Z	TGG ACC		
江	Eco57I ~~~~~~~ BbsI	~~~~~ GAAGAC CTTCTG	ĺΤΙ	CTT		
Д	び 2 2 3 4 7 7 7	CCT	H	GAC		
0	ł	AA(TT(വ	S S S S S S S S S S S S S S S S S S S		
ц		CCTGCAACCT GGACGTTGGA	വ	CCCCGCCGAC GGGGCGGCTG		
			E			
Ŋ		CAG	⊱	CCA		
Ŋ		AG(ATC)		ATA PAT	T WI	ĭ~ IGC
Н		CCATTAGCAG GGTAATCGTC	≯	CATTATACCA GTAATATGGT	R T BsiWI	ACGTACG TGCATGC
Ę		000	耳	CA		AC TG
		GA	Q	AG	\bowtie	AA'. TT
口		CCT	α	AGC ICG	Н	ATT FAP
[-1		'AC(5)	S S S S S S	团	AAA
لترا		TTTACCCTGA AAATGGGACT	O	TTGCCAGCAG		TTGAAATTAA AACTTTAATT
\circ		•	\Rightarrow		\triangleright	
⊢ -		~ CGGCACTGAT GCCGTGACTA	X X	CGACCTATTA GCTGGATAAT	G T K V	GGTACGAAAG CCATGCTTTC
[-1	H	CAC		CCT	⊱	ACG TGC
Ŋ	BamHI	, QQ QQ QQ	A	GA	Ŋ	GGT.
	Щ	≀ ბ ტ	7			. 00

FIG. 3B

FIG.	SUBCLASS	
0.G. F	CLASS	
APPROVED	>- ta	DRAFTSHAN

G G T	_	ညီ ၁၈	Q	AG
0 0 0 0	Z	CAA	Д	TCTGGATTGG TACCTTCAAA AACCAGGTCA AAGCCCGCAG
0 0 0 0 0	W	TAG ATC	S	209
CT GA(耳	CA		AA
GA CT	ᆸ	OTG BAC	Q	CA
AGT TCA	ᆸ	TGC	ra I	~~~~~~~ ACCAGGT
990	Ø	0 0 0 0 0	S С С С	~~~ CCA
CT		AA TT	×	AA
AGC PCG	O ₄	CCA	O.	AAA
TGZ BACT	W	AG(FTC(. 7	rTC.
CAC	വ	AGC	Н.	~~ CC2
2 2 2 3 3 6 6	凶	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Y [ud:	GG TACC
GAG CTC	C stI	GCA GGT	W K	~~ TGG
CCAC	τΩ O3	SCT CGA	Д	GAT
BAC(U_	rtă(Aat(ı	CTG
		A H		
TGA ACI	W	AGC TCG	<i>γ</i>	CTZ
TCG AGC	A.	9 0 0 0	Z	TAA
~~~ ATA' FAT.	Д	CCT	<b>≻</b>	GCTATAACTA
` & &		ŏŏ	G.	উ
	GATATCGTGA TGACCCAGAG CCCACTGAGC CTGCCAGTGA CTCCGGGCGA CTATAGCACT ACTGGGTCTC GGGTGACTCG GACGGTCACT GAGGCCCGCT	TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACTGGGTCTC GGGTGACTCG GACGGTCACT  I S C R S S Q S L L  PstI	TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACTGGGTCTC GGGTGACTCG GACGGTCACT  ISCR SSQ SL L  Psti  ATTAGCTGCA GAAGCAGCCA TAATCGACGT CTTCGTCGGT TAATCGACGT CTTCGTCGGT	TGACCCAGAG CCCACTGAGC CTGCCAGTGA ACTGGGTCTC GGGTGACTCG  I S C R S S Q S L L PStI  ATTAGCTGCA GAAGCAGCCA AAGCCTGCTG TAATCGACGT CTTCGTCGGT TAATCGACGT CTTCGTCGGT RpnI SexAI

## FIG. 3C

D F T CATTTAC SCTAAAATG	G T D F GGCA CCGATTTT CCGT GGCTAAAA	U B -	R A S G V P SanDI
	U U	G S G T Bamhi ~~~~~~ GGATCCGGCA C CCTAGGCCGT G	CAACCGTGCC

TACCACCCG ATGGTGGGGC AGCAGCATTA TCGTCGTAAT TATTATTGCC A ATAATAACGG AAGCTGAAGA CGTGGGCGTG TTCGACTTCT GCACCCGCAC

BbsI

~~~~

FIG. 3D

| IPPROVED O.G. FIG. | CLASS SUBCLASS | |
|--------------------|----------------|-----------|
| AFFROVED | L
≿3 | DRAFISMAN |

| | ΙŅ | } | S | G_{C}^{C} |
|------------------|-------|---------------------------------------|---------------|-------------|
| \vdash | BsiWI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | TA | AT |
| 凶 | Щ | ? | ACG | TGC |
| 又 | | • | ATTAAACGT | TAATTTGCAT |
| Н | | | | |
| Ы | | | GAAAGTTGAA | CTTTCAACTT |
| \triangleright | | | AAGT | TCA |
| X | | | GA. | CLJ |
| H | | | TAC | ATG |
| Ů | | | GGG | טטטי |
| PTFGQGTKVE IKRT | MscI | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | GCCAGGGTAC | CGGTCCCATG |
| U | M | ? | D.T. | AC |
| দ | | | CTI | GAZ |
| Н | | | CCGACCTTTG | GCTGGAAAC |
| щ | | - | \mathcal{E} | Ö |

FIG. 3E

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>ک</u> | DRAFTSKAH |

| T Q S P A T L S L S P G E
Banii | GA
CT | ٨. | AGCAGCTATC
TCGTCGATAG | \succ |
|------------------------------------|---|----------------------|-------------------------------|--|
| Q | CTCCGGGCGA | LSCRASQSVSSY
Psti | CT2
GA1 | H |
| Д |)
)
)
)
)
)
) | W | A T
T C | υ
Θ
Η |
| | CTC | W | AGO
ICO | A |
| Ŋ | H K | | | ь |
| H | CTG | W | GAG | γ; |
| ഗ | CTGAGCCTGT
GACTCGGACA | > | GAGCGTGAGC
CTCGCACTCG | _ |
| ٦ | IGA
ACT | W | 7GC | <u>р</u> . |
| \vdash | | | | A. |
| ⊣ | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | Q | ~
GAGCGAGCCA
CTCGCTCGGT | \bigcirc |
| Æ | CG2
GC1 | W | AGC | Ċ. |
| | 0 0
0 0 | A | 900
000
000 | G
SAI |
| H | ~ ~ CO CO | | ~
GA(
CT(| Se, |
| S
Banii | TGACCCAGAG CCCGGCGACC
ACTGGGTCTC GGGCCGCTGG | K
H |) | \checkmark |
| С | ~~
AGA
TCT | PS C
T | CTGAGCTGCA
GACTCGACGT | |
| _ | Ω
Ω Ω | Ø | | Q |
| H | SAC | ت | IGA
ACI | O |
| LI
LI | | | | 1 Y Q Q K P G Q A P R L L I Y
KpnI SexAI Asel |
| > | IGC
ACG | E | ACC | Kpr |
| | , CG
, CG
, CO | Ø | 900 | M |
| D I
EcoRV | GATATCGTGC
CTATAGCACG | R A T | ACGTGCGACC
TGCACGCTGG | L A W Y
KpnJ |
| ΩЙ | ~~.
GA:
CT: | | AC(
TG(| ı |
| | | | | |

FIG. 3F

| | SUBCLASS | |
|----------|--------------------------------------|-----------|
| 0.G. FIG | CLASS SUB | |
| APPROVED | :
::::::::::::::::::::::::::::::: | DRAFTSMAM |

| CCAGCAGAAA CCAGGTCAAG CACCGCGTCT ATTAATTTAT
GGTCGTCTTT GGTCCAGTTC GTGGCGCAGA TAATTAAATA | A R F S G S G
Bamhi | GCGCGTTTTA GCGGCTCTGG
CGCGCAAAAT CGCCGAGACC | S L E P E D
Eco57I | BbsI | GATTTTACCC TGACCATTAG CAGCCTGGAA CCTGAAGACT |
|--|------------------------|--|-----------------------|-------|---|
| AAA CCAGGTCAAG
ITT GGTCCAGTTC | | AAC TGGGGTCCCG
TTG ACCCCAGGGC | T T T S | | GATTTTACCC TGACCATTAG CAGCCTGGAA |
| | S
R
T | A GCCGTGCAAC | T T L | | |
| TGGCGTGGTA
ACCGCACCAT | Ω
Ω | GGCGCGAGCA | S
D | BamHI | ~~~~
ATCCGGCACG
TAGGCCGTGC |

FIG. 3G

| | r : | |
|----------|----------|-----------|
| F1G. | SUBCLASS | |
| L. | | |
| G. F. | CLASS | |
| 9 | टंड | |
| APPROVEC | β¥ | DRAFTSHAR |

| T d | - · · × | Y C Q Q H Y T T P P T F G MSCI | TTATTGCCAG CAGCATTATA CCACCCGCC GACCTTTGGC
AATAACGGTC GTCGTAATAT GGTGGGGCGG CTGGAAACCG | K V E I K R T
Bsiwi | ?
?
?
? | COAFFINA A PA A PER COAFFINA A |
|----------------------------|----------------|--------------------------------|---|------------------------|------------------|--------------------------------|
| Y C ATTACGG V E V E GTTGAA | _ , ∠ | O1 | | . Н
Ж | | |
| | - ' ⊠ | C
X | ATTGCC. | >
□ | | GTTGAA |

FIG. 3H

| FIG. | SUBCLASS | |
|---------|----------|-----------|
| CZ. | CLASS | |
| APROVEO |),
() | DRAFTSMAH |

CGGACCCGCT ATATCGTCGT 口 TATAGCAGCA GCCTGGGCGA Д S \mathcal{O} Д ഗ Ы O ഗ AGAAACCAGG CTGGCGGTGA GACCGCCACT CTCGCACGAC GAAGCAGCCA GAGCGTGCTG U SexAI \gt Д Þ 又 ഗ 口 O TGACCCAGAG CCCGGATAGC CTTCGTCGGT TGGTACCAGC ACTGGGTCTC GGGCCTATCG Q ഗ O ഗ О KpnI S Д \geq BanI. ~~~~~ 召 TAATTGACGT ATTAACTGCA CTATCTGGCG ഗ PstI A \mathcal{O} Ø Ы Z Н \succ H Z CTATAGCACT ACAACAAAA GATATCGTGA TGCACGCTGG ACGTGCGACC Z \vdash > × K ECORV ~~~~ Z 召 Z

FIG. 31

AGTCGGCGGC

TCTTTGGTCC

ACCATGGTCG

GATAGACCGC

TGTTGTTTT

| 10.G. FIG. | SLASS SUDA | SCHOOL | |
|------------|------------|-----------|--|
| APPROVED | BY | ORAFISHAR | |

 α GAAAGCGGGG TCCCGGATCG CTTTCGCCCC AGGGCCTAGC TAAAGCAGGG \vdash S \Box \vdash ഗ Д \succ Н SanDI \gt TACCCTGACC ATGGGACTGG 工 \vdash C Ø 口 ഗ \circ \vdash 口 \mathcal{O} CGTGACTAAA TITATIGGGC ATCCACCCGT GCACTGATTT TAGGTGGGCA Ц 召 \Box \vdash \vdash ഗ \gt Ö TCTGGATCCG AAATAACCCG AGACCTAGGC Þ Þ BamHI ~ ~ ~ ~ ~ ~ വ 3 \gt Ç × \Box S AAAATCGCCG TTTGATAATT AAACTATTAA TTTTAGCGGC 口 AseI Ç Z, ഗ Ц O 山 \leq H

FIG. 3J

BbsI

22222

Eco57

| 0.6. F16. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVER | <u>≻</u> | BRAFTSHAH |

TTATACCACC AATATGGTGG GAAATTAAAC GTACG CTTTAATTTG CATGC BsiWI ~~~~~ വ് CGGTCGTCGT GCCAGCAGCA × Н 口 ATGCTTTCAA TGCAAGCTGA AGACGTGGCG GTGTATTATT CACATAATAA TACGAAAGTT \gt × \vdash TTGGCCAGGG GGCGGCTGGA AACCGGTCCC TCTGCACCGC \mathcal{O} Ø ~~~~~ MscI Ċ ſΤι ACGTTCGACT CCGCCGACCT E Д Д

FIG. 3K

| C.G. FIG. | P G Q R
SexAI | CAGGTCAGCG
GTCCAGTCGC | S
N
X | AGCAACTATG
TCGTTGATAC | L
I | GCTGATTTAT
CGACTAAATA |
|--------------------------------|------------------|---|------------------|--------------------------|-----------------------|--|
| Markey and and and and and and | √ | SCAC | Ŋ | rggc
₄ccg | X
I | AACT
ITGA |
| APPROVED BY DRAFTSMAN | CD | ÜÜ | Н | AT.
TAJ | | GAZ |
| 54 | ഗ | AGTGGCGCAC
TCACCGCGTG | Z | CAACATTGGC
GTTGTAACCG | A P BbeI ~~~~~~ | CCCGGGACGG CGCCGAAACT
GGGCCCTGCC GCGGCTTTGA |
| | \triangleright | A C | W | AG
TC | } | C |
| | <u>ω</u> | CAG
CAT
CAT
CAT
CAT
CAT
CAT
CAT
CAT
CAT
CAT | W | 1GC | | 3AC
7TG |
| | | CTTCAG
GAAGTC
ECO57I | W | GC7 | a
Z~~ | 200 |
| | Щ | GCCTTCAGTG
CGGAAGTCAC
Eco57I | | GCAGCAGCAG
CGTCGTCGTC | P G
XmaI | CCCGGGACGG
GGGCCCTGCC |
| | Д | 0
0
0 | Ŋ | \mathcal{O} | Ы | TG
AC |
| | O. | CAG | Ŋ | rag
atc | Q | AGT
ICA |
| | E | 200 | SH ~~ | TG1
AC2 | | GC2 |
| | | rga
act | S C
BssSI | TCGTGTAGCG
AGCACATCGC | | CCAGCAGTTG
GGTCGTCAAC |
| | г | Ü Φ | } | | KpnI | |
| | \gt | GAC | Н | CAI
GTA | W Y
KpnI
~~~~~~ | GGT |
| | W |)
(C.G.
(C.G. | E | JAC
TG(| | 3CT(|
| | O/ | CAGAGCGTGC TGACCCAGCC
GTCTCGCACG ACTGGGTCGG | \triangleright | TGTGACCATC
ACACTGGTAG | >
\ | TGAGCTGGTA
ACTCGACCAT |

FIG. 4A

| | .ASS | |
|----------|-------------|------------|
| F16. | SUBCLASS | |
| 0.G. FI | SLASS | |
| APPADVED | <u>></u> | ORAFTSMAIL |

 \bowtie TCGCTTCTGC CGCCTAGGTT AGCGAAGACG GCGGATCCAA BbsI BamHI 口 \mathcal{O} S ഗ GTCGTAATAT GGTGGGCGG GATCGTTTTA CTAGCAAAAT GGGCCTGCAA AACGCTAATG CCCGGACGTT \bigcirc ſτι 口 召 \mathcal{O} \Box AGGCGTGCCG TTGCGATTAC TCGCAGGGAG TCCGCACGGC E CAGCATTATA Д \mathbf{H} 口 Ø G Bsu36I \Box AGCGTCCCTC AGCGCGAGCC TCGCGCTCGG AATAACGGTC Y C Q TTATTGCCAG S S Д Ø 斘 S O GATAACAACC TTCGCCGTGG CTATTGTTGG AAGCGGCACC TTCGCCTAAT AAGCGGATTA \vdash \mathbb{Z} G Z ഗ \Box ш

FIG. 4B

| O.S. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFPROVED | β¥ | DRAFTSMAN |

| ? ? | TCTTGGC
AGAACCG | בוכי יוני |
|------------------|--|-----------|
| ? ? ? ? ? | AGTTAACCGT TCTTGGC
TCAATTGGCA AGAACCG | Ų |
| | GGCGGCACGA | |

 \vdash

×

 \vdash

 \mathcal{O}

 \mathcal{O}

| C.G. FIG. | CLASS SUBCLASS | |
|--------------|----------------|-----------|
| AFPROVED C | λa | DRAFTSMAH |

| ω | 7 D
11 C | | CT
SA | Н | TT
AA |
|------------------|--|---------------------|--------------------------|---|--------------------------|
| Q | AG. | Z | AA(
TT(| | GA' |
| (h) | GAG | N
K
G | TAT
ATA | Z
Z | GAI |
| S P G Q
SexAI | AGCGGCTCAC CAGGTCAGAG
TCGCCGAGTG GTCCAGTCTC | | GGCTATAACT
CCGATATTGA | H | ACTGATGATT
TGACTACTAA |
| S ~ | AC
TG | D V G |)
(C)
(G) | A P K Bbel | AA |
| Ŋ | D A C | _ | rGG
ACC | Д ? | 000
000 |
| ა
დ | 000 | | TG. | A B
Bber
~~~~~~ |)
(1)
(1) |
| W | AGC
TCG | Ω | CGATGTGGGC
GCTACACCCG | | AGGCGCCGAA
TCCGCGGCTT |
| :> | H C | W | AG
TC | P G K
XmaI
~~~~~~ | GA
CT |
| Α
S V | AG'
ATC. | S
S | 1001 | P G
XmaI
~~~~~~~ | ρ
Ω
Ω |
| 01 | CTTCAG
GAAGTC
ECO57I | H | CTP
GAT | ~ 전 없 듯 | |
| Ø | AGCTTCAGTG
TCGAAGTCAC
Eco57I | - | GTACTAGCAG
CATGATCGTC | 口 | CATCCCGGGA
GTAGGGCCCT |
| Дı | | Ŋ | | | |
| A
Ö
L | 1 GG | Ð
H | 100
100 | Q | GCA
CGT |
| O. | CC7
GG1 | | GT7
CA3 | O | CA(
GT(|
| H | TGACCCAGCC
ACTGGGTCGG | S
BssSI
××××× | TCGTGTACGG
AGCACATGCC | Y Q Q
KpnI | GTACCAGCAG
CATGGTCGTC |
| 니 | T
AO | | TOA | , 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | |
| | AC | ~
} | ATC
PAG | ∑ ~ | TG |
| K, | 0
0
0
0
0
0 | E | CCA | ω . | AGC |
| W | AG(| | TA(
AT(| \triangleright | TG, |
| \circ | CAGAGCGCAC
GTCTCGCGTG | H | CATTACCATC
GTAATGGTAG | \Rightarrow | ATGTGAGCTG
TACACTCGAC |
| | | | | | |

FIG. 4D

| F1G. | SUBCLASS | |
|----------|------------|-----------|
| 3.6. | CLASS | |
| APPROVED | } 6 | DRAFTSHAH |

BbsI S AATCGCCTAG CAAGCGGAAG ATCGCCGGAC GTTCGCCTTC BamHI TTAGCGGATC GCCTGTGTTT ~ ~ ~ ~ ~ ~ ſщ \bigcirc K ഗ Д O ſΞι ATACCACCCC TATGGTGGGG TAGCGGCCTG TCGTTGGCAA AGCAACCGTT Д Ц 召 E r ablaEH S ഗ \succ GCCTGACCAT CGGACTGGTA GCAACCGTCC CTCAGGCGTG ATACTACACT CGTTGGCAGG GAGTCCGCAC CAGCAGCATT H \gt 口 \vdash Ċ O P S Bsu36I 口 Ø S AACACCGCGA TTGTGGCGCT AATAATAACG TTATTATTGC \mathcal{O} K 召 \vdash Z \succ ablaഗ TATGATGTGA GTTTTCGCCG CAAAAGCGGC ACGAAGCGGA \mathcal{O} Ø S BamHI D E BbsI X

FIG. 4E

CGGACACAAA

GTCGTCGTAA

TGCTTCGCCT

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | አ | DRAFTSMAH |

GGCGGCGCA CGAAGTTAAC CGTTCTTGGC
CCGCCGCCGT GCTTCAATTG GCAAGAACCG

 \vdash

 \bowtie

 \vdash

 \mathcal{O}

Ç

 \mathcal{O}

| - | | |
|-----------------|----------------|-----------|
| VED O.G. F1G. | CLASS SUBCLASS | |
| APPROVED | ⊁ 3 | DRAFTSMAN |

 \vdash GTCCAGTCTG ATGCGCTCGA TACGCGAGCT CAGGTCAGAC \Box ഗ O \Box K, ~~~~~~ Ċ × SexAI TCGCAACGTG CCCGCTATT GGGCGATAAA AGCGTTGCAC Н × K > \Box 口 \mathcal{O} ഗ CGCTACGCGA GCGATGCGCT CGGAAGTCAC \Box Д Eco57I ~~~~~ BbeI Þ ഗ Ø Д Ø Ç AGCACATCGC TCGTGTAGCG TGACCCAGCC ACTGGGTCGG Д \mathcal{O} XmaI ഗ Q Д BSSSI \mathcal{O} ~~~~~ ⊱ K S 口 GCGCGCATAG AGCTATGAAC Ø TCGATACTTG CGCGCGTATC \mathbf{H} 臼 Oi 召 KpnI >K S 3

F/G. 4G

K,

口

 \Box

口

Þ

Ø

 \vdash

C

S

Н

 \vdash

口

 \vdash

Ø

 \vdash

Z

Bbs.

APPROVED O.C. FIG.

BY CLASS SUBCLASS
ORAFISHAN

TTATGATGAT AATACTACTA AAGACCACTA TTCTGGTGAT CAGGCGCCAG GICCGCGGIC GAAACCCGGG CTTTGGGCCC GGTACCAGCA

 \mathcal{O} TITAGCGGAT CCAACAGCGG GGTTGTCGCC ഗ Z ~~~~~ BamHI S AAATCGCCTA Ŋ ഗ ſτι GGGCCTTGCG CCCGGAACGC 召 口 Д CCTCAGGCAT GGAGTCCGTA Ç ~~~~~ Bsu36I Д TCTGACCGTC AGACTGGCAG α О S

FIG. 4H

| 0.6. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVEG (| 6 | DRAFISMAN |

GACGAAGCGG CTGCTTCGCC TTAGCGGCAC TCAGGCGGAA AATCGCCGTG AGTCCGCCTT CAACACGGG ACCCTGACCA TGGGACTGGT GTTGTGGCGC

TGGCGGCGGC ATATGGTGGG GCGGACACAA CGCCTGTGTT TATACCACCC D Y Y C Q Q H ATTATTAG CCAGCAGCAT GGTCGTCGTA TAATAATAAC

T K L T V L G
HpaI MscI

ACGAAGTTAA CCGTTCTTGG C TGCTTCAATT GGCAAGAACC G FIG. 41

| F1G. | SUBCLASS | |
|----------|----------|------------|
| | CLASS | |
| AFPROVED | ≻ | DRAF TSHAN |

| W | A C
T | | GA | ტ . | Ο O
O |
|------------------|--------------------------|-----------------|----------------------------|------------------------|---|
| W | CGGGCAGCAG
GCCCGTCGTC | Ø | AGCTATGCGA
TCGATACGCT | D
D | GATGGGCGGC
CTACCCGCCG |
| O | 70 C | .>- | SAT | ∀ | 7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 |
| V K K P G S S | 000 | T F S S Y A | AG(
TC(| A | GA. |
| щ | AC
TG | W | 0
0
0 | L E W
XhoI | TG |
| × | GTGAAAAAC
CACTTTTTTG | لت | CACTTTTAGC
GTGAAAATCG | 田田 | GTCTCGAGTG
CAGAGCTCAC |
| X | AA. | | TT | L
XhoI | TC(|
| > | GTG | [| CAC | | GTC |
| 6.3 | | Ŋ | | Ch | |
| Щ | GGA | <u></u> i | GAG
CTC | O | CAG |
| Ø |)
()
()
() | S
G
Bspei | ~~~~~~
TCCGGA
AGGCCT | Ŋ | ~ C C C C C C C C C C C C C C C C C C C |
| V Q S G A E | TGGCGCGGAA
ACCGCGCCTT | 02 рд | CCTCCGGAGG | R Q A P G Q G
BstXI | GCGCCAAGCC CCTGGGCAGG |
| M | | ø | | tXI | 2 C) C) |
| 01 | GT(| X | AA(| BS. | 200
000
000
000 |
| O | TCA | U | GCA | \circ | CAZ
GTT |
| \triangleright | TGGTTCAGTC
ACCAAGTCAG | ひ
ス
ス | AGCTGCAAAG
TCGACGTTTC | 1 4 | GCGCCAAGCC |
| μН | ₹ | 01 | | | |
| Q
MfeI | CAGGTGCAAT
GTCCACGTTA | > | CGTGAAAGTG
GCACTTTCAC | N S I | TTAGCTGGGT
AATCGACCCA |
| | | V K V | AA(
'T'T' | M | TG |
| \triangleright | GGT
CCA | :> | rga
ACT | S | AGC |
| Q | CA(
GT(| • | 0
0
0
0 | H | TT.
AA' |
| | | | | | |

FIG. 5A

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------------|----------------|-----------|
| APPROVEU O.G. | >
#0 | DRAFTSMAN |

TACCTTGACT CGCGTCTTCA AAGTCCCGGC ATTATTGCGC GCGTTGGGGC C 口 3 [1] വ് Σ ~~~~~ ĹΤΙ BSSHI A Q K I GCGCAGAAGT CACCGCGTAT GTGGCGCATA \mathcal{O} Þ \vdash TTTCGTGGTC CCGCTTGATG AAAGCACCAG ACGGCCGTGT TGCCGGCACA A N Y GGCGAACTAC S > \vdash ~~~~~ EagI Þ S H 口 ATCGCTTCTA TAATAAGGCT AAAAACCGTG ACCGCGGATG TAGCGAAGAT TGGCGCCTAC Д \Box 口 Ø ഗ \vdash GCAGCCTGCG CCACTGGTAA CGTCGGACGC GGTGACCATT 召 Н Д П ~~~~~ V T Bsteii S ഗ

FIG. 5B

CGCAACCCCG

TAATAACGCG

| | S | |
|----------|----------|-----------|
| F16. | SUBCLASS | |
| | CLASS | |
| APPROVED | `~
60 | DRAFTSMAR |

| \vdash | | T C |
|--------------------------------|---------------|--------------------------|
| > | | GTG: |
| Y A M D Y W G Q G T L V T Styl | | CCCTGGTGAC
GGGACCACTG |
| Н | | A E |
| ρ
H | ? |)
)
)
) |
| Q (
StyI | ~ ~ ~ ~ ~ ~ ~ | GGCCAAGGCA
CCGGTTCCGT |
| Ŋ | ≀ | |
| M | | TGG
ACC |
| > | | TAT |
| Ω | | GGATTATTGG
CCTAATAACC |
| Z | | SAT |
| A | | 16C0 |
| | | TTTATGCGAT
AAATACGCTA |
| Ĺτι | | |
| CD | | TGG(|
| Ω | | GGCGATGGCT
CCGCTACCGA |
| ტ | |)
(C)
(C) |

FIG. 5C

| | ASS | | |
|----------|----------|-----------|--|
| co | SUBCLASS | | |
| 三 | | \dashv | |
| 10 | CLASS | | |
| | ਹ | | |
| APPROVED | | DRAFTSMAH | |
| iddd) | es
Z | AFT | |
| | | 5 | |

TCGATAATAT ഗ CGGGCGCGAG AGCTATTATA GCCCGCGCTC K \mathcal{O} ഗ Д CCTCCGGATA TACCTTTACC CACTTTTTG ATGGAAATGG GTGAAAAAC \vdash 又 ſτι × \vdash GGAGGCCTAT CGGCGCGGAA GCCGCCCTT \succ 口 BSPEI C K ഗ \mathcal{O} K CAGGTGCAAT TGGTTCAGAG ACCAAGTCTC AGCTGCAAAG TCGACGTTTC S 又 \bigcirc \mathcal{O} ഗ Q Mfel CGTGAAAGTG GTCCACGTTA GCACTTTCAC \gt O

FIG. 5D

GATGGGCTGG

GTCTCGAGTG CAGAGCTCAC

CCTGGGCAGG

CCGCCAAGCC

TGCACTGGGT

ACGTGACCCA

GGCGGTTCGG GGACCCGTCC

3

 \mathcal{O}

 Ξ

3

C

Ø

 \mathcal{O}

Д

ď

O<sub>i</sub>

召

 \triangleright

 \geq

口

 \mathbf{Z}

BstXI

L E XhoI APPROVED O.G. FIG.
BY CLASS SUBCLASS

A Q K F Q G R GCGCAGAAGT TTCAGGGCCG CGCGTCTTCA AAGTCCCGGC I N P N S G G T N Y ATTAACCCGA ATAGCGGCGG CACGAACTAC GTGCTTGATG TAATIGGGCT TAICGCCGCC

团 Ξ >Ø \vdash S Н ഗ \vdash \Box α \vdash Ξ ~~~~~ $V ext{T}$ BstEII

CACCGCGTAT ATGGAACTGA GTGGCGCATA TACCTTGACT GGTCGTAATC CCAGCATTAG ACCCGTGATA TGGGCACTAT GGTGACCATG CCACTGGTAC

 \mathcal{O} S 召 BSSHII ø \gt EagI Þ \vdash 口 S 召 Ы S ഗ

TAATAACGCG CGCAACCCCG ATTATIGCGC GCGTIGGGGC TGCCGGCACA ACGCCCGTGT ATCGCTTCTA TAGCGAAGAT GCAGCCTGCG CGTCGGACGC

FIG. 5E

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|---------------------------------------|-----------|
| APPROVED | , , , , , , , , , , , , , , , , , , , | DRAFISHAH |

| H | | AC | ŢĞ |
|-------------------------------------|-------------|-----------------------|----------------------------------|
| \triangleright | | GTG | CAC |
| 니 | | CCCTGGTGAC | GGGACCACTG |
| ⊣ | | | |
| ტ
Н | ? | GGC | CCG |
| Q (
StyI | <pre></pre> | CAA | GTT |
| CD | } | GGCCAAGGCA | CCG |
| M | | TGG | ACC |
| ≻ | | TAT | ATA |
| Ω | | GGAT | CCTA |
| Ξ | | AT | TA |
| K | | GCG | CGC |
| F Y A M D Y W G Q G T L V T
Styl | | TTTATGCGAT GGATTATTGG | AAATACGCTA CCTAATAACC CCGGTTCCGT |
| ĹΤΙ | | | |
| C | | GGCGATGGCT | CCGCTACCGA |
| Ω | | GAT | CTA |
| CO | | GGC | CCG |

FIG. 5

| APPROVED O.G. FIG. OY CLASS SUBCLASS DRAFTSHAH | _ | 183 | |
|--|-------|----------|------|
| 0.G. | (7) | BCLA | |
| min areas and a second | 1 | SS SU | |
| PFROVED
BY
AFTSHAN | 0.0 | CLA. | |
| A A | ROVED | <u>}</u> | SKAH |
| [₹ 8.1 | APE | • | DRAF |

Н GCTGGGTTTG ACGTCTGGCG TGCAGACCGC GGAAAGCCCT CGAGTGGCTG GACCTAAGCG GTCGGCGAC CCTTTCGGGA GCTCACCGAC CGACCCAAAC C Q 3 S ⊟ 口 XhoI \vdash Д TAGCCTGTCC GACCACTTTG ATCGGACAGG CTGGTGAAAC ഗ × K Ц \gt X ഗ 口 C 9500955005 TTTCCGGATT TGGACATGGA AAAGGCCTAA CAGCCGCCTG CGGCCCGGCC щ D S BSPEI Д BstXI Д Д \mathcal{O} \bigcirc L TGAAAGAAAG ACTTTCTTTC CCTGACCCTG ACCTGTACCT CTGGATTCGC ഗ 召 H 闰 Н \mathcal{O} × 3 \vdash O MfeI GTCCACGTTA CAGGTGCAAT TTGGCGTGGG GGACTGGGAC AACCGCACCC \mathcal{O} П Н G 口 Q >

FIG. 5G

| | - | |
|----------|-----------|-----------|
| | SUBCLASS | |
| Con | 딣 | - 1 |
| FIG | | _ |
| 0 | CL. A5S | |
| | <u>[5</u> | |
| APPROVED | _ | DRAFTSHAM |
| 1698 | Ϋ́O | MFT |
| ! . | | õ |

| L K T
MluI | AAAC
TTTG | E . | ACTA
TGAT | ×
×
× | TTGG
AACC |
|---------------------|--------------------------|-------------------|--------------------------|--------------|--|
| ы | GCCTGAAAAC
CGGACTTTTG | T J A A O N | GTGCTGACTA
CACGACTGAT | H | CCTATTATTG CGCGCGTTGG
GGATAATAAC GCGCGCAACC |
| ഗ | | | | C A
BssHI | C C |
| \vdash | ACCA | > | GGTG | | ATTC
TAAC |
| W | 1000
1000
1000 | O <sub>1</sub> | CAC | K. | TTA |
| \Rightarrow | TATAGCACCA
ATATCGTGGT | Z | AAATCAGGTG
TTTAGTCCAC | ,74 | CCTATTATTG
GGATAATAAC |
| \Rightarrow | _ | T S K NSpV | | EH | CCA |
| × | AG. | S K
NspV | TC(| ٠, |)
)
)
)
)
)
) |
| W D D D K Y Y S T S | TGATAAGTAT
ACTATTCATA | | ATACTTCGAA
TATGAAGCTT | D T A T Y Y | GATACGGCCA
CTATGCCGGT |
| Ω | | N N | | | |
| О | GAT
CTA | 內 | CAA
GIT | വ | 0
0
0
0
0 |
| M | ATTGGGATGA
TAACCCTACT | W | ATTAGCAAAG
TAATCGTTTC | О
О | GGACCCGGTG
CCTGGGCCAC |
| Д | | Н | | ¥ | |
| Н | ATTG
PAAC | L
H | SACC | N | ACA1
IGTA |
| A
L | GCTCTGATTG
CGAGACTAAC | ਜ
ਜ ≀ | GCGTCTGACC
CGCAGACTGG | E E | TGACCAACAT
ACTGGTTGTA |
| Þ | GCT'
CGA(| R
MluI
~~~~ | GCG
CGC | E
M | TGA
ACT |
| | | | | | |

FIG. 5H

| | | SUBCLASS | |
|--------------|-------|-----------|--|
| APPROVED I C | غ إ ز | DRAFTSHAN | |

| > | FIA | | |
|-----------------------|--|------------|--------------------------|
| | (C) | | |
| H | CT(
GA(| | |
| T L. V | GCACCCTGGT | | |
| | 00
00 | | |
| Ω × | | | |
| StyI | CAA | | |
| ტ <sup>×</sup> | TGGGGCCAAG | | |
| F Y A M D Y W G Q Sty | TGG | | |
| \Rightarrow | TAT | | |
| Ω | ATT
TAA | | |
| | 9
0
0 | | |
| Ξ | GATGGATTAT
CTACCTAATA | • | |
| A. | | · | |
| > 1 | GCTTTTATGC
CGAAAATACG | | |
| ĹΊ | rtt.
AAA. | , | PAG
TIC |
| | (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B | Ω H | TCAG |
| C | | ~ B
S ~ | |
| D
О | AT
TA | S \ | 'AG
'TC |
| | , D | > | TT; |
| O | 9
9
9
9
9 | r. | 300 |
| C) | GGCGGCGATG | F | GACGGTTAGC
CTGCCAATCG |

FIG. 51

| - | SUBCLASS | |
|------------|----------|-----------|
| 1. | 12 | |
| 9 | SE | - [|
| I. | | 7 |
| 10 | C1.A.SS | į |
| **** | | |
| APPROVED ! | | DRAFTSMAN |
| P%0 | X. | 5 |
| A | | 8 |
| | | |

CGGGCGGCAG TCGATACGCT GGTGAGCGCG CCACTCGCGC ഗ GCCGCCGTC AGCTATGCGA D Q C ഗ C S Д CTGGTGCAAC GACCACGTTG ATGGAAATCG TACCTTTAGC GTCTCGAGTG CAGAGCTCAC 3 ഗ Q ~~~~~ L XhoI ſщ \vdash 口 C 9009009009 GGAGGCCTAA CGCGGTTCGG GGACCCTTCC CGGCGGCGGC GCGCCAAGCC CCTGGGAAGG Гц CCTCCGGATT C S G Bspei 又 ~~~~~ C C C Д K ACCACCTTTC TGGTGGAAAG TCGACGCGCC ഗ Þ Þ 闰 Ø C \gt 召 S Q MfeI CTTCACGTTA GAAGTGCAAT GGACGCAGAC TGAGCTGGGT CCTGCGTCTG ACTCGACCCA \gt 口 3 召 ഗ 口 口 Ξ

FIG. 5J

APPROVED O.G. FIG.
BY CLASS SUBCLASS
ORAFISMAN

召 TGAAAGGCCG CGCCTATCGC ACTITCCGGC GCGGATAGCG Д T Y Y CACCTATTAT GTGGATAATA S G G S GCGGCGGCAG CGCCGCCGTC Ċ ഗ TAATCGCCAT ATTAGCGGTA Ŋ

 Ξ Ц 口 \vdash Z S K NspV Z \Box ~ ~ ~ ~ ~ ~ ~ PmlI ഗ \vdash Щ

CACCCTGTAT CTGCAAATGA GACGITIACT GTGGGACATA ATTCGAAAAA TAAGCTTTTT TCACGTGATA AGTGCACTAT AAAATGGTAA TTTACCATT

NSLRAEDTAVY Eagi

 \mathcal{O}

3

召

BSSHI

ATTATTGCGC GCGTTGGGGC CGCAACCCCG TAATAACGCG ACGGCCGTGT TGCCGGCACA TGCGGAAGAT ACGCCTTCTA ACAGCCTGCG TGTCGGACGC

FIG. 5K

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | 5 | ORAFISHAN |

| T | | TGAC | |
|-------------------------------------|-------------|--------------------------|--|
| F Y A M D Y W G Q G T L V T
Styl | | CCCTGGTGACGGGACCACTG | |
| H | | CA
GT | |
| A
A | ? | 16G | |
| Q (
StyI | <pre></pre> | CAZ
GTT | |
| Ŋ | } | GGCCAAGGCA
CCGGTTCCGT | |
| M | | TGG | |
| \succ | | TAT
ATA | |
| Д | | GGATTATTGG
CCTAATAACC | |
| M | | AT | |
| Ø | | | |
| × | | TTTATGCGAT
AAATACGCTA | |
| ĮΤι | | | |
| Ö | | GGCGATGGCT
CCGCTACCGA | |
| Ω | | GAJ | |
| ტ | | 000 | |

BlpI BlpI CGTTAGCTCA FIG. 5L

| FIG. | S SUBCLASS | |
|---------|------------|-----------|
| 0.6 | 31.455 | |
| AFFROVE | >-
E3 | DRAFTSMAR |

 \vdash CGAGCGAAAC TCGATAATAA ¥ 口 \mathcal{O} ഗ \mathbf{H} ഗ Д CTGGTGAAAC AAAGGCCTCC GTCGTAATCG GACCACTTTG 3 S \bowtie L E XhoI Н > S \Box Ċ ACCAGGCCCG TGGTCCGGGC \mathcal{O} C S G BspEI × ~~~~ Д C C Д \gt TGCAAGAAAG ACGTTCTTTC TGGACGTGGC ഗ \vdash 口 Ø \mathcal{O} Ø 召 \vdash Q MfeI GTCCACGTTA CAGGTGCAAT GGACTCGGAC \mathbf{H} П 3 ഗ ഗ П Ø \geq

FIG. 5M

AFPROVED O.G. FIG.
BY CLASS SUBCLASS
ORAFISMAN

AAACTGAGCA TTTGACTCGT GATTGGCTAT AAAGCCGGGT TTTCGGCCCA CTAACCGATA \ \ \ \ G BStEI ഗ α G П S 3 \bowtie 又 CCGAGCCTGA GGCTCGGACT CAGAGCTCAC GTCTCGAGTG GTTTAGCCTG CAAATCGGAC α 口 口 BSSHI Z, ഗ S ſц щ GTTGATACTT CGAAAAACCA GCTTTTTGGT GGAGCTGGAT TCGCCAGCCG CCTGGGAAGG GGACCCTTCC ATTTATTATA GCGGCAGCAC CAACTATAAT GTTGATATTA O Z Z \succ 区 Z NspVÞ EagI ഗ CAACTATGAA CGCCGTCGTG CCTCGACCTA AGCGGTCGGC H \vdash \vdash S \Box C Þ S TAAATAATAT GACCATTAGC CTGGTAATCG D ഗ \vdash T I BstEII \gt ~ ~ ~ ~ Н S

FIG. 5N

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | ×. | DRAFTSMAN |

| TTGGGGCGGC
AACCCCGCCG | Y A M D Y W G Q G T L V T V Styl | TGGTGACGGT
ACCACTGCCA |
|--------------------------|----------------------------------|--------------------------|
| ATTGCGCGCG
TAACGCGCGC | Q G T I
Styl | CAAGGCACCC
GTTCCGTGGG |
| GCCGTGTATT
CGGCACATAA | D M | TTATTGGGGC
AATAACCCCG |
| GGCGGATACG
CCGCCTATGC | Y A M D | ATGCGATGGA
TACGCTACCT |
| GCGTGACGGC
CGCACTGCCG | D G | GATGGCTTTT
CTACCGAAAA |

TAGCTCAG

S S BlpI

S

| 10vc0 0.0. FIG. | CLASS SUBCLASS | |
|-------------------|----------------|-----------|
| AFPROVEE | ;
;
(2) | DRAFTSHAH |

CTACCCGTAA S GCCCCCTTTC TCGATAACCT GATGGGCATT 3 口 Ċ \succ Ç \succeq S Д CAGAGCTCAC CACTTTTTG GTCTCGAGTG AAGGAAATGC TTCCTTTACG 3 GTGAAAAAAC Е × L E XhoI ſΞι 区 S > \mathcal{O} GCGCCAGATG CCTGGGAAGG CGCGGTCTAC GGACCCTTCC GCCGCGCCTT CAAGGCCTAT CGGCGCGGAA GTTCCGGATA \succ 口 S G BSPEI 凶 ~~~~~ Q \mathcal{O} \mathcal{O} Д \mathcal{O} BstX TGGTTCAGAG ACCAAGTCTC AGCTGCAAAG TCGACGTTTC ഗ Σ 又 Q Ø \mathbf{C} 吆 ഗ ~~~~~~ O Mfer CTTCACGTTA TTGGCTGGGT GAAGTGCAAT CCTGAAAATT GGACTTTTAA AACCGACCCA Н 3 区 \Box 口 口 H

FIG. 5P

APPROVED O.G. F.IG.

OY CLASS SUBCLASS

ORAFISHAN

CTTCAATGGA ATTATTGCGC GCGTTGGGGC TTCAGGGCCA AGAGGCTCGA AAGTCCCGGT GAAGTTACCT \mathcal{O} 3 \geq O α ſΞι BSSHI CACCGCGTAT GTGGCGCATA ഗ Q Д \vdash ഗ AAAGCATTAG TTTCGTAATC ACGGCCATGT ATGGGCAATA TACCCGTTAT ഗ Ξ \mathbf{H} 召 Þ ഗ \vdash 又 AGCGAGCGAT AGCGCGGATA TCGCGCCTAT TAAATAGGCC CGCTATCGCT GCGATAGCGA \Box \Box ഗ S Þ Q S Ċ GCAGCCTGAA GGTGACCATT CCACTGGTAA ATTTATCCGG X Ц ~~~~~ BStEI S ഗ

FIG.50

TAATAACGCG CGCAACCCCG

TGCCGGTACA

TCGCTCGCTA

CGTCGGACTT

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | 7.8 | DRAFTSMAN |

| ⊱ | AC | |
|----------------------------------|--------------------------|---|
| | GTG | |
| H | CCCTGGTGAC
GGGACCACTG | |
| \vdash | | |
| о
Н <sup>*</sup> | GGCCAAGGCA
CCGGTTCCGT | |
| Q G
Styl | CAA
GTT | |
| ტ <sup>≀</sup> | GGCCAAGGCA
CCGGTTCCGT | |
| M | | |
| \Rightarrow | TAT'
ATA | |
| Ω | GGATTATTGG
CCTAATAACC | |
| Ξ | | |
| A. | 909
090 | |
| F Y A M D Y W G Q G T L V T Styl | TTTATGCGAT
AAATACGCTA | |
| ፲ | | ζ |
| D
D | 1GG(| , |
| Ω | GGCGATGGCT
CCGCTACCGA | , |
| ტ | 900 | ۳ |
| | | |

FIG.5R

| 0.6. FIG. | CLASS SUBCLASS | | |
|------------|----------------|-----------|--|
| APPROVED [| ä, | ORAFISMAN | |

AGCAACAGCG TCGTTGTCGC \vdash GCTCGGTTTG CGAGTGGCTG GCTCACCGAC CGAGCCAAAC 口 ഗ Ø \geq Z ഗ 口 S Xho. Д CCGCACCGGA GGCGTGGCCT GACCACTTTG TAGCGTGAGC ATCGCACTCG CTGGTGAAAC ഗ X G \gt > 召 ഗ 口 ~~~~~~~~~~ C ACCAGGCCCG AAAGGCCTCT TTTCCGGAGA GTCAGAGGAC TGGTCCGGGC CAGTCTCCTG C Д BstXI S G BspE] ~ ~ ~ ~ ~ ~ Д ഗ C \bigcirc Н GACCTAAGCG ACGTTGTCAG TGGACACGCT CTGGATTCGC ഗ TGCAACAGTC ACCTGTGCGA 召 Q \bigcirc \mathcal{O} Q \geq \vdash Q Mfei GTCCACGTTA CAGGTGCAAT CCTGAGCCTG GGACTCGGAC GCCGCACCTT \mathbb{Z} 니 3 S > Þ \Box Ø K

FIG. 5S

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | 2 | DRAFTSMAH |

CAGTTTAGCC GTCAAATCGG TTATTGCGCG AATAACGCGC TTGCTAATAC GCCACTCGCA BSSHII ഗ ш >Ø Þ TTCGAAAAAC AAGCTTTTTG GCCGGCACAT CGGCCGTGTA AACGATTATG Z 又 О NspVEagI ~~~~ Þ ഗ \vdash TGGGCCTATG CCGGAAGATA GGCCTTCTAT ACCCGGATAC CCGGCATGGA TAATAGCATC GTTTACCATA \vdash \Box Д \geq 闰 Д 又 Д Z CITITICGGCC TAATGGTAGT CAGCGTGACC GTCGCACTGG Y R S ATTATCGTAG ATTACCATCA \vdash BsaB. \gt ഗ \succ G R T Y GGCCGTACCT TGCAACTGAA GAAAAGCCGG ACGTTGACTT Z 召 口 ഗ Ø X П

FIG. 5T

| | | _ |
|---------------|----------------|-----------|
| VED [1] G FIG | CLASS SURCIASS | |
| AFPROVED | >-
- | DRAFTSHAR |

| [-1 | AC | | |
|----------------------|---|--|--------------------------|
| | 999 | | |
| O G
StyI | GCCAAGGCAC
CGGTTCCGTG | | |
| CD | | | |
| M | GATTATTGGG
CTAATAACCC | | |
| > i | TAT
ATZ | | |
| О | GAT | | |
| Z | SATG | | |
| K. | 000 | | |
| D G F Y A M D Y W G | TTATGCGATG
AATACGCTAC | | |
| Гц | TT
AA | ⊢ ≀ | AG |
| Ü | 700
700 | S S S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | CTC |
| Д | AT(| V S S S Blp | 'AG(|
| | GCGATGGCTT
CGCTACCGAA | \triangleright | GTTAGCTCAG
CAATCGAGTC |
| Ch | | r . | |
| Ŋ | 900 | H | GAC |
| WIII | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | L V T | 3GT |
| R W G
BssHII
~ | CGTTGGGGCG
GCAACCCCGC | 니 | CCTGGTGACG
GGACCACTGC |
| | | | |

3

- O1K1 5'- GAATGCATACGCTGATATCCAGATGACCCAGAG-CCCGTCTAGCCTGAGC -3'
- **O1K2** 5'- CGCTCTGCAGGTAATGGTCACACGATCACCCAC-GCTCGCGCTCAGGCTAGACGGC -3'
- **O1K3** 5'- GACCATTACCTGCAGAGCGAGCCAGGGCATTAG-CAGCTATCTGGCGTGGTACCAGCAG -3'
- **O1K4** 5'- CTTTGCAAGCTGCTGGCTGCATAAATTAATAGT-TTCGGTGCTTTACCTGGTTCTGCTGGTACCACGCCAG -3'
- **O1K5** 5'- CAGCCAGCAGCTTGCAAAGCGGGGTCCCGTCCC-GTTTTAGCGGCTCTGGATCCGGCACTGATTTTAC -3'
- **O1K6** 5'- GATAATAGGTCGCAAAGTCTTCAGGTTGCAGGC-TGCTAATGGTCAGGGTAAAATCAGTGCCGGATCC -3'
- **O2K1** 5'- CGATATCGTGATGACCCAGAGCCCACTGAGCCT-GCCAGTGACTCCGGGCGAGCC -3'
- **O2K2** 5'- GCCGTTGCTATGCAGCAGGCTTTGGCTGCTTCT-GCAGCTAATGCTCGCAGGCTCGCCCGGAGTCAC -3'
- **O2K3** 5'- CTGCTGCATAGCAACGGCTATAACTATCTGGAT-TGGTACCTTCAAAAACCAGGTCAAAGCCC -3'
- **O2K4** 5'- CGATCCGGGACCCCACTGGCACGGTTGCTGCCC-AGATAAATTAATAGCTGCGGGCTTTGACCTGGTTTTTG -3'
- **O2K5** 5'- AGTGGGGTCCCGGATCGTTTTAGCGGCTCTGGA-TCCGGCACCGATTTTACCCTGAAAATTAGCCGTGTG -3'
- **O2K6** 5'- CCATGCAATAATACACGCCCACGTCTTCAGCTT-CCACACGCCTAATTTTCAGGG -3'
- O3K1 5'- GAATGCATACGCTGATATCGTGCTGACCCAGAG
- O3K2 5'- CGCTCTGCAGCTCAGGGTCGCACGTTCGCCCGG-AGACAGGCTCAGGGTCGCCGGGCTCTGGGTCAGC -3'
- **O3K3** 5'- CCCTGAGCTGCAGAGCGAGCCAGAGCGTGAGCA-GCAGCTATCTGGCGTGGTACCAG -3'

FIG. 6A

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- O3K4 5'- GCACGGCTGCTCGCGCCATAAATTAATAGACGC-GGTGCTTGACCTGGTTTCTGCTGGTACCACGCCAGATAG -3'
- **O3K5** 5'- GCGCGAGCAGCCGTGCAACTGGGGTCCCGGCGC-GTTTTAGCGGCTCTGGATCCGGCACGGATTTTAC -3'
- **O3K6** 5'- GATAATACACCGCAAAGTCTTCAGGTTCCAGGC-TGCTAATGGTCAGGGTAAAATCCGTGCCGGATC -3'
- **O4K1** 5'- GAATGCATACGCTGATATCGTGATGACCCAGAG-CCCGGATAGCCTGGCG -3'
- **O4K2** 5'- GCTTCTGCAGTTAATGGTCGCACGTTCGCCCAG-GCTCACCGCCAGGCTATCCGGGC -3'
- **O4K3** 5'- CGACCATTAACTGCAGAAGCAGCCAGAGCGTGC-TGTATAGCAGCAACAAAAAACTATCTGGCGTGGTACCAG
- **O4K4** 5'- GATGCCCAATAAATTAATAGTTTCGGCGGCTGA-CCTGGTTCTGCTGGTACCACGCCAGATAG -3'
- **O4K5** 5'- AAACTATTAATTTATTGGGCATCCACCCGTGAA-AGCGGGGTCCCGGATCGTTTTAGCGGCTCTGGATCCGGCAC-3'
- **O4K6** 5'- GATAATACACCGCCACGTCTTCAGCTTGCAGGG-ACGAAATGGTCAGGGTAAAATCAGTGCCGGATCCAGAGCC-3'
- **O1L1** 5'- GAATGCATACGCTCAGAGCGTGCTGACCCAGCC-GCCTTCAGTGAGTGG -3'
- **O1L2** 5'- CAATGTTGCTGCTGCTGCCGCTACACGAGATGG-TCACACGCTGACCTGGTGCGCCACTCACTGAAGGCGGC -3'
- **O1L3** 5'- GGCAGCAGCAGCAACATTGGCAGCAACTATGTG-AGCTGGTACCAGCAGTTGCCCGGGAC -3'
- O1L4 5'- CCGGCACGCCTGAGGGACGCTGGTTGTTATCATAAATCAGCAGTTTCGGCGCCGTCCCGGGCAACTGC -3
 O1L5 5'- CCCTCAGGCGTGCCGGATCGTTTTAGCGGATCCAAAAGCGGCACCAGCGCGAGCCTTGCG -3'

FIG.6B

APPROYED O.G. FIG.

BY CLASS SUBCLASS

BRAFISMAN

- **O1L6** 5'- CCGCTTCGTCTTCGCTTTGCAGGCCCGTAATCG-CAAGGCTCGCGCTGG -3'
- **O2L1** 5'- GAATGCATACGCTCAGAGCGCACTGACCCAGCC-AGCTTCAGTGAGCGGC -3'
- **O2L2** 5'- CGCTGCTAGTACCCGTACACGAGATGGTAATGC-TCTGACCTGGTGAGCCGCTCACTGAAGCTGG -3'
- **O2L3** 5'- GTACGGGTACTAGCAGCGATGTGGGCGGCTATA-ACTATGTGAGCTGGTACCAGCAGCATCCCGG -3'
- **O2L4** 5'- CGCCTGAGGGACGGTTGCTCACATCATAAATCA-TCAGTTTCGGCGCCCTTCCCGGGATGCTGCTGGTAC -3'
- **O2L5** 5'- CAACCGTCCCTCAGGCGTGAGCAACCGTTTTAG-CGGATCCAAAAGCGGCAACACCGCGAGCC -3'
- **O2L6** 5'- CCGCTTCGTCTTCCGCTTGCAGGCCGCTAATGG-TCAGGCTCGCGGTGTTGCCG -3'
- **O3L1** 5'- GAATGCATACGCTAGCTATGAACTGACCCAGCC-GCCTTCAGTGAGCG -3'
- **O3L2** 5'- CGCCCAGCGCATCGCCGCTACACGAGATACGCG-CGGTCTGACCTGGTGCAACGCTCACTGAAGGCGGC -3'
- **O3L3** 5'- GGCGATGCGCTGGGCGATAAATACGCGAGCTGG-TACCAGCAGAAACCCGGGCAGGCGC -3'
- **O3L4** 5'- GCGTTCCGGGATGCCTGAGGGACGGTCAGAATC-ATCATAAATCACCAGAACTGGCGCCTGCCCGGGTTTC -3'
- **O3L5** 5'- CAGGCATCCCGGAACGCTTTAGCGGATCCAACA-GCGCCAACACCGCGACCCTGACCATTAGCGG -3'
- **O3L6** 5' CCGCTTCGTCTTCCGCCTGAGTGCCGCTAATGG-
- O1246H1 5'- GCTCTTCACCCCTGTTACCAAAGCCCAG-GTGCAATTG -3'
- O1AH25'- GGCTTTGCAGCTCACTTTCACGCTGCCCGGT-TTTTCACTTCCGCGCCAGACTGAACCAATTGCACCTGGGC-TTTG -3'

FIG. 6C

- **O1AH3** 5'- GAAAGTGAGCTGCAAAGCCTCCGGAGGCACTTT-TAGCAGCTATGCGATTAGCTGGGTGCGCCAAGCCCCTGGGCAGGCTC -3'
- **O1AH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGCCGTGCCA-AAAATCGGAATAATGCCGCCCATCCACTCGAGACCCTGCCC-AGGGGC -3'
- **O1AH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATTACC-GCGGATGAAAGCACCAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O1ABH6** 5'- GCGCGCAATAATACACGGCCGTATCTTCGCT-ACGCAGGCTGCTCAGTTCC -3'
- **O1BH2** 5 '- GGCTTTGCAGCTCACTTTCACGCTCGCGCCCGGT-TTTTCACTTCCGCGCCGCTCTGAACCAATTGCACCTGGGC-TTTG -3 '
- **O1BH4** 5'- GCCCTGAAACTTCTGCGCGTAGTTCGTGCCGCC-GCTATTCGGGTTAATCCAGCCCATCCACTCGAGACCCTGCCCAGGGGC -3'
- **O1BH5** 5'- GCGCAGAAGTTTCAGGGCCGGGTGACCATGACC-CGTGATACCAGCATTAGCACCGCGTATATGGAACTGAGCAGCCTGCG -3'
- **O2H3** 5'- CTGACCCTGACCTGTACCTTTTCCGGATTTAGC-CTGTCCACGTCTGGCGTTGGCGTGGGCTGGATTCGCCAGCCGCCTGGGAAAG -3
- **O2H4** 5'- GCGTTTTCAGGCTGGTGCTATAATACTTATCAT-CATCCCAATCAATCAGAGCCAGCCACTCGAGGGCTTTCCCAGGCGCTGG -3'

FIG. 6D

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- **O2H5** 5'- GCACCAGCCTGAAAACGCGTCTGACCATTAGCA-AAGATACTTCGAAAAATCAGGTGGTGCTGACTATGACCAACAT GG -3'
- **O2H6** 5'- GCGCGCAATAATAGGTGGCCGTATCCACCGGGT-CCATGTTGGTCATAGTCAGC -3'
- O3H1 5'- CGAAGTGCAATTGGTGGAAAGCGGCGGCCT-GGTGCAACCGGGCGGCAG -3'
- O3H2 5'- CATAGCTGCTAAAGGTAAATCCGGAGGCCGCGC-AGCTCAGACGCAGGCTGCCGCCCGGTTGCAC -3'
- **O3H3** 5'- GATTTACCTTTAGCAGCTATGCGATGAGCTGGG-TGCGCCAAGCCCCTGGGAAGGGTCTCGAGTGGGTGAG -3'
- O3H4 5'- GGCCTTTCACGCTATCCGCATAATAGGTGCTGC-CGCCGCTACCGCTAATCGCGCTCACCCACTCGAGACCC -3'
- **O3H5** 5'- CGGATAGCGTGAAAGGCCGTTTTACCATTTCAC-GTGATAATTCGAAAAACACCCTGTATCTGCAAATGAACAG-3'
- **O3H6** 5'- CACGCGCGCAATAATACACGGCCGTATCTTCCG-CACGCAGGCTGTTCATTTGCAGATACAGG -3'
- **O4H2** 5'- GGTCAGGCTCAGGGTTTCGCTCGGTTTCACCAG-GCCCGGACCACTTTCTTGCAATTGCACCTGGGCTTTG -3'
- **O4H3** 5'- GAAACCCTGAGCCTGACCTGCACCGTTTCCGGAGG-CAGCATTAGCAGCTATTATTGGAGCTGGATTCGCCAGCCGC-3'
- **O4H4** 5'- GATTATAGTTGGTGCTGCCGCTATAATAAATAT-AGCCAATCCACTCGAGACCCTTCCCAGGCGGCTGGCGAATCCAGG-3'
- **O4H5** 5'- CGGCAGCACCAACTATAATCCGAGCCTGAAAAG-CCGGGTGACCATTAGCGTTGATACTTCGAAAAACCAGTTTAGCCTG -3'
- **O4H6** 5'- GCGCGCAATAATACACGGCCGTATCCGCCGCCG-TCACGCTGCTCAGTTTCAGGCTAAACTGGTTTTTCG -3'

FIG. 6E

APFROVED O.G. FIG.

0Y CLASS SUBCLASS
ORAFISHAN

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

- **O5H1** 5'- GCTCTTCACCCCTGTTACCAAAGCCGAAGTGCA ATTG -3'
- **O5H2** 5 ' CCTTTGCAGCTAATTTTCAGGCTTTCGCCCGGT-TTTTTCACTTCCGCGCCGCTCTGAACCAATTGCACTTCGGCTTTGG -3 '
- **O5H4** 5'- CGGAGAATAACGGGTATCGCTATCGCCCGGATA-AATAATGCCCATCCACTCGAGACCCTTCCCAGGCATCTGGCGCAC -3'
- **O5H5** 5'- CGATACCCGTTATTCTCCGAGCTTTCAGGGCCA-GGTGACCATTAGCGCGGATAAAAGCATTAGCACCGCGTATCTTC-3'
- **O5H6** 5'- GCGCGCAATAATACATGGCCGTATCGCTCGCTT-TCAGGCTGCTCCATTGAAGATACGCGGTGCTAATG -3'
- **O6H2** 5'- GAAATCGCACAGGTCAGGCTCAGGGTTTGGCTC-GGTTTCACCAGGCCCGGACCAGACTGTTGCAATTGCACCTGG-GCTTTG -3'
- **O6H3** 5'- GCCTGACCTGTGCGATTTCCGGAGATAGCGTGA-GCAGCAACAGCGCGGGGGGAACTGGATTCGCCAGTCTCCTGGGCG-3'
- **O6H4** 5'- CACCGCATAATCGTTATACCATTTGCTACGATA-ATAGGTACGGCCCAGCCACTCGAGGCCACGCCCAGGAGACTGGCG-3'
- **O6H5** 5'- GGTATAACGATTATGCGGTGAGCGTGAAAAGCC-GGATTACCATCAACCCGGATACTTCGAAAAACCAGTTTAGCCTGC -3'
- **O6H6** 5'- GCGCGCAATAATACACGGCCGTATCTTCCGGGG-TCACGCTGTTCAGTTGCAGGCTAAACTGGTTTTTC -3'
- **OCLK1** 5'- GGCTGAAGACGTGGGCGTGTATTATTGCCAGCA-GCATTATACCACCCCGCCGACCTTTGGCCAGGGTAC -3'

FIG. 6F

APPROVED O.G. FIG.
BY GLASS SUBCLASS
DRAFTSMAN

OCLK2 5'- GCGAAAAATAAACACGCTCGGAGCAGCCACCG-

- TACGTTTAATTTCAACTTTCGTACCCTGGCCAAAGGTC -3 '
 OCLK3 5'- GAGCGTGTTTATTTTTCCGCCGAGCGATGAACAACTGAAAAGCGGCACGGCGAGCGTGGTGTGCCTGCTG -3 '
 OCLK4 5'- CAGCGCGTTGTCTACTTTCCACTGAACTTTCGCTTCACGCGGATAAAAGTTGTTCAGCAGGCACACCACGC -3 '
 OCLK5 5'- GAAAGTAGACAACGCGCTGCAAAGCGGCAACAGCCAGGAAAGCGTGACCGAACAGGATAGCAAAGATAG -3 '
 OCLK6 5'- GTTTTTCATAATCCGCTTTGCTCAGGGTCAGGGTGCTGCTCAGAGAATAGGTGCTATCTTTGCTATCCTGTTCG 3'
- **OCLK7** 5'- GCAAAGCGGATTATGAAAAACATAAAGTGTATG-CGTGCGAAGTGACCCATCAAGGTCTGAGCAGCCCGGTG -3'
- **OCLK8** 5'- GGCATGCTTATCAGGCCTCGCCACGATTAAAAG-ATTTAGTCACCGGGCTGCTCAGAC -3'
- **OCH1** 5'- GGCGTCTAGAGGCCAAGGCACCCTGGTGACGGT-TAGCTCAGCGTCGAC -3'
- OCH2 5'- GTGCTTTTGCTGCTCGGAGCCAGCGGAAACACG-CTTGGACCTTTGGTCGACGCTGAGCTAACC -3'
- **OCH3** 5'- CTCCGAGCAGCAAAAGCACCAGCGGCGCACGG-CTGCCCTGGGCTGCCTGGTTAAAGATTATTTCC -3'
- **OCH4** 5'- CTGGTCAGCGCCCCGCTGTTCCAGCTCACGGTG-ACTGGTTCCGGGAAATAATCTTTAACCAGGCA -3'
- **OCH5** 5'- AGCGGGGCGCTGACCAGCGGCGTGCATACCTTT-CCGGCGGTGCTGCAAAGCAGCGGCCTG -3'
- **OCH6** 5'- GTGCCTAAGCTGCTCGGCACGGTCACAACG-CTGCTCAGGCTATACAGGCCGCTGCTTTGCAG -3'
- OCH7 5'- GAGCAGCAGCTTAGGCACTCAGACCTATATTTG-CAACGTGAACCATAAACCGAGCAACACC -3'
- **OCH8** 5'- GCGCGAATTCGCTTTTCGGTTCCACTTTTTAT-CCACTTTGGTGTTGCTCGGTTTATGG -3'

FIG. 6G

| FIG. | SUBCLASS | |
|------------------|----------|-----------|
| PPROVED O.G. FIL | CLASS | |
| APPROVED. | `~
&a | DRAFTSMAH |

Ø 口 Д ഗ Д Д 屲 ſΞι S Д Þ Ø \gt BsiWI

CGCTACTTGT TITCCGCCGA GCGATGAACA AAAGGCGGCT CIGCICCGAG CGIGITIALT GACGAGGCTC GCACAAATAA CGTACGGTGG GCATGCCACC

CCGTGCCGCT CGCACCACAC GGACGACTTG TTGAAATAG G T A S V V C L L N GGCACGGCGA GCGTGGTGTG CCTGCTGAAC TGACTTTTCG

W K V D N A L Q S G TGGAAAGTAG ACAACGCGCT GCAAAGCGGC ACCTTTCATC TGTTGCGCGA CGTTTCGCCG GCGCACTICG CITICAAGIC CGCGTGAAGC GAAAGTTCAG 团

AGCAAAGATA GCACCTATTC TCGTTTCTAT CGTGGATAAG ഗ GCTTGTCCTA AACAGCCAGG AAAGCGTGAC CGAACAGGAT 口 TTTCGCACTG လ 口 TTGTCGGTCC O Ŋ

FIG. 7A

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
#3 | DRAFTSHAH |

GGATTATGAA AAACATAAAG ACTCGTTTCG CCTAATACTT TTTGTATTTC X 口 L S S T L T L TCTGAGCAGC ACCCTGACCC ' AGACTCGTCG TGGGACTGGG

GTAGTTCCAG ACTCGTCGGG CCACTGATTT CATCAAGGTC TGAGCAGCCC ഗ ഗ ロ ひ の ACATACGCAC GCTTCACTGG TGTATGCGTG CGAAGTGACC 口

S F N R G E A

StuI

SphI

TCTTTTAATC GTGGCGAGGC CTGATAAGCA TGC AGAAAATTAG CACCGCTCCG GACTATTCGT ACG

FIG. 7B

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
88 | DRAFTSMAN |

ഗ ഗ Д Þ 口 ρι 屲 വ Д G \bowtie E SalI ഗ Þ

CTGGTTTCCA GGTTCGCACA AAGGCGACCG AGGCTCGTCG GACCAAAGGT CCAAGCGTGT TTCCGCTGGC TCCGAGCAGC GCTCAGCGTC CGAGTCGCAG

CCGACGGACC AATTTCTAAT GGCTGCCTGG ပ TTTTCGTGGT CGCCGCCGTG CCGACGGGAC AAAAGCACCA GCGGCGCAC GGCTGCCCTG Ċ ഗ ഗ

CCAGTCACCG TGAGCTGGAA CAGCGGGGCG CTGACCAGCG GGTCAGTGGC ACTCGACCTT GTCGCCCCGC GACTGGTCGC Ċ ഗ 3 AAAGGGCCTT TTTCCCGGAA

GIGCIGCAAA GCAGCGGCCI GIAIAGCCIG CACGACGTTT CGTCGCCGGA CATATCGGAC Ċ ഗ ഗ GAAAGGCCGC CTTTCCGGCG CGCACGTATG GCGTGCATAC

FIG. 7C

| | | _ |
|----------|----------|-----------|
| F16 | SUBCLASS | |
| 0.0 | CLASS | |
| APPROVED | θ¥ | DRAFTSMAN |
| | | |

AATCCGTGAG TCTGGATATA \mathcal{O} TCGTCGCAAC ACTGGCACGG CTCGTCGTCG 7 T V P S S S T TGACCGTGCC GAGCAGC Ŋ

又 TIGGIATITG GCICGIIGIG ഗ Д AACGTTGCAC

EPKSEF\*

AACCGAAAAG CGAATTCTGA TAAGCTT TTGGCTTTTC GCTTAAGACT ATTCGAA FIG. 7D

| | S | |
|------------------|----------------|-----------|
| 0.G. FIĠ. | CLASS SUBCLASS | |
| APPROVED O.G. F. | à | ORAFISHAN |

| F16. | SUBCLASS | |
|----------|----------|-----------------------------|
| | CLASS | - Charles and County to the |
| APPROVED | ≻a | DRAFISMAN |

BbsI

| \leftarrow | GAAGACGAAG
CTTCTGCTTC | CGGATTATTA TTGCCAGCAG
GCCTAATAAT AACGGTCGTC | CGGATTATTA TTGCCAGCAG CATTATACCA CCCCGCCTGT
GCCTAATAAT AACGGTCGTC GTAATATGGT GGGGCGGACA | CATTATACCA
GTAATATGGT | CCCCGCCTGT
GGGGCGGACA |
|--------------|--------------------------|--|--|--|--------------------------|
| | | OH
V~~ | HpaI
~~~~~~ | MscI | DraIII |
| 51 | GTTTGGCGGC | GGCACGAAGT TAACCGTTCT
CCGTGCTTCA ATTGGCAAGA | GGCACGAAGT TAACCGTTCT
CCGTGCTTCA ATTGGCAAGA | TGGCCAGCCG AAAGCCGCAC
ACCGGTCGGC TTTCGGCGTG | AAAGCCGCAC
TTTCGGCGTG |
| | DraIII | | | | |
| 101 | CGAGTGTGAC
GCTCACACTG | GCTGTTTCCG | GCTGTTTCCG CCGAGCAGCG AAGAATTGCA GGCGAACAAA
CGACAAAGGC GGCTCGTCGC TTCTTAACGT CCGCTTGTTT | AAGAATTGCA
TTCTTAACGT | GGCGAACAAA
CCGCTTGTTT |
| 151 | GCGACCCTGG | TGTGCCTGAT | TGTGCCTGAT TAGCGACTTT TATCCGGGAG CCGTGACAGT | TATCCGGGAG | CCGTGACAGT |

FIG. 7F

StuI

CTGACGCCTG AGCAGTGGAA GTCCCACAGA AGCTACAGCT GCCAGGTCAC GACTGCGGAC TCGTCACCTT CAGGGTGTCT TCGATGTCGA CGGTCCAGTG

301

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.6. | CLASS | |
| AFFROVED | 75 | DRAFTSMAN |

FIG. 7G

| APPROVED O.G. FIG | APPROVED O. |
|-------------------|-------------|
|-------------------|-------------|

GCATGAGGGG AGCACCGTGG AAAAACCGT TGCGCCGACT GAGGCCTGAT CGTACTCCCC TCGTGGCACC TTTTTTGGCA ACGCGGCTGA CTCCGGACTA

351

Sphī

401

AAGCATGC TTCGTACG

FIG. 7H

APTROVED O.G. F1G.
BY ULASS SUBCLASS
DRAFTSKAN

M24: assembly PCR

M24-A:

GAAGACAAGCGGATTATTATTGCCAGCAGTTATACCACCCCGCCTGTGTTTGGCGGCG-GCACGAAGTTAACCGTTC

M24-B:

CAATTCTTCGCTGCTCGGCGGAAACAGCGTCACACTCGGTGCGGCTTTCGGCTGGCCAA-GAACGGTTAACTTCGTGCCGC

M24-C:

CGCCGAGCAGCGAAGAATTGCAGGCGAACAAAGCGACCCTGGTGTGCCTGATTAGCGACT-TTTATCCGGGAGCCGTGACA

FIG. 71

| 0.6. F16. | CLASS SUBCLASS | |
|------------|----------------|------------|
| APPROVED (| 7.9 | DRAFTSMAII |

M24-D:

TGTTTGGAGGGTGTGGTCTCCACTCCCGCCTTGACGGGGCTGCTATCTGCCTTCCAG-GCCACTGTCACGGCTCCCGG

M24-E:

CCACACCCTCCAAACAAGCAACAAGTACGCGGCCAGCAGCTATCTGAGCCTGACGC-CTGAGCAGTGGAAGTCCCACAGAAGCTACAGCTG

M24-F:

GCATGCTTATCAGGCCTCAGTCGGCGCAACGGTTTTTTCCACGGTGCTCCCCTCATGCGT-GACCTGGCAGCTGTAGCTTC

FIG. 7J

| | SS | \neg |
|--------------------|----------|-----------|
| F16. | SUBCLASS | |
| 0.6.1 | CLASS | |
| APPROVED [C.G. F.] |).
20 | DRAFISMAM |

Д AATGGCAACG AGAAGTGGGG TTACCGTTGC TCTTCACCCC \vdash لتا SapI Ц 口 Д 口 CGTGATAACG TGACCGTGAG GCACTATIGC ACTGGCACTC 口 K 口 Ø Н \vdash S ATGAAACAAA TACTTTGTTT Ø × Σ

 \mathcal{O} S 口 > Q Mfei \gt 闰 \Box × \succ \Box Þ 又 \vdash \gt

CTTTCGCCGC GCAATTGGTG CGTTAACCAC TTCTACTTCA AAGATGAAGT GCCGACTACA CGGCTGATGT TGTTACCAAA ACAATGGTTT

BSPEI ഗ Þ Ø \mathcal{O} ഗ 口 α \Box S C G Д \circ \gt \Box Ç C

CAGACTCGAC GCGCCGGAGG GGCAGCCTGC GTCTGAGCTG CGCGGCCTCC CCGTCGGACG CGTTGGCCCG GCAACCGGGC GCGGCCTGGT CGCCGGACCA

 \mathcal{O} Д BstXI ď Ø 召 \gt ⋈ S Σ Ø \succ S ഗ ſщ \vdash BSpEI ſτι U

GGATTTACCT TTAGCAGCTA TGCGATGAGC TGGGTGCGCC AAGCCCCTGG

ACCCACGCGG TTCGGGGACC CCTAAATGGA AATCGTCGAT ACGCTACTCG

FIG. 8A

| F1G. | SUBCLÁSS | |
|-------------------|-------------|-----------|
| 10.G. F | CLASS | |
| APPROVED O.B. FIC | <u>></u> | DRAFTSMAM |

 \vdash ഗ Ċ $^{\circ}$ S Ċ S Н Þ S \gt 3 XhoI ĮП Ц Ö X

CGCGCTAATC GCCATCGCCG CCGTCGTGGA CGGTAGCGGC GGCAGCACCT GCGCGATTAG GAAGGGTCTC GAGTGGGTGA CTCACCCACT CTTCCCAGAG

NgsN ഗ Z Д PmlI 召 ഗ \mathbf{H} \vdash ഥ α Ċ 幺 > Ŋ K \succ

 \succ

CCATTTCACG TGATAATTCG GGTAAAGTGC ACTATTAAGC GGCCGTTTTA CCGGCAAAAT TAGCGTGAAA ATCGCACTTT ATTATGCGGA TAATACGCCT

EagI K \Box 闰 Ø 召 口 S \mathbb{Z} \succeq Ø Ы \succ 口 E Z NgsN

AAGATACGGC TTCTATGCCG CTGCGTGCGG GACGCACGCC TTACTTGTCG TGTATCTGCA AATGAACAGC ACATAGACGT TTTTTGTGGG AAAAACACCC

 \Box \succeq Þ × 屲 G \Box \mathcal{O} \mathcal{O} Z 召 BSSHI Ø O EagI

TGCGCGCGTT GGGGGGGCGA TGGCTTTTAT GCGATGGATT

FIG. 8B

| F16. | SUBCLASS | |
|---------------------|----------|-----------|
| 0.6. | CLASS | |
| APPROVED D. C. FIG. | >-
62 | DRAFTSMAN |

GCACATAATAACGCGCGCAA CCCCGCCGCT ACCGAAAATA CGCTACCTAA ഗ Ċ ᠐ ď BlpI ഗ ⊱ Ċ Q StyI Ċ

TAACCCCGGT TCCGTGGGAC CACTGCCAAT CGAGTCGCCC ACCGCCAAGA ATTGGGGCCA AGGCACCCTG GTGACGGTTA GCTCAGCGGG TGGCGGTTCT

ECORV Д ഗ Ċ Ċ Ċ Ċ ഗ Ċ G Ċ Ċ ഗ G Ö G

C

GGCGCGCGTG GGAGCGGTGG CGGTGGTTCT GGCGGTGGTG GTTCCGATAT CCGCCGCCAC CCTCGCCACC GCCACCAAGA CCGCCACCAC CAAGGCTATA

Д 闰 Ö Д \vdash > Д Ц ഗ Ц щ BanII ഗ Ø H Σ ECORV \gt

CAGAGCCCAC TGAGCCTGCC AGTGACTCCG GGCGAGCCTG CCGCTCGGAC GTCTCGGGTG ACTCGGACGG TCACTGAGGC CGTGATGACC GCACTACTGG

>G ablaഗ 出 口 Ц S O ഗ ഗ 召 PstI Ö S Н ഗ K

CTGCAGAAGC AGCCAAAGCC TGCTGCATAG CAACGGCTAT GTTGCCGATA GACGICITCG ICGGITICGG ACGACGIAIC CGAGCATTAG GCTCGTAATC

FIG. 8C

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
60 | DRAFTSMAH |

| S L | FF & | | <u>ე</u> ე | Æ | T & | \vdash |
|------------------------|--|------------------------|--|------------------|--|---|
| Q L L
AseI | CGCAGCTATT
GCGTCGATAA | W | AATTTATCTG GGCAGCAACC GTGCCAGTGG GGTCCCGGAT CGTTTTAGCG
TTAAATAGAC CCGTCGTTGG CACGGTCACC CCAGGGCCTA GCAAAATCGC | | AAATTAGCCG TGTGGAAGCT
TTTAATCGGC ACACCTTCGA | E D V G V Y Y C Q Q H Y T T P P T
Bbsi |
| \vdash | AGC
TCG | ц,
Li | TTT | ы
> | GGA | Д |
| Q | , CG C | 民 | GT. | \triangleright | JGT
ACA | |
| വ | | | | ĸ | 0
0 | \vdash |
| 70 | 1GG | Д | 3GA
CCT | 70 | 3CC
2GG | \vdash |
| 01 | AAA
TTT: | д н | 200 | 01 | TAC
ATC | ≻⊣ |
| <i>○</i> /
} | GTC | 109 | GTC | H | AAT
TTA | Œ |
| Q K P G Q S P
SexAI | TCAAAAACCA GGTCAAAGCC
AGTTTTTGGT CCAGTTTCGG | G V P
Ecoologi | GTGCCAGTGG GGTCCCGGAT
CACGGTCACC CCAGGGCCTA | 봈 | | |
| S P
S P
S P | CCA | G G | TGG | 니 | TG2
AC1 | O |
| ~ | AAA
TTT | Ŋ | STC | <u></u> | 700
366 | O |
| P4 | 'AA' | A | 2557 | | TA(| Ö |
| Ø | | ~ | GT | ļ I ļ | TT | |
| -1₹ | ATTGGTACCT
TAACCATGGA | GSNRASGVPD
Ecool091 | GGCAGCAACC
CCGTCGTTGG | GTDFTLKIS | BAT | \succ |
| W Y L
KpnI | TAC | 4 | CA2
GTT | E | 000
000 | \succ |
| > X . | 7GG | Ω | CAG | ۲ħ | SCA | \triangleright |
| ₽ | AT.
TAI | Ŋ | 990 | | Ğ
Ç
Ç | ~ h |
| О | (b) (c) | J | IG
AC | G S
BamHI | SGATC C | G |
| ᆸ | CT(| | ATC' | ය
සින | AGA' | \triangleright |
| ⊱ | TAT
AT? | I Y L | TT?
AAI | Ω
, | CTC | E D
BbsI |
| N Y L D | AACTATCTGG
TTGATAGACC | Ase I | AATTTATCTG
TTAAATAGAC | G S G S
BamH. | GCTCTGGATC CGGCACCGAT TTTACCCTGA
CGAGACCTAG GCCGTGGCTA AAATGGGACT | E
E
E |
| ~ | ,7 . | 77 (| .4 | J | | |

FIG. 8D

GAAGACGTGG GCGTGTATTA TTGCCAGCAG CATTATACCA CCCCGCCGAC CTTCTGCACC CGCACATAAT AACGGTCGTC GTAATATGGT GGGGCGGCTG

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFPROVED | in in | DRAFTSMAN |

CTTTGGCCAG GGTACGAAAG TTGAAATTAA ACGTACGGAA TTC GAAACCGGTC CCATGCTTTC AACTTTAATT TGCATGCCTT AAG T E F BsiWI EcoRI 斘 \bowtie 口 × \vdash \mathcal{O} MscI O U ſΞ

CCATGCTTTC AACTTTAATT TGCAT

4

 ∞

| 103 | \S | > | · < | \leq | > | \leq | > | > | > | > | > | > | <u> </u> |
|------------|----------------|----------|------------|-----------|-----------|-----------|----------|-----------|-------------|--------------|--------------|-----------|----------|
| 105 | | > | · >- | >- | >- | >- | >- | >- | > | > | >- | > | > |
| 101 | | | | | | | | | Ω | | Ω | | |
| 100E | Σ | 1 | , | ŧ | ŧ | ı | | • | • | 1 | 1 | ı | ı |
| 000 L | 1 | ı | • | t | ı | ı | ŧ | ŧ | ı | 1 | ı | ı | ı |
| 2001 | t | ı | 1 | 1 | 1 | ı | t | • | t | • | 1 | ı | ı |
| 100B | ⋖ | 1 | • | 1 | ı | ı | 1 | ı | | ŧ | ı | ı | ı |
| A001 | > | • | • | 1 | ı | ı | t | 1 | 1 | ŧ | ı | ı | ı |
| 001 | ட | > | - エ | エ | \propto | >- | ٩ | t | S | \checkmark | ⋖ | | Σ |
| 66 | 9 | Z | : ≥ | >- | ⋖ | 9 | 0 | \propto | Z | S | Ø | >- | ≥ |
| 86 | | Σ | ய | ب | \times | H | ⋖ | \vdash | \propto | | ட | O' | ш |
| 26 | g | × | · — | ш | | ⊢ | ш | _ | Z | ග | \vdash | ٥ | S |
| 96 | 9 | C |) <u>c</u> | \propto | ய | Z | Z | 4 | >- | > | \checkmark | ⋖ | 0 |
| <i>S6</i> | ≯ | u | - I | > | \forall | ≥ | _ | \vdash | ≥ | S | S | > | Σ |
| <i>t</i> 6 | \propto | Ω | : 04 | <u>~</u> | \propto | \propto | α | \propto | \propto | \propto | \propto | \propto | α |
| 86 | 4 | ٥ | < < | < < | ⋖ | 4 | ⋖ | ⋖ | ⋖ | 4 | ⋖ | ⋖ | 4 |
| <i>76</i> | \overline{S} | <u>_</u> |) U | C | C | C | C | ပ | ပ | S | ပ | ပ | O |
| | | | | | | | | | | | | | |

FIG. 10A

| APPROVED | 0.6. FIG. |
|-----------|----------------|
| 7-13 | CLASS SUBCLASS |
| DRAFTSMAN | |

| > | 3 | > | > | > | > | > | > | > | > | > |
|-----------|--------------------|--------------------------|-----------|--------------------------|--------------------------|----|--------------------------|--------------|-----------|--------------|
| > | > | > | > | > | > | > | > | > | > | > |
| | | | | | | | | | | |
| Σ | Σ | ட | Σ | Σ | ட | ய | Σ | Σ | Σ | Σ |
| > | | \times | > | م | | エ | \vdash | > | _ | ۵ |
| Σ | > | ∝ | \leq | Σ | S | | ග | | ட | G |
| — | \leq | ⋖ | 0 | ட | ≥ | >- | | - | Z | 0 |
| >- | 9 | I | 0 | ட | I | z | \propto | ш | ۵ | \checkmark |
| | S | u_ | ш | Z | ш | > | Z | | \prec | ட |
| ட | ⋖ | > | ≥ | S. | S | z | | u_ | | H |
| エ | 8 | Σ | ட | 8 | G | ≥ | Σ | ш | z | <u> </u> |
| > | _ | 0 | S | > | S | ۻ | ٥ | S | — | G |
| ட | ⋖ | Z | 0 | ۵. | G | Z | \checkmark | S | ≥ | 4 |
| >- | Σ | \checkmark | — | > | * | œ | Σ | \checkmark | S | > |
| \propto | \propto | \propto | \propto | <u>~</u> | \propto | ∝ | \propto | \propto | \propto | \propto |
| 4 | 4 | 4 | ⋖ | 4 | 4 | ∢ | ⋖ | ⋖ | ⋖ | 4 |
| ပ | $\overline{\circ}$ | $\overline{\mathcal{O}}$ | \cup | $\overline{\mathcal{O}}$ | $\overline{\mathcal{O}}$ | ပ | $\overline{\mathcal{O}}$ | \cup | \circ | C |

FIG. 10B

FIG. 11

FIG. 12

APPROVED O.G. FIG.

BY CLASS SUBCLASS

FIG. 13

- No Inhibition
- Inhibition with BSA
- ☐ Inhibition with Fluorescein

FIG. 14

| Frequency | , | n | — | 2 | - | | \vdash | 2 | . | 4 | — | — | | \vdash | | |
|--------------|--------------------------|---------------|---------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|--------------------------|--------------------------|--------------|---------------|---------------|----------------|
| EOI | \aleph | \aleph | \aleph | \aleph | * | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \geqslant | \aleph | \geqslant | \geq | \geqslant |
| <i>Z01</i> | > | > | > | > | > | > | > | \prec | \prec | > | > | > | > | > | > | X |
| IOI | Q | Д | Ω | О | Ω | Q | Q | Q | Q | Q | Q | Q | Q | Q | Q | Q |
| I00E | L | Ľ | ഥ | ц | Ц | \mathbb{Z} | Ц | Ц | Ц | II, | Ц | Ц | Щ | Ц | Ц | ſΤ |
| OOOI | × | × | R | α | S | 0 | > | × | \succ | \simeq | α | \approx | H | 0 | 8 | \approx |
| <i>2001</i> | 江 | 2 | H | \approx | Z | Q | A | > | × | Д | Z | Д | × | M | A | S |
| <i>B001</i> | K | Ξ | \simeq | X | × | Ц | X | \vdash | > | Ξ | \mathbf{Z} | \simeq | α | 2 | Щ | ſЦ |
| V 001 | Д | X | ļ | \vdash | \geqslant | S | × | S | × | α | 2 | A | ¥ | Д | S | \vdash |
| 001 | Z | K | H | \aleph | X | Д | 口 | \succ | S | α | Ŋ | Щ | Ŋ | \succ | 8 | \succ |
| 66 | 0 | × | \approx | X | \mathbb{Z} | H | Ц | 2 | X | ≽ | 2 | × | M | \vdash | 8 | \bigcirc |
| 86 | Σ | 0 | × | \approx | T | > | \mathbb{Z} | H | \mathbf{Z} | S | 2 | × | H | Ţ | X | \bowtie |
| <i>L</i> 6 | \mathbf{Z} | × | Ŋ | \mathbb{Z} | × | 田 | Ъ | Ц | [- | 2 | Д | × | > | H | \vdash | L |
| 96 | K | S | Z | K | \aleph | H | × | × | X | K | Z | Ŋ | \mathbb{Z} | M | \aleph | × |
| 56 | X | \simeq | \approx | \simeq | \succ | L | \simeq | \simeq | \simeq | M | \simeq | X | × | 2 | 2 | × |
| <i>p</i> 6 | \approx | \approx | \simeq | \approx | \approx | K | × | × | \simeq | \simeq | × | X | 2 | K | \simeq | ~ |
| 86 | 4 | A | A | A | A | A | A | 4 | A | A | A | A | A | A | A | A |
| 76 | $\overline{\mathcal{O}}$ | \mathcal{O} | \mathcal{C} | \mathcal{O} | \overline{C} | \mathcal{O} | \mathcal{O} | \mathcal{O} | \mathcal{O} | \mathcal{C} | $\overline{\mathcal{O}}$ | $\overline{\mathcal{O}}$ | C | \mathcal{O} | \mathcal{O} | \overline{C} |

FIG. 16

APRUVED O.G. FIG.
BY CLASS SUBCLASS

APPROVED C.C. FIG.
BY CLASS SUBCLASS

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

| FREQUENCY | М | . 👓 | 7 | П | IJ | 7 | \vdash | Η. | \vdash | Ŋ. | 4 | Н |
|-----------|------------|---------------|---------------|--------------|--------------|----------|--------------|-----------|----------|-----------|----------|--------------------------|
| EOT | <u> </u> | 3 | 3 | 3 | 3 | Z | 8 | S | Z | Z | Z | Z |
| TOS | > | \succ | \succ | \succ | > | \succ | \succ | \succ | \succ | X | > | \gt |
| TOT | О | О | Ω | Ω | О | Ω | О | Д | Д | О | П | Ω |
| JOOE | ſΤι | Σ | Įті | ſщ | \boxtimes | Σ | i | Σ | Σ | Σ | Σ | ĮΤΙ |
| JOOD | Ω | \bowtie | 民 | Гц | 江 | Ξ | 1 | 民 | > | Ĺτι | 凹 | Z |
| JOOT | \bowtie | 只 | × | \succ | \mathbb{Z} | × | ı | X | \succ | 召 | × | \bowtie |
| IOOB | 民 | 只 | Ω | 团 | ഗ | 民 | 1 | \succ | > | α | Ω | α |
| Y00T | \vdash | Z | Н | Ω | Z | 出 | ı | ĹΤι | \circ | Ĺτι | 召 | Ξ |
| 00 T | K | \asymp | Д | H | ഥ | 民 | Д | 3 | W | α | W | α |
| 66 | \bigcirc | ſτι | M | 以 | О | Дį | Д | 田 | 3 | Ξ | H | Ξ |
| 86 | 3 | 山 | Ξ | \mathbb{N} | Ç | 口 | Ø | M | Ξ | Ø | Ø | 니 |
| 46 | Д | Z | Z | Ц | M | Ы | X | \vdash | Ω | Ø | H | 異 |
| 96 | 異 | O | 召 | ß | Д | Ω | \mathbb{Z} | \bowtie | X | \bowtie | Ξ | Ξ |
| <i>56</i> | \vdash | Z | X | \succ | > | Z | Н | 又 | M | Z | Z | Z |
| ₽6 | 民 | α | α | 以 | 異 | α | 召 | 召 | α | 召 | 召 | 異 |
| ٤6 | Ø | Ø | K | Ø | Ø | Ø | Ø | Ø | Ø | Ø | K | ď |
| 76 | Ö | \mathcal{O} | \mathcal{O} | Ö | ر
ا | Ö | Ö | U | U | Ŋ | U | $\overline{\mathcal{O}}$ |

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| FREQUENCY | J 4 | <i>I</i> 3 | 1 2 | T P | T | W 1 |
|-----------|---------------------------------|------------|-------------|---------------------|-----------|---------------------------|
| E0T | $\frac{\mathbb{Z}}{\mathbb{Z}}$ | X M | A
V | $\frac{M}{\Lambda}$ | X
Z | $\frac{\Lambda}{\lambda}$ |
| 70T | Υ (| | | | | |
| ΤΟΤ | Ω | Д | Ω | Ω | Ω | Ω |
| JOOE | Ĺτί | Щ | ſι | ſΤ | لتا | ĮΤΙ |
| JOOD | Ø | O | Q | Σ | 3 | Q |
| J00T | H | Σ | \boxtimes | \vdash | X | Σ |
| TOOB | × | \bowtie | X | X | Σ | O |
| Y00T | α | \bigcirc | Z | Σ | Н | 召 |
| 00 T | \asymp | \sum | 以 | 3 | α | S |
| 66 | K | Z, | Ø | \triangleleft | α | Ø |
| . 86 | O | 工 | \succ | U | Ы | 只 |
| L6 | × | 民 | 又 | K | Д | 又 |
| 96 | Н | Z | > | \asymp | \asymp | 以 |
| 56 | \Rightarrow | \succ | \succ | \succ | \propto | \succ |
| <i>ħ6</i> | 民 | CC, | α | α | α | 以 |
| 86 | Ø | Ø | K | Ø | Ø | K |
| 76 | O | O | U | \cup | O. | \mathcal{O} |

APPAGVED O.G. FIG.

| APPROVED (I.G. FIG. | CLASS SUBCLASS | |
|---------------------|----------------|-----------|
| APPAGYED |)
}_ | DRAFTSKAN |

| FREQUENCY | 16 | \vdash | Τ | П | П | ٦ | Н | \leftarrow I |
|-------------|----------|----------|----------|----------|---------------|------------|-----------|--------------------------|
| EOI | 3 | Z | 3 | 3 | 3 | 3 | 3 | Z |
| IOS | > | \succ | \succ | \succ | \succ | > | \succ | \succ |
| TOT | О | Ω | Ω | Ω | Ω | Ω | Ω | \Box |
| IOOE | لتر | Σ | ſι | Σ | Σ | ſμ | \succeq | ĹĻ |
| JOOD | 工 | Д | \circ | 3 | > | ഗ | Z | 3 |
| J00T | Ŋ | Д | > | 出 | 二 | O | 团 | \succ |
| 100B | X | \succ | Z | 田 | Ω | \vdash | Z | 3 |
| VOOT | Н | ഗ | \succ | Д | α | Ĺτι | ப | Ĺ |
| 00 T | × | Z | Z | X | Ø | \bigcirc | \vdash | Н |
| 66 | ഗ | Ĺц | Д | 니 | \circ | ഗ | Ø | \Box |
| 86 | α | О | 니 | \succ | [1] | Z | Ĺц | ⊱ |
| L6 | \succ | α | Д | Þ | Н | 工 | 工 | Д |
| 96 | 以 | 3 | Ø | O | 口 | 3 | О | Z |
| 56 | Ø | 1 | Σ | 니 | 以 | ഗ | > | Ω |
| ħ6 | 吖 | α | α | 民 | 召 | 以 | α | 公 |
| 86 | Ø | K | Ø | Þ | Ø | Ø | A. | K |
| <i>76</i> | Ö | O | O | O. | \mathcal{O} | U | O | $\overline{\mathcal{O}}$ |

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| JENCY | | | | | | | | | | | | |
|-----------|----------------|---------------|----------|-----------------|-----------------|----------------|--------------------------|--------------------------|---------------|---------------|---------------|---------------|
| FREQUEN | 4 | 4 | 7 | \vdash | ᠬ | 7 | \leftarrow | 13 | Υ | \vdash | \vdash | \vdash |
| EOI | Z | M | 3 | Z | Z | 3 | B | M | M | M | Z | Z |
| IOS | \rightarrow | > | > | X | > | × | \succ | > | > | > | \succ | X |
| TOT | Д | О | Д | П | П | О | Ω | О | Ω | Ω | Ω | Ω |
| IOOE | 1 | Ĺц | Ξ | Σ | Σ | Σ | Ĺι | ĹĻ | Σ | Щ | İ | Σ |
| J00D | ı | α | \circ | Н | Ŏ | Ω | X | X | 召 | ĮΉ | ŀ | Ц |
| 100Ca | ı | 1 | 1 | ı | 召 | ı | . 1 | I | Ī | ı | ı | t |
| 200T | ı | 民 | α | 異 | K | П | α | α | 3 | ĸ | ı | 異 |
| IOOB | ı | > | W | Н | Д | Н | > | 召 | Ω | × | ı | α |
| AOOI | 1 | ĮΤί | 又 | \triangleleft | 3 | Σ | 3 | \vdash | 工 | S | ı | O |
| 00 T | 口 | ഗ | ഗ | Ŋ | ഗ | Ω | 民 | X | > | \bowtie | Ĺц | X |
| 66 | \vdash | Ω | ഗ | \succ | \triangleleft | > | \vdash | S | \succ | E | ĹIJ | \vdash |
| 86 | Ĺι | 凹 | 口 | ĹΊ | 口 | 3 | 山 | 口 | Ø | 团 | Σ | 口 |
| 46 | Ŋ | П | X | Ω | لير | Ш | S | X | \vdash | α | Н | 口 |
| 96 | ليا | لتا | Ы | Ö | 工 | Z | \succ | ĹĻ | × | 3 | \succ | ſτι |
| 56 | Ω | \circ | Н | ഠ | Z | ГIJ | O | \circ | \bowtie | α | О | O |
| <i>ħ6</i> | 民 | 民 | 以 | 公 | 民 | α | α | K | 民 | α | α | 召 |
| ٤6 | K | Ø | Ø | Ø | Z, | Ø | Ø | Ø | A. | Ø | Ø | Ø |
| 76 | \overline{C} | \mathcal{O} | () | \mathcal{O} | () | \overline{C} | $\overline{\mathcal{O}}$ | $\overline{\mathcal{O}}$ | \mathcal{O} | \mathcal{O} | \mathcal{O} | \mathcal{O} |

APPROVED O.G. FIG.

Tegan

| FREQUENCY | ഹ | \vdash | \leftarrow | \vdash | ,
← | \vdash |
|-----------|----------|------------------|------------------|-----------|----------|-----------|
| EOT | 3 | 3 | Z | Z | 3 | 3 |
| TOS | × | \triangleright | \triangleright | >1 | × | > |
| TOT | Д | Ω | Ω | Ω | О | О |
| IOOE | Σ | Įц | Σ | Σ | Σ | ſц |
| IOOD | > | 召 | 公 | Ø | \succ | ſμ |
| 700T | \succ | Ĺτί | > | Ŋ | Z | 工 |
| 700B | Д | \Rightarrow | > | 3 | Z | \vdash |
| AOOI | Н | Z | 口 | ഗ | വ | L |
| 00 T | Ø | \Rightarrow | Σ | г | K | Д |
| 66 | \succ | Σ | Q | K | \geq | \bowtie |
| 86 | ſτι | \succ | ГIJ | \succ | 只 | ſц |
| ۷6 | Ŋ | ⊱ | Ĺц | ГЛ | ഗ | Ŋ |
| 96 | \circ | Ĺц | Ĺц | \bowtie | Д | Ŋ |
| 56 | Ω | \gt | > | 口 | \succ | Ω |
| <i>₽6</i> | 召 | 召 | α | 民 | 公 | 民 |
| £6 | K | K | Þ | Þ | Ø | Ø |

APPAGNTO O.G. FIG.

| 10VEU 0.G. F1G. | CLASS SUBCLASS | |
|-----------------|----------------|-----------|
| APPROVED | 7-10 | DRAFTSMAH |

| unique restriction site | Isoschizomers |
|-------------------------|-----------------------------------|
| AatII | 1 |
| AfIII | Bfrl, BspTl, Bst981 |
| Ascl | 1 |
| Asel | Vspl, Asnl, PshBl |
| BamHI | Bstl |
| Bbel | Ehel, Kasl, Narl |
| Bbsl | BpuAl, Bpil |
| BgIII | 1 |
| Blpl | Bpu1102I,CellI, Blpl |
| BsaBI | Maml, Bsh1365l, BsrBRI |
| BsiWl | Pfl2311, Spl1, Sun1 |
| BspEl | AccIII, BseAI, BsiMI, Kpn2I, Mrol |
| BsrGl | Bsp14071, SspBI |
| BssHII | Paul |
| BstEII | BstPl, Eco911, Eco0651 |
| BstXI | |
| Bsu36l | Aocl, Cvnl, Eco811 |
| Dralll | 1 |
| DsmAl | |
| Eagl | BstZl, EclXl, Eco52l, Xmalll |
| Eco571 | 1 |
| EcoO109I | Drall |
| EcoRI | 1 |
| EcoRV | Eco32I |
| Fsel | 1 |
| HindIII | |
| Hpal | 1 |
| Kpnl | Acc651, Asp7181 |
| Mlul | 1 |
| Mscl | Ball, MluNl |
| | |

FIG. 25B

| unique restriction site | Isoschizomers |
|-------------------------|------------------------------------|
| Munl | Mfel |
| Nhel | / |
| Nsil | Ppu10l, EcoT22l, Mph1103l |
| NspV | Bsp119l, BstBl, Csp45l, Lspl, Sful |
| Pacl | / |
| Pmel | |
| PmII | BbrPl, Eco72l, PmaCl |
| Psp5II | PpuMI |
| Pstl | |
| Rsrll | (Rsril), Cpol, Cspl |
| SanDI | |
| Sapl | |
| SexAl | |
| Spel | |
| Sfil | |
| Sphl | Bbul, Pael, Nspl |
| Stul | Aatl, Eco147l |
| Styl | Eco130l, EcoT14l |
| Xbal | BspLU11II |
| Xhol | PaeR7I |
| Xmal | Aval, Smal, Cfr91, PspAl |

FIG. 25C

| FIG. | SUBCLASS | |
|-----------------------|----------|-----------|
| 0.6. F | CLASS | |
| APPROVEU [O. G. FIG. | 7.0 | DRAFTSHAN |

| | 9,0 | 36) | | dy / / Cin. |
|--|--|--|--------------------------------|--|
| reference | Skerra et al. (1991)
Bio/Technology 9,
273-278 | Hoess et al. (1986)
Nucleic Acids Res.
2287-2300 | see M2 | Ge et al., (1994)
Expressing
antibodies in E.
coli. In: Antibody
engineering: A
practical approach.
IRL Press, New
York, pp 229-266 |
| template | vector
pASK30 | (synthetic) | (synthetic) | vector
plG10 |
| sites to be
inserted | Aatll | lox, BgIII | lox', Sphl | none |
| sites to be
removed | 2x Vspl
(Asel) | 2x Vspl
(Asel) | none | Sphl,
BamHl |
| functional element | lac
promotor/operator | Cre/lox
recombination site | Cre/lox'
recombination site | glllp of filamentous
phage with N-
terminal
myctail/amber
codon |
| module/flan-
king
restriction
sites | Aatil-lacp/o-
Xbal | BgIII-lox-
Aatii | Xbal-lox'-
Sphl | EcoRI-
gIIIlong-
HindIII |
| No | M1 | M2 | M3 | M7-I |

FIG. 26A

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| APPROVED | 0.G. F1G. |
|-----------|----------------|
| <u>}.</u> | CLASS SUBCLASS |
| DRAFTSMAH | |

| truncated glllp of filamentous phage with N-terminal Gly-Ser linker truncated glllp of filamentous phage with N-terminal myctail/amber |
|--|
| codon |
| Cre/lox
recombination site |
| lpp-terminator |
| beta-lactamase/bla
(ampR) |
| origin of single-
stranded replication |
| origin of single-
stranded replication |

FIG. 26B

| APPROVEC | 6 0.G. FI | FIG. |
|--------------|-----------|----------|
| <u>>-</u> | CLASS | SUBCLASS |
| DRAFTSMAN | | |

| M12 | Nhel-p15A-
BgIII | origi
strand | BssSI, VspI,
NspV | Nhel, BgIII pACYC184 | pACYC184 | Rose, R.E. (1988)
Nucleic Acids Res.
16, 355 |
|--------------|--------------------------|---|----------------------------------|----------------------|-------------|--|
| M13 | BgIII-lox-
BgIII | Cre/lox
recombination site | none | BgIII, Iox,
Xmnl | (synthetic) | see M3 |
| M14-
Ext2 | BgIII-ColEI-
Nhel | origin of double-
stranded replication | Eco571
(BssS1 not
removed) | BgIII, Nhel | pUC19 | Yanisch-Peron, C.
(1985) Gene
33,103-119 |
| M17 | Aatll-cat-
BgIII | chloramphenicol-
acetyltransferase/
cat (camR) | BspEI, MscI,
Styl/Ncol | , | pACYC184 | Cardoso, M. & Schwarz, S. (1992) J. Appl. Bacteriol. 72, 289-293 |
| M19 | Xbal-phoA-
EcoRI | signal sequence of
phosphatase A | (synthetic) | | (synthetic) | see M1 |
| M20 | Xbal-phoA-
FLAG-EcoRI | signal sequence of
phosphatase A +
FLAG detection tag | (synthetic) | | (synthetic) | Knappik, A & Plückthun, A. (1994)
BioTechniques 17, 754-761 |

FIG. 26C

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | Ϋ́G | DRAFTSHAH |

| M21 | Xbal-stll-
Sapl | heat-stable
enterotoxin II signal (synthetic)
sequence | (synthetic) | (synthetic) | Lee et al. (1983)
c) Infect. Immunol.
264-268 |
|-----|---------------------------|--|--|-------------|--|
| M41 | Afill-lacl-
Nhel | lac-repressor | BstXI,
MluI,BbsI,
BanII,
BstEII,
HpaI, BbeI,
VspI | pASK30 | see M1 |
| M42 | EcoRI-Histail-
HindIII | poly-histidine tail | (synthetic) | (synthetic) | Lindner et al., (1992) Methods: a companion to methods in enzymology 4, 41- 56 |

FIG. 26D

CLASS SUBCLASS

BRAFTSHAN

APPROVED O.G. FIG.

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
63 | DRAFTSMAN |

| \leftarrow | HindIII
~~~~~~
ACATGTAAGC TTCCCCCCCC
TGTACATTCG AAGGGGGGGG | II
~~
TTCCCCCCC
AAGGGGGGGG | HindIII ACATGTAAGC TTCCCCCCC CCTTAATTAA CCCCCCCCCC | BsrGI
~~~~~
CCCCCCCC TGTACACCCC
GGGGGGGG ACATGTGGGG | I
ACCCC
TGGGG |
|--------------|---|---|---|--|-----------------------------|
| 51 | NheI
CCCCCGCTA GCCCCCCCC
GGGGGGGGGGGGG | 555555555555555555555555555555555555555 | | Bglii xbai ccacccca carccccca carcaca agreement | Xbal
_
ccccT
ggggA |
| 101 | XbaI
~~~~~
CTAGACCCCC
GATCTGGGGG | Sphi
CCCCGCATG C | xbaI cracccc ccccccarc cccccccccccccccccccc | ECORI AALII
CGAATTCGAC GTC
GCTTAAGCTG CAG | |

| 10.6. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED |)-
(3 | DRAFTSMAN |

FIG. 28A

| o.g. F16. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u> </u> | DRAFISHAN |

| 1 CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT TTGTTTATTT 51 TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT AACACTAT AAGATTTATG TAAGTTTATA CATAGGAAGAG TACTCTGTTA TTGGGACTAT 101 AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT CAACATTTCC TTACGAAGTT ATTATAACTT TTTCCTTCTC ATACTCATAA GTTGTAAAGG 151 GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACAGCGGGA ATAAGGAAA AAACGCCGTA AAACGGAAGG ACAAAAACGA |
|---|
|---|

FIG. 28B

BSSSI

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

APPROVED O.G. FIG.

BY CLASS SUBCLASS

| 301 | GTTTTCGCCC | CGAAGAACGT | TTTCCAATGA | TGAGCACTTT | TAAAGTTCTG |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | CAAAAGCGGG | GCTTCTTGCA | AAAGGTTACT | ACTCGTGAAA | ATTTCAAGAC |
| 351 | CTATGTGGCG | CGGTATTATC | CCGTATTGAC | GCCGGGCAAG | AGCAACTCGG |
| | GATACACCGC | GCCATAATAG | GGCATAACTG | CGGCCCGTTC | TCGTTGAGCC |
| 401 | TCGCCGCATA | CACTATTCTC
GTGATAAGAG | AGAATGACTT
TCTTACTGAA | GGTTGAGTAC
CCAACTCATG | TCACCAGTCA
AGTGGTCAGT |
| 451 | CAGAAAAGCA | TCTTACGGAT | GGCATGACAG | TAAGAGAATT | ATGCAGTGCT |
| | GTCTTTTCGT | AGAATGCCTA | CCGTACTGTC | ATTCTCTTAA | TACGTCACGA |
| 501 | GCCATAACCA | TGAGTGATAA | CACTGCGGCC | AACTTACTTC | TGACAACGAT |
| | CGGTATTGGT | ACTCACTATT | GTGACGCCGG | TTGAATGAAG | ACTGTTGCTA |
| 551 | CGGAGGACCG | AAGGAGCTAA | CCGCTTTTTT | GCACAACATG | GGGGATCATG |
| | GCCTCCTGGC | TTCCTCGATT | GGCGAAAAAA | CGTGTTGTAC | CCCCTAGTAC |
| 601 | TAACTCGCCT | TGATCGTTGG | GAACCGGAGC | TGAATGAAGC | CATACCAAAC |
| | ATTGAGCGGA | ACTAGCAACC | CTTGGCCTCG | ACTTACTTCG | GTATGGTTTG |
| 651 | GACGAGCGTG | ACACCACGAT | GCCTGTAGCA | ATGGCAACAA | CGTTGCGCAA |

| APPROVED | 0.6. | APPROVED 10.G. FIG. |
|-----------|-------|---------------------|
| }.
ea | CLASS | SUBCLASS |
| DRAFISHAN | | |

| ACGAAATAGA
TGCTTTATCT | CTATGGATGA
GATACCTACT | AGTCAGGCAA
TCAGTCCGTT | CACGACGGGG
GTGCTGCCCC | TAGTTATCTA
ATCAATAGAT | |
|--|--------------------------|--------------------------|--------------------------|--------------------------|--|
| TCCCGTATCG | TGGTAAGCCC
ACCATTCGGG | TGGGGCCAGA
ACCCCGGTCT | ATTGCAGCAC
TAACGTCGTG | TCGCGGTATC
AGCGCCATAG | |
| AGCGTGGGTC
TCGCACCCAG | GGAGCCGGTG
CCTCGGCCAC | TGATAAATCT
ACTATTTAGA | GGTTTATTGC
CCAAATAACG | CCGGCTGGCT | |
| CTCGGCCCTT
GAGCCGGGAA | CACTTCTGCG
GTGAAGACGC | GTTGCAGGAC
CAACGTCCTG | GGCGGATAAA
CCGCCTATTT | ACTGGATGGA
TGACCTACCT | |
| Asel
~~~~~~
CAATTAATAG
GTTAATTATC | TTCCCGGCAA | TTACTCTAGC
AATGAGATCG | GGCGAACTAC | ACTATTAACT
TGATAATTGA | |
| GCAACGCGTT | TACCGTTGTT | CGGACATCGT | TGTGGTGCTA | CTGCTCGCAC | |

801

851

901

701

751

FIG. 28D

CTCACTGATT AAGCATTGGT AACTGTCAGA

TTCGTAACCA

GAGTGACTAA

CAGATCGCTG AGATAGGTGC GTCTAGCGAC TCTATCCACG

951

TTGACAGTCT

CATTTTAAT GTAAAAATTA

TTTAAAACTT AAATTTTGAA

CCAAGTTTAC TCATALATAC TTTAGATTGA GGTTCAAATG AGTATATATG AAATCTAACT

| F1G. | SUBCLASS | | |
|----------|----------|-----------|--|
| | CLASS | | |
| APPROVED | 79 | DRAFTSHAR | |

| CAT GACCAAAATC | CCG TAGAAAAGAT
GGC ATCTTTTCTA | ATC TGCTGCTTGC | GCC GGATCAAGAG | GAG CGCAGATACC | CAC TTCAAGAACT |
|--------------------------|----------------------------------|--------------------------|--------------------------|--|--------------------------|
| ATAATCTCAT
TATTAGAGTA | TCAGACCCCG
AGTCTGGGGC | GCGCGTAATC
CGCGCATTAG | TTTGTTTGCC
AAACAAACGG | C TTCAGCAGAG
G AAGTCGTCTC
Eco57I | AGGCCACCAC
TCCGGTGGTG |
| ATCCTTTTTG
TAGGAAAAAC | CCACTGAGCG
GGTGACTCGC | CTTTTTTTCT
GAAAAAAAGA | CCAGCGGTGG
GGTCGCCACC | GGTAACTGGC
CCATTGACCG
Ec | AGCCGTAGTT
TCGGCATCAA |
| CTAGGTGAAG
GATCCACTTC | AGTTTTCGTT
TCAAAAGCAA | TCTTGAGATC
AGAACTCTAG | ACCACCGCTA
TGGTGGCGAT | TTTTCCGAA
AAAAAGGCTT | CTTCTAGTGT
GAAGATCACA |
| TTAAAAGGAT
AATTTTCCTA | CCTTAACGTG
GGAATTGCAC | CAAAGGATCT
GTTTCCTAGA | AAACAAAAA
TTTGTTTTTT | CTACCAACTC
GATGGTTGAG | AAATACTGTC
TTTATGACAG |
| 1051 | 1101 | 1151 | 1201 | 1251 | 1301 |

FIG. 28E

ACCAGTGGCT TGGTCACCGA

CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT GACATCGTGG CGGATGTATG GAGCGAGACG ATTAGGACAA

| .6. | SUBCLASS | |
|-----------|----------|-----------|
| 0.G. FIG. | CLASS S | |
| APPROVED | γū | DRAFTSMAN |
| | | |
| | | |

| GTG GCGATAAGTC CAC CGCTATTCAG GAT AAGGCGCAGC CTA TTCCGCGTCG GAA CCTCGCTTGC GAG AAAGCGCCAC CTC TTTCGCGGTG TCG CGTCCCAGC TCG CGTCCCAGC TCG CGTCCCAGC TCG CGTCCCAGC TCG CGTCCCAGC TCG CTGGTATCTT GCG CTGAAAACAC | GTGTCTTACC GGGTTGGACT CAAGACGATA
CACAGAATGG CCCAACCTGA GTTCTGCTAT | GGTCGGGCTG AACGGGGGGT TCGTGCACAC
CCAGCCCGAC TTGCCCCCCA AGCACGTGTG | ACCTACACCG AACTGAGATA CCTACAGCGT
TGGATGTGGC TTGACTCTAT GGATGTCGCA | GCTTCCCGAA GGGAGAAAGG CGGACAGGTA
CGAAGGGCTT CCCTCTTTCC GCCTGTCCAT | GAACAGGAGA GCGCACGAGG GAGCTTCCAG
CTTGTCCTCT CGCGTGCTCC CTCGAAGGTC
BSSSI | TATAGTCCTG TCGGGTTTCG CCACCTCTGA
ATATCAGGAC AGCCCAAAGC GGTGGAGACT | ATGCTCGTCA GGGGGGGGGA GCCTATGGAA
TACGAGGAGT CCCCCCTATGGAA |
|--|--|--|--|--|--|--|--|
| | GTG GCGATAAGTC
CAC CGCTATTCAG | GAT AAGGCGCAGC
CTA TTCCGCGTCG | CTT GGAGCGAACG
GAA CCTCGCTTGC | GAG AAAGCGCCAC
CTC TTTCGCGGTG | AGC GGCAGGGTCG OTCG CONTINUES OF CONTINUES O | CGC CTGGTATCTT | GTC GATTTTTGTG A
CAG CTAAAAACAC T |

FIG. 28F

AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT TGCTGGCCTT

| APPROVED | 0.G. F | F1G. |
|-----------|--------|----------|
| ۶-
هه | CLASS | SUBCLASS |
| DRAFISHAN | | |

| RI | ECORI | Sphi | ! | XbaI | |
|---|---|---|--|--|------|
| Aatli
~~~~~
CCCCGACGTC
GGGCTGCAG | Bglli Aatli
CCCCCCCAG ATCTCCCCCC CCCCGACGTC
GGGGGGGGTC TAGAGGGGGG GGGGCTGCAG | Bg
ccccccccAg
ggggggggg | NheI
~~~~~~
CCC CCGCTAGCCC
GGG GGCGATCGGG | BsrGI
~~
CACCCCCCC
GTGGGGGGGG | 1851 |
| BsrGI
~~~~
CCCCCTGTA
GGGGGACAT | HindIII PacI CCCCCCCTT AATTAACCCC CCCCCTGTA GTA CATTCGAAGG GGGGGGGGAA TTAATTGGGG GGGGGGACAT | Paci
CCCCCCCTT AATTAACCCC
GGGGGGAA TTAATTGGGG | HindIII TTGCTCACAT GTAAGCTTCC AACGAGTGTA CATTCGAAGG | TTGCTCACAT | 1801 |
| ACGACCGGAA | TTTGCGGTCG TTGCGCCGGA AAAATGCCAA GGACCGGAAA ACGACCGGAA | AAAATGCCAA | TTGCGCCGGA | TTTGCGGTCG | |

FIG. 28G

CCCCCCCGAA TTCACGT GGGGGGCTT AAGTGCA

M1 142 bp *FIG. 29A*

| 3. F1G. | SS SUBCLASS | |
|--------------------|-------------|-----------|
| APPROVED 0.G. FIG. | 67 CLASS | DRAFTSMAN |

AatII

1111

CCGAAATGTG GGCTTTACAC AGGCACCCCA TCCGTGGGGT CTCACTCATT GAGTGAGTAA GACGTCTTAA TGTGAGTTAG CTGCAGAATT ACACTCMATC

CTATTGTTAA GATAACAATT GTTGTGTGGA ATTGTGAGCG CAACACACCT TAACACTCGC CGGCTCGTAT GCCGAGCATA TTTATGCTTC (57

XbaI

11111

CGAATTTCTA GCTTAAAGAT AACAGCTATG ACCATGATTA TTGTCGATAC TGGTACTAAT TCACACAGGA /

101

FIG. 29B

| CLASS SUBCLASS | DRAFTSHAN |
|---------------------|-----------|
| in | , Y9 |
| APPROVED [O.G. FIG. | APPROVED |

| F1G. | SUBCLASS | |
|---------------|----------|-----------|
| 0.G. F | CLASS | |
| APPROVED 0.G. | :-
:a | DRAFISMAN |
| | | |

Ecori

| Н | GAATTCGAGC | AGAAGCTGAT
TCTTCGACTA | CTCTGAGGAG
GAGACTCCTC | GATCTGTAGG
CTAGACATCC | GTGGTGGCTC |
|-----|--|--------------------------------|--------------------------|--------------------------|--------------------------|
| 51 | TGGTTCCGGT | GATTTTGATT | ATGAAAAGAT. | GGCAAACGCT | AATAAGGGGG |
| | ACCAAGGCCA | CTAAAACTAA | TACTTTTCTA | CCGTTTGCGA | TTATTCCCCC |
| 101 | CTATGACCGA | AAATGCCGAT | GAAAACGCGC | TACAGTCTGA | CGCTAAAGGC |
| | GATACTGGCT | TTTACGGCTA | CTTTTGCGCG | ATGTCAGACT | GCGATTTCCG |
| 151 | AAACTTGATT | CTGTCGCTAC | TGATTACGGT | GCTGCTATCG | ATGGTTTCAT |
| | TTTGAACTAA | GACAGCGATG | ACTAATGCCA | CGACGATAGC | TACCAAAGTA |
| 201 | TGGTGACGTT
ACCACTGCAA | TCCGGCCTTG | CTAATGGTAA
GATTACCATT | TGGTGCTACT
ACCACGATGA | GGTGATTTTG
CCACTAAAAC |
| 251 | CTGGCTCTAA | TTCCCAAATG | GCTCAAGTCG | GTGACGGTGA | TAATTCACCT |
| | GACCGAGATT | AAGGGTTTAC | CGAGTTCAGC | CACTGCCACT | ATTÄAGTGGA |
| 301 | Xmn
~~~~~
TTAATGAATA
AATTACTTAT | 1I
ATTTCCGTCA
TAAAGGCAGT | ATATTTACCT
TATAAATGGA | TCCCTCCCTC | AATCGGTTGA
TTAGCCAACT |

FIG. 30B

| APPROVED
BY
DRAFTSHAN |
|-----------------------------|
|-----------------------------|

| | | | HindIII TAAGGAGTCT TGATAAGCTT ATTCCTCAGA ACTATTCGAA | TAAGGAGTCT
ATTCCTCAGA | 501 |
|--------------------------|--------------------------|--|--|--------------------------|-----|
| TACTGCGTAA
ATGACGCATT | TTTGCTAACA
AAACGATTGT | ATTTTCTACG
TAAAAGATGC | GTTGCCACCT TTATGTATGT ATTTTCTACG TTTGCTAACA TACTGCGTAA
CAACGGTGGA AATACATACA TAAAAGATGC AAACGATTGT ATGACGCATT | GTTGCCACCT | 451 |
| TCTTTTATAT
AGAAAATATA | TCTTTGCGTT
AGAAACGCAA | AATAAACTTA TTCCGTGGTG
TTATTTGAAT AAGGCACCAC | | ATTGTGACAA
TAACACTGTT | 401 |
| TTTTCTATTG
AAAAGATAAC | ACCATATGAA
TGGTATACTT | GCGCTGGTAA | ATGTCGCCCT TTTGTCTTTG GCGCTGGTAA ACCATATGAA TTTTCTATTG
TACAGCGGGA AAACAGAAAC CGCGACCATT TGGTATACTT AAAAGATAAC | ATGTCGCCCT
TACAGCGGGA | 351 |

M9-II 123 bp *FIG. 31A*

| # 0.G. FIG. | CLASS SUBCLASS | 77 882,500 |
|-------------|----------------|------------|
| APPROVED |)-
ea | DRAFTSMAH |

HindIII

GGGGGGGGG AAGCTTGACC TGTGAAGTGA AAAATGGCGC AGATTGTGCG CCCCCCCCCC TTCGAACTGG ACACTTCACT TTTTACCGCG TCTAACACGC

PacI

FseI

ACATTITITI TGICTGCCGI ITAATTAAAG GGGGGGGGGG GCCGGCCTGG TGIAAAAAA ACAGACGGCA AATTAATTIC CCCCCCCCC CGGCCGGACC

BsrGI

51

GGGGGGTGT ACAGGGGGG GGG CCCCCCCACA TGTCCCCCCC CCC 101

FIG. 31B

APPROVED O.G. FIG.
67 CLASS SUBCLASS

M11-III 470 bp FIG. 32A

| J.G. F1G. | CLASS SUBCLASS | | |
|-----------|----------------|-----------|--|
| APROVID | >-
© | DRAFTSHAN | |

| NheI | |
|------|--|
| | |

| Н | GCTAGCACGC | GCCCTGTAGC
CGGGACATCG | GGCGCATTAA
CCGCGTAATT |)
 | TGTGGTGGTT
ACACCACCAA |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | ACGCGCAGCG | TGACCGCTAC | ACTTGCCAGC | GCCCTAGCGC | CCGCTCCTTT |
| | TGCGCGTCGC | ACTGGCGATG | TGAACGGTCG | CGGGATCGCG | GGCGAGGAAA |
| 101 | CGCTTTCTTC | CCTTCCTTTC
GGAAGGAAAG | TCGCCACGTT
AGCGGTGCAA | CGCCGGCTTT | CCCCGTCAAG
GGGGCAGTTC |
| 151 | CTCTAAATCG | GGGCATCCCT | TTAGGGTTCC | GATTTAGTGC | TTTACGGCAC |
| | GAGATTTAGC | CCCGTAGGGA | AATCCCAAGG | CTAAATCACG | AAATGCCGTG |
| 201 | CTCGACCCCA
GAGCTGGGGT | AAAAACTTGA
TTTTTGAACT | TTAGGGTGAT
AATCCCACTA | GGTTCTCGTA
CCAAGAGCAT | GTGGGCCATC |
| 251 | GCCCTGATAG | ACGGTTTTTC | GCCCTTTGAC | GTTGGAGTCC | ACGTTCTTTA |
| | CGGGACTATC | TGCCAAAAAG | CGGGAAACTG | CAACCTCAGG | TGCAAGAAAT |
| 301 | ATAGTGGACT | CTTGTTCCAA | ACTGGAACAA | CACTCAACCC | TATCTCGGTC |
| | TATCACCTGA | GAACAAGGTT | TGACCTTGTT | GTGAGTTGGG | ATAGAGCCAG |
| 351 | TATTCTTTG | ATTTATAAGG | GATTTTGCCG | ATTTCGGCCT | ATTGGTTAAA |

FIG. 32B

| ROVED 10.G. FIG. | T CLASS SUBCLASS | TSMAN . |
|------------------|------------------|-----------|
| APPROVED | | DRAFTSMAN |

ATAAGAAAAC TAAATATTCC CTAAAACGGC TAAAGCCGGA TAACCAATTT

AAATGAGCTG ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA TTTACTCGAC TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT

401

BsrGI

D T C T

CGTTTACAAT TTCATGTACA GCAAATGTTA AAGTACATGT

451

FIG. 32C

APPROVED O.G. FIG.
BY CLASS SUBCLASS

M14-EXT2 733 bp F/G. 33A

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| t | CLASS | |
| APPROVEO | à | DRAFTSMAN |

| - | 4 |
|----|----|
| - | 4 |
| _ | 4 |
| ٠. | • |
| C | Σ. |
| α | 7 |

| GGGCTGAACG | CGCAGCGGTC | CCGGATAAGG | ACGATAGTTA | TGGACTCAAG | 351 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|
| CTTACCGGGT | TAAGTCGTGT | CCAGTGGCGA | GTGGCTGCTG | CCTGTTACCA | 301 |
| GAATGGCCCA | ATTCAGCACA | GGTCACCGCT | CACCGACGAC | GGACAATGGT | |
| CTCTGCTAAT | ACATACCTCG | AGCACCGCCT | AGAACTCTGT | CACCACTTCA | 251 |
| GAGACGATTA | TGTATGGAGC | TCGTGGCGGA | TCTTGAGACA | GTGGTGAAGT | |
| GTAGTTAGGC | TAGTGTAGCC | ACTGTTCTTC | GATACCAAAT | GCAGAGCGCA | 201 |
| CATCAATCCG | ATCACATCGG | TGACAAGAAG | CTATGGTTTA | CGTCTCGCGT | |
| ACTGGCTACA
TGACCGATGT | TCCGAAGGTA
AGGCTTCCAT | CAACTCTTTT
GTTGAGAAAA | CAAGAGCTAC
GTTCTCGATG | TTTGCCGGAT | 151 |
| CGGTGGTTTG | CCGCTACCAG | AAAAAAACCA | GCTTGCAAAC | GTAATCTGCT | 101 |
| GCCACCAAAC | GGCGATGGTC | TTTTTTGGT | CGAACGTTTG | CATTAGACGA | |
| TTTTCTGCGC | GAGATCCTTT | GGATCTTCTT | AAAGATCAAA | ACCCCGTAGA | 51 |
| AAAAGACGCG | CTCTAGGAAA | CCTAGAAGAA | TTTCTAGTTT | TGGGGCATCT | |
| TGAGCGTCAG
ACTCGCAGTC | TTCGTTCCAC | AACGTGAGTT
TTGCACTCAA | AAAATCCCTT
TTTTAGGGAA | AGATCTGACC
TCTAGACTGG | Н |

| F1G. | SUBCLASS | |
|----------|----------|------------|
| 0.6.5 | CLASS | |
| APPROVED | 87 | DRAF TSMAN |

| | ACCTGAGTTC | TGCTATCAAT | GGCCTATTCC | GCGTCGCCAG | CCCGACTTGC |
|-----|-----------------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------|
| 401 | GGGGGTTCGT
CCCCCAAGCA | GCACACAGCC
CGTGTGTCGG | CAGCTTGGAG
GTCGAACCTC | CGAACGACCT | ACACCGAACT
TGTGGCTTGA |
| 451 | GAGATACCTA
CTCTATGGAT | CAGCGTGAGC
GTCGCA©TCG | TATGAGAAAG
ATACTCTTTC | CGCCACGCTT
GCGGTGCGAA | CCCGAAGGGA
GGGCTTCCCT |
| 501 | GAAAGGCGGA
CTTTCCGCCT | CAGGTATCCG
GTCCATAGGC | GTAAGCGGCA
CATTCGCCGT | GGGTCGGAAC
CCCAGCCTTG | AGGAGAGCGC
TCCTCTCGCG
BSSSI |
| 551 | ACGAGGGAGC
TGCTCCCTCG
BssSI | TTCCAGGGGG | AAACGCCTGG
TTTGCGGACC | TATCTTTATA
ATAGAAATAT | GTCCTGTCGG
CAGGACAGCC |
| 601 | GTTTCGCCAC | CTCTGACTTG
GAGACTGAAC | AGCGTCGATT TCGCAGCTAA | TTTGTGATGC | TCGTCAGGGG
AGCAGTCCCC |
| 651 | GGCGGAGCCT
CCGCCTCGGA | ATGGAAAAAC
TACCTTTTTG | GCCAGCAACG
CGGTCGTTGC | CGGCCTTTTT
GCCGGAAAAA | ACGGTTCCTG
TGCCAAGGAC |

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROYED | ßY | DRAFTSMAH |

NheI

GCCTTTTGCT GGCCTT1.3GC TCACATGGCT AGC CGGAAAACG AGTGTACCGA TCG

701

FIG. 33D

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

M17 813 bp F/G. 34A

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | > | DRAFTSMAN |

| Н | |
|---|--|
| Н | |
| u | |
| Ø | |
| Ø | |

| AGCAAACTGA | GTTTTCCATG | TTGTTACACC | GTGTTCACCC | ATATGGGATA | 351 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------|
| TGAGCTGGTG | TGAAAGACGG | CGTATGGCAA | CCCGGAGTTC | TGAATGCTCA | 301 |
| ACTCGACCAC | ACTTTCTGCC | GCATACCGTT | GGGCCTCAAG | ACTTACGAGT | |
| GCCCGCCTGA
CGGGCGGACT | TCACATTCTT | CGGCCTTTAT | AAGTTTTATC
TTCAAAATAG | AAATAAGCAC
TTTATTCGTG | 251 |
| CCGTAAAGAA
GGCATTTCTT | TTTTTAAAGA
AAAAATTTCT | TATTACGGCC
ATAATGCCGG | TTCAGCTGGA | AACCAGACCG
TTGGTCTGGC | 201 |
| ATGTACCTAT | CAGTTGCTCA | GCATTTCAGT | ACATTTTGAG | ATCGTAAAGA | 151 |
| TACATGGATA | GTCAACGAGT | CGTAAAGTCA | TGTAAAACTC | TAGCATTTCT | |
| TCCCAATGGC | CGTTGATATA | GATATACCAC | AAAATCACTG | AATGGAGAAA | 101 |
| AGGGTTACCG | GCAACTATAT | CTATATGGTG | TTTTAGTGAC | TTACCTCTTT | |
| AGGAAGCTAA
TCCTTCGATT | TCAGGAGCTA
AGTCCTCGAT | ATCGAGATTT
TAGCTCTAAA | TTTTTGAGTT
AAAAACTCAA | CCGGGCGTAT | 51 |
| AAGATCACTA | ATAATGAAAT | AACTTTCACC | GTGAGGTTCC | GGGACGTCGG | \leftarrow |
| TTCTAGTGAT | TATTACTTTA | TTGAAAGTGG | CACTCCAAGG | CCCTGCAGCC | |

FIG. 34B

| G. FIG. | CLASS SUBCLASS | |
|-------------|----------------|-----------|
| APPROVED O. |] j | DRAFTSMAH |

| | TATACCCTAT | CACAAGTGGG | AACAATGTGG | CAAAAGGTAC | TCGTTTGACT |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 401 | AACGTTTTCA | TCGCTCTGGA | GTGAATACCA | CGACGATTTC | CGGCAGTTTC |
| | TTGCAAAAGT | AGCGAGACCT | CACTTATGGT | GCTGCTAAAG | GCCGTCAAAG |
| 451 | TACACATATA | TTCGCAAGAT | GTGGCGTGTT | ACGGTGAAAA | CCTGGCCTAT |
| | ATGTGTATAT | AAGCGTTCTA | CACCGCACAA | TGCCACTTTT | GGACCGGATA |
| 501 | TTCCCTAAAG | GGTTTATTGA | GAATATGTTT | TTCGTCTCAG | CCAATCCCTG |
| | AAGGGATTTC | CCAAATAACT | CTTATACAAA | AAGCAGAGTC | GGTTAGGGAC |
| 551 | GGTGAGTTTC | ACCAGTTTTG | ATTTAAACGT | AGCCAATATG | GACAACTTCT |
| | CCACTCAAAG | TGGTCAAAAC | TAAATTTGCA | TCGGTTATAC | CTGTTGAAGA |
| 601 | TCGCCCCCGT | TTTCACTATG
AAAGTGATAC | GGCAAATATT
CCGTTTATAA | ATACGCAAGG
TATGCGTTCC | CGACAAGGTG
GCTGTTCCAC |
| 651 | CTGATGCCGC | TGGCGATTCA
ACCGCTAAGT | GGTTCATCAT
CCAAGTAGTA | GCCGTTTGTG
CGGCAAACAC | ATGGCTTCCA
TACCGAAGGT |
| 701 | TGTCGGCAGA | ATGCTTAATG | AATTACAACA | GTACTGCGAT | GAGTGGCAGG |
| | ACAGCCGTCT | TACGAATTAC | TTAATGTTGT | CATGACGCTA | CTCACCGTCC |
| 751 | GCGGGGCGTA | ATTTTTAA | GGCAGTTATT | GGGTGCCCTT | AAACGCCTGG |

FIG. 34C

APPROVED O.G. FIG. DRAFISHAH CGCCCCCCT TAAAAAATT CCGTCAATAA CCCACGGGAA TTTGCGGACC

Bglii

TGCTAGATCT TCC ACGATCTAGA AGG 801

APPROVEU O.G. FIG.

| FIG. | SUBCLASS | |
|----------|----------|-----------|
| 0.G. F | CLASS | |
| APPROVED | >-
9 | DRAFTSHAN |

| Н | |
|----------|--|
| α | |
| О | |
| O | |
| 回 | |
| | |

| 101 101 201 | AATTCGAGCA
TTAAGCTCGT
GGTTCCGGTG
CCAAGGCCAC
TATGACCGAA
ATACTGGCTT
AACTTGATTC
TTGAACTAAG | GAAGCTGATC
CTTCGACTAG
ATTTTGATTA
TAAAACTAAT
AATGCCGATG
TTACGGCTAC
TGTCGCTACT
ACAGCGATGA | TCTGAGGAGG AGACTCCTCC TGAAAAGATG ACTTTTCTAC AAAACGCGCT TTTTGCGCGA CTAATGCTAAT | ATCTGTAGGG TAGACATCCC GCAAACGCTA CGTTTGCGAT ACAGTCTGAC TGTCAGACTG CTGCTATCGA GACGATAGCT | TGGTGGCTCT ACCACCGAGA ATAAGGGGGC TATTCCCCG GCTAAAGGCA CGATTTCATT ACCAAAGTAA GGGTTTCATT ACCAAAGTAA |
|-------------|--|--|---|---|---|
| 251 | TGGCTCTAAT | TCCCAAATGG | CTCAAGTCGG | TGACGGTGAT | AATTCACCTT |
| | ACCGAGATTA | AGGGTTTACC | GAGTTCAGCC | ACTGCCACTA | TTAAGTGGAA |

FIG. 35B

TAATGAATAA TTTCCGTCAA TATTTACCTT CCCTCCCTCA ATCGGTTGAA ATTACTTATT AAAGGCAGTT ATAAATGGAA GGGAGGGAGT TAGCCAACTT

XmnI

301

| SUBCLASS | | |
|----------|-----------|-------|
| CLASS | • | |
| <u>-</u> | DRAFTSHAN | |
| | | CLASS |

| 351 | TGTCGCCCTT
ACAGCGGGAA | TTGTCTTTGG | CGCTGGTAAA
GCGACCATTT | CCATATGAAT
GGTATACTTA | TTTCTATTGA
AAAGATAACT |
|-----|--------------------------|---|--------------------------|--------------------------|----------------------------|
| 401 | TTGTGACAAA
AACACTGTTT | ATAAACTTAT
TATTTGAATA | TCCGTGGTGT | CTTTGCGTTT
GAAACGCAAA | CTTTTATATG
GAAAATATAC |
| 451 | TTGCCACCTT
AACGGTGGAA | TATGTATGTA
ATACATACAT | TTTTCTACGT
AAAAGATGCA | TTGCTAACAT
AACGATTGTA | ACTGCGTAAT
TGACGCATTA |
| 501 | AAGGAGTCTT
TTCCTCAGAA | HindIII
~~~~~~
GATAAGCTTG
CTATTCGAAC | ACCTGTGAAG
TGGACACTTC | TGAAAAATGG
ACTTTTTACC | CGCAGATTGT
GCGTCTAACA |
| | | | | | FS
FS
FS |
| 551 | GCGACATTTT
CGCTGTAAAA | TTTTGTCTGC
AAAACAGACG | CGTTTAATTA
GCAAATTAAT | AAGGGGGGG
TTCCCCCCC | 99009900000
00990099999 |
| | | BsrG1 | | | |
| 601 | TGGGGGGGG | TGTACATGAA
ACATGTACTT | ATTGTAAACG
TAACATTTGC | TTAATATTTT
AATTATAAAA | GTTAAAATTC
CAATTTTAAG |

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

APPROVED O.G. FIG.
BY CLASS SUBCLASS

| F 1G. | CLASS SUBCLASS | : |
|--------------|----------------|-----------|
| APPROVEU 0.G | 67 CLASS | DRAFISHAN |

| AGT GTAGCGGTCA CGCTGCGCGT AACCACCACA CCCGCCGCGC | Nhel
~~~~~~
GCC GCTACAGGGC GCGTGCTAGC CATGTGAGCA AAAGGCCAGC
GCG CGATGTCCG CGCACGATCG GTACACTCGT TTTCCGGTCG | cag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg
ggtc cttggcattt ttccggcgca acgaccgcaa aaaggtatcc | OCC CTGACGAGCA TCACAAAAT CGACGCTCAA GTCAGAGGTG
3GGG GACTGCCOGT AGTGTTTTA GCTGCGAGTT CAGTCTCCAC | SCCG ACAGGACTAT AAAGATACCA GGCGTTTCCC CCTGGAAGCT
SGGC TGTCCTGATA TTTCTATGGT CCGCAAAGGG GGACCTTCGA | SI
FGCG CTCTCCTGTT CCGACCCTGC CGCTTACCGG ATACCTGTCC
ACGC GAGAGGACAA GGCTGGGACG GCGAATGGCC TATGGACAGG | CTCC CTTCGGGAAG CGTGGCGCTT TCTCATAGCT CACGCTGTAGGAGGC GAAGCCCTTC GCACCGCGAA AGAGTATCGA GTGCGACATC |
|---|---|---|---|--|--|---|
| GCTGGCAA | L
AATTACGCGG | 1 AAAAGGCCAG
TTTTCCGGTC | 1
GAGGCGGGGG | 1
CGCTTTGGGC | BSSSI
~~~~~~
1 CCCTCGTGCG
GGGAGCACGC | GCCTTTC
CGGAAAG |
| 1.001 | 1051 | 1101 | 1151 | 1201 | 1251 | 1301 |

FIG. 35E

| F1G. | S SUBCLASS | |
|----------|--------------|-----------|
| 0.0 | CLASS | |
| APPROVED | ب | DRAFTSMAN |

| TGTGTGCACG | CTATCGTCTT | CAGCCACTGG | GAGTTCTTGA | TGGTATCTGC | GCTCTTGATC | TGCAAGCAGC | GATCTTTTCT |
|------------|------------|------------|------------|------------|------------|------------|------------|
| ACACACGTGC | GATAGCAGAA | GTCGGTGACC | CTCAAGAACT | ACCATAGACG | CGAGAACTAG | ACGTTCGTCG | CTAGAAAAGA |
| CAAGCTGGGC | TATCCGGTAA | CCACTGGCAG | CGGTGCTACA | GAACAGTATT | AGAGTTGGTA | TTTTTTTGTT | AAGATCCTTT |
| GTTCGACCCG | ATAGGCCATT | GGTGACCGTC | GCCACGATGT | CTTGTCATAA | TCTCAACCAT | AAAAAAACAA | TTCTAGGAAA |
| TCGTTCGCTC | CGCTGCGCCT | CGACTTATCG | GGTATGTAGG | TACACTAGAA | CTTCGGAAAA | GTAGCGGTGG | GGATCTCAAG |
| AGCAAGCGAG | GCGACGCGGA | GCTGAATAGC | CCATACATCC | ATGTGATCTT | GAAGCCTTTT | CATCGCCACC | CCTAGAGTTC |
| TCGGTGTAGG | TCAGCCCGAC | CGGTAAGACA | AGCAGAGCGA | TAACTACGGC | AGCCAGTTAC | ACCACCGCTG | CAGAAAAAA |
| AGCCACATCC | AGTCGGGCTG | GCCATTCTGT | TCGTCTCGCT | ATTGATGCCG | TCGGTCAATG | TGGTGGCGAC | GTCTTTTTTT |
| GTATCTCAGT | AACCCCCCGT | GAGTCCAACC | TAACAGGATT | AGTGGTGGCC | GCTCTGCTGT | CGGCAAACAA | AGATTACGCG |
| CATAGAGTCA | | CTCAGGTTGG | ATTGTCCTAA | TCACCACCGG | CGAGACGACA | GCCGTTTGTT | TCTAATGCGC |
| 1351 | 1401 | 1451 | 1501 | 1551 | 1601 | 1651 | 1701 |

FIG. 35F

| FIG. | SUBCLÁSS | |
|----------|----------|-----------|
| 0.G | CLASS | |
| APPROVED | ů, | ORAFISHAH |

| GGATTTTGGT | TTAAAAAAT | CATTAAGCAT | TGAATCGCCA | CATAGTGAAA | CAAAACTGGT | TCAATAAACC |
|--------------------------|---|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| CCTAAAACCA | AATTTTTTA | GTAATTCGTA | ACTTAGCGGT | GTATCACTTT | GTTTTGACCA | AGTTATTTGG |
| TCACGTTAAG | AATAACTGCC | TGTTGTAATT | ATGATGAACC | AATATTTGCC | ACGTTTAAAT | AAACATATTC |
| AGTGCAATTC | TTATTGACGG | ACAACATTAA | TACTACTTGG | TTATAAACGG | TGCAAATTTA | TTTGTATAAG |
| GAACGAAAAC | TAAGGGCACC | ATCGCAGTAC | CACAAACGGC | CCTTGCGTAT | CATATTGGCT | CTGAGACGAA |
| CTTGCTTTTG | ATTCCCGTGG | TAGCGTCATG | GTGTTTGCCG | GGAACGCATA | GTATAACCGA | GACTCTGCTT |
| ACGCTCAGTG | ACCAGGCGTT | CCTGCCACTC | TGGAAGCCAT | CACCTTGTCG | AGAAGTTGTC | CAGGGATTGG |
| TGCGAGTCAC | TGGTCCGCAA | GGACGGTGAG | ACCTTCGGTA | GTGGAACAGC | TCTTCAACAG | GTCCCTAACC |
| ACGGGGTCTG
TGCCCCAGAC | BgllI
~~~~~~
CAGATCTAGC
GTCTAGATCG | TACGCCCCGC
ATGCGGGGCG | TCTGCCGACA
AGACGGCTGT | GCGCCATCAG
CGCCGTAGTC | ACGGGGGCGA
TGCCCCCGCT | GAAACTCACC
CTTTGAGTGG |
| 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 2101 | CTTTAGGGAA | ATAGGCCAGG | TTTTCACCGT | AACACGCCAC | ATCTTGCGAA |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GAAATCCCTT | TATCCGUTCC | AAAAGTGGCA | TTGTGCGGTG | TAGAACGCTT |
| 2151 | TATATGTGTA | GAAACTGCCG | GAAATCGTCG | TGGTATTCAC | TCCAGAGCGA |
| | ATATACACAT | CTTTGACGGC | CTTTAGCAGC | ACCATAAGTG | AGGTCTCGCT |
| 2201 | TGAAAACGTT
ACTTTTGCAA | TCAGTTTGCT | CATGGAAAAC
GTACCTTTTG | GGTGTAACAA
CCACATTGTT | GGGTGAACAC
CCCACTTGTG |
| 2251 | TATCCCATAT | CACCAGCTCA | CCGTCTTTCA | TTGCCATACG | GAACTCCGGG |
| | ATAGGGTATA | GTGGTCGAGT | GGCAGAAAGT | AACGGTATGC | CTTGAGGCCC |
| 2301 | TGAGCATTCA | TCAGGCGGGC | AAGAATGTGA | ATAAAGGCCG | GATAAAACTT |
| | ACTCGTAAGT | AGTCCGCCCG | TTCTTACACT | TATTTCCGGC | CTATTTTGAA |
| 2351 | GTGCTTATTT | TTCTTTACGG | TCTTTAAAAA | GGCCGTAATA | TCCAGCTGAA |
| | CACGAATAAA | AAGAAATGCC | AGAAATTTTT | CCGGCATTAT | AGGTCGACTT |
| 2401 | CGGTCTGGTT | ATAGGTACAT | TGAGCAACTG | ACTGAAATĞC | CTCAAAATGT |
| | GCCAGACCAA | TATCCATGTA | ACTCGTTGAC | TGACTTTACG | GAGTTTTACA |
| 2451 | TCTTTACGAT
AGAAATGCTA | GCCATTGGGA
CGGTAACCCT | TATATCAACG | GTGGTATATC
CACCATATAG | CAGTGATTTT
GTCACTAAAA |

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSHAN

FIG. 35H

| | | _ |
|---------------|----------------|-----------|
| 0.G. F1G. | CLASS SUBCLASS | |
| APPROVED G.G. | | DRAFTSHAH |

| 2501 | TTTCTCCATT
AAAGAGGTAA | TTAGCTTCCT
AATCGAAGGA | TAGCTCCTGA | AAATCTCGAT
TTTAGAGCTA | AACTCAAAAA
TTGAGTTTTT |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------|
| 2551 | ATACGCCCGG
TATGCGGGCC | TAGTGATCTT
ATCACTAGAA | ATTTCATTAT
TAAAGTAATA | GGTGAAAGTT
CCACTTTCAA | GGAACCTCAC
CCTTGGAGTG |
| | Aatii | | | | |
| 2601 | CCGACGTCTA
GGCTGCAGAT | ATGTGAGTTA
TACACTCAAŢ | GCTCACTCAT
CGAGTGAGTA | TAGGCACCCC
ATCCGTGGGG | AGGCTTTACA
TCCGAAATGT |
| 2651 | CTTTATGCTT
GAAATACGAA | CCGGCTCGTA
GGCCGAGCAT | TGTTGTGG | AATTGTGAGC
TTAACACTCG | GGATAACAAT
CCTATTGTTA |
| | | | | | I Sphi |
| 2701 | TTCACACAGG
AAGTGTGTCC | AAACAGCTAT
TTTGTCGATA | GACCATGATT
CTGGTACTAA | ACGAATTTCT
TGCTTAAAGA | CT AGAGCATGCG
GA TCTCGTACGC |
| | EcoRI | | | | |
| 2751 |)
 00000 | 4 | FIG. 35I | | |

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSMAH

M2 173 bp *FIG.* 35J

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | 24 | DRAFTSMAN |

7 7 AatII

CCGAAATGTG GGCTTTACAC TCCGTGGGGT AGGCACCCCA GAGTGAGTAA CTCACTCATT ACACTCAATC TGTGAGTTAG GACGTCTTAA CTGCAGAATT

GATAACAATT CTATTGTTAA ATTGTGAGCG TAACACTCGC GTTGTGTGGA CAACACACCT CGGCTCGTAT GCCGAGCATA TTTATGCTTC AAATACGAAG 5

. π

XmnI

XbaI

GTATAATGTA CATATTACAT GAATAACTTC CTTATTGAAG ACCATGTCTA TGGTACAGAT AACAGCTATG TTGTCGATAC TCACACAGGA AGTGTGTCCT

101

SphI

151 CGCTATACGA AGTTATCGCA TGC GCGATATGCT TCAATAGCGT ACG

FIG. 35K

APPROVED O.G. FIG.

DRAFISHAH

M3 47 bp *FIG.* 35L APPROVED O.G. FIG.
BY CLASS SUBCLASS DRAFTSMAR Aatii

TGACGTC ACTGCAG TACGAAGTTA ATGCTTCAAT ATGTATGCTA TACATACGAT

AGATCTCATA ACTTCGTATA TCTAGAGTAT TGAAGCATAT

ന Σ BgllI 11111

APPROVED O.G. F.IG.

OY CLASS SUBCLASS

DRAFISMAN

M7-I (long) 1255 bp *FIG.* 35N

| G. FIG. | CLASS SUBCLASS | |
|-------------|----------------|-----------|
| APPROVED 0. | ਹੋ
ਨੇ | DRAFTSHAN |

M 7-I (long):

ECORI

| ٦ | GAATTCGGTG
CTTAAGCCAC | GTGGTGGATC | TGCGTGCGCT
ACGCACGCGA | GAAACGGTTG
CTTTGCCAAC | AAAGTTGTTT
TTTCAACAAA |
|-----|--------------------------|------------|--------------------------|--------------------------|--------------------------|
| 51 | AGCAAAATCC | CATACAGAAA | ATTCATTTAC | TAACGTCTGG | AAAGACGACA |
| | TCGTTTTAGG | GTATGTCTTT | TAAGTAAATG | ATTGCAGACC | TTTCTGCTGT |
| 101 | AAACTTTAGA | TCGTTACGCT | AACTATGAGG | GCTGTCTGTG | GAATGCTACA |
| | TTTGAAATCT | AGCAATGCGA | TTGATACTCC | CGACAGACAC | CTTACGATGT |
| 151 | GGCGTTGTAG | TTTGTACTGG | TGACGAAACT | CAGTGTTACG | GTACATGGGT |
| | CCGCAACATC | AAACATGACC | ACTGCTTTGA | GTCACAATGC | CATGTACCCA |
| 201 | TCCTATTGGG | CTTGCTATCC | CTGAAAATGA | GGGTGGTGGC | TCTGAGGGTG |
| | AGGATAACCC | GAACGATAGG | GACTTTTACT | CCCACCACCG | AGACTCCCAC |
| 251 | GCGGTTCTGA | GGGTGGCGGT | TCTGAGGGTG | GCGGTACTAA | ACCTCCTGAG |
| | CGCCAAGACT | CCCACCGCCA | AGACTCCCAC | CGCCATGATT | TGGAGGACTC |

FIG. 350

CACCTATTCC GGGCTATACT TATATCAACC CTCTCGACGG GTGGATAAGG CCCGATATGA ATATAGTTGG GAGAGCTGCC

TACGGTGATA ATGCCACTAT

301

| 3. F1G. | SS SUBCLASS | |
|---------------|-------------|-----------|
| APPROVED C.G. | BY CLASS | DRAFTSHAN |

| 351 | CACTTATCCG | CCTGGTACTG | AGCAAAACCC | CGCTAATCCT | AATCCTTCTC |
|-----|--------------------------|--------------------------|--------------------------|-------------|--------------------------|
| | GTGAATAGGC | GGACCATGAC | TCGTTTTGGG | GCGATTAGGA | TTAGGAAGAG |
| 401 | TTGAGGAGTC | TCAGCCTCTT | AATACTTTCA | TGTTTCAGAA | TAATAGGTTC |
| | AACTCCTCAG | AGTCGGAGAA | TTATGAAAGT | ACAAAGTCTT | ATTATCCAAG |
| 451 | CGAAATAGGC | AGGGGGCATT | AACTGTTTAT | ACGGGCACTG | TTACTCAAGG |
| | GCTTTATCCG | TCCCCCGTAA | TTGACAAATA | TGCCCGTGAC | AATGAGTTCC |
| 501 | CACTGACCCC | GTTAAAACTT | ATTACCAGTA | CACTCCTGTA | TCATCAAAAG |
| | GTGACTGGGG | CAATTTTGAA | TAATGGTCAT | GTGAGGACAT | AGTAGTTTTC |
| 551 | CCATGTATGA | CGCTTACTGG | AACGGTAAAT | TCAGAGACTG | CGCTTTCCAT |
| | GGTACATACT | GCGAATGACC | TTGCCATTTA | AGTCTCTGAC | GCGAAAGGTA |
| 601 | TCTGGCTTTA | ATGAGGA TTT | ATTTGTTTGT | GAATATCAAG | GCCAATCGTC |
| | AGACCGAAAT | TACTCCTAAA | TAAACAAACA | CTTATAGTTC: | CGGTTAGCAG |
| 651 | TGACCTGCCT
ACTGGACGGA | CAACCTCCTG
GTTGGAGGAC | TCAATGCTGG
AGTTACGACC | CGGCGGCTCT | GGTGGTGGTT
CCACCACCAA |
| 701 | CTGGTGGCGG | CTCTGAGGGT | GGTGGCTCTG | AGGGTGGCGG | TTCTGAGGGT |
| | GACCACCGCC | GAGACTCCCA | CCACCGAGAC | TCCCACCGCC | AAGACTCCCA |

FIG. 35P

Achim KNAPPIK et al. PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| . F1G. | SUBCLASS | |
|----------|----------|-----------|
| (C) | CLA.55 | |
| AFPROVED | 70 | DRAFTSMAN |

| 751 | GGCGGCTCTG | AGGGAGGCGG
TCCCTCCGCC | TTCCGGTGGT | GGCTCTGGTT
CCGAGACCAA | CCGGTGATTT
GGCCACTAAA |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------|
| 801 | TGATTATGAA | AAGATGGCAA | ACGCTAATAA | GGGGCTATG | ACCGAAAATG |
| | ACTAATACTT | TTCTACCGTT | TGCGATTATT | CCCCCGATAC | TGGCTTTTAC |
| 851 | CCGATGAAAA | CGCGCTACAG | TCTGACGCTA | AAGGCAAACT | TGATTCTGTC |
| | GGCTACTTTT | GCGCGATGTC | AGACTGCGAT | TTCCGTTTGA | ACTAAGACAG |
| 901 | GCTACTGATT | ACGGTGCTGC | TATCGATGGT | TTCATTGGTG | ACGTTTCCGG |
| | CGATGACTAA | TGCCACGACG | ATAGCTACCA | AAGTAACCAC | TGCAAAGGCC |
| 951 | CCTTGCTAAT
GGAACGATTA | GGTAATGGTG
CCATTACCAC | CTACTGGTGA
GATGACCACT | TTTTGCTGGC | TCTAATTCCC
AGATTAAGGG |
| 1001 | AAATGGCTCA
TTTACCGAGT | AGTCGGTGAA
TCAGCCACTT | GGTGATAATT
CCACTATTAA | CACCTTTAAT
GTGGAAATTA | XmnI

GAATAATTTC
CTTATTAAAG |
| 1051 | CGTCAATATT | TACCTTCCAT | CCCTCAATCG | GTTGAATGTC | GCCCTTTTGT |
| | GCAGTTATAA | ATGGAAGGTA | GGGAGTTAGC | CAACTTACAG | CGGGAAAACA |

FIG. 35Q

| oveo O.G. F.IG. | CLASS SUBCLASS | З НАН |
|-------------------|----------------|--------------|
| APPROVED | F | DRAFISHAN |

| GTGGAAATAC
HindIII
AGTCTTGATA
TCAGAACTAT | | AATAAGGC ACCACAGAAA CGCAAAGAAA ATATACAACG TGTATTTT CTACGTTGC TAACATACTG CGTAATAAGG ACATAAAA GATGCAAACG ATTGTATGAC GCATTATTCC | TAAGGC ACCACAGAAA CGCAAAGAAA TATTTT CTACGTTMGC TAACATACTG ATAAAA GATGCAAACG ATTGTATGAC | raaggc
ratttt
ataaaa | |
|---|---|--|--|----------------------------|------|
| CACCTTTATG
GTGGAAATAC | | TGGTGTCTTT GCGTTTCTTT TATATGTTGC
ACCACAGAAA CGCAAAGAAA ATATACAACG | TGGTGTCTTT
ACCACAGAAA | | 1151 |
| GACAAAATAA
. CTGTTTTATT | CTTTGGCGCT GGTAAACCCT ATGAATTTTC TATTGATTGT GACAAATAA
GAAACCGCGA CCATTTGGGA TACTTAAAAG ATAACTAACA CTGTTTTATT | CTTTGGCGCT GGTAAACCCT ATGAATTTTC TATTGATTGT
GAAACCGCGA CCATTTGGGA TACTTAAAAG ATAACTAACA | GGTAAACCCT
CCATTTGGGA | CTTTGGCGCT
GAAACCGCGA | 1101 |

FIG. 35R

HindI ~~~~ AGCTT TCGAA

1251

APPROVED 0.G. FIG.
BY CLASS SUBCLASS

M7-II (ss-IAG) 502 bp **F/G. 35S**

| F1G. | SUBCLASS | | |
|----------|------------|-----------|--|
| 0.G. FI | CLASS S | | |
| APPROVED | <u>≻</u> : | DRAFISMAH | |

M 7-II (SS-TAG):

ECORI

| ~ | CGGGAATTCG | GAGGCGGTTC | CGGTGGTGGC | TCTGGTTCCG | GTGATTTTGA |
|----------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GCCCTTAAGC | CTCCGCCAAG | GCCACCACCG | AGACCAAGGC | CACTAAAACT |
| 51 | TTATGAAAAG | ATGGCAAACG | CTAATAAGGG | GGCTATGACC | GAAAATGCCG |
| | AATACTTTTC | TACCGTTTGC | GATTATTCCC | CCGATACTGG | CTTTTACGGC |
| .01 | ATGAAAACGC | GCTACAGTCT | GACGCTAAAG | GCAAACTTGA | TTCTGTCGCT |
| | TACTTTGCG | CGATGTCAGA | CTGCGATTTC | CGTTTGAACT | AAGACAGCGA |
| 51 | ACTGATTACG
TGACTAATGC | GTGCTGCTAT | CGATGGTTTC
GCTACCAAAG | ATTGGTGACG
TAACCACTGC | TTTCCGGCCT
AAAGGCCGGA |
| 01 | TGCTAATGGT
ACGATTACCA | AATGGTGCTA
TTACCACGAT | CTGGTGATTT
GACCACTAAA | TGCTGGCTCT | AATTCCCAAA
TTAAGGGTTT |

-/G. 35T

TAATTTCCGT ATTAAAGGCA

CTTTAATGAA GAAATTACTT

TGGCTCAAGT CGGTGACGGT GATAATTCAC ACCGAGTTCA GCCACTGCCA CTATTAAGTG

251

 \sim

XmnI

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| 0.6. | CLASS | |
| APPROVED | 7.9 | DRAFTSMAR |

| CTTTTGTCTT
GAAAACAGAA | AAAATAAACT
TTTTATTTGA | CTTTATGTAT
GAAATACATA | HindIII

CTTGATAAGC | GAACTATTCG |
|--------------------------|--------------------------|--------------------------|---------------------------|------------|
| GAATGTCGCC
CTTACAGCGG | TGATTGTGAC
ACTAACACTG | ATGTTGCCAC
TACAACGGTG | AATAAGGAGT | TTATTCCTCA |
| TCAATCGGTT
AGTTAGCCAA | AATTTTCTAT
TTAAAAGATA | TTTCTTTAT
AAAGAAAATA | CGTTTGCTAA CATACTGCGT | GTATGACGCA |
| CTTCCCTCCC
GAAGGGAGGG | AAACCATATG
TTTGGTATAC | TGTCTTTGCG
ACAGAAACGC | CGTTTGCTAA | GCAAACGATT |
| CAATATTTAC
GTTATAAATG | TGGCGCTGGT
ACCGCGACCA | TATTCCGTGG
ATAAGGCACC | GTATTTTCTA | CATAAAAGAT |
| 301 | 351 | 401 | 4
5
1 | |

FIG. 35U

ΉÌ

501

APPROVEU O.G. FIG.

DRAFISMAH

M8 47 bp *FIG.* 35V

CLASS SUBCLASS APPROVED D.G. FIG. DRAFISHAN 7

.. ထ

 $\mathbf{\Sigma}$

HindIII

GCATGCCATA ACTTCGTATA ATGTACGCTA TACGAAGTTA TAAGCTT CGTACGGTAT TGAAGCATAT TACATGCGAT ATGCTTCAAT ATTCGAA

FIG. 35W

M10-II 1163 bp F/G. 35X

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | 78 | DRAFTSMAN |

M 10-II

BsrGI

| - | GGGGGTGTAC | ATTCAAATAT
TAAGTTTATA | GTATCCGCTC
CATAGGCGAG | ATGAGACAAT
TACTCTGTTA | AACCCTGATA
TTGGGACTAT |
|----------|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | AATGCTTCAA | TAATATTGAA | AAAGGAAGAG | TATGAGTATT | CAACATTTCC |
| | TTACGAAGTT | ATTATAACTT | TTTCCTTCTC | ATACTCATAA | GTTGTAAAGG |
| 101 | GTGTCGCCCT | TATTCCCTTT
ATAAGGGAAA | TTTGCGGCAT
AAACGCCGTA | TTTGCCTTCC | TGTTTTGCT
ACAAAAACGA |
| 151 | CACCCAGAAA | CGCTGGTGAA | AGTAAAAGAT | GCTGAGGATC | AGTTGGGTGC |
| | GTGGGTCTTT | GCGACCACTT | TCATTTTCTA | CGACTCCTAG | TCAACCCACG |
| 201 | GCGAGTGGGT | TACATCGAAC | TGGATCTCAA | CAGCGGTAAG | ATCCTTGAGA |
| | CGCTCACCCA | ATGTAGCTTG | ACCTAGAGTT | GTCGCCATTC | TAGGAACTCT |
| | | XmnX | | | |
| 251 | GTTTCGCCC | CGAAGAACGT | TTTCCAATGA | TGAGCACTTT | TAAAGTTCTG |
| | CAAAAGCGGG | GCTTCTTGCA | AAAGGTTACT | ACTCGTGAAA | ATTTCAAGAC |

FIG. 35Y

| | SUBCLASS | |
|----------|-----------|-----------|
| 0.G. FIG | CLASS SUB | · |
| APPROVED |)
m | DRAFTSMAH |

| 301 | CTATGTGGCG
GATACACCGC | CGGTATTATC
GCCATAATAG | CCGTATTGAC
GGCATAACTG | GCCGGGCAAG | AGCAACTCGG
TCGTTGAGCC |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 351 | TCGCCGCATA | CACTATTCTC
GTGATAAGAG | AGAATGACTT
TCTTACTGAA | GGTTGAGTAC
CCAACTCATG | TCACCAGTCA
AGTGGTCAGT |
| 401 | CAGAAAAGCA
GTCTTTTCGT | TCTTACGGAT
AGAATGCCTA | GGCATGACAĞ
CCGTACTGTC | TAAGAGAATT
ATTCTCTTAA | ATGCAGTGCT |
| 451 | GCCATAACCA
CGGTATTGGT | TGAGTGATAA
ACTCACTATT | CACTGCGGCC
GTGACGCCGG | AACTTACTTC
TTGAATGAAG | TGACAACGAT
ACTGTTGCTA |
| 501 | CGGAGGACCG | AAGGAGCTAA
TTCCTCGATT | CCGCTTTTTT
GGCGAAAAAA | GCACAACATG
CGTGTTGTAC | GGGGATCATG
CCCCTAGTAC |
| 551 | TAACTCGCCT
ATTGAGCGGA | TGATCGTTGG
ACTAGCAACC | GAACCGGAGC
CTTGGCCTCG | TGAATGAAGC
ACTTACTTCG | CATACCAAAC
GTATGGTTTG |
| 601 | GACGAGCGTG | ACACCAĆGAT
TGTGGTGCTA | GCCTGTAGCA | ATGGCAACAA | CGTTGCGCAA
GCAACGCGTT |
| 651 | ACTATTAACT
TGATAATTGA | GGCGAACTAC | TTACTCTAGC
AATGAGATCG | TTCCCGGCAA | CAGTTAATAG
GTCAATTATC |

FIG. 35Z

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 0.G. F1G. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED |)-
C3 | DRAFTSHAR |

| 701 | ACTGGATGGA
TGACCTACCT | GGCGGATAAA
CCGCCTATTT | GTTGCAGGAC | CACTTCTGCG
GTGAAGACGC | CTCGCCCCTT |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 751 | CCGGCTGGCT | GGTTTATTGC
CCAAATAACG | TGATAAATCT
ACTATTTAGA | GGAGCCGGTG
CCTCGGCCAC | AGCGTGGGTC
TCGCACCCAG |
| 801 | TCGCGGTATC
AGCGCCATAG | ATTGCAGCAC
TAACGTCGTG | TGGGGCCAGA | TGGTAAGCCC
ACCATTCGGG | TCCCGTATCG
AGGGCATAGC |
| 851 | TAGTTATCTA
ATCAATAGAT | CACGACGGGG | AGTCAGGCAA
TCAGTCCGTT | CTATGGATGA
GATACCTACT | ACGAAATAGA
TGCTTTATCT |
| 901 | CAGATCGCTG
GTCTAGCGAC | AGATAGGTGC
TCTATCCACG | CTCACTGATT
GAGTGACTAA | AAGCATTGGG
TTCGTAACCC | TAACTGTCAG
ATTGACAGTC |
| 951 | ACCAAGTTTA
TGGTTCAAAT | CTCATATATA
GAGTATATAT | CTTTAGATTG
GAAATCTAAC | ATTTAAAACT
TAAATTTTGA | TCATTTTAA
AGTAAAAATT |
| 1001 | TTTAAAAGGA
AAATTTTCCT | TCTAGGTGAA
AGATCCACTT | GATCCTTTTT
CTAGGAAAAA | GATAATCTCA
CTATTAGAGT | TGACCAAAAT
ACTGGTTTTA |
| 1051 | CCCTTAACGT
GGGAATTGCA | GAGTTTTCGT
CTCAAAAGCA | TCCACTGAGC
AGGTGACTCG | GTCAGACCCC | GTAGAAAAGA
CATCTTTTCT |

FIG. 35AA

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|------------------|-----------|
| APPROVED | خـــــــــ
وع | DRAFTSHAH |

| ? | CCCCCCCTT | GGGGGGGGAA |
|---|-----------------------|----------------|
| ? | CCC | 9999 |
| 1 | AATGGCCGGC | TTACCGGCCG |
| | CCTTTTTGAT | GGAAAAACTA |
| | TICTIGAGAT CCTITITGAT | TAG AAGAACTCTA |
| | TCAAAGGATC | AGTTTCCTAG |
| | 101 | |

PacI

1151

PacI

FseI

APPROVED O.G. FIG.
BY CLASS SUBCLASS

| BY CLASS SUBCLASS |
|-------------------|
|-------------------|

M11-II:

NheI

| - | GCTAGCACGC
CGATCGTGCG | GCCCTGTAGC
CGGGACATCG | GGCGCATTAA
CCGCGTAATT | ၁၁၁၅၁၅၁၅၁၅၁ | TGTGGTGGTT
ACACCACCAA |
|-------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 51 | ACGCGCAGCG
TGCGCGTCGC | TGACCGCTAC
ACTGGCGATG | ACTTGCCAGC
TGAACGGTCG | GCCCTAGCGC
CGGGATCGCG | CCGCTCCTTT
GGCGAGGAAA |
| 101 | CGCTTTCTTC
GCGAAAGAAG | CCTTCCTTTC
GGAAGGAAAG | TCGCCACGTT
AGCGGTGCAA | CGCCGGCTTT
GCGGCCGAAA | CCCCGTCAAG
GGGCAGTTC |
| ر
د | STARAFOLO | BanII
~~~~~~ | | しざむさなむむかなむ | |
| H
}
H | GAGATTTAGC | CCCCGAGGGA | AATCCCAAGG | CTAAATCACG | AAATGCCGTG |
| 201 | CTCGACCCCA
GAGCTGGGGT | AAAAACTTGA
TTTTTGAACT | TTAGGGTGAT
AATCCCACTA | GGTTCTCGTA
CCAAGAGCAT | GTGGGCCATC |
| 251 | GCCCTGATAG
CGGGACTATC | ACGGTTTTTC
TGCCAAAAG | GCCCTTTGAC
CGGGAAACTG | GTTGGAGTCC
CAACCTCAGG | ACGTTCTTTA
TGCAAGAAAT |

| APPROVED O.G. F. | FIG. |
|------------------|------|
|------------------|------|

| | | | Bsrgi
CGTTTACAAT TTCATGTACA
GCAAATGTTA AAGTACATGT | CGTTTACAAT
GCAAATGTTA | 451 |
|--|--|--------------------------|---|--------------------------|-----|
| AAAATATTAA | ATTTAACAAA AATTTAACGC GAATTTTAAC AAAATATTAA | AATTTAACGC | ATTTAACAAA | AAATGAGCTG | 401 |
| TTTTATAATT | TAAATTGTTT TTAAATTGCG CTTAAAATTG TTTTATAATT | TTAAATTGCG | TAAATTGTTT | TTTACTCGAC | |
| ATTTCGGCCT ATTGGTTAAA
TAAAGCCGGA TAACCAATTT | GATTTTGCCG ATTTCGGCCT ATTGGTTAAA
CTAAAACGGC TAAAGCCGGA TAACCAATTT | GATTTTGCCG
CTAAAACGGC | ATTTATAAGG
TAAATATTCC | TATTCTTTTG | 351 |
| TATCTCGGTC | ATAGTGGACT CTTGTTCCAA ACTGGAACAA CACTCAACCC TATCTCGGTC | ACTGGAACAA | ATAGTGGACT CTTGTTCCAA | ATAGTGGACT | 301 |
| ATAGAGCCAG | TATCACCTGA GAACAAGGTT TGACCTTGTT GTGAGTTGGG ATAGAGCCAG | TGACCTTGTT | TATCACCTGA GAACAAGGTT | TATCACCTGA | |

FIG. 35EE

APPROVED O.G. FIG.
BY CLASS SUBCLASS

BRAFTSMAN

| ~ | | | |
|---------------|-----------|-----------|--|
| FIG | SHBCI ACC | CCCCLASS | |
| APPROVED O.C. | 67 CLASS | DRAFTSMAN | |
| A P. | w | DRAF | |

12: Σ

| ~ | AGATCTAATA
TCTAGATTAT | AGATGATCTT
TCTACTAGAA | CTTGAGATCG
GAACTCTAGC | TTTGGTCTG | CGCGTAATCT
GCGCATTAGA |
|-----|--------------------------|--------------------------|--------------------------|------------|--------------------------|
| 51 | CTTGCTCTGA | AAACGAAAAA | ACCGCCTTGC | AGGGCGGTTT | TTCGTAGGTT |
| | GAACGAGACT | TTTGCTTTTT | TGGCGGAACG | TCCCGCCAAA | AAGCATCCAA |
| 101 | CTCTGAGCTA | CCAACTCTTT | GAACCGAGGT | AACTGGCTTG | GAGGAGCGCA |
| | GAGACTCGAT | GGTTGAGAAA | CTTGGCTCCA | TTGACCGAAC | CTCCTCGCGT |
| 151 | GTCACTAAAA | CTTGTCCTTT | CAGTTTAGCC | TTAACCGGCG | CATGACTTCA |
| | CAGTGATTTT | GAACAGGAAA | GTCAAATCGG | AATTGGCCGC | GTACTGAAGT |
| 201 | AGACTAACTC
TCTGATTGAG | CTCTAAATCA
GAGATTTAGT | ATTACCAGTG
TAATGGTCAC | GCTGCTGCCA | GTGGTGCTTT
CACCACGAAA |
| 251 | TGCATGTCTT | TCCGGGTTGG | ACTCAAGACG | ATAGTTACCG | GATAAGGCGC |
| | ACGTACAGAA | AGGCCCAACC | TGAGTTCTGC | TATCAATGGC | CTATTCCGCG |
| 301 | AGCGGTCGGA | CTGAACGGGG | GGTTCGTGCA | TACAGTCCAG | CTTGGAGCGA |
| | TCGCCAGCCT | GACTTGCCCC | CCAAGCACGT | ATGTCAGGTC | GAACCTCGCT |

FIG. 35GG

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| | SUBCLASS | |
|-----------|------------|-----------|
| 0.6. FIG. | CLASS SUB | |
| APPROVED | \$-
\$3 | DRAFTSHAN |

| ACTGCCTACC CGGAACTGAG TGTCAGGCGT GGAATGAGAC AAACGCGGCC
TGACGGATGG GCCTTGACTC ACAGTCCGCA CCTTACTCTG TTTGCGCCGG | ATAACAGCGG AATGACACCG GTAAACCGAA AGGCAGGAAC AGGAGAGCGC TATTGGCTT TCCGTCCTTG TCCTCTCGCG | AGGAGGGAGC CGCCAGGGGG AAACGCCTGG TATCTTTATA GTCCTGTCGG
TCCTCCCTCG GCGGTCCCCC TTTGCGGACC ATAGAAATAT CAGGACAGCC | GTTTCGCCAC CACTGATTTG AGCGTCAGAT TTCGTGATGC TTGTCAGGGG
CAAAGCGGTG GTGACTAAAC TCGCAGTCTA AAGCACTACG AACAGTCCCC | GGCGGAGCCT ATGGAAAAC GGCTTTGCCG CGGCCCTCTC ACTTCCCTGT
CCGCCTCGGA TACCTTTTTG CCGAAACGGC GCCGGGAGAG TGAAGGGACA | TAAGTATCTT CCTGGCATCT TCCAGGAAAT CTCCGCCCCG TTCGTAAGCC
ATTCATAGAA GGACCGTAGA AGGTCCTTTA GAGGCGGGGC AAGCATTCGG | atticcecte gecgeagteg aacgaecgag cgtagegagt cagtgagega
taaaggegag eggegteage itgetggete geategetea gteaeteget FlG . $35HH$ |
|--|--|--|--|---|--|---|
| 351 A | 401 A | 451 A
T | 501 6 | 551 G | 601 T | 651 A
T |
| | | | | | | |

| | LASS | |
|----------|----------|-----------|
| F1G. | SUBCLASS | |
| | CLASS | |
| | L.,,,,, | SYAN |
| APPROVED | λg | DRAFTSHAN |

AgeI

ACCGGTGCAG TGGCCACGTC GACGACTGCG CTGCTGACGC GGAAGCGGAA TATATCCTGT ATCACATATT CCTTCGCCTT ATATAGGACA TAGTGTATAA 701

XmnI

AGTAGTCACG TCATCAGTGC ACTGACACCC TGACTGTGGG GAAGCACTTC CTTCGTGAAG CCTGCCACAT GGACGGTGTA GGAAAAAGA CCTTTTTTCT 751

NheI

CAACATAGTA AGCCAGTATA CACTCCGCTA GTTGTATCAT TCGGTCATAT GTGAGGCGAT GTGAGGCGAT

801

FIG. 3511

M13 49 bp *FIG. 35JJ* APPROVED O.G. FIG.

BY CLASS SUBCLASS

BRAFISMAN

M 13:

Bglil

IumX

BglII

TTCAGATCT AAGTCTAGA AGATCTCATA ACTTCGTATA ATGTATGCTA TACGAAGTTA TCTAGAGTAT TGAAGCATAT TACATACGAT ATGCTTCAAT

FIG. 35KK

APPROVED O.G. FIG.

M19 96 bp *FIG.* 35LL ECORI

| 0.6. FIG | CLASS SUBCIACE | | |
|----------|----------------|-----------|--|
| APPROVED | ¥.8 | BRAFTSKAH | |

M 19

SphI

XbaI

AAACAAAGCA CTATTGCACT TTTGTTTCGT GATAACGTGA AAATAAAATG TTTATTTTAC GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

SapI

GAATTC CTTAAG TACCAAAGCC ATGGTTTCGG CCGTTGCTCT TCACCCCTGT GGCAACGAGA AGTGGGGACA GGCACTCTTA 5,

FIG. 35MM

APPROVED O.G. FIG.
BY CLASS SUBCLASS

M28 120 bp FIG. 35NN

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | >-
e3 | BRAFTSMAN |

M 20:

XbaI SphI

11111

CTATTGCACT GATAACGTGA AAACAAAGCA TTTGTTTCGT AAATAAATG TTTATTTAC GCGTAGGAGA AGATCTCGTA TCTAGAGCAT

Sapi

111111

5

GACTACAAAG TACCAAAGCC ATGGTTTCGG TCACCCCTGT GCCAACGAGA AGTGGGGACA CCGTTGCTCT GGCACTCTTA

MunI EcoRI

1111111

1111

101 ATGAAGTGCA ATTGGAATTC TACTTCACGT TAACCTTAAG

FIG. 3500

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFISMAN

M21 96 bp *FIG. 35PP*

CLASS SUBCLASS APPROVED O.G. FIG. BRAFTSHAR λĐ

 \mathbf{Z}

XbaI

11111

TTATAGCGTA AAGAAGAACG AATATCGCAT TICTTCTTGC TATGAAAAAG ATACTTTTTC GAGGTGATTT TCTAGAGGTT AGATCTCCAA

NsiI

ECORI 11111

GAATTC TGCATACGCT CAAAAAAGAT AACGATGTTT ACGTATGCGA TTGCTACAAA

GTTTTTTTA

ATCTATGTTC

51

TAGATACAAG

FIG. 35QQ

<u>띯</u>

APPROVED O.G. FIG.

M41 1221 bp *FIG. 35RR*

| 0.6. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | λe | GRAFTSHAH |

M 41

| - | GCTAGCATCG | AATGGCGCAA | AACCTTTCGC | GGTATGGCAT | GATAGCGCCC |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | CGATCGTAGC | TTACCGCGTT | TTGGAAAGCG | CCATACCGTA | CTATCGCGGG |
| 51 | GGAAGAGAGT | CAATTCAGGG | TGGTGAATGT
ACCACTTACA | GAAACCAGTA
CTTTGGTCAT | ACGTTATACG
TGCAATATGC |
| 101 | ATGTCGCAGA | GTATGCCGGT | GTCTCTTATC | AGACCGTTTC | CCGCGTGGTG |
| | TACAGCGTCT | CATACGGCCA | CAGAGAATAG | TCTGGCAAAG | GGCGCACCAC |
| 151 | AACCAGGCCA | GCCACGTTTC
CGGTGCAAAG | TGCGAAAACG
ACGCTTTTGC | CGGGAAAAAG
GCCCTTTTTC | TGGAAGCGGC
ACCTTCGCCG |
| 201 | GATGGCGGAG | CTGAATTACA | TTCCTAACCG | CGTGGCACAA | CAACTGGCGG |
| | CTACCGCCTC | GACTTAATGT | AAGGATTGGC | GCACCGTGTT | GTTGACCGCC |
| 251 | GCAAACAGTC | GTTGCTGATT | GGCGTTGCCA | CCTCCAGTCT | GGCCCTGCAC |
| | CGTTTGTCAG | CAACGACTAA | CCGCAACGGT | GGAGGTCAGA | CCGGGACGTG |
| 301 | GCGCCGTCGC | AAATTGTCGC
TTTAACAGCG | GGCGATTAAA | TCTCGCGCCG | ATCAACTGGG
TAGTTGACCC |

| 16. | SUBCLASS | |
|----------|----------|-----------|
| 0.G. F | CLASS | |
| APPROVED | <u>}</u> | BRAFISNAH |

| C GAAGCCTGTA
G CTTCGGACAT | G GCTGATTATT
C CGACTAATAA | G CTGCCTGCAC
C GACGGACGTG | A CCCATCAACA
T GGGTAGTTGT | T GGAGCATCTG
A CCTCGTAGAC | C CATTAAGTTC
G GTAATTCAAG | T CTCACTCGCA
A GAGTGAGCGT | G TGCCATGTCC
C ACGGTACAGG |
|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| AAGCGGCGTC
TTCGCCGCAG | GTGTCAGTGG | GCTGTGGAAG | TGACCAGACA
ACTGGTCTGT | GACTGGGCGT
CTGACCCGCA | TTAGCTGGCC | GCATAAATAT
CGTATTTATA | GCGACTGGAG
CGCTGACCTC |
| TGGTAGAACG
ACCATCTTGC | CTCGCGCAAC | GGATGCTATT
CCTACGATAA | TTGATGTCTC
AACTACAGAG | GACGGTACGC | AATCGCGCTG
TTAGCGCGAC | TGGCTGGCTG
ACCGACCGAC | GAACGGGAAG
CTTGCCCTTC |
| GTCGTGTCGA | GCACAATCTT
CGTGTTAGAA | TGGATGACCA
ACCTACTGGT | GCGTTATTTC
CGCAATAAAG | CTCCCATGAG
GAGGGTACTC | GCCACCAGCA | CGTCTGCGTC
GCAGACGCAG | GCCGATAGCG
CGGCTATCGC |
| TGCCAGCGTG
ACGGTCGCAC | AAGCGGCGGT
TTCGCCGCCA | AACTATCCGC
TTGATAGGCG | TAATGTTCCG
ATTACAAGGC | GTATTATTTT
CATAATAAAA | GTCGCATTGG
CAGCGTAACC | TGTCTCGGCG
ACAGAGCCGC | ATCAAATTCA
TAGTTTAAGT |
| 351 | 401 | 451 | 501 | 551 | 601 | 651 | 70.1 |

FIG. 35TT

| 0.6. F IG. | SS SUBCLASS | | |
|-------------------|-------------|-----------|--|
| APPROVED [C. G. | BY CLASS | DRAFTSMAN | |

| TTCCCACTGC | CGTGCCATTA | GGGATACGAC | CCATCAAACA | CTGCAACTCT | CTCACTGGTG | CTCCCGCGC | CGACTGGAAA |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|------------|------------|--------------------------|
| AAGGGTGACG | GCACGGTAAT | CCCTATGCTG | GGTAGTTTGT | GACGTTGAGA | GAGTGACCAC | | GCTGACCTTT |
| GAGGGCATCG | GGGCGCAATG
CCCGCGTTAC | TCTCGGTAGT
AGAGCCATCA | CCGCTGACCA
GCCGACTGGT | GGACCGCTTG
CCTGGCGAAC | TGTTGCCCGT | CAAACCGCCT | ACAGGTTTCC
TGTCCAAAGG |
| AATGCTGAAT | AGATGGCGCT | GGTGCGGACA | TTATATCCCG | AAACCAGCGT | GGCAATCAGC | TCCCAATACG | AGCTGGCACG |
| TTACGACTTA | TCTACCGCGA | CCACGCCTGT | AATATAGGGC | TTTGGTCGCA | CCGTTAGTCG | AGGGTTATGC | TCGACCGTGC |
| AAACCATGCA | GCCAACGATC | GCTGCGCGTT | ACAGCTCATG | CTGCTGGGGC | GGCGGTGAAG | CCACCCTGGC | TCACTGATGC |
| TTTGGTACGT | CGGTTGCTAG | CGACGCGCAA | TGTCGAGTAC | GACGACCCCG | CCGCCACTTC | GGTGGGACCG | AGTGACTACG |
| GGTTTTCAAC | GATGCTGGTT | CCGAGTCCGG | GATACCGAGG | GGATTTTCGC | CTCAGGGCCA | AAAAGAAAAA | GTTGGCCGAT |
| CCAAAAGTTG | CTACGACCAA | GGCTCAGGCC | CTATGGCTCC | CCTAAAAGCG | GAGTCCCGGT | TTTTCTTTTT | |
| 751 | 801 | 851 | 901 | 951 | 1001 | 1051 | 1101 |

FIG. 35UU

CLASS SUBCLASS APPROVED 10.6. F1G. BRAFTSMAN GCGGGCAGTG AGGCTACCCG ATAAAAGCGG CTTCCTGACA GGAGGCCGTT CGCCCGTCAC TCCGATGGGC TATTTTCGCC GAAGGACTGT CCTCCGGCAA 1151

Aflii

TTGTTTTGCA GCCCACTTAA G AACAAAACGT CGGGTGAATT C 1201

FIG. 35VV

CLASS SUBCLASS

BRAFTSMAH

APPROVED O.G. FIG.

APPROVED (1.G. F. IG.

BY CLASS SUBCLASS
PRAFISHAH

pCALO-1: BglII

AAAAAATTA TTTTTAAT ATTGACGGAA TAACTGCCTT AGGGCACCAA TCCCGTGGTT CAGGCGTTTA A CTAGATCGTG GATCTAGCAC Н

AATTCGTAAG TTAAGCATTC GCGTCATGAC AACATTAAGT TTGTAATTCA CGCAGTACTG GCGGGGGGG ACGGTGAGTA TGCCACTCAT ರಾತಿಯಾಗುತ್ತು 51

TTAGCGGTCG AATCGCCAGC CTACTTGGAC GATGAACCTG GTTTGCCGTA CAAACGGCAT CTTCGGTAGT GAAGCCATCA ACGCCTGTAC TGCCGACATG 101

TAGTGAAAAC ATCACTTTTG TATTTGCCCA ATAAACGGGT TTGCGTATAA AACGCATATT CCTTGTCGCC GGAACAGCGG CCGTAGTCGT GGCATCAGCA 151

AAACTGGTGA TTTGACCACT GTTTAAATCA CAAATTTAGT TATTGGCTAC ATAACCGATG TTCAACAGGT GGGGGGAAG AAGTTGTCCA CCCCCCTTC 201

TTATTTGGGA AATAAACCCT ACATATTCTC TGTATAAGAG GGGATTGGCT GAGACGAAAA CTCTGCTTTT CCCTAACCGA AACTCACCCA TTGAGTGGGT 251

CTTGCGAATA GAACGCTTAT AGGCCAGGTT TTCACCGTAA CACGCCACAT GTGCGGTGTA TCCGGTCCAA AAGTGGCATT TTAGGGAAAT AATCCCTTTA 301

FIG. 35XX

Achim KNAPPIK *et al.* PROTEIN/ (POLY) PEPTIDE LIBRARIES Application No. 09/490,064

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | | BRAFTSMAH |

| COGGA AATCGTCGTG GTATTCACTC CAGAGCGATG | SCTCA TGGAAAACGG TGTAACAAGG GTGAACACTA | CACC GTCTTTCATT GCCATACGGA ACTCCGGGTG
AGTGG CAGAAAGTAA CGGTATGCCT TGAGGCCCAC | GCAA GAATGTGAAT AAAGGCCGGA TAAAACTTGT | GGTC TTTAAAAAGG CCGTAATATC CAGCTGAACG
GCCAG AAATTTTTCC GGCATTATAG GTCGACTTGC | PATTG AGCAACTGAC TGAAATGCCT CAAAATGTTC | GATA TATCAACGGT GGTATATCCA GTGATTTTTT | CTTA GCTCCTGAAA ATCTCGATAA CTCAAAAAT
3GAAT CGAGGACTTT TAGAGCTATT GAGTTTTTTA |
|--|--|---|---------------------------------------|---|--|---------------------------------------|--|
| AACTGCCGGA P
TTGACGGCCT 1 | AGTTTGCTCA T
TCAAACGAGT A | CCAGCTCACC GGTCGAGTGG C | AGGCGGGCAA G
TCCGCCCGTT C | CTTTACGGTC I
GAAATGCCAG A | AGGTACATTG A
TCCATGTAAC I | CATTGGGATA I
GTAACCCTAT A | AGCTTCCTTA G
TCGAAGGAAT C |
| TATGTGTAGA AACT
ATACACATCT TTGA | AAAACGTTTC AGTT
TTTTGCAAAG TCAA | | | GCTTATTTTT CTTT.
CGAATAAAAA GAAA | • | _ | |

FIG. 35YY

| | | | | APPROVED O.G. FIG. BY CLASS SUB | O.G. FIG. | |
|------|---|--------------------------|--------------------------|--|---|--|
| 751 | ACGCCCGGTA | GTGATCTTAT
CACTAGAAȚA | TTCATTATGG
AAGTAATACC | TGAAAGTTGG
ACTTTCAACC | AACCTCACCC
TTGGAGTGGG | |
| 801 | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA | GTGAGTTAGC
CACTCAATCG | TCACTCATTA
AGTGAGTAAT | GGCACCCCAG | GCTTTACACT
CGAAATGTGA | |
| 851 | TTATGCTTCC
AATACGAAGG | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA | TTGTGAGCGG
AACACTCGCC | ATAACAATTT
TATTGTTAAA | |
| 901 | CACACAGGAA
GTGTGTCCTT | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | Xbal
~~~~~~
GAATTTCTAG A
CTTAAAGATC T | ACCCCCCCC
TGGGGGGGG | |
| 951 | Sphi
cccargccar
cccargccar | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | |
| 1001 | CCTGTGAAGT | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC
AAACAGACGG | |

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| ()
() | CLASS | |
| APPROVED | λg | SRAFTSMAH |

| | PacI | | FSeI | | BsrGI |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--|
| 1051 | GTTTAATTAA
CAAATTAATT | AGGGGGGGG | GGGCCGGCCT | CCCCCCCAA | GTACATGAAA
CATGTACTTT |
| 1101 | TTGTAAACGT | TAATATTTTG | TTAAAATTCG | CGTTAAATTT | TTGTTAAATC |
| | AACATTTGCA | ATTATAAAAC | AATTTTAAGC | GCAATTTAAA | AACAATTTAG |
| 1151 | AGCTCATTTT | TTAACCAATA | GGCCGAAATC | GGCAAAATCC | CTTATAAATC |
| | TCGAGTAAAA | AATTGGTTAT | CCGGCTTTAG | CCGTTTTAGG | GAATATTTAG |
| 1201 | AAAAGAATAG | ACCGAGATAG | GGTTGAGTGT | TGTTCCAGTT | TGGAACAAGA |
| | TTTTCTTATC | TGGCTCTATC | CCAACTCACA | ACAAGGTCAA | ACCTTGTTCT |
| 1251 | GTCCACTATT | AAAGAACGTG | GACTCCAACG | TCAAAGGGCG | AAAAACCGTC |
| | CAGGTGATAA | TTTCTTGCAC | CTGAGGTTGC | AGTTTCCCGC | TTTTTGGCAG |
| 1301 | TATCAGGGCG | ATGGCCCACT
TACCGGGTGA | ACGAGAACCA
TGCTCTTGGT | TCACCCTAAT
AGTGGGATTA | CAAGTTTTTT
GTTCAAAAAA |
| 1351 | GGGGTCGAGG | TGCCGTAAAG
ACGGCATTTC | CACTAAATCG
GTGATTTAGC | GAACCCTAAA
CTTGGGATTT | Banii
~~~~~
GGGAGCCCCC
CCCTCGGGGG |

FIG. 35AAA

| | ASS | \neg |
|----------|---|-----------|
| F16. | SUBCLASS | |
| D.G. | Ci.ASS | |
| APPROVED | ;-;
-;-;
-;-;
-;-;
-;-;
-;-;
-;-;
-;-; | PRAFTSMAH |

| 1401 | GATTTAGAGC
CTAAATCTCG | TTGACGGGGA
AACTGCCCCT | AAGCCGGCGA
TTCGGCCGCT | ACGTGGCGAG
TGCACCGCTC | AAAGGAAGGG
TTTCCTTCCC |
|------|--|--|--|--|--|
| 1451 | AAGAAAGCGA
TTCTTTCGCT | AAGGAGCGGG
TTCCTCGCCC | CGCTAGGGCG | CTGGCAAGTG
GACCGTTCAC | TAGCGGTCAC
ATCGCCAGTG |
| 1501 | GCTGCGCGTA | ACCACCACAC
TGGTGGTGTG | CCGCCGCGCT | TAATGCGCCG
ATTACGCGGC | CTACAGGGCG
GATGTCCCGC |
| 1551 | NheI
CGTGCTAGCG
GCACGATCGC | GAGTGTATAC | TGGCTTACTA | TGTTGGCACT
ACAACCGTGA | GATGAGGGTG |
| 1601 | XmnI
TCAGTGAAGT | `~; } <sup>-</sup> | GCAGGAGAAA | AAAGGCTGCA | Agel |
| 1651 | AGTCACTTCA
AGCAGAATAT
TCGTCTTATA | CGAAGTACAC
GTGATACAGG
CACTATGTCC | CGTCCTCTTT
ATATATTCCG
TATATAAGGC | TTTCCGACGT
CTTCCTCGCT
GAAGGAGCGA | GGCCACGCAG
CACTGACTCG
GTGACTGAGC |
| 1701 | CTACGCTCGG | TCGJ | FIG. 35BBB | GAAATGGCTT | ACGAACGGGG |

| F1G. | SUBCLASS | |
|----------|----------|-----------|
| 0.G. F | CLASS | |
| APPROVED | , e | BRAFTSHAM |

| TGCTTGCCCC | GAAGTGAGAG
CTTCACTCTC | GACAAGCATC
CTGTTCGTAG | AGGACTATAA
TCCTGATATT | CTCCTGTTCC
GAGGACAAGG | CGTTTGTCTC
GCAAACAGAG | CCAAGCTGGA | TTATCCGGTA
AATAGGCCAT |
|------------|--------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|---------------------------|
| CTTTACCGAA | ACTTAACAGG
TGAATTGTCC | CCGCCCCCT | GAAACCCGAC
CTTTGGGCTG | CTCCTGCGCT
GAGGACGCGA | GTTATGGCCG | GCAGTTCGCT
CGTCAAGCGA | CCGCTGCGCC |
| CGCCGCTCGC | CCAGGAAGAT
GGTCCTTCTA | TCCATAGGCT
AGGTATCCGA | CAGTGGTGGC
GTCACCACCG | TGGCGGCTCC | TCATTCCGCT
AGTAAGGCGA | TTCCGGGTAG | TTCAGTCCGA
AAGTCAGGCT |
| AGCAAGCTGA | CTGGAAGATG
GACCTTCTAC | AAGCCGTTTT
TTCGGCAAAA | ACGCTCAAAT
TGCGAGTTTA | CGTTTCCCCC | AgeI
~~~~~
TTTACCGGTG
AAATGGCCAC | TGACACTCAG
ACTGTGAGTC | GAACCCCCCG
CTTGGGGGGCC |
| GATGCGAGCC | CGGAGATTTC
GCCTCTAAAG | GGCCGCGGCA | ACGAAATCTG
TGCTTTAGAC | AGATACCAGG
TCTATGGTCC | TGCCTTTCGG | ATTCCACGCC
TAAGGTGCGG | CTGTATGCAC
GACATACGTG |
| | 1751 | 1801 | 1851 | 1901 | 1951 | 2001 | 2051 |

FIG. 35CCC

| | | |
|----------|-------------|-----------|
| FIG. | SUBCLASS | |
| 0.6 | CLASS | |
| APPROVEO | <u>></u> | DRAFTSHAN |

| | | CATCTTATTA | TCAAGAAGAT
AGTTCTTCTA | CAAAACGATC
GTTTTGCTAG | 2351 |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------|
| | | Bglii | | | |
| ACGCGCAGAC
TGCGCGTCTG | GCAAGAGATT
CGTTCTCTAA | CGTTTTCAGA
GCAAAAGTCT | GCGGTTTTTT
CGCCAAAAAA | GCCCTGCAAG
CGGGACGTTC | 2301 |
| ACGAAAAACC
TGCTTTTTGG | CAGAGAACCT
GTCTCTTGGA | GTTGGTAGCT
CAACCATCGA | GGTTCAAAGA
CCAAGTTTCT | CAGTTACCTC
GTCAATGGAG | 2251 |
| TCCTCCAAGC
AGGAGGTTCG | GTGACTGCGC | ACAAGTTTTA
TGTTCAAAAT | AACTGAAAGG
TTGACTTTCC | GTTAAGGCTA
CAATTCCGAT | 2201 |
| TCATGCGCCG
AGTACGCGGC | AGTCTTGAAG
TCAGAACTTC | TAGAGGAGTT
ATCTCCTCAA | GТААТТGАТТ
САТТААСТАА | GCAGCCACTG | 2151 |
| ACCACTGGCA
TGGTGACCGT | ATGCAAAAGC
TACGTTTTCG | CCGGAAAGAC
GGCCTTTCTG | TGAGTCCAAC
ACTCAGGTTG | ACTATCGTCT
TGATAGCAGA | 2101 |

FIG. 35DDD

CLASS SUBCLASS

DRAFTSMAH

APPRIOVED | D.G. FIG.

FIG. 35EEE

APPROVED O.G. FIG.
BY CLASS SUBCLASS

pCALO-2:

BsrGI

1111

CGTTAAATTT GCAATTTAAA AATTTTAAGC TTAAAATTCG TAATATTTG ATTATAAAAC AACATTTGCA TTGTAAACGT GTACATGAAA CATGTACTTT

CCGTTTTAGG GGCAAAATCC CCGGCTTTAG GGCCGAAATC TTAACCAATA TCGAGTAAAA AATTGGTTAT AGCTCATTTT AACAATTTAG TTGTTAAATC 51

ACAAGGTCAA TGTTCCAGTT CCAACTCACA GGTTGAGTGT AAAAGAATAG ACCGAGATAG TGGCTCTATC TTTTCTTATC GAATATTTAG CTTATAAATC 101

TCAAAGGGCG AGTTTCCCGC CTGAGGTTGC GACTCCAACG AAAGAACGTG TTTCTTGCAC CAGGTGATAA GTCCACTATT ACCTTGTTCT TGGAACAAGA 151

TCACCCTAAT AGTGGGATTA TATCAGGGCG ATGGCCCACT ACGAGAACCA TGCTCTTGGT TACCGGGTGA ATAGTCCCGC TTTTGGCAG AAAAACCGTC 201

GAACCCTAAA CTTGGGATTT GGGGTCGAGG TGCCGTAAAG CACTAAATCG GTGATTTAGC ACGCCATTTC CCCCAGCTCC CAAGTTTTT STTCAAAAA 251

BanII

GATTTAGAGC TTGACGGGGA AAGCCGGCGA ACGTGGCGAG GGGAGCCCCC

FIG. 35FFF

| | | _ | |
|---------|-----------|-----------|--|
| F1G. | SHACLACO | 200 | |
| 0.0 | CLASS | | |
| D ADULE | >-
#25 | BRAFTSMAN | |

| | CCCTCGGGGG | CTAAATCTCG | AACTGCCCCT | Treseccect | TGCACCGCTC |
|-----|---|----------------------------------|--------------------------|--------------------------|--------------------------|
| 351 | AAAGGAAGGG
TTTCCTTCCC | AAGAAAGCGA
TTCTTTCGCT | AAGGAGCGGG | CGCTAGGGCG
GCGATCCCGC | CTGGCAAGTG
GACCGTTCAC |
| 401 | TAGCGGTCAC
ATCGCCAGTG | GCTGCGCGTA
CGACGCGCAT | ACCACCACAC
TGGTGGTGTG | CCGCCGCGCT | TAATGCGCCG
ATTACGCGGC |
| 451 | CTACAGGGCG | NheI
CGTGCTAGCG
GCACGATCGC | GAGTGTATAC
CTCACATATG | TGGCTTACTA | TGTTGGCACT
ACAACCGTGA |
| | | I rumX | Ħ | | AgeI |
| 501 | GATGAGGGTG | TCAGTGAAGT
AGTCACTTCA | GCTTCATGTG | GCAGGAGAAA
CGTCCTCTTT | AAAGGCTGCA
TTTCCGACGT |
| 551 | AgeI
~~~~~
CCGGTGCGTC
GGCCACGCAG | AGCAGAATAT
TCGTCTTATA | GTGATACAGG
CACTATGTCC | ATATATTCCG
TATATAAGGC | CTTCCTCGCT
GAAGGAGCGA |
| 601 | CACTGACTCG | CTACGCTCGG | TCGTTCGACT | GCGGCGAGCG | GAAATGGCTT |

FIG. 35GGG

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVES | 94 | BRAFISHAN |

| | GTGACTGAGC | GATGCGAGCC | AGCAAGCTGA | CGCCGCTCGC | CTTTACCGAA |
|-----|--|--|--|--|--|
| 651 | ACGAACGGGG
TGCTTGCCCC | CGGAGATTTC
GCCTCTAAAG | CTGGAAGATG
GACCTTCTAC | CCAGGAAGAT
GGTCCTTCTA | ACTTAACAGG
TGAATTGTCC |
| 701 | GAAGTGAGAG
CTTCACTCTC | GGCCGCGGCA | AAGCCGTTTT
TTCGGCAAAA | TCCATAGGCT
AGGTATCCGA | CCGCCCCCCT |
| 751 | GACAAGCATC
CTGTTCGTAG | ACGAAATCTG
TGCTTTAGAC | ACGCTCAAAT
TGCGAGTTTA | CAGTGGTGGC
GTCACCACCG | GAAACCCGAC
CTTTGGGCTG |
| 801 | AGGACTATAA
TCCTGATATT | AGATACCAGG
TCTATGGTCC | CGTTTCCCCC | TGGCGGCTCC | CTCCTGCGCT
GAGGACGCGA |
| 851 | CTCCTGTTCC | TGCCTTTCGG | Agel
~~~~~~
TTTACCGGTG | TCATTCCGCT | GTTATGGCCG |
| 901 | GAGGACAAGG
CGTTTGTCTC
GCAAACAGAG | ACGGAAAGCC
ATTCCACGCC
TAAGGTGCGG | AAATGGCCAC
TGACACTCAG
ACTGTGAGTC | AGTAAGGCGA
TTCCGGGTAG
AAGGCCCATC | CAATACCGGC
GCAGTTCGCT
CGTCAAGCGA |
| 951 | CCAAGCTGGA | CTGTATGCAC
GACATACGTG | GAACCCCCCG | TTCAGTCCGA
AAGTĊAGGCT | CCGCTGCGCC |

FIG. 35ННН

| <u>.</u> | CLASS SUBCLASS | |
|----------|----------------|------------|
| 0.G. FI | CLASS | |
| APPROVED | >-
ea | BRAF TSMAN |

| 1001 | TTATCCGGTA
AATAGGCCAT | ACTATCGTCT
TGATAGCAGA | TGAGTCCAAC
ACTCAGGTTG | CCGGAAAGAC
GGCCTTTCTG | ATGCAAAAGC
TACGTTTTCG |
|------|--------------------------|--------------------------|--------------------------|--------------------------|---|
| 1051 | ACCACTGGCA
TGGTGACCGT | GCAGCCACTG
CGTCGGTGAC | GTAATTGATT
CATTAACTAA | TAGAGGAGTT
ATCTCCTCAA | AGTCTTGAAG
TCAGAACTTC |
| 1101 | TCATGCGCCG | GTTAAGGCTA
CAATTCCGAT | AACTGAAAGG
TTGACTTTCC | ACAAGTTTTA
TGTTCAAAAT | GTGACTGCGC
CACTGACGCG |
| 1151 | TCCTCCAAGC
AGGAGGTTCG | CAGTTACCTC
GTCAATGGAG | GGTTCAAAGA
CCAAGTTTCT | GTTĞGTAGCT
CAACCATCGA | CAGAGAACCT
GTCTCTTGGA |
| 1201 | ACGAAAAACC
TGCTTTTTGG | GCCCTGCAAG
CGGGACGTTC | GCGGTTTTTT
CGCCAAAAAA | CGTTTTCAGA
GCAAAAGTCT | GCAAGAGATT
CGTTCTCTAA |
| | | | | | Bglli |
| 1251 | ACGCGCAGAC
TGCGCGTÇTG | CAAAACGATC
GTTTTGCTAG | TCAAGAAGAT
AGTTCTTCTA | CATCTTATTA
GTAGAATAAT | ~~~~~
GATCTAGCAC
CTAGATCGTG |
| 1301 | CAGGCGTTTA
GTCCGCAAAT | AGGGCACCAA
TCCCGTGGTT | TAACTGCCTT
ATTGACGGAA | AAAAAATTA
TTTTTTAAT | 555555555555555555555555555555555555555 |
| | | FIG. 35111 | 2111 | | |

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | λG | BRAFTSNAH |

| 1351 | TGCCACTCAT | CGCAGTACTG | TTGTAATTCA | TTAAGCATTC | TGCCGACATG |
|------|--------------------------|--------------------------|--------------------------|--------------------------|------------|
| | ACGGTGAGTA | GCGTCATGAC | AACATTAAGT | AATTCGTAAG | ACGGCTGTAC |
| 1401 | GAAGCCATCA | CAAACGGCAT | GATGAACCTG | AATCGCCAGC | GGCATCAGCA |
| | CTTCGGTAGT | GTTTGCCGTA | CTACTTGGAC | TTAGCGGTCG | CCGTAGTCGT |
| 1451 | CCTTGTCGCC | TTGCGTATAA | TATTTGCCCA | TAGTGAAAAC | GGGGGCGAAG |
| | GGAACAGCGG | AACGCATATT | ATAAACGGGT | ATCACTTTTG | CCCCCGCTTC |
| 1501 | AAGTTGTCCA
TTCAACAGGT | TATTGGCTAC
ATAACCGATG | GTTTAAATCA
CAAATTTAGT | AAACTGGTGA
TTTGACCACT | AACTCACCCA |
| 1551 | GGGATTGGCT | GAGACGAAAA | ACATATTCTC | AATAAACCCT | TTAGGGAAAT |
| | CCCTAACCGA | CTCTGCTTTT | TGTATAAGAG | TTATTTGGGA | AATCCCTTTA |
| 1601 | AGGCCAGGTT | TTCACCGTAA | CACGCCACAT | CTTGCGAATA | TATGTGTAGA |
| | TCCGGTCCAA | AAGTGGCATT | GTGCGGTGTA | GAACGCTTAT | ATACACATCT |
| 1651 | AACTGCCGGA | AATCGTCGTG | GTATTCACTC | CAGAGCGATG | AAAACGTTTC |
| | TTGACGGCCT | TTAGCAGCAC | CATAAGTGAG | GTCTCGCTAC | TTTTGCAAAG |
| 1701 | AGTTTGCTCA | TGGAAAACGG | TGTAACAAGG | GTGAACACTA | TCCCATATCA |
| | TCAAACGAGT | ACCTTTTGCC | ACATTGTTCC | CACTTGTGAT | AGGGTATAGT |

FIG. 35JJJ

| F16. | SUBCLASS | |
|----------|----------|-----------|
| 0.6. | CLASS | |
| APPROVEU | >-
G2 | PRAFTSMAN |

| 1751 | CCAGCTCACC | GTCTTTCATT | GCCATACGGA | ACTCCGGGTG | AGCATTCATC |
|------|--------------------------|------------|--------------------------|--------------------------|---|
| | GGTCGAGTGG | CAGAAAGTAA | CGGTATGCCT | TGAGGCCCAC | TCGTAAGTAG |
| 1801 | AGGCGGGCAA | GAATGTGAAT | AAAGGCCGGA | TAAAACTTGT | GCTTATTTTT |
| | TCCGCCCGTT | CTTACACTTA | TTTCCGGCCT | ATTTTGAACA | CGAATAAAAA |
| 1851 | CTTTACGGTC | TTTAAAAAGG | CCGTAATATC | CAGCTGAACG | GTCTGGTTAT |
| | GAAATGCCAG | AAATTTTTCC | GGCATTATAG | GTCGACTTGC | CAGACCAATA |
| 1901 | AGGTACATTG
TCCATGTAAC | AGCAACTGAC | TGAAATGCCT
ACTTTACGGA | CAAAATGTTC
GTTTTACAAG | TTTACGATGC
AAATGCTACG |
| 1951 | CATTGGGATA | TATCAACGGT | GGTATATCCA | GTGATTTTT | TCTCCATTTT |
| | GTAACCCTAT | ATAGTTGCCA | CCATATAGGT | CACTAAAAAA | AGAGGTAAAA |
| 2001 | AGCTTCCTTA | GCTCCTGAAA | ATCTCGATAA | CTCAAAAAAT | ACGCCCGGTA |
| | TCGAAGGAAT | CGAGGACTTT | TAGAGCTATT | GAGTTTTTTA | TGCGGGCCAT |
| 2051 | GTGATCTTAT | TTCATTATGG | TGAAAGTTGG
ACTTTCAACC | AACCTCACCC
TTGGAGTGGG | Aatii
~~~~~~
GACGTCTAAT
CTGCAGATTA |
| 2101 | GTGAGTTAGC | TCACTCATTA | TCACTCATTA GGCACCCCAG | GCTTTACACT | TTATGCTTCC |
| | | FIG. | FIG. 35KKK | | |

| | [v) | |
|----------|----------|-----------|
| | SUBCLASS | |
| F16 | | |
| O.G. | CLASS | |
| | <u>.</u> | - 5 |
| APPROVED | <u>≻</u> | BRAFTSHAH |
| ₹ | | E |

| | CACTCAATCG | AGTGAGTAAT | CCGTGGGGTC | CGAAATGTGA | AATACGAAGG |
|------|--------------------------|-------------------------------------|--------------------------------------|---|---|
| 2151 | GGCTCGTATG
CCGAGCATAC | TTGTGTGGAA
AACACACCTT | TTGTGAGCGG
AACACTCGCC | ATAACAATTT
TATTGTTAAA | CACACAGGAA
GTGTGTCCTT |
| 2201 | ACAGCTATGA
TGTCGATACT | CCATGATTAC
GGTACTAATG | XbaI

GAATTTCTAG
CTTAAAGATC | ACCCCCCCC
TGGGGGGGG | Sphi
~~~~~~
CGCATGCCAT
GCGTACGGTA |
| 2251 | AACTTCGTAT
TTGAAGCATA | AATGTACGCT
TTACATGCGA | ATACGAAGTT
TATGCTTCAA | HindIII
~~~~~~
ATAAGCTTGA
TATTCGAACT | CCTGTGAAGT
GGACACTTCA |
| 2301 | GAAAAATGGC
CTTTTTACCG | GCAGATTGTG
CGTCTAACAC | CGACATTTTT
GCTGTAAAAA | TTTGTCTGCC
AAACAGACGG | Paci
~~~~~~~
GTTTAATTAA
CAAATTAATT |
| 2351 | Fse. | Fsel
CCCGCCATTAT
CC CCCGTAATA | CAAAAAGGAT
GTTTTTCCTA | CTCAAGAAGA
GAGTTCTTCT | TCCTTTGATC |

FIG. 35LLL

| APPROVED | 0.G. F.IG. |
|-----------|----------------|
| ¥a | CLASS SUBCLASS |
| BRAFISHAN | |

| 2401 | TTTTCTACGG | GGTCTGACGC
CCAGACTGCG | TCAGTGGAAC
AGTCACCTTG | GAAAACTCAC
CTTTTGAGTG | GTTAAGGGAT
CAATTCCCTA |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 2451 | TTTGGTCATG | AGATTATCAA | AAAGGATCTT | CACCTAGATC | CTTTTAAATT |
| | AAACCAGTAC | TCTAATAGTT | TTTCCTAGAA | GTGGATCTAG | GAAAATTTAA |
| 2501 | AAAAATGAAG | TTTTAAATCA | ATCTAAAGTA | TATATGAGTA | AACTTGGTCT |
| | TTTTTACTTC | AAAATTTAGT | TAGATTTCAT | ATATACTCAT | TTGAACCAGA |
| 2551 | GACAGTTACC | CAATGCT'TAA | TCAGTGAGGC | ACCTATCTCA | GCGATCTGTC |
| | CTGTCAATGG | GTTACGAATT | AGTCACTCCG | TGGATAGAGT | CGCTAGACAG |
| 2601 | TATTTCGTTC | ATCCATAGTT | GCCTGACTCC | CCGTCGTGTA | GATAACTACG |
| | ATAAAGCAAG | TAGGTATCAA | CGGACTGAGG | GGCAGCACAT | CTATTGATGC |
| 2651 | ATACGGGAGG | GCTTACCATC | TGGCCCCAGT | GCTGCAATGA | TACCGCGAGA |
| | TATGCCCTCC | CGAATGGTAG | ACCGGGGTCA | CGACGTTACT | ATGGCGCTCT |
| 2701 | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC | AATAAACCAG | CCAGCCGGAA |
| | GGGTGCGAGT | GGCCGAGGTC | TAAATAGTCG | TTATTTGGTC | GGTCGGCCTT |
| 2751 | GGGCCGAGCG
CCCGGCTCGC | CAGAAGTGGT
GTCTTCACCA | CCTGCAACTT
GGACGTTGAA | TATCCGCCTC | CATCCAGTCT |

FIG. 35MMM

| APPROVED
DY
BRAFTSMAN |
|-----------------------------|
|-----------------------------|

| TAGAGTAAGT AGTTCGCCAG TTAATAGTTT
ATCTCATTCA TCAAGCGGTC AATTATCAAA | CTACAGGCAT CGTGGTGTCA CGCTCGTCGT
GATGTCCGTA GCACCACAGT GCGAGCAGCA | TCCGGTTCCC AACGATCAAG GCGAGTTACA
AGGCCAAGGG TTGCTAGTTC CGCTCAATGT | AAAAGCGGTT AGCTCCTTCG GTCCTCCGAT
TTTTCGCCAA TCGAGGAAGC CAGGAGGCTA | CCGCAGTGTT ATCACTCATG GTTATGGCAG
GGCGTCACAA TAGTGAGTAC CAATACCGTC | GTCATGCCAT CCGTAAGATG CTTTTCTGTG
CAGTACGGTA GGCATTCTAC GAAAAGACAC | GTCATTCTGA GAATAGTGTA TGCGGCGACC
CAGTAAGACT CTTATCACAT ACGCCGCTGG | CAATACGGGA TAATACCGCG CCACATAGCA
GTTATGCCCT ATTATGGCGC GGTGTATCGT |
|--|--|--|--|--|--|--|--|
| ATTAACTGTT GCCGGGAAGC TAGI | GCGCAACGTT GTTGCCATTG CTAC
CGCGTTGCAA CAACGGTAAC GATG | TTGGTATGGC TTCATTCAGC TCCC | TGATCCCCCA TGTTGTGCAA AAAAAAAAAAAAAAAAAA | CGTTGTCAGA AGTAAGTTGG CCG(
GCAACAGTCT TCATTCAACC GGC | CACTGCATAA TTCTCTTACT GTC1
GTGACGTATT AAGAGAATGA CAG | ACTGGTGAGT ACTCAACCAA GTC/
TGACCACTCA TGAGTTGGTT CAG | GAGTTGCTCT TGCCCGGCGT CAAT |
| 2801 | 2851 | 2901 | 2951 | 3001 | 3051 | 3101 | 3151 |

FIG. 35NNN

| . F16. | SS SUBCLASS | |
|----------------|-------------|-----------|
| APPROVED O. G. | EY CLASS | PRAFTSMAN |

XmnI

| GAAGCATTTA | CAATATTATT | CTTCCTTTTT | TACTCATACT | AAATGTTGAA | 3401 |
|------------|--------------------------|--------------------------|----------------------------------|--------------------------|------|
| CTTCGTAAAT | GTTATAATAA | GAAGGAAAAA | ATGAGTATGA | TTTACAACTT | |
| GGCGACACGG | AGGGAATAAG | GCCGCAAAAA | CAAAAACAGG AAGGCAAAAT GCCGCAAAAA | CAAAAACAGG | 3351 |
| CCGCTGTGCC | TCCCTTATTC | CGGCGTTTTT | GTTTTTGTCC TTCCGTTTTA CGGCGTTTTT | GTTTTTGTCC | |
| TCTGGGTGAG | CACCAGCGTT
GTGGTCGCAA | CTTTTACTTT
GAAAATGAAA | TCCTCAGCAT
AGGAGTCGTA | ACCCAACTGA
TGGGTTGACT | 3301 |
| CCACTCGCGC | TCGATGTAAC | GAGATCCAGT | TACCGCTGTT | TCAAGGATCT | 3251 |
| GGTGAGCGCG | AGCTACATTG | CTCTAGGTCA | ATGGCGACAA | AGTTCCTAGA | |
| GCGAAAACTC | ATTGGAAAAC GTTCTTCGGG | ATTGGAAAAC GTTC | AGTGCTCATC | GAACTTTAAA AGTGCTCATC | 3201 |
| CGCTTTTGAG | TAACCTTTTG CAAGAAGCCC | TAACCTTTTG CAAG | TCACGAGTAG | CTTGAAATTT TCACGAGTAG | |

BsrGI

TCAGGGTTAT TGTCTCATGA GCGGATACAT ATTTGAAT AGTCCCAATA ACAGAGTACT CGCCTATGTA TAAACTTA 3451

FIG. 35000

CLASS SUBCLASS

BRAFTSMAN

APPROVED O.G. FIG.

FIG. 35PPP

PacI

FIG. 35QQQ

| ن ا | SUBCLASS | |
|----------|----------|-----------|
| 0.G.FI | CLASS SI | |
| APPROVED | >
30 | SRAFTSMAH |

| Aatii | GACGTCTAAT
CTGCAGATTA | TTATGCTTCC
AATACGAAGG | CACACAGGAA
GTGTGTCCTT | Sphi | CGCATGCCAT
GCGTACGGTA | | CCTGTGAAGT
GGACACTTCA |
|-------------------------|--------------------------|--------------------------|--------------------------|------|--------------------------|---------|--------------------------|
| | ACGAAGTTAT
TGCTTCAATA | GCTTTACACT
CGAAATGTGA | ATAACAATTT
TATTGTTAAA | } | ACCCCCCCCC
TGGGGGGGGG | HindIII | ATAAGCTTGA
TATTCGAACT |
| | TGTATGCTAT
ACATACGATA | GGCACCCCAG | TTGTGAGCGG
AACACTCGCC | XbaI | GAATTTCTAG
CTTAAAGATC | | ATACGAAGTT
TATGCTTCAA |
| · | CTTCGTATAA
GAAGCATATT | TCACTCATTA
AGTGAGTAAT | TTGTGTGGAA
AACACACCTT | | CCATGATTAC
GGTACTAATG | | AATGTACGCT
TTACATGCGA |
| 0-3:
BglII
~~~~~~ | GATCTCATAA
CTAGAGTATT | GTGAGTTAGC
CACTCAATCG | GGCTCGTATG
CCGAGCATAC | | ACAGCTATGA
TGTCGATACT | | AACTTCGTAT
TTGAAGCATA |
| pCALO-3: Bg1 | Н | 21 | 101 | | 151 | | 201 |

| C.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | <u>}</u> | DRAFISHAN |

| AAACAGACGG CAAATTAATT | CTCAAGAAGA TCCTTTGATC
GAGTTCTTCT AGGAAACTAG | GAAAACTCAC GTTAAGGGAT
CTTTTGAGTG CAATTCCCTA | CACCTAGATC CTTTTAAATT
GTGGATCTAG GAAAATTTAA | TATATGAGTA AACTTGGTCT
ATATACTCAT TTGAACCAGA | ACCTATCTCA GCGATCTGTC
TGGATAGAGT CGCTAGACAG | CCGTCGTGTA GATAACTACG
GGCAGCACAT CTATTGATGC |
|-----------------------|--|--|--|--|--|--|
| GCTGTAAAAA 1 | CAAAAAGGAT (
GTTTTTCCTA (| TCAGTGGAAC AGAC AGAC AGAC AGACATCACCTTG | AAAGGATCTT (TTTCCTAGAA) | ATCTAAAGTA
TAGATTTCAT | TCAGTGAGGC A | GCCTGACTCC |
| CGTCTAACAC
eT | | GGTCTGACGC | AGATTATCAA
TCTAATAGTT | TTTTAAATCA
AAAATTTAGT | CAATGCTTAA
GTTACGAATT | TATTTCGTTC ATCCATAGTT
ATAAAGCAAG TAGGTATCAA |
| CTTTTTACCG |) } | TTTTCTACGG
AAAAGATGCC | TTTGGTCATG
AAACCAGTAC | AAAAATGAAG
TTTTTACTTC | GACAGTTACC
CTGTCAATGG | TATTTCGTTC
ATAAAGCAAG |
| 7 0 7 | 301 | 351 | 401 | 451 | 501 | 551 |

FIG. 35RRR

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| AFPROVED | <u>></u> | BRAFISHAN |

| 0 | (ካ () | GCTTACCATC
CGAATGGTAG | TGGCCCCAGT | GCTGCAATGA | TACCGCGAGA |
|-----|------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 651 | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC | AATAAACCAG | CCAGCCGGAA |
| | GGGTGCGAGT | GGCCGAGGTC | TAAATAGTCG | TTATTTGGTC | GGTCGGCCTT |
| 701 | GGGCCGAGCG | CAGAAGTGGT | CCTGCAACTT | TATCCGCCTC | CATCCAGTCT |
| | CCCGGCTCGC | GTCTTCACCA | GGACGTTGAA | ATAGGCGGAG | GTAGGTCAGA |
| 751 | ATTAACTGTT | GCCGGGAAGC | TAGAGTAAGT | AGTTCGCCAG | TTAATAGTTT |
| | TAATTGACAA | CGGCCCTTCG | ATCTCATTCA | TCAAGCGGTC | AATTATCAAA |
| 801 | GCGCAACGTT | GTTGCCATTG | CTACAGGCAT | CGTGGTGTCA | CGCTCGTCGT |
| | CGCGTTGCAA | CAACGGTAAC | GATGTCCGTA | GCACCACAGT | GCGAGCAGCA |
| 851 | TTGGTATGGC | TTCATTCAGC
AAGTAAGTCG | TCCGGTTCCC
AGGCCAAGGG | AACGATCAAG
TTGCTAGTTC | GCGAGTTACA
CGCTCAATGT |
| 901 | TGATCCCCCA | TGTTGTGCAA
ACAACACGTT | AAAAGCGGTT
TTTTCGCCAA | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT
CAGGAGGCTA |
| 951 | CGTTGTCAGA | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA | ATCACTCATG
TAGTGAGTAC | GTTATGGCAG
CAATACCGTC |

FIG. 35SSS

| O.G. FIG. | 1 |
|-----------------------------|---|
| APPROVED
BY
BRAFISHAN | |

FIG. 35TTT

| WED 0.G. F1G. | CLASS SUBCLASS | |
|---------------|----------------|------------------|
| APPROVED | <u>≻</u> 6 | DRAFTSHAH |

TITACAACIT AIGAGIAIGA GAAGGAAAAA GITATAAIAA CIICGIAAAI

BsrGI

| 1401 | TCAGGGTTAT | TGTCTCATGA | GCGGATACAT | ATTTGAATGT | ACATGAAATT |
|------|--------------------------|--------------------------|--------------------------|------------------------|--------------------------|
| , | AGTCCCAATA | ACAGAGTACT | CGCCTATGTA | TAAACTTACA | TGTACTTTAA |
| 1451 | GTAAACGTTA
CATTTGCAAT | ATATTTTGTT
TATAAAACAA | AAAATTCGCG
TTTTAAGCGC | ТТАААТТТТ
ААТТТАААА | GTTAAATCAG
CAATTTAGTC |
| 1501 | CTCATTTTT | AACCAATAGG | CCGAAATCGG | CAAAATCCCT | TATAAATCAA |
| | GAGTAAAAAA | TTGGTTATCC | GGCTTTAGCC | GTTTTAGGGA | ATATTTAGTT |
| 1551 | AAGAATAGAC | CGAGATAGGG | TTGAGTGTTG | TTCCAGTTTG | GAACAAGAGT |
| | TTCTTATCTG | GCTCTATCCC | AACTCACAAC | AAGGTCAAAC | CTTGTTCTCA |
| 1601 | CCACTATTAA | AGAACGTGGA | CTCCAACGTC | AAAGGGCGAA | AAACCGTCTA |
| | GGTGATAATT | TCTTGCACCT | GAGGTTGCAG | TTTCCCGCTT | TTTGGCAGAT |
| 1651 | TCAGGGCGAT | GGCCCACTAC | GAGAACCATC | ACCCTAATCA | AGTTTTTGG |
| | AGTCCCGCTA | CCGGGTGATG | CTCTTGGTAG | TGGGATTAGT | TCAAAAAACC |

FIG. 35UUU

BanII

| 3. F1G. | CLASS SUBCLASS | |
|------------------|----------------|-----------|
| APROVED (C.C. F. | DY CLASS | DRAFTSMAH |

| 1701 | GGTCGAGGTG
CCAGCTCCAC | CCGTAAAGCA
GGCATTTCGT | CTAAATCGGA
GATTTAGCCT | ACCCTAAAGG
TGGGATTTCC | GAGCCCCCGA |
|------|--|--------------------------|--------------------------|--------------------------|----------------------------------|
| 1751 | TTTAGAGCTT
AAATCTCGAA | GACGGGGAAA
CTGCCCCTTT | GCCGGCGAAC
CGGCCGCTTG | GTGGCGAGAA | AGGAAGGGAA
TCCTTCCCTT |
| 1801 | GAAAGCGAAA
CTTTCGCTTT | GGAGCGGGCG | CTAGGGCGCT
GATCCCGCGA | GGCAAGTGTA
CCGTTCACAT | GCGGTCACGC
CGCCAGTGCG |
| 1851 | TGCGCGTAAC
ACGCGCATTG | CACCACACCC | GCCGCGCTTA
CGGCGCGAAT | ATGCGCCGCT
TACGCGGCGA | ACAGGGCGCG |
| 1901 | NheI
~~~~~~
TGCTAGCGGA
ACGATCGCCT | GTGTATACTG | GCTTACTATG
CGAATGATAC | TTGGCACTGA | TGAGGGTGTC |
| | | | | Age | H |
| 1951 | AGTGAAGTGC
TCACTTCACG | TTCATGTGGC | AGGAGAAAAA
TCCTCTTTTT | AGGCTGCACC
TCCGACGTGG | ~~~~
GGTGCGTCAG
CCACGCAGTC |
| 2001 | CAGAATATGT
GTCTTATACA | GATACAGGAT | ATATTCCGCT | TCCTCGCTCA
AGGAGCGAGT | CTGACTCGCT
GACTGAGCGA |

FIG. 35VVV

| F1G. | SUBCLASS | |
|----------|----------|----------|
| | CLASS | |
| APPROVEU | 70 | MAFTSMAH |

| 2051 | ACGCTCGGTC
TGCGAGCCAG | GTTCGACTGC
CAAGCTGACG | GGCGAGCGGA
CCGCTCGCCT | AATGGCTTAC
TTACCGAATG | GAACGGGGCG
CTTGCCCCGC |
|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 2101 | GAGATTTCCT
CTCTAAAGGA | GGAAGATGCC
CCTTCTACGG | AGGAAGATAC
TCCTTCTATG | TTAACAGGGA
AATTGTCCCT | AGTGAGAGGG
TCACTCTCCC |
| 2151 | CCGCGGCAAA | GCCGTTTTTC
CGGCAAAAG | CATAGGCTCC
GTATCCGAGG | GCCCCCTGA
CGGGGGGACT | CAAGCATCAC
GTTCGTAGTG |
| 2201 | GAAATCTGAC
CTTTAGACTG | GCTCAAATCA
CGAGTTTAGT | GTGGTGGCGA | AACCCGACAG
TTGGGCTGTC | GACTATAAAG
CTGATATTTC |
| 2251 | ATACCAGGCG
TATGGTCCGC | TTTCCCCCTG | GCGGCTCCCT
CGCCGAGGGA | CCTGCGCTCT
GGACGCGAGA | CCTGTTCCTG |
| | | AgeI | | | |
| 2301 | CCTTTCGGTT
GGAAAGCCAA | TACCGGTGTC
ATGGCCACAG | ATTCCGCTGT
TAAGGCGACA | TATGGCCGCG
ATACCGGCGC | TTTGTCTCAT
AAACAGAGTA |
| 2351 | TCCACGCCTG | ACACTCAGTT
TGTGAGTCAA | CCGGGTAGGC | AGTTCGCTCC
TCAAGCGAGG | AAGCTGGACT
TTCGACCTGA |

FIG. 35WWW

| 0.G. FIG. | CLASS SUBCLASS | |
|-----------|----------------|-----------|
| APPROVED | β¥ | PRAFTSMAN |

| GCTGCGCCTT ATCCGGTAAC | GCAAAAGCAC CACTGGCAGC | TCTTGAAGTC ATGCGCCGGT | GACTGCGCTC CTCCAAGCCA | GAGAACCTAC GAAAAAACCGC | AAGAGATTAC GCGCAGACCA |
|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|
| CGACGCGGAA TAGGCCATTG | CGTTTTCGTG GTGACCGTCG | AGAACTTCAG TACGCGGCCA | CTGACGCGAG GAGGTTCGGT | CTCTTGGATG CTTTTTGGĆG | TTCTCTAATG CGCGTCTGGT |
| GCTGC | GCAAA
CGTTT | TCTTG
AGAAC | GACTG | GAGAA | AAGAG
TTCTC |
| CAGTCCGACC | GGAAAGACAT | GAGGAGTTAG | AAGTTTTAGT | TGGTAGCTCA | TTTTCAGAGC |
| GTCAGGCTGG | CCTTTCTGTA | CTCCTCAATC | TTCAAAATCA | ACCATCGAGT | AAAAGTCTCG |
| ACCCCCCGTT | AGTCCAACCC | AATTGATTTA | CTGAAAGGAC | TTCAAAGAGT | GGTTTTTTCG |
| TGGGGGGCAA | TCAGGTTGGG | TTAACTAAAT | GACTTTCCTG | AAGTTTCTCA | CCAAAAAAGC |
| GTATGCACGA | TATCGTCTTG | AGCCACTGGT | TAAGGCTAAA | GTTACCTCGG | CCTGCAAGGC |
| CATACGTGCT | ATAGCAGAAC | TCGGTGACCA | ATTCCGATTT | CAATGGAGCC | GGACGTTCCG |
| 2401 | 2451 | 2501 | 2551 | 2601 | 2651 |

rriga

AAACGATCTC AAGAAGATCA TCTTATTA TTTGCTAGAG TTCTTCTAGT AGAATAAT

2701

FIG. 35XXX

M1: PCR using template

NoVspAatII: TAGACGTC

POVED 0.G. FIG.
Y CLASS SUBCLASS

M2: synthesis

BloxA-A: TATGAGATCTCATAACTTCGTATAATGTACGCTATACG-

AAGTTAT

BloxA-B: TAATAACTTCGTATAGCATACATTATACGAAGTTATG-

AGATCTCA

M3: PCR, NoVspAatII as second oligo

XloxS-muta: CATTTTTGCCCTCGTTATCTACGCATGCGATAACTTCGTA-TAGCGTACATTATACGAAGTTATTCTAGACATGGTCATAGCTGTTTCCTG

M7-1: PCR

gIIINEW-fow: GGGGGGAATTCGGTGGTGGTGGATCTGCGTGCGCTG-

AAACGGTTGAAAGTTG

gIIINEW-rev: CCCCCCAAGCTTATCAAGACTCCTTATTACG

M7-II: PCR

glllss-fow: GGGGGGGGAATTCGGAGGCGGTTCCGGTGGTGGC

M7-III: PCR

glllsupernew-fow: GGGGGGGGAATTCGAGCAGAAGCTGATCTCT-GAGGAGGATCTGTAGGGTGGTGGCTCTGGTTCCGGTGATTTTG

FIG. 35YYY

PROVED O.G. FIG.
BY CLASS SUBCLASS
FTSMAIL

M8: synthesis

Iox514-A: CCATAACTTCGTATAATGTACGCTATACGAAGTTATA

IOX514-B: AGCTTATAACTTCGTATAGCGTACATTATACGAAGT-

TATGGCATG

M9II: synthesis

M9II-fow: AGCTTGACCTGTGAAGTGAAAAATGGCGCAGATT-

M9II-rev: GTACACCCCCCCAGGCCGGCCCCCCCCCTTTAA-

TTAAACGGCAGACAAAAAAAAATGTCGCACAATCTGCG

M10ll: assembly PCR with template

bla-fow: GGGGGGGTGTACATTCAAATATGTATCCGCTCATG

bla-seq4: GGGTTACATCGAACTGGATCTC

bla1-muta: CCAGTTCGATGTAACCCACTCGCGCACCCAACTGATC-

CTCAGCATCTTTACTTTCACC

blall-muta: ACTCTAGCTTCCCGGCAACAGTTAATAGACTGGATG-

GAGGCGG

bla-NEW: CTGTTGCCGGGAAGCTAGAGTAAG

bla-rev: CCCCCCTTAATTAAGGGGGGGGGCCGGCCATTATCAAA-

AAGGATCTCAAGAAGATCC

M11II/III: PCR, site-directed mutagenesis

FIG. 35ZZZ

PROVED O.G. FTG.

BY CLASS SUBCLASS
FTSHAN

f1-fow: GGGGGGGCTAGCACGCCCCTGTAGCGGCGCATTAA

f1-rev: CCCCCCCTGTACATGAAATTGTAAACGTTAATATTTTG

f1-t133.muta: GGGCGATGGCCCACTACGAGAACCATCACCCTAATC

M12: assembly PCR using template

p15-fow: GGGGGGAGATCTAATAAGATGATCTTCTTGAG

p15-NEWI: GAGTTGGTAGCTCAGAGAACCTACGAAAAACCGCCCTG-

CAAGGCG

p15-NEWII: GTAGGTTCTCTGAGCTACCAACTC

p15-NEWIII: GTTTCCCCCTGGCGGCTCCCTCCTGCGCTCTCCTGTTCCT-

GCC

p15-NEWIV: AGGAGGGAGCCGCCAGGGGGAAAC

p15-rev: GACATCAGCGCTAGCGGAGTGTATAC

M13: synthesis

BloxXB-A: GATCTCATAACTTCGTATAATGTATGCTATACGAAGTTA-

TTCA

BloxXB-B: GATCTGAATAACTTCGTATAGCATACATTATACGAAGTTA-

TGAGA

M14-Ext2: PCR, site-directed mutagenesis

ColEXT2-fow: GGGGGGGGAGATCTGACCAAAATCCCTTAACGTGAG

Col-mutal: GGTATCTGCGCTCTGCTGTAGCCAGTTACCTTCGG

FIG. 35AAAA

M17: assembly PCR using template

CAT-1: GGGACGTCGGGTGAGGTTCCAAC

CAT-2: CCATACGGAACTCCGGGTGAGCATTCATC

CAT-3: CCGGAGTTCCGTATGG

CAT-4: ACGTTTAAATCAAAACTGG

CAT-5: CCAGTTTTGATTTAAACGTAGCCAATATGGACAACTTCTTC-

GCCCCGTTTTCACTATGGGCAAATATT

CAT-6: GGAAGATCTAGCACCAGGCGTTTAAG

M41: assembly PCR using template

LAC1: GAGGCCGGCCATCGAATGGCGCAAAAC

LAC2: CGCGTACCGTCCTCATGGGAGAAAATAATAC

LAC3: CCATGAGGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCA-

TTGGGTCACCAGCAAATCCGCTGTTAGCTGGCCCATTAAG

LAC4: GTCAGCGGCGGGATATAACATGAGCTGTCCTCGGTATCGTCG

LAC5: GTTATATCCCGCCGCTGACCACCATCAAAC

LAC6: CATCAGTGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGT4TTG-

GGAGCCAGGGTGGTTTTC

LAC7: GGTTAATTAACCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCC-

AGCTGCATCAGTGAATCGGCCAAC

M41-MCS-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGTT-

AAGGGGGGGGGG

FIG. 35BBBB

M41-MCS-rev: CTAGCCCCCCCCCCCCTTAAGCCCCCCCCGGTCCGGT-

TTAAACACTAGT

M41-fow: CTAGACTAGTGTTTAAACCGGACCGGGGGGGGGGCTTAA-

GGGGGGGGGGG

M41-rev: CCCCCCTTAAGTGGGCTGCAAAACAAAACGGCCTCC-

TGTCAGGAAGCCGCTTTTATCGGGTAGCCTCACTGCCCGCTTTCC

M41-A2: GTTGTTGTGCCACGCGGTTAGGAATGTAATTCAGCTCCGC

M41-B1: AACCGCGTGGCACAACAAC

M41-B2: CTTCGTTCTACCATCGACACGACCACGCTGGCACCCAGTTG

M41-C1: GTGTCGATGGTAGAACGAAG

M41-CII: CCACAGCAATAGCATCCTGGTCATCCAGCGGATAGTT-

AATAATCAGCCCACTGACACGTTGCGCGAG

M41-DI: GACCAGGATGCTATTGCTGTGG

M41-DII: CAGCGCGATTTGCTGGTGGCCCAATGCGACCAGATGC

M41-EI: CACCAGCAAATCGCGCTG

M41-EII: CCCGGACTCGGTAATGGCACGCATTGCGCCCAGCGCC

M41-FI: GCCATTACCGAGTCCGGG

M42: synthesis

Eco-H5-Hind-fow: AATTCCACCATCATCACCATTGACGTCTA

Fco-H5-Hind-rev: AGCTTAGACGTCAATGGTGATGATGGTGG

FIG. 35CCCC

ž

CLASS SUBCLASS

Š

APPROVED O.G. FIG.

FIG. 36A

| | | —, |
|----------|----------|-----------|
| | LAS | |
| F1G. | SUBCLASS | |
| (2) | CLASS | |
| \odot | 2 | |
| VED | | HA |
| APPROVED | ÷2 | RAFTSHAII |
| | | co I |

| | I 6 | BsiWI NspV | CC GTACGTTCGA | | | TA TCAAAAAGGA
AT AGTTTTTCCT | CG CTCAGTGGAA
GC GAGTCACCTT | CA AAAAGGATCT
GT TTTTCCTAGA |
|--------|----------|------------|----------------------------------|------|-----------|--------------------------------|--------------------------------|--------------------------------|
| Psp5II | Eco01091 | | TGG CCAAGGTCCC
ACC GGTTCCAGGG | | ች | CCGGCCATTA | GGGTCTGACG
CCCAGACTGC | GAGATTATCA
CTCTAATAGT |
| | BstXI | | AAGCCCCTGG | | KpnI | AGG | CTTTTCTACG
GAAAAGATGC | TTTTGGTCAT
AAAACCAGTA |
| | Bsu36I | StEI | TCAGGTGACC | PmlI | | ACGT | ATCCTTTGAT
TAGGAAACTA | CGTTAAGGGA |
| | MluI Bsu | paI | CGCGTTAACC | | NspVBsaBI | AGATTACCAT | TCTCAAGAAG
AGAGTTCTTC | CGAAAACTCA
GCTTTTGAGT |
| | | | 126 | | | 176 | 226 | 276 |

F/G. 36B

| 0.G. FIG. | CLASS SUBCLASS | | |
|-----------|----------------|-----------|--|
| APPROVED | 20 | DRAFTSKAH | |

| 326 | TCACCTAGAT | CCTTTTAAAT | TAAAAATGAA | GTTTTAAATC | AATCTAAAGT |
|-----|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | AGTGGATCTA | GGAAAATTTA | ATTTTTACTT | CAAAATTTAG | TTAGATTTCA |
| 376 | ATATATGAGT | AAACTTGGTC | TGACAGTTAC | CAATGCTTAA | TCAGTGAGGC |
| | TATATACTCA | TTTGAACCAG | ACTGTCAATG | GTTACGAATT | AGTCACTCCG |
| 426 | ACCTATCTCA | GCGATCTGTC | TATTTCGTTC | ATCCATAGTT | GCCTGACTCC |
| | TGGATAGAGT | CGCTAGACAG | ATAAAGCAAG | TAGGTATCAA | CGGACTGAGG |
| 476 | CCGTCGTGTA | GATAACTACG
CTATTGATGC | ATACGGGAGG
TATGCCCTCC | GCTTACCATC
CGAATGGTAG | TGGCCCCAGT |
| 526 | GCTGCAATGA | TACCGCGAGA | CCCACGCTCA | CCGGCTCCAG | ATTTATCAGC |
| | CGACGTTACT | ATGGCGCTCT | GGGTGCGAGT | GGCCGAGGTC | TAAATAGTCG |
| 576 | AATAAACCAG | CCAGCCGGAA | GGGCCGAGCG | CAGAAGTGGT | CCTGCAACTT |
| | TTATTTGGTC | GGTCGGCCTT | CCCGGCTCGC | GTCTTCACCA | GGACGTTGAA |
| 929 | TATCCGCCTC | CATCCAGTCT | ATTAACTGTT | GCCGGGAAGC | TAGAGTAAGT |
| | ATAGGCGGAG | GTAGGTCAGA | TAATTGACAA | CGGCCCTTCG | ATCTCATTCA |
| 676 | AGTTCGCCAG
TCAAGCGGTC | TTAATAGTTT
AATTATCAAA | GCGCAACGTT
CGCGTTGCAA | GTTGCCATTG | CTACAGGCAT
GATGTCCGTA |

FIG. 36C

| 10.G. FIG. | CLASS SUBCLASS | |
|------------|----------------|-----------|
| APPROVED | }9 | DRAFTSPAN |

| 726 | CGTGGTGTCA | CGCTCGTCGT | TTGGTATGGC | TTCATTCAGC | TCCGGTTCCC |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | GCACCACAGT | GCGAGCAGCA | AACCATACCG | AAGTAAGTCG | AGGCCAAGGG |
| 776 | AACGATCAAG | GCGAGTTACA | TGATCCCCCA | TGTTGTGCAA | AAAAGCGGTT |
| | TTGCTAGTTC | CGCTCAATGT | ACTAGGGGGGT | ACAACACGTT | TTTTCGCCAA |
| 8 2 6 | AGCTCCTTCG
TCGAGGAAGC | GTCCTCCGAT | CGTTGTCAGA
GCAACAGTCT | AGTAAGTTGG
TCATTCAACC | CCGCAGTGTT
GGCGTCACAA |
| 876 | ATCACTCATG | GTTATGGCAG | CACTGCATAA | TTCTCTTACT | GTCATGCCAT |
| | TAGTGAGTAC | CAATACCGTC | GTGACGTATT | AAGAGAATGA | CAGTACGGTA |
| 926 | CCGTAAGATG | CTTTTCTGTG | ACTGGTGAGT | ACTCAACCAA | GTCATTCTGA |
| | GGCATTCTAC | GAAAAGACAC | TGACCACTCA | TGAGTTGGTT | CAGTAAGACT |
| 976 | GAATAGTGTA
CTTATCACAT | TGCGGCGACC
ACGCCGCTGG | GAGTTGCTCT
CTCAACGAGA | TGCCCGGCGT | CAATACGGGA
GTTATGCCCT |
| 1026 | TAATACCGCG | CCACATAGCA | GAACTTTAAA | AGTGCTCATC | ATTGGAAAAC |
| | ATTATGGCGC | GGTGTATCGT | CTTGAAATTT | TCACGAGTAG | TAACCTTTTG |
| 1076 | GTTCTTCGGG | GCGAAAACTC
CGCTTTTGAG | TCAAGGATCT
AGTTCCTAGA | TACCGCTGTT
ATGGCGACAA | GAGATCCAGT
CTCTAGGTCA |

FIG. 36D

|
 | SUBCLASS | |
|----------|----------|-----------|
| • | C. A.SS | |
| APPROVED | Æ | DRAFTSMAN |

| TCTTCAGCAT CTTTTACTTT
AGAAGTCGTA GAAAATGAAA
Eco571 | AAGGCAAAAT GCCGCAAAAA
TTCCGTTTTA CGGCGTTTTT | TACTCATACT CTTCCTTTTT
ATGAGTATGA GAAGGAAAAA | TGTCTCATGA GCGGATACAT
ACAGAGTACT CGCCTATGTA | XhoI
~~~~~~
BbeI AseI BssHII | CATTA A | |
|--|--|--|--|------------------------------------|-------------------------------|-------------|
| ACCCAACTGA TC1
TGGGTTGACT AG1 | CAAAAACAGG AA(
GTTTTTGTCC TT(| AAATGTTGAA TA(
TTTACAACTT AT(| TCAGGGTTAT TG'
AGTCCCAATA AC | PstI | CTGCA | BspEI BsrGI |
| CCACTCGTGC ACC
GGTGAGCACG TGG
BSSSI | TCTGGGTGAG CAA
AGACCCACTC GTT | GGCGACACGG AAA
CCGCTGTGCC TTT | GAAGCATTTA TCA
CTTCGTAAAT AGI | EagI | • | Bs |
| TCGATGTAAC CC
AGCTACATTG GC | CACCAGCGTT TO
GTGGTCGCAA AO | AGGGAATAAG GG
TCCCTTATTC C | CAATATTATT GI
GTTATAATAA C | | ATTTGAATGT AG
TAAACTTACA T | BssHII |
| 1126 | 1176 | 1226 | 1276 | | 1326 | |

F/G. 36E

CLASS SUSCLASS APPROVED 0.6. FIG. DRAFTSMAR

CGCTTTGTCT TCCGGATGTA CATGAAATT GCGAAACAGA AGGCCTACAT GTACTTTAA CGCGCTTCAG (GCGCGAAGTC (Eco57I 1376

FIG. 36F

Δ

| | | • | | | | | | | | | 10 | | | | | | | | |
|-----------|-----|---|---|---|---|---|---|---|---|---|----|---|---|---|---|----|-----|-----|----------------|
| 0_K3L_5 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | C |
| | | | | | | | | | | | | | | | | Bt | ısl | - : | |
| | | | | | | | | | | | | | | | E | | | D | |
| Vk1 & Vk3 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | \mathbb{C} |
| | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | E | | | D | |
| Vk2 | 5'- | G | C | C | Ċ | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | C |
| | | | | | | | | | | | | | | | Ε | | | D | |
| Vk4 | 5'- | G | C | C | C | T | G | C | Α | Α | G | C | G | G | Α | Α | G | Α | \overline{C} |

FIG. 37A

APPROVED O.G. F.IG.
EY CLASS SUBCLASS

FIG. 37B

FIG. 37C

| | | 70 | | | | | | | | | | 80 | 81 | | | |
|-----|-----|----|--------------|---|---|-----|---|---|---|---|---|----|----|-----|---------|---|
| AAC | C G | G | T | Α | Α | G | C | T | T | T | C | G | G | -5' | 0_K3L_3 | } |
| | Msc | 1 | | | | | | | | | | | | | | |
| F | G | | 0 | | _ | _ | _ | | | • | _ | ^ | 0 | 21 | | |
| TTG | G C | C | A | 1 | T | C | G | А | А | А | G | C | C | -3 | | |
| | _ | | ^ | | | | | | | | | | | | | |
| F | G _ | | \mathbf{Q} | | | | | | | | | | | | | |
| TTC | G C | С | Α | T | T | · C | G | Α | Ą | A | G | C | C | -3' | | |
| F | G | | Q | | | | | | | | | | | | | |
| TTC | G C | С | Α | T | T | C | G | Α | Α | Α | G | C | C | -3' | | |

FIG. 37D

APPROVED O.G. F1G.
BY CLASS SUBCLASS

E D E A D
5'- C C T G C A A G C G G A A G A G C G G A T T -

FIG. 38A

FIG. 38B

| ASS | | 09 | 70 | | 80 |
|--------------------------|---|-----------|----------------|---------|-------|
| O.G. FIG. | | | G G | G T | K L |
| APPROVED O.G. FIG. | | | | GGCACGA | AGTTA |
| | gap | gap | - : | | |
| APPROVED BY BY ORAFISHAM | - G C T G C T | | T. | | |
| APP. | | | | | |
| | GATGAT | : | · • | | |
| | G A G G A G | GAGGAG |)
r | | |
| | GGTGGT | G G T G G | 1
T | | |
| | CATCAT | i | T | | |
| | ATTATT | | T | | |
| | AAGAAG | AAGAA | 3 | | |
| | CTTCTT | CTTCT | Т | | |
| | ATGATG | i i | 1 | | |
| | AATAAT | • | : | | |
| | $\begin{array}{c} C \; C \; T \; C \; C \; T \\ C \; C \; C \; C \; C \; C \end{array}$ | ÷ | ÷ | | |
| | C A G C A G
C G T C G T | 1 | • | | |
| | | TCTTC | T | | |
| | ACTACT | | T | | |
| | | GTTGT | T | | |
| | | ΤG | G | | |
| | TATTAT | TATTA | | | |
| | 18 | 19 | | | |
| | 18 18 | 19 | | | |
| | 18 18 | 18 19 | 1.08E+08 | | |

FIG. 38C

NATIONEO C. G. F. IG.

NY GLASS SUBCLASS

AFTSMAH

FIG. 38D

APPROVED O.G. FIG.
BY CLASS SUBCLASS

DRAFTSHAIL

APPROVED U.G. F.IG.
BY CLASS SUBCLASS
ORAFISHAN

| % soluble | 궃 | ξ2 | χ | Х
4 | 7 | 77 | λ3 |
|-----------|-----|-----|-----|--------|-----|-----|-----|
| H1A | 61% | 58% | 52% | 42% | %06 | 61% | %09 |
| H1B | 39% | 48% | %99 | 48% | 47% | 39% | 36% |
| H2 | 47% | 57% | 46% | 49% | 37% | 36% | 45% |
| H3 · | 85% | 67% | 76% | 61% | 80% | 71% | 83% |
| H4 | %69 | 52% | 51% | 44% | 45% | 33% | 42% |
| HS | 49% | 49% | 46% | 67% | 54% | 46% | 47% |
| 9H | %06 | 28% | 54% | 47% | 45% | 20% | 51% |

| Total amount | , | 2, | 3 | 3 | 11 | 3.2 | 2.2 |
|------------------|------|------|------|--------|------|------|------|
| compared to H3K2 | 2 | 2 | 2 | t
∠ | - | 77 | ટ્ |
| H1A | 289% | | 166% | , , | 20% | 150% | 78% |
| H18 | 219% | | 89% | - | 117% | 158% | 101% |
| H2 | 186% | 223% | 208% | 182% | 126% | %09 | 97% |
| Н3 | 20% | | 71% | | 29% | 130% | 47% |
| H4 | 37% | 55% | %09 | | 195% | 107% | 251% |
| H5 | 98% | | 167% | | 93% | 128% | 115% |
| 9H | 65% | | 89% | | 299% | 215% | 278% |

FIG. 40A

<u>)</u>5

CLASS SUBCLASS

DRAFTSMAN

APPROVED O.G. FIG.

| Soluble amount | 7 | 2 | Ž | X4 | 7 | λ2 | 23 |
|------------------|----------|-------|------|------|------|------|-------|
| compared to H3K2 | <u>-</u> | 7 | 2 | | 1 | | |
| M1 A | 1910/0 | 88% | 121% | 122% | 26% | 211% | 16% |
| | 1240/0 | 95% | 83% | 107% | 79% | 142% | 29% |
| H.2 | 126% | 204% | 139% | 130% | %99 | 20% | 0/00/ |
| 711 | 630% |)
 | 81% | 49% | %69 | 143% | 61% |
| | 40% | 470% | 49% | 54% | 95% | 55% | 125% |
| ± 1 | %65 | 158% | 116% | 80% | 7 2% | 84% | 84% |
| C H | 85% | 122% | 87% | 77% | 162% | | 212% |
| | McPC | | | | | | |
| soluble | 38% | | | | | | |
| %H3k2 total | 117% | | | | | | |
| %H3k2 soluble | 9/069 | | | | | | |
| | | | | | | | |

FIG. 40B