Problem Solving with Al

Dr. Collin F. Lynch

Al Academy: North Carolina State University Copyright 2021: Dr. Collin F. Lynch

NC STATE UNIVERSITY

Agenda

Course Overview

Foundations

Problems

Agents

Agent Types

Course Overview

Broad Goals

- ► Cover foundational *concepts* of Al.
- ► Highlight potential *applications* for AI tools.
- Cover algorithms, techniques and design patterns for Al applications.

Foundations

Origins

Credit: www.filmeducation.org

6/41

Dr. Lynch Problem Solving NC STATE UNIVERSITY

Logic

Credit: historyoflogic.com

Dr. Lynch Problem Solving NC STATE UNIVERSITY

Applications

8/41

Image Credits: vipinonline.com callcredit.co.uk agweb.com techcrunch.com

The Boxes

"Machines with minds"	"Computations that perceive
Think like humans.	reason and act." Think ra-
	tionally.
"Machines that perform func-	"Intelligent behavior in arti-
tions that require intelligence	facts." Act rationally
when done by people." Act	
like humans	

Dr. Lynch Problem Solving NC STATE UNIVERSITY 9 / 41

Pragmatism

Image: mathworks.com

Dr. Lynch

The Turing Test

Dr. Lynch

Al Academy

Problem Solving

NC STATE UNIVERSITY

Student: Can machines think?

N Academy Problem Solving

Student: Can machines think?

Master: Can submarines swim?

Problems

Academy Problem Solving

What defines a problem?

Problems

Problem Types

- Well-Structured (Well-Defined) (Turing Recognizable)
- III-Defined
- Wicked Problems
- Toy or Puzzle:
 - Atomic:
 - Observable:
 - Deterministic:
 - Completely Known.

Problem Solving

- 1. Define a representation of the problem (abstraction).
- 2. Solve the problem by searching for a solution.
- 3. Execute the planned solution.
- 4. Evaluate or defend your results and recompute.

Agent

18 / 41

Aspects

- Separation:
 - ► The agent is distinct from the environment.
 - ▶ The *sensors* and *actuators* provide the interface.
 - These are distinct from the percepts and actions which are internal.
- Architecture agent hardware.
- ▶ Function $a: p_0, \ldots, p_n \rightarrow a_i$
- Program (implementation)

Dr. Lynch

Context

- Performance measure for success.
- Agent's prior knowledge.
- The available actions.
- Percept sequence to date.

PEAS

Big Idea: Satisficing

Problem Solving

Rationality

- Strong rationality rests on a basic assumption:
 - "Reasonable people all think the same,... if they think"
- This idea rests at the foundation of economics.
- And much other discussion, the basic idea that there are good processes of reasoning and clear values.

23 / 41

Rationality

- Strong rationality rests on a basic assumption:
 - "Reasonable people all think the same,... if they think"
- This idea rests at the foundation of economics.
- And much other discussion, the basic idea that there are good processes of reasoning and clear values.
- Needless to say humans don't do this.
- and AI is more limited.

Rational Agents

A rational agent seeks to maximize it's performance given it's current context. (Rationality \neq Omniscience)

Agent Types

Problem Solving

Problem Solving

Agent Types

- ► Simple Reflex
- Model-based reflex
- Goal-based
- Utility-based

Simple Reflex Agent

🛊 Al Academy

Simple Reflex Agent: Schema

```
def agent_func(Percept):
Rules = {"p0" : "a0", "p1" : "a3", ...}
Action = Rules[Percept]
return Action
```


(Pseudo-Random) Simple Reflex Agent: Schema (2)

Model-Based Reflex Agent

30 / 41

Model-Based Reflex Agent: Schema

Dr. Lynch

Goal-Based Agent

Goal-Based Agent: Schema

Dr. Lynch

Utility-Based Agent

34 / 41

Utility-Based Agent: Schema

35 / 41

Dr. Lynch Problem Solving NC STATE UNIVERSITY

Why Utility?

Why Utility?

- Sometimes there is no goal per-se.
- Sometimes the goal changes.
- Or the environment does.

Uncertainty.

- Certainty
- Uncertainty
- ▶ Risk

Learning Agent

38 / 41

Learning Agent: Schema

39 / 41

Dr. Lynch Problem Solving NC STATE UNIVERSITY

Wumpus World

(a) Wumpus World A

(b) Wumpus World B

Figure 1: Two Instances of the Wumpus World (AI: A Modern Approach (Russell and Norvig))

Dr. Lynch State UNIVERSITY 40 / 41

Ethics

► Ethics has already started.

Problem Solving

- ► Ethics has already started.
- Applications: what should be built?

- ► Ethics has already started.
- ► Applications: what should be built?
- ► Engineering: how should we build it?

- ► Ethics has already started.
- ► Applications: what should be built?
- ► Engineering: how should we build it?
- ▶ Implementation: Can agents have ethics?

- ► Ethics has already started.
- Applications: what should be built?
- ► Engineering: how should we build it?
- ▶ Implementation: Can agents have ethics?
- Enforcement: How can we enforce these rules?

