CG2351 机械特性测试模块 & 显示终端通讯协议

通讯波特率: 默认 9600bps; 8 位通讯; 1 位停止位; 无奇偶校验

注: 本协议去掉类型号 0x30

请求 - 读取 分合行程及电流曲线数据:								
类型	机号	功能	分合闸标	相位/电流标	寄存器个数	寄存器个数	CRCL	CRCH
号		码	志	志 志	Н	L		
0x30	0x01	0x04	XX	XX	0x00	0x00	XX	XX

分合闸标志字节:

0x00 —— 分闸

0x01 —— 合闸

相位标志字节:

0x0A—— A 相 0x0B—— B 相 0x0C—— C 相 0x0D—— 电流

回应 - 读	回应 - 读取 分合行程及电流曲线数据:								
类型号	机号	功能码	字节数 H	字节数 L	分合闸 标志	相位/电 流标志	Data1	Data2	•••
0x30	0x01	0x04	0x01	0x6E	XX	XX	XX	XX	•••
Data359	Data360	备用 H	备用 L	保留1	保留 2	CRCL	CRCH		
XX	XX	分合速 度/最大 电流 H	分合速 度/最大 电流 L	A/B/C 总行程 L	A/B/C 总行程 H	XX	XX		

位移点 10 倍化 (mm) —— 电流点 80.5 倍化 (A)

1、分合闸标志字节:

0x00 —— 分闸

0x01 —— 合闸

2、相位标志字节:

0x0A—— A 相

0x0B—— B 相 0x0C—— C 相 0x0D—— 电流

3、位移点 10 倍化(mm)

即: Data1~Data360 共 360 个点,每个数据点 / 10 = 实际位移曲线 单位: mm。

- 3、总行程 因子 0.1 , 单位 mm
- 5、线圈电流点 80.5 倍化 (A)

即:Data1~Data360 共 360 个数据点/80.5 = 实际电流曲线 单位:A。一般显示终端 处理 电 流曲线时,除以80即可(可不用除以80.5)。

若发送申流申流粉据。则相速度 H-和相速度 L-均为 0xFF。

请求 -	读取	储能电机	l的电流曲线数据	居:				
类型	机号	功能	起始寄存器	起始寄存器	寄存器个	寄存器个	CRCL	CRCH
号		码	地址 H	地址 L	数 H	数 L		
0x30	0x01	0x05	0x50	0x00	0x00	0x00	XX	XX

回应 - 读										
类型号	机号	功能码	字节数 H	字节数 L			Data1	Data2	•••	
0x30	0x01	0x05	0x01	0x6E	0x00	0x00	XX	XX	•••	
Data319	Data320	储能时 间 H	储能时 间 L	储能电 流最大 值 H	储能电 流最大 值 L	CRCL	CRCH			
XX	XX	XX	XX	未修正	未修正	XX	XX			

说明:储能电机电流每 50mS 采样一个点;实际电流=每一个数据点*8.282 单位 mA

请求- 计	请求- 读取寄存器值:							
类型	机号	功能码	起始寄	起始寄	寄存器	寄存器	CRCL	CRC
号			存器地	存器地	个数 H	个数 L		Н
			址H	址 L				
0x30	XX	0x03	XX	XX	XX	XX	XX	XX

回应- 智	寄存器值:	:							
类型 号	机号	功能	字节	寄存器数	寄存器数	寄存器数	寄存器数		
号	17 L G	码	数	据 1 H	据 1 L	据 2 H	据 2 L	• • •	• • •
0x30	XX	0x03	XX	XX	XX	XX	XX		• • •
CRCL	CRCH								
XX	XX								

请求 - 修	改寄存器值	:						
类型号	机号	功能码	起始寄 存器地	起始寄 存器地	寄存器个 数 H	寄存器个 数 L	字节	寄存器 数据 1
大王 7			サ福地 址 H	TANU 址L	女 口		数	数据 I H
			址 11	机上			双	11
0x30	0x01	0x10	XX	XX	XX	XX	XX	XX
寄存器	寄存器数	寄存器			CRCL	CRCH		
数据 1 L	据 2 H	数据 2 L	•••	•••				
XX	XX	XX	•••	•••	XX	XX		

回应 -	修改寄	存器值:						
类型	机号	功能	起始寄存器	起始寄存器	寄存器个	寄存器个	CRCL	CRCH
号		码	地址 H	地址 L	数 H	数 L		
0x30	0x01	0x10	XX	XX	XX	XX	XX	XX

附表一 【数据寄存器表】 下表中寄存器地址为 十进制

寄存器地址	定义	数据类型	读写属性	说明
00100	断路器分合状态	UINT16	R	0x00: 分闸状态
00100	则岭奋 万音状态	UINIIO	K	0x01: 合闸状态
00101	断路器储能状态	INT16	R	0x00: 未储能
00101	四月 四十五百 1 日 日七 4人 25	INTTO	K	0x01: 己储能
00102	合闸回路状态(当前状态	UINT16	R	0x00: 合闸回路正常
00102	为分闸时有效)	UINITO	K	0x01: 合闸回路断开
00103	分闸回路状态(当前状态	UINT16	R	0x00: 分闸回路正常
00103	为合闸时有效)	UINITO	K	0x01: 分闸回路断开
00104	断路器合闸次数	UINT16	R	实际动作记录次数
00104	(实际记录次数)	UINITO	K	安 协幼 [- 记录()
00105	断路器分闸次数	UINT16	R	实际动作记录次数
00103	(实际记录次数)	UINITO	K	关 协幼 [上
00106	合闸时间	UINT16	R	因子 0.1 単位 mS
00107	分闸时间	UINT16	R	因子 0.1 单位 mS
00108	A 相开距	UINT16	R	
00109	B 相开距	UINT16	R	
00110	C 相开距	UINT16	R	
00111	合闸速度(A 相)	UINT16	R	因子 0.001 单位 m/S
00112	合闸速度(B相)	UINT16	R	因子 0.001 单位 m/S
00113	合闸速度(C相)	UINT16	R	因子 0.001 单位 m/S
00114	分闸速度(A 相)	UINT16	R	因子 0.001 单位 m/S
00115	分闸速度(B相)	UINT16	R	因子 0.001 单位 m/S
00116	分闸速度(C相)	UINT16	R	因子 0.001 单位 m/S
00117	合闸线圈峰值(最大)电流	UINT16	R	因子 0.01 单位 A
00118	分闸线圈峰值(最大)电流	UINT16	R	因子 0.01 单位 A
00119	储能时间	UINT16	R	因子 0.05 单位 S
00120	储能电机峰值(最大)电流	UINT16	R	因子 0.001 单位 A

00121	储能曲线读取标志	UINT16	R	1:未读取,0:已经读取
00122	位移/线圈电流读取标志	UINT16	R	1: 未读取,0: 已经读取
00123	超程-A相(设置值)	UINT16	R	
00124	超程-B相(设置值)	UINT16	R	
00125	超程-C相(设置值)	UINT16	R	

附表二 【参数寄存器表】 下表中寄存器地址为 十进制

寄存器地址	定义	数据类	读写	说明
		型	属性	
00150	断路器合闸次数	UINT16	R/W	医克里山 广河松 罢 沙米
00150	(初始修改次数)	UINIIO	K/W	断路器出厂初始设置次数
00151	断路器分闸次数	HINT1C	D /W	ᄣᅋᄱᄱᆟᄕᅼᆉᆔᄼᅶᄮᄝᇄᄽ
00151	(初始修改次数)	UINT16	R/W	断路器出厂初始设置次数
				范围: 80−200,因子: 0.1,单位: ㎜
				(<i>范围: 1−199,</i> 修正值 <i>−100 即为实际偏</i>
00152	A.相总行程	UINT16	R/W	移量,如:发来的数据为35,实际偏移
30232	(A 相行程修正值)	0211120	22,	量为(35-100)=-65,即-6.5mm,若发
				来的数据位 155,实际偏移量为
				155-100=55,即+5.5mm.)
	B 相总行程			范围: 80-200 因子: 0.1, 单位: ■
00153	(B 相行程修正值)	UINT16	R/W	(范围: 1-199,(修正值-100)*0.1 即为
				实际修正值,实际范围: -9.9 [~] 9.9mm
	C 相总行程			范围: 80-200 因子: 0.1, 单位: mm
00154	(C 相行程修正值)	UINT16	R/W	(范围: 1-199,(修正值-100)*0.1 即为
	(0 4月13 4上)多正压)			实际修正值,实际范围: -9.9 [~] 9.9mm
00155	超程(A相)	UINT16	R/W	范围: 5 ~ 80 因子: 0.1, 单位: mm
00156	超程(B相)	UINT16	R/W	范围: 5 ~ 80 因子: 0.1, 单位: mm
00157	超程(C相)	UINT16	R/W	范围: 5 ~ 80 因子: 0.1, 单位: mm
00158	合闸时间修正值	UINT16	R/W	范围: 0 ~ 500 因子: 0.1, 单位:
00100	日出版刊品於正田	0111110	Α, "	(x-250)*0.1 mS
00159	分闸时间修正值	UINT16	R/W	范围: 0 [~] 500 因子: 0.1, 单位:

				(x-250)*0.1 mS
00160	合闸线圈峰值电流修正值	UINT16	R/W	范围:30~170 因子: 0.01, 单位: (x-100)*0.01A【-0.70~0.70A】
00161	分闸线圈峰值电流修正值	UINT16	R/W	范围:30~170 因子: 0.01, 单位: (x-100)*0.01A【-0.70~0.70A】
00162	储能电机峰值电流修正值	UINT16	R/W	范围:30~170 因子: 0.01, 单位: (x-100)*0.01 A【-0.70~0.70A】
00163	合闸速度修正值(A 相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】
00164	合闸速度修正值(B相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】
00165	合闸速度修正值(C相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】
00166	分闸速度修正值(A 相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】
00167	分闸速度修正值(B相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】
00168	分闸速度修正值(C相)	UINT16	R/W	范围: 1~399 因子: 0.01, 单位: m/S (X-200)*0.01m/S【-1.99~1.99】

附录三 触发流程说明: 假定和模块进行 485 通讯的是上位机(或显示终端,或其他 DTU 单 元),模块通讯地址假定为1号。

1、正常情况下(断路器未发生分合动作时),上位机(或显示终端)每隔 1S(或 2S) 左右读取模块 常规寄存器数据

即定时读取断路器分合状态、断路器储能状态、合闸回路状态、分闸回路状态、合闸次数、 分闸次数。即询问附表一中的前6个寄存器数据即可(当然全部询问也可以)发送如下命 **\(\phi: \)** 01 03 00 64 00 06 84 17

2、上位机(或显示终端)何时读取机械特性模块的合闸行程曲线和合闸线圈电流曲线

从步骤1中可以到断路器合闸次数,比如,上次读到的断路器合闸次数是5次,现在读到 的合闸次数是6次,说明断路器刚才发生了一次合闸动作,此时需要等待约0.28后向模块 分别询问 A.B.C 三相行程曲线,以及合闸线圈的电流曲线,即发送如下命令:

询问 A 相行程曲线命令:

01 04 01 0A 00 00 D1 F4

得到回应后,发送获取 B 相行程曲线的命令:

01 04 01 0B 00 00 80 34

得到回应后,发送获取 C 相行程曲线的命令: 01 04 01 0C 00 00 31 F5

- 得到回应后,发送获取合线圈电流曲线的命令: 01 04 01 0D 00 00 60 35
- 3、上位机(或显示终端)何时读取机械特性模块的分闸行程曲线或分闸线圈电流曲线 触发流程类似于 合闸行程曲线的读取方式
- 4、上位机(或显示终端)何时读取机械特性模块的其他测量参数,如分合闸时间、峰值电流等等

合闸曲线读取完毕后,需要对附表一中所有参数进行一次询问,发送如下命令:

01 03 00 64 00 1A 85 DE

分闸曲线读取完毕后,也需要对附表一中所有参数进行一次询问,发送如下命令:

01 03 00 64 00 1A 85 DE

5、上位机(或显示终端)何时读取机械特性模块的储能电流曲线

建议从步骤 4 中可以读到"储能曲线读取标志"若该标志为 1 则表示储能完成,需要读取储能曲线。当然也可以通过判断上一次的储能状态和当前的储能状态来进行读取储能曲线的读取工作。储能一般在断路器合闸完成之后,开始储能,即断路器合闸后,此时储能状态为"未储能",约 3S 后储能结束,此时读到的状态是"已储能"。

读取储能曲线命令: 01 05 00 00 00 00 CD CA

6、储能曲线读取完毕后,也需要对附表一中所有参数进行一次询问,发送如下命令: 01 03 00 64 00 1A 85 DE

A 相询问命令: 01 04 00 0A 00 00 D0 08 B 相询问命令: 01 04 00 0B 00 00 81 C8

C 相询问命令: 01 04 00 0C 00 00 30 09 电流询问命令: 01 04 00 0D 00 00 61 C9

01 04 01 0D 00 00 60 35

储能电机电流: 01 05 00 00 00 00 CD CA

读部分数据命令: 01 03 00 64 00 09 C4 13 读部分参数命令: 01 03 00 96 00 02 24 27

修改参数命令: 30 01 10 00 96 00 02 04 03 E8 03 E8 D8 81 01 10 00 96 00 02 04 03 E8 03 E8 FA 27

01 10 00 96 00 0A 14 03 E8 03 E8 00 41 00 42 00 43 00 C8 00 C8 00 03 00A0 00A0 26 AA

01 10 00 96 00 0A 14 03 E8 03 E8 00 41 00 42 00 43 00 FA 01 2C 00 03 00A0 00A0 0E 09

01 10 00 96 00 0A 14 03 E8 03 E8 00 32 00 33 00 34 00 FA 01 2C 00 03 00 A0 00 A0 30 28

01 10 00 96 00 0B 16 03 E8 03 E8 00 32 00 33 00 34 01 2C 00 C8 00 03 00 A0 00 A0 00 82 B1 DA

01 10 00 96 00 0B 16 03 E8 03 E8 00 64 00 64 00 64 00 FA 00 FA 00 03 00 64 00 64 00 64 8E 4B

读数据 01 03 00 64 00 1A 85 DE 读参数 01 03 00 96 00 13 E4 2B 修改参数

01 10 00 96 00 13 26 00 5A 00 5A 00 65 00 66 00 67 00 1D 00 1C 00 1B 01 2C 01 3B 00 78 00 7D 00 73 00 D7 00 E1 00 E1 00 C8 00 D2 00 DC AD 55