Weekly meeting

Yeh Shun-Liang
International College of Semiconductor Technology
National Yang Ming Chiao Tung University

Recent Progress

 Run all row buffer hits memory trace and extract statistics

 Discuss Memory Interfaces with Sub-project's students

Think about the detail architecture of memory controller

All row buffer hits Bandwidths

Assume 1Ghz, 1Gb bank	All row buffer hits Access		
Average Latency	6.19 (ns)		
Average Bandwidth	20.66 GB/s		
Peak Bandwidth	21.5GB/s		
Worst case Bandwidth	17.15GB/s		
Total Average Bandwidth with 64 banks	1322.24GB/s		

Refresh Timing Constraints	Durations
trefi	3900ns
tRFC	110ns

3D-DRAM Memory Controller

3D-DRAM Memory Controller Interface

3D-DRAM Memory Controller Interface

User DRAM subsystem access command							
Commands	R/W	Weights/KV \$	Bank number	Row Addr	Column address		
24bits	[24]	[23]	[21:20]	[19:4]	[3:0]		
Description	Read or Write request	Type of requested data	The bank number to access	Access Row	Access Column		

User DRAM memory controller interfaces				
Signal Name	Direction	Width	Description	
power_rst_n	INPUT	1	Asychronous reset signal which resets the DRAM and the DRAM control, DRAM enter initialization mode start powering up after the assertion of the signal	
clk1	INPUT	1	Main clock signal of 1GHz	
clk2	INPUT	1	Secondary clock signal for sampling data of DRAM running at double the rate of clk1	
Request Channel				
i_write_data_port0~3	INPUT	256	Write data only valid when request is a write command and the command is valid	
i_write_data_last_port0~3	INPUT	1	Indicating the end of a write burst , 4 sequential write data to the same column address	
i_command_valid_port0~3	INPUT	1	Indicating the command is valid	
o_controller_ready_port0~3	OUTPUT	1	Indicating if the memory controller is ready to receive the command and data	
i_command_port0~3	INPUT	24	Command signal for DRAM operations, for details please consults the Table	
RD Data Channel				
o_read_data_valid_port0~3	OUTPUT	1	Read data valid signal, when asserted 1 the data on the o_read_data bus is valid	
o_read_data_port0~3	OUTPUT	256	The read data from DRAM	
o_read_data_last_port0~3	INPUT	1	Indicating the end of a write burst, 4 sequential write data to the same column address	

3D-DRAM Memory Controller

Bank Level Memory Controller

Frontend Scheduler

Backend Controller

Future Works

- Modify Senior's 3D-DRAM Verilog model to meet project's need
- Create a baseline bank level memory controller

References

- C. -Y. Chang, P. -T. Huang, Y. -C. Chen, T. -S. Chang and W. Hwang, "Thermal-aware memory management unit of 3D-stacked DRAM for 3D high definition (HD) video," 2014 27th IEEE International System-on-Chip Conference (SOCC)
- Chang-Hsuan Chang, Ming-Hung Chang and Wei Hwang, "A flexible two-layer external memory management for H.264/AVC decoder," 2007 IEEE International SOC Conference, Hsinchu, Taiwan, 2007
- Design and implementation of DDR3 controller IP core and its verification, master thesis of Lanzhou Jiaotong University, 王正宇, 2012
- DDR3 controller design and research, master thesis of Fudan University,陆彦珩,2013
- D. Germchi, A High Performance DDR4 Memory Controller on FPGA, M.A.Sc. thesis, Dept. of Electrical and Computer Engineering, Univ. of Waterloo, Waterloo, ON, Canada, 2024.