Cálculo ($\lambda x.\mathsf{L}x\mathsf{mbd}x$) a

Paradigmas de Lenguajes de Programación

Departamento de Ciencias de la Computación Universidad de Buenos Aires

23 de abril de 2024

Vamos a ver

- Sintaxis del cálculo lambda
- Semántica operacional, estrategias de reducción
- Tipado
- * Extensión de números naturales

Cálculo lambda 1 / 17

Sintaxis

Los tipos del cálculo lambda simplemente tipado con booleanos se definen mediante la siguiente gramática:

$$\sigma ::= \mathsf{Bool} \mid \sigma \to \sigma$$

y sus términos son los siguientes:

$$M ::= x \mid \lambda x : \sigma.M \mid MM \mid \mathsf{true} \mid \mathsf{false} \mid \mathsf{if} \ M \mathsf{ then} \ M \mathsf{ else} \ M$$

donde $x \in \mathcal{X}$, el conjunto de todas las variables. Llamamos \mathcal{T} al conjunto de todos los términos.

Variables libres y ligadas

Las variables libres son todas aquellas fuera del alcance de las λ s. Se define la función fv : $\mathcal{T} \to \mathcal{X}$, que dado un término devuelve un conjunto de las variables libres en él, de la siguiente manera:

$$\begin{aligned} \mathsf{fv}(x) &= \{x\} & \mathsf{fv}(\mathsf{true}) &= \emptyset \\ \mathsf{fv}(\lambda x : \sigma.M) &= \mathsf{fv}(M) \backslash \{x\} & \mathsf{fv}(\mathsf{false}) &= \emptyset \\ \mathsf{fv}(MN) &= \mathsf{fv}(M) \cup \mathsf{fv}(N) & \mathsf{fv}(\mathsf{if}\ M\ \mathsf{then}\ N\ \mathsf{else}\ O) &= \mathsf{fv}(M) \cup \mathsf{fv}(N) \cup \mathsf{fv}(O) \end{aligned}$$

Un término se llama cerrado si no tiene variables libres, es decir, M es cerrado si y sólo si fv $(M)=\emptyset$.

Cálculo lambda 2 / 17

Sintaxis

Asociatividad v precedencia

$$\sigma \to \tau \to \rho = \sigma \to (\tau \to \rho) \neq (\sigma \to \tau) \to \rho$$
$$MNO = (MN)O \neq M(NO)$$
$$\lambda x : \sigma \cdot MN = \lambda x : \sigma \cdot (MN) \neq (\lambda x : \sigma \cdot M)N$$

$$\lambda x \cdot 0.MW = \lambda x \cdot 0.(MW) \neq (\lambda x \cdot 0.M)W$$

Las flechas en los tipos asocian a derecha.

La aplicación asocia a izquierda.

El cuerpo de la lambda se extiende hasta el final del término, excepto que haya paréntesis.

Ejercicio 1: ¿Cuáles de las siguientes expresiones son términos del cálculo lambda? En los casos que sí lo sean, dibujar su árbol sintáctico y marcar las ocurrencias libres de las variables.

- a) $\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x$ true
- b) $x \ u \ \lambda x : \mathsf{Bool} \to \mathsf{Bool}.x \ u$
- c) $(\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x \ y)(\lambda y : \mathsf{Bool}.x)$
- d) $\lambda x : Bool$
- $\lambda x.x$

- f) if x then y else λz : Bool.z
- g) $x (\lambda y : Bool.y)$
- h) true false
- i) x M
- i) if x then λx : Bool.x

3 / 17

Sustitución

$$x\{x:=N\}=N$$

$$y\{x:=N\}=y$$

$$(\lambda x:\sigma.M)\{x:=N\}=\lambda x:\sigma.M$$

$$(\lambda y:\sigma.M)\{x:=N\}=\lambda y:\sigma.M\{x:=N\}$$
 si $y\notin \operatorname{fv}(N)$
$$(\lambda y:\sigma.M)\{x:=N\}=\lambda z:\sigma.M\{y:=z\}\{x:=N\}$$
 si $y\in \operatorname{fv}(N)$
$$MO\{x:=N\}=M\{x:=N\}O\{x:=N\}$$
 true
$$\{x:=N\}=\operatorname{true}$$
 false
$$\{x:=N\}=\operatorname{false}$$
 (if M then O_1 else $O_2\}\{x:=N\}=\operatorname{if} M\{x:=N\}$ then $O_1\{x:=N\}$ else $O_2\{x:=N\}$

Ejercicio 2: Sean M, N y P términos del cálculo lambda. Por inducción en la estructura de M, probar que si x no aparece libre en P y $x \neq y$, entonces:

$$M\{x := N\}\{y := P\} = M\{y := P\}\{x := N\{y := P\}\}$$

Cálculo lambda 4 / 17

Semántica operacional

Consiste en un conjunto de reglas que definen la relación de reducción \to entre términos. Cuando $M \to N$, decimos que M reduce o reescribe a N.

Formas normales

Un término es o está en forma normal cuando no existe ninguna regla que lo reduzca a otro.

Determinismo

Decimos que la semántica es determinística cuando cada término que no está en forma normal tiene sólo una forma de reducir.

Estrategias de reducción

Para implementar un lenguaje, necesitamos una relación de reducción que sea determinística. En la teórica se vieron las estrategias call-by-name y call-by-value. En la parte práctica de la materia vamos a usar la estrategia call-by-value, y en particular nos van a interesar las extensiones determinísticas del cálculo lambda.

Cálculo lambda 5 / 17

Semántica operacional

La siguiente gramática de valores y reglas de reducción definen la estrategia call-by-value.

$$V ::= \mathsf{true} \mid \mathsf{false} \mid \lambda x : \sigma.M$$

$$(\lambda x : \sigma.M)V \to M\{x := V\} \tag{\beta}$$

 $\text{if true then } M \text{ else } N \to M \\ \hspace*{4cm} (\text{if}_{\mathsf{t}})$

if false then M else $N \to N$ (if_f)

Si $M \to N$, entonces

$$MO \to NO$$
 (μ)

$$VM \to VN$$
 (ν)

if M then O else $P \to if N$ then O else P (if C)

Cálculo lambda 6 / 17

Semántica operacional

Valores

Los valores son los resultados esperados de los programas. Se definen como los términos cerrados V producidos por la gramática de valores.

Ejercicio 3: ¿Cuáles de los siguientes términos son valores?

- a) if true then $(\lambda x : \mathsf{Bool}.x)$ else $(\lambda x : \mathsf{Bool}.\mathsf{false})$
- b) λx : Bool.false
- c) $(\lambda x : Bool.x)$ false

- d) true
- e) if x then true else false
- f) $\lambda x : \mathsf{Bool.}(\lambda y : \mathsf{Bool.}x)$ false
- g) $\lambda x : \mathsf{Bool} \to \mathsf{Bool}.x$ true

Ejercicio 4: ¿Cuál es el resultado de evaluar las siguientes expresiones? ¿El resultado es siempre un valor? Escribir la reducción a un paso.

- a) $((\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool}.\mathsf{if}\ x \ \mathsf{then}\ \mathsf{true}\ \mathsf{else}\ y)\ \mathsf{false})\ \mathsf{true}$
- b) $(\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool} \to \mathsf{Bool}.y(yx))((\lambda z : \mathsf{Bool.true}) \; \mathsf{false})(\lambda w : \mathsf{Bool}.w)$

Cálculo lambda 7 / 17

Tipos: La gramática que define los tipos del cálculo lambda simplemente tipado con booleanos es:

$$\sigma ::= \mathsf{Bool} \mid \sigma \to \sigma$$

Los contextos son conjuntos finitos de asociaciones entre tipos y variables. Por ejemplo:

$$\Gamma_1 = y: \mathsf{Bool} \to \mathsf{Bool} \qquad \Gamma_2 = y: \mathsf{Bool} \to \mathsf{Bool}, x: \mathsf{Bool}$$

son contextos válidos, pero

$$\Gamma_3 = y:\mathsf{Bool} \to \mathsf{Bool}, y:\mathsf{Bool}$$

no lo es.

Juicios de tipado: Un juicio de tipado es la relación $\Gamma \vdash M : \tau$ y se lee "en el contexto Γ , M es de tipo τ ". Por ejemplo:

$$x{:}\mathsf{Bool} \to \mathsf{Bool} \vdash x : \mathsf{Bool} \to \mathsf{Bool}$$

$$\vdash \mathsf{true} : \mathsf{Bool}$$

$$f{:}\mathsf{Bool} \to \mathsf{Bool}, x{:}\mathsf{Bool} \vdash fx : \mathsf{Bool}$$

son juicios de tipado válidos.

Cálculo lambda 8 / 17

Sistema de tipado

Los juicios de tipado $\Gamma \vdash M : \tau$ válidos se pueden derivar mediante el siguiente sistema de reglas de deducción:

$$\frac{\Gamma, x: \tau \vdash x: \tau}{\Gamma, x: \tau \vdash x: \tau} \ ax_v \qquad \frac{\Gamma, x: \tau \vdash M: \sigma}{\Gamma \vdash \lambda x: \tau. M: \tau \to \sigma} \ \to_i \qquad \frac{\Gamma \vdash M: \tau \to \sigma \quad \Gamma \vdash N: \tau}{\Gamma \vdash MN: \sigma} \ \to_e$$

$$\frac{\Gamma \vdash T \vdash \text{true}: \text{Bool}}{\Gamma \vdash \text{true}: \text{Bool}} \ ax_t \qquad \frac{\Gamma \vdash M: \text{Bool}}{\Gamma \vdash \text{if} \ M \text{ then} \ N_1 \text{ else} \ N_2: \tau} \ \text{if}$$

Cálculo lambda 9 / 17

Ejercicio 5: chequeo de tipos

Derivar los siguientes juicios de tipado, o explicar por qué no son válidos.

- a) $\vdash (\lambda x : \mathsf{Bool.if}\ x \ \mathsf{then}\ x \ \mathsf{else}\ x) \ \mathsf{true} : \mathsf{Bool}$
- b) $\vdash (\lambda x : \mathsf{Bool}.\lambda y : \mathsf{Bool}.\mathsf{if}\ x \mathsf{\ then\ true\ else}\ y) \mathsf{\ false} : \mathsf{Bool} \to \mathsf{Bool}$
- c) $x : \mathsf{Bool} \vdash \mathsf{true} : \mathsf{Bool}$
- d) \vdash if x then x else z: Bool
- e) $x : \mathsf{Bool} \vdash \mathsf{if}\ x\ \mathsf{then}\ x\ \mathsf{else}\ (\lambda y : \mathsf{Bool}.y) : \mathsf{Bool} \to \mathsf{Bool}$

Cálculo lambda 10 / 17

Ejercicio 6: inferencia de tipos

Derivar juicios de tipado para cada uno de los siguientes términos:

- a) Un término que represente la identidad.
- b) Un término análogo al flip de Haskell.
- c) Un término análogo al const de Haskell.
- d) $\lambda x : \sigma.\lambda y : \tau.\lambda z : \rho.xz(yz)$

Ejercicio 7: tipos habitados

Definir, si existe, un término M tal que el juicio $\vdash M: (\tau \to \rho) \to (\sigma \to \tau) \to (\sigma \to \rho)$ sea derivable, donde σ , τ y ρ son tipos cualesquiera.

Cálculo lambda 11 / 17

Determinismo

Ejercicio 8: Probar que la semántica operacional de cálculo lambda con booleanos, con la estrategia call-by-value, es determinística.

Es decir, probar que si $M o M_1$ y $M o M_2$, entonces $M_1 = M_2$.

Cálculo lambda 12 / 17

Extensión con números naturales

Sintaxis y tipado

Se extienden las gramáticas de términos y tipos de la siguiente manera:

$$\begin{split} \sigma ::= \dots \mid \mathsf{Nat} \\ M ::= \dots \mid \mathsf{zero} \mid \mathsf{succ}(M) \mid \mathsf{pred}(M) \mid \mathsf{isZero}(M) \end{split}$$

Se extiende el sistema de tipado con las siguientes reglas:

$$\frac{\Gamma \vdash \mathsf{zero} : \mathsf{Nat}}{\Gamma \vdash \mathsf{zero} : \mathsf{Nat}} \ \mathsf{ax}_0 \quad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ}(M) : \mathsf{Nat}} \ \mathsf{succ}$$

$$\frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred}(M) : \mathsf{Nat}} \ \ \mathsf{pred} \quad \frac{\Gamma \vdash M : \mathsf{Nat}}{\Gamma \vdash \mathsf{isZero}(M) : \mathsf{Nat}} \ \mathsf{isZero}$$

Cálculo lambda 13 / 17

Extensión con números naturales

Semántica operacional

Se extienden los valores de la siguiente manera:

$$V ::= \ldots \mid \mathsf{zero} \mid \mathsf{succ}(V)$$

Además, usamos la notación \underline{n} para succⁿ(zero) con $n \geq 0$. Se extiende la semántica operacional con las siguientes reglas:

$$\begin{aligned} \mathsf{pred}(\mathsf{succ}(V)) &\to V & (\mathsf{pred}) \\ \mathsf{isZero}(\mathsf{zero}) &\to \mathsf{true} & (\mathsf{isZero}_0) \\ \mathsf{isZero}(\mathsf{succ}(V)) &\to \mathsf{false} & (\mathsf{isZero}_n) \end{aligned}$$

Si $M \to N$, entonces

$$\operatorname{succ}(M) o \operatorname{succ}(N) \qquad \qquad (\operatorname{succ}_c)$$
 $\operatorname{pred}(M) o \operatorname{pred}(N) \qquad \qquad (\operatorname{pred}_c)$ $\operatorname{isZero}(M) o \operatorname{isZero}(N) \qquad \qquad (\operatorname{isZero}_c)$

Cálculo lambda 14 / 17

Extensión con números naturales

Ejercicio 9

- a) ¿Qué términos representan las expresiones 0, 1 y 2? ¿Cómo reducen?
- b) Escribir la reducción a un paso de los siguientes términos:
 - * isZero(succ(pred(succ(zero))))
 - * isZero(pred(succ(pred(zero))))
- c) Demostrar los siguientes juicios de tipado, o explicar por qué no son válidos:
 - $* \vdash (\lambda x : \mathsf{Nat}.\mathsf{succ}(x)) \mathsf{zero} : \mathsf{Nat}$
 - * $x : \mathsf{Bool} \vdash \mathsf{succ}(\mathsf{zero}) : \mathsf{Nat}$
 - * $x : \mathsf{Bool} \vdash \mathsf{if} \ x \ \mathsf{then} \ x \ \mathsf{else} \ \mathsf{zero} : \mathsf{Nat}$

Cálculo lambda 15 / 17

Intenten hacer los ejercicios 20 y 21 de la guía 4, para la clase del martes 30/4.

Cálculo lambda 16 / 17

