

definição e exemplos

Definição. Um grupo G diz-se cíclico se

$$(\exists a \in G) \quad G = \langle a \rangle,$$

i.e., se existe $a \in G$ tal que

$$(\forall x \in G) (\exists n \in \mathbb{Z}) \quad x = a^n.$$

Exemplo 34. O grupo $(\mathbb{Z},+)$ é cíclico, já que $\mathbb{Z}=\langle 1 \rangle$, pois para todo $n \in \mathbb{Z}$, temos que $n=n \cdot 1$.

Exemplo 35. O grupo $(\mathbb{R}, +)$ não é cíclico. Não existe nenhum real x tal que $\forall a \in \mathbb{R}, \ \exists n \in \mathbb{Z}: \ a = nx.$

Exemplo 36. O grupo $(\mathbb{Z}_4,+)$ é cíclico, já que $\mathbb{Z}_4=\left\langle \left[1\right]_4\right\rangle =\left\langle \left[3\right]_4\right\rangle$. De facto,

$$[0]_4 = 0 [1]_4 = 0 [3]_4$$
 $[1]_4 = 1 [1]_4 = 3 [3]_4$ $[2]_4 = 2 [1]_4 = 2 [3]_4$ $[3]_4 = 3 [1]_4 = 1 [3]_4$

Exemplo 37. Para qualquer $n \in \mathbb{N}$, temos que $(\mathbb{Z}_n, +)$ é cíclico, já que $\mathbb{Z}_n = \langle [1]_n \rangle$.

Exemplo 38. O conjunto $G = \{i, -i, 1, -1\}$, quando algebrizado pela multiplicação usual de complexos, é um grupo cíclico. De facto, $G = \langle i \rangle$.

Exemplo 39. O grupo trivial $G=\{1_G\}$ é um grupo cíclico. De facto, $\langle 1_G \rangle = \{1_G\}$.

propriedades elementares

Proposição. Todo o grupo cíclico é abeliano.

Demonstração. Sejam $G=\langle a\rangle$ e $x,y\in G$. Então, existem $n,m\in\mathbb{Z}$ tais que $x=a^n$ e $y=a^m$. assim,

$$xy = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = yx.$$

Observação. Observe-se que o recíproco do teorema anterir não é verdadeiro.

Exemplo 40. O grupo 4-Klein é um grupo abeliano. No entanto, não é cíclico, pois $\langle 1_G \rangle = \{1_G\} \neq G$, $\langle a \rangle = \{1_G, a\} \neq G$, $\langle b \rangle = \{1_G, b\} \neq G$ e $\langle c \rangle = \{1_G, c\} \neq G$. Assim, podemos concluir que não existe $x \in G$ tal que $G = \langle x \rangle$.

Teorema. Qualquer subgrupo de um grupo cíclico é cíclico.

Demonstração. Sejam $G = \langle a \rangle$, para algum $a \in G$, e H < G.

Se $H=\{1_G\}$, então $H=\langle 1_G \rangle$ e, portanto, H é cíclico.

Se $H \neq \{1_G\}$, então, existe $x = a^n \in G$ $(n \neq 0)$ tal que $x \in H$. Então, H tem pelo menos uma potência positiva de a. Seja d o menor inteiro positivo tal que $a^d \in H$. Vamos provar que $H = \left\langle a^d \right\rangle$:

- (i) Por um lado $a^d \in H$, logo $\langle a^d \rangle \subseteq H$;
- (ii) Reciprocamente, seja $y \in H$. Ćomo $y \in G$, $y = a^m$ para algum $m \in \mathbb{Z} \setminus \{0\}$. Então, existem $q, r \in \mathbb{Z}$ com $0 \le r < d$, tais que

$$y=a^m=a^{dq+r}=a^{qd}a^r.$$

Assim, $a^r = \left(a^d\right)^{-q} a^m \in H$, pelo que r = 0. Logo, $a^m = a^{qd} \in \left\langle a^d \right\rangle$, pelo que $H \subseteq \left\langle a^d \right\rangle$. \square

Observação. Se o grupo G é cíclico e tem ordem n, isto é, se existe $a \in G$ tal que $G = \langle a \rangle = \{1_G, a, a^2, ..., a^{n-1}\}$, então, para qualquer divisor positivo k de n, $\langle a^{\frac{n}{k}} \rangle$ é um subgrupo de G com ordem k.

Exemplo 41. Os subgrupos do grupo cíclico \mathbb{Z} são todos do tipo $n\mathbb{Z}$. De facto, para todo $n \in \mathbb{Z}$, $\langle n \rangle = n\mathbb{Z}$.

Observação. Resulta da definição de grupo cíclico que qualquer elemento que tenha ordem igual à ordem do grupo é um seu gerador e que qualquer gerador de um grupo cíclico finito tem ordem igual à ordem do grupo.

Exemplo 42. Em
$$\mathbb{Z}_4$$
 tem-se que: $o\left(\overline{3}\right)=4$ e $\mathbb{Z}_4=\left\langle\overline{3}\right\rangle$. Em geral, para $n\geq 2$, como $o([x]_n)=\frac{n}{\mathrm{m.d.c.}(x,n)}$, temos que $\mathbb{Z}_n=<[x]_n>\Longleftrightarrow\mathrm{m.d.c.}(x,n)=1.$

Para um grupo $G = \langle a \rangle$, G é abeliano e se H < G, $H = \langle a^d \rangle$, para algum $d \in \mathbb{N}$. Assim, $H \triangleleft G$, pelo que podemos falar no grupo G/H. Vejamos de seguida como são os elementos deste grupo:

Proposição. Seja $G = \langle a \rangle$ um grupo infinito e $H = \langle a^d \rangle \triangleleft G$. Então, $H, aH, a^2H, ..., a^{d-1}H$ é a lista completa de elementos de G/H.

Demonstração. Observemos primeiro que, para todo $x \in G$, $xH = a^rH$, para algum $r \in \{0,1,2,...,d-1\}$.

De facto, se $x\in G=\langle a\rangle$, então existe $p\in \mathbb{Z}$ para o qual $x=a^p$. Mas, se $p\in \mathbb{Z}$, existem $q\in \mathbb{Z}$ e $0\leq r\leq d-1$ tais que p=qd+r, pelo que $a^p=a^{qd+r}=a^r\cdot \left(a^d\right)^q\in a^rH$. Logo, $a^pH=a^rH$. Provemos agora que, para $0\leq i,j\leq d-1$,

$$i \neq j \Longrightarrow a^i H \neq a^j H$$
.

Suponhamos que i < j. Então, $0 \le j - i \le d - 1$, pelo que

$$a^iH = a^jH \quad \Leftrightarrow \left(a^i\right)^{-1}a^j \in H \Leftrightarrow a^{j-i} \in H$$

 $\Leftrightarrow j-i = kd, \text{ para algum } k \in \mathbb{Z}$
 $\Leftrightarrow j-i = 0 \Leftrightarrow j = i.$

Logo, a implicação verifica-se e, portanto, $G/_{H}=\left\{ H,aH,...,a^{d-1}H\right\} .$

morfismos entre grupos cíclicos

Proposição. Dois grupos cíclicos finitos são isomorfos se e só se tiverem a mesma ordem.

Demonstração. Sejam G e T dois grupos cíclicos e finitos. Então, existem $a \in G$ e $b \in T$ tais que $G = \langle a \rangle$ e $T = \langle b \rangle$.

Se $G \cong T$, então obviamente G e T têm a mesma ordem.

Se G e T têm a mesma ordem n, então, o(a) = o(b) = n e

$$G = \left\{1_G, a, a^2, ..., a^{n-1}\right\}, \qquad T = \left\{1_T, b, b^2, ..., b^{n-1}\right\}.$$

Logo, a aplicação $\psi: \textit{G}
ightarrow \textit{T}$ definida por

$$\psi = \left(\begin{array}{cccc} 1_G & a & a^2 & \cdots & a^{n-1} \\ 1_T & b & b^2 & \cdots & b^{n-1} \end{array}\right)$$

é obviamente um isomorfismo.

Corolário. Sejam $n \in \mathbb{N}$ e G um grupo cíclico de ordem n. Então, $G \cong \mathbb{Z}_n$.

Observação. Vimos já que se G é um grupo e $a \in G$ é tal que $o(a) = \infty$, então, para $m, n \in \mathbb{Z}$

$$m \neq n \Longrightarrow a^m \neq a^n$$
.

Assim, se G é infinito e cíclico, temos que $G=\langle a \rangle$ para algum $a \in G$ tal que $o(a)=\infty$, pelo que

$$G = \left\{..., a^{-2}, a^{-1}, 1_G, a, a^2, a^3, ...\right\}.$$

Proposição. Se G é um grupo cíclico infinito, então, $G \cong \mathbb{Z}$.