Foundations Test 2

Clark Saben
Foundations of Mathematics

April 19, 2023

1

Theorem 1. If $n \in \mathbb{Z}$ and $n \geq 0$, then $\sum_{i=0}^{n} i \cdot i! = (n+1)! - 1$.

Proof. Let $n \in \mathbb{Z}$ and $n \geq 0$. We will show that $\sum_{i=0}^{n} i \cdot i! = (n+1)! - 1$ via induction. For our base case, n = 0,

$$\sum_{i=0}^{0} 0 \cdot 0! = (0+1)! - 1$$
$$= 0$$

which is true, so we proceed with our inductive step. Let us assume that for some $k \in \mathbb{Z}$ that $k \ge 0$ and $\sum_{i=0}^k i \cdot i! = (k+1)! - 1$. It can be shown that by adding (k+1)(k+1)! to both sides of the equation we get,

$$\sum_{i=0}^{k} i \cdot i! + (k+1)(k+1)! = (k+1)! - 1 + (k+1)(k+1)!$$

Next, by re-arranging with algebra (namely, the distributive property), we can see,

$$\sum_{i=0}^{k} i \cdot i! + (k+1)(k+1)! = (1+(k+1))(k+1)! - 1$$
$$= (k+2)(k+1)! - 1$$

Now, notice that when we have k = k + 1, we have,

$$\sum_{i=0}^{k+1} i \cdot i! = ((k+1)+1)! - 1$$
$$= (k+2)(k+1)! - 1$$

which matches our result from the inductive step, so we have shown that $\sum_{i=0}^{n} i \cdot i! = (n+1)! - 1$ for all $n \in \mathbb{Z}$ and $n \ge 0$ by process of induction.

Theorem 2. The inequality $2^n \le 2^{n+1} - 2^{n-1} - 1$ holds for all $n \in \mathbb{N}$.

Proof. Let $n \in \mathbb{N}$. We will show that the inequality $2^n \leq 2^{n+1} - 2^{n-1} - 1$ holds for all n via induction. For our base case, n = 1,

$$2^{1} \le 2^{1+1} - 2^{1-1} - 1$$
$$2 \le 4 - 1 - 1$$
$$2 \le 2$$

which is true, so we proceed with our inductive step. Let us assume that for some $k \in \mathbb{N}$ the inequality $2^k \le 2^{k+1} - 2^{k-1} - 1$ holds for all k. Since 2^k is going to be less than $2^{k+1} - 2^{k-1} - 1$ it will also be less than that plus an additional $2^{k-1} + 1$. Hence we can correctly re-write our inequality from,

$$2^k < 2^{k+1} - 2^{k-1} - 1$$

to,

$$2^{k} \le 2^{k+1} - 2^{k-1} - 1 + (2^{k-1} + 1)$$
$$2^{k} \le 2^{k+1}$$
$$\le (2)2^{k}$$

Clearly, for any natural number, $k, 2^k \le (2)2^k$. Therefore, the inequality $2^n \le 2^{n+1} - 2^{n-1} - 1$ holds for all $n \in \mathbb{N}$.

Theorem 3. Define the relation R on \mathbb{Z} such that xRy if and only if 3x - 5y is even. Then R is an equivalence relation.

Proof. Let x and $y \in \mathbb{Z}$ and define relation R on \mathbb{Z} such that xRy if and only if 3x - 5y is even. We will show R is an equivalence relation.

To show R is reflexive, let $x \in \mathbb{Z}$. Then xRx if and only if 3x - 5x is even. By Definition 2.1 it can be seen that,

$$3x - 5x = 2(-k)$$
 (for some $-k \in \mathbb{Z}$)
 $-2x = -2k$

which is true for all $x \in \mathbb{Z}$, so R is reflexive.

To show R is symmetric, let x and $y \in \mathbb{Z}$. Then xRy if and only if 3x - 5y is even. By Definition 2.1 it can be seen that,

$$3x - 5y = 2(-k)$$
 (for some $-k \in \mathbb{Z}$)

We can add 2x-2y to both sides to get,

$$3x - 5y + 2x - 2y = 2(-k) + 2x - 2y$$
$$5x - 3y = 2(-k) + 2x - 2y$$
$$= -2(k - x + y)$$

We can then multiply each side by (-1) to get,

$$(-1)5x - 3y = (-1)(-2(k - x + y))$$
$$-5x + 3y = 2(k - x + y)$$
$$3y - 5x = 2(k - x + y)$$

where (k - x + y) is some integer. Therefore, since 3y - 5x is even (Definition 2.1), yRx, so R is symmetric.

To show R is transitive, let $x,y,z \in \mathbb{Z}$ and xRy and yRz. Then 3x - 5y is even and 3y - 5z is even. By Definition 2.1 it can be seen that,

$$3x - 5y = 2(k)$$
 (for some $k \in \mathbb{Z}$)
 $3y - 5z = 2(l)$ (for some $l \in \mathbb{Z}$)

We can add the two equations to get,

$$3x - 5y + 3y - 5z = 2(k) + 2(l)$$
$$3x - 5z - 2y = 2(k+l)$$
$$= 2(k+l+y)$$

We see that 3x - 5z is even, so xRz and R is transitive.

In conclusion, R is an equivalence relation since R is reflexive, symmetric, and transitive.

2

Theorem 4. Let $a,b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv_n b$ then $a^2 \equiv_n b^2$. (recall the definition of \equiv_n from Definition 7.79)

Proof. Let $a,b \in \mathbb{Z}$ and $n \in \mathbb{N}$. We will show that if $a \equiv_n b$ then $a^2 \equiv_n b^2$. By definition 7.79, $a \equiv_n b$ if and only if a - b is divisible by n. It can thus be shown that,

$$a - b = nk$$
 (for some $k \in \mathbb{Z}$)

we can then multiply both sides by a + b to get,

$$a^{2} + ab - ba + b^{2} = (a+b)nk$$

$$a^{2} - b^{2} = (a+b)nk$$

$$a^{2} - b^{2} = np \text{ such that } p = (a+b)k$$

Therefore, $a^2 - b^2$ is divisible by n. Thus, $a^2 \equiv_n b^2$ if a - b is divisible by n.

Theorem 5. For an $n \geq 4$, one can obtain n dollars using only \$2 and \$5 bills.

Proof. Let $n \ge 4$. We will show that one can obtain n dollars using only \$2 and \$5 bills. In other words, there exist non-negative integers a and b such that n = 2a + 5b for all $n \ge 4$. We will prove this via strong induction.

For our base case we will prove the cases for n = 2, 4, and 5 directly.

For n = 2, we can use one \$2 bill: $2 = 2 \cdot 1 + 5 \cdot 0 \ (a = 1, b = 0)$

For n = 4, we can use two \$2 bills: $4 = 2 \cdot 2 + 5 \cdot 0 \ (a = 2, b = 0)$

For n = 5, we can use one \$5 bill: $5 = 2 \cdot 0 + 5 \cdot 1$ (a = 0, b = 1)

For our inductive hypothesis, we will assume that for $5 \le k \le m$ can be obtained using only \$2 and \$5 bills such that $k, m \in \mathbb{Z}$.

We will now prove that k+1 can be obtained using only \$2 and \$5 bills. Since k-1 can be obtained using only \$2 and \$5 bills, we can see that,

$$k-1=2a+5b$$
 (for some $a,b\in\mathbb{Z}$)

which can be rewritten as,

$$(k+1) - 2 = 2a + 5b$$

Hence, by adding adding a \$2 bill to the \$2 and \$5 bills used to obtain k-1, we can obtain k+1 using only \$2 and \$5 bills.

Thus, we have shown via strong induction that for any $n \ge 4$, one can obtain n dollars using only \$2 and \$5 bills.

Theorem 6. Define $\Psi = \{(a,b) : a,b \in \mathbb{Z}, b \neq 0\}$ and define a relation \sim on Ψ via $(a,b) \sim (c,d)$ if and only if ad = bc. Then \sim is an equivalence relation.

Proof. Let $\Psi = \{(a,b) : a,b \in \mathbb{Z}, b \neq 0\}$ and define a relation \sim on Ψ via $(a,b) \sim (c,d)$ if and only if ad = bc. To show that \sim is an equivalence relation, we must show that \sim is reflexive, symmetric, and transitive.

To show that \sim is reflexive, we must show that for all $(a,b) \in \Psi$, $(a,b) \sim (a,b)$. It can be shown that,

$$(a,b) \sim (a,b) \Leftrightarrow ab = ba$$

 $\Leftrightarrow ab = ab$ (commutative property)

Therefore, \sim is reflexive.

To show that \sim is symmetric, we must show that for all $(a,b) \in \Psi$ and $(c,d) \in \Psi$, if $(a,b) \sim (c,d)$ then $(c,d) \sim (a,b)$. It can be shown that,

$$(a,b) \sim (c,d) \Leftrightarrow ad = bc$$

and that,

$$(c,d) \sim (a,b) \Leftrightarrow cb = da$$

 $\Leftrightarrow da = cb$
 $\Leftrightarrow ad = bc$ (commutative property)

Therefore, \sim is symmetric.

To show that, \sim is transitive, we must show that for all $(a,b) \in \Psi$, $(c,d) \in \Psi$, and $(e,f) \in \Psi$, if $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$ then $(a,b) \sim (e,f)$. Let $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$. Since, $(a,b) \sim (c,d)$ it can be shown that,

$$ad = bc$$

and if we multiply each side by f, we get,

$$fad = fbc$$

 $adf = bcf$

Also, since $(c,d) \sim (e,f)$, cf = de we can re-write f as $\frac{de}{c}$. We can finally show that,

$$adf = bc(\frac{de}{c})$$
$$adf = bde$$
$$af = be,$$

which would follow from $(a,b) \sim (e,f)$. Therefore, \sim is transitive.

Therefore, \sim is an equivalence relation.

3

Problem 1. Consider the following relation:

$$R = \{(a,a), (a,b), (a,d), (b,d), (c,c), (d,b), (d,c)\}$$

Problem 1. .1 What elements must be add to R to make it reflexive?

To be reflexive, (b, b) and (d, d) must be added to R.

Problem 1. .1 What elements must be add to R to make it symmetric?

To be symmetric, (b, a), (d, a) and (c, d) must be added to R.