## Exploratory Data Analysis Lecture 10

Corina Besliu

Technical University of Moldova

October 3, 2021



Formulate the hypothesis

 $H_0: \beta_k = 0$  $H_A: \beta_k \neq 0$ 

Formulate the hypothesis

$$H_0: \beta_k = 0$$
  
$$H_A: \beta_k \neq 0$$

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

- **③** Find t-critical in the t-table for chosen significance level  $\alpha$  (commonly  $\alpha=0.05$ ) and respective degrees of freedom (df = N K 1)
- Reject  $H_0$  if  $-t_c < t_k > t_c$

Formulate the hypothesis

$$H_0: \beta_k = 0$$
  
 $H_A: \beta_k \neq 0$ 

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

- § Find t-critical in the t-table for chosen significance level  $\alpha$  (commonly  $\alpha=0.05$ ) and respective degrees of freedom (df = N K 1)
- Reject  $H_0$  if  $-t_c < t_k > t_c$

Formulate the hypothesis

$$H_0: \beta_k = 0$$
  
 $H_A: \beta_k \neq 0$ 

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

- § Find t-critical in the t-table for chosen significance level  $\alpha$  (commonly  $\alpha=0.05$ ) and respective degrees of freedom (df = N K 1)
- Reject  $H_0$  if  $-t_c < t_k > t_c$

Formulate the hypothesis

$$H_0: \beta_k = 0$$
  
 $H_A: \beta_k \neq 0$ 

$$t_k = \frac{(\hat{\beta}_k - \beta_{H_0})}{SE(\hat{\beta}_k)} \qquad (k = 1, 2, \dots, K)$$

- § Find t-critical in the t-table for chosen significance level  $\alpha$  (commonly  $\alpha=0.05$ ) and respective degrees of freedom (df = N K 1)



A p-value for a  $t_k$  is the probability of observing a t-score that size or larger (in absolute value) if  $H_0$  were true  $(0 \ge p - value \le 1)$ .

#### In other words

p-value is the probability that you rejected a  $H_0$  that was correct (assuming that the estimate is in the expected direction).

A p-value for a  $t_k$  is the probability of observing a t-score that size or larger (in absolute value) if  $H_0$  were true  $(0 \ge p - value \le 1)$ .

#### In other words:

p-value is the probability that you rejected a  $H_0$  that was correct (assuming that the estimate is in the expected direction).

A p-value for a  $t_k$  is the probability of observing a t-score that size or larger (in absolute value) if  $H_0$  were true  $(0 \ge p - value \le 1)$ .

#### In other words:

*p-value* is the probability that you rejected a  $H_0$  that was correct (assuming that the estimate is in the expected direction).

A p-value for a  $t_k$  is the probability of observing a t-score that size or larger (in absolute value) if  $H_0$  were true  $(0 \ge p - value \le 1)$ .

#### In other words:

p-value is the probability that you rejected a  $H_0$  that was correct (assuming that the estimate is in the expected direction).



## To cofidently reject a null, you will want a <u>low p-value</u>

 $p-value < 0.05 \rightarrow reject H_0$ 

If  $p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow P(\text{Type I Error}) > 0.05$ Not Great!

# To cofidently reject a null, you will want a <u>low p-value</u> **Rule of Thumb:**

$$p-value < 0.05 
ightarrow {
m reject} \ H_0$$

If 
$$p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow \frac{P(\text{Type I Error}) > 0.05}{\text{Not Great!}}$$

To cofidently reject a null, you will want a <u>low p-value</u> **Rule of Thumb:** 

$$p-value < 0.05 \rightarrow reject H_0$$

If  $p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow \frac{P(\text{Type I Error}) > 0.05}{\text{Not Great!}}$ 

To cofidently reject a null, you will want a <u>low p-value</u> **Rule of Thumb:** 

$$p-value < 0.05 \rightarrow \text{reject } H_0$$

If  $p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow P(Type \ I \ Error) > 0.05$ Not Great!

To cofidently reject a null, you will want a <u>low p-value</u> **Rule of Thumb:** 

$$p-value < 0.05 \rightarrow \text{reject } H_0$$

If 
$$p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow \frac{P(\text{Type I Error}) > 0.05}{\text{Not Great!}}$$

To cofidently reject a null, you will want a <u>low p-value</u>

Rule of Thumb:

$$p-value < 0.05 \rightarrow \text{reject } H_0$$
 If  $p-value > 0.05 \rightarrow \alpha > 0.05 \rightarrow \frac{\text{P(Type I Error)} > 0.05}{\text{Not Great!}}$ 

## Regression Results

#### OLS Regression Results

| Dep. Variable:    | Profit           | R-squared (uncentered):      | 0.984    |
|-------------------|------------------|------------------------------|----------|
| Model:            | OLS              | Adj. R-squared (uncentered): | 0.982    |
| Method:           | Least Squares    | F-statistic:                 | 839.8    |
| Date:             | Wed, 29 Sep 2021 | Prob (F-statistic):          | 2.95e-49 |
| Time:             | 11:27:08         | Log-Likelihood:              | -661.85  |
| No. Observations: | 60               | AIC:                         | 1332.    |
| Df Residuals:     | 56               | BIC:                         | 1340.    |
| Df Model:         | 4                |                              |          |
| Covariance Type:  | nonrobust        |                              |          |

|              | coef   | std err | t         | P> t        | [0.025 | 0.975]  |
|--------------|--------|---------|-----------|-------------|--------|---------|
|              |        |         |           |             |        |         |
| RD           | 0.7145 | 0.068   | 10.490    | 0.000       | 0.578  | 0.851   |
| Admin        | 0.2546 | 0.043   | 5.927     | 0.000       | 0.169  | 0.341   |
| Marketing    | 0.0962 | 0.025   | 3.915     | 0.000       | 0.047  | 0.145   |
| Office       | 0.9425 | 0.663   | 1.421     | 0.161       | -0.386 | 2.271   |
|              |        |         |           |             |        |         |
| Omnibus:     |        | 6.4     | 29 Durbin | -Watson:    |        | 1.745   |
| Prob(Omnibus | ):     | 0.0     | 40 Jarque | -Bera (JB): |        | 9.643   |
| Skew:        |        | -0.1    | 96 Prob(J | B):         |        | 0.00805 |
| Kurtosis:    |        | 4.9     | 24 Cond.  | No.         |        | 91.1    |
|              |        |         |           |             |        |         |

Although  $R^2$  and  $\bar{R}^2$  measure the overall degree of fit of an equation, they don't provide a formal hypothesis test of that overall fit.

But we have the F-test!

The F-test is a joint hypothesis test.

 $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$  $H_A: H_0$  in not true

Although  $R^2$  and  $\bar{R}^2$  measure the overall degree of fit of an equation, they don't provide a formal hypothesis test of that overall fit.

#### But we have the F-test!

The F-test is a joint hypothesis test.

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

Although  $R^2$  and  $\bar{R}^2$  measure the overall degree of fit of an equation, they don't provide a formal hypothesis test of that overall fit.

But we have the F-test!

The F-test is a joint hypothesis test.

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

Although  $R^2$  and  $\bar{R}^2$  measure the overall degree of fit of an equation, they don't provide a formal hypothesis test of that overall fit.

But we have the F-test!

The F-test is a joint hypothesis test.

$$H_0:\beta_1=\beta_2=...=\beta_k=0$$

 $H_A: H_0$  in not true

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

• Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$ Unconstrained equation:  $Y_i = \beta_0 + \beta_1 + \beta_2 + ... + \beta_k + \epsilon_i$ 

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

lacktriangle Translate the null hypothesis into constraints on the equation. ightarrow

Unconstrained equation:  $Y_i = \beta_0 + \beta_1 + \beta_2 + ... + \beta_k + \epsilon_i$ 

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

• Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$ 

Unconstrained equation:  $Y_i = \beta_0 + \beta_1 + \beta_2 + ... + \beta_k + \epsilon_i$ 

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

• Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$ Unconstrained equation:  $Y_i = \beta_0 + \beta_1 + \beta_2 + ... + \beta_k + \epsilon_i$ 

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

- **1** Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$  Unconstrained equation:  $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k + \epsilon_i$
- Estimate the constrained equation and the unconstrained equation to compute:

$$F = \frac{(RSS_{M} - RSS)/M}{RSS/(N - K - 1)}$$

where

 ${\it M}$  - degrees of freedom in numerator (nb. of constraints  ${\it N}-{\it K}-1$  - degrees of freedom in the denominator

 $\begin{array}{ll} \text{ Reject} & H_0 \text{ if } F > F_c \\ \text{ Do not reject} & H_0 \text{ if } F < F_c \end{array}$ 

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

- **1** Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$  Unconstrained equation:  $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k + \epsilon_i$
- Estimate the constrained equation and the unconstrained equation to compute:

$$F = \frac{(RSS_M - RSS)/M}{RSS/(N - K - 1)}$$

where,

 ${\it M}$  - degrees of freedom in numerator (nb. of constraints)

 ${\it N}-{\it K}-1$  - degrees of freedom in the denominator

$$H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$$
  
 $H_A: H_0$  in not true

- **1** Translate the null hypothesis into constraints on the equation.  $\rightarrow$  Constrained equation:  $Y_i = \beta_0 + \epsilon_i$  Unconstrained equation:  $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_k + \epsilon_i$
- Estimate the constrained equation and the unconstrained equation to compute:

$$F = \frac{(RSS_M - RSS)/M}{RSS/(N - K - 1)}$$

where,

 ${\it M}$  - degrees of freedom in numerator (nb. of constraints)

N-K-1 - degrees of freedom in the denominator

**3** Reject  $H_0$  if  $F > F_c$ Do not reject  $H_0$  if  $F < F_c$ 

## F in the Regression Results

#### OLS Regression Results

| Dep. Variabl | e:     | Prof         | fit R-squa                             | ared (uncent          | ered):      |         | 0.984    |
|--------------|--------|--------------|----------------------------------------|-----------------------|-------------|---------|----------|
| Model:       |        | (            | OLS Adj. I                             | R-squared (u          | ncentered): |         | 0.982    |
| Method:      |        | Least Squar  | res F-stat                             | tistic:               |             |         | 839.8    |
| Date:        | We     | d, 29 Sep 20 | 21 Prob                                | (F-statistic          | ):          |         | 2.95e-49 |
| Time:        |        | 11:27:       | :08 Log-L:                             | ikelihood:            |             |         | -661.85  |
| No. Observat | ions:  |              | 60 AIC:                                |                       |             |         | 1332.    |
| Df Residuals | :      |              | 56 BIC:                                |                       |             |         | 1340.    |
| Df Model:    |        |              | 4                                      |                       |             |         |          |
| Covariance T | vpe:   | nonrobu      | ıst                                    |                       |             |         |          |
|              | <br>   |              |                                        |                       |             |         |          |
|              | coef   | std err      | t                                      | P>   t                | [0.025      | 0.975]  |          |
| RD           | 0.7145 | 0.068        | 10.490                                 | 0.000                 | 0.578       | 0.851   |          |
| Admin        | 0.2546 | 0.043        | 5.927                                  | 0.000                 | 0.169       | 0.341   |          |
| Marketing    | 0.0962 | 0.025        | 3.915                                  | 0.000                 | 0.047       | 0.145   |          |
| Office       | 0.9425 | 0.663        | 1.421                                  | 0.161                 | -0.386      | 2.271   |          |
| Omnibus:     |        | 6.4          | ====================================== | ========<br>n-Watson: |             | 1.745   |          |
| Prob(Omnibus | ):     |              |                                        | e-Bera (JB):          |             | 9.643   |          |
| Skew:        | , -    | -0.1         |                                        | , ,                   |             | 0.00805 |          |
| Kurtosis:    |        |              | 924 Cond.                              | ,                     |             | 91.1    |          |
|              |        |              |                                        |                       |             |         |          |

## **OLS** Assumptions

| Notation                                  | Meaning                                                  |
|-------------------------------------------|----------------------------------------------------------|
| 1. $E(u_i) = 0$                           | Average value of residuals is zero                       |
| $2.\text{Var}\left(u_i\right) = \sigma^2$ | The variance of the residuals is constant                |
| $3.\text{Cov }(u_i,x_i)=0$                | There is no linear relationship between residues and x   |
| $4. u_i \sim N(0, \sigma^2)$              | Residuals have a normal distribution                     |
| $5.\mathrm{Cov}\;(u_i,u_j)=0$             | Residuals don't depend on each other                     |
| 6. Multicollinearity                      | Independent variables are not correlated with each other |

- Choosing the correct independent variables
- ② Choosing the correct functional form
- Ohoosing the correct form of the stochastic error term

- Choosing the correct independent variables
- ② Choosing the correct functional form
- Ochoosing the correct form of the stochastic error term

- Choosing the correct independent variables
- Choosing the correct functional form
- Ohoosing the correct form of the stochastic error term

- Ohoosing the correct independent variables
- 2 Choosing the correct functional form
- Ohoosing the correct form of the stochastic error term

## Choosing the Correct Independent Variables

There are two mistakes one can make when choosing the independent variables for the model:

- Omitting an important variable
- ② Including an irrelevant variable.

## Choosing the Correct Independent Variables

There are two mistakes one can make when choosing the independent variables for the model:

- Omitting an important variable.
- 2 Including an irrelevant variable.

## Choosing the Correct Independent Variables

There are two mistakes one can make when choosing the independent variables for the model:

- Omitting an important variable.
- Including an irrelevant variable.

# Omitting an Important Variable

#### **Omitted Variable Bias**

True Model

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

$$Y_{i} = \beta_{0}^{*} + \beta_{1}^{*}X_{1i} + \epsilon_{i}^{*}$$

$$\downarrow$$

$$\epsilon_{i}^{*} = \epsilon_{i} + \beta_{2}X_{2i}$$

If 
$$X_1$$
 and  $X_2$  are correlated Cov  $(X_{1i}, \epsilon^*) \neq 0 \rightarrow \hat{\beta}_1^* \neq \beta_1$   
Biased!

# Omitting an Important Variable

#### **Omitted Variable Bias**

True Model

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

$$Y_{i} = \beta_{0}^{*} + \beta_{1}^{*}X_{1i} + \epsilon_{i}^{*}$$

$$\downarrow$$

$$\epsilon_{i}^{*} = \epsilon_{i} + \beta_{2}X_{2i}$$

If 
$$X_1$$
 and  $X_2$  are correlated Cov  $(X_{1i}, \epsilon^*) \neq 0 \rightarrow \frac{\hat{\beta}_1^* \neq \beta_1}{\text{Biased}!}$ 

# Omitting an Important Variable

#### **Omitted Variable Bias**

True Model

$$Y_i\,=\,\beta_0+\beta_1X_{1i}+\beta_2X_{2i}+\varepsilon_i$$

$$Y_{i} = \beta_{0}^{*} + \beta_{1}^{*}X_{1i} + \epsilon_{i}^{*}$$

$$\downarrow$$

$$\epsilon_{i}^{*} = \epsilon_{i} + \beta_{2}X_{2i}$$

If 
$$X_1$$
 and  $X_2$  are correlated Cov  $(X_{1i}, \epsilon^*) \neq 0 \rightarrow \frac{\hat{\beta}_1^* \neq \beta_1}{\text{Biased!}}$ 

Including an irrelevant variable won't bias  $\hat{\beta}_{\pmb{k}}$ 

$$Y_i = \, \beta_0 + \beta_1 X_{1i} + \varepsilon_i$$

Specified Model

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i^{**} \\ \downarrow \\ \varepsilon_i^{**} &= \varepsilon_i - \beta_2 X_{2i} \end{aligned}$$

$$\hat{eta}_1^*=eta_1$$
 but Var  $(\hat{eta}_1)\uparrow$  thus  $\underbrace{t_{X_1}\downarrow}_{ ext{Biased}}$ 

Also  $R^2 \uparrow$ , but  $\bar{R}^2 \downarrow$ 

Including an irrelevant variable won't bias  $\hat{\beta}_{\pmb{k}}$ 

True Model 
$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$$

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i^{**} \\ \downarrow \\ \varepsilon_i^{**} &= \varepsilon_i - \beta_2 X_{2i} \end{aligned}$$

$$\hat{eta}_1^* = eta_1$$
 but  $\mathsf{Var}\;(\hat{eta}_1)\uparrow\mathsf{thus}\;\underbrace{t_{X_1}\downarrow}_{\mathsf{Biased}}$ 

Also 
$$R^2 \uparrow$$
, but  $\bar{R}^2 \downarrow$ 

Including an irrelevant variable won't bias  $\hat{eta}_k$ 

True Model 
$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$$

Specified Model

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i^{**} \\ \downarrow \\ \varepsilon_i^{**} &= \varepsilon_i - \beta_2 X_{2i} \end{aligned}$$

$$\hat{eta}_1^* = eta_1$$
 but  $\mathsf{Var}\;(\hat{eta}_1)\uparrow\mathsf{thus}\; \underbrace{t_{X_1}\downarrow}_{\mathsf{Biased}}$ 

Also  $R^2 \uparrow$ , but  $\bar{R}^2$ 

Including an irrelevant variable won't bias  $\hat{\beta}_{\pmb{k}}$ 

True Model 
$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$$

Specified Model

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \varepsilon_i^{**} \\ \downarrow \\ \varepsilon_i^{**} &= \varepsilon_i - \beta_2 X_{2i} \end{aligned}$$

$$\hat{eta}_1^* = eta_1$$
 but  $\operatorname{Var}\left(\hat{eta}_1
ight) \uparrow$  thus  $\underbrace{t_{X_1}\downarrow}_{\mathsf{Biased}!}$ 

Also  $R^2 \uparrow$ , but  $\bar{R}^2 \downarrow$ 

Including an irrelevant variable won't bias  $\hat{eta}_k$ 

$$Y_i = \beta_0 + \beta_1 X_{1i} + \epsilon_i$$

$$\begin{aligned} Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i^{**} \\ \downarrow \\ \epsilon_i^{**} &= \epsilon_i - \beta_2 X_{2i} \end{aligned}$$

$$\hat{\beta}_1^* = \beta_1$$
 but  $\operatorname{Var}\left(\hat{\beta}_1\right) \uparrow$  thus  $\underbrace{t_{X_1} \downarrow}_{\mathsf{Biased}!}$ 

Also 
$$R^2 \uparrow$$
, but  $\bar{R}^2 \downarrow$ 

- Theory: Is the variables place in the equation unambiguous and theoretically sound?
- 2 t-Test: Is the variables estimated coefficient significant in the expected direction?
- ②  $\bar{R}^2$ : Does the overall fit of the equation (adjusted for degrees of freedom) improve when the variable is added to the equation?
- Bias: Do other variables coefficients change significantly when the variable is added to the equation?

- Theory: Is the variables place in the equation unambiguous and theoretically sound?
- 2 t-Test: Is the variables estimated coefficient significant in the expected direction?
- **3**  $\bar{R}^2$ : Does the overall fit of the equation (adjusted for degrees of freedom) improve when the variable is added to the equation?
- Bias: Do other variables coefficients change significantly when the variable is added to the equation?

- Theory: Is the variables place in the equation unambiguous and theoretically sound?
- 2 t-Test: Is the variables estimated coefficient significant in the expected direction?
- **3**  $\bar{R}^2$ : Does the overall fit of the equation (adjusted for degrees of freedom) improve when the variable is added to the equation?
- Sias: Do other variables coefficients change significantly when the variable is added to the equation?

- Theory: Is the variables place in the equation unambiguous and theoretically sound?
- 2 t-Test: Is the variables estimated coefficient significant in the expected direction?
- **3**  $\bar{R}^2$ : Does the overall fit of the equation (adjusted for degrees of freedom) improve when the variable is added to the equation?
- Bias: Do other variables coefficients change significantly when the variable is added to the equation?

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.
  - For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$  where.
  - $C_i$  are the fixed and variable costs of businesses in a branch
- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.
  - For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$
  - C<sub>i</sub> are the fixed and variable costs of businesses in a branch
- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

```
For example: C_i = \beta_0 + \beta_1 Q_i + \epsilon_i where
```

- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

For example: 
$$C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$$

where

- $C_i$  are the fixed and variable costs of businesses in a branch
- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$  where.

- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$  where,

- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

#### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$  where,

- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare!
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

### Should we include the intercept $\beta_0$ ?

- Beginner researchers may want to supress the intercept when there is no logical interpretation for  $\beta_0$ .
- This would be a mistake.  $\beta_0$  should be suppressed only on very rare occasions.

For example:  $C_i = \beta_0 + \beta_1 Q_i + \epsilon_i$  where.

- Excluding  $\beta_0$  in this context would preserve one degree of freedom and would supposedly make the estimate of  $\beta_1$  more accurate.
- However such examples in real life are rare!
- The risks associated with supressing  $\beta_0$  most times outweight the benefits of doing so.

By omitting the constant term, we force the impact of the constant into the estimates of the other coefficients.



- The estimated regression will go through the origin
- $\hat{\beta}_1 \neq \beta_1$  biassed coefficient
- t-scores ↑ also biased

By omitting the constant term, we force the impact of the constant into the estimates of the other coefficients.



- The estimated regression will go through the origin
- $\hat{\beta}_1 \neq \beta_1$  biassed coefficient
- t-scores ↑ also biased

By omitting the constant term, we force the impact of the constant into the estimates of the other coefficients.



- The estimated regression will go through the origin
- $\hat{\beta}_1 \neq \beta_1$  biassed coefficient
- t-scores ↑ also biased

By omitting the constant term, we force the impact of the constant into the estimates of the other coefficients.



- The estimated regression will go through the origin
- $\hat{\beta}_1 \neq \beta_1$  biassed coefficient
- t-scores ↑ also biased

## Polinomial Regressions

Sometimes the relationship between X and Y cannot be explained by a line.

#### Relationship between Earnings and Age.

- As a young worker gets older, his or her earnings will increase.
- Beyond some point an increase in age will not increase earnings, and around retirement earnings will start to fall abruptly with age.

# Relationship between Earnings and Age



$$Earnings_i = \beta_0 + \beta_1 Age_i + \beta_2 Age_i^2 + \, \cdots \, + \varepsilon_i$$

$$\frac{\Delta Y}{\Delta X_1} = \, \beta_1 + 2\beta_2 X_1$$

General Advice: Rely of Theory when Defining the Functional Form of Your Model.

# Relationship between Earnings and Age



$$Earnings_i = \beta_0 + \beta_1 Age_i + \beta_2 Age_i^2 + \, \cdots \, + \varepsilon_i$$

$$\frac{\Delta Y}{\Delta X_1} = \, \beta_1 + 2\beta_2 X_1$$

General Advice: Rely of Theory when Defining the Functional Form of Your Model.

- Multicollinearity
- ② Serial Correlation  $Cov(u_i, u_j) \neq 0$
- **1** Heteroskedasticity  $Var(u_i) \neq \sigma^2$

- Multicollinearity
- **2** Serial Correlation  $Cov(u_i, u_j) \neq 0$
- **3** Heteroskedasticity  $Var(u_i) \neq \sigma^2$

- Multicollinearity
- ② Serial Correlation  $Cov(u_i, u_i) \neq 0$
- **3** Heteroskedasticity  $Var(u_i) \neq \sigma^2$

- Multicollinearity
- ② Serial Correlation  $Cov(u_i, u_i) \neq 0$
- **3** Heteroskedasticity  $Var(u_i) \neq \sigma^2$





## Let's get Started!

Access Google Colaboratory through your Gmail account