

FROST Research Updates

Elizabeth Crites University of Edinburgh Chelsea Komlo
University of Waterloo
Zcash Foundation

• Flexible Round-Optimized Schnorr Threshold Signatures [Komlo & Goldberg, 2020]

- Flexible Round-Optimized Schnorr Threshold Signatures [Komlo & Goldberg, 2020]
 - 1. PedPop: Distributed Key Generation (DKG)

- Flexible Round-Optimized Schnorr Threshold Signatures [Komlo & Goldberg, 2020]
 - 1. PedPop: Distributed Key Generation (DKG)
 - 2. Two-round threshold signing that is concurrently secure

- Flexible Round-Optimized Schnorr Threshold Signatures [Komlo & Goldberg, 2020]
 - 1. PedPop: Distributed Key Generation (DKG)
 - 2. Two-round threshold signing that is concurrently secure
- Designed to solve needs in the Zcash ecosystem; now adopted as an industry standard

(2,3) Example

(2,3) Example

(2,3) Example

Uses for Threshold Signatures

Banks and Exchanges

Cryptocurrency Wallets

Trust Authorities (CAs)

Where was FROST Last Year?

5+
Implementations

Paper
Published
(FROST1)

Presented to NIST

IETF
Draft Started

Security

Proofs

How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures

Elizabeth Crites, Chelsea Komlo, Mary Maller

To generate a key pair:

$$sk \stackrel{\$}{\leftarrow} \mathbb{F}; PK \leftarrow g^{sk}$$

To generate a key pair:

$$sk \stackrel{\$}{\leftarrow} \mathbb{F}; PK \leftarrow g^{sk}$$

To sign a message m:

$$r \stackrel{\$}{\leftarrow} \mathbb{F}; R \leftarrow g^r$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

$$\sigma = (R, z)$$

To generate a key pair:

$$sk \stackrel{\$}{\leftarrow} \mathbb{F}; PK \leftarrow g^{sk}$$

To sign a message m:

$$r \stackrel{\$}{\leftarrow} \mathbb{F}; R \leftarrow g^r$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

$$\sigma = (R, z)$$

To generate a key pair:

$$sk \stackrel{\$}{\leftarrow} \mathbb{F}; PK \leftarrow g^{sk}$$

To sign a message m:

$$r \stackrel{\$}{\leftarrow} \mathbb{F}; R \leftarrow g^r$$

$$c \leftarrow H(PK, m, R)$$

$$z \leftarrow r + csk$$

To verify (PK, σ, m) :

$$c \leftarrow H(PK, m, R)$$

$$R \cdot PK^c \stackrel{?}{=} g^z$$

output accept/reject

 PK_1

 R_1

 PK_3

$$R_1 \xrightarrow{R_1} \xrightarrow{R_1} z_1 \leftarrow r_1 + csk_1 \xrightarrow{c}$$

 $\tilde{PK} = PK_1PK_2PK_3$ $\tilde{R} = R_1R_2R_3$ $c \leftarrow H(\tilde{PK}, m, \tilde{R})$

Combiner

$$R_3 \longrightarrow R_3$$

$$z_3 \leftarrow r_3 + csk_3 \longrightarrow C$$

Combiner

$$\tilde{PK} = PK_1PK_2PK_3$$

$$\tilde{R} = R_1R_2R_3$$

$$c \leftarrow H(\tilde{PK}, m, \tilde{R})$$

$$z \leftarrow z_1 + z_2 + z_3$$

$$\sigma = (\tilde{R}, z)$$

$$R_3 \longrightarrow C$$

$$z_3 \leftarrow r_3 + csk_3 \longrightarrow Z_3$$

w/ proof of possession of sk_j

$$\tilde{PK} = PK_1PK_2PK_3$$

$$\tilde{R} = R_1R_2R_3$$

$$c \leftarrow H(\tilde{PK}, m, \tilde{R})$$

$$z \leftarrow z_1 + z_2 + z_3$$

$$\sigma = (\tilde{R}, z)$$

$$R_3 \longrightarrow R_3$$

$$z_3 \leftarrow r_3 + csk_3 \longrightarrow z_3$$

Verify (\tilde{PK}, σ, m) : $c \leftarrow H(\tilde{PK}, m, \tilde{R})$ $\tilde{R} \cdot \tilde{PK}^c \stackrel{?}{=} g^z$

ROS Attack

- ROS problem originally stated in [Schnorr91]
- Drijvers et al. [DEFKLNS19] show how to break unforgeability
- confirmed polynomial-time attack by Benhamouda et al. [BLOR20]
- concurrent attack:
 - adversary opens multiple signing sessions at once
 - sees honest nonces first and makes its nonce a function of them
 - forges signature

Fix#1: 3 Rounds

Fix#1: 3 Rounds

$$PK_1$$
 $R_1, cm_1 = \bar{H}(R_1)$ cm_1

$$R_3, cm_3 = \bar{H}(R_3) \qquad cm_3$$

 PK_3

"How to Prove Schnorr Assuming Schnorr"

Elizabeth Crites, Chelsea Komlo, Mary Maller

- Our Contributions:
 - 3-round (n,n) multisignature SimpleMuSig (with PoP of keys)
 - 3-round (t,n) threshold signature SimpleTSig (with PedPoP)

 PK_2

 PK_1

Combiner

Combiner

$$R_1, S_1 \xrightarrow{R_1, S_1} c$$

$$z_1 \leftarrow r_1 + a_1 s_1 + c s k_1 \leftarrow c$$

 $\tilde{PK} = PK_1PK_2PK_3$ $a_j = \tilde{H}(j, \tilde{PK}, m, \{R_j, S_j\}_1^3)$ $\tilde{R} = \Pi_1^3 R_j S_j^{a_j}$ $c \leftarrow H(\tilde{PK}, m, \tilde{R})$

Combiner

$$R_3, S_3 \xrightarrow{R_3, S_3} c$$

$$z_3 \leftarrow r_3 + a_3 s_3 + c s k_3 \xrightarrow{c}$$

$$R_1, S_1 \xrightarrow{R_1, S_1} c$$

$$z_1 \leftarrow r_1 + a_1 s_1 + c s k_1 \xrightarrow{z_1} z_1$$

Combiner

$$\tilde{PK} = PK_1PK_2PK_3$$

$$a_j = \tilde{H}(j, \tilde{PK}, m, \{R_j, S_j\}_1^3)$$

$$\tilde{R} = \Pi_1^3 R_j S_j^{a_j}$$

$$c \leftarrow H(\tilde{PK}, m, \tilde{R})$$

$$z \leftarrow z_1 + z_2 + z_3$$

$$\sigma = (\tilde{R}, z)$$

$$R_{3}, S_{3} = R_{3}, S_{3}$$

$$z_{3} \leftarrow r_{3} + a_{3}s_{3} + csk_{3} = \frac{c}{z_{3}}$$

$$R_1, S_1 \xrightarrow{R_1, S_1} c$$

$$z_1 \leftarrow r_1 + a_1 s_1 + c s k_1 \xrightarrow{z_1} z_1$$

Combiner

$$\tilde{PK} = PK_1PK_2PK_3$$

$$a_j = \tilde{H}(j, \tilde{PK}, m, \{R_j, S_j\}_1^3)$$

$$\tilde{R} = \Pi_1^3 R_j S_j^{a_j}$$

$$c \leftarrow H(\tilde{PK}, m, \tilde{R})$$

$$z \leftarrow z_1 + z_2 + z_3$$

$$\sigma = (\tilde{R}, z)$$

$$PK_3$$

$$R_3, S_3$$

$$Z_3 \leftarrow r_3 + a_3 S_3 + c s k_3$$

$$R_3, S_3$$

$$C$$

$$Z_3 \leftarrow r_3 + a_3 S_3 + c s k_3$$

Verify (\tilde{PK}, σ, m) : $c \leftarrow H(\tilde{PK}, m, \tilde{R})$ $\tilde{R} \cdot \tilde{PK}^c \stackrel{?}{=} g^z$

Combiner

$$\tilde{PK} = PK_1PK_2PK_3$$

$$a = \tilde{H}(\tilde{PK}, m, \{R_j, S_j\}_1^3)$$

$$\tilde{R} = \Pi_1^3 R_j S_j^a$$

$$c \leftarrow H(\tilde{PK}, m, \tilde{R})$$

$$z \leftarrow z_1 + z_2 + z_3$$

$$\sigma = (\tilde{R}, z)$$

Verify (\tilde{PK}, σ, m) : $c \leftarrow H(\tilde{PK}, m, \tilde{R})$ $\tilde{R} \cdot \tilde{PK}^c \stackrel{?}{=} g^z$

"How to Prove Schnorr Assuming Schnorr"

Elizabeth Crites, Chelsea Komlo, Mary Maller

- Our Contributions:
 - 3-round (n,n) multisignature SimpleMuSig (with PoP of keys)
 - 3-round (t,n) threshold signature SimpleTSig (with PedPoP)
 - optimized 2-round (n,n) multisignature SpeedyMuSig (with PoP of keys)
 - optimized 2-round (t,n) threshold signature FROST2 (with PedPoP)
 - reduces exponentiations from at least t to one
 - new proving framework

Proving the Security of Multi-Party Schnorr

- Security reductions for multi-party signatures have two moving parts:
 - 1. Simulating honest users interacting with the adversary
 - Extracting a solution to some hard problem from the adversary's responses
- Idea: Separate the two parts for a more modular reduction

Proving the Security of Multi-Party Schnorr

FROST2 SimpleTSig multi-party SpeedyMuSig SimpleMuSig Bischnorr Schnorr single party Assumption Assumption One-More Discrete Log Discrete Log

Mihir Bellare, Stefano Tessaro, Chenzhi Zhu

Merged with our paper for CRYPTO 2022

Mihir Bellare, Stefano Tessaro, Chenzhi Zhu

- Merged with our paper for CRYPTO 2022
- Hierarchy of notions of unforgeability for threshold signatures

Mihir Bellare, Stefano Tessaro, Chenzhi Zhu

- Merged with our paper for CRYPTO 2022
- Hierarchy of notions of unforgeability for threshold signatures
- Independent proofs for unforgeability of FROST1 and FROST2 in ROM/OMDL

Mihir Bellare, Stefano Tessaro, Chenzhi Zhu

- Merged with our paper for CRYPTO 2022
- Hierarchy of notions of unforgeability for threshold signatures
- Independent proofs for unforgeability of FROST1 and FROST2 in ROM/OMDL
- Finds FROST2 to be malleable with respect to the signing set

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

 PK_2

$$R_2 = g^{r_2}, S_2 = g^{s_2}$$

Begin signing protocol with signers (1, 2, 3)

 PK_1

$$R_1 = g^{r_1}, S_1 = g^{s_1}$$
 $\frac{R_1, S_1}{}$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

$$PK_2$$
Honest
 R_2, S_2

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

$$R_1 = g^{r_1}, S_1 = g^{s_1} \qquad \frac{R_1, S_1}{}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

$$PK_2$$
 Honest $R_2 = g^{r_2}, S_2 = g^{s_2}$

$$R_2 = g^{r_2}, S_2 = g^{s_2}$$

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

$$R_1 = g^{r_1}, S_1 = g^{s_1} \qquad \frac{R_1, S_1}{}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

$$PK_2$$
 Honest

$$R_2 = g^{r_2}, S_2 = g^{s_2}$$

$$z_2 \leftarrow r_2 + as_2 + csk_2$$

$$R_{2} = g^{r_{2}}, S_{2} = g^{s_{2}}$$

$$z_{2} \leftarrow r_{2} + as_{2} + csk_{2}$$

$$R_{2}, S_{2}$$

$$c$$

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

$$PK_1$$

$$R_1 = g^{r_1}, S_1 = g^{s_1}$$

 $1 \leftarrow r_1 + as_1 + csk_1 \blacktriangleleft$

$$C_1 = g^{r_1}, S_1 = g^{s_1}$$
 $C_1 + as_1 + csk_1$
 $C_2 \leftarrow r_1 + as_1 + csk_1$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

$$PK_2$$
 Honest $R_2 = g^{r_2}, S_2 = g^{s_2}$ $z_2 \leftarrow r_2 + as_2 + csk_2$ $z_2 \leftarrow r_2 + as_2 + csk_2$

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

 PK_1

$$R_{1} = g^{r_{1}}, S_{1} = g^{s_{1}} \qquad \frac{R_{1}, S_{1}}{c}$$

$$z_{1} \leftarrow r_{1} + as_{1} + csk_{1} \leftarrow \frac{z_{1}}{c}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

$$PK_2$$
 Honest $R_2 = g^{r_2}, S_2 = g^{s_2}$ $z_2 \leftarrow r_2 + as_2 + csk_2$ $z_2 \leftarrow r_2 + as_2 + csk_2$

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

$$R_{1} = g^{r_{1}}, S_{1} = g^{s_{1}} \xrightarrow{R_{1}, S_{1}} c$$

$$z_{1} \leftarrow r_{1} + as_{1} + csk_{1} \leftarrow z_{1}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$
$$z = \delta \cdot z_1 + c\gamma(sk_3 + sk_4)$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

Signers (1,2) think they are contributing to signing...

 R_3, S_3

Honest PK_2

$$R_2 = g^{r_2}, S_2 = g^{s_2}$$

$$z_2 \leftarrow r_2 + as_2 + csk_2$$

$$z_2 \leftarrow z_2$$

$$r_2, S_2 = g^{s_2}$$
 $+ as_2 + csk_2$
 z_2

$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

 $R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$

$$PK_1$$

$$R_1 = g^{r_1}, S_1 = g^{s_1}$$

 $C_1 \leftarrow r_1 + as_1 + csk_1 \leftarrow$

$$R_{1} = g^{r_{1}}, S_{1} = g^{s_{1}} \xrightarrow{R_{1}, S_{1}} z_{1} \leftarrow r_{1} + as_{1} + csk_{1} \xleftarrow{z_{1}} z_{1}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$

$$z = \delta \cdot z_1 + c\gamma(sk_3 + sk_4)$$

- γ = Lagrange coefficient for signing set (1, 3, 4),
- δ = Lagrange coefficient for signing set (1, 2, 3) / γ

Signers (1,2) think they are contributing to signing...

$$R_2 = g^{r_2}, S_2 = g^{s_2}$$

$$z_2 \leftarrow r_2 + as_2 + csk_2$$

 R_3, S_3

$$R_3 = (R_1)^{\delta - 1} \cdot (R_2)^{-1}$$
$$S_3 = (S_1)^{\delta - 1} \cdot (S_2)^{-1}$$

$$PK_1$$

$$R_1 = g^{r_1}, S_1 = g^{s_1}$$

$$r_1 \leftarrow r_1 + as_1 + csk_1 < r_1$$

$$R_{1} = g^{r_{1}}, S_{1} = g^{s_{1}} \xrightarrow{R_{1}, S_{1}} z_{1} \leftarrow r_{1} + as_{1} + csk_{1} \xleftarrow{z_{1}} z_{1}$$

$$R = \prod_{i=1}^{3} R_i \cdot (S_i)^a \approx R_1 \cdot (S_1)^a$$

$$z = \delta \cdot z_1 + c\gamma(sk_3 + sk_4)$$

But the signature represents contributions from only (1, 3, 4)!

Signing Set Malleability

• This is a new notion for threshold signatures - is it actually needed in practice?

Signing Set Malleability

- This is a new notion for threshold signatures is it actually needed in practice?
- IETF draft is now back to FROST1.

Signing Set Malleability

- This is a new notion for threshold signatures is it actually needed in practice?
- IETF draft is now back to FROST1.
- FROST2 may be of interest for performance critical settings.

• Robustness: the protocol succeeds so long as at least t players participate honestly.

- Robustness: the protocol succeeds so long as at least t players participate honestly.
- FROST is **not** robust.

- Robustness: the protocol succeeds so long as at least t players participate honestly.
- FROST is **not** robust.
- Example: n=3, t=2

- Robustness: the protocol succeeds so long as at least t players participate honestly.
- FROST is **not** robust.
- Example: n=3, t=2
- If even one FROST signer issues garbage, the resulting signature is garbage and the protocol must be re-run (even if more than two signed).

"ROAST: Robust Asynchronous Schnorr Threshold Signatures"

Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, Dominique Schröder

• ROAST defines a wrapper protocol to make FROST robust.

eprint.iacr.org/2022/550

"ROAST: Robust Asynchronous Schnorr Threshold Signatures"

Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, Dominique Schröder

- ROAST defines a wrapper protocol to make FROST robust.
- Improves on the trivial solution of maintaining $\binom{n}{t}$ concurrent sessions to

eprint.iacr.org/2022/550

n - t + 1

What's Next: Unlinkable FROST

• This is an ongoing effort, we have a candidate scheme

What's Next: Unlinkable FROST

- This is an ongoing effort, we have a candidate scheme
- We are investigating the various trust and privacy tradeoffs

What's Next: Unlinkable FROST

- This is an ongoing effort, we have a candidate scheme
- We are investigating the various trust and privacy tradeoffs
- If you are interested in this work or have use cases, come talk to me!

• FROST extensions for different privacy/security use cases?

- FROST extensions for different privacy/security use cases?
- Beyond multi signatures? We do other things too:)

- FROST extensions for different privacy/security use cases?
- Beyond multi signatures? We do other things too:)
- We are always looking for research projects, so please come talk to us!

- FROST extensions for different privacy/security use cases?
- Beyond multi signatures? We do other things too:)
- We are always looking for research projects, so please come talk to us!

