Sistemas Especialistas

Sistemas de Produção

Sistemas de Produção

- Proporciona uma estruturação dos programas computacionais de Inteligência Artificial de forma a facilitar a descrição e execução dos processos na busca das soluções de problemas.
- Um sistema de produção não é um sistema de produção fabril.

Características:

- Possui um conjunto de regras, onde cada uma dela consiste em um padrão.
- Possui uma ou mais bases de conhecimento que constituem todas as informações e dados de uma determinada tarefa.
- Possui uma estratégia de controle ao qual especifique a ordem como as regras serão comparadas com a base de dados, e como uma forma de solucionar conflitos e ambiguidades que possam surgir conforme as regras vão sendo aplicadas.

Conhecimento Procedimental versus Declarativo

- A representação declarativa é caracterizada pela qual o conhecimento deve ser especificado, mas seu uso não é fornecido. Dessa forma, para utilizá-la é necessário especificar o que deve ser realizado com o conhecimento e como isso será feito.
- Já a representação procedimental especifica e determina que as informações de controle necessárias ao uso do conhecimento estão inseridas no próprio conhecimento. Para isso é necessário o uso de um interpretador que siga exatamente as instruções fornecidas no conhecimento.

Sistemas Especialistas Baseados em Regras

Regras como representação do conhecimento

- O processo interno mental do ser humano é muito complexo para ser representado através de um algoritmo.
- Especialistas conseguem expressar seus conhecimentos através de regras, possibilitando a resolução dos problemas.

Exemplo: Imagine que um engenheiro de tráfego necessite informar à sua equipe de estagiários como funciona um semáforo. Ele poderia transformar o conhecimento através das seguintes regras:

SE o semáforo estiver verde

ENTÃO o carro deve seguir

SE o semáforo estiver vermelho

ENTÃO o carro deve parar.

As Regras

Quaisquer regras consistem em duas partes principais.

SE é a parte chamada de antecedente (premissa ou condição)

E é uma associação de condições

ENTÃO é a parte chamada consequente (conclusão ou ação)

Membros de uma equipe de Sistemas Especialistas

- Especialistas de domínio possui conhecimento e habilidade para resolver problemas em uma área específica do conhecimento.
- Engenheiro do conhecimento responsável pela arquitetura, desenvolvimento e teste do sistema especialista.
- Programador responsável por programar as regras de forma que o computador possa interpretar suas ações.
- Gerente de Projeto é o líder da equipe de desenvolvimento do sistema especialista.
- Usuário Final é o utilizador do sistema que foi desenvolvido.

Estrutura de um Sistema Especialista

- Base de conhecimento contém o domínio para resolução do problema.
- Base de dados inclui um conjunto de fatos para se confrontar com as condições das regras armazenadas na base de conhecimento.
- Máquina de inferência realiza o raciocínio, ligando as regras com os fatos do banco de dados.
- Módulo de explanação permite perguntas ao sistema de como ele chegou às conclusões a partir dos fatos.
- Interface com o usuário entrada de dados e conclusões de seu raciocínio.

Encadeamento de Regras

Problemas de sistemas baseados em regras

- Construção difícil e demorada da base de conhecimento pretendida devido a elicitação de conhecimento especializado complexa e demorada.
- Incapacidade de lidar com problemas que não são explicitamente cobertos pela regra utilizada base.
- Se nenhum recurso de aprendizado estiver embutido, qualquer adição ao programa requer uma intervenção do programador.

Sistemas Especialistas Baseados em Casos (RBC)

Características dos Raciocínio Baseado em Casos (RBC)

- Não requer um modelo de domínio explícito e, portanto, a elicitação se torna uma tarefa de agregação de história de casos.
- Implementação reduzida para identificar recursos significativos que descrevem uma caso.
- Os sistemas de RBC podem aprender adquirindo novos conhecimentos como casos.

O Ciclo do Raciocínio Baseados em Casos

- Regularidade as mesmas ações executadas sob as mesmas condições tendem a ter resultados iguais ou semelhantes
- Tipicidade as experiências tendem a se repetir.
- Consistência pequenas mudanças na situação exigem apenas pequenas mudanças na interpretação da solução.
- Adaptabilidade quando as coisas se repetem, as diferenças tendem a ser pequenas e as diferenças fáceis de compensar.

Etapas de Processamento

- Recuperação de casos após a situação do problema ter sido avaliada, o melhor caso correspondente é pesquisado na base de caso e uma solução aproximada é recuperada.
- Adaptação do caso a solução recuperada é adaptada para se adequar melhor ao novo problema.
- Avaliação da solução a solução adaptada pode ser avaliada antes de a solução ser aplicada ao problema ou após a solução ter sido aplicada. Em qualquer caso, se o resultado obtido não é satisfatório, a solução recuperada deve ser adaptada novamente ou mais casos devem ser recuperados.
- Atualização de casos se a solução foi verificada como correta, o novo caso pode ser adicionado à base de casos.

Etapas de Processamento

De forma resumida:

- 1. RECUPERAR o caso mais similar;
- 2. REUTILIZAR o caso para tentar resolver o problema atual;
- 3. REVISAR a solução proposta, se necessário; e
- 4. RETENÇÃO da nova solução como parte de um novo caso.

O ciclo de um sistema especialista baseado em casos

Tipos de Conhecimento

Os sistemas de Raciocínio Baseado em Casos identificam quatro tipos de repositórios que podem ser consultados para identificação de casos semelhantes.

- 1. O vocabulário contém as medidas de similaridade, conhecimento de adaptação e casos em si.
- 2. As medidas de similaridade incluem o conhecimento sobre a medida de similaridade e é utilizado para escolher a organização mais eficiente da base de casos da recuperação de casos.
- **3.** A adaptação do conhecimento inclui o conhecimento necessário para implementar a ação e as etapas de avaliação do ciclo do RBC. Geralmente, o estagio de adaptação requer conhecimento sobre as diferenças nos problemas que afetam as soluções.
- **4. Conhecimento sobre as instâncias de problemas resolvidos** são os casos que representam o conhecimento que o sistema adquire durante o uso.

Referências

FLORES, C. D. Fundamentos dos Sistemas Especialistas. In: BARONE, D. A. C. (Ed.). Sociedades Artificiais: a nova fronteira da inteligência nas máquinas. Porto Alegre: Bookman, 2003.

Russel, Stuart J. Inteligência Artificial: tradução da segunda edição/ Stuart Russel, Peter Norvig. Rio de Janeiro: Elsevier, 2004.

Sox Jr HC. Medical decision making. In: Barondness JA, Carpenter G, Harvey AM. Diferential Diagnosis. Philadelphia: Lea & Fediger, 1994: 9-22,

Teixeira, João de Fernandes. Mentes e máquinas: uma introdução à ciência cognitiva. Porto Alegre: Artes Médicas, 1998

Vasconcelos, V. V.; Martins Junior, P.P. Protótipo de Sistema Especialista em Direito Ambiental para Auxílio à decisão em Situações de Desmatamento Rural. NT-27. CETEC-MG. 2004. 80p.

