Physics Lab Practical

Experimental Investigation

Quick Links

- 1. Station 1: Block on Ramp and Hints
- 2. Station 2: Fan Cart and Hints
- 3. Station 3: Bungee Einstein and Hints

Your Mission

Find the unknown quantity at each station using:

- Physical Measurements
- Newton's Laws
- Your physics knowledge

Lab Notebook Requirements

- 1. Initial Sketch with measurements (add in as you measure)
- 2. Free Body Diagram with all forces
- 3. Free Body Diagram Redrawn with force components
- 4. Force Components show calculations
- 5. Problem-Solving Process solve for unknown show all work
- Uncertainty Analysis estimate uncertainty on all of your measurements

Stations

- 1. Block on Ramp: Find minimal μ
- 2. Fan Cart: Find fan force
- 3. Bungee Doll: Find mass
- 4. Bonus: Sliding friction

Tips for Success

- Start with what you *know*
- Draw clear diagrams
- Write out equations before plugging in numbers
- Check units!
- Think about uncertainties

Station Instructions

Station 1: Block on Ramp

Setup: Block on adjustable ramp with protractor

Task: Find minimum coefficient of static friction

Equipment:

- Wooden block
- Adjustable ramp
- Protractor (plastic or app on your phone)
- Electronic Balance

Extensions:

- 1. Find maximum coefficient of static friction
- 2. Solve without mass measurement

Station 2: Fan Cart

Setup: Fan cart on level track

Task: Determine fan force

Equipment:

- Fan cart & track
- Labquest & Motion Sensor
- Electronic Balance

Extension:

- 1. Find fan force for each setting
- 2. Use known fan force to find an unknown mass

Station 3: Hanging Doll

Setup: Doll suspended by rubber bands

Task: Find doll's mass

Equipment:

• Spring scales

Bonus Station: Risky Business

Setup: Sliding person or object on level surface

Task: Determine coefficient of kinetic friction

Equipment:

- Video Analysis
- Motion Sensor
- Stop Watch
- Metersticks or long tape measure

Process & Expectations

- 1. One group at a station at a time
- 2. Do not use hints unless you are stuck \rightarrow but try hints before asking me for problem-solving help.
- 3. If/when finished early:
 - choose between extension options at the different stations
 - OR solve Risky Business station
 - o if you finish one go to the other

Station 1 Hints

- 1. Consider forces parallel to ramp
- 2. Remember: $F_f = \mu F_N$

Check work from yesterdays class (packet pages 9 & 10)

Station 2 Hints

- 1. $F_{net} = ma$
- 2. Measure acceleration from velocity time graph
- 3. What forces act horizontally?

Station 3 Hints

- 1. Split angled forces into components
- 2. Remember to sum the vertical and horizontal forces
- 3. Mass and Weight ($F_g=mg$) are different!