# Całka niewłaściwa

Anna Bahyrycz

## Definicja 1

Załóżmy, że funkcja f jest określona na przedziale  $[a,+\infty)$  i dla dowolnego  $\beta \in (a,+\infty)$  istnieje całka Riemanna

$$\int_{a}^{\beta} f(x)dx.$$

Całkę niewłaściwą pierwszego rodzaju funkcji f na przedziale  $[a,+\infty)$  definiujemy wzorem:

$$\int_{a}^{\infty} f(x)dx := \lim_{\beta \to +\infty} \int_{a}^{\beta} f(x) dx.$$

Jeżeli granica po prawej stronie znaku równości jest właściwa, to mówimy że całka niewłaściwa funkcji f na  $[a,+\infty)$  jest zbieżna. Jeżeli granica ta jest równa  $+\infty$  lub  $-\infty$ , to mówimy, że całka jest rozbieżna odpowiednio do  $+\infty$  lub  $-\infty$ .

W pozostałych przypadkach mówimy, że całka jest rozbieżna. Analogicznie definiuje się całkę niewłaściwą pierwszego rodzaju funkcji f na przedziale  $(-\infty, b]$ :

$$\int_{-\infty}^{b} f(x)dx := \lim_{\alpha \to -\infty} \int_{\alpha}^{b} f(x) dx.$$

# Całka niewłaściwa pierwszego rodzaju

Do tej pory, gdy mówiliśmy o całkach oznaczonych, to przyjmowaliśmy, że funkcja f (z której liczymy całkę) jest ograniczona na przedziale [a,b]. Zazwyczaj liczyliśmy całki oznaczone z funkcji ciągłych, z których całki Riemanna na przedziale domkniętym zawsze istnieją. Teraz zajmiemy się całkami niewłaściwymi. Zaczniemy od całek niewłaściwych pierwszego rodzaju, czyli takich, że granicą całkowania jest  $-\infty$  lub  $+\infty$ .

### Przykład 1

Korzystając z definicji zbadać zbieżność całki:

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{\beta \to +\infty} \int_0^\beta \frac{1}{1+x^2} dx = \lim_{\beta \to +\infty} \left[ \operatorname{arctgx} \right]_0^\beta$$
$$= \lim_{\beta \to +\infty} \left( \operatorname{arctg}\beta - \operatorname{arctg}0 \right) = \frac{\pi}{2}$$

Zatem rozważana całka jest zbieżna.



#### Przykład 2

Korzystając z definicji zbadać zbieżność całki:

$$\int_{-\infty}^{-1} \frac{1}{\sqrt[3]{3x-5}} dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{-1} \frac{1}{\sqrt[3]{3x-5}} dx = \lim_{\alpha \to -\infty} \left[ \frac{1}{2} \sqrt[3]{(3x-5)^2} \right]_{\alpha}^{-1}$$
$$= \frac{1}{2} \lim_{\alpha \to -\infty} \left( \sqrt[3]{64} - \sqrt[3]{(3\alpha-5)^2} \right) = -\infty.$$

Zatem rozważana całka jest rozbieżna do -∞.

# Całkafiniewłaściwa drugiego rodzaju

Niech funkcja f określona na przedziale (a,b] będzie nieograniczona tylko na prawostronnym sąsiedztwie punktu a i dla dowolnego  $\alpha \in (a,b)$  istnieje całka Riemanna

$$\int_{a}^{b} f(x)dx.$$

Całkę niewłaściwą drugiego rodzaju funkcji f na przedziale (a,b] definiujemy wzorem:

$$\int_a^b f(x)dx := \lim_{\alpha \to a^+} \int_\alpha^b f(x) dx.$$

Jeżeli granica po prawej stronie znaku równości jest właściwa, to mówimy, że całka niewłaściwa funkcji f na (a,b] jest zbieżna. Jeżeli granica ta jest równa  $+\infty$  lub  $-\infty$ , to mówimy, że całka jest rozbieżna odpowiednio do  $+\infty$  lub  $-\infty$ .

W pozostałych przypadkach mówimy, że całka jest rozbieżna. Analogicznie definiuje się całkę niewłaściwą drugiego rodzaju funkcji f na przedziale [a,b) nieograniczonej tylko na lewostronnym sąsiedztwie punktu b:

$$\int_a^b f(x)dx := \lim_{\beta \to b^-} \int_a^\beta f(x) \ dx.$$

#### Przykład 3

Dla ustalonej liczby a>0, w zależności od parametru  $p\in\mathbb{R},$  zbadać zbieżność całki:

$$I_p = \int_a^\infty \frac{1}{x^p} dx.$$

Poniewaz

$$\int \frac{1}{x^p} dx = \begin{cases} \frac{1}{1-p} x^{1-p} + C & \text{dla } p \neq 1 \\ \ln|x| + C & \text{dla } p = 1 \end{cases},$$

więc rozważmy przypadki:

$$\int_{a}^{\infty} \frac{1}{x} dx = \lim_{\beta \to +\infty} \int_{a}^{\beta} \frac{1}{x} dx = \lim_{\beta \to +\infty} (\ln \beta - \ln a) = +\infty$$

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \lim_{\beta \to +\infty} \frac{1}{1-p} (\beta^{1-p} - a^{1-p}) = \begin{cases} \frac{1}{p-1} a^{1-p} & \text{dla } p > 1\\ +\infty & \text{dla } p < 1 \end{cases}.$$

Zatem  $I_p$  jest zbieżna dla p > 1 i rozbieżna do  $+\infty$  dla  $p \le 1$ .

#### Przykład 4

Korzystając z definicji zbadać zbieżność całki:

$$\int_0^1 \frac{1}{(x-1)^2} dx$$



Zauważmy, że ponieważ  $\lim_{x\to 1^-} \frac{1}{(x-1)^2} = +\infty$ , więc funkcja podcałkowa jest nieograniczona w lewostronnym sąsiedztwie 1.

$$\int_0^1 \frac{1}{(x-1)^2} dx = \lim_{\beta \to 1^-} \int_0^\beta \frac{1}{(x-1)^2} dx = \lim_{\beta \to 1^-} \left( \frac{1}{1-\beta} - 1 \right) = +\infty$$

Zatem rozważana całka jest rozbieżna do +∞.

$$\int \frac{1}{(x-1)^2} dx = \int t^{-2} dt = -t^{-1} + C = -\frac{1}{x-1} + C, \quad t = x-1$$

#### Przykład 5

Korzystając z definicji zbadać zbieżność całki:

$$\int_{\frac{5}{3}}^{2} \frac{1}{\sqrt[3]{3x-5}} dx = \lim_{\alpha \to \frac{5}{3}^{+}} \int_{\alpha}^{2} \frac{1}{\sqrt[3]{3x-5}} dx = \lim_{\alpha \to \frac{5}{3}^{+}} \left[ \frac{1}{2} \sqrt[3]{(3x-5)^{2}} \right]_{\alpha}^{2}$$
$$= \frac{1}{2} \lim_{\alpha \to \frac{5}{3}^{+}} \left( 1 - \sqrt[3]{(3\alpha-5)^{2}} \right) = \frac{1}{2}.$$

Zatem rozważana całka jest zbieżna do  $\frac{1}{2}$ .

### Definicja 3

Załóżmy, że funkcja f jest określona na przedziale (a,b) gdzie  $a,b\in\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}$ . Jeżeli dla pewnego  $c\in(a,b)$  istnieją całki niewłaściwe funkcji f w przedziałach (a,c] i [c,b) to całkę niewłaściwą funkcji f w przedziale (a,b) określamy jako

$$\int_a^b f(x)dx := \int_a^c f(x)dx + \int_c^b f(x)dx,$$

o ile wyrażenie po prawej stronie ma sens.

### Uwaga 1

Definicja powyższa nie zależy od wyboru punktu c.

#### Przykład 6

Dla ustalonej liczby a > 0, w zależności od parametru  $p \in \mathbb{R}$ , zbadać zbieżność całki niewłaściwej drugiego rodzaju:

$$I_p = \int_0^a \frac{1}{x^p} dx.$$

Ponieważ

$$\int \frac{1}{x^p} dx = \begin{cases} \frac{1}{1-p} x^{1-p} + C & \textit{dla } p \neq 1 \\ \ln|x| + C & \textit{dla } p = 1 \end{cases},$$

więc rozważmy przypadki:

$$\int_0^a \frac{1}{x} dx = \lim_{\alpha \to 0^+} \int_\alpha^a \frac{1}{x} dx = \lim_{\alpha \to 0^+} (\ln a - \ln \alpha) = +\infty$$

p ≠ 1

$$\int_0^a \frac{1}{x^p} dx = \lim_{\alpha \to 0^+} \frac{1}{1-p} (a^{1-p} - \alpha^{1-p}) = \begin{cases} \frac{1}{1-p} a^{1-p} & \text{dla } p < 1 \\ +\infty & \text{dla } p > 1 \end{cases}.$$

Zatem  $I_p$  jest zbieżna dla p < 1 i rozbieżna do  $+\infty$  dla  $p \ge 1$ .

### Przykład 7

Korzystając z definicji zbadać zbieżność całki:

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \int_{-\infty}^{0} \frac{1}{1+x^2} dx + \int_{0}^{\infty} \frac{1}{1+x^2} dx$$

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx = \lim_{\alpha \to -\infty} \int_{\alpha}^{0} \frac{1}{1+x^2} dx = \lim_{\alpha \to -\infty} \left[ \operatorname{arctgx} \right]_{\alpha}^{0} = \lim_{\alpha \to -\infty} (0 - \operatorname{arctg}\alpha) = \frac{\pi}{2}$$

$$\int_0^\infty \frac{1}{1+x^2} dx \lim_{\beta \to +\infty} \int_0^\beta \frac{1}{1+x^2} dx = \lim_{\beta \to +\infty} \left[ \operatorname{arctgx} \right]_0^\beta = \lim_{\beta \to +\infty} \left( \operatorname{arctg} \beta - 0 \right) = \frac{\pi}{2}$$

Zatem rozważana całka jest zbieżna i równa  $\pi$ .

W powyższym przykładzie możemy również skorzystać z parzystości funkcji podcałkowej

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = 2 \int_{0}^{\infty} \frac{1}{1+x^2} dx = 2 \cdot \frac{\pi}{2} = \pi.$$

# Twierdzenie 1 (I kryterium porównawcze zbieżności całki)

Niech  $f,g:[a,b)\to\mathbb{R}$ ,  $b\in(-\infty,\infty]$   $(f,g:(a,b]\to\mathbb{R}$ ,  $a\in[-\infty,\infty)$ ) spełniają nierówność  $0\le f(x)\le g(x)$  dla  $x\in[a,b)$   $(x\in(a,b])$ . Wówczas

- 1. jeśli całka  $\int_a^b g(x)dx$  jest zbieżna, to całka  $\int_a^b f(x)dx$  jest zbieżna,
- 2. jeśli całka  $\int_a^b f(x)dx$  jest rozbieżna, to całka  $\int_a^b g(x)dx$  jest rozbieżna.

# Twierdzenie 2 (II kryterium porównawcze – asymptotyczne)

Niech  $f,g:[a,b)\to\mathbb{R}$ ,  $b\in(-\infty,\infty]$   $(f,g:(a,b]\to\mathbb{R},\ a\in[-\infty,\infty))$  będą funkcjami nieujemnymi albo niedodatnimi.

Jeśli istnieje  $\lim_{x\to b^-} \frac{f(x)}{g(x)} = K \in (0,\infty)$  ( $\lim_{x\to a^+} \frac{f(x)}{g(x)} = K \in (0,\infty)$ , to całki  $\int_a^b g(x)dx$ ,  $\int_a^b f(x)dx$  są równocześnie zbieżne albo rozbieżne.

# Definicja 4

Mówimy, że całka niewłaściwa  $\int_a^b f(x)dx$  jest bezwzględnie zbieżna jeśli zbieżna jest całka  $\int_a^b |f(x)|dx$ , warunkowo zbieżna jeśli całka  $\int_a^b f(x)dx$  jest zbieżna, a całka  $\int_a^b |f(x)|dx$  rozbieżna.

#### Twierdzenie 3

Jeżeli całka niewłaściwa jest bezwzględnie zbieżna, to jest zbieżna. Ponadto

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx.$$

### Przykład 8

Korzystając z kryterium porównawczego zbadać zbieżność całki:

$$\int_{1}^{+\infty} \frac{\arctan x}{x^3 + 1} dx.$$

Możemy skorzystać z I-ego lub II-ego kryterium porównawczego.

Z I-ego kryterium porównawczego:

$$\textit{ponieważ} \quad 0 < \frac{\arctan x}{x^3 + 1} < \frac{\frac{\pi}{2}}{x^3} \quad \textit{dla} \quad x \geq 1 \quad \textit{oraz} \quad \int_1^{+\infty} \frac{dx}{x^3} \quad \textit{jest zbieżna},$$

to stąd wnioskujemy, że rozważana całka jest zbieżna.

Z II-ego kryterium porównawczego:

ponieważ 
$$\frac{\operatorname{arctg} x}{x^3 + 1} > 0$$
 i  $\frac{1}{x^3} > 0$  dla  $x \ge 1$  oraz

$$\lim_{x \to \infty} \frac{\frac{\arctan \cot x}{x^3 + 1}}{\frac{1}{x^3}} = \lim_{x \to \infty} \arctan x \cdot \frac{x^3 + 1}{x^3} = \frac{\pi}{2},$$

to stąd wnioskujemy, że rozważana całka jest zbieżna.

### Przykład 9

Zbadać zbieżność i zbieżność bezwzględną całki:

$$\int_{1}^{+\infty} \frac{\sin^3 x}{x^2} dx.$$

Ponieważ  $0 \le \left| \frac{\sin^3 x}{x^2} \right| < \frac{1}{x^2}$  dla  $x \ge 1$  oraz  $\int_1^{+\infty} \frac{dx}{x^2}$  jest zbieżna,

to stąd wnioskujemy, na podstawie I-ego kryterium porównawczego, że całka

$$\int_{1}^{+\infty} \left| \frac{\sin^3 x}{x^2} \right| dx$$

jest zbieżna, co oznacza, że rozważana całka jest bezwzględnie zbieżna. Ze zbieżności bezwzględnej całki (zobacz Twierdzenie 3) wynika zbieżność, zatem rozważana całka jest także zbieżna.

Zauważmy, że do funkcji  $\frac{\sin^3 x}{x^2}$  dla x>1 nie możemy bezpośrednio zastosować kryterium porównawczego, gdyż funkcja ta przyjmuje zarówno wartości dodatnie jak i ujemne - założenia zarówno l-ego i II-ego kryterium porównawczego nie są spełnione.