Отчет по лабораторной работе № 2 «Применение многослойной нейронной сети для аппроксимации функций»

студента Каравашкин Марка группы Б19-514. Дата сдачи:
Ведущий преподаватель: Трофимов Александр Геннадиевич оценка:
подпись:

Вариант №1

Цель работы: изучение математической модели многослойной нейронной сети и решение с её помощью задачи аппроксимации функций.

1. Подготовка данных

А ппроусимируемая функция	Число	Число	Диапазон изменения
Аппроксимируемая функция	входов	выходов	аргументов
sin(3x)	1	1	[-300; 300]

Формирование обучающей, валидационной и тестовой выборок:

	Обучающая	Валидационная	Тестовая	Всего
%	60	30	10	100
Объём выборки	180	90	30	300

График аппроксимируемой функции:

Предобработка данных:

	1 11 1	Метод	Параметры	Формула расчёта
l		ттегод	метода	4 opinysta pae iera
	Предобработка входов	Нормировка	Σ̄, σ	$\frac{x-\overline{x}}{\sigma}$
	Предобработка выходов	Нормировка	x , σ	$\frac{x-\overline{x}}{\sigma}$

2. Обучение и тестирование нейронной сети с одним скрытым слоем

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	40	y = tanhx	Linear y = h

Схема нейронной сети:

Параметры обучения:

Метод обучения	Скорость обучения α	Режим обучения	Функция потерь
GD	0.04	batch	Quadratic loss

Метод инициализации сети: инициализация Хавьера

Критерий обучения:
$$E(w) = \frac{1}{n} \sum_{i=1}^{n} E^{(i)}(w) \rightarrow \min_{w}$$

Критерий останова: увеличение значения функции потерь на валидационной выборке на протяжении 20 эпох.

Зависимость выхода y(x) сети от входа сети (изобразить три графика: до обучения, после обучения и график аппроксимируемой функции): До обучения:

После обучения:

Аппроксимируемая функция:

Зависимость выходов $y_k(x)$ нейронов скрытого слоя от входа сети (изобразить на одном графике):

Зависимость ошибки сети $E(\tau)$ на обучающей и валидационной выборках от времени обучения:

Зависимость синаптических коэффициентов сети $w(\tau)$ от времени обучения:

Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	1.37323699	1.2191898	1.39991169
С.к.о. ошибки	0.238216	0.260080	0.317277
RMSE	0.02171832	0.0482439	0.0863264

Обученная нейросетевая модель *обладает* способностью к генерализации данных. Для улучшения качества аппроксимации требуется *продолжить обучение имеющейся сети*.

3. Улучшение качества аппроксимации

Параметры архитектуры сети:

Число входов	Число выходов	Число нейронов в скрытом слое	Функция активации нейронов скрытого слоя	Функция активации выходного нейрона
1	1	40	y = tanh(x)	Linear y = h

Параметры обучения:

rupumerph oog temm.					
Метод обучения	Скорость обучения α	Режим обучения	Функция потерь		
GD	0.05	batch	Quadratic loss		

Метод инициализации сети: инициализация Хавьера

Критерий останова: увеличение значения функции потерь на валидационной выборке на протяжении 20 эпох.

Показатели качества обученной нейросетевой модели:

	Обучающая	Валидационная	Тестовая
Макс. абс. ошибка	0.29044631	0.28779505	0.42038108
С.к.о. ошибок	0.07113638	0.10259150	0.06505007
RMSE	0.006487104	0.026449164	0.012321438

Выводы:_	 		