

LAB #2: REPRESENTAÇÃO DE INFORMAÇÃO & ARITMÉTICA

Estes exercícios servem de base quer ao laboratório da segunda semana de aulas, quer ao estudo para o teste.

Trabalho de casa para a aula da segunda semana do ano letivo 2017/2018. Exercícios:

- 1.1. f) até g)
- 2. d) até f)
- 4. d) até e)
- 5. d) até e)
- 6. f) até i)
- 9. a) até b)

O trabalho é entregue em papel no início da aula de laboratório do turno em que está inscrito. Este trabalho de casa é individual. (Os trabalhos subsequentes são em grupos de dois.)

1. CONVERTA OS SEGUINTES NÚMEROS PARA BINÁRIO:

1.1

- a) 3₁₀
- b) 5₁₀
- c) 8₁₀
- d) 13₁₀
- e) 21₁₀
- f) 34₁₀
- g) 55₁₀
- h) 89₁₀
- i) 2,5₁₀
- j) 0,375₁₀
- k) 5,75₁₀
- l) 3,125₁₀
- 1.2. Sem efetuar a conversão, é possível comparar se o número de dígitos binários (0s e 1s) necessários para e) e f) são iguais ou diferentes? Justifique a sua resposta.

2. CONVERTA OS SEGUINTES NÚMEROS POSITIVOS PARA DECIMAL:

- a) 10₂
- b) 1010₂
- c) 110110₂
- d) 11110000₂
- e) 000100010100111₂
- f) 111111₂
- g) 10,11₂
- h) 11,1010₂
- i) 101,001₂
- j) 0,1₂

3. QUAIS O MAIOR E MENOR NÚMEROS QUE SE PODEM REPRESENTAR COM 8 BITS E:

- a) Com representação sem sinal?
- b) Com representação "complemento para dois"?
- c) Com representação sinal & magnitude?

Repita o exercício para números com 16 bits.

4. CONVERTA OS SEGUINTES NÚMEROS POSITIVOS PARA BINÁRIO:

- a) A₁₆
- b) 2F₁₆
- c) 3E₁₆
- d) 5A₁₆
- e) 1F0E₁₆
- f) C3₁₆

5. CONVERTA OS SEGUINTES NÚMEROS POSITIVOS PARA DECIMAL:

- a) E₁₆
- b) 10₁₆
- c) 1B₁₆
- d) A2₁₆
- e) 28₁₆

6. CONVERTA OS SEGUINTES NÚMEROS BINÁRIOS POSITIVOS PARA HEXADECIMAL:

- a) 010₂
- b) 1010₂
- c) 101010₂
- d) 11110000₂
- e) 000100010100111₂
- f) 0111111₂
- g) 1110101010010100101001010110010₂
- h) 101010100001101101001110100101101₂
- i) 11111110₂

7. RESPONDA ÀS SEGUINTES QUESTÕES:

- a) Quantos Bytes existem numa palavra de 32 bits?
- b) Quantos Bytes existem numa palavra de 64 bits?
- c) Um modem recebe 600 Kibits/s. Quantos Bytes recebe num minuto?
- d) Uma memória é capaz de armazenar 2¹⁰ palavras de 32 bits. Quantos KiBytes são armazenados no total?

8. CODIFICAÇÃO BCD:

- a) O que significa BCD? Descreva sucintamente a representação.
- b) Escreva 19₁₀ em BCD
- c) Escreva 19₁₆ em BCD
- d) Escreva 10010101_{BCD} em decimal
- e) Escreva 10010101_{BCD} em hexadecimal.

9. SOMA DE NÚMEROS POSITIVOS EM BINÁRIO:

- (a) $11_2 + 10_2$
- b) 101110₂ + 11111₂
- c) 1101₂ + 1001₂
- d) $0111_2 + 0101_2$

Para as alíneas c) e d), supondo que se trata de uma representação com 4 bits, indique o valor de Carry out e se existiu Overflow.

10. SOMA DE NÚMEROS BINÁRIOS EM COMPLEMENTO PARA 2

Converta para a representação binária em complemento para 2 com 6 bits, e efetue as somas. Indique o valor de Carry out e Overflow.

- a) $16_{10} + 10_{10}$
- b) $27_{10} + 31_{10}$
- c) $-4_{10} + 19_{10}$
- d) $3_{10} + -32_{10}$
- e) $-16_{10} + -9_{10}$
- f) $-27_{10} + -31_{10}$

11. PROBLEMA #1:

Um OVNI despenhou-se algures perto do Entroncamento. A PJ foi investigar os destroços e encontrou parte de um manual com a seguinte equação: 325 + 42 = 411. Assumindo que a equação está certa e que a base da numeração foi determinada pelo mesmo critério que na espécie humana, quantos dedos têm os ETs em cada mão?

12. PROBLEMA #2:

Usando representação binária 5-bits com sinal (complemento para 2) indique todos os passos para determinar o resultado das seguintes expressões: a + (b + c) e (a + b) + c, onde a=-8, b=-10 e c=15. Discuta todos os resultados obtidos.

13. PROBLEMA #3:

A representação hexadecimal é a mais compacta das que foram estudadas até ao momento. Explique porquê e dê exemplos. Indique como guardar num valor hexadecimal para as 3 imagem P&B (binárias) das matrizes 3x5 (colunas x linhas) infra: "IAC". Indique todos os passos que um programa (pseudo-codigo) teria que executar para descodificar o valor de cada pixel e reproduzir a imagem. Assuma que existe disponível o método PutPixel(x,y,cor), onde o parâmetro cor corresponde a cor do pixel: 0 branco e 1 preto.

Que alterações teria que fazer caso a mensagem fosse atualizada para conter outra maior, ex. "IAC-LEIC".

```
### # ##

# # # #

# # # #

# # # #

# # # #
```

Ignore o espaço ente as letras na codificação.

14. PROGRAMA #1:

Escreva um programa em Python para converter números positivos de representação decimal para binário.

15. PROGRAMA #2:

Escreva um programa em Python para converter números positivos de representação binária para decimal.

16. PROGRAMA #3:

Escreva um programa em Python para converter números positivos de representação decimal para hexadecimal.

17. PROGRAMA #4:

Escreva um programa em Python para converter números positivos de representação hexadecimal para decimal.