香港考試局 HONG KONG EXAMINATIONS AUTHORITY

一九八八年香港中學會考 HONG KONG CERTIFICATE OF EDUCATION EXAMINATION, 1988

> 數學 Mathematics

評卷参考 Marking Scheme

這份內部文件,只限閱卷員參閱,不得以任何形式翻印。 This is a restricted document. It is meant for use by markers of this paper for marking purposes only. Reproduction in any form is strictly prohibited.

請在學校任教之閱卷員特別留意

本評卷參考並非標準答案,故極不宜 落於學生手中,以免引起誤會。

遇有學生求取此文件時,閱卷員應嚴 予拒絕。閱卷員在任何情況下披露本 評卷參考内容,均有違閱卷員守則及 「一九七七年香港考試局法例」。

Special Notes for Teacher Markers

It is highly undesirable that this marking scheme should fall into the hands of students. They are likely to regard it as a set of model answers, which it certainly is not.

Markers should therefore resist pleas from their students to have access to this document. Making it available would constitute misconduct on the part of the marker and is, moreover in breach of the 1977 Hong Kong Examinations Authority Ordinance.

© 香港考試局 保留版權 Hong Kong Examinations Authority All Rights Reserved 1988

GA 29

<u>`</u>	Solutions	Morelea	Remarks
1.	$a^{2} - a - 6 = (a + 2)(a - 3)$ $a^{3} + 8 = (a + 2)(a^{2} - 2a + 4)$) Correct	2A+1A	
		7	part
	Their L.C.M. = $(a + 2)(a - 3)(a^2 - 2a + 4)$	1M+1A	Both exp. must first be factorized.
	$(= a^4 - 3a^2 + 8a - 24)$		
2.	(a) $\frac{\sin(180^{\circ} - \theta)}{\sin(90^{\circ} + \theta)} = \frac{\sin\theta}{\cos\theta}$ must be shown.	1A 1A	PP-1 at most 3 per paper. PP-1 at most 1 per guestion at most 1 for the same type of p.
	= tanθ	1A	EXCES
	(b) $\sin^2(\pi - \emptyset) + \sin^2(\frac{3\pi}{2} + \emptyset)$		
	$= \sin^2 \theta + \cos^2 \theta \qquad \text{sik} \phi - \infty \hat{\phi} \cdots \circ A$	1A K	For $\sin(\frac{3\pi}{2} + \emptyset) = -\cos\emptyset$
	= 1	1A 5	
	2x² > 5x		With hold 1 mark if '='
	$2x^2 - 5x > 0$	1A	omitted. If solved by equation, no marks
	x(2x - 5) > 0	1A	awarded unless answer correct.
	Case (i) $x > 0$ and $2x - 5 > 0$)
	i.e. $x > \frac{5}{2}$		Optional without = , withhold I mank
			Optional without = , withhold I mark
	Case (ii) $x \le 0$ and $2x - 5 \le 0$:	
	i.e. x ≤ 0	·	J
	Combining the two parts, we have $x \le 0$ or $x \ge \frac{5}{2}$.		For $x \le 0$, $x > \frac{5}{2}$, 2
	•		$x \le 0 \text{ and } x > \frac{5}{2}$
•	(a) If $9x^2 - (k + 1)x + 1 = 0$ has equal roots,		Alt. Solution:
	$(k + 1)^2 - 36 = 0$	1A	$(k+1)^2 - 36 = 0$ 1A
	$k^2 + 2k - 35 = 0$	1 A	$k + 1 = \pm 6$ 1A+1A
	(k-5)(k+7) = 0	1A	k = 5 or -7 k+1 = 6 1A c
	k = 5 or -7 both correct	1A	
	(b) Putting $k = -7$ in (*)	1M	Sub. For negative value of k
	$9x^2 + 6x + 1 = 0$		
	$(3x + 1)^2 = 0$		L.S. = $(3x + 1)^2$
	$(3x + 1)^2 = 0$ $x = -\frac{1}{3}$ Subs. both for k=7 and k=5 no	1A 6	$x = -\frac{1}{3}$
	DESTRICTED MAIN	' '	

· · · · — · ·	<u> </u>	TO THE	人IT	- 1 • 2
-		Solutions	Marks	Remarks
5.	(a)	Area of OABC = $\pi 10^2 \text{ X } \frac{100^{\circ}}{360^{\circ}}$	1M	
		= 87.27 (corr. to 2 d.p.) ($\sigma r $ §7.28)	1A	
	(b)	Area of \triangle OAC = $\frac{1}{2}$ X 10 X 10 X sin100°	1M 7	$\Delta = \frac{1}{2}AC \times OM$
		= 49.24 (corr. to 2 d.p.)	1A J	$=\frac{1}{2} \times 15.3209 \times 6.4279$
	(c)	Area of minor segment ABC		= 49.24 1M
		= 87.27 - 49.24	1M	
		= 38.03 (corr. to 2 d.p.) (or 38.04)	1 <u>A</u> 6	0 100° 10
				A M C
, 6 .	log	2 = r , log 3 = s .		
	(a)	$\log 18 = \log 2X3^2$	-1A	For $18 = 2 \times 3^2$
		$= \log 2 + \log 3^2) \cdots$	1M) logab = loga+logb or
		= log 2 + 2log3) = $r + 2s$) $\log a^2 = 2\log a$
	(ъ)		1A	
	(0)	log15 = log3X5 = $log3 + log5$		
		$= \log 3 + \log \frac{10}{2} \wedge A$	1.4	- - 10 - 30
		$= \log 3 + \log 10 - \log 2$	1A 1A	For $5 = \frac{10}{2}$ or $15 = \frac{30}{2}$
		= 1 - r + s	1A	
			6	
7.	(a)	The coordinates of the centre are given by		7/
only answer	J	$x = -(-\frac{4}{2}), y = -\frac{10}{2}$	1M	$(x-2)^{\frac{1}{2}}+(y+5)^{\frac{1}{2}}=\frac{25}{1}$ $k+4$
→ correct 2A	~>	i.e. $x = 2$, $y = -5$	1A	
	(b)	As C touches the y-axis, bracket		OR
		its radius = 2	1M+1A	Subs. (0, -5) 1M
		$4 + 25 - k = 2^2$	1M	25 - 50 + k = 0 k = 25 1A
		k = 25		$r = \sqrt{4 + 25 - 25}$ 1M
		K - 25	1A	= 2 1A
				<u>OR</u>
				Put $x = 0$, $y^2 + 10y + k = 0$
				has equal roots. 1M
				100 - 4k = 0 k = 25 1A
		-	6	r = etc.
			ŀ	

NESI NIC I ED 内部	义什	P.3
Solutions	Marks	Remarks
8. (a) (i) A B		
P		ABCD in order
	1	For Q (between D, C)
D Q C		
(ii) Since \triangle PBC is equilateral, \angle PBC = 60° on the diagram $\angle ABP = 90^{\circ} - 60^{\circ} = 30^{\circ}$	1A	Follow through even in diagram not accurate
As BA = BP , \angle PAB = $\frac{1}{2}$ (180° - 30°)	1M	or equivalent
= 75°	1A	<u>OR</u>
Since AB // DC, \(\angle\) PQC = 180° - 75° = 105°	$\begin{bmatrix} 1M \\ 1A \end{bmatrix}$	∠PAD = 15° ∠PQC = 90° + 15° 11° = 105° 14°
(b) (i) \triangle TCB is similar to \triangle ACT because	1	
oon $\angle C$ is common.		≈ ≅ } PP-1
ATCB ~ AACT (AAA) no mark	1	Indication of 2 pairs of equal angles. With held if proving congruence.
(ii) $\frac{AC}{CT} = \frac{CT}{BC}$	1A	Follow through even if (b)(i) wrong.
$AC = \frac{6^2}{5} = 7.2 \qquad \text{correct substitution}$ $\therefore AB = 7.2 - 5$	1A	
$= 2.2 (= \frac{11}{5})$	1A 5	
A 9 B 5 C		
		•

Solutions Marks Remarks	8 Maths	E RESTRICTED 內部	文件	P.4
the smallest multiple of 7 is 105, the largest is 994. (b) The number of multiples is $\frac{994 - 105}{7} + 1$		Solutions	Marks	Remarks
the largest is 994. (b) The number of multiples is $\frac{994 - 105}{71} + 1$. (a)	Between 100 and 999,		
(b) The number of multiples is $\frac{994 - 105}{7} + 1$ must $\frac{2M}{2}$ = 128 The sum of these multiples = 105 + 112 + + 994 = $\frac{128}{2}$ [105 + 994]		the smallest multiple of 7 is 105,	1A	
The sum of these multiples = 105 + 112 + + 994 = 128 = 105 + 112 + + 994 = 128 2M = 70336 (c) The sum of all positive 3-digit integers = 100 + 101 + + 999 = 900/2 [100 + 999] = 494,550 The required sum = 494,550 - 70,336 = 424,214 1A			2	
The sum of these multiples = 105 + 112 + + 994 = 128 = 105 + 112 + + 994 = 128 2M = 70336 (c) The sum of all positive 3-digit integers = 100 + 101 + + 999 = 900/2 [100 + 999] = 494,550 The required sum = 494,550 - 70,336 = 424,214 1A	(b)	The number of multiples is $\frac{994-105}{7}+1$ must	2M	OR 994= 105 + (n-1) X 7
$= 105 + 112 + + 994$ $= \frac{128}{2} [105 + 994] 2M$ $= 70336$ (c) The sum of all positive 3-digit integers $= 100 + 101 + + 999$ $= \frac{900}{2} [100 + 999]$ $= 494,550 1A$ The required sum = 494,550 - 70,336 $= 424,214$ 1A			[]	
$= \frac{128}{2} [105 + 994] $ $= 70336$ $(c) The sum of all positive 3-digit integers$ $= 100 + 101 + + 999$ $= \frac{900}{2} [100 + 999]$ $= 494,550$ $= 494,550$ $= 424,214$ $1A$ $= 424,214$ $1A$		The sum of these multiples		
= 70336 (c) The sum of all positive 3-digit integers = 100 + 101 + + 999 = \frac{900}{2} [100 + 999] = 494,550 1A The required sum = 494,550 - 70,336 1M = 424,214 1A				
(c) The sum of all positive 3-digit integers = 100 + 101 + + 999 = \frac{900}{2} [100 + 999] = 494,550		$= \frac{128}{2} [105 + 994] \dots$	2м	
$= 100 + 101 + + 999$ $= \frac{900}{2} [100 + 999]$ $= 494,550$ The required sum = 494,550 - 70,336 $= 424,214$ 1A		= 70336	1A 6	
= 494,550	(c)	The sum of all positive 3-digit integers	1	
= 494,550		= 100 + 101 + + 999	1 .	
The required sum = 494,550 - 70,336 = 424,214 1A 1A 1A		$=\frac{900}{2}$ [100 + 999]		
= 424,214 <u>1A</u>		= 494,550	1A	•
		The required sum = 494,550 - 70,336	1M	
		= 424,214		
			.	
].	*

· · · · · · · · · · · · · · · · · · ·		义件	P.5
	Solutions	Mark	
10. (a)	Let $y = k_1 x + k_2 x^2$, where k_1 and k_2 are		for y=kx+kx ² or y = kx+x ²
	constants. for swestifuling	√ ₂	or $y = x+kx^2 \dots 1$
	Putting $x = 1$, $y = -5$; $x = 2$, $y = -8$, we have	1M	y=x+x2 romochs
	$k_1 + k_2 = -5$	1A	marks (Y= KiX
	$2k_1 + 4k_2 = -8$	1A	,
	Solving, $k_1 = -6$, $k_2 = 1$	1A+1A	
	$y = -6x + x^2$		
	Putting $x = 6$, we have $y = 0$.	1A 8	
(b)	$y = -6x + x^2 = (x^2 - 6x + 9) - 9$	1M	Equality must hold.
	$= (x - 3)^2 - 9$	1 A	y=(x+3) - 9 OA
	When $x = 3$, the value of y is least and the least value is -9 .	1M+1A 4	Least value of y is -9
l. (a)	From the curve,		
	(i) the median is 70 marks.	1A	
	(ii) the 1st quartile is 50 marks.) the 3rd quartile is 86 marks.)	1 A	for either
	: the interquartile range = 86 - 50	1M	
	= 36 marks	1 <u>A</u>	
(b)	(i) From the curve, the number of prize- winners = 60.	1A	•
	(ii) The probability that the student is a prize-winner = $\frac{60^{10}}{600}$ (= $\frac{1}{10}$).	lM+1A	
	(iii)(1) The probability that both are prize-	1	. 1 1 1
	winners is $\frac{60}{600} \times \frac{10}{599} = \frac{59}{5990} \times (=0.01)$	1M+1A	Accept $\frac{1}{10} \times \frac{1}{10} = \frac{1}{100}$ IM for product rule
	(2) The probability that both are not prize-	ì	
	winners = $\frac{540}{600} \times \frac{60}{599} = \frac{4851}{5990} = (-0.81)$	1A]	Accept $\frac{9}{10} \times \frac{9}{10}$
	. the probability that at least one		OR
	is a prize-winner = $1 - \frac{100}{5990}$	1M	Accept $\frac{9}{10} \times \frac{9}{10}$ $\frac{0R}{9} \times \frac{60}{599} + \frac{1}{10} \times \frac{540}{599} + \frac{1}{10} \times \frac{59}{599} = \frac{1M+1A}{5990} = \frac{1139}{5990} \dots 1A$
	$\stackrel{ A }{=} \frac{1139}{5990} (=0.19)$	1A)	$+\frac{1}{10} \times \frac{59}{599}$ 1M+1A
			$= \frac{1139}{5990} \dots 1A$

	Solutions	Marks	Remarks
12. (a)	1) L ₃ is given by $\frac{x}{3} + \frac{y}{4} = 1$ $\frac{y-\mu}{x} = \frac{4}{3}$ slope	1M	or 2-pt form, etc.
	i.e. $4x + 3y = 12$	1 <u>A</u>	Must be in this form
(b)	The three constraints are $y \leqslant 4$	1A	Withhold 1 mark if '
	x ∢ 3	1A	omitted.
	$4x + 3y \geqslant 12 \qquad \dots$	1A 3	or $4x + 3y - 12 \ge 0$.
(c)	The line $x + 4y = c$ drawn in the diagram.	IM+1A	For IA Drop of 2-3 verticle
	From the diagram, P is greatest when $x = 3$, $y = 4$ and least when $x = 3$, $y = 0$.		units for 10 hori- zontal units. OR Testing any vertice
answer {	The greatest value of P = 19.,	1A	At $(3, 0)$, $P = 3$.
(the least value = 3	1A	At $(0, 4)$, $P = 16$. At $(3, 4)$, $P = 19$.
<u> </u>		4	test 2 points only 1

1A ±1 unit at (1.5, 2), (3, 3).

Should be reasonably shaded.
At (3, 3), P = 15.
At (1.5, 2), P = 9.5.

(d) The line 2x - 3y + 3 = 0 drawn in the diagram. The shaded region.

P is least when $x = \frac{3}{2}$, y = 2.

The least value = $\frac{19}{2}$ (= 9.5)

<u> </u>	·	CALIFO TED FAIR	人IT	1.7
		Solutions	Marks	Remarks
13.		$\frac{AB}{HB} = \tan\theta$ $HB = \frac{3}{\tan\theta} m$ $\frac{DC}{KC} = \tan\theta$ $KC = \frac{2}{\tan\theta} m$	1M 1A }	any part in this guestion Wrong/no unit, pp-1. in the answer 2 + 1 in each fant
	(b)	(i) $S_1 = \frac{6}{2} (3 + 2)$ = 15 m ²	1A	
		$=\frac{15}{\tan\theta} m^2$	1 A	•
A		$\frac{S_1}{S_2} = \frac{15}{\frac{15}{\tan \theta}} = \tan \theta$ $\frac{15}{\frac{15}{\tan \theta}} = \frac{15}{\cot \theta}$ $\frac{15}{\frac{15}{\tan \theta}} = \tan \theta$ $\tan \theta = \tan \theta$ $\tan \theta = \tan \theta$ O mark	1A 	Must show working. 15 15 15 16 16 16 17 16 18 18 18 18 18 18 18 18 18 18 18 18 18
	H	3 m B K	D 2 m	

(c) Let
$$KE \perp BH$$
.

$$EK = BC = 6 \text{ (m)}$$

$$HE = \frac{3}{\tan \theta} \cdot \frac{2}{\tan \theta} = \left(\frac{3}{\tan 30^{\circ}} - \frac{2}{\tan 30^{\circ}}\right) \text{ m (= } \sqrt{3})$$

$$HK = \sqrt{HE^{2} + EK^{2}} \qquad \text{(M} \qquad \text{($$

	Solutio	ons	JHIV II	1.0
14. (a)	(i) $x^3 - \frac{4}{3}x - 6 = 0$		Marks	Remarks
,	-3 4	can be written as		
	$x^3 = \frac{4}{3} x + 6 .$		1M	
	Consider the line	$y = \frac{4}{3} x + 6$	1A+1A	lA for equation
	It cuts the curve	$y = x^3$ at $x = r$		lA for line drawn.
		tween 2.0 and 2.1 .		±1 vertical division about (0, 6), (3, 10)
			1A	
	(ii) Let $f(x) = x^3 - 3$	$\frac{4}{3} \times - 6$		
the state of	f(2) = -(= -0.6)	7)		
but	f(2.1) = +(=0.46)	both correct		
	/)	•• 1M	Correct change of sign
	Interval	Mid-value x f(x		
State :	2.000 < r < 2.100	TA TA		
ve 5 mars	2.050 < r < 2.100 2.050 < r < 2.100 2.050 < r < 2.075	2.075 +(=0	.17) 1M	IM for choosing mid- value, IA for correct
į	2.050 < r < 2.063	2.063 +(=0 2.057 -(=-(sign.
<u> </u>	2.057 < r < 2.063			Next correct step.
`		1		•
	r = 2.06 (cor	rect to 2 d.p.)	- 1A	
	Alt. Solution:		9	
	f(2) = -	`		•
	f(2.5) = +) ••••••	• 1M	
		é,25 om	TOA	
	Interval	Mid-value x f(x)		
	2.000 < r < 2.500 2.000 < r < 2.225	2.2150 +	IM+1A	
	•	2.113 +	1M	
	•	•		
				<i>:</i>
	r = 2.06 (corr	ect to 2 d.p.)	1A	
(b) Pu	t x = t + 1		1A	
The	e given equation can b	e written		
as	$3x^3 - 4x - 18 = 0$	-		
or	$x^3 - \frac{4}{3}x - 6 = 0$			
	(a), the solution is			
Бу	t = 2.06 - 1			
	= 1.06 (correct to		1 M	•
	(= 522 600 60	- 4.7./	$\frac{1A}{3}$	

Solutions Marks Remarks

14.

