Offline POMDP Algorithms

Last time: POMDP Value Iteration (horizon d)

 $\Gamma^0 \leftarrow \emptyset$ for $n \in 1 \dots d$ Construct Γ^n by expanding with Γ^{n-1} Prune Γ^n

Finite Horizon POMDP Value Iteration

Finite Horizon POMDP Value Iteration

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

P(2 failed components)

Infinite-Horizon POMDP Lower Bound Improvement

Infinite-Horizon POMDP Lower Bound Improvement

 $\Gamma \leftarrow \mathsf{blind} \mathsf{lower} \mathsf{bound}$

 $\Gamma \leftarrow \Gamma \cup \mathrm{backup}(\Gamma)$

 $\Gamma \leftarrow \operatorname{prune}(\Gamma)$

backup
$$\int_{a\in A}^{1} \int_{a\in A}^{q} \int_{a\in A}$$

$$\Gamma' \Phi \Gamma^{2} = \{\alpha_{1} + \alpha_{2} : \alpha_{1} \in \Gamma', \alpha_{2} \in \Gamma'\}$$

Point-Based Value Iteration (PBVI)

$$\begin{array}{l} \text{for } a \in A \\ \text{for } o \in O \\ \underline{b'} \leftarrow \tau(b,a,o) \\ \alpha_{a,o} \leftarrow \operatorname*{argmax}_{\alpha \in \Gamma} \alpha^\top b' \\ \text{for } s \in S \\ \alpha_a[s] = R(s,a) + \gamma \sum_{s',o} T(s' \mid s,a) \, Z(o' \mid a,s') \, \alpha_{a,o}[s'] \end{array}$$

If we perform a backup for each be B O(IA110115||5|+ |B||A||5||01)

Original PBVI

how do we choose B

$$B \leftarrow b_0$$
 loop
 $\mathsf{for}\ b \in B$
 $\Gamma \leftarrow \Gamma \cup \{\mathsf{point_backup}(\Gamma, b)\}$
 $\mathsf{for}\ b \in B$
 $\tilde{B} \leftarrow \{\tau(b, a, o) : a \in A, o \in O\}$
 $B' \leftarrow B' \cup \{\mathsf{argmax}\ \|B, b'\|\}$
 $b' \in \tilde{B}$

PERSEUS: Randomly Selected Beliefs

Two Phases:

- 1. Random Exploration ←
- 2. Value Backup

Random Exploration:

$$B \leftarrow \emptyset$$

$$b \leftarrow b_0$$

loop until |B| = n

$$a \leftarrow \operatorname{rand}(A)$$

$$o \leftarrow \operatorname{rand}(P(o \mid b, a))$$

$$b \leftarrow au(b, a, o)$$

$$B=B\cup\{b\}$$

Heuristic Search Value Iteration (HSVI)

while
$$\overline{V}(b_0) - \underline{V}(b_0) > \epsilon$$
 explore $(b_0,0)$

function explore(b, t)

$$\text{if } \overline{V}(b) - \underline{V}(b) > \epsilon \gamma^t \\ a^* = \operatorname*{argmax}_a \overline{Q}(b,a)$$

$$o^* = \operatorname*{argmax}_o P(o \mid b, a) \left(\overline{V}(au(b, a^*, o)) - \underline{V}(au(b, a^*, o)) - \epsilon \gamma^t
ight)$$

$$explore(\tau(b, a^*, o^*), t+1) \longleftarrow$$

$$\underline{\Gamma} \leftarrow \underline{\Gamma} \cup \text{point_backup}(\underline{\Gamma}, b) \longleftarrow$$

Sawtooth Upper Bounds

$$B[V](b) = \max_{a} R(b,a) + y \leq P(olb,a)V(T(b,a,b))$$

SARSOP

Successive Approximation of Reachable Space under Optimal Policies

HSVI SARSOP

BCR BCR*

reachable under optimal policy

Witness (avector value iteration): ~20 states SARSOP: 10,000-100,000 states

Offline POMDP Algorithms

Policy Graphs

Monte Carlo Value Iteration (MCVI)