# Revision Notes on p-Block Elements:

# **Boron Family (Group 13 Elements)**

- Members: B, Al, Ga, In & Tl
- Melting Point: Decreases from B to Ga and then increases up to Tl.
- Ionization Energies: 1<sup>st</sup> <<< 2<sup>nd</sup> < 3<sup>rd</sup>
- Metallic Character: Increases from B to Tl. B is non-metal

#### **Boron**

#### **Preparation of Boron:**

- From Boric Acid:  $B_2O_3(s) + 3Mg(s) \square 2B(s) + 3MgO(s)$
- From Boron Trichloride
  - o (at 1270 k):  $2BCl_3 + 3H_2(g) \rightarrow 2B(s) + 6HCl(g)$
  - (at 900  $^{0}$ C): 2BCl<sub>3</sub>(g) + 3Zn (s)  $\rightarrow$  2B(s) + 3 ZnCl<sub>2</sub> (s)
- By electrolysis of fused mixture of boric anhydride ( $B_2O_3$ ) and magnesium oxide (MgO) & Magnesium fluoride at 1100  $^0$ C
  - $\circ$  2 MgO-  $\rightarrow$  2Mg + O<sub>2</sub>(g)
  - $\circ$  B<sub>2</sub>O<sub>3</sub> + 3Mg  $\rightarrow$  2B + 3MgO
- By thermal decomposition of Boron hydrides & halides:  $B_2H_6(g) + \Delta \rightarrow 2B(s) + 3H_2(g)$

# **Compounds of Boron:**

#### Orthoboric acid (H<sub>3</sub>BO<sub>3</sub>)

### **Preparation of Orthoboric acid**

- From borax :  $Na_2B_4O_7 + H_2SO_4 + 5H_2O \square Na_2SO_4 + 4H_3BO_3$
- From colemanite:  $Ca_2B_6O_{11} + 2SO_2 + 11H_2O \square 2Ca(HSO_3)_2 + 6H_3BO_3$

#### **Properties of Orthoboric acid**

• Action of Heat:

| •               | Weak monobasic acidic behavior:<br>$B(OH)_3 \square H_3BO_3 \square H^+ + H_2O +$          |
|-----------------|--------------------------------------------------------------------------------------------|
|                 | Thus on titration with NaOH, it gives sodium metaborate salt                               |
|                 | H <sub>3</sub> BO <sub>3</sub> + NaOH □ NaBO <sub>2</sub> + 2H <sub>2</sub> O              |
| •               | Reaction with Metaloxide:                                                                  |
|                 |                                                                                            |
| •               | Reaction with Ammonium boro fluoride:                                                      |
|                 |                                                                                            |
|                 |                                                                                            |
| Bor             | ax (sodium tetraborate) Na <sub>2</sub> B <sub>4</sub> O <sub>7</sub> . 10H <sub>2</sub> O |
| Pre             | paration from Boric Acid                                                                   |
| 4H <sub>3</sub> | $_{3}BO_{3} + Na_{2}CO_{3}> Na_{2}B_{4}O_{7} + 6H_{2}O + CO_{2}$                           |
| Pro             | perties of Borax                                                                           |
| •               | Basic Nature:-                                                                             |
| Αqι             | ueous solution of borax is alkaline in nature due to its hydrolysis                        |
| Na              | $_{2}B_{4}O_{7} + 3H_{2}O \square NaBO_{2} + 3H_{3}BO_{3}$                                 |
| Nal             | BO <sub>2</sub> + 2H <sub>2</sub> O □ NaOH + H <sub>3</sub> BO <sub>3</sub>                |
| •               | Action of heat:                                                                            |
|                 |                                                                                            |
| Dib             | orabe( B <sub>2</sub> H <sub>6</sub> )                                                     |
| <u>Pre</u>      | paration of Diborane:                                                                      |
| Red             | duction of Boron Trifluoride:                                                              |
| BF <sub>3</sub> | + 3LiAlH <sub>4</sub> → 2B <sub>2</sub> H <sub>6</sub> + 3 LiAl F <sub>4</sub>             |

From NaBH<sub>4</sub>:

 $2NaBH_4 + H_2SO_4 \square B_2H_6 + 2H_2 + Na_2SO_4$  $2NaBH_4 + H_3PO_4 \square B_2H_6 + 2H_2 + NaH_2PO_4$ 

#### **Properties of Diborane:**

- Reaction with water:  $B_2H_6 + H_2O --> 2H_3BO_3 + 6H_2$
- **Combustion:**  $B_2H_6 + 2O_2 ... B_2O_3 + 3H_2O \Delta H = -2615 \text{ kJ/mol}$

# Compounds of Aluminium:

### Aluminium Oxide or Alumina (Al<sub>2</sub>O<sub>3</sub>)

$$2AI(OH)_3 + Heat \rightarrow AI_2O_3 + 2H_2O$$
 
$$2AI(SO_4)_3 + Heat \rightarrow AI_2O_3 + 2SO_3$$
 
$$(NH_4)_2AI_2(SO_4)_3 \cdot 24H_2O \dashrightarrow 2NH_3 + AI_2O_3 + 4SO_3 + 25H_2O$$

### Aluminum Chloride AlCl<sub>3</sub>:

#### Structure of Aluminium Chloride:

### **Properties of Aluminium Chloride**

- White, hygrosciopic solid
- Sublimes at 183 <sup>0</sup>C
- Forms addition compounds with NH<sub>3</sub>, PH<sub>3</sub>, COCl<sub>2</sub> etc.
- Hydrolysis: AlCl<sub>3</sub> + 3H<sub>2</sub>O --> Al(OH)<sub>3</sub> + 3HCl + 3H<sub>2</sub>O
- Action of Heat: 2AlCl<sub>3</sub> .6H<sub>2</sub>O --> 2Al(OH)<sub>3</sub> à Al<sub>2</sub>O<sub>3</sub>+ 6HCl + 3H<sub>2</sub>O

### Carbon Family (Group 14 Elements):

- Members: C, Si, Ge, Sn, & Pb
- **Ionization Energies:** Decreases from C to Sn and then increases up to Pb.
- Metallic Character: C and Si are non metals, Ge is metalloid and Sn and Pb are metals
- Catenation: C and Si show a tendency to combine with its own atoms to form long chain polymers

### **Compounds of Carbon:**

#### **Carbon Monoxide**

### **Preparation of Carbon Monoxide**

• By heating carbon in limited supply of oxygen:  $C + 1/2O_2 --> CO$ .

- By heating oxides of heavy metals e.g. iron, zinc etc with carbon.
  - $\circ$  Fe<sub>2</sub>O<sub>3</sub> + 3C  $\rightarrow$  2Fe + 3CO
  - $\circ$  ZnO + C  $\rightarrow$  Zn + CO
- By passing steam over hot coke:  $C + H_2O \rightarrow CO + H_2$  (water gas)
- By passing air over hot coke:  $2C + O_2 + 4N_2 \rightarrow 2CO + 4N_2$  (Producer gas)

#### ?Properties of Carbon Monoxide:

- A powerful reducing agent : Fe<sub>2</sub>O<sub>3</sub> + 3CO → 2Fe + 3CO<sub>2</sub>
   CuO + CO → Cu + CO<sub>2</sub>
- Burns in air to give heat and carbon dioxide:  $CO + 1/2O2 \rightarrow CO2 + heat$ .

#### **Tests For Carbon Monoxide:**

- Burns with blue flame
- Turns the filter paper soaked in platinum or palladium chloride to *pink or green*.

#### Carbon di-oxide

#### **Preparation of Carbon di-oxide**

- By action of acids on carbonates:  $CaCO_3 + 2HCl \square CaCl_2 + H_2O + CO_2$
- By combustion of carbon: C + O<sub>2</sub> □ CO<sub>2</sub>

#### **Properties of Carbon di-oxide**

- It turns lime water milky Ca(OH)<sub>2</sub> + CO<sub>2</sub> □ CaCO<sub>3</sub> + H<sub>2</sub>O,
- Solid carbon dioxide or *dry ice* is obtained by cooling CO2 under pressure. It passes from the soild state straight to gaseous state without liquefying (hence dry ice).

#### **Carbides:**

- Salt like Carbides: These are the ionic salts containing either  $C_2^{2-}$  (acetylide ion) or  $C^{4-}$  (methanide ion)e.g.  $CaC_2$ ,  $Al_4C_3$ ,  $Be_2C$ .
- **Covalent Carbides**: These are the carbides of non-metals such as silicon and boron. In such carbides, the atoms of two elements are bonded to each other through covalent bonds. SiC also known as *Carborundum*.
- Interstitial Carbides: They are formed by transition elements and consist of metallic lattices with carbon atoms in the interstices. e.g. tungsten carbide WC, vanadium carbide VC.

# **Compounds of Silicon:**

### Sodium Silicate (Na<sub>2</sub>SiO<sub>3</sub>):

?Prepared by fusing soda ash with pure sand at high temperature:

$$Na_2CO_3 + SiO_3 \square Na_2SiO_3 + CO_2$$

#### Silicones:

Silicon polymers containing Si – O – Si linkages formed by the hydrolysis of alkyl or aryl substituted chlorosilanes and their subsequent polymerisation.

#### Silicates:

Salts of silicic acid,  $H_4SiO_4$  comprised of  $SiO_4^{4-}$  units having tetrahedral structure formed as result of  $sp^3$  hybridization.

# **Nitrogen Family (Group 15 Elements)**

- Members: N, P, As, Sb & Bi
- Atomic Radii: Increases down the group. Only a small increases from As to Bi.
- Oxidation state: +3, +4 & +5. Stability of +3 oxidation state increases down the group.
- Ionization energy: Increases from N to Bi.

### Nitrogen

### **Preparation of Nitrogen:**

- 3CuO + 2NH<sub>3</sub> + Heat --> N<sub>2</sub> + Cu + 3H<sub>2</sub>O
- CaOCl<sub>2</sub> + 2NH<sub>3</sub> + Heat --> CaCl<sub>2</sub>+ 3H<sub>2</sub>O + N<sub>2</sub>
- $NH_4NO_2$  +Heat -->  $3H_2O + N_2 + Cr_2O_3$

#### **Properties of Dinitrogen:**

- Formation of Nitrides (with Li, Mg, Ca & Al):  $Ca + N_2 + Heat \rightarrow Ca_3N_2$
- Oxidation:  $N_2 + O_2 \square 2NO$
- Reaction with carbide (at 1273 K):  $CaC_2 + N_2 \rightarrow CaCN_2 + C$

### **Oxides of Nitrogen**



# Oxy -Acids of Nitrogen:

| Oxy Acids                                       | Name of oxy – acid |
|-------------------------------------------------|--------------------|
| 1. H <sub>2</sub> N <sub>2</sub> O <sub>2</sub> | Hyponitrous acid   |
| 2. H <sub>2</sub> NO <sub>2</sub>               | Hydronitrous acid  |
| 3. HNO <sub>2</sub>                             | Nitrous acid       |
| 4. HNO <sub>3</sub>                             | Nitric acid        |
| 5. HNO <sub>4</sub>                             | Per nitric acid    |

# Ammonia (NH<sub>3</sub>):

### **Preparation of Ammonia:**

- By heating an ammonium salt with a strong alkali ; $NH_4Cl + NaOH --> NH_3 + NaCl + H_2O$
- By the hydrolysis of magnesium nitride:  $Mg_3N_2 + 6H_2O --> 3Mg(OH)_2 + 2NH_3$ .
- Haber's process :  $N_2(g) + 3H_2(g) --> 2NH_3(g)$ .

### **Properties of Ammonia:**

- Basic nature : Its aq. solution is basic in nature and turns red litmus blue.  $NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$
- Reaction with halogens:

- $\circ$  8NH<sub>3</sub> + 3Cl<sub>2</sub> --> 6NH<sub>4</sub>Cl + N<sub>2</sub>
- NH3 +  $3Cl_2$  (in excess)  $\square$  NCl<sub>3</sub> + 3HCl
- 8NH3 + 3Br<sub>2</sub> □ 6NH4Br + N<sub>2</sub>
- NH<sub>3</sub> + 3Br<sub>2</sub> (in excess) □ NBr<sub>3</sub> + 3HBr
- $\circ$  8NH<sub>3</sub>.NI<sub>3</sub>  $\Box$  6NH<sub>4</sub>I + 9I<sub>2</sub> + 6N<sub>2</sub>

### • Complex formation :

- $\circ$  Ag<sup>+</sup> + NH<sub>3</sub>  $\Box$  [Ag(NH<sub>3</sub>)<sub>2</sub>]<sup>+</sup>
- $Cu^{2+} + 4NH_3 \square [Cu(NH_3)_4]^{2+}$
- $Cd^{2+} + 4NH_3 \square [Cd(NH_3)_{\Delta}]^{2+}$

### Precipitation of heavy metal ions from the aq. solution of their salts :

•  $FeCl_3 + 3NH_4OH \rightarrow Fe(OH)_3 + 3NH_4Cl$ 

Brown ppt.

- AlCl<sub>3</sub> + 3NH<sub>4</sub>OH  $\rightarrow$  Al(OH)<sub>3</sub> + 3NH<sub>4</sub>Cl White ppt.
- $CrCl_3 + 3NH_4OH \rightarrow Cr(OH)_3 + 3NH_4Cl$ Green ppt.

# **Phosphorus:**

### Allotropy of Phosphorus:

### a) White phosphorus:

- Translucent white waxy solid
- Extremely reactive
- Poisonous and insoluble in water

#### b) Red Phosphorus:

• Formed by heating white phosphorus in absence of air.

Red Phosphorus

• Does not burn spontaneously at room temperature.

**c) Black Phosphorus:** Formed by further heating of red phosphorus.

### **Compounds of Phosphorus:**

### a) Phosphine, PH<sub>3</sub>:

#### **Preparation of Phosphine**

- $Ca_3P_2 + 6H_2O \square 2 PH_3 + 3 Ca(OH)_2$
- 4H<sub>3</sub>PO<sub>3</sub> +Heat PH<sub>3</sub>+ 3 H<sub>3</sub>PO<sub>4</sub>
- PH<sub>4</sub>I +KOH □ PH<sub>3</sub>+KI + H<sub>2</sub>O
- P4 + 3KOH + 3H<sub>2</sub>O PH<sub>3</sub> +3KH<sub>3</sub>PO<sub>2</sub>

### **Properties of Phosphine:**

- Formation of Phosphonic Iodide: PH<sub>3</sub> + HI à PH<sub>4</sub>I
- Combustion: PH<sub>3</sub> + 2O<sub>2</sub> à H<sub>3</sub>PO<sub>4</sub>

### b) Phosphorous Halides:

### **Preparation**:

- P<sub>4</sub>+ 6Cl<sub>2</sub> □ 4PCl<sub>3</sub>
- P<sub>4</sub>+ 10Cl<sub>2</sub> \( \text{4PCl}\_5
- P<sub>4</sub>+ 8SOCl<sub>2</sub> \( \text{ 4PCl}\_3 + 4SO\_2 + 2S\_2Cl\_2 \)
- P<sub>4</sub>+ 10SOCl<sub>2</sub> □ 4PCl<sub>5</sub> + 10SO<sub>2</sub>

#### **Properties:**

- PCl<sub>3</sub> + 3H<sub>2</sub>O □ H<sub>3</sub>PO<sub>3</sub> + 3HCl
- PCl<sub>5</sub> + 4H<sub>2</sub>O □ POCl<sub>3</sub> à H<sub>3</sub>PO<sub>4</sub> +5HCl
- PCl<sub>3</sub> + 3CH<sub>3</sub>COOH [] 3 CH<sub>3</sub>COCl +H<sub>3</sub>PO<sub>3</sub>
- PCl<sub>5</sub> + CH<sub>3</sub>COOH 

  CH<sub>3</sub>COCl + POCl<sub>3</sub>+ HCl
- 2Ag + PCl<sub>5</sub> 2AgCl + PCl<sub>3</sub>
- 2Sn + PCl<sub>5</sub> \( \text{SnCl}\_4 + 2PCl\_3 \)

#### **?C) Oxides of Phosphorus:**

### d) Oxy - Acids of Phosphorus:

| Oxo acid                                     | Name                 |  |
|----------------------------------------------|----------------------|--|
| H <sub>3</sub> PO <sub>2</sub>               | Hypophosphorus acid  |  |
| H <sub>3</sub> PO <sub>3</sub>               | Phosphorus acid      |  |
| H <sub>4</sub> P <sub>2</sub> O <sub>6</sub> | Hypophosphoric acid  |  |
| H <sub>3</sub> PO <sub>4</sub>               | Orthophosphoric acid |  |
| H <sub>4</sub> P <sub>2</sub> O <sub>7</sub> | Pyrophosphoric acid  |  |
|                                              | Metaphosphoric acid  |  |

| HPO <sub>2</sub> | ' ' |
|------------------|-----|
| 111 03           |     |
|                  |     |
|                  |     |

# Oxygen Family (Group 16 Elements):

| Sr. No. | Property                            | Oxygen                              | Sulfur                              | Selenium                            | Tellurium                           | Polonium                            |
|---------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| 1.      | Configuration                       | [He]2s <sup>2</sup> 2p <sup>4</sup> | [Ne]3s <sup>2</sup> 3p <sup>4</sup> | [Ar]4s <sup>2</sup> 4p <sup>4</sup> | [Kr]5s <sup>2</sup> 5p <sup>4</sup> | [Xe]6s <sup>2</sup> 6p <sup>4</sup> |
| 2.      | Common oxidation state              | -2                                  | -2, +4, +6                          | +4, +6                              | +4, +6                              |                                     |
| 3.      | Atomic radius (pm)                  | 66                                  | 104                                 | 116                                 | 143                                 | 167                                 |
| 4.      | First ionization<br>energy (KJ/mol) | 1314                                | 1000                                | 941                                 | 869                                 | 812                                 |
| 5.      | Electronegativity                   | 3.5                                 | 2.5                                 | 2.4                                 | 2.1                                 | 2.0                                 |

# **Chemical Properties of Group 16:**

#### **Formation of volatile Hydrides:**

**Formation of Halides:** 

#### **Formation of Oxide:**

- a) All elements (except Se) forms monoxide.
- **b)** All elements form dioxide with formula  $MO_2$ ,  $SO_2$  is a gas,  $SeO_2$  is volatile solid. While  $TeO_2$  and  $PoO_2$  are non volatile crystalline solids.
- **c) Ozone:** It is unstable and easily decomposes into oxygen. It acts as a strong oxidising agent due to the case with which it can liberate nascent oxygen.

### **Oxyacids:**

| Sulphur                                                                  | Selenium                                       | Tellurium                                        |
|--------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|
| Sulphurous acid H <sub>2</sub> SO <sub>3</sub> .                         | Selenious acid H <sub>2</sub> SeO <sub>3</sub> | Tellurous acid H <sub>2</sub> TeO <sub>3</sub> . |
| Sulphuric acid H <sub>2</sub> SO <sub>4</sub>                            | Selnenic acid H <sub>2</sub> SeO <sub>4</sub>  | Telluric acid H <sub>2</sub> TeO <sub>4</sub> .  |
| Peroxomonosulphuric acid<br>H <sub>2</sub> SO <sub>5</sub> (Caro's acid) |                                                |                                                  |
| Peroxodisulphuric acid                                                   |                                                |                                                  |
| H <sub>2</sub> S <sub>2</sub> O <sub>8</sub> (Marshell's acid)           |                                                |                                                  |
| Thio sulphuric acid H <sub>2</sub> S <sub>2</sub> O <sub>3</sub>         |                                                |                                                  |
| Dithiconic acid H <sub>2</sub> S <sub>2</sub> O <sub>6</sub>             |                                                |                                                  |
| Pyrosulphuric acid H <sub>2</sub> S <sub>2</sub> O <sub>7</sub>          |                                                |                                                  |

# **Allotropes of Sulphur:**

#### **Rhombic sulphur:**

- It has bright yellow colour.
- It is insoluble in water and carbon disulphide. Its density is 2.07 gm cm<sup>-3</sup> and exists as  $S_8$  molecules. The 8 sulphur atoms in  $S_8$  molecule forms a puckered ring.

### **Monoclinic Sulphur:**

- Stable only above 369 K. It is dull yellow coloured solid, also called b sulphur. It is soluble in CS<sub>2</sub> but insoluble in H<sub>2</sub>O.
- It slowly changes into rhombic sulphur. It also exist as S<sub>8</sub> molecules which have puckered ring structure. It however, differs from the rhombic sulphur in the symmetry of the crystals

#### **Plastic Sulphur:**

- It is obtained by pouring molten sulphur to cold water.
- It is amorphous form of sulphur.
- It is insoluble in water as well as CS<sub>2</sub>.

# **Sulphuric Acid:**

- Due to strong affinity for water, H<sub>2</sub>SO<sub>4</sub> acts as a powerful dehydrating agent.
- Concentrated H2SO4 reacts with sugar, wood, paper etc to form black mass of carbon. This phenomenon is called charring.
- It is moderately strong oxidizing agent.
- Decomposes carbonates, bicarbonates, sulphides, sulphites, thiosulphates and nitrites at room temperatures.
- Salts like chlorides, fluorides, nitrates, acetates, oxalates are decomposed by hot conc. H<sub>2</sub>SO<sub>4</sub> liberating their corresponding acids.

?..

# Halogen Family (Group 17 Elements)

### Inter halogen compounds:

| Type XX' <sub>1</sub> (n = 1)<br>(with linear shape) | Type XX' <sub>3</sub> (n = 3) (with T-shape) | XX' <sub>5</sub> (n = 5)<br>(with square pyramidal<br>shape) | XX' <sub>7</sub> (n = 7) with pentagonal<br>bipyramidal shape) |
|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|
| CIF                                                  | CIF <sub>3</sub>                             | CIF <sub>5</sub>                                             |                                                                |
| BrF BrCl                                             | BrF <sub>3</sub>                             | BrF <sub>5</sub>                                             |                                                                |
| ICI, IBr, IF                                         | ICl <sub>3</sub> , IF <sub>3</sub>           | IF <sub>5</sub>                                              | IF <sub>7</sub>                                                |

### **Hydrogen Halides:**

### **Properties of Hydrogen Halides:**

• All the three acids are reducing agents HCl is not attacked by H<sub>2</sub>SO<sub>4</sub>.

$$\circ$$
 2HBr + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  2H<sub>2</sub>O + SO<sub>2</sub> + Br<sub>2</sub>

$$\circ$$
 2HI + H<sub>2</sub>SO<sub>4</sub>  $\rightarrow$  2H<sub>2</sub>O + SO<sub>2</sub> + I<sub>2</sub>

• All the three react with  $KMnO_4$  and  $K_2Cr_2O_7$ 

$$\circ$$
 K2Cr<sub>2</sub>O<sub>7</sub> + 14HBr  $\Box$  2KBr + 2CrBr<sub>3</sub> + 7H<sub>2</sub>O + 3Br<sub>2</sub>

• Other reactions are similar.

• Dipole moment: HI < HBr < HCl < HF

• Bond length: HF < HCl < HBr < HI

Bond strength: HI < HBr < HCl < HF</li>

• Thermal stability: HI < HBr < HCl < HF

Acid strength: HF < HCl < HBr < BI</li>

• Reducing power: HF < HCl < HBr < HI

#### Pseudohalide ions and pseudohalogens:

lons which consist of two or more atoms of which at least one is nitrogen and have properties similar to those of halide ions are called pseudohalide ions. Some of these pseudohalide ions can be oxidised to form covalent dimers comparable to halogens ( $X_2$ ). Such covalent dimers of pseudohalide ions are called pseudohalogens.

The best known psuedohalide ion is CN<sup>-</sup>

| Pseudohalide ions           | Name              |  |
|-----------------------------|-------------------|--|
| CN-                         | Cyanide ion       |  |
| OCN-                        | Cyanate ion       |  |
| SCN <sup>-</sup>            | Thiocyante ion    |  |
| SeCN <sup>-</sup>           | Selenocyanate ion |  |
| NCN <sup>2-</sup>           | Cyanamide ion     |  |
| N <sub>3</sub> <sup>-</sup> | Azide ion         |  |
| OMC <sup>-</sup>            | Fulminate ion     |  |

### **Pseudohalogen**

- (CN)<sub>2</sub> cyanogen
- (SCM)<sub>2</sub> thiocyanogen

#### Some important stable compound of Xenon

• XeO<sub>3</sub> Pyramidal

- XeO<sub>4</sub> Tetrahedral
- XeOF<sub>4</sub> Square pyramidal
- XeO<sub>2</sub>F<sub>2</sub> Distorted octahedral

First rare gas compound discovered was Xe<sup>+</sup> (PtF<sub>6</sub>]<sup>-</sup> by Bartlett.

### **Oxyacids of Chlorine**

| Formula           | Name              | Corresponding Salt |
|-------------------|-------------------|--------------------|
| HOCI              | Hypochlorous acid | Hypochlorites      |
| HCIO <sub>2</sub> | Chlorous acid     | Chlorites          |
| HClO <sub>3</sub> | Chloric acid      | Chlorates          |
| HClO <sub>4</sub> | Perchloric acid   | Perchlorates       |

**Acidic Character:** Acidic character of the same halogen increases with the increase in oxidation number of the halogen:  $HCIO_4 > HCIO_2 > HOCI$ 

#### **Preparation**

#### HOCI:

•  $Ca(OCI)_2 + 2HNO_3 \rightarrow Ca(NO_3)_2 + 2HOC1$ 

#### HClO<sub>2</sub>:

- BaO<sub>2</sub> + 2ClO<sub>2</sub> \( \text{Ba(ClO}\_2)\_2 \) (liquid) + O<sub>2</sub>
- Ba(ClO<sub>2</sub>)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>(dil.)  $\square$  BaSO<sub>4</sub>  $\overline{\phantom{a}}$  + 2HClO<sub>2</sub>

#### HClO<sub>3</sub>:

- 6Ba(OH)<sub>2</sub> + 6Cl<sub>2</sub> □ 5BaCl<sub>2</sub> + Ba(ClO<sub>3</sub>)<sub>2</sub> + 6H<sub>2</sub>O
- Ba(ClO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>SO<sub>4</sub>(dil.)  $\square$  BaSO<sub>4</sub>  $\overline{\phantom{a}}$  + 2HClO<sub>3</sub>

#### HClO<sub>4</sub>:

- KClO<sub>4</sub> + H<sub>2</sub>SO<sub>4</sub> KHSO<sub>4</sub> + HClO<sub>4</sub>
- 3HClO<sub>3</sub> \( \text{HClO}\_4 + 2ClO\_2 + H\_2O \)

### The Noble Gases (Group 18 Elements):

The noble gases are inert in nature. They do not participate in the reactions easily because they have

- stable electronic configuration i.e. complete octet.
- high ionization energies.
- low electron affinity.

### **Compounds of Xenon**

| Molecule         | Total electron pairs (BP + LP) | Hybridisation                  | Shape                |
|------------------|--------------------------------|--------------------------------|----------------------|
| XeF <sub>2</sub> | 5                              | Sp <sup>3</sup> d              | Linear               |
| XeF <sub>4</sub> | 6                              | Sp <sup>3</sup> d <sup>2</sup> | Square planar        |
| XeF <sub>6</sub> | 7                              | sp <sup>3</sup> d <sup>3</sup> | Distorted octahedral |

# **Uses of Nobles gas**

The noble gases are used in following ways:

### (A) Helium

- It is used to fill airships and observation balloons.
- In the oxygen mixture of deep sea divers.
- In treatment of asthma.
- Used in inflating aeroplane tyres.
- Used to provide inert atmosphere in melting and welding of easily oxidizable metals.

### (B) Neon

- It is used for filling discharge tubes, which have different characteristic colours and are used in advertising purposes.
- Also used in beacon lights for safety of air navigators as the light possesses fog and stram perpetrating power.

### (C) Argon

Along with nitrogen it is used in gas – filled electric lamps because argon is more inert than nitrogen.