PLONK Course - Lecture 5

算术约束与拷贝约束

回顾置换证明

上一节,我们讨论了如何让 Prover 证明两个长度为 N 的向量 \vec{a} 与 \vec{b} 满足一个实现约定(公开)的置换关系 $\sigma(\cdot)$,即

$$a_i = b_{\sigma(i)}$$

基本思路是向 Verifier 要一个随机数 eta,把两个「原始向量」和他们的「位置向量」进行合体,产生出两个新的向量,记为 $ec{a}'$ 与 $ec{b}'$

$$a_i' = a_i + eta \cdot i, \qquad b_i' = b_i + eta \cdot \sigma(i)$$

第二步是再向 Verifier 要一个随机数 γ ,通过连乘的方法来编码 \vec{a}' 和 \vec{b}' 的 Multiset,记为 A 和 B:

$$A = \prod (a_i' + \gamma), \qquad B = \prod (b_i' + \gamma)$$

第三步是让 Prover 证明 A/B=1,即

$$\prod_i rac{(a_i' + \gamma)}{(b_i' + \gamma)} = 1$$

证明这个连乘,需要引入一个辅助向量 \vec{z} ,记录每次乘法运算的中间结果:

$$z_0=1, \qquad z_{i+1}=z_i\cdotrac{(a_i'+\gamma)}{(b_i'+\gamma)}$$

由于 $z_N=\prod rac{a_i'+\gamma}{b_i'+\gamma}=1$,而且 $\omega^N=1$,因此我们可以用 z(X) 来编码 ec z,从而把置换证明转换成关于 z(X),a(X) 的关系证明。

最后 Verifier 发送挑战数 ζ , 得到 $z(\zeta), z(\omega \cdot \zeta), a(\zeta), b(\zeta)$ 然后检查它们之间的关系。

向量的拷贝约束

所谓拷贝约束 Copy Constraints,是说在一个向量中,我们希望能证明多个不同位置上的向量元素相等。我们先从一个简单例子开始:

$$ec{a}=(a_0,a_1,a_2,a_3)$$

假设为了让 Prover 证明 $a_0=a_2$,我们可以把 a_0 与 a_2 对调位置,这样形成一个「置换关系」,如果我们用 (0,1,2,3) 记录被置换向量的元素位置,那么我们把置换后的位置向量记为 σ ,而 \vec{a}_{σ} 为表示按照 σ 置换后的向量

$$\sigma=(2,1,0,3), \quad \vec{a}_{\sigma}=(a_2,a_1,a_0,a_3)$$

显然,只要 Prover 可以证明置换前后的两个向量相等, $\vec{a} = \vec{a}_{\sigma}$,那么我们就可以得出结论: $a_0 = a_2$ 。

这个方法可以推广到证明一个向量中有多个元素相等。比如要证明 \vec{a} 中的前三个元素都相等,我们只需要构造一个置换,即针对这三个元素的循环右移:

$$\sigma = (2,0,1,3), \quad \vec{a}_{\sigma} = (a_2,a_0,a_1,a_3)$$

那么根据 $\vec{a}=\vec{a}_{\sigma}$ 容易得出 $a_0=a_1=a_2$ 。

对于 Plonk 协议,拷贝约束需要横跨 W 表格的所有列,而协议要求 Prover 要针对每一列向量进行多项式编码。我们需要对置换证明进行扩展, 从而支持横跨多个向量的元素等价。

回忆比如针对上面电路的W表格:

i	w_a	w_b	w_c
0	0	0	out
1	$oldsymbol{x}_6$	$oldsymbol{x}_5$	out
2	x_1	x_2	$oldsymbol{x}_6$
3	x_3	x_4	$oldsymbol{x}_5$

看上面的表格,我们要求 $w_{a,1}=w_{c,2}$, $w_{b,1}=w_{c,3}$ 且 $w_{c,0}=w_{c,1}$ 。

支持跨向量置换的直接方案是引入多个对应的置换向量,比如上表的三列向量用三个置换向量统一进行位置编码:

i	$id_{a,i}$	$id_{b,i}$	$id_{c,i}$
0	0	4	8
1	1	5	9
2	2	6	10
3	3	7	11

置换后的向量为 $\sigma_a, \sigma_b, \sigma_c$:

i	$\sigma_{a,i}$	$\sigma_{b,i}$	$\sigma_{c,i}$
0	0	4	9
1	10	11	8
2	2	6	1
3	3	7	5

Prover 用一个随机数 β (Verifier 提供)来合并 $(\vec{w}_a, i\vec{d}_a)$, $(\vec{w}_b, i\vec{d}_b)$, $(\vec{w}_c, i\vec{d}_c)$,还有置换后的向量: (\vec{w}_a', σ_a) , (\vec{w}_b', σ_b) , (\vec{w}_c', σ_c) 。然后再通过一个随机数 γ (Verifier 提供)和连乘来得到 W 和 W' 的 Multisets, $\{f_i\}$ 与 $\{g_i\}$

$$f_i = (w_{a,i} + eta \cdot id_{a,i} + \gamma)(w_{b,i} + eta \cdot id_{b,i} + \gamma)(w_{c,i} + eta \cdot id_{c,i} + \gamma) \ g_i = (w_{a,i}' + eta \cdot \sigma_{a,i} + \gamma)(w_{b,i}' + eta \cdot \sigma_{b,i} + \gamma)(w_{c,i}' + eta \cdot \sigma_{c,i} + \gamma)$$

又因为拷贝约束要求置换后的向量与原始向量相等,因此 $w_a=w_a'$, $w_b=w_b'$, $w_c=w_c'$ 。

如果我们用多项式对 $\vec{w}_a, \vec{w}_b, \vec{w}_c, \vec{id}_a, \vec{id}_b, \vec{id}_c, \sigma_a, \sigma_b, \sigma_c$ 编码,得到 $w_a(X), w_b(X), w_c(X), id_a(X), id_a(X), id_c(X), id_c(X), \sigma_a(X), \sigma_b(X), \sigma_c(X)$,于是 f(X), g(X) 满足下面的约束关系:

$$f(X) = \Big(w_a(X) + eta \cdot id_a(X) + \gamma\Big) \Big(w_b(X) + eta \cdot id_b(X) + \gamma\Big) \Big(w_c(X) + eta \cdot id_c(X) + \gamma\Big) \ g(X) = \Big(w_a(X) + eta \cdot \sigma_a(X) + \gamma\Big) \Big(w_b(X) + eta \cdot \sigma_b(X) + \gamma\Big) \Big(w_c(X) + eta \cdot \sigma_c(X) + \gamma\Big)$$

如果两个 Multiset 相等 $\{f_i\} = \{g_i\}$,那么下面的等式成立:

$$\prod_{X\in H}f(X)=\prod_{X\in H}g(X)$$

上面的等式稍加变形,可得

$$\prod_{X\in H}rac{f(X)}{g(X)}=1$$

我们进一步构造一个辅助的**累加器**向量 \vec{z} ,表示连乘计算的一系列中间过程

$$z_0=1, \qquad z_{i+1}=z_i\cdotrac{f_i}{g_i}$$

其中 z_0 的初始值为 1, Prover 按照下表计算出 \vec{z} :

$oxed{i}$	H_i	${oldsymbol{z}}_i$
0	$\omega^0=1$	1
1	ω^1	$1 \cdot rac{f_0}{g_0}$
2	ω^2	$rac{f_0}{g_0} \cdot rac{f_1}{g_1}$
3	ω^3	$rac{f_0f_1}{g_0g_1}\cdotrac{f_2}{g_2}$
:		:
N-1	ω^{N-1}	$rac{f_0f_1\cdots f_{N-3}}{g_0g_1\cdots g_{N-3}}\cdotrac{f_{N-2}}{g_{N-2}}$
N	$\omega^N=1$	$rac{f_0f_1\cdots f_{N-1}}{g_0g_1\cdots g_{N-1}}=1$

如果 \vec{f} 能与 \vec{g} 连乘等价的话,那么最后一行 z_N 正好等于 1,即

$$z_N=z_0=1$$

而又因为 $\omega^N=1$ 。这恰好使我们可以把 $(z_0,z_1,z_2,\ldots,z_{N-1})$ 完整地编码在乘法子群 H 上。因此如果它满足下面两个多项式约束,我们就能根据数学归纳法得出 $z_N=1$,这是我们最终想要的「拷贝约束」:

$$z(\omega^0)=1$$
 $z(\omega\cdot X)g(X)=z(X)f(X)$

置换关系 σ

在构造拷贝约束前,置换关系 σ 需要提前公开共识。表格 W 含有所有算术门的输入输出,但是并没有描述门和门之间是否通过引线相连,而置换关系 σ 实际上正是补充描述了哪些算术门之间的连接关系。

因此,对于一个处于「空白态」的电路,通过 (Q,σ) 两个表格描述,其中 Q 由选择子向量构成,而 σ 则由「置换向量」构成。

置換关系 σ

下面是 Q 表格

i	q_L	q_R	q_M	q_C	q_O
0	0	0	0	99	1
1	0	0	1	0	1
2	1	1	0	0	1
3	0	0	1	0	1

下面是 S 表格,描述了哪些位置做了置换

i	$\sigma_{a,i}$	$\sigma_{b,i}$	$\sigma_{c,i}$
0	0	4	[9]
1	10	<u>11</u>	[8]
2	2	6	1
3	3	7	<u>5</u>

置换关系 σ

假如在上面给出的小电路中,要证明存在一个 Assignment,使得 out 的输入为一个特定的公开值,比如 out=99。最简单的办法是使用 Q 表中的 q_C 列,并增加一行约束,使得 $q_L=q_R=q_M=0$,因此满足下面等式

$$q_C(X) - q_O(X)w_c(X) = 0$$

但这个方案的问题是:这些公开值输入输出值被固定成了常数,如果公开值变化,那么 $q_C(X)$ 多项式需要重新计算。如果整体上 W 表格的行数比较大,那么这个重新计算过程会带来很多的性能损失。

能否在表格中引入参数,以区分电路中的常数列?并且要求参数的变化并不影响其它电路的部分?这就需要再引入一个新的列,专门存放公开参数,记为 ϕ ,因此,算术约束会变为:

$$q_L(X)w_a(X) + q_R(X)w_b(X) + q_M(X)w_a(X)w_b(X) - q_O(X)w_c(X) + q_C(X) + \phi(X) = 0$$

我们还可以通过修改拷贝约束的方式引入公开参数。

位置向量的优化

我们上面在构造三个 σ 向量时,直接采用的自然数 $(0,1,2,\cdots)$,这样在协议开始前,Verifier 需要构造 3 个多项式 $id_a(X),id_b(X),id_c(X)$,并且在协议最后一步查询 Oracle,获得三个多项式在挑战点 $X=\zeta$ 处的取值 $(id_a(\zeta),id_b(\zeta),id_c(\zeta))$ 。

思考一下, σ 向量只需要用一些互不相等的值来标记置换即可,不一定要采用递增的自然数。如果我们采用 $H=(1,\omega,\omega^2,\cdots)$ 的话,那么多项式 $id_a(X)$ 会被大大简化:

$$egin{aligned} ec{id}_a &= (1,\omega,\omega^2,\omega^3) \ ec{id}_b &= (k_1,k_1\omega,k_1\omega^2,k_1\omega^3) \ ec{id}_c &= (k_2,k_2\omega,k_2\omega^2,k_2\omega^3) \end{aligned}$$

其中 k_i 为互相不等的二次非剩余。

$$id_a(X)=X,\quad id_b(X)=k_1\cdot X,\quad id_a(X)=k_2\cdot X$$

这样一来,这三个多项式被大大简化,它们在 $X = \zeta$ 处的计算轻而易举,可以直接由 Verifier 完成。

陪集

定义1(陪集) 设 G 为(乘法)群, H < G 为子群, $a \in G$ 为任一元素,则

$$aH = \{ah \mid h \in H\}$$

称为 H 在 G 的一个(左)<mark>陪集(coset), a 称为此陪集的一个代表元(representative).</mark> 类似地, Ha 称为右陪集, 以下, 陪集均指左陪集.

例1 在 有限域 $G = F_{101}$ 中存在一个乘法子群 $H = \{1,10,100,91\}$, 则可计算一些左陪集。

- a = 6, $M = \{6,60,95,41\}$
- b = 33, $\bigcup bH = \{33,27,68,74\}$

陪集

引理1 子群H的陪集有如下性质:

- 1. 若 $h \in H$,则 hH = H. 特别有 HH = H.
- 2. 若 $a' \in aH$,则 a'H = aH. (陪集内元素皆可作为代表元)
- 3. 若 $b \notin aH$ 或 $aH \neq bH$,则 $aH \cap bH = \emptyset$. (不同的陪集无交)
- 4. $\sharp(H) = \sharp(aH)$. (各陪集的元素个数相等, 陪集等长)

群的陪集分解

$$G = H \cup a_1 H \cup a_2 H \cup a_3 H \cup \cdots$$

陪集

例 2 乘法群 $W_4 = \{1, i, -1, -i\}$, 子群 $H = \{1, -1\} = < -1 > .W_4$ 分为两个陪集:

$$H = \{-1,1\}, iH = \{i, -i\}.$$

对 W_4 作陪集分解

$$W_4 = H \cup iH = \{1, -1\} \cup \{i, -i\}$$

协议框架

•
理解 PLONK(四): 算术约束与拷贝约束: https://github.com/
wenjin1997/awesome-zkp-learning/blob/main/courses/Plonk-GuoYu/
lecture04/notes-plonk-lecture4-constraints.ipynb

Reference

- Plonk intro notebook: https://github.com/Antalpha-Labs/plonk-intro-notebook/blob/main/4-plonk-constraints.ipynb
- か抽象代数: https://book.douban.com/subject/36007684/