Partie cours

- 1. Donner la définition de la racine carré d'un nombre réel.
- 2. Montrer que si A et B sont deux ensembles de E, alors $A \subset B \Rightarrow \complement_E B \subset \complement_E A$.

Partie exercices

- 1. Montrer que: $A \Rightarrow B$ si et seulement si $non(B) \Rightarrow non(A)$.
- 2. Résolvez les équations/inéquations suivantes. Soit x un nombre réel.
 - (a) $x + 1 = \sqrt{x + 2}$
 - (b) $\sqrt{x^2 6x + 9} < 4$
 - (c) |2x+3|-|x-1|<3
 - (d) $x + a < \sqrt{x + a}$ où $a \in \mathbb{R}$
 - (e) x + |x 1| = 1 + |x|
- 3. Dire si les assertions suivantes sont vraies ou fausses et donner leur négation:
 - (a) $\forall x \in \mathbb{R}, \ \exists n \in \mathbb{N} \mid x \le n$
 - (b) $\exists M \in \mathbb{R}_{+}^{*} \mid \forall n \in \mathbb{N}, \mid U_{n} \mid \leq M$
 - (c) $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ xy = yx$
 - (d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \mid yxy^{-1} = x$
- 4. Montrer par contraposition les assertions suivantes:
 - (a) $\forall A, B \in \mathcal{P}(E) \ (A \cap B = A \cup B) \Rightarrow A = B$
 - (b) $\forall A, B, C \in \mathcal{P}(E) \ (A \cap B = A \cap C \ et \ A \cup B = A \cup C) \Rightarrow B = C$

MR

Partie cours

- 1. Donner la définition d'une fonction croissante.
- 2. Montrer pour tout $n \in \mathbb{N}, 2^n > n$.

Partie exercices

- 1. Écrire la négation des assertions suivantes où P, Q, R, S sont des propositions:
 - (a) $P \Rightarrow Q$
 - (b) P ET NON Q
 - (c) P ET (Q ET R)
 - (d) POU(QETR)
 - (e) (P ET Q) \Rightarrow ($R \Rightarrow S$)
- 2. Soit f la fonction de \mathbb{R} dans \mathbb{R} définie par: $\forall x \in \mathbb{R}$, $f(x) = x^2 + x + 1$
 - (a) Montrer que $\exists x \in \mathbb{R}, f(x) > 2$
 - (b) Est-il vrai que $\forall x \in \mathbb{R}, f(x) > 2$?
 - (c) Est-il vrai que $\forall x \in \mathbb{R}, f(x) > 0$?
 - (d) Résoudre dans \mathbb{C} , f(x) = 0 sans utiliser Δ
- 3. Déterminer m pour que l'équation suivante ait deux racines réelles positives: $m^2x^2 + (m-2)x + 6 = 0$
- 4. Montrer que $A \cap B = A \cap C \Leftrightarrow A \cap \complement B = A \cap \complement C$

 \mathcal{MR}

Partie cours

- 1. Donner la définition d'un nombre impaire.
- 2. Démontrer que $\sqrt{2}$ est irrationnel.

Partie exercices

- 1. Soit m et p deux paramètres réels fixés. Résolvez les équations et innéquations suivantes en x (réel). Pensez à bien déterminer l'ensemble solution:
 - (a) (2x+m)(x-6p) > 0
 - (b) $(mx \alpha)(4x p) = 0$ où $\alpha > 0$
 - (c) $(x+m)^2 = 2(x+p)$
 - (d) $x + m = \sqrt{x+p} + 4$
 - (e) $|x \frac{5}{3}| < m$
- 2. Soit A, B deux ensembles de E, montrer que $\mathcal{C}_E(A \cup B) = \mathcal{C}_E A \cap \mathcal{C}_E B$ et $\mathcal{C}_E(A \cap B) = \mathcal{C}_E A \cup \mathcal{C}_E B$
- 3. Montrer que $\forall \epsilon>0 \ \exists N\in\mathbb{N}$ tel que $(n\geq N\Rightarrow 2-\epsilon<\frac{2n+1}{n+2}<2+\epsilon)$
- 4. Écrire la négation des phrases suivantes:
 - (a) $\forall x \in \mathbb{R} \ \exists n \in \mathbb{N} \mid x \le n$
 - (b) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ xy = yx$
 - (c) $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \leq N, |U_n| < \epsilon$
 - (d) $\forall x \in \mathbb{R}, \forall \epsilon > 0, \exists \alpha > 0 \mid \forall f \in \mathcal{F}(E,F), \forall y \in \mathbb{R}, |x-y| < \alpha \Rightarrow |f(x) f(y)| < \epsilon$

MR