Course: Laboratory Practice III

Course Code: 410246

Name: Asmeeta Bardiya

Class: BE - A

Roll No.: 22

Title: Implement K-Means clustering/ hierarchical clustering on sales_data_sample.csv dataset.

Determine the number of clusters using the elbow method. Dataset link :

https://www.kaggle.com/datasets/kyanyoga/sample-sales-data

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import sklearn

dataset = pd.read_csv('/content/sales_data_sample.csv',sep=",", encoding='Latin-1')

dataset.head()

₽		ORDERNUMBER	QUANTITYORDERED	PRICEEACH	ORDERLINENUMBER	SALES	ORDERDATE	STA
	0	10107	30	95.70	2	2871.00	2/24/2003 0:00	Ship
	1	10121	34	81.35	5	2765.90	5/7/2003 0:00	Ship
	2	10134	41	94.74	2	3884.34	7/1/2003 0:00	Ship
	3	10145	45	83.26	6	3746.70	8/25/2003 0:00	Ship
	4	10159	49	100.00	14	5205.27	10/10/2003 0:00	Ship

5 rows × 25 columns

dataset.tail()

ORDERDATE	SALES	ORDERLINENUMBER	PRICEEACH	QUANTITYORDERED	ORDERNUMBER	
12/2/2004 0:00	2244.40	15	100.00	20	10350	2818
1/31/2005 0:00	3978.51	1	100.00	29	10373	2819
3/1/2005 0:00	5417.57	4	100.00	43	10386	2820
3/28/2005 0:00	2116.16	1	62.24	34	10397	2821
5/6/2005 0:00	3079.44	9	65.52	47	10414	2822

5 rowe x 25 columne

dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2823 entries, 0 to 2822
Data columns (total 25 columns):

#	Column	Non-Null Count	Dtype
0	ORDERNUMBER	2823 non-null	int64
1	QUANTITYORDERED	2823 non-null	int64
2	PRICEEACH	2823 non-null	float64
3	ORDERLINENUMBER	2823 non-null	int64
4	SALES	2823 non-null	float64
5	ORDERDATE	2823 non-null	object
6	STATUS	2823 non-null	object
7	QTR_ID	2823 non-null	int64
8	MONTH_ID	2823 non-null	int64
9	YEAR_ID	2823 non-null	int64
10	PRODUCTLINE	2823 non-null	object
11	MSRP	2823 non-null	int64
12	PRODUCTCODE	2823 non-null	object
13	CUSTOMERNAME	2823 non-null	object
14	PHONE	2823 non-null	object
15	ADDRESSLINE1	2823 non-null	object
16	ADDRESSLINE2	302 non-null	object
17	CITY	2823 non-null	object
18	STATE	1337 non-null	object
19	POSTALCODE	2747 non-null	object
20	COUNTRY	2823 non-null	object
21	TERRITORY	1749 non-null	object
22	CONTACTLASTNAME	2823 non-null	object
23	CONTACTFIRSTNAME	2823 non-null	object
24	DEALSIZE	2823 non-null	object
بادام	£1+C4/2\	LC1/7\ - L-1/1	< \

dtypes: float64(2), int64(7), object(16)

memory usage: 551.5+ KB

dataset.shape

(2823, 25)

```
dataset.isnull().sum()
```

```
ORDERNUMBER
     QUANTITYORDERED
                           0
     PRICEEACH
                           0
     ORDERLINENUMBER
                           0
                           0
     SALES
     ORDERDATE
                           0
                           0
     STATUS
     QTR_ID
                           0
     MONTH ID
                           0
     YEAR_ID
                           0
     PRODUCTLINE
                           0
     MSRP
                           0
     PRODUCTCODE
                           0
     CUSTOMERNAME
                           0
     PHONE
                           0
     ADDRESSLINE1
                           0
     ADDRESSLINE2
                       2521
     CITY
                           0
     STATE
                        1486
     POSTALCODE
                          76
     COUNTRY
                          0
                        1074
     TERRITORY
     CONTACTLASTNAME
                        0
     CONTACTFIRSTNAME
                           0
     DEALSIZE
                           0
     dtype: int64
X = dataset.iloc[:, [1, 2]].values
Χ
     array([[ 30. , 95.7 ],
            [ 34. , 81.35],
            [41., 94.74],
            . . . ,
            [ 43. , 100. ],
            [ 34. , 62.24],
            [ 47. , 65.52]])
from sklearn.cluster import KMeans
wcss = []
for i in range(1, 11):
   kmeans = KMeans(n_clusters = i, init = 'k-means++', random_state = 42)
   kmeans.fit(X)
   wcss.append(kmeans.inertia )
plt.plot(range(1,11), wcss)
plt.xlabel("Number of Clusters")
plt.ylabel("WCSS")
plt.show()
```



```
kmeans = KMeans(n_clusters = 5, init = "k-means++", random_state = 42)
y_kmeans = kmeans.fit_predict(X)
```

y_kmeans

```
array([3, 1, 0, ..., 0, 2, 1], dtype=int32)
```

```
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 60, c = 'red', label = 'Cluster1
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 60, c = 'blue', label = 'Cluster
plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 60, c = 'green', label = 'Cluste
plt.scatter(X[y_kmeans == 3, 0], X[y_kmeans == 3, 1], s = 60, c = 'violet', label = 'Clust
plt.scatter(X[y_kmeans == 4, 0], X[y_kmeans == 4, 1], s = 60, c = 'yellow', label = 'Clust
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 100, c = 'bl
plt.xlabel('Quantity Ordered')
plt.ylabel('Price Each')
plt.legend()
```

plt.show()

