

SAIRAM DIGITAL RESOURCES

MA8391

PROBABILITY AND STATISTICS (INFORMATION TECHNOLOGY)

UNIT III

TESTING OF HYPOTHESIS

3.4 TESTING OF HYPOTHESIS: LARGE SAMPLE TESTS FOR SINGLE VARIANCE AND DIFFERENCE OF VARIANCES

SCIENCE & HUMANITIES

Test of significance of the difference between sample S.D and population S.D.

Let 's' be the S.D of a large sample of size n drawn from a normal population with S.D σ .

Then it is known that s follows a $N\left(\sigma, \frac{\sigma}{\sqrt{2n}}\right)$ approximately.

: the test statistic

$$z = \frac{s - \sigma}{\frac{\sigma}{\sqrt{2n}}}$$

Test of significance of the difference between S. D's of two large samples.

Let s_1 and s_2 be the S.D's of two large samples of sizes n_1 and n_2 drawn from a normal population with S.D σ .

$$s_1$$
 follows a $N\left(\sigma, \frac{\sigma}{\sqrt{2n_1}}\right)$ and s_2 follows a $N\left(\sigma, \frac{\sigma}{\sqrt{2n_2}}\right)$

$$\therefore (s_1 - s_2) \text{ follows a } N\left\{0, \sigma\sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}\right\}$$

: the test statistic

$$Z = \frac{s_1 - s_2}{\sigma \sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}}$$

Example 1) A manufacturer of electric bulbs, according to a certain process, finds the S.D of the life of lamps to be 100 hours. He wants to change the process, if the new process results in a smaller variation in the life of lamps. In adopting a new process, a sample of 150 bulbs gave an S.D of 95 hours. Is the manufacturer justified in changing the process?

Solution: $\sigma = 100$, n = 150 and s = 95

Here

$$H_0$$
: $s = \sigma$

$$H_1$$
: $s < \sigma$

Left –tailed is to be used

Let LOS=5%
$$\therefore z_{\alpha} = -1.645$$

$$z = \frac{s - \sigma}{\frac{\sigma}{\sqrt{2n}}} = \frac{95 - 100}{\frac{100}{\sqrt{300}}} = -0.866$$

Now $|z| < |z_{\alpha}|$

- \therefore the difference between s and σ is not significant at 5% level.
- *i.e.*, H_0 is accepted and H_1 is rejected.
- i.e., The manufacturer is not justified in changing the process.

Example 2) The S.D of a random sample of 1000 is found to be 2.6 and the S.D of another random sample of 500 is 2.7. Assuming the sample to be independent, find whether the two samples could have come from populations with the same S.D.

Solution: $n_1 = 1000$, $s_1 = 2.6$; $n_2 = 500$, $s_2 = 2.7$

$$H_0: s_1 = s_2 \text{ (or } \sigma_1 = \sigma_2)$$

 $H_1: s_1 \neq s_2$

Two-tailed is to be used

Let LOS be 5%
$$\therefore z_{\alpha} = 1.96$$

$$z = \frac{s_1 - s_2}{\sqrt{\frac{s_1^2}{2n_1} + \frac{s_2^2}{2n_2}}} = \frac{2.6 - 2.7}{\sqrt{\frac{(2.6)^2}{1000} + \frac{(2.7)^2}{2000}}} = -0.98$$

Since σ is not known

Now $|z| < z_{\alpha}$

 \therefore the difference between s_1 and s_2 (and hence between σ_1 and σ_2) is not significant at 5% level, i.e., H_0 is accepted.

i.e., the two samples could have come from population with the same S.D.

Example 3) Random samples drawn from two countries gave the following data relating to the heights of male adults:

	Country A	Country B
S.D(in inches)	2.58	2.50
Number in samples	1000	1200

Is the difference between the standard deviation significant?

Solution:

 $n_1 = 1000$, $s_1 = 2.58$ inches , $n_2 = 1200$, $s_2 = 2.50$ inches

Null Hypothesis

 H_0 : $\sigma_1 = \sigma_2$, i.e., there is no significant difference between the sample standard deviations

Alternative Hypothesis

 $H_1: \sigma_1 \neq \sigma_2$ (two-tailed test)

Level of significance : $\alpha = 5\%$

Test statistic

Under H_0

$$z = \frac{s_1 - s_2}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_2^2}{2n_2}}} = \frac{s_1 - s_2}{\sqrt{\frac{s_1^2}{2n_1} + \frac{s_2^2}{2n_2}}} \sim N(0,1)$$

$$z = \frac{2.58 - 2.50}{\sqrt{\frac{(2.58)^2}{2(1000)} + \frac{(2.50)^2}{2(1200)}}} = \frac{2.58 - 2.50}{.07702} = 1.0387$$

The critical value at 5% LOS for two-tailed test is $z_{\alpha} = 1.96$.

Conclusion

Since |z| < 1.96, we accept the null hypothesis and hence conclude that the sample

Standard deviations do not differ significantly.

Example 4) Two samples of 100 and 80 bulbs of a factory are selected at random from the same production batch. The mean and standard deviation of the first batch are 540 hours and 30 hours and that of the second batch are 552 hours and 28 hours. Do you think the difference between the two standard deviations is significant?

Solution:

Given $n_1 = 100$, $n_2 = 80$, $s_1 = 30$, $s_2 = 28$

Null Hypothesis

 H_0 : $\sigma_1 = \sigma_2$. i.e., there is no significant difference between the two standard deviations.

Alternative Hypothesis

 H_0 : $\sigma_1 \neq \sigma_2$ (two-tailed test)

Level of significance: $\alpha = 5\%$

Test Statistic

Under H_{0}

$$z = \frac{s_1 - s_2}{\sqrt{\frac{\sigma_1^2}{2n_1} + \frac{\sigma_1^2}{2n_1}}} = \frac{s_1 - s_2}{\sqrt{\frac{s_1^2}{2n_1} + \frac{s_1^2}{2n_1}}} \sim N(0, 1)$$

Since σ_1 , σ_2 are not known

$$\frac{30 - 28}{\sqrt{\frac{30^2}{2(100)} + \frac{28^2}{2(80)}}} = \frac{2}{9.4} = 0.2128$$

The critical value at 5% LOS for two-tailed test is $z_{\alpha} = 1.96$

Conclusion

Since $|z| < z_{\alpha}$, we accept H_0 and conclude that the difference between the two standard deviations is not significant

