

SLICT: Multi-Input Multi-Scale Surfel-Based Lidar-Inertial Continuous-Time Odometry and Mapping

Thien-Minh Nguyen, Daniel Duberg, Patric Jensfelt

January 2023

Contents

- 1. Introduction
 - a. Global Mapping
 - b. Discrete vs Continuous-Time Optimization
 - c. Our contributions
- 2. Methodology
 - a. System overview
 - b. Octree-based Surfel Map
 - c. Multi-Scale Association
 - d. Continuous-Time Optimization
- 3. Experiments
- 4. Future Works

Introduction

☐ Issue 1:

A bottleneck in mapping framework:

Traditional LOAM methods rely on **local map**, at **one voxel scale** \rightarrow missing associations with features kept in earlier keyframes \rightarrow drift can accumulate early.

Why local map? (to bound the map building time)

Why one scale only? (having to maintain multiple maps)

Introduction

☐ Issue 2:

Discrete-time optimization issues:

The number of state estimates is equal to the number of pointclouds → Not representative of the dynamics.

Factors are based on the lidar points that have been motion compensated by IMU propagation.

→ propagation error on top of ranging error.

Nguyen, Thien-Minh, Shenghai Yuan, Muqing Cao, Lyu Yang, Thien Hoang Nguyen, and Lihua Xie. "MILIOM: Tightly coupled multi-input lidar-inertia odometry and mapping." IEEE Robotics and Automation Letters 6, no. 3 (2021): 5573-5580.

Introduction

- ☐ SLICT Contributions:
 - UFOMap-based mapping framework:
 - ✓ Can be queried globally.
 - ✓ Can be incrementally updated.
 - ✓ Can query surfels of multiple scales simultaneously.
 - Joint optimization of continuous-time lidar factors (using raw lidar points) and IMU preintegation factors.
 - Supporting simple loop closure → full-fledged SLAM.
 - Open sourced: https://github.com/brytsknguyen/slict

- ☐ System overview:
 - No feature extraction (~ direct method of FAST-LIO2).
 - Surfelization is done on the backend.
 - Blocks 2, 3, 4 can be done iteratively.

☐ Octree-based Surfel Map:

$$\mathcal{V}_i = \left\{ \mathbf{f}_1 \dots \mathbf{f}_{N_i} \right\}$$

class myBeautifulSurfel

$$\begin{cases} N_i \triangleq |\mathcal{V}_i|, & \mathbf{S}_i \triangleq \sum_{k=1}^{N_i} \mathbf{f}_i, & \mathbf{C}_i \triangleq \sum_{k=1}^{N_i} \mathbf{f}_i \mathbf{f}_i^{\top} - \frac{1}{N_i} \mathbf{S}_i \mathbf{S}_i^{\top} \\ \mu_i = \frac{1}{N_i}, & \Gamma_i = \frac{1}{N_i - 1} \mathbf{C}_i, & \mathbf{n} = \nu_0, & p = 2 \frac{\lambda_1 - \lambda_0}{\lambda_0 + \lambda_1 + \lambda_2} \dots \end{cases}$$

☐ Multi-scale Surfel:

Given $\mathcal{V}_i = \mathcal{V}_m \cup \mathcal{V}_n$, N_m , S_m , C_m , N_n , S_n , C_n , the surfel of \mathcal{V}_i can be computed by:

$$\alpha := 1/[N_m N_n (N_m + N_n)], \beta := N_n S_m - N_m S_n$$

$$\mathbf{C}_i = \mathbf{C}_m + \mathbf{C}_n + \alpha \beta \beta^{\mathsf{T}}$$

$$N_i = N_m + N_n$$

$$S_i = S_m + S_n$$

- ☐ Multi-Scale Association:
 - Distant small-scale voxels may not have enough points and good planarity when the map of that area is new:
 - \rightarrow cost function may consist of factors from close-range points only \rightarrow estimate optimized for short-term accuracy only.

- ☐ Multi-Scale Association:
 - Going up the scale, surfels may have enough points and planarity
 - → balanced optimization for both short term and long term accuracy.

☐ Association Strategy:

Given a deskewed point $\check{\mathbf{f}}$, and a surfel map, find a surfel \mathcal{V}_i to build the cost factor.

- 1st stage: Select all nodes satisfying the predicates,
 - Node's depth on the tree is between 1 to D_{max}
 - Number of points $\geq N_{\min}$
 - Surfel planarity $\geq \rho_{\min}$
 - Intersect with a ball of radius r

2nd stage

- Sort all the nodes by the scales.
- Starting from the smallest scale, find the surfel \mathcal{V}_i with the shortest distance to $\check{\mathbf{f}}$, denoted as d_i .
- If $d_i < d_{\max}$, admit \mathcal{V}_i to the buffer for construction of the cost factor.
- Otherwise, move to the next scale.

☐ Increase "model capacity":

Add more than one state estimate per scan → better capture the dynamic, shorter propagation

☐ Cost function:

$$f(\widehat{X}) = \sum_{\substack{m=w\\k-1}}^{k-1} \|r_{\mathcal{I}}(\mathcal{I}_{m}, \widehat{X}_{m}, \widehat{X}_{m+1})\|_{P_{\mathcal{I}}}^{2} + \sum_{\substack{m=w\\k-1}} \sum_{f \in \mathcal{A}_{m}} \|r_{\mathcal{L}}(\mathcal{L}(B_{t_{S}}f, \mathbf{n}, \mu), \widehat{X}_{m}, \widehat{X}_{m+1})\|_{P_{\mathcal{L}}}^{2}$$

☐ Continuous-Time lidar factor (using a linearly changing trajectory model)

$$r_{\mathcal{L}} = \mathbf{n}^{\mathsf{T}} \left(\widehat{\mathbf{R}}_{m} \mathsf{Exp} \left(\frac{t_{s} - t_{m}}{t_{m+1} - t_{m}} \mathsf{Log} (\widehat{\mathbf{R}}_{m}^{-1} \widehat{\mathbf{R}}_{m+1}) \right)^{B_{t_{s}}} \mathbf{f} + \widehat{\mathbf{p}}_{m} + \frac{t_{s} - t_{m}}{t_{m+1} - t_{m}} (\widehat{\mathbf{p}}_{m+1} - \widehat{\mathbf{p}}_{m}) - \mu \right)$$

☐ Benchmarking:

TABLE I: ATE of SLICT compared with other methods on NTU VIRAL datasets (unit [m]). The best results are in **bold**, second best are <u>underlined</u>. 'x' denotes divergence.

Dataset	MARS	LIO- SAM	Voxel- Map	FAST- LIO2	SLICT
eee_01	0.2471	0.0624	0.0699	0.0585	0.0316
eee_02	0.1033	0.0457	0.0506	0.0318	0.0249
eee_03	0.0927	0.0403	0.0631	0.0351	0.0275
nya_01	0.0555	2.0960	0.0508	0.0305	0.0229
nya_02	0.0624	X	0.0425	0.0286	0.0227
nya_03	0.0831	0.0468	0.0494	0.0315	0.0260
sbs_01	0.1370	0.0444	0.0535	0.0324	0.0298
sbs_02	0.1256	0.0461	0.0525	0.0322	0.0291
sbs_03	0.1588	0.0494	0.0498	$\overline{0.0428}$	0.0335
rtp_01	X	0.2571	9.7416	0.0494	0.0447
rtp_02	0.2329	0.1091	2.4479	$\overline{0.1151}$	0.0466
rtp_03	0.1377	$\overline{0.0576}$	0.0792	0.0543	0.0501
tnp_01	0.0734	X	0.0326	$\overline{0.0432}$	0.0287
tnp_02	0.0681	0.0330	$\overline{0.0247}$	0.0590	0.0201
tnp_03	0.0665	0.0283	$\overline{0.0331}$	0.0468	0.0383
spms_01	X	0.1620	$\overline{11.3792}$	0.0686	0.0610
spms_02	X	0.6641	X	$\overline{0.0821}$	0.1000
spms_03	19.8650	1.0071	X	0.0603	0.0661

- NTU VIRAL dataset: multi-input, accurate ground truth, challenging aerial scenario, 100m x 100m area.
- Most accurate in most sequences.
- No Loop Closure Needed.

☐ Benchmarking:

TABLE II: ATE of SLICT and other methods on Newer College Dataset (unit [m]). The best results are in **bold**, second best are <u>underlined</u>. 'x' demotes a divergent experiment.

Dataset	MARS	LIO- SAM	Voxel- Map	FAST- LIO2	SLICT
01_short_exp	2.1521	-	X	0.3883	0.3843
02_long_exp	6.0030	-	X	0.3659	0.3496
05_quad_dynamics	0.3729	-	17.0007	0.3443	0.1155
06_dynamic_spin	X	-	19.9993	0.0800	0.0844
07_parkland	X	-	X	<u>0.1356</u>	0.1290

- Newer College Dataset: 200m x 200m area.
- Most accurate in most sequences. Error more noticeable, mostly in z direction.
- No Loop Closure Needed

☐ Benchmarking:

TABLE III: ATE of SLICT and other methods on in-house dataset (unit [m]). The best results are in **bold**, second best are <u>underlined</u>. 'x' demotes a divergent experiment. LC denotes experiments with loop-closure and pose-graph optimization.

Dataset	LIO- SAM	Voxel- Map	FAST- LIO2	SLICT	LIO- SAM (LC)	SLICT (LC)
seq_01	4.0678	7.8550	1.7658	1.0778	1.2931	0.7437
seq_02	3.8518	X	1.2244	0.7372	0.9685	0.5401
seq_03	X	9.5255	<u>1.1653</u>	0.5789	x	0.6226

- MCD VIRAL, NTU ATV: Spinning lidar + Epicycle Lidar. 400m x 600m area, 2km route, very high speed.
- Most accurate in most sequences. Error very noticeable, especially in z direction.
- Loop closure is used and shows effectiveness.

- ☐ Ablation Study Effect of Maximum Associable Scales:
 - Changing D_{max} from 2 to 9 → maximum associable scale varies from $2^2 \times 0.05 = 0.2m$ to $2^9 \times 0.05 = 25.6m$.
 - Error reduces when D_{max} increases.
 - Beyond $2^5 \times 0.05 = 1.6m$, the maximum associable scale no longer has influence.

- ☐ Ablation Study Effect of Number of States Per Scan:
 - Changing the number of state estimates per scan in the sliding window.
 - Ablation study shows that error reduces when having more state estimates per scan.
 - 3 and 7 states per scan seem to have the best performance.

Thank you