- 1. Un compuesto químico se puede descomponer en otras sustancias; sin embargo, una sustancia elemental o elemento, no.
- **2.** Las sustancias elementales que aparecen en el esquema son el cobre y el azufre.

El compuesto que resulta de la reacción química que se produce entre el cobre y el azufre es el monosulfuro de cobre.

3. La ley de conservación de la masa si se cumple, puesto que la suma de las masas de cobre y de azufre es igual a la masa de sulfuro de cobre obtenida:

10 g de Cu + 5 g de S = 15,04 g de CuS

- 4. La proporción pedida es de 1,98.
- **5.** Aplicando la proporción entre la cantidad de cobre y de monosulfuro de cobre, 0,665, obtenemos una cantidad de cobre necesaria de 20 g.

Ficha de trabajo 2 (R)

- 1. a) Falsa.
 - b) Falsa.
 - c) Verdadera.
 - d) Falsa.
- 2. a) La materia está formada por partículas discretas, que son inmutables y de tamaño fijo, denominadas átomos.
 - b) Los átomos de un mismo **elemento** son iguales entre sí en **tamaño** y **masa**, pero distintos de los **átomos** de otro **elemento** diferente.
 - c) Los compuestos químicos se forman al unirse átomos de distintos elementos en una relación numérica sencilla.
 - d) En una reacción química, los átomos se reagrupan de forma distinta a como lo estaban inicialmente, pero ni se crean ni se destruyen.
- **3.** Las relaciones que solicita el enunciado de la actividad son las que se reflejan en el esquema siquiente:

independientemente del

elemento químico

2. La carga del electrón expresada en μC y nC es:

con carga

negativa

a las que denominó

electrones

$$1,602 \cdot 10^{-19} \text{ C} \cdot \frac{10^6 \ \mu\text{C}}{1 \ \text{C}} = 1,602 \cdot 10^{-13} \ \mu\text{C}$$

$$1,602 \cdot 10^{-19} \text{ C} \cdot \frac{10^9 \text{ nC}}{1 \text{ C}} = 1,602 \cdot 10^{-10} \text{ nC}$$

El número de electrones que hay en 1 C es:

$$\frac{1C}{1,602 \cdot 10^{-19} \text{ C/electron}} = 6,24 \cdot 10^{-20} \text{ electrones}$$

3. Entre 1803 y 1808, J. **Dalton** desarrolla su teoría atómica.

En 1850, W. Crookes construye un **tubo de descarga.**

En 1895, W. K. Röentgen descubre los rayos **X** en un **tubo de descarga.**

En 1897, J. J. **Thomson** descubre el **electrón** en un tubo de descarga.

4. Se ubican junto con Becquerel. El nombre radiactividad proviene de la actividad del radio.

Ficha de trabajo 4 (A)

1.		Modelo atómico	Año	Hechos experimentales
	000	Dalton	1803	Ley de conservación de la masa
		Rutherford	1911	Rebote de partículas α en bombardeo de lámina de metal
		Thomson	1904	Comportamiento de los rayos catódicos

	Dalton	Thomson	Rutherford	Bohr
El átomo es indivisible.				
La parte de carga negativa del átomo es el electrón.		~	~	~
La parte de carga positiva del átomo está en el núcleo.			V	~
Un átomo sin ionizar es neutro.		~	V	~
Los electrones se pueden extraer del átomo para dar lugar a iones positivos.		~	~	,
Los electrones giran en órbitas estacionarias.				~
La corteza del átomo es un lugar fundamentalmente vacío.			~	~
La corteza del átomo se organiza en capas de electrones.				,

Ficha de trabajo 5 (R)

1.		Α	Z	N.° protones	N.° neutrones	N.° electrones
	C-14	14	6	6	8	6
	Be-9	9	4	4	5	4
	Ar-40	40	18	18	22	18
	Ra-138	138	88	88	50	88

_						
2.	Elemento químico	N.° protones	N.° neutrones	N.° electrones	Masa (u)	Carga
	Potasio	19	20	20	39	+1
	Bario	56	81	54	137	+2
	Bromo	35	45	36	80	-1
	Azufre	16	16	18	32	-2
	Argón	18	22	18	40	_
	Calcio	20	20	18	40	+2
	Yodo	53	74	54	127	– 1
	Telurio	52	76	54	128	-2
	Sodio	11	12	10	23	+1

Ficha de trabajo 6 (A)

 Carga del neutrón: La carga del neutrón será la suma de las cargas de los quarks que lo forman (up, down, down).

$$\frac{+2}{3} + \frac{-1}{3} + \frac{-1}{3} = 0$$

Carga del protón: La carga del protón será la suma de las cargas de los quarks que lo forman (up, up, down).

$$\frac{+2}{3} + \frac{+2}{3} + \frac{-1}{3} = +1$$

Ficha de trabajo 7 (R)

1.	Α		Z N.° protones		N.° neutrones	N.° electrones	
	C-14	14	6	6	8	6	
	Be-9	9	4	4	5	4	
	C-12	12	6	6	6	6	
	Be-10	10	4	4	6	4	

- a) ^A_ZX, donde X es el símbolo químico del elemento; A, el número másico, y Z, el número atómico.
 - b) Corresponde al número de nucleones, es decir, a la suma del número de protones y de neutrones.
 - c) Es el número de protones de su núcleo.
 - d) Es mayor el número másico.
 - e) Son del mismo elemento químico.
 - f) Son dos átomos idénticos, del mismo isótopo.
 - g) El número de neutrones se obtiene restando el número atómico al másico.
 - h) Tienen el mismo número de nucleones, pero no tienen por qué ser del mismo elemento.
 - i) Son los átomos b) y d).

Ficha de trabajo 8 (R)

- 1. a) Es el número de protones de su núcleo.
 - b) El número debe ser diferente.
 - c) El número debe ser menor.
 - d) El número debe ser mayor.
 - e) La de un electrón, $1,6 \cdot 10^{-19}$ C.

2.	lon	Z	N.° electrones	Carga (Culombios)	
	F-	9	10	1,60 · 10 ⁻¹⁸	
	Ca ²⁺	20	18	2,88 · 10 ⁻¹⁸	
	Li+	3	2	3,20 · 10 ⁻¹⁹	
	S ²⁻	16	18	2,88 · 10 ⁻¹⁸	

- b) Verdadera.
- c) Falsa. Existen átomos del mismo elemento químico con distinto número de neutrones, se denominan isótopos.
- d) Falsa. Para que un átomo adquiera carga positiva ha de perder electrones.

Ficha de trabajo 9 (R)

1.	Elemento	Z	N.° de electrones por capa				
	Elemento		K	L	M	N	
	Calcio	20	2	8	18	2	
	Cloro	17	2	8	7		
	Azufre	16	2	8	6	_	
	Sodio	11	2	8	1	_	
	Bromo	35	2	8	18	7	
	Oxígeno	8	2	6	_	_	
	Flúor	9	2	7	_	_	

_								
2.	Elemento	Carga	Z	N.º de electrones por capa				
				K	L	М	N	
	Calcio	+2	20	2	8	18	_	
	Cloro	-1	17	2	8	8	_	
	Azufre	-2	16	2	8	8	_	
	Sodio	+1	11	2	8	_	_	
	Bromo	-1	35	2	8	18	8	
	Oxígeno	-2	8	2	8	_	_	
	Flúor	-1	9	2	8	_	_	