Metody Probabilistyczne i Statystyka

 Z_{10}

1. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład dyskretny o funkcji prawdopodobieństwa danej tabelą:

$X \setminus Y$	-1	0	1
0	0.1	0.1	0
1	0.2	0.2	0.1
2	0.1	0.1	0.1

Znaleźć funkcje prawdopodobieństwa zmiennych losowych $Z = \max(X, Y) - \min(X, Y)$ oraz $(U, V) = (|X \cdot Y|, X^2 + Y^2)$.

2. Zmienne losowe X i Y są niezależne o tym samym rozkładzie takim, że

$$P(X = -2) = P(X = 2) = \frac{1}{4}, \ P(X = 1) = \frac{1}{2}.$$

Wyznaczyć dystrybuantę zmiennej losowej Z = |X - Y|.

- 3. Zmienne losowe X i Y są niezależne i każda z nich ma rozkład geometryczny z parametrem p. Wyznaczyć rozkład zmiennej losowej Z = X + Y. Czy jest to rozkład geometryczny?
- 4. Wektor (X, Y) ma rozkład jednostajny w kwadracie $[0; 2] \times [0; 2]$. Wyznaczyć dystrybuantę oraz gęstość zmiennej losowej Z = X + Y.
- 5. Zmienne losowe X i Y są niezależne, $X \sim N(-2,3), Y \sim N(2,4)$. Wyznaczyć gęstość zmiennej losowej Z = X Y.
- 6. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład normalny o gestości

$$f(x,y) = \frac{1}{2\sqrt{2}\pi} \cdot \exp\left\{-\frac{1}{2}\left[x^2 + 2x(y+1) + \frac{3}{2}(y+1)^2\right]\right\}.$$

Wyznaczyć gęstość wektora (Z,T)=(2X+Y+1,2X-Y-1). Obliczyć P(Z>1).

7. Na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , gdzie $\Omega = [-2; 3]$, a P jest prawdopodobieństwem geometrycznym, określone są zmienne losowe:

$$X(\omega) = \begin{cases} -1 & \omega \in [-2; 0] \\ 1 & \omega \in (0; 3] \end{cases}, \qquad Y(\omega) = \begin{cases} 0 & \omega \in [-2; 1] \\ 1 & \omega \in (1; 2) \\ 2 & \omega \in [2; 3] \end{cases}.$$

Obliczyć E(Y|X=1) oraz E(X|Y=1).

8. Zmienne losowe X i Y mają rozkłady dyskretne takie, że $S_X = \{-1, 0, 1\}, S_Y = \{0, 1\}.$ Wiadomo ponadto, że

$$P(X = -1) = P(X = 1) = \frac{3}{8},$$

 $P(Y = 0|X = -1) = P(Y = 0|X = 1) = \frac{2}{3}, \ P(Y = 0|X = 0) = 1.$

Wyznaczyć rozkład łączny zmiennej losowej (X, Y). Wyznaczyć rozkład warunkowy zmiennej losowej X pod warunkiem zdarzenia $\{X + Y = 0\}$ oraz obliczyć V(X|X + Y = 0).

9. Dwuwymiarowa zmienna losowa (X,Y) ma rozkład ciągły o gęstości

$$f(x,y) = \begin{cases} 1/4 & , & -1 \le x \le 0 & \land & 0 \le y \le 2 \\ 1/8 & , & 0 < x \le 2 & \land & -1 \le y \le 1 \\ 0 & , & \text{wp.p.} \end{cases}$$

Wyznaczyć dystrybuantę rozkładu warunkowego zmiennej X przy warunku $\left\{Y < \frac{1}{2}\right\}$.

10. Wektor (X,Y) ma rozkład ciągły o gęstości

$$f(x,y) = (x+y) \cdot \mathbf{1}_D(x,y)$$
, gdzie $D = \{(x,y) : 0 < x < 1 \land 0 < y < 1\}$.

Wyznaczyć gęstość rozkładu warunkowego zmiennej losowej X pod warunkiem $\{Y=y\}$. Obliczyć $E\left(X|Y=\frac{1}{3}\right)$.

11. Wektor (X,Y) ma rozkład ciągły o gęstości

$$f(x,y) = 6xy \cdot \mathbf{1}_D(x,y)$$
, gdzie $D = \{(x,y) : 0 \le x \le 1 \land 0 \le y \le \sqrt{x}\}$.

Wyznaczyć funkcję $h:\mathbb{R}\to\mathbb{R},$ dla której wyrażenie $E\left(Y-h(X)\right)^2$ ma najmniejszą wartość.