9/21/2020 Home

Objective: Graphical Method for Solving a Linear Programming Problem

New Version

Solution

For the mathematical linear programming problem, maximize Z = 4x + y subject to the constraints $x + y \le 5$, $2x + y \ge 6$, $x \ge 0$, $y \ge 0$ (A) Graph the *feasible region* of the problem. (B) Find whether the feasible region is *bounded* or *unbounded*. (C) Use Corner Point Method to determine the *maximum value* of Z.

Use me to enter the answer				
1 2 3 4	Back			
5 6 7 8	Delete			
9 0 .	Clear			

How to plot graph

OBounded	OUnbounded Maximum	Value	=	

Solution:

- **Step 1:** Graph the inequality $x + y \le 5$. **Show Steps**
- Step 2: Graph the inequality $2x + y \ge 6$. Show Steps
- **Step 3:** Graph the inequality $x \ge 0$.
- **Step 4:** Graph the inequality $y \ge 0$.
 - (A) The common region 12 in the figure is the feasible solution.
 - (B) The feasible region is bounded feasible solution.
 - (C) The value of 7 at the vertices are tabluated

