PROJECT 4: "DrugScan & Summarise": Detect Drug Mentions in Clinical PDFs and Produce a Drug-Centric Digest

1 Business scenario

Your pharmacology team reviews dozens of open-access journal articles every week. They need a one-page brief that:

- 1. Lists every drug discussed in the paper.
- 2. Provides a **short fact** (indication, mechanism, or warning) for each drug.
- 3. Gives a **four-sentence abstract** that focuses on how the drugs were used or evaluated.

2 Learning objectives

- Use scispaCy (or a lightly-fine-tuned spaCy model) for drug NER in noisy PDF text.
- Compare **static embedding summarisation** (TextRank) with a **transformer abstractive model** (BART-base or T5).
- Query a public drug knowledge file (DrugBank Open Data CSV or openFDA labels) to enrich the output.
- Package results in a simple **Streamlit dashboard** or command-line script.

3 Data & resource links

What you need	Where to get it
Sample PDFs – three pharmacology articles (download the PDF tab on each page)	 Metformin RCT in metabolic syndrome (PMC ID: PMC8560579) PMC Atorvastatin lipid-lowering review (PMC ID: PMC6464917) PMC Safety of ibuprofen vs paracetamol (PMC ID: PMC3099387) PMC
Larger pool for experimentation	PubMed Central Open-Access subset download page PMC
Drug NER model	scispaCy (en_ner_bc5cdr_md) on GitHub <u>GitHub</u>
Drug facts	Either DrugBank Open Data CSV (requires free academic sign-up) DrugBank or openFDA drug-label downloads OpenFDA

(If campus firewall blocks these, using open wifi, download the three PDFs and a mini-CSV with 10 drug fact rows in the starter repo.)

4 Core tasks

1. PDF text extraction

Use PyMuPDF (fitz) or pdfminer.six; strip headers/footers and dehyphenate.

2. Drug NER

- Run scispaCy model → collect (drug_surface, char_span).
- o Optional: add a **rule-based matcher** for dosage patterns ("mg", "IU").

3. Quick fact look-up

- o Normalize surface forms to lower-case.
- String-match against the "name" and "synonyms" columns in DrugBank CSV (or openFDA JSON).
- o Return a one-line summary field (e.g., "Metformin biguanide antihyperglycemic for type 2 diabetes").

4. Focused summarisation

- Extract all sentences that contain ≥1 drug; concatenate into a minidocument.
- Produce:
 - Extractive baseline TextRank top-4 sentences.
 - Abstractive system BART-base (pre-trained) max length = 4 sentences.
- o Compare with ROUGE-L against the article's own abstract (drug-filtered).

5. Output formatting

o JSON or Markdown:

Markdown example:

Drugs Mentioned

- Metformin biguanide antihyperglycemic ...
- Atorvastatin HMG-CoA reductase inhibitor ...

Four-sentence Digest

- 1. ...
- 2. ...
- 3. ...
- 4. ...

6. Optional Streamlit mini-app

 File-uploader → spinner → shows the above Markdown with drug names highlighted.

In summary:

Stage	What the student actually builds / delivers
1. PDF extraction	Use PyPdf2 or PyMuPDF (fitz) or pdfminer.six to read the PDF pages, strip headers/footers, merge hyphenated line breaks, and output one clean UTF-8 string per article. Save the raw text to disk (article_001.txt).
2. Drug NER	 Load scispaCy's pre-trained model (en_ner_bc5cdr_md). Run nlp(text) on the extracted string to obtain Doc objects with entities. Filter entities where ent.label_ == "CHEMICAL" (drugs). Deliverable: a list/dictionary like {"drug_surface": "", "start_char": 123, "end_char": 131} for each article.
3. Quick fact lookup	Load the mini DrugBank/OpenFDA CSV provided in the starter repo. Write a simple synonym-matching function that maps each surface form to a one-line fact (indication or mechanism). Deliverable: a merged table `article_id
4. Focused summarisation	 Extract all sentences containing ≥ 1 drug mention (regex or spaCy sentence segmentation). Run both: ① TextRank extractive (baseline) and ②

Stage	What the student actually builds / delivers
	facebook/bart-large-cnn abstractive summariser limited to 4 sentences.• Deliverable: two summary strings per PDF + a ROUGE-L score vs. the article's original abstract.
5. Output formatting or mini- app	Generate a Markdown/JSON report that has: – "Drugs Mentioned" bullet list with quick facts "Four-sentence Digest" (from BART) Optional) Wrap the above in a Streamlit file-uploader so reviewers can drop in a PDF and instantly get the digest.

6 Expected deliverables

- 1. **Notebook** (DrugScan.ipynb) with all code, figures, and commentary.
- 2. data/ folder with sample PDFs and drug fact file.
- 3. output/ folder containing the JSON/Markdown digests.
- 4. (If built) app.py Streamlit script + screenshot.
- 5. README.md with environment setup and run commands.
- 6. Presentation as per template

Enhancement ideas (for extra credit)

- Display drug mentions overlaid on the PDF text (PyMuPDF page widget).
- Export the digest as a **PDF** or **HTML** report for email.
- **Fine-tune** BART on 500 random PubMed abstracts vs full bodies for domain style.

TIPS ON STEPS TO FINE TUNE BART

High Level Recipe:

Step	What happens
1 Collect	Download 500 open-access PubMed Central (PMC) articles (XML \rightarrow text).
2 Pair	For each article, keep the abstract as target and full body as source.

Step	What happens
3 Pre- process	Clean, truncate, and save as JSONL ({"text": <body>, "summary": <abstract>})</abstract></body>
4 Tokenise	Use facebook/bart-large-cnn tokenizer; pad & truncate.
5 Fine-tune	Hugging Face Seq2SeqTrainer for 2–3 epochs on a single GPU/Colab.
6 Evaluate	ROUGE-1/L vs. gold abstract; inspect samples.

7 Save + infer Push to Hugging Face Hub or save locally; run on a held-out paper.