Introduction to

Quantitative Finance

in Python

PART I

- ▶ Observing Prices
- ► Pricing Theory
- Derivatives
- ► Black-Scholes model

Part I

- ▶ Observing Prices
- ▶ Pricing Theory
- Derivatives
- ▶ Black-Scholes model

PART II

- ► The binomial model
- ► Advanced models

Some teaching, a lot of coding ...

- lots of small code snippets to try,
- get a feel for how things can be coded,
- see things work,
- refer to content for help, modify at will.

I.I Introduction

I.I Introduction

Key concepts:

- asset

- arbitrage

- derivative

- law of one price

Financial market = agents trading assets

Simple financial assets:

- stocks
- bonds
- commodities

LA>>> display financial quotes

Head to your notebook and ...

- retrieve quotes (eg. AAPL) over a time range
- display them using matplotlib

Financial market = agents trading assets

Simple financial assets:

- stocks
- bonds
- commodities

Composite assets or derivatives:

 contracts with a value depending upon that of another asset.

Forward = agreement to trade in the future

Characteristics:

- fixed future date T (maturity)
- fixed price K (strike)

Example:

```
at t = 0, Sam agrees to sell Laura 100 barrels of oil in T = 2 months for K = £10k.
```

Forward = agreement to trade in the future

Characteristics:

- fixed future date T (maturity)
- fixed price K (strike)

Example:

```
at t = 0, Sam agrees to sell Laura 100 barrels of oil in T = 2 months for K = £10k.
```

Sam has a short position, Laura has a long position.

Arbitrage = make money without risk

Investment opportunity with

- no chance to lose money,
- a chance to make money.

Arbitrage = make money without risk

Investment opportunity with

- no chance to lose money,
- a chance to make money.

If there is such an opportunity, it will be exploited immediately (eg. high-frequency trading) → assume market is *arbitrage-free*.

Example:

if the same asset can be bought at two different prices (e.g.: on two different markets) there is an arbitrage.

can you show it?

Example:

if the same asset can be bought at two different prices (e.g.: on two different markets) there is an arbitrage.

can you show it?

Law of one price:

Identical assets must have the same price at any time.

Simplifying assumptions ...

- fixed interest rate,
- no transaction fees,
- no bid-ask spread,
- no dividends,
- no cost of carry.

Recap...

Are these concepts clear?

- asset,
- derivative,
- arbitrage,
- law of one price.

I.II Observing prices

I.II Observing prices

Key concepts:

- log-returns
- evolution of the mean and variance of the log-returns

- LogNormal model

Log-returns = important process to model

Log of ratio of subsequent quotes:

$$r_i = \log \frac{S_i}{S_{i-1}}$$

Log-returns = important process to model

Log of ratio of subsequent quotes:

$$r_i = \log \frac{S_i}{S_{i-1}}$$

Note:

- scale-free → comparable
- r_1, r_2, \ldots modeled as a sequence of random variables ie, a *random process*.

LA>>> analysing log-returns

Head to your notebook and...

- plot the log-returns
- plot the histogram of the log-returns
- fit a normal distribution

Model the log-returns as normally distributed

Observations suggest:

$$r_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

Model the log-returns as normally distributed

Observations suggest:

$$r_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$$

Remarks:

- the fit is not perfect,
- how do μ_i , σ_i^2 vary if we increase the lag?

LA>>> mean and variance of the log-returns

Head to your notebook and...

• compute lagged log-returns for $\ell = 5$

$$r_i^{\ell} = \log \frac{S_i}{S_{i-\ell}}$$

- plot the corresponding histogram
- repeat this for varying ℓ and plot the evolution of the mean and variance with ℓ

Linear evolution of mean, var of log-returns

Observations suggest:

• mean and variance vary linearly with lag

The LogNormal model:

$$\log rac{S_{t+ au}}{S_t} \sim \mathcal{N}(\mu au, \sigma^2 au)$$

Recap...

Are these concepts clear?

- log-returns,
- LogNormal model.

I.III Pricing Theory

I.III Pricing Theory

Key concepts:

- discounting
- risk-neutral probability

- risk-neutral pricing
- replication pricing

"The price of a financial asset is equal to its discounted

 $V_t = \Phi_r(t, T) \mathbb{E}_t^{\star}[V_T]$

Discounting = taking time into account

At time *t*, invest *X* in bank with rate *r*:

- at T > t, you have $\Psi_r(t, T)X$
- inverse $\Phi_r(t,T) = \frac{1}{\Psi_r(t,T)}$ is the discounting factor

Discounting = taking time into account

At time t, invest X in bank with rate r:

- at T > t, you have $\Psi_r(t, T)X$
- inverse $\Phi_r(t,T) = \frac{1}{\Psi_r(t,T)}$ is the discounting factor

Standard form:
$$\Phi_r(t,T) = \exp(-r(T-t))$$
.

Discounting = taking time into account

At time *t*, invest *X* in bank with rate *r*:

- at T > t, you have $\Psi_r(t, T)X$
- inverse $\Phi_r(t,T) = \frac{1}{\Psi_r(t,T)}$ is the discounting factor

Standard form:
$$\Phi_r(t,T) = \exp(-r(T-t))$$
.

Allows to compare future cash-flows:

- $\bullet \ (X_1,T_1) \to \Phi_r(0,T_1)X_1$
- $(X_2, T_2) \rightarrow \Phi_r(0, T_2)X_2$

Example:

You want to sell your house to a friend, he offers £200k today or £208k next year. The annual rate at your bank is 5%.

What should you do?

Example:

You want to sell your house to a friend, he offers £200k today or £208k next year. The annual rate at your bank is 5%.

What should you do?

the present value of getting £208k in one year is £208k/1.05 or £198.1k. You should take the money today.

Here, the discounting factor is $\Phi_r(0,1) = \frac{1}{1.05}$.

How much would you pay to play?

Consider a coin-flip game with rewards

- £10 if head,
- £0 if tail.

If you have to pay to play, what is the most you would agree to pay? (and why?)

Most agents are risk-averse

 As a seller, I'd like to set the price high but also low enough so that lots of people want to play.

Most agents are risk-averse

- As a seller, I'd like to set the price high but also low enough so that lots of people want to play.
- Since most people are risk-averse, the price will reflect this and be lower than £5, say £3.

Most agents are risk-averse

- As a seller, I'd like to set the price high but also low enough so that lots of people want to play.
- Since most people are risk-averse, the price will reflect this and be lower than £5, say £3.
- How can we interpret this price?

Interpreting the price in a risk-neutral world

Interpretation 1:

• price = (expected gain) - (price of risk).

Interpreting the price in a risk-neutral world

Interpretation 1:

• price = (expected gain) – (price of risk).

• how to interpret the *price of risk*? (here £2)

Interpreting the price in a risk-neutral world

Interpretation 1:

• price = (expected gain) – (price of risk).

how to interpret the price of risk? (here £2)

Interpretation 2:

price = expected gain with modified probabilities.

£3 = £10
$$\times$$
 p_H^{\star} + £0 \times p_T^{\star} .

This artificial world with different probabilities is the risk-neutral world.

With the risk-neutral pdf, pricing is easy.

The risk-neutral pdf p^* is a fictive probability distribution that associates different weights to outcomes.

With it, you can price *any asset* depending on the same source of randomness and *guarantee there will not be an arbitrage*.

Example: introducing another game...

Same coin-flips but rewards (H:£6, T:£15).

- what should the price be?
- you can show that for any different price, there is an arbitrage (cf. notes)

So you think you can price...

We have seen the two key elements to pricing:

- using discounting to take time into account,
- using risk-neutral probabilities to price.

Together: $V_t = \Phi_r(t, T)\mathbb{E}_t^{\star}[V_T]$.

So you think you can price...

We have seen the two key elements to pricing:

- using discounting to take time into account,
- using risk-neutral probabilities to price.

Together:
$$V_t = \Phi_r(t, T)\mathbb{E}_t^*[V_T]$$
.

Now what?

- how do you find the risk-neutral pdf?
- how do you compute the expected-value?

Another way: if you can replicate, you can price

If you can build a portfolio that *replicates* the cash-flows of a derivative, then, by the *law of one price*, the price of that derivative is equal to the value of the portfolio.

Replication in a simple market model...

Model the evolution over one time-step a stock, a bank account and a derivative as:

Replication in a simple market model...

Model the evolution over one time-step a stock, a bank account and a derivative as:

Build a portfolio with αS_0 and $\beta \Phi_r$, it evolves as:

$$\alpha S_0 + \beta \Phi_r$$

$$\alpha dS_0 + \beta$$

Replicating = determining α^* and β^* such that

$$\begin{cases} \alpha^* u S_0 + \beta^* = V_u \\ \alpha^* d S_0 + \beta^* = V_d \end{cases}$$

Then, $V_0 = \alpha^* S_0 + \beta^* \Phi_r$.

Replicating = determining α^* and β^* such that

$$\begin{cases}
\alpha^{\star} u S_0 + \beta^{\star} = V_u \\
\alpha^{\star} d S_0 + \beta^{\star} = V_d
\end{cases}$$

Then, $V_0 = \overline{\alpha^* S_0 + \beta^* \Phi_r}$.

You could show the equivalence between this and the risk-neutral pricing (cf. notes).

Recap...

Are these concepts clear?

- discounting,
- risk-neutral probabilities,
- risk-neutral pricing,
- replication pricing.

I.IV Derivatives

I.IV Derivatives

Key concepts:

- payoff curve
- European & American options
- leverage
- put-call parity

Payoff curves for the forward

Payoff = value of the exchange at maturity

For the long forward, the payoff at maturity is

$$V_T^{\text{fwd}} = (S_T - K)$$

and the opposite for the short forward.

Recall that

- S_T is the price of the asset at maturity,
- *K* is the strike price of the forward.

Payoff curves for the forward

Characterising the long forward

- unlimited upside
- limited downside
- bullish

Characterising the long forward

- unlimited upside
- limited downside
- bullish

The payoff is also used to compute the price (on the board)

Options = right to buy/sell

Characterised by a strike price *K* and an expiry date *T*:

- Call: right to buy
- Put: right to sell

Options = right to buy/sell

Characterised by a strike price *K* and an expiry date *T*:

- Call: right to buy
- Put: right to sell

Call compared to forward, what changes?

Payoff curve for the call

Characterising options

Call

- unlimited upside
- no downside
- bullish

$$V_T^{\text{call}} = \max\{S_T - K, 0\}$$

Characterising options

Call

- unlimited upside
- no downside
- bullish

$$V_T^{\text{call}} = \max\{S_T - K, 0\}$$

what about the put?

Payoff curve for the put

Characterising options

Call

- unlimited upside
- no downside
- bullish

$$V_T^{\text{call}} = \max\{S_T - K, 0\}$$

what about the put?

- limited upside
- no downside
- bearish

$$V_T^{\text{put}} = \max\{K - S_T, 0\}$$

Characterising options

Call

- unlimited upside
- no downside
- bullish

$$V_T^{\text{call}} = \max\{S_T - K, 0\}$$

what about the put?

- limited upside
- no downside
- bearish

$$V_T^{\text{put}} = \max\{K - S_T, 0\}$$

You will see how to price those a bit further...

There are different options exercise style

• European: exercise is possible <u>at</u> (only at) *T*,

There are different options exercise style

- European: exercise is possible <u>at</u> (only at) T,
- American: exercise is possible at any time before *T*.

There are different options exercise style

- European: exercise is possible <u>at</u> (only at) T,
- American: exercise is possible at any time before T.

Nothing at all to do with geography! Bermudan options....

Key feature of options = leverage

Consider a call...

- buying a call is much *cheaper* than buying the underlying,
- you can therefore buy a large number of calls

Key feature of options = leverage

Consider a call...

- buying a call is much cheaper than buying the underlying,
- you can therefore buy a large number of calls
- if you choose to exercise, you then physically own a large number of units of the underlying and can sell it,
- this is called leverage.

Example: a golden call

Consider a call on an ounce of gold...

- the price of the call is at £15 and the strike at K = £980,
- the current (spot) price of the underlying is $S_t = £950$.

You have £10k to invest. Assume you invest everything in either the call or the underlying and that, at maturity, the spot price is at £1k.

What was the best choice?

Scenario 1: investment in the underlying

- with £10k you bought 10.5 ounces of gold,
- at maturity this is worth £10.5k
- profit: £500 or 5% return.

Scenario 1: investment in the underlying

- with £10k you bought 10.5 ounces of gold,
- at maturity this is worth £10.5k
- profit: £500 or 5% return.

Scenario 2: investment in the call

- with £10k you can buy more than 650 calls,
- at maturity, you exercise (since S_T > K) which gives you the right to buy 650 ounces of gold and sell them immediately making £20 per ounce.
- profit: $650 \times £20 = £13k$ or 30% return.

Gold price *drops* to £900

Gold price *drops* to £900

Scenario 1: investment in the underlying

- 10.5 ounces of gold now worth £9450.
- loss of £550 or -5.5%

Gold price *drops* to £900

Scenario 1: investment in the underlying

- 10.5 ounces of gold now worth £9450.
- loss of £550 or -5.5%

Scenario 2: investment in the call

- Call is out of the money, expires worthless
- you loose all your money −100%

Put-Call Parity = identity linking call and put

Put-Call Parity = identity linking call and put

Long call and short put with the same strike and expiry then:

$$V_T^{\text{call}} - V_T^{\text{put}} = (S_T - K)$$

Put-Call Parity = identity linking call and put

Long call and short put with the same strike and expiry then:

$$V_T^{\text{call}} - V_T^{\text{put}} = (S_T - K)$$

Therefore, if you can price a call, you can also price a put:

$$V_t^{\text{put}} = \underbrace{\Phi_r(t, T)K - S_t}_{\text{price of forward}} + V_t^{\text{call}}.$$

Recap...

Are these concepts clear?

- payoff curve,
- call and put options,
- European & American exercise,
- leverage,
- put-call parity.

I.V Black-Scholes model

I.V Black-Scholes model

Key concepts:

- Black-Scholes formula
- implied volatility

- Greeks ($\Delta, \nu, \Theta, \Gamma$)

- volatility smile

LogNormal model:

$$\frac{S_{t+\tau}}{S_t} \sim \text{LogNormal}(\mu\tau, \sigma^2\tau)$$

LogNormal model:

$$\frac{S_{t+\tau}}{S_t} \sim \text{LogNormal}(\mu \tau, \sigma^2 \tau)$$

Expected value of a LogNormal (m, s^2) is $exp(m + 0.5s^2)$

$$\mathbb{E}\left[\frac{\mathsf{S}_{t+\tau}}{\mathsf{S}_t}\right] = \frac{\mathbb{E}[\mathsf{S}_{t+\tau}]}{\mathsf{S}_t} = \exp((\mu + 0.5\sigma^2)\tau)$$

LogNormal model:

$$\frac{\mathsf{S}_{t+ au}}{\mathsf{S}_t} \sim \mathrm{LogNormal}(\mu au, \sigma^2 au)$$

Expected value of a LogNormal (m, s^2) is $exp(m + 0.5s^2)$

$$\mathbb{E}\left[rac{\mathsf{S}_{t+ au}}{\mathsf{S}_t}
ight] = rac{\mathbb{E}[\mathsf{S}_{t+ au}]}{\mathsf{S}_t} = \mathsf{exp}((\mu + 0.5\sigma^2) au)$$

In the risk neutral world, we must have

$$\frac{\mathbb{E}^{\star}[S_{t+\tau}]}{S_t} = \exp(r\tau)$$

Modification: $\mu \rightarrow r - 0.5\sigma^2$

LogNormal model:

$$\frac{\mathsf{S}_{t+ au}}{\mathsf{S}_t} \sim \operatorname{LogNormal}(\mu au, \sigma^2 au)$$

Expected value of a LogNormal (m, s^2) is $exp(m + 0.5s^2)$

$$\mathbb{E}\left[rac{\mathsf{S}_{t+ au}}{\mathsf{S}_t}
ight] = rac{\mathbb{E}[\mathsf{S}_{t+ au}]}{\mathsf{S}_t} = \mathsf{exp}((\mu + 0.5\sigma^2) au)$$

In the risk neutral world, we must have

$$\frac{\mathbb{E}^{\star}[S_{t+\tau}]}{S_t} = \exp(r\tau)$$

Modification: $\mu \rightarrow r - 0.5\sigma^2$

Only the drift changes!

Pricing of European options: Black-Scholes

- Risk-neutral distribution: LogNormal($(r 0.5\sigma^2)\tau, \sigma^2\tau$)
- Payoff of a European call: $V_T^{\text{call}} = \max\{S_T K, 0\}$

Pricing of European options: Black-Scholes

- Risk-neutral distribution: LogNormal($(r 0.5\sigma^2)\tau, \sigma^2\tau$)
- Payoff of a European call: $V_T^{\text{call}} = \max\{S_T K, 0\}$
- Risk-neutral price:

$$V_t^{\mathsf{call}} = \Phi_r(t, T) \mathbb{E}_t^{\star}[V_T^{\mathsf{call}}] = S_t F(d_1) - K \exp(-r\tau) F(d_2)$$

Pricing of European options: Black-Scholes

- Risk-neutral distribution: LogNormal($(r 0.5\sigma^2)\tau, \sigma^2\tau$)
- Payoff of a European call: $V_T^{\text{call}} = \max\{S_T K, 0\}$
- Risk-neutral price:

$$V_t^{\text{call}} = \Phi_r(t, T) \mathbb{E}_t^{\star}[V_T^{\text{call}}] = S_t F(d_1) - K \exp(-r\tau) F(d_2)$$

with

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp\left(-\frac{1}{2}t^{2}\right) dt$$
$$d_{1,2} = \frac{\log(S_{t}/K) + (r \pm 0.5\sigma^{2})\tau}{\sigma\sqrt{\tau}}$$

and $\tau = (T - t)$.

LA >>> coding Black-Scholes

Head to your notebook and...

- write a function that computes the price of a European call
- test with $S_t = £105$, K = £100, $\tau = 2$ years, r = 5% per year, $\sigma = 15\%$ (the price should be £ ≈ 17.4)

$$V_t^{\text{call}} = S_t F(d_1) - K \exp(-r\tau) F(d_2)$$

and $d_{1,2} = (\log(S_t/K) + (r \pm 0.5\sigma^2)\tau)/\sigma\sqrt{\tau}$, use norm.cdf for F.

The Greeks: a way to quantify risk

Want to characterise variability of the value of the derivative with respect to:

• the price of the underlying \rightarrow Delta (Δ),

The Greeks: a way to quantify risk

Want to characterise variability of the value of the derivative with respect to:

- the price of the underlying \rightarrow Delta (Δ),
- the volatility of the underlying \rightarrow Vega (ν),

The Greeks: a way to quantify risk

Want to characterise variability of the value of the derivative with respect to:

- the price of the underlying \rightarrow Delta (Δ),
- the volatility of the underlying \rightarrow Vega (ν),
- the time to expiry of the contract \rightarrow Theta (Θ).

The *Delta*: variability with respect to price

Defined as:

$$\Delta = \frac{\partial V}{\partial S} \approx \frac{V(S + \Delta S) - V(S)}{\Delta S}$$

• For the European call, it can be computed exactly $(\Delta = F(d_1))$. Otherwise, can use approximations.

The *Delta*: variability with respect to price

Defined as:

$$\Delta = \frac{\partial V}{\partial S} \approx \frac{V(S + \Delta S) - V(S)}{\Delta S}$$

- For the European call, it can be computed exactly ($\Delta = F(d_1)$). Otherwise, can use approximations.
- It is a common strategy to attempt a Delta-neutral portfolio where $\Delta \approx$ 0 at all times.

Current workflow:

log-returns

Current workflow:

log-returns → Volatility

Current workflow:

Current workflow:

What happens if you reverse it?

- look at existing option prices,
- find the implied volatility σ_{IV} such that Black-Scholes returns the same prices.

Current workflow:

What happens if you reverse it?

- look at existing option prices,
- find the implied volatility σ_{IV} such that Black-Scholes returns the same prices.
- implied volatility comparable across funds

Current workflow:

What happens if you reverse it?

- look at existing option prices,
- find the implied volatility σ_{IV} such that Black-Scholes returns the same prices.
- implied volatility comparable across funds
- we would expect $\sigma_{LR} \approx \sigma_{IV}...$

A look at the implied volatility...

For each price you can compute the implied vol:

Volatility smile or limits of the LogNormal model

Under the LogNormal model, you should have expected a constant σ , this does not hold.

Workarounds?

• other model? \rightarrow can do (e.g., Student-t based)

Volatility smile or limits of the LogNormal model

Under the LogNormal model, you should have expected a constant σ , this does not hold.

Workarounds?

- other model? → can do (e.g., Student-t based)
- expressing σ as a function of K in Black-Scholes?
 → a common way around the issue.

Volatility smile or limits of the LogNormal model

Under the LogNormal model, you should have expected a constant σ , this does not hold.

Workarounds?

- other model? → can do (e.g., Student-t based)
- expressing σ as a function of K in Black-Scholes?
 → a common way around the issue.
 - further, express σ as a function of K and T: $\sigma(f(K,T))$

Recap...

Are these concepts clear?

- Black-Scholes formula,
- *Greeks* (Δ , ν , Θ , Γ),
- implied volatility,
- volatility smile.

PART II – The binomial model

PART II – The binomial model

Key concepts:

- recombining binomial tree (BT)
- pricing with a BT

- calibrating a BT

Binomial tree = market as a branching process

Binomial tree = market as a branching process

Binomial tree = market as a branching process

The last layer converges to a LogNormal distribution when the number of steps grows.

LA>>> convergence of BT to LogNormal

Head to your notebook and...

compute the end probabilities and the end prices if

•
$$p = 0.6, u = 1.03, d = 0.99, N = 100$$

- compute the returns, plot the distribution,
- plot the log-returns and fit a normal distribution.

LA>>> hints...

• *k*th node at *N*th step:

$$Pr(k, N) = \frac{N!}{k!(N-k)!} p^k q^{N-k}, \qquad S_T(k) = S_0 u^k d^{N-k}.$$

• use scipy.misc.comb

LA>>> hints...

• *k*th node at *N*th step:

$$Pr(k, N) = \frac{N!}{k!(N-k)!} p^k q^{N-k}, \qquad S_T(k) = S_0 u^k d^{N-k}.$$

• use scipy.misc.comb

Got all this already?

can you return these quantities for any step?

Pricing with a BT? use risk-neutral pricing...

In the risk neutral-world, we must have

$$S_t = \Phi_r(t, t + \Delta t) \mathbb{E}_t^{\star}[S_{t+\Delta t}]$$

with $\Delta t = (T - t)/N$. This gives,

$$p^* = \frac{\Phi_r^{-1}(t, t + \Delta t) - d}{u - d} = \frac{\exp(r\Delta t) - d}{u - d}.$$

Consider a European call, u and d given,

- follow the tree forward → intrinsic values of the derivative,
- follow the tree backward → risk-neutral prices

Let's see how it works in practice...

Example: European call in a BT

Consider a 2-step model with

$$u = 1.02$$
, $d = 0.99$, $S_0 = 100$, $K = 99$ and $T = 1$.

Assume that r = 0 so that $\Phi_r = 1$.

• Write the evolution of the price:

Example: European call in a BT

Consider a 2-step model with

$$u = 1.02$$
, $d = 0.99$, $S_0 = 100$, $K = 99$ and $T = 1$.

Assume that r = 0 so that $\Phi_r = 1$.

• Write the evolution of the price:

• Write the value of the derivative at the last layer (maturity):

• Write the value of the derivative at the last layer (maturity):

- risk neutral probability: $p^* = \frac{1-d}{u-d} = \frac{1}{3}$,
- follow the tree backward using risk-neutral pricing:

- risk neutral probability: $p^* = \frac{1-d}{u-d} = \frac{1}{3}$,
- follow the tree backward using risk-neutral pricing:

• for example, $5.04p^* + 1.98(1 - p^*) = 3.0$.

LA >>> Coding a simple BT

Head to your notebook and reproduce the pricing steps with...

```
• u = 1.02, d = 0.99, S_0 = 100, K = 99, T = 1, N = 2
```

```
Forward
100
[ 99. 102.]
[ 98.01 100.98 104.04]
Backward
[ 0. 1.98 5.04]
[ 0.66 3. ]
1.44
```

Set *u*, *d* so that BT matches LogNormal model

It can be shown that setting

$$u = \exp(\sigma\sqrt{\Delta t}), \text{ and } d = \frac{1}{u},$$

the BT converges to the same LogNormal model than the one observed empirically, *in the risk-neutral world*.

Recap...

Are these concepts clear?

- recombining BT,
- calibration of a BT,
- pricing with a BT.

Part II – Advanced models

PART II – Advanced models

Key concepts:

- recombining trinomial tree (TT)
- pricing in a TT

- the Black-Scholes PDE
- performance computing

Trinomial tree = binomial tree on steroids

- go up (u), down (d = 1/u) or mid (m = 1)
- can be more accurate
- more flexible

Pricing in a TT = similar than in BT

Same process (forward then backward pass) with

- risk-neutral probabilities p_u^*, p_m^*, p_d^* (cf. content),
- to have the TT converge to the LogNormal model, can set

$$u, d = \exp(\pm \lambda \sigma \sqrt{2\Delta t})$$

• λ can be tuned (eg.: to have nodes achieving specific values)

Replicating the TT for multiple initial prices

This allows to *precompute* values avoiding having to recompute a tree if the value of the underlying changes!

From tree pricing to grid pricing

If we repeat the replication, the core part of the tree will look like a grid, and the backward step will look like:

With the $V_{i,j}$ being given by a formula of the form

$$V_{i,j} = \alpha V_{i+1,j+1} + \beta V_{i,j+1} + \gamma V_{i-1,j+1}.$$

Grid pricing or a finite-difference solver...

The equation can be written as

$$V_{:j} = T V_{:j+1}$$

where $V_{:j}$ refers to the jth column of the grid and \mathbf{T} is a tridiagonal matrix. You may recognise the particular form of a *finite-difference* solver used to solve *Partial differential equations* (PDE).

The Black-Scholes PDE for pricing...

In fact, it can be shown that pricing with the LogNormal model amounts to solving the following PDE:

$$\frac{\partial V(S,t)}{\partial t} + rS\frac{\partial V(S,t)}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V(S,t)}{\partial S^2} - rV(S,t) = 0.$$

with specific boundary conditions (see notes).

This is beyond the scope of this course...but it useful to understand that pricing can amount to solving a PDE.

The PDE perspective: a path to more methods

- solving the PDE yields the *full evolution of the price* of the option.
- numerical methods for PDE is a well studied field with a wealth of algorithms and techniques that can be used.

Performance computing = crucial in industry

- on electronic exchanges, things go *very fast*, everything is *automated*.
- if conditions change, you cannot afford to recompute everything.
- need for pre-computations (caching) and interpolation of results,
- crucial to be competitive!

Recap...

Are these concepts clear?

- recombining TT,
- calibration & pricing with a TT,
- the Black-Scholes PDE,
- the need for performance computing.

- write your own numerical model (binomial / trinomial tree)

- write your own numerical model (binomial / trinomial tree)

- write your own numerical model (binomial) timolinal free)

- get it to converge to the correct price

- write your own numerical model (binomial / trinomial tree)
- get it to converge to the correct price
- tune it for perfomance

- write your own numerical model (binomial / trinomial tree)
- get it to converge to the correct price
- tune it for perfomance
- beat the competition!

Competition The Game

Competition How to go about developing it?

Unzip the students.zip file into a directory of your choice

Competition How to go about developing it?

Unzip the students.zip file into a directory of your choice

IPython Notebook

- start jupyter-notebook
- read through TestYourModel notebook
- use this notebook as a starting point

Python Script

- Your starting point is the models/MyPricer.py file
- Edit / run / improve

Competition Demonstration