PROTOTYPE DE FEUILLE D'EXERCICE

HERMAN GOULET-OUELLET

- 1. Calculez le gradient et la dérivée dans la direction donnée pour les fonctions suivantes.
- a) f(x,y) = xy dans la direction $(\frac{1}{2}, \frac{\sqrt{3}}{2})$. b) $f(x,y) = e^x \sin(y)$ dans la direction (1,0).
- c) f(x, y, z) = xyz dans la direction (2, 1, -1).
- d) f(x,y) = xy dans la direction $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$.
- e) $f(x,y) = x^2 y^2$ dans la direction $(\frac{\sqrt{3}}{2}, \frac{1}{2})$. f) f(x,y) = 3x + 4y + 7 dans la direction $(\frac{3}{5}, \frac{4}{5})$.
- 2. Trouvez l'équation du plan tangent au point donné pour les fonctions suivantes.
- a) $f(x,y) = e^x \cos(y)$ au point $(0, \frac{\pi}{2})$.
- b) $f(x,y) = y^{10}$ au point (1,-1). c) $f(x,y) = \ln(x^2 + y^2)$ au point (1,2).
- d) $f(x,y) = x^2y$ au point (-5,5).
- 3. Calculez les dérivées directionnelles suivantes directement à partir de la définition.
- a) $f(x,y) = 5 2x^2 \frac{1}{2}y^2$ au point (3,4) dans la direction $(\cos(\frac{\pi}{4}), \sin(\frac{\pi}{4}))$.
- b) $f(x,y) = y^2 \cos(2x)$ au point $(\frac{\pi}{3},2)$ dans la direction $(\cos(\frac{\pi}{4}),\sin(\frac{\pi}{4}))$.
- c) $f(x,y) = y^2 \sin(2x)$ au point $(\frac{\pi}{4}, 2)$ dans la direction (5, 12).
- **4.** Démontrez la formule $\nabla_{ku} f(x) = k \nabla_{u} f(x)$.
- **5.** Soit $f(x,y) = xy/(x^2 + y^2)$ si $(x,y) \neq (0,0)$ et f(0,0) = 0. Expliquez pourquoi la dérivée au point (0,0) n'existe pas dans la direction (1,1). Quelle valeur de f(0,0) permet d'obtenir l'existence de cette dérivée directionelle?
- 6. Trouvez l'équation paramétrique pour la droite normale au graphe d'une fonction différentiable $f: \mathbb{R}^2 \to \mathbb{R}$ passant par un point donné.
- 7. La température T dans une bille de métal est inversement proportionnelle à la distance au centre (l'origine (0,0,0)). La températeur au point (1,2,2) est 120° C.
 - (a) Quelle est la variation instantanée de la température au point (1,2,2) dans la direction pointant vers (2,1,3)?

Date: 4 avril 2025.

- (b) Montrez qu'en tout point de la sphère, la direction de plus grande croissance instantanée est donnée par le vecteur pointant vers l'origine.
- 8. La tension électrique d'une région de l'espace est déterminée par la fonction $V(x, y, z) = 5x^2 3xy + xyz$.
 - (a) Déterminez la taux de changement de la tension électrique au point (3,4,5) dans la direction (1,1,-1).
 - (b) Dans quelle direction la tension électrique varie-t-elle le plus rapidement au point (3, 4, 5)?
 - (c) Quel est le taux de changement de la tension électrique autour du point (3, 4, 5)?
- **9.** En deux dimensions, le movement d'un fluide idéal est dicté par un potentiel des vitesses φ . Les composantes (u,v) de l'écoulement d'un fluide dans les directions x et y sont données par la formule $(u,v) = \nabla \varphi$. Trouvez les composantes de l'écoulement associé au potentiel des vitesses $\varphi(x,y) = \sin(\pi x)\sin(2\pi y)$.