Сума и директна сума на подпространства

Люба Конова

Октомври 2020

1 Теория:

1.1 Обикновена сума:

Сума на две пространства \mathbb{U}_1 и \mathbb{U}_2 наричаме множеството $\{u_1+u_2 \mid u_1 \in \mathbb{U}_1, u_2 \in \mathbb{U}_2\}$. Обратно, ако знаем, че линейното пространство \mathbb{W} е сума на две линейни пространства, то всеки един вектор $w \in \mathbb{W}$ може да се представи като сума на два вектора съответно от двете пространства.

1.2 Директна сума:

Сумата на две пространства е **директна**, ако всеки вектор от полученото множество може да се представи по **единствен** начин като сума на елементи от \mathbb{U}_1 и \mathbb{U}_2

1.3 НДУ за директна сума:

- 1. Сумата $\mathbb{U}_1 + \mathbb{U}_2$ е директна тогава и само тогава, когато нулевият вектор да се представя по единствен начин.
- 2. Сумата $\mathbb{U}_1 + \mathbb{U}_2$ е директна тогава и само тогава, когато $\mathbb{U}_1 \cap \mathbb{U}_2 = \overrightarrow{0}$.

2 Задачи:

Задача 1: Докажете или опровергайте чрез контрапример: ако $\mathbb{U}_1, \mathbb{U}_2, \mathbb{W}$ са подпространства на \mathbb{V} , такива че $\mathbb{U}_1 + \mathbb{W} = \mathbb{U}_2 + \mathbb{W}$, тогава $\mathbb{U}_1 = \mathbb{U}_2$.

Задача 2: Докажете или опровергайте чрез контрапример: ако $\mathbb{U}_1, \mathbb{U}_2, \mathbb{W}$ са подпространства на \mathbb{V} , такива че $\mathbb{U}_1 \oplus \mathbb{W} = \mathbb{U}_2 \oplus \mathbb{W}$, тогава $\mathbb{U}_1 = \mathbb{U}_2$.

Задача 3: Нека $\mathbb{V}=\mathbb{F}[x]$. Да се докаже, че ако \mathbb{V}_1 е множеството от всички четни полиноми (p(-x)=p(x)), а \mathbb{V}_2 - множеството от всички нечетни полиноми (p(-x)=-p(x)), то \mathbb{V}_1 и \mathbb{V}_2 са подпространства на \mathbb{V}

и $\mathbb{V} = \mathbb{V}_1 \oplus \mathbb{V}_2$.

Задача 4: Нека $\mathbb{U}_1, \mathbb{V}_1, \mathbb{W}_1 \in \mathbb{M}_3[\mathbb{F}]$

$$\mathbb{U}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & a_{32} & a_{33} \end{pmatrix} \mathbb{V}_1 = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & 0 & a_{23} \\ a_{31} & 0 & 0 \end{pmatrix} \mathbb{W}_1 = \begin{pmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & a_{32} & a_{33} \end{pmatrix}$$
а) Да се докаже, че $\mathbb{U}_1, \mathbb{V}_1$ и \mathbb{W}_1 са линейни пространства над \mathbb{R} ;

- б) Да се намерят размерностите на тези линейни пространства.
- в) Да се намерят $\mathbb{U}_1+\mathbb{V}_1,\mathbb{U}_1\cap\mathbb{V}_1,\mathbb{V}_1+\mathbb{W}_1$ и $\mathbb{V}_1\cap\mathbb{W}_1$. Директни ли са сумите?

Задача 5: Нека $\mathbb{V}=\mathbb{M}_n(\mathbb{F})$ и \mathbb{S} е множеството от всички симетрични матрици $(A^t = A)$, а \mathbb{T} е множеството от всички антисиметрични матрици $(A^t=-A)$. Да се докаже, че $\mathbb{V}=\mathbb{S}\oplus\mathbb{T}.$

Задача 6: Нека $\mathbb{U} = \{(x, y, x + y, x - y, 2x) \in \mathbb{F}^5 \mid x, y \in \mathbb{F}\}$. Намерете $\mathbb{W}_1, \mathbb{W}_2, \mathbb{W}_3 \in \mathbb{F}^5 \neq \{0\}$, такива че $\mathbb{F}^5 = \mathbb{U} \oplus \mathbb{W}_1 \oplus \mathbb{W}_2 \oplus \mathbb{W}_3$.