Exercice 1.

- 1. f est une fonction polynôme de degré 2, f est donc dérivable sur \mathbb{R} et donc sur [0; 1]. $\forall x \in [0; 1], f'(x) = -x + 1$. Or $\forall x \in [0; 1], f'(x) \geq 0$, on en déduit que f est **strictement croissante** sur [0; 1].
- 2. Soit \mathscr{P} : « $0 \le u_n \le 1$ »

 Initialisation: si n = 0 on a $u_0 = 1$ et $0 \le 1 \le 1$ donc \mathscr{P}_0 est vraie.

Hérédité: supposons \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire $0 \leqslant u_k \leqslant 1$ et montrons que \mathscr{P}_{k+1} est vraie c'est-à-dire $0 \leqslant u_{k+1} \leqslant 1$.

Par hypothèse de récurrence, $0 \le u_k \le 1$ donc $f(0) \le f(u_k) \le f(1)$ car la fonction f est strictement croissante sur [0; 1].

Or
$$f(0) = \frac{1}{2}$$
, $f(u_k) = u_{k+1}$ et $f(1) = 1$ donc $0 \le \frac{1}{2} \le u_{k+1} \le 1$ ce qui prouve que \mathscr{P}_{k+1} est vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n=0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \quad 0 \leqslant u_n \leqslant 1$$

Exercice 2. Soit \mathcal{P}_n : « $4^{2n+2} - 15n - 16$ est divisible par 225 ».

Initialisation: si n = 0 on a $4^2 - 0 - 16 = 0 = 255 \times 0$ donc \mathcal{P}_0 est vraie.

 $\pmb{H\acute{e}r\acute{e}dit\acute{e}}$: supposons \mathscr{P}_k vraie pour un entier naturel k quelconque, c'est-à-dire $4^{2k+2}-15k-16$ est divisible par 225. Montrons que \mathscr{P}_{k+1} est vraie c'est-à-dire $4^{2(k+1)+2}-15(k+1)-16$ soit $4^{2k+4}-15k-31$ est divisible par 225.

Par hypothèse de récurrence, $4^{2k+2} - 15k - 16$ est divisible par 225 donc il existe un entier p tel que : $4^{2k+2} - 15k - 16 = 225p$ soit encore $4^{2k+2} = 225p + 15k + 16$. Or,

$$4^{2k+4} - 15k - 31 = 4^2 \times 4^{2k+2} - 15k - 31$$

$$= 16(225p + 15k + 16) - 15k - 31$$

$$= 16 \times 225p + 240k + 256 - 15k - 31$$

$$= 16 \times 225p + 225k + 225$$

$$= 225(16p + k + 1) \text{ avec } 16p + k + 1 \text{ entier.}$$

Ce qui prouve que \mathscr{P}_{k+1} est vraie.

<u>Conclusion</u>: \mathcal{P}_0 est vraie et \mathcal{P}_n est héréditaire à partir du rang n=0, on en déduit que \mathcal{P}_n est vraie pour tout n de \mathbb{N} .

$$\forall n \in \mathbb{N}, \quad 4^{2n+2} - 15n - 16 \text{ est divisible par } 225$$