Acids and Bases

Math Tutor Practice

- 1. Formula equation: $CuSO_4(aq) + Na_2S(aq) \longrightarrow Na_2SO_4(aq) + CuS(s)$ Full ionic equation: $Cu^{2+}(aq) + SO_4^{2-}(aq) + 2Na^+(aq) + S^{2-}(aq) + 2Na^+(aq) + SO_4^{2-}(aq) + CuS(s)$ Net ionic equation: $Cu^{2+}(aq) + S^{2-}(aq) \longrightarrow CuS(s)$
- 2. Full ionic equation: $Cd^{2+}(aq) + 2Cl^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq) \longrightarrow 2Na^{+}(aq) + 2Cl^{-}(aq) + CdCO_{3}(s)$ Net ionic equation: $Cd^{2+}(aq) + CO_{3}^{2-}(aq) \longrightarrow CdCO_{3}(s)$

Acid-Base Titration and pH

Practice Problems A

- **1.** $[H_3O^+] = 1 \times 10^{-4} M;$ $[OH^-] = 1 \times 10^{-10} M$
- **2.** $[H_3O^+] = 1.0 \times 10^{-3} \text{ M};$ $[OH^-] = 1.0 \times 10^{-11} \text{ M}$
- 3. $[H_3O^+] = 3.3 \times 10^{-13} \text{ M};$ $[OH^-] = 3.0 \times 10^{-2} \text{ M}$
- **4.** $[H_3O^+] = 5.0 \times 10^{-11} \text{ M};$ $[OH^-] = 2.0 \times 10^{-4} \text{ M}$

Practice Problems B

- **1. a.** pH = 3.0
 - **b.** pH = 5.00
 - **c.** pH = 10.0
 - **d.** pH = 12.00

Practice Problems C

- **1.** pH = 3.17
- **2.** pH = 1.60
- **3.** pH = 5.60
- **4.** pH = 12.60

Practice Problems E

- **1.** $[H_3O^+] = 1 \times 10^{-5} \text{ M}$
- **2.** $[H_3O^+] = 1 \times 10^{-12} \text{ M}$
- 3. $[H_3O^+] = 3.2 \times 10^{-2} \text{ M};$ $[OH^-] = 3.2 \times 10^{-13} \text{ M}$
- **4.** $[H_3O^+] = 2.1 \times 10^{-4} \text{ M}$

Practice Problems F

- 1. 0.157 M CH₃COOH
- 2. 0.0128 M H₂SO₄

Math Tutor Practice

- **1.** pH = 3.07
- 2. $8.9 \times 10^{-5} \text{ M OH}^-$

Reaction Energy

Practice Problems A

- 1. $0.14 \text{ J/(g} \cdot \text{K})$
- 2. 329 K

Practice Problems B

- **1.** -890.8 kJ
- **2.** 2 kJ

Practice Problems C

- **1.** −125.4 kJ
- **2.** +66.4 kJ
- **3.** −296.1 kJ

Practice Problems D

1. above 333 K

Math Tutor Practice

- **1.** $\Delta H^0 = -396.0 \text{ kJ}$
- **2.** $\Delta H^0 = -441.8 \text{ kJ}$

Reaction Kinetics

Practice Problems A

- 1. a. See figure below
 - $\Delta E_{forward} = -150 \text{ kJ/mol}$ $\Delta E_{reverse} = +150 \text{ kJ/mol}$ $E_a = 100 \text{ kJ/mol}$ $E_a' = 250 \text{ kJ/mol}$

