IV - Résultat le plus probable

On rappelle que, pour deux événements A et B, on note $A \setminus B$ l'événement selon lequel A est réalisé, mais pas B. En outre, si $P[B] \neq 0$, on note $P_B[A]$ la probabilité conditionnelle de A sachant B.

On souhaite ici démontrer, pour tout entier $n \ge 1$, que $P[D_n = n] = M_n$. Dans ce but, on va démontrer la propriété \mathcal{P}_n suivante :

Pour tout entier k tel que $0 \le k \le n-1$, on a $P[D_n = k] \le P[D_n = k+1]$.

- 11) Démontrer que, si \mathcal{P}_n est vraie, alors $P[D_n = n] = M_n$.
- 12) Démontrer \mathcal{P}_1 .

On suppose maintenant que l'on dispose d'un entier $n \ge 2$ tel que \mathcal{P}_{n-1} est vraie et d'un entier k tel que $0 \le k \le n-1$.

- 13) Pour tout entier ℓ compris entre 0 et 2n, distinct de k et de k+1, on note X_{ℓ} l'événement selon lequel les trois boules de numéros k, k+1 et ℓ sont choisies dès la première sélection.
 - a) Pourquoi, si $\ell > k+1$, a-t-on $\mathbf{P}_{X_{\ell}}[D_n = k] = 0$ et $\mathbf{P}_{X_{\ell}}[D_n = k+1] = \mathbf{P}[D_{n-1} = k]$?
 - b) Donner des résultats analogues sur $\mathbf{P}_{X_\ell}[D_n=k]$ et $\mathbf{P}_{X_\ell}[D_n=k+1]$ lorsque $\ell < k$.
 - c) On note maintenant X l'événement selon lequel les deux boules de numéros k et k+1 sont choisies dès la première sélection. Démontrer que $\mathbf{P}_X[D_n=k] \leq \mathbf{P}_X[D_n=k+1]$.
- 14) Soit Y l'événement selon lequel l'une des boules de numéros k et k+1 est éliminée lors de la première sélection.
 - a) Démontrer que $P_{Y\setminus X}[D_n = k] = P_{Y\setminus X}[D_n = k+1]$.
 - b) En déduire que $P_Y[D_n = k] \le P_Y[D_n = k+1]$.
- 15) Soit a, b et c les numéros des trois boules choisies lors de la première sélection, avec a < b < c.
 - a) Soit G l'événement selon lequel c < k. Démontrer que $\mathbf{P}_G[D_n = k] \le \mathbf{P}_G[D_n = k+1]$.
 - b) Soit H l'événement selon lequel a < k et k+1 < c. Démontrer que $\mathbf{P}_H[D_n = k] \le \mathbf{P}_H[D_n = k+1]$.
 - c) Soit I l'événement selon lequel k+1 < a. Démontrer que, si $k \le n-2$, alors $\mathbf{P}_I[D_n=k] \le \mathbf{P}_I[D_n=k+1]$.
- 16) Démontrer que, si $k \le n-2$, alors $P[D_n = k] \le P[D_n = k+1]$.
- 17) Démontrer \mathcal{P}_n .