

Facsimile Transmission

Law Offices
DENNISON, SCHULTZ & MACDONALD
Suite 105
1727 King Street
Alexandria, VA 22314 USA
mail@dennisonlaw.com
FAX (703)837-0980 TEL (703)837-9600

DATE: June 18, 2007**RE:** SN 10/575,015**TO:** Examiner Jay Patidow (571-273-2265)**FROM:** Ira J. Schultz**NUMBER OF PAGES:** 6

A proposed amendment is attached.

OK to
enter
Jay
6/18/07

The following is a complete listing of claims in this application.

1. (currently amended) A device to correct interference errors in a measuring installation (A), ~~that includes~~ comprising:

at least two magnetic sensors ($1_1, 1_2$) for measuring the position of mobile elements ($2_1, 2_2$) that are moving along adjacent trajectories, where each magnetic measuring sensor (S_1, S_2) delivers a measurement signal that is representative of the position of the mobile element in an open magnetic circuit ($3_1, 3_2$),

and resources (M) for processing the measurement signals delivered by the magnetic measuring sensors,

~~characterised in that wherein~~ the processing resources (M) include resources for correction of the magnetic measurement signals in order to take account of interference errors between the adjacent magnetic sensors ($1_1, 1_2$) with a view to obtaining a corrected measurement signal (S_{1c}, S_{2c}) for each magnetic measuring sensor.

2. (currently amended) A device according to claim 1, ~~characterised in that wherein~~ the correction resources correct the measurement signal (S_1, S_2) of each magnetic measuring sensor ($1_1, 1_2$) according to the value of the measurement signals of the magnetic measuring sensor concerned and of the other magnetic measuring sensors.

3. (currently amended) A device according to claim 1, ~~characterised in that wherein~~ the processing resources (M) deliver a corrected measurement signal for each magnetic measuring sensor such that:

$$S_{1c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha_{ij} S_1^j S_2^{i-j} \right)$$

$$S_{2c} = \sum_{i=1}^n \left(\sum_{j=0}^i \alpha'_{ij} S_2^j S_1^{i-j} \right)$$

where α , α' are correction coefficients
and n is the correction order.

4. (currently amended) A device according to claim 3,
~~characterised in that wherein~~, for each magnetic measuring sensor
(l_1 , l_2), the processing resources (M) deliver a corrected
measurement signal such that for a correction order of $n = 3$, α ,
 i , j and α' are such that:

$$\alpha_{10} = a - c ,$$

$$\alpha_{11} = 1 + c$$

$$\alpha'_{10} = a' - c' ,$$

$$\alpha'_{11} = 1 + c'$$

$$\alpha_{20} = 0 = \alpha'_{20} ,$$

$$\alpha_{21} = \alpha'_{21} = 0 , \quad \alpha_{22} = \alpha'_{22} = 0$$

$$\alpha_{30} = -b ,$$

$$\alpha_{31} = 3b ,$$

$$\alpha_{32} = -3b ,$$

$$\alpha_{33} = b$$

$$\alpha'_{30} = -b' ,$$

$$\alpha'_{31} = 3b' ,$$

$$\alpha'_{32} = -3b' ,$$

$$\alpha'_{33} = b'$$

where a, b, c, a', b', c' are correction coefficients so
that:

$$S_{1c} = (1 + c) S_1 + (a - c) S_2 + 3bS_1 S_2^2 - 3bS_1^2 S_2 + bS_1^3 - bS_2^3$$

$$S_{2c} = (1 + c') S_2 + (a' - c') S_1 + 3b'S_2 S_1^2 - 3b'S_2^2 S_1 + b'S_2^3 - b'S_1^3$$

or

$$S_{1c} = S_1 + aS_2 + b(S_1 - S_2)^3 + c(S_1 - S_2)$$

and

$$S_{2c} = S_2 + a'S_1 + b'(S_2 - S_1)^3 + c'(S_2 - S_1)$$

5. (currently amended) A device according to claim 3,
~~characterised in that wherein~~, for each magnetic measuring sensor
(l_1 , l_2), the processing resources (M) deliver a corrected
measurement signal such that, for a correction order of $n = 1$,
the values of α , α' , i , and j are such that: $\alpha_{10} = a$, $\alpha_{11} = a'$ and
 $\alpha'_{10} = a'$, $\alpha'_{11} = 1$ so that:

$$S_{1c} = S_1 + aS_2 , \text{ and } S_{2c} = S_2 + a'S_1$$

6. (currently amended) A device according to claim 1,
~~characterised in that wherein~~ each measurement signal S_1 , S_2 is
such that:

$$S_1 = \frac{S_a - S_b}{S_a + S_b}$$

$$S_2 = \frac{S_d - S_c}{S_d + S_c}$$

where S_a , S_b , and S_c , S_d are a pair of elementary measurement signals delivered by a pair of measurement cells mounted in the open magnetic circuit.

7. (currently amended) A measuring installation
~~characterised in that it includes~~ comprising:

- a first magnetic measuring sensor (l_1) delivering a first measurement signal (S_1) for the position of a first mobile element (2_1) that is moving along a trajectory (T_1), where the value of the first measurement signal (S_1) depends on the position of the said mobile element in an open magnetic circuit (3_1),

- at least one second magnetic measuring sensor (l_2) delivering a second magnetic measurement signal (S_2) for the position of a second mobile element (2_2) that is moving along a trajectory (T_2) adjacent to the movement trajectory (T_1) of the first mobile element, where the value of the second measurement signal (S_2) depends on the position of the said mobile element in an open magnetic circuit (3_2)

- and a correction arrangement according to claim 1.

6. (currently amended) A measuring installation according to claim 7, ~~characterised in that wherein~~ each magnetic measuring sensor (l_1 , l_2) includes resources (4_1 , 4_2) for the creation of a magnetic flux in a direction perpendicular to the surface (5_1 , 5_2) of at least one polar part from which there emanates a

magnetic leakage flux whose strength varies with the surface area of the polar part along the movement axis, where these magnetic flux creation resources (4_1 , 4_2) are mounted to be movable by the mobile element, forming at least one magnetic gap (8_1 , 8_2) with a polar part forming part of the open magnetic circuit, with each magnetic measuring sensor including at least one measuring cell (11_1 , 11_2) mounted in a fixed manner in the magnetic circuit close to an end point of the trajectory so as to measure the magnetic flux delivered by the creation resources less a magnetic leakage flux appearing from the polar part and varying along the trajectory.

9. (currently amended) A measuring installation according to claim 7, ~~characterised in that~~ wherein the magnetic flux creation resources (4_1 , 4_2) of the two measuring sensors are mounted close to each other along parallel trajectories.

10. (currently amended) A measuring installation according to claim 8, ~~characterised in that~~ wherein each magnetic measuring sensor (1_1 , 1_2) includes a second measuring cell (13_1 , 13_2) mounted in a fixed manner in the magnetic circuit (3_1 , 3_2) close to the other trajectory end point, so as to measure the magnetic flux delivered by the creation resources (4_1 , 4_2) less the magnetic leakage flux.

11. (currently amended) A measuring installation according to claim 8, ~~characterised in that~~ wherein the magnetic flux creation resources (4_1 , 4_2) are mounted to be movable in translation.

12. (currently amended) A measuring installation according to claim 11, ~~characterised in that~~ wherein the magnetic flux creation resources (4_1 , 4_2) are composed of a radially or axially magnetised disk-shaped or annular element (14_1 , 14_2) whose axis is parallel to the movement axis in translation.

13. (currently amended) A measuring installation according to claim 11, ~~characterised in that~~ wherein the magnetic flux

creation resources are composed of a series of at least four magnets (15₁, 15₂) whose directions of magnetisation are shifted, two by two, by 90°.

14. (currently amended) A measuring installation according to claim 11, ~~characterised in that~~ wherein the open magnetic circuit (3₁, 3₂) includes a second polar part (18₁, 18₂) placed opposite to the first polar part (5₁, 5₂) forming, together with the latter, a magnetic gap (19₁, 19₂).

15. (currently amended) A measuring installation according to claim 14, ~~characterised in that~~ wherein the second polar part (18₁, 18₂) is equipped with resources for creation of the magnetic flux (4₁, 4₂).

16. A measuring installation according to claim 14, ~~characterised in that~~ wherein the second polar part (18₁, 18₂) is formed by a tubular element fitted with the radially magnetised annular element (14₁, 14₂).

17. (currently amended) A measuring installation according to claim ~~13~~ 14, ~~characterised in that~~ wherein one or the other of the polar parts (5₁, 18₁ - 5₂, 18₂) has a plane profile designed to improve the linearity of the output signal delivered by the measurement cells (11₁, 13₁ - 11₂, 13₂).