

Principal Component Analysis (PCA)

□ PCA: Data Analysis Technique

PCA

PCA: Fundamental Concepts

- Variance of a random variable fluctuating about its mean value
 - Average of the square of the fluctuations
- Covariance for a pair of random variables, each fluctuating about its mean value
 - Average of product of fluctuations
- □ N random variables: Covariance matrix
 - N x N symmetric matrix
 - □ Diagonal elements are variances of individual random variables

PCA

PCA: Fundamental Concepts

□ Eigenvalues and eigenvectors of a square matrix A satisfy the following

$$Av_i = \lambda_i v_i$$

- □ Principal eigenvector
 - Eigen vector corresponding to maximal eigenvalue

Principal eigenvector of the covariance matrix of the data >> Direction of maximum variance of data

Eigenvalue determines the projection variance of the corresponding eigenvector

PCA

7

PCA Example

Dataset

(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)

□ Covariance matrix

- 50
- □ Eigen values
- $\lambda_2 = 0$
- Eigen vectors
- $v_1 = (1, 1)$ $v_2 = (-1, 1)$

0.5 2 4 6 8

PCA

PCA: Applications

- □ General Dimensionality Reduction
 - Feature vector
- □ Visualization of High-dimensional Data
 - Feature space visualization

PCA

S

Thank You!