Western Governors University

D212 – Data Mining II – Task 3

By Krista Moik

Table of Contents

Part I: Research Question	2
A1: Proposal of Question	2
A2: Defined Goal	2
Part II: Market Basket Justification	2
B1: Explanation of Market Basket	2
B2: Transaction Example	2
B3: Market Basket Assumption	3
Part III: Data Preparation and Analysis	3
C1: Transforming the Data Set	3
C2: Code Execution	7
C3: Association Rules Table	7
C4: Top Three Rules	8
Part IV: Data Summary and Implications	9
D1: Significance of Support, Lift, and Confidence Summary	9
D2: Practical Significance of Findings	9
D3: Course of Action	10
Part V: Attachments	10
E: Panopto Video of Code	10
F: Sources For Third-Party Code	10
G: Sources	11
H: Professional Communication	11

Part I: Research Question

A1. Proposal of Question

Using the provided medical_market_basket CSV, my research question is: Which prescriptions are most commonly prescribed together?

A2. Defined Goal

My goal is to use market basket analysis to find trends in the provided prescription data to see if certain prescriptions are more likely to be prescribed with other prescriptions.

Part II: Market Basket Justification

B1. Explanation of Market Basket

Market Basket Analysis is a data mining technique used to understand purchasing patterns by locating product groupings and identifying items that are purchased together. This analysis looks at historical transactional data to create rules showing the relationships between items that are often purchased together. The rules indicate the likelihood of an item being purchased if another item is already being purchased. The items are described as antecedent (the IF part of the rule) and as consequent (the THEN part of the rule). These insights are then used by businesses for insights involving such decisions like promotions and product placement (Kadlaskar, 2024). Market Basket Analysis, for purposes of this data set, will analyze the WGU-provided CSV of prescription records to find trends in them, such as which prescriptions are most often prescribed with each other. I expect an outcome of rules showing which prescriptions are most often prescribed with each other.

B2. Transaction Example

Below is one transaction example from the data set:

```
#example transaction
df.iloc[5]
```

Presc01	enalapril
Presc02	NaN
Presc03	NaN
Presc04	NaN
Presc05	NaN
Presc06	NaN
Presc07	NaN
Presc08	NaN
Presc09	NaN
Presc10	NaN
Presc11	NaN
Presc12	NaN
Presc13	NaN
Presc14	NaN
Presc15	NaN
Presc16	NaN
Presc17	NaN
Presc18	NaN
Presc19	NaN
Presc20	NaN
Name: 5, d	type: object

This transaction shows 1 prescription (out of 20 total possible), which was enalapril.

B3. Market Basket Assumption

One assumption of Market Basket Analysis is that co-occurrence of 2 or more items implies that the purchase of one will lead to the purchase of others (Kadlaskar, 2024).

Part III: Data Preparation and Analysis

C1. Transforming the Data Set

After loading the data set, the data was viewed to obtain information on the data types and shape:

	Presc01	Presc02	Presc03	Presc04	Presc05	Presc06	Presc07	Presc08	Presc09	Presc10	Presc11	Presc12	Presc13	
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
1	amlodipine	albuterol aerosol	allopurinol	pantoprazole	lorazepam	omeprazole	mometasone	fluconozole	gabapentin	pravastatin	cialis	losartan	metoprolol succinate XL	
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
3	citalopram	benicar	amphetamine salt combo xr	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
4	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 15002 entries, 0 to 15001
Data columns (total 20 columns):
    Column
             Non-Null Count Dtype
 0
    Presc01 7501 non-null
                             object
 1
    Presc02 5747 non-null object
    Presc03 4389 non-null
 2
                             object
 3
    Presc04 3345 non-null
                            object
    Presc05 2529 non-null
 4
                             object
 5
    Presc06 1864 non-null
                             object
    Presc07 1369 non-null
 6
                             object
 7
    Presc08 981 non-null
                             object
    Presc09 654 non-null
                             object
    Presc10 395 non-null
 9
                             object
 10 Presc11 256 non-null
                             object
 11 Presc12 154 non-null
                             object
 12 Presc13 87 non-null
                             object
 13 Presc14 47 non-null
                             object
 14 Presc15 25 non-null
                             object
 15 Presc16 8 non-null
                             object
 16 Presc17 4 non-null
                             object
 17 Presc18 4 non-null
                             object
 18 Presc19 3 non-null
                             object
 19 Presc20 1 non-null
                             object
dtypes: object(20)
memory usage: 2.3+ MB
df.shape
```

(15002, 20)

Nulls were dropped:

```
#drop nulls
df=df[df['Presc01'].notna()]

df.shape
(7501, 20)
```

The data was transformed into a list of lists in preparation for TransactionEncoder (Western Governors University, n.d.):

```
#dataframe converted to list of lists
rows=[]
for i in range (0,7501):
    rows.append([str(df.values[i,j])
for j in range (0,20)])
```

The list was then fed into TransactionEncoder (Western Governors University, n.d.):

```
#list fed to TransactionEncoder

DE=TransactionEncoder()
array=DE.fit(rows).transform(rows)

#return array to DataFrame
transaction=pd.DataFrame(array, columns=DE.columns_)

#display transaction
transaction
```

Duloxe	tine	Prema	rin	Yaz	abilify	acetan	ninopher	n actone	el albute	rol HFA	albute	rol
aeroso	l alendr	onate	allopur	inol		trazod	one HCI	triamc	inolone	Ace topi	cal	
	triamt	erene	trimeth	noprim [OS	valacio	lovir	valsart	an	venlafa	axine XR	1
	verapa	mil SR	viagra	zolpide	em							
0	False	False	False	True	False	False	True	True	False	True		False
	False	False	False	False	False	False	False	False	False			
1	False	False	False	False	False	False	False	False	False	False		False
	False	False	False	False	False	False	False	False	False			
2	False	False	False	False	False	False	False	False	False	False		False
	False	False	False	False	False	False	False	False	False			
3	False	False	False	False	False	False	False	False	False	True		False
	False	False	False	False	False	False	False	False	False			
4	False	False	False	True	False	False	False	False	False	False		False
	False	False	False	False	False	False	False	False	False			
•••	•••	•••	•••	•••	•••	•••	•••	•••		•••	•••	•••

7496	False	 False									
	False										
7497	False	 False									
	False										
7498	False	 False									
	False										
7499	False	 False									
	False										
7500	False	 False									
	False										
7504											

7501 rows × 120 columns

Additional nulls were dropped:

<pre>clean_df=transaction.drop(['nan'], axis=1) clean_df.head(7501)</pre>	#remove NAN column from transformed datase		
clean_df.head(7501)	<pre>clean_df=transaction.drop(['nan'], axis=1)</pre>		
	clean_df.head(7501)		

	Duloxetine	Premarin	Yaz	abilify	acetaminophen	actonel	albuterol HFA	albuterol aerosol	alendronate	allopurinol	 trazodone HCI	triamcinolone Ace topical	triamterene
0	False	False	False	True	False	False	True	True	False	True	 False	False	False
1	False	False	False	False	False	False	False	False	False	False	 False	False	False
2	False	False	False	False	False	False	False	False	False	False	 False	False	False
3	False	False	False	False	False	False	False	False	False	True	 False	False	False
4	False	False	False	True	False	False	False	False	False	False	 False	False	False
						***		***			 	····	
7496	False	False	False	False	False	False	False	False	False	False	 False	False	False
7497	False	False	False	False	False	False	False	False	False	False	 False	False	False
7498	False	False	False	False	False	False	False	False	False	False	 False	False	False
7499	False	False	False	False	False	False	False	False	False	False	 False	False	False
7500	False	False	False	False	False	False	False	False	False	False	 False	False	False

7501 rows × 119 columns

Final cleaned data set was saved as KMoikD212_transf.csv (which is attached):

A copy of the full code used in this task is attached as ipynb and pdf files titled KMoikD212Code3.

C2. Code Execution

To generate association rules with the Apriori algorithm, I first created the Apriori rules (Western Governors University, n.d.):

```
#creating apriori rules
rules=apriori(df, min_support=0.02, use_colnames=True)
rules.head(5)
```

	support	itemsets
0	0.046794	(Premarin)
1	0.238368	(abilify)
2	0.020397	(albuterol aerosol)
3	0.033329	(allopurinol)
4	0.079323	(alprazolam)

A copy of the full code used in this task is attached as ipynb and pdf files titled KMoikD212Code3.

C3. Association Rules Table

The rules table was created with the values for support, lift, and confidence for all 20 prescriptions in the data set (Western Governors University, n.d.):

#creating rules table
rul_table=association_rules(rules, metric='lift', min_threshold=1)
rul_table.head(20)

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(amlodipine)	(abilify)	0.071457	0.238368	0.023597	0.330224	1.385352	0.006564	1.137144	0.299568
1	(abilify)	(amlodipine)	0.238368	0.071457	0.023597	0.098993	1.385352	0.006564	1.030562	0.365218
2	(amphetamine salt combo)	(abilify)	0.068391	0.238368	0.024397	0.356725	1.496530	0.008095	1.183991	0.356144
3	(abilify)	(amphetamine salt combo)	0.238368	0.068391	0.024397	0.102349	1.496530	0.008095	1.037830	0.435627
4	(amphetamine salt combo xr)	(abilify)	0.179709	0.238368	0.050927	0.283383	1.188845	0.008090	1.062815	0.193648
5	(abilify)	(amphetamine salt combo xr)	0.238368	0.179709	0.050927	0.213647	1.188845	0.008090	1.043158	0.208562
6	(atorvastatin)	(abilify)	0.129583	0.238368	0.047994	0.370370	1.553774	0.017105	1.209650	0.409465
7	(abilify)	(atorvastatin)	0.238368	0.129583	0.047994	0.201342	1.553774	0.017105	1.089850	0.467950
8	(carvedilol)	(abilify)	0.174110	0.238368	0.059725	0.343032	1.439085	0.018223	1.159314	0.369437
9	(abilify)	(carvedilol)	0.238368	0.174110	0.059725	0.250559	1.439085	0.018223	1.102008	0.400606
10	(abilify)	(cialis)	0.238368	0.076523	0.023997	0.100671	1.315565	0.005756	1.026851	0.314943
11	(cialis)	(abilify)	0.076523	0.238368	0.023997	0.313589	1.315565	0.005756	1.109585	0.259747
12	(citalopram)	(abilify)	0.087188	0.238368	0.024397	0.279817	1.173883	0.003614	1.057552	0.162275
13	(abilify)	(citalopram)	0.238368	0.087188	0.024397	0.102349	1.173883	0.003614	1.016889	0.194486
14	(clopidogrel)	(abilify)	0.059992	0.238368	0.022797	0.380000	1.594172	0.008497	1.228438	0.396502
15	(abilify)	(clopidogrel)	0.238368	0.059992	0.022797	0.095638	1.594172	0.008497	1.039415	0.489364
16	(dextroamphetamine XR)	(abilify)	0.081056	0.238368	0.027463	0.338816	1.421397	0.008142	1.151921	0.322617
17	(abilify)	(dextroamphetamine XR)	0.238368	0.081056	0.027463	0.115213	1.421397	0.008142	1.038604	0.389252
18	(diazepam)	(abilify)	0.163845	0.238368	0.052660	0.321400	1.348332	0.013604	1.122357	0.308965
19	(abilify)	(diazepam)	0.238368	0.163845	0.052660	0.220917	1.348332	0.013604	1.073256	0.339197

A copy of the full code used in this task is attached as ipynb and pdf files titled KMoikD212Code3.

C4. Top Three Rules

Using the Apriori algorithm, I generated the below top three rules (Western Governors University, n.d.):

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
30	(metformin)	(abilify)	0.050527	0.238368	0.023064	0.456464	1.914955	0.011020	1.401255	0.503221
24	(glipizide)	(abilify)	0.065858	0.238368	0.027596	0.419028	1.757904	0.011898	1.310962	0.461536
28	(lisinopril)	(abilify)	0.098254	0.238368	0.040928	0.416554	1.747522	0.017507	1.305401	0.474369
	_three_rules	_	antecedent support	ascending=False).he		confidence	lift	leverage	conviction	zhangs_metric
					Support	communication		icverage	Conviction	zmangs_meane
75	(carvedilol)	(lisinopril)	0.174110	0.098254	11.00		2.291162	0.022088	1.163716	0.682343
	(carvedilol) (lisinopril)	(lisinopril) (carvedilol)	0.174110 0.098254		0.039195	0.225115		0.022088		- Inc 10 - 10 - 11 - 11 - 11 - 11 - 11 - 1
75 74 72				0.098254	0.039195	0.225115 0.398915	2.291162	0.022088	1.163716	0.682343
74 72 #so top	(lisinopril) (glipizide) rting rules	(carvedilol) (carvedilol) by metric - s =rul_table.sc	0.098254 0.065858	0.098254 0.174110	0.039195 0.039195 0.022930	0.225115 0.398915	2.291162 2.291162	0.022088	1.163716 1.373997	0.682343 0.624943
74 72 #so top	(lisinopril) (glipizide) rting rules _three_rules _three_rules	(carvedilol) (carvedilol) by metric - s =rul_table.sc	0.098254 0.065858 support ort_values('support	0.098254 0.174110 0.174110	0.039195 0.039195 0.022930	0.225115 0.398915	2.291162 2.291162	0.022088 0.022088 0.011464	1.163716 1.373997 1.267048	0.682343 0.624943
74 72 #so top	(lisinopril) (glipizide) rting rules _three_rules _three_rules	(carvedilol) (carvedilol) by metric - s =rul_table.sc	0.098254 0.065858 support ort_values('support	0.098254 0.174110 0.174110 ', ascending=False)	0.039195 0.039195 0.022930 .head(3)	0.225115 0.398915 0.348178	2.291162 2.291162 1.999758	0.022088 0.022088 0.011464	1.163716 1.373997 1.267048	0.682343 0.624943 0.535186
74 72 #soc top	(lisinopril) (glipizide) rting rules three_rules _three_rules antecedents	(carvedilol) (carvedilol) by metric - serul_table.sec	0.098254 0.065858 support ort_values('support antecedent support	0.098254 0.174110 0.174110 , ascending=False) consequent support	0.039195 0.039195 0.022930 .head(3) support 0.059725	0.225115 0.398915 0.348178 confidence 0.343032	2.291162 2.291162 1.999758	0.022088 0.022088 0.011464	1.163716 1.373997 1.267048	0.682343 0.624943 0.535186

The first rule, confidence, is the proportion of all transactions that involve all the items in the data set divided by the proportion of all transactions involving just one of the items, which provides the probability that someone will purchase the consequent. The second rule, lift, is the likelihood that when the antecedent is purchased the consequent is also purchased. The third rule, support, is a measure of the frequency a particular item appears in the data set (Sivek, 2020).

Part IV: Data Summary and Implications

D1. Significance of Support, Lift, and Confidence Summary

The top confidence values were between 0.41 and 0.45, indicating a 41-45% chance that the consequent occurred when the antecedent was present.

The top lift values were between 1.99 to 2.29, indicating a strong co-occurrence between the antecedents and consequents and they are more likely to be purchased/prescribed together.

The top support values were approximately 0.05, indicating the prescriptions occurred in approximately 5% of all transactions. In my analysis, the prescriptions that appear most frequently in the data set are carvedilol and abilify.

D2. Practical Significance of Findings

Using the top three rules table (Western Governors University, n.d.):

0.068391

(abilify)

_	rules ules=rul_table[(r ules.head(3)	ul_table['lit	Ft']>0.08)]							
	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(amlodipine)	(abilify)	0.071457	0.238368	0.023597	0.330224	1.385352	0.006564	1.137144	0.299568
1	(abilify)	(amlodipine)	0.238368	0.071457	0.023597	0.098993	1.385352	0.006564	1.030562	0.365218

0.238368 0.024397 0.356725 1.496530 0.008095 1.183991

0.356144

When Amlodipine, a medication used as a calcium channel blocker to lower blood pressure, is prescribed, there is a 33% chance that Abilify, an antidepressant medication, is also prescribed. This co-occurrence has a lift of 1.38 even though Amlodipine only accounted for 2% of all prescriptions.

When Abilify is prescribed, there is a 9% chance that Amlodipine is also prescribed. This co-occurrence has a lift of 1.38 even though Abilify only accounted for 7% of all prescriptions.

When Amphetamine Salt Combo, a medication for ADHD, is prescribed, there is a 35% chance that Abilify is also prescribed. This co-occurrence has a lift of 1.49 even though Amphetamine Salt Combo only accounted for 2% of all prescriptions.

Knowing and understanding co-occurrent relationships between different medications can provide insight on the patients as well as indicate a need for additional research.

D3. Course of Action

2 (amphetamine salt combo)

As predicted, my analysis did provide information and trends regarding prescription co-occurrence. It is interesting that Amlodipine and Abilify are often antecedents and consequents for each other. This could show that they are often prescribed together as one may help with side effects from the other. However, it could also mean additional research might be needed to determine if one of these medications is in fact the cause of the side effects requiring the need for the consequent prescription. I would recommend obtaining additional information on the patients prescribed these medications to gain more understanding of their co-occurrence.

Part V: Attachments

E. Panopto Video of Code and Programs

The link to my Panopto video is:

https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=448491df-aebb-427a-bc42-b1330162ba1c

F. Sources of Third-Party Code

Western Governors University. (n.d.). *Data Mining II - D212 Task 3*. WGU. [Video]. https://wgu.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=db85c4f1-0da5-4bde-a1a4-b07c0019d46d

G. Sources

Kadlaskar, Amruta. (2024). *Market Basket Analysis: A Comprehensive Guide for Businesses*. Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-market-basket-analysis/

Sivek, Susan Currie. (2020). *Market Basket Analysis 101: Key Concepts*. Towards Data Science. https://towardsdatascience.com/market-basket-analysis-101-key-concepts-1ddc6876cd00

H. Professional Communication