Оскільки для розв'язку цієї задачі не існує достатньо простого алгоритму, то розвиток теорії конформних відображень йде в таких напрямках:

- 1) виясняються загальні умови існування комформного відображення і його єдиності;
- 2) визначаються різні частинні класи областей, відображення яких можна здійснювати при допомозі комбінації елементарних функцій;
- 3) ва допомогою загальних властивостей аналітичних функцій вивчаються різні властивості комформних відображень, в залежності від областей, що відображаються;
- 4) розробляються наближені методи конформних відображень.

Зупинимось на першій з перерахованих проблем. Многозв'язну область неможливо взаємно-однозначно і набережна відобразити на однозв'язну.

Неможливо, наприклад, комформно відобразити повну або відкриту площину z на обмежену область D* площини w.

Однак, дві довільні однозв'язні області, границі яких складаються більш ніж з однієї точки, виявляється можна комформно відобразити одну на іншу і при цьому багатьма способами.

Справедлива основна теорема теорії конформних відображень.

Теорема 0.1. *Рімана.* Які б не були однозв'язні області D і D* (границі яких складаються більш з однієї точки) і як би не були задані точки z_0 з D і w_0 з D* і дійсне число λ_0 , існує одне і тільки одне комформне відображення

$$w = f(z) \tag{1}$$

області D на області D* таке, що

$$f(z_0) = w_0, arg'(z_0) = \lambda 0.$$
 (2)

Доведення. Доведення цієї теореми виходить за рамки курсу (Див. дов. в 1)

 $^{^{1} \}mathrm{B.}$ В. Шабат. Введение в комплексный анадиз, "Наука 1969.

1. Лінійні та інші найпростіші перетворення

Даний параграф присвячений розгляду деяких відображення (зокрема комформних), які виконуються за допомогою простих аналітичних функцій

1.1. Лінійна функція. Ціла лінійна функція

Нехай задано функцію

$$w = az + b, (3)$$

де a, b - деякі сталі комплексні числа ($\neq 0$). Ясно що відображення (3) буде конформним у всій $C(w'=a\neq 0)$ і крім того взаємнооднозначним. Спочатку розглянемо три частинних випадки цього відображення. Для простоти, z і w будемо зображати точками на одній площині.

1) w=z+b. При такому відображенні точка z переходить в точку w. Поклавши $z=x+iy,\,w=u+iv,\,b=b_1+ib_2$ функцію (3) запишемо у вигляді

$$u = x + b_1, \quad v = y + b_2$$

Ці дві рівності представляють відомі формули переносу осей координат.

2) $w = e^{i\lambda}z$. В цьому випадку |w| = |z|, $argw = argz + \lambda$. Тобто точка z переходить в точку w як при повороті вектора z навколо початку координат на кут λ . Тобто відображення $w = e^{i\lambda}z$ є поворотом навколо початку координат на кут λ .

3) w=rz, де r - дійсна додатня стала. В цьому випадку маємо: |w|=r|z|, argw=argz, тобто точка z переходить в точку w, що лежить на прямій Oz на відстані r|z| від початку координат. Відображення w=az+b проводиться шляхом трьох простих, вище описаних перетворень. Дійсно, нехай $a=re^{i\lambda}$. Повернемо спочатку вектор $Oz\lambda:z'=e^{i\lambda}z$. Далі змінимо |z'| в r раз: z''=rz'. Останнім зробимо паралельне перенесення точки z'' на вектор b: $w=z''+b=rz'+b=re^{i\lambda}z+b=az+b$.

1.2. Функція $w = \frac{1}{z}$

Ця функція $w=\frac{1}{z}$ взаємно є взаємно однозначною у всіх точках $\bar{\mathbb{C}}$. Причому точці z=0 відповідає точка $w=\infty$. Для дослідження цього відображення введемо полярні координати: $z=\gamma e^{i\phi},\, w=\rho e^{i\theta}$. Тоді

$$\rho = \frac{1}{r}, \quad \theta = -\phi! \tag{4}$$

Проведемо коло C радіуса 1 з центром в початку координат. При перетворенні (4) це коло переходить саме в себе.

Перетворення! зручно розбити на два, більш простих, перетворення

$$r' = \frac{1}{r}, \quad \phi' = \phi \tag{5}$$

$$\phi = r', \quad \theta = -\phi' \tag{6}$$

В першому з цих перетворень аргумент не міняється, а модуль міняється на обернений. Точка z, ка міститься в колі C, переходить в точку w', яка знаходиться зовні кола і не лежить на продовженні відрізка Oz. Добуток відстаней від точки O до початкової точки на відстань від точки O до відображеної точки вірний одиниці. Таке відображення називають інверсією відносно кола C. Точка z і w', що переходять з допомогою перетворення (5), одна в другу, тобто z в w', називають взаємно симетричними відносно кола C. Покажемо, як з точки α з допомогою інверсії побудувати точку $\frac{1}{\alpha}$.

Проводимо коло з центром в початку координат радіуса 1. Нехай $|\alpha| < 1$. Через α і центр кола проводимо пряму. В точці α ставимо перпендикуляр до побудованої прямої. Знаходимо точку A, яка є точкою перетину цього перпендикуляра з колом. В точці A проводимо дотичну до кола. Знаходимо точку β , яка є перетином цієї дотичної з прямою $O\alpha$.

З трикутника $OA\beta$ маємо $\frac{|\beta|}{1} = \frac{1}{|\alpha|}$, тобто $|\alpha| \cdot |\beta| = 1$. Точки α і β називають взаємно симетричними відносно кола C. Ясно що $\arctan \alpha = \arg \beta$. А, значить, $\beta = \frac{1}{\alpha}$. Для того, щоб одержати точку $\frac{1}{\alpha}$, потрібно виконати симетричне відображення точки β відносно дійсної осі.

Геометрична побудова точки w' по заданій точці z вказана вище. Відображення (5) може бути записане у вигляді

$$w' = \frac{1}{z} \tag{7}$$

Воно не буде аналітичним перетворенням. При такому відображенні кути зберігаються по абсолютній величині, але мають різні напрямки.

Перетворення (6) можна записати у вигляді

$$w = \bar{w}'$$

Це перетворення також є конформним 2 роду, бо переводить кожну точку в точку, симетричну до неї відносно дійсної осі. Сукупність двох неаналітичних відображень (5) і (6) дає аналітичне (при $z \neq 0$) відображення $w = \frac{1}{z}$. Це відображення зберігає кути у всіх точках площини z, включаючи z = 0 і $z = \infty$, якщо під кутом двох ліній при $z = \infty$ розуміти кут, утворений відображеними лініями з допомогою функції $w = \frac{1}{z}$.

1.3. Дробово-лінійна функція

Функція

$$w = \frac{az+b}{cz+d} \tag{8}$$

де a, b, c і d — задані сталі комплексні числа такі, що $ad - bc \neq 0$, бо в противному випадку дробово-лінійна функція (8) не залежала б від z. Якщо $c \neq 0$, то $w(\infty) = \frac{a}{c}, \ w(-\frac{d}{c}) = \infty$, а якщо c = 0, то $w(\infty) = \infty$. Отже, дробово-лінійна функція (8) визначена у всій комплексній площині. Зокрема, при c = 0 функція (8) є лінійною функцією.

Основні властивості дробово-лінійних відображень такі: 1) Конформність.

Теорема 1.1. Дробово-лінійна функція (8) конформно відображає розширену комплексну площину на розширену комплексну площину.

Доведення. Функція (8) регулярна у всій