

Parallel Computing

Exercise 1

Andres Rodriguez, 23rd April 2015

Course Organization

✓ Exercise supervisor:

Andres Rodriguez a.rodriguez-escobar@tu-braunschweig.de

✓ Assignments

To be handed in groups of 2 Students.

Groups can not be changed along the semester.

Submission via email – Please use the next format in the subject field:

Assignment -> PC1 - HW## - Group##

Questions -> PC1 – QUESTION - Group##

Login into the Cluster

Requirements:

- ✓ VPN connection with the university network
 - VPN Client (Anyconnect Secure Mobility Client)
 https://www.tu-braunschweig.de/it/downloads/software
 - Installation Guide
 https://www.tu-braunschweig.de/Medien-DB/it/vpn_einrichten_und_nutzen_anyconnect30.pdf
- √ ssh-Client
 - Unix Reachable through Terminal
 - Windows Command Promt + Cygwin (My Personal suggestion)
 https://www.cygwin.com
 - Download
 https://www.youtube.com/watch?v=uTeH7vm8JZU
 - Installation Guide
 - Windows putty http://www.putty.org

Connection:

ssh yxxxxxx@akb.hlr.rz.tu-bs.de

Using Linux Command Interface

Our Repository

https://github.com/PC1-SS15-TUBS/

✓ Creating directories

mkdir <new_directory_Name>

✓ List of files in directory

ls

✓ Moving along directories

cd <directory_name> (Go into a directory)
cd .. (Step back one directory)

Using Linux Command Interface

✓ Exchanging files Cluster2PC / PC2Cluster

scp –r ./path/to/origin/file yxxxxxxx@akb.hlr.rz.tu-bs.de:./path/to/destination/file (PC2Cluster) scp –r yxxxxxxx@akb.hlr.rz.tu-bs.de:./path/to/origin/file ./path/to/destination/file (Cluster2PC)

This is done in a terminal not logged in to the cluster!!

Some examples here:

http://www.hypexr.org/linux_scp_help.php

✓ Creating/Opening file for editing in Cluster

emacs <file to edit/create>

(Create a file with the given name if it do not exist)

Using the Cluster

Category	Command	Argument 1	Argument 2	Usage
Modules management	module	Avail	-	List available modules
		load	<module name=""></module>	Load a module
		list	-	List all loaded modules
		unload	<module name=""></module>	Unload a module
Job Queue management	qsub	<job file="" name=""></job>	-	Submit a job file for execution
	qstat	-	-	List the current queue status
	qdel	ld	-	Delete the job in queue identified with the given ID

Required modules:

✓ gcc-4.4

✓ parastation

Job File

Job file extension:

<job file name>.pbs

Job file structure:

```
#!/bin/sh

#PBS -N <taskName>

#PBS -o <taskName>.out

#PBS -e <taskName>.err

#PBS -I nodes=<#>:ppn=<#>
#PBS -I walltime=<hh>:<mm>:<ss>
mpiexec -np <#>./compiledFile.out
```

taskName=Name for the job to be queuednodes=Requested multiprocess machines.ppn=Requested process.walltime=Processe self killing time.np=Actual number of processes to use.

Compiling your code

Regular code without MPI:

C -> gcc <fileToCompile>.c -o <outputName> [-I ./path/to/include/directory] [-lpthread]

C++ -> g++ <fileToCompile>.c -o <outputName> [-I ./path/to/include/directory] [-lpthread]

Code with MPI instructions & commands:

C/C++ + MPI mpicc <fileToCompile>.c –o <outputName> [-I ./path/to/include/directory] [-lpthread]

Matrix-Vector Multiplication

Matrix-Vector Multiplication

Why is a Mutex no needed in this problem?

How to store a matrix in memory

