

Description

The VSM1013E uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, low gate charge and operation with gate voltages as low as -1.8V. This device is suitable for use as a Battery protection or in other Switching application.

General Features

• $V_{DS} = -20V, I_{D} = -0.66A$

 $R_{DS(ON)}$ <520m Ω @ V_{GS} =-4.5V

 $R_{DS(ON)}$ <700m Ω @ V_{GS} =-2.5V

 $R_{DS(ON)}$ <1000m Ω @ V_{GS} =-1.8V

ESD Rating: HBM 2000V

- High power and current handing capability
- Lead free product is acquired
- Gate-Source ESD protection

Application

- Battery operated systems
- Load/ power switching cell phones pagers
- Power supply converter circuits

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM1013E-S2	VSM1013E	SOT-23-3	Ø180mm	8 mm	3000units

Absolute Maximum Ratings (T_A=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-20	V	
Gate-Source Voltage	V _{GS}	±12	V	
Drain Current-Continuous	I _D	-0.66	А	
Drain Current-Pulsed (Note 1)	I _{DM}	-3	А	
Maximum Power Dissipation	P _D	0.3	W	
Operating Junction and Storage Temperature Range	T_{J} , T_{STG}	-55 To 150	℃	

Thermal Characteristic

Thermal Resistance, Junction-to-Ambient (Note 2)	$R_{\theta JA}$	417	°C/W
--	-----------------	-----	------

Electrical Characteristics (T_A=25℃ unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Off Characteristics								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-20	-	-	V		

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±10V,V _{DS} =0V	-	-	±10	μA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	V _{DS} =V _{GS} ,I _D =-250µA	-0.5	-0.6	-0.9	V
		V _{GS} =-4.5V, I _D =-0.6A	-	362	520	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-2.5V, I _D =-0.5A	-	471	700	mΩ
		V _{GS} =-1.8V, I _D =-0.4A	-	837	1000	mΩ
Forward Transconductance	rward Transconductance g _{FS} V _{DS} =-5V,I _D =-0.6A		-	1	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} = -10 V ,V _{GS} = 0 V,	-	114	-	pF
Output Capacitance	Coss	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$ = F= 1.0 MHz,	-	17	-	pF
Reverse Transfer Capacitance	C _{rss}	- Γ- 1.0 WIΠZ,	-	14	-	pF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	6.5	-	nS
Turn-on Rise Time	t _r	V_{DD} = -10 V, R_{L} = 47 Ω	-	6.5	-	nS
Turn-Off Delay Time	t _{d(off)}	V_G = -4.5 V, R_G = 10 Ω	-	18.2	-	nS
Turn-Off Fall Time	t _f		-	5.5	-	nS
Total Gate Charge	Qg	V - 40 V V - 4 F V	-	1.44	-	nC
Gate-Source Charge	Q _{gs}	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -0.6 \text{A}$	-	0.14	-	nC
Gate-Drain Charge	Q_{gd}	I _D – -0.0A	-	0.35	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-0.6A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-0.6	Α

Notes:

- **1.** Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25°C. The value in any given application depends on the user's specific board design. The current rating is based on the t≤ 10s thermal resistance rating.
- **3.** Pulse Test: Pulse Width ≤ 300μ s, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production

Typical Electrical and Thermal Characteristics

Figure 1:Switching Test Circuit

T_J-Junction Temperature(°C)

Figure 3 Power Dissipation

Figure 5 Output Characteristics

Figure 2:Switching Waveforms

Figure 4 Drain-Source On-Resistance

 T_J -Junction Temperature($^{\circ}\mathbb{C}$)

Figure 6 Drain-Source On-Resistance

-Vgs Gate-Source Voltage (V)

Figure 7 Transfer Characteristics

-Vgs Gate-Source Voltage (V)

Figure 9 Rdson vs Vgs

Figure 11 Gate Charge

-Vds Drain-Source Voltage (V)

Figure 8 Capacitance vs Vds

- Vds Drain-Source Voltage (V)

Figure 10 Source- Drain Diode Forward

-Vds Drain-Source Voltage (V)

Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance