1 Теория вероятностей.

Монетка:

 $\Omega = \{O; P\}$. Ω — множество элементарных исходов; \leq счетное.

Случайное событие: $A \subset \Omega$.

 $P:\Omega\to\mathbb{R}_+$:

1.
$$P(x) \ge 0$$

$$2. \sum_{x \in \Omega} P(x) = 1$$

 (Ω, P) — вероятностное пространство.

Вероятность события $A - P(A) = \sum_{x \in A} P(x)$.

Случайное событие — измеримое подмножество вероятностного пространства.

Сумма событий — объединение множеств.

Произведение событий — пересечение множеств.

$$P(A+B) = P(A) + P(B) - P(AB).$$

$$P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC) + P(ABC).$$

Опр. A и B называются независимыми, если $P(AB) = P(A) \cdot P(B)$.

Пример:

 Ω_1 и Ω_2 — вероятностные пространства.

 $\Omega_1 \times \Omega_2$ — вероятностное пространство.

 $A \subset \Omega_1$ — случайное событие.

$$P(x,y) = P_1(x) \cdot P_2(y).$$

$$P_1(A) = P(A \times \Omega_2).$$

$$AB \leftrightarrow (A \times \Omega_2) \cap (\Omega_1 \times B) = A \times B.$$

$$A, B, C$$
 — независимы, если $P(ABC) = P(A)P(B)P(C)$.

События A_1, A_2, \dots, A_n независимы, если $\forall A_{i1}, \dots, A_{ik}$ верно $P(A_{i1}A_{i2}\dots A_{ik}) = \prod_{j=1}^k P(A_{ij})$.

Опр. Условная вероятность. P(A|B) — вероятность A при условие, что B произошло.

Теорема. Формула полной вероятности. Пусть A_1, A_2, \dots, A_n — система попарно несовместимых событий, в сумме дающих достоверное. Тогда для любого события B выполнена формула $P(A) = \sum_{i=1}^k P(A|B_i) \cdot P(B_i)$. Доказательство:

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

$$P(A) = \sum_{i=1}^{k} P(AB_i).$$

$$P(A) = \sum_{i=1}^{k} P(AB_i).$$

Случайные величины. 1.1

Опр. Ω — вероятностное пространство, $f:\Omega \to \mathbb{R}$. f называется случайной величиной.

Бросаем кубик. $\Omega = 1, 2, 3, 4, 5, 6, p(x) = \frac{1}{6}$. f(1) = 1, f(2) = 2, и т. д.

На \mathbb{R} введем структуру вероятностного пространства: $1 - \frac{1}{6}, 2 - \frac{1}{6}, 3 - \frac{1}{6}, 4 - \frac{1}{6}, 5 - \frac{1}{6}, 6 - \frac{1}{6}$, остальные 0.

Опр. $f:\Omega\to\mathbb{R}$ \Rightarrow на \mathbb{R} вводится структура вероятностного пространства. $\forall x\in\mathbb{R}$ $P_{\mathbb{R}}(x)=P_{\Omega}(f^{-1}(x))$.

Опр. Распределение случайно величины f — структура вероятностного пространства на \mathbb{R} .

Стандартное распределение:

- 1. Дискретное равномерное. $x_1 \frac{1}{n}, x_2 \frac{1}{n}, \dots, x_n \frac{1}{n}$.
- 2. Распределение Бернулли.

$$f(x) = \begin{cases} 1 & p \\ 0 & q = 1 - p \end{cases}$$

$$f = \sum_{i=1}^{n} f_i.$$

$$0 - q^n, 1 - C_n^1 p q^{n-1}, \dots, n.$$

$$P(f(x) = k) = C_n^k \cdot p^k \cdot q^{n-k}.$$

$$P(f(x) = k) = C_n^k \cdot p^k \cdot q^{n-k}.$$

3. Геометрическое распределение. Бросаем неравновесную монетку до выпадения орла. Случайная величина количество испытаний.

$$P(f(x) = k) = q^{k-1} \cdot p.$$

4. Распределение Пуассона.

$$P(f=k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda}$$
. $e \approx 2.718281828459045$, $\lambda > 0$.

5. Гипергеометрическое распределение. В сосуде N белых шаров и M черных. Мы не глядя вытаскиваем n шаров без возвращения. Случайная величина — количество белых шаров.

$$P(f=k) = \frac{C_N^k \cdot C_M^{n-k}}{C_{N+M}^n}.$$

Опр. Сложение. $f: \Omega \to \mathbb{R}, g: \Omega \to \mathbb{R}. (f+g)(x) = f(x) + g(x).$

Опр. f(x) = a — случайное событие.

Опр. f и g независимые, если $\forall A, B \in \mathbb{R}: P(f(x) \in A; g(x) \in B) = P(f(x) \in A) \cdot P(g(x) \in B)$. Или: $P(f(x) = a; g(x) = A) \cdot P(g(x) \in B)$ $b) = P(f(x) = a) \cdot P(q(x) = b).$

1.2 Математическое ожидание.

Опр. f — случайная величина. Ее математическим ожиданием называется $Mf = Ef = \sum_{x \in \Omega} f(x)P(x)$. Свойства:

- 1. c константа это случайная величина.
- 2. $f_1 \leqslant f_2 \Leftrightarrow f_1(x) \leqslant f_2(x) \forall x \Rightarrow M f_1 \leqslant M f_2$.
- 3. $M(cf) = c \cdot Mf$.
- 4. $M(f_1 + f_2) = Mf_1 + Mf_2$. $\sum_{x \in \Omega} (f_1(x) + f_2(x))P(x) = \sum_{x \in \Omega} f_1(x) \cdot P(x) + \sum_{x \in \Omega} f_2(x) \cdot P(x)$
- 5. Если f_1, f_2 независимы $\Rightarrow M(f_1 \cdot f_2) = M f_1 \cdot M f_2$. Mc = c.

$$\begin{split} M(f_1 \cdot f_2) &= \sum_{x \in \Omega} f_1(x) \cdot f_2(x) \cdot P(x) = \sum_j a_i \cdot b_j \cdot P(f_1 = a_i; f_2 = b_j) = \sum_{i,j} a_i \cdot b_j \cdot P(f_1 = a_i) \cdot P(f_2 = b_j) = \sum_i a_i \cdot$$

$$M(f_{1} \cdot f_{2}) = \sum_{x \in \Omega} f_{1}(x) \cdot f_{2}(x) \cdot P(x) = \sum_{i} a_{i} \cdot b_{j} \cdot P(f_{1} = a_{i}; f_{2} = b_{j}) = \sum_{i,j} a_{i} \cdot b_{j} \cdot P(f_{1} = a_{i}) \cdot P(f_{2} = b_{j}) = a_{i} \cdot \sum_{j} b_{j} \cdot P(f_{2} = b_{j}) = Mf_{1} \cdot Mf_{2}.$$

$$P(f = k) = \frac{C_{M}^{k} \cdot C_{N}^{n-k}}{C_{M+N}^{n}}.$$

$$Mf = \frac{n \cdot M}{M+N}.$$

$$Mf = \sum_{k=0}^{n} \frac{k \cdot C_{M}^{k} \cdot C_{N}^{n-k}}{C_{N}^{n}} = \frac{n \cdot M}{M+N} \cdot \frac{(M-1)!N!(n-1)!(M+N-n)!}{(M+N-1)!} \sum_{k=0}^{n} \frac{(M-1)!N!(n-1)!(M+N-n)!}{(k-1)!(M-k)!(n-k)!(N-n+k)!} = \sum_{k=0}^{N} \frac{C_{N-1}^{k-1} \cdot C_{M+N-1}^{M-k}}{C_{M+N-1}^{m-1}} = 1.$$

Дисперсия. 1.3

Опр. Мера отклонения случайной величины от своего математического ожидания. f — случайная величина; Df = $M(f-Mf)^2$.

Опр. Центрирование случайной величины — M(f-Mf) = Mf - M(Mf) = 0. Условно сдвигаем систему координат

 $Df = M(f^2 - 2f \cdot Mf + (Mf)^2) = Mf^2 - 2M^2f + M(M^2f) = Mf^2 - M^2f.$ Свойства:

- 1. D(c) = 0 $D(f) = 0 \Rightarrow f = const$
- 2. $D(cf) = c^2 D(f)$
- 3. D(f + c) = Df
- 4. Если случайные величины f и g независимы, то D(f+g) = Df + Dg

Формула Стирлинга. $n! \approx \sqrt{2\pi n} \cdot (\frac{n}{a})^n \cdot e^{\frac{\theta_n}{12n}}$. При больших $n, e^{\frac{\theta_n}{12n}} \approx 1$.

Неравенство Маркова. 1.4

f — случайная величина; $|Mf| < \infty$; c > 0; $f \ge 0$. $P(f \geqslant c) \leqslant \frac{Mf}{c}$.

$a_1 < c$	$a_2 < c$	 $a_n \geqslant c$	$a_{n+1} \geqslant c$	$a_{n+2} \geqslant c$	
p_1	p_2	 p_n	p_{n+1}	p_{n+2}	

$$g := \frac{f}{c}$$
.

$\frac{a_1}{c} < 1$	$\frac{a_2}{c} < 1$	 $\frac{a_n}{c} \geqslant 1$	$\frac{a_{n+1}}{c} \geqslant 1$	$\frac{a_{n+2}}{c} \geqslant 1$	
p_1	p_2	 p_n	p_{n+1}	p_{n+2}	•••

Надо: $P(g \ge 1) \le Mg$. $b_i = \frac{a_i}{c}$. $Mg = b_1 p_1 + b_2 p_2 + \dots + b_n p_n + b_{n+1} p_{n+1} + \dots \ge p_{n+1} + p_{n+2} + \dots$

1.5 Неравенство Чебышева.

f— случайная величина, Mf и Df $\exists,\,c>0.$ $\Rightarrow P(|f-Mf|\geqslant c)\leqslant \frac{Df}{c^2}.$ Нормировка случайной величины. $g:=\frac{f-Mf}{\sqrt{Df}}.$ $Mg=0,\,Dg=1.$ $|f-Mf|\geqslant c\Leftrightarrow \sqrt{Df}\cdot g\geqslant c.$ $P(|g|\geqslant \frac{c}{\sqrt{Df}})\leqslant \frac{Df}{c^2}.$ $P(|g|\geqslant \frac{c}{\sqrt{Df}})=P(g^2\geqslant \frac{c^2}{Df})\leqslant \frac{Mg^2}{(\frac{c^2}{Df})}=\frac{Df}{c^2}.$

1.6 Закон больших чисел.

 f_1,f_2,f_3,\ldots — последовательность. $M:=Mf_i,\,D=Df_i.$ Одинаковое распределение случайных величин. $S_n:=rac{f_1+f_2+\cdots+f_n}{n}\Rightarrow orall arepsilon>0 \ \lim_{n o\infty}P(|S_n-M|\geqslant arepsilon)=0.$ $MS_n=M;\,DS_n=rac{D}{n}.$ $P(|S_n-M|\geqslant arepsilon)\leqslant rac{D(S_n)}{arepsilon^2}=rac{D}{narepsilon^2} o 0.\ n o\infty,\,arepsilon$ — фикс.

1.7 Ковариация и корреляция.

Опр. cov(f;g) = M(f-Mf)(g-Mg). $cov(f;f) = Df = Mf^2 - M^2f$. $cov(f,g) = M(fg) - Mf \cdot Mg$. Главное свойство ковариации: f,g — независимы $\Rightarrow cov(f,g) = 0$. Опр. $r(f,g) = \frac{cov(f,g)}{\sqrt{Df \cdot Dg}}$ — коэффициент корреляции. Теорема.

$$\begin{aligned} &-1\leqslant r(f,g)\leqslant 1.\\ &r(f,g)=1\Leftrightarrow \frac{f}{g}=const>0.\\ &r(f,g)=-1\Leftrightarrow \frac{f}{g}=const<0. \end{aligned}$$

1.8 Применение к комбинаторике.

Опр. Перестановки. $f:\{1\dots n\}\to\{1\dots n\}$; биекция. Таких n!. Неподвижная точка -f(x)=x.

1.9 Теорема Рамсея.

Задача. Есть полный граф K_N , ребра которого покрашены в 2 цвета. Всегда ли можно выбрать либо K_m с ребрами 1 цвета, либо K_n с ребрами 2 цвета?

Теорема. $\forall m; n \exists N >> 0$: утверждение верно. Наименьшее такое N — число Рамсея R(m;n). Например R(3,3)=6. Но вот R(5,5) уже не известно.

Два аспекта:

- 1. Верхняя оценка = теорема Рамсея.
- 2. Нижняя оценка.

Теорема (все та же). $R(m;n) \leqslant R(m-1;n) + R(m;n-1)$. $R(m;n) \leqslant 2^{m+n}$.

 $R(m;n)\leqslant C_{m+n}^m$ — более точная оценка.

Теорема Эрдеша. $R(n;n) \geqslant 2^{\frac{n}{2}}$.

Вероятностный метод. Суть: рассмотрим случайный (со случайной раскраской ребер) граф на $2^{\frac{n}{2}}$ вершин. f — количество одноцветных клик K_n . Если $M(f) < 1 \Rightarrow O$ к.

Задача. Пьяница стоит на краю обрыва. С вероятностью p- шаг к обрыву, q=1-p- от обрыва.

 $P(\text{упадет ровно после } 2k+1 \text{ шага}) = p^{k+1} \cdot q^k \cdot c_k.$

 c_k имеет рекуррентную формулу: $c_{n+1} = c_0 \cdot c_n + c_1 \cdot c_{n-1} + \cdots + c_{n-1} \cdot c_1 + c_n \cdot c_0; c_0 = 1.$

 $P(\text{упадет}) = \frac{1 - \sqrt{1 - 4pq}}{2a}$

Числа Каталана. 1.10

Опр. $c_n - n$ -е число Каталана.

Опр. $c_{n+1}=c_0\cdot c_n+c_1\cdot c_{n-1}+\cdots+c_{n-1}\cdot c_1+c_n\cdot c_0;\ c_0=1.$ Ввная формула: $\frac{(2n)!}{n!(n+1)!}.$

Конструкции:

1. У n+2 угольника — c_n триангуляций.

2 Близкие дроби.

Опр. n-ый ряд Φ арея — последовательность дробей от 0 до 1 со знаменателем $\leqslant n$, несократимых, в порядке возрастания. На n-ом шаге $\varphi(n)$ дробей.

Опр. Медианта дробей $\frac{a}{b}$ и $\frac{c}{d}$ — это $\frac{a+c}{b+d}$

Опр. $\frac{a}{b}$ и $\frac{c}{d}$ близки, если $|\frac{a}{b} - \frac{c}{d}| = \frac{1}{bd} \Leftrightarrow |ad - bc| = 1$.

1. $\frac{a}{b} < \frac{c}{d} \Rightarrow \frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$. Доказательство:

$$\begin{array}{l} \frac{a}{b} < \frac{a+c}{b+d} \Leftrightarrow ab+ad < ab+bc \Leftrightarrow ad < bc \Leftrightarrow \frac{a}{b} < \frac{c}{d}. \\ \frac{a+c}{b+d} < \frac{c}{d} \Leftrightarrow ad+cd < bc+cd \Leftrightarrow ad < bc \Leftrightarrow \frac{a}{b} < \frac{c}{d}. \end{array}$$

2. $\frac{a}{b}$; $\frac{c}{d}$ — близкие (и тогда несократимые) $\Rightarrow \frac{a+c}{b+d}$ — несократимая. Доказательство:

Очевидно из 3 и 4 пункта.

3. Близкие дроби несократимые.

Доказательство:

Пусть нет.
$$\frac{a}{b} = \frac{a_1 k}{b_1 k} \Rightarrow |ad - bc| = |a_1 kd - b_1 kc| = 1?!?$$
.

4. Если дроби близки, то медианта близка к каждой из них.

Доказательство:

$$\begin{aligned} &|\frac{a}{b}-\frac{a+c}{b+d}|=?.\\ &a(b+d)-(a+c)b=ad-bc=1. \end{aligned}$$

- 5. Дроби близкие ⇒ они соседние в каком-то ряду Фарея.
- 6. Дроби соседние в каком-то ряду Фарея ⇒ они близкие.
- 7. $\frac{a}{b}$ и $\frac{c}{d}$ близкие \Rightarrow дробь с min знаменателем между ними медианта.

Перенос на плоскость ряда Фарея. Вектора (a,b) и (c,d) из точки (0,0). Их сумма равна (a+c,b+d). Площадь параллелограмма, образованного данными векторами, равна S = |ad - bc|. Равна 1, если вектора близки. Также на векторах нет целочисленных точек, иначе дроби сократимые. Тогда по формуле Пика $S = n + \frac{k}{2} - 1; n$ — количество внутренних вершин, k — количество вершин на сторонах. S=1 для близких векторов.

Опр.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 — матрица. $ad - bc$ — определитель $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. $def \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$.

Свойства:

1.
$$def\begin{pmatrix} \lambda a & \lambda b \\ c & d \end{pmatrix} = \lambda def\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Цепные дроби.

Опр. Конечной цепной дробью называется число $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots + \frac{1}{a_n}}}$, где a_0 — целое, a_1, \dots, a_n — натуральные числа.

Такую цепную дробь будем обозначать $[a_0, a_1, \ldots, a_n]$.

Теорема. $\forall \frac{m}{n} \exists !$ цепная дробь.

Доказательство:

$$\begin{array}{l} a_0 = \left[\frac{m}{n}\right] \\ \frac{1}{a_1 + \frac{1}{\dots}} = \left\{\frac{m}{n}\right\} = \frac{m_1}{n_1} \\ \frac{n_1}{m_1} = a_1 + \frac{1}{a_2 + \frac{1}{\dots}} = \frac{m_2}{n_2} \end{array}$$

$$1 + \frac{1}{1 + \frac{1}{\dots}} = [1, 1, \dots, 1] = \frac{F_{n+1}}{F_n}.$$

Опр. Несократимая дробь $\frac{p_k}{a_k} = [a_0, a_1, \dots, a_k]$ называется k-й подходящей дробью цепной дроби $[a_0, a_1, \dots, a_n]$.

Теорема. Рекуррентные формулы Эйлера. $p_k = a_k p_{k-1} + p_{k-2}; q_k = a_k q_{k-1} + q_{k-2}.$ $\frac{p_k}{q_k}$ располагается между $\frac{p_{k-2}}{q_{k-2}}$ и $\frac{p_{k-1}}{q_{k-1}}$ и равна $\frac{p_{k-2} + a_k \cdot p_{k-1}}{q_{k-2} + a_k \cdot q_{k-1}}.$

$$\begin{aligned} 1. & \left| \frac{p_k}{q_k} - \alpha \right| \leqslant \frac{1}{q_k^2} \\ & \left| \frac{p_k}{q_k} - \alpha \right| \leqslant \frac{1}{q_k q_{k+1}} \leqslant \frac{1}{q_k^2} \\ & \frac{p_k}{q_k} < \alpha \leqslant \frac{p_{k+1}}{q_{k+1}} \\ & \left| \frac{p_k}{q_k} - \alpha \right| \leqslant \left| \frac{p_k}{q_k} - \frac{p_{k+1}}{q_{k+1}} \right| = \frac{1}{q_k q_{k+1}} \end{aligned}$$

2.
$$\left|\frac{p_k}{q_k} - \alpha\right| \geqslant \frac{1}{q_k(q_k + q_{k+1})}$$

 $\left|\frac{p_k}{q_k} - \alpha\right| \geqslant \left|\frac{p_k}{q_k} - \frac{p_{k+2}}{q_{k+2}}\right| \geqslant \frac{1}{q_k q_{k+2}}$

$$\begin{split} r_n &:= a_n + \frac{1}{a_{n+1} + \frac{1}{\dots}} = [a_n, a_{n+1}, \dots]. \\ [a_0, a_1, \dots] &= [a_0, a_1, \dots, a_{n-1}, r_n]. \\ \textbf{Теорема.} & [a_0, a_1, \dots] &= \frac{p_{n-1} r_n + p_{n-2}}{q_{n-1} r_n + q_{n-2}} \end{split}$$

$$[a_0, a_1, \dots] = [a_0, a_1, \dots, a_{n-1}, r_n].$$

Teopema.
$$[a_0, a_1, \dots] = \frac{p_{n-1}r_n + p_{n-2}}{q_{n-1}r_n + q_{n-2}}$$

$$\alpha = \frac{p_{n-2}r_{n-1} + p_{n-3}}{q_{n-2}r_{n-1} + q_{n-3}}$$

$$r_{n-1} = a_{n-1} + \frac{1}{r_n}$$

 $lpha = rac{p_{n-2}r_{n-1} + p_{n-3}}{q_{n-2}r_{n-1} + q_{n-3}}$ $r_{n-1} = a_{n-1} + rac{1}{r_n}$ Теорема. Если цепная дробь lpha — периодическая, то lpha — корень квадратного трехчлена с целыми коэффициентами. **Теорема Лиувилля.** α — иррациональное число; α — корень f(x) степени n $(n-\min)$ с целыми коэффициентами $\Rightarrow \exists C>0: \forall rac{p}{q}$ выполнено $\left| lpha - rac{p}{q}
ight| \geqslant rac{c}{q^n}, \ C$ — константа.

Доказательство:

$$\begin{split} &f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \ a_i \in \mathbb{Z} \\ &f(x) = (x - \alpha) g(x) \Rightarrow \alpha - \text{не корень } g(x), \ \text{тк тогда} \ g(x) - \text{нецелые коэффициенты.} \\ &x - \alpha = \frac{f(x)}{g(x)}, \ \forall x \\ &\left| \frac{p}{q} - \alpha \right| = \frac{\left| f(\frac{p}{q}) \right|}{\left| g(\frac{p}{q}) \right|} = \frac{\left| a_n \frac{p^n}{q^n} + a_{n-1} \frac{p^{n-1}}{q^{n-1}} + \dots + a_0 \right|}{\left| g(\frac{p}{q}) \right|} = \frac{1}{q^n} \left| \frac{a_n p^n + a_{n-1} p^{n-1} q + \dots + a_0 q^n}{g(\frac{p}{q})} \right| \\ &\text{Hадо: } \left| \frac{a_n p^n + a_{n-1} p^{N-1} q + \dots + a_0 q^n}{g(\frac{p}{q})} \right| \geqslant C \end{split}$$