EUROPEAN PATENT APPLICATION

(21) Application number: 91305763.4

(22) Date of filing: 26.06.91

(51) Int. Ci.5: C07K 5/02, C07K 5/06, A61K 37/64, C07D 409/12, C07D 417/12, C07D 401/12, C07D 277/56, A61K 31/415, C07D 233/64, A61K 31/425, A61K 31/44

(30) Priority: 28.06.90 JP 172050/90

(43) Date of publication of application : 29.01.92 Bulletin 92/05

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Applicant : SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of SHIONOGI & CO. LTD. 1-8, Doshomachi 3-chome Chuo-ku Osaka 541 (JP)

(72) Inventor: Toyoda, Tatsuo 1-1-140, Suimeidai Kawanishi-shi, Hyogo 666-01 (JP) Inventor: Fujloka, Toshihiro 1-983-6, Isokabe, Kashiba-cho Kitakatsuragi-gun, Nara 639-026 (JP) Inventor: Hayashi, Kunio 32-11, Satsukida-cho Kadoma-shi, Osaka 571 (JP) Inventor: Nakamura, Masuhisa 6-9-11, Nakayamasakuradai Takarazuka-shi, Hyogo 665 (JP) Inventor: Hashimoto, Naofumi 5-13-7, Terakawa Daito-shi, Osaka 574 (JP)

(74) Representative: Hardisty, David Robert et al **BOULT, WADE & TENNANT 27 Furnival Street** London EC4A IPQ (GB)

(54) Renin inhibiting dipeptide derivatives, their preparation and pharmaceutical preparations containing them.

A novel dipeptide derivative of the following formula (I), which compound is capable of inhibiting the enzymatic activity of renin and thereby depressing the renin-angiotensin system and lowering the blood pressure, is provided.

wherein:

R1 is C1-C12 alkyl, C2-C6 alkenyl, C2-C8 alkynyl, C3-C10 cycloalkyl, aryl, or heterocyclic radical; R2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C1-C12 alkyl-S-, C1-C12 alkyl-S-CH2-, or C₃-C₁₀ cycloalkyl-S-;

R3 is anyl or 5- or 6-membered heterocyclic radical;

R4 is R4 -SO2 or R4 -CO;

R4 is aryl, C1-C12 alkyl, C2-C6 alkenyl, C2-C6 alkynyl; C3-C10 cycloaklyl, or het rocyclic radical;

X is CH₂, NH, O, or S; and Y is CO or NHSO₂, wherein R¹, R², R³ and R⁴ each may be substituted with one to thr substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C_1 - C_6 alkyl; C_3 - C_{10} cycloalkyl; -O- C_1 - C_6 alkyl; -O- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -NR 5 R 6 ; -O-CO-NR 5 R 6 ; -O- C_1 - C_6 alkyl NR 5 R 6 ; R 5 and R 6 are independently hydrog n, formyl or C_1 - C_6 alkyl, or R^5 and R^6 , when taken together with the nitrog n to which they are attached, form a cyclic amine group, or an acid addition salt the reof.

-(-<u>₹. 1...</u>-

÷: ..

This inv ntion relates to dipeptid derivatives capabl of inhibiting r nin activity, processes for their production and pharmaceutical preparations comprising th m.

Renin (EC3.4.23.15) is a protease which catalyz s th hydrolysis of angiotensinog n into angiot nsin I. Th angiotensin I is a biologically inactive decapeptide, though it is enzymatically converted into angiotensin II by an angiotensin converting enzyme in pulmonal vascular endotheliocytes. This system is "the reninangiotensin system". The angiotensin II induces hypertension through at least two routes, that is, contractive action on smooth muscles of peripheral vasculars and stimulation of secretion of adrenal hormone which inhibits sodium ion excretion. More particularly, it stimulates the secretion of aldosterone, an inhibitor of the excretion of Na⁺ ion, resulting in an increase of the volume of extracellular body fluid, rich is one of the causes of hypertension. Accordingly, compounds capable of depressing or inhibiting the renin-angiotensin system are expect d to be potent anti-hypertensive substance. Many peptide analogues which seemed to be useful in the regulation of hypertensive diseases on the basis of renin-inhibiting activity have been developed and disclosed [for example, USP 4656269, EP-A-274259 and AU-A-8822959].

As mentioned above, the renin inhibitor inhibits the synthesis of Angiotensin I thereby depressing the renin-angiotensin system and lowering blood pressure. Owing to the physiological activity, renin inhibitors hav been used in the treatment of hypertension. However, since hypertension is one of the most common disord rs and causes many serious conditions and diseases, a development of more and more novel anti-hypertensive substances including renin inhibitors has been demanded to treat hypertension effectively.

The present inventors have now discovered a class of novel dipeptide compounds capable of inhibiting the catalytic activity of renin both <u>in vitro</u> and <u>in vivo</u>.

In particular, the present invention provides a dipeptide derivative of formula (I):

wherein:

15

20

25

30

35

45

50

 $R^{1} \text{ is } C_{1}\text{-}C_{12} \text{ alkyl, } C_{2}\text{-}C_{6} \text{ alkenyl, } C_{2}\text{-}C_{6} \text{ alkynyl, } C_{3}\text{-}C_{10} \text{ cycloalkyl, aryl, or heterocyclic radical; }$

 R^2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C_1 - C_{12} alkyl-S-, C_1 - C_{12} alkyl-S-CH₂-, or C_3 - C_{10} cycloalkyl-S-;

R3 is anyl or 5- or 6-membered heterocyclic radical;

R4 is R4' -SO2 or R4' -CO;

R4' is aryl, C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl; C₃-C₁₀ cycloaklyl, or heterocyclic radical;

X is CH2, NH, O, or S; and

Y is CO or NHSO₂, wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C_1 - C_6 alkyl; C_3 - C_{10} cycloalkyl; -O- C_1 - C_6 alkyl; -S- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -SO₂- C_1 - C_6 alkyl; -CO- C_1 - C_6 alkyl; -NHCO- C_1 - C_6 alkyl; -NHSO₂- C_1 - C_6 alkyl; -NR5R6; -O-CO-NR5R8; -CO-NR5R6; -O-C1- C_6 alkyl NR5R6; R⁵ and R6 are independently hydrogen, formyl or C_1 - C_6 alkyl, or R⁵ and R6, when taken together with the nitrogen to which they are attached, form a cyclic amino group or an acid addition salt thereof.

In another aspect the present invention also provides a compound of formula (II):

$$\mathbb{R}^7 - \mathbb{N} \longrightarrow 0 \quad (\Pi)$$

55

wherein, R¹ is as defined above, and R⁷ is hydrogen or an amino prot cting group, which compound is useful as an int rmediate for the production of the compound of formula (I).

For the purpose of the present invention, as disclos d and claimed herein, the following terms ar defined as below.

The term "C₁-C₁₂ alky!" refers to a straight or branch d saturated hydrocarbon radical having one t two lve carbon atoms, including methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-p ntyl, isop ntyl, 2-methylbutyl, t-pentyl, neopentyl, isopentyl, 1-ethylpropyl, n-hexyl, isoh xyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and the like.

The term "C₁-C₆ alkyt" refers to a straight or branched saturated hydrocarbon radical having one to six carbon atoms as defined above.

The term "C₂ - C₆ alkenyl" refers to a straight or branched unsaturated hydrocarbon radical having tw to six carbon atoms and one or more double bonds, including vinyl, allyl, 1-propenyl, isopropenyl, 2-butenyl, 1,3-butadienyl, 2-pentenyl, 1-hexenyl, and the like.

The term "C₂ - C₈ alkynyl" refers to a straight or branched unsaturated hydrocarbon radical having two to six carbon atoms and one or more triple bonds, including ethynyl, 1-propynyl, 2-propynyl, 2-butynyl, 1,3-butadiynyl, 2-pentynyl, 1-hexynyl, and the like.

The term ${}^{m}C_{1} - C_{6}$ alkylenedioxy refers to methylenedioxy, ethylenedioxy, triethylenedioxy, tetramethylenedioxy, pentamethylenedioxy, hexamethylenedioxy, and the like.

The term "C₃ - C₁₀ cycloalkyi" refers to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexyl, cyclohexyl, and the like.

The term "ary!" refers to ary! radicals having 6 to 10 carbon atoms, including phenyl, indenyl, naphthyl, and the like.

The term "halogen" refers to halogen atoms such as fluorine, chlorine, bromine, and iodine.

15

20

30

35

The term "cyclic amino" refers to monocyclic or bicyclic amino groups such as pyrrolidino, 2-pyrazolidinyl, piperidino, 1-piperazinyl, 1-indolinyl, 2-indolinyl, morpholino, and the like.

The term "heterocyclic group" refers to a group of saturated or unsaturated monocyclic or condensed ring which contains one or more heteroatoms selected from nitrogen, oxygen and sulfur. Examples of heterocyclic groups include, for example, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 1-pyrazolyl, 2-pyridyl, 4-pyridyl, 4-pyridyl, 2-pyrimidyl, 3-pyridazinyl, 2-pyrazinyl, 3-triazolyl, 2-thiazolyl, 4-thiazolyl, 5-tetrazolyl, 3-isothiazolyl, 2-pyrrolidinyl, 2-imidazolidinyl, 4-pyrazolidinyl, 4-piperidyl, 2-piperadinyl, 4-indolyl, 7-indolyl, 5-quinolyl, 8-quinolyl, 8-isoquinolyl, and the like.

The term "5- or 6-membered heterocyclic groups" refers to 5- or 6-membered heterocyclic groups as defined above.

The term "carbamoyl" refers to carbamoyl or carbamoyl substituted with one or two substituents select d from a group consisting of C_1 - C_8 alkyl or C_3 - C_{10} cycloalkyl, for example, carbamoyl, methylcarbamoyl, dimethylcarbamoyl, cyclohexylcarbamoyl, and the like.

In the definition of \mathbb{R}^1 , preferred " \mathbb{C}_1 - \mathbb{C}_{12} alkyl" is methyl, ethyl, propyl, isopropyl, t-butyl, pentyl, hexyl, heptyl, or the like; preferred " \mathbb{C}_1 - \mathbb{C}_6 alkyl" is methyl, ethyl, propyl, isopropyl, t-butyl, or the like; preferred " \mathbb{C}_2 - \mathbb{C}_6 alkynyl" is ethynyl, or the like; preferred " \mathbb{C}_3 - \mathbb{C}_{10} cycloalkyl" is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, or the like; preferred "aryl" is phenyl, naphthyl, or the like. Preferr d "heterocyclic group" is 5-or 6- membered heterocyclic group such as 2-thienyl, 2-furyl, 2-pyrrolyl, 2-thiazolyl, 4-thiazolyl, 5-tetrazolyl, 4-pyridyl, 5-pyrimidinyl, 2-pyrrazinyl, 2-pyrroldinyl, 4-piperidyl, or the like or condensed heterocyclic group such as 8-quinolyl, or the like.

Examples of preferable R1 include phenyl, o-tolyl, p-tolyl, m-tolyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 2,6-dichlorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 2,4-dibromophenyl, 2,6-dibromophenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,4-difluorophenyl, 2,6-difluorophenyl, 2-tolufluoromethyl, 3-tolufluoromethyl, 4-tolufluoromethyl, 2-hydroxyphenyl, 3-hydroxyphenyl, 4hydroxyphenyl, 2-methoxyphenyl, 3-methoxyphenyl, 4-methoxyphenyl, 3,4-dimethoxyphenyl, 3,4-methylenedioxyphenyl, 3-methylaminophenyl, 3-(N-formyl)methylaminophenyl, 2-dimethylaminophenyl, 3-dimethylaminophenyl, 4-dimethylaminophenyl, 2-morpholinophenyl, 3-morpholinophenyl, 4-morpholinophenyl, 2-(4methylpiperazyno)phenyl, 3-(4-methylpiperazyno)phenyl, 4-(4-methylpiperazyno)phenyl, 2-acetamidophenyl, 3-acetamidophenyl, 4-acetamidophenyl, 2-methylsulfonylaminophenyl, 3-methylsulfonylaminophenyl, 4methylsulfonylaminophenyl, 2-isopropoxycarbonylphenyl, 3-isopropoxycarbonylphenyl, 4-isopropoxycarbonylphenyl, 2-morpholinocarbonylphenyl, 3-morpholinocarbonylphenyl, 4-morpholinocarbonylphenyl, 2-morpholinocarbonyloxyphenyl, 3-morpholinocarbonyloxyphenyl, 4-morpholinocarbonyloxyphenyl, 2-morpholinoethoxyphenyl, 3-morpholinoethoxyphenyl, 4-morpholinoethoxyphenyl, 2-cyanophenyl, 3-cyanophenyl, 4cyanophenyl, naphtyl, 2-pyrrolyl, 3-pyrrolyl, 1-methyl-2-pyrrolyl, 5-tetrazolyl, 1-methyl-5-tetrazolyl, 2-furyl, 3-furyl, 2-thienyl, 3-thienyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 1-methyl-4-pyridyl, 2-methyl-4-pyridyl, 3-methyl-4-pyridyl, 1-chloro-4-pyridyl, 2-chloro-4-pyridyl, 3-chloro-4-pyridyl, 1-fluoro-4-pyridyl, 2-fluoro-4-pyridyl, 3-fluoro-4-pyridyl, 2-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 1-methyl-2-pyrrolidinyl, 1-m thyl-3-

pyrrolidinyl, 2-piperidyl, 3-piperidyl, 4-piperidyl, 1-methyl-2-piperidyl, 1-m thyl-3-piperidyl, 1-methyl-4-piperidyl, 8-quinolyl, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, p ntyl, hexyl, heptyl, octyl, dimethylaminomethyl, morpholinom thyl, 1-morpholinoisopropyl, 1-morpholino thoxyisopropyl, 1-piperidinomethyl, cyclopropyl, cyclopentene, cycloh xyl, cycloheptyl, cyclooctyl, 2-morpholinocyclohexyl, 3-morpholinocyclohexyl, 4-morph linocyclohexyl, 2-m thylaminocyclohexyl, 3-m thylaminocyclohexyl, 4-dimethylaminocyclohexyl, 3-dimethylaminocyclohexyl, 4-dimethylaminocyclohexyl, and the like.

Examples of preferable R² include 5-membered heterocyclic groups containing two heteroatoms such as two nitrogen atoms, nitrogen and oxgen atoms, or nitrogen and sulfur atoms, for example, 4-imidazolyl, 4-thiazolyl, 4-oxazolyl, or the like, wherein said heterocyclic group may be substituted with methyl, ethyl, isopropyl, tert-butyl, amine, methylamine, dimethylamine, diethylamine, 1-pyrrolidinyl, piperidino, or the like; C1 - C12 alkyl-S- such as methylthio, cyclohexylthio, or the like; C1-C12 alkyl-S-CH2- such as methylthiomethyl, or the like; carbamoyl or substituted carbamoyl such as methylcarbamoyl, dimethylcarbamoyl, or the like.

Examples of preferable R⁴ include sulfonyl or carbonyl substituted with methyl, ethyl, isopropyl, dimethylamino, tert-butyl, N-morpholino or N-morpholinomethyl, or the like.

Examples of more preferable R1 are shown below.

5

Especially preferred compounds are those wherein R² is an optionally substituted 5- or 6-membered heterocyclic group; R³ is:an optionally substituted aryl; R⁴ is morpholinosulfonyl; and X is NH.

The pharmaceutically acceptable acid addition salts of compounds of formula (I) include salts derived from a mineral acid such as hydrochloric acid, suffuric acid, p-toluenesulfonic acids, or the like; carboxylic acid such as oxalic acid, maleic acid, citric acid, or the like. Preferable acid addition salts are those derived from mineral acid such as hydrochloric acid, sulfuric acid, toluenesulfonic acid, and the like.

All the compounds of the present invention are novel and can be prepared according to either of two processes described below on the basis of what Y represents.

Process 1

Preparation of compounds wherein Y is CO

The process is schematically shown as below.

30

15

20

25

35

40

45

50

Step 1

R7-NH CHO + 0 R1

$$\begin{array}{c|c}
H \\
R^7 - N \\
\hline
 & 0 \\
\hline
 & 0
\end{array}$$
[5]

Step 2a

5 [4] 10

[6] 20 25

[7] 35

45 HO 50 HŌ [10] [9]

Step 2b

Step 2c

[14]

$$\begin{array}{c|c} & & \\ & & \\ & 0 & \\ \end{array}$$
 [2]

[19]

$$NH_{2} \xrightarrow{R^{2'}} HO \xrightarrow{HO} O$$

Step 4 5 [11] 10 [12] (S) 15 20 25 . F. E OB 30 [13] 35 40 45 50

In the above reaction schemes, R^1 , R^2 and R^3 are as defin d above, $R^{2'}$ is optionally protected R^2 and R^7 is amino-protecting group.

Th amino protecting group which is shown by R^7 can b selected from those groups generally used in peptide synthesis. Examples of amino protecting groups include benzyloxycarbonyl (it is referred to as Z), 2,6-dichlorob nzyloxycarbonyl ($Z(Cl)_2$), 4-nitrobenzyloxycarbonyl ($Z(NO_2)$), 4-methoxybenzyloxycarbonyl

(Z(OMe)), t-butoxycarbonyl (Boc), t-amyloxycarbonyl (Aoc), isobornyloxycarbonyl, adamantyloxycarbonyl (Adoc), 2-(4-biphenyl)-2-propyloxycarbonyl (Bpoc), 9-fluor nylmethoxycarbonyl (Fmoc), m thylsulfonyl thoxycarbonyl (Msc), trifluoroacetyl, phtalyl, formyl, 2-nitrophenylsulf nyl (NPS), diphenylphosphinothioyl (Ppt), dimethylphosphinothioyl (Mpt), and the like.

Examples of the optionally protected R² shown by R² are 4-imidazoyl, 4-aminothiazolyl and R² as defined above, which are optionally protected with a group selected from benzyl (Bzl), benzyloxycarbonyl (Z), toluenesulfonyl (tosyl or Ts), trimethylsilyl (trityl, Trt), dinitrophenyl (Dnp), 2,2,2-trifluoro-1-benzyloxycarbonylaminoethyl (Tfz), 2,2,2-trifluoro-1-t-butoxycarbonyl (TfBoc), adamantyloxycarbonyl (Adoc), piperidinocarbonyl, t-butoxycarbonyl(Boc), and the like.

Step 1

10

30

1. Preparation of Compound [3] by Aldol Reaction

a) The optically active aldehyde [1], a required starting compound, can be prepared from, for example, Boc-L-phenylalanine using any of known methods described in literatures such as ¹⁾ (T. Shioiri et al., <u>J. Org. Chem. 52</u>:1252 (1987) and <u>J. Boger et al., <u>J. Med. Chem. 28</u>:1779 (1985)).</u>

The aldol condensation between an aldehyde [1] and a ketone [2] is carried out by a novel stereoselective method of the present invention. The reaction is conducted using metal amide, as a base, in an organic solvent in the presence of a crown ether at a temperature of about -78°C. Amides which may be used include sodium bis-trimethylsilylamide (NaN(TMS)₂), potassium bis-trimethylsilylamide (KN(TMS)₂), lithium diisopropylamide, lithium bis-trimethylsilylamide, and the like. Crown ethers which may be used include 15-crown-5, 12-crown-4, 18-crown-6, and the like. Although all the combinations of amides and crown ethers described above are suited for the stereoselective aldol reaction of the invention, certain combinations are especially preferable in connection with the stereoselectivity of the product [3] which is expressed by the ratio of the product of 2S form to 2R form, i.e., diastereo-selectivity, 2S:2R. Thus, NaN(TMS)₂, when used in association with 15-crown-5, giv s the most favorable result shown by the 2S:2R value of about 2.4 to about 16.0, while other amides, when us d alone or in combination with a crown ether, give inferior results shown by the 2S:2R value of less than 2.

Solvents which may be used include ethers such as diethyl ether, tetrahydrofuran (THF), dimethoxyethan, and the like with a preference for THF. When toluene is used, the stereoselectivity may be relatively decreased.

The reaction is carried out at a temperature ranging from about -20 to about -100°C, preferably about -78°C.

b) Alternatively, the stereoselective aldol condensation reaction can be carried out using metal alkoxide as a base in an inert solvent in the presence of a quarternary ammonium salt at a temperature of about -78°C.

Metal alkoxides which may be used include potassium t-butoxide (t-BuOK), potassium t-amyloxide (Et(Me)₂COK) or sodium ethoxide (EtONa), and the like.

Quarternary ammonium salts which may be used include tetrabutyl ammonium bromide ($(n-Bu)_4NBr$), t tramethyl ammonium bromide ($(Me)_4NBr$), tributylbenzylammonium bromide ($Bn(n-Bu)_3NBr$), and the like. All the reagents are suited to the stereoselective aldol reaction of the invention and the best result can be obtained by the combination of t-BuOK and n-Bu₄NBr giving the 3S/3R value of about 3.3 - 6.5. This method is us ful even in the absence of quarternary ammonium salt and gives the ratio of 3S/3R of about 3 to 5.

Solvents which may be used include THF, toluene, dichloroethane, dichloromethane, and the like with a preference for dichloromethane. When THF or toluene is used, the stereoselectivity may be decreased. The reaction can be conducted under a similar temperature as described in above a).

5 2) Separation of Stereoisomer (1S, 2S) [4]

The desired stereoisomer [3]-(2S) can be separated from a mixture of isomers shown by formula [3] by a known resolving procedure, for example, a column chromatography on silica gel. For the purpose of the invition, the desired isomer can be conveniently separated by reacting the mixture [3] with 2-methoxypropene or 2,2-dimethoxypropane in the presence of a catalytic amounts of p-toluene sulfonic acid or pyridinium p-toluene sulfonate in a solvent such as THF or dichloroethane at a temperature ranging from room temperature to the refluxing temperature for about 1 to 8 hours to obtain a product containing a mixture of ring-closed compounds [4] and [5] which differ in the crystallizing properties from a cirtain solvents. Thus, when the product is recrystallized from ethyl acetate or diisopropyle ther in which the desired stereoisomer [4] is hardly soluble and the undesired isomer [5]-(2R) is soluble, the former can be separated as a crystalline solid, while the latter remains in the mother liquor. A column chromatography on, for example, silicated gel, can be used when the compound [4] is not easily separated by recrystallization. The solution of the compound [4] in (1S, 2S) form is a novel and useful compound as an intermediate for the production of the compound (I).

Alternatively, the product [3], without further treatment to form acetonide, can b dir ctly subjected to a column chromatography on silica gel to yield the ster oisomer [3]-(2S), which is then convirted into dihydric alcohol of formula [7].

Step 2a

15

Before the deprotection of C1 amino group, the compound [4] should be reduced to avoid the possibility of ring closing reaction between the deprotected amino group and the C4 carbonyl group. The reducing reaction can be carried out using any of known methods in the art. However, it is efficiently conducted by reacting a solution of the ketone [4] in ethanol, methanol, THF or toluene with a reducing reagent such as sodium borohydrate, L-selectride or Red-Al at room temperature or under cooling for about 0.5 to 2 hours. Preferably, the latter reagent is used slightly in excess, that is, about 1.0 to 1.3 mole to 1.0 mole of ketone [4]. The resultant product [6], a mixture of diastereoisomers (1:1 to 3:1), is used in the next deprotection step without further purification.

The deprotection of amino group can be carried out using any of following procedures. When the protecting group is Boc, and the like, the compound [6] is deprotected by dissolving into THF or dioxane, adding 6N HCl thereto, and stirring at room temperature for about 1 to 4 hours. Alternatively, the compound [6] is treated with an acid such as aluminium chloride, trifluoroacetic acid or formic acid in the presence of anisole to yield the dihydric aminoalcohol [7].

When the protecting group is a member of benzyloxycarbonyl groups such as benzyloxycarbonyl (hereinafter, it is referred to as Z), 2,6-dichlorobenzyloxycarbonyl (Z(Cl)₂), or 4-nitrobenzyloxycarbonyl ((Z(NO₂)), the deprotection can be effected by catalytic reduction using palladium-containing catalyst, and the like. When th protecting group is Fmoc (9-fluorenylmethoxycarbonyl), Msc (methylsulfonylethoxycarbonyl), or the like, the deprotection can be effected by treating the compound [6] by piperidine, diethylamine, or the like.

The resulting dihydric alcohol of formula [7] is subjected to the next condensation reaction without purification. The condensation can be carried out using any procedure generally used in the field of peptide synthesis. For example, to a solution of compound [7] in an appropriate solvent such as dichloromethane is add d commercially available N-Boc-amino acid [8] or its DCHA salt, and the mixture is allowed to react at room temperature for about 1 to 4 hours in the presence of a slight excess of a coupling reagent such as 1.0 to 1.3 mole equivalent of diethyl cyanophosphosphate (DEPC) and, if desired, a tertiary amine such as N-methyl morpholine to obtain a coupled compound [9]. Examples of coupling reagents are DCC, EDC, DEPA, BOP, DCC-HOBt, DCC-HOSu, ethyl chlorocarbonate, isobutyl chlorocarbonate, isopropyl chlorocarbonate, diethyl chlorophosphate, diphenyl chlorophosphate, 2-chloro-4,6-dimethoxy-1,3,5-triazine, and the like. The compound [8] may be protected at the heterocyclic ring with a protecting group generally used in the field of peptide synthesis.

The resultant diastereisomer [9] is also converted into the corresponding ketone [10] without separation by dissolving the compound [9] into dichloromethane or DMF, adding about 3 to 10 times amounts of active manganese dioxide to the mixture and reacting at room temperature for 2 to 8 hours. This reaction proce ds very smoothly when fine crystal starting material [9] is used. The characteristic of this reaction is that the hydroxyl group at the C4 position of benzyl compound can be selectively oxidized.

Step 2b

35

40

55

Compound [10] can be also prepared through an aldol reaction according to a procedure described in step 1 from a starting compound [2] and a dipeptide aldehyde of formula [14] obtainable from a corresponding dip p-tide alcohol in the same manner as that used for the preparation of compound [1]. The reaction however proceeds without stereoselectivity and differs from that of step 1 in this regard. The product being a 1:1 mixture of compound [10] in 2S and 2R isomers, chromatographic procedure is required for the separation of desired [10]-(2S)-isomer. The characteristic of the method of step 2b is that it is applicable when the method of above step 2a is not effective because a compound resists the selective oxidization with manganese dioxide.

Step 2c

The compound [10] can b prepared by reacting a chloromethyl ketone of formula [19] with an amin . Th characteristic of the method of st p 2c is that it is useful in the introduction of N-substituted methylketone r sidue to the C-terminal moiety.

Step 3

The deprotection of k tone compound [10] can b carried out in the same manner as d scribed in the preparation of amino dihydric alcohol [7] from compound [6]. For example, when the protecting group is Boc, it is carried out by adding excess aluminium chloride to an anisole solution of compound [10] and stirring the mixture for about 1 to 3 hours at a temperature ranging from ice-cooled temperature to room temperature. The deprotection can also be effected by treating the compound [10] with either of excess trifluoroacetic acid in anisole or 6N HCl in THF to yield the desired compound [11]. The resultant ketone [11] with carbonyl group at the C4 position is novel and important as an intermediate for preparing the compound of formula (I) of the present invention

Step 4

10

15

30

35

40

45

The compound [11] is reacted with sulfonyl propionic acid derivatives, N-sulfamyl, N-carbamoyl, or N-acyl amino acid of formula [12] which can be prepared according to a known method such as described in a literature (J.L.Stanton et al., J.Med.Chem. 31:1839 (1988)) under a condition for the coupling reaction and then deprotected if necessary to give the desired compound (IA) as the final product.

The coupling reaction is preferably conducted using 1.0 to 1.3 mole equivalent of diethyl cyanophosphonate (DEPC) in the presence of N-methyl morpholine (NMM) in a solvent such as dichloromethane at room temperature for about 1 to 8 hours. Examples of coupling reagents are DCC, EDC, DEPA, BOP, DCC-HOBt, ethyl chlorocarbonate, isobutyl chlorocarbonate, isopropyl chlorocarbonate, diethyl chlorophosphate, diphenyl chlorophosphate, 2-chloro-4,6-dimethoxy-1,3,5-triazine, and the like.

The deprotection of the compound [13] is carried out using any of known procedures depending on the protecting group. When the protecting group of R² is tosyl, it can be carried out by stirring a mixture of a solution of compound [13] in DMF in the presence of 5 to 12 mole equivalent of pyridinium hydrochloride at room temperature for about 1 to 4 hours. The deprotection can be effected by means of trifluoroacetic acid (at 15°C for about 30 minutes), HBr/acetic acid (at room temperature for about 30 minutes), conc.ammonia (at room temperature for about 1 hour), conc.HCl, or the like.

Process II

Preparation of compounds (I) wherein Y is NHSO₂

The process is schematically shown as below.

Step i

 $R^{7} - NH \longrightarrow CHO \longrightarrow R^{7} - NH \longrightarrow HO$ $L-[1] \qquad [20]$ $R^{7} - NH \longrightarrow HO$ $R^{7} - NH \longrightarrow HO$

55

Step 2

5

10 $R^{7}-NH \xrightarrow{HO} NHSO_{2}R^{1} \longrightarrow NH_{2} \xrightarrow{HO} NHSO_{2}R^{2}$ [23] $R^{7}-NH \xrightarrow{COOH} [8]$ $R^{7}-NH \xrightarrow{R^{2}} [8]$ $R^{7}-NH \xrightarrow{NH} NHSO_{2}R^{1}$ [25]

Step 3

[25]
$$\longrightarrow NH_{2} \longrightarrow NH_{2} \longrightarrow NH_{2} \longrightarrow NH_{30} \longrightarrow$$

In the above reaction schemes, R1, R2, R3, R4 and R7 are as defined above.

Step 1

40

45

55

The optically active aldehyde [1], a required starting compound, can be prepared in the same manner as described in above Process I.

The preparation of cyanhydrin [20] from aldehyde [1] is carried out substantially in accordance with a procedure described in the literature. Thus, the aldehyde [1] is allowed to react with an acidic sodium sulfit to obtain an additive, which is then reacted with KCN in ethyl acetate at room temperature to yield the cyanhydrin [20] stereoselectively (2R/2S = 3/1). The product is then resolved into each stereoisomer by column chromatography on silica gel. The desired (2R)-isomer is a crystalline solid and can be purified by recrystallization while the undesired (2R)-isomer is an oil. Therefore, alternatively, the desired product [20]-2R can be obtained conveniently by adding a seed crystal to the reaction mixture, collecting the precipitate, and recrystallizing from a solvent befor subjecting to the chromatography.

Th cyanhydrin [20] is then converted into an amino alcohol [21] by r ducing the nitrile group. The r duction is carried out effectively by dissolving cyanhydrin [20] into an ethereal solvent, preferably THF, adding about 2 to 2.5 mole of lithium aluminium hydride thereto. The resulting amino alcohol [21] is the n, without purification, reacted with sulfonyl chloride [22] to obtain sulfonyl amide of formula [23]. The reaction is conducted by reacting the amino alcohol [21] and sulfonyl chloride [22] in an appropriate solvent such as dichloromethane in the pre-

sence of t rtiary amin such as triethylamine at room temperature for vernight.

Step 2

The deprotection of compound [23] can be carried out in a similar manner as describ d in the abov Process I. The deprotected compound [24] is, without purification, dissolved into an appropriate solvent such as CH₃CN, or the like, and subjected to a condensation with N-protected-amino acid [8] in the same manner as the coupling reaction described in the above process I to yield a dipeptide analogue [25].

10 Step 3

5

15

30

The compound [25] is then deprotected in **the similar manner** as that used for the deprotection of compound [23] in the above Process II, step 2. The product [26] is, without purification, subjected to the condensation reaction with a modified carboxylic acid [12] in exactly the same manner as described in Process I to obtain the final product [IB].

As can be seen from the above reaction schemes, the present invention provides a dipeptide in which on peptide bond is formed through a coupling reaction between, for example, a free carboxyl group of an amino-protected amino acid and an amino group of an amino dihydric alcohol of formula [7] prepared from an oxazoli-dine derivative of formula [4]. The compound [4], an important intermediate for preparing the compound of formula (I), is obtained by a stereoselective aldol condensation method of the present invention. The other peptide bond is formed by a coupling reaction between a carboxylic group of, for example, sulfonyl propionic acid of formula [12] with a free amino group of a depretected amino ketone [11] such as histidine as can be seen in the step 4.

As will be hereinafter described in the Experiment, the compounds of the invention have been demonstrated to be an effective renin inhibitor, whereby they suppress the renin-angiotensin system (one of the in vivo causes of hypertension) and lower blood pressure. The compounds of the invention are low in toxicity and useful in the treament of hypertension or cardiac dysfunction through their renin inhibitory activity. The compounds may be administered either orally or parenterally. It is a characteristic benefit of the compounds that they are effective even when orally administered.

When the compounds of the invention are used to treat renin-associated disorders, a therapeutically effective amount of a compound of formula (I) is formulated into a composition of an appropriate form by known procedures using pharmaceutically acceptable carriers, diluents, or excipients. The administration may be conducted orally, intranasally, intravenously, subcutaneously, or the like.

For preparing composition for the administration, an active compound (I) is mixed with one or more standard adducts such as excipient, stabilizer, or inert dituent, and the like. The mixture is then formulated into an appropriate form such as a tablet, coated tablet, hard gelatin-capsule, or an aqueous, alcoholic or oily suspension, or an aqueous, alcoholic or oily solution. Examples of inert excipients which can be used include various cyclodextrins, preferably β -cyclodextrin, acacia gum, magnesium carbonate, potassium phosphate, lactose, glucose, magnesium stearyl fumarate, starch, and the like. Either of dry or wet granules can be used. Examples of oily excipients or solvents include vegetable oil such as sunflower oil and fish liver oil.

For subcutaneous or intravenous administration, an active compound or a pharmaceutically acceptable salt thereof is dissolved, dispersed or emulsified into an appropriate solvent with the aid of any substances generally used in such a purpose, for example, solubilizing agent, emulsifying agent, or other adjuncts to obtain solutions, suspensions or emulsions.

Examples of appropriate solvents include water, physiological saline, alcohols such as ethanol, propanediol or glycerol, a sugar solution such as a solution of glucose or mannitol, or a mixture thereof, or Tween 80. Examples of solubilizing agents include above-mentioned cyclodextrins, preferably β -cyclodextrin.

The abbreviations used are as follows:

Boc = tertiary-butoxycarbonyl; Red-Al = sodium bis(2-methoxyethoxy)aluminium, L-Selectride = lithium tri-sec-butylborohydride; Boc His(Ts).DCHA = N^{-} Boc- N^{-} tosyl-L-histidine dicyclohexylamine; BOP = benzotriazol-1-yl-oxy-tris-(dimethylamino)phosphoniumhexafluorophosphate;

DCC-HOBt = dicyclocarbodiimide-1-hydroxybenzotriazole;

DCC-HOSu = dicyclohexylcarbodiimide-N-hydroxysuccineimide;

DEPC = diethyl cyanophosphonate; NMM = N-methylmorpholin ;

PPTS = pyridinium paratoluenesulphonat;

Tala = (4-thiazolyl)-L-alanine; rt = room temperature;

Ts = tosyl; TMS = trimethylsilane;

DMAP = 4-dimethylaminopyridine;

DCHA = Dicyclohexylamine;

DCC = Dicycloh xylcarbodiimide;

EDC = 1-Ethyl-3-(3dimethylaminopropyl)carbodiimide;

DEPA = Diethyl phosphorylazide;

BOP = Benzotriazol-1-yl-oxy-tris(dimethylamino)-phosphonium hexafluorophosphate

The following Examples further illustrate the compounds of the invention and the processes for preparing the same. The Examples are not intended to be limiting to the scope of the invention in any respect and should not be so construed. Unless otherwise noted, the NMR spectra were measured in CDCl₃ at 200 MHz (internal standard = TMS) and IR spectra in CHCl₃. All amino acid used are L-isomers.

Preparation 1

3-Boc-4-(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-oxo-2-(4-pyridyl)ethyl]oxazolidine [4a]

25

30

35

10

40

dichloroethane. reflux for 7hrs

R⁷-N-
$$0$$
 R¹ +

[4a](crystal)

$$R^7-N$$
 R^1

[5a] $R^1 = 4 - pyridyl$

55

50

1. a) To a 36ml (36mmol, 1.5eq) solution of 1N NaN(TMS)2 in THF is added a solution of 4.34g (36mmol, 1.5 eq) of 4-ac tylpyridine [2a] in 20ml of THF at -78°C over 10 minutes under nitrogen atmosphere. After 10 minutes stirring, a solution of 7.898g (36mmol, 1.5 eq) of 15-crown-5 in 10 ml of THF is added ther to and stirr d

for 5 minutes. To the mixture is added 6.108g (24 mmol) of N-Boc-L-cyclohexylalaninal [1a] in 50ml of THF over 15 minutes and stirred for 1 hour at -78°C. The reaction mixture is added t a mixture of saturat d aqueous solution of ammonium chloride and thyl ac tat with stirring and extract d three times with ethyl acetate. Th extract is washed with saturated brine, dried over magnesium sulfate and conc ntrated to dryness in vacu. The residue, upon purification by column chromatography on silica gel (eluent; dichloromethane/methanol = 98.5:1.5) gives N-Boc-1 (S)-cyclohexylmethyl-2-hydroxy-4-oxo-4-(4-pyridyl)butylamine [3a] (5.94g; yield = 66.0%) as a colorless powder. The product is a mixture of compound of 2(S)-isomer (desired isomer) and 2(R)-isomer (the ratio of 2(S): 2(R) = 5.24: 1).

b) To a stirring solution of 32g (125.3mmol) of N-Boc-L-cyclohexylalaninal [1a], 22.8g (188mmol, 1.5 q) of N-acetylpyridine, and 60.6g (188mmol, 1.5eq) of tetrabutyl ammonium bromide in 700ml of dichrolomethane is added each one fourth portions of t-BuOK (21.1g in total, 188mmol, 1.5eq.) at 10 minutes interval under cooling at -78°C and the stirring is continued for another 1.5 hours at the same temperature. The reaction mixture is added to a mixture of saturated aqueous ammonium chloride and dichloromethane with stirring and extract d three times with dichloromethane. The extract is treated with citric acid to purify the basic substances to obtain a crude product [3a] (37g; yield = 79%; 2(S)/2(R) = 7:1).

2. a) To a solution of 5.908g (15.7mmol) of purified alcohol [3a] in 50ml of THF are added 2ml (20.9mmol, 1.3 eq) of 2-methoxypropene and 299mg (1.57mmol, 0.1eq) of p-toluenesulfonic acid monohydrate and the mixture is heated to reflux for 4 hrs. The reaction mixture is concentrated under reduced pressure, and the residue is alkalified with 4% sodium bicarbonate and extracted 3 times with dichloromethane. The extract is washed once with saturated brine, dried over magnesium sulfate, and concentrated to dryness. The residue is decolorized by column chromatography on silica gel using a short column (eluent; dichloromethane/acetonitrile = 5:1) and recrystallized from ethyl acetate to obtain 4.66g (yield = 68.6%) of the title compound [4a] as a coloress solid

b) A mixture of 72g (195.6mmol) of the crude alcohol [3a], 150ml (122.0mmol, 6.2eq) of 2,2-dimethoxypropane and 2.73g (14.4mmol, 0.073eq) of p-toluenesulfonic acid monohydrate in 150ml of dichloroethane is heated to reflux for 16 hours. After cooling, the mixture is made basic with 4% aqueous sodium bicarbonat and extracted 3 times with dichloromethane. The extract is washed once with saturated brine, dried over magnesium sulfate, and concentrated to dryness in vacuo. The crude product, upon recrystallization from isopropyl ether, gives 23.5g (29.5%) of the compound [4a] as a white crystal. The mother liquor, when treated by column chromatography on 300g of silica gel (eluent; dichloromethane/ethyl acetate = 7:1) and recrystallized in th same manner as above, gives 2.5g (3.1%) of compound [4a].

```
m.p. = 115 - 116°C

[\alpha]_D = -18.5° (C=1.0 CHCl<sub>3</sub>; 23.5°C)

[Rvmax(CHCl_3):1692, 1596, 1557, 1477, 1450, 1172, 1086 cm<sup>-1</sup>]
```

NMRδ (CDCl₃):1.48(9H,s), 1.52(3H,s), 1.60(3H,s), 0.78-1.90(13H,m), 3.14(1H,dd,J=16.8,6.8Hz), 3.41(1H,dd,J=16.7,6.1Hz), 3.84(1H,m), 4.52(1H,t like m), 7.73(2H,m), 8.83(2H,m)

Elemental analysis (as C₂₄H₃₈N₂O₄) Calcd.(%): C:69.20; H:8.71; N:6.73 Found (%): C:69.20; H:8.75; N:6.76

Preparation 2 - 20

Compounds [4], the desired stereoisomers, were prepared according to the method described in abov Preparation 1 by preparing compound [3a] and separating the desired isomer [3]-(S) therefrom. The results are shown in the following Table 1. Among the compounds listed in the Table 1, compound Nos. 13 and 14 are separated chromatographically because the corresponding compounds of formula [4] do not crystallize und r the conditions used.

50

5			C# .1	. 1172. 1088		. 1173, 1100.				i. 1456. 1430.	2, 1139, 1088.		0. 1174. 1088.			77, 1450, 1430.	-		
10	E S E		IR V C	1686, 1650, 1582, 1478, 1450, 1172, 1088		1686, 1610, 1577, 1480, 1453, 1173, 1100.	1086, 990, 848			1689, 1600, 1585, 1488, 1465, 1456, 1430,	1394, 1369, 1290, 1255, 1172, 1139, 1088.	1050	1687, 1610, 1573, 1480, 1450, 1174, 1088,			1687, 1612(1595), 1498, 1477, 1450, 1430.	1172, 1140, 1098, 971, 855		
70	2		Found	C:72.25 16	H: 8.99	十	И: 8.10 10	N: 3.23	F: 4.45	C: 70.05	8.74	3. 15		N: 9.08	3. 20	C: 66. 31	H: 7.82		F: 8.38
20	- -		Calcd.	C: 72. 25 C:	II: 8.98 II:	\top			F: 4.38 F:	C: 70. 08 C:		N: 3.14 N:		9. 15	N: 3.26 N:	C: 66. 49 C	II: 7.81 H	3. 10	F: 8. 42 F
25	(I)	[4]	Elemental analysis	S	C25H37NO4 II		CzsHseNO4F H				CzellseNOs 1	-		CseHssNO.			CasHasNO.F2		
30	Boc-NH		[α]» C=1. 0. CliCes (°C)		-17.4	60.00	-18.5	(24.0)			- 6.2	(23.5)		-23.5	(24. 0)		-19.1	(23.5)	
	1		ည္ရမွ		111~	2	95∼	93			117~	119		132~	134		136∼	137	
35	-		Yield%		20		75				8			69			69		
	Ž=0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		C-2 S/R		3. 1		~ ;				2.7			2.4			- 7 .		
40	+	[3]	Yicld%		17		89				55			78			91		
45	E GIIO		- ~		pheny]		o-fluorophenyl		-		B-acthoxyphenyl			p-methylphenyl			2.4-	difluorophenyl	
50	Boc-Nii	Control	of Prep. No.		2		m	,			~			2			9		

EP 0 468 641 A2

0

Table 1 (continued)

Compd.			[3]				[4]			
jo	2		2-3			[a] n*				
Prep. No.		Yield%	S/R	Yield% S/R Yield% mpC		C=1. 0, CHC@s Elemental	Elesental	Calcd.	Found	1 R v cm ⁻¹
						3	analysis			Xea
								C: 74. 81	C: 74. 81 C: 74. 84	1687, 1595, 1508, 1477, 1449, 1393, 1379.
7	7 1-naphthyl	8	1.7	09	127~ -11.7	-11.7	Cz + 113 + NO4	H: 8.44	H: 8.44 H: 8.43	1368, 1250, 1172, 1138, 1098, 1085
					128	(24.0)		N: 3.01	N: 3.01 N: 3.06	
								C: 65. 52	C:65.75	1685, 1510, 1477, 1450, 1172, 1088
œ	3-thienyl	08	2.7	62	113~	113~ -13.5	CzsHzsNO.S	H: 8.37 H: 8.28	11: 8.28	
	-				114	(25)		N: 3.32	N: 3.31	
								S: 7.61 S: 7.57	S: 7.57	
								C: 62. 53	C:62. 28	1690, 1480, 1448, 1170, 1075, 945
6	2-thiazolyl	75	16	72	128~	128~ -10.7	C221134N204S 11: 8.11 11: 7.79	11: 8. 11	11: 7.79	
					129	(23. 5)		N: 6.63	N: 6.53	
								S: 7.59 S: 7.36	S: 7,36	

EP 0 468 641 A2

50	45		40		35	30	25	20	15	5
able 1	able 1 (continued)					-				
oand.		(8)					(3)(8)	or [4]		
of rep. No.		Yield%	C-2 S/R	Yicld%	ည္ရမ္	[a],*** C=1.0, CHC#s	Sleachtal analysis	Calcd	Found	IRVELICATION
01	m-fluorophenyl	82	6 6	11	103~ 105	-15.7°	F	C: 69. 25 II: 8. 37 N: 3. 23 F: 4. 38	C: 69. 36 II: 8. 41 N: 3. 25 F: 4. 22	1690, 1610, 1590, 1485, 1475, 1443, 1392. 1170, 1086
=	p-fluorophenyl	83	2.8	61	137~ 138	-15.7°	CzsHssN104F	C: 69. 25 II: 8. 37 N: 3. 23 F: 4. 38	C: 69. 14 H: 8. 35 N: 3. 14 P: 4. 41	1685, 1600, 1505, 1475, 1450, 1392, 1170. 1155, 1085
12	2, 6- difluorophenyl	88	13.0	83	51∼ 54	-18.8	C25H35N1O4F2	C:66.50 II: 7.81 N: 3.10 F: 8.41	C: 66. 40 II: 7. 79 N: 3. 34 F: 8. 69	1691, 1624, 1588, 1467, 1450, 1394, 1359, 1279, 1174, 1139, 1089, 1030, 982, 860
13	o-acthoxyphenyl	62	.2 8	[3](S) 53						0. 75~1. 93(13H, m). 1. 45(9H, s). 3. 10(1H, dd, J=9. 9, 18. 3Hz). 3. 70(1H, m). 4. 16(1H, m). 4. 82(1H, d. J=10Hz). 7. 00(2H, m). 7. 50(1H, td, J=2. 5. 7Hz). 7. 75(1H, dd, J=2. 5. 7Hz).
7	o-chlorophenyl	98	3.0	(3)(S) 57		-36.8*				0, 74~1, 90(1311, m), 1, 44(911, m). 3, 18(211, m), 3, 71(111, m), 4, 20(111, m). 4, 75(111, d, J=1011z), 7, 22~7, 59(411, m)
15	m-cyanopheny1	92	2.8	89	114~ 117	-14.7	CzellseN204	C: 70. 88 II: 8. 24 N: 6. 36	C:70.87 II: 8.27 N: 6.16	2236, 1693, 1602, 1479, 1450, 1394, 1369, 1172, 1088
16	n-mcthyl- sulfonyl- aminophenyl	29	1.5	51	131~ 132	- 3.3	CzeH.eNz0eS	C: 61. 39 H: 7. 93 N: 5. 51 S: 6. 30	C: 61. 00 II: 7. 85 N: 5. 48 S: 6. 22	1691, 1656, 1607, 1578, 1495, 1453, 1394, 1369, 1342, 1279, 1156, 1089, 967, 918

		• • •	
5		- *	
10			
15			
20			
25			
30			
35			
40			
45			

Table 1	Table 1 (continued)					-				The state of the s
Counc			[3]				[4]	3 - 1		A total formation and design of the formation of the form
	-~		2-5			[a]»,				
Prep No.	:	Yield%	SIR	Yield%	ည္ရမွာ	Yield % S/R Yield % ap C Cal. 0. CHCta Elemental	Blemental	Calcd.	Found	I R (v ch .)
					-	<u> </u>	analysis			
								C: 64. 58	C: 64. 83	1690, 1512, 1510, 1450, 1325, 1172, 1137.
•	Charles A	7,5	•	~	-28~		C II. e. F. NO.	1.50		1066
=	p-171110010-	3	?		130	· 9	-	N: 2.90	N: 2.89	
	seruy i pineny i				3	(24)	35°	19 H. F. 11. 79 F. 12. 02	F: 12. 02	
								C: 68. 16	C: 68. 04	1690, 1632, 1484, 1451, 1438, 1394, 1369.
•	- out Codes	5	2 2	80	154~ -3.6	-3.6	C3.01144N204	И: 8.39	H: 8.44	1303. 1277. 1172. 1141. 1116. 1087. 1025
<u>e</u>	a-moi pilot tilo-		- i		157	(23)		N: 5.30	N: 5.36	
	Cal Unity Directly 1							C: 67. 33	C: 67. 55	1686. 1650. 1582
	= (n=	71	3	36	117~	$117 \sim -13.5 $	C3,114,8N204	H: 8.90	11: 8.72	
<u>.</u>	othoxypheny!	:	; 	3	119	(23. 5)	.1/4 11,0	N: 5.10	N: 5.06	
	- (N-9-formy)-							C: 68. 62	C: 68. 68	1680, 1602, 1585, 1486, 1476, 1447, 1393
	aothulanino-	8	~		117~	$117 \sim -16.5$	C27H4.N20s	H: 8.53	11: 8. 43	1378. 1367
3	actily toward	3) i	3	2 2	(24.0)		N: 5.93	N: 5.93	

Pr paration 21

Boc-His(Ts)-1(S)-cycloh xylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [10a]

To a 3-Boc-4-(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-oxo-2-(4-pyridyl) thyl]oxazolidine[4a](4.66g, 11.18mmol) is dissolved in thanol (20ml) is added sodium borohydride (508mg, 13.42mmol) with stirring and

ice-cooling and the mixture is allowed to react at room temp rature for one hour. The solvent is removed in vacuo. To the residue are added ice water and saturated aqueous ammonium chloride, and the mixture is extracted with dichloromethane three times. The organic layer is washed with saturat d aqueous sodium chloride, dried over MgSO4, and evaporated to dryness in vacuo to obtain 3-Boc-4(S)-cyclohexylmethyl-2,2-dimethyl-5(S)-[2-hydroxy-2-(4-pyridyl)ethyl]oxazolidine [6a] (4.88g, quantitative amount) in colorl ss powder. The product is then, without further purification, dissolved in THF (2ml), and 6N HCl (16ml) is added thereto, and th mixture is stirred at room temperature for one hour. The reaction mixture is neutralized with 6N NaOH, alkalified with sodium bicarbonate, and then extracted five times with dichloromethane containing 10% methanol. The extract is dried over MgSO₄ and evaporated to dryness in vacuo to obtain 1(S)-cyclohexylmethyl-2(S), 4-dihydroxy-4-(4-pyridyl)butylamine [7a] (3.3g, quantitative amount, diastereomer ratio 1:1) in colorless powder. Th product (3.30g) is then, without further purification, dissolved in dichloromethane (100ml). To the solution are added Boc-His(Ts).DCHA [8a] (8.3g, 14.05mmol, 1.3eq) and diethyl cyanophosphonate (2.29g, 14.05mmol, 1.3eq), and the mixture is stirred for 6 hours at room temperature. The reaction mixture is evaporated to dryness in vacuo, and the residue is purified with silica gel chromatography (CH2Cl2:MeOH = 95:5) to obtain Boc-His(Ts)-1(S)-cyclohexylmethyl-2(S), 4-dihydroxy-4-(4-pyridyl)butylamide [9a] (6.00g, 80%) as a mixture of two diastereomers. The product [9a] may be used in the following reaction without separation of the two isomers.

To the solution of product [9a] (1.0g, 1.45mmol) in dichloromethane (3ml) is added MnO_2 (5g) at room temperature, and the **mixture** is stirred for six hours. The resultant black suspension is filtered on a Celite layer overlaid with active carbon, and insoluble material on the layer is thoroughly washed with CH_2Cl_2 -MeOH (10:1). The filtrate is evaporated to dryness in vacuo and purified with silica gel chromatography (CH_2Cl_2 :MeOH = 95:5) to obtain the title compound [10a] (683mg, 69%) in colorless powder.

NMR &(CDCl₃): 1.34(9H,s), 0.70-2.20(13H,m), 2.45(3H,s), 2.99(2H,m), 3.03(1H,dd,J=17.8,2.3Hz), 3.34(1H,dd,J=17.8,9.6Hz), 4.04(1H,ddd,J=8.7,8.7,8.7Hz), 4.23(1H,m), 4.30(1H,ddd,J=5.8,5.8,5.8Hz), 6.16(1H,m), 6.47(1H,d,J=10Hz), 7.11(1H,s), 7.36(2H,d,J=8Hz), 7.80(2H,m), 7.81(2H,d,J=8.6Hz), 7.92(1H,s), 8.82(2H,d,J=5Hz)

IR v(CHCl₃)max cm⁻¹: 3680, 3420, 3300(br), 1700, 1670, 1625, 1598, 1555, 1492, 1450, 1410, 1385, 1370, 1180, 1080, 1010

Preparation 22

20

25

35 R^7-NH OCH 3 HOCH 3

THF NH_2 OCH 3

[16a]

45 $\begin{array}{c}
R^{7}-NH & OH \\
\hline
 & 0H \\
\hline
 & 0H \\
\hline
 & 0H \\
\hline
 & 0CH_{3} \\
\hline
 & 0CH_{3} \\
\hline
 & 0CH_{3} \\
\hline
 & 0CH_{3} \\
\hline
 & 0CH_{2}C\ell_{2} \\
 & cH_{2}C\ell_{2} \\
 & rt 1~4h
\end{array}$ [17a]

45

55

A solution of N-Boc-3-cyclohexyl-alanine methyl ester [15a] (4.00g, 13.93mmol) in THF (10ml) is stirred in the presence of 6N HCl (40ml) at room temperature for four hours. The reaction mixture is made alkaline with powdery sodium bicarbonate and extracted with dichloromethane containing 5% methanol (100 ml x 4).

The extract is dried over MgSO₄ and evaporated to dryness <u>in vacuo</u> to quantitatively obtain 3-cyclohexylalanine methyl ester [16a] as an oil. The product is then, without further purification, dissolved in dichloromethane (50ml). To the solution are added Boc-His(Ts).DCHA [8a] (10.7g, 18.11mmol, 1.3eq) and diethyl cyanophosphonate (2.95g, 18.1mmol, 1.3eq), and the mixture is stirred for 1.5 hours at room temperature. The reaction mixture is subjected to silica gel chromatography (SiO₂:300g, CH₂Cl₂:MeOH = 99:1) to give a purified Boc-His(Ts)-3-cyclohexylalanine methyl ester [17a] (7.43g, 93%) as an oil. To a solution of the dipeptide ester [17a] (3.0g, 5.2mmol) in THF (6ml) and ethanol (6ml) is added a 2N solution of lithium borohydrid in THF (3ml, 6mmol) with stirring and ice-cooling. After 20 minutes stirring, the mixture is allowed to react at room temperature for an additional one hour. The solvent is removed <u>in vacuo</u> and to the residu is added ice water and saturated aqueous ammonium chlorid follow d by xtraction with dichlorom thane (20ml x 3). The organic layer is wash d with saturated aqueous sodium chloride, dried over MgSO₄, vaporated to dryness <u>in vacuo</u> and the residu is purified by silica gel chromatography (SiO₂: 200g, CH₂Cl₂:M OH = 98:2) to obtain Boc-His(Ts)-3-cycloh xyl-alaninol [18a] (2.06g, 72%) as an oil.

To a mixtur of th dipeptid alcohol [18a] (2.0g, 3.65mmol), triethylamin (1.30g, 12.85mmol, 3.5 q) and

DMSO (6ml) is added at room temperature SO_3 pyridine (2.03g, 12.75mmol, 3.5 q) in DMSO (6ml) and the mixture is stirr d for 35 minut s. The reaction mixture is poured on ice, and the resultant aqueous mixture is extracted with ethyl act at (20ml x 3). The organic layer is subsequently washed with 10% aqueous citric acid, saturated aqueous sodium chlorid (x 2), 7% aqueous sodium bicarb nate, and saturated aqueous sodium chloride, dried over MgSO₄, and concentrat d to dryn ss in vacuo. The resultant residue is purification with silicated chromatography (SiO₂:100g, CH₂Cl₂:MeOH = 95:5) to obtain Boc-His(Ts)-3-cyclohexylalaninal [14a] (1.67g, 84%) in amorphous powder.

To a 0.5N potassium bis-trimethylsilylamide solution in toluene (9.2ml, 4.60mmol, 2.5eq) is added dropwise at -78°C cyclohexyl methyl ketone (0.58g, 4.60mmol, 2.5eq) in THF (9ml) with stirring under a nitrogen atmosphere over 10 minutes. After 20 minutes stirring at the same temperature, 18-crown-6 (1.216g, 4.60mmol, 2.5eq) in THF (10ml) is dropwise added to the mixture over two minutes. Further, the dipeptidealdehyde [14a] (1.0g, 1.83mmol) in THF (10ml) is dropwise added over 15 minutes at -78°C, and the mixture is stirred for one hour at the same temperature. The reaction is quenched by adding a solution of acetic acid (0.60g, 10mmol, 5.5eq) in THF (10ml) and after the addition of saturated aqueous ammonium chloride (30ml) the mixture is extracted with ethyl acetate (50ml x 3). The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄, concentrated to dryness in vacuo, and purified with silica gel chromatography (Lobar column, CH_2Cl_2 :MeOH = 95:5) to obtain Boc-His(Ts)-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-cyclohexyl-butylamide [10b] (0.18g, 15%) in amorphous powder.

NMR δ : 1.30-1.90(23H,m), 1.40(9H,s), 2.32(1H,m), 2.44(3H,s), 2.59(2H,m), 2.93(1H,dd,J=5.8,9.6Hz), 3.04(1H,dd,J=5.8,9.6Hz), 3.89(1H,ddd,J=8.4,8.4,8.4Hz), 3.98(1H,m), 4.30(1H,ddd,J=6.0,6.0,6.0Hz), 6.12(1H,d,J=6.0Hz), 6.47(1H,d,J=9.8Hz), 7.10(1H,d,J=0.8Hz), 7.36(2H,d,J=8.0Hz), 7.81(2H,d,J=8.4Hz), 7.93(1H,d,J=1.2Hz)

Preparation 23

25

Boc - NH
$$\stackrel{R^2}{\longrightarrow}$$
 NH $\stackrel{H}{\longrightarrow}$ 0CH₃ $\stackrel{1NLiOH}{\longrightarrow}$ Boc - NH $\stackrel{R^2}{\longrightarrow}$ NH $\stackrel{H}{\longrightarrow}$ 0H $\stackrel{H}{\longrightarrow}$ 0H $\stackrel{H}{\longrightarrow}$ 0H

$$\frac{\text{NMN}}{\text{ii})\text{CH}_{2}\text{N}_{2}}$$

$$\frac{\text{Boc}-\text{NH}}{0} \xrightarrow{\text{NH}} \frac{\text{R}^{2}}{\text{HO}} \xrightarrow{\text{C}\ell} \frac{\text{HN}}{\text{NaI}}$$

$$\frac{\text{NaI}}{\text{NeCN}}$$

Boc - NH
$$\stackrel{R^2}{\longrightarrow}$$
 NH $\stackrel{R}{\longrightarrow}$ NH $\stackrel{R^2=4-\text{thiazoly1}}{\longrightarrow}$ Z $\stackrel{R^2=4-\text{thiazoly1}}{\longrightarrow}$ [10c]

To a solution of cyclostatine methyl ester [27a] (700mg, 3.05mm l), Boc-(4-thiazolyl)-L-alanine [8c] (869mg, 3.19mmol, 1.05eq), and HOBt (431mg, 3.19mmol, 1.05 q) in CH_3CN (10ml) is added DCC (660mg, 3.20mmol, 1.05eq) with stirring and ice-cooling und r nitrogen atmosph re and the mixture is stirred for 1.5 hours at the same temperature and then allowed to react at room temperature for 14 hours. Ethyl acetate is added to the mixture, and precipitated crystals were filtered off. The filtrate is concentrated to dryness in vacuo and the residue is subjected to silica gel chromatography (SiO₂:100g, NH₄OH:MeOH:CH₂Cl₂ = 1:10:990) to give the aimed product, Boc-(4-thiazolyl)alanyl-cyclostatine methyl ester [28a] (830mg, 59%) as an oil.

To the solution of the above product [28a] (830mg, 1.72mmol) in MeOH (2ml) is added 1N LiOH (1.9ml, 1.9mmol, 1.1eq) with stirring and ice-cooling. The mixture is stirred for 10 minutes and allowed to react at room temperature for two hours. After neutral substances are removed by washing with dichloromethane, the mixture is acidified with citric acid and is extracted with ethyl acetate. The organic layer is dried over MgSO₄, and concentrated to dryness in vacuo to obtain the aimed carboxylic acid [29c] (700mg, 87%).

To a mixture of the above carboxylic acid [29a] (700mg, 1.67mmol) and N-methylmorpholine (0.17ml, 1.67mmol) in THF (10ml) is added isobutyl chlorocarbonate (0.2ml, 1.67mmol) with stirring at a temperature of -15°C - -10°C under nitrogen atmosphere, and the resultant mixture is stirred for 50 minutes at the same temperature. After precipitated crystals are removed by filtration, to the filtrate is added a solution of diazomethane (2.2eq) in ethyl ether previously prepared at -10°C and allowed to reaet at room temperature for 3 hours. The reaction mixture is concentrated in vacuo to remove diazomethane and ethyl acetate (10ml) is added to the residue. After addition of 2N HCI (3ml) at -40°C - -30°C, the mixture is allowed to react for one hour. The reaction mixture is alkalified by addition of saturated aqueous sodium bicarbonate and the ethyl ac tate layer is separated. The layer is dried over MgSO₄ and concentrated to dryness in vacuo to obtain 800mg of crude chloromethyl ketone [19a]. Since the product tends to get colored and decomposed, it is immediately used in the next step without purification.

To a solution of the above product [19a] (400mg) in MeCN (5ml) are added morpholine (150mg) and a catalytic amount of NaI, and the mixture is stirred at room temperature for two hours. The reaction mixtur is purified by chromatography to give the aimed compound, Boc-(4-thiazolyl)alanyl-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(N-morpholino)methyl-butylamide [10c] (Z=0) (120mg, 29% starting from [29a]). NMRδ: 0.6-2.00(13H,m), 1.43(9H,s), 2.55(4H,m), 3.22(2H,dd,J=4.6,14.8Hz), 3.26(2H,s), 3.43(1H,dd, J=5.4,14.8Hz), 3.76(4H,m), 3.89(1H,m), 3.94(1H,m), 4.44(1H,ddd,J=6.2HzX3), 6.38(1H,d,J=9.8Hz), 6.48 (1H, d, J=7.5Hz),7.13(1H,d,J=1.8Hz), 8.79(1H,d,J=2Hz)

Preparation 24

In the same manner as in Preparation 23, Boc-(4-thiazolyl)alanyl-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(N-piperidino)methyl-butylamide [10d] (Z=CH₂) is obtained with an overall yield of 29%. NMR8: 0.6-1.83(19H,m), 1.44(9H,s), 2.46(4H,m), 3.15(2H,s), 3.20(1H,dd,J=5.6,14.8Hz), 3.44(1H, dd, J=5,14.8Hz), 3.89(2H,m), 4.47(1H,m), 6.41(1H,bs), 6.43(1H,d,J=9.8Hz), 7.12(1H,d,J=1.8Hz), 8.78 (1H, d, J=1.8Hz)

40 Preparation 25-50

Starting from the compounds [4] which have been prepared in Preparations 2-20, the ketone compounds [10] are obtained in the same manner as in Preparation 21. The thus obtained products are listed in Tabl 2.

45 Preparation 51-57

The aldol reaction between dipeptides [14] and methyl ketones [2] gives ketone compounds [10] in the same manner as in Preparation 22. The thus obtained products are listed in Table 3.

55

5		} }										
10	R.	Boc-NII (10)								~	. 6. 6. 6Hz). (2II. d. J=8Hz).	=1.4112)
15								1450, 1390, 1370,		211, m), 2, 99(211, m	llz), 4. 32(111, ddd 7. 12(111, m), 7. 35	11z), 7. 93(111, d. J
20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				(3680. 3420. 3280. 3140. 1675(1700sh). 1625. 1610. 1492. 1450. 1390. 1370.		0. 7-1. 85(1311, a), 1. 34(911, s), 2. 44(311, s), 2. 95-3. 55(211, a), 2. 99(211, b).	3. 86(311, s), 4. 02(111, ddd, J=9, 9, 9112), 4. 20(111, d. J=10112), 4. 32(111, ddd, 6, 6, 6112). 6. 09(111, m), 6. 56(111, d, J=10112), 7. 11(111, d, J=1, 3112), 7. 12(111, m), 7. 35(211, d. J=8112).	7. 48(111, 11), 7. 55(111, 10), 7. 37(111, 11), 7. 80(211, d. 3-8. 4112), 7. 93(111, d. 3-1. 4112)
25	R.".	Boc-Nil-Nii-			IR v Bax Co-1 or NMR(6)	5. 1705, 1675. 5. 1450, 1370.		0.1675(1700sh),	0	34(911, s), 2. 44(31	. ddd. J=9. 9. 9Hz).	.0), 7, 37(111, 0),
35	1		[10]		IR v Bax C	3680, 3420, 3300, 3140, 1705, 1675, 1625, 1600, 1580, 1495, 1450, 1370,	1162, 1125, 1032, 1010	0. 3420. 3280. 3140	1160, 1132, 1030, 1010	-1.85(1311, 1.). 1.	6(311, s), 4, 02(111, 9(111, s), 6, 56(111,	8(111, a), 7, 55(11)
33	$\left\langle \Xi\right\rangle$			eld%		368 65 162	911	51 368	116	43 0.7		7.4
40	+	II 2 N	[6]	Yicld% Yield%	(fron[7])	82		85		100		
45	Ş			R 2.		F. 5	~ <u>~</u> ={	Ts:		Ţ.	~^z _(=
50		Boc-Nil 6 [8]		۳. ا		phenyl		o-fluorophenyl		a-ncthoxyphenyl		
	Table 2		Coopd.	Jo	Prcp. No.	25		92		27		

ble 2 (continued)

Compd.			[6]		[10]
Jo	Ν	R2:	Yield% Yield%	Yield%	
Prep. No.			(from[7])		IR PRAX CE' or NMR(5)
		Ts			3420, 3300, 3240, 1705, 1670, 1625,
28	p-acthylphenyl	~ [78	57	1608. 1495. 1450. 1370. 1122. 1033.
		~ <u>~</u> ={			1010
		Ţ.			3680. 3420. 3300(br), 1705. 1672. 1611.
53	2. 4-	~ [_	72	20	1599, 1496, 1450, 1430, 1384, 1370,
	difluorophenyl	<u>~</u> ={			1172. 1095. 1080. 970. 855
		Ts			3692, 3420, 1709, 1673, 1599, 1575,
8	1-naphthyl	` ~ `	7.1	20	1495, 1450, 1386, 1370, 1175, 1094.
		~ ={			1080. 1033. 979. 908
					0.7-1.85(1311, a), 1.34(911, s), 2.44(311, s), 2.99(211, a), 2.86-3.27(211, a), 4.00(111.ddd.
31	3-thienyl	۵.z	48	63	J=9, 9, 9112), 4, 19(11, d, J=10112), 4, 32(111, ddd, J=6, 6, 6112), 6, 15(111, d, J=5, 0112), 6, 54
		<u>_</u>			(111, d. 1=911z), 7, 11(111, d. J=1, 211z), 7, 36(211, d. J=8, 211z), 7, 3(111, dd, J=2, 8, 5, 211z).
		Ž			7. 53(111, dd, J=1, 2, 5, 2112), 7, 80(211, d, J=8, 4112), 7, 91(111, d, J=1, 2112), 8, 18(111, •)
		Ts			3420. 3300. 3140. 1703. 1670. 1625.
32	2-thiazolyl	~	79	S	1603, 1550(br), 1496, 1450, 1370.
		<u>~</u>			1165, 1123, 1032, 1010

6. 58(111, d. J=1011z), 6. 99(211, a), 7. 10(111, d. J=1. 211z), 7. 35(211, d. J=8. 611z), 7. 47(111, a), 0.74-1.82(1311, m), 1.39(91, s), 2.44(311, s), 2.98(211, m), 3.08(211, m), 3.99(111, m), 4.18 3. 96(111, ddd, J=10, 10, 1011z), 4. 15(111, m), 4. 34(111, ddd, J=7, 7, 711z), 6. 04(111, d, J=711z). 5 3424. 1709. 1672. 1599. 1578. 1496. 1452. 1385. 1371. 1341. 1174. 1155. 1094. 1081. 1034. J=1, 311z), 7, 27~7, 45(6H, m), 7, 60(1H, m), 7, 80(2H, d, J=8, 411z), 7, 90(1H, d, J=1, 4Hz) 0. 75-1. 83(1311, m). 1. 36(911, s). 2. 44(311, s). 3. 00(211, m). 3. 13(211, m). 3. 90(311, s). (111, a), 4.30(111, ddd, J=711z), 6.05(111, d, J=711z), 6.52(111, d, J=1011z), 7.10(111, d, 3420, 2236, 1709, 1678, 1599, 1495, 1451, 1432, 1387, 1371, 1174, 1093, 1081, 909 3424, 1707, 1676, 1625, 1598, 1495, 1468, 1386, 1370, 1174, 1094, 1080, 1028 10 7. 70(111, dd, J=2, 7. 811z), 7. 80(211, d, J=8. 411z), 7. 91(111, d, J=1. 411z) 3420, 3320, 3140, 1670(sh1705), 1625, 1600, 1495, 1155, 1030, 1010 15 | R ν max ca-1, NMR(δ), [α]n. a.p. 20 3420, 1705, 1675, 1625, 1575, 1325, 3420, 3280, 3140, 1675, 1625, 1590. [a], -6.0° (C=1.0, CIICL3, 24T) 1495, 1160, 1122, 1030, 1010 1170, 1135, 1080, 1065 25 [30] a. p. =133-135°C 968, 917 30 Yield% Yield% 28 37 45 ဓ္က 22 23 51 2 from[7] 35 [6] 2 74 జ 67 16 28 88 31 .₂ × 40 0-acthoxyphenyl di fluorophenyl a-fluorophenyl p-fluorophenyl o-chlorophenyl -cyanophenyl p-trifluoro-Table 2 (continued) aminophenyl sulfonylo-methyl-<u>~</u> ethylphenyl -9 '2 45 rep. No. S జ్ఞ \$ 38 36 33

55

50

ಜ

6

돐

J=5.8Hzx3), 6.42(1H, d, J=5Hz), 6.49(1H, d, J=10Hz), 6.89(1H, s), 7.80(2H, m), 8.81(2H, m) 0.70~1, 86(13H, m), 1, 33(9H, s), 3, 00(1H, dd, J=0, 5, 14, 8Hz), 3, 23(1H, dd, J=5, 2, 14, 8Hz), 5 J=6. 2, 6. 2, 6. 2Hz), 4, 49(3H, m), 4, 49(1H, ddd, J=6. 2, 6. 2, 6. 2Hz), 6, 45(2H, d, J=9. 8Hz). 0.77~1.84(1311, m), 2.70(311, s), 3.17(411, m), 4.03(111, m), 4.20(111, m), 4.42(111, ddd 3. 22(111, dd, J=4, 6, 14, 411z), 3. 44(111, dd, J=5, 2, 14, 611z), 3. 75(411, m), 3. 98(111, ddd, J=1. 2, 2, 4, 811z), 7, 52(111, 1, J=7, 811z), 7, 87(211, m), 8, 57(111, s), 8, 78(111, d, J=211z) 4. 46(1H, ddd, J=5, 8Hz), 6. 4(1H, d, J=8Hz), 6. 55(1H, d, J=5Hz), 7. 13(1H, d, J=1, 8Hz), 0. 65-2. 05(13H, m), 1. 36(9H, s). 2. 93(1H, d. J=17. 1Hz), 3. 15(1H, dd, J=17. 6. 9. 4Hz) 3. 22(111, dd, J=14, 8, 5, 4Hz), 3, 44(111, dd, J=14, 6, 5, 3Hz), 3, 97(111, m), 4, 15(111, m), 4. 48(111, ddd, J=6, 4, 6, 4, 6, 4112), 6. 44(111, d, J=9, 9112), 6. 50(111, d, J=7, 5112), 7. 12 6. 44(111, d, J=9. 8Hz), 6. 58(111, d, J=6. 4Hz), 7. 14(111, d, J=1. 8Hz), 7. 39(111, ddofd, 3. 36(311, s), 3. 40(311, m), 4. 01(111, m), 4. 20(111, d, J=9. 811z), 4. 47(111, ddd, J=511z), 7.11(111, d, J=2.0), 7.15(111, dd, J=1.2.2.811z), 7.37(111, t, J=7.81tz), 7.48(111, m). 3420, 1709, 1674, 1632, 1600, 1495, 1386, 1370, 1279, 1174, 1116, 1093, 1080, 1026 0.70~1.90(1311, m), 1.35(911, s), 2.60(411, m), 2.83(211, t, J=5, 4112), 3.17(211, m), 4. 49(111, ddd, J=6, 2, 6, 2, 6, 2112), 6, 46(111, d, J=9, 2112), 7, 12(111, d, J=1, 8112), 0, 70-2, 05(1311, m), 1, 34(911, s), 2, 95-3, 50(411, m), 4, 01(111, m), 4, 19(111, m), 0.70~1,90(1311, m), 1,34(911, s), 2, 90~3,60(411, m), 3,99(111, m), 4,16(111, m), 10 (111, d, J=1, 911z), 7, 30(111, dd, J=5, 1, 2, 911z), 7, 53(111, dd, J=5, 1, 1, 31tz), 7, 78(211, d, J=6, 2112), 8, 77(111, d, J=1, 8112), 8, 80(111, d, J=9, 4Hz) 15 7. 40~7. 63(311, m), 7. 96(211, d. 1=8, 411z), 8. 76(111, d. 1=211z) IR v maxcm・1またはNMR(5) 20 7, 56(111, d, J=7, 811z), 8, 77(111, d, J=2, 011z) 8. 20(111, d, J=1, 911z), 8. 77(111, d, J=2, 111z) 25 30 35 Yield% 11 9 8 51 89 57 64 [from[7]) Yield% 83 98 97 98 85 90 9 40 2 2 45 carbonylphenyl m-(N-formyl)m-morpholinomorpholino)cthoxyphenyl methylamino 4-pyridyl 4-pyridyl 3-thienyl Table 2 (continued) ~ в-2-(Nphenyl 50 rcp. No. Compd. 46 43 \$ 33 44

43

٦

55

_	Compd.			[6]		[10]
	o Jo	R-	R.2	Yield% Vield%	% P1 2 ! X	IR vmax cm. 1 or NMR(S)
ڇَ	rep. No.			(from[7])	2	
1			ς			0.77~1.82(1311, m), 1.38(911, s), 3.10(411, m), 4.03(111, m), 4.16(111, m), 4.41(111, t.
32	48	phenyl	N N N	29	89	J=5. 2Hz), 6. 71(1H, s), 6. 89(1H, d, J=8. 2Hz), 7. 47(2H, t, J=7. 8Hz), 7. 59(1H, m).
			CIO			7. 94(2H, d, J=7, 2Hz), 8. 47(1H, s)
1						0. 76-1. 82(13H, m), 1. 41(9H, s), 2. 67(2H, m), 3. 06(1H, dd, J=4. 2, 18Hz), 3. 27(1H, dd.
	49	4-pyridyl	-CONII 2	98	65	J=8. 4, 18112), 4, 04(111, m), 4, 24(111, m), 4, 37(111, t, J=6, 4112), 7, 07(111, d, J=9, 4112).
						7.85(2ll, m), 8.76(2ll, m)
1						0.82-1.88(13H, m), 1.38(9H, s), 2.15(3H, s), 2.87(1H, dd, J=6.4, 13.6Hz), 2.95(1H, t.
	20	4-pyridyl	-SNe	99	36	J=7, 6112), 3, 10(111, dd, J=2, 2, 18, 811z), 3, 42(111, dd, J=9, 4, 18, 611z), 4, 12(111, m).
					-	4. 23(111, ddd, J=6Hzx3), 4. 28(111, m), 5. 37(111, d, J=6Hz), 6. 55(111, d, J=10Hz), 7. 77(2H, m).
		o				8.82(2II, m)

Table 2 (continued)

5	. Žę	# . 							
10	± = 5		1(111, ddd, J=	II, d. J. 9IIZ) IIZ).		(2).		1d. J=6. 8112×3)	. d.)={ii2}
15	Boc-NII		0. 75-1. 94(1311. a). 1. 33(911, s), 2. 44(311. s), 3. 00(211. a), 3. 08(211. a), 3. 88(311, s), 4. 01(111. ddd, J=8. 2112), 4. 19(111. a), 4. 34(111. ddd, J=6. 4112), 6. 12(111. d, J=5. 8112), 6. 58(111, d, J=9. 8112), 6. 93(211, d, J=9. 8112), 7. 36(211, d, J=8. 6112), 7. 95(111, a), 7. 36(211, d, J=8. 6112), 7. 95(111, a), 7. 36(211, d, J=8. 6112), 7. 95(111, a), 7. 96(211, d, J=8. 6112), 7. 95(111, d, J=9. 6112), 9. 95(1111, d, J=9.	0. 77-1. 83(1311. a). 1. 34(911. s). 2. 44(311. s). 3. 00(411. a). 4. 00(111. ddd. J=8. 4. 8. 4. 8. 412). 1. 18(111. d. J=6. 2112). 4. 32(111. ddd. J=6112). 6. 05(211. s). 6. 13(111. a). 6. 54(111. d. J=9. 8112). 5. 85(111. d. J=8. 2112). 7. 11(111. d. J=0. 4112). 7. 36(211. d. J=8. 4112). 7. 43(111. d. J=1. 4112). 7. 58(111. d. J=8. 2. 0. 8112). 7. 80(211. d. J=8. 4112). 7. 92(111. d. J=1. 2112).		0. 72-2. 00(13H. m). 1. 34(9H. s), 2. 44(3H. s), 3. 00(2H. m). 3. 10(2H. m), 3. 52-3. 8(8H. m). 4. 00(1H. ddd, J-8Hz). 4. 18(1H. m), 4. 33(1H. ddd, J-6. 6Hz). 6. 10(1H. m). 6. 58(1H. d. J-7Hz). 7. 12(1H. d. J-3. 4Hz). 7. 36(3H. m). 7. 47(1H. t. J-8Hz). 7. 68(1H. m). 7. 82(2H. m). 7. 04(2H. d. 1-3. 4Hz).		0. 70-1. 85(13H, m), 1. 38(9H, S), 2. 81(2H, d. J=5. 6Hz), 3. 20(1H, dd, J=4. 8. 14. 2Hz) 3. 45(1H, dd. J=5. 2, 14. 8Hz), 3. 69(3H, S), 3. 92(1H, m), 4. 07(1H, t. J=5. 8Hz), 4. 49(1H, ddd, J=6. 8Hzx3) 6. 48(1H, d. J=9. 6Hz), 6. 57(1H, S), 6. 58(1H, S), 7. 19(1H, d. J=9. 5Hz), 7. 29(1H, S), 6. 25(1H, S)	4, 5, 2llz) J=6, 2, 6, 2, 6, 2llz) 78(1ll, d, J=1, 8llz)
20	•		3(211, a), 3, 08(211, b), 1, 08(211, d), 1=5, 8112), 1, 211, d, 1=8, 611-3)	7. 92(111, d. 15-6, 0112). (211, s.), 6, 13(111, m., d. 16, 15-8, 4112). 7. 92(111, d. 1=1, 21, 21, 21, 21, 21, 21, 21, 21, 21, 2	.27	=6. 6Hz), 6. 10(1), 7. 18(1), 7. 18(1), 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	. 21	(a) (1) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	3. 20(1H. dd. J=14, m). 4. 45(1H. ddd. 1H, d, J=1. 6Hz). 8.
25		NMR & (CDC &)	idd, J=6, 4llz), 6, 13	77-1. 83(1311, a), 1.34(911, s), 2. 44(311, s), 3. 00(411, a), 4. 00(111, ddd 18(111, d, 1=6, 2112), 4. 32(111, ddd, 1=6112), 6. 05(211, s), 6. 13(111, a), 6. 85(111, d, 1=8, 2112), 7. 11(111, d, 1=0, 4112), 7. 35(211, d, 1=8, 4112), 7. 36(211, d, 1=8, 4112), 7. 36(211, d, 1=1, 2112), 7. 31(211, d, 1=1,	Identical with those of compound in Ex. No. 27	.2. 44(311, s), 3. 00 a), 4. 33(111, ddd, J a), 7. 47(11, t. J-8	Identical with those of compound in Ex. No. 21	0. 70-1. 85(13H, m), 1. 38(9H, S), 2. 81(2H, d. J=5. 6Hz), 3. 20(1H, dd, J=4, 8, 14, 2Hz) 3. 45(1H, dd, J=5, 2, 14, 8Hz), 3. 69(3H, S), 3. 92(1H, m), 4. 07(1H, t, J=5, 8Hz), 4. 49(6. 48(1H, d, J=9, 6Hz), 6. 57(1H, S), 6. 58(1H, S), 7. 12(1H, d, J=9, 6Hz), 7. 22(1H, S), 6.	D. 6-1.92(1311, m), 2.33(111, m), 2.45-2.75(211, m), 3.20(111, dd.)=14, 4, 5.2112) 3.44(111, dd.)=14.8.3.8112), 3.85(111, m), 3.93(111, m), 4.45(111, ddd.)=6, 2.6, 2.6, 2112) 6.40(111, d.)=9, 8112), 6.49(111, d.)=6, 8112), 7.12(111, d.)=1.6112), 8.78(111, d.)=1.8112)
30	+	N N N	(311, a), 1, 33(911, s) ((111, a), 4, 34(111, d 11(111, s), 7, 36(2)	311. a), 1, 34(911, s) =6. 2112), 4, 32(111, =8. 2112), 7, 11(111, J=8. 2, 0, 8112), 7, 8	with those of co	3fl. a). 1. 34(9fl. s). J=8flz). 4. 18(1fl. =3. 4flz). 7. 36(3fl.	rith those of co	3H, m), 1. 38(9H, S), 1=5. 2, 14. 8Hz), 3. (. m), 2, 33(1 , m), 7 =14, 8, 3, 8 z), 3, 8 =9, 8 z), 6, 49(1 , c
35			0. 75-1. 94(1 8. 211z). 4. 19 J=8. 6Hz). 7.	0. 77~1. 83(1 7. 18(111. d. J 6. 85(111. d. J 7. 58(111. td.	Identical	0. 72-2. 00(1) h. 00(1), ddd. 7. 12(1): d. J.	Identical	3. 45(111, dd. 6. 48(111, d. J.	0. 6~1. 92(13) 3. 44(111. dd. 6. 40(111. d. J=
40		Yicld%	10	60	23	27	28	33	31
	Boc-N	R .:	₹.×~×	°. ≥ \ \\	E. ▼ (r. ×√×	F. Z \	\$\hat{}	\$_\\\\
45	្ជ	. Z	p-acthoxy- phenyl	3'.4'-methy- lenedioxy- phenyl	3-thicnyl	morpholino- carbonyloxy- phenyl	pheny l	N-methyl-3- pyrrolyl	cyclohexyl
50	Table 3	Coapd. of Prep. No.	51	52	ន	25	55	99	57

Preparation 58

$$R^{4}-NH$$

$$\begin{array}{c}
R^{3} & R^{3}=phenyl \\
R^{4}=(N-morpholino)sulfonyol \\
E=CH_{3}
\end{array}$$

To a suspension of methyl ester of L-phenylalanine hydrochloride [31a] (4.31g, 20mmol) in dichloromethane (50ml) are added N-methylmorpholine (6.7g, 66mmol, 3.3eq). N-Morpholinosulfonyl chloride [30a] (4.44g, 24mmol, 1.2eq) in dichloromethane (4ml) and subsequently DMAP (244mg, 2.0mmol, 0.1eq) and the mixture is stirred overnight at room temperature. The reaction mixture is washed with 1N HCl and H_2O and the dichloromethane layer is dried over MgSO₄ and concentrated to dryness in vacuo. The residue is subject d to silica gel column chromatography (SiO₂: 110g, CH₂Cl₂:MeOH = 20:1) to obtain the compound [32a] (5.16g, 79%).

(i) To a solution of the compound [32a] (2.666g, 8.1mmol) in MeOH (12ml) is added 1N LiOH (12ml, 12mmol, 1.5eq) and the mixture is stirred at 80°C for 30 minutes. After removal of MeOH in vacuo, the r action mixture is washed with ethyl acetate. The mixture is then treated with active carbon, adjusted to pH 2 - 3 with 1N HCl, and extracted with ethyl acetate. The extract is washed with saturated aqueous sodium chloride, dried over MgSO₄, and concentrated to dryness in vacuo. The residue is recrystallized from ethyl acetate/n-hexane to colorless needles of N-(N-morpholino)sulfonyl-phenylalanine [12b] (2.267g, 89%). m.p. 164 - 6°C (decomposition)

(ii) To the compound [32b] (E=Et) (920mg, 2.7mmol) are added 6N HCl (9.2ml) and acetic acid (2ml) and the mixture is heated with stirring on an oil bath of 100°C for one hour. After cooling, the reaction mixture is concentrated to dryness in vacuo. The residue is made alkaline by dissolving into saturated aqueous sodium bicarbonate. The aqueous solution is washed with dichloromethane (10ml x 3), treated with active carbon, and neutralized with 6N HCl. The solution is then made acidic up to pH 3 by addition of 10% aqueous citric acid and extracted with ethyl acetate (50ml x 3). The organic layer is washed with saturated aqueous sodium chloride (x 2), dried over MgSO₄, and concentrated to dryness in vacuo to give the compound [12c] as a crystalline residue (620mg, 74%). Recrystallization from dichloromethane/isopropyl ether affords white crystals (543mg, 64%). m.p. 157 - 158°C.

[α]_D=-17.7±0.6°(C=1.0; MeOH; 25.0°C) IR ν max(cm⁻¹): 3320, 3200-2600(br), 1750, 1603, 1585, 1500, 1455, 1400, 1352, 1300 NMR(δ): 2.93(5H,m), 3.17(1H,dd,J=5.2,14.2Hz), 3.54(4H,m), 4.11(1H,dd,J=5.2,8.6Hz), 7.30(5H,m)

50

45

15

25

30

35

40

Pr paration 59

35

45

55

5

Boc - NH COOCH₃
$$\frac{10 \text{MPd/C}}{\text{EtOH}}$$
Boc - NH COOCH₃ $\frac{\text{C} \ell \text{COOiBu}}{\text{NMM}}$
To ℓ

[33a] $\frac{10}{\text{Soc}}$

Boc - NH COOCH₃ $\frac{\text{COOCH}_3}{\text{COOCH}_3}$

[34a] $\frac{\text{COCH}_2\text{C}\ell}{\text{COOCH}_3}$

Boc - NH COOCH₃ $\frac{\text{COCH}_2\text{C}\ell}{\text{COOCH}_3}$

[35a] $\frac{\text{N-CSNH}_2}{\text{CaCO}_3}$

C ℓ Cocch Soc - NH Cooch Soc - NH Co

a) A solution of methyl ester of N-Boc-ω-benzyl-L-aspartic acid [33a] (52.7g, 0,156mmol) in a mixture of water (10ml), acetic acid (10ml) and methanol (150ml) is subjected to a catalytic reduction in the presence of 10% Pd-C (4.0g) under an atmosphere of hydrogen gas at room temperature. The reduction is conducted with stirring and under atmospheric pressure. After a 3-hour reaction, the catalyst is filtered off and the filtrate is evaporated to dryness in vacuo. The residue is dissolved in saturated aqueous sodium bicarbonate and the aqueous layer is washed with dichloromethane (50ml x 3), made acidic with citric acid (about pH3), and extracted with ethyl acetate (200ml x 4) while salting out with the addition of sodium chloride. The ethyl acetate layer is dried over MgSO₄ and concentrated to dryness in vacuo. Trituration of the residue with the addition of n-hexane affords the carboxylic acid [34a] (37.5g, 98%) as a white solid.

To a solution of the above product [34a] (18.8g, 76mmol) and N-methylmorpholine (7.8g, 77.1mmol, 1.0 q) in ethyl ether (200ml) is added isobutyl chlorocarbonate (9.92ml, 76.5mmol, 1.0eq) over 10 minutes at a temperature between -15°C and -10°C under nitrogen atmosphere, and the mixture is stirred at the same temperature for 30 minutes. Precepitated methylmorpholine hydrochloride is filtered off, and the filtrate is added to a solution of diazomethane in ethyl ether which has previously been prepared from nitrosomethylurea (37g, 359mmol) with stirring at -10°C over 5 minutes. After 2.5-hour stirring at room temperature, the mixture is concentrated in vacuo to remove excessive diazomethane. To the mixture is added ethyl acetate (150ml) and then dropwise added 2N HCl/ethyl acetate (45ml) at a temperature betwen -40°C and -30°C. After 30-minutes stirring, the mixture is neutralized with saturated aqueous sodium bicarbonate. The ethyl acetate layer is separated, dried over MgSO₄, evaporated to dryness in vacuo, and subjected to silicated I chromatography (SiO₂: 150q, AcOEt:CH₂Cl₂ = 6:1) to obtain the chloromethyl k ton [36a] (20.3g, 95%) as an oil.

To a solution of the above compound [36a] (40.3g, 144.1mmol) in MeCN (160ml) are added CaCO₃ (28g, 280mmol, 1.9eq) and thioformamide (HCSNH₂, 14g, 229.1mmol, 1.6eq) and the mixture is stirred at room temperature for 18 hours under nitrogen atmosphere. Insoluble materials are filt red off and the filtrat is concentrated to dryness in vacuo. The residue is dissolved in dichlorom thane, subsequently washed with 7% aguing our strength of the residue is dissolved.

sodium bicarbonate, 1N NaOH, and wat r, two times ach, to remove non-r acted thioformamide. The dichloromethane layer is dried over MgSO₄, concentrat d to dryness in vacuo, and subject d to silica gel chromatography (SiO₂: 370g, M CN:CH₂Cl₂ = 1:7) to obtain (4-thiazolyl)alanin d rivative [37a] (29.15g, 71%) as an oil.

To the solution of above product [37a] (29.1g, 101.6mmol) in methanol(120ml) is added 1N LiOH (112ml, 112mmol, 1.1eq) with stirring and ice-cooling and the mixture is stirred for ten minutes at the same temperature and allowed to react an additional one hour at room temperature. The reaction mixture is concentrated in vacu on a water bath below 30°C to remove methanol and the residue is washed three times with dichloromethan . The aqueous layer is treated with active carbon, and citric acid to adjust the pH to 3, and extracted with ethyl acetate (150ml x 3). To the organic layer washed two times with saturated aqueous sodium chloride are added MgSO₄ and active carbon, the mixture is filtered and the filtrate is concentrated to dryness in vacuo to obtain crystalline crude product [8b] (26.96g, 97%). Recrystallization of the product from n-hexane provides pure product [8b] (26.2g, 95%). m.p. 96 - 98°C

[\alpha]_D=-4.2°(c=2; MeOH; 24°C)

5

35

40

45

NMR(δ): 1.47(9H,s), 3.41(1H,dd,J=5.6,14.6Hz), 3.56(1H,dd,J=3.4,11.0Hz), 4.59(1H,m), 3.60(1H,d,J=3.6Hz), 7.14(1H,d,J=2Hz), 8.94(1H,d,J=2Hz)

$$\begin{array}{c}
\text{CℓC00$iPr} \\
\text{NMM} \\
\text{Toℓ}
\end{array}$$

$$\begin{array}{c}
\text{C00C00$iPr} \\
\text{Boc} - \text{NH}
\end{array}$$

$$\begin{array}{c}
\text{C00CH}_3 \\
\text{C00CH}_3
\end{array}$$

$$\begin{array}{c}
\text{CH}_2 = \text{SMe}_2 \\
\text{Toℓ: DMS0} \\
\text{9} : 1
\end{array}$$

$$\begin{array}{c}
0 \\
\text{II} \\
\text{COCH} = \text{SNe}_2 & \text{i} \text{)HC}\ell \\
\text{EDOC} = \text{NH} & \text{COOCH}_3 & \text{ii} \text{)} \Delta
\end{array}$$

$$\begin{array}{c}
\text{Boc} - \text{NH} & \text{COOCH}_2\text{C}\ell \\
\text{EDOC} = \text{NH} & \text{COOCH}_3 & \text{EBO}
\end{array}$$

$$\begin{array}{c}
\text{COOCH}_3 & \text{EBO}
\end{array}$$

$$\begin{array}{c}
\text{SAB}
\end{array}$$

$$\begin{array}{c}
\text{SAB}
\end{array}$$

i) Preparation of carbonic anhydride

To a solution of compound [34a] (500mg, 2.02mmol) and N-methylmorpholine (225mg, 2.22mmol, 1.1eq) in toluene (4ml) is added isopropyl chlorocarbonate (0.254ml, 2.22mmol, 1.1eq) with stirring at a temperature between -15°C and -10°C under nitrogen atmosphere and the mixture is stirred at the same temperature for one hour to separate out N-methylmorpholine hydrochloride.

ii) Preparation of Corey reagent (dimethylsulfoxonium methylide)

To a suspension of trimethylsulfoxonium iodide (1.024g, 4.65mmol) in toluene (9ml) and DMSO (1ml) is added potassium t-butoxide (522mg, 4.65mmol, 1.0eq) with stirring under nitrogen atmosphere, and the mixture is heated with stirring on an oil bath at 70 - 75°C for 30 minutes. Orange crystals turn to grayish white crystals.

The carbonic anhydride solution obtained in the above step i) is charged in a dropping funnel with a cotton stopper. The solution is dropwise added to the Corey reagent prepared in the step ii) from the funnel with stirring and ice-cooling under nitrogen atmosphere over 10 minutes and the mixture is stirred at room temperature for one hour. The mixture is filtered and the filtrate is extracted with water (10ml x 3). The aqueous layer is extracted with dichloromethane (10ml x 4). Each extract is washed with water, dried over MgSO₄, and concentrated to dryness in vacuo to obtain 600mg of crud product. Chromatography (SiO₂: 40g, 3.5% MeOH/CH₂Cl₂) of the crude product gives th aimed ylide compound [38a] (554mg, 85%) as an oil.

To a solution of th ylid [38a] (3.16g, 9.83mmol) in dichloroethane (26ml) is add d 2N HCl/ethyl acetate (4.92ml, 9.84mmol) with stirring at -10°C and the mixture is stirred for one hour. The mixture is warmed on an oil bath of 100°C. Although precipitates (HCl addition product) separate out after two minutes, they redissolv after 3.5 minutes. When the solution becomes turbid after 6 minutes, the solution is cooled immediately to ter-

minate the reaction and the reaction mixtur is subjected to silicate 1 chromatography (SiO₂: 15g, AcOEt:CH₂Cl₂ = 1:7) to btain chlor methyl keton [36a] (2.308g, 84%) as a crystal substance.

A suspension f the abov product [36a] (2.308g, 8.25mmol), $HCSNH_2$ (1.26g, 20.62mmol, 2.5eq) and $CaCO_3$ (2.475g, 24.75mmol, 3eq) in dichloroethane (23ml), is stirred at room temperature for 15 hours under nitrogen atmosphere. After addition of NaI (62mg, 0.414mmol, 0.05eq), the mixture is stirred for an additional two hours. Insoluble materials are filtered off and washed with dichloromethane. The filtrate and washings are combined and subsequently washed with saturated aqueous sodium bicarbonate, 1N NaOH, and H_2O (x 2). Chromatographic treatment of the solution in the same manner as described in the foregoing process a) provides (4-thiazolyl)-L-alanine derivative [37a] (1.878g, 80%) as an oil.

To a solution of the above compound [37a] (3.16g, 11.04mmol) in methanol (6ml) is added with stirring and ice-cooling 1N LiOH (13ml, 13mmol, 1.18eq) and the mixture is stirred at room temperature for one hour. Similar procedure as disclosed in the process a) provides crude product [8b] (2.9g, 97%). Recrystallization of the product from ethyl ether/n-hexane gives pure product [8b] (2.6g, 88%) as colorless crystals. m.p. 110 - 112°C. [α]₀=-4.8 (c=2.0; MeOH; 25°C)

Preparation 60 and 61

10

15

20

25

30

35

40

45

50

55

N-sulfamylamino acids [12] listed in Table 4 are prepared from the compounds [30] in the same manner as disclosed in Preparation 58.

Preparation 62 and 63

2-Substituted (4-thiazolyl)-L-alanines [8] listed in Table 5 are prepared from the compounds [36] in th same manner as disclosed in Preparation 59.

		۲-			
5			(8)	2. 55(211, m), 2. 63(211, m), 3. 13(211, m), 3. 20(311, m), 3. 55(111, bs), 3. 80(111, dd, 1=4. 6, 14112), 4. 35(111, dt, 1=4. 4, 10112), 5. 05(111, d, 1=10. 2Hz), 7. 37(211, m), 7. 57(211, m), 7. 89(211, m), 8. 10(111, d, J=8. 2112)	2. 58(6H, s), 2. 98(1H, dd, J=7, 8, 13, 6Hz), 3. 20(1H, dd, J=5, 2, 13, 6Hz), 4. 24(1H, dofdd, J=9, 6, 7, 4, 4, 6Hz), 4. 90(1H, d, J=10Hz), 4. 90(1H, bs), 7. 30(5H, m)
10	/ R ³ / C00!!		NMR(6)	2. 55(2). 3. 13(2). 3. 55(1). J=4. 6. 14 J=4. 4. 10 J=10. 2Hz 7. 57(2).	2. 58(6H, J=7. 8. 13 J=5. 2. 13 dofdd, J= 4. 90(1H,
15	II R4-NII COOII	[12]	CIICe ₃ cm ⁻¹	3480, 3340, 3200~2400, 1723(1750)1598, 1508, 1450, 1395, 1342, 1155, 1111, 1070, 848	
20	IICe/Acoil		(10) (C) 1 R v	3480 3200 172: 1500 134: 1071	1.7 (7)
25	R* - NI COOE	[32]	[a], C=1, McOll (Temp, C)	-56. 7(25)	
30	1		Yield%	76	56
35	S.C. R3	[31]	[32] Yic1d%	88	83
40	$\frac{11Ce}{11}$	[30]	ω	0	Ŧ.
45	č		R³	(O)	<u></u>
50	۷		**	ONSO.	Me NSO2-
55	Table 4		Compd. of Pres No	09	61

5						. a).		-
10	N N N N N N N N N N N N N N N N N N N		(6)			211, m), 4. 64(11), 6. 69(111, s),		
15	Boc - NII		NMR(6)			*1.50(91, s), 3.38(21, m), 4.64(11, m), 5.15(21, d, J=6, 8112), 6.69(11, s), 8.48(11, s)		
20	1					*1.5 5.15 8.48		
25	HI COOCH,	[8]	IR V CIICes CR'I	3430, 2440(br) 1700, 1495. 1435, 1392 1368, 1160	1060	*3440.3200. 2440(br) 1700.1565.1500 1455.1435.1392	1370, 1160 1062	
30	► Boc - Nil		[\alpha] b C=1. NeOil (temp. \C)	(C=2) -20. 4 (24)		* -4.3 (22)		
35	N - CSNH ₂		mp, (°C)	135- 136		* 156- 157		-
40	0 C000CH ₃		Yic1d%	93		* 18		
45	Boc - Nil /	[37]	[a]u° C=1, NeO!! (temp. °C)	ı		-345 (24) -10.1*	(22)	* formyl compound
50			Yield%	42		88		* formyl
	101		Σ	CII3		NII 2		
55	Table 5		Compd. of Prep. No.	62		63		

Preparation 64

To the aldehyde compound [1a] (10.08g, 39.5mmol) is added NaHSO $_3$ (10.08g) in water (70ml) and the mixture is stirred with ice-cooling for 16 hours. The resultant solution is stirred at room temperature for 4 hours after addition of KCN (6.3g) in water (16.8ml) and ethyl acetate (137ml). The ethyl acetate layer is separat d from the reaction mixture, washed with saturated aqueous sodium chloride, dried, and concentrated. The residue is subjected to column chromatography using Lobar column Size C (CH $_2$ Cl $_2$:acetone = 19:1). Resultant product is recrystallized from hexane to give the aimed product [20a] (6.51g, 58%).

The product [20a] (3.56g, 12.6mmol) in anhydrous THF (50ml) is added dropwise to a suspension of LiAlH₄ (574mg, 1.2mol) in anhydrous THF (30ml) with stirring and ice-cooling over 30 minutes. The mixture is stirred at 0°C for an additional one hour. A small amount of ethyl acetate and ice water are added to the mixtur to separate out inorganic materials. The insoluble materials are filtered, and the filtrate is concentrated in vacuo and then purified with silica gel chromatography (SiO₂: 120g, CH₂Cl₂:MeOH:NH₄OH = 80:20:2). The aimed compound [21a] (2.21g, 61%) is thus obtained.

To a solution of the compound [21a] (12.49g, 43.6mmol) in anhydrous dichloromethane (200ml) are added triethylamine (8.8g, 2.0eq) and morpholinosulfonyl chloride (10.1g, 1.25eq) and the mixture is stirred at room temperature for 3 hours and concentrated in vacuo. The residue is dissolved in ethyl acetate, washed with water, dried, and evaporated to remove the solvent. The residue is purified with silica gel chromatography (SiO₂: 200g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1). The aimed compound [23a] (18.16g, 95%) is thus obtained. NMR(δ): 0.70-1.85(13H,m), 1.45(9H,s), 3.02(1H,m), 3.18(5H,m), 3.72(6H,m), 4.62(1H,d,J=9.2Hz), 5.58(1H,bt)

Preparation 65-74

30

35

40

45

50

55

The compounds [23] listed in Table 6 are prepared in the manner as taught in Preparation 64.

50	45		40	35	30	25	20	15	10	5
Table 6										
			`	(=)						
			Boc - NII	+ ZIIN	CeSO2R' EtsN	Boc - NI	I A NIISO R	₹.		
			[21a]	IIO	[22]		[23]			_
Compd.					[23]					
of Prep No	٦. ا	yicld %			NMR(5)	(8)				
65	-NKe2	97	0.80~1.90(5.48(1H.m)	(1311, m), 1, 45	(911, s), 2. 80(6	0.80~1.90(1311, m), 1.45(911, s), 2.80(611, s), 3.08(211, m), 3.72(211, n), 4.63(111, d, J=9.211z). 5.48(111, m)	m). 3. 72(211, m)	. 4. 63(111. d.	J=9, 211z).	
99	⊘ ≠	06	0.70~1.80(1) J=7,13llz).3 9.08(1ll,bs)	(13ll m), 1, 37 3, 68(2ll, m),	(9ll, s), 2, 49(1 4, 60(1ll, d, J=9	0.70-1.80(1311.m). 1.37(911.s), 2.49(111, bs), 2.82(111, dt, J=6.2.13.511z), 3.12(111, dt, J=7,131z), 3.68(211.m), 4.60(111, d, J=9.31z), 4.47(111, dd, J=4.611z), 8.17(111, m), 8.79(111, bd), 9.08(111, bs)	l, dt, J=6. 2, 13. l, dd, J=4. 6llz).	511z), 3. 12(1 8. 17(111, m),	H, dt. 8. 79(111, bd),	
67	\$	93	0.70~1.85 2.60(111, m) 7.60(211, m)	0. 70~1. 85(13H, m). 1. 39(2. 60(1H, m). 3. 67(2H, m). 7. 60(2H, m). 6. 24(1H, bt)	(911, s). 2, 90() . 4. 57(111, d, J=)	0. 70~1. 85(13H, m). 1. 39(9H, s), 2. 90(1H, dt, J=6. 1, 13. 4Hz). 3. 16(1H, dt, J=7. 0, 12. 9Hz). 2. 60(1H, m). 3. 67(2H, m). 4. 57(1H, d, J=9. 2), 5. 89(1H, t, J=7Hz). 7. 07(1H, dd. J=3. 7. 5. 0Hz). 7. 60(2H, m), 6. 24(1H, bt)	3. 4Hz). 3. 16(11 t, J=7Hz). 7. 07	, dt, J=7. 0, 1 '(111, dd, J=3.	2. 9Hz). 7. 5. 0Hz).	
89		66	0. 65~1. 80 6. 80(111, b 8. 29(111, d	(1311, m), 1, 32 t), 7, 57(111, d d, J=1, 6, 8, 411	(911, s), 2, 89(; id, J=4, 4, 8, 41; iz), 8, 42(111, de	0. 65~1. 80(1311, m). 1. 32(911, s). 2. 89(2H, bt). 3. 55(111, m). 3. 66(111, m). 4. 58(111, d. J=9. 2112). 6. 80(111, bt). 7. 57(111, dd. J=4. 4. 8. 4Hz), 7. 66(111, t, J=7. 4Hz). 8. 07(111, dd. J=1. 0. 8. 2112). 8. 29(111, dd. J=1. 6. 8. 4Hz). 8. 42(111, dd. J=1. 6. 8. 4112).	II, m). 3. 66(111, n J=7. 411z). 8. 07(). 9. 05(111, dd, 5), 4, 58(111, d (111, dd, J=1, 0 =1, 6, 4, 411z)	i, J=9, 2liz). i, 8, 2liz).	
69	©	97	0.70~1.80(J=6.5,13.6 7.85(211, m)	(1311, m), 1.37 6Hz), 3.65(21)	7(911, s), 2, 58(1, m), 4, 56(14,	0.70~1.80(13H, m), 1.37(9H, s), 2.58(1H, bd, J=5Hz), 2.80(1H, dt, J=6, 2.13.6Hz), 3.08(1H, dt, J=6, 5, 13.6Hz), 3.65(2H, m), 4.56(1H, d, J=9, 2Hz), 5.82(1H, bt, J=6Hz), 7.53(3H, m), 7.85(2H, m)	2. 80(111, dt, J=1 82(111, bt, J=611;	5, 2, 13, 6llz), z), 7, 53(3ll, a	3. 08(111. dt. a).	
70	Š	72	0.75~1.87 3.73(611, m	'(1311, m), 1, 4! 1), 4, 62(111, d,	0. 75~1. 87(1311, m). 1. 45(911, s), 1. 98(111, bs), 2 3. 73(611, m), 4. 62(111, d, J=9, 4112), 5. 63(111, bt)	0. 75~1. 87(1311, m). 1. 45(911, s), 1. 98(111, bs), 2. 52(411, m), 2. 86(211, m), 3. 17(411, m), 3. 73(611, m), 4. 62(111, d, 1=9. 411z), 5. 63(111, bt)	II, m), 2, 86(211,	n), 3. 17(411, n	۵).	- - T
11	<u></u>	36	0.75~1.88 J=9.1llz).	0, 75-1, 88(1311, m), 1, A8 J=9, 111z), 5, 82(111, bt)	5(911, s), 2, 03(0. 75~1. 88(1311, m), 1. 45(911, s), 2. 03(211, m), 2. 49(611, m), 3. 13(411, m), 3. 72(611, m), 4. 65(111. d. J=9. 111z), 5. 82(111. bt)	i, m), 3. 13(411, m). 3. 72(6II. m.)), 4. 65(111. d.	

_	
•	٠

Table 6 (continued)

			1601
Compd.			1607
Jo	2	yicld	NMR(5)
Prcp. No.		ሄ	3 64(211. a) 3 64(211. a) 4. 66(111. d.
			0. 75~1. 90(1311, m). 1. 44(911, s), 2. 29(611, s), 2. 60(211, m). 9. 10(011, m). 9. 10(1311, m)
72	√ NNC₂	75	1=9. 8112)
			5 14(2)1 m 3 79(2)1 m 4 65(1)1 d.
			0.75~1.85(1311, m), 1.45(911, s), 2.85(111, bs), 2.30(311, s), 3.14(211, m), 3.15(1311, m)
73	E C	97	J=9. 411z), 5. 53(111, bt)
			3 16(211 m) 3 16(211 m)
			0.94(311, t. J=7, 211z), 0.80~1.95(1711, a), 1.45(311, 5), 2.10(111, 03); 3.00(011, 17); 3.10(111)
74	{	86	3.70(211, m). 4.63(111, d. J=911z). 5.44(111, t. J=711z)

Preparation 75

$$R^{7}-NH \xrightarrow{R} NHSO_{2}R^{1} \xrightarrow{6NHC\ell} NH_{2} \xrightarrow{HO} NHSO_{2}R^{1}$$

$$[23a] \qquad [24a]$$

$$R^{7}-NH \xrightarrow{COOH} R^{7}-NH \xrightarrow{R^{2}} NHSO_{2}R^{1}$$

$$R^{7}-NH \xrightarrow{ROOH} R^{7}-NH \xrightarrow{R^{2}} NHSO_{2}R^{1}$$

$$[25a]$$

$$R^{7}=Boc$$

$$R^{1}=N$$

$$R^{2}=S$$

A mixture of the compound [23a] (18.16g, 41.6mmol), THF (150ml), and 6N HCI (150ml) is stirred at room temperature for 4 hours. The reaction mixture is made alkaline with Na_2CO_3 and saturated aqueous $NaHCO_3$ and extracted with a mixture of dichloromethane and methanol (9:1). The organic layer is dried and evaporat d to dryness in vacuo. The residue is subjected to silica gel column chromatography (SiO₂: 100g, CH_2Cl_2 :MeOH: $NH_4OH = 80:20:2$). The compound [24a] (14.0g, quantitative amount) is thus obtained.

To a solution of the above compound [24a] (14.0g, 41.6mmol) in acetonitrile (200ml) are added 4-thiazolyl-L-alanine [8b] (12.09g, 1.1eq) and HOBt (7.04g, 1.25eq) with ice-cooling. To the mixture is added DCC (11.18g, 1.3eq) and the resulting mixture is stirred for one hour at 0 °C and one hour at room temperature. The reaction mixture is filtered after addition of ethyl acetate and the filtrate is concentrated in vacuo. The residue is subjected to silica gel column chromatography (SiO₂: 600g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1) to give the product [25a] (24.5g, quantitative amount).

NMR(δ): 0.70-1.80(13H,m), 1.45(9H,s), 2.45(1H,bs), 2.98(2H,m), 3.18(4H,m), 3.30(2H,m), 3.75(5H,m), 4.02(1H,m), 4.46(1H,ddd,J=6.4Hx3), 5.72(1H,bt,J=6.6Hz), 6.16(1H,d,J=6.4Hz), 6.36(1H,d,J=9.2Hz), 7.15(1H,d,J=1.8Hz), 8.82(1H,d,J=2Hz)

Preparation 76-86

Compounds [25] listed in Table 7 are prepared according to the procedure disclosed in Preparation 75.

55

50

30

35

5		Г		T			
10) NIISO ₂ R'		1 2 72/11 m	-7Hz), 6. 39(1H, d	UU(111, at. ;), 3, 99(111, m), [11, d, J=1, 8112), [11, d, J=2112),	111, m), 4, 45(111, dc) 9, 311z), 7, 10(2H, n	(nz), 3, 22(1n, ud, 2x3), 6, 09(1ll, d, 1=1, 8llz), J=1, 4, 8, 3llz), ll, d, J=1, 9lz),
15			700 6 1 11	15(111, d. J	13. 61(2). 3. 1-2. 3. 6. 71 2 11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	39(111, d. J=	. J=5. f. 14. ddd, J=6. 6ll , 7. 02(1ll, d , 06(1ll, dd.
20	Boc - Nil		NMR(6)	79(611, s), 2, 95(2), 5, 58(111, bt), 6 2(111, d, 1=2112)	80(111, dt, J=6. d. z), 3, 70(111, dt, J=6. 312), 6, 55(21), 8, 20(111, d. J=	81(111, dt. J=6. 3 [111, dd, J=2. 4, 6. 6. 22(111, bt), 6.	l, m). 3. 11(111, dd (111, m). 4. 32(111, 8(111, t, J=6. 211z) 111, t, J=7. 411z). 8 111, dd, J=1. 4, 7. 3
25	(8)	[25]		311, s). 2. J=6. 6Hz 8Hz). 8. 8	911, s), 2, d, 3=5, 611 5(111, d, J J=4, 2411z	911, s), 2. m), 3. 66(=6. 911z),	1, 2, 79(2) 11, 3, 84(112), 6, 78(2), 7, 65(2), 8, 41(2)
30	Boc - Nil Cooli	[3]		0, 70~1, 80(1311, m), 1, 45(911, s), 2, 79(611, s), 2, 35(211, m), 3, 25(211, m), 5, 15(111, d), 4, 48(111, ddd, J=6, 6Hz), 5, 58(111, bt), 6, 15(111, d, J=711z), 6, 39(111, d, J=1011z), 7, 15(111, d, J=1, 811z), 8, 82(111, d, J=211z)	0. 65-1. 75(1311, m), 1. 39(911, s), 2. 80(111, dt, J=6. 4, 13. 61(2), 3. 00(111, dt, J=6. 6, 13. 71(2), 3. 19(211, d, J=5. 61(2), 3. 70(111, dt, J=2. 3. 6. 71(2), 3. 99(111, m), 4. 46(111, ddd, J=61(2), 6. 05(111, d, J=6. 31(2), 6. 55(211, m), 7. 11(111, d, J=1. 81(2), 7. 45(111, m), 7. 80(111, dd, J=4. 241(2), 8. 20(111, d. J=71(2), 8. 71(111, d. J=21(2), 9. 08(111, bs))	0. 65~2. 00(1311, m), 1. 43(91, s), 2. 81(111, dt, J=6. 3, 13. 51(z), 2. 99(111, dt. J=6. 9, 13. 51(z), 3. 24(211, m), 3. 66(111, dd, J=2. 4, 6. 81(z), 3. 97(111, m), 4. 45(111, ddd. J=6. 91(z), 3. 97(111, d, J=6. 91(z), 6. 22(111, bt), 6. 39(111, d, J=9. 31(z), 7. 10(211, m), 7. 58(211, m), 8. 75(111, d, J=1. 81(z)	0. 55(13 , m), 1. 43(9 , s), 2. 79(2 , m), 3. 11(1 , dd, J=5, 1, 14, 102), 3. 25(1n, dd, J=5, 4, 14, 7 z), 3. 65(1 , m), 3. 84(1 , m), 4. 32(1 , ddd, J=6, 6 zx3), 6. 09(1 , d, J=6, 27(1 , d, J=9, 4 z), 6. 78(1 , t, J=6, 2 z), 7. 02(1 , d, J=1, 8 z), 7. 56(1 , dd, J=4, 3, 8, 4 z), 7. 65(1 , t, J=7, 4 z), 8. 06(1 , dd, J=1, 4, 8, 3 z), 8. 27(1 , dd, J=1, 8, 8, 4 z), 8. 41(1 , dd, J=1, 4, 7. 3 z), 8. 69(1 , d, J=1, 9 z), 9. 04(1 , dd, J=1, 7, 4, 2 z)
35) NIISO ₂ R'		1	0. 70~ 4. 01 (J=10	0.65~ J=6.6 4.46(7.45(9.08(0. 65~ 1=6. 9 1=6. 9 7. 58	0.55 J=5. 7.56 8.27 8.27
40	N. 11		R2 Yield%	06	5	99 89	96
45			<u>ج</u>	-NKe	○ ≠	Ş	⊘ *
50	Table 7	pomoj	of Prep. No.	78	77	78	79

•	

Table 7 (continued)

7				[25]
of be	R	R.	Yield%	NMR(6)
Prep. No.			-+	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
S			66	0. 67~2. 00(1311, m), 1. 43(911, s), 2. (4(111, dt, 1-0. 5), 10. 51(2), 3. 62(111, dt, 1-2. 6. 13. 51(2), 3. 18(111, dd, 1-6. 3, 14Hz), 3. 27(111, dd, 1-5. 7, 14Hz), 3. 62(111, dt, 1-2. 6.
2	(\ \{		6. 81(2), 3, 95(111, m), 4, 41(111, ddd, J=6, 6112×3), 5, 95(111, bt), 6, 05(111, d, J=6, 8).
	<u> </u>	=_		6. 29(111, d. 1=9. 3112), 7. 07(111, d. 1=1. 9112), 7. 52(311, m), 7. 86(211, m), 8. 73(111, d.
				J=2. Oliz)
				0. 63~1. 78(1311, m), 1. 45(911, s), 2. 14(111, bs), 2. 52(411, ot., J-4, 0112), 2. 50(511, 5)
~	(\	<u> </u>	66	J=7112), 3. 05(211, bt, J=6112), 3. 14~3. 40(411, m), 3. 00(111, m), 3. 10(411, m),
3	<u>}</u>	=[4, 00(111, m), 4, 42(111, ddd, J=6, 2Hz), 5, 80(111, bt), 6, 24(111, d, J=6, bHz), 6, 31(111, d,
				J=9 4Hz), 7, 14(111, d, J=2Hz), 8, 81(111, d, J=2Hz)
				0 70~1 80(1311 m) 1 45(94, s), 2. 01(211, m), 2. 49(611, m), 3. 08(411, m), 3. 30(211, m),
	(<	×(_	5	2 72(511 m) 4 00(111 m) 4 43(111, ddd, J=6. 611zx3). 5. 88(111, bt), 6. 24(111, d.
85	2)	=(2	1. C 5113. 6 59(11) d 1. q 6112. 7 15(11), d, J=1. 8112). 8. 82(11), d. J=1. 8112)
				2-6, 0165, 0, 36, 11, 3, 4, 4, 4, 1, 9, 99(61, 5), 2, 81(211, t, J=6, 2112), 3, 04(211, d.
		U	5	0.00~1.00(130), m/, 1.40(3), 5/; 5/5(3), 6/12), 3,34(11), dd, J=5, 4, 14, 6Hz),
83	NXo.		=	J=5, 5, 5, 12, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
	704	[3.03(11), 01, 3-6, 4, 01, 5, 2), 3, 3, 4, 11, 4, 1=2112), 8, 81(11), 4, 3=2112)
				1 3 30(211, m). 3. 70(111, m). 3. 70(111, m). 3. 30(211, m). 3. 30(211, m). 3. 70(111, m).
;	=	ر مرکز	76	7. 10.11 m) d d6(111, ddd, J=6, 6112x3), 5. 72(111, bt), 6. 21(111, d, J=6, 6112).
×	<u>မ</u>	<u></u>	2	6. 39(1)1 d. J=9. 6 12). 7. 15(1)1, d. J=1. 6 12), 8. 82(1)1, d. J=1. 8 12)
				0.95(311, t, J=7, 2112), 0.65~1.88(1711, m), 1.45(911, s), 3.00(511, m), 3.30(211, m).
		\ <u>\</u>	83	3.68(111, dt. J=2. 3, 6. 611z), 4. 01(111, m), 4. 45(111, ddd, J=6. 211zx3), 5. 56(111, bt).
3		<u></u>		6. 18(111, d. 1=6. 6112)6. 35(111, d. 1=9. 6112). 7. 14(111, d. 1=1. 8112), 8. 81(111, d.
	\ 			J=2, 0llz)
	_			

5			
10			
15			
20			
25			
30			
35			
40			
45			

Table 7 (continued)

Compd. R: R: Yield96 Prcp. No. 0. 65~1. 75(1311. m), 1. 43(911, s), 2. 64(311, s), 2. 74(111, dt, J=6. 3, 13, 6112), 2. 96(111) 86 O S = 1. 75(1311. m), 1. 43(911, s), 2. 64(311, s), 2. 74(111, dt, J=6. 3, 13, 6112), 3. 96(111, m), 4. 34(111, dddddddddddddddddddddddddddddddddd								_
R. R.	[36]	[62]	NMR(6)	2. 96(11).	0.65~1.75(1311, m), 1.45(311, 5), 2.04(311, 4), 2.14(111, 4), 4.34(111, 4), 4.34(111, 4),	dt, J=6. 8, [3. 4 2), 3. 10(2 , a), 3. 01(1 , dt, J=0. 0. 0 2), 3. 0(2 , a), 3. 01(1 s)	[1=5,811z), 5, 90(111, n), 6, 00(111, d, 1=6, 211z), 6, 32(111, d, 1=3, 611z), 9, 92(111, 3), 112(111, n),	7, 52(311, m). 7. 86(211, dd, J=1, 6, 7, 811z)
R. R.			Yield9					
			R2		c			
Compd. of Prcp. No. 86						((≥	
		Compd	Jo	Prcp. No.		8	3	

55

Example 1

5

10

15

20

25

30

3-t-Butylsulfonyl-2(S)-ph nylmethylpropionyl-His-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamid [la]

1) His(Ts)-1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [11a]

$$\mathbb{R}^{7-NH} \xrightarrow{\mathbb{N}H} \mathbb{R}^{2} \xrightarrow{\mathbb{N}H} \mathbb{R}^{1} \xrightarrow{\mathbb{N}H} \mathbb{R}^{1} \xrightarrow{\text{anisole}} \mathbb{R}^{1} \xrightarrow{\text{anisole}} \mathbb{R}^{1}$$

[10a]

[11a] $R^{1} = 4 - pyridyl$

R'= 4-pyridyl
R' = 4-tosylimidazolyl
R': Boc

35

Boc-His(Ts) 1(S)-cyclohexylmethyl-2(S), hydroxy-4-oxo-4-(4-pyridyl)butylamide [10a] (1.31g, 1.96mmol) prepared in Preparation 21 is dissolved in anisole (13ml). To the solution is added trifluoroacetic acid (13ml) with stirring and ice-cooling and the mixture is stirred at room temperature for one hour. After evaporation of the reaction mixture to dryness in vacuo, ice is added to the residue and the mixture is washed with ethyl ether. The aqueous layer neutralized with 3N NaOH and adjusted to pH8 by addition of powdered Na₂CO₃ is extract d with dichloromethane three times and finally extracted with a mixture of dichloromethane and methanol (10:1). The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄ and evaporated to dryness in vacuo. The residue is purified with silica gel chromatography (CH₂Cl₂:MeOH = 95:5) to obtain the aimed crude product (850mg, 73%). Recrystallization of the crude product from ethyl acetate provides the title compound [11a] (750mg, 65%) as a needle crystal. m.p.161-162°C

NMR(δ): 0.75-1.80(13H,m), 1.98(1H,br.s), 2.44(3H,s), 2.73(1H,dd,J=14.8,8.2Hz), 2.95~3.24(3H,m), 3.65(1H,dd,J=8.4,4.2Hz), 4.02(1H,m), 4.27(1H,m), 7.12(1H,d,J=1.2Hz), 7.36(2H,d,J=7.8Hz), 7.53(1H,d,J=10Hz), 7.70 (2H,m), 7.81(2H,d,J=8.4Hz), 7.92(1H,d,J=1.4Hz), 8.79(2H,m)

IR vmax(CHCl₃)cm⁻¹:3680, 3340, 1690, 1654, 1602, 1593, 1515, 1475, 1450

Elemental analysis(as $C_{29}H_{39}N_5O_6S$) Calcd.: C:59.01; H:6.75; N:11.87; S:5.43 Found : C:59.12; H:6.69; N:11.68; S:5.21

2) 3-t-Butylsulfonyl-2(S)-ph nylmethylpropionyl-His(Ts) 1(S)-cycloh xylm thyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl)butylamide [13a]

35

45

To a solution of the ketone compound [11a] (334mg, 0.57mmol) in dichloromethane (1ml) are added 3-t-butylsulfonyl-2(**S)**-phenylmethylpropionic acid (220mg, 0.76mmol, 1.3eq), N-methylmorpholine (77mg, 0.76mmol, 1.3eq), and then DEPC (124mg, 0.76mmol, 1.3eq) and the mixture is stirred at room temperature for four hours. The reaction mixture is evaporated to dryness in vacuo and subjected to silica gel chromatography (CH₂Cl₂:MeOH = 95:5) to obtain the title compound [13a] (418mg, 89%) as colorless powders. NMR δ : 0.70-2.10(14H,m), 1.33(9H,s), 2.43(3H,s), 2.70 -3.28(8H,m), 3.45(1H,dd,J=12.9,9.4Hz), 4.00(1H,m), 4.18(1H,m), 4.53(1H,ddd,J=5.8,5.8,5.8Hz), 6.34(1H,d,J=10Hz), 7.17(1H,d,J=1.2Hz), 7.22(5H,m), 7.34 (2H,d,J=8.4Hz), 7.81(2H,d,J=8.5Hz), 7.85(1H,d,J=1.2Hz), 7.75(2H,d,J=6.0Hz), 8.81(2H,d,J=5.9Hz) IR vmax(CHCl₃) cm⁻¹:3680, 3470, 3370, 1665, 1600, 1520, 1450, 1172, 1112, 1075

3) 3-t-Butylsulfonyl-2(S)-phenylmethylpropionyl-His 1(S)-cyclohexylmethyl-2(S)-hydroxy-4-oxo-4-(4-pyridyl) butylamide [la]

R⁴=t-butylsulfonyl
$$X = C H_2$$
 [Ia] $R^1 = 4 - pyridyl$ $R^2 = 4 - imidazolyl$ $R^3 = phenyl$

To a solution of the protected compound [13a] (740mg, 0.89mmol) obtained in the above step 2) in DMF (4ml) is added pyridinium hydrochloride (1030mg, 8.87mmol, 10.0eq) and the mixture is stirred at room temperature for two hours. The reaction mixture is adjusted to pH 7 - 8 by addition of ice and 4% aqueous NaHCO₃ and extracted three times with dishlorom thane. The organic layer is washed with saturated aqueous sodium chloride, dried over MgSO₄, and concentrated to dryness in vacuo. The residue is purified with silicaged chromatography (CH₂Cl₂MeOH.concNH₄OH = 950:50:1) to obtain the title compound [1a] (543mg, 90%). Trituration of the residue with diisopropyl ether gives colorless powders.

NMR δ : 0.67-1.83(13H,m), 1.33(9H,s), 2.86(1H,d,J=13.5,8.4Hz), 2.97(1H,dd,J=13.0,9.8Hz), 3.10(5H,m), 3.26(1H,m), 3.56(1H,dd,J=13.0,9.8Hz), 4.02(1H,m), 4.20(1H,m), 4.56(1H,ddd,J=6.3,6.3,6.3Hz), 6.44 (1H, d, J=10Hz), 6.90(1H,s), 7.24(4H,m), 7.48(1H,s), 7.70(2H,m), 8.78(2H,m)

 $[\alpha]_D$ =-22.5°(C=1.0; MeOH; 23°C) IR vmax(CHCl₃)cm⁻¹:3460, 3360(br), 1662(1690sh), 1603, 1496, 1450, 1410, 1115

Elemental analysis (as C₃₆H₄₉N₅O₆S.3/4H₂O)

Calcd.: C:62.36; H:7.34; N:10.10; S:4.62 Found : C:62.42; H:7.33; N:10.21; S:4.49

Examples 2-52

15

20

25

30

35

40

45

50

55

The same procedure as disclosed in the steps 1) and 2) in Example 1 is repeated using, as the starting material, the compounds [10] prepared in foregoing Preparations 21-58, and the compounds [11] and [13] list d in Tables 8 (compound [11]) and 9 (compound [13]) are obtained. The compounds [13] (for example, compound [13] of No. 23) wherein R¹ or R² is not protected correspond to the compounds (I) of the invention. Where the substituent R² is protected, the compounds [13] are deprotected according to the procedure as disclosed in Step 3) in Example 1 to obtain the final products (I), which are listed in the following Table 10.

5																								
		analysis	Found	C: 63. 34	H: 6.67		3: 5: 6:											C:59.53	Н: 6.04	N: 9.42	S: 5.56	F: 6.38		
10		Elemental analysis	Calcd.	C: 63. 58		9.89	S: 5.66		oil				oi1				011	C:59.78	H: 6.02	N: 9.30	S: 5.32	F: 6.31		6
15	T =0	(3)									li, dd, J=8, 16llz),	2. 98(111, dd, J=10, 1811z), 3. 07(111, dd, J=6, 1611z), 3. 18(111, dd, J=3, 1811z)	4. 66(111, dd, J=4, 811z), 3. 85(311, s), 4. 02(111, m), 4. 24(111, m), 7. 17(111, s)											
20	NII2 0 [11]	(4) SMN 2 (4)									44(311, s), 2, 72(1	dd, J=6, 1611z), 3. 1	. 4. 02(111, m). 4. 24	5(2H, d, J=8, OHz).	=1.4112)									
25			Y Y PRO A Y T			1075		1670.	. 1480.	. 1075	0. 70-1. 83(1311, a), 2. 05(3H, bs), 2. 44(3II, s), 2. 72(111, dd, J=8. 1611z).	0, 1811z), 3, 07(1H, o	, 811z), 3. 85(311, s)	7. 17(111, m), 7. 30-7. 60(311, p), 7. 35(211, d, 1=8. 011z).	7. 80(211, d. J=8. 411z), 7. 91(111, d. J=1. 411z)	. 1570, 1510.	. 1092, 1075	5, 1612, 1595.	5, 1383, 1172.				, 1599, 1575.	6, 1190, 1174.
30	E0	[11]	(6)	3560, 3360, 1666.	1598, 1580, 1511	1450, 1382, 1172, 1075		3600, 3460(br), 1670.	1610, 1598, 1510, 1480,	1450, 1383, 1170, 1075	0. 70-1. 83(13).	2. 98(111, dd. J=1	4. 66(111, dd. J=4	7.17(111. 11). 7.3	7. 80(211, d. J=8.	3360, 1668, 1608, 1570, 1510.	1450. 1385. 1172. 1092. 1075	3580, 3360, 1665, 1612, 1595.	1510, 1498, 1475, 1383, 1172.	1075, 970			3400(br), 1665, 1599, 1575.	1510, 1450, 1386, 1190, 1174, 1094, 1080, 909
35	R ² . NII	1	[4],*(C=1. 0, CHQ13.)	3	-49.1	(23.5)													-43.9	(23.5)				
40	Boc-NII		Yield%		-	81	126-127		19			55					43			71	:			69
			~	-	<u>د</u> . ع	Û	=	Ts	Ĩ.	~ =(T.	<u>_</u>	-7		7.	Z _(Ts	<u>_</u>	<u></u>		T.	
45	∞		~		-	phenyl			o-fluorophenyl			a-acthoxypheny!					p-acthylphenyl			2 4-4i Clupto-	phony!			1-naphthy1
50	Table 8	Coep.	٥	CX. NO.		7			65	_		¥					S			ú	>			~

Table 8 (continued)

Compd						
jo	- -	2	Yield%	[a]»•	(a)dm	IR was car' or NMR(8)
Ex No				(C=1. 0. CIICe,)(t)		
		Ts				3680, 3360(br), 3120, 1665.
α	3~thiony]		20			1598, 1510, 1475, 1450, 1382,
•	. (~ _(1172, 1076
						0. 73-1. 83(1311, a), 2. 33(211, bs), 2. 44(311, s), 2. 76(111, dd, J=7. 1511z).
		۲				3. 07(111, dd, J=3, 6, 14, 611z), 3, 18-3, 38(211, w), 3, 68(111, w), 4, 02(111, m).
	9-thiazolvl	3.≥	25			4. 25(1H, a), 7. 14(1H, s), 7. 35(2H, d, J=8. 0Hz), 7. 51(1H, d, J=9. 0Hz).
·						7. 69(1H, d. J=3. 0Hz), 7. 80(2H, d. J=8. 4Hz), 7. 95(1H, d. J=1. 2Hz).
		F				8. 01(1H, d, J=3. 0Hz)
		Ts				3360, 1670, 1590.
-	a-fluorophenyl	·₹	99			1510. 1445, 1382,
2		~ ={				1170. 1090. 1075
		7				3360, 3500(br). 1665.
-	n-fluorophenyl	<u>~</u>	57	-45.8	128~130	1600, 1508, 1475, 1450
:				(24.0)		1095, 1075
		Ts				3368, 1698, 1665, 1624, 1598, 1512, 1420, 1385, 1279, 1190, 1174, 1094,
12	2. 6-difluoro-	. <u>~</u>	53	-23.9		1077. 1018
	pheny1	^ <u>z</u> =((24.0)		
						0. 70-1. 85(1311, a). 2. 20(311, bs). 2. 44(311, s). 2. 74(111, dd. J=8. 15liz).
						2. 95(11H, dd, J=10, 1711z), 3. 10(11I, dd, J=15. 5IIz), 3. 26(1II, dd, J=17, 3IIz)
13	o-methoxyphenyl	-7	22			3. 69(1H, dd, J=5, 10Hz), 3. 88(3H, s), 3. 99(1H, m), 4. 18(1H, m).
:		<u> </u>				6. 98(211, m), 7. 12(11, s), 7. 35(211, d. J=811z), 7. 50(111, m).
		:				7. 72(111, dd, J=7. 5, 2112), 7. 81(211, d. J=8112), 7. 92(111, s)
_		_	_			

Table 8 (continued)

Coard				[11]	
Jo	~	R 2:	Yield%	(2)da	IR VIBAX CHI' OF NMR(6)
Ex. No.					2 2 2 2 2 2 4 1/24 2 2 44(311 c) 2 72(111 dd. J=8, 15, 811z).
14	o-chlorophenyl	£.×~~	75		0. 70~1. 82(131, m), 2. 40(31, s), 2. 43(31, s), 2. 15. 5Hz), 3. 17(11, dd, J=17.5, 3. 00(11, dd, J=17.5, 10Hz), 3. 07(11, dd, J=15. 5Hz), 3. 17(11, dd, J=10, 5Hz), 3. 98(11, m), 4. 23(111, m), 7. 11(111, s), 7. 81(21, d, J=8. 4Hz), 7. 91(111, d, J=1. 4Hz)
					909 8201 1001 1211 0011 3011 0371 0371
Į ,	Vandagagag	T.Y	79		3360, 2236, 1666, 1514, 1498, 1450, 1566, 1163, 1114, 1654, 1715, 555
3		<u>_</u> [:		0.001 1.000 0.001
	o-methyl-	Ts	ê		3368, 1657, 1607, 1578, 1496, 1452, 1386, 1340, 1189, 1173, 1034, 1076.
16	sulfonyl- aminophenyl	. Z ~ Z	8		
					3360, 1670, 1600, 1510, 1450, 1410, 1385, 1325, 1180, 1135, 1065
11	p-trifluoro-	 ₽.≥	53	113-115	
	sethylphenyl	<u> </u>			

35	30	25	20	15	5 10	
Table 8 (continued)						(
			(11)			1
- -	 	Yield%	Z Z	NMR (6)		
			0. 73~2. 20(1311. m)	0. 73-2. 20(13H. m), 2. 44(3H, s), 2. 75(1H, dd, J=14. 8, 8. 6Hz),	, dd, J=14. 8. 8. 6Hz),	
a-acrpholino-	Ľ.		2. 93~3. 24(311, a),	2. 93~3. 24(3II, a), 3. 5~3. 82(8II, a), 4. 02(1II, a), 4. 23(1II, a).	(111, m), 4. 23(111, m).	
carbonyloxy-	~	81	7. 13(111, d. J=1. 01	7. 13(111, d. J=1, 011z), 7. 35(2H, d. J=8, 0Hz), 7. 35(111, m),	z), 7. 35(111. m).	
pheny1	<u>_</u> _(7. 47(111, t, 3=7.51	7, 47(1H, t, J=7, 5Hz), 7, 60(1H, d, J=10Hz), 7, 67(1H, m),), 7. 67(111, m).	
•			7. 81(211, d. J=8. 41	7. 81(211, d, J=8. 4112), 7. 81(111, s), 7. 91(111, d, J=1, 4112)	111, d, J=1, 411z)	
			0. 70~1. 85(13II, m)	0. 70-1. 85(13II. m). 2. 28(3II. bs). 2. 44(3II. s). 2. 75	II, s), 2, 75	
	TS		(111, dd, J=8. 6, 14.	8llz), 2. 95-3. 27(3ll,	(111, dd, J=8. 6, 14, 811z), 2. 95-3. 27(311, m), 3. 30-3. 94(811, m), 3. 68	
a-morpholino-	.z.	41	(111, dd, J=8. 4. 4.	2112), 4, 02(111, 11), 4, 26	(111, dd, J=8, 4, 4, 2112), 4, 02(111, m), 4, 26(111, m), 7, 14(111, d, J=1, 4112).	<u>.</u>
carbony l pheny l	~ ={	!	7. 36(211, d. J=811z	7. 36(211, d. J=8Hz), 7. 47-7. 69(2H, m), 7. 81(2H, d. J=8. 4Hz).	81(2H, d, J=8. 4Hz).	
•	:		7. 93(111, d.)=1. 21	7. 93(111, d. 1=1. 211z), 7. 98(111, d. 1=1. 611z), 8. 00(111, m)	(z), 8, 00(111, m)	-
			0. 70-2. 15(13II. m	0. 70-2. 15(13II. m). 2. 44(3II. s). 2. 73(1II. dd. J=14. 4. 8. 4IIz).	. dd, J=14. 4. 8. 411z).	
	F		2. 91(JII, dd. J=17.	2. 91(111, dd, J=17, 8, 9. 611z), 3. 09(111, dd, J=14, 6, 4. 211z)	i, J=14. 6. 4. 2llz).	
3. 4-sethylene-	2.2	74	3. 13(111, dd, J=18	. 411z), 3. 67(111, dd, J={	3. 13(111, dd, J=18. 4112), 3. 67(111, dd, J=8. 6, 3. 811z), 4. 00(111, m),	
dioxyphenyl	<u>_</u>		4. 20(111, m), 6. 05	(211, s), 6. 84(111. d, J={	4, 20(111, a), 6, 05(211, s), 6, 84(111, d, J=8, 2Hz), 7, 12(111, d, J=1, 0Hz).	
	(7. 36(211, d. J=8. 0	liz), 7. 40(11!, d, J=1. 61	7. 36(211, d. J=8, 011z), 7. 40(111, d. J=1. 6Hz), 7. 53(111, dd. J=8. 2. 1. 6Hz),	2).
			7. 81(211, d. J=8. 2	7. 81(2H, d, J=8. 2Hz), 7. 92(1H, d, J=1. 4Hz)	(z)	
			0. 70-1. 89(2311. m	0. 70-1. 89(2311. m). 2. 13(311. bs), 2. 33(111. m), 2. 45(111. m).	II. B), 2, 45(1II. B),	
	Ts		2. 47(111, dd. J=17	2. 47(111, dd, J=17. 6. 9. 4112), 2. 66(111, dd, J=15, 2. 6112),	1, J=15, 2. 611z).	
cyclohexyl	<u> </u>	89	2. 71(111, dd, 3=14	2. 71(111, dd, J=14, 9. 411z), 3. 07(111, dd, J=14. 8, 3. 611z).	I=14. 8, 3. 6Hz).	
	<u>~</u> ={		7. 12(111. d. J=1. 2	ilz), 7. 37(2ll, d. J=8. 4)	7. 12(111. d. J=1. 211z), 7. 37(211, d. J=8. 4Hz), 7. 48(1H, d. J=1011z).	
			7. 82(211. d. J=8. 4	82(211, d. J=8. 411z), 7. 94(11, d. J=1. 411z)	(Z)	
			0. 76-2. 20(13!1.	0. 76-2. 20(13H, m), 2. 44(3H, s), 2. 72(1H, dd, J=8. 6. 15Hz),	H, dd, J=8. 6, 15llz),	
			2. 93(111, dd, J=9.	2. 93(111, dd, J=9. 6, 17. 6Hz), 3. 94(1H, dd, J=3. 6, 15Hz)	d, J=3. 6, 15Hz).	
p-acthoxyphenyl	S.2	51	3. 17(1H, dd, J=2.	4. 17. 6llz), 3. 67(1ll, d	3. 17(111, dd, J=2. 4. 17. 6Hz), 3. 67(111, dd, J=4. 8. 6Hz), 3. 88(3H. s).	
			4. 02(111, m), 4. 23	4. 02(111. m), 4. 23(111, m), 6. 93(211, d. J=911z), 7. 27(111. s).	9liz), 7. 27(1ll. s).	
	<u> </u>		7. 36(211, d, J=8. 2	211z). 7. 52(111. d. J=9. 6	7, 36(211, d, J=8, 211z), 7, 52(111, d, J=9, 611z), 7, 81(111, d, J=8, 411z),	
			7. 91(211, d. J=9112	7. 91(211, d, J=911z), 7. 92(111, d, J=1, 811z)	•	

EP 0 468 641 A2

Table 8 (continued)

Coepd				(11)
Jo	ž	ž	Yield%	NMR(6)
Ex. No.				
				0. 7-2. 05(13H, m), 2. 96(1H, dd, J=18, 9. 4Hz), 3. 15(1H, dd, J=14, 2, 7. 8Hz), 3. 21(1H, dd, J=18, 2. 6Hz),
23	phenyl	<u>?</u>	20	3. 36(111, dd.)=14. 2. 4. 2112), 3. 80(111, dd, J=7. 8. 4. 4112), 4. 04(111, m).
		<u></u>	•	4. 24(111, m), 7. 11(111, d. J=1. 6liz), 7. 41~7. 63(311, m).
				7. 94(211, m), 8. 75(111, d, J=1, 8Hz) (mp. 106~107T)
				0.70-1.85(1311, m). 2.04(3H, m), 3.02(1H, dd, J=18.8.6Hz), 3.10-
			-	3. 26(211, m), 3. 36(111, dd, J=14, 4, 4. 2112), 3. 82(111, dd, J=7. 6, 4. 4112).
22	4-pyridy1	<u>در _</u>	2	4. 02(111, m), 4. 26(111, m), 7. 13(111, d, J=1, 6Hz), 7. 59(111, d, J=1011z).
		={	-	7. 71(211, dd, J=4. 6, 1. 6Hz), 8. 76(111, d, J=2Hz).
				8. 82(211, dd. J=4. 6. 1. 6llz) (ap. 118-120t)
				0. 70~1. 87(13H, m). 2. 28(3H, bs). 2. 89(1H, dd, J=17. 6, 9. 4Hz).
				3. 10(111, dd.)=17. 6. 2. 711z), 3. 14(111, dd. J=14. 3. 7. 811z).
52	3-thienyl	γ(72	3. 35(111, dd. 1=14. 3. 4. 1112), 3. 78(111, dd. 1=7. 8, 4. 3112), 4. 00(111. m).
		~ ={		4. 20(111, m), 7. 12(111, d, J=2, 011z), 7. 31(111, dd, J=5. 1, 2. 911z).
		;		7. 52(111, dd. J=5. 1, 1, 2112), 7. 57(111, s), 8. 08(111, dd. J=2, 9, 1, 211z).
				8. 75(1)II, dd. J=2llz)
				0.70-1.90(2411.m), 1.98(311, bs), 2.32(111, m), 2.45(111, dd, J=9.8.1.811z).
				2. 66(111, dd. 1=18. 2. 8Hz), 3. 15(111, dd. 1=14. 7. 4Hz).
56	cyclohexyl	<u>مر</u>	69	3. 35(111, dd. J=14. 4. 3. 8112), 3. 80(111, dd. J=7. 4, 4. 2112), 3. 91(111, m).
		-{	ď.	4. 02(111, m), 7. 13(11, d, J=1. 611z), 7. 50(111, d, J=9. 811z).
			90-93	8. 78(111, d. J=1, 811z)

	50	45	40	35	30	25	20	15	10	5
Table	Table 8 (continued)			,						Г
Compd.	۳.	R.	Yield%(Yield%(C=1.CliC ℓ_3) (Tcnp. C)			11] NMR(6)			I
27	m-2-(N- morpholino)- cthoxyphenyl	27	76	-46. 8 (23. 5)	0.70~2.10(13 1.m), 2 J=9.5.17.9Hz), 3.15 J=4.1.14.6Hz), 3.74 4.22(111, m), 7.11(111 8.75(111, d. J=1.1Hz)	1, m), 2, 59(41, t, J), 3, 15(11, dd, J=7), 3, 74(41, t, J=9, 11(11, br, s), 7, 1	0. 70~2. 10(1311, m), 2. 59(411, t, J=4, 711z), 2. 82(211, t, J=5, 711z), 2. 94(111, dd. J=9, 5, 17, 91z), 3. 15(111, dd. J=7, 6, 14, 611z), 3. 18(111, dd. J=2, 5, 17, 911z), 3. J=4, 1, 14, 611z), 3. 74(411, t, J=9, 311z), 3. 74(111, m), 4, 02(111, m), 4, 15(211, t, 4, 22(111, m), 7, 11(111, br. s), 7, 15(111, d, J=2, 7), 7, 36(111, t, J=8, 2), 7, 45~7, 8, 75(111, d, J=1, 111z)	t, J=5, 7liz), 2, 9 111, dd, J=2, 5, 17 4, 02(111, m), 4, 3 36(111, t, J=8, 2	0. 70~2. 10(1311, m), 2. 59(411, t, J=4, 711z), 2. 82(211, t, J=5, 71iz), 2. 94(111, dd. J=9, 5, 17, 91z), 3. 15(111, dd. J=7, 6, 14, 61iz), 3. 18(111, dd. J=2, 5, 17, 91iz), 3. 34(111, dd. J=4, 1, 14, 61iz), 3. 74(411, t, J=9, 31iz), 3. 74(111, m), 4. 02(111, m), 4. 15(211, t, J=8, 71iz), 4. 22(111, m), 7. 11(111, br. s), 7. 15(111, d. J=2, 7), 7. 36(111, t, J=8, 2), 7. 45~7, 62(211, m), 8. 75(111, d. J=1, 111z)	
28	m-(N-formyl)- methylamino- phenyl	\$\$\frac{1}{2}\$	73		0, 77~1, 85(13) 3, 35(111, m), 3, 7, 13(111, d, J=, 7, 59(111, d, J=)	H, e), 2, 40(211, m), . 60(111, dd, J=4, 3, 2, 0Hz), 7, 38(111, c 9, 7Hz), 7, 79(2H, a	0.77~1.85(13H.m.). 2. 40(2H, m.). 3. 02(1H, dd. J=9. 0.17.9Hz). 3. 17(3H, m.). 3. 34(3 3. 35(1H, m.). 3. 60(1H, dd. J=4. 3. 7. 8Hz). 4. 03(1H, m.). 4. 25(1H, dt. J=2. 1. 8. 2Hz). 7. 13(1H, d, J=2. 0Hz), 7. 38(1H, ddofd, J=8. 0. 1. 2. 2. 3Hz). 7. 52(1H. t. J=7. 52Hz). 7. 59(1H, d, J=9. 7Hz), 7. 79(2H, m.). 8. 52(1H, s). 8. 75(1H, d, J=2. 0)	1, 17, 902), 3, 17 1), 4, 25(10, dt. 2, 302), 7, 52(10) 5(10, d, J=2, 0)	0, 77~1, 85(13H, m), 2, 40(2N, m), 3, 02(1N, dd, J=9, 0, 17, 9Nz), 3, 17(3N, m), 3, 34(3N, s), 3, 35(1N, m), 3, 60(1N, dd, J=4, 3, 7, 8Nz), 4, 03(1N, m), 4, 25(1N, dt, J=2, 1, 8, 2Nz), 7, 13(1N, d, J=2, 0Nz), 7, 38(1N, ddofd, J=8, 0, 1, 2, 2, 3Nz), 7, 52(1N, t, J=7, 52Nz), 7, 59(1N, d, J=9, 7Nz), 7, 79(2N, m), 8, 52(1N, s), 8, 75(1N, d, J=2, 0)	
59	N-methyl-3- pyrrolyl	\$	69	-57. 6 (24)	0. 70~2. 00(13) J=7. 6, 14. 4Hz 3. 99(1H, m), 4 7. 27(1H, s), 7	11, m), 2, 65(111, dd, 1), 3, 35(111, dd, 1=1 1, 13(111, d1, 1=9, 6, 53(111, d, 1=9, 611;	0. 70~2. 00(13H, m). 2. 65(1H, dd, J=9. 8. 16. 8Hz). 2. 94(1H, dd, J=2. 4. 17Hz). 3. 13(1H, J=7. 6. 14. 4Hz), 3. 35(1H, dd, J=4. 2. 14. 6Hz). 3. 69(3H, s). 3. 77(1H, dd. J=4. 2. 8Hz). 3. 99(1H, m). 4. 13(1H, dt. J=9. 6. 2Hz), 6. 56(1H, s). 6. 57(1H, s). 7. 11(1H, d. J=1. 8Hz). 7. 27(1H, s). 7. 53(1H, d. J=9. 6Hz). 8. 76(1H, d. J=2Hz)	94(111, dd, J=2. (311, s), 3, 77(111 6, 57(111, s), 7. iz)	0. 70~2. 00(13H, m), 2. 65(1H, dd, J=9. 8, 16. 8Hz), 2. 94(1H, dd, J=2. 4, 17Hz), 3. 13(1H, dd, J=7. 6, 14, 4Hz), 3. 35(1H, dd, J=4. 2, 14. 6Hz), 3. 69(3H, s), 3. 77(1H, dd, J=4. 2, 8Hz), 3. 99(1H, m), 4. 13(1H, dt, J=9. 6, 2Hz), 6. 56(1H, s), 6. 57(1H, s), 7. 11(1H, d, J=1. 8Hz), 7. 27(1H, s), 7. 53(1H, d, J=9. 6Hz), 8. 76(1H, d, J=2Hz)	- T
30	N-morpholino- methyl	S	52							
31	N-pyperidino- methyl		36							
32	4-pyridyl	I S We	76		0.76~1.90(1; 4.03(1H,m),4	3H. m), 2, 35(3H, bs 1, 25(1H, m), 6, 88(), 2. 67(311, s), 3. 1 111, s), 7. 58(111, d,	4(4H, m), 3, 80(1 J=9, 6Hz), 7, 71(0.76~1.90(13H, m), 2.35(3H, bs), 2.67(3H, s), 3.14(4H, m).3.80(1H, dd, J~4.2, 7.8Hz), 4.03(1H, m), 4.25(1H, m), 6.88(1H, s), 7.58(1H, d, J=9.6Hz), 7.71(2H, m), 8.81(2H, m)	
33	pheny l	₩-95 ×	70		0. 78~1. 75(1; J=7. 8. 15. 3H:	3H, m), 3, 11(4H, m)	0. 78-1, 75(13H, m), 3. 11(4H, m), 4. 07(2H, m), 4. 23(1H, m), 6. 70(1H, s), 7. 41(2H, dd. J=7, 8, 15, 3Hz), 7. 57(1H, t, J=7Hz), 7. 88(2H, d, J=7, 2Hz), 8. 49(1H, s)	(111, a), 6, 70(1) 7, 2Hz), 8, 49(1)	H. s), 7. 41(2H. dd. H. s)	

10			
15			
20			
25			
30			
35			
40			
45			

Table 8 (continued)

Compd. of Ex. No.	٦.	R2	Yield%([α] _{n°} Yield%(C=1, CllCℓ ₃) (Tenp. °C)	NMR(5)
34	34 4-pyridyl	-CONH2	17		
35	4-pyridyl	-Ske	88		0. 70~1. 80(13H, m), 2. 13(3H, s), 2. 73(1H, dd, J=8. 2, 13. 8Hz), 3. 02(1H, dd, J=4. 13. 0Hz). 3. 09(1H, dd, J=8. 6, 15. 2Hz), 3. 20(1H, dd, J=3. 6. 18. 4Hz), 3. 58(1H, dd, J=4. 8. 4Hz). 4. 06(1H, m), 4. 28(1H, m), 7. 58(1H, d, J=10Hz), 7. 72(2H, m), 8. 81(2H, m)

5	T ====================================							
10	R2"		3. 14(7ll, m).), 5). =8. Gllz),		030, 1010		094. 1080
15		(8)	44(311, s), 2, 75~; , 4, 20(311, m), 7, 13~7, 30(611, m) 1, d, J=8, 411z),	70-3.15(711, m). 11. m). 4.15(111, m). 1. 01(z). 7.18(111, s). 1. m). 7.82(211, d. 1.).	7~3. 13(711, m), , 3. 48(111, m), d, J=9. 011z), 1(211, d, J=8. 41tz),	370. 1172. 1115. 10	5, 970, 855	292. 1175. 1117. 1
20	**. \ \$0\$	[13] R v Gax(CG-1) or NMR(6)	(1, 1, 93(111, bs), 2, 1, 91(2), 3, 98(111, m), 4(111, d, 1=9, 411z), 1=8, 411z), 7, 80(21, d, 1=7, 811z)	7. 2. 15(211, bs), 2. (6, 13. 4112), 3. 97(1) 2), 6. 43(111, d. 1=9 1=8. 2112), 7. 54(11 96(111, d. 1=1, 7113)), 2, 43(311, s), 2, 7 1611z), 3, 86(311, s), 7, 711z), 6, 40(111, , 7, 52(211, b), 7, 8(605. 1498. 1450. 1.	1). 1500, 1475, 1179	1477, 1450, 1385, 1
25		[13] R v gax(0. 70-1. 82(1311, a), 1. 32(911, s), 1. 93(111, bs), 2. 44(311, s), 2. 75-3. 14(711, a), 3. 21(111, a), 3. 48(111, dd, J=13. 911z), 3. 98(111, a), 4. 20(111, a), 4. 56(111, ddd, J=6, 6, 611z), 6. 44(111, d, J=9, 411z), 7. 13-7. 30(611, a), 7. 40-7. 63(311, a), 7. 34(211, d, J=8, 411z), 7. 80(211, d, J=8, 411z), 7. 96(211, d, J=7, 812)	0. 70-1. 80(13H. a). 1. 34(9H. s). 2. 15(2H. bs). 2. 70-3. 15(7H. a). 3. 19(1H. a). 3. 51(1H. dd, J-9. 6. 13. 4Hz). 3. 97(1H. a). 4. 15(1H. a). 4. 58(1H. ddd, J-6. 2. 6. 2. 6. 2Hz). 6. 43(1H. d. J-9. 0Hz). 7. 18(1H. s). 7. 05-7. 41(7H. a). 7. 34(2H. d. J-8. 2Hz). 7. 54(1H. a). 7. 82(2H. d. J-8. 6Hz). 7. 87(1H. ddd, J-7. 1, 19Hz). 7. 96(1H. d. J-1. 7Hz)	0. 70-1. 82(1311, m). 1. 33(911, s). 2. 43(311, s). 2. 77-3. 13(711, m). 3. 20(111, m). 3. 49(111, dd. J=9. 1611z), 3. 86(311, s). 3. 48(111, m). 4. 18(111, m). 4. 56(111, ddd. J=7, 7, 711z). 6. 40(111, d, J=9. 011z). 7. 21(111, s). 7. 09-7. 40(711, g). 7. 52(211, m). 7. 80(211, d, J=8. 411z). 7. 87(111, d. J=1. 411z)	3400. 3260. 3140. 1665. 1625. 1605. 1498. 1450. 1370. 1172. 1115. 1030. 1010	3400(br), 1665, 1600, 1599(sh), 1500, 1475, 1175, 970, 855	3696. 3415. 1667. 1598. 1509. 1477. 1450. 1385. 1292. 1175. 1117. 1094. 1080
30			0. 70-1. 82(3. 21(111. a). 4. 56(111. dd. 7. 40-7. 63(7. 89(111. d	0. 70~1. 80(3. 19(111. a). 4. 58(111. dd. 7. 05~7. 41(7. 87(111. dd.	0. 70-1. 82(131, m). 1. 3. 20(111, m). 3. 49(111, 4. 18(111, m). 4. 56(111, 7. 19(11, s). 7. 09-7. 7. 87(111, d. 1=1. 4112)	3400. 3260.	3400(br), 1	3696, 3416.
	R4. ~502/	Yield %	98	73	33	79	76	41
35	+	R ?:	<u></u>	£	× × ×	£ -{	£.≠	× \
40		۳.	[crt-buty]	lert-butyl	[crl-buty]	tert-buty]	tert-butyl	tert-buty]
45	R R 2.	- <u>-</u>	phcny]	o-fluorophenyl tert-butyl	B-mcthoxypheny] terl-buty]	p-methylphenyl tert-butyl	2.4-difluoro- phenyl	1-naphthy1
	Table 9	Compd.	2	က	4	5	9	7

5		
10		
15	T S	
20	. F	
25		>
30	R*'S0 ₂ CII ₂	
35	č	
40	Table 9 (continued)	
45	Table	

Count					[13]
jo	<u>~</u>	χ.	R 2:	Yield	IR v max(cm-1) or NMR(6)
Ex. No.				%	
			T _S		3410, 3360(sh), 1665, 1598, 1510, 1385, 1173, 1116, 1093, 1078
ω	3-thienyl	tert-buty]	<u> </u>	74	
			Ţ		0. 7~1. 82(131, m), 1. 35(91, s), 2. 37(111, bs), 2. 43(311, s). 2. 78~3. 28(811, m), 3. 53(111, dd, J=9. 0, 13. 0112), 3. 97(111, m), 4. 18(111, m).
6	2-thiazolyl	tert-buty]	z^	≅	4. 58(111, ddd, 6. 4, 6. 4, 6. 411z), 6. 35(111, d. 1=9. 011z), 7. 05(111, d. 1=6. 411z),
			<u>*</u>		7, 20(111, s), 7, 13-7, 40(511, a), 7, 33(21, d, J=8, 4112), 7, 168(111, d, J=3, 2112).
					7. 80(211, d. J=8. 4112), 6. 00(111, d. J=1. 2112), 6. 01 (21, d. J=312), 9. 01 (21, d. J=2112), 9. 01 (21, d. J=2
			S	_	3/100, 3300, 3200, 3100, 1000,
2	a-fluorophenyl tert-butyl	tert-butyl	.z/	83	
			<u> </u>		

	40	35	30		25	20	15	10	5
Table	Table 9 (continued)								
2						[13]			
į	- ~	۳٠,	۳.	Yield		I R or NMR	× WN		
è.				8			21. 627. 662.	01 0001 3111 3	
11	p-fluorophenyl	tert-butyl	F. K.	7.1	3410, 3280, 316	3410, 3280, 3160, 1665, 1625, 1600, 1509, 1450, 1155, 1115, 1030, 1010	. 1509, 1450, 115	5. 1115. 1030. IC	2 .
12	2.6-difluoro- phenyl	tert-butyl	ST.N.	97	3420, 1660, 162 1085, 1018	3420, 1660, 1624, 1599, 1499, 1467, 1459, 1385, 1292, 1189, 1175, 1118, 1093, 1085, 1018	. 1459, 1385, 129	12. 1189. 1175. 1	18. 1093.
			į.		0.70~1.80(13ll	0. 70~1. 80(13H, m), 1. 33(9H, s), 2. 42(3H, s), 2. 78~3. 25(7H, m), 3. 50(1H, dd 1=18. 13Hz), 3. 88(3H, s), 3. 95(1H, m), 4. 10(1H, m).	2. 42(3ll, s), 2. 7l 1. s), 3. 95(1ll, m	3~3. 25(7!!, m).), 4. 10(1!!, m).	
13	o-methoxyphenyl tert-butyl	tert-butyl		79	4. 48(111, ddd, J 7. 06~7. 40(911,	4.48(1)1, ddd, J=6.5, 6.5 1z), 6.48(1)1, d. J=9 1z), 6.97(2)1, m). 7.06~7.40(9)1, m), 7.49(1)1, m), 7.73(1)1, dd, J=9.2 1z).	6. 48(1H, d. J=9) 73(1H, dd, J=9.	iz), 6. 97(2ii, m). 2iiz).	_
					7. 79(211, d, J=8	7. 79(211, d, J=8Hz), 7. 84(111, s)			
			Ş.:		0. 70-1. 80(13) 3. 50(11), dd. J*	0. 70-1. 80(13H, w), 1. 31(9H, s), 2. 40(3H, s), 2. 80-3. 22(7H, w). 3. 50(1H, dd, J=15, 7. 5Hz), 3. 93(1H, w), 4. 09(1H, w), 4. 51(1H, ddd, J=6. 4.	2. 40(3!!, s), 2. 8 III. a), 4. 09(1!!.	0-3. 22(7H, m). m). 4. 51(1H, ddd	, J=6. 4.
14	o-chlorophenyl tert-butyl	tert-buty]	<u>-</u> (æ	6. 4. 6. 4liz). 6. 7. 78(2ll. d. J={	6. d. 6. diiz), 6. 29(1H, d. J=10liz), 7. 03~7. d1(8ii, n), 7. 53(1ii, n.). 7. 78(2ii, d. J=8. qiiz), 7. 78(1ii, d. J=1. diiz)	, 7. 03~7. 41(811, J=1. 411z)	n), 7. 53(111. m),	
15	-cyanopheny]	tert-butyl	£-×~≥	84	3408, 2236, 16(1079, 908	3408, 2236, 1668, 1599, 1508, 1478, 1450, 1368, 1291, 1190, 1175, 1117. 1079, 908	8, 1450, 1368, 12	91. 1190. 1175. 1	117.
16	o-mcthyl- sulfonyl- aminophenyl	tert-buty]			3420, 1666, 16 1079, 968, 909	3420, 1666, 1607, 1578, 1499, 1452, 1387, 1340, 1290, 1174, 1155, 1117. 1079, 968, 909	2, 1387, 1340, 12	90, 1174, 1155, 1	117.
11	p-trifluoromety] tert-butyl	tert-butyl	S. X	85	3400-3200.31 1065	3400-3200. 3140, 1665, 1625, 1600, 1510. 1450. 1410. 1325, 1175, 1135, 1115 1065	16, 1510, 1450, 14	110. 1325. 1175.	1135, 1115

5	
10	
15	- Article School of the second
20	H H H H H H H H H H H H H H H H H H H
25	
30	R4' —S02CII2
35	~
40	Table 9 (continued)
45	Table

Coand					[13]
	œ	×.	R 2.	Yield	NMR(6)
5 ,	•			%	
EX. NO.				:	n 70-1 82(1311 a), 1, 90(111, bs), 1, 32(911, s), 2, 43(311, s),
			Ţ.		2, 74-3, 30(711, m), 3, 49(111, dd, J=14, 1011z), 3, 52-3, 82(811, m), 3, 96(111, m).
ĕ	morpholino-	tert-buty]	. <u>z</u>	79	4. 16(111, a), 4. 54(111, ddd, J=6. 2, 6. 2, 6. 211z). 6. 40(111, d. J=9. 411z).
	carbony loxypheny		~ ={		7. 10-7. 40(711. m), 7. 33(211. d. J=8. 211z), 7. 48(111. t. J=7. 511z), 7. 70(111. m).
			:		7. 80(2H, d, J=8, 4Hz), 7. 80(1H, m), 7. 89(1H, d, J=1, 2Hz)
					0.7-1.82(13H, m), 1.32(9H, s), 2.43(3H, s), 2.70-3.30(8H, m),
			Ts		3. 48(111, dd, J=9. 4, 12, 8Hz), 3. 30~3. 90(8H, m), 3. 99(111, m), 4. 20(111, m),
91	m-morpholino-	tert-buty]	.z.	8	4. 53(111, ddd, J=6. 2, 6. 2, 6. 2112), 6. 42(111, d. J=9. 4112), 7. 08~7. 31(611. m),
:	carbonylphenyl		~ ={		7. 34(211, d, J=8, 2Hz), 7. 45~7. 68(211, m), 7. 81(211, d, J=8. 411z).
					7, 91(111, d, J=1, 411z), 8, 05(211, m)
					0.7-1.8(1311, m), 1.9(111, bs), 1.33(911, s), 2.44(311, s), 2.74-3.30(711, m).
					3.50(111, dd, J=9.2, 13Hz), 3.96(1H, m), 4.16(1H, m),
	R. 4' -methylene- tert-butyl	tert-butyl	Ts	88	A. 56(1H, ddd, J=6. 4, 6. 4, 6. 4Hz), 6. 06(2H, s), 6. 40(1H, d, J=9. 2Hz),
	dioxyphenyl		.z/		6. 85(111, d, J=8. 2Hz), 7. 25(6H, a), 7. 34(111, d, J=8. 2Hz),
			<u>-</u> [7. 45(111, d. 1=1. 6112), 7. 56(111, dd, 1=8. 2. 1. 6112).
					7. 80(211, d. J=8. 411z), 7. 85(111, d. J=1. 411z)

Table 9 (continued)

Compd.					[13]
jo	R.	÷ ≎	R 2.	Yield	NMR(6)
Ex. No.				%	
			Ţ		0. 70-1. 90(2311, a), 1. 34(911, s), 2. 33(111, a), 2. 44(311, s),
21	cyclohexyl	tert-buty1	3-₹	98	86 2. 78~3. 27(8II, m), 3. 50(1II, dd. J=12. 0. 8. 4IIz), 3. 86(1II, m), 3. 96(1II, m).
					4. 54(111, ddd, J=6. 2, 6. 2, 6. 2112), 6. 35(111, d. J=10112), 7. 13-7. 34(611, m).
			Ž		7. 37(211, d. 1=8, 4112), 7. 82(211, d. 1=8. 4112), 7. 90(111, d. 1=1. 4112),
					0. 72-1. 80(1311, a), 0. 90(111, bs), 1. 33(911, s), 2. 43(311, s).
					2. 78-3. 12(711, m), 3. 20(111, m), 3. 49(111, dd, J=9. 4, 13. 2112), 3. 88(311, s),
22	p-methoxyphenyl tert-butyl	tert-butyl	۳. <u>.</u>	87	87 3. 97(111, dd. J=9.4, 13. 211z), 3. 88(311, s), 3. 97(111, ddd. J=7. 4, 7, 4, 7, 41tz),
			<u>_</u>		4. 17(111, a), 4. 57(111, ddd, J=6. 6, 611z), 6. 42(111, d, J=9. A11z),
			<u> </u>		6. 94(211, d. J=9112), 7. 16-7. 26(611, m), 7. 22(111, s), 7. 34(211, d. J=8112),
					7, 79(211, d. 1=8, 411z), 7, 84(111, d. 1=1, 211z), 7, 94(211, d. 1=911z)

55	50		45	40		35	30	25	20	15	10	5
Tab	Table 9 (continued)	inued)			R* - X	R3 NII	, R ²	- - -				
						= 0	O					
Compd.									[13] ([1A])	A])		
of Ex No	~	R2	ž.	×	R.	Yield%			NMR(5)	۶)		
23	pheny1	S_7	⊘	CH2	+ 202	86	0. 7~1. 88(13H, m), 1. 32(9H, s), 2. 83~3. 55(9H, m), 3. 96(1H, m), 4. 15(1H, m), 4. 74(1H, ddd, J=5. 6Hzx3), 6. 32(1H, d. J=9. 8Hz), 7. 13(1H, d. J=2Hz), 7. 25(5H, m), 7. 47(2H, t, J=7. 8Hz), 7. 57(1H, d. J=7. 8Hz), 7. 96(2H, d. J=7. 2Hz), 8. 65(1H, d. J=7. 2Hz), 8. 65	5. 6l(z×3), 6. 3 8l(z), 7. 57(11),	. 2. 83~3. 55(2(111, d. J=9. . d. J=7. 811z)	911, m), 3, 96 8112), 7, 13(, 7, 96(211, d	(111, m), 4, 15 111, d, J=2112) , J=7, 2112), 8	(111, m). . 7. 25(511, m). . 65(111, d.
							1-2112) 3 00(11 m) 3 00(11 m) 3 00(11 m) 3 00(11 m)	1 10/01 5	1 89/911 1	c) 9 86~3	50(9) m) 3	04(1H m)
76	6-pvridv1	\(\)	0		+ S0,	98	0. 60~1. 60(151, m), 1. 53(51), 5), 1. 60(21), 63, 2. 50, 5; 50, 5; 50(21), 2, 50, 20; 50(21), 4. 1-0. 612), 4. 15(111, m), 4. 66(111, ddd, 1=6112×3), 6. 33(111, d, 1=9, 2112), 7. 16(111, d, 1=0, 6112),	6(111, ddd, J=6). 1. 66(24. L 112×3). 6. 33(111, d, J=9, 2	Hz), 7, 16(11	I, d, J=0, 6Hz).
5		<u> </u>	<u> </u>		•		7. 28(5H, m), 7. 65(1H, d, 1=6Hz), 7. 82(2H, bs), 8. 69(1H, d, 1=0. 6Hz), 8. 82(2H, bs)	5(111, d. J=611z), 7. 82(2II, t	18). 8. 69(11	, d, J=0. 6llz,	, 8. 82(2II, bs)
							0.65~1.82(1311, m), 1.33(911, s), 2.82~3.55(911, m), 3.95(111, m), 4.15(111, m).	m), 1.33(911, s), 2, 82~3, 55	(911, m), 3. 9	5(111, m), 4.	(5(1H, m).
52	3-thienyl	S	0	CII2	+ 202	79	4. 72(1H, ddd, J=6llzx3), 6. 33(1ll, d, J=9. 4Hz), 7. 14(1H, d, J=2Hz), 7. 17~7. 38(6H m) 7. 55(1H, dd, J=5. 2. 1. 4Hz), 7. 55(1H, s), 8. 20(1H, dd,	=611z×3), 6. 33(111, d, J=9, 41 J=5, 2, 1, 41	Iz), 7. 14(1H Iz), 7. 55(1H	, d, J=2ftz). , s), 8, 20(1 ¹	ł, dd,
		<u> </u>	}-				J=1, 2, 2, 8Hz), 8, 67(111, d, J=2Hz)	3. 67(111. d. J=2	IIz)			
		8	(0	į	6	0.0	0.7~2.00(2411.m).1.35(911.s), 2.32(111.m), 2.88~3.58(911.m), 3.83(111.m), 2.02(11.m), 3.02(11.m), 4.02(11.m), 4.02	1. 35(911, s)	7. 2. 32(111. m.)), 2, 88~3, 58 20(11 d_1=9	(911, m), 3, 8; (812), 7, 16;	3(1H, m), (1H, d, J=2Hz).
93	cyclonexyl	-\ -\	<u></u>	5	? ├ -	5	7. 27(5H, m), 7. 50(1H, d. J=5. 8Hz). 8. 71(1H, d. J=2. 2Hz)	50(1H, d. J=5. 8	112). 8. 71(1)	I, d, J=2, 2Hz	(;	
	m-2-(N-						0.6~1.8(1311, m), 2.60(411, m), 2.84(211, t, J=11.211z), 2.89~3.62(911, m).), 2. 60(411. m),	2. 84(211, t.	J=11, 2llz), 2	2. 89~3. 62(9	H. m).
27	morpholina	ر کان	<u>(</u>	CH2	+ 502	91	3.75(411, m), 3.95(111, ddd, J=7.8112x3), 4.18(211, t. J=5.412), 4.18(111, m)	95(111, ddd, J=	7. 8liz×3), 4.	18(2H, t, J=t	5. 4Hz). 4. 18	(111, a).
	ethoxy-		<u>-</u>				4.73(1H. ddd, J=5.2Nz×3), 6.32(1H, d, J=9.4Hz), 7.14(1H, d, J=2Hz), 7.14(1H, m),	=5. 2112×3), 6.	32(11, d, J=9	. 4Hz), 7. 141	(111, d, J=2Hz). 7. 14(1H, m).
	phenyl	:					7. 22~7. 56(3H, m), 8. 67(1H, d. J=2Hz)	m), 8, 67(111, d.	J=2liz)			

21 1	Table 9 (continued)		40		35	30	25	([V]) [E1]	15	10	5
R² R³	R3		×	~	Yield%			NMR(&)	8)	10720	
◇	<u></u>) O III	NS02	91	0. 60-1. 78(13H, m), 2. 51(2H, m), 2. 84(4H, m), 3. 17(2H, m), 3. 37(3H, s). 3. 40(5H, m), 3. 54(1H, dd, J=4, H, 10Hz), 3. 96(2H, m), 4. 14(1H, m), 4. 74(1H, m), 5. 20(1H, d, J=5, 7Hz), 6. 60(1H, d, J=6, 6Hz), 7. 15(1H, d, J=1, 9Hz), 7. 34(5H, m), 7. 53(1H, t, J=8, 9Hz), 7. 89(2H, m), 8. 61(1H, s), 8. 84(1H, d, J=2, 1Hz), 9. 26(1H, d, J=7, 2Hz)	60~1, 78(13H, m), 2, 51(2H, m), 2, 84(4H, m), 3, 17(2H, m), 3, 37(3H, s), 40(5H, m), 3, 54(1H, dd, J=4, 1, 10Hz), 3, 96(2H, m), 4, 14(1H, m), 4, 74(1H, m), 20(1H, d, J=5, 7Hz), 6, 60(1H, d, J=6, 6Hz), 7, 15(1H, d, J=1, 9Hz), 7, 34(5H, m), 53(1H, t, J=8, 9Hz), 7, 89(2H, m), 8, 61(1H, s), 8, 84(1H, d, J=2, 1Hz), 26(1H, d, J=7, 2Hz)), 2. 84(4H, m) 1, 10Hz), 3. 9(i, d, J=6. 6Hz), i, m), 8. 61(1H,	s, 3, 17(2H, m), (2H, m), (2H, m), 4, 14, 14, 17, 15(1H, d, J, s), 8, 84(1H, s), 8, 84	. 3. 37 (3H. s.). (1H. m.). 4. 74 (=1. 9Hz.). 7. 34 d, J=2. 1Hz.).	1H. m). (5H. m).
	ۍ ⊘-	၁	CII2	+ 802	85	0. 70~1. 80(13H, m), 2. 63(1H, dd, J=9. 6, 16. 8Hz), 2. 80(1H, dd, J=2. 5, 16. 8Hz). 2. 95(2H, m), 3. 07~3. 33(3H, m), 3. 48(2H, m), 3. 69(3H, s), 3. 90(1H, ddd. J=7. 4Hzx3), 4. 06(1H, m), 4. 75(1H, ddd, J=5. 6Hz), 6. 36(1H, d, J=9. 6Hz). 6. 57(1H, s), 6. 58(1H, s), 7. 11(1H, d, J=1. 8Hz), 7. 28(6H, m), 7. 49(1H, d, J=6. 8 8. 69(1H, d, J=2Hz)	70~1.80(13H, m), 2.63(1H, dd, J=9.6, 16.8Hz), 2.80(1H, dd, J=2.5, 16.8Hz), 95(2H, m), 3.07~3.33(3H, m), 3.48(2H, m), 3.69(3H, s), 3.90(1H, ddd. 7.7, 4Hzx3), 4.06(1H, m), 4.75(1H, ddd, J=5.6Hz), 6.36(1H, d, J=9.6Hz), 57(1H, s), 6.58(1H, s), 7.11(1H, d, J=1.8Hz), 7.28(6H, m), 7.49(1H, d, J=6.8Hz), 69(1H, d, J=2Hz)	(d. J=9. 6. 16. (d. 3. 48(211, m)) (111, ddd, J=5) ((111, d, J=1. 8)	8liz), 2. 80(11) 3. 69(31), 5), 612), 6. 36(1) liz), 7. 28(64),	a, dd, J=2, 5, 16 3, 90(11, ddd. 11, d, J=9, 6Hz) 11, 7, 49(111, d	. 8llz). . J=6. 8llz).
	<u>2</u>	Ž	HN	ONSO ₂	48	0. 58~2. 00(13H, m), 2. 58(8H, m), 2. 98(3H, m), 3. 27(4H, m), 3. 60(1H, dd. J=4, 8, 14, 8Hz), 3. 80(6H, m), 4. 15(2H, m), 4. 78(1H, m), 5. 03(1H, d, J=4, 6. 60(1H, d, J=9, 4Hz), 7. 18(1H, d, J=1, 8Hz), 7. 44(1H, s), 7. 45(1H, ddd. 7. 61(1H, t, J=7, 2Hz), 7. 72(1H, t, J=7, 0Hz), 7. 86(1H, d, J=8, 2Hz), 7. 9 J=7, 0Hz), 8. 42(1H, d, J=8, 2Hz), 8. 86(1H, d, J=1, 8Hz), 9. 45(1H, d, J=7, 0Hz), 8. 45(1H, d, J=7, 0	0. 58~2. 00(13H, m), 2. 58(8H, m), 2. 98(3H, m), 3. 27(4H, m), 3. 60(1H, dd. 1 - 4. 8. 14. 8Hz), 3. 80(6H, m), 4. 15(2H, m), 4. 78(1H, m), 5. 03(1H, d, 1 - 4. 5Hz), 6. 60(1H, d, 1 - 9. 4Hz), 7. 18(1H, d, 1 - 1. 8Hz), 7. 44(1H, s), 7. 45(1H, ddd, 1 - 7Hzx3), 7. 61(1H, t, 1 - 7. 2Hz), 7. 72(1H, t, 1 - 7. 0Hz), 7. 86(1H, d, 1 - 8. 2Hz), 7. 94(1H, d. 1 - 8. 2Hz), 7. 86(1H, d. 1 - 8. 2Hz), 7. 94(1H, d. 1 - 7. 94(1H, d. 1 - 8. 2Hz), 8. 66(1H, d. 1 - 1. 8Hz), 9. 45(1H, d. 1 - 7. 8Hz)	b). 2. 98(311, m 1. 15(211, m). 4 11, d, J=1. 81(z) 11, t, J=7. 01(z) 12). 8. 86(111, d), 3. 27(4H, m), 7. 78(1H, m), 5. 7. 44(1H, s), 7. 86(1H, d), 1=1, 8Hz), 9	7. 45(1H, dd, 1=4. 7. 45(1H, ddd, 1=8. 2HZ), 7. 95(1H, ddd, 1=8. 2HZ), 7. 94. 45(1H, d, 1=7.	5Hz). J=7Hzx3). I(1H. d. 8Hz)
<u></u>		_	H H	00NS02	28	0. 60~2. 08(19) 3. 28(21, s). 3. 5. 07(11, bs), (J=7. 012x3), 7. 7. 94(11, d. J=" J=7. 41z)	0. 60~2. 08(1911, m), 2. 54(711, m), 2. 71(211, m), 2. 99(311, m), 3. 22(111. m). 3. 28(211, s), 3. 60(111, dd, J=5, 1511z), 3. 80(211, m), 4. 14(211, m), 4. 80(111, m), 5. 07(111, bs), 6. 64(111, d, J=8, 611z), 7. 18(111, d, J=1. 811z), 7. 45(211, ddd, J=7. 012x3), 7. 60(111, t, J=6. 611z), 7. 70(111, t, J=6. 611z), 7. 86(111, d, J=8. 611z), 7. 94(111, d, J=7. 811z), 8. 24(111, d, J=8. 611z), 8. 84(111, d, J=1. 811z), 9. 34(111, d, J=7. 411z)	m), 2. 71(2H, n , 15Hz), 3. 80(, 6Hz), 7. 18(1 6Hz), 7. 70(1H H, d, J=8. 6Hz)), 2. 99(31, m (21, m), 4. 14((1, d, J=1, 8Hz 1, t, J=6, 6Hz)), 8. 84(111, d,	2H, m), 4, 80(11, m), 7, 45(2H, dd), 7, 45(2H, dd), 7, 86(1H, d, J) 1=1, 8Hz), 9, 3	1, m), 1, =8. 6Hz), 4(111, d.
	<u></u>		E Z	ONSO,	95	0. 78~1. 68(13 3. 43(4H, m). 3 J=5Hz). 6. 70(8. 85(2H, bs).	0. 78~1. 68(13H, m), 2. 45(2H, m), 2. 75(3H, s), 2. 83(3H, m), 3. 10(3H, m), 3. 43(4H, m), 3. 45(2H, m), 3. 97(2H, m), 4. 12(1H, m), 4. 75(1H, m), 5. 16(1H, d, 1=5Hz), 6. 70(1H, d, J=9, 4Hz), 6. 92(1H, s), 7. 33(5H, m), 7. 82(2H, bs), 8. 85(2H, bs), 9. 22(1H, d, J=7. 6Hz)	m), 2, 75(3H, 3) 77(2H, m), 4, 1 7, 6, 92(1H, s) 7, 6Hz)	s), 2, 83(3H, m 2(1H, m), 4, 75 7, 33(5H, m),	7, 3, 10(3H, m) (1H, m), 5, 16(7, 82(2H, bs),	18. d.

Table 9 (continued)

			<u> </u>	;	-		[13] ([1 A])
R' R' K' K'	ž ×	×		×		Yield%	NMR(6)
pheny1 CHO CH2 + SO2	i⊓ ⊝-	1 □ □		+ 802		71	0.70~1.85(13H, m), 1.30(9H, s), 2.84(1H, m), 3.14(7H, m), 3.46(1H, m), 4.06(1H, m), 4.13(1H, ddd, J=7Hz), 4.63(1H, m), 6.40(1H, d, J=10Hz), 6.79(1H, s), 7.25(5H, m), 7.48(2H, t, J=7.5Hz), 7.57(1H, m), 7.97(2H, m), 8.51(1H, m)
4-pyridy] -CONII2 OOO NII OONSO2	8	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	NII O NSO 2	NS02		70	0.79~1.78(13H, m), 2.10(2H, m), 2.50(2H, m), 2.68(3H, m), 2.96(4H, m), 3.13(2H, m), 3.93(1H, dd, J=3.6, 14, 2Hz), 4.05(1H, m), 4.21(2H, m), 4.78(1H, m), 7.28(1H, d, J=9.0Hz), 7.44(2H, d, J=4.4Hz), 7.58(2H, m), 7.88(4H, m), 8.20(1H, d, J=7.8Hz), 8.50(1H, d, J=8.0Hz), 8.80(2H, bs)
4-pyridyl -Ske OO NII ONSO2	-SWe	NII OOO	NII O NSOz	ZOSN O	1	84	0.80~1.80(13H, m), 2. 14(3H, s), 2. 63(2H, m), 2. 96(1H, m), 3. 26(3H, m). 3.49(4H, m), 3.98(1H, dddd, J=5.0Hz×4), 4. 12(1H, m), 4. 25(1H, m), 4. 65(1H, ddd. J=5.8Hz), 4. 99(1H, d, J=5.4Hz), 6. 90(1H, d, J=10Hz), 7. 30(5H, m), 7. 78(2H, bs), 8. 83(2H, bs)
4-pyridyl S OO CH2 + SO2			CH ₂ + SO ₂	+ 802		88	0. 78~1. 80(13H, m), 2. 95~3. 55(10H, m). 3. 99(1H, ddd, J=7. 8Hz), 4. 18(1H, m). 4. 63(1H, ddd, J=5. 6Hz), 6. 39(1H, d, J=9. 4Hz), 7. 11(1H, d, J=1. 8Hz), 7. 38(2H, d, J=5. 2Hz), 7. 58(3H, m), 7. 76(3H, m), 7. 89(1H, m), 8. 03(1H, d, J=7. 8Hz). 8. 54(1H, d, J=1. 8Hz), 8. 80(2H, bs)
phenyl TS OO CH2 > S0.	TS (OO) CH2 Y-S02	CH1 > 802	CH, YSO,	- S02		68	0.70-1.82(13H, m). 1.22(3H, d, J=7Hz). 1.30(3H, d, J=7Hz). 1.90(1H, bs). 2.43(3H, s). 2.72-3.23(8H, m), 3.49(1H, dd, J=13.2, 9.6Hz). 3.99(1H, m). 4.19(1H, m). 4.57(1H, ddd, J=6Hzx3). 6.40(1H, d, J=9.4Hz). 7.96(2H, d. J=6.8Hz). 7.15-7.32(6H, m). 7.34(2H, d. J=8.4Hz). 7.42-7.63(3H, m). 7.85(2H, d. J=8.4Hz). 7.85(1H, d. J=8.4Hz)
phenyl TS CH ₂ SO ₂	8	CH ₂ SO ₂	CII1 > SO1	~ SO.		86	0. 70~1. 83(1311, m), 1. 23(311, 1. 1=7. 412), 2. 43(311, s), 2. 20(211, bs), 2. 65~3. 24 (811, m), 3. 50(111, dd, 1=9. 6. 11. 211z), 4. 00(111, m), 4. 19(111, m), 4. 57(111, ddd, 1=6. 211zx3), 6. 43(111, d. 1=9. 411z), 7. 06~7. 40(811, m), 7. 40~7. 63(311, m), 7. 80(211, d. 1=8. 411z), 7. 88(111, s), 7. 97(211, d. 1=1. 811z)

	50	45		40		35	30	25	20	15	10	5
Tabl	Table 9 (continued)	(panu								:		
ompd.								[]	[13] ([1A])			
of r. No.	<u>ج</u>	۳. د	ŭ t	×	۳.	Yield%			NMR(6)			
39	pheny1	S T	00	CII2 (CII ₂ 0 N A	76	0. 70~1. 80(1311, m), 2. 28(111, dd, J=6. 2. 16. 4Hz), 2. 66(111, dd, J=4. 16. 8Hz), 2. 92(311, m), 3. 05~3. 75(1211, m), 4. 06(111, m), 4. 19(111, m), 4. 79(111, dd, J=6. 2Hz), 6. 78(111, d, J=1011z), 7. 18(111, d, J=1. 8Hz), 7. 30~7. 57(711, m), 7. 77(111, d, J=7. 8Hz), 7. 88(111, m), 8. 04(311, d, J=6. 4Hz), 8. 69(111, d, J=1. 8Hz)	5~3.75(1211, ad, 5~3.75(1211, m), 1z).7.18(111, d, 111, m).8.04(311,	J=6. 2. 16. 4Hz 4. 06(1H. m). 4 J=1. 8Hz). 7. 3 m). 8. 29(1H. d	19(11, a), 4. 7 19(11, a), 4. 7 1-7. 57(711, a), 1=6. 41z), 8. 8	, J=4, 16, 8Hz), 79(1H, ddd, J=, 7, 77(1H, d, 69(1H, d, J=1,	3. 2Hz).
40	pheny l	Z-2	00	CII2	CII ₂ ON A	81	0.80~1.80(13H, m), 2.40(3H, s), 2.90~3.75(17H, m), 4.06(1H, m), 4.22(1H, d, J=9.2Hz), 4.63(1H, ddd, J=5Hz), 6.87(1H, d, J=9.6Hz), 7.18~7.59(9H, m), 7.74~8.14(10H, m)	m), 2, 40(311, s), 111, ddd, J=511z), n)	2. 90~3. 75(17 6. 87(111, d. J=	H. m). 4. 06(1H. 9. 6Hz). 7. 18~'	7. 59(9!!. m).	-i
14	4-pyridyl	2		CII2	CII ₂ O N U	76	0.70~1.79(13H, m). 2.25(1H, dd. J=6.6,17Hz), 2.74(1H, dd. J=3.8, 16.8Hz), 2.88(1H, dd. J=3.6,16Hz), 2.96(3H, m), 3.08~3.64(10H, m)3.75(1H, dd. J=4.8,13Hz), 4.12(2H, m). 4.75(1H, ddd. J=5.8Hz×3), 6.82(1H, d. J=9.4Hz), 7.19(1H, d. J=2Hz), 8.77(2H, bs), 7.28(1H, d. J=7.6Hz), 7.41(1H, t. J=7Hz), 7.54(2H, m), 7.78(1H, d. J=8Hz), 7.87(3H, m), 8.03(1H, m), 8.46(1H, d. J=6.2Hz), 8.71(1H, d. J=2Hz)	m), 2, 25(111, dd, 6, 16112), 2, 96, 12(211, m), 4, 75, 2), 8, 77(211, bs, 8(111, d, J=8112), 2)	(311, m), 3. 08~3 (311, m), 3. 08~3 (111, ddd. 1=5. 8), 7. 28(111, d. 1 , 7. 87(311, m), 8	2. 74(111, dd. J . 64(1011, m)3. Hzx3). 6. 82(1 =7. 611z). 7. 41 . 03(111, m). 8.	=3. 8. 16. 8112) 75(111, dd. 11, d. J=9. 4112) (111, 1. J=7112) 46(111, d. J=6.	2112).
42	4-pyridyl	£ - ====	(O)(O)	CII2	CII.	79						
43	4-pyridyl		\Diamond	NH	ONSO.	95	0. 70-1. 90(13H, m), 2. 49(2H, m), 2. 87(3H, m), 3. 15(3H, m), 3. 41(4H, m), 3. 57(2H, m), 3. 97(2H, m), 4. 11(1H, m), 4. 74(1H, m), 5. 11(1H, d, J=5Hz), 6. 59(1H, d, J=9, 2Hz), 7. 15(1H, d, J=2Hz), 7. 32(5H, m), 7. 85(2H, m), 8. 85(1H, d, J=2Hz), 8. 85(2H, m), 9. 34(1H, d, J=7Hz)	m), 2, 49(2ll, m) 17(2ll, m), 4, 11(11l, d, J=2llz), 7 14(1ll, d, J=7llz)	. 2. 87(3H, m), 8. 11H, m), 4. 74(1H	. 15(3H, m), 3. I. m), 5. 11(1H, 5. (2H, m), 8. 85	41(411, m). d, J=5Hz), 6. E 5(111, d, J=2llz)	9(1H, d,
44	4-pyridyl	SI		E Z	oSNO0	96	0. 76~1. 86(13H, m). 1. 95(2H, m). 2. 50(2H, m). 2. 66(2H, m). 2. 88~3. 29(6H, m). 3. 58(1H, dd. J=5. 15Hz). 3. 98(1H, m). 4. 13(3H, m). 4. 79(1H, m). 5. 05(1H, d. J=4. 5Hz). 6. 63(1H, d. J=10Hz). 7. 17(1H, d. J=1. 7Hz). 7. 43(2H, m). 7. 59(2H, m). 7. 88(4H, m). 8. 69(1H, m). 8. 85(1H, d. J=2Hz). 8. 55(2H, bs). 9. 51(1H, d. J=7Hz)	m), 1, 95(2H, m) 5, 15Hz), 3, 98(1 (1H, d, J=10Hz), 39(1H, m), 8, 85(1, 2, 50(2H, m), H, m), 1, 13(3H, 7, 17(1H, d, J=1), HH, d, J=2Hz), H	., 66(2H, m), 2. m), 4, 79(1H, m i, 7Hz), 7, 43(2 i, 55(2H, bs), 9	88~3. 29(6H. n a), 5. 05(1H, d. 2H, m), 7. 59(2H 3. 51(1H, d. J=). . m). Hz)

Table 9 (continued)

1 100	Yield%	R4 Yield%	Yield%	R4 Yield%	X R Yield%
- - 1	94	94		94	NII 0 NS02 94
と B ひ B	88	NSO ₂ 89	88	NSO ₂ 89	NH Me NSO ₂ 89
	90 4.	90 4.	0.4.2.4	90 4.	NII 00 00.
을 다 다. 다	94	94 3.	NII OON 94 3.	NII OON 94 3.	94 3.
음주주구의	0. 82~1. 80(13H, m), 2. 19(2H, m), 2. 33(2H, m), 2. 60(4H, m), 2. 77~3. 25(6H, m), 77 3. 43(7H, m), 3. 74(4H, m)3. 83(1H, dd, J=5. 15Hz), 3. 98(1H, m). 4. 21(3H, m). 4. 63(1H, m), 4. 76(1H, dddd, J=5. 2Hz×4), 4. 76(1H, m), 6. 64(1H, d. J=9. 8Hz), 7. 12(1H, d. J=1. 4Hz), 7. 15(1H, m), 7. 41(3H, m), 7. 55(3H, m), 7. 67(2H, m), 7. 84(2H, m), 8. 17(1H, m), 8. 54(1H, d. J=2Hz)	7.7	77	77	
상 슬 등 위	0. 60-1. 80(13H, m). 3. 08(5H, m). 3. 33(4H, m). 3. 57(2H, m). 3. 64(4H, m). 4. 05(1H, m), 4. 18(1H, m). 4. 65(1H, m). 4. 95(1H, bs). 6. 87(1H, d. 1=9.8Hz). 7. 17(1H, d. 1=1. 2Hz). 7. 30(5H, m). 8. 17(2H, m). 8. 58(1H, d. 1=9Hz). 8. 70(1H, d. 1=1. 2Hz). 8. 84(2H, m).	% 9, 9, 83	83	% 9, 9, 83	NH ON S

•	_	1
•	ť	3
	ò	3
		ζ
		,
- (C	=
٠,	,	4
		۰
7		
•	2	3
- 1	C	,
- 4		1
Ċ		,
-		
_		
C	7	3
•	٠	•
7	۰	•
_	Ξ	•
4	ü	2
		i

3							
COMPG.							[13] (f I A 1)
ō	<u>-</u>	<u>ج</u>	z Z	×	24		
Ex. No.						Yield%	NMR(6)
51	m-2-(N- morpholi- no)ethoxy- phenyl			CII2	CII ₂ 0 0 0	70	0. 70~1. 80(1311, m). 2. 28(111, dd, J=6. 6, 17. 5112). 2. 56(411, m). 2. 68(111, dd. J=4. 16. 612). 2. 80(311, m). 2. 95(111, m). 3. 18(211, m). 3. 35(41, m). 3. 50(211, m). 3. 63(111, dd, J=5. 4. 12112). 3. 71(411, t, J=4. 4112). 3. 87(111, d. J=7. 4112). 4. 05(111, m). 4. 16(311, t. J=5. 6112). 4. 77(111, ddd, J=6. 4112x3). 6. 79(111, d. J=7. 6112). 7. 09(111, dd. J=2. 4. 8112). 7. 18(111, d. J=1. 8112). 7. 35(311, m). 7. 54(311, m). 7. 63(111, d. J=7. 8112). 7. 77(111, d. J=7. 6112). 7. 88(111, m). 8. 02(111, m). 8. 28(111, d. J=6. 4112). 8. 70(111, d. J=1. 8112).
- 52	52 cyclohexyl		0	II.	() >-0	94	0. 78(23II, m), 2. 22(2II, m), 2. 38(2II, m), 2. 58(2II, m), 3. 00(3II, m), 3. 48(6II, m), 3. 82(1II, dd, J=5, 14, 6IIz), 3. 82(1II, m), 3. 98(1II, m), 4. 63(1II, m), 4. 74(1II, ddd, J=8. 8IIz), 6. 56(1II, d, J=8. 8IIz), 7. 12(1II, d, J=1. 8Iz), 7. 44(2II, m), 7. 58(2II, dt, J=1. 8, 6. 4IIz), 7. 80(1II, m), 7. 89(1II, m), 8. 11(1II, d, J=7. 8IIz), 8. 22(1II, d.
							J=7, 2llz), 8, 54(1ll, d. J=1, 8llz)

EP 0 468 641 A2

70	40 45	35	30		25	20	15	10	5
o ⁱ	Table 9 (continued)								
-	$[\alpha]$	Molecular formula	गुज	Calcd	Sd.	Found	pu		
Jo	C=1. 0, CIIC1.	(Cla(Molecular weight)	5					L R V CIIC13	- E
	(Temp. °C)							X E E X	3
. –	-20.1	C371149N300S2	<u>:</u>	C: 63. 04	11:7.15	C:63.28	11:7.21	3520, 3420, 3360(br)	60(br)
	(24)	01/21120		N:5.96	S:9.10	N:5.91	S:8.97	1670, 1600, 1580, 1450.	80, 1450,
-		(704, 94)						1118	
	-22.6	C361148N406S2		C:61.65	11:6.77	C:61.47	11:7.02	3410, 3360, 1665, 1605.	65, 1605,
	(24)	01/11/10		N:7.99	S:9.14	N:8.01	S:8.91	_	1505, 1450, 1410.
		(708. 93)						1115	
!	-23.1	C351147N306S3	-	C:59.89	11:6.75	C:59.68	11:6.71	3315, 1665, 1510, 1412.	10, 1412.
	(22)	(701.948)		N:5.99	S:13.70	N:5.89	s:13.41	1290, 1115	
_	-19.6	C371155N306S2	! -	C:62.51	11:7.94	C:62.60	II:8.05	3520, 3420, 3360	360.
	(24)	0.1/21120		N:5.91	S:9.02	N:5.76	S:8.87	(br-sh), 1665, 1605	, 1605.
		(710.99)						1510, 1450, 1118	18
÷	-14.4	C431160N408S2	<u> </u>	C:61.92	11:7.37	C:61.77	11:7.51	3500, 3420, 3360.	360, 1665,
	(23.5)	-1/2 II 20		N:6.72	S:7.69	N:6.52	S:7.41	1596, 1581, 1505, 1460,	505, 1460,
		(834. 101)						1448	
ŧ	(24.0)	C381150N608S2		C: 55. 23	11:6.30	C:55.02	11:6.07	3370, 1672, 1	1672, 1603, 1586,
	-23.2	-2/3 20-1/2C 2C 2		N: 10, 04	S:7.66	N:10.01	S:7.44	1511, 1450, 1	1450, 1406, 1341,
	(Hc011)	(836.462)						1262, 1158, 1	1116
 -	-24.1	Caulla 0N406S2		C:61. 41	11:7.49	C:61.28	11:7.43	3500, 3420, 3360,	360, 1660,
	(24.0)	11/21120-1/4iPr20		N:7.64	S:8.74	N:7.50	S:8.50	_	1530, 1508, 1462,
		(733, 490)		1 13				1450	
:		C391154N6O8S2		C:57.88	11:7.54	C:57.65	11:7.31	3380(3300), 1712, 1665	1712, 1665
		3/21120-3/4iPr20		N:9.31	S:7.10	N:9.59	S: 6. 88	, 1600(1535), 1510	1510,
		(902.655)						1455, 1430	

				~		- 1:	_	~													- i		0			0	_
5		CIICI 3 Cm-1	×)), 1705, 1662	1600, 1535, 1510, 1450	. 1400	(3300), 1675	1602, 1595, 1510(1535		3600, 3360, 1732, 1685,	1664, 1640, 1600, 1545		3600, 3380, 1670(1690)	1600. (1515, 1525)		3500, 3400, 3370, 1665,	1598, 1510, (sh. 1550.					3400, 3340, 1665, (sh.	1695), 1625, 1530, 1510	10	3560, 3540, 3380, (sh.	3300), 1665, 1500, 1530	
10		0 " 21	- 7	3380(3280)	1600, 153	1400	3560. 3380	, 1602, 159). 1455	3600, 3360	1664, 1640		3600, 3380	1600. (18	1500	3500, 3400	1598, 1510	1525)				3400, 334	1695), 16	1450, 1410	3560, 354	3300), 16	1510
15		Pound		11:7.45	S:7.55		II:6.53	S:8.36		11:6.66	S: 4. 25		i	S: 9.01		11:7.13			11:6.93	S:4.23	. !	11:6.82	S: 3.95	i		S:8.72	
20		Po		C:59. 44	N:9.88		C: 57. 94	N:11.36		C:59.37	N:11.39		C:56.60	N: 9. 87		C: 62. 65	N:6.79		C:67. 47	N:7.54		C:65.08	N:9.21		C:57.89	N:11.47	
25		cq.		11:7.37	S: 7. 63		11:6.56	S:8. 60		1			: - -	S:9. 17		II:7.33	S:7.77		11:6.87	S: 4. 29		11:6.78	S: 4. 23		1	S:∞ ∞	
		Calcd		C59.30	N: 10. 00		C:58.01	N:11.27		C:59.58	N:11.27		C: 56. 71	N:10.02		C: 62. 60	N:6. 79		C: 67. 45	N:7.49		C:64.97	N:9.24		C:57.83	N:11.56	
30		r formula weight)),S2	iPr ₂ 0	37)),S2		(1)	Sec		(9)	0,52		(98	0,8S2	1/2 iPr20	74)	2,0	i	52)	0211-50	47)		0,5 ₂	21)	
35		Molecular formula (Molecular weight)		C401150NoO7S2	·1120-1/4iPr20	(840. 587)	C361148N607S2	.1/41120	(745.044)	C37 1148 NG 08S	02112/1.	(745.876)	C231147N5	02112/1.	(698. 886)	C431160N4	.3/21120-1/21Pr20	(825.074)	C421150N406S	02/12/	(749.952)	C41 1149 N500 S-1120	(757.947)		C35146N607S2	(726.9	
40	(continued)	$\begin{bmatrix} \alpha \end{bmatrix}_n$ C=1.0, CIIC13	(Tcmp, °C)			i	-37.0				-		-62.6	(24)	175-8	-14.5(24)				001-86		-19.7	(25.5)		-33.2	(22. 5)	
45	Table 9 (continu	Compd. [Ex. No.	31			32	-		34			35			36			39			41			43		

5	CIICI, Cm.	3560, 3520, 3390, (sh 3300), 1670, 1600, 1535 . 1510	3540, 3380, 3300, 1670, 1605, 1530, 1510, 1450, 1408	3550, 3380(3300), 1665 , 1605, 1596, 1530, 1510 , 1455, 1450		3520, 3340, 1670, 1600. 1510(1530)	3520, 3340, 1670, 1598, 1580, 1510, (sh. 1530)	3430(3480)3320, 1670. 1640, 1603, 1510
10	± 1 × 1	3560. 3 3300). 1510	3540. 1605. 1408	3550 160 145		3520	3520 1580	3430
15	:	i		II: 6. 82 S: 8. 01	II: 7. 05 S: 4. 31	II:6. 92 S:3. 81	II:7.27 S:3.36	11:7.03 S:4.16
20	Pound	C:59.40 N:10.04	C:58.55 N:9.05	C:66.85 N:11.14	C:60.79 N:11.56	C:63.34 N:10.64	C: 63. 49 N: 9. 35	C:61.35 N:11.36
25	Ť	II:6.44 S:7.73	II:7.78 S:8.05	11:6.91 S:8.37	II:7.03 S:4.37	II: 6. 81 S: 4. 12	II:7.20 S:3.52	
	Calcd.	C:59.33 N:10.13	C:58.80 N:8.79	C:56.83 N:10.97		i	C:63.34 N:9.23	
30	formula weight)	18 5 S 2 1)	7.5 /2iPr20 14)	/2 il'r20	C371148N6O6S ·3/21120-1/101Pr20 (733, 120)	5,5 14)	0 _R S 14)	0 ₆ S ₂ • D ₂ 0 [)
35 (ponu	Molecular formula	C4 11 s 3 N 2 O 8 5 S 2 (830, 014)	C361153N507S ·3/41120 · /2 iPr20 (796, 554)	C _{3,3} _{4,4} N ₆ O ₆ S ₃ · ' ₂ ₂ O ⁻¹ / ₂ ² O ₂ · ' ₄ C Cl ₂ (766, 200)	C37 1148 N6 O6 S · 3/2 112 O · 1/1 (733, 120)	C41 1150 N6 O6 S ·5/4 112 O (777. 444)	C18 1102NoORS -3/21120 (910, 114)	C301140N606S2 •1120*1/5•1020 (729.31)
fable 9 (continued)	[α], "C=1.0, CHC1, "C)	-40.7(24) 108-110	-34. 6 (24)	-3 <u>2.</u> 0 (25)		-23. 0(25)	-19. 3(25)	-24.8 (24)
45 GP		44	45	46	47	48	49	50

Table 9 (continued)

IRV max cm-1	C:65.39 II:7.15 C:65.63 II:7.44 3400, 3340, 1668, (163 N:7.94 S:3.64 N:7.85 S:3.39 5), 1600, 1585, 1511, 1460, 1440	C:65.60 II:7.60 C:65.66 II:7.68 3480, 3340, 1670, 1598, N:9.11 S:4.17 N:9.08 S:3.89 1508, (1525), 1448, 14 25, 1410
Found	C:65.63 II:7.44 N:7.85 S:3.39	C: 65. 66 II: 7. 68 N: 9. 08 S: 3. 89
Calcd.	C: 65. 39 II: 7. 15 N: 7. 94 S: 3. 64	C:65.60 11:7.60 N:9.11 S:4.17
Molecular formula (Molecular weight)		C421157N506S -1/21120
[c0]]	် ပို	-26.0 (24)
$\begin{bmatrix} \text{Compd.} & [\alpha]_n \\ \text{of} & \text{C=1.0.} \end{bmatrix}$	Ex. No. (Temp. 51 -15. (25)	52

5	
10	
15	(1 A)
20	E C
25	
30	
35	R4. / S02>
40	
45	
50	Table 10

Cospd				[a] _"		Elemental analysis	analysis	
of		R 4:	Yield	(C=1.0. MeOH)	Yield (C=1.0. WeOH) Nolecular formula		Found	1 R vinax cu.
Ex. No.			%	(£)				
					CsyllsoNa0eS	C:64. 82	C: 64. 87	3460, 3360(br), 1663, 1600, 1580.
8	pheny1	tert-	75	-22.2°	1/21120. 1/4iPr. d 11: 7.70	II: 7.70	11: 7.65	1498, 1450, 1116
		buty1		(241)		N: 7.85	N: 7.99	
						S: 4.49	S: 4.33	
					CarllasFN40sS	C:62.56 F: 2.67	C: 62. 65 F: 2. 71	3460. 3360(br), 1666, 1611, 1575.
ო	o-fluorophenyl	tert-	8	-20.9	·3/4H20	H: 7.17	H: 7.12	1480. 1453. 1116
		butyl		(24. 0)		N: 7.89	N: 8.05	
						S: 4.51	S: 4.56	
					C3 11152N407S	C:62.02	C: 62. 05	3468. 3348(br). 1668. 1600. 1585.
4	m-methoxyphenyl tert-	tert-	73	-18.1	·1. 5ll ₂ 0	II: 7.53	11: 7.16	1499. 1464. 1451. 1430. 1289. 1258.
		butyl		(24.5)		N: 7.61	N: 7.52	1169. 1117. 1077.
						S: 4.36	S: 4.12	
					C3 6 11 5 2 N 4 0 6 S	C:64. 61	C: 64. 65	3460. 3350(br), 1666. 1608. 1564.
2	p-methylphenyl	tert-	25	-21. 3	.3/41120	н: 7.63	11: 7.64	1498, 1450, 1116
		butyl		(24.0)		N: 7.93	N: 7.99	•
						S: 4.54	S: 4.61	
					CarilasFaNa0aS	C:61.39 F: 5.25	C:61.18 F: 5.35	3470, 3350(br), 1665, 1612(1595sh).
9	2. 4-difluoro-	tert-	8	-21.0	·1/2H ₂ 0	11: 6.82	II: 6.82	1498, 1450, 1430, 1116, 1100, 970,
	phenyl	buty1		(23. 5)		N: 7.74	N: 7.76	855
						S: 4.43	S: 4.40	

5	
10	
15	(1 A)
20	
25	
30	
35	R4. ~802~
40	
45	Table 10 (continued)
50	Table 1

		IR vmax cm-1	R v max cm ⁻¹ br). 1665. 1605, 1509.	1 R v max cm ⁻¹ 3672, 3352(br), 1665, 1605, 1509. 1464, 1450, 1441, 1369, 1291, 1117,	R v max cm ⁻¹ br), 1665, 1605, 1509. 1441, 1369, 1291, 1117,	I R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117, br). 1662, 1600, 1505.	I R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117. br). 1662, 1600, 1505.	l R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117, br). 1662, 1600, 1505.	l R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117, br). 1662, 1600, 1505.	I R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117, or). 1662, 1600, 1505.	l R v max cm ⁻¹ br). 1665, 1605, 1509. 1441, 1369, 1291, 1117, br). 1662, 1600, 1505.
	R v ma)		3672, 3352(br), 1665, 1605, 1509.	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077 3460, 3350(br), 1662, 1	3672, 3352(br), 1665, 1605, 1509, 1117 1464, 1450, 1441, 1369, 1291, 1117 1077 3460, 3350(br), 1662, 1600, 1505, 1446, 1113	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077 3460, 3350(br), 1662, 1 1446, 1113	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077 3460, 3350(br), 1662, 1 1446, 1113	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077 3460, 3350(br), 1662, 1 1446, 1113	3672, 3352(br), 1665, 1605, 1509, 1117, 1077 3460, 3350(br), 1662, 1600, 1505, 1446, 1113 3660, 3356(br), 1661, 1599, 1511, 146, 1113	3672, 3352(br), 1665, 1 1464, 1450, 1441, 1369, 1077 3460, 3350(br), 1662, 1 1446, 1113 3660, 3356(br), 1661, 1 1446, 1113
Found											
cd. Found	C-65 43	H: 7.09	:	N: 7.37	N: 7.37 S: 4.24 C:59.68	N: 7.37 S: 4.24 C:59.68 H: 7.02	N: 7.37 S: 4.24 C:59.68 H: 7.02 N: 8.23	N: 7.37 S: 4.24 C: 59.68 H: 7.02 N: 8.23 S: 9.10	N: 7.37 S: 4.24 C: 59.68 H: 7.02 N: 8.23 S: 9.10 C: 56.41	N: 7.37 S: 4.24 C:59.68 H: 7.02 N: 8.23 S: 9.10 C:56.41 H: 6.95	N: 7.37 S: 4.24 C: 59.68 H: 7.02 N: 8.23 S: 9.10 C: 56.41 H: 6.95 N: 9.14
1.3											
Calc C: 65. 53 II: 7. 31			N: 7.46		1				12 C:59.81 H: 7.17 N: 7.97 S: 9.12 C:56.45		25: 4.27 2 C:59.81 2 R: 7.17 2 R: 7.97 3: 9.12 2 C:56.45 3: 9.16 N: 9.16
lecular form		C4,1115,2N4,04,S			C35H48N4O6S2	C35H4.N406S2	15 H 4 N 4 O 6 S2	15114 a N 4 0 6 S 2	-1120 -1120 C341147N50652	150 150 140 141 141 141 141 141 141 141 141 14	120 120 1417 N50652
Vield (C=1.0, McOll) Molecular formula	(3)	i	(24.0)								
/ie1d (C=	%	09				94				· ·	·
۳. ۲		 -	7								
_	4	1-naphthy]		<u></u>		3-thienyl t				7	
•	of Ex. No.	7				- 6					

5	
10	(1 A)
15	E O
20	
25	
30); ₀₈ \
35	
40	ontinued)
45	Table 10 (continue

Coapd.			[a]».				
Jo	<u>-</u> ×	Yiclo		C=1.0. KeOll Molecular formula	Calcd.	Found	R vmax cm.1
Ex. No.		Ж	9				
				C37H49N4FO.S	C:62.56 F: 2.67	C: 62. 56 F: 2. 67 C: 62. 72 F: 2. 60	3470, 3340, 1663, 1605, 1590.
10	m-fluorophenyl	88	-21.4	3/41120	11: 7.17	N: 7.14	1496, 1445, 1400, 1370, 1115,
			(24.0)		N: 7.89	N: 7.67	1075. 1015
					S: 4.51	S: 4.60	
				C371149N4FO4S	C:62.56 F: 2.67	C:62.56 F: 2.67 C:62.60 F: 2.66	3470, 3340, 1665, 1600, 1505.
11	p-fluorophenyl	87	-21.3	3/41120	H: 7.17	и: 7.17	1450, 1410, 1370, 1156, 1115.
			(24. 0)		N: 7.89	N: 7.84	1076
					S: 4.51	S: 4.62	
				Carllean4F204S	C:61.15 F: 5.23	C:61.15 F: 5.23 C:61.05 F: 5.26	3468, 3360, 1664, 1624, 1502.
12	2, 6-difluoro-	75	-23.4	2/31120	11: 6.84	11: 6.60	1467. 1450, 1402. 1370. 1290.
	pheny1		(23.5)		N: 7.71	N: 7.77	1117, 1078, 1016, 991
					S: 4.41	S: 4.75	

Tat	5 5 5 Table 10 (continued)	40	35	30	25	15	5
S			[a]0				
of	۳.	Yield	C=1.0, MeOil	Molecular formula	Calcd.	Found	I R v max cm ⁻¹
Ex. No.		ሄ	(£)				
				Csalls2N407S	C:63. 18	C:63. 18	3468, 3348, 1665, 1600, 1502,
13	o-mcthoxypheny]	75	- 3.3	.3/41120	II: 7.46	H: 7.52	1487, 1465, 1438, 1289, 1163.
			(24. 0)		N: 7.76	N: 7.38	1117, 1077, 1026
					S: 4.44	S: 4.03	
				C371149CRN406S	C:61. 23 Ce: 5. 85	C:61.03 CA: 5.63	3468, 3360, 1665, 1593, 1500.
14	n-chlorophenyl	75	- 8.4	.0. 1 CII2Ce2.1/3112d 11: 6.91	II: 6.91	II: 6.85	1450, 1434, 1402, 1370, 1291.
			(23.5)		N: 7.70	N: 7.68	1117, 1077
					S: 4.41	S: 4.31	
				C3.1149N5O6S	C:61.82	C:61.87	3468, 3360, 2236, 1666, 1602,
15	a-cyanophenyl	92	-20.6	·1120-1/4C112C22	N: 6.99	H: 6.75	1499, 1450, 1431, 1401, 1370.
			(24.5)		N: 9.42	N: 9.40	1288, 1150, 1117, 1077, 909
					S: 4.31	S: 4.25	
				CsellsaNsOsSz	C:58.82	C:58.54	3464, 3352, 1664, 1607, 1578.
16	o-methylsulfonyl-	98	-11.4	11/4(iPr)20-1/2112d H: 7.19	Н: 7.19	II: 7.06	1492, 1452, 1400, 1340, 1289,
	ami nophenyl		(24.0)		N: 8.68	N: 8.46	1155, 1117, 1077, 968, 917
					S: 7.95	S: 7.71	
				CasHapFaN406S	C:60.38 F: 7.54	C: 60. 27 F: 7. 53	3450, 3350, 1665, 1605, 1510.
	p-trifluorometyl-	- 35	-18.8	·1/21120	11: 6.67	11: 6.77	1450, 1410, 1325, 1170, 1135.
	pheny l		(24. 0)		N: 7.41	N: 7.27	1115, 1065
						S: 4.24	S: 4.41

5		
10		(1 A)
15		I D
20		
25		
30		R**-S02
35		
40	(continued)	

3									
9			Yicld	Yield [a],					Γ
ō	יא	₩.		(C=1. 0,	Kolecular foraula	2016	Point	10	
Ex. No.			%	Ke011)				IN VEST CE	
	a-morpholino-				C421157NsOaS	C. 60 09	C:60 09 C:59 93	3470 3390 1711 1690	\neg
- 28	carbonyloxyphenyl	tert - hutvl	8	215 940 512	, a , a , a			0410, 0020, 1111, 1000.	_
		7 (100) 111	36	10.010.0	08u*/_ r.	H: 7. 26 H: 6. 94	H: 6.94	1665, 1605, 1587, 1500.	
				(25t)	₹.	N: 8.34 N: 8.38	N: 8.38	1420, 1370, 1116, 1068	_
						S: 3.82	S: 3. 79		
					C42IIS7NSO.S	C:61.93	C: 61. 93 C: 61. 70	3356, 1665, 1627, 1581,	
<u> </u>	m-morpholino-	tert - buty]	62	-15.8±0.6	. 5/4 1120	II: 7.36	II: 7.36 II: 7.10	1498, 1463, 1451, 1369.	
	carbonylphenyl			(25t)		№: 8.60	N: 8.42	1289, 1117, 1075, 1028	
-						S: 3.94 S: 3.92	S: 3.92		
-	•				Casila oN O bS	C: 59. 89	C:59.86	3470, 3340, 1665, 1605.	7
3	3.4-methylene-	tert - butyl	æ	-16.840.6	-16.8±0.6 .2 10 · 2/5 dioxane	11: 7.26 11: 6.92	11: 6.92	1505, 1490, 1445, 1117.	_
	dioxyphenyl			(25t)		N: 7.05 N: 6.77	N: 6.77	1080, 1042	
						S: 4.04 S: 3.87	S: 3.87		

10 (continued)

[1 A] $R^4 - X$ NII NII NII R^2

Compd						[a]n°				
of	≃	R.2	χ.	×	Yield%	Yield%(C=1. 0, MeOII)	Molecular	Calcd.	Found	IR u maxcm'
Ex. No.						(Temp. C)	formula			
								C:56.09	C:56.16	3380, 1667, 1604, 1584, 1508.
28	-N)-m	ς́.	N-morpho-	Ē	52	-25.5	C371150N607S2 11: 6.56	II: 6.56	II: 6.33	1454, 1448, 1410, 1339, 1294.
1	methyl)-		lino-			(22)	·2/3H20·	N:10.49	N:10.24	1261. 1156. 1113. 1071
	aminophenyl	-	sulfonyl				2/5CII 2C@2	S: 8.01	S: 7.64	
								C: 62. 11	C:62.10	3490, 3400, 1665, 1605, 1580.
33	phenyl	5	ter-butyl-	CII,	44	-24.9	C38HsoN4O6S2	II: 7.12	II: 7.24	1510. 1450. 1115
			Will sulfonyl			(23. 5)	-1/41120	N: 7.83	N: 7.95	
		:					(157.159°)	S: 8.96	S: 8.70	
		=						C:64.31	C:64.38	3460, 3400, 3310, 1662, 1630.
40	pheny1	= ~	N-morpho-	CII,	79	-15.8	C421151N506	H: 7.10	Н: 6.82	1600. 1580. 1510. 1490. 1450.
			lino-			(22)	.2H20.	N: 8.84	N: 8.97	1115. 1070
		2	carbonyl				2/5CH2CR2			
		:						C: 66. 73	C:66.54	3460, 3400, 3320, 1660(sh1690).
42	4-pyridyl	= ₹	N-morpho-	CII,	79	-19.3	C41 IIsoN606	II: 7.51	II: 7.54	1625. 1520. 1490. 1460. 1445.
			lino-	. –		(22)	-1120-1/2;Pr2d N:10.61	N: 10. 61	N: 10. 66	1410.1115
		2	carbonyl							

Table 10 (continued)

Pers 1	
S S S	
Jo	NMR(6):
Ex. No.	
	0.70~1.83(1311.m). 1.33(911, s), 2.68~3.18(711, m), 3.27(111, m), 3.60(111, dd, J=9.8, 13.211z),
2	3.80(111, br), 3.99(111, m), 4.21(111, m), 4.60(111, m), 6.48(111, d, J=9.4Hz), 6.89(111, s),
	7.08 \sim 7.63(811, \alpha). 7.50(111, \d, 1=1.8112). 7.93(211, \d, 1=8.4112)
	0.68~1.83(1311, m). 1.33(911, s), 2.70~3.17(711, m), 3.60(111, dd, J=13.1, 9.911z), 3.59(211, brs).
က	3. 25(111, m), 3. 98(111, m), 4. 18(111, m), 4. 59(111, ddd, J=6, 8, 6, 8, 6, 811z), 6. 51(111, d, J=9, 011z), 6. 90(111, s).
	$7.05 \sim 7.37(711, a)$, $7.52(111, a)$, $7.55(111, s)$, $7.84(111, ddd, J=7, 7, 1, 911z)$
	0.70~1.83(1311, m), 1.32(911, s), 2.74~3.17(711, m), 3.27(111, m), 3.59(111, dd, J=10.1311z),
4	3. 83(3H, s), 4. 00(1H, m), 4. 20(1H, m), 4. 60(1H, ddd, J=7, 7, 7Hz), 4. 72(1H, bs), 6. 60(1H, d. J=9Hz).
	6.86(111.s), 7.04 \sim 7.55(91, ω), 7.48(111, s)

Table 10 (continued)

Coapd.	
Jo	NMR(6):
Ex. No.	
	$0.70 \sim 1.85(13H, m)$. 1.32(9H, s). 2.40(3H, s). 2.70 $\sim 3.18(7H, m)$. 3.27(1H, m).
2	3. 61(111, dd. J=13. 2. 9. 811z). 3. 75(211, bs). 3. 99(111, m), 4. 19(111, m), 4. 61(111. ddd. J=6. 5. 6. 5. 6. 51 6. 51 7).
	6. 53(111, d. J=9. 111z), 6. 88(111, s), 7. $10 \sim 7$. $45(711, a)$, 7. $52(111, s)$, 7. $82(211, d, J=8. 211z)$
	$0.70 \sim 1.80(1311, \varpi)$, 1.34(911, s), 2.77 \sim 3.16(711, ϖ), 3.20(211, bs), 3.25(111, ϖ).
9	3. 59(111. dd.)=13. 95112), 3. 48(111. m), 4. 18(111. m), 4. 59(111, ddd. J=7, 7, 7112), 6. 46(111, d. J=9. 3112).
	6. $78 \sim 7$. $00(211, m)$, 6. $91(111, s)$, 7. $23(511, m)$, 7. $54(111, s)$, 7. $91(111, ddd, J=8. 6, 8. 6, 6. 611z)$
	$0.70 \sim 1.85(1311, m), 1.30(911, s), 2.82(111, dd, J=13.2, 8.4Hz), 2.90 \sim 3.18(611, m), 3.28(111, m),$
-	3. 59(1H, dd, J=13. 0, 10. 0Hz), 4. 03(1H, m), 4. 24(1H, m), 4. 60(1H, ddd, J=5, Hz), 5. 30(1H, brs), 6. 63(1H, d, J=9. 2Hz),
	6. 83(111, s), 7. 20(511, a), 7. 50(411, a), 7. 90(211, a), 7. 86(111, s), 8. 60(111, d, 1=7. 611z)
	$0.70 \sim 1.85(1311.m)$, 1.33(911, s), 2.77 $\sim 3.18(711.m)$, 3.26(111.m), 3.59(111, dd, J=13.2.10.211z),
∞	3. 97(11, a), 4. 18(11, a), 4. 58(11, a), 6. 44(11, d. $1=9$. 412), 6. 88(11, s), 7. $12\sim7$. 47(61, a).
	7, 50(1H, s), 7, 51(1H, dd, J=5, 0, 1, 2Hz), 8, 13(1H, dd, J=1, 2, 3Hz)
	$0.70 \sim 1.83(1311.m)$, 1.34(911.s), 2.74 \sim 3.32(811.m), 3.61(111.dd, J=12.8, 9.4112), 3.73(211.bs).
6	3.95(111, m), 4.23(111, m), 4.60(111, ddd, J=6.6.6.6.6112), 6.51(111, d, J=9.2Hz), 6.96(111, s), 7.12~7.35(511, m),
	7. 57(111. s). 7. 68(111. d, J=311z). 8. 00(111. d. J=311z)

Table 10 (continued)

Son Do	(1 A)
jo	NMR(6)
Ex. No.	
	0.70~1.82(1311, m), 1.33(911, s), 2.75~3.19(711, m), 3.28(111, m), 3.62(111, dd, J=13, 10Hz), 4. UZ(111, m),
2	A. 20(111, m), 4. 59(111, ddd, J=6, 4, 6, 4, 6, 412), 6. 55(111, d, J=9, 4112), 6. 92(111, s), 7. 25(611, m).
	7. 45(211, a), 7. 56(111, s), 7. 62(11, a), 7. 70(111, d, J=7. 611z)
	0.70 - 1.82(1311, a), 1.33(911, s), 2.75 - 3.20(711, a), 3.28(111, a), 3.57(211, bs), 3.60(111, dd, J=13.10112),
=	4 00(111, m), 4, 19(111, m), 4, 59(111, ddd, J=6, 6, 6, 6, 6, 6, 6, 111, 0, 54(111, d, J=9, 2112), 6, 90(111, s),
:	7 14/24 Ad 1=17 2, 8 8112), 7, 26(611, m), 7, 48(111, d, 1=8112), 7, 54(111, s), 7, 96(211, dd, 1=9, 5, 4112)
	0.20 (111, dd. J=13. 2), 2. 78~3. 18(711, m), 3. 25(111, m), 3. 61(111, dd. J=13. 2, 9. 8112).
	3 95(111 m), 4, 12(111, m), 4, 58(111, ddd, J=6, 4, 6, 4, 6, 4112), 5, 68(211, bs), 6, 55(111, d, J=9, 4112)
:	6.85(111, s), 6.93(211, t, J=8.21 z), 7.15~7.48(711, m), 7.49(111, s)
	$0.70 \sim 1.82(1311, m). 1.33(911, s). 2.75 \sim 3.35(811, m). 3.62(111, dd. J=14, 1011z). 3.87(311, s). 3.95(111. m).$
13	4. 15(111, m), 4. 62(111, ddd, J=6. 5, 6. 5, 6. 51/2), 6. 66(111, d, J=9. 4Hz), 6. 82(111, s), 6. 85(211, m), 7. 24(511, m).
	7, 46(111, s), 7, 46(111, td, J=7, 8, 1, 8Hz), 7, 70(111, dd, J=7, 8, 1, 8Hz)

Table 10 (continued)

Compd	(1A)
Jo	NMR(b)
Ex. No.	
	0.70~1.80(1311, m), 1.33(911, s), 2.78~3.17(711, m), 3.26(111, m), 3.52(111, dd, J=13, 9.81tz), 3.97(111, m).
14	4.13(1H, m), 4.57(1H, ddd, J=6, 7, 6, 7, 6, 7Hz), 6.52(1H, d, J=9.0Hz), 6.85(1H, s), 7.14~7.42(8H, m),
_	7.46(111, s), 7.53(111, a),
	$0.70 \sim 1.80(1311. \text{ m}), 1.33(911. \text{ s}), 2.77 \sim 3.18(711. \text{ m}), 3.29(111. \text{ m}), 3.61(111. \text{ dd}, J=12.8.9.8112).$
15	4.04(111, m). 4.22(111, m). 4.57(111, ddd. 1=5.8.5.8.5.8112). 6.59(111, d. 1=9112). 6.91(111, s).
	7. 23(511, m), 7. 56(111, s), 7. 58(111, t, J=7, 811z), 7. 81(111, d, J=7, 811z), 8. 14(111, d, J=811z), 8. 23(111, s)
	$0.70 \sim 1.82(1311, m). 1.33(911, s), 2.75 \sim 3.17(711, m), 3.26(111, m), 3.59(111, dd, J=13, 10.411z), 4.01(111, m).$
91	4.16(111, m), 4.57(111, ddd, J=6.4, 6.4, 6.4, 6.411), 6.59(111, d, J=9.2112), 6.88(111, s), 7.20(611, m), 7.49(111, d, J=1.2112),
_	7. 50(211. a). 7. 69(111. dd. J=8. 4. 1. 2112). 7. 86(111. dd. J=8. 2, 1. 2112)
	$0.70 \sim 1.80(1311. \text{ m})$, 1. $32(911. \text{ s})$, 2. $75 \sim 3.18(711. \text{ m})$, 3. $27(111. \text{ m})$, 3. $58(111. \text{ dd}$, $J=13.4.1011z$), 4. $04(1111. \text{ m})$.
11	4.21(111, td. 1=7, 2.511z), 4.57(111, ddd, 1=6.3, 6.3, 6.311z), 6.54(111, d, 1=9.41z), 7.25(511, m).
	7. 52(111. d. J=9112). 7. 71(211. d. J=8. 2112). 8. 01(211. d. J=8112)

Table 10 (continued)

Compd.	(1 A)
5	NMR(5)
Ex. No.	
	0.70~1.83(1311.m).1.34(911.s), 2.70~3.15(711.m), 3.28(111.m), 3.48~3.82(811.m), 3.88(111,m).
8 2	4.14(111, m), 4.63(111, ddd, J=6.6, 6.6, 6.611z), 6.39(111, d. J=8.611z), 6.80(111, s), 7.17~7.40(611, m),
	7. $40 \sim 7.60(311, n)$. 7. 77(111, d. $J=7.611z$)
	0.70~1.80(1311, m), 1.33(911, s), 2.63~3.17(711, m), 3.30(111, m), 3.38~3.95(1011, m), 4.18(111, m),
- 19	4. 63(111, ddd.)=6. 6. 6112), 6. 49(111, d.)=8. 8112), 6. 86(111, s), 7. 23(611, m), 7. 56(111, s), 7. 55(111, m),
	7.71(111, d. J=6112), 7.84(111, s), 8.00(111, m)
	0. 70~1. 82(1311. m), 1. 34(911, s), 2. 78~3. 18(711, m), 3. 26(111, m), 3. 60(111, dd, J=13. 9. 8112), 3. 97(111, m),
20	4. 17(111, m). 4. 60(111, ddd, J=6. 4, 6. 4, 6. 411z). 6. 04(211, s). 6. 45(111, d, J=9. 411z), 6. 84(211, d, J=8. 211z),
	6.86(11, s), 7.25(51, a), 7.39(11, d. J=1.21,z), 7.49(11, s), 7.51(21, d. 1=8.21,z)

Table 10 (continued)

Compd	(1V)
Jo	NMR(6)
Ex. No.	
	$0.70 \sim 1.92(2311, m), 1.35(911, s), 2.36(111, m), 2.55(211, m), 2.75 \sim 3.18(511, m), 3.26(111, m),$
21	3.60(111, dd, J=13.3.9.8112), 3.88(111, m), 3.99(111, m), 4.56(111, ddd, J=6, 6, 6112), 6.41(111, d, J=9.2112).
	6.88(111, s), 7.27(511, a), 7.54(111, s)
	$0.70\sim0.83(1311, m)$. 1. 34(9H, s), 2. 75 $\sim3.17(711, m)$, 3. 15(111, m), 3. 60(111, dd, J=13, 9. 611z), 3. 87(311, s).
22	3.98(111, m), 4.18(111, m), 4.61(111, ddd, J=6.8, 6.8, 6.811z), 6.44(111, d, J=9.211z), 6.86(111, s), 6.93(211, d. J=911z),
	7. 25(5II. m). 7. 49(1II, s), 7. 91(2II. d. J=8. 6IIz)
	$0.70 \sim 1.85(1311, 1), 1.23(311, 1), 1.33(311, 1), 1.30(311, 1), 1.30(311, 1), 2.70 \sim 3.18(811, 1), 3.22(111, 11)$
37	3.56(111, dd. 1=13. 4.9.6Hz), 4.01(111, m), 4.20(111, m), 4.60(111, ddd, 1=6.6Hz), 6.49(111, d, 1=9.2Hz),
	6. 87(111, s), 7. 22(5H, m), 7. 50(4H, m), 7. 93(2H, d, J=6. 8Hz)
	0.70-1.85(1311, m), 1. 23(311, t, $J=7.4112$), 2. 65(811, m), 3. 23(111, m), 3. 57(111, dd, $J=14, 9.8112$).
38	4.03(1H, m). 4.19(1H, m). 4.62(1H, ddd, J=6.2, G.2, G.2, G.50(1H, d, J=9.2Hz), 6.88(1H, s).
	7. 20(511, a), 7. 45(111, d, J=1, 6112), 7. 52(311, a), 7. 93(211, d, J=6, 8112)

.

Table 10 (continued)

Compd.			[IA]
Jo	۳3	×	
Ex. No.			NMR(S)
			0. 65-1. 77(1311, m), 2. 50(211, m), 2. 80(311, m), 2. 89(311, s), 3. 00(211, m), 3. 20(111, dd,
82	(Ī	J=5, 15llz), 3. 40(41, m), 3. 53(111, dd, J=5, 15Hz), 3. 95(211, m), 4. 12(111, m),
	₹		4.80(1H, dt, J=4, 4, 7, 0Hz), 5.18(1H, d, J=6Hz), 6.62(1H, d, J=9, 4Hz), 6.82(1H, dt,
			J=2. 2. 7Hz), 7. 14(111, d. J=2Hz), 7. 30(8H, m), 8. 81(111, d. J=2Hz), 9. 09(1H, d,
			J=6. 8IIz)
			0.70~1.82(1311, m), 1.31(911, s), 2.83~3.30(911, m), 3.47(111, dd, 1=4, 6, 13.2112),
33	(CH2	$CH_{2} \mid 4.01(111. \text{ m}), 4.16(111, dt. J=3, 6.211z), 4.60(111. ddd, J=4.811zx3), 5.30(111, bs),$
	≥>		6. 24(111, s), 6. 49(111, d. 1=9. 811z), 7. 25(511, m), 7. 47(211, t. 1=7. 411z), 7. 56(111, d.
			J=7112), 7. 62(111, d. J=6. 8112), 7. 96(21, dd, J=1, 4, 6. 6112)
			0.78~1.80(1311, m), 2.56(211, m), 2.90~3.70(1511, m), 4.04(111, m), 4.21(111, m),
49	(c)	ਛੋ	4. 64(111, ddd, J=6, 211z), 6. 68(111, d. J=1011z), 6. 87(111, s), 7. 26~7. 59(811, m),
)))		7.76(111, d, J=8.211z), 7.87(111, m), 8.02(311, m),
			0. 67~1. 77(1311, m), 2. 47(111, dd, J=7. 5, 1711z), 2. 62(111, dd, J=5, 1811z), 2. 88~3. 76
42	(C)	CH ₂	CH ₂ (1511, m), 4.08(111, m), 4.17(111, m), 4.63(111, ddd, J=5112), 6.77(111, d.J=1011z),
	<u>}</u>		6. 88(111, s), 7. 29(111, d. 1=7. 5112), 7. 40(111, t, 1=7. 5112), 7. 54(311, m), 7. 80(211, d,
			J=6. 2112). 7. 80(211, m). 8. 04(111, m). 8. 33(111, m), 8. 76(211, d, J=611z)

Examples 53

5

10

ONSO 2 NH ONH ONH NHSO 2 NO

To the compound [25a] (24.5g, 41.6mmol) are added anisole (89.7g, 20eq) and anhydrous dichloromethane (250ml). To the mixture is dropwise added trifluoroacetic acid (250ml) with stirring and ice-cooling over 30 minutes, and the mixture is stirred at room temperature for one hour. The reaction mixture is concentrated in vacuo, made alkaline with Na_2CO_3 and saturated aqueous sodium bicarbonate, and extracted with a mixture of dichloromethane and methanol (9:1). The organic layer is washed with water, dried ov r MgSO₄, and evaporated to dryness in vacuo. The residue is subjected to silica gel chromatography (SiO₂: 600g, CH₂Cl₂:MeOH:NH₄OH = 90:10:1) to obtain the compound [26a] (14.63g, 72%).

To the above compound [26a] (11.04g, 22.5mmol) are added N-(morpholinosulfonyl)phenylalanine [12a] (8.5g, 1.2eq), HOBt (3.96g, 1.25eq), and anhydrous CH₃CN (200ml). To the mixture is added DCC (6.05g, 1.3eq) with stirring and ioe-cooling, and the mixture is stirred at 0°C for one hour and then at room temperature for an additional one hour. To the reaction mixture is added ethyl acetate and it is then filtered. The filtrate is concentrated in vacuo and subjected to silica gel chromatography (SiO₂: 600g, CH₂Cl₂:MeOH = 97:3). Relevant fractions are combined and treated with isopropyl ether to give the compound [lb] (16.33g, 92%).

Elemental analysis (as C₃₃H₅₁N₇O₉S₃·0.75H₂O.1.0CH₂Cl₂)

Calcd.: C: 49.20; H: 6.57; N: 12.13; S 11.90

Found: C: 49.05; H: 6.20; N: 11.92; S 11.78

 $[\alpha]_D$ =-22.5 (c=1; MeOH; 24°C)

IR: 3370, 2720, 1665, 1530, 1510, 1454, 1340, 1330, 1260, 1155, 1113, 1073, 943

NMR(δ): 0.72(3H,m), 1.12(6H,m), 4.16(1H,bd,J=8Hz), 1.62(3H,bd,J=8Hz), 2.21(1H,bs), 2.47(2H,m), 2.74 (1H, dd,J=10.14Hz), 2.80-3.33(4H,m), 3.21(4H,m), 3.33-3.62(8H,m), 3.75(4H,m), 3.97(2H,m), 4.68(1H,m), 5.16 (1H, dd,J=10.14Hz), 2.80-3.33(4H,m), 3.21(4H,m), 3.21(4H,m), 3.80-3.80(8H,m), 3.75(4H,m), 3.97(2H,m), 4.68(1H,m), 5.16 (1H, dd,J=10.14Hz), 2.80-3.33(4H,m), 3.21(4H,m), 3.80-3.80(8H,m), 3.75(4H,m), 3.97(2H,m), 4.68(1H,m), 5.16 (1H, dd,J=10.14Hz), 2.80-3.33(4H,m), 3.80(1H,m), 3.8

d,J=5.4Hz), 5.64(1H,t,J=6.8Hz), 6.55(1H,d,J=9.2Hz), 7.19(1H,d,J=1.2Hz), 7.35(5H,m), 8.90(1H,d,J=1.2Hz), 9.40(1H,d,J=6.8Hz)

Examples 54-71

In accordance with substantially the same procedure as disclosed in Example 53, the compounds of the invention listed in Table 11 are obtained.

40

. 25

45

50

5					665.	115.		- 009	335.	075		604.	1328.	320		1530.	1290.			1605.	1415.	1115.	
				R и шахси ⁻¹	3370, 2920, 1730, 1665. 1600-1530-1510, 1400.	1340, 1260, 1155, 1115.		3340, 2920, 1670, 1600.	1530, 1510, 1505, 1335,	1261, 1155, 1116, 1075		3370, 2920, 1665, 1604,	1530, 1510, 1400, 1328.	1260, 1153, 1113, 950		3360, 2920, 1660, 1530,	1510, 1448, 1325, 1290.	5. 955		3380, 2930, 1665, 1605.	1577. 1530. 1512. 1415.	1340, 1260, 1160, 1115.	
10		. 43		1 R v	170. 2920 300. 1530	340, 1260	1072, 940	340, 2920	530, 1510	261, 1159		370, 2920	530, 151(260. 115.		360, 292	510, 144	1145, 1115, 955		1380, 293	577. 153	340, 126	1075.945
		II) NIISO ₂ R ¹													┪				S: 12. 73				S:11. 68
15				1 -	C:52.83	N: 10. 96	S: 10. 75	C:55. 62	N: 6.54	N:11.41	S: 7.18	C:48.59	11: 6.48	N: 12. 28	S:11.37	C:53.61	=	ž	S:1	C:5			S:1
		NII NI	[18]	Elemental Calcd.	C:53.01	N: 11. 10	S: 10.89	C: 55. 65	H: 6, 76	N:11.57	S: 7.57	C: 48. 48	N: 6.58	N:12.66	S: 12. 42	C:53.80	11: 7.31	N: 9.62	S:13.22	C: 50. 90	11: 6.05	N:12.13	S:11.90
20		R4 - X		Molecular formula	C371153N709		7,20			0. 661120	• 0. 25CH 2C@2	C31 114 . N708		0.51120	• 0. 25CH 2Ce 2	C32115,1 N50,		·0. 21120	·0.1(ipr)20	C341147N708		-0. 5ll 20	.0. 25CII 2CP 2
25		₩		,		53 -0.75H20	0.33	ئُ	Š	<u>ن</u>	9	ري	လိ	<u>.</u>	ç	င်	S,	ó	ó	Š	S.	ė	9
		DCC, 110B1		Yield%(C=1, McOII(°C)	9	-38. 4 (24. 0)			15.3	(24)			-22.9	(25.0)			-7.4	(24.0)			-23.7	(25.0)	
30		i		Yield%C	-	 28			83				86				68				92		
35		II) NIISO ₂ R'		ž	(O_NSO ₂ -			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\)			ONSO, 1)			+ 50, -				ONSO, -)	
		S = 0	[36]	×		—— ₹			₹		•		Ē				Ē				Ħ		
40		+ II ₂ N		r E		000	 } }-		{	0)			(<u></u>			(<u></u>			(<u></u>	. —
45		X R3	[12]	۲. ۲.		S	Z.		Š		E		ৰ্থ			-	Ý		2		ৰ্থ		<u> </u>
50	·	R4 - X	5	٦.		(°))		()		-Nie.	7			-NKG	•			\ \	<u></u>	5
	Table 11			Compd.		 24				3			95	3			2.5	5			8	3	

	_															-7				\neg								- 1
5			R v maxcm.1		3330, 2920, 1670, 1599.	1575, 1580, 1505, 1336,	1165.1115		3360, 2920, 1615, 1600.	1567, 1530, 1500, 1450.	1330, 1290		3360, 2920, 1660, 1530.	1510, 1450, 1405, 1338.	1290, 1155, 1115, 1015		3360, 2920, 1660, 1605,	1530, 1510, 1446, 1330,	1290, 1160, 1165, 1145.	1116. 1115	3440, 3360, 1662, 1605.	1585, 1510, 1450, 1330,	1290, 1160, 1115, 1095		3380, 2920, 1665, 1605.	1530, 1510, 1405, 1327,	1260, 1153, 1115, 1070	
· 10			-	•	3330.	1575.	1165.		3360.	1567.	1330.		3360	1510	1290		3360	1530	1290	1116	3440	1585	1290		338(
15			analysis	Found	C:57.84	II: 6.32	N:11.69	S: 7.55	C:58.20	11: 6.27	N: 8.59	S:11.75	C:53.04	11: 6.22	N: 7.56	S: 16. 63	C:57.01	H: 6. 69	N: 7.41	S: 12. 81	C:58.20	11: 7.08		S:12.35	C:50.98		N:11.90	S:11.46
		[8]	Elemental	Calcd.	C:57.81	II: 6.33	N:11.72	S: 7.67	C: 58. 43	11: 6.46	N: 8.74	S:12.00	C:53.28	11: 6.51	N: 7.31	S:16.73	C:57. 19	11: 6.80	N: 7.41	S: 12. 72	C: 58. 39	H: 6.89	N: 7.36	S:12. 64	C:50.80	11: 6.88	N:11.85	S:11. 02
20			Nolecular	formula	C. olls 1 N. 0,		-0. 51120	• 0. 25CH 2CR	C301151N607	-	-0.21120		Catliana0,	_	·0. 75H 20		Caells oN 407	S ₃	·0. 51120		C371152N407	S	•		C3 5 11 5 5 N 7 0 9	S³	·0. 751120	
25			1				_		3				3	Š			0	<u></u>										
30			[a]0°	Yield% C=1. NeOH(°C)	-	-17.6	(25.0)	; ;		-15.0	(23. 5)			-3.4	(23.5)			-3.8	(25. 5)			-5.4	(25. 5)	, 		-23.5	(25.5)	
30				Yield%		98	3			70	2			83	3			72				×	}	-		74		
35		-	Ž.			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u>,</u>			100	200			1	200			100-1	3			+	7			J. OSN)	
40		-	×		-	ž				Ę,	7			5	,			5	,			5	<u>.</u>		_	Ž		
40						(000	} }-		<	<u></u>)		<	<u></u>	•		(<u></u>)		<	<u></u>	>		<	<u></u>	
45	ᅴ		۵,	<u> </u>		v,	<u>_</u>			۷,	<u></u>	_ [+	Ų		 (v		<u>-</u>		Ų		<u> </u>		V		Z
50	able 11 (continued)	-	1 0				<u>_</u>	<u>-</u> -	+	(000	<u>}</u>			\Rightarrow	n		•	0	>			0	>			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)
55	able 11		Ompd.	5	.x. NO.		ne ne				2			;	 3				70			:	٠ د			2	80	

																												$\overline{}$
5			1 R v maxcm-1		3330, 3000, 1670, 1597.	1525(should), 1507.	1330. 1143. 1124		3380, 2930, 1665, 1605.	1530, 1510, 1325, 1263.	1155, 1116, 1075, 945		3330, 2920, 1670, 1600.	1530, 1505, 1446, 1330.	1142, 1115		3380, 2920, 1665, 1510.	1328, 1262, 1155, 1115			3350, 2920, 1660, 1604.	1525. 1510. 1325. 1286.	1146, 1114	•	3360, 2920, 1660, 1605.	1530, 1510, 1450, 1325.	1290. 1140. 1115	
15			analysis	Found	C:57. 12	11: 6.93	N:11.21	S: 7.36	C:49.76	11: 6.63	N:11.10	S: 10. 66	C:55.48	H: 6.86	N:10.82	S: 6.66	C:50.08	11: 6.80	N:12.41	S:11.99	C: 52. 25	11: 6.80	N: 7.80	S: 12. 51	C: 55. 58	H: 7.39	N: 7.57	S: 12. 83
	!	[18]	Elemental	Calcd.	C:57.26	11: 7.15	N:11.40	S: 7.45	C: 49. 92	N: 6.88	N:11.22	S:11.00	C:55.69	H: 7.04	N:10.70	S: 7.00	C:50.17	II: 7.02	N:12.41	S:12.17	C:52.51	11: 6.97	N: 7.58	S: 13. 01	C: 55. 72	H: 7.52	N: 7.64	S:13.12
20			Nolecular	formula	C4 , 1150N708	Sz.1120			Caella1N100	S3.1120	• 0. 33CII 2Ce 2		C421161 N708	S2-1120	-0. 5CH 2CP2		CasHasN708	S3.1120			C31 1148 N407	S3	·0.51120	•0. 33CII 2C#2	C341154N407	S3	•0. 331120	
25					1	-16.8 S	(25. 5)		٥	-19.9 S			0	-14.9 S				-23.8	(25. 5)			-11.1	_			-7.0	(23. 5)	
30]	11eld 36 C= 1, NeO!!(°C)		74				 83			-	98				28				83				96		
35			<u>`</u> ≃			()			ONSO	;)			())			NS0,)			+ 80, -				+80,-		
			×			Ē				Z				¥				Z				CII,				CII		
40			۲ ₃				0)	_		(<u></u> ○					_			<u></u>			(<u></u>			(<u>্</u>	
45	(p)		۳,			જ		<u> </u>		Š		~		Ý		<u> </u>		Ý	~	<u> </u>		Ý	_{_{	5		ď	~ ={ -	£ :
50	Table 11 (continued)		- ~	:		(<u></u>			(<u> </u>]		((<u>)</u>			NN (•			5	;			〈	,) \	
55	Table 1	Powo	· ·			2	3			99	- `			67	<u>-</u> `-			8	3	<u> </u>		69	3			70	2	

Table 11 (continued)

Сошод									(IR)		
Jo	٦.	1	R	×	R.		[α]υ,	Nolecular	Elemental	analvsis	
Ex. No.						Yield%	Yield% C=1, WeOll(°C) formula Calcd, Found	formula	Calcd.	Found	I R v maxcm.
								CaeHssNsO7	C:59.78	C:59.81	C3.0H5.3N50, C:59.78 C:59.81 3340, 2930, 1655, 1628.
11	{	ς(_	\(\frac{\chi}{\chi}\)			20	-6.6	S2	H: 7.27	II: 7, 10	H: 7.27 H: 7.10 1530, 1510, 1447, 1326,
)) -		֝֟֝֝֝֟֝֝֝֟֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		(24. 0)	.0.751120	N: 8.94 N: 8.85	N: 8.85	1142, 1126
									S: 8.18 S: 7.89	S: 7.89	

					T .	1	
5			. 52(211, m), (211, m), J=1. 611z), 23(111, d,	80(111, m). 311z). 3. 93(z). 7. 46(211, 61(111, d,) $00(1311, m)$, 2, $48(211, m)$, 2, $58(111, bs)$, 2, $81(611, s)$, 2, $68 \sim 3$, $12(411, m)$, 3, $16 \sim 3$, $63(911, m)$, 00(1311, m), 5, $27(111, d)$, 1=5, 4112), 5, $52(111, bt)$, 6, $57(111, d)$, 1=9, 2112), 7, $20(111, d)$, 1=7, $37(511, m)$, 8, $90(111, d)$, 1=1, 8112), 9, $37(111, d)$, 1=6, 8112) $37(111, d)$, 1, $37(511, m)$, 8, $90(111, s)$, 2, $79(611, s)$, 2, $82 \sim 3$, $53(911, m)$, 3, $67(111, m)$, 3, $94(111, m)$, 4, $67(111, m)$, 1, $37(911, bt)$, 6, $59(111, d)$, 1=9, 4112), 7, $27(611, m)$, 7, $53(111, d)$, 1=6, 6112), 8, $86(111, d)$, 1, $37(111, bt)$, 6, $39(111, d)$, 1=9, $3112 \sim 3$, 1, $31111 \sim 3$, 1, $311111 \sim 3$, 1, $311111 \sim 3$, 1, $31111 \sim 3$, 1, $311111 \sim 3$, 1, $311111 \sim 3$, 1, $311111 $	I, m), I. 13(5II, m), I. 43(1II, m), I. 60(4II, m), 2. 52(4II, m), 2. 83(5II, m), 3. 22(1II, dd, J=5, 15IIz), I, m), 3. 87(1II, m), 4. 03(1II, m), 4. 65(1II, m), 5. 33(1II, d, J=5. 6IIz), 6. 29(1II, t, J=6. 3IIz), 6. 58 (1 = 9. 0IIz), 7. 16(1II, d, J=1. 8IIz), 7. 33(6II, m), 7. 49(1II, m), 8. 20(1II, d, J=8IIz), 8. 79(1II, bd), 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	II. d. $J=2$. $U(12)$. $J=1$ (111, 05), $J=3$ (111, $D=4$), $J=4$ (211, m), $J=4$ (211, m), $J=7$ (111, m), $J=$
10			05(111, bs), 2 4, 06~4, 25 7, 18(111, d, 1), 7, 811z), 8.	72(211, m), 2. , J=4, 3, 14, 3 11, d, J=2, 011; J=7, 0112), 8.	(9, 2llz), 7. 2l (m), 3. 94(1ll (m), 3. 94(1ll (1) 1=6. 6llz), 8), 3, 22(111, d , 29(111, t, J= d, J=811z), 8.	73(111, m), 3 11, m), 6, 23(96(311, m), 8, bs)
15			5(211, m), 2. (3, 88(111, m), 4, J=9, 211z), 13(111, dd, J=	25(211, m), 2. 3, 92(111, dd 511z), 7, 16(1 8, 35(111, d.	68~3.12(4) .57(1), d, J=) m), 3.67(1), ,7.53(1), d.	, 2. 83(511, m J=5. 6112), 6	40(2!!, m), 2 1, m), 4. 63(1 n), 7. 70~7. m), 9. 11(1!!,
20			m), 1. 12(611, m), 1. 42(111, bd), 1. 60(311, bd, 7. 511z), 1. 95(211, m), 2. 05(111, bs), 2. 52(211, m), 3. 00(511, m), 3. 21(511, m), 3. 55(211, m), 3. 78(411, m), 3. 88(111, m), 4. 06~4. 25(211, m), 5. 01(111, d, J=411z), 5. 62(111, t, J=7. 511z), 6. 56(111, d, J=9. 211z), 7. 18(111, d, J=1. 611z), 7. 56~7. 76(211, m), 7. 87(111, dd, J=1, 4, 8. 211z), 7. 93(111, dd, J=1, 7. 811z), 8. 23(111, d, J=1, 7. 811z), 8. 23(8. 89(111, d, $J = 2112$), 9. b1(111, d, $J = 0$, o112), 1. 80(111, bs), 2. 25(211, m), 2. 42(211, m), 2. 80(111, m), 1. 60(411, bd), 1. 80(111, bs), 2. 25(211, dd, $J = 4$, 3, 14, 311z), 3. 93(m), 3. 19(411, m), 3. 46(711, m), 3. 63(111, m), 3. 75(411, m), 3. 92(111, dd, $J = 4$, 3, 14, 311z), 3. 93(51(111, m), 4. 70(111, m), 5. 58(111, bt), 6. 81(111, d, $J = 9$, 511z), 7. 16(111, d, $J = 2$, 011z), 7. 46(211, d, $J = 3$, 011z), 8. 61(111, d, $J = 3$, 011z), 7. 83(211, m), 7. 83(211, m), 8. 16(111, d, $J = 3$, 211z), 8. 35(111, d, $J = 3$, 011z), 8. 61(111, d, $J = 3$, 011z), 9.	$00(1311, m)$, 2, $48(211, m)$, 2, $58(111, bs)$, 2, $81(611, s)$, 2, $68 \sim 3$, $12(411, m)$, 3, $16 \sim 3$, $63(911, n)$, $00(1311, m)$, 5, $27(111, d, J=5, 411z)$, 5, $52(111, bt)$, 6, $57(111, d, J=9, 211z)$, 7, $20(111, d, J=7, 37(511, m)$, 8, $90(111, d, J=1, 811z)$, 9, $37(111, d, J=6, 811z)$, 8, $80(1311, m)$, 8, $90(111, d, J=1, 811z)$, 9, $27(111, d, J=6, 811z)$, 9, $27(111, m)$, 3, $37(111, m)$, 4, $37(111, m)$, 6, $39(111, d, J=9, 411z)$, 7, $27(611, m)$, 7, $53(111, d, J=6, 611z)$, 8, $86(111, d, J=6, 611z)$, 8, $37(111, d, J=6, 611z)$, 9, $37(111, d, J=6, 611z)$, 10, 11, 11, 12, 12, 13, 11, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	.m). 1. 13(511, m). 1. 43(111, m). 1. 60(411, m). 2. 52(411, m). 2. 83(511, m). 3. 22(111, dd, 1=5, 1511, m). 3. 87(111, m). 4. 03(111, m). 4. 65(111, m). 5. 33(111, d, 1=5. 611z). 6. 29(111, t, 1=6. 311z). 6. = 9. 011z). 7. 16(111, d, 1=1. 811z). 7. 33(611, m). 7. 49(111, m). 8. 20(111, d, 1=811z). 8. 79(111, bd)	26(21, m), 2. 1, m), 4. 49(11), 7. 58(211, r), 8. 77(111,
25		\$ \$	1, 60(311, bd 1, 55(211, m). 11, 1, 1=7, 511 11, dd, 1=1, 4	d, 3-6, 642) 111, bd), 1, 80 3, 63(111, m), 111, bt), 6, 81 11, 8, 16(111,	(III, bs), 2. 8 = 5. 4llz), 5. 8 llz), 9. 37(11 (6ll, s), 2. 8 d, J=9. 4llz), d, J=9. 4llz)	1. 60(411, m) 4. 65(111, m) 7. 33(61, m)	. d. $J=2$. $U(IZ)$, 9. $II(III, US)$, 9. $JU(III, US)$, 9. $JU(III, US)$, 9. $JU(III, US)$, 0. $JU(III, US)$, 1. $JU(III, US)$, 2. $JU(III, US)$, 3. $JU(III, US)$, 1. $JU(IIII, US)$, 1. $JU(III, US)$, 1. $JU(IIII, US)$, 1. $JU(III, US)$, 1. $JU(IIII, US)$, 1. $JU(III, US)$, 1. $JU(IIII, US)$, 1. $JU(IIII, US)$, 1. $JU(IIII, US)$, 1.
30		NMRS	42(111, bd). 21(511, m). 3 1112). 5. 62(1 11, m). 7. 87(1	z), 9. b1(111, 11, m), 1. 60(' 1, 46(711, m), 5. 11, m), 5. 58(' 1, 7. 89(111, 1	211, m), 2, 58 , 27(111, d, J 111, d, J=1, 8 (911, s), 2, 79 (), 6, 59(111,	1. 43(111, m). 1. 03(111, m). 4. J=1. 811z)	1 (11, 05), 3. (611, m), 1. 6(5-4. 2, 14. 41 , d, J=1. 61[z, , 15), 8. 58(11
35	ଚା	[1 B]	2(611, m), 1. 10(511, m), 3. 11(111, d, J=/36~7.76(21)	111, d, J=2115 35~1, 53(61 19(411, m), 3, 19(411, m), 7, 70(11, m), 7, 83(211, m)	11, m), 2, 48(71(11, m), 5 11, m), 8, 90(11, m), 1, 34(5, 73(111, b)	13(511, m), 1 87(111, m), 7 5), 7, 16(111,	2. Uliz), y. 1 3. 92~1. 48 85(11, dd, 25), 7. 15(111, dd, 15(111, dd)
40	(continued)			3 4 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\frac{1=1.911z}{0.60\sim2.00(13)}$ 3.97(211, m). 4. 1.811z), 7.37(5) 0.70 \sim 1.80(13) ddd, J=611zx3).	J=2) 0. 75(311, m), 1. 3. 44(611, m), 3. (111, d, J=9, 0112	3. 85(111, d, J=2, J=2, T3(311, bs), (J, T3(311, bs), 1, T3(311, d), J=3, T111, d, J=9, T112, 8, T3(112), 8, T3(112), 1=91(2), 1=
45	Table 11 (con		1	J=8. 41 0. 76(0 3. 04(0 111, m)	3. 9 3. 9 1. 8 0. 7		
	μï	Compd.	Ex. No. 54	55	56 57	28	59

Table 11 (continued)

Compd.	
Ex No	
09	$0.55\sim1.70(1311, m), 1.35(911, s), 2.75(211, m), 2.85\sim3.60(811, m), 3.75(111, m), 4.55(111, ddd, J=6.4)$
	112x3), 6, 17(111, d, J=9, 011z), 6, 79(111, t, J=6, 711z), 7, 11(111, d, J=2, 011z), 7, 26(511, m), 7, 55(111, dd,
	J=4, 3112), 7, 65(111, t, J=7, 811z), 8, 05(111, dd, J=1, 4, 8, 211z), 8, 26(111, dd, J=1, 8, 8, 3(11z), 8, 41(111,
	dd, J=1, 4, 7, 2112), 8, 58(111, d, J=2, 0112), 9, 04(111, dd, J=1, 8, 4, 3112)
19	$0.62 \sim 1.75(1311, m)$, 1. $34(911, s)$, 2. $70 \sim 3.54(1011, m)$, 3. $62(111, m)$, 3. $89(111, m)$, 4. $61(111, ddd, J=6.4)$
	11,2×3), 6, 40(111, t, J=6, 8112), 6, 48(111, d, J=9, 2112), 7, 07(111, dd, J=3, 6, 5112), 7, 25(611, m), 7, 40(111, d,
	J=6. 8llz), 8. 70(1ll, d, J=2llz)
- 29	1. $34(911, m)$, 0. $63 \sim 1$, $78(1311, m)$, 2. $74(111, dt, 1=6, 5, 13, 511z)$, 2. $85 \sim 3.52(811, m)$, 3. $58(111, dt, 1=6, 5, 13, 511z)$
	J=3. 5, 6. 6112), 4. 59(111, ddd, J=6. 5112x3), 6. 21(111, t, J=6. 4112), 6. 42(111, d, J=9. 2112), 7. 19(111,
	J=1. 711z), 7. 25(511, m), 7. 41(111, d, J=6. 811z), 7. 52(311, m), 7. 87(211, m), 8. 66(111, d, J=2. 011z)
63	$0.60 \sim 1.75(1311, m)$, 1.34(911, s), 2.63(311, s), 2.70(111, dt, J=6.6, 13.611z), 2.80 $\sim 3.46(911, m)$, 3.53
	(111, m), 3. 87(111, m), 4. 47(111, ddd, J=5. 811z×3), 5. 89(111, t, J=711z), 6. 41(111, d, J=911z), 6. 92(111, s),
	7. 28(511, m), 7. 52(311, m), 7. 63(111, d, 1=5. 811z), 7. 86(211, dd, 1=1. 6, 7. 711z)
79	0.76(311, m), 1.13(1.43(111, bd, J=911z), 1.60(411, bd, J=611z), 2.02(111, bs), 2.52(611, m), 2.72(111, dd,
	J=10, 1611z), 2.88(511, bt, J=711z), 3.03(211, m), 3.26(211, m), 3.45(811, m), 3.75(411, t, J=4.711z), 3.92
	(111, m), 3. 98(111, m), 4. 68(111, m), 5. 17(111, d, J=5. 511z), 5. 70(111, bt, J=511z), 6. 50(111, d, J=9. 611z),
	7. 16(111, d, 1=2. 011z), 7. 34(511, m), 8. 87(111, d, 1=2. 011z), 9. 39(111, d, 1=6. 911z)
65	$0.74(311, m), 0.9 \sim 1.35(511, m), 1.45(111, d. J=811z), 1.60(411, m), 1.98(111, bs), 2.24(211, m), 2.39(211, m)$
	\mid m), 2. 55(411, m), 2. 80 \sim 3. 15(811, m), 3. 25(211, t, J=711z), 3. 30 \sim 3. 68(811, m), 3. 75(411, m), 3. 90(111, dd,
	J=4. 4, 14. 511z), 3. 91(111, m), 4. 50(111, m), 4. 67(111, m), 5. 67(111, bt), 6. 73(111, d. J=9. 211z), 7. 15(111,
	d, J=1. 411z), 7. 46(211, m), 7. 60(211, m), 7. 76(111, d, J=3. 611z), 7. 84(111, dd, J=2. 6, 6. 811z), 7. 92(111, m),
	8. $16(111, d, J=8.411z)$, 8. $34(111, d, J=7.211z)$, 8. $60(111, d, J=211z)$

Table 11 (continued)

Compe	
Jo	[13] NMRS
Ex. No.	
- 99	$0.55 \sim 1.74(1311, m)$, $2.02(211, m)$, $2.18(111, bs)$, $2.50(611, m)$, $2.66 \sim 2.94(311, m)$, $2.94 \sim 3.30(511, m)$,
}	3, 45(811, m), 3, 73(511, m), 3, 90(111, m), 4, 00(111, m), 4, 67(111, m), 5, 20(111, bd), 5, 78(111, bt), 6, 53(111,
	d, J=9. Allz), 7. 16(111, d, J=1. 911z), 7. 35(511, m), 8. 87(111, d, J=2. 011z), 9. A1(111, d, J=6. 611z)
- 67	$0.62 \sim 1.75(1311, m), 2.04(211, m), 2.20(211, m), 2.39(211, m), 2.51(611, m), 2.90(311, m), 3.10(411, m).$
	3. 43(611, m), 3. 57(211, m), 3. 73(411, m), 3. 90(211, m), 4. 50(111, m), 4. 69(111, m), 5. 76(111, bt), 6. 77(111,
	d, J=911z), 7. 16(111, d, J=1. A11z), 7. AA(211, m), 7. 60(211, m), 7. 76(111, d. J=3. 211z), 7. 85(111, m), 7. 90
	(111, m), 8, 16(111, d, J=811z), 8, 37(111, d, J=6, 811z), 8, 60(111, d, J=211z)
89	0, 73(311, m), 1, 15(511, m), 1, 43(111, bd, J=811z), 1, 61(411, bd, J=611z), 2, 31(611, s), 2, 50(211, m), 2, 74
	(111, dd, J=10, 1411z), 2, 83(511, m), 3, 04(211, m), 3, 26(211, m), 3, 45(711, m), 3, 90(111, m), 4, 02(111, dd,
	J=2.8, 10. Allz), 4. 69(111, m), 5. 23(111, bs), 6. 51(111, d, J=911z), 7. 17(111, d, J=1, 611z), 7. 35(511, m),
	7. 35(511, m), 8. 87(111, d, J=211z), 9. 32(111, d, J=711z)
69	$0.70 \sim 1.80(1311, m)$, 1.35(911, s), 2.96(311, s), 2.75(111, bs), 2.87(\sim 3.50(911, m), 3.65(111, m), 3.45
	(111, m), 1. 63(111, ddd, J=5, 811z), 5. 78(111, t, J=6, 611z), 6. 50(111, d, J=9, 211z), 7. 28(611, m), 7. 60(111,
	d, 6. 2112), 8. 77(111, d, J=211z)
70	$0.70 \sim 1.88(1711, m)$, $0.95(311, t. J=7.211z)$, $2.87 \sim 3.52(1211, m)$, $3.63(111, m)$, $3.94(111, m)$, $4.63(111, m)$
	ddd, J=6. 2112x3), 5. 68(111, L, J=6. 411z), 6. 45(111, d, J=911z), 7. 25(611, m). 7. 54(111, d, J=6. 411z). 8. 76
	(III, d, J=2IIx)
1	$0.64 \sim 1.88(1711, m)$, 0.94(311, t, 1=7.211z), 2.28(111, dd, 1=6.4, 16.611z), 2.60 \sim 3.80(1911, m), 4.04
	(111, m), 4. 70(111, ddd, J=4. 7112×3), 5. 57(111, t, J=6. 811z)

Renin inhibition potency of the compounds (I) of the invention was distinuted in vitro and in vivo according to the procedure d scribed in the following Experiments.

Experiment 1 Potency in vitro

ing to the manufacturer's direction.

Commercially available lyophilized human plasma (Ortho, Bi-Level Plasma Renin Control) was renatured by dissolving in water. Angiotensinogen was allowed to react with intrinsic renin contained in the renatured plasma to generate angiotensin I (AI), which was quantitatively measured with radioimmunoassay (RIA). Thus, potency of the plasma renin was determined on the basis of the Al production. For this purpose, Renin RIA kit (RENIN RIABEADR) manufactured by Dinabott was used. All of the reagents necessary for the measurement of the Al production were available from the attachment of the kit, and the measurement was conducted accord-

To the plasma (0.2ml) were added all of the reagents, and the mixture was combined with either of sampl solutions (0.002ml) of various concentrations which had been prepared by dissolving a test compound in different amount of ethanol. Ethanol (0.002ml) containing no test compound was used as a control solution. The amount of AI produced was measured after 60 minutes incubation. Renin inhibition potency of test compound was determined by comparing the amount of AI produced by a sample solution with that produced by a control solution. The concentrations of the test compounds which inhibit renin activity by 50% (IC50) are summarized in Table 11.

20

25

30

35

40

45

50

55

15

5

Table 11 Renin Inhibition in vitro

Test Compo	ound IC ₅₀	Test Compou	nd IC ₅₀	Test Compound	IC ₅₀
(Example	- -	(Example No	• •	(Example No.)	
1	6.09	22	39.2	42	13
2	5.87	23	2.07	43	0.51
3	4.44	24	1.56	44	1.53
4	3.21	25	3.17	45	0.31
5	29.0	26	1.32	46	3.16
6	4.22	27	1.78	47	5.90
8	6.17	28	0.52	48	1.98
9	12.0	29	3.31	49	2.34
10	10.9	30	1.07	50	14.8
11	9.1	31	11.6	51	4.5
12	4.56	32	6.72	52	1.6
13	53.9	33	4.65	53	0.3
14	9.3	34	9.53	55	0.6
15	12.6	35	0.63	56	0.7
16	71.3	36	4.98	57	0.8
17	259	37	14.5	58	0.1
18	22.8	38	39.2	59	0.4
19	3.75	39	7.52	62	1.2
20	7.36	40	18.1	64	0.7
21	2.73	41	4.98	69	0.5
				(1)(KRI-13	14) 2
				(2)(ES-686	4) 3

IC₅₀: nM

45

(1) KRI-1314

50 NH NH HÖ

(2) ES-6864

Experiment 2 Potency in vivo

Crab-eating monkeys (Cynomolgus monkeys) (2.8-5.0 kg) were fed on low sodium diet (Na 7.15mg/100g feed) for six days, during which the monkeys intramuscularly received furosemide (2mg/kg body weight) every other day from the second day of the experiment, in order to make the monkeys hyperrenin condition.

After seven days of low sodium feeding, the monkeys were restrained on a monkey chair. Compounds to be tested are dissolved in 0.1M citric acid/physiological saline or suspended in water with addition of β-cyclodextrin, and orally administered to the monkeys using a stomach probe (15mg/kg body weight). Two millilit rs of blood was collected from the femoral vein before administration of the compounds and 0.5, 1.5, 2.5 and 4 hours after the administration. For the blood collection, an injection syringe containing 30μl of 6% aqueous EDTA-2Na solution was used. The collected blood was transferred into a test tube and centrifuged (3000 rpm, 10 minutes) at 4°C, and the resultant supernatant was used to determine the renin content. Plasma renin activity (Al(ng)/ml/h value) was measured using a Radioimmunoassay kit commercially available from Dinabott Co. in the same manner as in the foregoing in vitro test. Renin inhibition potencies of the compounds tested, which were expressed as a percentage of renin activity relative to the activity before the administration, are listed in Table 12.

Table 12

	Compound	Max	Mean	4h	6h	8h	24h
	Example No.						
	1	33	22	22			
)	2	49	46	49			
	8	60	52	60			
	21	55	37	55			
	24	99	90	77	56	42	28
	26	83	71	69	99		
	27	81	65	81	73	64	28
	28	97	74	97	89	83	53
	33	95	85	68	82		
	35	39	30	39	23	24	14
	39	46	28	12			
	40	44	30	44			
	41	95	89	87	76	54	18
	43	98	86	95	83	70	11
	44	99	97	91	81	71	21
	47	59	47	55	6	18	34
	48	98	88	88	63	33	0
	49	92	84	78	72	51	12
	50	93	59	58	42	29	0
	51	80	48	35	0	0	0
	53	96	85	94		73	
	56	93	72	82		85	
	57	100	97	89		80	
	58	83	71	82		67	

¹⁾ Administration rate of compound No. 1 is 30mg/kg.

The compounds of the invention which are not listed in Table 12 showed similar inhibition potencies.

55

²⁾ Furosemide was not administered in case of Nos. 2 and 8.

Vasodepressor activity of the compounds of the invention was also measured with direct technique using a conscious monkey, where a monkey was administered a compound of the invention orally or intravenously (a solution in Tween 20). The test results are shown in Table 13.

Table 13

Compound	Administration	Dose	Maximum	
Example No.	route	(mg/kg)	reduced BP	
			(-AmmHg)	
43	p.o.	100	35	
		30	10	
		10	5	
43	i.v.	3	-	
		1	20	
		0.3	5	
44	i.v.	3	20	
		1	8	
		0.3	5	

The above test results show that the compounds of the present invention have renin inhibition potency both in vitro and in vivo.

The compounds of the invention are thus useful for the treatment of hypertension due to the renin inhibition when orally administered. However, other administration routes may be also effective.

As discussed previously, the compounds of the invention can be formulated into a pharmaceutical composition together with suitable carriers or excipients. When the compounds of the invention are used as a hypot n-sive agent, suitable dosage is 0.01-50mg/kg/day in one to three divided does, preferably 0.05-10mg/kg/day, when orally administered, and 1-5000ug/kg/day, preferably 5-500ug/kg/day, when parenterally administer d.

Claims

25

30

35

40

45

50

55

A dipeptide derivative of formula (I):

$$\mathbb{R}^4 \xrightarrow{X} \mathbb{NH} \mathbb{R}^2 \mathbb{NH} \xrightarrow{\mathbb{O}} \mathbb{NH} \mathbb{NH} \xrightarrow{\mathbb{O}} \mathbb{H} \mathbb{NH}$$

wherein:

R¹ is C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkyl, aryl, or heterocyclic radical; R² is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C₁-C₁₂ alkyl-S-, C₁-C₁₂ alkyl-S-CH₂-, or C₃-C₁₀ cycloalkyl-S-;

R3 is aryl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

 R^4 is aryl, C_1 - C_{12} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; C_3 - C_{10} cycloalkyl, or heterocyclic radical; X is CH₂, NH, O, or S; and

Y is CO or NHSO₂ wh rein R¹, R², R³ and R⁴ each may b substituted with on to three substituents selected independently from a group consisting of hydroxy; halogen; trifluorom thyl; -CN; h terocyclic radical; C₁-C₆ alkyl; C₃-C₁₀ cycloalkyl; -O-C₁-C₆ alkyl; -S-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -SO₂-C₁-C₆ alkyl; -SO₂-C₁-C₆ alkyl; -NR⁵R⁶; -O-CO-NR⁵R⁶; -O-CO-NR⁵R⁶; -O-C₁-C₆ alkyl NR⁵R⁶; R⁵ and R⁶ ar independently hydrog n, formyl or C₁-C₆ alkyl, or R⁵ and

R⁶, whin tak in together with thin itrogin to which they are attached, form a cyclic amino group; or an acid addition salt thereof.

- 2. A compound as claim d in Claim 1 wherein R² is optionally substituted 5- or 6-m mb r d h terocyclic group; R³ is optionally substituted aryl; R⁴ is morpholinosulfonyl; and x is NH.
 - 3. A compound for the manufacture of the derivative of formula (I) of Claim 1, said compound having the formula:

R7-N-100

wherein, R1 is as defined in Claim 1, and R7 is hydrogen or an amino protecting group.

4. A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

Step 1

5

10 R⁷-NH CHO + 0

[1](S) [2]

25 R⁷-NH R¹

30 [3]

35

50

55

⁴⁵ [4] [5]

Step 2b

Step 2c

$$R^{2}-NB \longrightarrow 0$$

$$19$$

[14]

$$\begin{array}{c|c}
R^1 \\
0
\end{array}$$

Step 3

Step 2a

50

Step 4

5 [11] 10 [12] (S) 15 20 25 [13] 30 35 40 [I A]

wherein R¹, R², R³, R⁴ and X are as defined in Claim 1, R^{2'} is protected R² and R⁷ is an amino protecting group.

5. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

55

5

$$R^7 - NH$$
 CHO
 $R^7 - NH$
 HO
 CN
 $R^7 - NH$
 HO
 $R^7 - NH$
 HO

Step 2

20

40 Step 3

55

wherein R1, R2, R3, R4 and X are as defined in Claim 1 and R7 is an amino prot cting group.

- 6. A pharmaceutical preparation for us in the tr atment of hypertensi n comprising a pharmaceutically effective amount of at least on compound as defined in Claim 1 or Claim 2 together with ne or more pharmaceutically acceptable carriers, diluents or excipients.
- 5 7. The use of a compound as defined in Claim 1 or Claim 2 in the manufacture of a medicament for use in the treatment of hypertension.
 - 8. A process for carrying out a stereo selective aldol condensation between an aldelyde and a ketone wherein the reaction is carried out in the presence of a metal amide and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.
 - A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)₂), the crown ether is 15-crown-5 and the temperature is about -78°C.

15 Claims for the following Contracting State: ES

1. A process for the **production** of a pharmaceutical preparation for the treatment of hypertension comprising the step of admixing a pharmaceutically effective amount of at least one compound of the formula

 \mathbb{R}^{4} \mathbb{R}^{3} $\mathbb{N}\mathbb{H}$ $\mathbb{N}\mathbb{R}$ $\mathbb{N}\mathbb{R}$ $\mathbb{N}\mathbb{R}$ \mathbb{N} \mathbb{N}

wherein:

10

20

25

30

35

40

R¹ is C₁-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkyl, aryl, or heterocyclic radical; R² is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C₁-C₁₂ alkyl-S-, C₁-C₁₂ alkyl-S-CH₂-, or C₃-C₁₀ cycloalkyl-S-;

R3 is anyl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

R4' is aryl, C₇-C₁₂ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl; C₃-C₁₀ cycloalkyl, or heterocyclic radical;

X is CH₂, NH, O, or S; and

Y is CO or NHSO₂ wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C₁-C₆ alkyl; C₃-C₁₀ cycloalkyl; -O-C₁-C₆ alkyl; -S-C₁-C₆ alkyl; -SO-C₁-C₆ alkyl; -SO₂-C₁-C₆ alkyl; C₁-C₆ alkyl; -NHSO₂-C₁-C₆ alkyl; -NR⁵R⁶; -O-CO-NR⁵R⁶; -O-CO-NR⁵R⁶; -O-C₁-C₆ alkyl NR⁵R⁶; R⁵ and R⁶ are independently hydrogen, formyl or C₁-C₆ alkyl, or R⁵ and R⁶, when taken together with the nitrogen to which they are attached, form a cyclic amino group; or an acid addition salt thereof together with one or more pharmaceutically acceptable diluents, excipients or carriers.

- A process as claimed in Claim 1 wherein R² is optionally substituted 5- or 6-membered heterocyclic group;
 R³ is optionally substituted aryl; R⁴ is morpholinosulfonyl; and x is NH.
 - A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

Step 1

[2] [1](\$)

[3]

[4]

[5]

Step 2a

Step 2b

Step 2c

$$\int \int_{0}^{R^{1}} [2]$$

 $\begin{bmatrix} 11 \end{bmatrix} + \begin{bmatrix} R^4 \\ X \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$

[I A]

wherein R^1 , R^2 , R^3 , R^4 and X are as defined in Claim 1, $R^{2'}$ is protected R^2 and R^7 is an amino protecting group.

4. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

20

Step 3

45

50

55

[25]
$$\longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NHSO_2R^1 + R^4 - X \longrightarrow OH$$
[26] [12]

wher in R1, R2, R3, R4 and X are as defined in Claim 1 and R7 is an amino protecting group.

5. The use of a compound as defined in Claim 1 or Claim 2 in th manufactur of a medicament for use in

the treatment of hypertension.

- 6. A procession carrying out a stereo sel ctiv aldol cond insation between an aldelyde and a ketone whire in the reaction is carried out in the presence of a metal amide and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.
- A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)₂), the crown ether is 15-crown-5 and the temperature is about -78°C.

10 Claims for the following Contracting States: GR

 A process for the production of a pharmaceutical preparation for the treatment of hypertension comprising the step of admixing a pharmaceutically effective amount of at least one compound of the formula

 $\begin{array}{c|c}
R^3 & R^2 \\
\hline
 & NR & DH \\
\hline
 & OH \\
 & OH \\
\hline
 & OH \\
\hline$

wherein:

5

15

20

25

30

35

R¹ is C₁-C₁₂ afkyl. C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₃-C₁₀ cycloalkyl, aryl, or heterocyclic radical; R² is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C₁-C₁₂ alkyl-S-, C₁-C₁₂ alkyl-S-CH₂-, or C₃-C₁₀ cycloalkyl-S-;

R3 is anyl of 5- or 6-membered heterocyclic radical;

R4 is R4'-SO2 or R4'-CO;

 R^4 is aryl, C_1 - C_{12} alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl; C_3 - C_{10} cycloalkyl, or heterocyclic radical; X is CH₂, NH, O, or S; and

Y is CO or NHSO₂ wherein R¹, R², R³ and R⁴ each may be substituted with one to three substituents selected independently from a group consisting of hydroxy; halogen; trifluoromethyl; -CN; heterocyclic radical; C_1 - C_6 alkyl; C_3 - C_{10} cycloalkyl; -O- C_1 - C_6 alkyl; -S- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -NC5- C_1 - C_6 alkyl; -NHSO₂- C_1 - C_6 alkyl; -NR5R6; -O-CO-NR5R6; -CO-NR5R6; -O-C1- C_6 alkyl; NR5R6; R5 and R6 are independently hydrogen, formyl or C_1 - C_6 alkyl, or R_5 and R_6 , when taken together with the nitrogen to which they are attached, form a cyclic amino group; or an acid addition salt thereof together with one or more pharmaceutically acceptable diluents, excipients r carriers.

- 40 2. A process as claimed in Claim 1 wherein R² is optionally substituted 5- or 6-membered heterocyclic group; R³ is optionally substituted aryl; R⁴ is morpholinosulfonyl; and x is NH.
 - 3. A process for the preparation of a compound as defined in Claim 1 of Claim 2 wherein Y is CO comprising at least the final step of the following reaction scheme:

50

45

Step 2a

[9]

Step 2b

Step 2c

15 \\ \bigcup_{\text{N}}^{\text{R}^1} \\ \text{0} \\ \text{[2]}

5

$$\begin{bmatrix} 111 \end{bmatrix} + R^4 \times \begin{pmatrix} R^3 \\ 12 \end{bmatrix} (S)$$

$$\begin{bmatrix} 12 \end{bmatrix} (S)$$

$$\begin{bmatrix} 12 \end{bmatrix} (S)$$

$$\begin{bmatrix} 13 \end{bmatrix}$$

$$\begin{bmatrix} 13 \end{bmatrix}$$

$$\begin{bmatrix} 13 \end{bmatrix}$$

$$\begin{bmatrix} 13 \end{bmatrix}$$

$$\begin{bmatrix} 14 \end{bmatrix}$$

$$\begin{bmatrix} 1$$

wherein R¹, R², R³, R⁴ and X are as defined in Claim 1, R^{2'} is protected R² and R⁷ is an amino protecting group.

4. A process for preparing a compound as defined in Claim 1 or Claim 2 wherein Y is NHSO₂ comprising at least the final step of the following reaction scheme:

[[]

Step 1

$$R^{7}-NH \xrightarrow{CHO} \longrightarrow R^{1}-NH \xrightarrow{HO} CN$$

$$L-[1] \qquad [20]$$

$$R^{7}-NH \xrightarrow{HO} NH_{2} \xrightarrow{C\ell SO_{2}R^{1}} R^{7}-NH \xrightarrow{HO} NHSO_{2}R^{1}$$

$$[21] \qquad [23]$$
Step 2

25
$$R^{7}-NH \xrightarrow{HO} NHSO_{2}R^{1} \xrightarrow{NH} \frac{H}{O} NHSO_{2}R^{1}$$
30
$$R^{7}-NH \xrightarrow{R^{2}} [8]$$

$$R^{7}-NH \xrightarrow{OOOH} R^{7}-NH \xrightarrow{O} HO NHSO_{2}R^{1}$$
[25]

Step 3

(25)
$$\longrightarrow NH_2 \longrightarrow NH_2 \longrightarrow NHSO_2R^1 + R^4 - X \longrightarrow 0$$

(26) (12)
 $R^4 - X \longrightarrow NH \longrightarrow NHSO_2R^1$
 (12)

wherein R1, R2, R3, R4 and X are as d fin d in Claim 1 and R7 is an amino protecting group.

EP 0 468 641 A2

- 5. The us of a compound as defined in Claim 1 or Claim 2 in the manufactur of a medicament for use in the treatment of hypertension.
- 6. A proc ss for carrying out a stereo sel ctive aldol condensation between an aldelyde and a ketone wherein the reaction is carried out in the presence of a metal amid and a crown ether in an organic solvent and at a temperature in the range -10 to about -100°C.

- 7. A process as claimed in Claim 8 wherein the amide is sodium bis-trimethylsilylamide (NaN(TMS)₂), th crown ether is 15-crown-5 and the temperature is about -78°C.
- 8. A compound for the manufacture of the derivative of formula (I) of Claim 1, said compound having the formula:

R7-N-10 0 R1

wherein, R1 is as defined in Claim 1, and R7 is hydrogen or an amino protecting group.

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 91305763.4

(22) Date of filing: 26.06.91

(51) Int. Cl.⁵: **C07K 5/02**, C07K 5/06, A61K 37/64, C07D 409/12,

> C07D 417/12, C07D 401/12, C07D 277/56, A61K 31/415, C07D 233/64, A61K 31/425,

A61K 31/44

30 Priority: 28.06.90 JP 172050/90

(43) Date of publication of application: 29.01.92 Bulletin 92/05

(84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(88) Date of deferred publication of search report: 13.01.93 Bulletin 93/02

(71) Applicant: SHIONOGI SEIYAKU KABUSHIKI KAISHA trading under the name of SHIONOGI & CO. LTD. 1-8. Doshomachi 3-chome Chuo-ku Osaka 541 (JP)

1-1-140, Suimeidai Kawanishi-shi, Hyogo 666-01 (JP) Inventor: Fujioka, Toshihiro 1-983-6, Isokabe, Kashiba-cho Kitakatsuragi-gun, Nara 639-026 (JP) Inventor: Hayashi, Kunio

(72) Inventor : Toyoda, Tatsuo

32-11, Satsukida-cho Kadoma-shi, Osaka 571 (JP) Inventor: Nakamura, Masuhisa 6-9-11. Nakayamasakuradai Takarazuka-shi, Hyogo 665 (JP) Inventor: Hashimoto, Naofumi 5-13-7, Terakawa

Daito-shi, Osaka 574 (JP)

(74) Representative : Hardisty, David Robert et al **BOULT, WADE & TENNANT 27 Furnival Street** London EC4A IPQ (GB)

(A) Renin inhibiting dipeptide derivatives, their preparation and pharmaceutical preparations containing

A novel dipeptide derivative of the following formula (I), which compound is capable of inhibiting the enzymatic activity of renin and thereby depressing the renin-angiotensin system and lowering the blood pressure, is provided.

wherein:

R1 is C1-C12 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, C3-C10 cycloalkyl, aryl, or heterocyclic radical; R2 is carbamoyl, aryl, 5- or 6-membered heterocyclic radical, C1-C12 alkyl-S-, C1-C12 alkyl-S-CH2-, or C₃-C₁₀ cycloalkyl-S-;

R³ is anyl or 5- or 6-membered heterocyclic radical; R⁴ is R⁴ -SO₂ or R⁴ -CO;

 $R^4 \ \text{is aryl, } C_1\text{--}C_{12} \ \text{alkyl, } C_2\text{--}C_6 \ \text{alkenyl, } C_2\text{--}C_6 \ \text{alkynyl} \ ; \ C_3\text{--}C_{10} \ \text{cycloaklyl, or h} \ t \ \text{rocyclic radical} \ ;$

X is CH₂, NH, O, or S; and

Y is CO or NHSO2, wherein R1, R2, R3 and R4 each may b substituted with one to three substituents s lected ind pendently from a group consisting of hydroxy; halog n; trifluoromethyl; -CN; heterocyclic radical; C_1 - C_6 alkyl; C_3 - C_{10} cycloalkyl; -O- C_1 - C_6 alkyl; C_1 - C_6 alkyl; -NHCO- C_1 - C_6 alkyl; -S- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -SO- C_1 - C_6 alkyl; -NR 5 R 6 ; -O-CO-NR 5 R 6 ; -O-CO-NR 5 R 6 ; -O- C_1 - C_6 alkyl NR 5 R 6 ; R 5 and R 6 are indep nd ntly hydrogen,

EP 0 468 641 A3

formyl or C_1 - C_6 alkyl, or R^5 and R^6 , when taken together with the nitrogen to which they are attached, form a cyclic amino group, or an acid addition salt thereof.

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 5763 Page 1

				Page 1	
	DOCUMENTS CONSI	DERED TO BE RELEVAN	T]	
Category	Citation of document with it of relevant pa	ndication, where appropriate, ssages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)	
Ρ, χ	EP-A-0 396 065 (YOS 7 November 1990 * example 3 *	HITOMI)	1-3,6-7	C07K5/02 C07K5/06 A61K37/64	
, x	EP-A-0 391 180 (HOF 10 October 1990 *the whole disclosu on page 13*	FMANN-LA ROCHE) re, especially scheme 1		C07D409/12 C07D417/12 C07D401/12 C07D277/56 A61K31/415 C07D233/64	
	EP-A-0 310 015 (H0E 5 April 1989 * examples 1,2 *	CHST AG)	1-3,6-7	A61K31/425 A61K31/44	
(EP-A-0 264 795 (MER 27 April 1988 * the whole documen	-	1-3,6-7		
(EP-A-0 155 809 (PFI 25 September 1985 * page 9, line 11 -	-	1-3,6-7		
(GB-A-2 200 115 (SAN 27 July 1988 * examples 38-46 *	DOZ LTD)	1-3,5-7	TECHNICAL FIELDS SEARCHED (Int. Cl.5) CO7K	
(CHEMICAL ABSTRACTS, 3 July 1989, Columb abstract no. 7784c, W J GREENLEE ET AL. peptides containing peptide bond isoste phenylalanylhistidi page 751; column RI* abstract * & JP-A-63 146 850 (18 June 1988	1-3,6-7	C07D A61K		
	The present search report has b	<u> </u>			
	Place of scarch THE HAGUE	Date of completion of the search O4 NOVEMBER 1992		p. masturzo	
X : par Y : par doc A : tecl O : nor	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an unsent of the same category hanological backgroundwritten disclosure smediate document	NTS T: theory or princip E: earlier patent do after the filling d other D: document cited i L: document cited i	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: member of the same patent family, corresponding		

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 5763 Page 2

1	DOCIMENTS CONS	DEDED TO BE BELLEVI	NITE	rage z]
	DOCUMENTS CONSI Citation of document with in	G ASSINGATION OF THE		
Category	of relevant pa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
x	US-A-4 812 442 (BOG 14 March 1989 * column 27 - colum	·	4	
X	cobalt complexes of	1985, NEW YORK US ymeric catalysts. IX. polyureas based on and crown ether for	8	
x	CHEMICAL ABSTRACTS, 19 December 1988, abstract no. 230725 A ROSKA ET AL. 'hig	Columbus, Ohio, US; p, h molecular-weight	8	
	catalysts in organic synthesis. XVI. catalysis of condensation reaction by polymer-supported crown ethers' page 832 ;column RIGHT ;			TECHNICAL FIELDS SEARCHED (Int. Cl.5)
	* abstract * & LATV. PSR. ZINAT. SER. no. 1, 1988,	AKAD. VESTIS, KIM.		
	pages 91 - 96	•		
		-/		
	The present search report has b	Date of completion of the search		Exeminer
1	THE HAGUE	04 NOVEMBER 1992		p. masturzo
X : part Y : part doc: A : teck O : non	CATEGORY OF CITED DOCUME ticularly relevant if taken alone ticularly relevant if combined with an ument of the same category hnological background s-written disclosure grasediate document	ciple underlying the document, but public g date in the application d for other reasons	ished on, or	

EUROPEAN SEARCH REPORT

Application Number

EP 91 30 5763 Page 3

Category	Citation of document with ind of relevant pass		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)	
X	CHEMICAL ABSTRACTS, 12 September 1988, C abstract no. 92416k,	wol. 109, no. 11, olumbus, Ohio, US; . 'methylene-carbonyle carbon acids with transfer or is conditions'	to claim	TECHNICAL FIELDS SEARCHED (Int. Cl.5)	
	The present search report has been place of search THE HAGUE CATEGORY OF CITED DOCUMEN	Date of completion of the search O4 NOVEMBER 1992 T: theory or prize E: earlier nates	ciple underlying the	ished on, or	
X: particularly relevant if taken alone Y: particularly relevant if combined with another socument of the same category A: technological background O: non-written disclosure P: intermediate document		L : socument cite	after the filing date D: document cited in the application L: document cited for other reasons A: member of the same patent family		