Таблицы истинности для лабораторной работы 3

Анализ комбинационных и последовательных схем 24 октября 2025 г.

1 Комбинационные схемы

1.1 Часть 1: Логическая функция q = (a|b)&(c|d)

Таблица 1: Таблица истинности для части 1

a	b	c	d	q
0	0	0	0	$\frac{q}{0}$
0	0	0	1	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	0	0
0	0	1	1	0
$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1		0	0
0	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 1	0 1 1
0	1	1	0	1
0 0 1 1 1 1 1	1	1	1	1
1	0	0	0	1 0
1	0	0	1	1
1	0	1	0	1
1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	0 1	1 1 1
1	1		0	0
1	1	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1
1 1	1 1	1	0	1 1
1	1	1	1	1

1.2 Часть 2: Логическая функция q=b|c

Таблица 2: Таблица истинности для части 2

a	b	c	d	q
X	0	0	X	0
X	0	1	X	1
X	1	0	X	1
X	1	1	Χ	1

Примечание: Выход q зависит только от входов b и c, входы a и d не влияют на результат.

Таблица 3: Таблица истинности для части 3

a[3:0]	b[3:0]	c[3:0]	d[3:0]	e[3:0]	q[3:0]
X	X	0	X	X	b
X	X	1	X	X	e
X	X	2	X	X	a
X	X	3	X	X	d
X	X	4-15	X	X	F

1.3 Часть 3: Мультиплексор 4х1

Примечание: Мультиплексор выбирает один из четырех входов по управляющему сигналу c. При неопределенных значениях c выход устанавливается в F.

2 Последовательные схемы

2.1 Часть 4: Логика на основе тактового сигнала

Таблица 4: Логика работы модуля Part 4

clock	a	p	q
0	0	p_{prev}	q_{prev}
0	1	p_{prev}	q_{prev}
1	0	0	p
1	1	1	p

Примечание: p обновляется по положительному фронту clock, q обновляется по отрицательному фронту clock.

2.2 Часть 5: Счетчик с остановкой

Таблица 5: Логика работы счетчика Part 5

a	$q_{current}$	q_{next}	Описание
0	0-5	q+1	Обычный счет
0	6	0	Переполнение
1	X	4	Принудительная остановка на 4

Примечание: Счетчик считает от 0 до 6, при a=1 устанавливается значение 4.

2.3 Часть 6: XOR логика с состоянием

Примечание: $state_{n+1} = (a == b)?a : state, q = a \oplus b \oplus state$

Таблица 6: Логика работы модуля Part 6

a	b	$state_{current}$	$state_{next}$	q
0	0	0	a	$a \oplus b \oplus state$
0	0	1	a	$a \oplus b \oplus state$
0	1	0	state	$a \oplus b \oplus state$
0	1	1	state	$a \oplus b \oplus state$
1	0	0	state	$a \oplus b \oplus state$
1	0	1	state	$a \oplus b \oplus state$
1	1	0	a	$a \oplus b \oplus state$
1	1	1	a	$a \oplus b \oplus state$

Таблица 7: Логика работы счетчика

reset	q	q_{n+1}	Описание
1	X	0	Сброс счетчика
0	0-998	q+1	Инкремент
0	999	0	Переполнение

3 FSM модули

- 3.1 FSM Part 1: Счетчик 0-999
- 3.2 FSM Part 2: Сдвиговый регистр-счетчик
- 3.3 FSM Part 3: Детектор паттерна 1101
- 3.4 FSM Part 4: Продвинутый таймер

Примечание: $target\ count = (cnt + 1) \times 1000$, где cnt - значение сдвигового регистра.

4 Заключение

Все таблицы истинности соответствуют реализованным модулям и подтверждают корректность их работы. Комбинационные схемы реализуют различные логические функции, а последовательные схемы демонстрируют работу с тактовыми сигналами и внутренними состояниями. FSM модули показывают сложную логику конечных автоматов с множественными состояниями и переходами.

Таблица 8: Логика работы сдвигового регистра

$shift_ena$	$count_ena$	data	q_{n+1}	Описание
1	0	X	$\{q[2:0], data\}$	Сдвиг влево
0	1	X	$q-1$ (если $q \neq 0$)	Обратный счет
0	0	X	q	Сохранение

Таблица 9: Состояния FSM детектора паттерна

Состояние	Вход	Следующее состояние	$start_shifting$
S0 (IDLE)	0	S0	0
S0 (IDLE)	1	S1	0
S1	0	S0	0
S1	1	S2	0
S2	0	S3	0
S2	1	S2	0
S3	0	S0	0
S3	1	S4	1
S4	0	S0	0
S4	1	S1	0

Таблица 10: Состояния FSM продвинутого таймера

Состояние	Условие перехода	Следующее состояние	counting	done
S0-S3	Паттерн 1101 найден	В0	0	0
B0-B3	4 бита сдвинуты	COUNT	0	0
COUNT	$num_cnt \ge target$	WAIT	1	0
WAIT	ack = 1	S0	0	1