HMMexploration

2023-09-27

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

```
##
        speed
                         dist
                           : 2.00
##
    Min.
          : 4.0
                    Min.
    1st Qu.:12.0
##
                    1st Qu.: 26.00
##
    Median:15.0
                    Median : 36.00
##
    Mean
           :15.4
                   Mean
                           : 42.98
    3rd Qu.:19.0
                    3rd Qu.: 56.00
           :25.0
    Max.
                   Max.
                           :120.00
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

Hidden Markov Model exploration for calves

loading and visualizing data

load the libraries and the data from Matlab (it will already be chunked and averaged over a specified window)

```
library(fitdistrplus)
## Warning: package 'fitdistrplus' was built under R version 4.3.1
## Loading required package: MASS
## Loading required package: survival
library(momentuHMM)
## Warning: package 'momentuHMM' was built under R version 4.3.1
## The legacy packages maptools, rgdal, and rgeos, underpinning the sp package,
## which was just loaded, will retire in October 2023.
## Please refer to R-spatial evolution reports for details, especially
## https://r-spatial.org/r/2023/05/15/evolution4.html.
## It may be desirable to make the sf package available;
## package maintainers should consider adding sf to Suggests:.
## The sp package is now running under evolution status 2
        (status 2 uses the sf package in place of rgdal)
##
```

Look at the distributions of all 4 data streams

Histogram of all_all\$avg_speed

Histogram of all_all\$mean_resultant_len

Histogram of all_all\$max_depth

Histogram of all_all\$msa

parameter estimation for each variable SPEED

```
moment_match_gamma <- function(mu, sigma){</pre>
  # sigma is the standard deviation
  alpha = (mu ^ 2) / (sigma ^ 2)
  beta = mu / (sigma ^ 2)
  parameters = c(alpha, beta)
  names(parameters) = c('alpha', 'beta')
  parameters
}
# calculate the parameters for the travel state
travel_params = moment_match_gamma(
  mean(all_travel$avg_speed),
  sd(all_travel$avg_speed)
#and for the rest state
rest_params = moment_match_gamma(
  mean(all_rest$avg_speed),
  sd(all_rest$avg_speed)
```

plot the traveling and resting data and distributions

MEAN RESULTANT LENGTH

```
moment_match_beta <- function(mu, var){
    # var is the variance
    alpha = ((1 - mu) / var - 1 / mu) * mu ^ 2
    beta = alpha * (1 / mu - 1)
    parameters = c(alpha, beta)
    names(parameters) = c('alpha', 'beta')
    parameters
}

travel_mrl_params = moment_match_beta(
    mean(all_travel$mean_resultant_length),
    var(all_travel$mean_resultant_length)
)

rest_mrl_params = moment_match_beta(
    mean(all_rest$mean_resultant_length),
    var(all_rest$mean_resultant_length)
)</pre>
```

plot the traveling and resting data and distributions

Travel

DEPTH

```
travel_depth_params = moment_match_gamma(
  mean(all_travel$max_depth),
  sd(all_travel$max_depth)
)

rest_depth_params = moment_match_gamma(
  mean(all_rest$max_depth),
  sd(all_rest$max_depth)
)
```

plot the traveling and resting data and distributions

```
xlim=c(0, max(all_travel$max_depth)))
abline(v=mean(all_rest$max_depth), col='red', lwd=2)
curve(dgamma(x, rest_depth_params['alpha'], rest_depth_params['beta']),
    add = T, col = 'blue', lwd = 2)
```

Travel

Rest

AVERAGE MINIMUM SPECIFIC ACCELERATION

```
travel_msa_params = moment_match_gamma(
  mean(all_travel$msa),
  sd(all_travel$msa)
)

rest_msa_params = moment_match_gamma(
  mean(all_rest$msa),
  sd(all_rest$msa)
)
```

plot the traveling and resting data and distributions

```
# curve for estimated gamma
curve(dgamma(x, travel_msa_params['alpha'], travel_msa_params['beta']),
    add = T, col = 'blue', lwd = 2)

# ditto as above but for rest
hist(all_rest$msa, probability = TRUE, breaks=20, main = 'Rest',
    xlim=c(0, max(all_travel$msa)))

abline(v=mean(all_rest$msa), col='red', lwd=2)

curve(dgamma(x, rest_msa_params['alpha'], rest_msa_params['beta']),
    add = T, col = 'blue', lwd = 2)
```

Travel

Rest

simulate data and run simple HMMs

Simulate speed

```
# simulate rest data from parameters
n_rest = nrow(all_rest)
sim_rest = rgamma(n_rest, rest_params['alpha'], rest_params['beta'])

# simulate travel data from parameters
n_travel = nrow(all_travel)
sim_travel = rgamma(n_travel, travel_params['alpha'], travel_params['beta'])

xlim = c(0, max(all_travel$avg_speed))
```

```
par(mfrow=c(2, 2))
hist(all_travel$avg_speed, breaks=30, xlim=xlim)
hist(all_rest$avg_speed, breaks=30, xlim=xlim)
hist(sim_travel, breaks=30, xlim=xlim)
hist(sim_rest, breaks=30, xlim=xlim)
```

Histogram of all_travel\$avg_speed

Histogram of all_rest\$avg_speed

Histogram of sim_travel

Histogram of sim_rest

compare simulated speed HMM output to real speed data HMM output

```
Transition probability matrix formula: ~1
##
  Initial distribution formula: ~1
## DONE
print(sim_test1_speed)
## Value of the maximum log-likelihood: -278.7787
##
##
## avg_speed parameters:
## -----
         resting traveling
## mean 2.779147e-06 1.181837
      5.082706e+00 0.447573
##
## Regression coeffs for the transition probabilities:
##
              1 -> 2
                      2 -> 1
## (Intercept) 16.43828 -172.753
##
## Transition probability matrix:
## -----
               resting traveling
## resting 7.260180e-08 0.9999999
## traveling 9.426126e-76 1.0000000
## Initial distribution:
## resting traveling
## 0.1455826 0.8544174
#plot(sim_test1_speed, plotCI = TRUE, breaks=30)
The model did not work on the simulated data...
real speed data HMM
all_speed<- c(all_travel$avg_speed, all_rest$avg_speed)</pre>
combined_avg_speeds <- data.frame(avg_speed = all_speed)</pre>
speed_data<- prepData(combined_avg_speeds, type='LL', coordNames=NULL)</pre>
dist<-list(avg_speed="gamma")</pre>
Par0 <- list(avg_speed= c(rest_params['alpha'], travel_params['alpha'], rest_params['beta'], travel_par
stateNames <- c("traveling", "resting")</pre>
test1_speed <- fitHMM(speed_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)
## Fitting HMM with 2 states and 1 data stream
## -----
## avg_speed ~ gamma(mean=~1, sd=~1)
```

```
##
  Transition probability matrix formula: ~1
##
## Initial distribution formula: ~1
## DONE
print(test1_speed)
## Value of the maximum log-likelihood: -74.09784
##
##
## avg_speed parameters:
      traveling resting
## mean 1.5096063 0.8263913
## sd 0.3752685 0.1561869
##
## Regression coeffs for the transition probabilities:
              1 -> 2 2 -> 1
## (Intercept) -2.790865 -2.777805
## Transition probability matrix:
## -----
##
     traveling resting
## traveling 0.94218017 0.05781983
## resting 0.05853542 0.94146458
## Initial distribution:
## traveling resting
## 2.568529e-09 1.000000e+00
states <- viterbi(test1_speed)</pre>
table(states)/nrow(speed_data) #well that didn't really work
## states
##
   1
## 0.5091278 0.4908722
plot(test1_speed, plotCI = TRUE, breaks=30)
```

Decoding state sequence... DONE

ID Animal1

Simulate MRL

```
# simulate rest data from parameters
n_rest = nrow(all_rest)
sim_mrl_rest = rbeta(n_rest, rest_mrl_params['alpha'], rest_mrl_params['beta'])

# simulate travel data from parameters
n_travel = nrow(all_travel)
sim_mrl_travel = rbeta(n_travel, travel_mrl_params['alpha'], travel_mrl_params['beta'])

xlim = c(0, max(all_travel$mean_resultant_length))

par(mfrow=c(2, 2))
hist(all_travel$mean_resultant_length, breaks=30, xlim=xlim)
hist(all_rest$mean_resultant_length, breaks=30, xlim=xlim)
hist(sim_mrl_travel, breaks=30, xlim=xlim)
hist(sim_mrl_rest, breaks=30, xlim=xlim)
```

listogram of all_travel\$mean_resultant_leHistogram of all_rest\$mean_resultant_lel

Histogram of sim_mrl_travel

Histogram of sim_mrl_rest

Compare simulated MRL results to real MRL data results

```
sim_mrl<- c(sim_mrl_travel, sim_mrl_rest)</pre>
combined_sim_mrl <- data.frame(mrl = sim_mrl)</pre>
sim_mrl_data<- prepData(combined_sim_mrl, type='LL', coordNames=NULL)</pre>
dist<-list(mrl="beta")</pre>
Par0 <- list(mrl= c(rest_mrl_params['alpha'], travel_mrl_params['alpha'], rest_mrl_params['beta'], trav
stateNames <- c("resting","traveling")</pre>
sim_test2_mrl <- fitHMM(sim_mrl_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)</pre>
## Fitting HMM with 2 states and 1 data stream
    mrl ~ beta(shape1=~1, shape2=~1)
##
    Transition probability matrix formula: ~1
##
##
##
    Initial distribution formula: ~1
## DONE
```

```
print(sim_test2_mrl)
## Value of the maximum log-likelihood: 255.7218
##
## mrl parameters:
## -----
         resting traveling
## shape1 1.719708 2.0859862
## shape2 1.665464 0.5254493
##
## Regression coeffs for the transition probabilities:
                1 -> 2 2 -> 1
##
## (Intercept) -109.5512 -5.830175
## Transition probability matrix:
## -----
##
                        traveling
               resting
## resting 1.00000000 2.645509e-48
## traveling 0.002928958 9.970710e-01
## Initial distribution:
      resting traveling
## 1.679740e-07 9.999998e-01
plot(sim_test2_mrl, plotCI = TRUE, breaks=30)
## Decoding state sequence... DONE
```

ID Animal1


```
real mrl data HMM
```

```
all_mrl<- c(all_travel$mean_resultant_length, all_rest$mean_resultant_length)
combined_mrl <- data.frame(mrl = all_mrl)</pre>
mrl_data<- prepData(combined_mrl, type='LL', coordNames=NULL)</pre>
dist<-list(mrl="beta")</pre>
ParO <- list(mrl= c(rest_mrl_params['alpha'], travel_mrl_params['alpha'] , rest_mrl_params['beta'], travel_mrl_params['alpha'] ,
stateNames <- c("resting","traveling")</pre>
test2_mrl <- fitHMM(mrl_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)</pre>
## Fitting HMM with 2 states and 1 data stream
    mrl ~ beta(shape1=~1, shape2=~1)
##
    Transition probability matrix formula: ~1
##
##
    Initial distribution formula: ~1
##
## DONE
```

```
print(test2_mrl)
## Value of the maximum log-likelihood: 266.8004
##
##
## mrl parameters:
         resting traveling
## shape1 2.260958 24.079289
## shape2 1.690591 1.706516
##
## Regression coeffs for the transition probabilities:
                1 -> 2 2 -> 1
##
## (Intercept) -2.350092 -1.838156
## Transition probability matrix:
## -----
             resting traveling
## resting 0.9129415 0.08705849
## traveling 0.1372695 0.86273049
## Initial distribution:
       resting traveling
## 9.99999e-01 6.708947e-08
states <- viterbi(test2_mrl)</pre>
table(states)/nrow(mrl_data) #well that didn't really work
## states
         1
## 0.6044625 0.3955375
plot(test2_mrl, plotCI = TRUE, breaks=30)
## Decoding state sequence... DONE
```

ID Animal1

simulate max depth

```
# simulate rest data from parameters
n_rest = nrow(all_rest)
sim_depth_rest = rgamma(n_rest, rest_depth_params['alpha'], rest_depth_params['beta'])

# simulate travel data from parameters
n_travel = nrow(all_travel)
sim_depth_travel = rgamma(n_travel, travel_depth_params['alpha'], travel_depth_params['beta'])

xlim = c(0, max(all_travel$max_depth))

par(mfrow=c(2, 2))
hist(all_travel$max_depth, breaks=30, xlim=xlim)
hist(all_rest$max_depth, breaks=30, xlim=xlim)
hist(sim_depth_travel, breaks=30, xlim=xlim)
hist(sim_depth_rest, breaks=30, xlim=xlim)
```

Histogram of all_travel\$max_depth

0 5 10 15 20 25 30 all_travel\$max_depth

Histogram of all_rest\$max_depth

Histogram of sim_depth_travel

Histogram of sim_depth_rest

Compare simulated max depth HMM to real max depth HMM

```
sim_depth<- c(sim_depth_travel, sim_depth_rest)</pre>
combined_sim_depth<- data.frame(max_depth = sim_depth)</pre>
sim_depth_data<- prepData(combined_sim_depth, type='LL', coordNames=NULL)</pre>
dist<-list(max_depth="gamma")</pre>
ParO <- list(max_depth= c(rest_depth_params['alpha'],travel_depth_params['alpha'], rest_depth_params['
stateNames <- c("traveling", "resting")</pre>
sim_test2_depth <- fitHMM(sim_depth_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)</pre>
## Fitting HMM with 2 states and 1 data stream
##
   max_depth ~ gamma(mean=~1, sd=~1)
##
   Transition probability matrix formula: ~1
##
##
   Initial distribution formula: ~1
  ______
## DONE
print(sim_test2_depth)
```

```
## Value of the maximum log-likelihood: -1043.227
##
##
## max_depth parameters:
## -----
## traveling resting
## mean 5.128630 2.6891625
       3.465335 0.9127352
##
## Regression coeffs for the transition probabilities:
##
               1 -> 2 2 -> 1
## (Intercept) -5.814667 -52.64033
##
## Transition probability matrix:
## -----
##
              traveling resting
## traveling 9.970254e-01 0.0029746
## resting 1.375932e-23 1.0000000
## Initial distribution:
## traveling resting
## 9.999987e-01 1.339326e-06
states <- viterbi(sim_test2_depth)</pre>
plot(sim_test2_depth, plotCI = TRUE, breaks=30)
```

Decoding state sequence... DONE

ID Animal1


```
real max depth data HMM
all_depth<- c(all_travel$max_depth, all_rest$max_depth)</pre>
combined_depth <- data.frame(max_depth = all_depth)</pre>
depth_data<- prepData(combined_depth, type='LL', coordNames=NULL)</pre>
dist<-list(max_depth="gamma")</pre>
ParO <- list(max_depth= c(rest_depth_params['alpha'], travel_depth_params['alpha'], rest_depth_params['
stateNames<- c("traveling", "resting")</pre>
test2_depth <- fitHMM(depth_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)
## Fitting HMM with 2 states and 1 data stream
##
   max_depth ~ gamma(mean=~1, sd=~1)
##
##
   Transition probability matrix formula: ~1
##
   Initial distribution formula: ~1
## DONE
print(test2_depth)
```

Value of the maximum log-likelihood: -900.5824

```
##
##
## max_depth parameters:
## -----
      traveling resting
## mean 7.183501 2.8538984
## sd 3.196963 0.8734001
##
## Regression coeffs for the transition probabilities:
               1 -> 2 2 -> 1
## (Intercept) -2.523868 -3.266419
## Transition probability matrix:
   traveling resting
## traveling 0.92579818 0.07420182
## resting 0.03674137 0.96325863
## Initial distribution:
## -----
## traveling resting
## 9.99999e-01 7.088787e-08
states <- viterbi(test2_depth)</pre>
table(states)/nrow(depth_data) #well that didn't really work
## states
##
     1
## 0.3387424 0.6612576
plot(test2_depth, plotCI = TRUE, breaks=30)
## Decoding state sequence... DONE
```


simulate average MSA

```
# simulate rest data from parameters
n_rest = nrow(all_rest)
sim_msa_rest = rgamma(n_rest, rest_msa_params['alpha'], rest_msa_params['beta'])

# simulate travel data from parameters
n_travel = nrow(all_travel)
sim_msa_travel = rgamma(n_travel, travel_msa_params['alpha'], travel_msa_params['beta'])

xlim = c(0, max(all_travel$msa))

par(mfrow=c(2, 2))
hist(all_travel$msa, breaks=30, xlim=xlim)
hist(all_rest$msa, breaks=30, xlim=xlim)
hist(sim_msa_travel, breaks=30, xlim=xlim)
hist(sim_msa_rest, breaks=30, xlim=xlim)
```

Histogram of all_travel\$msa

Histogram of all_rest\$msa

Histogram of sim_msa_travel

Histogram of sim_msa_rest

compare simulated HMMs to real HMMs

```
sim_msa<- c(sim_msa_travel, sim_msa_rest)</pre>
combined_sim_msa<- data.frame(msa = sim_msa)</pre>
sim_msa_data<- prepData(combined_sim_msa, type='LL', coordNames=NULL)</pre>
dist<-list(msa="gamma")</pre>
Par0 <- list(msa= c(rest_msa_params['alpha'], travel_msa_params['alpha'], rest_msa_params['beta'], trav
stateNames <- c("traveling", "resting")</pre>
sim_test2_msa<- fitHMM(sim_msa_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)
## Fitting HMM with 2 states and 1 data stream
##
   msa ~ gamma(mean=~1, sd=~1)
##
   Transition probability matrix formula: ~1
##
##
   Initial distribution formula: ~1
## DONE
print(sim_test2_msa)
```

```
## Value of the maximum log-likelihood: -1.797693e+308
##
##
## msa parameters:
## -----
##
      traveling
                  resting
## mean 5.2629057 1.31835179
      0.2401494 0.04258705
##
## Regression coeffs for the transition probabilities:
             1 -> 2 2 -> 1
##
## (Intercept) -1.5 -1.5
##
## Transition probability matrix:
##
           traveling resting
## traveling 0.8175745 0.1824255
## resting 0.1824255 0.8175745
## Initial distribution:
## traveling resting
       0.5
all_msa<- c(all_travel$msa, all_rest$msa)
combined_msa <- data.frame(msa = all_msa)</pre>
msa_data <- prepData(combined_msa, type='LL', coordNames=NULL)
dist9<-list(msa="gamma")</pre>
Par09 <- list(msa= c(rest_msa_params['alpha'], travel_msa_params['alpha'] , rest_msa_params['beta'], tra
stateNames7 <- c("traveling", "resting")</pre>
test2_msa <- fitHMM(msa_data, nbStates=2, dist=dist9, Par0=Par09, stateNames=stateNames7)
## -----
## Fitting HMM with 2 states and 1 data stream
  msa ~ gamma(mean=~1, sd=~1)
  Transition probability matrix formula: ~1
##
##
   Initial distribution formula: ~1
## DONE
print(test2_msa)
## Value of the maximum log-likelihood: -1.797693e+308
##
##
## msa parameters:
```

```
## -----
##
                  resting
       traveling
## mean 5.2629057 1.31835179
       0.2401494 0.04258705
##
## Regression coeffs for the transition probabilities:
             1 -> 2 2 -> 1
##
## (Intercept) -1.5 -1.5
##
## Transition probability matrix:
## -----
##
           traveling resting
## traveling 0.8175745 0.1824255
## resting
          0.1824255 0.8175745
##
## Initial distribution:
## traveling
             resting
        0.5
```

The HMM on the average MSA data didn't work, basically the max log likelihood was infinity which is not good... maybe means that MSA is not a good summary statistic.

Multivariate HMMs

The best candidate variables seem to be the average speed, the mean resultant length, and the maximum depth for each 5 minute segment.

A model with those 3 variables and 2 states:

```
var3_test < -all_all[,c(2,3,4)]
var3_test_data<-prepData(var3_test, type='LL',coordNames = NULL)</pre>
dist<-list(avg_speed="gamma", mean_resultant_length="beta", max_depth="gamma")
ParO <- list( avg_speed=c(rest_params['alpha'],travel_params['alpha'] , rest_params['beta'], travel_params['alpha']
            mean_resultant_length= c(rest_mrl_params['alpha'],travel_mrl_params['alpha'] , rest_mrl_p
            max_depth=c(rest_depth_params['alpha'], travel_depth_params['alpha'], rest_depth_params['
stateNames <- c("traveling", "resting")</pre>
test_3vars <- fitHMM(var3_test_data, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)
## Fitting HMM with 2 states and 3 data streams
## -----
   avg_speed ~ gamma(mean=~1, sd=~1)
   mean_resultant_length ~ beta(shape1=~1, shape2=~1)
##
   max_depth ~ gamma(mean=~1, sd=~1)
##
  Transition probability matrix formula: ~1
```

```
##
## Initial distribution formula: ~1
print(test_3vars)
## Value of the maximum log-likelihood: -862.7959
##
##
## avg_speed parameters:
## -----
## traveling resting
## mean 1.5556149 0.8616075
## sd 0.3358055 0.1737782
##
## mean_resultant_length parameters:
## -----
      traveling resting
## shape1 2.8424114 1.659252
## shape2 0.7134265 1.042105
## max_depth parameters:
## -----
      traveling resting
## mean 6.382661 2.6911358
      2.850409 0.7475391
##
## Regression coeffs for the transition probabilities:
              1 -> 2 2 -> 1
## (Intercept) -2.134131 -2.369454
## Transition probability matrix:
## -----
     traveling resting
## traveling 0.89417657 0.1058234
## resting 0.08553182 0.9144682
## Initial distribution:
## traveling
              resting
## 9.923066e-07 9.999990e-01
plot(test_3vars, plotCI = TRUE, breaks=30, sepStates=TRUE, ask=TRUE)
```

Decoding state sequence... DONE

ID Animal1 – traveling

ID Animal1 – resting

ID Animal1 – resting

ID Animal1 – traveling

ID Animal1 - resting

Now try a model with the same 3 variables and 3 states: resting, traveling, and other. The other state is when the video watchers were unsure if the animal was traveling or resting, so it is unclear yet biologically what this state is.

```
other_params = moment_match_gamma(
  mean(all_other$avg_speed),
  sd(all_other$avg_speed)
other_mrl_params = moment_match_beta(
  mean(all_other$mean_resultant_length),
  var(all_other$mean_resultant_length)
)
other_depth_params = moment_match_gamma(
  mean(all_other$max_depth),
  sd(all_other$max_depth)
dist<-list(avg_speed="gamma",mean_resultant_length="beta",max_depth="gamma") #same as before
Par0 <- list( avg_speed=c(rest_params['alpha'], travel_params['alpha'], other_params['alpha'], rest_par
              mean_resultant_length= c(rest_mrl_params['alpha'],travel_mrl_params['alpha'], other_mrl_p
              max_depth=c(rest_depth_params['alpha'], travel_depth_params['alpha'],other_depth_params['
stateNames <- c("traveling", "other", "resting")</pre>
test_3vars_3st <- fitHMM(var3_test_data, nbStates=3, dist=dist, Par0=Par0, stateNames=stateNames)
```

```
## Fitting HMM with 3 states and 3 data streams
## -----
   avg_speed ~ gamma(mean=~1, sd=~1)
   mean_resultant_length ~ beta(shape1=~1, shape2=~1)
   max_depth ~ gamma(mean=~1, sd=~1)
##
##
##
  Transition probability matrix formula: ~1
##
  Initial distribution formula: ~1
## DONE
print(test_3vars_3st)
## Value of the maximum log-likelihood: -659.3679
##
##
## avg_speed parameters:
## -----
      traveling other resting
## mean 1.8991738 0.8481820 1.3430907
## sd 0.3497262 0.1623112 0.1261911
## mean_resultant_length parameters:
## -----
       traveling
                 other resting
## shape1 5.5936954 1.647284 2.1840239
## shape2 0.9512027 1.040729 0.6739152
##
## max_depth parameters:
      traveling other resting
## mean 9.358082 2.6383512 4.569592
## sd 3.164639 0.7141967 1.063880
##
## Regression coeffs for the transition probabilities:
## -----
               1 -> 2 1 -> 3
                                2 -> 1
                                        2 -> 3 3 -> 1
## (Intercept) -3.684055 -1.237185 -3.811611 -2.277468 -1.96011 -1.326603
## Transition probability matrix:
## -----
                    other
##
           traveling
## traveling 0.76027071 0.01909868 0.22063061
## other 0.01966158 0.88916073 0.09117768
## resting 0.10015710 0.18871673 0.71112617
## Initial distribution:
```

```
## traveling other resting
## 4.903545e-08 1.000000e+00 1.561386e-10
plot(test_3vars_3st, plotCI = TRUE, breaks=30, sepStates=TRUE, ask=TRUE)
```

Decoding state sequence... DONE

ID Animal1 – traveling

ID Animal1 – other

ID Animal1 – resting

ID Animal1 – other

ID Animal1 – traveling

ID Animal1 – other

ID Animal1 - resting

Now compare the AIC values of the models with different numbers of states

```
## Model AIC

## 1 test_3vars_3st 1370.736

## 2 test_3vars 1755.592

AICweights(test_3vars, test_3vars_3st, k = 2, n = NULL)

## Model weight

## # 1 test_3vars_3st 1.000000e+00

## 2 test_3vars_3st 2.688841e-84
```

so the model with three states better fits the data, but this third state is maybe not that important

Incorporating Covariates into the HMMS

Important covariates: Individual identity (some whales might naturally behave differently from others) - this would affect the transition probabilities and the state distributions I think Hour of day (there could be cycles in the whales behavior) - this would just affect the transition probabilities? Age of the calf (as they age, calves might behave differently) - this would affect the transition probabilities and the state distributions I think

```
calf_demo = read.csv('calf_demo_data.csv')
demo_hr<-calf_demo[,c(1,3,4,5,7)]
#try the model on this data set not broken up into traveling or resting</pre>
```

```
data_hr<-prepData(demo_hr, type='LL',coordNames = NULL)</pre>
dist<-list(avg_speed="gamma",mrl="beta",max_depth="gamma")</pre>
Par0 <- list( avg_speed=c(rest_params['alpha'], travel_params['alpha'] , rest_params['beta'], travel_params['alpha']
             mrl= c(rest_mrl_params['alpha'], travel_mrl_params['alpha'] , rest_mrl_params['beta'], tra
             max_depth=c(rest_depth_params['alpha'], travel_depth_params['alpha'], rest_depth_params['
stateNames <- c("resting","traveling")</pre>
test_3vars_all <- fitHMM(data_hr, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames)
## -----
## Fitting HMM with 2 states and 3 data streams
   avg_speed ~ gamma(mean=~1, sd=~1)
  mrl ~ beta(shape1=~1, shape2=~1)
##
   max_depth ~ gamma(mean=~1, sd=~1)
##
##
   Transition probability matrix formula: ~1
##
## Initial distribution formula: ~1
## DONE
print(test_3vars_all)
## Value of the maximum log-likelihood: -3425.762
##
##
## avg_speed parameters:
## -----
         resting traveling
## mean 0.9606769 1.5234772
## sd
       0.2203391 0.3949817
##
## mrl parameters:
          resting traveling
## shape1 1.994863 8.351758
## shape2 1.538289 1.015229
## max_depth parameters:
##
         resting traveling
## mean 20.301384 35.69286
        8.851783 29.98266
##
## Regression coeffs for the transition probabilities:
                1 -> 2 2 -> 1
##
```

Decoding state sequence... DONE

All animals - resting

All animals – resting


```
formula <- ~ cosinor(hour, period = 24)</pre>
test_3vars_hr <- fitHMM(data_hr, nbStates=2, dist=dist, Par0=Par0, stateNames=stateNames, formula=formu
\mbox{\tt \#\#} Fitting HMM with 2 states and 3 data streams
   avg_speed ~ gamma(mean=~1, sd=~1)
   mrl ~ beta(shape1=~1, shape2=~1)
   max_depth ~ gamma(mean=~1, sd=~1)
##
##
   Transition probability matrix formula: ~cosinor(hour, period = 24)
##
##
   Initial distribution formula: ~1
## DONE
print(test_3vars_hr)
## Value of the maximum log-likelihood: -3417.372
##
##
## avg_speed parameters:
```

```
##
      resting traveling
## mean 0.9615883 1.5278255
## sd 0.2203893 0.3939728
## mrl parameters:
## -----
    resting traveling
## shape1 1.968265 8.144833
## shape2 1.493568 1.002109
## max_depth parameters:
## -----
       resting traveling
## mean 20.241954 35.90724
     8.857007 30.13756
## sd
##
## Regression coeffs for the transition probabilities:
## -----
##
                               1 -> 2
                                         2 -> 1
## (Intercept)
                           -2.4101336 -0.91116911
## cosinorCos(hour, period = 24) 0.2296027 1.49237105
## cosinorSin(hour, period = 24) -1.1697199 0.03183823
## Transition probability matrix (based on mean covariate values):
## -----
##
             resting traveling
## resting 0.91025214 0.08974786
## traveling 0.08650095 0.91349905
##
## Initial distribution:
  resting traveling
## 0.178297 0.821703
plot(test_3vars_hr, plotCI = TRUE, breaks=30, sepStates=TRUE, ask=TRUE)
## Decoding state sequence... DONE
```

All animals – resting

All animals – resting


```
## Model weight
## 1 test_3vars_hr 0.98775719
## 2 test_3vars_all 0.01224281
```

According to the AIC values, the model with the cosinor 24 hour cycle as a covariate for the transition probabilities is better.