Application Note

Register Interface Control

(LMAC2 Core)

LeWiz Communications, Inc.

"The Wizard of Internet Communications"

May 17, 2021 Revision 1.00

PO Box 9276 San Jose, CA 95157 www.lewiz.com Email: support@lewiz.com

Copyright (C) 2019 LeWiz Communications, Inc.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library release; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

LeWiz can be contacted at: support@lewiz.com or address: PO Box 9276, San Jose, CA 95157-9276

www.lewiz.com

Author: LeWiz Communications, Inc.

Change Log

Version	Significant Changes
1.00	Release version

Table of Contents

	3.1 FMAC PHY STAT Register	۶
3.	Available registers	6
2	Overview	5
1	Introduction	4

1 Introduction

Inside each LMAC core are registers for configuring the core and keeping track of the status or statistics of the information transferred by the core. This application note discusses the details of interface for accessing the registers.

Figure 1.1: LMAC Core2 block diagram (shown with XGMII interface)

Figure 1.1 shows the block diagram of the LMAC Core2. This core supports speed modes: 10G/5G/2.5G/1G. The config/control/statistic registers are present inside the LMAC_CONTROLLER that can be accessed through the 'REG I/F' at the top level module (AXIS_LMAC_TOP).

To keep the core design simple and more accessible by the designers, information that are used to configure the core such as MAC address, speed control and others are brought out as signals to the top level of the core. User can tie these signals to the configuration applicable to the user's application or use user's own registers to control those signals. This way it is possible for the system to power up and work without requiring extensive software configuration.

The registers in the LMAC core are mainly for keeping track of conditions and statistics of the transfers.

4

2 Overview

The register interface consists of four important signals mentioned in the table below:

Signal	Direction	Description
host_addr_reg	Input	16 bit host byte address bus for selecting a memory
	16-bits	mapped register. Valid 1 clk before register read start
		signal. Address must be 64-bit aligned for most cases.
reg_rd_start	Input	Pulse. Register read start.
	1-bit	1 = Start the read for a register in the LMAC core
		0 = idle.
reg_rd_done_out	Output	Pulse. Indicating the register read is done and its data
	1-bit	is available on the MAC_REGDOUT bus.
		1 = indicating the data is available for the read to
		register
		0 = data not available.
FMAC_REGDOUT	Output	Data returned from LMAC register. Read is 32 bit at a
	32-bits	time.

Table 2.1: Register Interface Signals

This register interface is mainly used to read the internal registers of the LMAC core. These are status and statistic information collected by the hardware.

Figure 2.1: Example Register Interface Access

Figure 2.1 above shows an example of accessing the registers through the register interface. It also shows the 'reg_rd_start' delayed on the User side (bottom waves in the figure) due to synchronization. And 'reg_rd_done_out' and data come out to the TOP_MODULE after synchronization (see the waves at the top of the figures). The 'host_addr' here is 16'h1020 driven into the core with reg_rd_start pulse (marker CRSR-1 in Fig. 2.1) to read the contents of the 'FMAC_TX_PKT_CNT' register that holds the number of transmitted packets.

The host address corresponds to a memory mapped register to be read. Once the read request is made, the LMAC will output the contents of the register using 'FMAC_REGDOUT' signal and 'reg_rd_done_out' pulse (CRSR-4 in Fig. 2.1). The 'FMAC_REGDOUT' will hold the register contents that were requested. The number of

transmitted packets for the simulation were 8, so the 'FMAC_REGDOUT' shows 32'h8 with the 'reg_rd_done_out' pulse. The top part of the figure shows the signals from the top-level module (AXIS_LMAC_TOP). The bottom part shows the signals on the internal user side (LMAC_CONTROLLER). The AXI-4 Stream side can be at a different clock frequency as compared to the user side so the core contained synchronization internally. As both the sides are asynchronous (operating at different clock frequencies), the signal 'reg_rd_done_out' comes 5-clocks after the 'reg_rd_start' signal for the user side (delay between CRSR-2 and CRSR-3 in Fig. 2.1) and the delay varies for the top-level module (delay between CRSR-1 and CRSR-4 in Fig. 2.1) depending on the clock frequency that it is running on.

3. Available registers

The available registers are shown in the table below. Addr_offset is the same as the host_addr bus above. Each register has a name and can be accessed through a specific address offset.

Most of these are counters of specific condition captured by the LMAC core. The core implemented extensive statistic capturing which is useful for tracking network statistics.

Addr	Reg Name	Description
Offset		
h'0_1000	Reserved	(Reserved - user defined space)
h'0_1008	Reserved	
h'0_1010	Reserved	
h'0_1018	Reserved	
h'0_1020	FMAC_TX_PKT_CNT	Number of transmitted packets.
		(Each register is 32 bit)
h'0_1028	FMAC_RX_PKT_CNT_LO	Number of received packets (bit
		31:0 of 64 bit counter)
h'0_102C	FMAC_RX_PKT_CNT_HI	Number of received packets (bit
		63:32 of 64 bit counter)
h'0_1030	FMAC_TX_BYTE_CNT	Number of bytes transmitted
h'0_1038	FMAC_RX_BYTE_CNT_LO	Number of bytes received (low part
		of 64 bit count)
h'0_103C	FMAC_RX_BYTE_CNT_HI	Number of bytes received (high part
		of 64 bit count)
h'0_1040	FMAC_RX_UNDERSIZE_PKT_CNT	Number of undersize packets
		received (<64 byte packet)
h'0_1048	FMAC_RX_CRC32_ERR_CNT	Number of CRC error packets
		encountered
h'0_1050	FMAC_RX_DCNT_OVERRUN	Number of packets overrun the
		RxFIFO and dropped
h'0_1058	FMAC_RX_DCNT_LINK_ERR	Number of packets received
		encountered link error
h'0_1060	FMAC_RX_PKT_CNT_OVERSIZE	Number of packets received but

		over the MAX packet size
h'0_1068	FMAC_PHY_STAT	Internal PHY/Ethernet Link status
11 0_1008	TMAC_IIII_STAT	and information
h'0 1070	Reserved	and information
h'0 1078	FMAC_RX_PKT_CNT_JABBER	Number of jabber packets
		i i
h'0_1080	FMAC_RX_PKT_CNT_FRAGMENT	Number of fragmented packets Number of raw Ethernet frames
h'0_1088	FMAC_RX_RAW_FRAME_CNT	received
h'0 1090	FMAC_RX_BAD_FRAME_CNT	Number of bad Ethernet frames
11 0_1090	TWAC_KA_BAD_TKAWE_CNT	received
h'0_1800	FMAC_RX_PKT_CNT64_LO	Number of packets with size ≤ 64
11 0_1800	TWAC_RA_I KI_CN104_LO	bytes (low 32 bit count)
h'0_1804	FMAC_RX_PKT_CNT64_HI	Number of packets with size ≤ 64
11 0_1604	TWAC_KA_FKI_CN104_III	bytes (high 32 bit count)
h'0 1808	FMAC_RX_PKT_CNT127_LO	Number of packets with size ≤ 127
11 0_1000	TWAC_KA_I KI_CNI12/_LU	bytes (low 32 bit count)
h'0_180C	FMAC_RX_PKT_CNT127_HI	Number of packets with size ≤ 127
11 0_1000		bytes (high 32 bit count)
h'0_1810	FMAC_RX_PKT_CNT255_LO	Number of packets with size < 255
11 0_1010	TWINE_RX_TRI_EN1233_LO	bytes (low 32 bit count)
h'0 1814	FMAC_RX_PKT_CNT255_HI	Number of packets with size ≤ 255
11 0_1014	1 W// (C_1// 1 K1_C/V1233_111	bytes (high 32 bit count)
h'0_1818	FMAC_RX_PKT_CNT511_LO	Number of packets with size ≤ 511
n o_1010	TIMIC_IM_TRI_ENTSII_EO	bytes (low 32 bit count)
h'0_181C	FMAC_RX_PKT_CNT511_HI	Number of packets with size ≤ 511
n o_1010	11/11/0_141_111_01/1011_111	bytes (high 32 bit count)
h'0_1820	FMAC_RX_PKT_CNT1023_LO	Number of packets with size ≤ 1023
_		bytes (low 32 bit count)
h'0 1824	FMAC_RX_PKT_CNT1023_HI	Number of packets with size ≤ 1023
_		bytes (high 32 bit count)
h'0 1828	FMAC_RX_PKT_CNT1518_LO	Number of packets with size ≤ 1518
_		bytes (low 32 bit count)
h'0_182C	FMAC_RX_PKT_CNT1518_HI	Number of packets with size ≤ 1518
		bytes (high 32 bit count)
h'0_1830	FMAC_RX_PKT_CNT2047_LO	Number of packets with size ≤ 2047
		bytes (low 32 bit count)
h'0_1834	FMAC_RX_PKT_CNT2047_HI	Number of packets with size ≤ 2047
		bytes (high 32 bit count)
h'0_1838	FMAC_RX_PKT_CNT4095_LO	Number of packets with size ≤ 4095
		bytes (low 32 bit count)
h'0_183C	FMAC_RX_PKT_CNT4095_HI	Number of packets with size ≤ 4095
		bytes (high 32 bit count)
h'0_1840	FMAC_RX_PKT_CNT8191_LO	Number of packets with size ≤ 8191
		bytes (low 32 bit count)
h'0_1844	FMAC_RX_PKT_CNT8191_HI	Number of packets with size ≤ 8191
		bytes (high 32 bit count)

h'0_1848	FMAC_RX_PKT_CNT9018_LO	Number of packets with size ≤ 9018
		bytes (low 32 bit count)
h'0_184C	FMAC_RX_PKT_CNT9018_HI	Number of packets with size ≤ 9018
		bytes (high 32 bit count)
h'0_1850	FMAC_RX_PKT_CNT9022_LO	Number of packets with size ≤ 9022
		bytes (low 32 bit count)
h'0_1854	FMAC_RX_PKT_CNT9022_HI	Number of packets with size ≤ 9022
		bytes (high 32 bit count)
h'0_1858	FMAC_RX_PKT_CNT9199_LO	Number of packets with size \leq 9199
		bytes (low 32 bit count)
h'0_185C	FMAC_RX_PKT_CNT9199_HI	Number of packets with size \leq 9199
		bytes (high 32 bit count)

Table 3.1: Available Registers for LMAC

Each register is 32-bit width to be compatible with both 32 and 64-bit processors. 64-bit registers are split into 2 registers and the register name indicated the "lo" and "hi" 32-bit.

The 'FMAC_PHY_STAT' register is described below in Section 3.1.

3.1 FMAC_PHY_STAT Register

FMAC_PHY_STAT[0] = if 1, indicating the Ethernet link is up

FMAC_PHY_STAT[1] = Reserved

FMAC_PHY_STAT[2] = if 1, indicating the RX of the SerDes channel is aligned

Other bits are reserved.