Discrete 2 (Chapter 7)

Noti ghal Qabel Waqt l-Ezami

Juan Scerri

B.Sc. (Hons)(Melit.) Computing Science and Mathematics (Second Year)

April 7, 2023

1 Relations

Totality: $r \in X \leftrightarrow Y$ is said to be total iff $total(r) \stackrel{\text{def}}{=} \forall x \in X, \exists y \in Y \cdot (x, y) \in r$ it true.

Functionality: $r \in X \leftrightarrow Y$ is said to be functional iff

functional $(r) \stackrel{\text{def}}{=} \forall y_1, y_2 \in Y, \forall x \in X \cdot (x, y_1) \in r \land (x, y_2) \Rightarrow y_1 = y_2 \text{ is true.}$

Surjectivity: $r \in X \leftrightarrow Y$ is said to be surjective iff surjective $(r) \stackrel{\text{def}}{=} \forall y \in Y, \exists x \in X \cdot (x, y) \in r$ is true.

Injectivity: $r \in X \leftrightarrow Y$ is said to be injective iff

injective $(r) \stackrel{\text{def}}{=} \forall x_1, x_2 \in X, \forall y \in Y \cdot (x_1, y) \in r \land (x_2, y) \Rightarrow x_1 = x_2 \text{ is true.}$

Set of Total and Functional Relations: $X \to Y \stackrel{\text{def}}{=} \{r \in X \leftrightarrow Y : \text{total}(r) \land \text{functional}(r)\}$

2 Multisets

2.1 Definitions

Set of Multisets Over $X: \mathbb{M} X \stackrel{\text{def}}{=} X \to \mathbb{N}$.

Empty Multiset: $\square \stackrel{\text{def}}{=} \lambda x \in X \cdot 0$.

Multiset Element Of: $x \in T \stackrel{\text{def}}{=} T(x) > 0$

Multiset Subset: $T \sqsubseteq S \stackrel{\text{def}}{=} \forall x \in X \cdot T(x) \leq S(x)$.

Multiset Equality: $T \stackrel{\text{mst}}{=} S \stackrel{\text{def}}{=} \forall x \in X \cdot T(x) = S(x)$.

Multiset Union: $T \sqcup S \stackrel{\text{def}}{=} \lambda x \in X \cdot T(x) + S(x)$.

Multiset Intersection: $T \cap S \stackrel{\text{def}}{=} \lambda x \in X \cdot \min(\{T(x), S(x)\}).$

2.2 Theorems

Theorem 7.4: $T \sqcup S \stackrel{\text{mst}}{=} S \sqcup T$.

Theorem 7.6: $T \sqcap S \sqsubseteq T \sqcup S$.

2.3 Exercises

Exercise 7.1: $T \subseteq T$ (reflexive) and $T \subseteq R \land R \subseteq S \Rightarrow T \subseteq S$ (transitive).

Exercise 7.2: $\square \sqcap T \stackrel{\text{mst}}{=} T \sqcap \square \stackrel{\text{mst}}{=} \square$ and $\square \sqcup T \stackrel{\text{mst}}{=} T \sqcup \square \stackrel{\text{mst}}{=} T$.

Exercise 7.3: $T \sqcap T \stackrel{\text{mst}}{=} T$ (idempotent), $T \sqcap S \stackrel{\text{mst}}{=} S \sqcap T$ (commutative) and $(T \sqcap S) \sqcap R \stackrel{\text{mst}}{=} T \sqcap (S \sqcap R)$ (associative).

Exercise 7.4: $(T \sqcup S) \sqcup R \stackrel{\text{mst}}{=} T \sqcup (S \sqcup R)$ (associative).

Exercise 7.5: $T - S \stackrel{\text{def}}{=} \lambda x \in X \cdot \max(\{0, T(x) - S(x)\})$ (multiset difference), $T - T \stackrel{\text{mst}}{=} \not\square$ and $T - \not\square \stackrel{\text{mst}}{=} T$.

3 Sequences

Finite Subsets of \mathbb{N} : upto $(N) \stackrel{\text{def}}{=} \{ n \in \mathbb{N} : n < N \} \ (= \{0, 1, \dots, N - 1\}).$

Set of Sequences Over X: seq $X = \{s_X \in \mathbb{N} \to X : \exists N \in \mathbb{N} \cdot \text{dom}(s_X) = \text{upto}(N)\}.$

Empty Sequence: $\langle \rangle \stackrel{\text{def}}{=} \lambda \, n \in \mathbb{N} \cdot \text{undefined.}$

Head of a Sequence: head(s_X) $\stackrel{\text{def}}{=} s_X(0)$.

Tail of a Sequence: $tail(s_X) \stackrel{\text{def}}{=} \lambda n \in \mathbb{N} \cdot s_X(n+1)$.

Cons Operator:

$$cons(x, s_X) \stackrel{\text{def}}{=} \lambda n \in \mathbb{N} \cdot \begin{cases} x & \text{if } n = 0 \\ s_X(n-1) & \text{otherwise} \end{cases}.$$

Length of a Sequence:

4 Graph Theory