Министерство образования и науки Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики

Методы оптимизации Лабораторная работа №2

Факультет ПМИ

Группа ПМ-01

Студенты Александров М.Е.

Жигалов П.С.

Преподаватели Черникова О.С.

Чимитова Е.В.

Вариант 8

1. Цель работы

Ознакомиться с методами поиска минимума функции п переменных в оптимизационных задачах без ограничений.

2. Задание

С использованием программного обеспечения исследовать алгоритмы на заданной тестовой функции, осуществляя спуск из различных исходных точек (не менее трех). Исследовать сходимость алгоритма, фиксируя точность определения минимума, количество итераций метода и количество вычислений функции в зависимости от задаваемой точности поиска. Результатом выполнения данного пункта должны быть выводы об объёме вычислений в зависимости от задаваемой точности и начального приближения

Построить траекторию спуска различных алгоритмов из одной и той же исходной точки с одинаковой точностью. В отчете наложить эту траекторию на рисунок с линиями равного уровня заданной функции.

Реализовать в соответствии с вариантом задания метод поиска экстремума функции, проанализировать его работу на квадратичной функции (линии равного уровня не должны быть окружностями) и функции Розенброка ($f_1(\overline{x}) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$). Включить в реализуемый алгоритм собственную процедуру, реализующую одномерный поиск по направлению.

Метод: вращающихся координат (Розенброка).

Найти максимум заданной функции:
$$f\left(x,y\right) = \frac{3}{1 + \left(x-2\right)^2 + \frac{1}{4}\left(y-2\right)^2} + \frac{2}{1 + \frac{1}{9}\left(x-2\right)^2 + \left(y-3\right)^2} \ .$$

3. Результаты тестирования программным пакетом SIOM II

3.1. Таблица результатов

Метод	$oldsymbol{arepsilon}_{ ext{var}}$, $oldsymbol{arepsilon}_{ ext{deriv}}$, $oldsymbol{arepsilon}_{ ext{func}}$	\overline{x}_0	\overline{x}	$f(\overline{x})$	Итера- ций	Вычислений ф-ции
		(1.8,2.5)	(1.999999981749872, 2.756365366943739)	-4.512557268003038	3	294
	1e-3, 1e-6, 1e-12	(0.0,5.0)	(1.999999981796681, 2.756365389755768)	-4.512557268003040	2	274
		(10.0, 10.0)	(1.999999956601118, 2.756365374286977)	-4.512557268003036	2	270
		(1.8,2.5)	(1.999999981749872, 2.756365366943739)	-4.512557268003038	3	294
Розенброка	1e-6, 1e-6, 1e-12	(0.0,5.0)	(1.999999989463215, 2.756365385822976)	-4.512557268003040	2	241
		(10.0, 10.0)	(1.999999956601118, 2.756365374286977)	-4.512557268003036	2	270
		(1.8,2.5)	(1.999999981749872, 2.756365366943739)	-4.512557268003038	3	294
	1e-8, 1e-12, 1e-12	(0.0,5.0)	(1.999999989463215, 2.756365385822976)	-4.512557268003040	2	241
		(10.0, 10.0)	(1.999999956601118, 2.756365374286977)	-4.512557268003036	2	270
		(1.8,2.5)	(1.999797067316314, 2.758367960014958)	-4.512550461012389	4	353
	1e-3, 1e-6, 1e-12	(0.0,5.0)	(2.000740592242011, 2.759806055632341)	-4.512536091572734	6	564
		(10.0, 10.0)	(2.010023925024274, 2.786033496591384)	-4.510811176367957	8	767
Метод сопряжен-		(1.8,2.5)	(1.999797067316314, 2.758367960014958)	-4.512550461012389	4	353
ных гради- ентов	1e-6, 1e-6, 1e-12	(0.0,5.0)	(2.000740592242011, 2.759806055632341)	-4.512536091572734	6	564
(Флетчера- Ривса)		(10.0, 10.0)	(2.010023925024274, 2.786033496591384)	-4.510811176367957	8	767
		(1.8,2.5)	(2.008047772369044, 2.759618586639915)	-4.512378307201583	3	240
	1e-8, 1e-12, 1e-12	(0.0,5.0)	(2.026535564660253, 2.751555459215251)	-4.510758987521903	5	450
		(10.0, 10.0)	(1.998963238996435, 2.756944683154964)	-4.512554027397767	9	874

Метод	$\mathcal{E}_{ ext{var}}$, $\mathcal{E}_{ ext{deriv}}$, $\mathcal{E}_{ ext{func}}$	\overline{x}_0	\overline{x}	$f(\overline{x})$	Итера- ций	Вычислений ф-ции	
		(1.8,2.5)	(2.000042810678168, 2.756161497542306)	-4.512557194036427	7	667	
	1e-3, 1e-6, 1e-12	(0.0,5.0)	(2.000139772716404, 2.756089002031114)	-4.512557091759399	17	1571	
		(10.0, 10.0)	(1.999893741050910, 2.756166867521261)	-4.512557174049907	45	4031	
		(1.8,2.5)	(1.999960222118734, 2.756337490786740)	-4.512557262756746	9	793	
Ньютона	1e-6, 1e-6, 1e-12	(0.0,5.0)	(2.000020246006149, 2.756325355259285)	-4.512557264304585	20	1786	
		(10.0, 10.0)	(1.999984553185959, 2.756336513094230)	-4.512557266015556	48	4252	
		(1.8,2.5)	(1.#QNAN00000000000, 1.#QNAN00000000000)	1.#QNAN0000000000	2	170	
	1e-8, 1e-12, 1e-12	1e-8, 1e-12, 1e-12	(0.0,5.0)	(2.456772871294945, 3.309450984030498)	-3.619679379508940	2	175
		(10.0, 10.0)	(1.#QNAN00000000000, 1.#QNAN00000000000)	1.#QNAN0000000000	4	441	
	1e-3, 1e-6, 1e-12	(1.8,2.5)	(2.001016516999912, 2.754843415391774)	-4.512550825572539	4	369	
		(0.0,5.0)	(0.0000000000000001, 5.00000000000000001)	-0.781140042223786	1	10	
		(10.0, 10.0)	(1.980097674163305, 2.725279237967552)	-4.509975765147758	5	493	
		(1.8,2.5)	(2.001016516999912, 2.754843415391774)	-4.512550825572539	4	369	
Флетчера	1e-6, 1e-6, 1e-12	(0.0,5.0)	(0.0000000000000001, 5.00000000000000001)	-0.781140042223786	1	10	
		(10.0, 10.0)	(1.980097674163305, 2.725279237967552)	-4.509975765147758	5	493	
		(1.8,2.5)	(1.994992128914508, 2.748772424247469)	-4.512398728134231	3	243	
	1e-8, 1e-12, 1e-12	(0.0,5.0)	(0.0000000000000001, 5.00000000000000001)	-0.781140042223786	1	10	
		(10.0, 10.0)	(1.999042573315488, 2.754903343418818)	-4.512551414886762	7	712	

Сходимость алгоритма зависит от начального приближения в разной степени для разных методов. Так, на исследованной функции четкая зависимость наблюдалась у метода сопряженных градиентов (Флетчера-Ривса) и метода Ньютона (чем дальше приближение от искомой точки, тем большее число итераций и вычислений функции необходимо совершить). У методов Флетчера и Розенборка изменялось число вычислений функции (причем у Розенброка зависимость не линейная, а у Флетчера при одном из приближений результата достичь не удалось).

Зависимость объема вычислений от задаваемой точности также не однозначна, от отсутствия зависимости (Розенброк) до значительной зависимости вплоть до полной расходимости метода (Ньютон).

3.2. Траектории спуска различных алгоритмов

Метод сопряженных градиентов (Флетчера-Ривса)

 $\overline{x}_0 = (1.8, 2.5)$

Метод Ньютона

$$\overline{x}_0 = (10.0, 10.0)$$

Метод Флетчера

$$\overline{x}_0 = (10.0, 10.0)$$

$$\overline{x}_0 = (1.8, 2.5)$$

4. Реализованный алгоритм Розенброка

4.1. Исследование на квадратичной функции

Функция
$$f(x,y) = 2x^2 + 5y^2 + xy$$
, минимум $f(0,0) = 0$.

$$\overline{x}^0 = (10,10) , \varepsilon = 10^{-6}$$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
143	1	[-2.5000003647271036e+00, 2.4999937324882282e-01]	1.2187503556091720e+01
272	2	[-2.2578077822621001e-01, 9.0312625613051356e-01]	3.9762305432487857e+00
391	3	[-1.9215300397404267e-01, 7.6861454698447462e-01]	2.8799955689520278e+00
467	4	[-2.1398315802724543e-08, 6.7886509880210610e-07]	2.2906783179247376e-12
494	5	[-1.9795626675088562e-08, -8.7547589975329483e-08]	4.0839695630816363e-14

Розенброк с модификацией Палмера:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
143	1	[-2.5000003647271036e+00, 2.4999937324882282e-01]	1.2187503556091720e+01
272	2	[-8.1249885463002169e-01, -1.8682163118553374e-01]	1.6466127483026707e+00
394	3	[-5.6415427283897923e-02, 1.1193487234337773e-02]	6.3603862884539395e-03
497	4	[-1.2460243869853775e-02, -6.1004063930319291e-05]	3.1129408758516117e-04
587	5	[-4.5021473647531378e-04, 8.9114891399426441e-05]	4.0497309987731133e-07
653	6	[-2.5399778475438790e-05, 1.8409533642511059e-06]	1.2604832320138728e-09

$$\overline{x}^0 = (10,10)$$
, $\varepsilon = 10^{-12}$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
199	1	[-2.5000001210573970e+00, 2.4999999248856142e-01]	1.2187501180309649e+01
386	2	[-2.2578152248035455e-01, 9.0312612862506292e-01]	3.9762294205008071e+00
563	3	[-1.9215372991217239e-01, 7.6861497525750822e-01]	2.8799987784267378e+00
687	4	[5.5657693532138185e-13, 8.5065288146779494e-13]	4.7110611674004437e-24
748	5	[8.0161588183984139e-13, 1.1644929773120887e-12]	8.9988715799859286e-24

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
199	1	[-2.5000001210573970e+00, 2.4999999248856142e-01]	1.2187501180309649e+01
386	2	[-8.1249938934299915e-01, -1.8682198887963075e-01]	1.6466155448907420e+00
566	3	[-5.6415614134969580e-02, 1.1193254658860508e-02]	6.3604134499933469e-03
726	4	[-1.2459476099513173e-02, -6.0881215289260854e-05]	3.1125417000736128e-04
874	5	[-4.4940617110408366e-04, 8.8694535541910136e-05]	4.0340554481209678e-07
998	6	[-2.5194108243531895e-05, 2.3968866626983498e-06]	1.2378240867152095e-09
1100	7	[-1.7214875141554688e-07, 3.0600916818861594e-08]	5.8684556156099918e-14
1168	8	[-1.5364537796806488e-09, 2.0954777294263564e-10]	4.6189713121546200e-18

$$\overline{x}^0 = (1.8, 2.5)$$
, $\varepsilon = 10^{-12}$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
189	1	[-6.2500002941640243e-01, 6.2499999505569281e-02]	7.6171882170248262e-01
362	2	[-4.7373091995235084e-01, 4.7373091624585500e-02]	4.3762091981185625e-01
481	3	[-2.3075856020399202e-09, 9.2294313719376575e-09]	4.1526421691912015e-16
542	4	[-2.3082309945063278e-09, 9.2294635612814523e-09]	4.1526711493829330e-16

Розенброк с модификацией Палмера:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
189	1	[-6.2500002941640243e-01, 6.2499999505569281e-02]	7.6171882170248262e-01
364	2	[-1.9294726610529034e-01, -6.4794896171707222e-02]	1.0795118591843009e-01
534	3	[-2.2868972740795884e-02, 4.8394507172456885e-03]	1.0524079781286629e-03
687	4	[-7.0011188141137605e-03, -4.6552170695590180e-04]	1.0237405437785834e-04
833	5	[-6.5540888992276255e-04, 1.4823220545085629e-04]	8.7183285441835150e-07
961	6	[-7.8016249768957801e-05, 4.8300633610689071e-06]	1.1912894586807472e-08
1073	7	[-1.8585471486692543e-06, 3.6151330657438028e-07]	6.8899648366651310e-12
1157	8	[-4.1243465740605104e-08, 5.0623325932691381e-09]	3.3213948481392645e-15
1220	9	[-1.5830477622168159e-10, 2.7774678933949439e-11]	4.9581103965345326e-20

4.2. Исследование на функции Розенброка

Функция
$$f(x,y) = 100(y-x^2)^2 + (1-x)^2$$
, минимум $f(1,1) = 0$.

$$\overline{x}^0 = (10,10) , \varepsilon = 10^{-6}$$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
116	1	[-3.1612373055285268e+00, 9.9934209044856566e+00]	1.7315895912938107e+01
170	2	[-3.1601962057205721e+00, 9.9934214251100304e+00]	1.7311563908539043e+01
192	3	[-3.1601960757205774e+00, 9.9934214251300340e+00]	1.7311563908499156e+01

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
116	1	[-3.1612373055285268e+00, 9.9934209044856566e+00]	1.7315895912938107e+01
202	2	[-3.1601925039490570e+00, 9.9867963486511009e+00]	1.7307201711177203e+01
314	3	[-2.8876800950858783e+00, 8.3452502081470303e+00]	1.5118351851565055e+01
424	4	[-2.7068161233636210e+00, 7.3334960717693436e+00]	1.3744898114255163e+01
536	5	[-2.5046054599137255e+00, 6.2798000456539373e+00]	1.2286817753255766e+01
646	6	[-2.3142649935338122e+00, 5.3626972677003231e+00]	1.0989078745048255e+01
756	7	[-2.1231832192621738e+00, 4.5149168822768377e+00]	9.7591872904897716e+00
866	8	[-1.9361274264254476e+00, 3.7557543301996943e+00]	8.6259778704102121e+00
979	9	[-1.7512639668792038e+00, 3.0742628598615780e+00]	7.5748371272919250e+00
1092	10	[-1.5692677306903606e+00, 2.4701352116196911e+00]	6.6068127891242492e+00
1205	11	[-1.3898263200046514e+00, 1.9393732404090054e+00]	5.7172854564144648e+00

12	[-1.2129959229440406e+00, 1.4793643746272560e+00]	4.9037593826169719e+00
13	[-1.0386821441055198e+00, 1.0871415192308789e+00]	4.1630822528492537e+00
14	[-8.6687212469898500e-01, 7.6003770611106791e-01]	3.4925567493562335e+00
15	[-6.9765984216046084e-01, 4.9556790343904439e-01]	2.8898611096648619e+00
16	[-5.3150216753593038e-01, 2.9148821898796656e-01]	2.3535874899872451e+00
17	[-3.6979681990714991e-01, 1.4556559184671836e-01]	1.8841153438675005e+00
18	[-2.1588194370364791e-01, 5.4499942393028279e-02]	1.4846018910619985e+00
19	[-7.5210827441759193e-02, 1.1497655260170502e-02]	1.1594900360059226e+00
20	[4.7999270484960763e-02, 5.3017868930054432e-03]	9.0720410361199366e-01
21	[1.5497429041139058e-01, 2.4448201837669430e-02]	7.1408704072171936e-01
22	[2.5116082626415254e-01, 6.1851593166748445e-02]	5.6091143932499588e-01
23	[3.4130132212613079e-01, 1.1446230421570343e-01]	4.3429372253252274e-01
24	[4.2740376632320731e-01, 1.8044369711235014e-01]	3.2836386275911167e-01
25	[5.0981553463974094e-01, 2.5780298768955789e-01]	2.4072555248829108e-01
26	[5.8827904226946559e-01, 3.4423464883099619e-01]	1.6985181806809582e-01
27	[6.6231724866049779e-01, 4.3715098128174035e-01]	1.1425860483924739e-01
28	[7.3140938930359278e-01, 5.3377061821252036e-01]	7.2282306458191503e-02
29	[7.9490352592748104e-01, 6.3098101108391025e-01]	4.2143881305264745e-02
30	[8.5204826304528525e-01, 7.2535855510422453e-01]	2.1929115621941039e-02
31	[9.0190748200418613e-01, 8.1302969676216241e-01]	9.6387403232180840e-03
32	[9.4322182860262094e-01, 8.8943553135007758e-01]	3.2291378868671596e-03
33	[9.7432041857905183e-01, 9.4919581693294475e-01]	6.6053211466290018e-04
34	[9.9313268504466445e-01, 9.8628498791654517e-01]	4.7235871904890671e-05
35	[9.9948559031441964e-01, 9.9896938720431416e-01]	2.6504087824440744e-07
36	[9.9999767486124280e-01, 9.9999430910489939e-01]	1.1369589148034971e-10
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	13 [-1.0386821441055198e+00, 1.0871415192308789e+00] 14 [-8.6687212469898500e-01, 7.6003770611106791e-01] 15 [-6.9765984216046084e-01, 4.9556790343904439e-01] 16 [-5.3150216753593038e-01, 2.9148821898796656e-01] 17 [-3.6979681990714991e-01, 1.4556559184671836e-01] 18 [-2.1588194370364791e-01, 5.4499942393028279e-02] 19 [-7.5210827441759193e-02, 1.1497655260170502e-02] 20 [4.7999270484960763e-02, 5.3017868930054432e-03] 21 [1.5497429041139058e-01, 2.4448201837669430e-02] 22 [2.5116082626415254e-01, 6.1851593166748445e-02] 23 [3.4130132212613079e-01, 1.1446230421570343e-01] 24 [4.2740376632320731e-01, 1.8044369711235014e-01] 25 [5.0981553463974094e-01, 2.5780298768955789e-01] 26 [5.8827904226946559e-01, 3.4423464883099619e-01] 27 [6.6231724866049779e-01, 4.3715098128174035e-01] 28 [7.3140938930559278e-01, 5.3377061821252036e-01] 29 [7.9490352592748104e-01, 6.3098101108391025e-01] 30 [8.5204826304528525e-01, 7.2535855510422453e-01] 31 [9.0190748200418613e-01, 8.1302969676216241e-01]

$$\overline{x}^0 = (10, 10) , \varepsilon = 10^{-12}$$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
173	1	[-3.1612368381873743e+00, 9.9934183428980887e+00]	1.7315892023487660e+01
277	2	[-3.1601956720013398e+00, 9.9934188635225425e+00]	1.7311560536306619e+01
386	3	[-3.1601957554928815e+00, 9.9868372088207309e+00]	1.7307228724020987e+01
471	4	[-3.1601957554860651e+00, 9.9868372087772332e+00]	1.7307228723964272e+01
648	5	[-2.9199038325754940e+00, 8.5258383885087099e+00]	1.5365646056640049e+01
823	6	[-2.7561638115561240e+00, 7.5964389531510506e+00]	1.4108766579243831e+01
1000	7	[-2.5681864573391411e+00, 6.5955816766797737e+00]	1.2731954594338452e+01
1175	8	[-2.3937528295934234e+00, 5.7300526062058719e+00]	1.1517558268373369e+01
1348	9	[-2.2184635990582500e+00, 4.9215807373664422e+00]	1.0358507938462983e+01
1521	10	[-2.0478603639006909e+00, 4.1937320670555369e+00]	9.2894527978368515e+00
1694	11	[-1.8799121593211454e+00, 3.5340697237831744e+00]	8.2938940454057857e+00
1867	12	[-1.7154745430684490e+00, 2.9428529058083703e+00]	7.3738019940528039e+00
2040	13	[-1.5543106870376835e+00, 2.4158817097324317e+00]	6.5245030859149242e+00
2213	14	[-1.3966042548281759e+00, 1.9505034424965784e+00]	5.7437119542605171e+00
2383	15	[-1.2423850906459295e+00, 1.5435207113516130e+00]	5.0282908947511542e+00
2553	16	[-1.0917479524070743e+00, 1.1919135894776045e+00]	4.3754094963991887e+00
2723	17	[-9.4477024308154689e-01, 8.9259081072195867e-01]	3.7821312983754600e+00
2893	18	[-8.0154402924140400e-01, 6.4247282932229965e-01]	3.2455608892953531e+00
3063	19	[-6.6216497216898729e-01, 4.3846244887727243e-01]	2.7627923947055306e+00
3231	20	[-5.2673765653631155e-01, 2.7745255732290203e-01]	2.3309278718859887e+00
3399	21	[-3.9537501607635955e-01, 1.5632140228379993e-01]	1.9470714354901009e+00
3567	22	[-2.6820023224758127e-01, 7.1931363523683900e-02]	1.6083318290728197e+00
3732	23	[-1.4534809697537318e-01, 2.1126068240961162e-02]	1.3118222632451086e+00
3894	24	[-2.6967001953317124e-02, 7.2721814030377030e-04]	1.0546612231009844e+00
4056	25	[8.6778666897872850e-02, 7.5305362836304464e-03]	8.3397320323282631e-01
4218	26	[1.9570549770771714e-01, 3.8300641088169357e-02]	6.4688964641759095e-01
4380	27	[2.9960715917307262e-01, 8.9764449300947804e-02]	4.9055013148161353e-01
4542	28	[3.9824934482567009e-01, 1.5860254012753877e-01]	3.6210385100273529e-01
4704	29	[4.9136299850414944e-01, 2.4143759577177568e-01]	2.5871159929068993e-01
4866	30	[5.7863515523697084e-01, 3.3481864250358845e-01]	1.7754833240217166e-01
5026	31	[6.5969606999470609e-01, 4.3519890450275039e-01]	1.1580676477704799e-01
5186	32	[7.3410073676517684e-01, 5.3890389145554540e-01]	7.0702418188821795e-02
5346	33	[8.0130132138908805e-01, 6.4208380747351201e-01]	3.9481164881722486e-02
5504	34	[8.6060478758751158e-01, 7.4064060028677847e-01]	1.9431025243522769e-02
5662	35	[9.1110601381131318e-01, 8.3011416831022200e-01]	7.9021407805144432e-03
5817	36	[9.5158540000545411e-01, 9.0551477345675091e-01]	2.3439734926318837e-03
5970	37	[9.8040460414431629e-01, 9.6119318781055496e-01]	3.8397953874094623e-04
6118	38	[9.9589533022000376e-01, 9.9180750874952450e-01]	1.6848314002814380e-05
6254	39	[9.9982201040715546e-01, 9.9964405249445842e-01]	3.1680295160965391e-08
6361	40	[9.9999968777649584e-01, 9.9999937555281460e-01]	9.7483516558695921e-14
6434	41	[9.999999999959821e-01, 9.999999994302569e-01]	3.1551530544788387e-19

Розенброк с модификацией Палмера:

Вычислений ф-ции	Итерация	$\overline{\chi}^k$	$f(\overline{x}^k)$
173	1	[-3.1612368381873743e+00, 9.9934183428980887e+00]	1.7315892023487660e+01
317	2	[-3.1601924413518541e+00, 9.9867954010798918e+00]	1.7307201192617164e+01
487	3	[-2.8881166683972701e+00, 8.3477702436634935e+00]	1.5121744560562576e+01
655	4	[-2.7070834099545560e+00, 7.3349439055398564e+00]	1.3746880774554359e+01
825	5	[-2.5049258161572019e+00, 6.2814084070648333e+00]	1.2289068063857146e+01
993	6	[-2.3145499133831513e+00, 5.3640165542023643e+00]	1.0990968038222706e+01
1161	7	[-2.1234804387806032e+00, 4.5161811702135672e+00]	9.7610468606978475e+00
1329	8	[-1.9364077855558122e+00, 3.7568402647961259e+00]	8.6276246245876269e+00
1499	9	[-1.7515476142843334e+00, 3.0752575669625211e+00]	7.5763996639789317e+00
1669	10	[-1.5695404826790593e+00, 2.4709919678839571e+00]	6.6082153738005349e+00
1839	11	[-1.3900969370008942e+00, 1.9401260285731405e+00]	5.7185797507172857e+00
2006	12	[-1.2132603313974690e+00, 1.4800065179828039e+00]	4.9049307159865894e+00
2173	13	[-1.0389414950249958e+00, 1.0876803693919153e+00]	4.1641398157156209e+00
2340	14	[-8.6712839932091534e-01, 7.6048206097404536e-01]	3.4935136352784286e+00
2507	15	[-6.9791031650146784e-01, 4.9591783554310176e-01]	2.8907122803508636e+00
2674	16	[-5.3174603661419562e-01, 2.9174770234627029e-01]	2.3543348632639898e+00
2842	17	[-3.7003312865457710e-01, 1.4574115145131256e-01]	1.8847640791468439e+00
3010	18	[-2.1610214628503652e-01, 5.4598047134504349e-02]	1.4851421276547869e+00
3178	19	[-7.5404046589370416e-02, 1.1531305463901846e-02]	1.1599108916237815e+00
3340	20	[4.7832780301861472e-02, 5.2904136678777330e-03]	9.0752387814033908e-01
3502	21	[1.5482805009158632e-01, 2.4406550356291239e-02]	7.1433453221276177e-01
3664	22	[2.5102780556760917e-01, 6.1786968670255675e-02]	5.6111014409914806e-01
3826	23	[3.4117527045237450e-01, 1.1437707631395989e-01]	4.3445947497784587e-01
3986	24	[4.2728199959777102e-01, 1.8034031882588317e-01]	3.2850301440772911e-01
4146	25	[5.0970376040313270e-01, 2.5768892396525739e-01]	2.4083519041136708e-01
4306	26	[5.8816963403914735e-01, 3.4410657036704551e-01]	1.6994168813713784e-01
4464	27	[6.6222276119721335e-01, 4.3702593786605176e-01]	1.1432239435165625e-01
4622	28	[7.3131780391892687e-01, 5.3363665890212286e-01]	7.2331511576722712e-02
4780	29	[7.9482241232480555e-01, 6.3085246211188462e-01]	4.2177088982320574e-02
4935	30	[8.5197979240652877e-01, 7.2524161546295740e-01]	2.1949414127740378e-02
5090	31	[9.0184407649982434e-01, 8.1291532361429697e-01]	9.6511839922370900e-03
5243	32	[9.4317504979875999e-01, 8.8934771760733178e-01]	3.2344321976011908e-03
5396	33	[9.7429122400640500e-01, 9.4914011354197181e-01]	6.6200774874515089e-04
5542	34	[9.9312684174841037e-01, 9.8627350421240612e-01]	4.7315487736204611e-05
5678	35	[9.9948282732111804e-01, 9.9896385854531045e-01]	2.6789340962873162e-07
5792	36	[9.9999737730208793e-01, 9.9999474412297651e-01]	6.8895443156719967e-12
5872	37	[1.0000000004760476e+00, 9.999999957323382e-01]	1.9035251655375697e-16
5933	38	[9.999999991930577e-01, 9.999999983919130e-01]	6.5451705938504069e-21

$$\overline{x}^0 = (1.1, 1.1) , \varepsilon = 10^{-12}$$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
141	1	[1.0486981529565942e+00, 1.0997678159676196e+00]	2.3715101013838434e-03
240	2	[1.0485874467395477e+00, 1.0997673138494548e+00]	2.3661075609651208e-03
319	3	[1.0485874462052853e+00, 1.0997673127631358e+00]	2.3661075106293406e-03
467	4	[9.9702688790526872e-01, 9.9404770529667064e-01]	8.8616260676531613e-06
598	5	[9.9947121666533922e-01, 9.9894006762832377e-01]	2.8031158372061918e-07
712	6	[1.0000002370788714e+00, 1.0000004741574717e+00]	5.6206391286121789e-14
785	7	[1.0000000004730807e+00, 9.999999988749999e-01]	1.1230019725107872e-16

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
141	1	[1.0486981529565942e+00, 1.0997678159676196e+00]	2.3715101013838434e-03
262	2	[1.0485882394157926e+00, 1.0995394743374578e+00]	2.3608174841110146e-03
410	3	[1.0058316320038743e+00, 1.0117206637159504e+00]	3.4062649348800086e-05
546	4	[1.0009631663903782e+00, 1.0019311304761047e+00]	9.2918719008429179e-07
665	5	[1.0000037578085257e+00, 1.0000075306798302e+00]	1.4143771125419869e-11
748	6	[1.0000000018248960e+00, 9.999999998834244e-01]	1.3439515539766257e-15
809	7	[1.0000000003677250e+00, 1.0000000007378911e+00]	1.3581757280456652e-19

4.3. Исследование на тестовой функции

$$f(x,y) = \frac{3}{1+(x-2)^2 + \frac{1}{4}(y-2)^2} + \frac{2}{1+\frac{1}{9}(x-2)^2 + (y-3)^2}$$

$$\overline{x}^0 = (10,10)$$
, $\varepsilon = 10^{-6}$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{X}^k	$f(\overline{x}^k)$
137	1	[1.9999997700340799e+00, 2.7563648815157542e+00]	-4.5125572680024728e+00
165	2	[1.999999656455583e+00, 2.7563654117602225e+00]	-4.5125572680030359e+00

Розенброк с модификацией Палмера:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
137	1	[1.9999997700340799e+00, 2.7563648815157542e+00]	-4.5125572680024728e+00
165	2	[2.0000000938793017e+00, 2.7563657008595599e+00]	-4.5125572680028601e+00

$$\overline{x}^0 = (10,10)$$
, $\varepsilon = 10^{-12}$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
195	1	[1.999999565558007e+00, 2.7563653890555786e+00]	-4.5125572680030350e+00
258	2	[2.0000000170176788e+00, 2.7563654166377107e+00]	-4.5125572680030395e+00

Розенброк с модификацией Палмера:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
195	1	[1.999999565558007e+00, 2.7563653890555786e+00]	-4.5125572680030350e+00
258	2	[1.999999817988232e+00, 2.7563654224018657e+00]	-4.5125572680030386e+00

$$\overline{x}^0 = (2.1, 2.65)$$
, $\varepsilon = 10^{-12}$

Обычный Розенброк:

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
165	1	[1.9999999894635481e+00, 2.7563653763132558e+00]	-4.5125572680030395e+00
226	2	[2.0000000182498821e+00, 2.7563653763134917e+00]	-4.5125572680030395e+00

Вычислений ф-ции	Итерация	\overline{x}^k	$f(\overline{x}^k)$
165	1	[1.999999894635481e+00, 2.7563653763132558e+00]	-4.5125572680030395e+00
226	2	[1.999999944064946e+00, 2.7563653809608391e+00]	-4.5125572680030404e+00

В рассмотренных исследованиях метод Розенброка показал себя с хорошей стороны при задании большой точности. При задании недостаточной точности метод может разойтись.

Модификация Палмера может считаться эффективной на некоторых задачах в определенных комбинациях начального приближения и точности.

5. Текст программы

```
#include <iostream>
#include <fstream>
#include <vector>
#include <math.h>
using namespace std;
static const double eps = 1e-12:
static const double x_0 = 2.1;
static const double y_0 = 2.65;
static int f_calc;
class vect
private:
    double x[2];
public:
    inline vect() { x[0] = x[1] = 0.0; }
    inline vect(double z, double y) { x[0] = z; x[1] = y; }
    inline double norm() { return sqrt(x[0] * x[0] + x[1] * x[1]); }
    inline double& operator [] (unsigned i) { return x[i]; }
    inline vect operator + (vect y) { return vect(x[0] + y[0], x[1] + y[1]); } inline vect operator - (vect y) { return vect(x[0] - y[0], x[1] - y[1]); }
    inline vect operator * (double c) { return vect(x[0] * c, x[1] * c); }
    inline vect operator / (double c) { return vect(x[0] / c, x[1] / c); }
    inline double mult (vect y) { return x[0] * y[0] + x[1] * y[1]; }
    friend ostream& operator << (ostream& ostream_, const vect& v)</pre>
    {
        ostream_.setf(ios::scientific);
        ostream_.precision(16);
        ostream_ << "[ " << v.x[0] << ", " << v.x[1] << " ]";
        return ostream_;
};
inline double f(class vect x)
{
    f calc++:
    //return 100.0 * (x[1]-x[0]*x[0]) * (x[1]-x[0]*x[0]) + (1.0-x[0]) * (1.0-x[0]);
    //return 2.0 * x[0] * x[0] + x[0] * x[1] + 5.0 * x[1] * x[1];
    return -(3.0/(1.0+(x[0]-2.0)*(x[0]-2.0)+1.0/4.0*(x[1]-2.0)*(x[1]-2.0))+
           2.0/(1.0+1.0/9.0*(x[0]-2.0)*(x[0]-2.0)+(x[1]-3.0)*(x[1]-3.0)));
}
void interval(double &a, double &b, class vect x, class vect s)
{
    double lambda0 = 0.0:
    double delta = 1.0e-8;
    double lambda_k_minus_1 = lambda0;
    double f_k_minus_1 = f(x + s * lambda_k_minus_1);
    double lambda_k;
    double f_k;
    double lambda_k_plus_1;
    double f_k_plus_1;
    double h;
    if (f(x + s * lambda0) > f(x + s * (lambda0 + delta)))
    {
        lambda k = lambda0 + delta;
        h = delta:
    }
    else
    {
        lambda_k = lambda0 - delta;
        h = -delta;
    f_k = f(x + s * lambda_k);
    while (true)
        h *= 2.0;
        lambda_k_plus_1 = lambda_k + h;
        f_k_plus_1 = f(x + s * lambda_k_plus_1);
        if (f_k > f_k_plus_1)
        {
```

```
lambda_k_minus_1 = lambda_k;
            f_k_minus_1 = f_k;
            lambda_k = lambda_k_plus_1;
            f_k = f_k_plus_1;
        }
        else
        {
            a = lambda_k_minus_1;
            b = lambda_k_plus_1;
            if (b < a)
                swap(a, b);
            return;
        }
   }
}
inline double fib(int n)
    double sqrt5 = sqrt(5.0), pow2n = pow(2.0, n);
    return ( pow(1.0 + sqrt5, n) / pow2n - pow(1.0 - sqrt5, n) / pow2n ) / sqrt5;
double fibonacci(class vect x, class vect s)
    double a/* = -2.0*/, b/* = 2.0*/;
    interval(a, b, x, s);
    int iter;
    double len = fabs(a - b);
   int n = 0;
    while (fib(n) < (b - a) / eps) n++;
    iter = n - 3;
    double lambda1 = a + (fib(n-2) / fib(n)) * (b - a);
    double f1 = f(x + s * lambda1);
    double lambda2 = a + (fib(n - 1) / fib(n)) * (b - a);
    double f2 = f(x + s * lambda2);
    for (int k = 0; k < n - 3; k++)
    {
        if (f1 <= f2)
        {
            b = lambda2;
            lambda2 = lambda1;
            f2 = f1;
            lambda1 = a + (fib(n - k - 3) / fib(n - k - 1)) * (b - a);
f1 = f(x + s * lambda1);
        }
        else
        {
            a = lambda1;
            lambda1 = lambda2;
            f1 = f2;
            lambda2 = a + (fib(n - k - 2) / fib(n - k - 1)) * (b - a);
            f2 = f(x + s * lambda2);
        len = b - a;
    lambda2 = lambda1 + eps;
    f2 = f(x + s * lambda2);
    if (f1 <= f2)
        b = lambda1;
       a = lambda1;
    return (a + b) / 2.0;
}
bool allow_stop(class vect x1, class vect x)
    if (fabs(f(x1) - f(x)) \leftarrow eps)
        return true;
    if (fabs(x1[0] - x[0]) \le eps && fabs(x1[1] - x[1]) \le eps)
        return true;
    return false;
}
int main()
    class vect x, xold, s[2], a[2], b;
   double lambda1, lambda2;
    int iter = 0;
    f_calc = 0;
   x[0] = x_0;
    x[1] = y_0;
```

```
// Начальные ортогональные направления
s[0][0] = s[1][1] = 1.0;
s[0][1] = s[1][0] = 0.0;
// Сам метод (стандартный)
while(!iter || !allow_stop(x, xold))
    xold = x;
    lambda1 = fibonacci(x, s[0]);
    x = x + s[0] * lambda1;
    lambda2 = fibonacci(x, s[1]);
    x = x + s[1] * lambda2;
    // Построение новых ортогональных направлений
    a[0] = s[0] * lambda1 + s[1] * lambda2;
    // Сортировка лямбд по убыванию
    if (fabs(lambda1 >= lambda2))
        a[1] = s[1] * lambda2;
        a[1] = s[0] * lambda1;
    // Ортогонализация Грамма-Шмидта
    s[0] = a[0] / a[0].norm();
    b = a[1] - s[1] * a[1].mult(s[1]);
    if(b.norm() > eps)
       s[1] = b / b.norm();
    iter++;
    cout << f_calc << '\t' << iter << '\t' << x << '\t' << f(x) << endl;
cout << f_calc << '\t' << iter << '\t' << x << '\t' << f(x) << endl;
iter = 0;
f_calc = 0;
x[0] = x_0;
x[1] = y_0;
// Начальные ортогональные направления
s[0][0] = s[1][1] = 1.0;
s[0][1] = s[1][0] = 0.0;
// Сам метод (с ортогонализацией Палмера)
while(!iter || !allow_stop(x, xold))
   xold = x;
lambda1 = fibonacci(x, s[0]);
    x = x + s[0] * lambda1;
    lambda2 = fibonacci(x, s[1]);
    x = x + s[1] * lambda2;
    // Построение новых ортогональных направлений
   a[0] = s[0] * lambda1 + s[1] * lambda2;
a[1] = s[1] * lambda2;
    double a0_norm = a[0].norm();
    double a1_norm = a[1].norm();
    s[0] = a[0] / a0_norm;
    s[1] = (a[1] * a0_norm * a0_norm - a[0] * a1_norm * a1_norm) /
           (a0_norm * a1_norm * sqrt(a0_norm * a0_norm - a1_norm * a1_norm));
    cout << f_calc << '\t' << iter << '\t' << x << '\t' << f(x) << endl;
cout << f_calc << '\t' << iter << '\t' << x << '\t' << f(x) << endl;</pre>
return 0;
```

}