ПОВЫШЕНИЕ ТОЧНОСТИ ЭКСТРАПОЛЯЦИИ РЕГРЕССИИ ДЛЯ ДАННЫХ, СОДЕРЖАЩИХ КОМПЛЕКСНЫЕ ЧИСЛА, ПУТЕМ УЧЕТА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ПЕРЕМЕННЫХ И ИСПОЛЬЗОВАНИЯ СТАНДАРТНЫХ РЕГРЕССОРОВ SCIKIT-LEARN

Постановка задачи

Имеется набор данных dataset_0, который содержит количественные предикторы A_1, A_2, A_3, A_4, A_5 и количественную целевую переменную b. Набор данных dataset_0 представляет собой точную зависимость целевой переменной b от предикторов.

Даны два набора данных dataset_1 и dataset_2, каждый из которых содержит количественные предикторы A_h_1, A_h_2, A_h_3, A_h_4, A_h_5 и количественную целевую переменную b_d. Наборы данных dataset_1 и dataset_2 моделируют результаты измерений b от предикторов и сгенерированы по данным dataset_0 путем случайных отклонений предикторов в пределах 1% и целевой переменной b в пределах 5% от соответствующих точных значений из dataset_0.

Необходимо по данным dataset_1 и dataset_2 спрогнозировать значение целевой переменной b_max при значениях предикторов (1800 + j1000, 1500 + j1000, 1800 + j1400, 2000 + j1700, 1500 + j1200). Датасет dataset_0 использовать только для валидации обученных моделей.

РЕШЕНИЕ ЗАДАЧИ

1. Характеристика датасетов

Значения предикторов в каждом наборе данных являются положительными комплексными числами, максимальное значение которых не превышает 1230 + j513. Значения целевой переменной в каждом наборе данных также являются положительными комплексными числами, максимальное значение которых не превышает 83 + j109.

Для dataset_0 выявлена функциональная линейная зависимость целевой переменной от всех предикторов. При этом имеется практически абсолютная мультиколлинеарность всех предикторов.

Для dataset_1 и dataset_2 коэффициенты корреляции для всех предикторов между собой практически равны 1, а для целевой переменной с предикторами практически равны 0.99. Таким образом, для dataset_1 и dataset_2 также имеются практически функциональная линейная зависимость целевой переменной от предикторов и практически абсолютная мультиколлинеарность всех предикторов.

2. Обучение различных моделей

Данная задача относится к классу задач экстраполяции регрессии.

Обучение моделей выполнено на языке Python 3.

Обучение проводилось как при разбиении на обучающую и тестовую выборки (70/30), так и на полных наборах данных.

Модели строились на всех предикторах, которые масштабировались с помощью MaxAbsScaler.

Для обучения моделей применялись алгоритмы:

- 1) LinearRegression, Ridge, Lasso, ElasticNet, TheilSenRegressor из библиотеки scikit-learn с поиском оптимальных значений их гиперпараметров по сетке с кроссвалидацией.
- 2) регуляризация Тихонова с поиском коэффициента регуляризации α методом обобщенной невязки [1].

Алгоритмы scikit-learn не поддерживают работу с комплексными числами, что не позволяет построить непосредственные модели регрессии для данных, содержащих комплексные числа, с помощью стандартных регрессоров scikit-learn. Для устранения этого препятствия автором разработан метод преобразования исходного датасета размером $M \times N$ с комплексными числами в датасет размером $2M \times (2N-1)$ с вещественными числами, что позволило использовать для построения достоверных моделей регрессии комплексных чисел стандартные регрессоры scikit-learn (подробнее смотри репозиторий автора https://github.com/GorshkovAndrey/Regression of complex numbers using sklearn).

Отличие алгоритма регуляризации Тихонова от модели Ridge из scikit-learn состоит в том, что коэффициент регуляризации α определяется по условию оптимизации нестандартной метрики — обобщенной невязки, учитывающей информацию о погрешности измерения предикторов и целевой переменной.

Решение задачи регрессии – системы линейных уравнений Az = b для модели на основе алгоритма регуляризации Тихонова имеет следующий вид

$$z = (A^{T}A + \alpha E)^{-1}A^{T}b$$
 (1)

Уравнение обобщенной невязки для определения коэффициента регуляризации α имеет следующий вид

$$\|Az(\alpha) - b\|^2 - (h\|z(\alpha)\| + d)^2 = 0$$
(2)

$$h = \delta_{\mathbf{A}} \|\mathbf{A}\| \tag{3}$$

$$d = \delta_{\mathbf{h}} \|\mathbf{b}\| \tag{4}$$

где ||_|| – обозначение нормы матрицы или вектора;

 $\delta_{\rm A}$ – относительная погрешность измерения элементов матрицы A;

 $\delta_{\rm b}$ – относительная погрешность измерения элементов вектора b.

По условию данной задачи $\delta_{\rm A} = 0.01$, $\delta_{\rm b} = 0.05$.

Метрики, результаты прогноза целевой переменной b_max и их осредненные значения Меап для различных моделей регрессоров из библиотеки scikit-learn приведены в таблицах 1-7. Там же приведены результаты прогноза Regularized для модели на основе алгоритма регуляризации Тихонова и **точный прогноз** Accurate.

Таблица 1 — Метрики и результаты прогноза целевой переменной для dataset_1 (random state = 1902 для train test split)

		(-,		
	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate
R2 train	0.988	0.988	0.987	0.987	0.987	0.988	0.931	
R2 test	0.981	0.982	0.985	0.984	0.981	0.983	0.928	
b_max_complex	(305.464+440.399j)	(272.488+411.849j)	(192.317+320.62j)	(222.348+343.56j)	(271.979+427.573j)	(252.919+388.8j)	(159.659+324.404j)	(147.1+303.7j)
b_max_modul	535.966	493.831	373.876	409.234	506.746	463.825	361.565	337.449

Таблица 2 — Метрики и результаты прогноза целевой переменной для dataset_1 (random state = 1903 для train test split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate
R2 train	0.986	0.986	0.986	0.986	0.986	0.986	0.932	
R2 test	0.985	0.984	0.985	0.985	0.985	0.985	0.929	
b_max_complex	(208.258+343.867j)	(166.59+329.601j)	(220.384+327.825j)	(217.115+327.2j)	(194.87+341.702j)	(201.443+334.039j)	(160.012+325.055j)	(147.1+303.7j)
b_max_modul	402.015	369.309	395.017	392.682	393.363	390.079	362.305	337.449

Таблица 3 — Метрики и результаты прогноза целевой переменной для dataset_1 (обучение на полном наборе данных)

	(obj terme na nosmow nacope gambia)										
	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate			
R2	0.987	0.986	0.986	0.986	0.986	0.986	0.933				
b_max_complex	(210.911+350.847j)	(173.188+330.798j)	(185.271+314.552j)	(192.028+321.218j)	(201.778+364.422j)	(192.635+336.367j)	(160.015+325.052j)	(147.1+303.7j)			
h max modul	409 362	373 392	365.059	374.24	416 555	387 622	362 303	337 449			

Таблица 4 — Метрики и результаты прогноза целевой переменной для dataset_2 (random_state = 1994 для train_test_split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate
R2 train	0.99	0.99	0.989	0.989	0.989	0.989	0.936	
R2 test	0.977	0.978	0.98	0.98	0.977	0.979	0.907	
b_max_complex	(288.46+435.473j)	(272.626+420.048j)	(231.557+337.462j)	(231.365+337.574j)	(271.936+439.099j)	(259.189+393.931j)	(159.907+324.525j)	(147.1+303.7j)
b_max_modul	522.347	500.765	409.267	409.25	516.485	471.551	361.783	337.449

Таблица 5 — Метрики и результаты прогноза целевой переменной для dataset_2 (random_state = 1961 для train_test_split)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate
R2 train	0.987	0.987	0.987	0.987	0.987	0.987	0.93	
R2 test	0.985	0.986	0.987	0.986	0.983	0.986	0.939	
b_max_complex	(102.463+215.89j)	(152.992+296.72j)	(155.754+281.007j)	(158.619+292.201j)	(91.844+216.47j)	(132.334+260.458j)	(160.358+325.441j)	(147.1+303.7j)
b_max_modul	238.971	333.84	321.285	332.478	235.148	292.148	362.804	337.449

Таблица 6 – Метрики и результаты прогноза целевой переменной для dataset_2 (обучение на полном наборе данных)

	LinRegr	Ridge	Lasso	ElastNet	TheilSen	Mean	Regularized	Accurate
R2	0.987	0.987	0.987	0.987	0.987	0.987	0.933	
b_max_complex	(189.993+321.392j)	(170.353+329.699j)	(188.332+299.377j)	(207.623+310.257j)	(175.489+323.464j)	(186.358+316.838j)	(160.354+325.421j)	(147.1+303.7j)
b_max_modul	373.35	371.109	353.688	373.319	368.002	367.581	362.784	337.449

Таблица 7 — Метрики и результаты прогноза целевой переменной для dataset_0 (обучение на полном наборе данных)

	LinRegr	Ridge	TheilSen	Mean	Regularized	Accurate
R2	1.0	1.0	1.0	1.0	1.0	
b_max_complex	(147.1+303.7j)	(147.1+303.7j)	(147.1+303.701j)	(147.1+303.7j)	(147.1+303.701j)	(147.1+303.7j)
b_max_modul	337.449	337.449	337.45	337.449	337.45	337.449

Примечание. dataset_0 сгенерирован при коэффициентах z = (0.04 + j0.02, 0.035 + j0.015, 0.03 + j0.02, 0.02 + j 0.012, 0.016 + j0.01)

3. Анализ прогнозов различных моделей

Для dataset_1 диапазон **модуля** осредненного прогноза Mean различных моделей регрессоров scikit-learn составил от 387,6 до 463,8. Диапазон прогноза регуляризованного решения, учитывающего информацию о погрешности измерения предикторов и целевой переменной, составил от 361,6 до 362,3.

Для dataset_2 диапазон **модуля** осредненного прогноза Mean различных моделей регрессоров из библиотеки scikit-learn составил от 292,1 до 471,6. Диапазон прогноза регуляризованного решения, учитывающего информацию о погрешности измерения предикторов и целевой переменной, составил от 361,8 до 362,8.

Для dataset_0 значение **модуля** прогноза составляет 337,5. Это же значение получается при вычислении **точного прогноза** по выражению b_max = A_max · z, где $z = (0.04 + j0.02, 0.035 + j0.015, 0.03 + j0.02, 0.02 + j 0.012, 0.016 + j0.01) - коэффициенты регрессии для генерации dataset_0. Значение модуля прогноза регуляризованного решения с учетом того, что погрешности измерения переменных для dataset_0 равны нулю, также составило 337,5.$

Таким образом, несмотря на отличные метрики всех моделей регрессоров из библиотеки scikit-learn, результаты их прогнозов не только имеют неприемлемую точность, но и являются неустойчивыми — небольшие погрешности измерений данных приводят к недопустимым погрешностям прогноза целевой переменной (в терминологии ML это означает, что модели переобучаются). При этом модель регуляризации Тихонова, учитывающая информацию о погрешности измерения предикторов и целевой переменной, выдает устойчивый прогноз с приемлемой точностью. Так в данной задаче разброс (variance) осредненного прогноза различных моделей из библиотеки scikit-learn составил $\pm 23\%$ при смещении (bias) 13%, тогда как разброс (variance) прогноза модели регуляризации Тихонова составил $\pm 0.2\%$ при смещении (bias) 7%.

4. Выводы

- 1. Алгоритмы scikit-learn не поддерживают работу с комплексными числами, что не позволяет построить непосредственные модели регрессии для данных, содержащих комплексные числа, с помощью стандартных регрессоров scikit-learn.
- 2. Разработан метод преобразования исходного датасета размером $M \times N$ с комплексными числами в датасет размером $2M \times (2N-1)$ с вещественными числами, что позволяет использовать для построения достоверных моделей регрессии комплексных чисел стандартные регрессоры scikit-learn.
- 3. Игнорирование даже незначительной погрешности измерения предикторов и целевой переменной может привести к крайне большой погрешности прогноза экстраполяции регрессии (как для наборов данных, содержащих комплексные числа, так и для наборов данных, содержащих только вещественные числа).
- 4. Модели, обученные на наборах данных с мультиколлинеарными предикторами по условию оптимизации стандартных метрик из библиотеки scikit-learn, могут привести к неустойчивым прогнозам экстраполяции с недопустимой погрешностью.
- 5. Для моделей, обучаемых на наборах данных с мультиколлинеарными предикторами, для получения устойчивого прогноза экстраполяции с допустимой погрешностью следует использовать регуляризацию с учетом погрешности измерения предикторов и целевой переменной.

Список литературы

1. Тихонов А. Н., Гончарский А. В., Степанов В.В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. – М.: Наука, 1983. – 200 с.