Entendamos las transformaciones en el plano

Rotar

Problema (dificil)

Problema (dificil)

Solución: Rotación + estiramiento + compresión + Rotación

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

Recordemos el producto de matrices

$$3 \times 2 + 1 \times 5 + 0 \times -2 = 11$$

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

$$(0,-1)$$
 $(0,-5)$

$$A = \begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$$

$$(0,-1)$$
 $(0,-5)$

Matrices de rotación

$$\cos(\theta) - \sin(\theta) \\
\sin(\theta) \cos(\theta)$$

Matrices de estiramiento

$$\begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$$

Matrices de estiramiento

Simplificación de matrices

(Reducción de dimensionalidad)

Cual de estas dos matrices es más simple?

1	2	3	4
-1	-2	-3	-4
2	4	6	8
10	20	30	40

3	1	4	1
5	9	2	6
5	3	5	8
9	7	9	3

Matrices de rango 1

16 números

8 números

Aproximación usando matrices de rango 1

Rango 1 Rango 1 Rango 1

La matriz no es cuadrada? No hay problema!

6x6

La matriz no es cuadrada? No hay problema!

Ejemplo Real

(Imagen en Python)