

Tiesinių lygčių sistemos sprendimas

2 laboratorinis darbas Skaitiniai metodai

Darbą atliko:

Dovydas Martinkus

Duomenų Mokslas 4 kursas 1 gr.

Vilnius, 2022

Turinys

1	Užd	luoties ataskaita	.3
		Zeidelio metodas	
		Jungtinių gradientų metodas	
	icuas		.,

1 Užduoties ataskaita

Reikalinga 0,0001 tikslumu iteraciniais ir variaciniais metodais išspręsti tiesinę lygčių sistemą Ax=B, kur:

$$A = D + 0.1(k+3)E$$
,
 $k=16$,

$$D = \begin{pmatrix} 0.18 & 0.57 & 0.38 & 0.42 \\ 0.57 & 0.95 & 0.70 & 0.44 \\ 0.38 & 0.70 & 0.37 & 0.18 \\ 0.42 & 0.44 & 0.18 & 0.40 \end{pmatrix}, \ E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1,2 \\ 2 \\ 3 \\ 1,5 \end{pmatrix}.$$

Įsistatę prieš tai aprašytas reikšmes gauname sistemos matricą:

$$A = \begin{pmatrix} 2.08 & 0.57 & 0.38 & 0.42 \\ 0.57 & 2.85 & 0.70 & 0.44 \\ 0.38 & 0.70 & 2.27 & 0.18 \\ 0.42 & 0.44 & 0.18 & 2.30 \end{pmatrix}.$$

Toliau žymėjimuose naudojama:

$$D = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}, \quad -L = \begin{pmatrix} 0 & 0 & \dots & 0 & 0 \\ a_{21} & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{n,n-1} & 0 \end{pmatrix},$$

$$-U = \begin{pmatrix} 0 & a_{12} & \dots & a_{1,n-1} & a_{1n} \\ 0 & 0 & \dots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & a_{n-1,n} \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}.$$

1.1 Zeidelio metodas

Žemiau pateikti Zeidelio metodu gauti iteracijų rezultatai 5 skaičių po kablelio tikslumu:

k	X1 ^k	X_2^k	X3 ^k	X4 ^k	x ^k -x ∞
0	0,00000	0,00000	0,00000	0,00000	3,00000
1	0,57692	0,58637	1,04419	0,35293	0,88622
2	0,15421	0,35996	1,15679	0,46462	0,12796
3	0,.17313	0,31128	1,15977	0,47025	0,02425
4	0,18479	0,30734	1,15859	0,46896	0,00323
5	0,18634	0,30752	1,15838	0,46866	0,00028
6	0,18639	0,30761	1,15836	0,46864	0,00004

1 lentelė. Iteracijų rezultatai naudojant Zeidelio metodą

Konvergavimas pasiektas po 6 iteracijų. Patikrinimui gautą artinį įstatome į lygčių sistemą ir palyginame gautus rezultatus (5 skaičių po kablelio tikslumu):

2 lentelė. Gauto artinio patikrinimas jį įstatant į lygčių sistemą

	b ₁	b ₂	b ₃	b ₄
Gautas B	1,20003	1,9999	2,99999	1,5
Norimas B	1,20000	2,0000	3,00000	1,5

Pagal teoremą jei ||C|| < 1, tai iteracinė seka $x_{k+1} = Cx_k + d$, k > 0, konverguoja į Ax = b sprendinį kiekvienam pradiniam artiniui x_0 .

Zeidelio metodo atveju turime iteracinę seką $x_{k+1} = (D-L)^{-1}(Ux_k + b)$, vadinasi $C = (D-L)^{-1}U$.

Apskaičiavę ||C|| reikšmę gauname ||C|| = 0.5527425 < 1, todėl sudaryta iteracinė seka konverguoja su bet kokiu pradiniu artiniu.

Pagal kitą teoremą turime, kad iteracinė seka konverguoja su bet kokiu pirminiu artiniu jeigu $max\{|\lambda_1|,|\lambda_2|,...,|\lambda_n|\}<1$, kur λ_n – matricos C tikrinės reikšmės.

Apskaičiavę gauname reikšmę 0,1269249, todėl ir pagal šią teoremą matome, kad iteracinė seka konverguoja su bet kokiu pradiniu artiniu.

1.2 Jungtinių gradientų metodas

Primename, kad turime matrica:

$$A = \begin{pmatrix} 2.08 & 0.57 & 0.38 & 0.42 \\ 0.57 & 2.85 & 0.70 & 0.44 \\ 0.38 & 0.70 & 2.27 & 0.18 \\ 0.42 & 0.44 & 0.18 & 2.30 \end{pmatrix}$$

Matome, kad matrica A yra simetrinė, be to ji ir teigiamai apibrėžta: ji simetrinė ir jos tikrinės reikšmės (apytiksliai λ_1 =3,85, λ_2 =2,17, λ_3 =1,79 ir λ_4 =1,67) visos didesnės už 0.

Žemiau pateikti jungtinių gradientų metodu gauti iteracijų rezultatai 5 skaičių po kablelio tikslumu:

3 lentelė. Iteracijų rezultatai naudojant jungtinių gradientų metodą

k	X_1^k	X_2^k	<i>X</i> ₃ ^{<i>k</i>}	X_4^k	x ^k -x ∞
0	0,00000	0,00000	0,00000	0,00000	3,00000
1	0,33579	0,55965	0,83948	0,41974	0,55873
2	0,19674	0,30824	1,16337	0,44882	0,04005
3	0,18854	0,30627	1,15819	0,46903	0,00385
4	0,18637	0,30762	1,15837	0,46864	0,00000

Konvergavimas pasiektas po 4 iteracijų. Patikrinimui gautą artinį įstatome į lygčių sistemą ir palyginame gautus rezultatus (neapvalintus):

4 lentelė. Gauto artinio patikrinimas jį įstatant į lygčių sistemą

	b_1	b ₂	b ₃	b ₄
Gautas B	1,2	2	3	1,5
Norimas B	1,2	2	3	1,5

Matome, kad gautas tikslus lygčių sistemos Ax=B sprendinys.

Pagal teoremą, jeigu p^0 , p^1 ,, p^{n-1} sudaro matricos A atžvilgiu jungtinių vektorių sistemą, tai ne daugiau kaip per n iteracijų su bet kuriuo pradiniu artiniu x^0 iteraciniu metodu $x^{k+1} = x^k - \tau_k p^k$, $\tau_k = \frac{(Ax^k - b, p^k)}{(Ap^k, p^k)}$ gaunamas tikslus lygčių sistemos Ax = B sprendinys. Naudojant R patikrinta, kad jungtinių gradientų metodu $autos p^0$, $autos p^0$, au

Galiausiai lentelėje pateiktas Zeidelio, jungtinių gradientų ir naudojant R biblioteką *Rlinsolve* gautų artinių palyginimas. Kaip matome visais metodais gauti beveik identiški rezultatai:

5 lentelė. Skirtingais metodais gautų artinių palyginimas

Metodas	X ₁	X ₂	X ₃	X ₄
Zeidelio	0,1863910	0,3076080	1,158364	0,4686360
Jungtinių gradientų	0,1863705	0,3076182	1,158366	0,4686376
R iteracinis <i>Isolve.jacobi()</i>	0,1863781	0,3075950	1,158385	0,4686426
R variacinis Isolve.cg()	0,1863705	0,3076182	1,158366	0,4686376

Priedas

Žemiau pateiktas naudotas programinis kodas:

```
# Dovydas Martinkus
# Duomenų Mokslas 4k. 1gr.
# 2 uzduotis
###
# Funkciju aprasymas
zeidelio <- function(x0,D,L,U,B,eps) {</pre>
  x <- matrix(x0)</pre>
  n <- 0
  repeat {
    x_n \leftarrow solve(D-L) %*% (U %*% matrix(x[,n+1])+B)
    x \leftarrow cbind(x, x_n)
    if (norm(matrix(matrix(x[,n+2]) - matrix(x[,n+1]),
                      byrow=TRUE),
              type = "M") > eps) {
       n < - n + 1
    }
    else {
      return(t(x))
    }
  }
}
jungtiniu_gradientu <- function(x0,A,B,eps) {</pre>
  x <- matrix(x0)</pre>
  z <- A %*% x - B
  p <- z
  r <- A %*% p
  tau <- c((t(z) %*% z) / (t(r) %*% p))
  n <- 0
  repeat {
    if( n>0 ){
      r_n <- A %*% matrix(p[,n+1])
      r <- cbind(r, r_n)
      tau_n \leftarrow (t(matrix(z[,n+1])) %*% matrix(z[,n+1])) / (t(matrix(r[,n+1])) %*% matrix(p[,n+1]))
      tau <- cbind(tau, tau_n)</pre>
     }
    x_n \leftarrow matrix(x[,n+1]) - tau[n+1]*matrix(p[,n+1])
    z_n \leftarrow matrix(z[,n+1]) - tau[n+1]*matrix(r[,n+1])
```

```
x \leftarrow cbind(x, x_n)
    z <- cbind(z, z_n)</pre>
    if ( t(z_n) % x z_n >= eps^2 ) {
      beta_n \leftarrow c((t(z_n) \% \% z_n) / (t(matrix(z[,n+1])) \% \% matrix(z[,n+1])))
      p_n \leftarrow z_n + beta_n*matrix(p[,n+1])
      p <- cbind(p, p_n)</pre>
      n \leftarrow n + 1
    else {
      return(list(a=t(x),b=t(p)))
    }
  }
}
## lentele, parodanti artiniu paklaidas pagal iteracijas
lentele <- function(xn,A,B) {</pre>
  norms <- apply(xn,1,function(x) norm(matrix(A %*% x - B,byrow=TRUE),type="M"))</pre>
  xn <- cbind(0:(nrow(xn)-1),xn,norms)</pre>
  return(xn)
}
D <- matrix(c(0.18, 0.57, 0.38, 0.42,
               0.57, 0.95, 0.70, 0.44,
               0.38, 0.70, 0.37, 0.18,
               0.42, 0.44, 0.18, 0.40),
             ncol=4,nrow=4)
E < - diag(1, 4, 4)
B \leftarrow matrix(c(1.2,2,3,1.5))
A \leftarrow D + 0.1*(16+3)*E
U <- A
U[lower.tri(U,TRUE)] <- 0</pre>
U <- U * -1
L <- A
L[upper.tri(L,TRUE)] <- 0
L <- L * -1
D <- A
D[!(lower.tri(D,TRUE) & upper.tri(D,TRUE))] <- 0</pre>
D <- D
# konvergavimo sąlygų patikrinimas
max(abs(eigen(solve(D-L)%*%U)$values))
norm(solve(D-L)%*%U)
eps <- 0.0001
```

```
x0 <- rep(0,length(B)) # bet koks pradinis artinys
# Zeidelio metodas
xn_1 <- zeidelio(x0,D,L,U,B,eps)</pre>
round(lentele(xn_1,A,B),5)
palyginimas <- cbind(A %*% matrix(xn_1[nrow(xn_1),]),B)</pre>
colnames(palyginimas) <- c("Gautas B", "Norimas B")</pre>
round(t(palyginimas),6)
# Jungtiniu gradientu metodas
result <- jungtiniu_gradientu(x0,A,B,eps)</pre>
xn_2 <- result[[1]]</pre>
p_n <- result[[2]]</pre>
round(lentele(xn_2,A,B),5)
palyginimas <- cbind(A %*% matrix(xn_2[nrow(xn_2),]),B)</pre>
colnames(palyginimas) <- c("Gautas B","Norimas B")</pre>
t(palyginimas)
## patikriname ar gauti p_n tikrai sudaro matricos A atzvilgiu jungtiniu vektoriu sistema
for(i in 1:nrow(p_n)) {
for(j in 1:nrow(p_n)) {
   if(i != j) {
     print(all.equal(matrix(0)
                             ,t(A%*%p_n[i,]) %*% p_n[j,]))
   }
}
library(Rlinsolve)
# Artiniu palyginimas
palyginimas <- cbind(matrix(xn_1[nrow(xn_1),]),matrix(xn_2[nrow(xn_2),]),lsolve.jacobi(A,B)$x,</pre>
colnames(palyginimas) <- c("Zeidelio", "Jungtinių gradientų", "R iteracinis metodas lsolve.jacobi", "R
variacinis metodas lsove.cg")
t(palyginimas)
```