Inductive Bias, Estimation Bias and the Bias-Variance tradeoff

Mark Craven and David Page Computer Sciences 760 Spring 2019

Goals for the lecture

you should understand the following concepts

- generalization
- inductive bias
- estimation bias and variance
- the bias-variance tradeoff

Inductive bias

- *inductive bias* is the set of assumptions a learner uses to be able to predict y_i for a previously unseen instance x_i
- two components
 - hypothesis space bias: determines the models that can be represented
 - preference bias: specifies a preference ordering within the space of models
- in order to generalize (i.e. make predictions for previously unseen instances) a learning algorithm must have an inductive bias

Consider the inductive bias of DT and *k*-NN learners

learner	hypothesis space bias	preference bias
ID3	trees with single-feature, axis- parallel splits	small trees identified by greedy search
DT learner with m-of-n splits	trees with m-of-n splits	small trees identified by greedy search
DT learner with lookahead	trees with single-feature, axis- parallel splits	small trees identified by lookahead search
k-NN	Voronoi decomposition determined by nearest neighbors	

Estimation bias and variance

- How will predictive accuracy (error) change as we vary k
 in k-NN?
- Or as we vary the complexity of our decision trees?
- the bias/variance decomposition of error can lend some insight into these questions

note that this is a different sense of bias than in the term *inductive bias*, though related

Recall: Expected values

 the expected value of a random variable that takes on numerical values is defined as:

$$E[X] = \sum_{x} x P(x)$$

this is the same thing as the mean

 we can also talk about the expected value of a function of a random variable

$$E[g(X)] = \sum_{x} g(x)P(x)$$

Defining bias and variance

indicates the

model on D

dependency of

- consider the task of learning a regression model f(x; D) given a training set $D = \{(x_1, y_1)...(x_n, y_n)\}$
- a natural measure of the accuracy of f is

$$E[(y-f(x; D))^2 | x, D]$$

where the expectation is taken with respect to the real-world distribution of instances

Defining bias and variance

this can be rewritten as:

Defining bias and variance

 now consider the expectation (over different data sets D) for the second term

$$\begin{split} E_D\Big[\big(f(\boldsymbol{x};\,D) - E[\,y\,|\,\boldsymbol{x}\,]\big)^2\,\Big] = \\ & \left(E_D\Big[\,f(\boldsymbol{x};\,D)\,\big] - E\Big[\,y\,|\,\boldsymbol{x}\,\big]\big)^2 \qquad \text{bias} \\ & + E_D\Big[\big(f(\boldsymbol{x};\,D) - E_D\Big[\,f(\boldsymbol{x};\,D)\,\big]\big)^2\,\Big] \qquad \text{variance} \end{split}$$

- bias: if on average f(x; D) differs from $E[y \mid x]$ then f(x; D) is a biased estimator of $E[y \mid x]$
- variance: f(x; D) may be sensitive to D and vary a lot from its expected value

Bias/variance for polynomial interpolation

- the 1st order polynomial has high bias, low variance
- 50th order polynomial has low bias, high variance
- 4th order polynomial represents a good trade-off

Bias/variance trade-off for nearestneighbor regression

 consider using k-NN regression to learn a model of this surface in a 2-dimensional feature space

Bias/variance trade-off for nearestneighbor regression

bias for 1-NN

darker pixels correspond to higher values

variance for 1-NN

bias for 10-NN

variance for 10-NN

Bias/variance trade-off

 consider k-NN applied to digit recognition

Bias/variance discussion

- predictive error has two controllable components
 - expressive/flexible learners reduce bias, but increase variance
- for many learners we can trade-off these two components (e.g. via our selection of k in k-NN)
- the optimal point in this trade-off depends on the particular problem domain and training set size