

By: Priyanka Iragavarapu, Charles Barnes, Ellen Wei (Group M - Lec 1)

(2016-2021)

Table of Contents

01

INTRODUCTION

A background on US Accidents and Traffic Accident Dataset overview

Car Accidents in the US

Countrywide Traffic Accident Dataset

Observations

Training data: 35000 Testing data: 15000

Each observation represents a car accident incident

44

Variables

Detailed information recorded with each incident Ex. Start time, Description, State

Response variable: SEVERITY (mild vs. severe)

02

METHODOLOGY

Data cleaning and model exploration

Data Cleaning - NAs

Numerical

- First used medians
- Tried package 'mice'

Mutated variables

Description: Word count, Characters, Binary variables for presence of words Time: Month, Season, Year, Hour Start, Time of Day, Rush Hour, Weekend/Weekday Location: Local road, Region

Categorical

- Tried to consolidate categories
- Most models can't handle 50+ levels
 - -> removed
- Package 'Hmisc'

Data augmentation - mutations

Description analysis:

Mild

- Word cloud visualization
- Common words
- Categorical variables

"Caution"

Yes No 7337 24145 Severe 3517

New grouped variables:

- Start Time Category (ex. morning)
- Weekday
- Traffic object, building, sign

Variable Selection - Feature exploration

Cleaned Countrywide Traffic Accident Dataset

Observations

Training data: # 35,000 Testing data: # 15,000 51

Variables

Removed categorical variables with large amount of NAs

Median for NAs in numerical variables

Mutated data to include additional variables

Initial Model Comparisons

Model	Pros	Cons	
Logistic Regression	Good for classification	Low accuracy, hard to implement with the 90/10 split	
LDA/QDA	Good for classification - simple boundaries	Dataset is extremely complex	
KNN	Simple	Only numerical	
k-means	Easy to understand Only numerical		
Multiple Linear Regression	Extremely basic	Low accuracy	

Models: Tree-based

- Could immediately decide whether an observation was Mild or Severe
- Reduces the dataset that is "difficult" to classify
- Closed, Duration, CautionOrSlow, Timezone were most important

Base model: 92.89% training accuracy → Eventually got a 92.7% Public Score

Models: Random Forest

Why try RF?

- 1 tree, variables can dominate
- Randomly choose a few predictors each split

RF 5

- 500 trees, default mtry
- Numerical: Distance
- Time: Duration, TimeofDay, Season
- Description: Characters, Word Count, Closed, CautionOrSlow
- Location: State

99.7% training, 93.76% testing

Predictions: 13,917 Mild, 1,083 Severe

Training Data				
	Mild	Severe		
Mild	31,478	108		
Severe	4	3,410		

Variable Importance Plot

Rev 12 Mild Severe Mild 31,475 454 Severe 7 3,064

31,478	108	
4	3,410	

Training Data Severity

		Mild	Severe
Predicted Severity	Mild	31,475	454
	Severe	7	3,064

Models: Random Forest

Back to the drawing board . . .

RF 12

- Numerical: Distance
- Time: Duration, TimeofDay, Season, **Year**
- Description: Characters, Word Count, Closed, CautionOrSlowOrStationary, Incident, Between, Exit
- Location: State

98.7% training, 94.25% testing

 350+ severe cases incorrectly classified as Mild in training predictions compared to Rev 5

Predictions: 14,009 Mild, 991 Severe

Optimizations

County Census Data

OVERFITTING

- Log total population
- Proportion 15-24 y/o
- Proportion 65+ y/o
- Log aggregate commute
- Average vehicle/household

Bagging

Mtry =13, 93.4% testing

Boosting

OVERFITTING: high training accuracy, low testing accuracy

Importance and Probability Cutoff

Removing variables using variable importance Changing probability cutoff using ROC

- 0.356 instead of 0.5 as the threshold for classifying as Severe
- 99.4% training, 93.21% testing

03

RESULTS & DISCUSSION

Final constructed model analysis

Analysis: Final Model and Key Ideas

ModelRandom Forest

Observations
50000 incidents

Predictors51 Traffic Predictors

Simplicity

Simple

Kaggle Score

Public: 0.94266

Private: 0.94080

Rank

Top 15

Competition: 13 / 36 Lecture: 8 / 17

Discussion: The Important Predictors

Caution+slow+stationary

Description words

Closed

Description word

Time of Day

Categorical

Duration

Numerical

State

Year

Incident

Between

Exit

Distance

Characters (description)

Word count

Season

04

LIMITATIONS & CONCLUSIONS

Setbacks, assumptions, and final words

Limitations

Data Cleaning

- Used medians for NAs at first
- NA imputation too computationally intensive
- Threw out categorical variables with large amount of categories (ex. city, county, zip code)

Modeling

- Random forest limitations
- Computationally intensive
 - Lack of visualization
- Overfitting occurred when using numerical predictors
- Can't use for inference black box

Conclusion

We get good predictions using our model and the random forest model is <u>interpretable</u> when we take a look at specific parameters.

Most importantly, our model is **simple**! It uses **only 5** of the original predictors, and the remaining are mutated predictors that we added.

We even attempted adding census data but found those predictors were not as significant as our 5 original predictors.

Thank you and happy holidays!

Special thanks to Professor Almohalwas for the quarter. We enjoyed the friendly Kaggle competition.