

$$\begin{array}{l} x:=x^{(0)}\\ r:=b-Ax^{(0)}\\ \textbf{while}\ x\ no\ converja\ a\ la\ solución\ \textbf{do}\\ & d:=\omega A^t r\\ & x:=x+d\\ & r:=r-Ad\\ \textbf{end} \end{array}$$

= b - Ax (K+1)

a) Probar que si el esquema iterativo converge, lo hace a una solución del sistema planteado. ¿Cuál es la matriz que gobierna la iteración del esquema? (Sugerencia: Probar que en cada iteración r = b - Ax).

QVQ
$$r = b-Ax$$
 en cada iteración

Inducción en la cantidad de iteraciones K .

 $P(K) \cdot r(K) = b - Ax(K)$

Caso base $K = 0$ (antes del ciclo)

 $r^{(0)} = b - Ax^{(0)}$ por valor inicial de r .

Paso inductivo

 $HI : r^{(K)} = b - Ax^{(K)}$
 $QVQ : r^{(K+1)} = b - Ax^{(K+1)}$
 $d^{(K+1)} = wA^T r^{(K)}$
 $X^{(K+1)} = x^{(K)} + d^{(K+1)}$
 $X^{(K+1)} = x^{(K)} + d^{(K+1)}$
 $X^{(K+1)} = x^{(K)} - Ad^{(K+1)}$
 $X^{(K+1)} = x^{(K)} - Ad^{(K+1)}$
 $X^{(K+1)} = x^{(K)} - x^{(K)} - x^{(K+1)}$
 $X^{(K+1)} = x^{(K)} - x^{(K)} - x^{(K+1)}$
 $X^{(K+1)} = x^{(K)} - x^{(K+1)} - x^{(K+1)}$

∴ En	cada iteración vale $r^{(K)} = b - A \times^{(K)}$.
B s c c	mos el esquema iterativo.
120200	MOS EL ESQUEMIA ITELATIVO.
(K+1)	(K) ,(K)
X	$= \times^{(K)} + d^{(K)}$
	$= X^{(K)} + \omega A^{T} r^{(K)}$
	$= \times^{(\kappa)} + \omega A^{T} (b - A \times^{(\kappa)})$
	$= \times^{(\kappa)} + \omega A^{T} b - \omega A^{T} A \times^{(\kappa)}$
	$= (I - \omega A^{T}A) \times^{(K)} + \omega A^{T}b$
	R
Res	la matriz que gobierna la iteración.
>1 PC	R) < 1 el sistema converge a x* cuando K→∞.
•	()T. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$(I-\omega A^TA) \times^* + \omega A^T b$
	$\times^* = \times^* - \omega A^T A \times^* + \omega A^T b$
⟨= ⟩	$\times * - \times^* + \omega A^T A \times^* = \omega A^T b$
<=>	$WA^TA \times^* = WA^Tb$
⟨= ⟩	$A^TA \times * = A^Tb$ $w \neq 0$
<:	el sistema converge lo hace a una solución de:
	$A \times = A^T b$
PVF	

b)	Demostrar que el esquema	converge si y	sólo si	$0 < \omega <$	$(2/\lambda_{max})$	con λ_{max}	el mayor	autovalor
	de la matriz $A^t A$.							

Aux

Si λ es autovalor de ATA entonces 1-w λ es autovalor de R=I-wATA. Sea $v\neq o$ autovector de ATA asociado al autovalor λ .

$$(I - \omega A^T A) = V - \omega A^T A = V - \omega \lambda V = (1 - \omega \lambda) V$$

El sistema converge sii P(R) = P(I - WATA) < 1. QVQ $P(I - WATA) < 1 \Longleftrightarrow 0 < w < 2/\lambda_{max}$

Sean 1, 1 h todos los autovalores de ATA.

Por lo visto antes, 1- $w\lambda_1 \cdots 1-w\lambda_n$ son todos los autovalores de $R = I - wA^TA$.

$$P(R) = P(I-wA^TA) = \max \{|\lambda|: \lambda \text{ autovalor de } I-wA^TA^T\}$$

= $\max \{|1-w\lambda_i|: 1 \le i \le n, \lambda_i \text{ autovalor de } A^TA^T\}$

$$\langle = \rangle$$
 -1 < 1- $\omega \lambda_i$ < 1 $\forall i = 1...n$

$$\Leftrightarrow$$
 $-2 < -\omega \lambda_{i} < 0 \forall i = 1...n$

$$\langle = \rangle$$
 $2/\lambda_{ij} \rangle \omega \rangle 0 \qquad \forall i = 1...n$

rango (A) = $n \Rightarrow \lambda_i \neq 0 \quad \forall i=1... n$ (demo por absurdo)

Por	hi	pót	esis	>	λMo	X	es	el	Μαγ	10r	au-	tova	lor	de	. A	^T A .		
λma	ዶ _X	>	λ_{λ}	,	Υi	=1	n		<= >	2	2/入 ₁	max	≪	2/λ	į.	٧i:	=1n	
Lue	З 0 :																	
P(R`) <		<=>															
			<=> <=>								, :	λ= 1	ท '	ζ =	2/	λM	ax	
•••	P(-	I- U	4 ⁻ AU	() <	1	<=>	0	< w	<	2/2	\max	,						