COL352 Lecture 1

Contents

1	Logistics	1
	1.1 Lectures	
	1.2 Grading	1
2	The Halting Problem	1
	2.1 Statement	1
	2.2 Answer	1
	2.3 Proof	1

1 Logistics

1.1 Lectures

- 1. Timings Monday 11AM, Wednesday 11AM, Thursday 12PM
- 2. Mode synchronous, MS Teams

1.2 Grading

Class participation	5%
Quizzes (best 3 of 4-5)	30%
HW (best 25 out of $30+$)	25%
Major exam	40%

2 The Halting Problem

2.1 Statement

Does there exist a program H that always halts, and given inputs a program P and an input i, determine whether P terminates/halts on i?

2.2 Answer

No, there does not exist such a program.

2.3 Proof

Suppose there does exist such a program H.

Consider the following program C:

```
1: function C(P)

2: if H(P,P) then

3: run an infinite loop

4: else

5: return

6: end if

7: end function
```

Now consider what happens when we call C on the input C.

Suppose C(C) doesn't halt. Then this means that H(C,C) is false (by the definition of H). Hence, by line 2, C(C) must run forever, and this gives a contradiction.

Hence C(C) must halt. But in that case, we have H(C,C) to be true, and by line 2, we have a contradiction yet again.

Hence our assumption that such a program H exists is false, and we have proved the claim. \blacksquare .