159) Для проверки устойчивости напряжения в эл. сети было проведено 100 его наблюдений с

интервалом 0,5 часа. Результаты измерений (В) приведены ниже.

227	222	216	219	218	220	219	221	234	216	216	222	224	212	217
220	215	230	232	223	222	218	215	218	224	208	228	225	230	213
219	227	220	226	221	225	226	220	217	231	230	220	210	227	215
224	209	212	211	217	231	227	227	224	235	216	218	225	231	219
208	217	214	223	220	225	216	220	216	208	217	214	220	223	225
229	219	217	218	225	230	217	232	210	225	208	217	215	219	228
218	226	225	215	224	212	231	227	222	221					

- 1. Построить эмпирическую функцию распределения и гистограмму.
- 2. Вычислить оценки m_x и D_x .
- 3. Выбрав критерий согласия проверить согласованность опытных данных с равномерным законом распределения.

1) Сначала сгруппируем данные.

Минимальный элемент выборки равен 208, макимальны 235.

Таким образом, размах выборки равен $\Delta = 235 - 208 = 27$.

Разобъём интервал от 208 до 235 на 9 частей и подсчитаем число

элементов выборки, попавших на каждый из интервалов.

Интервал	208-211	211-214	214-217	217-220	220-223	223-226	226-229	229-232	232-235
Частота	7	5	13	20	15	16	11	9	4

По этим данным можно построить гистограмму частот. Высота столбца гистограммы определяет-

ся по формуле
$$h_{\text{\tiny \it Pucm}} = \frac{n_{i}}{n \cdot h}$$
 , где h=3 — ширина интервала.

Для построения эмпирической функции распределения вычислим накопленные частоты.

дыя построения ожинари теской функции распределения вы постим наконяющего настолья									
Интервал	208-	211-	214-	217-	220-	223-	226-	229-	232-
_	211	214	217	220	223	226	229	232	235
Накопленная	7	12	25	45	60	76	87	96	100
частота									

При построении, эти значения длятся на объём выборки n=100.

2) Оценки математического ожидания и дисперсии Выборочная средняя

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{100} (227 + 222 + ... + 221) = 220,8$$

Несмещённая оценка дисперсии

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{99} ((227 - 220,8)^{2} + (222 - 220,8)^{2} + \dots + (221 - 220,8)^{2}) =$$

$$= 41 \ 2121$$

3) Проверим гипотезу о равномерном распределении по критерию согласия Пирсона. Для этого, вычислим наблюдаемое значение статистики Пирсона.

$$\chi^{2}_{_{\mathit{Ha}\mathit{Gn}}} = \sum_{i=1}^{9} \frac{\left(n_{i} - n_{i}^{\mathit{meop}}\right)^{2}}{n_{i}^{\mathit{meop}}}$$

 $n_{i}^{\text{meop}} = nh \cdot \frac{1}{b-a} = 11,11 \; (в качестве оценок a u b выбрали грацины выборки)$

Вычисления сведём в таблицу.

i	n_{i}	n_i^{meop}	$(n_i - n_i^*)^2/n_i^*$
1	7	11,11	1.5211
2	5	11,11	3.3611
3	13	11,11	0.3211
4	20	11,11	7.1111
5	15	11,11	1.3611
6	16	11,11	2.1511
7	11	11,11	0.0011
8	9	11,11	0.4011
9	4	11,11	4.5511
Итого	100		20.7800

Таким образом, наблюдаемое значение статистики Пирсона $\chi^2_{_{\text{набл}}}=20.78$. Эта статистика имеет распределение χ^2 с k=9-2-1=6 степенями свободы. Задавшись уровнем значимости $\alpha=0.05$, по таблице критических точек распределения χ^2 находим $\chi^2_{_{\kappa p}}=14.45$.

Так как $\chi^2_{_{\text{набл}}} > \chi^2_{_{\kappa p}}$, то гипотеза о равномерном распределении выборки отвергается.