

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 0 570 683 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3:
29.04.1998 Bulletin 1998/18

(51) Int. Cl.⁶: H04L 29/06, G06F 17/30

(43) Date of publication A2:
24.11.1993 Bulletin 1993/47

(21) Application number: 93104656.9

(22) Date of filing: 22.03.1993

(84) Designated Contracting States:
DE FR GB

(30) Priority: 17.04.1992 US 870026

(71) Applicant:
International Business Machines
Corporation
Armonk, N.Y. 10504 (US)

(72) Inventors:
• Jones, Donald Newland
Endwell New York 13760 (US)
• Kalika, Robert Alois, Jr.
Endicott, New York 13760 (US)

(74) Representative:
Schäfer, Wolfgang, Dipl.-Ing.
IBM Deutschland
Informationssysteme GmbH
Patentwesen und Urheberrecht
70548 Stuttgart (DE)

(54) Network server for local and remote resources

(57) A network server (14) permits clients (11) on the network to access one or more local resources managed by the network server and one or more remote resources managed by one or more respective remote computers coupled to the network server. When a client desires to access any of the resources, the client first requests a session or log-on to the network server by supplying a valid account name and password. Either with the session establishment request or subsequently during the same session, the client requests a connection or access to a resource. The client need not know the location of the resource or the computer (remote or network server) which manages the resource. The network server determines which computer manages the requested resource. If the network server manages the resource, then the network server determines if the connection is available or provides the access as requested and responds to the client. Then, if the client subsequently requests a connection with or access to a resource managed by a remote computer, or if the original request was for a resource managed by the remote computer, the network server sends a session establishment request and connect or access request to the remote computer. The client need not send a separate session establishment request for the remote computer. If the remote computer grants the session, then the client can access the resource managed by the remote computer.

EP 0 570 683 A3

European Patent
Office

EUROPEAN SEARCH REPORT

Application Number
EP 93 10 4656

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.)
A	MARSHALL A D ET AL: "ON THE FEASIBILITY OF ISO FTAM-BASED FILE SERVERS TO IMPLEMENT A HETEROGENEOUS FILE SYSTEM" COMPUTER STANDARDS AND INTERFACES, vol. 14, no. 3, 1 January 1992, pages 191-208, XP000267365 * the whole document * ---	1-3,5-18	H04L29/06 G06F17/30
A	EP 0 384 339 A (DIGITAL EQUIPMENT CORP) 29 August 1990 * abstract; figures 1-3 * * column 2, line 49 - column 5, line 3 * * claims 1-4 * ---	1-3,5-18	
A	EP 0 375 664 A (DIGITAL EQUIPMENT CORP) 27 June 1990 * abstract; figures 1,2B * * column 3, line 45 - column 6, line 45 * ---	1-3,5, 7-11, 13-16,18	
A	WO 91 02305 A (IBM) * the whole document * ---	1,5-7,9, 11-14, 16-18	TECHNICAL FIELDS SEARCHED (Int.Cl.) G06F H04L
A	"EXTENDABLE CONTROL BLOCK STRUCTURE INTERFACE BETWEEN SQL DATABASE SERVERS AND THEIR CLIENTS" IBM TECHNICAL DISCLOSURE BULLETIN, vol. 34, no. 10B, 1 March 1992, pages 430-432, XP000302798 * the whole document * ---	1,2,5,7, 9-11, 14-16	
<p>The present search report has been drawn up for all claims</p>			
Place of search	Date of completion of the search	Examiner	
THE HAGUE	18 February 1998	Cichra, M	
CATEGORY OF CITED DOCUMENTS		T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document	
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			

Description

[0001] The invention relates generally to computer networks, and deals more particularly with a network server that permits a network client to access a local resource coupled directly to the network server and a remote resource coupled to a host computer.

[0002] A previously known local area network (LAN) is used to interconnect multiple personal computers or work stations, called "clients", and a network server. The network server comprises a personal computer and a program which provides a variety of services to the clients. For example, the server manages a local disk (DASD) and permits selected (or all) clients on the LAN to access the disk. Also, the server may provide access by LAN clients to a local printer that the server manages. To access the local disk, the client must first establish a session or "log-on" to the server with a valid account and password and request a connection to the local disk. In response, the server validates the account and password, and grants the connection if available. Then, the client requests a remote file operation (e.g. open, read, write, close) and furnishes associated parameters. In response, the server may copy (depending on the operation) the file from the local disk into RAM, and performs the operation requested by the client. If the file is updated, the server will copy the updated version back to the local disk, overwriting the previous version.

[0003] A previously known IBM LANRES/VM computer system comprises a LAN, a network server and a remote disk driver (with a remote disk) coupled to the network server. The remote disk driver is in the form of a System/370 host computer; however, the System/370 computer is not used as a computer for service to the network server, but merely as a disk driver for the remote disk. The network server maintains a list of all resources that the network server can access, i.e. the local disk, the remote disk, all directories on the local disk and all directories on the remote disk, and a table or pointers to map each directory and file within the directory to the storage location on the corresponding disk. The clients do not know where the requested resource resides. To access any of the resources, a client on the LAN must establish a session with or log-on to the network server with a valid account and password, request a connection to a named resource and provide a remote file operation/command and associated parameters. In response, the network server validates the account and password, determines the location of the named resource and then translates the directory name into specific addresses on the disk. If the file is located on the local disk, then the network server fetches the directory from the addresses and then performs the operation requested by the client. (The client may subsequently request access to a file within the directory.) If the file is located on the remote disk, then the server provides to the remote disk driver the specific addresses of the directory on the remote disk to be written to or read from

and the write or read command. It should be noted that the network server cannot address the remote disk by a directory (or file) name, and the disk driver does not provide the security associated with a log-on requirement.

5 5 [0004] Also, because the data cannot be accessed by a directory (or file) name or as any discernible entity, it is not possible for another application program which executes on the System/370 computer to access the directory or file; this other application program does not
10 know the location of the directory or file. Nevertheless, there is an important advantage to this LANRES/VM computer system. As noted above, the client need not know the actual location of the disk; the disk can be local to the network server or connected to the remote disk driver. In this respect, the server is "transparent" to the client.

[0004] In ,Marshall, A.D.,et al.: 'On the Feasibility Of ISO FTAM-Based File Servers To Implement A Heterogenous File System', Computer Standards And Interfaces, vol. 14,no.3, 1 Jan 1992, pages 191-208', a logical network model is described which has in each node a directory server responsible for providing directory services', i.e. for locating a remote ressource, as e.g., a searched file.

25 25 [0005] This yields to repeated requests to a plurality of node directory servers, if the requested file is not found at the first node requested. This is not an efficient way to search a particular file as, statistically, a number of remote hosts are requested which cannot contribute to locate the searched file or network resource.

[0006] In WO 91/02305 a method to access remote applications - not in the sense of ressources in general sense as e.g., files in the present application - is described in which user identification or authentication 30 30 does not play any relevant role when accessing said remote applications.

[0007] Further, there is not provided any means for providing increased efficency of several subsequent accesses to remote ressources, as e.g., files, because 40 40 there is no need to authenticate the user and thus to hold such user information or session information in a central form on a network server.

[0008] A general object of the present invention is to provide a network server which permits a client on a network to access more efficiently a local resource managed by the network server and a remote resource managed by a host computer, which host computer provides host computer services relating to the remote resource.

45 50 [0009] Another object of the present invention is to provide a network server of the foregoing type which permits a client to access both a local resource and a remote resource without knowing the location of either.

[0010] Still another object of the present invention is to provide a network server of the foregoing type which permits an application program executing on the host computer to access the same directories and files on the remote resource that the clients can access.

[0011] A more specific object of the present invention

is to provide a network server of the foregoing type in which the host computer provides security for the remote resource.

[0012] Another specific object of the present invention is to provide a network server of the foregoing type which permits a client to access remote resources managed by different host computers, and to do so efficiently.

[0013] These and other objects are solved advantageously by the invention as claimed.

[0014] The invention resides in a network server that permits clients on the network to access one or more local resources managed by the network server and one or more remote resources managed by one or more respective remote computers coupled to the network server.

[0015] When a client desires to access any of the resources, the client first requests a session or log-on to the network server by supplying an account name and/or password. If the account name and/or password are valid, the network server establishes a session with the client. Either with the session establishment request or subsequently during the same session, the client requests a connection or access to a resource. The client need not know the location of the resource or the computer (remote or network server) which manages the resource, and does not specify the location in the request. The network server determines which computer manages the requested resource. If the network server manages the resource, then the network server determines if the connection is available or provides the access as requested and responds to the client. Then, if the client subsequently requests a connection with or access to a resource managed by a remote computer, or if the original request was for a resource managed by the remote computer, the network server sends a session establishment request and connect or access request to the remote computer. The client need not send a separate session establishment request for the remote computer. The remote computer then accepts or rejects the session establishment request based on security information stored in the remote computer for this client. If the session with the remote computer is established, then the client can access the resource managed by the remote computer. For efficiency, the other remote computers are not informed of the session or otherwise interrupted.

[0016] According to one feature of the present invention, an application program executing on the host computer can also access the same remote resource managed by the host computer that the clients can access.

[0017] The invention will be described in more detail by the following description in connection with embodiments shown in the drawing in which:

Fig. 1 is a block diagram of a network server according to the present invention, a local DASD, a network of clients which can access the local DASD

via the network server, and remote computers coupled to the network server. Fig. 1 also illustrates remote DASDs which are managed by the remote computers and which the clients can access via the network server.

Figs. 2(a) and 2(b) are flow charts illustrating general operation of a back end service program within the network server of Fig. 1.

Figs. 3(a-d) form a flow chart illustrating examples of operation of the network server and host computers of Fig. 1 in response to specific requests by the clients.

Figs. 4(a) and 4(b) form a flow chart illustrating other examples of operation of the network server and host computers of Fig. 1 in response to other specific requests by the clients.

Figs. 5(a) and 5(b) form a flow chart illustrating still other examples of operation of the network server and host computers of Fig. 1 in response to still other specific requests by the clients.

Fig. 6 is a block diagram illustrating a PCA adapter card within the network server of Fig. 1.

Detailed Description of Embodiments

[0018] Referring now to the drawings in detail wherein like reference numerals indicate like elements throughout the several views, Fig. 1 illustrates a computer network generally designated 10 which includes many previously known clients 11a-z coupled together by a previously known communication link 12 to form a LAN 13, and a network server 14 according to the present invention. By way of example, each of the clients comprises a personal computer or a workstation which executes a DOS Lan Requestor, OS/2 LAN Requestor, PC LAN Program or LANMAN For DOS client program, and a Token-Ring or Ethernet adapter card to interface the personal computer or workstation to the other clients and the network server via the communication link. The network server 14 comprises a previously known personal computer such as an IBM PS/2 personal computer with a processor 18 (although the network server could also execute in a multiprocessor environment), an OS/2 operating system 20, a DASD controller 22 for local DASD 24, and a Token-Ring or Ethernet adapter card. For further details of the PS/2 computer, reference can be made to the following document which is available from International Business Machines Corp. in Mechanicsburg, Pennsylvania: "IBM PS/2 Reference Guide", G360-2669. The network server 14 also comprises a previously known parallel channel adapter (PCA) card 28 to permit the network server to communicate with a host computer 30 via an associated channel 32, and

with a host computer 34 via an associated channel 36. By way of example, each of the host computers comprises a previously known IBM System/370 or System/390 computer and each of the channels comprises an IBM Block Multiplexor channel. The host computers 30 and 34 provide basic computer functions such as security and management of respective DASDs 40 and 44. For further details of the host computers 30 and 34 and channels 32 and 36, reference can be made to the following documents which are available from International Business Machines Corp. in Mechanicsburg, Pennsylvania: "System/370 Principles of Operation" publication number GA22-7000, and "ESA/390 Principles of Operation" publication number SA22-7201.

[0019] Figs. 2(a) and (b) illustrate operation of network server 14 according to the present invention to permit any of the clients 11a-z to access the local DASD 24, remote DASD 40 and remote DASD 44. When a client 11a-z is initiated or subsequently when the client desires to access a directory or file on local DASD 24, remote DASD 40 or remote DASD 42, the client requests a session with or log-on to the network server 14. This request involves registration and authentication of an account name for the client, and requires a valid account name, password and other parameters as follows:

Client Maximum Buffer Size

Actual Maximum Multiplexed Pending Requests

Virtual Circuit Number - when a client establishes a communications link with a network server, that link is given a number to identify it uniquely. This is that number.

Session Key

Account Password Length Account Password

Account Name

Consumer Maximum Buffer Size

[0020] At the time of making the session establishment request or subsequently, the client may request a connection to a resource such as a directory by name. However, the client could have requested a connection to other types of resources, for example, an entire data repository such as one of the DASDs, a part of a data repository such as a minidisk, a printer (not shown), or another data entity such as a file. The connect request is a request to determine if the resource is available and if the requestor is authorized to access the resource. The client need not know the location of the resource or which computer 14, 30 or 34 manages the resource. The connect request usually precedes another command to actually read from or write to the resource. By way of example, all requests from the clients use a server message block (SMB) or Network File System (NFS) Remote Procedure Call (RPC) protocol, which are further defined in documents entitled "Microsoft Networks/OpenNET File Sharing Protocol", Intel Part Number 138446 Version 1.9, 04/21/87, Microsoft Corporation, Intel Corporation; "Microsoft Networks SMB FILE SHARING PROTOCOL EXTENSIONS: SMB File Sharing Protocol Extensions Version 2.0", Document Version 3.2, 07/13/88, Microsoft Corporation; and "Microsoft

Networks SMB FILE SHARING PROTOCOL EXTENSIONS: SMB File Sharing Protocol Extensions Version 3.0", Document Version 1.09, 11/29/89, Microsoft Corporation for SMB Protocol, and Internet RFC 1057, Sun Microsystems, Inc., June 1988 for NFS Protocol.

[0021] A network interface 52 within network server 14 receives the request(s), associates the request with the appropriate client and session, determines the correct process to receive the request, and then passes the request(s) to a front end service program 53. The front end service program passes this request(s) (and all client requests), without change, to a back end service program 60. (The front end service program and back end service program are both executed by processor 18 after being loaded or read from a magnetic disk or tape into RAM 103). When the back end service program receives the request (step 104), the back end service program determines if the request includes a session establishment request (decision block 106). If so, the back end service stores in a session establishment data table 54 the foregoing information from the client request and the following information which the front end service and the back end service generate (step 110):

25 (Front end Service Generated)

[0022] Session Structure Pointer - when a client session establishment requests is received by a network server, 30 the network server associates this request with a control block of information about that client. This field is the address of that control block. Once the session is established, the network server sets a bit to indicate that this session is active.

35 Session Encryption Key Length

Session Encryption Key

Remote Client Name Length - the length of the remote client name.

Remote Client Name - this is the address of a block of 40 storage that contains the machine name of the client that has/is attempting to establish a session with this network server. This address comes from the session structure.

45 (Back End Service Generated)

[0023] Account Name Length

Session Next Pointer - next instance of this structure based on session structure pointer - linked list.

50 Session Previous Pointer

Structure Next Pointer - next instance of this structure for any session - linked list.

Structure Previous Pointer

Structure Flags

55 [0024] This information forms a client control block.

[0025] Next, the back end service determines if the request includes a connect request, and if so, is the resource for which connection is requested stored within

a remote DASD (or other external device) managed by either host computer 30 or 34 (decision block 112). The latter determination is made by reading a resource table 56 to identify the location of the DASD or other external device that stores the file. If there is no such request to connect to resource managed by either remote DASD 40 or 44, then the back end service returns the client request to the front end service for processing. The front end service then determines if the account and password are valid by comparing them to lists of valid accounts and passwords, respectively. If the account and password are valid, the front end service establishes a session with the client by setting a flag in the session structure pointer field in the control blocks. Then the front end service notes the existence of the session in an active session table 57 and returns a session establishment acknowledgement to the client via the network interface and to the back end service (step 116). If the request also includes a connect request for a resource managed by the network server such as a directory stored in local DASD 24, then the front end service also checks the status of the connection, and reports the outcome to the client. If the password is not valid, or if the session cannot be established for some other reason (such as a limit on the number of sessions allocated to each resource), then the front end service returns a session refusal message to the client (step 116).

[0026] Referring again to decision block 112, if the client request includes a request to connect to a resource managed by remote computer 30 or remote computer 34 such as remote DASD 40 or remote DASD 44, respectively, then the back end service passes the session establishment request to the front end service (step 120), and waits for a return acknowledging session establishment with the network server (step 122). The front end service then determines if the session can be established (i.e. valid account and password, no other problems), and sends the response to the back end service. If the session is not successfully established (decision block 123), then the back end service sends an error message to the client via the front end service, refusing the session (step 124). However, if the session is successfully established, then the back end service sends the entire client request including the session establishment request and the connect request to the one host computer which manages the resource for which connection is requested (step 130), and waits for a response (step 132). It should be noted that the form of the session establishment request and connect request sent to the host computer by the network server in step 130 can be the same as that sent to the network server by the client. However, it may be necessary to provide a mapping between user/client ID, resource connection ID and file ID between that provided by the network server and that required by the remote computer. When the response is received from the host computer indicating whether the session was established and the connection is available, the back end service stores an identifier

for this host computer in the client control block (step 133), and passes the response to the front end service (step 134), then the front end service passes the response to the client via the network interface 52. The form of the session establishment response originating from the host computer and sent to the client after step 134 can be the same as that sent to the client after step 116 when there was no connect request to either host computer. If it is not identical, the network server alters the format suitably. Consequently, the client does not know the origin of the session establishment response or connect response, and assumes that the client now has access to any resource available from the network server. To support this assumption, the network server, as described below, will subsequently request session establishment on behalf of the client with any other remote computer connected to the network server when and if the client requests access to a resource managed by this other remote computer. The client need not request session establishment again during the course of the session that was just established after steps 120 and 130. This makes the network server transparent to the clients, yet there is no burden ever (for session establishment) on any host computer that does not manage a resource for which the client requests a connection. [0027] Subsequently, the client sends a request to the network server to access a named resource (assume the one for which a connect request was previously sent). The client need not know the location of the resource or computer which manages the resource, and does not specify the location in the request. The front end service receives the request via the network interface, and passes the request to the back end service (step 104). Because this request is a resource access request and not a session establishment request (decision block 106), the back end service next determines if the named resource is managed by either remote computer 30 or 34 (decision block 140). This determination is made by reading the resource table 56. If the named resource is instead managed by network server 14 (for example, stored on local DASD 24), then the back end service passes the request to the front end service for processing (step 116). For a read request, the front end service reads the directory from local DASD 24 into data buffer 69, and then sends the directory to the client for storage in the client's RAM. For a write request, the front end service writes the data supplied with the write command into data buffer 60 and then into the directory within local DASD 24. Other types of requests are handled in an appropriate manner. [0028] Referring again to decision block 140, if the named resource is managed by either remote computer 30 or 34 (for example, stored on either remote DASD 40 or remote DASD 44), the back end service determines that a session was previously established and is currently active for this client with the host computer that manages the requested resource (decision block 142). This determination is made by reading the active ses-

sion table 57. Then, the back end service sends the resource access request to the host computer (step 130) and then waits for a response (step 132). If the resource access request is a read request, then the host computer will read the resource from the remote DASD into host RAM, and send the resource to the data buffer 60, and the back end service will send the data to the client via the front end service (step 134). If the resource access request is a write request, the host computer will write the data into the remote DASD, and respond to the client via the front end service with an acknowledgement in step 134.

[0029] The client can also send a request to connect to another resource which is managed by the (or any) other host computer.

[0030] Referring again to decision block 142, if there is not yet a session established with this other host computer that manages the requested resource, then the back end service determines if session establishment data has been saved for this client by reading the session establishment data table 54 (decision block 148). If not, (which means that there is not an active session with the network server), then the back end service responds to the client via the front end service with an error signal and refuses connection to the host computer (step 124). (The client can now request a session establishment, and the flow chart of Fig. 2 will proceed as described above for steps 104, 106, 110 etc.)

[0031] Referring again to decision block 148, if the session establishment data has been saved for this client (meaning that there is currently an active session with at least the network server), the back end service builds a session establishment request based on the session establishment data stored in the table 54 and sends the request to this other host computer (step 152). It should be noted that in accordance with an object of the present invention, the client itself is not burdened with establishing a session with the host computer or even knowing that a host computer manages the requested resource. It should also be noted that the back end service establishes sessions only with those host computer(s) that manage resources for which connection or access has been requested, and the other host computer(s) are not interrupted. This maximizes efficiency.

[0032] After sending the session establishment request, the back end service waits for a response (step 156) from the host computer. The host computer will then determine if the session should be established based on the account name, password and other information, and respond with a session establishment acknowledgement or refusal to the back end service. If the session with this client has been established (decision block 170), then the back end service will send the resource connection to the host computer (step 130), and then execute steps 132, 133 and 134 as described above. The client can then follow with a resource access request. Referring again to decision block 170, if the

host computer refuses to establish the session, then the back end service will pass the error message and refusal to the client via the front end service (step 124).

[0033] Fig. 2(b) illustrates another portion of the back end service program which handles requests to terminate sessions. The requests can originate from either a client 11a-z or be initiated by administrative action on the network server (or indirectly by administrative action from the remote computer(s)), and includes a session structure pointer parameter.

[0034] The front end service receives this request, passes this request to an entry point in the back end service program corresponding to step 200, and processes the deleted session with the client by ending all work in progress by that client, and performing any needed cleanup. Then, the back end service reads the session establishment data table 54 to determine which of the network server, host computer 30 and host computer 34 have established a session with the requesting client (step 202). If neither of the host computers 30 nor 34 (nor any other host computer) has established a session with the requesting client (decision block 204), then the back end service returns control to the front end service (step 206), which terminates its processing of this request. However, if either of the host computers 30 or 34 has established a session with the requesting client, then the back end service builds a session delete notification (step 208) and sends the notification to all host computers that have established a session with the requesting client (step 210). The session delete notification includes the host identifier parameter that was stored in step 133.

[0035] The notified host computers proceed to delete the session by ending all work associated with the user and performing any needed cleanup, and then return acknowledgements to the back end service which is waiting (step 212). Then, the back end service returns control to the front end service, which terminates its processing of this request.

[0036] Figs. 3(a-d) illustrate operation of the network server 14 (including the back end service described above) and associated host computers 30 and 34 in responding to five specific requests by one client 11a on network 13. In step 310, the client issues a bundled request for session establishment and connection to a resource such as a directory that happens to reside in local DASD 24. The front end service passes the request to the back end service (step 312), the back end service stores the establishment data in step 110 and sends the request to the front end service in step 116. Then the front end service establishes the session, processes the connect request, and notifies the back end service and the client of the session (step 314). Because the resource is not managed by either remote computer 30 or 34, the back end service does not attempt to establish a session with either remote computer 30 or 34.

[0037] In step 320, the client subsequently issues a connect request for a resource such as a directory that

happens to reside on remote DASD 40 which is managed by host computer 30. The front end service passes the request to the back end service (step 322), and the back end service performs steps 152 and 156 described above in which the back end service requests that a session be established with host computer 30 and then waits for the response. This is necessary because the resource resides on remote DASD 40, and the session established in step 314 was confined to the network server. The host computer establishes the session (step 324), and then the back end service performs steps 130 and 132 described above in which the back end service sends the connect request to the host computer and waits for the response. Then, the host computer processes the connect request and responds to the back end service with the result (step 326). Then, the back end service sends the response to the client via the front end service (step 134).

[0038] In step 330, the client subsequently issues a request to connect to a second resource that happens to reside also on remote DASD 40. The front end service passes the request to the back end service (step 332), and the back end service sends the connect request to the host computer 30 (step 130). Because there is already a session established with host computer 30 for client 11a, it is not necessary to establish another session with host computer 30. Then the host computer 30 processes the connect request (step 334), and then the back end service returns the response to the client via the front end service (steps 132 and 134).

[0039] In step 340, the client subsequently issues a request to connect to a resource that happens to reside on the other remote DASD 44 which is managed by host computer 34. The front end service passes the request to the back end service (step 342), and the back end service executes steps 152 and 156 described above in which the back end service requests a session with host computer 34 for client 11a and then waits for a response. Then the host computer 34 establishes the session with the client 11a and responds with an acknowledgement (step 344). Such a session is necessary because the resource resides on remote DASD 44, and the sessions established earlier in steps 313 and 324 did not involve host computer 34. Then, the back end service passes the connect request to the host computer 34 and waits for a response (steps 130 and 132), the host computer 34 processes the request and returns a response (step 346). In step 134, the back end service forwards the response to the client via the front end service. It should be noted that the session with host computer 34 was not established until the client requested a connection to DASD 44; this optimizes efficiency.

[0040] In accordance with one object of the invention, an application program executing on the host computer 30 can access the same remote resource such as a directory on DASD 40 that the client can access. This is illustrated by step 348 in which a user application program 349 executing on host computer 30 (or coupled to

the host computer 30 via a communication facility not shown) makes a request to the host processor to link the application program to a minidisk portion of DASD 40. This linkage provides the application program with access by resource name to all the resources on the minidisk including the directory that was accessed by the client. Thus, the application program can now read from or write to the directory and any file therein stored on the minidisk by open, read, write or delete, close and other commands.

[0041] In step 350, the client subsequently issues a request to terminate the session. It should be noted that the client need not know that sessions were established also with host computers 30 and 34. The front end service passes the request to the back end service (step 352), and the back end service executes steps 200-206 described above in which the back end service determines which host computers have an active session with this client, builds a session termination notification and sends it to each host computer which has an active session for this client. In this example, host computers 30 and 34 currently have an active session with this client. Then, the host computers 30 and 34 terminate their sessions with this client 11a (steps 354 and 356).

[0042] Figs. 4(a) and (b) illustrate operation of the network server 14 (including the back end service described above) and associated host computer 30 in responding to three other specific requests by one client 11a on network 12. In step 410, client 11b, issues a bundled request for session establishment and a connection to a resource that happens to reside on DASD 40 which is managed by host computer 30. The front end service passes the request to the back end service (step 412), and the back end service saves the session establishment data and returns control to the front end service (steps 110 and 120). Then the front end service establishes the session, transfers control to the back end service and notifies the back end service that the session has been established (step 414). Next, the back end service executes steps 122 and 130 described above in which the back end service requests a session with host computer 30 for client 11b, and then host computer 30 establishes the session with client 11b, processes the connect request, and returns the result of the connect request processing to the back end service (step 416). Then, the back end service returns the result to the client via the front end service (step 134).

[0043] In step 420, the client 11b issues a connect request within the same session that was established in step 414 for a resource that happens to reside within local DASD 24. The front end service passes the requests to the back end service (step 422), and the back end service returns the request to the front end service because the request involves only local DASD 24 (step 116 described above). Then, the front end service processes the connect request (step 424). It is not necessary to establish any other sessions in view of the existing session with network server 14 for client 11b.

[0044] In step 430, the client 11b issues a request to terminate the session that was established in step 414, and the front end service passes the request to the back end service (step 432). Then, the back end service determines that a session currently exists for this client with host computer 30, builds a session termination notification based on the client request, and sends the notification to host computer 30 (steps 202, 208 and 210). It is not necessary to send the notification to host computer 34 because no session was previously established for client 11b on account of the requests made in Fig. 4 (a) and (b). In step 434, the host computer 30 terminates the session with client 11b.

[0045] Figs. 5(a) and (b) illustrate operation of the network server 14 (including the back end service described above) and associated host computers 30 and 34 in responding to three other specific requests by one client 11c on network 12. In step 510, client 11c issues a session establishment request to network server. The front end service passes the request to the back end service (step 512), and the back end service saves the session establishment data and returns the request to the front end service (steps 110 and 116). Because there is no request to connect to a resource on either remote DASD (or any resource), it is not necessary for the back end service to pass any request to either host computer 30 or 34. In step 514, the front end service establishes the session with client 11c, notifies the back end service of the session establishment, and returns a session establishment notification to the client 11c.

[0046] In step 520, the client 11c sends a connect request to the network server for a resource that happens to reside on DASD 44 which is managed by host computer 34. The front end service passes the request to the back end service (step 524), and the back end service builds a session establishment request based on the data stored in the session establishment data table, and sends the request to host computer 34 (steps 152 and 156). In step 524, host computer 34 establishes the session with client 11c and returns an acknowledgement to the session establishment request. Because the connect request does not involve host computer 30, the client requests are not sent to host computer 30 and host computer 30 is not interrupted in any way. After receiving the response from the host computer 34, the back end service passes the connect request to host computer 34 and waits for a response (steps 130 and 132). The host computer 34 processes the connect request and returns a response (step 524). The back end service forwards the response to the client via the front end service (step 134).

[0047] In step 530, the client 11c issues a request to the network server to terminate the session. The front end service passes the request to the back end service (step 532), and the back end service determines that host computer 30 has established a session with the client 11c, builds a session termination notification and sends it to the host computer 34. Because the host com-

puter 30 was never involved with the client request of Fig. 5, the back end service does not send the session termination notification to host computer 30. In step 534, the host computer 34 terminates the session with client

5 11c.

[0048] The following is a detailed description of the channels 32 and 36, and the PCA card 28, although the present invention does not depend on the specific type of communication facilities which are utilized.

10 [0049] Each of the host computers 630 and 634 includes a host processor 670 and 674, a main memory 680 and 684, a "Blue" bus 690 and 694 servicing the host processor, the main memory, the Block Multiplexor channel 632 and 636, and DASD controllers 697 and 699 respectfully. DASD controllers 697 and 699 control the reading from and writing to the remote DASD 640 and 644 respectively, and are well known in the art.

15 [0050] Each channel includes a host port, a buffer memory to temporarily store all data transferred between the Blue bus and the host port, and a channel processor to control the data transfer from the main memory to the host port via the buffer memory. The channel relieves the host processor of the burden of transferring data between the main memory of the host

20 computer and the host port, and once called by the host processor, is independent of the host processor.

25 [0051] To initiate a data transfer from the main memory to the host port, the host processor (under the direction of a host control program) builds a channel program including a sequence of channel command words (CCWs), and stores a channel address word at a pre-determined location. The channel address word points to the first CCW in the channel program. Each CCW includes a command such as read or write, a byte length indicating the length of data to be read or written, and a pointer to the first location in main memory to store the data to be read in the case of a read CCW, or the first location of the data to be written in the case of a write CCW. The, the host processor issues a Start I/O command which addresses the target device, in this case, the channel.

30 [0052] The channel processor receives the Start I/O command and fetches the first CCW. Pursuant to a single write CCW, the channel processor fetches a block of data from (host) main memory at a location indicated by the pointer and copies the data into the channel buffer memory. Next, the channel processor dispatches another task which executes on the channel processor to begin the transfer to the PCA card of the block of data that was recently copied into the channel buffer memory. Then, the channel processor processes subsequent write CCWs, if any, by fetching the corresponding blocks of data from the main memory and copying the data into the channel buffer memory.

35 [0053] The channel is connected to the PCA card 628 by an IBM Bus and Tag cable. The Bus and Tag cable includes many parallel coaxial conductors to transmit data, address and control signals in parallel.

[0054] As illustrated in Fig. 6, the PCA card includes an Intel 80C186 microprocessor ("PCA processor") 642 and a shared RAM 44. The PCA processor 42 as well as the PS/2 processor 618 and channel state machine 48 (within the PCA card) can all directly access shared RAM 44 (with permission by arbiter 50). Shared RAM 44 includes a communication area for communication between the PS/2 processor 618 executing PCA driver code 630 and the PCA processor 642, and the transmit and receive data buffers to temporarily store all data transferred between a Micro Channel (R) bus associated with the PS/2 processor and the channel. A multiplexer 47 is located between shared RAM 44 and the Micro Channel (R) bus control logic 45 provides hand-shaking for the Micro Channel (R) bus and address latching for addresses supplied to the Micro Channel (R) bus. Channel state machine 48 provides channel protocol and control sequences for communication with the channel. Arbiter 50 arbitrates access to shared RAM 44 between the Micro channel (R) bus, the channel state machine 48, and the PCA processor 42. A program RAM 56 stores PCA processor microcode, and channel status and device information, and forms a command FIFO and a status FIFO described below.

[0055] Channel interface logic or remote port 57 includes drivers and receivers for interfacing to channel bus and tag lines. Micro Channel (R) interface logic 41 includes the multiplexer 47 and latches for interfacing to address and data lines on the Micro Channel (R) bus.

[0056] The following procedure is used to transfer data from the data buffer 669 of the PS/2 processor to the RAM 680 or 684 of the host processor with initiation from the PS/2 processor. First, the PS/2 processor obtains access to RAM 44 with permission from arbiter 50 in order to read a list in RAM 44 of available transmit data buffers. Neither the System/370 processor nor the channel participates in the decision where to store the data in RAM 44. Then, the PS/2 processor writes the data into an available data buffer in RAM 44. Next, the PS/2 processor sends a write command message with device address, buffer address and transfer size to the PCA processor 42 via the communication area in the shared RAM. The PCA processor processes the write command by setting up control parameters, i.e. attention status, buffer address, and transfer size in the program RAM table. The PCA processor then writes the device address corresponding to the channel into the command FIFO. The channel state machine 48 reads out the device address from the command FIFO and sends the attention status to the channel. The channel then interrogates the write command pending on the PCA card. Because of the channel protocol, the PCA will not send the data until a matching (read) command is received from the channel.

[0057] The channel subsequently responds to the write command from the PS/2 processor with a read command. The channel state machine matches the channel read command with the PS/2 write command

and notifies the channel state machine of the match. Then, the channel state machine sets up the data buffer addresses and length count and controls the data transfer from the RAM 44 to the channel. Upon completion of the data transfer to the channel, the channel state machine writes an entry in the status FIFO to notify the PCA processor that the write operation has been completed.

[0058] The following procedure is used to transfer data from the data buffer 669 of the PS/2 processor to the RAM 680 or 684 of the host processor with initiation by the host processor. The host processor builds a channel program which includes a read CCW, and issues the Start I/O command to the channel. The channel fetches

the read CCW, and sends a read command to the PCA card. Assuming that data is not waiting in the PCA buffer for transmission to the channel, the channel state machines 48 will return "command retry status" to notify the host processor that the data is not immediately available. After returning the command retry status, the channel state machine 48 writes an entry in the status FIFO to notify the PCA processor of the read command received from the channel. In response, the PCA processor notifies the PS/2 processor about the read command. When the PS/2 processor has data to send to the host processor, the PS/2 identifies an available buffer in RAM 44, and writes the data into the available buffer. Then, the PS/2 processor writes a message into the shared communication area of RAM 44 to notify the PCA processor of the existence and location of the data. In response, the PCA processor makes an entry into the command FIFO to notify the channel state machine of the write command from the PS/2 processor and the target device address. The channel state machine sends a "data ready" status signal to the channel, and the channel responds with the read command again. Finally, the channel state machine 48 controls the data transfer from the transmit buffer in RAM 44 to the channel buffer.

[0059] The following procedure is used to transfer data from the RAM 680 or 684 of the channel to the data buffer 669 of the PS/2 processor with initiation from the host processor. The host processor builds a channel program which includes a write CCW, and issues the

Start I/O to the channel. The channel fetches the write CCW and corresponding data from the main memory, and stores the data in the channel data buffer. Then, the channel sends to the PCA card a corresponding write command. The channel state machine 48 obtains a data buffer from the shared RAM 44 by reading the list of available data buffers. (In the PCA system, it is not necessary to interrupt the PS/2 processor at this time.) Neither the System/370 processor nor the channel participates in the decision where to store the data in RAM 44. Then the channel state machine 48 controls the data transfer from the channel to the shared "RAM with the channel responding to control sequences established by the state machine 48. Upon completion, the channel

state machine writes an entry into the status FIFO to notify the PCA processor about the receipt of the data from the channel and the location and length of the data in the receive buffer in RAM 44. The PCA processor reads out the entry from the status FIFO and then notifies the PS/2 processor via the communication area in the shared RAM. The PS/2 processor finally moves the data from the shared RAM into the PS/2 system RAM.

[0060] The PS/2 processor can also initiate transfer of data from RAM 680 or 684 of the host processor to the data buffer 669 of the PS/2 processor. First, the PS/2 processor obtains access to RAM 44 (with permission from arbiter 50) in order to read the list of available receive data buffers. Then, the PS/2 processor sends a read command message with device address, buffer address and transfer size to the PCA processor 42 via the communication area in the shared RAM. The PCA processor processes the read command by setting up control parameters, i.e. attention status, buffer address, and transfer size, in the program RAM table. The PCA processor then writes the device address corresponding to the channel into the command FIFO. The channel state machine 48 reads out the device address from the channel FIFO and sends the attention status to the channel. The channel then interrogates the read command pending on the PCA card. The channel subsequently responds to the read command with a write command. The channel state machine matches the channel write command with the PS/2 read command. Then, the channel state machine sets up the data buffer addresses and length count and control the data transfer from the channel to the RAM 44. Upon completion of the data transfer from the channel, the channel state machine writes an entry in the status FIFO to notify the PCA processor that the read operation has been completed.

[0061] Instead of using the PCA driver 630, PCA card 28 and channels 32 and 36, the following commercially available software and hardware can be used to provide two alternate configurations. An IBM Personal Workstation Communication Services/VM program can execute on the processor 18 to interface processor 18 and data buffer 69 to an IBM Token-Ring Network 16/4 Adapter/A (IBM part number 74F9410) which is located at the network server. The Token-Ring Network 16/4 Adapter/A is coupled to an IBM Integrated LAN adapter (IBM part number 6134 for an ES/9000 type of host computer and part number 6034 for a 9370 type of host computer) which is located at the host computer and interfaces to the host processor.

[0062] Alternately, the IBM VM Personal Workstation Communication Services (PWSCS) program executes on the processor 18 to interface processor 18 and data buffer 69 to an IBM Channel Emulator/A card (IBM part number 1674899) which is located at the network server. An IBM 3088 multisystem channel communication unit interconnects the Channel Emulator/A card to the Block Multiplexor channel of the host computer. Other connectivities are also available with PWSCS program.

[0063] Based on the foregoing, a network server according to the present invention has been disclosed. However, numerous modifications and substitutions can be made without deviating from the scope of the present invention. For example, different type of networks, i.e. different clients and different network communication links, can be served by the network server, and the network server can interface to different types of remote computers. Also, the files can be stored on other types of repositories. Therefore, the invention has been disclosed by way of illustration and not limitation, and reference should be made to the following claims to determine the scope of the present invention.

15
20
25
30
35
40
45
50
55

Claims

1. A method for managing access by clients (11a- 11z) in a network to one or more local resources (24) managed by a network server (14) and one or more remote resources (40,44) managed by one or more respective remote computers (30,34) logically and/or physically coupled to the network server, said method comprising the steps of:

sending (310) from one of said clients to said network server a request to establish a session and a request to connect to or access a first resource (24), wherein said requests are preferably provided by a single request, said session establishment request including an account name and password for said one client;

in response to the session establishment request (123), establishing by said network server a session between said network server and said client, and storing (133) said account name and password;

in response to the request to connect to or access said first resource, determining that said first resource is managed by said network server, and determining if said connection is available to said first resource (24);

subsequently, sending (310) from said one client to said network server a request to connect to or access a second resource (40,44); and

in response to said subsequent request to connect to or access said second resource (40,44), determining (140) by said network server that one of said remote computers (30,34) manages said second resource, sending (152) a request by said network server to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and send-

ing a request by said network server to said one remote computer to connect to or access said second named resource.

2. Method as set forth in claim 1 further comprising the subsequent steps of:

sending (340) from said one client (11a-11z) to said network server (14) a request to connect to or access a third resource;

determining by said network server that another one of said remote computers manages said third resource; and

sending (130) by said network server to said other remote computer a request to establish a session, said session establishment request including said stored account name and password, and a request to connect to or access said third resource.

3. Method as set forth in claim 1 or 2 further comprising the steps of:

validating (324, 344) by said one remote computer said account name and password included in said session establishment request, and

establishing (326, 334, 341) by said one remote computer said session requested by said network server.

4. Method as set forth in claim 3 further comprising the steps of:

sending from said one client (11a-11z) to said network server (14) a request to terminate said session;

determining (202, 204) by said network server that said one remote computer is involved in said session;

sending (352) by said network server to said one remote computer a request to terminate said session requested by said network server; and

terminating (208) by said network server the session between said network server and said one client.

5. Method as set forth in claim 1 or one of the claims 2 to 4, further comprising the steps of:

after said subsequent request, making a request by another application program execut-

ing within said one remote computer to access said second resource (40, 44); and

pursuant to said application program request by said other application program, providing access by said one remote computer (30, 34) to said other application program to said second resource.

10 6. Method as set forth in claim 1 or one of the claims 2 to 5, wherein the subsequent connect or access request sent (140) by said one client to said network server specifies said second resource by name, but does not specify said one remote computer or location of said second resource.

15 7. A method for managing access by clients (11a-11z) in a network to a local resource (24) managed by a network server (14) and one or more remote resources (40, 44) managed by one or more respective remote computers (30, 34) logically and/or physically coupled to the network server, said method comprising the steps of:

20 25 sending (310) from one of said clients to said network server a request to establish a session and a request to connect to or access a first resource (40, 44), wherein said requests are preferably provided by a single request, said session establishment request including an account name and a password for said one client;

30 35 in response to the session establishment request (123), establishing by said network server a session with said network server, and storing (133) said account name and password;

40 45 in response to the connect or access request, determining that one of said remote computers manages (30, 34) said first resource (40, 44), sending (152) a request by said network server to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and sending a request by said network server to said remote computer to connect to or access said first resource;

50 55 subsequently, sending (310) from said one client to said network server a request to connect to or access a second resource; and

in response to said subsequent request, determining (140) that said network server manages said second resource, and determining whether said second resource is available.

8. Method as set forth in claim 7 further comprising the

step of establishing said session with said one remote computer by said one remote computer validating (324) said account name and password, in response to said session establishment request (152) from said network server.

9. A network server (14) for managing access by clients (11a-11z) in a network to one or more local resources (24) managed by the network server and one or more remote resources (40,44) managed by one or more respective remote computers (30,34) logically and/or physically coupled to the network server, said network server comprising:

means (52) for receiving from one of said clients on said network a request to establish a session and a request to connect to or access a first resource, wherein said requests are preferably provided by a single request, the session establishment request including an account name and password for said one client;

means (53,54) responsive to the session establishment request, for establishing a session between said network server and said one client, and storing said account name and password;

means (56), responsive to the request to connect to or access said first resource, for determining that said first resource is managed by said network server, and determining if said connection is available to said first resource; and

means (56,60), responsive to a subsequent request from said one client to connect to or access a second resource, for determining that one of said remote computers manages said second resource, sending a request to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and sending a request to said one remote computer to connect to or access said second resource.

10. Network server as set forth in claim 9 wherein:

the determining means (56) is responsive to another request from said one client to connect to or access a third resource to determine that another one of said remote computers manages said third resource; and

the sending means (60) sends to said other remote computer a request to establish a session, said session establishment request including said stored account name and password, and a request to connect to or access

said third resource.

11. Network server as set forth in claim 9 or 10 further comprising:

means, responsive to a request from said one client to terminate said session, for determining that said one remote computer is involved in said session;

means (60) for sending to said one remote computer a request to terminate said session requested by said network server, and

means for terminating the session between said network server and said one client.

12. Network server as set forth in claim 9, 10 or 11 wherein the subsequent connect or access request sent by said one client to said network server specifies said second resource by name, but does not specify said one remote computer or a location of the resource managed said one remote computer.

13. A network server (14) for managing access by clients (11a-11z) in a network to a local resource (24) managed by the network server and one or more remote resources (40,44) managed by one or more respective remote computers (30, 34) coupled to the network server, said network server comprising:

means (52,53) for receiving from one of said clients on said network a request to establish a session and a request to connect to or access a first resource, the session establishment request including an account name and a password for said one client;

means (54,60), responsive to the session establishment request, for establishing a session with said network server, and storing said account name and password;

means (56), responsive to the connect or access request, for determining that one of said remote computers manages said first resource, sending a request to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and sending a request to said remote computer to connect to or access said first resource; and

means (56), responsive to a subsequent request to connect to or access a second resource, for determining that said network server manages said second resource, and determining whether said second resource is avail-

able.

14. A computer program product for managing access by clients (11a-11z) in a network to one or more local resources (24) managed by the network server (14) and one or more remote resources (40,44) managed by one or more respective remote computers (30,34) logically and/or physically coupled to the network server, said computer program product comprising:

a computer readable medium;

a first program instruction means, recorded on said medium, for instructing a computer processor to receive from one of said client or said network a request to establish a session and a request to connect to or access a first resource, the session establishment request including an account name and password for said one client;

second program instruction means, recorded on said medium, for instructing a computer processor to respond to the session establishment request by establishing a session between said network server and said client, and storing said account name and password;

third program instruction means, recorded on said medium, for instructing a computer processor to respond to the request to connect to or access said first resource, by determining that said first resource is managed by said network server, and determining if said connection is available to said first resource; and

fourth program instruction means, recorded on said medium, for instructing a computer processor to respond to a subsequent request from said one client to connect to or access a second resource, by determining that one of said remote computers manages said second resource, sending a request to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and sending a request to said one remote computer to connect to or access said second resource; and

wherein each of said program instruction means is executable by the associated computer processor.

15. Computer program product as set forth in claim 14 wherein

the third program instruction means is responsive to another request from said one client to

5

10

15

20

25

30

35

40

45

50

55

connect to or access a third resource by instructing a computer processor to determine that another one of said remote computers manages said third resource; and

the fourth program instruction means instructs a computer processor to send to said other remote computer a request to establish a session, said session establishment request including said stored account name and password, and a request to connect to or access said third resource.

16. Computer program product as set forth in claim 14 or 15 further comprising:

fifth program instruction means, recorded on said medium, for instructing a computer processor to respond to a request from said one client to terminate said session, to determine that said one remote computer is involved in said session;

sixth program instruction means, recorded on said medium, for instructing a computer processor to send to said one remote computer a request to terminate said session requested by said network server; and

seventh program instruction means, recorded on said medium, for instructing a computer processor to terminate the session between said network server and said one client; and wherein said fifth, sixth and seventh program instruction means are executable by the associated computer processor.

17. Computer program product as set forth in claim 14, 15 or 16 wherein the subsequent connect or access request sent by said one client specifies said second resource by name, but does not specify said one remote computer or an address of the resource managed said one remote computer.

18. A computer program product for managing access by clients in a network to a local resource managed by the network server and one or more remote resources managed by one or more respective remote computers coupled to the network server, said computer program product comprising:

first program instruction means, recorded on said medium, for instructing a computer processor to receive from one of said clients on said network a request to establish a session and a request to connect to or access a first resource, the session establishment request including an account name and password for said one client;

second program instruction means, recorded on said medium, for instructing a computer processor to respond to the session establishment request by establishing a session with said network server, and storing said account name and password;

third program instruction means, recorded on said medium, for instructing a computer processor to respond to the connect or access request by determining that one of said remote computers manages said first resource, sending a request to said one remote computer to establish a session with said one remote computer, said request including said stored account name and password, and sending a request to said remote computer to connect to or access said first resource; and

fourth program instruction means, recorded on said medium, for instructing a computer processor to respond to a subsequent request to connect to or access a second resource by determining that said network server manages said second resource, and determining whether said second resource is available; and wherein

each of said program instruction means is executable by the associated computer processor.

Patentansprüche

- Ein Verfahren zum Verwalten des Zugriffs durch Clients (11a-11z) in einem Netzwerk auf ein oder mehrere lokale Betriebsmittel (24), die von einem Netzwerk-Server (14) verwaltet werden, und ein oder mehrere Fernbetriebsmittel (40, 44), die von einem oder mehreren entsprechenden Fernrechnern (30, 34) verwaltet werden, logisch und/oder physisch gekoppelt an den Netzwerk-Server, wobei das Verfahren die folgenden Schritte umfaßt:

Senden (310), von einem der Clients an den Netzwerk-Server, einer Anforderung zum Aufbau einer Sitzung, und einer Anforderung zum Verbinden mit, oder Zugreifen auf, ein erstes Betriebsmittel (24), wobei diese Anforderungen vorzugsweise durch eine einzige Anforderung vorgesehen sind, und diese Sitzungsaufbau-Anforderung einen Account-Namen und ein Paßwort für den betreffenden Client enthält;

als Reaktion auf die Sitzungsaufbauanforderung (123) Aufbau einer Sitzung zwischen dem Netzwerk-Server und dem Client durch den

5

10

15

20

25

30

35

40

45

50

55

Netzwerk-Server, und Speichern (133) des Account-Namens und des Paßworts;

als Reaktion auf die Anforderung zum Verbinden mit, oder Zugreifen auf das erste Betriebs-element, Bestimmen, daß das erste Betriebs-element vom Netzwerk-Server verwaltet wird, und Bestimmen, ob die Verbindung zum ersten Betriebselement (24) zur Verfügung steht;

anschließend Senden (310) einer Anforderung von dem einen Client an den Netzwerk-Server zum Verbinden mit, oder Zugreifen auf ein zweites Betriebmittel (40, 44); und

als Reaktion auf die nachfolgende Anforderung zum Verbinden mit, oder Zugreifen auf das zweite Betriebsmittel (40, 44) Bestimmen (140) durch den Netzwerk-Server, daß einer der Fernrechner (30, 34) das zweite Betriebsmittel verwaltet, Senden (152) einer Anforderung vom Netzwerk-Server an den zweiten Fernrechner auf Aufbauen einer Sitzung mit dem ersten Fernrechner, wobei diese Anforderung den gespeicherten Account-Namen und das gespeicherte Paßwort beinhaltet, und Senden einer Anforderung auf Verbindung mit, oder Zugriff auf das zweite Betriebsmittel von dem Netzwerk-Server zu dem einen Fernrechner.

- Verfahren gemäß Anspruch 1, ferner enthaltend die folgenden aufeinanderfolgenden Schritte:

Senden (340), von dem einen Client (11a-11z) an den Netzwerk-Server (14), einer Anforderung zum Verbinden mit, oder Zugreifen auf, ein drittes Betriebsmittel;

Bestimmen durch den Netzwerk-Server, daß ein anderer der Fernrechner das dritte Betriebsmittel verwaltet; und

Senden (130), durch den Netzwerk-Server zu dem anderen Fernrechner, einer Anforderung auf Aufbau einer Sitzung, wobei die Sitzungsaufbauanforderung den gespeicherten Account-Namen und das gespeicherte Paßwort beinhaltet, sowie einer Anforderung auf Anschließen an, oder Zugriff auf, das dritte Betriebsmittel.

- Verfahren gemäß Anspruch 1 oder 2, ferner enthaltend die folgenden Schritte:

Überprüfen (324, 344) des in der Sitzungsaufbauanforderung enthaltenen Account-Namens und des Paßworts durch den einen Fernrechner, und

Aufbau (326, 334, 341) der durch den Netzwerk-Server angeforderten Sitzung durch den Fernrechner.

4. Verfahren gemäß Anspruch 3, ferner enthaltend die folgenden Schritte:

Senden, von dem einen Client (11a-11z) an den Netzwerk-Server (14), einer Anforderung zum Beenden der Sitzung; 10

Bestimmen (202, 204) durch den Netzwerk-Server, daß der eine Fernrechner von der Sitzung betroffen ist; 15

Senden (352), durch den Netzwerk-Server an den einen Fernrechner, einer Anforderung zum Beenden der Sitzung, die vom Netzwerk-Server angefordert wurde; und 20

Beenden (208) der Sitzung zwischen dem Netzwerk-Server und dem einen Client durch den Netzwerk-Server.

5. Verfahren gemäß Anspruch 1 oder einem der Ansprüche 2 bis 4, ferner enthaltend die folgenden Schritte:

Nach der folgenden Anforderung, Stellen einer Anforderung durch ein weiteres Applikationsprogramm, das in dem einen Fernrechner abläuft, auf Zugriff auf das zweite Betriebsmittel (40, 44); und 30

gemäß dem Applikationsprogramm Anforderung durch dieses andere Applikationsprogramm, das durch diesen einen Fernrechner (30, 34) auf das andere Applikationsprogramm auf das zweite Betriebsmittel gibt Zugriff. 35

6. Verfahren gemäß Anspruch 1 oder einem der Ansprüche 2 bis 5, in dem die anschließende Verbindungs- oder Zugriffsanforderung, die von dem einen Client an den Netzwerk-Server gesendet wurde (140), das zweite Betriebsmittel mit Namen spezifiziert, jedoch nicht den einen Fernrechner oder den Standort des zweiten Betriebsmittels spezifiziert. 40

7. Ein Verfahren zum Verwalten des Zugriffs durch Clients (11a-11z) in einem Netzwerk auf ein lokales Betriebsmittel (24), das von einem Netzwerk-Server (14) verwaltet wird, und ein oder mehrere Fernbetriebsmittel (40, 44), die von einem oder mehreren entsprechenden Fernrechnern (30, 34) verwaltet werden, logisch und/oder physikalisch gekoppelt an den Netzwerk-Server, wobei das Verfahren die folgenden Schritte umfaßt:

Senden (310), von einem der Clients an den Netzwerk-Server, einer Anforderung zum Aufbau einer Sitzung, und einer Anforderung zum Verbinden mit, oder Zugreifen auf, ein erstes Betriebsmittel (40, 44), wobei diese Anforderungen vorzugsweise durch eine einzige Anforderung vorgesehen sind, und diese SitzungsaufbauAnforderung einen Account-Namen und ein Paßwort für den betreffenden einen Client enthält; 45

als Reaktion auf die SitzungsaufbauAnforderung (123), Aufbau einer Sitzung mit dem Netzwerk-Server, und Speichern (133) des Account-Namens und des Paßworts;

als Reaktion auf die Anforderung zum Verbinden oder Zugreifen, Bestimmen, daß einer der Fernrechner das erste Betriebselement (40, 44) verarbeitet (30, 34), Senden (152) einer Anforderung durch den Netzwerk-Server an den einen Fernrechner zum Aufbauen einer Sitzung mit diesem einen Fernrechner, wobei die Anforderung den gespeicherten Account-Namen und das gespeicherte Paßwort enthält, und Senden einer Anforderung durch den Netzwerk-Server an den Fernrechner zum Verbinden mit, oder Zugreifen auf das erste Betriebsmittel; 50

anschließend Senden (310) einer Anforderung von dem ersten Client an den Netzwerk-Server zum Verbinden mit, oder Zugreifen auf ein zweites Betriebsmittel; und

als Reaktion auf die nachfolgende Anforderung, Bestimmen (140), daß der Netzwerk-Server das zweite Betriebsmittel verwaltet, und Bestimmen, ob das zweite Betriebsmittel verfügbar ist. 55

8. Verfahren gemäß Anspruch 7, ferner beinhaltend den Schritt des Aufbaus der Sitzung mit dem einen Fernrechner durch den einen Fernrechner unter Überprüfung (324) des Account-Namens und des Paßworts als Reaktion auf die SitzungsaufbauAnforderung (152) vom Netzwerk-Server.

9. Ein Netzwerk-Server (14) zum Verwalten des Zugriffs durch Clients (11a-11z) in einem Netzwerk auf ein oder mehrere vom Netzwerk-Server verwaltete lokale Betriebsmittel (24), und ein oder mehrere Fernbetriebsmittel (40, 44), die von einem oder mehreren entsprechenden Fernrechnern (30, 34) verwaltet werden, logisch und/oder physikalisch gekoppelt an den Netzwerk-Server, wobei der Netzwerk-Server umfaßt:

Mittel (52) zum Empfangen, von einem der Clients im Netzwerk, einer Anforderung zum Aufbauen einer Sitzung, und einer Anforderung zum Verbinden mit, oder Zugreifen auf ein erstes Betriebsmittel, in dem die Anforderungen vorzugsweise durch eine einzige Anforderung gemacht werden, wobei die Sitzungsaufbauanforderung einen Account-Namen und ein Paßwort für den einen Client beinhaltet;

Mittel (53, 54) die auf die Sitzungsaufbauanforderung reagieren, zum Aufbauen einer Sitzung zwischen dem Netzwerk-Server und dem einen Client, und zum Speichern des Account-Namens und des Paßworts;

Mittel (56), die auf die Anforderung zum Verbinden mit, oder Zugreifen auf das erste Betriebsmittel reagieren, zum Bestimmen, daß das erste Betriebsmittel vom Netzwerk-Server verwaltet wird, und zum Bestimmen, ob die Verbindung für das erste Betriebsmittel verfügbar ist; und

Mittel (56, 60), die auf eine nachfolgende Anforderung von dem einen Client auf Verbindung mit, oder Zugriff zu einem zweiten Betriebsmittel reagieren, zum Bestimmen, daß einer der Fernrechner das zweite Betriebsmittel verwaltet, Senden einer Anforderung an den einen Fernrechner zum Aufbau einer Sitzung mit dem einen Fernrechner, wobei die Anforderung den gespeicherten Account-Namen und das Paßwort enthält, und Senden einer Anforderung an den einen Fernrechner zum Verbinden mit, oder Zugreifen auf das zweite Betriebsmittel.

10. Netzwerk-Server gemäß Anspruch 9, in dem:

Das Bestimmungsmittel (56) auf eine andere Anforderung von dem einen Client auf Verbinden mit, oder Zugreifen auf ein drittes Betriebsmittel anspricht, zum Bestimmen, daß ein anderer der Fernrechner das dritte Betriebsmittel verwaltet; und

das Sendemittel (60) an den anderen Fernrechner eine Anforderung zum Aufbau einer Sitzung sendet, diese Sitzungsaufbauanforderung den gespeicherten Account-Namen und das Paßwort sowie eine Anforderung zum Verbinden mit, oder Zugreifen auf das dritte Betriebsmittel beinhaltet.

11. Netzwerk-Server gemäß Anspruch 9 oder 10, ferner enthaltend:

Mittel, die auf eine Anforderung von dem einen Client zum Beenden der Sitzung ansprechen, zum Bestimmen, daß der eine Fernrechner von der Sitzung betroffen ist;

Mittel (60) zum Senden einer Anforderung auf Beenden der vom Netzwerk-Server angeforderten Sitzung an den einen Fernrechner; und

Mittel zum Beenden der Sitzung zwischen dem Netzwerk-Server und dem einen Client.

12. Netzwerk-Server gemäß Anspruch 9, 10 oder 11, in dem die nachfolgende Verbindungs- oder Zugriffsanforderung, die von dem einen Client an den Netzwerk-Server gesendet wurde, dieses zweite Betriebsmittel mit Namen spezifiziert, aber nicht den einen Fernrechner oder einen Standort des von dem einen Fernrechner verwalteten Betriebsmittels spezifiziert.

13. Ein Netzwerk-Server (14) zum Verwalten des Zugriffs durch Clients (11a-11z) in einem Netzwerk auf ein lokales Betriebsmittel (24), das durch einen Netzwerk-Server verwaltet wird, und auf ein oder mehrere Fernbetriebsmittel (40, 44), die von einem oder mehreren entsprechenden Fernrechnern (30, 34) verwaltet werden, die an den Netzwerk-Server gekoppelt sind, wobei der Netzwerkserver umfaßt:

Mittel (52, 53) zum Empfangen, von einem der Clients im Netzwerk, einer Anforderung zum Aufbau einer Sitzung und einer Anforderung zum Verbinden mit, oder Zugreifen auf, ein erstes Betriebsmittel, wobei diese Sitzungsaufbauanforderung einen Account-Namen und ein Paßwort für den betreffenden Client enthält;

Mittel (54, 60), die auf die Sitzungsaufbauanforderung mit dem Aufbau einer Sitzung mit dem Netzwerk-Server und Speichern des Account-Namens und des Paßworts ansprechen;

Mittel (56), die auf die Anforderung zum Verbinden oder Zugreifen ansprechen, zum Bestimmen, daß einer der Fernrechner das erste Betriebsmittel verwaltet, Senden einer Anforderung an den einen Fernrechner zum Aufbau einer Sitzung mit dem einen Fernrechner, wobei die Anforderung den gespeicherten Account-Namen und das Paßwort enthält, und Senden einer Anforderung an den Fernrechner zum Verbinden mit, oder Zugreifen auf das erste Betriebsmittel; und

Mittel (56) die auf die nachfolgende Anforderung zum Verbinden mit, oder Zugreifen auf ein zweites Betriebsmittel ansprechen, zum Be-

stimmen, daß der Netzwerk-Server das zweite Betriebsmittel verwaltet, und Bestimmen, ob das zweite Betriebsmittel verfügbar ist.

14. Ein Rechnerprogrammprodukt zum Verwalten des Zugriffs durch Clients (11a-11z) in einem Netzwerk auf ein oder mehrere lokale Betriebsmittel (24), die von einem Netzwerk-Server (14) verwaltet werden, und ein oder mehrere Fernbetriebsmittel (40, 44), die von einem oder mehreren entsprechenden Fernrechnern (30, 34) verwaltet werden, logisch und/oder physikalisch gekoppelt an den Netzwerk-Server, wobei das Rechnerprogrammprodukt umfaßt:

ein Rechner-lesbares Medium;

erste Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors zum Empfangen einer Anforderung von einem der Clients oder vom Netzwerk zum Aufbau einer Sitzung, und einer Anforderung zum Verbinden mit, oder Zugreifen auf ein erstes Betriebsmittel, wobei die Sitzungsaufbauanforderung einen Account-Namen und ein Paßwort für den einen Client enthält;

zweite Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf die Sitzungsaufbauanforderung zu reagieren mit dem Aufbau einer Sitzung zwischen dem Netzwerk-Server und dem Client, und Abspeichern des Account-Namens und des Paßworts;

dritte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf die Anforderung zum Verbinden mit, oder zum Zugreifen auf das erste Betriebsmittel, zu reagieren durch Bestimmen, daß das erste Betriebsmittel vom Netzwerk-Server verwaltet wird, und Bestimmen, ob die Verbindung zum ersten Betriebsmittel verfügbar ist;

vierte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf die Anforderung von dem einen Client zum Verbinden mit, oder Zugreifen auf das zweite Betriebsmittel, zu reagieren durch Bestimmen, daß einer der Fernrechner das zweite Betriebsmittel verwaltet, durch Senden einer Anforderung an den Fernrechner zum Aufbauen einer Sitzung mit dem einen Fernrechner, wobei die Anforderung den gespeicherten Account-Namen und das Paßwort beinhaltet, und Senden einer Anforde-

5

10

15

20

25

30

35

40

45

50

55

rung an den einen Fernrechner zum Verbinden mit, oder Zugreifen auf das zweite Betriebsmittel; und

in dem jedes dieser Programmanweisungsmittel durch den zugeordneten Rechnerprozessor ausführbar ist.

15. Ein Rechnerprogrammprodukt gemäß Anspruch 14, in dem

das dritte Programmanweisungsmittel auf eine weitere Anforderung von dem einen Client zum Verbinden mit, oder Zugreifen auf ein drittes Betriebsmittel reagiert, durch Anweisen eines Rechnerprozessors zum Bestimmen, daß ein anderer dieser Fernrechner das dritte Betriebsmittel verwaltet; und

das vierte Programmanweisungsmittel einen Rechnerprozessor anweist, an diesen anderen Fernrechner eine Anforderung zu senden, um eine Sitzung aufzubauen, wobei diese Sitzungsaufbauanforderung den gespeicherten Account-Namen und das Paßwort und eine Anforderung beinhaltet, sich mit dem dritten Betriebsmittel zu verbinden oder darauf zuzugreifen.

16. Ein Rechnerprogrammprodukt gemäß Anspruch 14 oder 15, das ferner enthält:

fünfte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf eine Anforderung des einen Client zum Beenden der Sitzung zu reagieren, um zu bestimmen, daß der eine Fernrechner von der Sitzung betroffen ist;

sechste Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, an den einen Fernrechner eine Anforderung zum Beenden der von dem einen Netzwerk-Server angeforderten Sitzung zu senden; und

siebte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, die Sitzung zwischen dem Netzwerk-Server und dem einen Client zu beenden; und worin das fünfte, sechste und siebte Programmanweisungsmittel durch den zugeordneten Rechnerprozessor ausführbar ist.

17. Ein Rechnerprogrammprodukt gemäß Anspruch 14, 15 oder 16, in dem die anschließend von dem einen Client gesendete Verbindungs- oder Zugriffs-

anforderung das zweite Betriebsmittel mit dem Namen spezifiziert, jedoch nicht den Fernrechner oder eine Adresse des Betriebsmittels spezifiziert, das der eine Fernrechner verwaltet.

18. Ein Rechnerprogrammprodukt zum Verwalten des Zugriffs durch Clients in einem Netzwerk auf ein lokales Betriebsmittel, das vom Netzwerk-Server verwaltet wird, und ein oder mehrere Fernbetriebsmittel, die von einem oder mehreren entsprechenden Fernrechner verwaltet werden, wobei das Rechnerprodukt enthält:

erste Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors zum Empfangen einer Anforderung von einem dieser Clients auf dem Netzwerk zum Aufbau einer Sitzung, und einer Anforderung zum Verbinden mit, oder Zugreifen auf ein erstes Betriebsmittel, wobei die Sitzungsaufbauanforderung einen Account-Namen und ein Paßwort für diesen einen Clienten beinhaltet; 15

zweite Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf die Sitzungsaufbauanforderung durch Aufbau einer Sitzung mit dem Netzwerk-Server und Speichern des Account-Namens und des Paßworts zu reagieren; 20

dritte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf die Verbindungs- oder Zugriffsaufforderung zu reagieren durch Bestimmen, daß einer der Fernrechner das erste Betriebsmittel verwaltet, durch Senden einer Anforderung an den einen Fernrechner, eine Sitzung mit dem einen Fernrechner aufzubauen, wobei die Anforderung einen abgespeicherten Account-Namen und ein Paßwort beinhaltet, und Senden einer Anforderung an den Fernrechner, um mit dem ersten Betriebsmittel verbunden zu werden oder darauf Zugriff zu nehmen; und 25

vierte Programmanweisungsmittel, die auf dem Medium aufgezeichnet sind, zum Anweisen eines Rechnerprozessors, auf eine nachfolgende Anforderung zum Verbinden mit, oder Zugriff auf ein zweites Betriebsmittel zu nehmen, zu reagieren durch Feststellung, daß der Netzwerk-Server das zweite Betriebsmittel verwaltet, und Bestimmen, ob das zweite Betriebsmittel verfügbar ist; und in dem jedes der Programmanweisungsmittel durch den beigeordneten Rechnerprozessor ausführbar ist. 30

5. Procédé destiné à gérer des accès par des clients (11a à 11z) dans un réseau à une ou plusieurs ressources locales (24) gérées par un serveur de réseau (14) et une ou plusieurs ressources à distance (40, 44) gérées par un ou plusieurs ordinateurs à distance respectifs (30, 34) logiquement et/ou physiquement reliés au serveur de réseau, ledit procédé comprenant les étapes consistant à :

envoyer (310) depuis l'un desdits clients audit serveur de réseau, une demande pour établir une session et une demande pour se connecter ou accéder à une première ressource (24), dans lequel lesdites demandes sont de préférence fournies grâce à une demande unique, ladite demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client, 35

en réponse à la demande d'établissement de session (123), établir par ledit serveur de réseau une session entre ledit serveur de réseau et ledit client, et mémoriser (133) lesdits nom de compte et mot de passe,

en réponse à la demande pour se connecter ou accéder à ladite première ressource, déterminer que ladite première ressource est gérée par ledit serveur de réseau, et déterminer si ladite connexion est disponible pour ladite première ressource (24), 40

ensuite, envoyer (310) depuis ledit un client vers ledit serveur de réseau, une demande pour se connecter ou accéder à une seconde ressource (40, 44), et 45

en réponse à ladite demande suivante pour se connecter ou accéder à ladite seconde ressource (40, 44), déterminer (140) par ledit serveur de réseau que l'un desdits ordinateurs à distance (30, 34) gère ladite seconde ressource, envoyer (152) une demande par ledit serveur de réseau vers ledit un ordinateur à distance afin d'établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande par ledit serveur de réseau audit un ordinateur à distance afin de se connecter ou d'accéder à ladite seconde ressource nommée. 50

55 2. Procédé selon la revendication 1, comprenant en outre les étapes suivantes consistant à :

envoyer (340) depuis ledit un client (11a à 11z)

audit serveur de réseau (14) une demande pour se connecter ou accéder à une troisième ressource,

déterminer par ledit serveur de réseau qu'un autre desdits ordinateurs à distance gère ladite troisième ressource, et

envoyer (130) par ledit serveur de réseau audit autre ordinateur à distance une demande pour établir une session, ladite demande d'établissement de session comprenant lesdits nom de compte et mot de passe mémorisés, et une demande pour se connecter ou accéder à ladite troisième ressource.

3. Procédé selon la revendication 1 ou 2, comprenant en outre les étapes consistant à :

valider (324, 344) par ledit un ordinateur à distance lesdits nom de compte et mot de passe inclus dans ladite demande d'établissement de session, et

établir (326, 334, 341) par ledit un ordinateur à distance ladite session demandée par ledit serveur de réseau.

4. Procédé selon la revendication 3 comprenant en outre les étapes consistant à :

envoyer depuis ledit un client (11a à 11z) audit serveur de réseau (14) une demande pour mettre fin à ladite session,

déterminer (202, 204) par ledit serveur de réseau que ledit un ordinateur à distance est impliqué dans ladite session,

envoyer (352) par ledit serveur de réseau audit un ordinateur à distance une demande pour mettre fin à ladite session demandée par ledit serveur de réseau, et

mettre fin (208) par ledit serveur de réseau à la session entre ledit serveur de réseau et ledit un client.

5. Procédé selon la revendication 1 ou l'une des revendications 2 à 4, comprenant en outre les étapes consistant à :

après ladite demande suivante, effectuer une demande par un autre programme d'application s'exécutant à l'intérieur dudit un ordinateur à distance en vue d'accéder à ladite seconde ressource (40, 44), et

à la suite de ladite demande de programme d'application par ledit autre programme d'application, réaliser un accès par ledit un ordinateur à distance (30, 34) audit autre programme d'application sur ladite seconde ressource.

6. Procédé selon la revendication 1 ou l'une des revendications 2 à 5, dans lequel la demande de connexion ou d'accès suivante envoyée (140) par ledit un client audit serveur de réseau spécifie ladite seconde ressource par un nom, mais ne spécifie pas ledit un ordinateur à distance ni l'emplacement de ladite seconde ressource.

15 7. Procédé destiné à gérer des accès par des clients (11a à 11z) dans un réseau à une ressource locale (24) gérée par un serveur de réseau (14) et une ou plusieurs ressources à distance (40, 440) gérées par un ou plusieurs ordinateurs à distance respectifs (30, 34) logiquement et/ou physiquement reliés au serveur de réseau, ledit procédé comprenant les étapes consistant à :

envoyer (310) depuis l'un desdits clients audit serveur de réseau une demande en vue d'établir une session et une demande pour se connecter ou accéder à une première ressource (40, 44), dans lequel lesdites demandes sont de préférence réalisées grâce à une demande unique, ladite demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client,

en réponse à la demande d'établissement de session (123), établir par ledit serveur de réseau une session avec ledit serveur de réseau, et mémoriser (133) lesdits nom de compte et mot de passe,

en réponse à la demande de connexion ou d'accès, déterminer que l'un desdits ordinateurs à distance gère (30, 34) ladite première ressource (40, 44), envoyer (152) une demande par ledit serveur de réseau audit un ordinateur à distance afin d'établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande par ledit serveur de réseau audit ordinateur à distance pour se connecter ou accéder à ladite première ressource,

ensuite, envoyer (310) depuis ledit un client audit serveur de réseau une demande pour se connecter ou accéder à une seconde ressource, et

en réponse à ladite demande suivante, déter-

miner (140) que ledit serveur de réseau gère ladite seconde ressource, et déterminer si ladite seconde ressource est disponible.

8. Procédé selon la revendication 7, comprenant en outre l'étape consistant à établir ladite session avec ledit un ordinateur à distance en faisant valider par ledit un ordinateur à distance (324) lesdits nom de compte et mot de passe, en réponse à ladite demande d'établissement de session (152) provenant dudit serveur de réseau. 5

9. Serveur de réseau (14) destiné à gérer des accès par des clients (11a à 11z) dans un réseau à une ou plusieurs ressources locales (24) gérées par ledit serveur de réseau et une ou plusieurs ressources à distance (40, 44) gérées par un ou plusieurs ordinateurs à distance respectifs (30, 34) logiquement et/ou physiquement reliés au serveur de réseau, ledit serveur de réseau comprenant : 15

un moyen (52) destiné à recevoir de l'un desdits clients sur ledit réseau une demande pour établir une session et une demande pour se connecter ou accéder à une première ressource, dans lequel lesdites demandes sont de préférence réalisées par une demande unique, la demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client, 20

un moyen (53, 54) répondant à la demande d'établissement de session, en vue d'établir une session entre ledit serveur de réseau et ledit un client, et mémoriser lesdits nom de compte et mot de passe, 25

un moyen (56), répondant à la demande pour se connecter ou accéder à ladite première ressource, afin de déterminer que ladite première ressource est gérée par ledit serveur de réseau, et déterminer si ladite connexion est disponible à ladite première ressource, et 30

un moyen (56, 60) répondant à une demande suivante provenant dudit un client pour se connecter ou pour accéder à une seconde ressource, afin de déterminer que l'un desdits ordinateurs à distance gère ladite seconde ressource, envoyer une demande audit un ordinateur à distance afin d'établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande audit un ordinateur à distance pour se connecter ou accéder à ladite seconde ressource. 35

10. Serveur de réseau selon la revendication 9, dans lequel : 40

le moyen de détermination (56) répond à une autre demande provenant dudit un client pour se connecter ou pour accéder à une troisième ressource afin de déterminer qu'un autre desdits ordinateurs à distance gère ladite troisième ressource, et 45

le moyen d'envoi (60) envoie audit autre ordinateur à distance une demande pour établir une session, ladite demande d'établissement de session comprenant lesdits nom de compte et mot de passe mémorisés, et une demande pour se connecter ou pour accéder à ladite troisième ressource. 50

11. Serveur de réseau selon la revendication 9 ou 10, comprenant en outre : 55

un moyen, répondant à une demande provenant dudit un client pour mettre fin à ladite session, en vue de déterminer que ledit un ordinateur à distance est impliqué dans ladite session,

un moyen (60) destiné à envoyer audit un ordinateur à distance une demande pour mettre fin à ladite session demandée par ledit serveur de réseau, et

un moyen destiné à mettre fin à la session entre ledit serveur de réseau et ledit un client.

12. Serveur de réseau selon la revendication 9, 10 ou 11, dans lequel la demande de connexion ou d'accès suivante émise par ledit un client vers ledit serveur de réseau spécifie ladite seconde ressource par un nom, mais ne spécifie pas ledit un ordinateur à distance ni un emplacement de la ressource générée audit un ordinateur à distance. 60

13. Serveur de réseau (14) destiné à gérer un accès par des clients (11a à 11z) dans un réseau à une ressource locale (24) gérée par le serveur de réseau et une ou plusieurs ressources à distance (40, 44) gérées par un ou plusieurs ordinateurs à distance respectifs (30, 34) reliés au serveur de réseau, ledit serveur de réseau comprenant : 65

un moyen (52, 53) destiné à recevoir de l'un desdits clients sur ledit réseau, une demande en vue d'établir une session et une demande pour se connecter ou pour accéder à une première ressource, la demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client, 70

un moyen (54, 60) répondant à la demande d'établissement de session, afin d'établir une session avec ledit serveur de réseau, et mémoriser lesdits nom de compte et mot de passe, 5

un moyen (56), répondant à la demande de connexion ou d'accès, afin de déterminer que l'un desdits ordinateurs à distance gère ladite première ressource, envoyer une demande audit un ordinateur à distance afin d'établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande audit ordinateur à distance pour se connecter ou pour accéder à ladite première ressource, et 10

un moyen (56), répondant à une demande suivante pour se connecter ou accéder à une seconde ressource, afin de déterminer que ledit serveur de réseau gère ladite seconde ressource, et déterminer si ladite seconde ressource est disponible, et 15

14. Produit de programme informatique destiné à gérer des accès par des clients (11a à 11z) dans un réseau à une ou plusieurs ressources locales (24) gérées par le serveur de réseau (14) et une ou plusieurs ressources à distance (40, 44) gérées par un ou plusieurs ordinateurs à distance respectifs (30, 34) logiquement et/ou physiquement reliés au serveur de réseau, ledit produit de programme informatique comprenant : 20

un support lisible par un ordinateur, 25

des premiers moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de recevoir de l'un dudit client ou dudit réseau une demande en vue d'établir une session et une demande pour se connecter ou pour accéder à une première ressource, ladite demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client, 30

des seconds moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à la demande d'établissement de session, en établissant une session entre ledit serveur de réseau et ledit client, et mémoriser lesdits nom de compte et mot de passe, 35

des troisièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à la demande pour instruction à un processeur d'ordinateur de répondre à la demande pour se connecter ou pour accéder à ladite première ressource, et 40

des quatrièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à une demande provenant dudit client pour se connecter ou accéder à une seconde ressource, en déterminant que l'un desdits ordinateurs à distance gère ladite seconde ressource, envoyer une demande audit un ordinateur à distance pour établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande audit un ordinateur à distance pour se connecter ou accéder à ladite seconde ressource, et 45

dans lequel chacun desdits moyens d'instruction de programme est exécutable par le processeur d'ordinateur associé.

15. Produit de programme informatique selon la revendication 14, dans lequel 50

les troisièmes moyens d'instruction de programme répondent à une autre demande provenant dudit client pour se connecter ou accéder à une troisième ressource en donnant pour instruction à un processeur d'ordinateur de déterminer qu'un autre desdits ordinateurs à distance gère ladite troisième ressource, et

les quatrièmes moyens d'instruction de programme donnent pour instruction à un processeur d'ordinateur d'envoyer audit autre ordinateur à distance une demande en vue d'établir une session, ladite demande d'établissement de session comprenant lesdits nom de compte et mot de passe mémorisés, et une demande pour se connecter ou accéder à ladite troisième ressource.

16. Produit de programme informatique selon la revendication 14 ou 15, comprenant en outre : 55

des cinquièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à une demande provenant dudit client pour mettre fin à ladite session, afin de déterminer que ledit un ordina-

teur à distance est impliqué dans ladite session,

des sixièmes moyens d'instruction de programme, enregistrés sur ledit support, afin de donner pour instruction à un processeur d'ordinateur d'envoyer audit un ordinateur à distance une demande pour mettre fin à ladite session demandée par ledit serveur de réseau, et 5

des septièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de mettre fin à la session entre ledit serveur de réseau et ledit un client, et dans lequel ledit cinquième, sixième et septième moyens d'instruction de programme sont exécutables par le processeur d'ordinateur associé. 10

17. Produit de programme informatique selon la revendication 14, 15 ou 16, dans lequel la demande de connexion ou d'accès suivante émise par ledit un client spécifie ladite seconde ressource par un nom, mais ne spécifie pas ledit un ordinateur à distance ni une adresse de la ressource gérée audit un ordinateur à distance. 15

18. Produit de programme informatique destiné à gérer un accès par des clients dans un réseau à un ressource locale gérée par le serveur de réseau et une ou plusieurs ressources à distance gérées par un ou plusieurs ordinateurs à distance respectifs reliés au serveur de réseau, ledit produit de programme informatique comprenant : 20

des premiers moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de recevoir de l'un desdits clients sur ledit réseau une demande pour établir une session et une demande pour se connecter ou accéder à une première ressource, la demande d'établissement de session comprenant un nom de compte et un mot de passe pour ledit un client, 25

des seconds moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à la demande d'établissement de session en établissant une session avec ledit serveur de réseau, et en mémorisant lesdits nom de compte et mot de passe, 30

des troisièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur 35

d'ordinateur de répondre à la demande de connexion ou d'accès en déterminant que l'un desdits ordinateurs à distance gère ladite première ressource, envoyer une demande audit un ordinateur à distance pour établir une session avec ledit un ordinateur à distance, ladite demande comprenant lesdits nom de compte et mot de passe mémorisés, et envoyer une demande audit ordinateur à distance pour se connecter ou accéder à ladite première ressource, et 40

des quatrièmes moyens d'instruction de programme, enregistrés sur ledit support, en vue de donner pour instruction à un processeur d'ordinateur de répondre à une demande suivante pour se connecter ou accéder à une seconde ressource en déterminant que ledit serveur de réseau gère ladite seconde ressource, et déterminer si ladite seconde ressource est disponible, et dans lequel 45

chacun desdits moyens d'instruction de programme est exécutable par le processeur d'ordinateur associé.

FIG.1

FIG.2(a)a

FIG.2(a)a
FIG.2(a)b

FIG.2(a)

FIG.2(a)b

FIG.2(b)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
ISSUE SESSION ESTABLISHMENT REQUEST WITH CONNECT REQUEST TO RESOURCE MANAGED BY FRONT-END SERVICE 310				
	TRANSFER CLIENT REQUEST TO BACK-END SERVICE 312	110,116	SAVE SESSION ESTABLISHMENT INFORMATION, TRANSFER BACK TO FRONT-END SERVICE 314	
			DO ACCOUNT VALIDATION, PROCESS CONNECT REQUEST, NOTIFY BACK-END SERVICE OF VALIDATED ACCOUNT, RETURN RESPONSE	

FIG.3(a)Q

	NOTE CONFIRMATION OF ACCOUNT VALI- DATION		
STATUS: REQUEST COMPLETED AND SESSION ESTAB- LISHED			
ISSUE CONNECT WITHIN SESSION TO RESOURCE ACTUALLY MANAGED BY HOST COMPUTER 30			
320	TRANSFER CLIENT REQUEST TO BACK-END SERVICE		

FIG.3(a)b

TO FIG.3(b)

FIG.A(a)a
FIG.3(a)b

FIG.3(a)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
		RETRIEVE SAVED SESSION ESTABLISHMENT INFORMATION AND PASS TO HOST COMPUTER 30, AND WAIT FOR RESPONSE		324
		152,156	DO ACCOUNT VALIDATION AND RETURN RESPONSE	130,132
		PASS CONNECT REQUEST TO HOST COMPUTER 30 AND WAIT FOR RESPONSE		326
		134	PROCESS CONNECT REQUEST AND RETURN RESPONSE	RETURN RESPONSE TO CLIENT CONNECT REQUEST
				RETURN RESPONSE
	STATUS: REQUEST COMPLETED			

FIG.3(b)q

FIG.3(b)b

TO FIG.3(c)

FIG.3(b)a
FIG.3(b)b

FIG.3(b)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
ISSUE CONNECT REQUEST FOR RESOURCE ACTUALLY MANAGED BY HOST COMPUTER 34				
340	TRANSFER CLIENT REQUEST TO BACK-END SERVICE	152,156		
		RETRIEVE SAVED SESSION ESTABLISHMENT INFORMATION AND PASS TO HOST COMPUTER 34, AND WAIT FOR RESPONSE		344
		130,132	DO ACCOUNT VALIDATION AND RETURN RESPONSE	
		PASS CONNECT REQUEST TO HOST COMPUTER 34 AND WAIT FOR RESPONSE		341
			PROCESS CONNECT REQUEST AND RETURN RESPONSE	
			RETURN RESPONSE TO CLIENT CONNECT REQUEST	
		RETURN RESPONSE		
STATUS: REQUEST COMPLETED				

FIG.3(c)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
			<p>HOST COMPUTER 30 USER 344 LINKS TO MINIDISK THAT IS ALSO BEING USED AS A RESOURCE BY LAN CLIENTS ATTACHED TO THIS HOST COMPUTER VIA THE FRONT-END /BACK-END SERVICE, AND ADDRESS FILE AND DIRECTORY BY NAME. HOST COMPUTER USER THEN PERFORMS NORMAL FUNCTIONS (E.G. OPEN, READ, WRITE, CLOSE, DELETE) ON FILES ON THIS MINIDISK.</p>	
TERMINATE SESSION		<p>NOTIFY BACK-END SERVICE OF SESSION TERMINATION AND TERMINATE SESSION ON NETWORK SERVER.</p> <p>350</p>	<p>BUILD SESSION TER- MINATION NOTIFICA- TION AND PASS TO EACH CONNECTED HOST COMPUTER</p> <p>352</p>	<p>354</p> <p>356</p> <p>PROCESS SESSION TERMINATION NOTIFICATION</p>

FIG.3(d)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
ISSUE SESSION ESTABLISHMENT REQUEST WITH CONNECT REQUEST TO RESOURCE MANAGED BY HOST COMPUTER 30				
410	TRANSFER CLIENT REQUEST TO BACK-END SERVICE	110,120,122		
			SAVE SESSION ESTABLISHMENT INFORMATION, TRANSFER BACK TO FRONT-END SERVICE	
		414		
			DO ACCOUNT VALIDATION, TRANSFER CONTROL TO BACK-END SERVICE AND NOTIFY IT OF VALIDATED ACCOUNT	

FIG.4(a)a

FIG. 4(a)b

FIG. 4(a)a
FIG. 4(a)b

FIG. 4(a)FIG. 4(b)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
STATUS: REQUEST COMPLETED AND SESSION ESTABLISHED				
ISSUE CONNECT WITHIN SESSION TO RESOURCE MANAGED BY FRONT-END SERVICE				
420	TRANSFER CLIENT REQUEST TO BACK-END SERVICE	116		
			NOTE THAT CLIENT REQUEST IS NOT FOR BACK-END SERVICE, SO TRANSFER CONTROL TO FRONT-END SERVICE	
		424		
	PROCESS CONNECT REQUEST, RETURN RESPONSE			
STATUS: REQUEST COMPLETED				

FIG. 4(b)q

TERMINATE SESSION	432				
430	NOTIFY BACK-END SERVER OF SESSION TERMINATION AND TERMINATE SESSION ON NETWORK SERVER.				
		BUILD SESSION TERMINATION NOTIFICATION AND PASS TO EACH CONNECTED HOST COMPUTER			
			PROCESS SESSION TERMINATION NOTIFICATION		

FIG. 4(b)b

FIG. 4(b)

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
ISSUE SESSION ESTABLISHMENT REQUEST TO INTER-MEDIATE SERVER	512			
510	TRANSFER CLIENT REQUEST TO BACK-END SERVICE	110,116		
		SAVE SESSION ESTABLISHMENT INFORMATION, TRANSFER BACK TO FRONT-END SERVICE		
	514	DO ACCOUNT VALIDATION, NOTIFY BACK-END SERVICE OF VALIDATED ACCOUNT, RETURN RESPONSE		
		NOTE CONFIRMATION OF ACCOUNT VALIDATION		
STATUS: REQUEST COMPLETED AND SESSION ESTABLISHED				

FIG.5(a)a

FIG.5(a)a
FIG.5(a)b

FIG.5(a)

TO FIG.5(b)

FIG.(a)b

CLIENT	FRONT-END SERVICE	BACK-END SERVICE	HOST COMPUTER 30	HOST COMPUTER 34
		PASS CONNECT REQUEST TO HOST COMPUTER 34 AND WAIT FOR RESPONSE		524
		130,132 134		PROCESS CONNECT REQUEST AND RETURN RESPONSE
		RETURN RESPONSE TO CLIENT CONNECT REQUEST		
		RETURN RESPONSE		
	STATUS: REQUEST COMPLETED			
TERMINATE SESSION	530	NOTIFY BACK-END SERVICE OF SESSION TERMINATION AND TERMINATE SESSION ON NETWORK SERVER.		
		532	BUILD SESSION TERMINATION NOTIFICATION AND PASS TO EACH CONNECTED HOST COMPUTER	534
				PROCESS SESSION TERMINATION NOTIFICATION

FIG.5(b)

FIG.6