Can multi-scale image pyramid processing concepts improve migration results?

Thomas Rapstine

GPGN658 Fall 2015 Colorado School of Mines

December 10, 2015

Agenda

Motivation

Project objectives

Theory

Results

Motivation

Image pyramids decompose by scale

Backscattering artifacts are obnoxious long wavelength features

Can image pyramids be used to target and remove backscattering artifacts?

Project objectives

1. Analyze migrated results using image pyramids

2. Migrated image pyramids levels independently

3. Propose and test new multi-scale imaging condition

Results

1. CIC then decompose

2. Decompose then CIC

3. Multiscale imaging condition application

Modeling assumptions

Acoustic variable density wave equation

Smoothly varying media

▶ Finite differences used for implementation

Building an image pyramid theory

1. Begin with an image

2. Smooth image

3. Discard even rows and columns

4. Repeat 1-3 until resulting image is size 1-by-1

Image pyramids size is manageable

$$N^2 \left[\frac{1}{4} + \frac{1}{4^2} + \ldots + \frac{1}{4^P} + \right] =$$

Image pyramids size is manageable

$$N^{2}\left[\frac{1}{4} + \frac{1}{4^{2}} + \ldots + \frac{1}{4^{P}} + \right] = N^{2}\sum_{k=0}^{P}\left(\frac{1}{4}\right)^{k}$$

Image pyramids size is manageable

$$N^2 \left[\frac{1}{4} + \frac{1}{4^2} + \ldots + \frac{1}{4^P} + \right] = N^2 \sum_{k=0}^{P} \left(\frac{1}{4} \right)^k \le \frac{4}{3} N^2$$

$$\leq \frac{4}{3}N^2 \tag{1}$$

Conventional imaging condition (CIC)

$$\mathbf{R}(\mathbf{x}) = \sum_{t} \mathbf{W}_{s}(\mathbf{x}, t) \mathbf{W}_{r}(\mathbf{x}, t)$$
 (2)

- x space coordinates
- t time coordinate
- ▶ W_s source wavefield
- ▶ **W**_r receiver wavefield
- ► **R**(**x**) migrated image

Conventional imaging condition (CIC) on pyramid levels

$$\hat{\mathbf{R}}_1(\mathbf{x},\mathbf{l}) = \sum_t \mathbf{W}_s(\mathbf{x},t,\mathbf{l}) \mathbf{W}_r(\mathbf{x},t,\mathbf{l})$$
 (3)

- x space coordinates
- t time coordinate
- ▶ **W**_s source wavefield
- ▶ **W**_r receiver wavefield
- $\hat{\mathbf{R}}_1(\mathbf{x}, \mathbf{I})$ migrated image for all levels

Model structure

Level 1 comparison

Level 2 comparison

Level 3 comparison

Level 4 comparison

Level 4 comparison

Building and collapsing pyramid is a nonlinear operation

Level 4 comparison

Building and collapsing pyramid is a nonlinear operation

What can we gain by comparing and combining wavefields by scale before applying CIC?

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum_t \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

(4)

(4)

(5)

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{I}) = \sum_t \mathsf{W}_s(\mathsf{x},t,\mathsf{I}) \mathsf{W}_r(\mathsf{x},t,\mathsf{I})$$

$$\hat{\mathbf{W}}_{s}(\mathbf{x}, t, l_{i}) = \beta_{i} \mathbf{W}_{s}(\mathbf{x}, t, l_{i})$$

$$\hat{\mathbf{p}}(\mathbf{w}, \mathbf{l}) = \sum_{i} \mathbf{W}(\mathbf{w}, \mathbf{r}, \mathbf{l}) \mathbf{W}(\mathbf{w}, \mathbf{r}, \mathbf{l})$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

 $\hat{\mathbf{W}}_{s}(\mathbf{x},t,l_{i}) = \beta_{i}\mathbf{W}_{s}(\mathbf{x},t,l_{i})$

 $\hat{\mathbf{W}}_r(\mathbf{x}, t, l_i) = \beta_i \mathbf{W}_r(\mathbf{x}, t, l_i)$

$$\hat{R}_{*}(\mathbf{v}, \mathbf{l}) = \sum_{i} \mathbf{W}_{i}(\mathbf{v}, t, \mathbf{l}) \mathbf{W}_{i}(\mathbf{v}, t, \mathbf{l})$$

(4)

(5)

(6)

$$\hat{P}(x, l) = \sum_{i=1}^{N} W(x, t, l) W(x, t, l)$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

(4)

(5)

(6)

$$\hat{\mathbf{R}}_{1}(\mathbf{x},\mathbf{I}) = \sum \mathbf{W}_{c}(\mathbf{x},t,\mathbf{I})\mathbf{W}_{c}(\mathbf{x},t,\mathbf{I})$$

 $\hat{\mathbf{W}}_{s}(\mathbf{x},t,l_{i}) = \beta_{i}\mathbf{W}_{s}(\mathbf{x},t,l_{i})$

 $\hat{\mathbf{W}}_r(\mathbf{x}, t, l_i) = \beta_i \mathbf{W}_r(\mathbf{x}, t, l_i)$

 $\hat{\mathbf{R}}_{2}(\mathbf{x},l_{i}) = \sum_{t} \hat{\mathbf{W}}_{s}(\mathbf{x},t,l_{i}) \hat{\mathbf{W}}_{r}(\mathbf{x},t,l_{i})$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{I}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{I}) \mathsf{W}_r(\mathsf{x},t,\mathsf{I})$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

(4)

(5)

(6)

$$\hat{\mathbf{W}}_r(\mathbf{x}, t, l_i) = \beta_i \mathbf{W}_r(\mathbf{x}, t, l_i)$$

$$\hat{\mathbf{R}}_2(\mathbf{x}, l_i) = \sum \hat{\mathbf{W}}_s(\mathbf{x}, t, l_i) \hat{\mathbf{W}}_r(\mathbf{x}, t, l_i)$$

 $\hat{\mathbf{W}}_{s}(\mathbf{x}, t, l_{i}) = \beta_{i} \mathbf{W}_{s}(\mathbf{x}, t, l_{i})$

$$\hat{\mathbf{R}}_{2}(\mathbf{x}, l_{i}) = \sum_{t} \hat{\mathbf{W}}_{s}(\mathbf{x}, t, l_{i}) \hat{\mathbf{W}}_{r}(\mathbf{x}, t, l_{i})$$

$$= \beta_{i}^{2} \sum_{t} \mathbf{W}_{s}(\mathbf{x}, t, l_{i}) \mathbf{W}_{r}(\mathbf{x}, t, l_{i})$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{I}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{I}) \mathsf{W}_r(\mathsf{x},t,\mathsf{I})$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

(4)

(5)

(6)

(7)

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{l}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{l}) \mathsf{W}_r(\mathsf{x},t,\mathsf{l})$$

 $\hat{\mathbf{W}}_{s}(\mathbf{x},t,l_{i}) = \beta_{i}\mathbf{W}_{s}(\mathbf{x},t,l_{i})$

 $\hat{\mathbf{W}}_r(\mathbf{x}, t, l_i) = \beta_i \mathbf{W}_r(\mathbf{x}, t, l_i)$

 $\hat{\mathbf{R}}_{2}(\mathbf{x},l_{i}) = \sum_{r} \hat{\mathbf{W}}_{s}(\mathbf{x},t,l_{i}) \hat{\mathbf{W}}_{r}(\mathbf{x},t,l_{i})$

 $=\beta_i^2 \hat{\mathbf{R}}_1(\mathbf{x}, I_i)$

 $= \beta_i^2 \sum_{\mathbf{x}} \mathbf{W}_s(\mathbf{x}, t, l_i) \mathbf{W}_r(\mathbf{x}, t, l_i)$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{I}) = \sum \mathsf{W}_s(\mathsf{x},t,\mathsf{I}) \mathsf{W}_r(\mathsf{x},t,\mathsf{I})$$

$$\hat{R}_1(x, l) = \sum W_c(x, t, l)W_c(x, t, l)$$

$$\hat{\mathbf{R}}_{\mathbf{r}}(\mathbf{x},\mathbf{l}) = \sum_{i} \mathbf{W}_{i}(\mathbf{x},t,\mathbf{l}) \mathbf{W}_{i}(\mathbf{x},t,\mathbf{l})$$

$$\hat{\mathsf{R}}_1(\mathsf{x},\mathsf{I}) = \sum_t \mathsf{W}_s(\mathsf{x},t,\mathsf{I}) \mathsf{W}_r(\mathsf{x},t,\mathsf{I})$$

$$\hat{m{\mathsf{W}}}_{s}(\mathbf{\mathsf{x}},t,\mathit{l}_{i})=eta_{i}m{\mathsf{W}}_{s}(\mathbf{\mathsf{x}},t,\mathit{l}_{i})$$

(4)

(5)

(6)

(7)

$$\hat{\mathbf{W}}_s(\mathbf{x},t,l_i) = eta_i \mathbf{W}_s(\mathbf{x},t,l_i)$$
 $\hat{\mathbf{W}}_r(\mathbf{x},t,l_i) = eta_i \mathbf{W}_r(\mathbf{x},t,l_i)$

$$\hat{\mathbf{R}}_2(\mathbf{x}, l_i) = \sum_t \hat{\mathbf{W}}_s(\mathbf{x}, t, l_i) \hat{\mathbf{W}}_r(\mathbf{x}, t, l_i)$$

$$\mathbf{K}_{2}(\mathbf{x}, l_{i}) = \sum_{t} \mathbf{W}_{s}(\mathbf{x}, t, l_{i}) \mathbf{W}_{r}(\mathbf{x}, t, l_{i})$$

$$= \beta_{i}^{2} \sum_{t} \mathbf{W}_{s}(\mathbf{x}, t, l_{i}) \mathbf{W}_{r}(\mathbf{x}, t, l_{i})$$

$$= \beta_i^2 \sum_t \mathbf{W}_s(\mathbf{x}, t, l_i) \mathbf{W}_r(\mathbf{x}, t, l_i)$$

$$=\beta_i^2 \hat{\mathbf{R}}_1(\mathbf{x}, I_i)$$

 \triangleright β_i scalar \in (0,1) $\triangleright \sum_i \beta_i = 1$

$$\hat{\mathsf{R}}_2(\mathsf{x},\mathit{l}_i) = \beta_i^2 \hat{\mathsf{R}}_1(\mathsf{x},\mathit{l}_i)$$

$$\hat{\mathbf{p}}$$
 (v. 1) = $\beta^2 \hat{\mathbf{p}}$ (v. 1)

$$\hat{\mathsf{R}}_2(\mathsf{x},\mathit{l}_i) = \beta_i^2 \hat{\mathsf{R}}_1(\mathsf{x},\mathit{l}_i)$$

$$\beta_i^2 \to \alpha_i \in (-1, 1) \tag{9}$$

(8)

$$\hat{\mathbf{R}}_{2}(\mathbf{x}, l_{i}) = \beta_{i}^{2} \hat{\mathbf{R}}_{1}(\mathbf{x}, l_{i})$$

$$\beta_{i}^{2} \to \alpha_{i} \in (-1, 1)$$
(8)

(10)

$$\hat{\mathbf{R}}_3(\mathbf{x}) = \sum_{\alpha} \alpha_i \hat{\mathbf{R}}_1(\mathbf{x}, I_i)$$

▶ Allows for truncation or subtraction of pyramid levels.

Migrated image: truncate at level 4 (include all levels)

Migrated image: truncate at level 3

Migrated image: truncate at level 2

Migrated image: truncate at level 1

Conclusions

- Backscattering not attenuated using proposed multi-scale imaging condition
- ► Sharpening of horizontal reflectors can occur at certain truncation levels
- ▶ Truncating levels can reverse polarity of image events
- ► Future work: more complex image pyramids, other decompositions

Backup slides follow

Image pyramid theory

$$\mathbf{G}_j = \mathbf{B}_{j-1} \mathbf{A}_{j-1} \mathbf{G}_{j-1}.$$

(11)

(12)

(13)

$$\mathbf{C} = \mathbf{A}^T \mathbf{B}^T \mathbf{C}$$

$$\mathbf{G}_{j+1} = \mathbf{A}_j \; \mathbf{B}_j \; \mathbf{G}_j.$$

$$\mathbf{G}_{j+1} = \mathbf{A}_j^T \mathbf{B}_j^T \mathbf{G}_j.$$

 $\mathbf{L}_k = \mathbf{G}_k - \mathbf{G}_{k+1,1}.$