Advanced R: Statistical Machine Learning

Dan Schmutz, MS Chief Environmental Scientist

Zoom Workshop for SJRWMD September 24, 2020

Decision Trees

recursive binary splits

Starting with all data, recursive, greedy binary splits are made using the Gini impurity measure (classification) or RMSE (regression).

Fitting tree (rpart) model to train

 notice we don't need to preprocess nominal variables using one-hot encoding because trees handle mixed variable types easily

```
rp_ttrain4cl <- rpart(
  formula = Survived2 ~ .,
  data = ttrain4,
  method = "class"
)</pre>
```

summary of rpart object

```
> summary(rp_ttrain4cl)
Call:
rpart(formula = Survived2 ~ .. data = ttrain4, method = "class")
 n= 891
         CP nsplit rel error
                               xerror
                                            xstd
1 0.4444444
                 0 1.0000000 1.0000000 0.04244576
2 0.03070175
                 1 0.5555556 0.5555556 0.03574957
3 0.02339181
                 3 0.4941520 0.4941520 0.03421740
                 4 0.4707602 0.4941520 0.03421740
4 0.02046784
                 5 0.4502924 0.5146199 0.03474917
5 0.01461988
6 0.01000000
                 6 0.4356725 0.4970760 0.03429471
Variable importance
            Fare Pclass2
                                              SibSp Embarked
 Gender
                              Age
                                      Parch
              16
                                                  6
Node number 1: 891 observations. complexity param=0.4444444
 predicted class=0 expected loss=0.3838384 P(node) =1
   class counts:
                   549 342
  probabilities: 0.616 0.384
 left son=2 (577 obs) right son=3 (314 obs)
 Primary splits:
     Gender splits as RL.
                                      improve=124.42630, (0 missing)
     Pclass2 splits as LRR,
                                      improve= 43.78183, (0 missing)
              < 10.48125 to the left, improve= 37.94194, (0 missing)
     Fare
     Embarked splits as RLL.
                                      improve= 11.92920, (0 missing)
                         to the right, improve= 10.05326, (0 missing)
              < 6.5
     Age
 Surrogate splits:
     Fare < 77.6229 to the left, agree=0.679, adj=0.089, (0 split)
     Parch < 0.5
                     to the left, agree=0.678, adj=0.086, (0 split)
     Age < 15.5
                     to the right, agree=0.651, adi=0.010, (0 split)
```

Plot of decision tree: succinct rules-based categorization

rpart.plot(rp_ttrain4cl)

Behind the scenes rpart is using 10fold cv to select optimal complexity plotcp(rp_ttrain4cl) parameter

Rules for classifying future observations, with probabilities

Variable importance to building the tree

vip(rp_ttrain4cl)

Partial dependence plots

Partial dependence plot using 3 variables

What happens if we relax the complexity parameter?

```
rp_ttrain4clmany <- rpart(
  formula = Survived2 ~ .,
  data = ttrain4,
  method = "class",
  cp = 0.000001
)
rpart.plot(rp_ttrain4clmany)</pre>
```

With cp = 0.000001 we grow an unnecessarily complex tree

How do our trees perform on train and test?

```
# evaluating parsimonious and overfit models on train and test pred_rp_ttrain4cl_train<-predict(rp_ttrain4cl, newdata=ttrain4) pred_rp_ttrain4cl_test<-predict(rp_ttrain4cl, newdata=ttest4) pred_rp_ttrain4clmany_train<-predict(rp_ttrain4clmany, newdata=ttrain4) pred_rp_ttrain4clmany_test<-predict(rp_ttrain4clmany, newdata=ttest4)
```

Output from the predictions is again a probability

hist(pred_rp_ttrain4cl_train) # base r histogram works here for quick look at the data

Evaluation comparison

- Plot ROC curves and AUC results for each
- Calculate overall accuracy for each

```
> summary(pred_rp_ttrain4cl_train)
       :0.0000
               Min.
                        :0.1111
               1st Qu.:0.1682
1st Qu.:0.3818
Median :0.8318 Median :0.1682
     :0.6162 Mean
                       :0.3838
 3rd Qu.:0.8318
               3rd Qu.:0.6182
       :0.8889
               Max.
> str(pred_rp_ttrain4cl_train)
num [1:891, 1:2] 0.8318 0.0529 0.3818 0.0529 0.8318 ...
 - attr(*, "dimnames")=List of 2
 ..$ : chr [1:891] "1" "2" "3" "4" ...
  ..$: chr [1:2] "0" "1"
```

Output from rpart is a matrix, so need to extract the probability of 1 only for evaluation pred_rp_ttrain4cl_train[,2] to extract the second column

ROC, AUC on train for parsimonious model

pred_rp_ttrain4cl_train[,2]

ROC, AUC on test for parsimonious model

pred_rp_ttrain4cl_test[,2]

ROC, AUC on train for overfit model

pred_rp_ttrain4clmany_train[,2]

ROC, AUC on test for overfit model

pred_rp_ttrain4clmany_test[,2]

GPI

confusionMatrix for parsimonious model (train and test)

```
> confusionMatrix(factor(predclass$predclas
> confusionMatrix(factor(predclass$predclas
                                                    s).ttest4$Survived2)
s),ttrain4$Survived2)
                                                    Confusion Matrix and Statistics
Confusion Matrix and Statistics
                                                              Reference
         Reference
                                                    Prediction 0 1
Prediction 0 1
                                                             0 210 51
        0 498 98
                                                             1 40 94
        1 51 244
                                                                  Accuracy : 0.7696
              Accuracy: 0.8328
                                                                     95% CI: (0.7249, 0.8103)
                95% CI: (0.8066, 0.8567)
                                                        No Information Rate: 0.6329
   No Information Rate: 0.6162
                                                        P-Value [Acc > NIR] : 3.776e-09
   P-Value [Acc > NIR] : < 2.2e-16
                                                                     Kappa: 0.4962
                 Kappa : 0.6371
                                                     Mcnemar's Test P-Value: 0.2945
Mcnemar's Test P-Value: 0.0001643
                                                                Sensitivity: 0.8400
           Sensitivity: 0.9071
                                                                Specificity: 0.6483
           Specificity: 0.7135
                                                             Pos Pred Value: 0.8046
        Pos Pred Value: 0.8356
                                                             Neg Pred Value: 0.7015
        Neg Pred Value: 0.8271
                                                                 Prevalence: 0.6329
            Prevalence: 0.6162
                                                             Detection Rate: 0.5316
        Detection Rate: 0.5589
                                                       Detection Prevalence: 0.6608
  Detection Prevalence: 0.6689
                                                          Balanced Accuracy: 0.7441
     Balanced Accuracy: 0.8103
                                                           'Positive' Class: 0
       'Positive' Class: 0
```

GP

confusionMatrix for overfit model (train and test)

```
> confusionMatrix(factor(predclass$predclas
> confusionMatrix(factor(predclass$predclas
                                                     s),ttest4$Survived2)
s),ttrain4$Survived2)
                                                     Confusion Matrix and Statistics
Confusion Matrix and Statistics
                                                               Reference
         Reference
                                                     Prediction 0 1
Prediction 0 1
                                                              0 198 57
        0 501 75
                                                              1 52 88
        1 48 267
                                                                    Accuracy: 0.7241
              Accuracy: 0.862
                                                                      95% CI: (0.6771, 0.7676)
                95% CI: (0.8375, 0.8839)
                                                         No Information Rate: 0.6329
   No Information Rate: 0.6162
                                                         P-Value [Acc > NIR] : 7.882e-05
   P-Value [Acc > NIR] : < 2e-16
                                                                      Kappa : 0.4018
                 Kappa: 0.7037
                                                      Mcnemar's Test P-Value: 0.7016
 Mcnemar's Test P-Value: 0.01906
                                                                 Sensitivity: 0.7920
           Sensitivity: 0.9126
                                                                 Specificity: 0.6069
           Specificity: 0.7807
                                                              Pos Pred Value: 0.7765
        Pos Pred Value: 0.8698
                                                              Neg Pred Value: 0.6286
         Neg Pred Value: 0.8476
                                                                  Prevalence: 0.6329
            Prevalence: 0.6162
                                                              Detection Rate: 0.5013
        Detection Rate: 0.5623
                                                        Detection Prevalence: 0.6456
   Detection Prevalence: 0.6465
                                                           Balanced Accuracy: 0.6994
      Balanced Accuracy: 0.8466
                                                            'Positive' Class: 0
       'Positive' Class: 0
```