Domande per verificare la comprensione del significato di errori del II tipo e di potenza.

N.B. Spesso le domande contengono informazioni irrilevanti.

Quesito 1. Preleviamo un campione di rango n=4 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=5$. La media μ invece potrebbe avere uno qualsiasi dei tre valori 2, 5, o 9.

Vogliamo testare $H_0: \mu = 5$ contro $H_A: \mu \in \{2, 9\}$. Fissiamo come significatività $\alpha = 0.02$ otteniamo che l'intervallo critico è per uno z-test a due code è [2.43, 7.57].

Qual è la potenza del test? Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Notazione: $\bar{X} \sim N(2, \sigma^2/n)$

Il caso in cui H_A meno distante da H_0 si verifica quando $\mu = 2$. Calcoliamo la probabilità di un errore del II tipo (falso negativo) in questo caso

$$\beta \ = \ \Pr \left({2.43 \le \bar X \le 7.57} \right) \ = \ \Pr \left({\frac{{0.43}}{{\sigma /\sqrt n }}} \ \le \ \frac{{\bar X} - 2}{{\sigma /\sqrt n }} \ \le \ \frac{{5.57}}{{\sigma /\sqrt n }} \right) \ = \ \Pr \left({0.172 \le Z \le 2.228} \right)$$

$$\beta \ \le \ \operatorname{norm.cdf} \left({2.228} \right) \ - \ \operatorname{norm.cdf} \left({0.172} \right) \ = \ 0.4188$$
 Risposta

Quesito 2. Preleviamo un campione di rango n=9 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=3$. La media μ invece potrebbe avere uno qualsiasi valori dei nell'intervallo [1, 4].

Vogliamo testare $H_0: \mu = 1$ contro $H_A: \mu \in (1,4]$. Fissiamo come significatività $\alpha = 0.1$ otteniamo che per uno z-test a coda superiore l'intervallo critico è $[2.282, +\infty)$.

- 1. Nel caso $H_A: \mu \in (3, 4]$ qual'è la massima probabilità β di non rigettare H_0 (errore II tipo)?
- 2. Calcolare la potenza del test con l'effect-size suggerito nel punto precedente.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Il caso più sfavorevole si ottiene quando $\mu=3$. Sia $\bar{X}\sim N(3,\ \sigma^2/n)$

$$\beta = \Pr\left(\bar{X} < 2.282\right) = \Pr\left(\frac{\bar{X} - 3}{\sigma/\sqrt{n}} < \frac{-0.718}{\sigma/\sqrt{n}}\right) = \Pr\left(Z < -0.718\right)$$

$$\beta = \operatorname{norm.cdf}(-0.718) = 0.2364$$
Risposta 1

Con un effect size $\delta=2$ la potenza del test è $1-\beta=1$ - norm.cdf(-0.718) = 0.7636 Risposta 2

Quesito 3. Vogliamo testare $H_0: \mu = \mu_0$ contro $H_A: \mu > \mu_0$ per una popolazione distribuita normalmente con deviazione standard nota σ . Fissiamo una significatività α e una potenza $1 - \beta$. L'effect-size che ci interessa è δ . Esprimere, in funzione dei parametri che assumiamo noti, le condizioni cui deve soddisfare il rango n del campione.

Risposta

Il rango necessario è il minimo ntale che $\Pr\left(Z<\frac{x_\alpha-\mu_0-\delta}{\sigma/\sqrt{n}}\right)\leq \beta$

dove
$$x_{\alpha}$$
 tale che $\Pr\left(Z \geq \frac{x_{\alpha} - \mu_0}{\sigma/\sqrt{n}}\right) = \alpha$

Risposta

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats

$$exttt{norm.cdf(z)} = \Pr ig(Z < exttt{z} ig) \ \mathrm{per} \ Z \sim N(0,1)$$

$$\texttt{norm.ppf(}\alpha\texttt{)} = z_{\alpha} \text{ dove } z_{\alpha} \text{ è tale che } \Pr\big(Z < z_{\alpha}\big) = \alpha \text{ per } Z \sim N(0,1)$$