# Laboratorio 1 - Simulación en Proteus

### Parte 1. Código en MPLAB

1. Cree un proyecto nuevo en MPLAB (siga el tutorial anterior)



3. Haga el header del archivo, colocando la información importante. Note que todo lo verde son comentarios.

```
1
       ; Archivo:
                       main.S
2
        ; Dispositivo: PIC16F887
 3
        ; Autor:
                       José Morales
 4
         Compilador:
                       pic-as (v2.30), MPLABX V5.40
5
       ;
 6
                       contador en el puerto A
       ; Programa:
7
       ; Hardware:
                       LEDs en el puerto A
8
9
       ; Creado: 1 feb, 2021
       ; Última modificación: 1 feb, 2021
10
```

 Copie la palabra de configuración. Ésta indica la configuración básica del microcontrolador. Asegurese que el oscilador en interno (FOSC\_INTRC\_NOCLKOUT)

5. Copie las variables que se van a utilizar.

```
PSECT udata_bank0 ;common memory
cont_small: DS 1 ;1 byte
cont_big: DS 1
```

6. Copie las instrucciones del vector de reset

```
PSECT resVect, class=CODE, abs, delta=2
;-----vector reset-----
ORG 00h    ;posición 0000h para el reset
resetVec:
    PAGESEL main
    goto main
```

7. Copie la configuración del microcontrolador

```
PSECT code, delta=2, abs
ORG 100h ; posición para el código
;----configuración-----
main:
         STATUS, 5; banco 11
   bsf
   bsf
         STATUS, 6
   clrf ANSEL ; pines digitales
   clrf ANSELH
        STATUS, 5 ; banco 01
   bsf
   bcf STATUS, 6
   clrf TRISA ; port A como salida
   bcf
         STATUS, 5; banco 00
          STATUS, 6
   bcf
8. Copie el loop princial
 ;-----loop principal-----
 loop:
     incf PORTA, 1
     call delay big
     goto loop ; loop forever
```

### 9. Copie la subrutina de delay

```
-----sub rutinas------
delay_big:
                        ; valor inicial del contador
  movlw
          50
  movwf cont big
        delay small ; rutina de delay
  call
  decfsz cont_big, 1
                        ; decrementar el contador
                         ; ejecutar dos líneas atrás
  goto
  return
delay_small:
  movlw
          150
                        ; valor inicial del contador
  movwf cont small
  decfsz cont small, 1 ; decrementar el contador
          $-1
                         ; ejecutar línea anterior
  goto
  return
```

## 10. Termine el código

return

11. Construya el proyecto en cualquiera de los dos martillos



12. Copie el directorio donde se creó el archivo de programación "\*.hex"

```
Copyright (c) 1998-2011 Microchip Technology Inc.

Errors : 0

make[2]: Leaving directory 'C:/Users/Mining/MPLABXProjects/clases.X'

make[1]: Leaving directory 'C:/Users/Mining/MPLABXProjects/clases.X'

BUILD SUCCESSFUL (total time: 2s)

Loading code from C:/Users/Mining/MPLABXProjects/clases.X/dist/default/production/clases.X.production.hex...

Loading completed
```

#### Parte 2. Prueba en Proteus

1. Como se vio en clase, haga un proyecto nuevo.

2. Ingrese el pic16F887 a proteus.



3. Agregue los LEDS y Resistencias en el Puerto A (RAO, RA1, RA2, RA3, RA4, RA5, RA6, RA7)





5. Pruebe su funcionamiento

## Parte 3. Configuración del delay

El Oscilador interno por defaul corre a FOSC = 4MHz. Cada instrucción se realiza en FOSC / 4.

- 1. Configure el DELAY\_SMALL a 50uS
- 2. Configure el DELAY\_BIG a 100mS
- 3. Muestre su funcionamiento al profesor o auxiliar