MACHINE LEARNING

IMAGE RECOGNITION

Sebastian Engelke

MASTER IN BUSINESS ANALYTICS

Example: handwritten digit classification

Dataset from [ESL] webpage. Normalized handwritten digits (16×16 grayscale images), automatically scanned from envelopes by the U.S. Postal Service. Observations consists of the digit $y_i \in \{0, \dots, 9\}$ and the p = 256 grayscale values $x_i = (x_{i1}, \dots, x_{i256})$. The training and test sets contain 7290 and 2006 examples, respectively.

Digital black-white images

Two-class classification: one predictor

- Value at Pixel 1 (blue cross) is the predictor
 X₁ = "value at Pixel 1" ∈ [-1,1]
- ▶ The class is $Y \in \{0,1\} = \{\text{zero}, \text{one}\}$
- ► We apply logistic regression to obtain a classifier based only on Pixel 1:

$$\widehat{G}(x) = egin{cases} ext{zero} & ext{if (Pixel 1)} < 0.45 \\ ext{one} & ext{otherwise.} \end{cases}$$

Two-class classification: two predictors

- ▶ p = 2: Predictors are $X_1 =$ "value at Pixel 1" $\in [-1, 1]$ $X_2 =$ "value at Pixel 2" $\in [-1, 1]$
- ▶ The class is $Y \in \{0,1\} = \{\text{zero}, \text{one}\}$
- ► We apply logistic regression to obtain a classifier based only on X_1 and X_2 .

- ▶ p = 2: Predictors are $X_1 = \text{"value at Pixel 1"} \in [-1, 1]$ $X_2 = \text{"value at Pixel 2"} \in [-1, 1]$
- The class is
 Y ∈ {0,1,...,9} = {zero, one,..., nine}
- ► We can apply multinomial regression, based on X_1 and X_2 , but with only two pixels this a very hard task!
- ► Luckily we have *p* = 256 predictors (pixel values) to perform this task...

Digit classification

- ▶ Training data: $(x_1, y_1), \dots, (x_n, y_n), n = 7290$, are used for model fitting/selection, where ▶ predictors $x_i = i$ -th image $\in \mathbb{R}^p$ are the grayscale values of the p = 256 pixels;
 - outcomes $y_i = i$ -th digit $\in \{\text{zero}, \text{one}, \dots, \text{nine}\}$.
- ▶ **Test data**: $(\tilde{x}_1, \tilde{y}_1), \dots, (\tilde{x}_m, \tilde{y}_m), m = 2006$, are <u>not used</u> for model fitting/selection, but only to evaluate the performance afterwards.
- linreg: direct linear regression
- ▶ <u>LDA1</u>: LDA based on the values x_i
- ▶ LDA2: LDA based on x_i and x_i^2
- QDA: different cov. matrix for each class
- log: logistic regression (multinomial)

	Training error	Test error
linreg	7.6%	13.1%
LDA1	6.2%	11.5%
LDA2	3.9%	10.2%
QDA	1.8%	13.5%
log	0.01%	11.1%

QDA is worst of the four methods since its variance is too high (overfitting).

Digit classification: visualization of LDA1

- ▶ Figure shows estimates $\widehat{\mu}_1, \dots, \widehat{\mu}_q$ for LDA1.
- ► This gives an impression of the centers of the classes, i.e., how American people write in ''average'' the 10 digits.

Example: digit classification

The table shows some misclassified test data from LDA1. The 10 columns on the right give the predicted class probabilities (in %) for $k \in \{0, \dots, 9\}$.

Obs		0	1	2	3	4	5	6	7	8	9
9	(6)	59	0	0	0	0	0	40	0	0	0
J	(2)	94	0	0	6	0	0	0	0	0	0
3	(3)	0	0	0	11	0	0	0	0	89	0
3	(3)	0	0	0	1	0	99	0	0	0	0
ક	(8)	1	0	0	81	1	11	0	0	5	0
¥/	(4)	0	0	0	0	15	0	0	0	0	85
7	(9)	0	0	0	0	0	0	0	100	0	0
9	(2)	100	0	0	0	0	0	0	0	0	0

Digit classification with regularization

- We can update our results on the digit classification.
- ► When estimating the logistic mulitnomial regression, we introduce a ridge penality and a lasso penality in the likelihood.
- ▶ The value of $\hat{\lambda}$ for the tuning parameters were found by 5-fold CV.
- ▶ linreg: direct linear regression;
- ▶ LDA1: LDA based on the values *x_i*;
- ▶ LDA2: LDA based on x_i and x_i^2 ;
- QDA: different cov. matrix for each class;
- log: logistic regression (multinomial).
- log-ridge: logistic regression (multinomial)
 with ridge penality.
- log-lasso: logistic regression (multinomial)
 with lasso penality.

	Training error	Test error
linreg	7.6%	13.1%
LDA1	6.2%	11.5%
LDA2	3.9%	10.2%
QDA	1.8%	13.5%
log	0.01%	11.1%
log-ridge	4.1%	9.0%
log-lasso	2.7%	8.8%