# **Nondeterministic Finite Automata**

So far, we have been talking about deterministic finite automata (DFA)

A Nondeterministic finite automata (NFA) is essentially a DFA but we can have multiple transitions per string

Ways to think about the nondeterminism:

- Computational: fork new parallel thread whenever you have multiple options and accept if any thread reaches accept
- Mathematical: tree with branches and accept if any branch reaches accept
- Magical: guess at each step which way to go, and a machine will always make a right guess that leads to accepting



An empty string  $\varepsilon$  automatically produces a fork (either you move along it or you don't)

#### ■ Nondeterministic Finite Automaton

A nondeterministic finite automaton N is a 5-tuple  $N=(Q,\Sigma,\delta,q_0,F)$ 

Same as before except for  $\delta$ 

$$\delta: Q imes \underbrace{\Sigma_arepsilon}_{\Sigma \cup \{arepsilon\}} o \underbrace{\mathcal{P}(Q)}_{ ext{power set}} = \{R | R \subseteq Q\}$$

ullet Power set of Q is the set of all subsets of Q

### ■ NFAs and Languages

If A=L(N) for NFA N then A is regular

#### **Proof:**

Let  $N=(Q,\Sigma,\delta,q_0,F)$  and we wish to construct some DFA  $M=(Q',\Sigma,\delta',q_0',F')$ . The idea is that we want to capture in our DFA all possible subsets that we could be at in N

- Q' = (Q) = power set of Q
- $\delta'(R,a) = \{q | q \in \delta(r,a) \text{ for some } r \in R\}$ 
  - $\circ R \in Q'$
  - o Needs to be slightly modified to include empty transitions
- $q_0' = \{q_0\}$
- $\bullet \ \ F' = \{R \in Q' | R \cap F \neq \emptyset\}$

# **Proving Closure Properties with NFAs**

# Proposition: Closure under Union

If  $A_1,A_2$  are regular languages, so is  $A_1\cup A_2$ 

#### Proof:

We wish to construct an NFA M that accepts both  $A_1$  and  $A_2$ 

We just construct a new NFA such that it has a single starting state that has two outgoing  $\varepsilon$  transitions to start state of  $M_1$  and  $M_2$ .



# **■** Proposition: Closure under Concatenation

If  $A_1,A_2$  are regular languages, so is  $A_1\circ A_2$ 

#### **Proof**:

We wish to construct an NFA M that accepts all inputs w=xy where  $x\in A_1$  and  $y\in A_2$ 

We include  $M_1$ , and we make all accept states of  $M_1$  no longer accept. Then we add transitions with empty string from all of those to the start state of  $M_2$ .



## Proposition: Closure under Klein Star

If A is a regular language, so is  $A^*$ 

#### **Proof**:

We wish to construct an NFA  $M^\prime$  from M such that A=L(M) and  $A^*=L(M^\prime)$ 

We create a start state that leads to the start of M with a  $\varepsilon$  transition (this ensures that M' accepts  $\varepsilon$ )

- All accept states of M remain accept states but they all have a arepsilon transition to the start of M



# Proposition: Regular Expressions can be Converted to NFAs

Given a regular expression R, we can make a corresponding NFA with the same langauge as R

#### **Proof:**

If R is atomic, we have the following easy NFAs we can make:

# If R is atomic: Equivalent M is: $R = a \text{ for } a \in \Sigma \qquad \longrightarrow \bigcirc$ $R = \varepsilon \qquad \longrightarrow \bigcirc$ $R = \emptyset \qquad \longrightarrow \bigcirc$

ullet could be considered as a single symbol, but it can also be done through composition of atomic expressions so it is fine to not include it

All compositions of atomic expressions with  $\cup$ ,  $\circ$ , \* can all be made using the closure properties.

# **6** Goal

We've done (the easier) half of showing that regular expressions are equivalent to FAs

To prove that a DFA can be converted to a regular expression, we need another concept first: Generalized Nondeterministic Finite Automata