

# Credit Risk Analysis

(Group Case Study)

Ву

Akansha Khandelwal

And

Neelanjan Basu

# 2 Agenda

| Topic                            | Section |
|----------------------------------|---------|
| Business Objective               | 3       |
| Dataset Parameters               | 4 – 7   |
| Univariate & Bivariate Analysis  | 8 – 59  |
| Observations and Recommendations | 60 - 61 |

- The EDA analyze the current and historical loan data, to let the loan providing companies (or banks) know the driving parameters/indicators based on which the bank employees can decide on the loan application based on the applicant's profile and credit history (if any).
- There are mainly two risks involved with the bank decision
  - If the applicant is likely to repay the loan, then not approving the loan results in a loss of business to the company
  - If the applicant is not likely to repay the loan, i.e. he/she is likely to default, then approving the loan may lead to a financial loss for the company.

### Dataset and its Parameters

As part of the case study 3 datasets were provided as follows

- 'application\_data.csv' contains all the information of the client at the time of application.
  The data is about whether a client has payment difficulties.
- 'previous\_application.csv' contains information about the client's previous loan data. It contains the data whether the previous application had been Approved, Cancelled, Refused or Unused offer.
- 'columns\_description.csv' is data dictionary which describes the meaning of the variables.

## Dataset and its Parameters (continued...)

As part of the analysis, 'application\_data.csv' contains around 122 columns and 'previous\_application.csv' contains around 37 columns, which we would use here as

part of our analysis.

- For the dataset 'application\_data.csv' there are around 49 columns which have more than 45% null values
- For the dataset 'previous\_application.csv' there are around 05 columns which have more than 40% null values
- As part of the data understanding and cleaning, we will drop columns having nulls values > 45% from 'application\_data.csv' and > 40% for 'previous\_application.csv' while merging.

```
      RATE_INTEREST_PRIVILEGED
      99.643698

      RATE_INTEREST_PRIMARY
      99.643698

      RATE_DOWN_PAYMENT
      53.636480

      AMT_DOWN_PAYMENT
      53.636480

      NAME_TYPE_SUITE
      49.119754
```

For our benefit during the EDA, we have categorized the individual dataset columns as below.

#### Dataset: 'application\_data.csv'

- User Demographics
  - Gender
  - House/Car Ownership
  - Age
  - Family
  - Education
  - Income
  - Employment
  - Marital Status
  - Residence
  - Contact Rating

- User Actions / Ratings and Social Value
  - ID change
  - External Rating
  - Social Rating/Observations
  - Loan Enquiries
- Loan Summary
  - Loan Type
  - Loan Amount
  - Loan Process
  - Loan Documents

For our benefit during the EDA, we have categorized the individual dataset columns as below.

Dataset: 'previous\_application.csv'

- Loan Summary
  - Loan Type
  - Loan Status
  - Loan Purpose
  - Loan Process
  - Loan Amount
  - Loan Interest
  - Loan Repayment

Please note to keep the presentation short we will not add any univariate/bivariate analysis of the dataset 'previous\_application.csv'. All can be found in the 2<sup>nd</sup> Jupyter notebook.

Anything variables required have fetched it in the main dataset and analyzed it at the end.

# Total Applicant - Defaulter / Non-Defaulter Analysis

#### **Defaulter / Non-Defaulter Percentage**



| Loan Application % (Non-Defaulter) | Loan Application %<br>(Defaulter) |
|------------------------------------|-----------------------------------|
| 91.9%                              | 8.1%                              |

#### **Summary:**

Overall, 8.1% of the population have defaulted or having payment difficulties in repaying the loans

# Gender Analysis - User Demographics

#### **Gender % Vs Loan Applications**



#### Gender % Vs Loan Applications (Defaulter/Non-Defaulter)



| Gender    | Loan Application % | Loan Application % (Non-Defaulter) | Loan Application %<br>(Defaulter) |
|-----------|--------------------|------------------------------------|-----------------------------------|
| Male(M)   | 34.16%             | 89.81%                             | 10.19%                            |
| Female(F) | 65.84%             | 92.96%                             | 7.04%                             |

04/08/2021

### Gender Analysis - User Demographics (continued..)

- Gender contains 0% null values
- Females (65.75%) have more loan applications than Males (34.25%).
- Males (10%) tends to default loans more than Females (7.04%).
  Therefore, even Females apply for loans more than Males, Males tend to default more than Females

| Gender    | Loan Application % | Loan Application % (Non-Defaulter) | Loan Application %<br>(Defaulter) |
|-----------|--------------------|------------------------------------|-----------------------------------|
| Male(M)   | 34.25%             | 89.81%                             | 10.19%                            |
| Female(F) | 65.75%             | 92.96%                             | 7.04%                             |

## House/Car Ownership Analysis - User Demographics

#### Own Car % Vs Loan Applications



# Own Car % Vs Loan Applications (Defaulter/Non-Defaulter)



| Own Car? | Loan Application % | Loan Application % (Non-Defaulter) | Loan Application % (Defaulter) |
|----------|--------------------|------------------------------------|--------------------------------|
| Yes      | 34%                | 92.75%                             | 7.25%                          |
| No       | 66%                | 91.43%                             | 8.57%                          |

# House/Car Ownership Analysis - User Demographics (continued..)

#### Own House % Vs Loan Applications



# Own House % Vs Loan Applications (Defaulter/Non-Defaulter)



| Own House ? | Loan Application % | Loan Application % (Non-Defaulter) | Loan Application %<br>(Defaulter) |
|-------------|--------------------|------------------------------------|-----------------------------------|
| Yes         | 69.3%              | 92%                                | 8%                                |
| No          | 30.7%              | 91.61%                             | 8.39%                             |

### House/Car Ownership Analysis - User Demographics (continued..)

#### Own House/Car Vs Count of Defaulters (in %)

| Own Car | Own House | Loan Application % (Non-Defaulter) |
|---------|-----------|------------------------------------|
| Yes     | No        | 10.48%                             |
| No      | No        | 20.15%                             |
| Yes     | Yes       | 23.5%                              |
| No      | Yes       | 45.83%                             |

- House and Car owned variable contains 0% null values
- Applicants who own Realty tends to apply for loan the most and default the most. It maybe because they have more commitments hence need further analysis.
- The second highest defaulters are applicants who own both House and a Car.
- Applicants who own a Car is the less likely to default.



# Age Analysis - User Demographics

# Age Vs Loan Applications (Defaulter/Non-Defaulter)



Target = 0 (Non-Defaulter)
Target = 1 (Defaulter)

#### **Actions:**

The 'DAYS\_BIRTH' in the dataset was provided in days hence converting the same into Year as a new dataset column 'AGE'

- AGE contains 0% null values
- Clients in the age group > 40 are less likely to default loans

# **Employment Analysis – Income Type**

#### **Income Type Vs Loan Applications**



# Income Type Vs Loan Applications (Defaulter/Non-Defaulter)



### Employment Analysis - Income Type (continued....)

# Top 3 Income Type Vs Loan Applications (%)

| Income Type          | Loan Application % |
|----------------------|--------------------|
| Working              | 51.63%             |
| Commercial associate | 23.29%             |
| Pensioner            | 18%                |

# Top 3 Income Type Vs Loan Applications (Defaulter)

| Income Type          | Loan Application % |
|----------------------|--------------------|
| Maternity Leave      | 40%                |
| Unemployed           | 36.36%             |
| Commercial Associate | 7.48%              |

- ❖ NAME\_INCOME\_TYPE contains 0% null values
- 'Working' / 'Commercial associate' / Pensioner are the Top 3 loan applicants.
- Applicants having Income type as Maternity Leave or Unemployed are the highest defaulters though they are not in the Top 3 applicant list.
- Commercial Associates reflect in the Top 3 defaulter / Loan applicant list hence will have a larger impact if 7.48% Commercial associate defaults

### **Employment Analysis – Years Employed**

#### **Employed (Years) Vs Loan Applications**



- \* 'DAYS\_EMPLOYED' contains 0% null values
- There are Applicants having 1000 years of experience which doesn't seem to be correct. Hence excluding the same while plotting 'DAYS EMPLOYED'
- Applicants who have less than 8 years of experience tend to default more.

## **Employment Analysis – Occupation Type**

#### Occupation Type Vs Loan Applications (Non-Defaulter)



All the occupation Non-default % bar seems to be of the same range except "Low skill Labourers" / "Labourers" / "Cooking Staff" / "Waters/bamen staff" / "Security Staff"

# Employment Analysis - Occupation Type (continued....)

#### Occupation Type Vs Loan Applications (Defaulter)



All the occupation Non-default % bar seems to be of the same range except "Low skill Labourers" / "Labourers" / "Cooking Staff" / "Waters/bamen staff" / "Security Staff"

### Employment Analysis - Occupation Type (continued....)

Top 5
Occupation Type Vs Loan Applications (Non-Defaulter)

| Occupation Type         | Loan Application % |
|-------------------------|--------------------|
| Accountants             | 95.17%             |
| High Skilled Tech Staff | 93.84%             |
| Managers                | 93.79%             |
| Core staff              | 93.70%             |
| HR Staff                | 93.61%             |
| / IT Staff              | 93.54%             |

Top 5
Occupation Type Vs Loan Applications (Defaulter)

| Occupation Type       | Loan Application % |
|-----------------------|--------------------|
| Low skilled Labourers | 17.15%             |
| Drivers               | 11.33%             |
| Waters\bamen staff    | 11.28%             |
| Security Staff        | 10.74%             |
| Labourers             | 10.58%             |

Top 5
Occupation Type Vs Loan Applications

| Occupation Type | Loan Application % |
|-----------------|--------------------|
| Laborers        | 31.47%             |
| Sales staff     | 16.67%             |
| Drivers         | 11.36%             |
| Core staff      | 9.37%              |
| Managers        | 7.16%              |

- \* 'OCCUPATION\_TYPE' contains 31% null values. Without a logical reason if we imputing value may introduce in an imbalance hence have not imputed the column.
- We have listed the Top5 Defaulter/ Non-Defaulter occupations for reference.
- Laborers / Drivers occupation is listed in both the Top 5 occupation types (who have applied for a loan) and have also defaulted.
- Sales staff do not appear in the Top 5 defaulter list but still responsible for 9.63% loan default

# **Employment Analysis – Organization Type**

If we club the subcategories of Business, Industry, Trade, Transport will that depict a different picture?

Hence will plot the same next



- ♦ 'ORGANIZATION\_TYPE' contains 0% null values
- Transport: type 3, Industry: type 13 and Industry: type 8 are more likely to default.

## **Employment Analysis – Organization Type**



Applicants from Restaurant, Construction and Cleaning are more likely to default which is completely different from the previous inference. Anyways it's a good inference.

## **Education Analysis**

Education Vs Loan Application (%)



#### Education Vs Defaulter / Non-Defaulter



### Education Analysis (continued...)

- \* 'NAME EDUCATION TYPE' contains 0% null values.
- Applicants who are having highest education as Secondary or less seems to have applied or defaulted the most.
- There is a 'Incomplete' category as well which default, but the column of such Applicant is less.
- It seems with more education, the applicants are less likely t default

# **Contact Rating Analysis**

Percentage (%) of loan applicants who provided individual Email / Mobile / Phone details in the application







- 100% Applicants provide mobile details in their loan application.
- 94.33% applicants do not provide their email address.
- ❖ 71.89% do not provide their home phone number

### Contact Rating Analysis (continued...)

Percentage (%) of loan applicants who provided Email / Mobile / Phone details in the application



- Majority applicants provide one contact details during their application.
- With at least 2 or more contact details applicants will be less likely (<= than 7.2%) to default.

## **Dwelling Rating**

#### **Actions:**

\* 'REGION\_POPULATION\_RELATIVE' is binned into three categories 'Low', 'Medium' and 'High' for better visibility.







| Region Population Category | Overall (%) | Non-Defaulters(%) | Defaulters(%) |
|----------------------------|-------------|-------------------|---------------|
| Low                        | 77.76%      | 91.43%            | 8.57%         |
| Medium                     | 19.5%       | 93.35%            | 6.65%         |
| High                       | 2.74%       | 96.03%            | 3.97%         |

'REGION\_RATING\_CLIENT' analysis.



| Region Client Rating | Overall (%) | Non-Defaulters(%) | Defaulters(%) |
|----------------------|-------------|-------------------|---------------|
| 1                    | 10.47%      | 95.18%            | 4.82%         |
| 2                    | 73.81%      | 92.11%            | 7.89%         |
| 3                    | 15.72%      | 88.9%             | 11.1%         |

\* REGION\_RATING\_CLIENT\_W\_CITY' analysis.



| Region Client Rating<br>(City) | Overall (%) | Non-Defaulters(%) | Defaulters(%) |
|--------------------------------|-------------|-------------------|---------------|
| 1                              | 11.11%      | 95.16%            | 4.84%         |
| 2                              | 74.63%      | 92.08%            | 7.92%         |
| 3                              | 14.26%      | 88.6%             | 11.4%         |

- 'REGION\_POPULATION\_RELATIVE',
  'REGION\_RATING\_CLIENT\_W\_CITY','NAME\_
  HOUSING\_TYPE' &
  'REGION\_RATING\_CLIENT\_Contains 0% null
  values.
- Majority Applicants are from relatively low populated area and are more likely to default.
- From Client Rating perspective majority applicants are from people having rating 2 and is the second most defaulter group.
- Though the applicants having 3 client rating tops the defaulter list the overall application volume is less compared to rating 2.

| Region Population<br>Category | Overall (%) | Non-<br>Defaulters(%) | Defaulters(%) |
|-------------------------------|-------------|-----------------------|---------------|
| Low                           | 77.76%      | 91.43%                | 8.57%         |
| Medium                        | 19.5%       | 93.35%                | 6.65%         |
| High                          | 2.74%       | 96.03%                | 3.97%         |

| Region Client<br>Rating | Overall (%) | Non-<br>Defaulters(%) | Defaulters(%) |
|-------------------------|-------------|-----------------------|---------------|
| 1                       | 10.47%      | 95.18%                | 4.82%         |
| 2                       | 73.81%      | 92.11%                | 7.89%         |
| 3                       | 15.72%      | 88.9%                 | 11.1%         |

| Region Client<br>Rating<br>(City) | Overall (%) | Non-<br>Defaulters(%) | Defaulters(%) |
|-----------------------------------|-------------|-----------------------|---------------|
| 1                                 | 11.11%      | 95.16%                | 4.84%         |
| 2                                 | 74.63%      | 92.08%                | 7.92%         |
| 3                                 | 14.26%      | 88.6%                 | 11.4%         |

|   | Housing Type           | Overall (%) | Non-<br>Defaulters(%) | Defaulters(%) |
|---|------------------------|-------------|-----------------------|---------------|
|   | House / apartment      | 88.73%      | 92.2%                 | 7.8%          |
|   | Wit Parents            | 4.83%       | 88.3%                 | 11.7%         |
|   | Municipal<br>Apartment | 3.64%       | 91.46%                | 8.54%         |
|   | Repted<br>Apartment    | 1.59%       | 87.69%                | 12.31%        |
| / | Office<br>Apartment    | 0.85%       | 93.43%                | 6.57%         |
|   | Co-op<br>apartment     | 0.36%       | 92.07%                | 7.93%         |

- Applicants staying in a Rented apartment / With Parents / Municipal apartment is more likely to default
- Applicants staying in House/Apartment are the major loan applicants with 7.8% defaulters.





# **Marital Status Analysis**



| Marital Status     | Overall (%) | Non-Defaulters(%) | Defaulters(%) |
|--------------------|-------------|-------------------|---------------|
| Married            | 63.88%      | 92.44%            | 7.56%         |
| Single/Not Married | 14.78%      | 90.19%            | 9.81%         |
| Civil Marriage     | 9.68%       | 90.06%            | 9.94%         |
| Separated          | 6.43%       | 91.81%            | 8.19%         |
| Widow              | 5.23%       | 94.18%            | 5.82%         |

### Marital Status Analysis (continued)

- \* 'NAME FAMILY STATUS' contains 0% null values.
- ❖ Majority of the applicants (63.88%) who have married have applied for a loan.
- Civil Marriage & Single/not married family status applicants top the defaulter list followed by Separated and Married category.
- Since Marriage applicant category column is significant the defaulters will be quite significant.

| / | Marital Status     | Overall (%) | Non-Defaulters(%) | Defaulters(%) |
|---|--------------------|-------------|-------------------|---------------|
|   | Married            | 63.88%      | 92.44%            | 7.56%         |
|   | Single/Not Married | 14.78%      | 90.19%            | 9.81%         |
|   | Civil Marriage     | 9.68%       | 90.06%            | 9.94%         |
|   | Separated          | 6.43%       | 91.81%            | 8.19%         |
|   | Widow              | 5.23%       | 94.18%            | 5.82%         |

## **Income Analysis**

#### Applicant Income distribution (with outliers)



#### Applicant Income distribution (without outliers)



- ❖ `AMT INCOME TOTAL' contains 0% null values.
- The variable contained some outliers hence we removed the outliers.
- Majority applicant are of the Income Group 100k-150k.
- Every category have some % of defaulters/non-defaulters there its difficult to conclude if any income category applicants are good. Though income range between 110k – 140k looks promising

EXT SOURCE 3





- ❖ `EXT SOURCE 2' variable contains 0.21% null values whereas 'EXT SOURCE 3' contains 19.8% null values. Since the null content of YEXT SOURCE 2' is not much hence imputing the value with median value
- From both the variables it seems that if the rating for the user is less than around 0.55% they are more likely to default
- The boxplot clearly shows that Non-Defaulters have a better user rating compared to Defaulters

# **ID/Phone Change Analysis**







- DAYS\_ID\_PUBLISH' variable contains 0% null values whereas
  'DAYS\_LAST\_PHONE\_CHANGE' contains 0.03% null values. We will look into the data without imputing any rating values.
- Changed the days into Years
- ❖ Applicants who have changed their ID < 7-8 years and have changed their phone numbers < 2.5 years is more likely to default.</p>

# Credit Bureau Check Analysis







## **Summary:**

Its difficult to quantify the extract number of Credit Bureau requests to tag any applicant to be default but from the data it's seems if an applicant enquires more about their rating in a day, they are more likely to default with some exceptions like 3/5/6 enquires in a day/week.

# Loan Summary – Loan Type







- 90.48% & 9.52% applicants applied for cash loan and revolving loans, respectively.
- Applicants who availed cash loan seems to default more compared to the revolving loans.

# Loan Summary – Amount Credited



|  |                | DEFAULT | NON DEFAULT | TOTAL | % defaulters | % non defaulters |
|--|----------------|---------|-------------|-------|--------------|------------------|
|  | AMT_CREDIT_BIN |         |             |       |              |                  |
|  | 10K-50K        | 23      | 538         | 561   | 4.0          | 96.0             |
|  | 50K-100K       | 308     | 5135        | 5443  | 6.0          | 94.0             |
|  | 100K-150K      | 762     | 11393       | 12155 | 6.0          | 94.0             |
|  | 150K-200K      | 1397    | 16588       | 17985 | 8.0          | 92.0             |
|  | 200K-300K      | 4321    | 50492       | 54813 | 8.0          | 92.0             |
|  | 300K-400K      | 2623    | 23715       | 26338 | 10.0         | 90.0             |
|  | 400K-500K      | 3171    | 28867       | 32038 | 10.0         | 90.0             |
|  | 500K-600K      | 3523    | 30709       | 34232 | 10.0         | 90.0             |
|  | 600K-700K      | 2097    | 21952       | 24049 | 9.0          | 91.0             |
|  | 700K-800K      | 1466    | 17727       | 19193 | 8.0          | 92.0             |
|  | 800K-900K      | 1555    | 20237       | 21792 | 7.0          | 93.0             |
|  | 900K-1M        | 647     | 8280        | 8927  | 7.0          | 93.0             |
|  | 1M+            | 2932    | 47053       | 49985 | 6.0          | 94.0             |
|  |                |         |             |       |              |                  |

- ❖ AMT\_CREDIT contains 0% null values.
- ❖ Majority amount credited < 500K followed by 500K 1M+</p>
- Applicants got who the credit amount was < 50K is less likely to default followed by other categories as depicted in the table above</p>

# **Loan Summary – Amount Annuity**



| DEFAULT         |      | NON DEFAULT | TOTAL | % defaulters | % non defaulters |
|-----------------|------|-------------|-------|--------------|------------------|
| AMT_ANNUITY_BIN |      |             |       |              |                  |
| 10K-20K         | 6434 | 76788       | 83222 | 8.0          | 92.0             |
| 20K-30K         | 8258 | 84220       | 92478 | 9.0          | 91.0             |
| 30K-40K         | 5251 | 53311       | 58562 | 9.0          | 91.0             |
| 40K-50K         | 2009 | 26660       | 28669 | 7.0          | 93.0             |
| 50K-80K         | 1178 | 18596       | 19774 | 6.0          | 94.0             |
| 380K-100K       | 35   | 983         | 1018  | 3.0          | 97.0             |
| 100K+           | 10   | 459         | 469   | 2.0          | 98.0             |

- AMT\_ANNUITY contains few null values, hence imputing the values with the median annuity amount.
- Majority amount Annuity is less than < 50K</p>
- No significant Defaulter % observed from the Annuity table. With Annuity amount the % of defaulter decreases. It may be because of the number of loans of that Annuity value is less.

# Loan Summary – Amount Goods Price



|                     | DEFAULT | NON DEFAULT | TOTAL  | % defaulters | % non defaulters |
|---------------------|---------|-------------|--------|--------------|------------------|
| AMT_GOODS_PRICE_BIN |         |             |        |              |                  |
| 10K-50K             | 59      | 1268        | 1327   | 4.0          | 96.0             |
| 50K-100K            | 467     | 6915        | 7382   | 6.0          | 94.0             |
| 100K-150K           | 1100    | 14844       | 15944  | 7.0          | 93.0             |
| 150K-200K           | 1434    | 15578       | 17012  | 8.0          | 92.0             |
| 200K-300K           | 5283    | 57478       | 62761  | 8.0          | 92.0             |
| 300K-400K           | 2230    | 18989       | 21219  | 11.0         | 89.0             |
| 400K-500K           | 5923    | 51328       | 57251  | 10.0         | 90.0             |
| 500k+               | 8329    | 116286      | 124615 | 7.0          | 93.0             |

- ❖ Goods price variable had 0.09% null values. The null value is for Revolving loans only. Therefore, based on further analysis we imputed the values with AMT\_CREDIT instead of imputing with the column median value. This is based on the fact, that the bank will only credit amount based on the purpose/purchase value shown in the loan.
- The histogram plot seems to be displaying the same inference as of the AMT\_CREDIT. Majority amount credited < 500K followed by 500K to 1M+
- ❖ Applicants for whom the Good's Price is < 50< is having the least defaulters.</p>

# Loan Summary – Documents



- ❖ Out of all the 21 documents only 71%, 8.81% and 8.14% applicants have provided Document 3, 6 and 8 respectively. Rest all documents were not provided by the applicants.
- Applicants who have provided document\_2 seems to have defaulted the most







# Family, Income, Amount Credit Vs Target



- Defaulter/Non-Defaulter Applicants for whom the loan amount was credited between 400K-1M+ majority have family members between 2-3.
- For Defaulter/Non-Defaulter applicants for whom the loan amount was credited < 400K seemed to have majority family size between 1-3 members
- From Income perspective irrespective of the income except < 50K income category, majority defaulters are having 2-3 family members

# Age, Income and Target





- Among the defaulters, across all income group > 50K, 30-50 years applicants with (40 years as median) are most likely to default with some exceptions. For income range < 50K the median age to default jumps from 40 years to 50 years and a range of 38-60 years.</p>
- ❖ A similar trend is observed among the non defaulters , < 50K income median age is around 55 years whereas for the other income groups the same drops to a stable range of 43-45 years</p>

# Education Type, Age and Target



- Applicants with Academic degree is less likely to default. Median age of such defaulters is around 35 years.
- Applicants with 'Lower Secondary' is most likely to default with a median age of 40 years and IQR between 35-55 years
- 'Incomplete Higher' defaults with a median age of 30 years with an IQR range of 28-35 years.
- For 'Secondary special' and 'Higher education' applicant the median age of defaulter is 35 years with an IQR of 35-50 years

# Contract Type, Credit < 300K and Target



- For Revolving loans for both Male/Female defaulters AMT\_CREDIT amount was between 190K 270K and 190K 250K respectively. Females seems to be better in paying Revolving loans.
- For Cash loans for both Male/Female defaulters AMT\_CREDIT amount is for the same range but Females seemed to have start defaulting from a slightly lesser AMT\_CREDIT. Males are better in paying cash loans

# Housing Type, Region Rating and Target



- Applicants with a lower REGION\_RATING staying in Municipal apartments are good in paying the loans.
- Applicants having higher REGION\_RATING but staying 'with parents' or 'Rented apartments' are most likely to default.

# Family Status, Gender, Annuity and Target



## **Summary:**

Widow and Separated Females are more likely to default

# **Amount Credited Vs Goods Price Vs Annuity**



Based on some criteria the Annuity amount varies with the credited amount. The parameter is unknown and needs to be further explored.

## **Summary:**

Amount Credited was in line with the goods price with some exceptions. But it seems whatever the Goods price is the same amount was credited.



# Top 10 Correlation

# TOP 10 Correlations (Non-Defaulter)

|      | Variable1                   | Variable2                  | CORRELATION | CORR_ABS |
|------|-----------------------------|----------------------------|-------------|----------|
| 789  | FLAG_EMP_PHONE              | DAYS_EMPLOYED              | -0.999758   | 0.999758 |
| 1950 | OBS_60_CNT_SOCIAL_CIRCLE    | OBS_30_CNT_SOCIAL_CIRCLE   | 0.998508    | 0.998508 |
| 364  | AMT_GOODS_PRICE             | AMT_CREDIT                 | 0.987250    | 0.987250 |
| 1219 | REGION_RATING_CLIENT_W_CITY | REGION_RATING_CLIENT       | 0.950149    | 0.950149 |
| 1082 | CNT_FAM_MEMBERS             | CNT_CHILDREN               | 0.878571    | 0.878571 |
| 1463 | LIVE_REGION_NOT_WORK_REGION | REG_REGION_NOT_WORK_REGION | 0.861861    | 0.861861 |
| 2011 | DEF_60_CNT_SOCIAL_CIRCLE    | DEF_30_CNT_SOCIAL_CIRCLE   | 0.859332    | 0.859332 |
| 1646 | LIVE_CITY_NOT_WORK_CITY     | REG_CITY_NOT_WORK_CITY     | 0.830381    | 0.830381 |
| 365  | AMT_GOODS_PRICE             | AMT_ANNUITY                | 0.776686    | 0.776686 |
| 304  | AMT_ANNUITY                 | AMT_CREDIT                 | 0.771309    | 0.771309 |

|    |     | Variable1                   | Variable2                  | CORRELATION | CORR_ABS |
|----|-----|-----------------------------|----------------------------|-------------|----------|
| 7  | 89  | FLAG_EMP_PHONE              | DAYS_EMPLOYED              | -0.999702   | 0.999702 |
| 19 | 950 | OBS_60_CNT_SOCIAL_CIRCLE    | OBS_30_CNT_SOCIAL_CIRCLE   | 0.998269    | 0.998269 |
| 3  | 64  | AMT_GOODS_PRICE             | AMT_CREDIT                 | 0.983103    | 0.983103 |
| 12 | 219 | REGION_RATING_CLIENT_W_CITY | REGION_RATING_CLIENT       | 0.956637    | 0.956637 |
| 10 | 082 | CNT_FAM_MEMBERS             | CNT_CHILDREN               | 0.885484    | 0.885484 |
| 20 | )11 | DEF_60_CNT_SOCIAL_CIRCLE    | DEF_30_CNT_SOCIAL_CIRCLE   | 0.868994    | 0.868994 |
| 14 | 163 | LIVE_REGION_NOT_WORK_REGION | REG_REGION_NOT_WORK_REGION | 0.847885    | 0.847885 |
| 16 | 646 | LIVE_CITY_NOT_WORK_CITY     | REG_CITY_NOT_WORK_CITY     | 0.778540    | 0.778540 |
| 3  | 65  | AMT_GOODS_PRICE             | AMT_ANNUITY                | 0.752699    | 0.752699 |
| 3  | 04  | AMT_ANNUITY                 | AMT_CREDIT                 | 0.752195    | 0.752195 |

**TOP 10 Correlations (Defaulters)** 

# CORRELATION (continued..)

## **Summary:**

There is a high correlation between

AMT\_GOODS\_PRICE and AMT\_CREDIT, DAYS\_BIRTH and
DAYS\_EMPLOYED

# Correlation for LOAN AMOUNTS / DAYS\_BIRTH & DAYS\_EMPLOYED



# CORRELATION (continued..)

## **Summary:**

- There is a high correlation between
  - REGION\_RATING\_CLIENT and REGION\_RATING\_CLIENT\_W\_CITY
  - REG\_CITY\_NOT\_WORK\_CITY and LIVE\_CITY\_NOT\_WORK\_CITY
  - REG\_REGION\_NOT\_WORK\_REGION and LIVE\_REGION\_NOT\_WORK\_REGION

### **Correlation for more variables**



# Applicant Historical Loan Status - Analysis

The current application is now merged with the previous application dataset to find out the previous contract status.

# Summary:

- Majority Current Applications previous Ioan applications was Approved (61.96%).
- If segmented by Defaulters, it seems that majority Applicants who defaulted their previous application was REFUSED.

## **Applicants Historical Loan applications**



## By Non-Defaulter

# By Defaulter



# Applicant Historical Loan Status - Analysis (continued..)



## **Summary:**

Regarding the Cash loans applicant who have taken a loan without a real purpose like 'Refusal to name the goal', 'Hobby' etc. is more likely to default.

# Client Type – Analysis



- Majority applications are from 'Repeater' (72.56%).
- Though 'NEW' applicants have defaulted the most. But please note that since 'Repeater' volume is significantly higher than 'New' applicants Repeater will the topmost defaulter.

# **Channel Type – Analysis**

- Majority applications was channeled via Credit and Cash offices.
- Whereas the loan applications coming from AP+(Cash loans) have the most defaulters from % perspective. Due to the 'Credit and Cash' office volumes it will have the highest defaulter.
- Car dealers are less likely to default





# Yield Group - Analysis

- Clients with high yield group is more likely to default compared to low\_action group
- Clients who do have a yield group, set as 'XNA' also likely to default. Not clear why 'XNA' was set against NAME\_YIELD\_GROUP. Maybe its not known or there is an error with the dat. Further analysis required for the same.







# Family Vs Previous Contract Status

## **Summary:**

Married applicants are the majors loan applicant category. Based on the graph below even though their previous loans was approved/refused or unused, the category are more likely to default. Having said that please note that 'Married' category is also one of the highest nondefaulters therefore there are other parameters which are making applicant of the category to default.

## Family Status Vs Previous Contract Status for Defaulters



# **Income Type Vs Previous Contract Status**

## **Income Type Vs Previous Contract Status for Defaulters**



### **Summary:**

Similar to the Married Applicants, applicants having Working are the highest loan applicants and defaulters as possible. It doesn't matter if the previous loan application was approved/refused or unused. There are other driving parameters which is making applicant to default.

- \* Bank should give more loans to clients with academic degree as they default less. Clients with Lower secondary educations are more likely to default.
- \* Low skill laborer's, drivers are more likely to default loan when compared to high skill occupations.
- Applicants who had previous loan applications Refused and Cancelled are more likely to default loans.
- Applicants with lower EXT\_SOURCE\_2 and EXT\_SOURCE\_3 (Rating) scores are likely to default.
- \*/Applicant staying in Rented Apartment / Staying with Parents are more likely to default. Also, since major loan applicants resides in House/Apartment a lower default rate would make a good number of defaulters in the category.
- Clients from Low populated regions are more likely to default more compared to Highly populated regions.
- Cash loans applicant who have taken a loan previously with purpose 'Refusal to name the goal', 'Hobby' etc. are more likely to default.
- Applicants who owns a house is are more likely to default. It may be because of additional liabilities they have. Therefore, other parameters like needs to be checked for the applicant.

# Conclusion (continued...)

- Overall clients > 40% are less likely to default.
- Banks should check the applicant's income type (e.g., Maternity leave / Unemployed) who are more likely to default. Also, since Commercial Associates reflect in the Top 3 defaulter / Loan applicant list hence it will have a larger impact if 7.48% Commercial associate defaults.
- Applicants who have just started work are most likely to default. Definitely other variables needs to be taken for a decision.
- Higher Region/City Rating applicants are less likely to default.
- Applicants who are Single or have a Marital status as Civil Marriage is more likely to default but since Married applicants apply the most even 7.65% defaulters out of the category will make a good number of defaulters.
- Applicants who are 'New' defaults the most. It may be because the bank didn't have a credit history for the applicant. Repeaters are the next set of defaulters.