Virtual LAN, VLAN trunking, Virtual Trunking Protocol Module 8; 9

Prednáška 7

VLAN

- Dôležitá vlastnosť Ethernet LAN prepínačov
- Virtual LAN (VLAN):
 - VLAN umožňujú logicky segmentovať fyzické, prepínané LAN siete
 - Doteraz logické delenie záviselo od fyzickej dostupnosti portov prepínanej LAN siete
 - Získame
 - Možnosti riadenia toku
 - Oddelenie fyzickej (geografickej) topológie od logickej
 - Môžeme vytvárať LAN siete napr.
 - Podľa funkcií v organizácií
 - Projektových tímov
 - Aplikácií a pod.

Tradičné LAN

Tradičné LAN

- Nie je možné uskutočniť delenie koncových staníc podľa iných funkcií ako dostupnosť portov LAN sietí
- Zariadenia je možné umiestniť len na daný fyzický segment

Tradičné LAN

- Segmentácia siete, riadenie toku
 - L3 zariadením (smerovač)

Traditional LAN segmentation

LAN₃

KIS FRI ŽU – Segeč – Počítačové siete 2

Ak chcem "rozbit"" Bcast doménu, musím použiť Router

Broadcast domény

- V tradičných LAN Broadcast doména:
 - Všetky prepínače
 - Všetky porty
- Rozdeliť Bcast doménu
 - Smerovač

Virtuálna LAN

Virtuálna LAN

- Daná VLAN má všetky vlastnosti ako tradičná LAN
- + logické členenie staníc podľa rôznych funkcií, kritérií
- + nie je obmedzenie pri členení len na fyzický LAN segment, dostupnosť portov

Princíp VLAN

All ports
same L
(function
as tradit
LAN sw

Broadcast domény a VLAN

VLAN

- Jeden prepínač viac VLAN
- Jedna VLAN nad viacerými prepínačmi
- Jedná VLAN jedna broadcast doména
- Jedna VLAN jedna IP subsieť
 - Všetky hosty spoločný IP prefix
- Komunikácia medzi VLAN
 - Vyžaduje smerovač
- Každý prepínač
 - Oddelenú Bridging table per VLAN
 - STP proces per VI AN

Broadcast domény a VLAN

Tradičné LAN

- Všetky porty prepínača
- Všetky prepínače prepínanej LAN siete
 - = jedna broadcast doména

VLAN

- Jeden prepínač podporuje viac VLAN
- Jedna VLAN
 - Sa môže rozprestierať nad jedným or viac prepínačmi
- Každá VLAN
 - Tvorí samostatnú broadcast doménu
 - Bcast rámce šírené len na portoch tej istej VLAN
 - Nie sú pre posielané na porty iných VLAN (aj toho istého prepínača)
 - Unicast rámce sú šírené len na portoch tej istej VLAN
- Každá VLAN samostatný IP adresný priestor
- Na prepojenie viacerých VLAN je potrebné použiť smerovač!!!

Typy VLAN

Typy VLAN

- Statické
 - Manuálne konfiguruje administrátor
- Dynamické
 - Dynamické určenie členstva na základe určitých kritérií

Statické VLAN

- Členstvo vo VLAN nastavuje administrátor manuálne
 - Priraďuje fyzický port prepínača do VLAN
 - Kým administrátor nezmení priradenie portu je členom danej VLAN
- Známe aj ako
 - port-based, port-centric
- Výhody

Statické VLAN – Vytvorenie VLAN a začlenenie portu

show vlan (Cisco IOS)

TAN Name						D-	4				
.——	AN Name 					Status Po:		rts			
	default				act	Fa Fa Fa Fa Fa	Fa0/1, Fa0/2, Fa0/3, Fa0/4 Fa0/5, Fa0/6, Fa0/7, Fa0/8 Fa0/9, Fa0/10, Fa0/11, Fa0/12 Fa0/13, Fa0/14, Fa0/15, Fa0/16 Fa0/17, Fa0/18, Fa0/19, Fa0/20 Fa0/21, Fa0/22, Fa0/23, Fa0/24				
	Testovacia					GiO/1, GiO/2 active					
	Marketing					active					
002 fddi-default						act/unsup					
003 token-ring-default					act	act/unsup					
	4 fddinet-default act/unsup										
ии 5	trnet	-default			act,	/unsup					
LAN	Туре	SAID	MTU	Parent	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans2	
	enet	100001	 1500		_	_			1002	1003	
	enet	100002	1500	_	_	_	_	_	0	0	
	enet	100003	1500	_	_	_	_	_	0	0	
	fddi	101002	1500	_	_	_	_		1	1003	
		101003		1005	_	_	-	srb	1	1002	
003		101004	1500 1500	_	_	1	ibm ibm	_	0 0	0 0	
003 004	+	TATARS	TOOR			1	TIM		U	Ð	
003 004	trnet										
003 004 005		N ULANs									
003 004 005		N ULANS									
003 004 005		N ULANS									

Dynamické VLAN

- Prideľovanie členstva dynamicky
- V okamihu keď sa host pripojí na port
 - Na základe:
 - MAC adresy pripojeného hosta
 - IP adresy
 - Typ protokolu
 - Vyžaduje sa konfiguračný server v sieti

Výhody VLAN

- Jednoduché premiestňovanie pracovných staníc na LAN
- Jednoduché pridávanie staníc do LAN
- Jednoduchá zmena konfigurácie LAN
- Zvýšená bezpečnosť
 - Izolácia prevádzky na VLAN
 - Ľahká kontrola sieťovej prevádzky
 - Použitie smerovačov
- Zvýšená priepustnosť
 - Segmentácia siete
 - Menej staníc, ktoré sa delia o prenosovú kapacitu
 - Redukcia broadcastu v sieti

Komunikácia v a medzi VLAN

Intra VLAN komunikácia - Dedikované porty

Intra VLAN komunikácia - Trunking

Trunk

- Fyzická linka medzi prepínačmi
- Rámce sa multiplexujú cez Trunk
- Ako rozlíšiť v
 multiplexovanom
 toky do ktorej VLAN
 VLA patria ktoré rámce?
- Rozlíšenie **Trunk** značkovaním rámcov podľa VLAN
- Tzv. TAGGING

Trunking

Trunking

- Poskytuje efektívnu cestu pre komunikáciu medzi prepínačmi
- Cesta ako poskytovať VLAN cez "internetwork"

Trunk

- Fyzická alebo logická linka
 - "Prenosový kanál medzi dvoma bodmi"
- Tvorí "backbone" pre rôzne VLAN v prepínanej LAN sieti
- Prepája prepínače navzájom
 - Pre potreby Intra VLAN komunikácie
- Prepája prepínač (-e) so smerovačom (-čmi)
 - Pre Inter VLAN komunikácie
- Rámce rôznych VLAN sú na trunk-u multiplexované
 - Do rámcov je pridávaný špeciálny TAG (značka)
 - Tzv. TAGGING
 - TAG určuje z/do ktorej VLAN rámce patria
- Býva súčasťou tzv. Native VLAN
 - Rámce native VLAN môžu prechádzať trunk-om neznačkované
 - Oba konce trunk-u musia byť v tej istej Native VLAN

Trunk protokoly

- Trunk protokoly
 - Vyvinuté ako efektívne prostriedky prenosu rámcov rôznych VLAN cez fyzickú linku
 - Určujú akým spôsobom budú multiplexované rámce
- Dve značkovacie schémy (tagging schemes)
 - ISL (Inter-Switch Link Protocol):
 - Proprietárny CISCO protokol
 - Optimalizovaný pre Cisco zariadenia
 - Problémy s kompatibilitou
 - Definuje enkapsuláciu rámcov cez trunk
 - K rámcu je pridaná nová hlavička s VLAN ID informáciou
 - **IEEE 802.1q**:
 - Značkovací VLAN štandard
 - Veľmi dobrá kompatibilita zariadení rôznych výrobcov
 - Preferované použitie
 - Nazývaný aj dot1.q

IEEE802.1q a IEEE802.1p

Virtual Bridged Local Area
Networks

IEEE 802.1q

- Štandardizovaná značkovacia schéma IEEE (trunk protokol)
 - Zabezpečená interoperabilita zariadení rôznych výrobcov
- Na základe ktorej:
 - Je možné prenášať cez jednu linku (trunk) rámce viacerých VLAN
 - Prepínač rozlišuje do ktorej VLAN rámce patria
 - Pridáva, číta VLAN Identifier do/z rámcov

IEEE 802.1q

- IEEE 802.1q mechanizmus
 - Pridáva do rámca 4 bytovú značku (Tag)
 - Značka identifikuje rámec a VLAN do ktorej rámec patrí
- Značka sa pridáva
 - Medzi pole Source address a pole Type/Length
 - Pre všetky rámce tečúce cez trunk
 - Pridávanie značky = zmena formátu Ethernet rámca
 - Musí sa prepočítať FCS
- Vysielajúci trunk-prepínač pre rámce vstupujúce na trunk
 - Vloží 4B tag do rámca
 - Prepočíta FCS
 - Pošle rámec cez trunk
- Prijímajúci trunk prepínač (druhá strana)
 - Odstráni tag
 - Skontroluje FCS
 - Prepne rámec do danej VLAN

802.1q – Intra VLAN komunikácia

Príklad:

Komunikácia medzi stanicami vo vnútri VLAN (Intra VLAN) na to istom prepínači

- -Prepínač príjme rámec na vstupnom porte (**VLAN Access port**).
- -prezrie Bridging table for VLAN 1
- -prepne rámec na výstupný port

Rámec nie je pozmenený (značkovaný) nakoľko nevstupuje na trunk port!

 Rámec je prepnutý ako na bežnom prepínači.

802.1q – Intra VLAN komunikácia

Príklad:

Komunikácia medzi stanicami vo vnútri VLAN (Intra VLAN) na **rôznych** prepínačoch.

- -Prepínač príjme rámec na vstupnom porte (**VLAN Access port**).
- -prezrie Bridging table for VLAN 2
- -rámec musí byť prepnutý cez trunk-vloží Tag, identifikujúci, že rámecje pre VLAN 2 (2)
- Prepne rámec na trunk port

- -Prijímajúci prepínač príjme rámec
- -prezrie Bridging table
- -ak cieľová stanica je na jeho porte
- -odstráni Tag
- -prepne rámec

Trunk

Rámec je
pozmenený
(značkovaný)
nakoľko vstupuje
na trunk port!

VLAN – Vytvorenie trunk

Inter-VLAN Routing

To route traffic between VLAN 1 and VLAN 200 in a non-VLAN-trunk environment, a router must be connected to a port in VLAN1 and a port in VLAN 200.

Inter-VLAN Issues and Solutions

Two of the most common issues that arise in a multiple-VLAN environment are as follows:

- The need for end-user devices to reach nonlocal hosts
- The need for hosts on different VLANs to communicate

Router on a Stick

In order for traffic to move from one VLAN to another, it must go through the router.

Physical and Logical Interfaces

The router supports one VLAN per interface.

A single ISL link can support multiple VLANs.

802.1q – Inter VLAN komunikácia

Príklad:

Komunikácia medzi stanicami v rôznych VLAN (Inter VLAN)

Trunk

VLAN 1

Dividing Physical Interfaces into Subinterfaces

KIS FRI ŽU – Segeč – Počítačové siete 2


```
Router A(config-if)#interface fastethernet 0/0.1
Router_A(config-subif)#encapsulation dot1q 1
Router_A(config-subif)#ip address 192.168.1.1 255.255.255.0
Router_A(config-if)#interface fastethernet 0/0.2
Router_A(config-subif)#encapsulation dot1q 2
Router A(config-subif)#ip address 192.168.2.1 255.255.255.0
Router A(config-if)#interface fastethernet 0/0.3
Router A(config-subif)#encapsulation dot1g 3
```

Router A(config)#interface fastethernet 0/0

Router A(config-if) #no shutdown

QoS at L2

802.1q formát rámca

- TPID (Tag Protocol Identifier): 16 bitov
 - Identifikuje rámec ako IEEE802.1g Ethernet rámec
 - Nastavená hodnota 0x8100 pre tagovaný ethernet
- **Priority:** 3bity
 - Indikuje prioritu rámca podľa prositizado prositizado prositizado prositizado prositizado prositizado prositizado prositizado prioritu rámca podľa prositizado pro
 - Použité na prioritizáciu rámcov
- CFI (Canonical Format Indicator): 1bit
 - Použité v FDDI
 - CFI=0: MAC adresa je v kanonickom formáte
 - CFI=1: MAC adresa nie je v kanonickom formáte
- VID (VLAN Identifier): 12 bit
 - (16bit) Jednoznačne a jedinečne identifikuje VLAN do ktorej patrí rámec
 - 4096 VLAN možných (0-4095)

(6B)

IEEE 802.1p

IEEE 802.1p

- Rozšírenie IEEE 802.1q štandardu týkajúce sa **Quality of Service**
- 3 bity v 802.1q hlavičke
- Umožňuje deliť LAN prevádzku podľa stupňov priorít
 - 8 stupňov delenia priorít
- Implementácia
 - Mechanizmy riadenia front

IEEE 802.1p - Priority

- 8 úrovní priorít
 - 0 Default priority, predpokladá sa Best Effort (BE)
 - Bežná LAN prevádzka
 - 1 Rezervované, menej než BE
 - Hry
 - 2 Rezervované
 - 3 Excellent effort
 - Best Effort pre dôležitých používateľov
 - 4 Controlled load, delay sensitive, bez ohraničenia
 - Dôležité aplikácie
 - 5 Delay sensitive, ohraničenie 100ms
 - Video
 - 6 Delay sensitive, 10ms ohraničenie
 - Hlas
 - 7 Network control:
 - Dáta nevyhnutné na činnosť siete, napr. smerovanie

Troubleshooting

VLAN Problem Isolation

Problem Isolation in Catalyst Networks

Common Problems in Troubleshooting VLANs

Problem	Explanation and Possible Resolution			
Trunk Ends in Different VLANs	Different ends of a trunk specify different VLANs. For example, vlan1, vlan2, and vlan3 are enabled on one end but not at the other end.			
Protocol	Different ends of link specify different protocols. For example, this could occur on a Fast Ethernet link with Inter Switch Link (ISL) enabled on one end but not on the other end.			
Single	Different ends of a single VLAN link specify different VLANs. (When the switches are not multi-VLAN capable when not running a trunking encapsulation protocol).			
Name Conflict	Two disconnected sets of switches that have VLANs of the same name. Implications: The VLANs are broken into two or more disjoint parts. Packets from one part are not traveling to the other part. Possible Resolution Rename one of he VLANs.			
VLAN Index Conflict	Same VLAN name on different switches with different VLAN Indexes or domains. Traffic from switches with one number for this VLAN will not go to ports on switches with a different number for this VLAN. Possible Resolutions Rename one of the VLANs			
SAID Conflict	Indicates different SAID numbers on the same VLAN.			

Virtual Trunking Protocol (VTP)

VTP Benefits

- VLAN configuration consistency across the network
- VLANs are trunked over mixed media. For example, an Ethernet VLAN is mapped to high-speed ATM LANE or FDDI VLAN
- Accurate tracking and monitoring of VLANs
- Dynamic reporting of added VLANs across the network
- "Plug-and-play" configuration when adding new VLANs

VTP Concepts

The role of VTP is to maintain VLAN configuration consistency across a common network administration domain.

VTP modes

VTP switches operate in one of three modes:

Server

can create, modify, and delete VLAN and VLAN configuration parameters for the entire domain.

Client

- cannot create, modify, or delete VLAN information
- useful for switches that lack the memory to store large tables of VLAN information.
- only role of VTP clients is to process VLAN changes and send VTP messages out all trunk ports

Transparent

- forward VTP advertisements but ignore information contained in the message for the VTP domain
- will not modify its database when updates are received, or send out an update that indicates a change in its VLAN status.

VTP Mode Comparison

Feature	Server	Client	Transparent
Source VTP Messages	Yes	Yes	No
Listen to VTP Messages	Yes	Yes	No
Create VLANs	Yes	No	Yes*
Remember VLANs	Yes	No	Yes*

^{*}Locally Significant only

VTP Operation

Group_1 Config Rev# N+1		
default		
first-vtp-vlan		
fddi-default		
token-ring-default		
fddinet-default		
trnet-default		
	default first-vtp-vlan fddi-default token-ring-default fddinet-default	

- advertisement starts as configuration revision number 0
- Changes = +1 revision #

VTP Implementation

- There are two types of VTP advertisements:
 - Requests from clients that want information at bootup
 - Responses from servers
- There are three types of VTP messages:
 - Advertisement requests
 - clients request VLAN information and the server responds with summary and subset advertisements
 - Summary advertisements
 - Catalyst switches issue summary advertisements every five minutes
 - Subset advertisements
 - contain detailed information about VLANs such as VTP version type, domain name and related fields, and the configuration revision number.
 - actions can trigger subset advertisements:
 - VLAN creation or deletion
 - VLAN suspension or activation
 - VLAN name change
 - VLAN maximum transmission unit (MTU) change

VTP Basic Configuration Steps

- · Determine the version number
- Choose the domain
- Choose the VTP mode
- Password protect the domain

VTP Basic Configuration Steps

Switch#vlan database Switch(vlan)#vtp v2-mode Switch(vlan)#vtp domain cisco Switch(vlan)#vtp {client | server | transparent}

Verifying VTP

```
MDF Switch#show vtp status
VTP Version
Configuration Revision
                                        :64
Maximum VLANs supported locally
Number of existing VLANs
                                        • 7
VTP Operation Mode
                                        :Server
VTP domain Name
                                        :cisco
                                        :Disabled
VTP Pruning Mode
VTP V2 Mode
                                        :Disabled
VTP Traps Generation
                                        :Disabled
MDS digest
                                        :0x30 0x50
Configuration last modified by 10.1.1.252 a local
updater ID 138.25.13.121 on interface found)
MDF Switch#exit
```

Verifying VTP

```
MDF Switch#show vtp counters
VTP statistics:
Summary advertisments received
                                          : 4
Subset advertisments received
                                          : 1
Request advertisments received
                                          : 2
                                          : 7
Summary advertisments transmitted
Subset advertisments transmitted
                                          : 4
Request advertisments transmitted
Number of config revision errors
                                          : 0
Number of config digest errors
                                          : 0
Number of V1 summary errors
                                          : 0
VTP pruning statistics:
                    Join Transmitted Join Received
Trunk
```