

Big Data and Data Mining

Supervised Learning

Flavio Bertini

flavio.bertini@unipr.it

Regression

- The regression problem asks to predict a numerical variable's value given the values of other variables
- Easiest example is with two variables x and y:
 - x is the variable in input
 - y is the variable we want to predict

х 📼	у
1	3
2	5
3	7
4	9
5	11

Training data: x is the input data, y is the label data

Learning

Learning task: what's the mapping from x to y?

Testing

Try to "learn" from the training data an hypothesis function h

What is h(6)? That is, what's y when x is 6?

Regression example 1/2

We have the data from 10 thousand houses in the U.S.

	City	Rooms	SQM	Price
m=10000	Los Angeles	3	130	420000
	Los Angeles	2	60	380000
	Albuquerque	2	140	220000
	Albuquerque	3	150	250000

 Goal: learn a function (model) that can infer the *Price* given all the other variables, for houses not in the 10 thousand dataset:

Regression example 2/2

- The houses' prices example is an example of regression task:
 - Among the variables there is the output variable (Price)
 - The output variable is the ground truth, because it's the actual price of the house
 - The output variable we want to predict is a numerical value

City	Rooms	SQM	Price
Los Angeles	5	230	?

- To visualize things better we will have examples with only two variables (one used as input one as output)
- All the process can be generalized for n variables

Linear regression

- We defined regression as the general task of predicting the real value of a variable using the other variables as input
- The model we want to learn is a function f from n real values x_i to one real value y:

$$y = f(x_1, \dots, x_n)$$

• The learned model is called *hypothesis* function *h*:

$$y = h(x_1, ..., x_n)$$

When h is a linear function on the input variables x_i, the regression task is called linear regression

Linear function

A linear function is a function of this form:

$$y = f(x_1,...,x_n) = w_1x_1 + ... + w_nx_n + b$$

- When n = 1 (only one input variable), the plotted function has the shape of a straight line. When n = 2 it takes the shape of a straight plane etc.
- Straight lines and straight planes are examples of linear functions

Linear regression: parameters

Recall, a linear function is a function of this form:

$$y = f(x_1,...,x_n) = w_1x_1 + ... + w_nx_n + b$$

- This means that the function that models our data is already defined!
- What's missing? What are the parameters we need to "learn"?
 - The x_i variables are the ones given in input, so we already have them (e.g., the square meters of the house)
 - The w_i coefficients are not known!
 - In a straight line, the coefficient is the slope of the linear function!
 - In ML they are also called weights: assuming that you have scaled your variables (e.g. between 0 and 1) they tell you how much a variable contributes to the final result (the y)
 - The b parameter is also not known!
 - In a straight line, this is the y-intercept of the line: the point where the line intercept the y axis
 - In ML this is also called bias term or bias weight

Example: data points

- Let's clarify these new notions with an example
- We have plotted some data points, each point is an observation with two variables: x and y

Example: slope 1/3

- Let's simulate a learning process: we need to learn the slope on the line
- To keep things simple, we focus on the angle only, setting the y-intercept to 0
- 1. **Let's try with a slope w = 1**: this means the line will have a 45° slope
- Having a y-intercept (b parameters) set to
 the hypothesis function is:

$$y = h(x) = wx = x$$

- 3. By plotting the line on the figure we can visually evaluate how much this hypothesis match the actual data
 - Is this hypothesis good enough?
 - We will see later how to measure precisely the distance between the actual data and the hypothesis
 - But for sure can do better!

Example: slope 2/3

- Let's simulate a learning process: we need to learn the slope on the line
- To keep things simple, we focus on the angle only, setting the y-intercept to 0
- 1. Now let's try with a slope w = 2!
- Having a y-intercept (b parameters) set to
 the hypothesis function is:

$$y = h(x) = 2x$$

- By plotting the line on the figure we can visually evaluate how much this hypothesis match the actual data
- Is this hypothesis better?
- The hypothesis seems worse than before

Example: slope 3/3

- Let's simulate a learning process: we need to learn the slope on the line
- To keep things simple, we focus on the angle only, setting the y-intercept to 0
- 1. Now let's try with a slope w = 0.5!
- Having a y-intercept (b parameters) set to
 the hypothesis function is:

$$y = h(x) = \frac{1}{2} x$$

- By plotting the line on the figure we can visually evaluate how much this hypothesis match the actual data
- Is this hypothesis better?
- The hypothesis seems quite accurate, at least for the slope
- We should now learn what's the best
 value for the bias term b

Example: bias term 1/2

- We have now a good slope but a clearly wrong bias term (the y intercept parameter)
- Let's try again some reasonable value
- 1. Now let's try with a bias b = 3!
- 2. Having already set the weight to 0.5, the hypothesis function is:

$$y = h(x) = \frac{1}{2}x + 3$$

- 3. By plotting the line on the figure we can visually evaluate how much this hypothesis match the actual data
- Are the points approximately around the line?
- It seems slightly above. We should try a lower value for b

Example: bias term 2/2

- We have now a good slope but a clearly wrong bias term (the y intercept parameter)
- Let's try again some reasonable value
- 1. Now let's try with a bias b = 2!
- 2. Having already set the weight to 0.5, the hypothesis function is:

$$y = h(x) = \frac{1}{2}x + 3$$

- 3. By plotting the line on the figure we can visually evaluate how much this hypothesis match the actual data
- This hypothesis looks quite right!

Example: observations

- The machine learning algorithm we have simulated is rather naive:
 - It has no precise way to measure how close we are to the optimal hypothesis
 - It makes almost random guesses to generate new hypothesis
- This means that a good machine learning model should have:
 - A way to measure how good (or how bad) an hypothesis is
 - A smart algorithm that tunes the weights until the measure of badness is very low (or conversely the measure of goodness is very high)

Loss function

- In ML, the measure used to evaluate the hypothesis is called a loss function
 - Intuitively, a loss function measures how bad the model is with respect to the actual data
- The most common it's the mean squared error, that is the average squared distance between the training data and the hypothesis
 - Mean because we want to consider all the m data points in the training set, so we average all the distances
 - Squared to enforce the distance to be non-negative

Optimization

- Now that we have a tool to measure the error of an hypothesis function, we want the error to be the smallest possible
- This means the our *objective function* is to find the variables values (weights and bias) that *minimize* the error

minimize:
$$\frac{1}{m} \sum_{i=1}^{m} (h(x_i) - y_i)^2$$

Using the argmin notation and replacing h(x) with the linear function:

$$\underset{w,b}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} ((wx_i + b) - y_i)^2$$

Optimization algorithms

- Most popular and effective optimization algorithm in ML is gradient descent
- It iterates through 4 steps until the loss is smaller than a tolerance value:
 - 1. Compute the gradient (that is the derivative or slope) of the loss function
 - 2. The **sign of the gradient** tells us if the loss increase (positive) or decrease (negative) moving to the right. Recall that we want to reach the minimum:
 - a. If it increase, we should move the weight to the left (subtract a small value)
 - b. If it decrease, we should move to the weight to the right (add a small value)
 - 3. Update the hypothesis with the new weights
 - 4. Compute again the loss

Gradient descent example 1/6

- For simplicity, we consider only one parameter w to be learned
- The loss function with respect to *w* it's a convex function, thus it has a global minimum

Gradient descent example 2/6

Derivate (gradient) of the loss function for the current w value

- The gradient is positive (increasing)
- In order to move toward the minimum, we should subtract a small value from *w*

Gradient descent example 3/6

Derivate (gradient) of the loss function for the current w value

- The gradient is still positive (increasing)
- In order to move toward the minimum, we should subtract a small value from *w*

Gradient descent example 4/6

Derivate (gradient) of the loss function for the current w value

- The gradient is still positive (increasing)
- In order to move toward the minimum, we should subtract a small value from w

Gradient descent example 5/6

- The gradient is still positive (increasing)
- In order to move toward the minimum, we should subtract a small value from w

Gradient descent example 6/6

- The gradient now is negative (decreasing)
- In order to move toward the minimum, we should add a small value to w
- However, we could decide that the loss is small enough and stop our descent iterations

Testing set

- Important: the loss function is made to evaluate the hypothesis on the training set! It measures the distance between the training data and the hypothesis
- If the loss is 0, it means that the hypothesis is perfectly fitting the training data
- Yet, this hypothesis could be inaccurate with unseen data: data that is not in the training set
 - This phenomenon is called overfitting: the model is extremely good (overfitted) on the training data but unable to generalize on new data
- In order to actually test our model, we must use a set of data that the learning algorithm has never seen, that is the *testing set*

Train/test split

- Usually in a data mining process the data is not already splitted into training and testing set
- In splitting between training and testing set you should consider the following:
 - The more data you have in the training the better will perform the learned model
 - The more data you have in the testing the better will be the estimation of accuracy (e.g., if you guess just one example you will have 100% accuracy, but it's not a significant estimation)
- IMPORTANT: both training and testing set must come from the same distribution. For example:
 - You can't train on the houses' prices in L.A. and test on the houses in N.Y.
 - You can't train on pictures taken with the smartphone and test it on pictures taken from Google Images

Train/test split ratio

The rule-of-thumb is to split 80/20 following the Pareto principle: 80 for training and 20 for testing

80%	20%
TRAINING SET	TESTING SET

 However, if you have many examples, you may decrease the size of testing set to have a more accurate model with a still significant testing set

What if we want to use all the data both for training and testing?

Cross-Validation (CV)

- The idea of cross-validation is to rotate over testing/training set split,
 so that each example will be used for training and for testing
- The fraction of the testing set will determine the number of rotations, also called "folds". For example, using a testing set of 20%, that is ½, we will have a 5-folds cross validation:

20% 80%						
TESTING SET		TRAINING SET				
	TESTING SET					
		TESTING SET				> 5 folds
			TESTING SET			
					_	
				TESTING SET		

Cross-Validation: limit scenarios

- A 2-fold cross-validation splits the data 50/50:
 - 1st fold: the first half is used for testing, the other for training
 - 2nd fold: the first half is used for training, the other for testing
- A m-fold cross-validation (m is the number of examples in the whole dataset) splits the data 1/m:
 - 1st fold: first example is used for testing, all the rest (m-1 examples) is used for training
 - 2nd fold: second example is used for testing, the first example and all the other examples from the third are used for training
 - **.** . . .
 - m-th fold: first m-1 examples are used for training, last example is used for testing

m-fold a.k.a. Leave-One-Out Cross-Validation

 Note on CV: the error of the model will be the average of all the errors: in the m-fold CV it will be the average of m error values

What about non-linear data?

 So far we have seen a regression method that only works if the function from the input variables to the output variable is linear. E.g., with only one input variable x:

$$y = f(x) = wx + b$$

 What if the function is non-linear? The associated expression would be like:

$$y = f(x) = w_1 x + w_2 x^2 + w_3 x^3 ...$$

with a different weight w for each exponential

- A simple trick to obtain non-linearity is to artificially generate new features:
 - We start from a feature x₁
 - We can compute the feature x₁² and add this new feature to our data
 - We then compute the feature x₁³ and add it to the data
 - And so on...

Example: house prices

- Let's suppose that the price is a non-linear function of the size in square meters
- In this example, the function that relates the price to the size is:

$$Price = 0*Size + 20*Size^2 + 0$$

- We kept the zeros to show all the coefficients and variables
- We can model the above function by augmenting our dataset as follows:

550000 500000				
450000				
400000				
350000			•	•
300000				
250000				
200000				
150000				
100000				
50000				
6	50	00 1 uare Me		140 160

Size (sqm)	Price
60	63193.69799
65.04312529	70911.59045
68.8814367	80082.32417
69.35554098	80602.04965
69.73350476	114729.8332
74.53091304	131513.3546

Size (sqm)	Size ²	Price
60	3600	63193.69799
65.04312529	3887.220733	70911.59045
68.8814367	4436.82399	80082.32417
69.35554098	4764.013352	80602.04965
69.73350476	5225.380597	114729.8332
74.53091304	5321.441446	131513.3546

Limits and advanced methods

- There are limits to the previous "trick":
 - We have to manually add features before training
 - We don't know where to stop
 - to which degree of the polynomial? x³? x⁴? ... x²⁰?
 - How about products of features like x₁x₂ or x₁²x₂³x₂²?
 - There can be so many features that this would make dimensionality (number of features) to explode
- There are advanced methods for regression that do not need to manually add features but have different ways of coping with non-linearity

Classification

- The classification problem ask to predict a categorical variable's value from the values of other variables
- Easiest example is with two variables x and y:
 - x is the variable in input
 - y is the variable we want to predict

x	у
1	А
2	А
3	В
4	В
5	А

Training data: x is the input data, y is the label data.

Learning task: what's the mapping

from x to y?

Testing

Try to "learn" from the training data an hypothesis function h

What is h(6)? That is, what's y when x is 6?

x	у
6	?

Classification example 1/2

We have again the data from 10 thousand houses in the U.S.

City	Rooms	SQM	Price
Los Angeles	3	130	420000
Los Angeles	2	60	380000
Albuquerque	2	140	220000
Albuquerque	3	150	250000

 Goal: learn a function (model) that can infer the City given all the other variables, for houses not in the 10 thousand dataset:

Price	Rooms	SQM	City
700000	5	230	?

Classification example 2/2

- The houses' city can be an example of classification task:
 - Among the variables we choose the output variable (City)
 - The output variable is the ground truth, because it's the actual city of the house
 - The output variable we want to predict is a categorical value

Price	Rooms	SQM		City
700000	5	230		?

- To visualize things better we will have examples with two variables (no rooms) as input and one as output
- The categorical output will be visualized using a different color for each category

Binary classification

- The binary classification is the task of classifying between two classes.
 For example:
 - Detecting if an email is spam or not
 - Deciding if an image has a cat in it
 - Predicting if a currency will go up or down
 - Classifying if a house is in L.A. or Albuquerque

Binary classifier prediction

- A binary classifier prediction works as following:
 - Estimate a score of probability for the first class
 - Output a binary value:
 - 1 if the probability score is greater than or equal to 0.5
 - 0 if the probability score is less than 0.5

Separating the space

 Visually speaking, it is very easy to linearly separate (i.e. with a straight line) the space between Los Angeles houses and Albuquerque houses:

 But how could we learn a function that separate the space automatically?

Linear regression for classification?

- In the case of classification, our hypothesis is a function that serves as a probability estimator
 - It takes the variables in input (e.g., house size and price)
 - It must outputs a value between 0 and 1
- Can we use linear regression? After all ...
 - ... the output value is actually numerical: 0 or 1
 - ... the line that separates our examples is a straight line
- **Problem:** we don't have control over unseen data, so we could have values bigger than 1, or lower than 0
- Idea:
 - We use a linear function to combines all the input variables into a value
 - We apply a function to constrain every possible value into a range of [0,1]

Logistic (sigmoid) function

- The sigmoid function is a special case of the logistic function
- Sigmoid functions have domain of all real numbers, with return value monotonically increasing from 0 to 1

Logistic Regression

- Despite the name, the logistic regression is actually a classification method
- Recall the linear regression hypothesis was a linear combination of the input variables, with one weight for each variable:

$$h_{linear}(x_1,...,x_n) = w_1x_1 + ... + w_nx_n + b$$

 Its hypothesis function is simply the sigmoid function applied to the linear combination:

$$h_{logistic}(x_1,...,x_n) = sig(w_1x_1 + ... + w_nx_n + b)$$

Logistic Regression: loss function

- Recall that we need a loss function to tune the weights towards a minimum loss
- We have a training input x. We consider two cases:
 - When the true y is 0: the hypothesis should output 0, anything more than 0 is a loss! So we can use simply the hypothesized score

$$loss(x) = h_{logistic}(x)$$

• When the true y is 1: the hypothesis should output 1, anything less than 1 is a loss! So we can use the difference between 1 and the hypothesized score

$$loss(x) = 1 - h_{logistic}(x)$$

Problem: Overfitting 1/2

• Using the **same trick** of introducing artificial features using polynomials of different degrees (e.g. $x_1^2x_2^3x_2^2...$), we could train a very complex non-linear function:

• Is this a good thing? For sure it's perfect for the training set ... what about unseen data?

Problem: Overfitting 2/2

- It turns out it is actually not good: the model is overly fitted on the training set the unseen data could fell randomly on one side or the other
- The model should be more robust and generalized to work also on unseen data (such as the testing set)

Solution: Regularization

- Regularization is a very effective technique to prevent overfitting
 - It's a modification of the loss function
 - We add an additional value to the loss function that increases as the value of features weights (w) increase
- What is the effect of regularization?
 - It prevents the features weights (w) to be very large
 - Visually speaking, it will "smooth" the decision boundary line:

Multi-class classification

- Binary classification can be generalized to multi-class classification
- There are two ways to adapt binary classifiers to a
 K-classes classification problem:
 - OVO One vs. One: Each possible pair of classes is taken in consideration to train a different classifier. This approach will need to train K*(K-1)/2 classifiers!
 - OVA One vs. All (more common): for each class, a different classifiers is trained to distinguish between that class and all the other classes merged together. This approach will need to train only K classifiers

References

Stanford Lectures on Machine Learning Andrew Ng