UNIVERSIDAD DE EL SALVADOR EDUCACIÓN A DISTANCIA

SISTEMAS DIGITALES I SDU115

UNIDAD I

CONCEPTOS BÁSICOS Y SIMPLIFICACIÓN ALGEBRAICA DE SISTEMAS DIGITALES COMBINACIONALES.

SISTEMAS DIGITALES I SDU115

Conversión (de base)entre sistemas de numeración.

Agenda

 Conversión (de base) entre sistemas de numeración.

Objetivo

Desarrollar conversiones entre los diferentes sistemas de numeración, para una mejor interpretación de los resultados obtenidos.

Sistemas Numéricos (cont.)

El valor total (N) de una cantidad se calcula por la sumatoria de los productos de cada uno de sus dígitos (a) multiplicado por su valor posicional o peso, el peso se especifica por la base del sistema (r) elevada a la posición del dígito (i), la posición se numera del punto a hacia la derecha con los números naturales desde 0 y del punto hacia la derecha desde -1.

$$N = \sum_{i=-m}^{n-1} a_i r^i$$

Sistema Decimal o Base 10 (cont.)

Ejemplo:

El 1 por su posición vale mil, es el bit mas significante (MSD) el que está mas a la izquierda (LSD). El 7 vale 7 milésimas es el bit menos significante, está ubicado mas a la derecha.

Sistema Binario a Base 10

La conversión de cualquier base a decimal se hace siguiendo la definición de sistema de valor posicional.

La conversión de decimal a cualquier base, se hace en dos partes:

- 1) Parte entera por divisiones sucesivas entre la base a la que se quiere convertir, hasta que el cociente sea cero, el último residuo es el MSB de la respuesta.
- 2)Parte fraccional por multiplicaciones sucesivas (omitiendo las partes enteras) por la base a la que se quiere convertir. La primera parte entera es el MSB de la respuesta.

Sistema Binario a Base 10

La Conversión de base 2 a decimal siguiendo la definición de sistema de valor posicional.

Binario a Decimal: Convertir 1011.101₂ a base 10

1 0 1 1. 1 0
$$1_2$$

$$1^*2^{-3} = 0.125$$

$$0^*2^{-2} = 0$$

$$1^*2^{-1} = 0.5$$

$$1^*2^0 = 1$$

$$1^*2^1 = 2$$

$$0^*2^2 = 0$$

$$1^*2^3 = 8$$

 $1011.101_2 = 11.625_{10}$

11.625₁₀

Sistema Octal a Base 10

Conversión de octal a decimal: siguiendo la definición de valor posicional

Convertir $3756.201_8 = a$ Base 10

$$= 1911.7019_{10}$$

3756.201₈= 1911.7019₁₀

Sistema Hexadecimal a Base 10

La conversión de hexadecimal a decimal, se hace también siguiendo el concepto de valor posicional:

Convertir A5C.80 F_{16} = a Base 10

A 5 C. 8 0
$$F_{16}$$
 $1*16^{-3} = 0.004$
 $0*16^{-2} = 0.0$
 $8*16^{-1} = 0.5$
 $C*16^{0} = 12$
 $5*16^{1} = 80$
 $A*16^{2} = 2560$
 $A*16^{2} = 2560$
 $A*16^{2} = 2560$

 $A5C.80F_{16} = 2652.504_{10}$

Sistema Decimal a Base 2

La conversión de decimal a binario, se hace en dos partes: La parte entera por divisiones sucesivas entre 2. La parte fraccional por multiplicaciones sucesivas por 2.

Convertir 26.75₁₀ a base 2

$$0.75*2 = 1.50 \rightarrow 1 \text{ MSB}$$

 $0.50*2 = 1.00 \rightarrow 1$
 $0.0*2 = 0.0 \rightarrow 0 \text{ LSB}$

 $26.75_{10} = 11010.110_2$

Sistema Decimal a Base 8

Conversión de decimal a octal: Divisiones multiplicaciones sucesivas

Convertir $29.72_{10} = a$ Base 8

$$0.72*8 = 1.56 \rightarrow 1 \text{ MSD}$$

 $0.56*8 = 4.48 \rightarrow 4$
 $0.48*8 = 3.84 \rightarrow 3 \text{ LSD}$

$$29.72_{10} = 35.143_{8}$$

Sistema Base 10 a Base 16 (cont.)

Conversión de decimal a hexadecimal: Recordar parte entera divisiones sucesivas entre 16

Convertir 739.82₁₀ a base 16

$$0.82*16 = 13.12 \rightarrow D$$
 MSD
 $0.12*16 = 1.92 \rightarrow 1$
 $0.92*16 = 14.72 \rightarrow E$ LSD

$$739.82_{10} = 2E3.D1E_{16}$$

Binario a Bases 2ⁿ y viceversa

Para convertir binario a bases 2ⁿ el binario se subdivide en grupos de "n" bits. Del punto hacia la derecha y del punto hacia la Izquierda

Base
$$4 = 2^2 = n = 2$$
; Base $8 = 2^3 = n = 3$

Base
$$16 = 2^4 = n = 4$$
; Base $32 = 2^5 = n = 5$

Un grupo incompleto a la izquierda se completa con ceros a la izquierda y en la derecha con ceros a la derecha.

Para convertir bases 2ⁿ a Binario, bajo cada dígito del código 2ⁿ se escribe su correspondiente en binario de n bits.

Binario a Bases 8 y viceversa

CONVERSION DE BINARIO A OCTAL

Convertir 1100101.11101₂ a octal 2³

Los grupos de tres quedan 1-100-101.111-01₂

Al completar los grupos a la izquierda y derecha:

$$001-100-101.111-010_2 =$$

CONVERSION DE OCTAL A BINARIO.

Convertir 630.421₈ a binario

$$6 \quad 3 \quad 0 \quad 4 \quad 2 \quad 1_8 =$$

$$110-011-000.100-010-001_2 =$$

110011000.100010001₂

Binario a Bases 16 y viceversa

CONVERSION DE BINARIO A HEXADECIMAL

Convertir 1100101.11101₂ a HEXADECIMAL 2⁴

Los grupos de cuatro quedan 110-0101.1110-1₂

Al completar los grupos a la izquierda y derecha: 0110-0101.1110-1000₂

6 5 . E 8₁₆

CONVERSION DE HEXADECIMAL A BINARIO

Convertir FE0.AC5₁₆ a binario

F B 0 . A C 5_{16} = 1111-1011-0000.1010-1100-0101₂ = 111110110000.101011000101₂

Resumen Métodos de Conversión

Cualquier base a Decimal:

Se hace siguiendo la definición de sistema de valor posicional.

Binario	110011001 ₂ = 1*256+1*128+0*64+0*32+1*16+1*8+0*4+0*2+1*1 = 409 ₁₀
Octal	1234 ₈ = 1*512+2*64+3*8+4*1 = 668 ₁₀
Hexadecimal	1234 ₈ = 1*512+2*64+3*8+4*1 = 668 ₁₀

Decimal a Cualquier base:

La partes entera se hace por divisiones sucesivas a la base que se quiere convertir, hasta que el cociente sea cero; la parte fraccionaria se hace por multiplicaciones sucesivas a la base que se quiere convertir hasta que la fracción sea cero o se alcance el numero de dígitos deseados después del punto.

Resumen Métodos de Conversión

Binario a base 2ⁿ:

El binario se subdivide en grupos de n bits contados del punto hacia la izquierda y del punto hacia la derecha, los grupos incompletos a la izquierda se llenan con ceros a la izquierda y los de la derecha con ceros a la derecha. Bajo cada grupo de n bits se escribe su equivalente en el sistema de base 2ⁿ

Octal	110011001 ₂ = 110 011 001 ₂ = 631 ₈
Hexadecimal	110011001 ₂ = 1 1001 1011 ₂ = 19B ₁₆

Base 2ⁿ a Binario:

Bajo cada digito de base 2ⁿ se escribe su correspondiente en binario de n bits.

Octal	1234 ₈ = 001 010 011 100 ₂ = 1010011100 ₂
Hexadecimal	COE ₁₆ = 1100 0000 1110 ₂ = 110000001110 ₂

HASTA LA PRÓXIMA