Calculus I Review

1.0 Prerequisite Skills

- using pascals triangle
- factoring
 - difference of squares
 - decomposition/aussie method
 - factoring by grouping
 - difference of cubes
 - synthetic division? ...
 - factor theorm \dots
 - recognizing domain (where a function is continuous)

$$f(x) = \frac{2 + \sqrt{x - 3}}{5x - 3}$$

the line above is continuous from

$$x \neq \frac{3}{5}$$

so . . .

$$D = \{x \epsilon r | x > 3\}$$

example 2

$$y = \sqrt{60 + 14x - 2x^2}$$

$$60 + 14x - 2x^2 \ge 0$$

$$2x^2 - 14x - 60 \ge 0$$

$$(x - 10)(2x + 6) \ge 0$$

$$thus D = \{x \in |x| - 3 \le x \le 10\}$$

• finding average and instantaneous rates of change

1.1 Radical expressions / rationalizing Denominators

 $\bullet\,$ simplify by rationalizing denominators and numerators

1.2 Slope of a Tangent

• soling for a tangent with

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- can stop solving for a solution if the top is zero
- solve for lines of tangents by using the slope and a p_0 with the symetric equation cross multiplication shortcut

$$\frac{x-2}{1} = y - 1013$$

$$13x - 26 = y - 10$$

$$13x - y - 14 = 0$$

1.3 Rates of Change

- solving for average rates of change with a table test
 - calculating average rate of change over a given time
 - calculate instantaneous rate of change using limit formula
 - be aware of the parameters of an application function
 - \ast a function that dictates hight would have a slope that dictates velocity
 - can solve for zeros and times by backwards substituting the slope or wanted value into the equation

$$\lim_{h\to 0}\frac{H(t+h)-H(t)}{h}=0$$

can solve for t

- solve for the average rate of change of applications (furballs)
- solve for instantaneous rate of change in applications (furballs)

1.4 The Limit of A Function

- a limit means that we can determine the value of a function at a by chosing a value x which is sufficiently close to a but is not equal to a
- this limit only exists if the limiting value from the left equals the limiting value from the right
- and so the value of a limit can be determined by checking if the left and right sides of the limit are equal

answers to true or false questions

- the limit of a function may exist even if the value of a function does not equal the limit, or does not even exist
- if the limit of both sides of an x value are equal, the limit is real,
- the limit does not have to always be equal to the function value
- the limit is effectively flowing throw a point
- the limit of an asymptote cannot be determined

1.5 Properties of limits

- the limit of a constant is equal to the constant (if a function will always return the same value)
- te limit of x as x approaches a is equal to a
- the limits can be broken up into sums and differences

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

• The limit of a constant times a function is analogous to the constant times the limit of the function

$$\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x)$$

- limits can also be multiplied and divided if that's something you are into \dots as long as neither of the limits are equal to 0
- finally the limit of a power or root is equal to the power or root of the limit

$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

also works with roots

- when a limit cannot be found by direct substitution it in indeterminate form (0/0)
- these functions are said to have a removable discontinuity
- eliminating removable discontinuities are cared for with simplifying, factoring, rationalizing, and changing the variable
- again, if no removable discontinuity, there is no answer

when checking if roots exist, you must sometimes break up a function into two different functions, a function for when approaching the limit from above and a function for when approaching the limit from below, based on these seperate functions the original function value can be substituted in to check if both limit sides are equal

1.6 Continuity

• a function is continuous at point a if

$$\lim_{x \to a} f(x) = f(a)$$

 $\bullet\,$ in other words the limit is the same as the value of the function

Example 1 determine the range of continuity of the function

$$g(x) = \frac{(5-x)}{\sqrt{x^2 - 16}}$$

so

$$x^2 - 16 \ge 0$$

$$(x-4)(x+4) \ge 0$$

therefore

$$x\epsilon r|x\geq 4, x\leq -4$$

• a function are not continuous at holes or wherever the function is not defined