Modelling of crowd systems Project Proposal review

D Purnendra Reddy

September 21, 2022

The problem - Objectives

In a dense crowding scenario, evacuation efficiency places a significant role in preventing disasters.

- Option-1: Make exits wider and design better evacuation routes.
- **Option-2:** Obstacle phenomenon- Impact of placing an obstacle on the upstream of exit and its correlation with evacuation efficiency.
 - ▶ Relative dimensions to the exit
 - ▶ Proximity to the exit
 - Lateral shift in Obstacle placement from the central line of the exit
 - Shape of the obstacle

Objectives

- Time optimisation: Prevention of clogging near exits speeding up the evacuation process.
- Minimal cost of obstacle placement simplicity of shapes
- Ensure crowd pressures do not exceed dangerous limits close to the exit
- Identify and define parameters that define evacuation efficiency.

Literature review

Critical Issues observed

- Uncertainty over correlation and obstacle performance.
 - ▶ **Positive**: Prevents friction between crowd agents near the exit to avoid stop and go turbulent waves. ¹
 - ▶ **Negative**: Reduces effective exit area decreasing crowd outflow.
 - Used cellular automaton model(Floor field) to arrive at the parameters that doesn't simulate real conditions as each person is restricted to a node and 8 possible directions.
 - Understanding the underlying mechanisms of obstacle effect that influence the outflow of crowd at bottlenecks. 3
- Outdoor scenario: Scope to study pedestrian streams in outdoor intersections or public squares by controlling the roundabout traffic in intersecting pedestrian streams.

¹Zhao, Y., Li, M., Lu, X., Tian, L., Yu, Z., Huang, K., Wang, Y., Li, T., 2017. Optimal layout design of obstacles for panic evacuation using differential evolution. Phys. A: Stat.Mech. Appl. 465, 175–194.

²Lei Wang et al 2016 Chinese Phys. B 25 118901

³Zhongjun Ding et al J. Stat. Mech. (2020) 023404

⁴ Shiwakoti, N., 2010. Crowd Dynamics Under Emergency Conditions: Using Non-human Organisms in the Development of a Pedestrian Crowd Model. Ph.D. Thesis. Monash University.

Methodology- Multi Agent System

Figure: Social Force model⁵

Approach to Model:

- Evacuating a crowd from a room through a single exit.
- Motion of a crowd agent determined through the superposition of forces from other agents and walls.
- A driving force guides the agent to move towards their destination.
- Standard obstacles like cylindrical columns are discretised as wall elements to estimate their force field.

Obstacles:

- Model is tested on obstacles under different test conditions.
- Arrive at parameters that determine crowd pressure and turbulence.

Summary of Work done

Figure: Simulation

- Identified Research gaps.
- Simulated a crowd evacuation scenario using python3.
- Working on validation of Helbing's social force model.

Future Timeline

- JUN-AUG Conceptual Understanding & Literature review
- SEP-NOV
 - Simulation
 - Validation of model
 - Parameter optimisation
- JAN-MAR
 - Object Placement and Data collection
 - Identification of parameters influencing crowd turbulence
 - Parameter optimisation and correlation
- APR Report