Feuille d'exercice n° 21 : **Dénombrement - correction**

Exercice 1

- 1) a) Si $m \in \mathbb{R}$ est tel que $\mathcal{D}_{m,p} \cap \mathcal{M}$ est de cardinal ≥ 2 , alors m est la pente d'une droite passant par 2 points de \mathcal{M} , il y en a au plus 999 × 1000.
 - b) Au minimum : 0 si tous les points sont alignés verticalement. Il n'y a bien qu'une droite qui passe par au moins deux de ces points, et cette droite n'a pas de pente. Maximum : prendre les (k, e^k) , si une droite $\mathcal{D}_{m,p}$ contient trois points de $\mathcal{M}: (a, e^a), (b, e^b)$ et (c, e^c) avec a < b < c, alors $\frac{e^c - e^a}{e^b - e^a} = \frac{c - a}{b - a}$ ce qui donne une équation polynomiale à coefficients entiers annulant e^c : c'est absurde.
- 2) Il suffit de prendre un m_0 qui n'est pas dans l'ensemble de 1)a), ce qui est possible car cet ensemble est fini et \mathbb{R} ne l'est pas.
- 3) Il y a donc exactement $p_1 < \cdots < p_{1000}$ pentes telles que $\operatorname{Card}(\mathscr{D}_{m_0,p} \cap \mathscr{M}) = 1$. Il suffit de prendre $p = \frac{p_{500} + p_{501}}{2}$. Notons M_k le point sur la droite de pente p_k . Alors M_1, \ldots, M_{500} sont en dessous de la droite $\mathscr{D}_{m_0,p}$ et $M_{501}, \ldots, M_{1000}$ sont au dessus.

Exercice 2 Avec V l'ensemble des voyelles et C celui des consonnes, c'est

$$\operatorname{Card}\left(\left[V\times C\times V\times C\times V\right]\sqcup \left[C\times V\times C\times V\times C\right]\right)=6^3\times 20^2+6^2\times 20^3=374\ 400.$$

Exercice 3 On le montre par récurrence sur n.

Pour n = 1, on écrit juste $Card(A_1) = Card(A_1)$. Pour n = 2, c'est la formule vue en cours. Soit $n \ge 3$, supposons que la formule est vraie pour n ensembles. Notons $A = \bigcup_{i=1}^n A_i$ et $B = A = \bigcup_{i=1}^n (A_i \cap A)$. On a alors

$$\operatorname{Card}\left(\bigcup_{i=1}^{n+1} A_i\right) = \operatorname{Card}(A \cup A_{n+1})$$

$$= \operatorname{Card}(A) + \operatorname{Card}(A_{n+1}) - \operatorname{Card}(A \cap A_{n+1})$$

$$= \operatorname{Card}(A) + \operatorname{Card}(A_{n+1}) - \operatorname{Card}(B)$$

Or, par récurrence,

$$\operatorname{Card}(A) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subset [\![1,n]\!], \operatorname{Card}(I) = k} \operatorname{Card}\left(\bigcap_{i \in I} A_i\right)$$

$$= \sum_{k=1}^{n+1} (-1)^{k+1} \sum_{I \subset [\![1,n+1]\!], \operatorname{Card}(I) = k, n+1 \notin I} \operatorname{Card}\left(\bigcap_{i \in I} A_i\right)$$

La somme porte bien sur toutes les parties de [1, n+1] ne contenant pas n+1.

$$\operatorname{Card}(B) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subset \llbracket 1, n \rrbracket, \operatorname{Card}(I) = k} \operatorname{Card}\left(\bigcap_{i \in I} A_i \cap A_{n+1}\right)$$

$$\operatorname{Card}(B) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{I \subset \llbracket 1, n \rrbracket, \operatorname{Card}(I) = k} \operatorname{Card}\left(A_{n+1} \cap \bigcap_{i \in I} A_i\right)$$

$$= \sum_{k=1}^{n} (-1)^{k+2-1} \sum_{I \subset \llbracket 1, n+1 \rrbracket, \operatorname{Card}(I) = k+1, n+1 \in I} \operatorname{Card}\left(\bigcap_{i \in I} A_i\right)$$

$$= -\sum_{k=2}^{n+1} (-1)^{k+1} \sum_{I \subset \llbracket 1, n+1 \rrbracket, \operatorname{Card}(I) = k, n+1 \in I} \operatorname{Card}\left(\bigcap_{i \in I} A_i\right).$$

La somme porte bien sur toutes les parties de [1, n+1] contenant n+1, sauf $\{n+1\}$.

Enfin, on peut écrire observer que le terme $Card(A_{n+1})$ correspond au cas où $I = \{n+1\}$, qui est le seul qui n'apparaît pas dans les sommes précédentes.

On obtient donc bien

$$\operatorname{Card}\left(\bigcup_{i=1}^{n+1} A_i\right) = \sum_{k=1}^{n+1} (-1)^{k+1} \sum_{I \subset [\![1,n+1]\!], \operatorname{Card}(I) = k} \operatorname{Card}\left(\bigcap_{i \in I} A_i\right).$$

On a donc bien établi la formule du crible pour n+1 ensembles, d'où le résultat par récurrence.

Exercice 4 \mathbb{Z} est infini, S_E non, donc l'application $k \mapsto \sigma^k$ n'est pas injective. Il existe $k \neq \ell$ tels que $\sigma^k = \sigma^\ell$. On peut supposer que $k < \ell$, donc $\sigma^{\ell-k} = \mathrm{Id}_E$.

Exercice 5 Il y a correspondance bijective entre ces applications strictements croissantes et le nombre de parties à n éléments dans [1; p].

En effet, si $\varphi : [1; n] \to [1; p]$ est strictement croissante, alors φ est injective donc Im φ est une partie à n éléments de [1; p]. Remarquons de plus que si deux applications strictement croissantes φ et ψ de [1; n] dans [1; p] ont la même image A, alors elles sont égales. En effet, $\varphi(1) = \psi(1) = \min(A)$, etc..

Réciproquement, si A une partie à n éléments de [1;p], alors on peut ordonner A par ordre croissant : $A = \{x_1, \ldots, x_n\}$ et $x_1 < x_2 < \cdots < x_n$. Il suffit alors de poser, pour chaque $1 \le i \le n$, $\varphi(i) = x_i$. Alors, on a $\varphi : [1;n] \to [1;p]$ et φ est strictement croissante, par construction.

Il y a donc $\binom{p}{n}$ applications strictements croissantes de [1; n] dans [1; p].

Exercice 6 En triant E par ordre croissant, il y a une correspondance bijective entre les relations d'ordre totales sur E et les permutations de E.

Il y en a donc $\operatorname{Card} E!$.

Exercice 7 Un triangle est caractérisé par la donnée de trois droites non parallèles. Donc il y en a $\binom{n}{3}$.

Exercice 8

- 1) Il y en a autant que de parties de $E \setminus X$, or $Card(E \setminus X) = n p$. Il y en a donc 2^{n-p} .
- 2) Soit $0 \le p \le n$ fixé, il y a $\binom{n}{p}$ parties X de cardinal p, donc il y a $2^{n-p}\binom{n}{p}$ couples de parties (X,Y) disjointes donc X est de cardinal p. Puis on fait varier p. Il y en a donc

$$\sum_{p=0}^{n} \binom{n}{p} 2^{n-p} = (1+2)^n = 3^n.$$