AP Calculus Homework 1

Please write your answer on a separate piece of paper and submit it on Classkick or write your answer directly on Classkick.

Please write all answers in exact forms. For example, write /pi instead of 3.14.

Questions with a * are optional. Questions with ** are optional and more challenging.

1. Sketch the graph of an example of a function f that satisfies all of the given conditions

a)
$$\lim_{x \to 0^{-}} f(x) = 1$$
, $\lim_{x \to 0^{+}} f(x) = -1$, $\lim_{x \to 2^{-}} f(x) = 0$, $\lim_{x \to 2^{+}} f(x) = 1$,

$$f(2) = 1$$
, $f(0) =$ undefined

b)
$$\lim_{x \to 1} f(x) = 3$$
, $\lim_{x \to 4^{-}} f(x) = 3$, $\lim_{x \to 4^{+}} f(x) = 3$, $f(1) = 1$, $f(4) = -1$

2. Given that

$$\lim_{x \to 2} f(x) = 4, \ \lim_{x \to 2} g(x) = -2, \ \lim_{x \to 2} h(x) = 0$$

find the following limits

a)
$$\lim_{x \to 2} [f(x) + 5g(x)]$$
 b) $\lim_{x \to 2} \sqrt{f(x)}$ c) $\lim_{x \to 2} \frac{g(x)}{h(x)}$

b)
$$\lim_{x\to 2} \sqrt{f(x)}$$

c)
$$\lim_{x \to 2} \frac{g(x)}{h(x)}$$

3. Evaluate the limit, if it exists.

a)
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$

a)
$$\lim_{x\to 2} \frac{x^2 - x + 6}{x - 2}$$
 b) $\lim_{h\to 0} \frac{\sqrt{1+h} - 1}{h}$ c) $\lim_{x\to -4} \frac{1/4 + 1/x}{4+x}$

c)
$$\lim_{x \to -4} \frac{1/4 + 1/x}{4 + x}$$

d)
$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h}$$
 e)* $\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$

e)*
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4}$$

1

4. Prove the following limits

a)
$$\lim_{x \to 0} x^4 \cos \frac{2}{x} = 0$$

a)
$$\lim_{x \to 0} x^4 \cos \frac{2}{x} = 0$$
 b)* $\lim_{x \to 0^+} \sqrt{x} e^{\sin \pi/x} = 0$

5. Find the limit, if it exists. If the limit does not exist, explain why.

a)
$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$$

a)
$$\lim_{x \to -6} \frac{2x+12}{|x+6|}$$
 b) $\lim_{x \to 0.5^{-}} \frac{2x-1}{|2x^3-x^2|}$

6. Find the limit

a)*
$$\lim_{x\to 0} \frac{\sin 3x}{x}$$

a)*
$$\lim_{x \to 0} \frac{\sin 3x}{x}$$
 b) $\lim_{x \to 0} \frac{x^2}{1 - \cos^2 x}$ c) $\lim_{x \to 0} \frac{4x}{\tan x}$

c)
$$\lim_{x \to 0} \frac{4x}{\tan x}$$

d)
$$\lim_{x \to 0} 3 \frac{x}{\sin x}$$

e)*
$$\lim_{x\to 0} \frac{\sin 3x}{\sin 8x}$$

d)
$$\lim_{x \to 0} 3 \frac{x}{\sin x}$$
 e)* $\lim_{x \to 0} \frac{\sin 3x}{\sin 8x}$ f)* $\lim_{x \to 0} \frac{x^2 \sin x}{1 - \cos^2 x}$ g) $\lim_{x \to 0} \frac{\sin^2 7x}{\sin^2 11x}$

g)
$$\lim_{x \to 0} \frac{\sin^2 7x}{\sin^2 11x}$$

7. Determine the infinite limit.

a)
$$\lim_{x \to 1} \frac{2-x}{(x-1)^2}$$

b)
$$\lim_{x \to 3^{+}} \ln(x^{2} - 9)$$
 c) $\lim_{x \to 2\pi^{-}} x \csc x$

c)
$$\lim_{x \to 2\pi^-} x \csc x$$

8. Find the vertical asymptotes of the function

$$y = \frac{x^2 + 1}{3x - 2x^2}$$

9. Sketch the graph of an example of a function f that satisfies all of the given condi-

$$\lim_{x \to -2} f(x) = \infty, \quad \lim_{x \to -\infty} f(x) = 3, \quad \lim_{x \to \infty} f(x) = -3$$

10. Find the limit

a)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}}$$

a)
$$\lim_{x \to \infty} \frac{x+2}{\sqrt{9x^2+1}}$$
 b)* $\lim_{x \to -\infty} (x+\sqrt{x^2+2x})$ c) $\lim_{x \to \infty} \frac{x^3-2x+3}{5-2x^2}$

c)
$$\lim_{x \to \infty} \frac{x^3 - 2x + 3}{5 - 2x^2}$$

d)*
$$\lim_{x \to \infty} \frac{1 - e^x}{1 + 2e^x}$$
 e) $\lim_{x \to \infty} (e^{-2x} \cos x)$

e)
$$\lim_{x \to \infty} (e^{-2x} \cos x)$$

11*. Find the horizontal and vertical asymptotes of the curve

$$y = \frac{1 + x^4}{x^2 - x^4}$$