零死角玩转STM32

淘宝: firestm32.taobao.com

论坛: www.firebbs.cn

扫描进入淘宝店铺

主讲内容

01 什么是STM32

02 STM32能做什么

03 STM32怎么选型

参考资料:《零死角玩转STM32》

"初识STM32"章节

什么是STM32

STM32的字面含义

- 1、ST— 意法半导体,是一个公司名,即SOC厂商
- 2、M— Microelectronics的缩写,表示微控制器,大家注意微控制

器和微处理器的区别

3、32—32bit的意思,表示这是一个32bit的微控制器

什么是STM32

STM32诞生的背景

- 1、技术的更替,这个是最主要的原因
- 2、市场的需求(成本、性能、功耗、GUI、操作系统),传统的8/16位的微控制器,久经岁月的洗礼,如今虽有余晖,当面对这些需求时更显的是捉襟见肘
- 3、ST的努力(产品线丰富、开发简单易上手—基于固件库开发),让STM32在众多的基于Cortex-M内核的微控制器中脱引而出,成为最璀璨的新星

我们该怎么做

作为一名合格的嵌入式工程师,面对新出现的技术,我们不是充耳不闻,而是要尽快吻合市场的需要,跟上技术的潮流。如今 STM32 的出现就是一种趋势,一种潮流,我们要做的就是搭上这趟快车,让自己的技术更有竞争力。

STM32有什么

STM32属于一个微控制器,自带了各种常用通信接口,功能非常强大

- 1、串口—USART,用于跟跟串口接口的设备通信,比如:USB转串口模块、ESP8266 WIFI、GPS模块,GSM 模块,串口屏、指纹识别模块
- 2、内部集成电路—I2C,用于跟I2C接口的设备通信,比如:EEPROM、电容屏、陀螺仪MPU6050、0.96寸OLED模块
- 3、串行通信接口—SPI,用于跟SPI接口的设备通信,比如:串行FLASH、以太网W5500、音频模块VS1053
- 4、SDIO、FSMC的超级、I2S、ADC、GPIO

身边常见的电子产品

智能手环,微型四轴飞行器,平衡车、扫地机、移动POST机,智能电饭锅,3D打印机

智能手环

微型四轴飞行器

扫地机

STM32F071VBT6做的扫地机

STM32429做的智能手环——三星 gear fit

表格 5-1 三星 Gear Fit 和秉火 STM32f103 "指南者"资源对比↓

资源↵	三星 Gear Fit。	指南者。
CPU₽	STM32F439ZIY6S, WLCSP143 封	STM32F103VET6, LQPF100 封
	装↩	装↩
存储。	NOR+SRAM 16MB, FSMC接口。	串行 FLASH 16MB ,SPI 接口。
显示。	1.84 寸的 AMOLED, RGB 接口,	3.2 寸电阻屏, FSMC 接口。 ·
	LTDC 驱动。	
陀螺仪↩	MPU6050,I2C接口。	可外接 MPU6050 模块,I2C 接口。
无线通信₽	蓝牙:博通 BCM4334, SDIO 或者	WIFI: ESP8266, UART接口。
	SPI 接口₽	

淘宝众筹

https://hi.taobao.com/market/hi/deramdetail.php?spm=a215p.1472805.0.0.c9an1L&id=10072392

学会了 STM32, 想自己做产品,如何实现自己的梦想,淘宝众筹吧。做出产品原型, 用别人的钱为自己的梦想买单。

淘宝众筹科技类网址:这里面有很多小玩意都可以用 STM32 实现,只要你的创意到了,就会有人买单,前提是我们要先学会 STM32。

https://hi.taobao.com/market/hi/list.php?spm=a215p.1596646.1.8.LbVyJk#type=121288001

STM32分类

表格 4-2 STM8 和 STM32 分类

CPU 位数	内核	系列	描述
	Cortex-M0	STM32-F0	入门级
	Cortex-Mo	STM32-L0	低功耗
		STM32-F1	基础型,主频 72M
	Cortex-M3	STM32-F2	高性能
32		STM32-L1	低功耗
		STM32-F3	混和信号
	Cortex-M4	STM32-F4	高性能,主频 180M
		STM32-L4	低功耗
	Cortex-M7	STM32-F7	高性能
		STM8S	标准系列
8	超级版 6502	STM8AF	标准系列的汽车应用
	户15001X 0302	STM8AL	低功耗的汽车应用
		STM8L	低功耗

STM32的命名方法

表格 5-3 STM32F103VET6 命名解释』							
- -₽	ST M32	103»	\mathbf{V}_{e}	\mathbf{E}_{e}	\mathbf{T}_{\circ}	6.	
家族。	STM32 表示 32bi	it 的 MCU₽				4	
产品类型。	F表示基础型₽						
具体特性。	基础型。						
引脚数目↩	V表示 100pin,	其他常用的为	C表示 48,	R 表示 64	,Z 表示 14	44,Z 表示 ←	
」 分脚数日↩	144, B表示 208	,N表示 216₽					
FLASH 大小₽	E表示 512KB, 其他常用的为 C表示 256, E表示 512, I表示 2048。						
封装。	T表示 QFP 封装,这个是最常用的封装。						
温度↩	6表示温度等级为 A: -40~85° ₽						

STM32的命名方法

选择合适的MCU

一个原则:花最少的钱,做最多的事

在确定项目需求的情况下,一般按照下面的顺序来选择合适的MCU

- 1、选择哪种内核的芯片,内核越高意味着功耗也越高
- 2、选择多少引脚的芯片,引脚多少决定了资源的多少,也影响价格
- 3、选择多少RAM和FLASH的芯片,FLASH越大,价格越贵
- 4、还要考虑所选型号采购是否容易,供货是否稳定

如何分配原理图引脚

表格 1-4 画原理图时的引脚分类

引脚分类	引脚说明说明					
电源	(VBAT)、(VDD VSS)、(VDDA VSSA)、(VREF+ VREF-)等					
晶振 IO	主晶振 IO,RTC 晶振 IO					
下载 IO	用于 JTAG 下载的 IO: JTMS、JTCK、JTDI、JTDO、NJTRST					
BOOT IO	BOOT0、BOOT1,用于设置系统的启动方式					
复位 IO	NRST,用于外部复位					
	上面 5 部分 IO 组成的系统我们也叫做最小系统					
	专用器件接到专用的总线,比如 I2C, SPI, SDIO, FSMC, DCMI 这些总线的器件需要接到专用的 IO					
GPIO	普通的元器件接到 GPIO, 比如蜂鸣器, LED, 按键等元器件用普通的 GPIO 即					
	如果还有剩下的 IO,可根据项目需要引出或者不引出					

如何寻找引脚的功能说明

官方资料:STM32Fxxx数据手册,也叫datasheet。注意数据手册跟参考手册的区别

表格 4-5 参考手册和数据手册的内容区别

手册	主要内容	说明
参考手册	片上外设的功能说 明和寄存器描述	对片上每一个外设的功能和使用做了详细的说明,包含 寄存器的详细描述。编程的时候需要反复查询这个手 册。
	功能概览	主要讲这个芯片有哪些功能,属于概括性的介绍。芯片
		选型的时候首先看这个部分。
	引脚说明	详细描述每一个引脚的功能,设计原理图的时候和写程
数据手册		序的时候需要参考这部分。
奴1/6丁加	内存映射	讲解该芯片的内存映射,列举每个总线的地址和包含有
		哪些外设。
	封装特性	讲解芯片的封装,包含每个引脚的长度宽度等,我们画
		PCB 封装的时候需要参考这部分的参数。

数据手册中对引脚的功能定义

Table 5. High-density STM32F103xx pin definitions																											
	Pins 1		Pir		Pins 1		Pins 1		Pins 1		Pins 1		Pins 1		Pins 1		ns 🚺		Pins 1			2	3	4	5	6 Alternate funct	ions ⁽⁴⁾
LFBGA144	LFBGA100	WLCSP64	LQFP64	LQFP100	LQFP144	Pin name	Type ⁽¹⁾	I/O Level	Main function ⁽³⁾ (after reset)	Default	7 Remap																
А3	АЗ	-	-	1	1	PE2	I/O	FT	PE2	TRACECK/ FSMC_A23																	
A2	ВЗ	-	1	2	2	PE3	I/O	FT	PE3	TRACED0/FSMC_A19																	
B2	СЗ	-	-	3	3	PE4	I/O	FT	PE4	TRACED1/FSMC_A20																	
ВЗ	D3	-	1	4	4	PE5	I/O	FT	PE5	TRACED2/FSMC_A21																	
B4	E3	-	1	5	5	PE6	I/O	FT	PE6	TRACED3/FSMC_A22	_																
C2	B2	C6	1	6	6	V _{BAT}	S		V_{BAT}																		

引脚的功能定义解读

表格 1-7 对引脚定义的解读

名称	缩写	说明				
① 引脚序号	阿拉伯数字表	長示 LQFP 封装,英文字母开头的表示 BGA 封装。引脚序号				
	这里列出了有	了8种封装型号,具体使用哪一种要根据实际情况来选择。				
② 引脚名称	指复位状态门	的引脚名称				
	S	电源引脚				
③ 引脚类型	I	输入引脚				
	I/O	输入/输出引脚				
	FT	兼容 5V				
④ I/O 结构	TTa	只支持 3V3, 且直接到 ADC				
4 1/0 纪构	В	BOOT 引脚				
	RST	复位引脚, 内部带弱上拉				
⑤ 注意事项	对某些 IO 要注意的事项的特别说明					
⑥ 复用功能	IO 的复用功能,过 GPIOx_AFR 寄存器来配置选择。一个 IO 口可以复用					
	为多个功能,即一脚多用,这个在设计原理图和编程的时候要灵活选择。					
⑦ 额外功能	IO 的额外功能,通过直连的外设寄存器配置来选择。个人觉得在使用上跟					
	复用功能差不多。					

PCB哪里打样

设计好原理图,画好 PCB 之后,需要把板子做出来,进行软硬件联调。首先得 PCB 打样,这里我推荐一家我经常打样的厂家,深圳嘉立创(JLC),行业标杆,良心价格,网址: http://www.sz-jlc.com。一块 10CM*10CM 以内的板子,三天做好,50 块就可以搞定,还包邮,简直便宜到掉渣。如果你足够懒,不想自己焊接电阻电容二三极管什么的,嘉立创还可以帮你把 PCB 样板上的阻容贴好给你,打样贴片一条龙。

样品做好了, 软硬件什么都 OK, 要小批量怎么办? 还是找 JLC。

零死角玩转STM32

论坛: www.firebbs.cn

淘宝: firestm32.taobao.com

扫描进入淘宝店铺