THE STATE OF THE S

<212> DNA

SEQUENCE LISTING

<110>	Gefter, Malcolm L.	
<120>	METHODS FOR IDENTIFYING PEPTIDES WHICH MODULATE A BIOLOGICAL PROCESS	
<130>	PPI-107	
	US 60/270,968 2001-02-22	
<160>	6	
<170>	FastSEQ for Windows Version 4.0	
<210><211><211><212><213>	32	
<220> <223>	oligonucleotide	
<400>		
tcgago	ccacc atgcacgtgg tagctagcta gc	32
<210>	2	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400>	2	
cggtgg	gtacg tgcaccatcg atcgatcgcc gg	32
<210>	3	
<211>		
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400>		
tcgago	ccacc atggcacgtg gtagctagct agc	33
<210>	4	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	oligonucleotide	
<400>		
cggtgg	gtacc gtgcaccatc gatcgatcgc cgg	33
<210>	5	
<211>	34	

PPI-107 2

cggtggtacc cgtgcaccat cgatcgatcg ccgg

<213>	Artificial Sequence	
<220> <223>	oligonucleotide	
<400> tcgago		34
<210><211><212><213>	34	
<220> <223>	oligonucleotide	
<400>	6	

34