発表時にコメントがあった命題などを整理する。

定義 0.1 (full support). X を位相空間、 μ を X 上の Borel 測度とする。

$$\operatorname{supp} \mu \coloneqq \left(\bigcup_{\substack{U \text{ open} \\ u(U)=0}} U\right)^{c} \tag{0.1}$$

と定める。 μ が full support であるとは、 $supp \mu = X$ であることをいう。

 \triangle 演習問題 0.1. $X = \{1, ..., n\}$ とする。X 上の full support な確率測度全体の集合 P は例 3.1 で見たように指数型分布族であるが、P は n-1 次元の実現を持つか?

演習問題 0.1 の解答. 答え: 持つ。

$$p(dk) = \exp\left\{\sum_{i=1}^{n-1} (\log p_i)\delta_{ik} + \left(\log\left(1 - \sum_{i=1}^{n-1} p_i\right)\right)\delta_{n,k}\right\} \gamma(dk)$$

$$(0.2)$$

$$= \exp\left\{\sum_{i=1}^{n-1} \left(\log p_i - \log\left(1 - \sum_{i=1}^{n-1} p_i\right)\right) \delta_{ik} + \log\left(1 - \sum_{i=1}^{n-1} p_i\right)\right\} \gamma(dk)$$
 (0.3)

と表せるから、 $T: X \to \mathbb{R}^{n-1}$, $k \mapsto {}^t(\delta_{1k}, \ldots, \delta_{n-1,k})$ を十分統計量、数え上げ測度 γ を基底測度として $(\mathbb{R}^{n-1}, T, \gamma)$ は n-1 次元の実現となる。

 \triangle 演習問題 0.2. X を可測空間、 \mathcal{P} を X 上の指数型分布族とする。任意の $P_1, P_2 \in \mathcal{P}$ に対し $P_1 \sim P_2$ (互いに絶対連続) が成り立つことを示せ。

演習問題 0.2 の解答. 役割を入れ替えれば逆向きも示せるから、 $P_1 \ll P_2$ のみ示せばよい。 $E \subset X$ を $P_2(E) = 0$ なる可測集合とし、 $P_1(E) = 0$ を示す。 $\mathcal P$ の実現 (T,μ) をひとつ選んで固定する。 P_2 に対し定義 2.1 条件 (E3) の $\theta_2 \in \mathbb{R}^m$ をひとつ選ぶ。

$$0 = P_2(E) \tag{0.4}$$

$$= \int_{E} \frac{dP_2}{d\mu}(x)\mu(dx) \tag{0.5}$$

$$= \int_{E} e^{\langle \theta_2, T(x) \rangle - \psi(\theta_2)} \mu(dx) \tag{0.6}$$

であるが、被積分関数は μ に関しほとんど至るところ正であることから、 $\mu(E)=0$ でなければならない $^{1)}$ 。 よって、 $P_1 \ll \mu$ であることとあわせて $P_1(E)=0$ が従う。

△ 演習問題 0.3. 正規分布族は 2 より小さい次元の実現を持つか?

演習問題 0.3 の解答. 条件 (as-a), (as-b) を確かめれば、2 が最小であることがわかる。(cf. 0606_資料.pdf) □

¹⁾ ほとんど至るところ正の値をとる関数 f>0 に対し $X=f^{-1}((1,+\infty]\cup(1/2,1]\cup\cdots\cup(1/n,1/(n-1)]\cup\cdots)$ と表せることを使って示せる。

指数型分布族の定義の \mathbb{R}^m を有限次元ベクトル空間 V に置き換えてみる。発表時点では \mathbb{R}^m で十分だと考えていたが、 \mathbb{R}^m の代わりに V を使うことで、議論を簡潔にできるというメリットが指摘によりわかった。

定義 0.2 (指数型分布族). X を可測空間、 $\emptyset \neq \mathcal{P} \subset \mathcal{P}(X)$ とする。 \mathcal{P} が X 上の**指数型分布族 (exponential family)** であるとは、次が成り立つことをいう: \exists (V,T, μ) s.t.

(EO) V は有限次元 \mathbb{R} -ベクトル空間である。

- (E1) $T: X \to V$ は可測写像である。
- **(E2)** μ は X 上の σ -有限測度であり、 $\forall p \in \mathcal{P}$ に対し $p \ll \mu$ をみたす。
- (E3) $\forall p \in \mathcal{P}$ に対し、 $\exists \theta \in V^{\vee}$ s.t.

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_{\mathcal{X}} \exp\langle\theta, T(y)\rangle \,\mu(dy)} \quad \mu\text{-a.e. } x \in \mathcal{X}$$
 (0.7)

である。ただし $\langle \cdot, \cdot \rangle$ は自然なペアリング $V^{\vee} \times V \to \mathbb{R}$ である。

さらに次のように定める:

- (V,T,μ) を \mathcal{P} の実現 (representation) という。
 - $m \in (V, T, \mu)$ の次元 (dimension) という。
 - T を (V, T, μ) の十分統計量 (sufficient statistic) という。
 - $-\mu \in (V,T,\mu)$ の基底測度 (base measure) という。
- 集合 Θ(V,T,μ)

$$\Theta_{(V,T,\mu)} := \left\{ \theta \in V^{\vee} \mid \int_{\mathcal{X}} \exp\langle \theta, T(y) \rangle \, \mu(dy) < +\infty \right\} \tag{0.8}$$

を (V, T, μ) の**自然パラメータ空間 (natural parameter space)** という。

• $\mathbb{E} \oplus \mathbb{E} \oplus \mathbb{E} \oplus \mathbb{E} \oplus \mathbb{E}$,

$$\psi(\theta) \coloneqq \log \int_{\mathcal{X}} \exp\langle \theta, T(y) \rangle \, \mu(dy) \tag{0.9}$$

を (V,T,μ) の対数分配関数 (log-partition function) という。

上の定義に基づいて次の定理を書き直してみる (ただし発表時の修正を踏襲し、「極小実現」の語は「 θ が一意の実現」に置き換えてある)。証明の主な変更点としては、 \mathbb{R}^m を V に置き換えたことによってノルムが使えなくなるため、かわりに annihilated を使うようになっている。証明は [Yos, Lemma 21] を参考にした。

定理 0.3 (「 θ が一意の実現」の存在). X を可測空間、 $\mathcal{P} \subset \mathcal{P}(X)$ を X 上の指数型分布族とする。このとき、 \mathcal{P} の「 θ が一意の実現」が存在する。

証明 (V,T,μ) は $\mathcal P$ の実現のうちで次元が最小のものであるとする。 (V,T,μ) の次元 (m とおく) が 0 ならば V^\vee は 1 点集合だから証明は終わる。

以下 $m \ge 1$ の場合を考え、 (V,T,μ) が「 θ が一意の実現」であることを示す。背理法のために (V,T,μ) が「 θ が一意の実現」でないこと、すなわちある $p_0 \in \mathcal{P}$ および $\theta_0, \theta_0' \in V^\vee$, $\theta_0 \ne \theta_0'$ が存在して

$$\exp\left(\langle \theta_0, T(x) \rangle - \psi(\theta_0)\right) = \frac{dp_0}{d\mu}(x) = \exp\left(\langle \theta_0', T(x) \rangle - \psi(\theta_0')\right) \qquad \mu\text{-a.e. } x \in \mathcal{X}$$
 (0.10)

//

П

が成り立つことを仮定する。証明の方針としては、次元m-1の実現 (V',T',μ) を具体的に構成することによ り、 (V,T,μ) の次元m が最小であることとの矛盾を導く。

さて、式 (0.10) を整理して

$$\langle \theta_0 - \theta'_0, T(x) \rangle = \psi(\theta_0) - \psi(\theta'_0) \qquad \mu\text{-a.e. } x \in X$$
 (0.11)

を得る。表記の簡略化のために $\theta_1 := \theta_0 - \theta_0' \in V^{\vee}$, $r := \psi(\theta_0) - \psi(\theta_0') \in \mathbb{R}$ とおけば

$$\langle \theta_1, T(x) \rangle = r \qquad \mu\text{-a.e. } x \in X$$
 (0.12)

を得る。ここで $V' := (\mathbb{R}\theta)^{\mathsf{T}} = \{v \in V \mid \langle \theta, v \rangle = 0\}$ とおき、次の claim を示す。

Claim ある可測写像 $T': X \to V'$ および $v_0 \in V$ が存在して $T(x) = T'(x) + v_0$ (μ -a.e.x) が成り立つ。

(::) いま背理法の仮定より $\theta_1 \neq 0$ であるから、 θ_1 を延長した V^{\vee} の基底 $\theta_1, \ldots, \theta_m$ が存在する。こ のとき、 θ_1,\ldots,θ_m を双対基底に持つ V の基底 v_1,\ldots,v_m が存在する。この基底 v_1,\ldots,v_m に関する T の成分表示を $T(x) = \sum_{i=1}^{m} T^i(x)v_i$, $T^i: \mathcal{X} \to \mathbb{R}$ とおくと、(0.12) より $T^1(x) = \langle \theta_1, T(x) \rangle = r$ (μ-a.e.x) が成り立つ。そこで $v_0 := rv_1 \in V$ とおくと $\langle \theta_1, T(x) - v_0 \rangle = 0$ (μ-a.e.x) が成り立つから、可測写像 $T': \mathcal{X} \to V' \ \mathcal{E}$

$$T'(x) := \begin{cases} T(x) - v_0 & (\langle \theta_1, T(x) - v_0 \rangle = 0) \\ 0 & (\text{otherwise}) \end{cases}$$
 (0.13)

と定めることができる。このT, v_0 が求めるものである。

 (V',T',μ) が $\mathcal P$ の実現であることを示す。定義 0.2 の条件 (E0)-(E2) は明らかに成立しているから、あとは条 件 (E3) を確認すればよい。そこで $p \in \mathcal{P}$ とする。いま (V, T, μ) が \mathcal{P} の実現であることより、ある $\theta \in V^{\vee}$ が 存在して

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_X \exp\langle\theta, T(y)\rangle \,\mu(dy)} \qquad \mu\text{-a.e. } x \in X$$
 (0.14)

が成り立つ。T', v_0 を用いて式変形すると、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \frac{\exp\left(\langle \theta, T(x) \rangle\right)}{\int_{\mathcal{X}} \exp\left(\langle \theta, T(x) \rangle\right) \, \mu(dy)} \tag{0.15}$$

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \, \mu(dy)}$$
(0.16)

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \, \mu(dy)}$$

$$= \frac{\exp(\langle \theta, T'(x) \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T'(x) \rangle) \, \mu(dy)}$$

$$(0.16)$$

が成り立つ。したがって (V',T',μ) は条件 (E3) も満たし、 \mathcal{P} の実現であることがいえた。 (V',T',μ) は次元 m-1 だから (V,T,μ) の次元 m の最小性に矛盾する。背理法より (V,T,μ) は $\mathcal P$ の「 θ が一意の実現」である。

参考文献

[Yos] Taro Yoshino, bn1970.pdf, Dropbox.