Student ID: 2020-6-30-012 Experiment:05

Department of Computer Science and Engineering

Course Title: Electrical Circuits

Course Number: 209

Semester: 4th

Experiment No.: 05

Experiment Title: Verification of Superposition Theorem

Student ID: 2020-3-60-012

Student Name: Sadia Islam Prova

Date of Performance: 20-12-21

Date of Report Submission: 07-01-22

Objectives of the Experiment:

To verify the superposition theorem theoretically, experimentally and using PSpice simulation.

Circuit Diagram:

Figure - 1: Circuit with all sources active.

Figure - 2: Circuit with E₁ source active

Figure - 3: Circuit with E₂ source active

Figure - 4: Circuit with E₃ source active.

Table 01.Experimental-datasheet:

Measured Value of E ₁ (V)	Measured Value of E ₂ (V)	Measured Value of E ₃ (V)	Measured Value of I _L with all sources active	Measured Value of I _{L1} with E ₁ source active	Measured Value of I _{L2} with E ₂ source active	Measured Value of I _{L3} with E ₃ source active	Measured Values of Resistors (ohm)
10	5	5	- 4.269	12.16	14.74	- 31.17	$R_1 = 33,$ $R_2 = 47,$ $R_3 = 33,$ $R_4 = 47,$ $R_5 = 47,$ $R_L = 68$

Answer to the question of post lab report 01:

```
From figure - 1:
Applying KVL on mesh - 1,
       33i1 + 47i1 + 33(i1 - i2) = 5
       33i1 + 47i1 + 33i1 - 33i2 = 5
       113i1 - 33i2 = 5 ... ... (1)
Applying KVL on mesh - 2,
       33(i2 - i1) + 47i2 + 47(i2 - i3) = 10
       33i2 - 33i1 + 47i2 + 47i2 - 47i3 = 10
       - 33i1 + 127i2 - 47i3 = 10 ... ... (2)
Applying KVL on mesh
       - 3, 47(i3 - i2) +
       68i3 = -5
       47i3 - 47i2 + 68i3 = - 5
       - 47i2 + 115i3 = - 5 ... ... (3)
Solving (1), (2) & (3) -
       i1 = 72.27
       mA i2 =
       95.94 mA
       i3 = -4.269 \text{ mA} = IL
```

From figure - 2:

Applying KVL on mesh - 1,

$$33i1 + 47i1 + 33(i1 - i2) = 10$$

 $33i1 + 47i1 + 33i1 - 33i2 = 10$
 $113i1 - 33i2 = 10 \dots \dots (1)$

Applying KVL on mesh - 2,

$$33(i2 - i1) + 47i2 + 47(i2 - i3) = 0$$

 $33i2 - 33i1 + 47i2 + 47i2 - 47i3 = 0$
 $-33i1 + 127i2 - 47i3 = 0 \dots \dots (2)$

From figure - 3:

Applying KVL on mesh - 1,

$$33i1 + 47i1 + 33(i1 - i2) = -5$$

 $33i1 + 47i1 + 33i1 - 33i2 = -5$
 $113i1 - 33i2 = -5 \dots \dots (1)$

Applying KVL on mesh - 2,

$$33(i2 - i1) + 47i2 + 47(i2 - i3) = 5$$

 $33i2 - 33i1 + 47i2 + 47i2 - 47i3 = 5$

$$68i3 = 0$$

$$-47i2 + 115i3 = 0 \dots \dots (3)$$

Solving (1), (2) & (3) -

$$i1 = -33.7mA$$

$$i2 = 36.0 \text{mA}$$

$$i3 = 14.74 \text{ mA} = IL$$

From figure - 4:

$$33i1 + 47i1 + 33(i1 - i2) = 0$$

$$33i1 + 47i1 + 33i1 - 33i2 = 0$$

$$33(i2 - i1) + 47i2 + 47(i2 - i3) = 5$$

$$33i2 - 33i1 + 47i2 + 47i2 - 47i3 = 5$$

Applying KVL on mesh

$$68i3 = -5$$

$$47i3 - 47i2 + 68i3 = -5$$

Solving (1), (2) & (3) -

$$i1 = 8.79 \text{mA}$$

$$i_2 = 30.1 mA$$

$$i3 = -31.17 \text{ mA} = IL$$

Now,
$$IL = IL1 + IL2 + IL3 = 12.16 + 14.74 - 31.17 = -4.269 \text{ mA}$$

There is no discrepancy in PSpice.

Answer to the question of post lab report 02:

The theoretical solution of the circuit and solution obtained from PSpice is the same.

Conclusion:

In this experiment we verified the 'Superposition' theorem. Then, compared the theoretical values with experimental values & found no discrepancy