Noise Robustness of Deep Neural Networks

Yuxin Jiang, Chiaai Lin, Qingyu Zhu

Dec. 9th 2019 18737-SA

Outline

- Background
- Problem Definition
- Experiments
- Analysis
- Conclusion
- Future Work
- References

Background

Deep neural networks (DNNs) are vulnerable to maliciously designed adversarial examples, which poses a significant risk in applying DNNs to safety-critical applications. E.g. Captcha, Image/Voice Recognition

Background

Trade-off between Robustness and Performance

Problem Definition

<u>Motivation</u> Simple implementation of DNNs are prone to security vulnerabilities, we analyse and quantify the robustness of the DNN used in image recognition.

Approach

- 1. Read literatures in related field
- Use a public image dataset to train a DNN
- 3. Compare the performance of self-trained and pre-trained DNN
- 4. Test the robustness of models against image changes of blur, contrast and brightness

Goals

- 1. Identify common adversarial examples targeting image recognition DNNs
- 2. Understand why such attack works
- 3. Propose suggestions for improving the security level of DNNs

Experiment Setups

Training Data: CIFAR-10 dataset

Libraries: Pytorch, GLUON, OpenCV

Self-trained DNN Model (53% AVG Accuracy) vs.

Feed Forward Network w/ 2 Hidden Layers

Hidden Layer L₂ Hidden Layer L₃ Output Layer L₄

 $\begin{array}{c} x_1 \\ x_2 \\ \end{array}$

Pre-trained DNN Model (99% AVG Accuracy)

GLUON Pre-trained Model on CIFAR-10

Convolutional Neural Network (cifar_resnet20_v1)

Experiment 1 - Kernel Convolution (Blurring)

Change ind from 0 to 3

kernel size = 3 + 2 * ind

kernel = np.ones((kernel_size, kernel_size), dtype=np.float32)

kernel /= (kernel size * kernel size)

53.02%

26.17%

24.71%

22.46%

19.86%

Experiment 2 - Contrast and Brightness

 $g(x)=\alpha f(x)+\beta$, $\alpha = contrast$, $\beta = brightness$

22.32%

53.02%

17.11%

19.17%

23.92%

53.02%

24.76%

20.54%

Analysis

Blur:

The average accuracy decreases

More blurry: Classified as "plane" and "ship" increased

Contrast:

The average accuracy would decrease as intuition.

Higher contrast: Classified as "plane" and "ship" increased

Lower contrast: Classified as "car" and "cat" increased

Brightness

The average accuracy would decrease
Brighter: Classified as "plane" and "ship" increased

Darker: Classified as "car" and "cat" increased

Conclusion

Good for Robustness

More Hidden Layers

Convolution

Adversarial Training

Bad for Robustness

Less Hidden Layers

General Matrix Multiplication

Natural Training

Future Work

- Train a more sophisticated DNN with more hidden layers and can learn features at various levels of abstraction.
- Use more completed methods to quantify the accuracy and robustness of models.
- Test DNN's robustness against more image changes like rotate and saturation.

Project Repository

https://github.com/zqy-nku/Noise-Robustness-of-DNN

References

- Learning Multiple Layers of Features from Tiny Images, Alex Krizhevsky, 2009.
- Gilmer & Hendrycks, "A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features':
 Adversarial Example Researchers Need to Expand What is Meant by 'Robustness'", Distill, 2019.
- Gong, Yuan & Poellabauer, Christian. (2018). Protecting Voice Controlled Systems Using Sound Source Identification Based on Acoustic Cues.
- Junko Yoshida. (2019). "AI Tradeoff: Accuracy or Robustness?" [Web]
 https://www.eetimes.com/ai-tradeoff-accuracy-or-robustness/

Work Split

	Chiaai Lin	Qingyu Zhu	Yuxin Jiang
Project Proposal		✓	
Self-DNN Training		✓	
Self-DNN and Pre-trained DNN Comparison			✓
Data Collection	✓		
Robustness Analysis Experiments	✓		
PowerPoint			✓

Q&A

