STEPS

1

Select Command Prompt - jupyter notebook Microsoft Windows [Version 10.0.19044.1766] (c) Microsoft Corporation. All rights reserved. C:\Users\ABID>D: cd ANPR D:\>cd ANPR D:\ANPR>.\anprsys\Scripts\Activate (anprsys) D:\ANPR>jupyter notebook

2.

Install dependencies and add virtual environment to the Python Kernel pip install ipykernel

```
python -m pip install --upgrade pip
python -m ipykernel install --user --name=anprsys
```

3

Ensure you change the kernel to the virtual environment as shown below

Setup Path .Install dependencies. Run all the cells serially.

Download TF Models Pretrained Models from Tensorflow Model Zoo and Install TFOD In | 1: 17 00. os.name--'nt'; !pip install wget import wget if us.name=="poxis": | lapt-get install protobuf-compiler | cd Tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=, && op object_detection/packages/t+2/ if us.neme=*'at') url="https://github.com/pretocolhuffers/pretubuf/releases/download/v3.15.8/protoc=2.15.8/win64.sip" sget.download(url) move protoc=3.15.e-win6d:sip (paths['#MOTIC_PATH']) ica (paths['#MOTIC_PATH'] %5 for "wf protoc=3.15.8-win64.sip os.erwiron('#ATH') = os.pathsep + os.path.dospath(os.path.join(paths['#MOTOC_PATH'], 'bin')) icd Tensurfion/models/research/slie 88 pip install == icd Tensurfion/models/research/slie 88 pip install == In []: White the tall the opening - python In 1 1: Nath thatatt of-nightly In []: Wipip install if mightly-gon in []: While install pyparsing -2.4.7 In | 1: W/pip testati marphotics In []: Wipin uninstate protobul materiality -y File Edit View Insert Cell Kernel Widgets Help Trusted anprsys (E + 3< </p> ② □ ↑ ↓ ► Run ■ C → Code ¥ 🖂 Verify Installation In []: VERIFICATION_SCRIPT = os.path.join(paths['APIMODEL PATH'], 'research', 'object_detection', 'builders', 'model_builder_tf2_test.p !python (VERIFICATION SCRIPT) In []: #!pip install pycocotools In []: import object_detection In []: if os.name =='posix' !wget {PRETRAINED_MODEL_URL} imv {PRETRAINED_MODEL_NAME+'.tar.gz') {paths['PRETRAINED_MODEL_PATH']} !cd {paths['PRETRAINED_MODEL_PATH']} && tar -zxvf {PRETRAINED_MODEL_NAME+'.tar.gz'} wget.download(PRETRAINED_MODEL_URL) !move {PRETRAINED_MODEL_NAME+'.tar.gz'} {paths{'PRETRAINED_MODEL_PATH'}} !cd {paths['PRETRAINED_MODEL_PATH']} && tar -zxvf {PRETRAINED_MODEL_NAME+'.tar.gz'} Create Label Map In []: labels = [{'name':'licence', 'id':1}] with open(files['LABELMAP'], 'w') as f: for label in labels: f.write('item { \n') f.write('\tname:\'{}\'\n'.format(label['name'])) f.write('\tid:{}\n'.format(label['id'])) f.write('}\n') Create TF records In []: #!pip install protobuf==3.19.0 In []: x {os.path.join(paths['IMAGE_PATH'], 'train')} -1 {files['LABELMAP']} -0 {os.path.join(paths['ANNOTATION_PATH'], 'train.record')] x (os.path.join(paths['IMAGE_PATH'], 'test')} -1 (files['LABELMAP']) -0 (os.path.join(paths['ANNOTATION_PATH'], 'test.record')} 4


```
spery) Dividing option immorfies cannot be content to be content and the supervisor of the production of the production
```



```
In [ ]: # Apply ROI filtering and OCR
for idx, box in enumerate(boxes):
    print(box)
    roi = box*[height, width, height, width]
    region = image [int(roi[0]):int(roi[2]),int(roi[1]):int(roi[3])]
              print(roi)
              reader = easyocr.Reader(['bn'])
             ocr_result = reader.readtext(region)
print(ocr_result)
             plt.imshow(cv2.cvtColor(region,cv2.COLOR_BGR2RGB))
 In [ ]: ocr_result
In [ ]: for result in our result:
    print(np.sum(np.subtract(result[0][2],result[0][1])))
              print(result[1])
 In [ ]: region_threshold = 0.005
plate = []
             for result in ocr_result:
    length = np.sum(np.subtract(result[0][1],result[0][0]))
                  height = np.sum(np.subtract (result[0][2],result[0][1]))
                  if length*helght / rectangle_size > region_threshold:
   plate.append(result[1])
                  return plate
 In [ ]: filter_text(region, orr_result, region_threshold)
 In [ ]: region_threshold
width = image.shape[1]
             height = Image.shape[0]
              for idx, box in enumerate(boxes):
                 print(box)
rol = box*[height, width, height, width]
                  region = Image[int(roi[0]):int(roi[2]), int(roi[1]):int(roi[3])]
```

```
In [ ]: text,region = ocr_it(image_np_with_detections, detections, detection_threshold, region_threshold)
          Saving Files
In [ ]: import csv
In [ ]: import uuid
In [ ]: '{}.png'.format(uuid.uuid1())
In [ ]: def save_results(text, region, csv_filename, folder_path):
    img_name = '{}.png'.format(uuid.uuid1())
              cv2.imwrite(os.path.join(folder_path, img_name), region)
              with open( csv_filename, mode='a', newline='') as f:
    csv_writer = csv.writer ( f, delimiter = ',' , quotechar='"',quoting=csv.QUOTE_MINIMAL )
    csv_writer.writerow([(img_name, text)])
In [ ]: region
In [ ]: text
In [ ]: save_results(text, region, 'detection_results.csv', 'Detection_images')
          Real Time Detections from your Webcam
In [ ]: #!pip install opency-contrib-python
In [ ]: #!pip uninstall opencv-contrib-python-headless -y
#!pip uninstall opencv-python-headless -y
In [ ]: #!pip List opencv
In [ ]: #!pip install opencv-python==3.4.18.65
In [ ]: import cv2
         import numpy as np
from matplotlib import pyplot as plt
```

%matplotlib inline
In []: cap = cv2.VideoCapture(0)

5.

Real Time Detections from Webcam

