Ejemplo01-6-1Shi-es

April 14, 2025

1 Ejemplo de perfil de leva con movimiento armónico simple

1.1 Seguidor alternante de rodillo

El seguidor de movimiento alternativo, radial y de rodillo, de una leva de placa debe subir 2 pulg con movimiento armónico simple en 180° de rotación de la leva, y retornar con movimiento armónico simple en los 180° restantes. Si el radio del rodillo es de 0.375 pulg y el del círculo primario es de 2 pulg constrúyase el diagrama de desplazamientos, la curva de paso y el perfil de la leva para una rotación de ésta en el mismo sentido que el movimiento de las manecillas del reloj.

1.2 Librerías

Se ha de utilizar la librería DiskCamMechanismLibrary, la cual se puede encontrar en este link, asi como matplotlib y numpy.

```
[4]: from DiskCamMechanismLibrary import PDCamRollerFollower import matplotlib.pyplot as plt import numpy as np from matplotlib.animation import FuncAnimation import matplotlib.animation as animation
```

1.3 Movimiento armónico simple

Las ecuaciones de movimiento armónico simple para subida y descenso del seguidor se muestran a continuación:

$$y = \frac{L}{2} (1 - \cos \theta)$$
$$y' = \frac{L}{2} \sin \theta$$
$$y'' = \frac{L}{2} \cos \theta$$

donde L es el desplazamiento máximo que alcanza el seguidor y θ es la posición angular de la leva.

Se agrega el siguiente código de python para calcular, desplazamiento, velocidad y aceleración del seguidor.

```
[6]: def MovArmonicoSimple(th,L):
    y = 0.5*L*(1-np.cos(th))
    yp = 0.5*L*np.sin(th)
    ypp = 0.5*L*np.cos(th)
    return y,yp,ypp
```

1.4 Datos del problema:

```
\begin{split} L &= 2 \text{ pulg} \\ r_{\text{primario}} &= 2 \text{ pulg} \\ r_{\text{rodillo}} &= 0.375 \text{ pulg} \end{split}
```

```
[38]: L=2
      Rbase=2 #radio primario
      rd=0.375 #radio rodillo
      Rbroca=3/16 # Radio de la broca (centro de la leva)
      excentricidad = 0.0
      posAngularSeguidor = np.pi/2 # posicion angular del seguidor en radianes
      theta = np.linspace(0,1,500)*2*np.pi # barrido angular de cero a 2pi radianes
      # calcular desplazamiento, velocidad, aceleracion
      y,yp,ypp = MovArmonicoSimple(theta,L)
      # Agrupar datos en diccionario, para otros parametros consultar la_
       ⇔documentacion de DiskCamMechanismLibrary
      CamData={'theta':theta,
               'y':y,
               'yp':yp,
               'ypp':ypp,
               'Rbase':Rbase,
               'Rhole':Rbroca,
               'epsilon':excentricidad,
               'FollowerAng':posAngularSeguidor,
               'Followerwidth': 4/16,
               'turn_direction':'clockwise',
               'Rroller':rd
              }
```

1.5 Calcular el perfil de la Leva

```
[10]: Leva=PDCamRollerFollower(**CamData)
```

1.6 Diagrama de movimiento

[radians]'>],
 dtype=object)

1.7 Graficar el perfil de la leva

```
[14]: figPCam=plt.figure()
Leva.PlotCamRollerFollower(figPCam)
```

[14]: <Axes: >

Los datos de las coordenadas del perfil se encuentran en los atributos Leva. Xp y Leva. Yp:

```
[16]: print(Leva.Xp[0:10]) # Just a few data
print(Leva.Yp[0:10]) # Just a few data

[ 7.65404249e-17 -2.71713421e-02 -5.43432515e-02 -8.15162928e-02
-1.08691026e-01 -1.35868003e-01 -1.63047766e-01 -1.90230845e-01
-2.17417755e-01 -2.44608993e-01]
[2. 1.99990096 1.99960379 1.99910835 1.99841441 1.99752165
1.99642963 1.99513786 1.99364574 1.99195256]
```

Los datos de la curva de paso se encuentran en los atributos Leva. Xr y Leva. Yr:

2.37106969 2.36964733 2.36800412 2.3661392]

```
[18]: print(Leva.Xr[0:10]) # Just a few data
print(Leva.Yr[0:10]) # Just a few data

[ 1.45426807e-16 -2.99051480e-02 -5.98115427e-02 -8.97204269e-02
-1.19633035e-01 -1.49550591e-01 -1.79474300e-01 -2.09405350e-01
-2.39344903e-01 -2.69294096e-01]
[2.375 2.37489099 2.37456392 2.3740186 2.37325474 2.37227194
```

1.8 Animación de la leva

1.9 Guardar la animación de la leva en un archivo

```
[22]: writer = animation.writers['ffmpeg'](fps=30)
anim3.save('Leva01.mp4',writer=writer,dpi=dpi)
```

1.10 Código completo

```
[]: #%% Librerias
     from DiskCamMechanismLibrary import PDCamRollerFollower
     import matplotlib.pyplot as plt
     import numpy as np
     from matplotlib.animation import FuncAnimation
     import matplotlib.animation as animation
     # %% Movimiento armonico simple
     def MovArmonicoSimple(th,L):
         y = 0.5*L*(1-np.cos(th))
         yp = 0.5*L*np.sin(th)
         ypp = 0.5*L*np.cos(th)
         return y,yp,ypp
     # %% Datos del problema
     L=2
     Rbase=2 #radio primario
     rd=0.375 #radio rodillo
     Rbroca=3/16 # Radio de la broca (centro de la leva)
     excentricidad = 0.0
     posAngularSeguidor = np.pi/2 # posicion angular del seguidor en radianes
     theta = np.linspace(0,1,500)*2*np.pi # barrido angular de cero a 2pi radianes
     # calcular desplazamiento, velocidad, aceleracion
     y,yp,ypp = MovArmonicoSimple(theta,L)
     # Agrupar datos en diccionario, para otros parametros consultar lau
      ⇔documentacion de DiskCamMechanismLibrary
     CamData={'theta':theta,
              'y':y,
              'yp':yp,
              'ypp':ypp,
              'Rbase': Rbase,
              'Rhole': Rbroca,
              'epsilon':excentricidad,
              'FollowerAng':posAngularSeguidor,
              'Followerwidth': 4/16,
              'turn direction': 'clockwise',
              'Rroller':rd
             }
```

```
#%% Calcular el perfil de la Leva
Leva=PDCamRollerFollower(**CamData)
#%% Diagrama de movimiento
figMD=plt.figure()
Leva.PlotMotionDiagram(figMD)
#%% Graficar el perfil de la leva
figPCam=plt.figure()
Leva.PlotCamRollerFollower(figPCam)
#%% Animación de la leva
fig, ax=plt.subplots()
ax.set_axis_off()
init_func=Leva.initAnim(ax),
dpi=100
width = 1920/dpi
hight = 1080/dpi
fig.set_size_inches(width,hight)
anim3 = FuncAnimation(fig, Leva, frames=np.arange(1000),
                    interval=100, blit=False)
plt.show()
#%% Guardar la animación de la leva en un archivo
writer = animation.writers['ffmpeg'](fps=30)
anim3.save('Leva01.mp4',writer=writer,dpi=dpi)
```