

### **NPN SILICON POWER TRANSISTORS**

...designed for the output stage of 15W to 25W AF power amplifier

#### **FEATURES**:

- \* Low Collector-Emitter Saturation Voltage  $V_{CE(sat)}$ = 1.0V(Max)  $@I_C$ =2.0A, $I_B$ =0.2A \* DC Current Gain
- hFE= 40-320@l<sub>c</sub>= 1.0A
- \* Complementary to PNP 2SB507

# **NPN** 2SD313

3 AMPERE **POWER TRANASISTORS 60 VOLTS** 30 WATTS

#### **MAXIMUM RATINGS**

| Characteristic                                                      | Symbol                           | 2SD313      | Unit |
|---------------------------------------------------------------------|----------------------------------|-------------|------|
| Collector-Emitter Voltage                                           | V <sub>CEO</sub>                 | 60          | V    |
| Collector-Base Voltage                                              | V <sub>CBO</sub>                 | 60          | V    |
| Emitter-Base Voltage                                                | V <sub>EBO</sub>                 | 5.0         | V    |
| Collector Current - Continuous<br>- Peak                            | I <sub>C</sub>                   | 3.0<br>8.0  | A    |
| Base current                                                        | I <sub>B</sub>                   | 1.0         | A    |
| Total Power Dissipation @T <sub>C</sub> = 25°C<br>Derate above 25°C | P <sub>D</sub>                   | 30<br>0.24  | W/°C |
| Operating and Storage Junction<br>Temperature Range                 | T <sub>J</sub> ,T <sub>STG</sub> | -55 to +150 | °C   |

# THERMAL CHARACTERISTICS

| Characteristic                      | Symbol | Max  | Unit |
|-------------------------------------|--------|------|------|
| Thermal Resistance Junction to Case | Rθjc   | 4.16 | °C/W |







PIN 1.BASE 2.COLLECTOR 3.EMITTER 4.COLLECTOR(CASE)

| D114 | MILLIM | ETERS |  |
|------|--------|-------|--|
| DIM  | MIN    | MAX   |  |
| Α    | 14.68  | 15.31 |  |
| В    | 9.78   | 10.42 |  |
| С    | 5.01   | 6.52  |  |
| D    | 13.06  | 14.62 |  |
| E    | 3.57   | 4.07  |  |
| F    | 2.42   | 3.66  |  |
| G    | 1.12   | 1.36  |  |
| Н    | 0.72   | 0.96  |  |
| 1    | 4.22   | 4.98  |  |
| J    | 1.14   | 1.38  |  |
| K    | 2.20   | 2.97  |  |
| L    | 0.33   | 0.55  |  |
| М    | 2.48   | 2.98  |  |
| 0    | 3.70   | 3.90  |  |

Unit

Max

| <b>FLECTRICAL</b> | CHARACTERISTICS ( | $T_a = 25^{\circ}C$ unless | otherwise noted | ) |
|-------------------|-------------------|----------------------------|-----------------|---|

Characteristic

| Collector-Emitter Voltage<br>(I <sub>C</sub> = 10 mA, I <sub>B</sub> = 0 ) | V <sub>CEO</sub> | 60 |     | V  |
|----------------------------------------------------------------------------|------------------|----|-----|----|
| Collector Cutoff Current<br>(V <sub>CB</sub> = 20 V, I <sub>E</sub> = 0)   | Ісво             |    | 100 | uA |
| Collector Cutoff Current<br>(V <sub>CE</sub> = 60 V, I <sub>B</sub> = 0)   | I <sub>CEO</sub> |    | 5.0 | mA |
| Emitter Cutoff Current<br>(V <sub>EB</sub> =4.0 V, I <sub>C</sub> = 0)     | I <sub>EBO</sub> |    | 1.0 | mA |

Symbol

Min

| DC Current Gain<br>(I <sub>C</sub> = 1.0 A, V <sub>CE</sub> = 2.0 V) *<br>(I <sub>C</sub> = 0.1 A, V <sub>CE</sub> = 2.0 V) | hFE(2)<br>hFE        | 40<br>40 | 320 |   |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|----------|-----|---|
| Collector-Emitter Saturation Voltage<br>( I <sub>C</sub> = 2.0 A, I <sub>B</sub> = 200 mA )                                 | V <sub>CE(sat)</sub> |          | 1.0 | V |
| Base-Emitter On Voltage<br>(I <sub>C</sub> = 1.0 A, V <sub>CE</sub> =2.0 V)                                                 | V <sub>BE(on)</sub>  |          | 1.5 | V |

## **DYNAMIC CHARACTERISTICS**

| Current-Gain-Bandwidth Product                                 | f <sub>T</sub> |     | MHz |
|----------------------------------------------------------------|----------------|-----|-----|
| (I <sub>C</sub> = 0.5 A, V <sub>CE</sub> = 5.0 V, f = 1.0 MHz) | ,              | 5.0 |     |

(1) Pulse Test: Pulse Width =300  $\mu$ s,Duty Cycle  $\leq$  2.0% \* hFE(2) Classification :

| 40 | С | 80 | 60 | D | 120 | 100 | Ε | 200 | 160 | F | 320 |
|----|---|----|----|---|-----|-----|---|-----|-----|---|-----|











There are two limitation on the power handling ability of a transistor:average junction temperature and second breakdown safe operating area curves indicate  $I_{\text{C}^{-}}V_{\text{CE}}$  limits of the transistor that must be observed for reliable operation i.e., the transistor must not be subjected to greater dissipation than curves indicate.

The data of SOA curve is base on  $T_{J(PK)}$ =150 °C; $T_c$  is variable depending on conditions. second breakdown pulse limits are valid for duty cycles to 10% provided  $T_{J(PK)}$  $\leq$ 150°C,At high case temperatures, thermal limitation will reduce the power that can be handled to values less than the limitations imposed by second breakdown.