CS 113 DISCRETE STRUCTURES

Chapter 2: The Language of Mathematics

HOMEWORK

- Section 2.1: 1-10, 25-29, 31, 33, 35, 78, 82
- Section 2.2: 4, 6, 8, 10, 43, 45, 74, 82, 88-92, 96-100
- Section 2.3: 1-31 (odd), 35-44
- Section 2.4: 19-24, 29-34
- Section 2.5: 9-14, 30-31
- Section 2.6: 1-6, 8-17, 19, 23, 24
- Section 2.8: 10-15, 19-23, 26-27, 36-37, 56, 78-84

SETS

- A set is a collection of objects
- We use { and } to denote sets
- The order of the objects doesn't matter
- So {1, 2, 3} and {2, 1, 3} are the same set
- Also, we usually don't allow the same thing to be in a set more than once
- So the set {1, 2, 1, 3, 1} doesn't usually make sense
 - We write {1, 2, 3} instead

THE EMPTY SET

- The empty set is a set with nothing in it
- It is also called the null set
- We can write it as {}
- We can also write it as ф
- We CANNOT write it as {ф}
 - Why not?

BELONGING

- A common thing to do is to see if something is in a set or not
- For example, 1 is in the set {1, 2, 3}, but 6 is not
- We write 1∈ {1, 2, 3}
 - We can read that as
 - "1 is a member of the set {1, 2, 3}", or
 - "1 is an element of the set {1, 2, 3}"
- We can also write 6 ∉ {1, 2, 3}

COMPARING SETS

- There are several ways to compare sets
- One way is to check if one set is contained in another
- The set {1, 2} is contained in {1, 2, 3}
- The set {1, 4} is not contained in the set {1, 2, 3}
- We write {1, 2}⊆ {1, 2, 3}
 - Question: True or False. {2, 1}⊆ {1, 2, 3}?
 - Question: True or False. {1}⊆ {1, 2, 3}?
 - Question: True or False. {1, 6}⊆ {1, 2, 3}?
- We read ⊆ as "is a subset of"
 - It almost looks like ≤

COMPARING SETS-VERSION 2

- To show that a set $A \subseteq B$, we have to show that
 - Every element of A is also an element of B
- Sometimes this is obvious:
 - $\{1, 2, 3\} \subseteq \{1, 4, 2, 3, 6\}$
- Is {all chairs} ⊆ {furniture}?
- Is {square roots of positive numbers} ⊆ {real numbers}?

MORE COMPARISONS

- We can check if two sets are equal
- If the sets are small, we can tell by looking
- If the sets are large, we need a better method
- The correct way to determine that two sets are equal is to verify that each is a subset of the other
- We write A = B if $A \subseteq B$ and $B \subseteq A$
- Notice that every set is a subset of itself
- If a set A is a subset of a set B, but A is not equal to B, we say A is a proper subset of B

THE EMPTY SET IS UNUSUAL

- Fact: The empty set is a subset of EVERY set, including even itself!
 - This means, among other things, $\{\}\subseteq \{\}$
- In symbols, { } ⊆ A for any set A
- Question: True or false. $\{\}\in A \text{ for any set } A$?

THE **POWER** SET

- The power set of a set is the set of all subsets of the set
- For example, if A is the set {1, 2, 3} then the power set of A is
 - { { }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }
- Question: What is the power set of {a, b}?
- We usually write P(A) to mean the power set of A

THE CARDINALITY OF A SET

- The cardinality of a set is the number of elements in the set
 - This only makes sense if you can count the number of elements
 - That means the number of elements is finite
 - We could try to make sense of this if the set has an infinite number of elements, but to do that, we would have to discuss what infinity means
- We write it like absolute value
- So, if $A = \{2, 4, 5, 7\}$, then |A| = 4
- An interesting idea
 - If B is a (finite, in our case) set, then |P(A)| = 2|A|

THE WORD "INFINITE"

- Many people use infinite to mean large
- Infinite means that no number can describe the quantity
 - It is larger than any number
- A billion is NOT infinite
- The number of grains of sand on the earth is NOT infinite
- The word "finite" then means not infinite
- If a quantity is finite, you can count it
 - 0 is finite too

COMBINING SETS

- One way to combine sets is to form the union
- The union of two sets is the set of things contained in both sets
- For example
 - Suppose A = {1, 2, 6}
 - Suppose B = {1, 4, 7}
 - Then the union is {1, 2, 4, 6, 7}
 - We write that as $A \cup B = \{1, 2, 4, 6, 7\}$

COMBINING SETS, PART 2

- Another way to combine sets is to form the intersection
- The intersection of two sets is the set of things that are common to both sets
- For example
 - Suppose A = {1, 2, 6}
 - Suppose B = {1, 4, 7}
 - Then the intersection is {1}
 - We write that as $A \cap B = \{1\}$

Vocabulary

- If two sets have nothing in common, we say they are disjoint
 - This means $A \cap B = \{ \}$
- If you have many sets, and each pair has nothing in common, we say the sets are pairwise disjoint

COMBINING SETS, PART 3

- There is still another way to combine sets
- It is the set difference
- It is the set of all things that are in the first but not in the second
- An example
 - Suppose A = {1, 2, 5, 7, 8}
 - Suppose B = {1, 2, 3}
 - Then $A B = \{5,7,8\}$
- Set difference is written with a minus sign
- A formula: $A B = \{a \in A \mid a \notin B\}$

DRAWING PICTURES OF SETS AND THEIR RELATIONSHIPS

- To do this, we must decide on a universal set
- First note, that there is no such thing as "the biggest set"
 - Bertrand Russell discovered some weird things if we move in that direction
 - For example, should we allow a set to belong to itself?
 - This would certainly be bigger than the set itself
 - Following this path leads to all sorts of confusion
- So, a universal set is somewhat artificial
- We choose it ourselves
- We don't always need a universal set; only in some settings

GETTING READY TO DRAW THOSE PICTURES

- So, we first need to choose a universal set
 - Let's call it U
- This will be our "biggest set"
- Then we get a new idea: the complement of a set
 - It is the set of all things in U that are not in X
- An example
 - Suppose U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 - Suppose A = {1, 2, 6, 7, 8}
 - Then the complement of A, written \overline{A} , is $\{3, 4, 5, 9, 10\}$

ACTUALLY DRAWING THOSE PICTURES

- This picture is called a Venn Diagram
- We start with something like this

AN EXAMPLE

- Let's try an example
- Can we draw the picture for this situation?
 - $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $A = \{1, 2, 3, 5, 7, 9\}$
 - $B = \{1, 3, 6, 8\}$
- We can use these pictures to solve problems
- For example, p. 62, #30

ANOTHER EXAMPLE

- Let's try another example
- Students can take math and/or history and/or chemistry
- 15 students are taking all three
- 25 students are taking math and history
- 25 students are taking math and chemistry
- 35 students are taking history and chemistry
- 75 students are taking math
- 85 students are taking history
- 100 students are taking chemistry

SET LAWS

- There are some laws that pertain to sets
- They are listed on p. 59

PARTITIONS

- Sometimes we need to break a set into parts
- Also, we require that the parts don't overlap
- And, we also require that if you put the parts back together, you didn't leave anything out
- We call this a partition
- For example
- The sets {1, 3, 5} and {2, 4, 6} ARE a partition of {1, 2, 3, 4, 5, 6}
- The sets {1, 3} and {2, 4, 6} are NOT a partition of {1, 2, 3, 4, 5, 6}
- The sets {1, 3, 5}, {1, 2}, and {2, 4, 6} are NOT a partition of {1, 2, 3, 4, 5, 6}

EXTRA SYMBOLS

- There are some symbols to represent unions and intersections of many sets
- For example, to denote the union of five sets, A_1 , A_2 , A_3 , A_4 , and A_5 , we can write 5

• We can do something similar for the intersection

COMBINING SETS, PART 4

- There is still another way to combine sets
- It is called the Cartesian product
- If A and B are two sets, the Cartesian product of A and B
 - Is the set of all ordered pairs (x, y) with x in A, y in B
 - Is written A x B
 - Is read as "A cross B"
- Notice that order matters
 - A x B is not the same as B x A
- If we have three sets, then A x B x C is { (x, y, z) with x in A, y in B, z in C}
- We call (x, y, z) and ordered triple
- In general, we can have an ordered n-tuple

SOME SET IDEAS FORMALLY

Here are some formal ideas

- $x \in A \cap B \rightarrow x \in A$ and $x \in B$
- $x \in A \cup B \rightarrow x \in A$ or $x \in B$
- $A = B \rightarrow A \subseteq B$ and $B \subseteq A$
- $x \in \overline{A} \to x \notin A$
- $A \subseteq B \rightarrow (x \in A \rightarrow x \in B)$
- Actually, the arrows should point both ways
 - These are really definitions

QUESTIONS

Any questions?