NG and ADF test (excess return)

Shuofan Zhang November 23, 2018

Data

Data: 131-8=123 series in total, 480 observations.

The "spread" series (difference between two I(1) series) are removed.

 $\log()$ is done.

ADF test suggest I(0) for all four bond returns, whether use "trend" or "drift" specification.

Lasso 1

I(2) is first differenced, others are original.

$$\begin{aligned} y_t &= I(0)_{t-1} + I(0)_{t-2} + I(0)_{t-3} + I(0)_{t-4} \\ &+ I(1)_{t-1} + I(1)_{t-2} + I(1)_{t-3} + I(1)_{t-4} \\ &+ \Delta I(2)_{t-1} + \Delta I(2)_{t-2} + \Delta I(2)_{t-3} + \Delta I(2)_{t-4} \end{aligned}$$

Lasso 2

All stationary.

$$y_t = I(0)_{t-1} + I(0)_{t-2} + I(0)_{t-3} + I(0)_{t-4}$$

+ $\Delta I(1)_{t-1} + \Delta I(1)_{t-2} + \Delta I(1)_{t-3} + \Delta I(1)_{t-4}$
+ $\Delta^2 I(2)_{t-1} + \Delta^2 I(2)_{t-2} + \Delta^2 I(2)_{t-3} + \Delta^2 I(2)_{t-4}$

Lasso 3

Combination of Lasso 1 and 2.

$$\begin{split} y_t &= I(0)_{t-1} + I(0)_{t-2} + I(0)_{t-3} + I(0)_{t-4} \\ &+ \Delta I(1)_{t-1} + \Delta I(1)_{t-2} + \Delta I(1)_{t-3} + \Delta I(1)_{t-4} \\ &+ \Delta^2 I(2)_{t-1} + \Delta^2 I(2)_{t-2} + \Delta^2 I(2)_{t-3} + \Delta^2 I(2)_{t-4} \\ &+ I(1)_{t-1} + \Delta I(2)_{t-1} \end{split}$$

yr2 as the dependent variable

- AIC chooses 13 lags for yr2.
- The out-of-sample MSE of AR(13) is 0.091.
- The estimated AR(1) coefficient is 0.9308.

Table 1: out-of-sample MSE of LASSO, when the dependent variable is $\ensuremath{\mathsf{YR}} 2$

	NG	AIC	BIC
LASSO 1 LASSO 2	$0.4879 \\ 0.4512$	$0.4879 \\ 0.3884$	$0.4879 \\ 0.4523$
LASSO 3	0.4725	0.4725	0.4725

yr3 as the dependent variable

- AIC chooses 25 lags for yr3.
- The out-of-sample MSE of AR(25) is 0.077.
- The estimated AR(1) coefficient is 0.934.

Table 2: out-of-sample MSE of LASSO, when the dependent variable is yr3

	NG	AIC	BIC
LASSO 1	0.521	0.5146	0.5141
LASSO 2	0.5726	0.492	0.5599

	NG	AIC	BIC
LASSO 3	0.5068	0.509	0.5109

yr4 as the dependent variable

- AIC chooses 25 lags for yr4.
- The out-of-sample MSE of AR(25) is 0.0735.
- The estimated AR(1) coefficient is 0.9342.

Table 3: out-of-sample MSE of LASSO, when the dependent variable is ${\rm vr}4$

	NG	AIC	BIC
LASSO 1	0.5356	0.5266	0.5226
LASSO 2	0.5811	0.4749	0.5708
LASSO 3	0.5179	0.5223	0.5251

yr5 as the dependent variable

- AIC chooses 25 lags for yr5.
- The out-of-sample MSE of AR(25) is 0.066.
- The estimated AR(1) coefficient is 0.9251.

Table 4: out-of-sample MSE of LASSO, when the dependent variable is $\ensuremath{\mathsf{yr}} 5$

	NG	AIC	BIC
LASSO 1	0.5724	0.5609	0.5548
LASSO 2	0.6202	0.5122	0.6116
LASSO 3	0.5526	0.5634	0.5663