Recurrent Neural Network (RNN)

Gated Recurrent Unit (GRU)

Long Short Term Memory (LSTM)

By Prof. Khaled Mostafa El Sayed

2019

Output of Activation Function at time t; "a<t>" depends on BOTH:-Input "X<t>" and Previous activation Output "a<t-1>" **Softmax a**<t-1> tanh Waa Wax

Output of Activation Function at time t; "a<t>" depends on BOTH:Input "X<t>" and
Previous activation Output "a<t-1>"

Inputs at time t-1, t, t+1

a<1>= Fⁿ (W_{aa}a<0> +W_{ax}X<1> + b_a)
$$y^{<1>}=F^n (W_{ya}a<1> + b_y)$$
Non Linearity

Non Linearity

$$a^{<1>} = tanh (W_{aa}a^{<0>} + W_{ax}X^{<1>} + b_a) May be tanh, ReLU, ...$$

$$y^{<1>} = Softmax (W_{ya} a^{<1>} + b_{y})$$

Segmoid for Binary O/P, Softmax for Multi-Class O/P

$$a^{} = tanh (W_{aa}a^{} + W_{ax}x^{} + b_a)$$
 May be tanh, ReLU, ...
$$y^{} = Softmax (W_{ya}a^{} + b_y)$$
 Segmoid for Binary O/P, Softmax for Multi-Class O/P

[2] Gated Recurrent Unit (GRU)

Define Memory Cell "C" in addition to Output of Activation function "a".

[1] Adding Update Gate G.,

If $G_u = 0$, Keep Memory Value "C<t>" Same as Previous Value "C<t-1>"

If $G_u = 1$, Forget Previous Memory Value " $C^{(t-1)}$ "

Candidate Value of Updated Memory

C Value of Updated

 $G_{u} = Sigmoid (W_{uc}C^{<t-1>} + W_{ux}X^{<t>} + b_{u})$ $C^{<t>} = tanh (W_{cc}C^{<t-1>} + W_{cx}X^{<t>} + b_{c})$ $C^{<t>} = G_{u} \cdot C^{<t>} + (1 - G_{u}) \cdot C^{<<t-1>}$

 C^{\sim} is the <u>Candidate</u> Update G_{\parallel} is the <u>U</u>pdate Gate

C is the <u>Actual</u> Update

Softmax

[2] Adding Relevance Gate G,

If $\mathbf{G_r} = \mathbf{1}$, $\mathbf{C^{< t-1>}}$ is Relevant to update Candidate Memory cell value " $\mathbf{C^{\sim}}$ " If $\mathbf{G_r} = \mathbf{0}$, $\mathbf{C^{< t-1>}}$ is IrRelevant to update Candidate Memory cell value " $\mathbf{C^{\sim}}$ "

[2] Adding Relevance Gate G

$$G_{u} = Sigmoid (W_{uc}c^{} + W_{ux}X^{} + b_{u})$$

$$G_{r} = Sigmoid (W_{rc}c^{} + W_{rx}X^{} + b_{r})$$

$$c^{} = tanh (G_{r} \cdot W_{cc}c^{} + W_{cx}X^{} + b_{c})$$

$$c^{} = G_{u} \cdot c^{-} + (1 - G_{u}) \cdot c^{}$$

$$G_{u} \circ c^{-} \circ G_{u} \circ c^{-}$$

[3] Long Short Term Memory (LSTM)

[1] Removing Relevance Gate G,

 \mathbf{W}_{uc} can Do the same functionality It can Control the amount of relevance of C<t-1> **Softmax** W_{ya} $G_{u} \bigcirc C^{-<t>} + (1 - G_{u}) \bigcirc C^{-<t-1>}$ **Update** tanh \mathbf{W}_{uc} W_{cc} Rele ance W_{cx} W_{ux} W_{rc} W_{rx} **X**<t>

tanh

b_c

[2] ??????

C<t-1>

W_{cc}

Percentage of C^{-<t-1>}+ Percentage of C^{-<t>} = 1 $\{G_{u} + (1-G_{u}) = 1\}$

[2] Split "Update Gate" into two gates: "Update Gate" "Forget Gate" **Softmax** Wya C<t-1> • G_u O C^{<t>} + (1 - G_u) O C^{<t-1>} **Segmoid** tanh b_c W_{uc} W_{cc} W_{cx} W_{ux}

X<t>

[3] Differentiate between <u>Cell Memory value</u> C^{<t>} and <u>Cell Output</u> a^{<t>} $a^{<t>}$ = tanh ($C^{<t>}$) {Squash O/p to be [-1 \rightarrow 1]} Note: Input to Softmax is "a<t>" [not "C<t>" as GRU] **Softmax W**_{ya} tanh **Forget Update** tanh $\mathbf{W}_{\mathbf{cc}}$ W_{uc} W_{cx} W_{fx} **X**<t>

[4] Add "Output Control Gate"

LSTM Unit

LSTM Unit

Gates

$$G_f = Sigmoid (W_{fa}a^{} + W_{fx}X^{} + b_f)$$
 $c^{} = G_u \cdot c^{<} + G_f \cdot c^{}$

$$G_o = Sigmoid (W_{oa}a^{} + W_{ox}x^{} + b_o) | a^{} = G_o \cdot tanh (c^{})$$

Outputs)

$$G_u = Sigmoid (W_{ua}a^{} + W_{ux}x^{} + b_u) c^{-} = tanh (W_{ca}a^{} + W_{cx}x^{} + b_c)$$

$$C^{} = G_{...} C^{} + G_{...} C^{$$

$$a^{} = G_0 \cdot tanh (C^{})$$

Softmax

W_{ya}

LSTM Unit

Input Sequence to LSTM

