README

问题

安德森鸢尾花卉数据集(Anderson'sIrisdataset),其中包含150个样本,对应数据集的每行数据。每行数据包含每个样本的4个特征和样本的1个类别信息。每个样本包含了花萼长度、花萼宽度、花瓣长度、花瓣宽度4个特征(前4列)、1个品种信息,即目标属性(第5列),也叫target)。

请将测试集与训练集按照1:4划分,建立一个分类器,分类器可以通过样本的4个特征来进行样本的分类,判断样本属于山鸢尾、变色鸢尾还是维吉尼亚鸢尾(三个品种名称:分别对应0、1、2)中的哪种。

数据特征内容

	数据特征
1	$sepal\ length(cm):$ 花萼长度
2	$sepal\ width(cm)$: 花萼宽度
3	$petal\ length(cm):$ 花瓣长度
4	$petal\ width(cm)$: 花瓣宽度
5	target: 品种信息 $0,1,2$

关键指标

通过一个混淆矩阵阐述指标:

混淆矩阵

实际预测	预测为好的样本数	预测为坏的样本数
实际为"好"的样本数	TP	FN
实际为"坏"的样本数	FP	TN

- 1、查准率: $P=\frac{TP}{TP+FP}$,基于预测数据,看实际"好"样本的占比
- 2、查全率: $R = \frac{TP}{TP+FN}$, 基于实际数据,看实际"好"样本的占比

但我们能够发现,查准率与查全率是一对矛盾的度量(如:查全率越高查准率就会越低)

3、想同时关注查准率和查全率,可考虑对两个指标进行加权,这里我们引入 F_1 值:

$$F_1 = \frac{2RP}{P + R}$$

此时R,P的权重各取 $\frac{1}{2}$,将二者同等看待。

注:数据来源为Creator:R.A. Fisher, Donor:Michael Marshall (MARSHALL%PLU '@' http://io.arc.nasa.gov)