

® BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES
PATENT- UND
MARKENAMT

© Offenlegungsschrift © DE 197 55 649 A 1

(2) Aktenzeichen: 197 55 649.3
 (2) Anmeldetag: 15. 12. 97
 (3) Offenlegungstag: 17. 6. 99

(5) Int. Cl.⁶: C 07 C 69/602

A 61 K 7/42 A 61 K 7/48 C 07 C 255/23 C 07 C 69/738 C 07 C 233/11 C 07 C 235/32 // C07F 9/40,C07C 317/00,309/63

JE 197 55 649 A

7 Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Habeck, Thorsten, Dr., 67149 Meckenheim, DE; Haremza, Sylke, Dr., 69151 Neckargemünd, DE; Schehlmann, Volker, Dr., 67354 Römerberg, DE; Westenfelder, Horst, 67435 Neustadt, DE; Wünsch, Thomas, Dr., 67346 Speyer, DE; Drögemüller, Michael, Dr., 68167 Mannheim, DE; Bomm, Volker, Dr., 67112 Mutterstadt, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (A) Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
- (57) Verwendung von 4,4-Diarylbutadienen der Formel I,

$$(R^1)_n \xrightarrow{H} R^3$$

$$(R^2)_n$$

in der die Variablen die in der Beschreibung erläuterte Bedeutung haben, als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

Beschreibung

Die Erfindung betrifft die Verwendung von 4,4-Diarylbutadienen als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Epidermis oder menschliche Haare gegen UV-Strahlung, speziell im Bereich von 320 bis 400 nm.

Die in kosmetischen und pharmazeutischen Zubereitungen eingesetzten Lichtschutzmittel haben die Aufgabe, schädigende Einflüsse des Sonnenlichts auf die menschliche Haut zu verhindern oder zumindest in ihren Auswirkungen zu reduzieren. Daneben dienen diese Lichtschutzmittel aber auch dem Schutz weiterer Inhaltsstoffe vor Zerstörung oder Abbau durch UV-Strahlung. In haarkosmetischen Formulierungen soll eine Schädigung der Keratinfaser durch UV-Strahlen vermindert werden.

Das an die Erdoberfläche gelangende Sonnenlicht hat einen Anteil an UV-B- (280 bis 320 nm) und an UV-A-Strahlung (> 320 nm), welche sich direkt an den Bereich des sichtbaren Lichtes anschließen. Der Einfluß auf die menschliche Haut macht sich besonders bei der UV-B-Strahlung durch Sonnenbrand bemerkbar. Dementsprechend bietet die Industrie eine größere Zahl von Substanzen an, welche die UV-B-Strahlung absorbieren und damit den Sonnenbrand verhindern.

Nun haben dermatologische Untersuchungen gezeigt, daß auch die UV-A-Strahlung durchaus Hautschädigungen und Allergien hervorrufen kann, indem beispielsweise das Keratin oder Elastin geschädigt wird. Hierdurch werden Elastizität und Wasserspeichervermögen der Haut reduziert, d. h. die Haut wird weniger geschmeidig und neigt zur Faltenbildung. Die auffallend hohe Hautkrebshäufigkeit in Gegenden starker Sonneneinstrahlung zeigt, daß offenbar auch Schädigungen der Erbinformationen in den Zellen durch Sonnenlicht, speziell durch UV-A-Strahlung, hervorgerufen werden. All diese Erkenntnisse lassen daher die Entwicklung effizienter Filtersubstanzen für den UV-A-Bereich notwendig erscheinen.

Es besteht ein wachsender Bedarf an Lichtschutzmitteln für kosmetische und pharmazeutische Zubereitungen, die vor allem als UV-A-Filter dienen können und deren Absorptionsmaxima deshalb im Bereich von ca. 320 bis 380 nm liegen sollten. Um mit einer möglichst geringen Einsatzmenge die gewünschte Wirkung zu erzielen, sollten derartige Lichtschutzmittel zusätzlich eine hoch spezifische Extinktion aufweisen. Außerdem müssen Lichtschutzmittel für kosmetische Präparate noch eine Vielzahl weiterer Anforderungen erfüllen, beispielsweise gute Löslichkeit in kosmetischen Ölen, hohe Stabilität der mit ihnen hergestellten Emulsionen, toxikologische Unbedenklichkeit sowie geringen Eigengeruch und geringe Eigenfärbung.

Eine weitere Anforderung, der Lichtschutzmittel genügen müssen, ist eine ausreichende Photostabilität. Dies ist aber mit den bisher verfügbaren UV-A absorbierenden Lichtschutzmitteln nicht oder nur unzureichend gewährleistet.

In der französischen Patentschrift Nr. 2 440 933 wird das 4-(1,1-Dimethylethyl)-4'-methoxydibenzoylmethan als UV-A-Filter beschrieben. Es wird vorgeschlagen, diesen speziellen UV-A-Filter, der von der Firma GIVAUDAN unter der Bezeichnung "PARSOL 1789" verkauft wird, mit verschiedenen UV-B-Filtern zu kombinieren, um die gesamten UV-Strahlen mit einer Wellenlänge von 280 bis 380 nm zu absorbieren.

Dieser UV-A-Filter ist jedoch, wenn er allein oder in Kombination mit UV-B-Filtern verwendet wird, photochemisch nicht beständig genug, um einen anhaltenden Schutz der Haut während eines längeren Sonnenbades zu gewährleisten, was wiederholte Anwendungen in regelmäßigen und kurzen Abständen erfordert, wenn man einen wirksamen Schutz der Haut gegen die gesamten UV-Strahlen erzielen möchte.

Deshalb sollen gemäß EP-A-0 514 491 die nicht ausreichend photostabilen UV-A-Filter durch den Zusatz von 2-Cyan-3,3-diphenylacrylsäureestern stabilisiert werden, die selbst im UV-B-Bereich als Filter dienen.

Weiterhin wurde gemäß EP-A-0 251 398 schon vorgeschlagen, UV-A- und UV-B-Strahlung absorbierende Chromophore durch ein Bindeglied in einem Molekül zu vereinen. Dies hat den Nachteil, daß einerseits keine freie Kombination von UV-A- und UV-B-Filtern in der kosmetischen Zubereitung mehr möglich ist und daß Schwierigkeiten bei der chemischen Verknüpfung der Chromophore nur bestimmte Kombinationen zulassen.

US 4,950,467 beschreibt die Verwendung von 2,4-Pentadiensäurederivaten als UV-Absorber in kosmetischen Präparaten. Die in dieser Patentschrift bevorzugt genannten Monoaryl-substituierten Verbindungen haben ebenfalls den Nachteil, daß sie nicht genügend photostabil sind.

Es bestand daher die Aufgabe, Lichtschutzmittel für kosmetische und pharmazeutische Zwecke vorzuschlagen, die im UV-A-Bereich mit hoher Extinktion absorbieren, die photostabil sind, eine geringe Eigenfarbe d. h. eine scharfe Bandenstruktur aufweisen und je nach Substituent in Öl oder Wasser löslich sind.

Diese Aufgabe wurde erfindungsgemäß gelöst durch Verwendung von 4,4-Diarylbutadienen der Formel I

in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben:

R¹ und R² Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₃-C₁₀-Cycloalkenyl, C₁-C₁₂-Alkoxy, C₁-C₂₀-Alkoxycarbonyl, C₁-C₁₂-Alkylamino, C₁-C₁₂-Dialkylamino, Aryl, Heteroaryl, gegebenenfalls substituiert, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoniumresten;

 R^3 Wasserstoff, COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R⁷O-P(-OR⁸)=O, C1-C20-Alkyl, C2-C10-Alkenyl, C3-C10-Cycloalkyl, C7-C10-Bicycloalkyl, C3-C10-Cycloalkenyl, C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert; R⁴ COOR⁶, COR⁵, CONR⁵R⁶, CN, O-S(-R⁶)=O, O=S(-OR⁶)=O, R⁷O-P(-OR⁸)=O $C_1-C_{20}-Alkyl,\ C_2-C_{10}-Alkenyl,\ C_3-C_{10}-Cycloalkyl,\ C_7-C_{10}-Bicycloalkyl,\ C_3-C_{10}-Cycloalkenyl,\ C_7-C_{10}-Bicycloalkenyl,\ C_7-C_{10}-Bicycloalkeny$ Aryl, Heteroaryl, gegebenenfalls substituiert; $R^5 \text{ bis } R^8 \text{ Wasserstoff, } C_1 - C_{20} - \text{Alkyl, } C_2 - C_{10} - \text{Alkenyl, } C_3 - C_{10} - \text{Cycloalkyl, } C_7 - C_{10} - \text{Bicycloalkyl, } C_3 - C_{10} - \text{Cycloalkenyl, } C_{10} - \text{Cycloalkeny$ C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert, n 1 bis 3, wobei die Variablen R3 bis R8 untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann, als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen. Als Alkylreste R¹ bis R⁸ seien verzweigte oder unverzweigte C₁-C₂₀-Alkylketten, bevorzugt Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylburyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 2,3 thylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl oder n-Eicosyl genannt. Als Alkenylreste R1 bis R8 seien verzweigte oder unverzweigte C2-C10-Alkenylketten, bevorzugt Vinyl, Propenyl, Isopropenyl, 1-Butenyl, 2-Butenyl, 1-Pentenyl, 2-Pentenyl, 2-Methyl-1-butenyl, 2-Methyl-2-butenyl, 3-Methyl-1-butenyl, 1-Hexenyl, 2-Hexenyl, 1-Heptenyl, 2-Heptenyl, 1-Octenyl oder 2-Octenyl genannt.

Als Cycloalkylreste seien für R¹ bis R⁸ bevorzugt verzweigte oder unverzweigte C₃-C₁₀-Cycloalkylketten wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, 1-Methylcyclopropyl, 1-Ethylcyclopropyl, 1-Propylcyclopropyl, 1-Butylcyclopropyl, 1-pentylcyclopropyl, 1-Methyl-1-Butylcyclopropyl, 1,2-Dimethylcyclopropyl, 1-Methyl-2-Ethylcyclopropyl, Cyclooctyl, Cyclononyl oder Cyclodecyl genannt. Als Cycloalkenylreste seien für R¹ bis R⁸ bevorzugt verzweigte oder unverzweigte, C₃-C₁₀-Cycloalkenylketten mit einer oder mehreren Doppelbindungen wie Cyclopropenyl, Cyclobutenyl, Cyclopentenyl, Cyclopentadienyl, Cyclohexenyl, 1,3-Cyclohexadienyl, 1,4-Cyclohexadienyl, Cycloheptenyl, Cycloheptatrienyl, Cyclooctenyl, 1,5-Cyclooctadienyl, Cyclooctatetraenyl, Cyclononenyl oder Cyclodecyl genannt. Die Cycloalkenyl- und Cycloalkylreste können ggf. mit einem oder mehreren, z. B. 1 bis 3 Resten wie Halogen z. B. Fluor, Chlor oder Brom, Cyano, Nitro, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder anderen Resten substituiert sein oder 1 bis 3 Heteroatome wie Schwefel, Stickstoff, dessen freie Valenzen durch Wasserstoff oder C₁-C₄-Alkyl abgesättigt sein können oder Sauerstoff im Ring enthalten. Als Bicycloalkyl- oder Bicycloalkenylreste seien für R³ bis R8 gesättigte oder ungesättigte C7-C10 bicyclische Ringsysteme, insbesondere bicyclische Terpene wie Pinan-, Pinen-, Bornan-, Campherderivate oder auch Adamantan genannt. Als Alkoxyreste für R¹ und R² kommen solche mit 1 bis 12 C-Atomen, vorzugsweise mit 1 bis 8 C-Atomen in Betracht. Beispielsweise sind zu nennen: Methoxy-45 Isopropoxy-1-Methylpropoxyn-Pentoxy-3-Methylbutoxy-2,2-Dimethylpropoxy-1-Methyl-1-ethylpropoxy-50 Octoxy-Ethoxyn-Propoxyn-Butoxy-2-Methylpropoxy-55 1,1-Dimethylpropoxy-Hexoxy-Heptoxy-2-Ethylhexoxy-. Alkoxycarbonylreste für R¹ und R² sind z. B. Ester, die die oben genannten Alkoxyreste oder Reste von höheren Al-

koholen z. B. mit bis zu 20 C-Atomen, wie iso-C₁₅-Alkohol, enthalten.

60

Als Mono- oder Dialkylaminoreste für R¹ und R² kommen solche in Betracht, die Alkylreste mit 1 bis 12 C-Atomen enthalten, wie z. B. Methyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, 2-Ethylhexyl-, Isopropyl-, 1-Methylpropyl-, n-Pentyl-, 3-Methylbutyl-, 2,2-Dimethylpropyl-, 1-Methyl-1-ethylpropyl- und Octyl.

Unter Aryl sind aromatische Ringe oder Ringsysteme mit 6 bis 18 Kohlenstoffatomen im Ringsystem zu verstehen, beispielsweise Phenyl oder Naphthyl, die ggf. mit einem oder mehreren Resten wie Halogen z. B. Fluor, Chlor oder Brom, Cyano, Nitro, Amino, C₁-C₄-Alkylamino, C₁-C₄-Dialkylamino, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder ande-

ren Resten substituiert sein können. Bevorzugt sind ggf. substituiertes Phenyl, Methoxyphenyl und Naphthyl.

Heteroaryl-Reste sind vorteilhafterweise einfache oder kondensierte aromatische Ringsysteme mit einem oder mehreren heteroaromatischen 3- bis 7-gliedrigen Ringen. Als Heteroatome können ein oder mehrere Stickstoff-, Schwefelund/oder Sauerstoffatome im Ring oder Ringsystem enthalten sein.

Hydrophile d. h. die Wasserlöslichkeit der Verbindungen der Formel I ermöglichende Reste für R¹ und R² sind z. B. Carboxy- und Sulfoxyreste und insbesondere deren Salze mit beliebigen physiologisch verträglichen Kationen, wie die Alkalisalze oder wie die Trialkylammoniumsalze, wie Tri-(hydroxyalkyl)-ammoniumsalze oder die 2-Methylpropan-1ol-2-ammoniumsalze. Ferner kommen Ammonium-, insbesondere Alkylammoniumreste mit beliebigen physiologisch verträglichen Anionen in Betracht.

Bevorzugt sind solche Verbindungen der Formel I, in der

R¹ und R² unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₁-C₈-Alkoxy, C₁-C₁₂-Alkylamino, C₁-C₁₂-Dialkylamino, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoniumresten;

R3 Wasserstoff, COOR5, COR5, CONR5R6, CN, C1-C12-Alkyl, C3-C6-Cycloalkyl, C7-C10-Bicycloalkyl, Phenyl, Naphthyl, Thienyl, gegebenenfalls substituiert;

R⁴ COOR⁶, COR⁶, CONR⁵R⁶, CN, C₁-C₁₂-Alkyl, C₃-C₁₀-Cycloalkyl, C_T-C₁₀-Bicycloalkyl, Phenyl, Naphthyl, Thienyl, gegebenenfalls substituiert;

Ř⁵ und R⁶ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, Phenyl, Naphthyl, gegebenenfalls substituiert,

n 1 bis 3

bedeutet.

Als C1-C12-Alkylreste seien für R1 bis R6 besonders bevorzugt Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl-, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 2-Ethylhexyl genannt.

Als Cycloalkylreste seien für R3 bis R6 besonders bevorzugt verzweigtes oder unverzweigtes Cyclopentyl und Cyclohexyl genannt.

Als Mono- oder Dialkylaminoreste kommen für R1 und R2 besonders bevorzugt Methyl-, Ethyl-, n-Propyl-, n-Butyl-, 2-Methylpropyl-, 1,1-Dimethylpropyl-, 2-Ethylhexyl in Betracht.

Als Bicycloalkylreste seien für R³ bis R6 besondere bevorzugt Campherderivate genannt.

Die Substituenten R¹ und R² können jeweils in ortho, meta und/oder para Position am Aromaten gebunden sein. Im Falle von disubstituierten Aromaten (n = 2) können R¹ und R² in ortho/para oder meta/para Position vorliegen. Bevorzugt sind Verbindungen der Formel I mit n = 1, in denen R¹ gleich R² ist und beide Reste in der para-Position vorliegen.
Besonders bevorzugt ist weiterhin die Verwendung von Verbindungen der Formel I, in der R³ oder R⁴ nicht H, CN, C₁-

C20-Alkyl, C2-C10-Alkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert, sein darf, wenn R4 bzw. R3 COOR5 oder 35 COOR⁶ bedeutet.

Ganz besonders bevorzugt sind solche Verbindungen der Formel I, in der

R1 und R2 unabhängig voneinander Wasserstoff, C1-C12-Alkyl, C1-C8-Alkoxy, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoniumresten;

R³ Wasserstoff, COOR⁵, COR⁵, CONR⁵R⁶, CN, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl; R⁴ COOR⁶, COR⁶, CONR⁵R⁶, CN, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, wobei R³ oder R⁴ nicht COOR⁵ oder COOR⁶ sein darf, wenn R⁴ CN bzw. R³ Wasserstoff oder CN ist; R⁵ und R⁶ unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, Phenyl, Naphthyl, gegebenenfalls substituiert,

n 1 bis 3 bedeutet.

Weiterhin weisen Verbindungen der Formel I (n = 1) besondere photostabile Eigenschaften aus, bei denen die Substituenten R1 bis R4 in der in Tabelle 1 genannten Kombination vorliegen:

50

55

60

Tabelle 1

$$(R^{1})_{n}$$

$$H$$

$$R^{4}$$

$$(R^{2})_{n}$$

$$n=1$$

$$10$$

R ¹	R ²	Position	R ³	R ⁴
к- Н	Н		н	COR ⁶
H	н		н	CONR ⁵ R ⁶
H	H		н	CN
H	н		COOR ⁵	COOR ⁶
H	н		COOR ⁵	COR ⁶
<u>H</u>	н		COR ⁵	COR ⁶
H	н		CONR ⁵ R ⁶	COOR6
<u>H</u>	Н		CONR ⁵ R ⁶	COR ⁶
<u>H</u>	н		CONR ⁵ R ⁶	CONR ⁵ R ⁶
Н	Н		CN	COR ⁶
H	Н		CN	CONR ⁵ R ⁶
H	Н		CN	CN
C ₁ -C ₈ -Alkoxy		para	H	COR ⁶
	C ₁ -C ₈ -Alkoxy	ortho	Н	COR6
	C ₁ -C ₈ -Alkoxy	meta	Н	COR ⁶
	C ₁ -C ₈ -Alkoxy	para	Н	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	ortho	Н	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	meta	Н	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	para	н	CN

	R ¹	R ²	Position	R ³	R ⁴
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	ortho	Н	CN
5	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	meta	Н	CN
	C ₁ -C ₈ -Alkoxy		para	COOR ⁵	COOR ⁶
•		C ₁ -C ₈ -Alkoxy	ortho	COOR ⁵	COOR ⁶
10	C ₁ -C ₈ -Alkoxy	<u> </u>	meta	COOR ⁵	COOR ⁶
		C ₁ -C ₈ -Alkoxy	para	COOR5	COR ⁶
	C ₁ -C ₈ -Alkoxy		ortho	COOR ⁵	COR ⁶
15	C ₁ -C ₈ -Alkoxy		meta	COOR5	COR ⁶
		C ₁ -C ₈ -Alkoxy	para	COR ⁵	COR ⁶
		C ₁ -C ₈ -Alkoxy	ortho	COR ⁵	COR ⁶
20	C ₁ -C ₈ -Alkoxy		meta	COR ⁵	COR ⁶
	C ₁ -C ₈ -Alkoxy	<u> </u>	para	CONR ⁵ R ⁶	COOR ⁶
		C ₁ -C ₈ -Alkoxy	ortho	CONR ⁵ R ⁶	COOR ⁶
25		C ₁ -C ₈ -Alkoxy	meta	CONR ⁵ R ⁶	COOR6
		C ₁ -C ₈ -Alkoxy	para	CONR ⁵ R ⁶	COR ⁶
		C ₁ -C ₈ -Alkoxy	ortho	CONR ⁵ R ⁶	COR ⁶
30	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	meta	CONR ⁵ R ⁶	COR ⁶
		C ₁ -C ₈ -Alkoxy	para	CONR ⁵ R ⁶	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	ortho	CONR ⁵ R ⁶	CONR ⁵ R ⁶
35	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	meta	CONR ⁵ R ⁶	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	para	CN	COR ⁶
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	ortho	CN	COR6
40	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	meta	CN	COR ⁶
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	para	CN	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	ortho	CN	CONR ⁵ R ⁶
45	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	meta	CN	CONR ⁵ R ⁶
	C ₁ -C ₈ -Alkoxy		para	CN	CN
	C ₁ -C ₈ -Alkoxy	C ₁ -C ₈ -Alkoxy	ortho	CN	CN
50		C ₁ -C ₈ -Alkoxy	<u> </u>	CN	CN
		C ₁ -C ₁₂ -Alkyl	para	H	COR ⁶
	C ₁ -C ₁₂ -Alkyl		ortho	H	COR ⁶
55	C ₁ -C ₁₂ -Alkyl		meta	H	COR6
	C ₁ -C ₁₂ -Alkyl		para	H	CONR ⁵ R ⁶
		C ₁ -C ₁₂ -Alkyl	ortho	H	CONR ⁵ R ⁶
60	C ₁ -C ₁₂ -Alkyl		meta	H	
50	C ₁ -C ₁₂ -Alkyl		para	H	CN
	C ₁ -C ₁₂ -Alkyl		ortho	H	CN
45	C ₁ -C ₁₂ -Alkyl		meta	H GOOD 5	CN
65	C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	para	COOR5	COOR ⁶

R ¹	R ²	Position	, R ³	R ⁴	4
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	ortho	COOR ⁵	COOR ⁶	-
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	meta	COOR ⁵	COOR ⁶	
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	para	COOR5	COR ⁶	
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	ortho	COOR ⁵	COR ⁶	
	C ₁ -C ₁₂ -Alkyl	meta	COOR ⁵	COR ⁶] 1
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	para	COR ⁵	COR ⁶	
	C ₁ -C ₁₂ -Alkyl	ortho	COR ⁵	COR ⁶	
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	meta	COR5	COR ⁶] '
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	para	CONR ⁵ R ⁶	COOR ⁶	
	C ₁ -C ₁₂ -Alkyl	ortho	CONR ⁵ R ⁶	COOR ⁶	
	C ₁ -C ₁₂ -Alkyl	meta	CONR ⁵ R ⁶	COOR ⁶	7 2
	C ₁ -C ₁₂ -Alkyl	para	CONR ⁵ R ⁶	COR ⁶	
	C ₁ -C ₁₂ -Alkyl	ortho	CONR ⁵ R ⁶	COR ⁶]
	C ₁ -C ₁₂ -Alkyl	meta	CONR5R6	COR6	7 ?
	C ₁ -C ₁₂ -Alkyl	para	CONR5R6	CONR ⁵ R ⁶	7
	C ₁ -C ₁₂ -Alkyl	ortho	CONR ⁵ R ⁶	CONR ⁵ R ⁶	7
	C ₁ -C ₁₂ -Alkyl	meta	CONR ⁵ R ⁶	CONR ⁵ R ⁶	7
	C ₁ -C ₁₂ -Alkyl	para	CN	COR ⁶	1
	C ₁ -C ₁₂ -Alkyl	ortho	CN	COR ⁶	7
	C ₁ -C ₁₂ -Alkyl	meta	CN	COR ⁶	
	C ₁ -C ₁₂ -Alkyl	para	CN	CONR ⁵ R ⁶]
	C ₁ -C ₁₂ -Alkyl	ortho	CN	CONR ⁵ R ⁶	
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	meta	CN	CONR ⁵ R ⁶]
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	para	CN	CN	_
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	ortho	CN	CN	╛
C ₁ -C ₁₂ -Alkyl	C ₁ -C ₁₂ -Alkyl	meta	CN	CN	╛
Carboxylat	Carboxylat	para	H	COR ⁶	_
Carboxylat	Carboxylat	ortho	Н	COR ⁶	_
Carboxylat	Carboxylat	meta	H	COR ⁶	_
Carboxylat	Carboxylat	para	Н	CONR ⁵ R ⁶	_
Carboxylat	Carboxylat	ortho	H	CONR ⁵ R ⁶	_
Carboxylat	Carboxylat	meta	Н	CONR ⁵ R ⁶	4
Carboxylat	Carboxylat	para	Н	CN	_
Carboxylat	Carboxylat	ortho	H	CN	_
Carboxylat	Carboxylat	meta	Н	CN	_
Carboxylat	Carboxylat	para	COOR ⁵	COOR ⁶	_
Carboxylat	Carboxylat	ortho	COOR5	COOR ⁶	
Carboxylat	Carboxylat	meta	COOR5	COOR ⁶	_
Carboxylat	Carboxylat	para	COOR5	COR ⁶	

	R ¹	R ²	Position	R ³	R ⁴
	Carboxylat	Carboxylat	ortho	COOR5	COR ⁶
5	Carboxylat	Carboxylat	meta	COOR ⁵	COR ⁶
	Carboxylat	Carboxylat	para	COR ⁵	COR ⁶
	Carboxylat	Carboxylat	ortho	COR ⁵	COR ⁶
10	Carboxylat	Carboxylat	meta	COR ⁵	COR ⁶
	Carboxylat	Carboxylat	para	CONR ⁵ R ⁶	COOR6
	Carboxylat	Carboxylat	ortho	CONR ⁵ R ⁶	COOR6
15	Carboxylat	Carboxylat	meta	CONR ⁵ R ⁶	COOR6
	Carboxylat	Carboxylat	para	CONR ⁵ R ⁶	COR ⁶
	Carboxylat	Carboxylat	ortho	CONR ⁵ R ⁶	COR6
20	Carboxylat	Carboxylat	meta	CONR ⁵ R ⁶	COR ⁶
	Carboxylat	Carboxylat	para	CONR ⁵ R ⁶	CONR ⁵ R ⁶
	Carboxylat	Carboxylat	ortho	CONR ⁵ R ⁶	CONR ⁵ R ⁶
25	Carboxylat	Carboxylat	meta	CONR ⁵ R ⁶	CONR5R6
	Carboxylat	Carboxylat	para	CN	COR ⁶
	Carboxylat	Carboxylat	ortho	CN	COR6
30	Carboxylat	Carboxylat	meta	CN	COR ⁶
	Carboxylat	Carboxylat	para	CN	CONR ⁵ R ⁶
	Carboxylat	Carboxylat	ortho	CN	CONR ⁵ R ⁶
35	Carboxylat	Carboxylat	meta	CN	CONR ⁵ R ⁶
	Carboxylat	Carboxylat	para	CN	CN
	Carboxylat	Carboxylat	ortho	CN	CN
40	Carboxylat	Carboxylat	meta	CN	CN
	Sulfonat	Sulfonat	para	H	COR ⁶
	Sulfonat	Sulfonat	ortho	Н	COR ⁶
45	Sulfonat	Sulfonat	meta	Н	COR ⁶
	Sulfonat	Sulfonat	para	Н	CONR ⁵ R ⁶
	Sulfonat	Sulfonat	ortho	н	CONR ⁵ R ⁶
50	Sulfonat	Sulfonat	meta	H	CONR ⁵ R ⁶
	Sulfonat	Sulfonat	para	H	CN
	Sulfonat	Sulfonat	ortho	H	CN
55	Sulfonat Sulfonat	Sulfonat Sulfonat	meta	COOR ⁵	COOR ⁶
		Sulfonat	para ortho	COOR ⁵	COOR ⁶
	Sulfonat Sulfonat	Sulfonat	meta	COOR ⁵	COOR ⁶
60	Sulfonat	Sulfonat	para	COOR ⁵	COR ⁶
	Sulfonat	Sulfonat	ortho	COOR ⁵	COR ⁶
	Sulfonat	Sulfonat	meta	COOR ⁵	COR ⁶
65	Sulfonat	Sulfonat	para	COR ⁵	COR ⁶
"	Patronar	Durronac	Para		

R ¹	R ²	Position	R ³	R ⁴	_
Sulfonat	Sulfonat	ortho	COR5	COR ⁶	
Sulfonat	Sulfonat	meta	COR5	COR6	5
Sulfonat	Sulfonat	para	CONR ⁵ R ⁶	COOR6	
Sulfonat	Sulfonat	ortho	CONR ⁵ R ⁶	COOR6	
Sulfonat	Sulfonat	meta	CONR ⁵ R ⁶	COOR ⁶	10
Sulfonat	Sulfonat	para	CONR ⁵ R ⁶	COR ⁶	
Sulfonat	Sulfonat	ortho	CONR ⁵ R ⁶	COR ⁶	7
Sulfonat	Sulfonat	meta	CONR ⁵ R ⁶	COR ⁶	15
Sulfonat	Sulfonat	para	CONR ⁵ R ⁶	CONR ⁵ R ⁶	
Sulfonat	Sulfonat	ortho	CONR ⁵ R ⁶	CONR ⁵ R ⁶	7
Sulfonat	Sulfonat	meta	CONR ⁵ R ⁶	CONR ⁵ R ⁶	20
Sulfonat	Sulfonat	para	CN	COR ⁶	
Sulfonat	Sulfonat	ortho	CN	COR ⁶	
Sulfonat	Sulfonat	meta	CN	COR6	25
Sulfonat	Sulfonat	para	CN	CONR ⁵ R ⁶	
Sulfonat	Sulfonat	ortho	CN	CONR ⁵ R ⁶	
Sulfonat	Sulfonat	meta	CN	CONR ⁵ R ⁶	30
Sulfonat	Sulfonat	para	CN	CN	
Sulfonat	Sulfonat	ortho	CN	CN	
Sulfonat	Sulfonat	meta	CN	CN	35
Ammonium	Ammonium	para	Н	COR ⁶	
Ammonium	Ammonium	ortho	H	COR ⁶	
Ammonium	Ammonium	meta	Н	COR6	40
Ammonium	Ammonium	para	Н	CONR ⁵ R ⁶	
Ammonium	Ammonium	ortho	Н	CONR ⁵ R ⁶	_
Ammonium	Ammonium	meta	H	CONR ⁵ R ⁶	45
Ammonium	Ammonium	para	Н	CN	
Ammonium	Ammonium	ortho	H	CN	
Ammonium	Ammonium	meta	H	CN	50
Ammonium	Ammonium	para	COOR ⁵	COOR ⁶	_
Ammonium	Ammonium	ortho	COOR ⁵	COOR ⁶	_
Ammonium	Ammonium	meta	COOR ⁵	COOR ⁶	55
Ammonium	Ammonium	para	COOR ⁵	COR ⁶	_
Ammonium	Ammonium	ortho	COOR ⁵	COR ⁶	_
Ammonium	Ammonium	meta	COOR5	COR6	- 60
Ammonium	Ammonium	para	COR5	COR6	
Ammonium	Ammonium	ortho	COR ⁵	COR ⁶	_
Ammonium	Ammonium	meta	COR5	COR ⁶	65
Ammonium	Ammonium	para	CONR ⁵ R ⁶	COOR6	

R ¹		R ²	Position	R ³	R4
Ammon	ium	Ammonium	ortho	CONR ⁵ R ⁶	COOR ⁶
5 Ammon	ium	Ammonium	meta	CONR ⁵ R ⁶	COOR ⁶
Ammon	ium	Ammonium	para	CONR ⁵ R ⁶	COR ⁶
Ammon	ium	Ammonium	ortho	CONR5R6	COR ⁶
0 Ammon	ium	Ammonium	meta	CONR ⁵ R ⁶	COR ⁶
Ammon	ium	Ammonium	para	CONR ⁵ R ⁶	CONR ⁵ R ⁶
Ammon	ium	Ammonium	ortho	CONR ⁵ R ⁶	CONR ⁵ R ⁶
.5 Ammon	monium Ammonium	meta	CONR ⁵ R ⁶	CONR ⁵ R ⁶	
Ammon	ium	Ammonium	para	CN	COR ⁶
Ammon	ium	Ammonium	ortho	CN	COR ⁶
20 Ammon	ium	Ammonium	meta	CN	COR ⁶
Ammon	ium	Ammonium	para	CN	CONR ⁵ R ⁶
Ammon	ium	Ammonium	ortho	CN	CONR ⁵ R ⁶
25 Ammon	ium	Ammonium	meta	CN	CONR ⁵ R ⁶
Ammon	ium	Ammonium	para	CN	CN
Ammon	ium	Ammonium	ortho	CN	CN
0 Ammon	ium	Ammonium	meta	CN	CN

Ebenfalls ganz besonders bevorzugt ist die Verwendung solcher Verbindungen der Formel I, in der

R¹ und R² unabhängig voneinander Wasserstoff, C₁-C₁₂-Alkyl, C₁-C₈-Alkoxy,

35 wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoni-

R³ COOR⁵, CONR⁵R⁶; R⁴ COOR⁶, COR⁶, CONR⁵R⁶; R⁵ und R⁶ unabhängig voncinander Wasserstoff, C₁-C₁₂-Alkyl, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, Phenyl, Naph-40 thyl, gegebenenfalls substituiert,

bedeutet, da diese Verbindungen besonders photostabil und gleichzeitig farblos sind.

Die Erfindung betrifft auch 4,4-Diarylbutadiene der Formel Ia,

$$(R^{1})_{n} \xrightarrow{H} R^{3}$$

$$(R^{2})_{n} \xrightarrow{H} R^{4}$$
Ia

55 in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben:

C20-Alkoxycarbonyl, C1-C12-Alkylamino, C1-C12-Dialkylamino, Aryl, Heteroaryl, gegebenenfalls substituiert, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoni-

umresten;

R³ COOR⁵, CONR⁵R⁶; R⁴ COOR⁶, CONR⁵R⁶;

 $R^5 \text{ und } R^6 \text{ Wasserstoff, } C_1 - C_{20} - \text{Alkyl, } C_2 - C_{10} - \text{Alkenyl, } C_3 - C_{10} - \text{Cycloalkyl, } C_7 - C_{10} - \text{Bicycloalkyl, } C_3 - C_{10} - \text{Cycloalkenyl, } C_{10} - \text{Cycloalkyl, } C_{10} -$ C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert;

wobei R³ und R⁴ nicht COOCH₃ sein dürfen, wenn R¹ und R² Wasserstoff bedeuten.

Bevorzugt sind 4,4-Diarylbutadiene der Formel Ib,

$$\mathbb{R}^1$$
 \mathbb{R}^2
 \mathbb{R}^4
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4
 \mathbb{R}^4

in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben:

15

20

35

40

55

60

65

R¹ und R² Wasserstoff, C₁-C₂₀-Alkyl, C₁-C₁₂-Alkoxy, C₁-C₂₀-Alkoxycarbonyl;

R3 COOR5, CONR5R6

R4 COOR6, CONR5R6; $m R^5$ und $m R^6$ Wasserstoff, $m C_1$ - $m C_{20}$ -Alkyl, $m C_2$ - $m C_{10}$ -Alkenyl, $m C_3$ - $m C_{10}$ -Cycloalkyl, $m C_7$ - $m C_{10}$ -Bicycloalkyl, $m C_3$ - $m C_{10}$ -Cycloalkenyl, $m C_{10}$ -Cycloalkenyl, mC7-C10 Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituien;

wobei R3 und R4 nicht COOCH3 sein darf, wenn R1 und R2 Wasserstoff bedeuten.

Besonders bevorzugt sind 4,4-Diarylbutadiene der Formel Ic,

$$R^1$$
 H
 R^3
 R^4
 R^4
 R^4
 R^3
 R^4
 R^4
 R^4
 R^4
 R^4
 R^4

in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben:

R¹ und R² Wasserstoff, C₁-C₂₀-Alkyl, C₁-C₁₂-Alkoxy, C₁-C₂₀-Alkoxycarbonyl;

R³ COOR⁵, CONR⁵R⁶; R⁴ COOR⁶, CONR⁵R⁶;

 $R^{5} \ und \ R^{6} \ Wasserstoff, \ C_{1}-C_{20}-Alkyl, \ C_{2}-C_{10}-Alkenyl, \ C_{3}-C_{10}-Cycloalkyl, \ C_{7}-C_{10}-Bicycloalkyl, \ C_{3}-C_{10}-Cycloalkyl, \ C_{10}-Cycloalkyl, \ C_{2}-C_{10}-Cycloalkyl, \ C_{2}-C_{10}-Cycloalkyl, \ C_{3}-C_{10}-Cycloalkyl, \ C_{3}-C_{10}-Cycloalk$ C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert;

wobei R3 und R4 nicht COOCH3 sein darf, wenn R1 und R2 Wasserstoff bedeuten.

Die genauere Definition der Substituenten R1 bis R6 der Verbindungen Ia bis Ic entspricht der bereits eingangs für die Verbindung I erfolgten Beschreibung.

Die erfindungsgemäß zu verwendenden Verbindungen der Formel I können nach der Gleichung

$$(R^{1})_{n} \xrightarrow{H} O + \begin{pmatrix} R^{3} & & & \\$$

durch Kondensation hergestellt werden, wobei R1 bis R4 die im Anspruch 1 genannte Bedeutung haben.

Die oben genannte Kondensation kann sowohl basen- als auch säurekatalysiert erfolgen. Geeignete Katalysatoren sind:

tertiäre Amine, wie z. B. Pyridin, Morpholin, Triethylamin, Triethanolamin;

sekundäre Amine, wie z. B. Piperidin, Dimethylamin, Diethylamin;

NH₃, NaNH₂, KNH₂, NH₄OAc;

basisches Aluminiumoxid, basischer Ionenaustauscher;

Na₂CO₃, K₂CO₃;

saure Katalysatoren, wie z. B. Eisessig, Ameisensäure, Propionsäure;

HCl, H₂SO₄, HNO₃;

saurer Ionenaustauscher.

Die Menge der Katalysatoren beträgt im allgemeinen 0.1 bis 50 mol-%, bevorzugt 0.5 bis 20 mol-%, der Menge des eingesetzten Aldehyds.

Vorzugsweise arbeitet man bei Temperaturen von 20 bis 150°C, besonders 30 bis 100°C, besonders bevorzugt 40 bis

80°C. Besondere Bedingungen bezüglich des Druckes sind nicht erforderlich; im allgemeinen nimmt man die Umsetzung bei Atmosphärendruck vor.

Als Lösungsmittel können Alkohole, wie z. B. Methanol, Ethanol oder Isopropanol; Aromaten, wie z. B. Toluol oder Xylol; Kohlenwasserstoffe, beispielsweise Heptan oder Hexan; chlorierte Kohlenwasserstoffe, wie z. B. Chloroform oder Dichlormethan; Miglyol, Tetrahydrofuran eingesetzt werden. Die Reaktion kann aber auch ohne Lösungsmittel durchgeführt werden.

Beispielsweise ergibt die Umsetzung von ß-Phenylzimtaldehyd mit Malonsäurediethylester in Gegenwart von Piperidin als Katalysator die Verbindung 1 in Tab. 2.

Es ist auch möglich, ausgehend von Methyl- oder Ethylestern, wie z. B. Verbindung 1 in Tabelle 2, längerkettige Ester durch Umesterungsreaktionen in Gegenwart eines basischen Katalysators herzustellen.

Für die Umesterung geeignete Katalysatoren sind:

basische Alkali- und Erdalkalisalze, bevorzugt solche, die weder in den Edukten noch in den Produkten löslich sind und sich nach Reaktionsende leicht abtrennen lassen, besonders bevorzugt: Natrium-, Kalium- oder Calciumcarbonat oder Natriumhydrogencarbonat;

15 Erdalkalioxide, bevorzugt Calcium- oder Magnesiumoxid und basische Zeolithe.

Die Menge der Katalysatoren beträgt im allgemeinen 1 bis 80 mol-%, bevorzugt 5 bis 50 mol-%, der Menge des eingesetzten Esters.

Die Menge an eingesetzten Alkohol muß mindestens äquimolar sein zur eingesetzten Menge an Ausgangsester, beispielsweise Verbindung 1 in Tabelle 2. Bevorzugt werden Mengen von 200 bis 500 mol-% des Alkohols verwendet.

Die Entfernung des gebildeten Methanols oder Ethanols erfolgt destillativ.

Vorzugsweise arbeitet man bei Temperaturen von 50 bis 250°C, besonders 60 bis 150°C. Besondere Bedingungen bezüglich des Druckes sind nicht erforderlich; im allgemeinen nimmt man die Umsetzung bei Atmosphärendruck vor.

Als Lösungsmittel können inerte, höher siedende Verbindungen wie Xylole, aber auch Toluol oder Gemische der eingesetzten Alkohole mit flüssigen, kurzkettigen Alkanen wie Hexan und Heptan, eingesetzt werden. Bevorzugt arbeitet man lösungsmittelfrei in dem eingesetzten Alkohol.

Die Umesterung kann sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden. Bei der kontinuierlichen Fahrweise leitet man die Reaktionspartner vorzugsweise über ein Festbett aus einer unlöslichen Base.

Für den Fall, daß $R^3 \neq R^4$, können die erfindungsgemäßen Verbindungen der Formel I prinzipiell in ihren verschiedenen geometrischen Isomeren, d. h. mit einem Z,Z; Z,E; E,Z und/oder E,E-konfigurierten Diensystem, vorliegen. Bevorzugt als kosmetische Lichtschutzmittel sind die all-E- und/oder all-Z-Isomeren, ganz besonders bevorzugt sind die all-E- Isomeren.

Ist $R^3 = R^4$, so kann die C-C Doppelbindung zwischen C-3 und C-4 (in Nachbarstellung zum Diarylsystem) in der E-und/oder Z-Konfiguration, bevorzugt in der Z-Konfiguration vorliegen.

Gegenstand der vorliegenden Erfindung sind weiterhin kosmetische und pharmazeutische Zubereitungen, die 0,1 bis 10 Gew.-%, vorzugsweise 1 bis 7 Gew.-%, bezogen auf die gesamte Menge der kosmetischen und pharmazeutischen Zubereitung, eine oder mehrere der Verbindungen der Formel I zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-A- und UV-B-Bereich absorbierenden Verbindungen als Lichtschutzmittel enthalten, wobei die Verbindungen der Formel I in der Regel in geringerer Menge als die UV-B-absorbierenden Verbindungen eingesetzt werden.

Die Lichtschutzmittel enthaltenden kosmetischen und pharmazeutischen Zubereitungen sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zubereitungen allein auf wäßriger Basis bei Verwendung von Verbindungen mit hydrophilen Substituenten möglich. Demgemäß kommen Öle, Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, Cremes und Pasten, Lippenschutzstiftmassen oder fettfreie Gele in Betracht.

Solche Sonnenschutzpräparate können demgemäß in flüssiger, pastöser oder fester Form vorliegen, beispielsweise als Wasser-in-Öl-Cremes, Öl- in-Wasser-Cremes und -Lotionen, Aerosol-Schaumcremes, Gele, Öle, Fettstifte, Puder, Sprays oder alkoholisch-wäßrige Lotionen.

Übliche Ölkomponenten in der Kosmetik sind beispielsweise Paraffinöl, Glycerylstearat, Isopropylmyristat, Diisopropyladipat, 2-Ethylhexansäurecctylstearylester, hydriertes Polyisobuten, Vaseline, Caprylsäure/Caprinsäure-Triglyceridei mikrokristallines Wachs, Lanolin und Stearinsäure.

Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z. B. Co-Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z. B. Magnesiumsulfat) und pH-Regulatoren. Als Co-Emulgatoren kommen vorzugsweise bekannte W/O- und daneben auch O/W-Emulgatoren wie etwa Polyglycerinester, Sorbitanester oder teilveresterte Glyceride in Betracht. Typische Beispiele für Fette sind Glyceride; als Wachse sind u. a. Bienenwachs, Paraffinwachs oder Mikrowachse gegebenenfalls in Kombination mit hydrophilen Wachsen zu nennen. Als Stabilisatoren können Metallsalze von Fettsäuren wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Geeignete Verdickungsmittel sind beispielsweise vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner Fettalkohole, Monoglyceride und Fettsäuren, Polycrylate, Polyvinylalkohol und Polyvinylpyrrolidon. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat -Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen. Als Konservierungsmittel eignen sich beispielsweise Formaldehydlösung, p-Hydroxybenzoat oder Sorbinsäure. Als Perlglanzmittel kommen beispielsweise Glycoldistearinsäureester wie Ethylenglycoldistearat, aber auch Fettsäuren und Fettsäuremonoglycolester in Betracht. Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkoimmission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von

0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.

Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 80, vorzugsweise 6 bis 40 Gew.-% und der nicht wäßrige Anteil ("Aktivsubstanz") 20 bis 80, vorzugsweise 30 bis 70 Gew.-% – bezogen auf die Mittel – betragen. Die Herstellung der Mittel kann in an sich bekannter Weise, d. h. beispielsweise durch Heiß-, Kalt-, Heiß-Heiß/Kalt- bzw. PIT-Emulgierung erfolgen. Hierbei handelt es sich um ein rein mechanisches Verfahren, eine chemische Reaktion findet nicht statt.

Schließlich können weitere an sich bekannte im UV-Bereich absorbierenden Substanzen mitverwendet werden, sofern sie im Gesamtsystem der erfindungsgemäß zu verwendenden Kombination aus UV-Filtern stabil sind.

Der größte Teil der Lichtschutzmittel in den zum Schutz der menschlichen Epidermis dienenden kosmetischen und pharmazeutischen Zubereitungen besteht aus Verbindungen, die UV-Licht im UV-B-Bereich absorbieren, d. h. im Bereich von 280 bis 320 nm. Beispielsweise beträgt der Anteil der erfindungsgemäß zu verwendenden UV-A-Absorber 10 bis 90 Gew.-%, bevorzugt 20 bis 50 Gew.-% bezogen auf die Gesamtmenge von UV-B und UV-A absorbierenden Substanzen.

10

15

50

55

60

65

Als UV-Filtersubstanzen, die in Kombination mit den erfindungsgemäß zu verwendenden Verbindungen der Formel I angewandt werden, kommen beliebige UV-A- und UV-B-Filtersubstanzen in Betracht.

Beispielsweise sind zu nennen:

Nr.	Stoff	CAS-Nr. (=Säure)	
1	4-Aminobenzoesäure	150-13-0	20
2	3-(4'Trimethylammonium)-benzylidenbornan-2-on-methylsulfat	52793-97-2	
3	3,3,5-Trimethy1-cyclohexyl-salicylat (Homosalatum)	118-56-9	25
4	2-Hydroxy-4-methoxy-benzophenon (Oxybenzonum)	131-57-7	
5	2-Phenylbenzimidazol-5-sulfonsäure und ihre Kalium-, Natrium- u. Triethanolaminsalze	27503-81-7	30
6	3,3'-(1,4-Phenylendimethin)-bis(7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-methansulfonsäure) und ihre Salze	90457-82-2	35
7	4-Bis(polyethoxy)amino-benzoesäurepolyethoxy- ethylester	113010-52-9	
8	4-Dimethylamino-benzoesäure-2-ethylhexylester	21245-02-3	
9	Salicylsäure-2-ethylhexylester	118-60-5	40
10	4-Methoxy-zimtsäure-2-isoamylester	7/6/7-10-2	
11	4-Methoxy-zimtsäure-2-ethylhexylester	5466-77-3	
12	2-Hydroxy-4-methoxy-benzophenon-5-sulfon- (Sulisobenzonum) und das Natriumsalz	4065-45-6	45

i	Nr.	Stoff	CAS-Nr. (=Säure)
5	13	3-(4'-Sulfo)benzyliden-bornan-2-on und Salze	58030-58-6
	14	3-(4'-Methyl)benzyliden-bornan-2-on	36861-47-9
	15	3-Benzylidenbornan-2-on	16087-24-8
10	16	1-(4'-Isopropylphenyl)-3-phenylpropan-1,3-dion	63260-25-9
	17	4-Isopropylbenzylsalicylat	94134-93-7
ı	18	2,4,6-Trianilin-(o-carbo-2'-ethylhe-xyl-1'-oxy)-1,3,5-triazin	88122-99-0
15	19	3-Imidazol-4-yl-acrylsäure und ihr Ethylester	104-98-3*
	20	2-Cyano-3,3-diphenylacrylsäureethylester	5232-99-5
20	21	2-Cyano-3,3-diphenylacrylsäure-2'-ethylhexyle- ster	6197-30-4
	22	Menthyl-o-aminobenzoate oder: 5-Methyl-2-(1-methylethyl)-2-aminobenzoate	134-09-8
25	23	Glyceryl p-aminobenzoat oder: 4-Aminobenzoesäure-1-glyceryl-ester	136-44-7
	24	2,2'-Dihydroxy-4-methoxybenzophenon (Dioxyben-zone)	131-53-3
30	25	2-Hydroxy-4-methoxy-4-methylbenzophenon (Mexonon)	1641-17-4
	26	Triethanolamin Salicylat	2174-16-5
35	27	Dimethoxyphenylglyoxalsäure oder: 3,4-dimethoxy-phenyl-glyoxal-saures Natrium	
	28	3-(4'Sulfo)benzyliden-bornan-2-on und seine Salze	56039-58-8
40	29	4-tertButyl-4'-methoxy-dibenzoylmethan	70356-09-1
	30	2,2',4,4'-Tetrahydroxybenzophenon	131-55-5

Schließlich sind auch mikrobielle Pigmente wie Titandioxid und Zinkoxid zu nennen.

Zum Schutz menschlicher Haare vor UV-Strahlen können die erfindungsgemäßen Lichtschutzmittel der Formel I in Shampoos, Lotionen, Gelen, Haarsprays, Aerosol-Schaumcremes oder Emulsionen in Konzentrationen von 0,1 bis 10 Gew.-%, bevorzugt 1 bis 7 Gew.-% eingearbeitet werden. Die jeweiligen Formulierungen können dabei u. a. zum Waschen, Färben sowie zum Frisieren der Haare verwendet werden.

Die erfindungsgemäß zu verwendenden Verbindungen zeichnen sich in der Regel durch ein besonders hohes Absorptionsvermögen im Bereich der UV-A-Strahlung mit scharfer Bandenstruktur aus. Weiterhin sind sie gut in kosmetischen Ölen löslich und lassen sich leicht in kosmetische Formulierungen einarbeiten. Die mit den Verbindungen I hergestellten Emulsionen zeichnen sich besonders durch ihre hohe Stabilität, die Verbindungen I selber durch ihre hohe Photostabilität aus, und die mit I hergestellten Zubereitungen durch ihr angenehmes Hautgefühl aus.

Die UV-Filterwirkung der erfindungsgemäßen Verbindungen der Formel I kann auch zur Stabilisierung von Wirk- und 55 Hilfsstoffen in kosmetischen und pharmazeutischen Formulierungen ausgenutzt werden.

Gegenstand der Erfindung sind auch die Verbindungen der Formel I zur Verwendung als Medikament sowie pharmazeutische Mittel zur vorbeugenden Behandlung von Entzündungen und Allergien der Haut sowie zur Verhütung bestimmter Hautkrebsarten, welche eine wirksame Menge mindestens einer Verbindung der Formel I als Wirkstoff enthalten.

Das erfindungsgemäße pharmazeutische Mittel kann oral oder topisch verabreicht werden. Für die orale Verabreichung liegt das pharmazeutische Mittel in Form von u. a. Pastillen, Gelatinekapseln, Dragees, als Sirup, Lösung, Emulsion oder Suspension vor. Die topische Anwendung der pharmazeutischen Mittel erfolgt beispielsweise als Salbe, Creme, Gel, Spray, Lösung oder Lotion.

Beispiele

I. Herstellung

Beispiel 1

Herstellvorschrift für die Verbindung der Nr. 1 der Tabelle 2

0.1 mol \(\beta\)-Phenylzimtaldehyd und 0.1 mol Malons\(\text{Malons\(\text{aured}\) ethizt. Anschlie\(\text{Bend wird mit Wasser verd\(\text{unnt je 1 ml Piperidin und Eisessig versetzt und 5 h auf R\(\text{\text{W}}\) ck\(\text{flu\(\text{B}\) erhitzt. Anschlie\(\text{Bend wird mit Wasser verd\(\text{unnt und auf 0°C} \) abgek\(\text{uhlt, wobei das Endprodukt auskristallisierte. Nach Abfiltrieren der Kristalle und Trocknung erhielt man 33 g (90% d. Th.) der Verbindung 1 der Tabelle 2 als \(\text{farblose Kristalle. Reinheit: > 99% (GC).}\)

Die Herstellung der Verbindungen 2 und 3 sowie 8 bis 15 der Tabelle 2 erfolgt analog Beispiel 1.

Die Verbindungen 18 bis 20 wurden analog Beispiel 1 durch Umsetzung von Malonsäurediethylester mit den entsprechenden Methyl-, tert. Butyl- oder Methoxy-substituierten β-Phenylzimtaldehyden hergestellt.

Beispiel 2

Die Verbindungen 4 bis 7 der Tabelle 2 wurden durch Umestern der Verbindung aus Beispiel 1 mit den entsprechenden Alkoholen in Gegenwart von Natriumcarbonat als Katalysator hergestellt. Das freiwerdende Ethanol wurde abdestilliert und die als Öl anfallenden Wertprodukte 4 bis 7 durch Destillation aufgereinigt.

Beispiel 3

Herstellvorschrift für die Verbindung der Nr. 17 der Tabelle 2

0.1 mol Campher in 40 ml Xylol werden mit 0.1 mol KOH versetzt und auf Rückfluß erhitzt. Anschließend wird über 6 h langsam eine Lösung von 0.105 mol β-Phenylzimtaldehyd in Xylol zugetropft. Nach Abkühlen auf Raumtemperatur wird mit Wasser versetzt, die organische Phase zweimal mit Wasser gewaschen und anschließend über Natriumsulfat getrocknet. Nach Entfernen des Solvens wird der ölige Rückstand aus Methanol/Wasser kristallisiert. Man erhält 22 g (64%) farblose Kristalle der Verbindung 17 der Tabelle 2. Reinheit 99% (HPLC, Isomeren-Gemisch).

Die Herstellung der Verbindung 16 der Tabelle 2 erfolgt durch Umsetzung von β-Phenylzimtaldehyd mit Pinakolon analog Beispiel 2.

(R¹)_n— H R³
(R²)_n

Nr.	< R ³	R ¹	R ²	n	λmax (nm)	E ¹ 1
1)	~.LL.~	H	H	1	334	802
2)	人。儿儿。人	Н	Н	1	334	775
3)	~~.ll~~	Н	Н	1	334	684
4)	↓~°L°~~	H	H	1	334	681

65

60

5

10

15

25

35

40

45

50

	Nr.	< R3 R4	R ¹	R ²	n	(max	E11
5	5)	١٠٠١	H	Н	1	333	655
10	6)	~~~!!~~~	н	H	1	334	602
	7)	~~~!i.~~~	H	H	1	334	580
15	8)	Ů	H	H	1	344	977
20	9)		H	Н	1	342	806
	10)	(Jiion	H	H	1	336	693
25	11)	N NH	Н	Н	1	350	806
30	12)	N N N	Н	H	1	342	525
35	13)	N ON	H	Н	1	340	776
40	14)	N N N	H	Н	1 .	338	802
45	15)	~ 1.1.	н	H	1	332	814
	16)	بُ	Н	Ħ	1	334	960
50	17)	X.	Н	н	1	338	901
55	18)	.~\\\\	1)	1)	1	364	672
60	19)	~!\.\.	2)	2)	1	346	643
	20)	~ii~	3)	3)	2	338	699

¹⁾ $R^1 = R^2 = Methoxy$ (in para-Stellung substituiert)

²⁾ $R^1 = R^2 = \text{tert. Butyl}$ (in para-Stellung substituiert) 3) $R^1 = R^2 = \text{Methyl}$ (in ortho- und para-Stellung substituiert)

Analog oder wie im allgemeinen Teil beschrieben lassen sich die Verbindungen in den Tabellen 3 und 4 herstellen.

Tabelle 3

$$(R^{1})_{n} \xrightarrow{H} COOR^{5}$$

$$COOR^{6}$$

$$(R^{2})_{n}$$

$$R^{5} = R^{6}$$

$$10$$

15

. 50

55

60

65

Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi- tion	
1)	n-Propyl	Н	Н	1	-	
2)	2,2-Dimethylpropyl	Н	Н	1	_	20
3)	n-Pentyl	H	Н	1	-	
4)	3-Methylbutyl	Н	H	1	-	
5)	2-Methylbutyl	H	н	1	-	25
6)	1-Methylbutyl	Н	H	1	-	
7)	n-Heptyl	Н	H	1	-	
8)	n-Octyl	H	H	1	-	30
9)	Methyl	Methyl	Methyl	1	para	}
10)	Ethyl	Methyl	Methyl	1	para]
11)	n-Propyl	Methyl	Methyl	1	para	35
12)	iso-Propyl	Methyl	Methyl	1	para	
13)	n-Butyl	Methyl	Methyl	1	para	
14)	2-Methylpropyl	Methyl	Methyl	1	para	40
15)	1-Methylpropyl	Methyl	Methyl	1	para	
16)	2,2-Dimethylpropyl	Methyl	Methyl	1	para	
17)	n-Pentyl	Methyl	Methyl	1	para	45

	Nr.	R ⁵ = R ⁶	R ¹	R ²	n	Posi- tion
5	18)	3-Methylbutyl	Methyl	Methyl	1	para
	19)	2-Methylbutyl	Methyl	Methyl	1	para
	20)	1-Methylbutyl	Methyl	Methyl	1	para
10	21)	n-Hexyl	Methyl	Methyl	1	para
	22)	n-Heptyl	Methyl	Methyl	1	para
	23)	n-Octyl	Methyl	Methyl	1	para
15	24)	2-Ethylhexyl	Methyl	Methyl	1	para
	25)	Methyl	Ethyl	Ethyl	1	para
	26)	Ethyl	Ethyl	Ethyl	1	para
20	27)	n-Propyl	Ethyl	Ethyl	1	para
	28)	iso-Propyl	Ethyl	Ethyl	1	para
	29)	n-Butyl	Ethyl	Ethyl	1	para
25	30)	2-Methylpropyl	Ethyl	Ethyl	1	para
	31)	1-Methylpropyl	Ethyl	Ethyl	1	para
	32)	2,2-Dimethylpropyl	Ethyl	Ethyl	1	para
30	33)	n-Pentyl	Ethyl	Ethyl	1	para
	34)	3-Methylbutyl	Ethyl	Ethyl	1	para
	35)	2-Methylbutyl	Ethyl	Ethyl	1	para
35	36)	1-Methylbutyl	Ethyl	Ethyl	1	para
	37)	n-Hexyl	Ethyl	Ethyl	1	para
	38)	n-Heptyl	Ethyl	Ethyl	1	para
40	39)	n-Octyl	Ethyl	Ethyl	1	para
70	40)	2-Ethylhexyl	Ethy1	Ethyl	1	para
	41)	Methyl	n-Propyl	n-Propyl	1	para
45	42)	Ethy1	n-Propyl	n-Propyl	1	para
45	43)	n-Propyl	n-Propyl	n-Propyl	1	para
	44)	iso-Propyl	n-Propyl	n-Propyl	1	para
	45)	n-Butyl	n-Propyl	n-Propyl	1	para
50	46)	2-Methylpropyl	n-Propyl	n-Propyl		para
	47)	1-Methylpropyl	n-Propyl	n-Propyl	1	para
	48)	2,2-Dimethylpropyl	n-Propyl	n-Propyl	1	para
55	49)	n-Pentyl	n-Propyl	n-Propyl	1	para
	50)	3-Methylbutyl	n-Propyl	n-Propyl	1	para
	51)	2-Methylbutyl	n-Propyl	n-Propyl	1	para
	52)	1-Methylbutyl	n-Propyl	n-Propy1	1	para
	53)	n-Hexyl	n-Propyl	n-Propyl	1	para
	54)	n-Heptyl	n-Propyl	n-Propyl	1	para
65	55)	n-Octyl	n-Propyl	n-Propyl	1	para

	$R^5 = R^6$	R ¹	R ²	n	Posi- tion	
56)	2-Ethylhexyl	n-Propyl	n-Propyl	1	para	5
57)	Methyl	i-Propyl	i-Propyl	1	para	1
58)	Ethyl	i-Propyl	i-Propyl	1	para	1
59)	n-Propyl	i-Propyl	i-Propyl	1	para	10
60)	iso-Propyl	i-Propyl	i-Propyl	1	para	
61)	n-Butyl	i-Propyl	i-Propyl	1	para	1
62)	2-Methylpropyl	i-Propyl	i-Propyl	1	para	15
63)	1-Methylpropyl	i-Propyl	i-Propyl	1	para	1 "
64)	2,2-Dimethylpropyl	i-Propyl	i-Propyl	1	para	1
65)	n-Pentyl	i-Propyl	i-Propyl	1	para	
66)	3-Methylbutyl	i-Propyl	i-Propyl	1	para	20
67)	2-Methylbutyl	i-Propyl	i-Propyl	1	para	┨
68)	1-Methylbutyl	i-Propyl	i-Propyl	1	para	-
69)	n-Hexyl	i-Propyl	i-Propyl	1	para	25
70)	n-Heptyl	i-Propyl	i-Propyl	1	para	1
71)	n-Octyl	i-Propyl	i-Propyl	1	para	1
72)	2-Ethylhexyl	i-Propyl	i-Propyl	1	para	30
73)	Methyl	n-Butyl	n-Butyl	1	para	-
74)	Ethyl	n-Butyl	n-Butyl	1	para	1
75)	n-Propyl	n-Butyl	n-Butyl	1	para	35
76)	iso-Propyl	n-Butyl	n-Butyl	1	para	-
77)	n-Butyl	n-Butyl	n-Butyl	1	para	1
78)	2-Methylpropyl	n-Butyl	n-Butyl	1	para	40
79)	1-Methylpropyl	n-Butyl	n-Butyl	1	para	}
	2,2-Dimethylpropyl	n-Butyl	n-Butyl	1	para	ł
81)	n-Pentyl	n-Butyl	n-Butyl	1	para	45
82)	3-Methylbutyl	n-Butyl	n-Butyl	1	para	
83)	2-Methylbutyl	n-Butyl	n-Butyl	1	para	
84)	1-Methylbutyl	n-Butyl	n-Butyl	1	para	50
85)	n-Hexyl	n-Butyl	n-Butyl	1	para	
86)	n-Heptyl	n-Butyl	n-Butyl	1	para	
87)	n-Octyl	n-Butyl	n-Butyl	1	para	55
88)	2-Ethylhexyl	n-Butyl	n-Butyl	1	para	
89)	Methyl	1-Methylpropyl	1-Methylpropyl	1	para	
90)	Ethyl	1-Methylpropyl	1-Methylpropyl	1	para	60
91)	n-Propyl	1-Methylpropyl	1-Methylpropyl	1	para	
92)	iso-Propyl	1-Methylpropyl	1-Methylpropyl	1	para	
93)	n-Butyl	1-Methylpropyl	1-Methylpropyl	1	para	65

	Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi-
						tion
5	94)	2-Methylpropyl	1-Methylpropyl	1-Methylpropyl	1	para
	95)	1-Methylpropyl	1-Methylpropyl	1-Methylpropyl	1	para
;	96)	2,2-Dimethylpropyl	1-Methylpropyl	1-Methylpropyl	1	para
10	97)	n-Pentyl	1-Methylpropyl	1-Methylpropyl	1	para
	98)	3-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
	99)	2-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
15	100)	1-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
	101)	n-Hexyl	1-Methylpropyl	1-Methylpropyl	1	para
	102)	n-Heptyl	1-Methylpropyl	1-Methylpropyl	1	para
20	103)	n-Octyl	1-Methylpropyl	1-Methylpropyl	1	para
i	104)	2-Ethylhexyl	1-Methylpropyl	1-Methylpropyl	1	para
	105)	Methyl	2-Methylpropyl	2-Methylpropyl	1	para
25	106)	Ethyl	2-Methylpropyl	2-Methylpropyl	1	para
	107)	n-Propyl	2-Methylpropyl	2-Methylpropyl	1	para
	108)	iso-Propyl	2-Methylpropyl	2-Methylpropyl	1	para
30	109)	n-Butyl	2-Methylpropyl	2-Methylpropyl	1	para
30	110)	2-Methylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
	111)	1-Methylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
35	112)	2,2-Dimethylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
33	113)	n-Pentyl	2-Methylpropyl	2-Methylpropyl	1	para
	114)	3-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
40	115)	2-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
-	116)	1-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
	117)	n-Hexyl	2-Methylpropyl	2-Methylpropyl	1	para
45	118)	n-Heptyl	2-Methylpropyl	2-Methylpropyl	1	para
45	119)	n-Octyl	2-Methylpropyl	2-Methylpropyl	1	para
	120)	2-Ethylhexyl	2-Methylpropyl	2-Methylpropyl	1	para
	121)	Methyl	n-Pentyl	n-Pentyl	1	para
50	122)	Ethyl	n-Pentyl	n-Pentyl	1	para
	123)	n-Propyl	n-Pentyl	n-Pentyl	1	para
	124)	iso-Propyl	n-Pentyl	n-Pentyl	1	para
55	125)	n-Butyl	n-Pentyl	n-Pentyl	1	para
	126)	2-Methylpropyl	n-Pentyl	n-Pentyl	1	para
	127)	1-Methylpropyl	n-Pentyl	n-Pentyl	1	para
60	128)	2,2-Dimethylpropyl	n-Pentyl	n-Pentyl	1	para
ļ	129)	n-Pentyl	n-Pentyl	n-Pentyl	1	para
	130)	3-Methylbutyl	n-Pentyl	n-Pentyl	1	para
65	131)	2-Methylbutyl	n-Pentyl	n-Pentyl	1	para

-	$R^5 = R^6$	R ¹	R ²	n	Posi-	1
Nr.	R* - K*	K-		-	tion	
132)	1-Methylbutyl	n-Pentyl	n-Pentyl	1	para	5
133)	n-Hexyl	n-Pentyl	n-Pentyl	1	para	1
134)	n-Heptyl	n-Pentyl	n-Pentyl	1	para	
135)	n-Octyl	n-Pentyl	n-Pentyl	1	para	10
136)	2-Ethylhexyl	n-Pentyl	n-Pentyl	1	para	1
137)	Methyl	n-Hexyl	n-Hexyl	1	para	1
138)	Ethyl	n-Hexyl	n-Hexyl	1	para	15
139)	n-Propyl	n-Hexyl	n-Hexyl	1	para	1
140)	iso-Propyl	n-Hexyl	n-Hexyl	1	para	
141)	n-Butyl	n-Hexyl	n-Hexyl	1	para	20
142)	2-Methylpropyl	n-Hexyl	n-Hexyl	1	para	1
143)	1-Methylpropyl	n-Hexyl	n-Hexyl	1	para	1
144)	2,2-Dimethylpropyl	n-Hexyl	n-Hexyl	1	para	25
145)	n-Pentyl	n-Hexyl	n-Hexyl	1	para	1
146)	3-Methylbutyl	n-Hexyl	n-Hexyl	1	para	1
147)	2-Methylbutyl	n-Hexyl	n-Hexyl	1	para	30
148)	1-Methylbutyl	n-Hexyl	n-Hexyl	1	para	1
149)	n-Hexyl	n-Hexyl	n-Hexyl	1	para	
150)	n-Heptyl	n-Hexyl	n-Hexyl	1	para	35
151)	n-Octyl	n-Hexyl	n-Hexyl	1	para	
152)	2-Ethylhexyl	n-Hexyl	n-Hexyl	1	para]
153)	Methyl	Methoxy	Methoxy	1	para	40
154)	Ethyl	Methoxy	Methoxy	1	para]
155)	n-Propyl	Methoxy	Methoxy	1	para	1
156)	iso-Propyl	Methoxy	Methoxy	1	para	45
157)	n-Butyl	Methoxy	Methoxy	1	para]
158)	2-Methylpropyl	Methoxy	Methoxy	1	para	
159)	1-Methylpropyl	Methoxy	Methoxy	1	para	50
160)	2,2-Dimethylpropyl	Methoxy	Methoxy	1	para	30
161)	n-Pentyl	Methoxy	Methoxy	1	para	
162)	3-Methylbutyl	Methoxy	Methoxy	1	para	
163)	2-Methylbutyl	Methoxy	Methoxy	1	para	55
164)	1-Methylbutyl	Methoxy	Methoxy	1	para	
165)	n-Hexyl	Methoxy	Methoxy	1	para	
166)	n-Heptyl	Methoxy	Methoxy	1	para	60
167)	n-Octyl	Methoxy	Methoxy	1	para	
168)	2-Ethylhexyl	Methoxy	Methoxy	1	para	
169)	Methyl	Ethoxy	Ethoxy	1	para	65

	Nr.	$R^5 = R^6$	R ¹ .	R ²	n	Posi- tion
5	170)	Ethyl	Ethoxy	Ethoxy	1	para
	171)	n-Propyl	Ethoxy	Ethoxy	1	para
	172)	iso-Propyl	Ethoxy	Ethoxy	1	para
10	173)	n-Butyl	Ethoxy	Ethoxy	1	para
	174)	2-Methylpropyl	Ethoxy	Ethoxy	1	para
	175)	1-Methylpropyl	Ethoxy	Ethoxy	1	para
15	176)	2,2-Dimethylpropyl	Ethoxy	Ethoxy	1	para
	177)	n-Pentyl	Ethoxy	Ethoxy	1	para
	178)	3-Methylbutyl	Ethoxy	Ethoxy	1	para
20	179)	2-Methylbutyl	Ethoxy	Ethoxy	1	para
	180)	1-Methylbutyl	Ethoxy	Ethoxy	1	para
	181)	n-Hexyl	Ethoxy	Ethoxy	1	para
25	182)	n-Heptyl	Ethoxy	Ethoxy	1	para
	183)	n-Octyl	Ethoxy	Ethoxy	1	para
	184)	2-Ethylhexyl	Ethoxy	Ethoxy	1	para
30	185)	Methyl	Methyl	Methyl	2	o/p*)
	186)	n-Propyl	Methyl	Methyl	2	
	187)	iso-Propyl	Methyl	Methyl	2	
35	188)	n-Butyl	Methyl	Methyl	2	-
33	189)	2-Methylpropyl	Methyl	Methyl	2	-
	190)	1-Methylpropyl	Methyl	Methyl	2	
40	191)	2,2-Dimethylpropyl	Methyl	Methyl	2	o/p*)
40	192)	n-Pentyl	Methyl	Methyl	2	o/p*)
	193)	3-Methylbutyl	Methyl	Methyl	2	o/p*)
	194)	2-Methylbutyl	Methyl	Methyl	2	o/p*)
45	195)	1-Methylbutyl	Methyl	Methyl	2	o/p*)
	196)	n-Hexyl	Methyl	Methyl	2	o/p*)
	197)	n-Heptyl	Methyl	Methyl	2	o/p*)
50	198)	n-Octyl	Methyl	Methyl	2	o/p*)
	199)	2-Ethylhexyl	Methyl	Methyl	2	o/p*)
	200)	Methyl	Ethyl	Ethyl	2	o/p*)
55	201)	Ethyl	Ethyl	Ethyl	2	o/p*)
	202)	n-Propyl	Ethyl	Ethyl	2	o/p*)
	203)	iso-Propyl	Ethyl	Ethyl	2	o/p*)
60	204)	n-Butyl	Ethy1	Ethyl	2	o/p*)
L	205)	2-Methylpropyl	Ethy1	Ethyl	2	o/p*)
	206)	1-Methylpropyl	Ethyl	Ethyl	2	o/p*)
65	207)	2,2-Dimethylpropyl	Ethyl	Ethyl	2	o/p*)

	$R^5 = R^6$	R ¹	R ²	n	Posi-	
Nr.	R° - R°	IV.			tion	
208)	n-Pentyl	Ethyl	Ethyl	2	o/p*)	5
209)	3-Methylbutyl	Ethyl	Ethyl	2	o/p*)	
210)	2-Methylbutyl	Ethyl	Ethyl	2	o/p*)	
211)	1-Methylbutyl	Ethyl	Ethyl	2	o/p*)	10
212)	n-Hexyl	Ethyl	Ethyl	2	o/p*)	
213)	n-Heptyl	Ethyl	Ethyl	2	o/p*)	
214)	n-Octyl	Ethyl	Ethyl	2	o/p*)	15
215)	2-Ethylhexyl	Ethyl	Ethyl	2	o/p*)	
216)	Methyl	n-Propyl	n-Propyl	2	o/p*)	
217)	Ethyl	n-Propyl	n-Propyl	2	o/p*)	20
218)	n-Propyl	n-Propyl	n-Propyl	2	o/p*)	
219)	iso-Propyl	n-Propyl	n-Propyl	2	o/p*)	
220)	n-Butyl	n-Propyl	n-Propy1	2	o/p*)	25
221)	2-Methylpropyl	n-Propyl	n-Propyl	2	o/p*)]
222)	1-Methylpropyl	n-Propyl	n-Propyl	2	o/p*)	
223)	2,2-Dimethylpropyl	n-Propyl	n-Propyl	2	o/p*)	30
224)	n-Pentyl	n-Propyl	n-Propyl	2	o/p*)	
225)	3-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)]
226)	2-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)	35
227)	1-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)	
228)	n-Hexyl	n-Propyl	n-Propyl	2	o/p*)	
229)	n-Heptyl	n-Propyl	n-Propyl	2	o/p*)	40
230)	n-Octyl	n-Propyl	n-Propyl	2	o/p*)]
231)	2-Ethylhexyl	n-Propyl	n-Propyl	2	o/p*)	
232)	Methyl	i-Propyl	i-Propyl	2	o/p*)	45
233)	Ethyl	i-Propyl	i-Propyl	2	o/p*)	1
234)	n-Propyl	i-Propyl	i-Propyl	2	0/p*)	1
235)	iso-Propyl	i-Propyl	i-Propyl	2	o/p*)	50
236)	n-Butyl	i-Propyl	i-Propyl	2	o/p*)	
237)	2-Methylpropyl	i-Propyl	i-Propyl	2	o/p*)	4
238)	1-Methylpropyl	i-Propyl	i-Propyl	2	o/p*)	55
239)	2,2-Dimethylpropyl	i-Propyl	i-Propyl	2	o/p*)	. "
240)	n-Pentyl	i-Propyl	i-Propyl	$\frac{ ^2}{ ^2}$	o/p*)	
241)	3-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	
242)	2-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	60
243)	1-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	1
244)	n-Hexyl	i-Propyl	i-Propyl	2	o/p*)	-
245)	n-Heptyl	i-Propyl	i-Propyl	2	o/p*)	65

	Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi- tion
5	246)	n-Octyl	i-Propyl	i-Propyl	2	o/p*)
_	247)	2-Ethylhexyl	i-Propyl	i-Propyl	2	o/p*)
	247)	Methyl	n-Butyl	n-Butyl	2	o/p*)
10	249)	Ethyl	n-Butyl	n-Butyl	2	o/p*)
	250)	n-Propyl	n-Butyl	n-Butyl	2	o/p*)
	251)	iso-Propyl	n-Butyl	n-Butyl	2	o/p*)
15	252)	n-Butyl	n-Butyl	n-Butyl	2	o/p*)
.5	253)	2-Methylpropyl	n-Butyl	n-Butyl	2	o/p*}
	254)	1-Methylpropyl	n-Butyl	n-Butyl	2	o/p*)
20	255)	2,2-Dimethylpropyl	n-Butyl	n-Butyl	2	o/p*)
20	256)	n-Pentyl	n-Butyl	n-Butyl	2	o/p*)
	257)	3-Methylbutyl	n-Butyl	n-Butyl	2	o/p*)
25	258)	2-Methylbutyl	n-Butyl	n-Butyl	2	o/p*)
23	259)	1-Methylbutyl	n-Butyl	n-Butyl	2	o/p*)
	260)	n-Hexyl	n-Butyl	n-Butyl	2	o/p*)
30	261)	n-Heptyl	n-Butyl	n-Butyl	2	o/p*)
50	262)	n-Octyl	n-Butyl	n-Butyl	2	o/p*)
	263)	2-Ethylhexyl	n-Butyl	n-Butyl	2	o/p*)
35	264)	Methyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
33	265)	Ethy1	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	266)	n-Propyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
40	267)	iso-Propyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
40	268)	n-Butyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	269)	2-Methylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
45	270)	1-Methylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
45	271)	2,2-Dimethylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	272)	n-Pentyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	273)	3-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
50	274)	2-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	275)	1-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	276)	n-Hexyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
55	277)	n-Heptyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	278)	n-Octyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	279)	2-Ethylhexyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
60	280)	Methyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
	281)	Ethyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
L	282)	n-Propyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
65	283)	iso-Propyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)

Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi-	
					tion	
284)	n-Butyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	5
285)	2-Methylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
286)	1-Methylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
287)	2,2-Dimethylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	10
288)	n-Pentyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
289)	3-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
290)	2-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	15
291)	1-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
292)	n-Hexyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
293)	n-Heptyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	20
294)	n-Octyl	2-Methylpropyl	2-Methylpropyl	2	o/p*}	l
295)	2-Ethylhexyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)]
296)	Methyl	n-Pentyl	n-Pentyl	2	o/p*)	25
297)	Ethyl	n-Pentyl	n-Pentyl	2	o/p*)	
298)	n-Propyl	n-Pentyl	n-Pentyl	2	o/p*)	
299)	iso-Propyl	n-Pentyl	n-Pentyl	2	o/p*)	30
300)	n-Butyl	n-Pentyl	n-Pentyl	2	o/p*)]
301)	2-Methylpropyl	n-Pentyl	n-Pentyl	2	o/p*)]
302)	1-Methylpropyl	n-Pentyl	n-Pentyl	2	o/p*)	35
303)	2,2-Dimethylpropyl	n-Pentyl	n-Pentyl	2	o/p*)	_
304)	n-Pentyl	n-Pentyl	n-Pentyl	2	o/p*)	
305)	3-Methylbutyl	n-Pentyl	n-Pentyl	2	o/p*)	40
306)	2-Methylbutyl	n-Pentyl	n-Pentyl	2	o/p*)	1
307)	1-Methylbutyl	n-Pentyl	n-Pentyl	2	o/p*)	
308)	n-Hexyl	n-Pentyl	n-Pentyl	2	o/p*)	45
309)	n-Heptyl	n-Pentyl	n-Pentyl	2	o/p*)	
310)	n-Octyl	n-Pentyl	n-Pentyl	2	o/p*)	4
311)	2-Ethylhexyl	n-Pentyl	n-Pentyl	2	o/p*)	50
312)	Methyl	n-Hexyl	n-Hexyl	2	o/p*)	~~~
313)	Ethy1	n-Hexyl	n-Hexyl	2	o/p*)	4
314)	n-Propyl	n-Hexyl	n-Hexyl	2	o/p*)	ا
315)	iso-Propyl	n-Hexyl	n-Hexyl	2	o/p*)	55
316)	n-Butyl	n-Hexyl	n-Hexyl	2	o/p*)	1
317)	2-Methylpropyl	n-Hexyl	n-Hexyl	2	0/p*)	4
318)	1-Methylpropyl	n-Hexyl	n-Hexyl	2	o/p*)	60
319)	2,2-Dimethylpropyl	n-Hexyl	n-Hexyl	2	o/p*)	4
320)	n-Pentyl	n-Hexyl	n-Hexyl	2	o/p*)	4
321)	3-Methylbutyl	n-Hexyl	n-Hexyl	2	o/p*)	65

			R ¹	R ²	In	Posi-
	Nr.	$R^5 = R^6$	K*	*	"	tion
5	322)	2-Methylbutyl	n-Hexyl	n-Hexyl	2	o/p*)
-	323)	1-Methylbutyl	n-Hexyl	n-Hexyl	2	o/p*}
	324)	n-Hexyl	n-Hexyl	n-Hexyl	2	o/p*)
10	325)	n-Heptyl	n-Hexyl	n-Hexyl	2	o/p*)
	326)	n-Octyl	n-Hexyl	n-Hexyl	2	o/p*)
	327)	2-Ethylhexyl	n-Hexyl	n-Hexyl	2	o/p*)
15	328)	Methyl	Methoxy	Methoxy	2	o/p*)
13	329)	Ethyl	Methoxy	Methoxy	2	o/p*)
	330)	n-Propyl	Methoxy	Methoxy	2	o/p*)
20		iso-Propyl	Methoxy	Methoxy	2	o/p*)
20	331)	n-Butyl	Methoxy	Methoxy	2	o/p*)
	3327	2-Methylpropyl	Methoxy	Methoxy	2	o/p*)
25	334)	1-Methylpropyl	Methoxy	Methoxy	2	o/p*)
25	334)	2.2-Dimethylpropyl	Methoxy	Methoxy	2	o/p*)
	336)	n-Pentyl	Methoxy	Methoxy	2	o/p*)
20	3307	3-Methylbutyl	Methoxy	Methoxy	2	o/p*)
30	338)	2-Methylbutyl	Methoxy	Methoxy	2	o/p*)
	339)	1-Methylbutyl	Methoxy	Methoxy	2	o/p*)
25	340)	n-Hexyl	Methoxy	Methoxy	2	o/p*)
35	341)	n-Heptyl	Methoxy	Methoxy	2	o/p*)
	342)	n-Octyl	Methoxy	Methoxy	2	o/p*)
40	343)	2-Ethylhexyl	Methoxy	Methoxy	2	o/p*)
40	344)	Methyl	Ethoxy	Ethoxy	2	o/p*)
	345)	Ethyl	Ethoxy	Ethoxy	2	o/p*)
45	346)	n-Propyl	Ethoxy	Ethoxy	2	o/p*)
45	347)	iso-Propyl	Ethoxy	Ethoxy	2	o/p*)
	348)	n-Butyl	Ethoxy	Ethoxy	2	o/p*)
	349)	2-Methylpropyl	Ethoxy	Ethoxy	2	o/¤*)
50	350)	1-Methylpropyl	Ethoxy	Ethoxy	2	o/p*)
	351)	2,2-Dimethylpropyl	Ethoxy	Ethoxy	2	o/p*}
	352)	n-Pentyl	Ethoxy	Ethoxy	2	o/p*)
55	353)	3-Methylbutyl	Ethoxy	Ethoxy	2	o/p*)
	354)	2-Methylbutyl	Ethoxy	Ethoxy	2	o/p*)
	355)	1-Methylbutyl	Ethoxy	Ethoxy	2	o/p*)
60	356)	n-Hexyl	Ethoxy	Ethoxy	2	o/p*)
	357)	n-Heptyl	Ethoxy	Ethoxy	2	o/p*)
	358)	n-Octyl	Ethoxy	Ethoxy	2	o/p*)
65	359)	2-Ethylhexyl	Ethoxy	Ethoxy	2	o/p*)

^{*)} o/p steht für ortho- und para-substituiert

Tabelle 4

$$(R^{1})_{n}$$

H

 $CONR^{5}R^{6}$
 $CONR^{5}R^{6}$
 $R^{5} = R^{6}$

Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi- tion	15
1)	Methyl	Н	н	1		
2)	Ethyl	Н	Н	1	-	20
3)	n-Propyl	Н	Н	1	-	
4)	iso-Propyl	Н	Н	1	-	
5)	n-Butyl	Н	Н	1	-	25
6)	2-Methylpropyl	Н	H	1	-	
7)	1-Methylpropyl	Н	Н	1	-	
8)	2,2-Dimethylpropyl	Н	Н	1	_	30
9)	n-Pentyl	Н	Н	1	-	
10)	3-Methylbutyl	H	Н	1	-]
11)	2-Methylbutyl	Н	Н	1	_	35
12)	1-Methylbutyl	Н	Н	1	-	
13)	n-Hexyl	Н	H	1	-	1
14)	n-Heptyl	Н	H	1	-	40
15)	n-Octyl	н	Н	1]
16)	2-Ethylhexyl	Н	Н	1	-	
17)	Methyl	Methyl	Methyl	1	para	45
18)	Ethyl	Methyl	Methyl	1	para	
19)	n-Propyl	Methyl	Methyl	1	para]
20)	iso-Propyl	Methyl	Methyl	1	para	
21)	n-Butyl	Methyl	Methyl	1	para	50
22)	2-Methylpropyl	Methyl	Methyl	1	para]
23)	1-Methylpropyl	Methyl	Methyl	1	para]
24)	2,2-Dimethylpropyl	Methyl	Methyl	1	para	55
25)	n-Pentyl	Methyl	Methyl	1	para	
26)	3-Methylbutyl	Methyl	Methyl	1	para	
27)	2-Methylbutyl	Methyl	Methyl	1	para	60
28)	1-Methylbutyl	Methyl	Methyl	1	para]

	Nr.	R ⁵ = R ⁶	R ¹ .	R ²	n	Posi- tion
5	29)	n-Hexyl	Methyl	Methyl	1	para
	30)	n-Heptyl	Methyl	Methyl	1	para
	31)	n-Octyl	Methyl	Methyl	1	para
10	32)	2-Ethylhexyl	Methyl	Methyl	1	para
!	33)	Methyl	Ethyl	Ethyl	1	para
!	34)	Ethyl	Ethy1	Ethyl	1	para
15	35)	n-Propyl	Ethy1	Ethyl	1	para
	36)	iso-Propyl	Ethy1	Ethyl	1	para
	37)	n-Butyl	Ethy1	Ethyl	1	para
20	38)	2-Methylpropyl	Ethy1	Ethyl	1	para
	39)	1-Methylpropyl	Ethyl	Ethyl	1	para
	40)	2,2-Dimethylpropyl	Ethyl	Ethyl	1	para
25	41)	n-Pentyl	Ethyl	Ethyl	1	para
	42)	3-Methylbutyl	Ethyl	Ethyl	1	para
	43)	2-Methylbutyl	Ethyl	Ethyl	1	para
30	44)	1-Methylbutyl	Ethyl	Ethyl	1	para
50	45)	n-Hexyl	Ethyl	Ethyl	1	para
	46)	n-Heptyl	Ethyl	Ethyl	1	para
35	47)	n-Octyl	Ethyl	Ethyl	1	para
33	48)	2-Ethylhexyl	Ethyl	Ethyl	1	para
	49)	Methyl	n-Propyl	n-Propyl	1	para
40	50)	Ethyl	n-Propyl	n-Propyl	1	para
40	51)	n-Propyl	n-Propyl	n-Propyl	1	para
	52)	iso-Propyl	n-Propyl	n-Propyl	1	para
45	53)	n-Butyl	n-Propyl	n-Propyl	1	para
43	54)	2-Methylpropyl	n-Propyl	n-Propyl	1	para
	55)	1-Methylpropyl	n-Propyl	n-Propyl	1	para
	56)	2,2-Dimethylpropyl	n-Propyl	n-Propyl	1	para
50	57)	n-Pentyl	n-Propyl	n-Propyl	1	para
	58)	3-Methylbutyl	n-Propyl	n-Propyl	1	para
	59)	2-Methylbutyl	n-Propyl	n-Propyl	$\frac{1}{1}$	para
55	60)	1-Methylbutyl	n-Propyl	n-Propyl	1	para
	61)	n-Hexyl	n-Propyl	n-Propyl	$\frac{1}{1}$	para
	62)	n-Heptyl	n-Propyl	n-Propyl	1	para
60	63)	n-Octyl	n-Propyl	n-Propyl	$\frac{1}{2}$	para
İ	64)	2-Ethylhexyl	n-Propyl	n-Propyl	1	para
	65)	Methyl	i-Propyl	i-Propyl	1	para
65	66)	Ethyl	i-Propyl	i-Propyl	1	para

r	$R^5 = R^6$	R ¹	R ²	n	Posi-	
Nr.	K2 = K2	R ² .			tion	
67)	n-Propyl	i-Propyl	i-Propyl	1	para	5
68)	iso-Propyl	i-Propyl	i-Propyl	1	para	
69)	n-Butyl	i-Propyl	i-Propyl	1	para	
70)	2-Methylpropyl	i-Propyl	i-Propyl	1	para	10
71)	1-Methylpropyl	i-Propyl	i-Propyl	1	para	
72)	2,2-Dimethylpropyl	i-Propyl	i-Propyl	1	para	
73)	n-Pentyl	i-Propyl	i-Propyl	1	para	15
74)	3-Methylbutyl	i-Propyl	i-Propyl	1	para	
75)	2-Methylbutyl	i-Propyl	i-Propyl	1	para	
76)	1-Methylbutyl	i-Propyl	i-Propyl	1	para	20
77)	n-Hexyl	i-Propyl	i-Propyl	1	para	
78)	n-Heptyl	i-Propyl	i-Propyl	1	para	
79)	n-Octyl	i-Propyl	i-Propyl	1	para	25
80)	2-Ethylhexyl	i-Propyl	i-Propyl	1	para	
81)	Methyl	n-Butyl	n-Butyl	1	para	
82)	Ethyl	n-Butyl	n-Butyl	1	para	30
83)	n-Propyl	n-Butyl	n-Butyl	1	para	
84)	iso-Propyl	n-Butyl	n-Butyl	1	para	
85)	n-Butyl	n-Butyl	n-Butyl	1	para	35
86)	2-Methylpropyl	n-Butyl	n-Butyl	1	para	
87)	1-Methylpropyl	n-Butyl	n-Butyl	1	para	
88)	2,2-Dimethylpropyl	n-Butyl	n-Butyl	1	para	40
89)	n-Pentyl	n-Butyl	n-Butyl	1	para	
90)	3-Methylbutyl	n-Butyl	n-Butyl	1	para	
91)	2-Methylbutyl	n-Butyl	n-Butyl	1	para	45
92)	1-Methylbutyl	n-Butyl	n-Butyl	1	para	
93)	n-Hexyl	n-Butyl	n-Butyl	1	para	
94)	n-Heptyl	n-Butyl	n-Butyl	1	para	50
95)	n-Octyl	n-Butyl	n-Butyl	1	para] ~~
96)	2-Ethylhexyl	n-Butyl	n-Butyl	1	para	
97)	Methyl	1-Methylpropyl	1-Methylpropyl	1	para	55
98)	Ethyl	1-Methylpropyl	1-Methylpropyl	1	para	, ,,
99)	n-Propyl	1-Methylpropy1	1-Methylpropyl	1	para	
100)	iso-Propyl	1-Methylpropyl	1-Methylpropyl	1	para	
101)	n-Butyl	1-Methylpropyl	1-Methylpropyl	1	para	60
102)	2-Methylpropyl	1-Methylpropyl	1-Methylpropyl	1	para	-
103)	1-Methylpropyl	1-Methylpropyl	1-Methylpropyl	1	para	-
104)	2,2-Dimethylpropyl	1-Methylpropyl	1-Methylpropyl	1	para	65

	Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi-
	1				_	tion
5	105)	n-Pentyl	1-Methylpropyl	1-Methylpropyl	1	para
	106)	3-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
	107)	2-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
10	108)	1-Methylbutyl	1-Methylpropyl	1-Methylpropyl	1	para
	109)	n-Hexyl	1-Methylpropyl	1-Methylpropyl	1	para
	110)	n-Heptyl	1-Methylpropyl	1-Methylpropyl	1	para
15	111)	n-Octyl	1-Methylpropyl	1-Methylpropyl	1	para
	112)	2-Ethylhexyl	1-Methylpropyl	1-Methylpropyl	1	para
	113)	Methyl	2-Methylpropyl	2-Methylpropyl	1	para
20	114)	Ethyl	2-Methylpropyl	2-Methylpropyl	1	para
	115)	n-Propyl	2-Methylpropyl	2-Methylpropyl	1	para
	116)	iso-Propyl	2-Methylpropyl	2-Methylpropyl	1	para
25	117)	n-Butyl	2-Methylpropyl	2-Methylpropyl	1	para
20	118)	2-Methylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
	119)	1-Methylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
30	120)	2,2-Dimethylpropyl	2-Methylpropyl	2-Methylpropyl	1	para
30	121)	n-Pentyl	2-Methylpropyl	2-Methylpropyl	1	para
	122)	3-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
25	123)	2-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
35	124)	1-Methylbutyl	2-Methylpropyl	2-Methylpropyl	1	para
	125)	n-Hexyl	2-Methylpropyl	2-Methylpropyl	1	para
	126)	n-Heptyl	2-Methylpropyl	2-Methylpropyl	1	para
40	127)	n-Octyl	2-Methylpropyl	2-Methylpropyl	1	para
	128)	2-Ethylhexyl	2-Methylpropyl	2-Methylpropyl	1	para
	129)	Methyl	n-Pentyl	n-Pentyl	1	para
45	130)	Ethyl	n-Pentyl	n-Pentyl	1	para
	131)	n-Propyl	n-Pentyl	n-Pentyl	1	para
	132)	iso-Propyl	n-Pentyl	n-Pentyl	1	para
50	133)	n-Butyl	n-Pentyl	n-Pentyl	1	para
	134)	2-Methylpropyl	n-Pentyl	n-Pentyl	1	para
	135)	1-Methylpropyl	n-Pentyl	n-Pentyl	1	para
55	136)	2,2-Dimethylpropyl	n-Pentyl	n-Pentyl	1	para
	137)	n-Pentyl	n-Pentyl	n-Pentyl	1	para
	138)	3-Methylbutyl	n-Pentyl	n-Pentyl	1	para
60	139)	2-Methylbutyl	n-Pentyl	n-Pentyl	1	para
ŀ	140)	1-Methylbutyl	n-Pentyl	n-Pentyl	1	para
	141)	n-Hexyl	n-Pentyl	n-Pentyl	1	para
65	142)	n-Heptyl	n-Pentyl	n-Pentyl	1	para

Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi- tion	
			n Donterl	$\frac{1}{1}$	para	5
143)	n-Octyl	n-Pentyl	n-Pentyl	1		J
144)	2-Ethylhexyl	n-Pentyl	n-Pentyl		para	
145)	Methyl	n-Hexyl	n-Hexyl	1	para	
146)	Ethyl	n-Hexyl	n-Hexyl	$\frac{1}{1}$	para	10
147)	n-Propyl	n-Hexyl	n-Hexyl	1	para	
148)	iso-Propyl	n-Hexyl	n-Hexyl	1	para	
149)	n-Butyl	n-Hexyl	n-Hexyl	1	para	15
150)	2-Methylpropyl	n-Hexyl	n-Hexyl	1	para	
151)	1-Methylpropyl	n-Hexyl	n-Hexyl	1	para	
152)	2,2-Dimethylpropyl	n-Hexyl	n-Hexyl	1	para	20
153)	n-Pentyl	n-Hexyl	n-Hexyl	1	para	
154)	3-Methylbutyl	n-Hexyl	n-Hexyl	1	para	
155)	2-Methylbutyl	n-Hexyl	n-Hexyl	1	para	25
156)	1-Methylbutyl	n-Hexyl	n-Hexyl	1	para	
157)	n-Hexyl	n-Hexyl	n-Hexyl	1	para	
158)	n-Heptyl	n-Hexyl	n-Hexyl	1	para	30
159)	n-Octyl	n-Hexyl	n-Hexyl	1	para	
160)	2-Ethylhexyl	n-Hexyl	n-Hexyl	1	para]
161)	Methyl	Methoxy	Methoxy	1	para	35
162)	Ethyl	Methoxy	Methoxy	1	para	
163)	n-Propyl	Methoxy	Methoxy	1	para	
164)	iso-Propyl	Methoxy	Methoxy	1	para	40
165)	n-Butyl	Methoxy	Methoxy	1	para	
166)	2-Methylpropyl	Methoxy	Methoxy	1	para	
167)	1-Methylpropyl	Methoxy	Methoxy	1	para	45
168)	2,2-Dimethylpropyl	Methoxy	Methoxy	1	para	
169)	n-Pentyl	Methoxy	Methoxy	1	para]
170)	3-Methylbutyl	Methoxy	Methoxy	1	para	50
171)	2-Methylbutyl	Methoxy	Methoxy	1	para	30
172)	1-Methylbutyl	Methoxy	Methoxy	1	para	
173)	n-Hexyl	Methoxy	Methoxy	1	para	55
174)	n-Heptyl	Methoxy	Methoxy	1	para]
175)	n-Octyl	Methoxy	Methoxy	1	para]
176)	2-Ethylhexyl	Methoxy	Methoxy	1	para	
177)	Methyl	Ethoxy	Ethoxy	1	para	60
178)	Ethyl	Ethoxy	Ethoxy	1	para	1
179)	n-Propyl	Ethoxy	Ethoxy	1	para	1
180)	iso-Propyl	Ethoxy	Ethoxy	1	para	65

	Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi- tion
5	181)	n-Butyl	Ethoxy	Ethoxy	1	para
	182)	2-Methylpropyl	Ethoxy	Ethoxy	1	para
	183)	1-Methylpropyl	Ethoxy	Ethoxy	1	para
10	184)	2,2-Dimethylpropyl	Ethoxy	Ethoxy	1	para
	185)	n-Pentyl	Ethoxy	Ethoxy	1	para
	186)	3-Methylbutyl	Ethoxy	Ethoxy	1	para
15	187)	2-Methylbutyl	Ethoxy	Ethoxy	1	para
	188)	1-Methylbutyl	Ethoxy	Ethoxy	1	para
	189)	n-Hexyl	Ethoxy	Ethoxy	1	para
20	190)	n-Heptyl	Ethoxy	Ethoxy	1	para
	191)	n-Octyl	Ethoxy	Ethoxy	1	para
	192)	2-Ethylhexyl	Ethoxy	Ethoxy	1	para
25	193)	Methyl	Methyl	Methyl	2	o/p*)
	194)	Ethyl	Methyl	Methyl	2	o/p*)
	195)	n-Propyl	Methyl	Methyl	2	o/p*)
30	196)	iso-Propyl	Methyl	Methyl	2	o/p*)
30	197)	n-Butyl	Methyl	Methyl	2	o/p*)
	198)	2-Methylpropyl	Methyl	Methyl	2	o/p*)
35	199)	1-Methylpropyl	Methyl	Methyl	2	o/p*)
ລວ	200)	2,2-Dimethylpropyl	Methyl	Methyl	2	o/p*}
	201)	n-Pentyl	Methyl	Methyl	2	o/p*)
40	202)	3-Methylbutyl	Methyl	Methyl	2	o/p*)
40	203)	2-Methylbutyl	Methyl	Methyl	2	o/p*)
	204)	1-Methylbutyl	Methyl	Methyl	2	o/p*)
45	205)	n-Hexyl	Methyl	Methyl	2	o/p*)
43	206)	n-Heptyl	Methyl	Methyl	2	o/p*)
	207)	n-Octyl	Methyl	Methyl	2	o/p '
50	208)	2-Ethylhexyl	Methyl	Methyl	$\frac{ 2 }{2}$	o/p*)
50	209)	Methyl	Ethy1	Ethyl	2	o/p /
	210)	Ethyl	Ethy1	Ethyl	2	o/p*)
55	211)	n-Propyl	Ethy1	Ethyl	$\frac{2}{2}$	o/p*)
	212)	iso-Propyl	Ethy1	Ethyl	2	o/p*)
60	213)	n-Butyl	Ethy1	Ethyl	2	o/p*)
	214)	2-Methylpropyl	Ethyl	Ethyl Ethyl	2	o/p*)
	215)	1-Methylpropyl	Ethyl	Ethyl	2	o/p*)
	216)	2,2-Dimethylpropyl	Ethyl	Ethyl	2	o/p*)
	217)	n-Pentyl	Ethyl	Ethyl	2	o/p*)
65	218)	3-Methylbutyl	Ethyl	FCUAT	<u></u>	0,5.

	-5 -6 1	R ¹ .	R ²	n	Posi-	
Nr.	$R^5 = R^6$	K*·	K-		tion	
219)	2-Methylbutyl	Ethyl	Ethyl	2	o/p*)	5
220)	1-Methylbutyl	Ethyl	Ethyl	2	o/p*)	
221)	n-Hexyl	Ethyl	Ethy1	2	o/p*)	
222)	n-Heptyl	Ethyl	Ethyl	2	o/p*)	10
223)	n-Octyl	Ethyl	Ethyl	. 2	o/p*)	
224)	2-Ethylhexyl	Ethyl	Ethyl	2	o/p*)	
225)	Methyl	n-Propyl	n-Propyl	2	o/p*)	15
226)	Ethyl	n-Propyl	n-Propyl	2	o/p*)	
227)	n-Propyl	n-Propyl	n-Propyl	2	o/p*)	
228)	iso-Propyl	n-Propyl	n-Propyl	2	o/p*)	20
229)	n-Butyl	n-Propyl	n-Propyl	2	o/p*)	
230)	2-Methylpropyl	n-Propyl	n-Propyl	2	o/p*}	
231)	1-Methylpropyl	n-Propyl	n-Propyl	2	o/p*)	25
232)	2,2-Dimethylpropyl	n-Propyl	n-Propyl	2	o/p*)	
233)	n-Pentyl	n-Propyl	n-Propyl	2	o/p*)	
234)	3-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)	30
235)	2-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)	
236)	1-Methylbutyl	n-Propyl	n-Propyl	2	o/p*)	
237)	n-Hexyl	n-Propyl	n-Propyl	2	o/p*)	35
238)	n-Heptyl	n-Propyl	n-Propyl	2	o/p*)	
239)	n-Octyl	n-Propyl	n-Propyl	2	o/p* ⁾	
240)	2-Ethylhexyl	n-Propyl	n-Propyl	2	o/p*)	40
241)	Methyl	i-Propyl	i-Propyl	2	o/p*)	
242)	Ethyl	i-Propyl	i-Propyl	2	o/p*)	
243)	n-Propyl	i-Propyl	i-Propyl	2	o/p*)	45
244)	iso-Propyl	i-Propyl	i-Propyl	2	o/p*)	, ·
245)	n-Butyl	i-Propyl	i-Propyl	2	o/p*)	
246)	2-Methylpropyl	i-Propyl	i-Propyl	2		50
247)	1-Methylpropyl	i-Propyl	i-Propyl	2	o/p*)	. ~
248)	2,2-Dimethylpropyl	i-Propyl	i-Propyl	2	o/p*)	
249)	n-Pentyl	i-Propyl	i-Propyl	2	o/p*)	
250)	3-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	55
251)	2-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	ļ
252)	1-Methylbutyl	i-Propyl	i-Propyl	2	o/p*)	
253)	n-Hexyl	i-Propyl	i-Propyl	2	o/p*)	60
254)	n-Heptyl	i-Propyl	i-Propyl	2	o/p*)	
255)	n-Octyl	i-Propyl	i-Propyl	2	o/p*)	
256)	2-Ethylhexyl	i-Propyl	i-Propyl	2	υ/μ,	65

	Nr.	$R^5 = R^6$	R ¹	R ²	n	Posi-
						tion
5	257)	Methyl	n-Butyl	n-Butyl	2	o/p*)
	258)	Ethyl	n-Butyl	n-Butyl	2	o/p*}
1	259)	n-Propyl	n-Butyl	n-Butyl	2	o/p*)
10	260)	iso-Propyl	n-Butyl	n-Butyl	2	o/p*)
	261)	n-Butyl	n-Butyl	n-Butyl	2	o/p*)
	262)	2-Methylpropyl	n-Butyl	n-Butyl	2	o/p*)
15	263)	1-Methylpropyl	n-Butyl	n-Butyl	2	o/p*)
i	264)	2,2-Dimethylpropyl	n-Butyl	n-Butyl	2	o/p*)
	265)	n-Pentyl	n-Butyl	n-Butyl	2	o/p*)
20	266)	3-Methylbutyl	n-Butyl	n-Butyl	2	o/p*)
;	267)	2-Methylbutyl	n-Butyl	n-Butyl	2	o/p*)
	268)	1-Methylbutyl	n-Butyl	n-Butyl	2	o/¤*)
25	269)	n-Hexyl	n-Butyl	n-Butyl	2	o/p*)
-	270)	n-Heptyl	n-Butyl	n-Butyl	2	o/p*)
	271)	n-Octyl	n-Butyl	n-Butyl	2	o/p*)
30	272)	2-Ethylhexyl	n-Butyl	n-Butyl	2	o/p*)
30	273)	Methyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	274)	Ethyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
25	275)	n-Propyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
35	276)	iso-Propyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	277)	n-Butyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	278)	2-Methylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
40	279)	1-Methylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	280)	2,2-Dimethylpropyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	281)	n-Pentyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
45	282)	3-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	283)	2-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	284)	1-Methylbutyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
50	285)	n-Hexyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	286)	n-Heptyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	287)	n-Octyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
55	288)	2-Ethylhexyl	1-Methylpropyl	1-Methylpropyl	2	o/p*)
	289)	Methyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
	290)	Ethyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
60	291)	n-Propyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
	292)	iso-Propyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
	293)	n-Butyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)
65	294)	2-Methylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)

D5 - D6	ъ1	R2	n	Posi-	
אי = גי	κ-	*		tion	
1-Methylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	5
2,2-Dimethylpropyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
n-Pentyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	
3-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2	o/p*)	10
2-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2		
1-Methylbutyl	2-Methylpropyl	2-Methylpropyl	2		
n-Hexyl	2-Methylpropyl	2-Methylpropyl	2		15
n-Heptyl	2-Methylpropyl	2-Methylpropyl	2		
n-Octyl	2-Methylpropyl	2-Methylpropyl	2	<u></u>	
2-Ethylhexyl	2-Methylpropyl	2-Methylpropyl	2		20
Methyl	n-Pentyl	n-Pentyl	2	<u> </u>	
Ethyl	n-Pentyl	n-Pentyl	2	l	
n-Propyl	n-Pentyl	n-Pentyl	2		25
iso-Propyl	n-Pentyl	n-Pentyl	2	o/p*)	<u> </u>
n-Butyl	n-Pentyl	n-Pentyl	2	o/p*)	j
2-Methylpropyl	n-Pentyl	n-Pentyl	2	o/p*)	30
1-Methylpropyl	n-Pentyl	n-Pentyl	2	o/p*)]
2,2-Dimethylpropyl	n-Pentyl	n-Pentyl	2	o/p*)	
n-Pentyl	n-Pentyl	n-Pentyl	2	o/p*)	35
3-Methylbutyl	n-Pentyl	n-Pentyl	2		
2-Methylbutyl	n-Pentyl	n-Pentyl	2		
1-Methylbutyl	n-Pentyl	n-Pentyl	2		40
n-Hexyl	n-Pentyl	n-Pentyl	2		1
n-Heptyl	n-Pentyl	n-Pentyl	2		
n-Octyl	n-Pentyl	n-Pentyl	2		45
2-Ethylhexyl	n-Pentyl	n-Pentyl	╃—		<u> </u>
Methyl	n-Hexyl	n-Hexyl			4
Ethyl	n-Hexyl	 	+		. 50
n-Propyl	n-Hexyl		╀		
iso-Propyl		<u> </u>	┼		4
n-Butyl	n-Hexyl				
2-Methylpropyl	n-Hexyl	<u> </u>	↓ —		55
1-Methylpropyl	n-Hexyl		╄-		-
2,2-Dimethylpropyl	n-Hexyl	<u> </u>	₩		1
n-Pentyl	n-Hexyl		4		60
3-Methylbutyl			╄	<u> </u>	4
2-Methylbutyl	n-Hexyl		₩	<u> </u>	4
1-Methylbutyl	n-Hexyl	n-Hexyl	2	0/p"	65
	2,2-Dimethylpropyl n-Pentyl 3-Methylbutyl 2-Methylbutyl 1-Methylbutyl n-Hexyl n-Heptyl n-Octyl 2-Ethylhexyl Methyl Ethyl n-Propyl iso-Propyl n-Butyl 2-Methylpropyl 1-Methylpropyl 2,2-Dimethylpropyl n-Pentyl 3-Methylbutyl 2-Methylbutyl n-Hexyl n-Hexyl n-Hexyl n-Hexyl n-Heptyl n-Octyl 2-Ethylhexyl Methyl Ethyl n-Octyl 2-Ethylhexyl Methyl 1-Methylpropyl 1-Methylbutyl 2-Methyl n-Octyl 2-Ethylhexyl Methyl n-Propyl iso-Propyl n-Butyl 2-Methylpropyl 1-Methylpropyl 1-Methylpropyl 2,2-Dimethylpropyl n-Pentyl 3-Methylbutyl 2-Methylpropyl n-Pentyl 3-Methylbutyl 2-Methylbutyl	1-Methylpropyl 2-Methylpropyl 2,2-Dimethylpropyl 2-Methylpropyl n-Pentyl 2-Methylpropyl 3-Methylbutyl 2-Methylpropyl 2-Methylbutyl 2-Methylpropyl 1-Methylbutyl 2-Methylpropyl n-Hexyl 2-Methylpropyl n-Hexyl 2-Methylpropyl n-Heptyl 2-Methylpropyl n-Octyl 2-Methylpropyl 2-Ethylhexyl 2-Methylpropyl Methyl n-Pentyl n-Pentyl n-Pentyl n-Propyl n-Pentyl n-Pentyl n-Pentyl 2-Methylpropyl n-Pentyl 1-Methylpropyl n-Pentyl 2,2-Dimethylpropyl n-Pentyl n-Pentyl n-Pentyl n-Pentyl n-Pentyl n-Pentyl n-Pentyl 2-Methylbutyl n-Pentyl n-Pentyl n-Pentyl n-Hexyl n-Hexyl n-Hexyl n-Hexyl n-Hexyl n-Hexyl n-Butyl n-Hexyl n-Butyl n-Hexyl n-Butyl n-Hexyl n-Butyl n-Hexyl	1-Methylpropyl 2-Methylpropyl 2-Methylpropyl 2,2-Dimethylpropyl 2-Methylpropyl 2-Methylpropyl 2-Methylpropyl 3-Methylpropyl 2-Methylpropyl 2-Methyl 2-Met	1-Methylpropyl 2-Methylpropyl 2-Methylpropyl 2 2,2-Dimethylpropyl 2-Methylpropyl 2-Methylpropyl 2 3-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 3-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 3-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 1-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 1-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 1-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 1-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 1-Methylpropyl 2-Methylpropyl 2-Methylpropyl 2 1-Methyl ropyl 2-Methylpropyl 2 1-Methylpropyl 2-Methyl 2 1-Methylbutyl 2-Methyl 2 1-Methyl 2-Methyl 2 1-Methyl 3-Methyl	1-Methylpropyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 2,2-Dimethylpropyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 3-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 3-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 2-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 1-Methylbutyl 2-Methylpropyl 2-Methylpropyl 2 o/p*) 1-Methyl 1-Pentyl 1-Pentyl 2 o/p*) 1-Pentyl 1-Pentyl 1-Pentyl 2 o/p*) 1-Pentyl 1-Pentyl 1-Pentyl 2 o/p*) 1-Methylpropyl 1-Pentyl 1-Pentyl 2 o/p*) 1-Methylbutyl 1-Pentyl 1-Pentyl 2 o/p*) 1-Pentyl 1-P

1	37	$R^5 = R^6$	R ¹ .	R ²	n	Posi-
	Nr.	K" - K"	K			tion
5	333)	n-Hexyl	n-Hexyl	n-Hexyl	2	o/p*)
	334)	n-Heptyl	n-Hexyl	n-Hexyl	2	o/p*)
:	335)	n-Octyl	n-Hexyl	n-Hexyl	2	o/p*)
10	336)	2-Ethylhexyl	n-Hexyl	n-Hexyl	2	o/p*)
	337)	Methyl	Methoxy	Methoxy	2	o/p*)
	338)	Ethyl	Methoxy	Methoxy	2	o/p*)
15	339)	n-Propyl	Methoxy	Methoxy	2	o/p*)
	340)	iso-Propyl	Methoxy	Methoxy	2	o/p*)
	341)	n-Butyl	Methoxy	Methoxy	2	o/p*)
20	342)	2-Methylpropyl	Methoxy	Methoxy	2	o/p*)
	343)	1-Methylpropyl	Methoxy	Methoxy	2	o/p*)
	344)	2,2-Dimethylpropyl	Methoxy	Methoxy	2	o/p*)
25	345)	n-Pentyl	Methoxy	Methoxy	2	o/p*)
25	346)	3-Methylbutyl	Methoxy	Methoxy	2	o/p*)
	347)	2-Methylbutyl	Methoxy	Methoxy	2	o/p*)
30	348)	1-Methylbutyl	Methoxy	Methoxy	2	o/p*)
30	349)	n-Hexyl	Methoxy	Methoxy	2	o/p*)
	350)	n-Heptyl	Methoxy	Methoxy	2	o/p*)
35	351)	n-Octyl	Methoxy	Methoxy	2	o/p*)
33	352)	2-Ethylhexyl	Methoxy	Methoxy	2	o/p*}
	353)	Methyl	Ethoxy	Ethoxy	2	o/p*)
	354)	Ethyl	Ethoxy	Ethoxy	2	o/p*)
40	355)	n-Propyl	Ethoxy	Ethoxy	2	o/p*)
	356)	iso-Propyl	Ethoxy	Ethoxy	2	o/p*)
	357)	n-Butyl	Ethoxy	Ethoxy	2	o/p*)
45	358)	2-Methylpropyl	Ethoxy	Ethoxy	2	o/p*)
	359)	1-Methylpropyl	Ethoxy	Ethoxy	2	o/p*)
50	360)	2,2-Dimethylpropyl	Ethoxy	Ethoxy	2	o/p")
	361)	n-Pentyl	Ethoxy	Ethoxy	2	o/p*)
	362)	3-Methylbutyl	Ethoxy	Ethoxy	$\frac{ 2 }{2}$	o/p*)
55	363)	2-Methylbutyl	Ethoxy	Ethoxy	2	o/p*)
	364)	1-Methylbutyl	Ethoxy	Ethoxy	2	o/p ·
	365)	n-Hexyl	Ethoxy	Ethoxy	2	o/p ,
	366)	n-Heptyl	Ethoxy	Ethoxy	2	o/p /
60	367)	n-Octyl	Ethoxy	Ethoxy Ethoxy	2	o/p /
	368)	2-Ethylhexyl	Ethoxy	Бспоху	<u></u>	5/ <u>5</u> ·

^{*)} o/p steht für ortho- und para-substituiert

Beispiel 4

Standardisierte Methode zur Bestimmung der Photostabilität (Suntest)

Eine 5 Gew.-%ige alkoholische Lösung des zu prüfenden Lichtschutzmittels wird mittels einer Eppendorfpipette (20 µl) auf die Auffräsung eines Glasplättchens aufgetragen. Durch die Anwesenheit des Alkohols verteilt sich die Lösung gleichmäßig auf der aufgerauhten Glasoberfläche. Die aufgetragene Menge entspricht der Menge an Lichtschutzmittel, die in Sonnencremes zur Erreichung eines mittleren Lichtschutzfaktors benötigt wird. Bei der Prüfung werden jeweils 4 Glasplättchen bestrahlt. Die Abdampfzeit und die Bestrahlung betragen je 30 Minuten. Die Glasplättchen werden während des Bestrahlens durch eine Wasserkühlung, die sich am Boden des Suntestgeräte befindet, leicht gekühlt. Die Temperatur innerhalb des Suntest Gerätes beträgt während der Bestrahlung 40°C. Nachdem die Proben bestrahlt worden sind, werden sie mit Ethanol in einen dunklen 50 ml Mcßkolben gewaschen und mit dem Photometer vermessen. Die Blindproben werden ebenso auf Glasplättchen aufgetragen und 30 Minuten bei Raumtemperatur abgedampft. Wie die anderen Proben werden sie mit Ethanol abgewaschen und auf 100 ml verdünnt und vermessen.

Vergleichsversuche bez. Photostabilität:

15

Photostabilität: 98%

20

25

Photostabilität: 0%

30

35

40

2.

Photostabilität: 98%

Photostabilität: 27%

50

55

45

Allgemeine Vorschrift zur Herstellung von Emulsionen für kosmetische Zwecke

Alle öllöslichen Bestandteile werden in einem Rührkessel auf 85°C erwärmt. Wenn alle Bestandteile geschmolzen sind, bzw. als Flüssigphase vorliegen, wird die Wasserphase unter Homogenisieren eingearbeitet. Unter Rühren wird die Emulsion auf ca. 40°C abgekühlt, parfümiert, homogenisiert und dann unter ständigem Rühren auf 25°C abgekühlt.

Zubereitungen

Beispiel 5

60

Zusammensetzung für die Lippenpflege

Massengehalt (Gew.-%) ad 100 Eucerinum anhydricum 10,00 Glyccrin 10,00 Titanium Dioxid 5,00 Verbindung Nr. 1 der Tabelle 2

8,00 Octyl Methoxycinnamat 5,00 Zink Oxid 4,00 Castoröl 4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat 5 3,00 Glyceryl Stearat SE 2,00 Bienenwachs 2,00 Microkristallines Wachs 2,00 Quaternium-18 Bentonit 1,50 PEG-45/Dodecyl Glycol Copolymer 10 Beispiel 6 Zusammensetzung für die Lippenpflege 15 Massengehalt (Gew.-%) ad 100 Eucerinum anhydricum 10,00 Glycerin 10,00 Titanium Dioxid 5,00 Verbindung Nr. 20 der Tabelle 2 8,00 Octyl Methoxycinnamat 5,00 Zink Oxid 4,00 Castoröl 4,00 Pentaerythrithil Stearat/caprat/Caprylat Adipat 3,00 Glyceryl Stearat SE 25 2,00 Bienenwachs 2,00 Microkristallines Wachs 2,00 Quaternium-18 Bentonit 1,50 PEG-45/Dodecyl Glycol Copolymer Beispiel 7 30 Zusammensetzung für Sunblocker mit Mikropigmenten Massengehalt 35 (Gew.-%) ad 100 Wasser 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl 6,00 Titanium Dioxid 5,00 Verbindung Nr. 1 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat 5,00 Propylen Glycol 3,00 Jojoba Öl 3,00 4-Methylbenzyliden Campher 2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon 0,50 PEG-40-Hydrogenated Castor Öl 0,50 Tocopheryl Acetat 50 0,50 Phenoxyethanol 0,20 EDTA Beispiel 8 Zusammensetzung für Sunblocker mit Mikropigmenten 55 Massengehalt (Gew.-%) ad 100 Wasser 60 10,00 Octyl Methoxcinnamat 6,00 PEG-7-Hydrogenated Castor Öl 6,00 Titanium Dioxid 5,00 Verbindung Nr. 20 der Tabelle 2 5,00 Mineral Öl 5,00 Isoamyl p-Methoxycinnamat 5,00 Propylen Glycol 3,00 Jojoba Öl

3,00 4-Methylbenzyliden Campher

2,00 PEG-45/Dodecyl Glycol Copolymer 1,00 Dimethicon 0,50 PEG-40-Hydrogenated Castor Öl 0,50 Tocopheryl Acetat 0,50 Phenoxyethanol 0,20 EDTA	5
Beispiel 9	
Fettfreies Gel	10
Massengehalt (Gew%) ad 100 Wasser 8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid 5,00 Verbindung Nr. 1 der Tabelle 2 5,00 Glycerin	15
5,00 PEG-25 PABA 1,00 4-Methylbenzyliden Campher 0,40 Acrylate C10-C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben	20
0,20 Disodium EDTA 0,15 Fragrance 0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	25
Beispiel 10	30
Fettfreies Gel	
Massengehalt (Gew%) ad 100 Wasser 8,00 Octyl Methoxycinnamat 7,00 Titanium Dioxid	35
5,00 Verbindung Nr. 20 der Tabelle 2 5,00 Glycerin 5,00 PEG-25 PABA 1,00 4-Methylbenzyliden Campher	40
0,40 Acrylate C10–C30 Alkyl Acrylat Crosspolymer 0,30 Imidazolidinyl Urea 0,25 Hydroxyethyl Cellulose 0,25 Sodium Methylparaben 0,20 Disodium EDTA 0,15 Fragrance	45
0,15 Sodium Propylparaben 0,10 Sodium Hydroxid	. 50
Beispiel 11	
Sonnencreme (LSF 20)	
Massengehalt (Gew%) ad 100 Wasser	55
8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Verbindung Nr. 1 der Tabelle 2 6,00 Mineral Öl 5,00 Zink Oxid	60
5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urca 3,00 Jojoba Öl 2,00 PEG: 45 Dedecyl Glycol Copolymer	65

0,50 Tocopheryl Acetat 0,25 Methylparaben 0,20 Disodium EDTA 0,15 Propylparaben Beispiel 12 Sonnencreme (LSF 20) 10 Massengehalt (Gew.-%) ad 100 Wasser 15 8,00 Octyl Methoxycinnamat 8,00 Titanium Dioxid 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Verbindung Nr. 20 der Tabelle 2 6,00 Mineral Öl 20 5,00 Zink Oxid 5,00 Isopropyl Palmitat 5,00 Imidazolidinyl Urea 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer 25 1,00 4-Methylbenzyliden Campher 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,25 Methylparaben 0.20 Disodium EDTA 30 0,15 Propylparaben Beispiel 13 Sonnencreme wasserfest 35 Massengehalt (Gew.-%) ad 100 Wasser 8,00 Octyl Methoxycinnamat 40 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 5,00 Verbindung Nr. 1 der Tabelle 2 45 4,00 Glycerin 3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 50 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance Beispiel 14 55 Sonnencreme wasserfest Massengehalt 60 (Gew.-%) ad 100 Wasser 8,00 Octyl Methoxycinnamat 5,00 PEG-7-Hydrogenated Castor Öl 5,00 Propylene Glycol 65 4,00 Isopropyl Palmitat 4,00 Caprylic/Capric Triglycerid 5,00 Verbindung Nr. 20 der Tabelle 2 4,00 Glyccrin

1,00 4-Methylbenzyliden Campher

0,60 Magnesium Stearat

3,00 Jojoba Öl 2,00 4-Methylbenzyliden Campher 2,00 Titanium Dioxid 1,50 PEG-45/Dodecyl Glycol Copolymer 1,50 Dimethicon 0,70 Magnesium Sulfat 0,50 Magnesium Stearat 0,15 Fragrance	. 5
Ве	eispiel 15
Sonnen	milch (LSF 6)
Massengehalt (Gew%) ad 100 Wasser 10,00 Mineral Öl	15
6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat 3,50 Octyl Methoxycinnamat 5,00 Verbindung Nr. 1 der Tabelle 2 3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl	20
2,00 PEG-45/Dodecyl Glycol Copolymer 0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,30 Glycerin 0,25 Methylparaben	25
0,15 Propylparaben 0,05 Tocopherol	30
В	eispiel 16
Sonner	nmilch (LSF 6) 35
Massengehalt (Gew%) ad 100 Wasser 10,00 Mineral Öl 6,00 PEG-7-Hydrogenated Castor Öl 5,00 Isopropyl Palmitat	40
3,50 Octyl Methoxycinnamat 5,00 Verbindung Nr. 20 der Tabelle 2 3,00 Caprylic/Capric Triglycerid 3,00 Jojoba Öl 2,00 PEG-45/Dodecyl Glycol Copolymer	4:
0,70 Magnesium Sulfat 0,60 Magnesium Stearat 0,50 Tocopheryl Acetat 0,30 Glycerin 0,25 Methylparaben 0,15 Propylparaben	51
0,05 Tocopherol	entansprüche 5.
Verwendung von 4,4-Diarylbutadienen der For	
$(R^1)_n$ R^3	
H R4	-
$(R^2)_n$	

in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben:

 R^1 und R^2 Wasserstoff, C_1 - C_{20} -Alkyl, C_2 - C_{10} -Alkenyl, C_3 - C_{10} -Cycloalkyl, C_3 - C_{10} -Cycloalkenyl, C_1 - C_{12} -Alkoxy, C_1 - C_{20} -Alkoxycarbonyl, C_1 - C_{12} -Alkylamino, C_1 - C_{12} -Dialkylamino, Aryl, Heteroaryl, gegebenenfalls substituiert, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Am-

R³ Wasserstoff, COOR⁵, COR⁵, CONR⁵R⁶, CN, O=S(-R⁵)=O, O=S(-OR⁵)=O, R⁷O-P(-OR⁸)=O,

C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert;

 $R^4 COOR^6$, COR^6 , $CONR^5R^6$, CN, $O=S(-R^6)=O$, $O=S(-OR^6)=O$, $R^7O-P(-OR^8)=O$

C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkyl, C₇-C₁₀-Bicycloalkyl, C₇-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkyl, C₈-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkyl, C₈-C₁₀-Cycloalkyl, C₈-C₁₀

R⁵ bis R⁸ Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkenyl, C₇-C₁₀-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert;

n 1 bis 3;

5

10

15

25

30

35

40

45

50

55

60

65

wobei die Variablen R³ bis R⁸ untereinander, jeweils zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, gemeinsam einen 5- oder 6-Ring bilden können, der gegebenenfalls weiter anelliert sein kann,

als photostabile UV-Filter in kosmetischen und pharmazeutischen Zubereitungen zum Schutz der menschlichen
Haut oder menschlicher Haare gegen Sonnenstrahlen, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten, im UV-Bereich absorbierenden Verbindungen.

2. Verwendung von Verbindungen der Formel I gemäß Anspruch 1 als photostabile UV-A-Filter.

3. Verwendung von Verbindungen der Formel I gemäß den Ansprüchen 1 und 2 als UV-Stabilisator in kosmetischen und pharmazeutischen Formulierungen.

4. Verwendung von Verbindungen der Formel I gemäß den Ansprüchen 1 bis 3, wobei die Substituenten unabhängig voneinander folgende Bedeutung haben:

R^T und R² Wasserstoff, C₁-C₁₂-Alkyl, C₁-C₈-Alkoxy, C₁-C₁₂-Alkylamino, C₁-C₁₂-Dialkylamino, wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Ammoniumresten;

R³ Wasserstoff, COOR⁵, COR⁵, CONR⁵R⁶, CN,

C₁-C₁₂-Alkyl, C₃-C₆-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, Phenyl, Naphthyl, Thienyl, gegebenenfalls substituiert; R⁴ COOR⁶, COR⁶, CONR⁵R⁶, CN,

 $\begin{array}{l} C_1\text{--}C_{12}\text{--Alkyl},\ C_3\text{--}C_6\text{--}Cycloalkyl},\ C_7\text{--}C_{10}\text{--Bicycloalkyl},\ Phenyl,\ Naphthyl,\ Thienyl,\ gegebenenfalls\ substituiert;}\\ R^5\ \text{und}\ R^6\ Wasserstoff},\ C_1\text{--}C_{12}\text{--Alkyl},\ C_3\text{--}C_6\text{--Cycloalkyl},\ C_7\text{--}C_{10}\text{--Bicycloalkyl},\\ \end{array}$

Phenyl, Naphthyl, gegebenenfalls substituiert;

n 1 bis 3.

5. Lichtschutzmittel enthaltende kosmetische und pharmazeutische Zubereitungen zum Schutz der menschlichen Epidermis oder menschlichen Haare gegen UV-Licht im Bereich von 280 bis 400 nm, dadurch gekennzeichnet, daß sie in einem kosmetisch und pharmazeutisch geeigneten Träger, allein oder zusammen mit an sich für kosmetische und pharmazeutische Zubereitungen bekannten im UV-Bereich absorbierenden Verbindungen, als photostabile UV-Filter wirksame Mengen von Verbindungen der Formel I

enthalten, in der die Variablen die Bedeutung gemäß Anspruch 1 haben.

6. Lichtschutzmittel enthaltende kosmetische und pharmazeutische Zubereitungen gemäß Anspruch 5, enthaltend als UV-A-Filter Verbindungen der Formel I, in der die Variablen die Bedeutung gemäß Anspruch 4 haben.
7. 4.4-Diarylbutadiene der Formel Ia,

$$(R^1)_n$$
 H
 R^3
 R^4
Ia

in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der

die Variablen unabhängig voneinander folgende Bedeutung haben: $R^1 \ und \ R^2 \ Wasserstoff, C_1-C_{20}-Alkyl, \ C_2-C_{10}-Alkenyl, \ C_3-C_{10}-Cycloalkyl, \ C_3-C_{10}-Cycloalkenyl, \ C_1-C_{12}-Alkoxy, \ C_2-C_{10}-Alkoxy, \ C_3-C_{10}-Cycloalkyl, \ C_3-C_{10}-Cycloalkenyl, \ C_1-C_{12}-Alkoxy, \ C_2-C_{10}-Alkoxy, \ C_3-C_{10}-Cycloalkenyl, \ C$ $C_1 - C_{20} - Alkoxycarbonyl, C_1 - C_{12} - Alkylamino, C_1 - C_{12} - Dialkylamino, Aryl, Heteroaryl, gegebenenfalls substituient, and the substitution of the control wasserlöslich machende Substituenten, ausgewählt aus der Gruppe bestehend aus Carboxylat-, Sulfonat- oder Am-5 moniumresten; R3 COOR5, CONR5R6; R⁴ COOR⁶, CONR⁵R⁶; R⁵ und R⁶ Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloalkyl, C₃-Cycloalkyl, C₃-Cycloalkyl, C₃-Cycloalkyl, C₃-Cycloalkyl, Cycloalkyl, Cycloal kenyl, C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert; 10 wobei R³ und R⁴ nicht COOCH₃ sein dürfen, wenn R¹ und R² Wasserstoff bedeuten. 8. 4,4-Diarylbutadiene der Formel Ib, 15 Ib 20 in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der die Variablen unabhängig voneinander folgende Bedeutung haben: 25 R¹ und R² Wasserstoff, C₁-C₂₀-Alkyl, C₁-C₁₂-Alkoxy, C₁-C₂₀-Alkoxycarbonyl; R³ COOR⁵, CONR⁵R⁶; R⁴ COOR⁶, CONR⁵R⁶; R⁵ und R⁶ Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloalkyl, C₃-Cycloalkyl, C₃-Cycloalkyl, Cycloalkyl, Cycl kenyl, C_7 - C_{10} -Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert; 30 wobei R³ und R⁴ nicht COOCH₃ sein dürfen, wenn R¹ und R² Wasserstoff bedeuten. 9. 4,4-Diarylbutadiene der Formel Ic, 35 IC 40 in der das Diensystem in der Z,Z; Z,E; E,Z oder E,E Konfiguration oder einer Mischung davon vorliegt und in der 45 die Variablen unabhängig voneinander folgende Bedeutung haben: $R^1 \ und \ R^2 \ Wasserstoff, \ C_1 - C_{20} - \Lambda lkyl, \ C_1 - C_{12} - \Lambda lkoxy, \ C_1 - C_{20} - \Lambda lkoxy carbonyl;$ R³ COOR⁵, CONR⁵R⁶; R⁴ COOR⁶, CONR⁵R⁶; R⁵ und R⁶ Wasserstoff, C₁-C₂₀-Alkyl, C₂-C₁₀-Alkenyl, C₃-C₁₀-Cycloalkyl, C₇-C₁₀-Bicycloalkyl, C₃-C₁₀-Cycloal- 50 kenyl, C7-C10-Bicycloalkenyl, Aryl, Heteroaryl, gegebenenfalls substituiert; wobei R3 und R4 nicht COOCH3 sein dürfen, wenn R1 und R2 Wasserstoff bedeuten. 10. Verbindungen der Formel I zur Verwendung als Arzneimittel.

43

11. Pharmazeutische Zubereitung, dadurch gekennzeichnet, daß sie eine wirksame Menge mindestens einer der

Verbindung der Formel I nach Anspruch 1 enthält.

55

60

- Leerseite -