Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning

在RLVR背景下,如何做SEARCH-AND-REASONING?

Bowen Jin¹, Hansi Zeng², Zhenrui Yue¹, Jinsung Yoon³, Sercan Ö. Arık³, Dong Wang¹ Hamed Zamani², Jiawei Han¹

- ¹ Department of Computer Science, University of Illinois at Urbana-Champaign
- ² Center for Intelligent Information Retrieval, University of Massachusetts Amherst
- ³ Google Cloud AI Research

{bowenj4,zhenrui3,dwang24,hanj}@illinois.edu, {hzeng, zamani}@cs.umass.edu

简介 开源代码: HTTPS://GITHUB.COM/PETERGRIFFINJIN/SEARCH-R1

本文提出了Search-R1,用RLVR的方法,同时提升LLM的推理和使用搜索引擎的能力。我们需要关注 作者如何设计reward function,以及额外注意的一点是由于rollout中含有搜索引擎返回的检索内容, 在计算loss (包括kl项)时要mask这些token,它们并不参与LLM的参数优化。

背景

LLM与搜索引擎(search engine)结合可以扩展其内部知识,如何结合呢?一种方法是RAG,通过搜索引擎的检索结果来扩展prompt;另一种是把搜索引擎看作一种tool,让LLM学会使用search tool。

让LLM使用tool,最简单的方法是写prompt template,比如解释下search tool可以做什么,再举几个使用tool的prompt的例子,类似CoT。还可以对LLM做finetuning,训练它学会使用search tool,本文聚焦用RL做

tuning,既让LLM提升推理能力又学会使用search tool

实验设置

训练集: NQ 和 HOTPOTQA

- 框架: verl,实验对象: Qwen2.5-3B/7B (Base/Instruct),强化学习算法: PPO和GRPO
- 通过prompt约束LLM的response用标签分隔,<search>和</search> 触发search,检索内容用<information>和</information>标记,LLM 的推理内容则用<think>和</think>标记,最终答案用<answer>和</answer>标记,并且可以多次调用search tool
- ORM形式的RLVR reward function,看answer是否正确,不包含format reward:

$$r_{\phi}(x, y) = \text{EM}(a_{\text{pred}}, a_{\text{gold}})$$

训练流程

不要看图中的REWARD MODEL,其实是RULE BASED REWARD FUNCTION,典型的RLVR

Figure 1: Demonstration of PPO and GRPO training with the search engine (SEARCH-R1). During the rollout, LLMs can conduct multi-turn interactions with the search engine.

Algorithm 1 LLM Response Rollout with Multi-Turn Search Engine Calls

Require: Input query x, policy model π_{θ} , search engine \mathcal{R} , maximum action budget B. **Ensure:** Final response y. 1: Initialize rollout sequence $y \leftarrow \emptyset$ 2: Initialize action count $b \leftarrow 0$ 3: while b < B do Initialize current action LLM rollout sequence $y_b \leftarrow \emptyset$ while True do Generate response token $y_t \sim \pi_{\theta}(\cdot \mid x, y + y_b)$ 6: Append y_t to rollout sequence $y_b \leftarrow y_b + y_t$ 7: if y_t in [</search>, </answer>, <eos>] then break 8: 9: end if end while 10: 11: $y \leftarrow y + y_b$ if $\langle search \rangle \langle search \rangle$ detected in y_h then 12: Extract search query $q \leftarrow \text{Parse}(y_h, \langle \text{search} \rangle, \langle \text{search} \rangle)$ 13: Retrieve search results $d = \mathcal{R}(q)$ 14: Insert d into rollout $y \leftarrow y + \langle information \rangle d \langle /information \rangle$ 15: 16: else if $\langle answer \rangle \langle answer \rangle$ detected in y_b then return final generated response y 17: 18: else 19: Ask for rethink $y \leftarrow y +$ "My action is not correct. Let me rethink." 20: end if Increment action count $b \leftarrow b + 1$ 21: 22: end while 23: **return** final generated response *y*

思考

本文是3月份的工作,算是比较早用RLVR做提升LLM的推理和TOOL UUSING的工作,并且没有选择大众化的数学/编程领域,而是聚焦搜索引擎工具,重点是理解ROLLOUT过程,如果生成了<SEARCH>...
</search>,则生成中断,系统调用搜索引擎返回检索结果,用<INFORMATION>...
/INFORMATION> 是表现的。
表现到RESPONSE,然后LLM继续生成,直到序列长度达到最大阈值或者生成了<ANSWER>...

<p

部分实验结果

Methods	General QA			Multi-Hop QA				
,	NQ [†]	TriviaQA*	PopQA*	$HotpotQA^{\dagger}$	2wiki*	Musique*	Bamboogle*	Avg.
Qwen2.5-7b-Base/Instruct								
Direct Inference	0.134	0.408	0.140	0.183	0.250	0.031	0.120	0.181
CoT	0.048	0.185	0.054	0.092	0.111	0.022	0.232	0.106
IRCoT	0.224	0.478	0.301	0.133	0.149	0.072	0.224	0.239
Search-o1	0.151	0.443	0.131	0.187	0.176	0.058	0.296	0.206
RAG	0.349	0.585	0.392	0.299	0.235	0.058	0.208	0.304
SFT	0.318	0.354	0.121	0.217	0.259	0.066	0.112	0.207
R1-base	0.297	0.539	0.202	0.242	0.273	0.083	0.296	0.276
R1-instruct	0.270	0.537	0.199	0.237	0.292	0.072	0.293	0.271
Search-R1-base	0.480	0.638	0.457	0.433	0.382	0.196	0.432	0.431
Search-R1-instruct	0.393	0.610	0.397	0.370	0.414	0.146	0.368	0.385