$\begin{array}{c} {\rm Homework} \ 4 \\ {\rm Justify \ all \ your \ answers} \\ {\rm due \ on \ Fr} \ 10/18/24 \ at \ 11:30AM \ in \ A236WH \end{array}$

Exercise 1. Given a stationary source (S,P) with entropy H. Let n,q,r,s be integers with n=qr+s, $0 \le s < r$, $n \ge 1$ and $q \ge 1$. Show that

(a)
$$\frac{H(p^n)}{n} \le \frac{H(p^r)}{r} \left(1 - \frac{s}{n}\right) + \frac{H(p^s)}{n}$$

$$\lim_{n \to \infty} \frac{H(p^n)}{n} = H$$

(Hint: Given $\epsilon > 0$, show that there exists $r \in \mathbb{Z}^+$ such that $\frac{H(p^r)}{r} < H + \frac{\epsilon}{2}$. Let K be the maximum value of $H(p^s)$ for $0 \le s < r$ and choose a positive integer n_0 such that $\frac{K}{n_0} < \frac{\epsilon}{2}$.)

Exercise 2. Given a memoryless source (\mathbb{B}, P) with probability distribution p = (0.2, 0.8).

- (a) Compute the entropy $H_2(P)$ of the source to the base 2.
- (b) Use the Coding Theorem for Memoryless Sources 4.4.10 to find a positive integer n such that there exists a prefix-free binary code for \mathbb{B}^n with average word-length L such that $\frac{L}{n}$ is within 10% of $H_2(P)$.

Exercise 3. Compute 0_*z for z = 00100101 and for z = 10111001.

Exercise 4. Consider a source (S, P) such that $S = \{a, b\}$ and p^2 is given by

$$\begin{array}{c|cccc} p^2 & a & b \\ \hline a & 0.1 & 0.2 \\ b & 0.3 & 0.4 \\ \end{array}$$

Let c_2 be the arithmetic code on S^2 with respect to the ordering bb < ba < ab < aa and the probability distribution p^2 . Compute $c_2(ba)$.

For exercises 5 and 6 let S be an ordered alphabet and (S, P) a memoryless source. For $r \in \mathbb{N}$ view S^r as an ordered alphabet via the lexicographic order. So if $x, y \in S^r$ then x < y if there exists $1 \le k \le r$ with $x_i = y_i$ for $1 \le i < k$ and $x_k < y_k$.) Let c_r be the arithmetic code for S^r with respect to p^r .

Exercise 5. Let $y = y_1 \dots y_r \in S^r$ and $s \in S$. Prove that

$$\alpha(ys) = \alpha(y) + P(y)\alpha(s) = \alpha(y) + p(y_1)p(y_2)\cdots p(y_r)\alpha(s).$$

Exercise 6. Suppose S = (a, b, c, d) and p = (0.4, 0.3, 0.2, 0.1).

- (a) Compute the average codeword length L of c_2 with respect to p^2 and compare $\frac{L}{2}$ with $H_2(p)$.
- (b) Compute $c_2(ac)$ and $c_3(acd)$.

Exercise 7. Use the LZW-decoding rules for the ordered alphabet $S = (\sqcup, B, D, E, N, O, P, R, S, T)$ to decode

Exercise 8. Compute the LZW-encoding of MISSISSIPPI for ordered alphabet S = (I, M, P, S).