Inhaltsverzeichnis

1	Theorie		1
	1.1	Erzeugen von Röntgenstrahlung	1
	1.2	Charakteristische Röntgenstrahlung	2
	1.3	Bremsstrahlung	2
	1.4	Schalenmodell der Elektronenhülle eines Atoms	2
	1.5	Mosley'sches Gesetz	2
	1.6	effektive Kernladungszahl	2
	1.7	Aufbau von Kristallen	2
	1.8	Beugung von Röntgenstrahlen an einem Kristallgitter	2
	1.9	Bragg'sche Refelexionsbedingung	2
	1.10	Begriff der Netzebene	3
	1.11	Gitterkonstante und Netzebenenabstand eines Kristalls	3
	1.12	Analyse von Pulvergemischen	3
	1.13	Funktionsweise eines Monochromators	3
	1.14	Arten von Röntgendetektoren/Funktionsweise eines Detektors	3
	1.15	Detektor-Totzeiten	4
	1.16	Fluoreszenz	4
2	Auswertung		4
	2.1	Messung des Emissionsspektrums	4
		2.1.1 Messung des Emissionsspektrums	4
		2.1.2 Netzebenenabstände anderer Kristalle	4
	2.2	Pulverdeffraktometrie/Debye-Scherrer-Verfahren	5
1	\mathbf{T}	heorie	
1.	1 I	Erzeugen von Röntgenstrahlung	
• Röntgenröhren			

- $-\,$ Beschleunigen von Elektronen aus einem Glühdraht
- Bremsen an der Kathode, wodurch Röntgenstrahlung emittiert wird
- Synchrotornstrahlung
 - Undolator zum verlassen des Kreises
 - Monochromator
 - Focusierung
 - Spectrometer

1.2 Charakteristische Röntgenstrahlung

• Atom spezifische Röntgenstrahlung, die von den Schalen der Elektronen abhängen

1.3 Bremsstrahlung

• Die Strahlung entsteht durch abbremsen geladener Teilchen, siehe 1.1

$$E_{photo} = h \cdot f = E_{kin} = e \cdot U \tag{1}$$

1.4 Schalenmodell der Elektronenhülle eines Atoms

1.5 Mosley'sches Gesetz

• Beschreibt den Übergang eines Elektrons von der L
 in die K Schale, bzw. die Energie der K $_{\alpha}$ Übergänge

$$f = \frac{\lambda}{c} = f_R \cdot Z_{eff}^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \tag{2}$$

- f_R : angepasste Rydberg-Frequenz
- Z_{eff} : effektive Kernladung
- n_1, n_2 : Hauptquantenzahl der Zustände

1.6 effektive Kernladungszahl

$$Z_{eff} = Z - S \tag{3}$$

- Z: Kernladungszahl
- S: Abschirmungskonstante (heuristisch)

1.7 Aufbau von Kristallen

• bcc, fcc, sc

1.8 Beugung von Röntgenstrahlen an einem Kristallgitter

1.9 Bragg'sche Refelexionsbedingung

$$2 \cdot d \cdot \sin(\theta) = n \cdot \lambda \tag{4}$$

- d: Ebenenabstand
- θ : Einfallswinkel (nicht zu Lot)
- λ : Wellenlänge des Röntgenstrahls
- n: Interferenz Bedingung

1.10 Begriff der Netzebene

1.11 Gitterkonstante und Netzebenenabstand eines Kristalls

1.12 Analyse von Pulvergemischen

1.13 Funktionsweise eines Monochromators

Verwendung der Bragg-Reflexion eines Kristalls, wodurch man monochromatische Strahlung erhält

1.14 Arten von Röntgendetektoren/Funktionsweise eines Detektors

- Totzeit erklären
- Halbleiterdetektoren
 - Vorteile:
 - * hohe Energieauflösung
 - Nachteile:
 - * schwaches Signal
 - * kühlung notwendig
- Szintillator:
 - Vorteile:
 - * hohe Quantenausbeute
 - * kurze Totzeit
 - * gute Linearität
 - Nachteile:
 - * schlechte Energieauflösung
- Röntgenfilm

- Vorteile:
 - * großflächig
 - * hohe Ortsauflösung
 - * Langzeitspeicher
- Nachteile:
 - * hohe Strahlungsdosis
 - * nicht-lineare Schwärzung
 - * nicht energieempfindlich

1.15 Detektor-Totzeiten

• Wenn ein Teilchen detektiert wurde, kann für kurze Zeit kein weiteres Teichen detektiert werde, diesen Zeitraum nennt man Totzeit

1.16 Fluoreszenz

- Spontane Licht Emission kurz nach der Anregung des Materials
- Das emittierte Licht hat in der Regel eine geringere Energie als das zuvor emittierte
- Spin ist erhalten

2 Auswertung

2.1 Messung des Emissionsspektrums

2.1.1 Messung des Emissionsspektrums

- Untersuchung von Röntgenbeugung an einem Silizium(111)-Einkristall
- Aufnahme des Emissionsspektrums der Kupferanode mittels Bragg'schen Verfahren
 - Zählrate über Winkel auftragen (numpy dataten einlesen, matplotlib fürs plotten)
 - Lage aller $K_{\alpha_{1,2}}$ und K_{β} Linien von Cu und deren Intensitätsverhältnisse (für jede Ordung und alle anderen Ordnungen)
 - Signal-zu-Rausch Verhältnis für $K_{\alpha_{1,2}}$ und K_{β} Linien, SRV = $\frac{P_{Signal}}{P_{Rauschen}}$

2.1.2 Netzebenenabstände anderer Kristalle

- Bestimmen der Netzebenenabstände von Si(331) und Ge(111)
- Vergleich mit Literaturwerten

2.2 Pulverdeffraktometrie/Debye-Scherrer-Verfahren

- Analyse einer unbekannten Pulverprobe
- Daten aus dem Deffraktogramm mit Datenbank Abgleichen, zur Bestimmung der Pulverzusammensetzung
- Netzebenenabstände aus dem Deffraktogramm bestimmen
- Graphisch zeigen, das die Bestimmte Kristallstrucktur mit dem Diffraktogramm verträglich ist
- Ermitteln der mittleren Kristallgröße