V1 Simple Cells Modeling

Daniela Pamplona

Contents

- 1. V1 simple cells
- 2. Sparse overcomplete coding
 - 1. Steepest gradient descent
 - 2. Natural images sparse overcomplete code
- 3. Independent Component Analysis
 - Netwon method
 - 2. Natural images independent components

Contents

- 1. V1 simple cells
- 2. Sparse overcomplete coding
 - 1. Steepest gradient descent
 - 2. Natural images sparse overcomplete code
- 3. Independent Component Analysis
 - Netwon method
 - 2. Natural images independent components

Where is V1?

Simple cells and complex cells in V1

Simple Cells

- have distinct excitatory and inhibitory regions within RF
- linearity of spatial summation within both the excitatory and inhibitory regions

Complex cells

- have no clear division of excitatory and inhibitory regions inside their RFs
- a bar with width about one third of the RF width in the optimal orientation of the cell will evoke maximal response, independent of where it is placed

Simple cells and complex cells in V1

Gabor filters

sinusoidal wave multiplied by a Gaussian

V1 simple cells' receptive fields and sparseness

Their RF are similar to Gabors

• V1 simple cells fire sparsely

It therefore seems likely that, even in a strongly driven visual cortex, only a small fraction of neurons is working at any one time—between 1 in 25 and 1 in 63, with the latter the more probable value.

Contents

- 1. V1 simple cells
- 2. Sparse overcomplete coding
 - 1. Steepest gradient descent
 - 2. Natural images sparse overcomplete code
- 3. Independent Component Analysis
 - 1. Netwon method
 - 2. Natural images independent components

Fixed point algorithms

Class of iterative algorithms of shape $x_{t+1} = f(x_t)$ — update function that stop when $x_{t+1} = x_t$

Algorithm Fixed point algorithms

1: initialize x randomly 2: define tol 3: define maxIter 4: for t = 0 to t = maxIter do 5: $x_{t+1} = f(x_t)$ 6: **if** $||x_t - x_{t+1}||^2 < tol$ **then** print The algorithm converged return x_{t+1} end if t = t + 110: 11: end for 12: print The algorithm did not converge

Steepest gradient descent

Goal: find minimum of g

Assumption: g is convex

$$f(x_t) = x_t - \gamma \nabla g(x_t)$$

$$\int_{\text{gradient}}^{\text{gradient}}$$

$$\text{learning}$$

$$\text{rate}$$

How does it work: if $f(x_t) = x_t$ then $\nabla g(x_t) = 0 \Rightarrow x_t$ is a minimum of g.

Why efficient codes?

Example: Visual System

Information Source: Environment

<u>Transmitter</u>: Eye

Channel: Early visual system

Noise: Unknown

Receiver: Higher areas (MT,TE,MIP,...)

<u>Destination:</u> Other brain areas (PMC,..)

Why sparse codes?

- Sparse codes are efficient, images are encoded representations that are most of the cases silent
- Firing is expensive, if each neuron fires/encodes sparsely images, then energy is saved

Sparseness weight
$$E = \sum_{t} \left\{ x - \sum_{i} \alpha_{i}(x)W \right\}^{2} + \lambda \sum_{i} S\left(\alpha_{i}(x)\right)$$
 Sparseness measure

Sparse measurements

- $S(a_i) = (\prod (1+a_i^2))^{-1}$ (a~Cauchy distribution)
- $S(a_i) = -e^{-ai}$ (a~Exponential distribution)
- $S(a_i) = |a_i|$ (norm-1 of a)
- $S(a_i) = E[(a_i E[a_i])^4 / V[a_i]^2]$ (Kurtosis of a)

Sparse overcomplete learning Gradient descent in 2 variables: a_i and W

Algorithm Pre-process

```
1: for all x_i \in X do
```

- 2: **if** $\dim(x_i) > 1$ **then**
- 3: vectorize x_i
- 4: end if
- 5: end for
- 6: for all $x_i \in X$ do
- 7: $x_i = x_i \mathbb{E}[x_i]$
- 8: end for
- 9: whiten X
- 10: return X

Algorithm Sparse Overcomplete Coding

- 1: get X
- 2: pre-process X
- 3: define S, tol, maxIter
- 4: initialize W_0 , α randomly
- 5: for t = 0 to i = maxIter do
- 6: $\alpha = \operatorname{argmin}_{\alpha} E$ (using gradient descent keeping W constant)
- 7: $W_{t+1} = \operatorname{argmin}_W \mathbb{E}[E]$ (using gradient descent keeping α constant)
- 8: **if** $||W_t W_{t+1}|| < \text{tol then}$
- 9: **print** The algorithm converged
- 10: return W_{t+1}
- 11: end if
- 12: t = t + 1
- 13: end for
- 14: print The algorithm did not converge

$$E = \sum_{t} \left\{ x - \sum_{i} \alpha_{i}(x)W \right\}^{2} + \lambda \sum_{i} S(\alpha_{i}(x))$$

Sparse overcomplete code of natural images

Database

Sparse overcomplete code of natural images

Database

Samuel images

Sparse overcomplete code of natural images

The receptive fields of V1 simple cells have such shape that they represent efficiently the natural images!

Contents

- 1. V1 simple cells
- 2. Sparse overcomplete coding
 - 1. Steepest gradient descent
 - 2. Natural images sparse overcomplete code
- 3. Independent Component Analysis
 - Netwon method
 - 2. Natural images independent components

Newton method

Goal: find zero of g

Assumption: g' is non zero

$$f(x_t) = x_t - \frac{g(x_t)}{\nabla g(x_t)}$$
gradient

How does it work: if $f(x_t) = x_t$ then $g(x_t) = 0 \Rightarrow x_t$ is a zero of g.

Fixed point algorithms

steepest gradient descent

- linear convergence
- g must be convex
- more robust to errors

Newton method

- possible quadratic convergence
- more calculations
- g' must be non-zero
- sensitive to errors

What is he saying?

sources

23

What is he saying?

sources

Goal: to find W such y = Wx = s

sources

Non-Gaussianity is independence

Goal: to find W such y = Wx = WAs = s

•y = WAs: y is a linear combination of s_i (independent variables)

Non-Gaussianity is independence

Goal: to find W such y = Wx = WAs = s

- •y = WAs: y is a linear combination of s_i (independent variables)
- •Central Limit Theorem:

$$\sum_{i=0}^{\infty} s_i \to \mathcal{N}(\mu, \sigma)$$

Non-Gaussianity is independence

Goal: to find W such y = Wx = WAs = s

- •y = WAs: y is a linear combination of s_i (independent variables)
- •Central Limit Theorem:

$$\sum_{i=0}^{\infty} s_i \to \mathcal{N}(\mu, \sigma)$$

- •y is the least Gaussian iff y = s
- •New Goal: to find W such y = Wx is non Gaussian

How to measure the non-Gaussianity?

Kurtosis

• Neg entropy $J(\mathbf{y}) = H(\mathbf{y}_{gauss}) - H(\mathbf{y})$

Gaussian with the same variance as y

Approximations of neg entropy

Fast ICA algorithm

Algorithm Pre-process

- 1: for all $x_i \in X$ do
- 2: **if** $\dim(x_i) > 1$ **then**
- 3: vectorize x_i
- 4: end if
- 5: end for
- 6: for all $x_i \in X$ do
- $7: \quad x_i = x_i \mathbb{E}[x_i]$
- 8: end for
- 9: whiten X
- 10: return X

Algorithm FAST ICA

- 1: get X
- 2: pre-process X
- 3: define G
- 4: initialize W randomly
- 5: $W = \operatorname{argmax}_W J(WX)$ (using Newton method)
- 6: return W

ICA natural images

Database

ICA natural images

Database

Samuel images

Independent Components

V1 RFs

The receptive fields of V1 simple cells have such shape that they extract the independent sources of natural images!

V1-like methods

Sparse overcomplete coding

- Less simple to model
- Sparseness is specifically modeled
- Simple to implement
- No guaranty of convergence
- Encoders not on real time
- Decoders similar to RFs of V1 simple cells

Independent Components Analysis

- Simple to model
- Sparseness emerges as consequence
- Simple to implement
- Mixing on real time
- Components similar to RFs of V1 simple cells

Summary

1. V1 simple cells receptive fields

2. Sparse overcomplete code of natural images

3. ICA of natural images

Bibliography

- Lennie, 2003, The Cost of Cortical Computation
- Lehkya et al, 2005, Selectivity and sparseness in the responses of striate complex cells
- Olshausen and Field, 1997, Sparse and overcomplete code: a strategy employed by V1?
- McDermott, 2009, The cocktail party problem
- Hyvärinen and Oja, 2000, Independent component analysis algorithms and applications
- Hyvärinen and Oja, 1997, A fast fixed-point algorithm for independent component analysis

Bibliography

- Hyvarinen et al, 2009, Natural Image Statistics
- Islam, 2013, A Comparative Study between ICA and PCA https://pt.slideshare.net/SahidulIslam/a-comparative-study-between-ica-independent-component-analysis-and-pca-principal-component-analysis/8
- Bell and Sejnowski, 1997, The 'independent components' of natural scenes are edge filters