Week 1: Introduction to Machine Learning

- Day 1-2: Overview of Machine Learning
 - Definition, Types of Machine Learning (Supervised, Unsupervised, Reinforcement Learning)
 - Real-world Applications
- Day 3-4: Mathematical Foundations
 - Basic Linear Algebra (Vectors, Matrices)
 - Basic Calculus (Derivatives)
- Day 5: Probability and Statistics
 - o Basic Probability, Bayes' Theorem
 - Introduction to Distributions

Week 2: Data Preprocessing

- Day 1-2: Data Cleaning
 - Handling Missing Values
 - o Data Transformation (Normalization, Standardization)
- Day 3-4: Exploratory Data Analysis (EDA)
 - Descriptive Statistics
 - Data Visualization (Histograms, Scatter Plots)
- Day 5: Practical Session on Data Preprocessing using Python (pandas, NumPy)

Week 3: Supervised Learning - Regression

- Day 1-2: Linear Regression
 - Simple Linear Regression
 - Multiple Linear Regression
- Day 3-4: Logistic Regression
 - Binary Classification
 - Multiclass Classification
- Day 5: Practical Session on Regression using scikit-learn

Week 4: Supervised Learning - Classification

- Day 1-2: K-Nearest Neighbors (KNN)
 - Introduction, Distance Metrics
 - o Implementing KNN in Python

- Day 3-4: Decision Trees
 - Concept, Gini Index, Entropy
 - Pruning Techniques
- Day 5: Practical Session on Classification using scikit-learn

Week 5: Supervised Learning - Advanced Models

- Day 1-2: Support Vector Machines (SVM)
 - Hyperplanes, Kernel Trick
- Day 3-4: Ensemble Methods
 - Bagging, Boosting
 - o Random Forests
- Day 5: Practical Session on SVM and Ensemble Methods using scikit-learn

Week 6: Model Evaluation and Selection

- Day 1-2: Evaluation Metrics
 - o Accuracy, Precision, Recall, F1 Score
 - o ROC Curve, AUC
- Day 3-4: Model Selection
 - Cross-Validation
 - o Grid Search, Random Search
- Day 5: Practical Session on Model Evaluation and Selection

Week 7: Unsupervised Learning - Clustering

- Day 1-2: K-Means Clustering
 - o Algorithm, Choosing K
 - Implementing K-Means in Python
- Day 3-4: Hierarchical Clustering
 - Agglomerative, Divisive Clustering
- Day 5: Practical Session on Clustering

Week 8: Unsupervised Learning - Dimensionality Reduction

- Day 1-2: Principal Component Analysis (PCA)
 - o Concepts, Eigenvalues, Eigenvectors
- **Day 3-4:** t-SNE

- Concepts, Applications
- Day 5: Practical Session on Dimensionality Reduction

Week 9: Neural Networks

- Day 1-2: Introduction to Neural Networks
 - Perceptrons, Activation Functions
- Day 3-4: Backpropagation and Gradient Descent
 - o Concepts, Implementation
- Day 5: Practical Session on Neural Networks using TensorFlow/Keras

Week 10: Deep Learning

- Day 1-2: Convolutional Neural Networks (CNNs)
 - Concepts, Applications
- Day 3-4: Recurrent Neural Networks (RNNs) and LSTMs
 - Concepts, Applications
- Day 5: Practical Session on CNNs and RNNs using TensorFlow/Keras

Week 11: Natural Language Processing (NLP)

- Day 1-2: Text Preprocessing
 - Tokenization, Lemmatization, Stemming
- Day 3-4: Text Classification
 - Sentiment Analysis
 - Word Embeddings (Word2Vec, GloVe)
- Day 5: Practical Session on NLP using NLTK and spaCy

Week 12: Time Series Analysis

- Day 1-2: Introduction to Time Series Analysis
 - Time Series Decomposition
- Day 3-4: ARIMA Models
 - Concepts, Implementation
- Day 5: Practical Session on Time Series Analysis

Week 13: Advanced Topics in Machine Learning

• Day 1-2: Reinforcement Learning

- Markov Decision Processes (MDP)
- Q-Learning
- Day 3-4: Deep Q-Networks (DQN)
 - Concepts, Applications
- Day 5: Practical Session on Reinforcement Learning

Week 14: Ethics in Al and Machine Learning

- Day 1-2: Bias and Fairness
 - o Types of Bias, Mitigation Techniques
- Day 3-4: Interpretability and Explainability
 - o SHAP, LIME
- Day 5: Case Studies and Discussion

Week 15: Capstone Project Week 1

- All Days: Start Capstone Project
 - Problem Selection, Data Collection, and Preprocessing

Week 16: Capstone Project Week 2

- All Days: Continue and Complete Capstone Project
 - o Model Building, Evaluation, and Presentation