

## Actividad aplicativa 1. Programa de actividades con un trabajo práctico.

Jesús María Mora Mur.

Curso 2024-2025.

Universidad Internacional de Valencia.

Aprendizaje y Enseñanza de la física y química.

Máster del profesorado de Secundaria, Bachillerato y FP.

### Índice

| 1. | Creación del programa de actividades con el trabajo práctico       | 2 |
|----|--------------------------------------------------------------------|---|
|    | 1.1. Objetivos                                                     | 2 |
|    | 1.2. Competencias específicas y criterios de evaluación trabajados | 2 |
|    | 1.3. Saberes básicos                                               | 4 |
|    | 1.4. Vinculación con las competencias clave y el perfil de salida  | 6 |
|    | 1.5. Actividades                                                   | 6 |
|    | 1.5.1. Actividades iniciales                                       | 6 |
|    | 1.5.2. Actividades de desarrollo                                   | 6 |
|    | 1.5.3. Actividades de conclusión                                   | 6 |
|    | 1.6. Perspectivas                                                  | 6 |

# 1. Creación del programa de actividades con el trabajo práctico.

Se creará un programa de actividades en base a un trabajo práctico para trabajar los conocimientos de física en el cuarto curso de Educación Secundaria Obligatoria. Específicamente, se trabajará la cinemática y la dinámica desde un enfoque experimental mediante trabajos prácticos en el laboratorio, entre otras técnicas didácticas.

#### 1.1. Objetivos.

- Experimentar con la cinemática y la dinámica sobre un sistema.
- Deducir la dependencia de las diferentes magnitudes en la mecánica del sistema.
- Estudiar la aceleración, comprendiendo la relación que existe con la fuerza sufrida por el sistema.
- Comprender el movimiento en dos dimensiones.

#### 1.2. Competencias específicas y criterios de evaluación trabajados.

#### Competencia Específica 1

Comprender y relacionar los motivos por los que ocurren los principales fenómenos fisicoquímicos del entorno, explicándolos en términos de las leyes y teorías científicas adecuadas, para resolver problemas con el fin de aplicarlas para mejorar la realidad cercana y la calidad de vida humana.

- 1.1. Comprender y explicar con rigor los fenómenos fisicoquímicos cotidianos a partir de los principios, teorías y leyes científicas adecuadas, expresándolos de manera argumentada, utilizando diversidad de soportes y medios de comunicación.
- 1.2. Resolver problemas fisicoquímicos planteados mediante las leyes y teorías científicas adecuadas, razonando los procedimientos utilizados para encontrar las soluciones y expresando los resultados con corrección y precisión.
- 1.3. Reconocer y describir situaciones problemáticas reales de índole científica y emprender iniciativas colaborativas en las que la ciencia, y en particular la física y la química, pueden contribuir a su solución, analizando críticamente su impacto en la sociedad y el medio ambiente.

#### Competencia Específica 2

Expresar las observaciones realizadas por el alumnado en forma de preguntas, formular hipótesis para explicarlas y demostrar dichas hipótesis a través de la experimentación científica, la indagación y la búsqueda de evidencias, para desarrollar los

razonamientos propios del pensamiento científico y mejorar las destrezas en el uso de las metodologías científicas.

- 2.1. Emplear las metodologías propias de la ciencia en la identificación y descripción de fenómenos científicos a partir de situaciones tanto observadas en el mundo natural como planteadas a través de enunciados con información textual, gráfica o numérica.
- 2.2. Predecir, para las cuestiones planteadas, respuestas que se puedan comprobar con las herramientas y conocimientos adquiridos, tanto de forma experimental como deductiva, aplicando el razonamiento lógico-matemático en su proceso de validación.
- 2.3. Aplicar las leyes y teorías científicas más importantes para validar hipótesis de manera informada y coherente con el conocimiento científico existente, diseñando los procedimientos experimentales o deductivos necesarios para resolverlas y analizar los resultados críticamente.

#### Competencia Específica 3

Manejar con soltura las reglas y normas básicas de la física y la química en lo referente al lenguaje de la IUPAC, al lenguaje matemático, al empleo de unidades de medida correctas, al uso seguro del laboratorio y a la interpretación y producción de datos e información en diferentes formatos y fuentes (textos, enunciados, tablas, gráficas, informes, manuales, diagramas, fórmulas, esquemas, modelos, símbolos, etc.), para reconocer el carácter universal y transversal del lenguaje científico y la necesidad de una comunicación fiable en investigación y ciencia entre diferentes países y culturas.

- 3.1. Emplear fuentes variadas, fiables y seguras para seleccionar, interpretar, organizar y comunicar información relativa a un proceso fisicoquímico concreto, relacionando entre sí lo que cada una de ellas contiene, extrayendo en cada caso lo más relevante para la resolución de un problema y desechando todo lo que sea irrelevante.
- 3.2. Utilizar adecuadamente las reglas básicas de la física y la química, incluyendo el uso correcto de varios sistemas de unidades, las herramientas matemáticas necesarias y las reglas de nomenclatura avanzadas, consiguiendo una comunicación efectiva con toda la comunidad científica.
- 3.3. Aplicar con rigor las normas de uso de los espacios específicos de la ciencia, como el laboratorio de Física y Química, asegurando la salud propia y colectiva, la conservación sostenible del medio ambiente y el cuidado por las instalaciones.

#### Competencia Específica 4

Utilizar de forma crítica, eficiente y segura plataformas digitales y recursos variados, tanto para el trabajo individual como en equipo, para fomentar la creatividad, el desarrollo personal y el aprendizaje individual y social, mediante la consulta de información,

la creación de materiales y la comunicación efectiva en los diferentes entornos de aprendizaje.

- 4.1. Utilizar de forma eficiente recursos variados, tradicionales y digitales, mejorando el aprendizaje autónomo y la interacción con otros miembros de la comunidad educativa, de forma rigurosa y respetuosa y analizando críticamente las aportaciones de todos.
- 4.2. Trabajar de forma versátil con medios variados, tradicionales y digitales, en la consulta de información y la creación de contenidos, seleccionando y empleando con criterio las fuentes y herramientas más fiables, desechando las menos adecuadas y mejorando el aprendizaje propio y colectivo.

#### Competencia Específica 5

Utilizar las estrategias propias del trabajo colaborativo que permitan potenciar el crecimiento entre iguales como base emprendedora de una comunidad científica crítica, ética y eficiente, para comprender la importancia de la ciencia en la mejora de la sociedad, las aplicaciones y repercusiones de los avances científicos, la preservación de la salud y la conservación sostenible del medio ambiente.

- 5.1. Establecer interacciones constructivas y coeducativas, emprendiendo actividades de cooperación e iniciando el uso de las estrategias propias del trabajo colaborativo, como forma de construir un medio de trabajo eficiente en la ciencia.
- 5.2. Emprender, de forma autónoma y de acuerdo a la metodología adecuada, proyectos científicos que involucren al alumnado en la mejora de la sociedad y que creen valor para el individuo y para la comunidad.

#### 1.3. Saberes básicos.

A. Las destrezas científicas básicas.

- i. Trabajo experimental y proyectos de investigación: estrategias en la resolución de problemas y el tratamiento del error mediante la indagación, la deducción, la búsqueda de evidencias y el razonamiento lógico-matemático, haciendo inferencias válidas de las observaciones y obteniendo conclusiones que vayan más allá de las condiciones experimentales para aplicarlas a nuevos escenarios.
- ii. Diversos entornos y recursos de aprendizaje científico como el laboratorio o los entornos virtuales: materiales, sustancias y herramientas tecnológicas.
- iii. Normas de uso de cada espacio, asegurando y protegiendo así la saludo propia y comunitaria, la seguridad en redes y el respeto hacia el medio ambiente.

- iv. El lenguaje científico: manejo adecuado de distintos sistemas de unidades y sus símbolos. Herramientas matemáticas adecuadas en diferentes escenarios científicos y de aprendizaje.
- v. Estrategias de interpretación y producción de información científica en diferentes formatos y a partir de diferentes medios: desarrollo del criterio propio basado en lo que el pensamiento científico aporta a la mejora de la sociedad para hacerla más justa, equitativa e igualitaria.
- vi. Valoración de la cultura científica y del papel de científicos y científicas en los principales hitos históricos y actuales de la física y la química para el avance y la mejora de la sociedad.

#### C. La interacción.

- i. Predicción y comprobación, utilizando la experimentación y el razonamiento matemático, de las principales magnitudes, ecuaciones y gráficas que describen el movimiento de un cuerpo, relacionándolo con situaciones cotidianas y con la mejora de la calidad de vida.
- ii. La fuerza como agente de cambios en los cuerpos: principio fundamental de la Física que se aplica a otros campos como el diseño, el deporte o la ingeniería.
- iii. Carácter vectorial de las fuerzas: uso del álgebra vectorial básica para la realización gráfica y numérica de operaciones con fuerzas y su aplicación a la resolución de problemas relacionados con sistemas sometidos a conjuntos de fuerzas, valorando su importancia en situaciones cotidianas.
- iv. Principales fuerzas del entorno cotidiano: reconocimiento del peso, la normal, el rozamiento, la tensión o el empuje, y su uso en la explicación de fenómenos físicos en distintos escenarios.
- v. Ley de la gravitación universal: atracción entre los cuerpos que componen el universo. Concepto de peso.
- vi. Fuerzas y presión en los fluidos: efectos de las fuerzas y la presión sobre los líquidos y los gases, estudiando los principios fundamentales que las describen.

- 1.4. Vinculación con las competencias clave y el perfil de salida.
- 1.5. Actividades
- 1.5.1. Actividades iniciales.
- 1.5.2. Actividades de desarrollo.
- 1.5.3. Actividades de conclusión.
- 1.6. Perspectivas.