Formale Semantik o6. Quantifikation und Modelltheorie

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

Folien in Überarbeitung. Englische Teile (ab Woche 7) sind noch von 2007!

Stets aktuelle Fassungen: https://github.com/rsling/VL-Semantik

Inhalt

Zur Erinnerung

Semantik von Fragment F1

- Namen referieren auf spezifische Individuen
- intransitive Verben referieren auf Mengen von Individuen
- mehrstellige Verben referieren auf Mengen von Tupeln von Individuen
- Sätze referieren auf Wahrheitswerte!
- F2 | Integration von Erkenntnissen aus Prädikatenlogik

Alles Wesentliche dieser Sitzung in Chierchia & McConnell-Ginet (2000: Kapitel 3)

Das Problem mit Pronomina

Wie situationsabhängige Namen

This is red.

- Pronomen this | syntaktisch eine NP
- ... und referiert auf ein spezifisches Objekt (wie Namen) keine Quantifikation bzw. Mengenreferenz
- Aber nur in gegebener Situation interpretierbar Deixis, im Text auch Anaphorik
- Kein Äquivalent in klassischer Logik

Pronomina und Variablen

Ähnlichkeit von Variablen und Pronominalausdrücken

- Rumpf einer quantifizierten Wff | Wff P(x) aus Wff $(\forall x)Px$
- Ungebundenes x in P(x) ähnlich wie Pronominalbedeutung Externe Interpretationsvorschrift erforderlich
- Quantoren | Auswertungsalgorithmus Für alle möglichen belegungen von x, P(x)
- Pronomina | Kontextuelle Auswertung
 Belegung für x im gegebenen Kontext

Prädikatenlogik | Syntax

Als Vorüberlegung | Prädikatenlogik als Phrasenstrukturgrammatik

```
a \rightarrow const. var \mid Individuenausdrücke
conn \rightarrow \land, \lor, \rightarrow, \leftrightarrow \mid Funktoren
neg \rightarrow \neg | Negation
Q \rightarrow \exists, \forall \mid \text{nur zwei Quantoren}
pred^1 \rightarrow P, Q | einstellige Prädikate
pred^2 \rightarrow R | zweistellige Prädikate
pred^3 \rightarrow S | dreistellige Prädikate
const \rightarrow b, c \mid nur zwei Individenkonstanten
var \rightarrow x_1, x_2, \cdots x_n | beliebig viele Variablen
```

• Die Formalisierung ist äquivalent zur mengenbasierten von letzter Woche!

Prädikatenlogik | PS-Regeln

Wir nehmen eine Prädikatsnotation ohne Klammern | Px statt P(x) usw.

- $\textit{wff} \rightarrow \textit{pred}^1 \ a_1 \ldots \ a_n \mid \text{n-stellige Prädikate und ihre Argumente}$
- wff → neg wff | Applikation von Negation auf Wffs
- wff → wff conn wff | Applikation von anderen Funktoren auf Wffs
- wff → Q var wff | Quantifikation

Eine Wff ohne Quantoren

Zum Beispiel: Ben (b) paddelt (P) und (\land) Ben rudert (R) nicht (\neg) mit Chris (c). In PL: $Pb \land \neg Rbc$

Eine Wff mit Quantoren

Zum Beispiel: Als Paddler hat man immer jemanden, mit dem man nicht rudert.

In PL: $\forall x_1[Px_1 \rightarrow \exists x_2 \neg Px_1x_2]$

Skopus und c-Kommando

Skopus in konfigurationaler Logik-Syntax: c-Kommando Variablen als gebunden vom nächsten c-kommandierenden koindizierten Quantor

Skopus/c-Kommando-Domäne von $\exists x_2 \mid$ Skopus/c-Kommando-Domäne von $\forall x_1 \text{ (zgl. derer von } \exists x_2 \text{)}$

Semantik für PL in Vorbereitung auf natürliche Sprache

Ziel (zur Erinnerung) | T-Sätze der Form S aus L ist wahr in v gdw ...

- Modell $\mathcal M$ | zugängliches Diskursuniversum (bzw. dessen Beschreibung)
- Menge D_n | Zugängliche Individuen (domain) in \mathcal{M}_n
- Funktion V_n | Valuation Zuweisung von
 - Namen zu Individuen in \mathcal{M}_n
 - ▶ Predikaten zu Tupeln von Individuen
- $\mathcal{M}_n = \langle D_n, V_n \rangle$
- Funktion g_n | Zuweisung von Variablen zu Individuen in \mathcal{M}_n
- Allgemeine Evaluation in $\mathcal{M}_n \mid [\![\alpha]\!]^{\mathcal{M}_n,g_n}$ Lies: Die Extension von Ausdruck α relativ zu \mathcal{M}_n und g_n

Unterschied zwischen V_n und g_n

Feste und variable Denotation

- V_n evaluiert statisch im Modell.
 Wenn das Modell einmal feststeht, evaluiert V_n jede Konstante stets gleich.
- Variablen (gebunden durch Quantoren) werden volatil interpretiert.
- Iteration durch Universum D_n durch g_n
- Eine Modifikation der Belegung pro Iteration
 - Modifizierte assignment function $g_n[d_i/x_m]$ Lies: relativ zu g_n , wobei die Referenz von Variable x_m auf Individuum d_i gesetzt wird

Evaluation von Variablen

 $D_1 = \{ \text{Herr Webelhuth, Frau Klenk, Turm} - \text{Mensa} \} \mid \text{Individuen in } \mathcal{M}_1$ $V_1(P) = \{ \text{Herr Webelhuth, Frau Klenk, Turm} - \text{Mensa} \} \mid \text{Prädikat } P \text{ (z. B. ist ein physikalisches Objekt) in } \mathcal{M}_1$ $\text{Evaluiere } [\forall x_1 Px_1]^{\mathcal{M}_1, g_1} = 1 \text{ weil keiner Belegung } [Px_1]^{\mathcal{M}_1, g_1} = 0$

- Initiale Belegung $[x_1]^{\mathcal{M}_1,g_1} = \text{Herr Webelhuth}$ $g_1 = \begin{bmatrix} x_1 \to \text{Herr Webelhuth} \\ x_2 \to \text{Herr Webelhuth} \\ x_3 \to \text{Herr Webelhuth} \end{bmatrix}$ $[Px_1]^{\mathcal{M}_1,g_1} = 1$
- $$\begin{split} \bullet & & \begin{bmatrix} x_1 \end{bmatrix}^{\mathcal{M}_1,g_1[\textit{Klenk}/x_1]} = \textit{Frau Klenk} \\ & g_1 = \begin{bmatrix} x_1 \to \textit{Frau Klenk} \\ x_2 \to \textit{Herr Webelhuth} \\ x_3 \to \textit{Herr Webelhuth} \end{bmatrix} \\ & & & \\$$

Evaluation mit zwei Variablen

```
D_1 = \{Herr Webelhuth, Frau Klenk, Turm - Mensa\} \mid Individuen in <math>\mathcal{M}_1
V_1(Q) = \{ \langle Webelhuth, Klenk \rangle, \langle Webelhuth, Mensa \rangle, \langle Klenk, Webelhuth \rangle \} \mid Prädikat Q (z. B. x besucht y) in <math>\mathcal{M}_1
Evaluiere [\forall x_1 \exists x_2 Qx_1x_2]^{\mathcal{M}_1,g_1} = 0 weil nicht für jede Belegung von x_1 mindestens einmal 1
```

- Initiale Belegung $[x_1]^{\mathcal{M}_1,g_1} = Frau Klenk$

 - $\qquad \qquad \mathbb{Q} \mathbf{X}_1 \mathbf{X}_2 \mathbb{I}^{\mathcal{M}_1, g_1[\mathit{Klenk}/\mathbf{X}_2]} = \mathbf{0}$
- $[x_1]^{\mathcal{M}_1,g_1[\mathsf{Turm}-\mathsf{Mensa}/x_1]} = \mathsf{Turm}-\mathsf{Mensa}$

 - Abbruch!
- $[x_1]^{\mathcal{M}_1,g_1[Webelhuth/x_1]}$ = Herr Webelhuth

 $\begin{array}{l} & \quad \| \mathsf{Q} \mathsf{x}_1 \mathsf{x}_2 \|^{\mathcal{N}_1, g_1[\mathsf{Turm}-\mathsf{Mensa}/\mathsf{x}_1]} = 0 \\ & \quad \| [\mathsf{Q} \mathsf{x}_1 \mathsf{x}_2 \|^{\mathcal{M}_1, g_1[\mathsf{Turm}-\mathsf{Mensa}/\mathsf{x}_1, \mathsf{Klenk}/\mathsf{x}_2]} = 0 \\ & \quad \| [\mathsf{Q} \mathsf{x}_1 \mathsf{x}_2 \|^{\mathcal{M}_1, g_1[\mathsf{Turm}-\mathsf{Mensa}/\mathsf{x}_1, \mathsf{Webelhuth}/\mathsf{x}_2]} = 0 \\ & \quad \mathsf{Abbruch!} \end{array} \quad \begin{array}{l} \mathsf{X}_1 \to \mathsf{Frau} \; \mathsf{KlenkTurm} - \mathsf{MensaHerr} \; \mathsf{Webelhuth} \\ \mathsf{X}_2 \to \mathsf{Turm} - \mathsf{MensaFrau} \; \mathsf{KlenkHerr} \; \mathsf{Webelhuth} \\ \mathsf{X}_3 \to \mathsf{Herr} \; \mathsf{Webelhuth} \\ \mathsf{X}_3 \to \mathsf{Herr} \; \mathsf{Webelhuth} \end{array}$