누락된 모달리티에 강건한 멀티모달 분류를 위한 Prompt Learning 기반 모델 학습

김준섭(성균관대학교) | 박은주(이화여자대학교) | 양희재(성균관대학교)

ABSTRACT

Multimodal classification systems often suffer from severe performance drops when one or more input modalities are missing or corrupted. To address this issue, we propose a lightweight and robust framework based on prompt learning. Our method introduces learnable prompt tokens at both the input and attention levels, enabling the model to capture reliable cross-modal representations even in challenging conditions.

By simulating various degradation scenarios during training, the model gains resilience to missing or noisy inputs. Experiments on the UrbanSound8K-AV and CIFAR10-AV datasets demonstrate that our approach outperforms existing methods—such as CAV-MAE, LoRA, and Adapter—achieving up to 10.4% higher accuracy, while reducing training time by 96% and memory usage by 82.3%. These results highlight the practicality and efficiency of prompt learning for robust multimodal classification in real-world settings.

Visual

Prompts

Attention-level Prompt

METHOD

본연구는 결손된 모달리티 환경에서도 강건한 멀티모달 분류를 위해 Prompt Learning 기반 프레임워크 제안

- ▶ **입력 및 어텐션 단계에 프롬프트 삽입** 학습 가능한 프롬프트 토큰을 입력과 어텐션 Key/Value에 삽입하여, 손상된 모달리티에서도 일관된
- 표현을 유도 · Cross-Attention 기반 양방향 Fusion 구조

오디오-비주얼 간 상호 보완적 정보를 교환하는 양방향 Cross-Attention 구조를 통해 표현 정렬을 강화

▶ **손상 시나리오별 프롬프트 학습 전략** 정상, 오디오 손상, 비주얼 손상, 양쪽 손상 등 다양한 조건별 프롬프트를 독립적으로 학습하여, 테스트 시

Visual Visual Input Encoder Prompts Audio **Audio** Noise **Encoder** | Prompts | **Input-level Prompt Fusion Module** K, V Audio Prompts ----**Visual - Audio** Visual Prompts **Cross Attention**

Audio

K, V

Audio - Visual

Cross Attention

Prompts

Visual

Prompt Mechanism

- ► Input-Level Prompt

 오디오 및 비주억 인력 간간에 대해 프로프트 토큰을 앞
- 오디오 및 비주얼 입력 각각에 대해, 프롬프트 토큰을 앞단에 삽입하여 각 모달리티의● 신뢰도와 중요도를 반영한 표현을 학습
- > 비주얼 입력이 손상된 경우에도 오디오 프롬프트를 통해 보완적 정보를 활용할 수 있도록 설계
- Attention-Level Prompt

프롬프트 토큰은 단순 입력 보조 역할을 넘어, Transformer의 어텐션 연산 내 Key / Value에 통합되어 모달리티 간 상호작용을 동적으로 조절.

- > 즉, 어텐션이 어떤 모달리티에 집중할지를 프롬프트가 동적으로 조정하며, 손상된 입력에서는 보다 신뢰도 높은 모달리티로 집중 유도할 수 있도록 설계
- Cross-Attention Fusion Module

본 모듈은 양방향 Cross-Attention 구조를 기반으로, 시각 및 오디오 특성 간의 정렬을 학습

- Visual-to-Audio: 비주얼 쿼리가 오디오 + 오디오 프롬프트에 주의
- Audio-to-Visual: 오디오 쿼리가 비주얼 + 비주얼 프롬프트에 주의

이를 통해 하나의 모달리티가 손상되어도 다른 모달리티가 보완할 수 있으며, 전체적인 표현 안정성을 유지.

RESULT

Comparison Accuracy

> Urbansound8K-AV

조건 없이도 강건한 추론이 가능하도록 설계

Noise Type	CAV-MAE	LoRA	Adapter	Prompt Learning (Ours)
Complete (C)	0.99	0.98	0.98	0.99
Noise to Audio (A)	0.69	0.84	0.88	0.94
Noise to Vision (V)	0.83	0.84	0.81	0.83
Noise to Both (D)	0.71	0.80	0.81	0.88
Avg.	0.80	0.87	0.87	0.91

> Cifar10-AV

Noise Type	CAV-MAE	LoRA	Adapter	Prompt Learning (Ours)
Complete (C)	0.93	0.92	0.91	0.93
Noise to Audio (A)	0.66	0.77	0.81	0.89
Noise to Vision (V)	0.70	0.76	0.85	0.84
Noise to Both (D)	0.60	0.79	0.72	0.78
Avg.	0.72	0.81	0.82	0.86

- 본 실험에서는 다양한 모달리티 손상 조건(C, A, V, D)에서 모델의 강건성을 비교
- UrbanSound8K-AV에서 0.91, CIFAR10-AV에서 0.86의 평균 정확도 기록(최고성능)
- 특히 오디오 손상(A) 및 양쪽 손상 조건(D)에서 기존 방법 대비 큰 향상을 보여,

프롬프트 기반 학습이 결손 대응 및 표현 정합성 유지에 효과적임을 입증

Efficient Analysis

Methods	Trainable Params (M)	Total Memory (GiB)	Time / Epoch	Accuracy
Finetuning	86.4	95.1	60.0 sec	0.88
LoRA	12.6	27.2	10.1 sec	0.86
Adapter	15.4	32.8	12.5 sec	0.87
Prompt Learning (Ours)	3.2	17.8	2.4 sec	0.88

- 본 실험은 Prompt Learning이 기존 Fine-Tuning, LoRA, Adapter 방식 대비 성능과 자원 효율성 모두에서 우수함을 입증하기 위해 수행
- 제안된 방식은 전체 파라미터의 3.7% 수준(3.2M)만 학습하고도, 정확도 0.88로 Fine-Tuning과 동일한 성능을 달성
- 또한, 본 방식은 학습 시간을 96% 감소 (60.0s → 2.4s), 메모리 사용량을 82.3%
 절감 (95.1GiB → 17.8GiB)
- 이와 같은 성능 절감에도 불구하고, 백본을 고정한 상태에서 정확도를 유지하며 고효율 학습 구조로서의 가능성을 입증
- 이는 제한된 자원 환경에서도 적용 가능한 실용적이고 확장 가능한 접근법으로,향후 다양한 멀티모달 태스크에 경량화된 대안으로 활용될 수 있음을 시사

CONCLUSION

- 본 연구는 일부 모달리티가 결손되거나 손상된 환경에서도 강건한 분류 성능을 보이는 멀티모달 프레임워크를 제안
- 입력 및 어텐션 단계의 프롬프트 삽입, Cross-Attention 기반 Fusion Module, 그리고 시나리오별 프롬프트 학습 전략을 결합하여 UrbanSound8K-AV와 CIFAR10-AV에서 높은 정확도와 효율성을 동시에 입증
- 그러나 본 모델은 주요 오디오-비주얼 벤치마크에 한정되어 검증되었으며, 보다 다양한 도메인과 모달리티 조건에서의 일반화 성능은 추가 연구가 필요
- 향후에는 프롬프트 구조의 확장 및 다중 모달리티가 복합적으로 손상되는 시나리오에 대한 강건성 향상을 중심으로 아키텍처를 발전시킬 예정

REFERENCE

- [1] Lee, Yi-Lun, et al. "Multimodal prompting with missing modalities for visual recognition." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
- [2] Gong, Yuan, et al. "Contrastive audio-visual masked autoencoder." arXiv preprint arXiv:2210.07839, 2022.
- [3] Guo, Lingyue, et al. "Transformer-based spiking neural networks for multimodal audiovisual classification." IEEE Transactions on Cognitive and Developmental Systems 16.3 (2023): 1077-1086.
- [4] Salamon, Justin, Christopher Jacoby, and Juan Pablo Bello. "A dataset and taxonomy for urban sound research."

 Proceedings of the 22nd ACM international conference on Multimedia. 2014.