

```
In [4]: using CSV
        using DataFrames
        using Statistics
        using GLM
        using Random
        using Plots
        # Загрузка датасета Boston Housing
        url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing
        df = CSV.read(download(url), DataFrame)
        # Исследовательский анализ данных
        println("Первые 5 строк данных:")
        display(first(df, 5))
        println("\nОсновная статистика данных:")
        display(describe(df))
        println("\nРазмерность данных: ", size(df))
        # Визуализация распределения целевой переменной
        histogram(df.medv, xlabel="Цена жилья (medv)", ylabel="Частота", title="Распре
```

Первые 5 строк данных:

5×14 DataFrame

|  | Row | crim    | zn      | indus   | chas  | nox     | rm      | age     | dis     | rad   |
|--|-----|---------|---------|---------|-------|---------|---------|---------|---------|-------|
|  |     | Float64 | Float64 | Float64 | Int64 | Float64 | Float64 | Float64 | Float64 | Int64 |
|  | 1   | 0.00632 | 18.0    | 2.31    | 0     | 0.538   | 6.575   | 65.2    | 4.09    | 1     |
|  | 2   | 0.02731 | 0.0     | 7.07    | 0     | 0.469   | 6.421   | 78.9    | 4.9671  | 2     |
|  | 3   | 0.02729 | 0.0     | 7.07    | 0     | 0.469   | 7.185   | 61.1    | 4.9671  | 2     |
|  | 4   | 0.03237 | 0.0     | 2.18    | 0     | 0.458   | 6.998   | 45.8    | 6.0622  | 3     |
|  | 5   | 0.06905 | 0.0     | 2.18    | 0     | 0.458   | 7.147   | 54.2    | 6.0622  | 3     |

Основная статистика данных:

14×7 DataFrame

| P | low | variable | mean     | min     | median  | max     | nmissing | eltype   |
|---|-----|----------|----------|---------|---------|---------|----------|----------|
|   |     | Symbol   | Float64  | Real    | Float64 | Real    | Int64    | DataType |
|   | 1   | crim     | 3.61352  | 0.00632 | 0.25651 | 88.9762 | 0        | Float64  |
|   | 2   | zn       | 11.3636  | 0.0     | 0.0     | 100.0   | 0        | Float64  |
|   | 3   | indus    | 11.1368  | 0.46    | 9.69    | 27.74   | 0        | Float64  |
|   | 4   | chas     | 0.06917  | 0       | 0.0     | 1       | 0        | Int64    |
|   | 5   | nox      | 0.554695 | 0.385   | 0.538   | 0.871   | 0        | Float64  |
|   | 6   | rm       | 6.28463  | 3.561   | 6.2085  | 8.78    | 0        | Float64  |
|   | 7   | age      | 68.5749  | 2.9     | 77.5    | 100.0   | 0        | Float64  |
|   | 8   | dis      | 3.79504  | 1.1296  | 3.20745 | 12.1265 | 0        | Float64  |
|   | 9   | rad      | 9.54941  | 1       | 5.0     | 24      | 0        | Int64    |
|   | 10  | tax      | 408.237  | 187     | 330.0   | 711     | 0        | Int64    |
|   | 11  | ptratio  | 18.4555  | 12.6    | 19.05   | 22.0    | 0        | Float64  |
|   | 12  | b        | 356.674  | 0.32    | 391.44  | 396.9   | 0        | Float64  |
|   | 13  | Istat    | 12.6531  | 1.73    | 11.36   | 37.97   | 0        | Float64  |
|   | 14  | medv     | 22.5328  | 5.0     | 21.2    | 50.0    | 0        | Float64  |
|   |     |          |          |         |         |         |          |          |

Размерность данных: (506, 14)





```
In [ ]: # Разделение данных на обучающую и тестовую выборки
        Random.seed!(123) # для воспроизводимости
        n = nrow(df) \# количество строк
        shuffled = shuffle(1:n) # перемешивание индексов
        train size = Int(round(0.8 * n)) # 80% для обучения
        train idx = shuffled[1:train size] # индексы для обучения
        test idx = shuffled[train size+1:end] # индексы для теста
        # Разделение DataFrame на обучающую и тестовую выборки
        train df = df[train idx, :]
        test df = df[test idx, :]
        # Построение модели линейной регрессии со всеми признаками
        formula = @formula(medv ~ crim + zn + indus + chas + nox + rm + age + dis + ra
        model = lm(formula, train df)
        # Вывод коэффициентов модели
        println("\nКоэффициенты модели:")
        ct = coeftable(model)
        for (name, coef) in zip(coefnames(model), coef(model)) # перебор имен признако
            println(rpad(name, 12), " = ", round(coef, digits=4))
        end
        # Прогнозирование и оценка модели
        y true = test df.medv
        y_pred = predict(model, test df)
        # Различные метрики оценки
        mse = mean((y true .- y pred).^2) # среднеквадратичная ошибка
        rmse = sqrt(mse) # корень из среднеквадратичной ошибки
        mae = mean(abs.(y_true .- y_pred)) # средняя абсолютная ошибка
        r2 = 1 - sum((y true .- y pred).^2) / sum((y true .- mean(y true)).^2) # <math>\kappa o \ni \phi \phi
        println("\n0ценка модели на тестовой выборке:")
        println("Среднеквадратичная ошибка (MSE): ", round(mse, digits=2))
        println("Среднеквадратичная ошибка (RMSE): ", round(rmse, digits=2))
        println("Средняя абсолютная ошибка (MAE): ", round(mae, digits=2))
        println("Коэффициент детерминации (R<sup>2</sup>): ", round(r2, digits=2))
        # Визуализация предсказаний vs реальных значений
        scatter(y true, y pred, xlabel="Реальные значения", ylabel="Предсказанные знач
                title="Предсказанные vs Реальные значения", legend=false)
        plot!(LinRange(minimum(y true), maximum(y true), 100),
              LinRange(minimum(y true), maximum(y true), 100),
              linewidth=2, linecolor=:red)
```

### Коэффициенты модели:

(Intercept) = 28.0018crim = -0.101= 0.0431zn = 0.0468indus chas = 1.687nox = -14.6268rm = 4.4579= 0.0014age = -1.1982dis = 0.3197rad tax = -0.0143ptratio = -0.9081= 0.0103b lstat = -0.4597

Оценка модели на тестовой выборке:

Среднеквадратичная ошибка (MSE): 34.68 Среднеквадратичная ошибка (RMSE): 5.89 Средняя абсолютная ошибка (MAE): 3.69 Коэффициент детерминации (R<sup>2</sup>): 0.67





# Проект: Прогнозирование цен на недвижимость с помощью линейной регрессии

### 1. Подключение библиотек

```
using CSV
using DataFrames
using Statistics
using GLM
using Random
using Plots
```

- CSV для чтения CSV-файлов.
- DataFrames удобная работа с таблицами.
- Statistics базовые статистические функции.
- GLM построение моделей обобщённых линейных моделей (в т.ч. линейная регрессия).
- Random работа со случайными числами (перемешивание, генерация).
- Plots визуализация данных.

# 2. Загрузка и предварительный анализ данных

```
url = "https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv"

df = CSV.read(download(url), DataFrame)

Загружается классический набор данных Boston Housing, содержащий характеристики домов (площадь, количество комнат, налог, криминогенность района и т.д.), а также целевую переменную medv — цену жилья.
```

#### Просмотр данных

```
println("Первые 5 строк данных:")
display(first(df, 5))

println("\nОсновная статистика данных:")
display(describe(df))

println("\nРазмерность данных: ", size(df))
```

- first(df, 5) первые 5 строк.
- describe(df) основные статистики по признакам (среднее, min, max, дисперсия и т.д.).
- size(df) количество строк и столбцов.

### 3. Визуализация целевой переменной

```
histogram(df.medv, xlabel="Цена жилья (medv)", ylabel="Частота", title="Распределение цен на жилье")
```

Гистограмма распределения цен на жильё. Обычно видно, что цены имеют асимметричное распределение, с ограничением сверху (в классическом датасете максимум medv = 50).

# 4. Разделение данных на обучающую и тестовую выборки

```
Random.seed!(123) # фиксируем случайность
n = nrow(df)
shuffled = shuffle(1:n)
train_size = Int(round(0.8 * n)) # 80% обучение, 20% тест
train_idx = shuffled[1:train_size]
test_idx = shuffled[train_size+1:end]

train_df = df[train_idx, :]
test_df = df[test_idx, :]
```

- Данные перемешиваются.
- 80% обучение, 20% тест.
- Таким образом проверяется, насколько модель обобщает информацию.

### 5. Построение модели линейной регрессии

```
formula = @formula(medv ~ crim + zn + indus + chas + nox + rm + age
+ dis + rad + tax + ptratio + b + lstat)
model = lm(formula, train_df)
```

- @formula задаём зависимость: цена (medv) зависит от всех признаков.
- lm строит модель линейной регрессии.

#### Коэффициенты модели

```
ct = coeftable(model)
for (name, coef) in zip(coefnames(model), coef(model))
    println(rpad(name, 12), " = ", round(coef, digits=4))
end
```

Выводятся коэффициенты признаков: насколько увеличивается/уменьшается цена при изменении признака на единицу (при прочих равных).

## 6. Прогнозирование и оценка качества модели

#### Метрики

```
mse = mean((y_true .- y_pred).^2) # MSE
rmse = sqrt(mse) # RMSE
mae = mean(abs.(y_true .- y_pred)) # MAE
r2 = 1 - sum((y_true .- y_pred).^2) / sum((y_true .- mean(y true)).^2) # R²
```

• y pred — предсказанные моделью.

- MSE (среднеквадратичная ошибка) насколько в среднем предсказания отклоняются от реальных значений в квадрате.
- RMSE то же самое, но в тех же единицах, что и medv (цены).
- МАЕ средняя абсолютная ошибка.
- R² (коэффициент детерминации) показывает, какая доля дисперсии объясняется моделью (от 0 до 1, чем выше — тем лучше).

### 7. Визуализация результатов

- Точки: реальные цены vs предсказанные.
- Красная линия: идеальное предсказание (у = х).
- Чем ближе точки к линии тем точнее модель.

В итоге проект демонстрирует полный цикл: загрузка данных  $\to$  анализ  $\to$  построение модели  $\to$  оценка качества  $\to$  визуализация результатов.