Principal Component Analysis (PCA)

François Husson

Applied Mathematics Department - Rennes Agrocampus

husson@agrocampus-ouest.fr

Which kinds of data?

PCA applies to data tables where rows are considered as individuals and columns as quantitative variables

Figure: Data table in PCA

For variable k, we note:

the mean:
$$\bar{x}_k = \frac{1}{l} \sum_{i=1}^{l} x_{ik}$$

the standard-deviation:

$$s_k = \sqrt{\frac{1}{I} \sum_{i=1}^{I} (x_{ik} - \bar{x}_k)^2}$$

Examples

- Sensory analysis: score for attribute k of product i
- Ecology: concentration of pollutant k in river i
- Economics: indicator value k for year i
- Genetics: expression of gene k for patient i
- Biology: measure k for animal i
- Marketing: value of measure k for brand i
- Sociology: time spent on activity k by individuals from social class i
- etc.
- ⇒ There exist many data tables like these

Wine data

- 10 individuals (rows): white wines from the Loire region
- 30 variables (columns):
 - 27 continuous variables: sensory descriptors
 - 2 continuous variables: odor and overall preference
 - 1 categorical variable: wine label (Vouvray or Sauvignon)

	O.fruity	O.passion	O.citrus	 Sweetness	Acidity	Bitterness	Astringency	Aroma.intensity	Aroma.persistency	Visual.intensity	Odor.preference	Overall.preference	Label
S Michaud	4,3	2,4	5,7	 3,5	5,9	4,1	1,4	7,1	6,7	5,0	6,0	5,0	Sauvignon
S Renaudie	4,4	3,1	5,3	 3,3	6,8	3,8	2,3	7,2	6,6	3,4	5,4	5,5	Sauvignon
S Trotignon	5,1	4,0	5,3	 3,0	6,1	4,1	2,4	6,1	6,1	3,0	5,0	5,5	Sauvignon
S Buisse Domaine	4,3	2,4	3,6	 3,9	5,6	2,5	3,0	4,9	5,1	4,1	5,3	4,6	Sauvignon
S Buisse Cristal	5,6	3,1	3,5	 3,4	6,6	5,0	3,1	6,1	5,1	3,6	6,1	5,0	Sauvignon
V Aub Silex	3,9	0,7	3,3	 7,9	4,4	3,0	2,4	5,9	5,6	4,0	5,0	5,5	Vouvray
V Aub Marigny	2,1	0,7	1,0	 3,5	6,4	5,0	4,0	6,3	6,7	6,0	5,1	4,1	Vouvray
V Font Domaine	5,1	0,5	2,5	 3,0	5,7	4,0	2,5	6,7	6,3	6,4	4,4	5,1	Vouvray
V Font Brûlés	5,1	0,8	3,8	 3,9	5,4	4,0	3,1	7,0	6,1	7,4	4,4	6,4	Vouvray
V Font Coteaux	4,1	0,9	2,7	 3,8	5,1	4,3	4,3	7,3	6,6	6,3	6,0	5,7	Vouvray

Issues – goals

The data table can be seen as a set of rows or a set of columns

Studying individuals

- When can we say that 2 individuals are similar (or dissimilar) with respect to all the variables?
- If there are many individuals, is it possible to categorize them?
- ⇒ groups of individuals, partitions between them

Issues – goals

Studying variables

- For individuals, we interpret similarity in terms of the variables' values
- Between variables, we talk instead of "relationships"
- Linear relationships are commonplace, and a first approximation of many links ⇒ correlation coefficient
- ⇒ visualization of the correlation matrix
- \Rightarrow find a small number of synthetic variables to summarize many variables (e.g. of a prior synthetic variable: the mean. But here we search for posterior synthetic variables from the data)

Issues – goals

Links between the two points-of-view

- Characterize groups of individuals using the variables
 - ⇒ need an automatic procedure
- Use specific individuals to better understand links between variables
 - \Rightarrow use of extreme individuals (return to individuals to understand more simply)

PCA issues:

- Descriptive method to explore data: visualization of data with simple plots
- Data compression summarize a big data table of individuals
 x quantitative variables

Two point clouds

The cloud of individuals N_I

1 individual =1 row of the data table $\Rightarrow 1$ point in \mathbb{R}^k

- If K = 1: axial representation
- If K = 2: scatter plot
- If K = 3: 3D graphical representation (more difficult)
- If K = 4: impossible to "see" BUT the concept is easy

Notion of similarity: (squared) distance between individuals i and i':

$$d^2(i,i') = \sum_{k=1}^K (x_{ik} - x_{i'k})^2$$
 (thanks Mr Pythagoras)

Studying the individuals \equiv Studying the shape of the cloud N_I

The cloud of individuals N_l

- Study the structure, i.e., the shape, of the cloud of individuals
- Individuals are in \mathbb{R}^K

Centering – standardizing data

 Centering does not modify the shape of the cloud ⇒ centering is always done

 Standardizing data is necessary if units are different between variables

$$x_{ik} \hookrightarrow \frac{x_{ik} - \bar{x}_{ik}}{S_{ik}}$$

Centering – standardizing data

	O.fruity	O.passion	O.citrus	 Sweetness	Acidity	Bitterness	Astringency	Aroma.intensity	Aroma.persistency	Visual.intensity
S Michaud	-0,17	0,45	1,50	 -0,30	0,11	0,20	-1,79	0,95	1,07	0,06
S Renaudie	0,02	1,03	1,16	 -0,46	1,39	-0,31	-0,65	0,99	0,82	-1,08
S Trotignon	0,79	1,73	1,16	 -0,67	0,48	0,20	-0,60	-0,44	0,07	-1,34
S Buisse Domaine	-0,17	0,45	-0,07	 -0,02	-0,25	-2,01	0,19	-2,24	-1,66	-0,55
S Buisse Cristal	1,30	1,03	-0,12	 -0,39	1,20	1,39	0,34	-0,44	-1,66	-0,90
V Aub Silex	-0,60	-0,97	-0,27	 2,93	-2,07	-1,33	-0,60	-0,84	-0,92	-0,64
V Aub Marigny	-2,44	-0,97	-1,94	 -0,30	0,84	1,39	1,45	-0,18	0,98	0,76
V Font Domaine	0,79	-1,11	-0,85	 -0,67	-0,12	0,03	-0,44	0,29	0,41	1,03
V Font Brûlés	0,79	-0,84	0,13	 -0,02	-0,61	0,03	0,34	0,75	0,07	1,73
V Font Coteaux	-0,29	-0,82	-0,69	 -0,11	-0,98	0,37	1,76	1,15	0,82	0,94

PCA \equiv Studying the standardized data set Difficult to visualize the cloud $N_I \Rightarrow$ try to get an approximate view of it

Fitting the cloud of individuals

PCA searches for the best summary space for optimal visualization of N_I

Viewpoint quality:

• faithfully reproduce the cloud's shape (animation)

Fitting the cloud of individuals

PCA searches for the best summary space for optimal visualization of N_I

 \iff Find a subspace that sums up the data the best

Viewpoint quality:

- faithfully reproduce the cloud's shape (animation)
- best representation of diversity, variability
- doesn't distort distances between individuals

How to quantify the quality of a viewpoint?

notion of dispersion, of variability, also called **inertia** inertia \equiv variance generalized to several dimensions

Fit the individuals' cloud

Figure: Camel or dromedary? (illustration by J.P. Fénelon)

Fit the individuals' cloud

How to find the best view to approximate the cloud?

1 find an axis that distorts the cloud the least

- ② Find the best plane: maximize $\sum_i (OH_i)^2$ with $H_i \in$ plane The best plane contains the best axis: we search for $u_2 \perp u_1$ and maximizing $\sum_i (OH_i)^2$
- 3 we can look for a third axis (etc.) with maximum inertia

Example: wine data

- Sensory descriptors are used as active variables: only these variables are used to construct the axes
- Variables are (centered and) standardized

	O.fruity	O.passion	O.citrus	 Sweetness	Acidity	Bitterness	Astringency	Aroma.intensity	Aroma.persistency	Visual.intensity	Odor.preference	Overall.preference	Label
S Michaud	4,3	2,4	5,7	 3,5	5,9	4,1	1,4	7,1	6,7	5,0	6,0		Sauvignon
S Renaudie	4,4	3,1	5,3	 3,3	6,8	3,8	2,3	7,2	6,6	3,4	5,4	5,5	Sauvignon
S Trotignon	5,1	4,0	5,3	 3,0	6,1	4,1	2,4	6,1	6,1	3,0	5,0	5,5	Sauvignon
S Buisse Domaine	4,3	2,4	3,6	 3,9	5,6	2,5	3,0	4,9	5,1	4,1	5,3	4,6	Sauvignon
S Buisse Cristal	5,6	3,1	3,5	 3,4	6,6	5,0	3,1	6,1	5,1	3,6	6,1	5,0	Sauvignon
V Aub Silex	3,9	0,7	3,3	 7,9	4,4	3,0	2,4	5,9	5,6	4,0	5,0	5,5	Vouvray
V Aub Marigny	2,1	0,7	1,0	 3,5	6,4	5,0	4,0	6,3	6,7	6,0	5,1	4,1	Vouvray
V Font Domaine	5,1	0,5	2,5	 3,0	5,7	4,0	2,5	6,7	6,3	6,4	4,4	5,1	Vouvray
V Font Brûlés	5,1	0,8	3,8	 3,9	5,4	4,0	3,1	7,0	6,1	7,4	4,4	6,4	Vouvray
V Font Coteaux	4,1	0,9	2,7	 3,8	5,1	4,3	4,3	7,3	6,6	6,3	6,0	5,7	Vouvray

Example: graphing the individuals

How to interpret the dimensions? Why are S. Trotignon and V. Font Brules far apart? \Rightarrow Need variables to interpret the directions of variability

Individuals' coordinates considered as variables

Representation of the variables as an interpretation aid for the individuals' cloud

• Correlations between the variable $x_{.k}$ and $F_{.1}$ (and $F_{.2}$)

⇒ Correlation circle

Representation of the variables as an interpretation aid for the individuals' cloud

How to interpret the first dimension?

How to interpret the second dimension?

Main directions of variability:

Fitting the variables' cloud N_K

1 variable = 1 point in an I-dimensional space

$$\cos(\theta_{kl}) = \frac{\langle x_{.k}, x_{.l} \rangle}{\|x_{.k}\| \|x_{.l}\|}$$
$$= \frac{\sum_{i=1}^{l} x_{ik} x_{il}}{\sqrt{\sum_{i=1}^{l} x_{ik}^2} \sqrt{\sum_{i=1}^{l} x_{il}^2}}$$

Since variables are centered, $\cos(\theta_{kl}) = r(x_{.k}, x_{.l})$

If variables are standardized \Rightarrow points are on an *I*-sphere of radius 1

Fitting the variables' cloud N_K

Similar strategy as for individuals: sequentially find orthogonal axes:

$$\argmax_{v_1 \in \mathbb{R}^I} \sum_{k=1}^K r(v_1, x_{.k})^2$$

 $\Rightarrow v_1$ is the best synthetic variable for summarizing the variables

Find the $2^{\rm nd}$ axis, then the $3^{\rm rd}$, etc.

Fitting the variables' cloud N_K

 \Rightarrow Same graph as before!!!!

- interpretation aid for the individuals' graph
- optimal representation of the variables' cloud
- visualization of the correlation matrix

Linking the two representations: transition formulas

Scores: F

Scores:
$$F_{\bullet s}$$
 Loadings: $G_{\bullet s}/\sqrt{\lambda_s}$ $F_{is} = \frac{1}{\sqrt{\lambda_s}} \sum_{k=1}^K x_{ik} G_{ks}$ $G_{ks} = \frac{1}{\sqrt{\lambda_s}} \sum_{i=1}^I x_{ik} F_{is}$

$$G_{ks} = \frac{1}{\sqrt{\lambda_s}} \sum_{i=1}^{I} x_{ik} F_{is}$$

⇒ Individuals are on the same side as their corresponding variables with high values

Projections...

$$r(A,B) = cos(\theta_{A,B})$$

 $cos(\theta_{A,B}) \approx cos(\theta_{H_A,H_B})$ if the variables are well-projected

Only well-projected variables can be interpreted!

Choosing the number of dimensions

Bar chart of eigenvalues, tests, confidence intervals, cross-validation (estim_ncp function), etc.

Two goals:

- \Rightarrow Interpretation
- \Rightarrow Separate structure from noise

Percentage of variance obtained under independence

 \Rightarrow Is there structure in my data?

	Number of variables												
nbind	4	5	6	7	8	9	10	11	12	13	14	15	16
5	96.5	93.1	90.2	87.6	85.5	83.4	81.9	80.7	79.4	78.1	77.4	76.6	75.5
6	93.3	88.6	84.8	81.5	79.1	76.9	75.1	73.2	72.2	70.8	69.8	68.7	68.0
7	90.5	84.9	80.9	77.4	74.4	72.0	70.1	68.3	67.0	65.3	64.3	63.2	62.2
8	88.1	82.3	77.2	73.8	70.7	68.2	66.1	64.0	62.8	61.2	60.0	59.0	58.0
9	86.1	79.5	74.8	70.7	67.4	65.1	62.9	61.1	59.4	57.9	56.5	55.4	54.3
10	84.5	77.5	72.3	68.2	65.0	62.4	60.1	58.3	56.5	55.1	53.7	52.5	51.5
11	82.8	75.7	70.3	66.3	62.9	60.1	58.0	56.0	54.4	52.7	51.3	50.1	49.2
12	81.5	74.0	68.6	64.4	61.2	58.3	55.8	54.0	52.4	50.9	49.3	48.2	47.2
13	80.0	72.5	67.2	62.9	59.4	56.7	54.4	52.2	50.5	48.9	47.7	46.6	45.4
14	79.0	71.5	65.7	61.5	58.1	55.1	52.8	50.8	49.0	47.5	46.2	45.0	44.0
15	78.1	70.3	64.6	60.3	57.0	53.9	51.5	49.4	47.8	46.1	44.9	43.6	42.5
16	77.3	69.4	63.5	59.2	55.6	52.9	50.3	48.3	46.6	45.2	43.6	42.4	41.4
17	76.5	68.4	62.6	58.2	54.7	51.8	49.3	47.1	45.5	44.0	42.6	41.4	40.3
18	75.5	67.6	61.8	57.1	53.7	50.8	48.4	46.3	44.6	43.0	41.6	40.4	39.3
19	75.1	67.0	60.9	56.5	52.8	49.9	47.4	45.5	43.7	42.1	40.7	39.6	38.4
20	74.1	66.1	60.1	55.6	52.1	49.1	46.6	44.7	42.9	41.3	39.8	38.7	37.5
25	72.0	63.3	57.1	52.5	48.9	46.0	43.4	41.4	39.6	38.1	36.7	35.5	34.5
30	69.8	61.1	55.1	50.3	46.7	43.6	41.1	39.1	37.3	35.7	34.4	33.2	32.1
35	68.5	59.6	53.3	48.6	44.9	41.9	39.5	37.4	35.6	34.0	32.7	31.6	30.4
40	67.5	58.3	52.0	47.3	43.4	40.5	38.0	36.0	34.1	32.7	31.3	30.1	29.1
45	66.4	57.1	50.8	46.1	42.4	39.3	36.9	34.8	33.1	31.5	30.2	29.0	27.9
50	65.6	56.3	49.9	45.2	41.4	38.4	35.9	33.9	32.1	30.5	29.2	28.1	27.0
100	60.9	51.4	44.9	40.0	36.3	33.3	31.0	28.9	27.2	25.8	24.5	23.3	22.3

Table: 95 % quantile for inertia in the two first axes of 10 000 PCA on data with independent variables

Percentage of variance obtained under independence

nbind 17 18 19 20 25 30 35 40 50 75 100 150 200 5 74.9 74.2 73.5 72.8 70.7 68.8 67.4 66.4 64.7 62.0 60.5 58.5 57.4 6 67.0 66.3 65.6 64.9 62.3 60.4 58.9 57.6 55.8 52.9 51.0 49.0 47.8 7 61.3 60.7 59.7 59.1 56.4 54.3 52.6 51.4 49.5 46.4 44.6 42.4 41.2 8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 41.6 39.8 37.6 36.4 9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 35.0 33.1 30.1 22.8 10 50.6 49.8 49.0		Number of variables												
6 67.0 66.3 65.6 64.9 62.3 60.4 58.9 57.6 55.8 52.9 51.0 49.0 47.8 7 61.3 60.7 59.7 59.1 56.4 54.3 52.6 51.4 49.5 46.4 44.6 42.4 41.2 8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 41.6 39.8 37.6 36.4 9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 36.1 34.0 32.7 10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8 11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5 13 44.4 43.4 42.8	nbind	17	18	19	20	25	30	35	40	50	75	100	150	200
7 61.3 60.7 59.7 59.1 56.4 54.3 52.6 51.4 49.5 46.4 44.6 42.4 41.2 8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 44.6 39.8 37.6 36.4 9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 36.1 34.0 32.7 10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8 11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 35.5 33.5 32.6 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 13 44.4 43.8 41.9	5	74.9	74.2	73.5	72.8	70.7	68.8	67.4	66.4	64.7	62.0	60.5	58.5	57.4
8 57.0 56.2 55.4 54.5 51.8 49.7 47.8 46.7 44.6 41.6 39.8 37.6 36.4 9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 35.0 33.2 31.0 29.8 11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 55.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7	6	67.0	66.3	65.6	64.9	62.3	60.4	58.9	57.6	55.8	52.9	51.0	49.0	47.8
9 53.6 52.5 51.8 51.2 48.1 45.9 44.4 42.9 41.0 38.0 36.1 34.0 32.7 10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8 11 48.1 47.2 46.5 45.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1	7	61.3	60.7	59.7	59.1	56.4	54.3	52.6	51.4	49.5	46.4	44.6	42.4	41.2
10 50.6 49.8 49.0 48.3 45.2 42.9 41.4 40.1 38.0 35.0 33.2 31.0 29.8 11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 13 44.4 43.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 16 40.4 39.5 38.7 37.9	8	57.0	56.2	55.4	54.5	51.8	49.7	47.8	46.7	44.6	41.6	39.8	37.6	36.4
11 48.1 47.2 46.5 45.8 42.8 40.6 39.0 37.7 35.6 32.6 30.8 28.7 27.5 12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6	9	53.6	52.5	51.8	51.2	48.1	45.9	44.4	42.9	41.0	38.0	36.1	34.0	32.7
12 46.2 45.2 44.4 43.8 40.7 38.5 36.9 35.5 33.5 30.5 28.8 26.7 25.5 13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.7	10	50.6	49.8	49.0	48.3	45.2	42.9	41.4	40.1	38.0	35.0	33.2	31.0	29.8
13 44.4 43.4 42.8 41.9 39.0 36.8 35.1 33.9 31.8 28.8 27.1 25.0 23.9 14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 33.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3 19 37.4 36.5 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8	11	48.1	47.2	46.5	45.8	42.8	40.6	39.0	37.7	35.6	32.6	30.8	28.7	27.5
14 42.9 42.0 41.3 40.4 37.4 35.2 33.6 32.3 30.4 27.4 25.7 23.6 22.4 15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 20.1 16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3 19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8	12	46.2	45.2	44.4	43.8	40.7	38.5	36.9	35.5	33.5	30.5	28.8	26.7	25.5
15 41.6 40.7 39.8 39.1 36.2 34.0 32.4 31.1 29.0 26.0 24.3 22.4 21.2 16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3 19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8	13	44.4	43.4	42.8	41.9	39.0	36.8	35.1	33.9	31.8	28.8	27.1	25.0	23.9
16 40.4 39.5 38.7 37.9 35.0 32.8 31.1 29.8 27.9 24.9 23.2 21.2 20.1 17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6	14	42.9	42.0	41.3	40.4	37.4	35.2	33.6	32.3	30.4	27.4	25.7	23.6	22.4
17 39.4 38.5 37.6 36.9 33.8 31.7 30.1 28.8 26.8 23.9 22.2 20.3 19.2 18 38.3 37.4 36.7 35.8 32.9 29.1 29.1 27.8 25.9 22.9 21.3 19.4 18.3 19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9	15	41.6	40.7	39.8	39.1	36.2	34.0	32.4	31.1	29.0	26.0	24.3	22.4	21.2
18 38.3 37.4 36.7 35.8 32.9 30.7 29.1 27.8 25.9 22.9 21.3 19.4 18.3 19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.0 26.1 25.8 23.0 21.0 19.5 18.6 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7	16	40.4	39.5	38.7	37.9	35.0	32.8	31.1	29.8	27.9	24.9	23.2	21.2	20.1
19 37.4 36.5 35.8 34.9 32.0 29.9 28.3 27.0 25.1 22.2 20.5 18.6 17.5 20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.0 26.1 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 <	17	39.4	38.5	37.6	36.9	33.8	31.7	30.1	28.8	26.8	23.9	22.2	20.3	19.2
20 36.7 35.8 34.9 34.2 31.3 29.1 27.5 26.2 24.3 21.4 19.8 18.0 16.9 25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 19.8 18.0 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	18	38.3	37.4	36.7	35.8	32.9	30.7	29.1	27.8	25.9	22.9	21.3	19.4	18.3
25 33.5 32.5 31.8 31.1 28.1 26.0 24.5 23.3 21.4 18.6 17.0 15.2 14.2 30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	19	37.4	36.5	35.8	34.9	32.0	29.9	28.3	27.0	25.1	22.2	20.5	18.6	17.5
30 31.2 30.3 29.5 28.8 26.0 23.9 22.3 21.1 19.3 16.6 15.1 13.4 12.5 35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	20	36.7	35.8	34.9	34.2	31.3	29.1	27.5	26.2	24.3	21.4	19.8	18.0	16.9
35 29.5 28.6 27.9 27.1 24.3 22.2 20.7 19.6 17.8 15.2 13.7 12.1 11.1 40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	25	33.5	32.5	31.8	31.1	28.1	26.0	24.5	23.3	21.4	18.6	17.0	15.2	14.2
40 28.1 27.3 26.5 25.8 23.0 21.0 19.5 18.4 16.6 14.1 12.7 11.1 10.2 45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	30	31.2	30.3	29.5	28.8	26.0	23.9	22.3	21.1	19.3	16.6	15.1	13.4	12.5
45 27.0 26.1 25.4 24.7 21.9 20.0 18.5 17.4 15.7 13.2 11.8 10.3 9.4 50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	35	29.5	28.6	27.9	27.1	24.3	22.2	20.7	19.6	17.8	15.2	13.7	12.1	11.1
50 26.1 25.3 24.6 23.8 21.1 19.1 17.7 16.6 14.9 12.5 11.1 9.6 8.7	40	28.1	27.3	26.5	25.8	23.0	21.0	19.5	18.4	16.6	14.1	12.7	11.1	10.2
	45	27.0	26.1	25.4	24.7	21.9	20.0	18.5	17.4	15.7	13.2	11.8	10.3	9.4
100 21.5 20.7 19.9 19.3 16.7 14.9 13.6 12.5 11.0 8.9 7.7 6.4 5.7	50	26.1	25.3	24.6	23.8	21.1	19.1	17.7	16.6	14.9	12.5	11.1	9.6	8.7
	100	21.5	20.7	19.9	19.3	16.7	14.9	13.6	12.5	11.0	8.9	7.7	6.4	5.7

Table: 95 % quantile for inertia in the two first axes of 10 000 PCA on data with independent variables

ata - Examples Studying individuals Studying variables Interpretation aids

Supplementary information

- For the quantitative variables: project supplementary variables onto the axes
- For categorical variables: project the barycenter of individuals in each category

⇒ Supplementary information not used to build the axes

Quality of the representation: cos²

• $\cos^2(\theta_{iH_i})$ for the individuals: distance between individuals can only be interpreted for well-projected individuals

• $\cos^2(\theta_{kH_k})$ for the variables: only well-projected variables (high \cos^2) can be interpreted!

Contributions

- ⇒ Contributions to components:
 - for an individual: $Ctr_s(i) = \frac{F_{is}^2}{\sum_{i=1}^I F_{is}^2} = \frac{F_{is}^2}{\lambda_s}$
 - ⇒ Individuals with a large coordinate value contribute most

- for a variable: $Ctr_s(k) = \frac{r(x_{.k}, v_s)^2}{\sum_{k=1}^{K} r(x_{.k}, v_s)^2} = \frac{r(x_{.k}, v_s)^2}{\lambda_s}$
 - ⇒ Variables highly correlated with the principal component contribute the most

Characterizing the axes

Using the continuous variables:

- correlation between each variable and the principal component of rank s is calculated
- correlation coefficients are sorted and significant ones are output

```
> dimdesc(res.pca)
                $Dim.1$quanti
                                                         $Dim.2$quanti
                 corr p.value
                                                          corr p.value
O.candied.fruit 0.93 9.5e-05
                              O.intensity.before.shaking 0.97 3.1e-06
                0.93 1.2e-04
                              O.intensity.after.shaking
Grade
                                                          0.95 3.6e-05
Surface.feeling 0.89 5.5e-04 Attack.intensity
                                                          0.85 1.7e-03
Typicity
                0.86 1.4e-03
                               Expression
                                                          0.84 2.2e-03
O.mushroom
                0.84 2.3e-03
                              Aroma.persistency
                                                          0.75 1.3e-02
Visual.intensity 0.83 3.1e-03
                              Bitterness
                                                          0.71 2.3e-02
                               Aroma.intensity
                                                          0.66 4.0e-02
0.plante
               -0.87 1.0e-03
O.flower
              -0.89 4.9e-04
O.passion
               -0.90 4.5e-04
Freshness
                -0.91 2.9e-04 Sweetness
                                                         -0.78 8.0e-03
```

Characterizing the axes

Using the categorical variables:

- Do one-way analysis of variance with the coordinates of the individuals $(F_{.s})$ described by the categorical variable
 - an F-test by variable
 - for each category, a Student's t-test to compare the average of the category with the general mean

PCA in practice

- Choose active variables
- 2 Rescale (or not) the variables
- Perform PCA
- 4 Choose the number of dimensions to interpret
- 5 Joint analysis of the cloud of individuals and the cloud of variables
- 6 Use indicators to enrich interpretation
- 7 Go back to raw data for interpretation

More

Husson F., Lê S. & Pagès J. (2017) Exploratory Multivariate Analysis by Example Using R 2nd edition, 230 p., CRC/Press.

The FactoMineR package for doing PCA:

http://factominer.free.fr/

Videos on Youtube:

- Youtube channel: youtube.com/HussonFrancois
- a playlist with movies in English
- a playlist with movies in French