Natural Language Processing

Lecture 16: Semantic Parsing II - Abstract Meaning Representation (AMR)

11/20/2018

COMS W4705
Daniel Bauer

Logical Forms

- Logical form satisfies many goals for meaning representations (unambiguous, canonical form, supports inference, expressiveness)
- But difficult to annotate on a large scale.

Event Semantics

 Typically events and relations are expressed as predicates in firstorder logic.

 $\exists x \exists y \ Computer(x) \land School(y) \land donate(Apple,x,y)$

- Problem: predicate arguments are not semantic roles.
 Model-theoretic semantics is problematic: donate(Apple,x,y) should imply donate(Apple,x)
- One approach: Event semantics (neo-Davisonian semantics).
 Events are treated like entities.

 $\exists e \exists x \exists y \ Donate(e) \land Computer(x) \land School(y) \land Donor(e,Apple) \land Theme(e,x) \land Receipient(e,y)$

How is this related to frames and semantic roles?

Abstract Meaning Representation (AMR)

(Banarescu et al., 2013)

- Uses a single, simple data structure (feature structures / directed graphs) to represent many aspects of meaning.
- Focus on "who does what to whom" but leave out details (tense, quantifiers, etc.)
- This level of abstraction facilitates consistent, largescale human annotation.
 - Goal: build a giant "semantics bank" (comparable to treebanks for syntax).

```
(e / eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
```

```
(e / eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
```



```
(e / eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
```


- Edges are labeled with relations (including semantic roles)
- Each node has a variable.
- Nodes are labeled with concepts.
- PropBank framesets used wherever possible.

```
(e / eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
```


- Edges are labeled with relations (including semantic roles)
- Each node has a variable.
- Nodes are labeled with concepts.
- PropBank framesets used wherever possible.

- Edges are labeled with relations (including semantic roles)
- Each node has a variable.
- Nodes are labeled with concepts.
 - Concepts can also be represented as edges.
- PropBank framesets used wherever possible.

Reentrancy

Reentrancy

```
(w / want-01
  :ARG0 (d / dog)
  :ARG1 (e / eat-01
    :ARG0 d
  :ARG1 (b / bone))
```


- Why the graph representation? Entities can play multiple roles.
- Two incoming edges in the graph, re-used variable in string notation.

AMR and Event Logic

```
(w / want-01
   :ARG0 (d / dog)
   :ARG1 (e / eat-01
      :ARG0 d
   :ARG1 (b / bone))
```


- AMR is related to event logic:
 - All concepts are existentially quantified.
 - Relations and concept labels are predicates.

AMR and Event Logic

```
(w / want-01
   :ARG0 (d / dog)
   :ARG1 (e / eat-01
      :ARG0 d
   :ARG1 (b / bone))
```


- AMR is related to event logic:
 - All concepts are existentially quantified.
 - Relations and concept labels are predicates.

```
\exists w \exists d \exists e \exists b \ Want(w) \land Dog(e) \land Eat(e) \land Bone(b) \land ARG0(w,d) \land ARG1(w,e) \land ARG0(e,d) \land ARG1(e,b)
```

Canonical Representaiton

The dog is eating a bone.
The bone was eaten by the dog.
The dog's eating of the bone.

```
(e / eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
```


- Many different sentences can have the same AMR representation.
- Nouns can describe events too.

```
(e/ eat-01
   :ARG0 (d / dog)
   :ARG1 (b / bone))
(f/ find-01
   :ARG0 d
   :ARG1 b)
```


- AMR annotations are typically single-rooted (tree plus reentrancy)
- The single root is the "focus" of the sentence.

- AMR annotations are typically single-rooted (tree plus reentrancy)
- The single root is the "focus" of the sentence.

- AMR annotations are typically single-rooted (tree plus reentrancy)
- The single root is the "focus" of the sentence.

Constants

The dog found four bones.

- Constants are used to represent quantities (node gets no variable).
- Also used for negation.

Constants

The dog did not find four bones.

- Constants are used to represent quantities (node gets no variable).
- Also used for negation.

Non-Core Roles

- AMR annotations use some built-in relations (not in PropBank)
 :time, :location, :manner, :part, :frequency
- :mod and :domain for attributes
- :op1, op2, ...for lists of arguments (for example in conjunctions).

```
(t/ truck
  :mod (m / monster))
```

a monster truck.

Non-Core Roles

- AMR annotations use some built-in relations (not in PropBank)
 :time, :location, :manner, :part, :frequency
- mod and :domain for attributes
- :op1, op2, ...for lists of arguments (for example in conjunctions).

```
(t/ truck
  :mod (m / monster))

(s/see-01
  (y / yummy
  :domain(f / food))
```

a monster truck.

seeing that the food is yummy.

Non-Core Roles

apples and oranges.

- AMR annotations use some built-in relations (not in PropBank)
 :time, :location, :manner, :part, :frequency
- :mod and :domain for attributes

:op1 (a / apple)

:op2 (o / orange))

(a / and

• :op1, op2, ...for lists of arguments (for example in conjunctions).

```
(t/ truck
  :mod (m / monster))

(s/see-01
  (y / yummy
      :domain(f / food))

seeing that the food is yummy.
```

Names and Dates

AMR to English

AMR to English

```
(r / read-01
      :arg0 (j / judge)
      :arg1 (t / thing
             :arg1-of (p /propose-01))
(p / picture-01
  :ARG0 (i / it)
  :ARG1 (b2 / boa
          :mod (c / constrictor)
          :ARG0-of (d / digest-01
                      :ARG1 (e / elephant))))
```

English to AMR

- "The girl wants the boy to like her"
- "The girl wants the boy to believe that she likes him"

AMR Data

- The Little Prince (publicly available, http://amr.isi.edu/download.html):
 - English and Chinese
 - Biomedical Data
- "AMRBank", 14k sentence, PTB and other corpora (including online discussion forums)

Another AMR Example

Back downtown, the execs squeezed in a few meetings at the hotel before boarding the buses again.

Another AMR Example

```
(s / squeeze-02
   :ARGO (p / person
             :ARG0-of (h2 / have-org-role-91
                           :ARG2 (e / executive)))
   :ARG1 (m / meet-03
            :location (h / hotel)
            :quant (f / few))
   :location (d / downtown
                :mod (b4 / back))
   :time (b / before
            :op1 (b2 / board-01
                      :ARG0 p
                      :ARG1 (b3 / bus)
                      :mod (a / again))))
```

Back downtown, the execs squeezed in a few meetings at the hotel before boarding the buses again.

Another AMR Example

Back downtown, the execs squeezed in a few meetings at the hotel before boarding the buses again.

Applications of AMR

- Semantics-Based Machine Translation (Jones, Andreas, Bauer, Hermann & Knight, 2012)
- Summarization:
 - Abstractive Summarization (Liu, Flanigan, Thomson, Sadeh & Smith, 2015)
 - Text Compression (text-to-text generation) (Thadani, 2015)
- Predicting stock price movement from financial news (Xie, 2015)

English -> AMR, trained automatically on string/graph pairs (AMR data)

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:
 - Concept identification + graph-based dependency parsing (JAMR, Flanigan et al. 2014)

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:
 - Concept identification + graph-based dependency parsing (JAMR, Flanigan et al. 2014)
 - Transduce dependency tree into AMR (Wang et al. 2015)

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:
 - Concept identification + graph-based dependency parsing (JAMR, Flanigan et al. 2014)
 - Transduce dependency tree into AMR (Wang et al. 2015)
 - CCG into logical form + coreference resolution (Artzi 2015)

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:
 - Concept identification + graph-based dependency parsing (JAMR, Flanigan et al. 2014)
 - Transduce dependency tree into AMR (Wang et al. 2015)
 - CCG into logical form + coreference resolution (Artzi 2015)
 - Syntax-based Machine Translation (Pust et al. 2015)

- English -> AMR, trained automatically on string/graph pairs (AMR data)
- Different approaches:
 - Concept identification + graph-based dependency parsing (JAMR, Flanigan et al. 2014)
 - Transduce dependency tree into AMR (Wang et al. 2015)
 - CCG into logical form + coreference resolution (Artzi 2015)
 - Syntax-based Machine Translation (Pust et al. 2015)
 - Hyperedge Replacement Grammars (Peng 2015, Bauer 2017)

JAMR

(Flanigan et al. 2014)

- Automatically align string spans and graph concepts to obtain a concept dictionary.
- For an unseen input sentence:
 - Identify the concepts in the sentence.
 - Identify the relations (edges) between the concepts using a graph-based aproach ("spanning graph").
 - Similar to graph-based dependency parsing.

JAMR - Alignments

(Flanigan et al. 2014)

- Uses a set of hand-crafter rules (patterns for named entities, dates, ...)
- Goal: Compute a concept dictionary.

JAMR - Alignments

(Flanigan et al. 2014)

- Uses a set of hand-crafter rules (patterns for named entities, dates, ...)
- Goal: Compute a concept dictionary.

IAEA accepted North Korea 's proposal in November.

JAMR - Concept ID

The boy wants to visit New York City

Figure 2: A concept labeling for the sentence "The boy wants to visit New York City."

JAMR - Concept ID

Figure 2: A concept labeling for the sentence "The boy wants to visit New York City."

- Need to compute best span-to-concept assignment.
- But need to consider all different spans.
- Dynamic programing algorithm to solve this.

JAMR - Relation ID

JAMR - Relation ID

Start with completely connected graph (one edge for each relation).

JAMR - Relation ID

(Bauer 2017)

 String CFGs assemble strings, Hyperedge Replacement Grammars (HRG) assemble graphs.

- String CFGs assemble strings, Hyperedge Replacement Grammars (HRG) assemble graphs.
- Use grammar rules with two matching right-hand sides (string, graph).
 - Parse the string, then follow the derivation and assemble a graph.

- String CFGs assemble strings, Hyperedge Replacement Grammars (HRG) assemble graphs.
- Use grammar rules with two matching right-hand sides (string, graph).
 - Parse the string, then follow the derivation and assemble a graph.
- The actual formalism is closer to TAG (lexicalized, allows an adjunction-like operation).

- String CFGs assemble strings, Hyperedge Replacement Grammars (HRG) assemble graphs.
- Use grammar rules with two matching right-hand sides (string, graph).
 - Parse the string, then follow the derivation and assemble a graph.
- The actual formalism is closer to TAG (lexicalized, allows an adjunction-like operation).
- Rules obtained automatically using alignments.

R1: $S \rightarrow NP VP$

R5: VP → shot NP

R2: NP \rightarrow 1

R6: $NP \rightarrow NP PP$

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: $PP \rightarrow in NP$

Derivation Tree

Derived String

R1: $S \rightarrow NP VP$

R5: VP → shot NP

R2: NP \rightarrow 1

R6: NP → NP PP

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: $PP \rightarrow in NP$

Derivation Tree

Derived String

R1: $S \rightarrow NP VP$

R5: VP → shot NP

R2: NP \rightarrow 1

R6: $NP \rightarrow NP PP$

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: PP → in NP

Derivation Tree

Derived String

NP VP

R1: $S \rightarrow NP VP$

R5: VP → shot NP

R2: NP \rightarrow 1

R6: NP → NP PP

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: $PP \rightarrow in NP$

Derivation Tree

Derived String

VF

R1: $S \rightarrow NP VP$

R5: $VP \rightarrow shot NP$

R2: NP \rightarrow 1

R6: $NP \rightarrow NP PP$

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: PP → in NP

Derivation Tree

Derived String

I shot

NP

PP

R1: $S \rightarrow NP VP$

R5: $VP \rightarrow shot NP$

R2: NP \rightarrow 1

R6: NP → NP PP

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: PP → in NP

Derivation Tree

Derived String

I shot an elephant PP

R1: $S \rightarrow NP VP$

R5: $VP \rightarrow shot NP$

R2: NP \rightarrow 1

R6: NP \rightarrow NP PP

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: PP → in NP

Derivation Tree

Derived String

I shot an elephant in NP

R1: $S \rightarrow NP VP$

R5: $VP \rightarrow shot NP$

R2: NP \rightarrow 1

R6: $NP \rightarrow NP PP$

R3: NP \rightarrow an elephant

R7: VP → shot NP PP

R4: NP \rightarrow my pajamas

R8: PP → in NP

Derivation Tree

Derived String

I shot an elephant in my pajamas

Hyperedges can have arbitrarily many tentacles. Their endpoints are ordered.

- Number of tentacles: type of the hyperedge.
- Terminal / Nonterminal alphabet is also typed.

Hyperedges can have arbitrarily many tentacles. Their endpoints are ordered.

- Number of tentacles: type of the hyperedge.
- Terminal / Nonterminal alphabet is also typed.

Derivation Tree

Derivation Tree

Derivation Tree

Derivation Tree

Derivation Tree

Derivation Tree

Derivation Tree

Hyperedge Replacement Grammar (HRG)

Derivation Tree

Derived Graph

Hyperedge Replacement Grammar (HRG)

Derivation Tree

R1 NP1 VP2 R2 R4 |S2 R5 |VP2 R6 ADV1 VP2 R7 R4

Derived Graph

Polynomial time graph parsing algorithms exist.
 (Chiang, Andreas, Bauer, Hermann, Jones & Knight, 2013)

Synchronous Hyperedge Replacement Grammar (SHRG)

- string/graph sides share the same, typed nonterminal alphabet.
- Explicit synchronization (co-indexing).
- Every string derivation is also a valid graph derivation.
- SHRG derive string/graph pairs.

Synchronous Hyperedge Replacement Grammar (SHRG)

Synchronous Hyperedge Replacement Grammar (SHRG)

he believed that he would never want to return

 How does SHRG compare to other formalisms for semantic construction?

- How does SHRG compare to other formalisms for semantic construction?
 - Less powerful than Feature Unification Grammars and CCG with λ -calculus.

- How does SHRG compare to other formalisms for semantic construction?
 - Less powerful than Feature Unification Grammars and CCG with λ -calculus.
- Are there any limitations on the Graph Structures that SHRG can produce?

- How does SHRG compare to other formalisms for semantic construction?
 - Less powerful than Feature Unification Grammars and CCG with λ -calculus.
- Are there any limitations on the Graph Structures that SHRG can produce?
 - Yes, restriction to CFG limits graph structures that can be constructed. For example, no cross-serial dependencies.

- How does SHRG compare to other formalisms for semantic construction?
 - Less powerful than Feature Unification Grammars and CCG with λ -calculus.
- Are there any limitations on the Graph Structures that SHRG can produce?
 - Yes, restriction to CFG limits graph structures that can be constructed. For example, no cross-serial dependencies.
 - Yes, maximum hyperedge type in a grammar implies a hierarchy of grammars. Cannot build up arbitrary complexity.

Extracting Synchronous Grammars

Task: Given a corpus of string/graph pairs, learn a SHRG that

- can derive all string/graph pairs in the corpus.
- is compact (small number of rules).
- generalizes well to unseen data.

The boy wants the girl to believe him.

Extracting SHRG/LSHRG Grammar Rules

My approach uses syntactic derivations to guide rule extraction.

- 1. Syntactic parser creates string derivations (MICA parser).
- 2. Aligner computes string-to-graph alignments.
- 3. Partitioning algorithm creates a rule forest.
- 4. EM-based rule selection extracts a compact set of rules.

Alignments And Derivation Trees

- Project alignments to nodes in the derivation tree.
- Every subtree is aligned to a subset of graph edges.

Alignments And Derivation Trees

- Project alignments to nodes in the derivation tree.
- Every subtree is aligned to a subset of graph edges.

Alignments And Derivation Trees

- Project alignments to nodes in the derivation tree.
- Every subtree is aligned to a subset of graph edges.

Solution: Compute spanning trees for each phrase. Remove edge alignments in the intersection.

Constructing A Decomposition Forest

- For each way of partitioning the graph, recursively run partitioning on the subtrees and subgraphs.
- This is expensive! Need memoization.
- The result is a packed forest.

Selecting a Grammar

- Extract forests for all string/graph pairs in the training data
- Run EM with inside/outside algorithm on the collection of forests.
- Select 1st best Viterbi tree from each forest. Extract rules from these forests and keep trees as "bronze derivations"

Selecting a Grammar

Extract forests for all string/graph pairs in the training data
 417k rules

 Run EM with inside/outside algorithm on the collection of forests.

 Select 1st best Viterbi tree from each forest. Extract rules from these forests and keep trees as "bronze derivations"
 31k rules

Extracted LSHRG Grammar Rule

SO → NP1_[0] VP-left* continue/t28 S2_[1] S-right*

HRG Demo

 "Bolinas" package for Hyperedge Replacement Grammars.

https://github.com/isi-nlp/bolinas

Acknowledgments

 Some slides from Nathan Schneider & Jeff Flanigan's AMR tutorial at NAACL 2015.