Finding Similar Sets

Applications
Shingling
Minhashing
Locality-Sensitive Hashing
Distance Measures

Goals

- Many Web-mining problems can be expressed as finding "similar" sets:
 - 1. Pages with similar words, e.g., for classification by topic.
 - 2. NetFlix users with similar tastes in movies, for recommendation systems.
 - 3. Dual: movies with similar sets of fans.
 - 4. Images of related things.

Similarity Algorithms

- ◆The best techniques depend on whether you are looking for items that are very similar or only somewhat similar.
- We'll cover the "somewhat" case.

Example Problem: Comparing Documents

- Goal: common text, not common topic.
- Special cases are easy, e.g., identical documents, or one document contained character-by-character in another.
- General case, where many small pieces of one doc appear out of order in another, is very hard.

Similar Documents – (2)

- Given a body of documents, e.g., the Web, find pairs of documents with a lot of text in common, e.g.:
 - Mirror sites, or approximate mirrors.
 - Application: Don't want to show both in a search.
 - Plagiarism, including large quotations.
 - Similar news articles at many news sites.
 - Application: Cluster articles by "same story."

Three Essential Techniques for Similar Documents

- 1. Shingling: convert documents, emails, etc., to sets.
- 2. Minhashing: convert large sets to short signatures, while preserving similarity.
- 3. Locality-sensitive hashing: focus on pairs of signatures likely to be similar.

The Big Picture

Shingles

- ◆A k -shingle (or k -gram) for a document is a sequence of k characters that appears in the document.
- ◆Example: k=2; doc = abcab. *Set* of 2-shingles = {ab, bc, ca}.
 - Option: regard shingles as a bag, and count ab twice.
- Represent a doc by its set of k-shingles.

Working Assumption

Documents that have lots of shingles in common have similar text, even if the text appears in different order.

Shingle Size

- ◆Is k=2 a good choice for size?
- ◆Example: k=2;
- \diamond doc1 = abcab. 2-shingles = {ab, bc, ca}.
- \diamond doc2 = cabc. 2-shingles = {ab, bc, ca}.

Shingle Size

- ◆Careful: you must pick k large enough, or most documents will have most shingles.
 - k = 5 is OK for short documents; k = 10 is better for long documents.

Shingles: Compression Option

- ◆If k=9, to compare shingles we need to compare 9 bytes
- To improve efficiency, we can compress long shingles: hash them to (say) 4 bytes, and
- Represent a doc by the set of hash values of its k-shingles.

```
(aaabbbccc)(abcabcabc) → h(aaabbbccc)h(abcabcabc)

18 bytes → 8 bytes
```

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?

Thought Question

- Why is it better to hash 9-shingles (say) to 4 bytes than to use 4-shingles?
- Hint: How random are the 32-bit sequences that result from 4-shingling?
- Assuming 20 characters are common in English, there are $(20)^4 = 160,000 \text{ 4-shingles}$
- Using 9 shingles there are $(20)^9 >> 2^{32}$

MinHashing

Data as Sparse Matrices
Jaccard Similarity Measure
Constructing Signatures

Basic Data Model: Sets

- Many similarity problems can be couched as finding subsets of some universal set that have significant intersection.
- Examples include:
 - 1. Documents represented by their sets of shingles (or hashes of those shingles).
 - 2. Similar customers or products.

Jaccard Similarity of Sets

- ◆The Jaccard similarity of two sets is the size of their intersection divided by the size of their union.
 - $Sim(C_1, C_2) = |C_1 \cap C_2|/|C_1 \cup C_2|.$

Example: Jaccard Similarity

3 in intersection. 8 in union. Jaccard similarity = 3/8

From Sets to Boolean Matrices

- Rows = elements of the universal set.
- ◆Columns = sets.
- ◆1 in row e and column S if and only if e is a member of S.
- Column similarity is the Jaccard similarity of the sets of their rows with 1.
- ◆Typical matrix is sparse.

Example: Jaccard Similarity of Columns

```
C_1 C_2

a 0 1 *

b 1 0 *

c 1 1 * * Sim (C_1, C_2) = 2/5 = 0.4

d 0 0

e 1 1 * *

f 0 1 *
```

Aside

- •We might not really represent the data by a boolean matrix.
- Sparse matrices are usually better represented by the list of places where there is a non-zero value.
- But the matrix picture is conceptually useful.

When Is Similarity Interesting?

- 1. When the sets are so large or so many that they cannot fit in main memory.
- 2. Or, when there are so many sets that comparing all pairs of sets takes too much time.
- 3. Or both.

Outline: Finding Similar Columns

- 1. Compute signatures of columns = small summaries of columns.
- 2. Examine pairs of signatures to find similar signatures.
 - Requirement: similarities of signatures and columns are related.
- 3. Optional: check that columns with similar signatures are really similar.

Warnings

- Comparing all pairs of signatures may take too much time, even if not too much space.
 - A job for Locality-Sensitive Hashing.
- 2. These methods can produce false negatives, and even false positives (if the optional check is not made).

Signatures

- Key idea: "hash" each column C to a small signature Sig (C), such that:
 - 1. Sig (C) is small enough that we can fit a signature in main memory for each column.
 - 2. Sim (C₁, C₂) is the same as the "similarity" of Sig (C₁) and Sig (C₂).

Four Types of Rows

Given columns C₁ and C₂, rows may be classified as:

$$C_1$$
 C_2
 a 1 1 1 $in both columns$
 b 1 0 $columns are different$
 c 0 1

 d 0 0 $ouldet ouldet ouldet$

- \bullet Also, a = # rows of type a, etc.
- Note Sim $(C_1, C_2) = a/(a+b+c)$.

Minhashing

- History: invented by Andrei Broder in 1997 to detect duplicate pages
- Imagine the rows permuted randomly.
- ◆Define "hash" function h (C) = the number of the first (in the permuted order) row in which column C has 1.
- Use several (e.g., 100) independent hash functions to create a signature.

Minhashing Example

Permutations

1 4 3 3 2 4 7 1 7 6 3 6 2 6 1 5 7 2

Input matrix

1	0	1	0
1	0	0	1
	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Surprising Property

- The probability (over all permutations of the rows) that $h(C_1) = h(C_2)$ is the same as $Sim(C_1, C_2)$.
- \bullet Both are a/(a+b+c)!
- Matrix is sparse most rows are of type d
- The ratio of type a, b, and c that determine the similarity and the probability that $h(C_1) = h(C_2)$

Surprising Property

- Probability that $h(C_1) = h(C_2)$ is the same as $Sim(C_1, C_2) = a/(a+b+c)!$
- ♦ Why?
 - Look down the permuted columns C₁ and C₂ until we see a 1.
 - If it's a type-a row, then $h(C_1) = h(C_2)$. If a type-b or type-c row, then not.

Similarity for Signatures

◆The similarity of signatures is the fraction of the hash functions in which they agree.

Min Hashing – Example

Signature matrix M

Input matrix

1	4	3
3	2	4
7	1	7
6	3	6
2	6	1
5	7	2
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0
			32	

Minhash Signatures

- Pick (say) 100 random permutations of the rows.
- Think of Sig (C) as a column vector.
- ◆Let Sig (C)[i] = according to the i th permutation, the number of the first row that has a 1 in column C.

Implementation -(1)

- Suppose 1 billion rows.
- Hard to pick a random permutation from 1...billion.
- Sorting would take a long time
- Representing a random permutation requires 1 billion entries.

Implementation -(2)

- A good approximation to permuting rows: pick 100 (?) hash functions.
- For each column c and each hash function h_i , keep a "slot" M(i, c).
- ◆ Intent: M(i, c) will become the smallest value of h_i(r) for which column c has 1 in row r.
 - I.e., $h_i(r)$ gives order of rows for i th permutation.

Implementation -(3)

```
for each row r

for each column c

if c has 1 in row r

for each hash function h_i do

if h_i(r) is a smaller value than

M(i, c) then

M(i, c) := h_i(r);
```

Example

Row	C1	C2
1	1	0
2	0	1
3	1	1
4	1	0
5	0	1

$$h(x) = x \mod 5$$

$$g(x) = 2x+1 \mod 5$$

Sig1 Sig2

Implementation – (4)

- Often, data is given by column, not row.
 - E.g., columns = documents, rows = shingles.
- If so, sort matrix once so it is by row.
- lacktriangle And *always* compute $h_i(r)$ only once for each row.

Locality-Sensitive Hashing

Focusing on Similar Minhash Signatures
Other Applications Will Follow

Finding Similar Pairs

- Suppose we have, in main memory, data representing a large number of objects.
 - May be the objects themselves .
 - May be signatures as in minhashing.
- •We want to compare each to each, finding those pairs that are sufficiently similar.

Checking All Pairs is Hard

- While the signatures of all columns may fit in main memory, comparing the signatures of all pairs of columns is quadratic in the number of columns.
- **Example:** 10^6 columns implies (10^6 2) $\frac{n!}{k!(n-k)!}$ = $\sim 5*10^{11}$ column-comparisons.
- At 1 microsecond/comparison: 6 days.

Locality-Sensitive Hashing

- ◆ General idea: Use a function f(x,y) that tells whether or not x and y is a candidate pair: a pair of elements whose similarity must be evaluated.
- ◆For minhash matrices: Hash columns to many buckets, and make elements of the same bucket candidate pairs.

Candidate Generation From Minhash Signatures

- ◆Pick a similarity threshold s, a fraction < 1.</p>
- ◆A pair of columns c and d is a candidate pair if their signatures agree in at least fraction s of the rows.
 - I.e., M(i, c) = M(i, d) for at least fraction s values of i.

LSH for Minhash Signatures

- ◆Big idea: hash columns of signature matrix M several times.
- Arrange that (only) similar columns are likely to hash to the same bucket.
- Candidate pairs are those that hash at least once to the same bucket.

Partition Into Bands

Partition into Bands – (2)

- Divide matrix M into b bands of r rows.
- For each band, hash its portion of each column to a hash table with k buckets.
 - Make *k* as large as possible.
- igoplus Candidate column pairs are those that hash to the same bucket for ≥ 1 band.
- ◆Tune b and r to catch most similar pairs, but few nonsimilar pairs.

Simplifying Assumption

- ◆There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band.
- Hereafter, we assume that "same bucket" means "identical in that band."

Example: Effect of Bands

- Suppose 100,000 columns.
- Signatures of 100 integers.
- Therefore, signatures take 40Mb.
- Want all 80%-similar pairs.
- 5,000,000,000 pairs of signatures can take a while to compare.
- Choose 20 bands of 5 integers/band.

Suppose C₁, C₂ are 80% Similar

- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$.
- Probability C_1 , C_2 are *not* similar in any of the 20 bands: $(1-0.328)^{20} = .00035$.
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives.

Suppose C₁, C₂ Only 40% Similar

- Probability C_1 , C_2 identical in any one particular band: $(0.4)^5 = 0.01$.
- ♦ Probability C_1 , C_2 identical in ≥ 1 of 20 bands: $\leq 20 * 0.01 = 0.2$.
- But false positives much lower for similarities << 40%.</p>

LSH Involves a Tradeoff

- Pick the number of minhashes, the number of bands, and the number of rows per band to balance false positives/negatives.
- Example: if we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up.

Analysis of LSH – What We Want

Similarity *s* of two sets

What One Band of One Row Gives You

What b Bands of r Rows Gives You

Example: b = 20; r = 5

5	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

LSH Summary

- Tune to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.
- Check in main memory that candidate pairs really do have similar signatures.
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar sets.

Applications of LSH

Entity Resolution
Similar News Articles

Desiderata

- Whatever form we use for LSH, we want :
 - 1. The time spent performing the LSH should be linear in the number of objects.
 - 2. The number of candidate pairs should be proportional to the number of truly similar pairs.
- Bucketizing guarantees (1).

Entity Resolution

- ◆The entity-resolution problem is to examine a collection of records and determine which refer to the same entity.
 - Entities could be people, events, etc.
- Typically, we want to merge records if their values in corresponding fields are similar.

Matching Customer Records

- I once took a consulting job solving the following problem:
 - Company A agreed to solicit customers for Company B, for a fee.
 - They then argued over how many customers.
 - Neither recorded exactly which customers were involved.

Customer Records – (2)

- Company B had about 1 million records of all its customers.
- Company A had about 1 million records describing customers, some of whom it had signed up for B.
- Records had name, address, and phone, but for various reasons, they could be different for the same person.

Customer Records – (3)

- Step 1: Design a measure ("score") of how similar records are:
 - E.g., deduct points for small misspellings ("Jeffrey" vs. "Jeffery") or same phone with different area code.
- Step 2: Score all pairs of records; report high scores as matches.

Customer Records – (4)

- ◆Problem: (1 million)² is too many pairs of records to score.
- Solution: A simple LSH.
 - Three hash functions: exact values of name, address, phone.
 - Compare iff records are identical in at least one.
 - Misses similar records with a small differences in all three fields.

Aside: Hashing Names, Etc.

- How do we hash strings such as names so there is one bucket for each string?
- Possibility: Sort the strings instead.
 - Used in this story.
- Possibility: Hash to a few million buckets, and deal with buckets that contain several different strings.

Aside: Validation of Results

- We were able to tell what values of the scoring function were reliable in an interesting way.
 - Identical records had a creation date difference of 10 days.
 - We only looked for records created within 90 days, so bogus matches had a 45-day average.

Validation - (2)

- ◆By looking at the pool of matches with a fixed score, we could compute the average time-difference, say x, and deduce that fraction (45-x)/35 of them were valid matches.
- Alas, the lawyers didn't think the jury would understand.

Validation – Generalized

- Any field not used in the LSH could have been used to validate, provided corresponding values were closer for true matches than false.
- ◆ Example: if records had a height field, we would expect true matches to be close, false matches to have the average difference for random people.

Application: Same News Article

- Recently, the Political Science Dept. asked a team from CS to help them with the problem of identifying duplicate, on-line news articles.
- Problem: the same article, say from the Associated Press, appears on the Web site of many newspapers, but looks quite different.

News Articles – (2)

- Each newspaper surrounds the text of the article with:
 - It's own logo and text.
 - Ads.
 - Perhaps links to other articles.
- A newspaper may also "crop" the article (delete parts).

News Articles – (3)

- The team came up with its own solution, that included shingling, but not minhashing or LSH.
 - A special way of shingling that appears quite good for this application.
 - LSH substitute: candidates are articles of similar length.

Enter LSH -(1)

- I told them the story of minhashing + LSH.
- They implemented it and found it faster for similarities below 80%.
 - Aside: That's no surprise. When similarity is high, there are better methods, as we shall see.

Enter LSH -(2)

- Their first attempt at LSH was very inefficient.
- They were unaware of the importance of doing the minhashing row-by-row.
- Since their data was column-by-column, they needed to sort once before minhashing.

New Shingling Technique

- The team observed that news articles have a lot of stop words, while ads do not.
 - Buy Sudzo" vs. "I recommend that you buy Sudzo for your laundry."
- They defined a shingle to be a stop word and the next two following words.

Why it Works

- By requiring each shingle to have a stop word, they biased the mapping from documents to shingles so it picked more shingles from the article than from the ads.
- ◆Pages with the same article, but different ads, have higher Jaccard similarity than those with the same ads, different articles.

Distance Measures

Distance Measures

- Generalized LSH is based on some kind of "distance" between points.
 - Similar points are "close."
- Two major classes of distance measure:
 - 1. Euclidean
 - 2. Non-Euclidean

Euclidean Vs. Non-Euclidean

- ◆A Euclidean space has some number of real-valued dimensions and "dense" points.
 - There is a notion of "average" of two points.
 - A *Euclidean distance* is based on the locations of points in such a space.
- ◆A Non-Euclidean distance is based on properties of points, but not their "location" in a space.

Axioms of a Distance Measure

- d is a distance measure if it is a function from pairs of points to real numbers such that:
 - 1. $d(x,y) \ge 0$.
 - 2. d(x,y) = 0 iff x = y.
 - 3. d(x,y) = d(y,x).
 - 4. $d(x,y) \le d(x,z) + d(z,y)$ (triangle inequality).

Some Euclidean Distances

- - The most common notion of "distance."
- L₁ norm: sum of the differences in each dimension.
 - Manhattan distance = distance if you had to travel along coordinates only.

Examples of Euclidean Distances

Another Euclidean Distance

- $\bigstar L_{\infty}$ norm: d(x,y) = the maximum of the differences between <math>x and y in any dimension.
- ◆Note: the maximum is the limit as n goes to ∞ of the L_n norm: what you get by taking the n th power of the differences, summing and taking the n th root.

Examples of Euclidean Distances

What is the L_{∞} -norm for a and b?

$$L_{\infty}$$
-norm:
Max(|9-5|,|8-5|) =
Max(4,3) = 4

Non-Euclidean Distances

- ◆ Jaccard distance for sets = 1 minus Jaccard similarity.
- Cosine distance = angle between vectors from the origin to the points in question.
- ◆ Edit distance = number of inserts and deletes to change one string into another.
- ♦ Hamming Distance = number of positions in which bit vectors differ.

Jaccard Distance for Sets (Bit-Vectors)

- **Example:** $p_1 = 10111$; $p_2 = 10011$.
- ◆Size of intersection = 3; size of union = 4, Jaccard similarity (not distance) = 3/4.
- \bullet d(x,y) = 1 (Jaccard similarity) = 1/4.

Why J.D. Is a Distance Measure

- \bullet d(x,x) = 0 because x \cap x = x \cup x.
- \bullet d(x,y) = d(y,x) because union and intersection are symmetric.
- ◆d(x,y) \ge 0 because $|x \cap y| \le |x \cup y|$.
- \bullet d(x,y) \leq d(x,z) + d(z,y) trickier (see textbook)

Triangle Inequality for J.D.

$$1 - |x \cap z| + 1 - |y \cap z| \ge 1 - |x \cap y|$$

$$|x \cup z| \qquad |y \cup z| \qquad |x \cup y|$$

- **♦**Remember: $|a \cap b|/|a \cup b| = probability that minhash(a) = minhash(b).$
- ◆Thus, $1 |a \cap b|/|a \cup b| = probability$ that minhash(a) ≠ minhash(b).

Triangle Inequality – (2)

- ◆Claim: prob[minhash(x) ≠ minhash(y)] ≤ prob[minhash(x) ≠ minhash(z)] + prob[minhash(z) ≠ minhash(y)]
- ◆Proof: whenever minhash(x) \neq minhash(y), at least one of minhash(x) \neq minhash(z) and minhash(z) \neq minhash(y) must be true.

Cosine Distance

- Think of a point as a vector from the origin (0,0,...,0) to its location.
- Two points' vectors make an angle, whose cosine is the normalized dotproduct of the vectors: $p_1 \cdot p_2/|p_2||p_1|$.
 - **Example:** $p_1 = 00111$; $p_2 = 10011$.
 - $p_1.p_2 = 2$; $|p_1| = |p_2| = \sqrt{3}$.
 - $cos(\theta) = 2/3; \theta$ is about 48 degrees.

Cosine-Measure Diagram

$$d(p_1, p_2) = \theta = \arccos(p_1.p_2/|p_2||p_1|)$$

Why C.D. Is a Distance Measure

- \bullet d(x,x) = 0 because arccos(1) = 0.
- \bullet d(x,y) = d(y,x) by symmetry.
- \bullet d(x,y) \geq 0 because angles are chosen to be in the range 0 to 180 degrees.
- ◆Triangle inequality: physical reasoning. If I rotate an angle from x to z and then from z to y, I can't rotate less than from x to y.

Edit Distance

- ◆The *edit distance* of two strings is the number of inserts and deletes of characters needed to turn one into the other. Equivalently:
- \bullet d(x,y) = |x| + |y| 2|LCS(x,y)|.
 - LCS = longest common subsequence = any longest string obtained both by deleting from x and deleting from y.

Example: LCS

- $\bullet x = abcde ; y = bcduve.$
- ◆Turn x into y by deleting a, then inserting u and v after d.
 - \bullet Edit distance = 3.
- \bullet Or, LCS(x,y) = *bcde*.
- Note: |x| + |y| 2|LCS(x,y)| = 5 + 6 -2*4 = 3 = edit distance.

Why Edit Distance Is a Distance Measure

- \bullet d(x,x) = 0 because 0 edits suffice.
- •d(x,y) = d(y,x) because insert/delete are inverses of each other.
- \diamond d(x,y) \geq 0: no notion of negative edits.
- ◆Triangle inequality: changing x to z and then to y is one way to change x to y.

Variant Edit Distances

- Allow insert, delete, and mutate.
 - Change one character into another.
- Minimum number of inserts, deletes, and mutates also forms a distance measure.
- Ditto for any set of operations on strings.
 - Example: substring reversal OK for DNA sequences

Hamming Distance

- ◆ Hamming distance is the number of positions in which bit-vectors differ.
- **Example:** $p_1 = 10101$; $p_2 = 10011$.
- \bullet d(p₁, p₂) = 2 because the bit-vectors differ in the 3rd and 4th positions.

Why Hamming Distance Is a Distance Measure

- $\bullet d(x,x) = 0$ since no positions differ.
- \bullet d(x,y) = d(y,x) by symmetry of "different from."
- \bullet d(x,y) \geq 0 since strings cannot differ in a negative number of positions.
- ◆Triangle inequality: changing x to z and then to y is one way to change x to y.