

My Theory of Everything

How it all works

Joe Bloggs

Submitted for the degree of Doctor of Philosophy University of Sussex September 2008

Declaration

I hereby	declare	that	$_{ m this}$	thesis	has	not	been	and	will	not	be	submitted	in	whole	or	in
part to a	nother 1	Univer	rsity	for the	e aw	ard	of any	oth	er de	egree	e.					

Signature:

Joe Bloggs

UNIVERSITY OF SUSSEX

Joe Bloggs, Doctor of Philosophy

MY THEORY OF EVERYTHING
HOW IT ALL WORKS

Summary

Acknowledgements

Contents

List of Tables							
Li	ist of Figures	vii					
1	Introduction	1					
2	Literature Review	3					
3	Method	5					
	3.1 Sequence feature extraction	5					
4	Conclusion	8					
	4.1 What was I right about?	8					
	4.1.1 Previous theories were wrong	8					
	4.1.2 My new idea is right	8					
В	ibliography	9					
\mathbf{A}	. Code	11					

List of Tables

List of Figures

3.1	Word examples with three or more subsequences		 				6
3.2	4-grams examples		 	_		 	6

Introduction

Word embeddings is a method of word representation mainly used for natural language processing. Text data appears differently in computer from images and sounds. Both images and sounds can be easily represented as mathematic models either using analog or digital signals but not with text data (Li and Yang, 2017). Text data consists of strings that can only be modeled using one-hot vector (from given d-dimension for d words that are known, only one dimension is one and the rest are zeroes). This one-hot vector does not have any information that infers connection between one to the other. Hence that, vector representations that maps semantic and syntactic information given one-hot vectors in a euclidean space is introduced (Li and Yang, 2017). This positional information then can be used to infer interconnection between words, whether its similarities or usage of the word in a sentence (S. Harris, 1954). To obtain word embeddings, a model is created to extract features of a word from a corpus and map its location in euclidean space based on the features found. These word embeddings then can be used to do many downstream tasks, such as postagging, named entity recognition (NER), and sentiment analysis (Ling et al., 2015; Lample et al., 2016). In general, large corpus with many words and examples of word usage is prefered because the size of the vocabularies will increases and more words connection can be inferred from the corpus (Kutuzov and Kunilovskaya, 2018). However, it is not possible to have such corpus since the language itself is changing overtime (Forrester, 2008). Furthermore, there are cases of typographical error, especially after internet and social media are booming where anybody willingly write text over these platforms and these words maybe not present in the corpus hence not included in the vocabulary thus making many typographical error while in its correct form it actually is. In addition with the increased number of smartphone which uses touch screen, some typographical error is expected Ghosh and Kristensson (2017). All this words that are non-existent in the corpus

and its embedding cannot be inferred are called as out-of-vocabulary (OOV) words. One may use simple approach by asigning unique random embedding or by replacing OOV with an unknown $\langle UNK \rangle$ embedding. While in some cases using these simple approaches and continue on the training on the downstream tasks can produce acceptable results {CITE}, further improvement on downstream tasks can be achieved by using machine learning method to infer OOV embeddings.

To infer OOV embeddings, the model is built over quasi-generative perspective. Only knowing the vocabularies and its embedding, the model tried to generate embedding for OOV words. Previous state-of-the-art used lstm to infer OOV embeddings (Pinter et al., 2017). Character embedding is used to transform sequence of characters then forwarded into bi-lstm then to fully connected layer. In language model, bi-lstm generally works by separating sub-word by remembering and forgeting previous sequence from both end. Those sub-word then will be used to infer its embedding. The problem might arise when there are more than two important sub-words and they are not in sequence, meaning that there exist at least one character between two important sub-words, hence the information is incomplete since lstm will dampen the previous sequence if the next sequence sub-words are considered more important. Instead of taking the whole words as a sequence and considering its importance based on time, by using n-grams and picking which grams that are considered to be important in theory should give better results since the information is complete and only left for the model to pick which n-grams are more important. The only problem is that for the model to pick which grams that should be included in the model is impossible to do since there are many word combinations making the model needs to accept huge number of inputs. Instead of handpicking the features of n-grams, convolutional neural network (CNN) can be used to pick which features needs to be considered by using character embedding and treat the character sequence embedding as an image.

Literature Review

Word2vec is one of word embedding that is trained using skip-gram model (Mikolov et al., 2013). A word w(t) used as an input and its context word, for example context word with windows of 4 are w(t-2), w(t-1), w(t+1), and w(t+2), used as the target and the projection from input to the output is used as the representation of the input w(t) that is usefull to predict the context words. This model is highly dependant on the corpus completeness. More examples and vocabulary a corpus has the better the representation of the embeddings since more information will be able to be learned. Word2vec model has no oov handling, meaning either random vector or unknown $\langle UNK \rangle$ embedding will be used.

Polyglot embedding

Dict2vec is yet another embedding that is trained by looking up definitions of words from cambridge dictionary Tissier et al. (2017). This embedding was created because the previous method is trained with unsupervised manner, meaning that there is no supervision between pairs of words. There might exists pair of words that are actually related but do not appear enough inside a corpus making it harder for the model to find connection. Thus, this model is trained by creating sets of strong and weak pairs of words, then move both pairs closer and further respectively based on the pairs. The model then evaluated using several word similarity tasks to show imporvements over vanilla implementation of word2vec and fasttext.

Part-of-Speech-Tagging (postagging) is a process of determining grammatical category (tag) of given word in a certain sentence. In English, exist words that has ambiguous grammatical category, such as word "tag" can be either noun or verb depends on the usage of it (Cutting et al., 1992). To tackle this problems, many researchers proposed to use mathematical models or statistical models namely hidden markov model (Cutting

et al., 1992), n-grams (Brants, 2000), and neural network model (Ling et al., 2015). In this research, the neural network model will be implemented to serve as the downstream task. This model is a recurrent neural network (RNN) that took sequence of word embeddings representing a sentence or parts of sentence then categorize each word embedding for its tag.

As aforementioned above, some word embedding model such as Word2vec has no oov handling, thus creating a model to predict such word becomes research interest. One of the model that tries to tackle this problem successfully used bi-LSTM to predict embedding given sequence of characters from a word from a pretrained embedding (Pinter et al., 2017). As a result, oov embeddings are able to be predicted without the needs of knowing lexicon or model used for creating the word embedding. The results then tested to do downstream task namely postagging.

N-grams often used to capture word features. N-grams relies on characters that make up a word, later on a sentence. With character embedding and convolution neural network (CNN), n-grams can be calculated by convoluting sets of characters embedding with the kernel size of $n \times d$ for n is the number of grams and d is the dimension of the embeddings. This CNN n-grams then can be used to create a neural language model (Kim et al., 2015).

Method

3.1 Sequence feature extraction

OOV problem is handled from quasi-generative perspective as aforementioned in chapter 1 by using neural language model under assumption that there is a form that could generate embedding for the original embedding. Hence that, the original embedding is used for training the model to generate the embedding. In chapter 1, reasons why lstm could perform worse is because the hidden states is controlled by cell gates making the information that is carried on is the most recent after the cell gates decided to forget inputs at certain time t.

$$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f) \tag{3.1}$$

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \tag{3.2}$$

$$\tilde{C}_t = tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \tag{3.3}$$

$$C_t = f_t \times C_{t-1} + i_t \times \tilde{C}_t \tag{3.4}$$

$$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$$
 (3.5)

$$h_t = o_t \times tanh(C_t) \tag{3.6}$$

Formally, when $C_t = 0$ from eq. 3.4, hidden state from eq. 3.6 will be reset to 0 rendering hidden states prior to time t gone. This problem can be solved by using bi-lstm, since bi-lstm process sequence in forward and reverse order making both early and later sequence held by the last hidden state for each forward lstm and reverse lstm respectively. Another problem might arise when we need to divide sequence into more than three subsequence. Hence another approach is needed since intermediate subsequence might get deleted or carried along with the later sequence even with bi-lstm. We can find many

un|recogniz|able inter|national|ities oto|rhino|laryngolog|ical hepatico|chol|angio|gastro|stomy

Figure 3.1: Word examples with three or more subsequences

unrecognizable: unre|nrec|reco|ecog|cogn|ogni|gniz|niza|izab|zabl|able internationalities: inte|nter|tern|erna|rnat|nati|atio|tion|iona|onal| nali|alit|liti|itie|ties otorhinolaryngological: otor|torh|orhi|rhin|hino|inol|nola|olar|lary| aryn|ryng|yngo|ngol|golo|olog|logi|ogic|gica|ical hepaticocholangiogastrostomy: hepa|epat|pati|atic|tico|icoc|coch|ocho|chol|hola|olan| lang|angi|ngio|giog|ioga|ogas|gast|astr|stro| tros|rost|osto|stom|tomy

Figure 3.2: 4-grams examples

examples especially from more technical areas as shown on Figure 3.1. Since on MIMICK Pinter et al. (2017) implementation only the last hidden state is used for inferencing word embedding, another approach is proposed.

For all subsequence to be processed, we need a method that accounts for all sequence yet still able to divides the whole sequence into subsequences. Consequently, n-grams is chosen because this method splits word into sequence of characters depends on the chosen window size. Those sequences of characters then feed into learning algorithm. This idea is similar to how human tries to recognize an unseen word by reading subword that is understandable beforhand when no explanation or context were given.

This model then will be used to estimate OOV embeddings. In other words, given sets of vocabulary \mathcal{V} with size $|\mathcal{V}|$ and pretrained embeddings $\mathcal{W}^{|\mathcal{V}| \times d}$ for each word $w_i \in \mathcal{V}$ that is represented as a vector e_i with d dimension, the model is trained to map function $f: \mathcal{V} \to \mathbb{R}^d$ that minimizes $|f(w_i) - e_i|^2$. This approach is similar to MIMICK Pinter et al. (2017) approach. The text input is represented as a sequence of character $[c_1, c_2, \ldots, c_m]$

for $c_i \in \mathcal{C}$. Those sequence then transformed as sequence of vectors g_i with b dimension by using character embeddings $\mathcal{G}^{|\mathcal{C}| \times b}$. For simplicity, sequence of $[g_1, g_2, \ldots, g_m]$ will be called $[\hat{g}]$. $[\hat{g}]$ becomes 2-dimensional matrix that has size of $m \times b$. In summary, given word w will be transformed using function h into $[\hat{g}]$.

$$h: w \to [\hat{g}] \tag{3.7}$$

To process $[\hat{g}]$ like an n-grams, CNN is used. CNN is basically a method to do convolution on matrix by using a kernel $k_i \in K$. This operation is represented with * symbol. To mimick n-grams, kernel with size of $n \times b$ is used, producing another vector \hat{t} that represents the value of each grams, then non-linearity is applied to this vector. Several kernel is used to learn several features for producing embeddings. Each of these kernel will be responsible to find grams that are affecting the results, thus the vector \hat{t}_i that are results of convolution $[\hat{g}] * k_i$ will be maxpooled to produce one number. In details, from given sequence of character embedding $[\hat{g}]$, only gram that produces the highest value when convoluted by using kernel k_i will be processed. Since, there are |K| number of filter, |K| number of grams will be considered to be important to the results. Furthermore, by using several window sizes for n-grams (bigram, trigram, etc.), more features will be able to be learned.

Conclusion

I was right all along.

4.1 What was I right about?

I was right about the following things.

4.1.1 Previous theories were wrong

People thought they understood, but they didn't.

4.1.2 My new idea is right

Of course.

Bibliography

- Brants, T. (2000). Thi: A statistical part-of-speech tagger. In *Proceedings of the Sixth Conference on Applied Natural Language Processing*, ANLC '00, pages 224–231, Stroudsburg, PA, USA. Association for Computational Linguistics. 4
- Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. (1992). A practical part-of-speech tagger. In Proceedings of the Third Conference on Applied Natural Language Processing, ANLC '92, pages 133–140, Stroudsburg, PA, USA. Association for Computational Linguistics. 3
- Forrester, J. C. (2008). A brief overview of english as a language in change. *CCSE*, abs/1508.06615(4). 1
- Ghosh, S. and Kristensson, P. O. (2017). Neural networks for text correction and completion in keyboard decoding. *CoRR*, abs/1709.06429. 1
- Kim, Y., Jernite, Y., Sontag, D., and Rush, A. M. (2015). Character-aware neural language models. CoRR, abs/1508.06615. 4
- Kutuzov, A. and Kunilovskaya, M. (2018). Size vs. Structure in Training Corpora for Word Embedding Models: Araneum Russicum Maximum and Russian National Corpus, pages 47–58. 1
- Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer, C. (2016). Neural architectures for named entity recognition. CoRR, abs/1603.01360. 1
- Li, Y. and Yang, T. (2017). Word Embedding for Understanding Natural Language: A Survey, volume 26. 1
- Ling, W., Dyer, C., Black, A. W., Trancoso, I., Fermandez, R., Amir, S., Marujo, L., and Luis, T. (2015). Finding function in form: Compositional character models for open vocabulary word representation. In *Proceedings of the 2015 Conference on Em-*

- pirical Methods in Natural Language Processing, pages 1520–1530, Lisbon, Portugal. Association for Computational Linguistics. 1, 4
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. CoRR, abs/1310.4546.
- Pinter, Y., Guthrie, R., and Eisenstein, J. (2017). Mimicking word embeddings using subword rnns. *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.* 2, 4, 6
- S. Harris, Z. (1954). Distributional structure. Word, 10:146–162. 1
- Tissier, J., Gravier, C., and Habrard, A. (2017). Dict2vec: Learning word embeddings using lexical dictionaries. In *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing*, pages 254–263, Copenhagen, Denmark. Association for Computational Linguistics. 3

Appendix A

Code

10 PRINT "HELLO WORLD"