О свойствах деревьев вывода для стохастической КС-грамматики, имеющей вид «цепочки»

Л.П. Жильцова, И.М. Мартынов (Нижний Новгород)

В работе исследуются свойства деревьев вывода высоты t при $t \to \infty$ для стохастической КС-грамматики с разложимой матрицей A первых моментов специального вида. Рассматривается критический случай, когда перронов корень матрицы A равен 1.

Стохастической КС-грамматикой называется система $G = \langle V_T, V_N, R, s \rangle$, где V_T и V_N — конечные алфавиты терминальных и нетерминальных символов (терминалов и нетерминалов) соответственно, $s \in V_N$ — аксиома, $R = \cup_{i=1}^k R_i$, где k — мощность алфавита V_N и R_i — множество правил с одинаковой левой частью A_i . Каждое правило r_{ij} из R_i имеет вид

$$r_{ij}: A_i \stackrel{p_{ij}}{\rightarrow} \beta_{ij}, \ j = 1, ..., n_i,$$

где $A_i \in V_N$, $\beta_{ij} \in (V_T \cup V_N)^*$ и p_{ij} – вероятность применения правила r_{ij} , причем $0 < p_{ij} \leqslant 1$ и $\sum_{j=1}^{n_i} p_{ij} = 1$.

Применение правила грамматики к слову состоит в замене вхождения нетерминала из левой части правила на слово, стоящее в его правой части.

Каждому слову α КС-языка соответствует последовательность правил грамматики (вывод), с помощью которой α выводится из аксиомы s. Выводу слова соответствует дерево вывода [1], вероятность которого определяется как произведение вероятностей правил, образующих вывод.

По стохастической КС-грамматике строится матрица A первых моментов. Для нее элемент a^i_j определяется как $\sum_{l=1}^{n_i} p_{il} s^j_{il}$, где величина s^j_{il} равна числу нетерминальных символов A_j в правой части правила r_{il} . Перронов корень матрицы A обозначим через r.

Введем некоторые обозначения. Будем говорить, что нетерминал A_j непосредственно следует за нетерминалом A_i (и обозначать $A_i \to A_j$), если в грамматике существует правило вида $A_i \stackrel{p_{ij}}{\to} \alpha_1 \ A_j \ \alpha_2$, где $\alpha_1, \alpha_2 \in (V_T \cup V_N)^*$. Рефлексивное транзитивное замыкание отношения \to обозначим \to_* .

Классом нетерминалов назовем максимальное по включению подмножество $K\subseteq V_N$ такое, что $A_i\to_* A_j$ для любых $A_i,A_j\in K$. Для различных классов нетерминалов K_1 и K_2 будем говорить, что класс K_2 непосредственно следует за классом K_1 (и обозначать $K_1\prec K_2$), если

существуют $A_1 \in K_1$ и $A_2 \in K_2$, такие, что $A_1 \to A_2$. Рефлексивное транзитивное замыкание отношения \prec обозначим через \prec_* .

Пусть $\mathcal{K}=\{K_1,K_2,\ldots,K_m\}$ — множество классов нетерминалов грамматики, $m\geqslant 2$. Будем полагать, что классы нетерминалов перенумерованы таким образом, что $K_i\prec_* K_j$ тогда и только тогда, когда i< i.

Будем говорить, что грамматика имеет вид «цепочки», если ее матрица первых моментов A имеет вид

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 & \cdots & 0 & 0 \\ 0 & A_{22} & A_{23} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{m-1,m-1} & A_{m-1,m} \\ 0 & 0 & 0 & \cdots & 0 & A_{m,m} \end{pmatrix}.$$
 (1)

Один класс нетерминалов представлен в матрице множеством подряд идущих строк и соответствующим множеством столбцов с теми же номерами. Для класса K_i квадратная подматрица, образованная соответствующими строками и столбцами, обозначается через A_{ii} . Подматрица A_{ij} является нулевой, если $K_i \not\prec K_j$. Блоки, расположенные ниже главной диагонали, нулевые в силу упорядоченности классов.

Для грамматики с матрицей первых моментов вида (1) классы нетерминалов образуют линейный порядок по отношению ≺:

$$K_1 \prec K_2 \prec \ldots \prec K_i \prec \ldots \prec K_m.$$
 (2)

Для каждого класса K_i матрица A_{ii} неразложима. Без ограничения общности будем считать, что она строго положительна и непериодична. Обозначим через r_i перронов корень матрицы A_{ii} . Для неразложимой матрицы перронов корень является вещественным и простым [2]. Очевидно, $r = \max_i \{r_i\}$.

Пусть $J=\{i_1,i_2,\ldots,i_l\}$ — множество всех номеров i_j классов, для которых $r_{i_j}=1$. Рассмотрим подцепочку классов

$$K_j \prec K_{j+1} \prec \ldots \prec K_m.$$
 (3)

Число классов с номерами из J в такой цепочке обозначим через q_i .

Через $P_j(t)$ обозначим вероятность множества деревьев вывода высоты t, корень которых помечен нетерминалом A_j .

Теорема 1 $\Pi pu \ t \to \infty$

$$P_j(t) \sim U^{(j)} \cdot \frac{c_j}{t^{1+(\frac{1}{2})^{q_j-1}}},$$

 $r\partial e\ c_j$ - некоторая положительная константа.

 $\Pi pu \ r_j = 1 \ вектор \ U^{(j)}$ является правым собственным вектором для матрицы A_{jj} , соответствующим r_j .

Обозначим через $M_{ij}(t)$ математическое ожидание числа применений правила r_{ij} грамматики в дереве вывода высоты t, корень которого помечен аксиомой грамматики $s=A_1$.

Теорема 2 Пусть матрица первых моментов грамматики G имеет вид (1), и r_{ij} — правило грамматики, для которого $A_i \in K_l$. Тогда при $t \to \infty$

$$M_{ij}(t) \sim d_i \cdot p_{ij} \cdot t^{\left(\frac{1}{2}\right)^{q_l^*-1}},$$

где $q_l^*=q_l-1$ при $l\in J$ и $q_l^*=q_l$ при $l\notin J;$ $d_i>0$ – некоторая константа, и p_{ij} — вероятность правила $r_{ij}.$

Таким образом, величина $M_{ij}(t)$ определяется удаленностью класса K_l , которому принадлежит нетерминал A_i из левой части правила r_{ij} , от конца цепочки (2). Математическое ожидание $M_{ij}(t)$ тем больше, чем меньше число классов с номерами из множества J, следующих за классом K_l в (3). Следовательно, чем дальше удален класс от начала цепочки (2), тем чаще применяются соответствующие ему правила грамматики. Для последнего класса в (2) с номером из J и всех последующих классов величины $M_{ij}(t)$ соответствующих правил грамматики имеют порядок $O\left(t^2\right)$, как в случае неразложимой грамматики [3] и грамматики с двумя классами нетерминалов [4].

Список литературы

- [1] Ахо А., Ульман Дж. Теория синтаксического анализа, перевода и компиляции. Том 1. М.: Мир, 1978.
- [2] Гантмахер Ф.Р. Теория матриц. М.: ФИЗМАТЛИТ, 2010. 560 с.
- [3] Жильцова Л.П. Закономерности в деревьях вывода слов стохастического контекстно-свободного языка и нижняя оценка стоимости кодирования. Критический случай// Дискретный анализ и исследование операций. Серия 1, т.10, N3. Новосибирск: Издательство Института математики СО РАН, 2003. С.23-53.
- [4] Борисов А.Е. О свойствах слов языка, порожденного разложимой стохастической КС-грамматикой с двумя нетерминалами. Критический случай// Материалы VIII Международного семинара "Дискретная математика и ее приложения". М.: Изд. мех-мат. ф-та МГУ, 2004. С. 408-410.