GEOMETRÍA II. RELACIÓN DE PROBLEMAS 3

ESPACIOS VECTORIALES EUCLÍDEOS

Curso 2018-19

- 1. Sea V un espacio vectorial real. Denotemos por $\mathcal{B}_s^+(V)$ al conjunto de todas las métricas euclídeas sobre V. Demuestra que:
 - a) Si $g, g' \in \mathcal{B}_s^+(V)$ entonces $g + g' \in \mathcal{B}_s^+(V)$.
 - b) Si a > 0 y $g \in \mathcal{B}_s^+(V)$ entonces $ag \in \mathcal{B}_s^+(V)$.

¿Es $\mathcal{B}_s^+(V)$ un subespacio vectorial de $\mathcal{B}(V)$?

2. Sean (V,g) y (V',g') dos espacios vectoriales euclídeos. Se define la *métrica producto* $g \times g'$ en $V \times V'$ a partir de la igualdad:

$$(g \times g')((u,u'),(v,v')) = g(u,v) + g'(u',v').$$

Demuestra que $g \times g'$ es una métrica euclídea en $V \times V'$.

3. Decide de forma razonada si son euclídeas o no las métricas sobre \mathbb{R}^3 cuyas matrices en la base usual son:

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 5 & 0 \\ 1 & 0 & 3 \end{pmatrix}, \qquad C = \begin{pmatrix} 2 & 1 & 1 \\ 1 & -5 & -1 \\ 1 & -1 & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} \alpha+4 & -2 & 2 \\ -2 & \alpha+1 & -1 \\ 2 & -1 & \alpha+1 \end{pmatrix}.$$

- 4. Dados dos vectores cualesquiera u y v de un espacio vectorial euclídeo (V,g), demuestra que se cumplen estas propiedades:
 - a) Identidad del paralelogramo: $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$.
 - b) Teorema del coseno: $||u-v||^2 = ||u||^2 + ||v||^2 2||u|| ||v|| \cos \angle (u,v)$.
 - c) Teorema de Pitágoras: $||u+v||^2 = ||u||^2 + ||v||^2 \iff u \perp v$.
 - $d) ||u|| = ||v|| \iff u + v \perp u v.$
 - $e) ||u|| ||v||| \le ||u v||.$

- 5. Utiliza la desigualdad de Cauchy-Schwarz en un espacio vectorial euclídeo conveniente para probar las siguientes desigualdades y caracterizar cuando se obtiene la igualdad en cada una de ellas.
 - a) Para cualesquiera números $x_1, \ldots, x_n \ge 0$, se cumple que:

$$\left(\sum_{i=1}^n x_i^2\right)^2 \le \left(\sum_{i=1}^n x_i^3\right) \left(\sum_{i=1}^n x_i\right).$$

- b) Para cada matriz simétrica A de orden n se verifica que $(tr(A))^2 \le n tr(A^2)$.
- c) Para cualquier función continua $\varphi : [a,b] \to \mathbb{R}$ se cumple que:

$$\left(\int_a^b \varphi(t) dt\right)^2 \le (b-a) \int_a^b \varphi(t)^2 dt.$$

6. Consideremos \mathbb{R}^4 con su métrica euclídea usual g_u . Calcula una base ortonormal de (U, g_U) , donde U es el subespacio de \mathbb{R}^4 dado por:

$$U = \{(x, y, z, t) \in \mathbb{R}^4 \mid 2x + 4y - z + 3t = 0\}.$$

Amplia la base anterior hasta conseguir una base ortonormal de (\mathbb{R}^4, g_u) . Calcula las coordenadas del vector u = (1,0,0,1) en la base obtenida.

- 7. En el espacio vectorial $S_2(\mathbb{R})$ de las matrices simétricas de orden 2 con coeficientes reales se considera la métrica g definida como $g(A,C) = \operatorname{tr}(AC)$.
 - a) Prueba que g es una métrica euclídea.
 - b) Utiliza el proceso de Gram-Schmidt para obtener una base ortonormal de $(S_2(\mathbb{R}), g)$ a partir de la base:

$$B = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) \right\}.$$

- c) Encuentra dos matrices linealmente independientes $A, C \in S_2(\mathbb{R})$ que sean unitarias y que formen ángulo $\pi/3$ con I_2 .
- 8. En el espacio vectorial $\mathbb{R}_2[x]$ de los polinomios de grado menor o igual que dos con coeficientes reales se considera la métrica euclídea dada por:

$$g(p(x), q(x)) = \int_{-1}^{1} p(x) q(x) dx.$$

Demuestra que la base usual B_u de $\mathbb{R}_2[x]$ no es ortonormal. Utilizar el proceso de Gram-Schmidt para obtener una base ortonormal de $(\mathbb{R}_2[x], g)$ a partir de B_u .

9. En \mathbb{R}^3 se considera la métrica g, cuya matriz en la base usual es:

$$A = \left(\begin{array}{rrr} 3 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right).$$

- a) Demuestra que la métrica g es euclídea.
- b) Calcula el ángulo que forman los vectores u = (1, 1, 0) y v = (0, -1, 1).
- c) Calcula la proyección ortogonal y la simetría ortogonal del vector u = (2,1,0) con respecto al plano $U = \{(x,y,z) \in \mathbb{R}^3 \mid x+y+z=0\}.$
- 10. En el espacio $M_2(\mathbb{R})$ de las matrices cuadradas de orden dos con coeficientes reales se considera la métrica euclídea dada por $g(A,C) = \operatorname{tr}(AC^t)$. Se definen las matrices:

$$A = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \qquad C = \begin{pmatrix} -2 & 1 \\ 1 & 0 \end{pmatrix}.$$

- a) Calcula el ángulo determinado por A y C.
- b) Calcula las proyecciones ortogonales de A sobre U = L(C) y sobre U^{\perp} .
- c) Calcula la imagen de A por la simetría respecto del subespacio de $M_2(\mathbb{R})$ dado por:

$$W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \, \middle| \, a - b + c - d = 0, -a + d = 0 \right\}.$$

- d) Da una base de W^{\perp} , siendo W el subespacio del apartado anterior.
- 11. Sea (V,g) un espacio vectorial euclídeo de dimensión n y $B = \{v_1, \ldots, v_n\}$ una base de V. Se sabe que $||v_i|| = 2$ para cada $i = 1, \ldots, n$ y que $\angle(v_i, v_j) = \pi/3$ si $i \neq j$. Calcula M(g,B) y una base ortonormal de (V,g).
- 12. Se consideran los endomorfismos $f, h : \mathbb{R}^3 \to \mathbb{R}^3$ dados por:

$$f(x,y,z) = (2x+y+z,x+2y+z,x+y+2z), \quad M(h,B_u) = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 3/2 & -1 \\ 2 & -1 & 3 \end{pmatrix}.$$

Demuestra que f y h son autoadjuntos respecto a la métrica euclídea usual. Calcula dos bases ortonormales de \mathbb{R}^3 en las que las matrices de f y h sean diagonales.

13. En \mathbb{R}^3 se considera el endomorfismo f que en la base $B = \{(1,0,1), (-1,2,1), (1,1,1)\}$ tiene la siguiente matriz asociada:

$$A = \left(\begin{array}{rrr} 4 & -1 & 1 \\ 1 & 2 & 1 \\ -2 & 2 & 1 \end{array}\right).$$

Estudia si f es autoadjunto con respecto a la métrica euclídea usual de \mathbb{R}^3 y, en caso de serlo, encuentra una base ortonormal de vectores propios de f.

14. Sea (V,g) un espacio vectorial euclídeo tridimensional. Supongamos que:

$$M(g,B) = \begin{pmatrix} 5 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 1 \end{pmatrix},$$

en una cierta base B de V. Sea $f:V\to V$ el endomorfismo dado por:

$$M(f,B) = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 4 & -4 & 3 \end{array}\right).$$

Demuestra que f es autoadjunto en (V,g) y encuentra una base ortonormal de (V,g) formada por vectores propios de f.

15. Dada la matriz

$$A = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & 1 \end{array}\right),$$

encuentra una matriz $P \in O(3)$ tal que $P^{-1}AP$ sea diagonal.

16. Sea g la métrica de \mathbb{R}^3 cuya matriz en la base usual es:

$$A = \left(\begin{array}{ccc} a & 0 & 0 \\ 0 & 1 & b \\ 0 & b & 1 \end{array}\right).$$

Calcula los valores propios de A y estudia su signo para determinar el índice de g. Clasifícala en función de los parámetros $a, b \in \mathbb{R}$. ¿En algún caso se obtiene la métrica euclídea usual o la métrica lorentziana usual de \mathbb{R}^3 ?

17. Se considera la familia de métricas $g_{a,b}$ en \mathbb{R}^4 tales que:

$$M(g_{a,b},B_u) = \left(\begin{array}{cccc} a & 1 & 0 & 0 \\ 1 & a & 0 & 0 \\ 0 & 0 & 1 & b \\ 0 & 0 & b & -1 \end{array}\right).$$

Clasifica, según los valores de $a, b \in \mathbb{R}$, las métricas $g_{a,b}$.

18. Sean V un plano vectorial, B una base de V y g la métrica en V tal que:

$$M(g,B) = \left(\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array}\right).$$

Consideremos, para cada $a \in \mathbb{R}$, el endomorfismo $f_a : V \to V$ dado por:

$$M(f_a, B) = \begin{pmatrix} -1 & a \\ 1 & 1 \end{pmatrix}.$$

- a) Prueba que g es una métrica euclídea sobre V y encuentra los valores de a para los que f_a es autoadjunto en (V,g).
- b) ¿Existe algún valor de a tal que f_a es una isometría en (V,g)?
- 19. Describe las isometrías de (\mathbb{R}^2, g_u) cuyas matrices en la base usual son:

$$A = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}, \qquad C = \begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{pmatrix}.$$

20. Sea (V,g) un plano vectorial euclídeo y B una base de V para la que:

$$M(g,B) = \left(\begin{array}{cc} 5 & -8 \\ -8 & 13 \end{array}\right).$$

Estudia si los endomorfismos $f, h: V \to V$ tales que:

$$M(f,B) = \begin{pmatrix} 7 & -12 \\ 4 & -7 \end{pmatrix}$$
 y $M(h,B) = \frac{1}{\sqrt{2}} \begin{pmatrix} -7 & 13 \\ -5 & 9 \end{pmatrix}$

son isometrías de (V,g). En caso afirmativo, describe tales isometrías.

21. En \mathbb{R}^3 se consideran la métrica euclídea g cuya matriz en la base usual viene dada por

$$M(g,B_u) = \left(\begin{array}{ccc} 3 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{array}\right)$$

y el endomorfismo $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ dado por

$$f(x,y,z) = \frac{1}{3}(5x + 2y + z, -10x - y + z, 4x + y + 2z).$$

- a) Comprueba que f es una isometría.
- b) Encuentra una base ortonormal en la que f adopte su forma canónica y clasifícala.

22. Describe geométricamente las isometrías de (\mathbb{R}^3, g_u) cuyas matrices en la base usual son:

$$A = \begin{pmatrix} 1/\sqrt{5} & 0 & 2/\sqrt{5} \\ 2/\sqrt{5} & 0 & -1/\sqrt{5} \\ 0 & 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}.$$

$$D = \begin{pmatrix} -1/3 & 2/3 & 2/3 \\ 2/3 & -1/3 & 2/3 \\ 2/3 & 2/3 & -1/3 \end{pmatrix}, \qquad E = \begin{pmatrix} 1/3 & -2/3 & 2/3 \\ -2/3 & 1/3 & 2/3 \\ 2/3 & 2/3 & 1/3 \end{pmatrix}.$$

23. Sobre el espacio vectorial $\mathbb{R}_2[x]$ de los polinomios de grado ≤ 2 con coeficientes reales se considera la métrica euclídea g tal que la base $B = \{1, x, x^2\}$ es ortonormal. Demuestra que el endomorfismo $f : \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ dado por:

$$f(a_0 + a_1x + a_2x^2) = \frac{1}{3} \left((2a_0 - a_1 + 2a_2) + (-a_0 + 2a_1 + 2a_2)x + (2a_0 + 2a_1 - a_2)x^2 \right)$$

es una isometría en $(\mathbb{R}_2[x], g)$ y descríbela.

24. Sobre el espacio vectorial euclídeo $(S_2(\mathbb{R}), g)$, donde $g(A, C) = \operatorname{tr}(AC)$, se define el endomorfismo $f: S_2(\mathbb{R}) \to S_2(\mathbb{R})$ dado por:

$$f\left(\begin{array}{cc} a & c \\ c & b \end{array}\right) = \left(\begin{array}{cc} b & a/\sqrt{2} \\ a/\sqrt{2} & -\sqrt{2}c \end{array}\right).$$

Demuestra que f es una isometría de $(S_2(\mathbb{R}), g)$ y descríbela.

- 25. Consideremos \mathbb{R}^2 con su métrica euclídea usual.
 - a) Calcula la matriz $M(f, B_u)$, siendo f la simetría axial con respecto a U = L((2,3)).
 - b) Calcula, en las coordenadas usuales, las ecuaciones de un giro que lleve el vector (-4,3) en el vector (5,0).
- 26. Consideremos \mathbb{R}^3 con su métrica euclídea usual.
 - a) Calcula la matriz $M(f, B_u)$, siendo f una rotación de ángulo $\pi/2$ con eje dado por $U = \{(x, y, z) \in \mathbb{R}^3 \mid x + y = 0, x z = 0\}.$
 - b) Calcula, en coordenadas usuales, las ecuaciones de la simetría ortogonal respecto al plano perpendicular a la recta *U* del apartado anterior.
 - c) Calcula $M(f,B_u)$, donde $f: \mathbb{R}^3 \to \mathbb{R}^3$ es una isometría que verifique f(1,-1,0) = (1,-1,0), f(1,1,5) = (3,3,-3) y det(f) = 1.

- 27. En (\mathbb{R}^3, g_u) , calcula la matriz en B_u de $h \circ \sigma_U$, donde σ_U es la simetría ortogonal con respecto al plano U de ecuación z = 0, y h es el giro de ángulo $\pi/3$ alrededor del eje OX. Clasifica y describe la isometría resultante.
- 28. En (\mathbb{R}^3, g_u) , encuentra si es posible una isometría f que lleve el subespacio $U = \{(x, y, z) \in \mathbb{R}^3 \mid x z = 0\}$ en el subespacio $W = \{(x, y, z) \in \mathbb{R}^3 \mid z = 0\}$. Si es posible da $M(f, B_u)$, clasifica y describe la isometría f.
- 29. Responde de forma razonada si las siguientes afirmaciones son verdaderas o falsas:
 - a) Si g es una métrica euclídea sobre V, entonces todos los elementos diagonales de la matriz de g en cualquier base de V son positivos. ¿Es cierto el recíproco?
 - b) Sea g una métrica cuya matriz en una base B tiene un valor propio negativo. Entonces g no es euclídea.
 - c) Sean u y v dos vectores no nulos de un espacio vectorial euclídeo (V,g) que forman un ángulo α . Entonces el ángulo que forman 2u y 2v es 2α .
 - d) Toda base B de un espacio vectorial V es base ortonormal para una única métrica euclídea sobre V.
 - e) Si U es un hiperplano de un espacio vectorial euclídeo entonces hay exactamente dos vectores perpendiculares a U y unitarios.
 - f) Toda matriz cuadrada con determinante 1 o -1 es ortogonal.
 - g) Si dos subespacios de un espacio vectorial euclídeo son perpendiculares y unimos dos bases ortonormales, una de cada uno de ellos, obtenemos una base ortonormal de la suma de los dos subespacios.
 - h) Sea U un subespacio vectorial de un espacio vectorial euclídeo (V,g). Entonces, se cumple la igualdad $I_V = 2\pi_U \sigma_U$, donde π_U and σ_U son la proyección y simetría ortogonales respecto a U.
 - i) Todo endomorfismo autoadjunto de un espacio vectorial euclídeo es automorfismo.
 - *j*) Todo endomorfismo diagonalizable de un espacio vectorial es autoadjunto respecto de alguna métrica euclídea en dicho espacio.
 - k) Dos vectores propios linealmente independientes de un endomorfismo autoadjunto son ortogonales.
 - *l*) Si $f: V \to V$ es una isometría de un espacio vectorial euclídeo (V,g) entonces dos vectores propios de f asociados a valores propios distintos son ortogonales.
 - m) Toda isometría de un espacio vectorial euclídeo es un endomorfismo autoadjunto.
 - n) En un espacio vectorial euclídeo (V,g), dados dos subespacios vectoriales de la misma dimensión siempre existe una isometría de (V,g) que lleva uno en otro.
 - \tilde{n}) En (\mathbb{R}^2, g_u) consideramos el giro r_{θ} de ángulo $\theta \in (0, 2\pi)$ y la simetría ortogonal σ con respecto a la recta de ecuación y = 0. Entonces, $f = r_{\theta} \circ \sigma$ es la simetría ortogonal con respecto a la recta de ecuación $(\cos \theta 1)x + (\sin \theta)y = 0$.

- o) En un plano vectorial euclídeo la composición de dos simetrías axiales es un giro.
- p) Si una matriz ortogonal de orden 2 no es diagonal y tiene determinante positivo, entonces no es diagonalizable.
- q) Toda isometría de un espacio vectorial euclídeo de dimensión 5 para la que el subespacio de vectores fijos tiene dimensión 2 tiene determinante -1.
- r) Sobre un espacio vectorial euclídeo (V,g) de dimensión impar no existe ninguna isometría f tal que $f \circ f = -I_V$.
- s) Si (V,g) es un espacio vectorial euclídeo y f un endomorfismo autoadjunto de g que además es una isometría entonces f es una simetría ortogonal.
- t) Si V un espacio vectorial y g y g' son dos métricas euclídeas en V que verifican $g(u,v)=0 \iff g'(u,v)=0$, entonces $g'=\lambda g, \lambda>0$.
- u) Sea $M_2(\mathbb{R})$ el espacio vectorial de las matrices cuadradas de orden dos con coeficientes reales y la métrica $g(A,C) = \operatorname{traza}(AMC^t)$ donde $M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Entonces g es una métrica euclídea si y solo si a > 0 y $\det(M) > 0$.
- v) Sea (V,g) un plano vectorial métrico no degenerado que verifica la siguiente propiedad:

Todo endomomorfismo f de V que cumple

$$g(f(u), v) = g(u, f(v)), \forall u, v \in V$$

es diagonalizable.

Entonces g es definida positiva o definida negativa.

w) Dada $A \in \mathcal{M}_n(\mathbb{R})$ una matriz invertible existe P una matriz ortogonal y Q una matriz triangular superior con todos los elementos de su diagonal positivos tal que $A = P \cdot Q$.