Electronic Companion—"A Branch-Price-and-Cut Algorithm for the Vehicle Routing Problem with Release and Due Dates"

EC.1. Detailed results for the instances of class A by CG_b , CG_n and CG_h

Table EC. 1: Detailed results for the instances of class A with $\theta = 0.05$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	$\overline{G_h}$
		~		#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$A - n32 - k5_1$	1138.50	1127.17	1127.17	24	1.1	0.00	20	1.2	21	1.8
$A - n33 - k5_1$	827.50	813.75	813.75	26	1.6	0.00	24	2.6	25	2.7
$A - n33 - k6_1$	904.50	896.21	896.21	18	0.9	0.00	21	1.7	19	1.3
$A - n34 - k5_1$	915.00	893.89	893.76	28	2.4	-0.65	28	5.6	27	12.3
$A - n36 - k5_1$	1081.00	1051.30	1051.30	27	1.8	0.00	25	3.6	27	11.9
$A - n37 - k5_1$	839.00	813.38	813.38	28	2.5	0.00	29	5.2	26	6.4
$A - n37 - k6_1$	1251.50	1228.80	1226.00	31	2.7	-12.33	30	5.8	29	16.9
$A - n38 - k5_1$	894.00	851.53	851.53	49	17.7	0.00	51	273.4	58	2184.2
$A - n39 - k5_1$	1018.50	1004.50	1004.50	39	11.3	0.00	33	20.6	28	66.0
$A - n39 - k6_1$	1071.50	1071.50	1071.50	24	1.8	_	25	2.8	24	6.3
$A - n44 - k6_1$	1147.00	1141.48	1140.90	36	8.8	-10.51	36	22.1	30	134.1
$A - n45 - k6_1$	1122.00	_	1103.77	61	67.6	_	55	751.5	_	_
$A - n45 - k7_1$	1636.00	1617.88	1617.88	25	2.1	0.00	25	3.8	25	19.6
$A - n46 - k7_1$	1214.50	1201.06	1201.06	26	1.4	0.00	27	2.5	26	2.9
$A - n48 - k7_1$	1406.00	1384.30	1384.30	26	3.0	0.00	27	5.2	30	31.9
$A - n53 - k7_1$	1325.50	_	1302.22	48	36.2	_	43	284.6	_	_
$A - n54 - k7_1$	1532.00	1511.72	1511.56	44	14.1	-0.79	40	29.5	39	1031.1
$A - n55 - k9_1$	1344.50	1318.11	1317.96	36	2.6	-0.57	31	3.4	34	7.1
$A - n60 - k9_1$	1731.00	1699.27	1698.61	45	5.7	-2.08	42	9.3	39	54.1
$A - n61 - k9_1$	1178.50	_	1151.30	61	63.5	_	49	227.0	_	_
A - n62 - k81	1684.00	_	1664.17	55	28.7	_	53	57.4	_	_
$A - n63 - k9_1$	2234.50	_	2203.38	60	48.2	_	51	1406.4	_	_
$A - n63 - k10_1$	1741.00	1714.65	1714.65	43	7.2	0.00	40	10.5	42	40.0
$A - n64 - k9_1$	1854.00	1818.20	1818.20	48	11.8	0.00	43	16.4	46	585.6
$A - n65 - k9_1$	1360.00	_	1335.38	52	58.5	_	67	469.1	_	_
$A - n69 - k9_1$	-	_	1369.55	71	41.2	_	68	125.6	_	_
$A - n80 - k10_1$	_	_	2314.03	58	82.4	_	61	154.8	_	_

Table EC. 2: Detailed results for the instances of class A with $\theta = 0.10$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$A - n32 - k5_2$	1111.00	1111.00	1111.00	19	0.9	_	18	1.3	17	1.0
A - n33 - k52	849.50	825.83	825.83	18	1.1	0.00	21	1.8	20	1.9
$A - n33 - k6_2$	966.00	950.55	950.55	19	0.9	0.00	18	1.5	18	1.4
$A - n34 - k5_2$	890.00	862.43	862.41	23	1.7	-0.08	25	3.2	23	4.9
$A - n36 - k5_2$	1125.50	1099.01	1098.07	34	3.2	-3.55	31	5.0	27	21.7
$A - n37 - k5_2$	860.50	831.25	831.25	28	2.5	0.00	29	3.8	30	4.1
$A - n37 - k6_2$	1244.00	1217.64	1215.46	37	3.8	-8.27	29	8.1	42	31.6
$A - n38 - k5_2$	888.00	851.69	851.34	49	19.8	-0.96	53	310.9	62	2697.9
$A - n39 - k5_2$	1034.50	1021.09	1020.71	62	33.7	-2.83	53	572.5	34	418.2
$A - n39 - k6_2$	1123.00	1117.25	1117.25	29	2.2	0.00	27	2.9	31	5.6
$A - n44 - k6_2$	1177.00	1171.13	1170.29	29	7.1	-14.31	33	17.2	26	67.7
A - n45 - k62	1108.00	_	1098.33	62	40.5	_	62	1248.8	_	_
$A - n45 - k7_2$	1644.00	1626.08	1626.08	28	2.4	0.00	28	3.7	32	53.8
A - n46 - k72	1211.00	1197.50	1197.50	27	1.3	0.00	26	1.9	25	1.9
$A - n48 - k7_2$	1492.50	1465.00	1465.00	29	3.8	0.00	26	7.4	30	64.7
$A - n53 - k7_2$	1360.00	1330.36	1330.17	45	19.2	-0.64	41	72.3	51	1263.8
$A - n54 - k7_2$	1596.00	1568.61	1568.46	46	27.1	-0.55	43	55.8	46	2052.1
$A - n55 - k9_2$	1387.50	1364.23	1364.23	35	3.1	0.00	37	4.8	40	5.3
$A - n60 - k9_2$	1770.00	1733.40	1731.66	33	4.9	-4.75	30	6.2	34	48.5
$A - n61 - k9_2$	1217.50	_	1174.13	59	50.6	_	51	331.3	_	_
$A - n62 - k8_2$	1765.50	_	1757.05	57	36.8	_	52	49.5	_	-
$A - n63 - k9_2$	2317.50	_	2285.87	46	32.9	_	40	378.7	_	_
$A - n63 - k10_2$	1769.00	1735.13	1735.13	38	6.3	0.00	37	10.3	32	41.5
A - n64 - k92	1937.00	1904.07	1904.07	46	13.9	0.00	45	29.4	48	545.1
$A - n65 - k9_2$	1429.50	_	1402.72	78	92.1	_	85	1975.5	_	_
A - n69 - k92	1420.50	_	1377.69	66	35.1	_	66	63.3	_	_
$A - n80 - k10_2$	_	_	2401.32	57	66.3	_	63	138.2	_	_

Table EC. 3: Detailed results for the instances of class A with $\theta = 0.15$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
A - n32 - k53	1139.50	1136.63	1136.63	27	1.2	0.00	17	1.1	24	2.2
$A - n33 - k5_3$	828.00	807.42	807.42	21	1.4	0.00	26	3.1	24	2.5
$A - n33 - k6_3$	936.00	930.00	930.00	26	1.2	0.00	22	1.8	22	1.7
$A - n34 - k5_3$	951.50	936.81	936.21	26	2.5	-4.08	29	6.6	35	12.4
$A - n36 - k5_3$	1115.50	1095.07	1094.75	31	2.3	-1.57	28	4.5	30	17.8
$A - n37 - k5_3$	879.50	847.88	847.87	38	5.4	-0.01	31	7.2	33	36.2
$A - n37 - k6_3$	1320.50	1300.17	1300.17	33	3.3	0.00	26	9.3	40	25.5
$A - n38 - k5_3$	895.50	848.11	848.11	62	29.7	0.00	63	485.6	57	1521.8
$A - n39 - k5_3$	1090.00	1072.52	1072.52	41	18.3	0.00	43	85.3	29	160.1
$A - n39 - k6_3$	1158.00	1158.00	1158.00	25	2.3	_	22	2.9	20	3.2
A - n44 - k63	1195.50	1181.44	1180.94	30	6.4	-3.56	27	13.2	25	31.5
$A - n45 - k6_3$	1154.00	_	1134.75	58	61.4	_	57	792.3	_	-
$A - n45 - k7_3$	1633.00	1614.17	1614.17	27	3.4	0.00	28	9.2	28	56.8
$A - n46 - k7_3$	1245.00	1238.33	1238.33	33	1.7	0.00	32	2.8	28	2.6
$A - n48 - k7_3$	1483.50	1468.75	1468.75	34	4.2	0.00	33	6.9	38	38.8
$A - n53 - k7_3$	1381.50	_	1350.21	47	26.0	_	50	225.1	_	-
$A - n54 - k7_3$	1595.00	1575.69	1575.56	46	41.6	-0.67	46	136.2	43	3093.0
$A - n55 - k9_3$	1444.50	1418.48	1418.25	32	2.8	-0.88	32	5.3	35	6.1
$A - n60 - k9_3$	1762.00	1723.09	1723.09	40	6.9	0.00	43	12.1	39	80.0
$A - n61 - k9_3$	1254.50	_	1216.06	51	58.1	_	48	202.5	_	_
$A - n62 - k8_3$	1746.00	_	1730.78	54	38.7	_	59	60.4	_	_
$A - n63 - k9_3$	2474.50	_	2434.97	35	38.4	_	38	89.1	_	_
$A - n63 - k10_3$	1800.00	1778.74	1778.74	52	13.4	0.00	45	22.0	46	172.4
$A - n64 - k9_3$	2005.50	1973.66	1973.66	47	16.2	0.00	47	30.0	46	1417.4
$A - n65 - k9_3$	1449.50	_	1421.83	81	116.9	_	91	1624.7	_	_
$A - n69 - k9_3$	1406.00	_	1380.82	77	57.3	_	70	254.3	_	_
$A - n80 - k10_3$	_	_	2488.87	47	151.9	_	50	132.4	_	_

Table EC. 4: Detailed results for the instances of class A with $\theta=0.20$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
A - n32 - k54	1188.00	1185.83	1185.83	20	1.0	0.00	19	1.7	23	1.8
A - n33 - k54	887.50	876.08	876.08	21	1.5	0.00	23	2.8	20	3.2
A - n33 - k64	965.00	955.60	955.60	19	1.0	0.00	19	1.8	18	1.4
A - n34 - k54	927.00	903.21	903.19	22	2.8	-0.07	23	3.5	19	4.8
$A - n36 - k5_4$	1079.00	1055.58	1055.58	29	3.1	0.00	34	4.9	29	12.9
A - n37 - k54	875.00	838.80	838.80	27	3.3	0.00	28	7.9	24	6.3
$A - n37 - k6_4$	1319.50	1293.89	1293.11	34	3.6	-3.05	30	10.8	36	26.5
A - n38 - k54	995.00	962.55	962.49	53	26.0	-0.18	55	371.5	56	1270.1
$A - n39 - k5_4$	1181.50	1156.38	1156.15	30	15.2	-0.92	37	78.8	26	201.1
A - n39 - k64	1156.50	1156.50	1156.50	32	2.0	_	31	3.5	26	6.2
$A - n44 - k6_4$	1200.50	1182.77	1182.77	33	6.5	0.00	27	12.0	28	45.2
A - n45 - k64	1184.50	_	1160.67	66	80.8	_	55	1108.1	_	_
$A - n45 - k7_4$	1747.50	1732.37	1732.37	29	3.1	0.00	28	7.5	28	23.1
A - n46 - k74	1255.00	1252.35	1252.35	27	1.6	0.00	25	2.7	23	2.4
$A - n48 - k7_4$	1516.50	1496.42	1496.42	31	4.4	0.00	35	7.7	33	38.1
A - n53 - k74	1405.00	1377.15	1376.97	49	33.3	-0.65	45	75.2	50	1775.3
$A - n54 - k7_4$	_	1610.87	1610.55	40	33.2	_	39	45.7	37	1364.0
A - n55 - k94	1436.50	1413.69	1413.69	43	4.8	0.00	40	13.5	52	73.4
$A - n60 - k9_4$	1786.00	1759.61	1758.60	42	6.2	-3.83	47	8.9	43	48.7
A - n61 - k94	_	_	1257.79	55	53.7	_	48	638.7	_	_
A - n62 - k84	1870.50	_	1842.07	48	66.2	_	40	78.9	_	-
A - n63 - k94	2384.50	_	2370.99	49	60.3	_	48	1856.5	_	_
$A - n63 - k10_4$	1833.50	1811.28	1811.28	35	5.4	0.00	35	13.5	33	110.8
A - n64 - k94	2072.50	2036.23	2035.84	43	17.4	-1.08	48	34.3	46	1222.4
$A - n65 - k9_4$	1502.50	_	1472.94	79	206.0	_	75	1670.0	_	_
A - n69 - k94	1506.00	_	1479.77	71	68.3	_	70	273.1	_	_
$A - n80 - k10_4$	2539.50	_	2504.54	49	158.7	_	56	283.3	_	_

Table EC. 5: Detailed results for the instances of class A with $\theta = 0.25$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
A - n32 - k55	1177.50	1156.60	1156.60	23	1.3	0.00	23	3.0	20	1.8
$A - n33 - k5_5$	945.00	921.65	921.65	22	1.3	0.00	24	4.1	22	4.1
A - n33 - k65	951.00	941.36	941.36	20	1.1	0.00	19	1.8	19	1.8
$A - n34 - k5_5$	956.00	925.62	925.62	26	2.9	0.00	23	7.0	21	9.0
A - n36 - k55	1156.50	1138.25	1138.25	25	2.8	0.00	27	4.2	25	17.6
$A - n37 - k5_5$	854.00	832.00	832.00	31	3.5	0.00	30	5.6	33	6.1
A - n37 - k65	1370.00	1336.13	1335.12	28	3.4	-2.98	29	12.4	34	28.8
$A - n38 - k5_5$	969.00	924.67	922.33	61	40.8	-5.27	66	546.6	66	1599.8
A - n39 - k55	1134.00	1107.19	1107.12	36	18.1	-0.26	32	64.4	27	141.3
$A - n39 - k6_5$	1192.50	1192.50	1192.50	28	2.7	0.00	27	4.4	22	8.0
A - n44 - k65	1209.00	1197.51	1195.63	33	8.4	-16.36	35	25.7	27	59.9
$A - n45 - k6_5$	1185.00	_	1149.25	62	63.2	_	61	1624.9	_	_
A - n45 - k75	1779.50	1755.04	1755.04	25	3.5	0.00	25	8.9	25	64.5
$A - n46 - k7_5$	1326.00	1307.67	1307.67	28	1.6	0.00	32	2.7	31	3.6
A - n48 - k75	1530.00	1509.21	1509.21	31	4.7	0.00	37	10.3	35	239.3
$A - n53 - k7_5$	1438.50	_	1402.72	46	41.3	_	44	500.4	_	_
A - n54 - k75	1706.00	1671.41	1670.89	43	45.3	-1.50	37	72.0	38	2437.0
$A - n55 - k9_5$	1462.50	1432.66	1432.66	44	4.0	0.00	40	5.1	44	8.7
$A - n60 - k9_5$	1873.50	1839.19	1838.45	38	8.0	-2.16	38	10.3	32	112.3
$A - n61 - k9_5$	_	_	1274.86	51	63.0	_	44	317.4	_	_
A - n62 - k85	1857.00	_	1832.64	52	55.9	_	43	70.0	_	_
$A - n63 - k9_5$	2558.50	_	2533.70	50	60.9	_	45	489.7	_	_
$A - n63 - k10_5$	1877.50	1849.63	1849.63	33	6.0	0.00	40	9.6	35	58.3
$A - n64 - k9_5$	2104.00	2077.83	2077.46	48	15.9	-1.41	48	31.1	39	554.1
$A - n65 - k9_5$	1521.50	_	1519.32	73	163.1	_	81	2336.9	_	_
$A - n69 - k9_5$	1529.50	_	1503.68	52	50.4	_	55	86.7	-	_
$A - n80 - k10_5$	_	_	2657.40	61	207.1	_	56	300.0	_	_

Table EC. 6: Detailed results for the instances of class B with $\theta=0.05$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_1$	1218.50	1207.00	1206.83	35	3.0	-1.48	32	3.6	34	16.1
$B - n34 - k5_1$	1252.00	1237.17	1232.71	28	6.9	-30.07	28	9.4	29	42.2
$B - n35 - k5_1$	1831.00	1661.93	1661.93	35	2.1	0.00	34	3.5	39	11.4
$B - n38 - k6_1$	1298.00	1241.92	1241.92	33	2.3	0.00	34	2.8	28	2.0
$B - n39 - k5_1$	990.50	950.86	950.67	41	10.9	-0.47	44	14.7	38	190.0
$B - n41 - k6_1$	1317.00	1251.81	1251.81	43	11.6	0.00	43	28.2	46	200.7
$B - n43 - k6_1$	1058.00	1038.53	1038.29	44	7.4	-1.23	43	9.1	42	60.8
$B - n44 - k7_1$	1526.50	1446.03	1446.03	30	3.9	0.00	30	4.3	25	7.9
$B - n45 - k5_1$	927.00	_	848.05	83	357.4	_	103	2453.7	_	_
$B - n45 - k6_1$	966.50	_	938.34	58	98.6	-	63	826.8	_	_
$B - n50 - k7_1$	1098.50	1012.53	1010.81	28	3.1	-2.00	34	6.3	28	4.7
$B - n50 - k8_1$	1951.00	1915.97	1915.34	38	9.9	-1.80	32	15.2	35	221.5
$B - n51 - k7_1$	_	_	1473.83	64	189.4	_	58	315.5	_	_
$B - n52 - k7_1$	1367.50	1307.15	1306.93	69	53.1	-0.36	59	42.4	69	1408.2
$B - n56 - k7_1$	1286.50	1203.97	1203.60	56	20.6	-0.45	62	29.3	62	251.8
$B - n57 - k7_1$	2046.00	_	1999.01	98	1261.2	_	62	2931.1	_	_
$B - n57 - k9_1$	3038.00	2999.46	2998.59	40	4.1	-2.26	36	4.8	36	17.3
$B - n63 - k10_1$	2725.00	2684.03	2681.69	48	12.4	-5.71	53	20.1	49	808.4
$B - n64 - k9_1$	_	_	1116.70	72	505.9	_	53	746.9	_	_
$B - n66 - k9_1$	2177.50	_	2140.14	65	111.5	_	66	171.8	_	_
$B - n67 - k10_1$	_	1353.86	1353.84	52	8.1	0.00	54	12.9	54	69.2
$B - n68 - k9_1$	2244.50	_	2175.99	63	61.2	_	60	52.9	_	_
$B - n78 - k10_1$	_	_	1920.21	85	80.8	_	82	124.0	_	_

Table EC. 7: Detailed results for the instances of class B with $\theta=0.10$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_2$	1243.00	1238.25	1238.20	27	2.1	-1.05	24	2.4	34	10.4
$B - n34 - k5_2$	1276.50	1260.23	1250.57	34	9.1	-59.37	29	11.1	32	42.0
$B - n35 - k5_2$	1803.00	1640.71	1640.71	31	$^{2.4}$	0.00	35	5.7	35	8.6
$B - n38 - k6_2$	1303.00	1257.28	1257.28	34	1.9	0.00	29	2.0	34	2.8
B - n39 - k52	1027.00	985.64	985.64	35	18.6	0.00	38	14.5	31	413.5
$B - n41 - k6_2$	1271.50	1258.55	1258.52	40	11.4	-0.23	40	64.2	49	343.2
$B - n43 - k6_2$	1088.50	1057.25	1056.46	32	6.7	-2.53	39	10.6	34	79.2
$B - n44 - k7_2$	1583.00	1500.35	1500.35	27	3.4	0.00	31	5.1	32	12.3
$B - n45 - k5_2$	917.00	_	843.00	86	649.8	_	_	_	-	-
$B - n45 - k6_2$	1024.00	_	994.22	58	110.0	_	52	660.3	_	_
$B - n50 - k7_2$	1121.50	1047.07	1047.07	27	3.0	0.00	29	4.1	27	4.1
$B - n50 - k8_2$	1978.50	1945.73	1945.60	33	11.2	-0.40	27	11.1	32	309.1
$B - n51 - k7_2$	1612.00	1508.29	1506.47	60	232.0	-1.75	58	300.9	65	2986.5
$B - n52 - k7_2$	1364.00	1312.05	1310.88	65	125.3	-2.25	54	60.3	56	1603.5
$B - n56 - k7_2$	1327.00	1249.98	1249.98	60	23.7	0.00	54	26.4	53	273.4
$B - n57 - k7_2$	_	_	2016.46	73	839.4	_	55	2967.7	-	-
$B - n57 - k9_2$	3105.00	3074.10	3073.45	31	5.2	-2.10	27	4.6	30	47.3
$B - n63 - k10_2$	2799.50	2753.80	2751.36	46	16.0	-5.34	51	16.8	53	1735.1
$B - n64 - k9_2$	_	-	1158.52	66	354.4	_	58	645.9	_	_
$B - n66 - k9_2$	_	_	2184.25	58	131.5	_	53	317.8	-	-
$B - n67 - k10_2$	_	1309.27	1309.26	71	10.5	0.00	68	16.4	77	85.6
$B - n68 - k9_2$	2365.00	_	2301.60	69	95.3	_	61	77.8	_	_
$B - n78 - k10_2$	_	_	1937.17	67	89.5	_	66	102.0	_	_

Table EC. 8: Detailed results for the instances of class B with $\theta = 0.15$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_3$	1265.50	1256.23	1254.03	30	3.2	-23.73	28	4.1	28	12.0
$B - n34 - k5_3$	1302.50	1289.02	1282.89	30	14.8	-45.47	34	14.6	29	43.9
$B - n35 - k5_3$	1921.00	1785.36	1785.36	35	3.3	0.00	33	5.7	31	9.5
$B - n38 - k6_3$	1387.50	1336.58	1336.58	32	$^{2.4}$	0.00	33	3.2	30	3.6
$B - n39 - k5_3$	1022.50	986.04	986.04	38	13.4	0.00	34	13.5	38	223.8
$B - n41 - k6_3$	1294.00	1271.26	1271.26	42	12.5	0.00	34	26.9	51	292.1
$B - n43 - k6_3$	1133.00	1116.72	1115.44	39	6.6	-7.86	39	11.2	34	59.5
$B - n44 - k7_3$	1546.50	1486.19	1486.19	37	5.0	0.00	35	7.8	42	29.0
$B - n45 - k5_3$	939.00	_	850.10	103	866.2	_	_	_	-	_
$B - n45 - k6_3$	1011.50	_	988.25	55	104.3	_	53	945.1	-	_
$B - n50 - k7_3$	1153.50	1071.80	1071.77	38	5.1	-0.04	33	6.3	34	7.1
$B - n50 - k8_3$	2024.00	1993.69	1993.33	31	15.6	-1.19	27	12.1	29	312.2
$B - n51 - k7_3$	_	1576.96	1574.95	59	132.4	_	55	303.3	68	3382.6
$B - n52 - k7_3$	1452.00	1389.58	1387.42	61	96.8	-3.46	75	107.9	74	1836.5
$B - n56 - k7_3$	1330.00	1254.68	1254.05	65	35.2	-0.84	64	47.0	64	500.3
$B - n57 - k7_3$	-	_	2113.10	73	1370.1	_	_	_	_	_
$B - n57 - k9_3$	3216.00	3174.89	3174.89	31	5.3	0.00	30	5.6	34	67.0
$B - n63 - k10_3$	2869.50	2823.63	2822.77	48	17.4	-1.87	51	26.9	56	1340.1
$B - n64 - k9_3$	-	_	1178.92	60	462.2	_	55	964.3	_	_
$B - n66 - k9_3$	2300.50	-	2278.16	60	270.6	_	61	1816.8	_	_
$B - n67 - k10_3$	-	1392.52	1392.52	65	10.3	0.00	64	17.0	56	179.7
$B - n68 - k9_3$	-	-	2342.75	48	80.6	_	53	53.3	_	_
$B - n78 - k10_3$	2406.50	-	1972.65	56	97.2	_	59	97.5	_	_

Table EC. 9: Detailed results for the instances of class B with $\theta = 0.20$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
B - n31 - k54	1308.50	1300.00	1299.57	34	3.1	-5.06	26	3.9	32	12.9
$B - n34 - k5_4$	1306.00	1306.00	1302.07	29	12.9	_	27	11.0	28	50.7
B - n35 - k54	1884.00	1752.39	1750.49	39	3.3	-1.44	34	3.7	29	10.8
$B - n38 - k6_4$	1389.50	1338.28	1338.28	28	1.9	0.00	28	2.8	27	2.9
B - n39 - k54	1038.50	994.18	994.18	45	13.6	0.00	38	13.4	44	327.2
$B - n41 - k6_4$	1316.00	1297.84	1297.84	46	23.5	0.00	40	55.8	48	408.6
B - n43 - k64	1138.50	1110.06	1109.58	37	8.9	-1.69	38	11.6	27	59.6
$B - n44 - k7_4$	1641.50	1565.42	1565.42	35	4.6	0.00	34	6.0	39	17.0
B - n45 - k54	987.50	_	905.04	98	1043.3	_	_	_	_	_
$B - n45 - k6_4$	1060.50	_	1055.17	57	88.9	_	52	698.8	_	_
$B - n50 - k7_4$	1191.00	1115.85	1115.85	33	5.8	0.00	38	9.6	38	12.8
$B - n50 - k8_4$	2040.50	2020.53	2020.39	39	10.9	-0.70	33	11.0	36	141.6
B - n51 - k74	1753.00	1664.20	1661.82	64	243.7	-2.68	61	301.7	64	3217.6
$B - n52 - k7_4$	1499.50	1439.83	1438.48	62	74.1	-2.26	53	88.5	52	2251.0
B - n56 - k74	1387.50	1304.87	1304.87	54	27.2	0.00	56	31.4	59	305.8
$B - n57 - k7_4$	2237.00	_	2205.61	78	1410.1	_	_	_	_	_
B - n57 - k94	3193.00	3171.60	3171.60	27	3.7	0.00	27	4.6	31	40.9
$B - n63 - k10_4$	2895.00	2853.12	2851.98	44	16.7	-2.72	59	36.1	53	1939.5
B - n64 - k94	_	_	1240.78	62	489.8	_	52	1299.9	_	_
$B - n66 - k9_4$	2336.00	_	2299.82	58	189.4	_	58	1923.0	_	_
B - n67 - k104	1516.50	1435.51	1435.44	47	10.1	-0.09	52	18.0	48	57.7
$B - n68 - k9_4$	2423.00	_	2369.57	53	75.3	_	52	85.9	_	_
B - n78 - k104	_	_	2064.86	54	91.3	_	65	165.4	_	_

Table EC. 10: Detailed results for the instances of class B with $\theta=0.25$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	$z_{l_{P_0}}$	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_5$	1337.00	1330.00	1327.00	30	3.2	-42.86	31	5.1	26	12.0
$B - n34 - k5_5$	1380.50	1377.07	1376.27	29	11.0	-23.32	32	21.8	27	43.0
$B - n35 - k5_5$	1926.00	1780.50	1780.50	38	3.1	0.00	37	4.9	32	31.1
$B - n38 - k6_5$	1446.00	1386.00	1386.00	20	1.5	0.00	24	2.3	20	1.8
$B - n39 - k5_5$	1021.00	985.43	985.34	34	10.3	-0.24	36	14.5	32	228.7
$B - n41 - k6_5$	1391.50	1373.83	1362.19	42	12.3	-65.87	39	58.5	47	561.7
$B - n43 - k6_5$	1151.00	1121.71	1121.36	36	6.7	-1.19	38	14.9	37	81.5
$B - n44 - k7_5$	1696.00	1617.35	1617.35	30	4.5	0.00	26	5.5	28	10.2
$B - n45 - k5_5$	1014.00	_	926.82	88	893.1	_	_	_	_	_
$B - n45 - k6_5$	1114.50	_	1101.52	61	115.4	_	52	1401.7	_	_
$B - n50 - k7_5$	1246.50	1174.91	1174.86	42	9.5	-0.07	46	11.0	47	52.1
$B - n50 - k8_5$	2108.00	2096.56	2096.31	32	9.2	-2.19	28	13.4	32	81.4
$B - n51 - k7_5$	1835.50	1738.41	1733.36	53	340.4	-5.20	57	517.7	56	2398.2
B - n52 - k75	1531.50	1465.08	1463.59	58	129.7	-2.24	58	139.2	50	2558.0
$B - n56 - k7_5$	1409.00	1325.26	1322.99	67	25.2	-2.71	66	47.7	70	265.0
$B - n57 - k9_5$	3282.50	3247.79	3247.77	38	6.4	-0.06	29	6.8	27	42.1
$B - n63 - k10_5$	2970.00	2919.00	2915.58	51	23.7	-6.71	45	29.0	50	2243.6
$B - n64 - k9_5$	_	_	1273.55	68	561.5	_	55	1286.6	_	_
$B - n66 - k9_5$	2389.50	-	2353.05	72	261.5	-	61	3414.4	_	_
$B - n67 - k10_5$	_	1492.36	1492.36	67	11.1	0.00	60	16.2	81	58.1
$B - n68 - k9_5$	2492.00	2443.59	2443.59	59	107.8	0.00	52	111.7	52	3081.4
$B - n78 - k10_5$	_	_	2121.30	96	150.3	_	86	371.0	_	_

Table EC. 11: Detailed results for the instances of class E-F-M with $\theta=0.05$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	$\overline{G_h}$
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_1$	568.00	_	563.22	73	1107.4	_	_	_	_	_
$E-n76-k7_1$	_	_	720.84	85	246.0	_	89	377.8	_	_
$E-n76-k8_1$	779.00	_	769.69	94	1193.2	_	87	2922.2	_	_
$E - n76 - k10_1$	_	_	930.89	69	271.0	_	68	2179.8	_	-
$E - n76 - k14_1$	1162.00	1147.24	1147.23	46	14.3	-0.07	45	175.6	55	607.3
$E - n101 - k14_1$	_	1236.08	1235.90	57	31.9	_	57	61.7	56	2981.8
$F - n45 - k4_1$	_	_	804.21	89	2181.5	_	78	3295.8	_	_
$M - n101 - k10_1$	942.00	_	942.00	210	575.3	-	181	1151.9	_	_

Table EC. 12: Detailed results for the instances of class E-F-M with $\theta = 0.10$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
		-		#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_2$	614.00	_	606.11	74	1033.5	_	_	-	_	-
$E - n76 - k7_2$	723.00	_	715.68	103	721.3	_	95	808.0	_	_
$E - n76 - k8_2$	_	_	770.48	85	495.3	_	81	2536.8	_	-
$E - n76 - k10_2$	_	_	927.74	76	354.2	_	66	2534.3	_	_
$E - n76 - k14_2$	1170.50	1152.54	1152.53	38	15.1	-0.06	36	249.1	40	650.2
$E - n101 - k14_2$	1277.50	1259.77	1259.77	69	36.1	0.00	66	57.6	65	3164.8
$F - n45 - k4_2$	_	_	796.08	80	2455.0	_	85	2593.4	_	-
$M - n101 - k10_2$	953.50	_	953.50	188	1637.0	_	176	670.0	_	

Table EC. 13: Detailed results for the instances of class E-F-M with $\theta=0.15$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		CG_n		CC	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_3$	632.00	_	624.56	75	1442.7	_	_	-	_	_
$E - n76 - k7_3$	_	_	722.50	105	317.4	_	108	443.7	_	_
$E - n76 - k8_3$	_	_	792.91	66	437.8	_	68	891.6	_	_
$E - n76 - k10_3$	_	_	977.31	63	248.0	_	61	3337.9	_	_
$E - n76 - k14_3$	1182.50	1172.97	1172.97	44	18.3	0.00	42	235.9	45	688.9
$E - n101 - k14_3$	_	_	1283.98	57	68.0	_	59	113.0	_	_
$F - n45 - k4_3$	845.00	_	835.00	99	1806.7	_	_	_	_	_
$M - n101 - k10_3$	1017.00	_	1013.17	160	1161.1	_	147	1259.3	_	_

Table EC. 14: Detailed results for the instances of class E-F-M with $\theta = 0.20$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	CG_h	
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_4$	_	_	620.67	66	1661.0	_	-	-	_	_
$E-n76-k7_4$	_	_	754.37	87	987.9	_	88	1450.5	_	_
$E - n76 - k8_4$	_	_	809.49	76	431.9	_	74	546.3	_	_
$E - n76 - k10_4$	_	_	1006.50	69	334.7	_	62	3339.5	_	_
$E - n76 - k14_4$	1196.50	1191.06	1191.06	36	15.5	0.00	38	164.4	41	476.5
$E - n101 - k14_4$	_	_	1294.74	59	54.0	_	59	95.3	_	_
$F - n45 - k4_4$	_	_	800.67	94	3028.5	_	82	2818.2	_	_
$M - n101 - k10_4$	1031.50	_	1031.50	184	1110.2	_	163	341.5	_	_

Table EC. 15: Detailed results for the instances of class E-F-M with $\theta=0.25$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_5$	_	-	649.17	74	1517.4	_	-	_	_	_
$E-n76-k7_5$	_	_	747.18	99	872.2	_	91	1055.2	_	_
$E - n76 - k8_5$	_	-	820.13	64	283.5	_	66	533.9	_	_
$E - n76 - k10_5$	_	_	1025.45	65	299.0	_	_	_	_	_
$E - n76 - k14_5$	1255.00	1234.95	1234.95	41	19.3	0.00	40	172.8	46	590.5
E - n101 - k145	_	_	1307.97	53	60.5	_	58	127.4	_	_
$M - n101 - k10_5$	1056.50	_	1056.50	150	1381.3	_	157	1166.7	_	_

Table EC. 16: Detailed results for the instances of class P with $\theta = 0.05$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b			G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_1$	589.00	588.17	588.17	5	0.4	0.00	4	0.5	5	0.5
$P - n19 - k2_1$	321.50	312.75	312.75	33	6.7	0.00	20	47.6	28	122.6
$P - n20 - k2_1$	278.50	278.50	278.17	30	12.5	_	28	28.8	22	89.6
$P - n21 - k2_1$	290.00	290.00	290.00	45	12.1	_	40	38.2	24	36.6
$P - n22 - k2_1$	301.50	301.50	301.50	39	18.7	_	39	64.8	26	1326.4
$P - n22 - k8_1$	763.00	730.00	730.00	10	0.5	0.00	7	0.5	9	0.5
$P - n23 - k8_1$	680.00	680.00	680.00	10	0.5	_	9	0.6	10	0.6
$P - n40 - k5_1$	550.50	550.50	550.50	45	9.1	_	48	12.3	37	66.0
$P - n45 - k5_1$	585.00	_	579.06	41	38.8	_	47	71.9	_	_
$P - n50 - k7_1$	638.50	633.19	633.19	31	5.4	-0.02	26	6.8	32	9.9
$P - n50 - k8_1$	777.50	744.88	744.86	40	12.1	-0.04	40	91.4	43	500.9
$P - n50 - k10_1$	868.00	854.17	854.17	24	1.4	0.00	29	3.0	31	6.8
$P - n51 - k10_1$	839.00	828.06	828.06	25	2.1	0.00	22	5.6	26	5.2
$P - n55 - k7_1$	688.00	682.97	682.97	44	15.2	0.00	42	28.5	45	1130.2
$P - n55 - k8_1$	758.00	727.67	727.20	37	13.9	-1.55	36	130.7	44	1756.8
$P - n55 - k10_1$	792.00	790.32	790.32	25	2.0	0.00	24	2.6	23	2.3
$P - n55 - k15_1$	1155.00	1128.46	1128.35	28	1.8	-0.41	22	3.0	24	30.5
$P - n60 - k10_1$	873.50	864.89	864.89	35	6.4	0.00	36	15.2	42	249.4
$P - n60 - k15_1$	1129.50	1122.18	1122.18	17	0.9	0.00	18	1.3	15	1.1
$P - n65 - k10_1$	970.00	956.35	956.35	37	12.4	0.00	40	25.4	42	2383.1
$P - n70 - k10_1$	944.50	_	924.36	55	77.6	_	45	631.7	_	_

Table EC. 17: Detailed results for the instances of class P with $\theta = 0.10$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}	CG_b		C	G_n	C	G_h	
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_2$	595.00	594.50	594.50	5	0.4	0.00	4	0.5	5	0.6
$P - n19 - k2_2$	325.00	316.47	316.00	31	10.7	-5.50	24	37.3	30	201.1
$P - n20 - k2_2$	300.00	299.00	293.00	38	22.8	-600.00	26	47.3	21	115.7
$P - n21 - k2_2$	292.50	292.50	292.50	42	9.3	_	30	33.6	21	69.7
$P - n22 - k2_2$	286.00	286.00	286.00	53	25.5	_	39	67.7	27	1322.2
$P - n22 - k8_2$	758.00	727.75	727.75	10	0.4	0.00	7	0.5	11	0.6
$P - n23 - k8_2$	706.00	706.00	706.00	10	0.4	_	7	0.5	8	0.7
$P - n40 - k5_2$	598.00	592.80	592.80	32	7.2	0.00	32	12.4	33	141.3
$P - n45 - k5_2$	572.00	_	566.97	48	55.9	_	49	151.2	_	_
$P - n50 - k7_2$	656.50	649.43	649.43	28	3.9	0.00	29	7.3	31	14.1
$P - n50 - k8_2$	-	748.29	748.26	40	18.8	0.00	35	108.3	39	1165.7
$P - n50 - k10_2$	852.00	841.40	841.40	23	1.4	0.00	23	2.2	21	4.8
$P - n51 - k10_2$	850.00	834.98	834.98	27	2.6	0.00	28	5.6	30	6.6
$P - n55 - k7_2$	699.00	686.55	686.55	46	12.2	0.00	44	18.2	48	292.7
$P - n55 - k8_2$	-	740.18	740.18	39	15.6	0.00	35	138.7	45	751.5
$P - n55 - k10_2$	807.00	800.48	800.48	18	1.2	0.00	17	1.6	18	1.5
$P - n55 - k15_2$	1177.50	1148.88	1148.88	30	1.9	0.00	22	2.6	28	33.5
$P - n60 - k10_2$	902.00	887.83	887.83	33	6.4	0.00	34	14.2	34	175.0
$P - n60 - k15_2$	1136.00	1123.59	1123.59	20	1.0	0.00	23	1.9	21	1.5
$P - n65 - k10_2$	977.50	967.87	967.87	36	4.8	0.00	39	8.0	34	8.8
$P - n70 - k10_2$	964.00	_	948.54	54	67.5	_	52	463.0	_	_

Table EC. 18: Detailed results for the instances of class P with $\theta=0.15$ by $CG_b,\,CG_n$ and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}	CG_b		C	G_n	C	G_h	
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_3$	602.00	600.00	600.00	4	0.4	0.00	4	0.5	4	0.6
$P - n19 - k2_3$	327.50	320.50	319.14	28	10.5	-19.39	26	97.6	25	200.0
$P - n20 - k2_3$	303.00	303.00	301.33	28	10.0	_	26	77.2	28	123.5
$P - n21 - k2_3$	275.50	275.50	275.50	41	11.1	0.00	29	24.3	25	34.8
$P - n22 - k2_3$	302.00	302.00	302.00	51	33.5	0.00	46	193.0	32	617.2
$P - n22 - k8_3$	772.00	740.80	740.80	8	0.4	0.00	6	0.6	9	0.6
$P - n23 - k8_3$	708.50	708.50	708.50	10	0.5	0.00	6	0.6	8	0.6
$P - n40 - k5_3$	597.50	592.13	592.13	39	11.8	0.00	34	15.5	37	112.2
$P - n45 - k5_3$	593.00	_	584.48	47	62.6	_	48	115.5	-	_
$P - n50 - k7_3$	662.00	652.18	652.18	29	6.6	0.00	31	10.7	32	74.1
$P - n50 - k8_3$	_	765.59	765.38	37	14.3	_	41	203.6	39	1822.3
$P - n50 - k10_3$	904.50	887.84	887.84	29	1.6	0.00	26	3.3	28	3.7
$P - n51 - k10_3$	855.00	839.04	838.98	29	2.8	-0.41	25	5.3	34	6.8
$P - n55 - k7_3$	706.00	699.06	699.06	47	19.3	0.00	47	28.6	46	820.8
$P - n55 - k8_3$	_	780.59	780.59	37	16.0	0.00	36	161.0	39	876.8
$P - n55 - k10_3$	837.50	831.11	831.11	23	1.4	0.00	24	2.4	23	1.9
$P - n55 - k15_3$	1198.00	1178.35	1178.09	23	1.6	-1.32	21	3.2	24	42.6
$P - n60 - k10_3$	868.00	863.42	863.42	32	5.9	0.00	33	13.8	39	126.8
$P - n60 - k15_3$	1165.00	1157.39	1157.39	21	1.0	0.00	23	2.1	23	1.9
$P - n65 - k10_3$	987.50	976.70	976.70	45	12.2	0.00	42	34.0	42	1421.0
$P - n70 - k10_3$	-	-	955.17	54	81.1	_	46	976.5	_	-

Table EC. 19: Detailed results for the instances of class P with $\theta = 0.20$ by CG_b , CG_n and CG_h

Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_4$	607.00	604.33	604.33	5	0.4	0.00	4	0.5	5	0.6
P - n19 - k24	332.00	328.23	328.23	28	8.6	0.00	23	60.2	27	136.2
$P - n20 - k2_4$	305.00	305.00	305.00	40	21.3	0.00	31	72.4	22	213.3
P - n21 - k24	307.50	307.50	307.50	38	19.2	0.00	35	141.9	27	411.6
$P - n22 - k2_4$	329.00	329.00	329.00	44	23.8	0.00	40	91.3	29	303.2
P - n22 - k84	781.50	747.50	747.50	9	0.4	0.00	7	0.5	9	0.5
$P - n23 - k8_4$	698.00	698.00	698.00	11	0.4	0.00	10	0.6	13	0.6
P - n40 - k54	613.50	606.82	606.82	50	13.4	0.00	36	19.0	36	368.9
$P - n45 - k5_4$	589.00	_	585.25	49	67.2	_	45	183.1	_	_
P - n50 - k74	656.00	648.50	648.50	34	6.6	0.00	36	11.6	33	75.0
$P - n50 - k8_4$	_	806.27	806.27	35	15.7	0.00	34	156.4	37	1194.5
$P - n50 - k10_4$	902.00	885.13	885.13	22	1.4	0.00	20	2.3	22	4.8
$P - n51 - k10_4$	893.00	874.17	874.08	26	4.3	-0.48	23	5.3	28	8.1
P - n55 - k74	721.00	712.54	712.25	28	12.2	-3.45	26	17.3	29	90.9
$P - n55 - k8_4$	_	763.02	762.52	41	16.0	_	34	165.2	34	762.8
$P - n55 - k10_4$	832.50	825.40	825.40	26	1.5	0.00	27	2.3	26	1.9
$P - n55 - k15_4$	1192.00	1158.07	1158.07	24	2.2	0.00	17	3.2	22	38.4
$P - n60 - k10_4$	876.50	876.50	876.50	26	3.3	0.00	30	8.2	29	30.1
$P - n60 - k15_4$	1172.50	1161.69	1161.69	20	1.1	0.00	20	1.8	23	1.7
$P - n65 - k10_4$	1043.00	1026.85	1026.85	40	14.8	0.00	36	24.0	37	804.6
$P - n70 - k10_4$	1008.00	_	980.41	54	102.3	_	52	1405.0	_	_

Table EC. 20: Detailed results for the instances of class P with $\theta = 0.25$ by CG_b , CG_n and CG_h

	. 20. 2000	arroa robar	00 101 0110 1	11000011000	or crasss	1 111011 0	0.20 27	cab, cab	, arra e e	i i
Instance	z_{ip}	z_{lp_0}	z_{lp}		CG_b		C	G_n	C	G_h
				#Iter	$t_{lp}(s)$	$\Delta_{lp}(\%)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
P - n16 - k85	616.50	614.33	614.33	6	0.6	0.00	4	0.5	6	0.5
$P - n19 - k2_5$	357.50	350.00	350.00	31	16.0	0.00	27	89.6	25	117.6
P - n20 - k25	314.00	300.25	300.25	33	27.8	0.00	32	111.3	25	365.0
$P - n21 - k2_5$	319.50	319.50	319.50	43	15.1	0.00	35	84.2	26	37.6
P - n22 - k25	312.50	312.50	312.50	45	18.8	0.00	51	155.0	30	107.4
$P - n22 - k8_5$	790.00	763.17	763.17	9	0.4	0.00	6	0.6	9	0.5
$P - n23 - k8_5$	719.00	719.00	719.00	9	0.4	0.00	6	0.5	8	0.6
$P - n40 - k5_5$	614.50	605.68	605.64	36	10.3	-0.49	47	21.7	38	320.7
$P - n45 - k5_5$	_	_	610.34	58	95.3	_	46	307.1	_	_
$P - n50 - k7_5$	678.50	669.51	669.51	30	6.4	0.00	30	13.3	32	125.9
$P - n50 - k8_5$	_	810.52	810.36	37	14.2	0.00	32	151.3	39	842.7
$P - n50 - k10_5$	922.50	900.80	900.80	25	1.8	0.00	26	4.5	29	7.1
$P - n51 - k10_5$	922.00	902.74	902.74	28	2.9	0.00	29	11.3	30	8.5
$P - n55 - k7_5$	759.00	_	741.83	57	34.5	_	47	35.8	_	_
$P - n55 - k8_5$	_	782.54	782.46	39	15.3	_	38	188.2	43	1306.1
$P - n55 - k10_5$	848.50	844.69	844.69	27	2.3	0.00	29	3.8	26	3.4
$P - n55 - k15_5$	1218.50	1188.37	1188.37	23	1.8	0.00	19	3.1	26	23.6
$P - n60 - k10_5$	934.50	915.96	915.96	34	7.9	0.00	37	15.7	31	348.6
$P - n60 - k15_5$	1159.00	1150.60	1150.60	14	0.9	0.00	18	1.3	18	1.2
$P - n65 - k10_5$	1040.50	_	1028.19	44	12.8	_	42	28.0	_	_
$P - n70 - k10_5$	1030.50	_	1006.52	50	115.7	_	47	1285.1	_	_

EC.2. Detailed results for the instances of class A by CG_b , CG_m , CG_t and CG_d

In this section, the corresponding detailed results are presented in Tables EC.21-EC.40. The columns have the same meaning as in Table 4.

Table EC. 21: Detailed results for the instances of class A with $\theta = 0.05$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	\overline{C}	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$A - n32 - k5_1$	1127.17	24	1.1	24	3.1	24	1.9	20	1.4
$A - n33 - k5_1$	813.75	26	1.6	35	26.1	35	15.5	49	10.6
$A - n33 - k6_1$	896.21	18	0.9	26	8.5	26	5.2	28	4.2
$A - n34 - k5_1$	893.76	28	$^{2.4}$	36	22.4	36	15.2	60	14.0
$A - n36 - k5_1$	1051.30	27	1.8	39	38.6	39	26.3	39	11.1
$A - n37 - k5_1$	813.38	28	2.5	45	48.9	45	32.8	42	18.6
$A - n37 - k6_1$	1226.00	31	2.7	60	53.4	60	34.6	58	22.1
$A - n38 - k5_1$	851.53	49	17.7	89	420.5	89	339.7	118	110.1
$A - n39 - k5_1$	1004.50	39	11.3	65	360.4	65	264.8	78	77.2
$A - n39 - k6_1$	1071.50	24	1.8	22	9.3	22	5.9	34	4.0
$A - n44 - k6_1$	1140.90	36	8.8	94	385.1	94	275.7	124	129.0
$A - n45 - k6_1$	1103.77	61	67.6	107	1074.4	107	785.7	160	344.5
$A - n45 - k7_1$	1617.88	25	2.1	40	27.6	40	16.1	53	12.1
$A - n46 - k7_1$	1201.06	26	1.4	31	6.2	31	3.4	36	3.8
$A - n48 - k7_1$	1384.30	26	3.0	40	31.2	40	18.3	43	12.4
$A - n53 - k7_1$	1302.22	48	36.2	82	638.8	82	435.5	130	234.8
$A - n54 - k7_1$	1511.56	44	14.1	74	451.2	74	294.1	80	136.6
$A - n55 - k9_1$	1317.96	36	2.6	46	75.1	46	47.0	49	14.0
$A - n60 - k9_1$	1698.61	45	5.7	52	87.5	52	51.8	56	55.0
$A - n61 - k9_1$	1151.30	61	63.5	121	1736.9	121	1217.7	158	795.5
$A - n62 - k8_1$	1664.17	55	28.7	79	663.6	79	444.6	140	581.1
$A - n63 - k9_1$	2203.38	60	48.2	104	1398.7	104	971.5	129	245.8
$A - n63 - k10_1$	1714.65	43	7.2	46	61.6	46	38.9	66	40.9
$A - n64 - k9_1$	1818.20	48	11.8	47	339.9	47	226.1	_	_
$A - n65 - k9_1$	1335.38	52	58.5	90	966.0	90	653.2	79	286.2
$A - n69 - k9_1$	1369.55	71	41.2	163	3455.9	163	2525.5	301	985.5
$A - n80 - k10_1$	2314.03	58	82.4	_	_	112	2325.6	173	1201.1

Table EC. 22: Detailed results for the instances of class A with $\theta = 0.10$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	CG_b		C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$A - n32 - k5_2$	1111.00	19	0.9	19	2.8	19	1.7	18	1.4
A - n33 - k52	825.83	18	1.1	23	7.6	23	4.4	34	5.9
$A - n33 - k6_2$	950.55	19	0.9	21	7.0	21	4.5	33	5.2
A - n34 - k52	862.41	23	1.7	33	18.4	33	11.6	34	7.8
$A - n36 - k5_2$	1098.07	34	3.2	37	65.4	37	45.2	43	18.8
$A - n37 - k5_2$	831.25	28	2.5	41	59.3	41	38.7	47	8.8
$A - n37 - k6_2$	1215.46	37	3.8	61	75.4	61	50.2	132	42.7
$A - n38 - k5_2$	851.34	49	19.8	80	369.2	80	266.9	150	342.7
$A - n39 - k5_2$	1020.71	62	33.7	95	422.9	95	307.3	85	122.3
$A - n39 - k6_2$	1117.25	29	2.2	21	8.3	21	6.4	41	9.2
$A - n44 - k6_2$	1170.29	29	7.1	50	211.3	50	144.4	58	97.8
$A - n45 - k6_2$	1098.33	62	40.5	_	-	106	3207.8	165	743.7
$A - n45 - k7_2$	1626.08	28	2.4	67	82.5	67	52.8	73	20.2
$A - n46 - k7_2$	1197.50	27	1.3	23	4.1	23	2.3	36	3.6
$A - n48 - k7_2$	1465.00	29	3.8	51	84.5	51	51.7	101	73.2
$A - n53 - k7_2$	1330.17	45	19.2	95	545.3	95	360.9	195	793.7
$A - n54 - k7_2$	1568.46	46	27.1	58	431.6	58	281.9	95	270.5
$A - n55 - k9_2$	1364.23	35	3.1	48	68.7	48	43.9	60	20.4
$A - n60 - k9_2$	1731.66	33	4.9	46	70.1	46	42.5	57	55.8
$A - n61 - k9_2$	1174.13	59	50.6	107	1580.8	107	1100.2	228	788.5
$A - n62 - k8_2$	1757.05	57	36.8	87	557.3	87	372.5	107	291.5
$A - n63 - k9_2$	2285.87	46	32.9	102	796.9	102	574.2	121	332.8
$A - n63 - k10_2$	1735.13	38	6.3	40	59.1	40	37.8	60	35.4
$A - n64 - k9_2$	1904.07	46	13.9	65	673.3	65	422.4	108	207.0
$A - n65 - k9_2$	1402.72	78	92.1	220	2150.4	220	1383.2	296	926.4
$A - n69 - k9_2$	1377.69	66	35.1	141	1874.2	141	1343.9	231	469.5
$A - n80 - k10_2$	2401.32	57	66.3	106	2023.2	106	1458.7	148	1115.5

Table EC. 23: Detailed results for the instances of class A with $\theta = 0.15$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	CG_b		C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
A - n32 - k53	1136.63	27	1.2	22	3.8	22	2.3	34	2.7
$A - n33 - k5_3$	807.42	21	1.4	36	24.6	36	14.9	40	6.1
$A - n33 - k6_3$	930.00	26	1.2	26	9.8	26	6.1	36	5.7
$A - n34 - k5_3$	936.21	26	2.5	44	42.3	44	28.4	78	24.3
$A - n36 - k5_3$	1094.75	31	2.3	35	30.3	35	19.7	69	29.8
$A - n37 - k5_3$	847.87	38	5.4	36	62.2	36	42.8	51	15.3
$A - n37 - k6_3$	1300.17	33	3.3	74	83.4	74	55.6	81	52.6
$A - n38 - k5_3$	848.11	62	29.7	90	569.4	90	419.4	151	488.6
A - n39 - k53	1072.52	41	18.3	56	516.3	56	384.1	79	96.5
$A - n39 - k6_3$	1158.00	25	2.3	20	8.6	20	5.9	27	5.6
A - n44 - k63	1180.94	30	6.4	43	138.4	43	90.6	52	59.3
$A - n45 - k6_3$	1134.75	58	61.4	110	3516.5	110	3384	270	1391.8
$A - n45 - k7_3$	1614.17	27	3.4	40	53.3	40	32.1	50	36.9
$A - n46 - k7_3$	1238.33	33	1.7	34	13.3	34	7.5	51	5.4
$A - n48 - k7_3$	1468.75	34	4.2	30	21.7	30	12.7	73	36.8
$A - n53 - k7_3$	1350.21	47	26.0	126	988.0	126	691.2	238	913.4
$A - n54 - k7_3$	1575.56	46	41.6	71	421.8	71	287.2	349	1438.1
$A - n55 - k9_3$	1418.25	32	2.8	43	74.0	43	47.6	82	26.7
$A - n60 - k9_3$	1723.09	40	6.9	63	100.4	65	68.4	63	40.9
$A - n61 - k9_3$	1216.06	51	58.1	89	1797.4	89	1242.7	181	1001.5
$A - n62 - k8_3$	1730.78	54	38.7	73	813.2	73	552.9	106	450.2
$A - n63 - k9_3$	2434.97	35	38.4	82	1318.3	82	870.0	92	342.2
$A - n63 - k10_3$	1778.74	52	13.4	57	366.0	57	231.5	77	48.4
$A - n64 - k9_3$	1973.66	47	16.2	60	572.1	60	372.7	105	310.8
$A - n65 - k9_3$	1421.83	81	116.9	238	2699.5	238	1621.4	288	876.8
$A - n69 - k9_3$	1380.82	77	57.3	_	_	_	_	243	2483.8
$A - n80 - k10_3$	2488.87	47	151.9	98	3085.8	98	2230.4	144	1655.7

Table EC. 24: Detailed results for the instances of class A with $\theta = 0.20$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	CG_b		C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$A - n32 - k5_4$	1185.83	20	1.0	21	2.9	21	1.8	33	2.9
A - n33 - k54	876.08	21	1.5	30	21.4	30	13.1	44	7.6
$A - n33 - k6_4$	955.60	19	1.0	18	6.1	18	4.0	38	7.2
A - n34 - k54	903.19	22	2.8	28	15.7	28	10.1	40	13.1
$A - n36 - k5_4$	1055.58	29	3.1	52	86.1	52	59.1	40	42.8
A - n37 - k54	838.80	27	3.3	34	102.0	34	71.3	47	28.2
$A - n37 - k6_4$	1293.11	34	3.6	71	80.7	71	53.6	58	29.3
A - n38 - k54	962.49	53	26.0	112	589.6	112	449.5	146	217.5
$A - n39 - k5_4$	1156.15	30	15.2	67	591.8	67	434.1	100	264.8
A - n39 - k64	1156.50	32	2.0	30	23.2	30	16.4	45	22.0
$A - n44 - k6_4$	1182.77	33	6.5	48	156.1	48	103.6	59	66.7
A - n45 - k64	1160.67	66	80.8	109	1080.8	109	739.8	174	911.6
$A - n45 - k7_4$	1732.37	29	3.1	56	79.0	56	47.2	72	31.9
A - n46 - k74	1252.35	27	1.6	24	5.0	24	3.0	31	4.5
$A - n48 - k7_4$	1496.42	31	4.4	38	36.2	38	22.1	58	23.7
A - n53 - k74	1376.97	49	33.3	75	445.6	75	296.4	139	391.2
$A - n54 - k7_4$	1610.55	40	33.2	60	655.1	60	440.6	90	283.9
A - n55 - k94	1413.69	43	4.8	79	171.1	79	107.6	141	131.2
$A - n60 - k9_4$	1758.60	42	6.2	55	114.8	55	70.0	72	84.6
A - n61 - k94	1257.79	55	53.7	91	2290.6	91	1580.1	188	965.9
$A - n62 - k8_4$	1842.07	48	66.2	65	1212.7	65	796.5	103	473.2
A - n63 - k94	2370.99	49	60.3	_	-	146	2454.1	193	941.1
$A - n63 - k10_4$	1811.28	35	5.4	52	109.7	52	67.3	83	38.2
A - n64 - k94	2035.84	43	17.4	68	1642.9	68	1176.5	107	916.0
$A - n65 - k9_4$	1472.94	79	206.0	207	1917.0	207	1362.3	205	488.9
A - n69 - k94	1479.77	71	68.3	_	_	_	_	280	2973.6
$A - n80 - k10_4$	2504.54	49	158.7	_	_	_	_	182	2386.8

Table EC. 25: Detailed results for the instances of class A with $\theta = 0.25$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
A - n32 - k55	1156.60	23	1.3	23	4.7	23	3.0	30	4.7
$A - n33 - k5_5$	921.65	22	1.3	35	30.4	35	20.1	31	9.0
A - n33 - k65	941.36	20	1.1	26	9.8	26	6.2	30	7.8
A - n34 - k55	925.62	26	2.9	37	24.3	37	15.1	54	16.6
A - n36 - k55	1138.25	25	2.8	33	57.5	33	41.3	45	14.0
$A - n37 - k5_5$	832.00	31	3.5	40	103.5	40	76.9	41	10.7
A - n37 - k65	1335.12	28	3.4	50	86.2	50	55.2	109	38.3
$A - n38 - k5_5$	922.33	61	40.8	75	542.7	75	390.2	146	236.4
A - n39 - k55	1107.12	36	18.1	60	622.3	60	461.1	71	178.9
$A - n39 - k6_5$	1192.50	28	2.7	27	17.4	27	11.5	34	6.3
A - n44 - k65	1195.63	33	8.4	75	395.4	75	274.1	99	155.1
$A - n45 - k6_5$	1149.25	62	63.2	_	_	_	_	382	1801.8
A - n45 - k75	1755.04	25	3.5	44	99.3	44	59.8	61	69.9
$A - n46 - k7_5$	1307.67	28	1.6	31	8.2	29	4.9	41	6.5
A - n48 - k75	1509.21	31	4.7	38	72.7	38	46.0	52	31.7
$A - n53 - k7_5$	1402.72	46	41.3	84	968.0	84	676.7	145	541.2
A - n54 - k75	1670.89	43	45.3	69	899.2	69	594.5	92	376.7
$A - n55 - k9_5$	1432.66	44	4.0	49	57.8	49	35.9	52	28.8
$A - n60 - k9_5$	1838.45	38	8.0	55	199.9	55	127.0	_	_
$A - n61 - k9_5$	1274.86	51	63.0	110	2993.2	110	2055.3	202	1934.9
A - n62 - k85	1832.64	52	55.9	77	1505.0	77	1026.1	114	1177.8
$A - n63 - k9_5$	2533.70	50	60.9	88	1992.2	88	1551.8	140	1028.3
$A - n63 - k10_5$	1849.63	33	6.0	32	97.1	32	61.1	95	96.5
$A - n64 - k9_5$	2077.46	48	15.9	53	606.8	53	436.5	98	507.8
A - n65 - k95	1519.32	73	163.1	242	3332.7	242	2302.4	217	635.0
$A - n69 - k9_5$	1503.68	52	50.4	_	2455.8	110	1598.4	151	3153.5
$A - n80 - k10_5$	2657.40	61	207.1	_	_	_	_	344	2504.4

Table EC. 26: Detailed results for the instances of class B with $\theta = 0.05$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_1$	1206.83	35	3.0	49	51.7	49	26.7	47	22.7
$B - n34 - k5_1$	1232.71	28	6.9	37	80.2	37	54.3	46	35.0
$B - n35 - k5_1$	1661.93	35	2.1	53	23.8	53	15.0	104	66.7
$B - n38 - k6_1$	1241.92	33	2.3	40	87.5	40	59.2	41	9.7
$B - n39 - k5_1$	950.67	41	10.9	47	345.0	47	243.0	66	204.3
$B - n41 - k6_1$	1251.81	43	11.6	94	325.6	94	207.3	107	98.4
$B - n43 - k6_1$	1038.29	44	7.4	60	106.1	60	68.6	81	45.7
$B - n44 - k7_1$	1446.03	30	3.9	32	110.3	32	69.8	34	29.5
$B - n45 - k5_1$	848.05	83	357.4	_	_	_	_	131	2337.8
$B - n45 - k6_1$	938.34	58	98.6	118	1930.3	118	1417.9	134	832.1
$B - n50 - k7_1$	1010.81	28	3.1	37	48.4	37	32.0	36	29.3
$B - n50 - k8_1$	1915.34	38	9.9	70	209.8	70	132.5	92	65.6
$B - n51 - k7_1$	1473.83	64	189.4	_	_	_	_	252	2583.6
$B - n52 - k7_1$	1306.93	69	53.1	104	359.0	_	_	174	263.4
$B - n56 - k7_1$	1203.60	56	20.6	83	1167.1	83	886.3	134	983.3
$B - n57 - k7_1$	1999.01	98	1261.2	_	_	_	_	_	-
$B - n57 - k9_1$	2998.59	40	4.1	40	43.2	40	30.2	62	33.9
$B - n63 - k10_1$	2681.69	48	12.4	77	349.5	77	246.6	122	141.5
$B - n64 - k9_1$	1116.70	72	505.9	_	_	_	_	_	_
$B - n66 - k9_1$	2140.14	65	111.5	_	_	_	_	_	-
$B - n67 - k10_1$	1353.84	52	8.1	74	601.5	74	338.0	75	60.5
$B - n68 - k9_1$	2175.99	63	61.2	-	-	118	2996.7	115	1671.2
$B - n78 - k10_1$	1920.21	85	80.8	_	_	150	2800.2	193	1060.8

Table EC. 27: Detailed results for the instances of class B with $\theta = 0.10$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_2$	1238.20	27	2.1	33	19.9	33	15.1	36	13.3
$B - n34 - k5_2$	1250.57	34	9.1	44	99.7	44	79.9	58	57.2
$B - n35 - k5_2$	1640.71	31	2.4	53	39.6	53	26.7	79	18.8
$B - n38 - k6_2$	1257.28	34	1.9	42	23.0	42	15.4	50	34.7
$B - n39 - k5_2$	985.64	35	18.6	51	1214.3	51	949.4	71	641.9
$B - n41 - k6_2$	1258.52	40	11.4	101	450.7	101	322.6	181	219.8
B - n43 - k62	1056.46	32	6.7	49	96.5	49	66.8	56	49.9
$B - n44 - k7_2$	1500.35	27	3.4	43	116.9	43	76.8	52	38.5
$B - n45 - k5_2$	843.00	86	649.8	_	_	_	_	_	_
$B - n45 - k6_2$	994.22	58	110.0	134	1918.7	134	1357.1	128	859.5
$B - n50 - k7_2$	1047.07	27	3.0	34	30.8	34	19.7	38	11.8
$B - n50 - k8_2$	1945.60	33	11.2	41	226.0	38	139.3	51	61.7
$B - n51 - k7_2$	1506.47	60	232.0	_	_	_	_	_	_
$B - n52 - k7_2$	1310.88	65	125.3	83	529.1	83	378.7	_	_
$B - n56 - k7_2$	1249.98	60	23.7	79	1006.4	79	827.3	145	1588.4
$B - n57 - k7_2$	2016.46	73	839.4	_	_	_	_	_	_
$B - n57 - k9_2$	3073.45	31	5.2	43	220.3	43	169.8	61	103.8
$B - n63 - k10_2$	2751.36	46	16.0	86	648.1	86	519.1	147	2174.4
$B - n64 - k9_2$	1158.52	66	354.4	_	_	_	_	_	_
$B - n66 - k9_2$	2184.25	58	131.5	_	_	_	_	_	_
$B - n67 - k10_2$	1309.26	71	10.5	117	525.2	117	429.4	106	186.7
$B - n68 - k9_2$	2301.60	69	95.3	_	_	_	_	_	_
$B - n78 - k10_2$	1937.17	67	89.5	_	_	_	_	171	1756.6

Table EC. 28: Detailed results for the instances of class B with $\theta = 0.15$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_3$	1254.03	30	3.2	36	46.9	36	42.6	38	16.7
$B - n34 - k5_3$	1282.89	30	14.8	36	102.8	36	96.5	50	167.9
$B - n35 - k5_3$	1785.36	35	3.3	44	34.7	44	30.4	60	12.2
$B - n38 - k6_3$	1336.58	32	2.4	38	28.5	38	24.7	60	15.9
$B - n39 - k5_3$	986.04	38	13.4	52	1471.8	52	1398.5	76	846.9
$B - n41 - k6_3$	1271.26	42	12.5	89	389.6	89	327.7	100	172.0
$B - n43 - k6_3$	1115.44	39	6.6	50	151.2	50	144.5	80	364.5
$B - n44 - k7_3$	1486.19	37	5.0	44	192.0	44	159.3	70	124.6
$B - n45 - k5_3$	850.10	103	866.2	-	_	_	_	_	_
B - n45 - k63	988.25	55	104.3	_	_	_	_	151	2496.1
$B - n50 - k7_3$	1071.77	38	5.1	53	271.8	53	209.0	98	126.7
$B - n50 - k8_3$	1993.33	31	15.6	35	195.4	35	129.4	63	160.2
$B - n51 - k7_3$	1574.95	59	132.4	_	_	_	_	_	_
$B - n52 - k7_3$	1387.42	61	96.8	125	1055.5	125	718.4	111	384.2
$B - n56 - k7_3$	1254.05	65	35.2	136	3454.3	136	2533.9	_	_
$B - n57 - k7_3$	2113.10	73	1370.1	_	_	_	_	_	-
$B - n57 - k9_3$	3174.89	31	5.3	39	140.0	39	88.1	63	90.4
$B - n63 - k10_3$	2822.77	48	17.4	72	668.2	72	541.3	129	349.0
$B - n64 - k9_3$	1178.92	60	462.2	_	_	_	_	_	-
$B - n66 - k9_3$	2278.16	60	270.6	-	_	-	_	-	_
$B - n67 - k10_3$	1392.52	65	10.3	103	599.2	103	409.1	193	674.3
$B - n68 - k9_3$	2342.75	48	80.6	-	_	95	3102.7	99	1606.6
$B - n78 - k10_3$	1972.65	56	97.2	_	_	_	_	_	

Table EC. 29: Detailed results for the instances of class B with $\theta = 0.20$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
B - n31 - k54	1299.57	34	3.1	34	29.5	34	24.0	37	20.4
$B - n34 - k5_4$	1302.07	29	12.9	46	138.6	46	120.0	59	56.4
B - n35 - k54	1750.49	39	3.3	49	42.5	49	35.7	75	31.9
$B - n38 - k6_4$	1338.28	28	1.9	41	29.1	41	23.7	64	14.3
B - n39 - k54	994.18	45	13.6	71	880.8	71	799.0	78	576.1
$B - n41 - k6_4$	1297.84	46	23.5	109	1004.1	109	854.7	137	710.1
B - n43 - k64	1109.58	37	8.9	43	168.7	43	142.3	59	70.1
$B - n44 - k7_4$	1565.42	35	4.6	64	422.4	64	344.7	108	309.5
B - n45 - k54	905.04	98	1043.3	_	-	_	-	131	3346.4
$B - n45 - k6_4$	1055.17	57	88.9	_	_	_	-	173	2391.3
$B - n50 - k7_4$	1115.85	33	5.8	52	351.5	52	292.8	98	34.2
$B - n50 - k8_4$	2020.39	39	10.9	46	103.0	46	72.8	46	40.9
B - n51 - k74	1661.82	64	243.7	_	-	_	-	-	_
$B - n52 - k7_4$	1438.48	62	74.1	89	898.0	89	716.8	130	526.9
B - n56 - k74	1304.87	54	27.2	84	916.9	84	762.3	119	1075.2
$B - n57 - k7_4$	2205.61	78	1410.1	_	-	_	-	_	_
$B - n57 - k9_4$	3171.60	27	3.7	32	97.3	32	73.7	50	56.3
$B - n63 - k10_4$	2851.98	44	16.7	89	908.4	89	715.7	97	608.0
B - n64 - k94	1240.78	62	489.8	_	-	_	-	-	_
$B - n66 - k9_4$	2299.82	58	189.4	_	-	-	-	_	-
B - n67 - k104	1435.44	47	10.1	65	673.5	65	463.4	83	390.0
$B - n68 - k9_4$	2369.57	53	75.3	_	-	-	-	190	2940.1
B - n78 - k104	2064.86	54	91.3	_	_	_	_	133	3207.6

Table EC. 30: Detailed results for the instances of class B with $\theta = 0.25$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$B - n31 - k5_5$	1327.00	30	3.2	37	55.3	37	51.5	39	20.0
$B - n34 - k5_5$	1376.27	29	11.0	33	96.5	33	89.5	58	109.5
$B - n35 - k5_5$	1780.50	38	3.1	47	42.5	47	36.1	126	40.0
$B - n38 - k6_5$	1386.00	20	1.5	23	10.3	23	7.6	38	6.3
$B - n39 - k5_5$	985.34	34	10.3	48	1028.2	48	880.8	69	1915.7
$B - n41 - k6_5$	1362.19	42	12.3	111	639.3	111	557.6	132	219.6
$B - n43 - k6_5$	1121.36	36	6.7	53	178.7	53	150.7	57	68.6
B - n44 - k75	1617.35	30	4.5	40	254.9	40	189.8	54	204.2
$B - n45 - k5_5$	926.82	88	893.1	_	_	_	_	_	-
$B - n45 - k6_5$	1101.52	61	115.4	118	2865.3	118	2148.7	158	1248.6
$B - n50 - k7_5$	1174.86	42	9.5	73	388.4	73	308.3	75	35.6
B - n50 - k85	2096.31	32	9.2	37	109.3	37	74.8	44	40.8
$B - n51 - k7_5$	1733.36	53	340.4	_	_	_	_	_	-
B - n52 - k75	1463.59	58	129.7	81	1413.9	81	1225.8	104	819.6
$B - n56 - k7_5$	1322.99	67	25.2	101	1218.7	101	960.7	_	-
$B - n57 - k9_5$	3247.77	38	6.4	52	289.8	52	236.7	101	117.8
$B - n63 - k10_5$	2915.58	51	23.7	76	925.8	76	757.7	94	290.7
$B - n64 - k9_5$	1273.55	68	561.5	_	_	-	_	_	-
$B - n66 - k9_5$	2353.05	72	261.5	_	_	-	_	_	-
$B - n67 - k10_5$	1492.36	67	11.1	88	806.0	88	629.0	169	360.6
$B - n68 - k9_5$	2443.59	59	107.8	_	_	-	_	_	-
$B - n78 - k10_5$	2121.30	96	150.3	_	_	_	_	_	_

Table EC. 31: Detailed results for the instances of class E-F-M with $\theta = 0.05$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C0	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_1$	563.22	73	1107.4	_	_	_	_	_	_
$E - n76 - k7_1$	720.84	85	246.0	_	_	_	_	_	_
$E - n76 - k8_1$	769.69	94	1193.2	_	_	_	_	_	_
$E - n76 - k10_1$	930.89	69	271.0	_	_	_	_	_	_
$E - n76 - k14_1$	1147.23	46	14.3	71	342.5	71	221.8	85	83.4
$E - n101 - k14_1$	1235.90	57	31.9	102	2495.4	102	1597.9	127	1046.5
$F - n45 - k4_1$	804.21	89	2181.5	_	-	_	_	-	_
$M - n101 - k10_1$	942.00	210	575.3	_	_	_	_	_	_

Table EC. 32: Detailed results for the instances of class E-F-M with $\theta = 0.10$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C0	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_2$	606.11	74	1033.5	_	_	-	_	-	_
$E - n76 - k7_2$	715.68	103	721.3	_	_	_	_	_	_
$E - n76 - k8_2$	770.48	85	495.3	_	_	_	_	_	_
$E - n76 - k10_2$	927.74	76	354.2	_	_	_	_	_	_
$E - n76 - k14_2$	1152.53	38	15.1	57	312.7	57	174.0	78	71.4
$E - n101 - k14_2$	1259.77	69	36.1	120	3242.8	120	2189.7	261	833.7
$F - n45 - k4_2$	796.08	80	2455.0	_	_	_	_	_	_
$M - n101 - k10_2$	953.50	188	1637.0	_	_	_	_	_	

Table EC. 33: Detailed results for the instances of class E-F-M with $\theta = 0.15$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	CC	\mathcal{I}_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_3$	624.56	75	1442.7	_	_	_	-	_	_
$E - n76 - k7_3$	722.50	105	317.4	_	-	_	_	_	_
$E - n76 - k8_3$	792.91	66	437.8	_	-	_	_	_	_
$E - n76 - k10_3$	977.31	63	248.0	_	_	_	-	_	-
$E - n76 - k14_3$	1172.97	44	18.3	69	398.7	69	225.6	123	184.2
$E - n101 - k14_3$	1283.98	57	68.0	_	_	_	-	171	1518.2
$F - n45 - k4_3$	835.00	99	1806.7	_	-	_	_	_	_
$M - n101 - k10_3$	1013.17	160	1161.1	-	-	_	-	_	_

Table EC. 34: Detailed results for the instances of class E-F-M with $\theta = 0.20$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C0	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_4$	620.67	66	1661.0	_	_	_	_	_	_
$E - n76 - k7_4$	754.37	87	987.9	_	_	_	_	_	_
$E - n76 - k8_4$	809.49	76	431.9	_	_	_	_	_	-
$E - n76 - k10_4$	1006.50	69	334.7	_	_	_	_	_	-
$E - n76 - k14_4$	1191.06	36	15.5	49	254.5	49	132.8	94	148.3
$E - n101 - k14_4$	1294.74	59	54.0	118	3579.8	118	2473.2	183	1216.6
$F - n45 - k4_4$	800.67	94	3028.5	_	_	_	_	_	_
$M - n101 - k10_4$	1031.50	184	1110.2	_	_	_	_	_	_

Table EC. 35: Detailed results for the instances of class E-F-M with $\theta = 0.25$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	CO	\vec{x}_m	C(G_t	C0	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$E - n51 - k5_5$	649.17	74	1517.4	_	-	_	_	_	_
E - n76 - k75	747.18	99	872.2	_	-	_	_	_	_
$E - n76 - k8_5$	820.13	64	283.5	_	-	_	_	_	_
$E - n76 - k10_5$	1025.45	65	299.0	_	-	_	_	_	_
$E - n76 - k14_5$	1234.95	41	19.3	62	447.9	62	293.6	101	142.4
E - n101 - k145	1307.97	53	60.5	_	-	_	_	118	938.3
$M - n101 - k10_5$	1056.50	150	1381.3	_	_	_	_	_	-

Table EC. 36: Detailed results for the instances of class P with $\theta = 0.05$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_1$	588.17	5	0.4	5	1.6	5	0.7	5	0.7
$P - n19 - k2_1$	312.75	33	6.7	56	69.5	56	57.2	53	42.0
$P - n20 - k2_1$	278.17	30	12.5	41	76.3	41	79.1	51	77.5
$P - n21 - k2_1$	290.00	45	12.1	108	302.0	108	276.0	133	87.4
$P - n22 - k2_1$	301.50	39	18.7	146	868.4	146	643.0	177	177.5
$P - n22 - k8_1$	730.00	10	0.5	8	1.7	8	0.6	9	0.6
$P - n23 - k8_1$	680.00	10	0.5	8	1.5	8	0.6	8	0.6
$P - n40 - k5_1$	550.50	45	9.1	58	130.8	58	83.3	83	42.0
$P - n45 - k5_1$	579.06	41	38.8	70	1283.0	70	919.0	119	687.6
$P - n50 - k7_1$	633.19	31	5.4	42	81.0	42	48.6	37	33.1
$P - n50 - k8_1$	744.86	40	12.1	70	285.2	70	183.8	65	108.7
$P - n50 - k10_1$	854.17	24	1.4	40	14.9	40	9.1	45	5.3
$P - n51 - k10_1$	828.06	25	2.1	28	16.2	28	9.3	54	7.3
$P - n55 - k7_1$	682.97	44	15.2	79	1132.3	79	763.1	97	402.0
$P - n55 - k8_1$	727.20	37	13.9	66	1273.1	66	949.7	82	188.5
$P - n55 - k10_1$	790.32	25	2.0	24	14.8	24	9.2	28	4.6
$P - n55 - k15_1$	1128.35	28	1.8	28	13.3	28	8.7	39	4.4
$P - n60 - k10_1$	864.89	35	6.4	43	98.1	43	62.4	56	32.0
$P - n60 - k15_1$	1122.18	17	0.9	17	3.5	17	1.7	17	1.2
$P - n65 - k10_1$	956.35	37	12.4	67	306.0	67	186.3	117	79.6
$P - n70 - k10_1$	924.36	55	77.6	110	2708.8	110	1861.4	131	799.0

Table EC. 37: Detailed results for the instances of class P with $\theta = 0.10$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_2$	594.50	5	0.4	4	1.7	4	0.6	4	0.5
$P - n19 - k2_2$	316.00	31	10.7	64	147.7	64	107.1	70	72.2
$P - n20 - k2_2$	293.00	38	22.8	41	129.4	41	89.5	52	156.6
$P - n21 - k2_2$	292.50	42	9.3	66	91.6	66	62.5	86	50.2
$P - n22 - k2_2$	286.00	53	25.5	101	419.2	101	300.4	117	197.9
$P - n22 - k8_2$	727.75	10	0.4	8	1.7	8	0.6	10	0.8
$P - n23 - k8_2$	706.00	10	0.4	7	1.5	7	0.7	10	0.7
$P - n40 - k5_2$	592.80	32	7.2	43	101.1	43	66.4	61	29.7
$P - n45 - k5_2$	566.97	48	55.9	126	3507.9	126	2431.1	240	557.6
$P - n50 - k7_2$	649.43	28	3.9	37	62.5	37	37.3	49	28.2
$P - n50 - k8_2$	748.26	40	18.8	61	518.4	61	339.0	75	117.4
$P - n50 - k10_2$	841.40	23	1.4	24	11.6	24	7.3	28	2.7
$P - n51 - k10_2$	834.98	27	2.6	34	22.3	34	13.7	47	13.2
$P - n55 - k7_2$	686.55	46	12.2	70	497.2	70	329.0	78	145.3
P - n55 - k82	740.18	39	15.6	87	762.9	87	551.9	99	207.0
$P - n55 - k10_2$	800.48	18	1.2	18	5.8	18	2.9	25	2.5
$P - n55 - k15_2$	1148.88	30	1.9	35	12.5	35	6.8	37	5.5
$P - n60 - k10_2$	887.83	33	6.4	56	161.3	56	104.2	88	71.2
$P - n60 - k15_2$	1123.59	20	1.0	20	4.4	20	2.6	33	2.3
$P - n65 - k10_2$	967.87	36	4.8	49	65.9	49	39.7	68	19.3
$P - n70 - k10_2$	948.54	54	67.5	106	2220.3	106	1488.4	154	613.9

Table EC. 38: Detailed results for the instances of class P with $\theta = 0.15$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	$\overline{G_d}$
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_3$	600.00	4	0.4	5	1.6	5	0.6	4	0.6
$P - n19 - k2_3$	319.14	28	10.5	64	360.3	64	288.3	42	121.5
$P - n20 - k2_3$	301.33	28	10.0	63	470.4	63	339.1	90	115.1
$P - n21 - k2_3$	275.50	41	11.1	40	61.5	40	41.3	57	22.7
$P - n22 - k2_3$	302.00	51	33.5	163	1127.4	163	824.5	131	192.1
$P - n22 - k8_3$	740.80	8	0.4	7	1.7	7	0.6	8	0.6
$P - n23 - k8_3$	708.50	10	0.5	8	1.6	8	0.7	11	0.6
$P - n40 - k5_3$	592.13	39	11.8	51	115.9	51	75.0	90	48.4
$P - n45 - k5_3$	584.48	47	62.6	121	3071.8	121	2268.4	271	1128.8
$P - n50 - k7_3$	652.18	29	6.6	39	217.4	39	143.8	58	43.4
$P - n50 - k8_3$	765.38	37	14.3	64	453.0	64	288.3	81	134.2
$P - n50 - k10_3$	887.84	29	1.6	29	13.8	29	8.3	50	6.3
$P - n51 - k10_3$	838.98	29	2.8	35	23.3	35	13.5	52	9.3
$P - n55 - k7_3$	699.06	47	19.3	94	1562.2	94	1052.5	139	264.7
$P - n55 - k8_3$	780.59	37	16.0	81	1556.3	81	1136.9	104	189.6
$P - n55 - k10_3$	831.11	23	1.4	25	12.4	25	6.8	38	5.1
$P - n55 - k15_3$	1178.09	23	1.6	31	11.5	31	7.1	40	7.2
$P - n60 - k10_3$	863.42	32	5.9	50	164.4	50	102.0	74	28.2
$P - n60 - k15_3$	1157.39	21	1.0	21	5.0	21	2.7	33	2.6
$P - n65 - k10_3$	976.70	45	12.2	97	655.9	97	431.1	183	392.9
$P - n70 - k10_3$	955.17	54	81.1	_	_	136	2719.3	182	1618.8

Table EC. 39: Detailed results for the instances of class P with $\theta = 0.20$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
$P - n16 - k8_4$	604.33	5	0.4	6	1.7	6	0.6	5	0.6
P - n19 - k24	328.23	28	8.6	53	116.2	53	81.1	68	79.0
$P - n20 - k2_4$	305.00	40	21.3	83	461.3	83	327.2	69	90.4
P - n21 - k24	307.50	38	19.2	101	1186.5	101	900.1	123	246.0
$P - n22 - k2_4$	329.00	44	23.8	102	759.8	114	503.3	184	130.6
P - n22 - k84	747.50	9	0.4	7	1.8	7	0.6	10	0.7
$P - n23 - k8_4$	698.00	11	0.4	9	1.6	9	0.6	11	0.7
P - n40 - k54	606.82	50	13.4	60	192.4	60	121.5	89	69.7
$P - n45 - k5_4$	585.25	49	67.2	_	_	149	2810.7	241	1591.4
P - n50 - k74	648.50	34	6.6	58	449.0	58	298.2	101	99.0
$P - n50 - k8_4$	806.27	35	15.7	77	515.5	77	359.2	109	215.6
P - n50 - k104	885.13	22	1.4	25	12.9	25	7.6	45	5.8
$P - n51 - k10_4$	874.08	26	4.3	32	23.8	32	14.8	49	13.1
P - n55 - k74	712.25	28	12.2	42	377.1	42	251.5	46	82.7
$P - n55 - k8_4$	762.52	41	16.0	76	494.4	76	338.3	101	260.4
P - n55 - k104	825.40	26	1.5	31	15.6	31	9.0	38	5.1
$P - n55 - k15_4$	1158.07	24	2.2	27	17.6	27	10.2	46	9.3
P - n60 - k104	876.50	26	3.3	36	68.3	36	40.8	45	35.4
$P - n60 - k15_4$	1161.69	20	1.1	19	3.6	19	1.9	21	1.8
P - n65 - k104	1026.85	40	14.8	67	409.1	67	252.5	156	267.5
$P - n70 - k10_4$	980.41	54	102.3	_	_	138	3158.1	178	2473.7

Table EC. 40: Detailed results for the instances of class P with $\theta = 0.25$ by CG_b , CG_m , CG_t and CG_d

Instance	z_{lp}	C	G_b	C0	G_m	C	G_t	C	G_d
		#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$	#Iter	$t_{lp}(s)$
P - n16 - k85	614.33	6	0.6	5	1.6	5	0.6	6	0.5
$P - n19 - k2_5$	350.00	31	16.0	59	162.5	59	124.7	60	171.3
P - n20 - k25	300.25	33	27.8	77	2068.6	77	1635.8	90	261.8
$P - n21 - k2_5$	319.50	43	15.1	121	811.9	121	595.5	70	52.5
P - n22 - k25	312.50	45	18.8	71	166.8	78	94.3	95	46.3
$P - n22 - k8_5$	763.17	9	0.4	7	1.6	7	0.6	9	0.6
$P - n23 - k8_5$	719.00	9	0.4	8	1.5	8	0.7	8	0.7
$P - n40 - k5_5$	605.64	36	10.3	65	339.5	65	227.2	114	56.2
$P - n45 - k5_5$	610.34	58	95.3	_	_	101	2619.4	_	_
$P - n50 - k7_5$	669.51	30	6.4	47	300.3	47	205.4	69	53.2
$P - n50 - k8_5$	810.36	37	14.2	72	1360.1	72	954.8	114	364.6
$P - n50 - k10_5$	900.80	25	1.8	30	16.3	30	9.8	54	8.3
$P - n51 - k10_5$	902.74	28	2.9	37	31.0	37	19.7	69	14.5
$P - n55 - k7_5$	741.83	57	34.5	78	753.4	78	528.0	126	162.2
$P - n55 - k8_5$	782.46	39	15.3	62	412.6	62	266.2	87	226.4
$P - n55 - k10_5$	844.69	27	2.3	28	22.6	28	13.3	48	13.3
$P - n55 - k15_5$	1188.37	23	1.8	30	18.6	30	12.2	46	7.7
$P - n60 - k10_5$	915.96	34	7.9	71	226.3	71	150.2	84	102.4
$P - n60 - k15_5$	1150.60	14	0.9	14	3.2	14	1.7	28	3.1
$P - n65 - k10_5$	1028.19	44	12.8	100	738.4	100	503.4	190	334.3
$P - n70 - k10_5$	1006.52	50	115.7	_	_	_	_	198	2989.9

EC.3. Detailed results for the selected instances by BPC1 and BPC2

Tables EC.41-EC.59 report the detailed results for the selected instances that can not be solved to optimality in the root node. The columns have the same meaning as in Table 5.

Table EC. 41: Detailed results for the selected instances of class A with $\theta = 0.05$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n36 - k5_1$	1081.00	2	19.4	3	24.1	50.00	24.23
$A - n45 - k7_1$	1636.00	5	18.4	3	14.7	-40.00	-20.11
$A - n46 - k7_1$	1214.50	9	14.4	7	12.3	-22.22	-14.58
$A - n55 - k9_1$	1344.50	7	21.7	8	26.7	14.29	23.04
$A - n61 - k9_1$	1178.50	15	1285.5	22	1096.3	46.67	-14.72
$A - n63 - k9_1$	2234.50	17	310.8	24	393.4	41.18	26.58
$A - n64 - k9_1$	1854.00	105	1178.0	163	1738.3	55.24	47.56
$A - n65 - k9_1$	1360.00	3	171.0	3	157.6	0.00	-7.84

Table EC. 42: Detailed results for the selected instances of class A with $\theta = 0.10$ by BPC1 and BPC2

Instance	z_{ip}	BP	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
A - n33 - k62	966.00	5	6.1	5	6.0	0.00	-1.64
$A - n34 - k5_2$	890.00	3	8.2	3	8.1	0.00	-1.22
$A - n36 - k5_2$	1125.50	3	17.0	3	15.7	0.00	-7.65
$A - n53 - k7_2$	1360.00	3	299.8	3	279.5	0.00	-6.77
$A - n54 - k7_2$	1596.00	7	339.0	7	324.3	0.00	-4.34
$A - n55 - k9_2$	1387.50	2	11.6	2	11.9	0.00	2.59
$A - n60 - k9_2$	1770.00	25	187.4	37	264.2	48.00	40.98
$A - n61 - k9_2$	1217.50	21	3124.5	31	2985.3	47.62	-4.46
$A - n63 - k9_2$	2317.50	5	241.4	5	204.2	0.00	-15.41
$A - n63 - k10_2$	1769.00	9	120.7	12	113.9	33.33	-5.63
$A - n64 - k9_2$	1937.00	41	613.4	69	881.3	68.29	43.67
$A - n69 - k9_2$	1420.50	17	762.7	11	516.4	-35.29	-32.29

Table EC. 43: Detailed results for the selected instances of class A with $\theta=0.15$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n45 - k7_3$	1633.00	4	25.0	3	24.0	-25.00	-4.00
$A - n53 - k7_3$	1381.50	9	503.5	9	448.8	0.00	-10.86
$A - n54 - k7_3$	1595.00	3	143.5	5	153.0	66.67	6.62
$A - n55 - k9_3$	1444.50	3	19.5	3	18.9	0.00	-3.08
$A - n60 - k9_3$	1762.00	7	99.1	7	96.2	0.00	-2.93
$A - n61 - k9_3$	1254.50	15	1473.6	19	1586.2	26.67	7.64
$A - n63 - k9_3$	2474.50	24	732.3	22	589.8	-8.33	-19.46
$A - n63 - k10_3$	1800.00	3	35.8	5	41.3	66.67	15.36
$A - n64 - k9_3$	2005.50	39	512.8	87	818.5	123.08	59.61
$A - n65 - k9_3$	1449.50	3	184.5	3	185.2	0.00	0.38
$A - n69 - k9_3$	1406.00	11	381.9	12	367.8	9.09	-3.69

Table EC. 44: Detailed results for the selected instances of class A with $\theta=0.20$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
A - n33 - k64	965.00	3	5.1	3	5.0	0.00	-1.96
$A - n60 - k9_4$	1786.00	4	69.5	5	67.9	25.00	-2.30
$A - n62 - k8_4$	1870.50	13	1954.4	11	1834.1	-15.38	-6.16
$A - n64 - k9_4$	2072.50	147	1618.4	281	3242.8	91.16	100.37
A - n65 - k94	1502.50	6	351.4	6	428.2	0.00	21.86
$A - n69 - k9_4$	1506.00	5	331.7	5	342.3	0.00	3.20
$A - n80 - k10_4$	2539.50	7	1616.7	11	2172.7	57.14	34.39

Table EC. 45: Detailed results for the selected instances of class A with $\theta = 0.25$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$A - n37 - k6_5$	1370.00	3	27.7	3	28.5	0.00	2.89
$A - n39 - k5_5$	1134.00	6	287.3	12	267.1	100.00	-7.03
A - n45 - k75	1779.50	3	49.2	5	65.1	66.67	32.32
$A - n46 - k7_5$	1326.00	4	11.0	5	11.5	25.00	4.55
A - n53 - k75	1438.50	3	925.4	3	821.7	0.00	-11.21
$A - n54 - k7_5$	1706.00	27	3580.5	29	2423.2	7.41	-32.32
A - n62 - k85	1857.00	13	945.2	17	976.7	30.77	3.33
$A - n63 - k9_5$	2558.50	5	230.1	3	176.2	-40.00	-23.42
$A - n63 - k10_5$	1877.50	9	172.8	7	129.5	-22.22	-25.06
$A - n64 - k9_5$	2104.00	17	472.6	35	665.1	105.88	40.73
A - n69 - k95	1529.50	21	663.2	19	451.7	-9.52	-31.89

Table EC. 46: Detailed results for the selected instances of class B with $\theta=0.05$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1			BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$B - n31 - k5_1$	1218.50	5	6.8	3	7.9	-40.00	16.18
$B - n39 - k5_1$	990.50	3	34.2	5	50.2	66.67	46.78
$B - n45 - k5_1$	927.00	3	902.0	3	901.3	0.00	-0.08
$B - n45 - k6_1$	966.50	12	2625.3	19	2241.5	58.33	-14.62
$B - n50 - k8_1$	1951.00	4	88.0	5	103.8	25.00	17.95
$B - n56 - k7_1$	1286.50	20	169.6	27	231.6	35.00	36.56
$B - n66 - k9_1$	2177.50	30	2122.9	5	613.7	-83.33	-71.09
$B - n68 - k9_1$	2244.50	3	636.2	3	721.3	0.00	13.38

Table EC. 47: Detailed results for the selected instances of class B with $\theta=0.10$ by BPC1 and BPC2

Instance	z_{ip}	BPG	BPC1 BPC2				
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$B - n39 - k5_2$	1027.00	10	105.8	12	148.7	20.00	40.55
$B - n43 - k6_2$	1088.50	3	51.2	3	43.8	0.00	-14.45
$B - n44 - k7_2$	1583.00	3	24.0	3	25.7	0.00	7.08
$B - n45 - k6_2$	1024.00	7	1946.7	19	3293.3	171.43	69.17
$B - n50 - k8_2$	1978.50	3	60.5	3	73.8	0.00	21.98
$B - n56 - k7_2$	1327.00	5	56.7	6	75.6	20.00	33.33
$B - n57 - k9_2$	3105.00	4	24.1	7	30.7	75.00	27.39
$B - n68 - k9_2$	2365.00	35	1968.4	60	2885.4	71.43	46.59

Table EC. 48: Detailed results for the selected instances of class B with $\theta=0.15$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1]	BPC2	
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$
$B - n45 - k6_3$	1011.50	3	743.8	5	918.5	66.67	23.49
$B - n50 - k7_3$	1153.50	2	27.1	2	30.6	0.00	12.92
$B - n50 - k8_3$	2024.00	4	65.9	3	78.2	-25.00	18.66
$B - n57 - k9_3$	3216.00	32	113.2	37	151.6	15.63	33.92
$B - n66 - k9_3$	2300.50	7	1714.7	3	1410.6	-57.14	-17.73
$B - n68 - k9_3$	2406.50	33	3430.9	_	_		_

Table EC. 49: Detailed results for the selected instances of class B with $\theta = 0.20$ by BPC1 and BPC2

Instance	z_{ip}	BPG	BPC1		BPC2					
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$			
B - n39 - k54	1038.50	3	152.9	5	203.7	66.67	33.22			
$B - n43 - k6_4$	1138.50	6	80.0	7	84.2	16.67	5.25			
$B-n44-k7_4$	1641.50	7	25.6	9	37.3	28.57	45.70			
$B - n56 - k7_4$	1387.50	13	149.6	12	160.1	-7.69	7.02			
B - n66 - k94	2336.00	19	3592.1	_	_	_	_			
$B - n67 - k10_4$	1516.50	167	2795.2	_	_	_	_			
B - n68 - k94	2423.00	6	1450.8	5	1366.6	-16.67	-5.80			

Table EC. 50: Detailed results for the selected instances of class B with $\theta = 0.25$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1		BPC2						
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$				
B - n31 - k55	1337.00	11	36.2	35	78.5	218.18	116.85				
$B - n38 - k6_5$	1446.00	4	14.0	6	21.4	50.00	52.86				
B - n43 - k65	1151.00	3	25.8	2	23.8	-33.33	-7.75				
$B - n44 - k7_5$	1696.00	2	22.9	2	25.7	0.00	12.23				
B - n56 - k75	1409.00	15	187.5	17	208.3	13.33	11.09				
$B - n57 - k9_5$	3282.50	9	153.7	24	214.7	166.67	39.69				
$B - n63 - k10_5$	2970.00	5	442.3	9	516.1	80.00	16.69				
$B - n66 - k9_5$	2389.50	4	1053.6	4	1068.8	0.00	1.44				
B - n68 - k95	2492.00	3	380.6	3	412.5	0.00	8.38				

Table EC. 51: Detailed results for the selected instances of class E-F-M with $\theta=0.05$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1		BPC2				
		#Nodes	#Nodes $t_T(s)$		$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$		
$E - n76 - k8_1$	779.00	2	1760.6	3	1778.7	50.00	1.03		
$E - n76 - k14_1$	1162.00	22 88.6		24	89.5	9.09	1.02		

Table EC. 52: Detailed results for the selected instances of class E-F-M with $\theta = 0.10$ by BPC1 and BPC2

Instance	z_{ip}	BP	BPC1		BPC2					
		#Nodes $t_T(s)$		#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$			
$E - n76 - k7_2$	723.00	8	1940.1	7	1717.6	-12.50	-11.47			
$E - n76 - k14_2$	1170.50	27	142.7	43	197.8	59.26	38.61			
$E - n101 - k14_2$	1277.50	155	3028.1	117	2135.7	-24.52	-29.47			

Table EC. 53: Detailed results for the selected instances of class E-F-M with $\theta=0.15$ by BPC1 and BPC2

Instance	z_{ip}	BPC	C1		BPC2				
		#Nodes	$\#Nodes t_T(s)$		#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$	
$E - n76 - k14_3$	1182.50	3	42.9		3	39.7	0.00	-7.46	

Table EC. 54: Detailed results for the selected instances of class E-F-M with $\theta = 0.25$ by BPC1 and BPC2

Instance	z_{ip}	BPC	C1		BPC2				
		#Nodes	#Nodes $t_T(s)$		#Nodes	$t_T(s)$	(s) $\Delta_{Nodes}(\%)$ $\Delta_{t_T}($		
$E - n76 - k14_5$	1255.00	81	485.8		166	671.2	104.94	38.16	

Table EC. 55: Detailed results for the selected instances of class P with $\theta=0.05$ by BPC1 and BPC2

Instance	z_{ip}	BPG	BPC1		BPC2					
		#Nodes	$t_T(s)$	-	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$		
$P - n22 - k8_1$	763.00	3	0.8		3	0.3	0.00	-62.50		
$P - n50 - k8_1$	777.50	69	3588.3		123	3242.0	78.26	-9.65		
$P - n50 - k10_1$	868.00	3	8.0		5	11.4	66.67	42.50		
$P - n51 - k10_1$	839.00	11	29.6		11	35.6	0.00	20.27		
$P - n55 - k7_1$	688.00	5	50.3		7	62.7	40.00	24.65		
$P - n55 - k8_1$	758.00	63	2744.4		61	1621.6	-3.17	-40.91		
$P - n55 - k15_1$	1155.00	9	24.0		9	27.2	0.00	13.33		
$P - n60 - k10_1$	873.50	6	19.4		5	19.2	-16.67	-1.03		
$P - n60 - k15_1$	1129.50	5	5.4		7	8.5	40.00	57.41		
$P - n65 - k10_1$	970.00	43	135.2		36	129.2	-16.28	-4.44		
$P - n70 - k10_1$	944.50	75	1191.3		119	1601.0	58.67	34.39		

Table EC. 56: Detailed results for the selected instances of class P with $\theta=0.10$ by BPC1 and BPC2

Instance	z_{ip}	BPC	BPC1		BPC2					
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$			
$P - n22 - k8_2$	758.00	3	0.6	3	0.4	0.00	-33.33			
$P - n50 - k7_2$	656.50	8	24.8	10	32.1	25.00	29.44			
$P - n51 - k10_2$	850.00	7	24.6	9	32.9	28.57	33.74			
$P - n55 - k7_2$	699.00	5	102.9	7	116.2	40.00	12.93			
$P - n55 - k15_2$	1177.50	9	23.5	11	34.0	22.22	44.68			
$P - n60 - k10_2$	902.00	17	53.1	19	62.4	11.76	17.51			
$P - n60 - k15_2$	1136.00	12	11.2	14	16.6	16.67	48.21			
$P - n65 - k10_2$	977.50	8	28.1	11	38.6	37.50	37.37			
$P - n70 - k10_2$	964.00	25	734.2	19	593.3	-24.00	-19.19			

Table EC. 57: Detailed results for the selected instances of class P with $\theta=0.15$ by BPC1 and BPC2

Instance	z_{ip}	BPC	BPC1		BPC2					
		#Nodes	#Nodes $t_T(s)$		odes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$		
$P - n22 - k8_3$	772.00	3	0.8		3	0.5	0.00	-37.50		
$P - n50 - k7_3$	662.00	3	25.9		3	28.2	0.00	8.88		
$P - n50 - k10_3$	904.50	5	11.0		8	16.3	60.00	48.18		
$P - n51 - k10_3$	855.00	9	47.0		7	42.4	-22.22	-9.79		
$P - n55 - k15_3$	1198.00	3	19.0		4	23.8	33.33	25.26		
$P - n60 - k15_3$	1165.00	5	6.2		3	6.9	-40.00	11.29		
$P - n65 - k10_3$	987.50	3	65.8		3	68.6	0.00	4.26		

Table EC. 58: Detailed results for the selected instances of class P with $\theta = 0.20$ by BPC1 and BPC2

Instance	z_{ip}	BPG	C1		BPC2					
		#Nodes	$t_T(s)$	#Nodes	$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$			
$P - n22 - k8_4$	781.50	3	0.6	3	0.4	0.00	-33.33			
$P - n45 - k5_4$	589.00	4	128.8	3	127.3	-25.00	-1.16			
$P - n50 - k7_4$	656.00	4	31.4	4	36.7	0.00	16.88			
$P - n50 - k10_4$	902.00	5	8.4	5	9.9	0.00	17.86			
$P - n51 - k10_4$	893.00	36	114.4	36	97.6	0.00	-14.69			
$P - n55 - k10_4$	832.50	10	7.7	9	9.2	-10.00	19.48			
$P - n55 - k15_4$	1192.00	47	97.8	89	139.5	89.36	42.64			
$P - n60 - k15_4$	1172.50	9	6.8	7	8.2	-22.22	20.59			
$P - n65 - k10_4$	1043.00	33	252.9	49	310.6	48.48	22.82			
P - n70 - k104	1008.00	109	2610.3	114	2670.1	4.59	2.29			

Table EC. 59: Detailed results for the selected instances of class P with $\theta=0.25$ by BPC1 and BPC2

Instance	z_{ip}	BPG	BPC1		BPC2					
		#Nodes	#Nodes $t_T(s)$		$t_T(s)$	$\Delta_{Nodes}(\%)$	$\Delta_{t_T}(\%)$			
$P - n50 - k10_5$	922.50	35	44.3	51	71.4	45.71	61.17			
$P - n51 - k10_5$	922.00	59	142.6	69	142.4	16.95	-0.14			
$P - n55 - k7_5$	759.00	24	329.2	21	271.0	-12.50	-17.68			
P - n55 - k155	1218.50	27	46.8	33	45.0	22.22	-3.85			
$P - n60 - k10_5$	934.50	37	151.4	25	103.2	-32.43	-31.84			
$P - n70 - k10_5$	1030.50	93	2192.9	87	1717	-6.45	-21.70			

EC.4. Detailed results for all VRPRD instances

Tables EC.60-EC.79 report the detailed results for all VRPRD instances. The columns have the same meaning as in Table 6.

Ta	ble EC. 60:	Detailed	l results fo	or the inst	ances of cl	lass A v	with $\theta =$	= 0.05	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$A - n32 - k5_1$	1138.50	1127.17	1138.50	5.0	100.00	3	6	1	5.0
$A - n33 - k5_1$	827.50	813.75	827.50	5.1	100.00	18	6	1	5.1
$A - n33 - k6_1$	904.50	896.21	904.50	3.0	100.00	7	14	1	3.0
$A - n34 - k5_1$	915.00	893.76	915.00	9.6	100.00	22	8	1	9.6
$A - n36 - k5_1$	1081.00	1051.30	1080.67	15.0	98.89	8	36	2	19.4
$A - n37 - k5_1$	839.00	813.38	839.00	10.6	100.00	13	14	1	10.7
$A - n37 - k6_1$	1251.50	1226.00	1251.50	9.9	100.00	25	6	1	9.9
$A - n38 - k5_1$	894.00	851.53	894.00	45.3	100.00	34	12	1	45.3
$A - n39 - k5_1$	1018.50	1004.50	1018.50	26.8	100.00	18	12	1	26.8
$A - n39 - k6_1$	1071.50	1071.50	1071.50	2.0	_	0	0	1	2.0
$A - n44 - k6_1$	1147.00	1140.90	1147.00	12.7	100.00	6	6	1	12.7
$A - n45 - k6_1$	1122.00	1103.77	1122.00	180.1	100.00	28	24	1	180.1
$A - n45 - k7_1$	1636.00	1617.88	1633.92	10.9	88.52	25	18	5	18.4
$A - n46 - k7_1$	1214.50	1201.06	1210.00	5.9	66.52	21	12	9	14.4
$A - n48 - k7_1$	1406.00	1384.30	1406.00	15.6	100.00	20	24	1	15.6
$A - n53 - k7_1$	1325.50	1302.22	1325.50	304.7	100.00	33	36	1	304.7
$A - n54 - k7_1$	1532.00	1511.56	1532.00	77.5	100.00	18	26	1	77.5
$A - n55 - k9_1$	1344.50	1317.96	1341.16	10.4	87.42	35	18	7	21.7
$A - n60 - k9_1$	1731.00	1698.61	1731.00	77.3	100.00	44	26	1	77.3
$A - n61 - k9_1$	1178.50	1151.30	1171.21	285.4	73.20	36	36	15	1285.5
$A - n62 - k8_1$	1684.00	1664.17	1684.00	165.4	100.00	50	6	1	165.4
$A - n63 - k9_1$	2234.50	2203.38	2226.99	123.5	75.87	61	30	17	310.8
$A - n63 - k10_1$	1741.00	1714.65	1741.00	32.4	100.00	20	20	1	32.4
$A - n64 - k9_1$	1854.00	1818.20	1841.20	55.9	64.25	21	30	105	1178.0
$A - n65 - k9_1$	1360.00	1335.38	1358.98	134.8	95.86	47	36	3	171.0

	<u> Fable EC. 61</u>	: Detailed	l results fo	<u>or the inst</u>		lass A v	$vith \theta =$	= 0.10	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
A - n32 - k52	1111.00	1111.00	1111.00	1.0	_	0	0	1	1.0
$A - n33 - k5_2$	849.50	825.83	849.50	4.7	100.00	20	8	1	4.7
$A - n33 - k6_2$	966.00	950.55	963.58	3.3	84.34	8	18	5	6.1
$A - n34 - k5_2$	890.00	862.41	889.13	6.2	96.84	17	12	3	8.2
$A - n36 - k5_2$	1125.50	1098.07	1124.73	10.8	97.19	10	18	3	17.0
$A - n37 - k5_2$	860.50	831.25	860.50	14.5	100.00	8	24	1	14.5
$A - n37 - k6_2$	1244.00	1215.46	1244.00	18.3	100.00	22	18	1	18.3
$A - n38 - k5_2$	888.00	851.34	888.00	50.5	100.00	23	14	1	50.6
$A - n39 - k5_2$	1034.50	1020.71	1034.50	55.2	100.00	16	6	1	55.2
$A - n39 - k6_2$	1123.00	1117.25	1123.00	3.5	100.00	3	2	1	3.5
$A - n44 - k6_2$	1177.00	1170.29	1177.00	12.1	100.00	10	6	1	12.1
$A - n45 - k6_2$	1108.00	1098.32	1108.00	88.5	100.00	25	4	1	88.5
$A - n45 - k7_2$	1644.00	1626.08	1644.00	6.6	100.00	18	6	1	6.6
$A - n46 - k7_2$	1211.00	1197.50	1211.00	6.9	100.00	22	18	1	6.9
$A - n48 - k7_2$	1492.50	1465.00	1492.50	20.3	100.00	18	20	1	20.3
$A - n53 - k7_2$	1360.00	1330.17	1358.40	233.6	94.64	38	36	3	299.8
$A - n54 - k7_2$	1596.00	1568.46	1592.54	152.1	87.44	22	42	7	339.0
$A - n55 - k9_2$	1387.50	1364.23	1387.29	10.3	99.10	33	12	2	11.6
$A - n60 - k9_2$	1770.00	1731.66	1761.70	44.2	78.35	38	24	25	187.4
$A - n61 - k9_2$	1217.50	1174.13	1208.82	828.2	79.99	60	49	21	3124.5
$A - n62 - k8_2$	1765.50	1757.05	1765.50	176.8	100.00	28	6	1	176.8
$A - n63 - k9_2$	2317.50	2285.87	2314.17	143.7	89.47	48	48	5	241.4
A - n63 - k10	1769.00	1735.13	1766.01	48.1	91.17	28	36	9	120.7
$A - n64 - k9_2$	1937.00	1904.07	1928.24	85.3	73.40	14	30	41	613.4
$A - n65 - k9_2$	1429.50	1402.72	1429.50	186.9	100.00	49	18	1	186.9
$A - n69 - k9_2$	1420.50	1377.69	1413.47	222.4	83.58	45	42	17	762.7

Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$A - n32 - k5_3$	1139.50	1136.63	1139.50	1.3	100.00	1	0	1	1.3
$A - n33 - k5_3$	828.00	807.42	828.00	7.7	100.00	22	14	1	7.7
$A - n33 - k6_3$	936.00	930.00	936.00	2.4	100.00	8	2	1	2.4
$A - n34 - k5_3$	951.50	936.21	951.50	8.8	100.00	21	2	1	8.8
$A - n36 - k5_3$	1115.50	1094.75	1115.50	7.9	100.00	5	20	1	7.9
$A - n37 - k5_3$	879.50	847.87	879.50	23.8	100.00	10	22	1	23.8
$A - n37 - k6_3$	1320.50	1300.17	1320.50	13.0	100.00	21	16	1	13.1
$A - n38 - k5_3$	895.50	848.11	895.50	68.4	100.00	27	24	1	68.4
$A - n39 - k5_3$	1090.00	1072.52	1090.00	58.7	100.00	12	14	1	58.7
$A - n39 - k6_3$	1158.00	1158.00	1158.00	2.3	_	0	0	1	2.3
$A - n44 - k6_3$	1195.50	1180.94	1195.50	28.0	100.00	15	24	1	28.0
$A - n45 - k6_3$	1154.00	1134.75	1154.00	227.3	100.00	17	18	1	227.4
$A - n45 - k7_3$	1633.00	1614.17	1630.96	17.1	89.17	32	24	4	25.0
$A - n46 - k7_3$	1245.00	1238.33	1245.00	3.7	100.00	1	10	1	3.7
$A - n48 - k7_3$	1483.50	1468.75	1483.50	8.2	100.00	10	0	1	8.2
$A - n53 - k7_3$	1381.50	1350.21	1376.86	182.0	85.17	32	30	9	503.5
$A - n54 - k7_3$	1595.00	1575.56	1592.87	103.2	89.04	26	24	3	143.5
$A - n55 - k9_3$	1444.50	1418.25	1443.18	14.9	94.97	39	24	3	19.5
$A - n60 - k9_3$	1762.00	1723.09	1757.93	62.1	89.54	48	30	7	99.1
$A - n61 - k9_3$	1254.50	1216.06	1248.50	445.5	84.39	39	48	15	1473.6
$A - n62 - k8_3$	1746.00	1730.78	1746.00	240.3	100.00	40	8	1	240.3
$A - n63 - k9_3$	2474.50	2434.97	2464.01	146.8	73.46	39	36	24	732.3
$A - n63 - k10_3$	1800.00	1778.74	1797.55	28.4	88.48	12	24	3	35.8
$A - n64 - k9_3$	2005.50	1973.66	1995.77	60.0	69.44	19	18	39	512.8
$A - n65 - k9_3$	1449.50	1421.83	1446.00	160.6	87.35	35	12	3	184.5
$A - n69 - k9_3$	1406.00	1380.82	1399.77	159.8	75.26	26	24	11	381.9

	Table EC. 63:	Detailed	d results fo	or the inst	ances of c	lass A v	with $\theta =$	0.20	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
A - n32 - k5	4 1188.00	1185.83	1188.00	1.6	100.00	2	2	1	1.6
A - n33 - k5	4 887.50	876.08	887.50	4.2	100.00	9	2	1	4.2
A - n33 - k6	965.00	955.60	964.20	3.8	91.49	7	18	3	5.1
A - n34 - k5	4 927.00	903.19	927.00	14.1	100.00	20	14	1	14.2
A - n36 - k5	4 1079.00	1055.58	1079.00	16.2	100.00	9	24	1	16.2
A - n37 - k5	4 875.00	838.80	875.00	24.8	100.00	17	22	1	24.8
A - n37 - k6	4 1319.50	1293.11	1319.50	20.7	100.00	15	34	1	20.7
A - n38 - k5	4 995.00	962.49	995.00	65.1	100.00	21	18	1	65.1
A - n39 - k5	4 1181.50	1156.15	1181.50	164.3	100.00	19	34	1	164.3
A - n39 - k6	$_4$ 1156.50	1156.50	1156.50	2.2	_	0	0	1	2.2
A - n44 - k6	4 1200.50	1182.77	1200.50	42.5	100.00	11	16	1	42.5
A - n45 - k6	$_4$ 1184.50	1160.67	1184.50	289.3	100.00	20	16	1	289.3
A - n45 - k7	4 1747.50	1732.37	1747.50	9.2	100.00	19	6	1	9.2
A - n46 - k7	1255.00	1252.35	1255.00	2.6	100.00	1	6	1	2.6
A - n48 - k7	4 1516.50	1496.42	1516.50	20.1	100.00	14	14	1	20.1
A - n53 - k7	4 1405.00	1376.97	1405.00	444.5	100.00	28	42	1	444.5
A - n55 - k9	$_4$ 1436.50	1413.69	1436.50	18.0	100.00	35	14	1	18.0
A - n60 - k9	$_{4}$ 1786.00	1758.60	1784.54	49.4	94.67	48	12	4	69.5
A - n62 - k8	4 1870.50	1842.07	1866.97	640.8	87.58	29	36	13	1954.4
A - n63 - k9	$_{4}$ 2384.50	2370.99	2384.50	110.9	100.00	23	18	1	110.9
A - n63 - k1	0_4 1833.50	1811.28	1833.50	33.9	100.00	34	18	1	34.0
A - n64 - k9	$_{4}$ 2072.50	2035.84	2052.54	63.7	45.55	21	12	147	1618.4
A - n65 - k9	4 1502.50	1472.94	1496.22	280.4	78.76	48	18	6	351.4
A - n69 - k9	4 1506.00	1479.77	1503.60	232.7	90.85	31	30	5	331.7
A - n80 - k1	0_4 2539.50	2504.54	2536.01	875.8	90.02	22	42	7	1616.7

Table EC. 64: Detailed results for the instances of class A with $\theta = 0.25$									
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$A - n32 - k5_5$	1177.50	1156.60	1177.50	3.7	100.00	6	6	1	3.7
A - n33 - k55	945.00	921.65	945.00	5.2	100.00	11	10	1	5.2
$A - n33 - k6_5$	951.00	941.36	951.00	2.6	100.00	8	8	1	2.6
A - n34 - k55	956.00	925.62	956.00	18.2	100.00	25	18	1	18.2
$A - n36 - k5_5$	1156.50	1138.25	1156.50	6.6	100.00	4	12	1	6.6
A - n37 - k55	854.00	832.00	854.00	13.4	100.00	13	6	1	13.4
$A - n37 - k6_5$	1370.00	1335.12	1369.38	19.5	98.22	19	24	3	27.7
A - n38 - k55	969.00	922.33	969.00	94.0	100.00	20	24	1	94.0
$A - n39 - k5_5$	1134.00	1107.12	1128.76	94.1	80.51	11	24	12	287.3
A - n39 - k65	1192.50	1192.50	1192.50	2.9	_	0	0	1	2.9
$A - n44 - k6_5$	1209.00	1195.63	1209.00	28.3	100.00	14	14	1	28.3
A - n45 - k65	1185.00	1149.25	1185.00	300.2	100.00	30	16	1	300.2
$A - n45 - k7_5$	1779.50	1755.04	1776.92	37.8	89.45	24	36	3	49.2
A - n46 - k75	1326.00	1307.67	1324.81	7.4	93.51	8	24	4	11.0
$A - n48 - k7_5$	1530.00	1509.21	1530.00	13.2	100.00	13	4	1	13.2
A - n53 - k75	1438.50	1402.72	1436.66	571.4	94.86	30	49	3	925.4
$A - n54 - k7_5$	1706.00	1670.89	1694.83	400.6	68.19	20	36	27	3580.5
$A - n55 - k9_5$	1462.50	1432.66	1462.50	19.4	100.00	38	24	1	19.4
$A - n60 - k9_5$	1873.50	1838.45	1873.50	54.3	100.00	29	14	1	54.3
A - n62 - k85	1857.00	1832.64	1851.72	358.8	78.33	27	12	13	945.2
$A - n63 - k9_5$	2558.50	2533.70	2555.44	149.2	87.66	27	24	5	230.1
$A - n63 - k10_5$	1877.50	1849.63	1872.37	76.1	81.59	24	48	9	172.8
$A - n64 - k9_5$	2104.00	2077.46	2095.76	112.5	68.95	16	42	17	472.6
$A - n65 - k9_5$	1521.50	1519.32	1521.50	160.7	100.00	5	0	1	160.7
$A - n69 - k9_5$	1529.50	1503.68	1523.18	160.8	75.52	25	30	21	663.2

Ta	<u>ble EC. 65:</u>	: Detailed	results for	or the inst	ances of cl	lass B w	vith $\theta =$	= 0.05	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$B - n31 - k5_1$	1218.50	1206.83	1217.50	4.0	91.43	11	6	5	6.8
$B - n34 - k5_1$	1252.00	1232.71	1252.00	23.9	100.00	20	2	1	23.9
$B - n35 - k5_1$	1831.00	1661.93	1831.00	3.3	100.00	14	6	1	3.3
$B - n38 - k6_1$	1298.00	1241.92	1298.00	4.1	100.00	12	8	1	4.1
$B - n39 - k5_1$	990.50	950.67	987.44	27.2	92.31	12	6	3	34.2
$B - n41 - k6_1$	1317.00	1251.81	1317.00	16.9	100.00	8	12	1	16.9
$B - n43 - k6_1$	1058.00	1038.29	1058.00	9.5	100.00	9	0	1	9.5
$B - n44 - k7_1$	1526.50	1446.03	1526.50	9.6	100.00	12	18	1	9.6
$B - n45 - k5_1$	927.00	848.05	925.74	697.8	98.40	29	12	3	902.0
$B - n45 - k6_1$	966.50	938.34	959.46	697.6	74.98	23	30	12	2625.3
$B - n50 - k7_1$	1098.50	1010.81	1098.50	9.8	100.00	22	10	1	9.8
$B - n50 - k8_1$	1951.00	1915.34	1950.34	64.3	98.15	36	24	4	88.0
$B - n52 - k7_1$	1367.50	1306.93	1367.50	56.4	100.00	6	0	1	56.4
$B - n56 - k7_1$	1286.50	1203.60	1282.63	37.1	95.33	14	12	20	169.6
$B - n57 - k7_1$	2046.00	2802.51	2046.00	3474.3	100.00	22	8	1	3474.3
$B - n57 - k9_1$	3038.00	2998.59	3038.00	11.0	100.00	21	10	1	11.0
$B - n63 - k10_1$	2725.00	2681.69	2725.00	62.2	100.00	42	12	1	62.2
$B - n66 - k9_1$	2177.50	2140.14	2171.51	333.2	83.97	25	12	30	2122.9
$B - n68 - k9_1$	2244.50	2175.99	2243.82	550.1	99.01	35	24	3	636.2

Table EC. 66: Detailed results for the instances of class B with $\theta = 0.10$										
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lpc}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
$B - n31 - k5_2$	1243.00	1238.20	1243.00	2.3	100.00	4	2	1	2.3	
$B - n34 - k5_2$	1276.50	1250.57	1276.50	21.3	100.00	14	4	1	21.3	
$B - n35 - k5_2$	1803.00	1640.71	1803.00	2.4	100.00	9	6	1	2.4	
$B - n38 - k6_2$	1303.00	1257.28	1303.00	2.5	100.00	6	0	1	2.5	
$B - n39 - k5_2$	1027.00	985.64	1020.93	33.9	85.32	12	6	10	105.8	
$B - n41 - k6_2$	1271.50	1258.52	1271.50	15.6	100.00	6	0	1	15.6	
$B - n43 - k6_2$	1088.50	1056.46	1087.33	27.9	96.35	19	18	3	51.2	
$B - n44 - k7_2$	1583.00	1500.35	1582.40	19.5	99.27	22	12	3	24.0	
$B - n45 - k5_2$	917.00	843.00	917.00	994.3	100.00	21	4	1	994.3	
$B - n45 - k6_2$	1024.00	994.22	1019.13	910.1	83.65	21	30	7	1946.7	
$B - n50 - k7_2$	1121.50	1047.07	1121.50	7.0	100.00	8	2	1	7.0	
$B - n50 - k8_2$	1978.50	1945.60	1977.54	50.7	97.08	27	18	3	60.5	
$B - n51 - k7_2$	1612.00	1506.47	1612.00	989.0	100.00	49	14	1	989.0	
$B - n52 - k7_2$	1364.00	1310.88	1364.00	119.7	100.00	6	0	1	119.7	
$B - n56 - k7_2$	1327.00	1249.98	1324.90	41.2	97.27	12	18	5	56.7	
$B - n57 - k9_2$	3105.00	3073.45	3103.19	13.9	94.26	14	12	4	24.1	
$B - n63 - k10_2$	2799.50	2751.36	2799.50	102.7	100.00	46	14	1	102.7	
$B - n68 - k9_2$	2365.00	2301.60	2357.32	301.3	87.89	25	12	35	1968.4	

Ta	able EC. 67	: Detailed	l results fo	or the inst	ances of c	lass B v	with $\theta =$	= 0.15	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$B - n31 - k5_3$	1265.50	1254.03	1265.50	5.3	100.00	9	12	1	5.3
$B - n34 - k5_3$	1302.50	1282.89	1302.50	24.2	100.00	7	2	1	24.2
$B - n35 - k5_3$	1921.00	1785.36	1921.00	31.3	100.00	15	26	1	31.3
$B - n38 - k6_3$	1387.50	1336.58	1387.50	3.7	100.00	13	2	1	3.7
$B - n39 - k5_3$	1022.50	986.04	1022.50	76.1	100.00	15	6	1	76.1
$B - n41 - k6_3$	1294.00	1271.26	1294.00	17.7	100.00	9	6	1	17.7
$B - n43 - k6_3$	1133.00	1115.44	1133.00	11.7	100.00	6	0	1	11.7
$B - n44 - k7_3$	1546.50	1486.19	1546.50	6.4	100.00	5	0	1	6.4
$B - n45 - k5_3$	939.00	850.10	939.00	1667.5	100.00	23	20	1	1667.5
$B - n45 - k6_3$	1011.50	988.25	1010.78	541.4	96.90	20	24	3	743.8
$B - n50 - k7_3$	1153.50	1071.77	1153.42	23.5	99.90	10	10	2	27.1
$B - n50 - k8_3$	2024.00	1993.33	2023.54	44.1	98.50	29	24	4	65.9
$B - n52 - k7_3$	1452.00	1387.42	1452.00	139.9	100.00	16	0	1	139.9
$B - n56 - k7_3$	1330.00	1254.05	1330.00	49.2	100.00	8	6	1	49.2
$B - n57 - k9_3$	3216.00	3174.89	3210.31	19.0	86.16	15	24	32	113.2
$B - n63 - k10_3$	2869.50	2822.77	2869.50	155.7	100.00	28	36	1	155.7
$B - n66 - k9_3$	2300.50	2278.16	2295.99	978.2	79.81	32	18	7	1714.7
$B - n68 - k9_3$	2406.50	2342.75	2398.69	496.0	87.75	27	18	33	3430.9

Table EC. 68: Detailed results for the instances of class B with $\theta = 0.20$										
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lpc}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
B - n31 - k54	1308.50	1299.57	1308.50	4.1	100.00	4	6	1	4.1	
$B - n34 - k5_4$	1306.00	1302.07	1306.00	15.4	100.00	5	0	1	15.4	
B - n35 - k54	1884.00	1750.49	1884.00	24.3	100.00	15	20	1	24.3	
$B - n38 - k6_4$	1389.50	1338.28	1389.50	4.0	100.00	13	10	1	4.0	
B - n39 - k54	1038.50	994.18	1036.75	104.2	96.05	15	18	3	152.9	
$B - n41 - k6_4$	1316.00	1297.84	1316.00	28.2	100.00	5	6	1	28.2	
B - n43 - k64	1138.50	1109.58	1133.61	44.8	83.09	19	18	6	80.0	
$B - n44 - k7_4$	1641.50	1565.42	1639.14	13.0	96.90	9	12	7	25.6	
B - n45 - k54	987.50	905.04	987.50	1395.5	100.00	27	8	1	1395.5	
$B - n45 - k6_4$	1060.50	1055.17	1060.50	115.5	100.00	3	0	1	115.5	
$B - n50 - k7_4$	1191.00	1115.85	1191.00	8.6	100.00	10	2	1	8.6	
$B - n50 - k8_4$	2040.50	2020.39	2040.50	47.6	100.00	47	16	1	47.6	
B - n51 - k74	1753.00	1661.82	1753.00	717.1	100.00	37	6	1	717.1	
$B - n52 - k7_4$	1499.50	1438.48	1499.50	114.3	100.00	9	0	1	114.3	
B - n56 - k74	1387.50	1304.87	1384.32	55.0	96.15	12	18	13	149.6	
$B - n57 - k7_4$	2237.00	2205.61	2237.00	2909.4	100.00	13	0	1	2909.4	
$B - n57 - k9_4$	3193.00	3171.60	3193.00	15.7	100.00	14	16	1	15.7	
$B - n63 - k10_4$	2895.00	2851.98	2895.00	126.6	100.00	32	24	1	126.7	
B - n66 - k94	2336.00	2299.82	2325.06	730.2	69.76	31	18	19	3592.1	
$B - n67 - k10_4$	1516.50	1435.44	1501.57	69.5	81.58	35	30	167	2795.2	
B - n68 - k94	2423.00	2369.57	2421.63	823.2	97.44	26	24	6	1450.8	

	Table EC. 69:	Detailed	l results for	or the inst	ances of c	lass B v	$vith \theta =$	= 0.25	
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
B - n31 - k5	5 1337.00	1327.00	1330.94	6.2	39.40	1	12	11	36.2
B - n34 - k5	1380.50	1376.27	1380.50	25.2	100.00	8	2	1	25.2
B - n35 - k5	5 1926.00	1780.50	1926.00	3.5	100.00	11	4	1	3.5
B - n38 - k6	5 1446.00	1386.00	1441.92	9.9	93.20	16	30	4	14.0
B - n39 - k5	5 1021.00	985.34	1021.00	17.3	100.00	8	0	1	17.3
B - n41 - k6	5 1391.50	1362.19	1391.50	27.7	100.00	5	12	1	27.7
B - n43 - k6	5 1151.00	1121.36	1150.91	18.6	99.70	15	6	3	25.8
B - n44 - k7	5 1696.00	1617.35	1695.83	19.5	99.78	10	18	2	22.9
B-n45-k5	5 1014.00	926.82	1014.00	1117.4	100.00	16	12	1	1117.4
B - n45 - k6	5 1114.50	1101.52	1114.50	328.7	100.00	12	12	1	328.8
B - n50 - k7	5 1246.50	1174.86	1246.50	14.2	100.00	10	12	1	14.2
B - n50 - k8	5 2108.00	2096.31	2108.00	27.0	100.00	19	8	1	27.0
B - n51 - k7	₅ 1835.50	1733.36	1835.50	2306.7	100.00	17	30	1	2306.7
B - n52 - k7	5 1531.50	1463.59	1531.50	865.3	100.00	13	18	1	865.3
B - n56 - k7	5 1409.00	1322.99	1404.90	40.0	95.23	9	12	15	187.5
B - n57 - k9	5 3282.50	3247.77	3275.65	38.5	80.28	16	36	9	153.7
B - n63 - k1	0_5 2970.00	2915.58	2967.06	175.0	94.60	30	30	5	442.3
B - n66 - k9	5 2389.50	2353.05	2387.44	774.4	94.35	27	30	4	1053.6
B - n68 - k9	5 2492.00	2443.59	2491.27	314.7	98.49	21	18	3	380.6

Table 1	EC. 70: D	etailed res	sults for t	he instanc	ces of class	E-F-M	with θ	0 = 0.05	
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lpc}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$E - n51 - k5_1$	568.00	563.22	568.00	1610.8	100.00	9	8	1	1610.8
$E - n76 - k8_1$	779.00	769.69	778.52	1630.2	94.88	14	30	2	1760.6
$E - n76 - k14_1$	1162.00	1147.23	1157.92	24.4	72.38	22	12	22	88.6
$M - n101 - k10_1$	942.00	942.00	942.00	613.3	_	0	0	1	613.3

Table EC. 71: Detailed results for the instances of class E-F-M with $\theta = 0.10$										
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
$E - n51 - k5_2$	614.00	606.11	614.00	3133.9	100.00	6	18	1	3134.0	
$E - n76 - k7_2$	723.00	715.68	720.69	922.3	68.38	3	18	8	1940.1	
$E - n76 - k14_2$	1170.50	1152.53	1164.60	41.1	67.17	29	36	27	142.7	
$E - n101 - k14_2$	1277.50	1259.77	1271.45	129.1	65.88	23	36	155	3028.1	
$M - n101 - k10_2$	953.50	953.50	953.50	1590.3	_	0	0	1	1590.3	

Table EC. 72: Detailed results for the instances of class E-F-M with $\theta = 0.15$											
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$		
$E - n51 - k5_3$	632.00	624.56	632.00	2851.0	100.00	12	12	1	2851.0		
$E - n76 - k14_3$	1182.50	1172.97	1182.22	35.2	97.06	25	24	3	42.9		
F - n45 - k43	845.00	835.00	845.00	2585.3	100.00	0	6	1	2585.3		
$M - n101 - k10_3$	1017.00	1013.17	1017.00	1409.1	100.00	1	6	1	1409.1		

Table EC. 73: Detailed results for the instances of class E-F-M with $\theta = 0.20$ Instance $t_T(s)$ z_{ip} z_{lp} z_{lpc} $t_{root}(s)$ $\Delta_{lpc}(\%)$ #CC #SR #Nodes 22 E - n76 - k1441196.50 1191.06 1196.50 31.1 100.00 14 1 31.1

1013.8

0

0

1013.8

1031.50

 $M - n101 - k10_4$

1031.50

1031.50

Table EC. 74: Detailed results for the instances of class E-F-M with $\theta = 0.25$										
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lpc}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
$E - n76 - k14_5$	1255.00	1234.95	1245.64	45.4	53.32	29	36	81	485.8	
M - n101 - k105	1056.50	1056.50	1056.50	1351.3	_	0	0	1	1351.3	

Table EC. 75: Detailed results for the instances of class P with $\theta = 0.05$ Instance $t_{root}(s)$ $\Delta_{lp_c}(\%)$ #CC #SR $t_T(s)$ z_{lp} z_{lp_c} z_{ip} $P - n16 - k8_1$ 589.00588.17589.000.6100.000 0.6 $P - n19 - k2_1$ 321.50 312.75 321.50 100.00 18.4 18.4 2 6 1 $P - n20 - k2_1$ 278.50278.17278.50 15.9100.00 0 15.9 $P - n21 - k2_1$ 290.00 11.2 11.2 290.00290.00 0 0 1 $P - n22 - k2_1$ 301.50301.50 301.50 16.7 0 0 1 16.7 $P - n22 - k8_1$ 763.00730.00761.170.794.458 3 0.8 $P - n23 - k8_1$ 680.00 680.00 680.00 0.5 0 0 1 0.5 $P - n40 - k5_1$ 550.50 550.50 550.50 8.5 0 0 1 8.5 $P - n45 - k5_1$ 100.00 585.00579.06585.00134.55 12 1 134.5 $P - n50 - k7_1$ 633.19 100.00 638.50638.50 11.6 6 14 1 11.6 $P - n50 - k8_1$ 777.50744.86761.92114.1 52.27 36 36 69 3588.3 $P - n50 - k10_1$ 868.00854.17865.96 6.585.23 32 30 3 8.0 $P - n51 - k10_1$ 828.06 839.00 834.89 11.3 62.4730 18 11 29.6 $P-n55-k7_1$ 688.00682.97 686.38 29.567.6910 6 5 50.3 $P - n55 - k8_1$ 30 63 758.00 727.20 745.95 138.3 60.89 38 2744.4 $P - n55 - k10_1$ 792.00 790.32 792.00 3.9 100.00 18 2 1 3.9 $P - n55 - k15_1$ 1155.001128.351147.4912.371.8247429 24.0 $P - n60 - k10_1$ 873.50 864.89 871.91 11.5 81.56 16 18 6 19.4 $P - n60 - k15_1$ 1129.501122.18 1128.00 3.7 79.515226 5 5.4 $P - n65 - k10_1$ 43 970.00956.35962.60 19.145.82 18 135.2 16 $P - n70 - k10_1$ 944.50 924.36 935.40 123.8 75 1191.3 54.80 41 30

Table EC. 76: Detailed results for the instances of class P with $\theta = 0.10$										
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
$P - n16 - k8_2$	595.00	594.50	595.00	0.4	100.00	2	0	1	0.4	
$P - n19 - k2_2$	325.00	316.00	325.00	54.1	100.00	2	8	1	54.1	
$P - n20 - k2_2$	300.00	293.00	300.00	58.5	100.00	3	4	1	58.5	
$P - n21 - k2_2$	292.50	292.50	292.50	9.3	_	0	0	1	9.3	
$P - n22 - k2_2$	286.00	286.00	286.00	25.3	_	0	0	1	25.3	
$P - n22 - k8_2$	758.00	727.75	756.33	0.5	94.49	10	8	3	0.6	
$P - n23 - k8_2$	706.00	706.00	706.00	0.5	_	0	0	1	0.5	
$P - n40 - k5_2$	598.00	592.80	598.00	21.7	100.00	4	12	1	21.7	
$P - n45 - k5_2$	572.00	566.97	572.00	127.9	100.00	10	12	1	127.9	
$P - n50 - k7_2$	656.50	649.43	653.28	12.9	54.47	24	6	8	24.8	
$P - n50 - k10_2$	852.00	841.40	852.00	6.5	100.00	31	26	1	6.5	
$P - n51 - k10_2$	850.00	834.98	846.99	11.7	79.95	24	30	7	24.6	
$P - n55 - k7_2$	699.00	686.55	697.37	58.1	86.88	14	30	5	102.9	
$P - n55 - k10_2$	807.00	800.48	807.00	4.5	100.00	28	8	1	4.5	
$P - n55 - k15_2$	1177.50	1148.88	1168.55	12.6	68.73	42	42	9	23.5	
$P - n60 - k10_2$	902.00	887.83	896.08	14.2	58.18	18	30	17	53.1	
$P - n60 - k15_2$	1136.00	1123.59	1132.00	5.0	67.77	42	42	12	11.2	
$P - n65 - k10_2$	977.50	967.87	974.80	14.1	71.93	21	12	8	28.1	
$P - n70 - k10_2$	964.00	948.54	958.93	164.1	67.19	48	36	25	734.2	

Table EC. 77: Detailed results for the instances of class P with $\theta = 0.15$									
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lpc}(\%)$	#CC	#SR	#Nodes	$t_T(s)$
$P - n16 - k8_3$	602.00	600.00	602.00	0.5	100.00	3	0	1	0.5
$P - n19 - k2_3$	327.50	319.14	327.50	28.4	100.00	4	2	1	28.4
$P - n20 - k2_3$	303.00	301.33	303.00	14.9	100.00	1	0	1	14.9
$P - n21 - k2_3$	275.50	275.50	275.50	12.6	_	0	0	1	12.6
$P - n22 - k2_3$	302.00	302.00	302.00	31.9	_	0	0	1	31.9
$P - n22 - k8_3$	772.00	740.80	768.33	0.7	88.25	16	10	3	0.8
$P - n23 - k8_3$	708.50	708.50	708.50	0.5	_	0	0	1	0.5
$P - n40 - k5_3$	597.50	592.13	597.50	25.5	100.00	2	10	1	25.5
$P - n45 - k5_3$	593.00	584.48	593.00	424.9	100.00	9	18	1	424.9
$P - n50 - k7_3$	662.00	652.18	661.43	18.8	94.24	18	18	3	25.9
$P - n50 - k10_3$	904.50	887.84	901.49	6.6	81.93	29	24	5	11.0
$P - n51 - k10_3$	855.00	838.98	852.38	20.8	83.65	48	49	9	47.0
$P - n55 - k7_3$	706.00	699.06	706.00	75.9	100.00	16	22	1	75.9
$P - n55 - k10_3$	837.50	831.11	837.50	4.5	100.00	22	8	1	4.5
$P - n55 - k15_3$	1198.00	1178.09	1195.48	15.2	87.34	50	48	3	19.0
$P - n60 - k10_3$	868.00	863.42	868.00	12.3	100.00	23	6	1	12.3
$P - n60 - k15_3$	1165.00	1157.39	1163.39	4.4	78.84	50	18	5	6.2
$P - n65 - k10_3$	987.50	976.70	986.86	49.7	94.07	31	36	3	65.8

Table EC. 78: Detailed results for the instances of class P with $\theta = 0.20$									
Instance	z_{ip}	z_{lp}	z_{lpc}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	$\#\mathrm{SR}$	#Nodes	$t_T(s)$
$P - n16 - k8_4$	607.00	604.33	607.00	0.4	100.00	4	0	1	0.4
$P - n19 - k2_4$	332.00	328.23	332.00	11.6	100.00	2	2	1	11.6
$P - n20 - k2_4$	305.00	305.00	305.00	20.9	_	0	0	1	20.9
$P - n21 - k2_4$	307.50	307.50	307.50	21.3	_	0	0	1	21.3
P - n22 - k24	329.00	329.00	329.00	23.0	_	0	0	1	23.0
$P - n22 - k8_4$	781.50	747.50	778.67	0.5	91.67	11	4	3	0.6
P - n23 - k84	698.00	698.00	698.00	0.5	_	0	0	1	0.5
$P - n40 - k5_4$	613.50	606.82	613.50	27.9	100.00	3	8	1	27.9
P - n45 - k54	589.00	585.25	587.48	86.5	59.36	5	6	4	128.8
$P - n50 - k7_4$	656.00	648.50	655.78	22.3	97.05	16	24	4	31.4
P - n50 - k104	902.00	885.13	899.16	5.4	83.16	26	30	5	8.4
$P - n51 - k10_4$	893.00	874.08	885.84	16.6	62.18	21	30	36	114.4
P - n55 - k74	721.00	712.25	721.00	69.0	100.00	18	18	1	69.0
$P - n55 - k10_4$	832.50	825.40	830.19	3.1	67.49	17	6	10	7.7
P - n55 - k154	1192.00	1158.07	1176.01	12.3	52.87	42	36	47	97.8
$P - n60 - k10_4$	876.50	876.50	876.50	3.2	_	0	0	1	3.2
P - n60 - k154	1172.50	1161.69	1170.02	3.4	77.06	37	24	9	6.8
$P - n65 - k10_4$	1043.00	1026.85	1036.27	39.8	58.33	14	36	33	252.9
P - n70 - k104	1008.00	980.41	996.88	192.8	59.71	26	30	109	2610.3

Table EC. 79: Detailed results for the instances of class P with $\theta = 0.25$										
Instance	z_{ip}	z_{lp}	z_{lp_c}	$t_{root}(s)$	$\Delta_{lp_c}(\%)$	#CC	#SR	#Nodes	$t_T(s)$	
$P - n16 - k8_5$	616.5	614.33	616.50	0.5	100.00	4	0	1	0.5	
$P - n19 - k2_5$	357.5	350.00	357.50	19.4	100.00	1	0	1	19.4	
P - n20 - k25	314.0	300.25	314.00	62.0	100.00	1	6	1	62.0	
$P - n21 - k2_5$	319.5	319.50	319.50	14.4	_	0	0	1	14.4	
P - n22 - k25	312.5	312.50	312.50	17.7	_	0	0	1	17.7	
$P - n22 - k8_5$	790.0	763.17	790.00	0.5	100.00	12	3	1	0.5	
P - n23 - k85	719.0	719.00	719.00	0.5	_	0	0	1	0.5	
$P - n40 - k5_5$	614.5	605.64	614.50	36.2	100.00	5	18	1	36.2	
P - n50 - k75	678.5	669.51	678.50	38.5	100.00	20	18	1	38.5	
$P - n50 - k10_5$	922.5	900.80	913.68	6.3	59.36	25	24	35	44.3	
$P - n51 - k10_5$	922.0	902.74	912.43	9.5	50.31	19	18	59	142.6	
$P - n55 - k7_5$	759.0	741.83	751.75	55.1	57.76	10	12	24	329.2	
$P - n55 - k10_5$	848.5	844.69	848.50	5.4	100.00	17	6	1	5.4	
$P - n55 - k15_5$	1218.5	1188.37	1206.77	9.0	61.07	35	24	27	46.8	
$P - n60 - k10_5$	934.5	915.96	928.84	21.7	69.45	19	30	37	151.4	
$P - n60 - k15_5$	1159.0	1150.60	1159.00	2.7	100.00	34	10	1	2.7	
$P - n65 - k10_5$	1040.5	1028.19	1040.50	45.8	100.00	28	42	1	45.8	
$P - n70 - k10_5$	1030.5	1006.52	1018.19	214.5	48.67	29	36	93	2192.9	