4 / 4 puntos

1. For a vector $\mathbf{x} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$ and the subspace U spanned by the basis vectors

$$\mathbf{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, which of the following statements are true?

You can use the formula slide that comes with the corresponding lecture.

- The projection matrix is symmetric.
- CorrectoProjection matrices are always symmetric.
- The projection matrix is $\frac{1}{6}\begin{bmatrix} 5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{bmatrix}$
- ✓ Correcto
 Well done!
- \square The coordinates of the projected point with respect to $\mathbf{b}_1, \mathbf{b}_2$ are $[0 \]$.
- ☐ The projection matrix is not symmetric.
- The projection of \mathbf{x} onto U is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- The rank of the projection matrix is 1.
- The coordinates of the projected point with respect to \mathbf{b}_1 , \mathbf{b}_2 are $\begin{bmatrix} 5 \\ -3 \end{bmatrix}$.
 - Correcto
 Excellent job!

1/1/	1/23	17.23
14/	1//3	17:73

The projection matrix is $\begin{bmatrix} 0 & 1 & 2 \end{bmatrix}$

The projection of **x** onto U is $\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}$

⊘ Correcto

Well done.

Project $\begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ onto the subspace spanned by $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$. 2.

1 / 1 punto

You can use the formula slide that comes with the corresponding lecture.

- - ✓ Correcto

Absolutely! The original vector is already in the subspace, so the projection has no effect.

1/1 punto

3.

- 1. Project $\begin{bmatrix} 12\\0\\0 \end{bmatrix}$ onto the subspace U_1 spanned by $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\2 \end{bmatrix}$.
- 2. Project the result from 1. onto the subspace spanned by $\begin{bmatrix} -10\sqrt{6} \\ -4\sqrt{6} \\ 2\sqrt{6} \end{bmatrix}.$

What is the final projection?

Hint: For step 2. you do not necessarily need to compute anything.

You can use the formula slide that comes with the corresponding lecture.

- $\begin{bmatrix}
 5 \\
 2\sqrt{6} \\
 -1\sqrt{6}
 \end{bmatrix}$
- $\left[\begin{array}{c}
 5\\2\sqrt{6}+1\\-\sqrt{6}+2
 \end{array}\right]$
- - ✓ Correcto

Good job! The first projection already lies in the second subspace. Therefore, the second projection does not do anything.