Floating Point

Professor Hugh C. Lauer CS-2011, Machine Organization and Assembly Language

(Slides include copyright materials from *Computer Systems: A Programmer's Perspective*, by Bryant and O'Hallaron, and from *The C Programming Language*, by Kernighan and Ritchie)

Today: Floating Point

Reading Assignment: §2.4

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

What is 1011.101₂?

Fractional binary numbers

■ Representation

Bits to right of "binary point" represent fractional powers of 2

• Represents rational number:
$$\sum_{k=-j}^{\infty} b_k \times 2^k$$

Fractional binary numbers: examples

Value
Representation

5 3/4 101.11₂

2 7/8 010.111₂

1 **7/16** 001.0111₂

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

Use notation 1.0 – ε

Representable numbers

Limitation #1

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations
- Value Representation
 - **1/3** 0.01010101[01]...2
 - **1/5** 0.001100110011[0011]...2
 - **1/10** 0.0001100110011[0011]...2

Limitation #2

- Many, many bits needed for very large or small numbers with fixed binary point
 - Planck's constant:— 6.626068 × 10⁻³⁴ erg sec
 - Avogadro's number: 6.022 x 10²³ particles per mole

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating point

- A way to approximate real numbers in computers
 - And also most rational numbers

Examples:-

- \bullet 3.14159265358979323846 $-\pi$
- $2.99792458 \times 10^8 \text{ m/s} c$, the velocity of light
- $6.62606885 \times 10^{-27} \text{ erg sec } -h$, Planck's constant

■ In C (and most other programming languages):—

- 3.14159265358979323846
- 2.99792458e8
- 6.62606885e-27

IEEE floating point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Same equations gave different answers on different machines!
- Now supported by all major processors

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Difficult to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

10

Floating point representation

Numerical Form:

$$(-1)^s \times M \times 2^E$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- **Exponent** *E* weights value by power of two

Encoding

- MSB s is sign bit s
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

S	exp	frac
	σλ ρ	ii a s

11

Precisions

Single precision: 32 bits

Double precision: 64 bits

Extended precision: 80 bits (Intel only)

Normalized values

 $v = (-1)^s M 2^E$

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when $111...1 (M = 2.0 \epsilon)$
 - Get extra leading bit for "free"

Normalized encoding example

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

13

- Value: Float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

$$M = 1.101101101_2$$

frac= 1101101101101000000000_2

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:

0 10001100 1101101101101000000000

s exp frac

Denormalized values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- \blacksquare Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x2
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - **exp** = 000...0, **frac** ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

Special values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Visualization: floating point encodings

Today: Floating Point

- **■**Background: Fractional binary numbers
- ■IEEE floating point standard: Definition
- **■** Example and properties
- Rounding, addition, multiplication
- Floating point in C
- **■Summary**

Tiny floating point example

8-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next four bits are the exponent, with a bias of 7
- the last three bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic range (positive only)

frac

s exp

0 1110 110

0 1110 111

0 1111 000

$v = (-1)^s M 2^E$
n: E = Exp - Bias
d: E = 1 – Bias

largest norm

		Cub	1140	_	Varae		a: E = 1 - Bias
	0	0000	000	-6	0	·	
	0	0000	001	-6	1/8*1/64	= 1/512	closest to zero
Denormalized	0	0000	010	-6	2/8*1/64	= 2/512	
numbers	•••						
	0	0000	110	-6	6/8*1/64	= 6/512	
	0	0000	111	-6	7/8*1/64	= 7/512	largest denorm
	0	0001	000	-6	8/8*1/64	= 8/512	smallest norm
	0	0001	001	-6	9/8*1/64	= 9/512	
	0	0110	110	-1	14/8*1/2	= 14/16	
	0	0110	111	-1	15/8*1/2	= 15/16	closest to 1 below
Normalized	0	0111	000	0	8/8*1	= 1	
numbers	0	0111	001	0	9/8*1	= 9/8	closest to 1 above
	0	0111	010	0	10/8*1	= 10/8	

Value

CS-2011, B-Term 2017 Floating Point 19

inf

n/a

14/8*128 = 224

15/8*128 = 240

Dynamic range (positive only)

0 1111 000

$v = (-1)^s M 2^E$
n: E = Exp - Bias
d: E = 1 – Bias

		s	exp	frac	E	Value			d: E = 1 – Bias
		0	0000	000	-6	0			
		0	0000	001	-6	1/8*1/64	=	1/512	closest to zero
Denc	ormalized	0	0000	010	-6	2/8*1/64	=	2/512	
num	bers								
		0	0000	110	-6	6/8*1/64	=	6/512	
		0	0000	111	-6	7/8*1/64	=	7/512	largest denorm
		0	0001	000	-6	8/8*1/64	=	8/512	smallest norm
		0	0001	001	-6	9/8*1/64	=	9/512	
		0	0110	110	-1	14/8*1/2	=	14/16	
		0	0110	111	-1	15/8*1/2	=	15/16	closest to 1 below
Norn	nalized		0111		0	8/8*1	=	1	
num	bers	0	0111	001	0	9/8*1	=	9/8	closest to 1 above
		0	0111	010	0	10/8*1	=	10/8	
					nt = bias	4/8*128	=	224	
	and sign	ifi	cand =	all zeros		5/8*128	=	240	largest norm

inf

n/a

Distribution of values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{(3-1)}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3

Interesting numbers

{single,double}

Description	ехр	frac	Numeric Value
Zero	0000	0000	0.0
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Single $\approx 1.4 \times 10^{-45}$			
■ Double $\approx 4.9 \times 10^{-324}$			
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Single ≈ 1.18 x 10 ⁻³⁸			
■ Double $\approx 2.2 \times 10^{-308}$			
Smallest Pos. Normalized	0001	0000	1.0 x $2^{-\{126,1022\}}$
Just larger than largest denorn	nalized		
One	0111	0000	1.0
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$
Single ≈ 3.4 x 10 ³⁸			
■ Double $\approx 1.8 \times 10^{308}$			

Special properties of encoding

- FP zero same as integer zero
 - All bits = 0
- Can (almost) use unsigned integer comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating point operations: Basic idea

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

$$\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$$

$$\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$$

Rounding

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down $(-\infty)$	\$1	\$1	\$1	\$2	- \$2
• Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

What are the advantages of the modes?

Closer look at round-to-even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth
 - 1.2349999 1.23 (Less than half way)
 - 1.2350001 1.24 (Greater than half way)
 - 1.2350000 1.24 (Half way—round up)
 - 1.2450000 1.24 (Half way—round down)

Rounding binary numbers

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2

FP multiplication

- $-(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign *s*: *s1* ^ *s2*
 - Significand M: M1 x M2
 - Exponent *E*: *E1 + E2*

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating point addition

- - \blacksquare Assume E1 > E2
- Exact Result: $(-1)^s M 2^E$
 - ■Sign *s*, significand *M*:
 - Result of signed align & add
 - ■Exponent *E*: *E1*

Fixing

- If $M \ge 2$, shift M right, increment E
- •if M < 1, shift M left k positions, decrement E by k
- Overflow if E out of range
- Round M to fit frac precision

Mathematical properties of FP add

Compare to those of Abelian Group

Closed under addition?

Yes

But may generate infinity or NaN

Commutative?

Yes

Associative?

No

Overflow and inexactness of rounding

• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

0 is additive identity?

Yes

Every element has additive inverse

Almost

Except for infinities & NaNs

Monotonicity

■ $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

Mathematical Properties of FP Mult

Compare to Commutative Ring

- Closed under multiplication?
 - But may generate infinity or NaN
- Multiplication Commutative?
- Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?
- Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding

Monotonicity

- $a \ge b \ \& \ c \ge 0 \Rightarrow a * c \ge b * c$?
 - Except for infinities & NaNs

Almost

Yes

Yes

Yes

No

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating point in C

- C guarantees two levels
 - float single precision
 - double double precision
- Conversions/casting
 - Casting between int, float, and double changes bit representations
 - double/float → int
 - Truncate fractional part i.e., rounding toward zero
 - Not defined when out-of-range, NaN, etc.; generally set to TMin
 - int → double
 - Exact conversion for numbers that fit into ≤ 53 bits
 - int → float
 - Round according to rounding mode

Floating Point Puzzles

■ For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true x == (int)(float) x

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Questions?

More Slides

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction
- s exp frac

 1 4-bits 3-bits

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

Requirement

- Set binary point so that numbers of form 1.xxxxx
- Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

■ Round = 1, Sticky = $1 \rightarrow > 0.5$

Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	Ν	1.101
17	1.0001000	010	Ν	1.000
19	1.0011000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	Υ	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Ехр	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Questions?