Rozwiązania zadań z logiki klasycznej

Zeimer

Zad. 1 Która z poniższych formuł jest semantycznie równoważna formule $p \to q \vee r$?

Rozwiązanie: najpierw musmy ustalić, co autor miał na myśli pisząc "semantycznie równoważna". Przyjmijmy, że zdania p i q są semantycznie równoważne, co będziemy zapisywać $p\equiv q$, gdy $\vdash p\leftrightarrow q$.

Na mocy równoważności $p \to q \equiv \neg p \lor q$ oraz praw de Morgana i oznaczając naszą formułę gwiazdką (*) mamy (*) $\equiv p \to q \lor r \equiv \neg p \lor q \lor r$. Teraz wystarczy podobnie przekształcić poniższe zdania:

- (a) $q \vee (\neg p \vee r) \equiv \neg p \vee q \vee r$
- (b) $q \land \neg r \to p \equiv \neg (q \land \neg r) \lor p \equiv \neg q \lor \neg \neg r \lor p \equiv p \lor \neg q \lor r$
- (c) $p \land \neg r \rightarrow q \equiv \neg (p \land \neg r) \lor q \equiv \neg p \lor \neg \neg r \lor q \equiv \neg p \lor q \lor r$
- (d) $\neg q \land \neg r \rightarrow p \equiv \neg (\neg q \land \neg r) \lor p \equiv \neg \neg q \lor \neg \neg r \lor p \equiv p \lor q \lor r$

Zdania (a) oraz (c) mają taką samą postać jak (*), są więc jej równoważne, zaś (b) oraz (d) mają inną postać.

Dla wartościowania $\sigma(p) = \sigma(q) = \sigma(r) = 0$ mamy $\hat{\sigma}((*)) = 1$, ale $\hat{\sigma}((d)) = 0$, zatem (*) i (d) nie sa równoważne.

Podobnie dla wartościowania $\sigma(p) = 0, \sigma(q) = 1, \sigma(r) = 0$ mamy $\hat{\sigma}((*)) = 1$, ale $\hat{\sigma}((b)) = 0$, a zatem (*) i (b) nie są równoważne.

Zad. 2 Czy spełnialna jest formuła $(p \to q) \lor (q \to r)$? Rozwiązanie: rozważmy dowolne wartościowanie σ . Rozpatrzmy dwa przypadki:

- 1. Jeżeli $\sigma(q)=0,$ to wtedy $\hat{\sigma}(q\to r)=1,$ a zatem $\hat{\sigma}((p\to q)\vee(q\to r))=1$
- 2. Jeżeli zaś $\sigma(q)=1$, to mamy $\hat{\sigma}(p\to q)=1$, a więc $\hat{\sigma}((p\to q)\vee(q\to r))=1$ Wobec tego formuła $(p\to q)\vee(q\to r)$ jest tautologią, a zatem jest spełnialna.

Zad. 3 Sprawdź, czy $(\exists x, \varphi) \land (\exists x, \psi) \implies (\exists x, \varphi \land \psi)$ jest tautologią.

Rozwiązanie: nie jest. Niech $\varphi(n) :\equiv "n$ jest parzyste" i niech $\psi(n) :\equiv "n$ jest nieparzyste". 0 i 1 świadczą o tym, że obie przesłanki implikacji są spełnione. Wobec tego gdyby powyższe zdanie było tautologią, to wtedy istniałaby liczba naturalna, która jest jednocześnie parzysta i nieparzysta, a tak nie jest. Mamy sprzeczność, a zatem powyższa formuła nie jest tautologią.

Zad. 4 Rozpatrzmy formułę $\varphi :\equiv \forall x \forall y, Q(g(x,y),g(y,y),z)$. Chcemy takie modele M i M' oraz wartościowania I oraz I', że $M \models_I \varphi$, ale $M' \not\models_{I'} \varphi$.

Idea jest prosta: w jednym modelu Q będzie zawsze prawdziwe, a w drugim zawsze fałszywe. Zanim przystąpimy do konstrukcji modeli zauważmy, że nasz zbiór symboli funkcyjnych to $F=\{g\}$, zbiór symboli relacyjnych to $R=\{Q\}$, zaś zbiór zmiennych to $V=\{x,y,z\}$. Uwaga: będziemy używać whitebookowej notacji $I_x^a(y):\equiv \begin{cases} I(y), x\neq y\\ a, x=y \end{cases}$.

Robimy model M. Niech $A=\{*\}$ będzie uniwersum modelu. Funkcję g zinterpretujemy jako $g^M:\equiv \lambda x.*$, zaś relację Q jako $Q^M:\equiv \{(*,*,*)\}$. Niech $I(_)=*$ będzie wartościowaniem.

Z definicji relacji \models mamy $M \models_I \forall x \forall y, Q(g(x,y), g(y,y), z) \equiv$ dla każdego $a \in A$ zachodzi $M \models_I \forall y, Q(g(x,y), g(y,y), z)[I_x^a] \equiv$ dla każdego $a, b \in A$ zachodzi $M \models_I Q(g(x,y), g(y,y), z)[(I_x^a)_y^b].$ Oczywiście musi być a = b = *, a zatem $(I_x^a)_y^b = I$. Wobec tego $M \models_I Q(g(x,y), g(y,y), z)[(I_x^a)_y^b] \equiv M \models_I Q(g(x,y), g(y,y), z)[I] \equiv (g^M(x,y)[I], g^M(y,y)[I], z^M[I]) \in Q^M \equiv ((\lambda x.*)(*,*), (\lambda x.*)(*,*), *) \in \{(*,*,*)\} \equiv (*,*,*) \in \{(*,*,*)\}, \text{ co jest prawda, a zatem faktycznie } M \models_I \forall x \forall y, Q(g(x,y), g(y,y), z)$

Robimy model M'. Niech $A=\{*\}$ będzie uniwersum modelu. Funkcję g interpretujemy tak jako poprzednio jako $g^{M'}:\equiv \lambda x.*$ i używamy takiej samej waluacji $I'(_)=*$, ale relację Q tym razem interpretujemy jako $Q^{M'}:\equiv \emptyset$. Rozumując jak poprzednio dochodzimy do wniosku, że $M'\models_{I'} \forall x \forall y, Q(g(x,y),g(y,y),z) \equiv (*,*,*) \in \emptyset$, co nie jest prawdą, a zatem $M'\not\models_{I'} \forall x \forall y, Q(g(x,y),g(y,y),z)$