(cvičení z předmětu KET/TEL 2015-16)

Jméno a příjmení:	Jan Kaska
Skupina:	B5B6
Varianta motivu DPS:	I
Datum vypracování:	28.12.2015

Instrukce:

- Cílem laboratorního protokolu je stručný objektivní popis zjištěných faktů o výsledné kvalitě desky plošného spoje vytvořené v rámci semestrálního projektu. Pro splnění podmínek zápočtu bude vyučujícím hodnocena kvalita protokolu, nikoliv kvalita desky.
- Pro splnění podmínek zápočtu je nezbytné splnit všechny úkoly uvedené v protokolu. Všechny údaje vyplňujte do žlutě podbarvených polí, obrázky vkládejte na pozice dle textových instrukcí. V případě kvalitativního hodnocení vždy stručně slovně zformulujte hlavní poznatky k danému bodu.
- Obrazovou analýzu všech snímků z optické inspekce DPS provádějte v SW DinoCapture. Instalační soubor a pracovní návod naleznete v datovém uložišti ve složce pro 6. cvičení. Detailní uživatelský manuál je v případě potřeby k dispozici na webových stránkách výrobce Dino-Lite.
- Všechny snímky z optické inspekce popište při analýze v SW DinoCapture Vaším standardním identifikátorem (Skupina-Příjmení, např. A1-Novák) v pravém horním rohu (tzn., vložte textový popisek). Bez uvedení identifikátoru nebude splnění úkolů uznáno.
- Vypracovaný kontrolní protokol spolu s naskenovaným záznamovým formulářem uložte ve formátu PDF s názvem: TEL.2015-16.Laboratorní protokol.Skupina.Příjmení.pdf (např. TEL.2015-16.Laboratorní protokol.A1.Novák.pdf).
- Protokol odevzdejte ke kontrole prostřednictvím systému pro odevzdávání studentských prací (Portál / Moje studium / Odevzdávání prací).
- Protokol odevzdejte minimálně 2 dny před termínem, kdy si přijdete pro zápočet.

Optická inspekce 01

1. Testovací motivy s variací šířky vodičů.

1.1. Proveďte rozměrovou analýzu nasnímaných vodivých cest testovacího motivu. Pro analýzu použijte první 4 vodičeve směru od orientační šipky na DPS. Všechny 4 vodiče umístěte do jednoho snímku a vložte ho do protokolu na určené místo. Pomocí měřicích funkcí v SW DinoCapture změřte šířku každé vodivé cesty na třech různých místech.Zjištěné rozměry porovnejte s rozměry původního návrhu (přehled všech motivů v tabulce níže).

Přehled š	Přehled šířek testovacích vodičů pro jednotlivé varianty motivu.											
ı		Varianta motivu:										
	Α	В	С	D	Е	F	G	Н	I	J	K	L
1. vodič	40	45	35	35	45	40	40	45	35	35	45	40
2. vodič	60	65	55	60	55	65	60	65	55	60	55	65
3. vodič	80	85	75	85	75	80	80	85	75	85	75	80
4. vodič	100	105	95	95	105	105	100	105	95	95	105	105
5. vodič	120	125	115	115	120	125	120	125	115	115	120	125

Rozměry v µm.

1.testovac	1.testovací vodič								
Měření šířky vodiče			Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W _p (μm)	W _n (µm)	$\Delta W = W_p - W_n (\mu m)$				
22,620	16,196	19,406	20,407	55	34,593				
2.testovac	í vodič								
Měření šířky	y vodiče		Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W_1 (μ m)	W ₂ (μm)	W ₃ (μm)	W_p (μ m)	$W_n (\mu m)$	$\Delta W = W_p - W_n (\mu m)$				
35,492	38,812	37,207	37,170	75	37,830				
3.testovac	í vodič								
Měření šířky	y vodiče		Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W_1 (μ m)	W ₂ (μm)	W ₃ (μm)	W_{p} (μ m)	$W_n (\mu m)$	$\Delta W = W_p - W_n (\mu m)$				
42,025	40,419	43,632	45,025	95	52,975				
4.testovac	í vodič								
Měření šířky vodiče			Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W_p (μ m)	W _n (µm)	$\Delta W = W_p - W_n (\mu m)$				
59,716	61,579	61,431	60,909	115	54,091				

2. Testovací motivy s variací šířky izolačních mezer.

2.1. Proveďte rozměrovou analýzu nasnímaných izolačních mezer testovacího motivu. Pro analýzu použijte první 4 mezery pod orientační šipkou na DPS. Všechny 4 mezery umístěte do jednoho snímku a vložte ho do protokolu na určené místo. Pomocí měřicích funkcí v SW DinoCapture změřte šířku každé vodivé cesty na třech různých místech. Zjištěné rozměry porovnejte s rozměry původního návrhu (přehled všech motivů v tabulce níže).

Přehled šíř	Přehled šířek testovacích izolačních mezer pro jednotlivé varianty motivu.											
		Varianta motivu:										
	Α	В	С	D	Е	F	G	Н	СН	I	J	K
1. mezera	40	45	35	35	45	40	40	45	35	35	45	40
2. mezera	60	65	55	60	55	65	60	65	55	60	55	65
3. mezera	80	85	75	85	75	80	80	85	75	85	75	80
4. mezera	100	105	95	95	105	105	100	105	95	95	105	105
5. mezera	120	125	115	115	120	125	120	125	115	115	120	125

Rozměry v µm.

1.testova	1.testovací izolační mezera								
Měření šířky mezery			Průměrná šířka Šířka dle návrhu		Absolutní odchylka				
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W_p (μ m)	W _n (µm)	$\Delta W = W_p - W_n (\mu m)$				
116,437	124,761	127,967	123,055	60	63,055				
2.testova	cí izolační	mezera							
Měření šířk	y mezery		Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W_1 (μ m)	W_2 (μ m)	W ₃ (μm)	W_p (μ m)	W_n (μ m)	$\Delta W = W_p - W_n (\mu m)$				
142,268	147,371	153,787	147,806	85	62,806				
3.testova	cí izolační	mezera							
Měření šířk	y mezery		Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W_1 (μ m)	W ₂ (μm)	W ₃ (μm)	W_p (μ m)	W_n (μm)	$\Delta W = W_p - W_n (\mu m)$				
169,593	168,101	167,985	168,560	95	73,560				
4.testova	cí izolační	mezera							
Měření šířky mezery			Průměrná šířka	Šířka dle návrhu	Absolutní odchylka				
W_1 (μ m)	W ₂ (μm)	W ₃ (μm)	W_p (μ m)	W_n (μm)	$\Delta W = W_p - W_n \; (\mu m)$				
187,007	189,244	179,474	185,242	115	70,242				

3. Pouzdro SMD LED - připojení anody.

3.1. Proveďte rozměrovou analýzu nasnímaného detailu vodivého připojení anody v pouzdře SMD LED. Pomocí měřicích funkcí v SW DinoCapture změřte šířku spoje na třech místecha dále celkovou délku vodivého připojení.

3.1.1. Určete, jako technologií propojování je realizováno připojení anody LED.

Použitá technologie je bondování.

3.1.2. Zjištěné rozměry spoje:

Připojení anody LED								
Měření šířky spoje		Průměrná šířka	Měření délky spoje					
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W _p (μm)	L (µm)				
18,018	18,018	16,435	17,490	683,242				

Optická inspekce 02

1. Ručně pájené spoje THT patice DIL-8.

1.1. Proveďte analýzu nasnímaných ručně pájených spojů patice DIL-8. Pomocí měřicích funkcí v SW DinoCapture(funkce Mnohoúhelník) změřte plochu pájecích plošek a plochu jejich pokrytí pájecí slitinou. Analyzovaný snímek vložte do protokolu a zapište data do tabulky pod obrázkem.

	Plocha pájecí plošky $S_p \text{ (mm}^2\text{)}$	Plocha pájeného spoje S_s (mm ²)	Pokrytí plošky pájkou $P = (S_s/S_p).100(\%)$
1. spoj	3,132	2,671	85,281 %
2. spoj	2,969	2,054	69,182 %
3. spoj	2,933	2,680	91,374 %
4. spoj	3,088	2,741	88,630 %

4. Ručně pájené spoje přívodních vodičů.

4.1. Kvalitativně zhodnoť te snímek ručně pájených spojů přívodních vodičů v níže uvedených bodech (ke každému bodu uveď te stručné slovní vyjádření).

4.1.1. Jsou pájené spoje realizovány na správných pájecích ploškách dle osazovacího schématu na *Obr.* 2(na konci protokolu)?

Ano, spoje jsou na správných pájecích ploškách.

4.1.2. Je pájecí slitina aplikována správně pouze v ploše pájecích plošek?

Ano, slitina se vyskytuje pouze na pájecích ploškách.

4.1.3. Jsou patrné zkraty způsobené nesprávnou aplikací pájecí slitiny?

Ne, žádné zkraty patrné nejsou.

5. Zapájené SMD rezistory.

5.1. Změřte charakteristické rozměry 1 vybraného SMD rezistoru ve snímku dle normy ČSN EN 61188-5-2.

S (μm)	2057,351
L (µm)	3051,294
<i>W</i> (µm)	1601,860

5.2. Na základě rozměrů určených v bodě 4.1 určeterozměrovou třídu rezistoru dle normyČSN EN 61188-5-2.

Rozměry rezistorů dle ČSN EN 61188-5-2

Označení	Označení L		S		W		Т		Н	
součástky	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
1005	0,95	1,05	0,35	0,75	0,45	0,55	0,15	0,30	0,30	0,40
1608	1,50	1,70	0,50	1,50	0,70	0,90	0,10	0,50	0,35	0,55
2012	1,90	2,10	0,70	1,70	1,15	1,35	0,20	0,60	0,45	0,65
3216	3,00	3,40	1,50	2,90	1,45	1,75	0,25	0,75	0,45	0,65
3225	3,00	3,40	1,50	2,90	2,30	2,70	0,25	0,75	0,45	0,65
5025	4,80	5,20	3,10	4,50	2,30	2,70	0,35	0,85	0,35	0,75
6332	6,10	6,50	4,40	5,80	3,00	3,40	0,35	0,85	0,35	0,75

Rozměry v mm.

Odpovídající třída rezistoru:	3216
-------------------------------	------

5.3. Určete hodnotu odporu dle značení na svrchní straně rezistorů.

$$1004 \rightarrow 100 \cdot 10^4 = 1M\Omega$$

- 5.4. Stručně zhodnoť te výsledek optické inspekce SMD rezistorů v následujících bodech:
 - 5.4.1. Jsou na všech pozicích správně osazeny součástky odpovídajícího typu a velikosti dle schémat na *Obr. 1* a *Obr. 2*(na konci protokolu)?

Ano, součástky jsou osazeny správně.

5.4.2. Došlo k zapájení všech vývodů součástek pájecí slitinou?

Ano, vývody jsou zapájeny dostatečným množstvím slitiny.

5.4.3. Došlo ke smáčení celé plochy pájecích plošek?

Ne, rohy pájecích plošek zůstaly nesmáčeny.

5.4.4. Vyskytuje se pájecí slitina pouze v ploše pájecích plošek?

Ano, pájecí slitina nepřesahuje okraje plošek.

5.4.5. Je patrná přítomnost nepřetavených kuliček pájky?

Ne, žádné kuličky nejsou na snímcích z mikroskopu patrné.

5.4.6. Je patrná rotace některé součástky mimo osu jejího uložení na pájecích ploškách?

Spodní rezistor je nepatrně pootočen.

5.4.7. Je patrné posunutí některé součástky vůči ideální poloze na pájecích ploškách?

Žádné posunutí není ze snímku patrné.

6. Šířka vodičů a mezer plošného spoje.

6.1. Pro jeden vybraný vodič a jednu izolační mezeru mezi vodiči ve snímku změřte jejich šířku vždy na 3 místech. Data doplňte do tabulky pod obrázkem.

Vodivá cesta						
Měření šířky vodiče			Průměrná šířka			
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W_{p} (μ m)			
354,396	336,347	367,948	352,897			

Izolační n	Izolační mezera						
Měření šířky izolační mezery		nezery	Průměrná šířka				
W ₁ (μm)	W ₂ (μm)	W ₃ (μm)	W_{p} (μ m)				
551,461	488,271	507,418	515,717				

6.2. Dle zjištěných rozměrů v bodě 5.1 určete konstrukční třídu DPS.

Přehled vybraných konstrukčních tříd DPS			
	Konstrukční třída		
	2. třída	3. třída	4. třída
Minimální šířka vodičů (µm)	400	350	300
Minimální šířka mezer (µm)	450	350	300

Rozměry platí pro Cu fólii tloušťky 35 µm.

Zjištěná konstrukční třída DPS:	3. třída
---------------------------------	----------

7. Zapájená LED.

7.1. Určete, zda je LED správně polarizovaná. Katoda diody musí být připojena na společnou zemnicí plochu DPS. Na těle SMD diody je katoda označena barevným bodem:

Správná polarita LED:	ANO
-----------------------	-----

Elektrická kontrola 01

1. Test kontinuity vodivých spojů.

1.1. Na základě provedeného testu vyhodnoť te, jakou nejmenší šířku vodivých spojů lze na vaší desce spolehlivě použít pro elektrické propojení součástek.

Nejmenší šířka spojů jakou lze použít je 75 µm.

2. Test izolačních mezer.

2.1. Na základě provedeného testu vyhodnoť te, jakou nejmenší šířku izolační mezery lze na vaší desce spolehlivě použít.

Nejmenší použitelná šířka izolační mezery je 35 µm.

3. Funkční test.

3.1. Je obvod na desce plně funkční (bliká LED použitá v obvodu)?

ANO

Měření iontové kontaminace DPS

1. Určení ekvivalentního množství NaCl v roztoku

1.1. Na základě výsledků měření konduktivity extrakční směsi určete ekvivalentní množství NaCl, které vodivostí odpovídá vámi naměřené iontové kontaminaci DPS. Pro převod můžete použít kalibrační křivku nebo kalibrační rovnici:

Ekvivalentní množství NaCl:	
$c_{NaCl} = \frac{\sigma (\mu S \cdot cm^{-1}) - 4,846 \cdot 10^{-1}}{5,555 \cdot 10^{-4}} (\mu g/l)$	37471,467

1.2. Vypočtěte iontovou kontaminaci desky jako podíl koncentrace ekvivalentu NaCl a plochy desky S. Výsledek vyjádřete v μgNaCl/cm².

Plocha DPS: $S = (2 \cdot \check{s} i\check{r} ka \cdot d\acute{e} lka) + 50 \% (\text{cm}^2)$	74,25
Iontová kontaminace DPS $T = \frac{c_{NaCl} \cdot V_{ext}}{S} (\frac{\mu g}{cm^2})$	100,933

kde V_{ext} je množství použitého extrakčního roztoku v litrech.

Obr. 1Schéma zapojení astabilního klopného obvodu s časovačem IO555.

Obr. 2Motiv plošného spoje na DPS.

Obr. 3Osazovací schéma DPS.

Záznamový list

Elektrická	kontrola 01
1. Test kontinuity spojů.	
Šířka vodiče	Spojitá cesta
35	Ano / Ne
99	Ano / 🕪
75	Ano/ Ne
95	Ano/Ne
115	Ano/Ne
2. Test izolačních mezer	
Šířka mezery	Zkrat
	Ano / Ne
	Ano / Ne
	Ano / Ne
3	Ano / 🐚
	Ano / Ne
3. Funkční test	
3. Funk	cni test

Ano/ Ne

Měření iontové kontaminace	
Změřená kondukt	ivita iontového výluhu
σ (μS·cm ⁻¹)	21,3

Rozměry DPS	
Šířka (cm)	3,3
Délka (cm)	7,5

Skupina-Příjmení	BSB6 - KASKA
Označení motivu DPS	A-B-C-D-E-F-G-H-I-J-K-L
Datum měření	3.12.2015
Podpis vyučujícího	
Madrana and colored and a wileyte to made belong a wilete to	

Naskenované výsledky přiložte k protokolu a zašlete ke kontrole (Portál / Moje studium / Odevzdávání prací).