Stress Analysis Report

Analyzed File:	wheel.ipt
Autodesk Inventor Version:	2024 (Build 280153000, 153)
Creation Date:	2024-04-13, 3:12 PM
Study Author:	Alex
Summary:	

Static Analysis:1

General objective and settings:

Design Objective	Single Point
Study Type	Static Analysis
Last Modification Date	2024-04-13, 3:05 PM
Model State	[Primary]
Detect and Eliminate Rigid Body Modes	No

iProperties

Summary

Author Alex

Project

Part Number	wheel
Designer	Alex
Estimated Cost	\$0.00
Creation Date	2024-04-09

Status

Design State WorkInProgress

Physical

Material	Aluminum 6061
Density	2.7 g/cm^3
Mass	0.199023 kg

Area	24741.1 mm^2
Volume	73712.4 mm^3
Center of Gravity	x=16.431 mm y=0 mm z=0.0000000102765 mm

Note: Physical values could be different from Physical values used by FEA reported below.

Mesh settings:

Avg. Element Size (fraction of model diameter)		
Min. Element Size (fraction of avg. size)		
Grading Factor	1.5	
Max. Turn Angle		
Create Curved Mesh Elements		

Material(s)

Name	Aluminum 6061		
	Mass Density	2.7 g/cm^3	
General	Yield Strength	275 MPa	
	Ultimate Tensile Strength	310 MPa	
	Young's Modulus	68.9 GPa	
Stress	Poisson's Ratio	0.33 ul	
	Shear Modulus	25.9023 GPa	
Part Name(s)) wheel.ipt		

Operating conditions

Force:1

Load Type	Force
Magnitude	22.925 N
Vector X	0.000 N
Vector Y	-22.925 N
Vector Z	0.000 N

Selected Face(s)

Fixed Constraint:1

Constraint Type Fixed Constraint

Selected Face(s)

Results

Reaction Force and Moment on Constraints

Constraint Name	Reaction Fo	orce	Reaction Moment	
Constraint Name	Magnitude	Component (X,Y,Z)	Magnitude	Component (X,Y,Z)
Fixed Constraint:1 22.925 N	0 N		0 N m	
		22.925 N	0.229243 N m	0 N m
		0 N		0.229243 N m

Result Summary

Name	Minimum	Maximum	
Volume	73712.4 mm^3		
Mass	0.199023 kg		
Von Mises Stress	0.000144406 MPa	0.172686 MPa	
1st Principal Stress	-0.0583105 MPa	0.180597 MPa	
3rd Principal Stress	-0.181237 MPa	0.0493392 MPa	
Displacement	0 mm	0.000110302 mm	
Safety Factor	15 ul	15 ul	
Stress XX	-0.0726671 MPa	0.060856 MPa	
Stress XY	-0.0519627 MPa	0.0294753 MPa	
Stress XZ	-0.0199095 MPa	0.0197321 MPa	
Stress YY	-0.174552 MPa	0.17133 MPa	
Stress YZ	-0.0997001 MPa	0.0933175 MPa	
Stress ZZ	-0.0687406 MPa	0.0504724 MPa	
X Displacement	-0.0000657585 mm	0.0000657064 mm	
Y Displacement	-0.0000892221 mm	0.0000000628859 mm	
Z Displacement	-0.000010112 mm	0.00000982842 mm	
Equivalent Strain	0.00000000186925 ul	0.00000222228 ul	
1st Principal Strain	0.00000000152138 ul	0.00000230452 ul	
3rd Principal Strain	-0.00000231549 ul	-0.00000000147502 ul	
Strain XX	-0.000000748585 ul	0.000000600951 ul	
Strain XY	-0.00000100305 ul	0.000000568972 ul	
Strain XZ	-0.00000038432 ul	0.000000380894 ul	
Strain YY	-0.00000218645 ul	0.00000216944 ul	
Strain YZ	-0.00000192455 ul	0.00000180134 ul	
Strain ZZ	-0.00000104265 ul	0.000000984066 ul	

Figures

Von Mises Stress

1st Principal Stress

3rd Principal Stress

Displacement

Safety Factor

Stress XX

Stress XY

Stress XZ

Stress YY

Stress YZ

Stress ZZ

X Displacement

Y Displacement

Z Displacement

Equivalent Strain

1st Principal Strain

3rd Principal Strain

Strain XX

Strain XY

Strain XZ

Strain YY

Strain YZ

Strain ZZ

 $C:\Shared\alex-bartella-schoolwork\4z03\final\wheel.ipt$