Machine Learning Interview Questions - Complete Study Guide

I. GENERAL AI & ML CONCEPTS

What is the difference between AI, Machine Learning, and Deep Learning?

Artificial Intelligence (AI) is the broadest concept - it's any technique that enables machines to mimic human intelligence, including rule-based systems, expert systems, and machine learning.

Machine Learning (ML) is a subset of Al where algorithms learn patterns from data without being explicitly programmed for every scenario. Instead of hard-coding rules, the system learns from examples.

Deep Learning (DL) is a subset of ML that uses neural networks with multiple layers (typically 3+ hidden layers) to automatically learn hierarchical representations of data.

Think of it as nested circles: Al contains ML, and ML contains Deep Learning.

What are the main types of Machine Learning?

- 1. **Supervised Learning**: Learning with labeled examples (input-output pairs)
- 2. Unsupervised Learning: Finding patterns in data without labels
- 3. Semi-supervised Learning: Uses both labeled and unlabeled data
- 4. **Reinforcement Learning**: Learning through interaction with an environment using rewards/penalties

Explain the difference between supervised and unsupervised learning

Supervised Learning:

- Uses labeled training data (input-output pairs)
- Goal: Learn a mapping function from input to output
- Examples: Classification (spam detection), Regression (price prediction)
- Algorithms: Linear Regression, SVM, Random Forest, Neural Networks

Unsupervised Learning:

- Uses only input data without corresponding outputs
- Goal: Discover hidden patterns or structures in data
- Examples: Clustering (customer segmentation), Dimensionality reduction (PCA)
- Algorithms: K-means, Hierarchical clustering, DBSCAN, PCA

What is overfitting and underfitting?

Overfitting:

• Model learns training data too well, including noise

- High training accuracy, poor test accuracy
- Model is too complex for the amount of data
- Solutions: Regularization, more data, cross-validation, early stopping

Underfitting:

- Model is too simple to capture underlying patterns
- Poor performance on both training and test data
- Solutions: More complex model, better features, reduce regularization

How do you evaluate a machine learning model?

For Classification:

- Accuracy, Precision, Recall, F1-score
- ROC curve and AUC
- Confusion matrix
- Cross-validation scores

For Regression:

- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- Mean Absolute Error (MAE)
- R-squared (coefficient of determination)

General Practices:

- Train/validation/test split
- Cross-validation
- Learning curves
- Feature importance analysis

What is the bias-variance trade-off?

Bias: Error from overly simplistic assumptions. High bias leads to underfitting.

Variance: Error from sensitivity to small fluctuations in training data. High variance leads to overfitting.

Trade-off:

- Simple models: High bias, low variance
- Complex models: Low bias, high variance

• Goal: Find the sweet spot that minimizes total error (bias² + variance + irreducible error)

Explain cross-validation and why it's important

Cross-validation splits data into multiple folds to get a more robust estimate of model performance:

K-Fold Cross-Validation:

- 1. Split data into k equal parts
- 2. Train on k-1 folds, test on remaining fold
- 3. Repeat k times, each fold serves as test set once
- 4. Average the k performance scores

Importance:

- Reduces overfitting to a particular train/test split
- Better utilizes limited data
- Provides confidence intervals for performance metrics
- Helps in hyperparameter tuning

What are precision, recall, F1-score, and accuracy?

Accuracy: (TP + TN) / (TP + TN + FP + FN) - Overall correctness

Precision: TP / (TP + FP) - Of positive predictions, how many were correct?

Recall (Sensitivity): TP / (TP + FN) - Of actual positives, how many were found?

F1-Score: 2 * (Precision * Recall) / (Precision + Recall) - Harmonic mean of precision and recall

TP=True Positives, TN=True Negatives, FP=False Positives, FN=False Negatives

What is the difference between classification and regression?

Classification:

- Predicts discrete categories or classes
- Output is categorical (spam/not spam, cat/dog/bird)
- Evaluation: Accuracy, precision, recall, F1-score
- Examples: Image recognition, sentiment analysis

Regression:

- Predicts continuous numerical values
- Output is a real number (price, temperature, age)
- Evaluation: MSE, RMSE, MAE, R²

• Examples: Stock price prediction, sales forecasting

What are some real-world applications of AI/ML?

- **Healthcare:** Medical diagnosis, drug discovery, personalized treatment
- Finance: Fraud detection, algorithmic trading, credit scoring
- Transportation: Autonomous vehicles, route optimization
- Technology: Recommendation systems, search engines, voice assistants
- **Retail:** Demand forecasting, price optimization, customer segmentation
- Manufacturing: Predictive maintenance, quality control, supply chain optimization

II. DATA PREPROCESSING & FEATURE ENGINEERING

How do you handle missing data in a dataset?

Strategies:

- 1. **Remove:** Delete rows/columns with missing values (if < 5% missing)
- 2. Imputation:
 - Mean/Median/Mode for numerical/categorical data
 - Forward/Backward fill for time series
 - KNN imputation
 - Multiple imputation
- 3. **Prediction:** Use other features to predict missing values
- 4. Indicator variables: Create binary flags for missingness

Choice depends on: Amount of missing data, type of missingness (MCAR, MAR, MNAR), and domain knowledge.

What is normalization and standardization?

Normalization (Min-Max Scaling):

- Scales data to [0,1] range
- Formula: (x min) / (max min)
- Preserves relationships between data points
- Sensitive to outliers

Standardization (Z-score):

- Centers data around mean=0, std=1
- Formula: (x μ) / σ

- Less sensitive to outliers
- Assumes normal distribution

When to use: Standardization for algorithms assuming normal distribution (SVM, Neural Networks). Normalization when you need bounded values.

What is one-hot encoding? When would you use it?

One-hot encoding converts categorical variables into binary vectors where only one element is 1 (hot) and others are 0.

Example: Color: [Red, Blue, Green] becomes:

• Red: [1, 0, 0]

• Blue: [0, 1, 0]

• Green: [0, 0, 1]

When to use:

- Nominal categorical variables (no order)
- Algorithms that can't handle categorical data directly
- When you want to avoid imposing artificial ordering

Avoid when: High cardinality categories (creates too many features), ordinal data (use label encoding instead).

How do you handle categorical variables?

- 1. **Label Encoding:** Assign integers to categories (for ordinal data)
- 2. **One-Hot Encoding:** Create binary columns for each category
- 3. **Target Encoding:** Replace categories with target variable statistics
- 4. **Binary Encoding:** Convert to binary representation
- 5. **Frequency Encoding:** Replace with frequency of occurrence
- 6. **Embedding:** Learn dense representations (for high cardinality)

What is feature selection and why is it important?

Feature selection chooses the most relevant features for model training.

Why important:

- Reduces overfitting
- Improves model interpretability
- Decreases training time

- Reduces storage requirements
- Removes noise and irrelevant information

Methods:

Filter: Statistical tests, correlation analysis

• Wrapper: Forward/backward selection, recursive feature elimination

• **Embedded:** LASSO regularization, tree-based feature importance

What is dimensionality reduction? Explain PCA.

Dimensionality Reduction: Technique to reduce the number of features while preserving important information.

Principal Component Analysis (PCA):

- Finds directions (principal components) of maximum variance
- Projects data onto lower-dimensional space
- Components are orthogonal and ordered by variance explained
- Unsupervised technique

Steps:

- 1. Standardize data
- 2. Compute covariance matrix
- 3. Find eigenvalues and eigenvectors
- 4. Select top k components
- 5. Transform data

Use cases: Visualization, noise reduction, preprocessing for other algorithms.

What is the curse of dimensionality?

As the number of dimensions increases:

- Data becomes sparse in high-dimensional space
- Distance metrics become less meaningful
- Required sample size grows exponentially
- Visualization becomes impossible
- Computational complexity increases

Solutions: Dimensionality reduction, feature selection, regularization, domain expertise for feature engineering.

What is feature scaling and when should it be applied?

Feature scaling ensures all features contribute equally to distance-based algorithms.

When to apply:

- Algorithms using distance metrics (KNN, SVM, Neural Networks)
- Gradient descent optimization
- When features have different units/scales

When not needed:

- Tree-based algorithms (Random Forest, Decision Trees)
- Naive Bayes
- Algorithms that don't use distance metrics

How do you deal with imbalanced datasets?

Techniques:

1. Resampling:

- Oversampling minority class (SMOTE)
- Undersampling majority class
- Combination approaches

2. Algorithm-level:

- Class weights
- Cost-sensitive learning
- Ensemble methods

3. Evaluation:

- Use precision, recall, F1-score instead of accuracy
- ROC-AUC, Precision-Recall curves

4. Data-level:

- Collect more minority class data
- Generate synthetic examples

Explain the role of EDA (Exploratory Data Analysis) in ML

EDA is the critical first step in any ML project:

Purposes:

• Understand data distribution and patterns

- Identify outliers and anomalies
- Discover relationships between variables
- Detect missing values and data quality issues
- Guide feature engineering decisions
- Inform algorithm selection

Techniques:

- Summary statistics
- Data visualization (histograms, box plots, scatter plots)
- Correlation analysis
- Distribution analysis

III. MACHINE LEARNING ALGORITHMS

How does the Decision Tree algorithm work?

Decision Trees make predictions by learning simple decision rules inferred from data features.

Algorithm:

- 1. Start with entire dataset at root
- 2. Find best feature and split point that maximizes information gain
- 3. Split data into subsets based on feature value
- 4. Recursively repeat for each subset
- 5. Stop when stopping criteria met (max depth, min samples, pure nodes)

Splitting Criteria:

• Classification: Gini impurity, Information gain (entropy)

• **Regression:** Mean Squared Error

Advantages: Interpretable, handles both numerical and categorical data, no feature scaling needed

Disadvantages: Prone to overfitting, unstable (small data changes affect tree structure)

What is the difference between bagging and boosting?

Bagging (Bootstrap Aggregating):

- Trains multiple models in parallel on different bootstrap samples
- Combines predictions by averaging (regression) or voting (classification)
- Reduces variance, helps with overfitting
- Example: Random Forest

Boosting:

- Trains models sequentially, each correcting previous model's errors
- Combines weak learners to create strong learner
- Reduces bias, can lead to overfitting if not careful
- Examples: AdaBoost, Gradient Boosting, XGBoost

Explain how the K-Nearest Neighbors algorithm works

KNN is a lazy learning algorithm that makes predictions based on the k closest training examples.

Algorithm:

- 1. Choose value of k
- 2. Calculate distance between query point and all training points
- 3. Find k nearest neighbors
- 4. For classification: majority vote among k neighbors
- 5. For regression: average of k neighbors' values

Distance Metrics: Euclidean, Manhattan, Minkowski, Hamming

Advantages: Simple, no assumptions about data, works well with small datasets **Disadvantages:** Computationally expensive, sensitive to irrelevant features, requires feature scaling

What is the intuition behind Support Vector Machines?

SVM finds the optimal hyperplane that separates classes with maximum margin.

Key Concepts:

- **Hyperplane:** Decision boundary separating classes
- Support Vectors: Data points closest to hyperplane
- Margin: Distance between hyperplane and nearest points from each class
- **Kernel Trick:** Maps data to higher dimensions where it becomes linearly separable

Types of Kernels:

- Linear: For linearly separable data
- RBF (Gaussian): For non-linear data
- Polynomial: For specific polynomial relationships

Advantages: Effective in high dimensions, memory efficient, versatile with kernels **Disadvantages:** Poor performance on large datasets, sensitive to feature scaling

How does Naive Bayes classifier work?

Naive Bayes applies Bayes' theorem with the "naive" assumption that features are conditionally independent.

Bayes' Theorem: $P(A|B) = P(B|A) \times P(A) / P(B)$

For classification: $P(class|features) = P(features|class) \times P(class) / P(features)$

Types:

• **Gaussian:** For continuous features (assumes normal distribution)

• **Multinomial:** For discrete features (text classification)

• Bernoulli: For binary features

Advantages: Fast, works well with small datasets, handles multiple classes naturally **Disadvantages:** Independence assumption often violated, poor probability estimates

What is the difference between Random Forest and XGBoost?

Random Forest:

- Ensemble of decision trees using bagging
- Trees trained independently in parallel
- Uses bootstrap sampling and random feature selection
- Averages predictions across trees
- Less prone to overfitting

XGBoost (Extreme Gradient Boosting):

- Ensemble using gradient boosting
- Trees trained sequentially, each correcting previous errors
- Uses regularization to prevent overfitting
- More complex hyperparameter tuning
- Often achieves better performance but requires more careful tuning

How do gradient descent and stochastic gradient descent differ?

Gradient Descent (Batch GD):

- Uses entire dataset to compute gradient
- Updates parameters once per epoch
- More stable convergence
- Computationally expensive for large datasets

Stochastic Gradient Descent (SGD):

- Uses single sample to compute gradient
- Updates parameters after each sample
- Faster but noisier convergence
- Can escape local minima due to noise

Mini-batch GD: Compromise using small batches (typically 32-512 samples)

Explain logistic regression and where it's used

Logistic regression uses the logistic function to model the probability of binary outcomes.

Logistic Function: $\sigma(z) = 1 / (1 + e^{(-z)})$ **Linear Combination:** $z = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$

Key Points:

- Output is probability between 0 and 1
- Uses maximum likelihood estimation
- Decision boundary at probability = 0.5
- Can be extended to multi-class (softmax regression)

Use Cases:

- Binary classification problems
- Medical diagnosis
- Marketing response prediction
- Email spam detection

What are ensemble models?

Ensemble models combine multiple individual models to create a stronger predictor.

Types:

- 1. **Bagging:** Parallel training with bootstrap sampling (Random Forest)
- 2. **Boosting:** Sequential training correcting previous errors (XGBoost)
- 3. Stacking: Train meta-model on predictions of base models
- 4. **Voting:** Simple majority vote or averaging

Benefits:

- Reduced overfitting
- Better generalization

- Improved accuracy
- More robust predictions

What is the difference between L1 and L2 regularization?

L1 Regularization (Lasso):

- Adds sum of absolute values of parameters
- Penalty: $\lambda \Sigma |\beta_i|$
- Promotes sparsity (sets some coefficients to exactly zero)
- Performs feature selection
- Less stable with correlated features

L2 Regularization (Ridge):

- Adds sum of squared parameters
- Penalty: λ Σβ_i²
- Shrinks coefficients toward zero but doesn't eliminate them
- Handles multicollinearity better
- More stable solution

Elastic Net: Combines L1 and L2 regularization

IV. DEEP LEARNING & NEURAL NETWORKS

What is a perceptron?

A perceptron is the simplest neural network unit, consisting of:

- Input features (x₁, x₂, ..., x_n)
- Weights (w₁, w₂, ..., w_n)
- Bias term (b)
- Activation function

Output: $f(\Sigma w_i x_i + b)$

Limitations:

- Can only learn linearly separable patterns
- Cannot solve XOR problem
- Single layer perceptron is very limited

Multi-layer perceptrons (MLPs) overcome these limitations by stacking multiple layers.

How do activation functions like ReLU, Sigmoid, and Tanh work?

Sigmoid: $\sigma(x) = 1/(1 + e^{(-x)})$

• Output: (0, 1)

• Problems: Vanishing gradients, not zero-centered

• Use: Binary classification output layer

Tanh: $tanh(x) = (e^x - e^(-x))/(e^x + e^(-x))$

• Output: (-1, 1)

• Zero-centered, still has vanishing gradient problem

• Use: Hidden layers in RNNs

ReLU: f(x) = max(0, x)

• Output: [0, ∞)

• Advantages: Computationally efficient, reduces vanishing gradients

• Problems: Dead neurons (always output 0)

• Use: Most common in hidden layers

Variants: Leaky ReLU, ELU, Swish address ReLU's limitations

What are epochs, batch size, and learning rate?

Epoch: One complete pass through the entire training dataset

Batch Size: Number of samples processed before updating model parameters

• Larger batches: More stable gradients, better hardware utilization

• Smaller batches: More frequent updates, better generalization

Learning Rate: Step size for parameter updates during optimization

• Too high: May overshoot optimal solution

• Too low: Slow convergence, may get stuck in local minima

• Common values: 0.001, 0.01, 0.1

What is the vanishing gradient problem?

During backpropagation in deep networks, gradients become exponentially smaller as they propagate backward through layers.

Causes:

Activation functions with small derivatives (sigmoid, tanh)

- Deep network architecture
- Poor weight initialization

Consequences:

- Early layers learn very slowly
- Network fails to capture long-range dependencies

Solutions:

- Better activation functions (ReLU)
- Proper weight initialization (Xavier, He initialization)
- Skip connections (ResNet)
- Batch normalization
- LSTM/GRU for sequential data

What is the difference between CNN and RNN?

Convolutional Neural Networks (CNN):

- Designed for spatial data (images, 2D/3D data)
- Uses convolution operations with filters/kernels
- Translation invariant
- Parameter sharing across spatial locations
- Architecture: Convolution → Pooling → Fully Connected
- Applications: Image recognition, computer vision

Recurrent Neural Networks (RNN):

- Designed for sequential data (text, time series)
- Has memory/hidden state from previous time steps
- Can handle variable-length sequences
- Architecture includes recurrent connections
- Applications: Language modeling, machine translation, time series

How does an LSTM work and where is it used?

Long Short-Term Memory (LSTM) addresses RNN's vanishing gradient problem using gating mechanisms:

Gates:

1. Forget Gate: Decides what information to discard from cell state

2. **Input Gate:** Decides what new information to store

3. Output Gate: Controls what parts of cell state to output

Cell State: Carries information across time steps with minimal modification

Process:

- 1. Forget irrelevant information
- 2. Decide what new information to store
- 3. Update cell state
- 4. Output filtered version of cell state

Applications:

- Machine translation
- Speech recognition
- Time series prediction
- Sentiment analysis

What are convolutional layers in CNN?

Convolutional layers apply filters (kernels) across input data to detect features.

Key Concepts:

- Filter/Kernel: Small matrix that slides across input
- **Stride:** Step size of filter movement
- **Padding:** Adding zeros around input borders
- **Feature Maps:** Output of convolution operation

Operations:

- 1. Element-wise multiplication between filter and input region
- 2. Sum all products
- 3. Apply activation function
- 4. Slide filter to next position

Benefits:

- Parameter sharing reduces overfitting
- Translation invariance
- Hierarchical feature learning
- Spatial relationship preservation

What is transfer learning?

Transfer learning uses pre-trained models as starting points for new, related tasks.

Approaches:

- 1. Feature Extraction: Use pre-trained model as fixed feature extractor
- 2. Fine-tuning: Update pre-trained weights for new task
- 3. **Using Pre-trained Models:** Adapt architecture for specific needs

Benefits:

- Faster training
- Better performance with limited data
- Leverages learned representations
- Reduces computational requirements

Common Pre-trained Models: ResNet, VGG, BERT, GPT

What is dropout and why is it used?

Dropout randomly sets a fraction of neurons to zero during training.

How it works:

- During training: Randomly "drop" neurons with probability p
- During inference: Use all neurons but scale outputs by (1-p)

Benefits:

- Prevents overfitting
- Reduces co-adaptation between neurons
- Acts as ensemble method
- Improves generalization

Typical dropout rates: 0.2-0.5 for hidden layers, 0.5-0.8 for input layers

How do you prevent overfitting in deep learning models?

Regularization Techniques:

1. **Dropout:** Randomly disable neurons during training

2. **L1/L2 Regularization:** Add penalty terms to loss function

3. Batch Normalization: Normalize layer inputs

4. **Early Stopping:** Stop training when validation loss increases

Data Techniques: 5. **Data Augmentation:** Artificially increase dataset size 6. **More Training Data:** Collect additional samples

Architecture Techniques: 7. **Simpler Models:** Reduce parameters/complexity 8. **Cross-validation:** Better model selection

Other Techniques: 9. **Transfer Learning:** Use pre-trained models 10. **Ensemble Methods:** Combine multiple models

V. NATURAL LANGUAGE PROCESSING

What is tokenization in NLP?

Tokenization breaks text into smaller units (tokens) for processing.

Types:

• Word Tokenization: Split by spaces/punctuation

• Sentence Tokenization: Split into sentences

• **Subword Tokenization:** Split words into subparts (BPE, WordPiece)

Character Tokenization: Individual characters as tokens

Challenges:

• Contractions (don't → do, n't)

• Punctuation handling

Multiple languages

Out-of-vocabulary words

Tools: NLTK, spaCy, Hugging Face tokenizers

How do word embeddings like Word2Vec or GloVe work?

Word embeddings represent words as dense vectors in continuous space where similar words have similar representations.

Word2Vec:

• Skip-gram: Predict context words from target word

• **CBOW:** Predict target word from context

- Uses neural network with single hidden layer
- Captures semantic and syntactic relationships

GloVe (Global Vectors):

- Combines global matrix factorization and local context window methods
- Uses word co-occurrence statistics
- Optimizes ratio of co-occurrence probabilities

Benefits:

- Captures semantic similarity
- Reduces dimensionality
- Works with machine learning algorithms

What is the difference between stemming and lemmatization?

Stemming:

- Removes suffixes to get root form
- Rule-based approach (Porter, Snowball stemmers)
- Fast but may create non-words
- Example: running → run, studies → studi

Lemmatization:

- Reduces words to dictionary form (lemma)
- Uses vocabulary and morphological analysis
- Slower but more accurate
- Example: running → run, studies → study, better → good

When to use:

- Stemming: Speed is important, approximate matching okay
- Lemmatization: Accuracy is crucial, meaning preservation needed

What is TF-IDF and why is it used?

Term Frequency-Inverse Document Frequency measures word importance in document relative to collection of documents.

Formula:

- TF(t,d) = (Number of times term t appears in document d) / (Total terms in d)
- IDF(t,D) = log(Total documents / Documents containing term t)
- TF-IDF(t,d,D) = TF(t,d) \times IDF(t,D)

Intuition:

- High TF-IDF: Word appears frequently in document but rarely in corpus
- Low TF-IDF: Common words (the, and, or) or rare words

Applications:

- Information retrieval
- Text mining
- Feature extraction for ML
- Document similarity

What are Transformers in NLP?

Transformers use attention mechanisms to process sequences in parallel, revolutionizing NLP.

Key Components:

- **Self-Attention:** Each position attends to all positions in sequence
- Multi-Head Attention: Multiple attention mechanisms in parallel
- Position Encoding: Add positional information to embeddings
- Feed-Forward Networks: Process attended representations

Advantages:

- Parallelizable (faster training)
- Captures long-range dependencies
- No recurrence needed
- State-of-the-art performance

Famous Models: BERT, GPT, T5, RoBERTa

VI. MODEL DEPLOYMENT & MLOps

How do you save and load a trained model in Python?

Scikit-learn:

```
python

import joblib
# Save
joblib.dump(model, 'model.pkl')
# Load
model = joblib.load('model.pkl')
```

TensorFlow/Keras:

```
python

# Save
model.save('model.h5')

# Load
model = tf.keras.models.load_model('model.h5')
```

PyTorch:

```
# Save
torch.save(model.state_dict(), 'model.pth')
# Load
model.load_state_dict(torch.load('model.pth'))
```

Best Practices:

- Save preprocessing pipelines with models
- Version control for models
- Include metadata (training date, performance metrics)
- Use model registries for production

What is model drift and how do you monitor it?

Model Drift: Degradation in model performance over time due to changes in data or environment.

Types:

- 1. Data Drift: Input data distribution changes
- 2. Concept Drift: Relationship between inputs and outputs changes
- 3. Label Drift: Target distribution changes

Monitoring Methods:

- Statistical tests (KS test, Chi-square)
- Performance metrics tracking
- Data distribution monitoring
- Feature importance changes
- Prediction distribution analysis

Solutions:

Regular model retraining

- Online learning
- Ensemble approaches
- A/B testing for model updates

How do you deploy a machine learning model as an API?

Steps:

- 1. Wrap model in API framework (Flask, FastAPI, Django)
- 2. Create endpoints for predictions
- 3. Handle input validation and preprocessing
- 4. Return structured responses (JSON)
- 5. Add error handling and logging
- 6. Containerize with Docker
- 7. **Deploy** to cloud platform

Example with Flask:

```
from flask import Flask, request, jsonify
import joblib

app = Flask(__name__)
model = joblib.load('model.pkl')

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict([data['features']])
    return jsonify({'prediction': prediction[0]})
```

What are common tools for deploying ML models?

Web Frameworks:

- Flask: Lightweight, simple for prototypes
- FastAPI: Modern, fast, automatic API documentation
- **Django:** Full-featured, good for complex applications

Containerization:

- **Docker:** Package application with dependencies
- Kubernetes: Container orchestration for scaling

Cloud Platforms:

• AWS: SageMaker, Lambda, EC2, ECS

Google Cloud: Al Platform, Cloud Run, App Engine

Azure: Machine Learning Studio, Container Instances

Specialized Tools:

• Streamlit: Quick web apps for data science

Gradio: Easy ML model interfaces

• MLflow: Model lifecycle management

• Seldon: Kubernetes-native ML deployments

Explain the CI/CD pipeline in MLOps

Continuous Integration/Continuous Deployment for ML systems includes both code and model versioning.

CI Pipeline:

- 1. Code commit triggers pipeline
- 2. Automated testing (unit tests, integration tests)
- 3. **Data validation** (schema checks, quality tests)
- 4. **Model training** on new data
- 5. **Model validation** (performance, bias checks)
- 6. **Model versioning** and artifact storage

CD Pipeline:

- 1. **Model approval** (manual or automated gates)
- 2. Staging deployment for testing
- 3. **A/B testing** or canary deployment
- 4. Production deployment
- 5. **Monitoring** and alerting
- 6. **Rollback** capabilities

Tools:

Version Control: Git, DVC (Data Version Control)

CI/CD: Jenkins, GitHub Actions, GitLab CI

Model Registry: MLflow, Weights & Biases

- Monitoring: Evidently, Great Expectations
- Orchestration: Airflow, Kubeflow, Prefect

Key Differences from Software CI/CD:

- Data dependencies and versioning
- Model performance monitoring
- Gradual rollouts (A/B testing)
- Data drift detection
- Model retraining triggers