Database Systems, Even 2020-21

Normalization: Practice Problems

- Find if a given functional dependency is implied from a set of functional dependencies:
 - For: $A \rightarrow BC$, $CD \rightarrow E$, $E \rightarrow C$, $D \rightarrow AEH$, $ABH \rightarrow BD$, $DH \rightarrow BC$
 - o Check: *BCD*→*H*
 - Check: $AED \rightarrow C$
 - For: $AB \rightarrow CD$, $AF \rightarrow D$, $DE \rightarrow F$, $C \rightarrow G$, $F \rightarrow E$, $G \rightarrow A$
 - o Check: CF→DF
 - o Check: BG→E
 - Check: $AF \rightarrow G$
 - o Check: AB→EF
 - For: $A \rightarrow BC$, $B \rightarrow E$, $CD \rightarrow EF$
 - o Check: *AD*→*F*

- Find candidate key using functional dependencies:
 - $\mathbf{R} = (ABCDE)$; $FDs = \{AB \rightarrow C, DE \rightarrow B, CD \rightarrow E\}$
 - $\mathbf{R} = (ABCDE)$; $FDs = \{AB \rightarrow C, C \rightarrow D, B \rightarrow AE\}$
- Find superkey using functional dependencies:
 - $\mathbf{R} = (ABCDE)$; $FDs = \{AB \rightarrow C, DE \rightarrow B, CD \rightarrow E\}$
 - $\mathbf{R} = (ABCDE)$; $FDs = \{AB \rightarrow C, C \rightarrow D, B \rightarrow AE\}$

- Find prime and nonprime attributes using functional dependencies:
 - $\mathbf{R} = (ABCDEF)$; $FDs = \{AB \rightarrow C, C \rightarrow D, D \rightarrow E, F \rightarrow B, E \rightarrow F\}$
 - $\mathbf{R} = (ABCDEF)$; $FDs = \{AB \rightarrow C, C \rightarrow DE, E \rightarrow F, C \rightarrow B\}$
 - $\mathbf{R} = (ABCDEFGHIJ)$; $FDs = \{AB \rightarrow C, A \rightarrow DE, B \rightarrow F, F \rightarrow GH, D \rightarrow IJ\}$
 - $\mathbf{R} = (ABDLPT)$; $FDs = \{B \rightarrow PT, A \rightarrow D, T \rightarrow L\}$
 - $\mathbf{R} = (ABCDEFGH)$; $FDs = \{E \rightarrow G, AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A\}$
 - $\mathbf{R} = (ABCDE)$; $FDs = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A\}$
 - $\mathbf{R} = (ABCDEH)$; $FDs = \{A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A\}$

- **Prime attributes:** Attribute set that belongs to any candidate key are called *prime attributes*
 - It is union of all the candidate key attribute: {CK1 ∪ CK2 ∪ CK3 ∪ ...}
 - If prime attribute determined by other attribute set, then more than one candidate key is possible
 - For example, if A is candidate key, and $A \rightarrow B$, then, X is also candidate key
- Nonprime attributes: Attribute set that does not belongs to any candidate key are called nonprime attributes

- Check the equivalence of a pair of sets of functional dependencies:
 - Consider the two sets F and G with their FDs as below:
 - \circ $F: \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$
 - \circ G: { $A \rightarrow CD$, $E \rightarrow AH$ }
 - Consider the two sets P and Q with their FDs as below:
 - \circ $P: \{A \rightarrow B, AB \rightarrow C, D \rightarrow ACE\}$
 - \circ Q: $\{A \rightarrow BC, D \rightarrow AE\}$

- Find the minimal cover or irreducible sets or canonical cover of a set of functional dependencies:
 - $AB \rightarrow CD$, $BC \rightarrow D$
 - ABCD \rightarrow E, E \rightarrow D, AC \rightarrow D, A \rightarrow B

Practice Problem on Lossless Join

- Check if the decomposition of R into D is lossless:
 - $\mathbf{R} = (ABC)$; $FDs = \{A \rightarrow B, A \rightarrow C\}$; $D = \mathbf{R}_1(AB), \mathbf{R}_2(BC)$;
 - $\mathbf{R} = (ABCDEF)$; $FDs = \{A \rightarrow B, B \rightarrow C, C \rightarrow D, E \rightarrow F\}$; $D = \mathbf{R}_1(AB)$, $\mathbf{R}_2(BCD)$; $\mathbf{R}_3(DEF)$;
 - $\mathbf{R} = (ABCDEF)$; $FDs = \{A \rightarrow B, C \rightarrow DE, AC \rightarrow F\}$; $D = \mathbf{R}_1(BE), \mathbf{R}_2(ACDEF)$;
 - $\mathbf{R} = (ABCDEG)$; $FDs = \{AB \rightarrow C, AC \rightarrow B, AD \rightarrow E, B \rightarrow D, BC \rightarrow A, E \rightarrow G\}$; $D = \mathbf{R}_1(AB), \mathbf{R}_2(BC), \mathbf{R}_3(ABDE), \mathbf{R}_4(EG)$;
 - \mathbf{R} = (ABCDEG); FDs = { $AB \rightarrow C$, $AC \rightarrow B$, $AD \rightarrow E$, $B \rightarrow D$, $BC \rightarrow A$, $E \rightarrow G$ }; D = \mathbf{R}_1 (ABC), \mathbf{R}_2 (ACDE), \mathbf{R}_3 (ADG);
 - $\mathbf{R} = (\mathsf{ABCDEFGHIJ}); \ \mathsf{FDs} = \{AB \rightarrow C, B \rightarrow F, D \rightarrow IJ, A \rightarrow DE, F \rightarrow GH\}; \ \mathsf{D} = \mathbf{R_1}(\mathsf{ABC}), \ \mathbf{R_2}(\mathsf{ADE}), \ \mathbf{R_3}(\mathsf{BF}), \ \mathbf{R_4}(\mathsf{FGH}), \ \mathbf{R_5}(\mathsf{DIJ});$
 - $\mathbf{R} = (\mathsf{ABCDEFGHIJ}); \ \mathsf{FDs} = \{AB \to C, \ B \to F, \ D \to IJ, \ A \to DE, \ F \to GH\}; \ \mathsf{D} = \mathbf{R}_1(\mathsf{ABCDE}) \ , \ \mathbf{R}_2(\mathsf{BFGH}), \ \mathbf{R}_3(\mathsf{DIJ});$
 - $\quad \mathbf{R} = (\mathsf{ABCDEFGHIJ}); \ \mathsf{FDs} = \{ AB \to C, \ B \to F, \ D \to IJ, \ A \to DE, \ F \to GH \}; \ \mathsf{D} = \mathbf{R_1}(\mathsf{ABCD}) \ , \ \mathbf{R_2}(\mathsf{DE}), \ \mathbf{R_3}(\mathsf{BF}), \ \mathbf{R_4}(\mathsf{FGH}), \ \mathbf{R_5}(\mathsf{DIJ});$

Practice Problem for 3NF Decomposition

- $\mathbf{R} = (ABCDEFGH)$; $FDs = \{A \rightarrow B, ABCD \rightarrow E, EF \rightarrow GH, ACDF \rightarrow EG\}$
- $\mathbf{R} = (CSJDPQV)$; $FDs = \{C \rightarrow CSJDPQV, SD \rightarrow P, JP \rightarrow C, J \rightarrow S\}$
- $\mathbf{R} = (\mathsf{ABCDEFGH}); \ \mathsf{FDs} = \{A \to CD, \ ACF \to G, \ AD \to BEF, \ BCG \to D, \ CF \to AH, \ CH \to G, \ D \to B, \ H \to DEG\}$
- $\mathbf{R} = (ABCDE)$; $FDs = \{A \rightarrow B, AB \rightarrow D, B \rightarrow BDE, C \rightarrow D, D \rightarrow D\}$
- $\mathbf{R} = (BOISQD)$; $FDs = \{I \rightarrow B, IS \rightarrow Q, B \rightarrow O, S \rightarrow D\}$
- $\mathbf{R} = (ABCDE)$; $FDs = \{A \rightarrow CD, B \rightarrow CE, E \rightarrow B\}$

Practice Problem for BCNF Decomposition

- $\mathbf{R} = (ABCDE)$; $FDs = \{A \rightarrow B, BC \rightarrow D\}$
- $\mathbf{R} = (ABCDEH)$; $FDs = \{A \rightarrow BC, E \rightarrow HA\}$
- $\mathbf{R} = (CSJDPQV)$; $FDs = \{C \rightarrow CSJDPQV, SD \rightarrow P, JP \rightarrow C, J \rightarrow S\}$
- $\mathbf{R} = (ABCD)$; $FDs = \{C \rightarrow D, C \rightarrow A, B \rightarrow C\}$

Thank you...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in