

Proof:

Which of the following should be the next sentence of this proof?

- A. "Pick any odd integer, n = 137."
- B. "Pick any odd integer *n*."
- C. "Pick any odd integer n and arbitrary integers r and s where $r^2 s^2 = n$."

Answer at **PollEv.com/cs103** or text **CS103** to **22333** once to join, then **A**, **B**, or **C**.

Proof: Pick any odd integer *n*.

Proof: Pick any odd integer *n*.

Proof: Pick any odd integer n.

This is a very different sort of request than what we've seen in the past. How on earth do we go about proving something like this?

Universal vs. Existential Statements

• A *universal statement* is a statement of the form

For all x, [some-property] holds for x.

- We've seen how to prove these statements.
- An *existential statement* is a statement of the form

There is some x where [some-property] holds for x.

How do you prove an existential statement?

Proving an Existential Statement

 Over the course of the quarter, we will see several different ways to prove an existential statement of the form

There is an x where [some-property] holds for x.

• *Simplest approach:* Search far and wide, find an *x* that has the right property, then show why your choice is correct.

Proof: Pick any odd integer *n*.

- **Theorem:** For any odd integer n, there exist integers r and s where $r^2 s^2 = n$.
- **Proof:** Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

- **Theorem:** For any odd integer n, there exist integers r and s where $r^2 s^2 = n$.
- **Proof:** Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k.

- **Theorem:** For any odd integer n, there exist integers r and s where $r^2 s^2 = n$.
- **Proof:** Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

$$r^2 - s^2 = (k+1)^2 - k^2$$

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

$$r^2 - s^2 = (k+1)^2 - k^2$$

= $k^2 + 2k + 1 - k^2$

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

$$r^{2} - s^{2} = (k+1)^{2} - k^{2}$$

$$= k^{2} + 2k + 1 - k^{2}$$

$$= 2k + 1$$

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

$$r^{2} - s^{2} = (k+1)^{2} - k^{2}$$

$$= k^{2} + 2k + 1 - k^{2}$$

$$= 2k + 1$$

$$= n.$$

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that

$$r^{2} - s^{2} = (k+1)^{2} - k^{2}$$

$$= k^{2} + 2k + 1 - k^{2}$$

$$= 2k + 1$$

$$= n.$$

This means that $r^2 - s^2 = n$, which is what we needed to show.

Proof: Pick any odd integer n. Since n is odd, we know there is some integer k where n = 2k + 1.

Now, let r = k+1 and s = k. Then we see that

$$r^{2} - s^{2} = (k+1)^{2} - k^{2}$$

$$= k^{2} + 2k + 1 - k^{2}$$

$$= 2k + 1$$

$$= n.$$

This means that $r^2 - s^2 = n$, which is what we needed to show. \blacksquare

Follow-Up Question: There are some integers that can't be written as $r^2 - s^2$ for any integers r and s.

Can you prove that every integer can be formed by adding and subtracting some combination of at most *three* perfect squares?