Exponentielles et Murs

Daniel Etiemble

LRI – Université Paris Sud

Exponentielles et murs

Des équations fondamentales

Temps d'exécution d'un programme

$$T_{ex} = \frac{\text{NI}}{\text{IPC} * \text{F}}$$

Puissance dissipée CMOS

Archi15 (8 Juin)

Plan (en vrac)

Exponentielles

- Technologie
- Moore
- Performances
- Puissance dissipée
- Coûts de fabrication

— ...

Murs

- Chaleur
- IPC
- Mémoire
- Conception
- Programmation parallèle?

• ...

Relations entre exponentielles et murs

Les exponentielles

- En profiter
 - Utilisation dans les applications
 - Puissance de calcul, capacité mémoire, etc.
 - Exemple : la traduction automatique
- Les combattre
 - Continuer à réaliser la progression exponentielle
 - Performances : microarchitecture et architecture
 - Traitement : explosion de la taille des données...
- Les deux à la fois
 - Exemple : calcul scientifique

La loi de Moore

- Version correcte
 - Le nombre de transistors par puce double tous les ans / 18 mois / 2 ans
- Versions « incorrectes »
 - Doublement tous les deux ans
 - De la performance
 - Du nombre de cœurs par puce
 - Etc

La loi de Moore

Les « nœuds » technologiques

- Une fin ?
 - Il est difficile de faire des prévisions (surtout pour le futur)
 - Voir les prévisions passées et la réalité
 - Vers les limites physiques
 - Quand?

Remarques sur les prévisions

- Paolo Gardini (Intel Fellow ITRS Chairman)
 - http://www.ewh.ieee.org/r6/scv/eds/slides/2014-Mar-11-Paolo.pdf
- Lesson 2
 - « Predictors of Engineering Limits have Always been Proven Wrong by The Right Improvements »
- Lesson 3
 - « It Would be Wrong to Believe that the Right Fundamental Limits Don't Exist »

« Predictors of Engineering Limits have Always been Proven Wrong by The Right Improvements »

- Un exemple
 - Transistor 3D et Technologie FinFET

« It Would be Wrong to Believe that the Right Fundamental Limits Don't Exist »

Coûts de fabrication

Fonderies pour les autres (14 13)

Croissance exponentielle des coûts de fonderie (loi de Rock)

GLOBALFOUNDRIES TO ACQUIRE IBM'S MICROELECTRONICS BUSINESS

Acquisition Enables GLOBALFOUNDRIES to Become a World Leader in Semiconductor Foundry Technology;

Vitesse des portes

Nombre de transistors (microprocesseurs)

Nombre de transistors

Surface de puce

Surfaces entre 1 et 7 cm²

Neon Nehalem – 45 nm – 685 mm² Power8 – 22 nm – 650 mm²

Une ou deux puces

- Opérateurs flottants
 - Coprocesseurs (ex : x87)...
 - Intégrés
- Caches
 - Externes
 - Internes (L1 puis L1-L2 puis...)
- CPU et GPU
 - 2 puces distinctes
 - GPU intégré (APU)
- Multi-cœurs
 - 1 puce
 - Cluster de multi-cœurs

Du coprocesseur à l'intégration dans la même puce

De puces distinctes à une seule puce

Evolution des caches

19

Archi15 (8 Juin) D. Etiemble

Un ou plusieurs circuits intégrés

- Exemple : GPU ou APU
 - APU = CPU + GPU dans la même puce.

	Tesla K40 + CPU	Nvidia Tegra K1
Single Precision Peak	4.2 TeraFlops	326 GFlops
Single Precision SGEMM	3.8 TeraFlops	290 GFlops
Memory	12GB @ 288GB/s	2GB @ 14.9GB/s
Power (CPU + GPU)	~ 385Watt	<11Watts
Performance Per Watt	10SP GFlops Per Watt	26SP GFlops Per Watt

Performance microprocesseurs (1980-2005)

Archi15 (8 Juin)

Exponentielles...(plus exponentielles que d'autres)

Evolution / an

Mur de l'IPC

- Parallélisme d'instructions
 - Nombre d'instructions exécutables/cycle
- Evolution très limitée de 1990 à 2015

Algorithme de Tomasulo

o-o-o : simplifier les recherches associatives

Pentium Pro, PIII, Nehalem

Netburst (P4)... Sandy Bridge, Haswell

Recherches associatives complexes

- Bibliothèques versus « full custom » (cas ARM)

Banc de registres multi-ports

Registres double accès

- Registres N ports
 - Temps accès proportionnel à N
 - Surface proportionnelle à N²

* "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies" – Fred Pollack, Intel Corp. Micro32 conference key note - 1999.

 0.5μ 0.35μ 0.25μ 0.18μ 0.13μ

 0.1μ

 0.07μ

 1.5μ

 0.7μ

 1μ

Puissance dissipée - GPU

Puissance dissipée en CMOS

- Pd = Pd_{statique} + Pd_{dynamique}
- Puissance statique
 - Courants de fuite
- Puissance dynamique

$$-P_{dyn} = \alpha . \Sigma C_i . V_{dd}^2.f$$

- Fréquence
- Tension d'alimentation

Puissance statique : technologie

Technologie

- Ex : Technologie Sol (IBM) réduit les capacités
- Ex : transistor 3D (Intel)

Puissance statique : circuiterie

Circuiterie

Ex : Massesvirtuelles(caches duXeon)

Puissance dynamique

Circuiterie

- « clock gating » : n'activer que les parties utiles
- Plusieurs tensions d'alimentation
- Transistors rapides, moyens et lents (tension de seuil Vt)

Architecture

- Fréquence d'horloge (F)
- Complexité du circuit
 - Processeur
 - Caches

N'activer que les parties utiles

Plusieurs modes de fonctionnement

Figure 2. EFM32 Gecko block diagram and the five energy modes.

5^{ème} génération Intel Core

Core M Pentium Celeron

LES DIFFERENTS ETATS

* Note: Power states availability may vary between the different SKUs

Mur de la chaleur

- Arrêt de l'augmentation de F
 - Fin du « free lunch »
 - Haut et milieu de gamme
 - Tournant vers les multi-cœurs
 - Bas de gamme
 - Simplification des architectures
- Utilisation du parallélisme
 - Parallélisme de données dans les monoprocesseurs (SIMD et SIMT)
 - Multi-cœurs

Parallélisme de données : réduire NI

Tex = NI * CPI * Tc

CPU

SIMD

1 instruction à plusieurs données

SSE2/3/4 – Neon - Altivec

GPU

SIMT

1 instruction pour plusieurs threads

Multiprocesseurs et puissance (d'après F. Anceau)

Multi-cœurs haut de gamme

Ivy-bridge

2013 22 nm 1,86 10⁹ T 2,57 cm²

Et le « *petit* » dernier ...

Intel® Xeon® Processor D - SoC Architecture

- 14 nm
- D1540
 - -8 cœurs
 - 15 Mo caches L3
 - 2 GHz
 - -45 W

Cc-NUMA (exemple AMD)

Embarqué: des processeurs très différents

- Microcontrôleurs 8 bits
 8051!
- Des processeurs 32 bits
- Des multi-cœurs
- Des SoC
- Contraintes
 - Taille du code
 - Consommation
 - Surface de puce

Intel Atom x3 c3440

- -CPU 4 cœurs
- -Modem 4G
- -Vidéo
- Intel® Atom™ x3-C3440 processor
 LTE SoC

 Quad-Core Intel® Atom™ CPU

 GPU ISP Video

 4G LTE 5-band Modem Baseband

 Memory

- -WiFi
- Bluetooth
- Radio FM

Kalray MPPA-256

Instruction Level Parallelism Thread Level Parallelism Process Level Parallelism

28 nm	Cores	GFLOPS (SP)	Active Power	Real Time	DDR	Ethernet
Kalray MPPA	288 K1	230	10W	Yes	2 DDR3 1600	8 10G

Monte-Carlo Option Pricing

Accelerator	Time (s)	Performance	Energy (J)
i7-3820	13.86	0.17	1802.2
Tesla C2075	2.37	1.00	531.7
MPPA-256	5.75	0.41	86.3

Modification des « moteurs »

La logique synchrone

- Temps de cycle fixé
 - Mur de la chaleur
- Avec les nœuds technologiques successifs
 - Diminution possible du nombre d'étages de pipelines

Des pipelines plus courts ?

- Moins d'étages de pipeline
 - Structures matérielles plus simples
 - Prédiction de branchement moins importante
 - Applicables à tous les types de processeurs
- Processeurs sans pipelines d'exécution ?????
 - Suppression des aléas (structurel, données, branchement)
 - Moins de registres
 - Contrôle plus simple
 - Consommation réduite
 - Simplification de la hiérarchie mémoire

Multi-cœurs et FPGA

 Réduction du différentiel de fréquences entre processeurs et FPGA

- Altera: 1 GHz en 14 nm Intel

Intel s'offre les puces reprogrammables d'Altera pour 16,7 milliards de dollars

CPU BA20 (IP Cast)

Re-invent the basic architecture

 What about those "old fashioned" non-pipelined CPUs?

BA20 PipelineZero Approach

VERSION MODERNE DU 8051

Fréquence – Etages de pipeline

Comparaison de différents processeurs scalaires (jeu d'instructions BA2)

Caractéristiques	BA20	BA21	BA22 (CE/AP)	BA25
NB étages	1	2	5	7/12
CoreMarks/MHz	3,41	2,77	2,93	2,51
FMAX @TMSC65LP	75 MHz	150 MHz	400 MHz	800 MHz
CoreMarks	256	415	1175	2000
Portes équivalentes	> 10 K	> 10 K	>25 K >35 K	> 150 K
Caches	-	-	L0 /L0	LO et L1
MMU	-	-	-/L0	L0 et L1

Mur mémoire: NUMAS

Clusters

STRUCTURATION DES DONNEES EN FONCTION DE LA HIERARCHIE MEMOIRE MODELES DE PROGRAMMATION : Mémoire partagée / Mémoire distribuée

Caches privés ou partagés

Complexification des problèmes de cohérence

Mur mémoire : débits

SERVEURS DELL

Mur mémoire : débits

Mur mémoire : CPU et GPU

Eviter PCle

- Puces soudées
- APU

Débit maximum PCIe

- PCle 1.0 x 16 : 4 Go/s

– PCle 2.0 x 16 : 8 Go/s

– PCle 3.0 x 16 : 16 Go/s

- PCle 4.0 (2016)

Contrôleur mémoire « pinned » du CPU

Example: The Memory Capacity Gap

Core count doubling ~ every 2 years

DRAM DIMM capacity doubling ~ every 3 years

- Memory capacity per core expected to drop by 30% every two years
- Trends worse for memory bandwidth per core!

Hétérogénéité : CPU + accélérateurs

- Superordinateurs
 - Multi-cœurs et GPUs
 - Multi-cœurs et Xeon-Phi
 - Multi-cœurs et FPGA
- MPSoC
 - CPU / Multi-cœurs/DSP/ FPGA

Et la programmation?

- Clusters de multi-cœurs
 - Mémoire partagée (OpenMP Pthreads)
 - Mémoire distribuée (MPI)
- + GPU
 - Cuda / OpenCL
- + DSP + FPGA + ...

D. A. Paterson (IEEE Spectrum – Juin 2010)

— "The Trouble With Multicore - Chipmakers are busy designing microprocessors that most programmers can't handle"

Un autre différentiel

• Évolution comparée du temps de conception d'un circuit et du nombre de portes disponibles

Écart de productivité de conception

Conclusions (1)

- Exponentielles : propriété n°1 de l'architecture des processeurs / ordinateurs
- Les exponentielles provoquent des murs, infranchissables ou à contourner
- Complexification
 - Hétérogénéité matérielle
 - Les accélérateurs disparaissent (on-chip) et réapparaissent plus nombreux (GPU, FPGA...)
 - Complexification de la hiérarchie mémoire
 - Hétérogénéité logicielle
 - Modèles de programmation différents

Conclusion (2): exponentielle et... thèse

• Le référentiel (état de l'art) évolue exponentiellement.

Archi15 (8 Juin)

Recherche en archi: masochisme?

- Pourquoi avoir choisi info/archi?
 - Référentiel à évolution rapide ou exponentielle
 - Architecture des ordinateurs
 - Données massives
- Et non un domaine à référentiel fixe ou à évolution très lente ?
 - Science de la terre
 - Physique Chimie
 - Biologie (végétale animale)
 - Recherche médicale
 - Ou... Mathématiques...

Dernier théorème de Fermat

Formulé par Fermat vers 1630

$$x^n + y^n = z^n$$

n'a pas de solutions entières non nulles quand n > 2.

- Démontré par Andrew Wiles en 1995
 - Plus de 350 ans plus tard
- Problèmes et... conditions de recherche sont immuables dans le temps

Questions?

 En évitant, dans la mesure du possible, les questions sur le futur ...! {joke}

Exécution o-o-o = recherches associatives

Exemple: « ROB » dans Metaflow (DRISS)

	Op source 1		Op source 2		Destination		on			
	`		ĺ	Ì						
N°	V	N° reg	ID	V	N° reg	ID	D ?	N° reg	Résultat	
·										
ID1	V	R2		V	R1		D ?	R1		DIV R1,R2,R1
ID2	V	R7			R1	ID1	D ?	R3		ADD R3,R7,R1
ID3	V	R8		V	R2		D ?	R1		SUB R1,R8,R2
ID4		R3	ID2		R1	ID3	D ?	R4		MUL R4,R3,R1
ID5	V	R6		V	R5		D ?	R4		XOR R4,R6,R5

Archi15 (8 Juin) D. Etiemble 64