

CLAIMS

What is claimed is:

1 1. An integrated circuit to interface to memory, the
2 integrated circuit comprising:

3 a first off chip driver calibration terminal to
4 couple to an external pull-up resistor;

5 a second off chip driver calibration terminal to
6 couple to an external pull-down resistor;

7 a first switch coupled between the first off chip
8 driver calibration terminal and a voltage reference node;
9 and

10 a second switch coupled between the second off chip
11 driver calibration terminal and the voltage reference
12 node.

1 2. The integrated circuit of claim 1, wherein

2 the first switch and the second switch are
3 selectively closed to generate an internal voltage
4 reference on the voltage reference node with which an
5 input signal may be compared in order to receive data.

1 3. The integrated circuit of claim 2, wherein

2 the first switch is selectively closed and the
3 second switch is selectively opened to generate a pull-up

4 calibration voltage on the voltage reference node to
5 calibrate an off-chip driver.

1 4. The integrated circuit of claim 3, wherein
2 the first switch is selectively opened and the
3 second switch is selectively closed to generate a pull-
4 down calibration voltage on the voltage reference node to
5 further calibrate the off-chip driver.

1 5. The integrated circuit of claim 1, further
2 comprising:

3 a plurality of input receivers each having a first
4 input coupled to the voltage reference node and a second
5 input coupled to a respective data terminal of a
6 plurality of data terminals.

1 6. The integrated circuit of claim 5, wherein
2 each input receiver includes
3 a comparator having a first input coupled to the
4 voltage reference node and a second input coupled to the
5 respective data terminal, the data terminal to couple to
6 an off-chip output driver for calibration.

1 7. The integrated circuit of claim 1, further
2 comprising:

3 a switch controller having a mode input, a first
4 control output coupled to a control input of the first

5 switch, and a second control output coupled to a control
6 input of the second switch, the switch controller to
7 control the opening and closing of the first switch and
8 the second switch in response to the mode input.

1 8. The integrated circuit of claim 7, wherein
2 the first switch and the second switch are
3 selectively closed to generate an internal voltage
4 reference on the voltage reference node with which an
5 input signal may be compared in order to receive data;
6 the first switch is selectively closed and the
7 second switch is selectively opened to generate a pull-up
8 calibration voltage on the voltage reference node to
9 calibrate an off-chip driver; and
10 the first switch is selectively opened and the
11 second switch is selectively closed to generate a pull-
12 down calibration voltage on the voltage reference node to
13 further calibrate the off-chip driver.

1 9. The integrated circuit of claim 1, wherein
2 the integrated circuit is a memory controller.

1 10. The integrated circuit of claim 1, wherein
2 the integrated circuit is a processor.

1 11. A method in an integrated circuit for interfacing to
2 a memory, the method comprising:

3 if in an off-chip driver calibration mode for a
4 pull-up, then
5 selecting a pull-up calibration terminal to be
6 coupled to a voltage reference node to provide a
7 pull-up calibration voltage thereon, and
8 calibrating a pull-up of an off chip driver;
9 if in an off-chip driver calibration mode for a
10 pull-down, then
11 selecting a pull-down calibration terminal to
12 be coupled to the voltage reference node to provide
13 a pull-down calibration voltage thereon, and
14 calibrating a pull-down of the off chip driver;
15 and,
16 if in a normal mode to receive data, then
17 selecting the pull-up calibration terminal and
18 the pull-down calibration terminal to be coupled to
19 the voltage reference node to provide a reference
20 voltage thereon, and
21 receiving data from a data terminal.

1 12. The method of claim 11 further comprising:
2 prior to selecting, calibrating and receiving,
3 coupling an external pull-up resistor to the
4 pull-up calibration terminal; and
5 coupling an external pull-down resistor to the
6 pull-down calibration terminal.

1 13. The method of claim 11, wherein
2 the receiving data from the data terminal includes
3 comparing the reference voltage on the voltage
4 reference node with an incoming signal on the data
5 terminal.

1 14. The method of claim 13, wherein
2 the calibrating of the pull-up of the off chip
3 driver includes
4 comparing the pull-up calibration voltage on the
5 voltage reference node with an incoming signal on the
6 data terminal.

1 15. The method of claim 14, wherein
2 the calibrating of the pull-down of the off chip
3 driver includes
4 comparing the pull-down calibration voltage on the
5 voltage reference node with an incoming signal on the
6 data terminal.

1 16. A system comprising:
2 a processor for executing instructions and
3 processing data;
4 a double data rate memory device to store data from
5 the processor and to read data to the processor;

6 an external pull-up resistor having a first end
7 coupled to a first power supply terminal;
8 an external pull-down resistor having a first end
9 coupled to a second power supply terminal; and
10 a memory controller coupled between the double data
11 rate memory device and the processor, the memory
12 controller including
13 a pull-up calibration terminal coupled to a
14 second end of the external pull-up resistor,
15 a pull-down calibration terminal coupled to a
16 second end of the external pull-down resistor,
17 a voltage reference node,
18 a first switch having a first switch connection
19 coupled to the pull-up calibration terminal and a
20 second switch connection coupled to the voltage
21 reference node, and
22 a second switch having a first switch
23 connection coupled to the pull-down calibration
24 terminal and a second switch connection coupled to
25 the voltage reference node.

1 17. The system of claim 16, wherein
2 the memory controller is an integrated circuit
3 separate from the processor.

1 18. The system of claim 16, wherein

2 the processor is an integrated circuit and includes
3 the memory controller.

1 19. The system of claim 16, wherein
2 the memory controller further includes
3 a switch controller having a mode input, a
4 first control output coupled to a control input of
5 the first switch, and a second control output
6 coupled to a control input of the second switch, the
7 switch controller to control the opening and closing
8 of the first switch and the second switch in
9 response to the mode input.

1 20. The system of claim 19, wherein
2 the first switch and the second switch are
3 selectively closed to generate an internal voltage
4 reference on the voltage reference node with which an
5 input signal may be compared in order to receive data;
6 the first switch is selectively closed and the
7 second switch is selectively opened to generate a pull-up
8 calibration voltage on the voltage reference node to
9 calibrate a driver of the DDR memory device; and
10 the first switch is selectively opened and the
11 second switch is selectively closed to generate a pull-
12 down calibration voltage on the voltage reference node to
13 further calibrate the driver of the DDR memory device.

1 21. A processor for a computer system, the processor
2 including:

3 a memory controller to interface to memory, the
4 memory controller having

5 a pull-up calibration terminal to couple to an
6 external pull-up resistor,

7 a pull-down calibration terminal to couple to
8 an external pull-down resistor,

9 a voltage reference node,

10 a first switch coupled between the pull-up
11 calibration terminal and the voltage reference node,
12 and

13 a second switch coupled between the pull-down
14 calibration terminal and the voltage reference node.

1 22. The processor of claim 21, wherein
2 the memory controller further has

3 a switch controller having a mode input, a
4 first control output coupled to a control input of
5 the first switch, and a second control output
6 coupled to a control input of the second switch, the
7 switch controller to control the opening and closing
8 of the first switch and the second switch in
9 response to the mode input.

1 23. The processor of claim 22, wherein

2 the first switch and the second switch are
3 selectively closed to generate an internal voltage
4 reference on the voltage reference node with which an
5 input signal may be compared in order to receive data
6 from a driver of a DDR memory device;

7 the first switch is selectively closed and the
8 second switch is selectively opened to generate a pull-up
9 calibration voltage on the voltage reference node to
10 calibrate the driver of the DDR memory device; and

11 the first switch is selectively opened and the
12 second switch is selectively closed to generate a pull-
13 down calibration voltage on the voltage reference node to
14 further calibrate the driver of the DDR memory device.

1 24. A packaged integrated circuit to interface to
2 memory, the packaged integrated circuit comprising:

3 a first off-chip driver calibration terminal to
4 couple to a first external resistor;

5 a second off-chip driver calibration terminal to
6 couple to a second external resistor;

7 a first plurality of field effect transistors having
8 sources coupled in parallel together to the first off-
9 chip driver calibration terminal and drains coupled in
10 parallel together to a voltage reference node; and

11 a second plurality of field effect transistors
12 having drains coupled in parallel together to the second

13 off-chip driver calibration terminal and sources coupled
14 in parallel together to the voltage reference node.

1 25. The packaged integrated circuit of claim 24 wherein
2 the first plurality of field effect transistors and
3 the second plurality of field effect transistors are p-
4 channel field effect transistors.

1 26. The packaged integrated circuit of claim 24 wherein
2 the first plurality of field effect transistors and
3 the second plurality of field effect transistors are n-
4 channel field effect transistors.

1 27. The packaged integrated circuit of claim 24 wherein
2 the first plurality of field effect transistors are
3 p-channel field effect transistors, and
4 the second plurality of field effect transistors are
5 n-channel field effect transistors.

1 28. The packaged integrated circuit of claim 24 wherein
2 the first plurality of field effect transistors are
3 n-channel field effect transistors, and
4 the second plurality of field effect transistors are
5 p-channel field effect transistors.

1 29. The packaged integrated circuit of claim 24 wherein

2 the first plurality of field effect transistors are
3 p-channel field effect transistors and n-channel field
4 effect transistors having sources coupled in parallel
5 together and drains coupled in parallel together, and
6 the second plurality of field effect transistors are
7 p-channel field effect transistors and n-channel field
8 effect transistors having sources coupled in parallel
9 together and drains coupled in parallel together.

1 30. The packaged integrated circuit of claim 24 further
2 comprising:

3 a switch controller having a mode input, a first
4 plurality of switch control signals coupled to respective
5 gates of the first plurality of field effect transistors,
6 a second plurality of switch control signals coupled to
7 respective gates of the second plurality of field effect
8 transistors, the switch controller to control the
9 switching of the first and second plurality of field
10 effect transistors.

1 31. The packaged integrated circuit of claim 24 further
2 comprising:

3 a plurality of input receivers each having a first
4 input coupled to the voltage reference node and a second
5 input coupled to respective data terminals to receive
6 data.

1 32. The packaged integrated circuit of claim 31, wherein
2 each input receiver includes
3 a comparator having a first input coupled to the
4 voltage reference node and a second input coupled to a
5 respective data terminal to calibrate a pull-up and a
6 pull-down of an off-chip output driver.

1 33. The packaged integrated circuit of claim 32, wherein
2 the comparator of each input receiver further to
3 receive data by comparing a reference voltage on the
4 reference node with an input signal on the respective
5 data terminal.