0 诚信应考,考试作弊将带来严重后果! 考试中心填写:

年___月__日 考 试 用

湖南大学课程考试试卷

课程名称:线性代数 A;课程编码: GE03003 试卷编号: A;考试时间:120 分钟

题 号	1~5	6~7	8~10	11~13	总分
应得分	20	18	28	34	100
实得分					
评卷人					

填空题:将答案填在横线上(1~5题,每题4分,共20分)

1. 设向量
$$\boldsymbol{\alpha} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\boldsymbol{\beta} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, 矩阵 $\boldsymbol{A} = \boldsymbol{\alpha} \boldsymbol{\beta}^{\mathrm{T}}$, 则 $\boldsymbol{A}^{6} = \underline{}$.

- 2. 设 4 阶矩阵 A 的秩为 2,则其伴随矩阵 A*的秩为 . . .
- 3. 已知向量组 α_1 =(1, 2, -1, 1), α_2 =(2, 0, t, 0), α_3 =(0, -4, 5, -2)的秩为 2, 则常数 t =
- 4. 设A为n阶实对称阵,P为n阶可逆矩阵,x是A的对应于特征值 λ 的 特征向量,则矩阵($P^{-1}AP$)^T对应于 λ 的特征向量是 . . .
- 5. 设矩阵 $A=\begin{bmatrix}1&2&0\end{bmatrix}$,而矩阵 B 满足 ABA*=2BA*+E,其中 A*为 A 的 0 0 1

伴随矩阵,E 为单位矩阵,则行列式|B|=.

解答题 (6~13 题, 共80 分):

装订线 (题目不得超过此线

崇守:

姓名:

6. (8分) 计算 n 阶行列式 $D_n = \begin{vmatrix} a+1 & a & a & \cdots & a \\ 1 & a+1 & 0 & \cdots & 0 \\ 1 & 0 & a+1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & \cdots & a+1 \end{vmatrix}$.

7. (10 分) 设矩阵 $(2E-C^{-1}B)A^{T}=C^{-1}$, 其中 E 为 4 阶的单位矩阵, A^{T} 为 A 的转

置矩阵,且 \mathbf{B} = $\begin{bmatrix} 1 & 2 & -3 & -2 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, \mathbf{C} = $\begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, 求 \mathbf{A} .

装订线(题目不得超过此线

8. $(8 \, \beta)$ 试确定参数 λ ,使得矩阵 $A = \begin{bmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{bmatrix}$ 的秩达到最小.

9. (10 分) 设矩阵
$$A = \begin{bmatrix} -1 & 2 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ -6 & 4 & 2 & -2 & 4 \\ 6 & 3 & -9 & 7 & 9 \end{bmatrix}$$
, 求矩阵 A 的**列**向量组的一个最大

无关组,并把不属于最大无关组的列向量用该最大无关组线性表示.

10. (10 分) 在 \mathbf{R}^3 中取两组基: $\boldsymbol{\varepsilon}_1 = (1,0,0)^T$, $\boldsymbol{\varepsilon}_2 = (0,1,0)^T$, $\boldsymbol{\varepsilon}_3 = (0,0,1)^T$ 和 $\boldsymbol{\alpha}_1 = (1,1,1)^T$, $\boldsymbol{\alpha}_2 = (1,1,-1)^T$, $\boldsymbol{\alpha}_3 = (1,-1,-1)^T$. (1) 求由基 $\boldsymbol{\varepsilon}_1$, $\boldsymbol{\varepsilon}_2$, $\boldsymbol{\varepsilon}_3$ 到基 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 的过渡矩阵; (2) 求向量 $\boldsymbol{\beta} = \boldsymbol{\varepsilon}_1 + 2\boldsymbol{\varepsilon}_2 + \boldsymbol{\varepsilon}_3$ 在基 $\boldsymbol{\alpha}_1$, $\boldsymbol{\alpha}_2$, $\boldsymbol{\alpha}_3$ 下的坐标; (3) 求在这两组基下有相同坐标的向量.

11. (14 分)设线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ x_2 + 2x_3 + 2x_4 = 1, \\ -x_2 + (a-3)x_3 - 2x_4 = b, \\ 3x_1 + 2x_2 + x_3 + ax_4 = -1 \end{cases}$$
, (1)当 a, b 为何值时该

方程组有唯一解、无解或有无穷多组解;(2)求出有无穷多组解时的通解.

装订线(题目不得超过此线) ……………

12. (12 分)设二次型 $f(x_1,x_2,x_3) = -2x_1x_2 - 2x_1x_3 - 2x_2x_3$, (1)用正交变换化其为标准形; (2)写出所做的变换; (3)说出方程 $f(x_1,x_2,x_3) = 1$ 的几何图形的名称, (4)几何上看,将二次型化标准形时,正交变换的特点在哪里?

13. (8分)设A,B为n阶方阵,试证明:(1)AB与BA有相同的特征值;(2)tr(AB)=tr(BA).