# Atmega128 메모리 Structure

#### Overview

AVR 아키텍쳐에서 메모리는 크게 Data Memory와 Program Memory Space로 나누어 볼 수 있으며 추가적으로 EEPROM Memory를 가지고 있다.

## In-System Reprogrammable Flash Program Memory

Atmega128은 128Kbyte(64K x 16 bit) Flash Memory를 가지고 있다. Software security를 위해 Flash Program memory는 Boot Program section과 Application Program section으로 나눠져있다.

Figure 8. Program Memory Map



Atmega128의 Program Counter이 16bit instruction으로 수행되기 때문에 128Kbyte / 16bit = 64Kbyte의 Program memory addressing을 할 수 있다. (\$0000 ~ \$FFFF) Boot Flash Section은 Boot Lock Bits에 의해 software protection 되어있다.

**SRAM Data Memory** 

Table 1. Memory Configurations

| Configuration | Internal SRAM Data Memory | External SRAM Data Memory |
|---------------|---------------------------|---------------------------|
| Normal mode   | 4096                      | up to 64K                 |

Figure 9. Data Memory Map



4352(\$10FF) Data Memory Location 까지 (General Purpose) Register, I/O Register, Extended I/O Register, Internal SRAM으로 구성되어 있다.
Internal SRAM의 다음 주소 (\$1100)부터 \$FFFF 까지 External SRAM 공간이다.
만약에 Internal SRAM 메모리 사용시 Read/Write strobe pin(PG0, PG1) inactive 상태가됨.

External SRAM Access : LD, ST, LDS, STS, LDD, STD, PUSH, POP 등등

## **Data Memory Access Times**

Figure 10. On-chip Data SRAM Access Cycles



SRAM Access에 대한 concept은 한 clk마다 Address에 대한 접근과 Address 연산을 처리한다.

#### **EEPROM Data Memory**

Atmega128은 4Kbyte EEPROM memory를 가지고 있다.

(EEPROM : Electrically Erasable Programmable Read-Only Memory, 전기적으로 데이터를 지우고 쓸수 있는 비휘발성 메모리)

이론적 측면에서 Flash Memory Endurance는 10,000 write/erase cycle인 반면, EEPROM Edurance는 100,000 write/erase cycle 이다.

EEPROM -> CPU 혹은 CPU -> EEPROM 으로 Address 접근할 때 EEPROM Address Register / Data Register / Control Register을 제어할 수 있다.

### **EEPROM Read/Write Access**

EEPROM이 read 상태일 때, 다음 instruction이 실행 되기 전에 CPU가 4 clock cycle동안 멈춘다.

EEPROM이 Write 상태일 때, 다음 instruction이 실행 되기 전에 CPU가 2 clock cycle동안 멈춘다.

EEPROM Address Register - EEARH / EEARL

| Bit           | 15    | 14    | 13    | 12    | 11     | 10     | 9     | 8     | _     |
|---------------|-------|-------|-------|-------|--------|--------|-------|-------|-------|
|               | -     | -     | -     | -     | EEAR11 | EEAR10 | EEAR9 | EEAR8 | EEARH |
|               | EEAR7 | EEAR6 | EEAR5 | EEAR4 | EEAR3  | EEAR2  | EEAR1 | EEAR0 | EEARL |
|               | 7     | 6     | 5     | 4     | 3      | 2      | 1     | 0     | 1     |
| Read/Write    | R     | R     | R     | R     | R/W    | R/W    | R/W   | R/W   |       |
|               | R/W   | R/W   | R/W   | R/W   | R/W    | R/W    | R/W   | R/W   |       |
| Initial Value | 0     | 0     | 0     | 0     | X      | X      | X     | X     |       |
|               | X     | X     | X     | X     | X      | X      | X     | X     |       |

- Bits 15 ~ 12 : Reserved Bits
   0로 지정 되어있으며, 다음 세대 device 호환성을 위해 남겨 짐.
- Bits 11 ~ 0 : EEPROM Address
   0 ~ 4096 까지의 Address를 표현하기 위해 12개 bit 사용함.
   EEAR 초기값은 undefined 되었기 때문에 EEPROM 접근 전에 한번 Write 해야한다.

## **EEPROM Data Register - EEDR**

| Bit           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | _    |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|------|
|               | MSB |     |     |     |     |     |     | LSB | EEDR |
| Read/Write    | R/W |      |
| Initial Value | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |      |

• Bits 7 ~ 0 : EEPROM Data

EEPROM write operation : EEAR에 있는 EEPROM 주소에 Data Write EEPROM read operation : EEAR에 있는 EEPROM 주소에 Data Read

## **EEPROM Control Register - EECR**

| Bit           | 7 | 6 | 5 | 4 | 3     | 2     | 1    | 0    | _    |
|---------------|---|---|---|---|-------|-------|------|------|------|
|               | - | - | - | - | EERIE | EEMWE | EEWE | EERE | EECR |
| Read/Write    | R | R | R | R | R/W   | R/W   | R/W  | R/W  | •    |
| Initial Value | 0 | 0 | 0 | 0 | 0     | 0     | X    | 0    |      |

- Bits 7 ~ 4 Res: Reserved Bits
   0로 지정 되어있으며, 다음 세대 device 호환성을 위해 남겨 짐.
- Bit 3 EERIE : EEPROM Ready Interrupt Enable
   1일 때, EEWE bit clear 되면 EEPROM Ready Interrupt 요청함.

Bit 2 EEMWE: EEPROM Master Write Enable
 EEWE Bit가 EEPROM에 Write 할 수 있는 지를 제어할 수 있다. (Master 권한)
 EEMWE가 1일 때 EEWE가 1이면 4 clock cycle 이후 EEPROM의 EEAR 주소에
 Data Write
 EEMWE가 0이면 EEWE가 1이라도 Write 안함

- Bit 1 EEWE : EEPROM Write Enable EEAR의 Address가 옳은 Address면 EEPROM Data Write
- Bit 0 EERE: EEPROM Read Enable EEAR의 Address가 옳은 Address면 EEPROM Data Read

## I/O Memory

모든 I/O Address는 LD/LDS/LDD 또는 ST/STS/STD instruction으로 접근할 수 있다.

| LD  | load indirect                    |
|-----|----------------------------------|
| LDS | load direct from data space      |
| LDD | load indirect with displacement  |
| ST  | store indirect                   |
| STS | store direct to data space       |
| STD | store indirect with displacement |

General Purpose Register(\$00 ~ \$1F)는 SBI / CBI instruction 으로 접근할 수 있다.

| SBI | set bit in I/O register   |
|-----|---------------------------|
| СВІ | clear bit in I/O register |

Bit value check 하기 위해서는 SBIS / SBIC 이용하자

| SBIC | skip if bit in I/O register |
|------|-----------------------------|
|      | cleared                     |

IN / OUT instruction 과 I/O Address (\$00 ~ \$3F) 를 통해 general purpose register에 Load / Write 가능하다.