Run 2 MC Tracker Only Validation: D* Normalization

Alex Fernez

Svende Braun, Manuel Franco Sevilla, Phoebe Hamilton, Yipeng Sun University of Maryland

May 4, 2021

1/33

Contents

- Cuts/Selection
 - Fit Sample Selections
- Plots
 - True/Reconstructed: q^2 , m_{miss}^2 , E_{μ}
 - Fit Sample Variables
 - Other Relevant Selection Variables
 - Variables used for BDTmu
- 3 Questions, Observations, TODO

Cuts/Selection

- Filtering- see "Run 2 proposed" on slide 3 here
- HLT2 (for FullSim)- Hlt2XcMuXForTauB2XcMu, see slide 5 of same presentation
- Stripping line 28r2 b2D0MuXB2DMuForTauMuLine not applied, but all cuts except PID are applied in reco script (again, see slide 5 of same presentation)
- Additional cuts from reco script: see third column of table in slide 10 in this (other) presentation
 - Notably: upstream slow pions are cut
- Multiple Candidates kept
- Some truth matching done, as well as other cuts Phoebe uses in redoHistos_Dst.C
 (variables from AddB.C) and redoHistos_D0.C (variables from AddD0B_temp.C))
 to select individual decays. Individual slides contain more info.
 - Overall cuts for TupleB0: D^{*+} bkgcat=0 (or =50 and D^0 bkgcat=50), D^{*+} mom or gdmom or gdgdmom= B^0 , μ truelD= μ
 - Overall cuts for TupleBminus: $|m_{D^0} < m_{D^0} > | < 23.4 {
 m MeV},~\mu$ truelD= μ
 - Efficiency of these truth matching selections will be manually noted where relevant

Alex Fernez Run 2 MC TrackerOnly May 4, 2021 3/33

ISO Fit Sample Selections

return (b.iso_BDT() < 0.15);

- This is equivalent to what is listed in the ANA note in table 16.
- However, Phoebe's code (line 1284) for this fit sample is slightly more complicated. It references the higher D** states for some reason. Since this is not listed in the ANA note, I assume this was a temporary thing that Phoebe did (maybe to investigate something), and I don't implement it.

DD Fit Sample Selections

- Sample is defined to look at an enhanced fraction of decays like $B \to D^{(*)}DX$ (by requiring a K among the tracks selected by the isolation algorithm, noting that submodes of these DD decays have $D \to K\mu X$)
- This is more complicated than what is listed in the ANA note in table 16.
- I am not sure why Phoebe recalculates the iso_NNk variables as above, but I blindly follow her implementation here.
- The complicated cut involving <code>iso_P</code>, <code>iso_PT</code>, and <code>iso_BDT</code> is also not referenced in the ANA note, but again I blindly follow Phoebe's code.
- Phoebe's code (line 1303) references a variable iso_NNkw. I do not know what this variable is, but as far as I can tell, we do not have a branch for it in our ntuples. Therefore, I ignore her use of this variable (which is also not listed in the ANA note).

10S Fit Sample Selections

- Sample is defined to look at an enhanced fraction of decays $D^{**} \to D^{(*)}\pi^+$ (chosen to be orthogonal to the DD fit sample)
- This is more complicated than what is listed in the ANA note in table 16. The cut on the charge variable multiplied by the D* MC ID is requiring that these particles have opposite charge; this is mentioned in the ANA note text. Besides this cut, my implementation here is equivalent to that table in the ANA note.
- Phoebe's code (line 1354) again references iso_NNkw for this fit sample selection. I again ignore the use of this variable in her code.

*D*** Fit Sample Selections

- This is the same as the 1OS fit sample, but with a mass cut on the $D^{*+}\pi^-$ combination around the relatively narrow D_1 and D_2^* states.
- Phoebe's code actually doesn't reference this sample, and her 1OS sample actually has a mass cut that I don't implement under the assumption that the D^{**} sample was created at a later time than the code was written and using the mass cut listed in the ANA note rather than line 1349 of her code.
- iso_DeltaM is defined as $\sqrt{(p_{
 m B~isolation~track}+p_{D^*})^2}-m_{D^*}$

20S Fit Sample Selections

```
return (iso_BDT > 0.15 && iso_BDT2 > 0.15 && iso_BDT3 < 0.15 && iso_CHARGE != iso_CHARGE2
    && iso_CHARGE != 0 && iso_CHARGE2 != 0 && iso_CHARGE < 100
    && TMath::Max(iso_P*(iso_PT > 150),iso_P2*(iso_PT2 > 150)) > 5e3
    && iso_NNk < 0.2 && iso_NNk2 < 0.2);
```

- Sample is defined to look at an enhanced fraction of the higher excited charm states, decaying as $D_H^{**} \to D^{(*)}\pi\pi$ (by requiring the isolation to find two tracks). Sample is chosen to be orthogonal to the DD and 10S fit samples.
- This is more complicated than what is listed in the ANA note in table 16.
- I'm not sure why the charge < 100 selection is there, but I just copied Phoebe's code for this.
- The complicated cut involving the iso_P, iso_PT are also not listed in that table, but again I blindly follow Phoebe's code.

All $B^0 o D^{*+}\muar u$: q^2 , m_{miss}^2 , E_μ^*

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Truth matching selection efficiency (trackeronly, fullsim): 0.913, 0.912
- $q^2 = (p_B p_{D^*})^2$, $m_{miss}^2 = (p_B p_{D^*} p_{\mu})^2$, $E_{\mu}^* = E_{\mu}$ boosted to B rest
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+} [\to D^0 [\to K^- \pi^+] \pi_s^+] \mu$

ISO $B^0 o D^{*+}\muar u$: q^2 , m_{miss}^2 , E_μ^*

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- ISO fit sample selec. efficiency, after truth-match (trackeronly, fullsim): 0.774, 0.773
- $q^2=(p_B-p_{D^*})^2$, $m^2_{miss}=(p_B-p_{D^*}-p_{\mu})^2$, $E^*_{\mu}=E_{\mu}$ boosted to B rest
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

DD $B^0 o D^{*+}\muar u$: q^2 , m_{miss}^2 , E_μ^*

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- DD fit sample selec. efficiency, after truth-match (trackeronly, fullsim): 0.046, 0.045
- $q^2=(p_B-p_{D^*})^2$, $m^2_{miss}=(p_B-p_{D^*}-p_{\mu})^2$, $E^*_{\mu}=E_{\mu}$ boosted to B rest
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+} [\to D^0 [\to K^- \pi^+] \pi_s^+] \mu$

10S $B^0 o D^{*+}\muar u$: q^2 , m_{miss}^2 , E_μ^*

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- 1OS fit sample selec. efficiency, after truth-match (trackeronly, fullsim): 0.022, 0.022
- $q^2=(p_B-p_{D^*})^2$, $m^2_{miss}=(p_B-p_{D^*}-p_{\mu})^2$, $E^*_{\mu}=E_{\mu}$ boosted to B rest
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+} [\to D^0 [\to K^- \pi^+] \pi_s^+] \mu$

D^{**} $B^0 o D^{*+} \mu \bar{ u}$: q^2 , m^2_{miss} , E^*_{μ}

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- D** fit sample selec. efficiency, after truth-match (trackeronly, fullsim): 0.0025, 0.0024
- $q^2=(p_B-p_{D^*})^2$, $m^2_{miss}=(p_B-p_{D^*}-p_{\mu})^2$, $E^*_{\mu}=E_{\mu}$ boosted to B rest
- $\bullet \ \, {\sf Plotted \ using \ TupleB0: \ reconstructed \ as} \ \, B^0 \to D^{*+}[\to D^0[\to K^-\pi^+]\pi^+_{\mathfrak s}]\mu$

2OS $B^0 o D^{*+}\muar u$: q^2 , m_{miss}^2 , E_μ^*

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- 2OS fit sample selec. efficiency, after truth-match (trackeronly, fullsim): 0.0031, 0.0032
- $q^2=(p_B-p_{D^*})^2$, $m^2_{miss}=(p_B-p_{D^*}-p_{\mu})^2$, $E^*_{\mu}=E_{\mu}$ boosted to B rest
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+} [\to D^0 [\to K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: Iso BDT, Iso NNk

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: Iso p, Iso p_T

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: Other Variables for Fit Samples

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: Investigation Requiring B^0 Isolation Track Type =3

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: B Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: D^* Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+}[\to D^0[\to K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: D^0 Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: π_s Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 \to D^{*+}[\to D^0[\to K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: K Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+} [o D^0 [o K^- \pi^+] \pi_s^+] \mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: π Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- ullet Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: μ Selection Variables

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- ullet Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: BDT μ Variables (1)

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: BDT μ Variables (2)

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

All $B^0 \to D^{*+} \mu \bar{\nu}$: BDT μ Variables (3)

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- $\bullet \ \, {\sf Plotted \ using \ TupleB0: \ reconstructed \ as} \ \, B^0 \to D^{*+}[\to D^0[\to K^-\pi^+]\pi^+_s]\mu$

All $B^0 o D^{*+} \mu \bar{\nu}$: BDT μ Variables (4)

- Selection: $\mu \text{ mom}=B^0$, $D^{*+} \text{ mom}=B^0$, $B^0 \text{ bkgcat}=0$
- Plotted using TupleB0: reconstructed as $B^0 o D^{*+}[o D^0[o K^-\pi^+]\pi_s^+]\mu$

Questions

• See the slides where I define and make observations about the implementation of the cuts for defining the fit samples.

Observations

• ..

TODO

...

Backup Slides