Sólidos: geometría del espacio

Grado 7

Contenido

- Propósitos y desempeños
- Conceptos
 - Definición: Que son?
 - Teorema de Euler
 - Clasificación
- Métrica
 - Construcción, superficie, volumen, capacidad
 - Algunos sólidos comunes
- Actividades

Sólidos: geometría del espacio

Propósitos

- Reconocer la aplicación de los sólidos geométricos en diferentes contextos cotidianos.
- Construir y medir diferentes sólidos geométricos (determinación de volúmenes y áreas).
- Resolver problemas que involucren sólidos geométricos, con sus unidades y equivalencias.

Desempeños

- Reconoce la importancia de la construcción de sólidos geométricos en la vida cotidiana.
- Construye y mide diferentes sólidos geométricos, aplicando los criterios necesarios para hallar volúmenes y superficies.
- Resuelve problemas relacionados con los sólidos geométricos.

Pirámide de *Keops*, la mayor de las pirámides de Egipto (2550 a.C.). Altura h=146 m, semi-base b=115 m, volumen 2.574.467 m³; equivalente al volumen transportado por unas 150.000 volquetas de 3 ejes.

Definición: Que son?

- Un sólido o cuerpo geométrico es una figura con 3 dimensiones: largo, ancho (también conocido como profundo) y alto.
- Él ocupa un lugar en el espacio denominado *volumen*.
- El volumen del sólido está cerrado por superficies (áreas) en el espacio 3D (espacio real).
- Un sólido tiene: caras, aristas, vértices y ángulos.
- Se distinguen dos ángulos: diedro y poliedro.

Vértice (cúspide, ápice)

- APOTEMA de la pirámide

Arista

Base

Altura

Poliedros y el Teorema de Euler

- Un poliedro es un cuerpo geométrico (sólido) de 3D cuyas caras son polígonos. De acuerdo al significado griego, la raíz polys se entiende por "muchas" y edra como "base" o "cara".
- Aquellos que están formados por polígono regulares se les llama poliedros regulares y el número de caras es igual al número de vértices.
- Ejemplos de poliedros regulares.

Teorema de Euler para poliedros

El <u>teorema de Euler</u> para poliedros establece una relación entre el número de caras (C), aristas (A) y vértices (V) que se cumple "para casi todos" los poliedros. Tal relación es

$$C + V = A + 2$$

• Ejemplos del teorema.

Clasificación de los sólidos geométricos

Se dividen fundamentalmente en 2 clases según sean sus superficies:

- Poliedros: por tener superficies planas
- Cuerpos Redondos: por tener superficies curvas.

Cada clase contiene (y se puede) de forma detallada subclases adicionales de acuerdo a la forma de las caras, forma de la base, paralelismo de las aristas, perpendicularidad de las bases, entre otras características que determinan el tipo de sólido geométrico.

Clasificación de los sólidos geométricos

Clasificación de los sólidos geométricos

Ejemplos. Clasificar cada sólido.

La parte métrica de un sólido hace referencia a las magnitudes (medible) que posee.

Desarrollo de un Sólido: se refiere a extender toda su superficie sobre un mismo plano.

Superficie: es la extensión de cada una de las caras, que se mide a través del área, usando alguna unidad de medida (metros cuadrados).

Volumen: es la extensión de espacio que ocupa un cuerpo a causa de sus 3 dimensiones. Se cuantifica (mide) a través de alguna unidad de medida (metros cúbicos).

Antes de empezar con el volumen, es necesario recordar alguna áreas.

Resumen general (básico y breve) sobre la superficie de sólidos geométricos.

Área de los prismas

Área lateral: Suma de las áreas de las caras laterales. En el prisma las caras laterales son rectángulos.

Área total: Es la suma del área lateral y el área de las dos bases. Las bases son dos polígonos iguales.

prisma rectangular recto.

Área de la pirámide

Área lateral: Suma de las áreas de las caras laterales.

Área total: Es la suma del área lateral y el área de la base. La base es un polígono cualquiera, regular o no. (Aquí trabajaremos con bases que son polígonos regulares).

Pirámide de base cuadrada

Resumen general (básico y breve) sobre el volumen de sólidos geométricos.

El cálculo de áreas y volúmenes se efectúa con fórmulas. A continuación se muestran las

más comunes.

$$A = \frac{I^2 \sqrt{3}}{V}$$

$$V = \frac{I^3 \cdot \sqrt{2}}{12}$$

$$A = 4\pi R^2$$

$$V = \frac{4}{3} \pi R^3$$

- 1. Escribir el nombre de cada figura y sus características.
- 2.Investigar que es un ángulo diedro y ángulo poliedro.
- 3. Dibujar (mano alzada) un sólido con 5 caras, 9 aristas y 6 vértices; escribir su nombre.
- 4. Dibujar (mano alzada) un sólido con 6 caras, 10 aristas y 6 vértices; escribir su nombre.

FIGURA DEL ESPACIO	NOMBRE	CARAS	BASES	VERTICES	ARISTAS

1. Para cada sólido evaluar si se cumple o no el teorema de Euler.

2. Inventa y dibuja un sólido donde se cumpla el teorema y otro donde no se cumple.

Para cada sólido determinar las caras, aristas, vértices y su clasificación.

I- Calcula la superficie total de los siguientes poliedros.

II. Calcula el volumen de los siguientes prismas.

2 m

III. Calcula el área total y el volumen de los siguientes cuerpos redondos:

a)

b)

c)

Soluciones:

- I. Prisma rectangular: 1650 cm²; Prisma triangular: 168 cm²
- II. 96 cm³. 24 cm³.
- III.Esfera: 7056π cm²; 98784π cm³. Cilindro: 147.56π cm²; 211.548π cm³.