Devoir maison n°10: Droites Tropicales

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Partie A - Les droites tropicales

- (\mathcal{A}') « Par deux points du plan passe une droite tropicale. »
- (\mathcal{B}') « Par deux points quelconques indépendants du plan passe une et une seule droite tropicale. »
- (\mathcal{C}') « Deux droites tropicales dont les points centraux sont indépendants se coupent toujours en un unique point. »

1) a)

b) On cherche à prouver (A'). Soient A et B deux points quelconques du plan. Par une translation B on se ramène au cas où :

$$\mathcal{A}(0,0)$$
 et $\mathcal{B}(x,y)$ avec $x\in\mathbb{R}$ et $y\in\mathbb{R}$

Etudions d'abord des cas particuliers :

Si x = 0 et y = 0 alors A = B, la droite tropicale de centre A convient.

Si y = 0 alors la droite tropicale de centre $\mathcal{C}(\max(0, x), 0)$ convient.

Si x = 0 alors la droite tropicale de centre $\mathcal{C}(0, \max(0, y))$ convient.

Si x = y alors la droite tropicale de centre $\mathcal{C}(\min(0, x), \min(0, y))$ convient.

Attaquons nous désormais aux cas généraux :

Si x < 0 **et** y > 0

Il existe $\mathcal{C}(0,y)$. Soient les demi-droites :

 $\mathcal{H}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{H} est parallèle à l'axe des abscisses.

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est parallèle à l'axe des ordonnées.

Comme x < 0, \mathcal{H} est de direction $-\vec{i}$ et comme y > 0, \mathcal{V} est de direction $-\vec{j}$. Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient la deuxième partie rayée.

Si x > 0 et y > 0 et y > x

Soit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des ordonnées. Comme $y>x,y_{\mathcal{C}}>0$. Soient les demi-droites :

 $\mathcal{D}: [\mathcal{C}, \mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i} + \vec{j}$

 $\mathcal{V}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{V} est de direction — \vec{j}

Donc $\mathcal A$ et $\mathcal B$ appartiennent à la droite tropicale de centre $\mathcal C.$

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x > y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Si x > 0 et y > 0 et y < x

Doit \mathcal{D}' la droite parallèle à y=x et passant par \mathcal{B} . On nomme \mathcal{C} l'intersection entre \mathcal{D}' et l'axe des abscisses. Comme $y< x, x_{\mathcal{C}}>0$. Soient les demi-droites :

 $\mathcal{D}:[\mathcal{C},\mathcal{B})$ par construction, \mathcal{D} est de direction $\vec{i}+\vec{j}$

 $\mathcal{H}: [\mathcal{C}, \mathcal{A})$ par construction, \mathcal{H} est de direction $-\vec{i}$

Donc \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} .

En inversant les rôles de \mathcal{A} et \mathcal{B} , on obtient que pour 0 > x et 0 > y et x < y, \mathcal{A} et \mathcal{B} appartiennent à la droite tropicale de centre \mathcal{C} , soit la deuxième zone rayée.

Conclusion

En combinant les différentes disjonctions de cas démontrées plus haut on obtient :

Le cas des lignes noires est couvert par les cas particuliers. Nous avons donc prouvé que pour tout point quelconque \mathcal{B} , il existe une droite tropicale passant par \mathcal{B} et par l'origine \mathcal{A} . Nous pouvons revenir au cas général avec deux points quelconques par la translation inverse de T.

Nous avons donc démontré (A'): par deux points du plan passe une droite tropicale.

2) a) La propriété (\mathcal{B}) n'est pas vraie pour les droites tropicales dans le cas de deux points dépendants.

Contre-exemple : Prenons les points $\mathcal{A}(0,0)$ et $\mathcal{B}(1,0)$, qui sont dépendants. La droite tropicale de point central $\mathcal{C}_1(2,0)$ passe par \mathcal{A} et par \mathcal{B} , mais celle de point central $\mathcal{C}_2(3,0)$ aussi. Il y a même une infinité de droites tropicales passant par ces deux points : toutes celles dont le point central est d'ordonnée nulle et d'abscisse supérieure à 1.

b) On chercher à prouver (\mathcal{B}') : « Par deux points quelconques indépendants du plan passe une et une seule droite tropicale. »

Soient \mathcal{A} et \mathcal{B} deux points indépendants du plan. Par une translation T on fait en sorte que $\mathcal{A}(0,0)$ -et- $\mathcal{B}(x,y)$ -avec $x\in\mathbb{R}$ -et $y\in\mathbb{R}$. Comme \mathcal{A} -et \mathcal{B} -sont indépendants, $x\neq 0$, $y\neq 0$ -et $x\neq y$.

D'après (\mathcal{A}') , il existe une droite tropicale de centre $\mathcal{C}(\alpha,\beta)$ -avec $\alpha \in \mathbb{R}$ -et $\beta \in \mathbb{R}$ -passant par \mathcal{A} -et \mathcal{B} . On nomme respectivement \mathcal{H} , \mathcal{V} -et \mathcal{D} -les demi-droites de direction $-\vec{i}$, $-\vec{j}$ -et \vec{i} + \vec{j} -formant cette droite tropicale.

On considère toutes les combinaisons de demi-droites auxquelles pourraient appartenir $\mathcal A$ et $\mathcal B$ -afin de déterminer $\mathcal C(\alpha,\beta)$.

Cas impossibles:

Si \mathcal{A} et \mathcal{B} appartiennent à la même demi-droite, alors ils sont dépendants ce qui n'est pas possible donc on peut éliminer les cas- $(\mathcal{A} \in \mathcal{H} \text{ et } \mathcal{B} \in \mathcal{H})$,- $(\mathcal{A} \in \mathcal{V} \text{ et } \mathcal{B} \in \mathcal{V})$ -et- $(\mathcal{A} \in \mathcal{D} \text{ et } \mathcal{B} \in \mathcal{D})$.

Cas génériques :

En inversant les roles de \mathcal{A} et \mathcal{B} on obtient également les contraintes suivantes : TODO

On remarque qu'à moins que x=0, y=0-ou x=y-ce qui n'est pas possible puisque $\mathcal A$ -et $\mathcal B$ -sont indépendants, il n'est pas possible que plusieurs droites donne le même centre.

(ce qui n'est pas ce que l'on cherche à démontrer)

3) On chercher à prouver (\mathcal{C}') : « Deux droites tropicales dont les points centraux sont indépendants se coupent toujours en un unique point. »

Soient \mathcal{C} et \mathcal{C}' deux centres de droites tropicales, indépendants. Par une translation T, on se ramène à $\mathcal{C}(0,0)$ et $\mathcal{C}'(x,y)$ avec $x\in\mathbb{R}$ et $y\in\mathbb{R}$. Comme \mathcal{C} et \mathcal{C}' sont indépendants, $x\neq 0, y\neq 0, x\neq y$.

On nomme respectivement \mathcal{H} , \mathcal{V} et \mathcal{D} les demi-droites de direction $-\vec{i}$, $-\vec{j}$ et $\vec{i} + \vec{j}$ contituant la droite tropicale \mathcal{C} . On fait de même pour \mathcal{C}' avec \mathcal{H}' , \mathcal{V}' et \mathcal{D}' .

Si y > 0 et x < 0 alors \mathcal{V}' coupe \mathcal{H} en I.

Si y > 0 et x > 0 et y > x alors \mathcal{V}' coupe \mathcal{D} en I.

Si y < 0 et x < 0 et y > x alors \mathcal{D}' coupe \mathcal{H} en I.

Si y < 0 et x < 0 et y < x alors \mathcal{D}' coupe \mathcal{V} en I.

Si y > 0 et x > 0 et y < x alors \mathcal{H}' coupe \mathcal{D} en I.

Si y < 0 et x > 0 alors \mathcal{H}' coupe \mathcal{V} en I.

Il n'y a aucune intersection autre que I entre les demi-droites pour chacun des cas, donc I est bien l'unique intersection de deux droites tropicales.

4) Voici l'exemple donné de triangle tropical :

Il est spécifié que dans cet exemple, $\hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}} = 360^{\circ}$.

a) On considère le triangle tropicale suivant :

On a repris la figure de l'exemple, sur laquelle on a rajouté 2 à l'abscisse de \mathcal{C}_2 .

 \mathcal{C}^* représente l'emplacement de \mathcal{C} sur l'ancienne figure. $\hat{\mathcal{A}}$ et $\hat{\mathcal{B}}$ ne sont pas impactés par le changement, par contre alors que $\hat{\mathcal{C}}^*$ était obtus, $\hat{\mathcal{C}}$ est droit. Donc $\hat{\mathcal{A}} + \hat{\mathcal{B}} + \hat{\mathcal{C}} < 360$.

L'égalité $\hat{\mathcal{A}}+\hat{\mathcal{B}}+\hat{\mathcal{C}}=360$ n'est pas vrai pour tous les triangles tropicaux.

b)

Soient \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 trois points indépendants du plan, centres de trois droites tropicales et sommets d'un triangle tropical.

D'après (\mathcal{C}') , les trois intersections \mathcal{A} , \mathcal{B} , \mathcal{C} des trois droites tropicales doivent exister.

Il existe deux intersections sur une demi-droite de direction $-\vec{i}$, $-\vec{j}$ ou $\vec{i}+\vec{j}$ si et seulement si les deux intersections sont dépendantes.

Or on suppose \mathcal{A} , \mathcal{B} , \mathcal{C} indépendants donc chaque demi-droite possède au plus une intersection.

Nous savons donc que chaque droite tropicale possède deux intersections qui sont répartis entre ses trois demi-droites. Donc l'unique cas de figure possible est que chacune des trois intersections soit entre deux demi-droites dont la combinaisons de leur direction est inédite.¹

Or, l'intersection entre une demi-droite de direction $-\vec{i}$ et $-\vec{j}$ donne un angle de 90° . $\vec{i}+\vec{j}$ et $-\vec{i}$ donne $90^\circ+45^\circ$. $\vec{i}+\vec{j}$ et $-\vec{j}$ donne $90^\circ+45^\circ$.

La somme des angles d'un triangle tropical dont les sommets sont indépendants donne donc $4 \times 90^{\circ} = 360^{\circ}$.

Partie B - Addition et Multiplication tropicales

On définit sur \mathbb{R} l'addition tropicale et la multiplication tropicale tel que pour tous $a, b \in \mathbb{R}$,

 $^{^1}$ En effet, soient deux directions, pour avoir deux fois une intersection entre des demi-droites ayant ces directions, comme cela arrive à la figure de la question 4) a), il est necessaire que la troisième demi-droite formant les intersections (appartenant à C_2 dans l'exemple) possède deux intersections, ce qui est contraire à la conclusion que chaque demi-droite possède au plus une intersection.

$$a \oplus b = \max(a, b)$$
 et $a \otimes b = a + b$

1) On a donc :

$$3 \oplus 7 = 7$$

$$-5 \oplus 2 = 2$$

$$3 \otimes 7 = 10$$

$$-5 \oplus 2 = 2$$
 $3 \otimes 7 = 10$ $-5 \otimes 2 = -3$

2) \oplus est associatif et commutatif car max est associatif et commutatif.

Soient $a, b, c \in \mathbb{R}$. Supposons sans perte de généralité que $b \leq c$ car \oplus est commutatif.

On a $a \otimes (b \oplus c) = a \otimes c = a \otimes b \oplus a \otimes c$ puisque $a \otimes b \leq a \otimes c$.

3) Soient $a,b,c\in\mathbb{R}$ les paramètres du polynome de premier degré et $(x,y)\in\mathbb{R}^2$ représentant les points du plan.

Visualisation graphique

Voici à quoi ressemble une fonction tropicale² de degré $1:a\otimes x\oplus b\otimes y\oplus c:$

 $1 \otimes x \oplus 5 \otimes y \oplus 1$

 $5 \otimes x \oplus 1 \otimes y \oplus 1$

 $1 \otimes x \oplus 1 \otimes y \oplus 5$

 $^{^2}$ Pour des raisons esthétiques, nous utilisons dans les graphiques l'opposé des valeurs de x et y.

On remarque que modifier les valeurs a, b et c « décale » l'un des « bords ».

Démonstration

On recherche le lieu (les droites) qui permettent d'atteindre deux fois le maximum dans $P_T = \max(a+x,b+y,c)$, ce qui est vrai si et seulement si :

Nous avons donc bien trois droites habituelles avec les bonnes directions qui permettraient de former une droite tropicale si ces trois droites se coupaient au même point.³

Or x-y=(c-a)-(c-b)=b-a, donc le point $\mathcal{C}(c-a,c-b)$ appartient aux trois droites et est le centre de la droite tropicale.⁴

Par ailleurs, remplacer x et y par c-a et c-b dans $\max(a+x,b+y,c)$ permet bien d'atteindre trois fois le maximum.

Le lieu des coins de P_T est une droite tropicale de centre $\mathcal{C}(c-a,c-b)$.

4) Soient $(x, y) \in \mathbb{R}^2$ représentant les points du plan.

Visualisation graphique

Voici à quoi ressemble la fonction tropicale du second degré⁵ :

$$Q_T(x,y) = 1 \oplus (-1) \otimes x \oplus 0 \otimes y \oplus (-5) \otimes x^2$$

 $^{{}^3}$ En effet, trois droites parallèles à l'abscisse, l'ordonnée et x=y qui se croisent en un point $\mathcal C$ permettent de former trois demi-droites partant de $\mathcal C$ dans les direction $-\vec i,-\vec j$ et $\vec i+\vec j$ et donc de former une droite tropicale de centre $\mathcal C$.

⁴Dans l'espace, le point $\mathcal{C}(c-a,c-b,c)$ est bien l'intersection des trois droites.

 $^{^5}$ On prend l'opposé pour l'axe y

D'un côté:

De l'autre en prenant l'opposé pour l'axe x :

Démonstration

De manière similaire à ce que nous avons réalisé pour le polynôme de premier degré, recherchons les ensembles de points permettant d'atteindre deux fois le maximum $Q_T(x,y) = \max(1,x-1,y,x^2-5)$:

Pour réaliser une droite tropicale, nous avons besoin d'une droite parallèle à l'abscisse et d'une parallèle à x=y, nous devons donc necessairement utiliser y=1 et x-y=1 et nous ne pourrons construire qu'une seule droite tropicale. En combinant ces deux équations nous obtenons x=2 comme point de croisement. La droite x=2 que nous avons précedement déterminée passe par ce point et convient donc.

Le lieu des coins de Q_T est la droite tropicale de centre $\mathcal{C}(2,1)$