My Project

Generated by Doxygen 1.9.5

1	Namespace Index	1
	1.1 Namespace List	1
2	Hierarchical Index	3
	2.1 Class Hierarchy	3
3	Class Index	7
	3.1 Class List	7
4	File Index	11
	4.1 File List	11
5	Namespace Documentation	13
	5.1 Algebra Namespace Reference	13
	5.1.1 Enumeration Type Documentation	13
	5.1.1.1 Solvers	13
	5.2 corenc Namespace Reference	14
	5.2.1 Detailed Description	14
	5.2.2 Typedef Documentation	15
	5.2.2.1 scalar_func	15
	5.2.2.2 vector_func	15
	5.2.3 Enumeration Type Documentation	15
	5.2.3.1 Parameters	15
	5.2.3.2 Terms	15
	5.3 corenc::color Namespace Reference	16
	5.3.1 Variable Documentation	16
	5.3.1.1 BBLACK	16
	5.3.1.2 BBLUE	16
	5.3.1.3 BCYAN	16
	5.3.1.4 BGREEN	17
	5.3.1.5 BLACK	17
	5.3.1.6 BLUE	17
	5.3.1.7 BMAGENTA	17
	5.3.1.8 BRED	17
	5.3.1.9 BWHITE	17
	5.3.1.10 BYELLOW	17
	5.3.1.11 CYAN	17
	5.3.1.12 ESCAPE	18
	5.3.1.13 GREEN	18
	5.3.1.14 MAGENTA	18
	5.3.1.15 PURPLE	18
	5.3.1.16 RED	18
	5.3.1.17 WHITE	18
	5.3.1.18 YELLOW	18
		. 0

	5.4 corenc::Mesh Namespace Reference	19
	5.4.1 Typedef Documentation	20
	5.4.1.1 function_dp	20
	5.4.2 Enumeration Type Documentation	20
	5.4.2.1 Elements	20
	5.4.2.2 Meshes	20
	5.4.2.3 NODES	21
	5.5 corenc::method Namespace Reference	21
	5.5.1 Enumeration Type Documentation	21
	5.5.1.1 BoundaryType	21
	5.5.1.2 DGFlux	22
	5.5.1.3 FVFlux	22
	5.6 corenc::solvers Namespace Reference	23
	5.7 corenc::tests Namespace Reference	23
	5.8 Methods Namespace Reference	23
	5.9 wtf Namespace Reference	23
	5.9.1 Function Documentation	23
	5.9.1.1 center_point()	23
	5.9.1.2 mid_point()	24
	5.9.1.3 s_point()	24
	Class Documentation	25
י ס		
	6.1 corenc::CBurgersScalar Class Reference	25
	6.1.1 Constructor & Destructor Documentation	25
	6.1.1.1 CBurgersScalar()	25
	6.1.1.2 ~CBurgersScalar()	
		26
	6.1.2.1 addTerm()	26
	6.1.2.2 getFlux()	26
	6.1.2.3 getNumberOfTerms()	26
	6.1.2.4 getTerm()	26 26
	6.1.2.5 load_parameters()	
	6.1.2.6 removeTerm()	27
	6.1.2.7 setTerm()	27
	6.2 corenc::Mesh::CCube Class Reference	27
	6.2.1 Constructor & Destructor Documentation	28
	6.2.1.1 CCube() [1/6]	28
	6.2.1.2 CCube() [2/6]	28
	6.2.1.3 CCube() [3/6]	28
	6.2.1.4 CCube() [4/6]	29
	6.2.1.5 CCube() [5/6]	29
	6.2.1.6 CCube() [6/6]	29

6.2.1.7 ~CCube()	2	9
6.2.2 Member Function Documentation	2	9
6.2.2.1 GetEdge()	2	9
6.2.2.2 GetFacet()	2	9
6.2.2.3 GetNode() [1/2]	3	0
6.2.2.4 GetNode() [2/2]	3	0
6.2.2.5 GetNumberOfEdges()	3	0
6.2.2.6 GetNumberOfFacets()	3	0
6.2.2.7 GetNumberOfNodes()	3	0
6.2.2.8 IncreaseOrder()	3	0
6.2.2.9 Integrate() [1/3]	3	1
6.2.2.10 Integrate() [2/3]	3	1
6.2.2.11 Integrate() [3/3]	3	1
6.2.2.12 operator=()	3	1
6.2.2.13 operator==()	3	1
6.2.2.14 operator>>()	3	;1
6.2.2.15 SetEdge()	3	2
6.2.2.16 SetFacet()	3	2
6.2.2.17 SetNode()	3	2
6.2.2.18 SetOrder()	3	2
6.3 corenc::Mesh::CCubeBasis Class Reference	3	2
6.3.1 Constructor & Destructor Documentation	3	3
6.3.1.1 CCubeBasis() [1/4]	3	3
6.3.1.2 CCubeBasis() [2/4]	3	3
6.3.1.3 CCubeBasis() [3/4]	3	3
6.3.1.4 CCubeBasis() [4/4]	3	4
6.3.1.5 ~CCubeBasis()	3	4
6.3.2 Member Function Documentation	3	4
6.3.2.1 GetGradShapeFunction()	3	4
6.3.2.2 GetMeasure()	3	4
6.3.2.3 GetNormal()	3	4
6.3.2.4 GetNumberOfShapeFunctions()	3	4
6.3.2.5 GetShapeFunction()	3	5
6.3.2.6 GetValue()	3	5
6.3.2.7 GetWeight()	3	5
6.3.2.8 IncreaseOrder()	3	5
6.3.2.9 operator=()	3	5
6.3.2.10 ReverseNormal()	3	5
6.4 corenc::method::CDGMethod< Type > Class Template Reference	3	6
6.4.1 Constructor & Destructor Documentation	3	6
6.4.1.1 CDGMethod()	3	6
6.4.1.2 ~CDGMethod()	3	6

6.4.2 Member Function Documentation	36
6.4.2.1 Assemble()	36
6.4.2.2 GetMaxSolution()	36
6.4.2.3 GetMinSolution()	37
6.4.2.4 GetSolution() [1/2]	37
6.4.2.5 GetSolution() [2/2]	37
6.5 corenc::method::CDGMethodZero < Type > Class Template Reference	37
6.5.1 Constructor & Destructor Documentation	37
6.5.1.1 CDGMethodZero()	38
6.5.1.2 ~CDGMethodZero()	38
6.5.2 Member Function Documentation	38
6.5.2.1 Assemble()	38
6.5.2.2 GetMaxSolution()	38
6.5.2.3 GetMinSolution()	38
6.5.2.4 GetSolution() [1/2]	38
6.5.2.5 GetSolution() [2/2]	39
6.6 corenc::CDiffusionScalar Class Reference	39
6.6.1 Constructor & Destructor Documentation	40
6.6.1.1 CDiffusionScalar()	40
6.6.1.2 ~CDiffusionScalar()	40
6.6.2 Member Function Documentation	40
6.6.2.1 add_boundary_parameter() [1/2]	40
6.6.2.2 add_boundary_parameter() [2/2]	40
6.6.2.3 add_parameter() [1/3]	41
6.6.2.4 add_parameter() [2/3]	41
6.6.2.5 add_parameter() [3/3]	41
6.6.2.6 addTerm()	41
6.6.2.7 findTerm()	41
6.6.2.8 get_boundary_parameter() [1/3]	41
6.6.2.9 get_boundary_parameter() [2/3]	42
6.6.2.10 get_boundary_parameter() [3/3]	42
6.6.2.11 get_boundary_type()	42
6.6.2.12 get_number_of_boundaries()	42
6.6.2.13 get_parameter() [1/5]	42
6.6.2.14 get_parameter() [2/5]	42
6.6.2.15 get_parameter() [3/5]	43
6.6.2.16 get_parameter() [4/5]	43
6.6.2.17 get_parameter() [5/5]	43
6.6.2.18 get_point_source()	43
6.6.2.19 get_total_sources()	43
6.6.2.20 getNumberOfTerms()	43
6.6.2.21 getTerm()	44

6.6.2.22 load_parameters()	. 44
6.6.2.23 removeTerm()	. 44
6.6.2.24 set_boundary_parameter()	. 44
6.6.2.25 set_parameter() [1/2]	. 44
6.6.2.26 set_parameter() [2/2]	. 44
6.6.2.27 set_point_source()	. 45
6.6.2.28 setTerm()	. 45
6.7 corenc::Mesh::CEdge Class Reference	. 45
6.7.1 Constructor & Destructor Documentation	. 46
6.7.1.1 CEdge() [1/4]	. 46
6.7.1.2 CEdge() [2/4]	. 46
6.7.1.3 CEdge() [3/4]	. 46
6.7.1.4 CEdge() [4/4]	. 46
6.7.1.5 ~CEdge()	. 46
6.7.2 Member Function Documentation	. 46
6.7.2.1 GetNode() [1/2]	. 47
6.7.2.2 GetNode() [2/2]	. 47
6.7.2.3 GetNumberOfNodes()	. 47
6.7.2.4 IncreaseOrder()	. 47
6.7.2.5 Integrate() [1/3]	. 47
6.7.2.6 Integrate() [2/3]	. 47
6.7.2.7 Integrate() [3/3]	. 48
6.7.2.8 operator=()	. 48
6.7.2.9 SetNode()	. 48
6.7.3 Friends And Related Function Documentation	. 48
6.7.3.1 operator==	. 48
6.7.3.2 operator>>	. 48
6.8 corenc::Mesh::CEdge2ndBasis Class Reference	. 49
6.8.1 Constructor & Destructor Documentation	. 49
6.8.1.1 CEdge2ndBasis() [1/4]	. 49
6.8.1.2 CEdge2ndBasis() [2/4]	. 49
6.8.1.3 CEdge2ndBasis() [3/4]	. 50
6.8.1.4 CEdge2ndBasis() [4/4]	. 50
6.8.1.5 ~CEdge2ndBasis()	. 50
6.8.2 Member Function Documentation	. 50
6.8.2.1 GetGradShapeFunction()	. 50
6.8.2.2 GetMeasure()	. 50
6.8.2.3 GetNormal()	. 50
6.8.2.4 GetNumberOfShapeFunctions()	. 51
6.8.2.5 GetShapeFunction()	. 51
6.8.2.6 GetWeight()	. 51
6.8.2.7 IncreaseOrder()	. 51

6.8.2.8 operator=()	51
6.8.2.9 ReverseNormal()	51
6.9 corenc::Mesh::CEdgeConstantBasis Class Reference	52
6.9.1 Constructor & Destructor Documentation	52
6.9.1.1 CEdgeConstantBasis() [1/4]	52
6.9.1.2 CEdgeConstantBasis() [2/4]	52
6.9.1.3 CEdgeConstantBasis() [3/4]	53
6.9.1.4 CEdgeConstantBasis() [4/4]	53
6.9.1.5 ∼CEdgeConstantBasis()	53
6.9.2 Member Function Documentation	53
6.9.2.1 GetGradShapeFunction()	53
6.9.2.2 GetMeasure()	53
6.9.2.3 GetNormal()	53
6.9.2.4 GetNumberOfShapeFunctions()	54
6.9.2.5 GetShapeFunction()	54
6.9.2.6 GetWeight()	54
6.9.2.7 IncreaseOrder()	54
6.9.2.8 operator=()	54
6.9.2.9 ReverseNormal()	54
6.10 corenc::Mesh::CEdgeHermiteBasis Class Reference	55
6.10.1 Constructor & Destructor Documentation	55
6.10.1.1 CEdgeHermiteBasis() [1/4]	55
6.10.1.2 CEdgeHermiteBasis() [2/4]	55
6.10.1.3 CEdgeHermiteBasis() [3/4]	56
6.10.1.4 CEdgeHermiteBasis() [4/4]	56
6.10.1.5 ∼CEdgeHermiteBasis()	56
6.10.2 Member Function Documentation	56
6.10.2.1 GetGradShapeFunction()	56
6.10.2.2 GetMeasure()	56
6.10.2.3 GetNormal()	56
6.10.2.4 GetNumberOfShapeFunctions()	57
6.10.2.5 GetShapeFunction()	57
6.10.2.6 GetWeight()	57
6.10.2.7 IncreaseOrder()	57
6.10.2.8 operator=()	57
6.10.2.9 ReverseNormal()	57
6.11 corenc::Mesh::CEdgeLinearBasis Class Reference	58
6.11.1 Constructor & Destructor Documentation	58
6.11.1.1 CEdgeLinearBasis() [1/4]	58
6.11.1.2 CEdgeLinearBasis() [2/4]	58
6.11.1.3 CEdgeLinearBasis() [3/4]	59
6.11.1.4 CEdgeLinearBasis() [4/4]	59

59
59
59
59
59
60
60
60
60
60
60
61
61
61
61
62
62
62
62
62
62
62
63
63
63
63
63
63
64
64
64
65
65
65
65
65
65
66
66
66
66
66

6.13.2.10 GetType()	6
6.13.2.11 GetWeight()	
6.13.2.12 IncreaseOrder()	6 [.]
6.13.2.13 Integrate() [1/3]	6 [.]
6.13.2.14 Integrate() [2/3]	67
6.13.2.15 Integrate() [3/3]	68
6.13.2.16 ReverseNormal()	68
6.13.2.17 SetNeighbour()	68
6.13.2.18 SetNode()	68
6.13.2.19 SetType()	69
6.14 corenc::Mesh::CElement2D< T > Class Template Reference	69
6.14.1 Constructor & Destructor Documentation	69
6.14.1.1 CElement2D()	70
6.14.1.2 ~CElement2D()	70
6.14.2 Member Function Documentation	70
6.14.2.1 Clone()	70
6.14.2.2 GetDoFs()	70
6.14.2.3 GetGradShapeFunction()	70
6.14.2.4 GetMeasure()	7
6.14.2.5 GetNeighbour()	7
6.14.2.6 GetNode()	7
6.14.2.7 GetNormal()	7
6.14.2.8 GetNumberOfNodes()	7
6.14.2.9 GetShapeFunction()	72
6.14.2.10 GetType()	72
6.14.2.11 GetWeight()	72
6.14.2.12 IncreaseOrder()	72
6.14.2.13 Integrate() [1/3]	72
6.14.2.14 Integrate() [2/3]	73
6.14.2.15 Integrate() [3/3]	73
6.14.2.16 ReverseNormal()	73
6.14.2.17 SetNeighbour()	73
6.14.2.18 SetNode()	73
6.14.2.19 SetOrder()	74
6.14.2.20 SetType()	74
6.15 corenc::Mesh::CElement2D< bool > Class Reference	74
6.15.1 Constructor & Destructor Documentation	7
6.15.1.1 CElement2D()	7
6.15.1.2 ~CElement2D()	
6.15.2 Member Function Documentation	7
6.15.2.1 Clone()	7
6.15.2.2 GetDoFs()	7!

6.15.2.3 GetGradShapeFunction()	 . 75
6.15.2.4 GetMeasure()	 . 75
6.15.2.5 GetNeighbour()	 . 76
6.15.2.6 GetNode()	 . 76
6.15.2.7 GetNormal()	 . 76
6.15.2.8 GetNumberOfNodes()	 . 76
6.15.2.9 GetShapeFunction()	 . 76
6.15.2.10 GetType()	 . 76
6.15.2.11 GetWeight()	 . 76
6.15.2.12 IncreaseOrder()	 . 77
6.15.2.13 Integrate() [1/3]	 . 77
6.15.2.14 Integrate() [2/3]	 . 77
6.15.2.15 Integrate() [3/3]	 . 77
6.15.2.16 ReverseNormal()	 . 77
6.15.2.17 SetNeighbour()	 . 77
6.15.2.18 SetNode()	 . 78
6.15.2.19 SetOrder()	 . 78
6.15.2.20 SetType()	 . 78
6.16 corenc::Mesh::CElement< bool > Class Reference	 . 78
6.16.1 Constructor & Destructor Documentation	 . 79
6.16.1.1 CElement()	 . 79
6.16.1.2 ~CElement()	 . 79
6.16.2 Member Function Documentation	 . 79
6.16.2.1 Clone()	 . 79
6.16.2.2 GetDoFs()	 . 79
6.16.2.3 GetGradShapeFunction()	 . 79
6.16.2.4 GetMeasure()	 . 79
6.16.2.5 GetNeighbour()	 . 80
6.16.2.6 GetNode()	 . 80
6.16.2.7 GetNormal()	 . 80
6.16.2.8 GetNumberOfNodes()	 . 80
6.16.2.9 GetShapeFunction()	 . 80
6.16.2.10 GetType()	 . 80
6.16.2.11 GetWeight()	 . 80
6.16.2.12 IncreaseOrder()	 . 81
6.16.2.13 Integrate() [1/3]	 . 81
6.16.2.14 Integrate() [2/3]	 . 81
6.16.2.15 Integrate() [3/3]	 . 81
6.16.2.16 ReverseNormal()	 . 81
6.16.2.17 SetNeighbour()	 . 81
6.16.2.18 SetNode()	 . 82
6.16.2.19 SetType()	 . 82

6.17 corenc::method::CFEMethod< Type > Class Template Reference	82
6.17.1 Constructor & Destructor Documentation	82
6.17.1.1 CFEMethod()	82
6.17.1.2 ~CFEMethod()	82
6.17.2 Member Function Documentation	83
6.17.2.1 Assemble()	83
6.17.2.2 GetMaxSolution()	83
6.17.2.3 GetMinSolution()	83
6.17.2.4 GetSolution() [1/2]	83
6.17.2.5 GetSolution() [2/2]	83
6.18 corenc::method::CFEMethodZero< Type > Class Template Reference	83
6.18.1 Constructor & Destructor Documentation	84
6.18.1.1 CFEMethodZero()	84
6.18.1.2 ∼CFEMethodZero()	84
6.18.2 Member Function Documentation	84
6.18.2.1 Assemble()	84
6.18.2.2 GetMaxSolution()	84
6.18.2.3 GetMinSolution()	85
6.18.2.4 GetSolution() [1/2]	85
6.18.2.5 GetSolution() [2/2]	85
6.19 corenc::CFESolution Class Reference	85
6.19.1 Constructor & Destructor Documentation	86
6.19.1.1 CFESolution() [1/3]	86
6.19.1.2 ~CFESolution()	86
6.19.1.3 CFESolution() [2/3]	86
6.19.1.4 CFESolution() [3/3]	86
6.19.2 Member Function Documentation	86
6.19.2.1 operator double()	86
6.19.2.2 operator"!=()	87
6.19.2.3 operator*=()	87
6.19.2.4 operator+=()	87
6.19.2.5 operator-=()	87
6.19.2.6 operator/=()	87
6.19.2.7 operator=() [1/2]	87
6.19.2.8 operator=() [2/2]	87
6.19.2.9 operator==()	88
6.19.3 Friends And Related Function Documentation	88
6.19.3.1 operator* [1/3]	88
6.19.3.2 operator* [2/3]	88
6.19.3.3 operator * [3/3]	88
6.19.3.4 operator+	88
6.19.3.5 operator	88

6.19.3.6 operator/	89
6.20 corenc::CFEweights Class Reference	89
6.20.1 Constructor & Destructor Documentation	89
6.20.1.1 CFEweights()	89
6.20.1.2 ~CFEweights()	89
6.20.2 Member Function Documentation	89
6.20.2.1 getWeight()	89
6.20.2.2 updateWeight()	90
6.21 corenc:: Mesh:: CFiniteElement < Shape, ShapeFunction, DoF, T > Class Template Reference . . .	90
6.21.1 Constructor & Destructor Documentation	91
6.21.1.1 CFiniteElement() [1/7]	91
6.21.1.2 CFiniteElement() [2/7]	91
6.21.1.3 CFiniteElement() [3/7]	91
6.21.1.4 CFiniteElement() [4/7]	92
6.21.1.5 CFiniteElement() [5/7]	92
6.21.1.6 CFiniteElement() [6/7]	92
6.21.1.7 CFiniteElement() [7/7]	92
6.21.1.8 ~CFiniteElement()	92
6.21.2 Member Function Documentation	92
6.21.2.1 Clone()	93
6.21.2.2 GetDoF()	93
6.21.2.3 GetDoFs()	93
6.21.2.4 GetGradShapeFunction()	93
6.21.2.5 GetMeasure()	93
6.21.2.6 GetNeighbour()	94
6.21.2.7 GetNode()	94
6.21.2.8 GetNormal()	94
6.21.2.9 GetNumberOfNodes()	94
6.21.2.10 GetShape()	94
6.21.2.11 GetShapeFunction()	95
6.21.2.12 GetShapeFunctions()	95
6.21.2.13 GetType()	95
6.21.2.14 GetWeight()	95
6.21.2.15 IncreaseOrder()	95
6.21.2.16 Integrate() [1/3]	96
6.21.2.17 Integrate() [2/3]	96
6.21.2.18 Integrate() [3/3]	96
6.21.2.19 operator=()	96
6.21.2.20 ReverseNormal()	96
6.21.2.21 SetDoF()	97
6.21.2.22 SetNeighbour()	97
6.21.2.23 SetNode()	97

6.21.2.24 SetShape()	 . 97
6.21.2.25 SetShapeFunction()	 . 97
6.21.2.26 SetType()	 . 98
6.21.3 Friends And Related Function Documentation	 . 98
6.21.3.1 operator==	 . 98
6.21.3.2 operator>>	 . 98
${\it 6.22~corenc::} Mesh:: CFinite Element 2D < Shape, Shape Function > Class~Template~Reference~.~.$. 98
6.22.1 Constructor & Destructor Documentation	 . 99
6.22.1.1 CFiniteElement2D() [1/8]	 . 100
6.22.1.2 CFiniteElement2D() [2/8]	 . 100
6.22.1.3 CFiniteElement2D() [3/8]	 . 100
6.22.1.4 CFiniteElement2D() [4/8]	 . 100
6.22.1.5 CFiniteElement2D() [5/8]	 . 100
6.22.1.6 CFiniteElement2D() [6/8]	 . 101
6.22.1.7 CFiniteElement2D() [7/8]	 . 101
6.22.1.8 CFiniteElement2D() [8/8]	 . 101
6.22.1.9 ∼CFiniteElement2D()	 . 101
6.22.2 Member Function Documentation	 . 101
6.22.2.1 Clone()	 . 101
6.22.2.2 GetDoFs()	 . 102
6.22.2.3 GetGradShapeFunction()	 . 102
6.22.2.4 GetMeasure()	 . 102
6.22.2.5 GetNeighbour()	 . 102
6.22.2.6 GetNode()	 . 102
6.22.2.7 GetNormal()	 . 103
6.22.2.8 GetNumberOfNodes()	 . 103
6.22.2.9 GetShape()	 . 103
6.22.2.10 GetShapeFunction()	 . 103
6.22.2.11 GetShapeFunctions()	 . 103
6.22.2.12 GetType()	 . 103
6.22.2.13 GetWeight()	 . 104
6.22.2.14 IncreaseOrder()	 . 104
6.22.2.15 Integrate() [1/3]	 . 104
6.22.2.16 Integrate() [2/3]	 . 104
6.22.2.17 Integrate() [3/3]	 . 104
6.22.2.18 operator=()	 . 105
6.22.2.19 ReverseNormal()	 . 105
6.22.2.20 SetNeighbour()	 . 105
6.22.2.21 SetNode()	 . 105
6.22.2.22 SetOrder()	 . 105
6.22.2.23 SetShape()	 . 106
6.22.2.24 SetShapeFunction()	 . 106

6.22.2.25 SetType()	106
6.22.3 Friends And Related Function Documentation	106
6.22.3.1 operator==	106
6.22.3.2 operator>>	106
$\textbf{6.23 corenc::} \textbf{Mesh::} \textbf{CFiniteElement} < \textbf{Shape}, \textbf{ShapeFunction, bool, bool} > \textbf{Class Template Reference} \; . \; .$	107
6.23.1 Constructor & Destructor Documentation	108
6.23.1.1 CFiniteElement() [1/8]	108
6.23.1.2 CFiniteElement() [2/8]	108
6.23.1.3 CFiniteElement() [3/8]	108
6.23.1.4 CFiniteElement() [4/8]	108
6.23.1.5 CFiniteElement() [5/8]	109
6.23.1.6 CFiniteElement() [6/8]	109
6.23.1.7 CFiniteElement() [7/8]	109
6.23.1.8 CFiniteElement() [8/8]	109
6.23.1.9 ~CFiniteElement()	109
6.23.2 Member Function Documentation	109
6.23.2.1 Clone()	110
6.23.2.2 GetDoFs()	110
6.23.2.3 GetGradShapeFunction()	110
6.23.2.4 GetMeasure()	110
6.23.2.5 GetNeighbour()	110
6.23.2.6 GetNode()	111
6.23.2.7 GetNormal()	111
6.23.2.8 GetNumberOfNodes()	111
6.23.2.9 GetShape()	111
6.23.2.10 GetShapeFunction()	111
6.23.2.11 GetShapeFunctions()	112
6.23.2.12 GetType()	112
6.23.2.13 GetWeight()	112
6.23.2.14 IncreaseOrder()	112
6.23.2.15 Integrate() [1/3]	112
6.23.2.16 Integrate() [2/3]	113
6.23.2.17 Integrate() [3/3]	113
6.23.2.18 operator=()	113
6.23.2.19 ReverseNormal()	113
6.23.2.20 SetNeighbour()	113
6.23.2.21 SetNode()	114
6.23.2.22 SetShape()	114
6.23.2.23 SetShapeFunction()	114
6.23.2.24 SetType()	114
6.23.3 Friends And Related Function Documentation	114
6.23.3.1 operator	11/

6.23.3.2 operator>>	115
$\textbf{6.24 corenc::} \textbf{Mesh::} \textbf{CFiniteElement} < \textbf{Shape, ShapeFunction, DoF, bool} > \textbf{Class Template Reference} \enspace . \enspace .$	115
6.24.1 Constructor & Destructor Documentation	116
6.24.1.1 CFiniteElement() [1/7]	116
6.24.1.2 CFiniteElement() [2/7]	116
6.24.1.3 CFiniteElement() [3/7]	116
6.24.1.4 CFiniteElement() [4/7]	117
6.24.1.5 CFiniteElement() [5/7]	117
6.24.1.6 CFiniteElement() [6/7]	117
6.24.1.7 CFiniteElement() [7/7]	117
6.24.1.8 ~CFiniteElement()	117
6.24.2 Member Function Documentation	117
6.24.2.1 Clone()	118
6.24.2.2 GetDoF()	118
6.24.2.3 GetDoFs()	118
6.24.2.4 GetGradShapeFunction()	118
6.24.2.5 GetMeasure()	118
6.24.2.6 GetNeighbour()	119
6.24.2.7 GetNode()	119
6.24.2.8 GetNormal()	119
6.24.2.9 GetNumberOfNodes()	119
6.24.2.10 GetShape()	119
6.24.2.11 GetShapeFunction()	120
6.24.2.12 GetShapeFunctions()	120
6.24.2.13 GetType()	120
6.24.2.14 GetWeight()	120
6.24.2.15 IncreaseOrder()	120
6.24.2.16 Integrate() [1/3]	121
6.24.2.17 Integrate() [2/3]	121
6.24.2.18 Integrate() [3/3]	121
6.24.2.19 operator=()	121
6.24.2.20 ReverseNormal()	121
6.24.2.21 SetDoF()	122
6.24.2.22 SetNeighbour()	122
6.24.2.23 SetNode()	122
6.24.2.24 SetShape()	122
6.24.2.25 SetShapeFunction()	122
6.24.2.26 SetType()	123
6.24.3 Friends And Related Function Documentation	123
6.24.3.1 operator==	123
6.24.3.2 operator>>	123
6.25 corenc::CFiniteSolver < Method, Mesh, Solver > Class Template Reference	123

6.25.1 Constructor & Destructor Documentation	123
6.25.1.1 CFiniteSolver()	124
6.25.1.2 ~CFiniteSolver()	124
6.25.2 Member Function Documentation	124
6.25.2.1 Solve()	124
6.26 corenc::Mesh::CMesh< T > Class Template Reference	124
6.26.1 Constructor & Destructor Documentation	125
6.26.1.1 CMesh()	125
6.26.1.2 ~CMesh()	125
6.26.2 Member Function Documentation	125
6.26.2.1 FindElement()	125
6.26.2.2 GetBoundary()	125
6.26.2.3 GetElement()	125
6.26.2.4 getMinSize()	126
6.26.2.5 GetNode()	126
6.26.2.6 GetNumberOfBoundaries()	126
6.26.2.7 GetNumberOfElements()	126
6.26.2.8 GetNumberOfNodes()	126
6.26.2.9 getParameter() [1/2]	127
6.26.2.10 getParameter() [2/2]	127
6.26.2.11 getSolution() [1/2]	127
6.26.2.12 getSolution() [2/2]	127
6.26.2.13 setParameter()	127
6.26.2.14 updateSolution() [1/4]	128
6.26.2.15 updateSolution() [2/4]	128
6.26.2.16 updateSolution() [3/4]	128
6.26.2.17 updateSolution() [4/4]	128
6.27 corenc::Mesh::CMesh1D Class Reference	129
6.27.1 Constructor & Destructor Documentation	129
6.27.1.1 CMesh1D() [1/6]	130
6.27.1.2 CMesh1D() [2/6]	130
6.27.1.3 CMesh1D() [3/6]	130
6.27.1.4 CMesh1D() [4/6]	130
6.27.1.5 CMesh1D() [5/6]	130
6.27.1.6 CMesh1D() [6/6]	130
6.27.1.7 ~CMesh1D()	131
6.27.2 Member Function Documentation	131
6.27.2.1 FindElement()	131
6.27.2.2 GetBoundary() [1/2]	131
6.27.2.3 GetBoundary() [2/2]	131
6.27.2.4 GetElement()	131
6 27 2 5 GatFlements()	121

6.27.2.6 getMinSize()	132
6.27.2.7 GetNode()	132
6.27.2.8 GetNumberOfBoundaries()	132
6.27.2.9 GetNumberOfElements()	132
6.27.2.10 GetNumberOfNodes()	132
6.27.2.11 getParameter() [1/2]	132
6.27.2.12 getParameter() [2/2]	133
6.27.2.13 getSolution() [1/2]	133
6.27.2.14 getSolution() [2/2]	133
6.27.2.15 operator=()	133
6.27.2.16 setParameter()	133
6.27.2.17 updateSolution() [1/4]	134
6.27.2.18 updateSolution() [2/4]	134
6.27.2.19 updateSolution() [3/4]	134
6.27.2.20 updateSolution() [4/4]	134
6.28 corenc::Mesh::CMesh< bool > Class Reference	134
6.28.1 Constructor & Destructor Documentation	135
6.28.1.1 CMesh()	135
6.28.1.2 ~CMesh()	135
6.28.2 Member Function Documentation	135
6.28.2.1 FindElement()	135
6.28.2.2 GetBoundary()	136
6.28.2.3 GetElement()	136
6.28.2.4 getMinSize()	136
6.28.2.5 GetNode()	136
6.28.2.6 GetNumberOfBoundaries()	136
6.28.2.7 GetNumberOfElements()	136
6.28.2.8 GetNumberOfNodes()	136
6.28.2.9 getParameter() [1/2]	137
6.28.2.10 getParameter() [2/2]	137
6.28.2.11 getSolution() [1/2]	137
6.28.2.12 getSolution() [2/2]	137
6.28.2.13 setParameter()	137
6.28.2.14 updateSolution() [1/3]	137
6.28.2.15 updateSolution() [2/3]	138
6.28.2.16 updateSolution() [3/3]	138
6.29 corenc::Mesh::CNode Class Reference	138
6.29.1 Constructor & Destructor Documentation	139
6.29.1.1 CNode() [1/4]	139
6.29.1.2 CNode() [2/4]	139
6.29.1.3 CNode() [3/4]	139
6.29.1.4 CNode() [4/4]	139

6.29.1.5 ~CNode()	. 139
6.29.2 Member Function Documentation	. 139
6.29.2.1 GetNode() [1/2]	. 140
6.29.2.2 GetNode() [2/2]	. 140
6.29.2.3 GetNumberOfNodes()	. 140
6.29.2.4 IncreaseOrder()	. 140
6.29.2.5 Integrate() [1/3]	. 140
6.29.2.6 Integrate() [2/3]	. 140
6.29.2.7 Integrate() [3/3]	. 141
6.29.2.8 operator=()	. 141
6.29.2.9 SetNode()	. 141
6.29.3 Friends And Related Function Documentation	. 141
6.29.3.1 operator==	. 141
6.29.3.2 operator>>	. 141
6.30 corenc::Mesh::CNodeBasis Class Reference	. 142
6.30.1 Constructor & Destructor Documentation	. 142
6.30.1.1 CNodeBasis() [1/3]	. 142
6.30.1.2 CNodeBasis() [2/3]	. 142
6.30.1.3 CNodeBasis() [3/3]	. 143
6.30.1.4 ~CNodeBasis()	. 143
6.30.2 Member Function Documentation	. 143
6.30.2.1 GetGradShapeFunction()	. 143
6.30.2.2 GetMeasure()	. 143
6.30.2.3 GetNormal()	. 143
6.30.2.4 GetNumberOfShapeFunctions()	. 143
6.30.2.5 GetShapeFunction()	. 144
6.30.2.6 GetWeight()	. 144
6.30.2.7 IncreaseOrder()	. 144
6.30.2.8 operator=()	. 144
6.30.2.9 ReverseNormal()	. 144
6.31 corenc::Mesh::CParameter Class Reference	. 144
6.31.1 Constructor & Destructor Documentation	. 145
6.31.1.1 CParameter() [1/3]	. 145
6.31.1.2 CParameter() [2/3]	. 145
6.31.1.3 CParameter() [3/3]	. 145
6.31.1.4 ~CParameter()	. 145
6.31.2 Member Function Documentation	. 145
6.31.2.1 GetAdvection() [1/2]	. 146
6.31.2.2 GetAdvection() [2/2]	. 146
6.31.2.3 GetDiffusion() [1/2]	. 146
6.31.2.4 GetDiffusion() [2/2]	. 146
6.31.2.5 GetMass() [1/2]	. 146

6.31.2.6 GetMass() [2/2]
6.32 corenc::CProblem Class Reference
6.32.1 Constructor & Destructor Documentation
6.32.1.1 CProblem()
6.32.1.2 ~CProblem()
6.32.2 Member Function Documentation
6.32.2.1 addTerm()
6.32.2.2 getNumberOfTerms()
6.32.2.3 getTerm()
6.32.2.4 load_parameters()
6.32.2.5 setTerm()
6.33 corenc::Mesh::CRectangle Class Reference
6.33.1 Constructor & Destructor Documentation
6.33.1.1 CRectangle() [1/6]
6.33.1.2 CRectangle() [2/6]
6.33.1.3 CRectangle() [3/6]
6.33.1.4 CRectangle() [4/6]
6.33.1.5 CRectangle() [5/6]
6.33.1.6 CRectangle() [6/6]
6.33.1.7 ~CRectangle()
6.33.2 Member Function Documentation
6.33.2.1 GetEdge()
6.33.2.2 GetFacet()
6.33.2.3 GetNode() [1/2]
6.33.2.4 GetNode() [2/2]
6.33.2.5 GetNumberOfEdges()
6.33.2.6 GetNumberOfFacets()
6.33.2.7 GetNumberOfNodes()
6.33.2.8 IncreaseOrder()
6.33.2.9 Integrate() [1/3]
6.33.2.10 Integrate() [2/3]
6.33.2.11 Integrate() [3/3]
6.33.2.12 operator=()
6.33.2.13 operator==()
6.33.2.14 operator>>()
6.33.2.15 SetEdge()
6.33.2.16 SetFacet()
6.33.2.17 SetNode()
6.33.2.18 SetOrder()
6.34 corenc::Mesh::CRectangleBasis Class Reference
6.34.1 Constructor & Destructor Documentation
6.34.1.1 CRectangleBasis() [1/4]

6.34.1.2 CRectangleBasis() [2/4]	155
6.34.1.3 CRectangleBasis() [3/4]	155
6.34.1.4 CRectangleBasis() [4/4]	155
6.34.1.5 ~CRectangleBasis()	155
6.34.2 Member Function Documentation	155
6.34.2.1 GetGradShapeFunction()	155
6.34.2.2 GetMeasure()	156
6.34.2.3 GetNormal()	156
6.34.2.4 GetNumberOfShapeFunctions()	156
6.34.2.5 GetShapeFunction()	156
6.34.2.6 GetValue()	156
6.34.2.7 GetWeight()	156
6.34.2.8 IncreaseOrder()	157
6.34.2.9 operator=()	157
6.34.2.10 ReverseNormal()	157
6.35 corenc::Mesh::CRectangleBasis2 Class Reference	157
6.35.1 Constructor & Destructor Documentation	158
6.35.1.1 CRectangleBasis2() [1/4]	158
6.35.1.2 CRectangleBasis2() [2/4]	158
6.35.1.3 CRectangleBasis2() [3/4]	158
6.35.1.4 CRectangleBasis2() [4/4]	158
6.35.1.5 ∼CRectangleBasis2()	158
6.35.2 Member Function Documentation	158
6.35.2.1 GetGradShapeFunction()	159
6.35.2.2 GetMeasure()	159
6.35.2.3 GetNormal()	159
6.35.2.4 GetNumberOfShapeFunctions()	159
6.35.2.5 GetShapeFunction()	159
6.35.2.6 GetValue()	159
6.35.2.7 GetWeight()	160
6.35.2.8 IncreaseOrder()	160
6.35.2.9 operator=()	160
6.35.2.10 ReverseNormal()	160
6.36 corenc::Mesh::CRectangleBasis2x Class Reference	160
6.36.1 Constructor & Destructor Documentation	161
6.36.1.1 CRectangleBasis2x() [1/4]	161
6.36.1.2 CRectangleBasis2x() [2/4]	161
6.36.1.3 CRectangleBasis2x() [3/4]	161
6.36.1.4 CRectangleBasis2x() [4/4]	162
6.36.1.5 ∼CRectangleBasis2x()	162
6.36.2 Member Function Documentation	162
6.36.2.1 GetGradShapeFunction()	162

6.36.2.2 GetMeasure()	162
6.36.2.3 GetNormal()	162
6.36.2.4 GetNumberOfShapeFunctions()	162
6.36.2.5 GetShapeFunction()	163
6.36.2.6 GetValue()	163
6.36.2.7 GetWeight()	163
6.36.2.8 IncreaseOrder()	163
6.36.2.9 operator=()	163
6.36.2.10 ReverseNormal()	163
6.37 corenc::Mesh::CRectangleBasis2y Class Reference	164
6.37.1 Constructor & Destructor Documentation	164
6.37.1.1 CRectangleBasis2y() [1/4]	164
6.37.1.2 CRectangleBasis2y() [2/4]	164
6.37.1.3 CRectangleBasis2y() [3/4]	165
6.37.1.4 CRectangleBasis2y() [4/4]	165
6.37.1.5 ∼CRectangleBasis2y()	165
6.37.2 Member Function Documentation	165
6.37.2.1 GetGradShapeFunction()	165
6.37.2.2 GetMeasure()	165
6.37.2.3 GetNormal()	165
6.37.2.4 GetNumberOfShapeFunctions()	166
6.37.2.5 GetShapeFunction()	166
6.37.2.6 GetValue()	166
6.37.2.7 GetWeight()	166
6.37.2.8 IncreaseOrder()	166
6.37.2.9 operator=()	166
6.37.2.10 ReverseNormal()	167
6.38 corenc::Mesh::CRectangleConstantBasis Class Reference	167
6.38.1 Constructor & Destructor Documentation	167
6.38.1.1 CRectangleConstantBasis() [1/4]	167
6.38.1.2 CRectangleConstantBasis() [2/4]	168
6.38.1.3 CRectangleConstantBasis() [3/4]	168
6.38.1.4 CRectangleConstantBasis() [4/4]	168
6.38.1.5 ∼CRectangleConstantBasis()	168
6.38.2 Member Function Documentation	168
6.38.2.1 GetGradShapeFunction()	168
6.38.2.2 GetMeasure()	169
6.38.2.3 GetNormal()	169
6.38.2.4 GetNumberOfShapeFunctions()	169
6.38.2.5 GetShapeFunction()	169
6.38.2.6 GetValue()	169
6.38.2.7 IncreaseOrder()	169

6.38.2.8 operator=()	170
6.38.2.9 ReverseNormal()	170
6.39 corenc::Mesh::CRectangleHBasis Class Reference	170
6.39.1 Constructor & Destructor Documentation	171
6.39.1.1 CRectangleHBasis() [1/6]	171
6.39.1.2 CRectangleHBasis() [2/6]	171
6.39.1.3 CRectangleHBasis() [3/6]	171
6.39.1.4 CRectangleHBasis() [4/6]	171
6.39.1.5 CRectangleHBasis() [5/6]	171
6.39.1.6 CRectangleHBasis() [6/6]	172
6.39.1.7 ∼CRectangleHBasis()	172
6.39.2 Member Function Documentation	172
6.39.2.1 GetGradShapeFunction()	172
6.39.2.2 GetMeasure()	172
6.39.2.3 GetNormal()	172
6.39.2.4 GetNumberOfShapeFunctions()	172
6.39.2.5 GetShapeFunction()	173
6.39.2.6 GetValue()	173
6.39.2.7 GetWeight()	173
6.39.2.8 IncreaseOrder()	173
6.39.2.9 operator=()	173
6.39.2.10 ReverseNormal()	173
6.39.2.11 SetOrder()	174
6.40 corenc::Mesh::CRegularMesh Class Reference	174
6.40.1 Constructor & Destructor Documentation	175
6.40.1.1 CRegularMesh() [1/6]	175
6.40.1.2 CRegularMesh() [2/6]	175
6.40.1.3 CRegularMesh() [3/6]	175
6.40.1.4 CRegularMesh() [4/6]	175
6.40.1.5 CRegularMesh() [5/6]	175
6.40.1.6 CRegularMesh() [6/6]	176
6.40.1.7 ∼CRegularMesh()	176
6.40.2 Member Function Documentation	176
6.40.2.1 Clone()	176
6.40.2.2 FindElement()	176
6.40.2.3 GetBoundary() [1/2]	176
6.40.2.4 GetBoundary() [2/2]	176
6.40.2.5 GetElement()	177
6.40.2.6 GetElements()	177
6.40.2.7 getMinSize()	177
6.40.2.8 GetNode()	177
6.40.2.9 GetNumberOfBoundaries()	177

	6.40.2.10 GetNumberOfElements()	177
	6.40.2.11 GetNumberOfINodes()	177
	6.40.2.12 GetNumberOfNodes()	178
	6.40.2.13 getParameter() [1/2]	178
	6.40.2.14 getParameter() [2/2]	178
	6.40.2.15 getSolution() [1/2]	178
	6.40.2.16 getSolution() [2/2]	178
	6.40.2.17 interpolate()	178
	6.40.2.18 operator=()	179
	6.40.2.19 refine_h()	179
	6.40.2.20 refine_hp()	179
	6.40.2.21 refine_hx()	179
	6.40.2.22 refine_hy()	179
	6.40.2.23 refine_p()	179
	6.40.2.24 setParameter() [1/2]	179
	6.40.2.25 setParameter() [2/2]	180
	6.40.2.26 updateSolution() [1/4]	180
	6.40.2.27 updateSolution() [2/4]	180
	6.40.2.28 updateSolution() [3/4]	180
	6.40.2.29 updateSolution() [4/4]	180
6.41 corenc::	Mesh::CRegularMesh3D Class Reference	180
6.41.1 (Constructor & Destructor Documentation	181
	6.41.1.1 CRegularMesh3D() [1/6]	181
	6.41.1.2 CRegularMesh3D() [2/6]	182
	6.41.1.3 CRegularMesh3D() [3/6]	182
	6.41.1.4 CRegularMesh3D() [4/6]	182
	6.41.1.5 CRegularMesh3D() [5/6]	182
	6.41.1.6 CRegularMesh3D() [6/6]	182
	6.41.1.7 ~CRegularMesh3D()	183
6.41.2	Member Function Documentation	183
	6.41.2.1 Clone()	183
	6.41.2.2 FindElement()	183
	6.41.2.3 GetBoundary() [1/2]	183
	6.41.2.4 GetBoundary() [2/2]	183
	6.41.2.5 GetElement()	183
	6.41.2.6 GetElements()	183
	6.41.2.7 getMinSize()	184
	6.41.2.8 GetNode()	184
	6.41.2.9 GetNumberOfBoundaries()	184
	6.41.2.10 GetNumberOfElements()	184
	6.41.2.11 GetNumberOfINodes()	184
	6.41.2.12 GetNumberOfNodes()	184

6.41.2.13 getParameter() [1/2]	34
6.41.2.14 getParameter() [2/2]18	35
6.41.2.15 getSolution() [1/2]	35
6.41.2.16 getSolution() [2/2]	35
6.41.2.17 interpolate()	35
6.41.2.18 operator=()	35
6.41.2.19 refine_h()	35
6.41.2.20 refine_hp()	35
6.41.2.21 refine_hx()	36
6.41.2.22 refine_hy()	36
6.41.2.23 refine_p()	36
6.41.2.24 setParameter() [1/2]	36
6.41.2.25 setParameter() [2/2]	36
6.41.2.26 updateSolution() [1/4]	36
6.41.2.27 updateSolution() [2/4]	36
6.41.2.28 updateSolution() [3/4]	37
6.41.2.29 updateSolution() [4/4]	37
6.42 corenc::CShallowWater Class Reference	37
6.42.1 Constructor & Destructor Documentation	38
6.42.1.1 CShallowWater()	38
6.42.1.2 ~CShallowWater()	38
6.42.2 Member Function Documentation	38
6.42.2.1 add_boundary_parameter() [1/2]18	38
6.42.2.2 add_boundary_parameter() [2/2]	38
6.42.2.3 add_parameter()	39
6.42.2.4 addTerm()	39
6.42.2.5 get_boundary_parameter() [1/2]	39
6.42.2.6 get_boundary_parameter() [2/2]	39
6.42.2.7 get_boundary_type()	39
6.42.2.8 get_number_of_boundaries()	39
6.42.2.9 get_parameter() [1/2]19	90
6.42.2.10 get_parameter() [2/2]	90
6.42.2.11 get_solution()	90
6.42.2.12 getNumberOfTerms()	90
6.42.2.13 getTerm()	90
6.42.2.14 load_parameters()	91
6.42.2.15 removeTerm()	91
6.42.2.16 set_boundary_parameter()	91
6.42.2.17 set_parameter()	91
6.42.2.18 setTerm()	91
6.43 corenc::Mesh::CShape Class Reference	92
6.43.1 Constructor & Destructor Documentation	92

6.43.1.1 CShape() [1/2]
6.43.1.2 CShape() [2/2]
6.43.1.3 ~CShape()
6.43.2 Member Function Documentation
6.43.2.1 GetEdge()
6.43.2.2 GetFacet()
6.43.2.3 GetNode() [1/2]
6.43.2.4 GetNode() [2/2]
6.43.2.5 GetNumberOfEdges()
6.43.2.6 GetNumberOfFacets()
6.43.2.7 GetNumberOfNodes()
6.43.2.8 Integrate() [1/3]
6.43.2.9 Integrate() [2/3]
6.43.2.10 Integrate() [3/3]
6.43.2.11 SetEdge()
6.43.2.12 SetFacet()
6.43.2.13 SetNode()
6.44 corenc::Mesh::CShapeFunction< Type > Class Template Reference
6.44.1 Constructor & Destructor Documentation
6.44.1.1 CShapeFunction() [1/2]
6.44.1.2 CShapeFunction() [2/2]
6.44.1.3 ~CShapeFunction()
6.44.2 Member Function Documentation
6.44.2.1 GetGradShapeFunction()
6.44.2.2 GetMeasure()
6.44.2.3 GetNormal()
6.44.2.4 GetNumberOfShapeFunctions()
6.44.2.5 GetShapeFunction()
6.44.2.6 ReverseNormal()
6.45 Methods::CSMethod Class Reference
6.45.1 Constructor & Destructor Documentation
6.45.1.1 CSMethod()
6.45.1.2 ~CSMethod()
6.46 corenc::CSolution Class Reference
6.46.1 Constructor & Destructor Documentation
6.46.1.1 CSolution()
6.46.1.2 ~CSolution()
6.47 corenc::Mesh::CTriangle Class Reference
6.47.1 Constructor & Destructor Documentation
6.47.1.1 CTriangle() [1/6]
6.47.1.2 CTriangle() [2/6]
6.47.1.3 CTriangle() [3/6]

6.47.1.4 CTriangle() [4/6]	201
6.47.1.5 CTriangle() [5/6]	201
6.47.1.6 CTriangle() [6/6]	201
6.47.1.7 ~CTriangle()	201
6.47.2 Member Function Documentation	201
6.47.2.1 GetEdge()	202
6.47.2.2 GetFacet()	202
6.47.2.3 GetNode() [1/2]	202
6.47.2.4 GetNode() [2/2]	202
6.47.2.5 GetNumberOfEdges()	202
6.47.2.6 GetNumberOfFacets()	202
6.47.2.7 GetNumberOfNodes()	203
6.47.2.8 IncreaseOrder()	203
6.47.2.9 Integrate() [1/3]	203
6.47.2.10 Integrate() [2/3]	203
6.47.2.11 Integrate() [3/3]	203
6.47.2.12 operator=()	203
6.47.2.13 operator==()	204
6.47.2.14 operator>>()	204
6.47.2.15 SetEdge()	204
6.47.2.16 SetFacet()	204
6.47.2.17 SetNode()	204
6.48 corenc::Mesh::CTriangleBasis Class Reference	205
6.48.1 Constructor & Destructor Documentation	205
6.48.1.1 CTriangleBasis() [1/8]	205
6.48.1.2 CTriangleBasis() [2/8]	206
6.48.1.3 CTriangleBasis() [3/8]	206
6.48.1.4 CTriangleBasis() [4/8]	206
6.48.1.5 ~CTriangleBasis() [1/2]	206
6.48.1.6 CTriangleBasis() [5/8]	206
6.48.1.7 CTriangleBasis() [6/8]	206
6.48.1.8 CTriangleBasis() [7/8]	207
6.48.1.9 CTriangleBasis() [8/8]	207
6.48.1.10 ~CTriangleBasis() [2/2]	207
6.48.2 Member Function Documentation	207
6.48.2.1 GetGradShapeFunction() [1/2]	207
6.48.2.2 GetGradShapeFunction() [2/2]	207
6.48.2.3 GetMeasure()	207
6.48.2.4 GetNormal() [1/2]	208
6.48.2.5 GetNormal() [2/2]	208
6.48.2.6 GetNumberOfShapeFunctions() [1/2]	208
6.48.2.7 GetNumberOfShapeFunctions() [2/2]	208

6.48.2.8 GetShapeFunction() [1/2]	208
6.48.2.9 GetShapeFunction() [2/2]	208
6.48.2.10 GetValue() [1/2]	209
6.48.2.11 GetValue() [2/2]	209
6.48.2.12 GetWeight()	209
6.48.2.13 IncreaseOrder()	209
6.48.2.14 operator=() [1/2]	209
6.48.2.15 operator=() [2/2]	209
6.48.2.16 ReverseNormal() [1/2]	209
6.48.2.17 ReverseNormal() [2/2]	210
6.49 corenc::Mesh::CTriangleLagrangeBasis Class Reference	210
6.49.1 Constructor & Destructor Documentation	210
6.49.1.1 CTriangleLagrangeBasis() [1/4]	211
6.49.1.2 CTriangleLagrangeBasis() [2/4]	211
6.49.1.3 CTriangleLagrangeBasis() [3/4]	211
6.49.1.4 CTriangleLagrangeBasis() [4/4]	211
6.49.1.5 ∼CTriangleLagrangeBasis()	211
6.49.2 Member Function Documentation	211
6.49.2.1 GetAlpha()	211
6.49.2.2 GetGradShapeFunction()	212
6.49.2.3 GetMeasure()	212
6.49.2.4 GetNormal()	212
6.49.2.5 GetNumberOfShapeFunctions()	212
6.49.2.6 GetShapeFunction()	212
6.49.2.7 GetValue()	212
6.49.2.8 GetWeight()	213
6.49.2.9 IncreaseOrder()	213
6.49.2.10 operator=()	213
6.49.2.11 ReverseNormal()	213
6.50 corenc::Mesh::CTriangleLinear Class Reference	213
6.50.1 Constructor & Destructor Documentation	214
6.50.1.1 CTriangleLinear() [1/6]	214
6.50.1.2 CTriangleLinear() [2/6]	214
6.50.1.3 CTriangleLinear() [3/6]	215
6.50.1.4 CTriangleLinear() [4/6]	215
6.50.1.5 CTriangleLinear() [5/6]	215
6.50.1.6 CTriangleLinear() [6/6]	215
6.50.1.7 ~CTriangleLinear()	215
6.50.2 Member Function Documentation	215
6.50.2.1 GetEdge()	215
6.50.2.2 GetFacet()	216
6 50 2 3 GetNode() [1/2]	216

6	.50.2.4 GetNode() [2/2]	216
6	.50.2.5 GetNumberOfEdges()	216
6	.50.2.6 GetNumberOfFacets()	216
6	.50.2.7 GetNumberOfNodes()	216
6	.50.2.8 IncreaseOrder()	217
6	.50.2.9 Integrate() [1/3]	217
6	.50.2.10 Integrate() [2/3]	217
6	.50.2.11 Integrate() [3/3]	217
6	.50.2.12 operator=()	217
6	.50.2.13 operator==()	217
6	.50.2.14 operator>>()	218
6	.50.2.15 SetEdge()	218
6	.50.2.16 SetFacet()	218
6	.50.2.17 SetNode()	218
6.51 corenc::M	esh::CTriangleLinearBasis Class Reference	218
6.51.1 Co	onstructor & Destructor Documentation	219
6	.51.1.1 CTriangleLinearBasis() [1/4]	219
6	.51.1.2 CTriangleLinearBasis() [2/4]	219
6	.51.1.3 CTriangleLinearBasis() [3/4]	219
6	.51.1.4 CTriangleLinearBasis() [4/4]	219
6	.51.1.5 ~CTriangleLinearBasis()	220
6.51.2 M	ember Function Documentation	220
6	.51.2.1 GetGradShapeFunction()	220
6	.51.2.2 GetMeasure()	220
6	.51.2.3 GetNormal()	220
6	.51.2.4 GetNumberOfShapeFunctions()	220
6	.51.2.5 GetShapeFunction()	220
6	.51.2.6 GetValue()	221
6	.51.2.7 IncreaseOrder()	221
6	.51.2.8 operator=()	221
6	.51.2.9 ReverseNormal()	221
6.52 corenc::M	esh::CTriangularMesh Class Reference	221
6.52.1 Cd	onstructor & Destructor Documentation	222
6	.52.1.1 CTriangularMesh() [1/4]	222
6	.52.1.2 CTriangularMesh() [2/4]	223
6	.52.1.3 CTriangularMesh() [3/4]	223
6	.52.1.4 CTriangularMesh() [4/4]	223
6	.52.1.5 ~CTriangularMesh()	223
6.52.2 M	ember Function Documentation	223
6	.52.2.1 Clone()	223
6	.52.2.2 FindElement()	223
6	.52.2.3 GetBoundary() [1/2]	224

6.52.2.4 GetBoundary() [2/2]	. 224
6.52.2.5 GetElement()	. 224
6.52.2.6 GetElements()	. 224
6.52.2.7 getMinSize()	. 224
6.52.2.8 GetNode()	. 224
6.52.2.9 GetNumberOfBoundaries()	. 225
6.52.2.10 GetNumberOfElements()	. 225
6.52.2.11 GetNumberOfINodes()	. 225
6.52.2.12 GetNumberOfNodes()	. 225
6.52.2.13 getParameter() [1/2]	. 225
6.52.2.14 getParameter() [2/2]	. 225
6.52.2.15 getSolution() [1/2]	. 226
6.52.2.16 getSolution() [2/2]	. 226
6.52.2.17 interpolate()	. 226
6.52.2.18 operator=()	. 226
6.52.2.19 refine_h()	. 226
6.52.2.20 refine_hp()	. 226
6.52.2.21 refine_p()	. 226
6.52.2.22 set2ndOrder()	. 227
6.52.2.23 set3rdOrder()	. 227
6.52.2.24 set4thOrder()	. 227
6.52.2.25 setParameter() [1/2]	. 227
6.52.2.26 setParameter() [2/2]	. 227
6.52.2.27 updateSolution() [1/4]	. 227
6.52.2.28 updateSolution() [2/4]	. 228
6.52.2.29 updateSolution() [3/4]	. 228
6.52.2.30 updateSolution() [4/4]	. 228
6.53 corenc::Mesh::CTriangularMeshLinear Class Reference	. 228
6.53.1 Constructor & Destructor Documentation	. 229
6.53.1.1 CTriangularMeshLinear() [1/3]	. 229
6.53.1.2 CTriangularMeshLinear() [2/3]	. 229
6.53.1.3 CTriangularMeshLinear() [3/3]	. 229
6.53.1.4 ~CTriangularMeshLinear()	. 230
6.53.2 Member Function Documentation	. 230
6.53.2.1 FindElement()	. 230
6.53.2.2 GetBoundary() [1/2]	. 230
6.53.2.3 GetBoundary() [2/2]	. 230
6.53.2.4 GetElement()	. 230
6.53.2.5 GetElements()	. 230
6.53.2.6 getMinSize()	. 231
6.53.2.7 GetNode()	. 231
6.53.2.8 GetNumberOfBoundaries()	. 231

6.53.2.9 GetNumberOfElements()
6.53.2.10 GetNumberOfNodes()
6.53.2.11 getParameter() [1/2]
6.53.2.12 getParameter() [2/2]
6.53.2.13 getSolution() [1/2]
6.53.2.14 getSolution() [2/2]
6.53.2.15 refine_h()
6.53.2.16 setParameter() [1/2]
6.53.2.17 setParameter() [2/2]
6.53.2.18 updateSolution() [1/4]
6.53.2.19 updateSolution() [2/4]
6.53.2.20 updateSolution() [3/4]
6.53.2.21 updateSolution() [4/4]
6.54 corenc::CVecSolution Class Reference
6.54.1 Constructor & Destructor Documentation
6.54.1.1 CVecSolution()
6.54.1.2 ~CVecSolution()
6.54.2 Member Data Documentation
6.54.2.1 m_w
6.55 corenc::solvers::dg_shallow_water< Mesh > Class Template Reference
6.55.1 Constructor & Destructor Documentation
6.55.1.1 dg_shallow_water()
6.55.1.2 ~dg_shallow_water()
6.55.2 Member Function Documentation
6.55.2.1 solve() [1/2]
6.55.2.2 solve() [2/2]
6.56 corenc::solvers::dg_solver< _Problem, _Mesh, _Result > Class Template Reference
6.56.1 Constructor & Destructor Documentation
6.56.1.1 dg_solver()
6.56.1.2 ~dg_solver()
6.56.2 Member Function Documentation
6.56.2.1 elliptic_solver()
6.56.2.2 get_gradvalue() [1/2]
6.56.2.3 get_gradvalue() [2/2]
6.56.2.4 get_value() [1/3]
6.56.2.5 get_value() [2/3]
6.56.2.6 get_value() [3/3]
6.57 corenc::solvers::dg_solver_shallow_water Class Reference
6.57.1 Constructor & Destructor Documentation
6.57.1.1 dg_solver_shallow_water()
6.57.1.2 ~dg_solver_shallow_water()
6 57 2 Member Function Documentation 239

6.57.2.1 solve() [1/2]	239
6.57.2.2 solve() [2/2]	239
$\textbf{6.58 corenc::} \textbf{method::} \textbf{DGMethod} < \textbf{Problem, Grid, Matrix} > \textbf{Class Template Reference} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	239
6.58.1 Constructor & Destructor Documentation	240
6.58.1.1 DGMethod() [1/6]	240
6.58.1.2 DGMethod() [2/6]	241
6.58.1.3 DGMethod() [3/6]	241
6.58.1.4 DGMethod() [4/6]	241
6.58.1.5 DGMethod() [5/6]	241
6.58.1.6 DGMethod() [6/6]	241
6.58.1.7 ~DGMethod()	241
6.58.2 Member Function Documentation	242
6.58.2.1 Discretization()	242
6.58.2.2 GetEffective()	242
6.58.2.3 GetGlobalMatrix()	242
6.58.2.4 GetGradSolution() [1/2]	242
6.58.2.5 GetGradSolution() [2/2]	242
6.58.2.6 GetMesh()	243
6.58.2.7 GetRightVector()	243
6.58.2.8 GetSolution() [1/3]	243
6.58.2.9 GetSolution() [2/3]	243
6.58.2.10 GetSolution() [3/3]	243
6.58.2.11 GetValue() [1/3]	243
6.58.2.12 GetValue() [2/3]	244
6.58.2.13 GetValue() [3/3]	244
6.58.2.14 LoadSolution()	244
6.58.2.15 OutDatFormat()	244
6.58.2.16 OutMeshFormat()	244
6.58.2.17 OutMeshTimeFormat()	245
6.58.2.18 ProjectSolution() [1/2]	245
6.58.2.19 ProjectSolution() [2/2]	245
6.58.2.20 Rediscretization() [1/2]	245
6.58.2.21 Rediscretization() [2/2]	245
6.58.2.22 SetSolution()	246
6.58.2.23 SetTimeStep()	246
6.59 corenc::method::DGMethodZero< Problem, Grid, Matrix > Class Template Reference	246
6.59.1 Constructor & Destructor Documentation	247
6.59.1.1 DGMethodZero() [1/6]	247
6.59.1.2 DGMethodZero() [2/6]	247
6.59.1.3 DGMethodZero() [3/6]	247
6.59.1.4 DGMethodZero() [4/6]	248
6.59.1.5 DGMethodZero() [5/6]	248

6.59.1.6 DGMethodZero() [6/6]	248
6.59.1.7 ~DGMethodZero()	248
6.59.2 Member Function Documentation	248
6.59.2.1 Discretization()	248
6.59.2.2 GetEffective()	248
6.59.2.3 GetGlobalMatrix()	249
6.59.2.4 GetGradSolution() [1/2]	249
6.59.2.5 GetGradSolution() [2/2]	249
6.59.2.6 GetMesh()	249
6.59.2.7 GetRightVector()	249
6.59.2.8 GetSolution() [1/3]	249
6.59.2.9 GetSolution() [2/3]	250
6.59.2.10 GetSolution() [3/3]	250
6.59.2.11 GetValue() [1/3]	250
6.59.2.12 GetValue() [2/3]	250
6.59.2.13 GetValue() [3/3]	250
6.59.2.14 LoadSolution()	251
6.59.2.15 OutDatFormat()	251
6.59.2.16 OutMeshFormat()	251
6.59.2.17 OutMeshTimeFormat()	251
6.59.2.18 ProjectSolution() [1/2]	251
6.59.2.19 ProjectSolution() [2/2]	252
6.59.2.20 Rediscretization() [1/2]	252
6.59.2.21 Rediscretization() [2/2]	252
6.59.2.22 SetSolution()	252
6.59.2.23 SetTimeStep()	252
6.60 corenc::method::DGSolution < Grid > Class Template Reference	253
6.60.1 Constructor & Destructor Documentation	253
6.60.1.1 DGSolution() [1/3]	253
6.60.1.2 DGSolution() [2/3]	253
6.60.1.3 DGSolution() [3/3]	253
6.60.1.4 \sim DGSolution()	253
6.60.2 Member Function Documentation	254
6.60.2.1 getWeight()	254
6.60.2.2 getWeights()	254
6.60.2.3 operator=()	254
6.60.2.4 updateWeight()	254
6.61 corenc::solvers::eigen_solver< Matrix, Solver > Class Template Reference	254
6.61.1 Constructor & Destructor Documentation	255
6.61.1.1 eigen_solver()	255
6.61.1.2 ~eigen_solver()	255
6.61.2 Member Function Documentation	255

6.61.2.1 rayleigh()	55
6.62 Algebra::ESolver Class Reference	55
6.62.1 Constructor & Destructor Documentation	56
6.62.1.1 ESolver() [1/3]	56
6.62.1.2 ESolver() [2/3]	56
6.62.1.3 ESolver() [3/3]	57
6.62.1.4 ~ESolver()	57
6.62.2 Member Function Documentation	57
6.62.2.1 BiCGStab() [1/2]	57
6.62.2.2 BiCGStab() [2/2]	57
6.62.2.3 BiCGStabPrecond()	57
6.62.2.4 Gauss() [1/5]	57
6.62.2.5 Gauss() [2/5]	58
6.62.2.6 Gauss() [3/5]	58
6.62.2.7 Gauss() [4/5]	58
6.62.2.8 Gauss() [5/5]	58
6.62.2.9 GetSolution() [1/3]	58
6.62.2.10 GetSolution() [2/3]	58
6.62.2.11 GetSolution() [3/3]	59
6.62.2.12 GMRES() [1/2]	59
6.62.2.13 GMRES() [2/2]	59
6.62.2.14 MatrixprodVector() [1/4]	59
6.62.2.15 MatrixprodVector() [2/4]	59
6.62.2.16 MatrixprodVector() [3/4]	59
6.62.2.17 MatrixprodVector() [4/4]	30
6.62.2.18 Pardiso()	30
6.62.2.19 Reload()	30
6.62.2.20 Solve() [1/3]	30
6.62.2.21 Solve() [2/3]	30
6.62.2.22 Solve() [3/3]	31
6.63 corenc::method::FEAnalysis < Method1, Method2, Mesh1, Mesh2 > Class Template Reference 26	31
6.63.1 Constructor & Destructor Documentation	31
6.63.1.1 FEAnalysis()	31
6.63.1.2 ∼FEAnalysis()	31
6.63.2 Member Function Documentation	31
6.63.2.1 L2Norm()	32
6.64 corenc::solvers::fem_solver< _Problem, _Mesh, _Result > Class Template Reference 26	32
6.64.1 Constructor & Destructor Documentation	32
6.64.1.1 fem_solver()	32
6.64.1.2 ~fem_solver()	32
6.64.2 Member Function Documentation	33
6.64.2.1 elliptic_solver()	33

6.64.2.2 elliptic_solver_gauss()	263
6.64.2.3 get_gradvalue() [1/2]	263
6.64.2.4 get_gradvalue() [2/2]	263
6.64.2.5 get_value() [1/4]	264
6.64.2.6 get_value() [2/4]	264
6.64.2.7 get_value() [3/4]	264
6.64.2.8 get_value() [4/4]	264
6.65 corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result > Class Template Reference	264
6.65.1 Constructor & Destructor Documentation	265
6.65.1.1 fem_solver_lib()	265
6.65.1.2 ~fem_solver_lib()	265
6.65.2 Member Function Documentation	265
6.65.2.1 elliptic_solver()	265
6.65.2.2 elliptic_solver_gauss()	266
6.65.2.3 get_gradvalue() [1/2]	266
6.65.2.4 get_gradvalue() [2/2]	266
6.65.2.5 get_value() [1/4]	266
6.65.2.6 get_value() [2/4]	. 266
6.65.2.7 get_value() [3/4]	267
6.65.2.8 get_value() [4/4]	267
6.66 corenc::method::FEMethod< Problem, Grid, Matrix > Class Template Reference	267
6.66.1 Constructor & Destructor Documentation	268
6.66.1.1 FEMethod() [1/6]	268
6.66.1.2 FEMethod() [2/6]	268
6.66.1.3 FEMethod() [3/6]	269
6.66.1.4 FEMethod() [4/6]	269
6.66.1.5 FEMethod() [5/6]	269
6.66.1.6 FEMethod() [6/6]	269
6.66.1.7 ∼FEMethod()	269
6.66.2 Member Function Documentation	269
6.66.2.1 Discretization()	270
6.66.2.2 GetEffective()	270
6.66.2.3 GetGlobalMatrix()	270
6.66.2.4 GetGradSolution() [1/2]	270
6.66.2.5 GetGradSolution() [2/2]	270
6.66.2.6 GetMesh()	270
6.66.2.7 GetRightVector()	271
6.66.2.8 GetSolution() [1/3]	271
6.66.2.9 GetSolution() [2/3]	271
6.66.2.10 GetSolution() [3/3]	271
6.66.2.11 GetValue() [1/3]	271
6.66.2.12 GetValue() [2/3]	271

	6.66.2.13 GetValue() [3/3]	272
	6.66.2.14 LoadSolution()	272
	6.66.2.15 operator=()	272
	6.66.2.16 OutDatFormat()	272
	6.66.2.17 OutMeshFormat()	272
	6.66.2.18 OutMeshTimeFormat()	273
	6.66.2.19 ProjectSolution() [1/2]	273
	6.66.2.20 ProjectSolution() [2/2]	273
	6.66.2.21 Rediscretization() [1/2]	273
	6.66.2.22 Rediscretization() [2/2]	273
	6.66.2.23 SetSolution()	274
	6.66.2.24 SetTimeStep()	274
6.67 corenc::n	${\sf nethod::FEMethodZero} {\sf < Problem, Grid, Matrix} > {\sf Class Template \ Reference} \qquad \dots \qquad \dots$	274
6.67.1 C	Constructor & Destructor Documentation	275
	6.67.1.1 FEMethodZero() [1/6]	275
	6.67.1.2 FEMethodZero() [2/6]	275
	6.67.1.3 FEMethodZero() [3/6]	275
	6.67.1.4 FEMethodZero() [4/6]	276
	6.67.1.5 FEMethodZero() [5/6]	276
	6.67.1.6 FEMethodZero() [6/6]	276
	6.67.1.7 ~FEMethodZero()	276
6.67.2 N	Member Function Documentation	276
	6.67.2.1 Discretization()	276
	6.67.2.2 GetEffective()	276
	6.67.2.3 GetGlobalMatrix()	277
	6.67.2.4 GetGradSolution() [1/2]	277
	6.67.2.5 GetGradSolution() [2/2]	277
	6.67.2.6 GetMesh()	277
	6.67.2.7 GetRightVector()	277
	6.67.2.8 GetSolution() [1/3]	277
	6.67.2.9 GetSolution() [2/3]	278
	6.67.2.10 GetSolution() [3/3]	278
	6.67.2.11 GetValue() [1/3]	278
	6.67.2.12 GetValue() [2/3]	278
	6.67.2.13 GetValue() [3/3]	278
	6.67.2.14 LoadSolution()	279
	6.67.2.15 OutDatFormat()	279
	6.67.2.16 OutMeshFormat()	279
	6.67.2.17 OutMeshTimeFormat()	279
	6.67.2.18 ProjectSolution() [1/2]	279
	6.67.2.19 ProjectSolution() [2/2]	280
	6.67.2.20 Rediscretization() [1/2]	280

6.67.2.21 Rediscretization() [2/2]	80
6.67.2.22 SetSolution()	80
6.67.2.23 SetTimeStep()	80
6.68 corenc::method::FVMethod1d Class Reference	81
6.68.1 Constructor & Destructor Documentation	81
6.68.1.1 FVMethod1d()	81
6.68.1.2 ~FVMethod1d()	81
6.68.2 Member Function Documentation	81
6.68.2.1 GetSolution()	81
6.68.2.2 Solve()	82
6.69 corenc::Mesh::Gauss1dim Struct Reference	82
6.69.1 Member Data Documentation	82
6.69.1.1 m_a	82
6.69.1.2 m_order	83
6.69.1.3 m_sqrt35	83
6.69.1.4 m_w	83
6.70 corenc::Mesh::Gauss1dimN< N > Struct Template Reference	83
6.70.1 Member Data Documentation	83
6.70.1.1 m_a	84
6.70.1.2 m_order	84
6.70.1.3 m_w	84
6.71 corenc::GaussianKernel Struct Reference	84
6.71.1 Constructor & Destructor Documentation	84
6.71.1.1 GaussianKernel()	85
6.71.2 Member Function Documentation	85
6.71.2.1 get_gp()	85
6.71.2.2 gpexp()	85
6.71.2.3 gpstep()	85
6.71.3 Member Data Documentation	85
6.71.3.1 _centrs	85
6.71.3.2 N	85
6.72 corenc::GaussianProcess Struct Reference	86
6.72.1 Constructor & Destructor Documentation	86
6.72.1.1 GaussianProcess()	86
6.72.2 Member Function Documentation	86
6.72.2.1 He()	86
6.72.2.2 phi()	87
6.72.3 Member Data Documentation	87
6.72.3.1 a	
6.72.3.2 A	87
6.72.3.3 b	87
6.72.3.4 B	87

6.7	72.3.5 c	 287
6.7	72.3.6 K	 287
6.7	72.3.7	 288
6.7	72.3.8 lambda	 288
6.7	72.3.9 sigma2	 288
6.73 corenc::Me	sh::GaussRectangular Struct Reference	 288
6.73.1 Mer	mber Data Documentation	 288
6.7	73.1.1 m_a	 288
6.7	73.1.2 m_b	 289
6.7	73.1.3 m_c	 289
6.7	73.1.4 m_ra	 289
6.7	73.1.5 m_rb	 289
6.7	73.1.6 m_rw	 289
6.7	73.1.7 m_wa	 289
6.7	73.1.8 m_wb	 289
6.7	73.1.9 m_wc	 290
6.74 corenc::Me	sh::GaussRectangularCubic Struct Reference	 290
6.74.1 Mer	mber Data Documentation	 290
6.7	74.1.1 m_a	 290
6.7	74.1.2 m_b	 290
6.7	74.1.3 m_c	 291
6.7	74.1.4 m_ra	 291
6.7	74.1.5 m_rb	 291
6.7	74.1.6 m_rc	 291
6.7	74.1.7 m_rw	 291
6.7	74.1.8 m_s	 291
6.7	74.1.9 m_w1	 291
6.7	74.1.10 m_w2	 291
6.7	74.1.11 m_w3	 292
6.7	74.1.12 m_w4	 292
6.75 corenc::Me	sh::GaussTetrahedron Struct Reference	 292
6.75.1 Mer	mber Data Documentation	 292
6.7	75.1.1 m_la	 292
6.7	75.1.2 m_lb	 293
6.7	75.1.3 m_lc	 293
6.7	75.1.4 m_ld	 293
6.7	75.1.5 m_msq	 293
6.7	75.1.6 m_psq	 293
6.7	75.1.7 m_w	 293
6.76 corenc::Me	sh::GaussTriangle Struct Reference	 293
6.76.1 Mer	mber Data Documentation	 294
6 7	76.1.1 m. order	20/

6.76.1.2 m_sqrt15	294
6.76.1.3 m_tra	294
6.76.1.4 m_trb	294
6.76.1.5 m_trw	295
6.77 Algebra::Matrix Class Reference	295
6.77.1 Detailed Description	295
6.77.2 Constructor & Destructor Documentation	295
6.77.2.1 Matrix() [1/3]	296
6.77.2.2 Matrix() [2/3]	296
6.77.2.3 ~Matrix()	296
6.77.2.4 Matrix() [3/3]	296
6.77.3 Member Function Documentation	296
6.77.3.1 AddElement()	296
6.77.3.2 Create() [1/2]	296
6.77.3.3 Create() [2/2]	297
6.77.3.4 GetElement()	297
6.77.3.5 GetSize()	297
6.77.3.6 NullMatrix()	297
6.77.3.7 NullRow()	297
6.77.3.8 operator()()	297
6.77.3.9 operator=()	298
6.78 Algebra::MatrixDiag Class Reference	298
6.78.1 Detailed Description	298
6.78.2 Constructor & Destructor Documentation	298
6.78.2.1 MatrixDiag() [1/3]	298
6.78.2.2 MatrixDiag() [2/3]	299
6.78.2.3 ∼MatrixDiag()	299
6.78.2.4 MatrixDiag() [3/3]	299
6.78.3 Member Function Documentation	299
6.78.3.1 AddElement()	299
6.78.3.2 Create()	299
6.78.3.3 GetSize()	299
6.78.3.4 NullMatrix()	300
6.78.3.5 NullRow()	300
6.78.3.6 operator()()	300
6.78.3.7 operator=()	300
6.79 Algebra::MatrixSkyline Class Reference	300
6.79.1 Detailed Description	301
6.79.2 Constructor & Destructor Documentation	301
6.79.2.1 MatrixSkyline() [1/3]	301
6.79.2.2 MatrixSkyline() [2/3]	301
6.79.2.3 ~MatrixSkyline()	301

6.79.2.4 MatrixSkyline() [3/3]	301
6.79.3 Member Function Documentation	301
6.79.3.1 AddElement()	302
6.79.3.2 Create()	302
6.79.3.3 diff_skymatrix() [1/2]	302
6.79.3.4 diff_skymatrix() [2/2]	302
6.79.3.5 GetElement()	302
6.79.3.6 GetSize()	302
6.79.3.7 NullMatrix()	303
6.79.3.8 NullRow()	303
6.79.3.9 operator()() [1/2]	303
6.79.3.10 operator()() [2/2]	303
6.79.3.11 operator=()	303
6.79.3.12 transpose_sky()	303
$\textbf{6.80 corenc::multi_vector} < T > Class \ Template \ Reference \qquad \dots \qquad \dots \qquad \dots \\$	304
6.80.1 Constructor & Destructor Documentation	304
6.80.1.1 multi_vector() [1/3]	304
6.80.1.2 multi_vector() [2/3]	304
6.80.1.3 multi_vector() [3/3]	304
6.80.1.4 ~multi_vector()	305
6.80.2 Member Function Documentation	305
6.80.2.1 fill_inc()	305
6.80.2.2 get() [1/2]	305
6.80.2.3 get() [2/2]	305
6.80.2.4 resize() [1/2]	305
6.80.2.5 resize() [2/2]	305
6.80.2.6 set()	306
6.80.2.7 size()	306
6.80.2.8 totalsize()	306
$\textbf{6.81 corenc::} \textbf{Mesh::} \textbf{parameter} < \textbf{T} > \textbf{Class Template Reference} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	306
6.81.1 Member Typedef Documentation	307
6.81.1.1 cfunc	307
6.81.1.2 cfunc_old	307
6.81.2 Constructor & Destructor Documentation	307
6.81.2.1 parameter() [1/6]	307
6.81.2.2 parameter() [2/6]	307
6.81.2.3 parameter() [3/6]	307
6.81.2.4 parameter() [4/6]	308
6.81.2.5 parameter() [5/6]	308
6.81.2.6 parameter() [6/6]	308
6.81.2.7 ~parameter()	308
6.81.3 Member Function Documentation	308

6.81.3.1 get() [1/3]	308
6.81.3.2 get() [2/3]	308
6.81.3.3 get() [3/3]	309
6.81.3.4 set()	309
6.82 corenc::Mesh::Point Class Reference	309
6.82.1 Constructor & Destructor Documentation	310
6.82.1.1 Point() [1/4]	310
6.82.1.2 Point() [2/4]	310
6.82.1.3 Point() [3/4]	310
6.82.1.4 Point() [4/4]	310
6.82.2 Member Function Documentation	310
6.82.2.1 Jacobian()	310
6.82.2.2 operator*()	310
6.82.2.3 operator*=()	311
6.82.2.4 operator+=()	311
6.82.2.5 operator<()	311
6.82.2.6 operator=()	311
6.82.2.7 operator==()	311
6.82.3 Friends And Related Function Documentation	311
6.82.3.1 operator"!=	311
6.82.3.2 operator* [1/3]	312
6.82.3.3 operator* [2/3]	312
6.82.3.4 operator * [3/3]	312
6.82.3.5 operator+	312
6.82.3.6 operator	312
6.82.4 Member Data Documentation	312
6.82.4.1 x	312
6.82.4.2 y	313
6.82.4.3 z	313
6.83 corenc::Mesh::point_source< T > Class Template Reference	313
6.83.1 Constructor & Destructor Documentation	313
6.83.1.1 point_source() [1/2]	313
6.83.1.2 point_source() [2/2]	313
6.83.2 Member Function Documentation	314
6.83.2.1 get_point()	314
6.83.2.2 get_value()	314
6.83.2.3 operator=()	314
6.84 corenc::method::RungeKutta< Problem, Type > Class Template Reference	314
6.84.1 Constructor & Destructor Documentation	315
6.84.1.1 RungeKutta() [1/2]	315
6.84.1.2 RungeKutta() [2/2]	315
6.84.1.3 ∼RungeKutta()	315

6.84.2 Member Function Documentation	15
6.84.2.1 discretize()	15
6.84.2.2 explicitEuler()	15
6.84.2.3 updateTimestep()	16
6.85 corenc::method::STSolution < Grid > Class Template Reference	16
6.85.1 Constructor & Destructor Documentation	16
6.85.1.1 STSolution() [1/4]	16
6.85.1.2 STSolution() [2/4]	16
6.85.1.3 STSolution() [3/4]	17
6.85.1.4 STSolution() [4/4]	17
6.85.1.5 ~STSolution()	17
6.85.2 Member Function Documentation	17
6.85.2.1 addTimeLayer()	17
6.85.2.2 getWeight()	17
6.85.2.3 getWeights()	18
6.85.2.4 operator=()	18
6.85.2.5 updateWeight()	18
$6.86\ corenc::method::system_dg_method < Problem,\ Grid,\ Matrix > Class\ Template\ Reference \ .\ .\ .\ .\ .\ 3100\ declines and the problem is a support of the problem of the problem$	18
6.86.1 Constructor & Destructor Documentation	19
6.86.1.1 system_dg_method() [1/2]	19
6.86.1.2 system_dg_method() [2/2]	19
6.86.1.3 ~system_dg_method()	19
6.86.2 Member Function Documentation	19
6.86.2.1 Assemble()	19
6.86.2.2 changeFlux()	20
6.86.2.3 DGtostandart()	20
6.86.2.4 GetGlobalMatrix()	20
6.86.2.5 GetMaxSolution()	20
6.86.2.6 GetMinSolution()	20
6.86.2.7 GetSolution() [1/4]	20
6.86.2.8 GetSolution() [2/4]	21
6.86.2.9 GetSolution() [3/4]	21
6.86.2.10 GetSolution() [4/4]	21
6.86.2.11 toDGSolution()	21
6.86.2.12 updateWeights()	21
$6.87\ corenc::method::system_dg_method < Grid,\ bool,\ bool > Class\ Template\ Reference \ \dots \ \dots \ 3200$	22
6.87.1 Member Function Documentation	22
6.87.1.1 GetSolution()	22
6.88 corenc::test_case_elliptic_fem Class Reference	22
6.88.1 Constructor & Destructor Documentation	23
6.88.1.1 test_case_elliptic_fem()	23
6.88.1.2 ~test_case_elliptic_fem()	23

6.88.2 Member Function Documentation	323
6.88.2.1 conv_diff_fem_fixed_triangle()	323
6.88.2.2 elliptic_2layer_fem_2d_tria_h()	323
6.88.2.3 elliptic_fem_2d_rect_source()	323
6.88.2.4 elliptic_fem_2d_tria()	323
6.88.2.5 elliptic_fem_hp_fixed()	324
6.88.2.6 elliptic_fem_hp_fixed_triangle()	324
6.88.2.7 elliptic_fem_hp_lagrange_triangle()	324
6.88.2.8 elliptic_fem_hxhy_fixed_triangle()	324
6.88.2.9 elliptic_fem_solver()	324
6.88.2.10 elliptic_fem_square_lin_basis()	324
6.88.2.11 elliptic_gaussian_triangle()	324
6.88.2.12 global_matrix()	325
6.88.2.13 homotopy_conv_diff_fem()	325
6.88.2.14 mass_matrix_3rd_order()	325
6.88.2.15 mass_matrix_4th_order()	325
6.88.2.16 strees_matrix_3rd_order()	325
6.88.2.17 stress_matrix_4th_order()	325
6.89 corenc::tests::test_case_rectanglebasis Class Reference	325
6.89.1 Constructor & Destructor Documentation	326
6.89.1.1 test_case_rectanglebasis()	326
6.89.1.2 ~test_case_rectanglebasis()	326
6.89.2 Member Function Documentation	326
6.89.2.1 mass_matrix()	326
6.89.2.2 stress_matrix()	326
6.90 corenc::tests::test_case_regular_mesh Class Reference	326
6.90.1 Constructor & Destructor Documentation	327
6.90.1.1 test_case_regular_mesh()	327
6.90.1.2 ~test_case_regular_mesh()	327
6.90.2 Member Function Documentation	327
6.90.2.1 construct_mesh()	327
6.91 corenc::test_case_solver Class Reference	327
6.91.1 Constructor & Destructor Documentation	328
6.91.1.1 test_case_solver()	328
6.91.1.2 ~test_case_solver()	328
6.91.2 Member Function Documentation	328
6.91.2.1 gauss_solver()	328
6.92 corenc::tests::test_case_trianglebasis Class Reference	328
6.92.1 Constructor & Destructor Documentation	328
6.92.1.1 test_case_trianglebasis()	329
6.92.1.2 ~test_case_trianglebasis()	329
6.92.2 Member Function Documentation	320

6.92.2.1 mass_matrix()	329
6.92.2.2 stress_matrix()	329
6.93 corenc::test_cases Class Reference	329
6.93.1 Constructor & Destructor Documentation	329
6.93.1.1 test_cases()	330
6.93.1.2 ~test_cases()	330
6.93.2 Member Function Documentation	330
6.93.2.1 perform() [1/3]	330
6.93.2.2 perform() [2/3]	330
6.93.2.3 perform() [3/3]	330
6.94 corenc::test_conv_diff Class Reference	330
6.94.1 Constructor & Destructor Documentation	331
6.94.1.1 test_conv_diff()	331
6.94.1.2 ~test_conv_diff()	331
6.94.2 Member Function Documentation	331
6.94.2.1 conv_diff_eigen()	331
6.94.2.2 conv_diff_fem()	331
6.95 corenc::solvers::vector_solution Struct Reference	332
6.95.1 Constructor & Destructor Documentation	332
6.95.1.1 vector_solution() [1/2]	332
6.95.1.2 vector_solution() [2/2]	332
6.95.2 Member Data Documentation	332
6.95.2.1 S	332
7 File Documentation	333
7.1 colors.h File Reference	
7.2 colors.h	
7.3 CoreNCA/Matrix.cpp File Reference	
7.4 CoreNCA/Matrix.h File Reference	334
	335
5 11	335
	335
	336
· · · · · · · · · · · · · · · · · · ·	336
	336
7.9.1.1 _NOPE	337
-	337
	337
•	338
7.12 CoreNCFEM/FESolution.h File Reference	341
7.13 FESolution.h	342
7.14 CoreNCFEM/FiniteElements/CRectangleBasis2x.cpp File Reference	343

7.15 CoreNCFEM/FiniteElements/Cube.cpp File Reference
7.16 CoreNCFEM/FiniteElements/Cube.h File Reference
7.16.1 Macro Definition Documentation
7.16.1.1 CORENC_MESH_CUBE_H
7.17 Cube.h
7.18 CoreNCFEM/FiniteElements/CubeHBasis.cpp File Reference
7.19 CoreNCFEM/FiniteElements/Edge.cpp File Reference
7.20 CoreNCFEM/FiniteElements/Edge.h File Reference
7.21 Edge.h
7.22 CoreNCFEM/FiniteElements/FiniteElement.h File Reference
7.23 FiniteElement.h
7.24 CoreNCFEM/FiniteElements/FiniteElement2D.h File Reference
7.25 FiniteElement2D.h
7.26 CoreNCFEM/FiniteElements/Node.cpp File Reference
7.27 CoreNCFEM/FiniteElements/Node.h File Reference
7.28 Node.h
7.29 CoreNCFEM/FiniteElements/Rectangle.cpp File Reference
7.30 CoreNCFEM/FiniteElements/Rectangle.h File Reference
7.31 Rectangle.h
7.32 CoreNCFEM/FiniteElements/RectangleBasis2.cpp File Reference
7.33 CoreNCFEM/FiniteElements/RectangleBasis2y.cpp File Reference
7.34 CoreNCFEM/FiniteElements/RectangleHBasis.cpp File Reference
7.35 CoreNCFEM/FiniteElements/Shape.h File Reference
7.36 Shape.h
7.37 CoreNCFEM/FiniteElements/ShapeFunction.h File Reference
7.38 ShapeFunction.h
7.39 CoreNCFEM/FiniteElements/Triangle.cpp File Reference
7.39.1 Function Documentation
7.39.1.1 center_point()
7.39.1.2 mid_point()
7.39.1.3 s_point()
7.40 CoreNCFEM/FiniteElements/Triangle.h File Reference
7.41 Triangle.h
7.42 CoreNCFEM/FiniteElements/TriangleLagrange.cpp File Reference
7.43 CoreNCFEM/FiniteElements/TriangleLinear.cpp File Reference
7.44 CoreNCFEM/FiniteElements/TriangleLinear.h File Reference
7.45 TriangleLinear.h
7.46 CoreNCFEM/FiniteSolver.h File Reference
7.47 FiniteSolver.h
7.48 CoreNCFEM/GaussianField.h File Reference
7.49 GaussianField.h
7.50 CoreNCEEM/Grids/Mesh1D.cop File Reference 388

7.51 CoreNCFEM/Grids/Mesh1D.h File Reference
7.52 Mesh1D.h
7.53 CoreNCFEM/Grids/RegularMesh.cpp File Reference
7.53.1 Function Documentation
7.53.1.1 sort_indexes()
7.54 CoreNCFEM/Grids/RegularMesh.h File Reference
7.55 RegularMesh.h
7.56 CoreNCFEM/Grids/RegularMesh3D.cpp File Reference
7.56.1 Function Documentation
7.56.1.1 sort_indexes()
7.57 CoreNCFEM/Grids/RegularMesh3D.h File Reference
7.58 RegularMesh3D.h
7.59 CoreNCFEM/Grids/TriangularMesh.cpp File Reference
7.59.1 Function Documentation
7.59.1.1 sort_indexes()
7.60 CoreNCFEM/Grids/TriangularMesh.h File Reference
7.61 TriangularMesh.h
7.62 CoreNCFEM/Grids/TriangularMeshLinear.cpp File Reference
7.63 CoreNCFEM/Grids/TriangularMeshLinear.h File Reference
7.64 TriangularMeshLinear.h
7.65 CoreNCFEM/Mesh.h File Reference
7.66 Mesh.h
7.67 CoreNCFEM/Methods/CSMethod.h File Reference
7.68 CSMethod.h
7.69 CoreNCFEM/Methods/dg_flux.h File Reference
7.70 dg_flux.h
7.71 CoreNCFEM/Methods/DGMethod.h File Reference
7.72 DGMethod.h
7.73 CoreNCFEM/Methods/DGMethodZero.h File Reference
7.74 DGMethodZero.h
7.75 CoreNCFEM/Methods/DGSolution.h File Reference
7.76 DGSolution.h
7.77 CoreNCFEM/Methods/FEAnalysis.h File Reference
7.77.1 Macro Definition Documentation
7.77.1.1 CORENC_METHODS_FEANALYSIS_H
7.78 FEAnalysis.h
7.79 CoreNCFEM/Methods/FEMethod.h File Reference
7.80 FEMethod.h
7.81 CoreNCFEM/Methods/FEMethodZero.h File Reference
7.82 FEMethodZero.h
7.83 CoreNCFEM/Methods/FVMethod.cpp File Reference
7.84 CoreNCFEM/Methods/FVMethod.h File Reference

7.85 FVMethod.h
7.86 CoreNCFEM/Methods/RungeKutta.h File Reference
7.87 RungeKutta.h
7.88 CoreNCFEM/Methods/system_dg_method.h File Reference
7.88.1 Macro Definition Documentation
7.88.1.1 CORENC_METHODS_SYSTEM_DG_METHOD_H
7.89 system_dg_method.h
7.90 CoreNCFEM/multi_vector.h File Reference
7.90.1 Macro Definition Documentation
7.90.1.1 CORENC_MULTI_VECTOR_H
7.91 multi_vector.h
7.92 CoreNCFEM/Parameter.cpp File Reference
7.93 CoreNCFEM/Parameter.h File Reference
7.93.1 Macro Definition Documentation
7.93.1.1 CORENC_MESH_PARAMETER_H
7.94 Parameter.h
7.95 CoreNCFEM/Point.cpp File Reference
7.96 CoreNCFEM/Point.h File Reference
7.96.1 Macro Definition Documentation
7.96.1.1 CORENC_MESH_Point_h
7.97 Point.h
7.98 main.cpp File Reference
7.98.1 Function Documentation
7.98.1.1 main()
7.99 Problems/BurgersScalar.cpp File Reference
7.100 Problems/BurgersScalar.h File Reference
7.101 BurgersScalar.h
7.102 Problems/DiffusionScalar.cpp File Reference
7.103 Problems/DiffusionScalar.h File Reference
7.104 DiffusionScalar.h
7.105 Problems/Problems.h File Reference
7.105.1 Macro Definition Documentation
7.105.1.1 CORENC_PROBLEMS_PROBLEMS_H
7.106 Problems.h
7.107 Problems/ShallowWater.cpp File Reference
7.108 Problems/ShallowWater.h File Reference
7.109 ShallowWater.h
7.110 Solvers/dg_solver.h File Reference
7.111 dg_solver.h
7.112 Solvers/dg_solver_shallow_water.cpp File Reference
7.113 Solvers/dg_solver_shallow_water.h File Reference
7.114 dg_solver_shallow_water.h

7.115 Solvers/eigen_solver.h File Reference
7.116 eigen_solver.h
7.117 Solvers/fem_solver.h File Reference
7.118 fem_solver.h
7.119 Solvers/fem_solver_lib.h File Reference
7.120 fem_solver_lib.h
7.121 Tests/FiniteElements/test_case_rectanglebasis.cpp File Reference
7.122 Tests/FiniteElements/test_case_rectanglebasis.h File Reference
7.122.1 Macro Definition Documentation
7.122.1.1 CORENC_TEST_CASE_RECTANGLEBASIS_H 516
7.123 test_case_rectanglebasis.h
7.124 Tests/FiniteElements/test_case_trianglebasis.cpp File Reference
7.125 Tests/FiniteElements/test_case_trianglebasis.h File Reference
7.125.1 Macro Definition Documentation
7.125.1.1 CORENC_TEST_CASE_TRIANGLEBASIS_H
7.126 test_case_trianglebasis.h
7.127 Tests/test_case_elliptic_fem.cpp File Reference
7.127.1 Macro Definition Documentation
7.127.1.1 _USE_MATH_DEFINES
7.127.2 Function Documentation
7.127.2.1 kekus()
7.128 Tests/test_case_elliptic_fem.h File Reference
7.129 test_case_elliptic_fem.h
7.130 Tests/test_case_regular_mesh.cpp File Reference
7.131 Tests/test_case_regular_mesh.h File Reference
7.131.1 Macro Definition Documentation
7.131.1.1 CORENC_TEST_CASE_REGULAR_MESH_H 520
7.132 test_case_regular_mesh.h
7.133 Tests/test_case_solver.cpp File Reference
7.133.1 Macro Definition Documentation
7.133.1.1 _USE_MATH_DEFINES
7.133.2 Function Documentation
7.133.2.1 solver()
7.134 Tests/test_case_solver.h File Reference
7.135 test_case_solver.h
7.136 Tests/test_cases.cpp File Reference
7.137 Tests/test_cases.h File Reference
7.137.1 Macro Definition Documentation
7.137.1.1 CORENC_TEST_CASES_H
7.138 test_cases.h
7.139 Tests/test_conv_diff.cpp File Reference
7.139.1 Macro Definition Documentation

	xlvii
7.139.1.1 _USE_MATH_DEFINES	 . 523
140 Tests/test_conv_diff.h File Reference	 . 524
141 test_conv_diff.h	 . 524
	E05
	525

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

Algebra												 											13
corenc												 											14
corenc::color .												 											16
corenc::Mesh .												 											19
corenc::method												 											21
corenc::solvers												 											23
corenc::tests .												 											23
Methods												 											23
wtf												 											23

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

${\sf corenc::method::CDGMethod\!< Type>$
corenc::method::CDGMethodZero< Type >
$corenc::Mesh::CElement < T > \dots \qquad \qquad$
$corenc:: Mesh:: CF in ite Element < Shape, Shape Function, DoF, T > \dots \dots$
$corenc::Mesh::CElement2D < T > \dots \dots$
corenc::Mesh::CElement2D< bool >
corenc::Mesh::CElement2D<>
corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >
$corenc::Mesh::CElement < bool > \dots $
corenc::Mesh::CElement<>
corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, bool >
$corenc:: Mesh:: CF in ite Element < Shape, Shape Function, bool, bool > \dots $
corenc::method::CFEMethod< Type >
corenc::method::CFEMethodZero< Type >
corenc::CFEweights
corenc::CFiniteSolver< Method, Mesh, Solver >
$corenc::Mesh::CMesh < T > \dots \dots$
corenc::Mesh::CMesh< bool >
corenc::Mesh::CMesh< CFESolution >
corenc::Mesh::CMesh1D
corenc::Mesh::CMesh<>
corenc::Mesh::CTriangularMesh
corenc::Mesh::CTriangularMeshLinear
corenc::Mesh::CParameter
corenc::CProblem
corenc::CBurgersScalar
corenc::CDiffusionScalar
corenc::CShallowWater
corenc::Mesh::CRegularMesh
corenc::Mesh::CRegularMesh3D
corenc::Mesh::CShape
corenc::Mesh::CCube
corenc::Mesh::CEdge

4 Hierarchical Index

corenc::Mesh::CNode	
corenc::Mesh::CRectangle	
corenc::Mesh::CTriangle	199
corenc::Mesh::CTriangleLinear	213
corenc::Mesh::CShapeFunction < Type >	195
corenc::Mesh::CShapeFunction < double >	
corenc::Mesh::CCubeBasis	
corenc::Mesh::CEdge2ndBasis	
corenc::Mesh::CEdgeConstantBasis	
corenc::Mesh::CEdgeHermiteBasis	
corenc::Mesh::CEdgeLinearBasis	
corenc::Mesh::CEdgeMultiBasis	
corenc::Mesh::CNodeBasis	
corenc::Mesh::CRectangleBasis	
•	
corenc::Mesh::CRectangleBasis2	
corenc::Mesh::CRectangleBasis2x	
corenc::Mesh::CRectangleBasis2y	
corenc::Mesh::CRectangleConstantBasis	
corenc::Mesh::CRectangleHBasis	
corenc::Mesh::CTriangleBasis	
corenc::Mesh::CTriangleBasis	
corenc::Mesh::CTriangleLagrangeBasis	
corenc::Mesh::CTriangleLinearBasis	
Methods::CSMethod	
corenc::CSolution	
corenc::CFESolution	
corenc::CVecSolution	233
$corenc::solvers::dg_shallow_water < Mesh > $	234
${\sf corenc::} {\sf solvers::} {\sf dg_solver} {\sf <_Problem}, {\sf _Mesh}, {\sf _Result} {\sf > \ldots $	236
corenc::solvers::dg_solver_shallow_water	238
${\it corenc::} method:: DGMethod < Problem, \ Grid, \ Matrix > \dots $	
$corenc::method::DGMethodZero < Problem, \ Grid, \ Matrix > \ \dots \dots$	246
${\sf corenc::} {\sf method::} {\sf DGSolution} {\sf < Grid} {\sf > } \ldots \ldots$	
$corenc::solvers::eigen_solver < Matrix, Solver > \dots $	
Algebra::ESolver	
$corenc::method::FEAnalysis < Method 1, Method 2, Mesh 1, Mesh 2 > \dots \dots$	
${\tt corenc::} solvers:: {\tt fem_solver} < {\tt _Problem}, {\tt _Mesh}, {\tt _Result} > {\tt \dots $	262
corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result >	
	264
corenc::method::FEMethod< Problem, Grid, Matrix >	264267
corenc::method::FEMethod< Problem, Grid, Matrix >	
$corenc::method::FEMethod < Problem, \ Grid, \ Matrix > \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots \ \dots$	267
corenc::method::FEMethod Problem, Grid, Matrix corenc::method::FEMethodZero Problem, Grid, Matrix corenc::method::FVMethod1d	267 274
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281
corenc::method::FEMethod Problem, Grid, Matrix corenc::method::FEMethodZero Problem, Grid, Matrix corenc::method::FVMethod1d	267 274 281 282
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286 288
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286 288 290
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286 288 290 292
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286 288 290 292 293
corenc::method::FEMethod< Problem, Grid, Matrix > corenc::method::FEMethodZero< Problem, Grid, Matrix > corenc::method::FVMethod1d corenc::Mesh::Gauss1dim corenc::Mesh::Gauss1dimN< N > corenc::GaussianKernel corenc::GaussianProcess corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangular corenc::Mesh::GaussTetrahedron corenc::Mesh::GaussTriangle Algebra::Matrix	267 274 281 282 283 284 286 288 290 292 293 295
corenc::method::FEMethod< Problem, Grid, Matrix >	267 274 281 282 283 284 286 288 290 292 293 295 298
corenc::method::FEMethod< Problem, Grid, Matrix > corenc::method::FEMethodZero< Problem, Grid, Matrix > corenc::method::FVMethod1d corenc::Mesh::Gauss1dim corenc::Mesh::Gauss1dimN< N > corenc::GaussianKernel corenc::GaussianProcess corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangularCubic corenc::Mesh::GaussTetrahedron corenc::Mesh::GaussTriangle Algebra::Matrix Algebra::MatrixDiag Algebra::MatrixDiag Algebra::MatrixSkyline corenc::multi_vector< T > corenc::Mesh::parameter< T >	267 274 281 282 283 284 286 290 292 293 295 298 300 304 306
corenc::method::FEMethod< Problem, Grid, Matrix > corenc::method::FEMethodZero< Problem, Grid, Matrix > corenc::method::FVMethod1d corenc::Mesh::Gauss1dim corenc::Mesh::Gauss1dimN< N > corenc::GaussianKernel corenc::GaussianProcess corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangularCubic corenc::Mesh::GaussTetrahedron corenc::Mesh::GaussTriangle Algebra::Matrix Algebra::MatrixDiag Algebra::MatrixSkyline corenc::multi_vector< T > corenc::Mesh::parameter< T > corenc::Mesh::parameter< double >	267 274 281 282 283 284 286 290 292 293 295 298 300 304 306 306
corenc::method::FEMethod< Problem, Grid, Matrix > corenc::method::FEMethodZero< Problem, Grid, Matrix > corenc::method::FVMethod1d corenc::Mesh::Gauss1dim . corenc::Mesh::Gauss1dim N > corenc::GaussianKernel corenc::GaussianProcess corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangularCubic corenc::Mesh::GaussTetrahedron corenc::Mesh::GaussTriangle Algebra::Matrix Algebra::MatrixDiag Algebra::MatrixSkyline corenc::multi_vector< T > corenc::Mesh::parameter< T > corenc::Mesh::parameter< double > corenc::Mesh::parameter< double > corenc::Mesh::Point	267 274 281 282 283 284 286 290 292 293 295 298 300 304 306 309
corenc::method::FEMethod< Problem, Grid, Matrix > corenc::method::FEMethodZero< Problem, Grid, Matrix > corenc::method::FVMethod1d corenc::Mesh::Gauss1dim corenc::Mesh::Gauss1dimN< N > corenc::GaussianKernel corenc::GaussianProcess corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangular corenc::Mesh::GaussRectangularCubic corenc::Mesh::GaussTetrahedron corenc::Mesh::GaussTriangle Algebra::Matrix Algebra::MatrixDiag Algebra::MatrixSkyline corenc::multi_vector< T > corenc::Mesh::parameter< T > corenc::Mesh::parameter< double >	267 274 281 282 283 284 286 290 292 293 295 298 300 304 306 306

2.1 Class Hierarchy 5

corenc::method::STSolution< Grid >	316
corenc::method::system_dg_method< Problem, Grid, Matrix >	318
corenc::method::system_dg_method< Grid, bool, bool >	322
corenc::test_case_elliptic_fem	322
corenc::tests::test_case_rectanglebasis	325
corenc::tests::test_case_regular_mesh	326
corenc::test_case_solver	327
corenc::tests::test_case_trianglebasis	328
corenc::test_cases	329
corenc::test_conv_diff	330
corencisolyers: yearor, solution	332

6 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

8 Class Index

corenc::Mesh::CRectangleBasis2x
corenc::Mesh::CRectangleBasis2y
corenc::Mesh::CRectangleConstantBasis
corenc::Mesh::CRectangleHBasis
corenc::Mesh::CRegularMesh
corenc::Mesh::CRegularMesh3D
corenc::CShallowWater
corenc::Mesh::CShape
corenc::Mesh::CShapeFunction < Type >
Methods::CSMethod
corenc::CSolution
corenc::Mesh::CTriangle
corenc::Mesh::CTriangleBasis
corenc::Mesh::CTriangleLagrangeBasis
corenc::Mesh::CTriangleLinear
corenc::Mesh::CTriangleLinearBasis
corenc::Mesh::CTriangularMesh
corenc::Mesh::CTriangularMeshLinear
corenc::CVecSolution
corenc::solvers::dg_shallow_water< Mesh >
corenc::solvers::dg_solver< _Problem, _Mesh, _Result >
corenc::solvers::dg_solver_shallow_water
corenc::method::DGMethod< Problem, Grid, Matrix >
corenc::method::DGMethodZero< Problem, Grid, Matrix >
corenc::method::DGSolution< Grid >
corenc::solvers::eigen_solver < Matrix, Solver >
Algebra::ESolver
corenc::method::FEAnalysis< Method1, Method2, Mesh1, Mesh2 >
corenc::solvers::fem_solver< _Problem, _Mesh, _Result >
corenc::solvers::fem_solver_lib<_Problem, _Mesh, _Result >
corenc::method::FEMethod< Problem, Grid, Matrix >
corenc::method::FEMethodZero< Problem, Grid, Matrix >
corenc::method::FVMethod1d
corenc::Mesh::Gauss1dim
corenc::Mesh::Gauss1dimN < N >
corenc::GaussianKernel
corenc::GaussianProcess
corenc::Mesh::GaussRectangular
corenc::Mesh::GaussRectangularCubic
corenc::Mesh::GaussTetrahedron
corenc::Mesh::GaussTriangle
Algebra::Matrix
Algebra::MatrixDiag
Algebra::MatrixSkyline
corenc::multi_vector< T >
corenc::Mesh::parameter <t> 306</t>
corenc::Mesh::Point
corenc::Mesh::point_source< T >
corenc::method::RungeKutta < Problem, Type >
corenc::method::STSolution< Grid >
corenc::method::system_dg_method< Problem, Grid, Matrix >
corenc::method::system_dg_method< Grid, bool, bool >
corenc::test_case_elliptic_fem
corenc::tests::test_case_rectanglebasis
corenc::tests::test_case_regular_mesh
corenc::test_case_solver
corenc::tests::test_case_trianglebasis
corenc::tests::test_case_trianglebasis

3.1 Class List

corenc::test_conv_diff	330
corenc: solvers: vector solution	332

10 Class Index

File Index

4.1 File List

Here is a list of all files with brief descriptions:

colors.h
main.cpp
CoreNCA/Matrix.cpp
CoreNCA/Matrix.h
CoreNCA/MatrixDiag.cpp
CoreNCA/MatrixDiag.h
CoreNCA/MatrixSkyline.cpp
CoreNCA/MatrixSkyline.h
CoreNCFEM/FESolution.h
CoreNCFEM/FiniteSolver.h
CoreNCFEM/GaussianField.h
CoreNCFEM/Mesh.h
CoreNCFEM/multi_vector.h
CoreNCFEM/Parameter.cpp
CoreNCFEM/Parameter.h
CoreNCFEM/Point.cpp
CoreNCFEM/Point.h
CoreNCFEM/FiniteElements/CRectangleBasis2x.cpp
CoreNCFEM/FiniteElements/Cube.cpp
CoreNCFEM/FiniteElements/Cube.h
CoreNCFEM/FiniteElements/CubeHBasis.cpp
CoreNCFEM/FiniteElements/Edge.cpp
CoreNCFEM/FiniteElements/Edge.h
CoreNCFEM/FiniteElements/FiniteElement.h
CoreNCFEM/FiniteElements/FiniteElement2D.h
CoreNCFEM/FiniteElements/Node.cpp
CoreNCFEM/FiniteElements/Node.h
CoreNCFEM/FiniteElements/Rectangle.cpp
CoreNCFEM/FiniteElements/Rectangle.h
CoreNCFEM/FiniteElements/RectangleBasis2.cpp
CoreNCFEM/FiniteElements/RectangleBasis2y.cpp
CoreNCFEM/FiniteElements/RectangleHBasis.cpp
CoreNCFEM/FiniteElements/Shape.h
CoreNCFEM/FiniteElements/ShapeFunction.h
CoreNCFEM/FiniteElements/Triangle.cpp

12 File Index

CoreNCFEM/FiniteElements/Triangle.h
CoreNCFEM/FiniteElements/TriangleLagrange.cpp
CoreNCFEM/FiniteElements/TriangleLinear.cpp
CoreNCFEM/FiniteElements/TriangleLinear.h
CoreNCFEM/Grids/Mesh1D.cpp
CoreNCFEM/Grids/Mesh1D.h
CoreNCFEM/Grids/RegularMesh.cpp
CoreNCFEM/Grids/RegularMesh.h
CoreNCFEM/Grids/RegularMesh3D.cpp
CoreNCFEM/Grids/RegularMesh3D.h
CoreNCFEM/Grids/TriangularMesh.cpp
CoreNCFEM/Grids/TriangularMesh.h
CoreNCFEM/Grids/TriangularMeshLinear.cpp
CoreNCFEM/Grids/TriangularMeshLinear.h
CoreNCFEM/Methods/CSMethod.h
CoreNCFEM/Methods/dg_flux.h
CoreNCFEM/Methods/DGMethod.h
CoreNCFEM/Methods/DGMethodZero.h
CoreNCFEM/Methods/DGSolution.h
CoreNCFEM/Methods/FEAnalysis.h
CoreNCFEM/Methods/FEMethod.h
CoreNCFEM/Methods/FEMethodZero.h
CoreNCFEM/Methods/FVMethod.cpp
CoreNCFEM/Methods/FVMethod.h
CoreNCFEM/Methods/RungeKutta.h
CoreNCFEM/Methods/system_dg_method.h
Problems/BurgersScalar.cpp
Problems/BurgersScalar.h
Problems/DiffusionScalar.cpp
Problems/DiffusionScalar.h
Problems/Problems.h
Problems/ShallowWater.cpp
Problems/ShallowWater.h
Solvers/dg_solver.h
Solvers/dg_solver_shallow_water.cpp
Solvers/dg_solver_shallow_water.h
Solvers/eigen solver.h
Solvers/fem solver.h
Solvers/fem_solver_lib.h
Tests/test case elliptic fem.cpp
Tests/test_case_elliptic_fem.h
Tests/test_case_regular_mesh.cpp
Tests/test_case_regular_mesh.h
Tests/test_case_solver.cpp
Tests/test_case_solver.h
Tests/test_cases.cpp
Tests/test_cases.h
Tests/test_conv_diff.cpp
Tests/test_conv_diff.h
Tests/FiniteElements/test_case_rectanglebasis.cpp
Tests/FiniteElements/test_case_rectanglebasis.h
Tests/FiniteElements/test_case_trianglebasis.cpp
Tests/FiniteElements/test_case_trianglebasis.h

Namespace Documentation

5.1 Algebra Namespace Reference

Classes

- class ESolver
- class Matrix
- · class MatrixDiag
- class MatrixSkyline

Enumerations

```
enum class Solvers {
    BiCGStab , GMRES , GMRES_BiCGStab , Gauss ,
    PARDISO }
```

5.1.1 Enumeration Type Documentation

5.1.1.1 Solvers

```
enum class Algebra::Solvers [strong]
```

Enumerator

BiCGStab	
GMRES	
GMRES_BiCGStab	
Gauss	
PARDISO	

5.2 corenc Namespace Reference

Namespaces

- · namespace color
- namespace Mesh
- · namespace method
- · namespace solvers
- namespace tests

Classes

- · class CBurgersScalar
- · class CDiffusionScalar
- class CFESolution
- · class CFEweights
- · class CFiniteSolver
- class CProblem
- · class CShallowWater
- class CSolution
- · class CVecSolution
- struct GaussianKernel
- struct GaussianProcess
- · class multi vector
- class test_case_elliptic_fem
- class test_case_solver
- class test_cases
- · class test_conv_diff

Typedefs

- using scalar_func = std::function< const double(const Mesh::Point &)>
- using vector_func = std::function< const Mesh::Point(const Mesh::Point &)>

Enumerations

```
    enum class Terms {
        IUV , IDUDV , IDUV , IUDV ,
        EUV , EDUDV , EDUV , EUDV ,
        EFV , RUV , SUPG }
    enum class Parameters { DIFFUSION , MASS , ADVECTION }
```

5.2.1 Detailed Description

Usually it is a vector<double> but some methods required different types like vector of vectors or double/tripple values The interface for dealing with solutions; NOT IN USE

5.2.2 Typedef Documentation

5.2.2.1 scalar_func

```
using corenc::scalar_func = typedef std::function<const double(const Mesh::Point&)>
```

5.2.2.2 vector_func

```
using corenc::vector_func = typedef std::function<const Mesh::Point(const Mesh::Point&)>
```

5.2.3 Enumeration Type Documentation

5.2.3.1 Parameters

```
enum class corenc::Parameters [strong]
```

Enumerator

DIFFUSION	
MASS	
ADVECTION	

5.2.3.2 Terms

enum class corenc::Terms [strong]

Enumerator

IUV	
IDUDV	
IDUV	
IUDV	
EUV	
EDUDV	
EDUV	
EUDV	
EFV	
RUV	
SUPG	

Generated by Doxygen

5.3 corenc::color Namespace Reference

Variables

- const std::string ESCAPE = "\u001b[0m"
- const std::string BLACK = "\u001b[30m"
- const std::string RED = "\u001b[31m"
- const std::string GREEN = "\u001b[32m"
- const std::string YELLOW = "\u001b[33m"
- const std::string BLUE = "\u001b[34m"
- const std::string MAGENTA = "\u001b[35m"
- const std::string $CYAN = "\u001b[36m"]$
- const std::string WHITE = "\u001b[37m"
- Const sta..string White = \u001b[5/iii
- const std::string PURPLE = "\e[1;35m"
- const std::string BBLACK = "\u001b[30;1m"
- const std::string BRED = "\u001b[31;1m"
- const std::string BGREEN = "\u001b[32;1m"
- const std::string BYELLOW = "\u001b[33;1m"
- const std::string BBLUE = "\u001b[34;1m"
- const std::string BMAGENTA = "\u001b[35;1m"
- const std::string BCYAN = "\u001b[36;1m"
- const std::string BWHITE = "\u001b[37;1m"

5.3.1 Variable Documentation

5.3.1.1 BBLACK

```
const std::string corenc::color::BBLACK = "\u001b[30;1m"
```

5.3.1.2 BBLUE

```
const std::string corenc::color::BBLUE = "\u001b[34;1m"
```

5.3.1.3 BCYAN

```
const std::string corenc::color::BCYAN = "\u001b[36;1m"
```

5.3.1.4 BGREEN

const std::string corenc::color::BGREEN = "\u001b[32;1m"

5.3.1.5 BLACK

const std::string corenc::color::BLACK = "\u001b[30m"

5.3.1.6 BLUE

const std::string corenc::color::BLUE = "\u001b[34m"

5.3.1.7 BMAGENTA

const std::string corenc::color::BMAGENTA = "\u001b[35;1m"

5.3.1.8 BRED

const std::string corenc::color::BRED = "\u001b[31;1m"

5.3.1.9 BWHITE

const std::string corenc::color::BWHITE = "\u001b[37;1m"

5.3.1.10 BYELLOW

const std::string corenc::color::BYELLOW = "\u001b[33;1m"

5.3.1.11 CYAN

const std::string corenc::color::CYAN = "\u001b[36m"

5.3.1.12 ESCAPE

const std::string corenc::color::ESCAPE = "\u001b[0m"

5.3.1.13 GREEN

const std::string corenc::color::GREEN = "\u001b[32m"

5.3.1.14 MAGENTA

const std::string corenc::color::MAGENTA = "\u001b[35m"

5.3.1.15 PURPLE

const std::string corenc::color::PURPLE = "\e[1;35m"

5.3.1.16 RED

const std::string corenc::color::RED = "\u001b[31m"

5.3.1.17 WHITE

const std::string corenc::color::WHITE = " $\u001b[37m"]$

5.3.1.18 YELLOW

const std::string corenc::color::YELLOW = "\u001b[33m"

5.4 corenc::Mesh Namespace Reference

Classes

- class CCube
- · class CCubeBasis
- class CEdge
- class CEdge2ndBasis
- · class CEdgeConstantBasis
- · class CEdgeHermiteBasis
- class CEdgeLinearBasis
- · class CEdgeMultiBasis
- class CElement
- class CElement2D
- class CElement2D< bool >
- class CElement< bool >
- class CFiniteElement
- class CFiniteElement2D
- class CFiniteElement< Shape, ShapeFunction, bool, bool >
- class CFiniteElement< Shape, ShapeFunction, DoF, bool >
- · class CMesh
- class CMesh1D
- class CMesh< bool >
- class CNode
- · class CNodeBasis
- · class CParameter
- class CRectangle
- class CRectangleBasis
- class CRectangleBasis2
- class CRectangleBasis2x
- · class CRectangleBasis2y
- class CRectangleConstantBasis
- · class CRectangleHBasis
- class CRegularMesh
- class CRegularMesh3D
- class CShape
- class CShapeFunction
- class CTriangle
- · class CTriangleBasis
- class CTriangleLagrangeBasis
- · class CTriangleLinear
- · class CTriangleLinearBasis
- · class CTriangularMesh
- · class CTriangularMeshLinear
- struct Gauss1dim
- struct Gauss1dimN
- · struct GaussRectangular
- struct GaussRectangularCubic
- struct GaussTetrahedron
- struct GaussTriangle
- class parameter
- class Point
- class point_source

Typedefs

• using function_dp = std::function< const double(const Point &)>

Enumerations

```
    enum Elements {
        Interval = 0 , Triangle = 1 , Rectangle = 2 , Tetrahedron = 3 ,
        Cube = 4 }
    enum class NODES { FIRST , LAST }
    enum Meshes { Mesh1D = 0 , TriangularMesh = 1 , TetrahedralMesh = 2 }
```

5.4.1 Typedef Documentation

5.4.1.1 function_dp

typedef std::function< const double(const Point &)> corenc::Mesh::function_dp

5.4.2 Enumeration Type Documentation

5.4.2.1 Elements

enum corenc::Mesh::Elements

Enumerator

Interval	
Triangle	
Rectangle	
Tetrahedron	
Cube	

5.4.2.2 Meshes

enum corenc::Mesh::Meshes

Enumerator

Mesh1D	
TriangularMesh	
TetrahedralMesh	

5.4.2.3 NODES

```
enum class corenc::Mesh::NODES [strong]
```

Enumerator

FIRST	
LAST	

5.5 corenc::method Namespace Reference

Classes

- class CDGMethod
- class CDGMethodZero
- class CFEMethod
- · class CFEMethodZero
- class DGMethod
- · class DGMethodZero
- class DGSolution
- class FEAnalysis
- class FEMethod
- class FEMethodZero
- class FVMethod1d
- class RungeKutta
- · class STSolution
- class system_dg_method
- class system_dg_method< Grid, bool, bool >

Enumerations

```
    enum class DGFlux {
        EIP, EBaumannOden, EBaumannOdenIP, ENIPG,
        EUpwind, ECentral, ELaxFriedrichs, IIP,
        IBaumannOden, IBaumannOdenIP, INIPG, IUpwind,
        ICentral, ILaxFriedrichs, CUSTOM, NOFLUX }
    enum class BoundaryType { MAIN, SECOND, THIRD, FREE }
```

enum class FVFlux { LaxFriedrichs , Upwind , Central , NOFLUX }

5.5.1 Enumeration Type Documentation

5.5.1.1 BoundaryType

```
enum class corenc::method::BoundaryType [strong]
```

Enumerator

MAIN	
SECOND	
THIRD	
FREE	

5.5.1.2 DGFlux

enum class corenc::method::DGFlux [strong]

Enumerator

EIP
EBaumannOden
EBaumannOdenIP
ENIPG
EUpwind
ECentral
ELaxFriedrichs
IIP
IBaumannOden
IBaumannOdenIP
INIPG
IUpwind
ICentral
ILaxFriedrichs
CUSTOM
NOFLUX

5.5.1.3 FVFlux

enum class corenc::method::FVFlux [strong]

Enumerator

LaxFriedrichs	
Upwind	
Central	
NOFLUX	

5.6 corenc::solvers Namespace Reference

Classes

- class dg_shallow_water
- · class dg solver
- class dg_solver_shallow_water
- · class eigen_solver
- class fem_solver
- class fem_solver_lib
- · struct vector_solution

5.7 corenc::tests Namespace Reference

Classes

- · class test_case_rectanglebasis
- · class test case regular mesh
- class test_case_trianglebasis

5.8 Methods Namespace Reference

Classes

· class CSMethod

5.9 wtf Namespace Reference

Functions

- const Point mid_point (const Point &p1, const Point &p2)
- const Point s_point (const Point &p1, const Point &p2, const double s)
- const Point center_point (const Point &p1, const Point &p2, const Point &p3)

5.9.1 Function Documentation

5.9.1.1 center_point()

5.9.1.2 mid_point()

5.9.1.3 s_point()

Chapter 6

Class Documentation

6.1 corenc::CBurgersScalar Class Reference

```
#include <BurgersScalar.h>
```

Inheritance diagram for corenc::CBurgersScalar:

Public Member Functions

- CBurgersScalar ()
- ∼CBurgersScalar ()
- Terms getTerm (const unsigned int) const
- const unsigned int getNumberOfTerms () const
- const int setTerm (const unsigned int, const Terms &)
- const int addTerm (const Terms &)
- const double getFlux (const double) const
- const int removeTerm (const Terms &)
- const int load_parameters (const std::string &file_name)

6.1.1 Constructor & Destructor Documentation

6.1.1.1 CBurgersScalar()

CBurgersScalar::CBurgersScalar ()

6.1.1.2 ∼CBurgersScalar()

```
\texttt{CBurgersScalar::} {\sim} \texttt{CBurgersScalar ( )}
```

6.1.2 Member Function Documentation

6.1.2.1 addTerm()

Implements corenc::CProblem.

6.1.2.2 getFlux()

```
\begin{tabular}{ll} \beg
```

6.1.2.3 getNumberOfTerms()

```
{\tt const\ unsigned\ int\ CBurgersScalar::} {\tt getNumberOfTerms\ (\ )\ const\ [virtual]} {\tt Implements\ corenc::} {\tt CProblem.}
```

6.1.2.4 getTerm()

Implements corenc::CProblem.

6.1.2.5 load_parameters()

Implements corenc::CProblem.

6.1.2.6 removeTerm()

6.1.2.7 setTerm()

Implements corenc::CProblem.

The documentation for this class was generated from the following files:

- · Problems/BurgersScalar.h
- Problems/BurgersScalar.cpp

6.2 corenc::Mesh::CCube Class Reference

```
#include <Cube.h>
```

Inheritance diagram for corenc::Mesh::CCube:

Public Member Functions

- CCube ()
- CCube (const int n1, const int n2, const int n3, const int n4, const int order)
- CCube (const int n1, const int n2, const int n3, const int n4, const int e1, const int e2, const int e3, const int e4, const int order)
- CCube (const int *, const int order)
- CCube (const int *, const int *, const int order)
- CCube (const CCube &)
- CCube & operator= (const CCube &t)
- const bool operator== (const CCube &t)
- std::istream & operator>> (std::istream &is)
- ∼CCube ()
- const int GetNode (const int) const
- const int GetNode (const NODES &) const
- const int GetEdge (const int) const
- const int GetFacet (const int) const
- const int GetNumberOfNodes () const

- · const int GetNumberOfEdges () const
- const int GetNumberOfFacets () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- void SetNode (const int k, const int node)
- const int IncreaseOrder ()
- const int SetOrder (const int px, const int py)
- void SetEdge (const int k, const int edge)
- · void SetFacet (const int k, const int facet)

6.2.1 Constructor & Destructor Documentation

6.2.1.1 CCube() [1/6]

```
CCube::CCube ( )
```

6.2.1.2 CCube() [2/6]

6.2.1.3 CCube() [3/6]

```
CCube::CCube (

const int n1,
const int n2,
const int n3,
const int n4,
const int e1,
const int e2,
const int e3,
const int e4,
const int e4,
const int order )
```

6.2.1.4 CCube() [4/6]

6.2.1.5 CCube() [5/6]

6.2.1.6 CCube() [6/6]

6.2.1.7 ∼CCube()

```
corenc::Mesh::CCube::~CCube ( ) [inline]
```

6.2.2 Member Function Documentation

6.2.2.1 GetEdge()

```
\begin{tabular}{ll} \beg
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.2 GetFacet()

Reimplemented from corenc::Mesh::CShape.

6.2.2.3 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.2.2.4 GetNode() [2/2]

Reimplemented from corenc::Mesh::CShape.

6.2.2.5 GetNumberOfEdges()

```
const int CCube::GetNumberOfEdges ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.6 GetNumberOfFacets()

```
const int CCube::GetNumberOfFacets ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.7 GetNumberOfNodes()

```
const int CCube::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.8 IncreaseOrder()

```
const int CCube::IncreaseOrder ( )
```

6.2.2.9 Integrate() [1/3]

```
const double CCube::Integrate (  {\it const std::function} < {\it const double(const Point \&)> \& f,}   {\it const std::vector} < {\it Point > \& v ) const}
```

6.2.2.10 Integrate() [2/3]

6.2.2.11 Integrate() [3/3]

```
const vector< double > CCube::Integrate ( const std::function< const std::vector< double > (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.2.2.12 operator=()

6.2.2.13 operator==()

6.2.2.14 operator>>()

6.2.2.15 SetEdge()

```
void CCube::SetEdge (  {\rm const\ int}\ k\text{,}   {\rm const\ int}\ edge\ ) \quad [{\rm virtual}]
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.16 SetFacet()

```
void CCube::SetFacet (  {\it const int } \ k,   {\it const int facet } ) \ \ [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.2.2.17 SetNode()

Implements corenc::Mesh::CShape.

6.2.2.18 SetOrder()

```
const int CCube::SetOrder (  {\rm const\ int\ } px,   {\rm const\ int\ } py\ )
```

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Cube.h
- CoreNCFEM/FiniteElements/Cube.cpp

6.3 corenc::Mesh::CCubeBasis Class Reference

```
#include <Cube.h>
```

Inheritance diagram for corenc::Mesh::CCubeBasis:

```
corenc::Mesh::CShapeFunction< double >

corenc::Mesh::CCubeBasis
```

Public Member Functions

- CCubeBasis ()
- CCubeBasis (const Point &, const Point &, const Point &, const Point &, const int order)
- CCubeBasis (const Point *, const int order)
- CCubeBasis (const CCubeBasis &)
- CCubeBasis & operator= (const CCubeBasis &t)
- ∼CCubeBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.3.1 Constructor & Destructor Documentation

6.3.1.1 CCubeBasis() [1/4]

```
CCubeBasis::CCubeBasis ( )
```

6.3.1.2 CCubeBasis() [2/4]

```
CCubeBasis::CCubeBasis (

const Point & p1,

const Point & p2,

const Point & p3,

const Point & p4,

const int order )
```

6.3.1.3 CCubeBasis() [3/4]

6.3.1.4 CCubeBasis() [4/4]

6.3.1.5 ∼CCubeBasis()

```
corenc::Mesh::CCubeBasis::~CCubeBasis ( ) [inline]
```

6.3.2 Member Function Documentation

6.3.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.3.2.2 GetMeasure()

```
const double corenc::Mesh::CCubeBasis::GetMeasure ( ) const [inline], [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.3.2.3 GetNormal()

```
const Point CCubeBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.3.2.4 GetNumberOfShapeFunctions()

```
\verb|const| int CCubeBasis:: GetNumberOfShapeFunctions ( ) const [virtual]|\\
```

Implements corenc::Mesh::CShapeFunction< double >.

6.3.2.5 GetShapeFunction()

```
const double CCubeBasis::GetShapeFunction (  {\rm const\ int}\ k,   {\rm const\ Point\ \&\ p\ )\ const\ [virtual]}
```

Implements corenc::Mesh::CShapeFunction< double >.

6.3.2.6 GetValue()

6.3.2.7 GetWeight()

6.3.2.8 IncreaseOrder()

```
const int CCubeBasis::IncreaseOrder ( )
```

6.3.2.9 operator=()

6.3.2.10 ReverseNormal()

```
void CCubeBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Cube.h
- CoreNCFEM/FiniteElements/Cube.cpp

6.4 corenc::method::CDGMethod< Type > Class Template Reference

#include <DGMethod.h>

Public Member Functions

- CDGMethod ()
- virtual ∼CDGMethod ()
- virtual const int Assemble ()=0
- virtual const Type GetSolution (const std::vector< double > &point) const =0
- virtual const std::vector< Type > GetSolution () const =0
- virtual const Type GetMaxSolution () const =0
- virtual const Type GetMinSolution () const =0

6.4.1 Constructor & Destructor Documentation

6.4.1.1 CDGMethod()

```
template<class Type >
corenc::method::CDGMethod< Type >::CDGMethod ( ) [inline]
```

6.4.1.2 ∼CDGMethod()

```
template<class Type >
virtual corenc::method::CDGMethod< Type >::~CDGMethod ( ) [inline], [virtual]
```

6.4.2 Member Function Documentation

6.4.2.1 Assemble()

```
template<class Type >
virtual const int corenc::method::CDGMethod< Type >::Assemble ( ) [pure virtual]
```

6.4.2.2 GetMaxSolution()

```
template<class Type >
virtual const Type corenc::method::CDGMethod< Type >::GetMaxSolution ( ) const [pure virtual]
```

6.4.2.3 GetMinSolution()

```
template<class Type >
virtual const Type corenc::method::CDGMethod< Type >::GetMinSolution ( ) const [pure virtual]
```

6.4.2.4 GetSolution() [1/2]

```
template<class Type >
virtual const std::vector< Type > corenc::method::CDGMethod< Type >::GetSolution ( ) const
[pure virtual]
```

6.4.2.5 GetSolution() [2/2]

The documentation for this class was generated from the following file:

• CoreNCFEM/Methods/DGMethod.h

6.5 corenc::method::CDGMethodZero< Type > Class Template Reference

```
#include <DGMethodZero.h>
```

Public Member Functions

- · CDGMethodZero ()
- virtual ∼CDGMethodZero ()
- virtual const int Assemble ()=0
- virtual const Type GetSolution (const std::vector< double > &point) const =0
- virtual const std::vector< Type > GetSolution () const =0
- virtual const Type GetMaxSolution () const =0
- virtual const Type GetMinSolution () const =0

6.5.1 Constructor & Destructor Documentation

6.5.1.1 CDGMethodZero()

```
template<class Type >
corenc::method::CDGMethodZero< Type >::CDGMethodZero ( ) [inline]
```

6.5.1.2 ∼CDGMethodZero()

```
template<class Type >
virtual corenc::method::CDGMethodZero< Type >::~CDGMethodZero ( ) [inline], [virtual]
```

6.5.2 Member Function Documentation

6.5.2.1 Assemble()

```
template<class Type >
virtual const int corenc::method::CDGMethodZero< Type >::Assemble ( ) [pure virtual]
```

6.5.2.2 GetMaxSolution()

```
template<class Type >
virtual const Type corenc::method::CDGMethodZero< Type >::GetMaxSolution ( ) const [pure virtual]
```

6.5.2.3 GetMinSolution()

```
template<class Type >
virtual const Type corenc::method::CDGMethodZero< Type >::GetMinSolution ( ) const [pure
virtual]
```

6.5.2.4 GetSolution() [1/2]

```
template<class Type >
virtual const std::vector< Type > corenc::method::CDGMethodZero< Type >::GetSolution ( )
const [pure virtual]
```

6.5.2.5 GetSolution() [2/2]

The documentation for this class was generated from the following file:

• CoreNCFEM/Methods/DGMethodZero.h

6.6 corenc::CDiffusionScalar Class Reference

```
#include <DiffusionScalar.h>
```

Inheritance diagram for corenc::CDiffusionScalar:

Public Member Functions

- CDiffusionScalar ()
- ∼CDiffusionScalar ()
- Terms getTerm (const unsigned int) const
- · const unsigned int getNumberOfTerms () const
- · const int findTerm (const Terms &) const
- const int setTerm (const unsigned int, const Terms &)
- const int addTerm (const Terms &)
- const int removeTerm (const Terms &)
- const int load_parameters (const std::string &file_name)
- const double get_parameter (const Terms &, const int element_type, const Mesh::Point &) const
- const double get_parameter (const Terms &, const int element_number, const int element_type, const Mesh::Point &) const
- const Mesh::Point get_parameter (const Terms &, const int element_number, const int element_type, const Mesh::Point &, const int) const
- const double get_parameter (const Terms &, const int element_type, const int element_number, const int node, const Mesh::Point &) const
- const Mesh::Point get_parameter (const Terms &, const int element_type, const int element_number, const int node, const Mesh::Point &, const int v) const
- const double get_boundary_parameter (const int type, const int element_type, const Mesh::Point &) const
- const double get_boundary_parameter (const int type, const int element_type, const int element_number, const Mesh::Point &) const
- const double get_boundary_parameter (const int type, const int element_type, const int element_number, const int node, const Mesh::Point &) const
- const int get_number_of_boundaries () const
- const int get_boundary_type (const int number) const
- const int add parameter (const Terms &, const int element type, const double &value)
- const int add_parameter (const Terms &, const int element_type, const Mesh::parameter < double > &value)

const int add_parameter (const Terms &, const int element_type, const Mesh::parameter < Mesh::Point > &value)

- const int set_parameter (const Terms &, const int element_type, const Mesh::parameter < double > &value)
- const int set_parameter (const Terms &, const int element_type, const Mesh::parameter < Mesh::Point > &value)
- const int set_boundary_parameter (const int type, const int element_type, const boundary &value)
- const int add_boundary_parameter (const int type, const int element_type, const Mesh::parameter< double > &value)
- const int add_boundary_parameter (const int element_type, const Mesh::parameter < double > &value, const Mesh::parameter < double > &value2)
- const Mesh::point_source< double > get_point_source (const int number) const
- void set point source (const int number, const Mesh::point source< double > &)
- const int get_total_sources () const

6.6.1 Constructor & Destructor Documentation

6.6.1.1 CDiffusionScalar()

```
CDiffusionScalar::CDiffusionScalar ( )
```

6.6.1.2 ∼CDiffusionScalar()

```
CDiffusionScalar::~CDiffusionScalar ( )
```

6.6.2 Member Function Documentation

6.6.2.1 add_boundary_parameter() [1/2]

6.6.2.2 add_boundary_parameter() [2/2]

6.6.2.3 add_parameter() [1/3]

6.6.2.4 add_parameter() [2/3]

6.6.2.5 add_parameter() [3/3]

6.6.2.6 addTerm()

Implements corenc::CProblem.

6.6.2.7 findTerm()

6.6.2.8 get_boundary_parameter() [1/3]

6.6.2.9 get_boundary_parameter() [2/3]

6.6.2.10 get_boundary_parameter() [3/3]

6.6.2.11 get_boundary_type()

6.6.2.12 get_number_of_boundaries()

```
const int CDiffusionScalar::get_number_of_boundaries ( ) const
```

6.6.2.13 get_parameter() [1/5]

6.6.2.14 get_parameter() [2/5]

```
const Mesh::Point CDiffusionScalar::get_parameter (
    const Terms & term,
    const int element_number,
    const int element_type,
    const Mesh::Point & p,
    const int ) const
```

6.6.2.15 get_parameter() [3/5]

6.6.2.16 get_parameter() [4/5]

```
const Mesh::Point CDiffusionScalar::get_parameter (
    const Terms & term,
    const int element_type,
    const int element_number,
    const int node,
    const Mesh::Point & p,
    const int v) const
```

6.6.2.17 get_parameter() [5/5]

6.6.2.18 get_point_source()

6.6.2.19 get_total_sources()

```
const int CDiffusionScalar::get_total_sources ( ) const
```

6.6.2.20 getNumberOfTerms()

```
const unsigned int CDiffusionScalar::getNumberOfTerms ( ) const [virtual]
```

Implements corenc::CProblem.

6.6.2.21 getTerm()

Implements corenc::CProblem.

6.6.2.22 load_parameters()

Implements corenc::CProblem.

6.6.2.23 removeTerm()

6.6.2.24 set_boundary_parameter()

6.6.2.25 set_parameter() [1/2]

6.6.2.26 set_parameter() [2/2]

6.6.2.27 set_point_source()

6.6.2.28 setTerm()

Implements corenc::CProblem.

The documentation for this class was generated from the following files:

- Problems/DiffusionScalar.h
- Problems/DiffusionScalar.cpp

6.7 corenc::Mesh::CEdge Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdge:

Public Member Functions

- CEdge ()
- CEdge (const CEdge &)
- CEdge (const int n1, const int n2)
- CEdge (const int *)
- CEdge & operator= (const CEdge &e)
- ∼CEdge ()
- · const int GetNode (const int) const
- const int GetNode (const NODES &) const
- const int GetNumberOfNodes () const
- void SetNode (const int k, const int node)
- const double Integrate (const std::function < const double(const Point &)> &, const std::vector < Point > &v)
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const int IncreaseOrder ()
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const

Friends

- const bool operator== (const CEdge &e1, const CEdge &e2)
- std::istream & operator>> (std::istream &is, CEdge &e)

6.7.1 Constructor & Destructor Documentation

6.7.1.1 CEdge() [1/4]

```
CEdge::CEdge ( )
```

6.7.1.2 CEdge() [2/4]

6.7.1.3 CEdge() [3/4]

6.7.1.4 CEdge() [4/4]

6.7.1.5 \sim CEdge()

```
corenc::Mesh::CEdge::~CEdge ( ) [inline]
```

6.7.2 Member Function Documentation

6.7.2.1 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.7.2.2 GetNode() [2/2]

Reimplemented from corenc::Mesh::CShape.

6.7.2.3 GetNumberOfNodes()

```
const int CEdge::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.7.2.4 IncreaseOrder()

```
const int CEdge::IncreaseOrder ( )
```

6.7.2.5 Integrate() [1/3]

6.7.2.6 Integrate() [2/3]

```
const Point CEdge::Integrate (  {\rm const~std::function} < {\rm const~Point~(const~Point~\&)} > \& ~f, \\ {\rm const~std::vector} < {\rm Point~} > \& ~v~) ~{\rm const}
```

6.7.2.7 Integrate() [3/3]

```
const std::vector< double > corenc::Mesh::CEdge::Integrate ( const std::function< const std::vector< double > (const Point &) > & , const std::vector< Point > & ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.7.2.8 operator=()

6.7.2.9 SetNode()

```
void CEdge::SetNode (  {\rm const\ int}\ k, \\ {\rm const\ int}\ node\ ) \quad [{\rm virtual}]
```

Implements corenc::Mesh::CShape.

6.7.3 Friends And Related Function Documentation

6.7.3.1 operator==

6.7.3.2 operator>>

The documentation for this class was generated from the following files:

- · CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.8 corenc::Mesh::CEdge2ndBasis Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdge2ndBasis:

```
corenc::Mesh::CShapeFunction< double >

corenc::Mesh::CEdge2ndBasis
```

Public Member Functions

- CEdge2ndBasis ()
- CEdge2ndBasis (const Point &, const Point &)
- CEdge2ndBasis (const Point *)
- CEdge2ndBasis (const CEdge2ndBasis &)
- CEdge2ndBasis & operator= (const CEdge2ndBasis &e)
- ∼CEdge2ndBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int node, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.8.1 Constructor & Destructor Documentation

6.8.1.1 CEdge2ndBasis() [1/4]

```
CEdge2ndBasis::CEdge2ndBasis ( )
```

6.8.1.2 CEdge2ndBasis() [2/4]

6.8.1.3 CEdge2ndBasis() [3/4]

6.8.1.4 CEdge2ndBasis() [4/4]

6.8.1.5 ∼CEdge2ndBasis()

```
corenc::Mesh::CEdge2ndBasis::~CEdge2ndBasis ( ) [inline]
```

6.8.2 Member Function Documentation

6.8.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.8.2.2 GetMeasure()

```
\verb|const double corenc::Mesh::CEdge2ndBasis::GetMeasure ( ) const [inline], [virtual]|\\
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.8.2.3 GetNormal()

```
const Point CEdge2ndBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.8.2.4 GetNumberOfShapeFunctions()

```
const int CEdge2ndBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.8.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.8.2.6 GetWeight()

6.8.2.7 IncreaseOrder()

```
const int corenc::Mesh::CEdge2ndBasis::IncreaseOrder ( ) [inline]
```

6.8.2.8 operator=()

6.8.2.9 ReverseNormal()

```
void CEdge2ndBasis::ReverseNormal ( ) [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.9 corenc::Mesh::CEdgeConstantBasis Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdgeConstantBasis:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CEdgeConstantBasis
```

Public Member Functions

- CEdgeConstantBasis ()
- CEdgeConstantBasis (const Point &, const Point &)
- CEdgeConstantBasis (const Point *)
- CEdgeConstantBasis (const CEdgeConstantBasis &)
- CEdgeConstantBasis & operator= (const CEdgeConstantBasis &e)
- ∼CEdgeConstantBasis ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int node, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.9.1 Constructor & Destructor Documentation

6.9.1.1 CEdgeConstantBasis() [1/4]

```
CEdgeConstantBasis::CEdgeConstantBasis ( )
```

6.9.1.2 CEdgeConstantBasis() [2/4]

6.9.1.3 CEdgeConstantBasis() [3/4]

6.9.1.4 CEdgeConstantBasis() [4/4]

6.9.1.5 ∼CEdgeConstantBasis()

```
corenc::Mesh::CEdgeConstantBasis::~CEdgeConstantBasis ( ) [inline]
```

6.9.2 Member Function Documentation

6.9.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.9.2.2 GetMeasure()

```
\verb|const| double corenc:: Mesh:: CEdgeConstantBasis:: GetMeasure ( ) const [inline], [virtual]|
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.9.2.3 GetNormal()

```
const Point CEdgeConstantBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.9.2.4 GetNumberOfShapeFunctions()

```
const int CEdgeConstantBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.9.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.9.2.6 GetWeight()

6.9.2.7 IncreaseOrder()

```
const int corenc::Mesh::CEdgeConstantBasis::IncreaseOrder ( ) [inline]
```

6.9.2.8 operator=()

6.9.2.9 ReverseNormal()

```
void CEdgeConstantBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.10 corenc::Mesh::CEdgeHermiteBasis Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdgeHermiteBasis:

```
corenc::Mesh::CShapeFunction< double >

corenc::Mesh::CEdgeHermiteBasis
```

Public Member Functions

- CEdgeHermiteBasis ()
- CEdgeHermiteBasis (const Point &, const Point &)
- CEdgeHermiteBasis (const Point *)
- CEdgeHermiteBasis (const CEdgeHermiteBasis &)
- CEdgeHermiteBasis & operator= (const CEdgeHermiteBasis &e)
- ∼CEdgeHermiteBasis ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const int IncreaseOrder ()
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int node, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const
- const double GetMeasure () const

6.10.1 Constructor & Destructor Documentation

6.10.1.1 CEdgeHermiteBasis() [1/4]

```
{\tt CEdgeHermiteBasis::CEdgeHermiteBasis ()}\\
```

6.10.1.2 CEdgeHermiteBasis() [2/4]

6.10.1.3 CEdgeHermiteBasis() [3/4]

6.10.1.4 CEdgeHermiteBasis() [4/4]

6.10.1.5 ∼CEdgeHermiteBasis()

```
corenc::Mesh::CEdgeHermiteBasis::~CEdgeHermiteBasis ( ) [inline]
```

6.10.2 Member Function Documentation

6.10.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.10.2.2 GetMeasure()

```
\verb|const| double corenc:: \verb|Mesh::CEdgeHermiteBasis::GetMeasure| ( ) const [inline], [virtual]|
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.10.2.3 GetNormal()

```
\verb|const| Point CEdge Hermite Basis:: Get Normal ( ) const [virtual]|\\
```

Implements corenc::Mesh::CShapeFunction< double >.

6.10.2.4 GetNumberOfShapeFunctions()

```
const int CEdgeHermiteBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.10.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.10.2.6 GetWeight()

6.10.2.7 IncreaseOrder()

```
const int corenc::Mesh::CEdgeHermiteBasis::IncreaseOrder ( ) [inline]
```

6.10.2.8 operator=()

6.10.2.9 ReverseNormal()

```
void CEdgeHermiteBasis::ReverseNormal ( ) [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.11 corenc::Mesh::CEdgeLinearBasis Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdgeLinearBasis:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CEdgeLinearBasis
```

Public Member Functions

- CEdgeLinearBasis ()
- CEdgeLinearBasis (const Point &, const Point &)
- CEdgeLinearBasis (const Point *)
- CEdgeLinearBasis (const CEdgeLinearBasis &)
- CEdgeLinearBasis & operator= (const CEdgeLinearBasis &e)
- ∼CEdgeLinearBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.11.1 Constructor & Destructor Documentation

6.11.1.1 CEdgeLinearBasis() [1/4]

```
CEdgeLinearBasis::CEdgeLinearBasis ( )
```

6.11.1.2 CEdgeLinearBasis() [2/4]

6.11.1.3 CEdgeLinearBasis() [3/4]

```
CEdgeLinearBasis::CEdgeLinearBasis ( const Point *p)
```

6.11.1.4 CEdgeLinearBasis() [4/4]

6.11.1.5 ∼CEdgeLinearBasis()

```
corenc::Mesh::CEdgeLinearBasis::~CEdgeLinearBasis ( ) [inline]
```

6.11.2 Member Function Documentation

6.11.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.11.2.2 GetMeasure()

```
const double corenc::Mesh::CEdgeLinearBasis::GetMeasure ( ) const [inline], [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.11.2.3 GetNormal()

```
const Point CEdgeLinearBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.11.2.4 GetNumberOfShapeFunctions()

```
const int CEdgeLinearBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.11.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.11.2.6 GetWeight()

6.11.2.7 IncreaseOrder()

```
const int CEdgeLinearBasis::IncreaseOrder ( )
```

6.11.2.8 operator=()

6.11.2.9 ReverseNormal()

```
void CEdgeLinearBasis::ReverseNormal ( ) [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.12 corenc::Mesh::CEdgeMultiBasis Class Reference

```
#include <Edge.h>
```

Inheritance diagram for corenc::Mesh::CEdgeMultiBasis:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CEdgeMultiBasis
```

Public Member Functions

- CEdgeMultiBasis ()
- CEdgeMultiBasis (const Point &, const Point &)
- CEdgeMultiBasis (const Point *)
- CEdgeMultiBasis (const CEdgeMultiBasis &)
- CEdgeMultiBasis & operator= (const CEdgeMultiBasis &e)
- ∼CEdgeMultiBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int node, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.12.1 Constructor & Destructor Documentation

6.12.1.1 CEdgeMultiBasis() [1/4]

```
{\tt CEdgeMultiBasis::CEdgeMultiBasis ()}\\
```

6.12.1.2 CEdgeMultiBasis() [2/4]

6.12.1.3 CEdgeMultiBasis() [3/4]

```
\label{eq:cedgeMultiBasis:CEdgeMultiBasis} \mbox{ (} \\ \mbox{const Point } * p \mbox{ )}
```

6.12.1.4 CEdgeMultiBasis() [4/4]

6.12.1.5 ∼CEdgeMultiBasis()

```
corenc::Mesh::CEdgeMultiBasis::~CEdgeMultiBasis ( ) [inline]
```

6.12.2 Member Function Documentation

6.12.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.12.2.2 GetMeasure()

```
\verb|const| double corenc:: \verb|Mesh:: CEdgeMultiBasis:: GetMeasure ()| const [inline], [virtual]|
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.12.2.3 GetNormal()

```
const Point CEdgeMultiBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.12.2.4 GetNumberOfShapeFunctions()

```
const int CEdgeMultiBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.12.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.12.2.6 GetWeight()

6.12.2.7 IncreaseOrder()

```
const int corenc::Mesh::CEdgeMultiBasis::IncreaseOrder ( ) [inline]
```

6.12.2.8 operator=()

6.12.2.9 ReverseNormal()

```
void CEdgeMultiBasis::ReverseNormal ( ) [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Edge.h
- CoreNCFEM/FiniteElements/Edge.cpp

6.13 corenc::Mesh::CElement < T > Class Template Reference

#include <FiniteElement.h>

Inheritance diagram for corenc::Mesh::CElement< T >:

```
corenc::Mesh::CElement< T >

corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >
```

Public Member Functions

- CElement ()
- virtual ∼CElement ()
- virtual const int GetType () const =0
- virtual CElement * Clone () const =0
- virtual const int GetDoFs () const =0
- virtual const int GetNode (const int) const =0
- virtual const int GetNeighbour (const int) const =0
- virtual void SetNeighbour (const int k, const int elem)=0
- virtual void SetType (const int)=0
- virtual void SetNode (const int, const int)=0
- virtual const int GetNumberOfNodes () const =0
- virtual const double GetShapeFunction (const int, const Point &) const =0
- virtual const Point GetGradShapeFunction (const int, const Point &) const =0
- virtual const Point GetNormal () const =0
- virtual void ReverseNormal ()=0
- virtual const int IncreaseOrder ()=0
- virtual const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v) const =0
- virtual const std::vector< double > Integrate (const std::function< const std::vector< double > (const Point &)> &, const std::vector< Point > &) const =0
- virtual const double GetMeasure () const =0
- virtual const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const =0

6.13.1 Constructor & Destructor Documentation

6.13.1.1 CElement()

```
template<class T >
corenc::Mesh::CElement< T >::CElement ( ) [inline]
```

6.13.1.2 ∼CElement()

```
template<class T >
virtual corenc::Mesh::CElement< T >::~CElement ( ) [inline], [virtual]
```

6.13.2 Member Function Documentation

6.13.2.1 Clone()

```
template<class T >
virtual CElement * corenc::Mesh::CElement< T >::Clone ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

6.13.2.2 GetDoFs()

```
template<class T >
virtual const int corenc::Mesh::CElement< T >::GetDoFs ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

6.13.2.3 GetGradShapeFunction()

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.4 GetMeasure()

```
template<class T >
virtual const double corenc::Mesh::CElement< T >::GetMeasure ( ) const [pure virtual]
```

6.13.2.5 GetNeighbour()

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.6 GetNode()

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

6.13.2.7 GetNormal()

```
template<class T >
virtual const Point corenc::Mesh::CElement< T >::GetNormal ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.8 GetNumberOfNodes()

```
\label{template} $$\operatorname{colass} T > $$\operatorname{virtual const int } \operatorname{corenc}::Mesh::CElement < T >::GetNumberOfNodes ( ) const [pure virtual] $$
```

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.9 GetShapeFunction()

6.13.2.10 GetType()

```
template<class T >
virtual const int corenc::Mesh::CElement< T >::GetType ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

6.13.2.11 GetWeight()

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.12 IncreaseOrder()

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.13 Integrate() [1/3]

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

6.13.2.14 Integrate() [2/3]

6.13.2.15 Integrate() [3/3]

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.16 ReverseNormal()

```
template<class T >
virtual void corenc::Mesh::CElement< T >::ReverseNormal ( ) [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.17 SetNeighbour()

Implemented in corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >.

6.13.2.18 SetNode()

6.13.2.19 SetType()

Implemented in corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >, corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >.

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/FiniteElement.h

6.14 corenc::Mesh::CElement2D< T > Class Template Reference

#include <FiniteElement2D.h>

Public Member Functions

- CElement2D ()
- virtual ∼CElement2D ()
- virtual const int GetType () const =0
- virtual CElement2D * Clone () const =0
- virtual const int GetDoFs () const =0
- virtual const int GetNode (const int) const =0
- virtual const int GetNeighbour (const int) const =0
- virtual void SetNeighbour (const int k, const int elem)=0
- virtual void SetType (const int)=0
- virtual void SetNode (const int, const int)=0
- virtual const int GetNumberOfNodes () const =0
- virtual const double GetShapeFunction (const int, const Point &) const =0
- virtual const Point GetGradShapeFunction (const int, const Point &) const =0
- virtual const Point GetNormal () const =0
- virtual void ReverseNormal ()=0
- virtual const int IncreaseOrder ()=0
- virtual const int SetOrder (const int px, const int py)=0
- virtual const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v) const =0
- virtual const std::vector< double > Integrate (const std::function< const std::vector< double > (const Point &)> &, const std::vector< Point > &) const =0
- virtual const double GetMeasure () const =0
- virtual const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const =0

6.14.1 Constructor & Destructor Documentation

6.14.1.1 CElement2D()

```
template<class T >
corenc::Mesh::CElement2D< T >::CElement2D ( ) [inline]
```

6.14.1.2 ∼CElement2D()

```
\label{template} $$\operatorname{template} < \operatorname{class} T > \\ \operatorname{virtual} \ \operatorname{corenc}:: Mesh:: CElement 2D < T >:: \sim CElement 2D () [inline], [virtual] $$
```

6.14.2 Member Function Documentation

6.14.2.1 Clone()

```
template<class T >
virtual CElement2D * corenc::Mesh::CElement2D< T >::Clone ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.2 GetDoFs()

```
template<class T >
virtual const int corenc::Mesh::CElement2D< T >::GetDoFs ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.3 GetGradShapeFunction()

6.14.2.4 GetMeasure()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.5 GetNeighbour()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.6 GetNode()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.7 GetNormal()

```
template<class T >
virtual const Point corenc::Mesh::CElement2D< T >::GetNormal ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D < Shape, ShapeFunction >.

6.14.2.8 GetNumberOfNodes()

6.14.2.9 GetShapeFunction()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.10 GetType()

```
template<class T >
virtual const int corenc::Mesh::CElement2D< T >::GetType ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.11 GetWeight()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.12 IncreaseOrder()

```
template<class T >
virtual const int corenc::Mesh::CElement2D< T >::IncreaseOrder ( ) [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.13 Integrate() [1/3]

6.14.2.14 Integrate() [2/3]

```
template<class T > virtual const Point corenc::Mesh::CElement2D< T >::Integrate ( const std::function< const Point (const Point &) > & , const std::vector< Point > & v ) const [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.15 Integrate() [3/3]

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.16 ReverseNormal()

```
template<class T >
virtual void corenc::Mesh::CElement2D< T >::ReverseNormal ( ) [pure virtual]
```

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.17 SetNeighbour()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

6.14.2.18 SetNode()

6.14.2.19 SetOrder()

Implemented in corenc::Mesh::CFiniteElement2D < Shape, ShapeFunction >.

6.14.2.20 SetType()

Implemented in corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >.

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/FiniteElement2D.h

6.15 corenc::Mesh::CElement2D< bool > Class Reference

```
#include <FiniteElement2D.h>
```

Public Member Functions

- CElement2D ()
- virtual ∼CElement2D ()
- virtual const int GetType () const =0
- virtual CElement2D * Clone () const =0
- virtual const int GetDoFs () const =0
- virtual const int GetNode (const int) const =0
- virtual const int GetNeighbour (const int) const =0
- virtual void SetNeighbour (const int k, const int elem)=0
- virtual void SetType (const int)=0
- virtual void SetNode (const int, const int)=0
- virtual const int GetNumberOfNodes () const =0
- virtual const double GetShapeFunction (const int, const Point &) const =0
- virtual const Point GetGradShapeFunction (const int, const Point &) const =0
- virtual const Point GetNormal () const =0
- virtual void ReverseNormal ()=0
- virtual const int SetOrder (const int px, const int py)=0
- virtual const double Integrate (const function_dp &, const std::vector < Point > &v) const =0
- virtual const Point Integrate (const std::function < const Point &)> &, const std::vector < Point >
 &v) const =0
- virtual const std::vector< double > Integrate (const std::function< const std::vector< double > (const Point &)> &, const std::vector< Point > &) const =0
- virtual const double GetWeight (const int, const std::vector< Point > &verts, const function_dp &f) const =0
- virtual const int IncreaseOrder ()=0
- virtual const double GetMeasure () const =0

6.15.1 Constructor & Destructor Documentation

6.15.1.1 CElement2D()

```
corenc::Mesh::CElement2D< bool >::CElement2D ( ) [inline]
```

6.15.1.2 ∼CElement2D()

```
virtual corenc::Mesh::CElement2D< bool >::~CElement2D ( ) [inline], [virtual]
```

6.15.2 Member Function Documentation

6.15.2.1 Clone()

```
virtual CElement2D * corenc::Mesh::CElement2D< bool >::Clone ( ) const [pure virtual]
```

6.15.2.2 GetDoFs()

```
\verb|virtual| const int corenc::Mesh::CElement2D < bool >::GetDoFs () const [pure virtual]| \\
```

6.15.2.3 GetGradShapeFunction()

6.15.2.4 GetMeasure()

```
virtual const double corenc::Mesh::CElement2D< bool >::GetMeasure ( ) const [pure virtual]
```

6.15.2.5 GetNeighbour()

6.15.2.6 GetNode()

6.15.2.7 GetNormal()

```
virtual const Point corenc::Mesh::CElement2D< bool >::GetNormal ( ) const [pure virtual]
```

6.15.2.8 GetNumberOfNodes()

```
virtual const int corenc::Mesh::CElement2D< bool >::GetNumberOfNodes ( ) const [pure virtual]
```

6.15.2.9 GetShapeFunction()

6.15.2.10 GetType()

```
virtual const int corenc::Mesh::CElement2D< bool >::GetType ( ) const [pure virtual]
```

6.15.2.11 GetWeight()

6.15.2.12 IncreaseOrder()

```
virtual const int corenc::Mesh::CElement2D< bool >::IncreaseOrder ( ) [pure virtual]
```

6.15.2.13 Integrate() [1/3]

```
virtual const double corenc::Mesh::CElement2D< bool >::Integrate ( const function_dp & , const std::vector< Point > & v ) const [pure virtual]
```

6.15.2.14 Integrate() [2/3]

```
virtual const Point corenc::Mesh::CElement2D< bool >::Integrate ( const std::function< const Point(const Point &) > & , const std::vector< Point > & v ) const [pure virtual]
```

6.15.2.15 Integrate() [3/3]

```
virtual const std::vector< double > corenc::Mesh::CElement2D< bool >::Integrate ( const std::function< const std::vector< double >(const Point &) > & , const std::vector< Point > & ) const [pure virtual]
```

6.15.2.16 ReverseNormal()

```
virtual void corenc::Mesh::CElement2D< bool >::ReverseNormal ( ) [pure virtual]
```

6.15.2.17 SetNeighbour()

```
virtual void corenc::Mesh::CElement2D< bool >::SetNeighbour ( const int k, const int elem ) [pure virtual]
```

6.15.2.18 SetNode()

6.15.2.19 SetOrder()

6.15.2.20 SetType()

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/FiniteElement2D.h

6.16 corenc::Mesh::CElement< bool > Class Reference

```
#include <FiniteElement.h>
```

Public Member Functions

- · CElement ()
- virtual ∼CElement ()
- virtual const int GetType () const =0
- virtual CElement * Clone () const =0
- virtual const int GetDoFs () const =0
- virtual const int GetNode (const int) const =0
- virtual const int GetNeighbour (const int) const =0
- virtual void SetNeighbour (const int k, const int elem)=0
- virtual void SetType (const int)=0
- virtual void SetNode (const int, const int)=0
- virtual const int GetNumberOfNodes () const =0
- virtual const double GetShapeFunction (const int, const Point &) const =0
- virtual const Point GetGradShapeFunction (const int, const Point &) const =0
- virtual const Point GetNormal () const =0
- virtual void ReverseNormal ()=0
- virtual const double Integrate (const function_dp &, const std::vector< Point > &v) const =0
- virtual const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const =0
- virtual const double GetWeight (const int, const std::vector < Point > &verts, const function dp &f) const =0
- virtual const int IncreaseOrder ()=0
- virtual const double GetMeasure () const =0

6.16.1 Constructor & Destructor Documentation

6.16.1.1 CElement()

```
corenc::Mesh::CElement < bool >::CElement ( ) [inline]
```

6.16.1.2 ∼CElement()

```
virtual corenc::Mesh::CElement< bool >::~CElement ( ) [inline], [virtual]
```

6.16.2 Member Function Documentation

6.16.2.1 Clone()

```
virtual CElement * corenc::Mesh::CElement < bool >::Clone ( ) const [pure virtual]
```

6.16.2.2 GetDoFs()

```
\verb|virtual| const int corenc::Mesh::CElement< bool >::GetDoFs ( ) const [pure virtual]| \\
```

6.16.2.3 GetGradShapeFunction()

6.16.2.4 GetMeasure()

```
virtual const double corenc::Mesh::CElement< bool >::GetMeasure ( ) const [pure virtual]
```

6.16.2.5 GetNeighbour()

6.16.2.6 GetNode()

6.16.2.7 GetNormal()

```
virtual const Point corenc::Mesh::CElement< bool >::GetNormal ( ) const [pure virtual]
```

6.16.2.8 GetNumberOfNodes()

```
virtual const int corenc::Mesh::CElement< bool >::GetNumberOfNodes ( ) const [pure virtual]
```

6.16.2.9 GetShapeFunction()

6.16.2.10 GetType()

```
virtual const int corenc::Mesh::CElement< bool >::GetType ( ) const [pure virtual]
```

6.16.2.11 GetWeight()

6.16.2.12 IncreaseOrder()

```
virtual const int corenc::Mesh::CElement< bool >::IncreaseOrder ( ) [pure virtual]
```

6.16.2.13 Integrate() [1/3]

```
virtual const double corenc::Mesh::CElement< bool >::Integrate ( const function_dp & , const std::vector< Point > & v ) const [pure virtual]
```

6.16.2.14 Integrate() [2/3]

```
virtual const Point corenc::Mesh::CElement< bool >::Integrate ( const std::function< const Point(const Point &) > & , const std::vector< Point > & v ) const [pure virtual]
```

6.16.2.15 Integrate() [3/3]

```
virtual const std::vector< double > corenc::Mesh::CElement< bool >::Integrate ( const std::function< const std::vector< double > (const Point &) > & , const std::vector< Point > & ) const [pure virtual]
```

6.16.2.16 ReverseNormal()

```
virtual void corenc::Mesh::CElement< bool >::ReverseNormal ( ) [pure virtual]
```

6.16.2.17 SetNeighbour()

```
virtual void corenc::Mesh::CElement< bool >::SetNeighbour ( const int k, const int elem ) [pure virtual]
```

6.16.2.18 SetNode()

6.16.2.19 SetType()

The documentation for this class was generated from the following file:

• CoreNCFEM/FiniteElements/FiniteElement.h

6.17 corenc::method::CFEMethod< Type > Class Template Reference

#include <FEMethod.h>

Public Member Functions

- CFEMethod ()
- virtual ∼CFEMethod ()
- virtual const int Assemble ()=0
- virtual const Type GetSolution (const std::vector< double > &point) const =0
- virtual const std::vector< Type > GetSolution () const =0
- virtual const Type GetMaxSolution () const =0
- virtual const Type GetMinSolution () const =0

6.17.1 Constructor & Destructor Documentation

6.17.1.1 CFEMethod()

```
template<class Type >
corenc::method::CFEMethod< Type >::CFEMethod ( ) [inline]
```

6.17.1.2 \sim CFEMethod()

```
template<class Type >
virtual corenc::method::CFEMethod< Type >::~CFEMethod ( ) [inline], [virtual]
```

6.17.2 Member Function Documentation

6.17.2.1 Assemble()

```
template<class Type >
virtual const int corenc::method::CFEMethod< Type >::Assemble ( ) [pure virtual]
```

6.17.2.2 GetMaxSolution()

```
template<class Type >
virtual const Type corenc::method::CFEMethod< Type >::GetMaxSolution ( ) const [pure virtual]
```

6.17.2.3 GetMinSolution()

```
template<class Type >
virtual const Type corenc::method::CFEMethod< Type >::GetMinSolution ( ) const [pure virtual]
```

6.17.2.4 GetSolution() [1/2]

```
template<class Type >
virtual const std::vector< Type > corenc::method::CFEMethod< Type >::GetSolution ( ) const
[pure virtual]
```

6.17.2.5 GetSolution() [2/2]

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/FEMethod.h

6.18 corenc::method::CFEMethodZero< Type > Class Template Reference

#include <FEMethodZero.h>

Public Member Functions

- CFEMethodZero ()
- virtual ∼CFEMethodZero ()
- virtual const int Assemble ()=0
- virtual const Type GetSolution (const std::vector< double > &point) const =0
- virtual const std::vector< Type > GetSolution () const =0
- virtual const Type GetMaxSolution () const =0
- virtual const Type GetMinSolution () const =0

6.18.1 Constructor & Destructor Documentation

6.18.1.1 CFEMethodZero()

```
template<class Type >
corenc::method::CFEMethodZero< Type >::CFEMethodZero ( ) [inline]
```

6.18.1.2 ∼CFEMethodZero()

```
template<class Type >
virtual corenc::method::CFEMethodZero< Type >::~CFEMethodZero ( ) [inline], [virtual]
```

6.18.2 Member Function Documentation

6.18.2.1 Assemble()

```
template<class Type >
virtual const int corenc::method::CFEMethodZero< Type >::Assemble ( ) [pure virtual]
```

6.18.2.2 GetMaxSolution()

```
template<class Type >
virtual const Type corenc::method::CFEMethodZero< Type >::GetMaxSolution ( ) const [pure virtual]
```

6.18.2.3 GetMinSolution()

```
template<class Type >
virtual const Type corenc::method::CFEMethodZero< Type >::GetMinSolution ( ) const [pure
virtual]
```

6.18.2.4 GetSolution() [1/2]

```
template<class Type >
virtual const std::vector< Type > corenc::method::CFEMethodZero< Type >::GetSolution ( )
const [pure virtual]
```

6.18.2.5 GetSolution() [2/2]

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/FEMethodZero.h

6.19 corenc::CFESolution Class Reference

```
#include <FESolution.h>
```

Inheritance diagram for corenc::CFESolution:

Public Member Functions

- CFESolution ()
- ∼CFESolution ()
- CFESolution & operator= (const CFESolution &fe)
- CFESolution & operator= (const double fe)
- CFESolution (const CFESolution &fe)
- CFESolution (const double &fe)
- operator double () const
- const bool operator== (const CFESolution &fe)
- const bool operator!= (const CFESolution &fe)
- CFESolution & operator+= (const CFESolution &fe)
- CFESolution & operator-= (const CFESolution &fe)
- CFESolution & operator*= (const CFESolution &fe)
- CFESolution & operator/= (const CFESolution &fe)

Friends

- const double operator* (const CFESolution &lhs, const CFESolution &rhs)
- const double operator* (const CFESolution &lhs, const double rhs)
- const double operator* (const double lhs, const CFESolution &rhs)
- const double operator- (const CFESolution &lhs, const CFESolution &rhs)
- const double operator+ (const CFESolution &lhs, const CFESolution &rhs)
- const double operator/ (const CFESolution &lhs, const CFESolution &rhs)

6.19.1 Constructor & Destructor Documentation

6.19.1.1 CFESolution() [1/3]

```
corenc::CFESolution::CFESolution ( ) [inline]
```

6.19.1.2 ∼CFESolution()

```
\verb|corenc::CFESolution::\sim CFESolution ( ) [inline]|\\
```

6.19.1.3 CFESolution() [2/3]

6.19.1.4 CFESolution() [3/3]

6.19.2 Member Function Documentation

6.19.2.1 operator double()

```
corenc::CFESolution::operator double ( ) const [inline]
```

6.19.2.2 operator"!=()

6.19.2.3 operator*=()

6.19.2.4 operator+=()

6.19.2.5 operator-=()

6.19.2.6 operator/=()

6.19.2.7 operator=() [1/2]

6.19.2.8 operator=() [2/2]

6.19.2.9 operator==()

6.19.3 Friends And Related Function Documentation

6.19.3.1 operator* [1/3]

6.19.3.2 operator* [2/3]

6.19.3.3 operator* [3/3]

6.19.3.4 operator+

6.19.3.5 operator-

```
const double operator- (  {\rm const~CFESolution~\&~} lhs, \\ {\rm const~CFESolution~\&~} rhs~) \quad [{\rm friend}]
```

6.19.3.6 operator/

The documentation for this class was generated from the following file:

· CoreNCFEM/FESolution.h

6.20 corenc::CFEweights Class Reference

```
#include <FESolution.h>
```

Public Member Functions

- CFEweights ()
- ∼CFEweights ()
- · const CFESolution getWeight (const unsigned int i) const
- const int updateWeight (const unsigned int i, const CFESolution &cfe)

6.20.1 Constructor & Destructor Documentation

6.20.1.1 CFEweights()

```
corenc::CFEweights::CFEweights ( ) [inline]
```

6.20.1.2 \sim CFEweights()

```
corenc::CFEweights::~CFEweights ( ) [inline]
```

6.20.2 Member Function Documentation

6.20.2.1 getWeight()

```
\begin{tabular}{ll} \end{tabular} {\tt const} \begin{tabular}{ll}
```

6.20.2.2 updateWeight()

The documentation for this class was generated from the following file:

CoreNCFEM/FESolution.h

6.21 corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T > Class Template Reference

```
#include <FiniteElement.h>
```

Inheritance diagram for corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >:

```
corenc::Mesh::CElement< T >

corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >
```

Public Member Functions

- CFiniteElement ()
- CFiniteElement (const int *nodes, const Point *points, const int dofs)
- CFiniteElement (const int *nodes, const Point *points)
- CFiniteElement (const Shape &shape, const ShapeFunction &f, const DoF &d)
- · CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const DoF &dofs, const int type)
- CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const DoF &dofs, const int type, const int *neigs)
- CFiniteElement (const CFiniteElement < Shape, ShapeFunction, DoF > &e)
- CElement< T > * Clone () const
- ∼CFiniteElement ()
- const int GetType () const
- const int GetNode (const int) const
- const int GetNeighbour (const int) const
- const Shape GetShape () const
- const ShapeFunction GetShapeFunctions () const
- · const DoF GetDoF () const
- · const int GetDoFs () const
- void SetNeighbour (const int k, const int elem)
- void SetType (const int)
- void SetShapeFunction (const int, const ShapeFunction &)
- void SetDoF (const DoF &)
- void SetShape (const Shape &)
- const int IncreaseOrder ()
- void SetNode (const int, const int)
- const int GetNumberOfNodes () const

- const double GetMeasure () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- CFiniteElement & operator= (const CFiniteElement &e)

Friends

- const bool operator== (const CFiniteElement &e1, const CFiniteElement &e2)
- std::istream & operator>> (std::istream &is, CFiniteElement &k)

6.21.1 Constructor & Destructor Documentation

6.21.1.1 CFiniteElement() [1/7]

6.21.1.2 CFiniteElement() [2/7]

6.21.1.3 CFiniteElement() [3/7]

6.21.1.4 CFiniteElement() [4/7]

6.21.1.5 **CFiniteElement()** [5/7]

6.21.1.6 CFiniteElement() [6/7]

6.21.1.7 CFiniteElement() [7/7]

6.21.1.8 ~CFiniteElement()

6.21.2 Member Function Documentation

6.21.2.1 Clone()

```
\label{template} $$ \text{CElement} < T > * corenc::Mesh::CFiniteElement} < Shape, ShapeFunction, DoF, T >::Clone ( ) const [inline], [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.2 GetDoF()

```
\label{lem:class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class_pof_to_class
```

6.21.2.3 GetDoFs()

```
template<class Shape , class ShapeFunction , class DoF , class T >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetDoFs [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.4 GetGradShapeFunction()

```
template<class Shape , class ShapeFunction , class DoF , class T > const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetGradShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.5 GetMeasure()

Implements corenc::Mesh::CElement< T >.

6.21.2.6 GetNeighbour()

```
\label{lem:const} $$ \text{template}$$ < \text{class Shape, class ShapeFunction, class DoF, class T} > $$ \text{const int } \text{corenc::Mesh::CFiniteElement}$ < \text{Shape, ShapeFunction, DoF, T} >::GetNeighbour ( const int $k$ ) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.7 GetNode()

```
template<class Shape , class ShapeFunction , class DoF , class T > const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetNode ( const int k ) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.8 GetNormal()

```
template<class Shape , class ShapeFunction , class DoF , class T >
const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetNormal [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.9 GetNumberOfNodes()

```
template<class Shape , class ShapeFunction , class DoF , class T >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetNumberOfNodes
[virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.10 GetShape()

6.21.2.11 GetShapeFunction()

```
template<class Shape , class ShapeFunction , class DoF , class T > const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetShapeFunction ( const int k, const Point & p) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.12 GetShapeFunctions()

```
template<class Shape , class ShapeFunction , class DoF , class T > const ShapeFunction corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::GetShape \leftarrow Functions
```

6.21.2.13 GetType()

Implements corenc::Mesh::CElement< T >.

6.21.2.14 GetWeight()

Implements corenc::Mesh::CElement< T >.

6.21.2.15 IncreaseOrder()

6.21.2.16 Integrate() [1/3]

```
template<class Shape , class ShapeFunction , class DoF , class T > const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::Integrate ( const std::function< const double(const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.17 Integrate() [2/3]

Implements corenc::Mesh::CElement< T >.

6.21.2.18 Integrate() [3/3]

```
template<class Shape , class ShapeFunction , class DoF , class T > const std::vector< double > corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >:: \leftarrow Integrate ( const std::function< const std::vector< double > (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.19 operator=()

```
template<class Shape , class ShapeFunction , class DoF , class T > CFiniteElement & corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::operator= ( const CFiniteElement< Shape, ShapeFunction, DoF, T > & e ) [inline]
```

6.21.2.20 ReverseNormal()

```
\label{template} $$ \ensuremath{\sf template}$ < $$ \ensuremath{\sf class}$ Shape $$, $$ class DoF , $$ class T > $$ void $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf void}$ $$ $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf void}$ $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, T >::ReverseNormal [virtual] $$ \ensuremath{\sf corence}$::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mesh::Mes
```

6.21.2.21 SetDoF()

6.21.2.22 SetNeighbour()

```
template<class Shape , class ShapeFunction , class DoF , class T > void corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >::SetNeighbour ( const int k, const int elem) [virtual]
```

Implements corenc::Mesh::CElement< T >.

6.21.2.23 SetNode()

Implements corenc::Mesh::CElement< T >.

6.21.2.24 SetShape()

6.21.2.25 SetShapeFunction()

6.21.2.26 SetType()

6.21.3 Friends And Related Function Documentation

6.21.3.1 operator==

6.21.3.2 operator>>

```
template<class Shape , class ShapeFunction , class DoF , class T > std::istream & operator>> (  std::istream \& is, \\ CFiniteElement< Shape, ShapeFunction, DoF, T > \& k ) [friend]
```

The documentation for this class was generated from the following file:

· CoreNCFEM/FiniteElements/FiniteElement.h

6.22 corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction > Class Template Reference

```
#include <FiniteElement2D.h>
```

Inheritance diagram for corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >:

```
corenc::Mesh::CElement2D<>
corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >
```

Public Member Functions

- CFiniteElement2D ()
- CFiniteElement2D (const int *nodes, const Point *points, const int dofs)
- CFiniteElement2D (const int *nodes, const Point *points, const int dofs, const int type)
- CFiniteElement2D (const int *nodes, const Point *points)
- CFiniteElement2D (const Shape & shape, const ShapeFunction &f)
- CFiniteElement2D (const Shape &shape, const ShapeFunction &shfunc, const int type)
- CFiniteElement2D (const Shape &shape, const ShapeFunction &shfunc, const int type, const int *neigs)
- CFiniteElement2D (const CFiniteElement2D &e)
- CElement2D * Clone () const
- ∼CFiniteElement2D ()
- const int GetType () const
- · const int GetNode (const int) const
- · const int GetNeighbour (const int) const
- const Shape GetShape () const
- const ShapeFunction GetShapeFunctions () const
- · const int GetDoFs () const
- void SetNeighbour (const int k, const int elem)
- void SetType (const int)
- void SetShapeFunction (const int, const ShapeFunction &)
- void SetShape (const Shape &)
- const int SetOrder (const int px, const int py)
- void SetNode (const int, const int)
- · const int GetNumberOfNodes () const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- const double GetShapeFunction (const int, const Point &) const
- · const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- CFiniteElement2D & operator= (const CFiniteElement2D &e)

Friends

- const bool operator== (const CFiniteElement2D &e1, const CFiniteElement2D &e2)
- std::istream & operator>> (std::istream &is, CFiniteElement2D &k)

6.22.1 Constructor & Destructor Documentation

6.22.1.1 CFiniteElement2D() [1/8]

```
template<class Shape , class ShapeFunction >
corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::CFiniteElement2D ( ) [inline]
```

6.22.1.2 CFiniteElement2D() [2/8]

6.22.1.3 CFiniteElement2D() [3/8]

6.22.1.4 CFiniteElement2D() [4/8]

6.22.1.5 CFiniteElement2D() [5/8]

```
template<class Shape , class ShapeFunction > corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::CFiniteElement2D ( const Shape & shape, const ShapeFunction & f) [inline]
```

6.22.1.6 CFiniteElement2D() [6/8]

6.22.1.8 CFiniteElement2D() [8/8]

6.22.1.9 ∼CFiniteElement2D()

```
template<class Shape , class ShapeFunction >
corenc::Mesh::CFiniteElement2D < Shape, ShapeFunction >::~CFiniteElement2D ( ) [inline]
```

6.22.2 Member Function Documentation

6.22.2.1 Clone()

```
template<class Shape , class ShapeFunction >
CElement2D * corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::Clone ( ) const [inline],
[virtual]
```

6.22.2.2 GetDoFs()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetDoFs [virtual]
Implements corenc::Mesh::CElement2D<>.
```

6.22.2.3 GetGradShapeFunction()

Implements corenc::Mesh::CElement2D<>.

6.22.2.4 GetMeasure()

```
template<class Shape , class ShapeFunction >
const double corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetMeasure [virtual]
Implements corenc::Mesh::CElement2D<>.
```

6.22.2.5 GetNeighbour()

Implements corenc::Mesh::CElement2D<>.

6.22.2.6 GetNode()

```
\label{lem:const} $$\operatorname{const}:\operatorname{CFiniteElement2D}<\operatorname{ShapeFunction}>::\operatorname{GetNode}\ ($$\operatorname{const}\ \operatorname{int}\ k\ )$$ const\ [\operatorname{virtual}]
```

6.22.2.7 GetNormal()

```
template<class Shape , class ShapeFunction >
const Point corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetNormal [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.8 GetNumberOfNodes()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetNumberOfNodes [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.9 GetShape()

```
template<class Shape , class ShapeFunction >
const Shape corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetShape
```

6.22.2.10 GetShapeFunction()

```
template<class Shape , class ShapeFunction > const double corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.11 GetShapeFunctions()

```
template<class Shape , class ShapeFunction >
const ShapeFunction corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetShapeFunctions
```

6.22.2.12 GetType()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::GetType [virtual]
```

6.22.2.13 GetWeight()

Implements corenc::Mesh::CElement2D<>.

6.22.2.14 IncreaseOrder()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::IncreaseOrder [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.15 Integrate() [1/3]

```
template<class Shape , class ShapeFunction > const double corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::Integrate ( const std::function< const double(const Point &) > & f, const std::vector< Point > & v) const [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.16 Integrate() [2/3]

```
template<class Shape , class ShapeFunction > const Point corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::Integrate ( const std::function< const Point (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.17 Integrate() [3/3]

```
template<class Shape , class ShapeFunction > const std::vector< double > corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::Integrate ( const std::function< const std::vector< double >(const Point &)> & f, const std::vector< Point > & v ) const [virtual]
```

6.22.2.18 operator=()

6.22.2.19 ReverseNormal()

```
template<class Shape , class ShapeFunction >
void corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::ReverseNormal [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.20 SetNeighbour()

Implements corenc::Mesh::CElement2D<>.

6.22.2.21 SetNode()

```
template<class Shape , class ShapeFunction > void corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::SetNode ( const int k, const int node) [virtual]
```

Implements corenc::Mesh::CElement2D<>.

6.22.2.22 SetOrder()

```
template<class Shape , class ShapeFunction > const int corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >::SetOrder ( const int px, const int py) [virtual]
```

6.22.2.23 SetShape()

6.22.2.24 SetShapeFunction()

6.22.2.25 SetType()

Implements corenc::Mesh::CElement2D<>.

6.22.3 Friends And Related Function Documentation

6.22.3.1 operator==

6.22.3.2 operator>>

```
template<class Shape , class ShapeFunction > std::istream & operator>> (  std::istream \& is, \\  CFiniteElement2D< Shape, ShapeFunction > \& k ) [friend]
```

The documentation for this class was generated from the following file:

• CoreNCFEM/FiniteElements/FiniteElement2D.h

6.23 corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool > Class Template Reference

#include <FiniteElement.h>

Inheritance diagram for corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >:

Public Member Functions

- CFiniteElement ()
- CFiniteElement (const int *nodes, const Point *points, const int dofs)
- CFiniteElement (const int *nodes, const Point *points, const int dofs, const int type)
- CFiniteElement (const int *nodes, const Point *points)
- CFiniteElement (const Shape &shape, const ShapeFunction &f)
- CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const int type)
- CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const int type, const int *neigs)
- CFiniteElement (const CFiniteElement < Shape, ShapeFunction > &e)
- CElement * Clone () const
- ∼CFiniteElement ()
- · const int GetType () const
- · const int GetNode (const int) const
- const int GetNeighbour (const int) const
- const Shape GetShape () const
- const ShapeFunction GetShapeFunctions () const
- const int GetDoFs () const
- void SetNeighbour (const int k, const int elem)
- void SetType (const int)
- void SetShapeFunction (const int, const ShapeFunction &)
- void SetShape (const Shape &)
- void SetNode (const int, const int)
- · const int GetNumberOfNodes () const
- const int IncreaseOrder ()
- · const double GetMeasure () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- CFiniteElement & operator= (const CFiniteElement &e)

Friends

- const bool operator== (const CFiniteElement &e1, const CFiniteElement &e2)
- std::istream & operator>> (std::istream &is, CFiniteElement &k)

6.23.1 Constructor & Destructor Documentation

6.23.1.1 CFiniteElement() [1/8]

```
template<class Shape , class ShapeFunction >
corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::CFiniteElement ( ) [inline]
```

6.23.1.2 CFiniteElement() [2/8]

6.23.1.3 CFiniteElement() [3/8]

6.23.1.4 CFiniteElement() [4/8]

6.23.1.5 CFiniteElement() [5/8]

6.23.1.6 CFiniteElement() [6/8]

6.23.1.7 CFiniteElement() [7/8]

6.23.1.8 **CFiniteElement()** [8/8]

6.23.1.9 ~CFiniteElement()

```
template<class Shape , class ShapeFunction >
corenc::Mesh::CFiniteElement < Shape, ShapeFunction, bool, bool >::~CFiniteElement ( ) [inline]
```

6.23.2 Member Function Documentation

6.23.2.1 Clone()

```
template<class Shape , class ShapeFunction >
CElement * corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::Clone ( ) const
[inline], [virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.2 GetDoFs()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetDoFs [virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.3 GetGradShapeFunction()

Implements corenc::Mesh::CElement<>.

6.23.2.4 GetMeasure()

```
template<class Shape , class ShapeFunction >
const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetMeasure
[virtual]
```

 $Implements\ corenc:: Mesh:: CElement<>.$

6.23.2.5 GetNeighbour()

6.23.2.6 GetNode()

```
\label{lem:const} $$ \text{template}$$ < \text{class Shape , class ShapeFunction >} $$ \text{const int } $ \text{corenc::Mesh::CFiniteElement} < \text{Shape, ShapeFunction, bool, bool >::GetNode ( const int $k$ ) const [virtual] } $$
```

Implements corenc::Mesh::CElement<>.

6.23.2.7 GetNormal()

```
template<class Shape , class ShapeFunction >
const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetNormal [virtual]
Implements corenc::Mesh::CElement<>.
```

6.23.2.8 GetNumberOfNodes()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetNumberOfNodes
[virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.9 GetShape()

```
template<class Shape , class ShapeFunction >
const Shape corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetShape
```

6.23.2.10 GetShapeFunction()

```
template<class Shape , class ShapeFunction > const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetShape \leftarrow Function ( const int k, const Point & p ) const [virtual]
```

6.23.2.11 GetShapeFunctions()

6.23.2.12 GetType()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::GetType [virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.13 GetWeight()

Implements corenc::Mesh::CElement<>.

6.23.2.14 IncreaseOrder()

```
template<class Shape , class ShapeFunction >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::IncreaseOrder
[virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.15 Integrate() [1/3]

```
template<class Shape , class ShapeFunction > const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::Integrate ( const std::function< const double(const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

6.23.2.16 Integrate() [2/3]

```
template<class Shape , class ShapeFunction > const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::Integrate ( const std::function< const Point (const Point &) > & f, const std::vector< Point > & v) const [virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.17 Integrate() [3/3]

Implements corenc::Mesh::CElement<>.

6.23.2.18 operator=()

6.23.2.19 ReverseNormal()

```
template<class Shape , class ShapeFunction >
void corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::ReverseNormal [virtual]
```

Implements corenc::Mesh::CElement<>.

6.23.2.20 SetNeighbour()

6.23.2.21 SetNode()

```
\label{lem:const} $$\operatorname{corenc::Mesh::CFiniteElement} < \operatorname{ShapeFunction}, \ \operatorname{bool}, \ \operatorname{bool} >::\operatorname{SetNode} \ ($$\operatorname{const} \ \operatorname{int} \ k,$$$ \operatorname{const} \ \operatorname{int} \ node \ ) \ [\operatorname{virtual}]
```

Implements corenc::Mesh::CElement<>.

6.23.2.22 SetShape()

6.23.2.23 SetShapeFunction()

```
template<class Shape , class ShapeFunction > void corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool >::SetShapeFunction ( const int k, const ShapeFunction & func )
```

6.23.2.24 SetType()

Implements corenc::Mesh::CElement<>.

6.23.3 Friends And Related Function Documentation

6.23.3.1 operator==

6.23.3.2 operator>>

```
template<class Shape , class ShapeFunction > std::istream & operator>> (  std::istream \& is, \\  CFiniteElement< Shape, ShapeFunction, bool, bool > \& k ) [friend]
```

The documentation for this class was generated from the following file:

· CoreNCFEM/FiniteElements/FiniteElement.h

6.24 corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool > Class Template Reference

```
#include <FiniteElement.h>
```

Inheritance diagram for corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, bool >:

Public Member Functions

- CFiniteElement ()
- CFiniteElement (const int *nodes, const Point *points, const int dofs)
- CFiniteElement (const int *nodes, const Point *points)
- CFiniteElement (const Shape &shape, const ShapeFunction &f, const DoF &d)
- CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const DoF &dofs, const int type)
- CFiniteElement (const Shape &shape, const ShapeFunction &shfunc, const DoF &dofs, const int type, const int *neigh)
- CFiniteElement (const CFiniteElement< Shape, ShapeFunction, DoF > &e)
- CElement * Clone () const
- ∼CFiniteElement ()
- const int GetType () const
- · const int GetNode (const int) const
- const int GetNeighbour (const int) const
- const Shape GetShape () const
- · const ShapeFunction GetShapeFunctions () const
- const DoF GetDoF () const
- · const int GetDoFs () const
- void SetNeighbour (const int k, const int elem)
- void SetType (const int)
- void SetShapeFunction (const int, const ShapeFunction &)
- void SetDoF (const DoF &)
- void SetShape (const Shape &)
- void SetNode (const int, const int)
- const int GetNumberOfNodes () const

- const int IncreaseOrder ()
- const double GetMeasure () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
- const std::vector< double > Integrate (const std::function< const std::vector< double > (const Point &)> &, const std::vector< Point > &) const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- CFiniteElement & operator= (const CFiniteElement &e)

Friends

- const bool operator== (const CFiniteElement &e1, const CFiniteElement &e2)
- std::istream & operator>> (std::istream &is, CFiniteElement &k)

6.24.1 Constructor & Destructor Documentation

6.24.1.1 CFiniteElement() [1/7]

```
template<class Shape , class ShapeFunction , class DoF >
corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, bool >::CFiniteElement ( ) [inline]
```

6.24.1.2 **CFiniteElement()** [2/7]

6.24.1.3 **CFiniteElement()** [3/7]

6.24.1.4 CFiniteElement() [4/7]

6.24.1.5 **CFiniteElement()** [5/7]

6.24.1.6 **CFiniteElement()** [6/7]

6.24.1.7 CFiniteElement() [7/7]

6.24.1.8 ∼CFiniteElement()

```
template<class Shape , class ShapeFunction , class DoF >
corenc::Mesh::CFiniteElement < Shape, ShapeFunction, DoF, bool >::~CFiniteElement ( ) [inline]
```

6.24.2 Member Function Documentation

6.24.2.1 Clone()

```
template<class Shape , class ShapeFunction , class DoF >
CElement * corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::Clone ( ) const
[inline], [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.2 GetDoF()

```
template<class Shape , class ShapeFunction , class DoF >
const DoF corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetDoF
```

6.24.2.3 GetDoFs()

```
template<class Shape , class ShapeFunction , class DoF >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetDoFs [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.4 GetGradShapeFunction()

```
template<class Shape , class ShapeFunction , class DoF > const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetGradShape \leftarrow Function ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.5 GetMeasure()

```
template<class Shape , class ShapeFunction , class DoF >
const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetMeasure
[virtual]
```

6.24.2.6 GetNeighbour()

Implements corenc::Mesh::CElement<>.

6.24.2.7 GetNode()

```
\label{lem:const} $$ \text{template}$$ < \text{class Shape}$, class ShapeFunction, class DoF > $$ \text{const int corenc}$::Mesh::CFiniteElement$< Shape, ShapeFunction, DoF, bool >::GetNode ( const int <math>k) const [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.8 GetNormal()

```
template<class Shape , class ShapeFunction , class DoF >
const Point corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetNormal [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.9 GetNumberOfNodes()

```
template<class Shape, class ShapeFunction, class DoF >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetNumberOfNodes
[virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.10 GetShape()

```
template<class Shape , class ShapeFunction , class DoF >
const Shape corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetShape
```

6.24.2.11 GetShapeFunction()

Implements corenc::Mesh::CElement<>.

6.24.2.12 GetShapeFunctions()

```
template<class Shape , class ShapeFunction , class DoF > const ShapeFunction corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::Get \leftarrow ShapeFunctions
```

6.24.2.13 GetType()

```
template<class Shape , class ShapeFunction , class DoF >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::GetType [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.14 GetWeight()

Implements corenc::Mesh::CElement<>.

6.24.2.15 IncreaseOrder()

```
template<class Shape , class ShapeFunction , class DoF >
const int corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::IncreaseOrder
[virtual]
```

6.24.2.16 Integrate() [1/3]

```
template<class Shape , class ShapeFunction , class DoF > const double corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::Integrate ( const std::function< const double(const Point &) > & f, const std::vector< Point > & v) const [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.17 Integrate() [2/3]

Implements corenc::Mesh::CElement<>.

6.24.2.18 Integrate() [3/3]

```
template<class Shape , class ShapeFunction , class DoF > const std::vector< double > corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool > ::Integrate ( const std::function< const std::vector< double > (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CElement<>.

6.24.2.19 operator=()

6.24.2.20 ReverseNormal()

```
template<class Shape , class ShapeFunction , class DoF >
void corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >::ReverseNormal [virtual]
```

6.24.2.21 SetDoF()

6.24.2.22 SetNeighbour()

Implements corenc::Mesh::CElement<>.

6.24.2.23 SetNode()

Implements corenc::Mesh::CElement<>.

6.24.2.24 SetShape()

6.24.2.25 SetShapeFunction()

6.24.2.26 SetType()

```
\label{lem:constint} $$\operatorname{corenc::Mesh::CFiniteElement}< \operatorname{ShapeFunction, DoF, bool}>::\operatorname{SetType} ($$\operatorname{const.int} k $) [\operatorname{virtual}]$
```

Implements corenc::Mesh::CElement<>.

6.24.3 Friends And Related Function Documentation

6.24.3.1 operator==

6.24.3.2 operator>>

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/FiniteElement.h

6.25 corenc::CFiniteSolver< Method, Mesh, Solver > Class Template Reference

```
#include <FiniteSolver.h>
```

Public Member Functions

- CFiniteSolver ()
- ∼CFiniteSolver ()
- void Solve ()

6.25.1 Constructor & Destructor Documentation

6.25.1.1 CFiniteSolver()

```
template<class Method , class Mesh , class Solver >
corenc::CFiniteSolver< Method, Mesh, Solver >::CFiniteSolver ( ) [inline]
```

6.25.1.2 ∼CFiniteSolver()

```
template<class Method , class Mesh , class Solver >
corenc::CFiniteSolver< Method, Mesh, Solver >::~CFiniteSolver ( ) [inline]
```

6.25.2 Member Function Documentation

6.25.2.1 Solve()

```
template<class Method , class Mesh , class Solver >
void corenc::CFiniteSolver< Method, Mesh, Solver >::Solve
```

The documentation for this class was generated from the following file:

· CoreNCFEM/FiniteSolver.h

6.26 corenc::Mesh::CMesh< T > Class Template Reference

```
#include <Mesh.h>
```

Public Member Functions

- · CMesh ()
- virtual ∼CMesh ()
- virtual const unsigned int GetNumberOfNodes () const =0
- virtual const unsigned int GetNumberOfElements () const =0
- virtual const int FindElement (const Point &) const =0
- virtual const unsigned int GetNumberOfBoundaries () const =0
- virtual const CElement < T > * GetElement (const unsigned int) const =0
- virtual const CElement < T > * GetBoundary (const unsigned int) const =0
- virtual const Point GetNode (const unsigned int) const =0
- virtual const double getSolution (const unsigned int element, const unsigned int node) const =0
- virtual const int updateSolution (const unsigned int element, const unsigned int node, const double value)=0
- virtual const std::vector< double > getSolution () const =0
- virtual const int updateSolution (const std::vector< double > &)=0
- virtual const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)=0
- virtual const double getParameter (Parameters, const unsigned int, const Point &) const =0
- virtual const double getParameter (Parameters, const unsigned int, const int) const =0
- virtual const int setParameter (Parameters, const double, const unsigned int)=0
- virtual const double getMinSize () const =0
- virtual const int updateSolution (const unsigned int node, const double value)=0

6.26.1 Constructor & Destructor Documentation

6.26.1.1 CMesh()

```
template < class T >
corenc::Mesh::CMesh < T >::CMesh ( ) [inline]

6.26.1.2 ~ CMesh()

template < class T >
```

virtual corenc::Mesh::CMesh< T >::~CMesh () [inline], [virtual]

6.26.2 Member Function Documentation

6.26.2.1 FindElement()

 $Implemented \ in \ corenc:: Mesh:: CTriangular Mesh, \ and \ corenc:: Mesh:: CTriangular MeshLinear.$

6.26.2.2 GetBoundary()

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.3 GetElement()

 $Implemented\ in\ corenc:: Mesh:: CTriangular Mesh, and\ corenc:: Mesh:: CTriangular MeshLinear.$

6.26.2.4 getMinSize()

```
template<class T >
virtual const double corenc::Mesh::CMesh< T >::getMinSize ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.5 GetNode()

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.6 GetNumberOfBoundaries()

```
template<class T >
virtual const unsigned int corenc::Mesh::CMesh< T >::GetNumberOfBoundaries ( ) const [pure
virtual]
```

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.7 GetNumberOfElements()

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.8 GetNumberOfNodes()

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.9 getParameter() [1/2]

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.10 getParameter() [2/2]

Implemented in corenc::Mesh::CTriangularMesh, corenc::Mesh::CTriangularMeshLinear, and corenc::Mesh::CMesh1D.

6.26.2.11 getSolution() [1/2]

```
template<class T >
virtual const std::vector< double > corenc::Mesh::CMesh< T >::getSolution ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.12 getSolution() [2/2]

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.13 setParameter()

Implemented in corenc::Mesh::CTriangularMesh.:CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.14 updateSolution() [1/4]

Implemented in corenc::Mesh::CTriangularMesh, corenc::Mesh::CTriangularMeshLinear, and corenc::Mesh::CMesh1D.

6.26.2.15 updateSolution() [2/4]

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.16 updateSolution() [3/4]

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

6.26.2.17 updateSolution() [4/4]

Implemented in corenc::Mesh::CMesh1D, corenc::Mesh::CTriangularMesh, and corenc::Mesh::CTriangularMeshLinear.

The documentation for this class was generated from the following file:

• CoreNCFEM/Mesh.h

6.27 corenc::Mesh::CMesh1D Class Reference

#include <Mesh1D.h>

Inheritance diagram for corenc::Mesh::CMesh1D:

Public Member Functions

- CMesh1D ()
- CMesh1D (const std::string &domain_name)
- CMesh1D (const std::string &domain file, const std::string &init file)
- CMesh1D (const double x0, const double x1, const unsigned n, const int order, const std::function< const double(const Point &)> &init_func)
- CMesh1D (const double x0, const double x1, const unsigned n, const int order, const std::function< const double(const Point &)> &init_func, const std::function< const double(const Point &)> &init_derivative)
- CMesh1D (const CMesh1D &)
- CMesh1D & operator= (const CMesh1D &m)
- · const unsigned int GetNumberOfElements () const
- const unsigned int GetNumberOfNodes () const
- · const unsigned int GetNumberOfBoundaries () const
- const int FindElement (const Point &) const
- const Point GetNode (const unsigned int) const
- const CElement < CFESolution > * GetElement (const unsigned int) const
- const CElement < CFESolution > * GetBoundary (const unsigned int) const
- const double getSolution (const unsigned int element, const unsigned int node) const
- const double getParameter (Parameters, const unsigned int, const Point &p) const
- const double getParameter (Parameters, const unsigned int, const int) const
- const std::vector< double > getSolution () const
- const int updateSolution (const std::vector< double > &new solution)
- const int updateSolution (const unsigned int element, const unsigned int node, const double value)
- const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)
- const int updateSolution (const unsigned int node, const double value)
- const int setParameter (Parameters, const double, const unsigned int)
- const double getMinSize () const
- ~CMesh1D ()
- auto GetElements () -> decltype(m_elems)
- auto GetBoundary () -> decltype(m_bnds)

6.27.1 Constructor & Destructor Documentation

6.27.1.1 CMesh1D() [1/6]

```
CMesh1D::CMesh1D ( )
```

6.27.1.2 CMesh1D() [2/6]

6.27.1.3 CMesh1D() [3/6]

6.27.1.4 CMesh1D() [4/6]

6.27.1.5 CMesh1D() [5/6]

6.27.1.6 CMesh1D() [6/6]

```
\label{eq:cmesh1D} \mbox{CMesh1D::CMesh1D (} $$ \mbox{const CMesh1D \& $m$ )}
```

6.27.1.7 ∼CMesh1D()

```
CMesh1D::~CMesh1D ( )
```

6.27.2 Member Function Documentation

6.27.2.1 FindElement()

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.2 GetBoundary() [1/2]

```
auto corenc::Mesh::CMesh1D::GetBoundary ( ) -> decltype(m_bnds) [inline]
```

6.27.2.3 GetBoundary() [2/2]

```
\label{eq:const} \mbox{CElement} < \mbox{CFESolution} > * \mbox{CMesh1D::GetBoundary (} \\ \mbox{const unsigned int } n \mbox{) const} \mbox{ [virtual]}
```

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.4 GetElement()

```
\begin{tabular}{ll} \mbox{const CElement} < \mbox{CFESolution} > * \mbox{CMesh1D::GetElement (} \\ \mbox{const unsigned int } n \mbox{) const [virtual]} \end{tabular}
```

 $Implements\ corenc:: Mesh:: CMesh < CFESolution >.$

6.27.2.5 GetElements()

```
auto corenc::Mesh::CMesh1D::GetElements ( ) -> decltype(m_elems) [inline]
```

6.27.2.6 getMinSize()

```
const double corenc::Mesh::CMesh1D::getMinSize ( ) const [inline], [virtual]
Implements corenc::Mesh::CMesh
```

6.27.2.7 GetNode()

```
\begin{tabular}{ll} \mbox{const Point CMesh1D::GetNode (} \\ \mbox{const unsigned int } n \end{tabular} ) \begin{tabular}{ll} \mbox{const [virtual]} \\ \mbox{} \mbox{
```

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.8 GetNumberOfBoundaries()

```
const unsigned int CMesh1D::GetNumberOfBoundaries ( ) const [virtual]
Implements corenc::Mesh::CMesh< CFESolution >.
```

6.27.2.9 GetNumberOfElements()

```
const unsigned int CMesh1D::GetNumberOfElements ( ) const [virtual]
Implements corenc::Mesh::CMesh< CFESolution >.
```

6.27.2.10 GetNumberOfNodes()

```
\label{lem:const_const_unsigned} \begin{tabular}{l} const unsigned int $CMesh1D::$GetNumberOfNodes ( ) const [virtual] \\ \hline \\ \begin{tabular}{l} limplements corenc::$Mesh::$CMesh< CFESolution>. \\ \hline \end{tabular}
```

6.27.2.11 getParameter() [1/2]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.12 getParameter() [2/2]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.13 getSolution() [1/2]

```
const std::vector< double > corenc::Mesh::CMesh1D::getSolution ( ) const [inline], [virtual]
Implements corenc::Mesh::CMesh< CFESolution >.
```

6.27.2.14 getSolution() [2/2]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.15 operator=()

6.27.2.16 setParameter()

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.17 updateSolution() [1/4]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.18 updateSolution() [2/4]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.19 updateSolution() [3/4]

Implements corenc::Mesh::CMesh< CFESolution >.

6.27.2.20 updateSolution() [4/4]

Implements corenc::Mesh::CMesh< CFESolution >.

The documentation for this class was generated from the following files:

- CoreNCFEM/Grids/Mesh1D.h
- CoreNCFEM/Grids/Mesh1D.cpp

6.28 corenc::Mesh::CMesh< bool > Class Reference

```
#include <Mesh.h>
```

Public Member Functions

- CMesh ()
- virtual ∼CMesh ()
- virtual const unsigned int GetNumberOfNodes () const =0
- virtual const unsigned int GetNumberOfElements () const =0
- virtual const int FindElement (const Point &) const =0
- virtual const unsigned int GetNumberOfBoundaries () const =0
- virtual const CElement * GetElement (const unsigned int) const =0
- virtual const CElement * GetBoundary (const unsigned int) const =0
- virtual const Point GetNode (const unsigned int) const =0
- virtual const double getSolution (const unsigned int element, const unsigned int node) const =0
- virtual const int updateSolution (const unsigned int element, const unsigned int node, const double value)=0
- virtual const std::vector< double > getSolution () const =0
- virtual const int updateSolution (const std::vector< double > &)=0
- virtual const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)=0
- virtual const double getParameter (Parameters, const unsigned int, const Point &p) const =0
- virtual const double getParameter (Parameters, const unsigned int, const int) const =0
- virtual const int setParameter (Parameters, const double, const unsigned int)=0
- virtual const double getMinSize () const =0

6.28.1 Constructor & Destructor Documentation

6.28.1.1 CMesh()

```
corenc::Mesh::CMesh bool >::CMesh () [inline]
```

6.28.1.2 ~CMesh()

```
virtual corenc::Mesh::CMesh bool >::~CMesh () [inline], [virtual]
```

6.28.2 Member Function Documentation

6.28.2.1 FindElement()

6.28.2.2 GetBoundary()

6.28.2.3 GetElement()

6.28.2.4 getMinSize()

```
virtual const double corenc::Mesh::CMesh bool >::getMinSize ( ) const [pure virtual]
```

6.28.2.5 GetNode()

6.28.2.6 GetNumberOfBoundaries()

```
virtual const unsigned int corenc::Mesh::CMesh< bool >::GetNumberOfBoundaries ( ) const [pure
virtual]
```

6.28.2.7 GetNumberOfElements()

```
virtual const unsigned int corenc::Mesh::CMesh< bool >::GetNumberOfElements ( ) const [pure
virtual]
```

6.28.2.8 GetNumberOfNodes()

```
virtual const unsigned int corenc::Mesh::CMesh< bool >::GetNumberOfNodes ( ) const [pure
virtual]
```

6.28.2.9 getParameter() [1/2]

6.28.2.10 getParameter() [2/2]

6.28.2.11 getSolution() [1/2]

```
virtual const std::vector< double > corenc::Mesh::CMesh< bool >::getSolution ( ) const [pure
virtual]
```

6.28.2.12 getSolution() [2/2]

6.28.2.13 setParameter()

6.28.2.14 updateSolution() [1/3]

6.28.2.15 updateSolution() [2/3]

6.28.2.16 updateSolution() [3/3]

The documentation for this class was generated from the following file:

· CoreNCFEM/Mesh.h

6.29 corenc::Mesh::CNode Class Reference

```
#include <Node.h>
```

Inheritance diagram for corenc::Mesh::CNode:

Public Member Functions

- CNode ()
- CNode (const CNode &)
- CNode (const int n)
- CNode (const int *n)
- CNode & operator= (const CNode &e)
- ∼CNode ()
- const int GetNode (const int) const
- const int GetNode (const NODES &) const
- const int IncreaseOrder ()
- · const int GetNumberOfNodes () const
- void SetNode (const int k, const int node)
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const

Friends

- const bool operator== (const CNode &e1, const CNode &e2)
- std::istream & operator>> (std::istream &is, CNode &e)

6.29.1 Constructor & Destructor Documentation

6.29.1.1 CNode() [1/4]

```
CNode::CNode ( )
```

6.29.1.2 CNode() [2/4]

```
CNode::CNode ( const CNode \& n )
```

6.29.1.3 CNode() [3/4]

6.29.1.4 CNode() [4/4]

6.29.1.5 ∼CNode()

```
corenc::Mesh::CNode::~CNode ( ) [inline]
```

6.29.2 Member Function Documentation

6.29.2.1 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.29.2.2 GetNode() [2/2]

Reimplemented from corenc::Mesh::CShape.

6.29.2.3 GetNumberOfNodes()

```
const int CNode::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.29.2.4 IncreaseOrder()

```
const int corenc::Mesh::CNode::IncreaseOrder ( ) [inline]
```

6.29.2.5 Integrate() [1/3]

6.29.2.6 Integrate() [2/3]

6.29.2.7 Integrate() [3/3]

```
const std::vector< double > corenc::Mesh::CNode::Integrate ( const std::function< const std::vector< double > (const Point &) > & , const std::vector< Point > & ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.29.2.8 operator=()

6.29.2.9 SetNode()

Implements corenc::Mesh::CShape.

6.29.3 Friends And Related Function Documentation

6.29.3.1 operator==

6.29.3.2 operator>>

The documentation for this class was generated from the following files:

- · CoreNCFEM/FiniteElements/Node.h
- CoreNCFEM/FiniteElements/Node.cpp

6.30 corenc::Mesh::CNodeBasis Class Reference

```
#include <Node.h>
```

Inheritance diagram for corenc::Mesh::CNodeBasis:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CNodeBasis
```

Public Member Functions

- CNodeBasis ()
- CNodeBasis (const Point *)
- CNodeBasis (const CNodeBasis &e)
- CNodeBasis & operator= (const CNodeBasis &e)
- ∼CNodeBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetWeight (const int node, const std::vector< Point > &verts, const std::function< const double(const Point &) > &f) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.30.1 Constructor & Destructor Documentation

6.30.1.1 CNodeBasis() [1/3]

```
CNodeBasis::CNodeBasis ( )
```

6.30.1.2 CNodeBasis() [2/3]

```
\label{eq:cnodeBasis:CNodeBasis} \mbox{CNodeBasis:CNodeBasis} \ \ ( \\ \mbox{const Point } * \ p \ )
```

6.30.1.3 CNodeBasis() [3/3]

6.30.1.4 ∼CNodeBasis()

```
corenc::Mesh::CNodeBasis::~CNodeBasis ( ) [inline]
```

6.30.2 Member Function Documentation

6.30.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.30.2.2 GetMeasure()

```
const double corenc::Mesh::CNodeBasis::GetMeasure ( ) const [inline], [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.30.2.3 GetNormal()

```
const Point CNodeBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.30.2.4 GetNumberOfShapeFunctions()

```
\verb|const| int CNodeBasis:: GetNumberOfShapeFunctions ( ) const [virtual]|\\
```

Implements corenc::Mesh::CShapeFunction< double >.

6.30.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.30.2.6 GetWeight()

6.30.2.7 IncreaseOrder()

```
const int corenc::Mesh::CNodeBasis::IncreaseOrder ( ) [inline]
```

6.30.2.8 operator=()

6.30.2.9 ReverseNormal()

```
void CNodeBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Node.h
- CoreNCFEM/FiniteElements/Node.cpp

6.31 corenc::Mesh::CParameter Class Reference

```
#include <Parameter.h>
```

Public Member Functions

- CParameter ()
- CParameter (const parameter< double > &_diff, const parameter< double > &_adv, const parameter<
 double > &_mass)
- CParameter (const Parameters &, const parameter< double > &)
- ∼CParameter ()
- const double GetDiffusion () const
- · const double GetAdvection () const
- const double GetMass () const
- const double GetDiffusion (const Point &) const
- const double GetAdvection (const Point &) const
- · const double GetMass (const Point &) const

6.31.1 Constructor & Destructor Documentation

6.31.1.1 CParameter() [1/3]

```
CParameter::CParameter ( )
```

6.31.1.2 CParameter() [2/3]

6.31.1.3 **CParameter()** [3/3]

```
CParameter::CParameter (  {\it const~Parameters~\&~type,}   {\it const~parameter<~double~>~\&~p~)}
```

6.31.1.4 ∼CParameter()

```
CParameter::~CParameter ( )
```

6.31.2 Member Function Documentation

6.31.2.1 GetAdvection() [1/2]

```
const double CParameter::GetAdvection ( ) const
```

6.31.2.2 GetAdvection() [2/2]

```
const double CParameter::GetAdvection (  {\tt const\ Point\ \&\ p\ )\ const}
```

6.31.2.3 GetDiffusion() [1/2]

```
const double CParameter::GetDiffusion ( ) const
```

6.31.2.4 GetDiffusion() [2/2]

```
const double CParameter::GetDiffusion ( {\tt const\ Point\ \&\ p}\ )\ {\tt const}
```

6.31.2.5 GetMass() [1/2]

6.31.2.6 GetMass() [2/2]

```
const double CParameter::GetMass ( {\tt const~Point~\&~p~)~const}
```

The documentation for this class was generated from the following files:

- CoreNCFEM/Parameter.h
- CoreNCFEM/Parameter.cpp

6.32 corenc::CProblem Class Reference

```
#include <Problems.h>
```

Inheritance diagram for corenc::CProblem:

Public Member Functions

- CProblem ()
- virtual ∼CProblem ()
- virtual Terms getTerm (const unsigned int) const =0
- virtual const unsigned int getNumberOfTerms () const =0
- virtual const int setTerm (const unsigned int, const Terms &)=0
- virtual const int addTerm (const Terms &)=0
- virtual const int load_parameters (const std::string &file_name)=0

6.32.1 Constructor & Destructor Documentation

6.32.1.1 CProblem()

```
corenc::CProblem::CProblem ( ) [inline]
```

6.32.1.2 ∼CProblem()

```
virtual corenc::CProblem::~CProblem ( ) [inline], [virtual]
```

6.32.2 Member Function Documentation

6.32.2.1 addTerm()

Implemented in corenc::CBurgersScalar, corenc::CDiffusionScalar, and corenc::CShallowWater.

6.32.2.2 getNumberOfTerms()

```
virtual const unsigned int corenc::CProblem::getNumberOfTerms ( ) const [pure virtual]
```

Implemented in corenc::CBurgersScalar, corenc::CDiffusionScalar, and corenc::CShallowWater.

6.32.2.3 getTerm()

Implemented in corenc::CBurgersScalar, corenc::CDiffusionScalar, and corenc::CShallowWater.

6.32.2.4 load_parameters()

 $Implemented\ in\ corenc:: CBurgers Scalar,\ corenc:: CDiffusion Scalar,\ and\ corenc:: CShallow Water.$

6.32.2.5 setTerm()

Implemented in corenc::CBurgersScalar, corenc::CDiffusionScalar, and corenc::CShallowWater.

The documentation for this class was generated from the following file:

• Problems/Problems.h

6.33 corenc::Mesh::CRectangle Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangle:

Public Member Functions

- CRectangle ()
- CRectangle (const int n1, const int n2, const int n3, const int n4, const int order)
- CRectangle (const int n1, const int n2, const int n3, const int n4, const int e1, const int e2, const int e3, const int e4, const int order)
- CRectangle (const int *, const int order)
- CRectangle (const int *, const int *, const int order)
- CRectangle (const CRectangle &)
- CRectangle & operator= (const CRectangle &t)
- const bool operator== (const CRectangle &t)
- std::istream & operator>> (std::istream &is)
- ∼CRectangle ()
- · const int GetNode (const int) const
- const int GetNode (const NODES &) const
- const int GetEdge (const int) const
- · const int GetFacet (const int) const
- · const int GetNumberOfNodes () const
- · const int GetNumberOfEdges () const
- · const int GetNumberOfFacets () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- void SetNode (const int k, const int node)
- const int IncreaseOrder ()
- const int SetOrder (const int px, const int py)
- void SetEdge (const int k, const int edge)
- void SetFacet (const int k, const int facet)

6.33.1 Constructor & Destructor Documentation

6.33.1.1 CRectangle() [1/6]

```
CRectangle::CRectangle ( )
```

6.33.1.2 CRectangle() [2/6]

```
CRectangle::CRectangle (
const int n1,
const int n2,
const int n3,
const int n4,
const int order)
```

6.33.1.3 CRectangle() [3/6]

```
CRectangle::CRectangle (
const int n1,
const int n2,
const int n3,
const int n4,
const int e1,
const int e2,
const int e3,
const int e4,
const int order)
```

6.33.1.4 CRectangle() [4/6]

6.33.1.5 CRectangle() [5/6]

6.33.1.6 CRectangle() [6/6]

```
\begin{tabular}{ll} $\tt CRectangle::CRectangle ( & t ) \\ & const \ CRectangle \ \& \ t \ ) \end{tabular}
```

6.33.1.7 \sim CRectangle()

```
\verb|corenc::Mesh::CRectangle::\sim CRectangle ( ) [inline]|\\
```

6.33.2 Member Function Documentation

6.33.2.1 GetEdge()

Reimplemented from corenc::Mesh::CShape.

6.33.2.2 GetFacet()

Reimplemented from corenc::Mesh::CShape.

6.33.2.3 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.33.2.4 GetNode() [2/2]

Reimplemented from corenc::Mesh::CShape.

6.33.2.5 GetNumberOfEdges()

```
const int CRectangle::GetNumberOfEdges ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.33.2.6 GetNumberOfFacets()

```
const int CRectangle::GetNumberOfFacets ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.33.2.7 GetNumberOfNodes()

```
const int CRectangle::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.33.2.8 IncreaseOrder()

```
const int CRectangle::IncreaseOrder ( )
```

6.33.2.9 Integrate() [1/3]

6.33.2.10 Integrate() [2/3]

6.33.2.11 Integrate() [3/3]

```
const vector< double > CRectangle::Integrate ( const std::function< const std::vector< double > (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.33.2.12 operator=()

6.33.2.13 operator==()

6.33.2.14 operator>>()

6.33.2.15 SetEdge()

```
void CRectangle::SetEdge (  {\rm const\ int}\ k\text{,}   {\rm const\ int}\ edge\ ) \quad [{\rm virtual}]
```

Reimplemented from corenc::Mesh::CShape.

6.33.2.16 SetFacet()

```
void CRectangle::SetFacet (  {\it const int } \ k, \\ {\it const int facet} \ ) \ \ [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.33.2.17 SetNode()

Implements corenc::Mesh::CShape.

6.33.2.18 SetOrder()

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/Rectangle.cpp

6.34 corenc::Mesh::CRectangleBasis Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangleBasis:

Public Member Functions

- CRectangleBasis ()
- CRectangleBasis (const Point &, const Point &, const Point &, const Point &, const int order)
- CRectangleBasis (const Point *, const int order)
- CRectangleBasis (const CRectangleBasis &)
- CRectangleBasis & operator= (const CRectangleBasis &t)
- ∼CRectangleBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- · const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.34.1 Constructor & Destructor Documentation

6.34.1.1 CRectangleBasis() [1/4]

```
CRectangleBasis::CRectangleBasis ( )
```

6.34.1.2 CRectangleBasis() [2/4]

6.34.1.3 CRectangleBasis() [3/4]

```
\begin{tabular}{ll} $\tt CRectangleBasis::CRectangleBasis ($$ const Point * p, $$ const int order )$ \end{tabular}
```

6.34.1.4 CRectangleBasis() [4/4]

```
\label{eq:crectangleBasis:CRectangleBasis} \mbox{ CRectangleBasis ( } \\ \mbox{ const CRectangleBasis & $t$ )}
```

6.34.1.5 ∼CRectangleBasis()

```
corenc::Mesh::CRectangleBasis::~CRectangleBasis ( ) [inline]
```

6.34.2 Member Function Documentation

6.34.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.34.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleBasis::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.34.2.3 GetNormal()

```
const Point CRectangleBasis::GetNormal ( ) const [virtual]
```

6.34.2.4 GetNumberOfShapeFunctions()

```
\verb|const| int CRectangleBasis:: GetNumberOfShapeFunctions ( ) const [virtual]|\\
```

Implements corenc::Mesh::CShapeFunction< double >.

Implements corenc::Mesh::CShapeFunction< double >.

6.34.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.34.2.6 GetValue()

```
const double CRectangleBasis::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.34.2.7 GetWeight()

6.34.2.8 IncreaseOrder()

```
const int CRectangleBasis::IncreaseOrder ( )
```

6.34.2.9 operator=()

6.34.2.10 ReverseNormal()

```
void CRectangleBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/Rectangle.cpp

6.35 corenc::Mesh::CRectangleBasis2 Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangleBasis2:

Public Member Functions

- CRectangleBasis2 ()
- · CRectangleBasis2 (const Point &, const Point &, const Point &, const Point &, const int order)
- CRectangleBasis2 (const Point *, const int order)
- CRectangleBasis2 (const CRectangleBasis2 &)
- CRectangleBasis2 & operator= (const CRectangleBasis2 &t)
- ∼CRectangleBasis2 ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector < Point > &verts, const std::function < const double(const Point &) > &f) const

6.35.1 Constructor & Destructor Documentation

6.35.1.1 CRectangleBasis2() [1/4]

```
CRectangleBasis2::CRectangleBasis2 ( )
```

6.35.1.2 CRectangleBasis2() [2/4]

6.35.1.3 CRectangleBasis2() [3/4]

6.35.1.4 CRectangleBasis2() [4/4]

6.35.1.5 ∼CRectangleBasis2()

```
corenc::Mesh::CRectangleBasis2::~CRectangleBasis2 ( ) [inline]
```

6.35.2 Member Function Documentation

6.35.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.35.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleBasis2::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.35.2.3 GetNormal()

```
const Point CRectangleBasis2::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.35.2.4 GetNumberOfShapeFunctions()

```
const int CRectangleBasis2::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.35.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.35.2.6 GetValue()

```
const double CRectangleBasis2::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.35.2.7 GetWeight()

6.35.2.8 IncreaseOrder()

```
const int CRectangleBasis2::IncreaseOrder ( )
```

6.35.2.9 operator=()

6.35.2.10 ReverseNormal()

```
void CRectangleBasis2::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/RectangleBasis2.cpp

6.36 corenc::Mesh::CRectangleBasis2x Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangleBasis2x:

```
corenc::Mesh::CShapeFunction< double >

corenc::Mesh::CRectangleBasis2x
```

Public Member Functions

- CRectangleBasis2x ()
- · CRectangleBasis2x (const Point &, const Point &, const Point &, const Point &, const int order)
- CRectangleBasis2x (const Point *, const int order)
- CRectangleBasis2x (const CRectangleBasis2x &)
- CRectangleBasis2x & operator= (const CRectangleBasis2x &t)
- ∼CRectangleBasis2x ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.36.1 Constructor & Destructor Documentation

6.36.1.1 CRectangleBasis2x() [1/4]

```
CRectangleBasis2x::CRectangleBasis2x ( )
```

6.36.1.2 CRectangleBasis2x() [2/4]

6.36.1.3 CRectangleBasis2x() [3/4]

6.36.1.4 CRectangleBasis2x() [4/4]

6.36.1.5 ∼CRectangleBasis2x()

```
\verb|corenc::Mesh::CRectangleBasis2x::\sim CRectangleBasis2x ( ) [inline]|
```

6.36.2 Member Function Documentation

6.36.2.1 GetGradShapeFunction()

```
const Point CRectangleBasis2x::GetGradShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.36.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleBasis2x::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.36.2.3 GetNormal()

```
const Point CRectangleBasis2x::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.36.2.4 GetNumberOfShapeFunctions()

```
const int CRectangleBasis2x::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.36.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.36.2.6 GetValue()

```
const double CRectangleBasis2x::GetValue ( const Point & p ) const
```

6.36.2.7 GetWeight()

6.36.2.8 IncreaseOrder()

```
const int CRectangleBasis2x::IncreaseOrder ( )
```

6.36.2.9 operator=()

6.36.2.10 ReverseNormal()

```
\verb"void CRectangleBasis2x:: ReverseNormal" ( ) \quad [\verb"virtual"]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/CRectangleBasis2x.cpp

6.37 corenc::Mesh::CRectangleBasis2y Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangleBasis2y:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CRectangleBasis2y
```

Public Member Functions

- CRectangleBasis2y ()
- CRectangleBasis2y (const Point &, const Point &, const Point &, const Point &, const int order)
- CRectangleBasis2y (const Point *, const int order)
- CRectangleBasis2y (const CRectangleBasis2y &)
- CRectangleBasis2y & operator= (const CRectangleBasis2y &t)
- ∼CRectangleBasis2y ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.37.1 Constructor & Destructor Documentation

6.37.1.1 CRectangleBasis2y() [1/4]

```
CRectangleBasis2y::CRectangleBasis2y ( )
```

6.37.1.2 CRectangleBasis2y() [2/4]

6.37.1.3 CRectangleBasis2y() [3/4]

6.37.1.4 CRectangleBasis2y() [4/4]

6.37.1.5 ∼CRectangleBasis2y()

```
corenc::Mesh::CRectangleBasis2y::~CRectangleBasis2y ( ) [inline]
```

6.37.2 Member Function Documentation

6.37.2.1 GetGradShapeFunction()

```
const Point CRectangleBasis2y::GetGradShapeFunction ( const int k, const Point & p ) const [virtual]
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.37.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleBasis2y::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.37.2.3 GetNormal()

```
const Point CRectangleBasis2y::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.37.2.4 GetNumberOfShapeFunctions()

```
const int CRectangleBasis2y::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.37.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.37.2.6 GetValue()

```
const double CRectangleBasis2y::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.37.2.7 GetWeight()

6.37.2.8 IncreaseOrder()

```
const int CRectangleBasis2y::IncreaseOrder ( )
```

6.37.2.9 operator=()

6.37.2.10 ReverseNormal()

```
void CRectangleBasis2y::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/RectangleBasis2y.cpp

6.38 corenc::Mesh::CRectangleConstantBasis Class Reference

#include <Rectangle.h>

Inheritance diagram for corenc::Mesh::CRectangleConstantBasis:

Public Member Functions

- CRectangleConstantBasis ()
- · CRectangleConstantBasis (const Point &, const Point &, const Point &, const Point &, const int order)
- CRectangleConstantBasis (const Point *, const int order)
- CRectangleConstantBasis (const CRectangleConstantBasis &)
- CRectangleConstantBasis & operator= (const CRectangleConstantBasis &t)
- →CRectangleConstantBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- · const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.38.1 Constructor & Destructor Documentation

6.38.1.1 CRectangleConstantBasis() [1/4]

 ${\tt CRectangleConstantBasis::} {\tt CRectangleConstantBasis} \ \ (\)$

6.38.1.2 CRectangleConstantBasis() [2/4]

```
CRectangleConstantBasis::CRectangleConstantBasis ( const Point & p1, const Point & p2, const Point & p3, const Point & p4, const int p4, const int p4,
```

6.38.1.3 CRectangleConstantBasis() [3/4]

```
\label{eq:constantBasis::CRectangleConstantBasis} \mbox{ (} \\ \mbox{const Point } * \ p, \\ \mbox{const int } \mbox{order} \mbox{ )}
```

6.38.1.4 CRectangleConstantBasis() [4/4]

6.38.1.5 ∼CRectangleConstantBasis()

```
\verb|corenc::Mesh::CRectangleConstantBasis::\sim CRectangleConstantBasis ( ) [inline]|
```

6.38.2 Member Function Documentation

6.38.2.1 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.38.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleConstantBasis::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.38.2.3 GetNormal()

```
const Point CRectangleConstantBasis::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.38.2.4 GetNumberOfShapeFunctions()

```
const int CRectangleConstantBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.38.2.5 GetShapeFunction()

```
const double CRectangleConstantBasis::GetShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.38.2.6 GetValue()

```
const double CRectangleConstantBasis::GetValue (  {\tt const\ Point\ \&\ p\ )\ const}
```

6.38.2.7 IncreaseOrder()

```
\verb|const| int CRectangleConstantBasis:: IncreaseOrder () \\
```

6.38.2.8 operator=()

6.38.2.9 ReverseNormal()

```
void CRectangleConstantBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/Rectangle.cpp

6.39 corenc::Mesh::CRectangleHBasis Class Reference

```
#include <Rectangle.h>
```

Inheritance diagram for corenc::Mesh::CRectangleHBasis:

Public Member Functions

- CRectangleHBasis ()
- · CRectangleHBasis (const Point &, const Point &, c
- CRectangleHBasis (const Point &, const Point &, const Point &, const Point &, const int px, const int py)
- CRectangleHBasis (const Point *, const int order)
- CRectangleHBasis (const Point *, const int px, const int py)
- CRectangleHBasis (const CRectangleHBasis &)
- CRectangleHBasis & operator= (const CRectangleHBasis &t)
- ∼CRectangleHBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const int SetOrder (const int px, const int py)
- · const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.39.1 Constructor & Destructor Documentation

6.39.1.1 CRectangleHBasis() [1/6]

```
CRectangleHBasis::CRectangleHBasis ( )
```

6.39.1.2 CRectangleHBasis() [2/6]

6.39.1.3 CRectangleHBasis() [3/6]

6.39.1.4 CRectangleHBasis() [4/6]

6.39.1.5 CRectangleHBasis() [5/6]

6.39.1.6 CRectangleHBasis() [6/6]

6.39.1.7 ∼CRectangleHBasis()

```
corenc::Mesh::CRectangleHBasis::~CRectangleHBasis ( ) [inline]
```

6.39.2 Member Function Documentation

6.39.2.1 GetGradShapeFunction()

```
const Point CRectangleHBasis::GetGradShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.39.2.2 GetMeasure()

```
const double corenc::Mesh::CRectangleHBasis::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.39.2.3 GetNormal()

```
const Point CRectangleHBasis::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.39.2.4 GetNumberOfShapeFunctions()

```
const int CRectangleHBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.39.2.5 GetShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.39.2.6 GetValue()

```
const double CRectangleHBasis::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.39.2.7 GetWeight()

6.39.2.8 IncreaseOrder()

```
const int CRectangleHBasis::IncreaseOrder ( )
```

6.39.2.9 operator=()

6.39.2.10 ReverseNormal()

```
void CRectangleHBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.39.2.11 SetOrder()

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Rectangle.h
- CoreNCFEM/FiniteElements/RectangleHBasis.cpp

6.40 corenc::Mesh::CRegularMesh Class Reference

```
#include <RegularMesh.h>
```

Public Member Functions

- CRegularMesh ()
- CRegularMesh (const std::string &file_name)
- CRegularMesh (const CRegularMesh &)
- CRegularMesh (const Point &p1, const Point &p2, const int nx, const int ny)
- CRegularMesh (const Point &p1, const Point &p2, const int nx, const int ny, const int px, const int py)
- CRegularMesh (const double x1, const double y1, const double x2, const double y2, const int nx, const int ny)
- CRegularMesh & operator= (const CRegularMesh &tr)
- CRegularMesh * Clone () const
- · const unsigned int GetNumberOfElements () const
- · const unsigned int GetNumberOfNodes () const
- · const int GetNumberOfINodes () const
- const unsigned int GetNumberOfBoundaries () const
- · const int FindElement (const Point &) const
- · const Point GetNode (const unsigned int) const
- const CElement2D * GetElement (const unsigned int) const
- const CElement * GetBoundary (const unsigned int) const
- const double getMinSize () const
- · const double getSolution (const unsigned int element, const unsigned int node) const
- const int updateSolution (const unsigned int element, const unsigned int node, const double value)
- const std::vector< double > getSolution () const
- const int updateSolution (const std::vector< double > &)
- const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)
- const double getParameter (Parameters, const unsigned int, const Point &) const
- const double getParameter (Parameters, const unsigned int, const int) const
- const int setParameter (Parameters, const double, const unsigned int)
- const int setParameter (const CParameter &, const unsigned int type)
- const int updateSolution (const unsigned int node, const double value)
- const int refine hx ()
- const int refine_hy ()
- · const int refine_h ()
- const int refine p ()
- const int refine hp ()
- · const int interpolate (const int node) const
- ∼CRegularMesh ()
- auto GetElements () -> decltype(m_elems)
- auto GetBoundary () -> decltype(m_edges)

6.40.1 Constructor & Destructor Documentation

6.40.1.1 CRegularMesh() [1/6]

```
CRegularMesh::CRegularMesh ( )
```

6.40.1.2 CRegularMesh() [2/6]

6.40.1.3 CRegularMesh() [3/6]

```
\begin{tabular}{ll} $\tt CRegularMesh ( & tr ) \end{tabular}
```

6.40.1.4 CRegularMesh() [4/6]

6.40.1.5 CRegularMesh() [5/6]

```
CRegularMesh::CRegularMesh (
    const Point & p1,
    const Point & p2,
    const int nx,
    const int ny,
    const int px,
    const int py)
```

6.40.1.6 CRegularMesh() [6/6]

```
CRegularMesh::CRegularMesh (
    const double x1,
    const double y1,
    const double x2,
    const double y2,
    const int nx,
    const int ny)
```

6.40.1.7 ∼CRegularMesh()

```
CRegularMesh::~CRegularMesh ( )
```

6.40.2 Member Function Documentation

6.40.2.1 Clone()

```
CRegularMesh * corenc::Mesh::CRegularMesh::Clone ( ) const [inline]
```

6.40.2.2 FindElement()

6.40.2.3 GetBoundary() [1/2]

```
auto corenc::Mesh::CRegularMesh::GetBoundary ( ) -> decltype(m_edges) [inline]
```

6.40.2.4 GetBoundary() [2/2]

```
\begin{tabular}{ll} \begin{tabular}{ll} const $\tt CElement * CRegularMesh::GetBoundary ( \\ & const unsigned int $n$ ) const \\ \end{tabular}
```

6.40.2.5 GetElement()

```
\begin{tabular}{ll} \mbox{const CElement2D * CRegularMesh::GetElement (} \\ \mbox{const unsigned int } n \end{tabular} ) \begin{tabular}{ll} \mbox{const} \\ \mbox{const} \\
```

6.40.2.6 GetElements()

```
auto corenc::Mesh::CRegularMesh::GetElements ( ) -> decltype(m_elems) [inline]
```

6.40.2.7 getMinSize()

```
const double corenc::Mesh::CRegularMesh::getMinSize ( ) const [inline]
```

6.40.2.8 GetNode()

6.40.2.9 GetNumberOfBoundaries()

```
\verb|const| unsigned| int CRegular Mesh:: Get Number Of Boundaries () const|
```

6.40.2.10 GetNumberOfElements()

```
const unsigned int CRegularMesh::GetNumberOfElements ( ) const
```

6.40.2.11 GetNumberOflNodes()

```
const int CRegularMesh::GetNumberOfINodes ( ) const
```

6.40.2.12 GetNumberOfNodes()

```
const unsigned int CRegularMesh::GetNumberOfNodes ( ) const
```

6.40.2.13 getParameter() [1/2]

```
const double CRegularMesh::getParameter ( \frac{\text{Parameters }param,}{\text{const unsigned int }l,} \text{const int }i\text{ ) const}
```

6.40.2.14 getParameter() [2/2]

6.40.2.15 getSolution() [1/2]

```
\verb|const| \verb|std::vector<| double > CRegularMesh::getSolution () | const| \\
```

6.40.2.16 getSolution() [2/2]

6.40.2.17 interpolate()

6.40.2.18 operator=()

```
CRegularMesh & corenc::Mesh::CRegularMesh::operator= (
           const CRegularMesh & tr ) [inline]
6.40.2.19 refine_h()
const int CRegularMesh::refine_h ( )
6.40.2.20 refine_hp()
const int corenc::Mesh::CRegularMesh::refine_hp ( )
6.40.2.21 refine_hx()
const int corenc::Mesh::CRegularMesh::refine_hx ( )
6.40.2.22 refine_hy()
const int corenc::Mesh::CRegularMesh::refine_hy ( )
6.40.2.23 refine_p()
const int CRegularMesh::refine_p ()
6.40.2.24 setParameter() [1/2]
\verb|const| int CRegularMesh::setParameter (
            const CParameter & p,
             const unsigned int type )
```

6.40.2.25 setParameter() [2/2]

6.40.2.26 updateSolution() [1/4]

```
const int CRegularMesh::updateSolution ( {\tt const\ std::vector} < {\tt double} \ > \ \& \quad )
```

6.40.2.27 updateSolution() [2/4]

6.40.2.28 updateSolution() [3/4]

6.40.2.29 updateSolution() [4/4]

The documentation for this class was generated from the following files:

- · CoreNCFEM/Grids/RegularMesh.h
- CoreNCFEM/Grids/RegularMesh.cpp

6.41 corenc::Mesh::CRegularMesh3D Class Reference

#include <RegularMesh3D.h>

Public Member Functions

- CRegularMesh3D ()
- CRegularMesh3D (const std::string &file_name)
- CRegularMesh3D (const CRegularMesh3D &)
- CRegularMesh3D (const Point &p1, const Point &p2, const int nx, const int ny)
- CRegularMesh3D (const Point &p1, const Point &p2, const int nx, const int ny, const int px, const int py)
- CRegularMesh3D (const double x1, const double y1, const double x2, const double y2, const int nx, const int ny)
- CRegularMesh3D & operator= (const CRegularMesh3D &tr)
- CRegularMesh3D * Clone () const
- const unsigned int GetNumberOfElements () const
- const unsigned int GetNumberOfNodes () const
- · const int GetNumberOflNodes () const
- · const unsigned int GetNumberOfBoundaries () const
- · const int FindElement (const Point &) const
- const Point GetNode (const unsigned int) const
- const CElement * GetElement (const unsigned int) const
- const CElement * GetBoundary (const unsigned int) const
- const double getMinSize () const
- const double getSolution (const unsigned int element, const unsigned int node) const
- const int updateSolution (const unsigned int element, const unsigned int node, const double value)
- const std::vector< double > getSolution () const
- const int updateSolution (const std::vector< double > &)
- const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)
- const double getParameter (Parameters, const unsigned int, const Point &) const
- · const double getParameter (Parameters, const unsigned int, const int) const
- const int setParameter (Parameters, const double, const unsigned int)
- const int setParameter (const CParameter &, const unsigned int type)
- const int updateSolution (const unsigned int node, const double value)
- const int refine_hx ()
- const int refine hy ()
- const int refine h ()
- · const int refine_p ()
- const int refine_hp ()
- · const int interpolate (const int node) const
- ∼CRegularMesh3D ()
- auto GetElements () -> decltype(m_elems)
- auto GetBoundary () -> decltype(m_edges)

6.41.1 Constructor & Destructor Documentation

6.41.1.1 CRegularMesh3D() [1/6]

CRegularMesh3D::CRegularMesh3D ()

6.41.1.2 CRegularMesh3D() [2/6]

6.41.1.3 CRegularMesh3D() [3/6]

6.41.1.4 CRegularMesh3D() [4/6]

```
CRegularMesh3D::CRegularMesh3D (
    const Point & p1,
    const Point & p2,
    const int nx,
    const int ny )
```

6.41.1.5 CRegularMesh3D() [5/6]

```
CRegularMesh3D::CRegularMesh3D (
    const Point & p1,
    const Point & p2,
    const int nx,
    const int ny,
    const int px,
    const int py)
```

6.41.1.6 CRegularMesh3D() [6/6]

6.41.1.7 ∼CRegularMesh3D()

```
CRegularMesh3D::~CRegularMesh3D ( )
```

6.41.2 Member Function Documentation

6.41.2.1 Clone()

```
CRegularMesh3D * corenc::Mesh::CRegularMesh3D::Clone ( ) const [inline]
```

6.41.2.2 FindElement()

6.41.2.3 GetBoundary() [1/2]

```
auto corenc::Mesh::CRegularMesh3D::GetBoundary ( ) -> decltype(m_edges) [inline]
```

6.41.2.4 GetBoundary() [2/2]

```
\begin{tabular}{ll} \beg
```

6.41.2.5 GetElement()

```
\begin{tabular}{ll} {\tt const} & {\tt CRegularMesh3D::GetElement (} \\ & {\tt const} & {\tt unsigned int } n \end{tabular} ) & {\tt const} \\ \end{tabular}
```

6.41.2.6 GetElements()

```
auto corenc::Mesh::CRegularMesh3D::GetElements ( ) -> decltype(m_elems) [inline]
```

6.41.2.7 getMinSize()

```
const double corenc::Mesh::CRegularMesh3D::getMinSize ( ) const [inline]
```

6.41.2.8 GetNode()

6.41.2.9 GetNumberOfBoundaries()

```
\verb|const| unsigned| int CRegular Mesh 3D:: Get Number Of Boundaries () const|
```

6.41.2.10 GetNumberOfElements()

```
const unsigned int CRegularMesh3D::GetNumberOfElements ( ) const
```

6.41.2.11 GetNumberOflNodes()

```
const int CRegularMesh3D::GetNumberOfINodes ( ) const
```

6.41.2.12 GetNumberOfNodes()

```
const unsigned int CRegularMesh3D::GetNumberOfNodes ( ) const
```

6.41.2.13 getParameter() [1/2]

6.41.2.14 getParameter() [2/2]

6.41.2.15 getSolution() [1/2]

```
const std::vector< double > CRegularMesh3D::getSolution ( ) const
```

6.41.2.16 getSolution() [2/2]

6.41.2.17 interpolate()

6.41.2.18 operator=()

6.41.2.19 refine_h()

```
const int CRegularMesh3D::refine_h ( )
```

6.41.2.20 refine_hp()

```
const int corenc::Mesh::CRegularMesh3D::refine_hp ( )
```

```
6.41.2.21 refine_hx()
```

```
const int corenc::Mesh::CRegularMesh3D::refine_hx ( )
6.41.2.22 refine_hy()
```

const int corenc::Mesh::CRegularMesh3D::refine_hy ()

6.41.2.23 refine_p()

```
const int CRegularMesh3D::refine_p ( )
```

6.41.2.24 setParameter() [1/2]

6.41.2.25 setParameter() [2/2]

6.41.2.26 updateSolution() [1/4]

6.41.2.27 updateSolution() [2/4]

6.41.2.28 updateSolution() [3/4]

6.41.2.29 updateSolution() [4/4]

The documentation for this class was generated from the following files:

- · CoreNCFEM/Grids/RegularMesh3D.h
- CoreNCFEM/Grids/RegularMesh3D.cpp

6.42 corenc::CShallowWater Class Reference

```
#include <ShallowWater.h>
```

Inheritance diagram for corenc::CShallowWater:

Public Member Functions

- CShallowWater ()
- ∼CShallowWater ()
- Terms getTerm (const unsigned int) const
- · const unsigned int getNumberOfTerms () const
- const int setTerm (const unsigned int, const Terms &)
- const int addTerm (const Terms &)
- const int removeTerm (const Terms &)
- const int load_parameters (const std::string &file_name)
- const double get_parameter (const Terms &, const int element_type, const Mesh::Point &) const
- const double get_parameter (const Terms &, const int element_number, const int element_type, const Mesh::Point &) const
- const double get_boundary_parameter (const int type, const int element_type, const Mesh::Point &) const
- const double get_boundary_parameter (const int type, const int element_number, const int element_type, const Mesh::Point &) const
- const int get_number_of_boundaries () const

const double get_solution (const int sys_number, const int element_type, const int element_number, const
 Mesh::Point &) const

- const int get_boundary_type (const int number) const
- const int add_parameter (const Terms &, const int element_type, const Mesh::parameter< double > &value)
- const int set_parameter (const Terms &, const int element_type, const Mesh::parameter< double > &value)
- const int set_boundary_parameter (const int type, const int element_type, const boundary &value)
- const int add_boundary_parameter (const int type, const int element_type, const Mesh::parameter< double > &value)
- const int add_boundary_parameter (const int element_type, const Mesh::parameter< double > &value, const Mesh::parameter< double > &value2)

6.42.1 Constructor & Destructor Documentation

6.42.1.1 CShallowWater()

```
CShallowWater::CShallowWater ( )
```

6.42.1.2 ∼CShallowWater()

```
CShallowWater::~CShallowWater ( )
```

6.42.2 Member Function Documentation

6.42.2.1 add_boundary_parameter() [1/2]

6.42.2.2 add_boundary_parameter() [2/2]

6.42.2.3 add_parameter()

6.42.2.4 addTerm()

Implements corenc::CProblem.

6.42.2.5 get_boundary_parameter() [1/2]

6.42.2.6 get_boundary_parameter() [2/2]

6.42.2.7 get_boundary_type()

6.42.2.8 get_number_of_boundaries()

```
\verb|const| int CShallowWater::get_number_of_boundaries ( ) const|\\
```

6.42.2.9 get_parameter() [1/2]

6.42.2.10 get_parameter() [2/2]

6.42.2.11 get_solution()

6.42.2.12 getNumberOfTerms()

```
const unsigned int CShallowWater::getNumberOfTerms ( ) const [virtual]
```

Implements corenc::CProblem.

6.42.2.13 getTerm()

Implements corenc::CProblem.

6.42.2.14 load_parameters()

Implements corenc::CProblem.

6.42.2.15 removeTerm()

6.42.2.16 set_boundary_parameter()

6.42.2.17 set_parameter()

6.42.2.18 setTerm()

Implements corenc::CProblem.

The documentation for this class was generated from the following files:

- Problems/ShallowWater.h
- Problems/ShallowWater.cpp

6.43 corenc::Mesh::CShape Class Reference

#include <Shape.h>

Inheritance diagram for corenc::Mesh::CShape:

Public Member Functions

- CShape ()
- CShape (const int *)
- virtual ∼CShape ()
- · virtual const int GetNumberOfNodes () const
- · virtual const int GetNumberOfEdges () const
- · virtual const int GetNumberOfFacets () const
- virtual const int GetNode (const int) const
- virtual const int GetNode (const NODES &) const
- virtual const int GetEdge (const int) const
- virtual const int GetFacet (const int) const
- virtual const double Integrate (const scalar_func &, const std::vector< Point > &) const =0
- virtual const Point Integrate (const vector_func &, const std::vector < Point > &) const =0
- virtual const std::vector< double > Integrate (const std::function< const std::vector< double > (const Point &)> &, const std::vector< Point > &) const =0
- virtual void SetNode (const int, const int)=0
- virtual void SetEdge (const int, const int)
- · virtual void SetFacet (const int, const int)

6.43.1 Constructor & Destructor Documentation

6.43.1.1 CShape() [1/2]

```
corenc::Mesh::CShape::CShape ( ) [inline]
```

6.43.1.2 CShape() [2/2]

6.43.1.3 ∼CShape()

```
virtual corenc::Mesh::CShape::~CShape ( ) [inline], [virtual]
```

6.43.2 Member Function Documentation

6.43.2.1 GetEdge()

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.2 GetFacet()

 $Reimplemented\ in\ corenc:: Mesh:: CCube,\ corenc:: Mesh:: CTriangle,\ and\ corenc:: Mesh:: M$

6.43.2.3 GetNode() [1/2]

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CEdge, corenc::Mesh::CNode, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.4 GetNode() [2/2]

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CEdge, corenc::Mesh::CNode, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.5 GetNumberOfEdges()

```
virtual const int corenc::Mesh::CShape::GetNumberOfEdges ( ) const [inline], [virtual]
```

 $Reimplemented\ in\ corenc:: Mesh:: CCube,\ corenc:: Mesh:: CTriangle,\ and\ corenc:: Mesh:: M$

6.43.2.6 GetNumberOfFacets()

```
virtual const int corenc::Mesh::CShape::GetNumberOfFacets ( ) const [inline], [virtual]
```

 $Reimplemented \ in \ corenc:: Mesh:: CCube, \ corenc:: Mesh:: CTriangle, \ and \ cor$

6.43.2.7 GetNumberOfNodes()

```
virtual const int corenc::Mesh::CShape::GetNumberOfNodes ( ) const [inline], [virtual]
```

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CEdge, corenc::Mesh::CNode, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.8 Integrate() [1/3]

6.43.2.9 Integrate() [2/3]

```
virtual const std::vector< double > corenc::Mesh::CShape::Integrate ( const std::function< const std::vector< double > (const Point &) > & , const std::vector< Point > & ) const [pure virtual]
```

Implemented in corenc::Mesh::CCube, corenc::Mesh::CEdge, corenc::Mesh::CNode, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.10 Integrate() [3/3]

6.43.2.11 SetEdge()

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.12 SetFacet()

Reimplemented in corenc::Mesh::CCube, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

6.43.2.13 SetNode()

Implemented in corenc::Mesh::CCube, corenc::Mesh::CEdge, corenc::Mesh::CNode, corenc::Mesh::CRectangle, corenc::Mesh::CTriangle, and corenc::Mesh::CTriangleLinear.

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/Shape.h

6.44 corenc::Mesh::CShapeFunction < Type > Class Template Reference

```
#include <ShapeFunction.h>
```

Public Member Functions

- CShapeFunction ()
- CShapeFunction (const Point *)
- virtual ∼CShapeFunction ()
- virtual const int GetNumberOfShapeFunctions () const =0
- virtual const double GetShapeFunction (const int, const Point &) const =0
- virtual const Point GetGradShapeFunction (const int, const Point &) const =0
- virtual const Point GetNormal () const =0
- virtual void ReverseNormal ()=0
- virtual const double GetMeasure () const =0

6.44.1 Constructor & Destructor Documentation

6.44.1.1 CShapeFunction() [1/2]

```
template<class Type >
corenc::Mesh::CShapeFunction Type >::CShapeFunction ( ) [inline]
```

6.44.1.2 CShapeFunction() [2/2]

6.44.1.3 ∼CShapeFunction()

```
template<class Type >
virtual corenc::Mesh::CShapeFunction< Type >::~CShapeFunction ( ) [inline], [virtual]
```

6.44.2 Member Function Documentation

6.44.2.1 GetGradShapeFunction()

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, and corenc::Mesh::CTriangleBasis.

6.44.2.2 **GetMeasure()**

```
template<class Type >
virtual const double corenc::Mesh::CShapeFunction< Type >::GetMeasure ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, and corenc::Mesh::CTriangleLinearBasis.

6.44.2.3 GetNormal()

```
template<class Type >
virtual const Point corenc::Mesh::CShapeFunction< Type >::GetNormal ( ) const [pure virtual]
```

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis.

6.44.2.4 GetNumberOfShapeFunctions()

```
template<class Type >
virtual const int corenc::Mesh::CShapeFunction< Type >::GetNumberOfShapeFunctions ( ) const
[pure virtual]
```

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis.

6.44.2.5 GetShapeFunction()

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, and corenc::Mesh::CTriangleBasis.

6.44.2.6 ReverseNormal()

```
template<class Type >
virtual void corenc::Mesh::CShapeFunction< Type >::ReverseNormal ( ) [pure virtual]
```

Implemented in corenc::Mesh::CCubeBasis, corenc::Mesh::CEdgeLinearBasis, corenc::Mesh::CEdgeConstantBasis, corenc::Mesh::CEdgeMultiBasis, corenc::Mesh::CEdgeHermiteBasis, corenc::Mesh::CEdge2ndBasis, corenc::Mesh::CNodeBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CRectangleBasis2x, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis, corenc::Mesh::CTriangleBasis.

The documentation for this class was generated from the following file:

CoreNCFEM/FiniteElements/ShapeFunction.h

6.45 Methods::CSMethod Class Reference

```
#include <CSMethod.h>
```

Public Member Functions

- · CSMethod ()
- virtual ∼CSMethod ()

6.45.1 Constructor & Destructor Documentation

6.45.1.1 CSMethod()

```
Methods::CSMethod::CSMethod ( ) [inline]
```

6.45.1.2 ∼CSMethod()

```
virtual Methods::CSMethod::~CSMethod ( ) [inline], [virtual]
```

The documentation for this class was generated from the following file:

· CoreNCFEM/Methods/CSMethod.h

6.46 corenc::CSolution Class Reference

#include <FESolution.h>

Inheritance diagram for corenc::CSolution:

Public Member Functions

- CSolution ()
- virtual ∼CSolution ()

6.46.1 Constructor & Destructor Documentation

6.46.1.1 CSolution()

corenc::CSolution::CSolution () [inline]

6.46.1.2 ~CSolution()

virtual corenc::CSolution::~CSolution () [inline], [virtual]

The documentation for this class was generated from the following file:

• CoreNCFEM/FESolution.h

6.47 corenc::Mesh::CTriangle Class Reference

#include <Triangle.h>

Inheritance diagram for corenc::Mesh::CTriangle:

Public Member Functions

- CTriangle ()
- CTriangle (const int n1, const int n2, const int n3, const int order)
- CTriangle (const int n1, const int n2, const int n3, const int e1, const int e2, const int e3, const int order)
- CTriangle (const int *, const int order)
- CTriangle (const int *, const int *, const int order)
- CTriangle (const CTriangle &)
- CTriangle & operator= (const CTriangle &t)
- const bool operator== (const CTriangle &t)
- std::istream & operator>> (std::istream &is)
- ∼CTriangle ()
- const int GetNode (const int) const
- const int GetNode (const NODES &) const
- · const int GetEdge (const int) const
- const int GetFacet (const int) const
- const int GetNumberOfNodes () const
- · const int GetNumberOfEdges () const
- · const int GetNumberOfFacets () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- void SetNode (const int k, const int node)
- const int IncreaseOrder ()
- void SetEdge (const int k, const int edge)
- void SetFacet (const int k, const int facet)

6.47.1 Constructor & Destructor Documentation

6.47.1.1 CTriangle() [1/6]

```
CTriangle::CTriangle ()
```

6.47.1.2 CTriangle() [2/6]

```
CTriangle::CTriangle (

const int n1,

const int n2,

const int n3,

const int order)
```

6.47.1.3 CTriangle() [3/6]

```
CTriangle::CTriangle (

const int n1,

const int n2,

const int n3,

const int e1,

const int e2,

const int e3,

const int order)
```

6.47.1.4 CTriangle() [4/6]

6.47.1.5 CTriangle() [5/6]

6.47.1.6 CTriangle() [6/6]

```
CTriangle::CTriangle ( const CTriangle & t )
```

6.47.1.7 ∼CTriangle()

```
\verb|corenc::Mesh::CTriangle::\sim CTriangle ( ) [inline]|\\
```

6.47.2 Member Function Documentation

6.47.2.1 GetEdge()

Reimplemented from corenc::Mesh::CShape.

6.47.2.2 GetFacet()

Reimplemented from corenc::Mesh::CShape.

6.47.2.3 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.47.2.4 GetNode() [2/2]

Reimplemented from corenc::Mesh::CShape.

6.47.2.5 GetNumberOfEdges()

```
const int CTriangle::GetNumberOfEdges ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.47.2.6 GetNumberOfFacets()

```
const int CTriangle::GetNumberOfFacets ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.47.2.7 GetNumberOfNodes()

```
const int CTriangle::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.47.2.8 IncreaseOrder()

```
const int CTriangle::IncreaseOrder ( )
```

6.47.2.9 Integrate() [1/3]

6.47.2.10 Integrate() [2/3]

6.47.2.11 Integrate() [3/3]

```
const vector< double > CTriangle::Integrate ( const std::function< const std::vector< double > (const Point &) > & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.47.2.12 operator=()

6.47.2.13 operator==()

6.47.2.14 operator>>()

```
std::istream & corenc::Mesh::CTriangle::operator>> ( std::istream & is ) [inline]
```

6.47.2.15 SetEdge()

Reimplemented from corenc::Mesh::CShape.

6.47.2.16 SetFacet()

```
void CTriangle::SetFacet (  {\it const int } \ k, \\ {\it const int facet } ) \ \ [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.47.2.17 SetNode()

Implements corenc::Mesh::CShape.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Triangle.h
- CoreNCFEM/FiniteElements/Triangle.cpp

6.48 corenc::Mesh::CTriangleBasis Class Reference

#include <Triangle.h>

Inheritance diagram for corenc::Mesh::CTriangleBasis:

Public Member Functions

- CTriangleBasis ()
- CTriangleBasis (const Point &, const Point &, const Point &, const int order)
- CTriangleBasis (const Point *, const int order)
- · CTriangleBasis (const CTriangleBasis &)
- CTriangleBasis & operator= (const CTriangleBasis &t)
- ∼CTriangleBasis ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- · const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- · const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const
- CTriangleBasis ()
- CTriangleBasis (const Point &, const Point &, const Point &, const int order)
- CTriangleBasis (const Point *, const int order)
- CTriangleBasis (const CTriangleBasis &)
- CTriangleBasis & operator= (const CTriangleBasis &t)
- ∼CTriangleBasis ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const

6.48.1 Constructor & Destructor Documentation

6.48.1.1 CTriangleBasis() [1/8]

CTriangleBasis::CTriangleBasis ()

6.48.1.2 CTriangleBasis() [2/8]

6.48.1.3 CTriangleBasis() [3/8]

6.48.1.4 CTriangleBasis() [4/8]

```
CTriangleBasis::CTriangleBasis (  {\tt const~CTriangleBasis~\&~t~)}
```

6.48.1.5 ∼CTriangleBasis() [1/2]

```
corenc::Mesh::CTriangleBasis::~CTriangleBasis ( ) [inline]
```

6.48.1.6 CTriangleBasis() [5/8]

```
\verb|corenc::Mesh::CTriangleBasis::CTriangleBasis ( )|\\
```

6.48.1.7 CTriangleBasis() [6/8]

6.48.1.8 CTriangleBasis() [7/8]

6.48.1.9 CTriangleBasis() [8/8]

6.48.1.10 ∼CTriangleBasis() [2/2]

```
corenc::Mesh::CTriangleBasis::~CTriangleBasis ( ) [inline]
```

6.48.2 Member Function Documentation

6.48.2.1 GetGradShapeFunction() [1/2]

```
const Point CTriangleBasis::GetGradShapeFunction ( const int k, const Point & p ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.48.2.2 GetGradShapeFunction() [2/2]

Implements corenc::Mesh::CShapeFunction< double >.

6.48.2.3 GetMeasure()

```
const double corenc::Mesh::CTriangleBasis::GetMeasure ( ) const [inline], [virtual]
```

6.48.2.4 GetNormal() [1/2]

```
const Point CTriangleBasis::GetNormal ( ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.48.2.5 GetNormal() [2/2]

```
const Point corenc::Mesh::CTriangleBasis::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.48.2.6 GetNumberOfShapeFunctions() [1/2]

```
\label{lem:const} \begin{tabular}{ll} const int CTriangleBasis:: GetNumberOfShapeFunctions ( ) const [virtual] \\ \begin{tabular}{ll} limplements corenc:: Mesh:: CShapeFunction < double >. \\ \end{tabular}
```

6.48.2.7 GetNumberOfShapeFunctions() [2/2]

```
const int corenc::Mesh::CTriangleBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.48.2.8 GetShapeFunction() [1/2]

Implements corenc::Mesh::CShapeFunction< double >.

6.48.2.9 GetShapeFunction() [2/2]

6.48.2.10 GetValue() [1/2]

```
const double CTriangleBasis::GetValue ( {\tt const\ Point\ \&\ p}\ )\ {\tt const}
```

6.48.2.11 GetValue() [2/2]

6.48.2.12 GetWeight()

```
const double CTriangleBasis::GetWeight (  const int \ , \\ const std::vector < Point > \& verts, \\ const std::function < const double(const Point \&) > \& f ) const
```

6.48.2.13 IncreaseOrder()

```
const int CTriangleBasis::IncreaseOrder ( )
```

6.48.2.14 operator=() [1/2]

6.48.2.15 operator=() [2/2]

6.48.2.16 ReverseNormal() [1/2]

```
void CTriangleBasis::ReverseNormal ( ) [virtual]
```

6.48.2.17 ReverseNormal() [2/2]

```
void corenc::Mesh::CTriangleBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- · CoreNCFEM/FiniteElements/Triangle.h
- · CoreNCFEM/FiniteElements/TriangleLinear.h
- CoreNCFEM/FiniteElements/Triangle.cpp

6.49 corenc::Mesh::CTriangleLagrangeBasis Class Reference

```
#include <Triangle.h>
```

Inheritance diagram for corenc::Mesh::CTriangleLagrangeBasis:

Public Member Functions

- CTriangleLagrangeBasis ()
- · CTriangleLagrangeBasis (const Point &, const Point &, const Point &, const int order)
- CTriangleLagrangeBasis (const Point *, const int order)
- CTriangleLagrangeBasis (const CTriangleLagrangeBasis &)
- CTriangleLagrangeBasis & operator= (const CTriangleLagrangeBasis &t)
- ∼CTriangleLagrangeBasis ()
- const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- · const double GetAlpha (const int i, const int j) const
- const double GetMeasure () const
- const double GetWeight (const int, const std::vector< Point > &verts, const std::function< const double(const Point &)> &f) const

6.49.1 Constructor & Destructor Documentation

6.49.1.1 CTriangleLagrangeBasis() [1/4]

```
CTriangleLagrangeBasis::CTriangleLagrangeBasis ( )
```

6.49.1.2 CTriangleLagrangeBasis() [2/4]

```
CTriangleLagrangeBasis::CTriangleLagrangeBasis ( const Point & p1, const Point & p2, const Point & p3, const int p3, const int p3,
```

6.49.1.3 CTriangleLagrangeBasis() [3/4]

6.49.1.4 CTriangleLagrangeBasis() [4/4]

```
CTriangleLagrangeBasis::CTriangleLagrangeBasis (  {\tt const~CTriangleLagrangeBasis~\&~t~)}
```

6.49.1.5 ∼CTriangleLagrangeBasis()

```
corenc::Mesh::CTriangleLagrangeBasis::~CTriangleLagrangeBasis ( ) [inline]
```

6.49.2 Member Function Documentation

6.49.2.1 GetAlpha()

```
const double corenc::Mesh::CTriangleLagrangeBasis::GetAlpha ( const int i, const int j) const [inline]
```

6.49.2.2 GetGradShapeFunction()

Implements corenc::Mesh::CShapeFunction< double >.

6.49.2.3 GetMeasure()

```
const double corenc::Mesh::CTriangleLagrangeBasis::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.49.2.4 GetNormal()

```
const Point CTriangleLagrangeBasis::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.49.2.5 GetNumberOfShapeFunctions()

```
const int CTriangleLagrangeBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.49.2.6 GetShapeFunction()

```
const double CTriangleLagrangeBasis::GetShapeFunction (  {\rm const\ int\ } k,  {\rm const\ Point\ \&\ } p \text{ ) const\ [virtual]}
```

 $Implements\ corenc:: Mesh:: CShape Function < double >.$

6.49.2.7 GetValue()

```
const double CTriangleLagrangeBasis::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.49.2.8 GetWeight()

6.49.2.9 IncreaseOrder()

```
const int CTriangleLagrangeBasis::IncreaseOrder ( )
```

6.49.2.10 operator=()

6.49.2.11 ReverseNormal()

```
void CTriangleLagrangeBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/Triangle.h
- CoreNCFEM/FiniteElements/TriangleLagrange.cpp

6.50 corenc::Mesh::CTriangleLinear Class Reference

```
#include <TriangleLinear.h>
```

Inheritance diagram for corenc::Mesh::CTriangleLinear:

Public Member Functions

- CTriangleLinear ()
- CTriangleLinear (const int n1, const int n2, const int n3)
- CTriangleLinear (const int n1, const int n2, const int n3, const int e1, const int e2, const int e3)
- CTriangleLinear (const int *)
- CTriangleLinear (const int *, const int *)
- CTriangleLinear (const CTriangleLinear &)
- CTriangleLinear & operator= (const CTriangleLinear &t)
- const bool operator== (const CTriangleLinear &t)
- std::istream & operator>> (std::istream &is)
- ∼CTriangleLinear ()
- const int GetNode (const int) const
- const int GetNode (const NODES &) const
- · const int GetEdge (const int) const
- · const int GetFacet (const int) const
- · const int GetNumberOfNodes () const
- · const int GetNumberOfEdges () const
- · const int GetNumberOfFacets () const
- const double Integrate (const std::function< const double(const Point &)> &, const std::vector< Point > &v)
 const
- const Point Integrate (const std::function< const Point(const Point &)> &, const std::vector< Point > &v)
 const
- const std::vector< double > Integrate (const std::function< const std::vector< double >(const Point &)> &, const std::vector< Point > &) const
- void SetNode (const int k, const int node)
- const int IncreaseOrder ()
- void SetEdge (const int k, const int edge)
- void SetFacet (const int k, const int facet)

6.50.1 Constructor & Destructor Documentation

6.50.1.1 CTriangleLinear() [1/6]

```
CTriangleLinear::CTriangleLinear ( )
```

6.50.1.2 CTriangleLinear() [2/6]

6.50.1.3 CTriangleLinear() [3/6]

6.50.1.4 CTriangleLinear() [4/6]

6.50.1.5 CTriangleLinear() [5/6]

6.50.1.6 CTriangleLinear() [6/6]

```
CTriangleLinear::CTriangleLinear (  {\tt const~CTriangleLinear~\&~t~)}
```

6.50.1.7 \sim CTriangleLinear()

```
corenc::Mesh::CTriangleLinear::~CTriangleLinear ( ) [inline]
```

6.50.2 Member Function Documentation

6.50.2.1 GetEdge()

Reimplemented from corenc::Mesh::CShape.

6.50.2.2 GetFacet()

Reimplemented from corenc::Mesh::CShape.

6.50.2.3 GetNode() [1/2]

Reimplemented from corenc::Mesh::CShape.

6.50.2.4 GetNode() [2/2]

```
const int CTriangleLinear::GetNode ( {\tt const\ NODES\ \&\ node\ )\ const\ [virtual]}
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.5 GetNumberOfEdges()

```
const int CTriangleLinear::GetNumberOfEdges ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.6 GetNumberOfFacets()

```
const int CTriangleLinear::GetNumberOfFacets ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.7 GetNumberOfNodes()

```
const int CTriangleLinear::GetNumberOfNodes ( ) const [virtual]
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.8 IncreaseOrder()

```
const int corenc::Mesh::CTriangleLinear::IncreaseOrder ( ) [inline]
```

6.50.2.9 Integrate() [1/3]

6.50.2.10 Integrate() [2/3]

```
const Point CTriangleLinear::Integrate ( const std::function< const Point (const Point &)> & f, const std::vector< Point > & v ) const
```

6.50.2.11 Integrate() [3/3]

```
const vector< double > CTriangleLinear::Integrate ( const std::function< const std::vector< double >(const Point &)> & f, const std::vector< Point > & v ) const [virtual]
```

Implements corenc::Mesh::CShape.

6.50.2.12 operator=()

6.50.2.13 operator==()

6.50.2.14 operator>>()

6.50.2.15 SetEdge()

```
void CTriangleLinear::SetEdge (  \mbox{const int } k \mbox{,}   \mbox{const int } edge \mbox{ ) } \mbox{ [virtual]}
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.16 SetFacet()

```
void CTriangleLinear::SetFacet (  {\rm const\ int}\ k, \\ {\rm const\ int}\ facet\ )\ [{\rm virtual}]
```

Reimplemented from corenc::Mesh::CShape.

6.50.2.17 SetNode()

Implements corenc::Mesh::CShape.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/TriangleLinear.h
- CoreNCFEM/FiniteElements/TriangleLinear.cpp

6.51 corenc::Mesh::CTriangleLinearBasis Class Reference

```
#include <TriangleLinear.h>
```

Inheritance diagram for corenc::Mesh::CTriangleLinearBasis:

```
corenc::Mesh::CShapeFunction < double >

corenc::Mesh::CTriangleLinearBasis
```

Public Member Functions

- CTriangleLinearBasis ()
- CTriangleLinearBasis (const Point &, const Point &, const Point &)
- CTriangleLinearBasis (const Point *)
- CTriangleLinearBasis (const CTriangleLinearBasis &)
- CTriangleLinearBasis & operator= (const CTriangleLinearBasis &t)
- ∼CTriangleLinearBasis ()
- · const int GetNumberOfShapeFunctions () const
- const double GetShapeFunction (const int, const Point &) const
- const Point GetGradShapeFunction (const int, const Point &) const
- const Point GetNormal () const
- void ReverseNormal ()
- const double GetValue (const Point &) const
- const int IncreaseOrder ()
- const double GetMeasure () const

6.51.1 Constructor & Destructor Documentation

6.51.1.1 CTriangleLinearBasis() [1/4]

```
CTriangleLinearBasis::CTriangleLinearBasis ( )
```

6.51.1.2 CTriangleLinearBasis() [2/4]

```
CTriangleLinearBasis::CTriangleLinearBasis ( const Point & p1, const Point & p2, const Point & p3)
```

6.51.1.3 CTriangleLinearBasis() [3/4]

6.51.1.4 CTriangleLinearBasis() [4/4]

6.51.1.5 ∼CTriangleLinearBasis()

```
corenc::Mesh::CTriangleLinearBasis::~CTriangleLinearBasis ( ) [inline]
```

6.51.2 Member Function Documentation

6.51.2.1 GetGradShapeFunction()

```
const Point CTriangleLinearBasis::GetGradShapeFunction ( const int k, const Point & ) const [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

6.51.2.2 GetMeasure()

```
const double corenc::Mesh::CTriangleLinearBasis::GetMeasure ( ) const [inline], [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.51.2.3 GetNormal()

```
const Point CTriangleLinearBasis::GetNormal ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.51.2.4 GetNumberOfShapeFunctions()

```
const int CTriangleLinearBasis::GetNumberOfShapeFunctions ( ) const [virtual]
Implements corenc::Mesh::CShapeFunction< double >.
```

6.51.2.5 GetShapeFunction()

6.51.2.6 GetValue()

```
const double CTriangleLinearBasis::GetValue ( {\tt const\ Point\ \&\ p\ )\ const}
```

6.51.2.7 IncreaseOrder()

```
const int corenc::Mesh::CTriangleLinearBasis::IncreaseOrder () [inline]
```

6.51.2.8 operator=()

6.51.2.9 ReverseNormal()

```
void CTriangleLinearBasis::ReverseNormal ( ) [virtual]
```

Implements corenc::Mesh::CShapeFunction< double >.

The documentation for this class was generated from the following files:

- CoreNCFEM/FiniteElements/TriangleLinear.h
- CoreNCFEM/FiniteElements/TriangleLinear.cpp

6.52 corenc::Mesh::CTriangularMesh Class Reference

```
#include <TriangularMesh.h>
```

Inheritance diagram for corenc::Mesh::CTriangularMesh:

Public Member Functions

- CTriangularMesh ()
- CTriangularMesh (const std::string &file_name)
- CTriangularMesh (const CTriangularMesh &)
- CTriangularMesh (const Point &p1, const Point &p2, const int nx, const int ny)
- CTriangularMesh & operator= (const CTriangularMesh &tr)
- CTriangularMesh * Clone () const
- const unsigned int GetNumberOfElements () const
- const unsigned int GetNumberOfNodes () const
- const unsigned int GetNumberOfBoundaries () const
- · const int FindElement (const Point &) const
- · const Point GetNode (const unsigned int) const
- const CElement * GetElement (const unsigned int) const
- const CElement * GetBoundary (const unsigned int) const
- const double getMinSize () const
- const double getSolution (const unsigned int element, const unsigned int node) const
- · const int updateSolution (const unsigned int element, const unsigned int node, const double value)
- const std::vector< double > getSolution () const
- const int updateSolution (const std::vector< double > &)
- const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)
- const double getParameter (Parameters, const unsigned int, const Point &) const
- const double getParameter (Parameters, const unsigned int, const int) const
- const int setParameter (Parameters, const double, const unsigned int)
- const int setParameter (const CParameter &, const unsigned int type)
- const int updateSolution (const unsigned int node, const double value)
- const int refine h ()
- const int refine_p ()
- const int refine_hp ()
- const int set4thOrder ()
- const int set2ndOrder ()
- const int set3rdOrder ()
- · const int interpolate (const int node) const
- · const int GetNumberOflNodes () const
- ∼CTriangularMesh ()
- auto GetElements () -> decltype(m_elems)
- auto GetBoundary () -> decltype(m edges)

6.52.1 Constructor & Destructor Documentation

6.52.1.1 CTriangularMesh() [1/4]

```
CTriangularMesh::CTriangularMesh ( )
```

6.52.1.2 CTriangularMesh() [2/4]

6.52.1.3 CTriangularMesh() [3/4]

```
CTriangularMesh::CTriangularMesh ( {\tt const~CTriangularMesh~\&~tr~)}
```

6.52.1.4 CTriangularMesh() [4/4]

```
CTriangularMesh::CTriangularMesh (
    const Point & p1,
    const Point & p2,
    const int nx,
    const int ny )
```

6.52.1.5 ∼CTriangularMesh()

```
CTriangularMesh::~CTriangularMesh ( )
```

6.52.2 Member Function Documentation

6.52.2.1 Clone()

```
CTriangularMesh * corenc::Mesh::CTriangularMesh::Clone ( ) const [inline]
```

6.52.2.2 FindElement()

6.52.2.3 GetBoundary() [1/2]

```
auto corenc::Mesh::CTriangularMesh::GetBoundary ( ) -> decltype(m_edges) [inline]
```

6.52.2.4 GetBoundary() [2/2]

```
\begin{tabular}{ll} \beg
```

Implements corenc::Mesh::CMesh<>.

6.52.2.5 GetElement()

```
\begin{tabular}{ll} \begin{tabular}{ll} const $\tt CElement * CTriangularMesh::GetElement ( \\ & const $\tt unsigned int $n$ ) const $\tt [virtual]$ \\ \end{tabular}
```

Implements corenc::Mesh::CMesh<>.

6.52.2.6 GetElements()

```
auto corenc::Mesh::CTriangularMesh::GetElements ( ) -> decltype(m_elems) [inline]
```

6.52.2.7 getMinSize()

```
const double corenc::Mesh::CTriangularMesh::getMinSize ( ) const [inline], [virtual]
```

Implements corenc::Mesh::CMesh<>.

6.52.2.8 GetNode()

6.52.2.9 GetNumberOfBoundaries()

```
const unsigned int CTriangularMesh::GetNumberOfBoundaries ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.52.2.10 GetNumberOfElements()

```
const unsigned int CTriangularMesh::GetNumberOfElements ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.52.2.11 GetNumberOflNodes()

```
const int CTriangularMesh::GetNumberOfINodes ( ) const
```

6.52.2.12 GetNumberOfNodes()

```
const unsigned int CTriangularMesh::GetNumberOfNodes ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.52.2.13 getParameter() [1/2]

```
const double CTriangularMesh::getParameter ( \frac{\text{Parameters }param,}{\text{const unsigned int }l,} \text{const int }i\text{ ) const [virtual]}
```

Implements corenc::Mesh::CMesh<>.

6.52.2.14 getParameter() [2/2]

```
const double CTriangularMesh::getParameter (  \begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\
```

```
6.52.2.15 getSolution() [1/2]
```

```
const std::vector< double > CTriangularMesh::getSolution ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.52.2.16 getSolution() [2/2]

Implements corenc::Mesh::CMesh<>.

6.52.2.17 interpolate()

6.52.2.18 operator=()

6.52.2.19 refine_h()

```
const int CTriangularMesh::refine_h ( )
```

6.52.2.20 refine_hp()

```
const int corenc::Mesh::CTriangularMesh::refine_hp ( )
```

6.52.2.21 refine_p()

```
const int CTriangularMesh::refine_p ( )
```

6.52.2.22 set2ndOrder()

```
const int CTriangularMesh::set2ndOrder ( )
```

6.52.2.23 set3rdOrder()

```
const int CTriangularMesh::set3rdOrder ( )
```

6.52.2.24 set4thOrder()

```
const int CTriangularMesh::set4thOrder ( )
```

6.52.2.25 setParameter() [1/2]

6.52.2.26 setParameter() [2/2]

Implements corenc::Mesh::CMesh<>.

6.52.2.27 updateSolution() [1/4]

6.52.2.28 updateSolution() [2/4]

Implements corenc::Mesh::CMesh<>.

6.52.2.29 updateSolution() [3/4]

Implements corenc::Mesh::CMesh<>.

6.52.2.30 updateSolution() [4/4]

```
const int CTriangularMesh::updateSolution (  {\it const unsigned int node,} \\ {\it const double value} \ ) \ \ [virtual]
```

Implements corenc::Mesh::CMesh<>.

The documentation for this class was generated from the following files:

- · CoreNCFEM/Grids/TriangularMesh.h
- CoreNCFEM/Grids/TriangularMesh.cpp

6.53 corenc::Mesh::CTriangularMeshLinear Class Reference

#include <TriangularMeshLinear.h>

Inheritance diagram for corenc::Mesh::CTriangularMeshLinear:

Public Member Functions

- CTriangularMeshLinear ()
- CTriangularMeshLinear (const std::string &file_name)
- CTriangularMeshLinear (const CTriangularMeshLinear &)
- const unsigned int GetNumberOfElements () const
- · const unsigned int GetNumberOfNodes () const
- const unsigned int GetNumberOfBoundaries () const
- const int FindElement (const Point &) const
- const Point GetNode (const unsigned int) const
- const CElement * GetElement (const unsigned int) const
- const CElement * GetBoundary (const unsigned int) const
- const double getMinSize () const
- · const double getSolution (const unsigned int element, const unsigned int node) const
- const int updateSolution (const unsigned int element, const unsigned int node, const double value)
- const std::vector< double > getSolution () const
- const int updateSolution (const std::vector< double > &)
- const int updateSolution (const unsigned int element, const unsigned int node, CSolution *value)
- const double getParameter (Parameters, const unsigned int, const Point &) const
- · const double getParameter (Parameters, const unsigned int, const int) const
- · const int setParameter (Parameters, const double, const unsigned int)
- const int setParameter (const CParameter &, const unsigned int type)
- const int updateSolution (const unsigned int node, const double value)
- const int refine h ()
- ∼CTriangularMeshLinear ()
- auto GetElements () -> decltype(m_elems)
- auto GetBoundary () -> decltype(m_edges)

6.53.1 Constructor & Destructor Documentation

6.53.1.1 CTriangularMeshLinear() [1/3]

```
CTriangularMeshLinear::CTriangularMeshLinear ( )
```

6.53.1.2 CTriangularMeshLinear() [2/3]

6.53.1.3 CTriangularMeshLinear() [3/3]

6.53.1.4 ∼CTriangularMeshLinear()

```
{\tt CTriangularMeshLinear::} {\sim} {\tt CTriangularMeshLinear} \ \ (\ )
```

6.53.2 Member Function Documentation

6.53.2.1 FindElement()

```
const int CTriangularMeshLinear::FindElement ( const\ Point\ \&\ )\ const\ [virtual]
```

Implements corenc::Mesh::CMesh<>.

6.53.2.2 GetBoundary() [1/2]

```
auto corenc::Mesh::CTriangularMeshLinear::GetBoundary ( ) -> decltype(m_edges) [inline]
```

6.53.2.3 GetBoundary() [2/2]

Implements corenc::Mesh::CMesh<>.

6.53.2.4 GetElement()

Implements corenc::Mesh::CMesh<>.

6.53.2.5 GetElements()

```
auto corenc::Mesh::CTriangularMeshLinear::GetElements ( ) -> decltype(m_elems) [inline]
```

6.53.2.6 getMinSize()

```
const double corenc::Mesh::CTriangularMeshLinear::getMinSize ( ) const [inline], [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.53.2.7 GetNode()

```
\begin{tabular}{ll} \beg
```

Implements corenc::Mesh::CMesh<>.

6.53.2.8 GetNumberOfBoundaries()

```
const unsigned int CTriangularMeshLinear::GetNumberOfBoundaries ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.53.2.9 GetNumberOfElements()

```
const unsigned int CTriangularMeshLinear::GetNumberOfElements ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.53.2.10 GetNumberOfNodes()

```
const unsigned int CTriangularMeshLinear::GetNumberOfNodes ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.53.2.11 getParameter() [1/2]

```
const double CTriangularMeshLinear::getParameter ( \frac{\text{Parameters }param,}{\text{const unsigned int }l,} \text{const int }i\text{ ) const [virtual]}
```

6.53.2.12 getParameter() [2/2]

Implements corenc::Mesh::CMesh<>.

6.53.2.13 getSolution() [1/2]

```
const std::vector< double > CTriangularMeshLinear::getSolution ( ) const [virtual]
Implements corenc::Mesh::CMesh<>.
```

6.53.2.14 getSolution() [2/2]

Implements corenc::Mesh::CMesh<>.

6.53.2.15 refine_h()

```
const int CTriangularMeshLinear::refine_h ( )
```

6.53.2.16 setParameter() [1/2]

6.53.2.17 setParameter() [2/2]

6.53.2.18 updateSolution() [1/4]

```
const int CTriangularMeshLinear::updateSolution ( const \ std::vector < \ double \ > \& \quad ) \quad [virtual]
```

Implements corenc::Mesh::CMesh<>.

6.53.2.19 updateSolution() [2/4]

Implements corenc::Mesh::CMesh<>.

6.53.2.20 updateSolution() [3/4]

Implements corenc::Mesh::CMesh<>.

6.53.2.21 updateSolution() [4/4]

Implements corenc::Mesh::CMesh<>.

The documentation for this class was generated from the following files:

- CoreNCFEM/Grids/TriangularMeshLinear.h
- CoreNCFEM/Grids/TriangularMeshLinear.cpp

6.54 corenc::CVecSolution Class Reference

```
#include <FESolution.h>
```

Inheritance diagram for corenc::CVecSolution:

Public Member Functions

- CVecSolution ()
- ∼CVecSolution ()

Public Attributes

std::vector< double > m w

6.54.1 Constructor & Destructor Documentation

6.54.1.1 CVecSolution()

```
corenc::CVecSolution::CVecSolution ( ) [inline]
```

6.54.1.2 ∼CVecSolution()

```
\verb|corenc::CVecSolution::\sim CVecSolution ( ) [inline]|\\
```

6.54.2 Member Data Documentation

6.54.2.1 m_w

```
std::vector<double> corenc::CVecSolution::m_w
```

The documentation for this class was generated from the following file:

· CoreNCFEM/FESolution.h

6.55 corenc::solvers::dg_shallow_water< Mesh > Class Template Reference

```
#include <dg_solver_shallow_water.h>
```

Public Member Functions

- dg_shallow_water ()
- ~dg_shallow_water ()
- const int solve (const double t0, const double t1, const Mesh &mesh, vector_solution &sol, const std
 ::function< const std::vector< double > (const std::vector< double > &)> &, const std::function< const
 std::vector< double > (const std::vector< double > &)> &, const std::vector< double
 > (const std::vector< double > &)> &) const
- const int solve (const double t0, const double t1, const Mesh &mesh, vector_solution &sol, std::vector< double > &bath, std::vector< double > &ze, std::vector< double > &dzx, std::vector< double > &dzy, std::vector< double > &dbx, std::vector< double > &dby, const std::function< const std::vector< double > (const std::ve

6.55.1 Constructor & Destructor Documentation

6.55.1.1 dg_shallow_water()

```
template<class Mesh >
corenc::solvers::dg_shallow_water< Mesh >::dg_shallow_water
```

6.55.1.2 \sim dg_shallow_water()

```
template<class Mesh >
corenc::solvers::dg_shallow_water< Mesh >::~dg_shallow_water
```

6.55.2 Member Function Documentation

6.55.2.1 solve() [1/2]

6.55.2.2 solve() [2/2]

```
template<class Mesh >
const int corenc::solvers::dq_shallow_water< Mesh >::solve (
            const double t0,
            const double t1,
             const Mesh & mesh,
             vector_solution & sol,
             std::vector< double > & bath,
             std::vector< double > & ze,
             std::vector< double > & dzx,
             std::vector< double > & dzy,
             std::vector< double > & dbx,
             std::vector< double > & dby,
            const std::function< const std::vector< double > (const std::vector< double > &,
const int) > & R,
            const std::function< const std::vector< double > (const std::vector< double > &,
const int) > & G,
            const std::function< const std::vector< double > (const std::vector< double > &,
const int) > & F,
            const bool WRITE_FILE ) const
```

The documentation for this class was generated from the following file:

• Solvers/dg_solver_shallow_water.h

6.56 corenc::solvers::dg_solver< _Problem, _Mesh, _Result > Class Template Reference

```
#include <dg_solver.h>
```

Public Member Functions

- dg_solver ()
- ~dg solver ()
- const int elliptic solver (Problem *, Mesh *, Result *)
- const double get value (const Mesh &, const Result &, const Mesh::Point &p) const
- const double get_value (const _Method *, const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Mesh &, const _Result &, const Mesh::Point &p, const int i) const
- const Mesh::Point get_gradvalue (const _Mesh &, const _Result &, const Mesh::Point &p) const
- const Mesh::Point get_gradvalue (const _Mesh &, const _Result &, const Mesh::Point &p, const int i) const

6.56.1 Constructor & Destructor Documentation

6.56.1.1 dg solver()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::dg_solver< _Problem, _Mesh, _Result >::dg_solver ( ) [inline]
```

6.56.1.2 ~dg_solver()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::dg_solver< _Problem, _Mesh, _Result >::~dg_solver ( ) [inline]
```

6.56.2 Member Function Documentation

6.56.2.1 elliptic_solver()

6.56.2.2 get_gradvalue() [1/2]

6.56.2.3 get_gradvalue() [2/2]

6.56.2.4 get_value() [1/3]

6.56.2.5 get_value() [2/3]

6.56.2.6 get_value() [3/3]

The documentation for this class was generated from the following file:

· Solvers/dg_solver.h

6.57 corenc::solvers::dg_solver_shallow_water Class Reference

```
#include <dg_solver_shallow_water.h>
```

Public Member Functions

- dg_solver_shallow_water ()
- ~dg_solver_shallow_water ()
- const int solve () const
- const int solve (const double t0, const double t1, const size_t nx, const size_t ny, const double x0, const double x1, const double y0, const double y1, const double g, const double H, const std::function< const std::vector< double >(const std::vector< double > &)> &, const std::function< const std::vector< double >(const std::vector< double > (const std::vector< double > &)> &) const std::vector< double > &)> &) const std::vector< double > &)> &) const

6.57.1 Constructor & Destructor Documentation

6.57.1.1 dg_solver_shallow_water()

```
dg_solver_shallow_water::dg_solver_shallow_water ( )
```

6.57.1.2 ~dg_solver_shallow_water()

```
dg\_solver\_shallow\_water::\sim dg\_solver\_shallow\_water ( )
```

6.57.2 Member Function Documentation

6.57.2.1 solve() [1/2]

```
const int dg_solver_shallow_water::solve ( ) const
```

6.57.2.2 solve() [2/2]

```
const int corenc::solvers::dg_solver_shallow_water::solve (
            const double t0,
            const double t1,
            const size_t nx,
            const size_t ny,
            const double x0,
            const double x1,
             const double y0,
             const double y1,
            const double g,
            const double H_{
m r}
            const std::function< const std::vector< double >(const std::vector< double >
&)> & ,
            const std::function< const std::vector< double > (const std::vector< double >
&)> & ,
            const std::function< const std::vector< double >(const std::vector< double >
&)> & ) const
```

The documentation for this class was generated from the following files:

- Solvers/dg_solver_shallow_water.h
- Solvers/dg_solver_shallow_water.cpp

6.58 corenc::method::DGMethod< Problem, Grid, Matrix > Class Template Reference

```
#include <DGMethod.h>
```

Public Member Functions

- · DGMethod ()
- DGMethod (Problem *p, Grid *g, Matrix *m, std::vector< double > *rhs)
- DGMethod (Problem *p, Grid *g, Matrix *m, Matrix *rm, std::vector< double > *rhs)
- DGMethod (const std::shared_ptr< Grid > &grid)
- DGMethod (Grid *grid)
- DGMethod (const DGMethod &meth)
- void Discretization ()
- · const double GetValue (const Mesh::Point &) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec, const int num) const
- const double GetEffective (const std::vector< double > &vec) const
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &, const int)> GetValue, std::vector< double > &sol)
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &)> GetValue, std::vector< double > &sol, const int)
- void LoadSolution (const std::vector< double > &vec)
- const std::vector< double > SetSolution (const int sol, const int liq, const double, const double, const double)
- void GetSolution (std::vector< double > &vec)
- void Rediscretization (const std::shared_ptr< Grid > &)
- void Rediscretization ()
- void SetTimeStep (const double &step)
- Matrix * GetGlobalMatrix () const
- Grid * GetMesh ()
- const std::vector< double > GetRightVector () const
- void OutDatFormat (const Mesh::Point &min, const Mesh::Point &max, const std::string &file_name, const std::vector< double > &vec) const
- void OutMeshFormat (const std::string &file_name, const std::vector< double > &vec)
- void OutMeshTimeFormat (const std::string &file_name, const std::vector< double > &vec)
- ∼DGMethod ()

Static Public Member Functions

- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int nfem)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int n)

6.58.1 Constructor & Destructor Documentation

6.58.1.1 DGMethod() [1/6]

```
template<class Problem , class Grid , class Matrix >
corenc::method::DGMethod< Problem, Grid, Matrix >::DGMethod ( ) [inline]
```

6.58.1.2 DGMethod() [2/6]

```
template<class Problem , class Grid , class Matrix >
corenc::method::DGMethod< Problem, Grid, Matrix >::DGMethod (
         Problem * p,
         Grid * g,
         Matrix * m,
         std::vector< double > * rhs ) [inline]
```

6.58.1.3 DGMethod() [3/6]

6.58.1.4 DGMethod() [4/6]

6.58.1.5 DGMethod() [5/6]

6.58.1.6 DGMethod() [6/6]

6.58.1.7 ∼DGMethod()

```
template<class Problem , class Grid , class Matrix >
corenc::method::DGMethod< Problem, Grid, Matrix >::~DGMethod
```

6.58.2 Member Function Documentation

6.58.2.1 Discretization()

```
template<class Problem , class Grid , class Matrix >
void corenc::method::DGMethod< Problem, Grid, Matrix >::Discretization
```

6.58.2.2 GetEffective()

6.58.2.3 GetGlobalMatrix()

```
template<class Problem , class Grid , class Matrix >
Matrix * corenc::method::DGMethod< Problem, Grid, Matrix >::GetGlobalMatrix
```

6.58.2.4 GetGradSolution() [1/2]

6.58.2.5 GetGradSolution() [2/2]

6.58.2.6 GetMesh()

```
template<class Problem , class Grid , class Matrix >
Grid * corenc::method::DGMethod< Problem, Grid, Matrix >::GetMesh ( ) [inline]
```

6.58.2.7 GetRightVector()

```
template<class Problem , class Grid , class Matrix >
const std::vector< double > corenc::method::DGMethod< Problem, Grid, Matrix >::GetRightVector
```

6.58.2.8 GetSolution() [1/3]

6.58.2.9 GetSolution() [2/3]

6.58.2.10 GetSolution() [3/3]

6.58.2.11 GetValue() [1/3]

6.58.2.12 GetValue() [2/3]

6.58.2.13 GetValue() [3/3]

6.58.2.14 LoadSolution()

6.58.2.15 OutDatFormat()

6.58.2.16 OutMeshFormat()

6.58.2.17 OutMeshTimeFormat()

6.58.2.18 ProjectSolution() [1/2]

6.58.2.19 ProjectSolution() [2/2]

6.58.2.20 Rediscretization() [1/2]

```
template<class Problem , class Grid , class Matrix >
void corenc::method::DGMethod< Problem, Grid, Matrix >::Rediscretization
```

6.58.2.21 Rediscretization() [2/2]

6.58.2.22 SetSolution()

6.58.2.23 SetTimeStep()

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/DGMethod.h

6.59 corenc::method::DGMethodZero< Problem, Grid, Matrix > Class Template Reference

#include <DGMethodZero.h>

Public Member Functions

- DGMethodZero ()
- DGMethodZero (Problem *p, Grid *g, Matrix *m, std::vector< double > *rhs)
- DGMethodZero (Problem *p, Grid *g, Matrix *m, Matrix *rm, std::vector< double > *rhs)
- DGMethodZero (const std::shared_ptr< Grid > &grid)
- DGMethodZero (Grid *grid)
- DGMethodZero (const DGMethodZero &meth)
- void Discretization ()
- const double GetValue (const Mesh::Point &) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec, const int num) const
- const double GetEffective (const std::vector< double > &vec) const
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &, const int)> GetValue, std::vector< double > &sol)
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &)> GetValue, std::vector< double > &sol, const int)
- void LoadSolution (const std::vector< double > &vec)
- const std::vector< double > SetSolution (const int sol, const int liq, const double, const double)
- void GetSolution (std::vector< double > &vec)
- void Rediscretization (const std::shared ptr< Grid > &)
- void Rediscretization ()
- void SetTimeStep (const double &step)

- Matrix * GetGlobalMatrix () const
- Grid * GetMesh ()
- const std::vector< double > GetRightVector () const
- void OutDatFormat (const Mesh::Point &min, const Mesh::Point &max, const std::string &file_name, const std::vector< double > &vec) const
- void OutMeshFormat (const std::string &file_name, const std::vector< double > &vec)
- void OutMeshTimeFormat (const std::string &file_name, const std::vector< double > &vec)
- ∼DGMethodZero ()

Static Public Member Functions

- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int nfem)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int n)

6.59.1 Constructor & Destructor Documentation

6.59.1.1 DGMethodZero() [1/6]

```
template<class Problem , class Grid , class Matrix >
corenc::method::DGMethodZero< Problem, Grid, Matrix >::DGMethodZero ( ) [inline]
```

6.59.1.2 DGMethodZero() [2/6]

6.59.1.3 DGMethodZero() [3/6]

6.59.1.4 DGMethodZero() [4/6]

6.59.1.5 DGMethodZero() [5/6]

6.59.1.6 DGMethodZero() [6/6]

6.59.1.7 ∼DGMethodZero()

```
template<class Problem , class Grid , class Matrix >
corenc::method::DGMethodZero Problem, Grid, Matrix >::~DGMethodZero
```

6.59.2 Member Function Documentation

6.59.2.1 Discretization()

```
template<class Problem , class Grid , class Matrix >
void corenc::method::DGMethodZero< Problem, Grid, Matrix >::Discretization
```

6.59.2.2 GetEffective()

6.59.2.3 GetGlobalMatrix()

```
template<class Problem , class Grid , class Matrix >
Matrix * corenc::method::DGMethodZero< Problem, Grid, Matrix >::GetGlobalMatrix
```

6.59.2.4 GetGradSolution() [1/2]

6.59.2.5 GetGradSolution() [2/2]

6.59.2.6 GetMesh()

```
template<class Problem , class Grid , class Matrix >
Grid * corenc::method::DGMethodZero< Problem, Grid, Matrix >::GetMesh ( ) [inline]
```

6.59.2.7 GetRightVector()

```
\label{localize} $$\operatorname{template} < \operatorname{class \ Problem} \ , \ \operatorname{class \ Grid} \ , \ \operatorname{class \ Matrix} > $$\operatorname{const \ std}::\operatorname{vector} < \operatorname{double} > \operatorname{corenc}::\operatorname{method}::\operatorname{DGMethodZero} < \operatorname{Problem}, \ \operatorname{Grid}, \ \operatorname{Matrix} > ::\operatorname{GetRight} \leftrightarrow \operatorname{Vector} $$$\operatorname{Vector} $$
```

6.59.2.8 GetSolution() [1/3]

6.59.2.9 GetSolution() [2/3]

6.59.2.10 GetSolution() [3/3]

6.59.2.11 GetValue() [1/3]

6.59.2.12 GetValue() [2/3]

```
template<class Problem , class Grid , class Matrix > const double corenc::method::DGMethodZero< Problem, Grid, Matrix >::GetValue ( const Mesh::Point & p, const std::vector< double > & vec) const
```

6.59.2.13 GetValue() [3/3]

6.59.2.14 LoadSolution()

6.59.2.15 OutDatFormat()

6.59.2.16 OutMeshFormat()

6.59.2.17 OutMeshTimeFormat()

6.59.2.18 ProjectSolution() [1/2]

6.59.2.19 ProjectSolution() [2/2]

6.59.2.20 Rediscretization() [1/2]

```
template<class Problem , class Grid , class Matrix >
void corenc::method::DGMethodZero< Problem, Grid, Matrix >::Rediscretization
```

6.59.2.21 Rediscretization() [2/2]

6.59.2.22 SetSolution()

```
template<class Problem , class Grid , class Matrix > const std::vector< double > corenc::method::DGMethodZero< Problem, Grid, Matrix >::Set \leftarrow Solution ( const int sol, const int liq, const double s, const double l, const double m)
```

6.59.2.23 SetTimeStep()

The documentation for this class was generated from the following file:

• CoreNCFEM/Methods/DGMethodZero.h

6.60 corenc::method::DGSolution < Grid > Class Template Reference

#include <DGSolution.h>

Public Member Functions

- DGSolution ()
- DGSolution (const std::vector< double > &w)
- DGSolution (const DGSolution < Grid > &dg)
- DGSolution < Grid > & operator= (const DGSolution < Grid > &dg)
- ∼DGSolution ()
- const double getWeight (const Grid &g, const Mesh::Point &p) const
- const std::vector< double > getWeights () const
- const int updateWeight (const unsigned int i, const double val)

6.60.1 Constructor & Destructor Documentation

6.60.1.1 DGSolution() [1/3]

```
template<class Grid >
corenc::method::DGSolution
Grid >::DGSolution ( ) [inline]
```

6.60.1.2 DGSolution() [2/3]

6.60.1.3 DGSolution() [3/3]

6.60.1.4 \sim DGSolution()

```
template<class Grid >
corenc::method::DGSolutionGrid >::~DGSolution ( ) [inline]
```

6.60.2 Member Function Documentation

6.60.2.1 getWeight()

6.60.2.2 getWeights()

```
template<class Grid >
const std::vector< double > corenc::method::DGSolution< Grid >::getWeights ( ) const [inline]
```

6.60.2.3 operator=()

6.60.2.4 updateWeight()

```
\label{local_const_int} $$\operatorname{corenc::method::DGSolution}< \operatorname{Grid}>::\operatorname{updateWeight} ($$\operatorname{const} \ \operatorname{unsigned} \ \operatorname{int} \ i,$$$\operatorname{const} \ \operatorname{double} \ \mathit{val} \ ) \ [inline]
```

The documentation for this class was generated from the following file:

· CoreNCFEM/Methods/DGSolution.h

6.61 corenc::solvers::eigen_solver< Matrix, Solver > Class Template Reference

```
#include <eigen_solver.h>
```

Public Member Functions

- eigen_solver ()
- ∼eigen_solver ()
- void rayleigh (Matrix *A, Matrix *B, Solver *esl, std::complex < double > *mu0, double *x0, const int n) const

6.61.1 Constructor & Destructor Documentation

6.61.1.1 eigen_solver()

```
template<class Matrix , class Solver >
corenc::solvers::eigen_solver< Matrix, Solver >::eigen_solver ( ) [inline]
```

6.61.1.2 ~eigen_solver()

```
template<class Matrix , class Solver >
corenc::solvers::eigen_solver< Matrix, Solver >::~eigen_solver ( ) [inline]
```

6.61.2 Member Function Documentation

6.61.2.1 rayleigh()

The documentation for this class was generated from the following file:

• Solvers/eigen_solver.h

6.62 Algebra::ESolver Class Reference

```
#include <MatrixSkyline.h>
```

Public Member Functions

- ESolver (const MatrixSkyline &matrix, const std::vector< double > &rightvector)
- ESolver ()
- ESolver (Solvers kek)
- void Reload (const MatrixSkyline &matrix, const std::vector< double > &right)
- void Solve (Solvers)
- const std::vector< double > Solve (MatrixSkyline &, const std::vector< double > &rhs, std::vector< double > &sol, std::vector< double > &residual, const int iter, const double eps)
- const std::vector< double > Solve (MatrixDiag &, const std::vector< double > &rhs, std::vector< double > &sol, std::vector< double > &residual, const int iter, const double eps)
- double BiCGStab (const int maxiter)
- double GMRES (const int _maxiter)
- void GMRES (MatrixSkyline &, const std::vector< double > &rhs, std::vector< double > &sol, std::vector< double > &residual, const int iter, const double eps)
- void BiCGStab (MatrixSkyline &, const std::vector< double > &rhs, std::vector< double > &sol, std::vector< double > &residual, const int iter, const double eps)
- void Gauss (MatrixSkyline &, const std::vector< double > &rhs, std::vector< double > &sol, std::vector< double > &rhs, std::vecto
- void Gauss (Matrix &, const std::vector< double > &rhs, std::vector< double > &sol)
- void Gauss (const Matrix &, double *in out)
- void Gauss (const Matrix &, double *in, double *out)
- void Gauss (const Matrix &, const double *in, double *out)
- void Pardiso (MatrixSkyline &, const std::vector< double > &rhs, std::vector< double > &sol)
- void BiCGStabPrecond ()
- const std::vector< double > GetSolution () const
- void GetSolution (std::vector< double > &sol) const
- void MatrixprodVector (double *res, std::vector< double > &x, MatrixSkyline &m)
- void MatrixprodVector (double *res, double *x, MatrixSkyline &m)
- void MatrixprodVector (double *res, double *x, const Matrix &m)
- void MatrixprodVector (double *res, const double *x, const Matrix &m)
- ∼ESolver ()
- auto GetSolution () -> decltype(m_solution)

6.62.1 Constructor & Destructor Documentation

6.62.1.1 ESolver() [1/3]

6.62.1.2 ESolver() [2/3]

```
Algebra::ESolver::ESolver ( ) [inline]
```

6.62.1.3 ESolver() [3/3]

```
Algebra::ESolver::ESolver (
Solvers kek) [inline]
```

6.62.1.4 ∼ESolver()

```
ESolver::\simESolver ( )
```

6.62.2 Member Function Documentation

6.62.2.1 BiCGStab() [1/2]

6.62.2.2 BiCGStab() [2/2]

6.62.2.3 BiCGStabPrecond()

```
void ESolver::BiCGStabPrecond ( )
```

6.62.2.4 Gauss() [1/5]

6.62.2.5 Gauss() [2/5]

6.62.2.6 Gauss() [3/5]

6.62.2.7 Gauss() [4/5]

6.62.2.8 Gauss() [5/5]

```
void ESolver::Gauss (
    MatrixSkyline & matrix,
    const std::vector< double > & rhs,
    std::vector< double > & sol,
    std::vector< double > & residual,
    const int iter,
    const double eps )
```

6.62.2.9 GetSolution() [1/3]

```
auto Algebra::ESolver::GetSolution ( ) -> decltype(m_solution) [inline]
```

6.62.2.10 GetSolution() [2/3]

```
const std::vector< double > Algebra::ESolver::GetSolution ( ) const [inline]
```

6.62.2.11 GetSolution() [3/3]

```
void Algebra::ESolver::GetSolution ( {\tt std::vector} < {\tt double} \ > \ \& \ sol \ ) \ {\tt const}
```

6.62.2.12 GMRES() [1/2]

6.62.2.13 GMRES() [2/2]

6.62.2.14 MatrixprodVector() [1/4]

6.62.2.15 MatrixprodVector() [2/4]

6.62.2.16 MatrixprodVector() [3/4]

6.62.2.17 MatrixprodVector() [4/4]

6.62.2.18 Pardiso()

6.62.2.19 Reload()

6.62.2.20 Solve() [1/3]

```
const std::vector< double > ESolver::Solve (
    MatrixDiag & matrix,
    const std::vector< double > & rhs,
    std::vector< double > & sol,
    std::vector< double > & residual,
    const int iter,
    const double eps )
```

6.62.2.21 Solve() [2/3]

6.62.2.22 Solve() [3/3]

The documentation for this class was generated from the following files:

- · CoreNCA/MatrixSkyline.h
- CoreNCA/MatrixSkyline.cpp

6.63 corenc::method::FEAnalysis< Method1, Method2, Mesh1, Mesh2 > Class Template Reference

```
#include <FEAnalysis.h>
```

Public Member Functions

- FEAnalysis ()
- ∼FEAnalysis ()
- const double L2Norm (const Method1 &method1, const Method2 &method2, const Mesh1 &mesh1, const Mesh2 &mesh2, const std::vector< double > &w1, const std::vector< double > &w2) const

6.63.1 Constructor & Destructor Documentation

6.63.1.1 FEAnalysis()

```
template<class Method1 , class Method2 , class Mesh1 , class Mesh2 >
corenc::method::FEAnalysis< Method1, Method2, Mesh1, Mesh2 >::FEAnalysis ( ) [inline]
```

6.63.1.2 ∼FEAnalysis()

```
template<class Method1 , class Method2 , class Mesh1 , class Mesh2 >
corenc::method::FEAnalysis< Method1, Method2, Mesh1, Mesh2 >::~FEAnalysis ( ) [inline]
```

6.63.2 Member Function Documentation

6.63.2.1 L2Norm()

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/FEAnalysis.h

6.64 corenc::solvers::fem_solver< _Problem, _Mesh, _Result > Class Template Reference

```
#include <fem_solver.h>
```

Public Member Functions

- fem_solver ()
- ∼fem solver ()
- const int elliptic_solver (_Problem *, _Mesh *, _Result *)
- const int elliptic_solver_gauss (_Problem *, _Mesh *, _Result *)
- const double get_value (const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Method2 *, const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Method *, const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Mesh &, const _Result &, const Mesh::Point &p, const int i) const
- const Mesh::Point get_gradvalue (const _Mesh &, const _Result &, const Mesh::Point &p) const
- const Mesh::Point get_gradvalue (const _Mesh &, const _Result &, const Mesh::Point &p, const int i) const

6.64.1 Constructor & Destructor Documentation

6.64.1.1 fem_solver()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::fem_solver< _Problem, _Mesh, _Result >::fem_solver ( ) [inline]
```

6.64.1.2 ∼fem_solver()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::fem_solver< _Problem, _Mesh, _Result >::~fem_solver ( ) [inline]
```

6.64.2 Member Function Documentation

6.64.2.1 elliptic_solver()

6.64.2.2 elliptic_solver_gauss()

6.64.2.3 get_gradvalue() [1/2]

6.64.2.4 get_gradvalue() [2/2]

6.64.2.5 get_value() [1/4]

6.64.2.6 get_value() [2/4]

6.64.2.7 get_value() [3/4]

6.64.2.8 get_value() [4/4]

The documentation for this class was generated from the following file:

Solvers/fem_solver.h

6.65 corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result > Class Template Reference

```
#include <fem_solver_lib.h>
```

Public Member Functions

- fem_solver_lib ()
- ~fem_solver_lib ()
- const int elliptic solver (Problem *, Mesh *, Result *)
- const int elliptic_solver_gauss (_Problem *, _Mesh *, _Result *)
- const double get_value (const_Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Method2 *, const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get_value (const _Method *, const _Mesh &, const _Result &, const Mesh::Point &p) const
- const double get value (const Mesh &, const Result &, const Mesh::Point &p, const int i) const
- const Mesh::Point get_gradvalue (const _Mesh &, const _Result &, const Mesh::Point &p) const
- const Mesh::Point get gradvalue (const Mesh &, const Result &, const Mesh::Point &p, const int i) const

6.65.1 Constructor & Destructor Documentation

6.65.1.1 fem_solver_lib()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result >::fem_solver_lib ( ) [inline]
```

6.65.1.2 ∼fem_solver_lib()

```
template<class _Problem , class _Mesh , class _Result >
corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result >::~fem_solver_lib ( ) [inline]
```

6.65.2 Member Function Documentation

6.65.2.1 elliptic_solver()

6.65.2.2 elliptic_solver_gauss()

6.65.2.3 get_gradvalue() [1/2]

6.65.2.4 get_gradvalue() [2/2]

6.65.2.5 get_value() [1/4]

6.65.2.6 get_value() [2/4]

6.65.2.7 get_value() [3/4]

6.65.2.8 get_value() [4/4]

The documentation for this class was generated from the following file:

· Solvers/fem solver lib.h

6.66 corenc::method::FEMethod< Problem, Grid, Matrix > Class Template Reference

```
#include <FEMethod.h>
```

Public Member Functions

- FEMethod ()
- FEMethod (Problem *p, Grid *g, Matrix *m, std::vector< double > *rhs)
- FEMethod (Problem *p, Grid *g, Matrix *m, Matrix *rm, std::vector< double > *rhs)
- FEMethod (const std::shared ptr< Grid > &grid)
- FEMethod (Grid *grid)
- FEMethod (const FEMethod &meth)
- FEMethod & operator= (const FEMethod &fem)
- void Discretization ()
- const double GetValue (const Mesh::Point &) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec, const int num) const
- const double GetEffective (const std::vector< double > &vec) const
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &, const int)> GetValue, std::vector< double > &sol)
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &)> GetValue, std::vector< double > &sol, const int)
- void LoadSolution (const std::vector< double > &vec)
- const std::vector< double > SetSolution (const int sol, const int liq, const double, const double)
- void GetSolution (std::vector< double > &vec)

- void Rediscretization (const std::shared_ptr< Grid > &)
- void Rediscretization ()
- void SetTimeStep (const double &step)
- Matrix * GetGlobalMatrix () const
- Grid * GetMesh ()
- const std::vector< double > GetRightVector () const
- void OutDatFormat (const Mesh::Point &min, const Mesh::Point &max, const std::string &file_name, const std::vector< double > &vec) const
- void OutMeshFormat (const std::string &file_name, const std::vector< double > &vec)
- void OutMeshTimeFormat (const std::string &file name, const std::vector< double > &vec)
- ∼FEMethod ()

Static Public Member Functions

- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int nfem)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int n)

6.66.1 Constructor & Destructor Documentation

6.66.1.1 FEMethod() [1/6]

```
template<class Problem , class Grid , class Matrix >
corenc::method::FEMethod< Problem, Grid, Matrix >::FEMethod ( ) [inline]
```

6.66.1.2 FEMethod() [2/6]

6.66.1.3 FEMethod() [3/6]

```
template < class Problem , class Grid , class Matrix >
corenc::method::FEMethod < Problem, Grid, Matrix >::FEMethod (
         Problem * p,
         Grid * g,
         Matrix * m,
         Matrix * rm,
         std::vector < double > * rhs ) [inline]
```

6.66.1.4 FEMethod() [4/6]

6.66.1.5 FEMethod() [5/6]

6.66.1.6 FEMethod() [6/6]

6.66.1.7 ∼FEMethod()

```
template<class Problem , class Grid , class Matrix >
corenc::method::FEMethod< Problem, Grid, Matrix >::~FEMethod
```

6.66.2 Member Function Documentation

6.66.2.1 Discretization()

```
template<class Problem , class Grid , class Matrix >
void corenc::method::FEMethod< Problem, Grid, Matrix >::Discretization
```

6.66.2.2 GetEffective()

6.66.2.3 GetGlobalMatrix()

```
template<class Problem , class Grid , class Matrix >
Matrix * corenc::method::FEMethod< Problem, Grid, Matrix >::GetGlobalMatrix
```

6.66.2.4 GetGradSolution() [1/2]

6.66.2.5 **GetGradSolution()** [2/2]

6.66.2.6 GetMesh()

```
template<class Problem , class Grid , class Matrix >
Grid * corenc::method::FEMethod< Problem, Grid, Matrix >::GetMesh ( ) [inline]
```

6.66.2.7 GetRightVector()

```
template<class Problem , class Grid , class Matrix >
const std::vector< double > corenc::method::FEMethod< Problem, Grid, Matrix >::GetRightVector
```

6.66.2.8 GetSolution() [1/3]

6.66.2.9 GetSolution() [2/3]

6.66.2.10 GetSolution() [3/3]

6.66.2.11 GetValue() [1/3]

6.66.2.12 GetValue() [2/3]

```
template<class Problem , class Grid , class Matrix > const double corenc::method::FEMethod< Problem, Grid, Matrix >::GetValue ( const Mesh::Point & p, const std::vector< double > & vec ) const
```

6.66.2.13 GetValue() [3/3]

6.66.2.14 LoadSolution()

6.66.2.15 operator=()

6.66.2.16 OutDatFormat()

6.66.2.17 OutMeshFormat()

6.66.2.18 OutMeshTimeFormat()

6.66.2.19 ProjectSolution() [1/2]

6.66.2.20 ProjectSolution() [2/2]

6.66.2.21 Rediscretization() [1/2]

```
template<class Problem , class Grid , class Matrix >
void corenc::method::FEMethod< Problem, Grid, Matrix >::Rediscretization
```

6.66.2.22 Rediscretization() [2/2]

6.66.2.23 SetSolution()

6.66.2.24 SetTimeStep()

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/FEMethod.h

6.67 corenc::method::FEMethodZero< Problem, Grid, Matrix > Class Template Reference

#include <FEMethodZero.h>

Public Member Functions

- FEMethodZero ()
- FEMethodZero (Problem *p, Grid *g, Matrix *m, std::vector< double > *rhs)
- FEMethodZero (Problem *p, Grid *g, Matrix *m, Matrix *rm, std::vector< double > *rhs)
- FEMethodZero (const std::shared_ptr< Grid > &grid)
- FEMethodZero (Grid *grid)
- FEMethodZero (const FEMethodZero &meth)
- void Discretization ()
- const double GetValue (const Mesh::Point &) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec) const
- const double GetValue (const Mesh::Point &, const std::vector< double > &vec, const int num) const
- const double GetEffective (const std::vector< double > &vec) const
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &, const int)> GetValue, std::vector< double > &sol)
- void ProjectSolution (std::vector< double > &, std::function< const double(const Mesh::Point &, const std
 ::vector< double > &)> GetValue, std::vector< double > &sol, const int)
- void LoadSolution (const std::vector< double > &vec)
- const std::vector< double > SetSolution (const int sol, const int liq, const double, const double)
- void GetSolution (std::vector< double > &vec)
- void Rediscretization (const std::shared ptr< Grid > &)
- void Rediscretization ()
- void SetTimeStep (const double &step)

- Matrix * GetGlobalMatrix () const
- Grid * GetMesh ()
- const std::vector< double > GetRightVector () const
- void OutDatFormat (const Mesh::Point &min, const Mesh::Point &max, const std::string &file_name, const std::vector< double > &vec) const
- void OutMeshFormat (const std::string &file name, const std::vector< double > &vec)
- void OutMeshTimeFormat (const std::string &file_name, const std::vector< double > &vec)
- ∼FEMethodZero ()

Static Public Member Functions

- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const double GetSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int nfem)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p)
- static const Mesh::Point GetGradSolution (const Grid &g, const std::vector< double > &weights, const Mesh::Point &p, const int n)

6.67.1 Constructor & Destructor Documentation

6.67.1.1 FEMethodZero() [1/6]

```
template<class Problem , class Grid , class Matrix >
corenc::method::FEMethodZero< Problem, Grid, Matrix >::FEMethodZero ( ) [inline]
```

6.67.1.2 FEMethodZero() [2/6]

6.67.1.3 FEMethodZero() [3/6]

6.67.1.4 FEMethodZero() [4/6]

6.67.1.5 FEMethodZero() [5/6]

6.67.1.6 FEMethodZero() [6/6]

6.67.1.7 ∼FEMethodZero()

```
template<class Problem , class Grid , class Matrix >
corenc::method::FEMethodZero< Problem, Grid, Matrix >::~FEMethodZero
```

6.67.2 Member Function Documentation

6.67.2.1 Discretization()

```
template<class Problem , class Grid , class Matrix >
void corenc::method::FEMethodZero< Problem, Grid, Matrix >::Discretization
```

6.67.2.2 GetEffective()

6.67.2.3 GetGlobalMatrix()

```
template<class Problem , class Grid , class Matrix >
Matrix * corenc::method::FEMethodZero< Problem, Grid, Matrix >::GetGlobalMatrix
```

6.67.2.4 GetGradSolution() [1/2]

6.67.2.5 GetGradSolution() [2/2]

6.67.2.6 GetMesh()

```
template<class Problem , class Grid , class Matrix >
Grid * corenc::method::FEMethodZero< Problem, Grid, Matrix >::GetMesh ( ) [inline]
```

6.67.2.7 GetRightVector()

6.67.2.8 GetSolution() [1/3]

6.67.2.9 GetSolution() [2/3]

6.67.2.10 GetSolution() [3/3]

6.67.2.11 GetValue() [1/3]

6.67.2.12 GetValue() [2/3]

```
template<class Problem , class Grid , class Matrix > const double corenc::method::FEMethodZero< Problem, Grid, Matrix >::GetValue ( const Mesh::Point & p, const std::vector< double > & vec) const
```

6.67.2.13 GetValue() [3/3]

6.67.2.14 LoadSolution()

6.67.2.15 OutDatFormat()

6.67.2.16 OutMeshFormat()

6.67.2.17 OutMeshTimeFormat()

6.67.2.18 ProjectSolution() [1/2]

6.67.2.19 ProjectSolution() [2/2]

6.67.2.20 Rediscretization() [1/2]

```
template<class Problem , class Grid , class Matrix >
void corenc::method::FEMethodZero< Problem, Grid, Matrix >::Rediscretization
```

6.67.2.21 Rediscretization() [2/2]

6.67.2.22 SetSolution()

```
template<class Problem , class Grid , class Matrix > const std::vector< double > corenc::method::FEMethodZero< Problem, Grid, Matrix >::Set \leftarrow Solution ( const int sol, const int liq, const double s, const double l, const double m)
```

6.67.2.23 SetTimeStep()

The documentation for this class was generated from the following file:

• CoreNCFEM/Methods/FEMethodZero.h

6.68 corenc::method::FVMethod1d Class Reference

```
#include <FVMethod.h>
```

Public Member Functions

- FVMethod1d ()
- ∼FVMethod1d ()

Static Public Member Functions

- static const int Solve (Mesh::CMesh< CFESolution > *mesh, const std::function< const double(const double)> &flux_func, const FVFlux &flux_type, std::vector< double > &new_solution, const double time_
 step)
- static const double GetSolution (const Mesh::CMesh1D &g, const Mesh::Point &p)

6.68.1 Constructor & Destructor Documentation

6.68.1.1 FVMethod1d()

```
FVMethod1d::FVMethod1d ( )
```

6.68.1.2 ∼FVMethod1d()

```
FVMethod1d::\sim FVMethod1d ( )
```

6.68.2 Member Function Documentation

6.68.2.1 GetSolution()

6.68.2.2 Solve()

The documentation for this class was generated from the following files:

- CoreNCFEM/Methods/FVMethod.h
- CoreNCFEM/Methods/FVMethod.cpp

6.69 corenc::Mesh::Gauss1dim Struct Reference

```
#include <Point.h>
```

Static Public Attributes

```
    static const int m_order = 13
    static const double m_a []
    static const double m_sqrt35 = sqrt(3./5.)
    static const double m_w []
```

6.69.1 Member Data Documentation

```
6.69.1.1 m a
```

```
const double Gaussldim::m_a [static]
```

Initial value:

6.69.1.2 m_order

```
const int Gauss1dim::m_order = 13 [static]
```

6.69.1.3 m_sqrt35

```
const double Gauss1dim::m_sqrt35 = sqrt(3./5.) [static]
```

6.69.1.4 m w

```
const double Gaussldim::m_w [static]
```

Initial value:

The documentation for this struct was generated from the following files:

- CoreNCFEM/Point.h
- CoreNCFEM/Point.cpp

6.70 corenc::Mesh::Gauss1dimN< N > Struct Template Reference

```
#include <Point.h>
```

Static Public Attributes

- static const int m_order
- static const double m_a []
- static const double m_w []

6.70.1 Member Data Documentation

6.70.1.1 m_a

```
template<int N>
const double corenc::Mesh::GaussldimN< N >::m_a[] [static]
```

6.70.1.2 m_order

```
template<int N>
const int corenc::Mesh::Gauss1dimN< N >::m_order [static]
```

6.70.1.3 m_w

```
template<int N>
const double corenc::Mesh::Gauss1dimN< N >::m_w[] [static]
```

The documentation for this struct was generated from the following file:

CoreNCFEM/Point.h

6.71 corenc::GaussianKernel Struct Reference

#include <GaussianField.h>

Public Member Functions

- const double gpexp (const Mesh::Point &a) const
- const double gpstep (const Mesh::Point &a) const
- GaussianKernel (const int _n, const std::vector< Mesh::Point > ¢ers)
- const double get_gp (const std::vector< double > &a, const Mesh::Point &p) const

Public Attributes

- int N
- std::vector< Mesh::Point > _centrs

6.71.1 Constructor & Destructor Documentation

6.71.1.1 GaussianKernel()

6.71.2 Member Function Documentation

6.71.2.1 get_gp()

6.71.2.2 gpexp()

6.71.2.3 gpstep()

6.71.3 Member Data Documentation

6.71.3.1 _centrs

```
std::vector<Mesh::Point> corenc::GaussianKernel::_centrs
```

6.71.3.2 N

```
int corenc::GaussianKernel::N
```

The documentation for this struct was generated from the following file:

· CoreNCFEM/GaussianField.h

6.72 corenc::GaussianProcess Struct Reference

#include <GaussianField.h>

Public Member Functions

- GaussianProcess (const double L, const size_t num)
- const double He (const int i, const double x) const
- const double phi (const int i, const double x) const

Public Attributes

- double sigma2
- double I
- double a
- double b
- double c
- double A
- double B
- size_t K = 1
- std::vector< double > lambda

6.72.1 Constructor & Destructor Documentation

6.72.1.1 GaussianProcess()

6.72.2 Member Function Documentation

6.72.2.1 He()

```
const double corenc::GaussianProcess::He (  {\rm const\ int\ } i,   {\rm const\ double\ } x\ )\ {\rm const\ } [{\rm inline}]
```

6.72.2.2 phi()

6.72.3 Member Data Documentation

6.72.3.1 a

double corenc::GaussianProcess::a

6.72.3.2 A

double corenc::GaussianProcess::A

6.72.3.3 b

double corenc::GaussianProcess::b

6.72.3.4 B

double corenc::GaussianProcess::B

6.72.3.5 c

double corenc::GaussianProcess::c

6.72.3.6 K

size_t corenc::GaussianProcess::K = 1

6.72.3.7 I

double corenc::GaussianProcess::1

6.72.3.8 lambda

std::vector<double> corenc::GaussianProcess::lambda

6.72.3.9 sigma2

double corenc::GaussianProcess::sigma2

The documentation for this struct was generated from the following file:

· CoreNCFEM/GaussianField.h

6.73 corenc::Mesh::GaussRectangular Struct Reference

#include <Point.h>

Static Public Attributes

```
    static const double m_ra [] = { -m_c, m_c, 0, 0, -m_a, m_a, -m_a, m_a, -m_b, m_b, -m_b, m_b }
```

• static const double m_rb [] = { 0, 0, -m_c, m_c, -m_a, -m_a, m_a, m_a, -m_b, -m_b, m_b, m_b }

static const double m_rw [] = { m_wc, m_wc, m_wc, m_wc, m_wa, m_wa, m_wa, m_wa, m_wb, m_wb, m_wb, m_wb }

• static const double m_a = sqrt((114. - 3. * sqrt(583.)) / 287)

static const double m_b = sqrt((114. + 3. * sqrt(583.)) / 287)

• static const double m c = sqrt(6. / 7)

• static const double m_wa = 307. / 810 + 923. / (270.*sqrt(583.))

static const double m_wb = 307. / 810 - 923. / (270.*sqrt(583.))

• static const double m_wc = 98./405

6.73.1 Member Data Documentation

6.73.1.1 m_a

```
const double GaussRectangular::m_a = sqrt((114. - 3. * sqrt(583.)) / 287) [static]
```

6.73.1.2 m_b

```
const double GaussRectangular::m_b = sqrt((114. + 3. * sqrt(583.)) / 287) [static]
```

6.73.1.3 m_c

```
const double GaussRectangular::m_c = sqrt(6. / 7) [static]
```

6.73.1.4 m_ra

```
const double GaussRectangular::m_ra = \{ -m_c, m_c, 0, 0, -m_a, m_a, -m_a, m_a, -m_b, m_b, -m_b, m_b \} [static]
```

6.73.1.5 m_rb

```
const double GaussRectangular::m_rb = \{ 0, 0, -m_c, m_c, -m_a, -m_a, m_a, m_a, -m_b, -m_b, m_b, m_b \} [static]
```

6.73.1.6 m rw

```
const double GaussRectangular::m_rw = { m_wc, m_wc, m_wc, m_wc, m_wa, m_wa, m_wa, m_wa, m_wb,
m_wb, m_wb } [static]
```

6.73.1.7 m wa

```
const double GaussRectangular::m_wa = 307. / 810 + 923. / (270.*sqrt(583.)) [static]
```

6.73.1.8 m_wb

```
const double GaussRectangular::m_wb = 307. / 810 - 923. / (270.*sqrt(583.)) [static]
```

6.73.1.9 m_wc

```
const double GaussRectangular::m_wc = 98./405 [static]
```

The documentation for this struct was generated from the following files:

- · CoreNCFEM/Point.h
- CoreNCFEM/Point.cpp

corenc::Mesh::GaussRectangularCubic Struct Reference

```
#include <Point.h>
```

Static Public Attributes

```
• static const double m_ra[]
• static const double m rb []
• static const double m_rc []
• static const double m_rw []

 static const double m_a = sqrt(6. / 7)

• static const double m_b = sqrt((960 - 33. * sqrt(238.)) / 2726)
• static const double m_c = sqrt((960 + 33. * sqrt(238.)) / 2726)

    static const double m_w1 = 1078. / 3645

• static const double m w2 = 343. / 3645
```

- static const double m w3 = 43. / 135 + 829. * sqrt(238.) / 136323
- static const double m_w4 = 43. / 135 829. * sqrt(238.) / 136323
- static const int m_s { 34 }

6.74.1 Member Data Documentation

6.74.1.1 m a

```
const double GaussRectangularCubic::m_a = sqrt(6. / 7) [static]
```

6.74.1.2 m_b

```
const double GaussRectangularCubic::m_b = sqrt((960 - 33. * sqrt(238.)) / 2726) [static]
```

6.74.1.3 m_c

```
const double GaussRectangularCubic::m_c = \sqrt{(960 + 33. * \sqrt{238.})} / 2726) [static]
```

6.74.1.4 m_ra

const double GaussRectangularCubic::m_ra [static]

6.74.1.5 m_rb

const double GaussRectangularCubic::m_rb [static]

6.74.1.6 m_rc

const double GaussRectangularCubic::m_rc [static]

6.74.1.7 m_rw

const double GaussRectangularCubic::m_rw [static]

6.74.1.8 m s

const int corenc::Mesh::GaussRectangularCubic::m_s { 34 } [static]

6.74.1.9 m_w1

const double GaussRectangularCubic::m_w1 = 1078. / 3645 [static]

6.74.1.10 m_w2

const double GaussRectangularCubic::m_w2 = 343. / 3645 [static]

6.74.1.11 m_w3

```
const double GaussRectangularCubic::m_w3 = 43. / 135 + 829. * sqrt(238.) / 136323 [static]
```

6.74.1.12 m_w4

```
const double GaussRectangularCubic::m_w4 = 43. / 135 - 829. * sqrt(238.) / 136323 [static]
```

The documentation for this struct was generated from the following files:

- CoreNCFEM/Point.h
- CoreNCFEM/Point.cpp

6.75 corenc::Mesh::GaussTetrahedron Struct Reference

```
#include <Point.h>
```

Static Public Attributes

- static const double m_la [] = { 1. / 4, 11. / 14, 5. / 70, 5. / 70, m_psq, m_msq, m_msq, m_msq, m_psq, m_psq }
- static const double m_lb [] = { 1. / 4, 5. / 70, 11. / 14, 5. / 70, 5. / 70, m_msq, m_psq, m_psq, m_psq, m_psq, m_psq}
- static const double m_lc [] = { 1. / 4, 5. / 70, 5. / 70, 11. / 14, 5. / 70, m_msq, m_msq, m_psq, m_psq, m_psq, m_msq }
- static const double m_ld [] = { 1. / 4, 1. / 6, 1. / 6, 1. / 6, 1. / 3 }
- static const double m_w []
- static const double m_psq = (1 + sqrt(5. / 14)) / 4
- static const double m_msq = (1 sqrt(5. / 14)) / 4

6.75.1 Member Data Documentation

6.75.1.1 m_la

```
const double GaussTetrahedron::m_la = { 1.  / 4, 11.  / 14, 5.  / 70, 5.  / 70, 5.  / 70,
m_psq, m_msq, m_msq, m_psq, m_psq } [static]
```

6.75.1.2 m_lb

```
const double GaussTetrahedron::m_lb = { 1.  / 4, 5.  / 70, 11.  / 14, 5.  / 70, 5.  / 70,
m_msq, m_psq, m_msq, m_psq, m_msq, m_psq } [static]
```

6.75.1.3 m_lc

```
const double GaussTetrahedron::m_lc = { 1. /4, 5. /70, 5. /70, 11. /14, 5. /70, m_msq, m_msq, m_psq, m_psq, m_msq } [static]
```

6.75.1.4 m ld

```
const double GaussTetrahedron::m_ld = { 1. / 4, 1. / 6, 1. / 6, 1. / 6, 1. / 3 } [static]
```

6.75.1.5 m_msq

```
const double GaussTetrahedron::m_msq = (1 - sqrt(5. / 14)) / 4 [static]
```

6.75.1.6 m_psq

```
const double GaussTetrahedron::m_psq = (1 + sqrt(5. / 14)) / 4 [static]
```

6.75.1.7 m w

```
const double GaussTetrahedron::m_w [static]
```

Initial value:

```
= { -74. / 5625, 343. / 45000, 343. / 45000, 343. / 45000, 343. / 45000, 56. / 2250, 56. / 2250, 56. / 2250, 56. / 2250, 56. / 2250 }
```

The documentation for this struct was generated from the following files:

- CoreNCFEM/Point.h
- CoreNCFEM/Point.cpp

6.76 corenc::Mesh::GaussTriangle Struct Reference

```
#include <Point.h>
```

Static Public Attributes

```
static const double m_tra []
static const double m_trb []
static const double m_sqrt15 = sqrt(15.)
static const double m_trw []
static const int m_order = 7
```

6.76.1 Member Data Documentation

```
const int GaussTriangle::m_order = 7 [static]
```

6.76.1.2 m_sqrt15

6.76.1.1 m_order

```
const double GaussTriangle::m_sqrt15 = sqrt(15.) [static]
```

6.76.1.3 m_tra

```
const double GaussTriangle::m_tra [static]
```

Initial value:

```
1. / 3,

(6 + m_sqrt15) / 21,

(6 + m_sqrt15) / 21,

(9 - 2 * m_sqrt15) / 21,

(9 + 2 * m_sqrt15) / 21,

(6 - m_sqrt15) / 21,

(6 - m_sqrt15) / 21,
```

6.76.1.4 m_trb

```
const double GaussTriangle::m_trb [static]
```

Initial value:

```
1. / 3,
    (9. - 2.*m_sqrt15) / 21,
    (6. + m_sqrt15) / 21,
    (6. - m_sqrt15) / 21,
    (6. - m_sqrt15) / 21,
    (9. + 2. * m_sqrt15) / 21,
    (6. - m_sqrt15) / 21,
}
```

6.76.1.5 m_trw

```
const double GaussTriangle::m_trw [static]
```

Initial value:

```
9. / 80,

(155. + m_sqrt15) / 2400,

(155. + m_sqrt15) / 2400,

(155. + m_sqrt15) / 2400,

(155. - m_sqrt15) / 2400,

(155. - m_sqrt15) / 2400,

(155. - m_sqrt15) / 2400,
```

The documentation for this struct was generated from the following files:

- · CoreNCFEM/Point.h
- CoreNCFEM/Point.cpp

6.77 Algebra::Matrix Class Reference

```
#include <Matrix.h>
```

Public Member Functions

- Matrix (const unsigned int &size, const std::vector< std::set< unsigned int >> &nonzero)
- Matrix ()
- ∼Matrix ()
- void NullRow (const int row)
- double & operator() (const int i, const int j)
- const int GetSize () const
- void NullMatrix ()
- Matrix & operator= (const Matrix &)
- Matrix (const Matrix &matrix)
- void Create (const unsigned int &size, const std::vector< std::set< unsigned int >> &nonzero)
- void Create (const unsigned int &size)
- const double GetElement (const int i, const int j)
- void AddElement (const unsigned int i, const unsigned int j, const double a)

6.77.1 Detailed Description

The Dense Matrix Class

6.77.2 Constructor & Destructor Documentation

6.77.2.1 Matrix() [1/3]

6.77.2.2 Matrix() [2/3]

```
Algebra::Matrix::Matrix ( ) [inline]
```

6.77.2.3 \sim Matrix()

```
Algebra::Matrix::~Matrix ( )
```

6.77.2.4 Matrix() [3/3]

```
Algebra::Matrix::Matrix (

const Matrix & matrix)
```

6.77.3 Member Function Documentation

6.77.3.1 AddElement()

6.77.3.2 Create() [1/2]

6.77.3.3 Create() [2/2]

6.77.3.4 GetElement()

6.77.3.5 GetSize()

```
const int Algebra::Matrix::GetSize ( ) const [inline]
```

6.77.3.6 NullMatrix()

```
void Algebra::Matrix::NullMatrix ( )
```

6.77.3.7 NullRow()

6.77.3.8 operator()()

```
double & Algebra::Matrix::operator() (  {\rm const\ int\ } i,   {\rm const\ int\ } j\ ) \ \ [{\rm inline}]
```

6.77.3.9 operator=()

The documentation for this class was generated from the following files:

- · CoreNCA/Matrix.h
- CoreNCA/Matrix.cpp

6.78 Algebra::MatrixDiag Class Reference

```
#include <MatrixDiag.h>
```

Public Member Functions

- MatrixDiag (const unsigned int &size, const std::vector< std::set< unsigned int > > &nonzero)
- MatrixDiag ()
- ∼MatrixDiag ()
- void NullRow (const int row)
- double & operator() (const int i, const int j)
- · const int GetSize () const
- void NullMatrix ()
- MatrixDiag & operator= (const MatrixDiag &)
- MatrixDiag (const MatrixDiag &matrix)
- void Create (const unsigned int &size, const std::vector< std::set< unsigned int >> &nonzero)
- void AddElement (const unsigned int i, const unsigned int j, const double a)

6.78.1 Detailed Description

The diagonal matrix class

6.78.2 Constructor & Destructor Documentation

6.78.2.1 MatrixDiag() [1/3]

6.78.2.2 MatrixDiag() [2/3]

```
Algebra::MatrixDiag::MatrixDiag ( ) [inline]
```

6.78.2.3 \sim MatrixDiag()

```
Algebra::MatrixDiag::~MatrixDiag ( )
```

6.78.2.4 MatrixDiag() [3/3]

6.78.3 Member Function Documentation

6.78.3.1 AddElement()

6.78.3.2 Create()

6.78.3.3 GetSize()

```
const int Algebra::MatrixDiag::GetSize ( ) const [inline]
```

6.78.3.4 NullMatrix()

```
void Algebra::MatrixDiag::NullMatrix ( )
```

6.78.3.5 NullRow()

6.78.3.6 operator()()

6.78.3.7 operator=()

The documentation for this class was generated from the following files:

- CoreNCA/MatrixDiag.h
- CoreNCA/MatrixDiag.cpp

6.79 Algebra::MatrixSkyline Class Reference

```
#include <MatrixSkyline.h>
```

Public Member Functions

- MatrixSkyline (const unsigned int &Size, const std::vector< std::set< unsigned int >> &nonzero)
- MatrixSkyline ()
- ∼MatrixSkyline ()
- void NullRow (int row)
- double & operator() (const int i, const int j)
- const double operator() (const int i, const int j) const
- const double GetElement (const int i, const int j) const
- const int GetSize () const
- void NullMatrix ()
- MatrixSkyline & operator= (const MatrixSkyline &)
- MatrixSkyline (const MatrixSkyline &matrix)
- void Create (const unsigned int &Size, const std::vector< std::set< unsigned int >> &nonzero)
- void AddElement (const unsigned int i, const unsigned int j, const double a)

Static Public Member Functions

- static const MatrixSkyline diff_skymatrix (const MatrixSkyline &matrix, const MatrixSkyline &B, const double scal)
- static const MatrixSkyline diff_skymatrix (const MatrixSkyline &matrix, const MatrixSkyline &B, const double a, const double b)
- static const MatrixSkyline transpose_sky (const MatrixSkyline &matrix)

6.79.1 Detailed Description

The sparse (skyline) matrix format

6.79.2 Constructor & Destructor Documentation

6.79.2.1 MatrixSkyline() [1/3]

6.79.2.2 MatrixSkyline() [2/3]

```
Algebra::MatrixSkyline::MatrixSkyline ( ) [inline]
```

6.79.2.3 ∼MatrixSkyline()

```
{\tt MatrixSkyline::}{\sim}{\tt MatrixSkyline} \ (\ )
```

6.79.2.4 MatrixSkyline() [3/3]

6.79.3 Member Function Documentation

6.79.3.1 AddElement()

6.79.3.2 Create()

6.79.3.3 diff_skymatrix() [1/2]

6.79.3.4 diff_skymatrix() [2/2]

6.79.3.5 GetElement()

6.79.3.6 GetSize()

```
const int Algebra::MatrixSkyline::GetSize ( ) const [inline]
```

6.79.3.7 NullMatrix()

```
void MatrixSkyline::NullMatrix ( )
```

6.79.3.8 NullRow()

6.79.3.9 operator()() [1/2]

6.79.3.10 operator()() [2/2]

6.79.3.11 operator=()

6.79.3.12 transpose_sky()

The documentation for this class was generated from the following files:

- · CoreNCA/MatrixSkyline.h
- CoreNCA/MatrixSkyline.cpp

6.80 corenc::multi_vector< T > Class Template Reference

```
#include <multi_vector.h>
```

Public Member Functions

- multi_vector ()
- multi_vector (const size_t block, const size_t dim)
- multi_vector (const size_t dim)
- ~multi_vector ()
- const T get (const size_t i...) const
- const T get (const std::vector< size_t > &i) const
- const int set (const T &element, const std::vector < size_t > &index)
- const int fill inc ()
- void resize (const size_t block)
- void resize (const size_t block, const size_t dim)
- const size_t size () const
- const size_t totalsize () const

6.80.1 Constructor & Destructor Documentation

6.80.1.1 multi_vector() [1/3]

```
template<class T >
corenc::multi_vector< T >::multi_vector
```

6.80.1.2 multi_vector() [2/3]

6.80.1.3 multi_vector() [3/3]

6.80.1.4 \sim multi_vector()

```
template<class T >
corenc::multi_vector< T >::~multi_vector
```

6.80.2 Member Function Documentation

6.80.2.1 fill_inc()

```
template<class T >
const int corenc::multi_vector< T >::fill_inc
```

6.80.2.2 get() [1/2]

6.80.2.3 get() [2/2]

6.80.2.4 resize() [1/2]

6.80.2.5 resize() [2/2]

6.80.2.6 set()

6.80.2.7 size()

```
template<class T >
const size_t corenc::multi_vector< T >::size
```

6.80.2.8 totalsize()

```
template<class T >
const size_t corenc::multi_vector< T >::totalsize
```

The documentation for this class was generated from the following file:

CoreNCFEM/multi_vector.h

6.81 corenc::Mesh::parameter < T > Class Template Reference

```
#include <Parameter.h>
```

Public Types

- using cfunc = std::function < const T(const int, const int, const Point &)>
- using cfunc_old = std::function < const T(const int, const Point &)>

Public Member Functions

- parameter ()
- parameter (const cfunc &func)
- parameter (const cfunc_old &func)
- parameter (const double _p)
- parameter (const Mesh::Point _p)
- parameter (const parameter < T > &_p)
- ∼parameter ()
- · const T get (const Point &p) const
- const T get (const int number, const Point &p) const
- const T get (const int element, const int node, const Point &p) const
- void set (const cfunc &func)

6.81.1 Member Typedef Documentation

6.81.1.1 cfunc

```
template<class T >
using corenc::Mesh::parameter< T >::cfunc = std::function<const T(const int, const int, const
Point&)>
```

6.81.1.2 cfunc_old

```
template<class T >
using corenc::Mesh::parameter< T >::cfunc_old = std::function<const T(const int, const Point&)>
```

6.81.2 Constructor & Destructor Documentation

6.81.2.1 parameter() [1/6]

```
template<class T >
corenc::Mesh::parameter< T >::parameter ( ) [inline]
```

6.81.2.2 parameter() [2/6]

6.81.2.3 parameter() [3/6]

6.81.2.4 parameter() [4/6]

6.81.2.5 parameter() [5/6]

6.81.2.6 parameter() [6/6]

6.81.2.7 ~parameter()

```
template<class T >
corenc::Mesh::parameter< T >::~parameter ( ) [inline]
```

6.81.3 Member Function Documentation

6.81.3.1 get() [1/3]

6.81.3.2 get() [2/3]

6.81.3.3 get() [3/3]

6.81.3.4 set()

The documentation for this class was generated from the following file:

· CoreNCFEM/Parameter.h

6.82 corenc::Mesh::Point Class Reference

```
#include <Point.h>
```

Public Member Functions

- Point ()
- Point (const double _x, const double _y)
- Point (const double _x, const double _y, const double _z)
- Point (const Point &p)
- const double Jacobian () const
- Point & operator= (const Point &p)
- const bool operator== (const Point &p)
- const bool operator< (const Point &p2)
- const Point operator* (const double rhs)
- Point & operator+= (const Point &rhs)
- Point & operator*= (const double rhs)

Public Attributes

- double x
- · double y
- double z

Friends

- const bool operator!= (const Point &p1, const Point &p2)
- const double operator* (const Point &lhs, const Point &rhs)
- const Point operator* (const Point &lhs, const double rhs)
- const Point operator* (const double lhs, const Point &rhs)
- const Point operator+ (const Point &lhs, const Point &rhs)
- const Point operator- (const Point &lhs, const Point &rhs)

6.82.1 Constructor & Destructor Documentation

6.82.1.4 Point() [4/4]

const double _y,

const double $_z$) [inline]

6.82.2 Member Function Documentation

6.82.2.1 Jacobian()

```
const double corenc::Mesh::Point::Jacobian ( ) const [inline]
```

6.82.2.2 operator*()

6.82.2.3 operator*=()

6.82.2.4 operator+=()

6.82.2.5 operator<()

6.82.2.6 operator=()

6.82.2.7 operator==()

6.82.3 Friends And Related Function Documentation

6.82.3.1 operator"!=

6.82.3.2 operator* [1/3]

6.82.3.3 operator* [2/3]

6.82.3.4 operator* [3/3]

6.82.3.5 operator+

6.82.3.6 operator-

6.82.4 Member Data Documentation

6.82.4.1 x

double corenc::Mesh::Point::x

6.82.4.2 y

```
double corenc::Mesh::Point::y
```

6.82.4.3 z

```
double corenc::Mesh::Point::z
```

The documentation for this class was generated from the following file:

· CoreNCFEM/Point.h

6.83 corenc::Mesh::point_source< T > Class Template Reference

```
#include <Parameter.h>
```

Public Member Functions

- point_source ()
- point_source (const Mesh::Point &p, const T &val)
- const T get_value () const
- const Mesh::Point get_point () const
- point_source< T > & operator= (const point_source< T > &ps)

6.83.1 Constructor & Destructor Documentation

6.83.1.1 point_source() [1/2]

```
template<class T >
corenc::Mesh::point_source< T >::point_source ( ) [inline]
```

6.83.1.2 point_source() [2/2]

6.83.2 Member Function Documentation

6.83.2.1 get_point()

```
template<class T >
const Mesh::Point corenc::Mesh::point_source< T >::qet_point () const [inline]
```

6.83.2.2 get value()

```
template<class T >
const T corenc::Mesh::point_source< T >::get_value ( ) const [inline]
```

6.83.2.3 operator=()

The documentation for this class was generated from the following file:

· CoreNCFEM/Parameter.h

6.84 corenc::method::RungeKutta< Problem, Type > Class Template Reference

```
#include <RungeKutta.h>
```

Public Member Functions

- RungeKutta ()
- RungeKutta (const double step, const double final, Problem *problem, const Type *solution)
- const Type discretize (const Type &solution, const std::function< const Type(const double time, const double time_step, const Type &curr_sol, Type *result)> &func)
- const Type explicitEuler (const Type &solution, const std::function< const Type(const double time, const double time_step, const Type &curr_sol, Type *result)> &func)
- void updateTimestep (const double step)
- ∼RungeKutta ()

6.84.1 Constructor & Destructor Documentation

6.84.1.1 RungeKutta() [1/2]

```
template<class Problem , class Type >
corenc::method::RungeKutta< Problem, Type >::RungeKutta ( ) [inline]
```

6.84.1.2 RungeKutta() [2/2]

6.84.1.3 ∼RungeKutta()

```
template<class Problem , class Type >
corenc::method::RungeKutta< Problem, Type >::~RungeKutta ( ) [inline]
```

6.84.2 Member Function Documentation

6.84.2.1 discretize()

6.84.2.2 explicitEuler()

6.84.2.3 updateTimestep()

The documentation for this class was generated from the following file:

· CoreNCFEM/Methods/RungeKutta.h

6.85 corenc::method::STSolution < Grid > Class Template Reference

```
#include <DGSolution.h>
```

Public Member Functions

- STSolution ()
- STSolution (const Grid &g)
- STSolution (const std::vector< DGSolution< Grid >> &w, const std::vector< double > time, const Grid &g)
- STSolution (const STSolution < Grid > &st)
- STSolution < Grid > & operator= (const STSolution < Grid > &st)
- ∼STSolution ()
- const double getWeight (const Mesh::Point &p, const double time) const
- const int updateWeight (const std::vector< double > time, const std::vector< DGSolution< Grid > > w)
- const int addTimeLayer (const double time, const DGSolution< Grid > w)
- const std::vector < DGSolution < Grid > > getWeights () const

6.85.1 Constructor & Destructor Documentation

6.85.1.1 STSolution() [1/4]

```
template<class Grid >
corenc::method::STSolutionGrid >::STSolution ( ) [inline]
```

6.85.1.2 STSolution() [2/4]

6.85.1.3 STSolution() [3/4]

6.85.1.4 STSolution() [4/4]

6.85.1.5 ∼STSolution()

```
template<class Grid >
corenc::method::STSolution
Grid >::~STSolution ( ) [inline]
```

6.85.2 Member Function Documentation

6.85.2.1 addTimeLayer()

```
\label{lem:const} $\operatorname{const} \operatorname{int} \operatorname{corenc}::\operatorname{method}::\operatorname{STSolution} < \operatorname{Grid} >::\operatorname{addTimeLayer} \ ($\operatorname{const} \operatorname{double} \ time, $\operatorname{const} \operatorname{DGSolution} < \operatorname{Grid} > w \ ) \ [inline]
```

6.85.2.2 getWeight()

6.85.2.3 getWeights()

```
template<class Grid >
const std::vector< DGSolution< Grid > > corenc::method::STSolution< Grid >::getWeights ( )
const [inline]
```

6.85.2.4 operator=()

```
template<class Grid > STSolution< Grid > & corenc::method::STSolution< Grid >::operator= ( const STSolution< Grid > & st ) [inline]
```

6.85.2.5 updateWeight()

The documentation for this class was generated from the following file:

· CoreNCFEM/Methods/DGSolution.h

6.86 corenc::method::system_dg_method< Problem, Grid, Matrix > Class Template Reference

```
#include <system_dg_method.h>
```

Public Member Functions

- system_dg_method ()
- system_dg_method (Problem *p, Grid *g, Matrix *m, const size_t sys_size, std::vector< double > *rhs)
- ∼system_dg_method ()
- const int Assemble ()
- const int changeFlux (const DGFlux flux_type)
- const Matrix * GetGlobalMatrix () const
- const std::vector< double > GetSolution () const
- const double GetSolution (const std::vector< double > &point) const
- const double GetMaxSolution () const
- · const double GetMinSolution () const
- const double GetSolution (const std::vector< double > &dg_sol, const Mesh::Point &p)
- const int toDGSolution (const Grid &g, std::vector< double > &dg_result) const
- const int updateWeights (const std::vector< double > &dg result)
- const int DGtostandart (const std::vector< double > &dg_result)

Static Public Member Functions

static const double GetSolution (const Grid &g, const std::vector< double > &dg_sol, const Mesh::Point &p)

6.86.1 Constructor & Destructor Documentation

6.86.1.1 system_dg_method() [1/2]

```
template<class Problem , class Grid , class Matrix >
corenc::method::system_dq_method< Problem, Grid, Matrix >::system_dq_method ( ) [inline]
```

6.86.1.2 system_dg_method() [2/2]

6.86.1.3 ∼system dg method()

```
template<class Problem , class Grid , class Matrix >
corenc::method::system_dg_method< Problem, Grid, Matrix >::~system_dg_method ( ) [inline]
```

6.86.2 Member Function Documentation

6.86.2.1 Assemble()

```
template<class Problem , class Grid , class Matrix >
const int corenc::method::system_dg_method< Problem, Grid, Matrix >::Assemble
```

6.86.2.2 changeFlux()

6.86.2.3 DGtostandart()

6.86.2.4 GetGlobalMatrix()

```
template<class Problem , class Grid , class Matrix >
const Matrix * corenc::method::system_dg_method< Problem, Grid, Matrix >::GetGlobalMatrix ( )
const [inline]
```

6.86.2.5 GetMaxSolution()

```
template<class Problem , class Grid , class Matrix >
const double corenc::method::system_dg_method< Problem, Grid, Matrix >::GetMaxSolution
```

6.86.2.6 GetMinSolution()

```
template<class Problem , class Grid , class Matrix >
const double corenc::method::system_dg_method< Problem, Grid, Matrix >::GetMinSolution
```

6.86.2.7 GetSolution() [1/4]

```
template<class Problem , class Grid , class Matrix > const std::vector< double > corenc::method::system_dg_method< Problem, Grid, Matrix >::Get← Solution ( ) const [inline]
```

6.86.2.8 GetSolution() [2/4]

6.86.2.9 GetSolution() [3/4]

6.86.2.10 GetSolution() [4/4]

6.86.2.11 toDGSolution()

```
template<class Problem , class Grid , class Matrix > const int corenc::method::system_dg_method< Problem, Grid, Matrix >::toDGSolution ( const Grid & g, std::vector< double > & dg_result) const [inline]
```

6.86.2.12 updateWeights()

The documentation for this class was generated from the following file:

• CoreNCFEM/Methods/system dg method.h

6.87 corenc::method::system_dg_method< Grid, bool, bool > Class Template Reference

```
#include <system_dg_method.h>
```

Static Public Member Functions

static const double GetSolution (const Grid &g, const std::vector < double > &dg_sol, const Mesh::Point &p)

6.87.1 Member Function Documentation

6.87.1.1 GetSolution()

The documentation for this class was generated from the following file:

CoreNCFEM/Methods/system_dg_method.h

6.88 corenc::test_case_elliptic_fem Class Reference

```
#include <test_case_elliptic_fem.h>
```

Public Member Functions

- test case elliptic fem ()
- ∼test case elliptic fem ()
- const int elliptic_fem_2d_tria () const
- const int elliptic_fem_solver () const
- const int elliptic_fem_square_lin_basis () const
- const int elliptic_fem_hp_fixed (const int h_ref_max, const int p_ref_max) const
- const int elliptic_fem_hp_fixed_triangle (const int h_ref_max, const int p_ref_max) const
- const int elliptic_fem_hp_lagrange_triangle (const int h_ref_max, const int p_ref_max) const
- const int elliptic_fem_hxhy_fixed_triangle (const int hx_max, const int hy_max) const
- const int conv_diff_fem_fixed_triangle (const int h_ref_max, const int p_ref_max) const
- const int global_matrix (const int h_ref_max, const int p_ref_max) const
- · const int elliptic_2layer_fem_2d_tria_h () const
- · const int elliptic fem 2d rect source () const
- · const int elliptic_gaussian_triangle () const
- · const int mass matrix 3rd order () const
- const int strees matrix 3rd order () const
- const int mass_matrix_4th_order () const
- const int stress_matrix_4th_order () const
- const int homotopy_conv_diff_fem (const double step) const

6.88.1 Constructor & Destructor Documentation

```
6.88.1.1 test_case_elliptic_fem()
test_case_elliptic_fem::test_case_elliptic_fem ( )
6.88.1.2 ~test_case_elliptic_fem()
\texttt{test\_case\_elliptic\_fem::} {\sim} \texttt{test\_case\_elliptic\_fem} \ \ ( \ )
6.88.2 Member Function Documentation
6.88.2.1 conv_diff_fem_fixed_triangle()
const int test_case_elliptic_fem::conv_diff_fem_fixed_triangle (
             const int h_ref_max,
             const int p\_ref\_max ) const
6.88.2.2 elliptic_2layer_fem_2d_tria_h()
const int test_case_elliptic_fem::elliptic_2layer_fem_2d_tria_h ( ) const
6.88.2.3 elliptic_fem_2d_rect_source()
const int test_case_elliptic_fem::elliptic_fem_2d_rect_source ( ) const
6.88.2.4 elliptic fem 2d tria()
const int test_case_elliptic_fem::elliptic_fem_2d_tria ( ) const
```

6.88.2.5 elliptic_fem_hp_fixed()

```
const int test_case_elliptic_fem::elliptic_fem_hp_fixed (  {\rm const\ int\ } h\_ref\_max,   {\rm const\ int\ } p\_ref\_max\ )\ {\rm const}
```

6.88.2.6 elliptic_fem_hp_fixed_triangle()

```
const int test_case_elliptic_fem::elliptic_fem_hp_fixed_triangle ( const \ int \ h\_ref\_max, const \ int \ p\_ref\_max \ ) \ const
```

6.88.2.7 elliptic_fem_hp_lagrange_triangle()

```
const int test_case_elliptic_fem::elliptic_fem_hp_lagrange_triangle (  {\rm const\ int\ } h\_ref\_max, \\ {\rm const\ int\ } p\_ref\_max\ )\ {\rm const}
```

6.88.2.8 elliptic_fem_hxhy_fixed_triangle()

```
const int test_case_elliptic_fem::elliptic_fem_hxhy_fixed_triangle ( const int hx_max, const int hy_max) const
```

6.88.2.9 elliptic_fem_solver()

```
const int test_case_elliptic_fem::elliptic_fem_solver ( ) const
```

6.88.2.10 elliptic_fem_square_lin_basis()

```
const int test_case_elliptic_fem::elliptic_fem_square_lin_basis ( ) const
```

6.88.2.11 elliptic_gaussian_triangle()

```
\verb|const| int test_case_elliptic_fem::elliptic_gaussian_triangle () const|
```

6.88.2.12 global_matrix()

6.88.2.13 homotopy_conv_diff_fem()

```
const int test_case_elliptic_fem::homotopy_conv_diff_fem ( {\tt const\ double\ } step\ )\ {\tt const}
```

6.88.2.14 mass_matrix_3rd_order()

```
const int test_case_elliptic_fem::mass_matrix_3rd_order ( ) const
```

6.88.2.15 mass_matrix_4th_order()

```
const int test_case_elliptic_fem::mass_matrix_4th_order ( ) const
```

6.88.2.16 strees_matrix_3rd_order()

```
const int test_case_elliptic_fem::strees_matrix_3rd_order ( ) const
```

6.88.2.17 stress matrix 4th order()

```
const int test_case_elliptic_fem::stress_matrix_4th_order ( ) const
```

The documentation for this class was generated from the following files:

- Tests/test_case_elliptic_fem.h
- Tests/test_case_elliptic_fem.cpp

6.89 corenc::tests::test_case_rectanglebasis Class Reference

```
#include <test_case_rectanglebasis.h>
```

Public Member Functions

- test_case_rectanglebasis ()
- ∼test_case_rectanglebasis ()
- const int mass_matrix () const
- const int stress_matrix () const

6.89.1 Constructor & Destructor Documentation

6.89.1.1 test_case_rectanglebasis()

```
{\tt test\_case\_rectangle basis::} {\tt test\_case\_rectangle basis} \ \ ( \ )
```

6.89.1.2 ∼test_case_rectanglebasis()

```
test_case_rectanglebasis::~test_case_rectanglebasis ( )
```

6.89.2 Member Function Documentation

6.89.2.1 mass_matrix()

```
const int test_case_rectanglebasis::mass_matrix ( ) const
```

6.89.2.2 stress matrix()

```
const int test_case_rectanglebasis::stress_matrix ( ) const
```

The documentation for this class was generated from the following files:

- Tests/FiniteElements/test_case_rectanglebasis.h
- Tests/FiniteElements/test_case_rectanglebasis.cpp

6.90 corenc::tests::test_case_regular_mesh Class Reference

```
#include <test_case_regular_mesh.h>
```

Public Member Functions

- test_case_regular_mesh ()
- ~test_case_regular_mesh ()
- const int construct mesh () const

6.90.1 Constructor & Destructor Documentation

6.90.1.1 test_case_regular_mesh()

```
test_case_regular_mesh::test_case_regular_mesh ( )
```

6.90.1.2 ∼test_case_regular_mesh()

```
test\_case\_regular\_mesh:: \sim test\_case\_regular\_mesh \ (\ )
```

6.90.2 Member Function Documentation

6.90.2.1 construct_mesh()

```
const int test_case_regular_mesh::construct_mesh ( ) const
```

The documentation for this class was generated from the following files:

- Tests/test_case_regular_mesh.h
- Tests/test_case_regular_mesh.cpp

6.91 corenc::test_case_solver Class Reference

```
#include <test_case_solver.h>
```

Public Member Functions

- test_case_solver ()
- ~test_case_solver ()
- const int gauss_solver () const

6.91.1 Constructor & Destructor Documentation

6.91.1.1 test_case_solver()

```
test_case_solver::test_case_solver ( )
```

6.91.1.2 \sim test_case_solver()

```
\texttt{test\_case\_solver::} {\sim} \texttt{test\_case\_solver} \ ( \ )
```

6.91.2 Member Function Documentation

6.91.2.1 gauss_solver()

```
const int test_case_solver::gauss_solver ( ) const
```

The documentation for this class was generated from the following files:

- Tests/test_case_solver.h
- Tests/test_case_solver.cpp

6.92 corenc::tests::test case trianglebasis Class Reference

```
#include <test_case_trianglebasis.h>
```

Public Member Functions

- test_case_trianglebasis ()
- ∼test_case_trianglebasis ()
- · const int mass_matrix () const
- const int stress_matrix () const

6.92.1 Constructor & Destructor Documentation

6.92.1.1 test_case_trianglebasis()

```
test_case_trianglebasis::test_case_trianglebasis ( )
```

6.92.1.2 ∼test case trianglebasis()

```
test_case_trianglebasis::~test_case_trianglebasis ( )
```

6.92.2 Member Function Documentation

6.92.2.1 mass_matrix()

```
const int test_case_trianglebasis::mass_matrix ( ) const
```

6.92.2.2 stress matrix()

```
const int test_case_trianglebasis::stress_matrix ( ) const
```

The documentation for this class was generated from the following files:

- Tests/FiniteElements/test_case_trianglebasis.h
- Tests/FiniteElements/test_case_trianglebasis.cpp

6.93 corenc::test cases Class Reference

```
#include <test_cases.h>
```

Public Member Functions

- test cases ()
- ∼test_cases ()
- const int perform () const
- const int perform (const std::function < const int() > &) const
- const int perform (const std::function < const int(std::ostream &) > &, std::ostream &) const

6.93.1 Constructor & Destructor Documentation

6.93.1.1 test_cases()

```
test_cases::test_cases ( )
```

6.93.1.2 \sim test_cases()

```
test_cases::~test_cases ( )
```

6.93.2 Member Function Documentation

6.93.2.1 perform() [1/3]

```
const int test_cases::perform ( ) const
```

6.93.2.2 perform() [2/3]

6.93.2.3 perform() [3/3]

```
const int corenc::test_cases::perform ( const \ std::function < \ const \ int(std::ostream \ \&)> \ \& \ , std::ostream \ \& \ ) \ const
```

The documentation for this class was generated from the following files:

- Tests/test_cases.h
- Tests/test_cases.cpp

6.94 corenc::test_conv_diff Class Reference

```
#include <test_conv_diff.h>
```

Public Member Functions

- test_conv_diff ()
- ~test_conv_diff ()
- void conv diff fem (const int h ref max, const int p ref max=1) const
- void conv_diff_eigen (const int h_ref_max, const int p_ref_max=1) const

6.94.1 Constructor & Destructor Documentation

6.94.1.1 test_conv_diff()

```
corenc::test_conv_diff::test_conv_diff ( ) [inline]
```

6.94.1.2 \sim test_conv_diff()

```
corenc::test_conv_diff::~test_conv_diff () [inline]
```

6.94.2 Member Function Documentation

6.94.2.1 conv_diff_eigen()

6.94.2.2 conv_diff_fem()

The documentation for this class was generated from the following files:

- · Tests/test conv diff.h
- Tests/test_conv_diff.cpp

6.95 corenc::solvers::vector_solution Struct Reference

```
#include <dg_solver_shallow_water.h>
```

Public Member Functions

- vector_solution ()
- vector_solution (const int _size)

Public Attributes

std::vector< double > S [3]

6.95.1 Constructor & Destructor Documentation

```
6.95.1.1 vector_solution() [1/2]
```

```
corenc::solvers::vector_solution::vector_solution ( ) [inline]
```

6.95.1.2 vector_solution() [2/2]

```
\begin{tabular}{ll} corenc::solvers::vector\_solution::vector\_solution ( \\ const int \_size ) & [inline] \end{tabular}
```

6.95.2 Member Data Documentation

6.95.2.1 S

```
std::vector<double> corenc::solvers::vector_solution::S[3]
```

The documentation for this struct was generated from the following file:

• Solvers/dg_solver_shallow_water.h

Chapter 7

File Documentation

7.1 colors.h File Reference

```
#include <string>
#include <iostream>
```

Namespaces

- · namespace corenc
- · namespace corenc::color

Variables

- const std::string corenc::color::ESCAPE = "\u001b[0m"
- const std::string corenc::color::BLACK = "\u001b[30m"
- const std::string corenc::color::RED = "\u001b[31m"
- const std::string corenc::color::GREEN = "\u001b[32m"
- const std::string corenc::color::YELLOW = "\u001b[33m"
- const std::string corenc::color::BLUE = "\u001b[34m"
- const std::string corenc::color::MAGENTA = "\u001b[35m"
- const std::string corenc::color::CYAN = "\u001b[36m"
- const std::string corenc::color::WHITE = "\u001b[37m"
- const std::string corenc::color::PURPLE = "\e[1;35m"
- const std::string corenc::color::BBLACK = "\u001b[30;1m"
- const std::string corenc::color::BRED = "\u001b[31;1m"
- const std::string corenc::color::BGREEN = "\u001b[32;1m"
- const std::string corenc::color::BYELLOW = "\u001b[33;1m"
- const std::string corenc::color::BBLUE = "\u001b[34;1m"
- const std::string corenc::color::BMAGENTA = "\u001b[35;1m"
- const std::string corenc::color::BCYAN = "\u001b[36;1m"
- const std::string corenc::color::BWHITE = "\u001b[37;1m"

334 File Documentation

7.2 colors.h

Go to the documentation of this file.

```
1 #ifndef CORENC_COLORS_H
2 #define CORENC COLORS H
3 #include <string>
4 #include <iostream>
5 namespace corenc
            namespace color
8
                     const std::string ESCAPE = "\u001b[0m";
                      // 8-bit colors
10
                      const std::string BLACK = "\u001b[30m";
                     const std::string BLACK = "\u001b[30m";
const std::string RED = "\u001b[31m";
const std::string GREEN = "\u001b[32m";
const std::string YELLOW = "\u001b[33m";
                   const std::string YELLOW = "\u001b[33m"; const std::string BLUE = "\u001b[34m"; const std::string MAGENTA = "\u001b[35m"; const std::string CYAN = "\u001b[36m"; const std::string WHITE = "\u001b[37m"; const std::string PURPLE = "\e[1;35m"; // 16-bit colors
14
15
16
18
19
20
                   // 16-bit colors
const std::string BBLACK = "\u001b[30;1m";
const std::string BRED = "\u001b[31;1m";
const std::string BGREEN = "\u001b[32;1m";
const std::string BYELLOW = "\u001b[33;1m";
const std::string BBLUE = "\u001b[34;1m";
const std::string BMAGENTA = "\u001b[35;1m";
const std::string BCYAN = "\u001b[36;1m";
const std::string BWHITE = "\u001b[37;1m";
static void color output (const std::strings)
21
25
26
2.7
28
                      static void color_output(const std::string& text, const std::string& col)
31
                                std::cout « col « text « ESCAPE « std::endl;
32
33
                       static void color_output(std::ostream& os, const std::string& text, const std::string& col)
34
35
                                os « col « text « ESCAPE « std::endl;
37
38 }
39 #endif // CORENC_COLORS_H
```

7.3 CoreNCA/Matrix.cpp File Reference

```
#include "Matrix.h"
```

7.4 CoreNCA/Matrix.h File Reference

```
#include <vector>
#include <set>
```

Classes

· class Algebra::Matrix

Namespaces

namespace Algebra

7.5 Matrix.h 335

7.5 Matrix.h

Go to the documentation of this file.

```
1 #ifndef CORENC_ALGEBRA_MATRIX_H
2 #define CORENC_ALGEBRA_MATRIX_H
3 #include <vector>
4 #include <set>
5 namespace Algebra
     class ESolver;
11
     class Matrix
12
     public:
13
       Matrix(const unsigned int& size, const std::vector<std::set<unsigned int>& nonzero);
14
          Matrix() {};
16
          ~Matrix();
17
          void
                                                  NullRow(const int row);
          double& operator()(const int i, const int j)
18
19
20
              return (*this).m_elem[i][j];
21
         const int
                                                   GetSize() const { return m_size; }
2.3
          void
                                                  NullMatrix();
2.4
          Matrix&
                                                    operator=(const Matrix&);
25
          Matrix(const Matrix& matrix);
26
          void
                                                   Create (const unsigned int& size, const
      std::vector<std::set<unsigned int>& nonzero);
27
                                                   Create(const unsigned int& size);
28
          const double
                                                   GetElement(const int i, const int j)
29
              return m_elem[i][j];
30
         }
void
31
                                                   AddElement (const unsigned int i, const unsigned int j,
      const double a)
33
34
              m_elem[i][j] += a;
3.5
              return;
36
     private:
      std::vector<std::vector<double»
39
          unsigned int
                                                   m_size{ 0 };
40
          friend
                                                  ESolver;
41
      };
42 }
44 #endif // !CORENC_ALGEBRA_MATRIX_H
```

7.6 CoreNCA/MatrixDiag.cpp File Reference

#include "MatrixDiag.h"

7.7 CoreNCA/MatrixDiag.h File Reference

```
#include <set>
#include <vector>
```

Classes

class Algebra::MatrixDiag

Namespaces

namespace Algebra

336 File Documentation

7.8 MatrixDiag.h

```
Go to the documentation of this file.
```

```
1 #ifndef CORENC_ALGEBRA_MATRIXDIAG_H
2 #define CORENC_ALGEBRA_MATRIXDIAG_H
3 #include <set>
4 #include <vector>
6 namespace Algebra
8
      class ESolver;
12
      class MatrixDiag
13
15
           MatrixDiag(const unsigned int& size, const std::vector<std::set<unsigned int& nonzero);</pre>
16
           MatrixDiag() {};
17
           ~MatrixDiag();
                                                      NullRow(const int row):
18
           void
           double& operator()(const int i, const int j)
19
21
               return (*this).m_valDiag[i];
23
           const int
                                                       GetSize() const { return m_size; }
24
                                                      NullMatrix();
           void
           MatrixDiag&
25
                                                        operator=(const MatrixDiag&);
           MatrixDiag(const MatrixDiag& matrix);
                                                       Create(const unsigned int& size, const
       std::vector<std::set<unsigned int>% nonzero);
2.8
           void
                                                       AddElement(const unsigned int i, const unsigned int j,
       const double a)
29
30
                if (i == j)
32
                    m_valDiag[i] += a;
33
                    return;
34
35
               return:
36
      private:
38
           std::vector<double>
                                                      m_valDiag;
39
           unsigned int
                                                      m_size{ 0 };
40
           friend
                                                      ESolver:
       } ;
41
42 }
44 #endif // !CORENC_ALGEBRA_MATRIXDIAG_H
```

7.9 CoreNCA/MatrixSkyline.cpp File Reference

```
#include "MatrixSkyline.h"
#include <iostream>
#include <fstream>
#include <ostream>
#include <ctime>
#include <cmath>
```

Macros

- #define N_MIN 4096
- #define NOPE

7.9.1 Macro Definition Documentation

7.9.1.1 _NOPE_

```
#define _NOPE_
```

7.9.1.2 N_MIN

#define N_MIN 4096

7.10 CoreNCA/MatrixSkyline.h File Reference

```
#include <set>
#include <vector>
#include <memory>
#include "Matrix.h"
#include "MatrixDiag.h"
```

Classes

• class Algebra::MatrixSkyline

• class Algebra::ESolver

Namespaces

• namespace Algebra

Enumerations

enum class Algebra::Solvers {
 Algebra::BiCGStab , Algebra::GMRES , Algebra::GMRES_BiCGStab , Algebra::Gauss ,
 Algebra::PARDISO }

338 File Documentation

7.11 MatrixSkyline.h

```
Go to the documentation of this file.
```

```
1 #ifndef CORENC_ALGEBRA_MATRIXSKYLINE_H_
2 #define CORENC_ALGEBRA_MATRIXSKYLINE_H_
3 #include <set>
4 #include <vector>
5 #include <memory>
6 #include "Matrix.h"
7 #include "MatrixDiag.h"
8 namespace Algebra
10
        class ESolver;
11
        enum class Solvers
12
            BiCGStab,
13
            GMRES,
14
            GMRES_BiCGStab,
15
16
            Gauss,
            PARDISO
18
22
        class MatrixSkyline
23
       public:
24
25
            MatrixSkyline(const unsigned int& Size, const std::vector<std::set<unsigned int& nonzero);</pre>
            MatrixSkyline(){};
26
            ~MatrixSkyline();
28
            void
                                  NullRow(int row);
29
            double& operator()(const int i, const int j)
30
                 int ind:
31
                /*for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
32
                     if (m_colind[ind] == j)
34
                         break;
35
                 return (*this).m_valL[ind]; */
36
                 if (i == j)
37
                     return (*this).m_valDiag[i];
38
39
40
                 <u>if</u> (i < j)
41
                     for (ind = m_rowptr[j]; ind < m_rowptr[j + 1]; ++ind)</pre>
42
43
                        if (m_colind[ind] == i)
44
                              break;
                     return (*this).m_valU[ind];
47
48
                     for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
49
50
                          if (m_colind[ind] == j)
51
                     return (*this).m_valL[ind];
53
                 //return (*this)[];
54
55
            const double operator()(const int i, const int j) const
56
                 int ind;
59
                 /*for \ (ind = m\_rowptr[i]; \ ind < m\_rowptr[i + 1]; \ ++ind)
                    if (m_colind[ind] == j)
60
61
                         break:
                 return (*this).m valL[ind]; */
62
63
                 if (i == j)
65
                     return (*this).m_valDiag[i];
66
67
                 if (i < j)
68
69
                     for (ind = m_rowptr[j]; ind < m_rowptr[j + 1]; ++ind)</pre>
70
                         if (m_colind[ind] == i)
71
72
                     if (ind < m_rowptr[j + 1])</pre>
73
                          return (*this).m_valU[ind];
                     return 0;
74
75
76
                 else
77
78
                      for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
79
                         if (m_colind[ind] == j)
80
                              break;
                     if (ind < m_rowptr[i + 1])</pre>
81
                         return (*this).m_valL[ind];
                     return 0;
85
                 return 0:
```

7.11 MatrixSkyline.h 339

```
86
                                 GetElement(const int i, const int j) const
            const double
87
88
89
                int ind;
                /*for (ind = m\_rowptr[i]; ind < m\_rowptr[i + 1]; ++ind)
90
                    if (m_colind[ind] == j)
91
92
                        break;
                return (*this).m_valL[ind]; */
93
94
                if (i == j)
9.5
                    return (*this).m_valDiag[i];
96
97
98
                <u>if</u> (i < j)
99
100
                      for (ind = m_rowptr[j]; ind < m_rowptr[j + 1]; ++ind)</pre>
101
                          if (m_colind[ind] == i)
102
                              break:
103
                     if (ind < m_rowptr[j + 1])</pre>
104
                          return (*this).m_valU[ind];
105
                     return 0;
106
107
                 else
108
                      for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
109
                          if (m_colind[ind] == j)
110
111
                              break;
112
                      if (ind < m_rowptr[i + 1])</pre>
113
                          return (*this).m_valL[ind];
114
                      return 0;
115
                 }
116
                 return 0:
117
118
             const int
                                  GetSize() const { return m_size; }
119
             void
                                  NullMatrix();
120
             MatrixSkyline&
                                 operator=(const MatrixSkyline&);
121
             //MatrixSkyline&
                                       operator-(const MatrixSkyline&);
             //friend const MatrixSkyline operator-(const MatrixSkyline&, const MatrixSkyline&);
122
123
             // A - scal * B
124
             static const MatrixSkyline diff_skymatrix(const MatrixSkyline& matrix, const MatrixSkyline& B,
       const double scal)
125
126
                 MatrixSkyline C(matrix);
                 127
128
129
                      for (int i = 0; i < B.m_gsize; ++i)</pre>
130
                          C.m_valL[i] = matrix.m_valL[i] - scal * B.m_valL[i];
C.m_valU[i] = matrix.m_valU[i] - scal * B.m_valU[i];
131
132
133
134
                      for (int i = 0; i < B.m size; ++i)
135
136
                          C.m_valDiag[i] = matrix.m_valDiag[i] - scal * B.m_valDiag[i];
137
138
139
                 return C:
140
141
             static const MatrixSkyline diff_skymatrix(const MatrixSkyline& matrix, const MatrixSkyline& B,
       const double a, const double b)
142
143
                 MatrixSkyline C(matrix);
144
                 if ((B.m_gsize == matrix.m_gsize) && (matrix.m_size == B.m_size))
145
146
                      for (int i = 0; i < B.m_gsize; ++i)</pre>
147
                          C.m_valL[i] = a * matrix.m_valL[i] - b * B.m_valL[i];
C.m_valU[i] = a * matrix.m_valU[i] - b * B.m_valU[i];
148
149
150
                      for (int i = 0; i < B.m size; ++i)
151
152
153
                          C.m_valDiag[i] = a * matrix.m_valDiag[i] - b * B.m_valDiag[i];
154
155
                 return C;
156
157
             static const MatrixSkyline transpose sky(const MatrixSkyline& matrix)
158
159
                 MatrixSkyline C(matrix);
160
                 C.m_valL = matrix.m_valU;
C.m_valU = matrix.m_valL;
161
162
163
                 return C:
164
165
            MatrixSkyline(const MatrixSkyline& matrix);
                                  Create(const unsigned int& Size, const std::vector<std::set<unsigned int>&
166
             void
       nonzero);
167
            void
                                   AddElement (const unsigned int i, const unsigned int j, const double a)
168
             {
                 int ind:
169
```

340 File Documentation

```
/*for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
171
                 if (m_colind[ind] == j)
172
                 break;
173
                 return (*this).m_valL[ind]; */
174
                if (i == j)
175
                {
176
                    m_valDiag[i] += a;
177
                    return;
178
179
                if (i < j)
180
                    for (ind = m_rowptr[j]; ind < m_rowptr[j + 1]; ++ind)</pre>
181
                        if (m_colind[ind] == i)
182
183
                            break;
184
                    m_valU[ind] += a;
185
                    return;
186
187
                else
188
189
                    for (ind = m_rowptr[i]; ind < m_rowptr[i + 1]; ++ind)</pre>
                        if (m_colind[ind] == j)
190
                            break;
191
                    m_valL[ind] += a;
192
193
                    return:
194
                }
195
            }
196
        private:
197
198
            //int*
                                m_rowptr = nullptr;
199
            std::vector<int>
                                m_rowptr;
200
                                m colind = nullptr:
            //int*
201
            std::vector<int>
                                m_colind;
202
            //double*
                                    m_valU = nullptr;
203
            std::vector<double> m_valU;
204
            //double*
                                    m_valL = nullptr;
            std::vector<double> m_valL;
205
                                   m_valDiag = nullptr;
206
            //double*
207
            std::vector<double> m_valDiag;
208
            int
                               m_size;
209
            int
                                m_gsize;
210
            friend
                                ESolver;
211
            //friend
                                    Matrix:
212
213
        class ESolver
214
        public:
215
216
           ESolver(const MatrixSkyline& matrix, const std::vector<double>& rightvector) :
217
               m_matrix{ matrix },
218
                m_rightvector( rightvector ),
                m_maxiter(20000),
219
220
               m_eps(1e-10)
221
222
                m_solution.resize(matrix.m_size);
223
            ESolver(){};
224
225
            ESolver(Solvers kek) :m solver(kek){};
                                    Reload(const MatrixSkyline& matrix, const std::vector<double>& right);
            void
227
                                    Solve(Solvers);
            const std::vector<double>
                                            Solve(MatrixSkyline&, const std::vector<double>& rhs,
228
       std::vector<double>& sol, std::vector<double>& residual, const int iter, const double eps);
229
            const std::vector<double>
                                            Solve(MatrixDiag&, const std::vector<double>& rhs,
       std::vector<double>& sol, std::vector<double>& residual, const int iter, const double eps);
230
            double
                                    BiCGStab(const int _maxiter);
                                     GMRES(const int _maxiter);
232
            void
                                    GMRES (MatrixSkyline&, const std::vector<double>& rhs,
       std::vector<double>& sol, std::vector<double>& residual, const int iter, const double eps);
233
            void
                                    BiCGStab(MatrixSkyline&, const std::vector<double>& rhs,
      234
       std::vector<double>& sol, std::vector<double>& residual, const int iter, const double eps);
235
                                    Gauss(Matrix&, const std::vector<double>& rhs, std::vector<double>&
            void
       sol);
236
            void
                                    Gauss(const Matrix&, double* in_out);
                                    Gauss (const Matrix&, double* in, double* out);
Gauss (const Matrix&, const double* in, double* out);
237
            void
238
            void
                                    Pardiso(MatrixSkyline&, const std::vector<double>& rhs,
            void
       std::vector<double>& sol);
240
            void
                                    BiCGStabPrecond();
241
            const std::vector<double>
                                        GetSolution() const{ return m_solution; }
                                    GetSolution(std::vector<double>& sol) const;
242
            void
                                    MatrixprodVector(double*res, std::vector<double>& x, MatrixSkyline& m);
243
            void
244
                                    MatrixprodVector(double*res, double* x, MatrixSkyline& m);
            void
245
                                     MatrixprodVector(double*res, double* x, const Matrix& m);
            void
246
            void
                                    MatrixprodVector(double*res, const double* x, const Matrix& m);
247
            ~ESolver();
2.48
        private:
249
            MatrixSkyline
                                   m matrix:
```

```
std::vector<std::vector<double» H, V, W;
             std::vector<double>
251
                                     m_solution;
252
             std::vector<double>
                                        m_rightvector;
253
             void
                                        GMRESBiCGStab();
2.54
             void
                                        MatrixprodVector(double*res, std::vector<double>& x, double*valDiag,
       double*valL, double*valU, int*rowptr, int*colind, int size);
                                        MatrixprodVector(double*res, std::vector<double>& x,
             void
256
                                                          std::vector<double>&valDiag,
257
                                                           std::vector<double>&valL,
258
                                                          std::vector<double>&valU
                                                           std::vector<int>&rowptr,
259
                                                          std::vector<int>&colind, int size);
260
                                        MatrixprodVector(double*res, std::vector<double>& x, MatrixSkyline& m);
MatrixprodVector(double*res, double* x,
             //void
261
262
263
                                                          std::vector<double>&valDiag,
264
                                                           std::vector<double>&valL,
265
                                                          std::vector<double>&valU.
                                                          std::vector<int>&rowptr,
266
                                                          std::vector<int>&colind, int size);
267
268
                                        MatrixprodVector(double*res, double* x, double*valDiag, double*valL,
       double*valU, int*rowptr, int*colind, int size);
269
             void
                                        {\tt MatrixprodVector}({\tt double*}\ {\tt res},\ {\tt double*}\ {\tt x},\ {\tt double*}\ {\tt val},\ {\tt int*}\ {\tt rowptr},\ {\tt int*}
       colind, int size);
270
                                        DotProd(double*, double*, int);
             const double
271
                                        zero_GMRES(std::vector<std::vector<double>&, const int str, const int
             void
       stl);
272
             void
                                        mult_Ht_H_slae(double, double*, int);
273
             void
                                        gauss(std::vector<std::vector<double»&, double*, double*, int);</pre>
274
             int
                                        find_max(std::vector<std::vector<double>&, int, int);
                                        Copy(double *x, double *y, int n);
mult_Vy(double*, double*, int);
mult_Vy(double*, double*, int, int);
275
             void
276
             void
             void
278
            const double
                                        DotProd(const std::vector<double>&, const std::vector<double>&, int);
279
             const double
                                        Norm(double*, int);
280
             const double
                                        Norm(const std::vector<double>&, int);
281
            double
                                        m_eps;
                                         m_solver;
282
             Solvers
283
            int
                                        m_maxiter;
                                        m_LUvalL = nullptr;
m_LUvalU = nullptr;
284
            double*
285
            double*
286
             double*
                                        m_LUvalDiag = nullptr;
2.87
             void
                                        LUPrec();
288
                                        LSolve(double*, double*);
             void
289
             void
                                        USolve(double*, double*);
290
        public:
291
                                        GetSolution() -> decltype(m_solution) { return m_solution; }
292
293 1
294 #endif // CORENC_ALGEBRA_MATRIXSKYLINE_H_
```

7.12 CoreNCFEM/FESolution.h File Reference

```
#include <vector>
#include "Point.h"
```

Classes

· class corenc::CSolution

· class corenc::CFESolution

class corenc::CVecSolution

class corenc::CFEweights

Namespaces

· namespace corenc

342 File Documentation

7.13 FESolution.h

Go to the documentation of this file.

```
1 #ifndef CORENC_FESOLUTION_H
2 #define CORENC FESOLUTION H
9 #include <vector>
10 #include "Point.h"
11 namespace corenc
12 {
13
       class CSolution
14
       public:
15
           CSolution() {};
16
            virtual ~CSolution() {};
18
19
       class CFESolution :public CSolution
20
21
       public:
22
23
           CFESolution() :m_w{ 0 } {};
24
            ~CFESolution() {}
25
            CFESolution& operator=(const CFESolution& fe)
26
27
                m w = fe.m w;
28
                return *this;
29
30
            CFESolution& operator=(const double fe)
31
32
                m_w = fe;
33
                return *this;
34
            CFESolution(const CFESolution& fe) :m_w{ fe.m_w } {}
35
           CFESolution(const double& fe) : m_w{ fe } {}
operator double() const { return m_w; }
36
37
38
            /*double& operator=(const double fe)
39
                m w = fe;
40
41
                return m_w;
42
43
            const bool operator == (const CFESolution& fe)
44
                if (fe.m_w == m_w)
45
                    return true;
46
47
                return false;
48
49
            const bool operator!=(const CFESolution& fe)
50
51
                if (fe.m_w != m_w)
                     return true;
52
53
                return false;
55
            CFESolution& operator+=(const CFESolution& fe)
56
                m_w += fe.m_w;
57
58
                return *this;
59
60
            CFESolution& operator = (const CFESolution& fe)
62
                m_w -= fe.m_w;
63
                return *this;
64
            CFESolution& operator*=(const CFESolution& fe)
65
66
68
                return *this;
69
70
            CFESolution& operator/=(const CFESolution& fe)
71
72
                m_w /= fe.m_w;
73
                return *this;
74
75
            friend const double operator*(const CFESolution& lhs, const CFESolution& rhs)
76
                return lhs.m_w * rhs.m_w;
77
78
            friend const double operator*(const CFESolution& lhs, const double rhs)
80
81
                return lhs.m_w * rhs;
82
            friend const double operator*(const double lhs, const CFESolution& rhs)
83
84
                return lhs * rhs.m_w;
86
87
            friend const double operator-(const CFESolution& lhs, const CFESolution& rhs)
88
```

```
return lhs.m_w - rhs.m_w;
91
           friend const double operator+(const CFESolution& lhs, const CFESolution& rhs)
92
               return lhs.m_w + rhs.m_w;
9.3
          friend const double operator/(const CFESolution& lhs, const CFESolution& rhs)
          {
97
               return lhs.m_w / rhs.m_w;
98
       private:
99
100
           double m_w;
101
102
        class CVecSolution :public CSolution
103
104
       public:
           CVecSolution() :m_w{ 0 } {};
105
            ~CVecSolution() {}
106
107
           std::vector<double> m_w;
108
       };
109
110
       class CFEweights
111
       public:
112
113
           CFEweights() {};
114
            ~CFEweights()
115
116
                if (m_w.size() > 0)
117
                    std::vector<CFESolution>().swap(m_w);
118
           };
119
           const CFESolution
                                             getWeight(const unsigned int i) const { return m_w[i]; };
120
            const int
                                            updateWeight (const unsigned int i, const CFESolution& cfe)
121
122
                if (i < m_w.size())
123
                    m_w[i] = cfe;
124
125
                    return 0;
126
127
                return 1;
128
129
      private:
130
            std::vector<CFESolution>
                                            m w;
131
132 }
133
134 #endif // !CORENC_FESOLUTION_H
135
```

7.14 CoreNCFEM/FiniteElements/CRectangleBasis2x.cpp File Reference

```
#include "Rectangle.h"
#include <iostream>
```

7.15 CoreNCFEM/FiniteElements/Cube.cpp File Reference

```
#include "Cube.h"
```

7.16 CoreNCFEM/FiniteElements/Cube.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
```

344 File Documentation

Classes

- · class corenc::Mesh::CCube
- · class corenc::Mesh::CCubeBasis

Namespaces

- namespace corenc
- · namespace corenc::Mesh

Macros

• #define CORENC_MESH_CUBE_H_

7.16.1 Macro Definition Documentation

7.16.1.1 CORENC_MESH_CUBE_H_

#define CORENC_MESH_CUBE_H_

7.17 Cube.h

Go to the documentation of this file.

```
1 #pragma once
2 #ifndef CORENC_MESH_CUBE_H_
3 #define CORENC_MESH_CUBE_H_
5 #include <stdio.h>
6 #include "Shape.h"
7 #include "ShapeFunction.h"
8 #include <iostream>
9 namespace corenc
10 {
11
        namespace Mesh
13
            class CCube : public CShape
14
            public:
15
16
                 CCube();
                 CCube (const int n1, const int n2, const int n3, const int n4, const int order);
18
                 const int e3, const int e4, const int order);
                 CCube(const int*, const int order);
CCube(const int*, const int*, const int order);
19
20
                 CCube(const CCube&);
21
22
                 CCube& operator=(const CCube& t)
23
                     m_nodes = t.m_nodes;
                     m_edges[0] = t.m_edges[0];
m_edges[1] = t.m_edges[1];
m_edges[2] = t.m_edges[2];
25
26
27
28
                     m_edges[3] = t.m_edges[3];
                     m_number = t.m_number;
m_order = t.m_order;
29
30
                     m_px = t.m_px;
m_py = t.m_py;
31
32
                     return *this;
33
34
                 const bool
                                 operator == (const CCube& t)
```

7.17 Cube.h 345

```
36
                     for (unsigned int i = 0; i < 4; ++i)
37
38
                         if (m_nodes[i] == t.m_nodes[0])
                              for (unsigned int j = 0; j < 4; ++j)
    if (m_nodes[j] == t.m_nodes[l])
        for (unsigned int k = 0; k < 4; ++k)
        if (m_nodes[k] == t.m_nodes[2])</pre>
39
40
41
42
43
                                               for (unsigned int 1 = 0; 1 < 4; ++1)
44
                                                    if (m_nodes[1] == t.m_nodes[3])
4.5
                                               return true;
46
                     return false:
47
                std::istream& operator»(std::istream& is)
48
49
50
                     is » m_nodes[0] » m_nodes[1] » m_nodes[2] » m_nodes[3];
51
52
                ~CCube() {};
53
54
                const int
                                                                          GetNode(const int) const;
                                                                          GetNode(const NODES&) const;
                const int
                const int
                                                                          GetEdge(const int) const;
57
                const int
                                                                          GetFacet(const int) const;
58
                const int
                                                                          GetNumberOfNodes() const;
                                                                          GetNumberOfEdges() const;
59
                const int
60
                                                                          GetNumberOfFacets() const;
                const int
                const double
                                                                          Integrate(const std::function<const</pre>
61
       double(const Point&)>&, const std::vector<Point>& v) const;
62
                const Point
                                                                             Integrate(const std::function<const</pre>
       Point(const Point&)>&, const std::vector<Point>& v) const;
63
                const std::vector<double>
                                                                          Integrate(const std::function<const</pre>
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
64
                                                                          SetNode(const int k, const int node);
                void
                                                                          IncreaseOrder();
65
                const int
                                                                          SetOrder(const int px, const int py);
66
                const int
67
                void
                                                                          SetEdge(const int k, const int edge);
68
                void
                                                                          SetFacet (const int k, const int facet);
            private:
69
70
                std::vector<int>
                                                                          m_nodes;
71
                int
                                                                          m_edges[4];
72
                int
                                                                          m_order;
73
                int
                                                                          m_number;
74
                int
                                                                          m_px, m_py;
7.5
            };
76
77
            class CCubeBasis : public CShapeFunction<double>
78
            public:
79
80
                CCubeBasis();
                CCubeBasis (const Point&, const Point&, const Point&, const Point&, const int order);
81
                CCubeBasis (const Point*, const int order);
82
83
                CCubeBasis(const CCubeBasis&);
                CCubeBasis& operator=(const CCubeBasis& t)
84
85
86
                     m_normal = t.m_normal;
                    m_det = t.m_det;
m_order = t.m_order;
87
88
                     m_ldorder = t.m_ldorder;
89
                     m_number = t.m_number;
90
91
                     m_s = t.m_s;
92
                     m_sp = t.m_sp;
9.3
                     m_points = t.m_points;
94
                     m hx = t.m hx;
95
                     m_hy = t.m_hy;
                     return *this;
97
98
                ~CCubeBasis() {};
99
                const int
                                                                          GetNumberOfShapeFunctions() const;
                 //const DForm<0>*
100
                                                                               GetShapeFunction(const int, const
       Point&) const:
101
                 const double
                                                                           GetShapeFunction(const int, const
       Point&) const;
102
                 const Point
                                                                              GetGradShapeFunction(const int, const
       Point&) const;
103
                 const Point
                                                                              GetNormal() const;
                                                                           ReverseNormal();
104
                 void
105
                 const double
                                                                           GetValue(const Point&) const;
106
                 const int
                                                                           IncreaseOrder();
107
                  //const int
                                                                           SetValue(const int, CSolution* value);
108
                  //CSolution*
                                                                           GetValue(const unsigned int);
109
                 //const_CFESolution
                                                                           GetValue(const int) const;
                                                                           GetMeasure() const { return m_det; };
110
                 const double
111
                 const double
                                                                           GetWeight (const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
112
                 //const unsigned int
                                                                               GetOrder() const;
113
                  //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
114
             private:
115
                 int
                                                                           m number:
```

346 File Documentation

```
116
                                                                      m_order;
117
                                                                      m_ldorder;
118
                Point
                                                                      m_normal;
119
                std::vector<Mesh::Point>
                                                                      m_points;
120
                double
                                                                      m_det;
                                                                      m_hx, m_hy;
121
                double
                                                                      m_x1(const double) const;
122
                const double
123
                const double
                                                                      m_x2(const double) const;
124
                const double
                                                                      m_y1(const double) const;
125
                const double
                                                                      m_y2(const double) const;
126
                                                                      compD(const Point&, const Point&, const
                void
      Point&);
127
                void
                                                                      compNormal(const Point&, const Point&,
       const Point&);
128
               const int
                                                                      createS();
                                                                      m_w[m_number];
m_w{ 4 };
129
                //std::vector<double>
                //std::vector<CFESolution>
130
131
                int
                                                                      m s;
132
                int
                                                                      m_sp;
133
            };
134
135 }
136 #endif // CORENC_MESH_Cube_H_
```

7.18 CoreNCFEM/FiniteElements/CubeHBasis.cpp File Reference

7.19 CoreNCFEM/FiniteElements/Edge.cpp File Reference

```
#include "Edge.h"
#include <iostream>
```

7.20 CoreNCFEM/FiniteElements/Edge.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
#include "../FESolution.h"
```

Classes

- · class corenc::Mesh::CEdge
- class corenc::Mesh::CEdgeLinearBasis
- class corenc::Mesh::CEdgeConstantBasis
- class corenc::Mesh::CEdgeMultiBasis
- class corenc::Mesh::CEdgeHermiteBasis
- class corenc::Mesh::CEdge2ndBasis

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.21 Edge.h 347

7.21 Edge.h

```
1 #ifndef Edge_hpp
2 #define Edge_hpp
4 #include <stdio.h>
5 #include "Shape.h"
6 #include "ShapeFunction.h"
7 #include <iostream>
8 #include "../FESolution.h"
9 namespace corenc
10 {
11
       namespace Mesh
12
13
            class CEdge : public CShape
14
15
            public:
16
                CEdge();
                CEdge(const CEdge&);
18
                CEdge(const int n1, const int n2);
19
                CEdge(const int*);
20
                CEdge& operator=(const CEdge& e)
21
22
                    m_nodes = e.m_nodes;
23
                    m_number = e.m_number;
                     return *this;
25
2.6
                friend const bool operator==(const CEdge& e1, const CEdge& e2)
2.7
                     if (e1.m_nodes[0] == e2.m_nodes[0])
28
                         if (e1.m_nodes[1] == e2.m_nodes[1])
29
                             return true;
31
                     if (e1.m_nodes[1] == e2.m_nodes[0])
                         if (e1.m_nodes[0] == e2.m_nodes[1])
32
33
                             return true;
                     return false:
34
35
                friend std::istream& operator»(std::istream& is, CEdge& e)
36
37
38
                     is » e.m_nodes[0] » e.m_nodes[1];
39
                     --e.m_nodes[0]; --e.m_nodes[1];
40
                    return is;
41
                ~CEdge() {};
43
                const int
                                                                              GetNode(const int) const;
44
                const int
                                                                              GetNode(const NODES&) const;
4.5
                const int
                                                                              GetNumberOfNodes() const;
                                                                              SetNode (const int k, const int node);
46
                void
                const double
                                                                              Integrate(const std::function<const</pre>
       double(const Point&)>&, const std::vector<Point>& v) const;
48
        std::function<const Point(const Point&)>&, const std::vector<Point>& v) const;
49
                const int
                                                                              IncreaseOrder();
                                                                              Integrate(const std::function<const</pre>
50
                const std::vector<double>
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
51
           private:
52
                                                                              m_number;
53
                std::vector<int>
                                                                              m_nodes;
54
            };
55
            class CEdgeLinearBasis : public CShapeFunction<double>
56
59
                CEdgeLinearBasis();
60
                CEdgeLinearBasis(const Point&, const Point&);
61
                CEdgeLinearBasis(const Point*);
CEdgeLinearBasis(const CEdgeLinearBasis&);
62
63
                CEdgeLinearBasis& operator=(const CEdgeLinearBasis& e)
                     m_number = e.m_number;
65
                    m_p0 = e.m_p0;
m_p1 = e.m_p1;
66
67
68
                     m_normal = e.m_normal;
69
                    m mes = e.m mes:
                     return *this;
70
71
72
                ~CEdgeLinearBasis() {};
73
                const int
                                                                              GetNumberOfShapeFunctions() const;
                //const DForm<0>*
74
                                                                                  GetShapeFunction(const int)
       const;
75
                const double
                                                                              GetShapeFunction(const int, const
       Point&) const;
76
                const Point
                                                                                 GetGradShapeFunction(const int,
       const Point&) const;
```

```
const Point
                                                                           GetNormal() const;
78
                                                                        ReverseNormal();
               void
79
               //const int
                                                                        SetValue(const int, CSolution*
       value);
80
               //const int
                                                                        SetValue(const int, const
       CFESolution& value);
               //const CFESolution
81
                                                                        GetValue(const Point&) const;
82
               //const CFESolution
                                                                         GetValue(const int) const;
83
               const int
                                                                         IncreaseOrder();
84
               const double
                                                                        GetMeasure() const { return m_mes; };
85
               const double
                                                                        GetWeight (const int, const
       \verb|std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;\\
86
                                                                    GetValue(const unsigned int);
               //CSolution*
               //const std::function<const DForm<0>*(const Point&)>
                                                                                GetShapeFunction(const int)
87
       const;
88
           private:
89
               int
                                                                        m number:
                                                                       m_p0, m_p1;
m_normal;
               Point
90
91
               Point
               double
                                                                        m_mes;
93
                                                                         CompNormal();
               void
94
               void
                                                                        CompLenght();
               //std::vector<double>
9.5
                                                                            m_w[2];
               //std::vector<CFESolution>
96
                                                                        m w:
98
               //const std::function<const double(const Point&p)>
                                                                        m_psi[2];
99
100
101
102
            class CEdgeConstantBasis : public CShapeFunction<double>
103
104
105
            public:
106
                CEdgeConstantBasis();
107
                CEdgeConstantBasis(const Point&, const Point&);
                CEdgeConstantBasis(const Point*);
108
                CEdgeConstantBasis(const CEdgeConstantBasis&);
109
110
                CEdgeConstantBasis& operator=(const CEdgeConstantBasis& e)
111
                {
                    m_p0 = e.m_p0;
m_p1 = e.m_p1;
112
113
114
                    m_normal = e.m_normal;
                    m mes = e.m mes:
115
                    return *this;
116
117
118
                ~CEdgeConstantBasis() {};
119
                const int
                                                                         GetNumberOfShapeFunctions() const;
                //const DForm<0>*
120
                                                                              GetShapeFunction(const int)
       const:
121
                const double
                                                                         GetShapeFunction(const int, const
       Point&) const;
122
                const Point
                                                                            GetGradShapeFunction(const int,
       const Point&) const;
123
                const Point
                                                                            GetNormal() const;
                                                                         ReverseNormal();
124
                void
       125
126
                {
127
                    return f(verts[node]);
128
                } ;
129
                //const double
                                                                         GetValue(const Point&) const;
                //const int
                                                                         SetValue (const unsigned int, const
130
       double& value);
131
                //const double
                                                                          GetValue(const unsigned int) const;
132
                //const int
                                                                         SetValue(const int, CSolution*
       value);
133
                //const int
                                                                         SetValue (const int, const
       CFESolution& value);
134
                const int
                                                                          IncreaseOrder() { return 1; };
                //const CFESolution
                                                                          GetValue(const Point&) const;
135
136
                //CSolution*
                                                                      GetValue(const unsigned int);
137
                //const CFESolution
                                                                         GetValue(const int) const;
138
                const double
                                                                         GetMeasure() const { return 0.; };
                //const std::function<const DForm<0>*(const Point&)>
                                                                                 GetShapeFunction(const int)
139
       const;
140
            private:
                                                                         m_number = 1;
141
                static const int
142
                Point
                                                                         m_p0;
143
                Point
                                                                        m_p1;
144
                Point.
                                                                         m normal;
145
                double
                                                                         m mes;
146
                void
                                                                          CompNormal();
147
                                                                          CompLenght();
                void
148
                //double
                                                                             m_w;
149
                //CFESolution
                                                                             m_w;
150
                //const std::function<const double(const Point&p)>
                                                                         m_psi[2];
151
            };
```

7.21 Edge.h 349

```
152
153
             class CEdgeMultiBasis : public CShapeFunction<double>
154
             public:
155
                 CEdgeMultiBasis();
156
                 CEdgeMultiBasis (const Point&, const Point&);
157
                 CEdgeMultiBasis(const Point*);
158
159
                 CEdgeMultiBasis(const CEdgeMultiBasis&);
160
                 CEdgeMultiBasis& operator=(const CEdgeMultiBasis& e)
161
                     m_p0 = e.m_p0;
162
                     m_po = e.m_po,
m_p1 = e.m_p1;
m_normal = e.m_normal;
163
164
165
                     m_mes = e.m_mes;
166
                      //m_w = e.m_w;
167
                      return *this;
168
                 ~CEdgeMultiBasis() {};
169
170
                 const int
                                                                              GetNumberOfShapeFunctions() const;
                 //const DForm<0>*
171
                                                                                   GetShapeFunction(const int)
       const;
172
                 const double
                                                                              GetShapeFunction(const int, const
       Point&) const;
                 const Point
173
                                                                                  GetGradShapeFunction(const int,
       const Point&) const;
174
                 const Point
                                                                                  GetNormal() const;
175
                                                                              ReverseNormal();
                 void
176
                 const double
                                                                              GetWeight(const int node, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
177
                 {
178
                     return f(verts[node]);
179
                 };
180
                 //const int
                                                                              SetValue(const int, CSolution*
       value);
                                                                              IncreaseOrder() { return 1; };
SetValue(const int, const
181
                 const int
182
                 //const int
       CFESolution& value);
183
                 //const CFESolution
                                                                              GetValue(const Point&) const;
184
                 //const CFESolution
                                                                              GetValue(const int) const;
185
                 const double
                                                                              GetMeasure() const { return 0.; };
186
                 //const std::function<const DForm<0>*(const Point&)>
                                                                                       GetShapeFunction(const int)
       const:
187
             private:
188
                 static const int
                                                                              m_number = 2;
189
                 Point
                                                                             m_p0;
190
                 Point
                                                                             m_p1;
191
                 Point
                                                                              m_normal;
192
                 double
                                                                              m_mes;
193
                                                                              CompNormal();
                 void
194
                                                                              CompLenght();
                 void
195
                 //std::vector<double>
                                                                                   m_w[m_number];
196
                 //std::vector<CFESolution>
                                                                              m_w;
197
                 //const std::function<const double(const Point&p)>
                                                                              m_psi[2];
198
             };
199
200
             class CEdgeHermiteBasis : public CShapeFunction<double>
201
202
203
                 CEdgeHermiteBasis();
204
                 CEdgeHermiteBasis(const Point&, const Point&);
                 CEdgeHermiteBasis(const Point*);
CEdgeHermiteBasis(const CEdgeHermiteBasis&);
205
206
207
                 CEdgeHermiteBasis& operator=(const CEdgeHermiteBasis& e)
208
209
                     m_p0 = e.m_p0;
210
                     m_p1 = e.m_p1;
211
                     m_normal = e.m_normal;
212
                     m_mes = e.m_mes;
                     //m_w = e.m_w;
213
                      return *this;
214
215
216
                 ~CEdgeHermiteBasis() {};
217
                 const int
                                                                              GetNumberOfShapeFunctions() const;
                 //const DForm<0>*
218
                                                                                   GetShapeFunction(const int)
       const;
219
                 const double
                                                                              GetShapeFunction(const int, const
       Point&) const;
220
                 const Point
                                                                                  GetGradShapeFunction(const int,
       const Point&) const;
221
                 const int
                                                                              IncreaseOrder() { return 1; };
  GetNormal() const;
                 const Point
222
223
                                                                              ReverseNormal();
                 void
                 const double
                                                                              GetWeight (const int node, const
224
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
225
                 {
226
                      return f(verts[node]);
227
                 };
```

```
228
                 //const int
                                                                             SetValue(const int, CSolution*
       value);
229
                 //const int
                                                                             SetValue(const int, const
       CFESolution& value);
230
                 //const CFESolution
                                                                             GetValue(const Point&) const;
231
                 //const CFESolution
                                                                             GetValue(const int) const;
GetMeasure() const { return 0.; };
232
                 const double
233
                 //const std::function<const DForm<0>*(const Point&)>
                                                                                     GetShapeFunction(const int)
       const;
234
            private:
235
                 static const int
                                                                             m number = 4;
236
                                                                            m_p0;
                 Point
237
                 Point
                                                                            m_p1;
238
                 Point
                                                                            m_normal;
239
                 double
                                                                             m_mes;
240
                 void
                                                                             CompNormal();
241
                 void
                                                                             CompLenght();
242
                 //std::vector<double>
                                                                                 m_w[m_number];
243
                 //std::vector<CFESolution>
244
                 //const std::function<const double(const Point&p)>
                                                                             m_psi[2];
245
246
             class CEdge2ndBasis : public CShapeFunction<double>
2.47
248
249
            public:
                 CEdge2ndBasis();
250
251
                 CEdge2ndBasis(const Point&, const Point&);
252
                 CEdge2ndBasis(const Point*);
253
                 CEdge2ndBasis(const CEdge2ndBasis&);
                 CEdge2ndBasis& operator=(const CEdge2ndBasis& e)
254
255
                 {
                     m_p0 = e.m_p0;
m_p1 = e.m_p1;
256
257
258
                     m_normal = e.m_normal;
                     m_mes = e.m_mes;
return *this;
259
260
261
262
                 ~CEdge2ndBasis() {};
263
                 const int
                                                                             GetNumberOfShapeFunctions() const;
264
                 //const DForm<0>*
                                                                                 GetShapeFunction(const int)
       const;
265
                 const double
                                                                             GetShapeFunction(const int, const
       Point () const:
266
                 const Point
                                                                                GetGradShapeFunction(const int,
       const Point&) const;
267
                 const Point
                                                                                GetNormal() const;
268
                 void
                                                                             ReverseNormal();
269
                 const double
                                                                             GetWeight (const int node, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
270
                {
271
                     return f(verts[node]);
272
273
                 const int
                                                                             IncreaseOrder() { return 1; };
2.74
                 //const int
                                                                             SetValue(const int, CSolution*
       value);
275
                 //const int
                                                                             SetValue (const int, const
       CFESolution& value);
276
                 //const CFESolution
                                                                             GetValue(const Point&) const;
277
                 const double
                                                                             GetMeasure() const { return 0.; };
278
                 //const CFESolution
                                                                             GetValue(const int) const;
                 //const std::function<const DForm<0>*(const Point&)>
2.79
                                                                                     GetShapeFunction(const int)
       const;
280
            private:
                static const int
281
                                                                             m_number = 3;
                                                                            m_p0, m_p1;
282
                 Point
283
                 Point
                                                                            m_normal;
284
                 double
                                                                             m_mes;
285
                 void
                                                                             CompNormal():
286
                 void
                                                                             CompLenght();
287
                 //std::vector<CFESolution>
                                                                             m_w;
288
                 //const std::function<const double(const Point&p)>
                                                                             m_psi[2];
289
             } ;
290
        }
291 }
293 #endif /* Edge_hpp */
```

7.22 CoreNCFEM/FiniteElements/FiniteElement.h File Reference

```
#include <functional>
#include <iostream>
```

7.23 FiniteElement.h 351

```
#include <vector>
#include "../Point.h"
#include "../FESolution.h"
```

Classes

- class corenc::Mesh::CElement< bool >
- class corenc::Mesh::CElement< T >
- class corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, T >
- class corenc::Mesh::CFiniteElement< Shape, ShapeFunction, DoF, bool >
- class corenc::Mesh::CFiniteElement< Shape, ShapeFunction, bool, bool

Namespaces

- · namespace corenc
- namespace corenc::Mesh

Typedefs

using corenc::Mesh::function_dp = std::function< const double(const Point &)>

Enumerations

```
    enum corenc::Mesh::Elements {
        corenc::Mesh::Interval = 0 , corenc::Mesh::Triangle = 1 , corenc::Mesh::Rectangle = 2 , corenc::Mesh::Tetrahedron = 3 ,
        corenc::Mesh::Cube = 4 }
```

7.23 FiniteElement.h

```
1 #ifndef CORENC_MESH_FINITEELEMENT_H_
2 #define CORENC_MESH_FINITEELEMENT_H_
4 #include <functional>
5 #include <iostream>
6 #include <vector>
7 #include "../Point.h"
8 #include "../FESolution.h"
9 namespace corenc
10 {
11
       namespace Mesh
12
           using function_dp = std::function<const double(const Point&)>;
13
           enum Elements
14
16
                Interval = 0,
                Triangle = 1,
17
                Rectangle = 2,
18
                Tetrahedron = 3,
19
20
                Cube = 4
21
           };
23
           template<class T = bool>
2.4
           class CElement;
25
26
           template<>
           class CElement < bool>
```

```
28
                public:
29
30
                       CElement() {}
                       virtual ~CElement() {}
31
32
                       virtual const int
                                                                                                        GetType() const = 0;
                       virtual CElement<>*
33
                                                                                                          Clone() const = 0;
                                                                                                        GetDoFs() const = 0;
                       virtual const int
                       virtual const int
35
                                                                                                        GetNode(const int) const = 0;
                       virtual const int
                                                                                                        GetNeighbour(const int) const = 0;
36
37
                       virtual void
                                                                                                        SetNeighbour(const int k, const int elem)
          = 0;
38
                       virtual void
                                                                                                        SetType(const int) = 0;
                                                                                                       SetNode(const int, const int) = 0;
GetNumberOfNodes() const = 0;
39
                       virtual void
                       virtual const int
40
41
                       //virtual void
                                                              SetShapeFunction(const unsigned int, const std::function<const
          DiffForm(const Point&)>&) = 0;
                       //virtual const DiffForm* GetShapeFunction(const int, const Point&) const = 0;
42
                       //virtual const double
                                                                                                       GetShapeFunction(const unsigned int,
43
          const std::vector<double>&) const = 0;
44
                       virtual const double
                                                                                                        GetShapeFunction(const int, const Point&)
           const = 0;
45
                      virtual const Point
                                                                                                            GetGradShapeFunction(const int, const
          Point&) const = 0;
                      //virtual const std::vector<double>
46
                                                                                                       GetGradShapeFunction(const unsigned int,
          const std::vector<double>&) const = 0;
                      virtual const Point
47
                                                                                                            GetNormal() const = 0;
                       //virtual const std::vector<double>
48
                                                                                                       GetNormal() const = 0;
19
                       virtual void
                                                                                                        ReverseNormal() = 0;
50
                       virtual const double
                                                                                                       Integrate(const function_dp&, const
          std::vector<Point>& v) const = 0;
                      //virtual const double
51
                                                                                                       Integrate (const std::function<const
          double(const std::vector<double>&)>&, const std::vector<std::vector<double>& v) const = 0;
52
                                                                                                           Integrate(const std::function<const</pre>
                       virtual const Point
           Point(const Point&)>&, const std::vector<Point>& v) const = 0;
53
                       //virtual const std::vector<double>
                                                                                                       Integrate(const std::function<const</pre>
           std::vector<double>(const std::vector<double>&)>&, const std::vector<std::vector<double>& v) const =
          0;
54
                       virtual const std::vector<double>
                                                                                                       Integrate(const std::function<const</pre>
           std::vector<double>(const Point&)>&, const std::vector<Point>&) const = 0;
55
                       virtual const double
                                                                                                      GetWeight (const int, const
           std::vector<Point>& verts, const function_dp& f) const = 0;
56
                       //virtual const Type
                                                                                                             GetValue(const unsigned number) const
          = 0;
57
                       //virtual const Type
                                                                                                             GetValue(const Mesh::Point&) const =
          0;
58
                       //virtual const int
                                                                                                       SetValue(const unsigned int number, const
          Type& value) = 0;
59
                      //virtual const int
                                                                                                       SetValue(const int number, CSolution*
          value) = 0:
60
                      //virtual CSolution*
                                                                                                             GetValue(const int) = 0;
                       virtual const int
                                                                                                        IncreaseOrder() = 0;
61
                       virtual const double
                                                                                                       GetMeasure() const = 0;
63
                       //virtual const std::vector<double>
                                                                                                       Integrate(const std::function<const</pre>
          \verb|std::vector<double>(const std::vector<double>\&) > \&, const std::vector<std::vector<double>\&) const = 0; | const std::vector<double>&) | const std::vecto
64
                       // {\tt virtual std::function} < {\tt const DiffForm(const Point\&)} > {\tt GetShapeFunction(const int)} = 0; \\
65
                       //virtual const double GetShapeFunction(const int, const Point&) const = 0;
66
                 template<class T>
                class CElement
68
69
                public:
70
                      CElement() {}
virtual ~CElement() {}
71
72
                       virtual const int
73
                                                                                                        GetType() const = 0;
74
                       virtual CElement*
                                                                                                        Clone() const = 0;
75
                       virtual const int
                                                                                                        GetDoFs() const = 0;
76
                       virtual const int
                                                                                                        GetNode(const int) const = 0;
                       virtual const int
77
                                                                                                        GetNeighbour(const int) const = 0;
78
                       virtual void
                                                                                                       SetNeighbour (const int k, const int elem)
           = 0;
79
                       virtual void
                                                                                                        SetType(const int) = 0;
80
                       virtual void
                                                                                                        SetNode(const int, const int) = 0;
81
                       virtual const int
                                                                                                       GetNumberOfNodes() const = 0;
                                                              SetShapeFunction(const unsigned int, const std::function<const
82
                       //virtual void
          DiffForm(const Point&)>&) = 0;
                       //virtual const DiffForm* GetShapeFunction(const int, const Point&) const = 0;
83
84
                       //virtual const double
                                                                                                       GetShapeFunction(const unsigned int,
           const std::vector<double>&) const = 0;
85
                       virtual const double
                                                                                                        GetShapeFunction(const int, const Point&)
          const = 0:
86
                      virtual const Point
                                                                                                            GetGradShapeFunction(const int, const
          Point&) const = 0;
                       //virtual const std::vector<double>
87
                                                                                                       GetGradShapeFunction(const unsigned int,
           const std::vector<double>&) const = 0;
88
                       virtual const Point
                                                                                                            GetNormal() const = 0;
89
                       //virtual const std::vector<double>
                                                                                                        GetNormal() const = 0;
                       virtual void
                                                                                                        ReverseNormal() = 0;
90
```

7.23 FiniteElement.h 353

```
virtual const int
                                                                       IncreaseOrder() = 0;
92
                virtual const double
                                                                       Integrate(const std::function<const</pre>
       double(const Point&)>&, const std::vector<Point>& v) const = 0;
93
               //virtual const double
                                                                      Integrate(const std::function<const</pre>
       double(const std::vector<double>%)>%, const std::vector<std::vector<double»& v) const = 0;</pre>
94
                                                                          Integrate (const std::function<const
               virtual const Point
       Point(const Point&)>&, const std::vector<Point>& v) const = 0;
                //virtual const std::vector<double>
95
                                                                       Integrate(const std::function<const</pre>
       \verb|std::vector<double>|(const std::vector<double>|\&|)>|\&|, const std::vector<std::vector<double>|\&| v) | |const std::vector<||
96
               virtual const std::vector<double>
                                                                       Integrate (const std::function<const
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const = 0;
97
                                                                           GetValue(const unsigned number) const
               //virtual const Type
98
               //virtual const Type
                                                                           GetValue(const Mesh::Point&) const =
       0;
                //virtual const int
99
                                                                       SetValue(const unsigned int number, const
       Type& value) = 0;
100
                //virtual const int
                                                                        SetValue(const unsigned int number,
       CSolution* value) = 0;
101
                //virtual CSolution*
                                                                   GetValue(const unsigned int) = 0;
102
                virtual const double
                                                                        GetMeasure() const = 0;
103
                virtual const double
                                                                        GetWeight (const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const = 0;
104
                                                                            GetValue(const int number) const =
                //virtual const T
       0;
105
                 //virtual const T
                                                                            GetValue(const Point& p) const = 0;
106
                 //virtual const int
                                                                        SetValue(const int number, const T&
       value) = 0;
                //virtual const std::vector<double>
107
                                                                        Integrate(const std::function<const
       std::vector<double>(const std::vector<double>&)>&, const std::vector<std::vector<double»&) const = 0;
108
                 //virtual std::function<const DiffForm(const Point&)> GetShapeFunction(const int) = 0;
109
                 //virtual const double GetShapeFunction(const int, const Point&) const = 0;
110
            };
111
112
113
114
115
            // Set of nodes
            // Set of shape function
116
117
            // Set of degrees of freedom ; don't use pls
            // Type of the weights aligned with the degrees of freedom
118
            // The weights should be inside of the set of shape functions and the types should be same
119
            template<class Shape, class ShapeFunction, class DoF = bool, class T = bool>
120
            class CFiniteElement;
121
            template<class Shape, class ShapeFunction, class DoF, class T>
122
123
            class CFiniteElement: public CElement<T>
124
            public:
125
126
                CFiniteElement() {}
127
                CFiniteElement(const int* nodes, const Point* points, const int dofs) :
128
                     m_shape{ nodes },
129
                     m_shapefunctions{ points },
130
                     m_dofs{ dofs },
                     m_type{ -1 } {
131
132
                     m neighbours [0] = -1; m neighbours [1] = -1;
133
134
                CFiniteElement(const int* nodes, const Point* points) :
135
                     m_shape{ nodes },
136
                     m_shapefunctions{ points },
137
                     m_dofs{ 0 },
m_type{ -1 }
138
139
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
140
141
                 CFiniteElement (const Shape& shape, const ShapeFunction& f, const DoF& d) :
142
                     m_shape{ shape },
143
                     m_shapefunctions{ f },
144
                     m_dofs{ d },
m_type{ -1 }
145
146
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
147
148
                CFiniteElement(const Shape& shape, const ShapeFunction& shfunc, const DoF& dofs, const int
       type) :
149
                     m_shape{ shape },
                     m shapefunctions { shfunc },
150
151
                     m_dofs{ dofs },
152
                     m_type{ type }
153
                     m_{\text{neighbours}}[0] = -1; m_{\text{neighbours}}[1] = -1;
154
                             CFiniteElement (const Shape& shape, const ShapeFunction& shfunc, const DoF& dofs,
155
       const int type, const int* neigs) :
156
                                      m_shape{ shape },
                                      m_shapefunctions{ shfunc },
157
158
                                      m_dofs{ dofs },
159
                                      m_type{ type }
                                      m_neighbours[0] = neigs[0]; m_neighbours[1] = neigs[1];
160
161
                              };
```

```
162
                CFiniteElement(const CFiniteElement<Shape, ShapeFunction, DoF>& e) :
163
                    m_shape{ e.m_shape },
164
                    m_shapefunctions{ e.m_shapefunctions },
165
                    m_dofs{ e.m_dofs },
166
                    m_type{ e.m_type } {
167
                    m neighbours[0] = e.m neighbours[0]; m neighbours[1] = e.m neighbours[1];
168
169
                CElement<T>*
                                     Clone() const
170
171
                                    return new CFiniteElement<Shape, ShapeFunction, DoF, T> (m_shape,
       \verb|m_shapefunctions, m_dofs, m_type, m_neighbours|;
172
173
                friend const bool
                                        operator==(const CFiniteElement& e1, const CFiniteElement& e2)
174
                    if (e1.m_shape == e2.m_shape)
175
176
                        return true;
177
                    return false:
178
179
                ~CFiniteElement() {}
180
                const int
                                        GetType() const;
181
                const int
                                        GetNode(const int) const;
182
                const int
                                        GetNeighbour(const int) const;
183
                const Shape
                                        GetShape() const;
184
                const ShapeFunction
                                        GetShapeFunctions() const;
185
                                        GetDoF() const;
                const DoF
                                        GetDoFs() const;
186
                const int
187
                void
                                        SetNeighbour(const int k, const int elem);
188
                void
                                        SetType(const int);
189
                void
                                        SetShapeFunction(const int, const ShapeFunction&);
190
                void
                                        SetDoF(const DoF&);
191
                                        SetShape (const Shape&);
                void
192
                const int
                                        IncreaseOrder();
193
                                        SetNode(const int, const int);
                void
194
                const int
                                        GetNumberOfNodes() const;
195
                //const int
                                        SetValue(const int number, CSolution* value);
196
                const double
                                        GetMeasure() const;
                //CSolution*
197
                                            GetValue(const int);
198
                //void
                                          SetShapeFunction(const int, const std::function<const
       DiffForm(const Point&)>&);
199
                const double
                                        Integrate(const std::function<const double(const Point&)>&, const
       std::vector<Point>& v) const;
200
                const Point
                                           Integrate(const std::function<const Point(const Point&)>&, const
       std::vector<Point>& v) const:
201
                const std::vector<double>
                                            Integrate(const std::function<const std::vector<double>(const
       Point&)>&, const std::vector<Point>&) const;
202
                //const std::function<const DiffForm(const Point&)>
                                                                              GetShapeFunction(const int)
       const:
203
                //const DiffForm*
                                            GetShapeFunction(const int, const Point&);
                                        GetShapeFunction(const int, const Point&) const;
                const double
204
205
                const Point
                                           GetGradShapeFunction(const int, const Point&) const;
206
                const Point
                                           GetNormal() const;
                                        ReverseNormal();
207
                void
208
                const double
                                        GetWeight(const int, const std::vector<Point>& verts, const
      209
210
211
                                        SetValue(const int number, const T& value);
                //const int
212
                                        operator=(const CFiniteElement& e)
                CFiniteElement&
213
214
                    m_shape = e.m_shape;
                    m_shapefunctions = e.m_shapefunctions;
215
216
                    m_dofs = e.m dofs:
217
                    m_type = e.m_type;
                    return *this;
218
219
220
                friend std::istream&
                                        operator»(std::istream& is, CFiniteElement& k)
221
222
                    is » k.m shape;
223
                    return is:
224
225
                //const DiffForm
                                          GetDShapeFunction(const int, const Point&);
226
            private:
227
                Shape
                                        m_shape;
228
                ShapeFunction
                                        m_shapefunctions;
229
                DoF
                                        m dofs;
230
                int
                                        m_type;
231
                int
                                        m_neighbours[2];
232
233
234
            template < class Shape, class ShapeFunction, class DoF>
            class CFiniteElement<Shape, ShapeFunction, DoF, bool> : public CElement<>
235
236
237
238
                CFiniteElement() {}
239
                CFiniteElement(const int* nodes, const Point* points, const int dofs) :
240
                    m shape{ nodes },
241
                    m shapefunctions { points }.
```

7.23 FiniteElement.h 355

```
242
                     m_dofs{ dofs },
243
                     m_type{ -1 }
244
                     m_{\text{neighbours}}[0] = -1; m_{\text{neighbours}}[1] = -1;
245
246
                 CFiniteElement(const int* nodes, const Point* points) :
247
                     m shape{ nodes }.
248
                     m_shapefunctions{ points },
249
                     m_dofs{ 0 },
                     m_type{ -1 }
250
2.51
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
252
                 CFiniteElement(const Shape& shape, const ShapeFunction& f, const DoF& d) :
253
254
                     m shape{ shape },
255
                     m_shapefunctions{ f },
256
                     m_dofs{ d },
2.57
                     m_type{ -1 }
258
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
259
260
                 CFiniteElement(const Shape& shape, const ShapeFunction& shfunc, const DoF& dofs, const int
       type) :
261
                     m_shape{ shape },
262
                     m_shapefunctions{ shfunc },
2.63
                     m_dofs{ dofs },
                     m_type{ type } {
2.64
265
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
266
267
                 CFiniteElement(const Shape& shape, const ShapeFunction& shfunc, const DoF& dofs, const int
       type, const int* neigh) :
2.68
                     m_shape{ shape },
269
                     m_shapefunctions{ shfunc },
270
                     m_dofs{ dofs },
271
                     m type{ type }
272
                     m_neighbours[0] = neigh[0]; m_neighbours[1] = neigh[1];
273
274
                 CFiniteElement(const CFiniteElement<Shape, ShapeFunction, DoF>& e) :
275
                     m_shape{ e.m_shape },
276
                     m_shapefunctions{ e.m_shapefunctions },
277
                     m_dofs{ e.m_dofs },
278
                     m_type{ e.m_type } {
279
                     m_neighbours[0] = e.m_neighbours[0]; m_neighbours[1] = e.m_neighbours[1];
280
281
                 friend const bool
                                          operator == (const CFiniteElement& e1, const CFiniteElement& e2)
282
283
                     if (e1.m_shape == e2.m_shape)
284
                         return true;
285
                     return false;
286
                 // don't forget to delete after the call
287
                 CElement<>*
288
                                        Clone() const
289
                 {
290
                     return new CFiniteElement<Shape, ShapeFunction, DoF>(m_shape, m_shapefunctions, m_dofs,
       m_type, m_neighbours);
291
                 };
292
                 ~CFiniteElement() {}
293
                 const int
                                           GetType() const;
                                           GetNode(const int) const;
294
                 const int
295
                                           GetNeighbour(const int) const;
                 const int
296
                 const Shape
                                           GetShape() const;
297
                 const ShapeFunction
                                           GetShapeFunctions() const;
                                          GetDoF() const;
GetDoFs() const;
298
                 const DoF
299
                 const int
300
                                           SetNeighbour(const int k, const int elem);
                 void
301
                 void
                                           SetType(const int);
                                           SetShapeFunction(const int, const ShapeFunction&);
302
                 void
303
                 void
                                           SetDoF(const DoF&);
304
                 void
                                           SetShape(const Shape&);
305
                 void
                                          SetNode(const int, const int);
GetNumberOfNodes() const;
                 const int
306
307
                 //const int
                                           SetValue(const int number, CSolution* value);
                                           IncreaseOrder();
308
                 const int
309
                 const double
                                           GetMeasure() const;
310
                 //CSolution*
                                              GetValue(const int);
311
                 //void
                                             SetShapeFunction(const int, const std::function<const
       DiffForm(const Point&)>&);
312
                 const double
                                           Integrate(const std::function<const double(const Point&)>&, const
       std::vector<Point>& v) const;
313
                 const Point
                                              Integrate(const std::function<const Point(const Point&)>&, const
       std::vector<Point>& v) const;
314
                 const std::vector<double>
                                              Integrate(const std::function<const std::vector<double>(const
       Point&)>&, const std::vector<Point>&) const;
    //const std::function<const DiffForm(const Point&)>
315
                                                                                  GetShapeFunction(const int)
       const;
316
                 //const DiffForm*
                                               GetShapeFunction(const int, const Point&);
317
                 const double
                                           GetShapeFunction(const int, const Point&) const;
318
                 const Point
                                              GetGradShapeFunction(const int, const Point&) const;
319
                 const Point
                                              GetNormal() const;
320
                                          ReverseNormal():
                 void
```

```
321
                                          GetWeight(const int, const std::vector<Point>& verts, const
                const double
       std::function<const double(const Point&)>& f) const;
322
                CFiniteElement&
                                          operator=(const CFiniteElement& e)
323
                 {
324
                     m_shape = e.m_shape;
325
                     m shapefunctions = e.m shapefunctions;
                     m_dofs = e.m_dofs;
326
327
                     m_type = e.m_type;
328
                     return *this;
329
                                          operator»(std::istream& is, CFiniteElement& k)
330
                 friend std::istream&
331
332
                     is » k.m shape;
333
                     return is;
334
335
                 //const DiffForm
                                            GetDShapeFunction(const int, const Point&);
336
            private:
337
                Shape
                                          m shape;
338
                 ShapeFunction
                                          m_shapefunctions;
339
                DoF
                                          m_dofs;
340
                 int
                                          m_type;
341
                int
                                          m_neighbours[2];
342
            };
343
344
345
            template<class Shape, class ShapeFunction>
346
            class CFiniteElement<Shape, ShapeFunction, bool, bool> : public CElement<>
347
348
            public:
349
                CFiniteElement() {}
350
                CFiniteElement(const int* nodes, const Point* points, const int dofs) :
351
                     m_shape{ nodes },
352
                     m_shapefunctions{ points, dofs },
353
                     m_type{ -1 } {
354
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
355
                CFiniteElement(const int* nodes, const Point* points, const int dofs, const int type) :
    m_shape{ nodes, dofs },
356
357
358
                     m_shapefunctions{ points, dofs },
359
                     m_type{ type } {
360
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
361
                CFiniteElement(const int* nodes, const Point* points) :
362
363
                     m_shape{ nodes },
                     m_shapefunctions{ points },
364
                     m_type{ -1 } {
365
366
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
367
                CFiniteElement(const Shape& shape, const ShapeFunction& f) :
368
                     m_shape{ shape },
369
                     m_shapefunctions{ f },
370
371
                     m_type{ -1 } {
372
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
373
374
                CFiniteElement(const Shape& shape, const ShapeFunction& shfunc, const int type) :
375
                     m shape{ shape },
376
                     m_shapefunctions{ shfunc },
377
                     m_type{ type } {
378
                     m_{\text{neighbours}}[0] = -1; m_{\text{neighbours}}[1] = -1;
379
                };
380
                             CFiniteElement (const Shape& shape, const ShapeFunction& shfunc, const int type,
       const int* neigs) :
381
                                      m_shape{ shape },
                                      m_shapefunctions{ shfunc },
382
383
                                      m_type{ type } {
384
                                      m_neighbours[0] = neigs[0]; m_neighbours[1] = neigs[1];
385
                             };
                CFiniteElement(const CFiniteElement<Shape, ShapeFunction>&e) :
386
387
                     m_shape{ e.m_shape },
                     m_shapefunctions{ e.m_shapefunctions },
388
389
                     m_type{ e.m_type } {
390
                     m_neighbours[0] = e.m_neighbours[0]; m_neighbours[1] = e.m_neighbours[1];
391
                                          operator==(const CFiniteElement& e1, const CFiniteElement& e2)
392
                 friend const bool
393
394
                     if (e1.m_shape == e2.m_shape)
395
                         return true;
396
                     return false;
397
                 // don't forget to delete after the call
398
399
                CElement<>*
                                       Clone() const
400
                                      return new CFiniteElement<Shape, ShapeFunction>(m_shape,
401
       m_shapefunctions, m_type, m_neighbours);
402
                 ~CFiniteElement() {}
403
                                          GetType() const;
404
                const int
```

7.23 FiniteElement.h 357

```
405
                                        GetNode(const int) const;
                const int
                const int
                                        GetNeighbour(const int) const;
406
407
                const Shape
                                        GetShape() const;
408
                const ShapeFunction
                                        GetShapeFunctions() const;
409
                const int
                                        GetDoFs() const;
410
                                        SetNeighbour (const int k, const int elem);
                void
411
                void
                                        SetType(const int);
412
                void
                                        SetShapeFunction(const int, const ShapeFunction&);
413
                void
                                        SetShape(const Shape&);
                                        SetNode(const int, const int);
GetNumberOfNodes() const;
SetValue(const int number, CSolution* value);
414
                void
415
                const int
416
                //const int
                                        IncreaseOrder();
417
                const int
                const double
418
                                        GetMeasure() const;
419
                //CSolution*
                                            GetValue(const int);
                //void
420
                                          SetShapeFunction(const int, const std::function<const
      DiffForm(const Point&)>&);
421
                const double
                                        Integrate(const std::function<const double(const Point&)>&, const
       std::vector<Point>& v) const;
422
                const Point
                                           Integrate(const std::function<const Point(const Point&)>&, const
       std::vector<Point>& v) const;
423
                Point&)>&, const std::vector<Point>&) const;
424
               //const std::function<const DiffForm(const Point&)>
                                                                              GetShapeFunction(const int)
      const;
425
                //const DiffForm*
                                            GetShapeFunction(const int, const Point&);
426
                                        GetShapeFunction(const int, const Point&) const;
                const double
427
                const Point
                                           GetGradShapeFunction(const int, const Point&) const;
428
                const Point
                                           GetNormal() const;
429
                void
                                        ReverseNormal():
                                        GetWeight (const int, const std::vector<Point>& verts, const
430
                const double
      std::function<const double(const Point&)>& f) const;
431
                CFiniteElement&
                                        operator=(const CFiniteElement& e)
432
                {
                    m_shape = e.m_shape;
433
434
                    m_shapefunctions = e.m_shapefunctions;
435
                    m_type = e.m_type;
                    return *this;
436
437
438
                friend std::istream&
                                        operator»(std::istream& is, CFiniteElement& k)
439
440
                    is » k.m shape;
441
                    return is:
442
443
                //const DiffForm
                                         GetDShapeFunction(const int, const Point&);
444
           private:
445
                Shape
                                        m_shape;
446
                ShapeFunction
                                        m_shapefunctions;
447
                int
                                        m_type;
448
                                        m neighbours[2]:
                int
449
            };
450
451
452
453
454
455
            // implementation template<class Shape, class ShapeFunction, class DoF>
456
            // CFiniteElement<Shape, ShapeFunction, DoF>
457
            template<class Shape, class ShapeFunction, class DoF>
458
            const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetType() const
459
460
                return m_type;
461
462
            //template<class Shape, class ShapeFunction, class DoF>
463
            //const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetValue(const int number,
      CSolution* value)
464
465
               return m shapefunctions.SetValue(number, value);
466
467
            //template<class Shape, class ShapeFunction, class DoF>
468
            //CSolution* CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetValue(const int p)
469
            //{
470
            11
               auto&& val = m_shapefunctions.GetValue(p);
471
               return const_cast<CSolution*>(static_cast<const CSolution*>(&val));;
472
473
            template<class Shape, class ShapeFunction, class DoF>
474
            const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetNode(const int k) const
475
476
                return m_shape.GetNode(k);
477
478
            template<class Shape, class ShapeFunction, class DoF>
            const double CFiniteElement<Shape, ShapeFunction, DoF, bool>::Integrate(const
479
       std::function<const double(const Point&)>&f, const std::vector<Point>& v) const
480
481
                return m_shape.Integrate(f, v);
482
483
```

```
484
            template<class Shape, class ShapeFunction, class DoF>
            const Point CFiniteElement<Shape, ShapeFunction, DoF, bool>::Integrate(const std::function<const</pre>
485
       Point(const Point&)>&f, const std::vector<Point>& v) const
486
487
                return m_shape.Integrate(f, v);
488
            }
489
490
            template<class Shape, class ShapeFunction, class DoF>
491
            const std::vector<double> CFiniteElement<Shape, ShapeFunction, DoF, bool>::Integrate(const
       std::function<const std::vector<double>(const Point&)>&f, const std::vector<Point>& v) const
492
493
                return m shape. Integrate (f, v);
494
495
            template<class Shape, class ShapeFunction, class DoF>
496
            const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetNeighbour(const int k) const
497
498
                return m_neighbours[k];
499
500
501
            template<class Shape, class ShapeFunction, class DoF>
502
            const Point CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetNormal() const
503
504
                return m_shapefunctions.GetNormal();
505
506
507
            template<class Shape, class ShapeFunction, class DoF>
508
            void CFiniteElement<Shape, ShapeFunction, DoF, bool>::ReverseNormal()
509
510
                m_shapefunctions.ReverseNormal();
511
512
            template<class Shape, class ShapeFunction, class DoF>
const double CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetMeasure() const
513
514
515
516
                return m_shapefunctions.GetMeasure();
517
518
519
            //template<class Shape, class ShapeFunction, class DoF, class T>
520
            //inline const T CFiniteElement<Shape, ShapeFunction, DoF, T>::GetValue(const int number) const
521
522
                return m_shapefunctions.GetValue(number);
            //}
523
524
525
            //template<class Shape, class ShapeFunction, class DoF, class T>
            //inline const T CFiniteElement<Shape, ShapeFunction, DoF, T>::GetValue(const Point & p) const
526
527
528
             // return m_shapefunctions.GetValue(p);
            //}
529
530
            //template<class Shape, class ShapeFunction, class DoF, class T>
531
             //inline const int CFiniteElement<Shape, ShapeFunction, DoF, T>::SetValue(const int number,
532
533
            //{
534
            // return m_shapefunctions.SetValue(number, value);
            //}
535
536
537
            template<class Shape, class ShapeFunction, class DoF>
538
            const Shape CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetShape() const
539
540
                return m_shape;
541
542
543
            template<class Shape, class ShapeFunction, class DoF>
            const ShapeFunction CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetShapeFunctions() const
544
545
546
                return m_shapefunctions;
547
548
549
            template<class Shape, class ShapeFunction, class DoF>
550
            const DoF CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetDoF() const
551
552
                return m_dofs;
553
554
            template<class Shape, class ShapeFunction, class DoF>
const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetNumberOfNodes() const
555
556
557
558
                 return m_shape.GetNumberOfNodes();
559
560
            template<class Shape, class ShapeFunction, class DoF>
561
562
            const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetDoFs() const
563
564
                 return m_shapefunctions.GetNumberOfShapeFunctions();
565
566
            template < class Shape, class ShapeFunction, class DoF >
567
```

7.23 FiniteElement.h 359

```
568
             void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetNeighbour(const int k, const int elem)
569
570
                 m_neighbours[k] = elem;
571
             }
572
             template<class Shape, class ShapeFunction, class DoF>
573
             void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetShapeFunction(const int k, const
       ShapeFunction& func)
575
576
                 m_shapefunctions = func;
577
             }
578
             template<class Shape, class ShapeFunction, class DoF>
void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetDoF(const DoF& dof)
579
580
581
582
                 m_dofs = dof;
583
584
585
             template<class Shape, class ShapeFunction, class DoF>
586
             void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetShape(const Shape &shape)
587
588
                 m_shape = shape;
589
             }
590
591
             template<class Shape, class ShapeFunction, class DoF>
             void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetType(const int k)
592
593
594
                 m_type = k;
595
596
597
             template<class Shape, class ShapeFunction, class DoF>
598
             void CFiniteElement<Shape, ShapeFunction, DoF, bool>::SetNode(const int k, const int node)
599
600
                 m_shape.SetNode(k, node);
601
602
             template < class Shape, class ShapeFunction, class DoF >
             const double CFiniteElement<Shape, ShapeFunction, DoF>::GetShapeFunction(const int k, const
603
       Mesh::Point &p) const
604
             {
605
                 return m_shapefunctions.GetShapeFunction(k, p);
606
607
             template < class Shape, class ShapeFunction, class DoF>
608
             const Point CFiniteElement<Shape, ShapeFunction, DoF, bool>::GetGradShapeFunction(const int k,
609
       const Mesh::Point &p) const
610
611
                 return m_shapefunctions.GetGradShapeFunction(k, p);
612
             }
613
614
             template<class Shape, class ShapeFunction, class DoF>
             const int CFiniteElement<Shape, ShapeFunction, DoF, bool>::IncreaseOrder()
615
616
617
                  if (m_shape.IncreaseOrder())
618
                      return 1;
619
                 if (m_shapefunctions.IncreaseOrder())
620
                      return 1;
621
                 return 0:
622
623
             template<class Shape, class ShapeFunction, class DoF>
       const double CFiniteElement<Shape, ShapeFunction, DoF>::GetWeight(const int, const
std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
624
625
             {
626
                 return 0.0;
627
             // fin.
628
629
630
             // \ {\tt implementation \ template}{\scriptsize <\tt class \ Shape}, \ {\tt class \ Shape}{\tt Function, \ class \ DoF, \ class \ T}{\scriptsize >}
             // CFiniteElement<Shape, ShapeFunction, DoF, T>
template<class Shape, class ShapeFunction, class DoF, class T>
631
632
633
             const int CFiniteElement<Shape, ShapeFunction, DoF, T>::GetType() const
634
635
                 return m_type;
636
             template<class Shape, class ShapeFunction, class DoF, class T>
637
             const double CFiniteElement<Shape, ShapeFunction, DoF, T>::GetMeasure() const
638
639
640
                 return m_shapefunctions.GetMeasure();
641
642
             //template<class Shape, class ShapeFunction, class DoF, class T>
             //const int CFiniteElement<Shape, ShapeFunction, DoF, T>::SetValue(const int number, CSolution*
643
       value)
644
645
                 return m_shapefunctions.SetValue(number, value);
646
647
             //template<class Shape, class ShapeFunction, class DoF, class T>
             //CSolution* CFiniteElement<Shape, ShapeFunction, DoF, T>::GetValue(const int p)
648
649
```

```
650
            // auto&& val = m_shapefunctions.GetValue(p);
            // return const_cast<CSolution*>(static_cast<const CSolution*>(&val));
651
652
            //}
653
            template<class Shape, class ShapeFunction, class DoF, class T>
654
            \verb|const| int CFiniteElement| < Shape, ShapeFunction, DoF, T>::GetNode(const int k) const| \\
655
656
                 return m_shape.GetNode(k);
657
658
            template<class Shape, class ShapeFunction, class DoF, class T>
659
            const double CFiniteElement<Shape, ShapeFunction, DoF, T>::Integrate(const std::function<const</pre>
       double(const Point&)>&f, const std::vector<Point>& v) const
660
661
                 return m shape.Integrate(f, v);
662
663
664
            template<class Shape, class ShapeFunction, class DoF, class T>
665
            const Point CFiniteElement<Shape, ShapeFunction, DoF, T>::Integrate(const std::function<const</pre>
       Point(const Point&)>&f, const std::vector<Point>& v) const
666
667
                 return m_shape.Integrate(f, v);
668
669
            template<class Shape, class ShapeFunction, class DoF, class T>
const std::vector<double> CFiniteElement<Shape, ShapeFunction, DoF, T>::Integrate(const
670
671
       std::function<const std::vector<double>(const Point&)>&f, const std::vector<Point>& v) const
672
673
                 return m_shape.Integrate(f, v);
674
675
            template<class Shape, class ShapeFunction, class DoF, class T>
            \texttt{const int CFiniteElement$<$Shape$, ShapeFunction, DoF, T$>::GetNeighbour(const int k) const}
676
677
678
                 return m neighbours[k];
679
680
            template<class Shape, class ShapeFunction, class DoF, class T>
const Point CFiniteElement<Shape, ShapeFunction, DoF, T>::GetNormal() const
681
682
683
684
                 return m_shapefunctions.GetNormal();
685
686
687
            template < class Shape, class ShapeFunction, class DoF, class T>
688
            void CFiniteElement<Shape, ShapeFunction, DoF, T>::ReverseNormal()
689
690
                m_shapefunctions.ReverseNormal();
691
692
693
            template<class Shape, class ShapeFunction, class DoF, class T>
                    const double CFiniteElement<Shape, ShapeFunction, DoF, T>::GetWeight(const int node,
694
       const std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
695
696
                             return m_shapefunctions.GetWeight(node, verts, f);
697
698
699
            template<class Shape, class ShapeFunction, class DoF, class T>
700
701
            const Shape CFiniteElement<Shape, ShapeFunction, DoF, T>::GetShape() const
702
703
                 return m_shape;
704
705
            template<class Shape, class ShapeFunction, class DoF, class T>
const ShapeFunction CFiniteElement<Shape, ShapeFunction, DoF, T>::GetShapeFunctions() const
706
707
708
            {
709
                 return m_shapefunctions;
710
            }
711
712
            template<class Shape, class ShapeFunction, class DoF, class T>
            const DoF CFiniteElement<Shape, ShapeFunction, DoF, T>::GetDoF() const
713
714
            {
715
                 return m_dofs;
716
717
718
            template<class Shape, class ShapeFunction, class DoF, class T>
719
            const int CFiniteElement<Shape, ShapeFunction, DoF, T>::GetNumberOfNodes() const
720
            {
721
                 return m_shape.GetNumberOfNodes();
722
723
            724
725
726
            {
727
                 return m_shapefunctions.GetNumberOfShapeFunctions();
728
729
730
            template<class Shape, class ShapeFunction, class DoF, class T>
731
            void CFiniteElement<Shape, ShapeFunction, DoF, T>::SetNeighbour(const int k, const int elem)
732
```

7.23 FiniteElement.h 361

```
733
                                           m_neighbours[k] = elem;
734
735
736
                                 template<class Shape, class ShapeFunction, class DoF, class T>
                                 \verb|void CFiniteElement| < Shape, ShapeFunction, DoF, T>::SetShapeFunction(const int k, constant) \\
737
                   ShapeFunction& func)
738
                                 {
739
                                            m_shapefunctions = func;
740
                                 }
741
742
                                 template<class Shape, class ShapeFunction, class DoF, class T>
                                 void CFiniteElement<Shape, ShapeFunction, DoF, T>::SetDoF(const DoF& dof)
743
744
745
746
747
                                 template<class Shape, class ShapeFunction, class DoF, class T>
void CFiniteElement<Shape, ShapeFunction, DoF, T>::SetShape(const Shape &shape)
748
749
750
751
                                            m_shape = shape;
752
753
                                template<class Shape, class ShapeFunction, class DoF, class T>
void CFiniteElement<Shape, ShapeFunction, DoF, T>::SetType(const int k)
754
755
756
                                 {
757
                                            m_type = k;
758
759
                                760
761
762
763
                                           m shape.SetNode(k, node);
764
765
                                 template<class Shape, class ShapeFunction, class DoF, class T>
766
                                 \texttt{const double CFiniteElement} < \texttt{ShapeFunction}, \ \texttt{DoF}, \ \texttt{T} > :: \texttt{GetShapeFunction} \\ (\texttt{const int } k, \ \texttt{const in
                   Mesh::Point &p) const
767
                                 {
768
                                            return m_shapefunctions.GetShapeFunction(k, p);
769
770
771
                                 template<class Shape, class ShapeFunction, class DoF, class T>
772
                                 \verb|const|| \texttt{Point} \texttt{ CFiniteElement} < \texttt{Shape}, \texttt{ ShapeFunction}, \texttt{ DoF}, \texttt{ T} > :: \texttt{GetGradShapeFunction} (\texttt{const} \texttt{ int } \texttt{k}, \texttt{ the proposed of the proposed of
                   const Mesh::Point &p) const
773
                                 {
774
                                            return m_shapefunctions.GetGradShapeFunction(k, p);
775
776
                                 template<class Shape, class ShapeFunction, class DoF, class T>
777
                                 \verb|const| int CFiniteElement < Shape, ShapeFunction, DoF, T > :: IncreaseOrder()| \\
778
                                 {
779
                                            if (m_shape.IncreaseOrder())
780
                                                        return 1;
781
                                            if (m_shapefunctions.IncreaseOrder())
782
                                                        return 1;
783
                                            return 0;
784
                                 }
785
786
                                 // implementation template<class Shape, class ShapeFunction>
787
                                 // CFiniteElement<Shape, ShapeFunction>
788
789
                                 template<class Shape, class ShapeFunction>
                                 const int CFiniteElement<Shape, ShapeFunction, bool, bool>::GetType() const
790
791
                                 {
792
                                            return m_type;
793
794
                                 template<class Shape, class ShapeFunction>
795
                                 const double CFiniteElement<Shape, ShapeFunction, bool, bool>::GetMeasure() const
796
797
                                            return m shapefunctions.GetMeasure();
798
                                 //template<class Shape, class ShapeFunction>
800
                                  //const int CFiniteElement<Shape, ShapeFunction, bool, bool>::SetValue(const int number,
                   CSolution* value)
801
                                 //{
                                 // return m_shapefunctions.SetValue(number, value);
802
803
804
                                 //template<class Shape, class ShapeFunction>
805
                                 //CSolution* CFiniteElement<Shape, ShapeFunction, bool, bool>::GetValue(const int p)
806
807
                                 // auto&& val = m_shapefunctions.GetValue(p);
                                 // return const_cast<CSolution*>(static_cast<const CSolution*>(&val));;
808
809
810
                                 template<class Shape, class ShapeFunction>
                                 const int CFiniteElement<Shape, ShapeFunction, bool, bool>::GetNode(const int k) const
811
812
813
                                            return m_shape.GetNode(k);
814
815
                                 template < class Shape, class ShapeFunction>
```

```
816
            const double CFiniteElement<Shape, ShapeFunction, bool, bool>::Integrate(const
       std::function<const double(const Point&)>&f, const std::vector<Point>& v) const
817
818
               return m_shape.Integrate(f, v);
819
820
821
            template<class Shape, class ShapeFunction>
822
            const Point CFiniteElement<Shape, ShapeFunction, bool, bool>::Integrate(const
       std::function<const Point(const Point&)>&f, const std::vector<Point>& v) const
823
824
               return m_shape.Integrate(f, v);
825
            }
826
827
            template<class Shape, class ShapeFunction>
828
            const std::vector<double> CFiniteElement<Shape, ShapeFunction, bool, bool>::Integrate(const
       std::function<const std::vector<double>(const Point&)>&f, const std::vector<Point>& v) const
829
830
               return m shape. Integrate (f, v);
831
832
            template<class Shape, class ShapeFunction>
833
            const int CFiniteElement<Shape, ShapeFunction, bool, bool>::GetNeighbour(const int k) const
834
835
               return m neighbours[k];
836
837
838
            template<class Shape, class ShapeFunction>
839
            const Point CFiniteElement<Shape, ShapeFunction, bool, bool>::GetNormal() const
840
841
                return m_shapefunctions.GetNormal();
842
843
844
            template<class Shape, class ShapeFunction>
845
            void CFiniteElement<Shape, ShapeFunction, bool, bool>::ReverseNormal()
846
847
               m_shapefunctions.ReverseNormal();
848
849
850
851
            template<class Shape, class ShapeFunction>
852
            const Shape CFiniteElement<Shape, ShapeFunction, bool, bool>::GetShape() const
853
854
               return m_shape;
855
856
857
            template<class Shape, class ShapeFunction>
858
            const ShapeFunction CFiniteElement<Shape, ShapeFunction, bool, bool>::GetShapeFunctions() const
859
860
                return m_shapefunctions;
861
            }
862
863
864
            template<class Shape, class ShapeFunction>
865
            const int CFiniteElement<Shape, ShapeFunction, bool, bool>::GetNumberOfNodes() const
866
               return m_shape.GetNumberOfNodes();
867
868
869
870
            template<class Shape, class ShapeFunction>
871
            const int CFiniteElement<Shape, ShapeFunction, bool, bool>::GetDoFs() const
872
873
               return m_shapefunctions.GetNumberOfShapeFunctions();
874
875
876
            template<class Shape, class ShapeFunction>
877
            void CFiniteElement<Shape, ShapeFunction, bool, bool>::SetNeighbour(const int k, const int elem)
878
            {
879
               m_neighbours[k] = elem;
880
881
882
            template<class Shape, class ShapeFunction>
            883
       ShapeFunction& func)
884
885
               m_shapefunctions = func;
886
887
888
            template<class Shape, class ShapeFunction>
889
            void CFiniteElement<Shape, ShapeFunction, bool, bool>::SetShape(const Shape &shape)
890
891
               m shape = shape;
892
893
894
            template<class Shape, class ShapeFunction>
895
            void CFiniteElement<Shape, ShapeFunction, bool, bool>::SetType(const int k)
896
897
               m_type = k;
898
            }
```

```
900
                                    template<class Shape, class ShapeFunction>
901
                                    void CFiniteElement<Shape, ShapeFunction, bool, bool>::SetNode(const int k, const int node)
902
                                                 m_shape.SetNode(k, node);
903
904
                                    template<class Shape, class ShapeFunction>
906
                                     const Mesh::Point &p) const
907
908
                                                 return m_shapefunctions.GetShapeFunction(k, p);
909
910
911
                                    template<class Shape, class ShapeFunction>
912
                                    \texttt{const Point CFiniteElement} < \texttt{Shape}, \ \texttt{ShapeFunction}, \ \texttt{bool} > :: \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const int } k, \texttt{const Point CFiniteElement}) \\ \texttt{GetGradShapeFunction} (\texttt{const int } k, \texttt{const in
                     const Mesh::Point &p) const
913
914
                                                 return m_shapefunctions.GetGradShapeFunction(k, p);
915
 916
917
                                   template<class Shape, class ShapeFunction>
918
                                    const int CFiniteElement<Shape, ShapeFunction, bool, bool>::IncreaseOrder()
919
920
                                                 if (m_shape.IncreaseOrder())
921
                                                              return 1;
922
                                                 if (m_shapefunctions.IncreaseOrder())
923
924
                                                return 0;
925
926
                                    template<class Shape, class ShapeFunction>
const double CFiniteElement<Shape, ShapeFunction, bool, bool>::GetWeight(const int node, const
927
                     std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const
928
929
                                                 return m_shapefunctions.GetWeight(node, verts, f);
930
                                     // fin.
931
932
933
934
935 }
936
937
938 #endif /* CORENC MESH FINITEELEMENT H */
```

7.24 CoreNCFEM/FiniteElements/FiniteElement2D.h File Reference

```
#include <functional>
#include <iostream>
#include <vector>
#include "../Point.h"
#include "../FESolution.h"
```

Classes

- class corenc::Mesh::CElement2D< bool >
- class corenc::Mesh::CElement2D< T >
- class corenc::Mesh::CFiniteElement2D< Shape, ShapeFunction >

Namespaces

- namespace corenc
- namespace corenc::Mesh

7.25 FiniteElement2D.h

```
#ifndef FINITEELEMENT2D H
2 #define FINITEELEMENT2D H
3 #include <functional>
4 #include <iostream>
5 #include <vector>
6 #include "../Point.h"
7 #include "../FESolution.h"
8 namespace corenc
10
       namespace Mesh
11
       // 2d element
12
13
           template<class T = bool>
14
           class CElement2D:
15
16
           using function_dp = std::function<const double(const Point&)>;
           template<>
18
           class CElement2D<bool>
19
20
           public:
                CElement2D() {}
21
22
                virtual ~CElement2D() {}
23
                virtual const int
                                                                        GetType() const = 0;
                virtual CElement2D<>*
                                                                        Clone() const = 0;
25
                virtual const int
                                                                        GetDoFs() const = 0;
2.6
                virtual const int
                                                                        GetNode(const int) const = 0;
                                                                        GetNeighbour(const int) const = 0;
2.7
                virtual const int
                                                                        SetNeighbour(const int k, const int elem)
28
                virtual void
       = 0;
29
                virtual void
                                                                        SetType(const int) = 0;
30
                virtual void
                                                                        SetNode(const int, const int) = 0;
31
                virtual const int
                                                                        GetNumberOfNodes() const = 0;
32
                virtual const double
                                                                        GetShapeFunction(const int, const Point&)
       const = 0:
33
               virtual const Point
                                                                           GetGradShapeFunction(const int, const
       Point&) const = 0;
34
                virtual const Point
                                                                           GetNormal() const = 0;
35
                virtual void
                                                                        ReverseNormal() = 0;
                                                                        SetOrder(const int px, const int py) = 0;
Integrate(const function_dp&, const
36
                virtual const int
                virtual const double
37
       std::vector<Point>& v) const = 0;
38
               virtual const Point
                                                                           Integrate(const std::function<const</pre>
       Point(const Point&)>&, const std::vector<Point>& v) const = 0;
39
               virtual const std::vector<double>
                                                                        Integrate(const std::function<const</pre>
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const = 0;
40
               virtual const double
                                                                        GetWeight (const int, const
       std::vector<Point>& verts, const function_dp& f) const = 0;
                virtual const int
                                                                        IncreaseOrder() = 0;
42
                virtual const double
                                                                        GetMeasure() const = 0;
43
44
           template<class T>
45
           class CElement2D
46
           public:
48
49
               CElement2D() {}
50
                virtual ~CElement2D() {}
                                                                        GetType() const = 0;
51
                virtual const int
                virtual CElement2D*
                                                                        Clone() const = 0;
52
                virtual const int
                                                                        GetDoFs() const = 0;
53
                virtual const int
                                                                        GetNode(const int) const = 0;
                virtual const int
                                                                        GetNeighbour(const int) const = 0;
55
56
                virtual void
                                                                        SetNeighbour(const int k, const int elem)
       = 0:
                                                                        SetType(const int) = 0;
SetNode(const int, const int) = 0;
GetNumberOfNodes() const = 0;
57
                virtual void
58
                virtual void
                virtual const int
60
                virtual const double
                                                                        GetShapeFunction(const int, const Point&)
       const = 0;
61
               virtual const Point
                                                                           GetGradShapeFunction(const int, const
       Point&) const = 0:
                virtual const Point
62
                                                                           GetNormal() const = 0;
63
                virtual void
                                                                        ReverseNormal() = 0;
64
                virtual const int
                                                                        IncreaseOrder() = 0;
6.5
                virtual const int
                                                                        SetOrder(const int px, const int py) = 0;
66
                virtual const double
                                                                        Integrate(const std::function<const</pre>
       double(const Point&)>&, const std::vector<Point>& v) const = 0;
67
                virtual const Point
                                                                           Integrate(const std::function<const</pre>
       Point(const Point&)>&, const std::vector<Point>& v) const = 0;
68
                virtual const std::vector<double>
                                                                         Integrate(const std::function<const</pre>
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const = 0;
69
                virtual const double
                                                                        GetMeasure() const = 0;
```

7.25 FiniteElement2D.h 365

```
GetWeight (const int, const
70
                virtual const double
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const = 0;
71
72
           template<class Shape, class ShapeFunction>
class CFiniteElement2D : public CElement2D<>
7.3
74
75
76
           public:
77
                CFiniteElement2D() {}
78
                CFiniteElement2D(const int* nodes, const Point* points, const int dofs) :
79
                    m_shape{ nodes },
                    m_shapefunctions{ points, dofs },
80
                    m_type{ -1 }
81
                    m_neighbours[0] = -1; m_neighbours[1] = -1;
82
83
84
                CFiniteElement2D(const int* nodes, const Point* points, const int dofs, const int type) :
85
                    m_shape{ nodes, dofs },
                    m_shapefunctions{ points, dofs },
86
87
                    m_type{ type } {
88
                    m_neighbours[0] = -1; m_neighbours[1] = -1;
89
90
                CFiniteElement2D(const int* nodes, const Point* points) :
91
                    m_shape{ nodes },
92
                    m_shapefunctions{ points },
93
                    m_type{ -1 } {
                    m_neighbours[0] = -1; m_neighbours[1] = -1;
95
96
                CFiniteElement2D(const Shape& shape, const ShapeFunction& f) :
97
                    m_shape{ shape },
                    m_shapefunctions{ f },
m_type{ -1 } {
98
99
100
                     m_{neighbours}[0] = -1; m_{neighbours}[1] = -1;
101
102
                 CFiniteElement2D(const Shape& shape, const ShapeFunction& shfunc, const int type) :
103
                     m_shape{ shape },
                     m_shapefunctions{ shfunc },
104
105
                     m_type{ type } {
                     m_neighbours[0] = -1; m_neighbours[1] = -1;
106
107
                 };
                 CFiniteElement2D(const Shape& shape, const ShapeFunction& shfunc, const int type, const int*
108
       neigs) :
109
                                      m shape { shape },
110
                                      m_shapefunctions{ shfunc },
111
                                      m_type{ type } {
                                      m_neighbours[0] = neigs[0]; m_neighbours[1] = neigs[1];
112
113
114
                CFiniteElement2D(const CFiniteElement2D&e) :
115
                     m_shape{ e.m_shape },
                     m_shapefunctions{ e.m_shapefunctions },
116
117
                     m type{ e.m type } {
118
                     m_neighbours[0] = e.m_neighbours[0]; m_neighbours[1] = e.m_neighbours[1];
119
120
                 friend const bool
                                          operator==(const CFiniteElement2D& e1, const CFiniteElement2D& e2)
121
                     if (e1.m_shape == e2.m_shape)
122
123
                         return true;
124
                     return false:
125
126
                 // don't forget to delete after the call
127
                CElement2D<>*
                                          Clone() const
128
                                      return new CFiniteElement2D(m_shape, m_shapefunctions, m_type,
129
       m_neighbours);
130
                };
131
                 ~CFiniteElement2D() {}
132
                const int
                                          GetType() const;
133
                const int
                                          GetNode(const int) const;
                                          GetNeighbour(const int) const;
134
                const int
135
                const Shape
                                          GetShape() const;
136
                const ShapeFunction
                                          GetShapeFunctions() const;
137
                const int
                                          GetDoFs() const;
138
                void
                                          SetNeighbour(const int k, const int elem);
139
                void
                                          SetType(const int);
                                          SetShapeFunction(const int, const ShapeFunction&);
140
                void
                                          SetShape(const Shape&);
141
                void
                                          SetOrder(const int px, const int py);
142
                const int
                                          SetNode(const int, const int);
143
                 void
144
                 const int
                                          GetNumberOfNodes() const;
145
                 //const int
                                          SetValue(const int number, CSolution* value);
                                          IncreaseOrder();
146
                const int
147
                                          GetMeasure() const;
                const double
148
                 //CSolution*
                                              GetValue(const int);
                 //void
149
                                            SetShapeFunction(const int, const std::function<const
       DiffForm(const Point&)>&);
150
                const double
                                          Integrate(const std::function<const double(const Point&)>&, const
       std::vector<Point>& v) const;
151
                                             Integrate (const std::function < const Point (const Point &) > &, const
                const Point
```

```
std::vector<Point>& v) const;
                152
       Point&)>&, const std::vector<Point>&) const;
153
                //const std::function<const DiffForm(const Point&)>
                                                                                GetShapeFunction(const int)
       const:
154
                //const DiffForm*
                                             GetShapeFunction(const int, const Point&);
155
                const double
                                         GetShapeFunction(const int, const Point&) const;
156
                                            GetGradShapeFunction(const int, const Point&) const;
                const Point
157
                const Point
                                            GetNormal() const;
158
                void
                                         ReverseNormal();
                const double
                                         GetWeight(const int, const std::vector<Point>& verts, const
159
       std::function<const double(const Point&)>& f) const;
                                           operator=(const CFiniteElement2D& e)
160
                CFiniteElement2D&
161
                {
162
                    m_shape = e.m_shape;
163
                    m_shapefunctions = e.m_shapefunctions;
164
                    m_type = e.m_type;
                     return *this;
165
166
167
                 friend std::istream&
                                         operator»(std::istream& is, CFiniteElement2D& k)
168
169
                     is » k.m_shape;
170
                    return is;
171
172
                //const DiffForm
                                           GetDShapeFunction(const int, const Point&);
173
            private:
174
                Shape
                                         m_shape;
175
                ShapeFunction
                                         m_shapefunctions;
176
                int
                                         m_type;
                                         m_neighbours[2];
177
                int
178
            };
179
180
181
            template<class Shape, class ShapeFunction>
182
            const int CFiniteElement2D<Shape, ShapeFunction>::GetType() const
183
184
                return m_type;
185
            template<class Shape, class ShapeFunction>
const double CFiniteElement2D<Shape, ShapeFunction>::GetMeasure() const
186
187
188
189
                return m shapefunctions.GetMeasure();
190
191
            //template<class Shape, class ShapeFunction>
            //const int CFiniteElement2D<Shape, ShapeFunction>::SetValue(const int number, CSolution* value)
192
193
194
                return m_shapefunctions.SetValue(number, value);
            //1
195
196
            //template<class Shape, class ShapeFunction>
197
            //CSolution* CFiniteElement2D<Shape, ShapeFunction>::GetValue(const int p)
198
            //{
199
                auto&& val = m_shapefunctions.GetValue(p);
200
            11
                return const_cast<CSolution*>(static_cast<const CSolution*>(&val));;
201
            //1
            template<class Shape, class ShapeFunction>
202
            const int CFiniteElement2D<Shape, ShapeFunction>::GetNode(const int k) const
203
204
205
                return m_shape.GetNode(k);
206
            template<class Shape, class ShapeFunction> const double CFiniteElement2D<Shape, ShapeFunction>::Integrate(const std::function<const
207
208
       double(const Point&)>&f, const std::vector<Point>& v) const
209
            {
210
                return m_shape.Integrate(f, v);
211
            }
212
213
            template<class Shape, class ShapeFunction>
const Point CFiniteElement2D<Shape, ShapeFunction>::Integrate(const std::function<const</pre>
214
       Point(const Point&)>&f, const std::vector<Point>& v) const
215
            {
216
                return m_shape.Integrate(f, v);
217
218
219
            template<class Shape, class ShapeFunction>
            const std::vector<double> CFiniteElement2D<Shape, ShapeFunction>::Integrate(const
220
       std::function<const std::vector<double>(const Point%)>&f, const std::vector<Point>& v) const
221
            {
222
                return m_shape.Integrate(f, v);
223
224
            template < class Shape, class ShapeFunction>
            const int CFiniteElement2D<Shape, ShapeFunction>::GetNeighbour(const int k) const
225
226
            {
227
                return m_neighbours[k];
228
229
230
            template<class Shape, class ShapeFunction>
            const Point CFiniteElement2D<Shape, ShapeFunction>::GetNormal() const
231
```

7.25 FiniteElement2D.h 367

```
232
                          {
                                  return m_shapefunctions.GetNormal();
233
234
235
236
                         template<class Shape, class ShapeFunction>
void CFiniteElement2D<Shape, ShapeFunction>::ReverseNormal()
237
238
239
                                  m_shapefunctions.ReverseNormal();
240
241
242
                          template<class Shape, class ShapeFunction>
243
244
                          const Shape CFiniteElement2D<Shape, ShapeFunction>::GetShape() const
245
246
                                  return m_shape;
247
248
                         template<class Shape, class ShapeFunction>
const ShapeFunction CFiniteElement2D<Shape, ShapeFunction>::GetShapeFunctions() const
249
250
251
252
                                  return m_shapefunctions;
253
254
255
256
                          template < class Shape, class ShapeFunction>
                          const int CFiniteElement2D<Shape, ShapeFunction>::GetNumberOfNodes() const
257
258
259
                                  return m_shape.GetNumberOfNodes();
2.60
261
262
                          template<class Shape, class ShapeFunction>
263
                          const int CFiniteElement2D<Shape, ShapeFunction>::GetDoFs() const
264
265
                                  return m_shapefunctions.GetNumberOfShapeFunctions();
266
267
268
                          template<class Shape, class ShapeFunction>
                          void CFiniteElement2D<Shape, ShapeFunction>::SetNeighbour(const int k, const int elem)
269
270
271
                                  m_neighbours[k] = elem;
272
273
274
                          template < class Shape, class ShapeFunction>
275
                          void CFiniteElement2D<Shape, ShapeFunction>::SetShapeFunction(const int k, const ShapeFunction&
               func)
276
277
                                  m_shapefunctions = func;
278
279
280
                          template < class Shape, class ShapeFunction>
                          void CFiniteElement2D<Shape, ShapeFunction>::SetShape(const Shape &shape)
281
282
283
                                  m_shape = shape;
284
                         }
285
286
                          template<class Shape, class ShapeFunction>
                          void CFiniteElement2D<Shape, ShapeFunction>::SetType(const int k)
287
288
289
                                  m_type = k;
290
291
292
                          template<class Shape, class ShapeFunction>
293
                          void CFiniteElement2D<Shape, ShapeFunction>::SetNode(const int k, const int node)
294
295
                                  m_shape.SetNode(k, node);
296
                          297
298
               Mesh::Point &p) const
299
                         {
300
                                  return m_shapefunctions.GetShapeFunction(k, p);
301
302
                          template<class Shape, class ShapeFunction>
303
                          \texttt{const Point CFiniteElement2D} < \texttt{Shape}, \ \texttt{ShapeFunction} > :: \texttt{GetGradShapeFunction} (\texttt{const int } k, \ \texttt{const Point CFiniteElement2D} < \texttt{ShapeFunction} ) = (\texttt{ShapeFunction}) + (\texttt{Shape
304
               Mesh::Point &p) const
305
                         {
306
                                  return m_shapefunctions.GetGradShapeFunction(k, p);
307
                          }
308
309
                          template<class Shape, class ShapeFunction>
                          const int CFiniteElement2D<Shape, ShapeFunction>::IncreaseOrder()
310
311
312
                                   if (m_shape.IncreaseOrder())
                                           return 1;
313
314
                                  if (m_shapefunctions.IncreaseOrder())
315
                                           return 1:
```

```
return 0;
318
         template<class Shape, class ShapeFunction>
319
320
          const int CFiniteElement2D<Shape, ShapeFunction>::SetOrder(const int px, const int py)
321
322
             if (m_shape.SetOrder(px, py))
323
324
             if (m_shapefunctions.SetOrder(px, py))
325
                 return 1;
             return 0;
326
327
         }
328
329
          template<class Shape, class ShapeFunction>
330
          const double CFiniteElement2D<Shape, ShapeFunction>::GetWeight(const int node, const
     331
             return m_shapefunctions.GetWeight(node, verts, f);
332
333
334
          // fin.
335
336 }
337
338 #endif // FINITEELEMENT2D_H
```

7.26 CoreNCFEM/FiniteElements/Node.cpp File Reference

```
#include "Node.h"
```

7.27 CoreNCFEM/FiniteElements/Node.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
```

Classes

- · class corenc::Mesh::CNode
- class corenc::Mesh::CNodeBasis

Namespaces

- namespace corenc
- namespace corenc::Mesh

7.28 Node.h 369

7.28 Node.h

```
1 #ifndef Node_hpp
2 #define Node hpp
4 #include <stdio.h>
5 #include "Shape.h"
6 #include "ShapeFunction.h"
7 #include <iostream>
8
9 namespace corenc
10 {
11
       namespace Mesh
12
13
           class CNode : public CShape
14
           public:
15
16
               CNode();
               CNode(const CNode&);
18
               CNode(const int n);
19
               CNode(const int*n);
20
               CNode& operator=(const CNode& e)
21
               {
22
                   m_node = e.m_node;
23
                   return *this;
24
25
               friend const bool operator == (const CNode& e1, const CNode& e2)
2.6
                   if (e1.m_node == e2.m_node)
2.7
28
                       return true:
29
                   return false;
31
               friend std::istream& operator»(std::istream& is, CNode& e)
32
33
                   is » e.m_node;
34
                   --e.m_node;
35
                   return is;
36
37
               ~CNode() {};
38
               const int
                                                                        GetNode(const int) const;
39
               const int
                                                                        GetNode(const NODES&) const;
40
               const int
                                                                         IncreaseOrder() { return 1; };
                                                                        GetNumberOfNodes() const;
41
               const int
42
               void
                                                                        SetNode(const int k, const int node);
43
               const double
                                                                        Integrate(const std::function<const</pre>
       double(const Point&)>&, const std::vector<Point>& v) const;
44
               const Point
                                                                           Integrate (const
       std::function<const Point(const Point&)>&, const std::vector<Point>& v) const;
45
               const std::vector<double>
                                                                        Integrate(const std::function<const</pre>
       std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
46
           private:
47
               const int
                                                                        m_number = 1;
48
               int
                                                                        m_node;
           };
49
50
           class CNodeBasis : public CShapeFunction<double>
51
53
           public:
54
               CNodeBasis();
               CNodeBasis(const Point*);
55
               CNodeBasis(const CNodeBasis&e)
56
                   m_p0 = e.m_p0;
59
                   m_normal = e.m_normal;
60
61
               CNodeBasis& operator=(const CNodeBasis& e)
62
               {
63
                   m_p0 = e.m_p0;
                   m_normal = e.m_normal;
65
                   return *this;
66
               ~CNodeBasis() {};
67
                                                                        GetNumberOfShapeFunctions() const;
68
               const int
               //const DForm<0>*
69
                                                                            GetShapeFunction(const int)
       const;
70
               const double
                                                                        GetShapeFunction(const int, const
       Point&) const;
71
               const Point
                                                                           GetGradShapeFunction(const int,
       const Point&) const;
72
               const Point
                                                                           GetNormal() const;
73
               void
                                                                        ReverseNormal();
74
               const double
                                                                        GetWeight (const int node, const
       75
```

```
return f(verts[node]);
78
               //const int
                                                                         SetValue(const int, CSolution*
       value);
               //const int
79
                                                                         SetValue(const int, const
       CFESolution& value);
              const int
                                                                         IncreaseOrder() { return 1; };
               //const CFESolution
                                                                         GetValue(const Point&) const;
82
               const double
                                                                         GetMeasure() const { return 0.; };
83
               //const CFESolution
                                                                         GetValue(const int) const;
               //const std::function<const DForm<0>*(const Point&)>
                                                                                 GetShapeFunction(const int)
84
      const;
         private:
85
               static const int
                                                                         m_number = 1;
87
               Point
                                                                        m_p0;
88
               Point
                                                                        m_normal;
                                                                        m_w;
m_psi[2];
               //CFESolution
89
               //const std::function<const double(const Point&p)>
90
91
94 1
95 #endif /* Node_hpp */
```

7.29 CoreNCFEM/FiniteElements/Rectangle.cpp File Reference

```
#include "Rectangle.h"
```

7.30 CoreNCFEM/FiniteElements/Rectangle.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
```

Classes

- class corenc::Mesh::CRectangle
- class corenc::Mesh::CRectangleBasis
- class corenc::Mesh::CRectangleHBasis
- class corenc::Mesh::CRectangleBasis2x
- class corenc::Mesh::CRectangleBasis2y
- class corenc::Mesh::CRectangleBasis2
- · class corenc::Mesh::CRectangleConstantBasis

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.31 Rectangle.h 371

7.31 Rectangle.h

```
1 #ifndef CORENC_MESH_RECTANGLE_H_
2 #define CORENC MESH RECTANGLE H
4 #include <stdio.h>
5 #include "Shape.h"
6 #include "ShapeFunction.h"
7 #include <iostream>
8 namespace corenc
10
        namespace Mesh
11
12
             class CRectangle : public CShape
1.3
             public:
14
                 CRectangle();
15
                 CRectangle (const int n1, const int n2, const int n3, const int n4, const int order);
CRectangle (const int n1, const int n2, const int n3, const int n4, const int e1, const int
16
        e2, const int e3, const int e4, const int order);
18
                  CRectangle(const int*, const int order);
                  CRectangle(const int*, const int*, const int order);
CRectangle(const CRectangle&);
19
20
21
                  CRectangle& operator=(const CRectangle& t)
                  {
                      m_nodes = t.m_nodes;
                      m_edges[0] = t.m_edges[0];
m_edges[1] = t.m_edges[1];
24
2.5
                      m_edges[2] = t.m_edges[2];
2.6
                      m_edges[3] = t.m_edges[3];
                      m_number = t.m_number;
28
                      m_order = t.m_order;
                      m_px = t.m_px;
m_py = t.m_py;
30
31
                      return *this;
32
33
34
                  const bool
                                  operator == (const CRectangle& t)
35
36
                       for (unsigned int i = 0; i < 4; ++i)
                           if (m_nodes[i] == t.m_nodes[0])
37
                                for (unsigned int j = 0; j < 4; ++j)
    if (m_nodes[j] == t.m_nodes[1])
        for (unsigned int k = 0; k < 4; ++k)</pre>
38
39
40
                                              if (m_nodes[k] == t.m_nodes[2])
                                                   for (unsigned int 1 = 0; 1 < 4; ++1)
43
                                                       if (m_nodes[1] == t.m_nodes[3])
44
                                                   return true;
                      return false;
4.5
46
                  std::istream& operator»(std::istream& is)
48
49
                      is » m_nodes[0] » m_nodes[1] » m_nodes[2] » m_nodes[3];
50
                      return is;
51
                  ~CRectangle() {};
52
53
                  const int
                                                                                GetNode(const int) const;
                  const int
                                                                                GetNode(const NODES&) const;
55
                  const int
                                                                                GetEdge(const int) const;
56
                  const int
                                                                                GetFacet(const int) const;
57
                  const int
                                                                                GetNumberOfNodes() const;
                                                                                GetNumberOfEdges() const;
58
                  const int
                                                                                GetNumberOfFacets() const;
                  const int
                  const double
                                                                                Integrate(const std::function<const</pre>
        double(const Point&)>&, const std::vector<Point>& v) const;
61
                  const Point
                                                                                    Integrate(const std::function<const</pre>
        Point (const Point &) > &, const std::vector < Point > & v) const;
                  const_std::vector<double>
                                                                                Integrate(const std::function<const</pre>
62
        std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
                                                                                SetNode(const int k, const int node);
63
                 void
64
                  const int
                                                                                IncreaseOrder();
65
                  const int
                                                                                SetOrder(const int px, const int py);
66
                  void
                                                                                SetEdge(const int k, const int edge);
67
                  void
                                                                                SetFacet (const int k, const int facet);
68
             private:
69
                  std::vector<int>
                                                                                m_nodes;
70
                                                                                m_edges[4];
71
                  int
                                                                                m_order;
72
                  int
                                                                                m_number;
73
                  int
                                                                                m_px, m_py;
74
75
             class CRectangleBasis : public CShapeFunction<double>
77
             public:
78
```

```
CRectangleBasis();
               CRectangleBasis(const Point&, const Point&, const Point&, const Point&, const int order);
80
81
               CRectangleBasis(const Point*, const int order);
               CRectangleBasis(const CRectangleBasis&);
82
83
               CRectangleBasis& operator=(const CRectangleBasis& t)
84
85
                   m_normal = t.m_normal;
                   m_det = t.m_det;
86
87
                   m_order = t.m_order;
88
                   m_ldorder = t.m_ldorder;
                   m_number = t.m_number;
89
90
                   m s = t.m s;
                   m_{sp} = t.m_{sp}
91
                   m_points = t.m_points;
92
                   m_hx = t.m_hx;
m_hy = t.m_hy;
93
94
95
                   return *this:
96
               ~CRectangleBasis() {};
98
               const int
                                                                    GetNumberOfShapeFunctions() const;
               //const DForm<0>*
                                                                         GetShapeFunction(const int, const
99
       Point&) const;
100
                const double
                                                                     GetShapeFunction(const int, const
       Point&) const;
101
                const Point
                                                                        GetGradShapeFunction(const int, const
       Point&) const;
102
                const Point
                                                                        GetNormal() const;
103
                void
                                                                      ReverseNormal();
104
                const double
                                                                      GetValue(const Point&) const;
105
                const int
                                                                      IncreaseOrder();
106
                //const int
                                                                      SetValue(const int, CSolution* value);
107
                //CSolution*
                                                                      GetValue(const unsigned int);
108
                //const CFESolution
                                                                      GetValue(const int) const;
109
                const double
                                                                      GetMeasure() const { return m_det; };
110
                const double
                                                                     GetWeight(const int, const
       111
                //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
112
113
           private:
114
               int
                                                                      m_number;
                                                                     m_order;
115
                int
116
                int
                                                                     m_ldorder;
117
                Point.
                                                                     m normal:
118
                std::vector<Mesh::Point>
                                                                     m_points;
119
                double
                                                                     m_det;
120
                double
                                                                      m_hx, m_hy;
121
                const double
                                                                      m_x1(const double) const;
122
                const double
                                                                     m_x2(const double) const;
                                                                     m_y1(const double) const;
123
                const double
124
                const double
                                                                     m v2(const double) const;
125
                void
                                                                      compD(const Point&, const Point&, const
       Point&);
126
                void
                                                                      compNormal(const Point&, const Point&,
       const Point&);
127
                const int
                                                                      createS();
                                                                         m_w[m_number];
128
                //std::vector<double>
129
                //std::vector<CFESolution>
                                                                      m_w{ 4 };
130
                int
                                                                     m_s;
131
                int
                                                                     m_sp;
132
            };
133
134
135
            class CRectangleHBasis : public CShapeFunction<double>
136
137
            public:
138
                CRectangleHBasis();
                CRectangleHBasis(const Point&, const Point&, const Point&, const Point&, const int order);
139
                CRectangleHBasis(const Point&, const Point&, const Point&, const Point&, const int px, const
140
       int pv);
141
                CRectangleHBasis(const Point*, const int order);
142
                CRectangleHBasis(const Point*, const int px, const int py);
143
                CRectangleHBasis(const CRectangleHBasis&);
144
                CRectangleHBasis& operator=(const CRectangleHBasis& t)
145
                    m normal = t.m normal;
146
147
                    m_det = t.m_det;
148
                    m_order = t.m_order;
                    m_ldorder = t.m_ldorder;
m_number = t.m_number;
149
150
                    m_s = t.m_s;
151
                    m_sp = t.m_sp;
152
153
                    m_points = t.m_points;
154
                    m_hx = t.m_hx;
155
                    m_hy = t.m_hy;
156
                    m_px = t.m_px;
                    m_py = t.m_py;
157
                    return *this;
158
```

7.31 Rectangle.h 373

```
159
160
                  ~CRectangleHBasis() {};
161
                 const int
                                                                          GetNumberOfShapeFunctions() const;
162
                 //const DForm<0>*
                                                                               GetShapeFunction(const int, const
       Point&) const;
163
                 const double
                                                                          GetShapeFunction(const int, const
       Point&) const;
164
                 const Point
                                                                              GetGradShapeFunction(const int, const
       Point&) const;
165
                 const Point
                                                                             GetNormal() const;
166
                 void
                                                                          ReverseNormal();
167
                 const double
                                                                          GetValue(const Point&) const:
                                                                          IncreaseOrder();
168
                 const int
                 const int
                                                                          SetOrder(const int px, const int py);
169
170
                 //const int
                                                                          SetValue(const int, CSolution* value);
171
                 //CSolution*
                                                                          GetValue(const unsigned int);
172
                 //const CFESolution
                                                                          GetValue(const int) const;
                                                                          GetMeasure() const { return m_det; };
                 const double
173
                 const double
174
                                                                          GetWeight (const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
175
                 //const unsigned int
                                                                              GetOrder() const;
176
                 //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
177
            private:
178
                 int
                                                                          m number;
179
                                                                          m_order;
                 int
180
                 int
                                                                          m_ldorder;
181
                 Point
                                                                          m_normal;
                                                                          m_points;
182
                 std::vector<Mesh::Point>
183
                 double
                                                                          m_det;
184
                 double
                                                                          m_hx, m_hy;
185
                 int
                                                                          m_px, m_py;
186
                 const double
                                                                          m_x1(const double) const;
187
                 const double
                                                                          m_x2(const double) const;
188
                 const double
                                                                          m_y1(const double) const;
                                                                          m_y2(const double) const;
189
                 const double
190
                 const double
                                                                          m_xi(const double, const int n) const;
                                                                          m_dxi(const double, const int n) const;
191
                 const double
                                                                          compD(const Point&, const Point&, const
192
                 void
       Point&);
193
                 void
                                                                          compNormal(const Point&, const Point&,
       const Point&);
                 const int
194
                                                                          createS();
195
                 //std::vector<double>
                                                                          \label{eq:mwwmmnumber} \begin{array}{c} \texttt{m\_w[m\_number];} \\ \texttt{m\_w{ 4 } }; \end{array}
196
                 //std::vector<CFESolution>
197
                 int
                                                                          m_s;
198
                 int
                                                                          m_sp;
199
             } ;
200
             class CRectangleBasis2x : public CShapeFunction<double>
201
202
203
             public:
204
                 CRectangleBasis2x();
205
                 CRectangleBasis2x(const Point&, const Point&, const Point&, const Point&, const int order);
                 CRectangleBasis2x(const Point*, const int order);
CRectangleBasis2x(const CRectangleBasis2x&);
206
207
                 CRectangleBasis2x& operator=(const CRectangleBasis2x& t)
208
209
210
                      m_normal = t.m_normal;
211
                      m_det = t.m_det;
212
                      m_order = t.m_order;
213
                      m 1dorder = t.m 1dorder;
                     m_number = t.m_number;
214
215
                     m_s = t.m_s;
                      m_sp = t.m_sp;
216
217
                      m_points = t.m_points;
                     m_hx = t.m_hx;
m_hy = t.m_hy;
218
219
                      return *this;
220
221
222
                 ~CRectangleBasis2x() {};
                                                                          GetNumberOfShapeFunctions() const;
223
                 const int
224
                 //const DForm<0>*
                                                                               GetShapeFunction(const int, const
       Point&) const;
225
                 const double
                                                                          GetShapeFunction(const int, const
       Point&) const;
                 const Point
226
                                                                             GetGradShapeFunction(const int, const
       Point&) const;
227
                 const Point
                                                                             GetNormal() const;
228
                 void
                                                                          ReverseNormal();
229
                 const double
                                                                          GetValue(const Point&) const;
230
                 const int
                                                                          IncreaseOrder();
231
                 //const int
                                                                          SetValue(const int, CSolution* value);
                 //CSolution*
                                                                          GetValue(const unsigned int);
232
233
                 //const CFESolution
                                                                          GetValue(const int) const;
234
                 const double
                                                                          GetMeasure() const { return m_det; };
235
                 const. double
                                                                          GetWeight (const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
```

```
236
                //const unsigned int
                                                                           GetOrder() const;
                 //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
237
            private:
238
239
                int
                                                                       m_number;
240
                int
                                                                       m_order;
241
                                                                       m 1dorder:
                int
242
                Point
                                                                       m_normal;
243
                std::vector<Mesh::Point>
                                                                       m_points;
244
                double
                                                                       m_det;
245
                double
                                                                       m_hx, m_hy;
                                                                       m_x1(const double) const;
                const double
246
247
                const double
                                                                       m x2(const double) const;
248
                const double
                                                                       m_x3(const double) const;
249
                const double
                                                                       m_dx3(const double) const;
250
                const double
                                                                       m_y1(const double) const;
2.51
                const double
                                                                       m_y2(const double) const;
252
                void
                                                                       compD(const Point&, const Point&, const
       Point&);
                void
                                                                       compNormal(const Point&, const Point&,
       const Point&);
254
                const int
                                                                       createS();
255
                //std::vector<double>
                                                                           m_w[m_number];
                                                                       m_w{ 4 };
256
                //std::vector<CFESolution>
2.57
                int
                                                                       m s;
258
                int
                                                                       m_sp;
259
            } ;
260
261
            class CRectangleBasis2y : public CShapeFunction<double>
2.62
            public:
263
264
                CRectangleBasis2v():
265
                CRectangleBasis2y(const Point&, const Point&, const Point&, const Point&, const int order);
266
                CRectangleBasis2y(const Point*, const int order);
267
                CRectangleBasis2y(const CRectangleBasis2y&);
268
                CRectangleBasis2y& operator=(const CRectangleBasis2y& t)
269
270
                    m normal = t.m normal;
271
                    m_det = t.m_det;
272
                    m_order = t.m_order;
273
                     m_ldorder = t.m_ldorder;
274
                    m_number = t.m_number;
                    m_s = t.m_s;
m_sp = t.m_sp;
275
276
                    m_points = t.m_points;
278
                     m_hx = t.m_hx;
279
                     m_hy = t.m_hy;
280
                     return *this;
281
                ~CRectangleBasis2y() {};
282
                                                                       GetNumberOfShapeFunctions() const;
283
                const int
                //const DForm<0>*
284
                                                                           GetShapeFunction(const int, const
       Point&) const;
285
                const double
                                                                       GetShapeFunction(const int, const
       Point&) const;
286
                const Point
                                                                          GetGradShapeFunction(const int, const
       Point&) const;
287
                const Point
                                                                          GetNormal() const;
                                                                       ReverseNormal();
288
                void
289
                const double
                                                                       GetValue(const Point&) const;
290
                const int
                                                                       IncreaseOrder();
                //const int
                                                                       SetValue(const int, CSolution* value);
291
292
                //CSolution*
                                                                       GetValue(const unsigned int);
293
                //const CFESolution
                                                                       GetValue(const int) const;
                const double
                                                                       GetMeasure() const { return m_det; };
294
295
                const double
                                                                       GetWeight (const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
                //const unsigned int
296
                                                                           GetOrder() const;
                //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
297
298
            private:
299
                int
                                                                       m_number;
300
                int
                                                                       m_order;
301
                int
                                                                       m 1dorder;
302
                Point
                                                                       m_normal;
303
                std::vector<Mesh::Point>
                                                                       m_points;
304
                                                                       m det;
                double
                double
305
                                                                       m_hx, m_hy;
306
                                                                       m_x1(const double) const;
                const double
307
                const double
                                                                       m_x2(const double) const;
308
                const double
                                                                       m_y3(const double) const;
309
                                                                       m dv3(const double) const;
                const. double
310
                                                                       m_y1(const double) const;
                const double
311
                const double
                                                                       m_y2(const double) const;
                                                                       compD(const Point&, const Point&, const
312
       Point&);
313
                void
                                                                       compNormal(const Point&, const Point&,
       const Point&);
314
                const int
                                                                       createS();
```

7.31 Rectangle.h 375

```
315
                                                                             m_w[m_number];
                 //std::vector<double>
                                                                         m_w{ 4 };
316
                 //std::vector<CFESolution>
317
                 int
                                                                         m_s;
318
                 int
                                                                         m_sp;
319
             };
320
321
            class CRectangleBasis2 : public CShapeFunction<double>
322
323
            public:
324
                 CRectangleBasis2();
                 CRectangleBasis2(const Point&, const Point&, const Point&, const Point&, const int order);
325
                 CRectangleBasis2(const Point*, const int order);
326
                 CRectangleBasis2(const CRectangleBasis2&);
327
328
                 CRectangleBasis2& operator=(const CRectangleBasis2& t)
329
330
                     m_normal = t.m_normal;
                     m_det = t.m_det;
m_order = t.m_order;
331
332
                     m_ldorder = t.m_ldorder;
333
                     m_number = t.m_number;
334
335
                     m_s = t.m_s;
336
                     m_sp = t.m_sp;
337
                     m_points = t.m_points;
338
                     m hx = t.m hx;
339
                     m_hy = t.m_hy;
340
                     return *this;
341
342
                 ~CRectangleBasis2() {};
343
                 const int
                                                                         GetNumberOfShapeFunctions() const;
344
                 //const DForm<0>*
                                                                             GetShapeFunction(const int, const
       Point&) const:
345
                 const double
                                                                         GetShapeFunction(const int, const
       Point&) const;
346
                 const Point
                                                                            GetGradShapeFunction(const int, const
       Point&) const;
347
                 const Point
                                                                            GetNormal() const;
348
                 void
                                                                         ReverseNormal();
349
                 const double
                                                                         GetValue(const Point&) const;
350
                 const int
                                                                         IncreaseOrder();
351
                 //const int
                                                                         SetValue(const int, CSolution* value);
352
                 //CSolution;
                                                                         GetValue(const unsigned int);
353
                 //const CFESolution
                                                                         GetValue(const int) const;
                                                                         GetMeasure() const { return m_det; };
354
                 const double
                                                                         GetWeight (const int, const
355
                 const double
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
356
                 //const unsigned int
                                                                             GetOrder() const;
357
                 //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
358
            private:
359
                 int
                                                                         m number:
360
                 int
                                                                         m order:
361
                                                                         m_ldorder;
                 int
362
                 Point
                                                                         m_normal;
                                                                         m_points;
363
                 std::vector<Mesh::Point>
364
                 double
                                                                         m_det;
365
                 double
                                                                         m_hx, m_hy;
                                                                         m_x1(const double) const;
m_x2(const double) const;
366
                 const double
367
                 const double
368
                 const double
                                                                         m_x3(const double) const;
369
                 const double
                                                                         m_dx3(const double) const;
370
                 const double
                                                                         m_y1(const double) const;
371
                 const. double
                                                                         m_y2(const double) const;
m_y3(const double) const;
372
                 const double
373
                 const double
                                                                         m_dy3(const double) const;
                                                                         compD(const Point&, const Point&, const
374
                 void
       Point&);
375
                 void
                                                                         compNormal(const Point&, const Point&,
       const Point&);
376
                 const int
                                                                         createS();
377
                 //std::vector<double>
                                                                             m w[m number]:
378
                 //std::vector<CFESolution>
                                                                         m_w{4};
379
                 int
                                                                         m_s;
380
                 int
                                                                         m_sp;
381
            } ;
382
383
             class CRectangleConstantBasis : public CShapeFunction<double>
384
385
            public:
386
                 CRectangleConstantBasis();
387
                 CRectangleConstantBasis(const Point&, const Point&, const Point&, const Point&, const int
       order):
388
                 CRectangleConstantBasis(const Point*, const int order);
389
                 CRectangleConstantBasis(const CRectangleConstantBasis&);
390
                 CRectangleConstantBasis& operator=(const CRectangleConstantBasis& t)
391
392
                     m_normal = t.m_normal;
                     m_det = t.m_det;
m_order = t.m_order;
393
394
```

```
m_ldorder = t.m_ldorder;
                    m_number = t.m_number;
397
                    m_s = t.m_s;
                    m_{sp} = t.m_{sp};
398
399
                    m_points = t.m_points;
                    m_hx = t.m_hx;
m_hy = t.m_hy;
400
402
403
404
                ~CRectangleConstantBasis() {};
                                                                      GetNumberOfShapeFunctions() const;
405
                const int
                //const DForm<0>*
406
                                                                          GetShapeFunction(const int, const
      Point&) const;
                const double
407
                                                                      GetShapeFunction(const int, const
      Point&) const;
408
                const Point
                                                                         GetGradShapeFunction(const int, const
      Point&) const;
409
                const Point
                                                                         GetNormal() const;
410
                                                                      ReverseNormal();
                void
                                                                      GetValue(const Point&) const;
                const double
412
               const int
                                                                      IncreaseOrder();
413
                //const int
                                                                      SetValue(const int, CSolution* value);
               //CSolution*
414
                                                                      GetValue(const unsigned int);
               //const CFESolution
415
                                                                      GetValue(const int) const;
416
                                                                      GetMeasure() const { return m_det; };
                const double
                                                                          GetOrder() const;
417
               //const unsigned int
418
                //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
419
         private:
420
                int
                                                                      m_number;
421
                int
                                                                      m_order;
422
                                                                      m 1dorder:
                int
423
                Point
                                                                      m normal;
424
                std::vector<Mesh::Point>
                                                                      m_points;
425
                double
                                                                      m_det;
426
                double
                                                                      m_hx, m_hy;
                                                                      m_x1(const double) const;
427
                const double
428
                const double
                                                                      m x2(const double) const;
                const double
                                                                      m_y1(const double) const;
                const double
                                                                      m_y2(const double) const;
431
                                                                      compD(const Point&, const Point&, const
      Point&);
432
                void
                                                                      compNormal(const Point&, const Point&,
      const Point&):
433
               const int
                                                                      createS();
                //std::vector<double>
434
                                                                          m_w[m_number];
                                                                      m_w \{ 1 \};
435
                //std::vector<CFESolution>
436
                int
                                                                      m_s;
437
                int
                                                                      m_sp;
           };
438
       }
439
440 }
441 #endif // CORENC_MESH_RECTANGLE_H_
```

7.32 CoreNCFEM/FiniteElements/RectangleBasis2.cpp File Reference

```
#include "Rectangle.h"
#include <iostream>
```

7.33 CoreNCFEM/FiniteElements/RectangleBasis2y.cpp File Reference

```
#include "Rectangle.h"
#include <iostream>
```

7.34 CoreNCFEM/FiniteElements/RectangleHBasis.cpp File Reference

```
#include "Rectangle.h"
#include <random>
```

```
#include <iostream>
#include "../../CoreNCA/Matrix.h"
#include "../../CoreNCA/MatrixSkyline.h"
```

7.35 CoreNCFEM/FiniteElements/Shape.h File Reference

```
#include <functional>
#include <vector>
#include "../Point.h"
```

Classes

· class corenc::Mesh::CShape

Namespaces

- · namespace corenc
- namespace corenc::Mesh

Typedefs

- using corenc::scalar_func = std::function < const double(const Mesh::Point &)>
- using corenc::vector_func = std::function < const Mesh::Point(const Mesh::Point &)>

Enumerations

enum class corenc::Mesh::NODES { corenc::Mesh::FIRST , corenc::Mesh::LAST }

7.36 Shape.h

```
1 #ifndef CORENC_MESH_Shape_h
2 #define CORENC_MESH_Shape_h
3 #include <functional>
4 #include <vector>
5 #include "../Point.h"
6 namespace corenc
        using scalar_func = std::function<const double(const Mesh::Point&)>;
using vector_func = std::function<const Mesh::Point(const Mesh::Point&)>;
8
10
        namespace Mesh
               //class Point:
12
              enum class NODES
13
14
                     FIRST,
15
16
                    LAST
18
               class CShape
19
               public:
20
21
                   CShape() {}
                     CShape(const int*) {}
```

```
virtual ~CShape() {}
                                               GetNumberOfNodes() const { return 0; };
             virtual const int
25
             virtual const int
                                               GetNumberOfEdges() const { return 0; };
2.6
             virtual const int
                                               GetNumberOfFacets() const { return 0; };
                                               GetNode(const int) const { return 1; };
2.7
             virtual const int
                                               GetNode(const NODES&) const { return 1; };
28
             virtual const int
                                              GetEdge(const int) const { return -1; };
             virtual const int
30
             virtual const int
                                               GetFacet(const int) const { return -1; };
31
             virtual const double
                                              Integrate(const scalar_func&, const std::vector<Point>&)
      const = 0;
32
             virtual const Point
                                              Integrate(const vector_func&, const std::vector<Point>&)
      const = 0;
33
             virtual const std::vector<double> Integrate(const std::function<const
      std::vector<double>(const Point&)>&, const std::vector<Point>&) const = 0;
             virtual void
35
36
37
38
39
40
41 }
42 #endif /* CORENC MESH Shape h */
```

7.37 CoreNCFEM/FiniteElements/ShapeFunction.h File Reference

```
#include "../Point.h"
#include <functional>
#include "../FESolution.h"
```

Classes

class corenc::Mesh::CShapeFunction< Type >

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.38 ShapeFunction.h

```
1 #ifndef CORENC_MESH_ShapeFunction_h
2 #define CORENC_MESH_ShapeFunction_h
3 #include "../Point.h"
4 #include <functional>
5 #include "../FESolution.h"
6 namespace corenc
8
     namespace Mesh
10
          template<class Type>
          class CShapeFunction
12
          public:
13
             CShapeFunction() {}
14
              CShapeFunction(const Point*) {}
              virtual ~CShapeFunction() {}
16
                                             GetNumberOfShapeFunctions() const = 0;
              //virtual const std::function<const DiffForm*(const Point&)> GetShapeFunction(const int)
18
      const = 0;
19
              //virtual const DiffForm* GetShapeFunction(const int) const = 0;
20
              virtual const Point
                                                GetGradShapeFunction(const int, const Point&) const = 0;
```

```
virtual const Point
                                                                    GetNormal() const = 0;
                                                             ReverseNormal() = 0;
GetMeasure() const = 0;
                    virtual void
                    virtual const double
                    //virtual const Type
                                                                    GetValue(const Point&) const = 0;
2.5
                                                          SetValue(const unsigned int, const Type& value) = 0;
GetValue(const unsigned int) const = 0;
2.6
                    //virtual const int
                    //virtual const Inc
//virtual const Type
//virtual const int
//virtual CSolution*
//virtual const int
GetValue(const unsigned int) = 0;
SetValue(const int, CSolution)
29
30
                                                              SetValue(const int, CSolution*) = 0;
31
              };
        }
32
33 }
34 #endif /* CORENC_MESH_ShapeFunction_h */
```

7.39 CoreNCFEM/FiniteElements/Triangle.cpp File Reference

```
#include "Triangle.h"
#include <iostream>
#include <algorithm>
#include <random>
#include "../../CoreNCA/Matrix.h"
#include "../../CoreNCA/MatrixSkyline.h"
```

Functions

- const Point mid_point (const Point &p1, const Point &p2)
- const Point s_point (const Point &p1, const Point &p2, const double s)
- const Point center_point (const Point &p1, const Point &p2, const Point &p3)

7.39.1 Function Documentation

7.39.1.1 center_point()

7.39.1.2 mid_point()

7.39.1.3 s_point()

7.40 CoreNCFEM/FiniteElements/Triangle.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
```

Classes

- class corenc::Mesh::CTriangle
- class corenc::Mesh::CTriangleBasis
- class corenc::Mesh::CTriangleLagrangeBasis

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.41 Triangle.h

```
1 #ifndef CORENC_MESH_TRIANGLE_H_
2 #define CORENC_MESH_TRIANGLE_H_
4 #include <stdio.h>
5 #include "Shape.h"
6 #include "ShapeFunction.h"
7 #include <iostream>
8 namespace corenc
9 {
10
         namespace Mesh
11
              class CTriangle : public CShape
13
14
              public:
15
                    CTriangle();
                    CTriangle(const int n1, const int n2, const int n3, const int order);
CTriangle(const int n1, const int n2, const int n3, const int e1, const int e2, const int e3,
16
17
        const int order);
18
                    CTriangle(const int*, const int order);
19
                    CTriangle(const int*, const int*, const int order);
                    CTriangle(const CTriangle&);
20
21
                    CTriangle& operator=(const CTriangle& t)
22
                         m_nodes = t.m_nodes;
                         m_edges[0] = t.m_edges[0];
m_edges[1] = t.m_edges[1];
24
25
                         m_edges[2] = t.m_edges[2];
m_number = t.m_number;
m_order = t.m_order;
26
2.7
28
29
                         return *this;
```

7.41 Triangle.h 381

```
31
                 const bool
                                 operator==(const CTriangle& t)
32
33
                      for (unsigned int i = 0; i < 3; ++i)
34
                          if (m_nodes[i] == t.m_nodes[0])
                               for (unsigned int j = 0; j < 3; ++j)
  if (m_nodes[j] == t.m_nodes[1])
  for (unsigned int k = 0; k < 3; ++k)</pre>
3.5
36
37
38
                                             if (m_nodes[k] == t.m_nodes[2])
39
                                                  return true;
40
                      return false;
41
                 std::istream& operator»(std::istream& is)
42
43
                      is » m_nodes[0] » m_nodes[1] » m_nodes[2];
44
45
46
                 ~CTriangle() {};
47
                                                                              GetNode (const int) const;
48
                 const int
                                                                              GetNode(const NODES&) const;
49
                 const int
50
                 const int
                                                                              GetEdge(const int) const;
                 const int
                                                                              GetFacet(const int) const;
51
52
                 const int
                                                                              GetNumberOfNodes() const;
5.3
                 const int
                                                                              GetNumberOfEdges() const;
                                                                              GetNumberOfFacets() const:
54
                 const int
55
                                                                              Integrate(const std::function<const</pre>
                 const double
        double(const Point&)>&, const std::vector<Point>& v) const;
56
                                                                                 Integrate(const std::function<const</pre>
        Point(const Point&)>&, const std::vector<Point>& v) const;
57
                 const std::vector<double>
                                                                              Integrate(const std::function<const</pre>
        std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
58
                                                                              SetNode (const int k, const int node);
                 void
59
                                                                              IncreaseOrder();
                 const int
                                                                              SetEdge(const int k, const int edge);
60
                 void
61
                 void
                                                                              SetFacet(const int k, const int facet);
            private:
62
63
                 std::vector<int>
                                                                              m_nodes;
                                                                              m edges[3];
64
65
                 int
                                                                              m_order;
66
                 int
                                                                              m_number;
67
                 void
                                                                              SetOrder();
68
            } ;
69
70
            class CTriangleBasis : public CShapeFunction<double>
71
72
            public:
73
                 CTriangleBasis();
74
                 CTriangleBasis(const Point&, const Point&, const Point&, const int order);
                 CTriangleBasis(const Point*, const int order);
CTriangleBasis(const CTriangleBasis&);
7.5
76
77
                 CTriangleBasis& operator=(const CTriangleBasis& t)
78
79
                      m_normal = t.m_normal;
80
                      m_det = t.m_det;
                      m_order = t.m_order;
m_ldorder = t.m_ldorder;
81
82
                      m_number = t.m_number;
83
                      m_nalpha[0][0] = t.m_alpha[0][0];
m_alpha[0][1] = t.m_alpha[0][1];
85
86
                      m_alpha[0][2] = t.m_alpha[0][2];
87
                     m_alpha[1][0] = t.m_alpha[1][0];
m_alpha[1][1] = t.m_alpha[1][1];
88
89
90
                      m_alpha[1][2] = t.m_alpha[1][2];
91
                      m_alpha[2][0] = t.m_alpha[2][0];
92
                      m_alpha[2][1] = t.m_alpha[2][1];
m_alpha[2][2] = t.m_alpha[2][2];
93
94
95
                      m_s = t.m_s;
                     m_sp = t.m_sp;
m_all = t.m_all;
96
98
                      return *this;
99
100
                   ~CTriangleBasis() {};
                                                                               GetNumberOfShapeFunctions() const;
101
                  const int
                   //const DForm<0>*
102
                                                                                    GetShapeFunction(const int, const
        Point&) const;
103
                  const double
                                                                               GetShapeFunction(const int, const
        Point&) const;
104
                  const Point
                                                                                  GetGradShapeFunction(const int, const
        Point () const:
105
                  const Point
                                                                                  GetNormal() const;
106
                                                                               ReverseNormal();
                  void
107
                                                                               GetValue(const Point&) const;
                  const double
108
                  const int
                                                                               IncreaseOrder();
109
                   //const int
                                                                               SetValue(const int, CSolution* value);
110
                   //CSolution+
                                                                               GetValue(const unsigned int);
111
                   //const CFESolution
                                                                               GetValue(const int) const:
```

```
112
                 const double
                                                                             GetMeasure() const { return fabs(m_det);
113
                 const double
                                                                             GetWeight(const int, const
        std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
                 //const unsigned int
114
                                                                                 GetOrder() const;
                  //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
115
116
             private:
117
                  int
                                                                             m_number;
118
                  int
                                                                             m_order;
119
                  int
                                                                             m 1dorder;
                  double
                                                                             m_alpha[3][3];
120
121
                  Point
                                                                             m normal:
122
                  double
                                                                             m det;
                  const double
123
                                                                             m_L(const int, const Point&) const;
124
                  const double
                                                                             m_xi(const int, const Point&) const;
125
                                                                             compD(const Point&, const Point&, const
                  void
       Point&);
126
                  void
                                                                             compAlpha(const Point&, const Point&,
       const Point&);
127
                                                                             compNormal(const Point&, const Point&,
                  void
       const Point&);
128
                  const int
                                                                             createS();
129
                  //std::vector<double>
                                                                                 m_w[m_number];
                                                                             m_w{ 3 };
                  //std::vector<CFESolution>
130
131
                  int
                                                                            m_s;
132
                  int
                                                                             m_sp;
133
                  std::vector<int>
                                                                             m_all;
134
             };
135
136
             class CTriangleLagrangeBasis : public CShapeFunction<double>
137
138
             public:
139
                  CTriangleLagrangeBasis();
140
                  CTriangleLagrangeBasis(const Point&, const Point&, const Point&, const int order);
                  CTriangleLagrangeBasis(const Point*, const int order);
CTriangleLagrangeBasis(const CTriangleLagrangeBasis&);
141
142
143
                  CTriangleLagrangeBasis& operator=(const CTriangleLagrangeBasis& t)
144
145
                      m_normal = t.m_normal;
                      m_det = t.m_det;
m_order = t.m_order;
146
147
                      m_ldorder = t.m_ldorder;
m_number = t.m_number;
148
149
                      m_nalpha[0][0] = t.m_alpha[0][0];
m_alpha[0][1] = t.m_alpha[0][1];
150
151
152
                      m_alpha[0][2] = t.m_alpha[0][2];
153
                      m_alpha[1][0] = t.m_alpha[1][0];
m_alpha[1][1] = t.m_alpha[1][1];
m_alpha[1][2] = t.m_alpha[1][2];
154
155
156
157
                      m_alpha[2][0] = t.m_alpha[2][0];
m_alpha[2][1] = t.m_alpha[2][1];
158
159
                      m_alpha[2][2] = t.m_alpha[2][2];
160
161
                      m_s = t.m_s;
                      m_sp = t.m_sp;
162
                      m_all = t.m_all;
163
                      return *this;
164
165
166
                  ~CTriangleLagrangeBasis() {};
167
                  const int
                                                                             GetNumberOfShapeFunctions() const;
                  //const DForm<0>*
                                                                                 GetShapeFunction(const int, const
168
       Point&) const;
                  const double
169
                                                                             GetShapeFunction(const int, const
       Point&) const;
170
                  const Point
                                                                                GetGradShapeFunction(const int, const
       Point&) const;
171
                  const Point
                                                                                GetNormal() const:
172
                  void
                                                                             ReverseNormal();
                                                                             GetValue(const Point&) const;
173
                  const double
174
                  const int
                                                                             IncreaseOrder();
175
                  //const int
                                                                             SetValue(const int, CSolution* value);
176
                  //CSolution*
                                                                             GetValue(const unsigned int);
177
                  //const CFESolution
                                                                             GetValue(const int) const;
                                                                             GetAlpha(const int i, const int j) const
178
                  const double
        { return m_alpha[i][j];
179
                  const double
                                                                             GetMeasure() const { return fabs(m_det);
180
                  const double
                                                                             GetWeight(const int, const
       std::vector<Point>& verts, const std::function<const double(const Point&)>& f) const;
                 //const unsigned int
                                                                                 GetOrder() const;
181
182
                  //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
183
             private:
                                                                             m_number;
184
                 int
                                                                             m_order;
185
                  int
186
                  int
                                                                             m 1dorder;
                  double
                                                                             m alpha[3][3];
187
```

```
188
                  Point
                                                                             m_normal;
189
                                                                              m_det;
190
                  const double
                                                                             m_L(const int, const Point&) const;
191
                  const double
                                                                              m_xi(const int, const Point&) const;
192
                  void
                                                                             compD(const Point&, const Point&, const
       Point&);
                                                                             compAlpha(const Point&, const Point&,
       const Point&);
194
                                                                              compNormal(const Point&, const Point&,
       const Point&);
195
                const int
                                                                              createS();
                 //std::vector<double>
196
                                                                              \begin{array}{c} \texttt{m\_w[m\_number];} \\ \texttt{m\_w{ 3 };} \end{array}
                //std::vector<CFESolution>
int
int
197
198
                                                                             m_s;
199
                                                                             m_sp;
200
                 std::vector<int>
             } ;
201
       }
202
204 #endif // CORENC_MESH_TRIANGLE_H_
```

7.42 CoreNCFEM/FiniteElements/TriangleLagrange.cpp File Reference

```
#include "Triangle.h"
#include <iostream>
#include <algorithm>
#include <random>
#include "../../CoreNCA/Matrix.h"
#include "../../CoreNCA/MatrixSkyline.h"
```

Namespaces

· namespace wtf

Functions

- const Point wtf::mid point (const Point &p1, const Point &p2)
- const Point wtf::s_point (const Point &p1, const Point &p2, const double s)
- const Point wtf::center point (const Point &p1, const Point &p2, const Point &p3)

7.43 CoreNCFEM/FiniteElements/TriangleLinear.cpp File Reference

```
#include "TriangleLinear.h"
#include <iostream>
```

7.44 CoreNCFEM/FiniteElements/TriangleLinear.h File Reference

```
#include <stdio.h>
#include "Shape.h"
#include "ShapeFunction.h"
#include <iostream>
```

Classes

- · class corenc::Mesh::CTriangleLinear
- · class corenc::Mesh::CTriangleLinearBasis
- class corenc::Mesh::CTriangleBasis

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.45 TriangleLinear.h

```
#ifndef CORENC_MESH_TRIANGLELINEAR_H_
2 #define CORENC_MESH_TRIANGLELINEAR_H_
4 #include <stdio.h>
5 #include "Shape.h"
6 #include "ShapeFunction.h"
7 #include <iostream>
8 namespace corenc
9 {
1.0
        namespace Mesh
11
             class CTriangleLinear : public CShape
12
13
15
                 CTriangleLinear();
16
                 CTriangleLinear(const int n1, const int n2, const int n3);
17
                 CTriangleLinear(const int n1, const int n2, const int n3, const int e1, const int e2, const
        int e3):
18
                 CTriangleLinear(const int*);
19
                 CTriangleLinear(const int*, const int*);
20
                 CTriangleLinear(const CTriangleLinear&);
2.1
                 CTriangleLinear& operator=(const CTriangleLinear& t)
22
                      m_nodes[0] = t.m_nodes[0];
23
                      m_nodes[1] = t.m_nodes[1];
25
                      m_nodes[2] = t.m_nodes[2];
26
                      m_edges[0] = t.m_edges[0];
                      m_edges[1] = t.m_edges[1];
27
                      m_edges[2] = t.m_edges[2];
2.8
29
                      return *this;
30
                                 operator==(const CTriangleLinear& t)
31
                      for (unsigned int i = 0; i < 3; ++i)
    if (m_nodes[i] == t.m_nodes[0])</pre>
33
34
                               for (unsigned int j = 0; j < 3; ++j)
    if (m_nodes[j] == t.m_nodes[1])
        for (unsigned int k = 0; k < 3; ++k)
        if (m_nodes[k] == t.m_nodes[2])</pre>
35
36
38
39
                                                   return true;
40
                      return false;
41
                 std::istream& operator»(std::istream& is)
42
                      is » m_nodes[0] » m_nodes[1] » m_nodes[2];
45
                      return is;
46
                 ~CTriangleLinear() {};
47
                                                                              GetNode (const int) const;
48
                 const int
                                                                              GetNode(const NODES&) const;
                 const int
                 const int
                                                                              GetEdge(const int) const;
                 const int
                                                                              GetFacet(const int) const;
52
                 const int
                                                                              GetNumberOfNodes() const;
5.3
                 const int
                                                                              GetNumberOfEdges() const;
54
                                                                              GetNumberOfFacets() const:
                 const int
55
                 const double
                                                                              Integrate(const std::function<const</pre>
        double(const Point&)>&, const std::vector<Point>& v) const;
56
                 const Point
                                                                                  Integrate(const std::function<const</pre>
        Point(const Point&)>&, const std::vector<Point>& v) const;
```

7.45 TriangleLinear.h 385

```
57
                 const std::vector<double>
                                                                               Integrate(const std::function<const</pre>
        std::vector<double>(const Point&)>&, const std::vector<Point>&) const;
58
                 void
                                                                               SetNode(const int k, const int node);
59
                 const int
                                                                               IncreaseOrder() { return 1; };
                                                                               SetEdge(const int k, const int edge);
SetFacet(const int k, const int facet);
60
                 void
                 void
61
62
             private:
63
64
                 int
                                                                               m_edges[3];
6.5
             };
66
             class CTriangleLinearBasis : public CShapeFunction<double>
67
68
            public:
69
70
                 CTriangleLinearBasis();
71
                 CTriangleLinearBasis(const Point&, const Point&, const Point&);
72
                 CTriangleLinearBasis(const Point*);
                 CTriangleLinearBasis(const CTriangleLinearBasis&);
73
74
                 CTriangleLinearBasis& operator=(const CTriangleLinearBasis& t)
75
76
                      m_normal = t.m_normal;
77
                      m_det = t.m_det;
                      m_alpha[0][0] = t.m_alpha[0][0];
m_alpha[0][1] = t.m_alpha[0][1];
78
79
                      m_alpha[0][2] = t.m_alpha[0][2];
80
81
                      m_alpha[1][0] = t.m_alpha[1][0];
82
                      m_alpha[1][1] = t.m_alpha[1][1];
m_alpha[1][2] = t.m_alpha[1][2];
83
84
85
                      m_alpha[2][0] = t.m_alpha[2][0];
m_alpha[2][1] = t.m_alpha[2][1];
m_alpha[2][2] = t.m_alpha[2][2];
86
88
                      return *this;
89
90
                 ~CTriangleLinearBasis() {};
91
                                                                               GetNumberOfShapeFunctions() const;
92
                 const int
                 //const DForm<0>*
93
                                                                                   GetShapeFunction(const int, const
        Point&) const;
94
                 const double
                                                                               GetShapeFunction(const int, const Point&)
        const;
                 const Point
9.5
                                                                                  GetGradShapeFunction(const int, const
        Point&) const;
96
                 const Point
                                                                                  GetNormal() const;
                 void
                                                                               ReverseNormal();
98
                 const double
                                                                               GetValue(const Point&) const;
99
                 const int
                                                                               IncreaseOrder() { return 1; };
100
                  //const int
                                                                                SetValue(const int, CSolution* value);
                  //CSolution*
                                                                                GetValue(const unsigned int);
101
                                                                                GetValue(const int) const;
102
                  //const CFESolution
                                                                                GetMeasure() const { return m_det; };
103
                  const double
104
                   //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
105
              private:
106
                  static const int
                                                                                m_number = 3;
                                                                                m_alpha[3][3];
107
                  double
108
                  Point
                                                                                m normal;
109
                  double
                                                                                m_det;
                  const double
110
                                                                                L(const int, const Point&) const;
                                                                                compD(const Point&, const Point&, const
111
        Point&);
                  void
112
                                                                                compAlpha(const Point&, const Point&,
        const Point&);
113
                                                                                compNormal(const Point&, const Point&,
                  void
        const Point&);
114
                   //std::vector<double>
                                                                                    m_w[m_number];
                                                                                m_w{3};
115
                   //std::vector<CFESolution>
116
117
118
              class CTriangleBasis : public CShapeFunction<double>
119
120
              public:
121
                  CTriangleBasis();
122
                  CTriangleBasis(const Point&, const Point&, const Point&, const int order);
                  CTriangleBasis(const Point*, const int order);
CTriangleBasis(const CTriangleBasis&);
123
124
125
                  CTriangleBasis& operator=(const CTriangleBasis& t)
126
127
                       m_normal = t.m_normal;
                       m_det = t.m_det;
m_order = t.m_order;
m_number = t.m_number;
128
129
130
                       m_alpha[0][0] = t.m_alpha[0][0];
m_alpha[0][1] = t.m_alpha[0][1];
131
132
                       m_alpha[0][2] = t.m_alpha[0][2];
133
134
                       m_alpha[1][0] = t.m_alpha[1][0];
m_alpha[1][1] = t.m_alpha[1][1];
135
136
```

```
137
                     m_alpha[1][2] = t.m_alpha[1][2];
138
139
                     m_alpha[2][0] = t.m_alpha[2][0];
                     m_alpha[2][1] = t.m_alpha[2][1];
m_alpha[2][2] = t.m_alpha[2][2];
140
141
142
                      return *this:
143
144
                 ~CTriangleBasis() {};
145
                 const int
                                                                          GetNumberOfShapeFunctions() const;
146
                 //const DForm<0>*
                                                                              GetShapeFunction(const int, const
       Point&) const;
147
                                                                          GetShapeFunction(const int, const
                 const double
       Point&) const;
148
                 const Point
                                                                             GetGradShapeFunction(const int, const
       Point&) const;
149
                const Point
                                                                             GetNormal() const;
150
                 void
                                                                          ReverseNormal();
                                                                         GetValue(const Point&) const;
SetValue(const int, CSolution* value);
151
                 const double
152
                //const int
                //CSolution*
153
                                                                          GetValue(const unsigned int);
154
                 //const CFESolution
                                                                          GetValue(const int) const;
155
                 //const std::function<const DForm<0>*(const Point&)> GetShapeFunction(const int) const;
          private:
156
157
                int
                                                                         m_number;
158
                 int
                                                                         m_order;
                 double
                                                                         m_alpha[3][3];
159
160
                 Point
                                                                         m_normal;
161
                 double
                                                                          m_det;
162
                 const double
                                                                          L(const int, const Point&) const;
163
                 void
                                                                          compD(const Point&, const Point&, const
       Point&);
164
                 void
                                                                          compAlpha(const Point&, const Point&,
       const Point&);
165
                void
                                                                          compNormal(const Point&, const Point&,
       const Point&);
                                                                              m_w[m_number];
166
                //std::vector<double>
                 //std::vector<CFESolution>
                                                                         m_w{ 3 };
167
168
            };
169
170 }
171 #endif // CORENC_MESH_TRIANGLELINEAR_H_
```

7.46 CoreNCFEM/FiniteSolver.h File Reference

Classes

class corenc::CFiniteSolver< Method, Mesh, Solver >

Namespaces

namespace corenc

7.47 FiniteSolver.h

```
#ifndef CORENC_FINITESOLVER_H
 #define CORENC_FINITESOLVER_H
4 namespace corenc
5
6
      template<class Method, class Mesh, class Solver>
      class CFiniteSolver
8
      public:
9
10
           CFiniteSolver() {};
11
           ~CFiniteSolver() {};
12
           void
                                        Solve();
       private:
13
14
         Method*
                                        m_method;
15
           Mesh*
                                        m_mesh;
```

7.48 CoreNCFEM/GaussianField.h File Reference

```
#include <algorithm>
#include <vector>
#include <cmath>
#include "Point.h"
```

Classes

- struct corenc::GaussianProcess
- · struct corenc::GaussianKernel

Namespaces

· namespace corenc

7.49 GaussianField.h

```
1 #ifndef CORENC_GAUSSIANPROCESS_H_
2 #define CORENC_GAUSSIANPROCESS_H_
3 #include <algorithm>
4 #include <vector>
5 #include <cmath>
6 #include "Point.h"
7 namespace corenc
8 {
       struct GaussianProcess
10
              double sigma2;
11
12
             double 1;
13
              double a;
14
             double b;
             double c;
15
             double A;
16
17
             double B;
19
              std::vector<double> lambda;
              GaussianProcess(const double L, const size_t num)
20
21
              {
22
                   K = num;
                   sigma2 = L;
                   1 = 2 * L;
                   1 - 2 * L;

a = 1. / (4 * sigma2);

b = 1. / (2 * 1 * 1);

c = sqrt(a * a + 2 * a * b);

A = a + b + c;

B = b / A;
26
2.7
28
                   lambda.resize(K);
```

```
for (size_t i = 0; i < K; ++i)</pre>
                 lambda[i] = std::pow(B, i) * sqrt(2 * a / A);
33
34
          const double He(const int i, const double x) const
3.5
36
             switch (i)
38
             case 0:
39
                 return 1.;
40
             case 1:
41
                return x;
             case 2:
42
43
                return x * x - 1.;
             case 3:
45
                 return x * x * x - 3. * x;
46
             case 4:
                 return x * x * x * x = 6. * x * x + 3.
47
48
             case 5:
49
                return x * x * x * x * x * x - 10. * x * x * x + 15. * x;
             case 6:
                 return x * x * x * x * x * x - 15. * x * x * x * x + 45. * x * x - 25.;
52
                 return x * x * x * x * x * x * x * x * x - 21. * x * x * x * x * x * x + 105. * x * x * x * x - 105. * x;
5.3
54
             case 8:
55
                -420. * x * x + 105;
             case 9:
56
      57
58
             default:
      59
60
61
             }
62
          const double phi (const int i, const double x) const
63
64
65
             return \exp(-(c - a) * x * x) * He(i, x * sqrt(2 * c));
         };
68
      /*enum class gkernels
69
70
          gexponent,
         gker1,
72
         gker2,
73
         gker3
74
7.5
      struct GaussianKernel
76
77
         const double gpexp(const Mesh::Point& a) const
79
80
             return exp(-12.5 * (a.x * a.x + a.y * a.y));
81
82
83
          const double gpstep(const Mesh::Point& a) const
85
             if (fabs(a.x) < 0.5 && fabs(a.y) < 0.5)
86
87
             return 0.;
88
         std::vector<Mesh::Point> _centrs;
GaussianKernel(const int _n, const std::vector<Mesh::Point>& centers) :
89
         N( _n ), _centrs( centers ) {} const double get_gp(const std::vector<double>& a, const Mesh::Point& p) const
92
93
94
             double sum = 0;
             for (auto i = 0; i < N; ++i)</pre>
95
                sum += a[i] * gpexp(p - _centrs[i]);
96
             return sum;
98
99
100
       };
101 }
102 #endif // CORENC_GAUSSIANPROCESS_H_
```

7.50 CoreNCFEM/Grids/Mesh1D.cpp File Reference

```
#include "Mesh1D.h"
#include "../FiniteElements/Node.h"
```

```
#include "../FiniteElements/Edge.h"
#include <iostream>
```

7.51 CoreNCFEM/Grids/Mesh1D.h File Reference

```
#include <stdio.h>
#include "../Mesh.h"
#include "../Point.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <map>
#include <unordered_map>
#include <typeinfo>
```

Classes

class corenc::Mesh::CMesh1D

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.52 Mesh1D.h

```
1 #ifndef CORENC_Mesh1D_hpp
2 #define CORENC_Mesh1D_hpp
4 #include <stdio.h>
5 #include "../Mesh.h"
7 #include "../Point.h"
8 #include <iostream>
9 #include <fstream>
10 #include <vector>
11 #include <string>
12 #include <map>
13 #include <unordered_map>
14 #include <typeinfo>
15 namespace corenc
16 {
17
        namespace Mesh
19
            class CMesh1D : public CMesh<CFESolution>
20
21
            public:
22
                 CMesh1D();
24
                 CMesh1D(const std::string& domain_name);
                 CMesh1D(const std::string& domain_file, const std::string& init_file);
                 CMesh1D(const double x0, const double x1, const unsigned n, const int order, const
26
        std::function<const double(const Point&)>& init_func);
        CMeshID(const double x0, const double x1, const unsigned n, const int order, const std::function<const double(const Point&)>& init_func, const std::function<const double(const
        Point&)>& init_derivative);
```

```
28
               CMesh1D(const CMesh1D&);
               CMesh1D& operator=(const CMesh1D& m)
30
31
                    auto sz = m.m_elems.size();
                   m_elems.resize(sz);
for (int i = 0; i < sz; ++i)
    m_elems[i] = m.m_elems[i]->Clone();
32
33
35
36
               const unsigned int
                                                               GetNumberOfElements() const;
37
               const unsigned int
                                                               GetNumberOfNodes() const;
                                                               GetNumberOfBoundaries() const;
38
               const unsigned int
                                                              FindElement(const Point&) const;
39
               const int
               const Point
40
                                                                  GetNode (const unsigned int) const;
               const CElement<CFESolution>*
                                                             GetElement(const unsigned int) const;
42
               const CElement<CFESolution>*
                                                             GetBoundary(const unsigned int) const;
43
               const double
                                                              getSolution(const unsigned int element, const
       unsigned int node) const;
44
                                                               getParameter (Parameters, const unsigned int,
               const double
       const Point& p) const;
               const double
                                                               getParameter (Parameters, const unsigned int,
       const int) const;
46
               const std::vector<double>
                                                               getSolution() const { return m_solution; };
47
               const int
                                                               updateSolution(const std::vector<double>&
       new_solution);
     const int
48
                                                               updateSolution(const unsigned int element, const
       unsigned int node, const double value);
49
                                                               updateSolution(const unsigned int element, const
       unsigned int node, CSolution* value);
50
               const int
                                                               updateSolution(const unsigned int node, const
       double value);
51
                                                               setParameter(Parameters, const double, const
               const int
       unsigned int);
52
              const double
                                                               getMinSize() const { return m_minsize; };
53
               ~CMesh1D();
          private:
               std::vector<CElement<CFESolution>*>
55
                                                              m_elems;
               std::vector<CElement<CFESolution>*>
56
                                                              m bnds;
               std::vector<Point>
                                                              m_points;
               std::vector<double>
                                                              m_solution;
59
               std::vector<int>
                                                               m_nums;
                                                               m_params;
60
               std::vector<double>
                                                              m_minsize{0.};
61
               double
         public:
62
63
                                                               GetElements() -> decltype(m_elems) { return
               auto
       m_elems; };
64
                                                               GetBoundary() -> decltype(m_bnds) { return
       m_bnds; };
6.5
           };
66
67 }
68 #endif /* CORENC_Mesh1D_hpp */
```

7.53 CoreNCFEM/Grids/RegularMesh.cpp File Reference

```
#include <stdio.h>
#include "RegularMesh.h"
#include "../FiniteElements/Rectangle.h"
#include "../FiniteElements/Edge.h"
#include <iostream>
#include <algorithm>
#include <numeric>
```

Functions

```
    template < class T >
        vector < size_t > sort_indexes (const vector < T > &v)
```

7.53.1 Function Documentation

7.53.1.1 sort_indexes()

```
template<class T > vector< size_t > sort_indexes (  const \ vector< T > \& \ v \ )
```

7.54 CoreNCFEM/Grids/RegularMesh.h File Reference

```
#include "../Mesh.h"
#include "../FiniteElements/FiniteElement2D.h"
#include "../Point.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <map>
#include "../Parameter.h"
```

Classes

class corenc::Mesh::CRegularMesh

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.55 RegularMesh.h

```
1 #ifndef CORENC_MESH_RegularMesh_h
2 #define CORENC_MESH_RegularMesh_h
3 #include "../Mesh.h"
4 #include "../FiniteElements/FiniteElement2D.h"
5 #include "../Point.h"
6 #include <iostream>
7 #include <fstream>
8 #include <vector>
9 #include <string>
10 #include <map>
11 #include "../Parameter.h"
12 namespace corenc
13 {
14
        namespace Mesh
15
             class CRegularMesh// : public CMesh<>
17
18
            public:
                 CRegularMesh();
19
                 CRegularMesh(const std::string& file_name);
20
                 CRegularMesh(const CRegularMesh&);
                 // nx ny number of elements on x y
                 CRegularMesh(const Point& p1, const Point& p2, const int nx, const int ny);
24
                 CRegularMesh (const Point& p1, const Point& p2, const int nx, const int ny, const int px,
       const int py);
25
                 CRegularMesh (const double x1, const double y1, const double x2, const double y2, const int
        nx, const int ny);
                 CRegularMesh& operator=(const CRegularMesh& tr)
```

```
{
                     const int sz_el = (int)tr.m_elems.size();
const int sz_pt = (int)tr.m_points.size();
28
29
                     const int sz_bpt = (int)tr.m_basepoints.size();
const int sz_bel = (int)tr.m_elemsbase.size();
30
31
                     const int sz_ed = (int)tr.m_edges.size();
32
                     const int sz_bed = (int)tr.m_edgesbase.size();
33
                     m_elems.resize(sz_el);
34
35
                     m_edges.resize(sz_ed);
36
                     m_points.resize(sz_pt);
37
                     m_basepoints.resize(sz_bpt);
38
                     m elemsbase.resize(sz bel);
39
                     m edgesbase.resize(sz bed);
40
                     int i = 0;
41
                     for (i = 0; i < sz_el; ++i)
                     m_elems[i] = tr.m_elems[i]->Clone();
for (i = 0; i < sz_ed; ++i)</pre>
42
43
                         m_edges[i] = tr.m_edges[i]->Clone();
44
                     for (i = 0; i < sz_pt; ++i)
45
                         m_points[i] = tr.m_points[i];
                     for (i = 0; i < sz_bpt; ++i)
47
48
                         m_basepoints[i] = tr.m_basepoints[i];
                     for (i = 0; i < sz_bel; ++i)
49
                        m_elemsbase[i] = tr.m_elemsbase[i]->Clone();
50
                     for (i = 0; i < sz_bed; ++i)</pre>
51
                         m_edgesbase[i] = tr.m_edgesbase[i]->Clone();
52
53
                     m_bnds.resize(tr.m_bnds.size());
                     for (i = 0; i < m_bnds.size(); ++i)
    m_bnds[i] = tr.m_bnds[i];</pre>
54
5.5
                     m_offsets = tr.m_offsets;
m_params = tr.m_params;
56
57
                     m_order = tr.m_order;
58
                     m_inodes = tr.m_inodes;
59
60
                     return *this;
61
                                           Clone() const
62
                CRegularMesh*
63
64
                     return new CRegularMesh(*this);
                };
                const unsigned int
                                                        GetNumberOfElements() const;
67
                const unsigned int
                                                        GetNumberOfNodes() const;
                                                        GetNumberOfINodes() const;
68
                const int
                                                        GetNumberOfBoundaries() const;
69
                const unsigned int
70
                                                        FindElement(const Point&) const;
                const int
                                                            GetNode(const unsigned int) const;
71
                const Point
72
                const CElement2D<>*
                                                        GetElement(const unsigned int) const;
73
                const CElement<>*
                                                      GetBoundary(const unsigned int) const;
74
                const double
                                                        getMinSize() const { return 0.; };
75
                const double
                                                        getSolution(const unsigned int element, const unsigned
       int node) const:
76
                const int
                                                        updateSolution(const unsigned int element, const unsigned
       int node, const double value);
77
                const std::vector<double>
                                                        getSolution() const;
78
                const int
                                                        updateSolution(const std::vector<double>&);
79
                const int
                                                        updateSolution(const unsigned int element, const unsigned
       int node, CSolution* value);
                const double
80
                                                        getParameter(Parameters, const unsigned int, const
       Point&) const:
81
                const double
                                                        getParameter(Parameters, const unsigned int, const int)
       const:
82
                const int
                                                        setParameter (Parameters, const double, const unsigned
       int);
83
                const int
                                                        setParameter(const CParameter&, const unsigned int type);
                                                        updateSolution(const unsigned int node, const double
                const int
       value);
85
                const int
                                                        refine_hx();
86
                const int
                                                        refine_hy();
87
                const int
                                                        refine h():
88
                const int
                                                        refine p();
                const int
                                                         refine_hp();
                const int
                                                        interpolate(const int node) const;
90
91
                ~CRegularMesh();
           private:
92
                std::vector<CElement2D<>*>
                                                        m elems;
93
                std::vector<CElement<>*>
94
                                                        m edges;
95
                std::vector<Point>
                                                        m_points;
96
                std::vector<Point>
                                                        m_basepoints;
97
                std::vector<CElement2D<>*>
                                                        m_elemsbase;
98
                std::vector<CElement<>*>
                                                        m_edgesbase;
99
                std::map<int, CParameter>
std::vector<int>
                                                        m_params;
100
                                                         m offsets;
                 std::vector<int>
101
                                                         m_bnds;
                                                          CompSquare (const Point& p1, const Point& p2, const
102
                 const double
       Point& p3) const;
103
                                                         m_order;
                 int
104
                 int
                                                          m_inodes;
             public:
105
```

7.56 CoreNCFEM/Grids/RegularMesh3D.cpp File Reference

```
#include <stdio.h>
#include "RegularMesh3D.h"
#include "../FiniteElements/Cube.h"
#include "../FiniteElements/Edge.h"
#include <iostream>
#include <algorithm>
#include <numeric>
```

Functions

```
    template < class T > vector < size_t > sort_indexes (const vector < T > &v)
```

7.56.1 Function Documentation

7.56.1.1 sort_indexes()

```
template<class T >  vector < size\_t > sort\_indexes \ ( \\ const \ vector < T > \& \ v \ )
```

7.57 CoreNCFEM/Grids/RegularMesh3D.h File Reference

```
#include "../Mesh.h"
#include "../FiniteElements/FiniteElement2D.h"
#include "../Point.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <map>
#include "../Parameter.h"
```

Classes

• class corenc::Mesh::CRegularMesh3D

Namespaces

- · namespace corenc
- namespace corenc::Mesh

7.58 RegularMesh3D.h

```
1 #ifndef CORENC_MESH_RegularMesh3D_h
2 #define CORENC_MESH_RegularMesh3D_h
#include "../Mesh.h"
4 #include "../FiniteElements/FiniteElement2D.h"
5 #include "../Point.h"
6 #include <iostream>
7 #include <fstream>
8 #include <vector>
9 #include <string>
10 #include <map>
11 #include "../Parameter.h"
12 namespace corenc
13 {
14
       namespace Mesh
15
            class CRegularMesh3D// : public CMesh<>
17
            public:
18
19
                 CRegularMesh3D();
                 CRegularMesh3D(const std::string& file name);
20
                 CRegularMesh3D(const CRegularMesh3D&);
21
                 // nx ny number of elements on x y
                 CRegularMesh3D(const Point& p1, const Point& p2, const int nx, const int ny);
24
                 CRegularMesh3D (const Point& p1, const Point& p2, const int nx, const int ny, const int px,
       const int py);
2.5
                CRegularMesh3D (const double x1, const double y1, const double x2, const double y2, const int
       nx, const int ny);
                CRegularMesh3D& operator=(const CRegularMesh3D& tr)
                 {
                     const int sz_el = (int)tr.m_elems.size();
const int sz_pt = (int)tr.m_points.size();
28
29
                     const int sz_bpt = (int)tr.m_basepoints.size();
30
                     const int sz_bel = (int)tr.m_elemsbase.size();
31
                     const int sz_ed = (int)tr.m_edges.size();
                     const int sz_bed = (int)tr.m_edgesbase.size();
33
34
                     m_elems.resize(sz_el);
35
                     m_edges.resize(sz_ed);
36
                     m_points.resize(sz_pt);
37
                     m basepoints.resize(sz bpt);
                     m_elemsbase.resize(sz_bel);
38
                     m_edgesbase.resize(sz_bed);
                     int i = 0;
40
                     for (i = 0; i < sz_el; ++i)</pre>
41
42
                     m_elems[i] = tr.m_elems[i]->Clone();
for (i = 0; i < sz_ed; ++i)</pre>
43
44
                         m_edges[i] = tr.m_edges[i]->Clone();
                     for (i = 0; i < sz_pt; ++i)</pre>
45
                          m_points[i] = tr.m_points[i];
47
                     for (i = 0; i < sz_bpt; ++i)
48
                         m_basepoints[i] = tr.m_basepoints[i];
                     for (i = 0; i < sz_bel; ++i)

m_elemsbase[i] = tr.m_elemsbase[i]->Clone();
49
50
                     for (i = 0; i < sz_bed; ++i)</pre>
                          m_edgesbase[i] = tr.m_edgesbase[i]->Clone();
53
                     m_bnds.resize(tr.m_bnds.size());
                     for (i = 0; i < m_bnds.size(); ++i)
    m_bnds[i] = tr.m_bnds[i];</pre>
54
55
                     m_offsets = tr.m_offsets;
m_params = tr.m_params;
56
                     m_order = tr.m_order;
59
                     m_inodes = tr.m_inodes;
60
                      return *this:
61
                 CRegularMesh3D*
62
                                             Clone() const
63
                     return new CRegularMesh3D(*this);
66
                 const unsigned int
                                                          GetNumberOfElements() const;
67
                 const unsigned int
                                                          GetNumberOfNodes() const;
                                                          GetNumberOfINodes() const;
68
                 const int
                                                          GetNumberOfBoundaries() const;
69
                 const unsigned int
                 const int
                                                          FindElement (const Point&) const;
```

```
const Point
                                                        GetNode(const unsigned int) const;
72
               const CElement<>*
                                                  GetElement(const unsigned int) const;
73
               const CElement<>*
                                                  GetBoundary (const unsigned int) const;
74
               const double
                                                    getMinSize() const { return 0.; };
7.5
               const double
                                                     getSolution(const unsigned int element, const unsigned
       int node) const:
76
              const int
                                                    updateSolution(const unsigned int element, const unsigned
       int node, const double value);
77
              const std::vector<double>
                                                     getSolution() const;
78
               const int
                                                     updateSolution(const std::vector<double>&);
79
               const int
                                                     {\tt updateSolution} ({\tt const\ unsigned\ int\ element,\ const\ unsigned}
       int node, CSolution* value);
80
               const double
                                                     getParameter(Parameters, const unsigned int, const
       Point&) const;
81
               const double
                                                     getParameter(Parameters, const unsigned int, const int)
       const;
82
               const int
                                                     setParameter (Parameters, const double, const unsigned
       int);
83
               const int
                                                     setParameter(const CParameter&, const unsigned int type);
84
                                                     updateSolution(const unsigned int node, const double
               const int
       value);
85
               const int
86
               const int
                                                     refine_hy();
87
               const int
                                                     refine h();
88
               const int
                                                     refine_p();
               const int
                                                     refine_hp();
90
                                                     interpolate(const int node) const;
91
               ~CRegularMesh3D();
92
          private:
93
               std::vector<CElement<>*>
                                                    m_elems;
               std::vector<CElement<>*>
94
                                                    m edaes;
95
               std::vector<Point>
                                                    m points;
               std::vector<Point>
                                                    m_basepoints;
97
               std::vector<CElement<>*>
                                                    m_elemsbase;
98
               std::vector<CElement<>*>
                                                    m_edgesbase;
99
               std::map<int, CParameter>
                                                    m_params;
                std::vector<int>
100
                                                     m_offsets;
101
                std::vector<int>
                                                     m_bnds;
102
                const double
                                                     CompSquare(const Point& p1, const Point& p2, const
      Point& p3) const;
103
                int
                                                      m_order;
104
                int
                                                      m_inodes;
           public:
105
                                                      GetElements() -> decltype(m_elems) { return m_elems; };
106
                auto
                                                      GetBoundary() -> decltype(m_edges) { return m_edges; };
107
                auto
108
109
       }
110 }
111 #endif /* CORENC_MESH_RegularMesh3D_h */
```

7.59 CoreNCFEM/Grids/TriangularMesh.cpp File Reference

```
#include <stdio.h>
#include "TriangularMesh.h"
#include "../FiniteElements/Triangle.h"
#include "../FiniteElements/Edge.h"
#include <iostream>
#include <algorithm>
#include <numeric>
#include <random>
```

Functions

```
    template < class T > vector < size_t > sort_indexes (const vector < T > &v)
```

7.59.1 Function Documentation

7.59.1.1 sort_indexes()

```
template < class T >
vector< size_t > sort_indexes (
            const vector< T > & v )
```

CoreNCFEM/Grids/TriangularMesh.h File Reference

```
#include "../Mesh.h"
#include "../Point.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <map>
#include "../Parameter.h"
```

Classes

· class corenc::Mesh::CTriangularMesh

Namespaces

- · namespace corenc
- · namespace corenc::Mesh

7.61 TriangularMesh.h

```
1 #ifndef CORENC_MESH_TriangularMesh_h
2 #define CORENC_MESH_TriangularMesh_h
3 #include "../Mesh.h"
5 #include "../Point.h"
6 #include <iostream>
7 #include <fstream>
8 #include <vector>
9 #include <string>
10 #include <map>
11 #include "../Parameter.h"
12 namespace corenc
13 {
14
          namespace Mesh
15
               class CTriangularMesh : public CMesh<>
16
17
               public:
19
                  CTriangularMesh();
20
                     CTriangularMesh(const std::string& file_name);
                     CTriangularMesh (const CTriangularMesh&);
CTriangularMesh (const Point& p1, const Point& p2, const int nx, const int ny);
21
22
                     CTriangularMesh& operator=(const CTriangularMesh& tr)
                          const int sz_el = tr.m_elems.size();
const int sz_pt = tr.m_points.size();
const int sz_bpt = tr.m_basepoints.size();
const int sz_bel = tr.m_elemsbase.size();
26
2.7
28
29
                           const int sz_ed = tr.m_edges.size();
                           const int sz_bed = tr.m_edgesbase.size();
```

7.61 TriangularMesh.h 397

```
m_elems.resize(sz_el);
                    m_edges.resize(sz_ed);
33
                    m_points.resize(sz_pt);
34
                    m_basepoints.resize(sz_bpt);
3.5
                    m elemsbase.resize(sz bel);
36
                    m edgesbase.resize(sz bed);
37
                    int i = 0;
38
                     for (i = 0; i < sz_el; ++i)</pre>
                    m_elems[i] = tr.m_elems[i]->Clone();
for (i = 0; i < sz_ed; ++i)</pre>
39
40
                        m_edges[i] = tr.m_edges[i]->Clone();
41
                    for (i = 0; i < sz_pt; ++i)
    m_points[i] = tr.m_points[i];</pre>
42
43
                    for (i = 0; i < sz_bpt; ++i)
44
45
                         m_basepoints[i] = tr.m_basepoints[i];
46
                    for (i = 0; i < sz_bel; ++i)
47
                        m_elemsbase[i] = tr.m_elemsbase[i] -> Clone();
                    for (i = 0; i < sz_bed; ++i)
   m_edgesbase[i] = tr.m_edgesbase[i]->Clone();
48
49
50
                    m_params = tr.m_params;
                    m_bnds.resize(tr.m_bnds.size());
52
                    for (i = 0; i < m_bnds.size(); ++i)</pre>
5.3
                        m_bnds[i] = tr.m_bnds[i];
                    m_order = tr.m_order;
m_offsets = tr.m_offsets;
54
55
56
                    return *this;
57
5.8
                CTriangularMesh*
                                           Clone() const
59
60
                    return new CTriangularMesh(*this);
61
                //const bool operator<(const CTriangularMesh& mesh) const
62
                    if(m_points.size() < mesh.m_points.size())</pre>
64
6.5
                         return true;
66
                    return false;
                //}
67
68
                const unsigned int
                                                       GetNumberOfElements() const;
                const unsigned int
                                                       GetNumberOfNodes() const;
70
                const unsigned int
                                                       GetNumberOfBoundaries() const;
71
                const int
                                                       FindElement(const Point&) const;
72
                const Point
                                                           GetNode (const unsigned int) const;
                const CElement<>*
7.3
                                                          GetElement (const unsigned int) const:
74
                const CElement<>*
                                                     GetBoundary(const unsigned int) const;
                                                       getMinSize() const { return 0.; };
                const double
76
                const double
                                                       getSolution(const unsigned int element, const unsigned
       int node) const;
77
                const int
                                                       updateSolution(const unsigned int element, const unsigned
       int node, const double value);
78
               const std::vector<double>
                                                       getSolution() const:
                                                       updateSolution(const std::vector<double>&);
                const int
                const int
80
                                                       updateSolution(const unsigned int element, const unsigned
       int node, CSolution* value);
81
                const double
                                                       getParameter(Parameters, const unsigned int, const
       Point&) const;
82
                const double
                                                       getParameter (Parameters, const unsigned int, const int)
       const;
83
                const int
                                                       setParameter(Parameters, const double, const unsigned
       int);
84
                const int
                                                        setParameter(const CParameter&, const unsigned int type);
8.5
                const int
                                                       updateSolution(const unsigned int node, const double
       value);
86
                const int
                                                       refine_h();
                const int
                                                       refine_p();
88
                const int
                                                        refine_hp();
89
                const int
                                                       set4thOrder();
90
                const int
                                                       set2ndOrder();
91
                const int
                                                       set3rdOrder():
                                                       interpolate(const int node) const;
92
                const int
                const int
                                                       GetNumberOfINodes() const;
                ~CTriangularMesh();
95
           private:
96
                std::vector<CElement<>*>
                                                       m_elems;
97
                std::vector<CElement<>*>
                                                       m_edges;
                std::vector<Point>
98
                                                       m points;
                std::vector<Point>
                                                       m_basepoints;
                                                         m_elemsbase;
100
                 std::vector<CElement<>*>
101
                 std::vector<CElement<>*>
                                                         m_edgesbase;
102
                 std::map<int, CParameter>
                                                         m_params;
103
                 std::vector<int>
                                                         m_offsets;
104
                 std::vector<int>
                                                         m bnds;
105
                                                         CompSquare(const Point& p1, const Point& p2, const
                 const double
       Point& p3) const;
106
                 void
                                                         set3rdNodes();
107
                 void
                                                         set4thNodes_1();
108
                 void
                                                         set4thNodes_2();
109
                 int
                                                         m order:
```

7.62 CoreNCFEM/Grids/TriangularMeshLinear.cpp File Reference

```
#include <stdio.h>
#include "TriangularMeshLinear.h"
#include "../FiniteElements/TriangleLinear.h"
#include "../FiniteElements/Edge.h"
#include <iostream>
#include <algorithm>
```

7.63 CoreNCFEM/Grids/TriangularMeshLinear.h File Reference

```
#include "../Mesh.h"
#include "../Point.h"
#include <iostream>
#include <fstream>
#include <vector>
#include <string>
#include <map>
#include "../Parameter.h"
```

Classes

class corenc::Mesh::CTriangularMeshLinear

Namespaces

- namespace corenc
- namespace corenc::Mesh

7.64 TriangularMeshLinear.h

```
1 #ifndef CORENC_MESH_TriangularMesh_h
2 #define CORENC_MESH_TriangularMesh_h
3 #include "../Mesh.h"
4
5 #include "../Point.h"
6 #include <iostream>
7 #include <fstream>
8 #include <vector>
9 #include <string>
10 #include <map>
```

```
11 #include "../Parameter.h"
12 namespace corenc
13 {
14
       namespace Mesh
1.5
16
           class CTriangularMeshLinear : public CMesh<>
17
18
           public:
19
               CTriangularMeshLinear();
2.0
               CTriangularMeshLinear(const std::string& file_name);
               CTriangularMeshLinear(const CTriangularMeshLinear&);
21
                                                    GetNumberOfElements() const;
22
               const unsigned int
                                                     GetNumberOfNodes() const;
23
               const unsigned int
24
               const unsigned int
                                                     GetNumberOfBoundaries() const;
25
               const int
                                                     FindElement(const Point&) const;
26
               const Point
                                                        GetNode(const unsigned int) const;
27
               const CElement<>*
                                                       GetElement(const unsigned int) const;
                                                  GetBoundary(const unsigned int) const;
getMinSize() const { return 0.; };
28
               const CElement<>*
29
               const double
30
               const double
                                                     getSolution(const unsigned int element, const unsigned
       int node) const;
31
               const int
                                                     updateSolution(const unsigned int element, const unsigned
       int node, const double value);
                                                     getSolution() const;
32
               const std::vector<double>
                                                     updateSolution(const std::vector<double>&);
33
               const int
                                                     updateSolution(const unsigned int element, const unsigned
34
               const int
       int node, CSolution* value);
35
               const double
                                                     getParameter(Parameters, const unsigned int, const
       Point&) const;
               const double
36
                                                     getParameter(Parameters, const unsigned int, const int)
       const:
37
               const int
                                                     setParameter (Parameters, const double, const unsigned
       int);
38
               const int
                                                     setParameter(const CParameter&, const unsigned int type);
39
               const int
                                                     updateSolution(const unsigned int node, const double
       value);
40
               const int
                                                     refine h();
41
                ~CTriangularMeshLinear();
           private:
              std::vector<CElement<>*>
                                                     m_elems;
43
44
               std::vector<CElement<>*>
                                                     m_edges;
4.5
               std::vector<Point>
                                                     m_points;
46
               std::map<int, CParameter>
                                                     m_params;
           public:
               auto
                                                     GetElements() -> decltype(m_elems) { return m_elems; };
49
               auto
                                                     GetBoundary() -> decltype(m_edges) { return m_edges; };
50
51
       }
52 }
53 #endif /* CORENC_MESH_TriangularMesh_h */
```

7.65 CoreNCFEM/Mesh.h File Reference

#include "FiniteElements/FiniteElement.h"

Classes

- class corenc::Mesh::CMesh< T >
- class corenc::Mesh::CMesh< bool >

Namespaces

- namespace corenc
- · namespace corenc::Mesh

Enumerations

 enum corenc::Mesh::Meshes { corenc::Mesh::TriangularMesh = 1 , corenc::Mesh::TetrahedralMesh = 2 }

7.66 Mesh.h

```
1 #ifndef CORENC_MESH_Mesh_h
2 #define CORENC_MESH_Mesh_h
3 #include "FiniteElements/FiniteElement.h"
4 namespace corenc
6
      namespace Mesh
8
          enum Meshes
10
               Mesh1D = 0,
               TriangularMesh = 1,
12
               TetrahedralMesh = 2
13
14
           template<class T = bool>
           class CMesh;
15
           template<class T>
16
           class CMesh
17
18
           public:
19
             CMesh() {}
20
               virtual ~CMesh() {}
21
               virtual const unsigned int
                                                          GetNumberOfNodes() const = 0;
                                                          GetNumberOfElements() const = 0;
               virtual const unsigned int
               virtual const int
                                                          FindElement(const Point&) const = 0;
25
               virtual const unsigned int
                                                          GetNumberOfBoundaries() const = 0;
26
               virtual const CElement<T>\star
                                                          GetElement(const unsigned int) const = 0;
               virtual const CElement<T>*
                                                          GetBoundary(const unsigned int) const = 0;
2.7
28
                                                             GetNode(const unsigned int) const = 0;
               virtual const Point
               virtual const double
                                                          getSolution(const unsigned int element, const
29
       unsigned int node) const = 0;
30
               virtual const int
                                                         updateSolution(const unsigned int element, const
       unsigned int node, const double value) = 0;
31
               virtual const std::vector<double>
virtual const int
                                                          getSolution() const = 0;
                                                          updateSolution(const std::vector<double>&) = 0;
32
33
               //virtual const int
                                                          updateSolution(const std::vector<CSolution*>&) = 0;
               virtual const int
34
                                                          updateSolution(const unsigned int element, const
       unsigned int node, CSolution* value) = 0;
35
               virtual const double
                                                          getParameter(Parameters, const unsigned int, const
       Point&) const = 0;
               virtual const double
36
                                                          getParameter(Parameters, const unsigned int, const
       int) const = 0;
37
               virtual const int
                                                          setParameter(Parameters, const double, const unsigned
       int) = 0;
38
               virtual const double
                                                          getMinSize() const = 0;
39
               virtual const int
                                                         updateSolution(const unsigned int node, const double
       value) = 0;
40
          };
           template<>
41
           class CMesh<bool>
43
           public:
44
               CMesh() {}
45
               virtual ~CMesh() {}
46
               virtual const unsigned int
                                                         GetNumberOfNodes() const = 0;
48
               virtual const unsigned int
                                                         GetNumberOfElements() const = 0;
49
               virtual const int
                                                         FindElement(const Point&) const = 0;
                                                       GetNumberOfBoundaries() const = 0;
GetElement(const unsigned int) const = 0;
50
               virtual const unsigned int
51
               virtual const CElement<>*
                                                       GetBoundary(const unsigned int) const = 0;
               virtual const CElement<>*
52
               virtual const Point
                                                             GetNode(const unsigned int) const = 0;
                                                          getSolution(const unsigned int element, const
54
               virtual const double
       unsigned int node) const = 0;
55
               virtual const int
                                                         updateSolution(const unsigned int element, const
       unsigned int node, const double value) = 0;
56
               virtual const std::vector<double>
                                                          getSolution() const = 0;
               virtual const int
                                                          updateSolution(const std::vector<double>&) = 0;
               //virtual const int
                                                          updateSolution(const std::vector<CSolution*>&) = 0;
               virtual const int
59
                                                          updateSolution(const unsigned int element, const
       unsigned int node, CSolution* value) = 0;
60
               virtual const double
                                                          getParameter(Parameters, const unsigned int, const
       Point& p) const = 0;
```

```
61
              virtual const double
                                                       getParameter(Parameters, const unsigned int, const
      int) const = 0;
62
              virtual const int
                                                       setParameter(Parameters, const double, const unsigned
      int) = 0;
63
              virtual const double
                                                       getMinSize() const = 0;
          };
64
65
66 }
68 #endif /* CORENC_MESH_Mesh_h */
```

7.67 CoreNCFEM/Methods/CSMethod.h File Reference

Classes

· class Methods::CSMethod

Namespaces

namespace Methods

7.68 CSMethod.h

Go to the documentation of this file.

7.69 CoreNCFEM/Methods/dg_flux.h File Reference

Namespaces

- · namespace corenc
- · namespace corenc::method

Enumerations

7.70 dg_flux.h

Go to the documentation of this file.

```
1 #ifndef CORENC_METHOD_DG_FLUX_H_
2 #define CORENC_METHOD_DG_FLUX_H_
3 namespace corenc
       namespace method
6
            enum class DGFlux
8
                 EIP,
                  EBaumannOden,
10
                  EBaumannOdenIP,
12
                  ENIPG,
13
                  EUpwind,
                  ECentral,
14
                  ELaxFriedrichs,
15
                  IIP,
16
                  IBaumannOden,
18
                  IBaumannOdenIP,
19
                  INIPG,
                  IUpwind,
ICentral,
ILaxFriedrichs,
20
21
23
                  CUSTOM,
                  NOFLUX,
25
             };
26
2.7
29 #endif // !CORENC_METHOD_DG_FLUX_H_
```

7.71 CoreNCFEM/Methods/DGMethod.h File Reference

```
#include <functional>
#include <set>
#include "../Point.h"
#include "../Parameter.h"
#include "CSMethod.h"
#include <memory>
#include <math>
#include <algorithm>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
```

Classes

- $\bullet \ \ {\it class corenc::} method:: CDGMethod < Type >$
- class corenc::method::DGMethod< Problem, Grid, Matrix >

Namespaces

- · namespace corenc
- namespace corenc::Mesh
- · namespace corenc::method

7.72 DGMethod.h

```
1 #ifndef DGMethod H
2 #define DGMethod H
4 // DGMethod.h describes an abstract interface and functions for a DG method with zero Dirichlet boundaries
5 #include <functional>
6 #include <set>
7 #include "../Point.h"
8 #include "../Parameter.h"
9 #include "CSMethod.h"
10 #include <memory>
11 #include <cmath>
12 #include <map>
13 #include <algorithm>
14 #include <vector>
15 #include <iostream>
16 #include <fstream>
17 #include <string>
18 namespace corenc
19 {
20
       namespace Mesh
21
22
           class Point;
23
       namespace method
25
2.6
            // class Type = Type of the solution, for ex vector or double, or even more specific
2.7
28
29
           template<class Type>
           class CDGMethod
31
32
           public:
               CDGMethod() {};
33
                virtual ~CDGMethod() {};
34
                virtual const int
                                                               Assemble() = 0;
35
                virtual const Type
                                                               GetSolution(const std::vector<double>& point)
       const = 0;
37
               virtual const std::vector<Type>
                                                               GetSolution() const = 0;
                                                               GetMaxSolution() const = 0;
38
               virtual const Type
                                                              GetMinSolution() const = 0;
39
               virtual const Type
40
            template<class Problem, class Grid, class Matrix>
43
           class DGMethod
44
           public:
4.5
46
                DGMethod():
                    m_problem{nullptr},
48
                    m_Grid{nullptr},
49
                    m_GlobalMatrix{nullptr},
50
                    m_RightMatrix{nullptr},
51
                    m_rhsvector{nullptr}
52
                DGMethod(
53
                    Problem* p,
                    Grid∗ g,
55
56
                    Matrix* m,
                    std::vector<double>* rhs):
57
                    m_problem{ p },
m_Grid{ g->Clone() },
58
59
                    m_GlobalMatrix{ m },
                    m_N{ g->GetNumberOfElements() },
62
                    m_Ns{ g->GetNumberOfBoundaries() },
                    m_rhsvector{ rhs }{
6.3
                    //GeneratePortrait();
64
65
                DGMethod(
66
                    Problem* p,
67
68
                    Grid∗ g,
69
                    Matrix* m,
70
                    Matrix* rm,
71
                    std::vector<double>* rhs):
72
                    m_problem{ p },
73
                    m_Grid{ g->Clone() },
74
                    m_GlobalMatrix{ m },
7.5
                    m_RightMatrix{ rm },
                    m_N{ g->GetNumberOfElements() },
76
                    m_Ns{ g->GetNumberOfBoundaries() },
                    m_rhsvector{ rhs }{
79
                    //GeneratePortrait();
80
81
                DGMethod(const std::shared_ptr<Grid>& grid) :m_Grid{ grid->Clone() } {}
```

```
82
               DGMethod(Grid* grid) :m_Grid{ grid->Clone() } {}
                DGMethod(const DGMethod& meth) :
84
                    m_Grid{ meth.m_Grid->Clone() },
8.5
                    //m_GlobalMatrix{ meth.m_GlobalMatrix->Clone() },
86
                    //m_rhsvector{ meth.m_rhsvector },
                    //m_problem{ meth.m_problem },
88
                    m_time{ meth.m_time },
                    //m_solution{ meth.m_solution },
89
                    m_size{ meth.m_size },
90
91
                    m N{ meth.m N },
                    m_Ns{ meth.m_Ns },
92
93
                    m_nums{ meth.m_nums }
94
                { };
95
                void
                                             Discretization();
96
                const double
                                             GetValue(const Mesh::Point&) const;
97
                const double
                                             GetValue(const Mesh::Point&, const std::vector<double>& vec)
       const:
98
               const double
                                             GetValue(const Mesh::Point&, const std::vector<double>& vec,
       const int num) const;
99
                //const Mesh::Point
                                             GetGradValue(const Mesh::Point&, const std::vector<double>& vec)
100
                 //const Mesh::Point
                                              GetLambdaGrad(const Mesh::Point&, const std::vector<double>&
       vec) const;
                                              GetEffective(const std::vector<double>& vec) const;
101
                const double
                                              ProjectSolution(std::vector<double>&, std::function<const
102
                void
       double(const Mesh::Point&, const std::vector<double>&, const int)> GetValue, std::vector<double>&
       sol);
103
                                              ProjectSolution(std::vector<double>&, std::function<const</pre>
       double(const Mesh::Point&, const std::vector<double>&)> GetValue, std::vector<double>& sol, const
       int);
104
                                              LoadSolution(const std::vector<double>& vec);
                const std::vector<double>
                                              SetSolution(const int sol, const int liq, const double, const
105
       double, const double);
106
                                              GetSolution(std::vector<double>& vec);
                void
107
                void
                                              Rediscretization(const std::shared_ptr<Grid>&);
108
                void
                                              Rediscretization();
                                              SetTimeStep(const double& step) { m_step = step; m_time = step;
109
                void
110
                Matrix*
                                              GetGlobalMatrix() const;
                                              GetMesh() { return m_Grid;
111
                Grid*
112
                const std::vector<double>
                                              GetRightVector() const;
113
                void
                                              OutDatFormat (const Mesh::Point& min, const Mesh::Point& max,
                                             std::vector<double>% vec) const:
       const std::string& file_name, const
114
                                              OutMeshFormat(const std::string& file_name, const
                void
       std::vector<double>& vec);
115
                void
                                              OutMeshTimeFormat(const std::string& file_name, const
       std::vector<double>& vec);
116
                static const double
                                              GetSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p);
117
                static const double
                                              GetSolution(const Grid& g. const std::vector<double> &weights.
       const Mesh::Point& p, const int nfem);
118
                static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p);
119
                static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p, const int n);
120
                ~DGMethod();
121
            private:
122
                void
                                              GeneratePortrait():
123
                                              AssemblGlobal();
                void
124
                void
                                              MainConditions();
125
                void
                                              SecondConditions():
126
                                              ThirdConditions();
                void
127
                void
                                              StefanConditions();
128
                void
                                              ApplySources();
129
                                              AssembleLocalMatrix(const int);
                const int
130
                const int
                                              AssembleIDUDVMatrix(const int);
131
                const int
                                              AssembleIDUVMatrix(const int);
                                              AssembleIUDVMatrix(const int);
132
                const int
133
                                              AssembleRUVMatrix(const int);
                const int
134
                const int
                                              AssembleSUPGMatrix(const int);
135
                                              AssembleLocalMatrix(const int, const int);
                const int
136
                const int
                                              AssembleInter();
                                              m_Grid = nullptr;
m_GlobalMatrix = nullptr;
137
                Grid*
138
                Matrix*
                                         m_RightMatrix = nullptr;
    m_problem = nullptr;
139
                Matrix*
140
                Problem,
                std::vector<double>
141
                                              m_solution;
                                              m_rhsvector;
142
                std::vector<double>*
                                              m_size;
143
                unsigned int
                                              m_step{ 0.1 };
144
                double
145
                double
                                              m time{ 0.1 };
146
                unsigned int
                                              m_N;
                unsigned int
147
                                              m Ns;
148
                std::vector<unsigned int>
                                              m_nums;
149
                 // interpolation nodes
150
                std::vector<std::vector<int> m inums;
151
```

```
152
            };
153
154
             template<class Problem, class Grid, class Matrix>
155
            void DGMethod<Problem, Grid, Matrix>::Discretization()
156
                 GeneratePortrait();
157
158
                 AssemblGlobal();
159
                 AssembleInter();
160
                 //ApplySources();
161
                 //SecondConditions();
                 //ThirdConditions();
162
                 MainConditions():
163
164
                 //StefanConditions();
165
166
             template<class Problem, class Grid, class Matrix>
167
             void DGMethod<Problem, Grid, Matrix>::GeneratePortrait()
168
169
                 const auto& el = m_Grid->GetElement(0);
                 int order = m_Grid->GetElement(0)->GetDoFs();
170
171
                 std::vector<std::set<unsigned int» temp;
172
                 //m_Ns = m_Grid->GetNumberOfINodes();
173
                 m_Ns = m_Grid -> GetNumberOfBoundaries();
                 m_N = m_Grid->GetNumberOfElements();
174
175
                 //temp.resize(m_Grid->GetNumberOfINodes());
                 unsigned i, j, k;
m_nums.resize(m_N);
176
177
178
                 m_inums.resize(m_N);
179
                 int size;
180
                 m_size = 0;
                 std::cout « "nums" « std::endl;
181
182
                 for (k = 0; k < m_N; ++k)
183
184
                     const auto& elem{ m_Grid->GetElement(k) };
185
                     size = 0;
186
                     m_inums[k].resize(order);
187
                     for (i = 0; i < order; ++i)</pre>
188
189
190
                              m_inums[k][i] = size;
191
192
193
                     m_nums[k] = m_size;
194
195
                     m_size += size;
196
                     std::cout « k « "\t" « m_nums[k] « std::endl;
197
198
                 int sz = m_Ns;
199
                 int nk, ne;
                 int sizej = 0;
int sizei = 0;
200
201
202
                 temp.resize(m_size);
203
                 for (k = 0; k < sz; ++k)
204
205
                     auto bound = m_Grid->GetBoundary(k);
206
                     nk = bound->GetNeighbour(0);
                     ne = bound->GetNeighbour(1);
207
208
                     std::cout « nk « ne « std::endl;
209
                     sizei = 0;
210
                     sizej = 0;
211
                     if (ne != -1)
212
                         auto elemk = m_Grid->GetElement(nk);
213
214
                         auto eleme = m_Grid->GetElement(ne);
215
                         size = 0;
216
                         for (i = 0; i < order; ++i)
217
218
                                  for (j = i + 1; j < order; ++j)
219
220
221
                                           temp[m_nums[nk] + m_inums[nk][j]].insert(m_nums[nk] +
       m_inums[nk][i]);
222
223
224
225
                         for (i = 0; i < order; ++i)</pre>
226
227
                                  for (j = 0; j < order; ++j)
228
                                      int jnode = m_Grid->interpolate(eleme->GetNode(j));
229
230
                                           temp[m_nums[ne] + m_inums[ne][j]].insert(m_nums[nk] +
       m inums[nk][i]);
231
232
233
234
                     else
235
236
                         sizei = 0;
```

```
sizej = 0;
237
238
                          auto elemk = m_Grid->GetElement(nk);
                          size = 0;
239
                          for (i = 0; i < order; ++i)</pre>
240
2.41
                                   for (j = i + 1; j < order; ++j)
242
243
244
                                            temp[m_nums[nk] + m_inums[nk][j]].insert(m_nums[nk] +
       m_inums[nk][i]);
245
                                            //temp[m_nums[nk] + sizej].insert(m_nums[nk] + sizei);
246
                                   }
247
                          }
248
                      }
249
250
                 if (m_problem->findTerm(Terms::RUV))
2.51
                     m_RightMatrix->Create(temp.size(), temp);
252
253
                   for (auto & it : temp)
254
      //
255
                        for (auto& it2 : it)
256 //
                            std::cout « it2 « "\t";
257
                        std::cout « std::endl;
258
                 //}
                 //m_GlobalMatrix = std::shared_ptr<Matrix>(new Matrix(m_Grid->GetNumberOfNodes(), temp));
//m_rhsvector.resize(m_Grid->GetNumberOfNodes());
259
260
                 //std::cout « temp.size() « std::endl;
261
262
                 m_GlobalMatrix->Create(temp.size(), temp);
263
                 m_rhsvector->resize(temp.size());
2.64
                 // {\tt m\_solution.resize} \, ( {\tt m\_Grid->GetNumberOfNodes} \, () \, ) \, ; \\
265
                 //for (int 1 = 0; 1 < m_Grid \rightarrow GetNumberOfNodes(); ++1)
266
                 // m_solution[1] = 20;
267
268
             template<class Problem, class Grid, class Matrix>
269
             void DGMethod<Problem, Grid, Matrix>::AssemblGlobal()
270
271
                 int 1:
272
                 //std::vector<std::future<int> futures;
273
                 int i, j, k, nodes;
274
                 double mij;
275
                 const int terms{ (int)m_problem->getNumberOfTerms() };
276
                 for (k = 0; k < terms; ++k)
277
                      switch (m_problem->getTerm(k))
278
279
                          case Terms::IDUDV:
280
281
                               for (1 = 0; 1 < m_N; ++1)
282
283
                                  AssembleIDUDVMatrix(1);
                              }
284
285
                              break:
286
                          case Terms::IDUV:
287
                              for (1 = 0; 1 < m_N; ++1)</pre>
288
                                  AssembleIDUVMatrix(1);
289
                              break;
290
                          case Terms::IUDV:
                              for (1 = 0; 1 < m_N; ++1)</pre>
291
                                  AssembleIUDVMatrix(1);
292
293
                              break;
                          case Terms::SUPG:
    for (1 = 0; 1 < m_N; ++1)</pre>
294
295
                                  AssembleSUPGMatrix(1);
296
297
                              break;
298
                          case Terms::RUV:
299
                              for (1 = 0; 1 < m_N; ++1)
300
                                  AssembleRUVMatrix(1);
301
                              break;
302
                          default:
303
                              break:
                      }
304
305
306
                 //for (1 = 0; 1 < m_N; ++1)
307
                      //futures.push_back(async(&DGMethod<Problem, Grid, Matrix>::AssembleLocalMatrix, this,
       1));
308
                   // AssembleLocalMatrix(1, 0);
                 //for (auto &it : futures)
309
310
                 //it.get();
311
312
313
             template<class Problem, class Grid, class Matrix>
             const int DGMethod<Problem, Grid, Matrix>::AssembleIDUDVMatrix(const int 1)
314
315
316
                 int i, j, k, nodes;
317
                 double mij;
318
                 const auto& elem{ m_Grid->GetElement(1) };
319
                 const int dofs{ (int)elem->GetDoFs() };
320
                 const int terms{ (int)m_problem->getNumberOfTerms() };
321
                 nodes = elem->GetNumberOfNodes();
```

```
322
                  std::vector<Mesh::Point> points(nodes);
                  for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
323
324
325
                  int sizei = 0, sizej = 0;
                  for (i = 0; i < (int)dofs; ++i)
326
327
328
                       for (j = 0; j < (int)dofs; ++j)
329
330
                           auto M = [&](const Mesh::Point& p)
331
                                //auto m = elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p); return m_problem->get_parameter(Terms::IDUDV, l, elem->GetType(), p) *
332
333
       elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
334
335
                           //mij = m_Grid->getParameter(Parameters::DIFFUSION, 1, j) * elem->Integrate(M,
       points);
336
                           mij = elem->Integrate(M, points);
                           //m_GlobalMatrix->AddElement(inode, jnode, mij);
m_GlobalMatrix->AddElement(m_nums[1] + i, m_nums[1] + j, mij);
337
338
339
340
341
                  return 0;
342
             }
343
344
             template<class Problem, class Grid, class Matrix>
             const int DGMethod<Problem, Grid, Matrix>::AssembleIDUVMatrix(const int 1)
345
346
347
                  int i, j, k, nodes;
348
                  double mij;
349
                  const auto& elem{ m_Grid->GetElement(1) };
350
                  const int dofs{ (int)elem->GetDoFs() };
351
                  const int terms{ (int)m_problem->getNumberOfTerms() };
352
                  nodes = elem->GetNumberOfNodes();
353
                  std::vector<Mesh::Point> points(nodes);
                  for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
354
355
356
                  int sizei = 0, sizej = 0;
                  for (i = 0; i < (int) dofs; ++i)
357
358
                  {
359
                       for (j = 0; j < (int) dofs; ++j)
360
361
                           auto M = [&](const Mesh::Point& p)
362
                               return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
363
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
364
365
                           auto _mij = elem->Integrate(M, points);
                           //m_GlobalMatrix->AddElement(inode, jnode, _mij);
m_GlobalMatrix->AddElement(m_nums[1] + i, m_nums[1] + j, _mij);
366
367
368
                       }
369
370
371
372
373
             template<class Problem, class Grid, class Matrix>
374
             const int DGMethod<Problem, Grid, Matrix>::AssembleIUDVMatrix(const int 1)
375
376
                  int i, j, k, nodes;
377
                  double mij;
378
                  const auto& elem{ m_Grid->GetElement(1) };
379
                  const int dofs{ (int)elem->GetDoFs() };
380
                  const int terms{ (int)m_problem->getNumberOfTerms() };
381
                  nodes = elem->GetNumberOfNodes();
                  std::vector<Mesh::Point> points(nodes);
382
383
                  for (i = 0; i < nodes; ++i)
384
                      points[i] = m_Grid->GetNode(elem->GetNode(i));
385
                  int sizei = 0, sizej = 0;
for (i = 0; i < dofs; ++i)</pre>
386
387
                  {
388
                       for (j = 0; j < dofs; ++j)
389
390
                           auto M = [&](const Mesh::Point& p)
391
392
                               return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
393
394
                           //mij = m_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j) *
       m_flux(m_CoarseGrid->getSolution(1, j)) * elem->Integrate(M, points).x;
395
                           mij = elem->Integrate(M, points).x;
396
                           //m_GlobalMatrix->AddElement(inode, jnode, mij);
                           m_GlobalMatrix->AddElement(m_nums[1] + i, m_nums[1] + j, mij);
397
398
                       }
399
400
                  return 0;
401
402
403
             template<class Problem, class Grid, class Matrix>
404
```

```
405
             const int DGMethod<Problem, Grid, Matrix>::AssembleRUVMatrix(const int 1)
406
407
                 int i, j, k, nodes;
408
                 double mij;
409
                 const auto& elem{ m_Grid->GetElement(1) };
                 const int dofs{ (int)elem->GetDoFs() };
const int terms{ (int)m_problem->getNumberOfTerms() };
410
411
412
                 nodes = elem->GetNumberOfNodes();
                 std::vector<Mesh::Point> points(nodes);
413
                 for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
414
415
                 int sizei = 0, sizej = 0;
416
                 for (i = 0; i < (int) dofs; ++i)
417
418
419
                      for (j = 0; j < (int)dofs; ++j)
420
421
                          auto M = [&](const Mesh::Point& p)
422
423
                              double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
424
                              double h = elem->GetMeasure();
425
                              double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
426
                              double tau = 0.:
                               //double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
427
       elem->GetType(), p);
428
429
                               if (Pe >= 1)
430
                                   tau = h / 2. / vel;
431
                              else
                                   tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
432
       elem->GetType(), p);
433
                              auto supg = tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p) * elem->GetShapeFunction(i, p);
434
                              return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);// + supg;
435
                          mij = elem->Integrate(M, points);
436
437
438
                              m_RightMatrix->AddElement(m_nums[1] + i, m_nums[1] + j, mij);
439
440
                 return 0:
441
442
443
444
             template<class Problem, class Grid, class Matrix>
445
             const int DGMethod<Problem, Grid, Matrix>::AssembleSUPGMatrix(const int 1)
446
447
                 int i, j, k, nodes;
                 double mij;
448
                 const auto& elem{ m_Grid->GetElement(1) };
449
450
                 const int dofs{ (int)elem->GetDoFs() };
451
                 const int terms{ (int)m_problem->getNumberOfTerms() };
452
                 nodes = elem->GetNumberOfNodes();
453
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
454
455
                 for (i = 0; i < (int) dofs; ++i)
457
458
                      for (j = 0; j < (int) dofs; ++j)
459
460
                          auto M = [&](const Mesh::Point& p)
461
462
                              double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
463
                               double h = elem->GetMeasure();
464
                               //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
465
                              double tau = 0.;
                              double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
466
       elem->GetType(), p);
467
                               //double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. /
       Pe);
468
                              //double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) -
       1. / Pe);
                              //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe); //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe);
469
470
471
                               //beta = 0.;
472
                               //for (int ii = 0; ii < (int)dofs; ++ii)
473
                                   //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetGradShapeFunction(ii, p);
474
                              //return beta * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)
       * m_problem->get_parameter(Terms::IDVV, 1, elem->GetType(), p, 0) *

// elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
475
                               if (Pe >= 1)
476
477
                                   tau = h / 2. / vel;
478
                              else
479
                                   tau = h * h / 12. / m problem->get parameter(Terms::IDUDV, 1,
```

```
elem->GetType(), p);
480
                             //return 0.;
481
                             return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       <code>m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) \star</code>
482
                                     elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
483
                         };
484
485
                         //double tau =
486
                         auto _mij = elem->Integrate(M, points);
487
                         m_GlobalMatrix->AddElement(m_nums[1] + i, m_nums[1] + j, _mij);
488
                     }
489
                }
490
                return 0;
491
492
493
494
            template < class Problem, class Grid, class Matrix>
495
            const int DGMethod<Problem, Grid, Matrix>::AssembleInter()
496
497
                const auto mu = 1e6;
498
                 for (int 1 = 0; 1 < m_Ns; ++1)</pre>
499
500
                     const auto& bound{ m_Grid->GetBoundary(1) };
501
                     const auto& nk{ bound->GetNeighbour(0) };
                     const auto& ne{ bound->GetNeighbour(1) };
502
503
                     const auto& elemk{ m_Grid->GetElement(nk) };
504
                     const auto& dofs{ bound->GetDoFs() };
505
                     const auto& dofsk{ elemk->GetDoFs() };
506
                     std::vector<Mesh::Point> points(dofs);
507
                     for (int i = 0; i < dofs; ++i)
508
509
                         points[i] = m_Grid->GetNode(bound->GetNode(i));
510
511
                     if (ne < 0)
                         continue;
512
                     const auto& eleme{ m_Grid->GetElement(ne) };
513
514
                     for (int i = 0; i < dofsk; ++i)
515
516
                         for (int j = 0; j < dofsk; ++j)
517
518
                             auto Tkk = [&](const Mesh::Point& p)
519
                                 auto kappa = m_problem->get_parameter(Terms::IDUDV, 1, elemk->GetType(), p);
520
521
                                 auto val1 = bound->GetNormal() * elemk->GetShapeFunction(j, p)
       elemk->GetGradShapeFunction(i, p);
522
                                 auto val2 = bound->GetNormal() * elemk->GetShapeFunction(i, p)
       elemk->GetGradShapeFunction(j, p);
523
                                 auto ip = bound->GetNormal() * bound->GetNormal() *
524
       elemk->GetShapeFunction(j, p) * elemk->GetShapeFunction(i, p);
525
                                 return 0.5 * kappa * (val2 - val1) + mu * ip;
526
527
                             auto mj = bound->Integrate(Tkk, points);
528
                             std::cout « mj « std::endl;
                             m_GlobalMatrix->AddElement(m_nums[nk] + i, m_nums[nk] + j, mj);
529
530
                         }
531
                     }
532
533
                     for (int i = 0; i < dofsk; ++i)</pre>
534
535
                         for (int j = 0; j < dofsk; ++j)
536
537
                             auto Tkk = [&](const Mesh::Point& p)
538
539
                                 auto kappa = m_problem->get_parameter(Terms::IDUDV, 1, eleme->GetType(), p);
540
                                 auto val1 = bound->GetNormal() * eleme->GetShapeFunction(j, p) *
       elemk->GetGradShapeFunction(i, p);
541
                                 auto val2 = bound->GetNormal() * elemk->GetShapeFunction(i, p) *
       eleme->GetGradShapeFunction(j, p);
542
543
                                 auto ip = bound->GetNormal() * bound->GetNormal() *
       \verb|eleme->GetShapeFunction(j, p)| * elemk->GetShapeFunction(i, p);
544
                                 return 0.5 * kappa * (val2 + val1) + mu * ip;
545
                             auto mj = bound->Integrate(Tkk, points);
546
547
                             m_GlobalMatrix->AddElement(m_nums[nk] + i, m_nums[ne] + j, mj);
548
549
                     }
550
551
                     for (int i = 0; i < dofsk; ++i)
552
553
554
                         for (int j = 0; j < dofsk; ++j)
555
556
                             auto Tkk = [&](const Mesh::Point& p)
557
                                 auto kappa = m problem->get parameter(Terms::IDUDV, 1, eleme->GetType(), p);
558
```

```
559
                                  auto val1 = bound->GetNormal() * eleme->GetShapeFunction(j, p)
       eleme->GetGradShapeFunction(i, p);
560
                                  auto val2 = bound->GetNormal() * eleme->GetShapeFunction(i, p) *
       eleme->GetGradShapeFunction(j, p);
561
                                  auto ip = bound->GetNormal() * bound->GetNormal() *
562
       eleme->GetShapeFunction(j, p) * eleme->GetShapeFunction(i, p);
563
                                  return 0.5 * kappa * (val2 - val1) + mu * ip;
564
565
                              auto mj = bound->Integrate(Tkk, points);
                              m_GlobalMatrix->AddElement(m_nums[ne] + i, m_nums[ne] + j, mj);
566
567
568
                     }
569
570
                     for (int i = 0; i < dofsk; ++i)</pre>
571
                         for (int j = 0; j < dofsk; ++j)
572
573
574
                              auto Tkk = [&](const Mesh::Point& p)
575
576
                                  auto kappa = m_problem->get_parameter(Terms::IDUDV, 1, elemk->GetType(), p);
577
                                  auto val1 = bound->GetNormal() * elemk->GetShapeFunction(j, p)
       eleme->GetGradShapeFunction(i, p);
578
                                  auto val2 = bound->GetNormal() * eleme->GetShapeFunction(i, p) *
       elemk->GetGradShapeFunction(j, p);
579
                                  auto ip = bound->GetNormal() * bound->GetNormal() *
580
       elemk->GetShapeFunction(j, p) * eleme->GetShapeFunction(i, p);
581
                                  return 0.5 * kappa * (val2 + val1) + mu * ip;
582
                              auto mi = bound->Integrate(Tkk, points);
583
584
                              m_GlobalMatrix->AddElement(m_nums[ne] + i, m_nums[nk] + j, mj);
585
586
                     }
587
588
                 return 0:
589
             }
590
591
             template<class Problem, class Grid, class Matrix>
592
             const int DGMethod<Problem, Grid, Matrix>::AssembleLocalMatrix(const int 1, const int old)
593
594
                 int i, j, k, nodes;
                 double mij;
595
596
                 const auto& elem{ m_Grid->GetElement(1) };
597
                 const int dofs{ (int)elem->GetDoFs() };
598
                 const int terms{ (int)m_problem->getNumberOfTerms() };
599
                 nodes = elem->GetNumberOfNodes();
600
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
   points[i] = m_Grid->GetNode(elem->GetNode(i));
601
602
603
                 for (k = 0; k < terms; ++k)
604
605
                     switch (m_problem->getTerm(k))
606
                     case Terms::IUV:
607
                         for (i = 0; i < (int) dofs; ++i)
608
609
610
                              for (j = 0; j < (int)dofs; ++j)
611
612
                                  auto M = [&](const Mesh::Point& p)
613
                                      return m_problem->get_parameter(Terms::IUV, 1, elem->GetType(), p) *
614
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
615
616
                                  mij = elem->Integrate(M, points);
617
                                  auto inode = m_Grid->interpolate(elem->GetNode(i));
                                  auto jnode = m_Grid->interpolate(elem->GetNode(j));
if (inode > -1 && jnode > -1)
618
619
620
                                      m_GlobalMatrix->AddElement(inode, jnode, mij);
621
                              }
622
623
                         break;
                     case Terms::IDUDV:
62.4
                         for (i = 0; i < (int)dofs; ++i)</pre>
625
626
627
                              for (j = 0; j < (int)dofs; ++j)
628
629
                                  auto inode = m_Grid->interpolate(elem->GetNode(i));
                                  auto jnode = m_Grid->interpolate(elem->GetNode(j));
if (inode == -1 || jnode == -1)
630
631
632
                                      continue;
633
                                  auto M = [&](const Mesh::Point& p)
634
635
                                       //auto m = elem->GetGradShapeFunction(i, p) *
       elem->GetGradShapeFunction(j, p);
                                      return m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(), p) *
636
       \verb|elem->GetGradShapeFunction(i, p)| * elem->GetGradShapeFunction(j, p);
```

```
637
                                 };
                                 //mij = m_Grid->getParameter(Parameters::DIFFUSION, 1, j) *
638
       elem->Integrate(M, points);
639
                                 mij = elem->Integrate(M, points);
640
                                 m_GlobalMatrix->AddElement(inode, jnode, mij);
641
                             }
642
643
                         break;
644
                     case Terms::IDUV:
                         for (i = 0; i < (int)dofs; ++i)
645
646
647
                             for (j = 0; j < (int)dofs; ++j)
648
649
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
650
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
                                 if (inode == -1 || jnode == -1)
651
652
                                     continue:
                                 auto M = [&](const Mesh::Point& p)
653
654
655
                                      return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
656
657
                                 auto _mij = elem->Integrate(M, points);
658
                                 m_GlobalMatrix->AddElement(inode, jnode, _mij);
659
                             }
660
661
                         break;
662
                     case Terms::IUDV:
663
                         for (i = 0; i < dofs; ++i)</pre>
664
665
                             for (j = 0; j < dofs; ++j)
666
667
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
668
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
                                 if (inode == -1 || jnode == -1)
669
670
                                      continue:
671
                                 auto M = [&](const Mesh::Point& p)
672
673
                                     return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
674
675
                                 // \texttt{mij} = \texttt{m\_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j)} ~ \star
        \texttt{m\_flux} \, (\texttt{m\_CoarseGrid->getSolution} \, (\texttt{l, j})) \, \, \star \, \, \texttt{elem->Integrate} \, (\texttt{M, points}) \, . \, \texttt{x;} \\
676
                                 mii = elem->Integrate(M, points).x;
677
                                 m_GlobalMatrix->AddElement(inode, jnode, mij);
678
                             }
679
680
                         break;
                     case Terms::EUV:
681
                         for (i = 0; i < dofs; ++i)</pre>
682
683
684
                             for (j = 0; j < dofs; ++j)
685
686
                                 auto M = [&](const Mesh::Point& p)
687
                                      return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
688
689
690
                                 mij = elem->Integrate(M, points);
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
691
       m_Grid->getParameter(Parameters::MASS, 1, j) * m_Grid->getSolution(1, j) * mij;
692
                                 //m_rhsvector->operator[](m_nums[1] + i) +=
       693
                             }
694
695
                         break;
696
                     case Terms::EDUDV:
697
                         for (i = 0; i < dofs; ++i)</pre>
698
699
                             for (j = 0; j < dofs; ++j)
700
701
                                 auto M = [&](const Mesh::Point& p)
702
703
                                      return elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
       p);
704
705
                                 mij = elem->Integrate(M, points);
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
706
       m_Grid->getParameter(Parameters::DIFFUSION, 1, j) * m_Grid->getSolution(1, j) * mij;
707
                            }
708
709
                        break:
                     case Terms::EDUV:
710
711
                         for (i = 0; i < dofs; ++i)
712
713
                             for (j = 0; j < dofs; ++j)
714
                                 auto M = [&](const Mesh::Point& p)
715
716
```

```
717
                                      return elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
718
719
                                  mij = elem->Integrate(M, points).x;
720
                                  \verb|m_rhsvector->operator[](elem->GetNode(i))| +=
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;
721
                              }
722
723
                         break;
724
                     case Terms::EUDV:
725
                         for (i = 0; i < dofs; ++i)
726
727
                              for (j = 0; j < dofs; ++j)
728
                              {
729
                                  auto M = [&](const Mesh::Point& p)
730
731
                                      return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
732
733
                                  mij = elem->Integrate(M, points).x;
734
                                  m_rhsvector->operator[](elem->GetNode(i)) +=
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;// *mij;
735
736
737
                         break;
                     case Terms::EFV:
738
739
                         for (i = 0; i < dofs; ++i)</pre>
740
741
                              /*for (j = 0; j < dofs; ++j)
742
743
                                  auto M = [&](const Mesh::Point& p)
744
                                      return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, j, p) *
745
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
746
747
                                  mij = elem->Integrate(M, points);
748
                                  m_rhsvector->operator[](elem->GetNode(i)) += mij;
                              } * /
749
750
                              auto M = [&](const Mesh::Point& p)
751
752
                                  return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, i, p) *
       elem->GetShapeFunction(i, p);
753
754
                              mij = elem->Integrate(M, points);
755
                              m_rhsvector->operator[](elem->GetNode(i)) += mij;
756
757
                         break;
758
                     case Terms::RUV:
759
                         for (i = 0; i < (int)dofs; ++i)
760
                              for (j = 0; j < (int)dofs; ++j)
761
762
763
                                  auto M = [&](const Mesh::Point& p)
764
765
                                      return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
766
                                  mij = elem->Integrate(M, points);
767
768
                                  auto inode = m Grid->interpolate(elem->GetNode(i));
                                  auto jnode = m_Grid->interpolate(elem->GetNode(j));
769
770
                                  if (inode > -1 && jnode >
                                                              -1)
771
                                      m_RightMatrix->AddElement(inode, jnode, mij);
772
                             }
773
                         }
774
                         break;
775
                     case Terms::SUPG:
776
                         for (i = 0; i < (int)dofs; ++i)
777
778
                              for (j = 0; j < (int)dofs; ++j)
779
780
                                  auto inode = m Grid->interpolate(elem->GetNode(i));
                                  auto jnode = m_Grid->interpolate(elem->GetNode(j));
781
                                  if (inode == -1 || jnode == -1)
782
783
                                      continue;
784
                                  auto M = [&](const Mesh::Point& p)
785
                                      double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1,
786
       elem->GetType(), p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
double h = elem->GetMeasure();
787
788
                                      //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
                                      double tau = 0.;
789
                                      double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
790
       elem->GetType(), p);
791
                                      //double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.)) / (exp(2. * Pe) - 1.)
       1.) - 1. / Pe);
792
                                      double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.)) / (exp(2. * Pe) - 1.)
       1.) - 1. / Pe);
793
                                      //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1.
       / Pe);
```

```
794
                                       //beta = 0.;
795
                                       //for (int ii = 0; ii < (int)dofs; ++ii)
796
                                          //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * elem->GetGradShapeFunction(ii, p);
797
       798
       p);
799
                                      if (Pe >= 1)
                                          tau = h / 2. / vel;
800
                                      else
801
                                          tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
802
       elem->GetType(), p);
803
                                      //return 0.;
804
                                       return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
                                               elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
805
       p);
806
                                  };
807
808
                                  //double tau =
809
                                  auto _mij = elem->Integrate(M, points);
810
                                  m_GlobalMatrix->AddElement(inode, jnode, _mij);
811
812
813
                         break;
814
                     default:
815
                         break;
816
817
818
                 return 0:
819
820
             template<class Problem, class Grid, class Matrix>
821
             void DGMethod<Problem, Grid, Matrix>::MainConditions()
822
823
                 double mu{ 1e8 };
                 const auto n = m_problem->get_number_of_boundaries();
const auto m = m_Grid->GetNumberOfBoundaries();
824
825
826
                 for (int i = 0; i < n; ++i)
827
828
                     const auto& type = m_problem->get_boundary_type(i);
                     for (int j = 0; j < m; ++j)
829
830
831
                         const auto& row = m_Grid->GetBoundary(j);
832
                          if (row->GetType() == type)
833
                              const int dofs = (int)row->GetDoFs();
const int dofs2 = 2;
834
835
                              const auto& elem_num = row->GetNeighbour(0);
836
                              const auto& elem = m_Grid->GetElement(elem_num);
const int dofs_elem = elem->GetDoFs();
837
838
                              std::vector<Mesh::Point> points(dofs_elem);
std::vector<Mesh::Point> bpoints(dofs);
839
840
841
                              for (int k = 0; k < dofs_elem; ++k)
                              points[k] = m_Grid->GetNode(elem->GetNode(k));
for (int k = 0; k < dofs; ++k)</pre>
842
843
                                  bpoints[k] = m_Grid->GetNode(row->GetNode(k));
844
                                 (int ii = 0; ii < dofs_elem; ++ii)
845
846
847
                                  for (int jj = 0; jj < dofs_elem; ++jj)</pre>
848
849
                                      auto M = [&] (const Mesh::Point& p)
850
                                          return elem->GetShapeFunction(ii, p) * elem->GetShapeFunction(jj,
       p);// + supg;
852
853
                                      auto mj = mu * row->Integrate(M, bpoints);
                                      m_GlobalMatrix->AddElement(m_nums[elem_num] + ii, m_nums[elem_num] + jj,
854
       mi);
855
856
                                  auto MM = [&](const Mesh::Point& p)
857
858
                                      return elem->GetWeight(elem_num, points, [=](const Mesh::Point& p) {
       return m_problem->get_boundary_parameter(0, type, p); }) * elem->GetShapeFunction(ii, p);
859
                                  };
860
                                  auto mij = row->Integrate(MM, points);
                                  std::cout « mij « std::endl;
861
862
                                  m_rhsvector->operator[](m_nums[elem_num] + ii) += mij;
863
                              /*for (int k = 0; k < dofs; ++k)
864
865
                                  int 1 = 0;
866
867
                                  for (; 1 < dofs_elem; ++1)
868
869
                                      if (elem->GetNode(1) == row->GetNode(k))
870
                                          break:
871
```

```
872
873
                                  m_GlobalMatrix->NullRow(row->GetNode(k));
874
                                  //m_GlobalMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
875
                                  //m_rhsvector->operator[](row->GetNode(k)) =
       m_problem->get_boundary_parameter(0, type, m_Grid->GetNode(row->GetNode(k)));
                                  //m_rhsvector->operator[](row->GetNode(k)) =
876
       m_problem->get_boundary_parameter(0, type, elem_num, 1, m_Grid->GetNode(row->GetNode(k)));
877
                                 m_rhsvector->operator[](row->GetNode(k)) = elem->GetWeight(1, points,
       [=](const Mesh::Point@ p) { return m_problem->get_boundary_parameter(0, type, p); });
878
                                  if(m_problem->findTerm(Terms::RUV))
879
880
                                          m RightMatrix->NullRow(row->GetNode(k));
                                          //m_RightMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
881
882
883
884
                              /*for (int k = dofs2; k < dofs; ++k)
885
                                  m GlobalMatrix->NullRow(row->GetNode(k));
886
887
                                 m_rhsvector->operator[](row->GetNode(k)) = 0;
888
889
890
                     }
891
                 /*for (auto bnd : m_Grid->GetBoundaryConditions())
892
893
894
                     if (get<0>(bnd.second) == 1)
895
                         for (auto row : m_Grid->GetBoundary())
896
897
                             if (bnd.first == row->GetType())
898
899
                                  for (int i = 0; i < row->GetDoF(); ++i)
900
901
                                      m_GlobalMatrix->NullRow(row->GetNodes(i));
902
                                      m_rhsvector[row->GetNodes(i)] =
       get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
903
904
                             }
905
906
                 } */
907
908
             template<class Problem, class Grid, class Matrix>
909
            void DGMethod<Problem, Grid, Matrix>::SecondConditions()
910
911
                 double theta = 0;
                 int nfem;
912
913
                 Mesh::Point temp[3];
914
                 std::vector<int> local;
915
                 for (auto bnd : m_Grid->GetBoundaryConditions())
916
917
                     //if (qet<0>(bnd.second) == 2)
918
919
                         for (auto row : m_Grid->GetBoundary())
920
921
                              if (bnd.first == row->GetType())
922
923
                                  local.resize(0);
924
                                  int dofs = row->GetDoF();
925
                                  nfem = row->GetNumberOfElement(0);
926
                                  auto elem = m_Grid->GetElements()[nfem];
                                  //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); }; for (int j = 0; j < dofs; ++j)
927
928
929
930
                                      temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
                                      for (int i = 0; i < elem->GetDoF(); ++i)
931
932
933
                                          if (row->GetNodes(j) == elem->GetNodes()[i])
934
                                              local.push back(i);
935
936
                                              break:
937
938
939
940
                                  for (int i = 0; i < dofs; ++i)
941
                                      for (int j = 0; j < dofs; ++j)
942
943
944
                                          //theta = get<1>(bnd.second)(m_Grid->GetNodes()[row->GetNodes(i)]);
945
                                          theta = 0;
                                          auto GetMass = [&](const Mesh::Point& p) {return
946
       elem->GetBasis(local[j], p) * elem->GetBasis(local[i], p); };
                                          auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
947
       p) *row->GetBasis(i, p); };
948
                                          //if (i < 2 || j < 2)
949
                                          m_rhsvector[row->GetNodes(i)] += theta * row->Integrate(GetMass,
       temp);
950
951
                                          //if (i < 3 || j < 3)
```

```
952
                                           // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
       temp);
953
                                 }
954
                             }
955
                        }
956
958
959
960
             template<class Problem, class Grid, class Matrix>
            void DGMethod<Problem, Grid, Matrix>::StefanConditions()
961
962
963
                 double dest{ 0. }, lat{ 0 };
                 int nfem;
964
                 Mesh::Point temp[3];
965
966
                 std::vector<int> local;
967
                 for (auto bnd : m_Grid->GetBoundaryConditions())
968
969
                     //if (get<0>(bnd.second) == 4)
970
971
                         lat = 0;
972
                         //lat = get<2>(bnd.second);
973
                         for (auto row : m_Grid->GetBoundary())
974
975
                              if (bnd.first == row->GetType())
976
977
                                  local.resize(0);
978
                                  int dofs = row->GetDoF();
979
                                  nfem = row->GetNumberOfElement(0);
                                  auto elem = m_Grid->GetElements()[nfem];
980
981
                                  //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
982
                                  for (int j = 0; j < dofs; ++j)
983
984
                                      temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
985
                                       for (int i = 0; i < elem->GetDoF(); ++i)
986
987
                                           if (row->GetNodes(j) == elem->GetNodes()[i])
988
989
                                               local.push_back(i);
990
991
992
993
994
                                  for (int i = 0; i < dofs; ++i)</pre>
995
996
                                       for (int j = 0; j < dofs; ++j)
997
                                           dest = 0;
998
                                           //dest = get<1>(bnd.second) (m_Grid->GetNodes() [row->GetNodes(i)]);
999
                                            auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
1000
       p)*row->GetBasis(i, p); };
1001
                                            //if (i < 2 || j < 2)
1002
                                            m_rhsvector[row->GetNodes(i)] += dest * lat *
       row->Integrate(GetBBasis, temp);
1003
                                            //if (i < 3 || j < 3)
1004
                                            // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
1005
       temp);
1006
1007
                                   }
1008
                              }
1009
                          }
1010
                      }
1011
1012
1013
              template<class Problem, class Grid, class Matrix>
1014
              void DGMethod<Problem, Grid, Matrix>::ThirdConditions()
1015
1016
                  double param{ 0 }, beta{ 0 };
1017
                  int nfem;
1018
                  Mesh::Point temp[6];
1019
                  std::vector<int> local;
                  auto fxy = [&] (const Mesh::Point& p) {return (10 * p.y*m_time + m_time) / 10; }; //auto fxy = [&] (const Point& p) {return 10 * p.y + 10 * m_time; };
1020
1021
                  for (auto bnd : m_Grid->GetBoundaryConditions())
1022
1023
1024
                       //if (get<0>(bnd.second) == 3)
1025
1026
                           for (auto row : m_Grid->GetBoundary())
1027
1028
1029
                               if (bnd.first == row->GetType())
1030
1031
                                   local.resize(0);
1032
                                   int dofs = row->GetDoF();
                                   nfem = row->GetNumberOfElement(0);
1033
1034
                                   auto elem = m_Grid->GetElements()[nfem];
```

```
//auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
1036
                                  auto order = elem->GetDoF();
1037
                                  for (int j = 0; j < dofs; ++j)
1038
                                      temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
1039
1040
                                      for (int i = 0; i < order; ++i)</pre>
1041
1042
                                          if (row->GetNodes(j) == elem->GetNodes()[i])
1043
1044
                                              local.push_back(i);
1045
                                              break:
1046
1047
                                      }
1048
1049
                                  double val{ 0 };
1050
                                  for (int i = 0; i < dofs; ++i)
1051
1052
                                      for (int j = 0; j < dofs; ++j)
1053
1054
                                          param = 0;
1055
                                          beta = 0;
1056
                                          //beta = get<2>(bnd.second);
       1057
1058
1059
1060
                                          //val = row->GetElement(GetBBasis, temp);
1061
                                          val = row->Integrate(GetBBasis, temp);
1062
                                          m_GlobalMatrix->operator()(row->GetNodes(i), row->GetNodes(j)) +=
       beta * val:
1063
                                          m rhsvector[row->GetNodes(i)] += beta * param * val;
1064
                                      }
1065
1066
                             }
1067
                         }
1068
                     }
1069
                 }
1070
1071
             template<class Problem, class Grid, class Matrix>
1072
             Matrix* DGMethod<Problem, Grid, Matrix>::GetGlobalMatrix() const
1073
1074
                 return m GlobalMatrix;
1075
1076
             template<class Problem, class Grid, class Matrix>
1077
             const double DGMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p) const
1078
1079
                 if (!m_solution.size())
                 return -1;
double val = 0;
1080
1081
                 int nfem = -1;
1082
1083
                 nfem = m_Grid->FindElement(p);
1084
                 if (nfem == -1)
1085
                      return -1;
1086
                 auto elem = m_Grid->GetElements()[nfem];
                 for (int i = 0; i < elem->GetDoF(); ++i)
1087
                     val += m_solution[elem->GetNodes()[i]] * elem->GetBasis(i, p);
1088
1090
1091
             template<class Problem, class Grid, class Matrix>
1092
             const double DGMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
       std::vector<double>& vec) const.
1093
             {
1094
                 if (!vec.size())
1095
                     return -1;
1096
                 double val{ 0 };
1097
                 int nfem{ -1 };
1098
                 nfem = m_Grid->FindElement(p);
1099
                 if (nfem == -1)
1100
                     return -1;
1101
                 auto elem = m_Grid->GetElements()[nfem];
1102
                 for (int i = 0; i < elem->GetDoFs(); ++i)
1103
                     val += vec[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1104
                 return val;
1105
             template<class Problem, class Grid, class Matrix>
const double DGMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
1106
       std::vector<double>& vec, const int num) const
1108
1109
                 if (!vec.size() || num < 0)</pre>
                 return -1;
double val{ 0 };
1110
1111
1112
                 auto elem = m_Grid->GetElements()[num];
                 for (int i = 0; i < elem -> GetDoF(); ++i)
1113
1114
                     val += vec[elem->GetNodes()[i]] * elem->GetBasis(i, p);
1115
                 return val;
1116
1117
             //template<class Problem, class Grid, class Matrix>
```

```
1118
              //const Mesh::Point DGMethod<Problem, Grid, Matrix>::GetGradValue(const Mesh::Point& p, const
       std::vector<double>& vec) const
1119
              //{
              11
1120
                 Mesh::Point val{ 0, 0 };
              //
1121
                 int nfem{-1};
              11
                 nfem = m_Grid->FindElement(p);
1122
                 if (nfem == -1)
1123
1124
                      return val;
1125
                  auto elem = m_Grid->GetElements()[nfem];
1126
              11
                 for (int i = 0; i < elem -> GetDoF(); ++i)
1127
              //
                      val.x += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).x;
1128
             11
1129
                      val.y += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).y;
              11
1130
                      val.z += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).z;
1131
              //
1132
              // return val;
              //1
1133
             template<class Problem, class Grid, class Matrix>
const double DGMethod<Problem, Grid, Matrix>::GetEffective(const std::vector<double>& vec)
1134
1135
       const
1136
1137
                  double sum = 0;
1138
                  //std::vector<int> dofs;
                  //Mesh::Point points[10];
1139
                  //for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1140
1141
                      //auto mb = [&](const Mesh::Point& b) {return GetGradValue(b, vec)*GetGradValue(b,
1142
       vec); };
1143
                      //dofs.resize(0);
1144
                      //auto elem = m_Grid->GetElements()[i];
                      //int order = elem->GetDoF();
1145
1146
                      //double diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
1147
                      //for (int j = 0; j < order; ++j)
1148
1149
                           //dofs.push_back(elem->GetNodes()[j]);
                          //points[j] = m_Grid->GetNodes()[dofs[j]];
1150
1151
1152
                      //sum += diff * elem->Integrate(mb, points);
1153
1154
                  //std::cout « "Effect (local): " « sum « std::endl;
1155
                  //std::cout « "Effect (local) sqrt: " « sqrt(sum) « std::endl;
1156
                  return sum;
1157
1158
              //template<class Problem, class Grid, class Matrix>
              //const Mesh::Point DGMethod<Problem, Grid, Matrix>::GetLambdaGrad(const Mesh::Point& p, const
1159
       std::vector<double>& vec) const
1160
1161
              11
                 Mesh::Point val{ 0, 0, 0 };
                 //double val{ 0 };
             11
1162
                  double diff{ 0 };
             11
1163
             //
1164
                 Mesh::Point temp{ 0, 0, 0 };
1165
                 int nfem{ -1 };
1166
              11
                  nfem = m_Grid->FindElement(p);
1167
             // if (nfem == -1)
             11
                      return val:
1168
              11
1169
                 auto elem = m Grid->GetElements()[nfem];
1170
             // diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
                 for (int i = 0; i < elem -> GetDoF(); ++i)
1171
1172
              // {
1173
              11
                      //val += elem->GetGradBasis(i, p) * elem->GetGradBasis(i, p) * vec[elem->GetNodes()[i]]
       * vec[elem->GetNodes()[i]] * diff;
                      //val += elem->GetBasis(i, p) * vec[elem->GetNodes()[i]] * diff;
1174
1175
                      temp = elem->GetGradBasis(i, p);
1176
                      val.x += temp.x * vec[elem->GetNodes()[i]] * (diff);
1177
              //
                      val.y += temp.y * vec[elem->GetNodes()[i]] * (diff);
1178
                      val.z += temp.z * vec[elem->GetNodes()[i]] * (diff);
1179
              11
              11
1180
                 return val:
1181
              //}
1182
              template<class Problem, class Grid, class Matrix>
1183
              const std::vector<double> DGMethod<Problem, Grid, Matrix>::GetRightVector() const
1184
1185
                  return *m_rhsvector;
1186
              template < class Problem, class Grid, class Matrix>
1187
              void DGMethod<Problem, Grid, Matrix>::OutDatFormat(const Mesh::Point& mn, const Mesh::Point&
       mx, const std::string& file_name, const std::vector<double>& vec) const
1189
             {
1190
                  std::ofstream of(file_name + "z.dat");
                  std::streambuf *buf = std::cout.rdbuf();
1191
                  std::cout.rdbuf(of.rdbuf());
1192
1193
                  std::cout « "TITLE = FE-METHOD\n";
                  std::cout « "VARIABLES = \"dxl\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1194
1195
                 double stepx = (mx.x - mn.x) / 51;
double stepy = (mx.y - mn.y) / 51;
for (int i = 0; i < 51; ++i)</pre>
1196
1197
1198
```

```
for (int j = 0; j < 51; ++j)
        std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" « GetValue (Mesh::Point (mn.x + j * stepx, mn.y + i * stepy, mn.z), vec) « std::endl;
1200
1201
                   std::cout.rdbuf(buf);
1202
                   of.close():
                   of.open(file_name + "x.dat");
1203
1204
                   buf = std::cout.rdbuf();
1205
                   std::cout.rdbuf(of.rdbuf());
                   std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1206
1207
1208
                   1209
1210
        GetValue(Mesh::Point(mn.z, mn.x + j * stepx, mn.y + i * stepy), vec) « std::endl;
1212
                   std::cout.rdbuf(buf);
1213
                   of close():
1214
                   of.open(file name + "v.dat");
1215
                   buf = std::cout.rdbuf();
1216
                   std::cout.rdbuf(of.rdbuf());
                   std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1217
1218
1219
                   for (int i = 0; i < 51; ++i)

for (int j = 0; j < 51; ++j)
1220
1221
                            std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" «
1222
        GetValue(Mesh::Point(mn.x + j * stepx, mn.z, mn.y + i * stepy), vec) « std::endl;
1223
                   std::cout.rdbuf(buf);
1224
                   of.close();
1225
              template<class Problem, class Grid, class Matrix>
void DGMethod<Problem, Grid, Matrix>::ApplySources()
1226
1227
1228
1229
                   int nfem = -1;
                   auto total = m_problem->get_total_sources();
for (int i = 0; i < total; ++i)</pre>
1230
1231
1232
1233
                        auto src = m_problem->get_point_source(i);
1234
                        auto point = src.get_point();
1235
                        nfem = m_Grid->FindElement(point);
1236
                        if (nfem != -1)
1237
                            auto val = src.get_value();
1238
1239
                            auto elem = m_Grid->GetElement(nfem);
                            for (int j = 0; j < 3; ++j)
1240
1241
                                 m_rhsvector->operator[](elem->GetNode(j)) += val * elem->GetShapeFunction(j,
       point);
1242
                        nfem = -1;
1243
1244
1245
                    /*for (auto srd : m_Grid->GetDottedSources())
1246
1247
                        nfem = m_Grid->FindElement(srd.first);
1248
                        if (nfem != -1)
1249
1250
                            auto elem = m Grid->GetElements()[nfem];
                            for (int i = 0; i < elem -> GetDoF(); ++i)
1251
1252
1253
                                 m_rhsvector[elem->GetNodes()[i]] += srd.second * elem->GetBasis(i, srd.first);
1254
1255
1256
                       nfem = -1;
1257
1258
1259
               template<class Problem, class Grid, class Matrix>
1260
              void DGMethod<Problem, Grid, Matrix>::Rediscretization(const std::shared_ptr<Grid>& grid)
1261
                   m GlobalMatrix->NullMatrix();
1262
1263
                   for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
1264
                        (*m\_rhsvector)[i] = 0;
1265
                   AssemblGlobal();
1266
                   //SecondConditions();
1267
                   //ApplySources();
                   //StefanConditions();
1268
1269
                   MainConditions();
1270
1271
              template<class Problem, class Grid, class Matrix>
1272
              void DGMethod<Problem, Grid, Matrix>::Rediscretization()
1273
1274
                   m time += m step:
1275
                   m GlobalMatrix->NullMatrix();
                   for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
1276
1277
                        (*m\_rhsvector)[i] = 0;
1278
                   AssemblGlobal();
1279
                   SecondConditions():
1280
                   ThirdConditions():
1281
                   StefanConditions():
```

7.72 DGMethod.h 419

```
//ApplySources();
1283
                   MainConditions();
1284
              template<class Problem, class Grid, class Matrix>
void DGMethod<Problem, Grid, Matrix>::GetSolution(std::vector<double>& vec)
1285
1286
1287
1288
                   int size = vec.size();
                   //Translation(vec);
1289
1290
                   for (int i = 0; i < size; ++i)
1291
                       vec[i] = m_solution[i];
1292
              template<class Problem, class Grid, class Matrix>
1293
              const double DGMethod<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
1294
       std::vector<double> &weights, const Mesh::Point& p)
1295
1296
                   double sum{ 0 };
1297
                   auto nfem{ g.FindElement(p) };
                   if (nfem < 0)
1298
1299
                       return 0.;
1300
                   auto elem{ g.GetElement(nfem) };
1301
                   auto dofs{ elem->GetDoFs() };
1302
                   for (auto i{ 0 }; i < dofs; ++i)</pre>
                       sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1303
1304
                   return sum;
1305
1306
              template<class Problem, class Grid, class Matrix>
               const double DGMethod<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
1307
       std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1308
1309
                   double sum{ 0 };
1310
                   //if (nfem < 0)
1311
                         return 0.;
1312
                   auto elem{ g.GetElement(nfem) };
1313
                   auto dofs{ elem->GetDoFs() };
                   //std::cout « nfem « std::endl;
for (auto i{ 0 }; i < dofs; ++i)</pre>
1314
1315
                       sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1316
1317
                   return sum;
1318
              template<class Problem, class Grid, class Matrix>
1319
1320
              const Mesh::Point DGMethod<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
       std::vector<double> &weights, const Mesh::Point& p)
1321
              {
1322
                   Mesh::Point sum{ 0, 0, 0 };
1323
                   auto nfem{ g.FindElement(p) };
1324
                   auto elem{ g.GetElement(nfem) };
1325
                   auto dofs{ elem->GetDoFs() };
1326
                   for (auto i{ 0 }; i < dofs; ++i)</pre>
1327
                       sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
1328
                   return sum;
1329
1330
               template<class Problem, class Grid, class Matrix>
1331
               const Mesh::Point DGMethod<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
       std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1332
1333
                   Mesh::Point sum{ 0, 0, 0 };
                   auto elem{ g.GetElement(nfem) };
1334
1335
                   auto dofs{ elem->GetDoFs() };
1336
                   for (auto i{ 0 }; i < dofs; ++i)</pre>
1337
                       sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
                   return sum;
1338
1339
1340
              template<class Problem, class Grid, class Matrix>
               void DGMethod<Problem, Grid, Matrix>::LoadSolution(const std::vector<double>& vec)
1341
1342
1343
                   m_solution.resize(vec.size());
1344
                   for (unsigned int i = 0; i < vec.size(); ++i)
    m_solution[i] = vec[i];</pre>
1345
1346
1347
              template<class Problem, class Grid, class Matrix>
               void DGMethod<Problem, Grid, Matrix>::OutMeshFormat(const std::string& file_name, const
1348
       std::vector<double>& vec)
1349
              {
1350
                   const int size{ (int)m Grid->GetNodes().size() };
                   const int number{ (int)m_Grid->GetElements().size() };
1351
                   //const int size{ number * 4 };
1352
       std::ofstream ofs(file_name + ".dat", std::ios::out);
std::string title("TITLE = \"Mesh data\"\n Variables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N
= " + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
1353
1354
       FETETRAHEDRON\n");
1355
                   ofs « title;
                   Mesh::Point p;
for (int i = 0; i < size; ++i)
1356
1357
1358
                        p = m\_Grid->GetNodes()[i]; \\ ofs ~ ~ p.x ~ ~ "\t" ~ ~ p.y ~ "\t" ~ ~ p.z ~ ~ "\t" ~ ~ GetValue(p, vec, 1) ~ ~ std::endl; 
1359
1360
1361
```

```
1362
                    for (int i = 0; i < number; ++i)
1363
1364
                        auto elem = m_Grid->GetElements()[i];
1365
                         for (int k = 0; k < 4; ++k)
1366
                             ofs « elem->GetNodes()[k] + 1 « "\t";
1367
1368
1369
                        ofs « std::endl;
1370
1371
                   ofs.close();
1372
               template<class Problem, class Grid, class Matrix>
void DGMethod<Problem, Grid, Matrix>::OutMeshTimeFormat(const std::string& file_name, const
1373
1374
        std::vector<double>& vec)
1375
1376
                    const int size{ (int)m_Grid->GetNodes().size() };
                   const int number{ (int)m_Grid->GetElements().size() };
//const int size{ number * 4 };
std::ofstream ofs(file_name + ".dat", std::ios::out | std::ios::app);
1377
1378
1379
        std::string title("TITLE = \"Mesh data\"\" Nariables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N
= " + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
1380
        FETETRAHEDRON\n");
1381
                   ofs « title;
                   Mesh::Point p;
for (int i = 0; i < size; ++i)</pre>
1382
1383
1384
1385
                        p = m_Grid->GetNodes()[i];
                        ofs « p.x « "\t" « p.y « "\t" « p.z « "\t" « GetValue(p, vec, 1) « std::endl;
1386
1387
1388
                    for (int i = 0; i < number; ++i)
1389
1390
                        auto elem = m_Grid->GetElements()[i];
1391
                         for (int k = 0; k < 4; ++k)
1392
1393
                             ofs < elem->GetNodes()[k] + 1 < "\t";
1394
1395
                        ofs « std::endl;
1396
1397
                   ofs.close();
1398
1399
               template<class Problem, class Grid, class Matrix>
               void DGMethod<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
1400
        std::function<const double(const Mesh::Point&, const std::vector<double>&, const int)> GetVal,
        std::vector<double>& vec)
1401
1402
                    for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1403
1404
                        auto elem = m_Grid->GetElements()[i];
1405
                        int order = elem->GetDoF();
                        for (int j = 0; j < order; ++j)
1406
1407
                             sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec, i);
1408
1409
               template<class Problem, class Grid, class Matrix>
void DGMethod<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
1410
1411
        std::function<const double(const Mesh::Point&, const std::vector<double>&)> GetVal,
        std::vector<double>& vec, const int)
1412
1413
                    for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1414
1415
                        auto elem = m Grid->GetElements()[il:
                        int order = elem->GetDoF();
1416
                        for (int j = 0; j < order; ++j)
    sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec);
1417
1418
1419
1420
1421
               template<class Problem, class Grid, class Matrix>
               const std::vector<double> DGMethod<Problem, Grid, Matrix>::SetSolution(const int sol, const int
1422
        lig, const double s, const double 1, const double m)
1423
               {
1424
                    int i;
1425
                    m_solution.resize(m_Grid->GetNodes().size());
1426
                    for (i = 0; i < m_Grid->GetElements().size(); ++i)
1427
                        auto elem = m_Grid->GetElements()[i];
int order = elem->GetDoF();
1428
1429
1430
                         if (m_Grid->GetElements()[i]->GetType() == liq)
1431
                            for (int j = 0; j < order; ++j)
1432
                                 m_solution[elem->GetNodes()[j]] = 1;
1433
                        else
                            for (int j = 0; j < order; ++j)
1434
1435
                                 m_solution[elem->GetNodes()[j]] = s;
1436
1437
1438
                    for (auto bnd : m_Grid->GetBoundaryConditions())
1439
1440
                        //if (qet<0>(bnd.second) == 4)
```

```
1441
1442
                             for (auto row : m_Grid->GetBoundary())
1443
1444
                                  if (bnd.first == row->GetType())
1445
1446
                                       int dofs = row->GetDoF();
1447
                                       for (int i = 0; i < dofs; ++i)</pre>
1448
1449
                                           m_solution[row->GetNodes(i)] = m;
1450
1451
1452
1453
                        }
1454
1455
                    return m_solution;
1456
              template<class Problem, class Grid, class Matrix>
DGMethod<Problem, Grid, Matrix>::~DGMethod()
1457
1458
1459
1460
                   delete m_Grid;
1461
1462
1463 }
1464
1465 #endif // !CORENC_METHODS_DGMethod_h
```

7.73 CoreNCFEM/Methods/DGMethodZero.h File Reference

```
#include <functional>
#include <set>
#include "../Point.h"
#include "../Parameter.h"
#include "CSMethod.h"
#include <memory>
#include <math>
#include <algorithm>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
```

Classes

- class corenc::method::CDGMethodZero< Type >
- class corenc::method::DGMethodZero
 Problem, Grid, Matrix

Namespaces

- · namespace corenc
- namespace corenc::Mesh
- · namespace corenc::method

7.74 DGMethodZero.h

Go to the documentation of this file.

```
1 #ifndef DGMETHODZERO_H
2 #define DGMETHODZERO H
4 // DGMethodZero.h describes an abstract interface and functions for a DG method with zero Dirichlet
      boundaries
5 #include <functional>
6 #include <set>
7 #include "../Point.h"
8 #include "../Parameter.h"
9 #include "CSMethod.h"
10 #include <memory>
11 #include <cmath>
12 #include <map>
13 #include <algorithm>
14 #include <vector>
15 #include <iostream>
16 #include <fstream>
17 #include <string>
18 namespace corenc
19 {
20
       namespace Mesh
21
            class Point;
24
       namespace method
2.5
            // class Type = Type of the solution, for ex vector or double, or even more specific
2.6
28
           template<class Type>
30
           class CDGMethodZero
31
           public:
32
               CDGMethodZero() {};
33
                virtual ~CDGMethodZero() {};
virtual const int
34
35
                                                                 Assemble() = 0;
36
                virtual const Type
                                                                 GetSolution(const std::vector<double>& point)
       const = 0;
37
                                                                 GetSolution() const = 0;
                virtual const std::vector<Type>
                                                                 GetMaxSolution() const = 0;
GetMinSolution() const = 0;
                virtual const Type
38
                virtual const Type
39
40
           };
42
            template<class Problem, class Grid, class Matrix>
           class DGMethodZero
4.3
44
45
           public:
                DGMethodZero():
46
47
                    m_problem{nullptr},
48
                     m_Grid{nullptr},
49
                     m_GlobalMatrix{nullptr},
50
                    m_RightMatrix{nullptr},
                    m_rhsvector{nullptr}
51
52
53
                DGMethodZero(
54
                    Problem* p,
5.5
                     Grid∗ g,
                    Matrix* m,
56
                     std::vector<double>* rhs):
57
58
                     m_problem{ p },
59
                     m_Grid{ g->Clone() },
60
                     m_GlobalMatrix{ m },
61
                     m_N{ g->GetNumberOfElements() },
62
                    m_Ns{ g->GetNumberOfBoundaries() },
                    m rhsvector( rhs ){
6.3
64
                     //GeneratePortrait();
65
66
                DGMethodZero(
                    Problem* p,
67
68
                     Grid* g,
                     Matrix* m,
69
                    Matrix* rm,
70
71
                     std::vector<double>* rhs):
72
                     m_problem{ p },
73
                     m_Grid{ g->Clone() },
74
                     m\_GlobalMatrix{ m },
75
                     m_RightMatrix{ rm },
                     m_N{ g->GetNumberOfElements() },
76
                     m_Ns{ g->GetNumberOfBoundaries() },
78
                     m_rhsvector{ rhs }{
79
                     //GeneratePortrait();
80
```

```
DGMethodZero(const std::shared_ptr<Grid>& grid) :m_Grid{ grid->Clone() } {}
               DGMethodZero(Grid* grid) :m_Grid{ grid->Clone() } {}
83
               DGMethodZero(const DGMethodZero& meth) :
                   m_Grid{ meth.m_Grid->Clone() },
84
8.5
                   //m_GlobalMatrix{ meth.m_GlobalMatrix->Clone() },
                   //m_rhsvector{ meth.m_rhsvector },
86
                   //m_problem{ meth.m_problem },
88
                   m_time{ meth.m_time },
89
                   //m_solution{ meth.m_solution },
90
                   m_size{ meth.m_size },
91
                   m_N{ meth.m_N },
92
                   m Ns{ meth.m Ns }.
93
                   m nums{ meth.m nums }
94
               { };
95
               void
                                            Discretization();
               const double
                                            GetValue(const Mesh::Point&) const;
96
97
               const double
                                            GetValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
98
               const double
                                            GetValue(const Mesh::Point&, const std::vector<double>& vec,
       const int num) const;
99
               //const Mesh::Point
                                            GetGradValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
100
                //const Mesh::Point
                                             GetLambdaGrad(const Mesh::Point&, const std::vector<double>&
       vec) const:
101
                                             GetEffective(const std::vector<double>& vec) const;
                const double
                                             ProjectSolution(std::vector<double>&, std::function<const
102
                void
       double(const Mesh::Point&, const std::vector<double>&, const int)> GetValue, std::vector<double>&
       sol);
103
                void
                                             ProjectSolution(std::vector<double>&, std::function<const
       double(const Mesh::Point&, const std::vector<double>&)> GetValue, std::vector<double>& sol, const
       int);
104
                void
                                             LoadSolution(const std::vector<double>& vec);
                                             SetSolution(const int sol, const int liq, const double, const
105
                const std::vector<double>
       double, const double);
106
                void
                                             GetSolution(std::vector<double>& vec);
107
                void
                                             Rediscretization(const std::shared_ptr<Grid>&);
                                             Rediscretization();
108
                void
109
                                             SetTimeStep(const double& step) { m_step = step; m_time = step;
                void
       }
110
                Matrix*
                                             GetGlobalMatrix() const;
111
                Grid*
                                             GetMesh() { return m_Grid; }
                                             GetRightVector() const;
112
                const std::vector<double>
                                             OutDatFormat(const Mesh::Point& min, const Mesh::Point& max,
113
                void
       const std::string& file_name, const std::vector<double>& vec) const;
114
                void
                                             OutMeshFormat(const std::string& file_name, const
       std::vector<double>& vec);
115
                                             OutMeshTimeFormat(const std::string& file_name, const
                void
       std::vector<double>& vec);
116
                                             GetSolution(const Grid& g, const std::vector<double> &weights.
                static const double
       const Mesh::Point& p);
117
                static const double
                                             GetSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p, const int nfem);
118
                static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p);
119
                static const Mesh::Point GetGradSolution(const Grid& q, const std::vector<double> &weights,
       120
121
            private:
                                             GeneratePortrait();
122
                void
                                             AssemblGlobal();
123
                void
124
                void
                                             MainConditions();
125
                                             SecondConditions();
                void
126
                void
                                             ThirdConditions();
127
                void
                                             StefanConditions();
128
                void
                                             ApplySources();
129
                const int
                                             AssembleLocalMatrix(const int);
130
                const int
                                             AssembleIDUDVMatrix(const int);
                                             AssembleIDUVMatrix(const int);
131
                const int
                                             AssembleIUDVMatrix(const int);
132
                const int
133
                const int
                                             AssembleRUVMatrix(const int);
134
                                             AssembleSUPGMatrix(const int);
                const int
135
                const int
                                             AssembleLocalMatrix(const int, const int);
136
                const int
                                             AssembleInter();
137
                Grid*
                                             m_Grid = nullptr;
                                             m_GlobalMatrix = nullptr;
                Matrix*
138
                                        m_RightMatrix = nullptr;
139
                Matrix*
                                             m_problem = nullptr;
140
                Problem*
141
                std::vector<double>
                                             m_solution;
                                             m_rhsvector;
142
                std::vector<double>*
143
                unsigned int
                                             m size;
                                             m_step{ 0.1 };
144
                double
145
                                             m_time{ 0.1 };
                double
146
                unsigned int
                                             m_N;
147
                unsigned int
                                             m_Ns;
148
                std::vector<unsigned int>
                                            m_nums;
149
                // interpolation nodes
150
                std::vector<std::vector<int> m inums;
```

```
151
152
153
154
             template<class Problem, class Grid, class Matrix>
155
             void DGMethodZero<Problem, Grid, Matrix>::Discretization()
156
157
                 GeneratePortrait();
158
                 AssemblGlobal();
159
                 AssembleInter();
160
                 //ApplySources();
                 //SecondConditions();
161
162
                 //ThirdConditions():
                 //MainConditions();
163
164
                 //StefanConditions();
165
166
             template<class Problem, class Grid, class Matrix>
167
             void DGMethodZero<Problem, Grid, Matrix>::GeneratePortrait()
168
169
                 const auto& el = m_Grid->GetElement(0);
170
                 int order = m_Grid->GetElement(0)->GetDoFs();
171
                 std::vector<std::set<unsigned int» temp;
172
                 //m_Ns = m_Grid->GetNumberOfINodes();
                 m_Ns = m_Grid->GetNumberOfBoundaries();
m_N = m_Grid->GetNumberOfElements();
173
174
175
                 //temp.resize(m_Grid->GetNumberOfINodes());
176
                 unsigned i, j, k;
177
                 m_nums.resize(m_N);
178
                 m_inums.resize(m_N);
179
                 int size;
180
                 m size = 0:
181
                 std::cout « "nums" « std::endl;
182
                 for (k = 0; k < m_N; ++k)
183
184
                      const auto& elem{ m_Grid->GetElement(k) };
185
                      size = 0;
                     m_inums[k].resize(order);
186
187
                      for (i = 0; i < order; ++i)
188
189
                          if (m_Grid->interpolate(elem->GetNode(i)) > -1)
190
191
                              m_{inums[k][i]} = size;
192
                               ++size;
193
194
195
                     m_nums[k] = m_size;
                      m_size += size;
196
                      std::cout « k « "\t" « m_nums[k] « std::endl;
197
198
199
                 int sz = m Ns;
                 int nk, ne;
200
                 int sizej = 0;
int sizei = 0;
201
202
203
                 temp.resize(m_size);
204
                 for (k = 0; k < sz; ++k)
205
206
                      auto bound = m Grid->GetBoundary(k);
                     nk = bound->GetNeighbour(0);
207
208
                      ne = bound->GetNeighbour(1);
209
                      std::cout « nk « ne « std::endl;
                     sizei = 0;
sizej = 0;
210
211
212
                      if (ne != -1)
213
214
                          auto elemk = m_Grid->GetElement(nk);
215
                          auto eleme = m_Grid->GetElement(ne);
216
                          size = 0;
217
                          for (i = 0; i < order; ++i)</pre>
218
219
                               int inode = m_Grid->interpolate(elemk->GetNode(i));
                               if (inode > -1)
220
221
                                   //sizej = sizei + 1;
for (j = i + 1; j < order; ++j)
222
223
224
225
                                       int jnode = m_Grid->interpolate(elemk->GetNode(j));
226
                                       if (jnode > - 1)
227
228
                                            temp[m_nums[nk] + m_inums[nk][j]].insert(m_nums[nk] +
       m_inums[nk][i]);
229
                                            //temp[m_nums[nk] + sizej].insert(m_nums[nk] + sizei);
230
                                            //++sizej;
231
                                            //std::cout « "k";
232
233
                                   //++sizei:
234
235
236
                          }
```

```
237
                          sizei = 0;
                          sizej = 0;
238
239
                          for (i = 0; i < order; ++i)</pre>
240
                              int inode = m_Grid->interpolate(elemk->GetNode(i));
2.41
                              if (inode > -1)
242
243
244
                                  sizej = 0;
245
                                  for (j = 0; j < order; ++j)
246
247
                                       int jnode = m_Grid->interpolate(eleme->GetNode(j));
248
                                       if (jnode > - 1)
249
250
                                           temp[m_nums[ne] + m_inums[ne][j]].insert(m_nums[nk] +
       m_inums[nk][i]);
2.51
                                           //temp[m_nums[ne] + sizej].insert(m_nums[nk] + sizei);
252
                                           ++sizei:
                                           std::cout « "k";
253
254
255
256
                                   ++sizei;
257
258
                         }
259
                     else
260
261
262
                          sizei = 0;
263
                          sizej = 0;
2.64
                          auto elemk = m_Grid->GetElement(nk);
265
                          size = 0:
266
                          for (i = 0; i < order; ++i)
267
                          {
268
                              int inode = m_Grid->interpolate(elemk->GetNode(i));
269
                              if (inode > -1)
270
271
                                  sizej = sizei + 1;
                                  for (j = i + 1; j < order; ++j)</pre>
272
273
274
                                       int jnode = m_Grid->interpolate(elemk->GetNode(j));
275
                                       <u>if</u> (jnode > - 1)
276
2.77
                                           temp[m_nums[nk] + m_inums[nk][j]].insert(m_nums[nk] +
       m inums[nk][i]);
278
                                           //temp[m_nums[nk] + sizej].insert(m_nums[nk] + sizei);
279
                                           ++sizej;
280
                                           std::cout « "k";
281
282
                                  ++sizei;
283
284
285
                         }
286
                     }
287
288
                 if (m_problem->findTerm(Terms::RUV))
289
                     m_RightMatrix->Create(temp.size(), temp);
290
291
                 for (auto & it : temp)
292
                 {
293
                      for (auto& it2 : it)
                          std::cout « it2 « "\t";
294
295
                     std::cout « std::endl;
296
297
                 //m_GlobalMatrix = std::shared_ptr<Matrix>(new Matrix(m_Grid->GetNumberOfNodes(), temp));
298
                 //m_rhsvector.resize(m_Grid->GetNumberOfNodes());
299
                 //std::cout « temp.size() « std::endl;
300
                 m_GlobalMatrix->Create(temp.size(), temp);
301
                 m_rhsvector->resize(temp.size());
                 //m_solution.resize(m_Grid->GetNumberOfNodes());
//for (int 1 = 0; 1 < m_Grid->GetNumberOfNodes(); ++1)
302
303
                 // m_solution[1] = 20;
304
305
306
             template<class Problem, class Grid, class Matrix>
307
            void DGMethodZero<Problem, Grid, Matrix>::AssemblGlobal()
308
309
                 int 1;
310
                 //std::vector<std::future<int> futures;
311
                 int i, j, k, nodes;
312
                 double mij;
313
                 const int terms{ (int)m_problem->getNumberOfTerms() };
                 for (k = 0; k < terms; ++k)
314
315
316
                      switch (m_problem->getTerm(k))
317
318
                          case Terms::IDUDV:
319
                              for (1 = 0; 1 < m_N; ++1)
320
321
                                  std::cout « "IDUDV: " « 1 « std::endl;
```

```
AssembleIDUDVMatrix(1);
323
324
                              break;
                          case Terms::IDUV:
325
                             for (1 = 0; 1 < m_N; ++1)</pre>
326
                                 AssembleIDUVMatrix(1);
327
328
                              break;
329
                          case Terms::IUDV:
330
                             for (1 = 0; 1 < m_N; ++1)
331
                                 AssembleIUDVMatrix(1);
332
                             break:
                          case Terms::SUPG:
333
                             for (1 = 0; 1 < m_N; ++1)</pre>
334
335
                                 AssembleSUPGMatrix(1);
336
                             break;
                          case Terms::RUV:
337
                              for (1 = 0; 1 < m_N; ++1)
338
                                 AssembleRUVMatrix(1);
339
                             break;
340
341
                          default:
342
                             break;
343
                     }
344
                 //for (1 = 0; 1 < m_N; ++1)
345
                     //futures.push_back(async(&DGMethod<Problem, Grid, Matrix>::AssembleLocalMatrix, this,
346
       1));
347
                  // AssembleLocalMatrix(1, 0);
348
                 //for (auto &it : futures)
349
                 //it.get();
350
351
352
             template<class Problem, class Grid, class Matrix>
353
             const int DGMethodZero<Problem, Grid, Matrix>::AssembleIDUDVMatrix(const int 1)
354
355
                 int i, j, k, nodes;
356
                 double mij;
                 const auto& elem{ m_Grid->GetElement(1) };
357
                 const int dofs{ (int)elem->GetDoFs() };
358
359
                 const int terms{ (int)m_problem->getNumberOfTerms() };
360
                 nodes = elem->GetNumberOfNodes();
361
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
int sizei = 0, sizej = 0;
362
363
364
                 for (i = 0; i < (int) dofs; ++i)
365
366
367
                     auto inode = m_Grid->interpolate(elem->GetNode(i));
368
                     if (inode == -1)
369
                         continue:
370
                     sizej = 0;
                     for (j = 0; j < (int) dofs; ++j)
372
373
                          auto jnode = m_Grid->interpolate(elem->GetNode(j));
374
                          if (jnode == -1)
375
                              continue:
376
                          auto M = [&](const Mesh::Point& p)
377
378
                              //auto m = elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
                              return m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(), p) *
379
       \verb|elem->GetGradShapeFunction(i, p)| * elem->GetGradShapeFunction(j, p); \\
380
381
                         //mij = m Grid->getParameter(Parameters::DIFFUSION, 1, j) * elem->Integrate(M,
       points);
382
                          mij = elem->Integrate(M, points);
383
                          //m_GlobalMatrix->AddElement(inode, jnode, mij);
384
                          m_GlobalMatrix->AddElement(m_nums[1] + sizei, m_nums[1] + sizej, mij);
385
                          ++sizej;
386
387
                     ++sizei;
388
389
                 return 0;
390
391
             template<class Problem, class Grid, class Matrix>
392
393
             const int DGMethodZero<Problem, Grid, Matrix>::AssembleIDUVMatrix(const int 1)
394
395
                 int i, j, k, nodes;
396
                 double mij;
397
                 const auto& elem{ m_Grid->GetElement(1) };
                 const int dofs{ (int)elem->GetDoFs() };
398
399
                 const int terms{ (int)m_problem->getNumberOfTerms() };
400
                 nodes = elem->GetNumberOfNodes();
                 std::vector<Mesh::Point> points(nodes);
401
402
                 for (i = 0; i < nodes; ++i)</pre>
403
                    points[i] = m_Grid->GetNode(elem->GetNode(i));
                 int sizei = 0, sizej = 0;
for (i = 0; i < (int)dofs; ++i)</pre>
404
405
```

```
406
                 {
407
                      auto inode = m_Grid->interpolate(elem->GetNode(i));
408
                      if (inode == -1)
409
                          continue;
                      sizej = 0:
410
                      for (j = 0; j < (int) dofs; ++j)
411
412
413
                          auto jnode = m_Grid->interpolate(elem->GetNode(j));
                          if (jnode == -1)
414
415
                                ontinue;
416
                          auto M = [&](const Mesh::Point& p)
417
                              return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
418
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
419
420
                          auto _mij = elem->Integrate(M, points);
                          //m_GlobalMatrix->AddElement(inode, jnode, _mij);
m_GlobalMatrix->AddElement(m_nums[1] + sizei, m_nums[1] + sizej, _mij);
421
422
423
                          ++sizej;
424
425
                      ++sizei;
426
                 }
42.7
                 return 0;
428
429
430
             template<class Problem, class Grid, class Matrix>
431
             const int DGMethodZero<Problem, Grid, Matrix>::AssembleIUDVMatrix(const int 1)
432
433
                 int i, j, k, nodes;
434
                 double mij;
435
                 const auto& elem{ m_Grid->GetElement(1) };
436
                 const int dofs{ (int)elem->GetDoFs() };
437
                 const int terms{ (int)m_problem->getNumberOfTerms() };
438
                 nodes = elem->GetNumberOfNodes();
439
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
440
441
                 int sizei = 0, sizej = 0;
442
443
                 for (i = 0; i < dofs; ++i)</pre>
444
445
                      auto inode = m_Grid->interpolate(elem->GetNode(i));
446
                      if (inode == -1)
447
                     continue;
sizej = 0;
448
449
                      for (j = 0; j < dofs; ++j)
450
451
                          auto jnode = m_Grid->interpolate(elem->GetNode(j));
452
                          if (jnode == -1)
453
                               continue:
454
                          auto M = [&](const Mesh::Point& p)
455
                          {
456
                               return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
457
458
                          //mij = m_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j) *
        \texttt{m\_flux} \, (\texttt{m\_CoarseGrid->getSolution(l, j))} \, \, \star \, \, \texttt{elem->Integrate(M, points).x;} \\
                          mij = elem->Integrate(M, points).x;
459
                          //m_GlobalMatrix->AddElement(inode, jnode, mij);
460
                          m_GlobalMatrix->AddElement(m_nums[l] + sizei, m_nums[l] + sizej, mij);
461
462
                          ++sizej;
463
464
                      ++sizei:
465
466
                 return 0;
467
468
469
470
             template<class Problem, class Grid, class Matrix>
             const int DGMethodZero<Problem, Grid, Matrix>::AssembleRUVMatrix(const int 1)
471
472
473
                 int i, j, k, nodes;
474
                 double mij;
475
                 const auto& elem{ m_Grid->GetElement(1) };
476
                 const int dofs{ (int)elem->GetDoFs() };
477
                 const int terms{ (int)m_problem->getNumberOfTerms() };
478
                 nodes = elem->GetNumberOfNodes();
479
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)</pre>
480
481
                     points[i] = m_Grid->GetNode(elem->GetNode(i));
                 int sizei = 0, sizej = 0;
for (i = 0; i < (int)dofs; ++i)</pre>
482
483
484
485
                      auto inode = m_Grid->interpolate(elem->GetNode(i));
                      if (inode == -1)
486
487
                          continue;
488
                      sizej = 0;
489
                      for (j = 0; j < (int)dofs; ++j)
490
```

```
491
                         auto M = [&](const Mesh::Point& p)
492
493
                             double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
494
                             double h = elem->GetMeasure();
                             double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
495
       elem->GetType(), p);
496
                              double tau = 0.;
497
                              //double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
498
499
                              if (Pe >= 1)
500
                                 tau = h / 2. / vel;
501
502
                                  tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
                             auto supg = tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
503
       0) * elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p) * elem->GetShapeFunction(i, p);

return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);// + supg;
504
505
506
                         mij = elem->Integrate(M, points);
507
                         auto jnode = m_Grid->interpolate(elem->GetNode(j));
if (inode > -1 && jnode > -1)
508
509
510
511
                              m_RightMatrix->AddElement(m_nums[1] + sizei, m_nums[1] + sizej, mij);
512
513
                         }
514
515
                     ++sizei;
516
517
                 return 0;
518
519
520
             template<class Problem, class Grid, class Matrix>
             const int DGMethodZero<Problem, Grid, Matrix>::AssembleSUPGMatrix(const int 1)
521
522
523
                 int i, j, k, nodes;
524
                 double mij;
525
                 const auto& elem{ m_Grid->GetElement(1) };
526
                 const int dofs{ (int)elem->GetDoFs() };
527
                 const int terms{ (int)m_problem->getNumberOfTerms() };
                 nodes = elem->GetNumberOfNodes():
528
                 std::vector<Mesh::Point> points(nodes);
529
                 for (i = 0; i < nodes; ++i)</pre>
530
531
                     points[i] = m_Grid->GetNode(elem->GetNode(i));
532
                 for (i = 0; i < (int) dofs; ++i)
533
                 {
                     for (j = 0; j < (int) dofs; ++j)
534
535
536
                         auto inode = m_Grid->interpolate(elem->GetNode(i));
537
                         auto jnode = m_Grid->interpolate(elem->GetNode(j));
538
                         if (inode == -1 || jnode == -1)
539
                              continue:
                         auto M = [&](const Mesh::Point& p)
540
541
                              double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
543
                              double h = elem->GetMeasure();
544
                              //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
545
                             double tau = 0.;
546
                              double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
547
                              //double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. /
       Pe);
                              //double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) -
548
       1. / Pe);
549
                              //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe);
                              //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe);
550
551
                              //beta = 0.;
552
                              //for (int ii = 0; ii < (int)dofs; ++ii)
553
                                  //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetGradShapeFunction(ii, p);
                              //return beta * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)
554
       * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
555
                                       elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
                              if (Pe >= 1)
556
557
                                  tau = h / 2. / vel;
                             else
558
                                 tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
559
       elem->GetType(), p);
560
                              return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
561
       m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
562
                                      \verb|elem->GetGradShapeFunction(i, p)| * elem->GetGradShapeFunction(j, p); \\
563
                         };
```

```
564
565
                         //double tau =
566
                        auto _mij = elem->Integrate(M, points);
567
                        m_GlobalMatrix->AddElement(inode, jnode, _mij);
568
569
570
                return 0;
571
572
573
574
            template<class Problem, class Grid, class Matrix>
            const int DGMethodZero<Problem, Grid, Matrix>::AssembleInter()
575
576
577
                for (int 1 = 0; 1 < m_Ns; ++1)
578
579
                     const auto& bound{ m_Grid->GetBoundary(1) };
580
                     const auto& nk{ bound->GetNeighbour(0) };
                    const auto& ne{ bound->GetNeighbour(1) };
581
582
                    const auto& elemk{ m_Grid->GetElement(nk) };
583
                     const auto& dofs{ bound->GetDoFs() };
584
                     const auto& dofsk{ elemk->GetDoFs()
585
                     std::vector<Mesh::Point> points(dofs);
586
                     for (int i = 0; i < dofs; ++i)
587
                        points[i] = m_Grid->GetNode(bound->GetNode(i));
588
589
590
                        continue;
591
592
                     const auto& eleme{ m_Grid->GetElement(ne) };
593
                     for (int i = 0; i < dofsk; ++i)</pre>
594
595
                        int inode = m_Grid->interpolate(elemk->GetNode(i));
596
                        if (inode == -1)
597
                             continue;
598
                        for (int j = 0; j < dofsk; ++j)
599
                             int jnode = m_Grid->interpolate(elemk->GetNode(j));
600
                             if (jnode == -1)
601
602
                                 continue;
603
                             auto Tkk = [&](const Mesh::Point& p)
604
                                 auto kappa = m_problem->get_parameter(Terms::IDUDV, 1, elemk->GetType(), p);
605
                                 auto val1 = bound->GetNormal() * elemk->GetShapeFunction(j, p)
606
       elemk->GetGradShapeFunction(i, p);
607
                                 auto val2 = bound->GetNormal() * elemk->GetShapeFunction(i, p) *
       elemk->GetGradShapeFunction(j, p);
608
                                 return 0.5 * kappa * (val2 - val1);
609
610
                             auto mi = bound->Integrate(Tkk, points);
                             m_GlobalMatrix->AddElement(m_nums[nk] + m_inums[nk][i], m_nums[nk] +
611
       m_inums[nk][j], mj);
612
613
                     }
614
                     for (int i = 0; i < dofsk; ++i)
615
616
617
                         int inode = m_Grid->interpolate(elemk->GetNode(i));
                        if (inode == -1)
618
                             continue;
619
620
                        for (int j = 0; j < dofsk; ++j)
621
622
                             int jnode = m_Grid->interpolate(elemk->GetNode(j));
623
                             if (jnode == -1)
624
                                 continue;
625
                             auto Tkk = [&](const Mesh::Point& p)
626
                                 auto kappa = m_problem->get_parameter(Terms::IDUDV, 1, eleme->GetType(), p);
62.7
                                 auto val1 = bound->GetNormal() * eleme->GetShapeFunction(j, p)
628
       elemk->GetGradShapeFunction(i, p);
629
                                 auto val2 = bound->GetNormal() * elemk->GetShapeFunction(i, p) *
       eleme->GetGradShapeFunction(j, p);
630
                                 return 0.5 * kappa * (val2 + val1);
631
                             auto mj = bound->Integrate(Tkk, points);
632
633
                             m_GlobalMatrix->AddElement(m_nums[nk] + m_inums[nk][i], m_nums[ne] +
       m_inums[ne][j], mj);
634
635
636
637
                return 0:
638
639
640
            template<class Problem, class Grid, class Matrix>
641
            const int DGMethodZero<Problem, Grid, Matrix>::AssembleLocalMatrix(const int 1, const int old)
642
                int i, j, k, nodes;
double mij;
643
644
```

```
645
                const auto& elem{ m_Grid->GetElement(1) };
                const int dofs{ (int)elem->GetDoFs() };
646
647
                const int terms{ (int)m_problem->getNumberOfTerms() };
648
                nodes = elem->GetNumberOfNodes();
649
                std::vector<Mesh::Point> points(nodes);
                for (i = 0; i < nodes; ++i)

points[i] = m_Grid->GetNode(elem->GetNode(i));
650
651
652
                for (k = 0; k < terms; ++k)
653
654
                    switch (m_problem->getTerm(k))
655
                    case Terms::IUV:
656
657
                        for (i = 0; i < (int)dofs; ++i)</pre>
658
659
                             for (j = 0; j < (int)dofs; ++j)
660
661
                                 auto M = [&](const Mesh::Point& p)
662
663
                                     return m_problem->get_parameter(Terms::IUV, 1, elem->GetType(), p) *
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
664
665
                                 mij = elem->Integrate(M, points);
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
666
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
667
                                 if (inode > -1 && jnode > -1)
m_GlobalMatrix->AddElement(inode, jnode, mij);
668
669
670
671
672
                        break;
673
                    case Terms::IDUDV:
674
                        for (i = 0; i < (int)dofs; ++i)</pre>
675
                        {
676
                             for (j = 0; j < (int)dofs; ++j)
677
678
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
679
                                 if (inode == -1 || jnode == -1)
680
681
                                     continue;
682
                                 auto M = [&](const Mesh::Point& p)
683
684
                                     //auto m = elem->GetGradShapeFunction(i, p) \star
       elem->GetGradShapeFunction(j, p);
                                    return m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(), p) *
685
       elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
686
                                 };
687
                                 //mij = m_Grid->getParameter(Parameters::DIFFUSION, 1, j) *
       elem->Integrate(M, points);
                                mij = elem->Integrate(M, points);
688
                                m_GlobalMatrix->AddElement(inode, jnode, mij);
689
690
                            }
691
                        }
692
                        break;
693
                    case Terms::IDUV:
694
                        for (i = 0; i < (int) dofs; ++i)
695
696
                             for (j = 0; j < (int)dofs; ++j)
697
698
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
699
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
700
                                 if (inode == -1 || jnode == -1)
701
                                     continue:
702
                                 auto M = [&](const Mesh::Point& p)
703
                                 {
                                     return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
704
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
705
706
                                 auto _mij = elem->Integrate(M, points);
                                m_GlobalMatrix->AddElement(inode, jnode, _mij);
707
708
                            }
709
710
                        break;
711
                    case Terms::IUDV:
712
                        for (i = 0; i < dofs; ++i)</pre>
713
714
                             for (j = 0; j < dofs; ++j)
715
716
                                 auto inode = m_Grid->interpolate(elem->GetNode(i));
717
                                 auto jnode = m_Grid->interpolate(elem->GetNode(j));
718
                                 if (inode == -1 || jnode == -1)
719
                                     continue:
720
                                 auto M = [&](const Mesh::Point& p)
721
722
                                     return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
723
724
                                 //mij = m_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j) *
       725
```

```
726
                                 m_GlobalMatrix->AddElement(inode, jnode, mij);
727
728
729
                         break;
                     case Terms::EUV:
730
                         for (i = 0; i < dofs; ++i)</pre>
731
732
733
                              for (j = 0; j < dofs; ++j)
734
735
                                  auto M = [&](const Mesh::Point& p)
736
737
                                      return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
738
739
                                 mij = elem->Integrate(M, points);
740
                                  m_rhsvector->operator[](elem->GetNode(i)) +=
       m_Grid->getParameter(Parameters::MASS, 1, j) * m_Grid->getSolution(1, j) * mij;
741
                                 //m_rhsvector->operator[](m_nums[1] + i) +=
       m_CoarseGrid->getParameter(Parameters::MASS, 1, points[j]) * elem->GetValue(j) * mij;
742
743
744
                         break;
745
                     case Terms::EDUDV:
                         for (i = 0; i < dofs; ++i)</pre>
746
747
748
                             for (j = 0; j < dofs; ++j)
749
                                  auto M = [&](const Mesh::Point& p)
750
751
752
                                      return elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
       p);
753
754
                                 mij = elem->Integrate(M, points);
755
                                  m_rhsvector->operator[](elem->GetNode(i)) +=
        \texttt{m\_Grid->getParameter(Parameters::DIFFUSION, l, j)} ~ \texttt{m\_Grid->getSolution(l, j)} ~ \texttt{mij}; \\
756
757
758
                         break;
                     case Terms::EDUV:
759
760
                         for (i = 0; i < dofs; ++i)</pre>
761
762
                             for (j = 0; j < dofs; ++j)
763
764
                                  auto M = [&](const Mesh::Point& p)
765
766
                                      return elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
767
768
                                 mij = elem->Integrate(M, points).x;
769
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;
770
                             }
771
772
                         break;
773
                     case Terms::EUDV:
774
                         for (i = 0; i < dofs; ++i)</pre>
775
776
                              for (j = 0; j < dofs; ++j)
777
778
                                  auto M = [&](const Mesh::Point& p)
779
780
                                      return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
781
782
                                 mij = elem->Integrate(M, points).x;
783
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;// *mij;
784
785
786
                         break;
                     case Terms::EFV:
787
788
                         for (i = 0; i < dofs; ++i)</pre>
789
                         {
790
                              /*for (j = 0; j < dofs; ++j)
791
792
                                  auto M = [&](const Mesh::Point& p)
793
794
                                      return m problem->get parameter(Terms::EFV, elem->GetType(), l, j, p) *
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
795
796
                                  mij = elem->Integrate(M, points);
797
                                  m_rhsvector->operator[](elem->GetNode(i)) += mij;
798
799
                             auto M = [&](const Mesh::Point& p)
800
                             {
                                  return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, i, p) *
801
       elem->GetShapeFunction(i, p);
802
                             mij = elem->Integrate(M, points);
803
                             m_rhsvector->operator[](elem->GetNode(i)) += mij;
804
```

```
805
                          break;
806
807
                      case Terms::RUV:
808
                          for (i = 0; i < (int) dofs; ++i)
809
810
                               for (i = 0; i < (int) dofs; ++i)
811
812
                                   auto M = [&](const Mesh::Point& p)
813
814
                                        return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
815
                                   };
816
                                   mij = elem->Integrate(M, points);
                                   auto inode = m_Grid->interpolate(elem->GetNode(i));
817
818
                                   auto jnode = m_Grid->interpolate(elem->GetNode(j));
819
                                   if (inode > -1 && jnode > -1)
820
                                        m_RightMatrix->AddElement(inode, jnode, mij);
821
                               }
822
                          }
823
                          break;
                      case Terms::SUPG:
824
825
                          for (i = 0; i < (int)dofs; ++i)
826
82.7
                               for (j = 0; j < (int)dofs; ++j)
828
829
                                   auto inode = m_Grid->interpolate(elem->GetNode(i));
                                   auto jnode = m_Grid->interpolate(elem->GetNode(j));
830
831
                                   if (inode == -1 || jnode == -1)
832
                                        continue;
833
                                   auto M = [&](const Mesh::Point& p)
834
                                        double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1,
835
       elem->GetType(), p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
836
                                        double h = elem->GetMeasure();
837
                                        //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
838
                                        double tau = 0.;
                                        double Pe = vel * h / 2. / m problem->get parameter(Terms::IDUDV, 1,
839
       elem->GetType(), p);
840
                                        //double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) -
        1.) - 1. / Pe);
841
                                        double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.)) / (exp(2. * Pe) - 1.) / (exp(2. * Pe) - 1.)
       1.) - 1. / Pe);
                                        //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1.
842
        / Pe);
843
                                        //beta = 0.;
844
                                        //for (int ii = 0; ii < (int)dofs; ++ii)
845
                                            //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * elem->GetGradShapeFunction(ii, p);
                                        return beta * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
846
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) * elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
847
       p);
848
                                        if (Pe >= 1)
849
                                            tau = h / 2. / vel;
850
                                        else
851
                                            tau = h * h / 12. / m problem->get parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
852
                                        //return 0.;
853
                                        return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) * elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
854
       p);
855
                                   };
856
857
                                   //double tau =
858
                                   auto _mij = elem->Integrate(M, points);
859
                                   m_GlobalMatrix->AddElement(inode, jnode, _mij);
860
                               }
861
862
                          break;
863
                      default:
864
                          break;
865
                      }
866
                 }
867
                 return 0;
868
             template<class Problem, class Grid, class Matrix>
869
870
             void DGMethodZero<Problem, Grid, Matrix>::MainConditions()
871
872
                 double muf 1e10 }:
                 const auto n = m_problem->get_number_of_boundaries();
const auto m = m_Grid->GetNumberOfBoundaries();
873
875
                  for (int i = 0; i < n; ++i)
876
877
                      const auto& type = m_problem->get_boundary_type(i);
878
                      for (int j = 0; j < m; ++j)
879
```

```
880
                        const auto& row = m_Grid->GetBoundary(j);
881
                        if (row->GetType() == type)
882
                            const int dofs = (int)row->GetDoFs();
const int dofs2 = 2;
883
884
                            const auto& elem_num = row->GetNeighbour(0);
885
                            const auto& elem = m_Grid->GetElement(elem_num);
886
887
                            const int dofs_elem = elem->GetDoFs();
888
                            std::vector<Mesh::Point> points(dofs_elem);
889
                            for (int k = 0; k < dofs_elem; ++k)
                                points[k] = m_Grid->GetNode(elem->GetNode(k));
890
891
                            for (int k = 0; k < dofs; ++k)
892
                                int l = 0;
893
894
                                for (; 1 < dofs_elem; ++1)</pre>
895
896
                                    if (elem->GetNode(1) == row->GetNode(k))
897
898
899
                                m_GlobalMatrix->NullRow(row->GetNode(k));
900
                                //m_GlobalMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
901
                                //m_rhsvector->operator[](row->GetNode(k))
       m_problem->get_boundary_parameter(0, type, m_Grid->GetNode(row->GetNode(k)));
902
                                //m_rhsvector->operator[](row->GetNode(k)) =
       903
       [=](const Mesh::Point& p) { return m_problem->get_boundary_parameter(0, type, p); });
901
                                if (m_problem->findTerm(Terms::RUV))
905
906
                                        m RightMatrix->NullRow(row->GetNode(k));
907
                                        //m_RightMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
908
909
910
                            /*for (int k = dofs2; k < dofs; ++k)
911
                                m_GlobalMatrix->NullRow(row->GetNode(k));
912
                                m_rhsvector->operator[](row->GetNode(k)) = 0;
913
914
915
916
                    }
917
918
                /*for (auto bnd : m_Grid->GetBoundaryConditions())
919
                    if (get<0>(bnd.second) == 1)
920
921
                        for (auto row : m_Grid->GetBoundary())
922
923
                            if (bnd.first == row->GetType())
924
                                for (int i = 0; i < row->GetDoF(); ++i)
925
926
927
                                    m_GlobalMatrix->NullRow(row->GetNodes(i));
                                    m_rhsvector[row->GetNodes(i)] =
928
       get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
929
                                }
                            }
930
931
                        }
932
                }*/
933
934
            template<class Problem, class Grid, class Matrix>
935
            void DGMethodZero<Problem, Grid, Matrix>::SecondConditions()
936
937
                double theta = 0;
938
                int nfem;
939
                Mesh::Point temp[3];
940
                std::vector<int> local;
941
                for (auto bnd : m_Grid->GetBoundaryConditions())
942
943
                    //if (get<0>(bnd.second) == 2)
944
945
                        for (auto row : m_Grid->GetBoundary())
946
947
                            if (bnd.first == row->GetType())
948
949
                                local.resize(0);
950
                                int dofs = row->GetDoF();
                                nfem = row->GetNumberOfElement(0);
951
952
                                auto elem = m_Grid->GetElements()[nfem];
953
                                //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
954
                                for (int j = 0; j < dofs; ++j)
955
                                    temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
956
957
                                    for (int i = 0; i < elem->GetDoF(); ++i)
958
959
                                        if (row->GetNodes(j) == elem->GetNodes()[i])
960
961
                                            local.push_back(i);
962
                                            break:
```

```
963
964
965
                                  for (int i = 0; i < dofs; ++i)</pre>
966
967
968
                                      for (int i = 0; i < dofs; ++i)
969
970
                                           //theta = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
                                          theta = 0;
971
972
                                          auto GetMass = [&](const Mesh::Point& p) {return
       elem->GetBasis(local[j], p) * elem->GetBasis(local[i], p); };
973
                                          auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
       p) *row->GetBasis(i, p); };
974
                                          //if (i < 2 || j < 2)
975
                                          m_rhsvector[row->GetNodes(i)] += theta * row->Integrate(GetMass,
       temp);
976
                                          //if (i < 3 || j < 3)
977
                                          // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
978
       temp);
979
980
981
                             }
                        }
982
983
                     }
984
                }
985
986
             template<class Problem, class Grid, class Matrix>
987
            void DGMethodZero<Problem, Grid, Matrix>::StefanConditions()
988
989
                 double dest{ 0. }, lat{ 0 };
990
                 int nfem;
991
                 Mesh::Point temp[3];
992
                 std::vector<int> local;
993
                 for (auto bnd : m_Grid->GetBoundaryConditions())
994
995
                     //if (qet<0>(bnd.second) == 4)
996
997
                         lat = 0;
998
                         //lat = get<2>(bnd.second);
999
                         for (auto row : m_Grid->GetBoundary())
1000
                          {
                               if (bnd.first == row->GetType())
1001
1002
1003
                                   local.resize(0);
1004
                                   int dofs = row->GetDoF();
1005
                                   nfem = row->GetNumberOfElement(0);
1006
                                   auto elem = m_Grid->GetElements()[nfem];
                                   //auto GetBasis = [&] (int t, Point p) {return elem->GetBasis(t, p); };
for (int j = 0; j < dofs; ++j)</pre>
1007
1008
1009
1010
                                       temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
1011
                                       for (int i = 0; i < elem->GetDoF(); ++i)
1012
                                            if (row->GetNodes(j) == elem->GetNodes()[i])
1013
1014
1015
                                                local.push_back(i);
1016
                                                break;
1017
1018
                                       }
1019
                                   for (int i = 0; i < dofs; ++i)</pre>
1020
1021
1022
                                       for (int j = 0; j < dofs; ++j)
1023
                                            dest = 0;
1024
                                            //dest = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
1025
                                           auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
1026
       p)*row->GetBasis(i, p); };
1027
                                            //if (i < 2 | | j < 2)
1028
                                           m_rhsvector[row->GetNodes(i)] += dest * lat *
       row->Integrate(GetBBasis, temp);
1029
                                            //if (i < 3 || j < 3)
1030
                                            // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
1031
       temp);
1032
1033
                                   }
                              }
1034
                          }
1035
1036
                      }
1037
                 }
1038
1039
              template<class Problem, class Grid, class Matrix>
1040
             void DGMethodZero<Problem, Grid, Matrix>::ThirdConditions()
1041
1042
                  double param{ 0 }, beta{ 0 };
```

```
1043
                   int nfem;
                   Mesh::Point temp[6];
1044
1045
                   std::vector<int> local;
                   auto fxy = [&](const Mesh::Point& p) {return (10 * p.y*m_time + m_time) / 10; }; //auto fxy = [&](const Point& p){return 10 * p.y + 10 * m_time; };
1046
1047
                   for (auto bnd : m_Grid->GetBoundaryConditions())
1048
1049
1050
                       //if (get<0>(bnd.second) == 3)
1051
1052
1053
                            for (auto row : m_Grid->GetBoundary())
1054
1055
                                if (bnd.first == row->GetType())
1056
1057
                                    local.resize(0);
1058
                                     int dofs = row->GetDoF();
1059
                                    nfem = row->GetNumberOfElement(0);
                                     auto elem = m_Grid->GetElements()[nfem];
1060
1061
                                     //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
1062
                                     auto order = elem->GetDoF();
1063
                                     for (int j = 0; j < dofs; ++j)
1064
1065
                                         temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
1066
                                         for (int i = 0; i < order; ++i)</pre>
1067
1068
                                              if (row->GetNodes(j) == elem->GetNodes()[i])
1069
1070
                                                  local.push_back(i);
1071
                                                  break;
1072
1073
                                         }
1074
1075
                                     double val{ 0 };
1076
                                     for (int i = 0; i < dofs; ++i)
1077
1078
                                         for (int j = 0; j < dofs; ++j)
1079
                                             param = 0;
1080
1081
                                              beta = 0;
1082
                                              //beta = get<2>(bnd.second);
                                             //param = get<1>(bnd.second) (m_Grid->GetNodes() [row->GetNodes(i)]);
//param = fxy(temp[j]);
1083
1084
                                              auto GetBBasis = [&](const Mesh::Point& p) {return
1085
       elem->GetBasis(local[j], p)*elem->GetBasis(local[i], p); };
//val = row->GetElement(GetBasis, temp);
1086
1087
                                              val = row->Integrate(GetBBasis, temp);
1088
                                             m_GlobalMatrix->operator()(row->GetNodes(i), row->GetNodes(j)) +=
       beta * val;
1089
                                             m rhsvector[row->GetNodes(i)] += beta * param * val;
1090
1091
                                    }
1092
                               }
1093
                           }
1094
                       }
1095
1096
1097
              template<class Problem, class Grid, class Matrix>
1098
              Matrix* DGMethodZero<Problem, Grid, Matrix>::GetGlobalMatrix() const
1099
1100
                   return m_GlobalMatrix;
1101
1102
              template<class Problem, class Grid, class Matrix>
1103
              const double DGMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p) const
1104
1105
                   if (!m_solution.size())
                  return -1;
double val = 0;
1106
1107
                   int nfem = -1:
1108
1109
                   nfem = m_Grid->FindElement(p);
1110
                   if (nfem == -1)
1111
                       return -1;
1112
                   auto elem = m_Grid->GetElements()[nfem];
                   for (int i = 0; i < elem->GetDoF(); ++i)
  val += m_solution[elem->GetNodes()[i]] * elem->GetBasis(i, p);
1113
1114
                   return val;
1115
1116
              template<class Problem, class Grid, class Matrix>
1117
1118
              const double DGMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
       std::vector<double>& vec) const
1119
              {
1120
                   if (!vec.size())
                       return -1;
                   double val{ 0 };
1122
1123
                   int nfem{ -1 };
1124
                   nfem = m_Grid->FindElement(p);
1125
                   if (nfem == -1)
                       return -1;
1126
```

```
auto elem = m_Grid->GetElements()[nfem];
                  for (int i = 0; i < elem -> GetDoFs(); ++i)
1128
1129
                      val += vec[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1130
                  return val;
1131
              template<class Problem, class Grid, class Matrix>
1132
              const double DGMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
1133
       std::vector<double>& vec, const int num) const
1134
1135
                  if (!vec.size() || num < 0)</pre>
                  return -1;
double val{ 0 };
1136
1137
                  auto elem = m_Grid->GetElements()[num];
1138
                  for (int i = 0; i < elem->GetDoF(); ++i)
1139
1140
                      val += vec[elem->GetNodes()[i]] * elem->GetBasis(i, p);
1141
                  return val;
1142
              //template<class Problem, class Grid, class Matrix>
1143
1144
              //const Mesh::Point DGMethodZero<Problem, Grid, Matrix>::GetGradValue(const Mesh::Point& p,
       const std::vector<double>& vec) const
1145
1146
              //
                 Mesh::Point val{ 0, 0 };
              // int nfem{ -1 };
1147
              11
                  nfem = m_Grid->FindElement(p);
1148
              11
                 if (nfem == -1)
1149
1150
                      return val;
1151
              //
                  auto elem = m_Grid->GetElements()[nfem];
1152
              // for (int i = 0; i < elem->GetDoF(); ++i)
1153
              11
                      val.x += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).x;
1154
              11
                      val.y += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).y;
val.z += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).z;
1155
              //
1156
              //
1157
1158
                  return val;
1159
              1/1
              template<class Problem, class Grid, class Matrix>
1160
              const double DGMethodZero<Problem, Grid, Matrix>::GetEffective(const std::vector<double>& vec)
1161
       const
1162
1163
                  double sum = 0;
1164
                  //std::vector<int> dofs;
1165
                  //Mesh::Point points[10];
                  //for (int i = 0; i < m_Grid->GetElements().size(): ++i)
1166
1167
1168
                      //auto mb = [&](const Mesh::Point& b) {return GetGradValue(b, vec)*GetGradValue(b,
       vec); };
1169
                       //dofs.resize(0);
1170
                       //auto elem = m_Grid->GetElements()[i];
                       //int order = elem->GetDoF();
1171
1172
                       //double diff = std::qet<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
1173
                       //for (int j = 0; j < order; ++j)
1174
1175
                           //dofs.push_back(elem->GetNodes()[j]);
1176
                          //points[j] = m_Grid->GetNodes()[dofs[j]];
1177
                       //}
1178
                      //sum += diff * elem->Integrate(mb, points);
1179
                  //std::cout « "Effect (local): " « sum « std::endl;
1180
1181
                  //std::cout « "Effect (local) sqrt: " « sqrt(sum) « std::endl;
                  return sum;
1182
1183
              //template<class Problem, class Grid, class Matrix>
1184
1185
              //const Mesh::Point DGMethodZero<Problem, Grid, Matrix>::GetLambdaGrad(const Mesh::Point& p,
       const std::vector<double>& vec) const
1186
1187
                 Mesh::Point val{ 0, 0, 0 };
1188
              11
                 //double val{ 0 };
                  double diff{ 0 };
              11
1189
1190
              11
                  Mesh::Point temp{ 0, 0, 0 };
1191
                  int nfem{ -1 };
1192
                  nfem = m_Grid->FindElement(p);
1193
              11
                  if (nfem == -1)
                      return val;
1194
              11
              11
                 auto elem = m_Grid->GetElements()[nfem];
1195
              //
                 diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
1196
                 for (int i = 0; i < elem->GetDoF(); ++i)
1197
1198
                 {
1199
                       // val += elem -> GetGradBasis(i, p) * elem -> GetGradBasis(i, p) * vec[elem -> GetNodes()[i]] \\
       * vec[elem->GetNodes()[i]] * diff;
1200
                      //val += elem->GetBasis(i, p) * vec[elem->GetNodes()[i]] * diff;
                      temp = elem->GetGradBasis(i, p);
              11
1201
                      val.x += temp.x * vec[elem->GetNodes()[i]] * (diff);
val.y += temp.y * vec[elem->GetNodes()[i]] * (diff);
val.z += temp.z * vec[elem->GetNodes()[i]] * (diff);
1202
              11
1203
1204
1205
1206
                  return val;
1207
              //1
```

```
template<class Problem, class Grid, class Matrix>
               const std::vector<double> DGMethodZero<Problem, Grid, Matrix>::GetRightVector() const
1209
1210
1211
                    return *m rhsvector;
1212
               template<class Problem, class Grid, class Matrix>
1213
               void DGMethodZero<Problem, Grid, Matrix>::OutDatFormat(const Mesh::Point& mn, const
1214
        Mesh::Point& mx, const std::string& file_name, const std::vector<double>& vec) const
1215
                    std::ofstream of(file_name + "z.dat");
1216
                    std::streambuf *buf = std::cout.rdbuf();
1217
                    std::cout.rdbuf(of.rdbuf());
1218
                    std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
1219
1220
1221
                    std::cout « "ZONE i=51, j=51, F=POINT\n";
                    double stepx = (mx.x - mn.x) / 51;
double stepy = (mx.y - mn.y) / 51;
for (int i = 0; i < 51; ++i)
    for (int j = 0; j < 51; ++j)</pre>
1222
1223
1224
1225
                              std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" «
        GetValue(Mesh::Point(mn.x + j * stepx, mn.y + i * stepy, mn.z), vec) « std::endl;
1227
                    std::cout.rdbuf(buf);
1228
                    of.close();
                    of.open(file_name + "x.dat");
1229
                    buf = std::cout.rdbuf();
1230
1231
                    std::cout.rdbuf(of.rdbuf());
                    std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1232
1233
1234
                    for (int i = 0; i < 51; ++i)

for (int j = 0; j < 51; ++j)
1235
1236
        std::cout mn.x + j * stepx  "\t" < mn.y + stepy * i < "\t" <
GetValue (Mesh::Point (mn.z, mn.x + j * stepx, mn.y + i * stepy), vec) </pre> std::endl;
1237
1238
                    std::cout.rdbuf(buf);
1239
                    of.close();
                    of.open(file_name + "y.dat");
1240
                    buf = std::cout.rdbuf();
1241
                    std::cout.rdbuf(of.rdbuf());
1242
                    std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
1243
1244
                    std::cout « "ZONE i=51, j=51, F=POINT\n";
1245
                    for (int i = 0; i < 51; ++i)

for (int j = 0; j < 51; ++j)
1246
1247
        std::cout «mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" « GetValue (Mesh::Point (mn.x + j * stepx, mn.z, mn.y + i * stepy), vec) « std::endl;
1248
1249
                    std::cout.rdbuf(buf);
1250
                    of.close();
1251
1252
               template < class Problem, class Grid, class Matrix>
1253
               void DGMethodZero<Problem, Grid, Matrix>::ApplySources()
1254
1255
                    int nfem = -1;
1256
                    auto total = m_problem->get_total_sources();
                    for (int i = 0; i < total; ++i)
1257
1258
1259
                         auto src = m_problem->get_point_source(i);
                         auto point = src.get_point();
1260
                         nfem = m_Grid->FindElement(point);
1261
1262
                         if (nfem != -1)
1263
1264
                              auto val = src.get value();
                              auto elem = m_Grid->GetElement(nfem);
1265
                              for (int j = 0; j < 3; ++j)
    m_rhsvector->operator[](elem->GetNode(j)) += val * elem->GetShapeFunction(j,
1266
1267
        point);
1268
                         nfem = -1:
1269
1270
1271
                    /*for (auto srd : m_Grid->GetDottedSources())
1272
1273
                         nfem = m_Grid->FindElement(srd.first);
1274
                         if (nfem != -1)
1275
                              auto elem = m_Grid->GetElements()[nfem];
1276
1277
                              for (int i = 0; i < elem -> GetDoF(); ++i)
1278
1279
                                   m_rhsvector[elem->GetNodes()[i]] += srd.second * elem->GetBasis(i, srd.first);
1280
1281
1282
                         nfem = -1:
1283
1284
1285
               template<class Problem, class Grid, class Matrix>
1286
               void DGMethodZero<Problem, Grid, Matrix>::Rediscretization(const std::shared_ptr<Grid>& grid)
1287
1288
                    m_GlobalMatrix->NullMatrix();
1289
                    for (unsigned int i = 0; i < m rhsvector->size(); ++i)
```

```
(*m\_rhsvector)[i] = 0;
                  AssemblGlobal();
1291
1292
                  //SecondConditions();
1293
                  //ApplySources();
1294
                  //StefanConditions():
                  MainConditions();
1295
1296
1297
             template < class Problem, class Grid, class Matrix>
1298
             void DGMethodZero<Problem, Grid, Matrix>::Rediscretization()
1299
1300
                  m_time += m_step;
                  m GlobalMatrix->NullMatrix();
1301
1302
                  for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
1303
                      (*m_rhsvector)[i] = 0;
1304
                  AssemblGlobal();
1305
                  SecondConditions();
1306
                  ThirdConditions():
1307
                  StefanConditions();
1308
                  //ApplySources();
1309
                  MainConditions();
1310
1311
             template<class Problem, class Grid, class Matrix>
             void DGMethodZero<Problem, Grid, Matrix>::GetSolution(std::vector<double>& vec)
1312
1313
             {
1314
                  int size = vec.size();
                  //Translation(vec);
1315
1316
                  for (int i = 0; i < size; ++i)</pre>
1317
                     vec[i] = m_solution[i];
1318
1319
             template<class Problem, class Grid, class Matrix>
             const double DGMethodZero<Problem, Grid, Matrix>::GetSolution(const Grid& q, const
1320
       std::vector<double> &weights, const Mesh::Point& p)
1321
1322
                  double sum{ 0 };
                 auto nfem{ g.FindElement(p) };
if (nfem < 0)</pre>
1323
1324
                      return 0.;
1325
1326
                  auto elem{ g.GetElement(nfem) };
1327
                  auto dofs{ elem->GetDoFs() };
1328
                  for (auto i{ 0 }; i < dofs; ++i)</pre>
1329
                     sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1330
                  return sum;
1331
1332
             template<class Problem, class Grid, class Matrix>
             const double DGMethodZero<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
1333
       std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1334
1335
                  double sum{ 0 };
                  //if (nfem < 0)
1336
1337
                       return 0.;
1338
                  auto elem{ g.GetElement(nfem) };
1339
                  auto dofs{ elem->GetDoFs() };
1340
                  //std::cout « nfem « std::endl;
1341
                  for (auto i{ 0 }; i < dofs; ++i)</pre>
                     sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1342
1343
                  return sum;
1344
1345
             template<class Problem, class Grid, class Matrix>
             const Mesh::Point DGMethodZero<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
1346
       std::vector<double> &weights, const Mesh::Point& p)
1347
             {
1348
                  Mesh::Point sum{ 0, 0, 0 };
1349
                  auto nfem{ g.FindElement(p) };
                  auto elem{ g.GetElement(nfem) };
1350
1351
                  auto dofs{ elem->GetDoFs() };
                  for (auto i{ 0 }; i < dofs; ++i)</pre>
1352
                     sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
1353
                  return sum;
1354
1355
1356
             template<class Problem, class Grid, class Matrix>
1357
              const Mesh::Point DGMethodZero<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
       std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1358
             {
1359
                  Mesh::Point sum{ 0, 0, 0 };
                 auto elem{ g.GetElement(nfem) };
auto dofs{ elem->GetDoFs() };
1360
1361
1362
                  for (auto i{ 0 }; i < dofs; ++i)</pre>
1363
                     sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
1364
                  return sum;
1365
             template<class Problem, class Grid, class Matrix>
1366
1367
             void DGMethodZero<Problem, Grid, Matrix>::LoadSolution(const std::vector<double>& vec)
1368
1369
                  m_solution.resize(vec.size());
1370
                  for (unsigned int i = 0; i < vec.size(); ++i)</pre>
                      m_solution[i] = vec[i];
1371
1372
             }
```

```
template<class Problem, class Grid, class Matrix>
              void DGMethodZero<Problem, Grid, Matrix>::OutMeshFormat(const std::string& file_name, const
1374
       std::vector<double>& vec)
1375
             {
1376
                  const int size{ (int)m Grid->GetNodes().size() };
       1377
1378
1379
1380
       FETETRAHEDRON\n");
1381
                  ofs « title;
                  Mesh::Point p;
for (int i = 0; i < size; ++i)
1382
1383
1384
                       \begin{tabular}{ll} $p = m\_Grid -> GetNodes()[i]; \\ ofs & & & & "\t" & & p.y & & "\t" & & p.z & & "\t" & & GetValue(p, vec, 1) & & std::endl; \\ \end{tabular} 
1385
1386
1387
1388
                  for (int i = 0; i < number; ++i)
1389
1390
                       auto elem = m_Grid->GetElements()[i];
1391
                       for (int k = 0; k < 4; ++k)
1392
                           ofs « elem->GetNodes()[k] + 1 « "\t^*;
1393
1394
1395
                      ofs « std::endl;
1396
1397
                  ofs.close();
1398
1399
              template<class Problem, class Grid, class Matrix>
              void DGMethodZero<Problem, Grid, Matrix>::OutMeshTimeFormat(const std::string& file name, const
1400
       std::vector<double>& vec)
1401
1402
                  const int size{ (int)m_Grid->GetNodes().size() };
1403
                  const int number{ (int)m_Grid->GetElements().size() };
       //const int size{ number * 4 };
std::ofstream ofs(file_name + ".dat", std::ios::out | std::ios::app);
std::string title("TITLE = \"Mesh data\"\n Variables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N
= " + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
1404
1405
1406
       FETETRAHEDRON\n");
1407
                  ofs « title;
                  Mesh::Point p;
for (int i = 0; i < size; ++i)</pre>
1408
1409
1410
                      1411
1412
1413
1414
                  for (int i = 0; i < number; ++i)
1415
1416
                       auto elem = m Grid->GetElements()[i];
1417
                       for (int k = 0; k < 4; ++k)
1418
1419
                           ofs < elem->GetNodes()[k] + 1 < "\t";
1420
1421
                      ofs « std::endl;
1422
                  ofs.close();
1424
1425
              template<class Problem, class Grid, class Matrix>
1426
              void DGMethodZero<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
       std::function<const double(const Mesh::Point&, const std::vector<double>&, const int)> GetVal,
       std::vector<double>& vec)
1427
              {
1428
                  for (int i = 0; i < m Grid->GetElements().size(); ++i)
1429
1430
                       auto elem = m_Grid->GetElements()[i];
                       int order = elem->GetDoF();
1431
                      for (int j = 0; j < order; ++j)
    sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec, i);
1432
1433
1434
                  }
1435
1436
              template<class Problem, class Grid, class Matrix>
              void DGMethodZero<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
1437
       std::function<const double(const Mesh::Point&, const std::vector<double>&)> GetVal,
       std::vector<double>& vec, const int)
1438
1439
                  for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1440
1441
                       auto elem = m_Grid->GetElements()[i];
                       int order = elem->GetDoF();
1442
                       for (int j = 0; j < order; ++j)
1443
1444
                           sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec);
1445
1446
1447
              template<class Problem, class Grid, class Matrix>
              const std::vector<double> DGMethodZero<Problem, Grid, Matrix>::SetSolution(const int sol, const
1448
       int lig, const double s, const double 1, const double m)
```

```
1450
                   m_solution.resize(m_Grid->GetNodes().size());
1451
                   for (i = 0; i < m_Grid->GetElements().size(); ++i)
1452
1453
1454
                       auto elem = m_Grid->GetElements()[i];
1455
                        int order = elem->GetDoF();
1456
                        if (m_Grid->GetElements()[i]->GetType() == liq)
1457
                           for (int j = 0; j < order; ++j)
1458
                                m_solution[elem->GetNodes()[j]] = 1;
1459
                           for (int j = 0; j < order; ++j)</pre>
1460
                                m_solution[elem->GetNodes()[j]] = s;
1461
1462
1463
1464
                   for (auto bnd : m_Grid->GetBoundaryConditions())
1465
                        //if (get<0>(bnd.second) == 4)
1466
1467
1468
                            for (auto row : m_Grid->GetBoundary())
1469
1470
                                 if (bnd.first == row->GetType())
1471
                                     int dofs = row->GetDoF();
for (int i = 0; i < dofs; ++i)</pre>
1472
1473
1474
1475
                                         m_solution[row->GetNodes(i)] = m;
1476
1477
1478
                            }
1479
1480
1481
                   return m_solution;
1482
              template<class Problem, class Grid, class Matrix>DGMethodZero<Problem, Grid, Matrix>::~DGMethodZero()
1483
1484
1485
                   delete m_Grid;
1487
1488
1489 }
1490
1491 #endif // !CORENC_METHODS_DGMethodZero_h
```

7.75 CoreNCFEM/Methods/DGSolution.h File Reference

#include "DGMethod.h"

Classes

- class corenc::method::DGSolution < Grid >
- class corenc::method::STSolution< Grid >

Namespaces

- namespace corenc
- namespace corenc::method

7.76 DGSolution.h 441

7.76 DGSolution.h

```
Go to the documentation of this file.
```

```
1 #ifndef CORENC_METHODS_DGSOLUTION_H_
2 #define CORENC_METHODS_DGSOLUTION_H_
4 #include "DGMethod.h"
5 namespace corenc
6 {
      namespace method
8
           template<class Grid>
10
           class DGSolution
11
           public:
12
1.3
                DGSolution() {};
                DGSolution(const std::vector<double>& w) :m_w{ w } {}
14
                DGSolution(const DGSolution<Grid>& dg) :m_w{ dg.m_w } {}}
15
                DGSolution<Grid>& operator=(const DGSolution<Grid>& dg)
16
18
                    m_w = dg.m_w;
19
                    return *this;
20
                ~DGSolution()
21
22
23
                    if (m_w.size() > 0)
                        std::vector<double>().swap(m_w);
25
2.6
                const double
                                              getWeight(const Grid& g, const Mesh::Point& p) const
2.7
28
                    if (m w.size() > 0)
29
                         return DGMethod<int, Grid, int>::GetSolution(g, m_w, p);
                    return 0.;
31
32
                const std::vector<double>
                                              getWeights() const { return m_w; }
33
                const int
                                              updateWeight (const unsigned int i, const double val)
34
35
                    if (i < m w.size())</pre>
36
37
                         m_w[i] = val;
38
                         return 0;
39
40
                    return 1;
41
           private:
43
                std::vector<double>
                                              m_w;
44
            };
4.5
            template<class Grid>
            class STSolution
46
48
            public:
49
                STSolution() {};
50
                STSolution(const Grid& g):m_grid{g}{}
51
                STSolution(
                    const std::vector<DGSolution<Grid>>& w,
52
                    const std::vector<double> time,
53
                    const Grid& g) : m_w{ w }, m_time{ time }, m_grid{g} {}
55
                STSolution(const STSolution<Grid>& st) :m_w{ st.m_w }, m_time{ st.m_time }, m_grid{st.m_grid}
56
                STSolution<Grid>& operator=(const STSolution<Grid>& st)
57
58
                    m w = st.m w;
59
                    m_time = st.m_time;
                    m_grid = st.m_grid;
                    return *this;
62
                ~STSolution()
6.3
64
65
                    if (m_w.size() > 0)
                         std::vector<DGSolution<Grid»().swap(m_w);</pre>
66
67
                    if (m_time.size() > 0)
68
                        std::vector<double>().swap(m_time);
69
70
                const double
                                              getWeight(const Mesh::Point& p, const double time) const
71
72
                    int i = 0;
73
                    auto sz = m_time.size();
74
                    if (fabs(time) < 1e-14)
7.5
                         return DGMethod<Grid>::GetSolution(m_grid, m_w[0].getWeights(), p);
                    for (; i < sz; ++i)</pre>
76
                         if (time < m_time[i])</pre>
79
                             break;
80
                     if (i == sz)
81
```

```
--i;
                   double dt = m_time[i] - m_time[i - 1];
                   auto temp = DGMethod<Grid>::GetSolution(m_grid, m_w[i - 1].getWeights(), p);
double du = DGMethod<Grid>::GetSolution(m_grid, m_w[i].getWeights(), p) - temp;
84
8.5
                   86
               };
               const int
                                             updateWeight(
89
                   const std::vector<double> time,
90
                   const std::vector<DGSolution<Grid>> w
91
92
                   m_time = time;
93
                   m w = w;
96
               const int
                                           addTimeLayer(
                   const double time,
98
                   const DGSolution<Grid> w
99
100
                    m_time.push_back(time);
102
                    m_w.push_back(w);
103
                    return 0;
104
                const std::vector<DGSolution<Grid> getWeights() const { return m_w; }
105
           private:
106
107
               std::vector<DGSolution<Grid»
108
                std::vector<double>
                                                                            m_time;
109
                                                                            m_grid;
110
            };
       }
111
112 }
113 #endif // !CORENC_METHODS_DGSOLUTION_H_
```

7.77 CoreNCFEM/Methods/FEAnalysis.h File Reference

```
#include <vector>
#include "../Point.h"
```

Classes

class corenc::method::FEAnalysis< Method1, Method2, Mesh1, Mesh2 >

Namespaces

- namespace corenc
- namespace corenc::method

Macros

• #define CORENC_METHODS_FEANALYSIS_H_

7.77.1 Macro Definition Documentation

7.77.1.1 CORENC_METHODS_FEANALYSIS_H_

#define CORENC_METHODS_FEANALYSIS_H_

7.78 FEAnalysis.h 443

7.78 FEAnalysis.h

Go to the documentation of this file.

```
#ifndef CORENC_METHODS_FEANALYSIS_H_
3 #define CORENC_METHODS_FEANALYSIS_H_
4 #include <vector>
5 #include "../Point.h"
6 namespace corenc
8
      namespace method
10
           template<class Method1, class Method2, class Mesh1, class Mesh2>
           class FEAnalysis
12
           public:
1.3
               FEAnalysis() {};
14
15
                ~FEAnalysis() {};
                                                  L2Norm( const Method1& method1,
               const double
17
                                                          const Method2& method2,
18
                                                          const Mesh1& mesh1,
19
                                                          const Mesh2& mesh2,
                                                          const std::vector<double>& w1,
20
21
                                                          const std::vector<double>& w2) const;
22
23
            template<class Method1, class Method2, class Mesh1, class Mesh2>
24
           const double FEAnalysis<Method1, Method2, Mesh1, Mesh2>::L2Norm(
25
                const Method1& method1,
26
                const Method2& method2.
                const Mesh1& mesh1,
                const Mesh2& mesh2,
29
                const std::vector<double>& w1,
30
                const std::vector<double>& w2) const
31
               double sum{ 0 }, sum2{0};
32
33
                double res, res2;
                int j;
                std::vector<int> dofs;
36
                int order = mesh1.GetElement(0)->GetDoFs();
37
                dofs.resize(order);
                std::vector<Mesh::Point> points(order);
38
39
                auto sub = [&](const Mesh::Point& p)
40
41
                    return (method1.GetValue(p, w1) - method2.GetValue(p, w2)) * (method1.GetValue(p, w1) -
       method2.GetValue(p, w2));
42
                auto r = [&](const Mesh::Point& p)
43
44
                    return method1.GetValue(p, w1);
45
47
                const int n = (int)mesh1.GetNumberOfElements();
48
                for (int i = 0; i < n; ++i)
49
50
                    const auto& elem = mesh1.GetElement(i);
                    for (j = 0; j < order; ++j)
    points[j] = mesh1.GetNode(elem->GetNode(j));
51
                        = elem->Integrate(sub, points);
54
                    res2 = elem->Integrate(r, points);
                    sum += res;
sum2 += res2;
55
56
57
                if (dofs.size() > 0)
                    std::vector<int>().swap(dofs);
60
                if (points.size() > 0)
61
                    std::vector<Mesh::Point>().swap(points);
62
                return sqrt(sum/sum2);
63
64
67 #endif // !CORENC_METHODS_FEANALYSIS_H_
```

7.79 CoreNCFEM/Methods/FEMethod.h File Reference

```
#include <functional>
#include <set>
#include "../Point.h"
```

```
#include "../Parameter.h"
#include "CSMethod.h"
#include <memory>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
```

Classes

- class corenc::method::CFEMethod< Type >
- class corenc::method::FEMethod< Problem, Grid, Matrix >

Namespaces

- · namespace corenc
- · namespace corenc::Mesh
- · namespace corenc::method

Enumerations

enum class corenc::method::BoundaryType { corenc::method::MAIN , corenc::method::SECOND , corenc::method::THIRD , corenc::method::FREE }

7.80 FEMethod.h

Go to the documentation of this file.

```
1 // FEMethod.h describes an abstract interface and functions for a general finite element method
3 #ifndef CORENC_METHODS_FEMethod_h
4 #define CORENC_METHODS_FEMethod_h
5 #include <functional>
6 #include <set>
7 #include "../Point.h"
8 #include "../Parameter.h"
9 #include "CSMethod.h"
10 #include <memory>
11 #include <cmath>
12 #include <map>
13 #include <algorithm>
14 #include <vector>
15 #include <iostream>
16 #include <fstream>
17 #include <string>
18 namespace corenc
20
        namespace Mesh
21
            class Point:
22
23
       namespace method
             enum class BoundaryType
27
                  MAIN,
2.8
                  SECOND,
29
30
                  THIRD,
```

7.80 FEMethod.h 445

```
32
           // class Type = Type of the solution, for ex vector or double, or even more specific
33
34
35
36
           template<class Type>
           class CFEMethod
37
38
39
           public:
40
                CFEMethod() {};
41
                virtual ~CFEMethod() {};
                virtual const int
                                                               Assemble() = 0:
42
                                                               GetSolution(const std::vector<double>& point)
43
                virtual const Type
       const = 0;
44
                virtual const std::vector<Type>
                                                               GetSolution() const = 0;
45
                virtual const Type
                                                               GetMaxSolution() const = 0;
46
                virtual const Type
                                                               GetMinSolution() const = 0;
47
           };
48
49
           template<class Problem, class Grid, class Matrix>
50
           class FEMethod
51
52
           public:
                FEMethod() :
5.3
                    m_problem{nullptr},
54
55
                    m_Grid{nullptr},
                    m_GlobalMatrix{nullptr},
56
57
                    m_RightMatrix{nullptr},
58
                    m_rhsvector{nullptr}
59
                FEMethod(
60
                    Problem* p,
61
                    Grid∗ g,
62
                    Matrix* m,
64
                    std::vector<double>* rhs):
                    m_problem{ p },
m_Grid{ g->Clone() },
6.5
66
                    m_GlobalMatrix{ m },
67
                    m_N{ g->GetNumberOfElements() },
68
69
                    m_Ns{ g->GetNumberOfBoundaries() },
70
                    m_rhsvector{ rhs }{
71
                    //GeneratePortrait();
72
                FEMethod(
73
74
                    Problem* p,
75
                    Grid* g,
76
                    Matrix* m,
77
                    Matrix* rm,
78
                    std::vector<double>* rhs):
                    m_problem{ p },
m_Grid{ g->Clone() },
79
80
                    m_GlobalMatrix{ m },
81
82
                    m_RightMatrix{ rm },
83
                    m_N{ g->GetNumberOfElements() },
84
                    m_Ns{ g->GetNumberOfBoundaries() },
85
                    m rhsvector{ rhs }{
86
                    //GeneratePortrait();
                FEMethod(const std::shared_ptr<Grid>& grid) :m_Grid{ grid->Clone() } {}
88
89
                FEMethod(Grid* grid) :m_Grid{ grid->Clone() } {}
90
                FEMethod(const FEMethod& meth) :
                    m_Grid{ meth.m_Grid->Clone() },
91
92
                    //m_GlobalMatrix{ meth.m_GlobalMatrix->Clone() },
93
                    //m_rhsvector{ meth.m_rhsvector },
                    //m_problem{ meth.m_problem },
95
                    m_time{ meth.m_time },
96
                    //m_solution{ meth.m_solution },
97
                    m_size{ meth.m_size },
98
                    m_N{ meth.m_N },
99
                    m_Ns{ meth.m_Ns },
100
                     m_nums{ meth.m_nums }
101
102
                 FEMethod&
                                               operator=(const FEMethod& fem)
103
                     m_Grid = fem.m_Grid->Clone();
104
                     m_time = fem.m_time;
m_size = fem.m_size;
105
106
107
                     m_N = fem.m_N;
108
                     m_Ns = fem.m_Ns;
109
                     m_nums = fem.m_nums;
110
                     return *this:
111
112
                 void
                                               Discretization();
                 const double
                                               GetValue(const Mesh::Point&) const;
113
114
                 const double
                                               GetValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
115
                const double
                                               GetValue(const Mesh::Point&, const std::vector<double>& vec,
       const int num) const;
```

```
116
                 //const Mesh::Point
                                               GetGradValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
117
                 //const Mesh::Point
                                               GetLambdaGrad(const Mesh::Point&, const std::vector<double>&
       vec) const;
                                               GetEffective(const std::vector<double>& vec) const;
118
                 const double
119
                                               ProjectSolution(std::vector<double>%, std::function<const
                 void
       double(const Mesh::Point&, const std::vector<double>&, const int)> GetValue, std::vector<double>&
       sol);
120
                 void
                                               ProjectSolution(std::vector<double>&, std::function<const
       double(const Mesh::Point&, const std::vector<double>&)> GetValue, std::vector<double>& sol, const
       int):
121
                 void
                                               LoadSolution(const std::vector<double>& vec);
                 const std::vector<double>
                                               SetSolution(const int sol, const int liq, const double, const
122
       double, const double);
123
                 void
                                               GetSolution(std::vector<double>& vec);
124
                 void
                                               Rediscretization(const std::shared_ptr<Grid>&);
125
                 void
                                               Rediscretization();
                                               SetTimeStep(const double& step) { m_step = step; m_time = step;
126
                 void
       }
127
                 Matrix*
                                               GetGlobalMatrix() const;
128
                 Grid*
                                               GetMesh() { return m_Grid; }
129
                 const std::vector<double>
                                               GetRightVector() const;
                                               OutDatFormat(const Mesh::Point& min, const Mesh::Point& max,
130
                 void
       const std::string& file_name, const std::vector<double>& vec) const;
131
                                               OutMeshFormat(const std::string& file_name, const
                 void
       std::vector<double>& vec);
132
                                               OutMeshTimeFormat(const std::string& file_name, const
                 void
       std::vector<double>& vec);
133
                 static const double
                                               GetSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p);
134
                static const double
                                               GetSolution(const Grid& g, const std::vector<double> &weights.
       const Mesh::Point& p, const int nfem);
static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
135
       const Mesh::Point& p);
136
                 static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
       const Mesh::Point& p, const int n);
137
                 ~FEMethod();
138
             private:
139
                 void
                                               GeneratePortrait():
140
                 void
                                               AssemblGlobal();
141
                 void
                                               MainConditions();
142
                 void
                                               SecondConditions():
                                               ThirdConditions():
143
                 void
144
                                               StefanConditions();
                 void
145
                 void
                                               ApplySources();
146
                 const int
                                               AssembleLocalMatrix(const int);
147
                 Grid*
                                               m_Grid = nullptr;
148
                 Matrix*
                                               m_GlobalMatrix = nullptr;
                                           m_RightMatrix = nullptr;
    m_problem = nullptr;
149
                 Matrix*
150
                 Problem*
151
                 std::vector<double>
                                               m_solution;
152
                 std::vector<double>*
                                               m_rhsvector;
153
                 unsigned int
                                               m_size;
                                               m_step{ 0.1 };
154
                 double
155
                 double
                                               m_time{ 0.1 };
156
                 unsigned int
                                               m N;
157
                 unsigned int
                                               m_Ns;
158
                 std::vector<unsigned int>
                                              m_nums;
159
160
161
             template<class Problem, class Grid, class Matrix>
162
163
             void FEMethod<Problem, Grid, Matrix>::Discretization()
164
165
                 GeneratePortrait();
                 AssemblGlobal();
166
167
                 //ApplySources();
                 //SecondConditions();
168
169
                 //ThirdConditions();
                 MainConditions();
171
                 //StefanConditions();
172
             template<class Problem, class Grid, class Matrix>
void FEMethod<Problem, Grid, Matrix>::GeneratePortrait()
173
174
175
176
                 const auto& el = m_Grid->GetElement(0);
177
                 int order = m_Grid->GetElement(0)->GetDoFs();
178
                 std::vector<std::set<unsigned int» temp;
179
                 m_Ns = m_Grid -> GetNumberOfNodes();
                 m_N = m_Grid->GetNumberOfElements();
180
181
                 temp.resize(m_Grid->GetNumberOfNodes());
                 unsigned i, j, k;
for (k = 0; k < m_N; ++k)
182
183
184
185
                     const auto& elem{ m_Grid->GetElement(k) };
                     for (i = 0; i < order; ++i)
    for (j = 0; j < order; ++j)</pre>
186
187
```

7.80 FEMethod.h 447

```
188
                              if (elem->GetNode(j) > elem->GetNode(i))
                                  temp[elem->GetNode(j)].insert(elem->GetNode(i));
189
190
191
                 if (m_problem->findTerm(Terms::RUV))
192
                     m_RightMatrix->Create(temp.size(), temp);
193
194
                 //m_GlobalMatrix = std::shared_ptr<Matrix>(new Matrix(m_Grid->GetNumberOfNodes(), temp));
195
                 //m_rhsvector.resize(m_Grid->GetNumberOfNodes());
196
                 //std::cout « temp.size() « std::endl;
197
                 m_GlobalMatrix->Create(temp.size(), temp);
198
                 m_rhsvector->resize(temp.size());
                 //m_solution.resize(m_Grid->GetNumberOfNodes());
//for (int 1 = 0; 1 < m_Grid->GetNumberOfNodes(); ++1)
199
200
                 // m_solution[1] = 20;
201
202
203
             template<class Problem, class Grid, class Matrix>
204
             void FEMethod<Problem, Grid, Matrix>::AssemblGlobal()
205
206
207
                 //std::vector<std::future<int> futures;
208
                 for (1 = 0; 1 < m_N; ++1)</pre>
209
                     //futures.push_back(async(&DGMethod<Problem, Grid, Matrix>::AssembleLocalMatrix, this,
       1));
210
                     AssembleLocalMatrix(1);
211
                 //for (auto &it : futures)
212
                 //it.get();
213
214
             template<class Problem, class Grid, class Matrix>
215
             const int FEMethod<Problem, Grid, Matrix>::AssembleLocalMatrix(const int 1)
216
217
                 int i, j, k, nodes;
double mij;
218
219
                 const auto& elem{ m_Grid->GetElement(1) };
220
                 const int dofs{ (int)elem->GetDoFs() };
221
                 const int terms{ (int)m_problem->getNumberOfTerms() };
222
                 nodes = elem->GetNumberOfNodes();
223
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)</pre>
224
225
                     points[i] = m_Grid->GetNode(elem->GetNode(i));
226
                 for (k = 0; k < terms; ++k)
227
228
                     switch (m_problem->getTerm(k))
229
230
                     case Terms::IUV:
231
                         for (i = 0; i < (int)dofs; ++i)</pre>
232
233
                              for (j = 0; j < (int)dofs; ++j)
234
235
                                  auto M = [&](const Mesh::Point& p)
236
237
                                      return m_problem->get_parameter(Terms::IUV, 1, elem->GetType(), p) *
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
238
239
                                  mij = elem->Integrate(M, points);
240
                                  m_GlobalMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), mij);
241
                             }
242
243
                         break:
244
                     case Terms::IDUDV:
                         for (i = 0; i < (int)dofs; ++i)
245
246
247
                              for (j = 0; j < (int)dofs; ++j)
248
249
                                  auto M = [&](const Mesh::Point& p)
250
251
                                      //auto m = elem->GetGradShapeFunction(i, p) \star
       elem->GetGradShapeFunction(j, p);
                                      return m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(), p) *
252
       \verb| elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p); \\
253
                                  };
254
                                  //mij = m_Grid->getParameter(Parameters::DIFFUSION, 1, j) *
       elem->Integrate(M, points);
2.5.5
                                  mij = elem->Integrate(M, points);
256
                                  m_GlobalMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), mij);
257
                              }
258
259
                         break;
260
                     case Terms::IDUV:
                         for (i = 0; i < (int)dofs; ++i)
261
2.62
                              for (j = 0; j < (int)dofs; ++j)
263
264
                                  auto M = [&](const Mesh::Point& p)
265
266
267
                                      return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       \verb|elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);|
268
```

```
269
                                 auto _mij = elem->Integrate(M, points);
270
                                 m_GlobalMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), _mij);
271
                             }
2.72
                        }
273
                        break;
274
                     case Terms::IUDV:
275
                        for (i = 0; i < dofs; ++i)</pre>
276
277
                             for (j = 0; j < dofs; ++j)
278
279
                                 auto M = [&](const Mesh::Point& p)
280
281
                                     return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
282
283
                                 //mij = m_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j) *
       284
285
                                m GlobalMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), mij);
286
287
                        }
288
                        break;
289
                     case Terms::EUV:
                        for (i = 0; i < dofs; ++i)</pre>
290
291
292
                             for (j = 0; j < dofs; ++j)
293
294
                                 auto M = [&](const Mesh::Point& p)
295
296
                                     return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
297
                                 };
298
                                mij = elem->Integrate(M, points);
299
                                m_rhsvector->operator[](elem->GetNode(i)) +=
       m_Grid->getParameter(Parameters::MASS, 1, j) * m_Grid->getSolution(1, j) * mij;
300
                                 //m_rhsvector->operator[](m_nums[1] + i) +=
       m_CoarseGrid->getParameter(Parameters::MASS, 1, points[j]) * elem->GetValue(j) * mij;
301
302
303
                        break;
304
                     case Terms::EDUDV:
305
                        for (i = 0; i < dofs; ++i)</pre>
306
                             for (j = 0; j < dofs; ++j)</pre>
307
308
309
                                 auto M = [&](const Mesh::Point& p)
310
311
                                     return elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
       p);
312
                                mij = elem->Integrate(M, points);
313
                                m_rhsvector->operator[](elem->GetNode(i)) +=
314
       m_Grid->getParameter(Parameters::DIFFUSION, 1, j) * m_Grid->getSolution(1, j) * mij;
315
316
317
                        break;
                     case Terms::EDUV:
318
                        for (i = 0; i < dofs; ++i)</pre>
319
320
321
                             for (j = 0; j < dofs; ++j)
322
323
                                 auto M = [&](const Mesh::Point& p)
324
                                     return elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
325
326
                                 };
327
                                 mij = elem->Integrate(M, points).x;
328
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
       \label{eq:m_Grid-sqetParameter} $$ m\_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij; $$
329
                            }
                        }
330
331
                        break:
                     case Terms::EUDV:
332
333
                        for (i = 0; i < dofs; ++i)</pre>
334
335
                             for (j = 0; j < dofs; ++j)
336
337
                                 auto M = [&](const Mesh::Point& p)
338
339
                                     return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
340
341
                                 mij = elem->Integrate(M, points).x;
                                m_rhsvector->operator[](elem->GetNode(i)) +=
342
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;// *mij;
343
                            }
344
345
                        break;
                     case Terms::EFV:
346
                        for (i = 0; i < dofs; ++i)
347
348
```

7.80 FEMethod.h 449

```
349
                                                 /*for (j = 0; j < dofs; ++j)
350
351
                                                       auto M = [&](const Mesh::Point& p)
352
353
                                                              return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, j, p) *
            elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
354
355
                                                       mij = elem->Integrate(M, points);
356
                                                       m_rhsvector->operator[](elem->GetNode(i)) += mij;
357
358
                                                auto M = [&](const Mesh::Point& p)
359
                                                       return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, i, p) *
360
            elem->GetShapeFunction(i, p);
361
                                                mij = elem->Integrate(M, points);
362
363
                                                m_rhsvector->operator[](elem->GetNode(i)) += mij;
364
365
                                         break;
366
                                   case Terms::RUV:
                                         for (i = 0; i < (int)dofs; ++i)
367
368
369
                                                 for (j = 0; j < (int)dofs; ++j)
370
371
                                                       auto M = [&](const Mesh::Point& p)
372
373
                                                              return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
374
375
                                                       mij = elem->Integrate(M, points);
                                                       m_RightMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), mij);
376
377
378
379
                                         break;
380
                                   case Terms::SUPG:
381
                                         for (i = 0; i < (int) dofs; ++i)
382
383
384
                                                 for (j = 0; j < (int)dofs; ++j)
385
386
                                                        /*auto inode = m_Grid->interpolate(elem->GetNode(i));
                                                       auto jnode = m_Grid->interpolate(elem->GetNode(j));
if (inode == -1 || jnode == -1)
387
388
389
                                                              continue: */
390
                                                       auto M = [&](const Mesh::Point& p)
391
392
                                                              double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1,
            \verb|elem->GetType(), p, 0)| * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)); \\
393
                                                              double h = elem->GetMeasure();
                                                              //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
394
            elem->GetTvpe(), p);
395
                                                              double tau = 0.;
                                                              double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
396
            elem->GetType(), p);
397
                                                               //double beta = h / 2. / vel * ((\exp(2. * Pe) + 1.) / (\exp(2. * Pe) - 1.)
            1.) - 1. / Pe);
398
                                                              //double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe))
            - 1.) - 1. / Pe);
399
                                                              //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1.
            / Pe);
400
                                                              //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1.
            / Pe):
401
                                                               //beta = 0.;
402
                                                               //for (int ii = 0; ii < (int)dofs; ++ii)
                                                                     //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
403
            p, 0) * elem->GetGradShapeFunction(ii, p);
404
                                                               //return beta * m_problem->get_parameter(Terms::IDUV, 1,
            \verb|elem->GetType(), p, 0)| * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)| * m_problem->get_parameter(Terms::IDUV, 1, elem->Get_parameter(Terms::IDUV, 1, ele
405
                                                                               elem->GetGradShapeFunction(i, p) *
            elem->GetGradShapeFunction(j, p);
                                                               if (Pe >= 1.)
406
407
                                                                     tau = h / 2. / vel;
408
                                                              else
409
                                                                     tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
            elem->GetType(), p);
410
                                                              //return 0.;
411
                                                               return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
            p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)
412
                                                                            elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
            p);
413
                                                       };
414
415
                                                        //double tau =
                                                       auto _mij = elem->Integrate(M, points);
416
417
                                                       m_GlobalMatrix->AddElement(elem->GetNode(i), elem->GetNode(j), _mij);
418
419
                                                auto M = [&] (const Mesh::Point& p)
420
```

```
421
                                 double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
422
                                 double h = elem->GetMeasure();
423
                                 double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
424
                                 double tau = 0.:
                                 //double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
425
       elem->GetType(), p);
426
427
                                 if (Pe >= 1.)
                                      tau = h / 2. / vel;
428
                                 else
429
                                      tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
430
       elem->GetType(), p);
                                 auto supg = tau * m_problem->get_parameter(Terms::EFV, elem->GetType(), 1,
431
       i, p) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetGradShapeFunction(i, p);
432
433
                                 return supg;
434
                             };
435
                             mij = elem->Integrate(M, points);
436
                             m_rhsvector->operator[](elem->GetNode(i)) += mij;
437
                         }
438
                     }
439
                         break;
                     default:
441
442
443
444
                return 0:
445
446
            template<class Problem, class Grid, class Matrix>
447
            void FEMethod<Problem, Grid, Matrix>::MainConditions()
448
449
                double mu{ 1e10 };
                const auto n = m_problem->get_number_of_boundaries();
const auto m = m_Grid->GetNumberOfBoundaries();
450
451
452
                 for (int i = 0; i < n; ++i)
453
                 {
454
                     const auto& type = m_problem->get_boundary_type(i);
455
                     for (int j = 0; j < m; ++j)
456
                         const auto& row = m_Grid->GetBoundary(j);
457
458
                         if (row->GetType() == type)
459
460
                             const int dofs = (int)row->GetDoFs();
461
                             const int dofs2 = 2;
                             const auto& elem_num = row->GetNeighbour(0);
462
                             const auto& elem = m_Grid->GetElement(elem_num);
463
464
                             const int dofs elem = elem->GetDoFs();
465
                             std::vector<Mesh::Point> points(dofs_elem);
466
                             for (int k = 0; k < dofs_elem; ++k)
467
                                 points[k] = m_Grid->GetNode(elem->GetNode(k));
468
                             for (int k = 0; k < dofs; ++k)
469
470
                                 int 1 = 0;
471
                                 for (; 1 < dofs_elem; ++1)</pre>
472
473
                                      if (elem->GetNode(1) == row->GetNode(k))
474
475
476
                                 m GlobalMatrix->NullRow(row->GetNode(k));
477
                                 m_GlobalMatrix->operator()(row->GetNode(k), row->GetNode(k)) = 0;
478
                                 //m_GlobalMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
479
                                  //m_rhsvector->operator[](row->GetNode(k)) =
       m_problem->get_boundary_parameter(0, type, m_Grid->GetNode(row->GetNode(k)));
480
                                 //m_rhsvector->operator[](row->GetNode(k)) =
       m_problem->get_boundary_parameter(0, type, elem_num, 1, m_Grid->GetNode(row->GetNode(k)));
                                 m_rhsvector->operator[](row->GetNode(k)) = elem->GetWeight(1, points,
481
       [=](const Mesh::Point& p) { return m_problem->get_boundary_parameter(0, type, p); });
482
                                 if (m_problem->findTerm(Terms::RUV))
483
484
                                          m_RightMatrix->NullRow(row->GetNode(k));
                                          //m_RightMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
485
486
487
488
                             /*for (int k = dofs2; k < dofs; ++k)
489
                                 m GlobalMatrix->NullRow(row->GetNode(k));
490
                                 m_rhsvector->operator[](row->GetNode(k)) = 0;
491
492
493
                         }
494
495
496
                 /*for (auto bnd : m_Grid->GetBoundaryConditions())
497
                     if (get<0>(bnd.second) == 1)
498
```

7.80 FEMethod.h 451

```
499
                        for (auto row : m_Grid->GetBoundary())
500
501
                            if (bnd.first == row->GetType())
502
503
                                for (int i = 0; i < row->GetDoF(); ++i)
504
505
                                    m_GlobalMatrix->NullRow(row->GetNodes(i));
506
                                    m_rhsvector[row->GetNodes(i)] =
       get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
507
508
                            }
509
                } */
510
511
512
            template<class Problem, class Grid, class Matrix>
513
            void FEMethod<Problem, Grid, Matrix>::SecondConditions()
514
515
                double theta = 0;
516
                int nfem;
                Mesh::Point temp[3];
518
                std::vector<int> local;
519
                for (auto bnd : m_Grid->GetBoundaryConditions())
520
                    //if (get<0>(bnd.second) == 2)
521
522
523
                        for (auto row : m_Grid->GetBoundary())
524
525
                            if (bnd.first == row->GetType())
526
527
                                local.resize(0);
528
                                int dofs = row->GetDoF();
529
                                nfem = row->GetNumberOfElement(0);
530
                                auto elem = m_Grid->GetElements()[nfem];
531
                                //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
532
                                for (int j = 0; j < dofs; ++j)
533
                                    temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
534
                                    for (int i = 0; i < elem->GetDoF(); ++i)
535
536
537
                                         if (row->GetNodes(j) == elem->GetNodes()[i])
538
539
                                             local.push_back(i);
540
                                            break:
541
542
543
544
                                for (int i = 0; i < dofs; ++i)
545
546
                                     for (int j = 0; j < dofs; ++j)
547
548
                                         //theta = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
549
                                         theta = 0;
550
                                         auto GetMass = [&](const Mesh::Point& p) {return
       551
                                         auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
       p) *row->GetBasis(i, p); };
552
                                         //if (i < 2 || j < 2)
                                        m_rhsvector[row->GetNodes(i)] += theta * row->Integrate(GetMass,
553
       temp);
554
555
                                         //if (i < 3 || j < 3)
                                         // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
556
       temp);
557
558
                                }
559
                            }
560
                        }
                    }
561
562
                }
563
564
            template<class Problem, class Grid, class Matrix>
565
            void FEMethod<Problem, Grid, Matrix>::StefanConditions()
566
                double dest{ 0. }, lat{ 0 };
567
568
                int nfem;
                Mesh::Point temp[3];
569
570
                std::vector<int> local;
571
                for (auto bnd : m_Grid->GetBoundaryConditions())
572
                    //if (get<0>(bnd.second) == 4)
573
574
575
                        lat = 0;
576
                        //lat = get<2>(bnd.second);
577
                        for (auto row : m_Grid->GetBoundary())
578
579
                            if (bnd.first == row->GetType())
580
```

```
581
                                    local.resize(0);
                                    int dofs = row->GetDoF();
582
583
                                    nfem = row->GetNumberOfElement(0);
584
                                    auto elem = m_Grid->GetElements()[nfem];
585
                                    //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); }; for (int j = 0; j < dofs; ++j)
586
587
588
                                         temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
589
                                         for (int i = 0; i < elem->GetDoF(); ++i)
590
591
                                             if (row->GetNodes(j) == elem->GetNodes()[i])
592
593
                                                  local.push back(i);
594
595
596
597
                                    for (int i = 0; i < dofs; ++i)
598
599
600
                                         for (int j = 0; j < dofs; ++j)
601
602
                                             //dest = get<1>(bnd.second) (m_Grid->GetNodes() [row->GetNodes(i)]);
603
604
                                             auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
       p) *row->GetBasis(i, p); };
605
                                             //if (i < 2 || j < 2)
606
                                             m_rhsvector[row->GetNodes(i)] += dest * lat *
       row->Integrate(GetBBasis, temp);
607
                                             //if (i < 3 || j < 3)
608
                                             // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
609
       temp);
610
611
                                    }
612
                               }
                          }
613
                      }
614
615
                 }
616
617
             template<class Problem, class Grid, class Matrix>
618
             void FEMethod<Problem, Grid, Matrix>::ThirdConditions()
619
62.0
                  double param{ 0 }, beta{ 0 };
621
                  int nfem;
                  Mesh::Point temp[6];
622
623
                  std::vector<int> local;
                  auto fxy = [&](const Mesh::Point& p) {return (10 * p.y*m_time + m_time) / 10; }; //auto fxy = [&](const Point& p){return 10 * p.y + 10 * m_time; };
624
625
626
                  for (auto bnd : m_Grid->GetBoundaryConditions())
627
628
                       //if (get<0>(bnd.second) == 3)
629
630
631
                           for (auto row : m_Grid->GetBoundary())
632
633
                                if (bnd.first == row->GetType())
634
635
                                    local.resize(0);
636
                                    int dofs = row->GetDoF();
637
                                    nfem = row->GetNumberOfElement(0);
                                    auto elem = m_Grid->GetElements()[nfem];
638
639
                                    \label{eq:continuous} $$ //auto GetBasis = [\&](int t, Point p){return elem->GetBasis(t, p); }; $$
                                    auto order = elem->GetDoF();
for (int j = 0; j < dofs; ++j)</pre>
640
641
642
643
                                         temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
644
                                         for (int i = 0; i < order; ++i)</pre>
645
646
                                             if (row->GetNodes(i) == elem->GetNodes()[i])
648
                                                  local.push_back(i);
649
                                                 break;
650
                                         }
651
652
653
                                    double val{ 0 };
654
                                    for (int i = 0; i < dofs; ++i)
655
656
                                         for (int j = 0; j < dofs; ++j)
657
                                             param = 0;
658
659
                                             beta = 0;
660
                                             //beta = get<2>(bnd.second);
                                             //param = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
//param = fxy(temp[j]);
661
662
663
                                             auto GetBBasis = [&](const Mesh::Point& p) {return
       elem->GetBasis(local[j], p)*elem->GetBasis(local[i], p); };
```

7.80 FEMethod.h 453

```
664
                                          //val = row->GetElement(GetBBasis, temp);
                                          val = row->Integrate(GetBBasis, temp);
665
666
                                          m_GlobalMatrix->operator()(row->GetNodes(i), row->GetNodes(j)) +=
       beta * val;
667
                                          m rhsvector[row->GetNodes(i)] += beta * param * val;
668
669
670
                             }
671
                        }
672
                    }
                }
673
674
675
            template<class Problem, class Grid, class Matrix>
676
            Matrix* FEMethod<Problem, Grid, Matrix>::GetGlobalMatrix() const
677
            {
678
                 return m_GlobalMatrix;
679
680
            template<class Problem, class Grid, class Matrix>
            const double FEMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p) const
681
682
683
                 if (!m solution.size())
684
                      return -1;
                double val = 0;
685
                int nfem = -1;
686
                nfem = m_Grid->FindElement(p);
687
688
                <u>if</u> (nfem == -1)
689
                     return -1;
690
                auto elem = m_Grid->GetElements()[nfem];
691
                for (int i = 0; i < elem->GetDoF(); ++i)
                    val += m_solution[elem->GetNodes()[i]] * elem->GetBasis(i, p);
692
693
                return val:
694
695
            template<class Problem, class Grid, class Matrix>
696
            const double FEMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
       std::vector<double>& vec) const
697
698
                if (!vec.size())
699
                     return -1;
700
                double val{ 0 };
701
                int nfem{ -1 };
702
                nfem = m_Grid->FindElement(p);
                <u>if</u> (nfem == -1)
703
                     return -1;
704
705
                auto elem = m_Grid->GetElements()[nfem];
                for (int i = 0; i < elem->GetDoFs(); ++i)
706
707
                    val += vec[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
708
                return val:
709
710
            template<class Problem, class Grid, class Matrix>
            const double FEMethod<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
711
       std::vector<double>& vec, const int num) const
712
713
                 if (!vec.size() || num < 0)</pre>
                return -1;
double val{ 0 };
714
715
716
                auto elem = m Grid->GetElements()[num];
717
                for (int i = 0; i < elem -> GetDoF(); ++i)
718
                    val += vec[elem->GetNodes()[i]] * elem->GetBasis(i, p);
719
                return val;
720
721
            //template<class Problem, class Grid, class Matrix>
            //const Mesh::Point FEMethod<Problem, Grid, Matrix>::GetGradValue(const Mesh::Point& p, const
722
       std::vector<double>& vec) const
723
724
                Mesh::Point val{ 0, 0 };
725
            // int nfem{ -1 };
726
                nfem = m_Grid->FindElement(p);
727
            // if (nfem == -1)
728
                    return val:
729
            // auto elem = m_Grid->GetElements()[nfem];
730
            // for (int i = 0; i < elem -> GetDoF(); ++i)
731
            11
                     val.x += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).x;
val.y += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).y;
732
733
            11
                     val.z += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).z;
734
735
736
737
738
            template<class Problem, class Grid, class Matrix>
            const double FEMethod<Problem, Grid, Matrix>::GetEffective(const std::vector<double>& vec) const
739
740
741
                double sum = 0;
                 //std::vector<int> dofs;
742
743
                 //Mesh::Point points[10];
744
                 //for (int i = 0; i < m_Grid \rightarrow GetElements().size(); ++i)
745
746
                     //auto mb = [&] (const Mesh::Point& b) {return GetGradValue(b, vec) *GetGradValue(b, vec);
```

```
};
747
                        //dofs.resize(0);
                        //auto elem = m_Grid->GetElements()[i];
//int order = elem->GetDoF();
748
749
750
                        //double diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
                        //for (int j = 0; j < order; ++j)
751
752
753
                             //dofs.push_back(elem->GetNodes()[j]);
754
                            //points[j] = m_Grid->GetNodes()[dofs[j]];
755
756
                        //sum += diff * elem->Integrate(mb, points);
757
758
                   //std::cout « "Effect (local): " « sum « std::endl;
759
                   //std::cout « "Effect (local) sqrt: " « sqrt(sum) « std::endl;
760
                   return sum;
761
              //template<class Problem, class Grid, class Matrix>
762
              //const Mesh::Point FEMethod<Problem, Grid, Matrix>::GetLambdaGrad(const Mesh::Point& p, const
763
        std::vector<double>& vec) const
764
765
                  Mesh::Point val{ 0, 0, 0 };
766
                   //double val{ 0 };
              // double diff{ 0 };
767
              // Mesh::Point temp{ 0, 0, 0 };
768
769
              // int nfem{ -1 };
770
              // nfem = m_Grid->FindElement(p);
                  if (nfem == -1)
771
              //
                       return val;
772
773
              // auto elem = m_Grid->GetElements()[nfem];
774
              // diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
775
                  for (int i = 0; i < elem -> GetDoF(); ++i)
                  -{
777
                        //val += elem->GetGradBasis(i, p) * elem->GetGradBasis(i, p) * vec[elem->GetNodes()[i]]
        * vec[elem->GetNodes()[i]] * diff;
778
                        //\text{val += elem->GetBasis(i, p)} ~*~ \text{vec[elem->GetNodes()[i]]} ~*~ \text{diff;}
                       temp = elem->GetGradBasis(i, p);
val.x += temp.x * vec[elem->GetNodes()[i]] * (diff);
779
780
              11
                        val.y += temp.y * vec[elem->GetNodes()[i]] * (diff);
781
782
                        val.z += temp.z * vec[elem->GetNodes()[i]] * (diff);
783
784
              11
                   return val;
              //}
785
786
              template<class Problem, class Grid, class Matrix>
787
              const std::vector<double> FEMethod<Problem, Grid, Matrix>::GetRightVector() const
788
789
                   return *m_rhsvector;
790
              template<class Problem, class Grid, class Matrix> void FEMethod<Problem, Grid, Matrix>::OutDatFormat(const Mesh::Point& mn, const Mesh::Point& mx,
791
792
        const std::string& file_name, const std::vector<double>& vec) const
793
794
                   std::ofstream of(file_name + "z.dat");
795
                   std::streambuf *buf = std::cout.rdbuf();
796
                   std::cout.rdbuf(of.rdbuf());
                   std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dxl\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
797
798
799
        800
801
802
803
804
805
                   std::cout.rdbuf(buf);
806
                   of.close();
807
                   of.open(file_name + "x.dat");
808
                   buf = std::cout.rdbuf();
                   std::cout.rdbuf()();
std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
809
810
811
                   std::cout « "ZONE i=51, j=51, F=POINT\n";
for (int i = 0; i < 51; ++i)
812
813
                        for (int j = 0; j < 51; ++j)</pre>
814
        std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" « GetValue (Mesh::Point (mn.z, mn.x + j * stepx, mn.y + i * stepy), vec) « std::endl;
815
816
                   std::cout.rdbuf(buf);
817
                   of.close();
                   of.open(file_name + "y.dat");
818
819
                   buf = std::cout.rdbuf();
                   std::cout.rdbuf(of.rdbuf());
820
                   std::cout < "TITLE = FE-METHOD\n";
std::cout < "TITLE = FE-METHOD\n";
std::cout < "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout < "ZONE i=51, j=51, F=POINT\n";
for (int i = 0; i < 51; ++i)</pre>
821
822
823
824
825
                       for (int j = 0; j < 51; ++j)
        std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" « GetValue(Mesh::Point(mn.x + j * stepx, mn.z, mn.y + i * stepy), vec) « std::endl;
826
```

7.80 FEMethod.h 455

```
std::cout.rdbuf(buf);
828
                  of.close();
829
              template<class Problem, class Grid, class Matrix>
void FEMethod<Problem, Grid, Matrix>::ApplySources()
830
831
832
833
                   int nfem = -1;
834
                  auto total = m_problem->get_total_sources();
835
                   for (int i = 0; i < total; ++i)
836
837
                       auto src = m_problem->get_point_source(i);
                       auto point = src.get_point();
nfem = m_Grid->FindElement(point);
838
839
                       if (nfem != -1)
840
841
842
                            auto val = src.get_value();
                            auto elem = m_Grid->GetElement(nfem);
for (int j = 0; j < 3; ++j)
    m_rhsvector->operator[](elem->GetNode(j)) += val * elem->GetShapeFunction(j,
843
844
845
        point);
846
847
                       nfem = -1;
848
                   /*for (auto srd : m_Grid->GetDottedSources())
849
850
851
                       nfem = m_Grid->FindElement(srd.first);
852
                       if (nfem != -1)
853
854
                            auto elem = m_Grid->GetElements()[nfem];
855
                            for (int i = 0; i < elem->GetDoF(); ++i)
856
857
                                 m_rhsvector[elem->GetNodes()[i]] += srd.second * elem->GetBasis(i, srd.first);
858
859
860
                       nfem = -1;
861
862
863
              template<class Problem, class Grid, class Matrix>
864
              void FEMethod<Problem, Grid, Matrix>::Rediscretization(const std::shared_ptr<Grid>& grid)
865
866
                  m_GlobalMatrix->NullMatrix();
                  for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
    (*m_rhsvector)[i] = 0;
867
868
869
                  AssemblGlobal();
870
                   //SecondConditions();
871
                   //ApplySources();
872
                   //StefanConditions();
873
                  MainConditions();
874
875
              template<class Problem, class Grid, class Matrix>
876
              void FEMethod<Problem, Grid, Matrix>::Rediscretization()
877
878
                  m_time += m_step;
879
                  m\_GlobalMatrix->NullMatrix();
                  for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
    (*m_rhsvector)[i] = 0;
880
881
882
                   AssemblGlobal();
                   SecondConditions();
883
884
                  ThirdConditions();
885
                  StefanConditions();
886
                   //ApplySources();
887
                  MainConditions();
888
889
              template<class Problem, class Grid, class Matrix>
890
              void FEMethod<Problem, Grid, Matrix>::GetSolution(std::vector<double>& vec)
891
892
                   int size = vec.size();
                  //Translation(vec);
for (int i = 0; i < size; ++i)</pre>
893
894
895
                       vec[i] = m_solution[i];
896
897
              template<class Problem, class Grid, class Matrix>
        const double FEMethod<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
std::vector<double> &weights, const Mesh::Point& p)
898
899
900
                  double sum{ 0 };
                  auto nfem{ g.FindElement(p) };
901
902
                   if (nfem < 0)
903
                       return 0.:
904
                  auto elem{ g.GetElement(nfem) };
                  auto dofs{ elem->GetDoFs() };
for (auto i{ 0 }; i < dofs; ++i)</pre>
905
906
907
                       sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
908
                   return sum;
909
910
              template<class Problem, class Grid, class Matrix>
911
              const double FEMethod<Problem, Grid, Matrix>::GetSolution(const Grid& q, const
```

```
std::vector<double> &weights, const Mesh::Point& p, const int nfem)
912
913
                    double sum{ 0 };
914
                    // if (nfem < 0)
915
                           return 0.:
                   auto elem{ g.GetElement(nfem) };
auto dofs{ elem->GetDoFs() };
916
917
918
                    //std::cout « nfem « std::endl;
919
                    for (auto i{ 0 }; i < dofs; ++i)</pre>
920
                        sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
921
                    return sum:
922
              template<class Problem, class Grid, class Matrix>
923
               const Mesh::Point FEMethod<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
        std::vector<double> &weights, const Mesh::Point& p)
925
                   Mesh::Point sum{ 0, 0, 0 };
auto nfem{ g.FindElement(p) };
926
927
                    auto elem{ g.GetElement(nfem) };
928
929
                    auto dofs{ elem->GetDoFs() };
930
                    for (auto i{ 0 }; i < dofs; ++i)</pre>
931
                        sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
                    return sum;
932
933
              template<class Problem, class Grid, class Matrix>
934
               const Mesh::Point FEMethod<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
935
         std::vector<double> &weights, const Mesh::Point& p, const int nfem)
936
937
                    Mesh::Point sum{ 0, 0, 0 };
938
                   auto elem{ g.GetElement(nfem) };
auto dofs{ elem->GetDoFs() };
939
940
                    for (auto i{ 0 }; i < dofs; ++i)</pre>
941
                        sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
942
                    return sum;
943
              template<class Problem, class Grid, class Matrix>
void FEMethod<Problem, Grid, Matrix>::LoadSolution(const std::vector<double>& vec)
944
945
946
947
                    m_solution.resize(vec.size());
948
                    for (unsigned int i = 0; i < vec.size(); ++i)</pre>
949
                         m_solution[i] = vec[i];
950
              template<class Problem, class Grid, class Matrix>
void FEMethod<Problem, Grid, Matrix>::OutMeshFormat(const std::string& file_name, const
951
952
        std::vector<double>& vec)
953
954
                    const int size{ (int)m_Grid->GetNodes().size() };
955
                    const int number{ (int)m_Grid->GetElements().size() };
                    //const int size{ number * 4 };
std::ofstream ofs(file_name + ".dat", std::ios::out);
956
957
        std::string title("TITLE = \"Mesh data\"\n Variables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N = " + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
958
        FETETRAHEDRON\n");
959
                    ofs « title;
                   Mesh::Point p;
for (int i = 0; i < size; ++i)</pre>
960
961
962
                          \begin{tabular}{ll} $p = m\_Grid -> GetNodes()[i]; \\ ofs & & p.x & "\t" & p.y & "\t" & p.z & "\t" & GetValue(p, vec, 1) & std::endl; \\ \end{tabular} 
963
964
965
966
                    for (int i = 0: i < number: ++i)
967
968
                         auto elem = m_Grid->GetElements()[i];
                         for (int k = 0; k < 4; ++k)
969
970
971
                              ofs « elem->GetNodes()[k] + 1 « "\t^*;
972
973
                         ofs « std::endl;
974
975
                    ofs.close();
976
977
               template<class Problem, class Grid, class Matrix>
978
              void FEMethod<Problem, Grid, Matrix>::OutMeshTimeFormat(const std::string& file_name, const
        std::vector<double>& vec)
979
                    const int size{ (int)m_Grid->GetNodes().size() };
980
                    const int number{ (int)m_Grid->GetElements().size() };
981
        //const int size{ number * 4 };

std::ofstream ofs(file_name + ".dat", std::ios::out | std::ios::app);

std::string title("TITLE = \"Mesh data\"\n Variables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N =

" + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
982
983
984
        FETETRAHEDRON\n");
985
                    ofs « title;
                    Mesh::Point p;
986
987
                    for (int i = 0; i < size; ++i)
988
                    {
                         p = m Grid->GetNodes()[i];
989
```

7.80 FEMethod.h 457

```
ofs « p.x « "\t" « p.y « "\t" « p.z « "\t" « GetValue(p, vec, 1) « std::endl;
991
992
                 for (int i = 0; i < number; ++i)
993
994
                     auto elem = m Grid->GetElements()[i];
995
                     for (int k = 0; k < 4; ++k)
996
997
                         ofs < elem->GetNodes()[k] + 1 < "\t";
998
999
                     ofs « std::endl;
1000
1001
                 ofs.close();
1002
1003
              template<class Problem, class Grid, class Matrix>
1004
              void FEMethod<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
       std::function<const double(const Mesh::Point&, const std::vector<double>&, const int)> GetVal,
       std::vector<double>& vec)
1005
             {
1006
                  for (int i = 0; i < m_Grid->GetElements().size(); ++i)
                  {
                      auto elem = m_Grid->GetElements()[i];
1008
1009
                      int order = elem->GetDoF();
                      for (int j = 0; j < order; ++j)
1010
                          sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec, i);
1011
1012
1013
1014
              template<class Problem, class Grid, class Matrix>
1015
             void FEMethod<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
       std::function<const double(const Mesh::Point&, const std::vector<double>&)> GetVal,
       std::vector<double>& vec, const int)
1016
             {
1017
                  for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1018
1019
                      auto elem = m_Grid->GetElements()[i];
                      int order = elem->GetDoF();
for (int j = 0; j < order; ++j)</pre>
1020
1021
                          sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec);
1022
1023
1024
1025
              template<class Problem, class Grid, class Matrix>
1026
             const std::vector<double> FEMethod<Problem, Grid, Matrix>::SetSolution(const int sol, const int
       liq, const double s, const double 1, const double m)
1027
             {
1028
                  int i;
                  m_solution.resize(m_Grid->GetNodes().size());
1029
1030
                  for (i = 0; i < m_Grid->GetElements().size(); ++i)
1031
                      auto elem = m_Grid->GetElements()[i];
int order = elem->GetDoF();
1032
1033
                      if (m_Grid->GetElements()[i]->GetType() == lig)
1034
                          for (int j = 0; j < order; ++j)
1035
1036
                              m_solution[elem->GetNodes()[j]] = 1;
1037
1038
                          for (int j = 0; j < order; ++j)
1039
                              m_solution[elem->GetNodes()[j]] = s;
1040
                  }
1041
1042
                  for (auto bnd : m_Grid->GetBoundaryConditions())
1043
1044
                      //if (get<0>(bnd.second) == 4)
1045
1046
                          for (auto row : m_Grid->GetBoundary())
1047
1048
                               if (bnd.first == row->GetType())
1049
1050
                                   int dofs = row->GetDoF();
1051
                                   for (int i = 0; i < dofs; ++i)
1052
1053
                                       m solution[row->GetNodes(i)] = m;
1054
                                   }
1055
1056
                          }
1057
                      }
1058
1059
                  return m solution;
1060
1061
              template<class Problem, class Grid, class Matrix>
1062
             FEMethod<Problem, Grid, Matrix>::~FEMethod()
1063
1064
                  delete m Grid:
1065
1066
         }
1067 }
1068
1069 #endif // !CORENC_METHODS_FEMethod_h
1070
```

7.81 CoreNCFEM/Methods/FEMethodZero.h File Reference

```
#include <functional>
#include <set>
#include "../Point.h"
#include "../Parameter.h"
#include "CSMethod.h"
#include <memory>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#include <fstream>
#include <string>
```

Classes

- class corenc::method::CFEMethodZero< Type >
- class corenc::method::FEMethodZero< Problem, Grid, Matrix >

Namespaces

- namespace corenc
- namespace corenc::Mesh
- · namespace corenc::method

7.82 FEMethodZero.h

Go to the documentation of this file.

```
1 // FEMethodZero.h describes an abstract interface and functions for a general finite element method with
        zero Dirichlet boundaries
2 #ifndef CORENC_METHODS_FEMethodZeroZero_h
3 #define CORENC_METHODS_FEMethodZeroZero_h
4 #include <functional>
5 #include <set>
6 #include "../Point.h"
7 #include "../Parameter.h"
8 #include "CSMethod.h"
9 #include <memory>
10 #include <cmath>
11 #include <map>
12 #include <algorithm>
13 #include <vector>
14 #include <iostream>
15 #include <fstream>
16 #include <string>
17 namespace corenc
18 {
19
        namespace Mesh
20
21
             class Point:
22
23
        namespace method
             // class Type = Type of the solution, for ex vector or double, or even more specific
27
2.8
            template<class Type>
29
            class CFEMethodZero
30
            public:
```

```
32
                CFEMethodZero() {};
                virtual ~CFEMethodZero() {};
33
34
                virtual const int
                                                                 Assemble() = 0;
35
                virtual const Type
                                                                 GetSolution(const std::vector<double>& point)
       const = 0:
36
                virtual const std::vector<Type>
                                                                 GetSolution() const = 0;
                virtual const Type
37
                                                                 GetMaxSolution() const = 0;
38
                virtual const Type
                                                                 GetMinSolution() const = 0;
39
            };
40
            template<class Problem, class Grid, class Matrix>
41
42
            class FEMethodZero
43
            public:
44
45
                FEMethodZero() :
                    m_problem{nullptr},
46
47
                    m_Grid{nullptr},
                    m_GlobalMatrix{nullptr},
48
49
                    m_RightMatrix{nullptr},
50
                    m_rhsvector{nullptr}
51
52
                FEMethodZero(
                    Problem* p,
5.3
54
                    Grid* g,
55
                    Matrix* m,
56
                     std::vector<double>* rhs):
57
                     m_problem{ p },
5.8
                     m_Grid{ g->Clone() },
59
                    m_GlobalMatrix{ m },
                    m_N{ g->GetNumberOfElements() },
m_Ns{ g->GetNumberOfBoundaries() },
60
61
                    m_rhsvector{ rhs }{
62
                     //GeneratePortrait();
64
6.5
                FEMethodZero(
66
                    Problem* p,
                    Grid* q,
67
68
                     Matrix* m,
                     Matrix* rm,
70
                     std::vector<double>* rhs):
                    m_problem{ p },
m_Grid{ g->Clone() },
71
72
                    m_GlobalMatrix{ m },
7.3
74
                    m_RightMatrix{ rm },
75
                     m_N{ g->GetNumberOfElements() },
76
                     m_Ns{ g->GetNumberOfBoundaries() },
77
                     m_rhsvector{ rhs }{
78
                     //GeneratePortrait();
79
                FEMethodZero(const std::shared_ptr<Grid>& grid) :m_Grid{ grid->Clone() } {}
80
                FEMethodZero(Grid* grid) :m_Grid{ grid->Clone() } {} FEMethodZero(const FEMethodZero& meth) :
81
82
83
                    m_Grid{ meth.m_Grid->Clone() },
84
                     //m_GlobalMatrix{ meth.m_GlobalMatrix->Clone() },
85
                     //m_rhsvector{ meth.m_rhsvector },
                     //m_problem{ meth.m_problem },
86
                     m_time{ meth.m_time },
88
                     //m_solution{ meth.m_solution },
89
                     m_size{ meth.m_size },
90
                     m_N{ meth.m_N },
91
                    m_Ns{ meth.m_Ns },
92
                    m_nums{ meth.m_nums }
93
                { };
                                               Discretization();
                void
95
                const double
                                               GetValue(const Mesh::Point&) const;
96
                const double
                                               GetValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
97
                const double
                                               GetValue(const Mesh::Point&, const std::vector<double>& vec.
       const int num) const:
98
                //const Mesh::Point
                                               GetGradValue(const Mesh::Point&, const std::vector<double>& vec)
       const;
99
                //const Mesh::Point
                                               GetLambdaGrad(const Mesh::Point&, const std::vector<double>& vec)
       const;
                                                GetEffective(const std::vector<double>& vec) const;
ProjectSolution(std::vector<double>&, std::function<const</pre>
100
                 const double
101
                 void
       double(const Mesh::Point&, const std::vector<double>&, const int)> GetValue, std::vector<double>&
       sol);
102
                 void
                                                ProjectSolution(std::vector<double>&, std::function<const</pre>
       double(const Mesh::Point&, const std::vector<double>&) > GetValue, std::vector<double>& sol, const
       int):
103
                 void
                                                LoadSolution(const std::vector<double>& vec);
104
                 const std::vector<double>
                                                SetSolution(const int sol, const int lig, const double, const
       double, const double);
105
                 void
                                                GetSolution(std::vector<double>& vec);
106
                 void
                                                Rediscretization(const std::shared_ptr<Grid>&);
107
                 void
                                                Rediscretization();
108
                                                SetTimeStep(const double& step) { m_step = step; m_time = step;
                 void
```

```
}
                                                   GetGlobalMatrix() const;
109
                  Matrix*
110
                  Grid*
                                                   GetMesh() { return m_Grid; }
                                                   GetRightVector() const;
111
                  const std::vector<double>
112
                  void
                                                   OutDatFormat(const Mesh::Point& min, const Mesh::Point& max,
        const std::string& file name, const std::vector<double>& vec) const;
113
                  void
                                                   OutMeshFormat(const std::string& file_name, const
        std::vector<double>& vec);
114
                                                   OutMeshTimeFormat(const std::string& file_name, const
                  void
        std::vector<double>& vec);
115
                                                   GetSolution(const Grid& g, const std::vector<double> &weights,
                  static const double
        const Mesh::Point& p);
                  static const double
                                                  GetSolution(const Grid& g, const std::vector<double> &weights,
116
        const Mesh::Point& p, const int nfem);
117
                  static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
        const Mesh::Point& p);
118
                  static const Mesh::Point GetGradSolution(const Grid& g, const std::vector<double> &weights,
        const Mesh::Point& p, const int n);
119
                  ~FEMethodZero();
120
             private:
121
                  void
                                                   GeneratePortrait();
                                                   AssemblGlobal();
122
                  void
123
                  void
                                                   MainConditions();
124
                  void
                                                   SecondConditions():
125
                                                   ThirdConditions();
                  void
126
                  void
                                                   StefanConditions();
127
                  void
                                                   ApplySources();
128
                  const int
                                                   AssembleLocalMatrix(const int);
129
                  const int
                                                   AssembleIDUDVMatrix(const int);
                                                   AssembleIDUVMatrix(const int);
130
                  const int
                                                   AssembleIUDVMatrix(const int);
131
                  const int
132
                  const int
                                                   AssembleRUVMatrix(const int);
133
                  const int
                                                   AssembleSUPGMatrix(const int);
134
                  const int
                                                   AssembleLocalMatrix(const int, const int);
                                                  m_Grid = nullptr;
m_GlobalMatrix = nullptr;
135
                  Grid*
136
                  Matrix*
                                              m_RightMatrix = nullptr;
m_problem = nullptr;
137
                  Matrix*
138
                  Problem*
139
                  std::vector<double>
                                                   m_solution;
140
                  std::vector<double>*
                                                   m_rhsvector;
                                                   m_size;
141
                  unsigned int
                                                   m_step{ 0.1 };
142
                  double
                                                   m_time{ 0.1 }:
143
                  double
144
                                                   m_N;
                  unsigned int
145
                  unsigned int
                                                   m_Ns;
146
                  std::vector<unsigned int>
                                                  m_nums;
147
148
              };
149
150
              template<class Problem, class Grid, class Matrix>
151
              void FEMethodZero<Problem, Grid, Matrix>::Discretization()
152
153
                  GeneratePortrait();
154
                  AssemblGlobal();
155
                  //ApplySources();
                  //SecondConditions();
156
157
                  //ThirdConditions();
                  //MainConditions();
158
159
                  //StefanConditions();
160
161
              template < class Problem, class Grid, class Matrix>
              void FEMethodZero<Problem, Grid, Matrix>::GeneratePortrait()
162
163
164
                  const auto& el = m_Grid->GetElement(0);
165
                  int order = m_Grid->GetElement(0)->GetDoFs();
166
                  std::vector<std::set<unsigned int> temp;
167
                  m Ns = m Grid->GetNumberOfINodes();
                  m_N = m_Grid->GetNumberOfElements();
168
169
                  temp.resize(m_Grid->GetNumberOfINodes());
                  unsigned i, j, k;

for (k = 0; k < m_N; ++k)
171
172
173
                       const auto& elem{ m_Grid->GetElement(k) };
                       for (i = 0; i < order; ++i)
for (j = 0; j < order; ++j)
174
175
176
177
                                //std::cout « "inside" « std::endl;
                                int jnode = m_Grid->interpolate(elem->GetNode(j));
int inode = m_Grid->interpolate(elem->GetNode(i));
int inode = m_Grid->interpolate(elem->GetNode(i));
//std::cout « jnode « "\t" « inode « std::endl;
//std::cout « "outside" « std::endl;
if (jnode > -1 && inode > -1)
178
179
180
181
182
                                     if (jnode > inode)
183
184
185
                                         temp[jnode].insert(inode);
186
                           }
187
```

```
188
                 if (m_problem->findTerm(Terms::RUV))
189
190
                      m_RightMatrix->Create(temp.size(), temp);
191
192
                 //m_GlobalMatrix = std::shared_ptr<Matrix>(new Matrix(m_Grid->GetNumberOfNodes(), temp));
                 //m_rhsvector.resize(m_Grid->GetNumberOfNodes());
193
194
                 //std::cout « temp.size() « std::endl;
195
                 m_GlobalMatrix->Create(temp.size(), temp);
196
                 m_rhsvector->resize(temp.size());
197
                 //m_solution.resize(m_Grid->GetNumberOfNodes());
                 //for (int 1 = 0; 1 < m_Grid->GetNumberOfNodes(); ++1)
198
199
                 // m_solution[1] = 20;
200
201
             template<class Problem, class Grid, class Matrix>
202
             void FEMethodZero<Problem, Grid, Matrix>::AssemblGlobal()
203
204
                 //std::vector<std::future<int> futures;
205
206
                 int i, j, k, nodes;
207
                 double mij;
208
                 const int terms{ (int)m_problem->getNumberOfTerms() };
209
                 for (k = 0; k < terms; ++k)
210
211
                      switch (m_problem->getTerm(k))
212
213
                          case Terms::IDUDV:
                              for (1 = 0; 1 < m_N; ++1)</pre>
214
215
                                  AssembleIDUDVMatrix(1);
                              break;
216
217
                          case Terms::IDUV:
                              for (1 = 0; 1 < m_N; ++1)</pre>
218
219
                                  AssembleIDUVMatrix(1);
220
                              break;
221
                          case Terms::IUDV:
222
                              for (1 = 0; 1 < m_N; ++1)</pre>
                                  AssembleIUDVMatrix(1);
223
224
                              break;
225
                          case Terms::SUPG:
226
                              for (1 = 0; 1 < m_N; ++1)</pre>
227
                                  AssembleSUPGMatrix(1);
228
                              break;
                          case Terms::RUV:
229
                              for (1 = 0; 1 < m_N; ++1)
230
231
                                  AssembleRUVMatrix(1);
                              break;
233
                          default:
234
                              break;
235
                      }
236
                 //for (1 = 0; 1 < m_N; ++1)
237
238
                      //futures.push_back(async(&DGMethod<Problem, Grid, Matrix>::AssembleLocalMatrix, this,
       1));
239
                   // AssembleLocalMatrix(1, 0);
240
                 //for (auto &it : futures)
241
                 //it.get();
242
             }
243
244
             template<class Problem, class Grid, class Matrix>
245
             const int FEMethodZero<Problem, Grid, Matrix>::AssembleIDUDVMatrix(const int 1)
246
2.47
                 int i, j, k, nodes;
248
                 double mij;
249
                 const auto& elem{ m_Grid->GetElement(1) };
250
                 const int dofs{ (int)elem->GetDoFs() };
251
                 const int terms{ (int)m_problem->getNumberOfTerms() };
252
                 nodes = elem->GetNumberOfNodes();
253
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
254
255
                 for (i = 0; i < (int) dofs; ++i)
256
257
258
                      for (j = 0; j < (int)dofs; ++j)
259
                          auto inode = m_Grid->interpolate(elem->GetNode(i));
260
                          auto jnode = m_Grid->interpolate(elem->GetNode(j));
if (inode == -1 || jnode == -1)
261
262
263
                              continue;
264
                          auto M = [&](const Mesh::Point& p)
265
                              //auto m = elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p); return m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(), p) *
266
267
       \verb| elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p); \\
268
269
                          //mij = m_Grid->getParameter(Parameters::DIFFUSION, 1, j) * elem->Integrate(M,
       points);
                          mij = elem->Integrate(M, points);
270
271
                          m GlobalMatrix->AddElement(inode, inode, mii);
```

```
272
                    }
273
274
                return 0;
275
            }
276
277
            template<class Problem, class Grid, class Matrix>
278
            const int FEMethodZero<Problem, Grid, Matrix>::AssembleIDUVMatrix(const int 1)
279
280
                int i, j, k, nodes;
281
                double mij;
                const auto& elem{ m_Grid->GetElement(1) };
282
                const int dofs{ (int)elem->GetDoFs() };
const int terms{ (int)m_problem->getNumberOfTerms() };
283
284
285
                nodes = elem->GetNumberOfNodes();
286
                std::vector<Mesh::Point> points(nodes);
                for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
287
288
                for (i = 0; i < (int)dofs; ++i)
289
290
291
                     for (j = 0; j < (int)dofs; ++j)
292
293
                         auto inode = m_Grid->interpolate(elem->GetNode(i));
294
                         auto jnode = m_Grid->interpolate(elem->GetNode(j));
                         if (inode == -1 || jnode == -1)
295
296
                             continue;
                         auto M = [&](const Mesh::Point& p)
297
298
299
                             return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
300
                         };
301
                         auto _mij = elem->Integrate(M, points);
302
                         m_GlobalMatrix->AddElement(inode, jnode, _mij);
303
304
                return 0;
305
306
307
308
            template<class Problem, class Grid, class Matrix>
309
            const int FEMethodZero<Problem, Grid, Matrix>::AssembleIUDVMatrix(const int 1)
310
311
                int i, j, k, nodes;
312
                double mij;
                const auto& elem{ m_Grid->GetElement(1) };
313
                const int dofs{ (int)elem->GetDoFs() };
314
                const int terms{ (int)m_problem->getNumberOfTerms() };
315
316
                nodes = elem->GetNumberOfNodes();
317
                std::vector<Mesh::Point> points(nodes);
                for (i = 0; i < nodes; ++i)
    points[i] = m_Grid->GetNode(elem->GetNode(i));
318
319
                 for (i = 0; i < dofs; ++i)
320
321
                {
322
                     for (j = 0; j < dofs; ++j)
323
324
                         auto inode = m_Grid->interpolate(elem->GetNode(i));
325
                         auto jnode = m_Grid->interpolate(elem->GetNode(j));
                         if (inode == -1 || jnode == -1)
326
                             continue;
327
328
                         auto M = [&](const Mesh::Point& p)
329
330
                             return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
331
                         };
                         //mij = m_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j) *
332
       333
334
                         m_GlobalMatrix->AddElement(inode, jnode, mij);
335
                     }
336
                }
337
                return 0:
338
            }
339
340
341
            template<class Problem, class Grid, class Matrix>
342
            const int FEMethodZero<Problem, Grid, Matrix>::AssembleRUVMatrix(const int 1)
343
344
                int i, j, k, nodes;
double mij;
345
346
                const auto& elem{ m_Grid->GetElement(1) };
347
                const int dofs{ (int)elem->GetDoFs() };
348
                const int terms{ (int)m_problem->getNumberOfTerms() };
                nodes = elem->GetNumberOfNodes():
349
350
                std::vector<Mesh::Point> points(nodes);
351
                for (i = 0; i < nodes; ++i)
                    points[i] = m_Grid->GetNode(elem->GetNode(i));
352
                double minPec = -1;
353
354
                auto MM = [&](const Mesh::Point& p)
355
                    double vel = sgrt(m problem->get parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
356
```

```
m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
357
                     double h = elem->GetMeasure();
358
                      //h = fabs(points[1].x - points[0].x);
359
                      h = sqrt(h);
360
                      //h = fabs(m\_Grid->GetNode(0).x - m\_Grid->GetNode(1).x);
                      double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(),
361
       p);
362
363
                      //double Pe = vel \star h / 2. / m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(),
       p);
364
                      if (Pe > minPec)
365
                          minPec = Pe;
366
367
                      return 0.;
368
369
                 elem->Integrate(MM, points);
370
                 for (i = 0; i < (int) dofs; ++i)
371
                 {
372
                      for (j = 0; j < (int)dofs; ++j)
373
374
                          auto inode = m_Grid->interpolate(elem->GetNode(i));
375
                          auto jnode = m_Grid->interpolate(elem->GetNode(j));
                          if (inode == -1 || jnode == -1)
376
377
                               continue:
378
                          auto M = [&](const Mesh::Point& p)
379
                               double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
380
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
381
                               double h = elem->GetMeasure();
382
                               //h = fabs(points[1].x - points[0].x);
383
                               h = sqrt(h);
//h = fabs(m_Grid->GetNode(0).x - m_Grid->GetNode(1).x);
384
                               //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
385
       elem->GetType(), p);
386
                               double Pe = minPec;
                               double tau = 0.;
387
                               double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. /
388
       Pe);
389
                               //double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
390
391
                               if (Pe >= 1)
                                   tau = h / 2. / vel;
392
393
                               else
394
                                   tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
395
                                   //tau = 0.;
                               //tau = 1e-7;
396
                               //std::cout « "tau Pe:\t" « Pe « std::endl;
397
                               //std::cout « "tau vel:\t" « vel « std::endl;

//std::cout « "tau h:\t" « h « std::endl;

//std::cout « "tau:\t" « tau « std::endl;
398
399
400
       auto supg = tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
0) * elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p) * elem->GetShapeFunction(i, p);
401
402
                               return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);// + supg;
403
404
                          mij = elem->Integrate(M, points);
                          m_RightMatrix->AddElement(inode, jnode, mij);
405
406
407
                 }
408
                 return 0;
409
410
411
             template<class Problem, class Grid, class Matrix>
412
             const int FEMethodZero<Problem, Grid, Matrix>::AssembleSUPGMatrix(const int 1)
413
414
                 int i, j, k, nodes;
                 double mij;
415
416
                 const auto& elem{ m_Grid->GetElement(1) };
417
                 const int dofs{ (int)elem->GetDoFs() };
418
                 const int terms{ (int)m_problem->getNumberOfTerms() };
419
                 nodes = elem->GetNumberOfNodes();
420
                 std::vector<Mesh::Point> points(nodes);
                 for (i = 0; i < nodes; ++i)
   points[i] = m_Grid->GetNode(elem->GetNode(i));
double minPec = -1;
421
422
423
424
                 auto MM = [&](const Mesh::Point& p)
425
                      double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) \star
426
       m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
427
                     double h = elem->GetMeasure();
428
                      //h = fabs(points[1].x - points[0].x);
429
                      h = sqrt(h);
430
                      //h = fabs(m_Grid->GetNode(0).x - m_Grid->GetNode(1).x);
431
                      double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(),
       p);
432
```

```
433
                      //double Pe = vel \star h / 2. / m_problem->get_parameter(Terms::IDUDV, 1, elem->GetType(),
       p);
434
435
                      if (Pe > minPec)
436
                          minPec = Pe;
                      return 0.;
437
438
439
                  elem->Integrate(MM, points);
440
                  for (i = 0; i < (int) dofs; ++i)
441
442
                      for (j = 0; j < (int)dofs; ++j)
443
                           auto inode = m_Grid->interpolate(elem->GetNode(i));
444
445
                           auto jnode = m_Grid->interpolate(elem->GetNode(j));
446
                           if (inode == -1 || jnode == -1)
                                continue:
447
448
                           auto M = [&] (const Mesh::Point& p)
449
450
                               double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p,
       0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
451
                                double h = elem->GetMeasure();
452
                               h = sqrt(h);
453
                                //h = fabs(points[1].x - points[0].x);
                                //h = fabs(m_Grid->GetNode(0).x - m_Grid->GetNode(1).x);
454
                                //h *= h;
455
456
                                //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
        elem->GetType(), p);
157
                                double tau = 0.;
458
                                //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
459
                               double Pe = minPec;
                               double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. /
460
        Pe);
461
                                //double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) -
        1. / Pe);
                               //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe); //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1. / Pe);
462
463
                                //beta = 0.;
464
465
                                //for (int ii = 0; ii < (int)dofs; ++ii)
                                    //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
466
       elem->GetGradShapeFunction(ii, p);
467
                                //return beta * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)
        * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *

// elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
468
                                if (Pe >= 1)
469
470
                                    tau = h / 2. / vel;
471
472
                                    tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
473
                                    //tau = 0:
                                //return 0.;
474
475
                                //tau = 1e-7;
476
                                //std::cout « "Stau Pe:\t" « Pe « std::endl;
                               //std::cout « "Stau re:\t" « re w std::end1;
//std::cout « "Stau ve!:\t" « h « std::end1;
//std::cout « "Stau:\t" « tau « std::end1;
477
478
479
                               auto ret = tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0)
480
        * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) * elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
481
482
                                //std::cout « ret « std::endl;
483
                               return ret;
484
                          };
485
486
                           //double tau =
487
                           auto _mij = elem->Integrate(M, points);
488
                           m_GlobalMatrix->AddElement(inode, jnode, _mij);
489
                      }
490
491
                  return 0:
492
493
494
             template<class Problem, class Grid, class Matrix>
495
             const int FEMethodZero<Problem, Grid, Matrix>::AssembleLocalMatrix(const int 1, const int old)
496
497
                  int i, j, k, nodes;
double mij;
498
499
                  const auto& elem{ m_Grid->GetElement(1) };
500
                  const int dofs{ (int)elem->GetDoFs() };
501
                  const int terms{ (int)m_problem->getNumberOfTerms() };
                  nodes = elem->GetNumberOfNodes():
502
                  std::vector<Mesh::Point> points(nodes);
503
504
                  for (i = 0; i < nodes; ++i)
                      points[i] = m_Grid->GetNode(elem->GetNode(i));
505
506
                  for (k = 0; k < terms; ++k)
507
508
                      switch (m_problem->getTerm(k))
509
```

```
case Terms::IUV:
                       for (i = 0; i < (int)dofs; ++i)
511
512
                           for (j = 0; j < (int)dofs; ++j)
513
514
515
                               auto M = [&](const Mesh::Point& p)
516
517
                                   return m_problem->get_parameter(Terms::IUV, 1, elem->GetType(), p) *
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
518
                               mij = elem->Integrate(M, points);
519
                               auto inode = m_Grid->interpolate(elem->GetNode(i));
520
521
                               auto jnode = m_Grid->interpolate(elem->GetNode(j));
522
                               if (inode > -1 && jnode > -1)
523
                                   m_GlobalMatrix->AddElement(inode, jnode, mij);
524
                           }
525
526
                       break;
527
                   case Terms::IDUDV:
                       for (i = 0; i < (int) dofs; ++i)
529
530
                           for (j = 0; j < (int)dofs; ++j)
531
                               auto inode = m_Grid->interpolate(elem->GetNode(i));
532
533
                               auto jnode = m_Grid->interpolate(elem->GetNode(j));
                               if (inode == -1 || jnode == -1)
534
535
                                   continue;
536
                               auto M = [&](const Mesh::Point& p)
537
538
                                   //auto m = elem->GetGradShapeFunction(i, p) *
      539
       elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
540
541
                               //mij = m\_Grid->getParameter(Parameters::DIFFUSION, 1, j) *
       elem->Integrate(M, points);
542
                               mij = elem->Integrate(M, points);
543
                               m_GlobalMatrix->AddElement(inode, jnode, mij);
544
                           }
545
546
                       break;
                   case Terms::IDUV:
547
                       for (i = 0; i < (int)dofs; ++i)</pre>
548
549
550
                           for (j = 0; j < (int)dofs; ++j)
551
552
                               auto inode = m_Grid->interpolate(elem->GetNode(i));
553
                               auto jnode = m_Grid->interpolate(elem->GetNode(j));
                               if (inode == -1 || jnode == -1)
554
555
                                   continue:
556
                               auto M = [&](const Mesh::Point& p)
557
                               {
558
                                   return m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
       elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
559
560
                               auto mij = elem->Integrate(M, points);
561
                               m_GlobalMatrix->AddElement(inode, jnode, _mij);
562
563
564
                       break;
                   case Terms::IUDV:
565
566
                       for (i = 0; i < dofs; ++i)</pre>
567
568
                           for (j = 0; j < dofs; ++j)
569
570
                               auto inode = m_Grid->interpolate(elem->GetNode(i));
571
                               auto jnode = m_Grid->interpolate(elem->GetNode(j));
                               if (inode == -1 || jnode == -1)
572
573
                                   continue:
574
                               auto M = [&](const Mesh::Point& p)
575
576
                                   return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
577
                               // \texttt{mij} = \texttt{m\_CoarseGrid->getParameter(Parameters::ADVECTION, 1, j)} ~ \star
578
      579
                               m_GlobalMatrix->AddElement(inode, jnode, mij);
580
581
582
583
                       break:
                   case Terms::EUV:
584
585
                       for (i = 0; i < dofs; ++i)</pre>
586
587
                           for (j = 0; j < dofs; ++j)
588
589
                               auto M = [&] (const Mesh::Point& p)
590
```

```
591
                                     return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
592
593
                                 mij = elem->Integrate(M, points);
594
                                m_rhsvector->operator[](elem->GetNode(i)) +=
       595
       m_CoarseGrid->getParameter(Parameters::MASS, 1, points[j]) * elem->GetValue(j) * mij;
596
597
598
                        break;
                    case Terms::EDUDV:
599
                        for (i = 0; i < dofs; ++i)</pre>
600
601
602
                             for (j = 0; j < dofs; ++j)
603
604
                                 auto M = [&](const Mesh::Point& p)
605
                                     return elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
606
       p);
607
608
                                 mij = elem->Integrate(M, points);
609
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
       \verb|m_Grid->getParameter(Parameters::DIFFUSION, 1, j) * m_Grid->getSolution(1, j) * mij;|
610
                            }
611
612
                        break;
613
                    case Terms::EDUV:
614
                        for (i = 0; i < dofs; ++i)</pre>
615
616
                             for (j = 0; j < dofs; ++j)
617
618
                                 auto M = [&](const Mesh::Point& p)
619
620
                                     return elem->GetShapeFunction(i, p) * elem->GetGradShapeFunction(j, p);
621
                                 mij = elem->Integrate(M, points).x;
622
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
623
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;
624
                            }
625
626
                        break;
                    case Terms::EUDV:
62.7
                        for (i = 0; i < dofs; ++i)</pre>
628
629
630
                             for (j = 0; j < dofs; ++j)
631
632
                                 auto M = [&](const Mesh::Point& p)
633
                                     return elem->GetGradShapeFunction(i, p) * elem->GetShapeFunction(j, p);
634
635
636
                                mij = elem->Integrate(M, points).x;
                                 m_rhsvector->operator[](elem->GetNode(i)) +=
637
       m_Grid->getParameter(Parameters::ADVECTION, 1, j) * mij;// *mij;
638
                            }
639
640
                        break;
                    case Terms::EFV:
641
                        for (i = 0; i < dofs; ++i)</pre>
642
643
644
                             /*for (j = 0; j < dofs; ++j)
645
646
                                 auto M = [&](const Mesh::Point& p)
647
648
                                     return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, j, p) *
       elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
649
                                mij = elem->Integrate(M, points);
m_rhsvector->operator[](elem->GetNode(i)) += mij;
650
651
652
653
                             auto M = [&](const Mesh::Point& p)
654
655
                                return m_problem->get_parameter(Terms::EFV, elem->GetType(), 1, i, p) *
       elem->GetShapeFunction(i, p);
656
                            };
                            mij = elem->Integrate(M, points);
657
                            m_rhsvector->operator[](elem->GetNode(i)) += mij;
658
659
660
                        break;
                    case Terms::RUV:
661
                        for (i = 0; i < (int)dofs; ++i)</pre>
662
663
664
                             for (j = 0; j < (int)dofs; ++j)
665
666
                                 auto M = [&](const Mesh::Point& p)
667
                                     return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
668
                                 };
669
```

```
mij = elem->Integrate(M, points);
671
                                   auto inode = m_Grid->interpolate(elem->GetNode(i));
672
                                   auto jnode = m_Grid->interpolate(elem->GetNode(j));
                                   if (inode > -1 && jnode > -1)
673
674
                                       m_RightMatrix->AddElement(inode, jnode, mij);
675
                              }
676
677
                          break;
678
                      case Terms::SUPG:
                          for (i = 0; i < (int)dofs; ++i)
679
680
681
                               for (j = 0; j < (int)dofs; ++j)
682
                                   auto inode = m_Grid->interpolate(elem->GetNode(i));
683
684
                                   auto jnode = m_Grid->interpolate(elem->GetNode(j));
                                   if (inode == -1 || jnode == -1)
685
686
                                       continue:
                                   auto M = [&](const Mesh::Point& p)
687
688
689
                                       double vel = sqrt(m_problem->get_parameter(Terms::IDUV, 1,
       elem->GetType(), p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0));
690
                                       double h = elem->GetMeasure();
691
                                       //double Pe = vel * h / 6. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetTvpe(), p);
692
                                       double tau = 0.;
                                       double Pe = vel * h / 2. / m_problem->get_parameter(Terms::IDUDV, 1,
693
       elem->GetType(), p);
694
                                       //double beta = h / 2. / vel * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) -
       1.) - 1. / Pe);
695
                                       double beta = h / std::sqrt(3.) * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.)) / (exp(2. * Pe) - 1.) / (exp(2. * Pe) - 1.)
       1.) - 1. / Pe);
696
                                       //double beta = h / 2. * ((exp(2. * Pe) + 1.) / (exp(2. * Pe) - 1.) - 1.
       / Pe);
                                        //beta = 0.;
697
                                       //for (int ii = 0; ii < (int)dofs; ++ii)
    //beta += m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
698
699
       p, 0) * elem->GetGradShapeFunction(ii, p);
700
                                       return beta * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) *
701
                                               elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
       p);
702
                                       if (Pe >= 1)
                                           tau = h / 2. / vel;
703
704
                                       else
705
                                           tau = h * h / 12. / m_problem->get_parameter(Terms::IDUDV, 1,
       elem->GetType(), p);
706
                                       //return 0.;
707
                                       return tau * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(),
       p, 0) * m_problem->get_parameter(Terms::IDUV, 1, elem->GetType(), p, 0) * elem->GetGradShapeFunction(i, p) * elem->GetGradShapeFunction(j,
708
       p);
709
710
711
                                   //double tau =
712
                                   auto _mij = elem->Integrate(M, points);
                                   m_GlobalMatrix->AddElement(inode, jnode, _mij);
713
714
715
716
                          break;
717
                      default:
718
                          break:
719
720
721
                 return 0;
722
723
             template<class Problem, class Grid, class Matrix>
724
             void FEMethodZero<Problem, Grid, Matrix>::MainConditions()
725
726
                 double mu{ 1e10 };
                 const auto n = m_problem->get_number_of_boundaries();
const auto m = m_Grid->GetNumberOfBoundaries();
727
728
729
                 for (int i = 0; i < n; ++i)
730
731
                      const auto& type = m_problem->get_boundary_type(i);
                      for (int j = \overline{0}; j < \overline{m}; ++j)
732
733
734
                          const auto& row = m_Grid->GetBoundary(j);
735
                          if (row->GetType() == type)
736
737
                              const int dofs = (int)row->GetDoFs();
                              const int dofs2 = 2;
738
739
                              const auto& elem_num = row->GetNeighbour(0);
740
                              const auto& elem = m_Grid->GetElement(elem_num);
741
                               const int dofs_elem = elem->GetDoFs();
742
                               std::vector<Mesh::Point> points(dofs_elem);
743
                               for (int k = 0; k < dofs_elem; ++k)
744
                                   points[k] = m Grid->GetNode(elem->GetNode(k));
```

```
745
                              for (int k = 0; k < dofs; ++k)
746
747
                                  int 1 = 0;
748
                                  for (; 1 < dofs_elem; ++1)</pre>
749
                                      if (elem->GetNode(1) == row->GetNode(k))
750
751
                                          break;
752
753
                                  m_GlobalMatrix->NullRow(row->GetNode(k));
754
                                  //m_GlobalMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
755
                                  //m\_rhsvector->operator[] \ (row->GetNode \ (k)) \ =
       \verb|m_problem->get_boundary_parameter(0, type, \verb|m_Grid->GetNode(row->GetNode(k)))|; \\
756
                                  //m_rhsvector->operator[](row->GetNode(k))
       m_problem->get_boundary_parameter(0, type, elem_num, 1, m_Grid->GetNode(row->GetNode(k)));
757
                                  m_rhsvector->operator[](row->GetNode(k)) = elem->GetWeight(1, points,
       [=](const Mesh::Point& p) { return m_problem->get_boundary_parameter(0, type, p); });
758
                                  if (m_problem->findTerm(Terms::RUV))
759
760
                                          m_RightMatrix->NullRow(row->GetNode(k));
761
                                          //m_RightMatrix->operator()(row->GetNode(k), row->GetNode(k)) *= mu;
762
763
                              /*for (int k = dofs2; k < dofs; ++k)
764
765
766
                                  m_GlobalMatrix->NullRow(row->GetNode(k));
                                  m_rhsvector->operator[](row->GetNode(k)) = 0;
767
768
769
770
                     }
771
772
                 /*for (auto bnd : m Grid->GetBoundaryConditions())
773
774
                     if (get<0>(bnd.second) == 1)
775
                         for (auto row : m_Grid->GetBoundary())
776
777
                              if (bnd.first == row->GetType())
778
779
                                  for (int i = 0; i < row->GetDoF(); ++i)
780
781
                                      m_GlobalMatrix->NullRow(row->GetNodes(i));
782
                                      m_rhsvector[row->GetNodes(i)] =
       get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
783
784
785
786
787
788
             template<class Problem, class Grid, class Matrix>
789
             void FEMethodZero<Problem, Grid, Matrix>::SecondConditions()
790
791
                 double theta = 0;
792
                 int nfem;
793
                 Mesh::Point temp[3];
794
                 std::vector<int> local;
795
                 for (auto bnd : m_Grid->GetBoundaryConditions())
796
797
                     //if (get<0>(bnd.second) == 2)
798
                         for (auto row : m_Grid->GetBoundary())
799
800
801
                              if (bnd.first == row->GetType())
802
803
                                  local.resize(0);
                                  int dofs = row->GetDoF();
804
805
                                  nfem = row->GetNumberOfElement(0);
806
                                  auto elem = m_Grid->GetElements()[nfem];
807
                                  //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); }; for (int j = 0; j < dofs; ++j)
808
809
810
                                      temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
811
                                      for (int i = 0; i < elem->GetDoF(); ++i)
812
813
                                           if (row->GetNodes(j) == elem->GetNodes()[i])
814
                                               local.push back(i);
815
816
                                               break:
817
818
819
                                  for (int i = 0: i < dofs: ++i)
820
821
822
                                      for (int j = 0; j < dofs; ++j)
823
824
                                           //theta = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
825
                                          theta = 0;
                                          auto GetMass = [&](const Mesh::Point& p) {return
82.6
       elem->GetBasis(local[j], p) * elem->GetBasis(local[i], p); };
```

```
827
                                           auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
       p)*row->GetBasis(i, p); };
828
                                           //if (i < 2 || j < 2)
829
                                           m_rhsvector[row->GetNodes(i)] += theta * row->Integrate(GetMass,
       temp);
830
                                           //if (i < 3 || j < 3)
831
832
                                              m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
       temp);
833
                                  }
834
                             }
835
836
                         }
837
838
                 }
839
840
             template<class Problem, class Grid, class Matrix>
             void FEMethodZero<Problem, Grid, Matrix>::StefanConditions()
841
842
843
                 double dest{ 0. }, lat{ 0 };
844
                 int nfem;
845
                 Mesh::Point temp[3];
846
                 std::vector<int> local;
847
                 for (auto bnd : m_Grid->GetBoundaryConditions())
848
849
                      //if (get<0>(bnd.second) == 4)
850
851
                          lat = 0;
852
                          //lat = get<2>(bnd.second);
853
                          for (auto row : m_Grid->GetBoundary())
854
855
                              if (bnd.first == row->GetType())
856
857
                                   local.resize(0);
858
                                   int dofs = row->GetDoF();
859
                                   nfem = row->GetNumberOfElement(0);
                                   auto elem = m_Grid->GetElements()[nfem];
860
861
                                   //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
862
                                   for (int j = 0; j < dofs; ++j)
863
864
                                       temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
865
                                       for (int i = 0; i < elem->GetDoF(); ++i)
866
867
                                           if (row->GetNodes(j) == elem->GetNodes()[i])
869
                                                local.push_back(i);
870
                                               break;
871
872
873
                                       (int i = 0; i < dofs; ++i)
875
876
                                       for (int j = 0; j < dofs; ++j)
877
878
                                           dest = 0:
                                           //dest = get<1>(bnd.second) (m_Grid->GetNodes() [row->GetNodes(i)]);
879
880
                                           auto GetBBasis = [&](const Mesh::Point& p) {return row->GetBasis(j,
       p)*row->GetBasis(i, p); };
881
                                           //if (i < 2 || j < 2)
882
                                           \label{eq:m_rhsvector} $$m_rhsvector[row->GetNodes(i)] += dest * lat * $$
       row->Integrate (GetBBasis, temp);
883
884
                                           //if (i < 3 || j < 3)
                                           // m_rhsvector[row[i + 1]] += theta * row->Integrate(GetBBasis,
885
       temp);
886
887
                                  }
888
                              }
889
                         }
890
                     }
891
892
893
             template<class Problem, class Grid, class Matrix>
             void FEMethodZero<Problem, Grid, Matrix>::ThirdConditions()
894
895
896
                 double param{ 0 }, beta{ 0 };
897
                 int nfem;
898
                 Mesh::Point temp[6];
899
                 std::vector<int> local;
                 auto fxy = [&](const Mesh::Point& p) {return (10 * p.y*m_time + m_time) / 10; }; //auto fxy = [&](const Point& p){return 10 * p.y + 10 * m_time; };
900
901
902
                 for (auto bnd : m_Grid->GetBoundaryConditions())
903
904
                      //if (get<0>(bnd.second) == 3)
905
906
907
                          for (auto row : m Grid->GetBoundary())
```

```
908
                         {
909
                              if (bnd.first == row->GetType())
910
911
                                  local.resize(0);
                                  int dofs = row->GetDoF();
912
                                  nfem = row->GetNumberOfElement(0);
913
                                  auto elem = m_Grid->GetElements()[nfem];
914
915
                                  //auto GetBasis = [&](int t, Point p){return elem->GetBasis(t, p); };
916
                                  auto order = elem->GetDoF();
917
                                  for (int j = 0; j < dofs; ++j)
918
                                      temp[j] = m_Grid->GetNodes()[row->GetNodes(j)];
for (int i = 0; i < order; ++i)</pre>
919
920
921
922
                                           if (row->GetNodes(j) == elem->GetNodes()[i])
923
924
                                               local.push_back(i);
925
                                               break;
926
927
                                      }
928
929
                                  double val{ 0 };
                                  for (int i = 0; i < dofs; ++i)
930
931
932
                                       for (int j = 0; j < dofs; ++j)
933
934
                                           param = 0;
935
                                           beta = 0;
936
                                           //beta = get<2>(bnd.second);
                                           //param = get<1>(bnd.second) (m_Grid->GetNodes()[row->GetNodes(i)]);
//param = fxy(temp[j]);
auto GetBBasis = [&](const Mesh::Point& p) {return
937
938
939
       elem->GetBasis(local[j], p)*elem->GetBasis(local[i], p); };
940
                                           //val = row->GetElement(GetBBasis, temp);
941
                                           val = row->Integrate(GetBBasis, temp);
                                           942
       beta * val;
943
                                          m_rhsvector[row->GetNodes(i)] += beta * param * val;
944
945
                                 }
946
                             }
                         }
947
                     }
948
949
                 }
950
951
             template<class Problem, class Grid, class Matrix>
952
            Matrix* FEMethodZero<Problem, Grid, Matrix>::GetGlobalMatrix() const
953
954
                 return m GlobalMatrix:
955
956
            template<class Problem, class Grid, class Matrix>
957
             const double FEMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p) const
958
959
                 if (!m_solution.size())
                return -1;
double val = 0;
int nfem = -1;
960
961
962
                 nfem = m_Grid->FindElement(p);
963
964
                 if (nfem == -1)
                     return -1:
965
966
                 auto elem = m Grid->GetElements()[nfem];
                 for (int i = 0; i < elem->GetDoF(); ++i)
967
968
                    val += m_solution[elem->GetNodes()[i]] * elem->GetBasis(i, p);
969
970
971
             template<class Problem, class Grid, class Matrix>
972
            const double FEMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
       std::vector<double>& vec) const
973
            {
974
                 if (!vec.size())
975
                     return -1;
                 double val{ 0 };
976
                int nfem{ -1 };
nfem = m_Grid->FindElement(p);
977
978
979
                 <u>if</u> (nfem == -1)
                     return -1;
980
981
                 auto elem = m_Grid->GetElements()[nfem];
982
                 for (int i = 0; i < elem->GetDoFs(); ++i)
983
                    val += vec[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
984
                 return val:
985
986
            template<class Problem, class Grid, class Matrix>
             const double FEMethodZero<Problem, Grid, Matrix>::GetValue(const Mesh::Point& p, const
987
       std::vector<double>& vec, const int num) const
988
989
                 if (!vec.size() || num < 0)
990
                     return -1:
```

```
double val{ 0 };
                auto elem = m_Grid->GetElements()[num];
992
993
                for (int i = 0; i < elem->GetDoF(); ++i)
994
                    val += vec[elem->GetNodes()[i]] * elem->GetBasis(i, p);
995
                 return val:
996
            //template<class Problem, class Grid, class Matrix>
            //const Mesh::Point FEMethodZero<Problem, Grid, Matrix>::GetGradValue(const Mesh::Point& p,
998
       const std::vector<double>& vec) const
999
1000
             11
                 Mesh::Point val{ 0, 0 };
             11
                 int nfem{ -1 }:
1001
1002
             11
                 nfem = m_Grid->FindElement(p);
                 if (nfem == -1)
1003
1004
             //
                      return val;
1005
              11
                  auto elem = m_Grid->GetElements()[nfem];
1006
             11
                 for (int i = 0; i < elem -> GetDoF(); ++i)
1007
             //
1008
             11
                      val.x += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).x;
                     val.y += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).y;
val.z += vec[elem->GetNodes()[i]] * elem->GetGradBasis(i, p).z;
1009
             11
1010
1011
              //
1012
              // return val;
              //1
1013
             template<class Problem, class Grid, class Matrix>
1014
             const double FEMethodZero<Problem, Grid, Matrix>::GetEffective(const std::vector<double>& vec)
1015
       const
1016
1017
                  double sum = 0;
1018
                  //std::vector<int> dofs;
                  //Mesh::Point points[10];
//for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1019
1020
1021
                      //auto mb = [&](const Mesh::Point& b) {return GetGradValue(b, vec)*GetGradValue(b,
1022
       vec); };
1023
                      //dofs.resize(0);
1024
                      //auto elem = m Grid->GetElements()[i];
                      //int order = elem->GetDoF();
1025
1026
                      //double diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
1027
                      //for (int j = 0; j < order; ++j)
1028
1029
                          //dofs.push_back(elem->GetNodes()[j]);
                          //points[j] = m_Grid->GetNodes()[dofs[j]];
1030
1031
1032
                      //sum += diff * elem->Integrate(mb, points);
1033
                  //}
1034
                  //std::cout « "Effect (local): " « sum « std::endl;
1035
                  //std::cout « "Effect (local) sqrt: " « sqrt(sum) « std::endl;
1036
                  return sum:
1037
1038
              //template<class Problem, class Grid, class Matrix>
              //const Mesh::Point FEMethodZero<Problem, Grid, Matrix>::GetLambdaGrad(const Mesh::Point& p,
1039
       const std::vector<double>& vec) const
1040
             //{
                Mesh::Point val{ 0, 0, 0 };
1041
              // //double val{ 0 };
1042
                 double diff{ 0 };
1043
             //
1044
                 Mesh::Point temp{ 0, 0, 0 };
1045
                 int nfem{ -1 };
1046
                 nfem = m_Grid->FindElement(p);
1047
             // if (nfem == -1)
             11
1048
                     return val;
1049
             11
                 auto elem = m_Grid->GetElements()[nfem];
1050
                 diff = std::get<0>(m_Grid->GetDiffusion().find(elem->GetType())->second);
1051
             11
                 for (int i = 0; i < elem -> GetDoF(); ++i)
             // {
1052
1053
              11
                      //val += elem->GetGradBasis(i, p) * elem->GetGradBasis(i, p) * vec[elem->GetNodes()[i]]
       * vec[elem->GetNodes()[i]] * diff;
1054
                      //val += elem->GetBasis(i, p) * vec[elem->GetNodes()[i]] * diff;
                      temp = elem->GetGradBasis(i, p);
1055
1056
                      val.x += temp.x * vec[elem->GetNodes()[i]] * (diff);
                      val.y += temp.y * vec[elem->GetNodes()[i]] * (diff);
1057
              11
1058
                      val.z += temp.z * vec[elem->GetNodes()[i]] * (diff);
1059
                 }
             //
1060
                 return val;
             //}
1061
1062
              template<class Problem, class Grid, class Matrix>
1063
              const std::vector<double> FEMethodZero<Problem, Grid, Matrix>::GetRightVector() const
1064
1065
                  return *m rhsvector:
1066
1067
             template<class Problem, class Grid, class Matrix>
              void FEMethodZero<Problem, Grid, Matrix>::OutDatFormat(const Mesh::Point& mn, const
1068
       Mesh::Point& mx, const std::string& file_name, const std::vector<double>& vec) const
1069
             {
                  std::ofstream of(file_name + "z.dat");
1070
1071
                  std::streambuf *buf = std::cout.rdbuf();
```

```
std::cout.rdbuf(of.rdbuf());
                                    std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1073
1074
1075
                                   double stepx = (mx.x - mn.x) / 51;
double stepy = (mx.y - mn.y) / 51;
for (int i = 0; i < 51; ++i)
1076
1077
1078
1079
                                             for (int j = 0; j < 51; ++j)
1080
                                                    std::cout « mn.x + j * stepx « "\t" « <math>mn.y + stepy * i « "\t" «
              \texttt{GetValue}(\texttt{Mesh::Point}(\texttt{mn.x} + \texttt{j} * \texttt{stepx}, \ \texttt{mn.y} + \texttt{i} * \texttt{stepy}, \ \texttt{mn.z}), \ \texttt{vec}) \ \texttt{ & std::endl;}
1081
                                    std::cout.rdbuf(buf);
1082
                                    of.close();
1083
                                    of.open(file_name + "x.dat");
                                    buf = std::cout.rdbuf();
1084
1085
                                    std::cout.rdbuf(of.rdbuf());
                                   std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dxl\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
for (int i = 0; i < 51; ++i)</pre>
1086
1087
1088
1089
                                            for (int j = 0; j < 51; ++j)
1090
              std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" « GetValue (Mesh::Point (mn.z, mn.x + j * stepx, mn.y + i * stepy), vec) « std::endl;
1091
1092
                                    std::cout.rdbuf(buf);
1093
                                    of.close():
1094
                                    of.open(file_name + "y.dat");
1095
                                    buf = std::cout.rdbuf();
1096
                                    std::cout.rdbuf(of.rdbuf());
                                    std::cout « "TITLE = FE-METHOD\n";
std::cout « "VARIABLES = \"dx1\", \"dx2\", \"u\"\n";
std::cout « "ZONE i=51, j=51, F=POINT\n";
1097
1098
1099
                                    for (int i = 0; i < 51; ++i)
1100
1101
                                            for (int j = 0; j < 51; ++j)
                                                     std::cout « mn.x + j * stepx « "\t" « mn.y + stepy * i « "\t" «
1102
              \texttt{GetValue}\,(\texttt{Mesh}::\texttt{Point}\,(\texttt{mn.x}\,+\,\texttt{j}\,\star\,\texttt{stepx},\,\,\texttt{mn.z},\,\,\texttt{mn.y}\,+\,\texttt{i}\,\star\,\,\texttt{stepy})\,,\,\,\texttt{vec})\,\,\,\,\,\,\,\,\,\,\,\,\,\texttt{std}::\texttt{endl};
1103
                                    std::cout.rdbuf(buf);
1104
                                    of.close();
1105
1106
                           template<class Problem, class Grid, class Matrix>
1107
                            void FEMethodZero<Problem, Grid, Matrix>::ApplySources()
1108
                                    int nfem = -1;
1109
                                   auto total = m_problem->get_total_sources();
for (int i = 0; i < total; ++i)</pre>
1110
1111
1112
1113
                                             auto src = m_problem->get_point_source(i);
1114
                                             auto point = src.get_point();
1115
                                             nfem = m_Grid->FindElement(point);
1116
                                             if (nfem != -1)
1117
1118
                                                     auto val = src.get value();
                                                     auto elem = m_Grid->GetElement(nfem);
for (int j = 0; j < 3; ++j)</pre>
1119
1120
1121
                                                             \label{eq:m_rhsvector} $$m_rhsvector->operator[](elem->GetNode(j)) += val * elem->GetShapeFunction(j, line) += val * 
              point);
1122
1123
                                            nfem = -1;
1124
                                     /*for (auto srd : m_Grid->GetDottedSources())
1125
1126
1127
                                             nfem = m_Grid->FindElement(srd.first);
                                             if (nfem != -1)
1128
1129
1130
                                                     auto elem = m_Grid->GetElements()[nfem];
                                                     for (int i = 0; i < elem -> GetDoF(); ++i)
1131
1132
1133
                                                              \texttt{m\_rhsvector[elem->GetNodes()[i]] += srd.second * elem->GetBasis(i, srd.first); } 
1134
1135
1136
                                           nfem = -1;
1137
1138
1139
                           template<class Problem, class Grid, class Matrix>
1140
                           void FEMethodZero<Problem, Grid, Matrix>::Rediscretization(const std::shared_ptr<Grid>& grid)
1141
                                    m GlobalMatrix->NullMatrix();
1142
1143
                                    for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
                                            (*m\_rhsvector)[i] = 0;
1144
1145
                                    AssemblGlobal();
1146
                                    //SecondConditions():
1147
                                    //ApplySources();
                                     //StefanConditions();
1148
1149
                                    MainConditions();
1150
1151
                            template<class Problem, class Grid, class Matrix>
1152
                           void FEMethodZero<Problem, Grid, Matrix>::Rediscretization()
1153
                           {
1154
                                    m time += m step;
```

```
m_GlobalMatrix->NullMatrix();
1156
                            for (unsigned int i = 0; i < m_rhsvector->size(); ++i)
1157
                                   (*m\_rhsvector)[i] = 0;
1158
                            AssemblGlobal();
1159
                            SecondConditions():
1160
                            ThirdConditions():
1161
                            StefanConditions();
1162
                             //ApplySources();
1163
                            MainConditions();
1164
                     template<class Problem, class Grid, class Matrix>
1165
1166
                     void FEMethodZero<Problem, Grid, Matrix>::GetSolution(std::vector<double>& vec)
1167
1168
                            int size = vec.size();
1169
                            //Translation(vec);
1170
                            for (int i = 0; i < size; ++i)
                                  vec[i] = m_solution[i];
1171
1172
1173
                     template<class Problem, class Grid, class Matrix>
1174
                     const double FEMethodZero<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
           std::vector<double> &weights, const Mesh::Point& p)
1175
1176
                            double sum{ 0 };
                            auto nfem{ g.FindElement(p) };
if (nfem < 0)</pre>
1177
1178
                                  return 0.;
1179
1180
                            auto elem{ g.GetElement(nfem) };
1181
                            auto dofs{ elem->GetDoFs() };
1182
                            for (auto i{ 0 }; i < dofs; ++i)</pre>
1183
                                 sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1184
                            return sum:
1185
1186
                     template<class Problem, class Grid, class Matrix>
                     const double FEMethodZero<Problem, Grid, Matrix>::GetSolution(const Grid& g, const
1187
           std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1188
1189
                            double sum{ 0 };
1190
                            //if (nfem < 0)
1191
                                      return 0.;
1192
                            auto elem{ g.GetElement(nfem) };
                            auto dofs{ elem->GetDoFs() };
1193
                           //std::cout « nfem « std::endl;
for (auto i{ 0 }; i < dofs; ++i)</pre>
1194
1195
                                 sum += weights[elem->GetNode(i)] * elem->GetShapeFunction(i, p);
1196
1197
                            return sum;
1198
1199
                     template<class Problem, class Grid, class Matrix>
1200
                     \verb|const Mesh|: Point FEMethodZero < Problem, Grid, Matrix>:: GetGradSolution (const Grid& g, const Grid& g, c
           std::vector<double> &weights, const Mesh::Point& p)
1201
                     {
1202
                            Mesh::Point sum{ 0, 0, 0 };
1203
                            auto nfem{ g.FindElement(p) };
1204
                            auto elem{ g.GetElement(nfem) };
1205
                            auto dofs{ elem->GetDoFs() };
                            for (auto i{ 0 }; i < dofs; ++i)</pre>
1206
                                  sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
1207
1208
1209
                      template<class Problem, class Grid, class Matrix>
1210
1211
                     const Mesh::Point FEMethodZero<Problem, Grid, Matrix>::GetGradSolution(const Grid& g, const
           std::vector<double> &weights, const Mesh::Point& p, const int nfem)
1212
                     {
1213
                            Mesh::Point sum{ 0, 0, 0 };
                            auto elem{ g.GetElement(nfem) };
1214
1215
                            auto dofs{ elem->GetDoFs() };
1216
                            for (auto i{ 0 }; i < dofs; ++i)</pre>
                                  sum += weights[elem->GetNode(i)] * elem->GetGradShapeFunction(i, p);
1217
1218
                            return sum;
1219
1220
                     template<class Problem, class Grid, class Matrix>
1221
                      void FEMethodZero<Problem, Grid, Matrix>::LoadSolution(const std::vector<double>& vec)
1222
1223
                            m_solution.resize(vec.size());
                            for (unsigned int i = 0; i < vec.size(); ++i)
m_solution[i] = vec[i];
1224
1225
1226
1227
                     template<class Problem, class Grid, class Matrix>
1228
                     void FEMethodZero<Problem, Grid, Matrix>::OutMeshFormat(const std::string& file_name, const
           std::vector<double>& vec)
1229
                     {
1230
                            const int size{ (int)m Grid->GetNodes().size() };
                            const int number{ (int)m_Grid->GetElements().size() };
           1232
1233
1234
           FETETRAHEDRON\n");
```

```
ofs « title;
                   Mesh::Point p;
1236
1237
                   for (int i = 0; i < size; ++i)
1238
1239
                       1240
1241
1242
                   for (int i = 0; i < number; ++i)
1243
1244
                        auto elem = m_Grid->GetElements()[i];
                        for (int k = 0; k < 4; ++k)
1245
1246
1247
                            ofs « elem->GetNodes()[k] + 1 « "\t";
1248
1249
                        ofs « std::endl;
1250
1251
                   ofs.close():
1252
1253
               template<class Problem, class Grid, class Matrix>
1254
               void FEMethodZero<Problem, Grid, Matrix>::OutMeshTimeFormat(const std::string& file_name, const
        std::vector<double>& vec)
1255
                   const int size{ (int)m_Grid->GetNodes().size() };
1256
12.57
                   const int number{ (int)m_Grid->GetElements().size() };
       const int number{ (int)m_Grid->GetElements().size() };
    //const int size{ number * 4 };
    std::ofstream ofs(file_name + ".dat", std::ios::out | std::ios::app);
    std::string title("TITLE = \"Mesh data\"\n Variables = \"X\", \"Y\", \"Z\", \"U\"\n Zone N
= " + std::to_string(size) + ", E = " + std::to_string(number) + ", DATAPACKING = POINT, ZONETYPE =
1258
1259
1260
       FETETRAHEDRON\n");
1261
                   ofs « title;
                   Mesh::Point p;
for (int i = 0; i < size; ++i)
1262
1263
1264
1265
                       p = m_Grid->GetNodes()[i];
                        ofs « p.x « "\t" « p.y « "\t" « p.z « "\t" « GetValue(p, vec, 1) « std::endl;
1266
1267
1268
                   for (int i = 0; i < number; ++i)
1269
1270
                        auto elem = m_Grid->GetElements()[i];
1271
                        for (int k = 0; k < 4; ++k)
1272
                            ofs « elem->GetNodes()[k] + 1 « "\t";
1273
1274
1275
                       ofs « std::endl;
1276
1277
                   ofs.close();
1278
1279
               template<class Problem, class Grid, class Matrix>
       void FEMethodZero<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol, std::function<const double(const Mesh::Point&, const std::vector<double>&, const int)> GetVal,
1280
        std::vector<double>& vec)
1281
1282
                   for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1283
                        auto elem = m_Grid->GetElements()[i];
1284
                        int order = elem->GetDoF();
1285
                        for (int j = 0; j < order; ++j)
1286
                            sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec, i);
1287
1288
1289
               template<class Problem, class Grid, class Matrix>
1290
               void FEMethodZero<Problem, Grid, Matrix>::ProjectSolution(std::vector<double>& sol,
1291
        std::function<const double(const Mesh::Point&, const std::vector<double>&)> GetVal,
        std::vector<double>& vec, const int)
1292
1293
                   for (int i = 0; i < m_Grid->GetElements().size(); ++i)
1294
                       auto elem = m Grid->GetElements()[i];
1295
1296
                       int order = elem->GetDoF();
1297
                        for (int j = 0; j < order; ++j)
1298
                            sol[elem->GetNodes(j)] = GetVal(m_Grid->GetNodes()[elem->GetNodes(j)], vec);
1299
1300
               template<class Problem, class Grid, class Matrix>
1301
               const std::vector<double> FEMethodZero<Problem, Grid, Matrix>::SetSolution(const int sol, const
1302
        int liq, const double s, const double 1, const double m)
1303
1304
1305
                   m_solution.resize(m_Grid->GetNodes().size());
                   for (i = 0; i < m_Grid->GetElements().size(); ++i)
1306
1307
1308
                       auto elem = m_Grid->GetElements()[i];
1309
                        int order = elem->GetDoF();
1310
                        if (m_Grid->GetElements()[i]->GetType() == liq)
1311
                            for (int j = 0; j < order; ++j)
1312
                                m_solution[elem->GetNodes()[j]] = 1;
                       else
1313
```

```
for (int j = 0; j < order; ++j)
1315
                              m_solution[elem->GetNodes()[j]] = s;
1316
1317
1318
                  for (auto bnd : m_Grid->GetBoundaryConditions())
1319
1320
                      //if (get<0>(bnd.second) == 4)
1321
1322
                          for (auto row : m_Grid->GetBoundary())
1323
                              if (bnd.first == row->GetType())
1324
1325
1326
                                  int dofs = row->GetDoF();
                                  for (int i = 0; i < dofs; ++i)</pre>
1327
1328
1329
                                       m_solution[row->GetNodes(i)] = m;
1330
1331
1332
1334
1335
                 return m_solution;
1336
             template<class Problem, class Grid, class Matrix>
1337
1338
             FEMethodZero<Problem, Grid, Matrix>::~FEMethodZero()
1339
1340
                 delete m_Grid;
1341
1342
1343 }
1344
1345 #endif // !CORENC_METHODS_FEMethodZeroZero_h
```

7.83 CoreNCFEM/Methods/FVMethod.cpp File Reference

```
#include "FVMethod.h"
```

7.84 CoreNCFEM/Methods/FVMethod.h File Reference

```
#include "../Grids/Mesh1D.h"
```

Classes

· class corenc::method::FVMethod1d

Namespaces

- namespace corenc
- namespace corenc::method

Enumerations

enum class corenc::method::FVFlux { corenc::method::LaxFriedrichs , corenc::method::Upwind , corenc::method::Central , corenc::method::NOFLUX }

7.85 FVMethod.h

Go to the documentation of this file.

```
1 #ifndef CORENC_METHODS_FINITEVOLUME_H_
2 #define CORENC_METHODS_FINITEVOLUME_H_
4 #include "../Grids/Mesh1D.h"
6 namespace corenc
      namespace method
10
           enum class FVFlux
11
               LaxFriedrichs.
12
13
               Upwind.
               Central,
15
              NOFLUX,
16
          class FVMethod1d
17
18
          public:
19
              FVMethod1d();
21
               ~FVMethod1d();
               static const int
                                                        Solve(Mesh::CMesh<CFESolution>* mesh,
23
                                                        const std::function<const double(const double)>&
       flux func,
24
                                                        const FVFlux& flux_type,
                                                        std::vector<double>& new_solution,
                                                        const double time_step);
27
               static const double
                                                        GetSolution(const Mesh::CMesh1D& g, const
       Mesh::Point& p);
2.8
          };
29
30 }
31 #endif // CORENC_METHODS_FINITEVOLUME_H_
```

7.86 CoreNCFEM/Methods/RungeKutta.h File Reference

```
#include <memory>
#include "../Point.h"
#include <functional>
```

Classes

class corenc::method::RungeKutta< Problem, Type >

Namespaces

- · namespace corenc
- · namespace corenc::method

7.87 RungeKutta.h

Go to the documentation of this file.

```
1 #ifndef CORENC_METHODS_RUNGEKUTTA
2 #define CORENC_METHODS_RUNGEKUTTA
3
4 #include <memory>
5 #include "../Point.h"
6 #include <functional>
7 namespace corenc
```

7.87 RungeKutta.h 477

```
8 {
       namespace method
10
11
            template<class Problem, class Type>
12
            class RungeKutta
13
14
            public:
15
                 RungeKutta() {};
16
                 RungeKutta(const double step, const double final, Problem* problem, const Type* solution) :
17
                     m_step{ step },
                     m_final{ final },
18
19
                     m_problem{problem} { }
        const Type discretize(const Type& solution, const std::function<const Type(const double time, const double time_step, const Type& curr_sol, Type* result)>& func);
20
21
                 const Type
                                            explicitEuler(const Type& solution, const std::function<const</pre>
        Type(const double time, const double time_step, const Type& curr_sol, Type* result)>& func);
22
                 void
                                            updateTimestep(const double step) { m_step = step; };
23
                 ~RungeKutta() {};
24
            private:
                 double
                                            m_step;
                                             m_final;
26
                 double
27
                 double
                                             m_curr;
2.8
                 Problem*
                                            m_problem;
2.9
                 Type*
                                            m solution:
30
                 static const std::vector<double> vector_mult(const std::vector<double>& lhs, const double
        rhs)
31
32
                      std::vector<double> vc(lhs);
33
                      for (auto &it : vc)
34
                          it *= rhs;
35
                      return vc:
36
                 }
37
38
                 static const std::vector<double> vector_mult(const double rhs, const std::vector<double>&
        lhs)
39
40
                     std::vector<double> vc(lhs);
41
                      for (auto &it : vc)
                          it \star = rhs;
43
                      return vc;
44
4.5
                 static const std::vector<double> vector_divide(const std::vector<double>& lhs, const double
46
        rhs)
47
48
                      std::vector<double> vc(lhs);
49
                      for (auto &it : vc)
                          it /= rhs;
50
                      return vc:
51
52
53
                 static const std::vector<double> vector_divide(const double rhs, const std::vector<double>&
        lhs)
55
                      std::vector<double> vc(lhs);
56
                     for (auto &it : vc)
    it /= rhs;
59
                      return vc;
60
61
62
                 static const std::vector<double> vector add(const std::vector<double>& rhs, const
        std::vector<double>& lhs)
63
                 {
                      std::vector<double> vc(lhs);
65
                      for (unsigned i{ 0 }; i < vc.size(); ++i)</pre>
66
                         vc[i] += rhs[i];
67
                      return vc;
68
69
            };
70
71
72
73
            template<class Problem, class Type>
        const Type RungeKuttaConst Type
const Type RungeKuttaConst Type
const Type(const double time, const double time_step, const Type& curr_sol, Type* result)
func)
74
75
76
                 Type k[4];
77
                 const int n{ int(m_final / m_step) };
                 func(m_curr, m_step, u_pr, &k[0]);
//std::vector<double> tempc(m_curr.size());
78
79
80
                 std::vector<double> tempu(u_pr.size());
                 std::vector<double> tempk(u_pr.size());
                 tempk = vector_divide(k[0], 2);
                 tempu = vector_add(u_pr, tempk);
83
                 func(m_curr + m_step / 2, m_step, tempu, &k[1]);
//func(m_curr + m_step / 2, m_step, u_pr + k[0] / 2, &k[1]);
84
8.5
86
```

```
tempk = vector_divide(k[1], 2);
                   tempu = vector_add(u_pr, tempk);
func(m_curr + m_step / 2, m_step, tempu, &k[2]);
//func(m_curr + m_step / 2, m_step, u_pr + k[1] / 2, &k[2]);
89
90
91
                   tempu = vector_add(u_pr, k[2]);
                   func(m_curr + m_step, m_step, tempu, &k[3]);
                   //func(m_curr + m_step, m_step, u_pr + k[2], &k[3]);
95
96
                   tempk = vector_mult(k[1], 2);
                   tempu = vector_mult(k[2], 2);
97
                   k[3] = vector_add(k[3], tempu);
98
                   k[3] = vector_add(k[3], tempk);
k[3] = vector_add(k[3], k[0]);
99
100
101
                    k[3] = vector_divide(k[3], 6.);
                    //k[3] = k[0] + 2 * k[1] + 2 * k[2] + k[3];
//k[3] = 1. / 6 * k[3];
102
103
                    m_problem->addTerm(Terms::EUV);
104
105
                    m_problem->addTerm(Terms::IUV);
                    m_curr += m_step;
107
                    return k[3];
               }
108
109
               template<class Problem, class Type>
110
        const Type RungeKutta<Problem, Type>::explicitEuler(const Type& u_pr, const std::function<const
Type(const double time, const double time_step, const Type& curr_sol, Type* result)>& func)
111
112
113
                    func(m_curr, m_step, u_pr, &k);
m_problem->addTerm(Terms::EUV);
114
115
                     m_problem->addTerm(Terms::IUV);
116
117
                    m_curr += m_step;
118
                     return k;
119
120
          }
121 }
122 #endif // !CORENC_METHODS_RUNGEKUTTA
```

7.88 CoreNCFEM/Methods/system_dg_method.h File Reference

```
#include <functional>
#include <set>
#include "../Point.h"
#include <memory>
#include <cmath>
#include "FEMethod.h"
#include <map>
#include <algorithm>
#include <vector>
#include "dg_flux.h"
```

Classes

- class corenc::method::system_dg_method< Problem, Grid, Matrix >
- class corenc::method::system_dg_method< Grid, bool, bool

Namespaces

- · namespace corenc
- · namespace corenc::method

Macros

• #define CORENC_METHODS_SYSTEM_DG_METHOD_H_

7.88.1 Macro Definition Documentation

7.88.1.1 CORENC_METHODS_SYSTEM_DG_METHOD_H_

```
#define CORENC_METHODS_SYSTEM_DG_METHOD_H_
```

7.89 system_dg_method.h

Go to the documentation of this file.

```
1 // NO GENERALIZATION HERE
  // JUST PLAIN DG FOR SYSTEM IN N - DIMENSIONAL SPACE FOR ONE TIME STEP
3 // CONSTANT BASIS FUNCTIONS
5 #pragma once
6 #ifndef CORENC_METHODS_SYSTEM_DG_METHOD_H_
  #define CORENC_METHODS_SYSTEM_DG_METHOD_H_
8 #include <functional>
9 #include <set>
10 #include "../Point.h"
11 #include <memory>
12 #include <cmath>
13 #include "FEMethod.h"
14 #include <map>
15 #include <algorithm>
16 #include <vector>
17 #include "dg_flux.h"
18
19 namespace corenc
       namespace method
22
2.3
           template<class Problem, class Grid, class Matrix>
24
           class system_dg_method
25
           public:
               system_dg_method() :
27
2.8
                   m_problem{ nullptr },
29
                   m_CoarseGrid{ nullptr },
30
                   m_GlobalMatrix{ nullptr },
                   m_rhsvector{ nullptr }
31
32
               { };
               system_dg_method(
                   Problem* p,
34
35
                   Grid∗ g,
36
                   Matrix* m.
37
                   //Solution* s,
38
                   const size_t sys_size,
39
                   std::vector<double>* rhs):
40
                    //const std::function<const double(const double)>& flux_function,
41
                    //const DGFlux flux_type) :
42
                   m_problem{ p },
                   m_CoarseGrid{ g },
m_GlobalMatrix{ m },
43
44
                   m_N{ g->GetNumberOfElements() },
45
46
                    m_Ns{ g->GetNumberOfBoundaries() },
47
                   m_rhsvector{ rhs },
48
                   //m_flux(flux_function),
49
                   m_sys_size{sys_size}
                   GeneratePortrait();
50
51
                ~system_dg_method() {};
               const int
                                             Assemble();
                                             changeFlux(const DGFlux flux_type) { m_fluxtype = flux_type;
54
               const int
       return 0; };
55
                                             GetGlobalMatrix() const { return m_GlobalMatrix; };
               const Matrix*
               const std::vector<double>
                                            GetSolution() const { return m_vec; };
               const double
                                             GetSolution(const std::vector<double>& point) const;
                                             GetMaxSolution() const;
               const double
59
               const double
                                            GetMinSolution() const;
60
               static const double
                                            GetSolution(const Grid& g, const std::vector<double> &dg_sol,
       const Mesh::Point& p)
61
                   double sum{ 0 };
```

```
63
                    auto nfem{ g.FindElement(p) };
                    auto elem{ g.GetElement(nfem) };
65
                    auto dofs{ elem->GetDoFs() };
                    for (auto i{ 0 }; i < dofs; ++i)</pre>
66
67
                        sum += dq_sol[nfem * dofs + i] * elem->GetShapeFunction(i, p);
68
69
70
                    return sum;
71
72
                const double
                                         GetSolution(const std::vector<double> &dg_sol, const Mesh::Point& p)
73
                    double sum{ 0 };
74
75
                    auto nfem{ m_CoarseGrid->FindElement(p) };
76
                    auto elem{ m_CoarseGrid->GetElement(nfem) };
77
                    auto dofs{ elem->GetDoFs() };
78
                     for (auto i{ 0 }; i < dofs; ++i)</pre>
79
                        sum += dg_sol[nfem * dofs + i] * elem->GetShapeFunction(i, p);
80
81
                    return sum;
83
84
                const int
                                              toDGSolution(const Grid& g, std::vector<double>& dg_result) const
8.5
                     //dg result->resize(m rhsvector->size());
86
                    dg_result.resize(m_rhsvector->size());
                     for (unsigned i{ 0 }; i < g.GetNumberOfElements(); ++i)</pre>
88
89
90
                         auto elem{ g.GetElement(i) };
                         auto dofs{ elem->GetDoFs() };
91
                         for (unsigned j{ 0 }; j < dofs; ++j)</pre>
92
                             //dg_result->operator[](m_nums[i] + j) = g.getSolution(i, j);
dg_result[m_nums[i] + j] = g.getSolution(i, j);
93
94
95
96
                     return 0;
97
                                              updateWeights(const std::vector<double>& dg_result)
98
                const int
99
100
                     for (unsigned int i{ 0 }; i < (unsigned int)m_CoarseGrid->GetNumberOfElements(); ++i)
101
                          for (unsigned int j{ 0 }; j < (unsigned int)m_CoarseGrid->GetElement(i)->GetDoFs();
102
       ++i)
103
                              m_CoarseGrid->updateSolution(i, j, dg_result[m_nums[i] + j]);
104
105
                     return 0;
106
                 }
107
108
                 const int
                                               DGtostandart(const std::vector<double>& dg_result)
109
                     for (unsigned int i{ 0 }; i < (unsigned int)m_CoarseGrid->GetNumberOfElements(); ++i)
110
111
112
                          auto elem{ m_CoarseGrid->GetElement(i) };
113
                          auto dofs{ elem->GetDoFs() };
114
                          for (unsigned int j{ 0 }; j < (unsigned int)dofs; ++j)</pre>
                              //m_CoarseGrid->updateSolution(i, j, dg_result[m_nums[i] + j]);
115
116
                              m_CoarseGrid->updateSolution(i, j, dg_result[m_nums[i] + j]);
117
118
                     return 0:
119
120
            private:
121
                 const int
                                               GeneratePortrait();
122
                 void
                                               assembleBoundaries();
                                               assemble flux(const unsigned boundary);
123
                 void
124
                 const double
                                               numerical_flux(const double ul, const double ur, const double
       fl, const double fr) const;
125
                 void
                                               MainConditions();
126
                 void
                                               SecondConditions();
                                               ThirdConditions();
127
                 void
                 const int
128
                                               AssembleGlobal():
129
                                               AssembleFluxMatrix();
                 const int
130
                 Grid*
                                               m_CoarseGrid;
131
                 Matrix*
                                               m_GlobalMatrix;
132
                 std::vector < double > *
                                               m_rhsvector;
                                               m_nums;
m_N; // number of elements
m_Ns; // number of boundaries
133
                 std::vector<unsigned int>
134
                 unsigned int
                 unsigned int
135
136
                 unsigned int
                                               m_size;
137
                 Problem*
                                               m_problem;
138
                 std::vector<double>
                                               m_vec;
139
                 std::vector<double>
                                               m_solution;
                 //std::function<const Mesh::Point(const Mesh::Point)> m_numflux;
140
                 //std::function<const Mesh::Point(const Mesh::Point)> m_flux;
141
                 DGFlux
142
                                                 m_fluxtype;
                                               m_sys_size;
143
                 size t
144
                 std::function<const double(const double)> m_flux;
145
                 const int
                                               AssembleLocalMatrix(const int);
146
             };
147
```

```
148
             template<class Grid>
             class system_dg_method<Grid, bool, bool>
149
150
             public:
151
152
                 static const double
                                                 GetSolution(const Grid& g, const std::vector<double> &dg sol,
        const Mesh::Point& p)
153
                 {
154
                       double sum{ 0 };
155
                       auto nfem{ g.FindElement(p) };
156
                       auto elem{ g.GetElement(nfem) };
                      auto dofs{ elem->GetDoFs() };
157
158
                       for (auto i{ 0 }; i < dofs; ++i)</pre>
159
160
                           sum += dq_sol[nfem * dofs + i] * elem->GetShapeFunction(i, p);
161
162
                       return sum;
163
                  }
164
             };
165
166
             template<class Problem, class Grid, class Matrix>
             const int system_dg_method<Problem, Grid, Matrix>::Assemble()
167
168
169
                  //GeneratePortrait();
                  AssembleGlobal():
170
171
                  AssembleFluxMatrix();
172
                  MainConditions();
173
                  SecondConditions();
174
                  ThirdConditions();
175
                  return 0;
176
177
             template<class Problem, class Grid, class Matrix>
178
             const int system_dg_method<Problem, Grid, Matrix>::GeneratePortrait()
179
180
                  int lorder, rorder, order;
181
                  std::vector<std::set<unsigned int> temp;
182
                  unsigned int i, j, nk, ne, k, sz, size;
                  m size = 0;
183
184
                  m_nums.resize(m_N * m_sys_size);
185
186
                  nk = 0;
187
                  sz = m_N * m_sys_size;
                  for (i = 0, k = 0; k < sz; ++i, k += m_sys_size)
188
189
                       size = m_CoarseGrid->GetElement(i)->GetDoFs() * m_sys_size;
190
                       for(j = 0; j < m_sys_size; ++j)
    m_nums[k + j] = m_size + j * m_CoarseGrid->GetElement(i)->GetDoFs();
191
192
193
                      m_size += size;
194
                  temp.resize(m_size);
195
196
                  sz = m Ns;
197
                  for (k = 0; k < sz; k += m_sys_size)
198
199
                       auto bound = m_CoarseGrid->GetBoundary(k);
                      nk = bound->GetNeighbour(0);
ne = bound->GetNeighbour(1);
200
201
                       lorder = m_CoarseGrid->GetElement(nk)->GetDoFs();
202
                       if (ne !=-1)
203
204
205
206
                           rorder = m_CoarseGrid->GetElement(ne)->GetDoFs();
                           for (i = 0; i < lorder; ++i)
for (j = 0; j < rorder; ++j)
207
208
                           temp[m_nums[ne] + j].insert(m_nums[nk] + i);
for (i = 0; i < lorder; ++i)
    for (j = i + 1; j < lorder; ++j)</pre>
209
210
211
212
                                    temp[m_nums[nk] + j].insert(m_nums[nk] + i);
213
                       }
                      else
214
215
216
                           for (i = 0; i < lorder; ++i)</pre>
217
                               for (j = i + 1; j < lorder; ++j)
218
                                    temp[m_nums[nk] + j].insert(m_nums[nk] + i);
219
                       }
220
                  }
221
222
                  /*temp.resize(m_CoarseGrid->GetNumberOfNodes());
223
                  m_nums.resize(m_CoarseGrid->GetNumberOfNodes());
                  lorder = m_CoarseGrid->GetElement(0)->GetDoFs();
for (k = 0; k < m_CoarseGrid->GetNumberOfNodes(); ++k)
224
225
                  m_nums[k] = k:
226
227
                  //for (auto elem : m_CoarseGrid->GetElements())
228
                  for(k = 0; k < m_CoarseGrid->GetNumberOfElements(); ++k)
229
230
                  auto elem{ m_CoarseGrid->GetElement(k) };
231
                  auto order{ elem->GetDoFs() };
                  for (i = 0; i < order; ++i)
for (j = 0; j < order; ++j)
232
233
```

```
234
                             if (elem->GetNode(j) > elem->GetNode(i))
235
                             temp[elem->GetNode(j)].insert(elem->GetNode(i));
236
237
                             m_GlobalMatrix->Create(temp.size(), temp);
238
                             m_rhsvector->resize(temp.size());
239
                             //m vec.resize(temp.size());
                             return 0;
240
241
242
243
                      template<class Problem, class Grid, class Matrix>
                      const int system_dg_method<Problem, Grid, Matrix>::AssembleLocalMatrix(const int 1)
244
245
246
                             int i, j, k, nodes;
double mij;
247
248
                             const auto& elem{ m_CoarseGrid->GetElement(1) };
                             const auto& dofs{ elem->GetDoFs() };
249
250
                             nodes = elem->GetNumberOfNodes();
                             std::vector<Mesh::Point> points(nodes);
251
                             for (i = 0; i < nodes; ++i)</pre>
252
                                   points[i] = m_CoarseGrid->GetNode(elem->GetNode(i));
253
254
                             for (k = 0; k < m_problem->getNumberOfTerms(); ++k)
255
256
                                     switch (m_problem->getTerm(k))
2.57
                                     case Terms::EUV:
258
259
                                          //for (i = 0; i < dofs; ++i)
260
                                            //{
261
                                                  for (j = 0; j < dofs; ++j)
2.62
263
                                            11
                                                          auto M = [&](const Mesh::Point& p)
264
                                            11
265
                                                                 return elem->GetShapeFunction(i, p) * elem->GetShapeFunction(j, p);
266
                                                          mij = elem->Integrate(M, points);
267
268
                                                         m_rhsvector->operator[](m_nums[1] + i) +=
            \verb|m_CoarseGrid->getParameter(Parameters::MASS, 1, j) * m_CoarseGrid->getSolution(1, j) * mij; | mi
269
                                            //
                                                  }
270
271
                                            for(size_t j = 0; j < m_sys_size; ++j)</pre>
272
                                                  m_rhsvector->operator[](m_nums[l] + j) += m_problem->get_solution(j, l,
             elem->GetType(), points[1]);
273
                                           break;
274
                                    default:
275
                                           break;
276
277
                             }
278
                             return 0;
279
                      }
280
                      template<class Problem, class Grid, class Matrix>
281
282
                      const int system_dg_method<Problem, Grid, Matrix>::AssembleGlobal()
283
284
                             for (int 1 = 0; 1 < m_N; ++1)
285
                                   AssembleLocalMatrix(1);
286
                             return 0;
287
                     }
288
289
                      template<class Problem, class Grid, class Matrix>
290
                      const int system_dg_method<Problem, Grid, Matrix>::AssembleFluxMatrix()
291
292
                             auto Nb{ m CoarseGrid->GetNumberOfBoundaries() };
293
                             unsigned int 1;
294
                             switch (m_fluxtype)
295
296
                             case corenc::method::DGFlux::ELaxFriedrichs:
297
298
                                     for (1 = 0; 1 < Nb; ++1)
299
                                            const auto& bound{ m_CoarseGrid->GetBoundary(1) };
300
301
                                            const auto& nk{ bound->GetNeighbour(0) };
302
                                            const auto& ne{ bound->GetNeighbour(1) };
303
                                            const auto& elemk{ m_CoarseGrid->GetElement(nk) };
304
                                            const auto& dofs{ bound->GetDoFs() };
305
                                            const auto& dofsk{ elemk->GetDoFs() };
306
                                            double C{ 0 };
                                            unsigned int i, j;
307
308
                                            std::vector<Mesh::Point> points(dofs);
309
                                            for (i = 0; i < dofs; ++i)</pre>
310
                                                   points[i] = m_CoarseGrid->GetNode(bound->GetNode(i));
311
                                            if (ne > -1)
312
313
                                                   const auto& eleme{ m_CoarseGrid->GetElement(ne) };
314
                                                   const auto& dofse{ eleme->GetDoFs() };
315
                                                   for (i = 0; i < dofsk; ++i)
316
                                                          for (j = 0; j < dofsk; ++j)
317
318
```

483

```
319
                                         auto Mkk = [&](const Mesh::Point& p)
320
321
                                              return elemk->GetShapeFunction(j, p) * elemk->GetShapeFunction(i,
        p);
322
                                         auto temp{ bound->Integrate(Mkk, points) };
323
324
                                         C = std::max(fabs(m_CoarseGrid->getSolution(ne, i)),
        fabs(m_CoarseGrid->getSolution(nk, j)));
325
                                          //m_rhsvector->operator[](m_nums[nk] + i) +=
        -0.5*(m_flux(m_CoarseGrid->getSolution(nk, j)) * temp - C * m_CoarseGrid->getSolution(nk, j) * temp);
auto val{ -0.5*(m_flux(m_CoarseGrid->getSolution(nk, j)) + C *
326
        m_CoarseGrid->getSolution(nk, j)) * temp };
                                         m_rhsvector->operator[](m_nums[nk] + i) += val;
327
329
                                         //lv[m_nums[nk] + i] += val;
330
331
                                for (i = 0; i < dofsk; ++i)</pre>
332
333
334
                                     for (j = 0; j < dofse; ++j)
335
336
                                          auto Mke = [&] (const Mesh::Point& p)
337
338
                                              return eleme->GetShapeFunction(j, p) * elemk->GetShapeFunction(i,
        p);
339
340
                                         auto temp{ bound->Integrate(Mke, points) };
341
                                         C = std::max(fabs(m_CoarseGrid->getSolution(nk, i)),
        fabs(m_CoarseGrid->getSolution(ne, j)));
342
                                         //m_rhsvector->operator[](m_nums[nk] +7 i) +=
        -0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) * temp - C * m_CoarseGrid->getSolution(ne, j) * temp); auto val{ -0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) - C *
343
        m_CoarseGrid->getSolution(ne, j)) * temp };
344
                                         m_rhsvector->operator[](m_nums[nk] + i) += val;
345
                                          //ke[m_nums[nk] + i] += val;
346
                                          //lv[m_nums[nk] + i] += val;
347
348
349
                                for (i = 0; i < dofse; ++i)
350
351
                                     for (j = 0; j < dofsk; ++j)
352
                                         auto Mek = [&](const Mesh::Point& p)
353
354
355
                                              return eleme->GetShapeFunction(i, p) * elemk->GetShapeFunction(j,
        p);
356
357
                                          auto temp{ bound->Integrate(Mek, points) };
358
                                         C = std::max(fabs(m_CoarseGrid->getSolution(nk, j)),
        fabs(m CoarseGrid->getSolution(ne, i)));
        //m_rhsvector->operator[](m_nums[ne] + i) +=
0.5*(m_flux(m_CoarseGrid->getSolution(nk, j)) * temp - C * m_CoarseGrid->getSolution(nk, j) * temp);
auto val{ 0.5*(m_flux(m_CoarseGrid->getSolution(nk, j)) + C *
359
360
        m_CoarseGrid->getSolution(nk, j)) * temp };
361
                                         m_rhsvector->operator[](m_nums[ne] + i) += val;
                                         //ek[m_nums[ne] + i] += val;
//rv[m_nums[ne] + i] += val;
362
363
364
365
366
                                for (i = 0; i < dofse; ++i)</pre>
367
368
                                     for (j = 0; j < dofse; ++j)
369
370
                                         auto Mee = [&](const Mesh::Point& p)
371
372
                                              return eleme->GetShapeFunction(j, p) * eleme->GetShapeFunction(i,
        p);
373
                                         auto temp{ bound->Integrate(Mee, points) };
374
375
                                         C = std::max(fabs(m_CoarseGrid->getSolution(nk, i)),
        fabs(m_CoarseGrid->getSolution(ne, j)));
376
                                          //m_rhsvector->operator[](m_nums[ne] + i) +=
        0.5 \star (\texttt{m\_flux}(\texttt{m\_CoarseGrid->getSolution}(\texttt{ne, j})) \  \  \, \star \  \, \texttt{temp - C} \  \  \, \star \  \, \texttt{m\_CoarseGrid->getSolution}(\texttt{ne, j}) \  \  \, \star \  \, \texttt{temp});
                                         auto val{ 0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) - C *
377
        378
379
                                         //ee[m_nums[ne] + i] += val;
                                          //rv[m_nums[ne] + i] += val;
380
381
382
                                }
383
                           }
384
                           else
385
                                 //C = m_flux(m_CoarseGrid->getSolution(nk, 0));
386
387
                                //m_rhsvector->operator[](m_nums[nk]) = C;
388
                                if (1 == 0)
389
                                     for (i = 0; i < dofsk; ++i)</pre>
390
```

7.89 system_dg_method.h

```
391
392
                                    for (j = 0; j < dofsk; ++j)
393
394
                                        auto Mkk = [&] (const Mesh::Point& p)
395
396
                                            return elemk->GetShapeFunction(i, p) *
       elemk->GetShapeFunction(i, p);
397
                                        };
                                        auto temp{ bound->Integrate(Mkk, points) };
398
399
                                        //m_rhsvector->operator[](m_nums[nk]+i)
       ((ne+int(1))>0?-1:1)*(m_flux(m_CoarseGrid->getSolution(nk, j)) * temp - C *
      400
401
402
                                        //if(C >= 0)
403
                                        //m_rhsvector->operator[](m_nums[nk] + i) += ((ne + int(1))>0 ? 1 :
       0) * C * temp;
404
                                        //m_rhsvector->operator[](m_nums[nk] + i) += 1e10 * C * temp;
405
406
407
408
                            else
409
                                for (i = 0; i < dofsk; ++i)</pre>
410
411
412
                                    for (j = 0; j < dofsk; ++j)
413
414
                                        auto Mkk = [&] (const Mesh::Point& p)
415
416
                                            return elemk->GetShapeFunction(j, p) *
       elemk->GetShapeFunction(i, p);
417
                                        };
418
                                        auto temp{ bound->Integrate(Mkk, points) };
419
                                        auto fl = m_flux(m_CoarseGrid->getSolution(nk, j)) * temp;
420
                                        m_rhsvector->operator[](m_nums[nk] + i) -= fl * temp;
421
422
                                }
423
                           }
424
425
                   }
426
                    // explicit LF flux
42.7
428
                   break:
429
               default:
430
                   break;
431
432
                return 0;
433
            }
434
            template<class Problem, class Grid, class Matrix>
435
436
            void system_dg_method<Problem, Grid, Matrix>::assemble_flux(const unsigned 1)
437
438
                const auto& bound{ m_CoarseGrid->GetBoundary(1) };
               const auto& nk{ bound->GetNeighbour(0) };
const auto& ne{ bound->GetNeighbour(1) };
439
440
               const auto& elemk{ m_CoarseGrid->GetElement(nk) };
441
               const auto& dofs{ bound->GetDoFs() };
               const auto& dofsk{ elemk->GetDoFs() };
443
444
                double C{ 0 };
445
               unsigned int i, j;
               std::vector<Mesh::Point> points(dofs);
446
447
               for (i = 0; i < dofs; ++i)
448
                   points[i] = m_CoarseGrid->GetNode(bound->GetNode(i));
               C = 2;
449
450
                if (ne > -1)
451
                {
452
                    const auto& eleme{ m_CoarseGrid->GetElement(ne) };
                   const auto& dofse{ eleme->GetDoFs() };
453
                    for (i = 0; i < dofsk; ++i)
454
455
456
                        for (j = 0; j < dofsk; ++j)
457
458
                            auto Mkk = [&](const Mesh::Point& p)
459
460
                               return elemk->GetShapeFunction(j, p) * elemk->GetShapeFunction(i, p);
461
                            auto temp{ bound->Integrate(Mkk, points) };
462
463
                            C = std::max(m_CoarseGrid->getSolution(nk, i), m_CoarseGrid->getSolution(nk,
       j));
       464
                            m_rhsvector->operator[](m_nums[nk] + i) += val;
465
                            //kk[m_nums[nk] + i] += val;
//lv[m_nums[nk] + i] += val;
466
467
468
                        }
469
470
                    for (i = 0; i < dofsk; ++i)</pre>
```

```
471
472
                                                                  for (j = 0; j < dofse; ++j)</pre>
473
474
                                                                            auto Mke = [&](const Mesh::Point& p)
475
476
                                                                                       return eleme->GetShapeFunction(i, p) * elemk->GetShapeFunction(i, p);
477
478
                                                                             auto temp{ bound->Integrate(Mke, points) };
479
                                                                            C = std::max(m_CoarseGrid->getSolution(nk, i), m_CoarseGrid->getSolution(ne,
                   j));
                  //m_rhsvector->operator[](m_nums[nk] +7 i) +=
-0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) * temp - C * m_CoarseGrid->getSolution(ne, j) * temp);
480
481
                                                                            auto val{ -0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) - C *
                   m_CoarseGrid->getSolution(ne, j)) * temp };
482
                                                                            m_rhsvector->operator[](m_nums[nk] + i) += val;
                                                                             //ke[m_nums[nk] + i] += val;
//rv[m_nums[nk] + i] += val;
483
484
485
486
487
                                                       for (i = 0; i < dofse; ++i)</pre>
488
489
                                                                  for (j = 0; j < dofsk; ++j)
490
                                                                            auto Mek = [&](const Mesh::Point& p)
491
492
493
                                                                                        return eleme->GetShapeFunction(i, p) * elemk->GetShapeFunction(j, p);
494
195
                                                                             auto temp{ bound->Integrate(Mek, points) };
496
                                                                            \texttt{C = std::max} \, (\texttt{m\_CoarseGrid->getSolution(nk, j), m\_CoarseGrid->getSolution(ne, j), m\_CoarseGrid->get
                   i));
497
                    //m\_rhsvector->operator[](m\_nums[ne] + i) += \\ 0.5*(m\_flux(m\_CoarseGrid->getSolution(nk, j)) * temp - C * m\_CoarseGrid->getSolution(nk, j) * temp); \\ auto val{      0.5*(m\_flux(m\_CoarseGrid->getSolution(nk, j)) + C * } 
498
                   m_CoarseGrid->getSolution(nk, j)) * temp };
499
                                                                            \label{eq:m_nums} $$m\_rhsvector->operator[](m\_nums[ne] + i) += val;
                                                                             //ek[m_nums[ne] + i] += val;
//lv[m_nums[ne] + i] += val;
500
501
502
503
504
                                                       for (i = 0; i < dofse; ++i)</pre>
505
506
                                                                  for (j = 0; j < dofse; ++j)
507
508
                                                                             auto Mee = [&] (const Mesh::Point& p)
509
510
                                                                                        return eleme->GetShapeFunction(j, p) * eleme->GetShapeFunction(i, p);
511
512
                                                                             auto temp{ bound->Integrate(Mee, points) };
                                                                            \texttt{C = std::max(m\_CoarseGrid->getSolution(ne, i), m\_CoarseGrid->getSolution(ne, i), m\_CoarseGrid->getSoluti
513
                   j));
514
                                                                             //m_rhsvector->operator[](m_nums[ne] + i) +=
                   0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) * temp - C * m_CoarseGrid->getSolution(ne, j) * temp);
515
                                                                            auto val{ 0.5*(m_flux(m_CoarseGrid->getSolution(ne, j)) - C *
                   \label{eq:m_coarseGrid->getSolution(ne, j)) * temp };
516
                                                                            m_rhsvector->operator[](m_nums[ne] + i) += val;
                                                                             //ee[m_nums[ne] + i] += val;
//rv[m_nums[ne] + i] += val;
517
518
519
520
                                                       }
521
                                           }
                                           else
522
523
524
                                                       for (i = 0; i < dofsk; ++i)</pre>
525
526
                                                                  for (j = 0; j < dofsk; ++j)
527
528
                                                                            auto Mkk = [&](const Mesh::Point& p)
529
530
                                                                                       return elemk->GetShapeFunction(j, p) * elemk->GetShapeFunction(i, p);
531
532
                                                                            auto temp{ bound->Integrate(Mkk, points) };
533
                                                                             auto fl = m_flux(m_CoarseGrid->getSolution(nk, j));
534
                                                                            C = m_CoarseGrid->getSolution(nk, j);
                                                                            535
536
                                                                  }
537
538
539
540
                                 template<class Problem, class Grid, class Matrix>
541
                                 void system_dg_method<Problem, Grid, Matrix>::MainConditions()
542
543
544
545
546
                                 template<class Problem, class Grid, class Matrix>
547
                                 void system_dg_method<Problem, Grid, Matrix>::SecondConditions()
548
```

```
550
551
552
            template<class Problem, class Grid, class Matrix>
            \verb|void system_dg_method<Problem|, Grid, Matrix>:: ThirdConditions()|\\
553
554
556
557
558
            template<class Problem, class Grid, class Matrix>
            const double system_dg_method<Problem, Grid, Matrix>::GetMaxSolution() const
559
560
561
                return 0.;
562
563
564
           template<class Problem, class Grid, class Matrix>
            const double system_dg_method<Problem, Grid, Matrix>::GetMinSolution() const
565
566
567
           }
569
570
            template<class Problem, class Grid, class Matrix>
            const double system_dg_method<Problem, Grid, Matrix>::GetSolution(const std::vector<double>&
571
       point) const
572
573
                return 0.;
574
575
576 }
577 #endif // !CORENC_METHODS_SYSTEM_DG_METHOD_H_
```

7.90 CoreNCFEM/multi_vector.h File Reference

```
#include <vector>
#include <cstdarg>
#include <cstddef>
```

Classes

class corenc::multi_vector< T >

Namespaces

namespace corenc

Macros

• #define CORENC_MULTI_VECTOR_H_

7.90.1 Macro Definition Documentation

7.90.1.1 CORENC_MULTI_VECTOR_H_

#define CORENC_MULTI_VECTOR_H_

7.91 multi_vector.h 487

7.91 multi vector.h

Go to the documentation of this file.

```
2 #ifndef CORENC MULTI VECTOR H
3 #define CORENC_MULTI_VECTOR_H_
4 #include <vector>
5 #include <cstdarg>
6 #include <cstddef>
7 namespace corenc
8 {
      template<class T>
10
      class multi_vector
11
12
       public:
13
          multi_vector();
           // dim = 1 vector, dim = 2 matrix, etc
14
           // block x ... x block; dim times
15
           multi_vector(const size_t block, const size_t dim);
16
           multi_vector(const size_t dim);
            ~multi_vector();
18
19
           const T
                                 get(const size_t i...) const;
20
           const T
                                 get(const std::vector<size_t>& i) const;
                                set(const T& element, const std::vector<size_t>& index);
set(const T& element, const size_t i...);
21
           const int
22
           //const int
23
           const int
                                fill_inc();
           void
                                resize(const size_t block);
25
           void
                                 resize(const size_t block, const size_t dim);
2.6
           const size_t
                                size() const;
2.7
           const size_t
                                totalsize() const;
       private:
28
29
          std::vector<T>
                                m_vector;
           size_t
                                m_dim;
31
          size_t
                                 m_block;
32
           size_t
                                 m_totalsize;
33
34
       template<class T>
35
36
       multi_vector<T>::multi_vector()
37
38
39
40
       template<class T>
41
       multi_vector<T>::multi_vector(const size_t block, const size_t dim)
42
43
           m_block = block;
44
           m_dim = dim;
           m_totalsize = 1;
for (size_t i = 0; i < m_dim; ++i, m_totalsize *= block);</pre>
4.5
46
           m_vector.resize(m_totalsize);
48
49
       template<class T>
50
       multi_vector<T>::multi_vector(const size_t dim)
51
           m block = 0;
52
           m_dim = dim;
53
           m_totalsize = 0;
55
56
       template<class T>
57
       multi_vector<T>::~multi_vector()
58
59
60
       template<class T>
       const size_t multi_vector<T>::size() const
63
64
            return m_block;
6.5
66
       template<class T>
       const size_t multi_vector<T>::totalsize() const
68
69
            return m_totalsize;
70
71
       template<class T>
       const T multi_vector<T>::get(const size_t i...) const
72
73
74
            va_list args;
7.5
           va_start(args, i);
76
77
           va_end(args);
78
           return m_vector[i];
80
81
       const T multi_vector<T>::get(const std::vector<size_t>& i) const
82
```

```
if (i.size() != m_dim)
            return T(0);
size_t ind = 0;
85
            for (size_t j = 0; j < m_dim; ++j)</pre>
86
87
                 size_t 1 = 1;
88
                 const int lim = m_dim - j - 1;
for (int k = 0; k < lim; ++k, 1 *= m_block);</pre>
90
91
                 ind += i[j] * 1;
92
            return m_vector[ind];
93
94
95
        template<class T>
        void multi_vector<T>::resize(const size_t block)
97
98
            m_block = block;
99
            m totalsize = 1;
             for (size_t i = 0; i < m_dim; ++i, m_totalsize *= block);</pre>
100
             m_vector.resize(m_totalsize);
101
102
103
        template<class T>
104
        void multi_vector<T>::resize(const size_t block, const size_t dim)
105
             m_block = block;
m_dim = dim;
106
107
             m_totalsize = 1;
108
109
              for (size_t i = 0; i < m_dim; ++i, m_totalsize *= block);</pre>
110
             m_vector.resize(m_totalsize);
111
112
        template<class T>
113
        const int multi_vector<T>::fill_inc()
114
115
              for (size_t i = 0; i < m_totalsize; ++i)</pre>
116
                 m_vector[i] = i;
117
             return 0;
118
        template<class T>
119
120
        const int multi_vector<T>::set(const T& element, const std::vector<size_t>& i)
121
122
             if (i.size() != m_dim)
123
             size_t ind = 0;
for (size_t j = 0; j < m_dim; ++j)
124
125
126
127
                  size_t 1 = 1;
128
                  const int \lim = m_{\dim} - j - 1;
                 for (int k = 0; k < lim; ++k, 1 *= m_block); ind += i[j] * 1;
129
130
131
132
             m vector[ind] = element;
133
             return 0;
134
135 }
136 #endif // !CORENC_MULTI_VECTOR_H_
```

7.92 CoreNCFEM/Parameter.cpp File Reference

#include "Parameter.h"

7.93 CoreNCFEM/Parameter.h File Reference

```
#include "Point.h"
#include <functional>
```

Classes

- class corenc::Mesh::parameter< T >
- class corenc::Mesh::point_source< T >
- · class corenc::Mesh::CParameter

7.94 Parameter.h 489

Namespaces

- · namespace corenc
- namespace corenc::Mesh

Macros

• #define CORENC_MESH_PARAMETER_H_

7.93.1 Macro Definition Documentation

7.93.1.1 CORENC_MESH_PARAMETER_H_

```
#define CORENC_MESH_PARAMETER_H_
```

7.94 Parameter.h

Go to the documentation of this file.

```
1 // OK. DESCRIPTION.
 // Here the known parameters are described. it is used then with meshes and problems etc.
  #pragma once
4 #ifndef CORENC_MESH_PARAMETER_H_
5 #define CORENC_MESH_PARAMETER_H_
7 #include "Point.h"
8 #include <functional>
9 namespace corenc
10 {
11
       namespace Mesh
12
13
           template<class T>
14
           class parameter
           public:
17
               using cfunc = std::function<const T(const int, const int, const Point&)>;
               using cfunc_old = std::function<const T(const int, const Point&)>;
18
                parameter() :m_func{ [=] (const int, const int, const Point&) {return T(); } } {};
19
20
                parameter(const cfunc& func):m_func{func}{}
                parameter(const cfunc_old& func)
21
                    cfunc f = [=](const int, const int n, const Point& p) {return func(n, p); }; m_func = f;
23
2.4
25
               parameter(const double _p) :m_func{ [=](const int, const int, const Point&) {return _p; } }
26
       { }
27
                parameter(const Mesh::Point _p) :m_func{ [=](const int, const int, const Point&) {return _p;
       } } {}
2.8
                parameter(const parameter<T>& _p) :m_func{ _p.m_func } {}
29
                ~parameter() {};
                                get(const Point& p) const { return m_func(0, 0, p); };
get(const int number, const Point& p) const { return m_func(0, number, p); };
30
                const T
31
                const T
                                 get(const int element, const int node, const Point& p) const { return
32
       m_func(element, node, p); };
33
               void
                                set(const cfunc& func) { m_func = func; };
           private:
34
35
                                m func;
               cfunc
36
           } ;
37
           template<class T>
38
39
           class point_source
40
41
           public:
42
               point_source() : m_point(Mesh::Point(0,0,0)), m_value(T(0)) {};
                point_source(const Mesh::Point& p, const T& val) : m_point(p), m_value(val) {};
```

```
const T
                                             get_value() const { return m_value; };
                   const Mesh::Point get_point() const { return m_point; };
46
                   point_source<T>&
                                             operator=(const point_source<T>& ps)
47
                        m_point = ps.m_point;
48
                        m_value = ps.m_value;
return *this;
49
50
              private:
53
                   Mesh::Point
                                        m_point;
54
                                        m_value;
55
              class CParameter
56
58
              public:
59
                   CParameter();
                   //{\tt CParameter} \ ({\tt const \ double \ \_diff, \ const \ double \ \_adv, \ const \ double \ \_mass);
60
                   CParameter(const parameter<double>& _diff, const parameter<double>& _adv, const
61
        parameter<double>& _mass);
                  CParameter(const Parameters&, const parameter<double>&);
                   ~CParameter();
64
                   const double
                                              GetDiffusion() const;
                  const double GetAdvection() const;

const double GetMass() const;

const double GetDiffusion(const Point&) const;

const double GetAdvection(const Point&) const;

const double GetMass(const Point&) const;
6.5
66
69
70
           private:
                  parameter<double> m_diffusion;
parameter<double> m_advection;
parameter<double> m_mass;
71
72
73
             };
75
76 }
78 #endif // !CORENC MESH PARAMETER H
```

7.95 CoreNCFEM/Point.cpp File Reference

```
#include "Point.h"
#include <cmath>
```

7.96 CoreNCFEM/Point.h File Reference

```
#include <cmath>
#include <vector>
```

Classes

- · class corenc::Mesh::Point
- struct corenc::Mesh::GaussTriangle
- struct corenc::Mesh::GaussRectangular
- struct corenc::Mesh::Gauss1dim
- struct corenc::Mesh::Gauss1dimN< N >
- struct corenc::Mesh::GaussTetrahedron
- struct corenc::Mesh::GaussRectangularCubic

Namespaces

- namespace corenc
- namespace corenc::Mesh

7.97 Point.h 491

Macros

• #define CORENC_MESH_Point_h

Enumerations

```
    enum class corenc::Terms {
        corenc::IUV , corenc::IDUV , corenc::IUDV ,
        corenc::EUV , corenc::EDUDV , corenc::EDUV ,
        corenc::EFV , corenc::RUV , corenc::SUPG }
    enum class corenc::Parameters { corenc::DIFFUSION , corenc::MASS , corenc::ADVECTION }
```

7.96.1 Macro Definition Documentation

7.96.1.1 CORENC_MESH_Point_h

```
#define CORENC_MESH_Point_h
```

7.97 Point.h

```
1 #pragma once
2 #ifndef CORENC_MESH_Point_h
3 #define CORENC_MESH_Point_h
4 #include <cmath>
5 #include <vector>
6 namespace corenc
8
       enum class Terms
10
             // left-side
             // uv
            IUV,
            // grad u grad v
IDUDV,
13
14
             // grad u v
15
16
17
             // u grad v
18
             IUDV,
            // right-side EUV, EDUDV,
19
20
21
22
            EDUV,
            EUDV,
24
            // right-side matrix
2.5
            RUV,
SUPG,
26
27
28
        };
29
        enum class Parameters
31
            DIFFUSION,
32
            MASS,
ADVECTION
33
34
35
        namespace Mesh
38
            class Point
39
40
41
                 Point() :x{ 0 }, y{ 0 }, z{ 0 } {}
```

```
43
                 Point(const double _x, const double _y) :
                 x\{ x \}, y\{ y\}, z\{ 0 \} \{ \}
Point(const double _x, const double _y, const double _z) :
45
                 x{ _x }, y{ _y }, z{ _z } {}
Point(const Point& p) :
46
47
                 x{p.x}, y{p.y}, z{p.z} {}
double x, y, z;
const double Jacobian() const { return 1; }
48
49
50
51
                 Point& operator=(const Point& p)
52
53
                      x = p.x;
54
                      y = p.y;
                      z = p.z;
55
                      return *this;
57
58
                 const bool operator==(const Point& p)
59
                      const double eps{ 1e-13 };
if (fabs(x - p.x) < eps)
    if (fabs(y - p.y) < eps)
        if (fabs(z - p.z) < eps)</pre>
60
61
                                    return true;
64
                      return false;
6.5
66
                 friend const bool operator!=(const Point& p1, const Point& p2)
67
68
69
                      const double eps{ 1e-13 };
70
                      if (fabs(p1.x - p2.x) < eps)
                          if (fabs(p1.y - p2.y) < eps)
if (fabs(p1.z - p2.z) < eps)
71
72
73
                                    return false:
                      return true;
75
76
                 const bool operator<(const Point& p2)</pre>
77
78
                      return (x < p2.x);
79
80
                 friend const double operator*(const Point& lhs, const Point& rhs)
82
                      return lhs.x * rhs.x + lhs.y * rhs.y + lhs.z * rhs.z;
83
                 const Point operator* (const double rhs)
84
8.5
                      return Point{ x * rhs, y * rhs, z * rhs };
86
88
                 Point& operator+=(const Point& rhs)
89
                      x += rhs.x;
90
                      y += rhs.y;
91
                      z += rhs.z;
92
93
                      return *this;
94
9.5
                 Point& operator *= (const double rhs)
96
97
                      x *= rhs:
                      y *= rhs;
98
                      z *= rhs;
100
                       return *this;
101
102
                  friend const Point operator* (const Point& lhs, const double rhs)
103
104
                       return Point{ rhs * lhs.x, rhs * lhs.y, rhs * lhs.z };
105
106
                   friend const Point operator*(const double lhs, const Point& rhs)
107
108
                       return Point{ lhs * rhs.x, lhs * rhs.y, lhs * rhs.z };
109
                  friend const Point operator+(const Point& lhs, const Point& rhs)
110
111
112
                       return Point{ lhs.x + rhs.x, lhs.y + rhs.y, lhs.z + rhs.z };
113
114
                   friend const Point operator-(const Point& lhs, const Point& rhs)
115
                       return Point{ lhs.x - rhs.x, lhs.y - rhs.y, lhs.z - rhs.z };
116
117
118
              };
119
120
              struct GaussTriangle
121
                  const static double m_tra[];
122
123
                  const static double m_trb[];
124
                  const static double m_sqrt15;
125
                  const static double m_trw[];
126
                  const static int
                                         m_order;
127
128
              struct GaussRectangular
129
```

```
{
131
                const static double m_ra[];
132
                const static double m_rb[];
133
                const static double m_rw[];
134
               const static double m_a;
135
               const static double m b:
136
               const static double m_c;
137
               const static double m_wa;
138
                const static double m_wb;
139
                const static double m_wc;
           };
140
           struct Gaussldim
141
142
143
                const static int
144
                const static double m_a[];
145
                const static double m_sqrt35;
146
                const static double m_w[];
           };
147
148
           template<int N>
150
           struct GaussldimN
151
152
                const static int
                                   m_order;
                const static double m_a[];
153
154
                const static double m_w[];
155
156
157
158
            struct GaussTetrahedron
159
160
                         static double
                                         m_la[];
                const
161
                         static double
                                          m_lb[];
                const
162
                         static double
163
                const
                         static double
                                          m_ld[];
                                         m_w[];
m_psq, m_msq;
                       static double
164
                const
165
                const
           };
166
167
           struct GaussRectangularCubic
169
170
                const static double m_ra[];
171
               const static double m_rb[];
172
               const static double m_rc[];
173
               const static double m_rw[];
174
              const static double m_a;
175
               const static double m_b;
              const static double m_c;
176
177
               const static double m_w1;
               const static double m w2;
178
179
               const static double m w3:
180
               const static double m_w4;
181
                const static int m_s{ 34 };
182
183
       }
184 }
185 #endif /* CORENC_MESH_Point_h */
```

7.98 main.cpp File Reference

```
#include <iostream>
#include "colors.h"
#include "Tests/test_cases.h"
```

Functions

• int main (int argc, char *argv[])

7.98.1 Function Documentation

7.98.1.1 main()

```
int main (
          int argc,
          char * argv[] )
```

7.99 Problems/BurgersScalar.cpp File Reference

```
#include "BurgersScalar.h"
#include <vector>
```

7.100 Problems/BurgersScalar.h File Reference

```
#include "Problems.h"
#include <vector>
```

Classes

· class corenc::CBurgersScalar

Namespaces

· namespace corenc

7.101 BurgersScalar.h

```
1 #ifndef CORENC_PROBLEMS_BURGERS_H_
2 #define CORENC_PROBLEMS_BURGERS_H_
4 #include "Problems.h"
5 #include <vector>
6 namespace corenc
8
        class CBurgersScalar : public CProblem
9
        public:
10
         CBurgersScalar();
11
              ~CBurgersScalar();
12
                                               getTerm(const unsigned int) const;
             Terms
          const unsigned int
const int
const int
const double
const int
const int
                                            getNumberOfTerms() const;
setTerm(const unsigned int, const Terms&);
                                                addTerm(const Terms&);
getFlux(const double) const;
removeTerm(const Terms&);
16
17
18
19
             const int
                                                 load_parameters(const std::string& file_name);
      private:
            std::vector<Terms>
21
                                                 m_terms;
22
23 }
24 #endif // !CORENC_PROBLEMS_BURGERS_H_
```

7.102 Problems/DiffusionScalar.cpp File Reference

```
#include "DiffusionScalar.h"
#include <vector>
#include <istream>
#include <iostream>
#include <fstream>
```

7.103 Problems/DiffusionScalar.h File Reference

```
#include "Problems.h"
#include <vector>
#include "../CoreNCFEM/Parameter.h"
#include <map>
#include <tuple>
```

Classes

· class corenc::CDiffusionScalar

Namespaces

namespace corenc

7.104 DiffusionScalar.h

```
1 #ifndef CORENC_PROBLEMS_DIFFUSIONSCALAR_H_
2 #define CORENC_PROBLEMS_DIFFUSIONSCALAR_H_
4 #include "Problems.h"
5 #include <vector>
6 #include "../CoreNCFEM/Parameter.h"
7 #include <map>
8 #include <tuple>
9 namespace corenc
10 {
11
       class CDiffusionScalar : public CProblem
13
           using boundary = std::tuple<int, Mesh::parameter<double>>, Mesh::parameter<double>>;
14
      public:
         CDiffusionScalar();
1.5
           ~CDiffusionScalar();
16
                                                  getTerm(const unsigned int) const;
17
          Terms
          const unsigned int
                                                   getNumberOfTerms() const;
18
                                                   findTerm(const Terms&) const;
          const int
20
          const int
                                                   setTerm(const unsigned int, const Terms&);
21
          const int
                                                   addTerm(const Terms&);
22
          const int
                                                   removeTerm(const Terms&);
                                                   load parameters(const std::string& file name);
23
          const int
          const double
                                                   get_parameter(const Terms&, const int element_type, const
     Mesh::Point&) const;
          const double
25
                                                   get_parameter(const Terms&, const int element_number,
      const int element_type, const Mesh::Point&) const;
26
          const Mesh::Point
                                                    get_parameter(const Terms&, const int element_number,
      const int element_type, const Mesh::Point&, const int) const;
                                                   get_parameter(const Terms&, const int element_type, const
          const double
       int element_number, const int node, const Mesh::Point&) const;
```

```
28
           const Mesh::Point
                                                     get_parameter(const Terms&, const int element_type,
       const int element_number, const int node, const Mesh::Point&, const int v) const;
29
           const double
                                                    get_boundary_parameter(const int type, const int
      element_type, const Mesh::Point&) const;
30
          const double
                                                    get_boundary_parameter(const int type, const int
      element_type, const int element_number, const Mesh::Point&) const;
                                                    get_boundary_parameter(const int type, const int
31
          const double
       element_type, const int element_number, const int node, const Mesh::Point&) const;
32
           const int
                                                    get_number_of_boundaries() const;
33
           const int
                                                    get_boundary_type(const int number) const;
34
          const int
                                                    add_parameter(const Terms&, const int element_type, const
      double& value);
35
           const int
                                                    add parameter (const Terms&, const int element type, const
      Mesh::parameter<double>& value);
36
           const int
                                                    add_parameter(const Terms&, const int element_type, const
      Mesh::parameter<Mesh::Point>& value);
37
           const int
                                                    set_parameter(const Terms&, const int element_type, const
      Mesh::parameter<double>& value);
38
          const int
                                                    set_parameter(const Terms&, const int element_type, const
      Mesh::parameter<Mesh::Point>& value);
39
           const int
                                                    set boundary parameter (const int type, const int
       element_type, const boundary& value);
40
                                                    // 1st and 2nd types of boundary conditions
41
           const int.
                                                    add_boundary_parameter(const int type, const int
      element_type, const Mesh::parameter<double>& value);
42
                                                    // 3rd type of boundary conditions
43
                                                    add_boundary_parameter(const int element_type, const
      Mesh::parameter<double>& value, const Mesh::parameter<double>& value2);
44
          const Mesh::point_source<double>
                                                    get_point_source(const int number) const;
45
           void
                                                    set_point_source(const int number, const
      Mesh::point source<double>&);
46
          const int
                                                   get_total_sources() const;
47
      private:
48
           std::vector<Terms>
                                                       m_terms;
49
           std::map<int, Mesh::parameter<double>
                                                      m_params;
50
           std::map<int, Mesh::parameter<Mesh::Point> m_vels;
          std::map<int, Mesh::parameter<double>
51
                                                      m srcs;
          std::map<int, Mesh::parameter<double>
                                                       m_gams;
          std::map<int, boundary>
                                                        m_bounds;
           //std::map<int, Mesh::point_source<double>
                                                         m_pointsrcs;
55
           std::vector<Mesh::point_source<double>
                                                      m_pointsrcs;
56
           int
                                                        m_total_params;
57
           int
                                                        m total srcs;
58
           int
                                                        m_total_gams;
                                                        m_total_bounds;
           int
60
      };
61 }
62 #endif // !CORENC_PROBLEMS_DIFFUSIONSCALAR_H_
```

7.105 Problems/Problems.h File Reference

```
#include "../CoreNCFEM/Point.h"
#include <string>
```

Classes

· class corenc::CProblem

Namespaces

namespace corenc

Macros

#define CORENC_PROBLEMS_PROBLEMS_H_

7.106 Problems.h 497

7.105.1 Macro Definition Documentation

7.105.1.1 CORENC_PROBLEMS_PROBLEMS_H_

```
#define CORENC_PROBLEMS_PROBLEMS_H_
```

7.106 Problems.h

Go to the documentation of this file.

```
1 #pragma once
2 #ifndef CORENC_PROBLEMS_PROBLEMS_H_
3 #define CORENC_PROBLEMS_PROBLEMS_H_
4 #include "../CoreNCFEM/Point.h"
5 #include <string>
7 namespace corenc
8 {
    class CProblem
10
    public:
     12
13
14
15
16
17
18
         virtual const int
                                   load_parameters(const std::string& file_name) = 0;
19
20 }
22 #endif // !CORENC_PROBLEMS_PROBLEMS_H_
```

7.107 Problems/ShallowWater.cpp File Reference

```
#include "ShallowWater.h"
#include <vector>
#include <istream>
#include <iostream>
#include <fstream>
```

7.108 Problems/ShallowWater.h File Reference

```
#include "Problems.h"
#include <vector>
#include "../CoreNCFEM/Parameter.h"
#include <map>
#include <tuple>
```

Classes

· class corenc::CShallowWater

Namespaces

· namespace corenc

7.109 ShallowWater.h

Go to the documentation of this file.

```
#ifndef CORENC_PROBLEMS_SHALLOWWATER_H_
2 #define CORENC_PROBLEMS_SHALLOWWATER_H_
4 #include "Problems.h"
5 #include <vector>
6 #include "../CoreNCFEM/Parameter.h"
7 #include <map>
8 #include <tuple>
9 namespace corenc
10 {
11
       class CShallowWater : public CProblem
12
13
           using boundary = std::tuple<int, Mesh::parameter<double>, Mesh::parameter<double>>;
14
       public:
          CShallowWater();
16
           ~CShallowWater();
17
           Terms
                                                    getTerm(const unsigned int) const;
18
           const unsigned int
                                                     getNumberOfTerms() const;
19
                                                     setTerm(const unsigned int, const Terms&);
           const int
          const int
                                                     addTerm(const Terms&);
20
21
           const int
                                                     removeTerm(const Terms&);
           const int
                                                     load_parameters(const std::string& file_name);
23
           const double
                                                     get_parameter(const Terms&, const int element_type, const
       Mesh::Point&) const:
24
          const double
                                                     get_parameter(const Terms&, const int element_number,
       const int element_type, const Mesh::Point&) const;
25
           const double
                                                     get_boundary_parameter(const int type, const int
       element_type, const Mesh::Point&) const;
26
                                                     get_boundary_parameter(const int type, const int
       element_number, const int element_type, const Mesh::Point&) const;
                                                     get_number_of_boundaries() const;
          const int
28
           const double
                                                     get_solution(const int sys_number, const int
       element_type, const int element_number, const Mesh::Point&) const;
          const int
                                                     get_boundary_type(const int number) const;
30
           const int
                                                     add_parameter(const Terms&, const int element_type, const
       Mesh::parameter<double>& value);
31
           const int
                                                     set_parameter(const Terms&, const int element_type, const
       Mesh::parameter<double>& value);
32
           const int
                                                     set_boundary_parameter(const int type, const int
       element_type, const boundary& value);
              1st and 2nd types of boundary conditions
33
34
           const int
                                                     add_boundary_parameter(const int type, const int
       element_type, const Mesh::parameter<double>& value);
35
           // 3rd type of boundary conditions
           const int
                                                     add boundary parameter (const int element type, const
36
       Mesh::parameter<double>& value, const Mesh::parameter<double>& value2);
37
       private:
38
          std::vector<Terms>
39
          std::map<int, Mesh::parameter<double> m_params;
std::map<int, Mesh::parameter<double> m_srcs;
40
41
           std::map<int, boundary>
                                                    m_bounds;
                                                     m_total_params;
           int
                                                     m_total_srcs;
44
                                                     m_total_bounds;
4.5
       };
47 #endif // !CORENC_PROBLEMS_SHALLOWWATER_H_
```

7.110 Solvers/dg_solver.h File Reference

```
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Methods/DGMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
```

7.111 dg_solver.h 499

Classes

class corenc::solvers::dg_solver< _Problem, _Mesh, _Result >

Namespaces

- · namespace corenc
- namespace corenc::solvers

7.111 dg_solver.h

```
#ifndef CORENC_SOLVERS_DG_SOLVER_H_
2 #define CORENC_SOLVERS_DG_SOLVER_H_
4 #include "../CoreNCFEM/Grids/TriangularMesh.h"
5 #include "../CoreNCFEM/Methods/DGMethod.h
7 #include "../Problems/DiffusionScalar.h"
7 #include "../CoreNCA/MatrixSkyline.h"
8 #include "../CoreNCFEM/Methods/FEAnalysis.h"
10 namespace corenc
11 {
12
       namespace solvers
13
           template<class _Problem, class _Mesh, class _Result>
15
           class dg_solver
16
17
                using _Method = method::DGMethod<_Problem, _Mesh, Algebra::MatrixSkyline>;
           public:
18
               dg_solver() :m_method{ nullptr } {}
19
20
                ~dg_solver()
               {
22
                    if (m_method != nullptr)
2.3
                        delete m_method;
24
               // terms, method, mesh, solver, result
25
26
                const int
                                         elliptic_solver(_Problem*, _Mesh*, _Result*);
                const double
                                         get_value(const _Mesh&, const _Result&, const Mesh::Point& p) const;
28
                const double
                                         get_value(const _Method*, const _Mesh&, const _Result&, const
       Mesh::Point& p) const;
29
                                         get_value(const _Mesh&, const _Result&, const Mesh::Point& p, const
               const double
       int i) const;
30
               const Mesh::Point
                                         get gradvalue(const Mesh&, const Result&, const Mesh::Point& p)
       const;
31
               const Mesh::Point
                                          get_gradvalue(const _Mesh&, const _Result&, const Mesh::Point& p,
       const int i) const;
32
         private:
               _Method * m_method;
33
34
           template<class _Problem, class _Mesh, class _Result>
37
           const int dg_solver<_Problem, _Mesh, _Result>::elliptic_solver(_Problem* problem, _Mesh* mesh,
       _Result* result)
38
39
                std::vector<double> res;
40
                //std::shared_ptr<Algebra::MatrixSkyline> matrix{    new Algebra::MatrixSkyline() };
                Algebra::MatrixSkyline* matrix{ new Algebra::MatrixSkyline() };
42
                std::vector<double> rhs;
43
               if (m_method != nullptr)
               delete m_method;
m_method = new _Method{ problem, mesh, matrix, &rhs };
m_method->Discretization();
44
45
46
               Algebra::ESolver esl{ Algebra::Solvers::GMRES };
48
                *result = esl.Solve(*matrix, rhs, *result, res, 100000, 1e-13);
49
               delete matrix;
50
               return 0:
           }
51
           template<class _Problem, class _Mesh, class _Result>
           const double dg_solver<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const _Result&
54
       res, const Mesh::Point& p) const
5.5
56
                if (m method != nullptr)
57
                    return m_method->GetSolution(mesh, res, p);
                return 0.;
```

```
template<class _Problem, class _Mesh, class _Result>
62
           const Mesh::Point dg_solver<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh, const
        _Result& res, const Mesh::Point& p) const
63
                 if (m_method != nullptr)
                     return m_method->GetGradSolution(mesh, res, p);
                 return Mesh::Point(0, 0, 0);
67
68
69
           template<class _Problem, class _Mesh, class _Result>
       const double dg_solver<_Problem, _Mesh, _Result>::get_value(const _Method* method2, const _Mesh& mesh, const _Result& res, const Mesh::Point& p) const
70
72
                 if (method2 != nullptr)
73
                     return method2->GetSolution(mesh, res, p);
                 return 0.;
74
75
           template<class _Problem, class _Mesh, class _Result>
       const double dg_solver<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const _Result& res, const Mesh::Point& p, const int i) const
78
79
                 if (m_method != nullptr)
80
81
                     return m_method->GetSolution(mesh, res, p, i);
                 return 0.;
83
84
            template<class _Problem, class _Mesh, class _Result>
        const Mesh::Point dg_solver<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh, const
_Result& res, const Mesh::Point& p, const int i) const
85
86
                 if (m_method != nullptr)
88
                      return m_method->GetGradSolution(mesh, res, p, i);
29
                 return Mesh::Point(0, 0, 0);
90
91
94 #endif // !CORENC_SOLVERS_dg_solver_H_
```

7.112 Solvers/dg_solver_shallow_water.cpp File Reference

```
#include "dg_solver_shallow_water.h"
#include <vector>
#include "../CoreNCFEM/Grids/RegularMesh.h"
#include "../CoreNCFEM/Parameter.h"
#include <algorithm>
#include <functional>
```

7.113 Solvers/dg_solver_shallow_water.h File Reference

```
#include <vector>
#include <functional>
#include <istream>
#include <iostream>
#include <fstream>
#include <algorithm>
#include "../CoreNCFEM/Point.h"
```

Classes

- · struct corenc::solvers::vector solution
- · class corenc::solvers::dg_solver_shallow_water
- class corenc::solvers::dg_shallow_water< Mesh >

Namespaces

- · namespace corenc
- · namespace corenc::solvers

7.114 dg_solver_shallow_water.h

```
#ifndef CORENC_SOLVERS_DG_SOLVER_SHALLOW_WATER_H_
2 #define CORENC_SOLVERS_DG_SOLVER_SHALLOW_WATER_H_
4 #include <vector>
5 #include <functional>
6 #include <istream>
7 #include <iostream>
8 #include <fstream>
9 #include <algorithm>
10 #include "../CoreNCFEM/Point.h"
11 namespace corenc
12 {
13
              namespace solvers
14
                       struct vector_solution
15
17
                                std::vector<double> S[3];
18
                                vector_solution() {}
19
                                vector_solution(const int _size)
20
                                        S[0].resize(_size);
21
                                        S[1].resize(_size);
                                        S[2].resize(_size);
24
25
                      class dg_solver_shallow_water
2.6
                                dg_solver_shallow_water();
30
                                ~dg_solver_shallow_water();
31
                                const int
                                                                                  solve() const;
32
                                const int
                                                                                  solve(
                                      const double t0,
33
                                        const double t1,
35
                                        const size_t nx,
36
                                        const size_t ny,
37
                                        const double x0,
38
                                        const double x1.
                                        const double y0,
39
40
                                        const double v1,
                                        const double g,
                                        const double H,
43
                                        44
                                        const std::function<const std::vector<double>(const std::vector<double>&)>&,
                                        const std::function<const std::vector<double>(const std::vector<double>&)>&) const;
45
46
                       };
                       template<class Mesh>
49
                       class dg_shallow_water
50
                      public:
51
52
                               dg_shallow_water();
                                ~dg_shallow_water();
                                const int
                                                                                   solve(
5.5
                                        const double t0,
56
                                        const double t1,
57
                                        const Mesh& mesh,
58
                                        vector solution& sol,
                                        const std::function<const std::vector<double>(const std::vector<double>&)>&,
59
                                        const std::function<const std::vector<double>(const std::vector<double>&)>&,
                                        \verb|const| std::function<const| std::vector<double>(const| std::vector<double>\&)>\&) | const| std::vector<double>&(const| std::vector<double>&(
62
                                const int
                                                                                   solve(
63
                                        const double t0.
                                        const double t1,
64
65
                                        const Mesh& mesh,
                                        vector_solution& sol,
                                        std::vector<double>& bath,
68
                                        std::vector<double>& ze,
69
                                        std::vector<double>& dzx,
70
                                        std::vector<double>& dzy,
71
                                        std::vector<double>& dbx,
                                        std::vector<double>& dby,
```

```
73
                    const std::function<const std::vector<double>(const std::vector<double>&, const int)>&,
74
                     const std::function<const std::vector<double>(const std::vector<double>&, const int)>&,
75
                     const std::function<const std::vector<double>(const std::vector<double>&, const int)>&,
76
                     const bool WRITE_FILE) const;
77
            };
78
79
            template<class Mesh>
            dg_shallow_water<Mesh>::dg_shallow_water()
80
81
82
83
84
            template<class Mesh>
            dg_shallow_water<Mesh>::~dg_shallow_water()
85
86
87
88
89
90
            template<class Mesh>
91
            const int dg_shallow_water<Mesh>::solve(
                const double t0,
                const double t1,
93
                const Mesh& mesh,
94
9.5
                vector_solution& sol,
                const std::function < const std::vector<double>(const std::vector<double>&)>&R,
96
                const std::function < const std::vector<double>(const std::vector<double>&)>&G
                const std::function < const std::vector<double>(const std::vector<double>&)>&F) const
99
100
                 std::vector<double> Ut[3];
101
                 const int max_iter = 30000;
                 const double dx = mesh.GetNode(mesh.GetNumberOfNodes() - 1).x - mesh.GetNode(0).x; const double dy = mesh.GetNode(mesh.GetNumberOfNodes() - 1).y - mesh.GetNode(0).y;
102
103
                 //const double dx = (x1 - x0) / nx;
//const double dy = (y1 - y0) / ny;
104
105
106
                 const int size = mesh.GetNumberOfElements();
107
                 const int bsize = mesh.GetNumberOfBoundaries();
108
109
                 std::vector<vector_solution> U(2);
110
                 std::vector<vector_solution> W(2);
111
                 U[0].S[0].resize(size);
112
                 U[0].S[1].resize(size);
113
                 U[0].S[2].resize(size);
114
                 U[1].S[0].resize(size);
115
                 U[11.S[11.resize(size):
                 U[1].S[2].resize(size);
116
117
118
                 W[0].S[0].resize(size);
119
                 W[0].S[1].resize(size);
120
                 W[0].S[2].resize(size);
                 W[1].S[0].resize(size);
121
122
                 W[1].S[1].resize(size);
123
                 W[1].S[2].resize(size);
124
                 for (size_t i = 0; i < size; ++i)</pre>
125
                      W[0].S[0][i] = sol.S[0][i];
W[0].S[1][i] = sol.S[1][i];
126
127
                      W[0].S[2][i] = sol.S[2][i];
128
129
130
                      U[0].S[0][i] = sol.S[0][i];
131
                      U[0].S[1][i] = sol.S[1][i] / sol.S[0][i];
                      U[0].S[2][i] = sol.S[2][i] / sol.S[0][i];
132
133
                 }
134
135
                 double t_step = 0.1;
                 const double cfl = 0.5;
136
137
                 //W = [h hu hv]
138
                 double lambda_x = 0;
                 double lambda_y = 0;
139
                 double lambdax = 0;
140
141
                 double lambday = 0;
142
                 double lambda = 0;
143
                 double t_curr = 0;
144
                 double g = 1;
145
                 size_t iter_max = 10000;
                 for (size_t t = 0; t < iter_max && t_curr < t1; ++t, t_curr += t_step)</pre>
146
147
                 {
148
                      lambda_x = 0;
149
                      lambda_y = 0;
150
                      for (size_t i = 0; i < size; ++i)</pre>
151
152
                          const auto& elem = mesh.GetElement(i):
                          const auto& res = F(std::vector<double>{W[t].S[0][i], W[t].S[1][i], W[t].S[2][i]});
153
                          W[t + 1].S[0][i] = W[t].S[0][i] + res[0];
154
                          W[t + 1].S[0][i] = W[t].S[1][i] + res[1];
W[t + 1].S[2][i] = W[t].S[2][i] + res[2];
155
156
157
                          lambda\_x = std::max(fabs(U[t].S[1][i]), lambda\_x);
158
                          lambda v = std::max(fabs(U[t].S[2][i]), lambda v);
159
```

```
160
                     t_step = cfl / 2 * std::min(dx / lambda_x, dy / lambda_y);
161
                        (t_curr + t_step > t1)
t_step = t1 - t_curr;
162
163
164
                     for (size_t i = 0; i < bsize; ++i)</pre>
165
166
                         const auto& bound = mesh.GetBoundary(i);
                          const int nk = bound->GetNeighbour(0);
167
168
                          const int ne = bound->GetNeighbour(1);
169
                         const auto& normal = bound->GetNormal();
170
                         if (ne > -1)
171
                         {
                              const auto& normal = bound->GetNormal();
172
173
                              std::vector<double> wk(3);
174
                              wk[0] = U[t].S[0][nk];
175
                              wk[1] = U[t].S[1][nk] * U[t].S[0][nk];
                              wk[2] = U[t].S[2][nk] * U[t].S[0][nk];
176
177
178
                              std::vector<double> we(3);
179
                              we[0] = U[t].S[0][ne];
                              we[1] = U[t].S[1][ne] * U[t].S[0][ne];
we[2] = U[t].S[2][ne] * U[t].S[0][ne];
180
181
182
                              //lambda\_x = std::max(fabs(U[t].S[1][nk]) + sqrt(g * U[t].S[0][nk]),
183
       fabs(U[t].S[1][ne]) + sqrt(q * U[t].S[0][ne]));
                              //lambda_y = std::max(fabs(U[t].S[2][nk]) + sqrt(g * U[t].S[0][nk]),
184
       fabs(U[t].S[2][ne]) + sqrt(g * U[t].S[0][ne]));
185
186
                              lambda_x = std::max(fabs(U[t].S[1][nk]), fabs(U[t].S[1][ne]));
187
                              lambda\_y = std::max(fabs(U[t].S[2][nk]), fabs(U[t].S[2][ne]));
188
189
190
                              lambdax = std::max(lambdax, lambda_x);
191
                              lambday = std::max(lambday, lambda_y);
                              double 11 = std::max(lambda_x, lambda_y);
//cout « "max:\t" « 11 « endl;
192
193
                              std::vector<double> uk(3);
194
195
                              uk[0] = U[t].S[0][nk];
196
                              uk[1] = U[t].S[1][nk];
197
                              uk[2] = U[t].S[2][nk];
198
                              std::vector<double> ue(3);
199
                             ue[0] = U[t].S[0][ne];
ue[1] = U[t].S[1][ne];
200
201
                              ue[2] = U[t].S[2][ne];
203
204
                              const auto rk = R(uk);
205
                              const auto re = R(ue);
                              const auto gk = G(uk);
206
207
                              const auto ge = G(ue);
208
209
                              std::vector<double> uu(3);
        uu[0] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound-> GetMeasure() * (normal.x * (rk[0] + re[0]) / 2 + normal.y * (gk[0] + ge[0]) / 2 - (lambda_x * normal.x / 2 * (ue[0] - uk[0]) + lambda_y * normal.y / 2 * (ue[0] - uk[0])); 
210
                             uu[1] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
211
       (normal.x * (rk[1] + re[1]) / 2 + normal.y * (gk[1] + ge[1]) / 2 - (lambda_x * normal.x / 2 * (ue[1] - uk[1]) + lambda_y * normal.y / 2 * (ue[1] - uk[1]));
                              uu[2] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
212
       W[t + 1].S[0][nk] -= uu[0];
W[t + 1].S[1][nk] -= uu[1];
213
214
                              W[t + 1].S[2][nk] -= uu[2];
215
216
217
                              uu[0] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound-> GetMeasure() *
       218
       (-normal.x * (rk[1] + re[1]) / 2 - normal.y * (gk[1] + ge[1]) / 2 + (lambda_x * normal.x / 2 * (ue[1] - uk[1]) + lambda_y * normal.y / 2 * (ue[1] - uk[1]));
219
                              \verb"uu[2] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound-> GetMeasure() *
       220
                              W[t + 1].S[0][ne] = uu[0];
221
                              W[t + 1].S[1][ne] -= uu[1];
                              W[t + 1].S[2][ne] = uu[2];
222
223
                         }
224
225
                     for (size t i = 0; i < bsize; ++i)</pre>
226
227
                         const auto& bound = mesh.GetBoundary(i);
                         const int nk = bound->GetNeighbour(0);
228
229
                          const int ne = bound->GetNeighbour(1);
230
                          if (ne == -1)
2.31
232
                              auto normal = bound->GetNormal();
```

```
233
234
                                                      std::vector<double> u(3);
                                                     u[0] = U[t].S[0][nk];
u[1] = -U[t].S[1][nk];
235
236
                                                     u[2] = -U[t].S[2][nk];
237
238
                                                      lambdax = std::max(lambdax, lambda_x);
240
                                                      lambday = std::max(lambday, lambda_y);
241
2.42
                                                     std::vector<double> uk(3);
                                                     uk[0] = U[t].S[0][nk];
uk[1] = U[t].S[1][nk];
243
244
245
                                                     uk[2] = U[t].S[2][nk];
246
247
                                                      std::vector<double> ue(3);
                                                     ue[0] = u[0];
ue[1] = u[1];
248
249
                                                     ue[2] = u[2];
250
251
252
                                                     const auto rk = R(uk);
253
                                                      const auto re = R(ue);
                                                      const auto gk = G(uk);
254
                                                      const auto ge = G(ue);
255
256
                                                      lambda\_x = std::max(fabs(uk[1]), fabs(ue[1]));
257
                                                      lambda_y = std::max(fabs(uk[2]), fabs(ue[2]));
                                                      std::vector<double> uu(3);
259
                                                      if (normal.x > 0 \mid \mid normal.y > 0)
260
261
                                                             uu[0] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
             2.62
              (normal.x * (rk[1] + re[1]) / 2 + normal.y * (gk[1] + ge[1]) / 2 - (lambda_x * normal.x / 2 * (ue[1] - uk[1]) + lambda_y * normal.y / 2 * (ue[1] - uk[1]));
             uu[2] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
(normal.x * (rk[2] + re[2]) / 2 + normal.y * (gk[2] + ge[2]) / 2 - (lambda_x * normal.x / 2 * (ue[2] - uk[2]) + lambda_y * normal.y / 2 * (ue[2] - uk[2]));
263
265
266
              uu[0] = t\_step \ / \ mesh.GetElement(nk) -> GetMeasure() \ * \ bound-> GetMeasure() \ * \ (normal.x \ * \ (rk[0] + re[0]) \ / \ 2 + normal.y \ * \ (gk[0] + ge[0]) \ / \ 2 + (lambda_x \ * \ normal.x \ / \ 2 \ * \ (ue[0] - uk[0]) + lambda_y \ * \ normal.y \ / \ 2 \ * \ (ue[0] - uk[0]));   uu[1] = t\_step \ / \ mesh.GetElement(nk) -> GetMeasure() \ * \ bound-> GetMeasu
267
268
              269
                                                            uu[2] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
             270
272
                                                     W[t + 1].S[0][nk] -= uu[0];
                                                     W[t + 1].S[1][nk] -= uu[1];
273
274
                                                     W[t + 1].S[2][nk] = uu[2];
275
276
277
                                       for (size_t i = 0; i < size; ++i)</pre>
278
279
                                             280
281
282
283
284
                                       W.push_back(vector_solution(size));
285
                                      U.push_back(vector_solution(size));
286
287
                              const auto ut = W.size() - 2;
288
                              for (size_t i = 0; i < size; ++i)</pre>
289
291
                                       sol.S[0][i] = W[ut].S[0][i];
                                       sol.S[1][i] = W[ut].S[1][i];
292
                                       sol.S[2][i] = W[ut].S[2][i];
293
294
295
                              return 0;
296
297
298
                       template<class Mesh>
299
                       const int dg_shallow_water<Mesh>::solve(
300
                              const double t0.
301
                              const double t1,
 302
                              const Mesh& mesh,
                               vector_solution& sol,
 303
304
                              std::vector<double>& bath,
305
                              std::vector<double>& ze,
306
                              std::vector<double>% dzx.
307
                              std::vector<double>& dzv.
```

```
308
                 std::vector<double>& dbx,
                 std::vector<double>& dby,
309
310
                 const std::function < const std::vector<double>(const std::vector<double>&, const int)>&R,
                 311
                 const std::function < const std::vector<double>(const std::vector<double>&, const int)>&F,
312
                 const bool WRITE_FILE) const
313
314
315
                 std::vector<double> Ut[3];
316
                 const int max_iter = 30000;
317
                 double dx = 100, dy = 100;
                 //const double dx = mesh.GetNode(mesh.GetNumberOfNodes() - 1).x - mesh.GetNode(0).x;
//const double dy = mesh.GetNode(mesh.GetNumberOfNodes() - 1).y - mesh.GetNode(0).y;
318
319
                 //const double dx = (x1 - x0) / nx;
//const double dy = (y1 - y0) / ny;
320
321
322
                 const int size = mesh.GetNumberOfElements();
323
                 const int bsize = mesh.GetNumberOfBoundaries();
324
325
                 std::vector<vector solution> U(2);
                 std::vector<vector_solution> W(2);
326
327
                 U[0].S[0].resize(size);
328
                 U[0].S[1].resize(size);
329
                 U[0].S[2].resize(size);
330
                 U[1].S[0].resize(size);
331
                 U[1].S[1].resize(size);
332
                 U[1].S[2].resize(size);
333
334
                 W[0].S[0].resize(size);
335
                 W[0].S[1].resize(size);
336
                 W[0].S[2].resize(size);
337
                 W[1].S[0].resize(size);
                 W[1].S[1].resize(size);
338
339
                 W[1].S[2].resize(size);
340
                 for (size_t i = 0; i < size; ++i)</pre>
341
                     W[0].S[0][i] = sol.S[0][i];
W[0].S[1][i] = sol.S[1][i];
342
343
                     W[0].S[2][i] = sol.S[2][i];
344
345
346
                      U[0].S[0][i] = sol.S[0][i];
                     U[0].S[1][i] = sol.S[1][i] / sol.S[0][i];
U[0].S[2][i] = sol.S[2][i] / sol.S[0][i];
347
348
349
                 auto center = [=](const size_t i)
350
351
352
                      const auto& elem = mesh.GetElement(i);
353
                      std::vector<corenc::Mesh::Point> pts(4);
354
                     pts[0] = mesh.GetNode(elem->GetNode(0));
355
                     pts[1] = mesh.GetNode(elem->GetNode(1));
                     pts[2] = mesh.GetNode(elem->GetNode(2));
356
357
                     pts[3] = mesh.GetNode(elem->GetNode(3));
358
                      ceturn corenc::Mesh::Point(pts[0].x + (pts[3].x - pts[0].x) / 2, pts[0].y + (pts[3].y -
       pts[0].y) / 2);
359
360
                 double t_step = 0.1;
                 const double cfl = 0.1;
361
                 //W = [h hu hv]
362
363
                 double lambda_x = 0;
364
                 double lambda_y = 0;
365
                 double lambdax = 0;
366
                 double lambday = 0;
367
                 double lambda = 0;
368
                 double t_curr = 0;
369
                 double g = 1;
370
                 size_t iter_max = 100;
371
                      (size_t t = 0; t < iter_max && t_curr < t1; ++t, t_curr += t_step)
372
373
                      lambda_x = 0;
                      lambda_y = 0;
374
375
                      for (size_t i = 0; i < size; ++i)</pre>
376
377
                          const auto& elem = mesh.GetElement(i);
378
                          \verb|const| auto& res = F(std::vector<double>{W[t].S[0][i], W[t].S[1][i], W[t].S[2][i]}|, \\
       i);
379
                          W[t + 1].S[0][i] = W[t].S[0][i] + res[0];
                          W[t + 1].S[1][i] = W[t].S[1][i] + res[1];
W[t + 1].S[2][i] = W[t].S[2][i] + res[2];
380
381
382
383
                          lambda\_x = std::max(fabs(U[t].S[1][i]) + sqrt(g*U[t].S[0][i]), lambda\_x);
                          lambda\_y = std::max(fabs(U[t].S[2][i]) + sqrt(g*U[t].S[0][i]), lambda\_y);
384
                          dx = std::min(mesh.GetNode(elem->GetNode(3)).x - mesh.GetNode(elem->GetNode(0)).x,
385
       dx);
386
                          dy = std::min(mesh.GetNode(elem->GetNode(3)).y - mesh.GetNode(elem->GetNode(0)).y,
       dv);
387
                          //lambda_x = std::min(U[t].S[1][i])
388
                          //lambda_x = std::max(fabs(U[t].S[1][i]), lambda_x);
                          //lambda_y = std::max(fabs(U[t].S[2][i]), lambda_y);
389
390
                      }
```

```
391
                       t_step = cfl / 2 * std::min(dx / lambda_x, dy / lambda_y);
392
                       //std::cout « t_step « std::endl;
                       if (t_curr + t_step > t1)
    t_step = t1 - t_curr;
393
394
                       for (size_t i = 0; i < bsize; ++i)</pre>
395
396
397
                           const auto& bound = mesh.GetBoundary(i);
398
                            const int nk = bound->GetNeighbour(0);
399
                            const int ne = bound->GetNeighbour(1);
400
                           const auto& normal = bound->GetNormal();
401
                           if (ne > -1)
402
                           {
403
                                const auto& normal = bound->GetNormal();
                                std::vector<double> wk(3);
404
405
                                wk[0] = U[t].S[0][nk];
                                wk[1] = U[t].S[1][nk] * U[t].S[0][nk];
wk[2] = U[t].S[2][nk] * U[t].S[0][nk];
406
407
408
409
                                std::vector<double> we(3);
410
                                we[0] = U[t].S[0][ne];
                                we[1] = U[t].S[1][ne] * U[t].S[0][ne];
we[2] = U[t].S[2][ne] * U[t].S[0][ne];
411
412
413
                                lambda\_x = std::max(fabs(U[t].S[1][nk]) + sqrt(g * U[t].S[0][nk]),
414
       fabs(U[t].S[1][ne]) + sqrt(g * U[t].S[0][ne]));
lambda_y = std::max(fabs(U[t].S[2][nk]) + sqrt(g * U[t].S[0][nk]),
415
        fabs(U[t].S[2][ne]) + sqrt(g * U[t].S[0][ne]));
416
417
                                 //lambda_x = std::max(fabs(U[t].S[1][nk]), fabs(U[t].S[1][ne]));
                                 //lambda_y = std::max(fabs(U[t].S[2][nk]), fabs(U[t].S[2][ne]));
418
419
420
421
                                 lambdax = std::max(lambdax, lambda_x);
422
                                 lambday = std::max(lambday, lambda_y);
                                double 11 = std::max(lambda_x, lambda_y);
//cout « "max:\t" « 11 « endl;
423
424
                                std::vector<double> uk(3);
425
426
                                uk[0] = U[t].S[0][nk];
427
                                uk[1] = U[t].S[1][nk];
428
                                uk[2] = U[t].S[2][nk];
429
                                std::vector<double> ue(3);
430
                                ue[0] = U[t].S[0][ne];
ue[1] = U[t].S[1][ne];
431
432
433
                                ue[2] = U[t].S[2][ne];
434
435
                                const auto rk = R(uk, nk);
                                const auto re = R(ue, ne);
436
                                const auto gk = G(uk, nk);
437
                                const auto ge = G(ue, ne);
438
439
440
                                 std::vector<double> uu(3);
        uu[0] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound -> GetMeasure() * (normal.x * (rk[0] + re[0]) / 2 + normal.y * (gk[0] + ge[0]) / 2 - (lambda_x * normal.x / 2 * (ue[0] - uk[0]) + lambda_y * normal.y / 2 * (ue[0] - uk[0])); 
441
                                uu[1] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
442
        (normal.x * (rk[1] + re[1]) / 2 + normal.y * (gk[1] + ge[1]) / 2 - (lambda_x * normal.x / 2 * (ue[1] - uk[1]) + lambda_y * normal.y / 2 * (ue[1] - uk[1]));
                                uu[2] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
443
       (normal.x * (rk[2] + re[2]) / 2 + normal.y * (gk[2] + ge[2]) / 2 - (lambda_x * normal.x / 2 * (ue[2] - uk[2]) + lambda_y * normal.y / 2 * (ue[2] - uk[2]));
                                W[t + 1].S[0][nk] -= uu[0];
W[t + 1].S[1][nk] -= uu[1];
444
445
                                W[t + 1].S[2][nk] -= uu[2];
447
448
                                uu[0] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound-> GetMeasure() *
       449
        (-normal.x * (rk[1] + re[1]) / 2 - normal.y * (gk[1] + ge[1]) / 2 + (lambda_x * normal.x / 2 * (ue[1] - uk[1]) + lambda_y * normal.y / 2 * (ue[1] - uk[1]));
450
                                \verb"uu[2] = t\_step / mesh.GetElement(nk) -> GetMeasure() * bound-> GetMeasure() *
        W[t + 1].S[0][ne] = uu[0];
451
452
                                W[t + 1].S[1][ne] -= uu[1];
453
                                W[t + 1].S[2][ne] = uu[2];
454
455
456
457
458
                           (size_t i = 0; i < bsize; ++i)
459
460
                            const auto& bound = mesh.GetBoundary(i);
                           const int nk = bound->GetNeighbour(0);
const int ne = bound->GetNeighbour(1);
461
462
                            if (ne == -1)
463
```

```
464
                                               {
465
                                                       auto normal = bound->GetNormal();
466
467
                                                       std::vector<double> u(3);
468
                                                      u[0] = U[t].S[0][nk];
u[1] = -U[t].S[1][nk];
469
470
                                                      u[2] = -U[t].S[2][nk];
471
472
                                                       //u[0] = U[t].S[0][nk];
473
                                                       //u[1] = U[t].S[1][nk];
                                                       //u[2] = U[t].S[2][nk];
474
475
476
                                                       lambdax = std::max(lambdax, lambda x);
477
                                                       lambday = std::max(lambday, lambda_y);
478
479
                                                       std::vector<double> uk(3);
                                                      uk[0] = U[t].S[0][nk];
uk[1] = U[t].S[1][nk];
480
481
                                                      uk[2] = U[t].S[2][nk];
482
483
484
                                                       std::vector<double> ue(3);
                                                      ue[0] = u[0];
ue[1] = u[1];
485
486
                                                      ue[2] = u[2];
487
488
489
                                                      const auto rk = R(uk, nk);
                                                       const auto re = R(ue, nk);
490
491
                                                       const auto gk = G(uk, nk);
492
                                                       const auto ge = G(ue, nk);
                                                      \label{lambda_x} \begin{array}{l} \texttt{lambda_x} = \texttt{std::max(fabs(uk[1])} + \texttt{sqrt(g*uk[0])}, \ \texttt{fabs(ue[1])} + \texttt{sqrt(g*ue[0])}; \\ \texttt{lambda_y} = \texttt{std::max(fabs(uk[2])} + \texttt{sqrt(g*uk[0])}, \ \texttt{fabs(ue[2])} + \texttt{sqrt(g*ue[0])}; \\ \end{array}
493
494
495
                                                       std::vector<double> uu(3);
496
                                                       if (normal.x > 0 \mid \mid normal.y > 0)
497
              uu[0] = t\_step \ / \ mesh.GetElement(nk) -> GetMeasure() \ * \ bound-> GetMeasure() \ * \ (normal.x \ * \ (rk[0] + re[0]) \ / \ 2 + normal.y \ * \ (gk[0] + ge[0]) \ / \ 2 - (lambda_x \ * \ normal.x \ / \ 2 \ * \ (ue[0] - uk[0]) + lambda_y \ * \ normal.y \ / \ 2 \ * \ (ue[0] - uk[0]));   uu[1] = t\_step \ / \ mesh.GetElement(nk) -> GetMeasure() \ * \ bound-> GetMeasu
498
             500
501
                                                      }
502
503
504
                                                              uu[0] = t_step / mesh.GetElement(nk)->GetMeasure() * bound->GetMeasure() *
             505
             506
              (normal.x * (rk[2] + re[2]) / 2 + normal.y * (gk[2] + ge[2]) / 2 + (lambda_x * normal.x / 2 * (ue[2] - uk[2]) + lambda_y * normal.y / 2 * (ue[2] - uk[2]));
                                                      }
507
508
509
                                                      W[t + 1].S[0][nk] = uu[0];
510
                                                      W[t + 1].S[1][nk] -= uu[1];
511
                                                      W[t + 1].S[2][nk] = uu[2];
512
513
514
                                       for (size_t i = 0; i < size; ++i)</pre>
515
516
                                              517
518
                                               U[t + 1].S[2][i] = W[t + 1].S[2][i] / W[t + 1].S[0][i];
519
520
521
                                       W.push_back(vector_solution(size));
                                       U.push_back(vector_solution(size));
522
523
524
                                       for (size_t k = 0; k < bsize; ++k)
525
526
                                               const auto& bound = mesh.GetBoundary(k);
527
                                               const auto nk = bound->GetNeighbour(0);
                                               const auto ne = bound->GetNeighbour(1);
528
529
                                               ze[nk] = W[t + 1].S[0][nk] - bath[nk];
530
                                               if (ne > -1)
531
                                                       ze[ne] = W[t + 1].S[0][ne] - bath[ne];
532
533
                                                      const auto ce = center(ne);
                                                       const auto ck = center(nk);
534
535
                                                       const double cx = ce.x - ck.x;
                                                       const double cy = ce.y - ck.y;
536
537
                                                       if (fabs(cy) < 1e-13)</pre>
538
```

```
dzx[nk] = (ze[ne] - ze[nk]) / cx;
                                       dzx[ne] = dzx[nk];
dbx[nk] = (bath[ne] - bath[nk]) / cx;
dbx[ne] = dbx[nk];
540
541
542
543
544
                                  else
545
546
                                       dzy[nk] = (ze[ne] - ze[nk]) / cy;
                                       dzy[ne] = dzy[nk];
dby[nk] = (bath[ne] - bath[nk]) / cy;
547
548
                                       dby[ne] = dby[nk];
549
550
551
                             }
552
553
                   /*const auto ut = W.size() - 2;
for (size_t i = 0; i < size; ++i)
554
555
556
557
                        sol.S[0][i] = W[ut].S[0][i];
                        sol.S[1][i] = W[ut].S[1][i];
559
                        sol.S[2][i] = W[ut].S[2][i];
560
                   std::ofstream ofs;
ofs.open("meshU.txt");
561
562
                   const size_t t_r = U.size() - 1;
ofs « t_r « std::endl;
563
564
565
                   for (size_t i = 0; i < t_r; ++i)
566
                       for (size_t j = 0; j < size; ++j)
                            ofs « U[i].S[0][j] - bath[j] « std::endl;
567
568
                   ofs.close(); */
569
                   return 0:
570
              }
571
572 }
573
574
575 #endif // !CORENC_SOLVERS_DG_SOLVER_SHALLOW_WATER_H_
```

7.115 Solvers/eigen_solver.h File Reference

```
#include <vector>
#include <complex>
```

Classes

class corenc::solvers::eigen_solver< Matrix, Solver >

Namespaces

- · namespace corenc
- namespace corenc::solvers

7.116 eigen_solver.h

```
1 #ifndef EIGEN_SOLVER_H
2 #define EIGEN_SOLVER_H
3 #include <vector>
4 #include <complex>
5 namespace corenc
6 {
7      namespace solvers
8      {
9          template<class Matrix, class Solver>
```

```
10
          class eigen_solver
11
          public:
12
13
               eigen_solver(){}
14
               ~eigen_solver(){}
15
              void
                          rayleigh (Matrix* A, Matrix* B, Solver* esl, std::complex<double>* mu0, double*
      x0, const int n) const
16
17
                   std::vector<std::complex<double> x(n);
18
                   std::vector<std::complex<double> y(n);
19
                   std::vector<std::complex<double> lam(n);
20
                   double norm_mu = 0;
                  double norm_x = 0;
22
                   for (int i = 0; i < n; ++i)
23
                      25
26
                  norm_mu = sqrt(norm_mu);
                  norm_x = sqrt(norm_x);
29
                   for (int i = 0; i < n; ++i)</pre>
30
                      x[i] = x0[i] / norm_x;
y[i] = mu0[i] / norm_mu;
31
32
33
                  std::complex<double> temp(0, 0);
35
                  temp =
36
37
          };
38
      }
39 }
40 #endif // EIGEN_SOLVER_H
```

7.117 Solvers/fem_solver.h File Reference

```
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
```

Classes

class corenc::solvers::fem_solver< _Problem, _Mesh, _Result >

Namespaces

- · namespace corenc
- namespace corenc::solvers

7.118 fem_solver.h

```
1 #ifndef CORENC_SOLVERS_FEM_SOLVER_H_
2 #define CORENC_SOLVERS_FEM_SOLVER_H_
3
4 #include "../CoreNCFEM/Grids/TriangularMesh.h"
5 #include "../CoreNCFEM/Methods/FEMethod.h"
6 #include "../Problems/DiffusionScalar.h"
7 #include "../CoreNCA/MatrixSkyline.h"
8 #include "../CoreNCFEM/Methods/FEAnalysis.h"
9
10 // FINITE ELEMENT METHOD SOLVER ONLY IN SPACE
```

```
12 namespace corenc
13
14
       namespace solvers
1.5
            template<class _Problem, class _Mesh, class _Result>
16
17
           class fem_solver
18
19
                using _Method = method::FEMethod<_Problem, _Mesh, Algebra::MatrixSkyline>;
                using _Method2 = method::FEMethod<_Problem, _Mesh, Algebra::Matrix>;
2.0
           public:
21
                fem_solver() :m_method2{ nullptr }, m_method{nullptr}{}
22
23
                ~fem solver()
24
25
                    if (m_method2 != nullptr)
26
                        delete m_method2;
                    if (m_method != nullptr)
27
28
                        delete m_method;
29
                // terms, method, mesh, solver, result
                                         elliptic_solver(_Problem*, _Mesh*, _Result*);
31
                const int
32
                const int
                                         elliptic_solver_gauss(_Problem*, _Mesh*, _Result*);
                                         get_value(const _Mesh&, const _Result&, const Mesh::Point& p) const;
33
                const double
34
                const double
                                         get_value(const _Method2*, const _Mesh&, const _Result&, const
       Mesh::Point& p) const;
const double
35
                                         get_value(const _Method*, const _Mesh&, const _Result&, const
       Mesh::Point& p) const;
36
                const double
                                         get_value(const _Mesh&, const _Result&, const Mesh::Point& p, const
       int i) const;
                const Mesh::Point
37
                                          get_gradvalue(const _Mesh&, const _Result&, const Mesh::Point& p)
       const:
38
                                          get_gradvalue(const _Mesh&, const _Result&, const Mesh::Point& p,
                const Mesh::Point
       const int i) const;
39
           private:
               _Method*
40
                                      m_method;
41
                Method*
                                      m_method2;
                // Method2*
42
                                         m method2;
43
           };
            template<class _Problem, class _Mesh, class _Result>
45
46
            const int fem_solver<_Problem, _Mesh, _Result>::elliptic_solver(_Problem* problem, _Mesh* mesh,
       _Result* result)
47
           {
48
                std::vector<double> res;
                std::vector<double> res2;
50
                //std::shared_ptr<Algebra::MatrixSkyline> matrix{    new Algebra::MatrixSkyline() };
51
                Algebra::MatrixSkyline* matrix{ new Algebra::MatrixSkyline() };
52
                std::vector<double> rhs;
                if (m_method != nullptr)
53
54
                    delete m method:
55
                m_method = new _Method{ problem, mesh, matrix, &rhs };
56
57
5.8
                m method->Discretization();
59
                Algebra::ESolver esl{ Algebra::Solvers::BiCGStab };
//std::cout « "Size:\t" « matrix->GetSize() « std::endl;
60
61
                //std::cout « matrix->GetSize() « std::endl;
63
64
                *result = esl.Solve(*matrix, rhs, *result, res, 100000, 1e-13);
6.5
                //std::cout « matrix->GetSize() « std::endl;
66
                //esl.Pardiso(*matrix, rhs, *result);
                //res.resize(matrix2->GetSize());
69
                //for (int i = 0; i < matrix2->GetSize(); ++i)
70
                    //for (int j = 0; j < matrix2 \rightarrow GetSize(); ++j)
71
72
73
                        //res[i] += result->operator[](j) * (matrix2->GetElement(i, j));
                    //}
75
76
                delete matrix;
77
78
                return 0:
79
           }
80
81
            template<class _Problem, class _Mesh, class _Result>
82
            const int fem_solver<_Problem, _Mesh, _Result>::elliptic_solver_gauss(_Problem* problem, _Mesh*
       mesh, _Result* result)
83
                std::vector<double> res;
84
                std::vector<double> res2;
85
                //std::shared_ptr<Algebra::MatrixSkyline> matrix{    new Algebra::MatrixSkyline() };
87
                //Algebra::MatrixSkyline* matrix{ new Algebra::MatrixSkyline() };
88
                Algebra::Matrix* matrix2{ new Algebra::Matrix() };
89
                std::vector<double> rhs;
90
                //if (m_method != nullptr)
```

7.118 fem_solver.h 511

```
delete m_method;
                if (m_method2 != nullptr)
93
                    delete m_method2;
94
9.5
                //m_method = new _Method{ problem, mesh, matrix, &rhs };
                m_method2 = new _Method2{ problem, mesh, matrix2, &rhs };
96
                //m_method->Discretization();
98
                m_method2->Discretization();
                //Algebra::ESolver esl{ Algebra::Solvers::BiCGStab };
//std::cout « "Size:\t" « matrix->GetSize() « std::endl;
99
100
                 Algebra::ESolver esl{ Algebra::Solvers::Gauss };
101
102
                 //std::cout « matrix->GetSize() « std::endl;
                 //*result = esl.Solve(*matrix, rhs, *result, res, 100000, 1e-13);
//std::cout « matrix->GetSize() « std::endl;
103
104
105
                 esl.Gauss(*matrix2, rhs, *result);
106
                 //esl.Pardiso(*matrix, rhs, *result);
107
                 //res.resize(matrix2->GetSize());
108
                 //for (int i = 0; i < matrix2->GetSize(); ++i)
109
110
                     //for (int j = 0; j < matrix2->GetSize(); ++j)
111
112
                         //res[i] += result->operator[](j) * (matrix2->GetElement(i, j));
113
114
                 //delete matrix;
115
116
                 delete matrix2;
117
                 return 0;
118
119
             template<class _Problem, class _Mesh, class _Result>
120
             const double fem_solver<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const _Result&
       res, const Mesh::Point& p) const
121
122
                 if (m_method2 != nullptr)
123
                     return m_method2->GetSolution(mesh, res, p);
124
                 return 0.;
125
            template<class _Problem, class _Mesh, class _Result>
const double fem_solver<_Problem, _Mesh, _Result>::get_value(const _Method2* method2, const
126
127
       _Mesh& mesh, const _Result& res, const Mesh::Point& p) const
128
129
                 if (method2 != nullptr)
                     return method2->GetSolution(mesh, res, p);
130
131
                 return 0.:
132
133
             template<class _Problem, class _Mesh, class _Result>
134
             const double fem_solver<_Problem, _Mesh, _Result>::get_value(const _Method* method2, const
       _Mesh& mesh, const _Result& res, const Mesh::Point& p) const
135
                 if (method2 != nullptr)
136
137
                     return method2->GetSolution(mesh, res, p);
138
                 return 0.;
139
140
1 4 1
             template<class _Problem, class _Mesh, class _Result>
            const double fem_solver<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const _Result&
142
       res, const Mesh::Point& p, const int i) const
143
144
                 if (m_method2 != nullptr)
                     return m_method2->GetSolution(mesh, res, p, i);
145
146
                 return 0.;
147
            }
148
149
             template<class _Problem, class _Mesh, class _Result>
             const Mesh::Point fem_solver<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh, const
150
       _Result& res, const Mesh::Point& p) const
151
            {
152
                 if (m_method2 != nullptr)
                     return m method2->GetGradSolution(mesh, res, p);
153
154
                 return Mesh::Point(0, 0, 0);
155
            }
156
157
             template<class _Problem, class _Mesh, class _Result>
158
            const Mesh::Point fem_solver<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh, const
       _Result& res, const Mesh::Point& p, const int i) const
159
160
                 if (m_method2 != nullptr)
                     return m_method2->GetGradSolution(mesh, res, p, i);
161
162
                 return Mesh::Point(0, 0, 0);
163
        1
164
165 }
166 #endif // !CORENC_SOLVERS_FEM_SOLVER_H_
```

7.119 Solvers/fem solver lib.h File Reference

```
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
#include <chrono>
#include <iostream>
#include <fstream>
#include <eigen3/Eigen/SparseCore>
#include <cstdlib>
#include <string>
#include <eigen3/Eigen/Cholesky>
#include <eigen3/Eigen/Jacobi>
#include <eigen3/Eigen/Householder>
#include <eigen3/Eigen/IterativeLinearSolvers>
#include <eigen3/unsupported/Eigen/IterativeSolvers>
#include <eigen3/Eigen/LU>
#include <eigen3/unsupported/Eigen/SparseExtra>
#include <eigen3/Eigen/SparseLU>
#include <eigen3/Eigen/UmfPackSupport>
```

Classes

class corenc::solvers::fem_solver_lib< _Problem, _Mesh, _Result >

Namespaces

- namespace corenc
- namespace corenc::solvers

7.120 fem solver lib.h

```
1 #ifndef CORENC_SOLVERS_fem_solver_lib_H_
2 #define CORENC_SOLVERS_fem_solver_lib_H_
4 #include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"

#include "../Froblems/DiffusionScalar.h"

#include "../CoreNCA/MatrixSkyline.h"

#include "../CoreNCA/Methods/FEAnalysis.h"
9 #include <chrono>
10
11 /*#include <eigen3/Eigen/SparseCore>
12 //#include <eigen3/Eigen/Sparse>
13 //#include <eigen3/Eigen/SparseLU>
14 //#include <eigen3/Eigen/SparseCholesky>
15 #include <eigen3/Eigen/Cholesky>
16 //#include <eigen3/Eigen/Dense>
17 #include <eigen3/Eigen/UmfPackSupport>
18 //#include <eigen3/Eigen/SparseCore>
19 #include <eigen3/unsupported/Eigen/SparseExtra>
20 #include <eigen3/Eigen/SparseLU>*/
22 #include <iostream>
23 #include <fstream>
24 #include <eigen3/Eigen/SparseCore>
```

7.120 fem_solver_lib.h 513

```
25 #include <cstdlib>
26 #include <string>
27 #include <eigen3/Eigen/Cholesky>
28 #include <eigen3/Eigen/Jacobi>
29 #include <eigen3/Eigen/Householder>
30 #include <eigen3/Eigen/IterativeLinearSolvers>
31 #include <eigen3/unsupported/Eigen/IterativeSolvers>
32 #include <eigen3/Eigen/LU>
33 #include <eigen3/unsupported/Eigen/SparseExtra>
34 #include <eigen3/Eigen/SparseLU>
35 #include <eigen3/Eigen/UmfPackSupport>
36
38 // FINITE ELEMENT METHOD SOLVER ONLY IN SPACE
39
40 namespace corenc
41 {
42
       namespace solvers
43
            template<class _Problem, class _Mesh, class _Result>
            class fem_solver_lib
45
46
                using _Method = method::FEMethod<_Problem, _Mesh, Algebra::MatrixSkyline>;
47
                using _Method2 = method::FEMethod<_Problem, _Mesh, Algebra::Matrix>;
48
           public:
49
50
               fem_solver_lib() :m_method2{ nullptr }, m_method{nullptr}{}
                ~fem_solver_lib()
51
52
53
                    if (m_method2 != nullptr)
54
                        delete m_method2;
                    if (m_method != nullptr)
55
56
                        delete m method;
                // terms, method, mesh, solver, result
58
59
                const int
                                          elliptic_solver(_Problem*, _Mesh*, _Result*);
                                          elliptic_solver_gauss(_Problem*, _Mesh*, _Result*);
get_value(const _Mesh&, const _Result&, const Mesh::Point& p) const;
get_value(const _Method2*, const _Mesh&, const _Result&, const
60
                const int
61
                const double
62
                const double
       Mesh::Point& p) const;
63
                const double
                                          get_value(const _Method*, const _Mesh&, const _Result&, const
       Mesh::Point& p) const;
64
                const double
                                          get_value(const _Mesh&, const _Result&, const Mesh::Point& p, const
       int i) const;
65
               const Mesh::Point
                                          get_gradvalue(const _Mesh&, const _Result&, const Mesh::Point& p)
       const;
66
                const Mesh::Point
                                           get_gradvalue(const _Mesh&, const _Result&, const Mesh::Point& p,
       const int i) const;
           private:
67
               _Method*
68
                                      m method;
69
                Method*
                                      m_method2;
70
                //_Method2*
                                         m_method2;
71
72
73
            template<class _Problem, class _Mesh, class _Result>
           const int fem_solver_lib<_Problem, _Mesh, _Result>::elliptic_solver(_Problem* problem, _Mesh*
74
       mesh, _Result* result)
75
76
77
78
                std::vector<double> res;
79
                std::vector<double> res2;
80
                //std::shared_ptr<Algebra::MatrixSkyline> matrix{    new Algebra::MatrixSkyline() };
81
                Algebra::MatrixSkyline* matrix{ new Algebra::MatrixSkyline() };
83
84
8.5
                std::vector<double> rhs;
86
                if (m method != nullptr)
87
                    delete m method:
88
89
                m_method = new _Method{ problem, mesh, matrix, &rhs };
90
91
                m_method->Discretization();
92
93
                int n = matrix->GetSize();
                Eigen::SparseMatrix<double> eA(n, n);
                for (int i = 0; i < n; ++i)</pre>
95
96
97
                    for (int j = 0; j < n; ++j)
98
99
                        auto elem = matrix->GetElement(i, j);
100
                         if (fabs(elem) > 1e-12)
                              eA.insert(i, j) = elem;
101
102
103
104
                 eA.makeCompressed();
105
```

```
106
                 //Algebra::ESolver esl{ Algebra::Solvers::BiCGStab };
107
108
109
                 //std::cout « "Size:\t" « matrix->GetSize() « std::endl;
110
111
                  //std::cout « matrix->GetSize() « std::endl;
                 //*result = esl.Solve(*matrix, rhs, *result, res, 100000, 1e-13);
Eigen::MatrixMarketIterator<double> it("matr");
112
113
114
                 Eigen::VectorXd xx(n);
                  for (int i = 0; i < n;
115
                      xx[i] = rhs[i];
116
117
                 std::chrono::steady_clock::time_point beq{ std::chrono::steady clock::now() };
118
119
                  //Eigen::SparseLU<Eigen::SparseMatrix<double» chol;//(eA);
120
                  //Eigen::BiCGSTAB<Eigen::SparseMatrix<double> chol;//(eA);
121
122
                 Eigen::UmfPackLU<Eigen::SparseMatrix<double> chol;//(eA);
123
124
                  //chol.analyzePattern(eA);
125
                 chol.compute(eA);
126
                  //chol.factorize(eA);
                 if (chol.info() != Eigen::Success)
    std::cout « "oops" « std::endl;
127
128
                 Eigen::Matrix<double, Eigen::Dynamic, 1> bb;
129
                  //auto bb = chol.solve(xx);
130
                 bb = chol.solve(xx);
131
132
                  if (chol.info() != Eigen::Success)
                      std::cout « "oops xx" « std::endl;
133
134
135
                 //Eigen::saveMarket(eA, "matrix.mtx");
                 //Eigen::saveMarketVector(xx, "vector.mtx");
//Eigen::saveMarketVector(bb, "MatrixName_x.mtx");
136
137
138
139
140
                 std::chrono::steady_clock::time_point end{ std::chrono::steady_clock::now() };
141
                 auto dur = std::chrono::duration_cast<std::chrono::milliseconds>(end - beg).count();
                 std::cout « dur « std::endl;
142
143
144
                 result->resize(n);
145
                 for (int i = 0; i < n; ++i)
146
                      (*result)[i] = bb[i];
147
                 //std::cout « matrix->GetSize() « std::endl:
148
149
150
                  //esl.Pardiso(*matrix, rhs, *result);
151
                  //res.resize(matrix2->GetSize());
152
                  //for (int i = 0; i < matrix2->GetSize(); ++i)
153
                      //for (int j = 0; j < matrix2 -> GetSize(); ++j)
154
155
                      1/1
156
                          //res[i] += result->operator[](j) * (matrix2->GetElement(i, j));
157
158
159
                 delete matrix;
160
161
                 return 0;
162
163
             template<class _Problem, class _Mesh, class _Result>
164
165
             const int fem_solver_lib<_Problem, _Mesh, _Result>::elliptic_solver_gauss(_Problem* problem,
        _Mesh* mesh, _Result* result)
166
167
                 std::vector<double> res;
                  std::vector<double> res2;
168
169
                  //std::shared_ptr<Algebra::MatrixSkyline> matrix{    new Algebra::MatrixSkyline() };
170
                  //Algebra::MatrixSkyline* matrix{    new Algebra::MatrixSkyline() };
171
                 Algebra::Matrix* matrix2{ new Algebra::Matrix() };
                 std::vector<double> rhs;
172
173
                  //if (m_method != nullptr)
174
                       delete m_method;
175
                  if (m_method2 != nullptr)
176
                      delete m_method2;
177
178
                  //m_method = new _Method{ problem, mesh, matrix, &rhs };
                 m_method2 = new _Method2{ problem, mesh, matrix2, &rhs };
179
                  //m_method->Discretization();
180
                 m_method2->Discretization();
181
                  //Algebra::ESolver esl{ Algebra::Solvers::BiCGStab };
//std::cout « "Size:\t" « matrix->GetSize() « std::endl;
182
183
                 Algebra::ESolver esl{ Algebra::Solvers::Gauss };
184
                  //std::cout « matrix->GetSize() « std::endl;
185
186
                  //*result = esl.Solve(*matrix, rhs, *result, res, 100000, 1e-13);
                  //std::cout « matrix->GetSize() « std::endl;
187
188
                  esl.Gauss(*matrix2, rhs, *result);
189
                  //esl.Pardiso(*matrix, rhs, *result);
                 //res.resize(matrix2->GetSize());
//for (int i = 0; i < matrix2->GetSize(); ++i)
190
191
```

```
193
                     //for (int j = 0; j < matrix2->GetSize(); ++j)
194
195
                         //res[i] += result->operator[](j) * (matrix2->GetElement(i, j));
196
197
198
                 //delete matrix;
199
                 delete matrix2;
200
                return 0;
201
202
            template<class _Problem, class _Mesh, class _Result>
            const double fem_solver_lib<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const
203
       _Result& res, const Mesh::Point& p) const
204
           {
205
                 if (m_method2 != nullptr)
206
                     return m_method2->GetSolution(mesh, res, p);
207
                return O.:
208
            template<class _Problem, class _Mesh, class _Result>
209
             const double fem_solver_lib<_Problem, _Mesh, _Result>::get_value(const _Method2* method2, const
       _Mesh& mesh, const _Result& res, const Mesh::Point& p) const
211
212
                 if (method2 != nullptr)
                     return method2->GetSolution(mesh, res, p);
213
214
                return 0.;
215
216
            template<class _Problem, class _Mesh, class _Result>
217
            const double fem_solver_lib<_Problem, _Mesh, _Result>::get_value(const _Method* method2, const
       _Mesh& mesh, const _Result& res, const Mesh::Point& p) const
218
219
                 if (method2 != nullptr)
220
                     return method2->GetSolution(mesh, res, p);
221
222
223
224
            template<class _Problem, class _Mesh, class _Result>
225
            const double fem_solver_lib<_Problem, _Mesh, _Result>::get_value(const _Mesh& mesh, const
       _Result& res, const Mesh::Point& p, const int i) const
226
          {
227
                 if (m_method2 != nullptr)
228
                     return m_method2->GetSolution(mesh, res, p, i);
                return 0.:
229
           }
230
231
            template<class _Problem, class _Mesh, class _Result>
233
            const Mesh::Point fem_solver_lib<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh,
       const _Result& res, const Mesh::Point& p) const
234
235
                 if (m method2 != nullptr)
236
                     return m_method2->GetGradSolution(mesh, res, p);
                return Mesh::Point(0, 0, 0);
238
239
      template<class _Problem, class _Mesh, class _Result>
  const Mesh::Point fem_solver_lib<_Problem, _Mesh, _Result>::get_gradvalue(const _Mesh& mesh,
  const _Result& res, const Mesh::Point& p, const int i) const
240
241
242
243
                if (m_method2 != nullptr)
244
                     return m_method2->GetGradSolution(mesh, res, p, i);
245
                return Mesh::Point(0, 0, 0);
246
            }
247
248 }
249 #endif // !CORENC_SOLVERS_fem_solver_lib_H_
```

7.121 Tests/FiniteElements/test case rectanglebasis.cpp File Reference

```
#include "test_case_rectanglebasis.h"
#include "../../CoreNCFEM/FiniteElements/Rectangle.h"
```

7.122 Tests/FiniteElements/test_case_rectanglebasis.h File Reference

Classes

class corenc::tests::test_case_rectanglebasis

Namespaces

- · namespace corenc
- namespace corenc::tests

Macros

• #define CORENC TEST CASE RECTANGLEBASIS H

7.122.1 Macro Definition Documentation

```
7.122.1.1 CORENC_TEST_CASE_RECTANGLEBASIS_H_
```

```
#define CORENC_TEST_CASE_RECTANGLEBASIS_H_
```

7.123 test_case_rectanglebasis.h

Go to the documentation of this file.

```
1 #pragma once
2 #ifndef CORENC_TEST_CASE_RECTANGLEBASIS_H_
3 #define CORENC_TEST_CASE_RECTANGLEBASIS_H_
4 namespace corenc
      namespace tests
          class test_case_rectanglebasis
         public:
10
          test_case_rectanglebasis();
11
               ~test_case_rectanglebasis();
              const int mass_matrix() const;
const int stress_matrix() const;
15
16
      }
18 #endif // !CORENC_TEST_CASE_RECTANGLEBASIS_H_
```

7.124 Tests/FiniteElements/test_case_trianglebasis.cpp File Reference

```
#include "test_case_trianglebasis.h"
#include "../../CoreNCFEM/FiniteElements/Triangle.h"
```

7.125 Tests/FiniteElements/test case trianglebasis.h File Reference

Classes

class corenc::tests::test_case_trianglebasis

Namespaces

- · namespace corenc
- · namespace corenc::tests

Macros

• #define CORENC_TEST_CASE_TRIANGLEBASIS_H_

7.125.1 Macro Definition Documentation

```
7.125.1.1 CORENC_TEST_CASE_TRIANGLEBASIS_H_
```

```
#define CORENC_TEST_CASE_TRIANGLEBASIS_H_
```

7.126 test_case_trianglebasis.h

Go to the documentation of this file.

```
2 #ifndef CORENC_TEST_CASE_TRIANGLEBASIS_H_
3 #define CORENC_TEST_CASE_TRIANGLEBASIS_H_
4 namespace corenc
5 {
     namespace tests
8
          class test_case_trianglebasis
9
          public:
1.0
             test_case_trianglebasis();
11
              ~test_case_trianglebasis();
                          mass_matrix() const;
              const int
14
              const int
                                  stress_matrix() const;
15
          };
16
      }
17 }
18 #endif // !CORENC_TEST_CASE_TRIANGLEBASIS_H_
```

7.127 Tests/test_case_elliptic_fem.cpp File Reference

```
#include "test_case_elliptic_fem.h"
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Grids/RegularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
#include "../Solvers/fem_solver.h"
#include "../CoreNCFEM/GaussianField.h"
#include "../CoreNCFEM/FiniteElements/Triangle.h"
#include <math.h>
```

Macros

• #define _USE_MATH_DEFINES

Functions

• const double kekus (const double c, const double a=0, const double b=90.)

7.127.1 Macro Definition Documentation

```
7.127.1.1 _USE_MATH_DEFINES
```

```
#define _USE_MATH_DEFINES
```

7.127.2 Function Documentation

7.127.2.1 kekus()

7.128 Tests/test_case_elliptic_fem.h File Reference

Classes

• class corenc::test_case_elliptic_fem

Namespaces

· namespace corenc

7.129 test case elliptic fem.h

Go to the documentation of this file.

```
#ifndef CORENC_TEST_CASE_ELLIPTIC_FEM_H_
2 #define CORENC_TEST_CASE_ELLIPTIC_FEM_H_
4 // SOME TEST PROBLEMS FOR ELLIPTIC CASE WITH FEM && DG\
5 // Oth, 1st, 2nd order definitely maybe more high-order
6 // LAGRANGE && HIERARHICAL BASIS FUNCTIONS
7 // LATER MAYBE EVEN TESTS WITH MULTISCALE
9 namespace corenc
10 {
       class test_case_elliptic_fem
11
12
13
      public:
        test_case_elliptic_fem();
14
1.5
           ~test_case_elliptic_fem();
16
          //const int
                                        test_case_elliptic_fem_3d_tetra() const;
17
          const int
                                        elliptic_fem_2d_tria() const;
         const int
                                        elliptic_fem_solver() const;
elliptic_fem_square_lin_basis() const;
18
20
          const int
                                        elliptic_fem_hp_fixed(const int h_ref_max, const int p_ref_max)
      const;
21
          const int
                                        elliptic_fem_hp_fixed_triangle(const int h_ref_max, const int
       p_ref_max) const;
22
                                        elliptic_fem_hp_lagrange_triangle(const int h_ref_max, const int
          const int
      p_ref_max) const;
           const int
                                        elliptic_fem_hxhy_fixed_triangle(const int hx_max, const int hy_max)
      const;
2.4
          const int
                                        conv_diff_fem_fixed_triangle(const int h_ref_max, const int
      p_ref_max) const;
25
       const int
//const int
                                        global matrix(const int h ref max, const int p ref max) const;
26
                                        test_case_elliptic_fem_square_2nd_basis() const;
27
          //const int
                                        test_case_elliptic_fem_square_nth_basis() const;
          const int
28
                                        elliptic_2layer_fem_2d_tria_h() const;
29
          const int
                                        elliptic_fem_2d_rect_source() const;
                                        elliptic_gaussian_triangle() const;
30
          const int
          const int
                                        mass matrix 3rd order() const;
31
                                        strees_matrix_3rd_order() const;
          const int
32
33
                                        mass_matrix_4th_order() const;
          const int
34
                                        stress_matrix_4th_order() const;
          const int
35
          const int
                                       homotopy_conv_diff_fem(const double step) const;
36
          //const int
                                        test_case_elliptic_fem_2d_rect() const;
          //const int
                                       test_case_elliptic_fem_3d_hex() const;
test_case_elliptic_dg_3d_tetra() const;
37
38
          //const int
           //const int
                                        test_case_elliptic_dg_2d_tria() const;
                                        test_case_elliptic_dg_2d_rect() const;
40
           //const int
41
           //const int
                                        test_case_elliptic_dg_3d_hex() const;
42
      };
43 }
45 #endif // !CORENC_TEST_CASE_ELLIPTIC_FEM_H_
```

7.130 Tests/test_case_regular_mesh.cpp File Reference

```
#include "test_case_regular_mesh.h"
#include "../CoreNCFEM/Grids/RegularMesh.h"
```

7.131 Tests/test_case_regular_mesh.h File Reference

Classes

· class corenc::tests::test case regular mesh

Namespaces

- · namespace corenc
- namespace corenc::tests

Macros

• #define CORENC_TEST_CASE_REGULAR_MESH_H_

7.131.1 Macro Definition Documentation

7.131.1.1 CORENC_TEST_CASE_REGULAR_MESH_H_

```
#define CORENC_TEST_CASE_REGULAR_MESH_H_
```

7.132 test_case_regular_mesh.h

Go to the documentation of this file.

```
1 #pragma once
2 #ifndef CORENC_TEST_CASE_REGULAR_MESH_H_
3 #define CORENC_TEST_CASE_REGULAR_MESH_H_
5 namespace corenc
6 {
      namespace tests
          class test_case_regular_mesh
10
11
          public:
          test_case_regular_mesh();
13
               ~test_case_regular_mesh();
               const int
                                             construct_mesh() const;
15
17 }
19 #endif // !CORENC_TEST_CASE_REGULAR_MESH_H_
```

7.133 Tests/test_case_solver.cpp File Reference

```
#include "test_case_solver.h"
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Grids/RegularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
#include "../Solvers/fem_solver.h"
#include "../CoreNCFEM/GaussianField.h"
#include <random>
#include <math.h>
```

Macros

• #define _USE_MATH_DEFINES

Functions

const int solver (const Algebra::Matrix &matrix, double *x, double *res)

7.133.1 Macro Definition Documentation

7.133.1.1 _USE_MATH_DEFINES

```
#define _USE_MATH_DEFINES
```

7.133.2 Function Documentation

7.133.2.1 solver()

7.134 Tests/test case solver.h File Reference

Classes

class corenc::test_case_solver

Namespaces

• namespace corenc

7.135 test_case_solver.h

```
1 #ifndef CORENC_TEST_CASE_SOLVER_H_
2 #define CORENC_TEST_CASE_SOLVER_H_
4 // SOME TEST PROBLEMS FOR ELLIPTIC CASE WITH FEM && DG \
5 // Oth, 1st, 2nd order definitely maybe more high-order 6 // LAGRANGE && HIERARHICAL BASIS FUNCTIONS
7 // LATER MAYBE EVEN TESTS WITH MULTISCALE
9 namespace corenc
10 {
11
        class test_case_solver
12
      public:
13
      test_case_solver();
            ~test_case_solver();
16
            const int
                                             gauss_solver() const;
17
18 }
20 #endif // !CORENC_TEST_CASE_SOLVER_H_
```

7.136 Tests/test cases.cpp File Reference

```
#include "test_cases.h"
#include "test_case_elliptic_fem.h"
#include "test_case_solver.h"
#include "test_case_regular_mesh.h"
#include "FiniteElements/test_case_rectanglebasis.h"
#include "FiniteElements/test_case_trianglebasis.h"
#include <iostream>
#include <future>
#include <chrono>
#include <ostream>
#include <ostream>
#include "../colors.h"
#include "test_conv_diff.h"
```

7.137 Tests/test_cases.h File Reference

```
#include <functional>
#include <ostream>
```

Classes

• class corenc::test_cases

Namespaces

· namespace corenc

Macros

• #define CORENC_TEST_CASES_H_

7.137.1 Macro Definition Documentation

7.137.1.1 CORENC_TEST_CASES_H_

```
#define CORENC_TEST_CASES_H_
```

7.138 test_cases.h 523

7.138 test_cases.h

Go to the documentation of this file.

```
1 #pragma once
2 #ifndef CORENC_TEST_CASES_H_
3 #define CORENC_TEST_CASES_H_
4 #include <functional>
5 #include <ostream>
6 namespace corenc
8
      class test_cases
10
       public:
           test_cases();
            ~test_cases();
           const int perform() const;
           const int perform(const std::function<const int()>&) const;
14
            const int perform(const std::function<const int(std::ostream&)>&, std::ostream&) const;
15
16
17 }
18
20 #endif // !CORENC_TEST_CASES_H_
```

7.139 Tests/test_conv_diff.cpp File Reference

```
#include "test_conv_diff.h"
#include "../CoreNCFEM/Grids/TriangularMesh.h"
#include "../CoreNCFEM/Grids/RegularMesh.h"
#include "../CoreNCFEM/Methods/FEMethod.h"
#include "../Problems/DiffusionScalar.h"
#include "../CoreNCA/MatrixSkyline.h"
#include "../CoreNCFEM/Methods/FEAnalysis.h"
#include "../Solvers/fem_solver.h"
#include "../Solvers/fem_solver_lib.h"
#include "../CoreNCFEM/GaussianField.h"
#include "../CoreNCFEM/FiniteElements/Triangle.h"
#include <math.h>
```

Macros

#define _USE_MATH_DEFINES

7.139.1 Macro Definition Documentation

7.139.1.1 _USE_MATH_DEFINES

#define _USE_MATH_DEFINES

7.140 Tests/test_conv_diff.h File Reference

Classes

· class corenc::test_conv_diff

Namespaces

· namespace corenc

7.141 test_conv_diff.h

Index

NOPE	corenc::Mesh::CFiniteElement< Shape, Shape-
MatrixSkyline.cpp, 336	Function, DoF, bool >, 117
_USE_MATH_DEFINES	corenc::Mesh::CFiniteElement< Shape, Shape-
test_case_elliptic_fem.cpp, 518	Function, DoF, $T >$, 92
test_case_solver.cpp, 521	\sim CFiniteElement2D
test_conv_diff.cpp, 523	corenc::Mesh::CFiniteElement2D< Shape, Shape-
_centrs	Function >, 101
corenc::GaussianKernel, 285	~CFiniteSolver
\sim CBurgersScalar	corenc::CFiniteSolver< Method, Mesh, Solver >,
corenc::CBurgersScalar, 25	124
~CCube	\sim CMesh
corenc::Mesh::CCube, 29	corenc::Mesh::CMesh< bool >, 135
~CCubeBasis	corenc::Mesh::CMesh< T >, 125
corenc::Mesh::CCubeBasis, 34	~CMesh1D
~CDGMethod	corenc::Mesh::CMesh1D, 130
corenc::method::CDGMethod< Type >, 36	~CNode
~CDGMethodZero	corenc::Mesh::CNode, 139
corenc::method::CDGMethodZero< Type >, 38	~CNodeBasis
~CDiffusionScalar	corenc::Mesh::CNodeBasis, 143
corenc::CDiffusionScalar, 40	~CParameter
~CEdge	corenc::Mesh::CParameter, 145
corenc::Mesh::CEdge, 46	~CProblem
~CEdge2ndBasis	corenc::CProblem, 147
corenc::Mesh::CEdge2ndBasis, 50	~CRectangle
~CEdgeConstantBasis	corenc::Mesh::CRectangle, 150
corenc::Mesh::CEdgeConstantBasis, 53	~CRectangleBasis
~CEdgeHermiteBasis	corenc::Mesh::CRectangleBasis, 155
corenc::Mesh::CEdgeHermiteBasis, 56	~CRectangleBasis2
~CEdgeLinearBasis	corenc::Mesh::CRectangleBasis2, 158
corenc::Mesh::CEdgeLinearBasis, 59	~CRectangleBasis2x
~CEdgeMultiBasis	corenc::Mesh::CRectangleBasis2x, 162
corenc::Mesh::CEdgeMultiBasis, 62	~CRectangleBasis2y
~CElement	corenc::Mesh::CRectangleBasis2y, 165
corenc::Mesh::CElement< bool >, 79	~CRectangleConstantBasis
corenc::Mesh::CElement< T >, 64	corenc::Mesh::CRectangleConstantBasis, 168
~CElement2D	~CRectangleHBasis
corenc::Mesh::CElement2D< bool >, 75	corenc::Mesh::CRectangleHBasis, 172
corenc::Mesh::CElement2D < T >, 70	~CRegularMesh
~CFEMethod	corenc::Mesh::CRegularMesh, 176
corenc::method::CFEMethod< Type >, 82	~CRegularMesh3D
~CFEMethodZero	corenc::Mesh::CRegularMesh3D, 182
corenc::method::CFEMethodZero< Type >, 84	~CSMethod
~CFESolution	Methods::CSMethod, 198
corenc::CFESolution, 86	~CShallowWater
~CFEweights	corenc::CShallowWater, 188
corenc::CFEweights, 89	~CShape
~CFiniteElement	corenc::Mesh::CShape, 192
corenc::Mesh::CFiniteElement< Shape, Shape- Function, bool, bool >, 109	~CShapeFunction corenc::Mesh::CShapeFunction< Type >. 196
FUNCTION, DOOL, DOOL >, TOS	COTETICIVIESTICOTAPEFUTICIIOTIS TYPE 2, 190

526 INDEX

\sim CSolution	corenc::solvers::eigen_solver< Matrix, Solver >,
corenc::CSolution, 199	255
\sim CTriangle	\sim fem_solver
corenc::Mesh::CTriangle, 201	corenc::solvers::fem_solver< _Problem, _Mesh,
\sim CTriangleBasis	_Result >, 262
corenc::Mesh::CTriangleBasis, 206, 207	\sim fem_solver_lib
\sim CTriangleLagrangeBasis	corenc::solvers::fem_solver_lib <problem,< td=""></problem,<>
corenc::Mesh::CTriangleLagrangeBasis, 211	_Mesh, _Result >, 265
\sim CTriangleLinear	~multi_vector
corenc::Mesh::CTriangleLinear, 215	corenc::multi_vector< T >, 304
\sim CTriangleLinearBasis	\sim parameter
corenc::Mesh::CTriangleLinearBasis, 219	corenc::Mesh::parameter< T >, 308
\sim CTriangularMesh	~system_dg_method
corenc::Mesh::CTriangularMesh, 223	corenc::method::system_dg_method< Problem,
~CTriangularMeshLinear	Grid, Matrix >, 319
corenc::Mesh::CTriangularMeshLinear, 229	~test_case_elliptic_fem
\sim CVecSolution	corenc::test_case_elliptic_fem, 323
corenc::CVecSolution, 234	~test_case_rectanglebasis
\sim DGMethod	corenc::tests::test_case_rectanglebasis, 326
corenc::method::DGMethod< Problem, Grid, Ma-	~test_case_regular_mesh
trix >, 241	corenc::tests::test_case_regular_mesh, 327
~DGMethodZero	~test_case_solver
corenc::method::DGMethodZero< Problem, Grid,	corenc::test_case_solver, 328
Matrix >, 248	~test_case_trianglebasis
~DGSolution	corenc::tests::test_case_trianglebasis, 329
corenc::method::DGSolution< Grid >, 253	~test cases
~ESolver	corenc::test_cases, 330
Algebra::ESolver, 257	~test_conv_diff
∼FEAnalysis	corenc::test_conv_diff, 331
corenc::method::FEAnalysis< Method1, Method2,	coronotost_conv_am, con
Mesh1, Mesh2 >, 261	A
~FEMethod	corenc::GaussianProcess, 287
corenc::method::FEMethod< Problem, Grid, Matrix	a
>, 269	corenc::GaussianProcess, 287
~FEMethodZero	add_boundary_parameter
corenc::method::FEMethodZero< Problem, Grid,	corenc::CDiffusionScalar, 40
Matrix >, 276	corenc::CShallowWater, 188
~FVMethod1d	add_parameter
	corenc::CDiffusionScalar, 40, 41
corenc::method::FVMethod1d, 281	corenc::CShallowWater, 188
~Matrix	AddElement
Algebra::Matrix, 296	Algebra::Matrix, 296
~MatrixDiag Algebra::MatrixDiag, 299	Algebra::MatrixDiag, 299
	Algebra::MatrixSkyline, 301
~MatrixSkyline	addTerm
Algebra::MatrixSkyline, 301	corenc::CBurgersScalar, 26
~RungeKutta	corenc::CDiffusionScalar, 41
corenc::method::RungeKutta< Problem, Type >,	corenc::CProblem, 147
315	corenc::CShallowWater, 189
~STSolution	addTimeLayer
corenc::method::STSolution< Grid >, 317	corenc::method::STSolution< Grid >, 317
~dg_shallow_water	ADVECTION
corenc::solvers::dg_shallow_water< Mesh >, 235	corenc, 15
~dg_solver	Algebra, 13
corenc::solvers::dg_solver< _Problem, _Mesh,	BiCGStab, 13
_Result >, 236	Gauss, 13
~dg_solver_shallow_water	
corenc::solvers::dg_solver_shallow_water, 238	GMRES, 13
~eigen_solver	GMRES_BiCGStab, 13 PARDISO, 13
	LOUIS A. IV

Solvers, 13	BBLACK
Algebra::ESolver, 255	corenc::color, 16
\sim ESolver, 257	BBLUE
BiCGStab, 257	corenc::color, 16
BiCGStabPrecond, 257	BCYAN
ESolver, 256	corenc::color, 16
Gauss, 257, 258	BGREEN
GetSolution, 258	corenc::color, 16
GMRES, 259	BiCGStab
MatrixprodVector, 259	Algebra, 13
Pardiso, 260	Algebra::ESolver, 257
Reload, 260	BiCGStabPrecond
Solve, 260	Algebra::ESolver, 257
Algebra::Matrix, 295	BLACK
-	
~Matrix, 296	corenc::color, 17
AddElement, 296	BLUE
Create, 296	corenc::color, 17
GetElement, 297	BMAGENTA
GetSize, 297	corenc::color, 17
Matrix, 295, 296	BoundaryType
NullMatrix, 297	corenc::method, 21
NullRow, 297	BRED
operator(), 297	corenc::color, 17
operator=, 297	BWHITE
Algebra::MatrixDiag, 298	corenc::color, 17
\sim MatrixDiag, 299	BYELLOW
AddElement, 299	corenc::color, 17
Create, 299	
GetSize, 299	C
MatrixDiag, 298, 299	corenc::GaussianProcess, 287
NullMatrix, 299	CBurgersScalar
NullRow, 300	corenc::CBurgersScalar, 25
operator(), 300	CCube
operator=, 300	corenc::Mesh::CCube, 28, 29
Algebra::MatrixSkyline, 300	CCubeBasis
\sim MatrixSkyline, 301	corenc::Mesh::CCubeBasis, 33
AddElement, 301	CDGMethod
Create, 302	corenc::method::CDGMethod< Type >, 36
diff_skymatrix, 302	CDGMethodZero
GetElement, 302	corenc::method::CDGMethodZero< Type >, 37
GetSize, 302	CDiffusionScalar
MatrixSkyline, 301	corenc::CDiffusionScalar, 40
NullMatrix, 302	CEdge
NullRow, 303	corenc::Mesh::CEdge, 46
operator(), 303	CEdge2ndBasis
operator=, 303	corenc::Mesh::CEdge2ndBasis, 49, 50
•	CEdgeConstantBasis
transpose_sky, 303	corenc::Mesh::CEdgeConstantBasis, 52, 53
Assemble	CEdgeHermiteBasis
corenc::method::CDGMethod< Type >, 36	corenc::Mesh::CEdgeHermiteBasis, 55, 56
corenc::method::CDGMethodZero < Type >, 38	CEdgeLinearBasis
corenc::method::CFEMethod< Type >, 83	corenc::Mesh::CEdgeLinearBasis, 58, 59
corenc::method::CFEMethodZero< Type >, 84	CEdgeMultiBasis
corenc::method::system_dg_method< Problem,	corenc::Mesh::CEdgeMultiBasis, 61, 62
Grid, Matrix >, 319	CElement
D	
B	corenc::Mesh::CElement < D > , 79
corenc::GaussianProcess, 287	corenc::Mesh::CElement< T >, 64
b	CElement2D
corenc::GaussianProcess, 287	corenc::Mesh::CElement2D< bool >, 75

corenc::Mesh::CElement2D< T >, 69	corenc::Mesh::CNodeBasis, 142
center_point	colors.h, 333
Triangle.cpp, 379	construct_mesh
wtf, 23	corenc::tests::test_case_regular_mesh, 327
Central	conv_diff_eigen
corenc::method, 22	corenc::test_conv_diff, 331
CFEMethod	conv_diff_fem
corenc::method::CFEMethod< Type >, 82	corenc::test_conv_diff, 331
CFEMethodZero	conv_diff_fem_fixed_triangle
corenc::method::CFEMethodZero< Type >, 84	corenc::test_case_elliptic_fem, 323
CFESolution 80	corenc, 14
corenc::CFESolution, 86	ADVECTION, 15
CFEweights	DIFFUSION, 15
corenc::CFEweights, 89 CFiniteElement	EDUDY, 15
	EDUV, 15 EFV, 15
corenc::Mesh::CFiniteElement< Shape, Shape-	EUDV, 15
Function, bool, bool >, 108, 109 corenc::Mesh::CFiniteElement< Shape, Shape-	EUV, 15
Function, DoF, bool >, 116, 117	IDUDV, 15
corenc::Mesh::CFiniteElement< Shape, Shape-	IDUV, 15
Function, DoF, T >, 91, 92	IUDV, 15
CFiniteElement2D	IUV, 15
corenc::Mesh::CFiniteElement2D< Shape, Shape-	MASS, 15
Function >, 99–101	Parameters, 15
CFiniteSolver	RUV, 15
corenc::CFiniteSolver< Method, Mesh, Solver >,	scalar_func, 15
123	SUPG, 15
cfunc	Terms, 15
corenc::Mesh::parameter< T >, 307	vector_func, 15
cfunc_old	corenc::CBurgersScalar, 25
corenc::Mesh::parameter< T >, 307	∼CBurgersScalar, 25
changeFlux	addTerm, 26
corenc::method::system_dg_method< Problem,	CBurgersScalar, 25
Grid, Matrix >, 319	getFlux, 26
Clone	getNumberOfTerms, 26
corenc::Mesh::CElement< bool >, 79	getTerm, 26
corenc::Mesh::CElement< T >, 65	load_parameters, 26
corenc::Mesh::CElement2D< bool >, 75	removeTerm, 26
corenc::Mesh::CElement2D< T >, 70	setTerm, 27
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::CDiffusionScalar, 39
Function, bool, bool >, 109	\sim CDiffusionScalar, 40
corenc::Mesh::CFiniteElement< Shape, Shape-	add_boundary_parameter, 40
Function, DoF, bool >, 117	add_parameter, 40, 41
corenc::Mesh::CFiniteElement< Shape, Shape-	addTerm, 41
Function, DoF, T >, 92	CDiffusionScalar, 40
corenc::Mesh::CFiniteElement2D< Shape, Shape-	findTerm, 41
Function >, 101	get_boundary_parameter, 41, 42
corenc::Mesh::CRegularMesh, 176	get_boundary_type, 42
corenc::Mesh::CRegularMesh3D, 183	get_number_of_boundaries, 42
corenc::Mesh::CTriangularMesh, 223	get_parameter, 42, 43
CMesh	get_point_source, 43
corenc::Mesh::CMesh< bool >, 135	get_total_sources, 43
corenc::Mesh::CMesh< T >, 125	getNumberOfTerms, 43
CMesh1D	getTerm, 43
corenc::Mesh::CMesh1D, 129, 130	load_parameters, 44
CNode	removeTerm, 44
corenc::Mesh::CNode, 139	set_boundary_parameter, 44
CNodeBasis	set_parameter, 44

set_point_source, 44	CShallowWater, 188
setTerm, 45	get_boundary_parameter, 189
corenc::CFESolution, 85	get_boundary_type, 189
\sim CFESolution, 86	get_number_of_boundaries, 189
CFESolution, 86	get_parameter, 189, 190
operator double, 86	get_solution, 190
operator!=, 86	getNumberOfTerms, 190
operator*, 88	getTerm, 190
operator*=, 87	load_parameters, 190
operator+, 88	removeTerm, 191
operator+=, 87	set_boundary_parameter, 191
operator-, 88	set_parameter, 191
operator-=, 87	setTerm, 191
operator/, 88	corenc::CSolution, 199
operator/=, 87	\sim CSolution, 199
operator=, 87	CSolution, 199
operator==, 87	corenc::CVecSolution, 233
corenc::CFEweights, 89	\sim CVecSolution, 234
\sim CFEweights, 89	CVecSolution, 234
CFEweights, 89	m_w, 234
getWeight, 89	corenc::GaussianKernel, 284
updateWeight, 89	_centrs, 285
corenc::CFiniteSolver< Method, Mesh, Solver >, 123	GaussianKernel, 284
\sim CFiniteSolver, 124	get_gp, 285
CFiniteSolver, 123	gpexp, 285
Solve, 124	gpstep, 285
corenc::color, 16	N, 285
BBLACK, 16	corenc::GaussianProcess, 286
BBLUE, 16	A, 287
BCYAN, 16	a, 287
BGREEN, 16	B, 287
BLACK, 17	b, 287
BLUE, 17	c, 287
BMAGENTA, 17	GaussianProcess, 286
BRED, 17	He, 286
BWHITE, 17	K, 287
BYELLOW, 17	I, 287
CYAN, 17	lambda, 288
ESCAPE, 17	phi, 286
GREEN, 18	sigma2, 288
MAGENTA, 18	corenc::Mesh, 19
PURPLE, 18	Cube, 20
RED, 18	Elements, 20
WHITE, 18	FIRST, 21
YELLOW, 18	function_dp, 20
corenc::CProblem, 147	Interval, 20
\sim CProblem, 147	LAST, 21
addTerm, 147	Mesh1D, 20
CProblem, 147	Meshes, 20
getNumberOfTerms, 147	NODES, 21
getTerm, 148	Rectangle, 20
load_parameters, 148	TetrahedralMesh, 20
setTerm, 148	Tetrahedron, 20
corenc::CShallowWater, 187	Triangle, 20
~CShallowWater, 188	TriangularMesh, 20
add_boundary_parameter, 188	corenc::Mesh::CCube, 27
add_parameter, 188	\sim CCube, 29
addTerm, 189	CCube, 28, 29

GetEdge, 29	GetShapeFunction, 54
GetFacet, 29	GetWeight, 54
GetNode, 29, 30	IncreaseOrder, 54
GetNumberOfEdges, 30	operator=, 54
GetNumberOfFacets, 30	ReverseNormal, 54
GetNumberOfNodes, 30	corenc::Mesh::CEdgeHermiteBasis, 55
IncreaseOrder, 30	~CEdgeHermiteBasis, 56
	-
Integrate, 30, 31	CEdgeHermiteBasis, 55, 56
operator>>, 31	GetGradShapeFunction, 56
operator=, 31	GetMeasure, 56
operator==, 31	GetNormal, 56
SetEdge, 31	GetNumberOfShapeFunctions, 56
SetFacet, 32	GetShapeFunction, 57
SetNode, 32	GetWeight, 57
SetOrder, 32	IncreaseOrder, 57
corenc::Mesh::CCubeBasis, 32	operator=, 57
\sim CCubeBasis, 34	ReverseNormal, 57
CCubeBasis, 33	corenc::Mesh::CEdgeLinearBasis, 58
GetGradShapeFunction, 34	~CEdgeLinearBasis, 59
GetMeasure, 34	CEdgeLinearBasis, 58, 59
GetNormal, 34	GetGradShapeFunction, 59
GetNumberOfShapeFunctions, 34	GetMeasure, 59
GetShapeFunction, 34	GetNormal, 59
•	
GetValue, 35	GetNumberOfShapeFunctions, 59
GetWeight, 35	GetShapeFunction, 60
IncreaseOrder, 35	GetWeight, 60
operator=, 35	IncreaseOrder, 60
ReverseNormal, 35	operator=, 60
corenc::Mesh::CEdge, 45	ReverseNormal, 60
\sim CEdge, 46	corenc::Mesh::CEdgeMultiBasis, 61
CEdge, 46	∼CEdgeMultiBasis, 62
GetNode, 46, 47	CEdgeMultiBasis, 61, 62
GetNumberOfNodes, 47	GetGradShapeFunction, 62
IncreaseOrder, 47	GetMeasure, 62
Integrate, 47	GetNormal, 62
operator>>, 48	GetNumberOfShapeFunctions, 62
•	·
operator=, 48	GetShapeFunction, 63
operator==, 48	GetWeight, 63
SetNode, 48	IncreaseOrder, 63
corenc::Mesh::CEdge2ndBasis, 49	operator=, 63
\sim CEdge2ndBasis, 50	ReverseNormal, 63
CEdge2ndBasis, 49, 50	corenc::Mesh::CElement< bool >, 78
GetGradShapeFunction, 50	\sim CElement, 79
GetMeasure, 50	CElement, 79
GetNormal, 50	Clone, 79
GetNumberOfShapeFunctions, 50	GetDoFs, 79
GetShapeFunction, 51	GetGradShapeFunction, 79
GetWeight, 51	GetMeasure, 79
IncreaseOrder, 51	GetNeighbour, 79
operator=, 51	GetNode, 80
•	
ReverseNormal, 51	GetNormal, 80
corenc::Mesh::CEdgeConstantBasis, 52	GetNumberOfNodes, 80
~CEdgeConstantBasis, 53	GetShapeFunction, 80
CEdgeConstantBasis, 52, 53	GetType, 80
GetGradShapeFunction, 53	GetWeight, 80
GetMeasure, 53	IncreaseOrder, 80
GetNormal, 53	Integrate, 81
GetNumberOfShapeFunctions, 53	ReverseNormal, 81

SetNeighbour, 81	IncreaseOrder, 72	
SetNode, 81	Integrate, 72, 73	
SetType, 82	ReverseNormal, 73	
corenc::Mesh::CElement< T >, 64	SetNeighbour, 73	
\sim CElement, 64	SetNode, 73	
CElement, 64	SetOrder, 73	
Clone, 65	SetType, 74	
GetDoFs, 65	corenc::Mesh::CFiniteElement< Shape,	ShapeFunc-
GetGradShapeFunction, 65	tion, bool, bool >, 107	
GetMeasure, 65	~CFiniteElement, 109	
GetNeighbour, 65	CFiniteElement, 108, 109	
GetNode, 66	Clone, 109	
GetNormal, 66	GetDoFs, 110	
GetNumberOfNodes, 66	GetGradShapeFunction, 110	
	•	
GetShapeFunction, 66	GetMeasure, 110	
GetType, 66	GetNeighbour, 110	
GetWeight, 67	GetNode, 110	
IncreaseOrder, 67	GetNormal, 111	
Integrate, 67	GetNumberOfNodes, 111	
ReverseNormal, 68	GetShape, 111	
SetNeighbour, 68	GetShapeFunction, 111	
SetNode, 68	GetShapeFunctions, 111	
SetType, 68	GetType, 112	
corenc::Mesh::CElement2D< bool >, 74	GetWeight, 112	
\sim CElement2D, 75	IncreaseOrder, 112	
CElement2D, 75	Integrate, 112, 113	
Clone, 75	operator>>, 114	
GetDoFs, 75	operator=, 113	
GetGradShapeFunction, 75	operator==, 114	
GetMeasure, 75	ReverseNormal, 113	
GetNeighbour, 75	SetNeighbour, 113	
GetNode, 76	SetNode, 113	
GetNormal, 76	SetShape, 114	
GetNumberOfNodes, 76	SetShapeFunction, 114	
GetShapeFunction, 76	SetType, 114	
GetType, 76	corenc::Mesh::CFiniteElement< Shape,	ShaneFunc-
GetWeight, 76	tion, DoF, bool >, 115	Onaper une
IncreaseOrder, 76	~CFiniteElement, 117	
Integrate, 77	CFiniteElement, 116, 117	
ReverseNormal, 77	Clone, 117	
SetNeighbour, 77	GetDoF, 118	
SetNode, 77	GetDoFs, 118	
SetOrder, 78	GetGradShapeFunction, 118	
SetType, 78	GetMeasure, 118	
corenc::Mesh::CElement2D< T >, 69	GetNeighbour, 118	
\sim CElement2D, 70	GetNode, 119	
CElement2D, 69	GetNormal, 119	
Clone, 70	GetNumberOfNodes, 119	
GetDoFs, 70	GetShape, 119	
GetGradShapeFunction, 70	GetShapeFunction, 119	
GetMeasure, 70	GetShapeFunctions, 120	
GetNeighbour, 71	GetType, 120	
GetNode, 71	GetWeight, 120	
GetNormal, 71	IncreaseOrder, 120	
GetNumberOfNodes, 71	Integrate, 120, 121	
GetShapeFunction, 71	operator>>, 123	
GetType, 72	operator=, 121	
GetWeight, 72	operator==, 123	
• .	. ,	

ReverseNormal, 121	operator==, 106
SetDoF, 121	ReverseNormal, 105
SetNeighbour, 122	SetNeighbour, 105
SetNode, 122	SetNode, 105
SetShape, 122	SetOrder, 105
SetShapeFunction, 122	SetShape, 105
•	•
SetType, 122	SetShapeFunction, 106
corenc::Mesh::CFiniteElement< Shape, ShapeFunc-	SetType, 106
tion, DoF, $T >$, 90	corenc::Mesh::CMesh< bool >, 134
\sim CFiniteElement, 92	\sim CMesh, 135
CFiniteElement, 91, 92	CMesh, 135
Clone, 92	FindElement, 135
GetDoF, 93	GetBoundary, 135
GetDoFs, 93	GetElement, 136
GetGradShapeFunction, 93	getMinSize, 136
GetMeasure, 93	GetNode, 136
GetNeighbour, 93	GetNumberOfBoundaries, 136
GetNode, 94	GetNumberOfElements, 136
GetNormal, 94	GetNumberOfNodes, 136
GetNumberOfNodes, 94	getParameter, 136, 137
GetShape, 94	getSolution, 137
GetShapeFunction, 94	setParameter, 137
GetShapeFunctions, 95	updateSolution, 137, 138
GetType, 95	corenc::Mesh::CMesh< T >, 124
GetWeight, 95	\sim CMesh, 125
IncreaseOrder, 95	CMesh, 125
Integrate, 95, 96	FindElement, 125
operator>>, 98	GetBoundary, 125
operator=, 96	GetElement, 125
operator==, 98	getMinSize, 125
ReverseNormal, 96	GetNode, 126
SetDoF, 96	GetNumberOfBoundaries, 126
SetNeighbour, 97	GetNumberOfElements, 126
	•
SetNode, 97	GetNumberOfNodes, 126
SetShape, 97	getParameter, 126, 127
SetShapeFunction, 97	getSolution, 127
SetType, 97	setParameter, 127
corenc::Mesh::CFiniteElement2D< Shape, ShapeFunc-	updateSolution, 127, 128
tion >, 98	corenc::Mesh::CMesh1D, 129
\sim CFiniteElement2D, 101	\sim CMesh1D, 130
CFiniteElement2D, 99–101	CMesh1D, 129, 130
Clone, 101	FindElement, 131
GetDoFs, 101	GetBoundary, 131
GetGradShapeFunction, 102	GetElement, 131
GetMeasure, 102	GetElements, 131
GetNeighbour, 102	getMinSize, 131
GetNode, 102	GetNode, 132
GetNormal, 102	GetNumberOfBoundaries, 132
GetNumberOfNodes, 103	GetNumberOfElements, 132
GetShape, 103	GetNumberOfNodes, 132
GetShapeFunction, 103	getParameter, 132
GetShapeFunctions, 103	getSolution, 133
GetType, 103	operator=, 133
GetWeight, 103	setParameter, 133
IncreaseOrder, 104	updateSolution, 133, 134
Integrate, 104	corenc::Mesh::CNode, 138
operator>>, 106	\sim CNode, 139
operator=, 104	CNode, 139

GetNode, 139, 140	\sim CRectangleBasis2, 158
GetNumberOfNodes, 140	CRectangleBasis2, 158
IncreaseOrder, 140	GetGradShapeFunction, 158
Integrate, 140	GetMeasure, 159
operator>>, 141	GetNormal, 159
operator=, 141	GetNumberOfShapeFunctions, 159
operator==, 141	GetShapeFunction, 159
•	•
SetNode, 141	GetValue, 159
corenc::Mesh::CNodeBasis, 142	GetWeight, 159
~CNodeBasis, 143	IncreaseOrder, 160
CNodeBasis, 142	operator=, 160
GetGradShapeFunction, 143	ReverseNormal, 160
GetMeasure, 143	corenc::Mesh::CRectangleBasis2x, 160
GetNormal, 143	~CRectangleBasis2x, 162
GetNumberOfShapeFunctions, 143	CRectangleBasis2x, 161
GetShapeFunction, 143	GetGradShapeFunction, 162
GetWeight, 144	GetMeasure, 162
IncreaseOrder, 144	GetNormal, 162
operator=, 144	GetNumberOfShapeFunctions, 162
ReverseNormal, 144	GetShapeFunction, 162
corenc::Mesh::CParameter, 144	GetValue, 163
\sim CParameter, 145	GetWeight, 163
CParameter, 145	IncreaseOrder, 163
GetAdvection, 145, 146	operator=, 163
GetDiffusion, 146	ReverseNormal, 163
GetMass, 146	corenc::Mesh::CRectangleBasis2y, 164
corenc::Mesh::CRectangle, 148	\sim CRectangleBasis2y, 165
\sim CRectangle, 150	CRectangleBasis2y, 164, 165
CRectangle, 149, 150	GetGradShapeFunction, 165
GetEdge, 150	GetMeasure, 165
GetFacet, 151	GetNormal, 165
GetNode, 151	GetNumberOfShapeFunctions, 165
GetNumberOfEdges, 151	GetShapeFunction, 166
GetNumberOfFacets, 151	GetValue, 166
GetNumberOfNodes, 151	GetWeight, 166
IncreaseOrder, 152	IncreaseOrder, 166
Integrate, 152	operator=, 166
operator>>, 153	ReverseNormal, 166
operator=, 152	corenc::Mesh::CRectangleConstantBasis, 167
operator==, 152	~CRectangleConstantBasis, 168
SetEdge, 153	CRectangleConstantBasis, 167, 168
SetFacet, 153	GetGradShapeFunction, 168
SetNode, 153	GetMeasure, 168
SetOrder, 153	GetNormal, 169
corenc::Mesh::CRectangleBasis, 154	GetNumberOfShapeFunctions, 169
~CRectangleBasis, 155	GetShapeFunction, 169
CRectangleBasis, 154, 155	GetValue, 169
GetGradShapeFunction, 155	IncreaseOrder, 169
GetMeasure, 155	operator=, 169
GetNormal, 156	ReverseNormal, 170
GetNumberOfShapeFunctions, 156	corenc::Mesh::CRectangleHBasis, 170
GetShapeFunction, 156	~CRectangleHBasis, 172
GetValue, 156	CRectangleHBasis, 171
GetWeight, 156	GetGradShapeFunction, 172
IncreaseOrder, 156	GetMeasure, 172
operator=, 157	GetNormal, 172
ReverseNormal, 157	GetNumberOfShapeFunctions, 172
	GetShapeFunction, 172
corenc::Mesh::CRectangleBasis2, 157	Gelonaperunction, 1/2

GetValue, 173	CShape, 192
GetWeight, 173	GetEdge, 193
IncreaseOrder, 173	GetFacet, 193
operator=, 173	GetNode, 193
ReverseNormal, 173	GetNumberOfEdges, 193
SetOrder, 173	GetNumberOfFacets, 194
corenc::Mesh::CRegularMesh, 174	GetNumberOfNodes, 194
∼CRegularMesh, 176	Integrate, 194
Clone, 176	SetEdge, 194
CRegularMesh, 175	SetFacet, 195
FindElement, 176	SetNode, 195
GetBoundary, 176	corenc::Mesh::CShapeFunction< Type >, 195
GetElement, 176	~CShapeFunction, 196
GetElements, 177	CShapeFunction, 196
getMinSize, 177	GetGradShapeFunction, 196
GetNode, 177	GetMeasure, 196
GetNumberOfBoundaries, 177	GetNormal, 197
GetNumberOfElements, 177	GetNumberOfShapeFunctions, 197
GetNumberOflNodes, 177	GetShapeFunction, 197
	ReverseNormal, 197
GetNumberOfNodes, 177	
getParameter, 178	corenc::Mesh::CTriangle, 199
getSolution, 178	~CTriangle, 201
interpolate, 178	CTriangle, 200, 201
operator=, 178	GetEdge, 201
refine_h, 179	GetFacet, 202
refine_hp, 179	GetNode, 202
refine_hx, 179	GetNumberOfEdges, 202
refine_hy, 179	GetNumberOfFacets, 202
refine_p, 179	GetNumberOfNodes, 202
setParameter, 179	IncreaseOrder, 203
updateSolution, 180	Integrate, 203
corenc::Mesh::CRegularMesh3D, 180	operator>>, 204
\sim CRegularMesh3D, 182	operator=, 203
Clone, 183	operator==, 203
CRegularMesh3D, 181, 182	SetEdge, 204
FindElement, 183	SetFacet, 204
GetBoundary, 183	SetNode, 204
GetElement, 183	corenc::Mesh::CTriangleBasis, 205
GetElements, 183	\sim CTriangleBasis, 206, 207
getMinSize, 183	CTriangleBasis, 205–207
GetNode, 184	GetGradShapeFunction, 207
GetNumberOfBoundaries, 184	GetMeasure, 207
GetNumberOfElements, 184	GetNormal, 207, 208
GetNumberOfINodes, 184	GetNumberOfShapeFunctions, 208
GetNumberOfNodes, 184	GetShapeFunction, 208
getParameter, 184	GetValue, 208, 209
getSolution, 185	GetWeight, 209
interpolate, 185	IncreaseOrder, 209
operator=, 185	operator=, 209
refine_h, 185	ReverseNormal, 209
refine_hp, 185	corenc::Mesh::CTriangleLagrangeBasis, 210
refine_hx, 185	~CTriangleLagrangeBasis, 211
refine_hy, 186	CTriangleLagrangeBasis, 210, 211
refine_p, 186	GetAlpha, 211
_	•
setParameter, 186	GetMagaura 212
updateSolution, 186, 187	GetMeasure, 212
corenc::Mesh::CShape, 192	GetNormal, 212
∼CShape, 192	GetNumberOfShapeFunctions, 212

GetShapeFunction, 212	set4thOrder, 227
GetValue, 212	setParameter, 227
GetWeight, 212	updateSolution, 227, 228
IncreaseOrder, 213	corenc::Mesh::CTriangularMeshLinear, 228
operator=, 213	\sim CTriangularMeshLinear, 229
ReverseNormal, 213	CTriangularMeshLinear, 229
corenc::Mesh::CTriangleLinear, 213	FindElement, 230
~CTriangleLinear, 215	GetBoundary, 230
CTriangleLinear, 214, 215	GetElement, 230
GetEdge, 215	GetElements, 230
GetFacet, 215	getMinSize, 230
GetNode, 216	GetNode, 231
GetNumberOfEdges, 216	GetNumberOfBoundaries, 231
GetNumberOfFacets, 216	GetNumberOfElements, 231
GetNumberOfNodes, 216	GetNumberOfNodes, 231
IncreaseOrder, 216	getParameter, 231
	getSolution, 232
Integrate, 217	_
operator 217	refine_h, 232
operator=, 217	setParameter, 232
operator==, 217	updateSolution, 232, 233
SetEdge, 218	corenc::Mesh::Gauss1dim, 282
SetFacet, 218	m_a, 282
SetNode, 218	m_order, 282
corenc::Mesh::CTriangleLinearBasis, 218	m_sqrt35, 283
~CTriangleLinearBasis, 219	m_w, 283
CTriangleLinearBasis, 219	corenc::Mesh::Gauss1dimN< N >, 283
GetGradShapeFunction, 220	m_a, 283
GetMeasure, 220	m_order, 284
GetNormal, 220	m_w, 284
GetNumberOfShapeFunctions, 220	corenc::Mesh::GaussRectangular, 288
GetShapeFunction, 220	m_a, 288
GetValue, 220	m_b, 288
IncreaseOrder, 221	m_c, 289
operator=, 221	m_ra, 289
ReverseNormal, 221	m_rb, 289
corenc::Mesh::CTriangularMesh, 221	m_rw, 289
\sim CTriangularMesh, 223	m_wa, 289
Clone, 223	m_wb, 289
CTriangularMesh, 222, 223	m_wc, 289
FindElement, 223	corenc::Mesh::GaussRectangularCubic, 290
GetBoundary, 223, 224	m_a, 290
GetElement, 224	m_b, 290
GetElements, 224	m_c, 290
getMinSize, 224	m_ra, 291
GetNode, 224	m_rb, 291
GetNumberOfBoundaries, 224	m_rc, 291
GetNumberOfElements, 225	
GetNumberOfINodes, 225	m_rw, 291
	m_rw, 291 m_s, 291
GetNumberOfNodes, 225	
GetNumberOfNodes, 225 getParameter, 225	m_s, 291
getParameter, 225	m_s, 291 m_w1, 291 m_w2, 291
getParameter, 225 getSolution, 225, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291
getParameter, 225 getSolution, 225, 226 interpolate, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292
getParameter, 225 getSolution, 225, 226 interpolate, 226 operator=, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292 corenc::Mesh::GaussTetrahedron, 292
getParameter, 225 getSolution, 225, 226 interpolate, 226 operator=, 226 refine_h, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292 corenc::Mesh::GaussTetrahedron, 292 m_la, 292
getParameter, 225 getSolution, 225, 226 interpolate, 226 operator=, 226 refine_h, 226 refine_hp, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292 corenc::Mesh::GaussTetrahedron, 292 m_la, 292 m_lb, 292
getParameter, 225 getSolution, 225, 226 interpolate, 226 operator=, 226 refine_h, 226 refine_hp, 226 refine_p, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292 corenc::Mesh::GaussTetrahedron, 292 m_la, 292 m_lb, 292 m_lc, 293
getParameter, 225 getSolution, 225, 226 interpolate, 226 operator=, 226 refine_h, 226 refine_hp, 226	m_s, 291 m_w1, 291 m_w2, 291 m_w3, 291 m_w4, 292 corenc::Mesh::GaussTetrahedron, 292 m_la, 292 m_lb, 292

m_psq, 293	NOFLUX, 22
m_w, 293	SECOND, 22
corenc::Mesh::GaussTriangle, 293	THIRD, 22
m_order, 294	Upwind, 22
m_sqrt15, 294	corenc::method::CDGMethod< Type >, 36
m_tra, 294	\sim CDGMethod, 36
m_trb, 294	Assemble, 36
m_trw, 294	CDGMethod, 36
corenc::Mesh::parameter< T >, 306	GetMaxSolution, 36
\sim parameter, 308	GetMinSolution, 36
cfunc, 307	GetSolution, 37
cfunc_old, 307	corenc::method::CDGMethodZero< Type >, 37
get, 308	\sim CDGMethodZero, 38
parameter, 307, 308	Assemble, 38
set, 309	CDGMethodZero, 37
corenc::Mesh::Point, 309	GetMaxSolution, 38
Jacobian, 310	GetMinSolution, 38
operator!=, 311	GetSolution, 38
operator<, 311	corenc::method::CFEMethod< Type >, 82
operator*, 310-312	\sim CFEMethod, 82
operator*=, 310	Assemble, 83
operator+, 312	CFEMethod, 82
operator+=, 311	GetMaxSolution, 83
operator-, 312	GetMinSolution, 83
operator=, 311	GetSolution, 83
operator==, 311	corenc::method::CFEMethodZero< Type >, 83
Point, 310	∼CFEMethodZero, 84
x, 312	Assemble, 84
y, 312	CFEMethodZero, 84
z, 313	GetMaxSolution, 84
corenc::Mesh::point_source< T >, 313	GetMinSolution, 84
get_point, 314	GetSolution, 85
get_value, 314	corenc::method::DGMethod< Problem, Grid, Matrix >,
operator=, 314	239
point_source, 313	\sim DGMethod, 241
corenc::method, 21	DGMethod, 240, 241
BoundaryType, 21	Discretization, 242
Central, 22	GetEffective, 242
CUSTOM, 22	GetGlobalMatrix, 242
DGFlux, 22	GetGradSolution, 242
EBaumannOden, 22	GetMesh, 242
EBaumannOdenIP, 22	GetRightVector, 243
ECentral, 22	GetSolution, 243
EIP, 22	GetValue, 243, 244
ELaxFriedrichs, 22	LoadSolution, 244
ENIPG, 22	OutDatFormat, 244
EUpwind, 22	OutMeshFormat, 244
FREE, 22	OutMeshTimeFormat, 244
FVFlux, 22	ProjectSolution, 245
IBaumannOden, 22	Rediscretization, 245
IBaumannOdenIP, 22	SetSolution, 245
ICentral, 22	SetTimeStep, 246
IIP, 22	corenc::method::DGMethodZero< Problem, Grid, Ma-
ILaxFriedrichs, 22	trix >, 246
INIPG, 22	\sim DGMethodZero, 248
IUpwind, 22	DGMethodZero, 247, 248
LaxFriedrichs, 22	Discretization, 248
MAIN, 22	GetEffective, 248

GetGlobalMatrix, 248 GetGradSolution, 249	GetValue, 278 LoadSolution, 278
GetMesh, 249	OutDatFormat, 279
GetRightVector, 249	OutMeshFormat, 279
GetSolution, 249, 250	OutMeshTimeFormat, 279
GetValue, 250	ProjectSolution, 279
LoadSolution, 250	Rediscretization, 280
OutDatFormat, 251	SetSolution, 280
OutMeshFormat, 251	SetTimeStep, 280
OutMeshTimeFormat, 251	corenc::method::FVMethod1d, 281
ProjectSolution, 251	~FVMethod1d, 281
Rediscretization, 252	FVMethod1d, 281
SetSolution, 252	GetSolution, 281
SetTimeStep, 252	Solve, 281
corenc::method::DGSolution< Grid >, 253	corenc::method::RungeKutta< Problem, Type >, 314
~DGSolution, 253	~RungeKutta, 315
DGSolution, 253	discretize, 315
getWeight, 254	explicitEuler, 315
	•
getWeights, 254	RungeKutta, 315
operator=, 254	updateTimestep, 315
updateWeight, 254	corenc::method::STSolution < Grid >, 316
corenc::method::FEAnalysis< Method1, Method2,	~STSolution, 317
Mesh1, Mesh2 >, 261	addTimeLayer, 317
∼FEAnalysis, 261	getWeight, 317
FEAnalysis, 261	getWeights, 317
L2Norm, 261	operator=, 318
corenc::method::FEMethod< Problem, Grid, Matrix >,	STSolution, 316, 317
267	updateWeight, 318
∼FEMethod, 269	corenc::method::system_dg_method< Grid, bool, bool
Discretization, 269	>, 322
FEMethod, 268, 269	GetSolution, 322
GetEffective, 270	corenc::method::system_dg_method< Problem, Grid,
GetGlobalMatrix, 270	Matrix >, 318
GetGradSolution, 270	~system_dg_method, 319
GetMesh, 270	Assemble, 319
GetRightVector, 270	changeFlux, 319
GetSolution, 271	DGtostandart, 320
GetValue, 271	GetGlobalMatrix, 320
LoadSolution, 272	GetMaxSolution, 320
operator=, 272	GetMinSolution, 320
OutDatFormat, 272	GetSolution, 320, 321
OutMeshFormat, 272	system_dg_method, 319
OutMeshTimeFormat, 272	toDGSolution, 321
ProjectSolution, 273	updateWeights, 321
Rediscretization, 273	corenc::multi_vector< T >, 304
SetSolution, 273	∼multi_vector, 304
SetTimeStep, 274	fill_inc, 305
corenc::method::FEMethodZero< Problem, Grid, Matrix	get, 305
>, 274	multi_vector, 304
\sim FEMethodZero, 276	resize, 305
Discretization, 276	set, 305
FEMethodZero, 275, 276	size, 306
GetEffective, 276	totalsize, 306
GetGlobalMatrix, 276	corenc::solvers, 23
GetGradSolution, 277	corenc::solvers::dg_shallow_water< Mesh >, 234
GetMesh, 277	\sim dg_shallow_water, 235
GetRightVector, 277	dg_shallow_water, 235
GetSolution, 277, 278	solve, 235

corenc::solvers::dg_solver< _Problem, _Mesh, _Result	corenc::test_cases, 329
>, 236	∼test_cases, 330
\sim dg solver, 236	perform, 330
dg_solver, 236	test_cases, 329
elliptic_solver, 237	corenc::test_conv_diff, 330
get_gradvalue, 237	∼test conv diff, 331
get_value, 237, 238	conv_diff_eigen, 331
corenc::solvers::dg_solver_shallow_water, 238	conv_diff_fem, 331
~dg_solver_shallow_water, 238	test_conv_diff, 331
dg_solver_shallow_water, 238	corenc::tests, 23
solve, 239	corenc::tests::test case rectanglebasis, 325
corenc::solvers::eigen_solver< Matrix, Solver >, 254	~test_case_rectanglebasis, 326
∼eigen_solver, 255	mass_matrix, 326
eigen_solver, 255	stress_matrix, 326
rayleigh, 255	test_case_rectanglebasis, 326
corenc::solvers::fem_solver< _Problem, _Mesh, _Re-	corenc::tests::test_case_regular_mesh, 326
sult >, 262	~test_case_regular_mesh, 327
∼fem solver, 262	construct_mesh, 327
elliptic solver, 263	test_case_regular_mesh, 327
elliptic solver gauss, 263	corenc::tests::test_case_trianglebasis, 328
fem_solver, 262	~test_case_trianglebasis, 329
get_gradvalue, 263	mass_matrix, 329
get_value, 263, 264	stress matrix, 329
corenc::solvers::fem_solver_lib< _Problem, _Mesh,	test_case_trianglebasis, 328
_Result >, 264	CORENC_MESH_CUBE_H_
~fem_solver_lib, 265	Cube.h, 344
elliptic_solver, 265	CORENC_MESH_PARAMETER_H_
elliptic_solver_gauss, 265	Parameter.h, 489
fem_solver_lib, 265	CORENC_MESH_Point_h
get_gradvalue, 266	Point.h, 491
get_value, 266, 267	CORENC_METHODS_FEANALYSIS_H_
corenc::solvers::vector_solution, 332	FEAnalysis.h, 442
S, 332	CORENC_METHODS_SYSTEM_DG_METHOD_H_
vector_solution, 332	system_dg_method.h, 479
corenc::test_case_elliptic_fem, 322	CORENC_MULTI_VECTOR_H_
~test_case_elliptic_fem, 323	multi_vector.h, 486
conv diff fem fixed triangle, 323	CORENC PROBLEMS PROBLEMS H
elliptic_2layer_fem_2d_tria_h, 323	Problems.h, 497
elliptic_fem_2d_rect_source, 323	CORENC_TEST_CASE_RECTANGLEBASIS_H_
elliptic fem 2d tria, 323	test_case_rectanglebasis.h, 516
elliptic_fem_hp_fixed, 323	CORENC_TEST_CASE_REGULAR_MESH_H_
elliptic fem hp fixed triangle, 324	test case regular mesh.h, 520
elliptic_fem_hp_lagrange_triangle, 324	CORENC TEST CASE TRIANGLEBASIS H
elliptic_fem_hxhy_fixed_triangle, 324	test_case_trianglebasis.h, 517
elliptic_fem_solver, 324	CORENC_TEST_CASES_H_
elliptic_fem_square_lin_basis, 324	test_cases.h, 522
elliptic_gaussian_triangle, 324	CoreNCA/Matrix.cpp, 334
global_matrix, 324	CoreNCA/Matrix.h, 334, 335
homotopy_conv_diff_fem, 325	CoreNCA/MatrixDiag.cpp, 335
mass_matrix_3rd_order, 325	CoreNCA/MatrixDiag.h, 335, 336
mass_matrix_4th_order, 325	CoreNCA/MatrixSkyline.cpp, 336
strees_matrix_3rd_order, 325	CoreNCA/MatrixSkyline.h, 337, 338
stress_matrix_4th_order, 325	CoreNCFEM/FESolution.h, 341, 342
test_case_elliptic_fem, 323	CoreNCFEM/FiniteElements/CRectangleBasis2x.cpp,
corenc::test_case_solver, 327	343
~test_case_solver, 328	CoreNCFEM/FiniteElements/Cube.cpp, 343
gauss_solver, 328	CoreNCFEM/FiniteElements/Cube.h, 343, 344
test_case_solver, 328	CoreNCFEM/FiniteElements/CubeHBasis.cpp, 346
	111

CoreNCFEM/FiniteElements/Edge.cpp, 346 CoreNCFEM/FiniteElements/Edge.h, 346, 347 CoreNCFEM/FiniteElements/FiniteElement.h, 350, 351 CoreNCFEM/FiniteElements/FiniteElement2D.h, 363, 364	CRectangle corenc::Mesh::CRectangle, 149, 150 CRectangleBasis corenc::Mesh::CRectangleBasis, 154, 155 CRectangleBasis2
CoreNCFEM/FiniteElements/Node.cpp, 368 CoreNCFEM/FiniteElements/Node.h, 368, 369 CoreNCFEM/FiniteElements/Rectangle.cpp, 370 CoreNCFEM/FiniteElements/Rectangle.h, 370, 371	corenc::Mesh::CRectangleBasis2, 158 CRectangleBasis2x corenc::Mesh::CRectangleBasis2x, 161 CRectangleBasis2y
CoreNCFEM/FiniteElements/RectangleBasis2.cpp, 376 CoreNCFEM/FiniteElements/RectangleBasis2y.cpp,	corenc::Mesh::CRectangleBasis2y, 164, 165 CRectangleConstantBasis
376	corenc::Mesh::CRectangleConstantBasis, 167,
CoreNCFEM/FiniteElements/RectangleHBasis.cpp, 376	168
CoreNCFEM/FiniteElements/Shape.h, 377	CRectangleHBasis
CoreNCFEM/FiniteElements/ShapeFunction.h, 378	corenc::Mesh::CRectangleHBasis, 171
CoreNCFEM/FiniteElements/Triangle.cpp, 379	CRegularMesh
CoreNCFEM/FiniteElements/Triangle.h, 380	corenc::Mesh::CRegularMesh, 175
CoreNCFEM/FiniteElements/TriangleLagrange.cpp, 383	CRegularMesh3D
CoreNCFEM/FiniteElements/TriangleLinear.cpp, 383	corenc::Mesh::CRegularMesh3D, 181, 182
CoreNCFEM/FiniteElements/TriangleLinear.h, 383, 384	CShallowWater
CoreNCFEM/FiniteSolver.h, 386	corenc::CShallowWater, 188
CoreNCFEM/GaussianField.h, 387	CShape
CoreNCFEM/Grids/Mesh1D.cpp, 388	corenc::Mesh::CShape, 192
CoreNCFEM/Grids/Mesh1D.h, 389	CShapeFunction
CoreNCFEM/Grids/RegularMesh.cpp, 390	corenc::Mesh::CShapeFunction< Type >, 196
CoreNCFEM/Grids/RegularMesh.h, 391	CSMethod
CoreNCFEM/Grids/RegularMesh3D.cpp, 393	Methods::CSMethod, 198
CoreNCFEM/Grids/RegularMesh3D.h, 393, 394	CSolution
CoreNCFEM/Grids/TriangularMesh.cpp, 395	corenc::CSolution, 199
CoreNCFEM/Grids/TriangularMesh.h, 396	CTriangle
CoreNCFEM/Grids/TriangularMeshLinear.cpp, 398	corenc::Mesh::CTriangle, 200, 201
CoreNCFEM/Grids/TriangularMeshLinear.h, 398	CTriangleBasis
CoreNCFEM/Mesh.h, 399, 400	corenc::Mesh::CTriangleBasis, 205-207
CoreNCFEM/Methods/CSMethod.h, 401	CTriangleLagrangeBasis
CoreNCFEM/Methods/dg_flux.h, 401, 402	corenc::Mesh::CTriangleLagrangeBasis, 210, 211
CoreNCFEM/Methods/DGMethod.h, 402, 403	CTriangleLinear
CoreNCFEM/Methods/DGMethodZero.h, 421, 422	corenc::Mesh::CTriangleLinear, 214, 215
CoreNCFEM/Methods/DGSolution.h, 440, 441	CTriangleLinearBasis
CoreNCFEM/Methods/FEAnalysis.h, 442, 443	corenc::Mesh::CTriangleLinearBasis, 219
CoreNCFEM/Methods/FEMethod.h, 443, 444	CTriangularMesh
CoreNCFEM/Methods/FEMethodZero.h, 458	corenc::Mesh::CTriangularMesh, 222, 223
CoreNCFEM/Methods/FVMethod.cpp, 475	CTriangularMeshLinear
CoreNCFEM/Methods/FVMethod.h, 475, 476	corenc::Mesh::CTriangularMeshLinear, 229
CoreNCFEM/Methods/RungeKutta.h, 476	Cube
CoreNCFEM/Methods/system_dg_method.h, 478, 479	corenc::Mesh, 20
CoreNCFEM/multi_vector.h, 486, 487	Cube.h
CoreNCFEM/Parameter.cpp, 488	CORENC_MESH_CUBE_H_, 344
CoreNCFEM/Parameter.h, 488, 489	CUSTOM
CoreNCFEM/Point.cpp, 490	corenc::method, 22
CoreNCFEM/Point.h, 490, 491	CVecSolution
CParameter	corenc::CVecSolution, 234
corenc::Mesh::CParameter, 145	CYAN
CProblem	corenc::color, 17
corenc::CProblem, 147	
Create	dg_shallow_water
Algebra::Matrix, 296	corenc::solvers::dg_shallow_water< Mesh >, 235
Algebra::MatrixDiag, 299	dg_solver
Algebra::MatrixSkyline, 302	corenc::solvers::dg_solver< _Problem, _Mesh, _Result >, 236

dg_solver_shallow_water	elliptic_fem_hp_fixed
corenc::solvers::dg_solver_shallow_water, 238	corenc::test_case_elliptic_fem, 323
DGFlux	elliptic_fem_hp_fixed_triangle
corenc::method, 22	corenc::test_case_elliptic_fem, 324
DGMethod	elliptic_fem_hp_lagrange_triangle
corenc::method::DGMethod< Problem, Grid, Ma-	corenc::test_case_elliptic_fem, 324
trix >, 240, 241	elliptic_fem_hxhy_fixed_triangle
DGMethodZero	corenc::test_case_elliptic_fem, 324
corenc::method::DGMethodZero< Problem, Grid,	elliptic_fem_solver
Matrix >, 247, 248	corenc::test_case_elliptic_fem, 324
DGSolution	elliptic_fem_square_lin_basis
corenc::method::DGSolution< Grid >, 253	corenc::test_case_elliptic_fem, 324
DGtostandart	elliptic_gaussian_triangle
corenc::method::system_dg_method< Problem,	corenc::test_case_elliptic_fem, 324
Grid, Matrix >, 320	elliptic_solver
diff_skymatrix	corenc::solvers::dg_solver< _Problem, _Mesh,
Algebra::MatrixSkyline, 302	_Result >, 237
DIFFUSION	corenc::solvers::fem_solver< _Problem, _Mesh,
corenc, 15	_Result >, 263
Discretization	corenc::solvers::fem_solver_lib <problem,< td=""></problem,<>
corenc::method::DGMethod< Problem, Grid, Ma-	_Mesh, _Result >, 265
trix >, 242	elliptic_solver_gauss
corenc::method::DGMethodZero< Problem, Grid,	corenc::solvers::fem_solver< _Problem, _Mesh,
Matrix >, 248	_Result >, 263
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::solvers::fem_solver_lib <problem,< td=""></problem,<>
>, 269	_Mesh, _Result >, 265
corenc::method::FEMethodZero< Problem, Grid,	ENIPG
Matrix >, 276	corenc::method, 22
discretize	ESCAPE
corenc::method::RungeKutta< Problem, Type >,	corenc::color, 17
315	ESolver
EBaumannOden	Algebra::ESolver, 256
corenc::method, 22	EUDV
EBaumannOdenIP	corenc, 15
corenc::method, 22	EUpwind
ECentral	corenc::method, 22
corenc::method, 22	EUV
EDUDV	corenc, 15
corenc, 15	explicitEuler
EDUV	corenc::method::RungeKutta< Problem, Type >,
corenc, 15	315
EFV	FEAnalysis
corenc, 15	corenc::method::FEAnalysis< Method1, Method2,
eigen_solver	Mesh1, Mesh2 >, 261
corenc::solvers::eigen_solver< Matrix, Solver >,	FEAnalysis.h
255	CORENC_METHODS_FEANALYSIS_H_, 442
EIP	fem_solver
corenc::method, 22	corenc::solvers::fem_solver< _Problem, _Mesh,
ELaxFriedrichs	_Result >, 262
corenc::method, 22	
	fem solver lib
Elements	fem_solver_lib corenc::solvers::fem_solver_lib<
	corenc::solvers::fem_solver_lib<
Elements corenc::Mesh, 20 elliptic_2layer_fem_2d_tria_h	
corenc::Mesh, 20	corenc::solvers::fem_solver_lib<
corenc::Mesh, 20 elliptic_2layer_fem_2d_tria_h	$\label{eq:corenc::solvers::fem_solver_lib} $$\operatorname{_Problem}, $$\operatorname{_Mesh}, \operatorname{_Result} >, 265$$$$FEMethod$$
corenc::Mesh, 20 elliptic_2layer_fem_2d_tria_h corenc::test_case_elliptic_fem, 323	$\label{eq:corenc::solvers::fem_solver_lib} $$\operatorname{_Problem}, $$\operatorname{_Mesh}, \operatorname{_Result} >, 265$$$ $$\operatorname{FEMethod} $$ \operatorname{corenc::method::FEMethod} < \operatorname{Problem}, \operatorname{Grid}, \operatorname{Matrix} $$$
corenc::Mesh, 20 elliptic_2layer_fem_2d_tria_h corenc::test_case_elliptic_fem, 323 elliptic_fem_2d_rect_source	$\label{eq:corenc::solvers::fem_solver_lib<} $$ _Problem, $$ _Mesh, _Result >, 265$ $$ FEMethod $$ corenc::method::FEMethod< Problem, Grid, Matrix $$ >, 268, 269$ $$$

fill_inc	corenc::CDiffusionScalar, 43
corenc::multi_vector< T >, 305	get_solution
FindElement	corenc::CShallowWater, 190
corenc::Mesh::CMesh< bool >, 135	get_total_sources
corenc::Mesh::CMesh< T >, 125	corenc::CDiffusionScalar, 43
corenc::Mesh::CMesh1D, 131	get_value
corenc::Mesh::CRegularMesh, 176	corenc::Mesh::point_source< T >, 314
corenc::Mesh::CRegularMesh3D, 183	corenc::solvers::dg_solver< _Problem, _Mesh,
corenc::Mesh::CTriangularMesh, 223	_Result >, 237, 238
corenc::Mesh::CTriangularMeshLinear, 230	corenc::solvers::fem_solver< _Problem, _Mesh,
findTerm	Result >, 263, 264
corenc::CDiffusionScalar, 41	corenc::solvers::fem_solver_lib <problem,< td=""></problem,<>
FIRST	
corenc::Mesh, 21	GetAdvection
FREE	corenc::Mesh::CParameter, 145, 146
corenc::method, 22	GetAlpha
function_dp	corenc::Mesh::CTriangleLagrangeBasis, 211
corenc::Mesh, 20	GetBoundary
FVFlux	corenc::Mesh::CMesh< bool >, 135
corenc::method, 22	corenc::Mesh::CMesh< T >, 125
FVMethod1d	corenc::Mesh::CMesh1D, 131
corenc::method::FVMethod1d, 281	corenc::Mesh::CRegularMesh, 176
Gauss	corenc::Mesh::CRegularMesh3D, 183
Algebra, 13	corenc::Mesh::CTriangularMesh, 223, 224
Algebra::ESolver, 257, 258	corenc::Mesh::CTriangularMeshLinear, 230
	GetDiffusion
gauss_solver	corenc::Mesh::CParameter, 146
corenc::test_case_solver, 328	GetDoF
GaussianKernel	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::GaussianKernel, 284	Function, DoF, bool >, 118
GaussianProcess	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::GaussianProcess, 286	Function, DoF, $T >$, 93
get	GetDoFs
corenc::Mesh::parameter< T >, 308	corenc::Mesh::CElement< bool >, 79
corenc::multi_vector< T >, 305	corenc::Mesh::CElement< T >, 65
get_boundary_parameter	corenc::Mesh::CElement2D< bool >, 75
corenc::CDiffusionScalar, 41, 42	corenc::Mesh::CElement2D< T >, 70
corenc::CShallowWater, 189	corenc::Mesh::CFiniteElement< Shape, Shape-
get_boundary_type	Function, bool, bool >, 110
corenc::CDiffusionScalar, 42	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::CShallowWater, 189	Function, DoF, bool >, 118
get_gp	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::GaussianKernel, 285	Function, DoF, $T >$, 93
get_gradvalue	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::solvers::dg_solver< _Problem, _Mesh,	Function >, 101
_Result >, 237	GetEdge
corenc::solvers::fem_solver< _Problem, _Mesh,	corenc::Mesh::CCube, 29
_Result >, 263	corenc::Mesh::CRectangle, 150
corenc::solvers::fem_solver_lib <problem,< td=""><td>corenc::Mesh::CShape, 193</td></problem,<>	corenc::Mesh::CShape, 193
_Mesh, _Result >, 266	corenc::Mesh::CTriangle, 201
get_number_of_boundaries	corenc::Mesh::CTriangleLinear, 215
corenc::CDiffusionScalar, 42	GetEffective
corenc::CShallowWater, 189	corenc::method::DGMethod< Problem, Grid, Ma-
get_parameter	trix >, 242
corenc::CDiffusionScalar, 42, 43	corenc::method::DGMethodZero< Problem, Grid,
corenc::CShallowWater, 189, 190	Matrix >, 248
get_point	corenc::method::FEMethod< Problem, Grid, Matrix
corenc::Mesh::point_source< T >, 314	>, 270
get_point_source	× , - · ·

$\label{eq:corenc::method::FEMethodZero} \mbox{Corenc::method::FEMethodZero} < \mbox{ Problem, Grid,} \\ \mbox{Matrix} >, \mbox{276} \\ \mbox{GetElement}$	corenc::Mesh::CRectangleBasis2, 158 corenc::Mesh::CRectangleBasis2x, 162 corenc::Mesh::CRectangleBasis2y, 165
Algebra::Matrix, 297	corenc::Mesh::CRectangleConstantBasis, 168
Algebra::MatrixSkyline, 302	corenc::Mesh::CRectangleHBasis, 172
corenc::Mesh::CMesh< bool >, 136	corenc::Mesh::CShapeFunction< Type >, 196
corenc::Mesh::CMesh< T >, 125	corenc::Mesh::CTriangleBasis, 207
corenc::Mesh::CMesh1D, 131	corenc::Mesh::CTriangleLagrangeBasis, 211
corenc::Mesh::CRegularMesh, 176	corenc::Mesh::CTriangleLinearBasis, 220
corenc::Mesh::CRegularMesh3D, 183	GetGradSolution
corenc::Mesh::CTriangularMesh, 224	corenc::method::DGMethod< Problem, Grid, Ma-
corenc::Mesh::CTriangularMeshLinear, 230	trix >, 242
GetElements	corenc::method::DGMethodZero< Problem, Grid,
corenc::Mesh::CMesh1D, 131	Matrix >, 249
corenc::Mesh::CRegularMesh, 177	corenc::method::FEMethod< Problem, Grid, Matrix
corenc::Mesh::CRegularMesh3D, 183	>, 270
corenc::Mesh::CTriangularMesh, 224	corenc::method::FEMethodZero< Problem, Grid,
corenc::Mesh::CTriangularMeshLinear, 230	Matrix >, 277
GetFacet	GetMass
corenc::Mesh::CCube, 29	corenc::Mesh::CParameter, 146
corenc::Mesh::CRectangle, 151	GetMaxSolution
corenc::Mesh::CShape, 193	corenc::method::CDGMethod< Type >, 36
corenc::Mesh::CTriangle, 202	corenc::method::CDGMethodZero< Type >, 38
corenc::Mesh::CTriangleLinear, 215	corenc::method::CFEMethod< Type >, 83
getFlux	corenc::method::CFEMethodZero< Type >, 84
corenc::CBurgersScalar, 26	corenc::method::system_dg_method< Problem,
GetGlobalMatrix	Grid, Matrix >, 320
corenc::method::DGMethod< Problem, Grid, Ma-	GetMeasure
trix >, 242	corenc::Mesh::CCubeBasis, 34
corenc::method::DGMethodZero< Problem, Grid,	corenc::Mesh::CEdge2ndBasis, 50
Matrix >, 248	corenc::Mesh::CEdgeConstantBasis, 53
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::Mesh::CEdgeHermiteBasis, 56
>, 270	corenc::Mesh::CEdgeLinearBasis, 59
corenc::method::FEMethodZero< Problem, Grid,	corenc::Mesh::CEdgeMultiBasis, 62
Matrix >, 276	corenc::Mesh::CElement< bool >, 79
corenc::method::system_dg_method< Problem,	corenc::Mesh::CElement< T >, 65
Grid, Matrix >, 320	corenc::Mesh::CElement2D< bool >, 75
GetGradShapeFunction	corenc::Mesh::CElement2D< T >, 70
corenc::Mesh::CCubeBasis, 34	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdge2ndBasis, 50	Function, bool, bool >, 110
corenc::Mesh::CEdgeConstantBasis, 53	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdgeHermiteBasis, 56	Function, DoF, bool >, 118
corenc::Mesh::CEdgeLinearBasis, 59	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdgeMultiBasis, 62	·
	Function, DoF, T >, 93
corenc::Mesh::CElement< bool >, 79	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CElement< T >, 65	Function >, 102
corenc::Mesh::CElement2D< bool >, 75	corenc::Mesh::CNodeBasis, 143
corenc::Mesh::CElement2D< T >, 70	corenc::Mesh::CRectangleBasis, 155
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis2, 159
Function, bool, bool >, 110	corenc::Mesh::CRectangleBasis2x, 162
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis2y, 165
Function, DoF, bool >, 118	corenc::Mesh::CRectangleConstantBasis, 168
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleHBasis, 172
Function, DoF, $T >$, 93	corenc::Mesh::CShapeFunction< Type >, 196
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CTriangleBasis, 207
Function >, 102	corenc::Mesh::CTriangleLagrangeBasis, 212
corenc::Mesh::CNodeBasis, 143	corenc::Mesh::CTriangleLinearBasis, 220
corenc::Mesh::CRectangleBasis, 155	GetMesh

corenc::method::DGMethod< Problem, Grid, Matrix >, 242	corenc::Mesh::CShape, 193 corenc::Mesh::CTriangle, 202
corenc::method::DGMethodZero< Problem, Grid,	corenc::Mesh::CTriangleLinear, 216
Matrix >, 249	corenc::Mesh::CTriangularMesh, 224
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::Mesh::CTriangularMeshLinear, 231
>, 270	GetNormal
corenc::method::FEMethodZero< Problem, Grid,	corenc::Mesh::CCubeBasis, 34
Matrix >, 277	corenc::Mesh::CEdge2ndBasis, 50
getMinSize	corenc::Mesh::CEdgeConstantBasis, 53
	corenc::Mesh::CEdgeHermiteBasis, 56
corenc::Mesh::CMesh < bool >, 136	-
corenc::Mesh::CMesh T >, 125	corenc::Mesh::CEdgeLinearBasis, 59
corenc::Mesh::CMesh1D, 131	corenc::Mesh::CEdgeMultiBasis, 62
corenc::Mesh::CRegularMesh, 177	corenc::Mesh::CElement< bool >, 80
corenc::Mesh::CRegularMesh3D, 183	corenc::Mesh::CElement< T >, 66
corenc::Mesh::CTriangularMesh, 224	corenc::Mesh::CElement2D< bool >, 76
corenc::Mesh::CTriangularMeshLinear, 230	corenc::Mesh::CElement2D< T >, 71
GetMinSolution	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method::CDGMethod< Type >, 36	Function, bool, bool >, 111
corenc::method::CDGMethodZero< Type >, 38	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method::CFEMethod< Type >, 83	Function, DoF, bool >, 119
corenc::method::CFEMethodZero< Type >, 84	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method::system_dg_method< Problem,	Function, DoF, $T >$, 94
Grid, Matrix >, 320	corenc::Mesh::CFiniteElement2D< Shape, Shape-
GetNeighbour	Function >, 102
corenc::Mesh::CElement< bool >, 79	corenc::Mesh::CNodeBasis, 143
corenc::Mesh::CElement< T >, 65	corenc::Mesh::CRectangleBasis, 156
corenc::Mesh::CElement2D< bool >, 75	corenc::Mesh::CRectangleBasis2, 159
corenc::Mesh::CElement2D< T >, 71	corenc::Mesh::CRectangleBasis2x, 162
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis2y, 165
Function, bool, bool >, 110	corenc::Mesh::CRectangleConstantBasis, 169
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleHBasis, 172
Function, DoF, bool >, 118	corenc::Mesh::CShapeFunction< Type >, 197
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CTriangleBasis, 207, 208
Function, DoF, T >, 93	corenc::Mesh::CTriangleLagrangeBasis, 212
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CTriangleLinearBasis, 220
Function >, 102	GetNumberOfBoundaries
GetNode	corenc::Mesh::CMesh< bool >, 136
corenc::Mesh::CCube, 29, 30	corenc::Mesh::CMesh< T >, 126
corenc::Mesh::CEdge, 46, 47	corenc::Mesh::CMesh1D, 132
corenc::Mesh::CElement < Dool >, 80	corenc::Mesh::CRegularMesh, 177 corenc::Mesh::CRegularMesh3D, 184
corenc::Mesh::CElement< T >, 66	· ·
corenc::Mesh::CElement2D< bool >, 76	corenc::Mesh::CTriangularMesh, 224
corenc::Mesh::CElement2D< T >, 71	corenc::Mesh::CTriangularMeshLinear, 231
corenc::Mesh::CFiniteElement< Shape, Shape-	GetNumberOfEdges
Function, bool, bool >, 110	corenc::Mesh::CCube, 30
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangle, 151
Function, DoF, bool >, 119	corenc::Mesh::CShape, 193
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CTriangle, 202
Function, DoF, $T >$, 94	corenc::Mesh::CTriangleLinear, 216
corenc::Mesh::CFiniteElement2D< Shape, Shape-	GetNumberOfElements
Function >, 102	corenc::Mesh::CMesh< bool >, 136
corenc::Mesh::CMesh< bool >, 136	corenc::Mesh::CMesh< T >, 126
corenc::Mesh::CMesh< T >, 126	corenc::Mesh::CMesh1D, 132
corenc::Mesh::CMesh1D, 132	corenc::Mesh::CRegularMesh, 177
corenc::Mesh::CNode, 139, 140	corenc::Mesh::CRegularMesh3D, 184
corenc::Mesh::CRectangle, 151	corenc::Mesh::CTriangularMesh, 225
corenc::Mesh::CRegularMesh, 177	corenc::Mesh::CTriangularMeshLinear, 231
corenc::Mesh::CRegularMesh3D, 184	GetNumberOfFacets

corenc::Mesh::CCube, 30		corenc::CShallowWater, 190
corenc::Mesh::CRectangle, 151		getParameter
corenc::Mesh::CShape, 194		corenc::Mesh::CMesh< bool >, 136, 137
corenc::Mesh::CTriangle, 202		corenc::Mesh::CMesh< T >, 126, 127
corenc::Mesh::CTriangleLinear, 216		corenc::Mesh::CMesh1D, 132
GetNumberOfINodes		corenc::Mesh::CRegularMesh, 178
corenc::Mesh::CRegularMesh, 177		corenc::Mesh::CRegularMesh3D, 184
corenc::Mesh::CRegularMesh3D, 184		corenc::Mesh::CTriangularMesh, 225
corenc::Mesh::CTriangularMesh, 225		corenc::Mesh::CTriangularMeshLinear, 231
GetNumberOfNodes		GetRightVector
corenc::Mesh::CCube, 30		corenc::method::DGMethod< Problem, Grid, Ma-
corenc::Mesh::CEdge, 47		trix >, 243
corenc::Mesh::CElement< bool >, 80		corenc::method::DGMethodZero< Problem, Grid,
corenc::Mesh::CElement< T >, 66		Matrix >, 249
corenc::Mesh::CElement2D< bool >, 7	6	corenc::method::FEMethod< Problem, Grid, Matrix
corenc::Mesh::CElement2D< T >, 71	O	>, 270
	o Chono	•
corenc::Mesh::CFiniteElement< Shape	e, Shape-	corenc::method::FEMethodZero< Problem, Grid,
Function, bool, bool >, 111	0.1	Matrix >, 277
corenc::Mesh::CFiniteElement< Shape	e, Shape-	GetShape
Function, DoF, bool >, 119		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CFiniteElement< Shape	e, Shape-	Function, bool, bool >, 111
Function, DoF, $T >$, 94		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CFiniteElement2D< Sha	pe, Shape-	Function, DoF, bool >, 119
Function >, 103		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CMesh< bool >, 136		Function, DoF, $T >$, 94
corenc::Mesh::CMesh< T >, 126		corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CMesh1D, 132		Function >, 103
corenc::Mesh::CNode, 140		GetShapeFunction
corenc::Mesh::CRectangle, 151		corenc::Mesh::CCubeBasis, 34
corenc::Mesh::CRegularMesh, 177		corenc::Mesh::CEdge2ndBasis, 51
		_
corenc::Mesh::CRegularMesh3D, 184		corenc::Mesh::CEdgeConstantBasis, 54
corenc::Mesh::CShape, 194		corenc::Mesh::CEdgeHermiteBasis, 57
corenc::Mesh::CTriangle, 202		corenc::Mesh::CEdgeLinearBasis, 60
corenc::Mesh::CTriangleLinear, 216		corenc::Mesh::CEdgeMultiBasis, 63
corenc::Mesh::CTriangularMesh, 225		corenc::Mesh::CElement< bool >, 80
corenc::Mesh::CTriangularMeshLinear,	231	corenc::Mesh::CElement< T >, 66
GetNumberOfShapeFunctions		corenc::Mesh::CElement2D< bool >, 76
corenc::Mesh::CCubeBasis, 34		corenc::Mesh::CElement2D< T >, 71
corenc::Mesh::CEdge2ndBasis, 50		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdgeConstantBasis, 53	3	Function, bool, bool >, 111
corenc::Mesh::CEdgeHermiteBasis, 56		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdgeLinearBasis, 59		Function, DoF, bool >, 119
corenc::Mesh::CEdgeMultiBasis, 62		corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CNodeBasis, 143		Function, DoF, T >, 94
corenc::Mesh::CRectangleBasis, 156		corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CRectangleBasis2, 159		Function >, 103
corenc::Mesh::CRectangleBasis2x, 162		corenc::Mesh::CNodeBasis, 143
corenc::Mesh::CRectangleBasis2y, 165		corenc::Mesh::CRectangleBasis, 156
corenc::Mesh::CRectangleConstantBas	IS, 169	corenc::Mesh::CRectangleBasis2, 159
corenc::Mesh::CRectangleHBasis, 172		corenc::Mesh::CRectangleBasis2x, 162
corenc::Mesh::CShapeFunction< Type	>, 197	corenc::Mesh::CRectangleBasis2y, 166
corenc::Mesh::CTriangleBasis, 208		corenc::Mesh::CRectangleConstantBasis, 169
corenc::Mesh::CTriangleLagrangeBasis,		corenc::Mesh::CRectangleHBasis, 172
corenc::Mesh::CTriangleLinearBasis, 22	: 0	corenc::Mesh::CShapeFunction< Type >, 197
getNumberOfTerms		corenc::Mesh::CTriangleBasis, 208
corenc::CBurgersScalar, 26		corenc::Mesh::CTriangleLagrangeBasis, 212
corenc::CDiffusionScalar, 43		corenc::Mesh::CTriangleLinearBasis, 220
corenc::CProblem, 147		GetShapeFunctions
,		•

corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CCubeBasis, 35
Function, bool, bool >, 111	corenc::Mesh::CRectangleBasis, 156
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis2, 159
Function, DoF, bool >, 120	corenc::Mesh::CRectangleBasis2x, 163
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis2y, 166
Function, DoF, T >, 95	corenc::Mesh::CRectangleConstantBasis, 169
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CRectangleHBasis, 173
Function >, 103	corenc::Mesh::CTriangleBasis, 208, 209
GetSize	corenc::Mesh::CTriangleLagrangeBasis, 212
Algebra::Matrix, 297	corenc::Mesh::CTriangleLinearBasis, 220
Algebra::MatrixDiag, 299	corenc::method::DGMethod< Problem, Grid, Ma-
Algebra::MatrixSkyline, 302	trix >, 243, 244
GetSolution	corenc::method::DGMethodZero< Problem, Grid,
Algebra::ESolver, 258	Matrix >, 250
corenc::method::CDGMethod< Type >, 37	corenc::method::FEMethod< Problem, Grid, Matrix
corenc::method::CDGMethodZero< Type >, 38	>, 271
corenc::method::CFEMethod< Type >, 83	corenc::method::FEMethodZero< Problem, Grid,
corenc::method::CFEMethodZero< Type >, 85	Matrix >, 278
corenc::method::DGMethod< Problem, Grid, Ma-	GetWeight
trix >, 243	corenc::Mesh::CCubeBasis, 35
corenc::method::DGMethodZero< Problem, Grid,	corenc::Mesh::CEdge2ndBasis, 51
Matrix >, 249, 250	corenc::Mesh::CEdgeConstantBasis, 54
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::Mesh::CEdgeHermiteBasis, 57
>, 271	corenc::Mesh::CEdgeLinearBasis, 60
corenc::method::FEMethodZero< Problem, Grid,	corenc::Mesh::CEdgeMultiBasis, 63
Matrix >, 277, 278	corenc::Mesh::CElement< bool >, 80
corenc::method::FVMethod1d, 281	corenc::Mesh::CElement< T >, 67
corenc::method::system_dg_method< Grid, bool,	corenc::Mesh::CElement2D< bool >, 76
bool >, 322	corenc::Mesh::CElement2D< T >, 72
corenc::method::system_dg_method< Problem,	corenc::Mesh::CFiniteElement< Shape, Shape-
Grid, Matrix >, 320, 321	Function, bool, bool >, 112
getSolution	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CMesh< bool >, 137	Function, DoF, bool >, 120
corenc::Mesh::CMesh< T >, 127	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CMesh1D, 133	Function, DoF, $T >$, 95
corenc::Mesh::CRegularMesh, 178	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CRegularMesh3D, 185	Function >, 103
corenc::Mesh::CTriangularMesh, 225, 226	corenc::Mesh::CNodeBasis, 144
corenc::Mesh::CTriangularMeshLinear, 232	corenc::Mesh::CRectangleBasis, 156
getTerm	corenc::Mesh::CRectangleBasis2, 159
corenc::CBurgersScalar, 26	corenc::Mesh::CRectangleBasis2x, 163
corenc::CDiffusionScalar, 43	corenc::Mesh::CRectangleBasis2y, 166
corenc::CProblem, 148	corenc::Mesh::CRectangleHBasis, 173
corenc::CShallowWater, 190	corenc::Mesh::CTriangleBasis, 209
GetType	corenc::Mesh::CTriangleLagrangeBasis, 212
corenc::Mesh::CElement< bool >, 80	getWeight
corenc::Mesh::CElement< T >, 66	corenc::CFEweights, 89
corenc::Mesh::CElement2D< bool >, 76	corenc::method::DGSolution < Grid >, 254
corenc::Mesh::CElement2D< T >, 72	corenc::method::STSolution < Grid >, 317
corenc::Mesh::CFiniteElement< Shape, Shape-	getWeights
Function, bool, bool >, 112	corenc::method::DGSolution< Grid >, 254
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::method::STSolution< Grid >, 317
Function, DoF, bool >, 120	global_matrix
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::test_case_elliptic_fem, 324
Function, DoF, T >, 95	GMRES
corenc::Mesh::CFiniteElement2D< Shape, Shape-	Algebra, 13
Function >, 103	Algebra::ESolver, 259
GetValue	GMRES BiCGStab

Algebra, 13 gpexp	corenc::Mesh::CTriangleLagrangeBasis, 213 corenc::Mesh::CTriangleLinear, 216
corenc::GaussianKernel, 285	corenc::Mesh::CTriangleLinearBasis, 221
gpstep	INIPG
corenc::GaussianKernel, 285	corenc::method, 22
GREEN	Integrate
corenc::color, 18	corenc::Mesh::CCube, 30, 31
He	corenc::Mesh::CEdge, 47
corenc::GaussianProcess, 286	corenc::Mesh::CElement< bool >, 81
homotopy_conv_diff_fem	corenc::Mesh::CElement< T >, 67
corenc::test_case_elliptic_fem, 325	corenc::Mesh::CElement2D< bool >, 77
corenocot_case_emptio_tem, 625	corenc::Mesh::CElement2D< T >, 72, 73
IBaumannOden	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method, 22	Function, bool, bool >, 112, 113
IBaumannOdenIP	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method, 22	Function, DoF, bool >, 120, 121
ICentral	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::method, 22	Function, DoF, T >, 95, 96
IDUDV	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc, 15	Function >, 104
IDUV	corenc::Mesh::CNode, 140
corenc, 15	corenc::Mesh::CRectangle, 152
IIP	corenc::Mesh::CShape, 194
corenc::method, 22	corenc::Mesh::CTriangle, 203
ILaxFriedrichs	corenc::Mesh::CTriangleLinear, 217
corenc::method, 22	interpolate
IncreaseOrder	corenc::Mesh::CRegularMesh, 178
corenc::Mesh::CCube, 30	corenc::Mesh::CRegularMesh3D, 185
corenc::Mesh::CCubeBasis, 35	corenc::Mesh::CTriangularMesh, 226
corenc::Mesh::CEdge, 47	Interval
corenc::Mesh::CEdge2ndBasis, 51	corenc::Mesh, 20 IUDV
corenc::Mesh::CEdgeConstantBasis, 54	
corenc::Mesh::CEdgeHermiteBasis, 57	corenc, 15
corenc::Mesh::CEdgeLinearBasis, 60	IUpwind
corenc::Mesh::CEdgeMultiBasis, 63	corenc::method, 22 IUV
corenc::Mesh::CElement< bool >, 80	
corenc::Mesh::CElement< T >, 67	corenc, 15
corenc::Mesh::CElement2D< bool >, 76	Jacobian
corenc::Mesh::CElement2D< T >, 72	corenc::Mesh::Point, 310
corenc::Mesh::CFiniteElement< Shape, Shape-	
Function, bool, bool >, 112	K
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::GaussianProcess, 287
Function, DoF, bool >, 120	kekus
corenc::Mesh::CFiniteElement< Shape, Shape-	test_case_elliptic_fem.cpp, 518
Function, DoF, T >, 95	
corenc::Mesh::CFiniteElement2D< Shape, Shape-	
Function >, 104	corenc::GaussianProcess, 287
corenc::Mesh::CNode, 140	L2Norm
corenc::Mesh::CNodeBasis, 144	corenc::method::FEAnalysis< Method1, Method2,
corenc::Mesh::CRectangle, 152	Mesh1, Mesh2 >, 261
corenc::Mesh::CRectangleBasis, 156	lambda
corenc::Mesh::CRectangleBasis2, 160	corenc::GaussianProcess, 288
corenc::Mesh::CRectangleBasis2x, 163	LAST
corenc::Mesh::CRectangleBasis2y, 166	corenc::Mesh, 21
corenc::Mesh::CRectangleConstantBasis, 169	LaxFriedrichs
corenc::Mesh::CRectangleHBasis, 173	corenc::method, 22
corenc::Mesh::CTriangle, 203	load_parameters
corenc::Mesh::CTriangleBasis, 209	corenc::CBurgersScalar, 26

corenc::CDiffusionScalar, 44 corenc::CProblem, 148 corenc::CShallowWater, 190	m_trb corenc::Mesh::GaussTriangle, 294
LoadSolution	m_trw corenc::Mesh::GaussTriangle, 294
corenc::method::DGMethod< Problem, Grid, Ma-	m_w
trix >, 244 corenc::method::DGMethodZero< Problem, Grid,	corenc::CVecSolution, 234 corenc::Mesh::Gauss1dim, 283
Matrix >, 250	corenc::Mesh::Gauss1dimN < N >, 284
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::Mesh::GaussTetrahedron, 293
>, 272	m_w1
corenc::method::FEMethodZero< Problem, Grid, Matrix >, 278	corenc::Mesh::GaussRectangularCubic, 291 m_w2
m_a	corenc::Mesh::GaussRectangularCubic, 291 m_w3
corenc::Mesh::Gauss1dim, 282	corenc::Mesh::GaussRectangularCubic, 291
corenc::Mesh::Gauss1dimN< N >, 283	m_w4
corenc::Mesh::GaussRectangular, 288 corenc::Mesh::GaussRectangularCubic, 290	corenc::Mesh::GaussRectangularCubic, 292
m b	m_wa
corenc::Mesh::GaussRectangular, 288	corenc::Mesh::GaussRectangular, 289 m wb
corenc::Mesh::GaussRectangularCubic, 290	corenc::Mesh::GaussRectangular, 289
m_c	m_wc
corenc::Mesh::GaussRectangular, 289	corenc::Mesh::GaussRectangular, 289
corenc::Mesh::GaussRectangularCubic, 290	MAGENTA
m_la corenc::Mesh::GaussTetrahedron, 292	corenc::color, 18
m_lb	MAIN corenc::method, 22
corenc::Mesh::GaussTetrahedron, 292	main
m_lc	main.cpp, 493
corenc::Mesh::GaussTetrahedron, 293	main.cpp, 493
m_ld corenc::Mesh::GaussTetrahedron, 293	main, 493
m_msq	MASS
corenc::Mesh::GaussTetrahedron, 293	corenc, 15 mass_matrix
m_order	corenc::tests::test_case_rectanglebasis, 326
corenc::Mesh::Gauss1dim, 282	corenc::tests::test_case_trianglebasis, 329
corenc::Mesh::Gauss1dimN <n>, 284</n>	mass_matrix_3rd_order
corenc::Mesh::GaussTriangle, 294 m_psq	corenc::test_case_elliptic_fem, 325
corenc::Mesh::GaussTetrahedron, 293	mass_matrix_4th_order corenc::test_case_elliptic_fem, 325
m_ra	Matrix
corenc::Mesh::GaussRectangular, 289	Algebra::Matrix, 295, 296
corenc::Mesh::GaussRectangularCubic, 291	MatrixDiag
m_rb corenc::Mesh::GaussRectangular, 289	Algebra::MatrixDiag, 298, 299
corenc::Mesh::GaussRectangularCubic, 291	MatrixprodVector Algebra::ESolver, 259
m_rc	MatrixSkyline
corenc::Mesh::GaussRectangularCubic, 291	Algebra::MatrixSkyline, 301
m_rw	MatrixSkyline.cpp
corenc::Mesh::GaussRectangular, 289	_NOPE_, 336
corenc::Mesh::GaussRectangularCubic, 291 m s	N_MIN, 337
corenc::Mesh::GaussRectangularCubic, 291	Mesh1D corenc::Mesh, 20
m_sqrt15	Meshes
corenc::Mesh::GaussTriangle, 294	corenc::Mesh, 20
m_sqrt35	Methods, 23
corenc::Mesh::Gauss1dim, 283	Methods::CSMethod, 198
m_tra corenc::Mesh::GaussTriangle, 294	∼CSMethod, 198

CSMethod, 198	corenc::CFESolution, 88
mid point	corenc::Mesh::Point, 312
Triangle.cpp, 379	operator+=
wtf, 23	corenc::CFESolution, 87
multi_vector	corenc::Mesh::Point, 311
corenc::multi_vector< T >, 304	operator-
multi_vector.h	corenc::CFESolution, 88
CORENC_MULTI_VECTOR_H_, 486	corenc::Mesh::Point, 312
	operator-=
N	corenc::CFESolution, 87
corenc::GaussianKernel, 285	operator/
N_MIN	corenc::CFESolution, 88
MatrixSkyline.cpp, 337	operator/=
NODES	corenc::CFESolution, 87
corenc::Mesh, 21	operator=
NOFLUX	Algebra::Matrix, 297
corenc::method, 22	Algebra::MatrixDiag, 300
NullMatrix	Algebra::MatrixSkyline, 303
Algebra::Matrix, 297	corenc::CFESolution, 87
Algebra::MatrixDiag, 299	corenc::Mesh::CCube, 31
Algebra::MatrixSkyline, 302	corenc::Mesh::CCubeBasis, 35
NullRow	corenc::Mesh::CEdge, 48
Algebra::Matrix, 297	corenc::Mesh::CEdge2ndBasis, 51
Algebra::MatrixDiag, 300	corenc::Mesh::CEdgeConstantBasis, 54
Algebra::MatrixSkyline, 303	corenc::Mesh::CEdgeHermiteBasis, 57
	corenc::Mesh::CEdgeLinearBasis, 60
operator double	corenc::Mesh::CEdgeMultiBasis, 63
corenc::CFESolution, 86	corenc::Mesh::CFiniteElement< Shape, Shape-
operator!=	Function, bool, bool >, 113
corenc::CFESolution, 86	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::Point, 311	Function, DoF, bool >, 121
operator<	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::Point, 311	Function, DoF, $T >$, 96
operator>>	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CCube, 31	Function >, 104
corenc::Mesh::CEdge, 48	corenc::Mesh::CMesh1D, 133
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CNode, 141
Function, bool, bool >, 114	corenc::Mesh::CNodeBasis, 144
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangle, 152
Function, DoF, bool >, 123 corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CRectangleBasis, 157
corenc::Mesh::CFiniteElement $<$ Shape, Shape-Function, DoF, T $>$, 98	corenc::Mesh::CRectangleBasis2, 160
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CRectangleBasis2x, 163
Function >, 106	corenc::Mesh::CRectangleBasis2y, 166
corenc::Mesh::CNode, 141	corenc::Mesh::CRectangleConstantBasis, 169
corenc::Mesh::CRectangle, 153	corenc::Mesh::CRectangleHBasis, 173
corenc::Mesh::CTriangle, 204	corenc::Mesh::CRegularMesh, 178
corenc::Mesh::CTriangleLinear, 217	corenc::Mesh::CRegularMesh3D, 185
operator*	corenc::Mesh::CTriangle, 203
corenc::CFESolution, 88	corenc::Mesh::CTriangleBasis, 209
corenc::Mesh::Point, 310–312	corenc::Mesh::CTriangleLagrangeBasis, 213
operator*=	corenc::Mesh::CTriangleLinear, 217
corenc::CFESolution, 87	corenc::Mesh::CTriangleLinearBasis, 221
corenc::Mesh::Point, 310	corenc::Mesh::CTriangularMesh, 226
operator()	corenc::Mesh::Point, 311
Algebra::Matrix, 297	corenc::Mesh::point_source< T >, 314
Algebra::MatrixDiag, 300	corenc::method::DGSolution < Grid >, 254
Algebra::MatrixSkyline, 303	corenc::method::FEMethod< Problem, Grid, Matrix
operator+	>, 272

corenc::method::STSolution< Grid >, 318	corenc::GaussianProcess, 286
operator==	Point agreement Annual Point An
corenc::CFESolution, 87 corenc::Mesh::CCube, 31	corenc::Mesh::Point, 310
corenc::Mesh::CEdge, 48	Point.h CORENC_MESH_Point_h, 491
corenc::Mesh::CFiniteElement< Shape, Shape-	point_source
Function, bool, bool >, 114	corenc::Mesh::point_source< T >, 313
corenc::Mesh::CFiniteElement< Shape, Shape-	Problems.h
Function, DoF, bool >, 123	CORENC PROBLEMS PROBLEMS H , 497
corenc::Mesh::CFiniteElement< Shape, Shape-	Problems/BurgersScalar.cpp, 494
Function, DoF, T >, 98	Problems/BurgersScalar.h, 494
corenc::Mesh::CFiniteElement2D< Shape, Shape-	Problems/DiffusionScalar.cpp, 495
Function >, 106	Problems/DiffusionScalar.h, 495
corenc::Mesh::CNode, 141	Problems/Problems.h, 496, 497
corenc::Mesh::CRectangle, 152	Problems/ShallowWater.cpp, 497
corenc::Mesh::CTriangle, 203	Problems/ShallowWater.h, 497, 498
corenc::Mesh::CTriangleLinear, 217	ProjectSolution
corenc::Mesh::Point, 311	corenc::method::DGMethod< Problem, Grid, Ma-
OutDatFormat	trix >, 245
corenc::method::DGMethod< Problem, Grid, Ma-	corenc::method::DGMethodZero< Problem, Grid,
trix >, 244	Matrix >, 251
corenc::method::DGMethodZero< Problem, Grid,	corenc::method::FEMethod< Problem, Grid, Matrix
Matrix $>$, 251	>, 273
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::method::FEMethodZero< Problem, Grid,
>, 272	Matrix >, 279
corenc::method::FEMethodZero< Problem, Grid,	PURPLE
Matrix >, 279	corenc::color, 18
OutMeshFormat	rayleigh
corenc::method::DGMethod< Problem, Grid, Ma-	corenc::solvers::eigen_solver< Matrix, Solver >,
trix >, 244 corenc::method::DGMethodZero< Problem, Grid,	255
Matrix >, 251	Rectangle
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::Mesh, 20
>, 272	RED
corenc::method::FEMethodZero< Problem, Grid,	corenc::color, 18
Matrix >, 279	Rediscretization
OutMeshTimeFormat	corenc::method::DGMethod< Problem, Grid, Ma-
corenc::method::DGMethod< Problem, Grid, Ma-	trix >, 245
trix >, 244	corenc::method::DGMethodZero< Problem, Grid,
corenc::method::DGMethodZero< Problem, Grid,	Matrix >, 252
Matrix >, 251	corenc::method::FEMethod< Problem, Grid, Matrix
corenc::method::FEMethod< Problem, Grid, Matrix	>, 273
>, 272	corenc::method::FEMethodZero< Problem, Grid, Matrix >, 280
corenc::method::FEMethodZero< Problem, Grid,	refine_h
Matrix $>$, 279	corenc::Mesh::CRegularMesh, 179
parameter	corenc::Mesh::CRegularMesh3D, 185
corenc::Mesh::parameter< T >, 307, 308	corenc::Mesh::CTriangularMesh, 226
Parameter.h	corenc::Mesh::CTriangularMeshLinear, 232
CORENC_MESH_PARAMETER_H_, 489	refine_hp
Parameters	corenc::Mesh::CRegularMesh, 179
corenc, 15	corenc::Mesh::CRegularMesh3D, 185
PARDISO	corenc::Mesh::CTriangularMesh, 226
Algebra, 13	refine_hx
Pardiso	corenc::Mesh::CRegularMesh, 179
Algebra::ESolver, 260	corenc::Mesh::CRegularMesh3D, 185
perform	refine_hy
corenc::test_cases, 330	corenc::Mesh::CRegularMesh, 179
phi	corenc::Mesh::CRegularMesh3D, 186

refine_p	SECOND
corenc::Mesh::CRegularMesh, 179	corenc::method, 22
corenc::Mesh::CRegularMesh3D, 186	set
corenc::Mesh::CTriangularMesh, 226	corenc::Mesh::parameter< T >, 309
RegularMesh.cpp	corenc::multi_vector< T >, 305
sort_indexes, 390	set2ndOrder
RegularMesh3D.cpp	corenc::Mesh::CTriangularMesh, 226
sort_indexes, 393	set3rdOrder
Reload	corenc::Mesh::CTriangularMesh, 227
Algebra::ESolver, 260	set4thOrder
removeTerm	corenc::Mesh::CTriangularMesh, 227
corenc::CBurgersScalar, 26	set_boundary_parameter
corenc::CDiffusionScalar, 44	corenc::CDiffusionScalar, 44
corenc::CShallowWater, 191	corenc::CShallowWater, 191
resize	set_parameter
corenc::multi_vector< T >, 305	corenc::CDiffusionScalar, 44
ReverseNormal	corenc::CShallowWater, 191
corenc::Mesh::CCubeBasis, 35	set_point_source
corenc::Mesh::CEdge2ndBasis, 51	corenc::CDiffusionScalar, 44
corenc::Mesh::CEdgeConstantBasis, 54	SetDoF
corenc::Mesh::CEdgeHermiteBasis, 57	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CEdgeLinearBasis, 60	Function, DoF, bool >, 121
corenc::Mesh::CEdgeMultiBasis, 63	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CElement< bool >, 81	Function, DoF, T >, 96
corenc::Mesh::CElement< T >, 68	SetEdge
corenc::Mesh::CElement2D< bool >, 77	corenc::Mesh::CCube, 31
corenc::Mesh::CElement2D< T >, 73	corenc::Mesh::CRectangle, 153
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::Mesh::CShape, 194
Function, bool, bool >, 113	corenc::Mesh::CTriangle, 204
	corenc::Mesh::CTriangleLinear, 218
corenc::Mesh::CFiniteElement< Shape, Shape- Function, DoF, bool >, 121	SetFacet
	corenc::Mesh::CCube, 32
·	
Function, DoF, T >, 96	corenc::Mesh::CRectangle, 153
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CShape, 195
Function >, 105	corenc::Mesh::CTriangle, 204
corenc::Mesh::CNodeBasis, 144	corenc::Mesh::CTriangleLinear, 218
corenc::Mesh::CRectangleBasis, 157	SetNeighbour
corenc::Mesh::CRectangleBasis2, 160	corenc::Mesh::CElement< bool >, 81
corenc::Mesh::CRectangleBasis2x, 163	corenc::Mesh::CElement< T >, 68
corenc::Mesh::CRectangleBasis2y, 166	corenc::Mesh::CElement2D< bool >, 77
corenc::Mesh::CRectangleConstantBasis, 170	corenc::Mesh::CElement2D< T >, 73
corenc::Mesh::CRectangleHBasis, 173	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CShapeFunction< Type >, 197	Function, bool, bool >, 113
corenc::Mesh::CTriangleBasis, 209	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CTriangleLagrangeBasis, 213	Function, DoF, bool >, 122
corenc::Mesh::CTriangleLinearBasis, 221	corenc::Mesh::CFiniteElement< Shape, Shape-
RungeKutta	Function, DoF, T >, 97
corenc::method::RungeKutta< Problem, Type >,	corenc::Mesh::CFiniteElement2D< Shape, Shape-
315	Function >, 105
RUV	SetNode
corenc, 15	corenc::Mesh::CCube, 32
6	corenc::Mesh::CEdge, 48
S sorrangual varauvantar calution 200	corenc::Mesh::CElement< bool >, 81
corenc::solvers::vector_solution, 332	corenc::Mesh::CElement< T >, 68
s_point	corenc::Mesh::CElement2D< bool >, 77
Triangle.cpp, 379	corenc::Mesh::CElement2D< T >, 73
wtf, 24	corenc::Mesh::CFiniteElement< Shape, Shape-
scalar_func	Function, bool, bool >, 113
corenc, 15	

corenc::Mesh::CFiniteElement< Shape, Shape- Function, DoF, bool >, 122	corenc::CShallowWater, 191 SetTimeStep
corenc::Mesh::CFiniteElement< Shape, Shape-	corenc::method::DGMethod< Problem, Grid, Ma-
Function, DoF, T >, 97	trix >, 246
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::method::DGMethodZero< Problem, Grid,
Function >, 105	Matrix >, 252
corenc::Mesh::CNode, 141 corenc::Mesh::CRectangle, 153	corenc::method::FEMethod< Problem, Grid, Matrix >, 274
corenc::Mesh::CShape, 195	corenc::method::FEMethodZero< Problem, Grid,
corenc::Mesh::CTriangle, 204	Matrix >, 280
corenc::Mesh::CTriangleLinear, 218	SetType
SetOrder	corenc::Mesh::CElement< bool >, 82
corenc::Mesh::CCube, 32	corenc::Mesh::CElement< T >, 68
corenc::Mesh::CElement2D< bool >, 78	corenc::Mesh::CElement2D< bool >, 78
corenc::Mesh::CElement2D< T >, 73	corenc::Mesh::CElement2D< T >, 74
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::Mesh::CFiniteElement< Shape, Shape-
Function $>$, 105	Function, bool, bool >, 114
corenc::Mesh::CRectangle, 153	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CRectangleHBasis, 173	Function, DoF, bool >, 122
setParameter	corenc::Mesh::CFiniteElement< Shape, Shape-
corenc::Mesh::CMesh< bool >, 137	Function, DoF, T >, 97
corenc::Mesh::CMesh< T >, 127	corenc::Mesh::CFiniteElement2D< Shape, Shape-
corenc::Mesh::CMesh1D, 133	Function >, 106
corenc::Mesh::CRegularMesh, 179 corenc::Mesh::CRegularMesh3D, 186	sigma2 corenc::GaussianProcess, 288
corenc::Mesh::CTriangularMesh, 227	size
corenc::Mesh::CTriangularMeshLinear, 232	corenc::multi_vector< T >, 306
SetShape	Solve
corenc::Mesh::CFiniteElement< Shape, Shape-	Algebra::ESolver, 260
Function, bool, bool >, 114	corenc::CFiniteSolver< Method, Mesh, Solver >,
corenc::Mesh::CFiniteElement< Shape, Shape-	124
Function, DoF, bool >, 122	corenc::method::FVMethod1d, 281
corenc::Mesh::CFiniteElement< Shape, Shape-	solve
Function, DoF, $T >$, 97	corenc::solvers::dg_shallow_water< Mesh >, 235
corenc::Mesh::CFiniteElement2D< Shape, Shape-	corenc::solvers::dg_solver_shallow_water, 239
Function >, 105	solver
SetShapeFunction	test_case_solver.cpp, 521
corenc::Mesh::CFiniteElement< Shape, Shape- Function, bool, bool >, 114	Solvers
corenc::Mesh::CFiniteElement< Shape, Shape-	Algebra, 13 Solvers/dg_solver.h, 498, 499
Function, DoF, bool >, 122	Solvers/dg_solver_shallow_water.cpp, 500
corenc::Mesh::CFiniteElement< Shape, Shape-	Solvers/dg_solver_shallow_water.h, 500, 501
Function, DoF, T >, 97	Solvers/eigen_solver.h, 508
corenc::Mesh::CFiniteElement2D< Shape, Shape-	Solvers/fem_solver.h, 509
Function >, 106	Solvers/fem_solver_lib.h, 512
SetSolution	sort_indexes
corenc::method::DGMethod< Problem, Grid, Ma-	RegularMesh.cpp, 390
trix >, 245	RegularMesh3D.cpp, 393
corenc::method::DGMethodZero< Problem, Grid,	TriangularMesh.cpp, 395
Matrix >, 252	strees_matrix_3rd_order
corenc::method::FEMethod< Problem, Grid, Matrix	corenc::test_case_elliptic_fem, 325
>, 273 corenc::method::FEMethodZero< Problem, Grid,	stress_matrix
Matrix >, 280	corenc::tests::test_case_rectanglebasis, 326 corenc::tests::test_case_trianglebasis, 329
setTerm	stress_matrix_4th_order
corenc::CBurgersScalar, 27	corenc::test_case_elliptic_fem, 325
corenc::CDiffusionScalar, 45	STSolution
corenc::CProblem, 148	corenc::method::STSolution < Grid >, 316, 317

SUPG	Tests/test_conv_diff.cpp, 523
corenc, 15	Tests/test_conv_diff.h, 524
system_dg_method	TetrahedralMesh
corenc::method::system_dg_method< Problem,	corenc::Mesh, 20
Grid, Matrix >, 319	Tetrahedron
system_dg_method.h	corenc::Mesh, 20
CORENC_METHODS_SYSTEM_DG_METHOD_H_	
479	corenc::method, 22
Terms	toDGSolution
corenc, 15	corenc::method::system_dg_method< Problem,
test_case_elliptic_fem	Grid, Matrix >, 321
corenc::test_case_elliptic_fem, 323	totalsize
test_case_elliptic_fem.cpp	corenc::multi_vector< T >, 306
_USE_MATH_DEFINES, 518	transpose_sky
kekus, 518	Algebra::MatrixSkyline, 303 Triangle
test_case_rectanglebasis	corenc::Mesh, 20
corenc::tests::test_case_rectanglebasis, 326	Triangle.cpp
test_case_rectanglebasis.h	center_point, 379
CORENC_TEST_CASE_RECTANGLEBASIS_H_,	mid point, 379
516	s_point, 379
test_case_regular_mesh	TriangularMesh
corenc::tests::test_case_regular_mesh, 327	corenc::Mesh, 20
test_case_regular_mesh.h	TriangularMesh.cpp
CORENC_TEST_CASE_REGULAR_MESH_H_,	sort_indexes, 395
520	3011_IIIdexe3, 000
test_case_solver	updateSolution
corenc::test_case_solver, 328	corenc::Mesh::CMesh< bool >, 137, 138
test_case_solver.cpp	corenc::Mesh::CMesh< T >, 127, 128
_USE_MATH_DEFINES, 521	corenc::Mesh::CMesh1D, 133, 134
solver, 521	corenc::Mesh::CRegularMesh, 180
test_case_trianglebasis	corenc::Mesh::CRegularMesh3D, 186, 187
corenc::tests::test_case_trianglebasis, 328	corenc::Mesh::CTriangularMesh, 227, 228
test_case_trianglebasis.h	corenc::Mesh::CTriangularMeshLinear, 232, 233
CORENC_TEST_CASE_TRIANGLEBASIS_H_,	updateTimestep
517	corenc::method::RungeKutta< Problem, Type >,
test_cases	315
corenc::test_cases, 329	updateWeight
test_cases.h	corenc::CFEweights, 89
CORENC_TEST_CASES_H_, 522	corenc::method::DGSolution < Grid >, 254
test_conv_diff	corenc::method::STSolution < Grid >, 318
corenc::test_conv_diff, 331	updateWeights
test_conv_diff.cpp	corenc::method::system_dg_method< Problem,
_USE_MATH_DEFINES, 523	Grid, Matrix >, 321
Tests/FiniteElements/test_case_rectanglebasis.cpp,	Upwind
515	corenc::method, 22
Tests/FiniteElements/test_case_rectanglebasis.h, 515,	
516	vector_func
Tests/FiniteElements/test_case_trianglebasis.cpp, 516	corenc, 15
Tests/FiniteElements/test_case_trianglebasis.h, 516,	vector_solution
517	corenc::solvers::vector_solution, 332
Tests/test_case_elliptic_fem.cpp, 517	WHITE
Tests/test_case_elliptic_fem.h, 518, 519	WHITE
Tests/test_case_regular_mesh.cpp, 519	corenc::color, 18
Tests/test_case_regular_mesh.h, 519, 520	wtf, 23
Tests/test_case_solver.cpp, 520	center_point, 23
Tests/test_case_solver.h, 521	mid_point, 23
Tests/test_cases.cpp, 522	s_point, 24
Tests/test_cases.h, 522, 523	

```
x corenc::Mesh::Point, 312

y corenc::Mesh::Point, 312

YELLOW corenc::color, 18

z corenc::Mesh::Point, 313
```