DISCIPLINE SPECIFIC CORE COURSE – 11: Machine Learning (INDSC4B)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course	Credits	s Credit distribution of the cours			Eligibility	Pre-requisite
title &		Lecture	Tutorial	Practical/	criteria	of the course
Code				Practice		(if any)
Machine	04	02	-	02	Class XII	Understanding
Learning					passed with	of
(INDSC4B)					Physics +	Mathematics
					Mathematics	&
					/Applied	programming
					Mathematics	language
					+ Chemistry/	
					Computer	
					Science/Infor	
					matics	
					Practices	

Learning Objectives

The Learning Objectives of this course are as follows:

- Students have an understanding of issues and challenges of Machine Learning.
- Students should be able to select data, model selection, model complexity etc.
- Understanding of the strengths and weaknesses of many popular machine learning approaches.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Identify the characteristics of datasets and compare the trivial data and big data for various applications.
- Understand machine learning techniques and computing environments that are suitable for the applications under consideration .
- Solve problems associated with batch learning and online learning, and the big data characteristics such as high dimensionality, dynamically growing data and in particular scalability issues.
- Develop scaling up machine learning techniques and associated computing techniques and technologies for various applications.
- Implement various ways of selecting suitable model parameters for different machine learning techniques.
- Integrate machine learning libraries, and mathematical and statistical tools with modern

- technologies like hadoop distributed file system and mapreduce programming model
- Familiarize with Simple Linear Regression and Logistic Regression.
- Appreciate the various nuances of Multiple Regressions and Model Building.
- Identify and apply the Classification algorithms.
- Apply the Clustering algorithms for developing applications

SYLLABUS OF DSC-11

UNIT – 1 (8 hours)

Introduction to Machine Learning: varieties of machine learning, Supervised Learning, Unsupervised Learning, Reinforcement Learning. Dimensionality Reduction, Subset Selection, Shrinkage Methods, Principal Components Regression: Linear Classification, Logistic Regression, Linear Discriminant Analysis, Optimization, Classification-Separating Hyperplanes Classification.

UNIT – 2 (8 hours)

Learning input/output functions, sample application. Boolean functions and their classes, CNF, DNF, decision lists and Bias – Variance, Version spaces for learning, version graphs, learning search of a version space, candidate elimination methods.

UNIT – 3 (8 hours)

Artificial Neural Networks (Early models, Back Propagation, Initialization, Training & Validation) Parameter Estimation (Maximum Likelihood Estimation, Bayesian Parameter Estimation) Decision Trees: ID4, C4.5, CART, Evaluation Measures, Hypothesis Testing.

UNIT – 4 (6 hours)

Clustering, Gaussian Mixture Models, Spectral Clustering, Ensemble Methods Learning Theory, Graphical Models.

K-Nearest Neighbors: Computational geometry; Voronoi Diagrams; Delaunay Triangulations K-Nearest Neighbor algorithm; Wilson editing and triangulations. Aspects to consider while designing K-Nearest Neighbor, Support Vector Machines and its classifications. Linear learning machines and Kernel space, Making Kernels and working in feature space.

Practical component:

(60 hour)

Hardware requirement: i5 Processor, 8GB RAM, Internet Connection Software Environment: IDE recommended PYCHARM (Recommended), JUPYTER, VISUAL STUDIO

- 1. Introduction to pandas and NumPy
- 2. Prediction based on different dataset: Vegetable Quality Prediction, Housing Price Prediction, Air Quality Prediction, Car Price Prediction

- 3. Prediction of diseases e.g. Liver Disease Prediction, Heart Disease Prediction, Crop disease.
- 4. Credit Default Prediction, Airline Passengers Prediction, Stock Price Prediction.
- 5. Bank Marketing, Media Content Problem, Online Retail Case Study
- 6. Energy Efficiency Analysis, Movie Sentiment Analysis, Car Evaluation
- 7. Program to demonstrate Simple Linear Regression
- 8. Program to demonstrate Logistic Regression using SCIKIT learn
- 9. Program to demonstrate Logistic Regression
- 10. Program to demonstrate k-Nearest Neighbor flowers classification
- 11. Program to demonstrate Decision Tree ID3 Algorithm
- 12. Program to demonstrate Naïve- Bayes Classifier
- 13. Program to demonstrate Back-Propagation Algorithm
- 14. Program to demonstrate k-means clustering algorithm
- 15. Program to demonstrate K-Means Clustering Algorithm on Handwritten Dataset
- 16. Program to demonstrate K-Medoid clustering algorithm
- 17. Program to demonstrate DBSCAN clustering algorithm
- 18. Program to demonstrate SVM based classification
- 19. Program to demonstrate PCA on face recognition
- 20. Program to demonstrate PCA and LDA on Iris dataset
- 21. Mini Project works shall be given with a batch of four students considering different datasets such as digit dataset, face dataset, flower dataset and microarray dataset.

Essential/recommended readings

- 1. Introduction to Machine learning, Nils J.Nilsson
- 2. Pattern Recognition and Machine Learning. Christopher Bishop. First Edition, Springer, 2006.
- 3. Pattern Classification. Richard Duda, Peter Hart and David Stock. Second Edition, Wiley-Interscience, 2000.
- 4. Machine Learning. Tom Mitchell. First Edition, McGraw-Hill, 1997.
- 5. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e, 2008.

Suggestive readings

- 1. Christopher Bishop. Pattern Recognition and Machine Learning. 2e.
- 2. Tom M. Mitchell, "Machine Learning", McGraw-Hill, 2010
- 3. Bishop, Christopher. Neural Networks for Pattern Recognition. New York, NY: Oxford University Press, 1995.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.