group86_other_algorithms

November 17, 2020

1 COMP5318 - Machine Learning and Data Mining: Assignment 2

```
Group 86
tlin4302 | 470322974 | Jenny Tsai-chen Lin
jsun4242 | 500409987 | Jiawei Sun
jyan2937 | 480546614 | Jinxuan Yang
```

1.1 The notebook includes sections:

- Section 0. Hardware and software specifications
- Section 1. Library and general functions
- Section 2. Data pre-processing
- Section 3. Implement algorithms
 - 3.1 AdaBoost Classifier
 - 3.2 Convolutional Neural Network Classifier
 - 3.3 Support-Vector-Machine Classifier
- Section 4. Compare result between algorithms in train dataset
- Section 5: Best perfroming algorithms in testing data (we will submit this in seperate notebook

1.2 CODE RUNNING INSTRUCTIONS:

Instruction:

Simply change the switches in **0.Switches** blocks and run all.

```
Dataset directory:

Same directory as the jupyter notebook, in the format of:
---[current dir]
|----[This file]
|----[dataset]
|----test
|----train
```

The default parameters will used the saved model to run simple tests, and load confusion matrices, accuracies, etc. from disk and plot them for display purpose.

1.2.1 Hardware and software specifications

hardware: 1. CPU: Intel i
7-8700 K@3.70 GHz 2. RAM: 64 G DDR4 3000 MHz 3. Graphics: N
Vidia GeForce GTX 1080 Ti 4. Chipset: Z370

1.2.2 Software specifications

```
[1]: import os, platform
     print('OS name:', os.name, ', system:', platform.system(), ', release:', u
     →platform.release())
     import sys
     print("Anaconda version:")
     #!conda list anaconda
     print("Python version: ", sys.version)
     print("Python version info: ", sys.version_info)
     import PIL
     from PIL import Image
     print("PIL version: ", PIL.__version__)
     import matplotlib
     import matplotlib.pyplot as plt
     print("Matplotlib version: ", matplotlib.__version__)
     #import tensorflow as tf
     #print("Keras version:", tf.keras.__version__)
     import cv2
     print("OpenCV version: ", cv2.__version__)
     import numpy as np
     print("nump version: ", np.__version__)
    OS name: nt , system: Windows , release: 10
    Anaconda version:
    Python version: 3.8.3 (default, Jul 2 2020, 17:30:36) [MSC v.1916 64 bit
    (AMD64)]
    Python version info: sys.version_info(major=3, minor=8, micro=3,
    releaselevel='final', serial=0)
    PIL version: 7.2.0
    Matplotlib version: 3.2.2
    OpenCV version: 4.4.0
    nump version: 1.18.5
```

1.3 Section 0. Switches (Default settings is great for demo purpose)

Load saved model or run training?

```
[2]: load_saved_model = True
```

```
Run preprocessing benchmark or not?
```

```
[3]: run_preprocessing_benchmark = True
```

```
Run test code for 3 classifiers?
```

```
[4]: run_test_code_for_classifiers = True
```

number of threads when preprocessing images

```
[5]: g_thread_num = 6
```

Run hyper parameter tuning? (Slow if turned on!)

```
[6]: # Caution: Slow if turned on.
do_hyper_parameter_tuning = False
```

Run 10-fold cross validation? (Slow if turned on)

```
[7]: # Caution: Slow if turned on.
run_ten_fold = False
```

1.4 Section 1. Library and general functions

```
[8]: # Go to anaconda prompt to install package imblearn
# anaconda: conda install -c glemaitre imbalanced-learn
#pip install kmeans-smote

from skimage import io, transform
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

import cv2
import time
```

1.4.1 global variables

```
[9]: # choose one of below two line depend file location*****

g_dataset_dir = "./dataset/"

#g_dataset_dir = "../dataset/"

a_random_file = "./dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg"
#a_random_file = "../dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg"

saved_model_path = "./saved_model/"
abc_model_file = saved_model_path + "abc_dump.pkl"
svc_model_file = saved_model_path + "svc_dump.pkl"
cnn_model_file = saved_model_path + "cnn_weights"
```

```
ten_fold_result_path = "./ten_fold_results/"
# define global variable
g_train_dir = g_dataset_dir + "/train/"
g_test_dir = g_dataset_dir + "/test/"
g_{image_size} = 400
g_grid_row = 8
g_grid_col = 8
g_grid_num = g_grid_row * g_grid_col
g_grid_size = int(g_image_size / g_grid_row)
#Processing 1 - scale down
g_down_sampled_size = 200
g_down_sampled_grid_size = int(g_grid_size / (g_image_size /__

→g_down_sampled_size))
# global instance of mapping of char vs chess pieces
# reference: Forsyth-Edwards Notation, https://en.wikipedia.org/wiki/
→Forsyth%E2%80%93Edwards_Notation
\# pawn = "P", knight = "N", bishop = "B", rook = "R", queen = "Q" and king = "K"
# White pieces are designated using upper-case letters ("PNBRQK") while black
→pieces use lowercase ("pnbrqk")
# we use 0 to note an empty grid.
# 13 items in total.
g_piece_mapping = {
    "P" : "pawn",
    "N" : "knight",
    "B" : "bishop",
    "R" : "rook",
    "Q" : "queen",
    "K" : "king",
    "p" : "pawn",
    "n" : "knight",
    "b" : "bishop",
    "r" : "rook",
    "q" : "queen",
    "k" : "king",
```

```
"0" : "empty_grid"
}
g_num_labels = len(g_piece_mapping)
g_labels = ["P",
"N",
"B",
"R",
"Q",
"K",
"p",
"n".
"b".
"r",
"q",
"k",
"0"]
```

1.4.2 Helper codes for label & board

```
[10]: #DataHelper.py
      import os
      import cv2
      from skimage import io
      import numpy as np
      import glob
      import h5py
      # get clean name by a path, where in our case this gets the FEN conviniently
      def GetCleanNameByPath(file_name):
          return os.path.splitext(os.path.basename(file_name))[0]
      # get full paths to the files in a directory.
      def GetFileNamesInDir(path_name, extension="*", num_return = 0):
          if num_return == 0:
              return glob.glob(path_name + "/*." + extension)
          else:
              return glob.glob(path_name + "/*." + extension)[:num_return]
      # get name list
      def GetCleanNamesInDir(path_name, extension = "*", num_return = 0):
          names = GetFileNamesInDir(path_name, extension)
```

```
offset = len(extension) + 1
    clean_names = [os.path.basename(x)[:-offset] for x in names]
   if num_return == 0:
        return clean_names
   else:
       return clean_names[:num_return]
# read dataset
def ReadImages(file_names, path = "", format = cv2.IMREAD_COLOR):
   if path == "":
        return [cv2.imread(f, format) for f in file names]
       return [cv2.imread(path + "/" + f, format) for f in file_names]
# read image by name
def ReadImage(file_name, gray = False):
   return io.imread(file_name, as_gray = gray)
# h5py functions
# read h5py file
# we assume the labels and
def ReadH5pyFile(file name, data name):
   h5_buffer = h5py.File(file_name)
   return h5 buffer[data name].copy()
# write h5py file
def WriteH5pyFile(file_name, mat, data_name = "dataset"):
   with h5py.File(file_name, 'w') as f:
        f.create_dataset(data_name, data = mat)
import re
import string
```

```
import re
import string
from collections import OrderedDict

import numpy as np
import skimage.util
from skimage.util.shape import view_as_blocks

#from ChessGlobalDefs import *

#FEN TO LABELS OF SQUARES
def FENtoL(fen):
    rules = {
```

```
r"-": r"",
        r"1": r"0",
       r"2": r"00",
       r"3": r"000",
       r"4": r"0000",
       r"5": r"00000",
       r"6": r"000000",
       r"7": r"0000000",
       r"8": r"00000000",
    }
   for key in rules.keys():
        fen = re.sub(key, rules[key], fen)
    return list(fen)
# Label array to char list:
def LabelArrayToL(arr):
    rules = {
       0 : "P",
        1 : "N",
        2 : "B",
       3 : "R",
       4 : "Q",
       5 : "K",
       6: "p",
       7 : "n",
       8 : "b".
       9 : "r",
      10 : "q",
      11: "k",
      12 : "0"
    }
   flattened = arr.flatten(order = "C")
   L = []
    for x in flattened:
        L.append(rules[x])
    return L
# char list to FEN
```

```
def LtoFEN(L):
   FEN = ""
   for y in range(8):
       counter = 0
       for x in range(8):
           idx = x + y * 8
           char = L[idx]
           if char == "0":
               counter += 1
               if x == 7:
                   FEN += str(counter)
           else:
               if counter:
                   FEN += str(counter)
                   counter = 0
               FEN += char
       if y != 7:
           FEN += "-"
   return FEN
# FEN to one-hot encoding, in our case, it returns an 64 by 13 array, with each
\hookrightarrow row as a one-hot to a grid.
def FENtoOneHot(fen):
    # this rule is in the same format as g_piece_mapping
    \#rules = {
         "P": np.array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
    #
         "N" : np.array([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "B": np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "R" : np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
         "Q" : np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]),
         "K" : np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]),
         "p": np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]),
         "n": np.array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]),
         "b": np.array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]),
         "r": np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]),
        "q": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]),
         "k": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]),
```

```
#
         "0": np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
    #}
    rules = {
        "P" : 0,
        "N" : 1,
        "B" : 2,
        "R" : 3,
        "Q" : 4,
        "K" : 5,
        "p" : 6,
        "n" : 7,
        "b" : 8,
        "r" : 9,
        "q" : 10,
        "k" : 11,
        "0" : 12
    }
    L = FENtoL(fen)
    one_hot_array = np.zeros((g_grid_num, g_num_labels), dtype = np.int32) # 64__
→ by 13
    for i, c in enumerate(L):
        one_hot_array[i, rules[c]] = 1
    return one_hot_array
# get 8*8 char matrix
def LtoCharMat(1):
    if type(1) == list:
        return np.array(1).reshape((8,8))
    if type(1) == str:
        return np.array([1]).reshape((8,8))
def GetBoardCell(board_image, row = 0, col = 0, size = 50):
    return np.array(board_image)[row*size:(row+1)*size,col*size:(col+1)*size]
# get grids of image
def ImageToGrids(image, grid_size_x, grid_size_y):
    return skimage.util.shape.view_as_blocks(image, block_shape = (grid_size_y,_

→grid_size_x, 3)).squeeze(axis = 2)
# get grids of image
def ImageToGrids_grey(image, grid_size_x, grid_size_y):
```

1.5 Section 2. Data pre-processing

1.5.1 Pre-processing - generic

```
[12]: # split into 64 small square from 1 board
      # image resized to 400x 400 to 200x 200. 64 square at 25x 25 each
      def PreprocessImage(image):
          image = transform.resize(image, (g_down_sampled_size, g_down_sampled_size),__
       →mode='constant')
          # 1st and 2nd dim is 8
          grids = ImageToGrids(image, g_down_sampled_grid_size,__
       →g down sampled grid size)
          return grids.reshape(g_grid_row * g_grid_col, g_down_sampled_grid_size,_u

→g_down_sampled_grid_size, 3)
      # split into 64 small square from 1 board -
      # output of x: number of image x 64 x 25 x 25 x 3 , y: number of image x 64 x 13
      def func_generator(train_file_names):
          x = []
          y = []
          for image_file_name in train_file_names:
              img = ReadImage(image_file_name)
              x.append(PreprocessImage(img))
              y.append(np.array(FENtoOneHot(GetCleanNameByPath(image file name))))
          return np.array(x), np.array(y)
```

```
x type : <class 'numpy.ndarray'>
x shape: (1, 64, 25, 25, 3)
y type : <class 'numpy.ndarray'>
y shape: (1, 64, 13)
```

[13]: <matplotlib.image.AxesImage at 0x1e80c167910>

1.5.2 Pre-processing - canny

```
x type : <class 'list'>
x[0] type : <class 'numpy.ndarray'>
x[0] shape: (64, 25, 25)
y type : <class 'list'>
y[0] type : <class 'numpy.ndarray'>
y[0] shape: (64,)
```

[15]: <matplotlib.image.AxesImage at 0x1e80c2465b0>

1.5.3 Pre-processing - SIFT

```
[16]: # Processing image with sift
      import cv2
      def ExtractSIFTForGrid(board_image, row, col, center_x = 25, center_y = 25,__
       \rightarrowradius = 45):
          kps = [cv2.KeyPoint(x = center_x + 50 * col, y = center_y + 50 * row, _size_
       →= 45)]
          # USE THE CORRECT VERSION OF CV2
          if cv2.__version__ == "4.4.0":
              keypoints, descriptors = cv2.SIFT_create(edgeThreshold = 0).
       →compute(image = board_image, keypoints = kps)
              keypoints, descriptors = cv2.xfeatures2d.SIFT_create(edgeThreshold = 0).
       →compute(image = board_image, keypoints = kps)
          return keypoints[0], descriptors[0, :]
      def PreprocessImage_sift(image):
          # 1st and 2nd dim is 8
          desc=[]
```

```
for i in range(8):
        for j in range(8):
            kp, d= ExtractSIFTForGrid(image,i,j)
            desc.append(np.array(d))
    return desc
# atomic func:
def func_sift(file_name):
    img = ReadImage(file_name)
    x = PreprocessImage_sift(img)
    y = np.array(FENtoL(GetCleanNameByPath(file name)))
    return x, y
# split into 64 small square from 1 - output of x: number of image x64 x128,
\rightarrow y:number of image x 64
def func generator sift(image file names):
    xs = []
    vs = []
    for image_file_name in image_file_names:
        x, y = func sift(image file name)
        xs.append(np.array(x))
        ys.append(np.array(y))
    return xs, ys
```

x type : <class 'list'>

```
x[0] type : <class 'numpy.ndarray'>
x[0] shape: (64, 128)
y type : <class 'list'>
y[0] type : <class 'numpy.ndarray'>
```

y[0] shape: (64,)

1.5.4 Example of image input, canny, SIFT

```
[18]: import cv2
from skimage.filters import sobel

#print("Sift: decriptor size:", cv2.SIFT_create().descriptorSize())
img = ReadImage(a_random_file)
img1 = cv2.Canny(img,100,200)
img2= sobel(img[:,:,0])
print(img.shape)
print(img1.shape)
print(img1.shape)
print(img2.shape)

kp, desc = ExtractSIFTForGrid(img, 0, 1)
kp2, desc2 = ExtractSIFTForGrid(img, 0, 3)
kp3, desc3 = ExtractSIFTForGrid(img, 0, 5)
kp4, desc4 = ExtractSIFTForGrid(img, 1, 3)
```

```
img_kp = cv2.drawKeypoints(img, [kp, kp2,kp3,kp4], img, flags=cv2.
→DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
img_kp1 = cv2.drawKeypoints(img1, [kp, kp2,kp3,kp4], img1, flags=cv2.
→DRAW MATCHES FLAGS DRAW RICH KEYPOINTS)
print('file name:',a_random_file)
plt.figure(figsize=(18,6))
plt.suptitle('Image processing output', fontsize=16)
plt.subplot(1, 3, 1)
plt.imshow(img_kp, aspect='auto')
plt.title('original image with keypoint')
plt.subplot(1, 3, 2)
plt.imshow(img2, aspect='auto')
plt.title('Sobel image')
plt.subplot(1, 3, 3)
plt.imshow(img1, aspect='auto')
plt.title('Canny image')
plt.show()
plt.figure(figsize=(15,6))
plt.suptitle('Sift output for original image at squares', fontsize=16)
#plt.tight layout()
plt.subplot(2, 2, 1)
plt.title('square 0,1(b)')
plt.bar(x = range(128), height = desc)
plt.xticks(x = range(128))
plt.subplot(2,2, 2)
plt.title('square 0,3(B)')
plt.bar(x = range(128), height = desc2)
plt.xticks(x = range(128))
plt.subplot(2,2,3)
plt.title('square 0,5(b)')
plt.bar(x = range(128), height = desc3)
plt.xticks(x = range(128))
plt.subplot(2,2,4)
plt.title('square 1,3(K)')
plt.bar(x = range(128), height = desc4)
plt.xticks(x = range(128))
```

plt.show()

(400, 400, 3) (400, 400) (400, 400)

file name: ./dataset/train/1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3.jpeg

Sift output for original image at squares

1.5.5 Read image - generic, canny, sift - run time

```
X_org,Y_org = func_generator(train_file_names)
print('runnning time for generic 100 images')
print('--- {} seconds ---'.format(time.time() - start_time))

X_sift,Y_sift = func_generator_sift(train_file_names)
print('runnning time for sift 100 images')
print('--- {} seconds ---'.format(time.time() - start_time))

start_time = time.time()
X_canny,Y_canny = func_generator_canny(train_file_names)
print('runnning time for canny 100 images')
print('--- {} seconds ---'.format(time.time() - start_time))
```

```
runnning time for generic 100 images
--- 1.9594979286193848 seconds ---
runnning time for sift 100 images
--- 28.49899911880493 seconds ---
runnning time for canny 100 images
--- 0.7249987125396729 seconds ---
```

1.5.6 Subset train data - high quality (image level)

reduced file number from 100 to 21

1.5.7 Undersempling -square (grid level)

```
[22]: # install the package if needed.
      if run preprocessing benchmark:
          !pip install imblearn
     Looking in indexes: https://pypi.douban.com/simple
     Requirement already satisfied: imblearn in g:\anaconda3\lib\site-packages (0.0)
     Requirement already satisfied: imbalanced-learn in g:\anaconda3\lib\site-
     packages (from imblearn) (0.7.0)
     Requirement already satisfied: scikit-learn>=0.23 in g:\anaconda3\lib\site-
     packages (from imbalanced-learn->imblearn) (0.23.2)
     Requirement already satisfied: scipy>=0.19.1 in g:\anaconda3\lib\site-packages
     (from imbalanced-learn->imblearn) (1.5.0)
     Requirement already satisfied: joblib>=0.11 in g:\anaconda3\lib\site-packages
     (from imbalanced-learn->imblearn) (0.16.0)
     Requirement already satisfied: numpy>=1.13.3 in g:\anaconda3\lib\site-packages
     (from imbalanced-learn->imblearn) (1.18.5)
     Requirement already satisfied: threadpoolctl>=2.0.0 in g:\anaconda3\lib\site-
     packages (from scikit-learn>=0.23->imbalanced-learn->imblearn) (2.1.0)
[23]: #subset data (in square level)
      #ref: #https://www.researchgate.net/post/
      → How_to_use_clustering_to_reduce_data_set_samples
      # implement using https://imbalanced-learn.readthedocs.io/en/stable/generated/
      → imblearn.under_sampling.ClusterCentroids.html
      if run_preprocessing_benchmark:
          from imblearn.under_sampling import ClusterCentroids
          # output x: number of grid x 125, y: number of grid
          def undersampling_ClusterCentroids_canny(X,Y):
              trans = ClusterCentroids(random state=0)
              length=len(np.array(Y))
              X= np.array(X).reshape(length*64,25*25)
              Y = np.array(Y).reshape(length*64)
              X_resampled, y_resampled = trans.fit_sample(X, Y)
              return X_resampled, y_resampled
          # output x: number of grid x 128, y: number of grid
          def undersampling_ClusterCentroids_sift(X,Y):
              trans = ClusterCentroids(random_state=0)
              length=len(np.array(Y))
              X= np.array(X).reshape(length*64,128)
              Y = np.array(Y).reshape(length*64)
```

X_resampled, y_resampled = trans.fit_sample(X, Y)

```
return X_resampled, y_resampled
```

```
[24]: if run_preprocessing_benchmark:
          # test canny -resampled
          start_time = time.time()
          X_resampled_canny, Y_resampled_canny =_
       →undersampling_ClusterCentroids_canny(X_canny,Y_canny)
          print('--- {} seconds ---'.format(time.time() - start_time))
          print('reduce grid number from',len(np.array(Y_canny))*64,'to',len(np.
       →array(Y_resampled_canny)))
          # test sift -resampled
          start_time = time.time()
          X_resampled_sift, Y_resampled_sift =
       →undersampling_ClusterCentroids_sift(X_sift,Y_sift)
          print('--- {} seconds ---'.format(time.time() - start time))
          print('reduce grid number from',len(np.array(Y_sift))*64,'to',len(np.
       →array(Y_resampled_sift)))
     --- 5.019449710845947 seconds ---
     reduce grid number from 6400 to 455
     --- 4.656001806259155 seconds ---
     reduce grid number from 6400 to 455
     1.5.8 Read Image - parallel version
[25]: from joblib import Parallel, delayed
      # note: functions are first-class objects in Python. we pass it directly as \Box
      \rightarrow parameter.
      def Preprocess_parallel(func, file_names, job_count = 6):
          result = Parallel(n_jobs=job_count)(delayed(func)(file_name) for file_name_u
       →in file_names)
          return zip(*result)
[26]: if run_preprocessing_benchmark:
          start_time = time.time()
          num_train = 100
          train_file_names = GetFileNamesInDir(g_train_dir, extension =_
       →"jpeg",num_return = num_train)
          xs, ys = Preprocess_parallel(func_canny, train_file_names)
          print('--- {} seconds ---'.format(time.time() - start_time))
```

--- 1.9814999103546143 seconds ---

1.5.9 Read file names

```
[27]: if do_hyper_parameter_tuning:
    # Using FEN to identify grid with chess

num_train = 500 # small bath train
num_test= 500 # small bath train

# Reading lables
train_file_names = GetFileNamesInDir(g_train_dir, extension = □
→"jpeg",num_return = num_train)
test_file_names = GetFileNamesInDir(g_test_dir, extension = □
→"jpeg",num_return = num_test)
```

1.6 Section 3. Implement algorithms

1.6.1 Section 3.0 AdaBoostClassifier (ABC) Prototype

Import data - SIFT output (n x 128)

```
[28]: if do_hyper_parameter_tuning:
          # import data - train
          start time = time.time()
          #xs_train, ys_train = Preprocess_parallel(train_file_names)
          xs_train_sift, ys_train_sift = Preprocess_parallel(func_sift,__
       →train_file_names) #[JL - I broke Preprocess_parallel. use this instead ]
          print('xs train sift, ys train sift generated:',len(xs train sift))
          print(np.array(xs_train_sift).shape, np.array(ys_train_sift).shape)
          print('--- {} seconds ---'.format(time.time() - start_time))
          # import data - test
          start time = time.time()
          #xs_train, ys_train = Preprocess_parallel(train_file_names)
          xs_test_sift, ys_test_sift = Preprocess_parallel(func_sift,__
       →test_file_names) #[JL - I broke Preprocess_parallel. use this instead ]
          print('xs_test_sift, ys_test_sift generated:',len(xs_test_sift))
          print(np.array(xs_test_sift).shape, np.array(ys_test_sift).shape)
          print('--- {} seconds ---'.format(time.time() - start_time))
```

intital prediction accuracy in sift data

```
[29]: if do_hyper_parameter_tuning:
    xs_train_sift2= np.array(xs_train_sift).reshape(500*64,128)
    ys_train_sift2 = np.array(ys_train_sift).reshape(500*64)
    print('shape of train data:',np.array(xs_train_sift2).shape, np.
    →array(ys_train_sift2).shape)
```

Import data - canny output (n x 25 x 25)

```
[30]: if do_hyper_parameter_tuning:
          # import data - train 500
         start_time = time.time()
          #xs train, ys train = Preprocess parallel(train file names)
         xs_train_canny, ys_train_canny = func_generator_canny(train_file_names) _
      →#[JL - I broke Preprocess parallel. use this instead ]
         print('xs_train_canny, ys_train_canny generated:',len(xs_train_canny))
         print(np.array(xs_train_canny).shape, np.array(ys_train_canny).shape)
         print('--- {} seconds ---'.format(time.time() - start_time))
          # import data - test 500
         start time = time.time()
         #xs_train, ys_train = Preprocess_parallel(train_file_names)
         xs_test_canny, ys_test_canny = func_generator_canny(test_file_names) #[JL_
      → - I broke Preprocess_parallel. use this instead ]
         print('xs_test_canny, ys_test_canny generated:',len(xs_test_canny))
         print(np.array(xs_test_canny).shape, np.array(ys_test_canny).shape)
         print('--- {} seconds ---'.format(time.time() - start_time))
```

intital prediction accuracy in canny data

```
[31]: if do_hyper_parameter_tuning:
    xs_train_canny2= np.array(xs_train_canny).reshape(500*64,25*25)
    ys_train_canny2 = np.array(ys_train_canny).reshape(500*64)
    print('shape of train data:',np.array(xs_train_canny2).shape, np.
    →array(ys_train_canny2).shape)
```

1.6.2 Proceed with canny data

Split train to train and validation

Undersampling traing set

```
[33]: if do_hyper_parameter_tuning:
    # test sift -resampled

start_time = time.time()

X_resampled, Y_resampled = U

oundersampling_ClusterCentroids_canny(X_train,Y_train)

print('--- {} seconds ---'.format(time.time() - start_time))

print('reduce grid number from',len(np.array(Y_train))*64,'to',len(np.oarray(Y_resampled)))
```

```
print('shape of resampled data:',np.array(X_resampled).shape, np.
       →array(Y_resampled).shape)
[34]: if do hyper parameter tuning:
          # reshpe train daa, validation data, and testing data as resampled
          X_train= np.array(X_train).reshape(335*64,25*25)
          Y_train = np.array(Y_train).reshape(335*64)
          print('shape of train data:',np.array(X_train).shape, np.array(Y_train).
       ⇒shape)
          X_val= np.array(X_val).reshape(165*64,25*25)
          Y val = np.array(Y val).reshape(165*64)
          print('shape of validation data:',np.array(X_val).shape, np.array(Y_val).
       →shape)
          xs_test_canny= np.array(xs_test_canny).reshape(num_test*64,25*25)
          ys_test_canny = np.array(ys_test_canny).reshape(num_test*64)
          print('shape of test data:',np.array(xs_test_canny).shape, np.
       →array(ys_test_canny).shape)
     Base classifier- Tree (with canny & canny resampling)
[35]: if do hyper parameter tuning:
          # Tree classifier - Canny data
          from sklearn.tree import DecisionTreeClassifier
          start_time = time.time()
          #Apply pre-pruning by limiting the depth of the tree - max depth=2
          tree = DecisionTreeClassifier(criterion='gini', max_depth=5)
          tree.fit(X_train, Y_train)
          #Evaluate its performance on the training and test set
          print("Accuracy on training set: {:.3f}".format(tree.score(X_train,_
       →Y_train)))
          print("Accuracy on validation set: {:.3f}".format(tree.score(X_val, Y_val)))
          print("Accuracy on testing set: {:.3f}".format(tree.score(xs_test_canny,__

ys_test_canny)))
          print('--- {} seconds ---'.format(time.time() - start_time))
[36]: if do_hyper_parameter_tuning:
          # Tree classifier - Canny & resampling data
          from sklearn.tree import DecisionTreeClassifier
          start_time = time.time()
          #Apply pre-pruning by limiting the depth of the tree
          tree = DecisionTreeClassifier(criterion='gini', max_depth=5)
```

tree.fit(X_resampled, Y_resampled)

```
#Evaluate its performance on the training and test set

print("Accuracy on training set: {:.3f}".format(tree.score(X_train,__

Y_train)))

print("Accuracy on validation set: {:.3f}".format(tree.score(X_val, Y_val)))

print("Accuracy on testing set: {:.3f}".format(tree.score(xs_test_canny,__

ys_test_canny)))

print('--- {} seconds ---'.format(time.time() - start_time))
```

AdaBoostClassifier- Tree (with canny & canny resampling)

```
[37]: if do hyper parameter tuning:
          # ABC classifier- Canny data
          from sklearn.ensemble import AdaBoostClassifier
          from sklearn.metrics import accuracy_score
          from sklearn.metrics import classification_report
          start_time = time.time()
          ada = AdaBoostClassifier(n_estimators=50,
                                   base_estimator =
       →DecisionTreeClassifier(criterion='gini', max_depth=5),
                                   learning rate=0.5,
                                   random state=42)
          ada.fit(X_train, Y_train)
          y_pred_val = ada.predict(X_val)
          y_pred_test = ada.predict(xs_test_canny)
          #Evaluate its performance on the training and test set
          print("AdaBoost- accuracy on validation set:", accuracy_score(Y_val,_
       →y_pred_val))
          print("AdaBoost- accuracy on testing set:", accuracy_score(ys_test_canny,_
       →y_pred_test))
          print('--- {} seconds ---'.format(time.time() - start_time))
```

```
#Evaluate its performance on the training and test set

print("AdaBoost- accuracy on validation set:", accuracy_score(Y_val,_

→y_pred_val))

print("AdaBoost- accuracy on testing set:", accuracy_score(ys_test_canny,_

→y_pred_test))

print('--- {} seconds ---'.format(time.time() - start_time))
```

Hyper parameter tunning

```
[39]: ###https://machinelearningmasteru.com/adaboost-ensemble-in-python/
      if do_hyper_parameter_tuning:
          from sklearn.ensemble import AdaBoostClassifier
          from sklearn.model_selection import GridSearchCV
          # AdaBoost
          param_grid = [{'n_estimators': np.arange(10,50,5),
                        'learning_rate': [0.01, 0.05, 0.1, 1,5,10]
                       }]
          start_time = time.time()
          abc = GridSearchCV(AdaBoostClassifier(random_state=42), param_grid)
          abc.fit(X_resampled, Y_resampled)
          print('--- {} seconds ---'.format(time.time() - start_time))
          # SVC
          param_grid = [{'n_estimators': np.arange(10,50,5),
                        'learning_rate': [0.01, 0.05, 0.1, 1,5,10],
                         "kernel" : ["linear", "poly", "rbf", "sigmoid"],
                         "C" : [0.01, 1, 10, 100]
                       }]
          start_time = time.time()
          svc = GridSearchCV(svm.SVC(random_state=42), param_grid)
          abc.fit(X_resampled, Y_resampled)
          print('--- {} seconds ---'.format(time.time() - start_time))
      else:
          print("Hyper parameter tuning skipped.")
```

Hyper parameter tuning skipped.

GridSearchCV Result

```
[40]: if do_hyper_parameter_tuning:
          # Print grid search results
          from sklearn.metrics import classification_report
          means = abc.cv_results_['mean_test_score']
          stds = abc.cv results ['std test score']
          params = abc.cv_results_['params']
          print('Grid search mean and stdev:\n')
          for mean, std, p in zip(means, stds, params):
              print("\%0.3f (+/-\%0.03f) for \%r"\% (mean, std * 2, p))
          # Print best params
          print('\nBest parameters:', abc.best_params_)
          print("Detailed classification report:")
          print()
          print(classification_report(Y_val, abc.predict(X_val)))
          print()
      else:
          print("Adaboost: Hyper parameter report skipped.")
```

Adaboost: Hyper parameter report skipped.

1.7 Section 3.1 SVM Classifier (SVC)

Base class for all classifiers

```
@abc.abstractmethod
def Predict(self, query_data):
    raise NotImplementedError()
```

Class definition for SVC

```
[42]: from sklearn import svm
      import numpy as np
      # image io and plotting
      from skimage import io, transform
      import skimage.util
      from skimage.util.shape import view_as_blocks
      from matplotlib import pyplot as plt
      # parallel processing
      from joblib import Parallel, delayed
      # model save and load
      import pickle
      import os
      # profiling
      import time
      # joblib needs the kernel to be a top-level function, so we defined it here.
      def PreprocessKernel(name):
          img = ReadImage(name, gray = True)
          grids = SVCClassifier.SVCPreprocess(img)
          labels = np.array(FENtoOneHot(GetCleanNameByPath(name))).argmax(axis=1)
          return grids, labels
      # SVM Classifier
      class SVCClassifier(IClassifier):
          def __init__(self):
              self.__svc__ = svm.SVC(C=1.0, cache_size=200, class_weight=None,_
       \rightarrowcoef0=0.0,
                                decision_function_shape='ovr', degree=3, gamma=0.001,__

→kernel='rbf',
                                max_iter=-1, probability=False, random_state=None,_
       ⇒shrinking=True,
                                tol=0.001, verbose=False)
          # this method should accept a list of file names of the training data
          def Train(self, train file names):
              print("svc: reading image.")
              start time = time.time()
              xs, ys = SVCClassifier.PreprocessParallelWrapperFunc(train_file_names)
```

```
print("svc: finished reading image, {} sec.".format(time.time() -
→start time))
       # train
       print("svc: start training.")
       start_time = time.time()
       self. svc .fit(xs, ys)
       print("svc: finished. {} sec.".format(time.time() - start_time))
   # this should accept a 400 * 400 * 3 numpy array as query data, and returns_{f U}
→ the fen notation of the board.
   def Predict(self, query_data):
       grids = SVCClassifier.SVCPreprocess(query data)
       y_pred = self.__svc__.predict(grids)
       return LabelArrayToL(y_pred)
   # predict by file name:
   def PredictMultiple(self, file_names):
       preds = []
       truth = []
       for f in file_names:
           img = ReadImage(f, gray = True)
           y_pred = self.Predict(img)
           y_true = FENtoL(GetCleanNameByPath(f))
           preds.append(y_pred)
           truth.append(y_true)
       all_pred = np.vstack(preds)
       all_truth = np.vstack(truth)
       return all_pred, all_truth
   # parallel pre-process wrapper:
   Ostaticmethod
   def PreprocessParallelWrapperFunc(file names, num thread = g thread num):
       result = Parallel(n_jobs =__
→num thread)(delayed(PreprocessKernel)(file_name) for file_name in file_names)
       xs, ys = zip(*result)
       xs = np.concatenate(xs, axis=0)
       ys = np.concatenate(ys)
       return xs, ys
   Ostaticmethod
   def SVCPreprocess(img):
       img = transform.resize(img, (g_down_sampled_size, g_down_sampled_size),_
→mode='constant')
       grids = skimage.util.shape.view_as_blocks(img, block_shape = __

→(g_down_sampled_grid_size, g_down_sampled_grid_size))
```

```
grids = grids.reshape((-1, grids.shape[3], grids.shape[3]))
  grids = grids.reshape((grids.shape[0], grids.shape[1] * grids.shape[1]))
  return grids

def SaveModel(self, save_file_name):
    os.makedirs(os.path.dirname(save_file_name), exist_ok = True)
    with open(save_file_name, 'wb') as file:
        pickle.dump(self.__svc__, file)

def LoadModel(self, load_file_name):
    with open(load_file_name, 'rb') as file:
        self.__svc__ = pickle.load(file)
```

Test code for SVC

```
[43]: if run_test_code_for_classifiers:
          svc = SVCClassifier()
          train_names = GetFileNamesInDir(g_train_dir)
          if load_saved_model:
              print("svc: loading model from " + svc_model_file)
              svc.LoadModel(svc_model_file)
          else:
              svc.Train(train_names[:500])
          y_truth = FENtoL(GetCleanNameByPath(a_random_file))
          img = ReadImage(a_random_file, gray = True)
          pred = svc.Predict(img)
          print("truth: ", ''.join(y_truth))
          print("pred : ", ''.join(pred))
          # save model
          if not load_saved_model:
              print("svc: saving model to " + svc_model_file)
              svc.SaveModel(svc_model_file)
```

svc: loading model from ./saved_model/svc_dump.pkl

1.7.1 Section 3.2 Convolutional Neural Network Classifier (CNN)

Class definition for CNN

```
[44]: import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import cv2
```

```
from skimage import io, transform
import numpy as np
import os
#import tensorflow as tf
#from tensorflow import keras
#from tf.keras.models import Sequential
#from tf.keras.layers.core import Flatten, Dense, Dropout, Activation
#from tf.keras.layers.convolutional import Convolution2D
class CNNClassifier(IClassifier):
    # the file name format does not accept batch as parameter. link:
    # https://github.com/tensorflow/tensorflow/issues/38668
    s_check_point_file_name = "./CNN_training_checkpoint/cp_{epoch:
→02d}-{accuracy:.2f}.ckpt"
    s_check_point_path = os.path.dirname(s_check_point_file_name)
   s_save_frequence = 10000 # save a checkpoint every s_save_frequence batches
   def __init__(self):
        #tf.config.threading.set inter op parallelism threads(3)
        #tf.config.threading.set_intra_op_parallelism_threads(3)
        # define our model
       self.__model__ = keras.Sequential(
                layers.Convolution2D(32, (3, 3), input_shape =

→(g_down_sampled_grid_size, g_down_sampled_grid_size, 3)),

                layers.Activation('relu'),
                layers.Dropout(0.1),
                layers.Convolution2D(32, (3, 3)),
                layers.Activation('relu'),
                layers.Convolution2D(32, (3, 3)),
                layers.Activation('relu'),
                layers.Flatten(),
                layers.Dense(128),
                layers.Activation('relu'),
                layers.Dropout(0.3),
                layers.Dense(13),
                layers.Activation("softmax")
           ]
        )
```

```
self.__model__.compile(loss = "categorical_crossentropy", optimizer =_
→ 'adam', metrics = ["accuracy"])
       self.__save_check_point_callback__ = tf.keras.callbacks.ModelCheckpoint(
           filepath = CNNClassifier.s check point file name,
           monitor='val_accuracy',
           save_weights_only = True,
           save_freq = CNNClassifier.s_save_frequence,
           verbose = 1
           )
    # generator
   Ostaticmethod
   def func_generator(train_file_names):
       for image file name in train file names:
           img = ReadImage(image_file_name)
           x = CNNClassifier.PreprocessImage(img)
           y = np.array(FENtoOneHot(GetCleanNameByPath(image_file_name)))
           yield x, y
   # this method should accept N * 64 * m * n numpy array as train data, and N_{\sqcup}
\rightarrow lists of 64 chars as label.
   def Train(self, train_data_names):
       train_size = len(train_data_names)
       ## try load last checkpoint
       #if not self.LoadMostRecentModel():
            os.makedirs(CNNClassifier.s_check_point_path, exist_ok = True)
       # train
       self.__model__.fit(CNNClassifier.func_generator(train_data_names),
                           use multiprocessing = False,
                           \#batch\_size = 1000,
                           steps_per_epoch = train_size / 20,
                           epochs = 2,
                           #callbacks = [self.__save_check_point_callback__],
                           verbose = 1)
   # this should accept a 64 * m * n numpy array as query data, and returns_
\rightarrow the fen notation of the board.
   def Predict(self, query data):
       grids = CNNClassifier.PreprocessImage(query_data)
       y_pred = self.__model__.predict(grids).argmax(axis=1)
```

```
return y_pred
   # predict by file name:
   def PredictMultiple(self, file_names):
       preds = []
       truth = []
       for f in file_names:
           img = ReadImage(f, gray = False)
           y_pred = LabelArrayToL(self.Predict(img))
           y_true = FENtoL(GetCleanNameByPath(f))
           preds.append(y_pred)
           truth.append(y_true)
       all_pred = np.vstack(preds)
       all_truth = np.vstack(truth)
       return all_pred, all_truth
   def LoadModel(self, name):
       self.__model__.load_weights(name)
   def SaveModel(self, name):
       os.makedirs(os.path.dirname(name), exist_ok = True)
       self.__model__.save_weights(name)
   def PrintModel(self):
       self.__model__.summary()
   def LoadMostRecentModel(self):
       return self.LoadMostRecentModelFromDirectory(CNNClassifier.
→s_check_point_path)
   def LoadMostRecentModelFromDirectory(self, path):
       try:
           last_cp = tf.train.latest_checkpoint(path)
           self.__model__.load_weights(last_cp)
           print("Loaded checkpoint from " + last_cp)
           return True
       except:
           print("No checkpoint is loaded.")
           return False
   def TestAccuracy(self, test_file_names):
       num_files = len(test_file_names)
```

```
predict_result = self.__model__.predict(CNNClassifier.
predict_result = predict_result.reshape(num_files, -1)
      predicted_fen_arr = np.array([LtoFEN(LabelArrayToL(labels)) for labels_
→in predict_result])
      test_fens = np.array([GetCleanNameByPath(file_name) for file_name_in__
→test_file_names])
      final_accuracy = (predicted_fen_arr == test_fens).astype(np.float).
→mean()
      return final_accuracy
  Ostaticmethod
  def PreprocessImage(image):
      image = transform.resize(image, (g_down_sampled_size,_
# 1st and 2nd dim is 8
      grids = ImageToGrids(image, g_down_sampled_grid_size,_
→g_down_sampled_grid_size)
      # debug
      #plt.imshow(grids[0][3])
      #plt.show()
      return grids.reshape(g_grid_row * g_grid_col, g_down_sampled_grid_size,_
```

test code for CNN

```
[45]: if run_test_code_for_classifiers:
          if not load saved model:
              cnn = CNNClassifier()
              train_names = GetFileNamesInDir(g_train_dir)
              cnn.Train(train_names)
              cnn.SaveModel(cnn_model_file)
          else:
             cnn = CNNClassifier()
              cnn.PrintModel()
             print("cnn: loading model from " + cnn_model_file)
             cnn.LoadModel(cnn_model_file)
             predicted_label = cnn.Predict(ReadImage(a_random_file))
             L = predicted label
             FEN = LtoFEN(LabelArrayToL(L))
             print("predicted: " + FEN)
             print("Original: " + GetCleanNameByPath(a_random_file))
```

```
\#test\_file\_names = GetFileNamesInDir(g\_test\_dir)[:1000]
       #print("CNN: Testing accuracy for {} board images.".
\rightarrow format(len(test_file_names)))
       #accuracy = cnn.TestAccuracy(test_file_names)
       #print("CNN: Final accuracy: {}".format(accuracy))
       labels = cnn.PredictMultiple(GetFileNamesInDir(g_test_dir)[:100])
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 23, 23, 32)	896
activation (Activation)	(None, 23, 23, 32)	0
dropout (Dropout)	(None, 23, 23, 32)	0
conv2d_1 (Conv2D)	(None, 21, 21, 32)	9248
activation_1 (Activation)	(None, 21, 21, 32)	0
conv2d_2 (Conv2D)	(None, 19, 19, 32)	9248
activation_2 (Activation)	(None, 19, 19, 32)	0
flatten (Flatten)	(None, 11552)	0
dense (Dense)	(None, 128)	1478784
activation_3 (Activation)	(None, 128)	0
dropout_1 (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 13)	1677
activation_4 (Activation)	(None, 13)	0
Total params: 1,499,853 Trainable params: 1,499,853		

Non-trainable params: 0

cnn: loading model from ./saved_model/cnn_weights predicted: 1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3 Original: 1b1B1b2-2pK2q1-4p1rB-7k-8-8-3B4-3rb3

1.7.2 Section 3.3 AdaBoost Classifier

class definition

```
[46]: from sklearn.ensemble import AdaBoostClassifier
      from sklearn.svm import SVC
      from sklearn.tree import DecisionTreeClassifier
      from sklearn.metrics import accuracy_score
      import numpy as np
      # image io and plotting
      from skimage import io, transform
      import skimage.util
      from skimage.util.shape import view_as_blocks
      from matplotlib import pyplot as plt
      # parallel processing
      from joblib import Parallel, delayed
      # model save and load
      import pickle
      import os
      # profiling
      import time
      # joblib needs the kernel to be a top-level function, so we defined it here.
      def PreprocessKernel(name):
          img = ReadImage(name, gray = True)
          grids = ABClassifier.ABCPreprocess(img)
          labels = np.array(FENtoOneHot(GetCleanNameByPath(name))).argmax(axis=1)
          return grids, labels
      # Adaboost Classifier
      class ABClassifier(IClassifier):
          def __init__(self):
              self.__abc__ = AdaBoostClassifier(n_estimators=30,
                                                base_estimator =__
       →DecisionTreeClassifier(criterion='gini', max_depth=5),
                                                learning rate=0.5)
          # this method should accept a list of file names of the training data
          def Train(self, train_file_names):
              print("abc: reading image.")
              start_time = time.time()
              xs, ys = ABClassifier.PreprocessParallelWrapperFunc(train_file_names)
              print("abc: finished reading image, {} sec.".format(time.time() -

start_time))
              # train
              print("abc: start training.")
              start_time = time.time()
              self.__abc__.fit(xs, ys)
```

```
print("abc: finished. {} sec.".format(time.time() - start_time))
   # this should accept a 400 * 400 * 3 numpy array as query data, and returns \Box
→ the fen notation of the board.
   def Predict(self, query data):
       grids = ABClassifier.ABCPreprocess(query data)
       y_pred = self.__abc__.predict(grids)
       return LabelArrayToL(y_pred)
   # parallel pre-process wrapper:
   Ostaticmethod
   def PreprocessParallelWrapperFunc(file_names, num_thread = g_thread_num):
       result = Parallel(n_jobs =__
→num_thread)(delayed(PreprocessKernel)(file_name) for file_name in file_names)
       xs, ys = zip(*result)
       xs = np.concatenate(xs, axis=0)
       ys = np.concatenate(ys)
       return xs, ys
   Ostaticmethod
   def ABCPreprocess(img):
       img = transform.resize(img, (g_down_sampled_size, g_down_sampled_size),_
→mode='constant')
       grids = skimage.util.shape.view_as_blocks(img, block_shape =__
→ (g_down_sampled_grid_size, g_down_sampled_grid_size))
       grids = grids.reshape((-1, grids.shape[3], grids.shape[3]))
       grids = grids.reshape((grids.shape[0], grids.shape[1] * grids.shape[1]))
       return grids
   def SaveModel(self, save_file_name):
       os.makedirs(os.path.dirname(save file name), exist ok = True)
       with open(save_file_name, 'wb') as file:
           pickle.dump(self.__abc__, file)
   def LoadModel(self, load_file_name):
       with open(load_file_name, 'rb') as file:
           self.__abc__ = pickle.load(file)
   # predict by file name:
   def PredictMultiple(self, file_names):
       preds = []
       truth = []
       for f in file_names:
```

```
img = ReadImage(f, gray = True)
  y_pred = self.Predict(img)
  y_true = FENtoL(GetCleanNameByPath(f))
  preds.append(y_pred)
  truth.append(y_true)

all_pred = np.vstack(preds)
  all_truth = np.vstack(truth)
  return all_pred, all_truth
```

Test code for ABC

```
[47]: if run_test_code_for_classifiers:
          abc = ABClassifier()
          train_names = GetFileNamesInDir(g_train_dir)
          if load_saved_model:
              print("abc: loading model from " + abc_model_file)
              abc.LoadModel(abc_model_file)
          else:
              abc.Train(train_names)
          y_truth = FENtoL(GetCleanNameByPath(a_random_file))
          img = ReadImage(a_random_file, gray = True)
          pred = abc.Predict(img)
          print("truth: ", ''.join(y_truth))
          print("pred : ", ''.join(pred))
          # save model
          if not load saved model:
              print("abc: saving model to " + abc_model_file)
              abc.SaveModel(abc_model_file)
```

abc: loading model from ./saved_model/abc_dump.pkl

1.8 10-fold cross validation for 3 classifiers

Cv reference https://scikit-learn.org/stable/modules/cross_validation.html

options for 10 fold 1. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.ShuffleSplit.html 2. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html (Preferred) "StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same percentage of samples of each target class as the complete set."

1.8.1 helper functions

```
[48]: # filters accepts a list of file names, and return the data matrix and labels
      import random
      from sklearn.metrics import confusion_matrix
      # get balanced accuracy from confusion matrix
      def BalancedAccuracyFromConfusionMatrix(cm):
          ret = np.empty((cm.shape[0]))
          for idx, row in enumerate(cm):
              ret[idx] = row[idx] / row.sum()
          return ret.mean()
      # dummy filter to return all files
      def DefaultFilter(file_names, rate = 1):
          return file_names
      # filter using random_sampling:
      def RandomFilter(file_names, rate = 1):
          # we fix the random part to assure the results are consistent
          random seed = 4242
          random.seed(random seed)
          return random.sample(file_names, k = int(len(file_names) * rate))
      def ConfusionMatrix(classifier, test_file_names, filter = RandomFilter,_
       ⇒sampling_rate = 0.001):
          confusion_matrices = []
          accuracies = []
          accuracies_balanced = []
          train_time_cost = []
          validation_time_cost = []
          # split name list into 10 equal parts
          division = len(test_file_names) / float(10)
          complete_name_folds = [ test_file_names[int(round(division * i)):__
       →int(round(division * (i + 1)))] for i in range(10) ]
          filtered_name_folds = complete_name_folds.copy()
          for i in range(10):
              filtered_name_folds[i] = filter(complete_name_folds[i], rate =_
       →sampling_rate)
          # we use filtered name folds to train, and validation.
          for iv in range(10):
```

```
# merge the 9 folds:
       train_names = []
       validation_names = []
       for i in range(10):
           if i != iv:
               train_names.extend(filtered_name_folds[i])
           else:
               # validation_names = complete_name_folds[i].copy()
               validation_names = filtered_name_folds[i].copy()
       # train the classifier:
       print("training started:
                                  ", type(classifier).__name__, "for fold #",_
→iv, "# train files:", len(train_names))
       t = time.time()
       classifier.Train(train_names)
       train_time_cost.append(time.time() - t)
       print("training finished: ", type(classifier).__name__, "for fold #", u
ن, ن
             "time: {}s".format(time.time() - t))
       print("predicting started: ", type(classifier).__name__, "for fold #", __
نv)
       t = time.time()
       ypreds, y_true = classifier.PredictMultiple(validation_names)
       validation_time_cost.append(time.time() - t)
       ypreds = ypreds.reshape((-1, 1))
       y_true = y_true.reshape((-1, 1))
       conf_mat = confusion_matrix(y_true, ypreds, labels = g_labels)
       confusion_matrices.append(conf_mat)
       accuracy = np.trace(conf_mat) / float(np.sum(conf_mat))
       accuracies.append(accuracy)
       accuracy_balanced = BalancedAccuracyFromConfusionMatrix(conf_mat)
       accuracies_balanced.append(accuracy_balanced)
       print("predicting finished: ", type(classifier).__name__, "for fold #",__
⇒iv,
             "time: {}s".format(time.time() - t), " accuracy: ", accuracy, "__
→balanced_accuracy:", accuracy_balanced)
   return confusion_matrices, accuracies, accuracies_balanced,__
→train_time_cost, validation_time_cost
```

1.8.2 10-fold routine

```
[49]: if run ten fold:
          # 10-fold for ABC
         train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
          # random sampling rate of the each fold in 10-fold
         abc_random_sampling_rate = 0.005
         abc_tf = ABClassifier()
         confusion_matrices_abc, accuracies_abc, accuracies_balanced_abc,_
       →train_time_cost_abc, validation_time_cost_abc = \
          ConfusionMatrix(abc_tf, train_file_names, RandomFilter, sampling_rate =_
       →abc_random_sampling_rate)
     training started:
                           ABClassifier for fold # 0 # train files: 360
     abc: reading image.
     abc: finished reading image, 5.398272275924683 sec.
     abc: start training.
     abc: finished. 105.41199851036072 sec.
     training finished: ABClassifier for fold # 0 time: 110.818776845932s
     predicting started: ABClassifier for fold # 0
     predicting finished: ABClassifier for fold # 0 time: 1.8081109523773193s
     accuracy: 0.915234375 balanced_accuracy: 0.9887159507361434
     training started:
                           ABClassifier for fold # 1 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.353529453277588 sec.
     abc: start training.
     abc: finished. 106.2824718952179 sec.
     training finished: ABClassifier for fold # 1 time: 107.64400005340576s
     predicting started: ABClassifier for fold # 1
     predicting finished: ABClassifier for fold # 1 time: 0.588024377822876s
     accuracy: 0.9953125 balanced accuracy: 0.9773043222050123
     training started:
                           ABClassifier for fold # 2 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.4164981842041016 sec.
     abc: start training.
     abc: finished. 108.95200252532959 sec.
                           ABClassifier for fold # 2 time: 110.37699913978577s
     training finished:
     predicting started:
                           ABClassifier for fold # 2
     predicting finished: ABClassifier for fold # 2 time: 0.5855247974395752s
     accuracy: 0.994921875 balanced_accuracy: 0.9726729328379256
     training started:
                           ABClassifier for fold # 3 # train files: 360
     abc: reading image.
     abc: finished reading image, 1.3769776821136475 sec.
     abc: start training.
     abc: finished. 105.25149726867676 sec.
     training finished:
                           ABClassifier for fold # 3 time: 106.63697409629822s
```

predicting started: ABClassifier for fold # 3

predicting finished: ABClassifier for fold # 3 time: 0.5955328941345215s

accuracy: 0.997265625 balanced_accuracy: 0.9829801695186311

training started: ABClassifier for fold # 4 # train files: 360

abc: reading image.

abc: finished reading image, 1.3645029067993164 sec.

abc: start training.

abc: finished. 105.66096711158752 sec.

training finished: ABClassifier for fold # 4 time: 107.03396940231323s

predicting started: ABClassifier for fold # 4

predicting finished: ABClassifier for fold # 4 time: 0.6035027503967285s

accuracy: 0.9984375 balanced_accuracy: 0.9871866850188351

training started: ABClassifier for fold # 5 # train files: 360

abc: reading image.

abc: finished reading image, 1.3729960918426514 sec.

abc: start training.

abc: finished. 106.87903761863708 sec.

training finished: ABClassifier for fold # 5 time: 108.26099824905396s

predicting started: ABClassifier for fold # 5

predicting finished: ABClassifier for fold # 5 time: 0.5815010070800781s

accuracy: 0.996484375 balanced accuracy: 0.9763087452358707

training started: ABClassifier for fold # 6 # train files: 360

abc: reading image.

abc: finished reading image, 1.3584940433502197 sec.

abc: start training.

abc: finished. 104.68600416183472 sec.

training finished: ABClassifier for fold # 6 time: 106.0530149936676s

predicting started: ABClassifier for fold # 6

predicting finished: ABClassifier for fold # 6 time: 0.6030011177062988s

accuracy: 0.9984375 balanced_accuracy: 0.9848901098901099

training started: ABClassifier for fold # 7 # train files: 360

abc: reading image.

abc: finished reading image, 1.4029998779296875 sec.

abc: start training.

abc: finished. 106.33550238609314 sec.

training finished: ABClassifier for fold # 7 time: 107.74799847602844s

predicting started: ABClassifier for fold # 7

predicting finished: ABClassifier for fold # 7 time: 0.5720021724700928s

accuracy: 0.994140625 balanced_accuracy: 0.9539770270297656

training started: ABClassifier for fold # 8 # train files: 360

abc: reading image.

abc: finished reading image, 1.4405317306518555 sec.

abc: start training.

abc: finished. 103.98052430152893 sec.

training finished: ABClassifier for fold # 8 time: 105.43050003051758s

predicting started: ABClassifier for fold # 8

predicting finished: ABClassifier for fold # 8 time: 0.6030175685882568s

accuracy: 0.989453125 balanced_accuracy: 0.9828409905842151

```
abc: reading image.
     abc: finished reading image, 1.3639986515045166 sec.
     abc: start training.
     abc: finished. 104.17997884750366 sec.
     training finished:
                         ABClassifier for fold # 9 time: 105.55300045013428s
     predicting started: ABClassifier for fold # 9
     predicting finished: ABClassifier for fold # 9 time: 0.5954928398132324s
     accuracy: 0.97421875 balanced accuracy: 0.9726182149323749
[50]: if run_ten_fold:
         # 10-fold for CNN
         # random sampling rate of the each fold in 10-fold
         cnn_random_sampling_rate = 0.5
         train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
         cnn_tf = CNNClassifier()
         confusion_matrices_cnn, accuracies_cnn, accuracies_balanced_cnn, __
      →train_time_cost_cnn, validation_time_cost_cnn = \
         ConfusionMatrix(cnn tf, train file names, RandomFilter, sampling rate = L
      →cnn_random_sampling_rate)
                          CNNClassifier for fold # 0 # train files: 36000
     training started:
     Epoch 1/2
     1800/1800 [============= ] - 92s 51ms/step - loss: 0.0742 -
     accuracy: 0.9811
     Epoch 2/2
     1800/1800 [============== ] - 92s 51ms/step - loss: 0.0129 -
     accuracy: 0.9967
     training finished:
                         CNNClassifier for fold # 0 time: 184.50335025787354s
     predicting started: CNNClassifier for fold # 0
     predicting finished: CNNClassifier for fold # 0 time: 255.72573709487915s
     accuracy: 0.9953046875 balanced_accuracy: 0.972284597528154
     training started: CNNClassifier for fold # 1 # train files: 36000
     Epoch 1/2
     1800/1800 [============= ] - 88s 49ms/step - loss: 0.0044 -
     accuracy: 0.9987
     Epoch 2/2
     1800/1800 [============== ] - 88s 49ms/step - loss: 0.0026 -
     accuracy: 0.9992
                          CNNClassifier for fold # 1 time: 176.32050108909607s
     training finished:
     predicting started:
                          CNNClassifier for fold # 1
     predicting finished: CNNClassifier for fold # 1 time: 203.46679401397705s
     accuracy: 0.99998828125 balanced_accuracy: 0.9999432022567637
                          CNNClassifier for fold # 2 # train files: 36000
     training started:
     Epoch 1/2
```

ABClassifier for fold # 9 # train files: 360

training started:

```
1800/1800 [============= ] - 86s 48ms/step - loss: 0.0042 -
accuracy: 0.9990
Epoch 2/2
1800/1800 [============= ] - 87s 49ms/step - loss: 0.0023 -
accuracy: 0.9994
training finished: CNNClassifier for fold # 2 time: 173.61347317695618s
predicting started: CNNClassifier for fold # 2
predicting finished: CNNClassifier for fold # 2 time: 258.44522190093994s
accuracy: 0.999921875 balanced_accuracy: 0.9993312211503912
training started: CNNClassifier for fold # 3 # train files: 36000
Epoch 1/2
accuracy: 0.9994
Epoch 2/2
1800/1800 [============= ] - 83s 46ms/step - loss: 0.0053 -
accuracy: 0.9993
training finished: CNNClassifier for fold # 3 time: 164.83446884155273s
predicting started: CNNClassifier for fold # 3
predicting finished: CNNClassifier for fold # 3 time: 253.1358721256256s
accuracy: 1.0 balanced accuracy: 1.0
training started:
                  CNNClassifier for fold # 4 # train files: 36000
Epoch 1/2
1800/1800 [============= ] - 81s 45ms/step - loss: 0.0039 -
accuracy: 0.9993
Epoch 2/2
1800/1800 [============= ] - 86s 48ms/step - loss: 0.0014 -
accuracy: 0.9996
training finished: CNNClassifier for fold # 4 time: 167.50047063827515s
predicting started: CNNClassifier for fold # 4
predicting finished: CNNClassifier for fold # 4 time: 257.837361574173s
accuracy: 1.0 balanced_accuracy: 1.0
training started: CNNClassifier for fold # 5 # train files: 36000
Epoch 1/2
1800/1800 [============== ] - 89s 50ms/step - loss: 0.0028 -
accuracy: 0.9995
Epoch 2/2
1800/1800 [============= ] - 88s 49ms/step - loss: 0.0025 -
accuracy: 0.9995
training finished: CNNClassifier for fold # 5 time: 176.9005012512207s
predicting started: CNNClassifier for fold # 5
predicting finished: CNNClassifier for fold # 5 time: 255.32304525375366s
accuracy: 1.0 balanced_accuracy: 1.0
training started:
                  CNNClassifier for fold # 6 # train files: 36000
Epoch 1/2
accuracy: 0.9999
Epoch 2/2
1800/1800 [============= ] - 87s 48ms/step - loss: 0.0058 -
```

```
accuracy: 0.9994
                         CNNClassifier for fold # 6 time: 174.0054988861084s
     training finished:
     predicting started:
                         CNNClassifier for fold # 6
     predicting finished: CNNClassifier for fold # 6 time: 254.33951449394226s
     accuracy: 0.99997265625 balanced accuracy: 0.9996995388807377
                         CNNClassifier for fold # 7 # train files: 36000
     training started:
     Epoch 1/2
     1800/1800 [=============== ] - 86s 48ms/step - loss: 6.0853e-04 -
     accuracy: 0.9999
     Epoch 2/2
     1800/1800 [============= ] - 91s 51ms/step - loss: 0.0046 -
     accuracy: 0.9994
     training finished:
                         CNNClassifier for fold # 7 time: 177.45500087738037s
                         CNNClassifier for fold # 7
     predicting started:
     predicting finished: CNNClassifier for fold # 7 time: 260.65016198158264s
     accuracy: 1.0 balanced_accuracy: 1.0
     training started:
                         CNNClassifier for fold # 8 # train files: 36000
     Epoch 1/2
     1800/1800 [============= ] - 87s 48ms/step - loss: 0.0012 -
     accuracy: 0.9997
     Epoch 2/2
     1800/1800 [============= ] - 87s 48ms/step - loss: 0.0066 -
     accuracy: 0.9993
     training finished:
                         CNNClassifier for fold # 8 time: 173.66347432136536s
     predicting started: CNNClassifier for fold # 8
     predicting finished: CNNClassifier for fold # 8 time: 258.1064829826355s
     accuracy: 0.999984375 balanced_accuracy: 0.9999181962289339
                         CNNClassifier for fold # 9 # train files: 36000
     training started:
     Epoch 1/2
     1800/1800 [============= ] - 87s 48ms/step - loss: 0.0017 -
     accuracy: 0.9997
     Epoch 2/2
     1800/1800 [============= ] - 91s 51ms/step - loss: 6.9238e-04 -
     accuracy: 0.9999
     training finished:
                         CNNClassifier for fold # 9 time: 178.00898122787476s
     predicting started: CNNClassifier for fold # 9
     predicting finished: CNNClassifier for fold # 9 time: 261.0290925502777s
     accuracy: 1.0 balanced_accuracy: 1.0
[51]: if run_ten_fold:
         # 10-fold for SVM
         train_file_names = GetFileNamesInDir(g_train_dir, extension = "jpeg")
         # random sampling rate of the each fold in 10-fold
         svc_random_sampling_rate = 0.01
         svc_tf = SVCClassifier()
```

```
→train_time_cost_svc, validation_time_cost_svc = \
    ConfusionMatrix(svc_tf, train_file_names, RandomFilter, sampling_rate = __
 ⇒svc random sampling rate)
                     SVCClassifier for fold # 0 # train files: 720
training started:
svc: reading image.
svc: finished reading image, 4.1754982471466064 sec.
svc: start training.
svc: finished. 275.877498626709 sec.
                     SVCClassifier for fold # 0 time: 280.06999683380127s
training finished:
predicting started:
                     SVCClassifier for fold # 0
predicting finished: SVCClassifier for fold # 0 time: 25.094476461410522s
accuracy: 0.9755859375 balanced_accuracy: 0.8390801614481257
training started:
                     SVCClassifier for fold # 1 # train files: 720
svc: reading image.
svc: finished reading image, 4.161530256271362 sec.
svc: start training.
svc: finished. 276.26797008514404 sec.
training finished:
                     SVCClassifier for fold # 1 time: 280.44550037384033s
predicting started:
                     SVCClassifier for fold # 1
predicting finished: SVCClassifier for fold # 1 time: 25.063472747802734s
accuracy: 0.97578125 balanced accuracy: 0.851003508486225
training started:
                     SVCClassifier for fold # 2 # train files: 720
svc: reading image.
svc: finished reading image, 4.096996545791626 sec.
svc: start training.
svc: finished. 273.4409935474396 sec.
                     SVCClassifier for fold # 2 time: 277.56246972084045s
training finished:
predicting started:
                     SVCClassifier for fold # 2
predicting finished: SVCClassifier for fold # 2 time: 25.160999536514282s
accuracy: 0.9748046875 balanced accuracy: 0.8442856239581942
training started:
                      SVCClassifier for fold # 3 # train files: 720
svc: reading image.
svc: finished reading image, 2.193498373031616 sec.
svc: start training.
svc: finished. 271.1005029678345 sec.
training finished:
                     SVCClassifier for fold # 3 time: 273.30952429771423s
                     SVCClassifier for fold # 3
predicting started:
predicting finished: SVCClassifier for fold # 3 time: 24.9065043926239s
accuracy: 0.9771484375 balanced accuracy: 0.8418881733972017
                     SVCClassifier for fold # 4 # train files: 720
training started:
svc: reading image.
svc: finished reading image, 2.113495111465454 sec.
svc: start training.
svc: finished. 271.2329773902893 sec.
                     SVCClassifier for fold # 4 time: 273.3629765510559s
training finished:
```

confusion_matrices_svc, accuracies_svc, accuracies_balanced_svc,_u

predicting started: SVCClassifier for fold # 4

predicting finished: SVCClassifier for fold # 4 time: 24.966519832611084s

accuracy: 0.9759765625 balanced_accuracy: 0.8401999249500759

training started: SVCClassifier for fold # 5 # train files: 720

svc: reading image.

svc: finished reading image, 2.094999074935913 sec.

svc: start training.

svc: finished. 270.80147099494934 sec.

training finished: SVCClassifier for fold # 5 time: 272.9129693508148s

predicting started: SVCClassifier for fold # 5

predicting finished: SVCClassifier for fold # 5 time: 24.80652356147766s

accuracy: 0.9701171875 balanced accuracy: 0.8018837193943575

training started: SVCClassifier for fold # 6 # train files: 720

svc: reading image.

svc: finished reading image, 2.1854727268218994 sec.

svc: start training.

svc: finished. 276.1960005760193 sec.

training finished: SVCClassifier for fold # 6 time: 278.39747190475464s

predicting started: SVCClassifier for fold # 6

predicting finished: SVCClassifier for fold # 6 time: 25.331998825073242s

accuracy: 0.980078125 balanced accuracy: 0.8347615121472585

training started: SVCClassifier for fold # 7 # train files: 720

svc: reading image.

svc: finished reading image, 3.927501916885376 sec.

svc: start training.

svc: finished. 274.04150009155273 sec.

training finished: SVCClassifier for fold # 7 time: 277.98550176620483s

predicting started: SVCClassifier for fold # 7

predicting finished: SVCClassifier for fold # 7 time: 25.360967874526978s

accuracy: 0.9787109375 balanced_accuracy: 0.8173997864853184

training started: SVCClassifier for fold # 8 # train files: 720

svc: reading image.

svc: finished reading image, 2.1504993438720703 sec.

svc: start training.

svc: finished. 273.974002122879 sec.

training finished: SVCClassifier for fold # 8 time: 276.14250111579895s

predicting started: SVCClassifier for fold # 8

predicting finished: SVCClassifier for fold # 8 time: 25.19000005722046s

accuracy: 0.97578125 balanced_accuracy: 0.8372536721897584

training started: SVCClassifier for fold # 9 # train files: 720

svc: reading image.

svc: finished reading image, 2.29949951171875 sec.

svc: start training.

svc: finished. 273.2610285282135 sec.

training finished: SVCClassifier for fold # 9 time: 275.57649850845337s

predicting started: SVCClassifier for fold # 9

predicting finished: SVCClassifier for fold # 9 time: 25.151024341583252s

accuracy: 0.9740234375 balanced_accuracy: 0.8392838619821293

1.8.3 Serialize the results (export to hard drive)

```
[52]: if run_ten_fold:
          # dump the matrices for report.
         os.makedirs(os.path.dirname(ten_fold_result_path), exist_ok = True)
         np.save(ten_fold_result_path + "confusion_matrices_abc.npy",_
      np.save(ten_fold_result_path + "accuracies_abc.npy", accuracies_abc)
         np.save(ten_fold_result_path + "accuracies_balanced_abc.npy",__
      →accuracies_balanced_abc)
         np.save(ten_fold_result_path + "train_time_cost_abc.npy", __
      →train_time_cost_abc)
         np.save(ten_fold_result_path + "validation_time_cost_abc.npy",__
      →validation_time_cost_abc)
         np.save(ten_fold_result_path + "confusion_matrices_cnn.npy",_

→confusion matrices cnn)
         np.save(ten_fold_result_path + "accuracies_cnn.npy", accuracies_cnn)
         np.save(ten_fold_result_path + "accuracies_balanced_cnn.npy",_
      →accuracies_balanced_cnn)
         np.save(ten_fold_result_path + "train_time_cost_cnn.npy", __
      →train_time_cost_cnn)
         np.save(ten_fold_result_path + "validation_time_cost_cnn.npy", __
      →validation_time_cost_cnn)
         np.save(ten_fold_result_path + "confusion_matrices_svc.npy", __
      np.save(ten_fold_result_path + "accuracies_svc.npy", accuracies_svc)
         np.save(ten_fold_result_path + "accuracies_balanced_svc.npy", __
      →accuracies_balanced_svc)
         np.save(ten_fold_result_path + "train_time_cost_svc.npy", __
      →train time cost svc)
         np.save(ten_fold_result_path + "validation_time_cost_svc.npy",_
      →validation_time_cost_svc)
         svc_tf.SaveModel(svc_model_file)
         abc_tf.SaveModel(abc_model_file)
         cnn_tf.SaveModel(cnn_model_file)
```

1.8.4 Read the results from hard drive

```
[54]: if not run_ten_fold:
import numpy as np
```

```
confusion_matrices_abc = np.load(ten_fold_result_path +_

¬"confusion_matrices_abc.npy")
  accuracies_abc = np.load(ten_fold_result_path + "accuracies_abc.npy")
  accuracies_balanced_abc = np.load(ten_fold_result_path +__
→"accuracies_balanced_abc.npy")
  train_time_cost_abc = np.load(ten_fold_result_path + "train_time_cost_abc.
   validation_time_cost_abc = np.load(ten_fold_result_path +_

¬"validation_time_cost_abc.npy")
   confusion_matrices_cnn = np.load(ten_fold_result_path +

¬"confusion_matrices_cnn.npy")
  accuracies cnn = np.load(ten fold result path + "accuracies cnn.npy")
  accuracies_balanced_cnn = np.load(ten_fold_result_path +_
→"accuracies_balanced_cnn.npy")
  train_time_cost_cnn = np.load(ten_fold_result_path + "train_time_cost_cnn.

¬npv")
  validation_time_cost_cnn = np.load(ten_fold_result_path +_

¬"validation time cost cnn.npy")
   confusion_matrices_svc = np.load(ten_fold_result_path +
accuracies_svc = np.load(ten_fold_result_path + "accuracies_svc.npy")
  accuracies_balanced_svc = np.load(ten_fold_result_path +__

¬"accuracies_balanced_svc.npy")
  train_time_cost_svc = np.load(ten_fold_result_path + "train_time_cost_svc.
→npy")
  validation_time_cost_svc = np.load(ten_fold_result_path +__
→"validation_time_cost_svc.npy")
```

1.8.5 Plot the results

```
[55]: import matplotlib.pyplot as plt
def plot_accuracy(mat_abc, mat_cnn, mat_svc, title):
    line, = plt.plot([i for i in range(len(mat_abc))],mat_abc)
    line.set_label('AdaBoost')
    line, = plt.plot([i for i in range(len(mat_cnn))],mat_cnn)
    line.set_label('CNN')
    line, = plt.plot([i for i in range(len(mat_svc))],mat_svc)
    line.set_label('SVM')
    plt.title(title)
    plt.xlabel('10 - folds')
    plt.ylabel('accuracy')
    plt.ylim(0.5, 1.1)
    plt.legend()
    plt.show()
```

```
plot_accuracy(accuracies_abc, accuracies_cnn, accuracies_svc, "Accuracy of 3<sub>□</sub>

→Classifiers")

plot_accuracy(accuracies_balanced_abc, accuracies_balanced_cnn, □

→accuracies_balanced_svc, "Balanced Accuracy of 3 Classifiers")
```


1.8.6 Bonus: GUI: see GUI_with_Classifiers.ipynb