Comparison of response functions in kitagawa

Andrew J. Barbour

October 1, 2013

Abstract

In this vignette I demonstrate the response functions found in the package **kitagawa**, which are appropriate for modeling the effect of harmonic volumetric strain or pressure-head fluctuations in sealed and open water wells. There is only one sealed-well response function, from Kitagawa et al. (2011), and this gives the complex frequency response of virtual water height Z or pressure P as a function of areal strain ϵ . There is a suite of open-well response functions, from Cooper et al. (1965); Hsieh et al. (1987); Rojstaczer (1988); Liu et al. (1989); and these give the complex frequency response of water height as a function of aquifer head H or pressure.

Contents

1	Introduction	2
2	Preliminaries	2
3	Sealed well response 3.1 Strain: Kitagawa et al. (2011)	5
4		7 7 9 11 13
5	5.1 Responses to strain	15 15 16

1 Introduction

The underlying physical model of these response functions is based upon the assumption that fluid flows radially through an homogeneous, isotropic, confined aquifer. The underlying principle is as follows. When a harmonic wave induces strain in a confined aquifer (one having aquitards above and below it), fluid flows radially into, and out of a well penetrating the aquifer. The flow-induced drawdown, s, is governed by the following partial differential equation, expressed in radial coordinates(r):

$$\frac{\partial^2 s}{\partial r^2} + \frac{1}{r} \frac{\partial s}{\partial r} - \frac{S}{T} \frac{\partial s}{\partial t} = 0 \tag{1}$$

where S and T are the aquifer storativity and transmissivity respectively.

The solution to this PDE, with periodic discharge boundary conditions, gives the amplitude and phase response we wish to calculate. The solution for an open well was first presented by Cooper et al. (1965), and subsequently modified by Rojstaczer (1988); Liu et al. (1989). Kitagawa et al. (2011) adapted the solution of Hsieh et al. (1987) for the case of a sealed well.

These models are applicable to any quasi-static process involving harmonic, volumetric strain of an aquifer (e.g., passing Rayleigh waves, or changes in the Earth's tidal potential). In practice, however, the presence of permeable fractures can violate the assumption of isotropic permeability, which may substantially alter the response by introducing shear-strain coupling. Such complications are beyond the scope of these models.

2 Preliminaries

Load the necessary packages:

```
library(RColorBrewer)
Set1 <- brewer.pal(8, "Set1")
library(signal)

## Loading required package: MASS
##
## Attaching package: 'signal'
##
## The following object is masked from 'package:stats':
##
## filter, poly

library(kitagawa)</pre>
```

```
## Loading required package:
## Loading required package:
                              Bessel
## Loading required package: Rmpfr
## Loading required package:
                              qmp
##
## Attaching package: 'gmp'
## The following object is masked from 'package:base':
##
##
      %*%, apply, crossprod, matrix, tcrossprod
## Loading C code of R package 'Rmpfr': GMP using 64 bits per limb
##
## Attaching package: 'Rmpfr'
## The following object is masked from 'package:stats':
##
##
      pnorm, print.integrate
##
## The following object is masked from 'package:base':
##
##
      cbind, pmax, pmin, rbind
##
## Loaded kelvin (1.2.2) - Solutions to the Kelvin differential equation.
## Loaded kitagawa (2.1.0) - Spectral response of water wells
```

Setup some constants:

```
S. <- 1e-05  # Storativity [nondimensional]
T. <- 1e-04  # Transmissivity [m**2 / s]
D. <- T./S.  # Diffusivity [m**2 / s]
Ta <- 50  # Aquifer thickness [m] #100
Hw <- z <- 50  # Depth to water table [m] #10
# Using ANO1 stats from Kit Tbl 1
Rc. <- 0.075  # Radius of cased portion of well [m]
Lc. <- 570  # Length of cased portion of well [m]
Rs. <- 0.135  # Radius of screened portion of well [m]
Ls. <- 15  # Length of screened portion of well [m]
Vw. <- sensing_volume(Rc., Lc., Rs., Ls.)  # volume of fluid [m**3]
# parameters assumed by well_response: rho=1000 # density of rock
# [kg/m**3] Kf=2.2e9 # Bulk modulus of fluid [Pascals] grav=9.81 #
```

```
# gravitational acceleration [m/s**2]
rhog <- 9.81 * 1000
# Kitagawa Fig 7: Ku B / Kw Aw = 3 => Aw==4.8 at 40GPa
Ku. <- 4e+10 # Bulk modulus [Pascals]
B. <- 0.5 # Skemptons ratio [nondimensional]</pre>
```

And create the dimensionless frequencies, defined by $z^2\omega/2D$, where D is the hydraulic diffusivity:

```
# Frequencies
Q <- 10^seq(-5, 2, by = 0.05) # [nondimensional]
1Q <- log10(Q)
omega <- omega_norm(Q, z, D., invert = TRUE) # [Hz]
Phase <- function(Z) {
    Phs. <- Arg(Z) # will wrap to -pi/pi
    uPhs. <- signal::unwrap(Phs., tol = pi/30)
    return(data.frame(Phs = Phs., uPhs = uPhs.))
}
# Responses converted to pressure if TRUE
asP <- FALSE
ZasP <- FALSE</pre>
```

And onto the response functions...

3 Sealed well response

3.1 Strain: Kitagawa et al. (2011)


```
crsp <- wrsp[["Response"]][, 2] # Complex response
kGain <- Mod(crsp)/Ku./B. # Amplitude (or Gain)
kP <- Phase(crsp) # Phase</pre>
```

Sealed Well Response (KITAGAWA): Harmonic Strain

Figure 1: The response of a sealed well to harmonic areal strain using the Kitagawa model. The amplitude is normalized by Skempton's coefficient B and the undrained bulk modulus κ_u . Frequency is dimensionless, based on the well-depth z and the diffusivity D.

4 Open well response

4.1 Pressure head: Cooper et al. (1965)


```
crsp <- wrsp[["Response"]][, 2]
cGain <- Mod(crsp)
cP <- Phase(crsp)</pre>
```

Open Well Response (COOPER): Harmonic Strain

Figure 2: The response of an open well to harmonic areal strain using the Cooper model. Frequency is dimensionless, based on the well-depth z and the diffusivity D.

4.2 Pressure head: Hsieh et al. (1987)


```
crsp <- wrsp[["Response"]][, 2]
hGain <- Mod(crsp)
hP <- Phase(crsp)</pre>
```

Open Well Response (HSIEH): Harmonic Strain

Figure 3: The response of an open well to harmonic areal strain using the Hsieh model. Frequency is dimensionless, based on the well-depth z and the diffusivity D.

4.3 Pressure head: Liu et al. (1989)


```
crsp <- wrsp[["Response"]][, 2]
lGain <- Mod(crsp)
lP <- Phase(crsp)</pre>
```

Open Well Response (LIU): Harmonic Strain

Figure 4: The response of an open well to harmonic areal strain using the Liu model. Frequency is dimensionless, based on the well-depth z and the diffusivity D.

4.4 Strain: Rojstaczer (1988)


```
crsp <- wrsp[["Response"]][, 2]
rGain <- Mod(crsp)
rP <- Phase(crsp)</pre>
```

Open Well Response (ROJSTACZER): Harmonic Strain

Figure 5: The response of an open well to harmonic areal strain using the Rojstaczer model. Modified from Rojstaczer (1988, Fig. 3). Frequency is dimensionless, based on the well-depth z and the diffusivity D.

5 Model Comparisons

5.1 Responses to strain

Harmonic Strain Well Responses (a) Gain 10⁰ $\log_{10} \mathrm{Z/E}$ 10^{-1} Kitagawa et al (2011) -- sealed Rojstaczer et al (1988) -- open 10^{-2} 10² 10^{-4} 10⁰ (b) Anti-Phase -90 Z rel. -180 E -60 -30 0 10^{-2} 10⁰ 10^{-4} 10²

Figure 6: A comparison of well responses to harmonic strain. The phase of the water level is relative to -180° the phase of strain.

Dimensionless frequency, $Q = z^2 \omega / 2D$

5.2 Responses to pressure head (all open)

Harmonic Pressure-head Well Responses (Open) (a) Gain 10¹ 10⁰ 10^{-1} 10^{-2} 10^{-3} Cooper et al (1965) 10^{-4} Liu et al (1989) 10^{-5} Hsieh et al (1987) 10^{-6} 10⁰ 10^{-2} 10^{-4} 10² (b) Phase -180H -120 -60 0 10^{-2} 10² 10^{-4} 10⁰ Dimensionless frequency, $Q = z^2 \omega / 2D$

Figure 7: A comparison of well responses to harmonic pressure-head, from Cooper et al. (1965); Hsieh et al. (1987); Liu et al. (1989) (all for unsealed).

References

- Cooper, H. H., Bredehoeft, J. D., Papadopulos, I. S., and Bennett, R. R. (1965). The response of well-aquifer systems to seismic waves. *Journal of Geophysical Research*, 70(16):3915–3926.
- Hsieh, P. A., Bredehoeft, J. D., and Farr, J. M. (1987). Determination of aquifer transmissivity from Earth tide analysis. *Water Resources Research*, 23(10):1824–1832.
- Kitagawa, Y., Itaba, S., Matsumoto, N., and Koizumi, N. (2011). Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high-frequency domain. *J. Geophys. Res.*, 116(B8).
- Liu, L.-B., Roeloffs, E., and Zheng, X.-Y. (1989). Seismically induced water level fluctuations in the Wali Well, Beijing, China. *Journal of Geophysical Research: Solid Earth*, 94(B7):9453–9462.
- Rojstaczer, S. (1988). Intermediate period response of water levels in wells to crustal strain: Sensitivity and noise level. *Journal of Geophysical Research: Solid Earth*, 93(B11):13619–13634.