数オリテキスト (仮)

佐世保北高校数学オリンピック勉強会 令和 2 年度

第1章

はじめに

- 1.1 記号についての説明
- 1.1.1 集合の記号

第2章

代数

2.1 方程式

2.1.1 同じ部分をまとめる

同じ部分はいったんまとめる事で、式がすっきりして解きやすくなることがあります。 同じ部分を見つけたら、文字で置くなどしてまとめましょう。また、文字で置いた場合は 値の範囲も確認して、ありえない値を書かないようにしょう。

例題

$$(x^2+2x)^2+3(x^2+2x)+2=0$$
 $X=x^2+2x$ とすると $(X\geqq-1-①)$ $(X+1)(X+2)=0$ ①より $X=-1$ $x^2+2x=-1$ $x^2+2x+1=0$ $(x+1)^2=0$ $x=-1$

練習問題

次の方程式を解け。
$$\frac{1}{x^2 - 10x - 29} + \frac{1}{x^2 - 10x - 45} - \frac{2}{x^2 - 10x - 69} = 0$$

ポイント

 $x^2 - 10x$ に着目し、まとめる。

解答

$$X=x^2-10x-49$$
 とおくと $(X\geqq-74$ ①)
$$\frac{1}{X+20}+\frac{1}{X+4}-\frac{2}{X-20}=0 \\ (X+4)(X-20)+(X+20)(X-20)-2(X+20)(X+4)=0$$

6 第 2 章 代数

$$X - 64X - 640 = 0$$

 $X = -10$
①より適
 $x^2 - 10x - 49 = -10$
 $x^2 - 10x - 39 = 0$
 $(x - 13)(x + 3) = 0$
 $x = -3, 13$

2.1.2 解と係数の関係

$$ax^2+bx+c=0$$
 の解を $x=\alpha,\beta$ とすると $(a\neq 0)$
$$\alpha+\beta=-\frac{b}{a}$$

$$\alpha\beta=\frac{c}{a}$$

因数分解をしたときに、

$$ax^2 + bx + c = a(x - \alpha)(x - \beta)$$

となります。右辺を展開し、係数を比較することで導くことができます。 2次方程式だけでなく、3次以上の場合でも、上と同じように考えることができます。

練習問題1

$$x^{1995} - x + 5 = 0$$
 の全ての解の 1995 乗の和を求めよ。

解答

解を
$$x_1, x_2, x_3, \ldots, x_{1995}$$
 とすると、 $x^{1995} - x + 5 = (x - x_1)(x - x_2)(x - x_3) \ldots (x - x_{1995})$ x^{1994} の係数を比較すると、 左辺では 0 右辺では $-(x_1 + x_2 + x_3 + \cdots + x_{1995})$ であるから、 $x_1 + x_2 + x_3 + \cdots + x_{1995} = 0$ $x^{1995} - x + 5 = 0$ $x^{1995} - x + 5 = 0$ $x^{1995} = x - 5$ よって全ての解の 1995 乗の和は、全ての解からそれぞれ 5 を引いたものの和に等しいから、 $(x_1 - 5) + (x_2 - 5) + (x_3 - 5) + \cdots + (x_{1995} - 5)$ $= x_1 + x_2 + x_3 + \cdots + x_{1995} - 5 \times 1995$ $= x_1 + x_2 + x_3 + \cdots + x_{1995} - 5 \times 1995$ $= -5 \times 1995$ $= -5 \times 1995$ $= -9975$

2.2 不等式 7

n 次方程式の x^{n-1} の係数が、解の総和に -1 をかけたものに等しいことは、覚えておいても良いでしょう。

練習問題2

次の方程式を解け。
$$\begin{cases} xy + x + y = 71 \\ x^2y + xy^2 = 88 \end{cases} (x, y \in \mathbb{N})$$

解答

x,y は整数なので因数分解をすることで解くこともできるが、解と係数の関係を使うと、約数を全通り試す必要なく解くことができる。

$$\begin{cases} xy + x + y = 71 \\ xy(x + y) = 880 \\ a に関する 2 次関数 $a^2 - 71a + 88 = 0$ は、 xy と $x + y$ を解にもつ $a^2 - 71a + 88 = 0$ $(a - 16)(a - 55) = 0$ $a = 16,55$ (i) $x + y = 16$, $xy = 55$ のとき b に関する 2 次関数 $b^2 - 16b + 55 = 0$ は、 x と y を解にもつ $b^2 - 16b + 55 = 0$ ($b - 5$)($b - 11$) = 0 $b = 5,11$ よって $(x,y) = (5,11),(11,5)$ (ii) $x + y = 55$, $xy = 16$ のとき b に関する 2 次関数 $b^2 - 55b + 16 = 0$ は、 x と y を解にもつ $b^2 - 55b + 16 = 0$ は、 x と y を解にもつ $b = \frac{-3\sqrt{329} + 55}{2}$ $x,y \in \mathbb{N}$ よ b 不適 \therefore $(x,y) = (5,11),(11,5)$$$

2.2 不等式

2.2.1 2 乗をつくる

実数は 2 乗をすると 0 以上になる不等式の証明をするときは、方針として、以下のような形を作る

$$A^{2} \ge 0$$

$$B^{2} \ge 0$$

$$A^{2} + B^{2} \ge 0$$

8 第2章 代数

練習問題

$$a^2 + b^2 + c^2 \ge ab + bc + ca$$
 を示せ。

解答

方針として、
$$(a-b)^2=a^2-2ab+b^2$$
 を使うために、 $2ab$ をつくる。
(左辺) - (右辺)
= $a^2+b^2+c^2-ab-bc-ca$
= $\frac{1}{2}(2a^2+2b^2+2c^2-2ab-2bc-2ca)$
= $\frac{1}{2}(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2)$
= $\frac{1}{2}\{(a-b)^2+(b-c)^2+(c-a)^2\} \ge 0$

2.2.2 相加相乗平均

 $rac{a+b}{2}$ を相加平均といい、 \sqrt{ab} を相乗平均という。 a,b>0 のとき、 $a+b\geqq 2\sqrt{ab}$ が成り立つ。

また3変数以上にも拡張することができる。

3 変数の場合 $a+b+c \ge 3\sqrt[3]{abc} \ (a,b,c>0)$

n 変数の場合
$$\sum_{i=1}^{n} a_i \ge n \sqrt[n]{\prod_{i=1}^{n} a_i \ (a_1, a_2, a_3, \dots, a_n)}$$
 また、 $\frac{2}{\frac{1}{a} + \frac{1}{b}}$ を調和平均という。逆数の相加平均の逆数である。

相加平均 ≥ 相乗平均 ≥ 調和平均が成り立つ。このことは相加相乗平均の不等式から導 ける。

$$Proof$$
. 相加平均と相乗平均の逆数を取ると、 $\dfrac{1}{\sqrt{ab}} \geq \dfrac{2}{a+b}$

$$\frac{1}{\sqrt{ab}} \ge \frac{2}{a+b}$$

$$\sqrt{ab} \ge \frac{2ab}{a+b}$$

$$\sqrt{ab} \ge \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

等号成立は、a = b のときである。

練習問題

$$x,y,z>0$$
 とする
$$\frac{x^3y^2z}{x^6+y^6+z^6} \,$$
の最大値を求めよ。

2.2 不等式 9

解答

分母が最小になるときに最大になる

$$\begin{split} x^6 + y^6 + z^6 \\ &= \frac{1}{3}x^6 + \frac{1}{3}x^6 + \frac{1}{3}x^6 + \frac{1}{2}y^6 + \frac{1}{2}y^6 + z^6 - \mathbb{O} \\ \mathbb{O} &\geq 6\sqrt[6]{\frac{1}{3}x^6 \times \frac{1}{3}x^6 \times \frac{1}{3}x^6 \times \frac{1}{2}y^6 \times \frac{1}{2}y^6 \times z^6} \\ &= 6\sqrt[6]{\frac{1}{108}} \ x^3y^2z \\ &= \sqrt[3]{4} \times \sqrt[2]{3}x^3y^2z \\ &\therefore \frac{1}{\sqrt[3]{4} \times \sqrt[2]{3}} \end{split}$$

①のような変形をすることで無理矢理 $x^3y^2z \times$ をつくって消すことができた。

2.2.3 コーシーシュワルツ不等式

$$(\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2) \ge (\sum_{i=1}^n a_i b_i)^2$$
つまり
$$(a_1^2, a_2^2, a_3^2 \dots, a_n^2)(b_1^2, b_2^2, b_3^2 \dots, b_n^2) \ge (a_1 b_1, a_2 b_2, a_3 b_3, \dots, a_n b_n)^2$$
 かが成り立つ。

Proof. n 次元のベクトルの内積について考える

$$\vec{a} = (a_1, a_2, a_3, \dots, a_n)$$

 $\vec{b} = (b_1, b_2, b_3, \dots, b_n)$

とする

$$\vec{a}\cdot\vec{b}=|\vec{a}||\vec{b}|\cos\theta$$

$$(\vec{a} \cdot \vec{b})^2 = |\vec{a}|^2 |\vec{b}|^2 \cos^2 \theta$$

$$|\vec{a}|^2|\vec{b}|^2 \geqq (\vec{a} \cdot \vec{b})^2$$

$$(a_1^2, a_2^2, a_3^2 \dots, a_n^2)(b_1^2, b_2^2, b_3^2 \dots, b_n^2) \ge (a_1b_1, a_2b_2, a_3b_3, \dots, a_nb_n)^2$$

等号成立条件は、 $\cos^2 \theta = 1$ すなわち 2 つのベクトルが並行なときであり、

$$a_1:a_2:a_3:\cdots:a_n=b_1:b_2:b_3:\cdots:b_n$$
 と同値である。

例題

$$4(w^2+x^2+y^2+z^2) \ge (w+x+y+z)^2$$
 を示す。 (左辺) = $(1+1+1+1)(w^2+x^2+y^2+z^2)$ コーシーシュワルツ不等式より、 $(1+1+1+1)(w^2+x^2+y^2+z^2) \ge (w+x+y+z)^2$ よって (左辺) \ge (右辺) となり、成り立つ。 等号成立は $w:x:y:z=1:1:1:1$ つまり $w=x=y=z$ のとき。

■注 有名不等式を使うときは、名前を書くこと。

10 第2章 代数

練習問題

$$\begin{array}{l} x+y+z=1,\; x,y,z>0\; \text{のとき}\\ \frac{1}{x}+\frac{4}{y}+\frac{9}{z}\; \text{の最小値を求めよ}. \end{array}$$

解答

コーシーシュワルツ不等式より、
$$(x+y+z)(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}) \geqq (1+2+3)^2$$
 等号成立条件は、
$$x:y:z=\frac{1}{x}:\frac{4}{y}:\frac{9}{z}$$

$$x^2=\frac{y^2}{4}=\frac{z^2}{9}$$

$$x,y,z>0$$
 より、
$$x=\frac{y}{2}=\frac{z}{3}$$
 ∴ 36