Relatório 3º Projeto ASA 2023/2024

Grupo: TP033

Aluno(s): João Gomes (106204) e Sofia Piteira (106194)

Descrição do Problema e da Solução:

O nosso programa resolve um problema de otimização para a fabrico de brinquedos de madeira. O projeto tem como objetivo a determinação da quantidade diária de cada brinquedo e pacote especial a ser produzido, visando maximizar o lucro total, considerando restrições de capacidade de produção e outros limites.

O problema na produção de n brinquedos, onde cada um possui um lucro específico e uma capacidade de produção limitada. Além disso existem pacotes especiais cada um com três brinquedos distintos, cujo lucro, por norma, é superior à soma dos lucros individuais.

O nosso projeto modela o problema como um programa linear, cada variável representa o número de brinquedos e pacotes especiais. As restrições são formuladas para garantir que a produção não ultrapassa os limites.

Função objetivo:

 $\Sigma \ln * xn + \Sigma \ln * yn$

Restrições do problema:

 $\Sigma xn + \Sigma 3*yn \le limProd$

 Σ xn + y1n + y2n <= cn

Formalização do modelo linear:

Identificação das variáveis do problema:

nb - Número de brinquedos

np - Número de pacotes

LimProd – Limite de produção total

b – Número do bringuedo

I – Lucro do brinquedo

c – Capacidade máxima de produção

x – Quantidade de produção do brinquedo

y1, y2, ... - Quantidades de produção dos pacotes que têm o brinquedo

db - {b: [l, c, x, y1, y2, ...], ...} - Dicionário com todos os brinquedos e com a sua informação

p - Número do pacote

i, j e k - Números dos brinquedos no pacote

Ip – Lucro do pacote

y - Quantidade de produção do pacote

dp - {p: [i, j, k, lp, y], ...} - Dicionário com todos os pacotes e com a sua informação

Análise Teórica:

O número de variáveis do programa linear é O (n + p)

O número de restrições do programa linear é O (n + 1)

Este gráfico representa o tempo de execução do nosso algoritmo em função do **número de variáveis + número de restrições**.

N°Variaveis	Tempo(s)	Temno	vs. NºV	ariaveis			
8001	0.441	30	7 43. 14 4	anavcis			
16001	1.315						
24001	2.722						
32001	4.367	20					
40001	6.697	odt					
48001	9.525	Тетро					
56001	12.152	10	10 ———				
64001	16.149						
72001	19.932	0					
80001	25.581		200)00 4	40000	60000	80000
88001	29.7				NºVaria	iveis	

Este gráfico representa o tempo de execução do nosso algoritmo em função do **número de brinquedos + número de pacotes**.

Ao observar estes gráficos podemos concluir que o tempo de execução do nosso programa evolui linearmente com o número de variáveis e restrições, tal como concluímos através da nossa análise teórica.