Exercice 1

- (1) $\frac{b_1}{P_1} = \frac{8}{10}$; $\frac{b_2}{P_2} = \frac{6}{7} > \frac{8}{10}$: le produit 2 rapporte le plus par unité de poids
- (2) Sixety non enhiers, solution: $b_{2} \frac{20}{P_{2}} = 6 \times \frac{20}{7} = \frac{120}{7} \times 17,14 \neq pow(x,y) = (0,\frac{20}{7})$
- 3) (1 & x & 4 0 & y & 2
- $4) \int (x,y) = 4x + 6y$
- (3) Contrainte: 5x + 7y ≤ 20

6
$$U=0$$

 $F_{2}(y=2):h(F_{1})=\int(1,2)=16:cm \text{ elapue }F_{1}\text{ et}$
 $V=16$
 $V=16$

 $F_3 (y=0)$

Evaluation de F_2 : il roste 6 kg disposibles donc x=1Evaluation de F_2 : il roste 13 kg disposibles donc x=2y=16 y=16 y=16

 $E = \frac{16}{5}$ F_1 élayué $E = \frac{1}{5}$ F_2 (y=1): $h(F_2) = f(2,1) = 14 < U$: on elayue F_2 F_3 (y=0) Evaluation de F_3 : if roste 20 kg disposibles donc x=4 U=16 F_4 élaqué F_2 élaqué F_3 (y=0): $h(F_3)=J(4,0)=16=U$: on élaque

Deux solutions:
$$(x,y)=(1,2)$$
 au $(4,0)$ $\int_{max}=16$

7 voir feuille suivante

Exercice 2

(9)
$$\frac{b_1}{P_1} = 0.8$$
, $\frac{b_2}{P_2} = \frac{6}{7} = 0.86$, $\frac{b_3}{P_3} = 0.875$
Le produit 3 rapporte le plus par unité de paids.

(2) Sixety non enhists, solution: $b_3 \frac{20}{P_3} = 7 \times \frac{20}{8} = \frac{140}{8} = 17,5 \neq 1$

(3) Si g=1, il reste 12 kg dispenibles. Le produit 2 rapporte plus par unité de paids que le produit 1, d'ai $y=\frac{12}{7}$.

(4) $\int_{0 \le x \le 4}^{\infty} (5) f(x, y, 3) = 4x + 6y + 73$ $\int_{0 \le 3 \le 2}^{\infty} (5) f(x, y, 3) = 4x + 6y + 73$ $\int_{0 \le 3 \le 2}^{\infty} (5) f(x, y, 3) = 4x + 6y + 73$ $\int_{0 \le 3 \le 2}^{\infty} (5) f(x, y, 3) = 4x + 6y + 73$ $\int_{0 \le 3 \le 2}^{\infty} (5) f(x, y, 3) = 4x + 6y + 73$

(7) U=0 Evaluation de F_1 : il reste 4 ky dispenible, en ne peut rien rajouter. $7F_1(3=2)$: $h(F_1)=\int(0,0,2)=14$: en élapue F_1 et U=14 $F_2(3=1)$

F3 (3=0)

NOM:

-PRENOM:-

Graphique de l'exercice 3 Exercice 1, que hian 7

$$U = H \qquad U = H$$

$$F_{3} \stackrel{\text{elaqué}}{=} I = H \qquad F_{4} \stackrel{\text{elaqué}}{=} I = H \qquad F_{5} \stackrel{\text{elaque}}{=} I = H \qquad F_{5} \stackrel{\text{elaque}}$$

$$\frac{U=17}{E}$$
 F_1 élagné
$$f_2$$
 élagné

 $F_3(3=0): h(f_3) = 6 \times \frac{20}{7} = \frac{120}{7} > U$ Evaluation cle $F_3: il roke 20 kg disposibles$

$$F_{3}(3=0) = \frac{1}{2} (4,0,0) = \frac{1}{2} (4,0,0)$$

Exercice 3

$$\frac{b_1}{P_1} = 2$$
, $\frac{b_2}{P_2} = \frac{9}{5} = 1,8$, $\frac{b_3}{B} = \frac{3}{2} = 1,5$:
le product L rapporte le plus par unité de poids
 $h(E) = 20 \times \frac{29}{10} = 58$

$$\frac{U=0}{E} \quad U=55$$

$$= 7 F_{1}(x_{1}=2) : h(F_{1})=2\times20+9\times\frac{9}{5}=56,2 \quad J=55 \text{ for elayue}$$

$$= V=55 \text{ for elayue}$$

$$\frac{U=55}{E} = \int_{-1}^{1} F_{2}(x_{1}=2) e \log u e'$$

$$= \int_{-1}^{1} F_{2}(x_{1}=1) \cdot h(F_{2}) = 20 + 9 \times \frac{19}{5} = 54,2 < U : \text{ on elaque}$$

$$F_3(x_1=0): h(F_2) = 9x \frac{29}{5} = 52,2 < U: cn éloque$$

1
$$f(x_1, x_2, x_3) = 4x_1 + 6x_2 + 7x_3$$

 $\frac{i \mid 1 \mid 2 \mid 3}{b_i \mid 4 \mid 6 \mid 7}$ le produit le
 $\frac{p_i \mid 5 \mid 7 \mid 8}{b_i \mid 4 \mid 6 \mid 7}$ on peut mettre
 $\frac{b_i}{p_i} \mid \frac{4 \mid 6 \mid 7}{5 \mid 7 \mid 8}$ $x_3 = \frac{22}{8} = \frac{22}{8}$

Le produit le plus rentable: 3 on peut mettre une quantité maximale $x_3 = \frac{22}{8} = 2,75$ $h(E) = 7 \times 2,75 = 19,25 =$

$$\frac{U=0}{E} > F_1(x_3=2) : h(F_1) = \int (1,0,2) = 18 : \text{ on elayue et } U = 18$$

$$= F_2(x_3=1)$$

$$= F_3(x_3=0)$$

 $\frac{U=18}{E} = 7 F_3(x_3=2) \text{ élaqué}$ $= 7 F_3(x_3=2) \text{ élaqué}$ $= 7 F_2(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$ $= 7 F_3(x_3=2) \text{ : h } (F_2) = \int (0,2,1) = 19 > U \text{ : on élaque et } U=19$

$$\frac{U=19}{E} = 7 f_3(x_3=2) \text{ élayué}$$

$$\Rightarrow F_2(x_3=1) \text{ élayué}$$

$$\Rightarrow F_3(x_3=0) : h(F_3) = 6 \times \frac{22}{7} = \frac{132}{7} < U : \text{ on élayue}$$
(Evaluation de F_3 : il rste 22 ky , $x_2 = \frac{22}{7}$)

Solution: $\int_{max} = 19 pos(x_1, x_2, x_3) = (0, 2, 1)$

Exercise 4 2 $\int (x_1, x_2, x_3) = 5x_1 + 6x_2 + 7x_3$ Le produit le plus rentable: 3 On peut methre une quantité maximale Pi 5 7 6

bi 1 <1 >1 $x_3 = \frac{20}{6}$ R(E)=7x20=160 223,33 $\frac{U=0}{2}$ $\int_{-\infty}^{\infty} F_{3}(x_{3}=3) : h(F_{2}) = \int_{-\infty}^{\infty} (0,0,3) = 21 : \text{ on elique et } U=21$ $G_1(x_1=1)$: $f_1(x_2)=f(x_1,0,2)=19<0$: on élyme $\frac{U=21}{E} \int_{a}^{b} f_{1}(x_{3}=3) e^{b} dy u e^{b} \int_{b}^{b} f_{2}(x_{3}=2) e^{b} dy u e^{b} \int_{b}^{b} f_{3}(x_{3}=2) e^{b} dy u e^{b} dy u e^{b} \int_{b}^{b} f_{3}(x_{3}=2) e^{b} dy u e^{b} dy u e^{b} dy u e^{b} \int_{b}^{b} f_{3}(x_{3}=2) e^{b} dy u e$ $h(6_2) = f(0,1,2) = 20 < 0.$ On élajue (Evaluation de Fz: il roke 8 kg) $\frac{U=2L}{E} = \int_{-\infty}^{\infty} f_1(x_3=3) \text{ élagué}$ $= \int_{-\infty}^{\infty} f_2(x_3=2) \text{ élagué}$ $F_{3}(x_{3}=1):h(F_{3})=7\times1+5\times\frac{14}{5}=71=0$ J for (62) = \$(1,1,1)=182U h (63)=1(0,2/6)=19(U V=21 E = F, éliqué F3 éliqué > Fy (x3=0): h (Fy)= (4,0,0) = 20 < U: on elayur Solution: Pmax = 21 por (x1, x2, x3) = (0,0,3)