S-mul:

$$X(++T_s) = A \times (+) + B u(+) + K e(+)$$

 $y(+) = C \times (+) + D u(+) + e(+)$

 $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{1 \times n}$, $D \in \mathbb{R}^{7 \times m}$ $x(t) \in \mathbb{R}^{n}$, $y(t) \in \mathbb{R}$, $u(t) \in \mathbb{R}^{m}$, $K \in \mathbb{R}^{n \times m}$

e(t)-difference between measured and predicted output of the model. Parameter estimation using PEM DARX model (parible best chose)

DARMAX model

DOE model

Models description:

1) Define state parameters:

$$X_1 = X$$

$$x_2 = dx$$

$$x(+) = \int (x(+), u(+))$$

Models identification

Mechanical assembly: 1) input data: mA, mB - flows that can be measured.

output data: X - position 2) input data: input data: \dot{m}_A , \dot{m}_B - flows output data: \dot{x} - accelerometer data. Deprends how to model, but generally: [] C-viscous friction coefficient De - Coulomb friction Js. fol - static, dy navunic friction factor.

Cylinder:

- All parameters can be nearured or taken from datasher f1.

Value:

With respect to equation for mass flow $\dot{m} = U(x_s) C$ $p_1 \sqrt{\frac{2}{RT}} V(\frac{p_2}{p_1})$ count

where p_1 - supply pressure p_2 - atmospheric pressure

1) C is value coefficient that need to

be identified,

in 1.st experement we