אלגברה לינארית ב' גיליון 5

שימו לב, התרגילים ללא חובת הגשה לא יופיעו בתור "שאלת שיעורי הבית" בבחינה, אך הם כלולים בחומר ומומלץ מאד לפתור אותם

תרגיל 1

עבור אילו ערכים של $a\in\mathbb{R}$ מתקיים שהתבנית .1

$$f(x,y) = x_1y_1 + x_2y_2 + x_3y_3 + ax_2y_3 + ax_3y_2$$

 \mathbb{R}^3 היא מכפלה פנימית על

- $v_1,\dots,v_m\in V$ יהיו את משפט פיתגורס ל ממ"פ סוף מימדי כלשהו (מעל הממשיים או המרוכבים): יהיו . 2 . בסעיף זה תוכיחו את משפט פיתגורס ל $\|v_1,\dots,v_m\|^2=\|v_1\|^2+\dots+\|v_m\|^2$ וקטורים א"ג. הראו ש
- מקדמי פוריה. יהיו $\alpha_i=\langle v,v_i\rangle$ ונסמן $v\in V$ ונסמן $v_1,\dots,v_m\in V$ מקדמי פוריה. יהיו 3 בסימוני סעיף 2, כעת נניח ש־ $\alpha_i=\langle v,v_i\rangle$ וקטורים א"נ. יהי $v_1,\dots,v_m\in V$ במשפט פיתגורס במשפט פיתגורס שהוכחתם כדי להראות ש־ $\alpha_iv_i\|\leq \|\|v-\sum \beta_iv_i\|\|^2$ מקלרים כלשהם. היעזרו במשפט פיתגורס שהוכחתם כדי להראות ש־ $v_1,\dots,v_m\in V$ מחנוך כל איברי v_i מרוב ביותר ל" v_i מרוב

תרגיל 2 (אין חובת הגשה)

יהא $W\subseteq V$ מרחב וקטורי מעל F (הממשיים או המרוכבים) וי מעל על מרחב וקטורי מעל

$$A(W) = \{ f \in V^* \mid \forall w \in W : f(w) = 0 \}$$

- $.V^{st}$ של הוא תת־מרחב של .1
- $A\left(W\right)\subset A\left(W'\right)$ אז $W'\subset W$ ב. מוכיחו שאם.
- $A\left(U+W
 ight)=A\left(U
 ight)\cap A\left(W
 ight)$ כי הוכיחו תתי־מרחבים. תתי־מרחבים $U,W\subseteq V$ מעתה נניח כי V הוא סוף־ממדי.
 - $\dim A\left(W
 ight)=\dim V-\dim W$ בי הוכיחו $W\subseteq V$ תת־מרחב. $W\subseteq V$ אהי
- $A\left(U\cap W
 ight)=A\left(U
 ight)+A\left(W
 ight)$ כי יהיו $U,W\subseteq V$ תתי־מרחבים. הוכיחו כי
 - $.V^{st}=A\left(U
 ight) \oplus A\left(W
 ight)$ כנית כי $.V=U\oplus W$ 6.
- 7. עבור V נגדיר שזהו תת־מרחב אל הראו $a\left(X\right)=\{v\in V\mid \forall f\in X,\ f\left(v\right)=0\}$ נגדיר גדיר אנגדיר מרחב אז $A\left(X\right)=\{v\in V\mid \forall f\in X,\ f\left(v\right)=0\}$ הראו תת־קבוצה אז $X\subseteq V^*$ תת־קבוצה אז $W\subseteq V$

תרגיל 3

(וודאו אכן מכפלה אכן מכפלה אכן ווודאו הבאה הפנימית הפנימית עם המכפלה עם $V=\mathbb{R}_2\left[x\right]$ יהי

$$\langle p, q \rangle = p(0) q(0) + p(1) q(1) + p(2) q(2)$$

נגדיר: P_W , $P_{W^{\perp}}$ ההטלות המרחב הניצב. תהיינה $W=\{p\left(x\right)\in V\mid p\left(1\right)=p\left(2\right)=0\}$ נגדיר: $W=\{p\left(x\right)\in V\mid p\left(1\right)=p\left(2\right)=0\}$ המרחבים W, W^{\perp} בהתאמה.

- .1 מצאו בסיס א"ג א"ג ל- Wל־ ל- B_1 לר של של בסיס אורתונורמלי B_1 ל- של אורתונורמלי בסיס אורתונורמלי והשלימו
- P_W שמצאתם קודם. מהי צורת ז'ורדן של P_W בבסיס שמצאתם המטריצה המייצגת של 2.
- $\|p\left(x
 ight)-P_{W^{\perp}}\left(p\left(x
 ight)
 ight)\|$ את המרחק של $p\left(x
 ight)=x^{2}-3x+7$ מצאו את המרחק של 3.

תרגיל 4

(אין קשר בין הסעיפים)

- אה. M והעלות על N והער וויהיו P בהתאמה. תת־מרחבים. נניח שיר וויהיו אור וויהיו $M,N\subseteq V$ והאיז איהיה על מרחב מכפלה פנימית סוף־מימדי ויהיו וויהיו $M,N\subseteq V$ איז $M,N\subseteq V$ והאיז וויהיו $Q|_N$ ורע). הראו כי אם $M=\dim N$ לכל $M=\dim N$ לכל $M=\dim N$ לכל $M=\dim N$ לכל וויהיו ווי
- T:V o V עם המכפלה הפנימית הסטנדרטית . $\langle A,B
 angle=\mathrm{tr}\,(B^tA)$ עם המכפלה הפנימית הסטנדרטית על ידי אותן על ידי

$$T\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right) \quad = \quad \left(\begin{array}{cc}3d&2c\\-b&4a\end{array}\right)$$

תרגיל 5 (אין חובת הגשה)

יהי עתי־מרחבים. הראו כי: תתי־מרחבים. הראו כי: מכפלה פנימית ויהיו עתי־מרחבים. הראו כי

- $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$.1
- $(U\cap W)^\perp=U^\perp+W^\perp$ אז סוף־ממדיים) אז U ור U ור עיהיו סוף־ממדי (למעשה מספיק ש־ נ.2
 - $V=U^\perp\oplus W^\perp$ אז $V=U\oplus W$. אם V סוף־ממדי ו־

תרגיל 6

יהי V אופרטור עמוד לעצמו: $T^*=T$ על $T^*=T$ אופרטור ויהי אופרטור מעל פנימית סוף־ממדי מעל $T^*=T$

- $v \in V$ לכל $\|v + iT(v)\| = \|v iT(v)\|$.1
 - $.v+iT\left(v
 ight) =0$ אם ורק אם v=0 .2
- נקרא (כזכור, $U*=U^{-1}$ מקיים $U=\left(I-iT\right)\left(I+iT\right)^{-1}$ כזה נקרא הפיכים וכן הפיכים וכן I+iT .3 אופרטור אוניטרי).

תרגיל 7

ניתנת $A\in GL_n\left(\mathbb{C}\right)$ הפיכה מטריצה שכל ירוק ירוק פירוק מטריצה אחד אלגוריתם אלגוריתם אחד שמידט הוא פירוק מטריצה אוניטרית ווי A מטריצה מטר