4 正の実数 a , b に対して $A(a,\,b)=rac{a+\,b}{2}$, $G(a,\,b)=\sqrt{ab}$ とする。以下の問いに答えよ。

- (1) $\min(a,b) \leq G(a,b) \leq A(a,b) \leq \max(a,b)$ が成り立つことを示せ。 ただし, $\min(a,b)$ は a,b のうちの最小の数を表し, $\max(a,b)$ は a,b のうち最大の数を表す(a=b の場合は a,b のうちのどちらかの数を表すとする)。
- (2) a>b , $a_0=a$, $b_0=b$ として,以下の数列を定義する。 $a_{n+1}=rac{a_n+b_n}{2},\quad b_{n+1}=\sqrt{a_nb_n},\quad c_{n+1}=rac{a_n-b_n}{2},\quad n=0,\,1,\,2,\,\cdots$

このとき数列 $\{a_n\}$ と数列 $\{b_n\}$ は同じ極限値 $(\alpha$ とする) に収束することを示せ。

- (3) a_{n+2} を a_n と b_n を用いて表せ。ただし $\{a_n\}$ と $\{b_n\}$ は (2) で定義した数列とする。
- (4) c_{n+2} と c_{n+1} の間に以下の関係が成り立つことを示せ。ただし, $\{c_n\}$ と lpha はそれぞれ (2) で定義した数列と極限値とする。

$$c_{n+2} < \left(\frac{1}{2\sqrt{\alpha}}c_{n+1}\right)^2$$