

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5: C07K 3/00, 15/00, 13/00	A1	(11) International Publication Number	: WO 93/23423
A61K 39/12, C07H 15/12 C12N 15/00, C12P 21/06 C12Q 1/70, 1/68		(43) International Publication Date:	25 November 1993 (25.11.93)

(21) International Application Number:

PCT/US93/04692

(22) International Filing Date:

7 May 1993 (07.05.93)

(30) Priority data:

07/880,194

8 May 1992 (08.05.92)

US

(60) Parent Application or Grant

(63) Related by Continuation

US Filed on

07/880,194 (CIP) 8 May 1992 (08.05.92)

(71) Applicant (for all designated States except US): SMITH-KLINE BEECHAM CORPORATION [US/US]; Cor-porate Patents - U.S., UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(72) Inventors; and
(75) Inventors; Applicants (for US only): MILLER, Timothy, J.
[US/US]; 102 Crestside Way, Malvern, PA 19355 (US).
KLEPFER, Sharon [US/US]; 113 Lindbergh Avenue,
Broomall, PA 19008 (US). REED, Albert, Paul [US/US]; 117 Baker Circle, Exton, PA 19341 (US). JONES,
Elaine, V. [US/US]; 1217 Andover Road, Wynnewood,
PA 19096 (US).

(74) Agents: SCHRECK, Patricia, A. et al.; SmithKline Beecham Corporation, Corporate Patents - U.S., UW2220, 709 Swedeland Road, P.O. Box 1539, King of Prussia, PA 19406-0939 (US).

(81) Designated States: AU, CA, JP, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

(54) Tide: CANINE CORONAVIRUS S GENE AND USES THEREFOR

(57) Abstract

The present invention provides the amino acid and nucleotide sequences of a CCV spike gene, and compositions containing one or more fragments of the spike gene for prophylaxis, diagnostic, and treatment of CCV infections.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Nutherlands
BE	Belgium	CN	Guinea	NO	Norway
BF	Buckina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	₽L	Poland
BJ	Bunin	IE .	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	КP	Democratic People's Republic	SD	Sudan
CG	Carigo		of Korea	SE	Swictura -
CH	Switzerland	KR	Republic of Korea	SK	Slovak Republic
CI	Côte d'Ivaire	K2	Kazakhstan	SN	Senegal
CM	Cameroon	LI.	Liechtenstein	SU	Soviet Union
cs	Czechoslovakia	LK	Sri Funka	TD	Chad
CZ	Czech Republic	LL	Lassembourg .	TG	Tago
DE	Germany	MC	Монасо	UA	Ukraine
DK	Denmark	MG	Madagasar	us	United States of America
ES	Spain	MĮ.	Mali	VN .	Viet Nam
FI	Finland	MN	Mongolia		

CANINE CORONAVIRUS S GENE AND USES THEREFOR

Cross-Reference to Related Application

This is a continuation-in-part of U.S. Patent Application Serial Ser. No. 07/880,194, filed May 8, 1992, which is a continuation-in-part of U.S. Patent Application Ser. No. 07/698,927, filed May 13, 1991, which is a continuation-in-part of U.S. Patent Application Ser. No. 07/613,066, filed November 14, 1990.

10

15

20

25

5

Field of the Invention

The present invention relates generally to canine coronavirus infections, and specifically to proteins useful in prophylaxis, therapy, and diagnosis of these infections in canines.

Background of the Invention

The coronaviruses are a large family of mammalian and avian pathogens which were first described in 1968. They are the causative agents of several diseases including encephalitis, hepatitis, peritonitis and gastroenteritis. Enteric coronaviruses have been detected in the feces of man, pigs, calves, cats, mice, chickens and dogs.

Canine coronavirus (CCV) enteritis was first isolated from dogs suffering an acute gastroenteritis, as reported by Binn et al., <u>Proc. 78th Ann. Mtg. U.S. Animal Health Assoc.</u>, Roanoke VA, pp. 359-366 (1974). The disease became prevalent during the 1970s. CCV gastroenteritis appears to be primarily transmitted through fecal contamination from infected dogs via the oral route,

leading ultimately to replication of the virus in the epithelial cells of the small intestine. Virus can be recovered from the feces of an infected dog between 3 and 14 days after infection.

CCV gastroenteritis is characterized by a mild depression, anorexia and loose stool from which the dog usually recovers. The onset of the disease is often sudden, accompanied by such symptoms as diarrhea, vomiting, excreted blood in stools, and dehydration. Deaths have occurred within as little as 24 to 36 hours after onset of clinical signs. Most dogs appear afebrile but elevated body temperature is seen in some cases. Often CCV will occur with a canine parvovirus infection and this coinfection can be fatal.

Serologically the disease is closely related to transmissible gastroenteritis virus of swine (TGEV). Although canine coronavirus does not infect pigs, transmissible gastroenteritis virus produces a subclinical infection in dogs. However, unlike the feline infectious peritonitis coronavirus (FIPV), previous exposure to CCV does not predispose dogs to enhanced disease; and antigenantibody complexes, if formed, are not associated with disease pathology.

There remains a need in the art for compositions useful in diagnosing, treating and preventing infections with canine coronaviruses.

Summary of the Invention

In one aspect the present invention provides the complete nucleotide sequence of the CCV S gene, strain 1-71, SEQ ID NO:1. The S gene or fragments thereof may be useful in diagnostic compositions for CCV infection.

₹.

In another aspect the present invention provides a CCV S (or spike) protein characterized by the amino acid sequence of a CCV S protein, SEQ ID NO:2, and peptide fragments thereof. These proteins may be optionally fused or linked to other fusion proteins or molecules.

5

10

15

20

25

30

Thus, in another aspect, the present invention provides a vaccine composition containing an effective immunogenic amount of at least one CCV S protein or an immunogenic fragment thereof.

In still another aspect, the invention provides a method of vaccinating an animal against infection with a coronavirus by administering an effective amount of a vaccine composition of this invention.

In yet a further aspect, the present invention provides a pharmaceutical composition for the treatment of CCV infection comprising a therapeutically effective amount of a CCV S peptide or protein of the invention and a pharmaceutically effective carrier.

Still another aspect of this invention is an antibody directed to CCV, which antibody is capable of distinguishing between CCV and other canine viruses. These antibodies may also be employed as diagnostic or therapeutic reagents.

In yet another aspect, a diagnostic reagent of the present invention comprises a CCV S protein or fragment thereof. In another aspect, the present invention provides a diagnostic reagent which comprises a nucleotide sequence which encodes a CCV S protein or fragment of the invention, and/or a nucleotide sequence which flanks the coding region, or fragments thereof. These protein and nucleotide sequences are optionally associated with detectable labels. Such diagnostic reagents may be used to assay for the presence of CCV in dogs using standard assay formats and can form components of a diagnostic kit.

In a further aspect, the invention provides a method of using a diagnostic reagent of this invention to identify dogs which are uninfected or which have been previously exposed to CCV. The diagnostic method can differentiate exposure to CCV from exposure to other

5

10

15

20

25

4

related coronaviruses, allow the identification of dogs which have been vaccinated against these diseases, and allow one to distinguish between different strains of CCV, or to identify dogs at advanced stages of CCV infection.

5

10

15

20

25

In yet a further aspect, the invention provides a method for the production of a recombinant CCV protein comprising culturing a selected host cell, e.g., a mammalian cell or viral vector, transformed with a DNA sequence encoding a selected CCV S protein or fragment thereof in operative association with regulatory sequences capable of regulating the expression of said protein.

Another aspect of the invention is a recombinant DNA molecule comprising a DNA sequence coding for a selected portion of a canine coronavirus S protein, the DNA sequences in operative association with regulatory sequences capable of directing the expression thereof in host cells.

Other aspects and advantages of the present invention are described further in the following detailed description of the preferred embodiments thereof.

Detailed Description of the Invention

The present invention provides novel isolated canine coronavirus (CCV) S proteins and fragments thereof, as well as isolated nucleotide sequences encoding the proteins or fragments. These proteins and fragments are diagnostic, useful for vaccinal and therapeutic compositions as well as methods for usina compositions in the diagnosis, prophylaxis and treatment of CCV-related and other coronavirus-related conditions.

30 I. Definitions

As defined herein, an amino acid fragment is any amino acid sequence from at least about 8 amino acids in length up to about the full-length CCV S gene protein. A nucleotide fragment defines a nucleotide sequence which

10

15

20

25

30

5

encodes from at least about 8 amino acids in length up to about the full-length CCV S gene protein.

The term "region" refers to all or a portion of a gene or protein, which may contain one or more fragments as defined above.

The term "immunogenic" refers to any S gene protein or fragment thereof, any molecule, protein, peptide, carbohydrate, virus, region or portion thereof which is capable of eliciting a protective immune response in a host, e.g., an animal, into which it is introduced.

The term "antigenic" refers only to the ability of a molecule, protein, peptide, carbohydrate, virus, region or portion thereof to elicit antibody formation in a host (not necessarily protective).

As used herein, the term "epitope" refers to a region of a protein which is involved in its immunogenicity, and can include regions which induce B cell and/or T cell responses.

As used herein, the term "B cell site or T cell site" defines a region of the protein which is a site for B cell or T cell binding. Preferably this term refers to sites which are involved in the immunogenicity of the protein.

II. Sources of CCV Sequences

The examples below specifically refer to newly identified spike gene sequences from canine coronavirus (CCV) strain 1-71. This strain is deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Drive, Rockville, Maryland under Accession No. VR-809. Particularly disclosed are nucleotide and amino acid sequences, SEQ ID NO:1 and 2, respectively, of the CCV S gene.

6

The present invention is not limited to the particular CCV strain employed in the examples. Other CCV strains have been described, e.g., strain CCV-TN449 [ATCC 2068]. Utilizing the teachings of this invention, analogous fragments of other canine coronavirus strains can be identified and used in the compositions of this invention.

III. CCV Nucleotide and Amino Acid Sequences of the Invention.

The inventors have identified and selected nucleotide and protein sequences of CCV strain 1-71 which have been determined to be of interest for use as vaccinal, therapeutic and/or diagnostic compositions. For example, selected peptide and nucleotide sequences present primarily in the variable N terminal region of the CCV S protein and gene are characterized by representing areas of homology between FIPV, TGEV, feline enteric coronavirus (FECV) and other coronavirus strains.

Peptide fragments obtained from this heterogeneous N terminal of the S protein are useful fragments for diagnostic compositions and kits for distinguishing between infection with CCV strain 1-71 from other CCV infections, and for distinguishing between infection with CCV and other coronavirus identified above in a vaccinated or infected dog, as well as for use in vaccine and therapeutic agents.

Additionally, the amino terminal sequences of CCV S protein include peptide sequences which are B cell sites and thus useful in vaccinal or therapeutic compositions, or for generating antibodies to CCV, in assays for the detection of CCV antibodies in dogs.

In addition, certain peptide fragments of the CCV S protein are believed to represent T cell sites, and thus are useful in vaccinal or therapeutic compositions.

5

10

15

20

25

PCT/US93/04692

5

10

7

Other suitable CCV amino acid regions for pharmaceutical or diagnostic use are located within other regions of the CCV S protein SEQ ID NO: 2. These amino acid and nucleotide fragments of the CCV S protein and its nucleotide sequence discussed above are specifically reported below in Tables I and II. Table II also reports the respective homologies of certain of these desired fragments to wild-type FIPV, i.e., FIPV WSU 1146. The CCV S nucleotide fragments in Tables I and II can be useful for diagnostic probes, PCR primers, or for use in recombinant production of relevant S protein fragments for use in therapeutic or vaccinal compositions. Other suitable fragments may also be identified for such use.

15 <u>Table I</u> <u>CCV Amino Acids</u>

	<u>B cell sites</u>	T cell sites	SEO ID NOS:
	50-250		3
	375-425		3 4 5 6
20	450-470		5
	550-600		6
	650-700		7
	770-850		8 9
	900-1025		
25	1150-1225	•	10
	1250-1452		11
		40-47	12
		63-81	13
		187-191	14
30		241-274	15
		335-341	16
		395-428	17
		468-494	18
		846-860	19
35		916-952	20
		977-992	21.
		1068-1145	22
		1366-1391	23

Table II

Amino Acid Sequences

5	CCV Amino Acid	1-71 Nucleotides	<pre>% Homology CCV 1-71 to WT FIPV WSU 1146</pre>	SEQ ID NOS. AA Nucl.
	1113-1236	3337-3708	100	25 and 24
	540-599	1618 - 1797	93.3	27 and 26
	342-388	1024-1164	93.6	29 and 28
	137-153	409-459	64.7	31 and 30
10	375-388	1123-1164	85.7	33 and 32
	1424-1440	4270-4320	94.1	35 and 34
	1407-1420	4219-4260	85.7	37 and 36
	1342-1406	4024-4218	96.9	39 and 38
	398-652	1192-1956	93.3	41 and 40
15	128-555	382-1665	89.5	43 and 42
	447-628	1339-1884	91.8	45 and 44

IV. Modified Sequences of the Invention.

In addition to the amino acid sequences and corresponding nucleotide sequences of the specifically-20 recited embodiments of CCV S proteins of this invention, the invention also encompasses other DNA and amino acid sequences of CCV S proteins. Such other nucleic acid sequences include those sequences capable of hybridizing to SEQ ID NO: 1 under conditions of at least 85% stringency, 25 i.e. having at least 85% homology to the sequence of SEQ ID NO: 1, more preferably at least 90% homology, and most preferably at least 95% homology. Such homologous sequences are characterized by encoding a CCV S gene 30 protein related to strain 1-71.

PCT/US93/04692

5

10

15

20

25

30

9

Further, allelic variations (naturally-occurring base changes in the species population which may or may not result in an amino acid change) of DNA sequences encoding the various S amino acid or DNA sequences from the illustrated CCV are also included in the present invention, as well as analogs or derivatives thereof. Similarly, DNA sequences which code for protein sequences of the invention but which differ in codon sequence due to the degeneracies of the genetic code or variations in the DNA sequence encoding these proteins which are caused by point mutations or by induced modifications to enhance the activity, half-life or production of the peptide encoded thereby are also encompassed in the invention.

Variations in the amino acid sequences of this invention may typically include analogs that differ by only 1 to about 4 codon changes. Other examples of analogs include polypeptides with minor amino acid variations from the natural amino acid sequence of S gene proteins and/or the fusion partner; in particular, conservative amino acid replacements. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids are generally divided into four families: acidic = (1) aspartate, glutamate; (2) basic = lysine, arginine, non-polar = alanine, valine, histidine; (3) isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar = glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. For example, it is reasonable to expect that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar conservative replacement of an amino acid with a structurally related

10

amino acid will not have a significant effect on its activity, especially if the replacement does not involve an amino acid at an epitope of the polypeptides of this invention.

V. Fusion Proteins.

If desired, the CCV S proteins and peptide fragments, e.g. those identified in Tables I and II, can be produced in the form of fusion proteins as defined below. Such a fusion protein may contain either a full-length CCV S protein or an immunogenic fragment thereof. Suitable fragments include those contained within SEQ ID NO: 2 and the amino acids fragments of Tables I and II. Other suitable fragments can be determined by one of skill in the art by analogy to the sequences provided herein.

Proteins or peptides may be selected to form fusion proteins with the selected S protein or peptide sequence based on a number of considerations. The fusion partner may be a preferred signal sequence, a sequence which is characterized by enhanced secretion in a selected host cell system, or a sequence which enhances the stability or presentation of the S-derived peptide. Such exemplary fusion partners include, without limitation, ubiquitin and a mating factor for yeast expression systems, and beta-galactosidase and influenza NS-1 protein for bacterial systems. One of skill in the art can readily select an appropriate fusion partner for a selected expression system. The present invention is not limited to the use of any particular fusion partner.

The CCV S protein or fragments thereof can optionally be fused to each other or to the fusion partner through a conventional linker sequence, i.e., containing about 2 to 50 amino acids, and more preferably, about 2 to about 20 amino acids in length. This optional linker may provide space between the two linked sequences.

ž

8

5

10

15

20

25

10

15

20

25

30

11

Alternatively, this linker sequence may encode, if desired, a polypeptide which is selectively cleavable or digestible by conventional chemical or enzymatic methods. example, the selected cleavage site may be an enzymatic cleavage site, including sites for cleavage by proteolytic enzyme, such as enterokinase, factor Xa, trypsin, collagenase and thrombin. Alternatively, cleavage site in the linker may be a site capable of being cleaved upon exposure to a selected chemical, cyanogen bromide or hydroxylamine. The cleavage site, if inserted into a linker useful in the fused sequences of this invention, does not limit this invention. Any desired cleavage site, of which many are known in the art, may bear, used for this purpose.

VI. Production of Sequences of Invention

The CCV S gene protein of the invention and amino acid regions, fragments thereof and their corresponding nucleotide sequences, as well as other proteins described fusion partners, may be produced e.g. conventional methods. These proteins or fragments and the nucleotide sequences may be prepared by chemical synthesis techniques [Merrifield, J.A.C.S., 85:2149-2154 (1963)]. Preferably, however, they are prepared by known recombinant DNA techniques by cloning and expressing within a host microorganism or cell a DNA fragment carrying a coding sequence for the selected protein. See, e.g., Sambrook et al, "Molecular Cloning. A Laboratory Manual", 2nd edit., Cold Spring Harbor Laboratory, New York (1989). techniques are discussed below in the Examples.

According to cloning techniques, a selected gene fragment of this invention can be cloned into a selected expression vector. Vectors for use in the method of producing S protein proteins comprise a novel S gene DNA sequence (or a fragment thereof) of the invention and

12

selected regulatory sequences in operative association with .
the DNA coding sequence, and capable of directing the replication and expression of the peptide in a selected host cell.

Vectors, e.g., polynucleotide molecules, of the invention may be designed for expression of CCV S proteins and/or fusion proteins in bacterial, mammalian, fungal or insect cells or in selected viruses. Suitable vectors are known to one skilled in the art by resort to known publications or suppliers.

The resulting DNA molecules or vectors containing nucleotide sequences encoding the canine coronavirus s peptides or fragments thereof and/or encoding the fusion proteins are then introduced into host cells and expression of the heterologous protein induced.

Additional expression systems may include the known viral expression systems, e.g., vaccinia, fowlpox, swine pox. It is understood additionally, that the design of the expression vector will depend on the choice of host cell. A variety of suitable expression systems in any of the below-identified host cells are known to those skilled in the art and may be readily selected without undue effort.

Suitable cells or cell lines for expressing the S protein or peptides of this invention can be eukaryotic or prokaryotic. A preferred expression system includes mammalian cells, such as Chinese Hamster ovary cells (CHO) or COS-1 cells. The selection of other mammalian host cells and methods for transformation, culture, amplification, screening product production and purification are known in the art. See, e.g., Gething and Sambrook, Nature, 293:620-625 (1981), or alternatively, Kaufman et al, Mol. Cell. Biol.,

5

10

15

20

25

10

15

20

25

30

13

5(7):1750-1759 (1985) or Howley et al, U. S. Patent 4,419,446. Also desirable are insect cell systems, such as the baculovirus or Drosophila systems. The selection of other suitable host cells and methods for transformation, culture, amplification, screening and product production and purification can be performed by one of skill in the art by reference to known techniques. See, e.g., Gething and Sambrook, Nature, 293:620-625 (1981).

After the transformed host cells are conventionally cultured for suitable times and under suitable culture conditions known to those skilled in the art, the cells may be lysed. It may also be possible, depending on the construct employed, that the recombinants proteins are secreted extracellularly and obtained from the culture medium. Cell lysates or culture medium are then screened for the presence of CCV S protein or peptide which are recognized by antibodies, preferably monoclonal antibodies (MAbs), to a peptide antigenic site from CCV.

Similarly, the fusion proteins may be produced by resort to chemical synthesis techniques, or preferably, recombinant methods, as described above. The selected primer sets used in the PCR reaction described in the Examples below may be designed to produce PCR amplified fragments containing restriction endonuclease cleavage site sequences for introduction of a canine coronavirus S gene fragment in a specific orientation into a selected expression vector to produce fusion proteins of the invention. The vector may contain a desired protein or fragment thereof to which the S gene fragment is fused in frame to produce a fusion protein.

The crude cell lysates containing the CCV S protein or peptides or fusion proteins can be used directly as vaccinal components, therapeutic compositions or

14

diagnostic reagents. Alternatively, the CCV S peptides can be purified from the crude lysate or medium by conventional means.

VII. Vaccine Compositions

The CCV S proteins and immunogenic fragments of invention may be incorporated in a Such a vaccine composition may contain an immunogenic amount of one or more selected CCV S peptides or proteins, e.g., encoded by the complete S gene sequence of CCV or partial sequences thereof, and prepared according to the method of the present invention, together with a carrier suitable for administration as composition for prophylactic treatment of CCV infections. The protein may be in the form of a fusion protein as above-described. Alternatively, the CCV S gene or fragment may be incorporated into a live vector, e.g., adenovirus, vaccinia virus and the like. The expression of vaccinal proteins in such live vectors are well-known to those in the art [See, e.g., U. S. Patent No. 4,920,209]. preferable that the protein employed in the vaccine composition induces protective immune responses against more than one strain of CCV.

A vaccine composition according to the invention may optionally contain other immunogenic components. Particularly desirable are vaccine compositions containing other canine antigens, e.g., canine distemper, Borrelia burgdorferi, canine Bordetella, rabies, canine parvovirus, Leptosporidia sp., canine rotavirus, canine parainfluenza virus and canine adenovirus.

In another embodiment, the CCV S proteins may be used in a combination vaccine directed to related coronaviruses. Other suitable coronaviruses which can be used in such a combination vaccine include a feline coronavirus, such as FIPV or FECV. For example, a CCV S peptide or protein of the present invention may be employed

5

10

15

20

25

30

10

15

20

25

30

15

as an additional antigen in the temperature sensitive FIPV vaccine described in detail in co-owned, co-pending U. S. Patent Application Ser. No. 07/428,796 filed October 30, 1989, incorporated by reference herein. Alternatively, the CCV S protein or peptide or a fragment thereof could be used in a vaccine composition containing other coronavirus S proteins or fragments thereof, particularly those described in co-pending, co-owned U.S. Patent application Ser. No. 07/698,927 (and its corresponding published PCT Application No. W092/08487).

The preparation of a pharmaceutically acceptable vaccine composition, having appropriate pH isotonicity, stability and other conventional characteristics is withing the skill of the art. Thus such vaccines may optimally contain other conventional components, such as adjuvants and/or carriers, e.g. aqueous suspensions of aluminum and magnesium hydroxides, liposomes and the like.

The vaccine composition may be employed to vaccinate animals against the clinical symptoms associated with CCV. The vaccines according to the present invention can be administered by an appropriate route, e.g., by the oral, intranasal, subcutaneous, intraperitoneal or intramuscular routes. The presently preferred methods of administration are the subcutaneous and intranasal routes.

The amount of the CCV S peptide or protein of the invention present in each vaccine dose is selected with regard to consideration of the animal's age, weight, sex, general physical condition and the like. The amount required to induce an immunoprotective response in the animal without significant adverse side effects may vary depending upon the recombinant protein employed as immunogen and the optional presence of an adjuvant.

16

Generally, it is expected that each dose will comprise between about 0.05-5000 micrograms of protein per mL, and preferably 0.05-100 micrograms per mL of a sterile solution of an immunogenic amount of a protein or peptide of this invention. Initial doses may be optionally followed by repeated boosts, where desirable.

Another vaccine agent of the present invention is an anti-sense RNA sequence generated to the S gene of CCV strain 1-71 [SEQ ID NO:1] [S. T. Crooke et al, <u>Biotech.</u>, 10:882-886 (Aug. 1992)]. This sequence may easily be generated by one of skill in the art either synthetically or recombinantly. Under appropriate delivery, such an anti-sense RNA sequence when administered to an infected animal should be capable of binding to the RNA of the virus, thereby preventing viral replication in the cell.

VIII. Pharmaceutical Compositions

The invention also provides a pharmaceutical composition comprising one or more CCV S peptides or proteins prepared according to the present invention and a pharmaceutically effective carrier. Suitable pharmaceutically effective carriers for internal administration are known to those skilled in the art. One selected carrier is sterile saline. The pharmaceutical composition can be adapted for administration by any appropriate route, but is designed preferentially for administration by injection or intranasal administration. IX. Antibodies of the Invention

The present invention also encompasses the development of an antibody to one or more epitopes in the above identified amino acid sequences derived from the CCV S protein, which epitope is distinct from those of other CCV strains or other coronaviruses, e.g. FIPV, TGEV or FECV. The antibody can be developed employing as an antigenic substance, a peptide of Table I or II.

5

10

15

20

25

10

15

20

25

30

17

Alternatively, other regions of the CCV strain 1-71 S protein SEQ ID NO: 2 may be employed in the development of an antibody according to conventional techniques.

In one embodiment, the antibody is capable of identifying or binding to a CCV antigenic site encoded by SEQ ID NO: 1 or a fragment thereof. Such an antibody may be used in a diagnostic screening test, e.g., as a hybridization probe, or as a therapeutic agent.

Antibodies which bind CCV peptides from the regions identified above or to other regions capable of distinguishing between CCV, TGEV, FIPV, FECV, and other coronaviruses for use in the assays of this invention may be polyclonal. However, it is desirable for purposes of increased target specificity to utilize MAbs, both in the assays of this invention and as potential therapeutic and prophylactic agents. Additionally, synthetically designed MAbs may be made by known genetic engineering techniques [W. D. Huse et al, Science, 246:1275-1281 (1989)] and employed in the methods described herein. For purposes of simplicity the term MAb(s) will be used throughout this specification; however, it should be understood that certain polyclonal antibodies, particularly high titer polyclonal antibodies and recombinant antibodies, may also be employed.

A MAb may be generated by the well-known Kohler and Milstein techniques and modifications thereof and directed to one or more of the amino acid residue regions identified above, or to other CCV S peptides or epitopes containing differences between CCV strain 1-71 and other coronaviruses. For example, a fragment of SEQ ID NO: 2 which represents an antigenic site, which differs from that of FIPV, may be presented as an antigen in conventional

18

techniques for developing MAbs. One of skill in the art may generate any number of MAbs by using fragments of the amino acid residue regions identified herein as an immunogen and employing these teachings.

For diagnostic purposes, the antibodies (as well as the diagnostic probes) may be associated with individual Where more than one antibody is employed in a diagnostic method, the labels are desirably interactive to produce a detectable signal. Most desirably, the label is detectable visually, e.g. colorimetrically. Detectable for attachment to antibodies useful in diagnostic assays of this invention may also be easily selected by one skilled in the art of diagnostic assays, which include, without limitation, horseradish peroxidase (HRP) or alkaline phosphatase (AP), hexokinase in conjunction with glucose-6-phosphate dehydrogenase, and NAD oxidoreductase with luciferase and substrates NADH and FMN or peroxidase with luminol and substrate peroxide. These and other appropriate label systems and methods for coupling them to antibodies or peptides are known to those of skill in the art.

Antibodies may also be used therapeutically as targeting agents to deliver virus-toxic or infected cell-toxic agents to infected cells. Rather than being associated with labels for diagnostic uses, a therapeutic agent employs the antibody linked to an agent or ligand capable of disabling the replicating mechanism of the virus or of destroying the virally-infected cell. The identity of the toxic ligand does not limit the present invention. It is expected that preferred antibodies to peptides encoded by the S genes identified herein may be screened for the ability to internalize into the infected cell and deliver the ligand into the cell.

5

10

15

20

25

10

15

20

25

30

19

X. Diagnostic Reagents and Assays

The nucleotide sequences, amino acid fragments and antibodies described above may be employed as diagnostic reagents for use in a variety of diagnostic methods according to this invention.

A. PCR Diagnostic Assays.

For example, these sequences can be utilized in a diagnostic method employing the polymerase chain reaction (PCR) technique to identify the presence of a CCV or CCV-like virus and in therapy of infected animals.

In addition to those sequences identified above, the oligonucleotide sequences that were designed to prime cDNA synthesis at specific sites within the CCV S gene, as described in detail below in Example 3 [SEQ ID NO:46-50], may also be employed as diagnostic reagents according to this invention. These sequences, as well as the below-described optimized conditions for the PCR amplification of CCV fragments therefrom, may also be employed in a diagnostic method.

The PCR technique is known to those of skill in the art of genetic engineering and is described in detail in Example 4 [see, e.g., R. K. Saiki et al, Science, 230:1350-1354 (1985)], which is incorporated herein by Briefly described, PCR employs oligonucleotide primers which are complementary to the opposite strands of a double stranded nucleic acid of interest whose strands are oriented such that when they are extended by DNA polymerase, synthesis occurs across the region which separates the oligonucleotides. By repeated cycles of heat denaturation, annealing of the primers to their complementary sequences and extension of the annealed primers with a temperature stable DNA polymerase, millions of copies of the target gene sequence are generated. template for the reaction is total RNA, which is isolated

20

from CCV infected cells. DNA fragments generated by PCR were amplified from cDNA which had been synthesized from this RNA. Other strains of CCV or CCV-related sequences may also provide PCR templates in a similar manner.

one diagnostic method, for example, heterogenous CCV gene sequences of this invention are useful as reagents in diagnostic assays to detect and distinguish the presence of specific viruses from each other, e.g., to distinguish one canine coronavirus strain from another or one species of coronavirus from another by means of conventional assay formats. For example, using protocols similar to those used for forensic purposes, tissue or blood samples from a dog suspected to be infected. with CCV would be subjected to PCR amplification with a selected CCV-specific set of primers, such as those DNA sequences disclosed herein. Amplification of DNA from a sample tissue or biological fluid of the animal suspected of infection using nucleotide sequences as primers specific for regions of the CCV viral gene sequences could correlate to the presence of CCV. Absence of CCV in the sample would result in no amplification. Similarly, the selection of specific sets of S gene primers would allow the identification of a particular strain of CCV as well. Thus, appropriate treatments may be selected for the infected animal.

Example 3 provides oligonucleotide primers which permitted the synthesis of regions of the CCV S gene. The nucleotide sequence of the S gene of CCV provides desirable sequences for hybridization probes and PCR primers, for example, the sequences between nucleotide base pairs 900 to about 1600 [SEQ ID NO: 55] and about 2500 to about 3900 [SEQ ID NO: 56] of SEQ ID NO: 1. Smaller or larger DNA fragments in these regions may also be employed as PCR primers or hybridization probes.

5

10

15

20

25

30 -

10

15

20

25

30

35

21

It is desirable to have PCR primer sequences between 15 to 30 bases in length, with an intervening sequence of at least 100 bases to as large as 5000 bases there between, according to conventional PCR technology. However, it is possible that larger or smaller sequence lengths may be useful based upon modifications to the PCR technology. In general, in order to achieve satisfactory discrimination, a hybridization or oligonucleotide probe made up of one or more of these sequences would consist of between 15 and 50 bases in length based on current technology.

B. Conventional Assay Formats

The CCV S proteins or peptide fragments may also:
be employed in standard diagnostic assays which rely on S
protein immunogens as targets for sera recognition. The
diagnostic assays may be any conventionally employed assay,
e.g., a sandwich ELISA assay, a Western blot, a Southern
blot and the like. Because a wide variety of diagnostic
methods exist and are conventionally known which can be
adapted to the use of the nucleotide and amino acid
sequences described herein, it should be understood that
the nature of the diagnostic assay does not limit the use
of the sequences of this invention.

For example, the amino acid sequences encoded by CCV S gene sequences, such as those appearing in Tables I and II above, which may be amplified by PCR, provide peptides useful in such diagnostic assays as ELISA or Western assay, or as antigens for the screening of sera or development of antibodies.

For example, the sequences between about amino acid 1 to about 250 [SEQ ID NO:57], about 450 to about 650 [SEQ ID NO:58], and about 900 to about 1150 [SEQ ID NO:59] of the CCV strain 1-71 S gene protein SEQ ID NO:2, are anticipated to be useful as such antigens. Such peptides can optionally also be used in the design of synthetic

22

peptide coupled to a carrier for diagnostic uses, e.g., antibody detection in sera. Suitable carriers include ovalbumin, keyhole limpet hemocyanin, bovine serum albumin, sepharose beads and polydextran beads.

5

Such peptide antigens and antibodies to these peptides would react positively with tissue or serum samples of dogs infected with CCV, but negatively with non-CCV infected dogs. These antibodies are discussed in more detail below.

10

15

For example, the invention provides a method of using the full length CCV S protein or fragments thereof as diagnostic agents for identifying the presence or absence of antibodies in previously exposed, naive or vaccinated dogs, respectively, as well as for differentiating exposure to CCV from other related coronaviruses. Other S peptides or fusion proteins which show differential reactivity to CCV and other coronavirus sera may also be useful as CCV-specific reagents in ELISA-based screening assays to detect CCV exposure in dogs. Similarly, an S protein or peptide which contains epitopes recognized only by sera from CCV infected dogs or by sera from CCV positive dogs could be employed to distinguish or differentiate among coronavirus infections.

25

30

20

As one assay format, the reactivity of affinity purified CCV S proteins or peptides fragments to canine biological fluids or cells can be assayed by Western blot. The assay is preferably employed on sera, but may also be adapted to be performed on other appropriate fluids or cells, for example, macrophages or white blood cells. In the Western blot technique, the purified protein, separated by a preparative SDS polyacrylamide gel, is transferred to

DOCID: <WO___9323423A1_1 >

10

15

20

25

30

nitrocellulose and cut into multiple strips. The strips are then probed with dog sera from uninfected or infected dogs. Binding of the dog sera to the protein is detected by incubation with alkaline phosphatase tagged goat antidog IgG followed by the enzyme substrate BCIP/NBT. Color development is stopped by washing the strip in water.

used in an ELISA based assay for detecting CCV disease. A typical ELISA protocol would involve the adherence of antigen (e.g., a S protein) to the well of a 96-well tray. The serum to be tested is then added. If the serum contains antibody to the antigen, it will bind. Specificity of the reaction is determined by the antigenerabsorbed to the plate. With the S protein, only sera from those dogs infected with CCV would bind to the plate; sera from naive or uninfected dogs would not bind.

Similarly, a CCV S protein or peptide which contained epitopes recognized only by sera from CCV-infected dogs or by sera from CCV-positive dogs could be employed to distinguish coronavirus infections. After the primary antibody is bound, an enzyme-labeled antibody directed against the globulin of the animal whose serum is tested is added. Substrate is then added. The enzyme linked to antibody bound to the well will convert the substrate to a visible form. The amount of color measured is proportional to the amount of antibody in the test material. In this manner, dogs infected with CCV can be identified and treated, or dogs naive to the virus can be protected by vaccination.

When used as diagnostic reagents, the primers, probes, peptide antigens, nucleotide sequence encoding or flanking a CCV S protein or fragment of the invention, and antibodies of this invention may be optionally associated with detectable labels or label systems known to those

24

skilled in the art. Such labelled diagnostic reagents may be used to assay for the presence of CCV in dogs in hybridization assays or in the PCR technique as described above.

C. Diagnostic Kits

The assay methods, PCR primers, CCV S nucleotide sequences [SEQ ID NO:1], S proteins and peptides, and antibodies described herein may be efficiently utilized in the assembly of a diagnostic kit, which may be used by veterinarians or laboratories. The kit is useful in distinguishing between CCV infected animals and vaccinated animals, as well as non-exposed dogs, and between CCV-infected animals and animals infected with serologically related viruses, such as other CCV or FIPV, TGEV, and FECV. Such a diagnostic kit contains the components necessary to practice the assays described above.

Thus, the kit may contain a sufficient amount of at least one CCV S protein, fusion protein or peptide fragment, at least one CCV S gene nucleotide sequence or PCR primer pair of this invention, a MAb directed to a first epitope on the CCV S protein (which MAb may be labeled), optional additional components of a detectable labelling system, vials for containing the serum samples, protein samples and the like, and a second MAb conjugated to the second enzyme, which in proximity to the first enzyme, produces a visible product. Other conventional components of such diagnostic kits may also be included.

Alternatively, a kit may contain a selected CCV S protein or peptide, a MAb directed against a selected CCV S peptide fragment bound to a solid surface and associated with a first enzyme, a different MAb associated with a second enzyme, and a sufficient amount of the substrate for the first enzyme, which, when added to the serum and MAbs, provides the reactant for the second enzyme, resulting in the color change.

5

10

15

20

25

30

10

15

20

25

25

Other known assay formats will indicate the inclusion of additional components for a diagnostic kit according to this invention.

The following examples illustrate the embodiments of this invention and do not limit the scope of the present invention.

Example 1 - Isolation of CCV

Canine coronavirus strain 1-71 was isolated in 1971 from military dogs suffering from a viral gastroenteritis by Binn et al., <u>Proceeding 78th Annual Meeting U.S. Animal Health Association</u>, October 1974, p. 359-366. The initial isolate from the feces of the infected dog was grown in tissue culture on the PrDKTCA72 dog cell line [ATCC No. CRL 1542]. The coronavirus strain used in this study was received from the ATCC (ATCC #VR-809, CCV Strain 1-71, Frozen lot#4, Passage 7/PDK, 17 May 1988) and passaged five times on PrDKTCA72.

Example 2 - RNA purification

After the fifth passage the infected cells were processed for RNA isolation by infecting a 1700 cc² roller bottle with a CCV inoculum. The inoculum was prepared by diluting 2.5 μl of infected fluids from a confluent monolayer into 13.0 mls of media. One ml of this material was used to infect a roller bottle and the cells were grown until they demonstrated a pronounced cytopathic effect at 48 hours. The infected monolayers were harvested and total cytoplasmic RNA was extracted using the guanidinium thiocyanate procedure as described in Chirgwin et al., Biochem., 18:5294 (1979).

26

Example 3 - Primers Used for PCR Amplification of CCV Spike Gene Fragments

The primers appearing below in Table III were synthesized conventionally by the phosphoramidite method and gel purified prior to use. Primer #3045 was based on an FECV S gene sequence; and primers #4920, 1923, 2443 and 2600 were based on WT FIPV WSU 1146 sequences.

	Table III													
10	Amplified S Gene Region	Cloned Region	Top Primer											
15	352-1452 aa 1-555 aa	1-352 aa 352-1452 aa 128-555 aa DNA Sequence	# 2600	# 1923										
	•	TAAAT <u>AGGCCT</u> TTAG	TGGACATGCAC	CTTTTTCAATT	'GG									
20	2443 [SEQ ID NO:47]		AGGCTATGGGT	TGACCATAAC	CAC									
	2600 [SEQ ID NO:48]	CAGAT <u>CCCGGG</u> TGTA XmaI	Caatctggtai	'GGGTGCTACA	G									
25	3045 [SEQ ID NO:49]	GTGCC <u>CCCGGG</u> TATG XmaI	ATTGTGCTCG1	'AACTTGCCTC	TTG									
	4920 [SEQ ID NO:50]	AGCACCCATACCAGAT	TGTACAT <u>CTGC</u> Pst		AGATTG									

Example 4 - PCR Amplification of CCV S Gene

PCR amplified fragments of CCV S gene were generated using the following procedure. All PCR reagents were supplied by Perkin Elmer-Cetus, Norwalk, CT. In a final reaction volume of 20 μ l of 1X RT buffer (5X RT buffer: 250 mM Tris-HCl, pH 8.3, 375 mM KCl, 15 mM MgCl₂),

10

15

20

25

30

27

the following components were assembled in RNAse-free siliconized 500 μ l microcentrifuge tubes: 1.0 mM of each dNTP, 20 units of RNAsin [Promega Corp, Madison, WI], 2.5 picomoles of random hexamer oligonucleotides [Pharmacia, Milwaukee, WI], 100 picomoles/ μ l solution in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 7.5), 200 units of reverse transcriptase [Superscript RT, Bethesda Research Labs, Gaithersburg, MD] and 1.0 μ g of respective RNA isolated as described above in Example 3. To avoid pipetting errors and contamination, all solutions were aliquoted from master mixes made with diethyl pyrocarbonate (DEPC) treated water and consisted of all of the reaction components except the RNA which was added last.

The mixture was incubated in a programmable thermal cycler [Perkin-Elmer Cetus, Norwalk, CT] at 21°C for ten minutes followed by 42°C for one hour then 95°C for five minutes and finally held at 4°C until PCR amplification.

Amplification of the CDNA was performed essentially according to the method of R. K. Saiki et al, Science, 230:1350-1354 (1985) using the Tag polymerase. Briefly, to the 20 μ l cDNA reaction mix from above was added 10.0 μ l 10X PCR buffer, 1.0 μ l of each upstream and downstream primer previously diluted in water to 30 picomoles per microliter and 2.5 units of Taq polymerase (Perkin-Elmer Cetus, Norwalk, CT). Final volume was made up to 100 μ l using DEPC treated water and overlaid with 100 μ l of mineral oil. As above, master mixes were prepared to avoid contamination. The reaction was performed in the Perkin-Elmer Cetus thermal cycler for one cycle by denaturing at 95°C for 1 minute, annealing at 37°C for 3 minutes followed by an extension at 72°C for 40 minutes.

28

This initial cycle increased the likelihood of first strand DNA synthesis. A standard PCR profile was then performed by a 95°C for 1 minute denaturation, 37°C for 3 minutes annealing, 72°C for 3 minutes extension for 40 cycles. A final extension cycle was done by 95°C for 1 minute denaturation, 37°C for 2 minutes annealing, 72°C for 15 minutes extension and held at 4°C until analyzed.

PCR products were analyzed by electrophoresing 5.0 μ l of the reaction on a 1.2% agarose gel for 16-17 hours. Bands were visualized by ethidium bromide staining the gel and fluorescence by UV irradiation at 256 nm. Photography using Polaroid type 55 film provided a negative that could be digitized for sample distance migration and comparison against markers run on each gel. The actual sizes of the bands were then calculated using the Beckman Microgenie software running on an IBM AT.

Example 5 - Cloning of CCV Spike Gene Regions

Cloning procedures were performed substantially as described by Maniatis et al, cited above. the clonings are provided in the following examples. Calfalkaline phosphatase was from Bethesda Research Labs (Gaithersburg, MD). Ligation products were transformed into E. coli host strain XL1 Blue [Stratagene Cloning Systems, La Jolla, CA]. pBluescript SKnM13-phagemid vector was also obtained from Stratagene Cloning Systems. restriction enzymes were purchased from New England Biolabs (Beverly, MA) or Bethesda Research Labs (Gaithersburg, MD) and used according to manufacturer's specifications. DNA ligase was received from Boehringer Biochemicals (Indianapolis, IN). Calf intestinal alkaline phosphatase was purchased from Bethesda Research Labs.

5

10

15

20

25

29

Example 6 - CCV S Protein Fragment, A.A. 1-128 [SEO ID NO:51]

Five microliters (approximately 200 ng) of PCRamplified DNA representing amino acids 1-362 [SEQ ID NO:53] of the CCV spike gene were ligated to the pT7Blue T-Vector Madison, WI) as per the manufacturer's One microliter of the ligation mix was used instructions. to transform NovaBlue competent cells (Novagen) transformation mixes were plated on LB plates supplemented with ampicillin, isopropylthio- β -galactoside (IPTG; Sigma Chemical Co., St. Louis, MO), and 5-bromo-4-chloro-3indolyl- β -D-galactoside (X-gal; Sigma Chemical Co., St. Louis, MO). White colonies were picked and screened by by restriction analysis of mini-prep DNA. Insert-bearing clones were identified and oriented with respect to vector by SmaI/PstI, StuI, and PstI digests. contained a full-length 1-362 amino acid insert and was used to provide sequence analysis from 1-128 amino acids of the CCV S gene.

20

25

30

15

5

10

Example 7 - CCV S Protein Fragment, A.A. 128-555 [SEO: ID NO:43]

10 μl of PCR DNA encoding 1-555aa of the CCV spike protein was digested with <u>Smal/Stul</u> for 4 hours at room temperature. DNA bands were isolated and purified from low-melting temperature agarose gels as described by Maniatis et al, cited above. Briefly, DNA fragments were visualized after staining with ethidium bromide, excised from the gel with a scalpel and transferred to microfuge tubes. Gel slices were incubated 5 min at 65°C, vortexed, and 5 volumes of 20 mM Tris, pH 8.0, 1 mM EDTA were added.

30

Samples were incubated an additional 2 minutes at 65°C and were then extracted once with phenol and again with phenol:chloroform. The DNA was precipitated with 1/10 volume 3 M NaOAc, pH 7.0, and 2.5 volumes of cold 95% EtoH overnight at -20°C. Insert DNAs were ligated to SK_{II}M13-SmaI-digested, dephosphorylated vector [Stratagene] for 4 hours at room temperature. Insert-bearing clones were identified by XhoI/SstI and BglI digests of mini-prep DNA. Restriction enzyme and sequence analysis indicated that the cloned insert was short by ~300bp due to the presence of a StuI site at amino acid #128 of the CCV spike gene. Therefore, these clones contained the CCV S protein spanning amino acids from about 128-555 [SEQ ID NO:43].

Example 8 - CCV S Protein Fragment, A.A. 352-1452 [SEO ID NO:52]

PCR-amplified DNA fragments encoding amino acids 352-1454 of the CCV spike protein were purified using Prime-Erase Quik Columns [Stratagene] according to the manufacturer's instructions. Column-purified DNAs were then digested with XmaI/EcoRV overnight at 15°C and subsequently isolated and eluted from low-melting temperature agarose gels as described by Maniatis et al, cited above. Inserts were ligated overnight at 15°C to XmaI/StuI digested, dephosphorylated vector [Stratagene]. Clones were identified and oriented with respect to vector by XhoI/SstI and PvuII digests of mini-prep DNAs, respectively.

Example 9 - DNA Sequencing

DNA sequence for the CCV S gene was determined from the individual clones #1775 (AA 352-1452; SEQ ID NO:52), #2007 (AA 128-555; SEQ ID NO:43) and #2964 (AA 1-362; SEQ ID NO:53). Nested set deletions were prepared from each clone or internal primers synthesized to

5

10

15

20

10

15

20

25

30

31

facilitate primer walking and the sequence determined from both strands [Lark Sequencing Technologies, Houston, TX]. The chain termination method performed as described in Sanger et al, <u>Proc. Natl. Acad. Sci. USA</u>, 74:5463-5467 (1977) was used to determine the sequence of all clones. The full length sequence of the CCV S gene was assembled from overlapping sequences of each of the three separate fragments by computer analysis.

DNA sequence analysis was performed using either Beckman Microgenie programs on an IBM Model PS/2 Model 70 or the University of Wisconsin GCG package of programs implemented on a DEC VAX cluster [Devereau et al., (1984)].

SEQ ID NO:1 is the complete nucleotide sequence. of the CCV strain 1-71 S gene. The amino acid [SEQ ID NO:2] and nucleotide sequences [SEQ ID NO:1] of CCV 1-71 total 1452 amino acids and 4356 base pairs. CCV 1-71 has a DNA homology of 90.8% to published FIPV strain WT WSU 1146, 93.2% identity with FIPV strain DF2 and 94.1% similarity with FECV. In comparison to WSU 1146, this CCV strain further contains two amino acid deletions at. positions 11 and 12, and two amino acid insertions at positions 118 and 119. In comparison to the amino acid sequences of other coronavirus S genes, the amino acid sequence of CCV is 82.2% homologous to TGEV, 89.7% homologous to DF2-HP, 90.0% homologous to TS-BP, 92.9% homologous to TS, 93.2% homologous to DF2, and 94.1% homologous to FECV.

The canine coronavirus S gene encoding amino acids #225-1325 [SEQ ID NO:54] has an overall homology to the published WT FIPV WSU 1146 strain at amino acids 352 to 1454 of 95.9%. The homology level is increased to 97.5% when the comparison is done under the amino acid similarity rules as proposed by M. O. Dayhoff, Atlas of Protein

10

32

Sequence and Structure, Vol. 5, Supp. 3, Natl. Biomed. Res. Found., Washington, DC (1978). There are 42 amino acid differences between the CCV S gene and the published sequence of WSU 1146 strain within the CCV sequence of SEQ ID NO: 2. Other CCV fragment homologies with WT FIPV WSU 1146 are illustrated in Table II above.

Numerous modifications and variations of the present invention are included in the above-identified specification and are expected to be obvious to one of skill in the art. Such modifications and alterations to the compositions and processes of the present invention are believed to be encompassed in the scope of the claims appended hereto.

DOCID: <WO___9323423A1_l_>

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Miller, Timothy J. Klepfer, Sharon Reed, Albert Paul Jones, Elaine V.
 - (ii) TITLE OF INVENTION: Canine Coronavirus S Gene and Uses Therefor
 - (iii) NUMBER OF SEQUENCES: 59
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation Corporate Patents
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-2799
 - (V) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC Compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/880,194
 - (B) FILING DATE: 08-MAY-1992
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/698,927 (B) FILING DATE: 13-MAY-1991
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 07/613,066
 - (B) FILING DATE: 14-NOV-1990
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Schreck, Patrica A.
 - (B) REGISTRATION NUMBER: 33,777
 - (C) REFERENCE/DOCKET NUMBER: SBC H85010-1
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (215) 270-5015 (B) TELEFAX: (215) 270-5090
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4359 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(ix) FEATURE:

(A) NAME/KEY: CDS (B) LOCATION: 1..4356

(xi) SEQUENCE DESCRIPTION:	: SEO	O ID	NO: 1:
----------------------------	-------	------	--------

	(xi	.) SE	QUEN	CE I	ESCF	RIPTI	ON:	SEQ	ID N	0:1:							
ATO Met	: Ile	GTG Val	CTC Leu	GTA Val	Thr	TGC Cys	CTC Leu	TTG Leu	TTT Phe 10	Ser	TAC Tyr	AAT Aen	AGT Ser	GTG Val	ATT		48
TG1 Cys	ACA Thr	TCA Ser	AAC Asn 20	Asn	GAC Asp	TGT Cya	GTA Val	CAA Gln 25	Val	AAT Asn	GTG Val	ACA Thr	CAA Gln 30	Leu	CCT Pro		96
GLy	AAT Asn	GAA Glu 35	Asn	ATT Ile	ATT	Lys	GAT Asp 40	Phe	CTA Leu	TTT Phe	CAC	ACC Thr 45	TTC Phe	Lys	GAA Glu		144
GAA Glu	GGA Gly 50	Ser	GTA Val	GTT Val	GTT Val	GGT Gly 55	GGT Gly	TAT Tyr	TAC Tyr	CCT Pro	ACA Thr 60	Glu	GTG Val	TGG Trp	TAT Tyr		192
AAC Asn 65	Сув	TCC Ser	AGA Arg	AGC Ser	GCA Ala 70	ACA Thr	ACC	ACC Thr	GCT Ala	TAC Tyr 75	Lys	GAT Asp	TTT	AGT Ser	TAA neA 08		240
ATA Ile	CAT His	GCA Ala	TTC	TAT Tyr 85	TTT	GAT	ATG Met	GAA Glu	GCC Ala 90	ATG Met	GAG Glu	AAT Asn	AGT Ser	ACT Thr 95	GTA		288
AAT Asn	GCA Ala	CGA Arg	GGT Gly 100	ГÅВ	CCT Pro	TTA Leu	CTA Leu	GTA Val 105	CAT	Val	CAT His	Gly	GAT Asp 110	CCT Pro	GTT Val		336
AGT Ser	ATC Ile	ATC Ile 115	ATA Ile	TAT Tyr	ATA Ile	TCG Ser	GCT Ala 120	TAT Tyr	AGA Arg	GAT	GAT	GTG	CAA Gln	Gjy Gga	AGG Arg		384
CCT Pro	CTT Leu 130	TTA Leu	AAA Lys	CAT His	GGT Gly	TTG Leu 135	TTG Leu	TGT Cys	ATA Ile	ACT Thr	AAA Lys 140	AAT Asn	AAA Lys	ATC Ile	ATT Ile		432
GAC Asp 145	TAT Tyr	AAC Asn	ACG Thr	TTT Phe	ACC Thr 150	AGC Ser	GCA Ala	CAG Gln	TGG Trp	AGT Ser 155	GCĊ Ala	ATA Ile	TGT Cys	TTG Leu	GGT Gly 160		480
GAT Asp	GAC Asp	AGA Arg	AAA Lys	ATA Ile 165	CCA Pro	TTC Phe	TCT Ser	GTC Val	ATA Ile 170	CCC Pro	ACA Thr	ggt Gly	AAT Asn	GGT Gly 175	ACA Thr		528
AAA Lys	ATA Ile	TTT Phe	GGT Gly 180	CTT Leu	GAG Glu	TGG Trp	AAT Asn	GAT Asp 185	GAC Asp	TAT Tyr	GTT Val	ACA Thr	GCC Ala 190	TAT Tyr	ATT Ile	• . •	576
AGT Ser	gat Asp	CGT Arg 195	TCT Ser	CAC His	CAT His	TTG Leu	AAC Asn 200	ATC Ile	yaù YYI	AAT Asn	AAT Asn	TGG Tr p 205	TTT Phe	AAC Aen	AAT Asn		624
GTG Val	ACA Thr 210	ATC Ile	CTA Leu	TAC Tyt	TCT Ser	CGA Arg 215	TCA Ser	AGC Ser	ACT The	Ala	ACG Thr 220	TGG Trp	CAG Gln	AAG Lys	AGT Ser		672

GCT Ala 225	GCA Ala	TAT Tyr	GTT Val	TAT Tyr	CAA Gln 230	GGT Gly	GTT Val	TCA Ser	AAT Asn	TTT Phe 235	ACT Thr	TAT Tyr	TAC Tyr	AAG Lys	TTA Leu 240		720
AAT Asn	AAC Asn	ACC Thr	TAA neA	GGC Gly 245	TTG Leu	TÀB TYY	AGC Ser	TAT Tyr	GAA Glu 250	TTG Leu	TGT Cys	GAA Glu	GAT Asp	TAT Tyr 255	GAA Glu		768
TGC Cys	TGC Cys	ACT Thr	GGC Gly 260	TAT Tyr	GCT Ala	ACC Thr	AAC Asn	GTA Val 265	TTT Phe	GCC Ala	CCG Pro	ACA Thr	GTG Val 270	GGC Gly	GGT Gly		816
TAT Tyr	ATA Ile	CCT Pro 275	GAT Asp	GGC Gly	TTC Phe	AGT Ser	TTT Phe 280	AAC Asn	AAT Asn	TGG Trp	TTT Phe	ATG Met 285	CTT Leu	ACA Thr	AAC Asn		864
			TTT Phe														912
															GAA Glu 320		960
TTT Phe	TGT Cys	TTT Phe	GAA Glu	GGT Gly 325	GCG Ala	CAG G1n	TTT Phe	AGC Ser	CAA Gln 330	TGT Cys	AAT Asn	GGT Gly	GTG Val	TCT Ser 335	TTA Leu	:	1008
			GTG Val 340													:	1056
			GGT Gly													:	1104
			CTT Leu													:	1152
			AGT Ser													;	1200
			TAC Tyr													;	1248
			CCT Pro 420													. :	1296
			AAT Asn													:	1344
			AAT Asn													:	1392
GCT Ala 465	TAC Tyr	ACA Thr	TCG Ser	TAC Tyr	ACT Thr 470	GAC Asp	GCA Ala	TTA Leu	GTA Val	CAA Gln 475	GTT Val	GAA Glu	AAC Asn	ACA Thr	GCT Ala 480	:	1440

									-							
AT: Ile	F AA:	A AA s Ly	G GT(B Va.	F ACC L Thi 485	- Ty:	T TGI	ÀAC ABI	C AG	F CAC His 490	: Ile	CAA 1 18A s	AA 1 Asi	AT!	r AA ≥ Ly 49	A TGT s Cys 5	1488
TC1 Ser	CA)	A CT n Le	T AC: u Thi 500	- Ala	CAA 1 18A 2	TTG Leu	CAA Glr	AAT Asr 505	ı Gly	TTI Phe	TAI	Pro	GT: Val 510	L Al	T TCA a Ser	1536
ser	. GII	ı va. 51	2 T GT ⁷	, Leu	ı Val	. Asn	Lys 520	Ser	: Val	. Val	. Leu	Leu 525	Pro	Se:	r TTC r Phe	1584
TAI Tyr	Ser Ser 530	Hi	T ACC	AGI Ser	GT1	AAT Asn 535	Ile	ACI Thr	ATT Ile	GAT Asp	CTT Leu 540	Gly	Met	AA(G CGT	1632
AGT Ser 545	GTA	TAT	r GGI Gly	CAA Gln	CCC Pro 550	Ile	GCC	TCA Ser	ACA Thr	TTA Leu 555	AGT Ser	AAC	ATC	ACI Thi	CTA Leu 560	1680
Pro	Met	: GII	ı Asp	9 Asn 565	Asn	. Thr	Asp	Val	Tyr. 570	Сув	Ile	Arg	Ser	Asr 575		1728
yne	ser	· Val	. Tyr 580	Val	His	Ser	Thr	Сув 585	Lys	Ser	Ser	Leu	Trp 590	Asp	GÀT Asp	1776
Val	Pne	595	Ser	Asp	Cys	Thr	Asp 600	Val	Leu	Tyr	Ala	Th r 605	Ala	Val	ATA	1824
гАг	610	СТĀ	Thr	Cys	Pro	Phe 615	Ser	Phe	Asp	Lys	Leu 620	Asn	Asn	Tyr		1872
625	PDE	Asn	rAs	Phe	630 Cys	TTG Leu	ser	Leu	Asn	Pro 635	Val	Gly	Ala	Asn	Сув 640	1920
rys	Pne	Asp	Val	Ala 645	Ala	CGT Arg	Thr.	Arg	Thr 650	Asn	Glu	Gln	Val	Val 6 5 5	Arg	1968
ser	Leu	TYT	660	Ile	Tyr	GAA Glu	Glu	Gly 665	Asp	Asn	Ile	Val	Gly 670	Val	Pro	2016
ser	wab	675	ser	GTĀ	Leu		Asp 680	Leu	Ser	Val	Leu	His 685	Leu	yab	Ser	2064
Cys	ACA Thr 690	gat Asp	TAT Tyr	AAT Asn	ATA. Ile	TAT Tyr 695	GLY	AGA Arg	ACT Thr	Gly	GTT Val 700	GGT Gly	ATT Ile	ATT Ile	AGA Arg	2112
CAA Gln 705	ACT Thr	AAC Asn	AGT Ser	Thr	CTA Leu 710	CTT . Leu .	AGT Ser	GGC Gly	Leu	TAT Tyr 715	TAC : Tyr	ACA Thr	TCA Ser	CTA Leu	TCA Ser 720	2160
GGT (Gly)	yab GyC	TTG Leu	TTA Leu	GGG Gly 725	TTT . Phe :	AAA I Lys I	AAT Asn	Val	AGT (Ser) 730	GAT (Asp (GGT (GTC : Val :	Ile	TAT Tyr 735	TCT Ser	2208

GTC Val	ACG Thr	CCA Pro	TGT Cys 740	Asp	GTA Val	AGC Ser	GCA Ala	CAA Gln 745	GCT Ala	GCT Ala	GTT Val	ATT Ile	GAT Asp 750	Gly	GCC Ala		2256
			GCT	ATG		TCC Ser		AAT					GGT	CTA			2304
CAT His	TGG Trp 770	ACA	ACA Thr	ACA Thr	CCT Pro	AAT Asn 775	TTT	TAT Tyr	TAT Tyr	TAT Tyr	TCT Ser 780	ATA	TAT Tyr	AAT Asn	TAT Tyr		2352
ACC Thr 785	AAT	GAA Glu	AGG Arg	ACT Thr	CGT Arg 790	GGC Gly	ACA Thr	GCA Ala	ATT Ile	GAT Asp 795	AGT	AAC Asn	GAT Asp	GTT Val	GAT Asp 800		2400
TGT Cys	GAA Glu	CCT Pro	ATC Ile	ATA Ile 805	ACC Thr	TAT Tyr	TCT Ser	AAT Asn	ATA Ile 810	GGT Gly	GTT Val	TGT Cys	AAA Lys	AAT Asn 815	GGA Gly		2448-
GCT Ala	TTG Leu	GTT Val	TTT Phe 820	ATT Ile	AAC Asn	GTC Val	ACA Thr	CAT His 825	TCT Ser	GAT GAT	GGA Gly	GAC Asp	GTT Val 830	CAA Gln	CCA Pro		2496
ATT Ile	AGC Ser	ACC Thr 835	GGT Gly	AAT Asn	GTC Val	ACG Thr	ATA Ile 840	CCT Pro	ACA Thr	AAT Asn	TTT Phe	ACC Thr 845	ATA Ile	TCT Ser	GTG Val		2544
CAA Gln	GTT Val 850	GAG Glu	TAC Tyr	ATT Ile	CAG Gln	GTT Val 855	TAC Tyr	ACT Thr	ACA Thr	CCG Pro	GTG Val 860	TCA Ser	ATA Ile	GAT Asp	TGT Cys	•	2592
TCA Ser 865	AGG Arg	TAC Tyr	GTT Val	TGC Cys	AAT Asn 870	GGT Gly	AAC Asn	CCT Pro	AGA Arg	TGC Cys 875	AAT Asn	AAA Lys	TTG Leu	TTA Leu	ACG Thr 880		2640
CAA Gln	TAC Tyr	GTT Val	TCT Ser	GCA Ala 885	TGT Cyb	CAA Gln	ACT Thr	ATT Ile	GAG Glu 890	CAA Gln	GCA Ala	CTT Leu	GCA Ala	ATG Met 895	GGT Gly		2688
GCC Ala	AGA Arg	CTT Leu	GAA Glu 900	AAC Asn	ATG Met	GAG Glu	ATT Ile	GAT Asp 905	TCC Ser	ATG Met	TTG Leu	TTT Phe	GTT Val 910	TCG Ser	GAA Glu		2736
AAT Asn	GCC Ala	CTT Leu 915	AAA Lys	TTG Leu	GCA Ala	TCT Ser	GTT Val 920	GAA Glu	GCA Ala	TTC Phe	AAT Asn	AGT Ser 925	ACG Thr	GAA Glu	ACT Thr		2784
TTA Leu	GAT Asp 930	CCT Pro	ATT Ile	TAC Tyr	AAA Lys	GAA Glu 935	TGG Trp	CCT Pro	AAC Asn	ATT Ile	GGT Gly 940	GGT Gly	TCT Ser	TGG Trp	CTA Leu		2832
GGA Gly 945	Gly	TTA Leu	AAA Lys	GAC Asp	ATA Ile 950	TTG Leu	CCA Pro	TCT Ser	CAC His	AAC Asn 955	AGC Ser	AAA Lys	CGT Arg	AAG Lyb	TAC Tyr 960		2880
CGG Arg	TCG Ser	GCT Ala	ATA Ile	GAA Glu 965	GAT Asp	TTG Leu	CTT Leu	TTT Phe	GAT Asp 970	AAG Lys	GTT Val	GTA Val	ACA Thr	TCT Ser 975	GGC Gly		2928
TTA Leu	Gly	ACA Thr	GTT Val 980	GAT Asp	GAA Glu	GAT Asp	TAT Tyr	AAA Lys 985	CGT Arg	TGT Cys	ACA Thr	GGT Gly	GGT Gly 990	TAT Tyr	GAC Asp		2976

								Tyx					Met		CTA Leu	3024
		Val					Lys	ATG Met				Thr				3072
	Gly					Gly		CTT Leu			Gly					3120
					Val			AGA Arg		Asn					Gln	3168
				Ser				CAG Gln 106	Ile					Phe		3216
			Gly					GCA Ala)					Asn			3264
		Gln					Leu	GCT Ala				Lys				3312
AAA Lys 1105	Val	CAA Gln	GAT Asp	GTT Val	GTT Val 1110	Asn	ACA Thr	CAA Gln	GGG Gly	CAA Gln 1115	Ala	TTA Leu	AGC Ser	CAC His	CTA Leu 1120	3360
					Asn			CAA Gln		Ile					Şer	340 <u>8</u>
GAC Asp	ATT Ile	TAT Tyr	AAC Asn 1140	Arg	CTT Leu	GAT Asp	GAA Glu	TTG Leu 1145	Ser	GCT Ala	GAT Asp	GCA Ala	CAA Gln 1150	Val	GAC Asp	3456
			Thr					GCA Ala)					Val			3504
ACT Thr	TTA Leu 1170	Thr	AGA Arg	CAA Gln	GCA Ala	GAG Glu 1175	Val	AGG Arg	GCT Ala	AGC Ser	AGA Arg 1180	Gln	CTT Leu	GCT Ala	AAA Lys	3552
GAC Asp 1185	Lys	GTA Val	AAT Asn	GAA Glu	TGC Cys 1190	Val	AGG Arg	TCT Ser	CAA Gln	TCT Ser 1195	Gln	AGA Arg	TTT Phe	GGA Gly	TTC Phe 1200	3600
					His			TCA Ser		Ala					Asņ	3648
GGC Gly	ATG Met	ATC Ile	TTC Phe 1220	Phe	CAC His	ACA Thr	GTG Val	CTA Leu 1225	Leu	CCA Pro	aca Thr	gct Alá	TAT Tyr 1230	Glu	ACC Thr	3696
GTG Val			Trp					Ala					Arg		TTT Phe	3744

GGA Gly	CTT Leu 125	Val	GTT Val	AAG Lys	GAT Asp	GTC Val 125	Gln	TTG Leu	ACG Thr	CTG Leu	TTT Phe 126	Arg	AAT Asn	CTA Leu	GAT Asp	3792
GAC Asp 1265	Lys	TTC Phe	TAT Tyr	TTG Leu	ACT Thr 1270	Pro	AGA Arg	ACT Thr	ATG Met	TAT Tyr 127	Gln	CCT Pro	AGA Arg	GTT Val	GCA Ala 1280	3840
ACT Thr	AGT Ser	TCT Ser	GAT Asp	TTT Phe 128	Val	CAA Gln	ATT	GAA Glu	GGA Gly 129	Сув	GAT Asp	GTG Val	TTG Leu	TTT Phe 129	Val	3888
AAT Asn	GCA Ala	ACT Thr	GTA Val 1300	Ile	GAC Asp	TTG Leu	CCT Pro	AGT Ser 130	Ile	ATA Ile	CCT Pro	GAC Asp	TAT Tyr 131	Ile	GAT Asp	3936
ATT Ile	AAT Asn	CAA Gln 1315	Thr	GTT Val	CAG Gln	GAC Asp	ATA Ile 1320	Leu	GAA Glu	AAT Asn	TTC Phe	AGA Arg 1325	Pro	AAT Asn	TGG [.] Trp	3984
ACT Thr	GTA Val 1330	Pro	GAG Glu	TTG Leu	CCA Pro	CTT Leu 1335	Asp	ATT Ile	TTC Phe	AAT Asn	GCA Ala 1340	Thr	TAC Tyr	TTA Leu	AAC Aan	4032
CTG Leu 1345	Thr	GGT Gly	GAA Glu	ATT Ile	AAT Asn 1350	yab	TTA Leu	GAA Glu	TTT Phe	AGG Arg 1355	Ser	GAA Glu	AAG Lys	TTA Leu	CAT His 1360	4080;
AAC . Aan	ACC Thr	ACA Thr	GTA Val	GAA Glu 1365	Leu	GCT Ala	ATT Ile	CTC Leu	ATT Ile 1370	Asp	AAT Asn	ATT Ile	AAT Asn	AAC Asn 1375	Thr	4128
TTA (GTC Val	AAT Asn	CTT Leu 1380	Glu	TGG Trp	CTC Leu	AAT Asn	AGA Arg 1385	Ile	GAA Glu	ACT Thr	TAT Tyr	GTA Val 1390	Lys	TGG Trp	4176
CCT :	TGG Trp	TAT Tyr 1395	Val	TGG Trp	CTA Leu	CTA Leu	ATT Ile 1400	Gly	TTA Leu	GTA Val	GTA Val	ATA Ile 1405	Phe	TGC. Cys	ATA Ile	4224
CCC Pro	ATA Ile 1410	Leu	CTA Leu	TTT Phe	TGT Cys	TGT Cys 1415	Сув	AGC Ser	ACT Thr	GGT Gly	TGT Cys 1420	Cys	GGA Gly	TGT Cys	ATT Ile	4272
GGG S Gly 6 1425	TGT Cys	TTA Leu	GGA Gly	AGC Ser	TGT Cys 1430	Сув	CAT His	TCC Ser	ATA Ile	TGT Cys 1435	Ser	AGA Arg	AGG Arg	CGA Arg	TTT Phe 1440	4320
GAA 1 Glu 1	AGT Ser	TAT Tyr	GAA Glu	CCA Pro 1445	Ile	GAA Glu	AAA Lys	GTG Val	CAT His 1450	Val	CAC His	TAA				4359

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1452 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ile Val Leu Val Thr Cys Leu Leu Phe Ser Tyr Asn Ser Val Ile Cys Thr Ser Asn Asn Asp Cys Val Gin Val Asn Val Thr Gin Leu Pro Gly Asn Glu Asn Ile Ile Lys Asp Phe Leu Phe His Thr Phe Lys Glu Glu Gly Ser Val Val Val Gly Gly Tyr Tyr Pro Thr Glu Val Trp Tyr Asn Cys Ser Arg Ser Ala Thr Thr Thr Ala Tyr Lys Asp Phe Ser Asn 65 70 75 80 Ile His Ala Phe Tyr Phe Asp Met Glu Ala Met Glu Asn Ser Thr Gly Asn Ala Arg Gly Lys Pro Leu Leu Val His Val His Gly Asp Pro Val 105 Ser Ile Ile Ile Tyr Ile Ser Ala Tyr Arg Asp Asp Val Gln Gly Arg 120 Pro Leu Leu Lys His Gly Leu Leu Cys Ile Thr Lys Asn Lys Ile Ile Asp Tyr Asn Thr Phe Thr Ser Ala Gln Trp Ser Ala Ile Cys Leu Gly Asp Asp Arg Lys Ile Pro Phe Ser Val Ile Pro Thr Gly Asn Gly Thr Lys Ile Phe Gly Leu Glu Trp Asn Asp Asp Tyr Val Thr Ala Tyr Ile Ser Asp Arg Ser His His Leu Asn Ile Asn Asn Asn Trp Phe Asn Asn - 200 Val Thr Ile Leu Tyr Ser Arg Ser Ser Thr Ala Thr Trp Gln Lys Ser 215 Ala Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys Leu Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu Leu Cys Glu Asp Tyr Glu 245 250 255 250 Cys Cys Thr Gly Tyr Ala Thr Asn Val Phe Ala Pro Thr Val Gly Gly Tyr Ile Pro Asp Gly Phe Ser Phe Asn Asn Trp Phe Met Leu Thr Asn Ser Ser Thr Phe Val Ser Gly Arg Phe Val Thr Asn Gln Pro Leu Leu 295 Val Asn Cys Leu Trp Pro Val Pro Ser Leu Gly Val Ala Ala Gln Glu

Phe	Сув	Phe	Glu	Gly 325	Ala	Gln	Phe	Ser	Gln 330		Asn	Gly	Val	Ser 335	Leu
Asn	neA	Thr	Val 340		Val	Ile	Arg	Phe 345	Asn	Leu	Asn	Phe	Thr 350		Asp
Val	Gln	Ser 355	Gly	Met	Gly	Ala	Thr 360		Phe	Ser	Leu	Asn 365		Thr	Gly
Gly	Val 370		Leu	Glu	Ile	Ser 375	Сув	Tyr	Asn	Asp	Thr 380		Ser	Glu	Ser
Ser 385		Tyr	Ser	Tyr	Gly 390	Glu	Ile	· Ser	Phe	Gly 395	Val	Thr	yab	Gly	Pro 400
Arg	Tyr	Cys	Tyr	Ala 405	Leu	Tyr	Asn	Gly	Thr 410	Ala	Leu	Lys	Tyr	Leu 415	Gly
Thr	Leu	Pro	Pro 420	Ser	Val	ГÀà	Gļu	Ile 425	Ala	Ile	Ser	Lув	Trp 430	Gļy	His
Phe	Tyr	Ile 435	Asn	Gly	Tyr	Asn	Phe 440	Phe	Ser	Thr	Phe	Pro 445	Ile	Asp	Cys
Ile	Ser 450	Phe	Asn	Leu	Thr	Thr 455	Gly	Авр	Ser	Gly	Ala 460	Phe	Trp	Thr	Ile
465				Tyr	470					475					480
				Thr 485					490					495	_
			500	Ala				505					510		•
		515		Leu			520					525			,
	530			Ser		535					540			_	-
545				Gln	550					555					560
				Asn 565					570			_		57 5	
			580	Val				585	·				590		_
		595		Asp			600			_		605			
Lys	Thr 610	Gly	Thr	Сув	Pro	Phe 615	Ser	Phe	Asp	Lys	Leu 620	Asn	Asn	Tyr	Leu
Thr 625	Phe	Asn	Lys	Phe	Сув 630	Leu	Ser	Leu	Asn	Pro 635	Val	Gly	Ala	Asn	Сув 640
Lys	Phe	Asp	Val	Ala 645	Ala	Arg	Thr	Arg	Thr 650	Asn	Glu	Gln	Val	Val 655	Arg

Sei	r Leu	ту:	7a]	l Ile	Yr Tyr	Glu	Glu	665	Ası	Àsr	ı Il∈	Va.	670	r Val	Pro
Ser	Asp	Ası 675	ser S	Gly	Leu	His	Asp 680		. Ser	. Val	. Leu	Hi: 685		Asp	Ser
Суз	690	. Asī	тут	Asr	lle	Tyr 695	Gly	Arg	Thr	Gly	Val 700		, Ile	Ile	Arg
Glr 705	Thr	Asr	Ser	Thr	710	Leu	Ser	Gly	Leu	Tyr 715		Thr	Ser	. Ten	Ser 720
Gly	Asp	Leu	Leu	Gly 725	Phe	Lys	Asn	. Val	Ser 730		Gly	Val	Ile	Tyr 735	Ser
Val	. Thr	Pro	740	Asp	Val	Ser	Ala	Gln 745		Ala	Val	Ile	750		Ala
Ile	. Val	Gly 755	Ala	. Met	Thr	Ser	Ile 760	Asn	Ser	Glu	Met	Leu 765		Leu	Thr
	770					775		-			780		_		Tyr
785					790			•		795					800
				805					810					815	Gly
	Leu		820					825					830		
	Ser	835					840					845			
	Val 850					855					860				_
865	Arg				870				·	875					880
	Tyr			885					890					895	_
	Arg		900					905					910		
	Ala	915					920					925			
	Asp 930				•	935	•	÷			940		÷ .		
945	Gly				950					955					960
	Ser			965					970					975	-
Leu	Gly	Thr	Val 980	Asp	Glu	Asp	Tyr	Lys 985	Arg	Сув	Thr	Gly	Gl y 990	Tyr	Asp

Ile Ala Asp Leu Val Cys Ala Gln Tyr Tyr Asn Gly Ile Met Val Leu 995 1000 1005

Pro Gly Val Ala Asn Asp Asp Lys Met Ala Met Tyr Thr Ala Ser Leu 1010 1015 1020

Ala Gly Gly Ile Thr Leu Gly Ala Leu Gly Gly Gly Ala Val Ser Ile 1025 1030 1035 1040

Pro Phe Ala Ile Ala Val Gln Ala Arg Leu Asn Tyr Val Ala Leu Gln 1045 1050 1055

Thr Asp Val Leu Ser Lys Asn Gln Gln Ile Leu Ala Asn Ala Phe Asn 1060 1065 1070

Gln Ala Ile Gly Asn Ile Thr Gln Ala Phe Gly Lys Val Asn Asp Ala 1075 1080 1085

Ile His Gln Thr Ser Gln Gly Leu Ala Thr Val Ala Lys Ala Leu Ala 1090 1095 1100

Lys Val Gln Asp Val Val Asn Thr Gln Gly Gln Ala Leu Ser His Leu 1105 1110 1115 1120

Thr Val Gln Leu Gln Asn Asn Phe Gln Ala Ile Ser Ser Ser Ile Ser 1125 1130 1135

Asp Ile Tyr Asn Arg Leu Asp Glu Leu Ser Ala Asp Ala Gln Val Asp 1140 1145 1150

Arg Leu Ile Thr Gly Arg Leu Thr Ala Leu Asn Ala Phe Val Ser Gln 1155 1160 1165

Thr Leu Thr Arg Gln Ala Glu Val Arg Ala Ser Arg Gln Leu Ala Lys 1170 1180

Asp Lys Val Asn Glu Cys Val Arg Ser Gln Ser Gln Arg Phe Gly Phe 1185 1190 1195 1200

Cys Gly Asn Gly Thr His Leu Phe Ser Leu Ala Asn Ala Ala Pro Asn 1205 1210 1215

Gly Met Ile Phe Phe His Thr Val Leu Leu Pro Thr Ala Tyr Glu Thr 1220 1225 1230

Val Thr Ala Trp Ser Gly Ile Cys Ala Ser Asp Gly Asp Arg Thr Phe 1235 1240 1245

Gly Leu Val Val Lys Asp Val Gln Leu Thr Leu Phe Arg Asn Leu Asp 1250 1255 1260

Asp Lys Phe Tyr Leu Thr Pro Arg Thr Met Tyr Gln Pro Arg Val Ala 1265 1270 1275 1280

Thr Ser Ser Asp Phe Val Gln Ile Glu Gly Cys Asp Val Leu Phe Val 1285 1290 1295

Asn Ala Thr Val Ile Asp Leu Pro Ser Ile Ile Pro Asp Tyr Ile Asp 1300 1305 1310

Ile Asn Gin Thr Val Gln Asp Ile Leu Glu Asn Phe Arg Pro Asn Trp 1315 1320 1325 WO 93/23423 PCT/US93/04692

Thr Val Pro Glu Leu Pro Leu Asp Ile Phe Asn Ala Thr Tyr Leu Asn 1335

Leu Thr Gly Glu Ile Asn Asp Leu Glu Phe Arg Ser Glu Lys Leu His 1355 1350

Asn Thr Thr Val Glu Leu Ala Ile Leu Ile Asp Asn Ile Asn Asn Thr 1370 1365

Leu Val Asn Leu Glu Trp Leu Asn Arg Ile Glu Thr Tyr Val Lys Trp 1385 1390 1380

Pro Trp Tyr Val Trp Leu Leu Ile Gly Leu Val Val Ile Phe Cys Ile 1400

Pro Ile Leu Leu Phe Cys Cys Cys Ser Thr Gly Cys Cys Gly Cys Ile 1415

Gly Cys Leu Gly Ser Cys Cys His Ser Ile Cys Ser Arg Arg Phe 1435

Glu Ser Tyr Glu Pro Ile Glu Lys Val His Val His

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Gly Ser Val Val Val Gly Gly Tyr Tyr Pro Thr Glu Val Trp Tyr Asn IO

Cys Ser Arg Ser Ala Thr Thr Thr Ala Tyr Lys Asp Phe Ser Asn Ile

His Ala Phe Tyr Phe Asp Met Glu Ala Met Glu Asn Ser Thr Gly Asn

Ala Arg Gly Lys Pro Leu Leu Val His Val His Gly Asp Pro Val Ser

Ile Ile Ile Tyr Ile Ser Ala Tyr Arg Asp Asp Val Gln Gly Arg Pro

Leu Leu Lys His Gly Leu Leu Cys Ile Thr Lys Asn Lys Ile Ile Asp

Tyr Asn Thr Phe Thr Ser Ala Gln Trp Ser Ala Ile Cys Leu Gly Asp

Asp Arg Lys Ile Pro Phe Ser Val Ile Pro Thr Gly Asm Gly Thr Lys

Ile Phe Gly Leu Glu Trp Asn Asp Asp Tyr Val Thr Ala Tyr Ile Ser

Asp Arg Ser His His Leu Asn Ile Asn Asn Asn Trp Phe Asn Asn Val 145 150 155 160

Thr Ile Leu Tyr Ser Arg Ser Ser Thr Ala Thr Trp Gln Lys Ser Ala 165 170 175

Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys Leu Asn 180 185 190

Asn Thr Asn Gly Leu Lys Ser Tyr Glu 195 200

- (2) INFORMATION FOR SEQ ID NO:4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser Ser Phe Tyr Ser Tyr Gly
1 10 15

Glu Ile Ser Phe Gly Val Thr Asp Gly Pro Arg Tyr Cys Tyr Ala Leu 20 25 30

Tyr Asn Gly Thr Ala Leu Lys Tyr Leu Gly Thr Leu Pro Pro Ser Val 35 40 45

Lys Glu Ile 50

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 amino acids
 - (B) TYPE: amino acid (D) TOPOLOGY: unknown
 - (2) 221020011 0112110411
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe Trp Thr Ile Ala 1 10 15

Tyr Thr Ser Tyr Thr 20

- (2) INFORMATION FOR SEQ ID NO:6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acide
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown

PCT/US93/04692

46

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Pro Ile Ala Ser Thr Leu Ser Asn Ile Thr Leu Pro Met Gln Asp Asn

Asn Thr Asp Val Tyr Cys Ile Arg Ser Aen Gln Phe Ser Val Tyr Val

His Ser Thr Cys Lys Ser Ser Leu Trp Asp Asp Val Phe Asn Ser Asp

Cys Thr Asp 50

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Thr Asn Glu Gln Val Val Arg Ser Leu Tyr Val Ile Tyr Glu Glu Gly

Asp Asn Ile Val Gly Val Pro Ser Asp Asn Ser Gly Leu His Asp Leu

Ser Val Leu His Leu Asp Ser Cys Thr Asp Tyr Asn Ile Tyr Gly Arg

Thr Gly Val 50

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 81 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Trp Thr Thr Pro Asn Phe Tyr Tyr Tyr Ser Ile Tyr Asn Tyr Thr

Asn Glu Arg Thr Arg Gly Thr Ala Ile Asp Ser Asn Asp Val Asp Cys

Glu Pro Ile Ile Thr Tyr Ser Asn Ile Gly Val Cys Lys Asn Gly Ala

Leu Val Phe Ile Asn Val Thr His Ser Asp Gly Asp Val Gln Pro Ile

Ser Thr Gly Asn Val Thr Ile Pro Thr Asn Phe Thr Ile Ser Val Gln

Val

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 126 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Glu Asn Met Glu Ile Asp Ser Met Leu Phe Val Ser Glu Asn Ala Leu

Lys Leu Ala Ser Val Glu Ala Phe Asn Ser Thr Glu Thr Leu Asp Pro

Ile Tyr Lys Glu Trp Pro Asn Ile Gly Gly Ser Trp Leu Gly Gly Leu 35 40 45

Lys Asp Ile Leu Pro Ser His Asn Ser Lys Arg Lys Tyr Arg Ser Ala

The Glu Asp Leu Leu Phe Asp Lys Val Val Thr Ser Gly Leu Gly Thr

Val Asp Glu Asp Tyr Lys Arg Cys Thr Gly Gly Tyr Asp Ile Ala Asp 85 90 95

Leu Val Cys Ala Gln Tyr Tyr Asn Gly Ile Met Val Leu Pro Gly Val

Ala Asn Asp Asp Lys Met Ala Met Tyr Thr Ala Ser Leu Ala 120

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 76 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Thr Ala Leu Asn Ala Phe

Val Ser Gln Thr Leu Thr Arg Gln Ala Glu Val Arg Ala Ser Arg Gln

Leu Ala Lys Asp Lys Val Asn Glu Cys Val Arg Ser Gln Ser Gln Arg

WO 93/23423 PCT/US93/04692

Phe Gly Phe Cys Gly Asn Gly Thr His Leu Phe Ser Leu Ala Asn Ala

Ala Pro Asn Gly Met Ile Phe Phe His Thr Val Leu

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 203 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Leu Val Val Lys Asp Val Gln Leu Thr Leu Phe Arg Asn Leu Asp Asp

Lys Phe Tyr Leu Thr Pro Arg Thr Met Tyr Gln Pro Arg Val Ala Thr

Ser Ser Asp Phe Val Gln Ile Glu Gly Cys Asp Val Leu Phe Val Asn

Ala Thr Val Ile Asp Leu Pro Ser Ile Ile Pro Asp Tyr Ile Asp Ile

Asn Gln Thr Val Gln Asp Ile Leu Glu Asn Phe Arg Pro Asn Trp Thr

Val Pro Glu Leu Pro Leu Asp Ile Phe Asn Ala Thr Tyr Leu Asn Leu

Thr Gly Glu Ile Asn Asp Leu Glu Phe Arg Ser Glu Lys Leu His Asn

Thr Thr Val Glu Leu Ala Ile Leu Ile Asp Asn Ile Asn Asn Thr Leu 120

Val Asn Leu Glu Trp Leu Asn Arg Ile Glu Thr Tyr Val Lys Trp Pro

Trp Tyr Val Trp Leu Leu Ile Gly Leu Val Val Ile Phe Cys Ile Pro

Ile Leu Leu Phe Cys Cys Cys Ser Thr Gly Cys Cys Gly Cys Ile Gly

Cys Leu Gly Ser Cys Cys His Ser Ile Cys Ser Arg Arg Phe Glu

Ser Tyr Glu Pro Ile Glu Lys Val His Val His 200

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Asp Phe Leu Phe His Thr Phe Lys 5

- (2) INFORMATION FOR SEQ ID NO:13:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Trp Tyr Asn Cys Ser Arg Ser Ala Thr Thr Thr Ala Tyr Lys Asp Phe

Ser Asn Ile

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Tyr Val Thr Ala Tyr

- (2) INFORMATION FOR SEQ ID NO:15:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 amino acids

 - (B) TYPE: amino acid (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu Leu Cys Glu Asp Tyr Glu

Cys Cys Thr Gly Tyr Ala Thr Asn Val Phe Ala Pro Thr Val Gly Gly 20 30

Tyr Ile

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 7 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Ser Leu Asn Asn Thr Val Asp

- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 34 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Gly Val Thr Asp Gly Pro Arg Tyr Cys Tyr Ala Leu Tyr Asn Gly Thr

Ala Leu Lys Tyr Leu Gly Thr Leu Pro Pro Ser Val Lys Glu Ile Ala

Ile Ser

- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Ser Tyr Thr Asp Ala Leu Val Gln Val Glu Asn Thr Ala Ile Lys Lys

Val Thr Tyr Cys Asn Ser His Ile Asn Asn Ile 25

- (2) INFORMATION FOR SEQ ID NO:19:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 15 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
 - Ile Ser Val Gln Val Glu Tyr Ile Gln Val Tyr Thr Thr Pro Val
- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 37 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
 - Lys Leu Ala Ser Val Glu Ala Phe Asn Ser Thr Glu Thr Leu Asp Pro
 - Ile Tyr Lys Glu Trp Pro Asn Ile Gly Gly Ser Trp Leu Gly Gly Leu 25
 - Lys Asp Ile Leu Pro 35
- (2) INFORMATION FOR SEQ ID NO:21:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
 - Leu Gly Thr Val Asp Glu Asp Tyr Lys Arg Cys Thr Gly Gly Tyr Asp
- (2) INFORMATION FOR SEQ ID NO:22:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 78 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO: 22:
------	----------	--------------	-----	----	---------

Ala Asn Ala Phe Asn Gln Ala Ile Gly Asn Ile Thr Gln Ala Phe Gly

Lys Val Asn Asp Ala Ile His Gln Thr Ser Gln Gly Leu Ala Thr Val

Ala Lys Ala Leu Ala Lys Val Gln Asp Val Val Asn Thr Gln Gly Gln

Ala Leu Ser His Leu Thr Val Gln Leu Gln Asn Asn Phe Gln Ala Ile

Ser Ser Ser Ile Ser Asp Ile Tyr Asn Arg Leu Asp Glu Leu

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Leu Ala Ile Leu Ile Asp Asn Ile Asn Asn Thr Leu Val Asn Leu Glu

Trp Leu Asn Arg Ile Glu Thr Tyr Val Lys

(2) INFORMATION FOR SEQ ID NO:24:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 372 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..372
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CAA GGG CAA GCT TTA AGC CAC CTA ACA GTA CAA TTG CAA AAT AAT TTC Gln Gly Gln Ala Leu Ser His Leu Thr Val Gln Leu Gln Asn Asn Phe 10 15

CAA GCC ATT AGT AGT TCC ATT AGT GAC ATT TAT AAC AGG CTI GAT GAA Gln Ala Ile Ser Ser Ser Ile Ser Asp Ile Tyr Asn Arg Leu Asp Glu 96

TIG AGT GCT GAT GCA CAA GTT GAC AGG CTG ATT ACA GGA AGA CTT ACA Leu Ser Ala Asp Ala Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Thr 35

GCA Ala	CTT Leu 50	AAT Asn	GCA Ala	TTT Phe	GTG Val	TCT Ser 55	CAG Gln	ACT Thr	TTA Leu	ACC Thr	AGA Arg 60	CAA Gln	GCA Ala	GAG Glu	GTT Val	192
AGG Arg 65	GCT Ala	AGC Ser	AGA Arg	CAG Gln	CTT Leu 70	GCT Ala	AAA Lys	GAC Asp	AAG Lys	GTA Val 75	AAT Asn	GAA Glu	TGC Cys	GTT Val	AGG Arg 80	240
TCT Ser	CAA Gln	TCT Ser	CAG Gln	AGA Arg 85	TTT Phe	GGA Gly	TTC Phe	TGT Cys	GLY GLY 90	AAT Asn	GGT Gly	AÇA Thr	CAT His	TTA Leu 95	TTT Phe	288
TCA Ser	CTT Leu	GCA Ala	AAT Asn 100	GCA Ala	GCA Ala	CCA Pro	AAT Asn	GGC Gly 105	ATG Met	ATC Ile	TTC Phe	TTT Phe	CAC His 110	ACA Thr	GTG Val	336
CTA Leu	TTA Leu	CCA Pro 115	ACA Thr	GCT Ala	TAT Tyr	GAA Glu	ACC Thr 120	GTG Val	ACG Thr	GCC Ala	TGG Trp					372

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 124 amino acids (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Gln Gly Gln Ala Leu Ser His Leu Thr Val Gln Leu Gln Asn Asn Phe 10

Gln Ala Ile Ser Ser Ser Ile Ser Asp Ile Tyr Asn Arg Leu Asp Glu

Leu Ser Ala Asp Ala Gln Val Asp Arg Leu Ile Thr Gly Arg Leu Thr

Ala Leu Asn Ala Phe Val Ser Gln Thr Leu Thr Arg Gln Ala Glu Val

Arg Ala Ser Arg Gln Leu Ala Lys Asp Lys Val Asn Glu Cys Val Arg

Ser Gln Ser Gln Arg Phe Gly Phe Cys Gly Asn Gly Thr His Leu Phe

Ser Leu Ala Asn Ala Ala Pro Asn Gly Met Ile Phe Phe His Thr Val

Leu Leu Pro Thr Ala Tyr Glu Thr Val Thr Ala Trp 120

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown

PCT/US93/04692

54

	(ii) мо	LECU	LE T	YPE:	DNA	(ge	nomi	c)							
	(ix	· {	ATUR A) N B) L	e: ame/: ocat	KEY:	CDS	180									
	(xi) SE	QUEN	CE D	ESCR	IPTI	on:	SEQ	ID N	0:26	:					•
CTT Leu 1	GGT Gly	ATG Met	Lys	CGT Arg 5	AGT Ser	GGT Gly	TAT Tyr	GGT Gly	CAA Gln 10	CCC Pro	ATA Ile	GCC Ala	TCA Ser	ACA Thr 15	TTA Leu	48
AGT Ser	AAC Asn	ATC Ile	ACA Thr 20	CTA Leu	CCA Pro	ATG Met	CAG Gln	-GAT Asp 25	AAT Asn	AAC Asn	ACC Thr	GAT Asp	GTG Val 30	TAC Tyr	TGC Cys	96
ATT Ile	CGT Arg	TCT Ser 35	AAC Asn	CAA Gln	TTT Phe	TCA Ser	GTT Val 40	TAC Tyr	GTT Val	CAT His	TCC Ser	ACT Thr 45	Cys	Lys Lys	AGT Ser	144
TCT Ser	TTA Leu 50	TGG Trp	GAC Asp	GAT CAT	GTG Val	TTT Phe 55	AAT Asn	TCC Ser	GAC Asp	TGC Cys	ACA Th r 60					180
(2)				FOR							-				•	
	(i) S	(A) (B)	NCE LEN TYP TOP	GTH: E: a	60 mino	amir aci	o ac	ids							
	(i	.i) M	OLEC	ULE	TYPE	: pr	otei	n.								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Leu Gly Met Lys Arg Ser Gly Tyr Gly Gln Pro Ile Ala Ser Thr Leu

Ser Asn Ile Thr Leu Pro Met Gln Asp Asn Asn Thr Asp Val Tyr Cys

Ile Arg Ser Asn Gln Phe Ser Val Tyr Val His Ser Thr Cys Lys Ser

Ser Leu Trp Asp Asp Val Phe Asn Ser Asp Cys Thr 55

- (2) INFORMATION FOR SEQ ID NO:28:
 - (i) SEQUENCE CHARACTERISTICS:

 - (A) LENGTH: 141 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 1..141

í	(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO:28:

GTC Val 1	ATT Ile	AGA Arg	TTC Phé	AAC Asn 5	CTT Leu	AAT Asn	TTT Phe	ACC	ACA Thr 10	ABP GAT	GTA Val	CAA Gln	TCT Ser	GGT Gly 15	ATG Met	48
GGT Gly	GCT Ala	ACA Thr	GTA Val 20	TTT Phe	TCA Ser	CTG Leu	AAT Asn	ACA Thr 25	ACA Thr	GGT Gly	GGT Gly	GTC Val	ATT Ile 30	CTT Leu	GAG Glu	96
ATT Ile	TCT Ser	Càa	TAT Tyr	ABN	Asp	Thr	Val	Ser	Glu	Ser	Ser	TTC Phe	Tyr	AGT Ser		141

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Val Ile Arg Phe Asn Leu Asn Phe Thr Thr Asp Val Gln Ser Gly Met

Gly Ala Thr Val Phe Ser Leu Asn Thr Thr Gly Gly Val Ile Leu Glu

Ile Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser Ser Phe Tyr Ser 35

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS (B) LOCATION: 1..51
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

TGT ATA ACT AAA AAT AAA ATC ATT GAC TAT AAC ACG TTT ACC AGC GCA 48 Cys Ile Thr Lys Asn Lys Ile Ile Asp Tyr Asn Thr Phe Thr Ser Ala 1 5 10 CAG 51

Gln

PCT/US93/04692

56

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Cys Ile Thr Lys Asn Lys Ile Ile Asp Tyr Asn Thr Phe Thr Ser Ala 1 5 10 15

Gln

- (2) INFORMATION FOR SEQ ID NO:32:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..42
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

TCT TGT TAT AAT GAT ACA GTG AGT GAG TCA AGT TTC TAC AGT Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser Ser Phe Tyr Ser 1

42

- (2) INFORMATION FOR SEQ ID NO:33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser Ser Phe Tyr Ser 1 10

- (2) INFORMATION FOR SEQ ID NO:34:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 51 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: DNA (genomic)

(ix)	FEATURE:	:
------	----------	---

- (A) NAME/KEY: CDS
- (B) LOCATION: 1..51
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

ATT GGG TGT TTA GGA AGC TGT TGT CAT TCC ATA TGT AGT AGA AGG CGA 48 Ile Gly Cys Leu Gly Ser Cys Cys His Ser Ile Cys Ser Arg Arg Arg 10

TTT Phe

51

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Ile Gly Cys Leu Gly Ser Cys Cys His Ser Ile Cys Ser Arg Arg Arg 10

Phe

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 1..42
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TGC ATA CCC ATA TTG CTA TTT TGT TGT TGT AGC ACT GGT TGT 42 Cys Ile Pro Ile Leu Leu Phe Cys Cys Cys Ser Thr Gly Cys

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 14 amino acids (B) TYPE: amino acid

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

	(:	xi)	SEQU	ence	DES	CRIP	TION	: SE	Q ID	NO:	37:						
Cys 1		Pro	Ile	Leu 5	Leu	Phe	Сув	Сув	Су в 10	Ser	Thr	Gly	Суз				
(2)	INF	ORMA	TION	FOR	SEQ	ID I	ко:3	8:									
	(i	() ()	QUEN A) L B) T C) S' D) T	engti Ype: Trani	nuc. DEDNI	95 b leic ESS:	ase aci dou	pair: d ble	В				•		-		
	(ii) мо	LECU	LE T	YPE:	DNA	(ge	nomi	c)								
	(ix)	(2	ATURI A) NI B) L	AME/I			195										
	(xi) SE	QUEN(CE DI	escr:	[PTI	ON: S	SEQ :	ED NO	38:0	3						
TAC Tyr 1	TTA Leu	AAC Asn	CTG	ACT Thr 5	GGT Gly	GAA Glu	ATT	AAT Asn	GAC Asp 10	TTA Leu	GAA Glu	TTT Phe	AGG Arg	TCA Ser 15	Gju GAA		4
AAG Lys	TTA Leu	CAT His	AAC Asn 20	ACC Thr	ACA Thr	GTA Val	GAA Glu	CTT Leu 25	GCT Ala	ATT Ile	CTC Leu	ATT Ile	GAT Asp 30	AAT Asn	ATT Ile		9
AAT Asn	AAC Asn	ACA Thr 35	TTA Leu	GTC Val	AAT Asn	CTT Leu	GAA Glu 40	TGG Trp	CTC Leu	TAA neA	AGA Arg	ATT Ile 45	GAA Glu	ACT Thr	TAT Tyr	3	144
GTA Val	AAA Lys 50	TGG Trp	CCT Pro	TGG Trp	TAT Tyr	GTG Val 55	TGG Trp	CTA Leu	CTA Leu	ATT Ile	GGA Gly 60	TTA Leu	GTA Val	GTA Val	ATA Ile		192
TTC Phe 65														•		1	195
(2)	INFC	RMAI	CION	FOR	SEQ	ID 8	10:39	3:					•				
	(i) S	(B)	LEN TYP	GTH: E: a	65 minc		o ac .d									

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Tyr Leu Asn Leu Thr Gly Glu Ile Asn Asp Leu Glu Phe Arg Ser Glu 1 5 10 15

Lys Leu His Asn Thr Thr Val Glu Leu Ala Ile Leu Ile Asp Asn Ile 20 25 30

Asn Asn Thr Leu Val Asn Leu Glu Trp Leu Asn Arg Ile Glu Thr Tyr 35 40 45

WO 93/23423 PCT/US93/04692

59

Val Lys Trp Pro Trp Tyr Val Trp Leu Leu Ile Gly Leu Val Val Ile 55

Phe 65

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 765 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:
 - (A) NAME/KEY: CDS (B) LOCATION: 1..765
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

										-
	T GGI p Gly 1							 	 48-	
	T TT								96	
	b el ⁷								144	
	T GAT e Asy 50	сув							192	
Tr	G ACI P Thr								240	
	C ACA								288	
	T AAA e Lys								336	
	T GCI								384	
	T AGI o Ser 130	Phe							 432	
	G AAG t Lys 5								480	

WO 93/23423 PCT/US93/04692

60

													-				
ATC Ile	ACA Thr	CTA Leu	CCA Pro	ATG Met 165	CAG Gln	GAT Asp	AAT Asn	AAC Asn	ACC Thr 170	GAT Asp	GTG Val	TAC Tyr	TGC Cys	ATT Ile 175	CGT Arg	52	28
TCT Ser	AAC Asn	CAA Gln	TTT Phe 180	TCA Ser	GTT Val	TAC Tyr	GTT Val	CAT His 185	TCC Ser	ACT Thr	Cys	TÀR	AGT Ser 190	TCT Ser	TTA Leu	57	16
TGG Trp	GAC Asp	GAT Asp 195	GTG Val	TTT Phe	AAT Asn	TCC Ser	GAC Asp 200	TGC Cys	ACA Thr	GAT Asp	GTT Val	TTA Leu 205	TAT Tyr	GCT Ala	ACA Thr	62	4
GCT Ala	GTT Val 210	ATA Ile	AAA Lys	ACT Thr	GGT Gly	ACT Thr 215	TGT Cys	CCT Pro	TTC Phe	TCG Ser	TTT Phe 220	GAT Asp	AAA Lys	TTG Leu	AAC Asn	67	2
AAT Asn 225	TAC Tyr	TTA Leu	ACT Thr	TTT Phe	AAC Asn 230	AAG Lys	TTC Phe	TGT Cys	TTG Leu	TCA Ser 235	TTG Leu	AAT Asn	CCT Pro	GTT Val	GGT Gly 240	72	0
GCC Ala	AAC Asn	TGC Cys	AAG Lys	TTT Phe 245	gat Asp	GTT Val	GCC Ala	GCT Ala	CGT Arg 250	ACA Thr	AGA Arg	ACC Thr	AAT Asn	GAG Glu 255		76	5

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 255 amino acids (B) TYPE: amino acid (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Asp Gly Pro Arg Tyr Cys Tyr Ala Leu Tyr Asn Gly Thr Ala Leu Lys

Tyr Leu Gly Thr Leu Pro Pro Ser Val Lys Glu Ile Ala Ile Ser Lys

Trp Gly His Phe Tyr Ile Asn Gly Tyr Asn Phe Phe Ser Thr Phe Pro

Ile Asp Cys Ile Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe

Trp Thr Ile Ala Tyr Thr Ser Tyr Thr Asp Ala Leu Val Gln Val Glu 65 70 75 80

Asn Thr Ala Ile Lys Lys Val Thr Tyr Cys Asn Ser His Ile Asn Asn 85 90 95

Ile Lys Cys Ser Gln Leu Thr Ala Asn Leu Gln Asn Gly Phe Tyr Pro 105

Val Ala Ser Ser Glu Val Gly Leu Val Asn Lys Ser Val Val Leu Leu

Pro Ser Phe Tyr Ser His Thr Ser Val Asn Ile Thr Ile Asp Leu Gly

Met 145		Arg	Ser	Gly	Tyr 150		Gln	Pro	Ile	Ala 155		Thr	Leu	Ser	160	
Ile	Thr	Leu	Pro	Met 165		Asp	Asn	. Asn	Thr 170		Val	Tyr	СЛа	11e	Arg	
Ser	: Asn	Gln	Phe 180	Ser	Val	Tyr	Val	His 185		Thr	Сув	Lys	Ser 190		Leu	
Trp	Asp	Asp 195		Phe	Asn	Ser	Asp 200		Thr	Asp	Val	Leu 205		Ala	Thr	
Ala	Val 210	Ile	Lys	Thr	Gly	Thr 215		Pro	Phe	Ser	Phe 220	Asp	Lys	Leu	Asn	
Asn 225	Tyr	Leu	Thr	Phe	Авп 230	Lys	Phe	Сув	Leu	Ser 235	Leu	Asn	Pro	Val	Gly 240	
Ala	. Asn	Cys	Lys	Phe 245	Asp	Val	Ala	Ala	Arg 250	Thr	Arg	Thr	Asn	Glu 255		
(2)	INF	ORMA	TION	FOR	SEQ	ID i	NO: 4	2:								
	(i	(2	QUENCA). L.	engt:	H: 1:	284 1	base	pai:	rs					•		•
		į	C) S:	ran:	DEDNI	ESS:	dou									
	(ii) MO	LECUI	LE T	YPE:	DNA	(ge	nomi	=}							
	(ix	(7	ATURI A) NI	ME/I												
•	(xi		B) LO QUENO					SEO T	או מו	1:42:						
AGG												777	AAT		> ===	45
Arg 1	Pro	Leu	Leu	Lys 5	His	GJA GGI	Leu	Leu	Сув 10	Ile	Thr	Lys	Asn	Lys 15	Ile	48
ATT Ile	GAC Asp	TAT Tyr	AAC Asn 20	ACG Thr	TTT Phe	ACC Thr	AGC Ser	GCA Ala 25	CAG Gln	TGG Trp	agt Ser	GCC Ala	ATA Ile 30	TGT Cys	TTG Leu	96
GGT Gly	GAT Asp	GAC Asp 35	AGA Arg	AAA Lys	ATA Ile	CCA Pro	TTC Phe 40	TCT Ser	GTC Val	ATA Ile	CCC Pro	ACA Thr 45	GGT Gly	AAT Asn	GGT Gly	144
ACA																
Thr	AAA Lys 50	ATA Ile	TTT Phe	GGT Gly	CTT Leu	GAG Glu 55	TGG Trp	AAT Asn	GAT Asp	GAC Asp	TAT Tyr 60	GTT Val	ACA Thr	GCC Ala	TAT Tyr	192
Thr	Lys 50 AGT	Ile	Phe CGT	Gly TCT	CAC	Glu 55 CAT	Trp	Asn	Asp	ASP	Tyr 60 AAT	Val AAT	ACA Thr TGG Trp	Ala TTT	Tyr	192 240

AGT Ser	GCT Ala	GCA Ala	TAT Tyr 100	Val	TAT	CAA Gln	GGT Gly	GTI Val 105	. Ser	AAT Asn	TTT Phe	ACT Thr	TAT Tyr 110	Туг	AAG Lys	336
TTA Leu	AAT Asn	AAC Asn 115	Thr	AAT Asn	GGC Gly	TTG Leu	AAA Lys 120	Ser	TAT Tyr	GAA Glu	TTG Leu	TGT Cys 125	Glu	GAT Asp	TAT Tyr	384
GAA Glu	TGC Cys 130	Сув	ACT Thr	Gly	TAT	GCT Ala 135	Thr	AAC	GTA Val	TTT Phe	GCC Ala 140	Pro	ACA Thr	GTG Val	GGC	432
GGT Gly 145	Tyr	ATA Ile	CCT Pro	GAT Asp	GGC Gly 150	Phe	AGT Ser	TTT	AAC Asn	AAT Asn 155	TGG	TTT Phe	ATG Met	CTT	ACA Thr 160	480
AAC Asn	AGT Ser	TCC Ser	ACG Thr	TTT Phe 165	GTT Val	AGT Ser	GGC Gly	AGA Arg	TTT Phe 170	GTA Val	ACA Thr	AAT Asn	CAA Gln	CCA Pro 175	TTA Leu	528
TTG Leu	GTT Val	AAT Asn	TGT Cys 180	Leu	TGG Trp	CCA Pro	GTG Val	CCC Pro 185	Ser	CTT Leu	GGT Gly	GTC Val	GCA Ala 190	GCA Ala	CAA Gln	576
GAA Glu	TTT Phe	TGT Cys 195	TTT	GAA Glu	GGT Gly	GCG Ala	CAG Gln 200	TTT Phe	AGC Ser	CAA Gln	TGT Cys	AAT Asn 205	GGT Gly	GTG Val	TCT	624
TTA Leu	AAC Asn 210	AAT Asn	ACA Thr	GTG Val	gat Asp	GTC Val 215	ATT Ile	AGA Arg	TTC Phe	AAC Asn	CTT Leu 220	AAT Asn	TTT Phe	ACC Thr	ACA Thr	672
GAT Asp 225	GTA Val	CAA Gln	TCT Ser	GGT Gly	ATG Met 230	GCT	GCT Ala	ACA Thr	GTA Val	TTT Phe 235	TCA Ser	CTG Leu	AAT Asn	ACA Thr	ACA Thr 240	720
GGT Gly	GGT Gly	GTC Val	ATT Ile	CTT Leu 245	GAG Glu	ATT Ile	TCT Ser	TGT Cys	TAT Tyr 250	AAT Asn	GAT Asp	ACA Thr	GTG Val	AGT Ser 255	GAG Glu	768
TCA Ser	AGT Ser	TTC Phe	TAC Tyr 260	AGT Ser	TAT Tyr	GGT	GAA Glu	ATT Ile 265	TCA Ser	TTC Phe	GGC Gly	GTA Val	ACT Thr 270	GAT Asp	GGA Gly	816
CCG Pro	CGT Arg	TAC Tyr 275	TGT Cys	TAC Tyr	GCA Ala	CTC	TAT Tyr 280	AAT Asn	GGC	ACG Thr	GCT Ala	CTT Leu 285	AAG Lys	TAT Tyr	TTA Leu	864
GGA Gly	ACA Thr 290	TTA Leu	CCA Pro	CCT Pro	AGT Ser	GTC Val 295	AAG Lys	GAA Glu	ATT Ile	GCT Ala	ATT Ile 300	AGT Ser	AAG Lys	TGG Trp	G1Å GGC	912
CAT His 305	TTT Phe	TAT Tyr	ATT Ile	Asn	GGT Gly 310	TAC Tyr	Asn	Phe	TTT Phe	Ser	ACT Thr	TTT Phe	CCT Pro	ATT Ile	GAT Asp 320	960
IGT Cys	ATA Ile	TCT Ser	TTT Phe	AAT Asn 325	TTA Leu	ACC Thr	ACT Thr	Gly	GAT Asp 330	AGT Ser	Gly GCA	GCA Ala	TTT Phe	TGG Trp 335	ACA Thr	1008
ATT Ile	GCT Ala	TAC Tyr	ACA Thr 340	TCG Ser	TAC Tyr	ACT Thr	Asp	GCA Ala 345	TTA Leu	GTA Val	CAA Gln	Val	GAA Glu 350	AAC Asn	ACA The	1056

				GTG Val												1104
				ACT Thr												1152
				GGT Gly												1200
TTC Phe	TAT Tyr	TCA Ser	CAT His	ACC Thr 405	AGT Ser	GTT Val	AAT Asn	ATA Ile	ACT Thr 410	ATT Ile	GAT Asp	CTT Leu	GGT Gly	ATG Met 415	AAG Lys	1248
				GGT Gly												1284

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 428 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Arg Pro Leu Leu Lys His Gly Leu Leu Cys Ile Thr Lys Asn Lys Ile Ile 15

Ile Asp Tyr Asn Thr Phe Thr Ser Ala Gln Trp Ser Ala Ile Cys Leu 20

Gly Asp Asp Arg Lys Ile Pro Phe Ser Val Ile Pro Thr Gly Asn Gly 35

Thr Lys Ile Phe Gly Leu Glu Trp Asn Asp Asp Tyr Val Thr Ala Tyr

Thr Lys Ile Phe Gly Leu Glu Trp Asn Asp Asp Tyr Val Thr Ala Tyr
50 55 60

Ile Ser Asp Arg Ser His His Leu Asn Ile Asn Asn Asn Trp Phe Asn 65 70 75 80

Asn Val Thr Ile Leu Tyr Ser Arg Ser Ser Thr Ala Thr Trp Gln Lys 85 90 95

Ser Ala Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys

Leu Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu Leu Cys Glu Asp Tyr 115 120 125

Glu Cys Cys Thr Gly Tyr Ala Thr Asn Val Phe Ala Pro Thr Val Gly 130 135

Gly Tyr Ile Pro Asp Gly Phe Ser Phe Asn Asn Trp Phe Met Leu Thr 145 150 155 160

Asn Ser Ser Thr Phe Val Ser Gly Arg Phe Val Thr Asn Gln Pro Leu Leu Val Asn Cys Leu Trp Pro Val Pro Ser Leu Gly Val Ala Ala Gln Glu Phe Cys Phe Glu Gly Ala Gln Phe Ser Gln Cys Asn Gly Val Ser Leu Asn Asn Thr Val Asp Val Ile Arg Phe Asn Leu Asn Phe Thr Thr Asp Val Gln Ser Gly Met Gly Ala Thr Val Phe Ser Leu Asn Thr Thr Gly Gly Val Ile Leu Glu Ile Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser Ser Phe Tyr Ser Tyr Gly Glu Ile Ser Phe Gly Val Thr Asp Gly 260 265 270 Pro Arg Tyr Cys Tyr Ala Leu Tyr Asn Gly Thr Ala Leu Lys Tyr Leu 275 280 285 280 Gly Thr Leu Pro Pro Ser Val Lys Glu Ile Ala Ile Ser Lys Trp Gly His Phe Tyr Ile Asn Gly Tyr Asn Phe Phe Ser Thr Phe Pro Ile Asp Cys Ile Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe Trp Thr Ile Ala Tyr Thr Ser Tyr Thr Asp Ala Leu Val Gln Val Glu Asn Thr Ala Ile Lys Lys Val Thr Tyr Cys Asn Ser His Ile Asn Asn Ile Lys Cys Ser Gin Leu Thr Ala Asn Leu Gin Asn Gly Phe Tyr Pro Val Ala Ser Ser Glu Val Gly Leu Val Asn Lys Ser Val Val Leu Leu Pro Ser Phe Tyr Ser His Thr Ser Val Asn Ile Thr Ile Asp Leu Gly Met Lys Arg Ser Gly Tyr Gly Gln Pro Ile Ala Ser Thr Leu
420
425

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 546 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: double
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)

PCT/US93/04692

65

r	120	। द्यागक्र बच्च	₹•

(A) NAME/KEY: CDS (B) LOCATION: 1..546

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

	,	,	~							J	•					
GAT Asp 1	TGT Cys	ATA	TCT Ser	TTT Phe 5	AAT Asn	TTA Leu	ACC Thr	ACT Thr	GGT Gly 10	qaA	AGT Ser	GGA Gly	GCA Ala	TTT Phe 15	TGG Trp	48
ACA Thr	ATT	GCT Ala	TAC Tyr 20	ACA Thr	TCG Ser	TAC Tyr	ACT Thr	GAC Asp · 25	GCA Ala	TTA Leu	GTA Val	CAA Gln	GTT Val 30	GAA Glu	AAC Asn	96
ACA Thr	GCT Ala	ATT Ile 35	AAA Lys	AAG Lys	GTG Val	ACG Thr	TAT Tyr 40	ТСТ Сув	AAC Asn	AGT Ser	CAC His	ATT Ile 45	AAT Asn	AAC Asn	ATT Ile	144
AAA Lys	TGT Cys 50	TCT Ser	CAA Gln	CTT Leu	ACT Thr	GCT Ala 55	AAT Asn	TTG Leu	CAA Gln	AAT Asn	GGA Gly 60	TTT Phe	TAT Tyr	CCT Pro	GTT Val	192
GCT Ala 65	TCA Ser	AGT Ser	GAA Glu	GTT Val	GGT Gly 70	CTT Leu	GTC Val	AAT Asn	AAG Lys	AGT Ser 75	GTT Val	GTG Val	TTA Leu	CTA Leu	CCT Pro 80	240
AGT Ser	TTC Phe	TAT Tyr	TCA Ser	CAT His 85	ACC Thr	AGT Ser	GTT Val	AAT Asn	ATA Ile 90	ACT Thr	ATT Ile	GAT Asp	CTT Leu	GGT Gly 95	ATG Met	288
AAG Lys	CGT Arg	AGT Ser	GGT Gly 100	TAT Tyr	GGT Gly	CAA Gln	CCC Pro	ATA Ile 105	GCC Ala	TCA Ser	ACA Thr	TTA Leu	AGT Ser 110	AAC Asn	ATC Ile	336
ACA Thr	CTA Leu	CCA Pro 115	ATG Met	CAG Gln	GAT Asp	AAT Asn	AAC Asn 120	ACC Thr	GAT Asp	GTG Val	TAC Tyr	TGC Cys 125	ATT Ile	CGT Arg	TCT Ser	384
AAC Asn	CAA Gln 130	TTT Phe	TCA Ser	GTT Val	TAC Tyr	GTT Val 135	CAT His	TCC Ser	ACT Thr	TCT Cys	AAA Lys 140	AGT Ser	TCT Ser	TTA Leu	TGG T rp	432
GAC Asp 145	GAT Asp	GTG Val	TTT Phe	TAA Asn	TCC Ser 150	GAC Asp	TGC Cys	ACA Thr	GAT Asp	GTT Val 155	TTA Leu	TAT Tyr	GCT Ala	ACA Thr	GCT Ala 160	480
GTT Val	ATA Ile	AAA Lys	ACT Thr	GGT Gly 165	ACT Thr	тст Сув	CCT Pro	Phe	TCG Ser 170	TTT Phe	GAT Asp	AAA Lys	Leu	AAC Asn 175	TAA TAA	528
			TTT Phe 180													546

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 182 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Asp Cys Ile Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe Trp Thr Ile Ala Tyr Thr Ser Tyr Thr Asp Ala Leu Val Gln Val Glu Asn 20 25 Thr Ala Ile Lys Lys Val Thr Tyr Cys Asn Ser His Ile Asn Asn Ile Lys Cys Ser Gln Leu Thr Ala Asn Leu Gln Asn Gly Phe Tyr Pro Val Ala Ser Ser Glu Val Gly Leu Val Asn Lys Ser Val Val Leu Leu Pro Ser Phe Tyr Ser His Thr Ser Val Asn Ile Thr Ile Asp Leu Gly Met Lys Arg Ser Gly Tyr Gly Gln Pro Ile Ala Ser Thr Leu Ser Asn Ile 100 Thr Leu Pro Met Gln Asp Asn Asn Thr Asp Val Tyr Cys Ile Arg Ser Asn Gln Phe Ser Val Tyr Val His Ser Thr Cys Lys Ser Ser Leu Trp Asp Asp Val Phe Asn Ser Asp Cys Thr Asp Val Leu Tyr Ala Thr Ala

Val Ile Lys Thr Gly Thr Cys Pro Phe Ser Phe Asp Lys Leu Asn Asn 165 170

Tyr Leu Thr Phe Asn Lys 180

(2) INFORMATION FOR SEQ ID NO:46:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

TAAATAGGCC TTTAGTGGAC ATGCACTTTT TCAATTGG

38

(2) INFORMATION FOR SEQ ID NO:47:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)

67	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	•
TTAGTAGGCC TGTCGAGGCT ATGGGTTGAC CATAACCAC	39
(2) INFORMATION FOR SEQ ID NO:48:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
CAGATCCCGG GTGTACAATC TGGTATGGGT GCTACAG	37
(2) INFORMATION FOR SEQ ID NO:49:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GTGCCCCGG GTATGATTGT GCTCGTAACT TGCCTCTTG	39
(2) INFORMATION FOR SEQ ID NO:50:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 43 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
AGCACCCATA CCAGATTGTA CATCTGCAGT GAAATTAAGA TTG	43
(2) INFORMATION FOR SEQ ID NO:51:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 128 amino acids (B) TYPE: amino acid (D) TOPOLOGY: unknown	

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Met Ile Val Leu Val Thr Cys Leu Leu Phe Ser Tyr Asn Ser Val Ile 1 5 10 15

Cys Thr Ser Asn Asn Asp Cys Val Gln Val Asn Val Thr Gln Leu Pro 20 25 30

Gly Asn Glu Asn Ile Ile Lys Asp Phe Leu Phe His Thr Phe Lys Glu 35 40 45

Glu Gly Ser Val Val Val Gly Gly Tyr Tyr Pro Thr Glu Val Trp Tyr
50 55 60

Asn Cys Ser Arg Ser Ala Thr Thr Thr Ala Tyr Lys Asp Phe Ser Asn 65 70 75 80

Ile His Ala Phe Tyr Phe Asp Met Glu Ala Met Glu Asn Ser Thr Gly 85 90 95

Asn Ala Arg Gly Lys Pro Leu Leu Val His Val His Gly Asp Pro Val 100 105 110

Ser Ile Ile Tyr Ile Ser Ala Tyr Arg Asp Asp Val Gln Gly Arg 115 120 125

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Asp Val Gln Ser Gly Met Gly Ala Thr Val Phe Ser Leu Asn Thr Thr 1 5 10 15

Gly Gly Val Ile Leu Glu Ile Ser Cys Tyr Asn Asp Thr Val Ser Glu 20 25 30

Ser Ser Phe Tyr Ser Tyr Gly Glu Ile Ser Phe Gly Val Thr Asp Gly 35 40 45

Pro Arg Tyr Cys Tyr Ala Leu Tyr Asn Gly Thr Ala Leu Lys Tyr Leu 50 55 60

Gly Thr Leu Pro Pro Ser Val Lys Glu Ile Ala Ile Ser Lys Trp Gly 65 70 75

His Phe Tyr Ile Asn Gly Tyr Asn Phe Phe Ser Thr Phe Pro Ile Asp 85 90 95

Cys Ile Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe Trp Thr 100 105 110

Ile Ala Tyr Thr Ser Tyr Thr Asp Ala Leu Val Gln Val Glu Asn Thr 115 120 125

Ala	11e	ГÃ	Lys	Val	Thr	Tyr 135		Asn	Ser	His	11e 140		Asn	Ile	Lys
Cys 145	Ser	Gln	Leu	Thr	Ala 150		Leu	Gln	. Asn	Gly 155		Tyr	Pro	Val	Ala 160
Ser	Ser	Glu	Val	Gly 165	Leu	Val	Asn	Lys	Ser 170		Val	Leu	Leu	Pro 175	
Phe	Tyr	Ser	His 180		Ser	Val	Asn	Ile 185		Ile	Asp	Leu	Gly 190		Lys
		195			Gln		200					205			
	21,0				Asn	215					220				
225					Val 230					235					240
				245	Asp				250					255	
			260		Сув			265			•		270		
		275			Phe		280					285	_		
	290				Ala	295					300				
305					11e 310					315				_	320
				325	Gly				330					3.35	_
			340		Asn			345					350		
		355			Thr		360					365			
	370				Gly	375					380	_			_
385					390 Asp					395					400
				405	Met				410					415	
			420		Thr			425					430		
		435			Thr		440					445		_	
Asp	Cys 450	Glu	Pro	Ile	Ile	Thr 455	Tyr	Ser	Asn	Ile	Gly 460	Val	Cys	Lys	ńaA

GIy	AL	a Le	u Va	l Ph	e Ile	Ası	ı Val	LTh	r His	s Sei	c Ası	Gl:	y Ası	p Vai	l Gln
465)				470)				47	5				480
Pro	Ile	e Sei	r Th	489		Val	L Thr	: Ile	≥ Pro 490		: Asr	ı Phe	e Thi	r Ile 499	e Ser
Val	. Glr	ı Va	500	Tyr	: Ile	Glr	ı Val	Ty:	Thi	Thi	Pro	Va]	510		e Asp
Суз	Ser	51:	Tyn 5	r Val	L Cys	Asn	520		Pro	Arc	ј Суз	Asr -525		Leu	ı Leu
Thr	Gln 530	. Туг)	Va)	L Ser	: Ala	Cys 535	Gln	Thr	Tle	: Glu	Gln 540		Lev	ı Ala	Met
Gly 545	Ala	Arc	J Lev	ı Glu	Asn 550	Met	Glu	Ile	a Asr	Ser 555		Let	Phe	• Val	Ser 560
Glu	Asn	Ala	Let	Lys 565	Leu	Ala	Ser	Val	. Glu 570		Phe	Asn	Ser	Thr 575	
Thr	Leu	Asp	9 Pro 580	Ile	Tyr	Lys	Glu	Trp 585	Pro	Asn	Ile	Gly	Gly 590		Trp
Leu	Gly	Gly 595	Leu	Ļув	Asp	Ile	Leu 600	Pro	Ser	His	Aşn	Ser 605		Arg	Lys
Tyr	Arg 610	Ser	Ala	Ile	Glu	Asp 615	Leu	Leu	Phe	Asp	Lys 620	Val	Val	Thr	Ser
Gly 625	Leu	Gly	Thr	Val	630 Yab	Glu	Asp	Tyr	Lys	Arg 635	Cys	Thr	Gly	Gly	Tyr 640
Asp	Ile	Ala	Авр	Leu 645	Val	Cys	Ala	Gln	Tyr 650	Tyr	Asn	Gly	Ile	Met 655	Val
Leu	Pro	Glý	Vál 660	Ala	Asn	Asp	Asp	Lys 665	Met	Ala	Met	Tyr	Thr 670	Aļa	Ser
Leu	Ala	Gly 675	Gly	Ile	Thr	Leu	680 680	Ala	Leu	Gly	Gly	G <u>l</u> y 685	Ala	Val	Ser
Ile	Pro 690	Phe	Ala	Ile	Ala	Val 695	Gln	Ala	Arg	Leu	Asn 700	Tyr	Val	Ala	Leu
Gln 705	Thr	Asp	Val	Leu	Ser 710	Lys	Asn	Gln	Gln	Ile 715	Leu	Ala	Asn	Ala	Phe 720
Asn	Gln	Ala	Ile	Gly 725	Asn	Ile	Thr	Gln	Ala 730	Phe	Gly	Lys	Val	Asn 735	Asp
Ala	Ile	His	Gln 740	Thr	Ser	Gln	Gly	Leu 745	Ala	Thr	Val	Ala	Lys 750	Ala	Leu _.
Ala	ГÃв	Val 755	Gln	yab	Val	Val	Asn 760	Thr	Gln	Gly		Ala 765	Leu	Ser	His
Leu	Thr 770	Val	Gln	Leu	Gln	Asn 775	Asn ·	Phe	Gln	Ala	Ile 780	Ser	Ser	Ser	Ile
ser : 785	Asp	Ile	Tyr	Asn	Arg 790	Leu	Asp	Glu ·	Leu	Ser 795	Ala.	Asp	Ala	Gin	Val 800

Asp Arg Leu Ile Thr Gly Arg Leu Thr Ala Leu Asn Ala Phe Val Ser Gln Thr Leu Thr Arg Gln Ala Glu Val Arg Ala Ser Arg Gln Leu Ala 825 Lys Asp Lys Val Asn Glu Cys Val Arg Ser Gln Ser Gln Arg Phe Gly 840 Phe Cys Gly Asn Gly Thr His Leu Phe Ser Leu Ala Asn Ala Ala Pro Asn Gly Met Ile Phe Phe His Thr Val Leu Leu Pro Thr Ala Tyr Glu 875 Thr Val Thr Ala Trp Ser Gly Ile Cys Ala Ser Asp Gly Asp Arg Thr 890 Phe Gly Leu Val Val Lys Asp Val Gln Leu Thr Leu Phe Arg Ash Leu Asp Asp Lys Phe Tyr Leu Thr Pro Arg Thr Met Tyr Gln Pro Arg Val 920 Ala Thr Ser Ser Asp Phe Val Gln Ile Glu Gly Cys Asp Val Leu Phe 9.35 Val Asn Ala Thr Val Ile Asp Leu Pro Ser Ile Ile Pro Asp Tyr Ile Asp Ile Asn Gln Thr Val Gln Asp Ile Leu Glu Asn Phe Arg Pro Asn Trp Thr Val Pro Glu Leu Pro Leu Asp Ile Phe Asn Ala Thr Tyr Leu 985 Asn Leu Thr Gly Glu Ile Asn Asp Leu Glu Phe Arg Ser Glu Lys Leu 1000 1005 His Asn Thr Thr Val Glu Leu Ala Ile Leu Ile Asp Asn Ile Asn Asn 1010 1015 1020 Thr Leu Val Asn Leu Glu Trp Leu Asn Arg Ile Glu Thr Tyr Val Lys 1030 Trp Pro Trp Tyr Val Trp Leu Leu Ile Gly Leu Val Val Ile Phe Cys 1050 Ile Pro Ile Leu Leu Phe Cys Cys Cys Ser Thr Gly Cys Cys Gly Cys 1065 Ile Gly Cys Leu Gly Ser Cys Cys His Ser Ile Cys Ser Arg Arg Arg 1080 Phe Glu Ser Tyr Glu Pro Ile Glu Lys Val His Val His 1090 1095

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 362 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown

(ii)	MOLECULE	TYPE:	protein
------	----------	-------	---------

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Met IIe Val Leu Val Thr Cys Leu Leu Phe Ser Tyr Asn Ser Val Ile
5 10 15

Cys Thr Ser Asn Asp Cys Val Gln Val Asn Val Thr Gln Leu Pro 20 25 30

Gly Asn Glu Asn Ile Ile Lys Asp Phe Leu Phe His Thr Phe Lys Glu 35 40 45

Glu Gly Ser Val Val Val Gly Gly Tyr Tyr Pro Thr Glu Val Trp Tyr 50 55 60

Asn Cys Ser Arg Ser Ala Thr Thr Thr Ala Tyr Lys Asp Phe Ser Asn 65 70 75 80

Ile His Ala Phe Tyr Phe Asp Met Glu Ala Met Glu Asn Ser Thr Gly 85 90 95

Asn Ala Arg Gly Lys Pro Leu Leu Val His Val His Gly Asp Pro Val

Ser Ile Ile Tyr Ile Ser Ala Tyr Arg Asp Asp Val Gln Gly Arg

Pro Leu Leu Lys His Gly Leu Leu Cys Ile Thr Lys Asn Lys Ile Ile 130 135 140

Asp Tyr Asn Thr Phe Thr Ser Ala Gln Trp Ser Ala Ile Cys Leu Gly 145 150 155 160

Asp Asp Arg Lys Ile Pro Phe Ser Val Ile Pro Thr Gly Asn Gly Thr 165 170 175

Lys Ile Phe Gly Leu Glu Trp Asn Asp Asp Tyr Val Thr Ala Tyr Ile 180 185 190

Ser Asp Arg Ser His His Leu Asn Ile Asn Asn Asn Trp Phe Asn Asn 195 200 205

Val Thr Ile Leu Tyr Ser Arg Ser Ser Thr Ala Thr Trp Gln Lys Ser 210 215 220

Ala Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys Leu 225 230 240

Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu Leu Cys Glu Asp Tyr Glu 245 250 255

Cys Cys Thr Gly Tyr Ala Thr Asn Val Phe Ala Pro Thr Val Gly Gly 260 265 270

Tyr Ile Pro Asp Gly Phe Ser Phe Asn Asn Trp Phe Met Leu Thr Asn 275 280 285

Ser Ser Thr Phe Val Ser Gly Arg Phe Val Thr Asn Gln Pro Leu Leu 290 295 300

Val Asn Cys Leu Trp Pro Val Pro Ser Leu Gly Val Ala Ala Gln Glu 305 310 315 320

Phe Cys Phe Glu Gly Ala Gln Phe Ser Gln Cys Asn Gly Val Ser Leu 325 330 335

Asn Asn Thr Val Asp Val Ile Arg Phe Asn Leu Asn Phe Thr Thr Asp 340 345 350

Val Gln Ser Gly Met Gly Ala Thr Val Phe 355 360

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1101 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:
- Ala Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys Leu 1 10 15
- Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu Leu Cys Glu Asp Tyr Glu 20 30
- Cys Cys Thr Gly Tyr Ala Thr Asn Val Phe Ala Pro Thr Val Gly Gly 35
- Tyr Ile Pro Asp Gly Phe Ser Phe Asn Asn Trp Phe Met Leu Thr Asn 50 55 60
- Ser Ser Thr Phe Val Ser Gly Arg Phe Val Thr Asn Gln Pro Leu Leu 65 70 75 80
- Val Asn Cys Leu Trp Pro Val Pro Ser Leu Gly Val Ala Ala Gln Glu 85 90 95
- Phe Cys Phe Glu Gly Ala Gln Phe Ser Gln Cys Asn Gly Val Ser Leu 100 105 110
- Asn Asn Thr Val Asp Val Ile Arg Phe Asn Leu Asn Phe Thr Thr Asp 115
- Val Gln Ser Gly Met Gly Ala Thr Val Phe Ser Leu Asn Thr Thr Gly
 130 135 140
- Gly Val Ile Leu Glu Ile Ser Cys Tyr Asn Asp Thr Val Ser Glu Ser 145
- Ser Phe Tyr Ser Tyr Gly Glu Ile Ser Phe Gly Val Thr Asp Gly Pro 165 170
- Arg Tyr Cys Tyr Ala Leu Tyr Asn Gly Thr Ala Leu Lys Tyr Leu Gly 180 185 190
- Thr Leu Pro Pro Ser Val Lys Glu Ile Ala Ile Ser Lys Trp Gly His 195 200 205
- Phe Tyr Ile Asn Gly Tyr Asn Phe Phe Ser Thr Phe Pro Ile Asp Cys 210 215 220

I1 22	.e \$6	r P	he	Asn	Le	u Th 23	r Th	r Gl	у Ав	p Še	r Gl	y Al	a Ph	e Tr	p Ti	
			hr	Ser		• •		·		**=	23	_				24
					44.	5				25	0	n Va.			25	5
				200					20:	•		e Ası		27	0	
Se	r Gl	n L	≥u 75	Thr	Ala	a Ası	n Le	28	n Ası O	n Gl	y Phe	э Туг	28!		l Al	a Se
Se	r Gl 29	u Va O	al ·	Gly	Leu	ı Val	1 Ası 29!	n Ly: 5	s Sei	va:	l Val	L Let 300	Lei)	ı Pr	o Se	r Ph
Ty:	r Se	r Hi	is '	Thr	Ser	7a)) Ası	n Ile	∃ Thr	: Ile	e Ası 319	Leu	Gl ₃	/ Me	t Ly	s Ar
Sei	r Gl	Y T	r c (Gly	Gl: 325	Pro	Ile	⊇ Ala	a Ser	Th:	r Lec)	Ser	Aer	ıIl	≘ Th: 33!	
Pro) Met	= G]	n i	Asp 340	Asn	Asn	Thr	. Asī	Val 345	Tyı	с Сув	Ile	Arg	350	c Ası	n Gl
Phe	e Ser	* Va	1 7	[yr	Val	His	Ser	Thr 360	Cys	Lye	s Ser	Ser	Leu 365	Tr) Asj	o Asi
Val	. Phe	e As	n s	Ser	Asp	Сув	Thr. 375	Asp	Val	Leu	Tyr	Ala 380	Thr	Ala	va]	LILE
Lys 385	Thr	Gl	y 1	Thr	Сув	Pro 390	Phe	Ser	Phe	Asp	Lys 395	Leu	Asn	Ası	туг	Let 400
Thr	Phe	As	n I	ys	Phe 405	Сув	Leu	Ser	Leu	Asn 410	Pro	Val	Gly	Ala	Asr. 415	
Lys	Phe	Äs	p V 4	al 20	Ala	Ala	Arg	Thr	Arg 425	Thr	Asn	Glu	Gln	Val 430		. Arg
Ser	Leu	Ty:	r V 5	'al	Ile	Tyr	Glu	Glu 440	Gly	Авр	Asn	Ile	Val 445	Gly	_Val	Pro
Ser	Asp 450	Ası	n S	er	Gly	Lëu	His 455	Asp	Leu	Ser	Val	Leu 460	His	Leu	Asp	Ser
Cys 465	Thr	Asj	T	yr X	Asn	Ile 470	Tyr	Gly	Arg	Thr	Gly 475	Val	Gly	Ile	Ile	Arg 480
Gln	Thr	Ası	ı S	er :	Thr 485	Leu	Leu	Ser	Gly	Leu 490	Tyr	Tyr	Thr	Ser	Leu 495	Ser
Gly	Asp	Let	L (00 · en (⊋ly	Phe	Lys	Asn	Val 505	Ser	Asp	Gly	Val.	Ile 510	Tyr	Ser
Val	Thr	Pro 515	C)	ys ?	Asp	Val	Ser	Ala 520	Gln	Ala	Ala	Val	Ile 525	Asp	Gly	Ala
Ile	Val 530	Gly	Al	la M	let	Thr	Ser 535	Ile	Asn	Ser	Glu	Met : 540	Leu	G1¥	Leu	Thr
His 545	Trp	Thr	Th	ur I	hr :	Pro 550	Aën	Phe	Tyr	Tyr	Tyr 555	Ser :	Ile	Tyr,	Asn	Tyr

Thi	: Ası	ı Glı	ı Arç	Thr 565	Arg	g Gly	Thr	Ala	11e		Ser	Asn	Asp	Val 575	Asp
Суз	Glu	Pro	580	e Ile	Thr	Tyr	Ser	Asn 585		Ğly	Val	. Сув	Lys 590		Gly
Ala	Lev	Val 595	Ph∈	: Ile	a Asn	Val	Thr 600	His	Ser	Asp	Gly	Asp 605		Gln	Pro
Ile	Ser 610	Thr	Gly	Asn	V al	Thr 615	Ile	Pro	Thr	. Yeu	Phe 620		Ile	Ser	Val
G1n 625	Val	Glu	Tyr	Ile	Gln 630	Val	Tyr	Thr	Thr	Pro 635		Ser	Ile	Asp	Сув 640
Ser	Arg	Tyr	Val	Cys 645	Asn	Gly	Asn	Pro	Arg 650		Asn	Lys	Leu	Leu 655	Thr
			660	•				665					670		
		675					680					685		Ser	
	690					695					700			Ġlu	
705					710					715				Trp	Leu 720
				725	Ile				730					735	Tyr
			740					745					750	Ser	_
		/55	2				760					765		Tyr	
	770			-		775					780			Val	
785					790					795				Ser	800
				805					810					Ser 815	
			820					825					830	Leu	
		835					840					845		Phe	
	850					855					860			Asp	
865					870					875					880
Lys	Val	Gln	yab	Val 885	Val	Asn	Thr	Gln	Gly 890	Gln	Ala	Leu	Ser	His 895	Leu

Thr	. Val	. Gln	Leu 900	Gln	Asn	Авп	Phe	Gln 905	Ala	Ile	Ser	Ser	Ser 910	Ile	Ser
Yab	Ile	Tyr 915	Asn	Arg	Leu	Asp	Glu 920	Leu	Ser	Ala	Asp	Ala 925	Gln	Val	Asp
Arg	Leu 930	Ile	Thr	Gly	Arg	Leu 935	Thr	Ala	Leu	Asn	Ala 940	Phe	Val	Ser	Gln
Thr 945	Leu	Thr	Arg	Gln	Ala 950	Glu	Val	Arg	Ala	Ser 955	Arg	Gln	Leu	Ala	7 960
Asp	ГÀв	Val	Agn	Glu 965	Сув	Val	`Arg	Ser	Gln 970	Ser	Gln	. Arg	Phe	Gly 975	Phe
Сув	Gly	Asn	Gly 980	Thr	His	Leu	Phe	Ser 985	Leu	Ala	Asn	Ala	Ala 990	Pro	Asn
Gly	Met	Ile 995	Phe	Phe	His	Thr	Val 1000	Leu)	Leu	Pro	Thr	Ala 100		Glu	Thr
Val	Thr 1010	Ala)	Trp	Ser	Gly	Ile 1015	Cys	Ala	Ser	Asp	Gly 1020	Asp)	Arg	Thr	Phe
Gly 1025	Leu	Val	Val	Lys	Asp 1030	Val	Gln	Leu	Thr	Leu 1039	Phe	Arg	Asn	Leu	Asp 1040
Asp	ГÀЗ	Phe	Tyr	Leu 1045	Thr	Pro.	Arg	Thr	Met 1050	Týr)	Gln	Pro	Arg	Val 1055	
Thr	Ser	Ser	Asp 1060	Phe	Val	Gln	Ile	Glu 1065	Gly	Сув	Asp	Val	Leu 1070		Val
Asn	Ala	Thr 1075	Val	Ile	Asp	Leu	Pro 1080	Ser	Ile	Ile	Pro	Asp 1085	Tyr	Ile	Asp
Ile	Asn 1090	Gln	Thr '	Val	Gln :	Asp 1095	Ile	Leu	Glu	Asn	Phe 1100				

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 701 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: DNA (genomic)
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

TCAACCATTA	TIGGTTAATT	GTTTGTGGCC	AGTGCCCAGT	CTTGGTGTCG	CAGCACAAGA	60
ATTTTGTTTT	GAAGGTGCGC	AGTTTAGCCA	ATGTAATGGT	GTGTCTTTAA	ACAATACAGT	120
GGATGTCATT	AGATTCAACC	TTAATTTTAC	CACAGATGTA	CAATCTGGTA	TGGGTGCTAC	180
AGTATTTTCA	CTGAATACAA	CAGGIGGIGI	CATTCTTGAG	ATTTCTTGTT	ATAATGATAC	240
agtgagtgag	TCAAGTTTCT	ACAGTTATGG	TGAAATTTCA	TTCGGCGTAA	CTGATGGACC	300
GCGTTACTGT	TACGCACTCT	ATAATGGCAC	GGCTCTTAAG	TATTTAGGAA	CATTACCACC	360

PCT/US93/04692

77

TAGTGTCAAG	GAAATTGCTA	TTAGTAAGTG	GGGCCATTTT	TATATTAATG	GTTACAATTT	420
CTTTAGCACT	TTTCCTATTG	ATTGTATATC	TTTTAATTTA	ACCACTGGTG	ATAGTGGAGC	480
ATTTTGGACA	ATTGCTTACA	CATCGTACAC	TGACGCATTA	GTACAAGTTG	AAAACACAGC	540
TATTAAAAAG	GTGACGTATT	GTAACAGTCA	CATTAATAAC	ATTAAATGTT	CTCAACTTAC	600
TGCTAATTTG	CAAAATGGAT	TTTATCCTGT	TGCTTCAAGT	GAAGTTGGTC	TTGTCAATAA	660
GAGTGTTGTG	TTACTACCTA	GTTTCTATTC	ACATACCAGT	G		701

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1401 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

AGCACCGGTA	ATGTCACGAT	ACCTACAAAT	TTTACCATAT	CTGTGCAAGT	TGAGTACATT	60
CAGGTTTACA	CTACACCGGT	GTCAATAGAT	TGTTCAAGGT	ACGTTTGCAA	TGGTAACCCT	120
AGATGCAATA	AATTGTTAAC	GCAATACGTT	TCTGCATGTC	AAACTATTGA	GCAAGCACTT	180
GCAATGGGTG	CCAGACTTGA	AAACATGGAG	ATTGATTCCA	TGTTGTTTGT	TTCGGAAAAT	240
GCCCTTAAAT	TGGCATCTGT	TGAAGCATTC	AATAGTACGG	AAACTTTAGA	TCCTATTTAC	300
AAAGAATGGC	CTAACATTGG	TGGTTCTTGG	CTAGGAGGTT	TAAAAGACAT	ATTGCCATCT	360
CACAACAGCA	AACGTAAGTA	CCGGTCGGCT	ATAGAAGATT	TGCTTTTTGA	TAAGGTTGTA	420
ACATCTGGCT	TAGGTACAGT	TGATGAAGAT	TATAAACGTT	GTACAGGTGG	TTATGACATA .	480
GCTGACTTAG	TGTGTGCACA	ATATTACAAT	GGCATCATGG	TGCTACCTGG	TGTAGCTAAT	540
GATGACAAGA	TGGCTATGTA	CACTGCATCT	CTTGCAGGTG	GTATAACATT	AGGTGCACTT	600
GGTGGTGGCG	CAGTGTCTAT	ACCTTTTGCA	ATAGCAGTTC	AAGCCAGACT	TAATTATGTT	660
GCTCTACAAA	CTGATGTATT	GAGCAAGAAC	CAGCAGATCC	TGGCTAATGC	TTTCAATCAA	720
GCTATTGGTA	ACATTACACA	GGCATTTGGT	AAGGTTAATG	ATGCTATACA	TCAAACGTCA	780
CAAGGTCTTG	CTACTGTTGC	TAAAGCATTG	GCAAAAGTGC	AAGATGTTGT	TAACACACAA	840
GGGCAAGCTT	TAAGCCACCT	AACAGTACAA	TTGCAAAATA	ATTTCCAAGC	CATTAGTAGT	9.00
TCCATTAGTG	ACATTTATAA	CAGGCTTGAT	GAATTGAGTG	CTGATGCACA	AGTTGACAGG	960
CTGATTACAG	GAAGACTTAC	AGCACTTAAT	GCATTTGTGT	CTCAGACTTT	AACCAGACAA	1020
GCAGAGGTTA	GGGCTAGCAG	ACAGCTTGCT	AAAGACAAGG	TAAATGAATG	CGTTAGGTCT	1080
CAATCTCAGA	GATTTGGATT	CTGTGGTAAT	GGTACACATT	TATTTTCACT	TGCAAATGCA	1140

GCACCAAATG	GCATGATCTT	CTTTCACACA	GTGCTATTAC	CAACAGCTTA	TGAAACCGTG	1200
ACGGCCTGGT	CAGGTATTTG	TGCATCAGAT	GGCGATCGTA	CTTTTGGACT	TGTTGTTAAG	1260
GATGTCCAGT	TGACGCTGTT	TCGCAATCTA	GATGACAAAT	TCTATTTGAC	TCCCAGAACT	1320
ATGTATCAGC	CTAGAGTTGC	AACTAGTTCT	GATTTTGTTC	AAATTGAAGG	ATGTGATGTG	1380
ITGTTTGTTA	ATGCAACTGT	A				1401

(2) INFORMATION FOR SEQ ID NO:57:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 250 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

(XI)	SEQ	UENC	E DE	SCRI	PTIO	N.: 5.	EQ I	D NO	:57:						-
Met 1	Ile	Val	Leu	Val 5	Thr	Сув	Leu	Leu	Phe 10	Ser	Tyr	Asn	Ser	Val	Ile
Cys	Thr	Ser	Asn 20	Asn	yab	Сув	Val	Gln 25	Val	Asn	Val	Thr	30 Gln	Leu	Pro
Gly	Asn	Glu 35	Asn	Ile	Ile	ГЛа	Asp 40	Phe	Leu	Phe	His	Thr 45	Phe	Lys	Glu
Glu	Gly 50	Ser	Val	Val	Val	Gly 55	Gly	Tyr	Tyr	Pro	Thr 60	Glu	V al	Trp	Tyr
Asn 65	Сув	Ser	Arg	Ser	Ala 70	Thr	Thr	Thr	Ala	Tyr 75	Lys	Asp	Phe	Ser	Asn 80
Ile	His	Ala	Phe	Tyr 85	Phe	Aap	Met	Glu	Ala 90	Met	Glu	Asn	Ser	Thr 95	GLY
Asn	Ala	Arg	Gly 100	Lys	Pro	Leu	Leu	Val 105	His	Val	His	Gly	Asp 110	Pro	Val
Ser	Ile	Ile 115	Ile	Tyr	Ile	Ser	Ala 120	Tyr	Arg	Asp	Asp	Val 125	Gln	Gly	Arg
Pro	Leu 130	Leu	Lys	Ris	Gly	Leu 135	Leu	Cys	Ile	Thr	Lys 140	Asn	Lys	Ile	Ile
Asp 145	Tyr	Asn	Thr	Phe	Thr 150	Ser	Ala	Gln	Trp	Ser 155	Ala	Ile	Сля	Leu	Gly 160
Asp	Asp	Arg	ГĀв	Ile 165	Pro	Phe	Ser	Val	Ile 170	Pro	Thr	Gly	Asn	G1y 175	Thr
Lys	Ile	Phe	Gly 180	Lēu	Glu	Trp	Asn	Asp 185	Asp	Tyr	Väl	Thr	Ala 190	Tyr	Ile
Ser	Asp	Arg 195	Ser	His	His	Leu	Asn 200	Ile	Asn	Asn		Trp 205	Phe	Asn	Asn
Val	Thr 210	Ile	Leu	Tyr	Ser	Arg 215	Ser	Ser	Ťhr	Ala	Thr 220	Trp	Gln	Lys	ser

Ala Ala Tyr Val Tyr Gln Gly Val Ser Asn Phe Thr Tyr Tyr Lys Leu 225 230 235 240

Asn Asn Thr Asn Gly Leu Lys Ser Tyr Glu 245 250

(2) INFORMATION FOR SEQ ID NO:58:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 201 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Ser Phe Asn Leu Thr Thr Gly Asp Ser Gly Ala Phe Trp Thr Ile Ala 1 10 15

Tyr Thr Ser Tyr Thr Asp Ala Leu Val Gln Val Glu Asn Thr Ala Ile 20 25 30

Lys Lys Val Thr Tyr Cys Asn Ser His Ile Asn Asn Ile Lys Cys Ser 35 40 45

Gln Leu Thr Ala Asn Leu Gln Asn Gly Phe Tyr Pro Val Ala Ser Ser 50 55 60

Glu Val Gly Leu Val Asn Lys Ser Val Val Leu Leu Pro Ser Phe Tyr 65 70 75

Ser His Thr Ser Val Asn Ile Thr Ile Asp Leu Gly Met Lys Arg Ser 85 90 95

Gly Tyr Gly Gln Pro Ile Ala Ser Thr Leu Ser Asn Ile Thr Leu Pro 100 105 110

Met Gln Asp Asn Asn Thr Asp Val Tyr Cys Ile Arg Ser Asn Gln Phe 115 120 125

Ser Val Tyr Val His Ser Thr Cys Lys Ser Ser Leu Trp Asp Asp Val 130

Phe Asn Ser Asp Cys Thr Asp Val Leu Tyr Ala Thr Ala Val Ile Lys 155 150

Thr Gly Thr Cys Pro Phe Ser Phe Asp Lys Leu Asn Asn Tyr Leu Thr 165 170

Phe Asn Lys Phe Cys Leu Ser Leu Asn Pro Val Gly Ala Asn Cys Lys 180 185

Phe Asp Val Ala Ala Arg Thr Arg Thr 195 200

(2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 251 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: unknown

WO 93/23423 PCT/US93/04692

80

(ii) MOLECULE TYPE: protein

(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ON C	:59:						
Glu 1	Asn	Met	Glu	Ile 5	Asp	Ser	Met	Leu	Phe 10	Val	Ser	Glu	Asn	Ala 15	Le
Lys	Leu	Ala	Ser 20	Val	Glu	Ala	Phe	Asn 25	Ser	Thr	Glu	Thr	Leu 30	Asp	Pr
Ile	Tyr	Lys 35	Glu	Trp	Pro	Asn	Ile 40	Gly	Gly	Ser	Trp	Leu 45	Gly	Gly	Le
Lys	Asp 50	Ile	Leu	Pro	Ser	His 55	Asn	Ser	Lys	Arg	Lys 60	Tyr	Arg	Ser	Ala
Ile 65	Glu	qeA	Leu	Leu	Phe 70	Asp	Lув	Val	Val	Thr 75	Ser	Gly	Leu	Gly	Th: 80
Val	yab	Glu	Asp	Tyr 85	Lys	Arg	Cys	Thr	Gly 90	Gly	Tyr	Asp	Ile	Ala 95	Ası
Leu	Val	Cys	Ala 100	Gln	Tyr	Tyr	Asn	Gly 105	Ile	Met	Val	Leu	Pro 110	Gly	Va]
Ala	Asn	115 13p	Asp	Lys	Met	Ala	Met 120	Tyr	Thr	Ala	Ser	Leu 125	Ala	Gly	Gly
Ile	Thr 130	Leu	Gly	Ala	Leu	Gly 135	Gly	Gly	Ala	Val	Ser 140	Ile	Pro	Phe	Ala
Ile 145	Ala	Val	Gln	Ala	Arg 150	Leu	Asn	Tyr	Val	Ala 155	Leu	Gln	Thr	Asp	Val 160
Leu	Ser	Lys	Asn	Gln 165	Gln	Ile	Leu	Ala	Asn 170	Ala	Phe .	Asn	Gln	Ala 175	Il∈
Gly	Asn	Ile	Thr 180	Gln	Ala	Phe	Gly	Lys 185	Val	Asn	Asp	Ala	Ile 190	His	Gln

Thr Ser Gln Gly Leu Ala Thr Val Ala Lys Ala Leu Ala Lys Val Gln 195 Val Asn Thr Gln Gly Gln Ala Leu Ser His Leu Thr Val Gln 210

Leu Gln Asn Asn Phe Gln Ala Ile Ser Ser Ser Ile Ser Asp Ile Tyr 225 230 235 240

Asn Arg Leu Asp Glu Leu Ser Ala Asp Ala Gln 245 250

What is claimed is:

- 1. An isolated protein sequence comprising a selected sequence from the S protein of a canine coronavirus strain, optionally fused to a second selected fusion protein.
- 2. The protein according to claim 1 wherein said strain is CCV 1-71.
- 3. The protein according to claim 1 comprising amino acid residues 1 to 1452 SEQ ID NO: 2.
- 4. The protein according to claim 1 wherein said selected sequence is selected from the group consisting of: 1113-1236 SEQ ID NO:25, 540-599 SEQ ID NO:27, 342-388 SEQ ID NO:29, 137-153 SEQ ID NO:31, 375-388 SEQ ID NO:33, 1424-1440 SEQ ID NO:35, 1407-1420 SEQ ID NO:37, 1342-1406 SEQ ID NO:39, 398-652 SEQ ID NO:44, 128-555 SEQ ID NO:43, and 447-628 SEQ ID NO:45.
- 5. An isolated DNA sequence comprising a selected nucleotide sequence from the S gene of a canine coronavirus strain, optionally associated with the nucleotide sequence encoding a fusion protein.
- 6. The DNA sequence according to claim 5 wherein said selected sequence comprises nucleotides 1 to 4356 SEQ ID NO: 1.
- 7. The DNA sequence according to claim 5 wherein the selected sequence is a nucleotide sequence selected from the group consisting of: 3337-3708 SEQ ID NO:24, 1618-1797 SEQ ID NO:26, 1024-1164 SEQ ID NO:28, 409-459 SEQ ID NO:30, 1123-1164 SEQ ID NO:32, 4270-4320 SEQ ID NO:34,

4219-4260 SEQ ID NO:34, 4024-4218 SEQ ID NO:38, 1192-1956 SEQ ID NO:40, 382-1665 SEQ ID NO:42, and 1339-1884 SEQ ID NO:44.

- 8. A method for the production of a recombinant CCV protein comprising culturing a selected host transformed with a DNA sequence encoding a selected CCV S protein or fragment thereof in operative association with regulatory sequences capable of regulating the expression of said protein.
- 9. The method according to claim 8 wherein said host is a mammalian cell.
- 10. The method according to claim 8 wherein said host is a viral vector.
- 11. A recombinant DNA molecule comprising a DNA sequence coding for a selected portion of a canine coronavirus S protein, said DNA sequences in operative association with regulatory sequences capable of directing the expression thereof in host cells.
- 12. A vaccine composition comprising an effective amount of a canine coronavirus protein comprising a selected canine coronavirus strain S protein, or immunogenic fragment thereof and an optional carrier.
- 13. A composition according to claim 12 wherein said strain is CCV 1-71.

14. The composition according to claim 12 wherein said S protein is a fusion protein.

- 15. The vaccine composition according to claim 12 further comprising an immunogenic amount of one or more additional antigens.
- 16. A method for vaccinating an animal against CCV gastroenteritis which comprises the step of internally administering to the animal an effective amount of a CCV S protein, S fusion protein or an immunogenic fragment thereof.
- 17. An antibody to a protein comprising a selected sequence from the S gene of a canine coronavirus strain, said antibody being specific for a CCV S gene epitope.
- 18. The protein according to claim 17 wherein said strain is CCV 1-71.
- 19. A diagnostic reagent comprising a selected sequence from the S protein of a canine coronavirus strain, optionally fused to a second selected fusion protein, said sequence optionally associated with a detectable label.
- 20. A diagnostic reagent comprising an antibody to a protein comprising a selected sequence from the S gene of a canine coronavirus strain, said antibody being specific for a CCV S gene epitope and said antibody optionally associated with a detectable label.
- 21. A diagnostic reagent which comprises a nucleotide sequence encoding or flanking a CCV S protein or fragment, said nucleotide sequence optionally associated with a detectable label.

- 22. A diagnostic kit comprising one or more diagnostic reagents selected from the group consisting of
- (a) a selected sequence from the S protein of a canine coronavirus strain, optionally fused to a second selected fusion protein, said sequence optionally associated with a detectable label;
- (b) an antibody to a protein comprising a selected sequence from the S gene of a canine coronavirus strain, said antibody being specific for a CCV S gene epitope and said antibody optionally associated with a detectable label; and
- (c) a nucleotide sequence encoding or flanking a CCV S protein or fragment, said nucleotide sequence optionally associated with a detectable label.
- 23. A method of diagnosing CCV infection in dogs comprising treating a tissue sample from a dog with a diagnostic reagent of claim 22.
- 24. The method according to claim 23 wherein dogs previously exposed to CCV or to a CCV vaccine are detected.
- 25. The method according to claim 23 wherein said diagnostic method can differentiate exposure to CCV from exposure to another related coronavirus.
- 26. The method according to claim 23 wherein said diagnostic method can differentiate exposure to different strains of CCV.

27. The method according to claim 23 wherein said method can identify dogs at advanced stages of CCV infection.

INTERNATIONAL SEARCH REPORT

Int. .tional application No.
PCT/US93/04692

CT.	ASSIFICATION OF SUBJECT MATTER		
1		•	•
US CL	:Please See Extra Sheet. :530/350, 409, 387.1; 424/89; 536/27; 435/5, 6, 69	12 220 1	
	to International Patent Classification (IPC) or to both		•
	LDS SEARCHED		
Minimum o	documentation searched (classification system followed	ed by classification symbols)	
U.S. :	530/350, 409, 387.1; 424/89; 536/27; 435/5, 6, 69.	3, 320.1	•
Documenta	tion searched other than minimum documentation to th	e extent that such documents are included	in the fields searched
1			
1			
	A-1- 1		
Electronic (data base consulted during the international search (n	ame of data base and, where practicable	, search terms used)
Picase Se	e Extra Sheet.		
			•
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		ym - 17
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
Y	EP, A, 0,264,979 (de Groot et al)	27 April 1099 see entire	1-27
1 *	•	27 April 1988, See clime	1-27
	document.		
Y	EP, A, 0,278,541 (Jacobs et al)	17 August 1988, see entire	1-27
	document.	· ·	
Υ .	Proceedings of the National Academy	of Sciences IISA Volume 90	1 27
1 '	Proceedings of the National Academy		1-27
	issued March 1983, R. A. Young e		<u> </u>
	Genes by Using Antibody Probes",	pp. 1194-1198, see entire	·
	document.		
Υ .	US, A, 4,904,468 (Gill et al) 27	February 1000 see entire	1 27
•		reduiary 1990, see entire	.1-27
	document.	•	, ,
		j	
X Funth	er documents are listed in the continuation of Box C	See patent family annex.	
Spe	ocial categories of eited documents:	"T" later document published after the inte	
	current defining the general mate of the art which is not considered	date and not in conflict with the application of the principle or theory underlying the investment of the principle of the pr	
	be part of particular relevance	"X" document of particular relevance; the	i
	iler document published on or after the international filing date	considered novel or cannot be conside	
	current which may throw doubts on priority claim(s) or which is not to establish the publication date of another citation or other	when the document is taken alone	
	cial reason (as specified)	"Y" document of particular relevance; the	
	cument referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other such	documents, such combination
	204	being obvious to a person skilled in th	e art
	cument published prior to the international filing date but later than priority date claimed	*&* document member of the same patent	family!
Date of the	actual completion of the international search	Date of mailing of the international sea	reh report
	•	03 Alic 1993 //	'
26 JULY	1993		[-
Name and m	nailing address of the ISA/US ner of Patents and Trademarks	Authorized officer	me n
Box PCT		D. BARND	1100 L'
_	, D.C. 20231		70
Facsimile N	o. NOT APPLICABLE	Telephone No. (703) 308-0196	/

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

Intentional application No. PCT/US93/04692

		PC17059370405	
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		•
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No
Y	Journal of General Virology, Volume 71, issued 1990, et al., "Nucleotide Sequence of the Gene Encoding the Glycoprotein of Human Coronavirus HCV 229E", pp. see Figure 4.	Spike	1-27
Y	Archives of Virology, Volume 117, issued 1991, T. Hoal., "Characterization of Monoclonal Antibodies Agains Infectious Peritonitis Virus Type II and Antigenic Relat Between Feline, Porcine, and Canine Coronaviruses", page entire document.	it Feline ionship	1-27
Y	EP, A, 0,376,744 (Dale et al) 04 July 1990, see entire	document.	17-27
	·		
			·
			,
			•
	•		
			,
		·	
ļ			
		-	
· ·			

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

search terms: coronavirus, peplomer, S protein, vaccin?, antibod?, diagnos?

International application No. PCT/US93/04692

A. CLASSIFICATION OF SUBJECT MATTER: IPC (5):
C07K 3/00, 15/00, 13/00; A61K 39/12; C07H 15/12; C12N 15/00; C12P 21/06; C12Q 1/70, 1/68
B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):
EMBL, GenBank, SwissProt, PIR, GeneSeq, Medline, CA, Biosis, WPI, APS

Form PCT/ISA/210 (extra sheet)(July 1992)★

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.