

STN Karlsruhe

L7 ANSWER 1 OF 1 WPIDS COPYRIGHT 2005 THE THOMSON CORP on STN
 ACCESSION NUMBER: 1997-146738 [14] WPIDS
 DOC. NO. CPI: C1997-046984
 TITLE: Prodn. of high solids protective colloid-stabilised polyvinyl ester dispersion - using water-soluble cationic azo initiator, with prod. used as binder, opt. as redispersible powder..
 DERWENT CLASS: A14 A93 L02
 INVENTOR(S): GEISSLER, U
 PATENT ASSIGNEE(S): (FARH) HOECHST AG; (CLRN) CLARIANT GMBH
 COUNTRY COUNT: 18
 PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG	MAIN IPC
DE 19531515	A1	19970227	(199714)*	8	C08F218-04<--	
EP 761697	A2	19970312	(199715)	GE	10	C08F018-04
R: AT BE CH	DE DK ES FI FR GB GR IE IT LI NL PT SE					
JP 09136910	A	19970527	(199731)		8	C08F004-04
EP 761697	A3	19971022	(199814)			C08F218-04
EP 761697	B1	20000510	(200027)	GE		C08F018-04
R: AT BE CH	DE ES FR GB IT LI NL SE					
DE 59605168	G	20000615	(200036)			C08F018-04
ES 2147875	T3	20001001	(200052)			C08F018-04
US 6331587	B1	20011218	(200205)			C08L019-02

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
DE 19531515	A1	DE 1995-1031515	19950826
EP 761697	A2	EP 1996-113244	19960819
JP 09136910	A	JP 1996-222712	19960823
EP 761697	A3	EP 1996-113244	19960819
EP 761697	B1	EP 1996-113244	19960819
DE 59605168	G	DE 1996-505168	19960819
		EP 1996-113244	19960819
ES 2147875	T3	EP 1996-113244	19960819
US 6331587	B1	US 1996-701988	19960823

FILING DETAILS:

PATENT NO	KIND	PATENT NO
DE 59605168	G Based on	EP 761697
ES 2147875	T3 Based on	EP 761697

PRIORITY APPLN. INFO: DE 1995-19531515 19950826

REFERENCE PATENTS: No-SR.Pub; DE 3239091; US 4489192

INT. PATENT CLASSIF.:

MAIN: C08F004-04; C08F018-04; C08F218-04; C08L019-02

SECONDARY: C04B024-26; C08F002-22; C08L029-04; C08L031-02

BASIC ABSTRACT:

DE 19531515 A UPAB: 19970407

Prodn. of protective colloid-stabilised poly(vinyl ester)-contg. dispersions is effected by polymerisation of the vinyl ester (and opt. comonomer(s)) using a water-soluble cationic azo initiator, pref. an azo-amidine.

A claimed dispersion, opt. contg. units from a neutral or anionic

STN Karlsruhe

comonomer, has solids content at least 45 (pref. 60-70) wt.%
USE - Claimed use is as a binder for use in building, opt. as a
redispersible powder.

Dwg. 0/0

FILE SEGMENT: CPI

FIELD AVAILABILITY: AB

MANUAL CODES: CPI: A02-A02; A04-F01A1; A08-S06; A10-B05; A12-R01; L02-D

=>

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(10) **DE 195 31 515 A 1**

(51) Int. Cl. 6:
C 08 F 218/04
C 08 F 4/04
C 04 B 24/26

(21) Aktenzeichen: 195 31 515.4
(22) Anmeldetag: 26. 8. 95
(43) Offenlegungstag: 27. 2. 97

DE 195 31 515 A 1

(71) Anmelder:
Hoechst AG, 65929 Frankfurt, DE

(72) Erfinder:
Geißler, Ulrich, Dr., 65239 Hochheim, DE

(56) Entgegenhaltungen:
US 44 89 192
JP 74-85 174

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Herstellung von Polyvinylester-Dispersionen

(57) Polyvinylester-Dispersionen mit hohem Feststoffgehalt, die als Bindemittel in Baustoffen vorzugsweise in Form redispergierbarer Kunststoffpulver eingesetzt werden können, werden erhalten durch Polymerisation von mindestens einem Vinylester und optional weiteren damit copolymerisierbaren Monomeren mittels wasserlöslicher kationischer Azoinitiatoren.

DE 195 31 515 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 01.97 602 069/448

10/26

Beschreibung

- Die Erfindung betrifft ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Dispersionen von Vinyl-Polymeraten mit hohem Feststoffgehalt unter Einsatz wasserlöslicher kationischer Azoinitiatoren sowie die Verwendung dieser Dispersionen beziehungsweise der durch Sprühtrocknung daraus erhältlichen redispersierbaren Dispersionspulver zur Modifizierung von Baustoffen.
- Aus wirtschaftlichen Gründen sollten Dispersionen mit möglichst hohem Feststoffgehalt hergestellt werden. Diese Forderung kann bisher jedoch nicht für alle Dispersionstypen erfüllt werden. So neigen Schutzkolloid-stabilisierte Dispersionen auf Basis Vinylester/(Meth)Acrylat bei hohen Feststoffgehalten zur Dilatanz.
- Der Einsatz kationischer Azoinitiatoren bei der Herstellung Emulgator-stabilisierter Dispersionen ist grundsätzlich bekannt.
- In der DE-A 32 39 091 wird ein Verfahren zur Herstellung kationischer Styrol- oder Acrylester-Latices in Gegenwart kationischer Comonomer berichtet, wobei als Initiator 2,2'-Azobis(2-amidinopropan)hydrochlorid eingesetzt wird. Stabile Latices werden nur unter Zusatz des kationischen Emulgators Dodecylpyridiniumchlorid oder bei Copolymerisation mit den kationischen Monomeren Dimethylaminoethylmethacrylathydrochlorid erhalten. Der Feststoffgehalt der beschriebenen Dispersionen liegt unter 25 Gew.-%.
- Die Aufgabe der vorliegenden Erfindung bestand darin, ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten Vinylester enthaltenden Polymerdispersionen bereitzustellen.
- Die Aufgabe wurde gelöst durch Einsatz von wasserlöslichen, kationischen Azoinitiatoren.
- Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Schutzkolloid-stabilisierten homo- oder copolymeren Vinylester enthaltenden Dispersionen durch Polymerisation von mindestens einem Vinylester und optional weiteren damit copolymerisierbaren Monomeren mittels wasserlöslicher kationischer Azoinitiatoren.
- Bevorzugte wasserlösliche, kationische Azoinitiatoren im Sinne der Erfindung sind Azoamidinverbindungen, beispielsweise 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid, 2,2'-Azobis(2-methyl-N-phenylpropionamidin)dihydrochlorid, 2,2'-Azobis[N-(4-chlorophenyl)-2-methylpropionamidin]dihydrochlorid, 2,2'-Azobis[N-(4-hydroxyphenyl)-2-methylpropionamidin]dihydrochlorid, 2,2'-Azobis[N-(4-aminophenyl)-2-methylpropionamidin]tetrahydrochlorid, 2,2'-Azobis[2-methyl-N(phenylmethyl)propionamidin]dihydrochlorid, 2,2'-Azobis[2-methyl-N-2-propenylpropionamidin]dihydrochlorid, 2,2'-Azobis[N-(2-hydroxyethyl)-2-methylpropionamidin]dihydrochlorid, 2,2'-Azobis[2-(2-imidazolin-2-yl)propan]dihydrochlorid, 2,2'-Azobis[2-(4,5,6,7-tetrahydro-1H-1,3-diazepin-2-yl)propan] dihydrochlorid, 2,2'-Azobis[2-(3,4,5,6-tetrahydropyrimidin-2-yl)propan]dihydrochlorid, 2,2'-Azobis[2-(5-hydroxy-3,4,5,6-tetrahydropyrimidin-2-yl)propan]dihydrochlorid, 2,2'-Azobis-[1-(2-hydroxyethyl)-2-imidazolin-2-yl]-propan]dihydrochlorid.
- Besonders bevorzugt wird als Initiator 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid verwendet.
- Der Initiator wird vorzugsweise in einer Menge von 0,05 bis 2 Gew.-%, bezogen auf die Gesamtmenge der Monomeren, eingesetzt.
- Als Monomere für das erfundungsgemäße Verfahren kommen die bekannten Vinylester in Frage, insbesondere Vinylester von linearen und verzweigten Monocarbonsäuren mit 2 bis 12 Kohlenstoffatomen. Beispiele sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylpivalat, Vinyl-2-ethylhexanoat, Vinylester von [®]Versatic-Säure 9,10 oder 11 (a,a-Dialkyl-verzweigte Monocarbonsäuren, Shell Chemie). Der Anteil der Vinylester beträgt vorzugsweise mindestens 50 Gew.-%, insbesondere 70 bis 90 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
- Geeignete Comonomere sind Ethylen sowie Ester der Acrylsäure oder Methacrylsäure mit einem 1 bis 12 Kohlenstoffatome aufweisenden Alkohol, beispielsweise Methylacrylat, Ethylacrylat, n-Propylacrylat, n-Butylacrylat, i-Butylacrylat, t-Butylacrylat, n-Hexylacrylat, n-Octylacrylat, 2-Ethylhexylacrylat, Methylmethacrylat, Ethylmethacrylat, n-Propylmethacrylat, n-Butylmethacrylat, i-Butylmethacrylat, n-Octylmethacrylat, 2-Ethylhexylmethacrylat. Der Anteil dieser Comonomere beträgt vorzugsweise bis zu 50 Gew.-%, insbesondere 5 bis 30 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
- Weiterhin können monoolefinisch ungesättigte Monocarbonsäuren und Dicarbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, sowie Mono- und Diester der Dicarbonsäuren, beispielsweise Maleinsäuremonomethylester und Maleinsäuremono-2-ethylhexylester sowie auch Salze der vorgenannten Säuren eingesetzt werden. Der Anteil dieser Comonomere beträgt vorzugsweise bis zu 5 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
- Das erfundungsgemäße Verfahren wird insbesondere in vollständiger Abwesenheit von kationischen Comonomeren ausschließlich in Gegenwart von Vinylestern oder von Vinylestern und ausschließlich Comonomeren aus der Gruppe der neutralen und anionischen Monomeren durchgeführt.
- Als Schutzkolloid wird vorzugsweise Polyvinylalkohol in einer Menge von 4 bis 15 Gew.-%, vorzugsweise 6 bis 12 Gew.-%, bezogen auf die Gesamtmenge der Monomeren eingesetzt. Der Polymerisationsgrad des Polyvinylalkohols liegt vorzugsweise bei 200 bis 3500, insbesondere zwischen 500 und 3000. Der Hydrolysegrad beträgt vorzugsweise 80 bis 98 Mol.-%, bevorzugt 88 Mol.-%, insbesondere 85 bis 95 Mol.-%.

Weitere Beispiele für geeignete Schutzkolloide sind veretherte Cellulosederivate, beispielsweise Hydroxyethylcellulose, Methylcellulose, Carboxymethylcellulose sowie Polyvinylpyrrolidon oder Polycarbonsäuren.

Das Verfahren kann als Batch-, Zulauf- oder kontinuierliches Verfahren durchgeführt werden.

Die Polymerisationstemperatur beträgt vorzugsweise 40 bis 90°C, insbesondere 60 bis 80°C.

Nach dem erfindungsgemäßen Verfahren werden vorzugsweise Dispersionen mit einem Feststoffgehalt von mindestens 45 Gew.-% erzielt. Insbesondere werden Feststoffgehalte zwischen 50 und 75 Gew.-%, besonders bevorzugt zwischen 60 und 70 Gew.-% erreicht.

Gegenstand der Erfindung sind auch Schutzkolloid-stabilisierte Polymerdispersionen mit einem Feststoffgehalt von mindestens 45 Gew.-%, die durch Polymerisation von ausschließlich Vinyl estern oder von Vinyl estern mit ausschließlich weiteren Comonomeren aus der Gruppe der neutralen und anionischen Monomeren mittels wasserlöslicher kationischer Azoinitiatoren erhältlich sind.

Die erfindungsgemäß hergestellten Dispersionen können zur Modifizierung von Baustoffen eingesetzt werden.

Aus den erfindungsgemäß hergestellten Dispersionen lassen sich durch Sprühtrocknung sehr gut redispergierbare Kunststoffpulver herstellen. Derartige Kunststoffpulver können ebenfalls in hydraulisch abbindenden Baustoffen sowie in Pulverfarben eingesetzt werden.

Gegenstand der Erfindung ist daher auch die Verwendung der nach dem erfindungsgemäßen Verfahren hergestellten Polyvinylester-Dispersionen als Bindemittel in Baustoffen sowie zur Herstellung von redispergierbaren Dispersionspulvern, vorzugsweise für den Einsatz in Baustoffen und Pulverfarben.

Die aus den erfindungsgemäß hergestellten Polyvinylester-Dispersionen erhaltenen Pulver weisen eine höhere Lagerstabilität auf als nach Standardverfahren zugängliche Pulver.

Die folgenden Beispiele dienen der näheren Erläuterung der Erfindung. Die angegebenen Teile und Prozente beziehen sich auf das Gewicht, soweit nicht anders vermerkt.

Beispiel 1

25

In einem 4-l-Glaskolben, der sich in einem Heizbad befindet und mit Rührer, Rückflußkühler, Tropfrichter und Thermometer ausgestattet ist, wird die in der nachfolgenden Tabelle angegebene Menge vollentsalztes Wasser vorgelegt.

Unter Rühren (130 Upm) werden 30
117,5 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 8 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 1400),

1,0 Teil Natriumlaurylsulfat (Texapon K12, Henkel),
3,3 Teile eines Ethylenoxid-Propylenoxid-Blockpolymerisats mit 20% Ethylenoxid (Genapol PF20, Hoechst AG),

1,0 Teil eines Entschäumers auf Basis einer Kombination von flüssigen Kohlenwasserstoffen, hydrophober Kieselsäure, synthetischen Copolymeren und nicht-ionogenen Emulgatoren (Agitan 280, Münzing Chemie),
2,65 Teile Natriumacetat

zugegeben und die Mischung auf eine Innentemperatur von 70°C aufgeheizt (Polymerisationsflotte).
Ferner werden eine Monomerenmischung bestehend aus

580 Teilen Vinylacetat,
580 Teilen Vinylester von Versatic-Säure 10, (Veo Va10, Shell-Chemie) und

130 Teilen n-Butylacrylat
sowie eine Initiatorlösung bestehend aus 2,1 Teilen 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid (V-50, Wako Chemicals) in
41,5 Teilen vollentsalztem Wasser

hergestellt.

Zu der auf eine Innentemperatur von 70°C erwärmt Polymerisationsflotte werden 130 Teile Monomerenmischung zugegeben. Sobald die Innentemperatur wieder 70°C erreicht hat, werden 8 Teile Initiatorlösung zugesetzt und 15 Minuten vorpolymerisiert.

Anschließend wird die Monomerenmischung und parallel dazu 30 Teile der Initiatorlösung innerhalb von 3 Stunden bei 70°C zudosiert. Nach Dosierende wird die restliche Menge an Initiatorlösung zugegeben. Man erwärmt auf 80°C und läßt bei dieser Temperatur 1 Std. nachreagieren.

Nach Abkühlen auf 50°C werden Lösungen von
1,8 Teilen tert-Butylhydroperoxid, 70%ig (Trigonox A-W 70, Akzo) in

35 Teilen vollentsalztem Wasser
sowie

1,3 Teilen Natriumhydroxymethansulfonat (Rongalit C, BASF) in
35 Teilen vollentsalztem Wasser

über einen Zeitraum von 15 Minuten zudosiert. Danach wird abgekühlt.
Von den hergestellten Dispersionen wurden Feststoffgehalt, Siebrückstand (Filtration durch ein 40 µm Sieb)

sowie Partikelgrößenverteilung (Aerosolspektroskopie) ermittelt.

65

Nr.	Vorgelegte Wassermenge [Teile]	Feststoff [%] (gef.)	Siebrückstand [%] (40 µm Sieb)	Partikelgrößenverteilung dw [nm] dw/dn	
1	1590	44,9	0,274	569	3,43
2	1459	46,8	0,087	872	5,23
3	1338	49,0	0,065	843	4,83
4	1174	51,8	0,056	1596	10,50
5	1060	53,8	0,017	1472	11,85
6	927	56,9	0,013	1335	9,73
7	807	60,0	0,005	1328	9,92
8	636	64,2	0,002	1746	12,79

Man erhält Dispersionen mit hohem Feststoffgehalt. In den vorliegenden Beispielen beträgt der Mindestfeststoffgehalt ca. 45%. Der Siebrückstand nimmt mit zunehmendem Feststoffgehalt ab. Die Partikel von Dispersionen mit hohem Feststoffgehalt sind im Vergleich zu solchen mit geringerem Feststoffgehalt größer, die Verteilung ist breiter.

Beispiel 2

Es wurden analoge Dispersionen wie in Beispiel 1 hergestellt, jedoch wurde als Schutzkolloid ein Polyvinylalkohol mit folgender Spezifikation eingesetzt:

Viskosität einer 4%igen Lösung bei 20°C: 4 mPa · s,
 Verseifungsgrad: 88 Mol-%
 Polymerisationsgrad: 630

Nr.	Vorgelegte Wassermenge [Teile]	Feststoff [%] (gef.)	Siebrückstand [%] (40 µm Sieb),	Partikelgrößenverteilung dw [nm] dw/dn	
9	927	57,2	0,032	1256	7,19
10	807	60,3	0,012	1373	9,04
11	636	64,5	0,018	1272	7,25

Bei Einsatz des niedermolekularen Polyvinylalkohols beträgt der Mindestfeststoffgehalt ca. 57%.

Beispiel 3

Es wurde eine Dispersion wie in Beispiel 1 Nr. 7 beschrieben hergestellt, als Schutzkolloidsystem wurde jedoch folgende Polyvinylalkohol-Mischung eingesetzt:
 40 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 8 mPa · s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 1400) und

77,5 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 4 mPa · s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 630)
 Feststoffgehalt, Siebrückstand und Partikelgrößenverteilung sind nachfolgend zusammengestellt:

Nr.	Feststoff [%] (gef.)	Siebrückstand [%] (40 µm-Sieb)	Partikelgrößenverteilung dw[nm]	dw/dn	
12	59,7	0,007	1769	10,21	5

Die Viskosität der Dispersion würde mit einem Rotationsviskosimeter (VT500 der Fa. Haake) bei verschiedenen Scherkräften bestimmt:

Scherkräfte D [sec ⁻¹]	Viskosität [mPa · s]	
10,71	5520	
17,93	4830	15
29,93	4430	
58,44	3910	
83,21	3620	
139,1	3090	
231,7	2700	20

Beispiel 4

Es wurde eine Dispersion analog Nr. 7 aus Beispiel 1 hergestellt, jedoch wurden Schutzkolloidsystem, Initiator und Polymerisationsbedingungen wie folgt geändert:

Schutzkolloidsystem:

40 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 8 mPa · s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 1400) und

77,5 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 4 mPa · s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 630)

Initiator:

2,1 Teile 2,2'-Azobis[2-(2-imidazolin-2-yl)propan]dihydrochlorid

Polymerisationsbedingungen		
Polymerisationstemperatur:	60°C	
Vorpolymerisationsdauer:	30 Min.	
Dosierzeit:	5 Std.	
Schutzgas:	Stickstoff	40

Es wurden Feststoffgehalt, Siebrückstand, Teilchengrößenverteilung und Viskosität der Dispersion bestimmt:

Nr.	Feststoff [%] (gef.)	Siebrückstand [%]	Partikelgrößenverteilung dw[nm]	dw/dn	
13	60,3	0,008	1343	9,29	50

Scherkräfte D [sec ⁻¹]	Viskosität [mPa · s]	
10,71	4230	
17,93	3750	
29,93	3530	
58,44	3320	
83,21	3240	60
139,1	3070	
231,7	2820	

Beispiel 5 (Vergleich)

Es wurden Dispersionen hergestellt, wie in Beispiel 1 beschrieben, jedoch wurde folgende Initiatorlösung eingesetzt:

2,1 Teile Ammoniumperoxodisulfat in
41,5 Teilen vollentsalztem Wasser.

Die Polymerisation wurde bei 80°C durchgeführt. Die Halbwertszeit von Ammoniumperoxodisulfat bei 80°C entspricht in etwa derjenigen von 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid bei 70°C.

5

Nr.	Vorgelegte Wassermenge [Teile]	Feststoff [%] (gef.)	Siebrückstand [%] (40 µm Sieb)	Partikelgrößenverteilung dw [nm] dw/dn	
14	1800	41,9	0,104	2618	21,65
15	1590	44,7	nicht filtrierbar	dilatant	
16	1459	46,6	nicht filtrierbar	dilatant	

20

D [sec ⁻¹]	Schergefälle Viskosität [mPa·s]	
	Disp. 14	Disp. 15
10,71	—	18200
17,93	2500	17600
29,93	2330	16300
58,44	2070	—
83,21	1900	—
139,1	1630	—
231,7	1500	—

40 Bei Einsatz von Ammoniumperoxodisulfat als Initiator werden ab einem Feststoffgehalt von ca. 45% dilatante Dispersionen erhalten.

Sprührocknung der in den Beispielen 1, 3 und 5 beschriebenen Dispersionen 7, 12 und 14 und Einsatz der isolierten Dispersionspulver in hydraulisch abbindenden Baustoffen:

Zu den Dispersionen 7,12 und 14 wurden jeweils 5%, bezogen auf Feststoff, Polyvinylalkohol (Viskosität einer 45%igen Lösung bei 20°C: 4 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 630) als 25%ige Lösung zugesetzt.

Die Dispersionen wurden mit entionisiertem Wasser auf einen Feststoffgehalt von 40 Gew.-% verdünnt und unter Zugabe einer Antibackmittelkombination aus Talk und Dolomit sprühgetrocknet (Sprührockner der Fa. Niro, Eingangstemperatur: 130°C, Ausgangstemperatur: 65°C, Durchsatz: 1 kg/Stunde). Der Antibackmittelgehalt betrug 12 Gew.-%.

Es wurde die Zementverträglichkeit der Dispersionspulver wie folgt bestimmt:
 500 Teile Portlandzement PZ 35 werden mit 1500 Teilen Normsand und 50 Teilen Dispersionspulver trocken gemischt und anschließend mit 250 Teilen Wasser angerührt. Unmittelbar nach Fertigstellung des dispersionspulverhaltigen Zementmörtels sowie 15 bzw. 30 min nach Fertigstellung, wird nach DIN 18 555 Teil 2 das Ausbreitmaß bestimmt. Die Zementverträglichkeit des Dispersionspulvers ist um so besser, je größer das Ausbreitmaß des Zementmörtels ist, und je langsamer dieses als Funktion der Zeit abfällt.
 Die Ergebnisse sind in der nachfolgenden Tabelle zusammengestellt:

60

65

Pulver aus Dispersion Nr.	Ausbreitmaß [cm]		
	sofort	nach 15 min	nach 30 min
7	20,2	19,3	19,2
12	20,6	19,5	18,9
14 (Vergleich)	15,5	13,6	12,7

Man erkennt die deutlich bessere Zementverträglichkeit der erfundungsgemäß hergestellten Dispersionspulver. 15

Beispiel 6

In einem Glaskolben, der sich in einem Heizbad befindet und mit Rührer, Rückflußkühler, Tropftrichter und Thermometer ausgestattet ist, wird unter Aufheizen auf eine Innentemperatur von 80°C folgende Lösung hergestellt (Polymerisationsflotte): 20

1210 Teile vollentsalztes Wasser,

78 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 18 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 2700), 25

39 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 8 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 1400),

1 Teil Natriumlaurylsulfat,

2,6 Teile Natriumacetat,

0,6 Teile eines Entschäumers auf Basis einer Kombination von pflanzlichen Ölen, modifizierten Fettstoffen, nichtionogenen Emulgatoren und Silikonöl (®Agitan 301, Münzing Chemie). 30

Nach Abkühlen der Polymerisationsflotte auf 65°C werden zunächst

1 Teil 2,2'-Azobis(2-methylpropionamidin)dihydrochlorid in

5 Teilen vollentsalztem Wasser und anschließend

58 Teile Vinylacetat

hinzugefügt. 35

Die Innentemperatur fällt auf ca. 62°C ab. Sobald eine Temperatur von 68°C erreicht ist, werden

1254 Teile Vinylacetat

innerhalb von 3 Stunden zudosiert, wobei die Innentemperatur bei 72 bis 74°C gehalten wird.

Nach Dosierende werden

0,32 Teile Ammoniumperoxodisulfat in

15 Teilen vollentsalztem Wasser

zugegeben wobei die Temperatur kurzzeitig auf ca. 77°C ansteigt. Anschließend werden nacheinander

0,63 Teile Ammoniumperoxodisulfat in

15 Teilen vollentsalztem Wasser und

0,63 Teile Rongalit C in

15 Teilen vollentsalztem Wasser

zugesetzt. 45

Bei einer Innentemperatur von 65°C erfolgt die Zugabe folgender Lösung:

28 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 18 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 2700) 50

6 Teile Polyvinylalkohol (Viskosität einer 4%igen Lösung bei 20°C: 8 mPa·s, Verseifungsgrad: 88 Mol-%, Polymerisationsgrad: 1400)

0,3 Teile Natriumlaurylsulfat in

184 Teilen vollentsalztem Wasser. 55

Von der Dispersion wurden Feststoffgehalt, Viskosität, Siebrückstand und Partikelgrößenverteilung bestimmt:

Nr.	Feststoff [%] (gef.)	Viskosität [mPa·s] (D = 17,93 s ⁻¹ / 83,21 s ⁻¹)	Siebrückstand [%] (40 µm Sieb)	Partikelgrößenver- teilung	
				dw[nm]	dw/dn
17	50,1	11500/8070	0,013	1807	10,22

5 Zum Vergleich wurde eine Dispersion unter Einsatz der gleichen Menge an Ammoniumperoxodisulfat hergestellt. Die Polymerisation wurde bei einer Innentemperatur von 82 bis 84°C durchgeführt (vergleichbare Halbwertszeiten der Initiatoren).

Nr.	Feststoff [%] (gef.)	Viskosität [mPa·s] (D = 17,93 s ⁻¹ / 83,21 s ⁻¹)	Siebrückstand [%] (40 µm Sieb)	Partikelgrößenverteilung	
				dw[nm]	dw/dn
15	18 50,0	13000/8590	0,024	1911	12,34

20 Die Dispersionen 17 und 18 wurden mit entionisiertem Wasser auf einen Feststoffgehalt von 35% verdünnt und sprühgetrocknet. Die isolierten Dispersionspulver wurden mit 0,2% einer hydrophoben Kieselsäure abgemischt.

Die Lagerstabilität der Pulver wurde wie folgt bestimmt:

Das Dispersionspulver wurde in eine Kristallisierschale von 5 cm Durchmesser und 3 cm Höhe gefüllt und für 24 Stunden in einen Trockenschrank bei 50°C gestellt.

25 Während das aus Dispersion 18 isolierte Pulver (Vergleich) deutlich zusammengebacken war, lag das durch Sprühgetrocknung der Dispersion 17 erhaltene erfundungsgemäße Pulver nach der forcierten Lagerung unverändert vor.

Patentansprüche

- 30 1. Verfahren zur Herstellung von Schutzkolloid-stabilisierten homo- oder copolymeren Vinyllester enthaltenden Dispersionen durch Polymerisation von mindestens einem Vinyllester und optional weiteren damit copolymerisierbaren Monomeren mittels wasserlöslicher kationischer Azoinitiatoren.
- 35 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Azoinitiatoren Azoamidinverbindungen eingesetzt werden.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Schutzkolloid Polyvinylalkohol in einer Menge von 4 bis 15 Gew.-%, bezogen auf die Gesamtmenge der Monomeren eingesetzt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Polymerisationsgrad des Polyvinylalkohols 200 bis 3500 beträgt und der Hydrolysegrad 80 bis 98 Mol-% beträgt.
- 40 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Polymerisationstemperatur 40 bis 90°C beträgt.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Monomere ausschließlich Vinyllester oder Vinyllester und ausschließlich weitere Comonomere aus der Gruppe der neutralen und anionischen Monomeren eingesetzt werden.
- 45 7. Schutzkolloid-stabilisierte Polymerdispersion mit einem Feststoffgehalt von mindestens 45 Gew.-%, die durch Polymerisation von ausschließlich Vinylresten oder von Vinylresten mit ausschließlich weiteren Comonomeren aus der Gruppe der neutralen und anionischen Monomeren mittels wasserlöslicher kationischer Azoinitiatoren erhältlich sind.
- 50 8. Polymerdispersion nach Anspruch 7, dadurch gekennzeichnet, daß der Feststoffgehalt der Dispersion zwischen 60 und 70 Gew.-% liegt.
9. Verwendung der nach dem Verfahren gemäß Anspruch 1 hergestellten Polymerdispersion zur Herstellung von redispergierbaren Dispersionspulvern.
10. Verwendung der nach dem Verfahren gemäß Anspruch 1 hergestellten Polymerdispersion als Bindemittel in Baustoffen.

55

60

65