Polaridade e eletronegatividade

Prof. Diego J. Raposo UPE – Poli 2025.2

Polaridade de ligação química

- Átomos possuem tendências próprias de atrair elétrons em ligação química. Isso caracteriza o tipo de ligação que será formada;
- Em moléculas formadas por dois átomos de um mesmo elemento a tendência de cada átomo é igual. Logo a densidade eletrônica (região com maior probabilidade de encontrar o elétron) se encontra exatamente no meio dos átomos.
- Esse tipo de ligação é chamada de covalente apolar, pois não há dipolos elétricos, nem preferência da nuvem eletrônica por um dos átomos (cargas ao redor dos átomo são equivalentes);
- Ela ocorre entre ametais de um mesmo elemento, e entre átomos de hidrogênio (H₂).

Polaridade de ligação química

- Se, por outro lado, um dos átomos tem uma tendência maior de atrair elétrons, a nuvem estará mais deslocalizada em sua direção, e é mais provável encontrar o elétron mais próximo dele;
- Essa ligação é chamada de covalente polar, porque um dipolo elétrico permanente é formado na ligação;
- É comum entre ametais de diferentes tipos entre si ou ligados ao átomo de hidrogênio.

Polaridade de ligação química

 Se a diferença entre a capacidade relativa de atrair elétrons entre os átomos é muito grande, haverá a transferência de elétrons para o com maior capacidade, ocorrendo uma ligação iônica.
Como vimos, ela ocorre sobretudo entre metais e ametais.

Eletronegatividade de Millikan

- A tendência de um átomo atrair elétrons é chamada de eletronegatividade, uma quantidade que ajuda a prever o tipo de ligação que é formada entre dois ou mais átomos. Ela também auxilia o estudo de propriedades físicas e químicas das substâncias.
- É possível estimar a eletronegatividade de diferentes formas. Uma delas, chamada de eletronegatividade de Millikan, combina a energia de ionização e a afinidade eletrônica de um átomo para estimar sua eletronegatividade:

$$\chi_M = \frac{I + A_e}{2}$$

Eletronegatividade de Millikan

Eletronegatividade de Pauling

- Ou seja, átomos que possuem uma energia de ionização elevada (dificilmente perdem os elétrons que possuem) e uma afinidade eletrônica também alta (liberam muita energia quando recebem elétrons, pois diminuem bastante em energia ao incorporá-los) são muito eletronegativos.
- A mais usada medida de eletronegatividade é, no entanto, devida a Linus Pauling. A eletronegatividade de Pauling (χ_P) é calculada a partir de dados termoquímicos (energias necessárias para romper ligações entre átomos). Essa eletronegatividade se comporta como uma tendência periódica: ela aumenta quando Z aumenta em um período e diminui quando Z aumenta em um grupo).

Eletronegatividade de Pauling

Eletronegatividade

Eletronegatividade

- Os átomos mais eletronegativos têm carga nuclear efetiva maior e raios menores, pois isso maximiza a interação dos elétrons de valência (inclusive os que estão na ligação covalente) com o núcleo;
- A eletronegatividade de Pauling varia de 0,7 (Fr) a 4,0 (F), mas memorizar tais valores não é importante. Por outro lado, saber quais os átomos são mais eletronegativos em um grupo é bastante relevante na determinação do tipo de cada ligação e na polaridade da ligação e da molécula. Essa comparação relativa pode ser feita via inspeção da tabela periódica.

 Podemos inferir se a ligação tender a ser covalente (isto é, temos uma molécula) ou iônica (formando substâncias sólidas iônicas);

Método 1: identificando os elementos na tabela, e se são metais (M), ametais (A) e hidrogênio (H).

H + H → Ligação covalente apolar H + A → Ligação covalente polar A + A → Ligação covalente apolar A + A' → Ligação covalente polar M + M → Ligação metálica M + M' → Ligação metálica M + H → Ligação iônica M + A → Ligação iônica

Tal abordagem, porém, tem várias exceções. Ex.: SnCl₄ é covalente embora seja M + A

• **Método 2:** Cálculo de $\Delta \chi = \chi_A - \chi_B$ para o par de átomos AB, onde χ_A é a eletronegatividade do átomo mais eletronegativo e χ_B é a eletronegatividade do átomo menos eletronegativo. Portanto:

- O método 2, no entanto, não funciona tão bem quando metais com diferentes estados de oxidação formam compostos. Em geral, quanto maior o estado de oxidação do metal (sobretudo acima de +4) mais significativo o grau de covalência;
- Quanto maior o estado de oxidação mais difícil retirar o elétron do metal, então a tendência é que haja um compartilhamento (ligação covalente) ao invés da transferência para o ametal (ligação iônica).

Ligação iônica

Ligação covalente

Figura 7.15 Estados de oxidação representativos dos elementos. Observe que o hidrogênio apresenta números de oxidação positivo e negativo, sendo 1 e −1.

	s	ΔS_i		s	ΔS_i		S	ΔS_i		s	ΔS_i
	2.592	2.528	Ti (II)	0.64	1.256	Ni (IV)	3.27	2.839	Mo (IV)	1.40	1.858
i	0.886	1.468	Ti (III)	1.09	1.639	Ni (V)	3.81	3.065	Mo (V)	1.73	2.065
Be (I)	1.56	1.961	Ti (IV)	1.50	1.923	Cu (II)	1.98	2.209	Mo (VI)	2.20	2.329
Be (II)	1.810	2.112	V (II)	0.69	1.304	Zn	2.223	2.341	Ag (I)	1.826	2.122
3 (1)	1.53	1.961	V (III)	1.39	1.851	Ga (I)	0.86	1.456	Cd	1.978	2.208
3 (11)	2.19	2.323 iÔN	ICa v (IV)	1.89	2.158	Ga (III)	2.419	2.442	In (I)	0.71	1.323
3 (111)	2.275	2.368	V (V)	2.51	2.487	Ge (IV)	2.618	2.540	In (III)	2.138	2.296
	2.746	2.602	Cr (II)	1.24	1.748	As	2.816	2.635	Sn (II)	1.49	1.916
-	3.194	2.806	Cr (III)	1.66	2.023	Se	3.014	2.726	Sn (IV)	2.298	2.380
)	3.654	3.001	Cr(IV)	2.29	2.376	Br	3.219	2.817	Sb	2.458	2.461
	4.000	3.140	Cr (V)	2.83	2.641	Rb	0.312	0.866	Te	2.618	2.540
la	0.835	1.435	Cr (VI)	3.37	2.882	Sr	0.721	1.333	1	2.778	2.617
Лg	1.318	1.802	Mn (II)	1.66	2.023	Y (II)	0.40	0.993	Cs	0.220	0.736
AI (I)	0.84	1.439	Mn (III)	2.20	2.329	Y (III)	0.65	1.260	Ba	0.683	1.298
AI (II)	1.63	2.004	Mn (IV)	2.74	2.599	Zr (II)	0.52	1.132	W (II)	0.73	1.341
AI (III)	1.714	2.055	Mn (V)	3.28	2.843	Zr (III)	0.79	1.395	W (III)	0.98	1.910
Si (III)	1.99	2.215	Mn (VI)	3.82	3.069	Zr (IV)	0.90	1.489	W (IV)	1.23	1.741
Si (IV)	2.138	2.296	Mn (VII)	4.36(?)	3.278	Nb (II)	0.77	1.378	W (V)	1.48	1.910
•	2.515	2.490	Fe (II)	1.64	2.011	Nb (III)	1.02	1.586	W (VI)	1.67	2.029
3	2.957	2.790	Fe (III)	2.20	2.329	Nb (IV)	1.25	1.755	Hg	2.195	2.326
CI	3.475	2.927	Co (II)	1.96	2.198	Nb (V)	1.42	1.871	TI (I)	0.99	1.562
(0.445	1.047	Co (III)	2.56	2.512	Mo (II)	0.90	1.489	TI (III)	2.246	2.353
Ca	0.946	1.527	Co (IV)	3.10	2.764	Mo (III)	1.15	1.684	Pb (II)	1.92	2.175
Sc (II)	0.64	1.256	Ni (II)	1.94	2.187				Pb (IV)	2.291	2.376
Sc (III)	1.02	1.586	Ni (III)	2.73	2.594				Bi	2.342	2.403

Momento de dipolo

- A ligação covalente polar pode ser tratada aproximadamente como um dipolo elétrico, em que as cargas q+ e q- estão separadas por uma distância r. Em moléculas diatômicas, como a única ligação é polar, a molécula é dita polar. Moléculas polares interagem fortemente entre si e com íons, levando a várias propriedades relevantes;
- O momento de dipolo permite quantificar a polaridade de uma ligação.

Momento de dipolo

 Se carga e distância seguem tendências opostas, em geral a separação de carga influencia mais o momento de dipolo que a distância:

Tabela 8.3 Comprimentos de ligação, diferenças de eletronegatividade e momentos de dipolo dos halogenetos de hidrogênio.

Composto	Comprimento da ligação (Å)	Diferença de eletronegatividade	Momento de dipolo (D)
HF	0,92	1,9	1,82
HCl	1,27	0,9	1,08
HBr	1,41	0,7	0,82
н	1,61	0,4	0,44

r cresce

q decresce

 μ decresce

Obrigado e boa sorte!