Gewöhnliche Differentialgleichungen Hausaufgaben Blatt 5

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: December 2, 2024)

Problem 1. Sei $A: \mathbb{R} \to \mathbb{R}^{2\times 2}$. Gegeben ist die Differentialgleichung $\dot{x} = A(t)x$ durch

$$\dot{x}_1 = (3t - 1)x_1 - (1 - t)x_2,$$

$$\dot{x}_2 = -(t+2)x_1 + (t-2)x_2.$$

- (a) Zeigen Sie, dass die Wronski-Determinante w durch $w = c \cdot e^{2t^2 3t}, c \in \mathbb{R}$ gegeben ist.
- (b) Eine Lösung der Differentialgleichung ist durch $\varphi_1: \mathbb{R} \to \mathbb{R}^2, \varphi_1(t) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{t^2}$ gegeben. Bestimmen Sie mit Hilfe der Wronski-Determinante w eine weitere von φ_1 linear unabhängige Lösung der Differentialgleichung.

(Hinweis: Setzen Sie dazu mit Begründung bei der Wronski-Determinante aus Teil a) für c einen festen Wert ein und benutzen Sie als Ansatz für die zweite Lösung $\varphi_2(t) = (u(t)v(t))^T$.)

Proof. (a) Das Gleichungsssystem können wir umschreiben als

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 3t - 1 & t - 1 \\ -(t+2) & t - 2 \end{pmatrix}}_{A(t)} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

mit Spur Tr(A)(t) = 4t - 3. Die Wronski-Determinante ist damit bestimmt durch die Gleichung

$$\dot{w} = (4t - 3)w$$

Die DGL hat Lösung

$$w = e^{\int 4t - 3dt} = c \cdot e^{2t^2 - 3t}.$$

(b)

* jun-wei.tan@stud-mail.uni-wuerzburg.de

Problem 2. Gegeben sei die Differentialgleichung $\dot{x} = Ax$ mit

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}.$$

- (a) Bestimmen Sie die reellen Eigenschwingungen und mit diesen die allgemeine Lösung der Differentialgleichung und eine Fundamentalmatrix.
- (b) Bestimmen Sie mit den reellen Eigenschwingungen die Lösung der Differentialgleichung zum Anfangswert

$$x(1) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Problem 3. (a) Berechnen Sie die Fundamentalmatrizen und Lösungen von

i)
$$\dot{x} = Ax$$
, $x(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ mit $A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$ und

ii)
$$\dot{x} = Bx$$
, $x(0) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ mit $B = \begin{pmatrix} 0 & -1 & 1 \\ -3 & -2 & 3 \\ -2 & -2 & 3 \end{pmatrix}$.

iii)
$$\dot{x} = Cx$$
, $x(0) = \begin{pmatrix} 1\\3\\-2 \end{pmatrix}$ mit $C = \begin{pmatrix} 0 & 0 & -1\\0 & -1 & 0\\1 & 0 & 2 \end{pmatrix}$.

(b) Wir erweitern a.iii) zu
$$\dot{x}=Cx+c(t)$$
 mit $c(t)=\begin{pmatrix} -t\,e^{-t}\\ e^{-t}\\ 1+t \end{pmatrix}$. Lösen Sie dieses Anfangswertproblem.

Problem 4. Beurteilen Sie, ob die folgenden 4 Behauptungen wahr oder falsch sind.

Sie müssen bei dieser Aufgabe keine Begründungen angeben.

Für jede richtig beantwortete Frage gibt es einen Punkt.

Für jede falsch beantwortete Frage wird ein Punkt abgezogen.

Für jede nicht beantwortete Frage gibt es keine Punkte.

Die gesamte Aufgabe wird mit mindestens 0 Punkten bewertet (sie können also nicht z.

B. -1 Punkte bekommen). Insgesamt können bis zu 3 Punkte erreicht werden.

	Wahr	Falsch
Die Differentialgleichung $\dot{x}(t) = \frac{\arctan(t)x^3}{1+x^2} + e^{-t^2}\sin(x) + 1$, $x(t_0) = \frac{\arctan(t)x^3}{1+x^2} + \frac{1}{2}\sin(x) + \frac{1}{2}$		
x_0 hat für alle $(t_0, x(t_0)) \in \mathbb{R}^2$ eine eindeutige Lösung.		
Die Funktionen $\varphi_1, \ldots, \varphi_n, \varphi_i(t) = e^{\mu_i t}, i = 1, \ldots, n$, genau dann		
\mathbb{R} -linear unabhängig sind, wenn $\mu_1, \dots, \mu_n \in \mathbb{R}$ paarweise ver-		
schieden sind.		
Es sei $\dot{x} = f(t,x), x(t_0) = x_0, f: Z_{a,b} \to \mathbb{R}$. Ist f in x lipschitz-		
stetig, so ist f auch in \boldsymbol{x} stetig, womit es nach dem Satz von Picard-		
Lindelöf eine eindeutige Lösung gibt.		