26 November 2020

Best Subset Selection Methods

Cp statistic

Remarks

- 1. If a model is underfitted, $\hat{\sigma}^2$, $\hat{\beta}$ and \hat{y} at a new observation of x_0 are not unbiased estimators.
- 2. If a model is overfitted, $\hat{\sigma}^2$, $\hat{\beta}$ and \hat{y} at a new observation of x_0 are still unbiased estimators but with larger variance.
- 3. Normally, we choose a larger value for α_{IN} than α_{OUT} to avoid underfitting a model.
- 4. The Lack of Fit test in Chapter 1 is a test for testing whether the model is underfitted if there are repeated measurements of y for the same x.

Consider the mean square error of $\hat{y}(x_i)$

$$\sum_{i=1}^{n} \frac{\text{MSE}(\hat{y}(\underline{x}_i))}{\sigma^2} = p' + \frac{\text{E}(\hat{\sigma}_{p'}^2) - \sigma^2}{\sigma^2} (n - p')$$

Then, Cp is defined as its estimate, i.e.,

$$Cp = 2p' - n + \frac{ResS.S._{p'}}{\hat{\sigma}_{\text{full model}}^2}$$

Remarks

- 1. For each p', calculate C_p for the model with smallest $ResS.S._{p'}$.
- 2. Find the model with the smallest C_p .
- 3. Find a model with the smallest mean square error on predicted values of y.