

Learning Personalized Itemset Mapping for Cross-Domain Recommendation

Yinan Zhang^{1,2,*}, Yong Liu^{1,3,*}, Peng Han^{4,6}, Chunyan Miao², Lizhen Cui⁵, Baoli Li⁶, Haihong Tang⁶

- 1. Alibaba-NTU Singapore Joint Research Institute, Nanyang Technological University, Singapore
- 2. School of Computer Science and Engineering, Nanyang Technological University, Singapore
- 3. The Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, Singapore
 - 4. King Abdullah University of Science and Technology
 - 5. School of Software & Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University 6. Alibaba Group, China

The 28th International Joint Conference on Artificial Intelligence (IJCAI 2020)

January 7th – 15th, 2020

Agenda

- Background
- CGN Model
- Experimental Results
- Conclusion

Recommendation Systems in Our daily life

Cross-Domain Recommendation Systems

- ✓ Transfer Learning
 Existing methods usually
 transfer knowledge across
 different domains implicitly.
- ➤In practice, users' interests and states may vary over time.
- >Users usually interact with items in multiple domains.

CoNet: Collaborative Cross Networks for Cross-Domain Recommendation, CIKM'18

Problem Formulation

- In this work, we aim to exploit a user's behavior data in one domain to generate her item recommendation for the same time period in another domain.
- We proposed Cycle Generation Networks (CGN).

Long-term preference

User embedding in domain X, u_X

User embedding in domain Y, u_Y

- Loss Functions
 - generation loss
 - cycle consistency loss

- generation loss
 - maximum mean discrepancy (MMD)

$$MMD(\boldsymbol{M}, \boldsymbol{E}) = \frac{1}{m^2} \sum_{i}^{m} \sum_{i'}^{m} k(\boldsymbol{M}_i, \boldsymbol{M}_{i'})$$
$$+ \frac{1}{n^2} \sum_{i}^{m} \sum_{j'}^{n} k(\boldsymbol{E}_j, \boldsymbol{E}_{j'}) - \frac{2}{mn} \sum_{i}^{m} \sum_{j}^{n} k(\boldsymbol{M}_i, \boldsymbol{E}_j), \quad (1)$$

generation loss

$$\ell_{gen}(\boldsymbol{u}_{X}, \boldsymbol{u}_{Y}, \mathcal{X}_{u}, \mathcal{Y}_{u}) = MMD\left(\mathcal{G}(\boldsymbol{u}_{Y}, \boldsymbol{E}_{\mathcal{X}_{u}}), \boldsymbol{E}_{\mathcal{Y}_{u}}\right) + MMD\left(\mathcal{F}(\boldsymbol{u}_{X}, \boldsymbol{E}_{\mathcal{Y}_{u}}), \boldsymbol{E}_{\mathcal{X}_{u}}\right). \tag{2}$$

- cycle consistency loss
 - cycle consistency pattern

$$egin{aligned} \mathcal{G}(oldsymbol{u}_{Y}, oldsymbol{E}_{\mathcal{X}_{u}}) &
ightarrow \mathcal{F}(oldsymbol{u}_{X}, \mathcal{G}(oldsymbol{u}_{Y}, oldsymbol{E}_{\mathcal{X}_{u}})) &pprox oldsymbol{E}_{\mathcal{X}_{u}} \ \mathcal{F}(oldsymbol{u}_{X}, oldsymbol{E}_{\mathcal{Y}_{u}})
ightarrow \mathcal{G}(oldsymbol{u}_{Y}, \mathcal{F}(oldsymbol{u}_{X}, \mathcal{Y}_{u})) &pprox oldsymbol{E}_{\mathcal{Y}_{u}} \end{aligned}$$

cycle consistency loss

$$\ell_{cyc}(\boldsymbol{u}_{X}, \boldsymbol{u}_{Y}, \mathcal{X}_{u}, \mathcal{Y}_{u}) = \left\| \mathcal{F}(\boldsymbol{u}_{X}, \mathcal{G}(\boldsymbol{u}_{Y}, \boldsymbol{E}_{\mathcal{X}_{u}})) - \boldsymbol{E}_{\mathcal{X}_{u}} \right\|_{F}^{2}$$

$$+ \left\| \mathcal{G}(\boldsymbol{u}_{Y}, \mathcal{F}(\boldsymbol{u}_{X}, \boldsymbol{E}_{\mathcal{Y}_{u}})) - \boldsymbol{E}_{\mathcal{Y}_{u}} \right\|_{F}^{2}, \quad (3)$$

Final loss function

$$\ell_{gen}(oldsymbol{u}_X,oldsymbol{u}_Y,\mathcal{X}_u,\mathcal{Y}_u) + \lambda \ell_{cyc}(oldsymbol{u}_X,oldsymbol{u}_Y,\mathcal{X}_u,\mathcal{Y}_u)$$
 .

Recommendation Process

Experimental Settings

Experimental datasets

Datasets	#Initial	#Initial	#Valid	#Valid	#Valid	
	Users	Items	Users	Items	Inter.	
Home	2,512 K	410 K	206	4,793	6,637	
Clothing	3,117 K	1,136 K	200	6,159	6,525	
Books	8,026 K	2,330 K	800	37,533	159,735	
Movies	2,089 K	201 K	800	22,662	114,808	

- Evaluation metrics
 - Hit Ratio (HR)
 - Precision
 - Recall

Experimental Results

Datasets	Metrics	BPRMF	Caser	CMF	CoNet	CGN _{w/o UE}	CGN _{w/o Cycle}	CGN
Source Domain: Clothing; Target Domain: Home	HR@5	0.1582	0.2260_{*}	0.0113*	0.0622*	0.1695	0.1582	0.2316
	HR@10	0.2316	0.2486*	0.0226^*	0.0735*	0.2316	0.2316	0.2700
	HR@20	0.3277	0.2768*	0.0339*	0.1469*	0.2825	0.3107	0.3220
	Precision@5	0.0757	0.0678*	0.0023*	0.0147*	0.1209	0.1232	0.1100
	Precision@10	0.0723	0.0514*	0.0023*	0.0090*	0.1113	0.1215	0.1249
	Precision@20	0.0715	0.0412*	0.0017^*	0.0102*	0.0760	0.0783	0.0900
	Recall@5	0.0312*	0.0301*	0.0021*	0.0070*	0.0655	0.0651	0.0612
	Recall@10	0.0613*	0.0418*	0.0068*	0.0091*	0.1141	0.1203	0.1267
	Recall@20	0.1194	0.0600*	0.0110^*	0.0297*	0.1339	<u>0.1428</u>	0.1606
Source Domain: Movies; Target Domain: Books	HR@5	0.0405	0.0544	0.0038*	0.0139*	0.0126	0.0708	0.0777
	HR@10	0.0683	0.0822	0.0101^*	0.0405*	0.0240	0.0936	0.1113
	HR@20	0.0910	0.1113	0.0177^*	0.0797*	0.0202	0.0961	0.1290
	Precision@5	0.0162	0.0134	0.0008*	0.0038*	0.0028	0.0245	0.0238
	Precision@10	0.0182	0.0124*	0.0010^*	0.0051*	0.0028	0.0214	0.0230
	Precision@20	0.0197	0.0104	0.0010^*	0.0051*	0.0013	0.0130	0.0181
	Recall@5	0.0017	0.0042	0.0003^*	0.0009*	0.0005	0.0050	0.0064
	Recall@10	0.0045*	0.0081	0.0007*	0.0037	0.0013	0.0092	0.0140
	Recall@20	0.0088	0.0120*	0.0018*	0.0079*	0.0025	0.0071	0.0165

- > Overall, these results indicate that CGN usually achieves superior performance in terms of most evaluation metrics, comparing with all baselines.
- Both users' personalized preferences and the cycle consistency loss can help improve recommendation.

Experimental Results

Figure 5: A case study of cross-domain recommendation showing the effectiveness of the proposed CGN model.

- > Both "Rambo: First Blood" and "The Manhattan Hunt Club" talk about crime.
- \triangleright Both "Prince of Darkness" and "Ice Hunt" are about the doomsday theme.

Experimental Results

Figure 4: The recommendation accuracy of CGN with respect to different settings of d, λ , and B, measured by Precision@10.

- \succ The best performance is achieved when dimension d is set to 10.
- ➤ The recommendation accuracy can be improved by incorporating cycle consistency loss in training the generator networks.
- ➤ Better results can be usually achieved by using a smaller batch size (e.g., B=64).

Conclusion

- ☐ We propose a novel cross-domain recommendation model(CGN), which learns a user's personalized mapping between her interaction itemsets in different domains at the same temporal period.
- ☐ We perform extensive experiments on four real-world datasets to demonstrate the effectiveness of CGN. CGN usually outperforms baseline methods in terms of all metrics.

