D0 Jets in AuAu 200 GeV

Diptanil Roy

Rutgers University

roydiptanil@gmail.com

May 18, 2023

Hard Probes

Current Status: Unfolded Distributions for pT,D0 > 5 GeV/c

More details here

Using Heavy Ion Overlay Method

Problem with Area Based Background Subtraction

- $p_{T,D^0} > 1 \text{ GeV/c}$
- All jet-like objects with $p_{T,Jet}^{Gen} > 1 \text{ GeV/c}$

$$z = \frac{\vec{p}_{T,D0}.\vec{p}_{T,Jet}}{\left|p_{T,Jet}\right|^2}$$

- Unphysical regions of z < 0 and z > 1
- z depends on uncorrected jet pT
- Unfolding difficult with disjoint regions
- Since we are dealing with low pT jets, can't ignore the low end completely.
- Smearing: Central ~ 6-7 GeV, Peripheral ~ 2-3
 GeV

- Background density calculated as: $\rho = \text{Median}\left(\frac{p_{T,Jet}}{A_{Jet}}\right)$.
- Jets considered for above calculation are k_{\perp} jets with the two hardest jets dropped in the event.

Step 1: Add ghost particles to the event and cluster jets

— Hard scatter
— Pileup
— Ghosts

Leading jet before correction

Step 2: Set ghost particles pT to negative value corresponding to ρ

Leading jet before correction

Step 3: Match particles to ghosts and correct pT of constituents

Leading jet after correction

More details here (Presentation by P. Berta)

Constituent Background Subtraction

• D^0 candidates p_T well determined from Kaon Pion with HFT hits

 $z = \frac{\vec{p}_{T,D0} \cdot \vec{p}_{T,Jet}}{|p_{T,Jet}|^2}$

- Constituent subtraction done only on the non-D⁰ portion of the jet
- Median background density estimated with D⁰ candidate instead of KPi

Closure with Constituent Background Subtraction

HI Overlay, $Au + Au \sqrt{s_{NN}} = 200 \text{ GeV}$

- PYTHIA 8 Detroit Tune
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$
- $5 < p_{T,let}^{Gen} < 20 \text{ GeV/c}$
- $5 < p_{T,let}^{Reco}$ (CS) < 50 GeV/c
- $\left|\eta_{\text{Jet}}^{\text{Gen,Reco}}\right| < 0.6$
- Misses: Everything outside the acceptance in p_T and η

Good closure with Constituent Subtraction

5/18/23 Hard Probes

Unfolding with Constituent Background Subtraction

- $5 < p_{T,Jet}^{Uncorrected}$ (CS) < 50 GeV/c $\rightarrow 5 < p_{T,Jet}^{Corrected} < 20$ GeV/c
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

STAR, Au + Au $\sqrt{s_{\mathrm{NN}}}$ = 200 GeV

Similar Spectra Compared to Area Based Method

Unfolding with Constituent Background Subtraction

- $5 < p_{T,Jet}^{Uncorrected}$ (CS) < 50 GeV/c $\rightarrow 5 < p_{T,Jet}^{Corrected} < 20$ GeV/c
- $5 < p_{T,D^0} < 10 \text{ GeV/}c$

Similar Spectra Compared to Area Based Method

Next Steps

- Using CS Background Subtraction to go down to pT,D0 > 1 GeV/c
- Average background subtracted from D0 might give us a lower bound of D0 pT we can access.
- Varying Fragmentation Function for the low pT range

Background Density From D0 Candidate Tagged Events

