Higher Category Theory

Assignment 10

Exercise 1

Exercise 2

Proof. (1) We begin by considering a commutative diagram

$$\Lambda_k^n \longrightarrow p^{-1}(a) = X_a \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow p,$$

$$\Delta^n \longrightarrow \Delta^0 \longrightarrow a \longrightarrow A$$

where $0 \le k < n$ and the square on the right is a pullback. From the LLP of $\Lambda_k^n \to \Delta^n$ against p we get a lift $\Delta^n \to X$ and then, using the universal property of the pullback with respect to the lift and $\Delta^n \to \Delta^0$, we get a lift of $\Lambda_k^n \to \Delta^n$ against $X_a \to \Delta^0$.

This implies that X_a is an ∞ -category, hence we only need to prove that its morphisms are invertible, which will make it a ∞ -groupoid and therefore a Kan complex.

To prove this, for any morphism $f: x \to y$ in X_a we consider the diagram

$$\Lambda_0^2 \xrightarrow{(\mathrm{id}_x, f)} X_a$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^2$$

inducing the pictured 2-simplex t by our previous observations. The morphism f is a right inverse of $d^2(t) = g \colon y \to x$ and from

$$\Lambda_0^2 \xrightarrow{(\mathrm{id}_y,g)} X_a$$
 \downarrow
 Δ^2

we also get a left inverse $d^2(u) = h$ of g. It follows that g is invertible and the same goes for f.

(2) Let's consider for any morphism $f: a_0 \to a_1$ in A the commutative diagram

$$\Lambda_0^1 = \Delta^0 \xrightarrow{x_0} X$$

$$\downarrow \qquad \qquad \downarrow p,$$

$$\Delta^1 \xrightarrow{f} A$$

which from the LLP of $\Lambda_0^1 \to \Delta^1$ against p grants us the desired lift $\phi \colon x_0 \to x_1$ of f along p.

To prove that the equivalence class of x_1 in $\pi_0(X_{a_1})$ does not depend on the choice of the lift we consider for any other such lift $\psi \colon x_0 \to y$ the commutative diagram

$$\Lambda_0^2 \xrightarrow{(\psi,\phi)} X
\downarrow \qquad t \qquad \downarrow p,
\Delta^2 \xrightarrow[s_0(f)]{} A$$

granting us a 2-simplex t which induces a morphism $d^0(t) = \xi \colon x_1 \to y$. The commutative diagram

then shows that this morphism also lies in X_a through the universal property of the pullback and therefore $[x_1] = [y]$ in $\pi_0(X_a)$.

We have just proven that distinct lifts through p of the same morphism have the same codomain up to equivalence as long as they have the same domain.

(3) Let $t \colon \Delta^2 \to A$ be the map corresponding to our commutative trangle. We proceed by drawing the commutative diagram

$$\Lambda_1^2 \xrightarrow{(\phi',\phi)} X
\downarrow \qquad \qquad \downarrow p,
\Delta^2 \xrightarrow{t} A$$

which by the LLP of $\Lambda_0^2 \to \Delta^2$ against p grants us a lift $u \colon \Delta^2 \to X$ (and therefore a commutative triangle) with $d^0(u) = \phi'$, $d^1(u) = \psi \colon x_0 \to x_2$ and $d^2(u) = \phi$ such that $p(\psi) = g$.

(4) The functor, which we will denote by F, has already been well defined on objects, hence we only need to specify the action on morphisms. We know that for any

2

map $f: a_0 \to a_1$ in A we have a lift $\phi: x_0 \to x_1$ such that $p(\phi) = f$, thus we define $F([f]): \pi_0(X_{a_0}) \to \pi_0(X_{a_1})$ as $F([f])([x_0]) = [x_1]$, where $[x_1]$ lies in $\pi_0(X_{a_1})$ since $p(d^0(\phi)) = d^0(p(\phi)) = d^0(f) = a_1$. We need to show that this map is well defined, for which we will start with proving that, after fixing a representative f of [f], if we have a morphism $\psi: x_0 \to x'_0$ in X_{a_0} then we also have a morphism $x_1 \to x'_1$ in X_{a_1} between the objects specified by the liftings ϕ , ϕ' of f with domains x_0, x'_0 .

We can construct a map $(\phi' \cdot \psi, \phi) \colon \Lambda_0^2 \to X$ which, composed with p, gives us $(p(\phi' \cdot \psi), f) \colon \Lambda_0^2 \to A$. We want to extend this to a 2-simplex $t \colon \Delta^2 \to A$ where $d^0(t) = \mathrm{id}_a$; we will then lift it through p thanks to the RLP with respect to $\Lambda_0^2 \to \Delta^2$, getting a 2-simplex t' in X such that $d^0(t')$ is by construction the desired morphism $x_1 \to x_1'$ in X_{a_1} .

$$\Lambda_0^2 \xrightarrow{(\phi' \cdot \psi, \phi)} X$$

$$\downarrow \qquad \qquad \downarrow^p$$

$$\Delta^2 \xrightarrow{t} A$$

Notice that we have 2-simplices v, v' showing that $p(\phi' \cdot \psi) \sim p(\phi') \cdot p(\psi) = f \cdot \mathrm{id}_a$, $f = f \cdot \mathrm{id}_a$, thus we may construct a horn $(s_0(f), v', v) \colon \Lambda_1^3 \to A$ which can be extended to a 3-simplex α such that $t = d^1(\alpha)$ is the desired 2-simplex in A.

Having proven that $F([f])([x_0])$ does not depend on the representative of $[x_0]$, we show that it also does not depend on the representative of [f].

Suppose that $g \in [f]$, i.e. we have a 2-simplex t in A showing that $\mathrm{id}_a \cdot f \sim g$, meaning that $d^0(t) = \mathrm{id}_a$, $d^1(t) = g$, $d^2(t) = f$. After choosing lifts $\phi \colon x_0 \to x_1$, $\psi \colon x_0 \to x_1'$ of f, g through p, we can construct the commutative square

$$\Lambda_0^2 \xrightarrow{(\psi,\phi)} X
\downarrow \qquad \qquad \downarrow^p,
\Delta^2 \xrightarrow{t} A$$

where the lift u is such that $d^0(u) = h$ provides the desired morphism $x_1 \to x_1'$ in X_{a_1} . This shows that F([f]) is well defined. We still have to prove that this association is functorial.

If $[f] = [\mathrm{id}_a]$, then for any $[x] \in \pi_0(X_a)$ we may pick id_x as a lift of id_a through p, which then shows that $F([\mathrm{id}_a])([x]) = [x]$.

On the other hand, consider two composable morphisms [f], [g], where dom(f) = a. Given a 2-simplex t in A such that $d^0(t) = g$, $d^1(t) = g \cdot f$, $d^2(t) = f$ and fixed an element $[x_0] \in \pi_0(X_a)$, after fixing lifts $\phi \colon x_0 \to x_1$, $\psi \colon x_1 \to x_2$ of f, g by (3) we get a 2-simplex u in X such that $d^0(u) = \psi$, $d^1(u) = \xi \colon x_0 \to x_2$, $d^2(u) = \phi$ and ξ is a lift of $g \cdot f$ through p with $\phi \cdot \psi \sim \xi$. It follows that $F([g] \cdot [f]) = F([g]) \cdot F([f])$.