Textvectorizer

Dipl. Inform.(FH) Jony Sugianto, M. Comp. Sc. WA:0812-13086659 Email:jonysugianto@gmail.com

Machine Learning in NLP Bag of Words Example

Document 1

The quick brown fox jumped over the lazy dog's back.

Document 2

Now is the time for all good men to come to the aid of their party. Document 1

aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

Stopword List

for	
is	
of	
the	
to	

Example TF-IDF Model Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a *binary vector* $\in \{0,1\}^{|V|}$!

Example TF-IDF Model Term-document count matrices

 Consider the number of occurrences of a term in a document*:

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Each document is represented by a *count vector* $\in \mathbb{N}^{|V|}$!

Example TF-IDF Model idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log_{10} (N/df_t)$$

There is one idf value for each term t in a collection.

Example TF-IDF Model Binary → count → weight matrix

	Antony and Cleopatra	Jul ius Cae sar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a *real-valued* vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Why distance is a bad idea

The Euclidean distance between q and d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d₂ are very similar.

Cosine similarity illustrated

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The vector space model is unable to discriminate between different meanings of the same word.

$$\sin_{\text{true}}(d, q) < \cos(\angle(\vec{d}, \vec{q}))$$

Problems with Lexical Semantics

- Synonymy: Different terms may have identical or similar meanings (weaker: words indicating the same topic).
- No associations between words are made in the vector space representation.

$$\sin_{\text{true}}(d, q) > \cos(\angle(\vec{d}, \vec{q}))$$

Goals of LSI

 Similar terms map to similar location in low dimensional space

Noise reduction by dimension reduction

Goals of LSI

 Similar terms map to similar location in low dimensional space

Noise reduction by dimension reduction

Latent Semantic Analysis

Latent semantic space: illustrating example

Latent Semantic Indexing LSI

	Doc1	Doc2	Doc3
LSI Dim1	0.1	0.2	2.2
LSI Dim2	2.5	0.2	1.9

How to describe the word meaning?

- Bag of words, TF-IDF Model, LSI model are about document description
- How to represent word?

"A word is known by the company it keeps"

Word Representations

Traditional Method - Bag of Words Model

- Uses one hot encoding
- Each word in the vocabulary is represented by one bit position in a HUGE vector.
- For example, if we have a vocabulary of 10000 words, and "Hello" is the 4th word in the dictionary, it would be represented by: 0 0 0 1 0 0 0 0 0 0
- Context information is not utilized

Word Embeddings

- Stores each word in as a point in space, where it is represented by a vector of fixed number of dimensions (generally 300)
- Unsupervised, built just by reading huge corpus
- For example, "Hello" might be represented as: [0.4, -0.11, 0.55, 0.3...0.1, 0.02]
- Dimensions are basically projections along different axes, more of a mathematical concept.

Examples

vector[Queen] = vector[King] - vector[Man]
+ vector[Woman]

Neural Network for Building Word vector

