FYS-STK Week 37

Harald Tverdal

August 2024

1 Week 37

1.1 Exercise 1

1.1.1 1

$$y_i = X_{i,*}\beta + \epsilon_i \tag{1}$$

Taking the expectation value of y_i gives:

$$\mathbb{E}[y_i] = \mathbb{E}[X_{i,*}\beta + \epsilon_i] = \mathbb{E}[X_{i,*}\beta] + \mathbb{E}[\epsilon_i]$$
 (2)

We know $\mathbb{E}[\epsilon_i] = 0$, which gives:

$$\mathbb{E}[y_i] = \mathbb{E}[X_{i,*}\beta] = X_{i,*}\beta \tag{3}$$

This is because $X_{i,*}\beta$'s expectation value is equal to itself, as it is independent of the probability distribution of ϵ .

1.1.2 2

$$Var(y_i) = \mathbb{E}\left[[y_i - \mathbb{E}[y_i]]^2 \right]$$
(4)

We know

$$\mathbb{E}\left[\left[y_i - \mathbb{E}[y_i]\right]^2\right] = \mathbb{E}[y_i^2] - \mathbb{E}[y_i]^2 \tag{5}$$

Using $\mathbb{E}[y_i] = X_{i,*}\beta$ and $y_i = X_{i,*}\beta + \epsilon_i$ for the expression, we get:

$$\mathbb{E}[(X_{i,*}\beta + \epsilon_i)(X_{i,*}\beta + \epsilon_i)] - (X_{i,*}\beta)^2$$

$$= \mathbb{E}[(X_{i,*}\beta)^2 + (2\epsilon_i X_{i,*}\beta) + \epsilon_i^2] - (X_{i,*}\beta)^2$$

$$= \mathbb{E}[(X_{i,*}\beta)^2] + \mathbb{E}[(2\epsilon_i X_{i,*}\beta] + \mathbb{E}[\epsilon_i]^2 - (X_{i,*}\beta)^2$$
(6)

Where $\mathbb{E}[(X_{i,*}\beta)^2] - (X_{i,*}\beta)^2 = 0$ and $\mathbb{E}[\epsilon_i] = 0$, which means we end up with:

$$\mathbb{E}[\epsilon_i]^2 = \sigma^2 \tag{7}$$

1.1.3 3

Using the expression $\hat{\beta} = (X^T X)^{-1} X^T y$, we get:

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}[(X^T X)^{-1} X^T y] = (X^T X)^{-1} X^T \mathbb{E}[y]$$

$$(X^T X)^{-1} X^T X \beta = \beta$$
(8)

1.1.4 4

$$Var(\hat{\beta}) = \mathbb{E}\left[(\hat{\beta} - \mathbb{E}[\hat{\beta}])(\hat{\beta} - \mathbb{E}[\hat{\beta}])^T \right]$$
(9)

We know $\hat{\beta} = (X^T X)^{-1} X^T y$ and $E[\hat{\beta}] = \beta$:

$$Var(\hat{\beta}) = \mathbb{E}\Big[((X^T X)^{-1} X^T y - \beta) ((X^T X)^{-1} X^T y - \beta)^T \Big]$$

$$= \mathbb{E}\Big[((X^T X)^{-1} X^T y - \beta) (y^T X (X^T X)^{-1} - \beta^T) \Big]$$

$$= \mathbb{E}\Big[(X^T X)^{-1} X^T y y^T X (X^T X)^{-1} - \beta \beta^T - \beta \beta^T + \beta \beta^T \Big]$$

$$= [(X^T X)^{-1} X^T \mathbb{E}\Big[y y^T \Big] X (X^T X)^{-1} - \beta \beta^T$$
(10)

From previously we know $E[y^2] = E[y]^2 + \sigma^2$:

$$(X^{T}X)^{-1}X^{T}\mathbb{E}\Big[yy^{T}\Big]X(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= (X^{T}X)^{-1}X^{T}(X\beta\beta^{T}X^{T} + \sigma^{2})X(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= (X^{T}X)^{-1}X^{T}(X\beta\beta^{T}X^{T} + \sigma^{2})X(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= [(X^{T}X)^{-1}X^{T}X\beta\beta^{T}X^{T} + (X^{T}X)^{-1}X^{T}\sigma^{2}]X(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= [\beta\beta^{T}X^{T} + (X^{T}X)^{-1}X^{T}\sigma^{2}]X(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= \beta\beta^{T}X^{T}X(X^{T}X)^{-1} + (X^{T}X)^{-1}X^{T}X\sigma^{2}(X^{T}X)^{-1} - \beta\beta^{T}$$

$$= [\beta\beta^{T} + \sigma^{2}((X^{T}X)^{-1}) - \beta\beta^{T}$$

$$= \sigma^{2}((X^{T}X)^{-1})$$
(11)

1.2 Exercise 2

1.2.1

$$\mathbb{E}[\hat{\beta}_{Ridge}] = \mathbb{E}[(X^T X + \lambda I)^{-1} X^T y]$$

$$= (X^T X + \lambda I)^{-1} X^T \mathbb{E}[y]$$

$$= (X^T X + \lambda I)^{-1} X^T X \beta$$
(12)

1.2.2 2

$$Var[\hat{\beta}_{Ridge}] = \mathbb{E}[\hat{\beta}_{Ridge}^2] - \mathbb{E}[\hat{\beta}_{Ridge}]^2$$
(13)

We already know $\mathbb{E}[\hat{\beta}_{Ridge}] = (X^T X + \lambda I)^{-1} X^T X \beta$.

To make calculations easier, $Q = (X^T X + \lambda I)^{-1}$.

$$\mathbb{E}[\hat{\beta}_{Ridge}]^2 = (Q^{-1}X^T X \beta)(Q^{-1}X^T X \beta)^T = Q^{-1}X^T X \beta \beta^T X^T X (Q^{-1})^T \quad (14)$$

$$\mathbb{E}[\hat{\beta}_{Ridge}^{2}] = \mathbb{E}[(Q^{-1}X^{T}y)(Q^{-1}X^{T}y)^{T}]$$

$$= \mathbb{E}[Q^{-1}X^{T}yy^{T}X(Q^{-1})^{T}]$$

$$= Q^{-1}X^{T}\mathbb{E}[yy^{T}]X(Q^{-1})^{T}$$
(15)

We know $\mathbb{E}[yy^T] = X\beta\beta^TX^T + \sigma^2$

$$Q^{-1}X^{T}\mathbb{E}[yy^{T}]XQ^{-1} = Q^{-1}X^{T}(X\beta\beta^{T}X^{T} + \sigma^{2})X(Q^{-1})^{T}$$

$$= (Q^{-1}X^{T}X\beta\beta^{T}X^{T} + Q^{-1}X^{T}\sigma^{2})X(Q^{-1})^{T}$$

$$= Q^{-1}X^{T}X\beta\beta^{T}X^{T}X(Q^{-1})^{T} + Q^{-1}X^{T}\sigma^{2}X(Q^{-1})^{T}$$
(16)

Which means:

$$Var[\hat{\beta}_{Ridge}]$$

$$= Q^{-1}X^{T}X\beta\beta^{T}X^{T}X(Q^{-1})^{T} + Q^{-1}X^{T}\sigma^{2}X(Q^{-1})^{T} - \mathbb{E}[\hat{\beta}_{Ridge}]^{2}$$

$$= Q^{-1}X^{T}X\beta\beta^{T}X^{T}X(Q^{-1})^{T} + Q^{-1}X^{T}\sigma^{2}X(Q^{-1})^{T}$$

$$- Q^{-1}X^{T}X\beta\beta^{T}X^{T}X(Q^{-1})^{T}$$

$$= Q^{-1}X^{T}\sigma^{2}X(Q^{-1})^{T}$$

$$= \sigma^{2}(X^{T}X + \lambda I)^{-1}X^{T}X((X^{T}X + \lambda I)^{-1})^{T}$$
(17)