Code simulates a network topology using the **NS-3** simulator, setting up a network with **routers**, **workstations** (end devices), and **UDP Echo applications** that generate traffic between these workstations. The simulation is configured to measure **flow statistics** such as **throughput**, **packet loss**, **delay**, and **jitter**. It also generates a **NetAnim** visualization of the network topology for analysis.

1. Network Topology Overview

The network in this simulation consists of:

- 4 Routers (R1, R2, R3, R4).
- 7 Workstations (A, B, C, D, E, F, G).
- Routers (R1, R2, R3, R4) are connected in a loop:

```
R1 <-> R2 <-> R3 <-> R4 <-> R1.
```

- Workstations (A-G) are connected to routers:
 - A. B to R1.
 - o C, D to R2.
 - o E, F to R3.
 - o G to R4.

The workstations send traffic to each other, and the routers route the traffic.

2. Logging Setup

The simulation logs information about the **UDP Echo client** and **UDP Echo server** applications.

These lines enable logging at the **INFO** level, meaning details about the application operations (such as packet transmissions and receptions) will be printed.

3. CreateLink Function (Helper Function)

The CreateLink function sets up the **point-to-point links** between the nodes (routers and workstations):

Parameters:

- **node1**, **node2**: The two nodes (routers or workstations) to connect.
- capacity: Data rate of the link (e.g., "3Mbps").
- **delay:** Propagation delay of the link (e.g., "1ms").
- baseAddr: Base IP address for the link.
- **dropRate:** Optional rate for packet drops (default 0.0 means no packet drops).

Function Steps:

- o **DataRate** specifies the link's bandwidth (e.g., "3Mbps").
- **Delay** specifies the propagation delay for the link (e.g., "1ms").
- **Point-to-Point Helper Setup:** This part sets the link's data rate and delay:

Error Model for Packet Drops: If a **dropRate** is specified (greater than 0), an error model is created to simulate packet loss:

Assign IP Addresses: The Ipv4AddressHelper assigns IP addresses to the devices:

Output:

This function returns the interface container containing the IP addresses assigned to the link.

4. Main Simulation Logic

Initial Parameters:

• Packet Size: 256 bytes (for UDP packets).

• Simulation Time: 60 seconds.

• Propagation Delay: 1ms.

• Packet Drop Rate: 0.1%.

Traffic Matrix:

A **traffic matrix** is created to define the average number of packets exchanged between workstations. The matrix is 7x7, where trafficMatrix[i][j] represents the number of packets sent from workstation i to workstation j.

Node Creation:

- Routers: 4 routers (R1, R2, R3, R4).
- Workstations: 7 workstations (A, B, C, D, E, F, G).

Install Internet Stack:

The **internet stack** is installed on both routers and workstations to enable IP-based communication.

5. Link Creation Between Nodes

Routers:

 Point-to-point links are established between the routers, with specified data rates, delays, and drop rates:

Workstations:

• Each workstation is connected to a router through point-to-point links:

6. Application Setup: UDP Echo Client-Server

The **UDP Echo Client** sends traffic from one workstation to another. The **UDP Echo Server** listens for this traffic.

- Client Setup: For each workstation pair (i, j) in the traffic matrix, the client sends trafficMatrix[i][j] packets to the server at workstation j:
- **Server Setup:** The server listens for incoming traffic:

7. Flow Monitoring and Statistics

 The Flow Monitor is used to track packet flows, measure performance, and gather statistics like throughput, delay, and jitter:

After the simulation, flow statistics are printed:

Statistics:

- Tx Packets: Transmitted packets.
- Rx Packets: Received packets.
- Lost Packets: Difference between transmitted and received packets.
- Throughput: Calculated as (Received Bytes * 8) / (Time taken) in kbps.
- Average Delay: Average delay for packets in seconds.
- Average Jitter: Average variation in delay between received packets.

8. Simulation Execution and Cleanup

The simulation is run for 60 seconds and then the flow statistics are displayed. The simulation is stopped using:

Conclusion:

The code sets up a **custom network topology** with routers and workstations, simulates traffic between workstations using UDP Echo applications, and collects network performance statistics. The network's behavior is visualized with **NetAnim**, and the **Flow Monitor** is used to measure throughput, delay, jitter, and packet loss during the simulation. The **traffic matrix** defines how much traffic is generated between each pair of workstations.