In this note we explore different attempts at expressing the $B_2 \wedge B_2$ component of $R_8^{(2)}$ with cluster polylogarithms.

First let us define "good" \mathcal{X} -coordinates: an \mathcal{X} -coordinate R is good if R and 1+R can be expressed as ratios of \mathcal{A} -coordinates of the form

$$\langle i \ i+1 \ jk \rangle, \quad \langle i(i-1 \ i+1)(j \ j+1)(k \ k+1) \rangle, \langle i \ i+1 \ \bar{j} \cap \bar{k} \rangle, \quad \langle i(i-2 \ i-1)(i+1 \ i+2)(j \ j+1) \rangle.$$
 (1)

An algebra is good if it contains only good \mathcal{X} -coordinates.

Fitting with A_3 's

There are 1600 good A_3 's in Gr(4,8), with only 513 actual degrees of freedom in $B_2 \wedge B_2$. An ansatz of these functions can be fit to $R_8^{(2)}$. A zero-thought choice of free parameters leaves us with an expression involving 223 A_3 's.

Fitting with D_5 's

There are NO good D_5 's in Gr(4,8) (this is a deeply surprising fact to me). Furthermore, NO D_5 contains enough good A_3 's to allow us to tune the free parameters in f_{D_5} in order to have only good A_3 's appear in f_{D_5} . In other words, any representation of $R_8^{(2)}$ in terms of f_{D_5} will necessarily involve "bad" ratios inside the f_{D_5} 's which must cancel in the full sum. This is an aesthetically upsetting fact to me!

Fitting with E_6 's

Are there E_6 's in Gr(4,8) which have $\{v,z\}$ squares? What if I try the 42-term $\{v,z\}$ expression for $R_7^{(2)} \sim f_{E_6}$ and see if that evaluates to "good" things on (at least some of) the E_6 's I've found in Gr(4,8).