Introduction to Machine Learning

Introduction

SHENG-JYH WANG

NATIONAL YANG MING CHIAO TUNG UNIVERSITY, TAIWAN SPRING, 2024

Conventional Techniques

Apollo 11 Mission in 1969

- Knowledge based
- Model based

https://www.history.com/news/apollo-11-moon-landing-timeline

Problems that are Difficult to Model

Face Detection

Viola, Paul, and Michael J. Jones. "Robust real-time face detection." International journal of computer vision 57 (2004): 137-154.

Recent History of Human Technologies

History of Al

https://www.calls9.com/blogs/the-history-of-ai-a-timeline-from-1940-to-2023

Scope of Machine Learning

What is machine learning?

To design and develop algorithms that allow computers to evolve behaviors based on **empirical data**.

- ✓ Try to explore certain patterns or regularities.
- ✓ Learn models from the given data.
- ✓ Based on the given data, the learner produces a useful output in new cases.

Ref: https://aneskey.com/20-epilogue-artificial-intelligence-methods/

Data-Driven Al

Black-Box Statistical Model

(e.g., neural networks, support vector machine)

INTRODUCTION (2024)

Data-Driven Al

Integration of Domain Knowledge and Statistical Learning

(e.g., Bayesian framework, probabilistic graphical models)

NYCU EE

Ref: https://www.youtube.com/watch?v=WKAcfXUSaeA

Data-Driven Al

Deep Learning Models

Data-Driven Al

Combination of Deep Learning Modules and Attention Mechanism

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Data-Driven Al

Foundation Models

BERT

Encoder

Bidirectional Encoder Representations from Transformers

GPT

Decoder

Generative Pre-trained Transformers

https://heidloff.net/article/foundation-models-transformers-bert-and-gpt/

History of Machine Learning

History of Machine Learning

Schneider, Johannes. "Foundation models in brief: A historical, socio-technical focus." arXiv preprint arXiv:2212.08967 (2022).

Performance vs Data Amount

Major issues in machine learning?

In training,

- ✓ We need efficient algorithms to build the models, to process the data, and to store the data.
- ✓ For certain problems, we need to collect a huge amount of data.

After training

✓ We need efficient algorithms for inference or generalization.

Trend of Required Computations

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Trend of Model Size

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Major Topics of Machine Learning (1/5)

- Supervised Learning
- Unsupervised Learning
 - ✓ Self-supervised Learning
- Semi-supervised Learning
- Reinforcement Learning

Major Topics of Machine Learning (2/5)

Supervised learning: to learn a model to classify data or predict outcomes.

Major Topics of Machine Learning (3/5)

• Unsupervised learning: to analyze and cluster unlabeled datasets

Major Topics of Machine Learning (4/5)

• **Semi-supervised learning**: use a small amount of labeled data and a large amount of unlabeled data to label all the unlabeled data.

Major Topics of Machine Learning (5/5)

Reinforcement Learning: learn how to take actions in an environment in order to maximize the cumulative reward.

Supervised Learning (1/7)

- **Training data**: examples of the input vectors along with their corresponding target vectors.
- Types of supervised learning
 - ✓ *Classification*: assign each input vector to one of a finite number of discrete categories.
 - ✓ Regression: assign each input vector to one or more continuous variables.
- Methods: Linear Regression, Linear Classification, Neural Networks, Support Vector Machine, Ensemble Learning,

Supervised Learning (2/7)

Supervised Learning (3/7)

Regression

Supervised Learning (4/7)

Classification

Supervised Learning (5/7)

Model Training: use a set of N digits $\{x_1, x_2, ..., x_N\}$, sometimes together with their target vectors $\{t_1, t_2, ..., t_N\}$, to learn a proper model for the problem.

NYCU EE

Supervised Learning (6/7)

Feature Extraction: The original input variables are usually transformed into some new space of variables, where the problem can be handled in an easier or more efficient way.

Supervised Learning (7/7)

Generalization: the ability to categorize correctly new examples that differ from those used for training.

Preparation of Training Data

Feature Extraction (1/4)

Feature Extraction (2/4)

Regression

NYCU EE

Feature Extraction (3/4)

Classification

Feature Extraction (4/4)

Hand-crafted Features

Learned Features

Training Data Distribution vs Actual Distribution

Example: Regression

Actual Distribution

Less Proper Training Samples

More proper Training Samples

Training Data Distribution vs Actual Distribution

Example: Binary Classification

Less Proper Training Samples

More proper Training Samples

Generalization (1/8)

Generalization (2/8)

Example: Polynomial Curve Fitting

Training data:

Goal: to exploit this training set in order to make predictions of the value \hat{t} of the target variable for some new value \hat{x} of the input variable.

Generalization (3/8)

Fit the data using a polynomial function of the form:

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j x^j$$

Linear Model

Here we minimize the error function

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Generalization (4/8)

Model Selection (Model Comparison):

Over-fitting!

Generalization (5/8)

Root-Mean-Square (RMS) Error:

$$E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$$

INTRODUCTION (2024)

Table of the coefficient w*

	M = 0	M = 1	M=6	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
$w_3^{\tilde{\star}}$			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43

Generalization (6/8)

- ✓ The over-fitting problem becomes less severe as the size of the data set increases.
- ✓ In general, the number of data points should be no less than some multiple (say 5 or 10) of the number of adaptive parameters in the model.
- ✓ Regularization is often used to control the over-fitting phenomenon.
- ✓ In a Bayesian model, the effective number of parameters adapts automatically to the size of the data set.

Generalization (7/8)

Regularization

Add a penalty term to the error function to discourage the coefficients from reaching large values.

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
where $\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w} = \omega_0^2 + \omega_1^2 + \dots + \omega_M^2$

- ✓ The coefficient ω_0 is usually omitted.
- ✓ This kind of techniques is called *shrinkage* methods in the statistics literature. The particular case of a quadratic regularizer is called *ridge regression*.
- ✓ In neural networks, this approach is known as weight decay.

Generalization (8/8)

Model Selection (1/2)

- ✓ In model selection, we may split the data set into a **training** set, a **validation** set, and/or a **test** set.
- \checkmark S-fold cross-validation: use (S-1)/S of the available data for training.

(Leave-one-out technique: S = N)

The technique of S-fold cross-validation, illustrated here for the case of S=4, involves taking the available data and partitioning it into S groups (in the simplest case these are of equal size). Then S-1 of the groups are used to train a set of models that are then evaluated on the remaining group. This procedure is then repeated for all S possible choices for the held-out group, indicated here by the red blocks, and the performance scores from the S runs are then averaged.

- ✓ Drawbacks of cross-validation:
 - The number of training runs increases by a factor of S.
 - The number of parameter combinations increases exponentially.

Model Selection (2/2)

"Information criteria" have been proposed that adds a penalty term to compensate for the over-fitting of more complex models.

e.g. Akaike Information Criterion (AIK)

$$\ln p(\mathcal{D}|\mathbf{w}_{\mathrm{ML}}) - M$$

Bayesian Information Criterion (BIC)

$$\ln p(D \mid \mathbf{w}_{MAP}) - \frac{1}{2} M \ln N$$

Three Ways to Build the Mapping Model

• **Discriminant function**: find a function that maps each input **x** directly onto the target value/label.

• Generative models:

- ✓ Model $p(\mathbf{x}|t)$ and p(t), or model $p(\mathbf{x},t)$.
 - \Rightarrow Find $p(t|\mathbf{x})$.
- ✓ Use decision theory to determine class membership for each new input x.
- ✓ Allow p(x) to be determined. \Rightarrow can detect outliers.

• Discriminative models:

- ✓ Model p(t|x) directly.
- ✓ Use decision theory to determine class membership for each new input x.

Unsupervised Learning (1/8)

- *Unsupervised learning*: the training data consists of a set of input vectors x without any corresponding target values.
 - ✓ *Clustering*: to discover groups of similar examples within the data.
 - ✓ **Density Estimation**: to determine the distribution of data within the input space.
 - ✓ **Dimension Reduction:** to project the data from a high-dimensional space down to a low-dimensional space.
 - ✓ Generative Model: to learn a model that can generate data like the training data.
 - ✓ Self-supervised Learning: use the data itself to generate supervisory signals.

Unsupervised Learning (2/8)

Clustering

Unsupervised Learning (3/8)

Density Estimation

Unsupervised Learning (4/8)

Dimension Reduction

Unsupervised Learning (5/8)

Hidden Markov Model (HMM)

Unsupervised Learning (6/8)

Auto-encoder

Unsupervised Learning (7/8)

Diffusion Model

Unsupervised Learning (8/8)

Self-supervised Learning

Curse of Dimensionality (1/3)

Example: Exponentially grow of the number of regions in a regular grid

Example: Exponentially grow of polynomial coefficients

NYCU EE

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{i=1}^{D} w_i x_i + \sum_{i=1}^{D} \sum_{j=1}^{D} w_{ij} x_i x_j + \sum_{i=1}^{D} \sum_{j=1}^{D} \sum_{k=1}^{D} w_{ijk} x_i x_j x_k$$

$$M = 3$$

Curse of Dimensionality (2/3)

Our geometrical intuitions can fail badly in a space of higher dimensionality.

Not all intuitions developed in spaces of low dimensionality will generalize to spaces of high dimensions!

e.g., volume fraction of a sphere

e.g., Gaussian Densities in Higher Dimensions

$$V_D(r) = K_D r^D$$

$$\frac{V_D(1) - V_D(1 - \epsilon)}{V_D(1)} = 1 - (1 - \epsilon)^D$$

Curse of Dimensionality (3/3)

Good News:

- ✓ Real data can often be confined to a subspace with lower effective dimensionality
- ✓ Real data typically exhibit some smoothness properties (at least locally) so we can exploit local interpolation-like techniques for the prediction of the target variables.

Fig. 19. Three-dimensional embedding of ISOMAP face data using RML.

Ref: T. Lin & H. Zha, "Reimannian Manifold Learning", PAMI, May 2008

Reinforcement Learning (1/7)

History of Reinforcement Learning

- Trial and error learning
- Optimal control
- Temporal-difference methods

Reinforcement Learning (2/7)

- Learn to map situations to actions
 - ✓ Discover which action yields the most reward
- Major characteristics
 - ✓ Closed-Loop Problems
 - ✓ Do not have direction instructions about what actions to take
 - ✓ Actions may not only affect the immediate reward but also the next situation and all subsequent rewards
- Three major aspects Sensation, Action, and Goal

Reinforcement Learning (3/7)

Reinforcement Learning (4/7)

RL v.s. Supervised/Unsupervised Learning

- There is no supervisor. All we have is the reward signal.
- Do not predict the correct action simply based on the current situation.
- Deal with sequential data but not i.i.d. data.
- Try to maximize a reward signal instead of finding the hidden structure
- There is balance between exploitation and exploration
- Involve the interaction between an agent with an environment

Reinforcement Learning (5/7)

- Learn how to act or behave when given occasional reward or punishment signals.
- Close to the way human learns to interact with the environment
- Basic reinforcement learning is modeled as a Markov decision process (MDP)
- Every action impacts the environment, and the environment provides the reward to guide the learning process ⇒ learn how to act in order to maximize the reward.

Reinforcement Learning (6/7)

- Reward: indicate which action is preferred in an immediate sense
- Value: indicate which action is preferred in the long run.
- Policy: a mapping from states to actions

Reinforcement Learning (7/7)

Methods for Reinforcement Learning

- Dynamic programming
- Monte Carlo Methods
- Temporal-difference Learning