§ 3.1. Calois representation

1. Galois rep

2. Weil-Deligne rep

3. connections

4. L-fct

5 density theorem

Just for convenience, we allow element & class class Calass Find I be a class. We may add a to emphasize that the family can be a class, instead of set.

1. Galois rep Setting G: arbitrary topo qp e.g. G any Galois qpIf G profinite \Rightarrow open subgps are finite index subgps. Δ : top field e.g. \overline{F}_p , \overline{Q}_p , C, don't want to mention \overline{Z}_p now.

Def (cont Galois rep) $(p, V) \in \operatorname{vep}_{\Lambda, \operatorname{cont}}(G)$ $V \in \operatorname{vect}_{\Lambda} + p : G \longrightarrow \operatorname{GL}(V)$ cont

 ∇ $\rho(G)$ can be infinite! for GalgpE.g. When char $F \neq l$, we have l-adic cyclotomic character $\mathcal{E}_{l}: Gal(F^{sep}_{F}) \longrightarrow Z_{l}^{\times} \hookrightarrow \mathcal{Q}_{l}^{\times}$ $\sigma \mapsto \varepsilon_{l}(\sigma)$ satisfying

This is cont by def. (Take usual topo.)

Ex: Compute \mathcal{E}_{l} for $F = \mathbb{F}_{p}$.

A: $\mathcal{Z} \cong Gal(\mathbb{F}_{p}/\mathbb{F}_{p}) \longrightarrow \mathbb{Z}_{l}^{\times}$ This is cont by def. (Take usual topo.) $\mathcal{Z} \cong Gal(\mathbb{F}_{p}/\mathbb{F}_{p}) \longrightarrow \mathbb{Z}_{l}^{\times}$ This is cont by def. (Take usual topo.)

Notice the following two definitions don't depend on the topo of Λ .

Def (sm Galois rep) $(p, V) \in \operatorname{rep}_{\Lambda, \operatorname{sm}}(G)$ $V \in \operatorname{vect}_{\Lambda} + p : G \longrightarrow \operatorname{GL}(V)$ with open stabilizer.

Def (fin image Galois rep) $(\rho, V) \in \operatorname{vep}_{\Lambda, f_i}(G)$ finite image / finite index $V \in \operatorname{vect}_{\Lambda} + \rho: G \longrightarrow \operatorname{GL}(V)$ with finite image

Rmk.
$$\operatorname{rep}_{\Delta,\operatorname{sm}}(G) = \operatorname{rep}_{\Delta \operatorname{disc},\operatorname{cont}}(G) \xrightarrow{\operatorname{rep}_{\Delta},\operatorname{fi}(G)} \operatorname{rep}_{\Delta,\operatorname{cont}}(G)$$

$$\operatorname{Rep}_{\Delta,\operatorname{sm}}(G) \longleftarrow \operatorname{Rep}_{\Delta \operatorname{disc},\operatorname{cont}}(G) \xrightarrow{\operatorname{rep}_{\Delta},\operatorname{fi}(G)} \operatorname{Rep}_{\Delta,\operatorname{fi}}(G)$$

$$\xrightarrow{} \text{ if } fin \text{ index subaps} \text{ are open}$$

$$\xrightarrow{} \text{ if } G : \operatorname{profinite } \operatorname{ap} \quad (\operatorname{Only need} : \operatorname{open} \Rightarrow \operatorname{fin index})$$

$$\xrightarrow{} \operatorname{Artin} \operatorname{rep} (\operatorname{of} \operatorname{profinite } \operatorname{ap})$$

Artin rep. $\Lambda = (\mathbb{C}, \text{ euclidean topo})$ G profinite

Lemma 1 (No small gp argument)

I U C GL, (C) open nbhd of 1 s.t.

 $\forall H \in GL_n(\mathbb{C})'$, $H \subseteq \mathcal{U} \implies H = \{id\}$. Proof. Take $\mathcal{U} = \{A \in GL_n(\mathbb{C}) \mid \|A - I\| < \frac{1}{3n}\}$ $\|\cdot\| = \|\cdot\|_{max}$, $\|\cdot\| = \|\cdot\|_{max}$ Only need to show, $\forall A \in GL_n(\mathbb{C})$, $A \neq Id$, $\exists m \in M$, s.t $A^m \notin \mathcal{U}$ Consider the Jordan form of A.

Case 1. A unipotent.

Case Z. A not unipotent.

Il I NECT-Soi st. Av=lv. Take mel st /2 -11 > 1/3. = 101 < 12m-1/101 = 1/Am - Id) v11 = n || Am - Id| | 101 => 1/Am - Id| > 1/3n.

Prop. For $(\rho, V) \in \text{rep}_{\mathbb{C}, \text{cont}}(G)$, $\rho(G)$ is finite. Proof. Take U in Lemma 1, then $\rho^{-1}(\mathcal{U})$ is open \Rightarrow $\exists I \in G_F$ finite index. $\rho(I) \subseteq \mathcal{U}$ \Rightarrow $\rho(I) = Id$ $\Rightarrow \rho(G_F)$ is finite

Rmk. For Artin rep we can speak more:

I. ρ is conj to a rep valued in $GLn(\overline{Q})$ $\rho \text{ can be viewed as cpl} \times \text{rep of fin gp. so } \rho \text{ is semisimple.}$ Since classifications of irr reps for C & \overline{Q} are the same, Levery irr rep is conj to a rep valued in $GL_n(\bar{Q})$.

 $\#\{\ fin\ subgps\ in\ GL_n(C)\ of\ "exponent\ m"\ \}\ is\ bounded,\ see:$

2. Weil-Deligne rep

Now we work over "the skeloton of the Galois gp" in general. Setting: Λ NA local field with char κ_{Λ} = 1 &: What would happen if Λ is only a NA local field?

Finite field

Goal For Λ NA local field with char $K_{\Lambda} = l$, understand $rep_{\Lambda,cont}(\widehat{Z})$.

Def/Prop. Let $A \in GLn(\Lambda)$, TFAE: ①. $\widehat{Z} \longrightarrow GLn(\Lambda)$ is a well-defined cont gp homo $1 \longmapsto A$ ② $\exists g \in GLn(\Lambda)$, $gAg^{-1} \in GLn(\mathcal{O}_{\Lambda})$ ③ det $(\lambda I - A) \in \mathcal{O}_{\Lambda}[\lambda]$, with det $A \in \mathcal{O}_{\Lambda}^{\times}$ A is called bounded in these cases.

Proof 0=

 $0 \Rightarrow 0$: \hat{Z} is cpt, so image lies in a max cpt subgp of $GL_n(\Lambda)$, which conjugates to $GL_n(O_{\Lambda})$

https://math.stackex.change.com/questions/4461815/maximal-compact-subgroups-of-mathrmgl2-mathbb-q-pact-subgroups-of-mathrmgl2-math

Another method:

Lemma 1. $\rho.\mu$ two ways of expressions of gp action $\rho: \widehat{Z} \to GL_n(Z)$ is cont $\iff \mu: \widehat{Z} \times \Lambda^n \longrightarrow \Lambda^n$ is cont

$$\Rightarrow : \mu : \widehat{\mathbb{Z}} \times \Lambda^n \xrightarrow{\rho \times Id\Lambda^n} GL_n(\Lambda) \times \Lambda^n \xrightarrow{\uparrow} \Lambda^n \quad \text{is cont.}$$

$$\Lambda^n \text{ is Haus loc cpt.}$$

See [Theorem III.3, III.4]:

 $https://github.com/lrnmhl/AT1/blob/main/Algebraic_Topology_I__Stefan_Schwede_Bonn_Winter_2021.pdf$

Another

∈ : (suggested by Longke Tang)

$$\iff \mathcal{Z} \times \Lambda^n \longrightarrow \Lambda^n \text{ is cont open cpt topo}$$

$$\iff \mathcal{Z} \xrightarrow{\exists!} \mathcal{M}_{OV_{op}}(\Lambda^n, \Lambda^n) \text{ is cont}$$

$$GL_n(\Lambda)$$

Only need: $GL_n(\Lambda) \subseteq M_{nxn}(\Lambda)$, $GL_n(\Lambda) \subset M_{or_{Top}}(\Lambda^n, \Lambda^n)$ define the same topo on $GL_n(\Lambda)$.

This is hard. Assuming Lemma 1, this can be proved,

but then this method can't be a real proof for Lemma 1.

Lemma 2. 1, 12 lattice in $\Lambda^n \Rightarrow 1, +1$ 2 lattice in Λ

$$\begin{bmatrix} \mathcal{L}_{1} \supseteq (p^{k})^{\Theta_{n}} \\ \mathcal{L}_{2} \supseteq (p^{k})^{\Theta_{n}} \end{bmatrix} \Rightarrow \# \mathcal{L}_{1} + \mathcal{L}_{1} < +\infty \Rightarrow \mathcal{L}_{1} + \mathcal{L}_{2} \text{ is a lottice} \end{bmatrix}$$

Take
$$1 = \mathcal{O}_{\Lambda}^{n} \subseteq \Lambda^{n}$$
, then the stabilizer

Stab(L) = $g \in \mathcal{Z} \mid g : L = L$

= $g \in \mathcal{Z} \mid g : e : \in L$ $\forall i$

= $g \in \mathcal{Z} \mid g : e : \in L$

is open, where

$$\mu_{ei} : \widehat{\mathbb{Z}} \longrightarrow \Lambda^n$$
 $g \mapsto g.e.$ (cont by Lemma 1)

After conjugation,
$$A, A^{-1} \in \mathcal{M}^{n \times n}(\mathcal{O}_{\Delta}) \Rightarrow A \in GL_n(\mathcal{O}_{\Delta})$$

$$\Rightarrow A \in GL_n(\mathcal{O}_{\Lambda})$$

$$Q \Rightarrow 0$$
: w.l.o.g. $A \in GL_n(\mathcal{O}_\Delta)$. Then we get a lift

$$\widehat{\mathbb{Z}} \xrightarrow{\exists ! \text{ cont}} \widehat{GL_n(\mathcal{O}_{\Delta})} \cong GL_n(\mathcal{O}_{\Delta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathbb{Z} \longrightarrow GL_n(\mathcal{O}_{\Delta})$$

$$\sum_{i \in Z} A^i \mathcal{L} = \sum_{i=0}^{n-1} A^i \mathcal{L}$$
 is a lattice fixed by $A_i A^{-1}$ (Lemma 2)

After conjugation,
$$A$$
, $A^{-1} \in \mathcal{M}^{n \times n}(\mathcal{O}_{\Delta}) \Rightarrow A \in GL_n(\mathcal{O}_{\Delta})$

 ∇A , B ϵ GLn(Λ) bounded \Rightarrow AB bounded counter eg: (from Longke Tang)

Consider
$$A = \begin{pmatrix} P_1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} P_1 \end{pmatrix}^{-1}$$
, $B = \begin{pmatrix} 1 \end{pmatrix}$, then $AB = \begin{pmatrix} P_{p^{-1}} \end{pmatrix}$.

Local field

Goal. For Λ : NA local field with char $K_{\Lambda} = l$, $F: NA | local | field | with | char | K_{F} = p \neq l$,

realize cont Galois rep as bounded Weil-Deligne rep,

via the following diagrams:

$$rep_{\Delta,cont}(W_{F}) \xrightarrow{\sim} WDrep_{\Delta,sm}(W_{F}) \text{ with N}$$

$$V = V_{\Delta,cont}(W_{F}) \xrightarrow{\sim} WDrep_{\Delta,sm}(W_{F})$$

$$V = V_{\Delta,cont}(V_{F}) \xrightarrow{\sim} WDrep_{\Delta,sm}(W_{F})$$

here, "bdd" means Imp are bounded.

 $https://mathoverflow.net/questions/{\tt iii760/a-natural-way-of-thinking-of-the-definition-of-an-artin-l-function}$