Bitácora Ejercicios Matemáticas Discretas II

Carlos Arturo Murcia Andrade 2023-1

1 Definiciones

Definicion 1. Una operación binaria se dice **asociativa** si $\forall a, b, c \in G$ tiene (a * b) * c = a * (b * c).

Definicion 2. Un **grupo** es un conjunto de elementos G cuya operación binaria "*" es cerrada $(a,b \in G \to a*b \in G)$ con un elemento especial "e" (conocido como neutro) que:

 $\exists a^{-1} \forall a, \ tal \ que \ a * a^{-1} = e$

b*e=e*b=b

Además, la operación binaria es asociativa.

2 Ejercicio #1

Sea $G = \{a, b, c, d\}$ con la siguiente tabla de multiplicación:

*	a	b	c	d
a	a	b	c	d
b	c	d	d	d
c	a	b	d	С
d	d	a	c	d

Table 1: Definición de G

Demostrar si la operación "*" definida en G es asociativa o no.

Proof. Sea p = (b * b) * c, $p \in G$ y sea q = b * (b * c), $q \in G$. Ahora, jes p = q?

$$(b*b)*c = b*(b*c)$$

$$d*c = b*d$$

$$c \neq d$$

Si $c \neq d$, entonces, $(b*b)*c \neq b*(b*c)$. Ergo, $p \neq q$. Y, por lo tanto, la operación "*" definida en G no es asociativa.

3 Ejercicio #2

Demostrar que la multiplicación de matrices cuadradas 2x2 es asociativa.

Proof. Sean $A, B, C \in \mathbb{R}_{2x2}$. $\xi(A * B) * C = A * (B * C)$?

$$\begin{pmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \times \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$\begin{pmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \end{pmatrix} \times \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{pmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \times \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$\begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix} \times \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11}C_{11} + B_{12}C_{21} & B_{11}C_{12} + B_{12}C_{22} \\ B_{21}C_{11} + B_{22}C_{21} & B_{21}C_{12} + B_{22}C_{22} \end{bmatrix}$$

$$\begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{bmatrix}$$

donde

$$X_{11} = A_{11}B_{11}C_{11} + A_{12}B_{21}C_{11} + A_{11}B_{12}C_{21} + A_{12}B_{22}C_{21}$$

$$X_{12} = A_{11}B_{11}C_{12} + A_{12}B_{21}C_{12} + A_{11}B_{12}C_{22} + A_{12}B_{22}C_{22}$$

$$X_{21} = A_{21}B_{11}C_{11} + A_{22}B_{21}C_{11} + A_{21}B_{12}C_{21} + A_{22}B_{22}C_{21}$$

$$X_{22} = A_{21}B_{11}C_{12} + A_{22}B_{21}C_{12} + A_{21}B_{12}C_{22} + A_{22}B_{22}C_{22}$$

Por lo tanto, (A*B)*C = A*(B*C). Es decir, la multiplicación de matrices cuadradas 2x2 es asociativa.

4 Ejercicio #3

Demostrar que los números complejos (\mathbb{C}) bajo la multiplicación forman un grupo.

Proof. Sean $p = a + bi \in C$ y $q = c + di \in C$.

Sea $r = p*q = (a+bi)*(c+di) = ac+adi+bci+bdi^2 = (ac-bd)+(ad+bc)i$. Sean $e = ac-bd \in \mathbb{R}$ y $f = ad+bc \in \mathbb{R}$, entonces, $r = p*q = e+fi \in \mathbb{C}$. Ergo, el producto de complejos es una **operación cerrada**.

Ahora, sea
$$s = p^{-1} = (a + bi)^{-1} \in \mathbb{C}$$
. Luego, $s * p = p^{-1} * p = (a + bi)^{-1} * (a + bi) = 1 + 0i \in \mathbb{C}$. Entonces, $\forall p \in \mathbb{C}, \exists s \in \mathbb{C}, \text{ tal que } s + p = 1$.

Sea $t=1+0i\in\mathbb{C}$. Luego, $t*p=(1+0i)*(a+bi)=a+bi\in\mathbb{C}$. Entonces, $\forall p\in\mathbb{C},\ \exists t\in\mathbb{C},\ \text{tal que }t*p=p.$

Sabemos que $p = a + bi \in \mathbb{C}$, $q = c + di \in \mathbb{C}$, $r = e + fi \in \mathbb{C}$. Ahora

$$(p*q)*r = ((a+bi)*(c+di))*(e+fi) = ((ac-bd)+(ad+bc)i)*(e+fi)$$

= $(ace-bde-adf-bcf)+(acf-bdf+ade+bce)i$

$$p*(q*r) = (a+bi)*((c+di)*(e+fi)) = (a*bi)*((ce-df)+(cf+de)i)$$
$$= (ace-bde-adf-bcf)+(acf-bdf+ade+bce)i$$

De esto podemos decir que (p*q)*r = p*(q*r), entonces, la operación de multiplicación es **asociativa**.

Por último, ya que la operación de multiplicación es cerrada y asociativa y existe elemento neutro e inverso, quiere decir que los números complejos (\mathbb{C}) bajo la multiplicación forman un grupo.

4