Summer School JGU Mainz — Advanced Methods in Behavioral Economics, 2021

Dr. Carina I. Hausladen

October 1, 2021

However beautiful the strategy, you should occasionally look at the results.

Winston Churchill

5

Charting the Type Space: The Case of Linear Public Good Games

Christoph Engel, Carina I. Hausladen, Marcel H. Schubert

Why Study Public Good Games?

- Global public goods include the prevention of nuclear proliferation, the suppression of pandemics, and climate change mitigation.
- Failure to supply these global public goods exposes the world to dangers; providing them expands human capabilities. (Barrett et al. 2007)

The Tragedy of the Commons

Average contributions typically start above zero but decline over time (Chaudhuri 2011; Ledyard 1995; Zelmer 2003).

The Tragedy of the Commons – Possible Explanations

- Social preferences are part of the utility function (for an excellent overview see Fehr et al. 2002).
- There exist different behavioral types (Fischbacher et al. 2001).
- However, the theorized types are not sufficient to explain the experimental evidence.

Figure: Player Types Proposed by Fischbacher, Gächter, Fehr (2001)

Research Question

Which reaction functions exist, and how prevalent are they?

Method

- We analyze the data via clustering.
- The data are multivariate time series, consisting of
 - a participant's own contribution and
 - the group members' average contribution.

Simulation

Data generating process: $\pi_{it} = e - c_{it} + \mu \sum_{k=1}^{K} c_{kt}$ π profit of individual i in period t; endowment e; contribution c; marginal per capita rate $\mu < 1 < K\mu$.

Table: Simulated Type Space

type	t = 1	t > 1
short-sighted freerider	0	0
far-sighted freerider	10	$c_{-i,t-1}$ if $t < au$ 0 if $t \ge au$
conditional cooperator	10	$c_{-i,t-1}$
hump shaped	5	$c_{-i,t-1}$ if $c_{-i,t-1} \leq 10$ $-c_{-i,t-1}$ if $c_{-i,t-1} > 10$
altruist	20	20

Types Versus Patterns

(a) 5 Clusters for 5 Types

(b) 5 Types in 5 Clusters

Internal Cluster Validation Indices

- We face a combined algorithm selection (Rice 1976) and configuration problem (Kotthoff et al. 2017).
- The rankvote of 7 CVIs (chosen based on recommendations by Arbelaitz et al. 2013) decides for:
 - the number of clusters,
 - the prototyping function,
 - the distance function, and
 - the clustering algorithm.
- The best configuration consists of 39 clusters, sdtw centroids & distance, and partitional clustering.

39 Clusters for 5 Types on Simulated Data

Experimental Data

The data consists of 7 studies, 1,616 participants, 16,474 observations.

study	period	endowment	group size	MPCR	subjects
Diederich et al. (2016)	7	40	10	0.3	360
Diederich et al. (2016)	7	40	40	0.3	200
Diederich et al. (2016)	7	40	100	0.3	500
Diederich et al. (2016)	7	1,000	10	0.3	50
Engel and Kurschilgen (2013)	30	20	4	0.4	44
Engel and Kurschilgen (2014)	30	20	4	0.4	48
Engel and Kurschilgen (2020)	30	20	4	0.4	48
Engel and Rockenbach (2020)	20	20	3	0.4	30
Engel, Kube, et al. (2020)	10	20	4	0.4	96
Kosfeld et al. (2009)	20	20	4	0.4	40
Kosfeld et al. (2009)	20	20	4	0.6	176
Nikiforakis et al. (2008)	10	20	4	0.5	24

Clusters' Centroids in the Experimental Data

Interpretation of the Experimental Data

Few clusters can be theorized with the five types simulated. We find

- almost no altruists.
- very few outright selfish participants,
- very few nearly perfectly conditional cooperators, and
- no hump-shaped types.

Our interpretation:

- Participants try to educate their peers (motivational).
- Participants explore the boundaries of others' reactions (cognitive).

Conclusion

- Clustering can be used to infer the composition of the type space.
- Existing theories about the type space only explain a narrow fraction of the data.

Let's Discuss!

- How would you map the clusters to types? (Gerlach et al. 2018)
- How would you explore the parameter space in a more efficient way? (Balietti et al. 2020; Ferrari et al. 2015; Helfmann et al. 2018; Shalamov et al. 2018, e.g.)
- Which alternative evaluation metrics (apart from internal CVIs) would you use?

References I

- * Arbelaitz, Olatz et al. (2013). "An Extensive Comparative Study of Cluster Validity Indices". In: Pattern Recognition 46.1, pp. 243–256.
 - Balietti, Stefano et al. (2020). "Optimal Design of Experiments to Identify Latent Behavioral Types". In: Experimental Economics, pp. 1–28.
 - Barrett, Scott et al. (2007). Why Cooperate?: The Incentive to Supply Global Public Goods. Oxford University Press on Demand.
 - Chaudhuri, Ananish (2011). "Sustaining Cooperation in Laboratory Public Goods Experiments: A Selective Survey of the Literature". In: Experimental Economics 14.1, pp. 47–83.
 - Diederich, Johannes et al. (2016). "Group Size and the (In)Efficiency of Pure Public Good Provision". In: *European Economic Review* 85, pp. 272–287.
 - Engel, Christoph, Sebastian Kube, et al. (2020). "Managing Expectations: How Selective Information Affects Cooperation". Working paper.
 - Engel, Christoph and Michael Kurschilgen (2013). "The Coevolution of Behavior and Normative Expectations: An Experiment". In: American Law and Economics Review 15.2, pp. 578–609.
 - (2014). "The Jurisdiction of the Man Within". Working paper.
 - (2020). "The Fragility of a Nudge: the Power of Self-Set Norms to Contain a Social Dilemma". In: Journal of Economic Psychology, forthcoming.
 - Engel, Christoph and Bettina Rockenbach (2020). "What Makes Cooperation Precarious?" Working paper.

References II

- * Fehr, Ernst et al. (2002). "Theories of Fairness and Reciprocity. Evidence and Economic Applications". In: Advances in Economics and Econometrics. 8th World Congress. Ed. by Mathias Dewatripont et al. Cambridge: Cambridge University Press, pp. 208–257.
 - Ferrari, Daniel Gomes et al. (2015). "Clustering Algorithm Selection by Meta-Learning Systems: A New Distance-Based Problem Characterization and Ranking Combination Methods". In: *Information Sciences* 301, pp. 181–194.
- Fischbacher, Urs et al. (2001). "Are People Conditionally Cooperative? Evidence from a Public Goods Experiment". In: Economics Letters 71.3, pp. 397–404.
 - Gerlach, Martin et al. (2018). "A Robust Data-Driven Approach Identifies Four Personality Types Across Four Large Data Sets". In: Nature Human Behaviour 2.10, pp. 735–742.
 - Helfmann, Luzie et al. (2018). "On Hyperparameter Search in Cluster Ensembles". In: arXiv preprint arXiv:1803.11008.
 - Kosfeld, Michael et al. (2009). "Institution Formation in Public Goods Games". In: *American Economic Review* 99.4, pp. 1335–55.
 - Kotthoff, Lars et al. (2017). "Auto-WEKA 2.0: Automatic Model Selection and Hyperparameter Optimization in WEKA". In: *The Journal of Machine Learning Research* 18.1, pp. 826–830.
 - Ledyard, John O (1995). "Public Goods: A Survey of Experimental Research". In: Handbook of Experimental Economics. Ed. by John Kagel et al. Princeton: Princeton University Press, pp. 111–194.

References III

- Nikiforakis, Nikos et al. (2008). "A Comparative Statics Analysis of Punishment in Public-Good Experiments". In: Experimental Economics 11.4, pp. 358–369.
 Rice, John R. (1976). "The Algorithm Selection Problem". In: Advances in Computers.
- Rice, John R. (1976). "The Algorithm Selection Problem". In: Advances in Computers Vol. 15. Elsevier, pp. 65–118.
- Shalamov, Viacheslav et al. (2018). "Reinforcement-Based Method for Simultaneous Clustering Algorithm Selection and its Hyperparameters Optimization". In: *Procedia Computer Science* 136, pp. 144–153.
- Zelmer, Jennifer (2003). "Linear Public Goods Experiments: A Meta-Analysis". In: Experimental Economics 6.3, pp. 299–310.