5 tatistics Basics, - Inferential. Descriptive Deasure
of central
Tondary Measure of Probobility Jespersion. Hypothesis 3 Basics Testix → 2 test → t test L> Cord Prob -> 10R -> Median → One failed > Enperted MD / Two tailed - Mode -> Variance - ANOVA -> standard deviation.

chances Probability 50% 51%				
	Tossiy a Cain	Traning a diff	a cord	
Rondom Experiment				Any action whose outcome is not frued
Sample Space	(MI)	(1,2,3,4,5,6)	(1,2,3,	au the possible
Event	Occurence of H	DCC of Every	Occurence of Rea	One of the possible Outcomes
P(E) = (No. of war Event) favourable Can occur) favourable Total Mo. of) Total Dutioned (# Sample Lange of Men 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

$$P(K \text{ or } Kcd)$$

= $P(K) + P(Rcd) - P(K&Rcd)$
= $\frac{4}{52} + \frac{46}{52} - \frac{2}{52} = \frac{48}{52}$ 13

$$P(k \text{ or } ked)$$
=\frac{h(1}{52}(\frac{1}{52}(\frac{1}{52}) - \frac{1}{52}(\frac{1}{52}) - \frac{1}{

@:

Conditional Probability
$$P(\xi) = \frac{3}{6} = \frac{1}{2} \int_{0}^{\infty} Sox \qquad P(A/B) = \frac{1}{2} \int_{0}^{\infty} \frac{1}{2}$$

$$-\frac{4/6}{3/6} = \frac{1}{6} \times \frac{2}{3} = \frac{1}{3}$$

$$\int \int \left(\frac{\varepsilon}{N} \right) dx = \frac{2}{3}$$
 67%

$$\rho \left(\rho_{rime} \right) = \frac{3}{6} = \frac{1}{2} \left((1,2,3,4,5,6) \right)$$

$$= \frac{1/6}{3/4} = \frac{1}{6} \times \frac{1}{3} = \frac{1}{3}$$

Probability Distribution: Standard Mormal Distribution

Population & Sample

Two tailed

The pothesis Testing to test of two saples

Chi square

The sample of the sampl Normal Distribution (Bell Corve) Inferential Statistics ANOVA

Tossing two coins HT -> 14 TH -> YY >> Linomial Distribution TT > 14. / >> Poissions Distribution. Otails -> 14

Stepl: formulate Nul Hypothesis and Population = Sample Ho: Status Quo Present condition it stillow.

Hi: Claim (Trying) to prove. 4 \$110000 Population Sample Povameter statistic Stel: Confidence > 951/991/991/901. Level of significance = 100% - conf. Green Level of Significance = 100% - Conf. Steps: Decide on the statistical

Test. 2-test, t-test, chi ANOVA

test of prop some teiled

test of prop some teiled * Used to verify a claim. >30.
Process is to find out =:
what are the chances of
the claim has Stepn: Colculate she Sample statistic! 2 score, t. score, Chisto if-Statistic The claim being true. Styps: Compare it with critical value New / / / Step 6: Accept/Reject Ho

Fried Population is infinite

> Sample Size < 30

or

> Population st. der

is unknown

Population of the st. der

is unknown

