1 主問題

1.1 所与の条件

特徴空間 (距離空間) (\mathcal{F},d) $d: \mathcal{F} \times \mathcal{F} \to \mathbb{R}_+$

ラベル空間 \mathcal{L}

学習済み分類器 $f:\mathcal{F} o \mathcal{L}$

目的データ $x^* \in \mathcal{F}$ 深さ制約 $D_{\max} \in \mathbb{N}$ 精度制約 $A_{\min} \in [0,1]$

1.2 決定木

決定木 $t: \mathcal{F} \to \mathcal{L}$

木の深さ $D(t): \mathcal{T}_{\mathcal{F}} \to \mathbb{N}$

仮説空間 $\mathcal{T}_{\mathcal{F}}$ — 特徴空間 \mathcal{F} において, 可能な決定木の集合

 $\mathcal{T}_{\mathcal{F}}(D_{\max}) = \{ t \in \mathcal{T}_{\mathcal{F}} \mid D(t) \leq D_{\max} \}$

1.3 変数

近傍半径 $r \in \mathbb{R}_+$

1.4 関数など

近傍 $V_{x^*}(r) = \{x \in \mathcal{F} \mid d(x, x^*) \leq r\}$

ノイズ集合 $\operatorname{noise}(r): \mathbb{R}_+ \to 2^F \quad \forall V \in 2^{\mathcal{F}} \; ; \; \operatorname{noise}(r) \subseteq V_{x^*}(r) \wedge \operatorname{noise}(r) \; \text{is finite}.$

近似精度

$$A(t,r) = \frac{1}{|\text{noise}(r)|} \sum_{x \in \text{noise}(r)} \mathbb{I}(t(x) = f(x))$$

1.5 問題

 $\exists t \in \mathcal{T}_{\mathcal{F}}(D_{\max}) \; ; \; A(t,r) \geq A_{\min}$ を満足する最大の近傍半径 $r \in \mathbb{R}_+$ を求める.

2 固定されたデータセットの場合

2.1 所与の条件

特徴空間 \mathcal{F}

ラベル空間 \mathcal{L}

データセットのサイズ $N \in \mathbb{N}$

ヹータセット $X = \{x_i \in \mathcal{F}\}_{i=1}^N, Y = \{y_i \in \mathcal{L}\}_{i=1}^N$

目的データ $x^* \in X$

深さ制約 $D_{\max} \in \mathbb{N}$

精度制約 $A_{\min} \in [0,1]$

2.2 決定木

決定木 $t: \mathcal{F} \to \mathcal{L}$

木の深さ $D(t): \mathcal{T}_{\mathcal{F}} \to \mathbb{N}$

仮説空間 $T_{\mathcal{F}}$ — 特徴空間 \mathcal{F} において, 可能な決定木の集合

 $\mathcal{T}_{\mathcal{F}}(D_{\max}) = \{ t \in \mathcal{T}_{\mathcal{F}} \mid D(t) \le D_{\max} \}$

2.3 関数など

近似精度

$$A_{X,Y}(t) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{I}(y_i = t(x_i))$$

2.4 問題

 $A_{X,Y}(t) \geq A_{\min}$ を満足する $t \in \mathcal{T}_{\mathcal{F}}(D_{\max})$ が存在するか否かを判定する.