

Wind & Weather Avoidance Analysis at Bangkok Airport (VTBS)

Krit Ittisomboon 2025/06/26 WasedaUniversity/KMITL

Final Presentation **Prof. Asei Tezuka Lab.**

Introduction

Thailand is one of Southeast Asia's major aviation hubs, with **Suvarnabhumi Airport (VTBS)** in Bangkok serving as the primary international gateway. Each day, VTBS handles hundreds of domestic and international flights.

However, Thailand's tropical climate often causes weather-related disruptions. Thunderstorms and heavy rainfall can significantly impact flight paths and air traffic flow.

➤ This project explores how weather conditions influence flight routes around **VTBS** using real flight and weather data.

(Bangkok Suvarnabhumi Airport (VTBS))

Background

- > Suvarnabhumi Airport (VTBS) is Thailand's main international gateway, handling over 800 flights daily, both domestic and international.
- > As Thailand continues to grow as a tourism and business hub, air traffic congestion has become more common—especially during peak hours.
- Weather conditions like storms and heavy rain often lead to route changes, holding patterns, or even delays, making air traffic management more complex.

(BKK Suvarnabhumi Airport (VTBS) Terminal Map)

Bangkok Air Traffic Challenge

> Suvarnabhumi Airport (VTBS)

- 65 million passengers/year
- 300,000++ flights annually

> Weather Problems:

- Frequent Thunderstorms (May-October)
- Sudden Weather Changes
- Safety VS Efficiency Decisions

> What we learn:

- How pilots avoid weather?
- Does wind direction affect decisions?
- When do pilot deviate?

(Radar from previous progress at 2025/05/25 code detecting heavy rain)

We created **Automated Weather Avoidance Analysis System**

> What does it do ?:

- ✓ Track all flight arriving at Suvarnabhumi Airport (VTBS)
- ✓ Analyzes real weather radar data
- ✓ Measures avoidance behavior
- ✓ Correlates with wind conditions

> Key Features Combining:

- Real-Flight Positions
- Actual Weather Data
- Wind Conditions
- Automated 24/7 analysis

```
Report Generated: 2025-06-24 16:32:07
                                                              AVOIDANCE BY WIND CONDITION
Analysis Type: Real Weather Radar Data (No Simulated Zones)
DATA SOURCES
                                                              HEADWIND:
                                                                 Total Flights: 15
 METAR Station: VTBS
                                                                 Avoiding Weather: 0 (0.0%)
METAR Time: 2025-06-24 07:00:00
                                                                 In Real Weather: 0 (0.0%)
Wind: 11 kt from 180°
Full METAR: VTBS 240700Z 18011KT 150V220 9999 FEW020 32/23 Q1006 NOSIG
Weather Radar: 2025-06-24 16:30:00 (2.0 min ago)
                                                              CONFIDENCE ANALYSIS
Radar Source: Rain Viewer API
ALTITUDE FILTERING
                                                              HIGH Confidence (14 flights):
Maximum Altitude for Analysis: 10,000 ft
                                                                Average Score: 94.3%
Final Approach Altitude: 3,000 ft
                                                                Common Issues:
Only analyzing arrival flights below threshold
                                                                   - High altitude (8700ft, -15%): 1 flights
                                                                   - Medium altitude (5250ft, -10%): 1 flights
EXECUTIVE SUMMARY
                                                                   - Medium altitude (6700ft, -10%): 1 flights
                                                                   - High altitude (8400ft, -15%): 1 flights
Total Arrival Flights Analyzed: 15
Flights Avoiding Weather: 0 (0.0%)
                                                                   - Medium altitude (6475ft, -10%): 1 flights
Flights in Real Weather: 0 (0.0%)
                                                                   - Medium altitude (5575ft, -10%): 1 flights
Average Confidence Score: 93.0%
                                                                   - Medium altitude (6200ft, -10%): 1 flights
High Confidence Analyses: 14 (93.3%)
                                                              MEDIUM Confidence (1 flights):
ALTITUDE DISTRIBUTION
                                                                 Average Score: 75.0%
                                                                 Common Issues:
0-3,000 ft: 5 flights
3,000-5,000 ft: 2 flights
                                                                   - High altitude (8350ft, -15%): 1 flights
5,000-7,000 ft: 5 flights
                                                                   - Far from airport (65km, -10%): 1 flights
7,000-10,000 ft: 3 flights
```

(Text Result from our code showing all information we've taken at 2025/06/24, 16:30)

Data Sources

FLIGHT DATA	WEATHER RADAR	MIND DATA
OpenSky Network	RainViewer API	METAR (VTBS)
 Position 	 Precipitation 	• Speed
• Altitude	Intensity (dBZ)	• Direction
Heading	 Coverage Area 	• Gusts
> Real-Time	> Every 5-10 min	> Hourly

Coverage Area: 80km radius around Airport (VTBS)

Collection Time: Automated every 10 minutes

How It Works

1. Filter Arrival Flights

- Altitude ≤ 10,000ft
- Within 80Km of VTBS
- **Descending Aircraft Only**

2. Classify Wind Exposure

- Calculate wind relative to approach
- Categorize: HEADWIND | TAILWIND CROSSWIND | CALM

3. Analyze Weather Position

- Extract radar intensity at aircraft location
- Measure: Clear | Light | Moderate | Heavy

4. Detect Avoidance

- Compare Actual VS Ideal Heading
- If deviation >20° + in Weather = **AVOIDING**
- Assign Confidence Score (0-100%)

(Result of our map showing flight data and Airport at 2025/06/24 16:30)

Analysis Results (June 24, 2025 16:30)

Total Arrival Flights:	15
Wind Condition:	HEADWIND
Current Wind:	11kt/180°
Weather Activity:	MINIMAL

Key Observations:

No weather encounters (clear conditions)

800

- No avoidance behavior detected
- High confidence: 93% average
- 14/15 flights with HIGH confidence

**(All data shown taken at 2025-06-24, 16:30)

System Capabilities

What Our System Can Detect During Active Weather:

- ✓ Avoidance patterns by wind type
- ✓ Critical decision zones (40-60km)
- ✓ Altitude-dependent behavior
- ✓ Real-time deviations

Quality Metrics:

- Confidence: 93% Average
- Quality: 14/15 (93%)
- Data Age: 2 minutes

Altitude Distribution:

- 0 3,000 ft : 5 flights
- 3,000 7,000 ft : 7 flights
- 7,000 10,000 ft : 3 flights

Expected Patterns

Expected During Weather Events:

Wind Type	Expected Behavior
CROSSWIND	Highest caution
HEADWIND	Moderate avoid
TAILWIND	Least avoidance
CALM	Minimal changes

Decision Zones:

- > 60 Km: Free Maneuvering Large deviations possible
- o 40 60 Km: Critical Decisions Most avoidance here
- o 20 40Km: Limited Options Minor adjustment only
- < 20 KM: Must Continue Too close to deviate
 </p>

Altitude Factor:

- >5,000 ft: More Likely to avoid
- <3,000 ft: Committed to Landing</p>

(Example Data from 2025/06/23 01:40 Data When Rain Occurs)

Future Development

Current System (60-70% Accuracy):

- OpenSky Network Data
- > Real Weather Data
- Surface Wind (METAR)
- ➤ Basic Pattern Decision

Future Develop -> (90%++ Accuracy):

- ✓ FlightRadar24 integration (better tracking and more information)
- ✓ Upper-Level Wind data (Full 3D analysis)
- ✓ Machine Learning model create for greater predictions
- ✓ Create Historical Pattern database
- ✓ Continuous Monitoring (24/7)

Applications:

- ❖ Air Traffic Control Anticipate deviations
- ❖ Airlines Optimize Approach
- Research Safety Studies

Conclusion

What we Achieved:

- ✓ Automated avoidance analysis for VTBS
- ✓ Real-Time monitoring system operational
- ✓ Discovered wind-dependent patterns

Current Status:

- ✓
 ¶ System validated during clear conditions
- ✓ III Baseline behavior established
- ✓ **o** Prepared for weather analysis

Contact:

Krit Ittisomboon

66011042@kmitl.ac.th

GitHub: https://github.com/krithymn/ATMCODE.git

Thank You!

