

PLAN

- Introduction
- I- Les catécholamines
- 1-Structure
- 2-Biosynthèse
- 3-Stockage, sécrétion et recaptage
- 4-Régulation
- 5- Mode d'action
- 6-Effets physiologiques
- 7-Catabolisme
- II Exploration biochimique
- 1-prélèvement : conditions préanalytiques
- 2- méthodes de dosage
- 3-valeurs usuelles
- 4- physiopathologie

Introduction

- Les surrénales sont deux petites glandes endocrines qui chapeautent les reins, elles présentent deux parties distinctes :
- Le cortex situé à la périphérie, a une importance vitale de par sa production en hormones stéroïdes.
- La médullosurrénale située au centre, fait partie intégrante du système nerveux sympathique, n'est pas essentielle à la vie. En effet ; elle est considérée comme un ganglion sympathique avec une évolution endocrinienne;

cette notion repose sur des bases:

- * Histologiques : ses cellules sécrétrices =chromaffines (montrent une forte affinité pour le Chrome) sont regroupées en amas autour des capillaires.
- * Embryologiques : elles dérivent de la crête neurale (comme les cellules post des ganglions sympathiques).
- * Neuro -physiologiques : ses nerfs splanchniques ont une médiation cholinergique.

CATECHOLAMINES (CA)

- La médullo-surrénale libère 03 catécholamines :
- la dopamine(DA),
- o la noradrénaline (NA) ou norépinephrine sont des neuromédiateurs,
- Adrénaline (A) ou épinephrine majoritairement secrétée par la médullosurrénale est l'hormone de stress.

STRUCTURE CATECHOLAMINES

- Sont des dérivés 3, 4-dihydroxy phényléthylamine
- Constituées d'un noyau catéchol et de l'éthylamine.
- Possèdent une fonction **amine** et 2 fonctions **hydroxyles**.

BIOSYTHÈSE DES CATECHOLAMINES

• La biosynthèse se fait à partir de la Acide aminé aromatique L-tyrosine issue de l'alimentation ou du métabolisme hépatique de la phenylalanine

Phénylalanine

Phénylalanine

R+ (NAD+) (Tétrahydrobioptérine)

déhydrobioptérine réductase

H₂O PAH (phénylalanine hydroxylase)

RH₂ (NADH + H Dihydrobioptérine

Tyrosine

Déficit en phenylalanine hydroxylase→ PCU

phenylcétonurie

BIOSYNTHÈSE DES CATECHOLAMINES

- Les différentes étapes de synthèse des catécholamines fait intervenir 4 enzymes successivement :
- La tyrosine hydroxylase
- La DOPA décarboxylase(DDC)
- La dopamine B-hydroxylase (DBH)
- La phényléthanolamine –N-méthyl transférase (PNMT) présente uniquement dans la surrénale.

SAM: S Adenosyl methionine SAH: S adenosyl homocysteine

STOCKAGE, SÉCRÉTION ET RECAPTURE

- Les catécholamines ainsi les molécules ATP et calcium sont stockées dans les granules des cellules chromaffines de la médullo-surrénale et dans les vésicules sécrétoires des terminaisons sympathiques.
- Dans la **médullosurrénale**, **80** % **d**es catécholamines stockées par les granules chromaffines sont représentées par **l'adrénaline**.
- Dans les vésicules synaptiques des neurones noradrénergiques périphériques et centraux stockent **principalement la noradrénaline** qui est le neuromédiateur.
- La libération dans les deux cas s'effectue par exocytose sous l'effet de l'influx nerveux émanant des neurones **préganglionnaire acétylcholinergiques.**

STOCKAGE, SÉCRÉTION ET RECAPTAGE

Fonctionnement synaptique

Communication hormonale

RÉGULATION DE LA SYNTHÈSE

Etape régulée

Interconversion enz. actif ↔ enz. inactif - activité ↑ par influx nerveux (phosphorylation dépendante de l'AMPc, de Ca²+ ou du DAG

- activité ↓ par DOPA et norAd → rétro contrôle

Etape spécifique

- des cellules chromaffines (médullo surrénale)
- de certains neurones (SNC, rétine) Activité contrôlée par cortisol

RÉGULATION

- Elle est surtout nerveuse et dépend du SN sympathique.
- Il existe une sécrétion de base faible ; dite paralytique ; de dénervation.
- Elle peut être augmentée par différents stimuli ; qui peuvent être d'origine :
- * Réflexe: hypotension artérielle au niveau de la crosse de l'aorte et le sinus carotidien(barorécepteurs); hypoxie; hypercapnie (chémorécepteurs) du glomus carotidien.
- * Centrale: hypoglycémie; hypothermie.
- * Intercentrale: douleur; émotion; stress

RÉGULATION

Auto régulation par rétrocontrôle soit par :

- * Action directe de l'hormone sur les centres régulateurs;
- * Action réflexe par ses effets hypertensifs ;
- * Action directe sur les récepteurs sino- carotidiens ;
- * Le rétrocontrôle de l'Adrénaline et noradrénaline sur la tyrosine hydroxylase.

Rôle des hormones dans la synthèse des catécholamines :

- * ACTH : stimule la tyrosine hydroxylase et dopamine bêta hydroxylase.
- * Cortisol : stimule la phényl éthanolamine N méthyl transférase et dopamine bêta hydroxylase.

CATECHOLAMINES CIRCULANTES

- Une partie des catecholamines est liée aux protéines et l'autre partie est sous forme libre
- La NA est 5 à 10 fois plus élevée que l'adrénaline dans le sang. La NA d'origine sympathique
- Il existe une adrénalinémie physiologique basale de 2-3mg/j dont l'origine est due à l'activité de la médullosurrénale.

La demi-vie plasmatique est très courte de l'ordre de quelques secondes

Modes d'action des catecholamines : récepteurs adrénérgiques

- Les catécholamines se lient à des récepteurs membranaires spécifiques couplés à la protéine G
- Sur la base de critères pharmacologiques, il existe deux classes de récepteurs :
- Les récepteurs α : α1 et α2

adrénaline beaucoup plus active que la noradrénaline

- Constriction ou contraction musculaire
- Vasoconstriction
- o Contraction de l'utérus
- Mydriase : dilatation de la pupille
- \triangleright Les récepteurs β : β 1 et β 2

L'adrénaline est plus active que la noradrénaline

On a plutôt des effets de dilatation et relaxation :Bronchodilatation

Vasodilatation

Récepteur **\beta** 3 découverte récente

Récepteurs dopaminergiques : D1,2,3,4

MODE D'ACTION DES CATECHOLAMINES: RÉCEPTEURS ADRÉNERGIQUES

Type de récepteur	Effet intracellulaire	Localisation	Effet	
Alpha1	Activation de la	-Vaisseaux sanguins desservant	-Chronotrope + et Inotrope +	
	phospholipase C	les muqueuses ; la peau ; reins ;	(Augmente la fréquence et la force cardiaques)	
		viscères	- Vasoconstriction	
			- contraction des viscères	
			- Mydriase	
Alpha 2	Inhibition de	-Membranes des terminaisons	-Inhibition de libération de	
	l'adényl cyclase	axonales adrénergiques	l'insuline	
Bêta 1	Activation de	- Coeur ; tissu adipeux -	-Chronotrope + et Inotrope +	
	l'adényl cyclase		- Lipolyse	
Bêta 2	Activation de	-Reins ; bronches ; foie ;	-Sécrétion de rénine ;	
	l'adényl cyclase	vaisseaux sanguins du cœur	-Glycogénolyse , néoglycogénése	
		et des muscles squelettiques	-Vasodilation bronchodilatation);	
		et autres organes cibles	-Relâchement des muscles lisses; l'intestin	
		du sympathique	tractus urinaire et myomètre	

Chronotrope = fréquence cardiaque; chronotrope+ = accélération de la fréquence cardiaque, Inotrope = puissance de contraction; inotrope+ = augmentation de la contractilité

EFFETS PHYSIOLOGIQUES DES CATECHOLAMINES

- Métabolisme glucidique: glycémie /
- activation de la glycogénolyse, activation de la gluconéogenèse (action antagoniste de celle de l'insuline) et inhibition de la glycogénogénèse.
- Inhibe la sécrétion d'insuline, mais augmente la sécrétion de glucagon (adrénaline).
- Métabolisme lipidique:
- Augmentation de la lipolyse (lipase hormonosensible) et inhibition de la lipogenèse

EFFETS PHYSIOLOGIQUES DES CATECHOLAMINES

Sur la sécrétion hormonale:

- L'appareil juxta glomérulaire a une innervation sympathique abondante et soit l'adrénaline, soit la stimulation nerveuse rénale **augmente la sécrétion de rénine.**
- La stimulation des nerfs splanchniques diminue la sécrétion d'insuline (effet α) et augmente de façon simultanée la sécrétion de glucagon (effet β).
- Les CA stimulent la synthèse et la libération des hormones thyroïdiennes.

RÉPONSE AU STRESS

CATABOLISME DES CATECHOLAMINES

 La dégradation a lieu au niveau du foie, du rein et de la médullo-surrénale et fait principalement intervenir deux enzymes: La Monoaminooxydase (MAO) et la catéchol-Ométhyltransférase(COMT)

CATABOLISME DES CATECHOLAMINES

MAO : est une enzyme à FAD

• Membrane externe des mitochondries

Il existe deux formes:

- MAO-A digestive oxyde les amines au cours de la digestion, pour éviter l'action pharmacologique d'amines contenues dans les aliments
- MAO-B cérébrale oxyde les amines biologiques de notre métabolisme.

ÉLIMINATION DES CATECHOLAMINES

- Chez l'homme 93% des métanéphrines et 25 à 40% de normétanéphrines circulantes proviennent de la médullo-surrénale.
- Les catécholamines et les métanéphrines sont essentiellement éliminées dans les urines sous forme sulfo et glucuronoconjuguées.

EXPLORATION BIOCHIMIQUE

- L'exploration biochimique des catécholamines est indiquée dans deux tumeurs distinctes:
- Pheochromocytome
- Neuroblastome

Tumeurs neuroendorines

o Dans le diagnostic mais aussi la surveillance

EXPLORATION BIOCHIMIQUE

- o Dosage de l'adrénaline
- o Dosage de la noradrénaline
- Dosage de la dopamine
- Dosage des métabolites :
 dérivés méthoxylés (métanéphrines)

HVA ET VMA

Prélèvement: conditions préanalytiques

- Sang (plasma)= catécholamines
- Variations nycthémérales importantes des catécholamines,
- Impact de l'état nutritionnel, de l'activité physique et des conditions émotionnelles = respecter des conditions de prélèvement strictes.
- Un régime alimentaire excluant chocolat, bananes, agrumes et comprenant une consommation modérée de thé et de café dans les 48 heures précédant le prélèvement s'impose et Stop médicaments
- Prélèvement se fait en position couchée après un Repos strict de 20 minutes

Prélevement : conditions préanalytiques

Urines

Doivent être recueillies pendant 24 heures dans un bocal acidifiées par 10 ml d'une solution d'HCl 6N

- Si possible 3 jours de suite.
- Les prélèvements doivent être acheminés le plus rapidement possible au laboratoire où ils seront conditionnés et éventuellement congelés si le dosage doit être différé ou transféré.

Stabilité

- Les catécholamines plasmatiques restent stables entre 3 et 5 heures après le prélèvement recueilli sur **héparine** à + 4°C.
- La congélation à 20°C permet de garder les catécholamines stables dans le plasma ou dans l'urine pendant au moins 3 semaines

MÉDICAMENTS INTERFÉRENTS (CATÉCHOLAMINES ET METABOLITES)

Augmentation

- Anti-parkinsoniens : lévodopa : prolopa
- Anti-hypertenseurs : nifédipine (adalat®), bêta-bloquants, methyldopa
- Anti depresseurs : tricycliques, inhibiteurs recapture de la sérotonine— IMAO (inhibiteurs de la monoamine oxydase)
- Anti-psychotiques : phénothiazines, chlopromazine
- Autres : sympathicomimétiques, théophylline
- **Diminution** Clonidine (antihypertenseur)

MÉTHODES DE DOSAGE

- Fluorimétrie: manque de sensibilité et spécificité
- Radioenzymatique: spécifique et sensible mais longue et utilisation de radioéléments)
- La chromatographie liquide haute performance couplée à la détection électrochimique (HPLC-ED) est la méthode la plus performante et la plus spécifique.

Elle doit être préférée à toutes les autres méthodes

durée ++++

LCMS/MS

MÉTHODES DE DOSAGE

Gain de temps

Préparation de l'échantillon

- 8 h 4 h
- Analyse
- 70 min/échantillon 8 min/échantillon

- o Dans le sang: les Métanéphrines et les Catécholamines
- Dans les urines des 24h:

Catécholamines

Méthoxyamines

L'acide vanilylmandélique (VMA)

- Le dosage des catécholamines (NA et AD) détecte 80% des phéochromocytomes. La DA est augmentée de façon inconstante.
- · Le dosage de VMA n'en détecte que 60%
- Seul le dosage des méthoxyamines (NMN et MN) a une fiabilité voisine de 100%.

Ces données ne sont valables que pour les dosages par CLHP-DE

VALEURS USUELLES

Paramètres	Sang		Urines	
	Pg/ml	nmol/l	μg/24h	nmol/24h
Noradrénaline (NA)	245 ± 51	1,5 ± 0,3	153 ± 23	1,5 ± 0,3
Adrénaline (A)	41 ± 6	0,22 ± 0,04	22±6	120 ± 33
Dopamine (DA)	<50	<0,33	1197 ± 179	7840 ± 1180
Normétadrénaline (NMN)			209 ± 15	1140 ± 82
Métadrénaline (MN)			135 ± 32	685 ± 162
Acide vanilmandélique (AVM)			2,1 ± 0,27	10206 ± 1364
Acide homovanilique (HVA)			2,2 ± 0,30	12100 ± 1650

PHYSIOPATHOLOGIES

Essentiellement excès de sécrétion de catécholamines

□ Tumeur : phéochromocytome, neuroblastome

PHEOCHROMOCYTOME

- Les phéochromocytomes sont des tumeurs issues des cellules chromaffines (phéochromocytes) de la médullosurrénale (= phéochromocytomes) ou extrasurrénales (= paragangliomes),
- 90% de ces tumeurs sont bénignes,
- 10% sont malignes (phéochromoblastomes).
- 25-30% des cas sont Familiaux et/ou l'expression d'une maladie génétique:NEM2,VHL,NF1,paragangliome héréditaire
- Clinique:
- hypertension artérielle (permanente ou paroxystique).
- La présence de la triade: céphalées, sueurs, tachycardie chez un hypertendu oriente le diagnostic (diag biologique indispensable).
- L'incidence est d'environ 0,1% des patients hypertendus

PHEOCHROMOCYTOME

- Sécrétions autonomes mais discontinues
- dans l'ordre de fréquence: noradrénaline, adrénaline, dopamine

Diagnostic:

- o suspecté à partir d'une élévation supérieure à 4 nmol/l de noradrénaline et 2 nmol/l d'adrénaline.
- Un taux élevé d'AD plasmatique associé à un taux normal de NA est en faveur d'un phéochromocytome surrénalien peu étendu,
- o une élévation de NA avec AD normale indique plutôt une tumeur extra-surrénalienne.
- o une élévation modérée des métanéphrines, la chromogranine A sérique est dosée
- o Dosage de la chromogranine A est d'un grand intérêt.

CHROMOGRANINE A

- La médullosurrénale synthétise et sécrète aussi un grand nombre de neuropeptides retrouvés dans les granules (appellés granines = famille de glycoprotéines acides).
- o la chromogranine A (ChgA) co-libérée avec les catécholamines n'est pas sensible aux interférences médicamenteuses constatées pour les métanéphrines, il a une **excellente valeur prédictive négative.**
- Intérêt clinique de la ChgA: un marqueur général des tumeurs neuroendocrines;

NEUROBLASTOME

- Ce sont des tumeurs embryonnaires qui se développent à partir de cellules issues de la crête neurale.
- Les neuroblastomes peuvent siéger à tous les niveaux de l'organisme.
- La localisation rétropéritonéale est largement prédominante (75%),
- o la localisation médiastinale postérieure représente 20 % des cas (surtout au 1/3 supérieur).

Les autres localisations (pelviennes, cervicales, au niveau des ganglions sympathiques intra-craniens) sont plus rares.

• Ce sont des tumeurs malignes du jeune enfant, apparaissant entre 3 mois et 5 ans.

Le pronostic est sombre en l'absence de dépistage précoce:

Si le traitement est institué avant 1 an, la survie à 3 ans est de 75%,

Si le diagnostic intervient tardivement. après 2 ans, elle tombe à 15 %.

NEUROBLASTOME

- o la DA qui augmente souvent massivement.
- o Diagnostic: VMA, HVA, et DA suffit
- Il est important d'obtenir un prélèvement sur les urines des 24 heures, tout en sachant que ce type de recueil est difficile à réaliser vu l'âge des malades (inférieur à 2 ans).
- Pour pallier ce problème, les résultats peuvent être exprimés par comparaison à la créatininurie

•

MERCI DE VOTRE ATTENTION