

Prince Yaw Gharbin Yann Hoffmann Supervisor: Sergei Tikhomirov

Table of contents

- 1. Introduction
- 2. Lightning Network
- 3. New Security Threats
- 4. Probing Attacks
- 5. Conclusion

Introduction: Bitcoin

Bitcoin is a collection of rules and software specifications that enables distributed networks to conduct transactions anonymously and irreversibly.

- Bitcoin relies on the **blockchain** consensus mechanism to validate transactions.
- Bitcoin comes with a significant speed constraint (1MB + 10min):
 - \gt SWIFT \rightarrow 33.6 million per day
 - ightharpoonup Bitcoin ightharpoonup 604,800 per day, 55 times less
- Lightning Network addresses the problem of speed and capacity by letting users settle transactions among themselves in trustless off-chain channels.

The Lightning Network

- 1. Two nodes can create a channel by committing BTC to a **shared address**.
- Two characteristics: capacity and distribution of funds.
- 3. A payer and payee can then transact together even if they do not share a channel by **rerouting** through Lightning.
- 4. Lightning resorts to the blockchain only in case of **disputes**.
- 5. Lightning Network then becomes independent from the blockchain and unlocks the transfer rates.

Payment Channels

Key features:

- Privacy
- Speed
- Capacity
- Flexibility
- Security

New Security Threats

- 1. Lockdown
- 2. Eclipse
- 3. Probing

- → Victim A is a hub between two users, B and C.
- → Capacity values AB = p1 + p4.
- → Capacity values AC = p2 + p3 being pi the balances in each direction for each channel.
- → Objective of adversary James (J) is to disrupt the availability of A by either blocking incoming links or outgoing ones.
- ⇒ By rendering p1 = 0 and p3 = 0 or p2 = 0 and p4 = 0

Scenario 1

Scenario 2

Eclipse attack: Only node 1 is eclipsed because all of its connections lead to the attacker.

Probing attack in practice

Walkthrough:

- Setting up a route {attack, intermediary, node, target}
- Binary search

Epsilon (msat):	10	100	1000	10000
Nb. of iterations	27	23	20	17
Convergence (msat)	153,890,003	153,889,988	153,889,845	153,890,990
Probe #1 (s)	42.991	44.291	32.674	29.092
Probe #2 (s)	43.243	39.725	31.589	31.745
Probe #3 (s)	47.818	41.849	32.375	31.538
Probe #4 (s)	46.289	37.218	36.379	33.076
Probe #5 (s)	44.44	34.29	37.111	31.742
Mean probe du- ration (s)	1.67	1.72	1.70	1.85

References

- U. NISSLMUELLER, K.-T. FOERSTER, S. SCHMID & C. DECKER "Toward active and passive confidentiality attacks on cryptocurrency off-chain networks", arXiv preprint arXiv:2003.00003 (2020).
- C. PÉREZ-SOLÀ, A. RANCHAL-PEDROSA, J. HERRERA-JOANCOMARTÍ, G. NAVARRO-ARRIBAS & J. GARCIA-ALFARO – "Lockdown: Balance availability attack against lightning network channels", in *International* Conference on Financial Cryptography and Data Security, Springer, 2020, p. 245–263.
- A. RIARD & G. NAUMENKO "Time-dilation attacks on the lightning network", arXiv preprint arXiv:2006.01418 (2020).