Advanced Data Mining-Project

Joan Zhang

Sunday, March 06, 2016

Evaluate different algorithm (Random forest, Boosting, SVM and Neural network) from ML to predicate Puma Indian diabetes base upon patient's healthy measurement by using caret package from R

```
suppressMessages(library(caret))
## Warning: package 'ggplot2' was built under R version 3.2.4
db = read.csv(file="C:/Users/jzhanggn/Documents/diabetes.csv", header=TRUE, sep=",")
head(db)
##
     Nof.Pregnant plasma.glucose.concentra blood.pressure Tri.skin.Thickness
## 1
                 6
                                         148
                                                          72
## 2
                 1
                                           85
                                                          66
                                                                               29
                 8
                                                                                0
## 3
                                         183
                                                          64
## 4
                 1
                                           89
                                                          66
                                                                               23
## 5
                                         137
                                                          40
                                                                               35
                                                          74
## 6
                                         116
##
     serum.insulin body.mass.index diabetes.pedigree.func age Class
## 1
                                                       0.627
                                                               50
                                                                      1
## 2
                  0
                                26.6
                                                       0.351
                                                                      0
                                                              31
                                23.3
## 3
                  0
                                                       0.672
                                                              32
                                                                      1
## 4
                 94
                                28.1
                                                       0.167
                                                               21
## 5
                168
                                43.1
                                                       2.288
                                                                      1
## 6
                                25.6
                                                       0.201
```

```
dim(db)
```

```
## [1] 768
              9
```

```
summary(db)
```

```
##
    Nof.Pregnant
                     plasma.glucose.concentra blood.pressure
##
   Min.
          : 0.000
                            : 0.0
                                              Min.
##
    1st Qu.: 1.000
                     1st Qu.: 99.0
                                              1st Qu.: 62.00
   Median : 3.000
                     Median :117.0
                                              Median : 72.00
##
   Mean
         : 3.845
                     Mean
                            :120.9
                                              Mean
                                                      : 69.11
##
    3rd Qu.: 6.000
                     3rd Qu.:140.2
                                              3rd Qu.: 80.00
##
##
   Max.
          :17.000
                     Max.
                            :199.0
                                              Max.
                                                      :122.00
##
   Tri.skin.Thickness serum.insulin
                                       body.mass.index diabetes.pedigree.func
                              : 0.0
   Min.
           : 0.00
                       Min.
                                               : 0.00
                                                        Min.
                                       Min.
                                                               :0.0780
##
   1st Qu.: 0.00
                       1st Qu.: 0.0
                                       1st Qu.:27.30
##
                                                        1st Qu.:0.2437
   Median :23.00
                       Median : 30.5
                                       Median :32.00
##
                                                        Median :0.3725
   Mean
         :20.54
                       Mean : 79.8
                                       Mean :31.99
##
                                                        Mean
                                                              :0.4719
##
    3rd Ou.:32.00
                       3rd Ou.:127.2
                                       3rd Qu.:36.60
                                                        3rd Ou.:0.6262
   Max.
           :99.00
                       Max.
                              :846.0
                                       Max.
                                              :67.10
                                                        Max.
                                                               :2.4200
##
##
         age
                        Class
##
   Min.
           :21.00
                    Min.
                           :0.000
   1st Qu.:24.00
                    1st Qu.:0.000
##
##
   Median :29.00
                    Median :0.000
   Mean
         :33.24
                    Mean
                           :0.349
##
   3rd Qu.:41.00
                    3rd Qu.:1.000
##
           :81.00
##
   Max.
                    Max.
                           :1.000
```

```
attach(db)
Class =as.factor(ifelse(Class == 1, "Y", "N"))
head(db)
```

```
Nof.Pregnant plasma.glucose.concentra blood.pressure Tri.skin.Thickness
##
## 1
                                          148
                 6
                                                           72
                                                                                35
                 1
                                                                                29
## 2
                                           85
                                                           66
## 3
                 8
                                          183
                                                           64
                                                                                 0
## 4
                 1
                                           89
                                                           66
                                                                                23
## 5
                 0
                                                           40
                                                                                35
                                          137
                 5
## 6
                                          116
                                                           74
                                                                                 0
##
     serum.insulin body.mass.index diabetes.pedigree.func age Class
## 1
                  0
                                33.6
                                                        0.627
                                                               50
                                                                       1
## 2
                  0
                                26.6
                                                        0.351 31
                                                                       0
## 3
                  0
                                23.3
                                                        0.672
                                                               32
                                                                       1
## 4
                 94
                                28.1
                                                        0.167
                                                               21
                                                                       0
## 5
                168
                                43.1
                                                        2.288
                                                               33
                                                                       1
## 6
                  0
                                25.6
                                                        0.201 30
                                                                       0
```

```
db = db[-9]
cor(db)
```

```
##
                             Nof.Pregnant plasma.glucose.concentra
## Nof.Pregnant
                               1.00000000
                                                         0.12945867
## plasma.glucose.concentra
                               0.12945867
                                                         1.00000000
## blood.pressure
                               0.14128198
                                                         0.15258959
## Tri.skin.Thickness
                              -0.08167177
                                                         0.05732789
## serum.insulin
                              -0.07353461
                                                         0.33135711
## body.mass.index
                               0.01768309
                                                        0.22107107
## diabetes.pedigree.func
                              -0.03352267
                                                        0.13733730
## age
                               0.54434123
                                                        0.26351432
##
                             blood.pressure Tri.skin.Thickness serum.insulin
## Nof.Pregnant
                                 0.14128198
                                                   -0.08167177
                                                                  -0.07353461
## plasma.glucose.concentra
                                 0.15258959
                                                    0.05732789
                                                                   0.33135711
## blood.pressure
                                                    0.20737054
                                                                   0.08893338
                                 1.00000000
## Tri.skin.Thickness
                                 0.20737054
                                                    1.00000000
                                                                   0.43678257
## serum.insulin
                                 0.08893338
                                                    0.43678257
                                                                   1.00000000
## body.mass.index
                                                    0.39257320
                                 0.28180529
                                                                   0.19785906
## diabetes.pedigree.func
                                 0.04126495
                                                    0.18392757
                                                                   0.18507093
## age
                                 0.23952795
                                                   -0.11397026
                                                                  -0.04216295
##
                             body.mass.index diabetes.pedigree.func
## Nof.Pregnant
                                  0.01768309
                                                         -0.03352267
## plasma.glucose.concentra
                                  0.22107107
                                                          0.13733730
## blood.pressure
                                                          0.04126495
                                  0.28180529
## Tri.skin.Thickness
                                  0.39257320
                                                          0.18392757
## serum.insulin
                                  0.19785906
                                                          0.18507093
## body.mass.index
                                  1.00000000
                                                          0.14064695
## diabetes.pedigree.func
                                  0.14064695
                                                          1.00000000
## age
                                  0.03624187
                                                          0.03356131
##
                                     age
## Nof.Pregnant
                              0.54434123
## plasma.glucose.concentra
                             0.26351432
## blood.pressure
                              0.23952795
## Tri.skin.Thickness
                             -0.11397026
## serum.insulin
                             -0.04216295
## body.mass.index
                              0.03624187
## diabetes.pedigree.func
                              0.03356131
## age
                              1.00000000
```

```
db = cbind(db, Class)
attach(db)
```

```
## The following object is masked _by_ .GlobalEnv:
##
## Class
```

```
## The following objects are masked from db (pos = 3):
##
## age, blood.pressure, body.mass.index, Class,
## diabetes.pedigree.func, Nof.Pregnant,
## plasma.glucose.concentra, serum.insulin, Tri.skin.Thickness
```

head(db)

```
Nof.Pregnant plasma.glucose.concentra blood.pressure Tri.skin.Thickness
##
## 1
                                         148
## 2
                 1
                                          85
                                                          66
                                                                              29
                                                                               0
## 3
                 8
                                         183
                                                          64
## 4
                 1
                                          89
                                                          66
                                                                              23
## 5
                                         137
                                                          40
                                                                              35
                 0
                                                          74
## 6
                 5
                                         116
                                                                               0
     serum.insulin body.mass.index diabetes.pedigree.func age Class
##
                                                       0.627
## 1
                  0
                               33.6
                                                              50
## 2
                  0
                               26.6
                                                       0.351 31
                                                                      N
## 3
                               23.3
                                                       0.672 32
                                                                      Υ
                  0
                               28.1
                                                       0.167 21
## 4
                 94
## 5
                168
                               43.1
                                                       2.288
                                                                      Υ
## 6
                               25.6
                                                       0.201 30
```

Split training and test

```
set.seed(1)
inTraining = createDataPartition(Class, p = .7, list = F)
training = db[inTraining,]
testing = db[-inTraining,]
```

use different traing control (Kappa or ROC)

```
fitControl.1 = trainControl(method = 'repeatedcv', number = 10, repeats = 5)
fitControl.2 = trainControl(method = "repeatedcv", repeats = 5, classProbs = TRUE, summaryFunc
tion= twoClassSummary)
```

1. RandomForest

```
library(pROC)
```

```
## Type 'citation("pROC")' for a citation.
```

```
##
## Attaching package: 'pROC'
```

```
## The following objects are masked from 'package:stats':
##

cov, smooth, var
```

```
set.seed(1)
rf.start.time.1 = proc.time()
rfFit1 = train(Class~., data=training, trControl = fitControl.1, verbose = F)
```

```
## Loading required package: randomForest
```

```
## randomForest 4.6-12
```

Type rfNews() to see new features/changes/bug fixes.

```
##
## Attaching package: 'randomForest'
```

```
## The following object is masked from 'package:ggplot2':
##
## margin
```

```
rf.total.time.1 = proc.time() - rf.start.time.1
rf.total.time.1[3]
```

```
## elapsed
## 44.04
```

plot(rfFit1)

#Check variable importance
plot(varImp(rfFit1))

plot(rfFit1\$finalModel) #check classfication error rate and # of trees used

rfFit1\$finalModel

#The train function can generate a candidate set of parameter values and the tuneLength argument controls how many are evaluated.

```
rf.start.time.2 = proc.time()
rfFit2 = train(Class~., data = training, method = "rf", tuneLength = 5, trControl =
fitControl.2, metric = "ROC", preProc = c("center", "scale"))
rf.total.time.2 = proc.time() - rf.start.time.2
rf.total.time.2[3]
```

```
## elapsed
## 69.92
```

rfFit2

```
## Random Forest
##
##
  538 samples
##
    8 predictor
     2 classes: 'N', 'Y'
##
##
## Pre-processing: centered (8), scaled (8)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
  Summary of sample sizes: 485, 484, 484, 484, 484, 484, ...
  Resampling results across tuning parameters:
##
##
    mtry
          ROC
                     Sens
                                Spec
                                           ROC SD
                                                       Sens SD
                                                                   Spec SD
##
    2
          0.8399215
                     0.8491429
                                0.6120468
                                           0.05769763
                                                       0.06903632 0.1200342
          0.8420693
                     0.8445714
                                0.6119883 0.05821169 0.07166956 0.1149005
##
    3
##
    5
          0.8402448
                     0.8428571 0.6267251 0.05964978 0.06562423 0.1140368
          0.8376416
                     0.8428571
                                0.6193567
                                           0.06063400 0.06737785
##
    6
                                                                   0.1105091
##
          0.8367469
                     0.8428571 0.6214035 0.06148074 0.06811559 0.1056342
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 3.
```

#show the relationship between the resampled performance value and predicators plot(rfFit2)


```
#the default behavior is to calculated the predicted class
rfClass=predict(rfFit2, newdata=testing)
#to compute class probabilities from the model.
rfProbs <- predict(rfFit2, newdata = testing, type = "prob")
head(rfProbs)</pre>
```

```
## N Y

## 2 0.888 0.112

## 3 0.372 0.628

## 4 0.990 0.010

## 6 0.868 0.132

## 8 0.374 0.626

## 9 0.204 0.796
```

```
#Plot test probablity
histogram(~rfProbs$N|testing$Class, xlab = "Probability of Diabetes")
```



```
#Compute confusion matrix and associated statistics for the model fit

r.c = confusionMatrix(data = rfClass, testing$Class)
r.Accuracy = r.c$overall[1]
r.kappa = r.c$overall[2]
#plot ROC
rfROC <- roc(testing$Class, rfProbs[, 1], levels(testing$Class))
rfROC$auc</pre>
```

```
## Area under the curve: 0.802
```

```
plot(rfROC, type = "S", print.thres = .5)
```


2. Boosting

```
set.seed(1)
boost.start.time = proc.time()
gbmFit = train(Class~., data = training, method = "gbm", tuneLength = 5, trControl = fitControl.
2, metric = "ROC", preProc = c("center", "scale"))
## Loading required package: gbm
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:caret':
##
##
       cluster
## Loading required package: splines
## Loading required package: parallel
## Loaded gbm 2.1.1
## Loading required package: plyr
```

٠,	2011				7 lavarioca Date	a willing i roject
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2550	nan	0.1000	0.0148
	##	2	1.2239	nan	0.1000	0.0132
	##	3	1.1959	nan	0.1000	0.0124
	##	4	1.1756	nan	0.1000	0.0088
	##	5	1.1529	nan	0.1000	0.0098
	##	6	1.1353	nan	0.1000	0.0068
	##	7	1.1195	nan	0.1000	0.0057
	##	8	1.1042	nan	0.1000	0.0055
	##	9	1.0903	nan	0.1000	0.0042
	##	10	1.0794	nan	0.1000	0.0038
	##	20	0.9800	nan	0.1000	0.0019
	##	40	0.8938	nan	0.1000	-0.0011
	##	60	0.8398	nan	0.1000	-0.0003
	##	80	0.8124	nan	0.1000	-0.0006
	##	100	0.7948	nan	0.1000	-0.0018
	##	120	0.7723	nan	0.1000	-0.0020
	##	140	0.7566	nan	0.1000	-0.0007
	##	160	0.7457	nan	0.1000	-0.0005
	##	180	0.7345	nan	0.1000	-0.0018
	##	200	0.7244	nan	0.1000	-0.0019
	##	220	0.7153	nan	0.1000	-0.0020
	##	240	0.7067	nan	0.1000	-0.0010
	##	250	0.7041	nan	0.1000	-0.0015
	##		077012		0.1200	0.0025
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2439	nan	0.1000	0.0231
	##	2	1.2023	nan	0.1000	0.0155
	##	3	1.1700	nan	0.1000	0.0163
	##	4	1.1337	nan	0.1000	0.0152
	##	5	1.1051	nan	0.1000	0.0107
	##	6	1.0789	nan	0.1000	0.0109
	##	7	1.0581	nan	0.1000	0.0087
	##	8	1.0403	nan	0.1000	0.0065
	##	9	1.0234	nan	0.1000	0.0049
	##	10	1.0067	nan	0.1000	0.0058
	##	20	0.9001	nan	0.1000	0.0012
	##	40	0.7973	nan	0.1000	-0.0003
	##	60	0.7448	nan	0.1000	-0.0011
	##	80	0.7125	nan	0.1000	-0.0011
	##	100	0.6850	nan	0.1000	-0.0004
	##	120	0.6543	nan	0.1000	-0.0007
	##	140	0.6298	nan	0.1000	-0.0018
	##	160	0.6063	nan	0.1000	-0.0027
	##	180	0.5790	nan	0.1000	-0.0007
	##	200	0.5618	nan	0.1000	-0.0018
	##	220	0.5483	nan	0.1000	-0.0022
	##	240	0.5308	nan	0.1000	-0.0003
	##	250	0.5211	nan	0.1000	-0.0015
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2438	nan	0.1000	0.0257
	##	2	1.1906	nan	0.1000	0.0244

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Bat	a willing i rojec
##	3	1.1520	nan	0.1000	0.0156
##	4	1.1198	nan	0.1000	0.0148
##	5	1.0866	nan	0.1000	0.0141
##	6	1.0671	nan	0.1000	0.0033
##	7	1.0446	nan	0.1000	0.0076
##	8	1.0216	nan	0.1000	0.0068
##	9	0.9969	nan	0.1000	0.0088
##	10	0.9740	nan	0.1000	0.0101
##	20	0.8457	nan	0.1000	0.0011
##	40	0.7399	nan	0.1000	-0.0029
##	60	0.6695	nan	0.1000	-0.0038
##	80	0.6144	nan	0.1000	-0.0028
##	100	0.5663	nan	0.1000	-0.0028
##	120	0.5273	nan	0.1000	-0.0011
##	140	0.4931	nan	0.1000	-0.0008
##	160	0.4560	nan	0.1000	-0.0018
##	180	0.4294	nan	0.1000	-0.0024
##	200	0.4041	nan	0.1000	-0.0012
##	220	0.3866	nan	0.1000	-0.0030
##	240	0.3687	nan	0.1000	-0.0018
##	250	0.3589	nan	0.1000	-0.0017
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2312	nan	0.1000	0.0263
##	2	1.1799	nan	0.1000	0.0184
##	3	1.1317	nan	0.1000	0.0157
##	4	1.0904	nan	0.1000	0.0139
##	5	1.0522	nan	0.1000	0.0158
##	6	1.0232	nan	0.1000	0.0095
##	7	0.9974	nan	0.1000 0.1000	0.0095
##	8 9	0.9755 0.9552	nan	0.1000	0.0056 0.0072
##	10	0.9326	nan nan	0.1000	0.0072
##	20	0.8106	nan	0.1000	-0.0015
##	40	0.6976	nan	0.1000	-0.0017
##	60	0.6244	nan	0.1000	-0.0017
##	80	0.5636	nan	0.1000	-0.0026
##	100	0.5160	nan	0.1000	0.0000
##	120	0.4672	nan	0.1000	-0.0007
##	140	0.4260	nan	0.1000	0.0000
##	160	0.3919	nan	0.1000	-0.0009
##	180	0.3589	nan	0.1000	-0.0016
##	200	0.3344	nan	0.1000	-0.0009
##	220	0.3044	nan	0.1000	-0.0021
##	240	0.2808	nan	0.1000	-0.0011
##	250	0.2695	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2309	nan	0.1000	0.0259
##	2	1.1697	nan	0.1000	0.0252
##	3	1.1198	nan	0.1000	0.0187
##	4	1.0788	nan	0.1000	0.0190
##	5	1.0420	nan	0.1000	0.0161
##	6	1.0077	nan	0.1000	0.0122

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Ball	a willing i rojco
##	7	0.9823	nan	0.1000	0.0054
##	8	0.9588	nan	0.1000	0.0034
##	9	0.9367	nan	0.1000	0.0048
##	10	0.9166	nan	0.1000	0.0041
##	20	0.7688	nan	0.1000	0.0004
##	40	0.6332	nan	0.1000	-0.0015
##	60	0.5399	nan	0.1000	-0.0020
##	80	0.4732	nan	0.1000	-0.0016
##	100	0.4254	nan	0.1000	-0.0020
##	120	0.3833	nan	0.1000	-0.0015
##	140	0.3420	nan	0.1000	-0.0019
##	160	0.3075	nan	0.1000	-0.0011
##	180	0.2789	nan	0.1000	-0.0017
##	200	0.2506	nan	0.1000	-0.0018
##	220	0.2274	nan	0.1000	-0.0025
##	240	0.2081	nan	0.1000	-0.0017
##	250	0.2003	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2574	nan	0.1000	0.0183
##	2	1.2179	nan	0.1000	0.0147
##	3	1.1916	nan	0.1000	0.0114
##	4	1.1680	nan	0.1000	0.0085
##	5	1.1483	nan	0.1000	0.0076
##	6	1.1297	nan	0.1000	0.0074
##	7	1.1120	nan	0.1000	0.0071
##	8	1.0926	nan	0.1000	0.0083
##	9	1.0770	nan	0.1000	0.0048
##	10	1.0624	nan	0.1000	0.0067
##	20	0.9601	nan	0.1000	0.0009
##	40	0.8735	nan	0.1000	0.0003
##	60	0.8271	nan	0.1000	0.0007
##	80	0.7953	nan	0.1000	0.0005
##	100	0.7730	nan	0.1000	-0.0007
##	120	0.7537	nan	0.1000	-0.0026
##	140	0.7367	nan	0.1000	-0.0010
##	160	0.7268	nan	0.1000	-0.0003
##	180	0.7188	nan	0.1000	-0.0022
##	200	0.7086	nan	0.1000	-0.0010
##	220	0.7004	nan	0.1000	-0.0007
##	240	0.6933	nan	0.1000	-0.0005
##	250	0.6873	nan	0.1000	-0.0010
##					_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2465	nan	0.1000	0.0217
##	2	1.2018	nan	0.1000	0.0203
##	3	1.1659	nan	0.1000	0.0163
##	4	1.1371	nan	0.1000	0.0116
##	5	1.1082	nan	0.1000	0.0127
##	6	1.0818	nan	0.1000	0.0114
##	7	1.0594	nan	0.1000	0.0098
##	8	1.0379	nan	0.1000	0.0090
##	9	1.0199	nan	0.1000	0.0069
##	10	1.0028	nan	0.1000	0.0071

<i>"</i> 2 0 1 <i>1</i>				/ laval loca Dall	a willing i rojec
##	20	0.8924	nan	0.1000	0.0012
##	40	0.7867	nan	0.1000	-0.0014
##	60	0.7303	nan	0.1000	-0.0002
##	80	0.6886	nan	0.1000	-0.0030
##	100	0.6483	nan	0.1000	-0.0009
##	120	0.6257	nan	0.1000	0.0003
##	140	0.6035	nan	0.1000	-0.0015
##	160	0.5829	nan	0.1000	-0.0015
##	180	0.5670	nan	0.1000	-0.0021
##	200	0.5485	nan	0.1000	-0.0018
##	220	0.5277	nan	0.1000	-0.0009
##	240	0.5117	nan	0.1000	-0.0014
##	250	0.5031	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2337	nan	0.1000	0.0242
##	2	1.1933	nan	0.1000	0.0158
##	3	1.1453	nan	0.1000	0.0215
##	4	1.1153	nan	0.1000	0.0095
##	5	1.0783	nan	0.1000	0.0149
##	6	1.0509	nan	0.1000	0.0082
##	7	1.0193	nan	0.1000	0.0116
##	8	0.9983	nan	0.1000	0.0076
##	9	0.9741	nan	0.1000	0.0089
##	10	0.9538	nan	0.1000	0.0065
##	20	0.8283	nan	0.1000	0.0033
##	40	0.7234	nan	0.1000	-0.0005
##	60	0.6514	nan	0.1000	-0.0013
##	80	0.6069	nan	0.1000	-0.0004
##	100	0.5680	nan	0.1000	-0.0029
##	120	0.5280	nan	0.1000	-0.0020
##	140	0.4962	nan	0.1000	-0.0025
##	160	0.4653	nan	0.1000	-0.0020
##	180	0.4419	nan	0.1000	-0.0016
##	200	0.4182	nan	0.1000	-0.0021
##	220	0.3944	nan	0.1000	-0.0005
##	240	0.3711	nan	0.1000	-0.0003
##	250	0.3595	nan	0.1000	-0.0009
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2308	nan	0.1000	0.0260
##	2	1.1694	nan	0.1000	0.0234
##	3	1.1225	nan	0.1000	0.0220
##	4	1.0892	nan	0.1000	0.0100
##	5	1.0521	nan	0.1000	0.0131
##	6	1.0198	nan	0.1000	0.0146
##	7	0.9846	nan	0.1000	0.0140
##	8	0.9651	nan	0.1000	0.0048
##	9	0.9467	nan	0.1000	0.0039
##	10	0.9300	nan	0.1000	0.0036
##	20	0.8009	nan	0.1000	-0.0007
##	40	0.6787	nan	0.1000	-0.0035
##	60	0.6091	nan	0.1000	-0.0035
##	80	0.5513	nan	0.1000	-0.0025

12011				/ lavarioca Dat	a mining i rojeo
##	100	0.4998	nan	0.1000	-0.0014
##	120	0.4595	nan	0.1000	-0.0026
##	140	0.4263	nan	0.1000	-0.0023
##	160	0.3838	nan	0.1000	-0.0013
##	180	0.3533	nan	0.1000	-0.0011
##	200	0.3241	nan	0.1000	-0.0011
##	220	0.2977	nan	0.1000	-0.0018
##	240	0.2713	nan	0.1000	-0.0008
##	250	0.2633	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2265	nan	0.1000	0.0281
##	2	1.1641	nan	0.1000	0.0270
##	3	1.1155	nan	0.1000	0.0190
##	4	1.0735	nan	0.1000	0.0146
##	5	1.0409	nan	0.1000	0.0109
##	6	1.0101	nan	0.1000	0.0102
##	7	0.9787	nan	0.1000	0.0093
##	8	0.9526	nan	0.1000	0.0108
##	9	0.9320	nan	0.1000	0.0037
##	10	0.9108	nan	0.1000	0.0046
##	20	0.7748	nan	0.1000	0.0003
##	40	0.6461	nan	0.1000	-0.0013
##	60	0.5572	nan	0.1000	-0.0020
##	80	0.4852	nan	0.1000	-0.0017
##	100	0.4362	nan	0.1000	-0.0014
##	120	0.3845	nan	0.1000	-0.0021
##	140	0.3459	nan	0.1000	-0.0019
##	160	0.3076	nan	0.1000	-0.0022
##	180	0.2735	nan	0.1000	-0.0010
##	200	0.2427	nan	0.1000	-0.0009
##	220	0.2185	nan	0.1000	-0.0011
##	240	0.2002	nan	0.1000	-0.0014
##	250	0.1909	nan	0.1000	-0.0008
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2546	nan	0.1000	0.0177
##	2	1.2229	nan	0.1000	0.0119
##	3	1.1975	nan	0.1000	0.0114
##	4	1.1751	nan	0.1000	0.0084
##	5	1.1543	nan	0.1000	0.0065
##	6	1.1340	nan	0.1000	0.0053
##	7	1.1173	nan	0.1000	0.0052
##	8	1.1016	nan	0.1000	0.0063
##	9	1.0836	nan	0.1000	0.0057
##	10	1.0702	nan	0.1000	0.0047
##	20	0.9791	nan	0.1000	-0.0004
##	40	0.8904	nan	0.1000	0.0024
##	60 80	0.8482	nan	0.1000	-0.0011
##	80 100	0.8221	nan	0.1000	-0.0003
##	100	0.8038	nan	0.1000	-0.0011 -0.0012
##	120	0.7876	nan	0.1000	-0.0012
##	140	0.7746 0.7597	nan	0.1000	-0.0007 -0.0008
##	160	0.7597	nan	0.1000	-0.0008

12011				/ lavarioca Bat	a mining i rojec
##	180	0.7481	nan	0.1000	-0.0012
##	200	0.7390	nan	0.1000	-0.0017
##	220	0.7325	nan	0.1000	-0.0008
##	240	0.7247	nan	0.1000	-0.0017
##	250	0.7187	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2480	nan	0.1000	0.0220
##	2	1.2087	nan	0.1000	0.0163
##	3	1.1717	nan	0.1000	0.0121
##	4	1.1473	nan	0.1000	0.0095
##	5	1.1223	nan	0.1000	0.0092
##	6	1.0940	nan	0.1000	0.0080
##	7	1.0740	nan	0.1000	0.0088
##	8	1.0523	nan	0.1000	0.0074
##	9	1.0342	nan	0.1000	0.0069
##	10	1.0160	nan	0.1000	0.0062
##	20	0.9102	nan	0.1000	0.0005
##	40	0.8113	nan	0.1000	-0.0020
##	60	0.7636	nan	0.1000	-0.0026
##	80	0.7276	nan	0.1000	-0.0025
##	100	0.6907	nan	0.1000	-0.0009
##	120	0.6621	nan	0.1000	-0.0031
##	140	0.6405	nan	0.1000	-0.0012
##	160	0.6186	nan	0.1000	-0.0011
##	180	0.5992	nan	0.1000	-0.0019
##	200	0.5799	nan	0.1000	-0.0017
##	220	0.5606	nan	0.1000	-0.0013
##	240	0.5411	nan	0.1000	-0.0019
##	250	0.5303	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2353	nan		0.0257
##	2	1.1836	nan	0.1000	0.0221
##	3	1.1428	nan	0.1000	0.0117
##	4	1.1086	nan	0.1000	0.0131
##	5	1.0803	nan	0.1000	0.0124
##	6	1.0546	nan	0.1000	0.0085
##	7	1.0306	nan	0.1000	0.0094
##	8	1.0099	nan	0.1000	0.0057
##	9	0.9899	nan	0.1000	0.0081
##	10	0.9716	nan	0.1000	0.0037
##	20	0.8580	nan	0.1000	-0.0000
##	40	0.7555	nan	0.1000	-0.0003
##	60	0.6886	nan	0.1000	-0.0023
##	80	0.6431	nan	0.1000	-0.0030
##	100	0.6031	nan	0.1000	-0.0027
##	120	0.5606	nan	0.1000	-0.0004
##	140	0.5280	nan	0.1000	-0.0030
##	160	0.4904	nan	0.1000	-0.0026
##	180	0.4586	nan	0.1000	-0.0009
##	200	0.4362	nan	0.1000	-0.0022
##	220	0.4118	nan	0.1000	-0.0027
##	240	0.3900	nan	0.1000	-0.0009

шш	250	0 2700		0.1000	0.0013
##	250	0.3789	nan	0.1000	-0.0013
##	- .	-	v 1: lb :	c. c:	-
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2314	nan	0.1000	0.0263
##	2	1.1814	nan	0.1000	0.0217
##	3	1.1372	nan	0.1000	0.0212
##	4	1.1007	nan	0.1000	0.0152
##	5	1.0704	nan	0.1000	0.0124
##	6	1.0439	nan	0.1000	0.0104
##	7	1.0197	nan	0.1000	0.0061
##	8	0.9972	nan	0.1000	0.0060
##	9	0.9717	nan	0.1000	0.0089
##	10	0.9531	nan	0.1000	0.0065
##	20	0.8274	nan	0.1000	0.0010
##	40	0.7034	nan	0.1000	-0.0005
##	60	0.6351	nan	0.1000	-0.0037
##	80	0.5762	nan	0.1000	-0.0015
##	100	0.5232	nan	0.1000	-0.0021
##	120	0.4784	nan	0.1000	-0.0005
##	140	0.4358	nan	0.1000	-0.0008
##	160	0.3979	nan	0.1000	-0.0009
##	180	0.3645	nan	0.1000	-0.0007
##	200	0.3373	nan	0.1000	-0.0027
##	220	0.3094	nan	0.1000	-0.0013
##	240	0.2855	nan	0.1000	-0.0016
##	250	0.2763	nan	0.1000	-0.0014
##				c. c.	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2295	nan	0.1000	0.0237
##	2	1.1696	nan	0.1000	0.0228
##	3	1.1221	nan	0.1000	0.0176
##	4	1.0864	nan	0.1000	0.0113
##	5	1.0473	nan	0.1000	0.0137
##	6	1.0108	nan	0.1000	0.0112
##	7	0.9849	nan	0.1000	0.0076
##	8	0.9564	nan	0.1000	0.0060
##	9	0.9388	nan	0.1000	0.0045
##	10			0 4000	
	10	0.9170	nan	0.1000	0.0073
##	20	0.7945	nan	0.1000	0.0018
##	20 40	0.7945 0.6645	nan nan	0.1000 0.1000	0.0018 -0.0053
##	20 40 60	0.7945 0.6645 0.5789	nan nan nan	0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021
## ## ##	20 40 60 80	0.7945 0.6645 0.5789 0.5142	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026
## ## ## ##	20 40 60 80 100	0.7945 0.6645 0.5789 0.5142 0.4634	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007
## ## ## ##	20 40 60 80 100 120	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015
## ## ## ## ##	20 40 60 80 100 120 140	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020
## ## ## ## ## ##	20 40 60 80 100 120 140 160	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009
## ## ## ## ## ##	20 40 60 80 100 120 140 160	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009
## ## ## ## ## ## ##	20 40 60 80 100 120 140 160 180 200	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0009
## ## ## ## ## ## ##	20 40 60 80 100 120 140 160 200 220	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031 0.2792	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0009 -0.0023 -0.0013
## ## ## ## ## ## ##	20 40 60 80 100 120 140 160 180 200 240	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031 0.2792 0.2542 0.2302	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0009 -0.0023 -0.0013
## ## ## ## ## ## ##	20 40 60 80 100 120 140 160 200 220	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031 0.2792	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0009 -0.0023 -0.0013
## ## ## ## ## ## ## ##	20 40 60 80 100 140 160 200 220 240 250	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031 0.2792 0.2542 0.2302 0.2198	nan nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0023 -0.0013 -0.0014 -0.0005
## ## ## ## ## ## ## ##	20 40 60 80 100 120 140 160 180 200 240	0.7945 0.6645 0.5789 0.5142 0.4634 0.4191 0.3764 0.3377 0.3031 0.2792 0.2542 0.2302	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0018 -0.0053 -0.0021 -0.0026 -0.0007 -0.0015 -0.0020 -0.0009 -0.0009 -0.0023 -0.0013

/2017				Auvanceu Dau	a willing-Frojec
##	2	1.2223	nan	0.1000	0.0127
##	3	1.1928	nan	0.1000	0.0119
##	4	1.1709	nan	0.1000	0.0110
##	5	1.1488	nan	0.1000	0.0091
##	6	1.1297	nan	0.1000	0.0080
##	7	1.1123	nan	0.1000	0.0056
##	8	1.0950	nan	0.1000	0.0080
##	9	1.0802	nan	0.1000	0.0050
##	10	1.0627	nan	0.1000	0.0051
##	20	0.9627	nan	0.1000	0.0021
##	40	0.8792	nan	0.1000	0.0005
##	60	0.8459	nan	0.1000	0.0004
##	80	0.8253	nan	0.1000	-0.0001
##	100	0.8094	nan	0.1000	-0.0007
##	120	0.7964	nan	0.1000	-0.0019
##	140	0.7798	nan	0.1000	0.0001
##	160	0.7684	nan	0.1000	-0.0014
##	180	0.7588	nan	0.1000	-0.0006
##	200	0.7459	nan	0.1000	-0.0010
##	220	0.7380	nan	0.1000	-0.0005
##	240	0.7300	nan	0.1000	-0.0018
##	250	0.7268	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2508	nan	0.1000	0.0148
##	2	1.2139	nan	0.1000	0.0172
##	3	1.1768	nan	0.1000	0.0169
##	4	1.1376	nan	0.1000	0.0164
##	5	1.1077	nan	0.1000	0.0122
##	6	1.0857	nan	0.1000	0.0101
##	7	1.0605	nan	0.1000	0.0098
##	8	1.0426	nan	0.1000	0.0067
##	9	1.0245	nan	0.1000	0.0082
##	10	1.0036	nan	0.1000	0.0088
##	20	0.8967	nan	0.1000	0.0011
##	40	0.8132	nan	0.1000	0.0007
##	60	0.7642	nan	0.1000	-0.0001
##	80	0.7364	nan	0.1000	-0.0002
##	100	0.7054	nan	0.1000	-0.0018
##	120	0.6793	nan	0.1000	-0.0011
##	140	0.6467	nan	0.1000	-0.0016
##	160	0.6228	nan	0.1000	-0.0017
##	180 200	0.6036 0.5881	nan	0.1000 0.1000	-0.0022 -0.0024
	220		nan		
##	240	0.5675 0.5520	nan	0.1000 0.1000	-0.0018 -0.0012
##	250	0.5425	nan	0.1000	-0.0012
##	230	0.3423	nan	0.1000	-0.0019
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2353	nan	0.1000	0.0211
##	2	1.1858	nan	0.1000	0.0198
##	3	1.1404	nan	0.1000	0.0138
##	4	1.1091	nan	0.1000	0.0173
##	5	1.0736	nan	0.1000	0.0155
''''	,	1.0750	11411	0.1000	0.0100

12011				/ lavarioca Dat	a mining i rojeo
##	6	1.0497	nan	0.1000	0.0092
##	7	1.0251	nan	0.1000	0.0126
##	8	1.0011	nan	0.1000	0.0073
##	9	0.9798	nan	0.1000	0.0046
##	10	0.9646	nan	0.1000	0.0025
##	20	0.8476	nan	0.1000	0.0011
##	40	0.7526	nan	0.1000	-0.0022
##	60	0.6946	nan	0.1000	-0.0020
##	80	0.6410	nan	0.1000	-0.0015
##	100	0.5985	nan	0.1000	-0.0028
##	120	0.5571	nan	0.1000	-0.0035
##	140	0.5228	nan	0.1000	-0.0017
##	160	0.4936	nan	0.1000	-0.0016
##	180	0.4657	nan	0.1000	-0.0020
##	200	0.4405	nan	0.1000	-0.0024
##	220	0.4114	nan	0.1000	-0.0020
##	240	0.3920	nan	0.1000	-0.0015
##	250	0.3826	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2290	nan	0.1000	0.0287
##	2	1.1749	nan	0.1000	0.0239
##	3	1.1271	nan	0.1000	0.0202
##	4	1.0855	nan	0.1000	0.0146
##	5	1.0570	nan	0.1000	0.0079
##	6	1.0246	nan	0.1000	0.0099
##	7	0.9962	nan	0.1000	0.0095
##	8	0.9691	nan	0.1000	0.0056
##	9	0.9526	nan	0.1000	0.0041
##	10	0.9359	nan	0.1000	0.0038
##	20	0.8057	nan	0.1000	0.0010
##	40	0.7103	nan	0.1000	-0.0009
##	60	0.6265	nan	0.1000	-0.0018
##	80	0.5671	nan	0.1000	-0.0012
##	100	0.5152	nan	0.1000	-0.0008
##	120	0.4763	nan	0.1000	-0.0024
##	140	0.4364	nan	0.1000	-0.0017
##	160	0.3992	nan	0.1000	-0.0007
##	180	0.3711	nan	0.1000	-0.0041
##	200	0.3440	nan	0.1000	-0.0017
##	220	0.3234	nan	0.1000	-0.0009
##	240	0.2987	nan	0.1000	-0.0007
##	250	0.2892	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2297	nan	0.1000	0.0229
##	2	1.1678	nan	0.1000	0.0230
##	3	1.1196	nan	0.1000	0.0214
##	4	1.0776	nan	0.1000	0.0138
##	5	1.0405	nan	0.1000	0.0113
##	6	1.0053	nan	0.1000	0.0130
##	7	0.9789	nan	0.1000	0.0089
##	8	0.9544	nan	0.1000	0.0066
##	9	0.9344	nan	0.1000	0.0050
I					

					3 -,
##	10	0.9138	nan	0.1000	0.0032
##	20	0.7890	nan	0.1000	-0.0014
##	40	0.6581	nan	0.1000	-0.0010
##	60	0.5718	nan	0.1000	-0.0037
##	80	0.5102	nan	0.1000	-0.0032
##	100	0.4549	nan	0.1000	-0.0027
##	120	0.4036	nan	0.1000	-0.0031
##	140	0.3626	nan	0.1000	-0.0018
##	160	0.3244	nan	0.1000	-0.0002
##	180	0.2926	nan	0.1000	-0.0023
##	200	0.2630	nan	0.1000	-0.0013
##	220	0.2389	nan	0.1000	-0.0023
##	240	0.2170	nan	0.1000	-0.0011
##	250	0.2051	nan	0.1000	-0.0015
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2544	nan	0.1000	0.0165
##	2	1.2214	nan	0.1000	0.0125
##	3	1.1905	nan	0.1000	0.0137
##	4	1.1656	nan	0.1000	0.0095
##	5	1.1493	nan	0.1000	0.0045
##	6	1.1291	nan	0.1000	0.0091
##	7	1.1105	nan	0.1000	0.0075
##	8	1.0940	nan	0.1000	0.0066
##	9	1.0770	nan	0.1000	0.0061
##	10	1.0614	nan	0.1000	0.0057
##	20	0.9698	nan	0.1000	-0.0002
##	40	0.8754	nan	0.1000	-0.0007
##	60	0.8290	nan	0.1000	-0.0004
##	80	0.8023	nan	0.1000	0.0001
##	100	0.7809	nan	0.1000	-0.0016
##	120	0.7719	nan	0.1000	-0.0016
##	140	0.7586	nan	0.1000	-0.0006
##	160	0.7444	nan	0.1000	-0.0020
##	180	0.7329	nan	0.1000	-0.0018
##	200	0.7226	nan	0.1000	-0.0014
##	220	0.7154	nan	0.1000	0.0000
##	240	0.7129	nan	0.1000	-0.0015
##	250	0.7095	nan	0.1000	-0.0035
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2384	nan	0.1000	0.0211
##	2	1.2023	nan	0.1000	0.0158
##	3	1.1649	nan	0.1000	0.0159
##	4	1.1349	nan	0.1000	0.0115
##	5	1.1076	nan	0.1000	0.0132
##	6	1.0837	nan	0.1000	0.0075
##	7	1.0604	nan	0.1000	0.0080
##	8	1.0407	nan	0.1000	0.0073
##	9	1.0252	nan	0.1000	0.0029
##	10	1.0061	nan	0.1000	0.0083
##	20	0.9038	nan	0.1000	0.0031
##	40	0.8051	nan	0.1000	0.0007
##	60	0.7553	nan	0.1000	-0.0003

12011				/ lavarioca Dat	a willing i rojco
##	80	0.7202	nan	0.1000	-0.0022
##	100	0.6900	nan	0.1000	-0.0009
##	120	0.6639	nan	0.1000	-0.0037
##	140	0.6399	nan	0.1000	-0.0012
##	160	0.6192	nan	0.1000	-0.0011
##	180	0.5974	nan	0.1000	-0.0016
##	200	0.5762	nan	0.1000	-0.0026
##	220	0.5569	nan	0.1000	0.0001
##	240	0.5410	nan	0.1000	-0.0019
##	250	0.5320	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2361	nan	0.1000	0.0200
##	2	1.1912	nan	0.1000	0.0176
##	3	1.1571	nan	0.1000	0.0106
##	4	1.1078	nan	0.1000	0.0209
##	5	1.0736	nan	0.1000	0.0166
##	6	1.0423	nan	0.1000	0.0137
##	7	1.0179	nan	0.1000	0.0102
##	8	0.9970	nan	0.1000	0.0070
##	9	0.9800	nan	0.1000	0.0052
##	10	0.9671	nan	0.1000	0.0031
##	20	0.8445	nan	0.1000	0.0028
##	40	0.7381	nan	0.1000	-0.0021
##	60	0.6803	nan	0.1000	-0.0010
##	80	0.6374	nan	0.1000	-0.0016
##	100	0.5964	nan	0.1000	-0.0023
##	120	0.5505	nan	0.1000	-0.0012
##	140	0.5176	nan	0.1000	-0.0014
##	160	0.4869	nan	0.1000	-0.0023
##	180	0.4586	nan	0.1000	-0.0011
##	200	0.4358	nan	0.1000	-0.0024
##	220	0.4122	nan	0.1000	-0.0003
##	240	0.3889	nan	0.1000	-0.0012
##	250	0.3794	nan	0.1000	-0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2294	nan	0.1000	0.0324
##	2	1.1764	nan	0.1000	0.0173
##	3	1.1213	nan	0.1000	0.0261
##	4	1.0822	nan	0.1000	0.0158
##	5	1.0474	nan	0.1000	0.0116
##	6	1.0213	nan	0.1000	0.0079
##	7	0.9951	nan	0.1000	0.0078
##	8	0.9731	nan	0.1000	0.0069
##	9	0.9514	nan	0.1000	0.0061
##	10	0.9297	nan	0.1000	0.0085
##	20	0.8147	nan	0.1000	-0.0031
##	40	0.6916	nan	0.1000	-0.0028
##	60	0.6157	nan	0.1000	-0.0032
##	80	0.5556	nan	0.1000	-0.0039
##	100	0.5082	nan	0.1000	-0.0013
##	120	0.4660	nan	0.1000	-0.0017
##	140	0.4330	nan	0.1000	-0.0022

,2017				/ laval loca Dall	a willing i rojec
##	160	0.3967	nan	0.1000	-0.0011
##	180	0.3718	nan	0.1000	-0.0018
##	200	0.3442	nan	0.1000	-0.0032
##	220	0.3149	nan	0.1000	-0.0009
##	240	0.2914	nan	0.1000	-0.0030
##	250	0.2770	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2273	nan	0.1000	0.0279
##	2	1.1693	nan	0.1000	0.0240
##	3	1.1153	nan	0.1000	0.0219
##	4	1.0750	nan	0.1000	0.0140
##	5	1.0404	nan	0.1000	0.0101
##	6	1.0080	nan	0.1000	0.0125
##	7	0.9845	nan	0.1000	0.0028
##	8	0.9606	nan	0.1000	0.0066
##	9	0.9371	nan	0.1000	0.0081
##	10	0.9116	nan	0.1000	0.0080
##	20	0.7791	nan	0.1000	0.0002
##	40	0.6454	nan	0.1000	-0.0030
##	60	0.5665	nan	0.1000	-0.0013
##	80	0.5033	nan	0.1000	-0.0009
##	100	0.4438	nan	0.1000	-0.0025
##	120	0.3966	nan	0.1000	-0.0021
##	140	0.3508	nan	0.1000	-0.0010
##	160	0.3167	nan	0.1000	-0.0013
##	180	0.2861	nan	0.1000	-0.0016
##	200	0.2546	nan	0.1000	-0.0012
##	220	0.2291	nan	0.1000	-0.0013
##	240	0.2076	nan	0.1000	-0.0012
##	250	0.1964	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2532	nan	0.1000	0.0175
##	2	1.2182	nan	0.1000	0.0163
##	3	1.1950	nan	0.1000	0.0112
##		1.1691	nan	0.1000	0.0100
##		1.1450	nan	0.1000	0.0090
##	6	1.1225	nan	0.1000	0.0069
##	7	1.1068	nan	0.1000	0.0057
##		1.0899	nan	0.1000	0.0059
##		1.0746	nan	0.1000	0.0063
##		1.0609	nan	0.1000	0.0060
##		0.9671	nan	0.1000	0.0005
##		0.8838	nan	0.1000	-0.0016
##		0.8409	nan	0.1000	-0.0005
##		0.8166	nan	0.1000	-0.0001
##		0.7978	nan	0.1000	-0.0007
##		0.7820	nan	0.1000	-0.0000
##		0.7714	nan	0.1000	-0.0011
##		0.7601	nan	0.1000	-0.0005
##		0.7526	nan	0.1000	-0.0007
##		0.7446	nan	0.1000	-0.0033
##	220	0.7378	nan	0.1000	-0.0030

_	2017				/ lavarioca Bala	i wiii iii ig i Tojco
	##	240	0.7312	nan	0.1000	-0.0005
	##	250	0.7280	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2469	nan	0.1000	0.0211
	##	2	1.2005	nan	0.1000	0.0207
	##	3	1.1636	nan	0.1000	0.0187
	##	4	1.1318	nan	0.1000	0.0125
	##	5	1.1066	nan	0.1000	0.0111
	##	6	1.0813	nan	0.1000	0.0113
	##	7	1.0618	nan	0.1000	0.0051
	##	8	1.0424	nan	0.1000	0.0077
	##	9	1.0186	nan	0.1000	0.0099
	##	10	1.0023	nan	0.1000	0.0065
	##	20	0.8908	nan	0.1000	0.0021
	##	40	0.8009	nan	0.1000	-0.0013
	##	60	0.7611	nan	0.1000	-0.0004
	##	80	0.7190	nan	0.1000	-0.0018
	##	100	0.6929	nan	0.1000	-0.0017
	##	120	0.6647	nan	0.1000	-0.0019
	##	140	0.6355	nan	0.1000	-0.0007
	##	160	0.6110	nan	0.1000	-0.0022
	##	180	0.5903	nan	0.1000	-0.0019
	##	200	0.5638	nan	0.1000	-0.0013
	##	220	0.5387	nan	0.1000	-0.0027
	##	240	0.5212	nan	0.1000	-0.0009
	##	250	0.5115	nan	0.1000	-0.0019
	##		0.0223		0.1000	0,0022
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2284	nan	0.1000	0.0262
	##	2	1.1788	nan	0.1000	0.0197
	##	3	1.1394	nan	0.1000	0.0185
	##	4	1.1084	nan	0.1000	0.0127
	##	5	1.0728	nan	0.1000	0.0158
	##	6	1.0489	nan	0.1000	0.0063
	##	7	1.0251	nan	0.1000	0.0064
	##	8	1.0018	nan	0.1000	0.0081
	##	9	0.9807	nan	0.1000	0.0077
	##	10	0.9675	nan	0.1000	0.0023
	##	20	0.8507	nan	0.1000	0.0002
	##	40	0.7563	nan	0.1000	-0.0018
	##	60	0.6989	nan	0.1000	-0.0011
	##	80	0.6497	nan	0.1000	-0.0023
	##	100	0.6115	nan	0.1000	-0.0015
	##	120	0.5750	nan	0.1000	-0.0058
	##	140	0.5432	nan	0.1000	-0.0037
	##	160	0.5054	nan	0.1000	-0.0009
	##	180	0.4740	nan	0.1000	0.0001
	##	200	0.4379	nan	0.1000	-0.0009
	##	220	0.4114	nan	0.1000	-0.0021
	##	240	0.3882	nan	0.1000	-0.0008
	##	250	0.3785	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve

						3 .,
	##	1	1.2296	nan	0.1000	0.0278
	##	2	1.1828	nan	0.1000	0.0173
	##	3	1.1319	nan	0.1000	0.0223
	##	4	1.0929	nan	0.1000	0.0166
	##	5	1.0623	nan	0.1000	0.0105
	##	6	1.0304	nan	0.1000	0.0093
	##	7	1.0037	nan	0.1000	0.0081
	##	8	0.9761	nan	0.1000	0.0094
	##	9	0.9526	nan	0.1000	0.0059
	##	10	0.9336	nan	0.1000	0.0050
	##	20	0.8106	nan	0.1000	-0.0026
	##	40	0.6936	nan	0.1000	-0.0034
	##	60	0.6220	nan	0.1000	-0.0032
	##	80	0.5691	nan	0.1000	-0.0010
	##	100	0.5159	nan	0.1000	-0.0007
	##	120	0.4688	nan	0.1000	-0.0032
	##	140	0.4330	nan	0.1000	-0.0029
	##	160	0.3908	nan	0.1000	-0.0004
	##	180	0.3573	nan	0.1000	-0.0023
	##	200	0.3309	nan	0.1000	-0.0034
	##	220	0.3047	nan	0.1000	-0.0014
	##	240	0.2814	nan	0.1000	-0.0007
	##	250	0.2703	nan	0.1000	-0.0015
	##					_
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2278	nan	0.1000	0.0250
	##	2	1.1712	nan	0.1000	0.0232
	##	3	1.1250	nan	0.1000	0.0199
	##	4 5	1.0789	nan	0.1000	0.0164
	##	6	1.0413 1.0119	nan	0.1000 0.1000	0.0097 0.0106
	##	7	0.9841	nan nan	0.1000	0.0087
	##	8	0.9597	nan	0.1000	0.0068
	##	9	0.9373	nan	0.1000	0.0061
	##	10	0.9217	nan	0.1000	0.0009
	##	20	0.8024	nan	0.1000	-0.0038
	##	40	0.6693	nan	0.1000	-0.0031
	##	60	0.5897	nan	0.1000	-0.0031
	##	80	0.5223	nan	0.1000	-0.0037
	##	100	0.4570	nan	0.1000	-0.0017
	##	120	0.4154	nan	0.1000	-0.0017
	##	140	0.3667	nan	0.1000	-0.0017
	##	160	0.3241	nan	0.1000	-0.0033
	##	180	0.2905	nan	0.1000	-0.0012
	##	200	0.2629	nan	0.1000	-0.0014
	##	220	0.2403	nan	0.1000	-0.0014
	##	240	0.2182	nan	0.1000	-0.0015
	##	250	0.2071	nan	0.1000	-0.0009
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2589	nan	0.1000	0.0158
	##	2	1.2238	nan	0.1000	0.0186
	##	3	1.1945	nan	0.1000	0.0127
	##	4	1.1734	nan	0.1000	0.0089
1						

ı	12011				Auvanceu Dau	a willing-Projec
	##	5	1.1552	nan	0.1000	0.0087
	##	6	1.1344	nan	0.1000	0.0077
	##	7	1.1143	nan	0.1000	0.0076
	##	8	1.0998	nan	0.1000	0.0036
	##	9	1.0854	nan	0.1000	0.0053
	##	10	1.0707	nan	0.1000	0.0069
	##	20	0.9679	nan	0.1000	0.0003
	##	40	0.8837	nan	0.1000	-0.0021
	##	60	0.8419	nan	0.1000	-0.0020
	##	80	0.8222	nan	0.1000	-0.0005
	##	100	0.7972	nan	0.1000	-0.0005
	##	120	0.7760	nan	0.1000	-0.0009
	##	140	0.7638	nan	0.1000	-0.0009
	##	160	0.7524	nan	0.1000	-0.0009
	##	180	0.7369	nan	0.1000	-0.0014
	##	200	0.7290	nan	0.1000	-0.0010
	##	220	0.7196	nan	0.1000	-0.0006
	##	240	0.7114	nan	0.1000	-0.0014
	##	250	0.7062	nan	0.1000	-0.0001
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2507	nan	0.1000	0.0157
	##	2	1.2085	nan	0.1000	0.0190
	##	3	1.1672	nan	0.1000	0.0190
	##	4	1.1375	nan	0.1000	0.0112
	##	5	1.1066	nan	0.1000	0.0096
	##	6	1.0818	nan	0.1000	0.0113
	##	7	1.0574	nan	0.1000	0.0104
	##	8	1.0360	nan	0.1000	0.0076
	##	9	1.0151	nan	0.1000	0.0081
	##	10	0.9984	nan	0.1000	0.0053
	##	20	0.9023	nan	0.1000	-0.0004
	##	40	0.8060	nan	0.1000	-0.0023
	##	60	0.7536	nan	0.1000	-0.0015
	##	80	0.7161	nan	0.1000	-0.0018
	##	100	0.6828	nan	0.1000	-0.0012
	##	120	0.6540	nan	0.1000	-0.0022
	##	140	0.6246	nan	0.1000	-0.0017
	##	160	0.5962	nan	0.1000	-0.0009
	##	180	0.5710	nan	0.1000	-0.0017
	##	200	0.5517	nan	0.1000	-0.0021
	##	220	0.5302	nan	0.1000	-0.0022
	##	240	0.5180	nan	0.1000	-0.0025
	##	250	0.5085	nan	0.1000	-0.0010
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2327	nan	0.1000	0.0257
	##	2	1.1870	nan	0.1000	0.0189
	##	3	1.1465	nan	0.1000	0.0175
	##	4	1.1067	nan	0.1000	0.0147
	##	5	1.0757	nan	0.1000	0.0147
	##	6	1.0489	nan	0.1000	0.0126
	##	7	1.0228	nan	0.1000	0.0098
	##	8	1.0011	nan	0.1000	0.0085
ļ						

,	2017				/ lavarioca Bat	a mining i rojeo
	##	9	0.9849	nan	0.1000	0.0048
	##	10	0.9683	nan	0.1000	0.0025
	##	20	0.8463	nan	0.1000	0.0009
	##	40	0.7488	nan	0.1000	-0.0030
	##	60	0.6875	nan	0.1000	-0.0022
	##	80	0.6305	nan	0.1000	-0.0026
	##	100	0.5828	nan	0.1000	-0.0027
	##	120	0.5417	nan	0.1000	-0.0013
	##	140	0.5109	nan	0.1000	-0.0017
	##	160	0.4830	nan	0.1000	-0.0021
	##	180	0.4541	nan	0.1000	-0.0013
	##	200	0.4247	nan	0.1000	-0.0021
	##	220	0.3991	nan	0.1000	-0.0017
	##	240	0.3745	nan	0.1000	-0.0025
	##	250	0.3647	nan	0.1000	-0.0006
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2265	nan	0.1000	0.0287
	##	2	1.1721	nan	0.1000	0.0221
	##	3	1.1234	nan	0.1000	0.0197
	##	4	1.0873	nan	0.1000	0.0137
	##	5	1.0523	nan	0.1000	0.0137
	##	6	1.0228	nan	0.1000	0.0117
	##	7	0.9965	nan	0.1000	0.0103
	##	8	0.9755	nan	0.1000	0.0073
	##	9	0.9571	nan	0.1000	0.0038
	##	10	0.9427	nan	0.1000	0.0003
	##	20	0.8138	nan	0.1000	0.0005
	##	40	0.6967	nan	0.1000	0.0008
	##	60	0.6191	nan	0.1000	-0.0016
	##	80	0.5575	nan	0.1000	-0.0009
	##	100	0.4954	nan	0.1000	-0.0015
	##	120	0.4532	nan	0.1000	-0.0027
	##	140	0.4133	nan	0.1000	-0.0022
	##	160	0.3854	nan	0.1000	-0.0024
	##	180	0.3536	nan	0.1000	-0.0018
	##	200	0.3285	nan	0.1000	-0.0011
	##	220	0.3019	nan	0.1000	-0.0010
	##	240	0.2810	nan	0.1000	-0.0014
	##	250	0.2715	nan	0.1000	-0.0020
	##	T+on	TnainDaviance	ValidDaviance	C+onCi-o	Tmnnovo
		Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve
	##	2	1.2211	nan	0.1000	0.0315
		3	1.1682	nan	0.1000	0.0241
	## ##	4	1.1199 1.0770	nan	0.1000 0.1000	0.0152 0.0167
				nan		
	## ##	5 6	1.0400 1.0107	nan nan	0.1000 0.1000	0.0112 0.0110
	##	7	0.9806	nan	0.1000	0.0075
	##	8	0.9543	nan	0.1000	0.0073
	##	9	0.9286	nan	0.1000	0.0088
	##	10	0.9092	nan	0.1000	0.0053
	##	20	0.7729	nan	0.1000	0.0035
	##	40	0.6360	nan	0.1000	-0.0022
			2.0500	11611	0.2000	3.0022

,2017				/ laval loca Dat	a mining i rojec
##	60	0.5532	nan	0.1000	-0.0014
##	80	0.4829	nan	0.1000	-0.0021
##	100	0.4317	nan	0.1000	-0.0011
##	120	0.3844	nan	0.1000	-0.0018
##	140	0.3499	nan	0.1000	-0.0015
##	160	0.3135	nan	0.1000	-0.0009
##	180	0.2833	nan	0.1000	-0.0007
##	200	0.2581	nan	0.1000	-0.0006
##	220	0.2299	nan	0.1000	-0.0012
##	240	0.2060	nan	0.1000	-0.0012
##	250	0.1939	nan	0.1000	-0.0008
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2593	nan	0.1000	0.0190
##	2	1.2276	nan	0.1000	0.0152
##	3	1.2004	nan	0.1000	0.0116
##	4	1.1742	nan	0.1000	0.0098
##	5	1.1539	nan	0.1000	0.0065
##	6	1.1376	nan	0.1000	0.0055
##	7	1.1196	nan	0.1000	0.0070
##	8	1.1064	nan	0.1000	0.0060
##	9	1.0915	nan	0.1000	0.0064
##	10	1.0753	nan	0.1000	0.0033
##	20	0.9743	nan	0.1000	0.0024
##	40	0.8913	nan	0.1000	-0.0009
##	60	0.8462	nan	0.1000	-0.0004
##	80	0.8145	nan	0.1000	-0.0000
##	100	0.7865	nan	0.1000	-0.0010
##	120	0.7678	nan	0.1000	-0.0022
##	140	0.7566	nan	0.1000	-0.0010
##	160	0.7449	nan	0.1000	-0.0012
##	180	0.7346	nan	0.1000	-0.0017
##	200	0.7257	nan	0.1000	-0.0010
##	220	0.7166	nan	0.1000	-0.0017
##	240	0.7090	nan	0.1000	-0.0007
##	250	0.7050	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2453	nan	0.1000	0.0203
##	2	1.1980	nan	0.1000	0.0237
##	3	1.1606	nan	0.1000	0.0160
##	4	1.1325	nan	0.1000	0.0140
##	5	1.1042	nan	0.1000	0.0114
##	6	1.0757	nan	0.1000	0.0102
##	7	1.0536	nan	0.1000	0.0089
##	8	1.0345	nan	0.1000	0.0061
##	9	1.0185	nan	0.1000	0.0054
##	10	1.0006	nan	0.1000	0.0066
##	20	0.8987	nan	0.1000	0.0017
##	40	0.8044	nan	0.1000	0.0002
##	60	0.7499	nan	0.1000	-0.0010
##	80	0.7154	nan	0.1000	-0.0017
##	100	0.6837	nan	0.1000	-0.0015
##	120	0.6587	nan	0.1000	-0.0023

##	140	0.6356	nan	0.1000	-0.0019
##	160	0.6175	nan	0.1000	-0.0018
##	180	0.5946	nan	0.1000	0.0000
##	200	0.5750	nan	0.1000	-0.0022
##	220	0.5541	nan	0.1000	-0.0017
##	240	0.5355	nan	0.1000	-0.0009
##	250	0.5276	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2399	nan	0.1000	0.0188
##	2	1.1898	nan	0.1000	0.0218
##	3	1.1500	nan	0.1000	0.0161
##	4	1.1172	nan	0.1000	0.0116
##	5	1.0874	nan	0.1000	0.0105
##	6	1.0639	nan	0.1000	0.0091
##	7	1.0373	nan	0.1000	0.0117
##	8	1.0111	nan	0.1000	0.0078
##	9	0.9880	nan	0.1000	0.0078
##	10	0.9703	nan	0.1000	0.0053
##	20	0.8511	nan	0.1000	-0.0020
##	40	0.7427	nan	0.1000	-0.0016
##	60	0.6809	nan	0.1000	-0.0009
##	80	0.6370	nan	0.1000	-0.0030
##	100	0.5999	nan	0.1000	-0.0022
##	120	0.5654	nan	0.1000	-0.0019
##	140	0.5241	nan	0.1000	-0.0020
##	160	0.4982	nan	0.1000	-0.0017
##	180	0.4720	nan	0.1000	-0.0019
##	200	0.4507	nan	0.1000	-0.0026
##	220	0.4216	nan	0.1000 0.1000	-0.0004 -0.0026
##	240 250	0.3991 0.3878	nan	0.1000	-0.0026
##	230	0.3676	nan	0.1000	-0.0003
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2298	nan	0.1000	0.0259
##	2	1.1809	nan	0.1000	0.0207
##	3	1.1363	nan	0.1000	0.0170
##	4	1.0963	nan	0.1000	0.0173
##	5	1.0621	nan	0.1000	0.0105
##	6	1.0328	nan	0.1000	0.0106
##	7	1.0030	nan	0.1000	0.0096
##	8	0.9787	nan	0.1000	0.0076
##	9	0.9594	nan	0.1000	0.0046
##	10	0.9381	nan	0.1000	0.0077
##		0.8202	nan	0.1000	-0.0018
##	40	0.6955	nan	0.1000	-0.0041
##	60	0.6207	nan	0.1000	-0.0023
##	80	0.5609	nan	0.1000	-0.0017
##	100	0.5126	nan	0.1000	-0.0009
##	120	0.4734	nan	0.1000	-0.0028
##	140	0.4312	nan	0.1000	-0.0024
##	160	0.3929	nan	0.1000	-0.0014
##	180	0.3612	nan	0.1000	-0.0014
##	200	0.3351	nan	0.1000	-0.0025

						. 5 .,
	##	220	0.3084	nan	0.1000	-0.0012
:	##	240	0.2855	nan	0.1000	-0.0017
:	##	250	0.2760	nan	0.1000	-0.0026
:	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
1	##	1	1.2336	nan	0.1000	0.0232
:	##	2	1.1695	nan	0.1000	0.0306
	##	3	1.1218	nan	0.1000	0.0181
	##	4	1.0814	nan	0.1000	0.0147
	##	5	1.0444	nan	0.1000	0.0117
	##	6	1.0100	nan	0.1000	0.0125
	##	7	0.9789	nan	0.1000	0.0137
	##	8	0.9584	nan	0.1000	0.0054
	##	9	0.9393	nan	0.1000	0.0037
	##	10	0.9141	nan	0.1000	0.0083
	##	20	0.7796	nan	0.1000	-0.0020
	##	40	0.6516	nan	0.1000	-0.0007
	## ##	60 80	0.5653 0.5071	nan	0.1000	-0.0010
	## ##	100	0.4521	nan	0.1000 0.1000	-0.0027 -0.0017
	## ##	120	0.4027	nan nan	0.1000	-0.0017
	ππ ##	140	0.3633	nan	0.1000	-0.0013
	##	160	0.3213	nan	0.1000	-0.0032
	##	180	0.2924	nan	0.1000	-0.0011
	##	200	0.2671	nan	0.1000	-0.0014
	##	220	0.2442	nan	0.1000	-0.0008
:	##	240	0.2192	nan	0.1000	-0.000/
	## ##	240 250	0.2192 0.2090	nan nan	0.1000 0.1000	-0.0007 -0.0007
	## ## ##		0.2192 0.2090	nan nan	0.1000	-0.0007 -0.0007
:	##	250				
:	## ##	250	0.2090	nan	0.1000	-0.0007
:	## ## ##	250 Iter	0.2090 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0007
:	## ## ##	250 Iter 1	0.2090 TrainDeviance 1.2488	nan ValidDeviance nan	0.1000 StepSize 0.1000	-0.0007 Improve 0.0163
	## ## ## ##	250 Iter 1 2	0.2090 TrainDeviance 1.2488 1.2180	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130
:	## ## ## ## ##	250 Iter 1 2 3	0.2090 TrainDeviance 1.2488 1.2180 1.1878	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106
	## ## ## ## ##	250 Iter 1 2 3 4	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090
	##############	250 Iter 1 2 3 4 5 6 7	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048
	#############	250 Iter 1 2 3 4 5 6 7 8	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0048
	#############	250 Iter 1 2 3 4 5 6 7 8 9	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810	nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0048 0.0029
	################	250 Iter 1 2 3 4 5 6 7 8 9 10	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0048 0.0029 0.0023
	#################	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0048 0.0029 0.0023 -0.0002
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0016
	###################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0023 -0.0002 -0.0016 -0.0004 -0.0015
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0012
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0016 -0.0004 -0.0015 -0.0012 -0.0006
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0012 -0.0006 -0.0008
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820 0.7691	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0012 -0.0008 0.0005
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820 0.7691 0.7569	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0016 -0.0004 -0.0015 -0.0012 -0.0006 -0.0008 0.0005 -0.0006
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820 0.7691 0.7569 0.7464	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0006 -0.0008 0.0005 -0.0006 -0.0012
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820 0.7691 0.7569 0.7464 0.7384	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0006 -0.0008 0.0005 -0.0006 -0.0012 -0.0024
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7984 0.7569 0.7691 0.7569 0.7464 0.7384 0.7321	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0006 -0.0008 0.0005 -0.0006 -0.0012 -0.0006 -0.0012 -0.0024 -0.0014
	#######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.2090 TrainDeviance 1.2488 1.2180 1.1878 1.1624 1.1399 1.1216 1.1062 1.0913 1.0810 1.0706 0.9823 0.9014 0.8612 0.8368 0.8178 0.7984 0.7820 0.7691 0.7569 0.7464 0.7384	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0007 Improve 0.0163 0.0130 0.0106 0.0090 0.0097 0.0057 0.0048 0.0029 0.0023 -0.0002 -0.0016 -0.0004 -0.0015 -0.0006 -0.0008 0.0005 -0.0006 -0.0012 -0.0024

				, .a. aooa 2 a.	a willing i rojec
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2437	nan	0.1000	0.0231
##	2	1.2032	nan	0.1000	0.0175
##	3	1.1664	nan	0.1000	0.0147
##	4	1.1334	nan	0.1000	0.0089
##	5	1.1056	nan	0.1000	0.0120
##	6	1.0888	nan	0.1000	0.0054
##	7	1.0649	nan	0.1000	0.0078
##	8	1.0485	nan	0.1000	0.0070
##	9	1.0351	nan	0.1000	0.0046
##	10	1.0190	nan	0.1000	0.0047
##	20	0.9149	nan	0.1000	0.0001
##	40	0.8258	nan	0.1000	-0.0025
##	60	0.7850	nan	0.1000	-0.0017
##	80	0.7460	nan	0.1000	-0.0020
##	100	0.7086	nan	0.1000	-0.0014
##	120	0.6847	nan	0.1000	-0.0016
##	140	0.6588	nan	0.1000	-0.0009
##	160	0.6388	nan	0.1000	-0.0028
##	180	0.6182	nan	0.1000	-0.0024
##	200	0.5912	nan	0.1000	-0.0024
##	220	0.5764	nan	0.1000	-0.0032
##	240	0.5533	nan	0.1000	-0.0021
##	250	0.5430	nan	0.1000	-0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2440	nan	0.1000	0.0234
				0.1200	0.023
##	2	1.1947	nan	0.1000	0.0193
##	2	1.1947 1.1491			0.0193 0.0172
##	2 3 4	1.1947 1.1491 1.1123	nan	0.1000 0.1000 0.1000	0.0193 0.0172 0.0156
## ## ##	2 3 4 5	1.1947 1.1491 1.1123 1.0826	nan nan	0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108
## ## ## ##	2 3 4 5 6	1.1947 1.1491 1.1123 1.0826 1.0576	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075
## ## ## ##	2 3 4 5 6 7	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074
## ## ## ## ##	2 3 4 5 6 7 8	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059
## ## ## ## ##	2 3 4 5 6 7 8 9	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067
## ## ## ## ## ##	2 3 4 5 6 7 8 9	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045
## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003
## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010
## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010
## ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020
## ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021
## ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022
## ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 120 120	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0022
## ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0020 -0.0013
### ##################################	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0021 -0.0022 -0.0022 -0.0023 -0.0013 -0.0025
### ### ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0025 -0.0025
### ### ## ## ## ## ## ##	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0020 -0.0013 -0.0025 -0.0025 -0.0009
######################################	2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 220 240	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464 0.4246	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0021 -0.0022 -0.0022 -0.0025 -0.0025 -0.0009 -0.0027
######################################	2 3 4 5 6 7 8 9 10 40 60 80 120 140 160 180 200 240 250	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0020 -0.0013 -0.0025 -0.0025 -0.0009
######################################	2 3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 200 220 240 250	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464 0.4246 0.4010 0.3887	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0020 -0.0021 -0.0022 -0.0025 -0.0025 -0.0009 -0.0014
######################################	2 3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 220 240 250 Iter	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464 0.4246 0.4010 0.3887	nan	0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0021 -0.0022 -0.0021 -0.0025 -0.0025 -0.0027 -0.0014 Improve
######################################	2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 200 240 250 Iter	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464 0.4246 0.4010 0.3887 TrainDeviance 1.2331	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0021 -0.0022 -0.0022 -0.0025 -0.0025 -0.0027 -0.0014 Improve 0.0269
######################################	2 3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 220 240 250 Iter	1.1947 1.1491 1.1123 1.0826 1.0576 1.0307 1.0081 0.9878 0.9740 0.8569 0.7519 0.6896 0.6365 0.5942 0.5589 0.5264 0.5010 0.4776 0.4464 0.4246 0.4010 0.3887	nan	0.1000 0.1000	0.0193 0.0172 0.0156 0.0108 0.0075 0.0074 0.0059 0.0067 0.0045 0.0003 -0.0010 -0.0013 -0.0021 -0.0022 -0.0021 -0.0025 -0.0025 -0.0027 -0.0014 Improve

12011				/ lavarioca Bat	a willing i rojco
##	4	1.0978	nan	0.1000	0.0099
##	5	1.0699	nan	0.1000	0.0098
##	6	1.0358	nan	0.1000	0.0146
##	7	1.0074	nan	0.1000	0.0082
##	8	0.9862	nan	0.1000	0.0059
##	9	0.9674	nan	0.1000	0.0040
##	10	0.9515	nan	0.1000	0.0044
##	20	0.8267	nan	0.1000	0.0008
##	40	0.6998	nan	0.1000	-0.0017
##	60	0.6328	nan	0.1000	-0.0020
##	80	0.5702	nan	0.1000	-0.0018
##	100	0.5237	nan	0.1000	-0.0010
##	120	0.4803	nan	0.1000	-0.0017
##	140	0.4406	nan	0.1000	-0.0006
##	160	0.4098	nan	0.1000	-0.0025
##	180	0.3769	nan	0.1000	-0.0013
##	200	0.3453	nan	0.1000	-0.0030
##	220	0.3185	nan	0.1000	-0.0010
##	240	0.2913	nan	0.1000	-0.0003
##	250	0.2813	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2281	nan	0.1000	0.0275
##	2	1.1735	nan	0.1000	0.0244
##	3	1.1311	nan	0.1000	0.0160
##	4	1.0916	nan	0.1000	0.0132
##	5	1.0535	nan	0.1000	0.0150
##	6	1.0215	nan	0.1000	0.0094
##	7	0.9994	nan	0.1000	0.0043
##	8	0.9746	nan	0.1000	0.0076
##	9	0.9520	nan	0.1000	0.0080
##	10	0.9301	nan	0.1000	0.0054
##	20	0.7985	nan	0.1000	0.0010
##	40	0.6711	nan	0.1000	-0.0022
##	60	0.5877	nan	0.1000	-0.0025
##	80	0.5208	nan	0.1000	-0.0017
##	100	0.4560	nan	0.1000	-0.0016
##	120	0.4091	nan	0.1000	-0.0028
##	140	0.3669	nan	0.1000	-0.0017
##	160	0.3287	nan	0.1000	-0.0004
##	180	0.2975	nan	0.1000	-0.0009
##	200	0.2689	nan	0.1000	-0.0013
##	220	0.2446	nan	0.1000	-0.0010
##	240	0.2238	nan	0.1000	-0.0013
##	250	0.2147	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2551	nan	0.1000	0.0201
##	2	1.2279	nan	0.1000	0.0144
##	3	1.2001	nan	0.1000	0.0120
##	4	1.1703	nan	0.1000	0.0122
##	5	1.1506	nan	0.1000	0.0096
##	6	1.1312	nan	0.1000	0.0078
##	7	1.1113	nan	0.1000	0.0064
1					

_	,2011				/ lavarioca Bai	a willing i rojco
	##	8	1.0958	nan	0.1000	0.0061
	##	9	1.0831	nan	0.1000	0.0047
	##	10	1.0708	nan	0.1000	0.0049
	##	20	0.9718	nan	0.1000	0.0034
	##	40	0.8808	nan	0.1000	0.0011
	##	60	0.8377	nan	0.1000	-0.0001
	##	80	0.8087	nan	0.1000	-0.0014
	##	100	0.7883	nan	0.1000	-0.0011
	##	120	0.7735	nan	0.1000	-0.0027
	##	140	0.7646	nan	0.1000	-0.0009
	##	160	0.7520	nan	0.1000	-0.0017
	##	180	0.7431	nan	0.1000	-0.0010
	##	200	0.7356	nan	0.1000	-0.0017
	##	220	0.7305	nan	0.1000	-0.0021
	##	240	0.7240	nan	0.1000	-0.0019
	##	250	0.7190	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2462	nan	0.1000	0.0242
	##	2	1.1961	nan	0.1000	0.0187
	##	3	1.1561	nan	0.1000	0.0150
	##	4	1.1272	nan	0.1000	0.0096
	##	5	1.0954	nan	0.1000	0.0131
	##	6	1.0707	nan	0.1000	0.0100
	##	7	1.0473	nan	0.1000	0.0088
	##	8	1.0264	nan	0.1000	0.0084
	##	9	1.0107	nan	0.1000	0.0071
	##	10	0.9917	nan	0.1000	0.0032
	##	20	0.8855	nan	0.1000	0.0010
	##	40	0.7994	nan	0.1000	-0.0005
	##	60	0.7495	nan	0.1000	-0.0020
	##	80 100	0.7103 0.6812	nan	0.1000 0.1000	-0.0022 -0.0020
	##	120	0.6526	nan	0.1000	-0.0020
	##	140	0.6250	nan nan	0.1000	-0.0015
	##	160	0.6069	nan	0.1000	-0.0023
	##	180	0.5795	nan	0.1000	-0.0012
	##	200	0.5627	nan	0.1000	-0.0004
	##	220	0.5458	nan	0.1000	-0.0016
	##	240	0.5281	nan	0.1000	-0.0035
	##	250	0.5204	nan	0.1000	-0.0016
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2378	nan	0.1000	0.0214
	##	2	1.1835	nan	0.1000	0.0228
	##	3	1.1409	nan	0.1000	0.0173
	##	4	1.1091	nan	0.1000	0.0119
	##	5	1.0747	nan	0.1000	0.0121
	##	6	1.0449	nan	0.1000	0.0120
	##	7	1.0203	nan	0.1000	0.0103
	##	8	0.9990	nan	0.1000	0.0071
	##	9	0.9788	nan	0.1000	0.0050
	##	10	0.9586	nan	0.1000	0.0063
	##	20	0.8486	nan	0.1000	0.0022

##	40	0.7486	nan	0.1000	0.0000
##	60	0.7020	nan	0.1000	-0.0014
##	80	0.6550	nan	0.1000	-0.0020
##	100	0.6210	nan	0.1000	-0.0014
##	120	0.5772	nan	0.1000	-0.0008
##	140	0.5398	nan	0.1000	-0.0017
##	160	0.5069	nan	0.1000	-0.0014
##	180	0.4863	nan	0.1000	-0.0013
##	200	0.4548	nan	0.1000	-0.0023
##	220	0.4290	nan	0.1000	-0.0032
##	240	0.4062	nan	0.1000	-0.0021
##	250	0.3959	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2329	nan	0.1000	0.0264
##	2	1.1790	nan	0.1000	0.0196
##	3	1.1308	nan	0.1000	0.0223
##	4	1.0904	nan	0.1000	0.0173
##	5	1.0552	nan	0.1000	0.0097
##	6	1.0245	nan	0.1000	0.0121
##	7	0.9997	nan	0.1000	0.0068
##	8	0.9707	nan	0.1000	0.0088
##	9	0.9523	nan	0.1000	0.0044
##	10	0.9329	nan	0.1000	0.0045
##	20	0.8143	nan	0.1000	0.0005
##	40	0.7024	nan	0.1000	-0.0030
##	60	0.6279	nan	0.1000	-0.0017
##	80	0.5720	nan	0.1000	-0.0033
##	100	0.5237	nan	0.1000	-0.0018
##	120	0.4767	nan	0.1000	-0.0025
##	140	0.4386	nan	0.1000	-0.0003
##	160	0.4004	nan	0.1000	-0.0028
##	180	0.3709	nan	0.1000	-0.0011
##	200	0.3443	nan	0.1000	-0.0018
##	220	0.3169	nan	0.1000	-0.0006
##	240	0.2940	nan	0.1000	-0.0019
##	250	0.2831	nan	0.1000	-0.0013
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2213	nan	0.1000	0.0319
##	2	1.1624	nan	0.1000	0.0232
##	3	1.1107	nan	0.1000	0.0193
##	4	1.0682	nan	0.1000	0.0195
##	5	1.0369	nan	0.1000	0.0080
##	6	1.0025	nan	0.1000	0.0118
##	7	0.9742	nan	0.1000	0.0113
##	8	0.9547	nan	0.1000	0.0037
##	9	0.9357	nan	0.1000	0.0066
##	10	0.9135	nan	0.1000	0.0044
##	20	0.7821	nan	0.1000	-0.0003
##	40	0.6487	nan	0.1000	-0.0012
##	60	0.5691	nan	0.1000	-0.0020
##	80	0.5038	nan	0.1000	-0.0026
##	100	0.4459	nan	0.1000	-0.0019

,2011				/ lavarioca Dat	a mining i rojeo
##	120	0.4024	nan	0.1000	-0.0033
##	140	0.3633	nan	0.1000	-0.0007
##	160	0.3260	nan	0.1000	-0.0001
##	180	0.2953	nan	0.1000	-0.0012
##	200	0.2707	nan	0.1000	-0.0009
##	220	0.2458	nan	0.1000	-0.0009
##	240	0.2215	nan	0.1000	-0.0007
##	250	0.2083	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2525	nan	0.1000	0.0207
##	2	1.2196	nan	0.1000	0.0165
##	3	1.1951	nan	0.1000	0.0078
##	4	1.1696	nan	0.1000	0.0135
##	5	1.1454	nan	0.1000	0.0111
##	6	1.1249	nan	0.1000	0.0095
##	7	1.1045	nan	0.1000	0.0035
##	8	1.0864	nan	0.1000	0.0065
##	9	1.0701	nan	0.1000	0.0070
##	10	1.0558	nan	0.1000	0.0050
##	20	0.9590	nan	0.1000	0.0019
##	40	0.8805	nan	0.1000	0.0010
##	60	0.8376	nan	0.1000	-0.0011
##	80	0.8084	nan	0.1000	-0.0001
##	100	0.7890	nan	0.1000	-0.0012
##	120	0.7714	nan	0.1000	-0.0012
##	140	0.7590	nan	0.1000	-0.0006
##	160	0.7481	nan	0.1000	-0.0003
##	180	0.7395	nan	0.1000	-0.0006
##	200	0.7301	nan	0.1000	-0.0016
##	220	0.7192	nan	0.1000	-0.0006
##	240	0.7095	nan	0.1000	-0.0008
##	250	0.7045	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2410	nan	0.1000	0.0219
##	2	1.1940	nan	0.1000	0.0203
##	3	1.1606	nan	0.1000	0.0166
##	4	1.1278	nan	0.1000	0.0155
##	5	1.1017	nan	0.1000	0.0105
##	6	1.0737	nan	0.1000	0.0084
##	7	1.0547	nan	0.1000	0.0079
##	8	1.0356	nan	0.1000	0.0048
##	9	1.0176	nan	0.1000	0.0052
##	10	1.0036	nan	0.1000	0.0045
##	20	0.9014	nan	0.1000	0.0022
##	40	0.8134	nan	0.1000	-0.0033
##	60	0.7544	nan	0.1000	-0.0020
##	80	0.7130	nan	0.1000	-0.0001
##	100	0.6858	nan	0.1000	-0.0027
##	120	0.6607	nan	0.1000	-0.0014
##	140	0.6335	nan	0.1000	-0.0021
##	160	0.6064	nan	0.1000	-0.0026
##	180	0.5849	nan	0.1000	-0.0001

				, .a. acoa 2 a.	a mining i rojec
##	200	0.5660	nan	0.1000	-0.0014
##	220	0.5513	nan	0.1000	-0.0023
##		0.5310	nan	0.1000	-0.0031
##	250	0.5217	nan	0.1000	-0.0010
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2406	nan	0.1000	0.0197
##	2	1.1871	nan	0.1000	0.0198
##	3	1.1422	nan	0.1000	0.0166
##	4	1.1091	nan	0.1000	0.0146
##	5	1.0793	nan	0.1000	0.0128
##	6	1.0464	nan	0.1000	0.0107
##	7	1.0212	nan	0.1000	0.0102
##	8	0.9991	nan	0.1000	0.0081
##	9	0.9784	nan	0.1000	0.0071
##	10	0.9625	nan	0.1000	0.0042
##	20	0.8423	nan	0.1000	0.0000
##	40	0.7386	nan	0.1000	0.0004
##	60	0.6741	nan	0.1000	-0.0017
##	80	0.6282	nan	0.1000	-0.0030
##		0.5798	nan	0.1000	-0.0010
##	120	0.5403	nan	0.1000	-0.0027
##		0.5093	nan	0.1000	-0.0011
##		0.4821	nan	0.1000	-0.0013
##		0.4550	nan	0.1000	-0.0022
##	200	0.4272	nan	0.1000	-0.0017
##		0.4045	nan	0.1000	-0.0010
	220				
##	240		nan		
##		0.3779	nan nan	0.1000	-0.0016
##			nan nan		
##	250	0.3779 0.3675	nan	0.1000 0.1000	-0.0016 -0.0013
## ## ##	250 Iter	0.3779 0.3675 TrainDeviance	nan ValidDeviance	0.1000 0.1000 StepSize	-0.0016 -0.0013
## ## ## ##	250	0.3779 0.3675 TrainDeviance 1.2310	nan ValidDeviance nan	0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265
## ## ## ##	250 Iter 1 2	0.3779 0.3675 TrainDeviance 1.2310 1.1754	nan ValidDeviance nan nan	0.1000 0.1000 StepSize 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229
## ## ## ## ##	250 Iter 1 2 3	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306	nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159
## ## ## ## ##	250 Iter 1 2 3 4	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848	nan ValidDeviance nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172
## ## ## ## ## ##	250 Iter 1 2 3 4 5	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530	nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092
## ## ## ## ##	250 Iter 1 2 3 4 5 6	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848	nan ValidDeviance nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014	nan ValidDeviance nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567	nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016
## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026
## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026
## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0054 -0.0006
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0054 -0.0006 -0.0010 -0.0028
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335 0.3993	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0006 -0.0054 -0.0026 -0.0026 -0.0028 -0.0026
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335 0.3993 0.3613	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0054 -0.0006 -0.0010 -0.0028 -0.0026 -0.0026 -0.0026
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335 0.3993 0.3613	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0054 -0.0026 -0.0010 -0.0028 -0.0026 -0.0016 -0.0034
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335 0.3993 0.3613 0.3376	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0010 -0.0028 -0.0026 -0.0016 -0.0034 -0.0016
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.3779 0.3675 TrainDeviance 1.2310 1.1754 1.1306 1.0848 1.0530 1.0239 1.0014 0.9810 0.9567 0.9398 0.8123 0.6913 0.6188 0.5672 0.5079 0.4697 0.4335 0.3993 0.3613	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 StepSize 0.1000	-0.0016 -0.0013 Improve 0.0265 0.0229 0.0159 0.0172 0.0092 0.0082 0.0072 0.0049 0.0100 0.0058 -0.0003 -0.0016 -0.0026 -0.0054 -0.0026 -0.0010 -0.0028 -0.0026 -0.0016 -0.0034

##	ŧ				
##	: Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	: 1	1.2155	nan	0.1000	0.0360
##	<u> </u>	1.1657	nan	0.1000	0.0186
##		1.1180	nan	0.1000	0.0216
##		1.0793	nan	0.1000	0.0110
##		1.0467	nan	0.1000	0.0101
##		1.0106	nan	0.1000	0.0152
##		0.9791	nan	0.1000	0.0114
##	ŧ 8	0.9575	nan	0.1000	0.0044
##		0.9361	nan	0.1000	0.0060
##	10	0.9175	nan	0.1000	0.0032
##	20	0.7858	nan	0.1000	-0.0009
##	ŧ 40	0.6412	nan	0.1000	-0.0031
##	ŧ 60	0.5569	nan	0.1000	-0.0017
##	ŧ 80	0.4853	nan	0.1000	-0.0003
##	100	0.4295	nan	0.1000	-0.0030
##	120	0.3812	nan	0.1000	-0.0018
##	140	0.3411	nan	0.1000	-0.0019
##	160	0.3062	nan	0.1000	-0.0021
##	180	0.2801	nan	0.1000	-0.0012
##	200	0.2488	nan	0.1000	-0.0005
##	220	0.2252	nan	0.1000	-0.0006
##	240	0.2066	nan	0.1000	-0.0010
##	250	0.1965	nan	0.1000	-0.0008
##	‡				
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2641	nan	0.1000	0.0145
##		1.2296	nan	0.1000	0.0145
##		1.2017	nan	0.1000	0.0126
##		1.1787	nan	0.1000	0.0096
##		1.1543	nan	0.1000	0.0108
##		1.1354	nan	0.1000	0.0081
##		1.1193	nan	0.1000	0.0073
##		1.1022	nan	0.1000	0.0049
##		1.0888	nan	0.1000	0.0049
##		1.0741	nan	0.1000	0.0040
##		0.9787 0.9001	nan	0.1000 0.1000	0.0022 0.0004
##		0.8546	nan	0.1000	-0.0026
##		0.8278	nan nan	0.1000	-0.0020
##		0.8063	nan	0.1000	-0.0010
##		0.7859	nan	0.1000	-0.0004
##		0.7775	nan	0.1000	-0.0008
##		0.7654	nan	0.1000	-0.0003
##		0.7546	nan	0.1000	-0.0008
##		0.7431	nan	0.1000	-0.0007
##		0.7333	nan	0.1000	-0.0016
##		0.7258	nan	0.1000	-0.0004
##		0.7218	nan	0.1000	-0.0013
##	ŧ				
##	: Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	‡ 1	1.2476	nan	0.1000	0.0237
##	2	1.2068	nan	0.1000	0.0166

_	12011				/ lavarioca Da	ta iviii iii g i Tojo
	##	3	1.1736	nan	0.1000	0.0085
	##	4	1.1382	nan	0.1000	0.0146
	##	5	1.1097	nan	0.1000	0.0120
	##	6	1.0857	nan	0.1000	0.0076
	##	7	1.0621	nan	0.1000	0.0078
	##	8	1.0419	nan	0.1000	0.0093
	##	9	1.0249	nan	0.1000	0.0059
	##	10	1.0108	nan	0.1000	0.0031
	##	20	0.9095	nan	0.1000	-0.0022
	##	40	0.8234	nan	0.1000	-0.0009
	##	60	0.7680	nan	0.1000	-0.0018
	##	80	0.7302	nan	0.1000	-0.0001
	##	100	0.6922	nan	0.1000	-0.0022
	##	120	0.6656	nan	0.1000	-0.0020
	##	140	0.6389	nan	0.1000	-0.0027
	##	160	0.6169	nan	0.1000	-0.0018
	##	180	0.6044	nan	0.1000	-0.0035
	##	200	0.5843	nan	0.1000	-0.0019
	##	220	0.5709	nan	0.1000	-0.0014
	##	240	0.5566	nan	0.1000	-0.0006
	##	250	0.5496	nan	0.1000	-0.0016
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2337	nan	0.1000	0.0273
	##	2	1.1955	nan	0.1000	0.0138
	##	3	1.1572	nan	0.1000	0.0171
	##	4	1.1183	nan	0.1000	0.0123
	##	5	1.0902	nan	0.1000	0.0085
	##	6	1.0659	nan	0.1000	0.0070
	##	7	1.0414	nan	0.1000	0.0067
	##	8	1.0187	nan	0.1000	0.0075
	##	9	0.9979	nan	0.1000	0.0072
	##	10	0.9804	nan	0.1000	0.0064
	##	20	0.8696	nan	0.1000	0.0005
	##	40 60	0.7694	nan	0.1000	-0.0025
	##		0.7096	nan	0.1000	-0.0025
	##	80 100	0.6583 0.6081	nan	0.1000 0.1000	-0.0009 -0.0019
	##	120	0.5709	nan	0.1000	-0.0019
	##	140	0.5250	nan nan	0.1000	-0.0015
	##	160	0.5004	nan	0.1000	-0.0003
	##	180	0.4705	nan	0.1000	-0.0021
	##	200	0.4422	nan	0.1000	-0.0022
	##	220	0.4176	nan	0.1000	-0.0014
	##	240	0.3920	nan	0.1000	-0.0009
	##	250	0.3819	nan	0.1000	-0.0007
	##					
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2390	nan	0.1000	0.0219
	##	2	1.1796	nan	0.1000	0.0216
	##	3	1.1326	nan	0.1000	0.0186
	##	4	1.0990	nan	0.1000	0.0102
	##	5	1.0656	nan	0.1000	0.0134
	##	6	1.0333	nan	0.1000	0.0114

##	7	1.0105	nan	0.1000	0.0059
##	8	0.9851	nan	0.1000	0.0090
##	9	0.9648	nan	0.1000	0.0063
##	10	0.9426	nan	0.1000	0.0081
##	20	0.8281	nan	0.1000	0.0009
##	40	0.7239	nan	0.1000	-0.0024
##	60	0.6534	nan	0.1000	-0.0045
##	80	0.5838	nan	0.1000	0.0005
##	100	0.5310	nan	0.1000	-0.0014
##	120	0.4772	nan	0.1000	-0.0017
##	140	0.4347	nan	0.1000	-0.0006
##	160	0.3973	nan	0.1000	-0.0017
##	180	0.3643	nan	0.1000	-0.0015
##	200	0.3351	nan	0.1000	-0.0014
##	220	0.3080	nan	0.1000	-0.0006
##	240	0.2884	nan	0.1000	-0.0016
##	250	0.2787	nan	0.1000	-0.0025
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2235	nan	0.1000	0.0305
##	2	1.1717	nan	0.1000	0.0213
##	3	1.1255	nan	0.1000	0.0206
##	4	1.0815	nan	0.1000	0.0135
##	5	1.0512	nan	0.1000	0.0125
##	6	1.0231	nan	0.1000	0.0108
##	7	0.9928	nan	0.1000	0.0097
##	8	0.9708	nan	0.1000	0.0067
##	9	0.9462	nan	0.1000	0.0082
##	10	0.9246 0.7970	nan	0.1000	0.0070
##	20 40	0.6659	nan	0.1000 0.1000	-0.0003 -0.0012
##	60	0.5708	nan nan	0.1000	-0.0012
##	80	0.5038	nan	0.1000	-0.0009
##	100	0.4473	nan	0.1000	-0.0022
##	120	0.3998	nan	0.1000	-0.0026
##	140	0.3579	nan	0.1000	-0.0009
##	160	0.3279	nan	0.1000	-0.0015
##	180	0.2972	nan	0.1000	-0.0017
##	200	0.2697	nan	0.1000	-0.0012
##	220	0.2426	nan	0.1000	-0.0013
##	240	0.2197	nan	0.1000	-0.0017
##	250	0.2111	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2541	nan	0.1000	0.0174
##	2	1.2220	nan	0.1000	0.0150
##	3	1.1930	nan	0.1000	0.0120
##	4	1.1686	nan	0.1000	0.0097
##	5	1.1471	nan	0.1000	0.0069
##	6	1.1250	nan	0.1000	0.0065
##	7	1.1084	nan	0.1000	0.0069
##	8	1.0915	nan	0.1000	0.0050
##	9	1.0811	nan	0.1000	0.0038
##	10	1.0656	nan	0.1000	0.0055

					. 3 .,
##	20	0.9841	nan	0.1000	0.0006
##	40	0.8948	nan	0.1000	0.0005
##	60	0.8527	nan	0.1000	-0.0001
##	80	0.8282	nan	0.1000	-0.0003
##	100	0.8106	nan	0.1000	-0.0008
##	120	0.7928	nan	0.1000	-0.0005
##	140	0.7772	nan	0.1000	-0.0012
##	160	0.7647	nan	0.1000	-0.0013
##		0.7555	nan	0.1000	-0.0036
##		0.7469	nan	0.1000	-0.0010
##		0.7362	nan	0.1000	0.0001
##		0.7258	nan	0.1000	-0.0017
##		0.7208	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2534	nan	0.1000	0.0197
##		1.2130	nan	0.1000	0.0167
##		1.1757	nan	0.1000	0.0133
##		1.1488	nan	0.1000	0.0106
##		1.1202	nan	0.1000	0.0083
##		1.0943	nan	0.1000	0.0108
##		1.0694	nan	0.1000	0.0102
##		1.0509	nan	0.1000	0.0058
##		1.0324	nan	0.1000	0.0063
##		1.0123	nan	0.1000	0.0076
##		0.9053	nan	0.1000	0.0009
##		0.8199	nan	0.1000	-0.0023
##		0.7674	nan	0.1000	-0.0000
##		0.7286	nan	0.1000	-0.0017
##		0.6913	nan	0.1000	-0.0011
##		0.6628	nan	0.1000	-0.0014
##		0.6380	nan	0.1000	-0.0026
##		0.6113	nan	0.1000	-0.0024
##		0.5884	nan	0.1000	-0.0016
##		0.5679	nan	0.1000	-0.0007
##		0.5458	nan	0.1000	-0.0003
##		0.5287	nan	0.1000	-0.0010
##		0.5165	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2426	nan	0.1000	0.0257
##	2	1.1972	nan	0.1000	0.0205
##	3	1.1570	nan	0.1000	0.0148
##	4	1.1192	nan	0.1000	0.0162
##	5	1.0864	nan	0.1000	0.0127
##	6	1.0568	nan	0.1000	0.0101
##		1.0336	nan	0.1000	0.0084
##		1.0130	nan	0.1000	0.0081
##		0.9915	nan	0.1000	0.0090
##		0.9724	nan	0.1000	0.0050
##		0.8547	nan	0.1000	0.0001
##		0.7543	nan	0.1000	-0.0031
##		0.6925	nan	0.1000	-0.0042
##		0.6445	nan	0.1000	-0.0024
	_				

,, 2011				/ lavarioca Dat	a willing i rojec
##	100	0.5911	nan	0.1000	-0.0020
##	120	0.5506	nan	0.1000	-0.0014
##	140	0.5110	nan	0.1000	-0.0003
##	160	0.4720	nan	0.1000	-0.0013
##	180	0.4412	nan	0.1000	-0.0018
##	200	0.4174	nan	0.1000	-0.0016
##	220	0.3941	nan	0.1000	-0.0021
##	240	0.3739	nan	0.1000	-0.0012
##	250	0.3624	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2332	nan	0.1000	0.0251
##	2	1.1801	nan	0.1000	0.0229
##	3	1.1313	nan	0.1000	0.0200
##	4	1.0939	nan	0.1000	0.0134
##	5	1.0592	nan	0.1000	0.0151
##	6	1.0290	nan	0.1000	0.0122
##	7	1.0036	nan	0.1000	0.0107
##	8	0.9807	nan	0.1000	0.0060
##	9	0.9591	nan	0.1000	0.0077
##	10	0.9429	nan	0.1000	0.0035
##	20	0.8197	nan	0.1000	-0.0020
##	40	0.6977	nan	0.1000	-0.0005
##	60	0.6244	nan	0.1000	-0.0024
##	80	0.5599	nan	0.1000	-0.0027
##	100	0.5080	nan	0.1000	-0.0026
##	120	0.4561	nan	0.1000	-0.0011
##	140	0.4125	nan	0.1000	-0.0016
##	160	0.3776	nan	0.1000	-0.0020
##	180	0.3426	nan	0.1000	-0.0008
##	200	0.3120	nan	0.1000	-0.0010
##	220	0.2892	nan	0.1000	-0.0007
##	240	0.2695	nan	0.1000	-0.0006
##	250	0.2601	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2310	nan	0.1000	0.0279
##	2	1.1738	nan	0.1000	0.0250
##	3	1.1284	nan	0.1000	0.0157
##	4	1.0839	nan	0.1000	0.0137
##	5	1.0455	nan	0.1000	0.0094
##	6	1.0192	nan	0.1000	0.0080
##	7	0.9885	nan	0.1000	0.0121
##	8	0.9681	nan	0.1000	0.0046
##	9	0.9434	nan	0.1000	0.0076
##	10	0.9230	nan	0.1000	0.0061
##	20	0.7803	nan	0.1000	-0.0008
##	40	0.6531	nan	0.1000	-0.0000
##	60	0.5698	nan	0.1000	-0.0038
##	80	0.5004	nan	0.1000	-0.0020
##	100	0.4362	nan	0.1000	-0.0013
##	120	0.3871	nan	0.1000	-0.0012
##	140	0.3438	nan	0.1000	-0.0011
##	160	0.3076	nan	0.1000	-0.0010

12011				/ lavarioca Dat	a mining i rojeo
##	180	0.2800	nan	0.1000	-0.0007
##	200	0.2489	nan	0.1000	-0.0021
##	220	0.2251	nan	0.1000	-0.0002
##	240	0.2037	nan	0.1000	-0.0005
##	250	0.1938	nan	0.1000	-0.0004
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2494	nan	0.1000	0.0192
##	2	1.2166	nan	0.1000	0.0152
##	3	1.1873		0.1000	0.0139
##	4		nan		
		1.1636	nan	0.1000	0.0101
##	5	1.1421	nan	0.1000	0.0100
##	6 7	1.1141	nan	0.1000	0.0095
##		1.0957	nan	0.1000	0.0051
##	8	1.0790 1.0584	nan	0.1000	0.0072
##	9		nan	0.1000	0.0066
##	10 20	1.0425	nan	0.1000	0.0065
##	40	0.9453 0.8528	nan	0.1000	0.0017
	60		nan	0.1000	-0.0009
##	80	0.8082	nan	0.1000	-0.0002
##	100	0.7865	nan	0.1000	-0.0007
		0.7662	nan	0.1000	-0.0014
##	120	0.7474	nan	0.1000	-0.0010
##	140	0.7299	nan	0.1000	-0.0009
##	160	0.7182	nan	0.1000	-0.0019
##	180	0.7069	nan	0.1000	-0.0014
##	200	0.6959	nan	0.1000	-0.0005
##	220	0.6849	nan	0.1000	-0.0015
##	240	0.6768	nan	0.1000	-0.0009
##	250	0.6714	nan	0.1000	-0.0012
##	- .	-	v 1:15 ·	c. c:	-
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2481	nan	0.1000	0.0226
##	2	1.1981	nan	0.1000	0.0202
##	3	1.1576	nan	0.1000	0.0154
##	4	1.1288	nan	0.1000	0.0096
##	5	1.0987	nan	0.1000	0.0125
##	6	1.0691	nan	0.1000	0.0120
##	7	1.0464	nan	0.1000	0.0094
##	8	1.0227	nan	0.1000	0.0094
##	9	1.0049	nan	0.1000	0.0071
##	10	0.9858	nan	0.1000	0.0073
##	20	0.8817	nan	0.1000	0.0012
##	40	0.7880	nan	0.1000	-0.0004
##	60	0.7199	nan	0.1000	-0.0005
##	80	0.6808	nan	0.1000	-0.0031
##	100	0.6498	nan	0.1000	-0.0010
##	120	0.6253	nan	0.1000	-0.0028
##	140	0.5965	nan	0.1000	-0.0017
##	160	0.5738	nan	0.1000	-0.0005
##	180	0.5502	nan	0.1000	-0.0014
##	200	0.5266	nan	0.1000	-0.0014
##	220	0.5103	nan	0.1000	-0.0022
##	240	0.4892	nan	0.1000	-0.0019

##	250	0.4853	nan	0.1000	-0.0018
##					
## It		nDeviance	ValidDeviance	StepSize	Improve
##	1	1.2271	nan	0.1000	0.0295
##	2	1.1739	nan	0.1000	0.0241
##	3	1.1400	nan	0.1000	0.0139
##	4	1.0937	nan	0.1000	0.0186
##	5	1.0634	nan	0.1000	0.0107
##	6	1.0429	nan	0.1000	0.0072
##	7	1.0180	nan	0.1000	0.0096
##	8	0.9927	nan	0.1000	0.0086
##	9	0.9717	nan	0.1000	0.0061
##	10	0.9510	nan	0.1000	0.0038
##	20	0.8335	nan	0.1000	0.0011
##	40	0.7213	nan	0.1000	0.0005
##	60	0.6514	nan	0.1000	-0.0010
##	80	0.5999	nan	0.1000	-0.0007
##	100	0.5606	nan	0.1000	-0.0012
##	120	0.5234	nan	0.1000	-0.0011
##	140	0.4874	nan	0.1000	-0.0019
##	160	0.4608	nan	0.1000	-0.0029
##	180	0.4330	nan	0.1000	-0.0021
##	200	0.4090	nan	0.1000	-0.0017
##	220	0.3862	nan	0.1000	-0.0009
##	240	0.3661	nan	0.1000	-0.0018
##	250	0.3549	nan	0.1000	-0.0012
##					
## It		nDeviance	ValidDeviance	StepSize	Improve
##	1	1.2322	nan	0.1000	0.0270
##	2	1.1747	nan	0.1000	0.0222
##	3	1.1289	nan	0.1000	0.0183
##	4	1.0821	nan	0.1000	0.0194
##	5	1.0393	nan	0.1000	0.0155
##	6	1.0067	nan	0.1000	0.0134
##	7	0.9782	nan	0.1000	0.0072
##	8	0.9556	nan	0.1000	0.0066
##	9	0.9324	nan	0.1000	0.0060
##	10	0.9161	nan	0.1000	0.0042
##	20	0.7868	nan	0.1000	0.0022
##	40	0.6726	nan	0.1000	-0.0035
##	60	0.6019	nan	0.1000	-0.0036
##	80	0.5301	nan	0.1000	-0.0012
##	100	0.4761	nan	0.1000	-0.0025
##	120	0.4290	nan	0.1000	-0.0014
##	140	0.3905	nan	0.1000	-0.0010
###			nan	0.1000	-0.0025
##	160	0.3595			
##	180	0.3297	nan	0.1000	-0.0017
##	180 200	0.3297 0.3019	nan nan	0.1000 0.1000	-0.0027
## ## ##	180 200 220	0.3297 0.3019 0.2812	nan nan nan	0.1000 0.1000 0.1000	-0.0027 -0.0012
## ## ## ##	180 200 220 240	0.3297 0.3019 0.2812 0.2592	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	-0.0027 -0.0012 -0.0006
## ## ## ##	180 200 220	0.3297 0.3019 0.2812	nan nan nan	0.1000 0.1000 0.1000	-0.0027 -0.0012
## ## ## ## ##	180 200 220 240 250	0.3297 0.3019 0.2812 0.2592 0.2485	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	-0.0027 -0.0012 -0.0006 -0.0012
## ## ## ##	180 200 220 240 250	0.3297 0.3019 0.2812 0.2592	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	-0.0027 -0.0012 -0.0006

0/2017				Auvanceu Data	a willing-Frojec
##	2	1.1647	nan	0.1000	0.0246
##	3	1.1206	nan	0.1000	0.0196
##	4	1.0802	nan	0.1000	0.0138
##	5	1.0451	nan	0.1000	0.0125
##	6	1.0091	nan	0.1000	0.0154
##	7	0.9791	nan	0.1000	0.0093
##	8	0.9527	nan	0.1000	0.0093
##	9	0.9248	nan	0.1000	0.0065
##	10	0.9008	nan	0.1000	0.0070
##	20	0.7504	nan	0.1000	-0.0007
##	40	0.6198	nan	0.1000	-0.0016
##	60	0.5321	nan	0.1000	-0.0017
##	80	0.4659	nan	0.1000	-0.0034
##	100	0.4165	nan	0.1000	-0.0026
##	120	0.3705	nan	0.1000	-0.0018
##	140	0.3328	nan	0.1000	-0.0016
##	160	0.3013	nan	0.1000	-0.0023
##	180	0.2719	nan	0.1000	-0.0016
##	200	0.2439	nan	0.1000	-0.0016
##	220	0.2171	nan	0.1000	-0.0018
##	240	0.1952	nan	0.1000	-0.0009
##	250	0.1848	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2510	nan	0.1000	0.0145
##	2	1.2198	nan	0.1000	0.0118
##	3	1.1973	nan	0.1000	0.0078
##	4	1.1766	nan	0.1000	0.0074
##	5	1.1553	nan	0.1000	0.0077
##	6	1.1352	nan	0.1000	0.0079
##	7	1.1205	nan	0.1000	0.0068
##	8	1.1069	nan	0.1000	0.0065
##	9	1.0932	nan	0.1000	0.0055
##	10	1.0773	nan	0.1000	0.0063
##	20	0.9827	nan	0.1000	0.0015
##	40	0.8952	nan	0.1000	0.0010
##	60	0.8471	nan	0.1000	-0.0022
##	80	0.8170	nan	0.1000	-0.0003
##	100	0.7972	nan	0.1000	-0.0016
##	120	0.7847	nan	0.1000	-0.0009
##	140	0.7715	nan	0.1000	-0.0006
##	160	0.7531	nan	0.1000	-0.0015
##	180 200	0.7457 0.7350	nan	0.1000 0.1000	-0.0010 -0.0006
	220		nan		
##		0.7264	nan	0.1000	-0.0015
##		0.7179	nan	0.1000	-0.0017
##	250	0.7153	nan	0.1000	-0.0005
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2449	nan	0.1000	0.0215
##	2	1.2112	nan	0.1000	0.0213
##	3	1.1707	nan	0.1000	0.0149
##	4	1.1412	nan	0.1000	0.0097
##	5	1.1115	nan	0.1000	0.0037
1 111	,	1.1117	iiaii	0.1000	0.0001

12011				/ lavarioca Dat	a mining i rojeo
##	6	1.0887	nan	0.1000	0.0093
##	7	1.0653	nan	0.1000	0.0090
##	8	1.0485	nan	0.1000	0.0049
##	9	1.0310	nan	0.1000	0.0064
##	10	1.0142	nan	0.1000	0.0059
##	20	0.9110	nan	0.1000	0.0022
##	40	0.8138	nan	0.1000	-0.0006
##	60	0.7644	nan	0.1000	-0.0016
##	80	0.7339	nan	0.1000	-0.0013
##	100	0.6987	nan	0.1000	-0.0029
##	120	0.6718	nan	0.1000	-0.0021
##	140	0.6483	nan	0.1000	-0.0016
##	160	0.6184	nan	0.1000	-0.0011
##	180	0.5949	nan	0.1000	-0.0019
##	200	0.5727	nan	0.1000	-0.0009
##	220	0.5519	nan	0.1000	-0.0033
##	240	0.5333	nan	0.1000	-0.0016
##	250	0.5244	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2380	nan	0.1000	0.0238
##	2	1.1868	nan	0.1000	0.0201
##	3	1.1471	nan	0.1000	0.0150
##	4	1.1082	nan	0.1000	0.0169
##	5	1.0795	nan	0.1000	0.0134
##	6	1.0517	nan	0.1000	0.0112
##	7	1.0268	nan	0.1000	0.0087
##	8	1.0089	nan	0.1000	0.0062
##	9	0.9877	nan	0.1000	0.0064
##	10	0.9695	nan	0.1000	0.0033
##	20	0.8596	nan	0.1000	-0.0030
##	40	0.7475	nan	0.1000	-0.0009
##	60	0.6806	nan	0.1000	-0.0019
##	80	0.6326	nan	0.1000	-0.0030
##	100	0.5916	nan	0.1000	-0.0021
##	120	0.5512	nan	0.1000	-0.0018
##	140	0.5149	nan	0.1000	-0.0009
##	160	0.4835	nan	0.1000	-0.0012
##	180	0.4525	nan	0.1000	-0.0013
##	200	0.4282	nan	0.1000	-0.0016
##	220	0.4059	nan	0.1000	-0.0008
##	240	0.3858	nan	0.1000	-0.0023
##	250	0.3743	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2288	nan	0.1000	0.0264
##	2	1.1718	nan	0.1000	0.0213
##	3	1.1303	nan	0.1000	0.0149
##	4	1.0923	nan	0.1000	0.0186
##	5	1.0601	nan	0.1000	0.0114
##	6	1.0335	nan	0.1000	0.0090
##	7	1.0121	nan	0.1000	0.0056
##	8	0.9898	nan	0.1000	0.0087
##	9	0.9648	nan	0.1000	0.0076

					3 -,
##	10	0.9436	nan	0.1000	0.0055
##	20	0.8233	nan	0.1000	0.0011
##	40	0.7016	nan	0.1000	-0.0006
##	60	0.6283	nan	0.1000	-0.0011
##	80	0.5722	nan	0.1000	-0.0023
##	100	0.5218	nan	0.1000	-0.0013
##	120	0.4734	nan	0.1000	-0.0017
##	140	0.4293	nan	0.1000	-0.0022
##	160	0.3950	nan	0.1000	-0.0015
##	180	0.3658	nan	0.1000	-0.0030
##	200	0.3364	nan	0.1000	-0.0017
##	220	0.3090	nan	0.1000	-0.0012
##	240	0.2839	nan	0.1000	-0.0018
##	250	0.2700	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2233	nan	0.1000	0.0282
##	2	1.1760	nan	0.1000	0.0157
##	3	1.1336	nan	0.1000	0.0146
##	4	1.0939	nan	0.1000	0.0158
##	5	1.0613	nan	0.1000	0.0109
##	6	1.0266	nan	0.1000	0.0096
##	7	0.9997	nan	0.1000	0.0064
##	8	0.9733	nan	0.1000	0.0083
##	9	0.9575	nan	0.1000	0.0007
##	10	0.9363	nan	0.1000	0.0034
##	20	0.7852	nan	0.1000	-0.0003
##	40	0.6457	nan	0.1000	-0.0025
##	60	0.5623	nan	0.1000	-0.0003
##	80	0.5007	nan	0.1000	-0.0030
##	100	0.4483	nan	0.1000	-0.0044
##	120	0.4051	nan	0.1000	-0.0019
##	140	0.3689	nan	0.1000	-0.0015
##	160	0.3335	nan	0.1000	-0.0019
##	180	0.3013	nan	0.1000	-0.0012
##	200	0.2713	nan	0.1000	-0.0012
##	220	0.2467	nan	0.1000	-0.0008
##	240	0.2237	nan	0.1000	-0.0019
##	250	0.2137	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2503	nan	0.1000	0.0195
##	2	1.2206	nan	0.1000	0.0152
##	3	1.1974	nan	0.1000	0.0080
##	4	1.1638	nan	0.1000	0.0086
##	5	1.1408	nan	0.1000	0.0103
##	6	1.1216	nan	0.1000	0.0081
##	7	1.0988	nan	0.1000	0.0085
##	8	1.0838	nan	0.1000	0.0070
##	9	1.0653	nan	0.1000	0.0057
##	10	1.0507	nan	0.1000	0.0054
##	20	0.9623	nan	0.1000	-0.0001
##	40	0.8788	nan	0.1000	-0.0006
##	60	0.8302	nan	0.1000	-0.0008

^	12011				/ lavarioca Dat	a mining i rojeo
	##	80	0.8064	nan	0.1000	-0.0011
	##	100	0.7879	nan	0.1000	-0.0007
	##	120	0.7715	nan	0.1000	-0.0008
	##	140	0.7583	nan	0.1000	-0.0017
	##	160	0.7468	nan	0.1000	-0.0004
	##	180	0.7381	nan	0.1000	-0.0012
	##	200	0.7300	nan	0.1000	-0.0015
	##	220	0.7244	nan	0.1000	-0.0027
	##	240	0.7176	nan	0.1000	-0.0012
	##	250	0.7161	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2434	nan	0.1000	0.0223
	##	2	1.2001	nan	0.1000	0.0166
	##	3	1.1584	nan	0.1000	0.0181
	##	4	1.1265	nan	0.1000	0.0124
	##	5	1.0991	nan	0.1000	0.0120
	##	6	1.0712	nan	0.1000	0.0089
	##	7	1.0523	nan	0.1000	0.0074
	##	8	1.0335	nan	0.1000	0.0069
	##	9	1.0109	nan	0.1000	0.0065
	##	10	0.9934	nan	0.1000	0.0067
	##	20	0.8865	nan	0.1000	0.0002
	##	40	0.7986	nan	0.1000	-0.0020
	##	60	0.7448	nan	0.1000	-0.0030
	##	80	0.7083	nan	0.1000	-0.0025
	##	100	0.6789	nan	0.1000	-0.0010
	##	120	0.6515	nan	0.1000	-0.0027
	##	140	0.6299	nan	0.1000	-0.0038
	##	160	0.6029	nan	0.1000	-0.0017
	##	180	0.5799	nan	0.1000	-0.0014
	##	200	0.5594	nan	0.1000	-0.0023
	##	220	0.5415	nan	0.1000	-0.0014
	##	240	0.5226	nan	0.1000	-0.0025
	##	250	0.5156	nan	0.1000	-0.0034
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2443	nan	0.1000	0.0197
	##	2	1.1970	nan	0.1000	0.0213
	##	3	1.1534	nan	0.1000	0.0176
	##	4	1.1146	nan	0.1000	0.0152
	##	5	1.0874	nan	0.1000	0.0055
	##	6	1.0583	nan	0.1000	0.0133
	##	7	1.0353	nan	0.1000	0.0080
	##	8	1.0134	nan	0.1000	0.0062
	##	9	0.9916	nan	0.1000	0.0071
	##	10	0.9720	nan	0.1000	0.0064
	##	20	0.8451	nan	0.1000	-0.0008
	##	40	0.7347	nan	0.1000	-0.0013
	##	60	0.6700	nan	0.1000	-0.0034
	##	80	0.6233	nan	0.1000	-0.0013
	##	100	0.5856	nan	0.1000	-0.0020
	##	120	0.5557	nan	0.1000	-0.0032
	##	140	0.5193	nan	0.1000	-0.0010

12011				/ lavarioca Date	a willing i rojec
##	160	0.4843	nan	0.1000	-0.0025
##	180	0.4581	nan	0.1000	-0.0021
##	200	0.4348	nan	0.1000	-0.0016
##	220	0.4148	nan	0.1000	-0.0012
##	240	0.3895	nan	0.1000	-0.0010
##	250	0.3790	nan	0.1000	-0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2170	nan	0.1000	0.0303
##	2	1.1698	nan	0.1000	0.0191
##	3	1.1159	nan	0.1000	0.0224
##	4	1.0756	nan	0.1000	0.0115
##	5	1.0418	nan	0.1000	0.0154
##	6	1.0125	nan	0.1000	0.0097
##	7	0.9919	nan	0.1000	0.0083
##	8	0.9626	nan	0.1000	0.0094
##	9	0.9451	nan	0.1000	0.0039
##	10	0.9257	nan	0.1000	0.0038
##	20	0.8097	nan	0.1000	0.0004
##	40	0.6935	nan	0.1000	-0.0008
##	60	0.6152	nan	0.1000	-0.0006
##	80	0.5550	nan	0.1000	-0.0029
##	100	0.4995	nan	0.1000	-0.0041
##	120	0.4577	nan	0.1000	-0.0031
##	140	0.4198	nan	0.1000	-0.0004
##	160	0.3834	nan	0.1000	-0.0016
##	180	0.3557	nan	0.1000	-0.0015
##	200	0.3298	nan	0.1000	-0.0010
##	220	0.3038	nan	0.1000	-0.0026
##	240	0.2807	nan	0.1000	-0.0010
##	250	0.2694	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2252	nan	0.1000	0.0270
##	2	1.1669	nan	0.1000	0.0266
##	3	1.1193	nan	0.1000	0.0170
##	4	1.0807	nan	0.1000	0.0147
##	5	1.0458	nan	0.1000	0.0157
##	6	1.0119	nan	0.1000	0.0107
##	7	0.9853	nan	0.1000	0.0085
##	8	0.9622	nan	0.1000	0.0068
##	9	0.9397	nan	0.1000	0.0029
##	10	0.9163	nan	0.1000	0.0076
##	20	0.7708	nan	0.1000	0.0032
##	40	0.6454	nan	0.1000	-0.0017
##	60	0.5576	nan	0.1000	-0.0038
##	80	0.4898	nan	0.1000	-0.0024
##	100	0.4339	nan	0.1000	-0.0019
##	120	0.3889	nan	0.1000	-0.0027
##	140	0.3500	nan	0.1000	-0.0027
##	160	0.3125	nan	0.1000	-0.0011
##	180	0.2794	nan	0.1000	-0.0009
##	200	0.2539	nan	0.1000	-0.0013
##	220	0.2268	nan	0.1000	-0.0004

٠.	2017				/ lavarioca Data	i wiii iii ig i Tojoot
	##	240	0.2041	nan	0.1000	-0.0010
	##	250	0.1964	nan	0.1000	-0.0015
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2587	nan	0.1000	0.0158
	##	2	1.2275	nan	0.1000	0.0130
	##	3	1.2037	nan	0.1000	0.0108
	##	4	1.1799	nan	0.1000	0.0110
	##	5	1.1609	nan	0.1000	0.0072
	##	6	1.1423	nan	0.1000	0.0058
	##	7	1.1254	nan	0.1000	0.0086
	##	8	1.1127	nan	0.1000	0.0036
	##	9	1.0955	nan	0.1000	0.0059
	##	10	1.0802	nan	0.1000	0.0047
	##	20	0.9896	nan	0.1000	0.0006
	##	40	0.9041	nan	0.1000	-0.0005
	##	60	0.8592	nan	0.1000	-0.0001
	##	80	0.8293	nan	0.1000	-0.0022
	##	100	0.8016	nan	0.1000	-0.0025
	##	120	0.7862	nan	0.1000	-0.0014
	##	140	0.7734	nan	0.1000	0.0001
	##	160	0.7586	nan	0.1000	-0.0013
	##	180	0.7501	nan	0.1000	-0.0011
	##	200	0.7380	nan	0.1000	-0.0008
	##	220	0.7265	nan	0.1000	-0.0007
	##	240	0.7215	nan	0.1000	-0.0007
	##	250	0.7179	nan	0.1000	-0.0014
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2445	nan	0.1000	0.0189
	##	2	1.2085	nan	0.1000	0.0163
	##	3	1.1735	nan	0.1000	0.0154
	##	4	1.1411	nan	0.1000	0.0124
	##	5	1.1206	nan	0.1000	0.0065
	##	6	1.0951	nan	0.1000	0.0087
	##	7	1.0743	nan	0.1000	0.0085
	##	8	1.0547	nan	0.1000	0.0096
	##	9	1.0349	nan	0.1000	0.0070
	##	10	1.0221	nan	0.1000	0.0041
	##	20	0.9194	nan	0.1000	-0.0005
	##	40	0.8238	nan	0.1000	-0.0002
	##	60	0.7739	nan	0.1000	-0.0008
	##	80	0.7323	nan	0.1000	-0.0024
	##	100	0.6990	nan	0.1000	-0.0010
	##	120	0.6770	nan	0.1000	-0.0010
	##	140	0.6546	nan	0.1000	-0.0023
	##	160	0.6354	nan	0.1000	-0.0016
	##	180	0.6111	nan	0.1000	-0.0012
	##	200	0.5919	nan	0.1000	-0.0021
	##	220	0.5710 0.5525	nan	0.1000	-0.0012 -0.0013
	##	240 250	0.5525 0.5421	nan	0.1000 0.1000	-0.0013 -0.0008
	##	230	0.3421	nan	0.1000	-0.0000
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	ππ	T (C)	II GTUDE ATQUICE	varrabevrance	2 cch2T76	TIIIDI OVE

##	1	1.2365	nan	0.1000	0.0250
##	2	1.1887	nan	0.1000	0.0181
##	3	1.1455	nan	0.1000	0.0185
##	4	1.1114	nan	0.1000	0.0122
##	5	1.0870	nan	0.1000	0.0090
##	6	1.0611	nan	0.1000	0.0098
##	7	1.0337	nan	0.1000	0.0115
##	8	1.0170	nan	0.1000	0.0045
##	9	0.9974	nan	0.1000	0.0067
##	10	0.9805	nan	0.1000	0.0035
##	20	0.8627	nan	0.1000	0.0005
##	40	0.7523	nan	0.1000	-0.0008
##	60	0.6904	nan	0.1000	-0.0013
##	80	0.6394	nan	0.1000	-0.0016
##	100	0.5997	nan	0.1000	-0.0014
##	120	0.5696	nan	0.1000	-0.0026
##	140	0.5416	nan	0.1000	-0.0025
##	160	0.5104	nan	0.1000	-0.0028
##	180	0.4777	nan	0.1000	-0.0007
##	200	0.4497	nan	0.1000	-0.0020
##	220	0.4248	nan	0.1000	-0.0022
##	240	0.4032	nan	0.1000	-0.0028
##	250	0.3911	nan	0.1000	-0.0011
##					_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2376	nan	0.1000	0.0238
##	2	1.1787	nan	0.1000	0.0206
##	3	1.1376	nan	0.1000	0.0158
## ##	4 5	1.1012 1.0688	nan	0.1000 0.1000	0.0147 0.0083
##	6	1.0375	nan nan	0.1000	0.0074
##	7	1.0104	nan	0.1000	0.0068
##	8	0.9852	nan	0.1000	0.0108
##	9	0.9654	nan	0.1000	0.0070
##	10	0.9470	nan	0.1000	0.0053
##	20	0.8294	nan	0.1000	-0.0006
##	40	0.7205	nan	0.1000	-0.0032
##	60	0.6374	nan	0.1000	0.0006
##	80	0.5774	nan	0.1000	-0.0012
##	100	0.5261	nan	0.1000	-0.0027
##	120	0.4859	nan	0.1000	-0.0013
##	140	0.4424	nan	0.1000	-0.0015
##	160	0.4063	nan	0.1000	-0.0008
##	180	0.3746	nan	0.1000	-0.0005
##	200	0.3438	nan	0.1000	-0.0022
##	220	0.3180	nan	0.1000	-0.0006
##	240	0.2961	nan	0.1000	-0.0015
##	250	0.2838	nan	0.1000	-0.0019
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2370	nan	0.1000	0.0231
##	2	1.1737	nan	0.1000	0.0248
##	3	1.1232	nan	0.1000	0.0202
##	4	1.0832	nan	0.1000	0.0127

						3 3,55
	##	5	1.0443	nan	0.1000	0.0167
	##	6	1.0138	nan	0.1000	0.0100
	##	7	0.9833	nan	0.1000	0.0096
	##	8	0.9618	nan	0.1000	0.0036
	##	9	0.9399	nan	0.1000	0.0063
	##	10	0.9192	nan	0.1000	0.0037
	##	20	0.7875	nan	0.1000	-0.0013
	##	40	0.6552	nan	0.1000	-0.0030
	##	60	0.5718	nan	0.1000	-0.0031
	##	80	0.5041	nan	0.1000	-0.0028
	##	100	0.4496	nan	0.1000	-0.0019
	##	120	0.4008	nan	0.1000	-0.0020
	##	140	0.3549	nan	0.1000	-0.0017
	##	160	0.3226	nan	0.1000	-0.0020
	##	180	0.2892	nan	0.1000	-0.0015
	##	200	0.2641	nan	0.1000	-0.0017
	##	220	0.2419	nan	0.1000	-0.0025
	##	240	0.2188	nan	0.1000	-0.0013
	##	250	0.2096	nan	0.1000	-0.0013
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2513	nan	0.1000	0.0209
	##	2	1.2191	nan	0.1000	0.0139
	##	3	1.1881	nan	0.1000	0.0135
	##	4	1.1638	nan	0.1000	0.0115
	##	5	1.1396	nan	0.1000	0.0072
	##	6	1.1221	nan	0.1000	0.0067
	##	7	1.1005	nan	0.1000	0.0079
	##	8	1.0805	nan	0.1000	0.0064
	##	9	1.0649	nan	0.1000	0.0069
	##	10	1.0536	nan	0.1000	0.0045
	##	20	0.9565	nan	0.1000	-0.0009
	##	40	0.8708	nan	0.1000	-0.0001
	##	60	0.8275	nan	0.1000	-0.0023
	##	80	0.8017	nan	0.1000	-0.0006
	##	100	0.7806	nan	0.1000	-0.0007
	##	120	0.7678	nan	0.1000	-0.0011
	##	140	0.7578	nan	0.1000	-0.0007
	##	160	0.7420	nan	0.1000	-0.0013
	##	180	0.7335	nan	0.1000	-0.0015
	##	200	0.7225	nan	0.1000	-0.0012
	##	220	0.7144	nan	0.1000	-0.0014
	##	240	0.7091	nan	0.1000	-0.0011
	##	250	0.7065	nan	0.1000	-0.0017
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2381	nan	0.1000	0.0225
	##	2	1.1937	nan	0.1000	0.0175
	##	3	1.1552	nan	0.1000	0.0181
	##	4	1.1209	nan	0.1000	0.0134
	##	5	1.0921	nan	0.1000	0.0111
	##	6	1.0665	nan	0.1000	0.0093
	##	7	1.0440	nan	0.1000	0.0094
	##	8	1.0268	nan	0.1000	0.0068
ı						

,2011				/ tavarioca Dat	a mining i rojec
##	9	1.0115	nan	0.1000	0.0046
##	10	0.9953	nan	0.1000	0.0057
##	20	0.8913	nan	0.1000	0.0035
##	40	0.8034	nan	0.1000	-0.0011
##	60	0.7467	nan	0.1000	-0.0008
##	80	0.7131	nan	0.1000	-0.0019
##	100	0.6917	nan	0.1000	-0.0029
##	120	0.6597	nan	0.1000	-0.0030
##	140	0.6327	nan	0.1000	-0.0012
##	160	0.6066	nan	0.1000	-0.0026
##	180	0.5859	nan	0.1000	-0.0007
##	200	0.5630	nan	0.1000	-0.0012
##	220	0.5459	nan	0.1000	-0.0021
##	240	0.5270	nan	0.1000	-0.0022
##	250	0.5161	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2373	nan	0.1000	0.0264
##	2	1.1839	nan	0.1000	0.0260
##	3	1.1394	nan	0.1000	0.0198
##	4	1.1047	nan	0.1000	0.0130
##	5	1.0713	nan	0.1000	0.0134
##	6	1.0421	nan	0.1000	0.0097
##	7	1.0193	nan	0.1000	0.0040
##	8	0.9992	nan	0.1000	0.0093
##	9	0.9785	nan	0.1000	0.0079
##	10	0.9578	nan	0.1000	0.0039
##	20	0.8385	nan	0.1000	-0.0001
##	40	0.7371	nan	0.1000	0.0007
##	60	0.6728	nan	0.1000	-0.0008
##	80	0.6258	nan	0.1000	-0.0014
##	100	0.5903	nan	0.1000	-0.0033
##	120	0.5504	nan	0.1000	-0.0018
##	140 160	0.5156	nan	0.1000	-0.0022
##	180	0.4855 0.4547	nan	0.1000 0.1000	-0.0024 -0.0017
##	200	0.4266	nan nan	0.1000	-0.0017
##	220	0.4055	nan	0.1000	-0.0012
##	240	0.3804	nan	0.1000	-0.0016
##	250	0.3692	nan	0.1000	-0.0011
##		0.0002		31233	0.00
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2198	nan	0.1000	0.0310
##	2	1.1665	nan	0.1000	0.0235
##	3	1.1242	nan	0.1000	0.0173
##	4	1.0837	nan	0.1000	0.0161
##	5	1.0468	nan	0.1000	0.0156
##	6	1.0233	nan	0.1000	0.0096
##	7	0.9892	nan	0.1000	0.0153
##	8	0.9662	nan	0.1000	0.0091
##	9	0.9486	nan	0.1000	0.0043
##	10	0.9317	nan	0.1000	0.0033
##	20	0.7972	nan	0.1000	0.0002
##	40	0.6870	nan	0.1000	-0.0012

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Bat	a willing i rojco
##	60	0.6245	nan	0.1000	-0.0045
##	80	0.5677	nan	0.1000	-0.0010
##	100	0.5135	nan	0.1000	-0.0017
##	120	0.4693	nan	0.1000	-0.0008
##	140	0.4209	nan	0.1000	-0.0015
##	160	0.3900	nan	0.1000	-0.0005
##	180	0.3585	nan	0.1000	-0.0016
##	200	0.3312	nan	0.1000	-0.0021
##	220	0.3097	nan	0.1000	-0.0017
##	240	0.2863	nan	0.1000	-0.0016
##	250	0.2753	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2278	nan	0.1000	0.0193
##	2	1.1705	nan	0.1000	0.0230
##	3	1.1155	nan	0.1000	0.0197
##	4	1.0724	nan	0.1000	0.0142
##	5	1.0368	nan	0.1000	0.0062
##	6	1.0054	nan	0.1000	0.0089
##	7	0.9724	nan	0.1000	0.0124
##	8	0.9465	nan	0.1000	0.0097
##	9	0.9253	nan	0.1000	0.0042
##	10	0.9018	nan	0.1000	0.0077
##	20	0.7678	nan	0.1000	-0.0005
##	40	0.6459	nan	0.1000	-0.0036
##	60	0.5631	nan	0.1000	-0.0050
##	80	0.4915	nan	0.1000	-0.0015
##	100	0.4383	nan	0.1000	-0.0021
##	120	0.3955	nan	0.1000	-0.0020
##	140	0.3501	nan	0.1000	-0.0009
##	160	0.3149	nan	0.1000	-0.0007
##	180	0.2821	nan	0.1000	-0.0014
##	200	0.2544	nan	0.1000	-0.0012
##	220	0.2270	nan	0.1000	-0.0006
##	240	0.2094	nan	0.1000	-0.0010
##	250	0.1978	nan	0.1000	-0.0006
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2537	nan	0.1000	0.0180
##	2	1.2212	nan	0.1000	0.0163
##	3	1.1972	nan	0.1000	0.0083
##	4	1.1668	nan	0.1000	0.0100
##	5	1.1460	nan	0.1000	0.0099
##	6	1.1285	nan	0.1000	0.0073
##	7	1.1132	nan	0.1000	0.0054
##	8	1.0972	nan	0.1000	0.0060
##	9	1.0903	nan	0.1000	-0.0012
##	10	1.0763	nan	0.1000	0.0054
##	20	0.9822	nan	0.1000	0.0015
##	40	0.8985	nan	0.1000	-0.0019
##	60	0.8521	nan	0.1000	-0.0007
##	80	0.8204	nan	0.1000	-0.0018
##	100	0.8029	nan	0.1000	-0.0025
##	120	0.7882	nan	0.1000	-0.0011

2017				7 lavarioca Balo	i wiii iii ig i Tojco
##	140	0.7714	nan	0.1000	-0.0020
##	160	0.7601	nan	0.1000	-0.0010
##	180	0.7484	nan	0.1000	-0.0015
##	200	0.7393	nan	0.1000	-0.0006
##	220	0.7327	nan	0.1000	-0.0027
##	240	0.7253	nan	0.1000	-0.0004
##	250	0.7179	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2441	nan	0.1000	0.0227
##	2	1.2034	nan	0.1000	0.0191
##	3	1.1674	nan	0.1000	0.0160
##	4	1.1349	nan	0.1000	0.0125
##	5	1.1070	nan	0.1000	0.0106
##	6	1.0854	nan	0.1000	0.0081
##	7	1.0661	nan	0.1000	0.0053
##	8	1.0438	nan	0.1000	0.0096
##	9	1.0267	nan	0.1000	0.0049
##	10	1.0092	nan	0.1000	0.0033
##	20	0.9008	nan	0.1000	-0.0004
##	40	0.8089	nan	0.1000	0.0005
##	60	0.7552	nan	0.1000	-0.0023
##	80	0.7191	nan	0.1000	-0.0023
##	100	0.6902	nan	0.1000	-0.0018
##	120	0.6670	nan	0.1000	-0.0017
##	140	0.6430	nan	0.1000	-0.0013
##	160	0.6203	nan	0.1000	-0.0003
##	180	0.5952	nan	0.1000	-0.0013
##	200	0.5773	nan	0.1000	-0.0030
##	220	0.5527	nan	0.1000	-0.0020
##	240	0.5351	nan	0.1000	-0.0030
##	250	0.5253	nan	0.1000	-0.0016
##		010_00		0.1000	0.0020
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2365	nan	0.1000	0.0261
##	2	1.1838	nan	0.1000	0.0224
##	3	1.1495	nan	0.1000	0.0146
##	4	1.1129	nan	0.1000	0.0126
##	5	1.0860	nan	0.1000	0.0102
##	6	1.0639	nan	0.1000	0.0077
##	7	1.0362	nan	0.1000	0.0099
##	8	1.0141	nan	0.1000	0.0069
##	9	0.9942	nan	0.1000	0.0075
##	10	0.9756	nan	0.1000	0.0057
##	20	0.8606	nan	0.1000	-0.0008
##	40	0.7490	nan	0.1000	-0.0022
##	60	0.6864	nan	0.1000	-0.0013
##	80	0.6342	nan	0.1000	-0.0014
##	100	0.5875	nan	0.1000	-0.0015
##	120	0.5471	nan	0.1000	-0.0002
##	140	0.5148	nan	0.1000	-0.0011
##	160	0.4855	nan	0.1000	-0.0035
##	180	0.4614	nan	0.1000	-0.0034
##	200	0.4304	nan	0.1000	-0.0022

,, ,	-017					a willing i rojec
	##	220	0.4085	nan	0.1000	-0.0008
	##	240	0.3877	nan	0.1000	-0.0025
	##	250	0.3825	nan	0.1000	-0.0013
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2300	nan	0.1000	0.0278
	##	2	1.1748	nan	0.1000	0.0186
	##	3	1.1349	nan	0.1000	0.0120
	##	4	1.0943	nan	0.1000	0.0171
	##	5	1.0609	nan	0.1000	0.0101
	##	6	1.0354	nan	0.1000	0.0072
	##	7	1.0088	nan	0.1000	0.0092
	##	8	0.9852	nan	0.1000	0.0067
	##	9	0.9634	nan	0.1000	0.0063
	##	10	0.9403	nan	0.1000	0.0066
	##	20	0.8210	nan	0.1000	0.0010
	##	40	0.6992	nan	0.1000	-0.0024
	##	60	0.6223	nan	0.1000	-0.0018
	##	80	0.5640	nan	0.1000	-0.0010
	##	100	0.5118	nan	0.1000	-0.0019
	##	120	0.4647	nan	0.1000	-0.0027
	##	140	0.4251	nan	0.1000	-0.0031
	## ##	160 180	0.3927 0.3629	nan	0.1000 0.1000	-0.0017 -0.0014
	##	200	0.3354	nan	0.1000	-0.0014
	##	220	0.3121	nan nan	0.1000	-0.0013
	##	240	0.2905	nan	0.1000	-0.0014
	##	250	0.2804	nan	0.1000	-0.0010
	##	230	0.2004	nun	0.1000	0.0010
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2341	nan	0.1000	0.0292
	##	2	1.1787	nan	0.1000	0.0288
	##	3	1.1354	nan	0.1000	0.0138
	##	4	1.0916	nan	0.1000	0.0152
	##	5	1.0497	nan	0.1000	0.0096
	##	6	1.0153	nan	0.1000	0.0126
	##	7	0.9861	nan	0.1000	0.0098
	##	8	0.9638	nan	0.1000	0.0081
	##	9	0.9381	nan	0.1000	0.0074
	##	10	0.9179	nan	0.1000	0.0051
	##	20	0.7739	nan	0.1000	0.0025
	##	40	0.6499	nan	0.1000	-0.0041
	##	60	0.5636	nan	0.1000	-0.0028
	##	80	0.4975	nan	0.1000	-0.0026
	##	100	0.4456	nan	0.1000	-0.0038
	##	120	0.4025	nan	0.1000	-0.0012
	##	140	0.3578	nan	0.1000	-0.0010
	##	160	0.3209	nan	0.1000	-0.0019
	##	180	0.2890	nan	0.1000	-0.0020
	##	200	0.2603	nan	0.1000	-0.0021
	##	220	0.2359	nan	0.1000	-0.0008
	## ##	240 250	0.2138 0.2032	nan	0.1000 0.1000	-0.0007 -0.0011
	TT 11	230	0.2032	nan	O. TOOO	-0.00TI
	##					

					a willing i rojec
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2556	nan	0.1000	0.0182
##	2	1.2244	nan	0.1000	0.0147
##	3	1.1976	nan	0.1000	0.0105
##	4	1.1718	nan	0.1000	0.0104
##	5	1.1498	nan	0.1000	0.0087
##	6	1.1332	nan	0.1000	0.0066
##	7	1.1134	nan	0.1000	0.0059
##	8	1.0958	nan	0.1000	0.0065
##	9	1.0835	nan	0.1000	0.0056
##	10	1.0722	nan	0.1000	0.0044
##	20	0.9739	nan	0.1000	0.0028
##	40	0.8808	nan	0.1000	-0.0006
##	60	0.8405	nan	0.1000	-0.0006
##	80	0.8127	nan	0.1000	-0.0000
##	100	0.7893	nan	0.1000	-0.0002
##	120	0.7699	nan	0.1000	-0.0013
##	140	0.7576	nan	0.1000	-0.0011
##	160	0.7460	nan	0.1000	-0.0011
##	180	0.7377	nan	0.1000	-0.0007
##	200	0.7317	nan	0.1000	-0.0006
##	220	0.7245	nan	0.1000	-0.0006
##	240	0.7124	nan	0.1000	-0.0018
##	250	0.7082	nan	0.1000	-0.0012
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2436	nan	0.1000	0.0262
##	2	1.1971	nan	0.1000	0.0178
##	3	1.1667	nan	0.1000	0.0136
## ##	3 4	1.1667 1.1359	nan nan	0.1000 0.1000	0.0136 0.0117
## ## ##	3 4 5	1.1667 1.1359 1.1087	nan nan nan	0.1000 0.1000 0.1000	0.0136 0.0117 0.0109
## ## ## ##	3 4 5 6	1.1667 1.1359 1.1087 1.0814	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098
## ## ## ##	3 4 5 6 7	1.1667 1.1359 1.1087 1.0814 1.0575	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100
## ## ## ## ##	3 4 5 6 7 8	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106
## ## ## ## ##	3 4 5 6 7 8 9	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055
## ## ## ## ## ##	3 4 5 6 7 8 9 10	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039
## ## ## ## ## ##	3 4 5 6 7 8 9 10 20	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0004
## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0004 -0.0019
## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0018
## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0004 -0.0019 -0.0019
## ## ## ## ## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6630 0.6630 0.6424 0.6187	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0004 -0.0019 -0.0019 -0.0019
## ## ## ## ## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0019 -0.0029 -0.0015
## ## ## ## ## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 200 220	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0019 -0.0015 -0.0012
######################################	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5637 0.5637	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0019 -0.0029 -0.0015 -0.0012 -0.0018
######################################	3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 200 220	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0019 -0.0015 -0.0012
######################################	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807 0.5637 0.5434 0.5327	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0030 -0.0018 -0.0019 -0.0019 -0.0019 -0.0015 -0.0012 -0.0013
######################################	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 220 240 250	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807 0.5637 0.5434 0.5327	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0012 -0.0013 Improve
#########################	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 250 Iter	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807 0.5637 0.5434 0.5327	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0015 -0.0015 -0.0013 Improve 0.0229
###########################	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200 240 250 Iter 1	1.1667 1.1359 1.1087 1.0814 1.0575 1.0365 1.0207 1.0033 0.9009 0.8060 0.7614 0.7192 0.6904 0.6630 0.6424 0.6187 0.5994 0.5807 0.5637 0.5434 0.5327 TrainDeviance 1.2377	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0136 0.0117 0.0109 0.0098 0.0100 0.0106 0.0055 0.0039 0.0011 -0.0016 -0.0030 -0.0018 -0.0019 -0.0019 -0.0012 -0.0013 Improve

3/2017				/ lavarioca Dati	a willing i rojec
##	4	1.1044	nan	0.1000	0.0152
##	5	1.0711	nan	0.1000	0.0127
##	6	1.0518	nan	0.1000	0.0067
##	7	1.0308	nan	0.1000	0.0060
##	8	1.0054	nan	0.1000	0.0097
##	9	0.9811	nan	0.1000	0.0076
##	10	0.9671	nan	0.1000	0.0045
##	20	0.8475	nan	0.1000	-0.0003
##	40	0.7520	nan	0.1000	-0.0018
##	60	0.6963	nan	0.1000	-0.0025
##	80	0.6588	nan	0.1000	-0.0021
##	100	0.6187	nan	0.1000	-0.0024
##	120	0.5756	nan	0.1000	-0.0017
##	140	0.5447	nan	0.1000	-0.0011
##	160	0.5131	nan	0.1000	-0.0024
##	180	0.4884	nan	0.1000	-0.0023
##	200	0.4650	nan	0.1000	-0.0021
##	220	0.4380	nan	0.1000	-0.0012
##	240	0.4158	nan	0.1000	-0.0007
##	250	0.4060	nan	0.1000	-0.0024
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2351	nan	0.1000	0.0228
##	2	1.1794	nan	0.1000	0.0218
##	3	1.1379	nan	0.1000	0.0164
##	4	1.0990	nan	0.1000	0.0157
##	5	1.0628	nan	0.1000	0.0102
##	6	1.0357	nan	0.1000	0.0096
##	7	1.0117	nan	0.1000	0.0069
##	8	0.9862	nan	0.1000	0.0086
##		0.9656	nan	0.1000	0.0062
##	10	0.9430	nan	0.1000	0.0058
##	20	0.8187	nan	0.1000	-0.0010
##		0.7033	nan	0.1000	-0.0013
##		0.6275	nan	0.1000	-0.0030
##		0.5695	nan	0.1000	-0.0037
##		0.5168	nan	0.1000	-0.0026
##		0.4789	nan	0.1000	-0.0018
##		0.4383	nan	0.1000	-0.0013
##		0.4055	nan	0.1000	-0.0011
##		0.3760	nan	0.1000	-0.0022
##		0.3473	nan	0.1000	-0.0016
##		0.3247	nan	0.1000	-0.0022
##		0.3012	nan	0.1000	-0.0007
##		0.2915	nan	0.1000	-0.0021
##		TuefuBendence	V-14 dD4	C+ C :	T
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2251	nan	0.1000	0.0278
##			nan	0.1000	0.0216
##		1.1218 1.0730	nan	0.1000 0.1000	0.0217 0.0174
##		1.0388	nan nan	0.1000	0.0174
##		1.0066	nan	0.1000	0.0083
##		0.9788	nan	0.1000	0.0083
π#	,	0.9700	IIaII	0.1000	0.0033

_	,2011				/ lavarioca Dat	a mining i rojec
	##	8	0.9523	nan	0.1000	0.0089
	##	9	0.9284	nan	0.1000	0.0080
	##	10	0.9036	nan	0.1000	0.0079
	##	20	0.7808	nan	0.1000	-0.0006
	##	40	0.6658	nan	0.1000	-0.0033
	##	60	0.5865	nan	0.1000	-0.0024
	##	80	0.5185	nan	0.1000	-0.0044
	##	100	0.4670	nan	0.1000	-0.0015
	##	120	0.4138	nan	0.1000	-0.0014
	##	140	0.3727	nan	0.1000	-0.0006
	##	160	0.3371	nan	0.1000	-0.0016
	##	180	0.3054	nan	0.1000	-0.0013
	##	200	0.2764	nan	0.1000	-0.0016
	##	220	0.2543	nan	0.1000	-0.0012
	##	240	0.2302	nan	0.1000	-0.0012
	##	250	0.2196	nan	0.1000	-0.0007
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2546	nan	0.1000	0.0196
	##	2	1.2219	nan	0.1000	0.0138
	##	3	1.1958	nan	0.1000	0.0098
	##	4	1.1693	nan	0.1000	0.0140
	##	5	1.1445	nan	0.1000	0.0090
	##	6	1.1258	nan	0.1000	0.0064
	##	7	1.1067	nan	0.1000	0.0059
	##	8	1.0899	nan	0.1000	0.0060
	##	9	1.0730	nan	0.1000	0.0060
	##	10	1.0600	nan	0.1000	0.0044
	##	20	0.9660	nan	0.1000	0.0019
	##	40	0.8805	nan	0.1000	-0.0002
	##	60	0.8305	nan	0.1000	0.0005
	##	80 100	0.8008	nan	0.1000 0.1000	-0.0010
	##	100	0.7743	nan		-0.0012
	##	120 140	0.7576 0.7449	nan	0.1000	-0.0022
	##	160	0.7371	nan nan	0.1000 0.1000	-0.0018 -0.0032
	##	180	0.7293	nan	0.1000	-0.0032
	##	200	0.7213	nan	0.1000	-0.0007
	##	220	0.7136	nan	0.1000	-0.0026
	##	240	0.7054	nan	0.1000	-0.0013
	##	250	0.7005	nan	0.1000	-0.0008
	##					
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2405	nan	0.1000	0.0224
	##	2	1.1994	nan	0.1000	0.0206
	##	3	1.1643	nan	0.1000	0.0130
	##	4	1.1356	nan	0.1000	0.0136
	##	5	1.1094	nan	0.1000	0.0101
	##	6	1.0850	nan	0.1000	0.0083
	##	7	1.0639	nan	0.1000	0.0088
	##	8	1.0412	nan	0.1000	0.0101
	##	9	1.0241	nan	0.1000	0.0085
	##	10	1.0069	nan	0.1000	0.0061
	##	20	0.8919	nan	0.1000	-0.0001
	-					

,2017				/ lavarioca Bai	a willing i rojec
##	40	0.7932	nan	0.1000	-0.0009
##	60	0.7415	nan	0.1000	-0.0017
##	80	0.7019	nan	0.1000	-0.0018
##	100	0.6749	nan	0.1000	-0.0037
##	120	0.6454	nan	0.1000	-0.0031
##	140	0.6218	nan	0.1000	-0.0025
##	160	0.5977	nan	0.1000	-0.0023
##	180	0.5713	nan	0.1000	-0.0015
##	200	0.5543	nan	0.1000	-0.0013
##	220	0.5345	nan	0.1000	-0.0009
##	240	0.5168	nan	0.1000	-0.0002
##	250	0.5051	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2394	nan	0.1000	0.0266
##	2	1.1839	nan	0.1000	0.0176
##	3	1.1404	nan	0.1000	0.0172
##	4	1.1024	nan	0.1000	0.0148
##	5	1.0707	nan	0.1000	0.0116
##	6	1.0435	nan	0.1000	0.0107
##	7	1.0221	nan	0.1000	0.0086
##	8	0.9995	nan	0.1000	0.0074
##	9	0.9779	nan	0.1000	0.0095
##	10	0.9633	nan	0.1000	0.0048
##	20	0.8448	nan	0.1000	-0.0001
##	40	0.7287	nan	0.1000	-0.0006
##	60	0.6687	nan	0.1000	-0.0029
##	80	0.6224	nan	0.1000	-0.0018
##	100	0.5798	nan	0.1000	-0.0018
##	120	0.5291	nan	0.1000	-0.0003
##	140	0.4985	nan	0.1000	-0.0016
##	160	0.4708	nan	0.1000	-0.0008
##	180	0.4389	nan	0.1000	-0.0021
##	200	0.4100	nan	0.1000	-0.0016
##	220	0.3882	nan	0.1000	-0.0013
##	240	0.3681	nan	0.1000	-0.0013
##	250	0.3577	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2289	nan	0.1000	0.0279
##	2	1.1688	nan	0.1000	0.0299
##	3	1.1255	nan	0.1000	0.0198
##	4	1.0856	nan	0.1000	0.0133
##	5	1.0566	nan	0.1000	0.0099
##	6	1.0268	nan	0.1000	0.0107
##	7	0.9960	nan	0.1000	0.0117
##	8	0.9707	nan	0.1000	0.0092
##	9	0.9490	nan	0.1000	0.0066
##	10	0.9337	nan	0.1000	0.0028
##	20	0.8129	nan	0.1000	-0.0015
##	40	0.6810	nan	0.1000	-0.0024
##	60	0.6026	nan	0.1000	-0.0019
##	80	0.5494	nan	0.1000	-0.0014
##	100	0.4936	nan	0.1000	-0.0015
-					

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Dat	a mining i rojec
##	120	0.4447	nan	0.1000	-0.0019
##	140	0.4091	nan	0.1000	-0.0023
##	160	0.3813	nan	0.1000	-0.0034
##	180	0.3504	nan	0.1000	-0.0012
##	200	0.3227	nan	0.1000	-0.0028
##	220	0.2989	nan	0.1000	-0.0019
##	240	0.2765	nan	0.1000	-0.0014
##	250	0.2704	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2351	nan	0.1000	0.0229
##	2	1.1759	nan	0.1000	0.0172
##	3	1.1245	nan	0.1000	0.0171
##	4	1.0855	nan	0.1000	0.0138
##	5	1.0426	nan	0.1000	0.0179
##	6	1.0125	nan	0.1000	0.0113
##	7	0.9758	nan	0.1000	0.0156
##	8	0.9446	nan	0.1000	0.0119
##	9	0.9177	nan	0.1000	0.0096
##	10	0.8958	nan	0.1000	0.0080
##	20	0.7607	nan	0.1000	-0.0000
##	40	0.6298	nan	0.1000	-0.0023
##	60	0.5502	nan	0.1000	-0.0020
##	80	0.4831	nan	0.1000	-0.0026
##	100	0.4231	nan	0.1000	-0.0015
##	120	0.3789	nan	0.1000	-0.0030
##	140	0.3332	nan	0.1000	-0.0006
##	160	0.2963	nan	0.1000	-0.0019
##	180	0.2653	nan	0.1000	-0.0009
##	200 220	0.2399 0.2134	nan nan	0.1000 0.1000	-0.0003 -0.0014
##	240	0.1931	nan	0.1000	-0.0014
##	250	0.1853	nan	0.1000	-0.0014
##	230	0.1033	· · · · · · · · · · · · · · · · · · ·	0.1000	0.001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2571	nan	0.1000	0.0174
##	2	1.2147	nan	0.1000	0.0148
##	3	1.1870	nan	0.1000	0.0115
##	4	1.1603	nan	0.1000	0.0079
##	5	1.1408	nan	0.1000	0.0068
##	6	1.1229	nan	0.1000	0.0070
##	7	1.1048	nan	0.1000	0.0083
##	8	1.0901	nan	0.1000	0.0058
##	9	1.0739	nan	0.1000	0.0052
##	10	1.0602	nan	0.1000	0.0052
##	20	0.9752	nan	0.1000	0.0017
##	40	0.8860	nan	0.1000	0.0001
##	60	0.8394	nan	0.1000	-0.0014
##	80	0.8065	nan	0.1000	-0.0003
##	100	0.7861	nan	0.1000	-0.0008
##	120	0.7698	nan	0.1000	-0.0017
##	140	0.7567	nan	0.1000	-0.0007
##	160	0.7429	nan	0.1000	-0.0016 -0.0017
##	180	0.7348	nan	0.1000	-0.0017

12011				/ lavarioca Dati	a willing i rojec
##	200	0.7241	nan	0.1000	-0.0011
##	220	0.7151	nan	0.1000	-0.0023
##	240	0.7061	nan	0.1000	-0.0007
##	250	0.7021	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2438	nan	0.1000	0.0222
##	2	1.2121	nan	0.1000	0.0101
##	3	1.1723	nan	0.1000	0.0146
##	4	1.1454	nan	0.1000	0.0129
##	5	1.1142	nan	0.1000	0.0133
##	6	1.0855	nan	0.1000	0.0096
##	7	1.0596	nan	0.1000	0.0100
##	8	1.0364	nan	0.1000	0.0067
##	9	1.0183	nan	0.1000	0.0064
##	10	1.0051	nan	0.1000	0.0023
##	20	0.9015	nan	0.1000	0.0043
##	40	0.8033	nan	0.1000	-0.0017
##	60	0.7544	nan	0.1000	-0.0008
##	80	0.7118	nan	0.1000	-0.0013
##	100	0.6836	nan	0.1000	-0.0021
##	120	0.6580	nan	0.1000	-0.0018
##	140	0.6368	nan	0.1000	-0.0028
##	160	0.6156	nan	0.1000	-0.0019
##	180	0.5912	nan	0.1000	-0.0015
##	200	0.5680	nan	0.1000	-0.0011
##	220	0.5441	nan	0.1000	-0.0006
##	240	0.5287	nan	0.1000	-0.0009
##	250	0.5221	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2359	nan	0.1000	0.0218
##	2	1.1914	nan	0.1000	0.0156
##	3	1.1511	nan	0.1000	0.0146
##	4	1.1095	nan	0.1000	0.0182
##	5	1.0799	nan	0.1000	0.0115
##	6	1.0501	nan	0.1000	0.0137
##	7	1.0245	nan	0.1000	0.0091
##	8	1.0022	nan	0.1000	0.0070
##	9	0.9830	nan	0.1000	0.0063
##	10	0.9630	nan	0.1000	0.0041
##	20	0.8524	nan	0.1000	-0.0025
##	40	0.7480	nan	0.1000	-0.0017
##	60	0.6873	nan	0.1000	-0.0021
##	80	0.6409	nan	0.1000	-0.0026
##			_		
##	100	0.6030	nan	0.1000	-0.0032
##	100 120	0.6030 0.5477	nan nan	0.1000 0.1000	-0.0008
	100 120 140	0.6030 0.5477 0.5126	nan nan nan	0.1000 0.1000 0.1000	-0.0008 -0.0016
##	100 120 140 160	0.6030 0.5477 0.5126 0.4829	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027
##	100 120 140 160 180	0.6030 0.5477 0.5126 0.4829 0.4525	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027 -0.0016
## ##	100 120 140 160 180 200	0.6030 0.5477 0.5126 0.4829 0.4525 0.4305	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027 -0.0016 -0.0002
## ## ##	100 120 140 160 180 200 220	0.6030 0.5477 0.5126 0.4829 0.4525 0.4305 0.4060	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027 -0.0016 -0.0002 -0.0026
## ## ## ##	100 120 140 160 180 200 220 240	0.6030 0.5477 0.5126 0.4829 0.4525 0.4305 0.4060 0.3822	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027 -0.0016 -0.0002 -0.0026 -0.0013
## ## ##	100 120 140 160 180 200 220	0.6030 0.5477 0.5126 0.4829 0.4525 0.4305 0.4060	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 -0.0016 -0.0027 -0.0016 -0.0002 -0.0026

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2314	nan	0.1000	0.0278
##	2	1.1786	nan	0.1000	0.0211
##	3	1.1324	nan	0.1000	0.0152
##	4	1.0927	nan	0.1000	0.0169
##	5	1.0606	nan	0.1000	0.0124
##	6	1.0306	nan	0.1000	0.0129
##	7	1.0082	nan	0.1000	0.0078
##	8	0.9800	nan	0.1000	0.0096
##	9	0.9568	nan	0.1000	0.0067
##	10	0.9395	nan	0.1000	0.0044
##	20	0.8182	nan	0.1000	-0.0002
##		0.6891	nan	0.1000	-0.0024
##		0.6054	nan	0.1000	-0.0011
##		0.5376	nan	0.1000	-0.0018
##		0.4849	nan	0.1000	-0.0018
##		0.4432	nan	0.1000	-0.0022
##		0.4033	nan	0.1000	-0.0018
##		0.3656	nan	0.1000	-0.0005
##		0.3327	nan	0.1000	-0.0020
##		0.3076	nan	0.1000	-0.0009
##		0.2838	nan	0.1000	-0.0017
##		0.2652	nan	0.1000	-0.0011
##		0.2559	nan	0.1000	-0.0013
##				c. c.	_
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2350	nan	0.1000	0.0266
##		1.1812	nan	0.1000	0.0219
##		1.1345	nan	0.1000	0.0236
##		1.0929 1.0598	nan	0.1000 0.1000	0.0143 0.0090
##		1.0398	nan nan	0.1000	0.0090
##		0.9894	nan	0.1000	0.0033
##		0.9641	nan	0.1000	0.0130
##		0.9401	nan	0.1000	0.0107
##		0.9176	nan	0.1000	0.0030
##		0.7839	nan	0.1000	-0.0019
##		0.6550	nan	0.1000	-0.0025
##		0.5738	nan	0.1000	-0.0024
##		0.5006	nan	0.1000	-0.0053
##		0.4447	nan	0.1000	-0.0028
##		0.3920	nan	0.1000	-0.0006
##		0.3475	nan	0.1000	-0.0017
##		0.3103	nan	0.1000	-0.0011
##		0.2783	nan	0.1000	-0.0009
##		0.2510	nan	0.1000	-0.0012
##		0.2284	nan	0.1000	-0.0007
##		0.2067	nan	0.1000	-0.0011
##	250	0.1962	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2510	nan	0.1000	0.0191
##	2	1.2210	nan	0.1000	0.0137

•	2011				/ lavarioca Dat	a willing i rojec
	##	3	1.1943	nan	0.1000	0.0104
	##	4	1.1717	nan	0.1000	0.0107
	##	5	1.1453	nan	0.1000	0.0087
	##	6	1.1258	nan	0.1000	0.0070
	##	7	1.1061	nan	0.1000	0.0076
	##	8	1.0896	nan	0.1000	0.0068
	##	9	1.0752	nan	0.1000	0.0037
	##	10	1.0595	nan	0.1000	0.0056
	##	20	0.9701	nan	0.1000	0.0010
	##	40	0.8871	nan	0.1000	0.0002
	##	60	0.8448	nan	0.1000	-0.0009
	##	80	0.8090	nan	0.1000	0.0004
	##	100	0.7911	nan	0.1000	-0.0017
	##	120	0.7759	nan	0.1000	-0.0008
	##	140	0.7639	nan	0.1000	-0.0024
	##	160	0.7518	nan	0.1000	-0.0013
	##	180	0.7409	nan	0.1000	-0.0006
	##	200	0.7309	nan	0.1000	-0.0016
	##	220	0.7201	nan	0.1000	-0.0014
	##	240	0.7091	nan	0.1000	-0.0008
	##	250	0.7045	nan	0.1000	-0.0010
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2384	nan	0.1000	0.0258
	##	2	1.1992	nan	0.1000	0.0152
	##	3	1.1586	nan	0.1000	0.0145
	##	4	1.1215	nan	0.1000	0.0154
	##	5	1.0929	nan	0.1000	0.0114
	##	6	1.0684	nan	0.1000	0.0086
	##	7	1.0449	nan	0.1000	0.0104
	##	8	1.0216	nan	0.1000	0.0064
	##	9	1.0070	nan	0.1000	0.0050
	##	10	0.9879	nan	0.1000	0.0045
	##	20	0.8836	nan	0.1000	0.0014
	##	40	0.8008	nan	0.1000	-0.0025
	##	60	0.7489	nan	0.1000	-0.0002
	##	80	0.7111	nan	0.1000	-0.0012
	##	100	0.6729	nan	0.1000	-0.0037
	##	120 140	0.6465	nan	0.1000 0.1000	-0.0011
	##	160	0.6253 0.6048	nan		-0.0012 -0.0015
	##	180	0.5831	nan	0.1000 0.1000	-0.0013
	##	200	0.5620	nan nan	0.1000	-0.0020
	##	220	0.5406	nan	0.1000	-0.0017
	##	240	0.5215	nan	0.1000	-0.0004
	##	250	0.5095	nan	0.1000	-0.0018
	##	230	0.3033	· · · · · · · · · · · · · · · · · · ·	0.1000	0.0020
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2383	nan	0.1000	0.0242
	##	2	1.1918	nan	0.1000	0.0222
	##	3	1.1502	nan	0.1000	0.0187
	##	4	1.1176	nan	0.1000	0.0147
	##	5	1.0820	nan	0.1000	0.0146
	##	6	1.0466	nan	0.1000	0.0136

12011				7 lavarioca Bal	a mining i rojeo
##	7	1.0239	nan	0.1000	0.0101
##	8	1.0008	nan	0.1000	0.0076
##	9	0.9828	nan	0.1000	0.0041
##	10	0.9711	nan	0.1000	0.0008
##	20	0.8482	nan	0.1000	0.0001
##	40	0.7374	nan	0.1000	-0.0013
##	60	0.6762	nan	0.1000	-0.0011
##	80	0.6233	nan	0.1000	-0.0026
##	100	0.5785	nan	0.1000	-0.0026
##	120	0.5373	nan	0.1000	-0.0024
##	140	0.5071	nan	0.1000	-0.0031
##	160	0.4772	nan	0.1000	-0.0025
##	180	0.4509	nan	0.1000	-0.0035
##	200	0.4282	nan	0.1000	-0.0030
##	220	0.4023	nan	0.1000	-0.0011
##	240	0.3768	nan	0.1000	-0.0013
##	250	0.3658	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2315	nan	0.1000	0.0273
##	2	1.1757	nan	0.1000	0.0242
##	3	1.1340	nan	0.1000	0.0151
##	4	1.0925	nan	0.1000	0.0156
##	5	1.0545	nan	0.1000	0.0154
##	6	1.0185	nan	0.1000	0.0119
##	7	0.9911	nan	0.1000	0.0095
##	8	0.9608	nan	0.1000	0.0119
##	9	0.9436	nan	0.1000	0.0036
##	10	0.9284	nan	0.1000	0.0013
##	20	0.8061	nan	0.1000	-0.0008
##	40 60	0.6955 0.6128	nan	0.1000	-0.0002
##	80	0.5574	nan	0.1000 0.1000	-0.0030 -0.0014
##	100	0.5137	nan	0.1000	-0.0014
##	120	0.4716	nan nan	0.1000	-0.0033
##	140	0.4367	nan	0.1000	-0.0035
##	160	0.3975	nan	0.1000	-0.0033
##	180	0.3649	nan	0.1000	-0.0014
##	200	0.3316	nan	0.1000	-0.0017
##	220	0.3098	nan	0.1000	-0.0020
##	240	0.2886	nan	0.1000	-0.0017
##	250	0.2786	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2282	nan	0.1000	0.0196
##	2	1.1689	nan	0.1000	0.0198
##	3	1.1241	nan	0.1000	0.0174
##	4	1.0802	nan	0.1000	0.0191
##	5	1.0435	nan	0.1000	0.0154
##	6	1.0146	nan	0.1000	0.0107
##	7	0.9850	nan	0.1000	0.0115
##	8	0.9579	nan	0.1000	0.0091
##	9	0.9303	nan	0.1000	0.0070
##	10	0.9111	nan	0.1000	0.0066
-					

12011				/ lavarioca Dat	a willing i rojec
##	20	0.7767	nan	0.1000	-0.0007
##	40	0.6319	nan	0.1000	-0.0019
##	60	0.5513	nan	0.1000	-0.0034
##	80	0.4890	nan	0.1000	0.0008
##	100	0.4362	nan	0.1000	-0.0024
##	120	0.3901	nan	0.1000	-0.0036
##	140	0.3498	nan	0.1000	-0.0016
##	160	0.3145	nan	0.1000	-0.0027
##	180	0.2857	nan	0.1000	-0.0016
##	200	0.2580	nan	0.1000	-0.0019
##	220	0.2341	nan	0.1000	-0.0006
##	240	0.2138	nan	0.1000	-0.0004
##	250	0.2033	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2645	nan	0.1000	0.0157
##	2	1.2364	nan	0.1000	0.0131
##	3	1.2156	nan	0.1000	0.0121
##	4	1.1950	nan	0.1000	0.0090
##	5	1.1731	nan	0.1000	0.0098
##	6	1.1556	nan	0.1000	0.0068
##	7	1.1349	nan	0.1000	0.0079
##	8	1.1197	nan	0.1000	0.0051
##	9	1.1037	nan	0.1000	0.0057
##	10	1.0900	nan	0.1000	0.0047
##	20	0.9971	nan	0.1000	0.0011
##	40	0.9107	nan	0.1000	-0.0003
##	60	0.8606	nan	0.1000	-0.0001
##	80	0.8395	nan	0.1000	-0.0002
##	100	0.8179	nan	0.1000	-0.0014
##	120	0.8008	nan	0.1000	-0.0018
##	140	0.7871	nan	0.1000	-0.0023
##	160	0.7779	nan	0.1000	-0.0016
##	180	0.7695	nan	0.1000	-0.0024
##	200	0.7649	nan	0.1000	-0.0018
##	220	0.7576	nan	0.1000	-0.0009
##	240	0.7511	nan	0.1000	-0.0007
##	250	0.7480	nan	0.1000	-0.0010
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2528	nan	0.1000	0.0190
##	2	1.2115	nan	0.1000	0.0169
##	3	1.1734	nan	0.1000	0.0184
##	4	1.1469	nan	0.1000	0.0111
##	5	1.1183	nan	0.1000	0.0102
##	6	1.0956	nan	0.1000	0.0095
##	7	1.0773	nan	0.1000	0.0053
##	8	1.0534	nan	0.1000	0.0066
##	9	1.0405	nan	0.1000	0.0055
##	10	1.0254	nan	0.1000	0.0072
##	20	0.9236	nan	0.1000	0.0033
##	40	0.8285	nan	0.1000	-0.0008
##	60	0.7809	nan	0.1000	-0.0005
##	80	0.7504	nan	0.1000	-0.0010

12011				/ lavarioca Dat	a mining i rojeo
##	100	0.7181	nan	0.1000	-0.0010
##	120	0.6923	nan	0.1000	-0.0010
##	140	0.6687	nan	0.1000	-0.0006
##	160	0.6448	nan	0.1000	-0.0009
##	180	0.6186	nan	0.1000	-0.0004
##	200	0.5966	nan	0.1000	-0.0019
##	220	0.5753	nan	0.1000	-0.0038
##	240	0.5576	nan	0.1000	-0.0011
##	250	0.5482	nan	0.1000	-0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2404	nan	0.1000	0.0215
##	2	1.1937	nan	0.1000	0.0198
##	3	1.1564	nan	0.1000	0.0157
##	4	1.1230	nan	0.1000	0.0134
##	5	1.0940	nan	0.1000	0.0119
##	6	1.0684	nan	0.1000	0.0083
##	7	1.0450	nan	0.1000	0.0065
##	8	1.0205	nan	0.1000	0.0082
##	9	1.0019	nan	0.1000	0.0047
##	10	0.9827	nan	0.1000	0.0055
##	20	0.8765	nan	0.1000	0.0003
##	40	0.7759	nan	0.1000	-0.0020
##	60	0.7128	nan	0.1000	-0.0003
##	80	0.6618	nan	0.1000	-0.0012
##	100	0.6221	nan	0.1000	-0.0014
##	120	0.5865	nan	0.1000	-0.0024
##	140	0.5529	nan	0.1000	-0.0022
##	160	0.5207	nan	0.1000	-0.0016
##	180	0.4889	nan	0.1000	-0.0031
##	200	0.4615	nan	0.1000	-0.0018
##	220	0.4413	nan	0.1000	-0.0026
##	240	0.4195	nan	0.1000	-0.0017
##	250	0.4093	nan	0.1000	-0.0020
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2359	nan	0.1000	0.0236
##	2	1.1913	nan	0.1000	0.0176
##	3	1.1455	nan	0.1000	0.0165
##	4	1.1082	nan	0.1000	0.0130
##	5	1.0712	nan	0.1000	0.0137
##	6	1.0418	nan	0.1000	0.0096
##	7	1.0106	nan	0.1000	0.0078
##	8	0.9868	nan	0.1000	0.0085
##	9	0.9684	nan	0.1000	0.0033
##	10	0.9544	nan	0.1000	-0.0005
##	20	0.8337	nan	0.1000	-0.0017
##	40	0.7173	nan	0.1000	-0.0006
##	60	0.6361	nan	0.1000	-0.0007
##	80	0.5732	nan	0.1000	-0.0026
##	100	0.5170	nan	0.1000	-0.0004
##	120	0.4732	nan	0.1000	-0.0018
##	140	0.4277	nan	0.1000	-0.0026
##	160	0.3951	nan	0.1000	-0.0014

_	_0 17				/ lavarioca Dali	a willing i rojeo
	##	180	0.3635	nan	0.1000	-0.0020
	##	200	0.3343	nan	0.1000	-0.0010
	##	220	0.3094	nan	0.1000	-0.0022
	##	240	0.2868	nan	0.1000	-0.0016
	##	250	0.2769	nan	0.1000	-0.0020
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2310	nan	0.1000	0.0287
	##	2	1.1769	nan	0.1000	0.0168
	##	3	1.1325	nan	0.1000	0.0155
	##	4	1.0901	nan	0.1000	0.0174
	##	5	1.0500	nan	0.1000	0.0172
	##	6	1.0166	nan	0.1000	0.0126
	##	7	0.9909	nan	0.1000	0.0091
	##	8	0.9613	nan	0.1000	0.0106
	##	9	0.9370	nan	0.1000	0.0070
	##	10	0.9204	nan	0.1000	0.0018
	##	20	0.7994	nan	0.1000	-0.0004
	##	40	0.6625	nan	0.1000	-0.0028
	##	60	0.5787	nan	0.1000	-0.0038
	##	80	0.5174	nan	0.1000	-0.0002
	##	100	0.4627	nan	0.1000	-0.0005
	##	120	0.4153	nan	0.1000	-0.0032
	##	140	0.3733	nan	0.1000	-0.0012
	##	160	0.3363	nan	0.1000	-0.0014
	##	180	0.3013	nan	0.1000	-0.0006
	##	200	0.2713	nan	0.1000	-0.0024
	##	220	0.2460	nan	0.1000	-0.0010
	##	240	0.2246	nan	0.1000	-0.0017
	##	250	0.2148	nan	0.1000	-0.0005
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2602	nan	0.1000	0.0193
	##	2	1.2268	nan	0.1000	0.0131
	##	3	1.2003	nan	0.1000	0.0129
	##	4	1.1752	nan	0.1000	0.0088
	##	5	1.1580	nan	0.1000	0.0031
	##	6	1.1401	nan	0.1000	0.0085
	##	7	1.1236	nan	0.1000	0.0048
	##	8	1.1079	nan	0.1000	0.0062
	##	9	1.0921	nan	0.1000	0.0050
	##	10	1.0770	nan	0.1000	0.0064
	##	20	0.9892	nan	0.1000	0.0020
	##	40	0.9042	nan	0.1000	0.0012
	##	60	0.8595	nan	0.1000	-0.0010
	##	80	0.8310	nan	0.1000	-0.0005
	##	100	0.8079	nan	0.1000	-0.0011
	##	120	0.7961	nan	0.1000	-0.0022
	##	140	0.7814	nan	0.1000	-0.0005
	##	160	0.7718	nan	0.1000	-0.0011
	##	180	0.7655	nan	0.1000	-0.0007
	##	200	0.7558	nan	0.1000	-0.0006
	##	220	0.7410	nan	0.1000	-0.0015
	##	240	0.7334	nan	0.1000	-0.0025

##	250	0.7298	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2478	nan	0.1000	0.0231
##	2	1.2103	nan	0.1000	0.0160
##	3	1.1753	nan	0.1000	0.0153
##	4	1.1405	nan	0.1000	0.0156
##	5	1.1070	nan	0.1000	0.0094
##	6	1.0825	nan	0.1000	0.0080
##	7	1.0618	nan	0.1000	0.0066
##	8	1.0394	nan	0.1000	0.0103
##	9	1.0207	nan	0.1000	0.0072
##	10	1.0030	nan	0.1000	0.0067
##	20	0.9063	nan	0.1000	0.0025
##	40	0.8202	nan	0.1000	-0.0011
##	60	0.7741	nan	0.1000	-0.0025
##	80	0.7425	nan	0.1000	-0.0018
##	100	0.7089	nan	0.1000	-0.0019
##	120	0.6829	nan	0.1000	-0.0009
##	140	0.6588	nan	0.1000	-0.0022
##	160	0.6326	nan	0.1000	0.0005
##	180	0.6057	nan	0.1000	-0.0022
##	200	0.5867	nan	0.1000	-0.0016
##	220	0.5688	nan	0.1000	-0.0021
##	240	0.5555	nan	0.1000	-0.0030
##	250	0.5468	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2338	nan	0.1000	0.0259
##	2	1.1915	nan	0.1000	0.0222
##	3	1.1533	nan	0.1000	0.0167
##	4	1.1132	nan	0.1000	0.0158
##	5	1.0799	nan	0.1000	0.0149
##	6	1.0516	nan	0.1000	0.0098
##	7	1.0299	nan	0.1000	0.0074
##	8	1.0074	nan	0.1000	0.0081
##	9	0.9913	nan	0.1000	0.0014
##	10	0.9715	nan	0.1000	0.0073
##	20	0.8587	nan	0.1000	0.0010
##	40	0.7675	nan	0.1000	-0.0040
##	60	0.7088	nan	0.1000	-0.0031
##	80	0.6622	nan	0.1000	-0.0009
##	100	0.6171	nan	0.1000	-0.0023
##	120	0.5758	nan	0.1000	-0.0016
##	140	0.5415	nan	0.1000	-0.0032
##	160	0.5134	nan	0.1000	-0.0010
##	180	0.4882	nan	0.1000	-0.0031
##	200	0.4616	nan	0.1000	-0.0012
##	220	0.4396	nan	0.1000	-0.0017
##	240	0.4173	nan	0.1000	-0.0020
##	250	0.4064	nan	0.1000	-0.0011
##		-	V 3 · In ·	c. c:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2228	nan	0.1000	0.0315

					a willing i rojo
##	2	1.1801	nan	0.1000	0.0171
##	3	1.1406	nan	0.1000	0.0182
##	4	1.1008	nan	0.1000	0.0141
##	5	1.0661	nan	0.1000	0.0119
##	6	1.0367	nan	0.1000	0.0070
##	7	1.0106	nan	0.1000	0.0085
##	8	0.9851	nan	0.1000	0.0089
##	9	0.9654	nan	0.1000	0.0057
##	10	0.9494	nan	0.1000	0.0032
##	20	0.8354	nan	0.1000	-0.0014
##	40	0.7107	nan	0.1000	-0.0023
##	60	0.6374	nan	0.1000	-0.0021
##	80	0.5801	nan	0.1000	-0.0027
##	100	0.5288	nan	0.1000	-0.0024
##	120	0.4878	nan	0.1000	-0.0042
##	140	0.4469	nan	0.1000	-0.0017
##	160	0.4100	nan	0.1000	-0.0016
##	180	0.3746	nan	0.1000	-0.0014
##	200	0.3472	nan	0.1000	-0.0016
##	220	0.3255	nan	0.1000	-0.0014
##	240	0.3061	nan	0.1000	-0.0011
##	250	0.2967	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2321	nan	0.1000	0.0269
##	2	1.1768	nan	0.1000	0.0201
##	3	1.1303	nan	0.1000	0.0130
##	4	1.0883	nan	0.1000	0.0155
##	5	1.0491	nan	0.1000	0.0129
##	6	1.0132	nan	0.1000	0.0143
##	7	0.9862	nan	0.1000	0.0080
##	8	0.9600	nan	0.1000	0.0074
##	9				
##	9	0.9407	nan	0.1000	0.0045
	10	0.9407 0.9223	nan nan	0.1000 0.1000	0.0045 0.0009
##	_				
	10	0.9223	nan	0.1000	0.0009
##	10 20	0.9223 0.8029	nan nan	0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021
## ##	10 20 40	0.9223 0.8029 0.6703	nan nan nan	0.1000 0.1000 0.1000	0.0009 0.0000 0.0008
## ## ##	10 20 40 60	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0024 -0.0032
## ## ## ##	10 20 40 60 80	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0024 -0.0032
## ## ## ##	10 20 40 60 80 100 120 140	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0024 -0.0032
## ## ## ## ##	10 20 40 60 80 100 120 140	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0024 -0.0032
## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0035 -0.0021 -0.0029 -0.0019
## ## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180 200	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	10 20 40 60 80 100 120 140 160 180 200	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0024 -0.0032 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013
* * * * * * * * * * * * * * * * * * * *	10 20 40 60 80 100 120 140 160 180 200	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2512	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0012
*	10 20 40 60 80 100 120 140 160 180 200	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013
* * * * * * * * * * * * * * * * * * * *	10 20 40 60 80 100 140 160 180 200 220 240 250	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2512 0.2279 0.2193	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0024 -0.0032 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0009
*	10 20 40 60 80 100 120 140 160 200 240 250 Iter	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2512 0.2279 0.2193	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0008 0.0008 -0.0021 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005 -0.0012 -0.0009 Improve
* * * * * * * * * * * * * * * * * * * *	10 20 40 60 80 100 120 140 160 200 240 250 Iter 1	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2512 0.2279 0.2193 TrainDeviance 1.2567	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0035 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0012 -0.0009 Improve 0.0165
****	10 20 40 60 80 100 120 140 160 200 220 240 250 Iter 1	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2765 0.2512 0.2279 0.2193 TrainDeviance 1.2567 1.2280	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0009 Improve 0.0165 0.0118
*****	10 20 40 60 80 100 120 140 160 220 240 250 Iter 1 2	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2512 0.2279 0.2193 TrainDeviance 1.2567 1.2280 1.1951	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0012 -0.0009 Improve 0.0165 0.0118 0.0151
****	10 20 40 60 80 100 120 140 160 200 220 240 250 Iter 1	0.9223 0.8029 0.6703 0.5835 0.5191 0.4646 0.4182 0.3732 0.3379 0.3057 0.2765 0.2765 0.2512 0.2279 0.2193 TrainDeviance 1.2567 1.2280	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0009 0.0000 0.0008 -0.0021 -0.0032 -0.0021 -0.0029 -0.0019 -0.0005 -0.0013 -0.0009 Improve 0.0165 0.0118
***	############################	## 3 ## 5 6 ## 5 6 ## 7 ## 8 ## 9 ## 10 ## 40 ## 120 ## 140 ## 140 ## 140 ## 240 ## 240 ## 240 ## 250 ## 240 ## 3 ## 3 ## 4 ## 5 ## 3 ## 4 ## 5 ## 3 ## 3 ## 3 ## 3 ## 3 ## 3 ## 3	## 3 1.1406 ## 4 1.1008 ## 5 1.0661 ## 6 1.0367 ## 7 1.0106 ## 8 0.9851 ## 9 0.9654 ## 10 0.9494 ## 20 0.8354 ## 40 0.7107 ## 60 0.6374 ## 80 0.5801 ## 100 0.5288 ## 120 0.4878 ## 140 0.4469 ## 140 0.4469 ## 160 0.3746 ## 200 0.3746 ## 200 0.3746 ## 200 0.3755 ## 240 0.3061 ## 250 0.2967 ## ## Iter TrainDeviance ## 1 1.2321 ## 2 1.1768 ## 3 1.1303 ## 4 1.0883 ## 5 1.0491 ## 6 1.0132 ## 6 1.0132	## 3 1.1406	## 3 1.1406

12011				/ lavarioca Dat	a mining i rojeo
##	6	1.1238	nan	0.1000	0.0056
##	7	1.0997	nan	0.1000	0.0077
##	8	1.0840	nan	0.1000	0.0072
##	9	1.0685	nan	0.1000	0.0071
##	10	1.0537	nan	0.1000	0.0038
##	20	0.9566	nan	0.1000	0.0020
##	40	0.8715	nan	0.1000	0.0001
##	60	0.8263	nan	0.1000	-0.0004
##	80	0.8025	nan	0.1000	-0.0008
##	100	0.7823	nan	0.1000	-0.0005
##	120	0.7676	nan	0.1000	-0.0018
##	140	0.7544	nan	0.1000	-0.0007
##	160	0.7435	nan	0.1000	-0.0034
##	180	0.7297	nan	0.1000	-0.0013
##	200	0.7230	nan	0.1000	-0.0012
##	220	0.7171	nan	0.1000	-0.0006
##	240	0.7102	nan	0.1000	-0.0006
##	250	0.7073	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2416	nan	0.1000	0.0222
##	2	1.2025	nan	0.1000	0.0172
##	3	1.1630	nan	0.1000	0.0140
##	4	1.1276	nan	0.1000	0.0146
##	5	1.1014	nan	0.1000	0.0111
##	6	1.0769	nan	0.1000	0.0112
##	7	1.0549	nan	0.1000	0.0065
##	8	1.0343	nan	0.1000	0.0097
##	9	1.0190	nan	0.1000	0.0050
##	10	1.0015	nan	0.1000	0.0080
##	20	0.8898	nan	0.1000	0.0002
##	40	0.7906	nan	0.1000	-0.0017
##	60	0.7403	nan	0.1000	-0.0016
##	80	0.7062	nan	0.1000	-0.0012
##	100	0.6708	nan	0.1000	-0.0026
##	120	0.6445	nan	0.1000	-0.0011
##	140	0.6153	nan	0.1000	-0.0013
##	160	0.5956	nan	0.1000	-0.0024
##	180	0.5773	nan	0.1000	-0.0012
##	200	0.5534	nan	0.1000	-0.0011
##	220	0.5336	nan	0.1000	-0.0026
##	240	0.5157	nan	0.1000	-0.0018
##	250	0.5066	nan	0.1000	-0.0035
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2448	nan	0.1000	0.0245
##	2	1.1933	nan	0.1000	0.0231
##	3	1.1462	nan	0.1000	0.0182
##	4	1.1078	nan	0.1000	0.0147
##	5	1.0771	nan	0.1000	0.0147
##	6	1.0451	nan	0.1000	0.0142
##	7	1.0210	nan	0.1000	0.0073
##	8	0.9972	nan	0.1000	0.0085
##	9	0.9739	nan	0.1000	0.0086

					3 3,55
##	10	0.9577	nan	0.1000	0.0063
##	20	0.8391	nan	0.1000	-0.0003
##	40	0.7380	nan	0.1000	-0.0027
##	60	0.6782	nan	0.1000	-0.0005
##	80	0.6214	nan	0.1000	-0.0013
##	100	0.5762	nan	0.1000	-0.0010
##	120	0.5433	nan	0.1000	-0.0017
##	140	0.5084	nan	0.1000	-0.0016
##	160	0.4850	nan	0.1000	-0.0014
##	180	0.4582	nan	0.1000	-0.0013
##	200	0.4276	nan	0.1000	-0.0016
##	220	0.4034	nan	0.1000	-0.0022
##	240	0.3815	nan	0.1000	-0.0011
##	250	0.3703	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2244	nan	0.1000	0.0252
##	2	1.1763	nan	0.1000	0.0208
##	3	1.1237	nan	0.1000	0.0201
##	4	1.0824	nan	0.1000	0.0162
##	5	1.0497	nan	0.1000	0.0137
##	6	1.0217	nan	0.1000	0.0100
##	7	0.9972	nan	0.1000	0.0071
##	8	0.9662	nan	0.1000	0.0098
##	9	0.9471	nan	0.1000	0.0056
##	10	0.9314	nan	0.1000	0.0039
##	20	0.8056	nan	0.1000	0.0006
##	40	0.6975	nan	0.1000	-0.0029
##	60	0.6132	nan	0.1000	-0.0013
##	80	0.5500	nan	0.1000	-0.0040
##	100	0.4989	nan	0.1000	-0.0007
##	120	0.4612	nan	0.1000	-0.0011
##	140	0.4182	nan	0.1000	-0.0018
##	160	0.3815	nan	0.1000	-0.0023
##	180	0.3492	nan	0.1000	-0.0022
##	200	0.3245	nan	0.1000	-0.0012
##	220	0.3013	nan	0.1000	-0.0006
##	240	0.2759	nan	0.1000	-0.0011
##	250	0.2642	nan	0.1000	-0.0010
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2301	nan	0.1000	0.0267
##	2	1.1667	nan	0.1000	0.0295
##	3	1.1191	nan	0.1000	0.0196
##	4	1.0742	nan	0.1000	0.0148
##	5	1.0386	nan	0.1000	0.0159
##	6	1.0070	nan	0.1000	0.0103
##	7	0.9838	nan	0.1000	0.0067
##	8	0.9553	nan	0.1000	0.0090
##	9	0.9369	nan	0.1000	0.0026
##	10	0.9127	nan	0.1000	0.0085
##	20	0.7862	nan	0.1000	-0.0009
##	40	0.6542	nan	0.1000	-0.0047
##	60	0.5683	nan	0.1000	-0.0034

12011				/ lavarioca Dall	a willing i rojec
##	80	0.5043	nan	0.1000	-0.0029
##	100	0.4424	nan	0.1000	-0.0014
##	120	0.3935	nan	0.1000	-0.0018
##	140	0.3550	nan	0.1000	-0.0026
##	160	0.3219	nan	0.1000	-0.0025
##	180	0.2887	nan	0.1000	-0.0011
##	200	0.2576	nan	0.1000	-0.0017
##	220	0.2326	nan	0.1000	-0.0016
##	240	0.2122	nan	0.1000	-0.0015
##	250	0.2033	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2628	nan	0.1000	0.0130
##	2	1.2338	nan	0.1000	0.0164
##	3	1.2042	nan	0.1000	0.0121
##	4	1.1756	nan	0.1000	0.0123
##	5	1.1537	nan	0.1000	0.0106
##	6	1.1301	nan	0.1000	0.0061
##	7	1.1138	nan	0.1000	0.0059
##	8	1.0958	nan	0.1000	0.0052
##	9	1.0789	nan	0.1000	0.0069
##	10	1.0659	nan	0.1000	0.0048
##	20	0.9643	nan	0.1000	0.0014
##	40	0.8769	nan	0.1000	-0.0012
##	60	0.8247	nan	0.1000	-0.0007
##	80	0.7960	nan	0.1000	-0.0003
##	100	0.7785	nan	0.1000	-0.0013
##	120	0.7633	nan	0.1000	-0.0013
##	140	0.7565	nan	0.1000	-0.0015
##	160	0.7458	nan	0.1000	-0.0003
##	180	0.7380	nan	0.1000	-0.0009
##	200	0.7273	nan	0.1000	-0.0026
##	220	0.7147	nan	0.1000	-0.0013
##	240	0.7051	nan	0.1000	-0.0006
##	250	0.7024	nan	0.1000	-0.0020
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2407	nan	0.1000	0.0216
##	2	1.1960	nan	0.1000	0.0166
##	3	1.1645	nan	0.1000	0.0152
##	4	1.1312	nan	0.1000	0.0174
##	5	1.1059	nan	0.1000	0.0104
##	6	1.0824	nan	0.1000	0.0112
##	7	1.0577	nan	0.1000	0.0096
##	8	1.0383	nan	0.1000	0.0073
##	9	1.0201	nan	0.1000	0.0071
##	10	1.0055	nan	0.1000	0.0065
##	20	0.8928	nan	0.1000	0.0013
##	40	0.8030	nan	0.1000	-0.0013
##	60	0.7482	nan	0.1000	-0.0008
##	80 100	0.7077	nan	0.1000	-0.0017
##	100	0.6796	nan	0.1000	-0.0013
##	120	0.6504	nan	0.1000	-0.0012
##	140	0.6143	nan	0.1000	-0.0014

_	.017				/ lavarioca Dall	a willing i rojec
	##	160	0.5929	nan	0.1000	-0.0031
	##	180	0.5699	nan	0.1000	-0.0013
	##	200	0.5480	nan	0.1000	-0.0010
	##	220	0.5297	nan	0.1000	-0.0020
	##	240	0.5064	nan	0.1000	-0.0018
	##	250	0.4957	nan	0.1000	-0.0009
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2372	nan	0.1000	0.0272
	##	2	1.1950	nan	0.1000	0.0195
	##	3	1.1523	nan	0.1000	0.0145
	##	4	1.1172	nan	0.1000	0.0134
	##	5	1.0825	nan	0.1000	0.0138
	##	6	1.0477	nan	0.1000	0.0125
	##	7	1.0230	nan	0.1000	0.0076
	##	8	1.0037	nan	0.1000	0.0041
	##	9	0.9856	nan	0.1000	0.0054
	##	10	0.9683	nan	0.1000	0.0051
	##	20	0.8529	nan	0.1000	-0.0005
	##	40	0.7429	nan	0.1000	-0.0021
	##	60	0.6781	nan	0.1000	-0.0030
	##	80	0.6256	nan	0.1000	-0.0005
	##	100	0.5865	nan	0.1000	-0.0013
	##	120	0.5447	nan	0.1000	-0.0023
	##	140	0.5131	nan	0.1000	-0.0035
	##	160	0.4825	nan	0.1000	-0.0011
	##	180	0.4514	nan	0.1000	-0.0011
	##	200	0.4256	nan	0.1000	-0.0016
	##	220	0.3976	nan	0.1000	-0.0025
	##	240	0.3727	nan	0.1000	-0.0017
	##	250	0.3647	nan	0.1000	-0.0017
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2344	nan	0.1000	0.0260
	##	2	1.1905	nan	0.1000	0.0173
	##	3	1.1474	nan	0.1000	0.0155
	##	4	1.1044	nan	0.1000	0.0185
	##	5	1.0610	nan	0.1000	0.0157
	##	6	1.0307	nan	0.1000	0.0096
	##	7	0.9998	nan	0.1000	0.0107
	##	8	0.9830	nan	0.1000	0.0047
	##	9	0.9616	nan	0.1000	0.0052
	##	10	0.9407	nan	0.1000	0.0054
	##	20	0.8156	nan	0.1000	-0.0000
	##	40	0.6932	nan	0.1000	-0.0042
	##	60	0.6083	nan	0.1000	-0.0016
	##	80	0.5395	nan	0.1000	0.0000
	##	100	0.4821	nan	0.1000	-0.0022
	##	120	0.4337	nan	0.1000	-0.0017
	##	140	0.3965	nan	0.1000	-0.0018
	##	160	0.3656	nan	0.1000	-0.0013
	##	180	0.3362	nan	0.1000	-0.0017
	##	200	0.3088	nan	0.1000	-0.0012
	##	220	0.2843	nan	0.1000	-0.0018

_	2017				/ lavarioca Bala	a willing i rojeo
	##	240	0.2593	nan	0.1000	-0.0005
	##	250	0.2487	nan	0.1000	-0.0009
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2357	nan	0.1000	0.0208
	##	2	1.1785	nan	0.1000	0.0235
	##	3	1.1240	nan	0.1000	0.0210
	##	4	1.0826	nan	0.1000	0.0155
	##	5	1.0397	nan	0.1000	0.0144
	##	6	1.0074	nan	0.1000	0.0123
	##	7	0.9770	nan	0.1000	0.0098
	##	8	0.9485	nan	0.1000	0.0076
	##	9	0.9323	nan	0.1000	0.0006
	##	10	0.9136	nan	0.1000	0.0050
	##	20	0.7866	nan	0.1000	0.0000
	##	40	0.6430	nan	0.1000	-0.0005
	##	60	0.5669	nan	0.1000	-0.0027
	##	80	0.5017	nan	0.1000	-0.0026
	##	100	0.4395	nan	0.1000	-0.0030
	##	120	0.4011	nan	0.1000	-0.0042
	##	140	0.3572	nan	0.1000	-0.0013
	##	160	0.3226	nan	0.1000	-0.0024
	##	180	0.2865	nan	0.1000	-0.0013
	##	200	0.2585	nan	0.1000	-0.0007
	##	220	0.2326	nan	0.1000	-0.0013
	##	240	0.2091	nan	0.1000	-0.0007
	##	250	0.1979	nan	0.1000	-0.0010
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2554	nan	0.1000	0.0179
	##	2	1.2312	nan	0.1000	0.0067
	##	3	1.1996	nan	0.1000	0.0129
	##	4	1.1760	nan	0.1000	0.0098
	##	5	1.1492	nan	0.1000	0.0109
	##	6	1.1281	nan	0.1000	0.0083
	##	7	1.1054	nan	0.1000	0.0070
	##	8	1.0886	nan	0.1000	0.0067
	##	9	1.0759	nan	0.1000	0.0050
	##	10	1.0598	nan	0.1000	0.0037
	##	20	0.9650	nan	0.1000	-0.0004
	##	40	0.8817	nan	0.1000	0.0003
	##	60	0.8422	nan	0.1000	-0.0011
	##	80	0.8097	nan	0.1000	-0.0013
	##	100	0.7894	nan	0.1000	-0.0024
	##	120	0.7716	nan	0.1000	-0.0017
	##	140	0.7594	nan	0.1000	-0.0009
	##	160	0.7498	nan	0.1000	-0.0018
	##	180	0.7425	nan	0.1000	-0.0019
	##	200	0.7337	nan	0.1000	-0.0025
	##	220	0.7248	nan	0.1000	-0.0017
	##	240	0.7171	nan	0.1000	-0.0023
	##	250	0.7137	nan	0.1000	-0.0005
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve

,2017				/ lavarioca Dat	a willing i rojec
##	1	1.2418	nan	0.1000	0.0206
##	2	1.1983	nan	0.1000	0.0213
##	3	1.1619	nan	0.1000	0.0138
##	4	1.1265	nan	0.1000	0.0140
##	5	1.1043	nan	0.1000	0.0104
##	6	1.0785	nan	0.1000	0.0092
##	7	1.0591	nan	0.1000	0.0059
##	8	1.0382	nan	0.1000	0.0091
##	9	1.0217	nan	0.1000	0.0044
##	10	1.0035	nan	0.1000	0.0081
##	20	0.9014	nan	0.1000	-0.0003
##	40	0.8074	nan	0.1000	-0.0020
##	60	0.7499	nan	0.1000	-0.0010
##	80	0.7175	nan	0.1000	-0.0009
##	100	0.6831	nan	0.1000	-0.0009
##	120	0.6515	nan	0.1000	-0.0002
##	140	0.6258	nan	0.1000	-0.0018
##	160	0.6039	nan	0.1000	-0.0014
##	180	0.5806	nan	0.1000	-0.0012
##	200	0.5586	nan	0.1000	-0.0005
##	220	0.5398	nan	0.1000	-0.0012
##	240	0.5179	nan	0.1000	-0.0010
##	250	0.5106	nan	0.1000	-0.0014
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2380	nan	0.1000	0.0225
##	2	1.1859	nan	0.1000	0.0223
##	3	1.1497	nan	0.1000	0.0130
##	4	1.1121	nan	0.1000	0.0162
##	5	1.0793	nan	0.1000	0.0152
##	6	1.0522	nan	0.1000	0.0104
##	7	1.0229	nan	0.1000	0.0085
##	8	1.0018	nan	0.1000	0.0044
##	9	0.9768	nan	0.1000	0.0073
##	10	0.9580	nan	0.1000	0.0059
##	20	0.8531	nan	0.1000	0.0004
##	40	0.7401	nan	0.1000	-0.0020
##	60	0.6801	nan	0.1000	-0.0011
##	80	0.6247	nan	0.1000	-0.0014
##	100	0.5884	nan	0.1000	-0.0029
##	120	0.5501	nan	0.1000	-0.0011
##	140	0.5099	nan	0.1000	-0.0013
##	160	0.4813	nan	0.1000	-0.0004
##	180	0.4585	nan	0.1000	-0.0029
##	200	0.4298	nan	0.1000	-0.0013
##	220	0.4078	nan	0.1000	-0.0017
##	240	0.3835	nan	0.1000	-0.0010
##	250	0.3732	nan	0.1000	-0.0017
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2261	nan	0.1000	0.0287
##	2	1.1696	nan	0.1000	0.0254
##	3	1.1195	nan	0.1000	0.0227
##	4	1.0733	nan	0.1000	0.0146

٨	2017				Auvanceu Dau	a willing-Frojec
	##	5	1.0357	nan	0.1000	0.0153
	##	6	1.0061	nan	0.1000	0.0112
	##	7	0.9851	nan	0.1000	0.0063
	##	8	0.9601	nan	0.1000	0.0067
	##	9	0.9374	nan	0.1000	0.0046
	##	10	0.9173	nan	0.1000	0.0059
	##	20	0.7997	nan	0.1000	-0.0005
	##	40	0.6946	nan	0.1000	-0.0052
	##	60	0.6255	nan	0.1000	-0.0041
	##	80	0.5635	nan	0.1000	-0.0018
	##	100	0.5175	nan	0.1000	-0.0015
	##	120	0.4696	nan	0.1000	-0.0024
	##	140	0.4344	nan	0.1000	-0.0047
	##	160	0.3960	nan	0.1000	-0.0015
	##	180	0.3664	nan	0.1000	-0.0004
	##	200	0.3424	nan	0.1000	-0.0016
	##	220	0.3162	nan	0.1000	-0.0016
	##	240	0.2911	nan	0.1000	-0.0026
	##	250	0.2821	nan	0.1000	-0.0018
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2211	nan	0.1000	0.0322
	##	2	1.1675	nan	0.1000	0.0206
	##	3	1.1122	nan	0.1000	0.0175
	##	4	1.0700	nan	0.1000	0.0171
	##	5	1.0340	nan	0.1000	0.0162
	##	6	1.0022	nan	0.1000	0.0117
	##	7	0.9723	nan	0.1000	0.0081
	##	8	0.9464	nan	0.1000	0.0058
	##	9	0.9257	nan	0.1000	0.0060
	##	10	0.9048	nan	0.1000	0.0045
	##	20	0.7776	nan	0.1000	0.0009
	##	40	0.6385	nan	0.1000	0.0013
	##	60	0.5643	nan	0.1000	-0.0016
	##	80	0.4984	nan	0.1000	-0.0012
	##	100	0.4448	nan	0.1000	-0.0024
	##	120	0.3957	nan	0.1000	-0.0022
	##	140	0.3605	nan	0.1000	-0.0024
	##	160	0.3202	nan	0.1000	-0.0018
	##	180	0.2871	nan	0.1000	-0.0018
	##	200	0.2594	nan	0.1000	-0.0011
	##	220	0.2348	nan	0.1000	-0.0015
	##	240	0.2156	nan	0.1000	-0.0013
	##	250	0.2069	nan	0.1000	-0.0007
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2575	nan	0.1000	0.0183
	##	2	1.2321	nan	0.1000	0.0100
	##	3	1.1976	nan	0.1000	0.0114
	##	4	1.1739	nan	0.1000	0.0126
	##	5	1.1528	nan	0.1000	0.0098
	##	6	1.1337	nan	0.1000	0.0073
	##	7	1.1194	nan	0.1000	0.0064
	##	8	1.1017	nan	0.1000	0.0070
ı						

					3 -,
##	9	1.0880	nan	0.1000	0.0054
##	10	1.0730	nan	0.1000	0.0063
##	20	0.9744	nan	0.1000	0.0018
##	40	0.8852	nan	0.1000	-0.0003
##	60	0.8513	nan	0.1000	-0.0006
##	80	0.8268	nan	0.1000	-0.0015
##	100	0.8012	nan	0.1000	-0.0014
##	120	0.7856	nan	0.1000	-0.0012
##	140	0.7757	nan	0.1000	-0.0015
##	160	0.7639	nan	0.1000	-0.0008
##	180	0.7557	nan	0.1000	-0.0006
##	200	0.7471	nan	0.1000	-0.0020
##	220	0.7337	nan	0.1000	-0.0021
##	240	0.7252	nan	0.1000	-0.0005
##	250	0.7251	nan	0.1000	-0.0008
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2444	nan	0.1000	0.0187
##	2	1.2105	nan	0.1000	0.0158
##	3	1.1704	nan	0.1000	0.0163
##	4	1.1399	nan	0.1000	0.0141
##	5	1.1129	nan	0.1000	0.0112
##	6	1.0878	nan	0.1000	0.0117
##	7	1.0676	nan	0.1000	0.0065
##	8	1.0483	nan	0.1000	0.0081
##	9	1.0271	nan	0.1000	0.0047
##	10	1.0098	nan	0.1000	0.0045
##	20	0.9060	nan	0.1000	0.0014
##	40	0.8030	nan	0.1000	0.0004
##	60	0.7535	nan	0.1000	-0.0036
##	80	0.7195	nan	0.1000	-0.0022
##	100	0.6921	nan	0.1000	-0.0022
##	120	0.6672	nan	0.1000	-0.0019
##	140	0.6380	nan	0.1000	-0.0025
##	160	0.6112	nan	0.1000	-0.0011
##	180	0.5934	nan	0.1000	-0.0023
##	200	0.5745	nan	0.1000	-0.0010
##	220	0.5511	nan	0.1000	0.0001
##	240	0.5371	nan	0.1000	-0.0024
##	250	0.5291	nan	0.1000	-0.0013
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2356	nan	0.1000	0.0227
##	2	1.1885	nan	0.1000	0.0151
##	3	1.1496	nan	0.1000	0.0142
##	4	1.1104	nan	0.1000	0.0144
##	5	1.0825	nan	0.1000	0.0102
##	6	1.0533	nan	0.1000	0.0113
##	7	1.0322	nan	0.1000	0.0056
##	8	1.0075	nan	0.1000	0.0079
##	9	0.9836	nan	0.1000	0.0072
##	10	0.9670	nan	0.1000	0.0037
##	20	0.8532	nan	0.1000	0.0012
##	40	0.7490	nan	0.1000	-0.0016

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Dat	a mining i rojeo
##	60	0.6937	nan	0.1000	-0.0034
##	80	0.6471	nan	0.1000	-0.0027
##	100	0.6042	nan	0.1000	-0.0021
##	120	0.5729	nan	0.1000	-0.0032
##		0.5367	nan	0.1000	-0.0008
##	160	0.5035	nan	0.1000	-0.0031
##	180	0.4709	nan	0.1000	-0.0009
##	200	0.4399	nan	0.1000	-0.0005
##	220	0.4199	nan	0.1000	-0.0012
##	240	0.3970	nan	0.1000	-0.0015
##	250	0.3893	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2291	nan	0.1000	0.0309
##	2	1.1749	nan	0.1000	0.0209
##	3	1.1351	nan	0.1000	0.0158
##	4	1.0911	nan	0.1000	0.0159
##	5	1.0553	nan	0.1000	0.0172
##	6	1.0287	nan	0.1000	0.0120
##	7	1.0041	nan	0.1000	0.0065
##	8	0.9809	nan	0.1000	0.0080
##	9	0.9611	nan	0.1000	0.0064
##	10	0.9440	nan	0.1000	0.0043
##	20	0.8248	nan	0.1000	0.0010
##	40	0.7012	nan	0.1000	-0.0019
##	60	0.6302	nan	0.1000	-0.0013
##	80	0.5585	nan	0.1000	-0.0003
##	100	0.5061	nan	0.1000	-0.0010
##	120	0.4671	nan	0.1000	-0.0013
##	140	0.4311	nan	0.1000	-0.0019
##	160	0.3971	nan	0.1000	-0.0016
##	180	0.3658	nan	0.1000	-0.0015
##	200	0.3387	nan	0.1000	-0.0010
##		0.3151	nan	0.1000	-0.0018
##		0.2912	nan	0.1000	-0.0010
##		0.2818	nan	0.1000	-0.0006
##				·	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2209	nan	0.1000	0.0308
##		1.1659	nan	0.1000	0.0202
##		1.1219	nan	0.1000	0.0164
##		1.0855	nan	0.1000	0.0144
##		1.0482	nan	0.1000	0.0110
##		1.0221	nan	0.1000	0.0084
##		0.9958	nan	0.1000	0.0071
##		0.9741	nan	0.1000	0.0034
##		0.9484	nan	0.1000	0.0062
##		0.9258 0.7852	nan	0.1000 0.1000	0.0055 0.0005
##		0.6489	nan	0.1000	-0.0017
##		0.5720	nan nan	0.1000	-0.0017
##		0.5134	nan	0.1000	-0.0023
##		0.4550	nan	0.1000	-0.0011
##		0.4077	nan	0.1000	-0.0022
1111	120	0.40//	nan	0.1000	3.0013

					3 -,
##	140	0.3657	nan	0.1000	-0.0007
##	160	0.3256	nan	0.1000	-0.0004
##	180	0.2950	nan	0.1000	-0.0014
##	200	0.2671	nan	0.1000	-0.0011
##	220	0.2449	nan	0.1000	-0.0012
##	240	0.2199	nan	0.1000	-0.0008
##	250	0.2091	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2497	nan	0.1000	0.0164
##	2	1.2184	nan	0.1000	0.0131
##	3	1.1921	nan	0.1000	0.0117
##	4	1.1713	nan	0.1000	0.0088
##	5	1.1476	nan	0.1000	0.0093
##	6	1.1306	nan	0.1000	0.0079
##	7	1.1130	nan	0.1000	0.0066
##	8	1.0952	nan	0.1000	0.0058
##	9	1.0810	nan	0.1000	0.0065
##	10	1.0661	nan	0.1000	0.0051
##	20	0.9782	nan	0.1000	0.0037
##	40	0.8916	nan	0.1000	0.0015
##	60	0.8474	nan	0.1000	-0.0004
##	80	0.8220	nan	0.1000	0.0003
##	100	0.8012	nan	0.1000	-0.0011
##	120	0.7865	nan	0.1000	-0.0018
##	140	0.7711	nan	0.1000	-0.0000
##	160	0.7597	nan	0.1000	-0.0015
##	180	0.7486	nan	0.1000	-0.0011
##	200	0.7366	nan	0.1000	-0.0004
##	220	0.7271	nan	0.1000	-0.0008
##	240	0.7171	nan	0.1000	-0.0015
##	250	0.7145	nan	0.1000	-0.0019
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2427	nan	0.1000	0.0206
##	2	1.2073	nan	0.1000	0.0177
##	3	1.1732	nan	0.1000	0.0144
##	4	1.1374	nan	0.1000	0.0163
##	5	1.1082	nan	0.1000	0.0147
##	6	1.0849	nan	0.1000	0.0094
##	7	1.0623	nan	0.1000	0.0090
##	8	1.0427	nan	0.1000	0.0070
##	9	1.0272	nan	0.1000	0.0056
##	10	1.0127	nan	0.1000	0.0041
##	20	0.9071	nan	0.1000	-0.0004
##	40	0.8221	nan	0.1000	-0.0012
##	60	0.7667	nan	0.1000	-0.0019
##	80	0.7267	nan	0.1000	-0.0006
##	100	0.6929	nan	0.1000	-0.0006
##	120	0.6640	nan	0.1000	-0.0019
##	140	0.6418	nan	0.1000	-0.0026
##	160	0.6156	nan	0.1000	-0.0013
##	180	0.5926	nan	0.1000	-0.0005
##	200	0.5709	nan	0.1000	-0.0022
	_00	2.3,03	11611	2.2000	3.0022

,,	2017				/ lavarioca Data	i wii ii ig i rojeci
	##	220	0.5520	nan	0.1000	-0.0011
	##	240	0.5352	nan	0.1000	-0.0020
	##	250	0.5254	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2315	nan	0.1000	0.0291
	##	2	1.1899	nan	0.1000	0.0169
	##	3	1.1507	nan	0.1000	0.0151
	##	4	1.1138	nan	0.1000	0.0150
	##	5	1.0807	nan	0.1000	0.0110
	##	6	1.0540	nan	0.1000	0.0098
	##	7	1.0286	nan	0.1000	0.0081
	##	8	1.0089	nan	0.1000	0.0059
	##	9	0.9914	nan	0.1000	0.0043
	##	10	0.9714	nan	0.1000	0.0048
	##	20	0.8590	nan	0.1000	0.0024
	##	40	0.7589	nan	0.1000	0.0005
	##	60	0.6881	nan	0.1000	-0.0014
	##	80	0.6316	nan	0.1000	-0.0021
	##	100	0.5897	nan	0.1000	-0.0023
	##	120	0.5508	nan	0.1000	-0.0014
	##	140	0.5253	nan	0.1000	-0.0029
	##	160	0.4877	nan	0.1000	-0.0016
	##	180	0.4584	nan	0.1000	-0.0012
	##	200	0.4360	nan	0.1000	-0.0036
	##	220	0.4069	nan	0.1000	-0.0014
	## ##	240 250	0.3856 0.3760	nan nan	0.1000 0.1000	-0.0014 -0.0009
	##	230	0.3700	IIaii	0.1000	-0.0003
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2258	nan	0.1000	0.0294
	##	2	1.1743	nan	0.1000	0.0228
	##	3	1.1312	nan	0.1000	0.0151
	##	4	1.0929	nan	0.1000	0.0161
	##	5	1.0578	nan	0.1000	0.0147
	##	6	1.0245	nan	0.1000	0.0126
	##	7	1.0019	nan	0.1000	0.0063
	##	8	0.9797	nan	0.1000	0.0062
	##	9	0.9594	nan	0.1000	0.0055
	##	10	0.9402	nan	0.1000	0.0081
	##	20	0.8152	nan	0.1000	0.0004
	##	40	0.7050	nan	0.1000	-0.0006
	##	60	0.6359	nan	0.1000	-0.0013
	##	80	0.5674	nan	0.1000	-0.0017
	##	100	0.5113	nan	0.1000	-0.0024
	##	120	0.4642	nan	0.1000	-0.0017
	##	140	0.4307	nan	0.1000	-0.0014
	##	160	0.3952	nan	0.1000	-0.0005
	##	180 200	0.3619 0.3357	nan	0.1000 a 1000	-0.0021 -0.0019
	## ##	220	0.3357 0.3060	nan nan	0.1000 0.1000	-0.0019 -0.0014
	##	240	0.2809	nan	0.1000	-0.0014
	##	250	0.2697	nan	0.1000	-0.0013
		_55	0.2037		3.2000	
	##					

				, ta , a . 100 a 2 a .	a willing i rojec
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2210	nan	0.1000	0.0263
##	2	1.1590	nan	0.1000	0.0256
##	3	1.1136	nan	0.1000	0.0179
##	4	1.0676	nan	0.1000	0.0172
##	5	1.0318	nan	0.1000	0.0116
##	6	1.0003	nan	0.1000	0.0119
##	7	0.9776	nan	0.1000	0.0056
##	8	0.9531	nan	0.1000	0.0038
##	9	0.9291	nan	0.1000	0.0067
##	10	0.9107	nan	0.1000	0.0044
##	20	0.8003	nan	0.1000	-0.0014
##	40	0.6662	nan	0.1000	-0.0033
##	60	0.5741	nan	0.1000	-0.0037
##	80	0.4957	nan	0.1000	-0.0029
##	100	0.4426	nan	0.1000	-0.0018
##	120	0.3931	nan	0.1000	-0.0011
##	140	0.3528	nan	0.1000	-0.0024
##	160	0.3209	nan	0.1000	-0.0019
##	180	0.2904	nan	0.1000	-0.0011
##	200	0.2574	nan	0.1000	-0.0007
##	220	0.2316	nan	0.1000	-0.0016
##	240	0.2126	nan	0.1000	-0.0010
##	250	0.2038	nan	0.1000	-0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2541	nan	0.1000	0.0164
					0.020.
##		1.2213	nan	0.1000	0.0138
##	3	1.2213 1.1978			0.0138 0.0112
##	3 4	1.2213 1.1978 1.1753	nan	0.1000 0.1000 0.1000	0.0138 0.0112 0.0112
## ## ##	3 4 5	1.2213 1.1978 1.1753 1.1515	nan nan	0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082
## ## ## ##	3 4 5 6	1.2213 1.1978 1.1753 1.1515 1.1299	nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100
## ## ## ##	3 4 5 6 7	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053
## ## ## ## ##	3 4 5 6 7 8	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033
## ## ## ## ##	3 4 5 6 7 8 9	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057
## ## ## ## ## ##	3 4 5 6 7 8 9 10	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057 0.0071
## ## ## ## ## ##	3 4 5 6 7 8 9 10 20	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057 0.0071 0.0011
## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057 0.0071 0.0011 0.0002
## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0057 0.0011 0.0002 -0.0004 -0.0004
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 120 140	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0004 -0.0012 -0.0013
## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7725	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0057 0.0011 0.0002 -0.0004 -0.0004 -0.0011 -0.0012 -0.0013 -0.0005
## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0013 -0.0005 -0.0015
## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7384 0.7276	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0004 -0.0011 -0.0012 -0.0013 -0.0015 -0.0019
## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200 220	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7725 0.7585 0.7459 0.7384 0.7276	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0057 0.0011 0.0002 -0.0004 -0.0004 -0.0011 -0.0012 -0.0013 -0.0005 -0.0015 -0.0019 -0.0015
## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.8756 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7384 0.7276 0.7190 0.7093	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0013 -0.0015 -0.0015 -0.0015 -0.0007
### ##################################	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200 240 250	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7725 0.7585 0.7459 0.7384 0.7276	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0057 0.0011 0.0002 -0.0004 -0.0004 -0.0011 -0.0012 -0.0013 -0.0005 -0.0015 -0.0019 -0.0015
### ##################################	3 4 5 6 7 8 9 10 20 40 60 120 140 160 180 220 240 250	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7384 0.7276 0.7190 0.7093 0.7051	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0051 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0013 -0.0005 -0.0015 -0.0019 -0.0015 -0.0007 -0.0008
######################################	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 250 Iter	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7459 0.7384 0.7276 0.7190 0.7093 0.7051 TrainDeviance	nan	0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0015 -0.0015 -0.0015 -0.0015 -0.0007 -0.0008 Improve
######################################	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 220 240 250 Iter 1	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7384 0.7276 0.7190 0.7093 0.7051 TrainDeviance 1.2462	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0013 -0.0015 -0.0019 -0.0008 Improve 0.0196
######################################	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 220 240 250 Iter 1	1.2213 1.1978 1.1753 1.1515 1.1299 1.1136 1.0993 1.0825 1.0664 0.9664 0.8756 0.8351 0.8090 0.7885 0.7725 0.7585 0.7459 0.7459 0.7384 0.7276 0.7190 0.7093 0.7051 TrainDeviance	nan	0.1000 0.1000	0.0138 0.0112 0.0112 0.0082 0.0100 0.0053 0.0033 0.0057 0.0071 0.0011 0.0002 -0.0004 -0.0011 -0.0012 -0.0015 -0.0015 -0.0015 -0.0015 -0.0007 -0.0008 Improve

,, 2011				/ lavarioca Dall	a willing i rojec
##	4	1.1274	nan	0.1000	0.0145
##	5	1.0974	nan	0.1000	0.0107
##	6	1.0776	nan	0.1000	0.0066
##	7	1.0611	nan	0.1000	0.0044
##	8	1.0386	nan	0.1000	0.0086
##	9	1.0214	nan	0.1000	0.0084
##	10	1.0074	nan	0.1000	0.0036
##	20	0.8955	nan	0.1000	0.0014
##	40	0.7997	nan	0.1000	0.0002
##	60	0.7499	nan	0.1000	-0.0003
##	80	0.7120	nan	0.1000	-0.0013
##	100	0.6859	nan	0.1000	-0.0020
##	120	0.6547	nan	0.1000	-0.0023
##	140	0.6355	nan	0.1000	-0.0002
##	160	0.6121	nan	0.1000	-0.0016
##	180	0.5879	nan	0.1000	-0.0009
##	200	0.5635	nan	0.1000	-0.0016
##	220	0.5470	nan	0.1000	-0.0023
##	240	0.5299	nan	0.1000	-0.0019
##	250	0.5208	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2451	nan	0.1000	0.0222
##	2	1.1952	nan	0.1000	0.0234
##	3	1.1506	nan	0.1000	0.0195
##	4	1.1158	nan	0.1000	0.0122
##	5	1.0874	nan	0.1000	0.0085
##	6	1.0566	nan	0.1000	0.0112
##	7	1.0327	nan	0.1000	0.0056
##	8	1.0049	nan	0.1000	0.0104
##	9	0.9816	nan	0.1000	0.0087
##	10	0.9646	nan	0.1000	0.0050
##	20	0.8572	nan	0.1000	0.0020
##	40	0.7443	nan	0.1000	0.0003
##	60	0.6883	nan	0.1000	-0.0039
##	80	0.6354	nan	0.1000	-0.0024
##	100	0.5920	nan	0.1000	-0.0029
##	120	0.5499	nan	0.1000	-0.0011
##	140	0.5133	nan	0.1000	-0.0014
##	160	0.4793	nan	0.1000	-0.0011
##	180	0.4542	nan	0.1000	-0.0014
##	200	0.4299	nan	0.1000	-0.0012
##	220	0.4070	nan	0.1000	-0.0018
##	240	0.3843	nan	0.1000	-0.0013
##	250	0.3740	nan	0.1000	-0.0017
##			v 11 lb 1	c. c.	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2403	nan	0.1000	0.0180
##	2	1.1804	nan	0.1000	0.0262
##	3	1.1283	nan	0.1000	0.0193
##	4	1.0910	nan	0.1000	0.0139
##	5	1.0569	nan	0.1000	0.0125
##	6	1.0265	nan	0.1000	0.0090
##	7	0.9992	nan	0.1000	0.0101

_	2017				/ lavarioca Bai	a willing i rojec
	##	8	0.9747	nan	0.1000	0.0080
	##	9	0.9555	nan	0.1000	0.0053
	##	10	0.9383	nan	0.1000	0.0057
	##	20	0.8070	nan	0.1000	-0.0004
	##	40	0.6925	nan	0.1000	-0.0022
	##	60	0.6199	nan	0.1000	-0.0015
	##	80	0.5561	nan	0.1000	-0.0008
	##	100	0.5051	nan	0.1000	-0.0020
	##	120	0.4630	nan	0.1000	-0.0008
	##	140	0.4169	nan	0.1000	-0.0012
	##	160	0.3837	nan	0.1000	-0.0044
	##	180	0.3517	nan	0.1000	-0.0020
	##	200	0.3245	nan	0.1000	-0.0012
	##	220	0.3001	nan	0.1000	-0.0013
	##	240	0.2807	nan	0.1000	-0.0017
	##	250	0.2693	nan	0.1000	-0.0009
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2209	nan	0.1000	0.0311
	##	2	1.1658	nan	0.1000	0.0242
	##	3	1.1208	nan	0.1000	0.0170
	##	4	1.0734	nan	0.1000	0.0153
	##	5	1.0313	nan	0.1000	0.0164
	##	6	1.0021	nan	0.1000	0.0109
	##	7	0.9765	nan	0.1000	0.0055
	##	8	0.9510	nan	0.1000	0.0085
	##	9	0.9310	nan	0.1000	0.0050
	##	10	0.9099	nan	0.1000	0.0066
	##	20	0.7809	nan	0.1000	-0.0003
	##	40	0.6377	nan	0.1000	-0.0005
	##	60	0.5543	nan	0.1000 0.1000	-0.0009
	##	80 100	0.4832 0.4243	nan	0.1000	-0.0031 -0.0014
	##	120	0.3789	nan nan	0.1000	-0.0014
	##	140	0.3402	nan	0.1000	-0.0022
	##	160	0.3069	nan	0.1000	-0.0033
	##	180	0.2749	nan	0.1000	-0.0017
	##	200	0.2465	nan	0.1000	-0.0006
	##	220	0.2229	nan	0.1000	-0.0011
	##	240	0.2002	nan	0.1000	-0.0010
	##	250	0.1890	nan	0.1000	-0.0009
	##			-		
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2623	nan	0.1000	0.0173
	##	2	1.2323	nan	0.1000	0.0166
	##	3	1.2069	nan	0.1000	0.0123
	##	4	1.1804	nan	0.1000	0.0094
	##	5	1.1644	nan	0.1000	0.0045
	##	6	1.1482	nan	0.1000	0.0082
	##	7	1.1269	nan	0.1000	0.0088
	##	8	1.1092	nan	0.1000	0.0051
	##	9	1.0957	nan	0.1000	0.0067
	##	10	1.0807	nan	0.1000	0.0056
	##	20	0.9884	nan	0.1000	0.0015

	##	40	0.9016	nan	0.1000	-0.0010
	##	60	0.8641	nan	0.1000	-0.0010
	##	80	0.8382	nan	0.1000	-0.0004
	##	100	0.8154	nan	0.1000	-0.0006
	##	120	0.8001	nan	0.1000	-0.0014
	##	140	0.7882	nan	0.1000	-0.0014
	##	160	0.7750	nan	0.1000	-0.0008
	##	180	0.7655	nan	0.1000	-0.0010
	##	200	0.7538	nan	0.1000	-0.0006
	##	220	0.7420	nan	0.1000	-0.0027
	##	240	0.7304	nan	0.1000	-0.0009
	##	250	0.7272	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2472	nan	0.1000	0.0203
	##	2	1.2088	nan	0.1000	0.0161
	##	3	1.1752	nan	0.1000	0.0128
	##	4	1.1478	nan	0.1000	0.0124
	##	5	1.1200	nan	0.1000	0.0116
	##	6	1.0979	nan	0.1000	0.0106
	##	7	1.0814	nan	0.1000	0.0083
	##	8	1.0612	nan	0.1000	0.0078
	##	9	1.0441	nan	0.1000	0.0063
	##	10	1.0257	nan	0.1000	0.0069
	##	20	0.9220	nan	0.1000	0.0006
	##	40	0.8236	nan	0.1000	-0.0002
	##	60	0.7732	nan	0.1000	-0.0022
	##	80	0.7354	nan	0.1000	-0.0012
	##	100	0.7076	nan	0.1000	-0.0012
	##	120	0.6789	nan	0.1000	-0.0029
	##	140	0.6534	nan	0.1000	-0.0021
	##	160	0.6247	nan	0.1000	-0.0015
	##	180	0.6014	nan	0.1000	-0.0020
	##	200	0.5800	nan	0.1000	-0.0014
	##	220	0.5633	nan	0.1000	-0.0019
	##	240	0.5455	nan	0.1000	-0.0023
	##	250	0.5352	nan	0.1000	-0.0011
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2405	nan	0.1000	0.0202
	##	2	1.1957	nan	0.1000	0.0172
	##	3	1.1543	nan	0.1000	0.0146
	##	4	1.1153	nan	0.1000	0.0157
	##	5	1.0819	nan	0.1000	0.0110
	##	6	1.0570	nan	0.1000	0.0054
	##	7	1.0322	nan	0.1000	0.0083
	##	8	1.0098	nan	0.1000	0.0068
	##	9	0.9936	nan	0.1000	0.0035
	##	10	0.9789	nan	0.1000	0.0032
	##	20	0.8681	nan	0.1000	-0.0017
	##	40	0.7622	nan	0.1000	-0.0013
	##	60	0.6973	nan	0.1000	-0.0009
	##	80	0.6484	nan	0.1000	-0.0030
	##	100	0.6131	nan	0.1000	-0.0018
ı						

12011				7 lavarioca Bal	a willing i rojec
##	120	0.5740	nan	0.1000	-0.0021
##	140	0.5437	nan	0.1000	-0.0018
##	160	0.5121	nan	0.1000	-0.0024
##	180	0.4810	nan	0.1000	-0.0012
##	200	0.4541	nan	0.1000	-0.0014
##	220	0.4316	nan	0.1000	-0.0015
##	240	0.4065	nan	0.1000	-0.0010
##	250	0.3972	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2246	nan	0.1000	0.0252
##	2	1.1795	nan	0.1000	0.0178
##	3	1.1352	nan	0.1000	0.0184
##	4	1.1018	nan	0.1000	0.0129
##	5	1.0707	nan	0.1000	0.0110
##	6	1.0409	nan	0.1000	0.0116
##	7	1.0209	nan	0.1000	0.0029
##	8	0.9984	nan	0.1000	0.0068
##	9	0.9747	nan	0.1000	0.0092
##	10	0.9528	nan	0.1000	0.0049
##	20	0.8378	nan	0.1000	0.0008
##	40	0.7257	nan	0.1000	-0.0015
##	60	0.6558	nan	0.1000	-0.0026
##	80	0.5920	nan	0.1000	-0.0031
##	100	0.5323	nan	0.1000	-0.0019
##	120	0.4888	nan	0.1000	-0.0014
##	140	0.4534	nan	0.1000	-0.0002
##	160	0.4189	nan	0.1000	-0.0007
##	180	0.3876	nan	0.1000	-0.0018
##	200	0.3609	nan	0.1000	-0.0016
##	220	0.3300	nan	0.1000	-0.0005
##	240	0.3036	nan	0.1000	-0.0018
##	250	0.2926	nan	0.1000	-0.0008
##	.	-	v 1: lb :	c. c.	-
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2210	nan	0.1000	0.0324
##	2	1.1703	nan	0.1000	0.0198
##	4	1.1278	nan	0.1000 0.1000	0.0161
##	5	1.0821 1.0546	nan	0.1000	0.0197 0.0093
##	6	1.0346	nan nan	0.1000	0.0058
##	7	0.9964	nan	0.1000	0.0108
##	8	0.9777	nan	0.1000	0.0047
##	9	0.9560	nan	0.1000	0.0047
##	10	0.9375	nan	0.1000	0.0037
##	20	0.8144	nan	0.1000	-0.0020
##	40	0.6755	nan	0.1000	-0.0036
##	60	0.5940	nan	0.1000	-0.0005
##	80	0.5289	nan	0.1000	-0.0014
##	100	0.4682	nan	0.1000	-0.0007
##	120	0.4162	nan	0.1000	-0.0018
##	140	0.3700	nan	0.1000	-0.0021
##	160	0.3334	nan	0.1000	-0.0013
##	180	0.3001	nan	0.1000	-0.0013

					a willing i rojec
##	200	0.2687	nan	0.1000	-0.0011
##	220	0.2436	nan	0.1000	-0.0015
##	240	0.2238	nan	0.1000	-0.0016
##	250	0.2121	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2491	nan	0.1000	0.0208
##		1.2125	nan	0.1000	0.0153
##		1.1817	nan	0.1000	0.0131
##		1.1577	nan	0.1000	0.0113
##		1.1355	nan	0.1000	0.0075
##		1.1179	nan	0.1000	0.0049
##		1.1010	nan	0.1000	0.0074
##		1.0820	nan	0.1000	0.0055
##		1.0671	nan	0.1000	0.0064
##		1.0536	nan	0.1000	0.0053
##		0.9575	nan	0.1000	0.0020
##		0.8676	nan	0.1000	0.0007
##		0.8252	nan	0.1000	-0.0018
##		0.7967	nan	0.1000	-0.0009
##		0.7763	nan	0.1000	-0.0012
##		0.7619	nan	0.1000	-0.0014
##		0.7515	nan	0.1000	-0.0014
##		0.7425	nan	0.1000	-0.0010
##		0.7313	nan	0.1000	-0.0024
##		0.7224	nan	0.1000	-0.0014
##		0.7120	nan	0.1000	-0.0007
		017 ==0		0.2000	
##	240	0.7060	nan	0.1000	-0.0012
##		0.7060 0.7004	nan nan	0.1000 0.1000	-0.0012 -0.0016
##	250	0.7060 0.7004	nan nan	0.1000 0.1000	-0.0012 -0.0016
##	250	0.7004	nan	0.1000	-0.0016
## ## ##	250 Iter	0.7004 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0016
## ## ## ##	250	0.7004	nan ValidDeviance nan	0.1000	-0.0016 Improve 0.0181
## ## ## ##	250 Iter 1 2	0.7004 TrainDeviance 1.2460 1.1944	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245
## ## ## ## ##	250 Iter 1 2 3	0.7004 TrainDeviance 1.2460 1.1944 1.1544	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184
## ## ## ## ##	250 Iter 1 2 3 4	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099
## ## ## ## ## ##	250 Iter 1 2 3 4 5	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127
## ## ## ## ##	250 Iter 1 2 3 4 5 6	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013	nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009
### ##################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.00011
### ### ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.0004 -0.0011 -0.0033 -0.0017
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.00011 -0.0033 -0.0017 -0.0012
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239 0.6022	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.0004 -0.0011 -0.0033 -0.0017 -0.0012 -0.0028
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239 0.6022 0.5808	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.0004 -0.0011 -0.0033 -0.0017 -0.0028 0.0001
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239 0.6022 0.5808 0.5581	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.00011 -0.0033 -0.0017 -0.0012 -0.0028 0.00018
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239 0.6022 0.5808 0.5581 0.5415	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.0004 -0.0011 -0.0033 -0.0017 -0.0012 -0.0028 0.0001 -0.0018 -0.0008
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.7004 TrainDeviance 1.2460 1.1944 1.1544 1.1222 1.0919 1.0660 1.0440 1.0206 1.0013 0.9838 0.8814 0.7879 0.7352 0.6982 0.6738 0.6512 0.6239 0.6022 0.5808 0.5581	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0016 Improve 0.0181 0.0245 0.0184 0.0099 0.0127 0.0123 0.0083 0.0058 0.0058 0.0078 0.0050 -0.0004 -0.0009 -0.00011 -0.0033 -0.0017 -0.0012 -0.0028 0.00018

12312	2017				Advanced Data	a Mining-Projec
	##	T	TuriuDaviana	V-14 dD	C+C:	T
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2323	nan	0.1000	0.0270
	##	2	1.1765	nan	0.1000	0.0254
	##	3	1.1320	nan	0.1000	0.0165
	##	4	1.1002	nan	0.1000	0.0108
	##	5	1.0610	nan	0.1000	0.0154
	##	6	1.0289	nan	0.1000	0.0121
	##	7	1.0000	nan	0.1000	0.0102
	##	8	0.9761	nan	0.1000	0.0055
	##	9	0.9538	nan	0.1000	0.0052
	##	10	0.9348	nan	0.1000	0.0047
	##	20	0.8286	nan	0.1000	0.0021
	##	40	0.7157	nan	0.1000	0.0006
	##	60	0.6547	nan	0.1000	-0.0024
	##	80	0.6060	nan	0.1000	-0.0023
	##	100	0.5630	nan	0.1000	-0.0026
	##	120	0.5324	nan	0.1000	-0.0021
	##	140	0.4939	nan	0.1000	-0.0021
	##	160	0.4654	nan	0.1000	-0.0029
	##	180	0.4405	nan	0.1000	-0.0016
	##	200	0.4167	nan	0.1000	-0.0023
	##	220	0.3938	nan	0.1000	-0.0018
	##	240	0.3735	nan	0.1000	-0.0013
	##	250	0.3645	nan	0.1000	-0.0012
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2258	nan	0.1000	0.0314
	##	2	1.1756	nan	0.1000	0.0206
	##	3	1.1251	nan	0.1000	0.0233
	##	4	1.0883	nan	0.1000	0.0145
	##	5	1.0506	nan	0.1000	0.0133
	##	6	1.0192	nan	0.1000	0.0099
	##	7	0.9862	nan	0.1000	0.0132
	##	8	0.9663	nan	0.1000	0.0069
	##	9	0.9495	nan	0.1000	0.0061
	##	10	0.9316	nan	0.1000	0.0065
	##	20	0.7903	nan	0.1000	0.0023
	##	40	0.6729	nan	0.1000	-0.0004
	##	60	0.6085	nan	0.1000	-0.0016
	##	80	0.5449	nan	0.1000	-0.0015
	##	100	0.4963	nan	0.1000	-0.0031
	##	120	0.4440	nan	0.1000	-0.0014
	##	140	0.4028	nan	0.1000	-0.0011
	##	160	0.3701	nan	0.1000	-0.0015
	##	180	0.3394	nan	0.1000	-0.0008
	##	200	0.3083	nan	0.1000	-0.0017
	##	220	0.2853	nan	0.1000	-0.0017
	##	240	0.2686	nan	0.1000	-0.0017
	##	250	0.2582	nan	0.1000	-0.0013
	##	250	0.2302	IIGII	3.1000	0.0010
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2286	nan	0.1000	0.0229
	##	2	1.1649		0.1000	0.0223
	11 TT	2	1.1049	nan	0.1000	0.0311

12011				/ lavarioca Dat	a mining i rojeo
##	3	1.1058	nan	0.1000	0.0187
##	4	1.0643	nan	0.1000	0.0166
##	5	1.0268	nan	0.1000	0.0168
##	6	0.9941	nan	0.1000	0.0124
##	7	0.9623	nan	0.1000	0.0114
##	8	0.9427	nan	0.1000	0.0061
##	9	0.9231	nan	0.1000	0.0062
##	10	0.9029	nan	0.1000	0.0076
##	20	0.7800	nan	0.1000	0.0012
##	40	0.6336	nan	0.1000	-0.0032
##	60	0.5420	nan	0.1000	-0.0025
##	80	0.4726	nan	0.1000	-0.0016
##	100	0.4198	nan	0.1000	-0.0011
##	120	0.3696	nan	0.1000	-0.0024
##	140	0.3339	nan	0.1000	-0.0006
##	160	0.3046	nan	0.1000	-0.0006
##	180	0.2696	nan	0.1000	-0.0018
##	200	0.2450	nan	0.1000	-0.0015
##	220	0.2244	nan	0.1000	-0.0012
##	240	0.2030	nan	0.1000	-0.0006
##	250	0.1949	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2551	nan	0.1000	0.0146
##	2	1.2217	nan	0.1000	0.0166
##	3	1.1911	nan	0.1000	0.0110
##	4	1.1665	nan	0.1000	0.0087
##	5	1.1431	nan	0.1000	0.0103
##	6	1.1266	nan	0.1000	0.0074
##	7	1.1133	nan	0.1000	0.0049
##	8	1.0964	nan	0.1000	0.0055
##	9	1.0831	nan	0.1000	0.0062
##	10	1.0671	nan	0.1000	0.0044
##	20	0.9724	nan	0.1000	0.0028
##	40	0.8960	nan	0.1000	-0.0010
##	60	0.8525	nan	0.1000	-0.0008
##	80	0.8247	nan	0.1000	-0.0005
##	100	0.8036	nan	0.1000	-0.0018
##	120	0.7877	nan	0.1000	-0.0000
##	140	0.7788	nan	0.1000	-0.0010
##	160	0.7664	nan	0.1000	-0.0020
##	180	0.7553	nan	0.1000	-0.0002
##	200	0.7471	nan	0.1000	-0.0017
##	220	0.7393	nan	0.1000	-0.0011
##	240	0.7290	nan	0.1000	-0.0005
##	250	0.7244	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2421	nan	0.1000	0.0251
##	2	1.2031	nan	0.1000	0.0159
##	3	1.1688	nan	0.1000	0.0164
##	4	1.1342	nan	0.1000	0.0126
##	5	1.1079	nan	0.1000	0.0075
##	6	1.0804	nan	0.1000	0.0104

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Dat	a mining i rojec
##	7	1.0590	nan	0.1000	0.0085
##	8	1.0402	nan	0.1000	0.0087
##	9	1.0207	nan	0.1000	0.0074
##	10	1.0080	nan	0.1000	0.0037
##	20	0.9061	nan	0.1000	-0.0002
##	40	0.8142	nan	0.1000	-0.0014
##	60	0.7647	nan	0.1000	-0.0012
##	80	0.7366	nan	0.1000	-0.0005
##	100	0.7063	nan	0.1000	-0.0028
##	120	0.6858	nan	0.1000	-0.0026
##	140	0.6580	nan	0.1000	-0.0015
##	160	0.6275	nan	0.1000	-0.0017
##	180	0.6072	nan	0.1000	-0.0011
##	200	0.5845	nan	0.1000	-0.0016
##	220	0.5672	nan	0.1000	-0.0045
##	240	0.5447	nan	0.1000	-0.0012
##	250	0.5378	nan	0.1000	-0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2324	nan	0.1000	0.0295
##	2	1.1916	nan	0.1000	0.0176
##	3	1.1525	nan	0.1000	0.0164
##	4	1.1177	nan	0.1000	0.0121
##	5	1.0904	nan	0.1000	0.0119
##	6	1.0584	nan	0.1000	0.0130
##	7	1.0307	nan	0.1000	0.0096
##	8	1.0096	nan	0.1000	0.0081
##	9	0.9888	nan	0.1000	0.0058
##	10	0.9714	nan	0.1000	0.0070
##	20	0.8552	nan	0.1000	-0.0020
##	40	0.7563	nan	0.1000	-0.0006
##	60	0.6984	nan	0.1000	-0.0013
##	80	0.6435	nan	0.1000	-0.0029
##	100	0.6004	nan	0.1000	-0.0021
##	120	0.5575	nan	0.1000	-0.0017
##	140	0.5243	nan	0.1000	-0.0017
##	160	0.4914	nan	0.1000	-0.0013
##	180	0.4584	nan	0.1000	-0.0012
##	200	0.4299	nan	0.1000	-0.0020
##	220	0.4038	nan	0.1000	-0.0013
##	240	0.3814	nan	0.1000	-0.0015
##	250	0.3714	nan	0.1000	-0.0008
##	.	-	v 1:15 :	c. c:	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2186	nan	0.1000	0.0283
##	2	1.1734	nan	0.1000	0.0195
##	3	1.1200	nan	0.1000	0.0216
##	4	1.0776	nan	0.1000	0.0189
##	5 6	1.0461	nan	0.1000	0.0131
##	7	1.0153 0.9903	nan	0.1000 0.1000	0.0105 0.0082
##	8	0.9665	nan	0.1000	0.0082
##	9	0.9450	nan nan	0.1000	0.0052
##	10	0.9258		0.1000	0.0052
##	10	0.3238	nan	0.1000	0.0003

						. 5 .,
	##	20	0.8081	nan	0.1000	-0.0016
	##	40	0.6954	nan	0.1000	-0.0024
	##	60	0.6248	nan	0.1000	-0.0007
	##	80	0.5684	nan	0.1000	-0.0026
	##	100	0.5151	nan	0.1000	-0.0018
	##	120	0.4775	nan	0.1000	-0.0025
	##	140	0.4377	nan	0.1000	-0.0003
	##	160	0.4020	nan	0.1000	-0.0014
	##	180	0.3727	nan	0.1000	-0.0016
	##	200	0.3470	nan	0.1000	-0.0020
	##	220	0.3229	nan	0.1000	-0.0012
	##	240	0.2972	nan	0.1000	-0.0009
	##	250	0.2877	nan	0.1000	-0.0015
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2363	nan	0.1000	0.0193
	##	2	1.1818	nan	0.1000	0.0192
	##	3	1.1276	nan	0.1000	0.0224
	##	4	1.0873	nan	0.1000	0.0153
	##	5	1.0492	nan	0.1000	0.0134
	##	6	1.0215	nan	0.1000	0.0096
	##	7	0.9968	nan	0.1000	0.0078
	##	8	0.9702	nan	0.1000	0.0078
	##	9	0.9487	nan	0.1000	0.0066
	##	10	0.9336	nan	0.1000	0.0008
	##	20	0.7974	nan	0.1000	-0.0013
	##	40	0.6539	nan	0.1000	-0.0032
	##	60	0.5751	nan	0.1000	-0.0022
	##	80	0.5081	nan	0.1000	-0.0016
	##	100	0.4506	nan	0.1000	-0.0029
	##	120	0.4049	nan	0.1000	-0.0033
	##	140	0.3639	nan	0.1000	-0.0012
	##	160	0.3282	nan	0.1000	-0.0021
	##	180	0.2935	nan	0.1000	-0.0006
	##	200	0.2665	nan	0.1000	-0.0010
	##	220	0.2405	nan	0.1000	-0.0008
	##	240	0.2200	nan	0.1000	-0.0021
	##	250	0.2087	nan	0.1000	-0.0008
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2474	nan	0.1000	0.0202
	##	2	1.2164	nan	0.1000	0.0161
	##	3	1.1876	nan	0.1000	0.0124
	##	4	1.1620	nan	0.1000	0.0103
	##	5	1.1438	nan	0.1000	0.0083
	##	6	1.1262	nan	0.1000	0.0085
	##	7	1.1091	nan	0.1000	0.0068
	##	8	1.0942	nan	0.1000	0.0055
	##	9	1.0797	nan	0.1000	0.0049
	##	10	1.0676	nan	0.1000	0.0051
	##	20	0.9736	nan	0.1000	-0.0004
	##	40	0.8841	nan	0.1000	-0.0002
	##	60	0.8400	nan	0.1000	0.0003
	##	80	0.8155	nan	0.1000	-0.0003
ı						

12011				/ lavarioca Dat	a mining i rojeo
##	100	0.7953	nan	0.1000	-0.0005
##	120	0.7788	nan	0.1000	-0.0022
##	140	0.7629	nan	0.1000	-0.0000
##	160	0.7555	nan	0.1000	-0.0016
##	180	0.7423	nan	0.1000	-0.0007
##	200	0.7343	nan	0.1000	-0.0019
##	220	0.7258	nan	0.1000	-0.0008
##	240	0.7167	nan	0.1000	-0.0021
##	250	0.7107	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2455	nan	0.1000	0.0259
##	2	1.1996	nan	0.1000	0.0163
##	3	1.1621	nan	0.1000	0.0176
##	4	1.1288	nan	0.1000	0.0137
##	5	1.0984	nan	0.1000	0.0112
##	6	1.0767	nan	0.1000	0.0071
##	7	1.0612	nan	0.1000	0.0041
##	8	1.0428	nan	0.1000	0.0072
##	9	1.0249	nan	0.1000	0.0082
##	10	1.0101	nan	0.1000	0.0037
##	20	0.9074	nan	0.1000	0.0016
##	40	0.7986	nan	0.1000	-0.0001
##	60	0.7436	nan	0.1000	-0.0010
##	80	0.7105	nan	0.1000	-0.0011
##	100	0.6846	nan	0.1000	-0.0017
##	120	0.6572	nan	0.1000	-0.0016
##	140	0.6301	nan	0.1000	-0.0014
##	160	0.6061	nan	0.1000	-0.0009
##	180	0.5801	nan	0.1000	-0.0024
##	200	0.5601	nan	0.1000	-0.0008
##	220	0.5442	nan	0.1000	-0.0014
##	240	0.5261	nan	0.1000	-0.0010
##	250	0.5194	nan	0.1000	-0.0022
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2284	nan	0.1000	0.0241
##	2	1.1817	nan	0.1000	0.0189
##	3	1.1426	nan	0.1000	0.0165
##	4	1.1101	nan	0.1000	0.0124
##	5	1.0808	nan	0.1000	0.0098
##	6	1.0527	nan	0.1000	0.0106
##	7	1.0283	nan	0.1000	0.0075
##	8	1.0070	nan	0.1000	0.0092
##	9	0.9863	nan	0.1000	0.0059
##	10	0.9651	nan	0.1000	0.0085
##	20	0.8407	nan	0.1000	0.0007
##	40	0.7392	nan	0.1000	-0.0019
##	60	0.6749	nan	0.1000	-0.0030
##	80	0.6307	nan	0.1000	-0.0027
##	100	0.5906	nan	0.1000	-0.0015
##	120	0.5548	nan	0.1000	-0.0022
##	140	0.5288	nan	0.1000	-0.0026
##	160	0.4933	nan	0.1000	-0.0002

2017				/ laval loca Dat	a willing i rojec
##	180	0.4683	nan	0.1000	-0.0012
##	200	0.4462	nan	0.1000	-0.0021
##	220	0.4211	nan	0.1000	-0.0019
##	240	0.3951	nan	0.1000	-0.0031
##	250	0.3822	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2292	nan	0.1000	0.0273
##	2	1.1841	nan	0.1000	0.0187
##	3	1.1402	nan	0.1000	0.0188
##	4	1.1040	nan	0.1000	0.0115
##	5	1.0752	nan	0.1000	0.0094
##	6	1.0405	nan	0.1000	0.0126
##	7	1.0099	nan	0.1000	0.0098
##	8	0.9786	nan	0.1000	0.0067
##	9	0.9529	nan	0.1000	0.0074
##	10	0.9308	nan	0.1000	0.0052
##	20	0.8072	nan	0.1000	0.0013
##	40	0.6925	nan	0.1000	-0.0006
##	60	0.6291	nan	0.1000	-0.0015
##	80	0.5699	nan	0.1000	-0.0026
##	100	0.5140	nan	0.1000	-0.0025
##	120	0.4759	nan	0.1000	-0.0029
##	140	0.4389	nan	0.1000	-0.0016
##	160	0.4073	nan	0.1000	-0.0017
##	180	0.3772	nan	0.1000	-0.0022
##	200	0.3432	nan	0.1000	-0.0015
##	220	0.3168	nan	0.1000	-0.0023
##	240	0.2930	nan	0.1000	-0.0010
##	250	0.2803	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2260	nan		0.0338
##	2	1.1668	nan	0.1000	0.0265
##	3	1.1197	nan	0.1000	0.0178
##	4	1.0750	nan	0.1000	0.0179
##	5	1.0333	nan	0.1000	0.0171
##	6	1.0036	nan	0.1000	0.0094
##	7	0.9698	nan	0.1000	0.0086
##	8	0.9507	nan	0.1000	0.0043
##	9	0.9319	nan	0.1000	0.0038
##	10	0.9150	nan	0.1000	0.0046
##	20	0.7850	nan	0.1000	-0.0033
##	40	0.6568	nan	0.1000	0.0004
##	60	0.5765	nan	0.1000	-0.0048
##	80	0.4992	nan	0.1000	-0.0022
##	100	0.4407	nan	0.1000	-0.0013
##	120	0.3913	nan	0.1000	-0.0029
##	140	0.3515	nan	0.1000	0.0003
##	160	0.3120	nan	0.1000	-0.0018
##	180	0.2829	nan	0.1000	-0.0021
##	200	0.2595	nan	0.1000	-0.0019
##	220	0.2351	nan	0.1000	-0.0007
##	240	0.2132	nan	0.1000	-0.0004

					3 -,
##		0.2056	nan	0.1000	-0.0009
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2570	nan	0.1000	0.0117
##		1.2269	nan	0.1000	0.0134
##		1.1995	nan	0.1000	0.0108
##		1.1741	nan	0.1000	0.0114
##		1.1541	nan	0.1000	0.0065
##		1.1349	nan	0.1000	0.0063
##		1.1179	nan	0.1000	0.0077
##		1.1042	nan	0.1000	0.0050
##		1.0875	nan	0.1000	0.0047
##		1.0792	nan	0.1000	0.0029
##		0.9803	nan	0.1000	0.0018
##		0.9009	nan	0.1000	-0.0002
##		0.8607	nan	0.1000	-0.0005
##		0.8355	nan	0.1000	-0.0010
##	100	0.8165	nan	0.1000	-0.0016
##		0.8004	nan	0.1000	-0.0007
##	140	0.7823	nan	0.1000	-0.0021
##	160	0.7708	nan	0.1000	-0.0003
##	180	0.7582	nan	0.1000	-0.0009
##	200	0.7451	nan	0.1000	-0.0018
##	220	0.7352	nan	0.1000	-0.0004
##	240	0.7280	nan	0.1000	-0.0006
##	250	0.7209	nan	0.1000	-0.0026
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2499	nan	0.1000	0.0230
##		1.2102	nan	0.1000	0.0150
##		1.1727	nan	0.1000	0.0159
##		1.1411	nan	0.1000	0.0134
##		1.1139	nan	0.1000	0.0127
##		1.0913	nan	0.1000	0.0086
##		1.0709	nan	0.1000	0.0091
##		1.0488	nan	0.1000	0.0044
##		1.0347	nan	0.1000	0.0028
##		1.0157	nan	0.1000	0.0059
##		0.9100	nan	0.1000	-0.0009
##		0.8094	nan	0.1000	-0.0005
##		0.7511	nan	0.1000	-0.0008
##		0.7174	nan	0.1000	-0.0010
##		0.6862	nan	0.1000	-0.0001
##		0.6609	nan	0.1000	-0.0027
##		0.6326	nan	0.1000	-0.0021
##		0.6092	nan	0.1000	-0.0040
##		0.5909 0.5716	nan	0.1000 0.1000	-0.0005 -0.0021
##		0.5526	nan nan	0.1000	-0.0021
##		0.5356	nan	0.1000	-0.0004
##		0.5274	nan	0.1000	-0.0022
##		0.52/4	Hall	3.1000	3.0023
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2377	nan	0.1000	0.0238

12011				/ lavarioca Dat	a mining i rojec
##	2	1.1850	nan	0.1000	0.0200
##	3	1.1410	nan	0.1000	0.0185
##	4	1.1091	nan	0.1000	0.0139
##	5	1.0796	nan	0.1000	0.0092
##	6	1.0519	nan	0.1000	0.0082
##	7	1.0271	nan	0.1000	0.0100
##	8	1.0108	nan	0.1000	0.0049
##	9	0.9898	nan	0.1000	0.0075
##	10	0.9713	nan	0.1000	0.0074
##	20	0.8659	nan	0.1000	-0.0015
##	40	0.7486	nan	0.1000	-0.0004
##	60	0.6865	nan	0.1000	-0.0021
##	80	0.6389	nan	0.1000	-0.0020
##	100	0.5916	nan	0.1000	-0.0010
##	120	0.5524	nan	0.1000	-0.0011
##	140	0.5201	nan	0.1000	-0.0016
##	160	0.4888	nan	0.1000	-0.0018
##	180	0.4605	nan	0.1000	-0.0012
##	200	0.4328	nan	0.1000	-0.0013
##	220	0.4128	nan	0.1000	-0.0019
##	240	0.3936	nan	0.1000	-0.0024
##	250	0.3811	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2294	nan	0.1000	0.0334
##	2	1.1718	nan	0.1000	0.0216
##	3	1.1216	nan	0.1000	0.0225
##	4	1.0907	nan	0.1000	0.0136
##	5	1.0511	nan	0.1000	0.0163
##	6	1.0211	nan	0.1000	0.0081
##	7	0.9970	nan	0.1000	0.0086
##	8	0.9724	nan	0.1000	0.0083
##	9	0.9509	nan	0.1000	0.0074
##	10	0.9290	nan	0.1000	0.0089
##	20	0.8208	nan	0.1000	0.0002
##	40	0.6995	nan	0.1000	-0.0050
##	60	0.6247	nan	0.1000	-0.0031
##	80	0.5625	nan	0.1000	-0.0026
##	100	0.5063	nan	0.1000	-0.0021
##	120	0.4678	nan	0.1000	-0.0025
##	140	0.4278	nan	0.1000	-0.0021
##	1.00				-0.0026
##	160	0.3855	nan	0.1000	
##	180	0.3855 0.3549	nan nan	0.1000 0.1000	-0.0012
##		0.3549 0.3270			
## ##	180	0.3549	nan	0.1000	-0.0012 -0.0034 -0.0030
##	180 200	0.3549 0.3270 0.3066 0.2834	nan nan	0.1000 0.1000	-0.0012 -0.0034
## ##	180 200 220	0.3549 0.3270 0.3066	nan nan nan	0.1000 0.1000 0.1000	-0.0012 -0.0034 -0.0030
## ## ## ##	180 200 220 240 250	0.3549 0.3270 0.3066 0.2834 0.2723	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010
## ## ## ## ##	180 200 220 240 250 Iter	0.3549 0.3270 0.3066 0.2834 0.2723	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 StepSize	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010
## ## ## ## ##	180 200 220 240 250 Iter 1	0.3549 0.3270 0.3066 0.2834 0.2723 TrainDeviance 1.2245	nan nan nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010 Improve 0.0321
## ## ## ## ## ##	180 200 220 240 250 Iter 1 2	0.3549 0.3270 0.3066 0.2834 0.2723 TrainDeviance 1.2245 1.1669	nan nan nan nan NalidDeviance	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010 Improve 0.0321 0.0228
## ## ## ## ## ##	180 200 220 240 250 Iter 1 2	0.3549 0.3270 0.3066 0.2834 0.2723 TrainDeviance 1.2245 1.1669 1.1206	nan nan nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010 Improve 0.0321 0.0228 0.0144
## ## ## ## ## ##	180 200 220 240 250 Iter 1 2	0.3549 0.3270 0.3066 0.2834 0.2723 TrainDeviance 1.2245 1.1669	nan nan nan nan validDeviance nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0012 -0.0034 -0.0030 -0.0009 -0.0010 Improve 0.0321 0.0228

12011				/ lavarioca Dat	a mining i rojeo
##	6	1.0182	nan	0.1000	0.0086
##	7	0.9932	nan	0.1000	0.0068
##	8	0.9710	nan	0.1000	0.0069
##	9	0.9511	nan	0.1000	0.0038
##	10	0.9297	nan	0.1000	0.0043
##	20	0.7921	nan	0.1000	0.0018
##	40	0.6571	nan	0.1000	-0.0047
##	60	0.5763	nan	0.1000	-0.0024
##	80	0.5107	nan	0.1000	-0.0033
##	100	0.4622	nan	0.1000	-0.0016
##	120	0.4052	nan	0.1000	-0.0008
##	140	0.3633	nan	0.1000	-0.0019
##	160	0.3153	nan	0.1000	-0.0014
##	180	0.2862	nan	0.1000	-0.0013
##	200	0.2622	nan	0.1000	-0.0008
##	220	0.2381	nan	0.1000	-0.0007
##	240	0.2136	nan	0.1000	-0.0007
##	250	0.2044	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2556	nan	0.1000	0.0171
##	2	1.2246	nan	0.1000	0.0127
##	3	1.2009	nan	0.1000	0.0100
##	4	1.1751	nan	0.1000	0.0110
##	5	1.1575	nan	0.1000	0.0056
##	6	1.1373	nan	0.1000	0.0096
##	7	1.1192	nan	0.1000	0.0076
##	8	1.0997	nan	0.1000	0.0074
##	9	1.0810	nan	0.1000	0.0066
##	10	1.0663	nan	0.1000	0.0055
##	20	0.9660	nan	0.1000	-0.0003
##	40	0.8807	nan	0.1000	-0.0007
##	60	0.8425	nan	0.1000	-0.0014
##	80	0.8113	nan	0.1000	-0.0023
##	100	0.7941	nan	0.1000	-0.0022
##	120	0.7800	nan	0.1000	-0.0007
##	140	0.7650	nan	0.1000	-0.0016
##	160	0.7531	nan	0.1000	-0.0002
##	180	0.7434	nan	0.1000	-0.0020
##	200	0.7332	nan	0.1000	-0.0004
##	220	0.7258	nan	0.1000	-0.0020
##	240	0.7178	nan	0.1000	-0.0013
##	250	0.7154	nan	0.1000	-0.0037
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2455	nan	0.1000	0.0171
##	2	1.2015	nan	0.1000	0.0197
##	3	1.1618	nan	0.1000	0.0160
##	4	1.1283	nan	0.1000	0.0117
##	5	1.1002	nan	0.1000	0.0124
##	6	1.0760	nan	0.1000	0.0090
##	7	1.0569	nan	0.1000	0.0093
##	8	1.0369	nan	0.1000	0.0093
##	9	1.0181	nan	0.1000	0.0081
I					

##	10	1.0057	nan	0.1000	0.0036
##	20	0.9044	nan	0.1000	0.0000
##	40	0.8017	nan	0.1000	-0.0015
##	60	0.7415	nan	0.1000	-0.0010
##	80	0.7093	nan	0.1000	0.0002
##	100	0.6782	nan	0.1000	-0.0041
##	120	0.6523	nan	0.1000	-0.0014
##	140	0.6244	nan	0.1000	-0.0011
##	160	0.6040	nan	0.1000	-0.0011
##	180	0.5811	nan	0.1000	-0.0021
##	200	0.5567	nan	0.1000	-0.0017
##	220	0.5367	nan	0.1000	-0.0014
##	240	0.5229	nan	0.1000	-0.0026
##	250	0.5127	nan	0.1000	-0.0013
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2306	nan	0.1000	0.0266
##	2	1.1816	nan	0.1000	0.0207
##	3	1.1379	nan	0.1000	0.0177
##	4	1.1015	nan	0.1000	0.0168
##	5	1.0670	nan	0.1000	0.0109
##	6	1.0434	nan	0.1000	0.0075
##	7	1.0145	nan	0.1000	0.0120
##	8	0.9914	nan	0.1000	0.0100
##	9	0.9724	nan	0.1000	0.0044
##	10	0.9564	nan	0.1000	0.0050
##	20	0.8418	nan	0.1000	0.0021
##	40	0.7429	nan	0.1000	-0.0005
##	60	0.6758	nan	0.1000	-0.0012
##	80	0.6209	nan	0.1000	-0.0009
##	100	0.5796	nan	0.1000	-0.0018
##	120	0.5406	nan	0.1000	-0.0001
##	140	0.5039	nan	0.1000	-0.0019
##	160	0.4754	nan	0.1000	-0.0023
##	180	0.4381	nan	0.1000	-0.0008
##	200	0.4195	nan	0.1000	-0.0020
##	220	0.3947	nan	0.1000	-0.0013
##	240	0.3725	nan	0.1000	-0.0014
##	250	0.3606	nan	0.1000	-0.0016
##	.	-	v 1:15 :	c. c:	-
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2403	nan	0.1000	0.0213
##	2	1.1884	nan	0.1000	0.0225
##	3	1.1448	nan	0.1000	0.0126
##	4	1.1125	nan	0.1000	0.0125
##	5	1.0757	nan	0.1000	0.0147
##	6	1.0465	nan	0.1000	0.0079
##	7	1.0196	nan	0.1000	0.0072
##	8 9	0.9931 0.9741	nan	0.1000	0.0101
##	10	0.9741 0.9550	nan	0.1000	0.0033
##	20	0.8188	nan	0.1000 0.1000	0.0059 0.0016
##	40	0.8188	nan	0.1000	0.0016
##	60	0.6012	nan	0.1000	-0.0006
##	99	0.0012	nan	0.1000	-0.0000

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ laval loca Dat	a mining i rojec
##	80	0.5392	nan	0.1000	-0.0028
##	100	0.4878	nan	0.1000	-0.0034
##	120	0.4428	nan	0.1000	-0.0010
##	140	0.4040	nan	0.1000	-0.0028
##	160	0.3735	nan	0.1000	-0.0024
##	180	0.3408	nan	0.1000	-0.0009
##	200	0.3161	nan	0.1000	-0.0009
##	220	0.2902	nan	0.1000	-0.0015
##	240	0.2682	nan	0.1000	-0.0006
##	250	0.2598	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2173	nan	0.1000	0.0304
##	2	1.1539	nan	0.1000	0.0216
##	3	1.1075	nan	0.1000	0.0187
##	4	1.0673	nan	0.1000	0.0136
##	5	1.0317	nan	0.1000	0.0130
##	6	1.0031	nan	0.1000	0.0084
##	7	0.9745	nan	0.1000	0.0115
##	8	0.9528	nan	0.1000	0.0069
##	9	0.9305	nan	0.1000	0.0049
##	10	0.9074	nan	0.1000	0.0070
##	20	0.7875	nan	0.1000	-0.0011
##	40	0.6458	nan	0.1000	-0.0019
##	60	0.5678	nan	0.1000	-0.0021
##	80	0.4994	nan	0.1000	-0.0028
##	100	0.4308	nan	0.1000	-0.0026
##	120	0.3857	nan	0.1000	-0.0014
##	140	0.3475	nan	0.1000	-0.0028
##	160	0.3120	nan	0.1000	-0.0013
##	180	0.2797	nan	0.1000	-0.0023
##	200	0.2546	nan	0.1000	-0.0018
##	220	0.2313	nan	0.1000	-0.0014
##	240	0.2089	nan	0.1000	-0.0009
##	250	0.1988	nan	0.1000	-0.0004
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2600	nan	0.1000	0.0157
##	2	1.2277	nan	0.1000	0.0179
##		1.1948	nan	0.1000	0.0130
##		1.1691	nan	0.1000	0.0095
##	5	1.1485	nan	0.1000	0.0093
##	6	1.1329	nan	0.1000	0.0075
##	7	1.1170	nan	0.1000	0.0067
##	8 9	1.1024	nan	0.1000	0.0057
##		1.0898	nan	0.1000	0.0054
##	10 20	1.0809 0.9879	nan	0.1000 0.1000	0.0027 0.0025
##	40	0.9879	nan	0.1000	0.0025
##	60	0.8623	nan	0.1000	-0.0027
##		0.8332	nan nan	0.1000	-0.0027
##		0.8113	nan	0.1000	-0.0004
##		0.7972	nan	0.1000	-0.0010
##	140	0.7870	nan	0.1000	-0.0010
""	170	3.7070	nan	0.1000	3.0013

				, lavalicea Ball	a Milling-Projec
##	160	0.7749	nan	0.1000	-0.0015
##	180	0.7680	nan	0.1000	-0.0013
##	200	0.7604	nan	0.1000	-0.0018
##	220	0.7511	nan	0.1000	-0.0011
##	240	0.7454	nan	0.1000	-0.0019
##	250	0.7418	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2495	nan	0.1000	0.0221
##	2	1.2113	nan	0.1000	0.0184
##	3	1.1686	nan	0.1000	0.0172
##	4	1.1369	nan	0.1000	0.0121
##	5	1.1108	nan	0.1000	0.0091
##	6	1.0892	nan	0.1000	0.0103
##	7	1.0672	nan	0.1000	0.0094
##	8	1.0481	nan	0.1000	0.0061
##	9	1.0295	nan	0.1000	0.0059
##	10	1.0153	nan	0.1000	0.0025
##	20	0.9178	nan	0.1000	0.0024
##	40	0.8293	nan	0.1000	-0.0002
##	60	0.7760	nan	0.1000	-0.0050
##	80	0.7394	nan	0.1000	-0.0027
##	100	0.7132	nan	0.1000	-0.0015
##	120	0.6809	nan	0.1000	-0.0015
##	140	0.6535	nan	0.1000	-0.0007
##	160	0.6306	nan	0.1000	-0.0015
##	180	0.6089	nan	0.1000	-0.0015
## ##	180 200	0.6089 0.5926	nan nan	0.1000 0.1000	-0.0015 -0.0013
##	200	0.5926	nan	0.1000	-0.0013
## ##	200 220	0.5926 0.5744	nan nan	0.1000 0.1000	-0.0013 -0.0014
## ## ##	200 220 240	0.5926 0.5744 0.5596	nan nan nan	0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027
## ## ## ##	200 220 240	0.5926 0.5744 0.5596	nan nan nan	0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027
## ## ## ##	200 220 240 250 Iter 1	0.5926 0.5744 0.5596 0.5491	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021
## ## ## ## ##	200 220 240 250 Iter 1 2	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892	nan nan nan nan ValidDeviance	0.1000 0.1000 0.1000 0.1000 StepSize	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189
## ## ## ## ## ##	200 220 240 250 Iter 1 2	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492	nan nan nan nan ValidDeviance nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172
## ## ## ## ## ##	200 220 240 250 Iter 1 2 3 4	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892	nan nan nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189
## ## ## ## ## ## ##	200 220 240 250 Iter 1 2 3 4 5	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839	nan nan nan ValidDeviance nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072
## ## ## ## ## ## ## ##	200 220 240 250 Iter 1 2 3 4 5 6	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614	nan nan nan ValidDeviance nan nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068
## ###################################	200 220 240 250 Iter 1 2 3 4 5 6 7	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408	nan nan nan ValidDeviance nan nan nan	0.1000 0.1000 0.1000 0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068
## ## ## ## ## ## ## ##	200 220 240 250 Iter 1 2 3 4 5 6 7 8	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210	nan nan nan ValidDeviance nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049
## ## ## ## ## ## ## ## ##	200 220 240 250 Iter 1 2 3 4 5 6 7 8	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990	nan nan nan NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092
###################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038
###################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026
####################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044
#####################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038
######################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049 0.6624	nan nan nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019
########################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049 0.6624 0.6138	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0031
#########################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049 0.6624 0.6138 0.5759	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0031 -0.0021
###########################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049 0.6624 0.6138 0.5759 0.5465	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0021 -0.0021
##############################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7675 0.7049 0.6624 0.6138 0.5759 0.5465 0.5160	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0031 -0.0021 -0.0018
#############################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7049 0.6624 0.6138 0.5759 0.5465 0.5160 0.4904	nan	0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0072 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0031 -0.0021 -0.0018 -0.0014
##############################	200 220 240 250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.5926 0.5744 0.5596 0.5491 TrainDeviance 1.2345 1.1892 1.1492 1.1137 1.0839 1.0614 1.0408 1.0210 0.9990 0.9833 0.8707 0.7675 0.7675 0.7049 0.6624 0.6138 0.5759 0.5465 0.5160	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0013 -0.0014 -0.0027 -0.0021 Improve 0.0230 0.0189 0.0172 0.0173 0.0072 0.0068 0.0068 0.0049 0.0092 0.0038 0.0026 -0.0044 -0.0038 -0.0019 -0.0031 -0.0021 -0.0018
	###########################	## 180 ## 200 ## 220 ## 240 ## 250 ## ## Iter ## 1 ## 2 ## 3 ## 4 ## 5 ## 6 ## 7 ## 8 ## 9 ## 10 ## 20 ## 40 ## 60 ## 80 ## 120 ## 140	## 180 0.7680 ## 200 0.7604 ## 220 0.7511 ## 240 0.7454 ## 250 0.7418 ## ## Iter TrainDeviance ## 1 1.2495 ## 2 1.2113 ## 3 1.1686 ## 4 1.1369 ## 5 1.1108 ## 5 1.1108 ## 7 1.0672 ## 8 1.0481 ## 9 1.0295 ## 10 1.0153 ## 20 0.9178 ## 40 0.8293 ## 40 0.8293 ## 60 0.7760 ## 80 0.7394 ## 100 0.7132 ## 120 0.6809 ## 140 0.6535	## 180 0.7680 nan ## 200 0.7604 nan ## 220 0.7511 nan ## 240 0.7454 nan ## 250 0.7418 nan ## ## Iter TrainDeviance ValidDeviance ## 1 1.2495 nan ## 2 1.2113 nan ## 3 1.1686 nan ## 4 1.1369 nan ## 5 1.1108 nan ## 5 1.1108 nan ## 6 1.0892 nan ## 7 1.0672 nan ## 8 1.0481 nan ## 9 1.0295 nan ## 10 1.0153 nan ## 20 0.9178 nan ## 40 0.8293 nan ## 40 0.8293 nan ## 40 0.8293 nan ## 40 0.8293 nan ## 40 0.7760 nan ## 40 0.7760 nan ## 40 0.7760 nan ## 40 0.7732 nan ## 100 0.7132 nan ## 100 0.7132 nan ## 120 0.6809 nan ## 120 0.6809 nan ## 120 0.6809 nan	## 160 0.7749 nan 0.1000 ## 200 0.7680 nan 0.1000 ## 220 0.7511 nan 0.1000 ## 240 0.7454 nan 0.1000 ## 250 0.7418 nan 0.1000 ## ## Iter TrainDeviance ValidDeviance StepSize ## 1 1.2495 nan 0.1000 ## 3 1.1686 nan 0.1000 ## 4 1.1369 nan 0.1000 ## 5 1.1108 nan 0.1000 ## 6 1.0892 nan 0.1000 ## 7 1.0672 nan 0.1000 ## 8 1.0481 nan 0.1000 ## 9 1.0295 nan 0.1000 ## 10 1.0153 nan 0.1000 ## 20 0.9178 nan 0.1000 ## 40 0.8293 nan 0.1000 ## 40 0.8293 nan 0.1000 ## 60 0.7760 nan 0.1000 ## 80 0.7394 nan 0.1000 ## 80 0.7394 nan 0.1000 ## 100 0.7132 nan 0.1000 ## 120 0.6809 nan 0.1000 ## 140 0.6535 nan 0.1000

3/2017				/ lavarioca Data	i wiii iii g i rojeo
##	240	0.4178	nan	0.1000	-0.0027
##	250	0.4055	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2273	nan	0.1000	0.0226
##	2	1.1724	nan	0.1000	0.0227
##	3	1.1327	nan	0.1000	0.0103
##	4	1.0905	nan	0.1000	0.0153
##	5	1.0597	nan	0.1000	0.0120
##	6	1.0315	nan	0.1000	0.0072
##	. 7	1.0123	nan	0.1000	0.0040
##	8	0.9892	nan	0.1000	0.0083
##	9	0.9696	nan	0.1000	0.0042
##	10	0.9533	nan	0.1000	0.0046
##	20	0.8374	nan	0.1000	-0.0006
##	40	0.7201	nan	0.1000	-0.0009
##	60	0.6443	nan	0.1000	-0.0009
##	80	0.5830	nan	0.1000	-0.0013
##	100	0.5363	nan	0.1000	-0.0028
##	120	0.4924	nan	0.1000	-0.0044
##	140	0.4552	nan	0.1000	-0.0013
##	160	0.4180	nan	0.1000	-0.0027
##	180	0.3846	nan	0.1000	-0.0010
##	200	0.3554	nan	0.1000	-0.0015
##	220	0.3288	nan	0.1000	-0.0031
##	240	0.2999	nan	0.1000	-0.0010
##	250	0.2863	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2304	nan	0.1000	0.0285
##	2	1.1728	nan	0.1000	0.0200
##	3	1.1297	nan	0.1000	0.0156
##	4	1.0870	nan	0.1000	0.0163
##	5	1.0528	nan	0.1000	0.0113
##	6	1.0300	nan	0.1000	0.0047
##	7	1.0012	nan	0.1000	0.0102
##	8	0.9803	nan	0.1000	0.0044
##	9	0.9586	nan	0.1000	0.0050
##	10	0.9418	nan	0.1000	0.0033
##	20	0.8065	nan	0.1000	-0.0001
##	40	0.6664	nan	0.1000	-0.0007
##		0.5894	nan	0.1000	-0.0030
##		0.5184	nan	0.1000	-0.0035
##		0.4657	nan	0.1000	-0.0016
##	120	0.4155	nan	0.1000	-0.0026
##		0.3764	nan	0.1000	-0.0027
##		0.3425	nan	0.1000	-0.0022
##		0.3113	nan	0.1000	-0.0030
##		0.2810	nan	0.1000	-0.0019
##		0.2539	nan	0.1000	-0.0011
##	240	0.2303	nan	0.1000	-0.0014
				_	
##	250	0.2182	nan	0.1000	0.0001
##	250		nan ValidDeviance	0.1000 StepSize	0.0001 Improve

					3 .,
#	# 1	1.2546	nan	0.1000	0.0201
#	# 2	1.2222	nan	0.1000	0.0117
#	# 3	1.1901	nan	0.1000	0.0091
#	# 4	1.1707	nan	0.1000	0.0082
#	# 5	1.1479	nan	0.1000	0.0102
#	# 6	1.1252	nan	0.1000	0.0072
#	# 7	1.1087	nan	0.1000	0.0067
#	# 8	1.0908	nan	0.1000	0.0071
#	# 9	1.0785	nan	0.1000	0.0046
#	# 10	1.0651	nan	0.1000	0.0040
#	# 20	0.9637	nan	0.1000	0.0022
#	# 40	0.8861	nan	0.1000	-0.0026
#	# 60	0.8412	nan	0.1000	-0.0000
#	# 80	0.8080	nan	0.1000	0.0006
#	# 100	0.7879	nan	0.1000	-0.0007
#	# 120	0.7676	nan	0.1000	-0.0015
#		0.7536	nan	0.1000	-0.0004
#		0.7415	nan	0.1000	-0.0013
#	# 180	0.7309	nan	0.1000	-0.0008
#		0.7214	nan	0.1000	-0.0014
#		0.7137	nan	0.1000	-0.0017
#		0.7053	nan	0.1000	-0.0009
#		0.7002	nan	0.1000	-0.0019
#	#				
#		TrainDeviance	ValidDeviance	StepSize	Improve
#		1.2407	nan	0.1000	0.0203
#		1.1983	nan	0.1000	0.0181
#		1.1601	nan	0.1000	0.0161
#		1.1286	nan	0.1000	0.0119
#		1.1020	nan	0.1000	0.0097
#		1.0807 1.0644	nan	0.1000 0.1000	0.0060 0.0053
#		1.0423	nan	0.1000	0.0053
#		1.0224	nan nan	0.1000	0.0081
#		1.0031	nan	0.1000	0.0066
#		0.8899	nan	0.1000	0.0008
#		0.7961	nan	0.1000	0.0010
#		0.7412	nan	0.1000	-0.0025
#		0.7040	nan	0.1000	-0.0013
#		0.6731	nan	0.1000	-0.0026
#		0.6478	nan	0.1000	-0.0007
#		0.6260	nan	0.1000	-0.0009
#		0.5993	nan	0.1000	-0.0007
#		0.5729	nan	0.1000	-0.0014
#		0.5513	nan	0.1000	-0.0014
#		0.5306	nan	0.1000	-0.0010
#		0.5132	nan	0.1000	-0.0015
#		0.5016	nan	0.1000	-0.0008
#					
#	# Iter	TrainDeviance	ValidDeviance	StepSize	Improve
#	# 1	1.2369	nan	0.1000	0.0289
#	# 2	1.1900	nan	0.1000	0.0148
#	# 3	1.1562	nan	0.1000	0.0124
#	# 4	1.1195	nan	0.1000	0.0073
1					

_	,2017				/ lavarioca Dai	a willing i rojec
	##	5	1.0831	nan	0.1000	0.0147
	##	6	1.0543	nan	0.1000	0.0090
	##	7	1.0270	nan	0.1000	0.0099
	##	8	1.0116	nan	0.1000	0.0020
	##	9	0.9882	nan	0.1000	0.0095
	##	10	0.9705	nan	0.1000	0.0057
	##	20	0.8536	nan	0.1000	0.0022
	##	40	0.7473	nan	0.1000	-0.0015
	##	60	0.6856	nan	0.1000	-0.0013
	##	80	0.6321	nan	0.1000	-0.0020
	##	100	0.5924	nan	0.1000	-0.0017
	##	120	0.5583	nan	0.1000	-0.0017
	##	140	0.5149	nan	0.1000	-0.0027
	##	160	0.4803	nan	0.1000	-0.0016
	##	180	0.4419	nan	0.1000	-0.0012
	##	200	0.4185	nan	0.1000	-0.0027
	##	220	0.3874	nan	0.1000	-0.0013
	##	240	0.3682	nan	0.1000	-0.0013
	##	250	0.3575	nan	0.1000	-0.0017
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2312	nan	0.1000	0.0276
	##	2	1.1818	nan	0.1000	0.0185
	##	3	1.1270	nan	0.1000	0.0206
	##	4	1.0892	nan	0.1000	0.0131
	##	5	1.0543	nan	0.1000	0.0140
	##	6	1.0263	nan	0.1000	0.0092
	##	7	1.0010	nan	0.1000	0.0088
	##	8	0.9777	nan	0.1000	0.0036
	##	9	0.9548	nan	0.1000	0.0093
	##	10	0.9408	nan	0.1000	0.0033
	##	20	0.8173	nan	0.1000	-0.0010
	##	40	0.6915	nan	0.1000	-0.0030
	##	60	0.6234	nan	0.1000	-0.0019
	##	80	0.5593	nan	0.1000	-0.0001
	##	100	0.5075	nan	0.1000	-0.0006
	##	120	0.4619	nan	0.1000	-0.0028
	##	140	0.4230	nan	0.1000	-0.0029
	##	160	0.3844	nan	0.1000	-0.0022
	##	180	0.3515	nan	0.1000	-0.0019
	##	200	0.3182	nan	0.1000	-0.0015
	##	220	0.2956	nan	0.1000	-0.0013
	##	240	0.2747	nan	0.1000	-0.0017
	##	250	0.2642	nan	0.1000	-0.0021
	##					
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2167	nan	0.1000	0.0374
	##	2	1.1617	nan	0.1000	0.0206
	##	3	1.1139	nan	0.1000	0.0162
	##	4	1.0743	nan	0.1000	0.0155
	##	5	1.0349	nan	0.1000	0.0106
	##	6	0.9995	nan	0.1000	0.0126
	##	7	0.9720	nan	0.1000	0.0079
	##	8	0.9451	nan	0.1000	0.0097

_	2011				/ lavarioca Da	a willing i rojec
	##	9	0.9255	nan	0.1000	0.0062
	##	10	0.9073	nan	0.1000	0.0031
	##	20	0.7749	nan	0.1000	-0.0053
	##	40	0.6405	nan	0.1000	0.0009
	##	60	0.5515	nan	0.1000	-0.0017
	##	80	0.4794	nan	0.1000	-0.0008
	##	100	0.4293	nan	0.1000	-0.0020
	##	120	0.3741	nan	0.1000	-0.0023
	##	140	0.3338	nan	0.1000	-0.0009
	##	160	0.3034	nan	0.1000	-0.0010
	##	180	0.2758	nan	0.1000	-0.0016
	##	200	0.2489	nan	0.1000	-0.0010
	##	220	0.2251	nan	0.1000	-0.0013
	##	240	0.2016	nan	0.1000	-0.0006
	##	250	0.1902	nan	0.1000	-0.0017
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2559	nan	0.1000	0.0162
	##	2	1.2188	nan	0.1000	0.0163
	##	3	1.1898	nan	0.1000	0.0117
	##	4	1.1647	nan	0.1000	0.0109
	##	5	1.1418	nan	0.1000	0.0105
	##	6	1.1258	nan	0.1000	0.0060
	##	7	1.1111	nan	0.1000	0.0052
	##	8	1.0935	nan	0.1000	0.0041
	##	9	1.0768	nan	0.1000	0.0056
	##	10	1.0596	nan	0.1000	0.0057
	##	20	0.9666	nan	0.1000	0.0009
	##	40	0.8821	nan	0.1000	0.0011
	##	60	0.8335	nan	0.1000	-0.0008
	##	80	0.8076	nan	0.1000	-0.0020
	##	100	0.7872	nan	0.1000	-0.0004
	##	120	0.7710	nan	0.1000	-0.0015
	##	140	0.7557	nan	0.1000	-0.0012
	##	160	0.7463	nan	0.1000	-0.0010
	##	180	0.7394	nan	0.1000	-0.0013
	##	200	0.7310	nan	0.1000	-0.0014
	##	220	0.7215	nan	0.1000	-0.0004
	##	240	0.7143	nan	0.1000	-0.0014
	##	250	0.7112	nan	0.1000	-0.0012
	##	Tton	TasiaDaviance	ValidDaviance	C+02Ci-0	Tmnnava
		Iter 1	TrainDeviance	ValidDeviance	StepSize	Improve
	##		1.2495	nan	0.1000	0.0222
		2	1.2064	nan	0.1000	0.0162
	##	4	1.1671 1.1363	nan	0.1000 0.1000	0.0186 0.0159
				nan		
	##	5 6	1.1079 1.0829	nan	0.1000 0.1000	0.0115 0.0115
	##	7	1.0630	nan nan	0.1000	0.0070
	##	8	1.0409	nan	0.1000	0.0083
	##	9	1.0227	nan	0.1000	0.0083
	##	10	1.0056	nan	0.1000	0.0077
	##	20	0.8947	nan	0.1000	0.0007
	##	40	0.7963	nan	0.1000	0.0007
		.0	3.,,505		2.2000	2.0007

<i>"</i> _ C					/ lavarioca Dat	a mining i rojeo
:	##	60	0.7423	nan	0.1000	-0.0026
;	##	80	0.7069	nan	0.1000	-0.0012
:	##	100	0.6778	nan	0.1000	-0.0025
	##	120	0.6506	nan	0.1000	-0.0021
	##	140	0.6277	nan	0.1000	-0.0014
	##	160	0.5996	nan	0.1000	-0.0008
	##	180	0.5824	nan	0.1000	-0.0013
	##	200	0.5603	nan	0.1000	-0.0006
	##	220	0.5419	nan	0.1000	-0.0014
	##	240	0.5262	nan	0.1000	-0.0016
:	##	250	0.5178	nan	0.1000	-0.0011
:	##					
:	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
;	##	1	1.2398	nan	0.1000	0.0239
:	##	2	1.1875	nan	0.1000	0.0225
:	##	3	1.1392	nan	0.1000	0.0186
:	##	4	1.1068	nan	0.1000	0.0112
:	##	5	1.0747	nan	0.1000	0.0119
:	##	6	1.0488	nan	0.1000	0.0118
:	##	7	1.0259	nan	0.1000	0.0069
:	##	8	1.0038	nan	0.1000	0.0098
:	##	9	0.9878	nan	0.1000	0.0032
:	##	10	0.9673	nan	0.1000	0.0060
:	##	20	0.8556	nan	0.1000	0.0018
:	##	40	0.7478	nan	0.1000	-0.0008
:	##	60	0.6794	nan	0.1000	-0.0019
:	##	80	0.6242	nan	0.1000	-0.0036
:	##	100	0.5732	nan	0.1000	-0.0032
1	##	120	0.5395	nan	0.1000	-0.0022
1	##	140	0.5076	nan	0.1000	-0.0024
	##	160	0.4785	nan	0.1000	-0.0001
1	##	180	0.4533	nan	0.1000	-0.0018
1	##	200	0.4300	nan	0.1000	-0.0013
	##	220	0.4045	nan	0.1000	-0.0009
	##	240	0.3795	nan	0.1000	-0.0018
	##	250	0.3716	nan	0.1000	-0.0021
	##				c. c.	_
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	## ##	1 2	1.2333	nan	0.1000	0.0275
	## ##	3	1.1829 1.1407	nan	0.1000 0.1000	0.0203 0.0166
	##	4	1.0999	nan	0.1000	0.0130
	##	5	1.0635	nan nan	0.1000	0.0153
	##	6	1.0359	nan	0.1000	0.0091
	##	7	1.0092	nan	0.1000	0.0091
	##	8	0.9850	nan	0.1000	0.0032
	##	9	0.9600	nan	0.1000	0.0033
	##	10	0.9419	nan	0.1000	0.0033
	##	20	0.8103	nan	0.1000	0.0010
	##	40	0.6888	nan	0.1000	-0.0021
	##	60	0.6166	nan	0.1000	-0.0047
	##	80	0.5613	nan	0.1000	-0.0034
	##	100	0.5135	nan	0.1000	-0.0027
	##	120	0.4621	nan	0.1000	-0.0017

,2011				/ lavarioca Dai	a mining i rojeo
##	140	0.4242	nan	0.1000	-0.0020
##	160	0.3898	nan	0.1000	-0.0019
##	180	0.3610	nan	0.1000	-0.0013
##	200	0.3334	nan	0.1000	-0.0018
##	220	0.3069	nan	0.1000	-0.0014
##	240	0.2835	nan	0.1000	-0.0008
##	250	0.2748	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2230	nan	0.1000	0.0288
##	2	1.1670	nan	0.1000	0.0214
##	3	1.1181	nan	0.1000	0.0173
##	4	1.0792	nan	0.1000	0.0116
##	5	1.0391	nan	0.1000	0.0168
##	6	1.0029	nan	0.1000	0.0131
##	7	0.9712	nan	0.1000	0.0131
##	8	0.9495	nan	0.1000	0.0072
##	9	0.9262	nan	0.1000	0.0045
##	10	0.9034	nan	0.1000	0.0045
##	20	0.7777	nan	0.1000	-0.0028
##	40	0.6541	nan	0.1000	-0.0028
##	60	0.5665	nan	0.1000	-0.0035
##	80	0.4951	nan	0.1000	-0.0019
##	100	0.4355	nan	0.1000	-0.0027
##	120	0.3911	nan	0.1000	-0.0027
##	140	0.3482	nan	0.1000	-0.0000
##	160	0.3170	nan	0.1000	-0.0020
##	180	0.2837	nan	0.1000	-0.0026
##	200	0.2555	nan	0.1000	-0.0012
##	220	0.2351	nan	0.1000	-0.0007
##	240	0.2123	nan	0.1000	-0.0008
##	250	0.1991	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2653	nan	0.1000	0.0114
##		1.2276	nan	0.1000	0.0173
##	3	1.1964	nan	0.1000	0.0131
##		1.1735	nan	0.1000	0.0106
##		1.1499	nan	0.1000	0.0066
##	6	1.1343	nan	0.1000	0.0061
##		1.1188	nan	0.1000	0.0054
##		1.1060	nan	0.1000	0.0070
##		1.0888	nan	0.1000	0.0052
##		1.0729	nan	0.1000	0.0055
##		0.9789	nan	0.1000	-0.0003
##		0.8995	nan	0.1000	0.0001
##		0.8582	nan	0.1000	-0.0007
##		0.8296	nan	0.1000	-0.0023
##		0.8060	nan	0.1000	-0.0017
##		0.7925	nan	0.1000	-0.0011
##		0.7809	nan	0.1000	-0.0004
##		0.7681	nan	0.1000	-0.0010
##		0.7593	nan	0.1000	-0.0020
##	200	0.7493	nan	0.1000	-0.0002

						. 5 .,
	##	220	0.7406	nan	0.1000	-0.0008
	##	240	0.7323	nan	0.1000	-0.0007
	##	250	0.7297	nan	0.1000	-0.0017
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2426	nan	0.1000	0.0222
	##	2	1.2057	nan	0.1000	0.0159
	##	3	1.1687	nan	0.1000	0.0195
	##	4	1.1392	nan	0.1000	0.0102
	##	5	1.1127	nan	0.1000	0.0106
	##	6	1.0875	nan	0.1000	0.0110
	##	7	1.0660	nan	0.1000	0.0038
	##	8	1.0470	nan	0.1000	0.0069
	##	9	1.0302	nan	0.1000	0.0036
	##	10	1.0144	nan	0.1000	0.0037
	##	20 40	0.9125 0.8208	nan	0.1000	-0.0005
	##	60	0.7692	nan	0.1000 0.1000	-0.0013 -0.0024
	##	80	0.7382	nan nan	0.1000	-0.0024
	##	100	0.7097	nan	0.1000	-0.0021
	##	120	0.6801	nan	0.1000	0.0013
	##	140	0.6554	nan	0.1000	-0.0016
	##	160	0.6318	nan	0.1000	-0.0029
	##	180	0.6104	nan	0.1000	-0.0018
	##	200	0.5914	nan	0.1000	-0.0019
	##	220	0.5696	nan	0.1000	-0.0015
	##	240	0.5557	nan	0.1000	-0.0018
Т						
	##	250		nan		
			0.5489		0.1000	-0.0009
	##	250				
	## ##	250	0.5489	nan	0.1000	-0.0009
	## ## ##	250 Iter	0.5489	nan ValidDeviance	0.1000 StepSize	-0.0009
	## ## ## ##	250 Iter 1	0.5489 TrainDeviance 1.2440	nan ValidDeviance nan	0.1000 StepSize 0.1000	-0.0009 Improve 0.0220
	## ## ## ##	250 Iter	0.5489 TrainDeviance 1.2440 1.2023	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214
	## ## ## ## ##	250 Iter 1 2 3 4 5	0.5489 TrainDeviance 1.2440 1.2023 1.1647	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137
	## ## ## ## ## ##	250 Iter 1 2 3 4 5 6	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018	nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021
	## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029
	## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016
	## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028
	## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0020
	## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027
	## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231 0.4931	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017 -0.0018
	########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231 0.4931 0.4689	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017 -0.0018 -0.0022
	#########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231 0.4931 0.4689 0.4448	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017 -0.0018 -0.0022 -0.0024
	########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231 0.4931 0.4689	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017 -0.0018 -0.0024 -0.0015
	############################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.5489 TrainDeviance 1.2440 1.2023 1.1647 1.1271 1.0929 1.0684 1.0417 1.0214 1.0018 0.9858 0.8694 0.7693 0.7104 0.6609 0.6190 0.5852 0.5550 0.5231 0.4931 0.4689 0.4448 0.4190	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0009 Improve 0.0220 0.0214 0.0137 0.0181 0.0137 0.0090 0.0102 0.0069 0.0072 0.0021 0.0029 -0.0016 -0.0028 -0.0027 -0.0016 -0.0030 -0.0017 -0.0018 -0.0022 -0.0024

						a willing i rojec
#	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
#	##	1	1.2332	nan	0.1000	0.0229
#	##	2	1.1763	nan	0.1000	0.0220
#	##	3	1.1366	nan	0.1000	0.0183
#	##	4	1.0987	nan	0.1000	0.0094
#	##	5	1.0738	nan	0.1000	0.0055
#	##	6	1.0448	nan	0.1000	0.0067
#	##	7	1.0160	nan	0.1000	0.0105
#	##	8	0.9971	nan	0.1000	0.0023
#	##	9	0.9747	nan	0.1000	0.0070
#	##	10	0.9584	nan	0.1000	0.0044
#	##	20	0.8306	nan	0.1000	0.0007
#	##	40	0.7129	nan	0.1000	-0.0028
#	##	60	0.6438	nan	0.1000	-0.0017
#	##	80	0.5880	nan	0.1000	-0.0021
#	##	100	0.5440	nan	0.1000	-0.0018
#	##	120	0.5000	nan	0.1000	-0.0033
#	##	140	0.4619	nan	0.1000	-0.0007
#	##	160	0.4199	nan	0.1000	-0.0007
#	##	180	0.3895	nan	0.1000	-0.0025
#	##	200	0.3590	nan	0.1000	-0.0006
#	##	220	0.3315	nan	0.1000	-0.0007
#	##	240	0.3086	nan	0.1000	-0.0028
#	##	250	0.2984	nan	0.1000	-0.0010
#	##					
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
#	##	1	1.2305	nan	0.1000	0.0269
	##	2	1.1823	nan	0.1000	0.0174
#	##	3	1.1313	nan nan	0.1000	0.0160
#	‡# ‡#	3 4	1.1313 1.0961		0.1000 0.1000	0.0160 0.0100
# # #	## ## ##	3 4 5	1.1313 1.0961 1.0557	nan	0.1000 0.1000 0.1000	0.0160 0.0100 0.0128
# #	## ## ##	3 4 5 6	1.1313 1.0961 1.0557 1.0247	nan nan	0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103
# # # #	## ## ## ##	3 4 5 6 7	1.1313 1.0961 1.0557 1.0247 0.9991	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077
# # # # #	;# ;# ;# ;# ;#	3 4 5 6 7 8	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053
# # # # #	;# ;# ;# ;# ;# ;#	3 4 5 6 7 8 9	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045
# # # # # #	*# *# *# *# *# *#	3 4 5 6 7 8 9 10	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048
# # # # # # #	*# *# *# *# *# *# *#	3 4 5 6 7 8 9 10 20	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007
# # # # # # #	## ## ## ## ## ## ## ## ## ## ## ## ##	3 4 5 6 7 8 9 10 20 40	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007
# # # # # # #	**	3 4 5 6 7 8 9 10 20 40 60	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039
# # # # # # # # # # # # # # # # # # #	**	3 4 5 6 7 8 9 10 20 40 60 80	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035
# # # # # # # # #	**	3 4 5 6 7 8 9 10 20 40 60 80 100	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026
# # # # # # # # # # # # # # # # # # #	*	3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030
# # # # # # # # # # # # # # # # # # #	*	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4615	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0030 -0.0010
# # # # # # # # # # # # # # # # # # #	*	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008
# # # # # # # # # # # # #	**	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013
# # # # # # # # # # # # # # # # # # #	+++++++++++++++++++++++++++++++++++++++	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338 0.3054	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0030 -0.0010 -0.0008 -0.0013 -0.0015
# # # # # # # # # # # # # # # # # # #	+++++++++++++++++++++++++++++++++++++++	3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 200 220	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3713 0.3338 0.3054 0.2763	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0015 -0.0017
# # # # # # # # # # # # # # # # # # #	+++++++++++++++++++++++++++++++++++++++	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338 0.3054 0.2763 0.2503	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0015 -0.0017 -0.0015
# # # # # # # # # # # # # # # # # # #	+++++++++++++++++++++++++++++++++++++++	3 4 5 6 7 8 9 10 20 40 60 80 100 140 160 180 200 220	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3713 0.3338 0.3054 0.2763	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0015 -0.0017
# # # # # # # # # # # # # # # # # # #	*	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 220 240 250	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4615 0.4763 0.3713 0.3338 0.3054 0.2763 0.2503 0.2263	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0015 -0.0017 -0.0013
# # # # # # # # # # # # # # # # # # #	* * * * * * * * * * * * * * * * * * * *	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 250 Iter	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338 0.3054 0.2763 0.2503 0.2263 0.2143 TrainDeviance	nan	0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0017 -0.0015 -0.0013 Improve
# # # # # # # # # # # # # # # # # # #	* * * * * * * * * * * * * * * * * * * *	3 4 5 6 7 8 9 10 20 40 60 80 120 140 160 180 200 240 250 Iter 1	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338 0.3054 0.2763 0.2503 0.2263 0.2143 TrainDeviance 1.2487	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0013 -0.0015 -0.0015 -0.0013 Tmprove 0.0179
# # # # # # # # # # # # # # # # # # #	* * * * * * * * * * * * * * * * * * * *	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 250 Iter	1.1313 1.0961 1.0557 1.0247 0.9991 0.9767 0.9576 0.9380 0.8101 0.6778 0.5836 0.5145 0.4615 0.4143 0.3713 0.3338 0.3054 0.2763 0.2503 0.2263 0.2143 TrainDeviance	nan	0.1000 0.1000	0.0160 0.0100 0.0128 0.0103 0.0077 0.0053 0.0045 0.0048 -0.0007 -0.0004 -0.0039 -0.0035 -0.0026 -0.0030 -0.0010 -0.0008 -0.0013 -0.0017 -0.0015 -0.0013 Improve

,, 2011				/ lavarioca Dall	a willing i rojec
##	4	1.1635	nan	0.1000	0.0097
##	5	1.1387	nan	0.1000	0.0092
##	6	1.1223	nan	0.1000	0.0068
##	7	1.1015	nan	0.1000	0.0096
##	8	1.0863	nan	0.1000	0.0030
##	9	1.0796	nan	0.1000	-0.0013
##	10	1.0652	nan	0.1000	0.0039
##	20	0.9621	nan	0.1000	0.0025
##	40	0.8831	nan	0.1000	0.0002
##	60	0.8390	nan	0.1000	-0.0002
##	80	0.8074	nan	0.1000	-0.0004
##	100	0.7879	nan	0.1000	-0.0010
##	120	0.7740	nan	0.1000	-0.0012
##	140	0.7565	nan	0.1000	0.0001
##	160	0.7454	nan	0.1000	-0.0007
##	180	0.7304	nan	0.1000	-0.0007
##	200	0.7216	nan	0.1000	-0.0028
##	220	0.7136	nan	0.1000	-0.0009
##	240	0.7045	nan	0.1000	-0.0009
##	250	0.7017	nan	0.1000	-0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2424	nan	0.1000	0.0210
##	2	1.2009	nan	0.1000	0.0181
##	3	1.1591	nan	0.1000	0.0174
##	4	1.1236	nan	0.1000	0.0151
##	5	1.0999	nan	0.1000	0.0107
##	6	1.0724	nan	0.1000	0.0116
##	7	1.0469	nan	0.1000	0.0116
##	8	1.0294	nan	0.1000	0.0052
##	9	1.0105	nan	0.1000	0.0061
##	10	0.9945	nan	0.1000	0.0037
##	20	0.8867	nan	0.1000	0.0023
##	40	0.7876	nan	0.1000	-0.0008
##	60	0.7383	nan	0.1000	-0.0009
##	80	0.7087	nan	0.1000	-0.0007
##	100	0.6779	nan	0.1000	-0.0013
##	120	0.6467	nan	0.1000	-0.0025
##	140	0.6202	nan	0.1000	-0.0009
##	160	0.6002	nan	0.1000	-0.0016
##	180	0.5786	nan	0.1000	-0.0011
##	200	0.5569	nan	0.1000	-0.0021
##	220	0.5383	nan	0.1000	-0.0005
##	240	0.5178	nan	0.1000	-0.0024
##	250	0.5089	nan	0.1000	-0.0011
##	- .		v 11.15	c. c.	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2323	nan	0.1000	0.0281
##	2	1.1795	nan	0.1000	0.0237
##	3	1.1366	nan	0.1000	0.0171
##	4	1.1027	nan	0.1000	0.0140
##	5	1.0655	nan	0.1000	0.0157
##	6	1.0346	nan	0.1000	0.0113
##	7	1.0118	nan	0.1000	0.0071

				/ lavarioca Bai	a mining i rojec
##	8	0.9888	nan	0.1000	0.0067
##	9	0.9712	nan	0.1000	0.0054
##	10	0.9516	nan	0.1000	0.0066
##	20	0.8419	nan	0.1000	0.0019
##	40	0.7473	nan	0.1000	-0.0017
##	60	0.6777	nan	0.1000	-0.0016
##	80	0.6238	nan	0.1000	-0.0006
##	100	0.5794	nan	0.1000	-0.0015
##	120	0.5364	nan	0.1000	-0.0019
##	140	0.4993	nan	0.1000	-0.0026
##	160	0.4673	nan	0.1000	-0.0031
##	180	0.4399	nan	0.1000	-0.0004
##	200	0.4144	nan	0.1000	-0.0014
##	220	0.3909	nan	0.1000	-0.0012
##	240	0.3599	nan	0.1000	-0.0008
##	250	0.3493	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2189	nan	0.1000	0.0323
##	2	1.1642	nan	0.1000	0.0218
##	3	1.1201	nan	0.1000	0.0177
##	4	1.0808	nan	0.1000	0.0177
##	5	1.0484	nan	0.1000	0.0098
##	6	1.0177	nan	0.1000	0.0138
##	7	0.9949	nan	0.1000	0.0052
##	8	0.9691	nan	0.1000	0.0076
##	9	0.9491	nan	0.1000	0.0065
##	10	0.9269	nan	0.1000	0.0056
##	20	0.7946	nan	0.1000	0.0012
##	40	0.6841	nan	0.1000	-0.0018
##	60	0.6070	nan	0.1000	-0.0027
##	80	0.5441	nan	0.1000	-0.0028
##	100	0.4912	nan	0.1000	-0.0023
##	120	0.4474	nan	0.1000	-0.0019
##	140	0.4165	nan		-0.0028
##	160	0.3766	nan	0.1000	-0.0012
##			nan	0.1000	-0.0018
			nan		-0.0007
			nan		-0.0004
			nan		-0.0012
	250	0.2503	nan	0.1000	-0.0008
				c. c.	_
				•	Improve
					0.0382
					0.0249
					0.0206
					0.0178
					0.0148
					0.0099
					0.0075
					0.0059
					0.0065 0.0032
π#	20	0.7727	IIdli	0.1000	0.0007
	#######################################	## 9 ## 10 ## 20 ## 40 ## 60 ## 120 ## 140 ## 160 ## 200 ## 240 ## 240 ## 250 ## 55 ## 66 ## 7 ## 88 ## 9 ## 10 ## 120 ## 40 ## 60 ## 80 ## 100 ## 120 ## 140 ## 160 ## 180 ## 20 ## 20 ## 3 ## 4 ## 5 ## 60 ## 100 ## 120 ## 140 ## 150 ## 140 ## 150	## 10 0.9516 ## 20 0.8419 ## 40 0.7473 ## 60 0.6777 ## 80 0.6238 ## 100 0.5794 ## 120 0.5364 ## 140 0.4993 ## 160 0.4673 ## 180 0.4399 ## 220 0.3909 ## 240 0.3599 ## 250 0.3493 ## ## Iter TrainDeviance ## 1 1.0808 ## 5 1.0484 ## 6 1.0177 ## 7 0.9949 ## 8 0.9691 ## 9 0.9491 ## 10 0.9269 ## 20 0.7946 ## 40 0.6841 ## 60 0.6070 ## 80 0.5441 ## 140 0.4165 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 140 0.4912 ## 150 0.3766 ## 180 0.3473 ## 200 0.3147 ## 200 0.3147 ## 200 0.3147 ## 200 0.3147 ## 200 0.3147 ## 200 0.3593 ## 3 1.1020 ## 3 1.1020 ## 4 1.0602 ## 5 1.0198 ## 6 0.9930 ## 7 0.9681 ## 8 0.9405 ## 8 0.9405 ## 8 0.9405 ## 8 0.9405 ## 9 0.9157 ## 9 0.9157	## 9 0.9712	## 8 0.9888

_	12011				7 lavarioca Ball	i wiii iii ig i Tojco
	##	40	0.6445	nan	0.1000	-0.0009
	##	60	0.5563	nan	0.1000	-0.0025
	##	80	0.4856	nan	0.1000	-0.0044
	##	100	0.4263	nan	0.1000	-0.0034
	##	120	0.3677	nan	0.1000	-0.0015
	##	140	0.3327	nan	0.1000	-0.0027
	##	160	0.3020	nan	0.1000	-0.0009
	##	180	0.2719	nan	0.1000	-0.0018
	##	200	0.2445	nan	0.1000	-0.0009
	##	220	0.2189	nan	0.1000	-0.0007
	##	240	0.1987	nan	0.1000	-0.0010
	##	250	0.1891	nan	0.1000	-0.0010
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2599	nan	0.1000	0.0176
	##	2	1.2322	nan	0.1000	0.0125
	##	3	1.2039	nan	0.1000	0.0115
	##	4	1.1815	nan	0.1000	0.0098
	##	5	1.1637	nan	0.1000	0.0088
	##	6	1.1446	nan	0.1000	0.0074
	##	7	1.1282	nan	0.1000	0.0084
	##	8	1.1110	nan	0.1000	0.0066
	##	9	1.0968	nan	0.1000	0.0049
	##	10	1.0860	nan	0.1000	0.0044
	##	20	0.9853	nan	0.1000	0.0046
	##	40	0.8966	nan	0.1000	0.0002
	##	60	0.8510	nan	0.1000	-0.0003
	##	80	0.8165	nan	0.1000	-0.0012
	##	100	0.7945	nan	0.1000	-0.0010
	##	120	0.7726	nan	0.1000	-0.0004
	##	140	0.7606	nan	0.1000	-0.0014
	##	160	0.7482	nan	0.1000	-0.0008
	##	180	0.7349	nan	0.1000	-0.0013
	##	200	0.7222	nan	0.1000	-0.0020
	##	220	0.7138	nan	0.1000	-0.0011
	##	240	0.7046	nan	0.1000	-0.0001
	##	250	0.7008	nan	0.1000	-0.0008
	##					
		Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2460	nan	0.1000	0.0230
	##	2	1.2030	nan	0.1000	0.0189
	##	3	1.1698	nan	0.1000	0.0127
	##	4	1.1389	nan	0.1000	0.0117
	##	5	1.1136	nan	0.1000	0.0067
	##	6	1.0940	nan	0.1000	0.0078
	##	7	1.0783	nan	0.1000	0.0058
	##	8	1.0619	nan	0.1000	0.0042
	##	9	1.0427	nan	0.1000	0.0083
	##	10	1.0226	nan	0.1000	0.0068
	##	20	0.9147	nan	0.1000	0.0009
	##	40	0.8112	nan	0.1000	0.0002
	##	60	0.7561	nan	0.1000	-0.0012
	##	80	0.7046	nan	0.1000	-0.0005
	##	100	0.6729	nan	0.1000	-0.0021

ì	2017				Auvanceu Dai	a willing-riojed
	##	120	0.6495	nan	0.1000	-0.0018
	##	140	0.6247	nan	0.1000	-0.0010
	##	160	0.6083	nan	0.1000	-0.0007
	##	180	0.5827	nan	0.1000	-0.0024
	##	200	0.5628	nan	0.1000	-0.0026
	##	220	0.5403	nan	0.1000	-0.0026
	##	240	0.5180	nan	0.1000	-0.0028
	##	250	0.5083	nan	0.1000	-0.0014
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2424	nan	0.1000	0.0193
	##	2	1.2071	nan	0.1000	0.0133
	##	3	1.1588	nan	0.1000	0.0194
	##	4	1.1216	nan	0.1000	0.0138
	##	5	1.0924	nan	0.1000	0.0114
	##	6	1.0661	nan	0.1000	0.0082
	##	7	1.0412	nan	0.1000	0.0079
	##	8	1.0206	nan	0.1000	0.0059
	##	9	1.0001	nan	0.1000	0.0053
	##	10	0.9818	nan	0.1000	0.0061
	##	20	0.8686	nan	0.1000	-0.0005
	##	40	0.7486	nan	0.1000	0.0004
	##	60	0.6805	nan	0.1000	-0.0007
	##	80	0.6259	nan	0.1000	-0.0027
	##	100	0.5811	nan	0.1000	-0.0013
	##	120	0.5413	nan	0.1000	-0.0025
	##	140	0.5090	nan	0.1000	-0.0008
	##	160	0.4781	nan	0.1000	-0.0022
	##	180	0.4532	nan	0.1000	-0.0015
	##	200	0.4244	nan	0.1000	-0.0012
	##	220	0.3985	nan	0.1000	-0.0016
	##	240	0.3782	nan	0.1000	-0.0012
	##	250	0.3665	nan	0.1000	-0.0003
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2324	nan	0.1000	0.0282
	##	2	1.1757	nan	0.1000	0.0224
	##	3	1.1397	nan	0.1000	0.0157
	##	4	1.0991	nan	0.1000	0.0160
	##	5	1.0646	nan	0.1000	0.0108
	##	6	1.0369	nan	0.1000	0.0065
	##	7	1.0088	nan	0.1000	0.0104
	##	8	0.9822	nan	0.1000	0.0082
	##	9	0.9632	nan	0.1000	0.0037
	##	10	0.9468	nan	0.1000	0.0036
	##	20	0.8151	nan	0.1000	0.0016
	##	40	0.6865	nan	0.1000	-0.0016
	##	60	0.6129	nan	0.1000	-0.0020
	##	80	0.5527	nan	0.1000	-0.0018
	##	100	0.5017	nan	0.1000	-0.0002
	##	120	0.4566	nan	0.1000	-0.0022
	##	140	0.4116	nan	0.1000	-0.0032
	##	160	0.3723	nan	0.1000	-0.0019
	##	180	0.3414	nan	0.1000	-0.0014

•						a willing i rojec
	##	200	0.3165	nan	0.1000	-0.0014
	##	220	0.2904	nan	0.1000	-0.0016
	##	240	0.2686	nan	0.1000	-0.0007
	##	250	0.2583	nan	0.1000	-0.0018
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2259	nan	0.1000	0.0303
	##	2	1.1709	nan	0.1000	0.0250
	##	3	1.1272	nan	0.1000	0.0163
	##	4	1.0847	nan	0.1000	0.0183
	##	5	1.0461	nan	0.1000	0.0130
	##	6	1.0118	nan	0.1000	0.0134
	##	7	0.9849	nan	0.1000	0.0108
	##	8	0.9622	nan	0.1000	0.0075
	##	9	0.9405	nan	0.1000	0.0070
	##	10	0.9206	nan	0.1000	0.0052
	##	20	0.7786	nan	0.1000	0.0005
	##	40	0.6409	nan	0.1000	-0.0001
	##	60	0.5574	nan	0.1000	-0.0028
	##	80	0.4808	nan	0.1000	-0.0027
	##	100	0.4220	nan	0.1000	-0.0023
	##	120	0.3756	nan	0.1000	-0.0014
	##	140	0.3385	nan	0.1000	-0.0015
	##	160	0.3019	nan	0.1000	-0.0016
	##	180	0.2724	nan	0.1000	-0.0016
	##	200	0.2465	nan	0.1000	-0.0014
	##	220	0.2216	nan	0.1000	-0.0011
	##	240	0.2019	nan	0.1000	-0.0003
	##	240 250	0.2019 0.1924	nan nan	0.1000 0.1000	-0.0003 -0.0008
	##				0.1000	-0.0008
	## ##	250	0.1924	nan		
	## ## ##	250 Iter	0.1924 TrainDeviance	nan ValidDeviance	0.1000 StepSize	-0.0008
	## ## ## ##	250 Iter 1	0.1924 TrainDeviance 1.2601	nan ValidDeviance nan	0.1000 StepSize 0.1000	-0.0008 Improve 0.0183
	## ## ## ##	250 Iter 1 2	0.1924 TrainDeviance 1.2601 1.2216	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181
	## ## ## ## ##	250 Iter 1 2 3	0.1924 TrainDeviance 1.2601 1.2216 1.1923	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116
	## ## ## ## ## ##	250 Iter 1 2 3 4	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102
	## ## ## ## ## ##	250 Iter 1 2 3 4 5	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088
	## ## ## ## ## ##	250 Iter 1 2 3 4 5 6	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078
	## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105	nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941	nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063
	## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815	nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034
	## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699	nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045
	## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025
	## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020
	## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000
	## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015
	## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0001
	## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0008
	## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938 0.7845	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0008 -0.0026
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938 0.7845 0.7757	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0001 -0.0008 -0.0026 -0.0005
	## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938 0.7845 0.7757 0.7655	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0001 -0.0008 -0.0026 -0.0005 -0.0038
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938 0.7845 0.7757 0.7655 0.7542	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0008 Improve 0.0183 0.0181 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0008 -0.0026 -0.0038 -0.0038
	######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.1924 TrainDeviance 1.2601 1.2216 1.1923 1.1665 1.1461 1.1264 1.1105 1.0941 1.0815 1.0699 0.9803 0.8942 0.8547 0.8307 0.8126 0.7938 0.7845 0.7757 0.7655 0.7542 0.7464	NalidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	-0.0008 Improve 0.0183 0.0181 0.0116 0.0102 0.0088 0.0078 0.0064 0.0063 0.0034 0.0045 0.0025 -0.0020 0.0000 -0.0015 -0.0001 -0.0005 -0.0038 -0.0015 -0.0011

##	ŧ				
##	‡ Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	‡ 1	1.2516	nan	0.1000	0.0220
##	‡ 2	1.2082	nan	0.1000	0.0182
##	‡ 3	1.1711	nan	0.1000	0.0168
##	‡ 4	1.1431	nan	0.1000	0.0109
##	‡ 5	1.1155	nan	0.1000	0.0107
##	ŧ 6	1.0905	nan	0.1000	0.0111
##	‡ 7	1.0667	nan	0.1000	0.0081
##	ŧ 8	1.0477	nan	0.1000	0.0070
##	‡ 9	1.0278	nan	0.1000	0.0070
##	‡ 10	1.0076	nan	0.1000	0.0075
##	‡ 20	0.9079	nan	0.1000	0.0014
##	ŧ 40	0.8145	nan	0.1000	-0.0008
##		0.7600	nan	0.1000	-0.0013
##		0.7278	nan	0.1000	-0.0011
##		0.6992	nan	0.1000	-0.0024
##		0.6783	nan	0.1000	-0.0016
##		0.6511	nan	0.1000	-0.0026
##		0.6278	nan	0.1000	-0.0018
##		0.6054	nan	0.1000	-0.0018
##		0.5857	nan	0.1000	-0.0019
##		0.5696	nan	0.1000	-0.0028
##		0.5548	nan	0.1000	-0.0010
##		0.5486	nan	0.1000	-0.0016
##		.	v 1: lb :	c. c:	_
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2427	nan	0.1000	0.0214
##		1.1919 1.1544	nan	0.1000	0.0210
##		1.1344	nan	0.1000 0.1000	0.0123 0.0147
##		1.0911	nan nan	0.1000	0.0147
##		1.0595	nan	0.1000	0.0112
##		1.0303	nan	0.1000	0.0113
##		1.0100	nan	0.1000	0.0040
##		0.9918	nan	0.1000	0.0051
##		0.9746	nan	0.1000	0.0042
##		0.8644	nan	0.1000	-0.0000
##		0.7712	nan	0.1000	-0.0016
##		0.7063	nan	0.1000	-0.0026
##		0.6548	nan	0.1000	-0.0011
##	‡ 100	0.6095	nan	0.1000	-0.0019
##	‡ 120	0.5776	nan	0.1000	-0.0015
##	‡ 140	0.5473	nan	0.1000	-0.0021
##	‡ 160	0.5206	nan	0.1000	-0.0026
##	‡ 180	0.4918	nan	0.1000	-0.0006
##	‡ 200	0.4670	nan	0.1000	-0.0020
##	‡ 220	0.4417	nan	0.1000	-0.0016
##	‡ 240	0.4134	nan	0.1000	-0.0014
##	‡ 250	0.4027	nan	0.1000	-0.0012
##	‡				
##	‡ Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	‡ 1	1.2351	nan	0.1000	0.0275
##	‡ 2	1.1814	nan	0.1000	0.0180
1					

<i>"</i> <u>-</u> 0 1 <i>1</i>				/ lavarioca Da	ta mining i roje
##	3	1.1291	nan	0.1000	0.0191
##	4	1.0920	nan	0.1000	0.0143
##	5	1.0601	nan	0.1000	0.0094
##	6	1.0343	nan	0.1000	0.0102
##	7	1.0078	nan	0.1000	0.0093
##	8	0.9837	nan	0.1000	0.0086
##	9	0.9640	nan	0.1000	0.0053
##	10	0.9437	nan	0.1000	0.0054
##	20	0.8342	nan	0.1000	-0.0024
##	40	0.7251	nan	0.1000	-0.0025
##	60	0.6561	nan	0.1000	-0.0038
##	80	0.5962	nan	0.1000	-0.0030
##	100	0.5383	nan	0.1000	-0.0037
##	120	0.4958	nan	0.1000	-0.0017
##	140	0.4632	nan	0.1000	-0.0026
##	160	0.4256	nan	0.1000	-0.0013
##	180	0.3956	nan	0.1000	-0.0012
##	200	0.3663	nan	0.1000	-0.0016
##		0.3385	nan	0.1000	-0.0014
##	240	0.3096	nan	0.1000	-0.0005
##		0.2972	nan	0.1000	-0.0022
##					
##		TrainDeviance	ValidDeviance	StepSize	Improve
##		1.2204	nan	0.1000	0.0291
##		1.1650	nan	0.1000	0.0142
##		1.1127	nan	0.1000	0.0182
##		1.0745	nan	0.1000	0.0150
##		1.0411	nan	0.1000	0.0105
##		1.0091	nan	0.1000	0.0110
##		0.9878 0.9574	nan nan	0.1000 0.1000	0.0068 0.0067
##		0.9376	nan	0.1000	0.0045
##	10	0.9168	nan	0.1000	0.0049
##		0.7882	nan	0.1000	0.0015
##		0.6646	nan	0.1000	-0.0041
##		0.5822	nan	0.1000	-0.0033
##		0.5235	nan	0.1000	-0.0017
##		0.4633	nan	0.1000	-0.0037
##	120	0.4200	nan	0.1000	-0.0029
##	140	0.3790	nan	0.1000	-0.0017
##	160	0.3460	nan	0.1000	-0.0014
##	180	0.3117	nan	0.1000	-0.0020
##	200	0.2849	nan	0.1000	-0.0012
##	220	0.2601	nan	0.1000	-0.0021
##	240	0.2309	nan	0.1000	-0.0013
##	250	0.2197	nan	0.1000	-0.0010
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2517	nan	0.1000	0.0213
##		1.2222	nan	0.1000	0.0167
##		1.1917	nan	0.1000	0.0123
##		1.1633	nan	0.1000	0.0117
##		1.1435	nan	0.1000	0.0090
##	6	1.1234	nan	0.1000	0.0099

					3 -,
##	7	1.1079	nan	0.1000	0.0036
##	8	1.0896	nan	0.1000	0.0069
##	9	1.0737	nan	0.1000	0.0072
##	10	1.0583	nan	0.1000	0.0051
##	20	0.9465	nan	0.1000	0.0031
##	40	0.8640	nan	0.1000	0.0005
##	60	0.8178	nan	0.1000	-0.0008
##	80	0.7867	nan	0.1000	-0.0016
##	100	0.7642	nan	0.1000	-0.0009
##	120	0.7468	nan	0.1000	-0.0015
##	140	0.7322	nan	0.1000	-0.0002
##	160	0.7215	nan	0.1000	-0.0012
##	180	0.7131	nan	0.1000	-0.0007
##	200	0.7029	nan	0.1000	-0.0017
##	220	0.6974	nan	0.1000	-0.0008
##	240	0.6900	nan	0.1000	-0.0013
##	250	0.6839	nan	0.1000	-0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2426	nan	0.1000	0.0229
##	2	1.1979	nan	0.1000	0.0195
##	3	1.1646	nan	0.1000	0.0137
##	4	1.1285	nan	0.1000	0.0152
##	5	1.0957	nan	0.1000	0.0125
##	6	1.0689	nan	0.1000	0.0133
##	7	1.0424	nan	0.1000	0.0108
##	8	1.0195	nan	0.1000	0.0103
##	9	1.0001	nan	0.1000	0.0075
##	10	0.9827	nan	0.1000	0.0061
##	20	0.8703	nan	0.1000	-0.0024
##	40	0.7758	nan	0.1000	-0.0018
##	60	0.7243	nan	0.1000	-0.0009
##	80	0.6898	nan	0.1000	-0.0020
##	100	0.6538	nan	0.1000	-0.0011
##	120	0.6211	nan	0.1000	-0.0007
##	140	0.5970	nan	0.1000	-0.0023
##	160	0.5722	nan	0.1000	-0.0017
##	180	0.5499	nan	0.1000	-0.0013
##	200	0.5283	nan	0.1000	-0.0016
##	220	0.5052	nan	0.1000	-0.0008
##	240	0.4842	nan	0.1000	-0.0018
##	250	0.4792	nan	0.1000	-0.0010
##	Tton	TaniaDovina	ValidDaviance	C+onCi-o	Tmnnovo
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1 2	1.2261	nan	0.1000	0.0293
##	3	1.1696	nan	0.1000	0.0224
##	4	1.1305 1.0920	nan	0.1000 0.1000	0.0179 0.0158
##	5	1.0577	nan nan	0.1000	0.0138
##	6	1.0377	nan	0.1000	0.0140
##	7	1.0103	nan	0.1000	0.0072
##	8	0.9873	nan	0.1000	0.0072
##	9	0.9628	nan	0.1000	0.0088
##	10	0.9448	nan	0.1000	0.0056
π π	10	0.3440	IIdli	0.1000	0.0000

12011				/ lavarioca Data	a willing i rojec
##	20	0.8274	nan	0.1000	0.0030
##	40	0.7169	nan	0.1000	-0.0017
##	60	0.6459	nan	0.1000	-0.0016
##	80	0.5990	nan	0.1000	-0.0028
##	100	0.5620	nan	0.1000	-0.0018
##	120	0.5259	nan	0.1000	-0.0014
##	140	0.4879	nan	0.1000	-0.0020
##	160	0.4551	nan	0.1000	-0.0006
##	180	0.4287	nan	0.1000	-0.0019
##	200	0.3983	nan	0.1000	-0.0003
##	220	0.3762	nan	0.1000	-0.0011
##	240	0.3546	nan	0.1000	-0.0016
##	250	0.3438	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2295	nan	0.1000	0.0304
##	2	1.1691	nan	0.1000	0.0280
##	3	1.1176	nan	0.1000	0.0207
##	4	1.0721	nan	0.1000	0.0159
##	5	1.0433	nan	0.1000	0.0112
##	6	1.0093	nan	0.1000	0.0097
##	7	0.9811	nan	0.1000	0.0071
##	8	0.9581	nan	0.1000	0.0068
##	9	0.9379	nan	0.1000	0.0055
##	10	0.9161	nan	0.1000	0.0081
##	20	0.7884	nan	0.1000	0.0012
##	40	0.6680	nan	0.1000	-0.0011
##	60	0.5844	nan	0.1000	-0.0023
##	80	0.5212	nan	0.1000	-0.0027
##	100	0.4669	nan	0.1000	-0.0012
##	120	0.4287	nan	0.1000	-0.0021
##	140	0.3916	nan	0.1000	-0.0022
##	160	0.3582	nan	0.1000	-0.0002
##	180	0.3303	nan	0.1000	-0.0019
##	200	0.3064	nan	0.1000	-0.0011
##	220	0.2835	nan	0.1000	-0.0013
##	240	0.2630	nan	0.1000	-0.0008
##	250	0.2515	nan	0.1000	-0.0008
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2240	nan	0.1000	0.0286
##	2	1.1680	nan	0.1000	0.0194
##	3	1.1143	nan	0.1000	0.0234
##	4	1.0684	nan	0.1000	0.0163
##	5	1.0287	nan	0.1000	0.0144
##	6	0.9962	nan	0.1000	0.0071
##	7	0.9679	nan	0.1000	0.0045
##	8	0.9418	nan	0.1000	0.0123
##	9	0.9238	nan	0.1000	0.0043
##	10	0.8983	nan	0.1000	0.0069
##	20	0.7520	nan	0.1000	-0.0012
##	40	0.6128	nan	0.1000	-0.0025
##	60	0.5192	nan	0.1000	-0.0020
##	80	0.4546	nan	0.1000	-0.0032

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7 lavarioca Bat	a mining i rojec
##	100	0.4022	nan	0.1000	-0.0032
##	120	0.3590	nan	0.1000	-0.0010
##	140	0.3190	nan	0.1000	-0.0025
##	160	0.2871	nan	0.1000	-0.0023
##	180	0.2652	nan	0.1000	-0.0011
##		0.2409	nan	0.1000	-0.0008
##	220	0.2185	nan	0.1000	-0.0013
##	240	0.1958	nan	0.1000	-0.0013
##	250	0.1865	nan	0.1000	-0.0017
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2528	nan	0.1000	0.0183
##	2	1.2212	nan	0.1000	0.0149
##	3	1.1951	nan	0.1000	0.0133
##	4	1.1700	nan	0.1000	0.0093
##	5	1.1484	nan	0.1000	0.0095
##	6	1.1265	nan	0.1000	0.0069
##	7	1.1091	nan	0.1000	0.0087
##	8	1.0944	nan	0.1000	0.0064
##	9	1.0815	nan	0.1000	0.0045
##	10	1.0712	nan	0.1000	0.0038
##	20	0.9725	nan	0.1000	0.0010
##	40	0.8911	nan	0.1000	0.0005
##	60	0.8412	nan	0.1000	-0.0020
##	80	0.8149	nan	0.1000	-0.0007
##	100	0.7972	nan	0.1000	-0.0010
##	120	0.7812	nan	0.1000	-0.0014
##	140	0.7702	nan	0.1000	-0.0024
##	160	0.7612	nan	0.1000	-0.0025
##	180	0.7544	nan	0.1000	-0.0044
##		0.7406	nan	0.1000	-0.0016
##	220	0.7298	nan	0.1000	-0.0015
##	240	0.7257	nan	0.1000	-0.0010
##		0.7224	nan	0.1000	-0.0005
##					_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2476	nan	0.1000	0.0208
##		1.2069	nan	0.1000	0.0175
##		1.1613	nan	0.1000	0.0198
##		1.1313 1.1063	nan nan	0.1000 0.1000	0.0161 0.0079
##		1.0810	nan	0.1000	0.0073
##		1.0579	nan	0.1000	0.0069
##		1.0375	nan	0.1000	0.0009
##		1.0199	nan	0.1000	0.0035
##		1.0039	nan	0.1000	0.0033
##		0.8994	nan	0.1000	0.0024
##		0.8100	nan	0.1000	-0.0005
##		0.7599	nan	0.1000	-0.0014
##		0.7244	nan	0.1000	-0.0043
##		0.6937	nan	0.1000	-0.0020
##		0.6677	nan	0.1000	-0.0026
##		0.6464	nan	0.1000	-0.0014
##		0.6256	nan	0.1000	-0.0007

12011				/ lavarioca Date	i wiii iii ig i Tojco
##	180	0.6040	nan	0.1000	-0.0010
##	200	0.5825	nan	0.1000	-0.0006
##	220	0.5614	nan	0.1000	-0.0006
##	240	0.5430	nan	0.1000	-0.0002
##	250	0.5335	nan	0.1000	-0.0018
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2388	nan	0.1000	0.0239
##	2	1.1837	nan	0.1000	0.0239
##	3	1.1372	nan	0.1000	0.0182
##	4	1.1027	nan	0.1000	0.0140
##	5	1.0692	nan	0.1000	0.0094
##	6	1.0419	nan	0.1000	0.0080
##	7	1.0187	nan	0.1000	0.0085
##	8	0.9974	nan	0.1000	0.0054
##	9	0.9826	nan	0.1000	0.0054
##	10	0.9667	nan	0.1000	0.0043
##	20	0.8500	nan	0.1000	0.0018
##	40	0.7575	nan	0.1000	-0.0024
##	60	0.6970	nan	0.1000	-0.0030
##	80	0.6456	nan	0.1000	-0.0015
##	100	0.6067	nan	0.1000	-0.0020
##	120	0.5705	nan	0.1000	-0.0015
##	140	0.5365	nan	0.1000	-0.0020
##	160	0.5101	nan	0.1000	-0.0027
##	180	0.4793	nan	0.1000	-0.0019
##	200	0.4466	nan	0.1000	-0.0023
##	220	0.4254	nan	0.1000	-0.0009
##	240	0.4005	nan	0.1000	-0.0026
##	250	0.3894	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2252	nan	0.1000	0.0313
##	2	1.1709	nan	0.1000	0.0221
##	3	1.1310	nan	0.1000	0.0159
##	4	1.0970	nan	0.1000	0.0098
##	5	1.0628	nan	0.1000	0.0129
##	6	1.0338	nan	0.1000	0.0085
##	7	1.0053	nan	0.1000	0.0107
##	8	0.9858	nan	0.1000	0.0071
##	9	0.9639	nan	0.1000	0.0067
##	10	0.9470	nan	0.1000	0.0022
##	20	0.8283	nan	0.1000	-0.0002
##	40	0.7137	nan	0.1000	-0.0026
##	60	0.6368	nan	0.1000	-0.0043
##	80	0.5788	nan	0.1000	-0.0014
##	100	0.5337	nan	0.1000	-0.0025
##	120	0.4868	nan	0.1000	-0.0024
##	140	0.4511	nan	0.1000	-0.0018
##	160	0.4218	nan	0.1000	-0.0029
##	180	0.3839	nan	0.1000	-0.0011
##	200	0.3556	nan	0.1000	-0.0012
##	220	0.3276	nan	0.1000	-0.0003
##	240	0.3063	nan	0.1000	-0.0009

##	250	0.2950	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2308	nan	0.1000	0.0279
##	2	1.1743	nan	0.1000	0.0233
##	3	1.1242	nan	0.1000	0.0195
##	4	1.0835	nan	0.1000	0.0143
##	5	1.0497	nan	0.1000	0.0107
##	6	1.0198	nan	0.1000	0.0101
##	7	0.9938	nan	0.1000	0.0081
##	8	0.9631	nan	0.1000	0.0122
##	9	0.9413	nan	0.1000	0.0069
##	10	0.9240	nan	0.1000	0.0029
##	20	0.7894	nan	0.1000	-0.0009
##	40	0.6620	nan	0.1000	-0.0004
##	60	0.5772	nan	0.1000	-0.0029
##	80	0.5149	nan	0.1000	-0.0026
##	100	0.4590	nan	0.1000	-0.0027
##	120	0.4091	nan	0.1000	-0.0019
##	140	0.3646	nan	0.1000	-0.0022
##	160	0.3283	nan	0.1000	-0.0014
##	180	0.2999	nan	0.1000	-0.0011
##	200	0.2698	nan	0.1000	-0.0014
##	220	0.2461	nan	0.1000	-0.0008
##	240	0.2225	nan	0.1000	-0.0018
##	250	0.2122	nan	0.1000	-0.0016
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2547	nan	0.1000	0.0171
##	2	1.2212	nan	0.1000	0.0120
##	3	1.1941	nan	0.1000	0.0145
##	4	1.1813	nan	0.1000	0.0019
##					
##	5	1.1555	nan	0.1000	0.0122
	6	1.1385	nan	0.1000	0.0122 0.0072
##	6 7	1.1385 1.1165	nan nan	0.1000 0.1000	0.0122 0.0072 0.0076
## ##	6 7 8	1.1385 1.1165 1.0981	nan nan nan	0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075
## ## ##	6 7 8 9	1.1385 1.1165 1.0981 1.0823	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053
## ## ## ##	6 7 8 9 10	1.1385 1.1165 1.0981 1.0823 1.0643	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064
## ## ## ##	6 7 8 9 10 20	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018
## ## ## ## ##	6 7 8 9 10 20 40	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018
## ## ## ## ## ##	6 7 8 9 10 20 40 60	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016
## ## ## ## ## ##	6 7 8 9 10 20 40 60 80	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015
## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001
## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017
## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019
## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005
## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006
## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 120 140 160 180 200	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011
## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347 0.7272	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011 -0.0006
## ## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347 0.7272 0.7231	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011 -0.0006 -0.0010
## ## ## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347 0.7272	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011 -0.0006
## ## ## ## ## ## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 120 140 160 180 200 220 240 250	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347 0.7272 0.7231 0.7143 0.7094	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0016 -0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011 -0.0006 -0.0010 -0.0007
## ## ## ## ## ## ## ## ## ##	6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.1385 1.1165 1.0981 1.0823 1.0643 0.9640 0.8802 0.8329 0.8091 0.7883 0.7715 0.7588 0.7467 0.7347 0.7272 0.7231	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0122 0.0072 0.0076 0.0075 0.0053 0.0064 0.0018 0.0015 0.0001 -0.0017 -0.0018 -0.0019 -0.0005 -0.0006 -0.0011 -0.0006 -0.0010

				a willing i rojec
2	1.1994	nan	0.1000	0.0187
3	1.1678	nan	0.1000	0.0122
4	1.1341	nan	0.1000	0.0140
5	1.1023	nan	0.1000	0.0139
6	1.0795	nan	0.1000	0.0093
. 7	1.0556	nan	0.1000	0.0108
8	1.0371	nan	0.1000	0.0075
9	1.0167	nan	0.1000	0.0066
10	1.0022	nan	0.1000	0.0039
20	0.8965	nan	0.1000	-0.0017
40	0.7983	nan	0.1000	-0.0007
60	0.7448	nan	0.1000	-0.0014
80	0.7088	nan	0.1000	-0.0007
100	0.6758	nan	0.1000	-0.0005
120	0.6506	nan	0.1000	-0.0028
140	0.6222	nan	0.1000	-0.0015
160	0.5994	nan	0.1000	-0.0014
180	0.5803	nan	0.1000	-0.0009
200	0.5569	nan	0.1000	-0.0046
220	0.5382	nan	0.1000	-0.0013
240	0.5169	nan	0.1000	-0.0020
250	0.5074	nan	0.1000	-0.0014
:				
Iter	TrainDeviance	ValidDeviance	StepSize	Improve
1	1.2355	nan	0.1000	0.0233
2	1.1925	nan	0.1000	0.0179
3	1.1538	nan	0.1000	0.0157
4	1.1110	nan	0.1000	0.0175
5	1.0774	nan	0.1000	0.0153
6	1.0488	nan	0.1000	0.0101
7	1.0260	nan	0.1000	0.0074
_	4 0030		0 1000	0 0000
8	1.0030	nan	0.1000	0.0086
9	0.9828	nan nan	0.1000	0.0073
9	0.9828 0.9685 0.8497	nan	0.1000	0.0073
9 10	0.9828 0.9685	nan nan	0.1000 0.1000	0.0073 0.0013
9 10 20	0.9828 0.9685 0.8497	nan nan nan	0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022
9 10 20 40 60 80	0.9828 0.9685 0.8497 0.7536	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010
9 10 20 40 60 80 100	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012
9 10 20 40 60 80 100 120	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021
9 10 20 40 60 80 100 120 140	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0026
9 10 20 40 60 80 100 120 140	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0025
9 10 20 40 60 80 100 120 140 160 180	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0025 -0.0018
9 10 20 40 60 80 100 120 140 160 180 200	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332	nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0026 -0.0025 -0.0018 -0.0014
9 10 20 40 60 80 100 120 140 160 180 200	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012
9 10 20 40 60 80 100 120 140 160 180 200 220 240	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0012
9 10 20 40 60 80 100 120 140 160 180 200 240 250	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0012 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012
9 10 20 40 60 80 100 120 140 160 180 200 220 240 250	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0021 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0012 -0.0020
9 10 20 40 60 80 100 120 140 60 80 200 220 240 250	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0021 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0012 -0.0020
9 10 20 40 60 80 100 120 140 160 180 200 220 240 250 Iter	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781 TrainDeviance 1.2268	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0020 Improve 0.0287
9 10 20 40 60 80 100 120 140 160 200 220 240 250 11ter 1	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781 TrainDeviance 1.2268 1.1718	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0020 Improve 0.0287 0.0193
9 10 20 40 60 80 100 120 140 160 220 240 250 11ter 1 2 3	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781 TrainDeviance 1.2268 1.1718 1.1260	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0021 -0.0021 -0.0025 -0.0018 -0.0012 -0.0012 -0.0012 -0.0020 Improve 0.0287 0.0193 0.0165
9 10 20 40 60 80 100 120 140 160 200 220 240 250 11ter 1	0.9828 0.9685 0.8497 0.7536 0.6828 0.6348 0.5885 0.5562 0.5204 0.4885 0.4580 0.4332 0.4109 0.3882 0.3781 TrainDeviance 1.2268 1.1718	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0073 0.0013 -0.0022 -0.0010 -0.0026 -0.0020 -0.0021 -0.0025 -0.0018 -0.0014 -0.0012 -0.0020 Improve 0.0287 0.0193
	3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 61 180 220 240 250 61 17 180 180 180 180 180 180 180 180 180 180	3 1.1678 4 1.1341 5 1.1023 6 1.0795 7 1.0556 8 1.0371 9 1.0167 10 1.0022 20 0.8965 40 0.7983 60 0.7448 80 0.7088 100 0.6758 120 0.6506 140 0.6222 160 0.5994 180 0.5803 200 0.5569 220 0.5382 240 0.5169 250 0.5074 Elter TrainDeviance 1 1.2355 2 1.1925 3 1.1538 4 1.1110 5 1.0774 6 1.0488 7 1.0260	1.1678 nan	1.1678

,2017				/ lavarioca Dai	a mining i rojec
##	6	1.0226	nan	0.1000	0.0056
##	7	0.9916	nan	0.1000	0.0113
##	8	0.9644	nan	0.1000	0.0071
##	9	0.9452	nan	0.1000	0.0006
##	10	0.9290	nan	0.1000	-0.0002
##	20	0.8069	nan	0.1000	-0.0014
##	40	0.6904	nan	0.1000	-0.0015
##	60	0.6216	nan	0.1000	-0.0037
##	80	0.5553	nan	0.1000	-0.0020
##	100	0.5004	nan	0.1000	-0.0025
##	120	0.4531	nan	0.1000	-0.0004
##	140	0.4174	nan	0.1000	-0.0016
##	160	0.3818	nan	0.1000	-0.0008
##	180	0.3464	nan	0.1000	-0.0016
##	200	0.3170	nan	0.1000	-0.0021
##	220	0.2880	nan	0.1000	-0.0013
##	240	0.2688	nan	0.1000	-0.0014
##	250	0.2605	nan	0.1000	-0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2245	nan	0.1000	0.0302
##	2	1.1611	nan	0.1000	0.0256
##	3	1.1145	nan	0.1000	0.0193
##	4	1.0781	nan	0.1000	0.0110
##	5	1.0437	nan	0.1000	0.0125
##	6	1.0079	nan	0.1000	0.0145
##	7	0.9807	nan	0.1000	0.0073
##	8	0.9566	nan	0.1000	0.0074
##	9	0.9308	nan	0.1000	0.0097
##	10	0.9134	nan	0.1000	0.0043
##	20	0.7643	nan	0.1000	0.0008
##	40	0.6415	nan	0.1000	-0.0032
##	60	0.5433	nan	0.1000	-0.0012
##	80	0.4798	nan	0.1000	-0.0035
##	100	0.4171	nan	0.1000	-0.0011
##	120	0.3758	nan	0.1000	-0.0009
##		0.3325	nan	0.1000	-0.0014
##		0.2944	nan	0.1000	-0.0014
##		0.2627	nan	0.1000	-0.0019
##		0.2367	nan	0.1000	-0.0017
##		0.2156	nan	0.1000	-0.0011
##		0.1966	nan	0.1000	-0.0010
##	250	0.1879	nan	0.1000	-0.0008
##					
##		TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2577	nan	0.1000	0.0155
##		1.2234	nan	0.1000	0.0142
##		1.1954	nan	0.1000	0.0101
##		1.1725	nan	0.1000	0.0095
##		1.1530	nan	0.1000	0.0070
##		1.1325	nan	0.1000	0.0073
##		1.1162	nan	0.1000	0.0056
##		1.0999	nan	0.1000	0.0053
##	9	1.0829	nan	0.1000	0.0053

<i>"</i> 2 0 1 <i>1</i>				/ lavarioca Dati	a willing i rojec
##	10	1.0713	nan	0.1000	0.0050
##	20	0.9861	nan	0.1000	0.0012
##	40	0.9098	nan	0.1000	-0.0008
##	60	0.8702	nan	0.1000	-0.0008
##	80	0.8426	nan	0.1000	-0.0003
##	100	0.8172	nan	0.1000	-0.0023
##	120	0.7993	nan	0.1000	-0.0012
##	140	0.7876	nan	0.1000	-0.0025
##	160	0.7776	nan	0.1000	-0.0006
##	180	0.7698	nan	0.1000	-0.0006
##	200	0.7613	nan	0.1000	-0.0010
##	220	0.7514	nan	0.1000	-0.0012
##	240	0.7400	nan	0.1000	-0.0008
##	250	0.7348	nan	0.1000	-0.0006
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2501	nan	0.1000	0.0213
##	2	1.2070	nan	0.1000	0.0178
##	3	1.1740	nan	0.1000	0.0175
##	4	1.1460	nan	0.1000	0.0095
##	5	1.1226	nan	0.1000	0.0059
##	6	1.0948	nan	0.1000	0.0108
##	7	1.0708	nan	0.1000	0.0100
##	8	1.0514	nan	0.1000	0.0069
##	9	1.0385	nan	0.1000	0.0020
##	10	1.0248	nan	0.1000	-0.0004
##	20	0.9180	nan	0.1000	0.0011
##	40	0.8245	nan	0.1000	-0.0008
##	60	0.7719	nan	0.1000	0.0012
##	80	0.7338	nan	0.1000	-0.0028
##	100	0.7041	nan	0.1000	-0.0017
##	120	0.6807	nan	0.1000	-0.0011
##	140	0.6540	nan	0.1000	-0.0028
##	160	0.6367	nan	0.1000	-0.0014
##	180	0.6131	nan	0.1000	-0.0010
##	200	0.5885	nan	0.1000	-0.0013
##	220	0.5693	nan	0.1000	-0.0010
##	240	0.5545	nan	0.1000	-0.0018
##	250	0.5441	nan	0.1000	-0.0018
##				·	_
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2407	nan	0.1000	0.0180
##	2	1.1929	nan	0.1000	0.0172
##	3	1.1534	nan	0.1000	0.0155
##	4	1.1193	nan	0.1000	0.0149
##	5	1.0830	nan	0.1000	0.0145
##	6	1.0606	nan	0.1000	0.0074
##	7	1.0364	nan	0.1000	0.0090
##	8	1.0155	nan	0.1000	0.0053
##	9	0.9949	nan	0.1000	0.0067
##	10	0.9762	nan	0.1000	0.0026
##	20	0.8757	nan	0.1000	0.0003
##	40	0.7693	nan	0.1000	-0.0001
##	60	0.7040	nan	0.1000	-0.0028

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				/ lavarioca Ball	a willing i rojco
##	80	0.6661	nan	0.1000	-0.0034
##	100	0.6199	nan	0.1000	-0.0029
##		0.5828	nan	0.1000	-0.0009
##	140	0.5500	nan	0.1000	-0.0016
##		0.5205	nan	0.1000	-0.0030
##	180	0.4923	nan	0.1000	-0.0013
##	200	0.4682	nan	0.1000	-0.0019
##	220	0.4416	nan	0.1000	-0.0009
##	240	0.4165	nan	0.1000	-0.0012
##	250	0.4023	nan	0.1000	-0.0011
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2366	nan	0.1000	0.0261
##	2	1.1861	nan	0.1000	0.0231
##	3	1.1426	nan	0.1000	0.0211
##	4	1.1024	nan	0.1000	0.0175
##	5	1.0722	nan	0.1000	0.0090
##	6	1.0416	nan	0.1000	0.0107
##	7	1.0166	nan	0.1000	0.0067
##	8	0.9947	nan	0.1000	0.0073
##	9	0.9705	nan	0.1000	0.0095
##	10	0.9481	nan	0.1000	0.0073
##	20	0.8226	nan	0.1000	0.0007
##	40	0.7116	nan	0.1000	-0.0002
##	60	0.6393	nan	0.1000	-0.0028
##	80	0.5717	nan	0.1000	-0.0024
##	100	0.5205	nan	0.1000	-0.0009
##	120	0.4749	nan	0.1000	-0.0032
##	140	0.4418	nan	0.1000	-0.0010
##	160	0.4071	nan	0.1000	-0.0018
##	180	0.3744	nan	0.1000	-0.0007
##	200	0.3459	nan	0.1000	-0.0025
##	220	0.3217	nan	0.1000	-0.0014
##		0.2962	nan	0.1000	-0.0015
##	250	0.2857	nan	0.1000	-0.0017
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2339	nan	0.1000	0.0231
##		1.1763	nan	0.1000	0.0192
##		1.1280	nan	0.1000	0.0183
##		1.0920	nan	0.1000	0.0122
##		1.0541	nan	0.1000	0.0163
##		1.0248	nan	0.1000	0.0124
##		0.9961	nan	0.1000	0.0061
##		0.9710	nan	0.1000	0.0066
##		0.9485	nan	0.1000	0.0061
##		0.9270	nan	0.1000	0.0058
##		0.7824	nan	0.1000	-0.0015
##		0.6552	nan	0.1000	-0.0017 -0.0023
##		0.5746 0.5013	nan	0.1000 0.1000	-0.0023 -0.0009
##		0.4415	nan nan	0.1000	-0.0009
##		0.3957	nan	0.1000	-0.0012
##		0.3541	nan	0.1000	-0.0018
1177	740	0.3341	Hall	0.1000	0.0010

2011				/ lavarioca Ball	a willing i rojeo
##	160	0.3206	nan	0.1000	-0.0013
##	180	0.2868	nan	0.1000	-0.0011
##	200	0.2614	nan	0.1000	-0.0007
##	220	0.2376	nan	0.1000	-0.0014
##	240	0.2167	nan	0.1000	-0.0013
##	250	0.2059	nan	0.1000	-0.0007
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2537	nan	0.1000	0.0176
##	2	1.2189	nan	0.1000	0.0162
##	3	1.1901	nan	0.1000	0.0132
##	4	1.1646	nan	0.1000	0.0093
##	5	1.1419	nan	0.1000	0.0076
##	6	1.1225	nan	0.1000	0.0057
##	7	1.1046	nan	0.1000	0.0081
##	8	1.0879	nan	0.1000	0.0053
##	9	1.0691	nan	0.1000	0.0077
##	10	1.0530	nan	0.1000	0.0056
##	20	0.9570	nan	0.1000	0.0009
##	40	0.8660	nan	0.1000	0.0005
##	60	0.8198	nan	0.1000	-0.0006
##	80	0.7949	nan	0.1000	-0.0015
##	100	0.7737	nan	0.1000	-0.0003
##	120	0.7636	nan	0.1000	-0.0013
##	140	0.7539	nan	0.1000	-0.0010
##	160	0.7422	nan	0.1000	-0.0012
##	180	0.7317	nan	0.1000	-0.0009
##	200	0.7273	nan	0.1000	-0.0008
##	220	0.7181	nan	0.1000	-0.0016
##	240	0.7130	nan	0.1000	-0.0013
##	250	0.7096	nan	0.1000	-0.0028
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2471	nan	0.1000	0.0237
##	2	1.2084	nan	0.1000	0.0180
##	3	1.1682	nan	0.1000	0.0152
##	4	1.1329	nan	0.1000	0.0155
##	5	1.1021	nan	0.1000	0.0122
##	6	1.0747	nan	0.1000	0.0079
##	7	1.0537	nan	0.1000	0.0066
##	8	1.0341	nan	0.1000	0.0084
##	9	1.0137	nan	0.1000	0.0086
##	10	0.9943	nan	0.1000	0.0075
##	20	0.8836	nan	0.1000	0.0020
##	40	0.7949	nan	0.1000	-0.0022
##	60	0.7445	nan	0.1000	-0.0009
##	80	0.7084	nan	0.1000	-0.0020
##	100	0.6797	nan	0.1000	-0.0009
##	120	0.6572	nan	0.1000	-0.0028
##	140	0.6279	nan	0.1000	-0.0020
##	160	0.6101	nan	0.1000	-0.0011
##	180	0.5849	nan	0.1000	-0.0022
##	200	0.5652	nan	0.1000	-0.0015
##	220	0.5467	nan	0.1000	-0.0020

_	2017				/ lavarioca Bala	i wiii iii ig i Tojco
	##	240	0.5287	nan	0.1000	-0.0003
	##	250	0.5214	nan	0.1000	-0.0005
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2361	nan	0.1000	0.0263
	##	2	1.1842	nan	0.1000	0.0222
	##	3	1.1424	nan	0.1000	0.0161
	##	4	1.1015	nan	0.1000	0.0134
	##	5	1.0671	nan	0.1000	0.0131
	##	6	1.0410	nan	0.1000	0.0110
	##	7	1.0163	nan	0.1000	0.0069
	##	8	0.9964	nan	0.1000	0.0067
	##	9	0.9806	nan	0.1000	0.0041
	##	10	0.9573	nan	0.1000	0.0070
	##	20	0.8386	nan	0.1000	-0.0007
	##	40	0.7326	nan	0.1000	-0.0021
	##	60	0.6759	nan	0.1000	-0.0044
	##	80	0.6271	nan	0.1000	-0.0031
	##	100	0.5856	nan	0.1000	-0.0028
	##	120	0.5496	nan	0.1000	-0.0029
	##	140	0.5163	nan	0.1000	-0.0014
	##	160	0.4880	nan	0.1000	-0.0016
	##	180	0.4567	nan	0.1000	-0.0012
	##	200	0.4246	nan	0.1000	-0.0012
	##	220	0.3982	nan	0.1000	-0.0004
	##	240	0.3777	nan	0.1000	-0.0012
	##	250	0.3682	nan	0.1000	-0.0012
	##	230	0.3002	nan	0.1000	0.0007
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2341	nan	0.1000	0.0308
	##	2	1.1858	nan	0.1000	0.0223
	##	3	1.1308	nan	0.1000	0.0242
	##	4	1.0936	nan	0.1000	0.0150
	##	5	1.0612	nan	0.1000	0.0104
	##	6	1.0296	nan	0.1000	0.0066
	##	7	1.0022	nan	0.1000	0.0092
	##	8	0.9773	nan	0.1000	0.0076
	##	9	0.9553	nan	0.1000	0.0049
	##	10	0.9381	nan	0.1000	0.0052
	##	20	0.8122	nan	0.1000	-0.0013
	##	40	0.6934	nan	0.1000	-0.0031
	##	60	0.6342	nan	0.1000	-0.0033
	##	80	0.5685	nan	0.1000	-0.0055
	##	100	0.5174	nan	0.1000	-0.0020
	##	120	0.4722	nan	0.1000	-0.0025
	##	140	0.4315	nan	0.1000	-0.0037
	##	160	0.3943	nan	0.1000	-0.0017
	##	180	0.3638	nan	0.1000	-0.0016
	##	200	0.3320	nan	0.1000	-0.0002
	##	220	0.3087	nan	0.1000	-0.0017
	##	240	0.2825	nan	0.1000	-0.0009
	##	250	0.2731	nan	0.1000	-0.0010
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve

_	2017				/ lavarioca Da	ta iviii iii g i Tojo
	##	1	1.2242	nan	0.1000	0.0306
	##	2	1.1616	nan	0.1000	0.0276
	##	3	1.1128	nan	0.1000	0.0201
	##	4	1.0728	nan	0.1000	0.0140
	##	5	1.0343	nan	0.1000	0.0135
	##	6	1.0000	nan	0.1000	0.0096
	##	7	0.9730	nan	0.1000	0.0068
	##	8	0.9501	nan	0.1000	0.0065
	##	9	0.9278	nan	0.1000	0.0063
	##	10	0.9059	nan	0.1000	0.0036
	##	20	0.7673	nan	0.1000	0.0011
	##	40	0.6325	nan	0.1000	-0.0011
	##	60	0.5448	nan	0.1000	-0.0038
	##	80	0.4810	nan	0.1000	-0.0014
	##	100	0.4219	nan	0.1000	-0.0015
	##	120	0.3770	nan	0.1000	-0.0018
	##	140	0.3394	nan	0.1000	-0.0017
	##	160	0.3024	nan	0.1000	-0.0004
	##	180	0.2734	nan	0.1000	-0.0004
	##	200	0.2475	nan	0.1000	-0.0008
	##	220	0.2267	nan	0.1000	-0.0010
	##	240	0.2051	nan	0.1000	-0.0009
	##	250	0.1972	nan	0.1000	-0.0012
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2582	nan	0.1000	0.0137
	##	2	1.2349	nan	0.1000	0.0111
	##	3	1.2103	nan	0.1000	0.0109
	##	4	1.1848	nan	0.1000	0.0118
	##	5	1.1682	nan	0.1000	0.0079
	##	6	1.1493	nan	0.1000	0.0091
	##	7	1.1325	nan	0.1000	0.0068
	##	8	1.1156	nan	0.1000	0.0066
	##	9	1.1013	nan	0.1000	0.0064
	##	10	1.0870	nan	0.1000	0.0072
	##	20	0.9884	nan	0.1000	0.0025
	##	40	0.8916	nan	0.1000	0.0010
	##	60	0.8472	nan	0.1000	-0.0021
	##	80	0.8202	nan	0.1000	-0.0011
	##	100	0.7955	nan	0.1000	-0.0010
	##	120	0.7743	nan	0.1000	-0.0004
	##	140	0.7568	nan	0.1000	-0.0004
	##	160	0.7458	nan	0.1000	-0.0019
	##	180	0.7353	nan	0.1000	-0.0009
	##	200	0.7253	nan	0.1000	-0.0007
	##	220	0.7177	nan	0.1000	-0.0024
	##	240	0.7065	nan	0.1000	-0.0018
	##	250	0.7012	nan	0.1000	0.0003
	##					
	##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	##	1	1.2524	nan	0.1000	0.0189
	##	2	1.2149	nan	0.1000	0.0172
	##	3	1.1823	nan	0.1000	0.0131
	##	4	1.1514	nan	0.1000	0.0135

			Auvanceu Dai	a Milling-Projec
5	1.1305	nan	0.1000	0.0059
6	1.1040	nan	0.1000	0.0126
7	1.0828	nan	0.1000	0.0083
8	1.0627	nan	0.1000	0.0076
9	1.0389	nan	0.1000	0.0106
10	1.0226	nan	0.1000	0.0069
20	0.9065	nan	0.1000	0.0003
40	0.8019	nan	0.1000	-0.0008
60	0.7566	nan	0.1000	-0.0024
80	0.7115	nan	0.1000	0.0002
100	0.6831	nan	0.1000	-0.0006
120	0.6535	nan	0.1000	-0.0008
140	0.6287	nan	0.1000	-0.0022
160	0.6035	nan	0.1000	-0.0014
180	0.5828	nan	0.1000	-0.0027
200	0.5622	nan	0.1000	-0.0012
220	0.5428	nan	0.1000	-0.0007
240	0.5228	nan	0.1000	-0.0012
250	0.5128	nan	0.1000	-0.0012
Iter	TrainDeviance	ValidDeviance	StepSize	Improve
1	1.2405	nan	0.1000	0.0245
2	1.1934	nan	0.1000	0.0169
3	1.1540	nan	0.1000	0.0166
4	1.1180	nan	0.1000	0.0163
5	1.0866	nan	0.1000	0.0123
6	1.0607	nan	0.1000	0.0088
7	1.0385	nan	0.1000	0.0056
8	1.0148	nan	0.1000	0.0079
9	0.9932	nan	0.1000	0.0078
10	0.9769	nan	0.1000	0.0033
20	0.8515	nan	0.1000	0.0018
40	0.7377	nan	0.1000	-0.0013
60	0.6715	nan	0.1000	-0.0008
		nan		-0.0021
		nan		-0.0024
		nan		-0.0010
				-0.0026
				-0.0011
				-0.0015
				-0.0022
				-0.0027
				-0.0021
	0.3652	nan	0.1000	-0.0017
	Tuelabania	V-1: dD:	C+ C i	T
			•	Improve
				0.0224
				0.0208
				0.0222
				0.0181
				0.0071
				0.0093
,	I ININE IX		IA TIAIAIA	N NING A
7 8	1.0050 0.9848	nan nan	0.1000 0.1000	0.0098 0.0077
	6 7 8 9 10 20 40 160 180 200 240 250 Tter 1 2 3 3 4 5 6 6 Tr 1 2 3 3 4 5 5 6 Tr 1 1 2 5 5 6 Tr 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1040 7 1.0828 8 1.0627 9 1.0389 10 1.0226 20 0.9065 40 0.8019 60 0.7566 80 0.7115 100 0.6831 120 0.6535 140 0.6287 160 0.6035 180 0.5828 240 0.5228 250 0.5128 240 0.5128 240 0.5128 250 0.5128 240 0.5128 250 0.5128 240 0.5128 250 250	6 1.1040 nan 7 1.0828 nan 8 1.0627 nan 9 1.0389 nan 10 1.0226 nan 20 0.9065 nan 40 0.8019 nan 60 0.7566 nan 80 0.7115 nan 100 0.6831 nan 120 0.6535 nan 140 0.6287 nan 160 0.6035 nan 180 0.5828 nan 200 0.5622 nan 240 0.5228 nan 220 0.5428 nan 240 0.5228 nan 250 0.5128 nan 240 0.5228 nan 250 0.5128 nan 26 1.1934 nan 27 1.0385 nan 28 1.0607 nan <td< th=""><th>5 1.1305 nan 0.1000 6 1.1040 nan 0.1000 7 1.0828 nan 0.1000 8 1.0627 nan 0.1000 9 1.0339 nan 0.1000 10 1.0226 nan 0.1000 40 0.8019 nan 0.1000 40 0.8019 nan 0.1000 60 0.7566 nan 0.1000 80 0.7115 nan 0.1000 100 0.6831 nan 0.1000 140 0.6287 nan 0.1000 140 0.6287 nan 0.1000 180 0.5228 nan 0.1000 180 0.5228 nan 0.1000 200 0.5428 nan 0.1000 240 0.5228 nan 0.1000 250 0.5128 nan 0.1000 3 1.1540 nan 0.1000</th></td<>	5 1.1305 nan 0.1000 6 1.1040 nan 0.1000 7 1.0828 nan 0.1000 8 1.0627 nan 0.1000 9 1.0339 nan 0.1000 10 1.0226 nan 0.1000 40 0.8019 nan 0.1000 40 0.8019 nan 0.1000 60 0.7566 nan 0.1000 80 0.7115 nan 0.1000 100 0.6831 nan 0.1000 140 0.6287 nan 0.1000 140 0.6287 nan 0.1000 180 0.5228 nan 0.1000 180 0.5228 nan 0.1000 200 0.5428 nan 0.1000 240 0.5228 nan 0.1000 250 0.5128 nan 0.1000 3 1.1540 nan 0.1000

12011				/ lavarioca Bat	a mining i rojec
##	9	0.9660	nan	0.1000	0.0041
##	10	0.9465	nan	0.1000	0.0029
##	20	0.8228	nan	0.1000	0.0008
##	40	0.7013	nan	0.1000	-0.0031
##	60	0.6209	nan	0.1000	-0.0045
##	80	0.5500	nan	0.1000	-0.0020
##	100	0.4977	nan	0.1000	-0.0008
##	120	0.4580	nan	0.1000	-0.0021
##	140	0.4135	nan	0.1000	-0.0009
##	160	0.3823	nan	0.1000	-0.0016
##	180	0.3464	nan	0.1000	-0.0016
##	200	0.3230	nan	0.1000	-0.0019
##	220	0.3005	nan	0.1000	-0.0012
##	240	0.2787	nan	0.1000	-0.0023
##	250	0.2685	nan	0.1000	-0.0010
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2259	nan	0.1000	0.0237
##	2	1.1778	nan	0.1000	0.0180
##	3	1.1276	nan	0.1000	0.0209
##	4	1.0911	nan	0.1000	0.0136
##	5	1.0570	nan	0.1000	0.0085
##	6	1.0261	nan	0.1000	0.0097
##	7	0.9961	nan	0.1000	0.0121
##	8	0.9745	nan	0.1000	0.0060
##	9	0.9491	nan	0.1000	0.0079
##	10	0.9269	nan	0.1000	0.0064
##	20	0.7840	nan	0.1000	-0.0034
##	40	0.6489	nan	0.1000	-0.0017
##	60	0.5676	nan	0.1000	-0.0010
##	80	0.4987	nan	0.1000	-0.0021
##	100	0.4424	nan	0.1000	-0.0015
##	120	0.3955	nan	0.1000	-0.0030
##	140	0.3524	nan	0.1000	-0.0019
##	160	0.3160	nan	0.1000	-0.0027
##	180	0.2827	nan	0.1000	-0.0017
##	200	0.2591	nan	0.1000	-0.0015
##	220	0.2336	nan	0.1000	-0.0011
##	240	0.2114	nan	0.1000	-0.0003
##	250	0.2031	nan	0.1000	-0.0015
##					
	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2540	nan	0.1000	0.0165
##	2	1.2293	nan	0.1000	0.0113
##	3	1.2023	nan	0.1000	0.0131
##	4	1.1746	nan	0.1000	0.0117
##	5	1.1546	nan	0.1000	0.0064
##	6	1.1337	nan	0.1000	0.0088
##	7	1.1183	nan	0.1000	0.0068
##	8	1.1029	nan	0.1000	0.0069
##	9	1.0910	nan	0.1000	0.0035
##	10	1.0774	nan	0.1000	0.0054
##	20	0.9755	nan	0.1000	0.0025
##	40	0.8921	nan	0.1000	-0.0006

##	60	0.8508	nan	0.1000	0.0001
##	80	0.8244	nan	0.1000	-0.0005
##	100	0.8067	nan	0.1000	-0.0026

```
boost.total.time = proc.time() - boost.start.time
boost.total.time[3]
```

```
## elapsed
## 25.33
```

gbmFit

```
## Stochastic Gradient Boosting
##
## 538 samples
##
     8 predictor
##
     2 classes: 'N', 'Y'
##
## Pre-processing: centered (8), scaled (8)
  Resampling: Cross-Validated (10 fold, repeated 5 times)
   Summary of sample sizes: 484, 484, 484, 484, 484, 484, ...
   Resampling results across tuning parameters:
##
##
##
     interaction.depth
                        n.trees
                                 ROC
                                             Sens
                                                                   ROC SD
                                                        Spec
##
                         50
                                            0.8811429
                                                        0.5514620
     1
                                 0.8368705
                                                                   0.05146112
                        100
##
     1
                                 0.8429173
                                            0.8731429
                                                        0.5774269
                                                                   0.04953678
##
     1
                        150
                                 0.8413952
                                            0.8588571
                                                       0.5698830
                                                                   0.05002629
                        200
##
     1
                                 0.8376040
                                            0.8571429
                                                        0.5761404 0.05213550
##
     1
                        250
                                            0.8520000
                                                        0.5749123
                                 0.8354520
                                                                   0.05298436
##
     2
                         50
                                 0.8412865
                                            0.8691429
                                                        0.5761988
                                                                   0.04906393
     2
##
                        100
                                 0.8395188
                                            0.8462857
                                                        0.5881287
                                                                   0.05152655
     2
##
                        150
                                 0.8333868
                                            0.8382857
                                                        0.5932164
                                                                   0.05377491
##
     2
                        200
                                 0.8291546
                                            0.8308571
                                                       0.5847953
                                                                   0.05243689
     2
                        250
##
                                 0.8263141
                                            0.8285714
                                                       0.5912865
                                                                   0.05571766
##
     3
                         50
                                            0.8588571 0.5943860
                                 0.8413935
                                                                   0.04953792
     3
##
                        100
                                 0.8348755
                                            0.8405714
                                                       0.5965497
                                                                   0.05253429
##
     3
                        150
                                 0.8275873
                                            0.8348571
                                                        0.5880117
                                                                   0.05418476
##
     3
                        200
                                 0.8235038
                                            0.8234286
                                                        0.5955556
                                                                   0.05381470
     3
##
                        250
                                 0.8229056
                                            0.8257143
                                                        0.5971930
                                                                   0.05527243
##
     4
                         50
                                 0.8401086
                                            0.8520000
                                                        0.5961404
                                                                   0.05369524
##
     4
                        100
                                 0.8283392
                                            0.8291429
                                                        0.5950292
                                                                   0.05072324
##
     4
                        150
                                 0.8222473
                                            0.8291429
                                                        0.5995322
                                                                   0.05515090
##
     4
                        200
                                 0.8174787
                                            0.8240000
                                                        0.5983041
                                                                   0.05993844
##
     4
                        250
                                 0.8166032
                                            0.8245714
                                                        0.5856725
                                                                   0.05785680
##
     5
                         50
                                 0.8389140
                                            0.8457143
                                                        0.5994737
                                                                   0.04722114
     5
##
                        100
                                 0.8291078
                                            0.8342857
                                                        0.5972515
                                                                   0.05290687
     5
##
                        150
                                 0.8211997
                                            0.8308571
                                                        0.5865497
                                                                   0.05755287
##
     5
                        200
                                 0.8184595
                                            0.8251429
                                                        0.6005263
                                                                   0.05585512
##
     5
                        250
                                            0.8245714 0.5961988
                                 0.8166316
                                                                   0.05696081
##
     Sens SD
                 Spec SD
##
     0.04910189
                 0.11888702
##
     0.04695120
                0.11378961
##
     0.05240092
                 0.10536629
##
     0.05227040
                0.10817820
##
     0.05675965
                0.10717504
##
     0.05068132 0.11566356
##
     0.05442211 0.11186859
##
     0.06015667 0.10866209
##
     0.05316787 0.11239607
##
     0.05714286 0.10692305
##
     0.05898206 0.10821058
##
     0.05860804 0.10801603
##
     0.06330874
                 0.11383715
##
     0.05849422
                 0.11579327
##
     0.06460078 0.10359157
```

```
##
     0.05820872 0.10933123
##
     0.06149329 0.10047186
##
     0.06517589 0.10253584
     0.06765175 0.11633964
##
##
     0.06505308 0.11254384
     0.05536596 0.10430317
##
##
     0.06190102 0.10244536
##
     0.06345331 0.09987223
##
     0.06126257 0.10512863
##
     0.06054315 0.10135711
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 100,
   interaction.depth = 1, shrinkage = 0.1 and n.minobsinnode = 10.
```

plot(gbmFit)


```
gbmClass=predict(gbmFit, newdata=testing)
gbmProbs <- predict(gbmFit, newdata = testing, type = "prob")
head(gbmProbs)</pre>
```

```
## N Y

## 1 0.9035570 0.09644298

## 2 0.2232907 0.77670931

## 3 0.9735764 0.02642360

## 4 0.9049295 0.09507054

## 5 0.4498817 0.55011832

## 6 0.1372012 0.86279880
```

```
histogram(~gbmProbs$N|testing$Class, xlab = "Probability of Diabetes")
```



```
g.c = confusionMatrix(data = gbmClass, testing$Class)
g.Accuracy = g.c$overall[1]
g.kappa = g.c$overall[2]

#plot ROC
gbmROC <- roc(testing$Class, gbmProbs[, 1], levels(testing$Class))
gbmROC$auc</pre>
```

```
## Area under the curve: 0.8179
```

```
plot(gbmROC, type = "S", print.thres = .5, col='green')
```


3. SVM method

```
set.seed(1)

v.start.time = proc.time()
svmFit = train(Class~., data = training, method = "svmRadial", tuneLength = 5, trControl = fitCo
ntrol.2, metric = "ROC", preProc = c("center", "scale"))
```

```
## Loading required package: kernlab
```

```
##
## Attaching package: 'kernlab'
```

```
## The following object is masked from 'package:ggplot2':
##
## alpha
```

```
v.tatol.time = proc.time() - v.start.time
v.tatol.time[3]
```

```
## elapsed
## 23.25
```

svmFit

```
## Support Vector Machines with Radial Basis Function Kernel
##
## 538 samples
    8 predictor
##
    2 classes: 'N', 'Y'
##
##
## Pre-processing: centered (8), scaled (8)
## Resampling: Cross-Validated (10 fold, repeated 5 times)
## Summary of sample sizes: 484, 484, 484, 484, 484, 484, ...
  Resampling results across tuning parameters:
##
                                                       Sens SD
##
    C
          ROC
                     Sens
                                Spec
                                           ROC SD
##
    0.25 0.8432899 0.8651429
                                0.6122807 0.04780006 0.05228315
    0.50 0.8454871 0.8685714 0.5994152 0.04742318 0.05195070
##
##
    1.00 0.8438713 0.8634286 0.5856140 0.04803088 0.05693548
    2.00 0.8417577
##
                     0.8600000 0.5602339 0.04984967 0.05949951
    4.00 0.8382640 0.8640000 0.5434503 0.05219393 0.04779520
##
##
    Spec SD
##
    0.09560746
##
    0.09327028
##
    0.09151596
##
    0.09630208
##
    0.10560078
##
## Tuning parameter 'sigma' was held constant at a value of 0.1126622
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.1126622 and C = 0.5.
```

```
plot(svmFit)
```


svmClass=predict(svmFit, newdata=testing) #predication on test data
svmClass

svmProbs <- predict(svmFit, newdata = testing, type = "prob") #cal probablity
head(svmProbs)</pre>

```
## N Y

## 1 0.9184620 0.08153798

## 2 0.1350432 0.86495681

## 3 0.9424451 0.05755494

## 4 0.8227374 0.17726260

## 5 0.2400533 0.75994669

## 6 0.1573596 0.84264041
```

histogram(~svmProbs\$N|testing\$Class, xlab = "Probability of Diabetes")


```
#calculate confustionMatix
s.c = confusionMatrix(data = svmClass, testing$Class)
s.Accuracy = s.c$overall[1]
s.kappa = s.c$overall[2]

#plot ROC
svmROC <- roc(testing$Class, svmProbs[, 1], levels(testing$Class))
svmROC$auc</pre>
```

```
## Area under the curve: 0.7968
```

```
plot(svmROC, type = "S", print.thres = .5, col='green')
```


4. Neuralnet

```
set.seed(1)
n.start.time = proc.time()
nnetFit = train(Class~., data = training, method = "nnet", tuneLength = 5, trControl = fitContro
1.2, metric = "ROC", preProc = c("center", "scale"))
```

```
## Loading required package: nnet
```

```
## # weights: 11
## initial value 395.636267
## iter
        10 value 225.003333
## iter
         20 value 223.876934
## iter
         30 value 220.189202
         40 value 215.766490
## iter
## iter
        50 value 215.526391
## iter 60 value 215.525446
## final value 215.525438
## converged
## # weights:
## initial value 321.362610
## iter 10 value 221.932764
## iter
        20 value 199.715449
         30 value 195.177379
## iter
## iter
        40 value 193.223722
         50 value 191.159493
## iter
## iter 60 value 189.901149
         70 value 188.543620
## iter
        80 value 187.922127
## iter
## iter 90 value 187.569377
## iter 100 value 187.541123
## final value 187.541123
## stopped after 100 iterations
## # weights: 51
## initial value 301.967005
## iter
         10 value 198.720777
  iter
         20 value 182.112860
  iter
         30 value 169.153066
##
         40 value 149.916513
##
  iter
## iter
         50 value 134.135379
        60 value 127.578092
## iter
        70 value 126.520363
## iter
        80 value 126.301240
## iter
## iter 90 value 126.192195
## iter 100 value 125.998123
## final value 125.998123
## stopped after 100 iterations
## # weights: 71
## initial value 349.425157
## iter
        10 value 208.992510
## iter
         20 value 180.529184
         30 value 166.431048
## iter
## iter
         40 value 150.800728
## iter
         50 value 135.395883
## iter
        60 value 128.270113
         70 value 126.443717
## iter
## iter
        80 value 126.318449
## iter 90 value 126.283273
## iter 100 value 126.266331
## final value 126.266331
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 306.714995
## iter 10 value 200.771675
        20 value 166.429446
## iter
## iter
        30 value 139.614584
## iter
        40 value 115.182781
## iter
        50 value 107.758866
## iter 60 value 96.683538
## iter 70 value 93.030951
## iter 80 value 91.344037
## iter 90 value 89.924449
## iter 100 value 88.452694
## final value 88.452694
## stopped after 100 iterations
## # weights: 11
## initial value 312.606732
## iter 10 value 230.772293
## iter 20 value 220.437206
## iter 30 value 219.424541
## final value 219.406594
## converged
## # weights:
## initial value 353.722235
## iter 10 value 227.435168
## iter 20 value 206.245492
        30 value 200.540059
## iter
## iter 40 value 199.767127
## iter
        50 value 199.248952
## iter 60 value 199.219022
## iter
        70 value 199.218030
## iter 80 value 199.217857
## final value 199.217851
## converged
## # weights: 51
## initial value 380.528909
## iter 10 value 208.936309
## iter
        20 value 197.737926
        30 value 192.623453
## iter
  iter
        40 value 191.679797
## iter
        50 value 191.461814
        60 value 190.881993
## iter
## iter 70 value 189.085970
## iter 80 value 188.736720
## iter 90 value 188.289789
## iter 100 value 187.917605
## final value 187.917605
## stopped after 100 iterations
## # weights: 71
## initial value 310.985849
## iter 10 value 209.079916
## iter 20 value 195.853971
## iter 30 value 189.778350
## iter 40 value 186.422144
        50 value 183.355817
## iter
## iter 60 value 181.704050
```

```
## iter 70 value 181.481462
         80 value 181.103747
## iter
## iter 90 value 180.947314
## iter 100 value 179.981760
## final value 179.981760
## stopped after 100 iterations
## # weights: 91
## initial value 306.961545
## iter 10 value 208.598062
## iter
        20 value 186.007465
         30 value 175.044618
## iter
## iter 40 value 168.843702
## iter 50 value 166.761720
## iter 60 value 166.442818
## iter 70 value 164.077435
## iter 80 value 163.256885
## iter 90 value 162.753680
## iter 100 value 162.615246
## final value 162.615246
## stopped after 100 iterations
## # weights: 11
## initial value 442.709067
## iter 10 value 229.327074
## iter 20 value 218.604471
         30 value 216.341434
## iter
## iter 40 value 216.173480
## final value 216.173312
## converged
## # weights: 31
## initial value 333.284396
## iter 10 value 219.386000
## iter
         20 value 199.190325
## iter
         30 value 195.049157
         40 value 194.089529
## iter
         50 value 193.720513
## iter
## iter
         60 value 193.700760
        70 value 193.696547
## iter
## final value 193.696509
## converged
## # weights: 51
## initial value 310.225601
## iter 10 value 199.808249
## iter
         20 value 182.518392
         30 value 177.104914
## iter
        40 value 174.490260
## iter
## iter
        50 value 172.408984
## iter 60 value 171.898481
## iter 70 value 171.857668
## iter 80 value 171.845550
## iter 90 value 171.845372
## final value 171.845368
## converged
## # weights: 71
## initial value 346.607493
```

```
10 value 204.474151
## iter
## iter
         20 value 180.942605
         30 value 169.849570
## iter
## iter
         40 value 163.901171
## iter
         50 value 161.849637
## iter
        60 value 160.655363
        70 value 157.684898
## iter
## iter 80 value 155.737383
## iter 90 value 154.135876
## iter 100 value 153.838394
## final value 153.838394
## stopped after 100 iterations
## # weights: 91
## initial value 312.633205
## iter 10 value 200.645652
## iter 20 value 164.809124
## iter 30 value 133.219758
        40 value 119.920088
## iter
## iter
        50 value 116.814607
## iter
        60 value 115.734688
        70 value 114.766137
## iter
## iter 80 value 114.385805
## iter 90 value 114.129057
## iter 100 value 110.760097
## final value 110.760097
## stopped after 100 iterations
## # weights: 11
## initial value 348.797034
## iter 10 value 219.763009
## iter
         20 value 215.860741
## iter 30 value 215.595274
## final value 215.594974
## converged
## # weights: 31
## initial value 323.620529
## iter
        10 value 203.647814
         20 value 193.479842
## iter
  iter
         30 value 190.116657
  iter
         40 value 188.305348
##
         50 value 187.458292
##
  iter
## iter
         60 value 187.130898
        70 value 187.100248
## iter
## iter 70 value 187.100248
## iter 70 value 187.100248
## final value 187.100248
## converged
## # weights: 51
## initial value 339.257964
## iter 10 value 214.551508
## iter 20 value 192.684827
        30 value 177.710537
## iter
         40 value 168.847688
## iter
         50 value 162.419450
## iter
## iter 60 value 161.136878
```

```
## iter 70 value 160.926824
         80 value 160.686011
## iter
        90 value 160.597068
## iter
## iter 100 value 160.486461
## final value 160.486461
## stopped after 100 iterations
## # weights: 71
## initial value 347.259030
## iter 10 value 205.633080
## iter
         20 value 174.499661
         30 value 149.653733
## iter
        40 value 143.340969
## iter
## iter
        50 value 141.275910
## iter
        60 value 139.687315
## iter 70 value 139.350729
## iter 80 value 139.123316
## iter 90 value 139.048552
## iter 100 value 138.985937
## final value 138.985937
## stopped after 100 iterations
## # weights: 91
## initial value 375.014365
## iter 10 value 199.474410
        20 value 162.474511
## iter
         30 value 126.636933
## iter
        40 value 106.620650
## iter
  iter
         50 value 98.805968
##
## iter
        60 value 96.014612
##
  iter
         70 value 94.898113
## iter
         80 value 94.047530
## iter 90 value 93.686856
## iter 100 value 93.470924
## final value 93.470924
## stopped after 100 iterations
## # weights: 11
## initial value 380.776159
## iter 10 value 230.744878
## iter
         20 value 215.592746
## iter
        30 value 215.551420
## final value 215.532453
## converged
## # weights: 31
## initial value 314.899498
## iter 10 value 222.133584
## iter
         20 value 202.587932
## iter
         30 value 197.039852
        40 value 193.792153
## iter
## iter
        50 value 191.139373
## iter 60 value 189.038144
## iter 70 value 188.683768
## iter 80 value 188.636705
## iter 90 value 188.611291
## iter 100 value 188.469831
## final value 188.469831
```

stopped after 100 iterations ## # weights: 51 ## initial value 309.687688 ## iter 10 value 207.757887 ## iter 20 value 185.975361 ## iter 30 value 171.753194 ## iter 40 value 167.520452 ## iter 50 value 156.375059 ## iter 60 value 155.809306 ## iter 70 value 155.748844 ## iter 80 value 155.726612 ## iter 90 value 155.693286 ## iter 100 value 155.627957 ## final value 155.627957 ## stopped after 100 iterations ## # weights: 71 ## initial value 405.714483 ## iter 10 value 201.769779 ## iter 20 value 176.390493 ## iter 30 value 155.572281 ## iter 40 value 144.217995 ## iter 50 value 139.171927 ## iter 60 value 132.255103 ## iter 70 value 126.258699 ## iter 80 value 122.383378 ## iter 90 value 121.049260 ## iter 100 value 120.567630 ## final value 120.567630 ## stopped after 100 iterations ## # weights: 91 ## initial value 338.707118 ## iter 10 value 201.866299 ## iter 20 value 174.355417 ## iter 30 value 150.940609 ## iter 40 value 128.655076 ## iter 50 value 108.376885 60 value 98.568005 ## iter iter 70 value 96.780333 80 value 96.462253 ## iter ## iter 90 value 96.304473 ## iter 100 value 96.208772 ## final value 96.208772 ## stopped after 100 iterations ## # weights: 11 ## initial value 343.899418 ## iter 10 value 214.958119 ## iter 20 value 212.588911 ## iter 30 value 212.523540 ## final value 212.518373 ## converged ## # weights: 31 ## initial value 443.631097 ## iter 10 value 214.348197 ## iter 20 value 197.126001

```
30 value 191.952247
## iter
         40 value 186.590122
## iter
## iter
         50 value 183.088733
## iter
         60 value 180.605684
## iter
         70 value 180.362209
## iter 80 value 180.297311
## iter 90 value 180.233772
## iter 100 value 179.896789
## final value 179.896789
## stopped after 100 iterations
## # weights: 51
## initial value 371.829473
## iter 10 value 221.292201
## iter
        20 value 191.774523
## iter
        30 value 172.716635
## iter 40 value 162.749213
## iter 50 value 148.858127
## iter 60 value 145.734320
## iter 70 value 145.439207
## iter 80 value 145.437014
## iter 90 value 145.429299
## iter 100 value 145.152600
## final value 145.152600
## stopped after 100 iterations
## # weights: 71
## initial value 464.361827
## iter 10 value 193.003768
## iter
         20 value 173.574197
  iter
         30 value 161.124273
## iter
         40 value 150.649550
         50 value 143.408227
##
  iter
##
  iter
         60 value 136.322231
## iter
        70 value 126.514230
## iter
        80 value 121.061311
## iter 90 value 120.319744
## iter 100 value 120.273066
## final value 120.273066
## stopped after 100 iterations
## # weights: 91
## initial value 320.135000
## iter 10 value 199.690423
## iter
        20 value 167.394916
## iter
         30 value 135.130547
## iter 40 value 119.312710
        50 value 109.778452
## iter
## iter
        60 value 96.327683
## iter 70 value 88.137577
## iter 80 value 87.258208
## iter 90 value 87.206650
## iter 100 value 87.200924
## final value 87.200924
## stopped after 100 iterations
## # weights: 11
## initial value 301.682766
```

```
## iter 10 value 218.193003
## iter 20 value 216.041180
## final value 216.035539
## converged
## # weights: 31
## initial value 332.265476
## iter 10 value 224.090526
## iter 20 value 205.922640
## iter
        30 value 199.442880
## iter 40 value 198.036218
## iter 50 value 196.893570
## iter 60 value 195.891295
## iter 70 value 195.798042
## iter 80 value 195.789550
## final value 195.789404
## converged
## # weights: 51
## initial value 319.764236
## iter 10 value 209.863920
## iter
        20 value 194.606429
        30 value 191.538421
## iter
## iter 40 value 187.646597
## iter
        50 value 186.064939
## iter 60 value 185.350830
## iter 70 value 185.065498
## iter 80 value 184.982294
## iter 90 value 184.797590
## final value 184.795707
## converged
## # weights:
             71
## initial value 318.063589
## iter 10 value 202.280804
## iter
        20 value 186.374373
## iter
        30 value 176.441789
## iter 40 value 172.846176
##
  iter
        50 value 171.762025
        60 value 171.278826
## iter
  iter
        70 value 171.152386
## iter
        80 value 171.112842
## iter 90 value 171.110023
## final value 171.109997
## converged
## # weights: 91
## initial value 283.022194
## iter 10 value 204.120615
## iter
        20 value 184.866440
## iter
        30 value 176.179155
## iter 40 value 169.473069
## iter 50 value 165.029496
## iter 60 value 163.956363
## iter 70 value 163.410368
## iter 80 value 162.589183
## iter 90 value 161.933126
## iter 100 value 161.852250
```

```
## final value 161.852250
## stopped after 100 iterations
## # weights: 11
## initial value 320.877391
## iter 10 value 224.171230
## iter
        20 value 216.377204
         30 value 213.261442
## iter
## iter 40 value 212.929485
## iter 40 value 212.929483
## iter 40 value 212.929483
## final value 212.929483
## converged
## # weights: 31
## initial value 353.606706
## iter 10 value 210.324884
## iter 20 value 197.081218
## iter 30 value 192.719852
        40 value 188.946170
## iter
## iter 50 value 187.473252
## iter 60 value 186.978610
        70 value 186.910598
## iter
## iter 80 value 186.878860
## iter 90 value 186.877912
## final value 186.877731
## converged
## # weights: 51
## initial value 378.550947
## iter 10 value 207.205443
## iter
         20 value 191.687136
## iter
         30 value 175.601873
        40 value 169.099573
##
  iter
##
  iter
         50 value 167.996146
## iter
        60 value 166.929662
        70 value 166.254984
## iter
## iter 80 value 164.616133
        90 value 164.483737
## iter
## iter 100 value 164.418594
## final value 164.418594
## stopped after 100 iterations
## # weights: 71
## initial value 332.747002
## iter 10 value 202.525313
## iter
         20 value 180.032066
         30 value 161.683642
## iter
## iter
        40 value 153.468778
## iter
         50 value 152.134969
## iter
        60 value 151.565500
## iter 70 value 149.329286
## iter 80 value 141.518200
## iter 90 value 139.320641
## iter 100 value 137.484362
## final value 137.484362
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 330.285012
## iter
        10 value 202.448740
         20 value 171.979046
## iter
## iter
         30 value 148.027356
## iter
         40 value 139.310299
        50 value 132.038705
## iter
## iter 60 value 125.050490
## iter 70 value 121.668485
## iter 80 value 120.411677
## iter 90 value 119.862779
## iter 100 value 119.393914
## final value 119.393914
## stopped after 100 iterations
## # weights: 11
## initial value 362.803340
## iter 10 value 224.906380
## iter 20 value 222.089553
        30 value 218.848681
## iter
## iter 40 value 217.047280
## iter 50 value 212.659748
## iter 60 value 212.560729
## final value 212.560722
## converged
## # weights: 31
## initial value 369.114635
## iter 10 value 214.879092
## iter
         20 value 185.622188
## iter
         30 value 181.869211
  iter
         40 value 178.080098
## iter
         50 value 176.630748
  iter 60 value 175.612233
##
## iter
        70 value 174.810766
## iter 80 value 174.735217
## iter 90 value 174.635937
## iter 100 value 174.631223
## final value 174.631223
## stopped after 100 iterations
## # weights: 51
## initial value 301.130808
## iter 10 value 198.103927
## iter
         20 value 183.681473
         30 value 174.662076
## iter
## iter
         40 value 164.361140
        50 value 160.152008
## iter
        60 value 159.407414
## iter
## iter
        70 value 158.583035
## iter 80 value 157.648194
## iter 90 value 157.383492
## iter 100 value 157.284190
## final value 157.284190
## stopped after 100 iterations
## # weights: 71
## initial value 455.115076
## iter 10 value 210.732209
```

```
20 value 174.506033
## iter
         30 value 149.762940
## iter
         40 value 134.052667
## iter
## iter
         50 value 128.338075
## iter
         60 value 123.082488
## iter
        70 value 121.358547
        80 value 120.893800
## iter
## iter 90 value 120.041142
## iter 100 value 119.435362
## final value 119.435362
## stopped after 100 iterations
## # weights: 91
## initial value 542.902346
## iter 10 value 199.390579
## iter
        20 value 159.744464
         30 value 116.307095
## iter
## iter 40 value 98.598161
        50 value 92.162311
## iter
## iter 60 value 89.358275
## iter 70 value 88.020487
## iter 80 value 86.673683
## iter 90 value 85.807677
## iter 100 value 84.756660
## final value 84.756660
## stopped after 100 iterations
## # weights: 11
## initial value 313.475660
## iter 10 value 228.185654
## iter
         20 value 224.336379
## iter
         30 value 223.295314
  iter 40 value 222.695733
## iter 50 value 222.693999
## final value 222.690871
## converged
## # weights:
              31
## initial value 306.744986
        10 value 212.695355
## iter
  iter
         20 value 198.623756
## iter
         30 value 192.473616
         40 value 184.315995
## iter
## iter
         50 value 183.761336
## iter 60 value 182.470485
## iter
        70 value 180.887284
## iter 80 value 179.128782
## iter 90 value 177.887417
## iter 100 value 174.400495
## final value 174.400495
## stopped after 100 iterations
## # weights: 51
## initial value 461.564109
## iter 10 value 206.058234
         20 value 184.635339
## iter
## iter
         30 value 171.809493
        40 value 154.074625
```

```
50 value 148.223774
## iter
         60 value 146.979819
## iter
## iter
         70 value 146.760611
## iter
         80 value 146.643312
## iter
        90 value 146.526165
## iter 100 value 146.197619
## final value 146.197619
## stopped after 100 iterations
## # weights: 71
## initial value 408.639457
## iter
        10 value 213.732630
## iter
         20 value 189.144836
## iter
         30 value 159.931947
## iter 40 value 141.475000
## iter
        50 value 128.696597
## iter 60 value 116.360920
## iter 70 value 113.420732
## iter 80 value 113.109524
## iter 90 value 112.965290
## iter 100 value 112.812940
## final value 112.812940
## stopped after 100 iterations
## # weights: 91
## initial value 687.564776
## iter
        10 value 196.207504
## iter
         20 value 159.265497
## iter
         30 value 140.229288
  iter
        40 value 126.702743
  iter
         50 value 120.497596
## iter
         60 value 111.424586
## iter 70 value 106.101918
## iter
         80 value 104.712626
## iter 90 value 102.444598
## iter 100 value 99.655683
## final value 99.655683
## stopped after 100 iterations
## # weights: 11
## initial value 333.235671
## iter 10 value 236.091979
## iter
         20 value 230.124306
## iter
         30 value 222.463205
## iter 40 value 219.949410
## final value 219.937496
## converged
## # weights: 31
## initial value 343.205484
## iter 10 value 215.320924
## iter 20 value 205.812166
## iter 30 value 199.229152
## iter 40 value 190.602186
## iter
        50 value 188.964264
         60 value 187.520511
## iter
         70 value 182.466193
## iter
        80 value 181.050394
```

```
## iter 90 value 180.918664
## iter 100 value 180.873816
## final value 180.873816
## stopped after 100 iterations
## # weights: 51
## initial value 306.597810
## iter 10 value 214.011950
## iter 20 value 191.615166
## iter
        30 value 172.487886
## iter 40 value 167.507583
## iter 50 value 165.486596
        60 value 163.343320
## iter
## iter 70 value 159.472300
## iter 80 value 149.474203
## iter 90 value 143.241868
## iter 100 value 142.336722
## final value 142.336722
## stopped after 100 iterations
## # weights: 71
## initial value 416.448385
## iter 10 value 209.724992
## iter 20 value 183.398534
## iter
        30 value 157.441803
## iter 40 value 145.963985
        50 value 140.314912
## iter
## iter 60 value 132.803921
## iter 70 value 124.666207
## iter 80 value 116.637199
## iter 90 value 114.229534
## iter 100 value 113.587150
## final value 113.587150
## stopped after 100 iterations
## # weights: 91
## initial value 346.779686
## iter 10 value 205.066217
## iter
        20 value 158.683575
        30 value 129.911999
## iter
  iter
        40 value 120.729534
## iter
        50 value 111.381091
        60 value 99.798034
## iter
## iter 70 value 98.212595
## iter 80 value 97.898697
## iter 90 value 97.877353
## final value 97.877143
## converged
## # weights: 11
## initial value 315.937420
## iter 10 value 224.645414
## iter 20 value 224.021844
## final value 224.014304
## converged
## # weights: 31
## initial value 330.797698
## iter 10 value 224.946411
```

```
20 value 210.156422
## iter
         30 value 207.194347
## iter
         40 value 205.516343
## iter
         50 value 204.402147
## iter
## iter
        60 value 204.387125
## final value 204.386640
## converged
## # weights: 51
## initial value 352.566783
## iter 10 value 222.970242
         20 value 204.555556
## iter
         30 value 199.614781
## iter
## iter
        40 value 194.753242
## iter
         50 value 192.313934
## iter 60 value 191.894481
## iter 70 value 191.709064
## iter 80 value 190.671211
## iter 90 value 190.643527
## final value 190.643517
## converged
## # weights:
## initial value 346.949648
## iter 10 value 231.107805
## iter
        20 value 206.628402
         30 value 194.123888
## iter
         40 value 188.671952
## iter
  iter
         50 value 185.669510
##
##
  iter
         60 value 184.482801
##
  iter
         70 value 184.062242
## iter
         80 value 181.826514
        90 value 180.290399
## iter 100 value 179.672022
## final value 179.672022
## stopped after 100 iterations
## # weights: 91
## initial value 340.479728
        10 value 210.993804
## iter
  iter
         20 value 195.545511
  iter
         30 value 186.115535
##
         40 value 179.936984
##
  iter
## iter
         50 value 177.145126
## iter 60 value 176.418403
## iter
        70 value 176.141847
## iter 80 value 175.385760
## iter 90 value 174.957359
## iter 100 value 174.931295
## final value 174.931295
## stopped after 100 iterations
## # weights: 11
## initial value 365.365778
## iter 10 value 234.926754
         20 value 228.087294
## iter
## iter
         30 value 221.865392
        40 value 220.336848
```

```
## final value 220.326738
## converged
## # weights: 31
## initial value 382.022603
## iter 10 value 215.034837
## iter 20 value 197.304153
## iter 30 value 195.557834
## iter 40 value 195.219681
## iter 50 value 195.198044
## final value 195.196826
## converged
## # weights: 51
## initial value 338.146387
## iter 10 value 211.640329
## iter 20 value 190.572530
## iter 30 value 179.636484
## iter 40 value 176.802750
## iter 50 value 175.724261
## iter 60 value 175.357789
## iter 70 value 175.333418
## iter 80 value 175.333054
## final value 175.333038
## converged
## # weights: 71
## initial value 329.167159
## iter 10 value 212.382300
## iter
        20 value 177.152546
## iter
        30 value 161.849635
## iter
        40 value 158.615674
## iter
        50 value 155.904765
## iter 60 value 153.144977
## iter 70 value 151.636051
## iter 80 value 150.935021
## iter 90 value 150.721581
## iter 100 value 150.577462
## final value 150.577462
## stopped after 100 iterations
## # weights: 91
## initial value 310.382699
## iter 10 value 209.617376
## iter 20 value 173.919566
## iter 30 value 157.700886
## iter 40 value 142.239769
## iter 50 value 136.429357
## iter 60 value 131.635146
## iter 70 value 127.652444
## iter 80 value 125.757776
## iter 90 value 122.490782
## iter 100 value 121.032262
## final value 121.032262
## stopped after 100 iterations
## # weights: 11
## initial value 308.303944
## iter 10 value 238.438517
```

```
20 value 234.209690
## iter
         30 value 229.329637
## iter
        40 value 221.683139
## iter
## iter
         50 value 220.164361
## iter
        60 value 219.977850
## final value 219.977477
## converged
## # weights: 31
## initial value 467.245589
## iter 10 value 221.245838
        20 value 194.732164
## iter
         30 value 188.077042
## iter
## iter 40 value 186.145039
## iter
         50 value 185.661731
## iter 60 value 185.045995
## iter 70 value 184.968979
## iter 80 value 184.959085
## iter 90 value 184.929493
## iter 100 value 184.927587
## final value 184.927587
## stopped after 100 iterations
## # weights: 51
## initial value 367.833035
## iter 10 value 212.361088
         20 value 191.668063
## iter
         30 value 176.319815
## iter
  iter
         40 value 172.298067
##
##
  iter
         50 value 170.877353
##
  iter
         60 value 169.556580
## iter
         70 value 169.450145
  iter 80 value 169.165086
        90 value 169.040344
## iter
## iter 100 value 168.997703
## final value 168.997703
## stopped after 100 iterations
## # weights: 71
## initial value 378.034452
## iter
        10 value 208.707788
## iter
         20 value 182.759739
         30 value 164.844997
##
  iter
## iter
         40 value 154.245323
        50 value 145.892846
## iter
## iter
         60 value 141.980746
        70 value 140.062504
## iter
         80 value 138.366924
## iter
## iter 90 value 137.252986
## iter 100 value 136.782998
## final value 136.782998
## stopped after 100 iterations
## # weights: 91
## initial value 335.763458
## iter 10 value 208.251015
## iter
         20 value 170.916498
## iter
        30 value 145.201831
```

```
## iter 40 value 132.317677
         50 value 122.940292
## iter
## iter
         60 value 121.117360
## iter
         70 value 120.343084
## iter
         80 value 119.843958
## iter 90 value 119.659628
## iter 100 value 119.516716
## final value 119.516716
## stopped after 100 iterations
## # weights: 11
## initial value 365.645500
## iter 10 value 228.625522
## iter
        20 value 220.716961
## iter
         30 value 219.967967
## iter 40 value 219.942626
## iter 40 value 219.942626
## iter 40 value 219.942626
## final value 219.942626
## converged
## # weights: 31
## initial value 358.377481
## iter 10 value 213.347284
## iter
         20 value 207.204387
## iter
        30 value 200.790754
         40 value 196.710415
## iter
         50 value 194.722498
## iter
  iter
         60 value 193.272933
##
##
  iter
         70 value 192.785704
  iter
        80 value 191.984583
        90 value 190.969492
## iter 100 value 188.046817
## final value 188.046817
## stopped after 100 iterations
## # weights: 51
## initial value 313.750001
## iter
        10 value 217.506268
         20 value 194.267045
## iter
  iter
         30 value 174.612971
  iter
        40 value 163.176566
##
         50 value 157.041617
##
  iter
## iter
         60 value 152.463531
## iter 70 value 148.936227
        80 value 148.607227
## iter
## iter 90 value 148.325274
## iter 100 value 148.283870
## final value 148.283870
## stopped after 100 iterations
## # weights: 71
## initial value 335.749807
## iter 10 value 216.013336
## iter 20 value 174.700116
        30 value 147.531627
## iter
## iter 40 value 138.362409
        50 value 130.234436
```

```
## iter 60 value 124.916537
        70 value 123.271431
## iter
        80 value 122.730067
## iter
## iter
        90 value 122.616048
## iter 100 value 122.405081
## final value 122.405081
## stopped after 100 iterations
## # weights: 91
## initial value 330.874451
## iter 10 value 206.233427
         20 value 167.958113
## iter
         30 value 136.338347
## iter
## iter 40 value 117.882534
## iter
         50 value 106.615293
## iter 60 value 102.389294
## iter 70 value 100.774598
## iter 80 value 100.533744
## iter 90 value 100.472278
## iter 100 value 100.388423
## final value 100.388423
## stopped after 100 iterations
## # weights: 11
## initial value 308.362502
## iter 10 value 241.040131
## iter
         20 value 230.593655
         30 value 229.276335
## iter
         40 value 228.244809
  iter
## iter
         50 value 222.567459
## iter 60 value 220.819760
## final value 220.728898
## converged
## # weights:
             31
## initial value 307.546261
## iter 10 value 220.843297
         20 value 204.088305
## iter
## iter
         30 value 197.626529
         40 value 190.263530
## iter
  iter
         50 value 187.393164
         60 value 181.580692
##
  iter
         70 value 180.970922
## iter
## iter
         80 value 180.896932
## iter 90 value 180.893311
## iter 100 value 180.892467
## final value 180.892467
## stopped after 100 iterations
## # weights: 51
## initial value 373.104183
## iter 10 value 218.120784
## iter 20 value 195.054805
## iter
         30 value 188.388281
## iter 40 value 183.391747
        50 value 179.968695
## iter
## iter 60 value 171.155575
        70 value 164.929495
```

```
## iter 80 value 155.321502
## iter 90 value 151.685045
## iter 100 value 151.512192
## final value 151.512192
## stopped after 100 iterations
## # weights: 71
## initial value 393.440394
## iter 10 value 218.904467
## iter
        20 value 191.142388
## iter 30 value 174.496553
## iter 40 value 160.588732
        50 value 152.523227
## iter
## iter 60 value 144.954910
## iter 70 value 140.771478
## iter 80 value 131.391579
## iter 90 value 127.673313
## iter 100 value 126.521017
## final value 126.521017
## stopped after 100 iterations
## # weights: 91
## initial value 437.910121
## iter 10 value 210.351319
## iter
        20 value 179.863762
## iter 30 value 148.508199
        40 value 131.748354
## iter
        50 value 124.161445
## iter
## iter
        60 value 111.984634
## iter
        70 value 101.373263
## iter
        80 value 99.215042
## iter 90 value 98.704299
## iter 100 value 98.644757
## final value 98.644757
## stopped after 100 iterations
## # weights: 11
## initial value 344.657530
## iter 10 value 228.174324
## iter
        20 value 224.044130
## iter 30 value 224.024124
## final value 224.023534
## converged
## # weights: 31
## initial value 374.154307
## iter 10 value 223.460666
## iter 20 value 211.453951
## iter
        30 value 206.849102
## iter 40 value 205.525007
## iter 50 value 205.323299
## final value 205.322863
## converged
## # weights: 51
## initial value 313.718325
## iter 10 value 217.038795
## iter
        20 value 207.149121
## iter
        30 value 200.604733
```

```
40 value 197.026022
## iter
         50 value 196.223544
## iter
## iter
        60 value 196.157046
## iter
        70 value 196.145968
## final value 196.145699
## converged
## # weights:
              71
## initial value 366.522681
## iter 10 value 228.963010
## iter
         20 value 200.128787
## iter
         30 value 191.635260
        40 value 186.627891
## iter
## iter
         50 value 184.256158
## iter
         60 value 183.077526
## iter
        70 value 182.787989
## iter 80 value 182.591948
## iter 90 value 182.500694
## iter 100 value 182.498094
## final value 182.498094
## stopped after 100 iterations
## # weights: 91
## initial value 333.734659
## iter 10 value 225.899672
## iter
        20 value 200.190303
         30 value 186.421207
## iter
         40 value 179.862142
## iter
  iter
         50 value 177.762592
##
##
  iter
         60 value 176.670243
##
  iter
         70 value 175.842620
## iter
         80 value 175.675511
        90 value 175.417017
## iter 100 value 175.344268
## final value 175.344268
## stopped after 100 iterations
## # weights: 11
## initial value 365.912014
        10 value 235.219296
## iter
  iter
         20 value 231.171655
  iter
         30 value 223.267182
##
         40 value 221.172183
## iter
## iter 50 value 221.116473
## final value 221.115782
## converged
## # weights: 31
## initial value 334.678380
## iter 10 value 223.171096
## iter
         20 value 212.200298
## iter
         30 value 206.066371
## iter 40 value 201.084622
        50 value 198.827627
## iter
## iter 60 value 198.341221
         70 value 198.310735
## iter
## iter
        80 value 198.305857
        90 value 198.303374
```

```
## final value 198.303124
## converged
## # weights: 51
## initial value 358.939885
## iter 10 value 216.761397
## iter 20 value 199.441534
## iter 30 value 191.549799
## iter 40 value 189.858269
## iter 50 value 189.273981
## iter 60 value 189.222770
## iter 70 value 189.214607
## final value 189.214397
## converged
## # weights: 71
## initial value 414.298877
## iter 10 value 213.763570
## iter 20 value 186.704786
## iter 30 value 175.189954
## iter 40 value 166.653043
## iter 50 value 161.146983
## iter 60 value 152.631843
## iter 70 value 149.158460
## iter 80 value 148.198055
## iter 90 value 147.271366
## iter 100 value 147.057088
## final value 147.057088
## stopped after 100 iterations
## # weights: 91
## initial value 471.887553
## iter 10 value 213.675165
## iter 20 value 184.509385
## iter
        30 value 163.881758
## iter 40 value 157.107965
## iter 50 value 154.766153
## iter 60 value 147.851084
## iter 70 value 145.274474
## iter 80 value 141.430347
## iter 90 value 138.524639
## iter 100 value 138.027566
## final value 138.027566
## stopped after 100 iterations
## # weights: 11
## initial value 335.610990
## iter 10 value 236.143340
## iter 20 value 227.267844
## iter 30 value 221.276407
## iter 40 value 220.769049
## final value 220.768789
## converged
## # weights: 31
## initial value 328.161619
## iter 10 value 220.998730
## iter 20 value 210.039334
## iter 30 value 203.670909
```

```
## iter 40 value 190.163113
         50 value 186.740323
## iter
## iter
         60 value 186.193768
## iter
         70 value 186.013457
## iter
         80 value 185.981047
## iter 90 value 185.953214
## final value 185.935551
## converged
## # weights: 51
## initial value 336.322434
## iter
        10 value 216.264172
## iter
         20 value 200.215962
## iter
         30 value 195.184945
## iter 40 value 191.402647
## iter
        50 value 185.350459
## iter 60 value 175.602820
## iter 70 value 172.725823
## iter 80 value 172.346742
## iter 90 value 171.891845
## iter 100 value 171.834581
## final value 171.834581
## stopped after 100 iterations
## # weights: 71
## initial value 349.974759
## iter
        10 value 220.738546
## iter
         20 value 201.743652
  iter
         30 value 185.696603
##
##
  iter 40 value 168.967666
##
  iter
         50 value 161.740018
## iter
         60 value 158.569519
  iter 70 value 156.569797
##
## iter
        80 value 155.022508
## iter 90 value 154.341454
## iter 100 value 153.664706
## final value 153.664706
## stopped after 100 iterations
## # weights: 91
## initial value 601.894529
## iter 10 value 221.420774
## iter
         20 value 176.126406
## iter
         30 value 150.482981
## iter 40 value 130.813764
## iter
         50 value 125.236775
## iter 60 value 120.923782
        70 value 117.371770
## iter
## iter 80 value 115.147875
        90 value 112.997290
## iter 100 value 112.395203
## final value 112.395203
## stopped after 100 iterations
## # weights: 11
## initial value 384.919692
## iter 10 value 230.485691
## iter 20 value 221.847934
```

```
30 value 220.896772
## iter
         40 value 220.732902
## iter
        40 value 220.732901
## iter
## iter 40 value 220.732901
## final value 220.732901
## converged
## # weights:
             31
## initial value 381.757200
## iter 10 value 223.385595
## iter
         20 value 212.972910
         30 value 205.280051
## iter
        40 value 198.942091
## iter
## iter
        50 value 194.490777
## iter
        60 value 193.303398
## iter
        70 value 192.995818
## iter 80 value 192.896206
## iter 90 value 192.843315
## iter 100 value 192.838181
## final value 192.838181
## stopped after 100 iterations
## # weights: 51
## initial value 328.215207
## iter 10 value 217.635392
## iter 20 value 198.801639
         30 value 189.063586
## iter
        40 value 176.135273
## iter
  iter
         50 value 172.027084
##
  iter
        60 value 166.949591
##
  iter
         70 value 162.517777
## iter
         80 value 160.382726
        90 value 157.488258
## iter 100 value 157.138181
## final value 157.138181
## stopped after 100 iterations
## # weights: 71
## initial value 308.110503
        10 value 211.644978
## iter
  iter
         20 value 189.166364
  iter
         30 value 172.272729
##
         40 value 159.077497
##
  iter
## iter
         50 value 150.451410
## iter 60 value 139.718705
## iter
        70 value 134.388031
## iter 80 value 133.846074
## iter 90 value 133.683570
## iter 100 value 132.930443
## final value 132.930443
## stopped after 100 iterations
## # weights: 91
## initial value 317.633998
## iter 10 value 210.206287
         20 value 171.766320
## iter
## iter
         30 value 146.725700
        40 value 134.554438
```

```
50 value 124.907104
## iter
         60 value 122.958839
## iter
         70 value 122.534757
## iter
## iter
         80 value 122.261644
## iter
        90 value 122.099083
## iter 100 value 121.876239
## final value 121.876239
## stopped after 100 iterations
## # weights: 11
## initial value 441.212755
## iter
        10 value 229.509326
         20 value 226.146098
## iter
## iter
         30 value 225.646613
## iter 40 value 219.753687
## iter
         50 value 219.692269
## iter 60 value 219.689677
## iter 70 value 219.689132
## iter 80 value 219.688848
## final value 219.688767
## converged
## # weights:
## initial value 341.798802
## iter 10 value 216.905285
        20 value 201.772896
## iter
         30 value 193.798376
## iter
        40 value 190.370156
## iter
  iter
         50 value 186.474517
##
##
  iter
        60 value 184.608064
##
  iter
         70 value 183.722048
## iter
         80 value 182.688432
        90 value 182.106957
## iter 100 value 181.275473
## final value 181.275473
## stopped after 100 iterations
## # weights: 51
## initial value 334.878373
        10 value 206.409808
## iter
  iter
         20 value 184.190731
  iter
         30 value 174.066983
##
         40 value 164.127015
##
  iter
## iter
         50 value 153.457239
## iter 60 value 146.272459
## iter 70 value 146.196911
## final value 146.196799
## converged
## # weights:
              71
## initial value 330.105242
## iter 10 value 204.114191
## iter 20 value 166.995356
         30 value 143.349975
## iter
## iter 40 value 137.992110
         50 value 133.666100
## iter
## iter
        60 value 131.463581
        70 value 128.992819
```

```
## iter 80 value 117.080812
## iter 90 value 115.059334
## iter 100 value 114.590000
## final value 114.590000
## stopped after 100 iterations
## # weights: 91
## initial value 580.330744
## iter 10 value 241.301423
## iter
         20 value 189.697294
## iter 30 value 167.124979
## iter
        40 value 158.689618
         50 value 148.640317
## iter
## iter 60 value 140.205596
## iter 70 value 132.825123
## iter 80 value 128.834364
## iter 90 value 127.044655
## iter 100 value 125.665937
## final value 125.665937
## stopped after 100 iterations
## # weights: 11
## initial value 331.203189
## iter 10 value 237.181324
## iter
        20 value 228.380299
## iter 30 value 220.267042
         40 value 219.773431
## iter
        40 value 219.773431
## iter
## iter 40 value 219.773431
## final value 219.773431
## converged
## # weights: 31
## initial value 312.766703
## iter
        10 value 223.898738
## iter
         20 value 209.258217
## iter
         30 value 205.608781
        40 value 204.778210
## iter
##
  iter
         50 value 203.620140
         60 value 203.113718
## iter
  iter
         70 value 203.092543
         80 value 203.092224
## iter
         80 value 203.092223
## iter
## iter 80 value 203.092223
## final value 203.092223
## converged
## # weights: 51
## initial value 320.268708
## iter 10 value 217.538414
## iter 20 value 203.093584
## iter
         30 value 199.017168
## iter 40 value 196.133326
## iter 50 value 195.105122
## iter 60 value 195.012567
## iter 70 value 195.007966
## final value 195.007825
## converged
```

```
## # weights: 71
## initial value 340.634948
## iter 10 value 211.027239
## iter
        20 value 196.034495
## iter
        30 value 187.404516
## iter 40 value 184.740426
## iter 50 value 183.803042
## iter 60 value 182.469905
## iter 70 value 181.548907
## iter 80 value 181.050012
## iter 90 value 181.042628
## iter 100 value 181.041273
## final value 181.041273
## stopped after 100 iterations
## # weights: 91
## initial value 295.589292
## iter 10 value 207.686865
## iter 20 value 195.559186
## iter 30 value 183.435384
## iter 40 value 178.107902
## iter 50 value 175.081138
## iter 60 value 173.177045
## iter 70 value 172.404727
## iter 80 value 172.160898
## iter 90 value 170.845103
## iter 100 value 169.730294
## final value 169.730294
## stopped after 100 iterations
## # weights: 11
## initial value 325.259963
## iter 10 value 220.428977
## iter 20 value 216.445373
## iter 30 value 216.361656
## final value 216.358693
## converged
## # weights: 31
## initial value 353.524393
## iter 10 value 210.374544
## iter
        20 value 201.894904
## iter
        30 value 199.026337
## iter
        40 value 196.989192
## iter 50 value 196.918456
## iter
        60 value 196.842544
## iter 70 value 196.541469
        80 value 196.332828
## iter
## iter 90 value 196.179703
## iter 100 value 196.177355
## final value 196.177355
## stopped after 100 iterations
## # weights: 51
## initial value 315.006023
## iter 10 value 218.455975
## iter
        20 value 196.688534
        30 value 186.543410
```

```
40 value 183.354696
## iter
         50 value 182.707516
## iter
## iter
         60 value 182.642502
## iter
         70 value 182.553227
## iter
         80 value 182.443331
## iter
        90 value 182.391246
## iter 100 value 182.366055
## final value 182.366055
## stopped after 100 iterations
## # weights: 71
## initial value 373.816444
## iter 10 value 209.145746
## iter
         20 value 192.344010
## iter
         30 value 168.694983
## iter 40 value 158.662311
## iter 50 value 156.401765
## iter 60 value 155.895956
## iter 70 value 155.642839
## iter 80 value 155.137761
## iter 90 value 154.940034
## iter 100 value 154.922381
## final value 154.922381
## stopped after 100 iterations
## # weights: 91
## initial value 351.152572
## iter 10 value 204.245885
  iter
         20 value 173.646511
  iter
         30 value 158.313775
  iter
         40 value 153.591109
## iter
         50 value 147.052666
         60 value 139.493392
##
  iter
## iter
         70 value 137.219484
## iter
        80 value 135.638641
## iter 90 value 134.576649
## iter 100 value 133.186488
## final value 133.186488
## stopped after 100 iterations
## # weights: 11
## initial value 324.741540
## iter
        10 value 253.856443
## iter
         20 value 244.459931
         30 value 242.320370
## iter
## iter
         40 value 230.270888
         50 value 225.185744
## iter
         60 value 219.549774
## iter
## iter
         70 value 216.054335
## iter
        80 value 215.789616
## iter 90 value 215.511451
## final value 215.509942
## converged
## # weights: 31
## initial value 386.107872
## iter 10 value 223.200648
## iter 20 value 213.080154
```

```
30 value 204.572104
## iter
         40 value 199.906276
## iter
## iter
         50 value 194.757171
## iter
         60 value 191.449662
## iter
         70 value 190.441356
## iter 80 value 190.255081
## iter 90 value 189.915171
## iter 100 value 189.809896
## final value 189.809896
## stopped after 100 iterations
## # weights: 51
## initial value 330.744233
## iter 10 value 207.276268
## iter
        20 value 190.020453
## iter
        30 value 177.458316
## iter 40 value 168.755188
## iter 50 value 163.419447
## iter 60 value 162.367506
## iter 70 value 161.502288
## iter 80 value 161.245673
## iter 90 value 161.223547
## iter 100 value 161.204787
## final value 161.204787
## stopped after 100 iterations
## # weights: 71
## initial value 352.841442
## iter 10 value 207.785865
## iter
         20 value 182.868543
  iter
         30 value 151.045132
## iter
         40 value 140.757368
         50 value 138.137951
##
  iter
##
  iter
         60 value 132.452886
##
  iter
        70 value 128.708977
## iter
        80 value 126.899747
## iter 90 value 124.442077
## iter 100 value 123.891260
## final value 123.891260
## stopped after 100 iterations
## # weights: 91
## initial value 501.673062
## iter 10 value 210.681296
## iter
         20 value 185.878311
## iter
         30 value 157.069981
## iter 40 value 141.039453
## iter
        50 value 132.415837
## iter
        60 value 128.346846
## iter
        70 value 126.619558
## iter
        80 value 124.994394
## iter 90 value 122.508020
## iter 100 value 120.065320
## final value 120.065320
## stopped after 100 iterations
## # weights: 11
## initial value 347.404779
```

```
10 value 230.352619
## iter
## iter
         20 value 227.544645
         30 value 225.920168
## iter
## iter
         40 value 216.574205
## iter
         50 value 215.434948
## iter
        60 value 215.380643
         70 value 215.346426
## iter
## iter
        80 value 215.345884
         80 value 215.345882
## iter
## iter 80 value 215.345882
## final value 215.345882
## converged
## # weights:
              31
## initial value 321.528195
## iter 10 value 222.470661
        20 value 211.575650
## iter
## iter
        30 value 204.783665
         40 value 199.326615
## iter
## iter
         50 value 198.027925
## iter
        60 value 196.738824
        70 value 190.446539
## iter
## iter
        80 value 188.809621
## iter 90 value 188.611894
## iter 100 value 188.353695
## final value 188.353695
## stopped after 100 iterations
## # weights: 51
## initial value 393.236491
## iter
        10 value 199.222543
## iter
         20 value 181.533427
         30 value 173.674697
##
  iter
##
  iter
         40 value 170.262506
##
  iter
         50 value 165.782861
         60 value 158.920080
  iter
##
         70 value 153.957119
##
  iter
  iter
         80 value 152.709695
## iter 90 value 151.772862
## iter 100 value 151.196693
## final value 151.196693
## stopped after 100 iterations
## # weights: 71
## initial value 406.835188
## iter
        10 value 204.046177
         20 value 172.645743
## iter
## iter
         30 value 156.803622
## iter
        40 value 147.128785
## iter
         50 value 137.636444
## iter
         60 value 134.903569
## iter 70 value 134.340987
        80 value 133.853524
## iter
## iter 90 value 133.637975
## iter 100 value 133.256524
## final value 133.256524
## stopped after 100 iterations
```

```
## # weights: 91
## initial value 463.192068
## iter 10 value 203.626715
## iter
        20 value 157.500336
## iter
        30 value 129.191049
## iter 40 value 107.723685
## iter 50 value 97.288800
## iter 60 value 93.950638
## iter 70 value 88.278655
## iter 80 value 83.926843
## iter 90 value 83.455025
## iter 100 value 83.138178
## final value 83.138178
## stopped after 100 iterations
## # weights: 11
## initial value 433.841878
## iter 10 value 234.503667
## iter 20 value 217.722153
## iter 30 value 216.957536
## iter 40 value 216.828154
## iter 40 value 216.828153
## iter 40 value 216.828153
## final value 216.828153
## converged
## # weights: 31
## initial value 446.984964
## iter 10 value 209.663187
## iter
        20 value 204.108554
## iter
        30 value 201.931222
## iter
        40 value 199.523362
        50 value 188.209797
## iter
## iter
        60 value 184.053287
## iter
        70 value 184.021983
        80 value 184.019918
## iter
## iter 90 value 184.018829
## final value 184.018825
## converged
## # weights: 51
## initial value 368.519109
## iter 10 value 213.266831
## iter
        20 value 196.853019
## iter
        30 value 182.766197
## iter
        40 value 175.275230
        50 value 167.050344
## iter
        60 value 160.485047
## iter
## iter
        70 value 157.532014
## iter 80 value 156.579041
## iter 90 value 156.518559
## iter 100 value 156.502002
## final value 156.502002
## stopped after 100 iterations
## # weights: 71
## initial value 520.225738
## iter 10 value 208.266051
```

```
20 value 176.769473
## iter
         30 value 155.144493
## iter
## iter
         40 value 137.962268
## iter
         50 value 128.201721
## iter
         60 value 123.488728
## iter
         70 value 121.563099
        80 value 120.720506
## iter
## iter 90 value 120.502941
## iter 100 value 120.439249
## final value 120.439249
## stopped after 100 iterations
## # weights: 91
## initial value 352.727232
## iter 10 value 207.307337
## iter
         20 value 174.166171
         30 value 139.185578
## iter
## iter 40 value 112.797548
## iter
         50 value 99.102456
## iter 60 value 94.119357
## iter 70 value 91.086674
## iter 80 value 89.171300
## iter 90 value 87.481288
## iter 100 value 85.706906
## final value 85.706906
## stopped after 100 iterations
## # weights: 11
## initial value 338.837582
## iter 10 value 227.518859
## iter
         20 value 220.568861
## iter
        30 value 220.523286
## final value 220.520573
## converged
## # weights: 31
## initial value 326.915057
## iter 10 value 212.783964
## iter
         20 value 206.693861
         30 value 206.248528
## iter
  iter
         40 value 206.086990
  iter
         50 value 204.912093
##
         60 value 201.658151
##
  iter
## iter
         70 value 201.202429
        80 value 200.815297
## iter
## iter 90 value 200.770409
## final value 200.768084
## converged
## # weights: 51
## initial value 341.048149
## iter 10 value 234.477071
## iter 20 value 216.364286
## iter
         30 value 206.555004
## iter 40 value 204.603424
         50 value 201.959958
## iter
## iter
        60 value 198.397683
         70 value 193.173374
```

```
## iter 80 value 191.811506
## iter 90 value 191.596852
## iter 100 value 191.554365
## final value 191.554365
## stopped after 100 iterations
## # weights: 71
## initial value 328.504061
## iter 10 value 224.912462
## iter
         20 value 205.527467
## iter 30 value 194.584043
        40 value 191.013753
## iter
         50 value 188.011805
## iter
## iter 60 value 185.684340
## iter 70 value 184.908483
## iter 80 value 184.625424
## iter 90 value 184.432588
## iter 100 value 184.408718
## final value 184.408718
## stopped after 100 iterations
## # weights: 91
## initial value 405.375685
## iter 10 value 216.722123
## iter
         20 value 195.862004
## iter 30 value 186.416098
         40 value 181.076587
## iter
         50 value 178.385990
## iter
  iter
         60 value 173.551061
##
##
  iter
         70 value 172.408099
  iter
         80 value 171.748820
        90 value 171.464811
## iter 100 value 171.323264
## final value 171.323264
## stopped after 100 iterations
## # weights: 11
## initial value 392.268258
## iter 10 value 233.974198
         20 value 227.445195
## iter
  iter
         30 value 225.830780
## iter 40 value 218.539452
## iter 50 value 217.400718
## final value 217.286976
## converged
## # weights: 31
## initial value 330.452408
## iter 10 value 222.659155
## iter
         20 value 204.961514
## iter
         30 value 196.885444
## iter 40 value 194.885432
## iter 50 value 192.251543
## iter 60 value 191.483253
## iter 70 value 191.465942
        80 value 191.453055
## iter
## iter 90 value 191.437530
## final value 191.436409
```

```
## converged
## # weights: 51
## initial value 332.712184
## iter 10 value 206.123231
## iter
        20 value 191.351209
## iter 30 value 183.872086
## iter 40 value 179.670594
## iter 50 value 177.565698
## iter 60 value 176.302430
## iter 70 value 175.927525
## iter 80 value 175.906868
## iter 90 value 175.856389
## iter 100 value 175.620173
## final value 175.620173
## stopped after 100 iterations
## # weights: 71
## initial value 403.159663
## iter 10 value 216.659908
## iter 20 value 194.799376
## iter 30 value 180.071975
## iter 40 value 164.260251
## iter 50 value 152.409826
## iter
        60 value 150.048191
## iter 70 value 148.765003
## iter 80 value 146.721877
## iter 90 value 144.703376
## iter 100 value 143.792653
## final value 143.792653
## stopped after 100 iterations
## # weights: 91
## initial value 510.069498
## iter 10 value 207.685587
## iter
        20 value 178.905027
        30 value 158.187629
## iter
## iter 40 value 140.538821
##
  iter
        50 value 132.811188
        60 value 127.159029
## iter
  iter
        70 value 124.873479
## iter
        80 value 124.270105
## iter 90 value 123.736707
## iter 100 value 123.005707
## final value 123.005707
## stopped after 100 iterations
## # weights: 11
## initial value 315.487617
## iter 10 value 232.208636
## iter 20 value 225.365204
## iter 30 value 225.211875
## iter 40 value 224.830568
## iter 50 value 218.224978
## iter 60 value 216.925343
## final value 216.876353
## converged
## # weights: 31
```

```
## initial value 409.843342
## iter
         10 value 210.576353
         20 value 196.282243
## iter
## iter
         30 value 194.498685
## iter
         40 value 192.648452
## iter
         50 value 190.431619
        60 value 189.831738
## iter
## iter
        70 value 189.539849
        80 value 189.490145
## iter
## iter 90 value 189.422656
## final value 189.422238
## converged
## # weights:
              51
## initial value 303.705206
## iter 10 value 207.940474
        20 value 178.509484
## iter
## iter 30 value 166.124913
        40 value 160.580899
## iter
## iter
        50 value 159.676701
## iter
        60 value 159.551615
        70 value 159.388478
## iter
## iter
        80 value 159.333819
## iter 90 value 159.331772
## iter 100 value 159.330933
## final value 159.330933
## stopped after 100 iterations
## # weights: 71
## initial value 317.930886
## iter
        10 value 206.698371
## iter
         20 value 183.675919
         30 value 166.194304
##
  iter
##
  iter
         40 value 153.580771
##
  iter
         50 value 146.581645
         60 value 143.028170
  iter
##
        70 value 141.919816
##
  iter
  iter
         80 value 141.528931
## iter 90 value 141.038045
## iter 100 value 140.674283
## final value 140.674283
## stopped after 100 iterations
## # weights: 91
## initial value 328.344333
## iter
        10 value 199.577197
         20 value 170.289969
## iter
## iter
         30 value 137.066221
## iter
        40 value 114.317677
## iter
         50 value 107.849606
## iter
         60 value 106.786386
## iter 70 value 105.700793
        80 value 104.176909
## iter
## iter 90 value 103.727819
## iter 100 value 103.199197
## final value 103.199197
## stopped after 100 iterations
```

```
## # weights: 11
## initial value 331.769942
## iter 10 value 223.196643
## iter 20 value 216.892855
## iter 30 value 216.843134
## final value 216.833001
## converged
## # weights: 31
## initial value 314.360356
## iter 10 value 210.488326
## iter 20 value 196.107092
        30 value 191.031705
## iter
## iter 40 value 188.206043
## iter 50 value 181.518082
## iter 60 value 180.410584
## iter 70 value 180.304858
## iter 80 value 180.116440
## iter 90 value 179.389199
## iter 100 value 179.053838
## final value 179.053838
## stopped after 100 iterations
## # weights: 51
## initial value 329.650280
## iter 10 value 207.280715
## iter
        20 value 186.724159
        30 value 177.633964
## iter
## iter
        40 value 170.521228
## iter
        50 value 159.365087
  iter
        60 value 157.589106
## iter 70 value 156.999006
## iter 80 value 156.863357
## iter 90 value 156.570672
## iter 100 value 156.097739
## final value 156.097739
## stopped after 100 iterations
## # weights: 71
## initial value 403.929080
## iter 10 value 216.863522
## iter
        20 value 182.513754
## iter
        30 value 160.405845
## iter
        40 value 138.930151
## iter 50 value 133.089843
## iter 60 value 127.023069
## iter 70 value 119.218015
## iter 80 value 110.155876
## iter 90 value 102.857948
## iter 100 value 101.748282
## final value 101.748282
## stopped after 100 iterations
## # weights: 91
## initial value 491.032090
## iter 10 value 203.353091
## iter 20 value 173.216701
## iter 30 value 146.472643
```

```
40 value 130.184078
## iter
         50 value 121.930047
## iter
## iter
         60 value 116.894538
## iter
         70 value 113.127138
## iter
         80 value 110.891922
## iter 90 value 110.335713
## iter 100 value 109.868160
## final value 109.868160
## stopped after 100 iterations
## # weights: 11
## initial value 378.944033
## iter 10 value 235.558165
## iter
        20 value 230.781472
## iter
        30 value 229.591629
## iter 40 value 219.345824
## iter 50 value 217.893192
## iter 60 value 217.873221
## final value 217.873219
## converged
## # weights: 31
## initial value 346.402457
## iter 10 value 217.753567
## iter
         20 value 205.325462
## iter 30 value 198.947214
         40 value 196.849835
## iter
         50 value 191.678833
## iter
  iter
         60 value 189.779713
##
##
  iter
         70 value 187.918435
  iter
        80 value 187.517816
        90 value 186.588139
## iter 100 value 181.717809
## final value 181.717809
## stopped after 100 iterations
## # weights: 51
## initial value 399.181166
## iter
        10 value 207.781093
         20 value 188.901379
## iter
  iter
         30 value 162.077737
  iter
        40 value 152.857117
##
         50 value 146.695077
##
  iter
## iter
         60 value 143.937824
## iter 70 value 141.574819
## iter
        80 value 137.444387
## iter 90 value 132.379067
## iter 100 value 130.486973
## final value 130.486973
## stopped after 100 iterations
## # weights: 71
## initial value 324.641111
## iter 10 value 217.980560
## iter 20 value 192.753094
        30 value 182.201996
## iter
## iter 40 value 173.455352
        50 value 164.049277
```

```
## iter 60 value 153.570954
        70 value 143.158290
## iter
        80 value 138.991313
## iter
        90 value 135.370796
## iter
## iter 100 value 127.882420
## final value 127.882420
## stopped after 100 iterations
## # weights: 91
## initial value 341.243873
## iter 10 value 210.137893
        20 value 176.887548
## iter
        30 value 142.486949
## iter
## iter 40 value 129.963740
## iter
        50 value 117.451243
## iter 60 value 108.812394
## iter 70 value 102.327357
## iter 80 value 97.502645
## iter 90 value 91.666537
## iter 100 value 86.536573
## final value 86.536573
## stopped after 100 iterations
## # weights: 11
## initial value 324.963759
## iter 10 value 227.581819
## iter
        20 value 221.449143
## iter 30 value 221.198359
## iter 40 value 221.198201
## final value 221.198147
## converged
## # weights: 31
## initial value 402.814233
## iter 10 value 229.374369
## iter 20 value 217.241702
        30 value 211.644265
## iter
## iter 40 value 208.314043
## iter
        50 value 206.455089
## iter 60 value 206.402442
## final value 206.402236
## converged
## # weights: 51
## initial value 324.865003
## iter 10 value 221.867399
## iter
        20 value 208.164755
        30 value 202.366359
## iter
## iter
        40 value 198.011580
        50 value 194.002941
## iter
## iter 60 value 192.437248
## iter 70 value 191.551814
## iter 80 value 191.188479
## iter 90 value 191.135736
## final value 191.135282
## converged
## # weights: 71
## initial value 367.838062
```

```
10 value 213.856356
## iter
## iter
         20 value 199.627621
         30 value 192.344085
## iter
## iter
         40 value 184.877513
## iter
         50 value 181.656762
## iter
        60 value 180.753518
         70 value 180.179696
## iter
## iter 80 value 180.053045
## iter 90 value 179.893522
## iter 100 value 179.837448
## final value 179.837448
## stopped after 100 iterations
## # weights: 91
## initial value 650.606590
## iter 10 value 217.913423
        20 value 192.442915
## iter
## iter 30 value 180.578438
         40 value 174.506699
## iter
## iter
        50 value 171.709740
## iter
        60 value 170.834952
        70 value 168.696216
## iter
## iter
        80 value 166.696583
## iter 90 value 166.395014
## iter 100 value 166.324495
## final value 166.324495
## stopped after 100 iterations
## # weights: 11
## initial value 314.318100
## iter 10 value 223.492186
## iter
         20 value 218.415009
## iter 30 value 218.257951
## final value 218.257947
## converged
## # weights: 31
## initial value 363.937367
## iter
        10 value 225.015116
         20 value 212.520756
## iter
  iter
         30 value 200.297400
  iter
         40 value 198.884480
##
         50 value 198.723341
##
  iter
## iter
         60 value 198.580203
        70 value 198.549175
## iter
## iter 80 value 198.548919
## final value 198.548872
## converged
## # weights: 51
## initial value 305.485802
## iter 10 value 214.249225
## iter 20 value 191.144675
## iter
         30 value 171.629693
## iter 40 value 168.087615
         50 value 166.777675
## iter
        60 value 166.554016
## iter
         70 value 166.464184
```

```
## iter 80 value 166.444248
## iter 90 value 166.442102
## iter 100 value 166.441371
## final value 166.441371
## stopped after 100 iterations
## # weights: 71
## initial value 723.788316
## iter 10 value 198.501449
## iter
         20 value 170.351495
## iter 30 value 161.712429
## iter
        40 value 157.352971
         50 value 155.630282
## iter
## iter 60 value 153.729003
## iter 70 value 153.039323
## iter 80 value 150.564768
## iter 90 value 149.621329
## iter 100 value 149.292293
## final value 149.292293
## stopped after 100 iterations
## # weights: 91
## initial value 318.453656
## iter 10 value 212.799836
## iter
         20 value 184.419352
## iter
        30 value 163.669700
         40 value 153.568411
## iter
         50 value 150.668599
## iter
  iter
         60 value 149.176925
##
##
  iter
         70 value 148.218753
## iter
         80 value 147.973328
        90 value 147.440653
## iter 100 value 146.412926
## final value 146.412926
## stopped after 100 iterations
## # weights: 11
## initial value 322.612885
## iter 10 value 220.313596
         20 value 218.025335
## iter
## iter
        30 value 217.913532
## final value 217.912755
## converged
## # weights: 31
## initial value 379.112838
## iter 10 value 212.747457
         20 value 200.107434
## iter
## iter
         30 value 193.223807
## iter 40 value 190.633784
## iter
         50 value 189.706437
## iter
         60 value 189.637170
## iter 70 value 189.617725
## iter 80 value 189.545653
## iter 90 value 189.398735
## iter 100 value 189.348999
## final value 189.348999
## stopped after 100 iterations
```

weights: 51 ## initial value 364.852284 ## iter 10 value 230.542204 ## iter 20 value 207.031851 ## iter 30 value 194.504411 ## iter 40 value 182.239289 ## iter 50 value 178.994430 ## iter 60 value 175.060858 ## iter 70 value 173.949513 ## iter 80 value 173.167272 ## iter 90 value 172.673744 ## iter 100 value 171.566619 ## final value 171.566619 ## stopped after 100 iterations ## # weights: 71 ## initial value 363.061425 ## iter 10 value 215.635186 ## iter 20 value 190.476088 ## iter 30 value 168.524231 ## iter 40 value 151.700819 ## iter 50 value 136.723854 ## iter 60 value 131.809642 ## iter 70 value 130.121106 ## iter 80 value 128.999319 ## iter 90 value 128.600524 ## iter 100 value 128.198891 ## final value 128.198891 ## stopped after 100 iterations ## # weights: 91 ## initial value 344.850678 ## iter 10 value 206.076953 ## iter 20 value 177.595809 ## iter 30 value 141.292164 40 value 128.389513 ## iter 50 value 123.738539 ## iter ## iter 60 value 122.241440 70 value 119.791719 ## iter ## iter 80 value 118.888472 ## iter 90 value 118.500809 ## iter 100 value 118.302992 ## final value 118.302992 ## stopped after 100 iterations ## # weights: 11 ## initial value 326.282984 ## iter 10 value 236.399670 ## iter 20 value 219.186830 ## iter 30 value 217.969314 ## final value 217.877184 ## converged ## # weights: 31 ## initial value 447.328008 ## iter 10 value 212.274360 ## iter 20 value 196.793235 30 value 192.598702

```
40 value 188.281818
## iter
         50 value 186.916946
## iter
## iter
         60 value 186.558245
## iter
         70 value 186.477757
## iter
         80 value 185.834508
## iter 90 value 184.656832
## iter 100 value 184.544748
## final value 184.544748
## stopped after 100 iterations
## # weights: 51
## initial value 339.784070
## iter 10 value 207.402724
## iter
         20 value 187.182263
## iter
         30 value 178.099172
## iter 40 value 172.637400
## iter 50 value 163.741865
## iter 60 value 160.228230
## iter 70 value 160.000435
## iter 80 value 159.838255
## iter 90 value 159.780989
## iter 100 value 159.704799
## final value 159.704799
## stopped after 100 iterations
## # weights: 71
## initial value 336.984068
## iter 10 value 209.758621
  iter
         20 value 163.199984
  iter
         30 value 145.194738
  iter
         40 value 134.475235
## iter
         50 value 125.823611
        60 value 124.629980
##
  iter
## iter
        70 value 124.282832
## iter 80 value 124.092167
## iter 90 value 123.874336
## iter 100 value 123.670873
## final value 123.670873
## stopped after 100 iterations
## # weights: 91
## initial value 411.294444
## iter 10 value 204.505367
## iter
         20 value 177.339620
         30 value 146.559360
## iter
## iter
         40 value 125.885250
         50 value 115.544435
## iter
         60 value 110.489124
## iter
## iter
         70 value 107.587172
## iter
        80 value 106.776571
## iter 90 value 106.081788
## iter 100 value 105.746711
## final value 105.746711
## stopped after 100 iterations
## # weights: 11
## initial value 366.967595
## iter 10 value 235.899693
```

```
20 value 222.227305
## iter
## iter
         30 value 217.303999
## iter 40 value 216.622038
## final value 216.584359
## converged
## # weights: 31
## initial value 312.050345
## iter 10 value 219.873682
## iter
        20 value 205.084630
## iter 30 value 197.748357
        40 value 192.496908
## iter
        50 value 186.610885
## iter
## iter 60 value 185.310158
## iter 70 value 184.627277
## iter 80 value 183.622484
## iter 90 value 183.077644
## iter 100 value 181.329526
## final value 181.329526
## stopped after 100 iterations
## # weights: 51
## initial value 366.313394
## iter 10 value 216.645516
## iter
         20 value 198.083360
## iter 30 value 186.498551
         40 value 172.856744
## iter
         50 value 166.833890
## iter
  iter
         60 value 163.231575
##
  iter
         70 value 160.577445
  iter
        80 value 159.010484
## iter 90 value 157.981312
## iter 100 value 156.729973
## final value 156.729973
## stopped after 100 iterations
## # weights: 71
## initial value 301.001820
## iter
        10 value 207.167709
         20 value 172.838245
## iter
  iter
         30 value 152.204040
  iter
        40 value 139.461947
##
         50 value 129.218065
##
  iter
## iter
         60 value 116.755592
## iter 70 value 110.149148
        80 value 108.451561
## iter
## iter 90 value 108.352821
## iter 100 value 108.351790
## final value 108.351790
## stopped after 100 iterations
## # weights: 91
## initial value 347.723947
## iter 10 value 205.456013
## iter 20 value 169.843891
        30 value 146.821324
## iter
## iter 40 value 105.818141
        50 value 92.606156
```

```
60 value 87.942738
## iter
         70 value 82.052865
## iter
        80 value 74.887568
## iter
         90 value 70.711867
## iter
## iter 100 value 69.160754
## final value 69.160754
## stopped after 100 iterations
## # weights: 11
## initial value 419.981414
## iter 10 value 224.925371
## iter 20 value 220.288071
## iter 30 value 220.168168
## final value 220.162819
## converged
## # weights: 31
## initial value 318.409989
## iter 10 value 224.792358
## iter 20 value 218.053189
## iter 30 value 211.822797
## iter 40 value 208.209686
## iter 50 value 206.383179
        60 value 204.754860
## iter
## iter 70 value 204.630417
## iter 80 value 204.614705
## final value 204.613247
## converged
## # weights: 51
## initial value 312.973192
## iter
        10 value 211.374609
## iter
         20 value 198.124381
  iter
         30 value 192.898355
##
  iter
         40 value 187.405658
## iter
         50 value 185.300507
         60 value 184.384651
## iter
        70 value 183.765663
## iter
## iter
         80 value 183.465029
## iter 90 value 183.402494
## iter 100 value 183.396137
## final value 183.396137
## stopped after 100 iterations
## # weights: 71
## initial value 321.932520
## iter
        10 value 210.568588
         20 value 191.572837
## iter
## iter
         30 value 185.275417
## iter 40 value 180.741205
## iter
         50 value 178.633028
## iter
         60 value 177.334527
## iter 70 value 176.630082
## iter 80 value 175.666879
## iter 90 value 175.120641
## iter 100 value 174.962305
## final value 174.962305
## stopped after 100 iterations
```

```
## # weights: 91
## initial value 320.159928
## iter 10 value 215.187464
## iter
        20 value 195.179570
## iter
        30 value 181.466679
## iter 40 value 175.179363
## iter 50 value 172.789535
## iter 60 value 171.680141
## iter 70 value 170.005882
## iter 80 value 169.845833
## iter 90 value 169.806075
## iter 100 value 169.798336
## final value 169.798336
## stopped after 100 iterations
## # weights: 11
## initial value 358.916244
## iter 10 value 221.340355
## iter 20 value 217.111240
## iter 30 value 217.015557
## iter 40 value 217.014443
## iter 40 value 217.014442
## iter 40 value 217.014442
## final value 217.014442
## converged
## # weights: 31
## initial value 320.266264
## iter 10 value 214.569907
## iter
        20 value 196.088711
## iter
        30 value 190.350879
## iter
        40 value 189.501295
## iter 50 value 187.237439
## iter
        60 value 186.551174
## iter 70 value 186.413473
## iter 80 value 186.409508
## final value 186.409500
## converged
## # weights: 51
## initial value 317.934115
## iter 10 value 221.197219
## iter
        20 value 201.490529
## iter
        30 value 190.083675
## iter 40 value 178.921710
        50 value 173.522111
## iter
## iter 60 value 172.410698
## iter 70 value 171.573644
## iter 80 value 171.136624
## iter 90 value 169.174022
## iter 100 value 165.619392
## final value 165.619392
## stopped after 100 iterations
## # weights: 71
## initial value 399.675350
## iter 10 value 213.773598
## iter 20 value 187.187437
```

```
30 value 165.993609
## iter
         40 value 157.105123
## iter
## iter
         50 value 153.507324
## iter
         60 value 149.252881
## iter
         70 value 146.937062
        80 value 146.296794
## iter
        90 value 146.046641
## iter
## iter 100 value 145.911632
## final value 145.911632
## stopped after 100 iterations
## # weights: 91
## initial value 320.968435
## iter 10 value 205.017120
## iter
         20 value 181.093875
## iter
         30 value 154.296592
        40 value 133.743909
## iter
## iter 50 value 128.458367
## iter 60 value 125.387454
## iter 70 value 123.688963
## iter 80 value 123.115361
## iter 90 value 122.800012
## iter 100 value 122.686278
## final value 122.686278
## stopped after 100 iterations
## # weights: 11
## initial value 419.868901
## iter 10 value 235.417650
## iter
         20 value 231.284705
  iter
         30 value 228.988311
## iter
         40 value 225.912140
         50 value 217.619319
  iter
## iter 60 value 216.670626
## final value 216.629054
## converged
## # weights:
              31
## initial value 409.170552
        10 value 209.361150
## iter
  iter
         20 value 194.303804
## iter
         30 value 187.332724
         40 value 185.331509
##
  iter
## iter
         50 value 184.224408
        60 value 184.000239
## iter
## iter
        70 value 183.930632
## iter 80 value 183.917959
## iter 90 value 183.874308
## iter 100 value 183.872762
## final value 183.872762
## stopped after 100 iterations
## # weights: 51
## initial value 336.277015
## iter 10 value 206.215584
         20 value 176.339571
## iter
## iter
         30 value 164.810770
        40 value 161.200615
```

```
50 value 158.993081
## iter
## iter
         60 value 158.182773
## iter
         70 value 157.890876
## iter
         80 value 157.314170
## iter
        90 value 157.297342
## iter 100 value 157.289134
## final value 157.289134
## stopped after 100 iterations
## # weights: 71
## initial value 353.844926
## iter
        10 value 201.096648
         20 value 168.089117
## iter
## iter
         30 value 149.035569
## iter 40 value 140.418505
## iter
         50 value 135.127396
## iter 60 value 133.600405
## iter 70 value 131.232960
## iter 80 value 130.749744
## iter 90 value 130.242877
## iter 100 value 130.108370
## final value 130.108370
## stopped after 100 iterations
## # weights: 91
## initial value 350.531079
        10 value 202.977520
## iter
## iter
         20 value 161.022167
  iter
         30 value 136.680382
##
##
  iter
        40 value 127.064960
##
  iter
         50 value 115.322152
  iter
         60 value 112.489500
##
        70 value 110.212573
##
  iter
## iter
         80 value 108.988946
## iter 90 value 108.271027
## iter 100 value 108.065309
## final value 108.065309
## stopped after 100 iterations
## # weights: 11
## initial value 340.257014
## iter 10 value 218.908269
        20 value 216.640944
## iter
## iter 30 value 216.592775
## final value 216.588848
## converged
## # weights: 31
## initial value 318.095811
## iter 10 value 210.087314
## iter
        20 value 200.732960
## iter
         30 value 195.837264
## iter 40 value 194.024582
## iter 50 value 192.128551
## iter 60 value 189.591603
        70 value 188.624419
## iter
        80 value 188.039755
## iter
        90 value 187.888602
```

```
## iter 100 value 187.785583
## final value 187.785583
## stopped after 100 iterations
## # weights: 51
## initial value 376.313596
## iter 10 value 204.850317
         20 value 182.239527
## iter
## iter
         30 value 174.954698
        40 value 168.782128
## iter
## iter 50 value 162.708987
## iter
        60 value 160.490009
         70 value 156.579965
## iter
## iter 80 value 154.348858
## iter 90 value 153.901367
## iter 100 value 153.779695
## final value 153.779695
## stopped after 100 iterations
## # weights: 71
## initial value 457.339941
## iter 10 value 205.130707
        20 value 175.271340
## iter
## iter
         30 value 151.396828
## iter 40 value 143.766906
## iter 50 value 137.062081
        60 value 133.331657
## iter
        70 value 131.553755
## iter
  iter
        80 value 130.802065
##
## iter 90 value 130.304547
## iter 100 value 129.638804
## final value 129.638804
## stopped after 100 iterations
## # weights: 91
## initial value 312.355801
## iter 10 value 209.655423
         20 value 178.632825
## iter
##
  iter
         30 value 147.760211
         40 value 131.621083
## iter
  iter
         50 value 124.127694
         60 value 117.432707
##
  iter
         70 value 116.743286
##
  iter
## iter
        80 value 116.598724
## iter 90 value 116.320552
## iter 100 value 115.874381
## final value 115.874381
## stopped after 100 iterations
## # weights: 11
## initial value 398.130985
## iter 10 value 238.325908
## iter 20 value 228.171780
        30 value 228.067619
## iter
## iter 40 value 226.538828
        50 value 225.251770
## iter
## iter 60 value 223.019932
        70 value 221.849926
```

```
## iter 80 value 221.747691
## final value 221.735670
## converged
## # weights: 31
## initial value 432.910413
## iter 10 value 225.717565
        20 value 200.919814
## iter
## iter
        30 value 194.848558
## iter 40 value 186.505543
## iter 50 value 184.093873
## iter 60 value 179.976307
        70 value 179.441307
## iter
## iter 80 value 179.426227
## iter 90 value 179.417469
## iter 100 value 179.416641
## final value 179.416641
## stopped after 100 iterations
## # weights: 51
## initial value 313.666314
## iter 10 value 211.088855
## iter 20 value 186.787608
## iter
        30 value 177.395455
## iter 40 value 171.452625
## iter 50 value 168.351041
## iter 60 value 165.019348
## iter 70 value 163.935457
## iter 80 value 162.022075
## iter 90 value 160.097357
## iter 100 value 159.371684
## final value 159.371684
## stopped after 100 iterations
## # weights: 71
## initial value 362.257199
## iter 10 value 209.916377
        20 value 172.865250
## iter
  iter
        30 value 159.974861
        40 value 145.247999
## iter
  iter
        50 value 134.027665
        60 value 129.349872
##
  iter
        70 value 123.013705
## iter
## iter 80 value 116.660781
## iter 90 value 115.674291
## iter 100 value 115.450969
## final value 115.450969
## stopped after 100 iterations
## # weights: 91
## initial value 372.971244
## iter 10 value 211.559169
## iter 20 value 171.412886
## iter 30 value 134.734520
## iter 40 value 114.000224
## iter 50 value 101.040786
## iter 60 value 96.764687
## iter 70 value 93.690780
```

```
## iter 80 value 90.024443
## iter 90 value 82.253998
## iter 100 value 77.998981
## final value 77.998981
## stopped after 100 iterations
## # weights: 11
## initial value 316.702259
## iter 10 value 227.336657
## iter 20 value 223.106869
## iter 30 value 223.094417
## final value 223.093973
## converged
## # weights: 31
## initial value 393.306815
## iter 10 value 231.843635
## iter 20 value 212.948347
## iter 30 value 210.120711
## iter 40 value 207.569055
## iter 50 value 205.577904
## iter 60 value 205.475511
## iter 70 value 205.473352
## final value 205.473319
## converged
## # weights: 51
## initial value 337.978285
## iter 10 value 214.131102
## iter
         20 value 202.644980
## iter
         30 value 194.002579
## iter
         40 value 191.937756
## iter
         50 value 191.084443
        60 value 190.287925
## iter
## iter
        70 value 189.536901
## iter 80 value 189.423326
## iter 90 value 189.404693
## final value 189.404684
## converged
## # weights: 71
## initial value 357.407039
## iter 10 value 209.860062
## iter
         20 value 196.408882
## iter
         30 value 190.522998
## iter 40 value 185.412586
## iter
         50 value 180.160566
## iter 60 value 179.193868
## iter 70 value 178.960121
## iter 80 value 178.903341
## iter 90 value 178.897960
## iter 100 value 178.894713
## final value 178.894713
## stopped after 100 iterations
## # weights: 91
## initial value 364.199413
## iter 10 value 225.892727
## iter 20 value 200.996625
```

```
30 value 191.033500
## iter
         40 value 184.860444
## iter
         50 value 182.132210
## iter
## iter
         60 value 180.608623
## iter
         70 value 179.224829
## iter 80 value 178.777611
## iter 90 value 178.637212
## iter 100 value 178.605804
## final value 178.605804
## stopped after 100 iterations
## # weights: 11
## initial value 319.782583
## iter 10 value 226.438795
## iter 20 value 219.906540
## iter 30 value 219.541030
## final value 219.527454
## converged
## # weights: 31
## initial value 403.837833
## iter 10 value 212.236137
        20 value 206.898776
## iter
## iter
         30 value 198.500818
## iter 40 value 196.976228
## iter 50 value 196.456606
         60 value 196.369269
## iter
        70 value 196.355575
## iter
## iter 70 value 196.355575
## iter 70 value 196.355575
## final value 196.355575
## converged
## # weights: 51
## initial value 567.635107
## iter
        10 value 207.084623
         20 value 183.739099
## iter
         30 value 169.472705
## iter
  iter
         40 value 165.887995
         50 value 164.791351
## iter
  iter
         60 value 163.826248
         70 value 163.656715
## iter
         80 value 163.582450
## iter
## iter 90 value 163.579313
## final value 163.579306
## converged
## # weights: 71
## initial value 409.329176
## iter 10 value 207.049003
## iter
         20 value 178.578871
## iter
         30 value 160.555299
## iter 40 value 156.441873
## iter 50 value 154.452504
## iter 60 value 152.367454
        70 value 151.954562
## iter
## iter
        80 value 151.736330
        90 value 151.280801
```

```
## iter 100 value 150.440831
## final value 150.440831
## stopped after 100 iterations
## # weights: 91
## initial value 346.527355
## iter 10 value 209.439768
## iter 20 value 175.362016
## iter 30 value 156.197104
## iter 40 value 144.786340
## iter 50 value 134.541683
## iter 60 value 129.125895
        70 value 127.927375
## iter
## iter 80 value 127.077419
## iter 90 value 126.428953
## iter 100 value 124.624952
## final value 124.624952
## stopped after 100 iterations
## # weights: 11
## initial value 336.810918
## iter 10 value 225.112009
## iter 20 value 219.415444
## iter 30 value 219.113765
## final value 219.098846
## converged
## # weights: 31
## initial value 346.465224
## iter 10 value 211.443468
## iter
        20 value 206.526222
## iter
        30 value 201.240263
## iter
        40 value 192.438140
        50 value 189.810379
## iter
## iter
        60 value 186.149401
## iter 70 value 185.984077
        80 value 185.949565
## iter
## iter 90 value 185.896684
## iter 100 value 185.888021
## final value 185.888021
## stopped after 100 iterations
## # weights: 51
## initial value 310.542794
## iter 10 value 208.870817
## iter 20 value 185.736030
## iter
        30 value 172.139025
## iter 40 value 167.967388
## iter 50 value 163.207211
## iter 60 value 162.200436
## iter 70 value 161.537666
## iter 80 value 161.197507
## iter 90 value 161.040527
## iter 100 value 160.881675
## final value 160.881675
## stopped after 100 iterations
## # weights: 71
## initial value 367.050792
```

```
10 value 206.089775
## iter
         20 value 177.724053
## iter
## iter
         30 value 162.823881
## iter
         40 value 153.977614
## iter
         50 value 145.959665
## iter
        60 value 143.836972
        70 value 143.060820
## iter
## iter 80 value 142.318602
## iter 90 value 141.558480
## iter 100 value 141.472958
## final value 141.472958
## stopped after 100 iterations
## # weights: 91
## initial value 434.161248
## iter 10 value 207.803595
        20 value 180.245633
## iter
## iter 30 value 142.554055
        40 value 122.257459
## iter
## iter
        50 value 109.360553
## iter
        60 value 106.172962
        70 value 104.541941
## iter
## iter
        80 value 103.164445
## iter 90 value 102.275166
## iter 100 value 101.487559
## final value 101.487559
## stopped after 100 iterations
## # weights: 11
## initial value 399.071302
## iter 10 value 221.037885
## iter
         20 value 219.096104
## iter 30 value 219.053202
## final value 219.053186
## converged
## # weights: 31
## initial value 321.206505
## iter
        10 value 219.287980
         20 value 207.134920
## iter
  iter
         30 value 201.468404
  iter
         40 value 192.797944
##
         50 value 186.351664
##
  iter
## iter
         60 value 183.535731
        70 value 182.878135
## iter
## iter
         80 value 182.283025
## iter 90 value 181.986405
## iter 100 value 181.923203
## final value 181.923203
## stopped after 100 iterations
## # weights: 51
## initial value 339.252614
## iter 10 value 206.980822
## iter 20 value 193.246527
         30 value 181.804704
## iter
## iter 40 value 171.774093
         50 value 165.059145
```

```
60 value 160.134494
## iter
         70 value 158.579315
## iter
## iter
         80 value 158.234445
        90 value 157.973636
## iter
## iter 100 value 157.871547
## final value 157.871547
## stopped after 100 iterations
## # weights: 71
## initial value 304.237538
## iter 10 value 207.107528
         20 value 180.564654
## iter
         30 value 157.500285
## iter
## iter
        40 value 147.738311
## iter
         50 value 142.516504
## iter 60 value 136.044131
## iter 70 value 132.396374
## iter 80 value 131.705191
## iter 90 value 131.556775
## iter 100 value 131.472549
## final value 131.472549
## stopped after 100 iterations
## # weights: 91
## initial value 322.615379
## iter 10 value 206.244851
         20 value 173.633372
## iter
         30 value 142.964117
## iter
  iter
         40 value 124.517963
##
##
  iter
         50 value 109.604850
##
  iter
         60 value 100.623077
## iter
         70 value 94.743718
        80 value 91.513718
## iter
        90 value 81.857481
## iter
## iter 100 value 79.016328
## final value 79.016328
## stopped after 100 iterations
## # weights: 11
## initial value 368.624443
## iter 10 value 234.308670
## iter
         20 value 231.344442
         30 value 227.737543
## iter
## iter
         40 value 220.589433
         50 value 219.142615
## iter
## iter 60 value 219.133752
## final value 219.133617
## converged
## # weights: 31
## initial value 474.067607
## iter 10 value 206.715854
## iter 20 value 199.458813
## iter
         30 value 193.860047
## iter 40 value 182.435757
         50 value 178.155555
## iter
## iter 60 value 177.986780
## final value 177.986073
```

```
## converged
## # weights: 51
## initial value 362.942650
## iter 10 value 207.683375
## iter
        20 value 182.245652
## iter 30 value 167.675655
## iter 40 value 161.021962
## iter 50 value 155.512446
## iter 60 value 149.715778
## iter 70 value 143.396203
## iter 80 value 140.216175
## iter 90 value 139.985311
## iter 100 value 139.950258
## final value 139.950258
## stopped after 100 iterations
## # weights: 71
## initial value 431.716670
## iter 10 value 206.354468
## iter 20 value 182.510952
## iter 30 value 164.946851
## iter 40 value 155.807413
## iter 50 value 148.058089
## iter
        60 value 140.175220
## iter 70 value 134.480435
## iter 80 value 129.576021
## iter 90 value 128.550790
## iter 100 value 127.346333
## final value 127.346333
## stopped after 100 iterations
## # weights: 91
## initial value 495.194475
## iter 10 value 200.476736
## iter 20 value 161.981710
        30 value 129.724623
## iter
## iter 40 value 106.730326
## iter
        50 value 97.702177
        60 value 88.893768
## iter
## iter 70 value 83.029580
## iter
        80 value 79.839351
## iter 90 value 78.388719
## iter 100 value 78.221292
## final value 78.221292
## stopped after 100 iterations
## # weights: 11
## initial value 422.413056
## iter 10 value 243.742430
## iter 20 value 222.886091
## iter 30 value 222.783044
## final value 222.781311
## converged
## # weights: 31
## initial value 322.994173
## iter 10 value 245.078065
## iter 20 value 215.660753
```

```
## iter
         30 value 211.968220
         40 value 210.943531
## iter
## iter
         50 value 210.207168
## iter
         60 value 210.150110
## iter
         70 value 210.148714
## iter 70 value 210.148712
## iter 70 value 210.148712
## final value 210.148712
## converged
## # weights: 51
## initial value 328.567867
## iter 10 value 213.603640
## iter
         20 value 202.119597
## iter
         30 value 194.497844
## iter 40 value 191.919217
## iter 50 value 191.167917
## iter 60 value 191.012118
## iter 70 value 190.958670
## iter 80 value 190.955129
## iter 90 value 190.954567
## iter 90 value 190.954566
## iter 90 value 190.954566
## final value 190.954566
## converged
## # weights: 71
## initial value 475.869344
## iter 10 value 216.933494
## iter
         20 value 199.696590
  iter
         30 value 190.235083
## iter
         40 value 188.688701
         50 value 186.602526
##
  iter
##
  iter
         60 value 184.009099
## iter
        70 value 182.965140
        80 value 180.453449
## iter
## iter 90 value 179.214505
## iter 100 value 179.046512
## final value 179.046512
## stopped after 100 iterations
## # weights:
              91
## initial value 336.020685
## iter
        10 value 211.141377
## iter
         20 value 192.353343
## iter
         30 value 180.673074
## iter 40 value 172.691726
        50 value 169.794759
## iter
## iter
        60 value 167.367191
## iter
        70 value 165.287544
## iter
        80 value 164.773609
## iter 90 value 164.683834
## iter 100 value 164.619606
## final value 164.619606
## stopped after 100 iterations
## # weights: 11
## initial value 410.974332
```

```
## iter 10 value 229.651590
## iter
        20 value 220.036264
## iter 30 value 219.610178
## final value 219.585719
## converged
## # weights: 31
## initial value 299.104688
## iter 10 value 220.036120
## iter
        20 value 204.965426
## iter 30 value 202.558765
        40 value 201.285294
## iter
        50 value 200.831412
## iter
## iter 60 value 199.537413
## iter 70 value 199.368479
## iter 80 value 199.325635
## iter 90 value 199.312793
## final value 199.312417
## converged
## # weights: 51
## initial value 391.676407
## iter 10 value 214.772541
## iter 20 value 198.705043
## iter
        30 value 188.240386
## iter 40 value 185.397209
        50 value 184.493802
## iter
        60 value 184.246812
## iter
## iter
        70 value 184.153848
## iter 80 value 184.112177
        90 value 184.083092
## iter
## iter 100 value 184.077019
## final value 184.077019
## stopped after 100 iterations
## # weights: 71
## initial value 342.134225
## iter 10 value 213.020755
## iter
        20 value 185.584695
        30 value 171.068848
## iter
  iter
        40 value 165.230282
  iter
        50 value 158.879003
##
        60 value 156.204389
## iter
## iter
        70 value 155.636762
## iter 80 value 155.439414
## iter 90 value 154.591703
## iter 100 value 153.756582
## final value 153.756582
## stopped after 100 iterations
## # weights: 91
## initial value 335.602040
## iter 10 value 202.305164
## iter 20 value 173.891927
## iter 30 value 149.395974
        40 value 141.028240
## iter
## iter
        50 value 135.489873
## iter 60 value 132.773281
```

```
70 value 128.862006
## iter
         80 value 127.000270
## iter
        90 value 126.493977
## iter
## iter 100 value 126.365686
## final value 126.365686
## stopped after 100 iterations
## # weights: 11
## initial value 311.604973
## iter 10 value 230.664028
## iter 20 value 221.537522
        30 value 219.509696
## iter
## iter 40 value 219.181010
## final value 219.180985
## converged
## # weights: 31
## initial value 319.751548
## iter 10 value 222.786336
        20 value 203.865615
## iter
## iter 30 value 196.850578
## iter 40 value 195.270211
## iter 50 value 193.132397
## iter
        60 value 190.570002
## iter 70 value 189.642175
## iter 80 value 189.599236
## final value 189.599193
## converged
## # weights: 51
## initial value 312.031865
## iter
        10 value 212.119606
## iter
         20 value 189.993600
         30 value 175.243593
##
  iter
##
  iter
         40 value 170.972821
##
  iter
         50 value 166.431968
         60 value 163.129931
## iter
        70 value 162.798011
## iter
## iter
         80 value 162.129990
## iter 90 value 161.792364
## iter 100 value 160.916741
## final value 160.916741
## stopped after 100 iterations
## # weights: 71
## initial value 331.451039
## iter
        10 value 206.551123
         20 value 177.310627
## iter
## iter
         30 value 147.255420
## iter
        40 value 137.694279
## iter
         50 value 130.476286
## iter
         60 value 127.473512
## iter 70 value 123.456790
        80 value 120.743079
## iter
## iter 90 value 119.709720
## iter 100 value 118.933418
## final value 118.933418
## stopped after 100 iterations
```

```
## # weights: 91
## initial value 349.726358
## iter 10 value 208.887618
## iter
        20 value 174.032467
## iter
        30 value 141.232803
## iter 40 value 126.437095
## iter 50 value 117.886945
## iter 60 value 114.403267
## iter 70 value 111.325230
## iter 80 value 107.344791
## iter 90 value 106.096159
## iter 100 value 105.647211
## final value 105.647211
## stopped after 100 iterations
## # weights: 11
## initial value 316.627869
## iter 10 value 231.542014
## iter 20 value 230.975150
## iter 30 value 222.303827
## iter 40 value 219.351350
## iter 50 value 219.161873
## final value 219.139917
## converged
## # weights: 31
## initial value 386.985603
## iter 10 value 210.739503
## iter
        20 value 200.835848
## iter
        30 value 194.721506
## iter
        40 value 193.056135
## iter
        50 value 191.717638
## iter 60 value 189.993077
## iter 70 value 189.589952
## iter 80 value 188.785091
## iter 90 value 188.056592
## iter 100 value 184.536855
## final value 184.536855
## stopped after 100 iterations
## # weights: 51
## initial value 328.567812
## iter 10 value 216.751186
## iter
        20 value 201.085152
## iter
        30 value 183.855793
## iter
        40 value 171.784239
## iter 50 value 162.235175
        60 value 159.404008
## iter
## iter
        70 value 154.522603
## iter 80 value 152.765590
## iter 90 value 152.609185
## iter 100 value 152.593259
## final value 152.593259
## stopped after 100 iterations
## # weights: 71
## initial value 296.760791
## iter 10 value 208.063758
```

```
20 value 182.139936
## iter
         30 value 152.913675
## iter
## iter
        40 value 137.505488
## iter
         50 value 128.595309
## iter
         60 value 125.625541
## iter 70 value 124.985017
## iter 80 value 124.353845
## iter 90 value 124.147815
## iter 100 value 124.061199
## final value 124.061199
## stopped after 100 iterations
## # weights: 91
## initial value 320.593527
## iter 10 value 209.348929
## iter
        20 value 181.219344
         30 value 150.702759
## iter
## iter 40 value 128.541860
        50 value 118.332740
## iter
## iter 60 value 111.716456
## iter 70 value 106.504799
## iter 80 value 102.522992
## iter 90 value 101.115253
## iter 100 value 100.437177
## final value 100.437177
## stopped after 100 iterations
## # weights: 11
## initial value 325.190389
## iter 10 value 227.848192
## iter
        20 value 226.263963
## iter
         30 value 225.828965
## iter 40 value 221.152640
## final value 220.818164
## converged
## # weights: 31
## initial value 332.908534
## iter
        10 value 207.581495
         20 value 197.953090
## iter
  iter
         30 value 192.647330
  iter
        40 value 181.844285
##
         50 value 179.948802
##
  iter
## iter
         60 value 179.625259
## iter 70 value 179.576765
        80 value 179.560066
## iter
## iter 90 value 179.556883
## iter 100 value 179.555430
## final value 179.555430
## stopped after 100 iterations
## # weights: 51
## initial value 330.020284
## iter 10 value 206.674959
## iter 20 value 189.677561
        30 value 174.922383
## iter
## iter 40 value 171.177587
        50 value 159.948228
```

```
## iter 60 value 153.586927
## iter
       70 value 153.271709
## iter 80 value 153.268875
## final value 153.268873
## converged
## # weights: 71
## initial value 338.149300
## iter 10 value 203.991239
## iter
        20 value 182.988666
## iter 30 value 164.583103
        40 value 151.962255
## iter
        50 value 145.789836
## iter
## iter 60 value 132.690242
## iter 70 value 120.925875
## iter 80 value 118.881537
## iter 90 value 118.866427
## final value 118.866054
## converged
## # weights: 91
## initial value 337.541445
## iter 10 value 199.402825
## iter 20 value 162.718071
## iter
        30 value 135.007137
## iter 40 value 114.229318
        50 value 103.065778
## iter
        60 value 96.451010
## iter
        70 value 95.058822
## iter
## iter 80 value 95.014645
## iter 90 value 94.999554
## iter 100 value 94.800221
## final value 94.800221
## stopped after 100 iterations
## # weights: 11
## initial value 409.580138
## iter 10 value 227.375595
        20 value 219.433709
## iter
## iter 30 value 218.684664
## final value 218.684192
## converged
## # weights: 31
## initial value 329.152970
## iter 10 value 213.342982
## iter
        20 value 203.924016
        30 value 199.523842
## iter
## iter
        40 value 197.894735
## iter 50 value 197.428985
## iter 60 value 197.329694
## final value 197.329370
## converged
## # weights: 51
## initial value 313.973070
## iter 10 value 212.984862
## iter
        20 value 200.370483
## iter
        30 value 193.905880
```

```
40 value 189.094677
## iter
         50 value 188.029055
## iter
         60 value 187.802147
## iter
         70 value 187.755799
## iter
## iter
        80 value 187.737216
## final value 187.737204
## converged
## # weights: 71
## initial value 486.092270
## iter 10 value 211.810963
## iter
        20 value 194.088309
         30 value 187.054062
## iter
## iter 40 value 185.369238
## iter
         50 value 183.770175
## iter 60 value 180.771788
## iter 70 value 179.279301
## iter 80 value 179.008068
## iter 90 value 178.913592
## iter 100 value 178.862813
## final value 178.862813
## stopped after 100 iterations
## # weights: 91
## initial value 351.088463
## iter 10 value 203.151627
## iter
         20 value 190.838442
         30 value 180.576228
## iter
  iter
         40 value 175.694614
##
##
  iter
         50 value 173.340130
##
  iter
         60 value 172.668493
## iter
         70 value 172.110456
        80 value 171.020555
## iter
        90 value 170.040303
## iter
## iter 100 value 168.345884
## final value 168.345884
## stopped after 100 iterations
## # weights: 11
## initial value 322.799821
## iter 10 value 227.371575
## iter
         20 value 226.314513
## iter
         30 value 219.124385
## iter
         40 value 214.720086
## iter 50 value 214.670822
## final value 214.668428
## converged
## # weights: 31
## initial value 319.232313
## iter 10 value 209.232023
## iter 20 value 199.020740
## iter 30 value 196.388268
## iter 40 value 196.284220
## iter 50 value 196.282416
## final value 196.282332
## converged
## # weights: 51
```

```
## initial value 368.330698
         10 value 204.959909
## iter
## iter
         20 value 183.896957
## iter
         30 value 175.009497
## iter
         40 value 171.629865
## iter
         50 value 169.058661
## iter
        60 value 168.311167
## iter
        70 value 168.116516
        80 value 167.908825
## iter
## iter 90 value 167.802569
## iter 100 value 167.763823
## final value 167.763823
## stopped after 100 iterations
## # weights: 71
## initial value 382.884119
## iter 10 value 204.062512
        20 value 173.250340
## iter
         30 value 158.896040
## iter
## iter 40 value 148.922926
## iter
        50 value 146.160813
## iter 60 value 145.611499
## iter
        70 value 145.486468
## iter
         80 value 145.462101
## iter 90 value 145.451639
## iter 100 value 145.450094
## final value 145.450094
## stopped after 100 iterations
## # weights:
              91
## initial value 315.277463
## iter
         10 value 203.906356
  iter
         20 value 170.322177
##
  iter
         30 value 144.193430
##
  iter
         40 value 120.257228
  iter
         50 value 111.223113
##
        60 value 106.999413
##
  iter
##
  iter
         70 value 103.576550
         80 value 100.994458
##
  iter
        90 value 99.487800
## iter 100 value 98.930015
## final value 98.930015
## stopped after 100 iterations
## # weights: 11
## initial value 321.997299
        10 value 228.757113
## iter
## iter
         20 value 226.412466
## iter
         30 value 226.406261
        40 value 224.917321
## iter
## iter
        50 value 218.762899
## iter 60 value 214.357723
## iter 70 value 214.053417
## iter 80 value 213.957862
## iter 90 value 213.863646
## final value 213.863607
## converged
```

```
## # weights: 31
## initial value 311.494841
## iter 10 value 205.792543
## iter
         20 value 192.282630
## iter
         30 value 185.960196
## iter 40 value 181.457183
## iter 50 value 180.495264
## iter 60 value 179.946676
## iter 70 value 179.863898
## iter 80 value 179.472503
## iter 90 value 179.421027
## iter 100 value 179.405446
## final value 179.405446
## stopped after 100 iterations
## # weights: 51
## initial value 317.878001
## iter 10 value 207.179992
## iter 20 value 182.583430
## iter 30 value 174.597162
## iter 40 value 166.026561
## iter 50 value 160.809897
## iter 60 value 159.332390
## iter 70 value 159.140894
## iter 80 value 158.945500
## iter 90 value 158.915733
## iter 100 value 158.904854
## final value 158.904854
## stopped after 100 iterations
## # weights: 71
## initial value 382.586191
## iter 10 value 203.881100
## iter
         20 value 171.803454
## iter
         30 value 157.184794
         40 value 145.822810
## iter
        50 value 140.070066
##
  iter
  iter
         60 value 139.188465
         70 value 139.047387
## iter
  iter
        80 value 138.845314
## iter 90 value 138.735076
## iter 100 value 138.702772
## final value 138.702772
## stopped after 100 iterations
## # weights: 91
## initial value 593.437945
## iter 10 value 195.474943
## iter
         20 value 164.533478
## iter
         30 value 142.379640
## iter 40 value 124.207181
## iter 50 value 114.153828
## iter 60 value 105.687982
## iter 70 value 98.671850
## iter 80 value 95.735192
## iter 90 value 94.561178
## iter 100 value 93.941331
```

```
## final value 93.941331
## stopped after 100 iterations
## # weights: 11
## initial value 321.047648
## iter 10 value 221.621438
        20 value 214.709874
## iter
## iter
         30 value 213.929968
## iter 40 value 213.762801
## iter 50 value 213.704579
## iter 60 value 213.700672
## iter 70 value 213.694056
## final value 213.693882
## converged
## # weights: 31
## initial value 315.601661
## iter 10 value 210.064579
## iter 20 value 190.368793
         30 value 183.381470
## iter
## iter 40 value 177.093841
## iter 50 value 174.024249
## iter 60 value 173.438384
## iter 70 value 173.192546
## iter
        80 value 171.965274
## iter 90 value 171.492391
## iter 100 value 170.407999
## final value 170.407999
## stopped after 100 iterations
## # weights: 51
## initial value 349.011882
## iter
        10 value 205.898349
  iter
         20 value 184.467485
##
  iter
         30 value 173.188604
##
  iter
        40 value 165.027173
  iter
         50 value 157.611578
##
  iter 60 value 155.472092
##
##
  iter
        70 value 154.615926
        80 value 154.480034
## iter
  iter 90 value 154.300222
## iter 100 value 154.226553
## final value 154.226553
## stopped after 100 iterations
## # weights: 71
## initial value 436.139516
## iter 10 value 209.557096
## iter
         20 value 175.353749
## iter
         30 value 151.875182
## iter 40 value 140.241798
## iter 50 value 131.104296
## iter 60 value 123.158012
## iter 70 value 122.404344
## iter 80 value 122.099760
## iter 90 value 121.693941
## iter 100 value 121.347899
## final value 121.347899
```

```
## stopped after 100 iterations
## # weights: 91
## initial value 379.180656
## iter
        10 value 203.631439
## iter
        20 value 168.566892
## iter 30 value 139.985325
## iter 40 value 117.010892
## iter 50 value 104.433977
## iter 60 value 98.579536
## iter 70 value 93.793461
## iter 80 value 92.019189
## iter 90 value 91.286234
## iter 100 value 91.035782
## final value 91.035782
## stopped after 100 iterations
## # weights: 11
## initial value 377.752924
## iter 10 value 231.087387
## iter 20 value 224.338090
## iter 30 value 221.143262
## iter 40 value 221.017059
## iter 40 value 221.017059
## iter 40 value 221.017059
## final value 221.017059
## converged
## # weights: 31
## initial value 328.453118
## iter 10 value 219.406633
## iter
        20 value 208.667996
## iter
        30 value 202.080775
## iter 40 value 199.407095
## iter
        50 value 194.921829
## iter 60 value 189.774050
## iter 70 value 188.239777
## iter 80 value 187.345194
## iter 90 value 186.747804
## iter 100 value 185.515169
## final value 185.515169
## stopped after 100 iterations
## # weights: 51
## initial value 295.946084
## iter 10 value 201.944900
## iter
        20 value 172.836515
        30 value 162.730243
## iter
## iter 40 value 145.724238
## iter 50 value 139.672626
## iter 60 value 139.087705
## iter 70 value 138.504263
## iter 80 value 138.498769
## final value 138.498661
## converged
## # weights: 71
## initial value 321.442925
## iter 10 value 213.408857
```

```
20 value 189.724793
## iter
         30 value 165.410365
## iter
## iter
         40 value 146.702662
## iter
         50 value 135.436390
## iter
         60 value 124.034012
## iter
         70 value 121.287225
        80 value 121.244345
## iter
## iter 90 value 121.128982
## iter 100 value 121.105608
## final value 121.105608
## stopped after 100 iterations
## # weights: 91
## initial value 302.412074
## iter 10 value 208.812850
## iter
         20 value 169.470600
         30 value 132.478768
## iter
## iter 40 value 116.437887
         50 value 107.672542
## iter
## iter 60 value 97.939438
## iter 70 value 90.807965
## iter 80 value 84.446131
## iter 90 value 79.427456
## iter 100 value 78.871414
## final value 78.871414
## stopped after 100 iterations
## # weights: 11
## initial value 362.249302
## iter 10 value 231.273909
## iter
        20 value 225.049349
## iter
        30 value 224.982873
## final value 224.981040
## converged
## # weights: 31
## initial value 397.546061
## iter 10 value 231.342375
## iter
         20 value 214.521481
         30 value 212.744240
## iter
  iter
         40 value 210.173025
## iter
         50 value 209.715244
## iter 60 value 209.682208
## final value 209.681372
## converged
## # weights: 51
## initial value 394.434082
## iter 10 value 217.382864
## iter
         20 value 204.702133
## iter
         30 value 197.182616
## iter
        40 value 194.122823
## iter 50 value 192.065905
## iter 60 value 191.268867
        70 value 190.372468
## iter
         80 value 190.251384
## iter
## iter 90 value 190.242444
## final value 190.242421
```

```
## converged
## # weights: 71
## initial value 324.132326
## iter 10 value 216.257946
## iter
        20 value 203.435314
## iter 30 value 191.366110
## iter 40 value 187.100641
## iter 50 value 185.970704
## iter 60 value 185.186305
## iter 70 value 182.187028
## iter 80 value 181.108130
## iter 90 value 180.951749
## iter 100 value 180.932625
## final value 180.932625
## stopped after 100 iterations
## # weights: 91
## initial value 354.711449
## iter 10 value 218.120644
## iter 20 value 206.800962
## iter 30 value 189.512438
## iter 40 value 183.349446
## iter 50 value 179.763337
## iter
        60 value 178.249764
## iter 70 value 177.326735
## iter 80 value 176.292221
## iter 90 value 175.886333
## iter 100 value 175.709433
## final value 175.709433
## stopped after 100 iterations
## # weights: 11
## initial value 345.538697
## iter 10 value 233.241105
## iter 20 value 224.779305
        30 value 221.481542
## iter
## iter 40 value 221.379094
## final value 221.378920
## converged
## # weights: 31
## initial value 370.996907
## iter 10 value 218.086133
## iter
        20 value 214.085899
## iter
        30 value 208.954291
## iter
        40 value 206.450554
## iter 50 value 205.840623
        60 value 205.714604
## iter
        70 value 205.088485
## iter
## iter 80 value 198.087969
## iter 90 value 194.053746
## iter 100 value 193.254713
## final value 193.254713
## stopped after 100 iterations
## # weights: 51
## initial value 395.107829
## iter 10 value 214.752130
```

```
20 value 194.668822
## iter
## iter
         30 value 184.715788
## iter
        40 value 182.899181
## iter
         50 value 182.314478
## iter
         60 value 182.113103
## iter 70 value 182.086172
## iter 80 value 182.084039
## iter 90 value 182.079745
## final value 182.079465
## converged
## # weights: 71
## initial value 343.586298
## iter 10 value 228.142508
## iter
        20 value 202.414318
## iter
        30 value 187.201726
## iter 40 value 181.229187
## iter 50 value 178.448107
## iter 60 value 176.275401
## iter 70 value 175.608172
## iter 80 value 173.982480
## iter 90 value 173.838392
## iter 100 value 173.753037
## final value 173.753037
## stopped after 100 iterations
## # weights: 91
## initial value 303.690232
## iter 10 value 205.432690
## iter
         20 value 166.260112
  iter
         30 value 145.650392
## iter
         40 value 140.478075
         50 value 138.626169
##
  iter
##
  iter
         60 value 136.190273
## iter
        70 value 133.714437
        80 value 132.920638
## iter
## iter 90 value 131.418304
## iter 100 value 131.215945
## final value 131.215945
## stopped after 100 iterations
## # weights:
              11
## initial value 312.294085
## iter 10 value 230.649055
## iter
        20 value 226.118676
         30 value 221.387722
## iter
## iter 40 value 221.054179
## final value 221.054145
## converged
## # weights: 31
## initial value 483.564192
## iter 10 value 218.124567
## iter 20 value 200.699639
## iter 30 value 197.736040
        40 value 195.150510
## iter
         50 value 192.936794
## iter
## iter 60 value 192.641249
```

```
70 value 192.556858
## iter
         80 value 191.831689
## iter
        90 value 190.889017
## iter
## iter 100 value 190.550240
## final value 190.550240
## stopped after 100 iterations
## # weights: 51
## initial value 448.748981
## iter 10 value 217.713524
## iter
         20 value 196.219861
         30 value 188.708677
## iter
        40 value 182.692584
## iter
## iter
         50 value 178.547225
## iter
        60 value 176.558072
## iter
        70 value 175.522460
## iter 80 value 174.394598
## iter 90 value 173.409144
## iter 100 value 172.696819
## final value 172.696819
## stopped after 100 iterations
## # weights: 71
## initial value 316.549907
## iter 10 value 208.770007
## iter
         20 value 180.205927
         30 value 164.777152
## iter
         40 value 155.397225
## iter
  iter
         50 value 151.723925
##
##
  iter
         60 value 150.646904
##
  iter
         70 value 150.066360
## iter
         80 value 149.609671
        90 value 149.430937
## iter
## iter 100 value 149.356489
## final value 149.356489
## stopped after 100 iterations
## # weights: 91
## initial value 424.402891
         10 value 221.264438
## iter
  iter
         20 value 198.112320
  iter
         30 value 159.303106
##
         40 value 132.870637
##
  iter
## iter
         50 value 115.834958
## iter 60 value 109.051752
        70 value 107.191751
## iter
## iter 80 value 106.204960
## iter 90 value 105.770310
## iter 100 value 105.471666
## final value 105.471666
## stopped after 100 iterations
## # weights: 11
## initial value 315.876096
## iter 10 value 222.477437
## iter 20 value 221.025965
## final value 221.020780
## converged
```

```
## # weights: 31
## initial value 446.865199
## iter 10 value 220.189140
## iter
         20 value 207.301814
## iter
         30 value 200.291200
## iter 40 value 198.874480
## iter 50 value 194.785701
## iter 60 value 193.830509
## iter 70 value 193.288309
## iter 80 value 192.473275
## iter 90 value 191.297240
## iter 100 value 190.257620
## final value 190.257620
## stopped after 100 iterations
## # weights: 51
## initial value 361.926080
## iter 10 value 217.302450
## iter 20 value 191.845190
## iter 30 value 177.416957
## iter 40 value 171.010122
## iter 50 value 165.090978
## iter 60 value 161.199446
## iter 70 value 158.812043
## iter 80 value 158.159146
## iter 90 value 156.710210
## iter 100 value 155.206706
## final value 155.206706
## stopped after 100 iterations
## # weights: 71
## initial value 405.042480
## iter 10 value 203.319422
## iter
         20 value 179.929735
## iter
         30 value 156.276053
         40 value 145.325227
## iter
        50 value 138.078111
##
  iter
  iter
         60 value 133.627550
         70 value 131.591381
## iter
        80 value 130.507575
## iter 90 value 129.578386
## iter 100 value 129.298068
## final value 129.298068
## stopped after 100 iterations
## # weights: 91
## initial value 365.164066
## iter 10 value 213.200993
## iter
        20 value 179.712283
## iter
        30 value 151.026539
## iter 40 value 135.622256
## iter 50 value 131.422513
## iter 60 value 124.092040
## iter 70 value 121.790629
## iter 80 value 121.171821
## iter 90 value 120.861396
## iter 100 value 120.365474
```

```
## final value 120.365474
## stopped after 100 iterations
## # weights: 11
## initial value 361.676677
## iter 10 value 227.839914
## iter 20 value 226.039115
        30 value 223.634234
## iter
## iter 40 value 219.380968
## iter 50 value 218.627502
## final value 218.627464
## converged
## # weights: 31
## initial value 339.349900
## iter 10 value 217.608606
## iter 20 value 206.088226
## iter 30 value 198.717927
## iter 40 value 192.295898
## iter 50 value 188.658958
## iter 60 value 188.226502
## final value 188.224416
## converged
## # weights: 51
## initial value 373.364118
## iter 10 value 208.688845
         20 value 193.320447
## iter
         30 value 180.637714
## iter
## iter
         40 value 177.569165
## iter
         50 value 174.375599
##
  iter
         60 value 169.946907
## iter
        70 value 160.914015
## iter 80 value 154.078224
## iter 90 value 150.774827
## iter 100 value 150.168093
## final value 150.168093
## stopped after 100 iterations
## # weights: 71
## initial value 350.042802
## iter 10 value 215.451125
## iter
         20 value 187.339170
         30 value 162.941464
## iter
## iter
         40 value 148.119723
## iter 50 value 143.527298
## iter
        60 value 137.643863
## iter 70 value 131.002976
        80 value 126.300860
## iter
## iter 90 value 123.508731
## iter 100 value 121.787138
## final value 121.787138
## stopped after 100 iterations
## # weights: 91
## initial value 315.186867
## iter 10 value 206.226098
## iter 20 value 166.295018
## iter
        30 value 135.680938
```

40 value 119.538453 ## iter ## iter 50 value 111.258336 ## iter 60 value 104.782590 ## iter 70 value 94.320665 ## iter 80 value 92.443858 ## iter 90 value 92.073134 ## iter 100 value 91.799800 ## final value 91.799800 ## stopped after 100 iterations ## # weights: 11 ## initial value 347.398666 ## iter 10 value 238.095959 ## iter 20 value 222.979216 ## final value 222.720531 ## converged ## # weights: 31 ## initial value 328.267785 ## iter 10 value 229.838137 ## iter 20 value 220.626539 ## iter 30 value 212.296849 ## iter 40 value 208.584422 50 value 208.212661 ## iter ## iter 60 value 208.195423 ## final value 208.195401 ## converged ## # weights: 51 ## initial value 427.664641 ## iter 10 value 225.862234 ## iter 20 value 211.109008 ## iter 30 value 208.051143 40 value 203.201415 ## iter ## iter 50 value 198.123863 ## iter 60 value 195.200597 70 value 189.728156 ## iter ## iter 80 value 187.825288 90 value 187.321091 ## iter ## iter 100 value 187.315426 ## final value 187.315426 ## stopped after 100 iterations ## # weights: 71 ## initial value 355.529035 ## iter 10 value 216.048773 ## iter 20 value 198.633836 30 value 192.875837 ## iter 40 value 185.744880 ## iter 50 value 182.760254 ## iter ## iter 60 value 181.673833 ## iter 70 value 180.114187 ## iter 80 value 178.692081 ## iter 90 value 178.483257 ## iter 100 value 178.377665 ## final value 178.377665 ## stopped after 100 iterations ## # weights: 91

```
## initial value 315.938260
## iter
        10 value 214.022548
         20 value 195.552830
## iter
## iter
         30 value 183.578962
## iter
         40 value 176.315186
## iter
        50 value 174.300030
## iter 60 value 173.244466
## iter 70 value 172.627781
## iter 80 value 172.484765
## iter 90 value 172.338445
## iter 100 value 172.223807
## final value 172.223807
## stopped after 100 iterations
## # weights: 11
## initial value 362.911403
## iter 10 value 231.103120
## iter 20 value 225.943578
## iter 30 value 221.622128
## iter 40 value 219.001705
## final value 218.992409
## converged
## # weights: 31
## initial value 307.004769
## iter 10 value 226.155636
         20 value 218.243923
## iter
         30 value 209.389033
## iter
  iter
         40 value 206.663403
##
## iter
         50 value 205.482323
  iter
         60 value 204.934748
## iter
        70 value 204.847516
## iter 80 value 203.342659
## iter 90 value 202.610560
## iter 100 value 201.991748
## final value 201.991748
## stopped after 100 iterations
## # weights: 51
## initial value 340.378584
## iter 10 value 218.213947
## iter
         20 value 198.782233
         30 value 186.784009
## iter
## iter
         40 value 182.602135
## iter 50 value 180.379566
## iter
        60 value 176.080502
## iter 70 value 174.736901
        80 value 174.291157
## iter
## iter 90 value 174.087195
## iter 100 value 170.780631
## final value 170.780631
## stopped after 100 iterations
## # weights: 71
## initial value 313.213436
## iter 10 value 211.642591
## iter
        20 value 182.520234
        30 value 171.578076
```

```
40 value 167.840247
## iter
         50 value 166.794808
## iter
## iter
         60 value 166.535756
## iter
         70 value 166.319443
## iter
         80 value 165.933884
## iter 90 value 165.488286
## iter 100 value 165.126614
## final value 165.126614
## stopped after 100 iterations
## # weights: 91
## initial value 449.128712
## iter 10 value 212.670965
## iter
         20 value 186.630295
## iter
         30 value 143.381156
## iter 40 value 135.072201
## iter 50 value 131.489463
## iter 60 value 128.180354
## iter 70 value 126.654041
## iter 80 value 124.399938
## iter 90 value 122.728315
## iter 100 value 122.060695
## final value 122.060695
## stopped after 100 iterations
## # weights: 11
## initial value 364.264580
## iter 10 value 231.771044
## iter
         20 value 225.984435
## iter
         30 value 224.936624
  iter
         40 value 219.412510
## iter
         50 value 218.669690
        60 value 218.664711
## iter
## iter
        60 value 218.664711
## iter 60 value 218.664711
## final value 218.664711
## converged
## # weights: 31
## initial value 331.754727
## iter 10 value 212.413138
## iter
         20 value 198.144371
## iter
         30 value 193.129548
## iter
         40 value 186.305754
        50 value 185.721927
## iter
## iter
         60 value 185.402396
         70 value 185.152805
## iter
        80 value 184.563268
## iter
## iter 90 value 184.455977
## iter 100 value 184.428805
## final value 184.428805
## stopped after 100 iterations
## # weights: 51
## initial value 333.828094
## iter 10 value 210.242460
## iter
        20 value 190.729238
        30 value 182.806667
```

```
## iter
        40 value 178.517244
         50 value 175.175223
## iter
## iter
         60 value 173.443655
## iter
         70 value 171.983216
## iter
         80 value 169.396634
## iter 90 value 169.012789
## iter 100 value 168.451373
## final value 168.451373
## stopped after 100 iterations
## # weights: 71
## initial value 521.645244
## iter 10 value 211.252645
## iter
         20 value 182.759722
## iter
         30 value 165.072572
## iter 40 value 158.635077
## iter 50 value 155.246018
## iter 60 value 153.961134
## iter 70 value 153.252160
## iter 80 value 152.625006
## iter 90 value 152.457412
## iter 100 value 152.114409
## final value 152.114409
## stopped after 100 iterations
## # weights: 91
## initial value 319.855857
## iter 10 value 215.290636
  iter
         20 value 196.312434
  iter
         30 value 156.013039
##
  iter
         40 value 136.431341
## iter
         50 value 129.203625
        60 value 124.530163
##
  iter
## iter
        70 value 122.664154
## iter 80 value 121.883427
## iter 90 value 121.106377
## iter 100 value 120.762624
## final value 120.762624
## stopped after 100 iterations
## # weights: 11
## initial value 314.143791
## iter 10 value 231.836293
## iter 20 value 229.294024
## final value 229.293887
## converged
## # weights: 31
## initial value 387.916212
## iter 10 value 211.300018
## iter
         20 value 205.561593
## iter
         30 value 199.606884
## iter 40 value 194.913573
        50 value 188.892108
## iter
## iter 60 value 187.963049
        70 value 187.737193
## iter
        80 value 187.507287
## iter
        90 value 186.821634
```

```
## iter 100 value 186.349832
## final value 186.349832
## stopped after 100 iterations
## # weights: 51
## initial value 431.665641
## iter 10 value 213.597137
         20 value 184.498812
## iter
## iter
         30 value 168.573746
## iter
        40 value 163.138631
## iter 50 value 159.471171
        60 value 154.958962
## iter
         70 value 151.592791
## iter
## iter 80 value 150.083582
## iter 90 value 149.772439
## iter 100 value 149.007076
## final value 149.007076
## stopped after 100 iterations
## # weights: 71
## initial value 343.559779
## iter 10 value 211.022805
        20 value 181.475077
## iter
## iter
         30 value 165.544413
## iter 40 value 151.354923
## iter 50 value 141.037844
        60 value 138.281772
## iter
        70 value 137.095316
## iter
        80 value 136.931314
## iter
## iter 90 value 136.824353
## iter 100 value 136.728653
## final value 136.728653
## stopped after 100 iterations
## # weights: 91
## initial value 357.161759
## iter 10 value 207.717436
         20 value 158.703693
## iter
  iter
         30 value 130.521818
         40 value 110.371056
## iter
  iter
         50 value 98.905483
  iter
         60 value 95.503977
##
         70 value 93.395784
##
  iter
## iter
        80 value 92.598579
## iter 90 value 92.306831
## iter 100 value 92.162970
## final value 92.162970
## stopped after 100 iterations
## # weights: 11
## initial value 383.107126
## iter 10 value 217.762563
## iter 20 value 210.047105
        30 value 208.222320
## iter
## iter 40 value 208.020205
## iter 40 value 208.020203
## iter 40 value 208.020203
## final value 208.020203
```

```
## converged
## # weights: 31
## initial value 384.234419
## iter
        10 value 206.847077
## iter
        20 value 192.144315
## iter
        30 value 187.538325
## iter 40 value 181.297639
## iter 50 value 178.396468
## iter 60 value 175.292467
## iter 70 value 175.041054
## iter 80 value 174.435368
## iter 90 value 173.171241
## iter 100 value 173.098963
## final value 173.098963
## stopped after 100 iterations
## # weights: 51
## initial value 485.781962
## iter 10 value 196.649736
## iter 20 value 179.981438
## iter
        30 value 162.891700
## iter 40 value 151.465250
## iter
        50 value 142.132665
## iter
        60 value 133.632424
## iter 70 value 130.934392
## iter 80 value 130.775812
## iter 90 value 130.770728
## final value 130.770722
## converged
## # weights: 71
## initial value 333.307822
## iter 10 value 192.718583
## iter
        20 value 175.057087
## iter
        30 value 148.960107
        40 value 136.002932
## iter
        50 value 131.325330
## iter
        60 value 125.740439
##
  iter
        70 value 116.763424
## iter
  iter
        80 value 114.909828
## iter 90 value 114.636095
## iter 100 value 114.624544
## final value 114.624544
## stopped after 100 iterations
## # weights: 91
## initial value 338.478080
## iter 10 value 199.443373
        20 value 167.609666
## iter
## iter
        30 value 145.986430
## iter 40 value 122.192611
## iter 50 value 109.582769
## iter 60 value 93.423012
## iter 70 value 88.767872
## iter
        80 value 88.411482
## iter 90 value 88.398813
## final value 88.398584
```

```
## converged
## # weights: 11
## initial value 334.437965
## iter 10 value 238.799072
## iter 20 value 216.533571
## iter 30 value 213.045076
## iter 40 value 211.740529
## final value 211.740505
## converged
## # weights: 31
## initial value 345.238179
## iter 10 value 217.966033
## iter 20 value 203.585776
## iter 30 value 202.022122
## iter 40 value 201.529847
## iter 50 value 201.515694
## final value 201.515503
## converged
## # weights: 51
## initial value 329.382008
## iter 10 value 224.000422
## iter 20 value 203.667542
## iter 30 value 187.638544
## iter 40 value 177.828320
## iter 50 value 177.294946
## iter 60 value 177.121563
## iter 70 value 176.314538
## iter 80 value 175.933824
## iter 90 value 175.720843
## iter 100 value 175.662469
## final value 175.662469
## stopped after 100 iterations
## # weights: 71
## initial value 338.075521
## iter 10 value 205.594129
## iter
        20 value 190.160286
## iter
        30 value 176.693048
## iter
        40 value 172.258521
## iter
        50 value 169.953096
## iter 60 value 169.125723
## iter 70 value 168.462529
## iter 80 value 168.266018
## iter 90 value 167.991037
## iter 100 value 167.967158
## final value 167.967158
## stopped after 100 iterations
## # weights: 91
## initial value 329.753438
## iter 10 value 203.656194
## iter 20 value 185.566193
## iter 30 value 174.361564
## iter 40 value 166.084895
## iter 50 value 160.856218
## iter 60 value 159.472974
```

```
## iter 70 value 159.017147
         80 value 158.872647
## iter
## iter 90 value 158.826350
## iter 100 value 158.810702
## final value 158.810702
## stopped after 100 iterations
## # weights: 11
## initial value 331.497791
## iter 10 value 212.740491
## iter 20 value 208.676475
## iter 30 value 208.583466
## final value 208.582665
## converged
## # weights: 31
## initial value 315.284136
## iter 10 value 209.947737
## iter 20 value 205.061242
         30 value 203.565036
## iter
## iter 40 value 203.189406
## iter 50 value 198.680038
## iter 60 value 193.351288
## iter
        70 value 192.583319
## iter
        80 value 191.280552
## iter 90 value 190.137138
## iter 100 value 187.066489
## final value 187.066489
## stopped after 100 iterations
## # weights: 51
## initial value 361.439428
## iter
         10 value 210.406297
## iter
         20 value 190.154820
## iter
         30 value 170.814871
## iter
         40 value 166.788907
         50 value 166.110244
## iter
        60 value 165.792776
## iter
## iter
        70 value 165.757561
        80 value 165.754414
## iter
## iter 90 value 165.753881
## final value 165.753870
## converged
## # weights:
             71
## initial value 342.955689
## iter 10 value 199.304823
         20 value 166.153108
## iter
## iter
         30 value 152.335002
## iter 40 value 145.850262
## iter
         50 value 141.549679
## iter
         60 value 140.011297
## iter 70 value 138.757386
## iter 80 value 138.462797
## iter 90 value 138.409062
## iter 100 value 138.393668
## final value 138.393668
## stopped after 100 iterations
```

```
## # weights: 91
## initial value 328.750207
## iter 10 value 196.581284
## iter
        20 value 162.791633
## iter
        30 value 136.968362
## iter 40 value 123.470939
## iter 50 value 120.182373
## iter 60 value 118.680445
## iter 70 value 118.015638
## iter 80 value 117.813407
## iter 90 value 117.423059
## iter 100 value 117.225056
## final value 117.225056
## stopped after 100 iterations
## # weights: 11
## initial value 326.260903
## iter 10 value 216.484667
## iter 20 value 209.409830
## iter 30 value 208.083192
## iter 40 value 208.065096
## iter 40 value 208.065096
## iter 40 value 208.065096
## final value 208.065096
## converged
## # weights: 31
## initial value 341.386529
## iter 10 value 222.390552
## iter
        20 value 195.082890
## iter
        30 value 190.817791
## iter
        40 value 188.656941
        50 value 188.468004
##
  iter
## iter
        60 value 188.196289
## iter 70 value 188.116390
## iter 80 value 188.084587
## iter 90 value 188.063077
## iter 100 value 188.057746
## final value 188.057746
## stopped after 100 iterations
## # weights: 51
## initial value 320.940311
## iter 10 value 205.463482
## iter 20 value 183.610845
## iter
        30 value 171.244901
## iter 40 value 166.040523
## iter 50 value 164.459867
## iter 60 value 163.515274
## iter 70 value 161.802875
## iter 80 value 158.912962
## iter 90 value 156.071776
## iter 100 value 154.434616
## final value 154.434616
## stopped after 100 iterations
## # weights: 71
## initial value 358.712454
```

```
10 value 201.402033
## iter
         20 value 165.497791
## iter
## iter
         30 value 145.581914
## iter
         40 value 138.666140
## iter
         50 value 135.039813
## iter
        60 value 129.036236
        70 value 126.055091
## iter
## iter 80 value 125.546824
## iter 90 value 125.212503
## iter 100 value 124.906350
## final value 124.906350
## stopped after 100 iterations
## # weights: 91
## initial value 351.018549
## iter 10 value 197.451349
        20 value 166.757707
## iter
## iter 30 value 130.710348
         40 value 112.754349
## iter
## iter
        50 value 106.394886
## iter
        60 value 104.474717
        70 value 103.948808
## iter
## iter
         80 value 103.108187
## iter 90 value 101.727865
## iter 100 value 99.989541
## final value 99.989541
## stopped after 100 iterations
## # weights: 11
## initial value 359.320467
## iter
        10 value 219.635607
## iter
         20 value 214.837280
         30 value 209.408687
  iter
## iter 40 value 208.025025
## final value 208.024707
## converged
## # weights:
              31
## initial value 309.631334
        10 value 204.084056
## iter
  iter
         20 value 192.815416
## iter
         30 value 187.113062
         40 value 179.918882
##
  iter
## iter
         50 value 178.266079
## iter 60 value 178.052482
## iter
        70 value 177.866381
        80 value 177.703940
## iter
## iter 90 value 177.137760
## iter 100 value 176.629798
## final value 176.629798
## stopped after 100 iterations
## # weights: 51
## initial value 340.935166
## iter 10 value 202.747465
         20 value 186.658905
## iter
## iter
         30 value 170.806681
        40 value 168.186636
```

```
50 value 161.290408
## iter
        60 value 156.599115
## iter
## iter
        70 value 154.211817
## iter
        80 value 151.518758
## iter
        90 value 150.875173
## iter 100 value 150.811767
## final value 150.811767
## stopped after 100 iterations
## # weights: 71
## initial value 338.618756
## iter
        10 value 209.936388
        20 value 177.445687
## iter
## iter
        30 value 145.744699
## iter 40 value 134.862448
## iter
        50 value 128.289276
## iter 60 value 122.625776
## iter 70 value 119.490659
## iter 80 value 116.042309
## iter 90 value 112.650896
## iter 100 value 110.785197
## final value 110.785197
## stopped after 100 iterations
## # weights: 91
## initial value 397.083392
## iter 10 value 198.640398
## iter
        20 value 157.868585
## iter
        30 value 137.980230
  iter 40 value 126.054777
  iter
        50 value 116.527888
## iter
        60 value 114.223288
  iter 70 value 113.706305
##
## iter
        80 value 113.526346
## iter 90 value 113.449326
## iter 100 value 113.392319
## final value 113.392319
## stopped after 100 iterations
## # weights: 11
## initial value 316.735522
## iter 10 value 240.952066
## iter
        20 value 227.290326
## iter
        30 value 221.423728
## iter 40 value 218.492279
        50 value 218.316736
## iter
## iter 60 value 218.290043
## final value 218.287019
## converged
## # weights: 31
## initial value 334.200848
## iter 10 value 218.117266
## iter 20 value 203.195528
## iter 30 value 200.644048
        40 value 198.483273
## iter
        50 value 196.338684
## iter
## iter 60 value 196.115036
```

```
70 value 196.102994
## iter
         80 value 196.097649
## iter
## iter 90 value 196.057874
## iter 100 value 195.124473
## final value 195.124473
## stopped after 100 iterations
## # weights: 51
## initial value 365.187999
## iter 10 value 208.266184
## iter
         20 value 190.497636
         30 value 177.597384
## iter
        40 value 172.294395
## iter
## iter
        50 value 157.798059
## iter
        60 value 153.537511
## iter 70 value 153.515528
## iter 80 value 153.515395
## iter 80 value 153.515394
## iter 80 value 153.515394
## final value 153.515394
## converged
## # weights:
## initial value 323.230287
## iter 10 value 207.429272
## iter
        20 value 182.109630
         30 value 165.798604
## iter
         40 value 149.911011
## iter
  iter
         50 value 141.736761
##
##
  iter
        60 value 135.733887
##
  iter
         70 value 132.972943
## iter
         80 value 131.798727
        90 value 127.861287
## iter 100 value 123.286831
## final value 123.286831
## stopped after 100 iterations
## # weights: 91
## initial value 442.054374
        10 value 204.748455
## iter
  iter
         20 value 173.749783
  iter
         30 value 152.055238
##
         40 value 139.373984
##
  iter
## iter
         50 value 131.671502
## iter 60 value 116.020848
## iter
        70 value 104.741302
## iter 80 value 98.003108
## iter 90 value 93.079685
## iter 100 value 90.315013
## final value 90.315013
## stopped after 100 iterations
## # weights: 11
## initial value 305.806273
## iter 10 value 233.349337
## iter
        20 value 222.940632
## iter 30 value 222.441390
## final value 222.431425
```

```
## converged
## # weights: 31
## initial value 333.183165
## iter 10 value 222.137399
## iter
        20 value 215.177586
## iter 30 value 211.707864
## iter 40 value 209.798031
## iter 50 value 209.224184
## iter 60 value 209.184106
## final value 209.183729
## converged
## # weights: 51
## initial value 368.213624
## iter 10 value 220.586763
## iter 20 value 203.509650
## iter 30 value 198.382785
## iter 40 value 196.277798
## iter 50 value 194.511475
## iter 60 value 193.031190
## iter 70 value 192.674910
## iter 80 value 191.878790
## iter 90 value 191.328819
## iter 100 value 191.309345
## final value 191.309345
## stopped after 100 iterations
## # weights: 71
## initial value 373.979108
## iter 10 value 216.237995
## iter
        20 value 202.789142
## iter
        30 value 194.179899
## iter 40 value 189.486285
        50 value 184.590943
## iter
## iter 60 value 181.026667
## iter 70 value 179.043365
## iter 80 value 178.170314
## iter 90 value 177.633193
## iter 100 value 177.512765
## final value 177.512765
## stopped after 100 iterations
## # weights: 91
## initial value 294.186242
## iter 10 value 215.264282
## iter
        20 value 200.252469
## iter 30 value 192.124666
## iter 40 value 183.309541
## iter 50 value 176.181432
## iter 60 value 171.041459
## iter 70 value 170.376183
## iter 80 value 170.152365
## iter 90 value 170.034402
## iter 100 value 169.983109
## final value 169.983109
## stopped after 100 iterations
## # weights: 11
```

```
## initial value 335.566693
## iter 10 value 230.545280
         20 value 220.710481
## iter
## iter
         30 value 219.049148
## iter 40 value 218.898104
## final value 218.898100
## converged
## # weights: 31
## initial value 420.055586
## iter 10 value 215.362677
## iter 20 value 204.035667
         30 value 201.256631
## iter
## iter 40 value 200.779063
## iter 50 value 200.607185
## iter 60 value 200.598860
## final value 200.598189
## converged
## # weights: 51
## initial value 329.659781
## iter 10 value 212.626204
        20 value 190.213996
## iter
## iter
         30 value 181.709585
## iter 40 value 179.217944
## iter 50 value 177.473350
        60 value 170.724415
## iter
        70 value 167.856150
## iter
## iter
        80 value 167.281335
## iter 90 value 166.929120
## iter 100 value 166.689371
## final value 166.689371
## stopped after 100 iterations
## # weights: 71
## initial value 318.075928
## iter 10 value 210.179793
         20 value 196.090030
## iter
  iter
         30 value 177.121335
         40 value 169.216299
## iter
  iter
         50 value 160.658060
         60 value 157.111873
##
  iter
         70 value 156.012780
## iter
## iter
        80 value 155.106299
## iter 90 value 154.784814
## iter 100 value 154.412689
## final value 154.412689
## stopped after 100 iterations
## # weights: 91
## initial value 430.468537
## iter 10 value 209.856418
## iter 20 value 185.448266
## iter
         30 value 164.759992
## iter 40 value 150.350101
        50 value 142.177131
## iter
## iter 60 value 139.923942
        70 value 138.531869
```

```
## iter 80 value 137.615663
## iter 90 value 136.741004
## iter 100 value 136.352415
## final value 136.352415
## stopped after 100 iterations
## # weights: 11
## initial value 408.522248
## iter 10 value 223.576340
## iter 20 value 218.864378
## iter 30 value 218.485022
## iter 40 value 218.381508
## final value 218.381443
## converged
## # weights: 31
## initial value 428.733509
## iter 10 value 205.824249
## iter 20 value 199.558878
        30 value 195.646308
## iter
## iter 40 value 193.181529
## iter 50 value 192.395949
## iter 60 value 191.910962
## iter 70 value 191.875061
## iter 80 value 191.867358
## final value 191.862160
## converged
## # weights: 51
## initial value 314.909327
## iter 10 value 209.729849
## iter
        20 value 187.543003
## iter
        30 value 177.754365
## iter
        40 value 169.508708
## iter
        50 value 165.247928
## iter
        60 value 163.639851
## iter 70 value 162.706094
## iter 80 value 162.144083
## iter 90 value 161.937320
## iter 100 value 161.302799
## final value 161.302799
## stopped after 100 iterations
## # weights: 71
## initial value 323.727100
## iter 10 value 206.051015
## iter
        20 value 184.494714
        30 value 165.831975
## iter
## iter 40 value 150.141937
        50 value 144.772499
## iter
## iter 60 value 141.024128
## iter 70 value 139.644687
## iter 80 value 139.079634
## iter 90 value 138.906876
## iter 100 value 138.704944
## final value 138.704944
## stopped after 100 iterations
## # weights: 91
```

initial value 414.693493 ## iter 10 value 209.273757 ## iter 20 value 188.031004 ## iter 30 value 168.621929 ## iter 40 value 142.381405 ## iter 50 value 123.079184 ## iter 60 value 116.604633 ## iter 70 value 109.784802 ## iter 80 value 105.172992 ## iter 90 value 103.049750 ## iter 100 value 100.364126 ## final value 100.364126 ## stopped after 100 iterations ## # weights: 11 ## initial value 336.533633 ## iter 10 value 235.917787 ## iter 20 value 230.704151 ## iter 30 value 230.150345 ## iter 40 value 226.079886 ## iter 50 value 220.209198 ## iter 60 value 218.444437 ## iter 70 value 218.312730 ## final value 218.294460 ## converged ## # weights: 31 ## initial value 334.776752 ## iter 10 value 213.526244 ## iter 20 value 207.756728 ## iter 30 value 203.369649 ## iter 40 value 201.681709 50 value 200.498632 ## iter ## iter 60 value 199.184577 ## iter 70 value 198.261848 ## iter 80 value 198.112933 ## iter 90 value 197.913498 ## iter 100 value 197.253844 ## final value 197.253844 ## stopped after 100 iterations ## # weights: 51 ## initial value 326.427390 ## iter 10 value 216.553208 ## iter 20 value 194.392779 ## iter 30 value 179.371904 ## iter 40 value 173.098011 ## iter 50 value 167.093386 ## iter 60 value 162.866814 ## iter 70 value 162.136239 ## iter 80 value 161.696428 ## iter 90 value 161.621015 ## iter 100 value 161.379158 ## final value 161.379158 ## stopped after 100 iterations ## # weights: 71 ## initial value 328.968545

```
10 value 212.369466
## iter
         20 value 183.586635
## iter
## iter
         30 value 165.381852
## iter
         40 value 156.033370
## iter
         50 value 148.083982
## iter
        60 value 140.298318
        70 value 128.843622
## iter
## iter 80 value 123.355673
## iter 90 value 122.581682
## iter 100 value 122.355339
## final value 122.355339
## stopped after 100 iterations
## # weights: 91
## initial value 318.158048
## iter 10 value 209.796903
## iter 20 value 172.205291
## iter 30 value 141.862224
        40 value 122.059982
## iter
## iter
        50 value 112.008094
## iter
        60 value 105.652058
        70 value 100.214776
## iter
## iter
        80 value 95.546310
## iter 90 value 94.452709
## iter 100 value 93.967030
## final value 93.967030
## stopped after 100 iterations
## # weights: 11
## initial value 321.189231
## iter 10 value 226.613376
## iter
         20 value 224.725409
         30 value 221.796801
## iter
## iter
        40 value 219.400671
## iter 50 value 219.124387
## final value 219.063758
## converged
## # weights: 31
## initial value 330.920445
## iter 10 value 212.235941
## iter
         20 value 200.757973
         30 value 195.241329
## iter
## iter
         40 value 187.355690
        50 value 180.966236
## iter
## iter
         60 value 177.713003
        70 value 177.634628
## iter
## iter 80 value 177.631129
## final value 177.630084
## converged
## # weights: 51
## initial value 309.197154
## iter 10 value 208.052138
## iter 20 value 192.586296
         30 value 174.103373
## iter
## iter 40 value 168.845389
         50 value 166.091655
```

```
## iter 60 value 153.178352
        70 value 152.201531
## iter
## iter
        80 value 151.917409
        90 value 151.799116
## iter
## iter 100 value 150.708492
## final value 150.708492
## stopped after 100 iterations
## # weights: 71
## initial value 311.183060
## iter 10 value 206.099182
         20 value 179.073205
## iter
         30 value 155.340034
## iter
## iter 40 value 139.617648
## iter
         50 value 126.640771
## iter 60 value 124.237341
## iter 70 value 123.850194
## iter 80 value 123.654799
## iter 90 value 123.493136
## iter 100 value 123.466969
## final value 123.466969
## stopped after 100 iterations
## # weights: 91
## initial value 350.740374
## iter 10 value 206.656683
         20 value 168.559376
## iter
         30 value 148.592639
## iter
  iter
         40 value 133.284843
##
##
  iter
         50 value 126.355931
##
  iter
         60 value 116.115420
## iter
         70 value 106.512072
## iter 80 value 97.458922
        90 value 93.602249
## iter
## iter 100 value 93.031318
## final value 93.031318
## stopped after 100 iterations
## # weights: 11
## initial value 374.615242
## iter 10 value 232.647756
## iter
         20 value 225.377418
         30 value 223.052203
## iter
## iter 40 value 222.366039
## final value 222.366034
## converged
## # weights: 31
## initial value 354.799061
## iter 10 value 231.567466
## iter
        20 value 218.015978
## iter
         30 value 212.581214
## iter 40 value 210.805969
## iter 50 value 208.867280
## iter 60 value 207.468300
## iter 70 value 207.297166
## iter 80 value 207.248744
## final value 207.246965
```

```
## converged
## # weights: 51
## initial value 318.141696
## iter 10 value 226.774009
## iter
        20 value 208.223439
## iter 30 value 201.826447
## iter 40 value 195.585560
## iter 50 value 193.244936
## iter 60 value 191.789986
## iter 70 value 191.071015
## iter 80 value 190.651562
## iter 90 value 190.644560
## final value 190.644347
## converged
## # weights: 71
## initial value 311.459643
## iter 10 value 211.308665
## iter 20 value 196.431955
## iter 30 value 184.313262
## iter 40 value 180.387429
## iter 50 value 179.131131
## iter 60 value 177.911743
## iter 70 value 177.664389
## iter 80 value 177.598960
## iter 90 value 177.585319
## iter 100 value 177.584059
## final value 177.584059
## stopped after 100 iterations
## # weights: 91
## initial value 477.895081
## iter 10 value 211.385028
## iter
        20 value 194.728232
## iter
        30 value 180.284413
        40 value 172.423486
## iter
## iter 50 value 169.615236
  iter
        60 value 168.408558
        70 value 167.791046
## iter
  iter
        80 value 166.908400
## iter 90 value 166.378644
## iter 100 value 166.046217
## final value 166.046217
## stopped after 100 iterations
## # weights: 11
## initial value 371.729442
## iter 10 value 229.675395
## iter 20 value 222.900464
## iter 30 value 219.715271
## iter 40 value 219.450723
## iter 40 value 219.450722
## iter 40 value 219.450722
## final value 219.450722
## converged
## # weights: 31
## initial value 331.676277
```

```
## iter 10 value 227.461952
## iter
         20 value 217.259908
## iter
         30 value 212.363991
## iter
        40 value 211.681895
## iter
         50 value 211.611079
## iter 60 value 211.607480
## final value 211.607469
## converged
## # weights: 51
## initial value 360.890588
## iter
        10 value 216.031591
## iter
         20 value 195.864779
## iter
        30 value 180.412816
## iter 40 value 174.483166
## iter
        50 value 171.624893
## iter 60 value 171.052763
## iter 70 value 170.935643
## iter 80 value 170.614079
## iter 90 value 170.512772
## iter 100 value 170.509073
## final value 170.509073
## stopped after 100 iterations
## # weights: 71
## initial value 362.937717
## iter
        10 value 216.908919
## iter
         20 value 186.465753
  iter
         30 value 171.433272
##
##
  iter 40 value 168.480459
##
  iter
         50 value 167.508331
  iter
         60 value 160.385573
##
  iter 70 value 158.447910
##
## iter
        80 value 158.112416
## iter 90 value 157.991951
## iter 100 value 157.891123
## final value 157.891123
## stopped after 100 iterations
## # weights: 91
## initial value 449.113437
## iter 10 value 217.372947
## iter
         20 value 195.280205
## iter
         30 value 169.576035
## iter 40 value 149.959479
## iter
         50 value 139.602161
## iter 60 value 133.484082
## iter 70 value 130.831110
## iter 80 value 129.527662
## iter 90 value 129.045474
## iter 100 value 128.902797
## final value 128.902797
## stopped after 100 iterations
## # weights: 11
## initial value 318.030423
## iter 10 value 229.158314
## iter 20 value 225.372000
```

```
## iter 30 value 224.825381
## iter 40 value 224.116929
## final value 224.114902
## converged
## # weights: 31
## initial value 316.748913
## iter 10 value 228.281625
## iter 20 value 206.268498
## iter
        30 value 202.533829
## iter 40 value 199.384700
## iter 50 value 194.570530
## iter 60 value 193.520733
## iter 70 value 193.375102
## iter 80 value 193.299155
## iter 90 value 192.677763
## iter 100 value 190.493461
## final value 190.493461
## stopped after 100 iterations
## # weights: 51
## initial value 566.374558
## iter 10 value 208.582566
## iter 20 value 179.426086
## iter
        30 value 170.189676
## iter 40 value 163.385039
        50 value 162.094687
## iter
## iter 60 value 159.786632
  iter 70 value 158.926486
##
## iter 80 value 158.593509
## iter 90 value 158.334767
## iter 100 value 158.311743
## final value 158.311743
## stopped after 100 iterations
## # weights: 71
## initial value 390.405165
## iter 10 value 208.688660
## iter
        20 value 173.855476
        30 value 160.749890
## iter
  iter
        40 value 154.612735
## iter
        50 value 150.658597
        60 value 146.837159
## iter
## iter 70 value 144.051600
## iter 80 value 143.198534
## iter 90 value 142.775081
## iter 100 value 141.829307
## final value 141.829307
## stopped after 100 iterations
## # weights: 91
## initial value 477.363684
## iter 10 value 213.458549
## iter 20 value 174.534246
## iter 30 value 155.281271
## iter 40 value 137.997547
## iter 50 value 126.843680
## iter 60 value 123.586262
```

```
## iter 70 value 121.740403
         80 value 121.158650
## iter
## iter 90 value 119.941846
## iter 100 value 119.544972
## final value 119.544972
## stopped after 100 iterations
## # weights: 11
## initial value 326.361566
## iter 10 value 226.756280
## iter 20 value 219.278772
## iter 30 value 219.078375
## final value 219.069141
## converged
## # weights: 31
## initial value 330.334617
## iter 10 value 213.589531
## iter 20 value 193.168716
         30 value 191.930554
## iter
## iter 40 value 190.838201
## iter 50 value 185.530430
## iter 60 value 180.077793
## iter
        70 value 178.730281
## iter
        80 value 178.595919
## iter 90 value 178.450312
## iter 100 value 178.315023
## final value 178.315023
## stopped after 100 iterations
## # weights: 51
## initial value 320.748579
## iter
        10 value 214.890285
         20 value 188.563009
## iter
##
  iter
         30 value 175.290883
##
  iter
        40 value 168.115294
## iter
         50 value 155.847387
  iter 60 value 153.595591
##
##
  iter
        70 value 153.245614
        80 value 152.685809
## iter
        90 value 152.576484
## iter 100 value 152.461504
## final value 152.461504
## stopped after 100 iterations
## # weights: 71
## initial value 305.317211
        10 value 206.330618
## iter
## iter
         20 value 177.528814
## iter
         30 value 157.451426
## iter
        40 value 143.204769
## iter 50 value 132.970040
## iter 60 value 129.699074
## iter 70 value 128.569439
## iter 80 value 127.778766
## iter 90 value 127.467168
## iter 100 value 127.143616
## final value 127.143616
```

```
## stopped after 100 iterations
## # weights: 91
## initial value 324.598916
## iter
        10 value 207.937389
## iter
        20 value 180.454637
## iter 30 value 149.003295
## iter 40 value 130.563563
## iter 50 value 110.995218
## iter 60 value 103.958990
## iter 70 value 100.931888
## iter 80 value 99.849997
## iter 90 value 98.832608
## iter 100 value 98.554021
## final value 98.554021
## stopped after 100 iterations
## # weights: 11
## initial value 344.507370
## iter 10 value 225.505664
## iter 20 value 222.779647
## iter 30 value 222.732454
## final value 222.730708
## converged
## # weights: 31
## initial value 337.243938
## iter 10 value 225.601056
## iter
        20 value 214.452906
## iter
        30 value 203.005020
## iter 40 value 196.998410
## iter
        50 value 189.333042
## iter
        60 value 185.862305
## iter 70 value 183.640471
## iter
        80 value 183.026587
## iter 90 value 182.930796
## iter 100 value 182.806803
## final value 182.806803
## stopped after 100 iterations
## # weights: 51
## initial value 390.234924
## iter 10 value 221.456525
## iter
        20 value 202.899045
## iter
        30 value 192.500632
## iter 40 value 184.189178
## iter
        50 value 176.966520
## iter 60 value 172.331989
## iter 70 value 163.410815
## iter 80 value 162.400545
## iter 90 value 162.356909
## final value 162.356166
## converged
## # weights: 71
## initial value 310.919700
## iter 10 value 213.004985
## iter 20 value 172.790939
## iter
        30 value 157.624478
```

```
40 value 145.835971
## iter
## iter
         50 value 139.007783
## iter
         60 value 129.282909
         70 value 128.330430
## iter
## iter 80 value 128.239982
## final value 128.239933
## converged
## # weights: 91
## initial value 480.606449
## iter 10 value 221.308474
        20 value 178.577921
## iter
         30 value 146.315566
## iter
## iter 40 value 118.872894
## iter
         50 value 100.954810
## iter 60 value 91.666132
## iter 70 value 84.967603
## iter 80 value 79.712237
## iter 90 value 70.243090
## iter 100 value 64.850633
## final value 64.850633
## stopped after 100 iterations
## # weights: 11
## initial value 322.485446
## iter 10 value 229.217595
## iter
        20 value 226.273473
## iter 30 value 226.261110
## final value 226.260727
## converged
## # weights: 31
## initial value 315.783692
## iter 10 value 232.153835
## iter
         20 value 215.842263
## iter
         30 value 209.175866
         40 value 206.748589
## iter
         50 value 206.458649
## iter
## iter 60 value 206.452177
## final value 206.452127
## converged
## # weights: 51
## initial value 328.620594
## iter 10 value 222.197299
## iter
         20 value 204.312098
## iter
         30 value 197.367975
## iter 40 value 196.115527
        50 value 195.812740
## iter
## iter 60 value 195.655993
## iter
        70 value 195.530457
## iter 80 value 195.527011
## final value 195.526974
## converged
## # weights: 71
## initial value 345.075278
## iter 10 value 221.319744
## iter 20 value 198.343956
```

```
30 value 187.834161
## iter
         40 value 185.633978
## iter
## iter
         50 value 184.789301
## iter
         60 value 183.124695
## iter
         70 value 181.585700
## iter 80 value 181.143038
## iter 90 value 179.585909
## iter 100 value 178.886605
## final value 178.886605
## stopped after 100 iterations
## # weights: 91
## initial value 391.679705
## iter 10 value 218.628811
## iter
        20 value 198.848597
## iter
        30 value 186.385010
## iter 40 value 178.281686
## iter 50 value 176.118970
## iter 60 value 173.731164
## iter 70 value 171.105634
## iter 80 value 166.480710
## iter 90 value 164.414314
## iter 100 value 163.757645
## final value 163.757645
## stopped after 100 iterations
## # weights: 11
## initial value 312.823060
## iter 10 value 235.791380
## iter
         20 value 228.892730
  iter
         30 value 223.557300
## iter
         40 value 223.179500
         50 value 223.168168
##
  iter
## iter
        50 value 223.168167
## iter 50 value 223.168167
## final value 223.168167
## converged
## # weights: 31
## initial value 363.756752
## iter 10 value 227.377618
## iter
         20 value 208.286875
         30 value 202.220846
## iter
## iter
         40 value 200.478492
        50 value 198.811922
## iter
## iter
        60 value 197.550187
        70 value 196.352538
## iter
        80 value 195.998433
## iter
## iter 90 value 195.822489
## iter 100 value 195.808553
## final value 195.808553
## stopped after 100 iterations
## # weights: 51
## initial value 385.658564
## iter 10 value 213.454346
## iter
        20 value 193.191749
        30 value 188.727139
```

```
## iter
        40 value 187.586819
         50 value 186.765407
## iter
## iter
         60 value 186.028625
## iter
         70 value 184.765904
## iter
         80 value 183.642327
## iter
        90 value 183.219416
## iter 100 value 182.451610
## final value 182.451610
## stopped after 100 iterations
## # weights: 71
## initial value 321.455698
## iter 10 value 213.120766
## iter
         20 value 200.029783
## iter
         30 value 185.337751
## iter 40 value 165.574555
## iter 50 value 159.257959
## iter 60 value 156.759152
## iter 70 value 154.721299
## iter 80 value 153.610417
## iter 90 value 152.421096
## iter 100 value 151.933705
## final value 151.933705
## stopped after 100 iterations
## # weights: 91
## initial value 322.934271
## iter 10 value 210.423492
  iter
         20 value 167.446733
  iter
         30 value 144.264775
##
  iter
         40 value 130.330001
## iter
         50 value 122.397979
         60 value 117.588934
##
  iter
## iter
         70 value 115.448597
## iter
        80 value 113.806251
## iter 90 value 113.208155
## iter 100 value 112.759721
## final value 112.759721
## stopped after 100 iterations
## # weights: 11
## initial value 338.380716
## iter 10 value 243.105539
## iter
         20 value 240.193023
         30 value 236.501599
## iter
## iter
         40 value 233.849927
         50 value 231.703347
## iter
         60 value 230.729955
## iter
## iter 70 value 230.703563
## final value 230.697626
## converged
## # weights: 31
## initial value 360.119368
## iter 10 value 213.048478
         20 value 201.305202
## iter
## iter
         30 value 196.917131
        40 value 194.673102
```

```
50 value 194.335210
## iter
         60 value 194.178128
## iter
         70 value 194.150009
## iter
         80 value 194.081200
## iter
## iter 90 value 194.053151
## final value 194.047682
## converged
## # weights: 51
## initial value 321.309089
## iter 10 value 227.152186
        20 value 197.204340
## iter
         30 value 184.694756
## iter
## iter 40 value 174.773698
## iter
         50 value 163.576594
## iter 60 value 159.694782
## iter 70 value 158.756099
## iter 80 value 156.911681
## iter 90 value 154.723129
## iter 100 value 154.424367
## final value 154.424367
## stopped after 100 iterations
## # weights: 71
## initial value 359.950168
## iter 10 value 215.530338
         20 value 179.339835
## iter
         30 value 154.915546
## iter
  iter
         40 value 143.636738
##
  iter
         50 value 139.384027
##
  iter
         60 value 137.221628
## iter
        70 value 134.453639
## iter 80 value 133.793196
## iter 90 value 133.427216
## iter 100 value 133.339672
## final value 133.339672
## stopped after 100 iterations
## # weights: 91
## initial value 413.760386
## iter 10 value 216.378861
## iter
         20 value 187.986849
         30 value 168.179616
## iter
## iter
         40 value 150.889559
        50 value 133.411991
## iter
## iter
        60 value 124.097558
        70 value 118.715575
## iter
        80 value 116.316464
## iter
## iter 90 value 114.402021
## iter 100 value 112.694010
## final value 112.694010
## stopped after 100 iterations
## # weights: 11
## initial value 317.378445
## iter 10 value 235.435426
## iter
        20 value 230.408947
        30 value 223.616909
```

```
## iter 40 value 222.739954
## final value 222.735313
## converged
## # weights: 31
## initial value 313.266835
## iter 10 value 210.268859
        20 value 200.089245
## iter
## iter
        30 value 198.300650
## iter 40 value 197.080568
## iter 50 value 195.019805
## iter 60 value 191.924404
        70 value 191.545088
## iter
## iter 80 value 191.399267
## iter 90 value 190.595658
## iter 100 value 189.620330
## final value 189.620330
## stopped after 100 iterations
## # weights: 51
## initial value 353.436123
## iter 10 value 212.349524
## iter 20 value 204.398630
## iter
        30 value 190.942680
## iter 40 value 175.942441
## iter 50 value 170.837802
## iter 60 value 165.273224
## iter 70 value 157.145688
## iter 80 value 150.573980
## iter 90 value 149.170154
## iter 100 value 148.913132
## final value 148.913132
## stopped after 100 iterations
## # weights: 71
## initial value 354.046090
## iter 10 value 210.859495
        20 value 166.443748
## iter
## iter
        30 value 140.569890
        40 value 127.584743
## iter
  iter
        50 value 123.087049
        60 value 116.771163
## iter
        70 value 113.454999
## iter
## iter
        80 value 108.840543
## iter 90 value 104.723941
## iter 100 value 103.976691
## final value 103.976691
## stopped after 100 iterations
## # weights: 91
## initial value 556.013687
## iter 10 value 201.404716
## iter 20 value 160.799654
## iter 30 value 139.296830
## iter 40 value 122.587925
## iter 50 value 107.753822
## iter 60 value 103.772002
## iter 70 value 96.426298
```

```
## iter 80 value 94.629128
## iter 90 value 94.195586
## iter 100 value 93.857021
## final value 93.857021
## stopped after 100 iterations
## # weights: 11
## initial value 306.178129
## iter 10 value 230.764171
## iter 20 value 217.521088
## iter 30 value 215.604653
## iter 40 value 215.372290
## final value 215.372252
## converged
## # weights: 31
## initial value 336.334136
## iter 10 value 215.423251
## iter 20 value 201.560512
         30 value 191.200856
## iter
## iter 40 value 188.894104
## iter 50 value 185.673461
## iter 60 value 183.506649
## iter 70 value 180.320629
## iter
        80 value 179.334225
## iter 90 value 179.088229
## iter 100 value 179.072706
## final value 179.072706
## stopped after 100 iterations
## # weights: 51
## initial value 324.683708
## iter
        10 value 210.711967
         20 value 191.278164
## iter
## iter
         30 value 179.273743
## iter
        40 value 170.743666
         50 value 155.961569
## iter
## iter 60 value 145.050667
## iter
        70 value 140.539416
        80 value 140.421221
## iter
## iter 90 value 140.379804
## iter 100 value 140.315110
## final value 140.315110
## stopped after 100 iterations
## # weights: 71
## initial value 327.741949
## iter 10 value 202.122744
## iter
         20 value 169.594301
## iter
         30 value 145.838036
## iter 40 value 132.909589
## iter 50 value 128.617487
## iter 60 value 121.816365
## iter 70 value 111.382845
## iter 80 value 108.717167
## iter 90 value 106.714220
## iter 100 value 106.050833
## final value 106.050833
```

```
## stopped after 100 iterations
## # weights: 91
## initial value 368.862317
## iter
        10 value 207.129114
## iter
        20 value 171.166713
## iter 30 value 139.041037
## iter 40 value 123.055780
## iter 50 value 110.064994
## iter 60 value 100.042863
## iter 70 value 93.824869
## iter 80 value 91.024578
## iter 90 value 88.835873
## iter 100 value 87.041644
## final value 87.041644
## stopped after 100 iterations
## # weights: 11
## initial value 342.094662
## iter 10 value 237.478714
## iter 20 value 222.565352
## iter 30 value 219.159965
## final value 218.908207
## converged
## # weights: 31
## initial value 298.904762
## iter 10 value 217.477307
        20 value 203.277790
## iter
## iter
        30 value 197.854532
## iter 40 value 196.400665
## iter
        50 value 195.982588
## iter
        60 value 195.825190
## iter 70 value 195.822041
## iter 80 value 195.821888
## final value 195.821855
## converged
## # weights: 51
## initial value 497.913831
## iter 10 value 224.409641
## iter
        20 value 199.399368
## iter
        30 value 195.885913
## iter 40 value 193.005688
## iter
        50 value 190.524195
## iter 60 value 188.336914
## iter 70 value 187.588747
## iter 80 value 187.437755
## iter 90 value 187.434459
## final value 187.434441
## converged
## # weights: 71
## initial value 307.321273
## iter 10 value 214.032330
## iter 20 value 195.312419
## iter 30 value 184.534979
## iter 40 value 181.206433
        50 value 179.686683
```

```
## iter 60 value 179.344314
        70 value 178.604783
## iter
        80 value 177.863424
## iter
        90 value 177.831717
## iter
## iter 100 value 177.828467
## final value 177.828467
## stopped after 100 iterations
## # weights: 91
## initial value 456.194229
## iter 10 value 213.421237
         20 value 191.158458
## iter
         30 value 177.494323
## iter
## iter 40 value 171.959738
## iter
         50 value 167.116449
## iter 60 value 163.328060
## iter 70 value 162.415848
## iter 80 value 161.907838
## iter 90 value 161.515605
## iter 100 value 161.265174
## final value 161.265174
## stopped after 100 iterations
## # weights: 11
## initial value 361.022963
## iter 10 value 234.315988
         20 value 233.518753
## iter
         30 value 229.047853
## iter
         40 value 219.730769
  iter
## iter
         50 value 216.247129
## iter 60 value 215.789642
## final value 215.789632
## converged
## # weights:
             31
## initial value 310.591791
## iter 10 value 206.005079
         20 value 190.685412
## iter
## iter
         30 value 189.417754
         40 value 188.963333
## iter
  iter
         50 value 188.857342
         60 value 188.818890
## iter
         70 value 188.818132
## iter
## iter
        70 value 188.818131
## iter 70 value 188.818131
## final value 188.818131
## converged
## # weights: 51
## initial value 347.260166
## iter 10 value 200.352205
## iter
        20 value 179.642734
## iter 30 value 173.397231
## iter
        40 value 169.801203
         50 value 168.979060
## iter
         60 value 168.725209
## iter
## iter
         70 value 168.607368
        80 value 168.345694
```

```
## iter 90 value 168.334932
## iter 100 value 168.326245
## final value 168.326245
## stopped after 100 iterations
## # weights: 71
## initial value 391.778128
        10 value 202.270378
## iter
## iter 20 value 175.917297
## iter
        30 value 162.136976
## iter 40 value 152.486256
## iter
        50 value 147.065450
        60 value 144.716573
## iter
## iter 70 value 143.591151
## iter 80 value 143.218484
## iter 90 value 143.042225
## iter 100 value 143.008620
## final value 143.008620
## stopped after 100 iterations
## # weights: 91
## initial value 500.531607
## iter 10 value 210.203352
## iter 20 value 172.180192
## iter
        30 value 149.622543
## iter 40 value 137.268630
        50 value 127.391263
## iter
        60 value 123.739354
## iter
  iter
        70 value 120.121027
##
## iter 80 value 117.723209
        90 value 114.665372
## iter
## iter 100 value 112.032246
## final value 112.032246
## stopped after 100 iterations
## # weights: 11
## initial value 335.478922
## iter 10 value 228.793107
## iter
        20 value 226.809955
        30 value 222.392779
## iter
  iter
        40 value 216.200987
## iter
        50 value 215.421900
## iter 60 value 215.415366
## final value 215.415361
## converged
## # weights: 31
## initial value 350.941474
## iter 10 value 215.723255
## iter
        20 value 210.933925
        30 value 202.491389
## iter
## iter 40 value 195.668510
## iter 50 value 193.393852
## iter 60 value 192.122280
## iter 70 value 191.943919
        80 value 191.869789
## iter
## iter 90 value 191.453729
## iter 100 value 191.448837
```

```
## final value 191.448837
## stopped after 100 iterations
## # weights: 51
## initial value 388.348820
## iter 10 value 208.517034
         20 value 180.305636
## iter
## iter
         30 value 171.701534
## iter 40 value 163.858001
        50 value 158.900799
## iter
## iter 60 value 154.257455
## iter
        70 value 151.797270
## iter 80 value 150.194291
## iter 90 value 149.149590
## iter 100 value 149.046884
## final value 149.046884
## stopped after 100 iterations
## # weights: 71
## initial value 330.826755
## iter 10 value 212.932584
## iter
         20 value 190.834014
        30 value 174.495575
## iter
## iter
        40 value 163.557137
## iter
         50 value 158.791841
## iter 60 value 155.405817
        70 value 151.930833
## iter
## iter 80 value 149.760609
  iter 90 value 148.368790
## iter 100 value 147.044046
## final value 147.044046
## stopped after 100 iterations
## # weights: 91
## initial value 318.475839
## iter
        10 value 205.303625
## iter
         20 value 159.150797
##
  iter
         30 value 126.635418
  iter
         40 value 116.422858
         50 value 111.331457
##
  iter
  iter
         60 value 109.240690
         70 value 107.864534
##
  iter
        80 value 107.528681
## iter
## iter 90 value 107.286325
## iter 100 value 106.763785
## final value 106.763785
## stopped after 100 iterations
## # weights: 11
## initial value 360.780355
## iter 10 value 229.709981
## iter 20 value 226.535600
## iter 30 value 223.218414
## iter 40 value 216.229919
## iter
        50 value 215.394493
## iter 60 value 215.376581
## final value 215.376578
## converged
```

```
## # weights: 31
## initial value 431.188496
## iter 10 value 202.422161
## iter
         20 value 193.681709
## iter
         30 value 191.726030
## iter 40 value 188.286184
## iter 50 value 187.004316
## iter 60 value 186.460658
## iter 70 value 186.429861
## iter 80 value 186.402477
## iter 90 value 185.996611
## iter 100 value 185.594494
## final value 185.594494
## stopped after 100 iterations
## # weights: 51
## initial value 331.609815
## iter 10 value 205.422788
## iter 20 value 184.547412
## iter 30 value 170.310884
## iter 40 value 162.163552
## iter 50 value 153.823906
## iter 60 value 153.283153
## iter 70 value 152.928106
## iter 80 value 152.640459
## iter 90 value 152.402094
## iter 100 value 152.285951
## final value 152.285951
## stopped after 100 iterations
## # weights: 71
## initial value 369.527089
## iter 10 value 207.481972
## iter
         20 value 180.715366
## iter
         30 value 162.941766
         40 value 156.495554
## iter
        50 value 153.192537
##
  iter
  iter
         60 value 145.933469
         70 value 138.635706
## iter
  iter
        80 value 132.904222
## iter 90 value 130.247270
## iter 100 value 129.354706
## final value 129.354706
## stopped after 100 iterations
## # weights: 91
## initial value 417.677718
## iter 10 value 204.346218
## iter
         20 value 163.023539
## iter
         30 value 128.898669
## iter 40 value 113.180413
## iter 50 value 105.580330
## iter 60 value 102.736286
## iter 70 value 98.376889
## iter 80 value 95.555002
## iter 90 value 94.085726
## iter 100 value 93.193549
```

```
## final value 93.193549
## stopped after 100 iterations
## # weights: 11
## initial value 348.925064
## iter 10 value 232.692702
         20 value 227.885976
## iter
         30 value 222.292345
## iter
## iter 40 value 217.714381
        50 value 217.493030
## iter
## iter 60 value 217.492581
## iter 60 value 217.492581
## iter 60 value 217.492581
## final value 217.492581
## converged
## # weights: 31
## initial value 405.252410
## iter 10 value 210.173038
        20 value 197.134152
## iter
## iter 30 value 194.041092
## iter 40 value 186.703844
## iter 50 value 178.007799
## iter
        60 value 176.872304
## iter 70 value 176.211408
## iter 80 value 175.091585
## iter 90 value 174.673790
## iter 100 value 173.738501
## final value 173.738501
## stopped after 100 iterations
## # weights: 51
## initial value 540.048840
## iter 10 value 238.354452
##
  iter
         20 value 222.827562
##
  iter
         30 value 215.827223
         40 value 210.091192
## iter
         50 value 205.539571
##
  iter
##
  iter
         60 value 197.938135
         70 value 192.775340
## iter
  iter
         80 value 187.974354
        90 value 184.143520
## iter 100 value 180.799327
## final value 180.799327
## stopped after 100 iterations
## # weights: 71
## initial value 432.491794
## iter 10 value 217.275777
## iter
         20 value 182.725220
## iter
         30 value 169.051717
## iter 40 value 152.814874
## iter 50 value 136.363945
## iter 60 value 126.740146
## iter 70 value 125.456961
        80 value 124.996805
## iter
## iter 90 value 124.973745
## final value 124.973502
```

```
## converged
## # weights: 91
## initial value 293.707057
## iter
        10 value 206.821207
## iter
        20 value 182.643851
## iter 30 value 158.788388
## iter 40 value 128.458327
## iter 50 value 113.415232
## iter 60 value 104.928644
## iter 70 value 96.737004
## iter 80 value 92.333737
## iter 90 value 90.883650
## iter 100 value 90.772506
## final value 90.772506
## stopped after 100 iterations
## # weights: 11
## initial value 329.089042
## iter 10 value 237.001624
## iter 20 value 223.882647
## iter 30 value 220.963816
## final value 220.864372
## converged
## # weights: 31
## initial value 359.315513
## iter 10 value 223.343259
## iter
        20 value 208.868754
        30 value 203.919566
## iter
## iter 40 value 203.215513
## iter 50 value 203.193244
## final value 203.193154
## converged
## # weights: 51
## initial value 321.787000
## iter 10 value 217.750075
## iter
        20 value 202.226639
        30 value 199.641904
## iter
        40 value 196.401569
## iter
  iter
        50 value 193.761299
## iter
        60 value 193.210890
        70 value 191.957429
## iter
## iter
        80 value 190.768205
## iter 90 value 190.038212
## iter 100 value 190.024079
## final value 190.024079
## stopped after 100 iterations
## # weights: 71
## initial value 448.978163
## iter 10 value 213.351495
## iter 20 value 196.213286
## iter 30 value 186.310652
## iter 40 value 182.363949
## iter 50 value 180.388397
## iter 60 value 179.776098
## iter 70 value 179.396197
```

```
## iter 80 value 179.269582
## iter
        90 value 179.237748
## iter 100 value 178.775887
## final value 178.775887
## stopped after 100 iterations
## # weights: 91
## initial value 385.079509
## iter 10 value 209.443643
## iter
         20 value 192.431191
## iter
        30 value 184.171593
        40 value 180.181765
## iter
         50 value 177.530400
## iter
## iter
        60 value 172.598534
## iter
        70 value 168.429149
## iter 80 value 167.558507
## iter 90 value 166.754854
## iter 100 value 166.256077
## final value 166.256077
## stopped after 100 iterations
## # weights: 11
## initial value 338.428289
## iter 10 value 223.430076
## iter
         20 value 218.018961
## iter 30 value 217.875975
         40 value 217.874876
## iter
        40 value 217.874876
## iter
## iter 40 value 217.874876
## final value 217.874876
## converged
## # weights: 31
## initial value 313.343403
## iter 10 value 210.145990
## iter
         20 value 202.125373
         30 value 197.937731
## iter
        40 value 196.543934
## iter
##
  iter
         50 value 196.219116
         60 value 196.037239
## iter
## iter
         70 value 196.015754
## final value 196.014607
## converged
## # weights: 51
## initial value 340.843290
## iter
        10 value 207.196250
         20 value 190.022671
## iter
## iter
         30 value 181.900189
## iter
        40 value 176.936357
## iter
         50 value 175.700983
## iter
         60 value 175.523125
## iter 70 value 174.839314
## iter 80 value 174.786869
## iter 90 value 174.784669
## final value 174.784651
## converged
## # weights: 71
```

```
## initial value 335.636647
## iter
        10 value 202.979234
## iter
         20 value 176.885487
## iter
         30 value 159.861811
## iter
         40 value 154.400729
## iter
        50 value 153.773558
## iter 60 value 153.475306
## iter 70 value 153.136024
## iter 80 value 152.324411
## iter 90 value 152.134656
## iter 100 value 152.035598
## final value 152.035598
## stopped after 100 iterations
## # weights: 91
## initial value 306.692379
## iter 10 value 205.290409
## iter 20 value 181.896557
         30 value 164.320294
## iter
## iter 40 value 159.236196
## iter 50 value 153.436573
## iter 60 value 145.054383
## iter 70 value 139.622259
## iter 80 value 138.127691
## iter 90 value 136.446451
## iter 100 value 134.903857
## final value 134.903857
## stopped after 100 iterations
## # weights: 11
## initial value 332.428264
## iter 10 value 224.855092
        20 value 218.669575
## iter
## iter
         30 value 217.757459
## iter 40 value 217.539548
## final value 217.531624
## converged
## # weights: 31
## initial value 332.239618
## iter 10 value 210.583605
## iter
         20 value 200.132712
         30 value 197.635548
## iter
## iter
         40 value 192.366506
        50 value 189.286336
## iter
## iter
        60 value 188.194550
        70 value 188.090411
## iter
        80 value 188.074795
## iter
## iter 90 value 188.067904
## iter 100 value 188.047743
## final value 188.047743
## stopped after 100 iterations
## # weights: 51
## initial value 300.502610
## iter 10 value 205.719426
## iter
        20 value 185.165604
        30 value 177.628516
```

```
40 value 172.672163
## iter
         50 value 170.377157
## iter
## iter
         60 value 170.198463
## iter
         70 value 169.491194
## iter
         80 value 169.357468
## iter 90 value 169.030114
## iter 100 value 168.850959
## final value 168.850959
## stopped after 100 iterations
## # weights: 71
## initial value 341.795894
## iter 10 value 206.191608
## iter
         20 value 185.476574
## iter
         30 value 172.419893
## iter
        40 value 162.924473
## iter 50 value 157.658969
## iter 60 value 152.762656
## iter 70 value 151.093636
## iter 80 value 150.469233
## iter 90 value 150.035467
## iter 100 value 149.949811
## final value 149.949811
## stopped after 100 iterations
## # weights: 91
## initial value 304.950366
## iter
        10 value 206.683727
  iter
         20 value 172.248399
  iter
         30 value 146.570202
##
  iter
         40 value 119.665466
## iter
         50 value 110.238543
         60 value 108.283743
##
  iter
##
  iter
         70 value 106.583529
## iter
        80 value 105.201137
## iter 90 value 103.997096
## iter 100 value 103.514235
## final value 103.514235
## stopped after 100 iterations
## # weights: 11
## initial value 363.183082
## iter 10 value 273.029668
## iter
         20 value 221.819936
         30 value 218.268739
## iter
## iter 40 value 217.498660
## final value 217.496494
## converged
## # weights: 31
## initial value 342.856297
## iter 10 value 211.419591
## iter 20 value 206.668659
         30 value 198.280467
## iter
## iter 40 value 191.627066
         50 value 190.155776
## iter
        60 value 189.390451
## iter
        70 value 187.522498
```

```
## iter 80 value 185.696897
## iter 90 value 180.438821
## iter 100 value 178.662186
## final value 178.662186
## stopped after 100 iterations
## # weights: 51
## initial value 417.537930
## iter 10 value 205.500103
## iter
         20 value 187.297396
## iter 30 value 181.982698
## iter
        40 value 164.124644
        50 value 155.730123
## iter
## iter 60 value 153.084726
## iter 70 value 152.873247
## iter 80 value 152.703003
## iter 90 value 152.457162
## iter 100 value 151.771575
## final value 151.771575
## stopped after 100 iterations
## # weights: 71
## initial value 426.891657
## iter 10 value 206.162044
## iter
         20 value 182.596444
## iter
        30 value 166.794597
         40 value 156.296240
## iter
         50 value 150.689598
## iter
  iter
         60 value 142.352523
##
##
  iter
         70 value 139.310899
  iter
         80 value 138.438003
## iter
        90 value 138.075899
## iter 100 value 137.692768
## final value 137.692768
## stopped after 100 iterations
## # weights: 91
## initial value 333.610377
## iter
        10 value 206.227778
         20 value 173.098463
## iter
  iter
         30 value 152.858571
         40 value 128.012518
##
  iter
         50 value 114.171741
##
  iter
## iter
         60 value 105.683182
        70 value 101.735427
## iter
## iter
        80 value 98.803310
## iter 90 value 98.417025
## iter 100 value 98.204800
## final value 98.204800
## stopped after 100 iterations
## # weights: 11
## initial value 406.564315
## iter 10 value 227.189192
## iter 20 value 219.732671
## iter 30 value 218.658490
## final value 218.642564
## converged
```

```
## # weights: 31
## initial value 371.706944
## iter 10 value 212.082469
## iter
        20 value 200.957454
## iter
        30 value 196.354426
## iter 40 value 192.630046
## iter 50 value 190.555724
## iter 60 value 189.742031
## iter 70 value 189.644215
## iter 80 value 189.555495
## iter 90 value 189.530547
## iter 100 value 189.525569
## final value 189.525569
## stopped after 100 iterations
## # weights: 51
## initial value 319.678717
## iter 10 value 209.326451
## iter 20 value 183.339545
## iter 30 value 177.766424
## iter 40 value 172.716494
## iter 50 value 165.881969
## iter 60 value 163.952336
## iter 70 value 160.209985
## iter 80 value 149.311674
## iter 90 value 143.129636
## iter 100 value 142.196262
## final value 142.196262
## stopped after 100 iterations
## # weights: 71
## initial value 400.835388
## iter 10 value 209.385619
## iter
        20 value 181.851387
## iter
        30 value 157.282543
        40 value 146.705196
## iter
        50 value 133.864341
##
  iter
  iter
        60 value 122.065360
        70 value 115.830737
## iter
  iter
        80 value 115.487960
## iter 90 value 115.466126
## iter 100 value 115.465452
## final value 115.465452
## stopped after 100 iterations
## # weights: 91
## initial value 284.103762
## iter 10 value 206.230452
## iter
        20 value 175.728964
## iter
        30 value 136.301922
## iter 40 value 106.655084
## iter 50 value 94.486387
## iter 60 value 88.390423
## iter 70 value 84.342177
## iter 80 value 77.806358
## iter 90 value 71.826817
## iter 100 value 69.879161
```

final value 69.879161 ## stopped after 100 iterations ## # weights: 11 ## initial value 321.709697 ## iter 10 value 239.017396 ## iter 20 value 223.457574 ## iter 30 value 222.135513 ## final value 222.109630 ## converged ## # weights: 31 ## initial value 352.321439 ## iter 10 value 223.816265 ## iter 20 value 210.643930 ## iter 30 value 208.499790 ## iter 40 value 207.917562 ## iter 50 value 207.900337 ## final value 207.900332 ## converged ## # weights: 51 ## initial value 440.151275 ## iter 10 value 224.596336 ## iter 20 value 204.881746 ## iter 30 value 193.793452 ## iter 40 value 191.379755 50 value 191.060092 ## iter ## iter 60 value 191.021663 ## iter 70 value 191.006092 ## final value 191.005988 ## converged ## # weights: 71 ## initial value 319.412742 ## iter 10 value 216.251818 ## iter 20 value 200.447935 30 value 193.405771 ## iter 40 value 188.275089 ## iter ## iter 50 value 185.555931 60 value 183.592181 ## iter iter 70 value 183.037850 80 value 182.887131 ## iter 90 value 182.862524 ## iter ## iter 100 value 182.860644 ## final value 182.860644 ## stopped after 100 iterations ## # weights: 91 ## initial value 336.547908 ## iter 10 value 215.611532 ## iter 20 value 198.271454 ## iter 30 value 186.715999 ## iter 40 value 179.907999 ## iter 50 value 173.730317 ## iter 60 value 171.824049 70 value 171.279127 ## iter 80 value 171.067167 ## iter 90 value 170.798258

```
## iter 100 value 170.259745
## final value 170.259745
## stopped after 100 iterations
## # weights: 11
## initial value 353.576109
## iter 10 value 228.995808
## iter 20 value 220.438734
## iter 30 value 219.210172
## iter 40 value 219.178537
## final value 219.178534
## converged
## # weights: 31
## initial value 326.541945
## iter 10 value 227.852229
## iter 20 value 213.986863
## iter 30 value 210.276636
## iter 40 value 207.322039
## iter 50 value 200.748542
## iter 60 value 199.289805
## iter 70 value 197.394998
## iter 80 value 197.254090
## iter 90 value 197.243622
## final value 197.243393
## converged
## # weights: 51
## initial value 387.168072
## iter 10 value 213.827897
## iter
        20 value 195.234570
## iter
        30 value 181.142608
## iter
        40 value 177.979273
        50 value 176.781379
## iter
## iter
        60 value 176.182319
## iter
        70 value 175.521021
        80 value 175.400341
## iter
## iter 90 value 175.066119
## iter 100 value 172.964815
## final value 172.964815
## stopped after 100 iterations
## # weights:
              71
## initial value 369.978037
## iter 10 value 208.813553
## iter
        20 value 183.950613
## iter
        30 value 177.125537
## iter 40 value 170.097867
## iter 50 value 166.785964
## iter 60 value 165.603065
## iter 70 value 164.239745
## iter 80 value 163.899642
## iter 90 value 163.798019
## final value 163.771980
## converged
## # weights: 91
## initial value 369.277739
## iter 10 value 206.515238
```

```
20 value 173.427244
## iter
         30 value 153.317091
## iter
## iter
        40 value 141.805332
## iter
         50 value 135.762847
## iter
         60 value 128.982611
## iter 70 value 124.779480
## iter 80 value 123.159137
## iter 90 value 121.549825
## iter 100 value 119.546838
## final value 119.546838
## stopped after 100 iterations
## # weights: 11
## initial value 314.921099
## iter 10 value 230.289428
## iter 20 value 221.460433
## iter 30 value 219.211478
## iter 40 value 218.684551
## final value 218.684486
## converged
## # weights: 31
## initial value 377.072635
## iter 10 value 209.868616
## iter
         20 value 197.386923
## iter
        30 value 192.612959
         40 value 188.161545
## iter
         50 value 188.061287
## iter
  iter
         60 value 188.050508
##
##
  iter
         70 value 188.043650
  iter
        80 value 188.037937
        90 value 188.021055
## iter 100 value 188.020777
## final value 188.020777
## stopped after 100 iterations
## # weights: 51
## initial value 450.092809
## iter
        10 value 212.608950
         20 value 192.882565
## iter
  iter
         30 value 181.224608
  iter
        40 value 177.774337
##
         50 value 173.773663
##
  iter
## iter
         60 value 170.106310
## iter 70 value 168.974201
        80 value 168.408326
## iter
## iter 90 value 167.445037
## iter 100 value 164.820150
## final value 164.820150
## stopped after 100 iterations
## # weights: 71
## initial value 322.296608
## iter 10 value 213.724570
## iter 20 value 185.439250
        30 value 165.156066
## iter
## iter 40 value 143.706579
        50 value 139.702014
```

```
## iter 60 value 137.347999
## iter
        70 value 135.602617
## iter
        80 value 134.620288
        90 value 132.941645
## iter
## iter 100 value 130.291143
## final value 130.291143
## stopped after 100 iterations
## # weights: 91
## initial value 307.091377
## iter 10 value 208.816819
         20 value 172.293120
## iter
         30 value 146.351740
## iter
## iter 40 value 131.604215
## iter
         50 value 120.239570
## iter 60 value 116.648530
## iter 70 value 113.979813
## iter 80 value 112.049327
## iter 90 value 111.279764
## iter 100 value 111.021069
## final value 111.021069
## stopped after 100 iterations
## # weights: 11
## initial value 313.575902
## iter 10 value 233.481435
## iter
        20 value 220.163279
## iter 30 value 218.727586
## final value 218.646770
## converged
## # weights: 31
## initial value 322.150423
## iter 10 value 209.336452
## iter
         20 value 201.458705
## iter
         30 value 196.931014
         40 value 195.211945
## iter
         50 value 189.862965
##
  iter
  iter
         60 value 186.803584
         70 value 185.595186
## iter
  iter
         80 value 185.053643
        90 value 183.813521
## iter 100 value 183.534474
## final value 183.534474
## stopped after 100 iterations
## # weights: 51
## initial value 331.509792
## iter 10 value 206.242959
         20 value 188.841227
## iter
## iter
         30 value 177.520537
## iter 40 value 168.161828
## iter 50 value 163.365246
## iter 60 value 157.434811
## iter 70 value 156.606713
        80 value 156.334116
## iter
## iter 90 value 156.181814
## iter 100 value 155.912035
```

```
## final value 155.912035
## stopped after 100 iterations
## # weights: 71
## initial value 320.272732
## iter 10 value 213.560325
        20 value 186.754464
## iter
## iter
        30 value 169.867168
## iter 40 value 159.001757
## iter 50 value 151.835247
## iter 60 value 144.195038
## iter 70 value 143.340697
## iter 80 value 143.213255
## iter 90 value 143.052090
## iter 100 value 142.987263
## final value 142.987263
## stopped after 100 iterations
## # weights: 91
## initial value 430.156300
## iter 10 value 218.687248
## iter 20 value 176.764681
        30 value 156.774042
## iter
## iter 40 value 140.343514
## iter
        50 value 130.039464
## iter 60 value 123.126229
## iter 70 value 118.876331
## iter 80 value 114.180941
## iter 90 value 112.624115
## iter 100 value 112.074872
## final value 112.074872
## stopped after 100 iterations
## # weights: 11
## initial value 315.455912
## iter 10 value 221.456221
        20 value 213.806596
## iter
## iter 30 value 213.175884
## final value 213.110811
## converged
## # weights: 31
## initial value 317.483146
## iter 10 value 214.335225
## iter
        20 value 200.698716
        30 value 199.291792
## iter
## iter
        40 value 197.142150
        50 value 194.175579
## iter
        60 value 190.818862
## iter
## iter
        70 value 189.820575
## iter 80 value 189.088047
## iter 90 value 188.779832
## iter 100 value 186.819547
## final value 186.819547
## stopped after 100 iterations
## # weights: 51
## initial value 335.433281
## iter 10 value 208.814669
```

```
20 value 186.125285
## iter
         30 value 165.854131
## iter
         40 value 158.205572
## iter
## iter
         50 value 149.988159
## iter
         60 value 142.010901
## iter
         70 value 140.724062
## iter 80 value 140.670043
## final value 140.669984
## converged
## # weights: 71
## initial value 320.774963
## iter 10 value 201.066926
## iter
         20 value 173.104724
## iter
         30 value 155.584208
## iter 40 value 143.012558
## iter 50 value 130.949349
## iter 60 value 121.724482
## iter 70 value 117.830288
## iter 80 value 116.344264
## iter 90 value 115.945859
## iter 100 value 115.820993
## final value 115.820993
## stopped after 100 iterations
## # weights: 91
## initial value 306.598094
        10 value 199.474058
## iter
## iter
         20 value 171.237212
## iter
         30 value 143.334879
##
  iter
         40 value 113.851134
## iter
         50 value 103.778550
         60 value 100.165906
##
  iter
         70 value 96.077203
## iter
## iter
        80 value 91.210862
## iter 90 value 88.970766
## iter 100 value 88.621397
## final value 88.621397
## stopped after 100 iterations
## # weights: 11
## initial value 380.100055
## iter 10 value 222.321314
## iter
         20 value 216.858551
## iter 30 value 216.747499
## final value 216.747475
## converged
## # weights: 31
## initial value 362.870593
## iter 10 value 211.056123
## iter 20 value 205.869557
## iter 30 value 204.096797
## iter 40 value 203.370334
## iter 50 value 203.261178
## final value 203.260998
## converged
## # weights: 51
```

```
## initial value 392.884373
## iter
         10 value 223.344270
         20 value 205.753618
## iter
## iter
         30 value 195.424002
## iter
         40 value 190.950127
## iter
         50 value 189.954864
        60 value 189.710189
## iter
## iter
        70 value 189.676431
        80 value 189.660247
## iter
## iter 90 value 189.658687
## iter 90 value 189.658686
## iter 90 value 189.658686
## final value 189.658686
## converged
## # weights: 71
## initial value 382.198353
## iter 10 value 209.073952
        20 value 194.827425
## iter
## iter 30 value 188.009710
## iter 40 value 182.088976
## iter 50 value 179.375694
## iter
        60 value 178.206868
## iter 70 value 177.441662
## iter 80 value 177.207843
## iter 90 value 177.169734
## iter 100 value 177.162494
## final value 177.162494
## stopped after 100 iterations
## # weights: 91
## initial value 321.485893
## iter 10 value 204.990516
## iter
         20 value 192.652587
## iter
         30 value 182.207174
         40 value 175.173042
## iter
         50 value 172.290989
##
  iter
##
  iter
         60 value 170.963632
         70 value 170.134154
## iter
  iter
         80 value 169.702527
        90 value 168.877409
## iter 100 value 167.817506
## final value 167.817506
## stopped after 100 iterations
## # weights: 11
## initial value 324.299856
## iter 10 value 221.575520
## iter 20 value 214.054154
## iter 30 value 213.665090
## final value 213.651921
## converged
## # weights: 31
## initial value 321.145521
## iter 10 value 225.490738
## iter
         20 value 206.388601
## iter
        30 value 195.180957
```

```
## iter 40 value 193.371930
## iter
        50 value 193.123827
## iter 60 value 193.117317
## final value 193.117220
## converged
## # weights: 51
## initial value 345.502916
## iter 10 value 222.381836
## iter
        20 value 191.177014
## iter 30 value 182.478122
## iter 40 value 173.058403
        50 value 170.946916
## iter
## iter 60 value 169.964581
## iter 70 value 169.831590
## iter 80 value 169.673551
## iter 90 value 169.606255
## iter 100 value 169.593215
## final value 169.593215
## stopped after 100 iterations
## # weights: 71
## initial value 343.423250
## iter 10 value 207.041043
## iter
        20 value 182.040374
## iter 30 value 169.942531
        40 value 166.286241
## iter
        50 value 162.311726
## iter
  iter
        60 value 161.201312
##
## iter
        70 value 159.460176
## iter
        80 value 155.663477
        90 value 152.994861
## iter 100 value 152.343582
## final value 152.343582
## stopped after 100 iterations
## # weights: 91
## initial value 311.693340
## iter
        10 value 197.525139
        20 value 165.965621
## iter
  iter
        30 value 147.318809
  iter
        40 value 135.016127
##
        50 value 129.969220
##
  iter
## iter
        60 value 128.616657
## iter 70 value 126.633812
## iter
        80 value 121.356568
## iter 90 value 116.861094
## iter 100 value 114.690241
## final value 114.690241
## stopped after 100 iterations
## # weights: 11
## initial value 338.193685
## iter 10 value 226.289075
## iter 20 value 220.739659
## iter 30 value 213.517083
## iter 40 value 213.169137
## final value 213.167484
```

```
## converged
## # weights: 31
## initial value 338.895635
## iter
        10 value 208.895422
## iter
        20 value 196.426839
## iter 30 value 193.043901
## iter 40 value 188.586877
## iter 50 value 186.927871
## iter 60 value 185.598172
## iter 70 value 185.369278
## iter 80 value 185.163695
## iter 90 value 185.088004
## final value 185.073565
## converged
## # weights: 51
## initial value 353.654817
## iter 10 value 203.943477
## iter 20 value 185.349192
## iter 30 value 176.836462
## iter 40 value 169.608442
## iter 50 value 165.909439
## iter 60 value 163.131699
## iter 70 value 160.741367
## iter 80 value 160.143139
## iter 90 value 158.650384
## iter 100 value 157.849799
## final value 157.849799
## stopped after 100 iterations
## # weights: 71
## initial value 403.992539
## iter 10 value 204.640115
        20 value 171.798766
## iter
## iter
        30 value 154.348598
        40 value 143.986313
## iter
  iter 50 value 140.177873
##
##
  iter
        60 value 137.745457
        70 value 136.526738
## iter
  iter
        80 value 136.110907
## iter 90 value 135.962953
## iter 100 value 135.876781
## final value 135.876781
## stopped after 100 iterations
## # weights: 91
## initial value 303.559453
## iter 10 value 203.854897
        20 value 175.760184
## iter
## iter
        30 value 149.839837
## iter 40 value 134.583498
## iter 50 value 128.752860
## iter 60 value 125.690863
## iter 70 value 123.510587
## iter 80 value 122.860485
## iter 90 value 122.172898
## iter 100 value 121.863367
```

```
## final value 121.863367
## stopped after 100 iterations
## # weights: 11
## initial value 348.714300
## iter 10 value 229.041090
## iter 20 value 224.499692
## iter
         30 value 217.294166
## iter 40 value 213.262962
## iter 50 value 213.115343
## final value 213.115277
## converged
## # weights: 31
## initial value 335.075251
## iter 10 value 212.612155
## iter 20 value 198.532984
## iter
         30 value 193.546103
## iter 40 value 189.247469
## iter 50 value 182.912399
## iter 60 value 182.458638
## iter 70 value 182.435257
## iter 80 value 182.417069
## iter 90 value 181.990000
## iter 100 value 181.942920
## final value 181.942920
## stopped after 100 iterations
## # weights: 51
## initial value 328.442332
## iter 10 value 207.412744
## iter
         20 value 184.924760
## iter
         30 value 173.003788
        40 value 159.604088
##
  iter
##
  iter
         50 value 152.835689
## iter
        60 value 152.117891
        70 value 151.990245
## iter
## iter 80 value 151.895000
## iter
        90 value 151.775183
## iter 100 value 151.266242
## final value 151.266242
## stopped after 100 iterations
## # weights: 71
## initial value 321.008070
## iter 10 value 208.369139
## iter
         20 value 180.575920
         30 value 157.110545
## iter
## iter
        40 value 148.653615
## iter
         50 value 141.475340
## iter
        60 value 135.181466
## iter 70 value 132.137821
## iter 80 value 129.920496
## iter 90 value 129.264586
## iter 100 value 128.981584
## final value 128.981584
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 445.928388
## iter
        10 value 203.593144
         20 value 172.006950
## iter
## iter
         30 value 133.081206
## iter
         40 value 112.917633
         50 value 97.760258
## iter
        60 value 91.188570
## iter
## iter 70 value 87.486122
## iter 80 value 86.559841
## iter 90 value 85.794052
## iter 100 value 83.338876
## final value 83.338876
## stopped after 100 iterations
## # weights: 11
## initial value 313.163170
## iter 10 value 299.360953
## iter 20 value 218.901018
        30 value 217.605192
## iter
## iter 40 value 217.469053
## iter 40 value 217.469053
## iter 40 value 217.469053
## final value 217.469053
## converged
## # weights:
              31
## initial value 315.173595
## iter 10 value 213.183270
## iter
         20 value 198.235329
## iter
         30 value 189.922759
##
  iter
         40 value 180.458363
## iter
         50 value 177.104767
        60 value 176.860552
## iter
## iter 70 value 176.856738
## iter 80 value 176.855887
## final value 176.855560
## converged
## # weights: 51
## initial value 304.830791
## iter 10 value 209.475616
## iter
         20 value 185.782933
## iter
         30 value 171.146363
## iter
         40 value 158.915875
        50 value 152.491520
## iter
## iter
         60 value 143.877395
        70 value 136.519161
## iter
        80 value 134.319408
## iter
## iter 90 value 134.232257
## final value 134.231842
## converged
## # weights: 71
## initial value 451.238999
## iter 10 value 203.759031
         20 value 167.255982
## iter
## iter
         30 value 142.384657
        40 value 131.888353
```

```
50 value 123.478139
## iter
        60 value 118.599024
## iter
        70 value 114.273972
## iter
        80 value 109.675678
## iter
## iter 90 value 109.048884
## final value 109.048715
## converged
## # weights: 91
## initial value 445.302588
## iter 10 value 207.364923
## iter 20 value 177.929506
## iter
        30 value 157.226686
## iter 40 value 140.017810
## iter
        50 value 127.917130
## iter 60 value 118.310604
## iter 70 value 110.939458
## iter 80 value 109.441545
## iter 90 value 109.227416
## final value 109.225184
## converged
## # weights: 11
## initial value 346.008056
## iter 10 value 233.927672
## iter 20 value 224.196393
## iter 30 value 221.197875
## final value 221.112539
## converged
## # weights:
              31
## initial value 375.214048
## iter 10 value 232.171792
## iter
        20 value 214.887865
## iter
        30 value 208.827703
## iter
        40 value 204.839487
        50 value 203.036742
## iter
## iter 60 value 202.622141
## final value 202.621289
## converged
## # weights: 51
## initial value 474.046486
## iter 10 value 226.191057
## iter
        20 value 203.827800
## iter
        30 value 193.313710
## iter
        40 value 190.228065
        50 value 189.736868
## iter
        60 value 189.634754
## iter
        70 value 189.588682
## iter
## iter 80 value 189.588451
## final value 189.588444
## converged
## # weights: 71
## initial value 376.405368
## iter 10 value 238.196078
## iter
        20 value 211.118463
## iter
        30 value 197.413380
```

40 value 191.375339 ## iter 50 value 189.116020 ## iter ## iter 60 value 187.432689 ## iter 70 value 186.896797 ## iter 80 value 186.386465 90 value 185.691672 ## iter ## iter 100 value 184.288539 ## final value 184.288539 ## stopped after 100 iterations ## # weights: 91 ## initial value 326.037213 ## iter 10 value 216.842344 ## iter 20 value 191.269045 ## iter 30 value 180.767794 ## iter 40 value 176.906037 ## iter 50 value 176.100524 ## iter 60 value 175.131343 ## iter 70 value 172.579875 ## iter 80 value 171.226236 ## iter 90 value 170.448009 ## iter 100 value 170.244510 ## final value 170.244510 ## stopped after 100 iterations ## # weights: 11 ## initial value 387.427884 ## iter 10 value 231.839344 iter 20 value 226.117623 iter 30 value 219.565674 iter 40 value 217.931415 ## iter 50 value 217.912692 ## final value 217.912653 ## converged ## # weights: 31 ## initial value 321.782215 ## iter 10 value 234.818715 ## iter 20 value 218.836764 30 value 210.052433 ## iter iter 40 value 207.315055 50 value 207.195596 ## iter 60 value 207.036762 ## iter ## iter 70 value 207.029628 ## iter 80 value 207.027155 ## iter 90 value 207.024516 ## final value 207.024467 ## converged ## # weights: 51 ## initial value 312.462703 ## iter 10 value 208.809239 ## iter 20 value 188.725890 30 value 179.035374 ## iter ## iter 40 value 176.465629 50 value 175.774735 ## iter ## iter 60 value 175.443060 70 value 175.428621

```
## iter 80 value 175.395224
## iter 90 value 175.318621
## iter 100 value 175.303035
## final value 175.303035
## stopped after 100 iterations
## # weights: 71
## initial value 323.179188
## iter 10 value 207.644491
## iter
        20 value 174.089246
## iter 30 value 155.070909
## iter
        40 value 150.016792
        50 value 148.573318
## iter
## iter 60 value 147.605194
## iter 70 value 146.329676
## iter 80 value 145.026389
## iter 90 value 143.434501
## iter 100 value 143.074702
## final value 143.074702
## stopped after 100 iterations
## # weights: 91
## initial value 374.046391
## iter 10 value 204.364395
## iter
        20 value 173.588539
## iter 30 value 154.033608
        40 value 147.367262
## iter
        50 value 140.213867
## iter
  iter
        60 value 137.125628
##
##
  iter
        70 value 129.071228
  iter
        80 value 125.336697
## iter 90 value 123.946257
## iter 100 value 122.680689
## final value 122.680689
## stopped after 100 iterations
## # weights: 11
## initial value 462.785063
## iter 10 value 263.144138
        20 value 219.096259
## iter
  iter
        30 value 217.777506
## iter 40 value 217.515240
## final value 217.515196
## converged
## # weights: 31
## initial value 318.105589
## iter 10 value 224.213504
## iter
        20 value 211.285539
## iter
        30 value 209.847841
## iter 40 value 205.067860
## iter 50 value 202.385268
## iter 60 value 198.209635
## iter 70 value 197.670176
## iter 80 value 197.071883
## iter 90 value 196.863283
## iter 100 value 196.842455
## final value 196.842455
```

```
## stopped after 100 iterations
## # weights: 51
## initial value 390.195635
## iter
        10 value 211.817948
## iter
        20 value 195.695265
## iter 30 value 179.330765
## iter 40 value 170.861222
## iter 50 value 166.919432
## iter 60 value 163.607284
## iter 70 value 162.821735
## iter 80 value 162.315303
## iter 90 value 161.911590
## iter 100 value 161.734113
## final value 161.734113
## stopped after 100 iterations
## # weights: 71
## initial value 329.653134
## iter 10 value 203.426354
## iter 20 value 177.051524
## iter 30 value 158.071235
## iter 40 value 148.497800
## iter
        50 value 145.178025
## iter
        60 value 143.284747
## iter 70 value 141.121598
## iter 80 value 140.367459
## iter 90 value 139.819637
## iter 100 value 139.648519
## final value 139.648519
## stopped after 100 iterations
## # weights: 91
## initial value 387.132526
## iter 10 value 208.123792
## iter
        20 value 160.853241
## iter
        30 value 124.839481
## iter 40 value 110.175236
## iter
        50 value 97.817597
        60 value 95.143811
## iter
  iter
        70 value 93.964442
        80 value 92.488708
## iter
## iter 90 value 91.649128
## iter 100 value 91.286816
## final value 91.286816
## stopped after 100 iterations
## # weights: 11
## initial value 413.167698
## iter 10 value 248.050424
## iter 20 value 217.925288
## iter 30 value 217.492757
## final value 217.475495
## converged
## # weights: 31
## initial value 341.764453
## iter 10 value 214.445120
## iter 20 value 196.807981
```

```
30 value 193.661994
## iter
         40 value 190.487608
## iter
## iter
         50 value 186.049678
## iter
         60 value 184.761671
## iter
         70 value 184.620945
## iter 80 value 184.530951
## iter 90 value 184.417497
## iter 100 value 184.064741
## final value 184.064741
## stopped after 100 iterations
## # weights: 51
## initial value 406.360577
## iter 10 value 206.332112
## iter
        20 value 197.245693
## iter
        30 value 174.984406
## iter 40 value 164.703306
## iter 50 value 159.045081
## iter 60 value 154.010911
## iter 70 value 149.121585
## iter 80 value 147.830812
## iter 90 value 147.554576
## iter 100 value 147.378594
## final value 147.378594
## stopped after 100 iterations
## # weights: 71
## initial value 380.090574
## iter 10 value 204.431152
## iter
         20 value 181.669456
  iter
         30 value 170.277733
## iter
         40 value 158.078133
         50 value 153.965209
##
  iter
##
  iter
         60 value 153.468998
##
  iter
        70 value 153.041512
## iter
        80 value 152.606581
## iter 90 value 152.540427
## iter 100 value 152.410772
## final value 152.410772
## stopped after 100 iterations
## # weights: 91
## initial value 372.497209
## iter 10 value 212.834688
         20 value 180.451560
## iter
## iter
         30 value 153.422683
## iter 40 value 127.604187
        50 value 115.841377
## iter
## iter
        60 value 105.912984
        70 value 101.354039
## iter
## iter
        80 value 100.480134
## iter 90 value 99.941478
## iter 100 value 99.818928
## final value 99.818928
## stopped after 100 iterations
## # weights: 11
## initial value 358.308959
```

```
## iter 10 value 243.565423
         20 value 217.680662
## iter
## iter
         30 value 217.235214
## iter
         40 value 217.232664
## iter
        40 value 217.232664
## iter 40 value 217.232664
## final value 217.232664
## converged
## # weights: 31
## initial value 336.758726
## iter
        10 value 222.257780
## iter
         20 value 206.549176
## iter
         30 value 197.901520
## iter 40 value 194.589720
## iter
         50 value 192.205741
## iter 60 value 190.751059
## iter 70 value 190.364263
## iter 80 value 190.223328
## iter 90 value 189.658375
## iter 100 value 189.414455
## final value 189.414455
## stopped after 100 iterations
## # weights: 51
## initial value 334.056509
## iter
        10 value 212.813843
## iter
         20 value 200.729148
  iter
         30 value 190.796520
##
##
  iter
        40 value 181.425225
##
  iter
         50 value 168.875910
  iter
         60 value 164.872308
##
        70 value 162.504410
##
  iter
## iter
         80 value 157.024518
## iter 90 value 153.957895
## iter 100 value 152.224358
## final value 152.224358
## stopped after 100 iterations
## # weights: 71
## initial value 336.901986
## iter 10 value 204.667467
## iter
         20 value 176.158299
## iter
         30 value 157.441555
        40 value 149.402826
## iter
## iter
         50 value 146.023761
        60 value 141.649762
## iter
        70 value 138.260322
## iter
## iter
        80 value 132.490881
        90 value 126.921991
## iter 100 value 123.465120
## final value 123.465120
## stopped after 100 iterations
## # weights: 91
## initial value 327.758632
## iter 10 value 207.370290
## iter 20 value 185.147576
```

30 value 165.927149 ## iter 40 value 145.601009 ## iter ## iter 50 value 131.467366 ## iter 60 value 123.520069 ## iter 70 value 112.596152 ## iter 80 value 100.089102 ## iter 90 value 92.089628 ## iter 100 value 84.528107 ## final value 84.528107 ## stopped after 100 iterations ## # weights: 11 ## initial value 370.317256 ## iter 10 value 230.759970 ## iter 20 value 221.426930 ## iter 30 value 220.927237 ## final value 220.919883 ## converged ## # weights: 31 ## initial value 331.837175 ## iter 10 value 224.213014 ## iter 20 value 209.708954 ## iter 30 value 205.980367 ## iter 40 value 205.581683 ## iter 50 value 205.564448 ## final value 205.563334 ## converged ## # weights: 51 ## initial value 306.012614 ## iter 10 value 216.629970 ## iter 20 value 203.428746 30 value 199.718121 ## iter ## iter 40 value 197.335704 ## iter 50 value 196.132075 60 value 195.329931 ## iter 70 value 193.837568 ## iter ## iter 80 value 192.059133 ## iter 90 value 189.031451 ## iter 100 value 188.438543 ## final value 188.438543 ## stopped after 100 iterations ## # weights: 71 ## initial value 347.000281 ## iter 10 value 211.963127 20 value 189.069122 ## iter ## iter 30 value 185.104506 ## iter 40 value 182.792823 ## iter 50 value 179.451937 ## iter 60 value 177.808286 ## iter 70 value 176.059018 ## iter 80 value 174.894270 ## iter 90 value 174.585769 ## iter 100 value 174.554390 ## final value 174.554390 ## stopped after 100 iterations

```
## # weights: 91
## initial value 447.553934
## iter 10 value 210.657984
## iter
        20 value 193.688349
## iter
        30 value 182.493337
## iter 40 value 175.719862
## iter 50 value 171.722381
## iter 60 value 170.989648
## iter 70 value 170.497781
## iter 80 value 169.975075
## iter 90 value 169.225358
## iter 100 value 167.553961
## final value 167.553961
## stopped after 100 iterations
## # weights: 11
## initial value 319.652585
## iter 10 value 222.779789
## iter 20 value 218.292888
## iter 30 value 217.831838
## final value 217.807082
## converged
## # weights: 31
## initial value 317.773213
## iter 10 value 209.193114
## iter
        20 value 204.307726
        30 value 202.619013
## iter
## iter
        40 value 201.910254
## iter
        50 value 198.576779
## iter
        60 value 195.236737
## iter
        70 value 195.146004
## iter 80 value 195.135887
## iter 90 value 195.133243
## iter 100 value 195.132983
## final value 195.132983
## stopped after 100 iterations
## # weights: 51
## initial value 311.641985
## iter 10 value 213.721173
## iter
        20 value 195.302669
## iter
        30 value 180.677927
## iter
        40 value 176.758617
## iter 50 value 176.584389
## iter
        60 value 176.494932
## iter 70 value 176.415209
## iter 80 value 176.337098
## iter 90 value 176.333165
## final value 176.333011
## converged
## # weights: 71
## initial value 425.347683
## iter 10 value 206.150836
## iter
        20 value 182.969610
## iter
        30 value 167.922052
        40 value 159.365697
```

```
50 value 155.711047
## iter
         60 value 154.647779
## iter
         70 value 153.993576
## iter
## iter
         80 value 152.736841
## iter
        90 value 148.483506
## iter 100 value 145.738511
## final value 145.738511
## stopped after 100 iterations
## # weights: 91
## initial value 336.455461
## iter
        10 value 212.666910
         20 value 184.020575
## iter
## iter
         30 value 165.977925
## iter 40 value 149.166480
## iter
         50 value 141.165429
## iter 60 value 138.713615
## iter 70 value 136.201821
## iter 80 value 134.333630
## iter 90 value 133.899054
## iter 100 value 133.559332
## final value 133.559332
## stopped after 100 iterations
## # weights: 11
## initial value 340.786268
        10 value 231.889636
## iter
## iter
         20 value 228.574538
  iter
         30 value 221.537578
## iter 40 value 217.332640
## iter
        50 value 217.284838
## final value 217.280053
## converged
## # weights:
             31
## initial value 305.547577
## iter 10 value 208.919342
         20 value 201.451891
## iter
  iter
         30 value 197.520807
         40 value 193.062315
## iter
  iter
         50 value 188.890718
         60 value 188.000232
##
  iter
         70 value 187.864514
## iter
## iter
         80 value 187.702023
## iter 90 value 186.407110
## iter 100 value 186.016835
## final value 186.016835
## stopped after 100 iterations
## # weights: 51
## initial value 325.142943
## iter 10 value 202.645827
## iter 20 value 186.105438
         30 value 175.602699
## iter
## iter 40 value 167.722183
         50 value 166.380169
## iter
        60 value 165.510133
## iter
        70 value 164.778960
```

```
## iter 80 value 164.658418
## iter 90 value 164.611863
## iter 100 value 164.548322
## final value 164.548322
## stopped after 100 iterations
## # weights: 71
## initial value 356.545024
## iter 10 value 203.405487
## iter
         20 value 189.214811
## iter 30 value 172.406909
## iter
        40 value 160.529892
        50 value 153.859497
## iter
## iter 60 value 150.610282
## iter 70 value 150.078959
## iter 80 value 149.171718
## iter 90 value 148.259529
## iter 100 value 148.171482
## final value 148.171482
## stopped after 100 iterations
## # weights: 91
## initial value 315.698736
## iter 10 value 202.584661
## iter
         20 value 175.320205
## iter 30 value 148.629256
         40 value 133.640279
## iter
         50 value 120.117745
## iter
  iter
         60 value 117.290943
##
## iter
         70 value 115.390748
## iter
        80 value 115.031327
## iter
        90 value 114.814684
## iter 100 value 114.627202
## final value 114.627202
## stopped after 100 iterations
## # weights: 11
## initial value 341.303094
## iter 10 value 232.460074
         20 value 227.326130
## iter
## iter
         30 value 220.367004
## iter 40 value 217.299032
## final value 217.238840
## converged
## # weights: 31
## initial value 494.132078
## iter 10 value 220.634686
## iter
         20 value 210.874191
## iter
         30 value 199.410735
## iter 40 value 195.614258
## iter 50 value 191.180081
## iter 60 value 188.735850
## iter 70 value 188.595188
## iter 80 value 188.525023
## iter 90 value 188.243552
## iter 100 value 188.043648
## final value 188.043648
```

```
## stopped after 100 iterations
## # weights: 51
## initial value 315.215927
## iter
        10 value 208.926291
## iter
         20 value 189.601377
## iter
        30 value 175.938946
        40 value 172.200460
## iter
## iter
        50 value 170.737882
        60 value 167.681338
## iter
## iter 70 value 162.852943
## iter 80 value 161.727312
## iter 90 value 161.493777
## iter 100 value 161.242769
## final value 161.242769
## stopped after 100 iterations
## # weights: 71
## initial value 349.202345
## iter 10 value 205.633893
## iter 20 value 177.629470
## iter
        30 value 154.150753
## iter 40 value 135.279271
## iter
        50 value 125.642119
## iter
        60 value 122.387327
## iter 70 value 120.519718
## iter 80 value 117.284535
## iter 90 value 116.556587
## iter 100 value 116.389655
## final value 116.389655
## stopped after 100 iterations
## # weights: 91
## initial value 384.461559
## iter 10 value 202.236939
## iter
         20 value 153.012391
## iter
         30 value 123.633723
        40 value 112.237532
## iter
##
  iter
         50 value 105.655832
## iter
         60 value 98.733713
  iter
         70 value 97.779788
         80 value 97.488130
## iter
        90 value 97.374258
## iter
## iter 100 value 97.146452
## final value 97.146452
## stopped after 100 iterations
## # weights: 11
## initial value 349.239867
## iter 10 value 243.045382
## iter 20 value 239.226476
## iter
        30 value 238.098715
## iter 40 value 234.259625
## iter 50 value 228.796280
## iter 60 value 224.474679
## iter 70 value 223.915594
## final value 223.915587
## converged
```

```
## # weights: 31
## initial value 312.284384
## iter 10 value 222.586540
## iter
        20 value 214.158577
## iter
        30 value 200.372145
## iter 40 value 197.379917
## iter 50 value 194.249643
## iter 60 value 189.619607
## iter 70 value 184.839940
## iter 80 value 184.309257
## iter 90 value 184.236908
## iter 100 value 184.218111
## final value 184.218111
## stopped after 100 iterations
## # weights: 51
## initial value 298.363931
## iter 10 value 210.067918
## iter 20 value 185.891313
## iter 30 value 175.397897
## iter 40 value 166.486090
## iter 50 value 159.822309
## iter 60 value 149.081780
## iter 70 value 146.964814
## iter 80 value 145.858770
## iter 90 value 145.849521
## final value 145.849509
## converged
## # weights:
              71
## initial value 409.408759
## iter 10 value 210.959089
        20 value 176.236594
## iter
## iter
        30 value 161.249796
## iter 40 value 150.589271
        50 value 141.025590
## iter
## iter 60 value 134.361377
## iter 70 value 131.845632
## iter 80 value 130.759159
## iter 90 value 128.476902
## iter 100 value 120.380813
## final value 120.380813
## stopped after 100 iterations
## # weights: 91
## initial value 333.102459
        10 value 210.742010
## iter
## iter
        20 value 166.798851
## iter
        30 value 140.286233
## iter 40 value 111.948861
## iter 50 value 98.012955
## iter 60 value 91.609742
## iter 70 value 89.106677
## iter 80 value 83.435756
## iter 90 value 78.223364
## iter 100 value 75.829152
## final value 75.829152
```

```
## stopped after 100 iterations
## # weights: 11
## initial value 361.149181
## iter 10 value 230.417154
## iter 20 value 228.037532
## final value 228.035600
## converged
## # weights: 31
## initial value 360.886141
## iter 10 value 225.694134
## iter 20 value 210.696863
## iter
        30 value 206.631370
## iter 40 value 205.115458
## iter 50 value 204.977367
## iter 60 value 204.962710
## iter 60 value 204.962709
## iter 60 value 204.962709
## final value 204.962709
## converged
## # weights: 51
## initial value 361.020379
## iter 10 value 217.749655
## iter 20 value 201.537904
## iter 30 value 193.155087
        40 value 190.911194
## iter
        50 value 190.564825
## iter
        60 value 190.400954
## iter
## iter
        70 value 190.367509
## iter 80 value 190.365963
## final value 190.365955
## converged
## # weights:
             71
## initial value 381.330094
## iter 10 value 222.674608
## iter
        20 value 206.835835
## iter
        30 value 194.884367
        40 value 188.855225
## iter
  iter
        50 value 186.047681
## iter
        60 value 185.448008
        70 value 184.189427
## iter
## iter
        80 value 183.746419
## iter 90 value 183.314770
## iter 100 value 183.132374
## final value 183.132374
## stopped after 100 iterations
## # weights: 91
## initial value 479.171846
## iter 10 value 234.724729
## iter 20 value 209.857617
## iter 30 value 188.211541
## iter 40 value 180.262404
## iter 50 value 177.239747
## iter 60 value 175.747525
## iter 70 value 175.243029
```

```
## iter 80 value 174.835900
## iter 90 value 174.703304
## iter 100 value 173.712235
## final value 173.712235
## stopped after 100 iterations
## # weights: 11
## initial value 454.907420
## iter 10 value 240.436431
## iter 20 value 226.026453
## iter 30 value 224.438919
## final value 224.431891
## converged
## # weights: 31
## initial value 339.497186
## iter 10 value 224.839424
## iter 20 value 208.055464
## iter 30 value 199.069998
## iter 40 value 196.414245
## iter 50 value 195.681319
## iter 60 value 195.583033
## iter 70 value 195.581332
## iter 80 value 195.581138
## final value 195.581072
## converged
## # weights: 51
## initial value 372.512572
## iter 10 value 210.346068
## iter
         20 value 188.585563
## iter
         30 value 184.360224
## iter
         40 value 180.954489
         50 value 179.989855
##
  iter
## iter
         60 value 178.701572
## iter
        70 value 177.151074
        80 value 176.613141
## iter
## iter 90 value 176.516726
## iter 100 value 176.516091
## final value 176.516091
## stopped after 100 iterations
## # weights:
              71
## initial value 434.592224
## iter 10 value 225.630974
## iter
        20 value 194.505882
## iter
         30 value 172.610409
## iter 40 value 163.604396
## iter 50 value 154.840046
## iter 60 value 153.533424
## iter 70 value 152.986714
## iter 80 value 152.812625
## iter 90 value 152.717202
## iter 100 value 152.655835
## final value 152.655835
## stopped after 100 iterations
## # weights: 91
## initial value 353.287076
```

```
10 value 213.161223
## iter
## iter
         20 value 174.550857
         30 value 152.200249
## iter
## iter
         40 value 136.398884
## iter
         50 value 131.908194
## iter 60 value 129.397643
        70 value 127.644591
## iter
## iter 80 value 127.176512
## iter 90 value 126.434795
## iter 100 value 125.958944
## final value 125.958944
## stopped after 100 iterations
## # weights: 11
## initial value 330.886353
## iter 10 value 231.325745
## iter 20 value 226.003303
## iter 30 value 224.020488
## iter 40 value 223.969934
## iter 40 value 223.969934
## iter 40 value 223.969934
## final value 223.969934
## converged
## # weights: 31
## initial value 475.032959
## iter
        10 value 217.016515
## iter
         20 value 200.984567
  iter
         30 value 198.397736
##
##
  iter 40 value 196.956931
##
  iter
         50 value 193.937716
## iter
         60 value 192.989991
  iter 70 value 192.490346
##
## iter
         80 value 191.268677
## iter 90 value 190.952226
## iter 100 value 190.801456
## final value 190.801456
## stopped after 100 iterations
## # weights: 51
## initial value 375.661952
## iter 10 value 220.699860
## iter
         20 value 202.947340
## iter
         30 value 191.082636
## iter 40 value 182.548114
## iter
         50 value 176.642020
## iter 60 value 175.064432
        70 value 174.156349
## iter
## iter 80 value 173.357612
        90 value 172.945138
## iter 100 value 172.907990
## final value 172.907990
## stopped after 100 iterations
## # weights: 71
## initial value 370.568638
## iter 10 value 219.088931
## iter 20 value 195.430885
```

```
30 value 178.342657
## iter
         40 value 163.245362
## iter
## iter
         50 value 156.597191
## iter
         60 value 150.571906
## iter
         70 value 144.300734
## iter 80 value 136.598501
## iter 90 value 133.232953
## iter 100 value 132.138660
## final value 132.138660
## stopped after 100 iterations
## # weights: 91
## initial value 329.124649
## iter 10 value 207.537475
## iter 20 value 165.881733
## iter
        30 value 148.839554
## iter 40 value 136.195605
## iter 50 value 131.242009
## iter 60 value 125.098674
## iter 70 value 123.099099
## iter 80 value 122.367299
## iter 90 value 121.814947
## iter 100 value 121.254233
## final value 121.254233
## stopped after 100 iterations
## # weights: 11
## initial value 359.188978
## iter 10 value 230.266036
## iter
        20 value 224.351126
## iter
         30 value 223.925562
## iter 40 value 223.921137
## final value 223.921055
## converged
## # weights: 31
## initial value 324.313004
## iter 10 value 212.339833
## iter
         20 value 201.531014
         30 value 200.072059
## iter
  iter
         40 value 195.487297
## iter
         50 value 191.802650
         60 value 190.621035
## iter
## iter
        70 value 190.506057
## iter 80 value 190.466264
## iter 90 value 190.126638
## iter 100 value 189.856610
## final value 189.856610
## stopped after 100 iterations
## # weights: 51
## initial value 340.549925
## iter 10 value 216.115049
## iter 20 value 198.409309
## iter 30 value 187.613128
        40 value 173.692249
## iter
        50 value 164.218680
## iter
## iter 60 value 156.962697
```

```
70 value 156.536442
## iter
         80 value 156.297979
## iter
## iter 90 value 156.112338
## iter 100 value 156.045845
## final value 156.045845
## stopped after 100 iterations
## # weights: 71
## initial value 411.413457
## iter 10 value 209.607791
## iter
         20 value 178.863405
         30 value 168.075199
## iter
        40 value 158.910221
## iter
## iter
        50 value 147.402525
## iter
        60 value 142.557224
## iter 70 value 136.184722
## iter 80 value 131.248476
## iter 90 value 130.397400
## iter 100 value 129.755378
## final value 129.755378
## stopped after 100 iterations
## # weights: 91
## initial value 381.966143
## iter 10 value 207.675797
## iter
        20 value 168.332671
         30 value 121.016328
## iter
         40 value 94.125909
## iter
         50 value 84.387552
  iter
##
##
  iter
        60 value 80.498805
##
  iter
         70 value 78.848671
## iter
         80 value 76.438500
        90 value 75.690948
## iter 100 value 75.554193
## final value 75.554193
## stopped after 100 iterations
## # weights: 11
## initial value 326.815191
        10 value 223.334946
## iter
  iter
         20 value 218.280171
         30 value 217.674654
## iter 40 value 217.634448
## final value 217.634302
## converged
## # weights: 31
## initial value 328.252279
## iter 10 value 216.842740
## iter
         20 value 203.502730
## iter
         30 value 186.332080
## iter
        40 value 179.512715
## iter 50 value 175.410789
## iter 60 value 173.285390
        70 value 171.624708
## iter
        80 value 171.402443
## iter
## iter 90 value 171.393677
## iter 100 value 171.357235
```

```
## final value 171.357235
## stopped after 100 iterations
## # weights: 51
## initial value 323.428854
## iter 10 value 211.791936
## iter 20 value 199.832089
## iter
        30 value 185.518298
## iter 40 value 175.957149
## iter 50 value 168.816279
## iter 60 value 162.512935
## iter 70 value 158.704640
## iter 80 value 158.032724
## iter 90 value 157.606958
## iter 100 value 157.374044
## final value 157.374044
## stopped after 100 iterations
## # weights: 71
## initial value 331.627808
## iter 10 value 213.394333
## iter 20 value 192.177639
## iter 30 value 169.880115
## iter 40 value 152.883402
## iter 50 value 140.596589
## iter 60 value 132.597105
## iter 70 value 128.513755
## iter 80 value 123.709566
## iter 90 value 118.542808
## iter 100 value 114.141574
## final value 114.141574
## stopped after 100 iterations
## # weights: 91
## initial value 332.275262
## iter 10 value 207.628650
## iter
        20 value 174.775323
## iter
        30 value 144.369625
## iter
        40 value 127.533391
        50 value 116.471116
## iter
  iter
        60 value 106.188145
        70 value 101.293088
## iter
## iter 80 value 98.841706
## iter 90 value 96.129614
## iter 100 value 93.113998
## final value 93.113998
## stopped after 100 iterations
## # weights: 11
## initial value 325.984826
## iter 10 value 226.358553
## iter 20 value 221.192954
## iter 30 value 221.177336
## iter 30 value 221.177334
## final value 221.177322
## converged
## # weights: 31
## initial value 344.649908
```

```
## iter 10 value 230.882138
## iter
         20 value 214.956855
         30 value 209.540673
## iter
## iter
         40 value 207.339392
## iter
         50 value 207.110613
## iter 60 value 207.085801
## final value 207.085732
## converged
## # weights: 51
## initial value 350.115572
## iter
        10 value 218.617951
         20 value 201.593147
## iter
## iter
         30 value 195.746518
## iter 40 value 194.655752
## iter
        50 value 194.394851
## iter 60 value 194.316279
## iter 70 value 194.298758
## iter 80 value 194.206848
## iter 90 value 194.165576
## final value 194.165355
## converged
## # weights: 71
## initial value 342.865932
## iter 10 value 211.875052
         20 value 198.133923
## iter
         30 value 186.585688
## iter
  iter
         40 value 182.697446
##
##
  iter
         50 value 182.137907
##
  iter
         60 value 181.901615
## iter
         70 value 179.041368
## iter 80 value 178.761844
        90 value 178.678418
## iter
## iter 100 value 178.672404
## final value 178.672404
## stopped after 100 iterations
## # weights: 91
## initial value 294.049309
## iter 10 value 214.173469
## iter
         20 value 196.347352
## iter
         30 value 186.363439
## iter
         40 value 181.158132
        50 value 177.955596
## iter
## iter
        60 value 176.404347
        70 value 174.770946
## iter
## iter
        80 value 173.054700
## iter 90 value 171.391794
## iter 100 value 170.938010
## final value 170.938010
## stopped after 100 iterations
## # weights: 11
## initial value 383.566159
## iter 10 value 272.316004
## iter
        20 value 230.697364
## iter
        30 value 222.993257
```

```
40 value 218.536252
## iter
         50 value 218.057302
## iter
         60 value 218.056478
## iter
         60 value 218.056478
## iter
## iter 60 value 218.056478
## final value 218.056478
## converged
## # weights: 31
## initial value 348.548265
## iter 10 value 210.395511
        20 value 203.562722
## iter
         30 value 202.309036
## iter
## iter 40 value 198.190444
## iter
         50 value 197.172668
## iter 60 value 195.941499
## iter 70 value 195.778709
## iter 80 value 195.578373
## iter 90 value 195.571445
## final value 195.571121
## converged
## # weights:
## initial value 312.579962
## iter 10 value 209.499718
## iter 20 value 189.530738
         30 value 180.331288
## iter
        40 value 178.346392
## iter
  iter
         50 value 178.032275
##
## iter
        60 value 177.954009
         70 value 177.940095
## iter
## iter
        80 value 177.936204
## final value 177.936158
## converged
## # weights: 71
## initial value 393.444915
## iter 10 value 215.154546
## iter
         20 value 184.010535
         30 value 166.215266
## iter
  iter
         40 value 157.850088
## iter
         50 value 151.448734
         60 value 146.206030
## iter
## iter
        70 value 144.490943
## iter 80 value 143.525511
## iter 90 value 143.030582
## iter 100 value 142.650344
## final value 142.650344
## stopped after 100 iterations
## # weights: 91
## initial value 380.643332
## iter 10 value 204.400881
## iter 20 value 180.390923
## iter 30 value 166.951459
         40 value 160.161567
## iter
## iter
         50 value 158.281116
## iter 60 value 157.007846
```

```
## iter 70 value 156.847107
         80 value 156.720490
## iter
## iter 90 value 156.365835
## iter 100 value 156.118815
## final value 156.118815
## stopped after 100 iterations
## # weights: 11
## initial value 418.141053
## iter 10 value 232.291004
## iter 20 value 219.270206
        30 value 217.880213
## iter
## iter 40 value 217.693290
## final value 217.693283
## converged
## # weights: 31
## initial value 374.161420
## iter 10 value 208.248485
        20 value 189.143826
## iter
## iter 30 value 182.750952
## iter 40 value 181.019667
## iter 50 value 180.811841
## iter
        60 value 180.746463
## iter
        70 value 180.674514
## iter 80 value 180.651363
## iter 90 value 180.616981
## final value 180.616209
## converged
## # weights:
              51
## initial value 336.833564
## iter
        10 value 211.175103
         20 value 191.951333
## iter
##
  iter
         30 value 175.486173
##
  iter
         40 value 172.610093
         50 value 167.953717
## iter
        60 value 164.638018
## iter
##
  iter
         70 value 163.414728
        80 value 160.939662
## iter
        90 value 159.984997
## iter 100 value 159.692261
## final value 159.692261
## stopped after 100 iterations
## # weights: 71
## initial value 384.539804
        10 value 205.418350
## iter
## iter
         20 value 178.239784
## iter
         30 value 153.057515
## iter
        40 value 140.127144
## iter
        50 value 126.858905
## iter 60 value 124.620714
## iter 70 value 123.735696
## iter 80 value 122.636025
## iter 90 value 121.654335
## iter 100 value 121.471935
## final value 121.471935
```

```
## stopped after 100 iterations
## # weights: 91
## initial value 372.222383
## iter
        10 value 209.991214
## iter
        20 value 173.918981
## iter 30 value 145.366982
## iter 40 value 131.794593
## iter 50 value 122.962848
## iter 60 value 120.386825
## iter 70 value 118.396118
## iter 80 value 117.138466
## iter 90 value 116.455849
## iter 100 value 116.305614
## final value 116.305614
## stopped after 100 iterations
## # weights: 11
## initial value 317.795777
## iter 10 value 230.980967
## iter 20 value 224.792992
## iter 30 value 219.619610
## iter 40 value 217.679709
## final value 217.640239
## converged
## # weights: 31
## initial value 462.019092
## iter 10 value 208.419130
## iter
        20 value 201.559883
## iter
        30 value 196.317658
## iter
        40 value 188.553485
## iter
        50 value 182.506335
## iter 60 value 180.438351
## iter 70 value 179.774676
## iter 80 value 178.971506
## iter 90 value 176.710391
## iter 100 value 176.615994
## final value 176.615994
## stopped after 100 iterations
## # weights: 51
## initial value 324.525845
## iter 10 value 210.845334
## iter
        20 value 187.877414
        30 value 174.968793
## iter
## iter
        40 value 161.773095
## iter 50 value 158.679912
        60 value 158.051934
## iter
## iter
        70 value 156.937414
## iter 80 value 156.247129
## iter 90 value 155.282988
## iter 100 value 154.801344
## final value 154.801344
## stopped after 100 iterations
## # weights: 71
## initial value 355.456869
## iter 10 value 209.078831
```

```
20 value 173.693648
## iter
         30 value 150.632679
## iter
## iter
        40 value 138.531220
## iter
         50 value 129.472743
## iter
         60 value 123.456764
## iter
        70 value 119.136069
## iter 80 value 116.388661
## iter 90 value 116.003385
## iter 100 value 115.764372
## final value 115.764372
## stopped after 100 iterations
## # weights: 91
## initial value 585.668689
## iter 10 value 208.002147
## iter
        20 value 179.126316
## iter
         30 value 142.107390
## iter 40 value 115.881653
## iter
        50 value 105.252320
## iter 60 value 99.167058
## iter 70 value 95.991550
## iter 80 value 93.837856
## iter 90 value 92.486613
## iter 100 value 92.014485
## final value 92.014485
## stopped after 100 iterations
## # weights: 11
## initial value 378.336146
## iter 10 value 226.275314
## iter
         20 value 217.967317
## iter
         30 value 217.163040
## iter 40 value 217.103103
## final value 217.103088
## converged
## # weights: 31
## initial value 323.624943
## iter
        10 value 224.303147
         20 value 201.668833
## iter
  iter
         30 value 191.195262
  iter
        40 value 189.142337
##
         50 value 188.052634
##
  iter
## iter
         60 value 182.590085
        70 value 181.472523
## iter
        80 value 180.735688
## iter
## iter 90 value 180.178478
## iter 100 value 180.031513
## final value 180.031513
## stopped after 100 iterations
## # weights: 51
## initial value 315.956109
## iter 10 value 212.566212
## iter 20 value 193.113174
        30 value 177.287061
## iter
## iter 40 value 168.212293
        50 value 162.909452
```

```
60 value 158.109848
## iter
         70 value 154.994533
## iter
## iter
        80 value 153.378677
## iter
        90 value 153.015160
## iter 100 value 152.857946
## final value 152.857946
## stopped after 100 iterations
## # weights: 71
## initial value 324.711478
## iter 10 value 206.745128
         20 value 163.706406
## iter
         30 value 132.825328
## iter
## iter
        40 value 117.871866
## iter
         50 value 110.438862
## iter
        60 value 102.748344
## iter 70 value 99.904735
## iter 80 value 99.614291
## iter 90 value 99.603888
## iter 100 value 99.328095
## final value 99.328095
## stopped after 100 iterations
## # weights: 91
## initial value 342.656849
## iter 10 value 204.858576
         20 value 161.590135
## iter
         30 value 133.431693
## iter
  iter
         40 value 115.734425
  iter
         50 value 96.168611
##
  iter
         60 value 85.347233
## iter
         70 value 82.030557
        80 value 78.191969
## iter
        90 value 71.248038
## iter
## iter 100 value 65.138974
## final value 65.138974
## stopped after 100 iterations
## # weights: 11
## initial value 313.446238
## iter 10 value 234.291270
## iter
         20 value 221.885144
         30 value 221.222300
## iter
## iter
         40 value 221.220815
## iter 40 value 221.220815
## iter 40 value 221.220815
## final value 221.220815
## converged
## # weights: 31
## initial value 343.371257
## iter 10 value 232.247875
## iter 20 value 221.617362
         30 value 214.085895
## iter
## iter 40 value 204.230198
         50 value 201.217016
## iter
        60 value 200.995029
## iter
        70 value 200.967082
```

```
## iter 80 value 200.960063
## final value 200.959717
## converged
## # weights: 51
## initial value 304.736442
## iter 10 value 209.311754
## iter 20 value 196.754881
## iter 30 value 187.343725
## iter 40 value 185.683493
## iter 50 value 185.128943
## iter 60 value 185.046884
## iter 70 value 185.041624
## final value 185.041597
## converged
## # weights: 71
## initial value 306.496017
## iter 10 value 214.841752
## iter 20 value 201.168262
## iter 30 value 190.337517
## iter 40 value 184.098758
## iter 50 value 181.018277
## iter 60 value 180.011233
## iter 70 value 179.541902
## iter 80 value 179.395901
## iter 90 value 179.316248
## iter 100 value 179.261110
## final value 179.261110
## stopped after 100 iterations
## # weights: 91
## initial value 353.549287
## iter 10 value 207.727530
## iter
        20 value 194.664265
## iter
        30 value 183.805220
        40 value 173.559470
## iter
        50 value 167.174566
## iter
## iter
        60 value 165.653133
        70 value 165.263531
## iter
## iter
        80 value 163.584311
## iter 90 value 163.389655
## iter 100 value 163.333442
## final value 163.333442
## stopped after 100 iterations
## # weights: 11
## initial value 342.933004
## iter 10 value 230.862069
## iter 20 value 218.058602
## iter 30 value 217.629780
## final value 217.607177
## converged
## # weights: 31
## initial value 352.537578
## iter 10 value 228.892087
## iter 20 value 215.872153
## iter
        30 value 201.326636
```

```
40 value 193.970012
## iter
         50 value 190.624070
## iter
         60 value 188.391639
## iter
## iter
         70 value 188.235086
## iter
         80 value 188.223318
## iter 90 value 188.216567
## final value 188.216474
## converged
## # weights: 51
## initial value 332.033964
## iter
        10 value 208.790603
## iter
         20 value 179.246101
## iter
         30 value 173.769694
## iter 40 value 173.099700
## iter
         50 value 173.001153
## iter 60 value 172.979612
## iter 70 value 172.938791
## iter 80 value 172.932481
## final value 172.932376
## converged
## # weights:
## initial value 407.597902
## iter 10 value 207.020442
## iter
        20 value 171.438962
         30 value 157.748666
## iter
         40 value 152.728150
## iter
  iter
         50 value 152.138045
##
##
  iter
         60 value 151.550935
##
  iter
         70 value 151.284662
## iter
         80 value 150.183073
        90 value 149.397034
## iter 100 value 148.745990
## final value 148.745990
## stopped after 100 iterations
## # weights: 91
## initial value 362.020639
         10 value 197.618763
## iter
  iter
         20 value 168.201100
  iter
         30 value 152.235890
##
         40 value 143.079659
##
  iter
## iter
         50 value 137.257598
## iter 60 value 134.202741
## iter
        70 value 132.819130
## iter 80 value 131.655705
## iter 90 value 130.714252
## iter 100 value 130.466327
## final value 130.466327
## stopped after 100 iterations
## # weights: 11
## initial value 345.007006
## iter 10 value 234.297239
         20 value 229.119460
## iter
## iter
         30 value 226.200515
        40 value 218.728099
```

```
## iter 50 value 217.189298
## iter 60 value 217.144152
## final value 217.143720
## converged
## # weights: 31
## initial value 331.297209
## iter 10 value 212.350635
## iter 20 value 200.696038
## iter
        30 value 193.785390
## iter 40 value 192.342412
        50 value 191.743990
## iter
        60 value 191.563989
## iter
## iter 70 value 191.548539
## iter 80 value 191.537865
## iter 90 value 191.531294
## final value 191.531218
## converged
## # weights: 51
## initial value 385.858705
## iter 10 value 211.167571
        20 value 186.392821
## iter
## iter
        30 value 175.774105
## iter 40 value 168.227873
## iter 50 value 164.179563
        60 value 163.095098
## iter
        70 value 162.945811
## iter
## iter
        80 value 162.688582
## iter 90 value 162.574705
## iter 100 value 162.143175
## final value 162.143175
## stopped after 100 iterations
## # weights: 71
## initial value 322.911452
## iter 10 value 207.347028
        20 value 174.739873
## iter
  iter
        30 value 149.162511
        40 value 139.304837
## iter
  iter
        50 value 134.276023
        60 value 130.580833
##
  iter
        70 value 129.316856
##
  iter
## iter
        80 value 128.750871
## iter 90 value 128.399993
## iter 100 value 128.134799
## final value 128.134799
## stopped after 100 iterations
## # weights: 91
## initial value 462.997462
## iter 10 value 208.936102
## iter 20 value 164.823149
        30 value 129.724479
## iter
## iter 40 value 114.668744
        50 value 104.289465
## iter
## iter 60 value 98.291187
        70 value 96.315912
```

```
## iter 80 value 94.386440
## iter 90 value 93.758302
## iter 100 value 93.336602
## final value 93.336602
## stopped after 100 iterations
## # weights: 11
## initial value 333.469398
## iter 10 value 228.987042
## iter
        20 value 224.555048
## iter 30 value 221.145997
## iter 40 value 220.550947
## iter 50 value 220.141930
## final value 220.141890
## converged
## # weights: 31
## initial value 317.712172
## iter 10 value 198.416369
        20 value 190.362060
## iter
## iter 30 value 188.085137
## iter 40 value 180.719730
## iter 50 value 180.017380
## iter
        60 value 179.932111
## iter 70 value 179.916058
## iter 80 value 179.912212
## iter 90 value 179.908666
## iter 100 value 179.907960
## final value 179.907960
## stopped after 100 iterations
## # weights: 51
## initial value 372.125680
        10 value 212.875683
##
  iter
         20 value 191.589309
##
  iter
         30 value 180.354592
         40 value 173.058921
## iter
         50 value 168.619798
##
  iter
  iter
         60 value 160.205158
         70 value 157.235910
## iter
  iter
         80 value 155.957352
        90 value 153.067593
## iter 100 value 152.129642
## final value 152.129642
## stopped after 100 iterations
## # weights: 71
## initial value 320.357822
## iter 10 value 210.183088
## iter
         20 value 179.765718
## iter
         30 value 151.645977
## iter 40 value 139.974769
## iter 50 value 131.676125
## iter 60 value 126.310287
        70 value 119.069057
## iter
        80 value 116.915368
## iter
## iter 90 value 116.092283
## iter 100 value 115.854660
```

```
## final value 115.854660
## stopped after 100 iterations
## # weights: 91
## initial value 310.761091
## iter 10 value 206.981501
## iter 20 value 169.791801
## iter
         30 value 143.883973
## iter 40 value 131.463255
## iter 50 value 124.373212
## iter 60 value 119.580397
## iter 70 value 117.266571
## iter 80 value 116.252155
## iter 90 value 115.813495
## iter 100 value 115.356212
## final value 115.356212
## stopped after 100 iterations
## # weights: 11
## initial value 348.405688
## iter 10 value 228.367429
## iter 20 value 220.118303
## iter 30 value 218.754977
## final value 218.711739
## converged
## # weights: 31
## initial value 317.343972
## iter 10 value 221.113681
## iter
         20 value 209.228425
## iter
         30 value 196.373020
  iter
         40 value 192.563484
## iter
         50 value 188.311391
  iter 60 value 180.712399
##
## iter
        70 value 179.115523
## iter 80 value 179.018689
## iter 90 value 178.982775
## iter 100 value 178.978345
## final value 178.978345
## stopped after 100 iterations
## # weights: 51
## initial value 414.213605
## iter 10 value 207.264655
## iter
         20 value 174.106456
         30 value 157.865101
## iter
## iter
         40 value 146.897143
        50 value 139.795370
## iter
        60 value 129.824091
## iter
## iter
        70 value 125.248287
## iter 80 value 124.187949
## iter 90 value 124.184745
## iter 90 value 124.184744
## iter 90 value 124.184744
## final value 124.184744
## converged
## # weights: 71
## initial value 322.179865
```

iter 10 value 204.250730 20 value 177.385432 ## iter ## iter 30 value 156.162457 ## iter 40 value 140.515572 ## iter 50 value 135.710512 ## iter 60 value 126.820881 70 value 113.526238 ## iter ## iter 80 value 112.096260 ## iter 90 value 111.959293 ## iter 100 value 111.919645 ## final value 111.919645 ## stopped after 100 iterations ## # weights: 91 ## initial value 390.257729 ## iter 10 value 204.644753 20 value 168.560818 ## iter ## iter 30 value 140.345720 40 value 123.476074 ## iter ## iter 50 value 115.948159 ## iter 60 value 112.652175 70 value 108.552136 ## iter ## iter 80 value 104.300760 ## iter 90 value 97.492924 ## iter 100 value 91.278009 ## final value 91.278009 ## stopped after 100 iterations ## # weights: 11 ## initial value 309.883231 ## iter 10 value 241.542812 ## iter 20 value 226.187788 30 value 222.547668 iter ## iter 40 value 221.909397 ## iter 40 value 221.909396 ## iter 40 value 221.909396 ## final value 221.909396 ## converged ## # weights: 31 ## initial value 406.966182 ## iter 10 value 224.072536 ## iter 20 value 204.961829 ## iter 30 value 202.117216 40 value 201.766940 ## iter 50 value 201.534729 ## iter ## final value 201.530683 ## converged ## # weights: 51 ## initial value 350.219036 ## iter 10 value 215.002519 ## iter 20 value 199.241597 30 value 196.352700 ## iter 40 value 195.803369 ## iter 50 value 195.123192 ## iter ## iter 60 value 194.437021 70 value 194.420509

```
## final value 194.420357
## converged
## # weights: 71
## initial value 426.749471
## iter 10 value 247.032120
## iter 20 value 212.487353
## iter 30 value 198.326525
## iter 40 value 190.382508
## iter 50 value 183.193128
## iter 60 value 180.421877
## iter 70 value 179.862252
## iter 80 value 179.775304
## iter 90 value 179.757722
## iter 100 value 179.752992
## final value 179.752992
## stopped after 100 iterations
## # weights: 91
## initial value 404.378277
## iter 10 value 217.566083
## iter 20 value 198.314889
## iter 30 value 188.266213
## iter 40 value 181.042913
## iter 50 value 176.253414
## iter 60 value 173.449431
## iter 70 value 172.267077
## iter 80 value 172.132902
## iter 90 value 172.116962
## iter 100 value 172.110395
## final value 172.110395
## stopped after 100 iterations
## # weights: 11
## initial value 308.985795
## iter 10 value 221.035559
## iter 20 value 219.243565
## iter 30 value 219.171092
## final value 219.170913
## converged
## # weights: 31
## initial value 336.500972
## iter 10 value 231.450465
## iter 20 value 207.187836
## iter 30 value 204.153932
## iter 40 value 199.888695
## iter 50 value 198.435059
## iter 60 value 198.413171
## iter 70 value 198.412837
## iter 80 value 198.412752
## final value 198.412712
## converged
## # weights: 51
## initial value 311.194686
## iter 10 value 203.148406
## iter 20 value 181.435483
## iter 30 value 175.107211
```

```
40 value 174.547070
## iter
         50 value 174.148534
## iter
         60 value 174.021504
## iter
        70 value 173.955424
## iter
## final value 173.952653
## converged
## # weights:
             71
## initial value 342.363912
## iter 10 value 206.708256
## iter
         20 value 187.975276
         30 value 176.317590
## iter
        40 value 165.821082
## iter
## iter
         50 value 162.397402
## iter
        60 value 159.595074
## iter
        70 value 158.886281
## iter 80 value 158.608894
## iter 90 value 158.598474
## iter 100 value 158.597789
## final value 158.597789
## stopped after 100 iterations
## # weights: 91
## initial value 473.809408
## iter 10 value 206.902583
## iter
         20 value 180.106629
         30 value 163.160240
## iter
         40 value 153.912850
## iter
  iter
         50 value 143.367489
##
##
  iter
         60 value 138.917036
##
  iter
         70 value 136.559965
## iter
         80 value 134.378241
        90 value 132.636504
## iter 100 value 132.404155
## final value 132.404155
## stopped after 100 iterations
## # weights: 11
## initial value 314.356059
        10 value 231.966022
## iter
  iter
         20 value 222.358976
         30 value 218.979968
## iter 40 value 218.748485
## final value 218.748479
## converged
## # weights: 31
## initial value 420.957283
## iter 10 value 216.787055
## iter
         20 value 200.124426
## iter
         30 value 193.386627
## iter
        40 value 190.819345
## iter 50 value 190.708123
## iter 60 value 189.410722
        70 value 189.123269
## iter
         80 value 189.087170
## iter
## iter 90 value 188.997951
## final value 188.992682
```

```
## converged
## # weights: 51
## initial value 374.876650
## iter
        10 value 210.177179
## iter
        20 value 192.786655
## iter 30 value 184.142590
## iter 40 value 175.466738
## iter 50 value 170.019318
## iter 60 value 168.591334
## iter 70 value 167.941015
## iter 80 value 167.441136
## iter 90 value 167.035883
## iter 100 value 166.904657
## final value 166.904657
## stopped after 100 iterations
## # weights: 71
## initial value 340.319657
## iter 10 value 210.486691
## iter 20 value 179.559949
## iter 30 value 159.624435
## iter 40 value 147.071976
## iter
        50 value 142.651065
## iter
        60 value 140.888459
## iter 70 value 139.959073
## iter 80 value 139.347383
## iter 90 value 138.282920
## iter 100 value 137.636474
## final value 137.636474
## stopped after 100 iterations
## # weights: 91
## initial value 511.881165
## iter 10 value 198.820979
## iter
        20 value 163.381258
        30 value 139.984040
## iter
## iter 40 value 123.709295
##
  iter
        50 value 121.383747
        60 value 118.264286
## iter
  iter
        70 value 117.126716
        80 value 116.737603
## iter
## iter 90 value 116.481939
## iter 100 value 116.380032
## final value 116.380032
## stopped after 100 iterations
## # weights: 11
## initial value 323.129383
## iter 10 value 230.238956
## iter 20 value 228.698831
## iter
        30 value 226.807007
## iter 40 value 225.940096
## iter 50 value 225.846607
## iter 60 value 225.789234
## iter 70 value 225.787314
## final value 225.786485
## converged
```

```
## # weights: 31
## initial value 324.171711
## iter 10 value 219.971631
## iter
         20 value 206.816770
## iter
         30 value 203.654319
## iter 40 value 200.089118
## iter 50 value 194.221153
## iter 60 value 193.063770
## iter 70 value 192.869387
## iter 80 value 192.821797
## iter 90 value 192.783618
## iter 100 value 192.543744
## final value 192.543744
## stopped after 100 iterations
## # weights: 51
## initial value 316.950804
## iter 10 value 204.876481
## iter 20 value 183.036436
## iter 30 value 172.827286
## iter 40 value 162.762635
## iter 50 value 154.956491
## iter 60 value 152.251179
## iter 70 value 150.930619
## iter 80 value 150.678183
## iter 90 value 150.478924
## iter 100 value 150.201285
## final value 150.201285
## stopped after 100 iterations
## # weights: 71
## initial value 348.638887
## iter 10 value 209.191762
## iter
         20 value 186.709083
## iter
         30 value 162.737395
         40 value 152.842847
## iter
        50 value 147.254961
##
  iter
  iter
         60 value 136.218321
         70 value 130.972822
## iter
        80 value 129.478126
## iter 90 value 128.727508
## iter 100 value 128.501044
## final value 128.501044
## stopped after 100 iterations
## # weights: 91
## initial value 331.098666
## iter 10 value 209.291023
## iter
         20 value 158.459295
## iter
         30 value 134.219295
## iter 40 value 115.092739
## iter 50 value 107.550453
## iter 60 value 102.938484
## iter 70 value 99.274751
        80 value 98.873572
## iter
## iter 90 value 98.678844
## iter 100 value 98.607478
```

final value 98.607478 ## stopped after 100 iterations ## # weights: 11 ## initial value 389.005940 ## iter 10 value 217.795610 ## iter 20 value 213.425783 ## iter 30 value 213.227587 ## final value 213.226742 ## converged ## # weights: 31 ## initial value 332.633881 ## iter 10 value 205.772857 ## iter 20 value 195.881292 ## iter 30 value 193.570297 ## iter 40 value 188.370896 ## iter 50 value 184.899867 ## iter 60 value 184.839644 ## final value 184.839560 ## converged ## # weights: 51 ## initial value 338.111118 ## iter 10 value 205.487525 ## iter 20 value 188.903638 ## iter 30 value 178.345035 40 value 171.846657 ## iter 50 value 168.866282 ## iter ## iter 60 value 164.113049 ## iter 70 value 157.623383 ## iter 80 value 153.406354 ## iter 90 value 151.584032 ## iter 100 value 150.953463 ## final value 150.953463 ## stopped after 100 iterations ## # weights: 71 ## initial value 392.762517 ## iter 10 value 216.498073 20 value 189.719272 ## iter ## iter 30 value 158.641207 ## iter 40 value 144.658454 50 value 135.109115 ## iter ## iter 60 value 129.109048 ## iter 70 value 123.945214 ## iter 80 value 119.116301 ## iter 90 value 114.214311 ## iter 100 value 112.139532 ## final value 112.139532 ## stopped after 100 iterations ## # weights: 91 ## initial value 349.335403 ## iter 10 value 205.320783 ## iter 20 value 167.549522 ## iter 30 value 134.315743 ## iter 40 value 114.330920 50 value 102.251506

```
## iter 60 value 97.712552
        70 value 93.185744
## iter
## iter
        80 value 88.279383
## iter 90 value 81.580391
## iter 100 value 79.855336
## final value 79.855336
## stopped after 100 iterations
## # weights: 11
## initial value 324.659017
## iter 10 value 232.743299
## iter 20 value 218.177030
## iter 30 value 216.591955
## final value 216.562215
## converged
## # weights: 31
## initial value 325.978207
## iter 10 value 223.581001
## iter 20 value 209.548434
## iter 30 value 203.251943
## iter 40 value 200.925218
## iter 50 value 200.479175
## iter 60 value 200.337796
## iter 70 value 200.330102
## iter 80 value 200.326014
## final value 200.325430
## converged
## # weights: 51
## initial value 367.903236
## iter 10 value 209.125086
## iter
         20 value 197.081505
         30 value 192.003575
## iter
## iter
         40 value 187.638552
## iter
         50 value 185.441855
## iter
         60 value 184.201045
## iter 70 value 184.001974
## iter 80 value 183.967563
## final value 183.967394
## converged
## # weights:
             71
## initial value 310.241607
## iter 10 value 209.153171
## iter
         20 value 198.092659
## iter
         30 value 189.073455
## iter 40 value 184.609999
        50 value 183.315227
## iter
## iter
        60 value 182.387676
## iter
        70 value 181.933406
## iter
        80 value 181.067864
## iter 90 value 177.474288
## iter 100 value 176.604695
## final value 176.604695
## stopped after 100 iterations
## # weights: 91
## initial value 341.708248
```

```
10 value 209.320780
## iter
         20 value 187.002347
## iter
## iter
         30 value 178.816529
## iter
         40 value 174.087459
## iter
         50 value 169.715270
## iter
        60 value 168.123452
        70 value 166.444983
## iter
## iter 80 value 165.698773
## iter 90 value 165.454611
## iter 100 value 165.218326
## final value 165.218326
## stopped after 100 iterations
## # weights: 11
## initial value 311.783462
## iter 10 value 231.121123
## iter 20 value 225.043819
## iter 30 value 222.275588
        40 value 220.912765
## iter
## iter
        50 value 216.580709
## iter
        60 value 214.027616
        70 value 213.603270
## iter
## iter 70 value 213.603269
## iter 70 value 213.603269
## final value 213.603269
## converged
## # weights: 31
## initial value 304.359120
## iter 10 value 204.166860
## iter
         20 value 193.744038
## iter
         30 value 190.456050
        40 value 189.674201
  iter
## iter
         50 value 188.787045
## iter 60 value 188.744198
## final value 188.744004
## converged
## # weights: 51
## initial value 316.839449
## iter 10 value 212.874836
## iter
         20 value 194.207463
## iter
         30 value 186.052365
## iter
         40 value 180.682824
         50 value 177.677970
## iter
## iter
         60 value 174.161931
        70 value 173.689771
## iter
         80 value 173.490164
## iter
## iter 90 value 173.432802
## iter 100 value 173.429182
## final value 173.429182
## stopped after 100 iterations
## # weights: 71
## initial value 311.469129
## iter 10 value 205.634286
## iter
         20 value 174.407495
## iter
        30 value 163.217783
```

```
40 value 159.691476
## iter
         50 value 156.219644
## iter
         60 value 149.923653
## iter
## iter
         70 value 145.148577
## iter
         80 value 144.543076
        90 value 143.894881
## iter
## iter 100 value 143.778227
## final value 143.778227
## stopped after 100 iterations
## # weights: 91
## initial value 722.081428
## iter 10 value 200.363833
## iter
         20 value 163.178925
## iter
         30 value 139.537901
## iter 40 value 134.802222
## iter 50 value 132.402779
## iter 60 value 131.069409
## iter 70 value 130.720741
## iter 80 value 130.583455
## iter 90 value 130.485175
## iter 100 value 129.754340
## final value 129.754340
## stopped after 100 iterations
## # weights: 11
## initial value 358.620582
## iter 10 value 220.419887
  iter
         20 value 219.898063
## iter
         30 value 214.259005
## iter 40 value 213.275937
## final value 213.265201
## converged
## # weights:
             31
## initial value 452.535447
## iter 10 value 208.444204
         20 value 196.562833
## iter
  iter
         30 value 188.046132
         40 value 184.879054
## iter
  iter
         50 value 183.840114
         60 value 182.379805
##
  iter
         70 value 181.410045
## iter
## iter
         80 value 181.096439
## iter 90 value 180.991670
## iter 100 value 180.859439
## final value 180.859439
## stopped after 100 iterations
## # weights: 51
## initial value 309.664276
## iter 10 value 204.268016
## iter 20 value 187.191825
         30 value 175.992362
## iter
## iter 40 value 169.070529
         50 value 162.858523
## iter
        60 value 159.611976
## iter
        70 value 157.986300
```

```
## iter 80 value 155.947282
## iter 90 value 154.953231
## iter 100 value 154.773783
## final value 154.773783
## stopped after 100 iterations
## # weights: 71
## initial value 386.665527
## iter 10 value 207.378301
## iter
         20 value 180.592271
## iter 30 value 163.988131
## iter
        40 value 151.725494
        50 value 140.275829
## iter
## iter 60 value 137.089966
## iter 70 value 135.487604
## iter 80 value 134.734467
## iter 90 value 133.002254
## iter 100 value 132.648898
## final value 132.648898
## stopped after 100 iterations
## # weights: 91
## initial value 315.773705
## iter 10 value 203.670653
## iter
         20 value 172.588829
## iter 30 value 139.919703
        40 value 125.392326
## iter
         50 value 118.888366
## iter
  iter
         60 value 112.583489
##
##
  iter
         70 value 108.045022
  iter
        80 value 106.900700
        90 value 106.391840
## iter 100 value 105.958109
## final value 105.958109
## stopped after 100 iterations
## # weights: 11
## initial value 367.397192
## iter 10 value 233.897431
         20 value 220.980953
## iter
  iter
         30 value 220.632494
## iter 40 value 217.211159
## iter 50 value 216.841929
## final value 216.819304
## converged
## # weights: 31
## initial value 313.034160
## iter 10 value 214.268030
## iter
         20 value 204.733260
## iter
         30 value 193.144798
## iter 40 value 188.551211
## iter 50 value 185.933394
## iter 60 value 183.296183
## iter 70 value 182.760816
        80 value 181.827043
## iter
## iter 90 value 180.137804
## iter 100 value 179.531909
```

```
## final value 179.531909
## stopped after 100 iterations
## # weights: 51
## initial value 476.500375
## iter 10 value 216.879227
## iter
        20 value 194.750319
## iter
         30 value 184.504505
## iter 40 value 170.525072
        50 value 160.472512
## iter
## iter 60 value 159.212098
## iter 70 value 158.515769
## iter 80 value 158.018697
## iter 90 value 157.897386
## iter 100 value 157.875952
## final value 157.875952
## stopped after 100 iterations
## # weights: 71
## initial value 331.767950
## iter 10 value 198.864463
## iter
        20 value 175.200211
## iter
        30 value 161.356513
## iter 40 value 146.064616
## iter
        50 value 135.375019
## iter 60 value 133.634803
## iter 70 value 133.104684
## iter 80 value 132.686523
## iter 90 value 132.104769
## iter 100 value 131.331288
## final value 131.331288
## stopped after 100 iterations
## # weights: 91
## initial value 337.926664
        10 value 198.886090
## iter
## iter
         20 value 164.041416
## iter
         30 value 130.560704
  iter
         40 value 106.069074
##
  iter
         50 value 94.602434
  iter
         60 value 86.819896
         70 value 81.625575
##
  iter
        80 value 77.873196
## iter
## iter 90 value 76.835498
## iter 100 value 74.961818
## final value 74.961818
## stopped after 100 iterations
## # weights: 11
## initial value 311.365647
## iter 10 value 232.992629
## iter 20 value 222.804945
## iter 30 value 216.915328
## iter 40 value 215.494887
## iter
        50 value 215.170676
## iter
         60 value 215.140275
         70 value 215.015903
## iter
        80 value 215.011229
```

```
## iter 90 value 214.989637
## final value 214.982933
## converged
## # weights: 31
## initial value 319.478680
## iter 10 value 221.661888
        20 value 208.497094
## iter
## iter 30 value 202.662756
## iter 40 value 197.547287
## iter 50 value 194.228248
## iter 60 value 191.750964
        70 value 190.139181
## iter
## iter 80 value 189.764849
## iter 90 value 189.566476
## iter 100 value 189.238055
## final value 189.238055
## stopped after 100 iterations
## # weights: 51
## initial value 350.522517
## iter 10 value 207.178334
## iter 20 value 188.357138
## iter 30 value 174.787181
## iter 40 value 162.296206
## iter 50 value 151.699274
## iter 60 value 150.510485
## iter 70 value 150.482508
## final value 150.482458
## converged
## # weights: 71
## initial value 343.630801
## iter 10 value 205.902864
## iter
        20 value 184.018549
## iter
        30 value 161.900959
        40 value 148.826434
## iter
## iter 50 value 136.223077
  iter
        60 value 129.354010
        70 value 124.542065
## iter
  iter
        80 value 122.029944
## iter 90 value 120.927810
## iter 100 value 120.558825
## final value 120.558825
## stopped after 100 iterations
## # weights: 91
## initial value 352.889299
## iter 10 value 208.410153
## iter
        20 value 168.652422
## iter
        30 value 133.577432
## iter 40 value 122.855127
## iter 50 value 109.274906
## iter 60 value 103.466876
## iter 70 value 102.482955
## iter 80 value 102.442063
## iter 90 value 102.437498
## iter 100 value 102.435729
```

```
## final value 102.435729
## stopped after 100 iterations
## # weights: 11
## initial value 329.433120
## iter 10 value 232.144950
## iter 20 value 222.432315
## iter 30 value 220.341092
## final value 220.191911
## converged
## # weights: 31
## initial value 373.675850
## iter 10 value 231.782917
## iter
        20 value 214.387363
## iter
         30 value 209.960097
## iter 40 value 207.581292
## iter 50 value 206.494477
## iter 60 value 206.141890
## iter 70 value 206.125563
## final value 206.124734
## converged
## # weights: 51
## initial value 453.688076
## iter 10 value 217.096194
## iter 20 value 200.651629
         30 value 192.107517
## iter
        40 value 191.271313
## iter
  iter
         50 value 191.169986
##
## iter 60 value 191.115053
## iter 70 value 191.086927
## final value 191.086887
## converged
## # weights:
             71
## initial value 384.624722
        10 value 228.743752
## iter
         20 value 209.879014
## iter
## iter
         30 value 194.066853
         40 value 188.571173
## iter
  iter
         50 value 185.834616
         60 value 184.560977
## iter
         70 value 183.181202
## iter
## iter
         80 value 181.079180
## iter 90 value 180.590333
## iter 100 value 180.006661
## final value 180.006661
## stopped after 100 iterations
## # weights: 91
## initial value 435.419523
## iter 10 value 211.943100
## iter 20 value 194.881380
## iter
         30 value 183.986252
## iter 40 value 180.892735
         50 value 174.809195
## iter
## iter 60 value 171.609910
        70 value 170.121379
```

```
## iter 80 value 169.718874
## iter 90 value 169.552823
## iter 100 value 169.489572
## final value 169.489572
## stopped after 100 iterations
## # weights: 11
## initial value 343.612326
## iter 10 value 230.307176
## iter
        20 value 227.345241
## iter 30 value 220.181070
## iter 40 value 216.593296
## iter 50 value 216.219962
## iter 60 value 216.188928
## final value 216.187177
## converged
## # weights: 31
## initial value 319.168991
## iter 10 value 213.286208
## iter 20 value 195.554923
## iter 30 value 194.011000
## iter 40 value 193.899648
        50 value 193.846858
## iter
## iter 60 value 193.842534
## final value 193.842498
## converged
## # weights: 51
## initial value 365.206797
## iter 10 value 215.742607
## iter
         20 value 194.462003
## iter
         30 value 188.231562
        40 value 183.492096
##
  iter
##
  iter
         50 value 181.347701
## iter
        60 value 180.633957
        70 value 177.841673
## iter
## iter 80 value 174.055983
        90 value 170.487138
## iter
## iter 100 value 169.858101
## final value 169.858101
## stopped after 100 iterations
## # weights: 71
## initial value 317.156322
## iter 10 value 200.566012
## iter
         20 value 182.420055
         30 value 170.003386
## iter
## iter
        40 value 157.075059
## iter
         50 value 149.633032
## iter
        60 value 146.336348
## iter 70 value 145.191851
## iter 80 value 144.792995
## iter 90 value 144.660934
## iter 100 value 144.534112
## final value 144.534112
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 312.256484
## iter
        10 value 201.785024
         20 value 170.969560
## iter
## iter
         30 value 150.879678
## iter
         40 value 143.237223
## iter
        50 value 137.451570
## iter 60 value 134.651235
## iter 70 value 132.000914
## iter 80 value 131.135717
## iter 90 value 129.186214
## iter 100 value 128.386743
## final value 128.386743
## stopped after 100 iterations
## # weights: 11
## initial value 305.641289
## iter 10 value 222.690241
## iter 20 value 217.142273
        30 value 216.095953
## iter
## iter 40 value 215.481362
## iter 50 value 215.293117
## iter 60 value 215.290619
## final value 215.282420
## converged
## # weights:
             31
## initial value 298.377720
## iter 10 value 210.955041
## iter
         20 value 196.481101
## iter
         30 value 191.629154
  iter
         40 value 187.666981
## iter
         50 value 186.122091
  iter 60 value 183.863360
##
## iter
        70 value 183.268549
## iter 80 value 180.938727
## iter 90 value 180.729718
## iter 100 value 180.556218
## final value 180.556218
## stopped after 100 iterations
## # weights: 51
## initial value 408.692959
## iter 10 value 212.782536
## iter
         20 value 195.774616
         30 value 184.097119
## iter
## iter
         40 value 179.774015
        50 value 177.230448
## iter
        60 value 174.355281
## iter
## iter
        70 value 174.018794
## iter 80 value 173.924333
## iter 90 value 173.886565
## iter 100 value 173.833229
## final value 173.833229
## stopped after 100 iterations
## # weights: 71
## initial value 382.006405
## iter 10 value 219.335710
```

```
20 value 206.968310
## iter
         30 value 183.164804
## iter
## iter
         40 value 165.691391
## iter
         50 value 157.309942
## iter
         60 value 147.891849
        70 value 144.352406
## iter
        80 value 142.863077
## iter
## iter 90 value 142.383668
## iter 100 value 141.623156
## final value 141.623156
## stopped after 100 iterations
## # weights: 91
## initial value 312.866685
## iter 10 value 199.795085
## iter
        20 value 162.410990
         30 value 134.374703
## iter
## iter 40 value 107.877873
        50 value 98.549264
## iter
## iter 60 value 96.070295
## iter 70 value 93.695165
## iter 80 value 92.180220
## iter 90 value 91.370861
## iter 100 value 91.181404
## final value 91.181404
## stopped after 100 iterations
## # weights: 11
## initial value 346.009405
## iter 10 value 228.500860
## iter
         20 value 223.354662
## iter
         30 value 217.326024
        40 value 215.778680
  iter
##
  iter
         50 value 215.198262
## iter
        60 value 215.185236
## iter 70 value 215.102448
## final value 215.092871
## converged
## # weights: 31
## initial value 344.732530
## iter 10 value 219.327930
## iter
         20 value 198.852437
## iter
         30 value 195.455236
        40 value 192.274639
## iter
## iter
         50 value 189.669923
        60 value 187.900424
## iter
         70 value 187.282448
## iter
## iter
        80 value 187.240959
        90 value 186.793310
## iter 100 value 186.261898
## final value 186.261898
## stopped after 100 iterations
## # weights: 51
## initial value 326.628011
## iter 10 value 211.566641
## iter 20 value 195.851818
```

```
30 value 173.649791
## iter
         40 value 168.669335
## iter
## iter
         50 value 159.184904
## iter
         60 value 158.440772
## iter
         70 value 158.049477
## iter
        80 value 157.367179
## iter 90 value 157.162244
## iter 100 value 156.705019
## final value 156.705019
## stopped after 100 iterations
## # weights: 71
## initial value 298.460571
## iter 10 value 208.798931
## iter
         20 value 172.891196
## iter
         30 value 139.518609
## iter 40 value 125.633854
## iter 50 value 120.798646
## iter 60 value 118.126489
## iter 70 value 117.280604
## iter 80 value 116.318379
## iter 90 value 114.131577
## iter 100 value 113.282061
## final value 113.282061
## stopped after 100 iterations
## # weights: 91
## initial value 390.521469
## iter
        10 value 200.333836
## iter
         20 value 167.511580
##
  iter
         30 value 149.649850
## iter
         40 value 142.870810
         50 value 138.557173
##
  iter
##
  iter
         60 value 131.105902
##
  iter
         70 value 129.498005
         80 value 129.034816
## iter
## iter 90 value 128.858111
## iter 100 value 128.028721
## final value 128.028721
## stopped after 100 iterations
## # weights:
              11
## initial value 318.230368
## iter 10 value 223.369670
## iter
        20 value 220.774975
## iter 30 value 220.738595
## final value 220.737782
## converged
## # weights:
              31
## initial value 325.741471
## iter 10 value 224.137468
## iter 20 value 206.044407
         30 value 201.814308
## iter
## iter 40 value 196.733382
         50 value 193.791638
## iter
        60 value 189.069627
## iter
        70 value 187.437288
```

```
## iter 80 value 186.464930
## iter 90 value 185.924161
## iter 100 value 185.824051
## final value 185.824051
## stopped after 100 iterations
## # weights: 51
## initial value 325.407165
## iter 10 value 218.519703
## iter 20 value 203.285847
## iter 30 value 189.584488
## iter 40 value 181.933519
## iter 50 value 177.910803
## iter 60 value 173.210378
## iter 70 value 170.942722
## iter 80 value 165.945461
## iter 90 value 159.581477
## iter 100 value 158.581207
## final value 158.581207
## stopped after 100 iterations
## # weights: 71
## initial value 342.010782
## iter 10 value 214.864583
## iter
        20 value 183.628669
## iter 30 value 161.661285
         40 value 142.159568
## iter
         50 value 130.503142
## iter
## iter
         60 value 124.433051
## iter
         70 value 118.116743
## iter
        80 value 117.762550
## iter 90 value 117.708552
## final value 117.708398
## converged
## # weights: 91
## initial value 362.930346
## iter 10 value 216.009573
## iter
         20 value 175.801073
         30 value 149.407036
## iter
  iter
        40 value 136.653273
         50 value 125.620256
## iter
        60 value 116.088781
## iter
## iter 70 value 109.933931
## iter 80 value 104.133750
## iter 90 value 102.973651
## iter 100 value 102.692358
## final value 102.692358
## stopped after 100 iterations
## # weights: 11
## initial value 329.482988
## iter 10 value 229.384986
## iter 20 value 224.962292
## final value 224.934005
## converged
## # weights: 31
## initial value 319.941144
```

```
## iter 10 value 222.644145
         20 value 206.883512
## iter
         30 value 206.383416
## iter
## iter
         40 value 206.295816
## iter
        50 value 206.292679
## final value 206.292670
## converged
## # weights: 51
## initial value 323.450692
## iter 10 value 233.284161
        20 value 206.651387
## iter
         30 value 200.599439
## iter
## iter 40 value 197.999995
## iter
        50 value 196.798023
## iter 60 value 196.193091
## iter 70 value 196.136506
## final value 196.136051
## converged
## # weights: 71
## initial value 329.919356
## iter 10 value 219.456142
## iter
        20 value 201.087832
## iter
         30 value 192.289622
## iter 40 value 186.806999
         50 value 185.411499
## iter
        60 value 184.675902
## iter
  iter
        70 value 182.789634
##
## iter 80 value 181.567540
        90 value 181.249113
## iter
## iter 100 value 180.489521
## final value 180.489521
## stopped after 100 iterations
## # weights: 91
## initial value 355.919317
## iter 10 value 217.340388
## iter
         20 value 200.028540
         30 value 187.676922
## iter
  iter
         40 value 180.021184
  iter
         50 value 174.991401
##
         60 value 172.187973
## iter
## iter
        70 value 171.021230
## iter 80 value 169.180987
## iter 90 value 168.040910
## iter 100 value 167.786730
## final value 167.786730
## stopped after 100 iterations
## # weights: 11
## initial value 326.299280
## iter 10 value 230.091109
## iter 20 value 222.548709
## iter 30 value 221.332008
        40 value 221.143188
## iter
## iter 40 value 221.143188
## iter 40 value 221.143188
```

```
## final value 221.143188
## converged
## # weights: 31
## initial value 313.038876
## iter 10 value 218.707061
## iter 20 value 200.360009
        30 value 196.991623
## iter
## iter 40 value 195.285223
## iter 50 value 194.193835
## iter 60 value 191.808535
## iter 70 value 191.143445
## iter 80 value 191.133394
## final value 191.133275
## converged
## # weights: 51
## initial value 346.016360
## iter 10 value 216.604901
## iter 20 value 190.815880
## iter 30 value 181.134733
## iter 40 value 176.573453
## iter 50 value 175.301921
## iter 60 value 174.454201
## iter 70 value 174.363729
## iter 80 value 174.350257
## iter 90 value 174.348026
## final value 174.347876
## converged
## # weights:
              71
## initial value 358.338293
## iter 10 value 224.568226
## iter
        20 value 196.322594
## iter
        30 value 175.845930
## iter 40 value 166.200557
        50 value 159.568628
## iter
## iter 60 value 155.844532
## iter 70 value 153.429487
## iter 80 value 150.950154
## iter 90 value 150.110369
## iter 100 value 149.487069
## final value 149.487069
## stopped after 100 iterations
## # weights: 91
## initial value 378.198470
## iter 10 value 218.555389
## iter
        20 value 187.720927
## iter
        30 value 154.839405
## iter 40 value 143.456708
## iter 50 value 138.540555
## iter 60 value 137.925720
## iter 70 value 137.579701
## iter 80 value 137.235346
## iter 90 value 135.573876
## iter 100 value 133.985874
## final value 133.985874
```

```
## stopped after 100 iterations
## # weights: 11
## initial value 413.075669
## iter 10 value 224.991989
## iter 20 value 220.900266
## iter 30 value 220.808132
## final value 220.779689
## converged
## # weights: 31
## initial value 490.114093
## iter 10 value 232.603870
        20 value 209.940797
## iter
## iter 30 value 201.095427
## iter 40 value 199.036596
## iter 50 value 197.494979
## iter 60 value 196.606499
## iter 70 value 196.216404
## iter 80 value 195.913317
## iter 90 value 194.411348
## iter 100 value 193.857870
## final value 193.857870
## stopped after 100 iterations
## # weights: 51
## initial value 323.056760
## iter 10 value 209.350505
## iter
        20 value 190.279784
## iter
        30 value 179.500058
## iter 40 value 173.611599
##
  iter
        50 value 169.918143
## iter
        60 value 169.507308
## iter 70 value 169.193620
## iter
        80 value 169.108165
## iter 90 value 168.898863
## iter 100 value 168.818831
## final value 168.818831
## stopped after 100 iterations
## # weights: 71
## initial value 332.091993
## iter 10 value 210.999373
## iter
        20 value 182.404552
## iter
        30 value 161.794175
## iter 40 value 153.988299
## iter
        50 value 150.654223
## iter 60 value 147.320952
## iter 70 value 141.931280
## iter 80 value 138.881895
## iter 90 value 137.543078
## iter 100 value 137.295204
## final value 137.295204
## stopped after 100 iterations
## # weights: 91
## initial value 304.079713
## iter 10 value 205.948633
## iter 20 value 157.589117
```

```
30 value 139.612250
## iter
         40 value 126.884447
## iter
         50 value 117.946689
## iter
## iter
         60 value 114.358055
## iter
         70 value 111.648014
## iter 80 value 109.493386
## iter 90 value 109.039223
## iter 100 value 108.274846
## final value 108.274846
## stopped after 100 iterations
## # weights: 11
## initial value 348.008120
## iter 10 value 235.127792
## iter 20 value 232.721178
## iter 30 value 231.826238
## iter 40 value 231.372149
## iter 50 value 229.957452
## final value 229.913228
## converged
## # weights: 31
## initial value 317.668313
## iter 10 value 228.429038
## iter
        20 value 209.345793
## iter 30 value 202.013961
         40 value 196.479671
## iter
         50 value 193.450047
## iter
  iter
         60 value 189.995211
##
##
  iter
         70 value 189.856613
  iter
        80 value 189.810021
        90 value 189.789615
## iter 100 value 189.700481
## final value 189.700481
## stopped after 100 iterations
## # weights: 51
## initial value 452.014047
## iter
        10 value 220.883460
         20 value 194.478426
## iter
  iter
         30 value 186.217139
  iter
        40 value 171.486551
##
         50 value 163.044668
##
  iter
## iter
         60 value 154.559067
## iter 70 value 151.129645
## iter
        80 value 149.970797
## iter 90 value 149.778628
## iter 100 value 149.557154
## final value 149.557154
## stopped after 100 iterations
## # weights: 71
## initial value 352.502916
## iter 10 value 221.156675
## iter 20 value 201.438638
        30 value 177.989640
## iter
## iter 40 value 156.583189
        50 value 147.486335
```

```
60 value 139.475991
## iter
         70 value 131.569670
## iter
## iter
         80 value 127.127558
        90 value 126.144952
## iter
## iter 100 value 125.023447
## final value 125.023447
## stopped after 100 iterations
## # weights: 91
## initial value 340.619844
## iter 10 value 205.956399
         20 value 170.544077
## iter
         30 value 145.907795
## iter
## iter
        40 value 123.758859
## iter
         50 value 113.055391
## iter
        60 value 104.760121
## iter 70 value 99.840720
## iter 80 value 99.475484
## iter 90 value 99.214946
## iter 100 value 99.122198
## final value 99.122198
## stopped after 100 iterations
## # weights: 11
## initial value 369.204078
## iter 10 value 223.550056
## iter
         20 value 215.143211
## iter 30 value 214.793727
## final value 214.775827
## converged
## # weights: 31
## initial value 324.654641
## iter 10 value 221.847101
## iter
         20 value 205.068316
## iter
         30 value 199.749201
         40 value 193.383684
## iter
         50 value 184.290576
## iter
  iter
         60 value 175.059506
         70 value 173.083863
## iter
  iter
         80 value 172.600887
        90 value 172.592534
## iter 100 value 172.580984
## final value 172.580984
## stopped after 100 iterations
## # weights: 51
## initial value 308.290384
## iter 10 value 205.322788
         20 value 174.909159
## iter
## iter
         30 value 162.398639
## iter 40 value 155.682628
## iter 50 value 142.534388
## iter 60 value 133.642987
## iter 70 value 132.324148
## iter 80 value 132.277424
## final value 132.276527
## converged
```

```
## # weights: 71
## initial value 341.739714
## iter 10 value 200.323559
## iter
        20 value 167.085530
## iter
        30 value 145.324425
## iter 40 value 137.376740
## iter 50 value 126.026032
## iter 60 value 119.460409
## iter 70 value 117.725178
## iter 80 value 117.625518
## iter 90 value 117.613627
## iter 100 value 117.611223
## final value 117.611223
## stopped after 100 iterations
## # weights: 91
## initial value 384.639398
## iter 10 value 200.627862
## iter 20 value 162.828565
## iter 30 value 123.182671
## iter 40 value 112.919485
## iter 50 value 107.291828
## iter
        60 value 99.823136
## iter 70 value 92.439647
## iter 80 value 90.543423
## iter 90 value 90.474048
## iter 100 value 90.469344
## final value 90.469344
## stopped after 100 iterations
## # weights: 11
## initial value 330.903847
## iter 10 value 253.999258
        20 value 225.710569
## iter
## iter
        30 value 220.297557
## iter 40 value 219.114410
## final value 219.114339
## converged
## # weights: 31
## initial value 322.427931
## iter 10 value 240.449012
## iter
        20 value 221.648979
## iter
        30 value 212.837345
## iter 40 value 206.040264
## iter
        50 value 205.022770
## iter 60 value 204.986677
## iter 70 value 204.986105
## final value 204.986016
## converged
## # weights: 51
## initial value 331.158245
## iter 10 value 220.006931
## iter 20 value 206.899502
## iter
        30 value 199.390492
## iter 40 value 194.010118
        50 value 190.927473
```

```
## iter 60 value 189.954091
        70 value 189.612600
## iter
## iter
        80 value 189.335839
        90 value 189.151286
## iter
## iter 100 value 189.071405
## final value 189.071405
## stopped after 100 iterations
## # weights: 71
## initial value 351.499575
## iter 10 value 210.940368
         20 value 198.517317
## iter
         30 value 188.780207
## iter
## iter 40 value 186.402933
## iter
         50 value 183.268857
## iter 60 value 181.408832
## iter 70 value 179.584574
## iter 80 value 178.030984
## iter 90 value 177.594480
## iter 100 value 176.888738
## final value 176.888738
## stopped after 100 iterations
## # weights: 91
## initial value 316.716244
## iter 10 value 209.645227
         20 value 185.491427
## iter
         30 value 175.651832
## iter
  iter
         40 value 171.784938
##
  iter
         50 value 170.210629
  iter
         60 value 169.536433
## iter
         70 value 169.028393
## iter 80 value 168.954075
        90 value 168.943443
## iter
## iter 100 value 168.930677
## final value 168.930677
## stopped after 100 iterations
## # weights: 11
## initial value 329.291290
## iter 10 value 232.179680
## iter
         20 value 220.319640
         30 value 215.599824
## iter
## iter 40 value 215.179139
## final value 215.178009
## converged
## # weights: 31
## initial value 316.278332
## iter 10 value 210.768962
## iter
        20 value 198.066584
## iter
         30 value 193.913712
## iter 40 value 191.526308
## iter 50 value 190.914180
## iter 60 value 190.828308
        70 value 190.789704
## iter
        80 value 190.779409
## iter
        90 value 190.777620
```

```
## final value 190.777556
## converged
## # weights: 51
## initial value 311.927871
## iter 10 value 214.746130
## iter 20 value 193.528504
        30 value 184.559398
## iter
## iter 40 value 180.540766
## iter 50 value 177.269682
## iter 60 value 175.666675
## iter 70 value 174.538540
## iter 80 value 172.930455
## iter 90 value 172.401663
## iter 100 value 172.103205
## final value 172.103205
## stopped after 100 iterations
## # weights: 71
## initial value 329.308076
## iter 10 value 217.835596
## iter 20 value 190.738454
## iter 30 value 174.888249
## iter 40 value 167.245461
## iter 50 value 161.969484
## iter 60 value 158.335218
## iter 70 value 154.882671
## iter 80 value 153.634266
## iter 90 value 152.860219
## iter 100 value 152.525833
## final value 152.525833
## stopped after 100 iterations
## # weights: 91
## initial value 334.713235
## iter 10 value 205.328543
## iter
        20 value 172.203392
## iter 30 value 151.923535
## iter 40 value 138.080446
        50 value 133.197904
## iter
  iter 60 value 130.698958
## iter 70 value 128.819516
## iter 80 value 125.532396
## iter 90 value 123.964285
## iter 100 value 123.449133
## final value 123.449133
## stopped after 100 iterations
## # weights: 11
## initial value 328.410341
## iter 10 value 234.901645
## iter 20 value 221.980217
## iter 30 value 217.315639
## iter 40 value 214.873747
## iter 50 value 214.822523
## final value 214.817111
## converged
## # weights: 31
```

```
## initial value 334.239178
        10 value 219.196127
## iter
## iter
         20 value 201.988469
## iter
         30 value 191.796850
## iter
         40 value 185.821128
## iter
         50 value 185.701655
## iter
        60 value 185.631762
## iter 70 value 185.484921
## iter 80 value 185.455787
## iter 90 value 185.309256
## iter 100 value 185.278849
## final value 185.278849
## stopped after 100 iterations
## # weights: 51
## initial value 323.066798
## iter 10 value 205.716334
## iter 20 value 187.333232
         30 value 175.210721
## iter
## iter 40 value 172.625135
## iter 50 value 172.471019
## iter 60 value 172.288773
## iter 70 value 172.137274
## iter
        80 value 172.112254
## iter 90 value 172.078168
## iter 100 value 172.061314
## final value 172.061314
## stopped after 100 iterations
## # weights:
              71
## initial value 350.914027
## iter
        10 value 209.920613
         20 value 191.226957
  iter
##
  iter
         30 value 174.040097
##
  iter
        40 value 154.077360
  iter
         50 value 143.216302
##
  iter 60 value 139.663382
##
  iter
        70 value 138.510878
        80 value 135.042402
##
  iter
  iter 90 value 134.622010
## iter 100 value 134.175240
## final value 134.175240
## stopped after 100 iterations
## # weights: 91
## initial value 358.349534
        10 value 212.212082
## iter
## iter
         20 value 189.190337
## iter
         30 value 165.959072
## iter
        40 value 140.515291
## iter 50 value 126.684749
## iter 60 value 122.697260
## iter 70 value 120.034994
## iter 80 value 119.021938
## iter 90 value 118.475133
## iter 100 value 118.011975
## final value 118.011975
```

```
## stopped after 100 iterations
## # weights: 11
## initial value 329.399395
## iter 10 value 223.277261
## iter
        20 value 218.446135
## iter 30 value 215.495705
## iter 40 value 214.781637
## final value 214.781380
## converged
## # weights: 31
## initial value 333.425254
## iter 10 value 209.734455
## iter 20 value 200.540660
## iter
        30 value 190.160004
## iter 40 value 186.874652
## iter 50 value 180.910527
## iter 60 value 180.636096
## iter 70 value 180.574121
## iter 80 value 180.384706
## iter 90 value 180.382283
## iter 100 value 180.381671
## final value 180.381671
## stopped after 100 iterations
## # weights: 51
## initial value 372.859926
## iter 10 value 205.715397
## iter
        20 value 187.902169
## iter
        30 value 169.596392
## iter
        40 value 160.266514
## iter
        50 value 151.856053
## iter 60 value 150.830540
## iter 70 value 150.603821
## iter 80 value 150.437088
## iter 90 value 150.131533
## iter 100 value 149.914370
## final value 149.914370
## stopped after 100 iterations
## # weights: 71
## initial value 399.719099
## iter 10 value 213.825096
## iter
        20 value 187.561620
        30 value 166.158151
## iter
## iter
        40 value 155.278384
## iter 50 value 150.671629
        60 value 147.717810
## iter
## iter
        70 value 141.318894
## iter 80 value 137.183840
## iter 90 value 134.409277
## iter 100 value 133.908647
## final value 133.908647
## stopped after 100 iterations
## # weights: 91
## initial value 370.387931
## iter 10 value 210.539255
```

```
20 value 187.609416
## iter
         30 value 158.545821
## iter
        40 value 134.139925
## iter
## iter
         50 value 119.207514
## iter
         60 value 108.023132
        70 value 97.555186
## iter
## iter 80 value 92.409221
## iter 90 value 89.485291
## iter 100 value 86.770843
## final value 86.770843
## stopped after 100 iterations
## # weights: 11
## initial value 348.825693
## iter 10 value 232.764145
## iter 20 value 225.394398
## iter 30 value 223.870453
## iter 40 value 223.766957
## final value 223.766951
## converged
## # weights: 31
## initial value 327.617752
## iter 10 value 224.960529
## iter
         20 value 205.554779
## iter 30 value 199.882190
         40 value 193.748717
## iter
         50 value 189.792213
## iter
  iter
         60 value 188.158502
##
##
  iter
         70 value 187.715319
  iter
        80 value 187.435406
        90 value 187.129380
## iter 100 value 186.378481
## final value 186.378481
## stopped after 100 iterations
## # weights: 51
## initial value 357.399843
## iter
        10 value 216.461679
         20 value 198.414839
## iter
  iter
         30 value 181.689779
  iter
        40 value 178.055729
##
         50 value 174.570161
##
  iter
## iter
         60 value 167.709951
## iter 70 value 160.912376
        80 value 152.335111
## iter
## iter 90 value 151.707262
## iter 100 value 151.655136
## final value 151.655136
## stopped after 100 iterations
## # weights: 71
## initial value 356.192422
## iter 10 value 215.168658
## iter 20 value 188.475097
        30 value 169.794939
## iter
## iter 40 value 162.458455
        50 value 158.174667
```

```
## iter 60 value 147.145939
        70 value 139.764477
## iter
## iter
        80 value 133.460868
## iter
        90 value 129.418583
## iter 100 value 127.877718
## final value 127.877718
## stopped after 100 iterations
## # weights: 91
## initial value 471.143338
## iter 10 value 217.104938
        20 value 183.668942
## iter
         30 value 154.292522
## iter
## iter 40 value 141.198938
## iter
         50 value 131.381739
## iter 60 value 121.757581
## iter 70 value 114.842757
## iter 80 value 109.435465
## iter 90 value 101.878698
## iter 100 value 99.289412
## final value 99.289412
## stopped after 100 iterations
## # weights: 11
## initial value 370.648130
## iter 10 value 242.444349
## iter 20 value 228.253167
## iter 30 value 227.975489
## final value 227.975112
## converged
## # weights: 31
## initial value 483.790902
## iter 10 value 233.642888
## iter
         20 value 213.637188
## iter
         30 value 209.538968
         40 value 208.816698
## iter
        50 value 208.709012
## iter
## iter 60 value 208.642453
## final value 208.642413
## converged
## # weights: 51
## initial value 454.325122
## iter 10 value 230.389851
## iter
         20 value 210.110941
## iter
         30 value 202.565814
## iter 40 value 197.920016
        50 value 195.461655
## iter
## iter
        60 value 193.795504
## iter
        70 value 192.767835
## iter
        80 value 191.995816
## iter 90 value 191.918273
## iter 100 value 191.903463
## final value 191.903463
## stopped after 100 iterations
## # weights: 71
## initial value 330.170291
```

```
10 value 226.752409
## iter
         20 value 207.830088
## iter
         30 value 199.283394
## iter
## iter
         40 value 195.876598
## iter
         50 value 193.323542
        60 value 191.543338
## iter
        70 value 191.062428
## iter
## iter 80 value 191.001117
## iter 90 value 190.062455
## iter 100 value 187.819802
## final value 187.819802
## stopped after 100 iterations
## # weights: 91
## initial value 351.930107
## iter 10 value 217.333955
        20 value 200.784454
## iter
## iter 30 value 189.917416
        40 value 183.921670
## iter
## iter
        50 value 180.894234
## iter
        60 value 180.191442
        70 value 179.619630
## iter
## iter
        80 value 178.937193
## iter 90 value 178.714181
## iter 100 value 178.633847
## final value 178.633847
## stopped after 100 iterations
## # weights: 11
## initial value 310.692834
## iter 10 value 233.363106
## iter
         20 value 225.687897
## iter 30 value 224.261967
## final value 224.185410
## converged
## # weights: 31
## initial value 323.469637
## iter
        10 value 220.255227
         20 value 209.589070
## iter
  iter
         30 value 207.110007
  iter
         40 value 205.157795
##
         50 value 203.726633
## iter
## iter
         60 value 203.465816
## iter 70 value 203.423811
## final value 203.423046
## converged
## # weights: 51
## initial value 343.279153
## iter 10 value 217.986550
## iter
        20 value 202.285509
## iter 30 value 193.983760
        40 value 191.122582
## iter
         50 value 187.670299
## iter
         60 value 185.067015
## iter
## iter
         70 value 184.804383
        80 value 184.508242
```

```
## iter 90 value 184.404683
## iter 100 value 184.392447
## final value 184.392447
## stopped after 100 iterations
## # weights: 71
## initial value 387.994251
        10 value 214.197391
## iter
## iter 20 value 185.757285
## iter
         30 value 175.759773
## iter 40 value 171.775068
## iter
        50 value 168.582092
        60 value 166.599020
## iter
## iter 70 value 165.489293
## iter
        80 value 164.452021
## iter 90 value 163.977969
## iter 100 value 163.071162
## final value 163.071162
## stopped after 100 iterations
## # weights: 91
## initial value 308.848769
## iter 10 value 212.177327
## iter
        20 value 186.166583
## iter
         30 value 169.462619
## iter 40 value 159.926769
         50 value 153.472941
## iter
        60 value 150.452846
## iter
  iter
        70 value 148.740763
##
## iter 80 value 145.206612
## iter
        90 value 141.999128
## iter 100 value 139.547629
## final value 139.547629
## stopped after 100 iterations
## # weights: 11
## initial value 328.167142
## iter 10 value 234.302924
## iter
         20 value 227.564164
         30 value 223.928200
## iter
  iter
         40 value 223.811097
         50 value 223.810688
##
  iter
         50 value 223.810687
## iter
## iter 50 value 223.810687
## final value 223.810687
## converged
## # weights: 31
## initial value 353.449264
## iter 10 value 223.319471
## iter
        20 value 203.309499
## iter
         30 value 197.938033
## iter 40 value 193.914927
## iter 50 value 192.766220
## iter 60 value 192.037315
        70 value 191.482998
## iter
        80 value 191.231058
## iter
        90 value 191.017710
```

```
## iter 100 value 190.975983
## final value 190.975983
## stopped after 100 iterations
## # weights: 51
## initial value 285.414192
## iter 10 value 215.723085
         20 value 190.434651
## iter
## iter
        30 value 180.146920
## iter
        40 value 177.996532
## iter 50 value 175.838539
## iter
        60 value 174.677409
         70 value 173.368103
## iter
## iter 80 value 170.104266
## iter 90 value 169.717053
## iter 100 value 169.405616
## final value 169.405616
## stopped after 100 iterations
## # weights: 71
## initial value 312.364384
## iter 10 value 207.609675
        20 value 183.418987
## iter
## iter
         30 value 173.361866
## iter 40 value 169.063798
## iter 50 value 163.855251
        60 value 161.591360
## iter
        70 value 161.007092
## iter
        80 value 160.363665
## iter
## iter 90 value 160.251083
## iter 100 value 160.096940
## final value 160.096940
## stopped after 100 iterations
## # weights: 91
## initial value 436.640407
## iter 10 value 214.182124
         20 value 180.760721
## iter
##
  iter
         30 value 159.309775
         40 value 143.829896
## iter
  iter
         50 value 128.549457
         60 value 119.296320
##
  iter
         70 value 117.379718
## iter
## iter
         80 value 116.719676
## iter 90 value 116.377082
## iter 100 value 115.548381
## final value 115.548381
## stopped after 100 iterations
## # weights: 11
## initial value 357.044464
## iter 10 value 281.460194
## iter 20 value 228.467027
## iter 30 value 223.977942
## iter 40 value 223.771353
## final value 223.771348
## converged
## # weights: 31
```

```
## initial value 355.883291
         10 value 212.127211
## iter
## iter
         20 value 201.269135
## iter
         30 value 195.988137
## iter
         40 value 189.877031
## iter
         50 value 188.176867
        60 value 187.829678
## iter
## iter
        70 value 187.587469
        80 value 187.435379
## iter
## iter 90 value 186.932676
## iter 100 value 186.807049
## final value 186.807049
## stopped after 100 iterations
## # weights: 51
## initial value 315.533127
## iter 10 value 211.734920
## iter 20 value 188.019424
         30 value 183.632554
## iter
## iter 40 value 178.117307
## iter 50 value 173.184124
## iter 60 value 170.041906
## iter
        70 value 167.666043
## iter
        80 value 167.339026
## iter 90 value 167.201366
## iter 100 value 167.157112
## final value 167.157112
## stopped after 100 iterations
## # weights:
              71
## initial value 338.032701
## iter
        10 value 214.009503
  iter
         20 value 174.124290
##
  iter
         30 value 154.734935
##
  iter
        40 value 139.350144
  iter
         50 value 134.136441
##
        60 value 129.156243
##
  iter
  iter
        70 value 127.994904
        80 value 124.989914
##
  iter
  iter 90 value 123.743469
## iter 100 value 122.339655
## final value 122.339655
## stopped after 100 iterations
## # weights: 91
## initial value 437.402161
        10 value 214.210476
## iter
## iter
         20 value 176.413066
## iter
         30 value 135.287853
## iter
        40 value 119.806148
## iter
        50 value 111.151656
## iter 60 value 106.191712
## iter 70 value 103.111529
## iter 80 value 101.713846
## iter 90 value 101.413371
## iter 100 value 101.341562
## final value 101.341562
```

```
## stopped after 100 iterations
## # weights: 11
## initial value 323.810853
## iter
        10 value 224.277968
## iter
        20 value 215.747030
## iter 30 value 212.348164
## iter 40 value 211.551220
## iter 50 value 211.423988
## iter 60 value 211.417292
## iter 70 value 211.395571
## final value 211.395566
## converged
## # weights: 31
## initial value 347.937901
## iter 10 value 212.388549
## iter 20 value 191.814432
## iter 30 value 188.815361
## iter 40 value 186.578370
## iter 50 value 184.071903
## iter 60 value 180.226668
## iter 70 value 179.094534
## iter 80 value 178.463009
## iter 90 value 178.179892
## iter 100 value 178.026065
## final value 178.026065
## stopped after 100 iterations
## # weights: 51
## initial value 333.725348
## iter 10 value 196.088123
## iter
        20 value 175.714822
        30 value 168.888442
## iter
## iter
        40 value 151.442802
## iter
        50 value 146.514596
        60 value 145.903789
## iter
## iter 70 value 145.898541
## final value 145.898535
## converged
## # weights: 71
## initial value 343.755191
## iter 10 value 199.441599
## iter
        20 value 173.105377
## iter
        30 value 142.288711
## iter
        40 value 128.218720
        50 value 117.780594
## iter
        60 value 112.639349
## iter
        70 value 109.490170
## iter
## iter 80 value 108.647892
## iter 90 value 108.001172
## iter 100 value 107.176858
## final value 107.176858
## stopped after 100 iterations
## # weights: 91
## initial value 321.610571
## iter 10 value 195.723170
```

```
20 value 170.306305
## iter
## iter
         30 value 147.006633
        40 value 132.993807
## iter
## iter
         50 value 121.963232
## iter
         60 value 110.800666
## iter
        70 value 101.876878
## iter 80 value 96.843521
## iter 90 value 96.354366
## iter 100 value 96.326321
## final value 96.326321
## stopped after 100 iterations
## # weights: 11
## initial value 337.126195
## iter 10 value 228.987865
## iter 20 value 218.331319
## iter 30 value 216.013861
## iter 40 value 215.739545
## iter 40 value 215.739544
## iter 40 value 215.739544
## final value 215.739544
## converged
## # weights: 31
## initial value 357.143120
## iter 10 value 214.717581
         20 value 206.614482
## iter
         30 value 199.825033
## iter
  iter
         40 value 196.950441
## iter
         50 value 195.605717
## iter
         60 value 195.562541
## iter 70 value 195.562174
## final value 195.562158
## converged
## # weights: 51
## initial value 385.125958
## iter 10 value 209.461135
## iter
         20 value 199.095962
         30 value 191.859444
## iter
  iter
         40 value 188.878305
## iter
         50 value 187.641528
         60 value 187.439660
## iter
## iter
        70 value 187.382721
## iter 80 value 187.376343
## final value 187.376203
## converged
## # weights: 71
## initial value 340.934815
## iter 10 value 222.201480
## iter
        20 value 199.887375
## iter 30 value 187.028318
## iter 40 value 185.042103
        50 value 183.059190
## iter
         60 value 182.587805
## iter
## iter
         70 value 180.876250
        80 value 179.712155
```

```
## iter 90 value 179.167058
## iter 100 value 178.341629
## final value 178.341629
## stopped after 100 iterations
## # weights: 91
## initial value 312.449239
## iter 10 value 202.419501
## iter 20 value 189.898753
## iter
         30 value 178.910517
## iter 40 value 172.343091
        50 value 169.431948
## iter
        60 value 166.795981
## iter
## iter 70 value 165.192504
## iter 80 value 163.936791
## iter 90 value 163.717689
## iter 100 value 163.609704
## final value 163.609704
## stopped after 100 iterations
## # weights: 11
## initial value 390.067408
## iter 10 value 215.240397
## iter 20 value 212.488856
## iter 30 value 212.407286
## final value 212.396891
## converged
## # weights: 31
## initial value 350.854243
## iter 10 value 203.370451
## iter
         20 value 191.581086
## iter
         30 value 188.899174
        40 value 187.781971
##
  iter
##
  iter
         50 value 187.599003
## iter
        60 value 187.496759
## iter 70 value 187.454946
## iter 80 value 187.451004
## iter 90 value 187.448438
## iter 100 value 187.448147
## final value 187.448147
## stopped after 100 iterations
## # weights: 51
## initial value 325.592247
## iter 10 value 205.401651
## iter
         20 value 186.803969
         30 value 176.757768
## iter
## iter
        40 value 173.474846
## iter
        50 value 172.677982
## iter 60 value 172.554329
## iter 70 value 172.493399
## iter 80 value 172.472011
## iter 90 value 172.445914
## iter 100 value 172.264160
## final value 172.264160
## stopped after 100 iterations
## # weights: 71
```

```
## initial value 347.178341
        10 value 210.341752
## iter
## iter
         20 value 177.985272
## iter
         30 value 161.968779
## iter
         40 value 155.574191
## iter
         50 value 152.422083
## iter 60 value 151.098085
## iter 70 value 150.351159
## iter 80 value 149.891685
## iter 90 value 149.304734
## iter 100 value 148.766593
## final value 148.766593
## stopped after 100 iterations
## # weights: 91
## initial value 541.570620
## iter 10 value 202.745664
## iter 20 value 182.171321
         30 value 156.422786
## iter
## iter 40 value 141.699394
## iter 50 value 133.104193
## iter 60 value 120.739998
## iter 70 value 112.779394
## iter
        80 value 109.267702
## iter 90 value 107.984519
## iter 100 value 106.995316
## final value 106.995316
## stopped after 100 iterations
## # weights: 11
## initial value 310.764777
## iter
        10 value 223.450284
         20 value 215.880663
## iter
##
  iter
         30 value 212.654427
##
  iter
        40 value 211.751894
         50 value 211.540406
## iter
## iter 60 value 211.530792
## final value 211.524990
## converged
## # weights:
              31
## initial value 329.851232
## iter 10 value 202.261846
## iter
         20 value 188.241589
         30 value 184.865784
## iter
## iter
         40 value 184.381195
         50 value 183.442539
## iter
         60 value 180.183909
## iter
## iter
         70 value 180.091011
## iter 80 value 180.079139
## iter 90 value 180.061487
## iter 100 value 180.029413
## final value 180.029413
## stopped after 100 iterations
## # weights: 51
## initial value 375.783009
## iter 10 value 197.430951
```

```
20 value 173.846002
## iter
         30 value 164.633280
## iter
## iter
        40 value 158.081472
## iter
         50 value 157.487963
## iter
         60 value 157.103193
## iter 70 value 156.669840
## iter 80 value 156.193454
## iter 90 value 156.101695
## iter 100 value 156.080968
## final value 156.080968
## stopped after 100 iterations
## # weights: 71
## initial value 331.047387
## iter 10 value 202.261439
## iter
        20 value 186.289721
## iter
         30 value 170.026929
## iter 40 value 153.773580
        50 value 146.453544
## iter
## iter 60 value 140.815996
## iter 70 value 139.748908
## iter 80 value 136.179406
## iter 90 value 132.492971
## iter 100 value 129.661454
## final value 129.661454
## stopped after 100 iterations
## # weights: 91
## initial value 333.910150
## iter 10 value 196.596915
## iter
         20 value 158.987373
## iter
         30 value 124.338707
        40 value 105.747699
##
  iter
##
  iter
         50 value 98.213969
## iter
        60 value 96.711544
## iter 70 value 94.649836
## iter 80 value 92.492026
## iter 90 value 91.705134
## iter 100 value 91.363603
## final value 91.363603
## stopped after 100 iterations
## # weights: 11
## initial value 322.816917
## iter 10 value 214.896122
         20 value 212.081351
## iter
        30 value 211.748524
## iter
        40 value 211.491717
## iter
## iter
        50 value 211.429114
## iter 60 value 211.427938
## final value 211.421823
## converged
## # weights: 31
## initial value 325.344623
## iter 10 value 203.038471
## iter
        20 value 194.068251
        30 value 186.286888
```

```
## iter
        40 value 184.943505
## iter
         50 value 183.287157
## iter
         60 value 181.966429
## iter
         70 value 180.798986
## iter
         80 value 180.124651
## iter 90 value 179.864087
## iter 100 value 178.665868
## final value 178.665868
## stopped after 100 iterations
## # weights: 51
## initial value 445.093951
## iter 10 value 211.608660
## iter
         20 value 179.491154
## iter
         30 value 171.079107
## iter 40 value 164.228141
## iter 50 value 160.035527
## iter 60 value 158.831128
## iter 70 value 158.500995
## iter 80 value 158.406894
## iter 90 value 158.171516
## iter 100 value 157.917598
## final value 157.917598
## stopped after 100 iterations
## # weights: 71
## initial value 316.211543
## iter 10 value 204.563804
  iter
         20 value 184.032790
  iter
         30 value 168.190632
  iter
         40 value 147.600373
  iter
         50 value 133.771538
##
        60 value 125.064045
##
  iter
##
  iter
        70 value 123.084093
## iter 80 value 120.281001
## iter 90 value 119.120778
## iter 100 value 118.733837
## final value 118.733837
## stopped after 100 iterations
## # weights: 91
## initial value 357.456145
## iter 10 value 196.547219
## iter
         20 value 155.582330
         30 value 126.590946
## iter
## iter
         40 value 104.892732
## iter
         50 value 97.179267
         60 value 92.767865
## iter
## iter
         70 value 90.203635
## iter
        80 value 89.567385
## iter 90 value 89.151704
## iter 100 value 89.036788
## final value 89.036788
## stopped after 100 iterations
## # weights: 11
## initial value 354.383684
## iter 10 value 231.262165
```

```
20 value 226.710243
## iter
         30 value 219.151009
## iter
## iter 40 value 218.798264
## final value 218.798104
## converged
## # weights: 31
## initial value 334.274717
## iter 10 value 220.722849
## iter
         20 value 201.798155
## iter 30 value 199.935659
        40 value 195.136477
## iter
         50 value 184.691284
## iter
## iter 60 value 182.017524
## iter 70 value 181.845131
## iter 80 value 181.815484
## iter 90 value 181.784653
## iter 100 value 181.673337
## final value 181.673337
## stopped after 100 iterations
## # weights: 51
## initial value 305.898758
## iter 10 value 220.533944
## iter
         20 value 201.429468
## iter
        30 value 183.920931
         40 value 174.900886
## iter
         50 value 170.460921
## iter
  iter
         60 value 161.784645
##
##
  iter
         70 value 153.919838
## iter
         80 value 153.425249
## iter
        90 value 153.413755
## final value 153.413744
## converged
## # weights: 71
## initial value 344.880633
## iter 10 value 205.782674
## iter
         20 value 177.247140
         30 value 157.360613
## iter
  iter
         40 value 144.346366
## iter
         50 value 129.524179
         60 value 126.785687
## iter
## iter 70 value 126.679716
## final value 126.678736
## converged
## # weights: 91
## initial value 529.491852
## iter 10 value 204.652538
## iter
        20 value 176.171360
## iter
         30 value 152.486756
## iter 40 value 134.768066
## iter 50 value 123.906545
## iter 60 value 115.631314
        70 value 109.609384
## iter
        80 value 102.512824
## iter
        90 value 98.790274
```

iter 100 value 94.913212 ## final value 94.913212 ## stopped after 100 iterations ## # weights: 11 ## initial value 317.066967 ## iter 10 value 240.576769 ## iter 20 value 225.282007 ## iter 30 value 222.208812 ## final value 222.110996 ## converged ## # weights: 31 ## initial value 454.691108 ## iter 10 value 233.378725 ## iter 20 value 213.671333 ## iter 30 value 208.257165 ## iter 40 value 204.863087 ## iter 50 value 203.390835 ## iter 60 value 203.302011 ## final value 203.301510 ## converged ## # weights: 51 ## initial value 342.356971 ## iter 10 value 229.393188 ## iter 20 value 211.941588 30 value 202.565749 ## iter ## iter 40 value 194.693122 ## iter 50 value 193.551568 ## iter 60 value 193.304043 70 value 193.235001 ## iter ## iter 80 value 193.224168 ## final value 193.224102 ## converged ## # weights: 71 ## initial value 368.133200 ## iter 10 value 234.448478 ## iter 20 value 218.121260 30 value 203.910429 ## iter ## iter 40 value 199.172147 ## iter 50 value 196.883726 60 value 195.856608 ## iter ## iter 70 value 194.703029 ## iter 80 value 194.279224 ## iter 90 value 193.970060 ## iter 100 value 193.905221 ## final value 193.905221 ## stopped after 100 iterations ## # weights: 91 ## initial value 324.021911 ## iter 10 value 222.111494 ## iter 20 value 206.157004 ## iter 30 value 191.096854 ## iter 40 value 183.776643 ## iter 50 value 181.534906 ## iter 60 value 180.573344

```
## iter 70 value 179.628807
## iter
         80 value 178.444307
## iter 90 value 176.564296
## iter 100 value 175.647380
## final value 175.647380
## stopped after 100 iterations
## # weights: 11
## initial value 318.751249
## iter 10 value 220.059939
## iter 20 value 219.335622
## iter 30 value 219.288018
## final value 219.287044
## converged
## # weights: 31
## initial value 345.152885
## iter 10 value 220.848250
## iter 20 value 201.797592
         30 value 197.205222
## iter
## iter 40 value 195.271012
## iter 50 value 193.261847
## iter 60 value 193.086783
        70 value 193.033731
## iter
## iter 80 value 193.033165
## final value 193.033116
## converged
## # weights: 51
## initial value 483.064300
## iter 10 value 217.102818
## iter
         20 value 185.763434
## iter
         30 value 170.653109
         40 value 168.595042
##
  iter
##
  iter
         50 value 167.458493
## iter
        60 value 166.659163
        70 value 165.741497
## iter
## iter 80 value 165.446316
        90 value 165.425135
## iter
## iter 100 value 165.424335
## final value 165.424335
## stopped after 100 iterations
## # weights: 71
## initial value 317.473807
## iter 10 value 212.250218
## iter
         20 value 195.488848
         30 value 182.700405
## iter
## iter
         40 value 172.831227
## iter
         50 value 168.909501
## iter
        60 value 167.332177
## iter
        70 value 167.170173
## iter 80 value 167.137845
## iter 90 value 167.133164
## iter 100 value 167.132587
## final value 167.132587
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 374.440993
## iter
         10 value 212.490273
## iter
         20 value 173.870948
## iter
         30 value 149.841023
## iter
         40 value 142.383165
         50 value 139.051045
## iter
        60 value 138.092328
## iter
## iter 70 value 135.936850
## iter 80 value 135.144147
## iter 90 value 134.896077
## iter 100 value 134.802281
## final value 134.802281
## stopped after 100 iterations
## # weights: 11
## initial value 417.752067
## iter 10 value 226.118070
## iter 20 value 218.898734
## iter 30 value 218.854523
## final value 218.849001
## converged
## # weights:
## initial value 369.975414
## iter 10 value 207.273395
## iter 20 value 200.368331
         30 value 196.826762
## iter
        40 value 194.078064
## iter
  iter
         50 value 191.711112
##
##
  iter
        60 value 190.256933
##
  iter
         70 value 190.117622
## iter
         80 value 190.052462
        90 value 189.927502
## iter 100 value 189.922178
## final value 189.922178
## stopped after 100 iterations
## # weights: 51
## initial value 344.111857
        10 value 212.593569
## iter
  iter
         20 value 191.704913
## iter
         30 value 179.063029
         40 value 170.548555
## iter
## iter
         50 value 168.967170
## iter 60 value 168.793957
## iter 70 value 168.568885
## iter 80 value 168.500477
## iter 90 value 168.464766
## iter 100 value 168.453097
## final value 168.453097
## stopped after 100 iterations
## # weights: 71
## initial value 368.314876
## iter 10 value 211.661718
         20 value 186.929058
## iter
## iter
         30 value 173.755759
        40 value 156.948002
```

```
50 value 152.954730
## iter
         60 value 150.817433
## iter
## iter
         70 value 150.108839
## iter
         80 value 149.681211
## iter
        90 value 149.254957
## iter 100 value 148.758982
## final value 148.758982
## stopped after 100 iterations
## # weights: 91
## initial value 332.926469
## iter
        10 value 208.395238
## iter
         20 value 176.568150
## iter
         30 value 150.370566
## iter 40 value 139.664959
## iter
        50 value 136.077922
## iter 60 value 132.932066
## iter 70 value 130.672196
## iter 80 value 129.436974
## iter 90 value 129.148986
## iter 100 value 128.911321
## final value 128.911321
## stopped after 100 iterations
## # weights: 11
## initial value 370.975825
## iter 10 value 235.743122
## iter
         20 value 231.238006
  iter
         30 value 231.054913
## iter 40 value 229.380697
## iter
        50 value 229.292748
## final value 229.292377
## converged
## # weights:
             31
## initial value 334.284667
## iter 10 value 213.569987
         20 value 208.876103
## iter
## iter
         30 value 202.242642
         40 value 195.223259
## iter
  iter
         50 value 191.274529
         60 value 190.685146
##
  iter
         70 value 190.583435
## iter
## iter
         80 value 190.495775
## iter 90 value 190.453227
## iter 100 value 190.442504
## final value 190.442504
## stopped after 100 iterations
## # weights: 51
## initial value 384.254762
## iter 10 value 217.060691
## iter 20 value 199.491615
        30 value 184.558703
## iter
## iter 40 value 175.619577
        50 value 172.528023
## iter
## iter 60 value 166.968975
        70 value 162.891828
```

```
## iter 80 value 161.675523
## iter 90 value 161.421895
## iter 100 value 161.295214
## final value 161.295214
## stopped after 100 iterations
## # weights: 71
## initial value 375.689946
## iter 10 value 211.719715
## iter
        20 value 178.767829
## iter 30 value 149.569944
## iter 40 value 138.905757
        50 value 131.304901
## iter
## iter 60 value 126.930546
## iter 70 value 124.202555
## iter 80 value 123.671661
## iter 90 value 123.539189
## iter 100 value 123.411836
## final value 123.411836
## stopped after 100 iterations
## # weights: 91
## initial value 337.503143
## iter 10 value 206.867393
## iter
         20 value 180.125418
## iter 30 value 150.036340
         40 value 131.775378
## iter
         50 value 123.323292
## iter
  iter
         60 value 115.460257
##
## iter
         70 value 109.517189
## iter
        80 value 104.095276
## iter 90 value 97.765220
## iter 100 value 95.598611
## final value 95.598611
## stopped after 100 iterations
## # weights: 11
## initial value 416.662712
## iter 10 value 224.394884
         20 value 215.680564
## iter
## iter
         30 value 214.193389
## iter 40 value 213.835425
## final value 213.835422
## converged
## # weights: 31
## initial value 465.638753
## iter 10 value 210.779845
## iter
         20 value 199.810506
## iter
         30 value 194.083649
## iter 40 value 191.164833
## iter 50 value 188.005824
## iter 60 value 186.347169
## iter 70 value 184.527139
## iter 80 value 183.465556
## iter 90 value 182.601327
## iter 100 value 181.088397
## final value 181.088397
```

```
## stopped after 100 iterations
## # weights: 51
## initial value 320.507328
## iter
        10 value 212.632309
## iter
        20 value 196.833271
## iter 30 value 183.699208
## iter 40 value 176.855273
## iter 50 value 163.667176
## iter 60 value 152.114861
## iter 70 value 145.902803
## iter 80 value 145.638610
## iter 90 value 145.591351
## final value 145.590687
## converged
## # weights: 71
## initial value 323.252051
## iter 10 value 203.677735
## iter 20 value 178.627297
## iter 30 value 165.389709
## iter 40 value 148.742428
## iter 50 value 138.740881
## iter 60 value 132.817513
## iter 70 value 126.385659
## iter 80 value 121.604407
## iter 90 value 120.974240
## iter 100 value 120.965422
## final value 120.965422
## stopped after 100 iterations
## # weights: 91
## initial value 504.392053
## iter 10 value 202.337061
## iter
        20 value 173.537195
## iter
        30 value 139.883891
## iter
        40 value 120.438022
        50 value 107.709779
## iter
## iter
        60 value 104.250759
        70 value 99.654965
## iter
## iter
        80 value 90.162974
## iter 90 value 89.091427
## iter 100 value 88.676930
## final value 88.676930
## stopped after 100 iterations
## # weights: 11
## initial value 398.125354
## iter 10 value 225.386446
## iter 20 value 217.630747
## iter 30 value 217.409262
## final value 217.401165
## converged
## # weights: 31
## initial value 322.471360
## iter 10 value 223.223907
## iter 20 value 207.924292
        30 value 206.034459
```

```
## iter 40 value 205.789259
         50 value 205.683589
## iter
## iter 60 value 205.672643
## final value 205.672617
## converged
## # weights: 51
## initial value 448.122900
## iter 10 value 216.556061
## iter
        20 value 196.104550
## iter 30 value 189.957807
## iter
        40 value 188.197901
        50 value 186.837916
## iter
## iter 60 value 186.118220
## iter 70 value 185.861164
## iter 80 value 185.472176
## iter 90 value 185.394741
## iter 100 value 185.391234
## final value 185.391234
## stopped after 100 iterations
## # weights: 71
## initial value 639.136516
## iter 10 value 236.115095
## iter
         20 value 200.543991
## iter 30 value 189.342835
        40 value 184.979965
## iter
         50 value 179.265343
## iter
  iter
         60 value 175.896747
##
  iter
         70 value 175.233517
  iter
        80 value 175.118191
        90 value 175.086622
## iter 100 value 175.039723
## final value 175.039723
## stopped after 100 iterations
## # weights: 91
## initial value 340.788370
## iter
        10 value 218.817124
         20 value 195.733141
## iter
  iter
         30 value 181.767112
  iter
        40 value 176.483831
##
##
  iter
         50 value 173.663475
## iter
         60 value 172.531117
## iter 70 value 171.343228
## iter
        80 value 170.991611
## iter 90 value 170.802854
## iter 100 value 170.345538
## final value 170.345538
## stopped after 100 iterations
## # weights: 11
## initial value 450.276511
## iter 10 value 233.770620
## iter 20 value 225.112829
        30 value 219.055204
## iter
## iter 40 value 214.740628
        50 value 214.368587
```

```
## iter 60 value 214.367850
         60 value 214.367848
## iter
## iter 60 value 214.367848
## final value 214.367848
## converged
## # weights: 31
## initial value 374.854309
## iter 10 value 214.640590
## iter
        20 value 197.548518
## iter 30 value 195.329591
        40 value 194.664915
## iter
        50 value 193.769287
## iter
## iter 60 value 193.630984
## iter 70 value 193.519995
## iter 80 value 193.372522
## iter 90 value 193.339868
## iter 100 value 193.338016
## final value 193.338016
## stopped after 100 iterations
## # weights: 51
## initial value 542.555338
## iter 10 value 204.871175
## iter
         20 value 184.629345
## iter 30 value 177.400408
         40 value 175.540907
## iter
         50 value 175.074900
## iter
  iter
         60 value 174.685320
##
##
  iter
         70 value 172.224086
  iter
        80 value 170.390802
        90 value 169.803227
## iter 100 value 169.635158
## final value 169.635158
## stopped after 100 iterations
## # weights: 71
## initial value 343.728245
## iter
        10 value 206.953321
         20 value 179.824063
## iter
  iter
         30 value 163.513756
  iter
        40 value 157.760940
##
         50 value 155.323343
##
  iter
## iter
         60 value 154.596589
## iter 70 value 153.902632
## iter
        80 value 152.165083
## iter 90 value 151.862774
## iter 100 value 151.632040
## final value 151.632040
## stopped after 100 iterations
## # weights: 91
## initial value 326.884268
## iter 10 value 206.549449
## iter 20 value 167.691042
        30 value 144.202903
## iter
## iter 40 value 131.801848
        50 value 127.817562
```

```
## iter 60 value 125.102081
        70 value 123.864979
## iter
        80 value 117.575366
## iter
        90 value 114.201425
## iter
## iter 100 value 112.959341
## final value 112.959341
## stopped after 100 iterations
## # weights: 11
## initial value 348.094924
## iter 10 value 219.655807
## iter 20 value 214.550905
        30 value 213.879713
## iter
## iter 40 value 213.878235
## iter 40 value 213.878235
## iter 40 value 213.878235
## final value 213.878235
## converged
## # weights: 31
## initial value 324.728956
## iter 10 value 213.920297
        20 value 203.141689
## iter
## iter
         30 value 191.977588
## iter 40 value 188.895936
## iter 50 value 187.131336
        60 value 186.100749
## iter
        70 value 185.990727
## iter
## iter
        80 value 185.912024
## iter 90 value 185.473126
## iter 100 value 185.470936
## final value 185.470936
## stopped after 100 iterations
## # weights: 51
## initial value 346.091095
## iter 10 value 207.501561
         20 value 191.916280
## iter
  iter
         30 value 177.952430
         40 value 165.072822
## iter
  iter
         50 value 157.907088
         60 value 154.465849
##
  iter
         70 value 153.100443
## iter
## iter
         80 value 152.450991
## iter 90 value 152.241587
## iter 100 value 152.199523
## final value 152.199523
## stopped after 100 iterations
## # weights: 71
## initial value 317.947453
## iter 10 value 205.090442
## iter 20 value 179.686224
        30 value 158.635667
## iter
## iter 40 value 144.611851
        50 value 137.548389
## iter
## iter 60 value 134.002673
        70 value 130.790496
```

```
## iter 80 value 129.752044
## iter 90 value 128.985145
## iter 100 value 128.259294
## final value 128.259294
## stopped after 100 iterations
## # weights: 91
## initial value 359.952079
## iter 10 value 199.421102
## iter
         20 value 174.014759
## iter 30 value 153.403099
## iter
        40 value 133.839120
        50 value 127.898213
## iter
## iter 60 value 122.874933
## iter 70 value 121.208031
## iter 80 value 119.752475
## iter 90 value 118.360023
## iter 100 value 117.868073
## final value 117.868073
## stopped after 100 iterations
## # weights: 11
## initial value 341.220130
## iter 10 value 225.398390
## iter
        20 value 220.075968
## iter 30 value 214.752147
## iter 40 value 213.840365
## final value 213.839718
## converged
## # weights:
              31
## initial value 347.938855
## iter 10 value 213.774772
         20 value 201.499362
## iter
## iter
         30 value 196.010534
##
  iter
        40 value 193.235043
## iter
         50 value 188.263352
        60 value 183.038669
## iter
  iter
        70 value 182.864459
        80 value 182.797521
## iter
## iter 90 value 182.747469
## iter 100 value 182.638200
## final value 182.638200
## stopped after 100 iterations
## # weights: 51
## initial value 372.507606
## iter 10 value 206.023817
## iter
         20 value 182.349134
## iter
         30 value 173.922176
## iter
        40 value 169.614526
## iter 50 value 154.819009
## iter 60 value 149.013578
## iter 70 value 146.855461
## iter 80 value 145.739273
## iter 90 value 142.586589
## iter 100 value 142.264853
## final value 142.264853
```

```
## stopped after 100 iterations
## # weights: 71
## initial value 309.604013
## iter
        10 value 203.034518
## iter
        20 value 169.277933
## iter 30 value 142.772992
## iter 40 value 131.655585
## iter 50 value 123.294035
## iter 60 value 117.153555
## iter 70 value 114.698867
## iter 80 value 114.435551
## iter 90 value 114.288956
## iter 100 value 114.244759
## final value 114.244759
## stopped after 100 iterations
## # weights: 91
## initial value 356.180863
## iter 10 value 210.099245
## iter 20 value 181.002858
## iter 30 value 156.837306
## iter 40 value 138.041696
## iter 50 value 125.959566
## iter
        60 value 120.778227
## iter 70 value 115.709825
## iter 80 value 110.565766
## iter 90 value 108.270189
## iter 100 value 107.487067
## final value 107.487067
## stopped after 100 iterations
## # weights: 11
## initial value 313.137268
## iter 10 value 227.645202
## iter 20 value 218.887873
        30 value 218.823595
## iter
## iter 40 value 218.615417
## final value 218.615411
## converged
## # weights: 31
## initial value 329.737793
## iter 10 value 220.695268
## iter
        20 value 208.052520
        30 value 200.588487
## iter
## iter
        40 value 196.717376
        50 value 191.897358
## iter
        60 value 189.175963
## iter
## iter
        70 value 187.951929
## iter 80 value 184.970447
## iter 90 value 184.803162
## iter 100 value 184.271072
## final value 184.271072
## stopped after 100 iterations
## # weights: 51
## initial value 335.433872
## iter 10 value 212.317336
```

```
20 value 194.546682
## iter
## iter
         30 value 181.942769
        40 value 172.562371
## iter
## iter
         50 value 162.077092
## iter
         60 value 155.588218
## iter 70 value 155.347695
## final value 155.343370
## converged
## # weights: 71
## initial value 308.112554
## iter
        10 value 209.039072
         20 value 175.857288
## iter
## iter
         30 value 160.194381
## iter 40 value 143.776039
## iter
         50 value 138.882162
        60 value 128.616065
## iter
## iter 70 value 123.524486
## iter 80 value 122.963672
## iter 90 value 122.959574
## iter 100 value 122.958642
## final value 122.958642
## stopped after 100 iterations
## # weights: 91
## initial value 512.034912
## iter
         10 value 203.007423
         20 value 174.378176
## iter
  iter
         30 value 152.907047
##
##
  iter
        40 value 136.312987
##
  iter
         50 value 122.922991
  iter
         60 value 118.356469
##
        70 value 113.000378
##
  iter
## iter
         80 value 110.779686
## iter 90 value 107.449179
## iter 100 value 103.929033
## final value 103.929033
## stopped after 100 iterations
## # weights: 11
## initial value 411.039169
## iter 10 value 237.428063
## iter
        20 value 229.014857
## iter 30 value 222.061678
## final value 221.914845
## converged
## # weights: 31
## initial value 466.931109
## iter 10 value 240.301338
## iter 20 value 215.414090
## iter
         30 value 211.320477
## iter 40 value 208.829277
## iter 50 value 206.364001
## iter 60 value 206.108151
## final value 206.103918
## converged
## # weights: 51
```

```
## initial value 462.379104
        10 value 223.351245
## iter
         20 value 208.348162
## iter
## iter
         30 value 199.613166
## iter
         40 value 197.418024
## iter
         50 value 197.072216
## iter 60 value 197.017426
## iter 70 value 197.014190
## final value 197.013970
## converged
## # weights: 71
## initial value 334.342809
## iter 10 value 231.211050
## iter
        20 value 204.081450
## iter
         30 value 194.521551
## iter 40 value 190.716510
## iter 50 value 188.060271
## iter 60 value 187.369663
## iter 70 value 185.720818
## iter 80 value 184.897799
## iter 90 value 184.225000
## iter 100 value 183.935223
## final value 183.935223
## stopped after 100 iterations
## # weights: 91
## initial value 373.986696
## iter 10 value 215.824668
## iter
         20 value 198.821496
  iter
         30 value 183.312357
## iter
         40 value 175.319322
         50 value 172.857036
##
  iter
##
  iter
         60 value 171.895510
## iter
         70 value 171.507986
        80 value 171.413969
## iter
## iter 90 value 171.141182
## iter 100 value 170.942399
## final value 170.942399
## stopped after 100 iterations
## # weights:
              11
## initial value 359.180316
## iter 10 value 226.884116
## iter
        20 value 219.623984
## iter 30 value 219.135801
## final value 219.120420
## converged
## # weights: 31
## initial value 396.480482
## iter 10 value 217.721867
## iter 20 value 208.546854
         30 value 205.989697
## iter
## iter 40 value 200.443280
         50 value 199.083890
## iter
        60 value 198.910779
## iter
        70 value 198.908467
```

```
## final value 198.908425
## converged
## # weights: 51
## initial value 311.225885
## iter 10 value 210.237730
## iter 20 value 192.946952
## iter 30 value 189.847869
## iter 40 value 186.285145
## iter 50 value 184.583059
## iter 60 value 183.233567
## iter 70 value 180.657064
## iter 80 value 179.878816
## iter 90 value 179.824700
## iter 100 value 179.479954
## final value 179.479954
## stopped after 100 iterations
## # weights: 71
## initial value 570.831715
## iter 10 value 204.757328
## iter 20 value 175.177345
## iter 30 value 167.971833
## iter 40 value 163.860205
## iter 50 value 162.491121
## iter 60 value 161.716041
## iter 70 value 160.314324
## iter 80 value 159.840485
## iter 90 value 159.352107
## iter 100 value 157.309217
## final value 157.309217
## stopped after 100 iterations
## # weights: 91
## initial value 318.804558
## iter 10 value 207.372854
## iter
        20 value 181.650946
## iter 30 value 165.201035
## iter 40 value 157.638810
## iter 50 value 150.830042
## iter 60 value 149.230687
## iter 70 value 148.637777
## iter 80 value 148.295157
## iter 90 value 148.149584
## iter 100 value 146.971287
## final value 146.971287
## stopped after 100 iterations
## # weights: 11
## initial value 346.616403
## iter 10 value 231.057989
## iter 20 value 225.121998
## iter 30 value 219.957395
## iter 40 value 218.686035
## final value 218.654091
## converged
## # weights: 31
## initial value 368.973344
```

```
10 value 236.848227
## iter
## iter
         20 value 208.279674
         30 value 200.629899
## iter
## iter
         40 value 195.271268
## iter
         50 value 194.718728
## iter
        60 value 194.647284
        70 value 194.594451
## iter
## iter 80 value 194.556523
## iter 90 value 194.543615
## iter 100 value 194.539483
## final value 194.539483
## stopped after 100 iterations
## # weights: 51
## initial value 347.687019
## iter 10 value 211.967523
        20 value 189.401788
## iter
## iter 30 value 180.627016
        40 value 172.196340
## iter
## iter
        50 value 166.755314
## iter
        60 value 165.525440
        70 value 165.212486
## iter
## iter
        80 value 164.695202
## iter 90 value 164.526844
## iter 100 value 164.488575
## final value 164.488575
## stopped after 100 iterations
## # weights: 71
## initial value 409.314880
## iter
        10 value 221.230545
## iter
         20 value 205.031649
         30 value 175.279921
##
  iter
##
  iter
         40 value 160.330525
##
  iter
         50 value 152.621810
         60 value 149.148006
## iter
        70 value 146.683792
##
  iter
  iter
         80 value 141.583398
## iter 90 value 140.053434
## iter 100 value 138.517150
## final value 138.517150
## stopped after 100 iterations
## # weights: 91
## initial value 373.857490
## iter
        10 value 204.887416
         20 value 172.360597
## iter
## iter
         30 value 140.833994
## iter
        40 value 126.714929
## iter
         50 value 115.356414
## iter
         60 value 109.596669
## iter 70 value 102.239150
        80 value 99.825728
## iter
## iter 90 value 97.391618
## iter 100 value 96.476395
## final value 96.476395
## stopped after 100 iterations
```

```
## # weights: 11
## initial value 395.333083
## iter 10 value 229.709731
## iter
        20 value 222.022719
## iter
        30 value 219.061563
## iter 40 value 218.627633
## final value 218.620690
## converged
## # weights: 31
## initial value 328.966463
## iter 10 value 219.388408
        20 value 208.765336
## iter
## iter 30 value 200.884575
## iter 40 value 197.274087
## iter 50 value 194.123979
## iter 60 value 194.031097
## iter 70 value 193.973734
## iter 80 value 191.215738
## iter 90 value 188.977777
## iter 100 value 188.239745
## final value 188.239745
## stopped after 100 iterations
## # weights: 51
## initial value 308.268656
## iter
        10 value 208.736439
## iter
        20 value 195.907864
## iter
        30 value 180.215182
## iter 40 value 170.743451
  iter
        50 value 162.484717
## iter
        60 value 159.852940
## iter 70 value 159.302839
## iter
        80 value 159.050684
## iter 90 value 158.489286
## iter 100 value 158.132628
## final value 158.132628
## stopped after 100 iterations
## # weights: 71
## initial value 374.358524
## iter 10 value 210.276503
## iter
        20 value 180.892358
## iter
        30 value 157.027803
## iter 40 value 149.828076
## iter
        50 value 142.689137
## iter 60 value 138.898832
## iter 70 value 138.005872
## iter 80 value 137.461698
## iter 90 value 137.231709
## iter 100 value 137.060524
## final value 137.060524
## stopped after 100 iterations
## # weights: 91
## initial value 331.858413
## iter 10 value 212.431532
## iter 20 value 194.747488
```

```
30 value 158.293824
## iter
         40 value 141.078671
## iter
## iter
         50 value 125.493664
## iter
         60 value 118.649989
## iter
         70 value 111.800847
## iter 80 value 107.777000
## iter 90 value 106.074332
## iter 100 value 105.389429
## final value 105.389429
## stopped after 100 iterations
## # weights: 11
## initial value 346.314115
## iter 10 value 229.733849
## iter 20 value 227.108718
## iter 30 value 221.731964
## iter 40 value 218.491933
## iter 50 value 218.108192
## iter 60 value 218.086193
## final value 218.081708
## converged
## # weights:
## initial value 368.739934
## iter 10 value 229.675295
## iter 20 value 205.693454
         30 value 198.802757
## iter
        40 value 193.770998
## iter
  iter
         50 value 187.285932
##
## iter
        60 value 184.943583
##
  iter
         70 value 184.824751
## iter
         80 value 184.812988
         90 value 184.807103
## iter
## iter
        90 value 184.807101
## iter 90 value 184.807101
## final value 184.807101
## converged
## # weights: 51
## initial value 424.894845
## iter 10 value 223.815324
## iter
         20 value 196.009774
         30 value 183.279097
## iter
## iter
         40 value 172.995680
        50 value 164.944568
## iter
## iter
         60 value 156.563870
        70 value 155.238295
## iter
        80 value 152.586534
## iter
## iter 90 value 152.316100
## iter 100 value 152.298617
## final value 152.298617
## stopped after 100 iterations
## # weights: 71
## initial value 396.682250
## iter 10 value 207.015516
## iter
        20 value 177.355742
## iter
        30 value 163.258078
```

```
## iter 40 value 145.804243
## iter
        50 value 138.828552
        60 value 130.942929
## iter
## iter
        70 value 127.601941
## iter
        80 value 127.438654
## iter 90 value 127.430444
## final value 127.429533
## converged
## # weights: 91
## initial value 344.854263
## iter
        10 value 205.122727
        20 value 165.036472
## iter
## iter
        30 value 141.112059
## iter 40 value 119.684512
## iter
        50 value 110.998289
## iter 60 value 100.653466
## iter 70 value 91.529308
## iter 80 value 89.873508
## iter 90 value 89.783310
## iter 100 value 89.781235
## final value 89.781235
## stopped after 100 iterations
## # weights: 11
## initial value 382.891092
## iter 10 value 234.417979
## iter
        20 value 222.661602
## iter 30 value 222.356053
## final value 222.355954
## converged
## # weights: 31
## initial value 321.325376
## iter 10 value 222.660301
## iter 20 value 209.581461
        30 value 205.236798
## iter
## iter 40 value 203.627009
## iter 50 value 203.085733
## final value 203.078892
## converged
## # weights: 51
## initial value 365.194212
## iter 10 value 226.343661
## iter
        20 value 205.105569
## iter
        30 value 195.954081
## iter 40 value 192.912837
## iter
        50 value 189.603657
## iter 60 value 188.721921
## iter
        70 value 188.594868
## iter
        80 value 188.535562
## iter 90 value 188.529431
## final value 188.529371
## converged
## # weights: 71
## initial value 328.359553
## iter 10 value 214.092304
```

```
20 value 198.441145
## iter
         30 value 191.156336
## iter
         40 value 187.303821
## iter
## iter
         50 value 183.748101
## iter
         60 value 180.501590
## iter
        70 value 177.435431
        80 value 176.341760
## iter
## iter 90 value 176.110750
## iter 100 value 176.075685
## final value 176.075685
## stopped after 100 iterations
## # weights: 91
## initial value 374.766508
## iter 10 value 216.378901
## iter
         20 value 190.181229
         30 value 177.045772
## iter
## iter 40 value 171.243731
         50 value 167.661121
## iter
## iter 60 value 161.857788
## iter 70 value 160.847611
## iter 80 value 160.467197
## iter 90 value 160.328246
## iter 100 value 160.293316
## final value 160.293316
## stopped after 100 iterations
## # weights: 11
## initial value 344.283069
## iter 10 value 231.184177
  iter
         20 value 228.281606
  iter
         30 value 221.398347
##
        40 value 218.756280
  iter
  iter 50 value 218.729267
##
## final value 218.727303
## converged
## # weights:
              31
## initial value 368.921870
        10 value 213.306220
## iter
  iter
         20 value 201.676437
  iter
         30 value 196.859510
##
         40 value 196.134914
##
  iter
## iter
         50 value 195.620576
## iter 60 value 195.599459
## iter
        70 value 195.596154
## iter 80 value 195.595056
## iter 90 value 195.594767
## final value 195.594712
## converged
## # weights: 51
## initial value 353.772530
## iter 10 value 210.420880
## iter 20 value 193.972728
         30 value 177.536271
## iter
## iter 40 value 170.187523
         50 value 168.412890
```

```
## iter 60 value 161.368837
         70 value 159.507609
## iter
        80 value 159.334345
## iter
        90 value 159.296432
## iter
## iter 100 value 159.294683
## final value 159.294683
## stopped after 100 iterations
## # weights: 71
## initial value 340.397621
## iter 10 value 202.642372
         20 value 175.676504
## iter
         30 value 164.266866
## iter
## iter
        40 value 159.877619
## iter
         50 value 158.535846
## iter 60 value 156.880752
## iter 70 value 155.818853
## iter 80 value 155.459362
## iter 90 value 155.394736
## iter 100 value 155.348006
## final value 155.348006
## stopped after 100 iterations
## # weights: 91
## initial value 340.337217
## iter 10 value 208.012103
         20 value 177.255594
## iter
         30 value 151.755291
## iter
  iter
         40 value 143.706598
##
  iter
         50 value 133.953963
##
  iter
         60 value 129.928919
## iter
         70 value 128.939543
        80 value 128.145680
## iter
## iter
        90 value 127.541931
## iter 100 value 127.254058
## final value 127.254058
## stopped after 100 iterations
## # weights: 11
## initial value 382.238877
## iter 10 value 230.172951
## iter
         20 value 226.370592
         30 value 220.078088
##
  iter
## iter
         40 value 218.286457
         50 value 218.160419
## iter
## iter 60 value 218.159222
## final value 218.158865
## converged
## # weights: 31
## initial value 332.739721
## iter 10 value 208.790771
## iter 20 value 198.216241
         30 value 195.065909
## iter
## iter 40 value 192.128684
         50 value 189.863974
## iter
        60 value 189.506683
## iter
        70 value 189.075379
```

```
## iter 80 value 189.019538
## iter 90 value 189.006664
## iter 100 value 188.993046
## final value 188.993046
## stopped after 100 iterations
## # weights: 51
## initial value 333.138442
## iter 10 value 217.300018
## iter
        20 value 201.182922
## iter 30 value 190.013020
## iter 40 value 175.353763
        50 value 169.225859
## iter
## iter 60 value 164.687704
## iter 70 value 162.788020
## iter 80 value 162.105725
## iter 90 value 162.060117
## iter 100 value 162.001927
## final value 162.001927
## stopped after 100 iterations
## # weights: 71
## initial value 301.185036
## iter 10 value 206.387963
## iter
        20 value 171.872514
## iter 30 value 153.807328
         40 value 144.621542
## iter
         50 value 137.339605
## iter
  iter
         60 value 134.491416
##
  iter
         70 value 133.934303
  iter
        80 value 133.696178
## iter 90 value 133.505668
## iter 100 value 133.477326
## final value 133.477326
## stopped after 100 iterations
## # weights: 91
## initial value 390.051977
## iter 10 value 210.083946
         20 value 170.503357
## iter
  iter
         30 value 151.548570
        40 value 131.150685
##
  iter
##
  iter
         50 value 121.154005
## iter
         60 value 110.942283
## iter 70 value 104.722858
## iter
        80 value 102.389947
## iter 90 value 101.803822
## iter 100 value 101.365304
## final value 101.365304
## stopped after 100 iterations
## # weights: 11
## initial value 374.897391
## iter 10 value 230.529567
## iter 20 value 225.271943
## iter
        30 value 219.626222
## iter 40 value 218.144958
        50 value 218.090286
```

```
## final value 218.090277
## converged
## # weights: 31
## initial value 396.311186
## iter 10 value 211.505575
## iter 20 value 199.226351
## iter 30 value 186.251128
## iter 40 value 183.361297
## iter 50 value 179.385697
## iter 60 value 178.617963
## iter 70 value 178.553467
## iter 80 value 178.409072
## iter 90 value 177.931320
## iter 100 value 176.907151
## final value 176.907151
## stopped after 100 iterations
## # weights: 51
## initial value 467.397545
## iter 10 value 205.734112
## iter 20 value 183.161555
## iter 30 value 175.250496
## iter 40 value 164.635627
## iter 50 value 157.047825
## iter 60 value 150.673716
## iter 70 value 150.161294
## iter 80 value 150.088982
## iter 90 value 150.017983
## iter 100 value 149.987338
## final value 149.987338
## stopped after 100 iterations
## # weights: 71
## initial value 354.371362
## iter 10 value 202.966098
## iter
        20 value 164.452256
## iter 30 value 145.433553
  iter 40 value 134.558008
        50 value 130.449714
## iter
  iter 60 value 124.777732
## iter 70 value 122.711204
## iter 80 value 122.415838
## iter 90 value 122.365666
## iter 100 value 122.301159
## final value 122.301159
## stopped after 100 iterations
## # weights: 91
## initial value 357.568074
## iter 10 value 200.664244
## iter 20 value 164.949177
## iter 30 value 140.567999
## iter 40 value 120.552219
## iter 50 value 113.358850
## iter 60 value 108.107616
        70 value 105.661455
## iter
## iter 80 value 105.292702
```

```
## iter 90 value 105.144521
## iter 100 value 105.012017
## final value 105.012017
## stopped after 100 iterations
## # weights: 11
## initial value 333.367986
## iter 10 value 225.495896
## iter 20 value 222.704959
## iter 30 value 222.633266
## iter 40 value 222.625338
## final value 222.625315
## converged
## # weights: 31
## initial value 377.235533
## iter 10 value 213.739936
## iter 20 value 207.040534
## iter 30 value 205.590923
## iter 40 value 203.792661
## iter 50 value 201.834314
## iter 60 value 201.068413
## iter 70 value 200.169012
## iter 80 value 199.403575
## iter 90 value 197.897389
## iter 100 value 195.486357
## final value 195.486357
## stopped after 100 iterations
## # weights: 51
## initial value 339.381994
## iter 10 value 223.590919
## iter
        20 value 199.986573
        30 value 181.582138
## iter
## iter
        40 value 170.971445
## iter
        50 value 156.273952
        60 value 149.253099
## iter
## iter 70 value 149.031664
## iter 80 value 149.027715
## final value 149.027696
## converged
## # weights: 71
## initial value 318.903902
## iter 10 value 218.298321
## iter
        20 value 197.920779
## iter
        30 value 178.864186
## iter 40 value 170.652830
## iter 50 value 158.850662
## iter 60 value 142.864983
## iter 70 value 133.124215
## iter 80 value 128.261074
## iter 90 value 124.769138
## iter 100 value 124.360137
## final value 124.360137
## stopped after 100 iterations
## # weights: 91
## initial value 325.323459
```

```
10 value 209.727187
## iter
## iter
         20 value 173.506837
## iter
         30 value 152.174111
## iter
         40 value 137.589598
## iter
         50 value 121.261084
## iter
        60 value 112.542182
        70 value 109.475272
## iter
## iter 80 value 109.269128
## iter 90 value 109.267502
## final value 109.267500
## converged
## # weights: 11
## initial value 310.680047
## iter 10 value 231.757752
## iter 20 value 226.824588
## iter 30 value 226.686339
## final value 226.685122
## converged
## # weights: 31
## initial value 338.056028
## iter 10 value 231.344581
## iter 20 value 215.364074
## iter
         30 value 210.667204
## iter 40 value 210.054955
## iter 50 value 210.034240
## final value 210.033687
## converged
## # weights:
              51
## initial value 342.159433
## iter
        10 value 216.703891
         20 value 207.451451
## iter
## iter
         30 value 204.457874
## iter
         40 value 203.625866
         50 value 199.465005
## iter
        60 value 197.685814
## iter
## iter
        70 value 197.554425
## iter 80 value 197.525920
## final value 197.525614
## converged
## # weights: 71
## initial value 323.652105
## iter 10 value 218.254635
## iter
         20 value 202.721586
         30 value 197.322280
## iter
        40 value 192.091847
## iter
         50 value 189.540372
## iter
## iter
        60 value 188.404480
## iter
        70 value 187.820394
## iter 80 value 187.622464
## iter 90 value 187.466377
## iter 100 value 187.379955
## final value 187.379955
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 430.060620
## iter
         10 value 229.165422
         20 value 203.887476
## iter
## iter
         30 value 189.680257
## iter
         40 value 184.882890
## iter
         50 value 182.733405
        60 value 181.516778
## iter
## iter
        70 value 179.267952
        80 value 177.858095
## iter
## iter 90 value 177.242483
## iter 100 value 176.685666
## final value 176.685666
## stopped after 100 iterations
## # weights: 11
## initial value 362.496759
## iter 10 value 225.158863
## iter 20 value 223.375764
## iter 30 value 223.189280
## final value 223.130674
## converged
## # weights:
## initial value 391.708563
## iter 10 value 218.766134
## iter
        20 value 207.324994
         30 value 203.517241
## iter
         40 value 198.887774
## iter
  iter
         50 value 197.857917
##
##
  iter
        60 value 197.737499
##
  iter
         70 value 197.725837
## iter
         80 value 197.725042
## final value 197.724651
## converged
## # weights: 51
## initial value 367.897091
## iter 10 value 220.560451
## iter
         20 value 188.562942
         30 value 180.286543
## iter
  iter
         40 value 178.364069
         50 value 177.687732
##
  iter
         60 value 177.497370
##
  iter
## iter
         70 value 177.343352
## iter 80 value 177.272575
## iter 90 value 177.265350
## final value 177.265162
## converged
## # weights:
              71
## initial value 374.688726
## iter 10 value 217.993862
## iter 20 value 185.103532
         30 value 163.439784
## iter
## iter 40 value 157.718636
         50 value 155.966366
## iter
        60 value 154.356167
## iter
        70 value 153.673821
```

```
## iter 80 value 153.520233
## iter 90 value 153.448223
## iter 100 value 153.426719
## final value 153.426719
## stopped after 100 iterations
## # weights: 91
## initial value 404.609860
## iter 10 value 211.120570
## iter
         20 value 178.576323
## iter 30 value 161.880729
## iter
        40 value 147.371666
        50 value 142.120732
## iter
## iter 60 value 134.657301
## iter 70 value 128.258157
## iter 80 value 126.733093
## iter 90 value 125.080292
## iter 100 value 122.870417
## final value 122.870417
## stopped after 100 iterations
## # weights: 11
## initial value 343.196470
## iter 10 value 233.934717
## iter
        20 value 232.657559
## iter 30 value 231.752491
         40 value 231.605892
## iter
        40 value 231.605891
## iter
## iter 40 value 231.605891
## final value 231.605891
## converged
## # weights: 31
## initial value 412.142471
## iter 10 value 226.550938
## iter
         20 value 205.053181
## iter
         30 value 197.667004
        40 value 193.298501
## iter
  iter
         50 value 191.538517
         60 value 190.678527
## iter
  iter
         70 value 190.407334
         80 value 190.322284
## iter
## iter 90 value 190.052071
## final value 190.040037
## converged
## # weights: 51
## initial value 352.218857
## iter 10 value 211.284725
## iter
         20 value 194.139660
## iter
         30 value 176.785599
## iter 40 value 173.060070
## iter 50 value 169.207223
## iter 60 value 167.282039
## iter 70 value 163.768483
        80 value 162.689616
## iter
## iter 90 value 162.247266
## iter 100 value 162.190416
```

```
## final value 162.190416
## stopped after 100 iterations
## # weights: 71
## initial value 300.450294
## iter 10 value 206.050873
        20 value 175.848338
## iter
## iter
        30 value 160.133402
## iter 40 value 156.517776
        50 value 152.107706
## iter
## iter 60 value 149.583521
## iter 70 value 149.026636
## iter 80 value 148.968607
## iter 90 value 148.901160
## iter 100 value 148.816724
## final value 148.816724
## stopped after 100 iterations
## # weights: 91
## initial value 360.256573
## iter 10 value 213.201008
## iter
        20 value 181.533628
        30 value 153.852842
## iter
## iter 40 value 138.907145
## iter
        50 value 130.351085
## iter 60 value 124.361824
## iter 70 value 121.184197
## iter 80 value 119.892094
## iter 90 value 118.996295
## iter 100 value 118.299000
## final value 118.299000
## stopped after 100 iterations
## # weights: 11
## initial value 361.963805
## iter 10 value 234.887588
## iter
        20 value 233.044847
        30 value 228.157142
## iter
## iter
        40 value 222.930754
## iter 50 value 222.635209
## final value 222.629448
## converged
## # weights: 31
## initial value 321.758720
## iter 10 value 218.837049
## iter
        20 value 198.881399
        30 value 195.708343
## iter
        40 value 193.030357
## iter
## iter
        50 value 192.333405
## iter
        60 value 191.770311
## iter 70 value 191.214992
## iter 80 value 191.090041
## iter 90 value 191.065501
## iter 100 value 191.022779
## final value 191.022779
## stopped after 100 iterations
## # weights: 51
```

```
## initial value 306.963709
        10 value 219.199494
## iter
         20 value 189.040196
## iter
## iter
         30 value 172.459332
## iter
         40 value 164.932782
         50 value 158.028477
## iter
## iter 60 value 154.010660
## iter 70 value 153.866157
## iter 80 value 153.393895
## iter 90 value 153.158211
## iter 100 value 153.040163
## final value 153.040163
## stopped after 100 iterations
## # weights: 71
## initial value 396.708163
## iter 10 value 212.169175
## iter 20 value 178.457658
         30 value 149.072241
## iter
## iter 40 value 135.790865
## iter 50 value 130.163455
## iter 60 value 128.908849
## iter 70 value 128.644509
## iter 80 value 128.358625
## iter 90 value 127.681575
## iter 100 value 127.480613
## final value 127.480613
## stopped after 100 iterations
## # weights: 91
## initial value 407.981099
## iter
        10 value 210.299480
## iter
         20 value 177.615613
## iter
         30 value 143.410714
## iter
        40 value 121.674991
         50 value 110.594552
## iter
## iter 60 value 102.156765
## iter
        70 value 98.178094
        80 value 95.502542
## iter
## iter 90 value 94.183976
## iter 100 value 93.471350
## final value 93.471350
## stopped after 100 iterations
## # weights: 11
## initial value 389.973489
## iter 10 value 231.351516
## iter
        20 value 228.424970
## iter
        30 value 220.202771
## iter 40 value 216.320530
## final value 216.228194
## converged
## # weights: 31
## initial value 337.338523
## iter 10 value 216.102100
## iter
        20 value 206.083868
        30 value 195.613664
```

```
40 value 181.991696
## iter
         50 value 176.988497
## iter
## iter
         60 value 173.821393
## iter
         70 value 173.014972
## iter
         80 value 172.185515
## iter 90 value 171.992071
## iter 100 value 166.880110
## final value 166.880110
## stopped after 100 iterations
## # weights: 51
## initial value 332.507144
## iter 10 value 206.468167
## iter
         20 value 185.770069
## iter
         30 value 166.683877
## iter 40 value 154.910465
## iter 50 value 149.576967
## iter 60 value 147.327339
## iter 70 value 142.873243
## iter 80 value 136.216684
## iter 90 value 135.940559
## iter 100 value 135.925021
## final value 135.925021
## stopped after 100 iterations
## # weights: 71
## initial value 317.441265
## iter 10 value 202.926318
  iter
         20 value 178.486888
  iter
         30 value 155.571415
  iter
         40 value 136.407552
  iter
         50 value 122.503123
##
        60 value 114.118587
##
  iter
##
  iter
         70 value 108.525812
## iter
        80 value 107.327726
## iter 90 value 107.107937
## iter 100 value 106.931134
## final value 106.931134
## stopped after 100 iterations
## # weights: 91
## initial value 320.940327
## iter 10 value 203.314311
## iter
         20 value 173.814753
         30 value 146.301364
## iter
## iter
         40 value 125.406439
         50 value 106.229317
## iter
## iter
         60 value 97.679184
## iter
         70 value 84.309554
## iter
        80 value 78.263225
## iter 90 value 77.157488
## iter 100 value 76.244106
## final value 76.244106
## stopped after 100 iterations
## # weights: 11
## initial value 325.232423
## iter 10 value 224.457023
```

```
## iter 20 value 220.465322
## iter
        30 value 220.384134
## final value 220.383925
## converged
## # weights: 31
## initial value 340.036141
## iter 10 value 218.144106
## iter 20 value 208.286657
## iter
         30 value 205.805197
## iter 40 value 204.226715
        50 value 199.697188
## iter
## iter 60 value 199.140547
## iter 70 value 199.098398
## final value 199.098276
## converged
## # weights: 51
## initial value 343.767338
## iter 10 value 215.743522
## iter 20 value 197.903208
## iter
        30 value 189.755630
## iter 40 value 186.315327
## iter
         50 value 185.250011
## iter
         60 value 183.187840
## iter 70 value 182.818160
        80 value 182.784636
## iter
## iter 90 value 182.779578
## iter 100 value 182.716514
## final value 182.716514
## stopped after 100 iterations
## # weights: 71
## initial value 324.499070
## iter 10 value 213.371763
## iter
         20 value 191.619413
         30 value 180.054741
## iter
        40 value 174.860602
##
  iter
##
  iter
         50 value 173.250548
         60 value 172.340394
##
  iter
  iter
         70 value 171.748499
         80 value 171.683450
## iter
        90 value 171.638855
## iter
## iter 100 value 171.635328
## final value 171.635328
## stopped after 100 iterations
## # weights: 91
## initial value 409.828717
## iter 10 value 212.378279
## iter
        20 value 187.736949
## iter
         30 value 177.680023
## iter 40 value 172.530683
## iter 50 value 169.588013
## iter 60 value 166.506128
        70 value 164.726704
## iter
        80 value 163.135249
## iter
        90 value 162.870153
```

```
## iter 100 value 162.431706
## final value 162.431706
## stopped after 100 iterations
## # weights: 11
## initial value 380.092293
## iter 10 value 241.940966
## iter 20 value 216.828509
## iter 30 value 216.718861
## final value 216.717344
## converged
## # weights: 31
## initial value 423.114977
## iter 10 value 211.429492
## iter 20 value 205.622151
## iter 30 value 202.641517
## iter 40 value 197.752054
## iter 50 value 195.821970
## iter 60 value 195.701571
## iter 70 value 195.672370
## iter 80 value 195.654407
## iter 90 value 195.650733
## final value 195.650662
## converged
## # weights: 51
## initial value 322.555679
## iter 10 value 207.659987
## iter
        20 value 182.219847
## iter
        30 value 167.018836
  iter
        40 value 161.128267
## iter
        50 value 157.710371
## iter 60 value 156.246313
## iter 70 value 154.832807
## iter 80 value 154.451282
## iter 90 value 154.401607
## iter 100 value 154.398767
## final value 154.398767
## stopped after 100 iterations
## # weights: 71
## initial value 316.516122
## iter 10 value 199.198120
## iter
        20 value 176.542595
        30 value 170.552600
## iter
## iter
        40 value 166.090912
## iter 50 value 161.293556
        60 value 155.330209
## iter
## iter
        70 value 152.695446
## iter 80 value 151.381921
## iter 90 value 151.182687
## iter 100 value 151.027689
## final value 151.027689
## stopped after 100 iterations
## # weights: 91
## initial value 347.713267
## iter 10 value 206.233913
```

```
20 value 179.744349
## iter
## iter
         30 value 158.033458
## iter
        40 value 146.476768
## iter
         50 value 138.461998
## iter
         60 value 136.370574
## iter
        70 value 133.581179
        80 value 129.335865
## iter
## iter 90 value 127.787260
## iter 100 value 126.657137
## final value 126.657137
## stopped after 100 iterations
## # weights: 11
## initial value 363.898326
## iter 10 value 217.121551
## iter 20 value 216.291600
## final value 216.266516
## converged
## # weights: 31
## initial value 364.487228
## iter 10 value 224.406979
         20 value 206.957025
## iter
## iter
         30 value 196.256942
## iter
         40 value 194.739197
        50 value 194.109756
##
  iter
         60 value 192.808834
## iter
         70 value 192.761245
## iter
  iter
         80 value 192.157191
##
## iter 90 value 192.051811
## iter 100 value 191.970601
## final value 191.970601
## stopped after 100 iterations
## # weights: 51
## initial value 322.903093
        10 value 214.014351
## iter
         20 value 194.031542
## iter
  iter
         30 value 182.441066
         40 value 175.778855
## iter
  iter
         50 value 173.618801
         60 value 171.497686
##
  iter
         70 value 169.722929
##
  iter
## iter
         80 value 169.089915
## iter 90 value 169.029671
## iter 100 value 168.939051
## final value 168.939051
## stopped after 100 iterations
## # weights: 71
## initial value 392.522610
## iter 10 value 210.924111
## iter 20 value 178.752274
         30 value 160.223054
## iter
## iter 40 value 146.152680
         50 value 137.514080
## iter
        60 value 133.446125
## iter
        70 value 131.958252
```

```
## iter 80 value 130.326197
## iter 90 value 130.110165
## iter 100 value 129.759709
## final value 129.759709
## stopped after 100 iterations
## # weights: 91
## initial value 330.136263
## iter 10 value 207.697779
## iter
         20 value 171.456753
## iter 30 value 140.974165
## iter
        40 value 123.833907
        50 value 112.351807
## iter
## iter 60 value 109.997204
## iter 70 value 105.037040
## iter 80 value 103.425743
## iter 90 value 102.261398
## iter 100 value 101.760941
## final value 101.760941
## stopped after 100 iterations
## # weights: 11
## initial value 317.362330
## iter 10 value 235.427551
## iter
        20 value 224.961775
## iter 30 value 218.738652
        40 value 216.339879
## iter
## iter 50 value 216.232166
## final value 216.231994
## converged
## # weights: 31
## initial value 318.026530
## iter 10 value 220.687576
## iter
         20 value 210.510564
## iter
         30 value 204.692768
## iter
         40 value 197.898868
         50 value 190.530778
##
  iter
  iter
         60 value 188.689200
         70 value 187.948856
## iter
  iter
         80 value 187.440818
        90 value 187.321331
## iter 100 value 187.234973
## final value 187.234973
## stopped after 100 iterations
## # weights: 51
## initial value 306.727542
## iter 10 value 210.706317
## iter
         20 value 184.037555
## iter
         30 value 172.061219
## iter 40 value 161.908838
## iter 50 value 154.670449
## iter 60 value 151.379022
## iter 70 value 148.836009
        80 value 148.399153
## iter
## iter 90 value 148.348230
## iter 100 value 148.327633
```

```
## final value 148.327633
## stopped after 100 iterations
## # weights: 71
## initial value 309.675773
## iter 10 value 200.926821
## iter
        20 value 162.049462
## iter
        30 value 138.175292
## iter 40 value 130.007104
        50 value 125.709476
## iter
## iter 60 value 119.450642
## iter 70 value 117.476303
## iter 80 value 116.455384
## iter 90 value 115.919029
## iter 100 value 115.691287
## final value 115.691287
## stopped after 100 iterations
## # weights: 91
## initial value 348.364420
## iter 10 value 200.188995
## iter
        20 value 157.926836
        30 value 130.729567
## iter
## iter 40 value 116.603230
## iter
        50 value 109.654422
## iter 60 value 107.300563
## iter 70 value 106.097803
## iter 80 value 105.466673
## iter 90 value 105.129086
## iter 100 value 104.678222
## final value 104.678222
## stopped after 100 iterations
## # weights: 11
## initial value 313.279305
## iter 10 value 217.199906
        20 value 214.234406
## iter
## iter 30 value 214.106000
## final value 214.097015
## converged
## # weights: 31
## initial value 357.530022
## iter 10 value 208.768208
## iter
        20 value 199.241222
        30 value 193.030723
## iter
## iter
        40 value 186.887702
## iter
        50 value 180.833165
## iter
        60 value 178.766740
## iter
        70 value 178.246003
## iter 80 value 176.939477
## iter 90 value 174.917900
## iter 100 value 174.862598
## final value 174.862598
## stopped after 100 iterations
## # weights: 51
## initial value 416.680581
## iter 10 value 211.583850
```

```
20 value 182.585408
## iter
         30 value 173.301515
## iter
## iter
         40 value 169.809286
## iter
         50 value 164.515384
## iter
         60 value 160.111360
## iter
        70 value 156.898825
        80 value 154.335599
## iter
## iter 90 value 153.531027
## iter 100 value 151.249058
## final value 151.249058
## stopped after 100 iterations
## # weights: 71
## initial value 326.369990
## iter 10 value 201.018819
## iter
        20 value 170.524900
         30 value 154.690598
## iter
## iter 40 value 142.903611
        50 value 138.651972
## iter
## iter 60 value 122.705923
## iter 70 value 115.401666
## iter 80 value 115.098467
## iter 90 value 115.092171
## final value 115.092161
## converged
## # weights: 91
## initial value 332.307022
## iter 10 value 202.159121
## iter
         20 value 178.684116
  iter
         30 value 128.774530
## iter
         40 value 90.897477
         50 value 77.367975
##
  iter
##
  iter
         60 value 74.205772
## iter
         70 value 65.861899
         80 value 60.370117
## iter
## iter 90 value 58.240457
## iter 100 value 57.215289
## final value 57.215289
## stopped after 100 iterations
## # weights:
              11
## initial value 310.886445
## iter 10 value 229.304797
## iter
        20 value 218.402246
## iter 30 value 217.791974
## final value 217.785675
## converged
## # weights:
             31
## initial value 322.904291
## iter 10 value 221.777204
## iter 20 value 206.449806
         30 value 203.515876
## iter
## iter 40 value 202.370397
         50 value 200.575794
## iter
        60 value 200.431820
## iter
        70 value 200.427954
```

```
## iter 70 value 200.427954
## iter 70 value 200.427954
## final value 200.427954
## converged
## # weights: 51
## initial value 346.862666
## iter 10 value 213.253961
## iter 20 value 197.889383
## iter
         30 value 194.680321
## iter 40 value 194.129864
        50 value 194.023585
## iter
        60 value 194.010006
## iter
## iter 70 value 194.007890
## iter
        80 value 193.982224
## iter 90 value 193.201426
## iter 100 value 190.870912
## final value 190.870912
## stopped after 100 iterations
## # weights: 71
## initial value 395.917130
## iter 10 value 207.266694
## iter
        20 value 194.455437
## iter
         30 value 182.033614
## iter 40 value 176.887303
         50 value 172.266193
## iter
        60 value 170.671412
## iter
  iter
        70 value 170.003043
##
## iter
        80 value 169.027639
## iter
        90 value 168.636051
## iter 100 value 168.601335
## final value 168.601335
## stopped after 100 iterations
## # weights: 91
## initial value 335.332645
## iter 10 value 210.576658
## iter
         20 value 189.815050
         30 value 181.438349
## iter
  iter
         40 value 175.159777
         50 value 169.958185
##
  iter
         60 value 166.279716
## iter
## iter
        70 value 161.919575
## iter 80 value 158.857169
## iter 90 value 157.336506
## iter 100 value 155.731853
## final value 155.731853
## stopped after 100 iterations
## # weights: 11
## initial value 373.680794
## iter 10 value 220.109073
## iter 20 value 217.915215
## iter 30 value 215.635075
## iter 40 value 214.662906
## final value 214.538970
## converged
```

```
## # weights: 31
## initial value 349.580537
## iter 10 value 206.723403
## iter
         20 value 198.142504
## iter
         30 value 196.044557
## iter 40 value 192.197065
## iter 50 value 191.808894
## iter 60 value 191.786118
## iter 70 value 191.785614
## iter 80 value 191.785374
## final value 191.785370
## converged
## # weights: 51
## initial value 314.754558
## iter 10 value 205.206864
## iter 20 value 186.080844
## iter 30 value 172.311901
## iter 40 value 166.522468
## iter 50 value 166.007380
## iter 60 value 165.858202
## iter 70 value 165.800169
        80 value 165.797280
## iter
## iter 90 value 165.796875
## final value 165.796831
## converged
## # weights: 71
## initial value 305.796906
## iter 10 value 205.723655
## iter
         20 value 176.361811
## iter
         30 value 161.811254
  iter
        40 value 155.250700
##
##
  iter
         50 value 152.293019
## iter
        60 value 148.977023
        70 value 148.150622
## iter
## iter 80 value 147.714825
        90 value 147.415032
## iter
## iter 100 value 147.254231
## final value 147.254231
## stopped after 100 iterations
## # weights: 91
## initial value 351.049640
## iter 10 value 203.462727
## iter
         20 value 168.902785
         30 value 151.377182
## iter
## iter 40 value 145.227160
## iter
        50 value 143.182576
## iter 60 value 141.073964
## iter 70 value 139.113360
## iter 80 value 138.018699
## iter 90 value 137.174940
## iter 100 value 136.601481
## final value 136.601481
## stopped after 100 iterations
## # weights: 11
```

```
## initial value 357.800177
        10 value 220.771635
## iter
         20 value 217.599508
## iter
## iter
         30 value 217.326682
## iter
         40 value 215.054517
## iter
        50 value 214.169910
## iter 60 value 214.142858
## final value 214.142766
## converged
## # weights: 31
## initial value 322.883805
## iter 10 value 211.567435
## iter
         20 value 193.295512
## iter
         30 value 191.089563
## iter 40 value 189.901443
## iter 50 value 187.717156
## iter 60 value 186.840089
## iter 70 value 186.624395
## iter 80 value 186.186953
## iter 90 value 184.532179
## iter 100 value 184.285676
## final value 184.285676
## stopped after 100 iterations
## # weights: 51
## initial value 342.387373
## iter 10 value 212.269844
  iter
         20 value 187.842401
  iter
         30 value 169.509555
  iter
         40 value 163.096785
## iter
         50 value 157.990166
        60 value 154.118852
##
  iter
## iter
        70 value 152.807448
## iter 80 value 151.902029
## iter 90 value 151.629190
## iter 100 value 151.256739
## final value 151.256739
## stopped after 100 iterations
## # weights: 71
## initial value 408.879088
## iter 10 value 201.662490
## iter
         20 value 172.168168
         30 value 144.402213
## iter
## iter
         40 value 133.088430
         50 value 125.788246
## iter
         60 value 123.599838
## iter
## iter
         70 value 120.555387
## iter
        80 value 119.294430
## iter 90 value 118.438518
## iter 100 value 116.045923
## final value 116.045923
## stopped after 100 iterations
## # weights: 91
## initial value 449.805427
## iter 10 value 191.144430
```

```
20 value 159.092004
## iter
         30 value 127.017528
## iter
## iter
        40 value 113.353825
## iter
         50 value 109.220658
## iter
         60 value 105.744585
## iter 70 value 104.675659
## iter 80 value 103.477896
## iter 90 value 103.121677
## iter 100 value 102.659233
## final value 102.659233
## stopped after 100 iterations
## # weights: 11
## initial value 375.949098
## iter 10 value 223.116431
## iter 20 value 214.542559
## iter
        30 value 214.157933
## iter 40 value 214.103701
## iter 40 value 214.103700
## iter 40 value 214.103700
## final value 214.103700
## converged
## # weights: 31
## initial value 323.429859
## iter 10 value 209.070691
         20 value 197.095341
## iter
         30 value 187.515610
## iter
  iter
         40 value 183.020497
##
  iter
         50 value 178.011148
##
  iter
         60 value 177.661505
## iter
         70 value 177.600914
## iter 80 value 177.371772
## iter
        90 value 176.295534
## iter 100 value 176.267274
## final value 176.267274
## stopped after 100 iterations
## # weights: 51
## initial value 364.524072
## iter 10 value 209.574725
## iter
         20 value 191.223434
         30 value 184.296895
## iter
## iter
         40 value 178.019713
        50 value 166.444754
## iter
## iter
         60 value 162.888387
        70 value 162.356718
## iter
         80 value 161.932449
## iter
## iter 90 value 161.643065
## iter 100 value 161.421405
## final value 161.421405
## stopped after 100 iterations
## # weights: 71
## initial value 339.740004
## iter 10 value 203.241324
## iter
        20 value 168.942804
        30 value 138.704658
```

```
40 value 126.229537
## iter
## iter
         50 value 118.841453
## iter
         60 value 117.421535
## iter
         70 value 117.097175
## iter
         80 value 116.922146
## iter 90 value 116.834959
## iter 100 value 116.742757
## final value 116.742757
## stopped after 100 iterations
## # weights: 91
## initial value 305.010300
## iter 10 value 194.979312
## iter
         20 value 166.001568
## iter
         30 value 128.479188
## iter
        40 value 107.780692
## iter 50 value 97.179972
## iter 60 value 92.005931
## iter 70 value 89.611223
## iter 80 value 88.616228
## iter 90 value 86.046198
## iter 100 value 85.631583
## final value 85.631583
## stopped after 100 iterations
## # weights: 11
## initial value 322.707106
## iter 10 value 224.885737
  iter
         20 value 221.138122
  iter
         30 value 220.289902
  iter
         40 value 220.289567
## iter
        40 value 220.289566
## final value 220.289557
## converged
## # weights: 31
## initial value 375.142439
## iter 10 value 223.393152
## iter
         20 value 210.279213
         30 value 202.167895
## iter
  iter
         40 value 196.903734
## iter
         50 value 188.322432
## iter 60 value 185.763848
## final value 185.744138
## converged
## # weights: 51
## initial value 332.228728
## iter 10 value 214.755535
## iter
         20 value 193.625261
## iter
         30 value 179.334916
## iter
        40 value 173.359016
## iter 50 value 164.127285
## iter 60 value 154.971571
        70 value 153.417121
## iter
         80 value 153.359648
## iter
## iter 90 value 153.355669
## final value 153.355471
```

```
## converged
## # weights: 71
## initial value 393.763132
## iter 10 value 211.859806
## iter
        20 value 178.627909
## iter 30 value 163.659123
## iter 40 value 151.849586
## iter 50 value 143.648112
## iter 60 value 139.510848
## iter 70 value 132.854102
## iter 80 value 121.892752
## iter 90 value 121.046729
## iter 100 value 121.041584
## final value 121.041584
## stopped after 100 iterations
## # weights: 91
## initial value 338.011435
## iter 10 value 209.651852
## iter 20 value 171.948921
## iter 30 value 150.115601
## iter 40 value 133.333129
## iter 50 value 121.907621
## iter 60 value 114.409891
## iter 70 value 101.241823
## iter 80 value 98.943583
## iter 90 value 98.908248
## iter 100 value 98.907677
## final value 98.907677
## stopped after 100 iterations
## # weights: 11
## initial value 315.369090
## iter 10 value 225.986127
## iter 20 value 223.812476
## iter 30 value 223.769577
## final value 223.769554
## converged
## # weights: 31
## initial value 374.417333
## iter 10 value 228.823772
## iter 20 value 213.269512
## iter
        30 value 205.316382
## iter 40 value 204.668881
## iter 50 value 204.568163
## iter 60 value 204.567088
## final value 204.567083
## converged
## # weights: 51
## initial value 400.329228
## iter 10 value 217.382563
## iter 20 value 201.247763
## iter 30 value 195.338580
## iter 40 value 193.591454
## iter 50 value 193.130695
## iter 60 value 192.868428
```

```
## iter 70 value 192.722605
## iter 80 value 192.670719
## final value 192.669374
## converged
## # weights: 71
## initial value 356.399692
## iter 10 value 214.435619
## iter 20 value 198.918583
## iter
        30 value 192.522329
## iter 40 value 182.801626
        50 value 179.301681
## iter
        60 value 178.204828
## iter
## iter 70 value 178.077217
## iter 80 value 178.063390
## iter 90 value 178.058835
## iter 100 value 178.057529
## final value 178.057529
## stopped after 100 iterations
## # weights: 91
## initial value 473.057012
## iter 10 value 216.419916
## iter
        20 value 200.328953
## iter
        30 value 187.661467
## iter 40 value 182.082672
        50 value 177.332039
## iter
        60 value 175.627856
## iter
  iter
        70 value 174.409625
##
## iter 80 value 172.441293
        90 value 169.786415
## iter
## iter 100 value 169.089836
## final value 169.089836
## stopped after 100 iterations
## # weights: 11
## initial value 427.757627
## iter 10 value 234.772040
## iter
        20 value 230.953478
        30 value 225.352493
## iter
  iter
        40 value 220.798634
        50 value 220.717041
## final value 220.716916
## converged
## # weights: 31
## initial value 402.430871
## iter 10 value 216.304318
## iter
        20 value 207.305878
## iter
        30 value 206.286221
## iter 40 value 202.169539
## iter 50 value 200.456264
## iter 60 value 199.772703
## iter 70 value 199.747214
## iter 80 value 199.745631
## iter 90 value 199.744689
## final value 199.744511
## converged
```

```
## # weights: 51
## initial value 344.785914
## iter 10 value 213.481744
## iter
         20 value 194.421132
## iter
         30 value 185.937532
## iter 40 value 185.139777
## iter 50 value 183.989911
## iter 60 value 183.814368
## iter 70 value 183.790733
## iter 80 value 183.789589
## final value 183.789434
## converged
## # weights: 71
## initial value 353.863220
## iter 10 value 211.813984
## iter 20 value 181.308562
## iter 30 value 166.536332
## iter 40 value 164.334813
## iter 50 value 160.014604
## iter 60 value 157.309492
## iter 70 value 155.780868
## iter 80 value 155.392704
## iter 90 value 154.965374
## iter 100 value 151.777569
## final value 151.777569
## stopped after 100 iterations
## # weights: 91
## initial value 593.044537
## iter
        10 value 209.422289
## iter
         20 value 178.666717
## iter
         30 value 160.444424
## iter
         40 value 149.544998
## iter
         50 value 142.204842
         60 value 137.163595
## iter
        70 value 129.604813
## iter
        80 value 124.524628
## iter
## iter 90 value 122.673499
## iter 100 value 121.388309
## final value 121.388309
## stopped after 100 iterations
## # weights: 11
## initial value 315.666811
## iter 10 value 238.530294
## iter 20 value 235.192616
## iter
        30 value 234.939982
## iter 40 value 234.236515
## final value 234.196701
## converged
## # weights: 31
## initial value 338.829526
## iter 10 value 234.781497
## iter
        20 value 210.169814
## iter
         30 value 207.024925
        40 value 197.735601
```

```
50 value 194.063953
## iter
         60 value 191.753932
## iter
## iter
         70 value 191.333699
## iter
         80 value 191.219186
## iter 90 value 190.091565
## iter 100 value 189.863996
## final value 189.863996
## stopped after 100 iterations
## # weights: 51
## initial value 385.825261
## iter
        10 value 210.458731
## iter
         20 value 196.613991
## iter
        30 value 185.369286
## iter 40 value 177.489780
## iter
        50 value 172.792596
## iter 60 value 168.767013
## iter 70 value 166.150016
## iter 80 value 165.146434
## iter 90 value 164.576336
## iter 100 value 164.055998
## final value 164.055998
## stopped after 100 iterations
## # weights: 71
## initial value 417.037528
## iter
        10 value 206.348934
## iter
         20 value 174.829536
  iter
         30 value 139.628167
##
  iter 40 value 130.612144
  iter
         50 value 126.764378
## iter
         60 value 124.656177
  iter 70 value 123.812382
##
## iter
        80 value 123.438109
## iter 90 value 122.845609
## iter 100 value 122.565767
## final value 122.565767
## stopped after 100 iterations
## # weights: 91
## initial value 449.152243
## iter 10 value 205.980744
## iter
         20 value 162.257983
## iter
         30 value 143.108435
## iter 40 value 128.552595
## iter
         50 value 123.160059
## iter 60 value 121.355858
        70 value 120.475120
## iter
## iter 80 value 120.015552
## iter 90 value 119.382167
## iter 100 value 118.892607
## final value 118.892607
## stopped after 100 iterations
## # weights: 11
## initial value 364.957689
## iter 10 value 233.053790
## iter 20 value 230.642015
```

```
30 value 224.938111
## iter
## iter
         40 value 220.561073
## iter
         50 value 220.297837
## iter
         60 value 220.294045
## iter
        60 value 220.294045
## iter 60 value 220.294045
## final value 220.294045
## converged
## # weights: 31
## initial value 484.552062
## iter
        10 value 216.307442
         20 value 208.507652
## iter
## iter
         30 value 205.675131
## iter 40 value 198.007305
## iter
        50 value 191.492908
## iter 60 value 190.030391
## iter 70 value 189.737037
## iter 80 value 189.476676
## iter 90 value 189.419335
## iter 100 value 189.418014
## final value 189.418014
## stopped after 100 iterations
## # weights: 51
## initial value 366.588136
## iter
        10 value 215.322123
## iter
         20 value 194.779058
  iter
         30 value 181.620498
##
##
  iter 40 value 175.649053
  iter
         50 value 168.850547
  iter
         60 value 161.879639
##
  iter 70 value 161.230496
##
## iter
         80 value 161.059120
## iter 90 value 160.818680
## iter 100 value 160.757727
## final value 160.757727
## stopped after 100 iterations
## # weights: 71
## initial value 466.344631
## iter 10 value 209.675389
## iter
         20 value 174.940755
## iter
         30 value 161.038482
## iter 40 value 153.883219
## iter
         50 value 146.613353
        60 value 142.465504
## iter
        70 value 140.832274
## iter
## iter 80 value 140.001862
        90 value 139.834510
## iter 100 value 139.794697
## final value 139.794697
## stopped after 100 iterations
## # weights: 91
## initial value 371.542598
## iter 10 value 206.589262
## iter 20 value 168.132351
```

```
30 value 137.791484
## iter
## iter
         40 value 118.642089
## iter
         50 value 111.441995
## iter
         60 value 108.402466
## iter
         70 value 104.216922
## iter 80 value 101.908233
## iter 90 value 100.230301
## iter 100 value 98.513151
## final value 98.513151
## stopped after 100 iterations
## # weights: 11
## initial value 349.198801
## iter 10 value 229.973771
## iter 20 value 220.563436
## iter 30 value 218.405131
## final value 218.304449
## converged
## # weights: 31
## initial value 324.078500
## iter 10 value 219.135706
        20 value 199.628379
## iter
## iter
         30 value 196.151461
## iter
        40 value 192.124439
## iter 50 value 190.233434
         60 value 183.302127
## iter
         70 value 180.610838
## iter
         80 value 179.770877
## iter
## iter 90 value 179.452662
## iter 100 value 179.434246
## final value 179.434246
## stopped after 100 iterations
## # weights: 51
## initial value 418.798806
        10 value 213.802601
## iter
         20 value 185.219395
## iter
  iter
         30 value 175.194581
         40 value 170.979112
## iter
  iter
         50 value 168.625306
         60 value 161.788009
##
  iter
         70 value 155.647521
## iter
## iter
         80 value 149.883128
## iter 90 value 147.560818
## iter 100 value 147.476808
## final value 147.476808
## stopped after 100 iterations
## # weights: 71
## initial value 339.077386
## iter 10 value 205.881975
## iter 20 value 173.139280
         30 value 150.131628
## iter
## iter 40 value 137.398353
         50 value 127.394218
## iter
        60 value 122.212841
## iter
        70 value 121.988639
```

```
## iter 80 value 121.936224
## final value 121.936126
## converged
## # weights: 91
## initial value 334.132991
## iter 10 value 207.406974
## iter 20 value 171.680902
## iter 30 value 142.012758
## iter 40 value 123.361164
## iter 50 value 115.404406
## iter 60 value 105.064761
## iter 70 value 100.794866
## iter 80 value 100.410971
## iter 90 value 100.377384
## final value 100.377066
## converged
## # weights: 11
## initial value 318.234293
## iter 10 value 239.726852
## iter 20 value 224.113033
## iter 30 value 221.522810
## final value 221.444516
## converged
## # weights: 31
## initial value 411.752617
## iter 10 value 225.999424
        20 value 208.312871
## iter
## iter
        30 value 204.092789
## iter 40 value 202.799096
## iter 50 value 202.404989
## final value 202.404135
## converged
## # weights: 51
## initial value 376.267024
## iter 10 value 231.821583
## iter
        20 value 204.820098
## iter
        30 value 197.308992
## iter 40 value 193.606924
## iter
        50 value 190.616584
## iter 60 value 189.944630
## iter 70 value 189.781390
## iter 80 value 189.703307
## iter 90 value 189.280750
## iter 100 value 187.650311
## final value 187.650311
## stopped after 100 iterations
## # weights: 71
## initial value 439.747272
## iter 10 value 215.640598
## iter 20 value 194.236104
## iter 30 value 185.259452
## iter 40 value 177.716359
## iter 50 value 175.986793
## iter 60 value 175.423314
```

```
## iter 70 value 175.291521
## iter
         80 value 175.266212
## iter 90 value 175.255367
## iter 100 value 175.250626
## final value 175.250626
## stopped after 100 iterations
## # weights: 91
## initial value 352.155478
## iter 10 value 212.857683
## iter
        20 value 194.619792
         30 value 184.061209
## iter
## iter 40 value 174.819113
## iter
        50 value 170.163547
## iter 60 value 167.169009
## iter 70 value 166.055435
## iter 80 value 164.650223
## iter 90 value 164.336108
## iter 100 value 164.235654
## final value 164.235654
## stopped after 100 iterations
## # weights: 11
## initial value 365.314268
## iter 10 value 231.980969
         20 value 227.105725
## iter
         30 value 221.570965
## iter
        40 value 218.739637
## iter
## iter 50 value 218.659744
## final value 218.656015
## converged
## # weights: 31
## initial value 322.508083
## iter 10 value 223.213790
## iter
         20 value 217.770129
## iter
         30 value 206.310320
        40 value 196.508473
## iter
## iter
         50 value 195.382586
         60 value 195.331842
## iter
## iter
        70 value 195.330261
## final value 195.330232
## converged
## # weights: 51
## initial value 397.815539
## iter 10 value 208.522615
## iter
         20 value 196.060516
## iter
         30 value 187.197429
## iter 40 value 179.625147
## iter
         50 value 178.838001
## iter
        60 value 178.427273
## iter 70 value 178.392868
## iter 80 value 178.389331
## final value 178.389235
## converged
## # weights: 71
## initial value 330.949243
```

10 value 212.607625 ## iter ## iter 20 value 192.408977 ## iter 30 value 177.298026 ## iter 40 value 162.831227 ## iter 50 value 159.783336 ## iter 60 value 157.377528 70 value 155.812965 ## iter ## iter 80 value 154.367353 ## iter 90 value 153.392278 ## iter 100 value 151.331418 ## final value 151.331418 ## stopped after 100 iterations ## # weights: 91 ## initial value 328.958343 ## iter 10 value 205.293592 20 value 168.908954 ## iter ## iter 30 value 151.269130 40 value 134.996762 ## iter ## iter 50 value 130.366345 ## iter 60 value 128.617569 70 value 126.358182 ## iter ## iter 80 value 123.907822 ## iter 90 value 122.538399 ## iter 100 value 117.865759 ## final value 117.865759 ## stopped after 100 iterations ## # weights: 11 ## initial value 363.472512 ## iter 10 value 221.420913 ## iter 20 value 218.414311 ## iter 30 value 218.360729 ## final value 218.340278 ## converged ## # weights: 31 ## initial value 385.211977 ## iter 10 value 218.407494 20 value 204.982377 ## iter iter 30 value 200.676750 iter 40 value 197.753665 ## 50 value 196.897474 ## iter ## iter 60 value 196.220112 70 value 196.000198 ## iter ## iter 80 value 195.628245 ## iter 90 value 194.598430 ## iter 100 value 194.552443 ## final value 194.552443 ## stopped after 100 iterations ## # weights: 51 ## initial value 338.721409 ## iter 10 value 219.452175 ## iter 20 value 203.293498 30 value 185.202385 ## iter ## iter 40 value 178.389814 50 value 174.131136

```
## iter 60 value 172.453345
        70 value 171.612317
## iter
## iter
        80 value 170.816243
        90 value 170.659786
## iter
## iter 100 value 170.618927
## final value 170.618927
## stopped after 100 iterations
## # weights: 71
## initial value 327.208227
## iter 10 value 207.780774
         20 value 181.960719
## iter
         30 value 165.323618
## iter
## iter 40 value 155.181091
## iter
         50 value 143.913851
## iter 60 value 140.101494
## iter 70 value 138.246715
## iter 80 value 136.708645
## iter 90 value 135.997247
## iter 100 value 135.816994
## final value 135.816994
## stopped after 100 iterations
## # weights: 91
## initial value 309.052846
## iter 10 value 204.325697
         20 value 171.004439
## iter
         30 value 141.223598
## iter
  iter
         40 value 123.795572
##
  iter
         50 value 118.464482
  iter
         60 value 115.034659
## iter
         70 value 112.628008
## iter 80 value 111.751854
        90 value 111.145019
## iter
## iter 100 value 110.746866
## final value 110.746866
## stopped after 100 iterations
## # weights: 11
## initial value 354.033607
## iter 10 value 221.169376
## iter 20 value 218.397732
## final value 218.308982
## converged
## # weights: 31
## initial value 317.730797
## iter 10 value 210.770936
## iter
         20 value 199.958640
## iter
         30 value 196.146461
## iter 40 value 193.513434
## iter 50 value 190.544042
## iter 60 value 184.322473
## iter 70 value 184.189418
## iter 80 value 184.115168
## iter 90 value 183.946819
## iter 100 value 183.324333
## final value 183.324333
```

```
## stopped after 100 iterations
## # weights: 51
## initial value 345.000301
## iter
        10 value 206.752592
## iter
        20 value 190.939058
## iter 30 value 185.161798
## iter 40 value 180.842220
## iter 50 value 176.936861
## iter 60 value 172.527039
## iter 70 value 169.438458
## iter 80 value 166.401213
## iter 90 value 163.407225
## iter 100 value 163.029403
## final value 163.029403
## stopped after 100 iterations
## # weights: 71
## initial value 312.148871
## iter 10 value 211.409801
## iter 20 value 188.458007
## iter 30 value 164.622185
## iter 40 value 150.712053
## iter 50 value 143.468748
## iter 60 value 135.506612
## iter 70 value 130.473619
## iter 80 value 129.254038
## iter 90 value 128.492451
## iter 100 value 127.965054
## final value 127.965054
## stopped after 100 iterations
## # weights: 91
## initial value 392.982224
## iter 10 value 207.121155
## iter
        20 value 165.845636
## iter
        30 value 136.806230
## iter 40 value 125.270169
## iter
        50 value 115.907754
        60 value 110.989004
## iter
  iter
        70 value 109.174718
        80 value 108.543889
## iter
## iter 90 value 108.344139
## iter 100 value 107.552746
## final value 107.552746
## stopped after 100 iterations
## # weights: 11
## initial value 321.651520
## iter 10 value 231.913735
## iter 20 value 228.188717
## iter 30 value 227.847061
## iter 40 value 220.757720
## final value 219.507523
## converged
## # weights: 31
## initial value 359.400491
## iter 10 value 211.543776
```

```
20 value 194.938228
## iter
         30 value 190.790254
## iter
## iter
        40 value 177.963964
## iter
         50 value 175.659726
## iter
        60 value 175.643013
## final value 175.642922
## converged
## # weights: 51
## initial value 336.348167
## iter 10 value 208.954672
         20 value 183.190473
## iter
         30 value 177.258960
## iter
## iter
        40 value 162.211647
## iter
         50 value 158.858342
## iter 60 value 158.728016
## iter 70 value 158.688210
## iter 80 value 158.679276
## iter 90 value 158.678832
## final value 158.678268
## converged
## # weights:
## initial value 622.564898
## iter 10 value 199.044037
        20 value 166.250894
## iter
         30 value 148.029470
## iter
         40 value 135.133931
## iter
  iter
         50 value 120.243512
##
##
  iter
         60 value 112.883867
##
  iter
         70 value 111.348421
## iter
         80 value 111.010783
        90 value 110.930933
## iter 100 value 110.896227
## final value 110.896227
## stopped after 100 iterations
## # weights: 91
## initial value 454.107538
        10 value 209.870995
## iter
  iter
         20 value 162.748478
  iter
         30 value 133.615654
##
         40 value 117.528856
##
  iter
## iter
         50 value 108.411697
## iter 60 value 95.981466
## iter
        70 value 92.479338
## iter 80 value 92.366484
## iter 90 value 92.358896
## iter 100 value 92.354709
## final value 92.354709
## stopped after 100 iterations
## # weights: 11
## initial value 314.035690
## iter 10 value 231.332071
## iter
        20 value 224.543786
## iter 30 value 223.765198
## final value 223.714137
```

```
## converged
## # weights: 31
## initial value 329.542739
## iter
        10 value 227.923321
## iter
        20 value 212.685764
## iter 30 value 210.294820
## iter 40 value 206.742965
## iter 50 value 204.569005
## iter 60 value 204.231325
## iter 70 value 204.209902
## iter 80 value 204.139469
## iter 90 value 203.930186
## iter 100 value 203.698027
## final value 203.698027
## stopped after 100 iterations
## # weights: 51
## initial value 298.890481
## iter 10 value 215.842860
## iter 20 value 203.104816
## iter 30 value 197.944897
## iter 40 value 196.794719
## iter 50 value 193.220546
## iter
        60 value 191.614054
## iter 70 value 190.344855
## iter 80 value 190.193834
## iter 90 value 190.193198
## final value 190.193177
## converged
## # weights: 71
## initial value 512.034884
## iter 10 value 230.625551
## iter
        20 value 198.238679
## iter
        30 value 189.541100
        40 value 186.780597
## iter
## iter 50 value 184.479436
  iter
        60 value 183.476302
        70 value 182.564566
## iter
  iter
        80 value 180.979108
## iter 90 value 180.469922
## iter 100 value 180.415254
## final value 180.415254
## stopped after 100 iterations
## # weights: 91
## initial value 362.662658
## iter 10 value 210.839101
        20 value 193.401994
## iter
## iter 30 value 186.246756
## iter 40 value 182.258705
## iter 50 value 178.284004
## iter 60 value 176.260910
## iter 70 value 174.882388
## iter 80 value 174.497258
## iter 90 value 174.420672
## iter 100 value 174.394435
```

```
## final value 174.394435
## stopped after 100 iterations
## # weights: 11
## initial value 363.377346
## iter 10 value 223.149664
## iter 20 value 220.036682
         30 value 219.731570
## iter
## iter 40 value 219.729086
## iter 40 value 219.729086
## iter 40 value 219.729086
## final value 219.729086
## converged
## # weights: 31
## initial value 356.875909
## iter 10 value 221.046577
## iter 20 value 207.238316
## iter 30 value 197.281968
        40 value 195.427227
## iter
## iter
        50 value 194.600084
## iter
        60 value 193.458450
        70 value 192.211059
## iter
## iter
        80 value 189.415222
## iter 90 value 186.390934
## iter 100 value 186.283691
## final value 186.283691
## stopped after 100 iterations
## # weights: 51
## initial value 330.731217
## iter
        10 value 209.752690
## iter
         20 value 195.515322
         30 value 183.471821
##
  iter
##
  iter
         40 value 180.331598
##
  iter
         50 value 180.174505
         60 value 179.956846
## iter
        70 value 179.916619
## iter
## iter
        80 value 179.911152
## iter 90 value 179.910765
## final value 179.910649
## converged
## # weights: 71
## initial value 551.730966
## iter 10 value 202.918544
## iter
         20 value 177.586755
         30 value 167.697523
## iter
## iter
        40 value 161.849716
## iter
         50 value 154.937393
## iter
        60 value 152.988576
## iter 70 value 152.336355
## iter 80 value 152.129349
## iter 90 value 152.104405
## iter 100 value 152.102336
## final value 152.102336
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 444.560706
## iter
        10 value 209.559702
         20 value 183.568962
## iter
## iter
         30 value 161.748024
## iter
         40 value 153.418120
## iter
         50 value 149.660992
        60 value 147.662600
## iter
## iter 70 value 146.876132
## iter 80 value 146.362125
## iter 90 value 145.389222
## iter 100 value 144.993719
## final value 144.993719
## stopped after 100 iterations
## # weights: 11
## initial value 377.404446
## iter 10 value 231.086157
## iter 20 value 228.127798
        30 value 227.436668
## iter
## iter 40 value 225.980735
## iter 50 value 225.865184
## iter 60 value 225.861632
## final value 225.861289
## converged
## # weights: 31
## initial value 312.018265
## iter 10 value 213.801861
## iter
         20 value 195.072447
## iter
         30 value 191.196198
##
  iter
         40 value 186.089906
## iter
         50 value 185.298871
  iter 60 value 183.972349
##
## iter
        70 value 183.733041
## iter 80 value 183.553180
## iter 90 value 183.552897
## final value 183.552803
## converged
## # weights: 51
## initial value 404.758329
## iter 10 value 218.453190
## iter
         20 value 193.365097
## iter
         30 value 171.708502
## iter 40 value 164.670062
## iter
         50 value 161.796287
## iter 60 value 159.572248
        70 value 159.298568
## iter
## iter 80 value 159.188954
        90 value 159.012192
## iter 100 value 158.788227
## final value 158.788227
## stopped after 100 iterations
## # weights: 71
## initial value 325.988361
## iter 10 value 210.433781
## iter 20 value 179.624608
```

```
30 value 157.649335
## iter
         40 value 139.309084
## iter
## iter
         50 value 134.024717
## iter
         60 value 128.666345
## iter
         70 value 126.820003
## iter 80 value 126.574936
## iter 90 value 126.367685
## iter 100 value 126.190989
## final value 126.190989
## stopped after 100 iterations
## # weights: 91
## initial value 347.807564
## iter 10 value 207.342658
## iter
        20 value 178,409986
## iter
        30 value 149.167601
## iter 40 value 125.428555
## iter 50 value 114.679214
## iter 60 value 113.277986
## iter 70 value 112.159711
## iter 80 value 111.010948
## iter 90 value 110.784442
## iter 100 value 110.640736
## final value 110.640736
## stopped after 100 iterations
## # weights: 11
## initial value 313.396974
## iter 10 value 228.167446
## iter
         20 value 222.058699
## iter
         30 value 219.589902
## iter 40 value 219.310817
## final value 219.310717
## converged
## # weights: 31
## initial value 297.125446
## iter 10 value 213.636913
## iter
         20 value 201.851119
         30 value 198.389667
## iter
  iter
         40 value 192.142668
         50 value 189.368878
## iter
         60 value 188.823810
## iter
## iter
        70 value 188.612633
## iter 80 value 188.049482
## iter 90 value 187.457586
## iter 100 value 187.327182
## final value 187.327182
## stopped after 100 iterations
## # weights: 51
## initial value 292.379145
## iter 10 value 205.038459
## iter 20 value 184.875733
## iter 30 value 172.619562
        40 value 161.173179
## iter
        50 value 156.004266
## iter
## iter 60 value 155.630989
```

```
## iter 70 value 154.829786
         80 value 153.381984
## iter
## iter
        90 value 152.914205
## iter 100 value 152.598923
## final value 152.598923
## stopped after 100 iterations
## # weights: 71
## initial value 322.720322
## iter 10 value 205.919738
## iter
         20 value 170.291373
         30 value 146.480411
## iter
        40 value 135.377545
## iter
## iter
        50 value 123.302750
## iter
        60 value 117.356392
## iter
        70 value 116.356348
## iter 80 value 116.115936
## iter 90 value 115.624772
## iter 100 value 115.389353
## final value 115.389353
## stopped after 100 iterations
## # weights: 91
## initial value 340.752523
## iter 10 value 210.551389
## iter
         20 value 178.693886
         30 value 155.394455
## iter
         40 value 138.961356
## iter
  iter
         50 value 130.377481
##
  iter
         60 value 118.720764
##
  iter
         70 value 112.926347
         80 value 111.852226
## iter
        90 value 111.429693
## iter
## iter 100 value 110.919784
## final value 110.919784
## stopped after 100 iterations
## # weights: 11
## initial value 385.476137
        10 value 240.709720
## iter
  iter
         20 value 238.003772
         30 value 237.374211
##
  iter
         40 value 232.413603
##
  iter
## iter
         50 value 232.319994
## iter 60 value 232.292682
## iter
        70 value 232.287991
        80 value 232.284615
## iter
## iter 90 value 232.279891
## iter 100 value 232.278170
## final value 232.278170
## stopped after 100 iterations
## # weights: 31
## initial value 355.709263
## iter 10 value 210.351835
         20 value 199.072740
## iter
## iter
         30 value 195.963593
        40 value 191.532727
```

```
50 value 184.893313
## iter
         60 value 184.424899
## iter
## iter
         70 value 184.329516
## iter
         80 value 184.189143
## iter 90 value 184.175117
## iter 100 value 183.967318
## final value 183.967318
## stopped after 100 iterations
## # weights: 51
## initial value 323.892728
## iter
        10 value 213.539334
## iter
         20 value 194.414109
## iter
        30 value 176.578781
## iter 40 value 164.873065
## iter
        50 value 155.281509
## iter 60 value 151.448888
## iter 70 value 150.550118
## iter 80 value 150.493583
## iter 90 value 150.489967
## final value 150.489963
## converged
## # weights: 71
## initial value 575.957217
## iter 10 value 213.807749
         20 value 179.433283
## iter
         30 value 164.410926
## iter
  iter
         40 value 157.031810
  iter
         50 value 148.095064
  iter
         60 value 141.522219
## iter
         70 value 137.444226
## iter 80 value 134.192586
        90 value 132.248742
## iter
## iter 100 value 127.744189
## final value 127.744189
## stopped after 100 iterations
## # weights: 91
## initial value 360.108832
## iter 10 value 205.005308
## iter
         20 value 173.251617
         30 value 140.595637
## iter
## iter
         40 value 124.184122
        50 value 114.121267
## iter
## iter
        60 value 99.370095
        70 value 92.957023
## iter
        80 value 86.338123
## iter
## iter 90 value 82.564949
## iter 100 value 81.244428
## final value 81.244428
## stopped after 100 iterations
## # weights: 11
## initial value 339.748604
## iter 10 value 226.299842
## iter 20 value 223.381578
## final value 223.327462
```

```
## converged
## # weights: 31
## initial value 508.060688
## iter
        10 value 233.375614
## iter
        20 value 214.478431
## iter 30 value 208.894025
## iter 40 value 206.548698
## iter 50 value 205.169933
## iter 60 value 205.134606
## iter 70 value 205.134050
## final value 205.133975
## converged
## # weights: 51
## initial value 341.682386
## iter 10 value 212.521876
## iter 20 value 203.299354
## iter 30 value 199.820050
## iter 40 value 196.246310
## iter 50 value 192.631189
## iter 60 value 190.206428
## iter 70 value 189.558640
## iter 80 value 189.050926
## iter 90 value 188.076000
## iter 100 value 188.034552
## final value 188.034552
## stopped after 100 iterations
## # weights: 71
## initial value 319.682259
## iter
        10 value 209.462369
## iter
        20 value 194.231151
        30 value 187.399869
## iter
##
  iter
        40 value 185.406266
## iter
        50 value 183.766786
        60 value 183.669439
## iter
        70 value 183.064256
## iter
## iter
        80 value 182.585142
## iter 90 value 182.557742
## iter 100 value 182.557391
## final value 182.557391
## stopped after 100 iterations
## # weights: 91
## initial value 480.593215
## iter 10 value 207.987201
        20 value 191.381291
## iter
## iter
        30 value 184.774254
## iter 40 value 174.733218
## iter
        50 value 166.757471
## iter
        60 value 165.486898
## iter 70 value 165.156921
## iter 80 value 165.029583
## iter 90 value 164.911024
## iter 100 value 164.883654
## final value 164.883654
## stopped after 100 iterations
```

```
## # weights: 11
## initial value 470.406635
## iter 10 value 235.927390
## iter
        20 value 228.534186
## iter
        30 value 226.208472
## iter 40 value 219.358567
## iter 50 value 218.753501
## iter 60 value 218.722331
## final value 218.720255
## converged
## # weights: 31
## initial value 311.273347
## iter 10 value 205.694692
## iter 20 value 194.208374
## iter 30 value 191.256637
## iter 40 value 191.013303
## iter 50 value 191.003916
## final value 191.003707
## converged
## # weights: 51
## initial value 324.554338
## iter 10 value 221.915403
## iter 20 value 201.302464
## iter 30 value 191.065298
        40 value 180.067444
## iter
        50 value 173.662439
## iter
  iter
        60 value 172.583734
## iter
        70 value 171.991282
## iter
        80 value 171.644176
## iter 90 value 171.114719
## iter 100 value 171.033988
## final value 171.033988
## stopped after 100 iterations
## # weights: 71
## initial value 333.097934
## iter 10 value 210.487336
        20 value 186.197098
## iter
  iter
        30 value 173.080553
## iter
        40 value 169.072647
        50 value 161.252386
## iter
## iter
        60 value 156.312555
## iter 70 value 155.219696
## iter 80 value 155.120602
## iter 90 value 155.106135
## iter 100 value 155.101868
## final value 155.101868
## stopped after 100 iterations
## # weights: 91
## initial value 313.307181
## iter 10 value 207.030414
## iter 20 value 162.092554
## iter 30 value 146.542503
## iter 40 value 138.103070
        50 value 134.365391
```

```
## iter 60 value 129.001656
         70 value 126.005289
## iter
## iter
        80 value 124.821056
        90 value 123.678070
## iter
## iter 100 value 123.013703
## final value 123.013703
## stopped after 100 iterations
## # weights: 11
## initial value 345.812496
## iter 10 value 228.271975
        20 value 224.686137
## iter
         30 value 220.108306
## iter
## iter 40 value 218.235034
## iter 50 value 218.036818
## iter 60 value 218.004565
## final value 217.996720
## converged
## # weights: 31
## initial value 325.007022
## iter 10 value 217.220203
         20 value 204.588396
## iter
## iter
         30 value 192.411066
## iter
         40 value 189.447043
        50 value 184.861214
## iter
         60 value 183.456896
## iter
         70 value 183.234380
## iter
## iter
         80 value 182.772273
## iter 90 value 182.403539
## iter 100 value 182.287709
## final value 182.287709
## stopped after 100 iterations
## # weights: 51
## initial value 365.024941
## iter 10 value 209.656017
         20 value 191.319162
## iter
  iter
         30 value 186.613091
         40 value 181.940532
## iter
  iter
         50 value 173.354238
         60 value 169.242014
##
  iter
         70 value 167.687112
## iter
## iter
         80 value 167.031480
## iter 90 value 166.924012
## iter 100 value 166.865920
## final value 166.865920
## stopped after 100 iterations
## # weights: 71
## initial value 305.336543
## iter 10 value 206.768114
## iter 20 value 177.219175
         30 value 157.672807
## iter
## iter 40 value 147.683197
        50 value 145.163420
## iter
## iter
        60 value 144.618851
        70 value 144.257368
```

```
## iter 80 value 143.792802
## iter 90 value 143.640237
## iter 100 value 143.528795
## final value 143.528795
## stopped after 100 iterations
## # weights: 91
## initial value 331.978552
## iter 10 value 204.348549
## iter
        20 value 175.554749
## iter 30 value 136.156286
## iter
        40 value 128.126167
        50 value 122.451160
## iter
## iter 60 value 120.361754
## iter 70 value 118.785356
## iter 80 value 117.438306
## iter 90 value 115.455645
## iter 100 value 115.099621
## final value 115.099621
## stopped after 100 iterations
## # weights: 11
## initial value 317.537986
## iter 10 value 226.869200
## iter
        20 value 220.330856
## iter 30 value 218.394808
         40 value 217.981592
## iter
         50 value 217.886986
## iter
## iter
         60 value 217.882955
## iter 70 value 217.862770
## final value 217.862528
## converged
## # weights: 31
## initial value 369.544969
## iter 10 value 209.253497
## iter
         20 value 196.457726
## iter
         30 value 193.608864
  iter
         40 value 189.509820
         50 value 186.575599
## iter
  iter
         60 value 186.295268
         70 value 186.216043
## iter
        80 value 186.106414
## iter
## iter 90 value 185.773552
## iter 100 value 185.697263
## final value 185.697263
## stopped after 100 iterations
## # weights: 51
## initial value 421.109892
## iter 10 value 207.741378
## iter 20 value 179.186582
## iter 30 value 167.579231
## iter 40 value 163.796789
## iter
        50 value 160.918490
         60 value 152.345218
## iter
         70 value 150.749712
## iter
        80 value 149.953686
```

```
## iter 90 value 149.876776
## iter 100 value 149.818620
## final value 149.818620
## stopped after 100 iterations
## # weights: 71
## initial value 352.611417
## iter 10 value 201.813082
## iter 20 value 168.694662
         30 value 158.193746
## iter
## iter 40 value 146.335327
## iter
        50 value 133.622983
        60 value 130.796208
## iter
## iter 70 value 126.898882
## iter 80 value 121.029959
## iter 90 value 117.336561
## iter 100 value 116.050676
## final value 116.050676
## stopped after 100 iterations
## # weights: 91
## initial value 352.046592
## iter 10 value 211.016317
## iter 20 value 169.043555
## iter
         30 value 136.884094
## iter 40 value 110.561389
         50 value 101.254596
## iter
        60 value 97.521090
## iter
        70 value 95.795411
##
  iter
## iter 80 value 91.705130
## iter 90 value 86.432186
## iter 100 value 85.204904
## final value 85.204904
## stopped after 100 iterations
## # weights: 11
## initial value 311.870321
## iter 10 value 213.974642
## iter 20 value 212.676799
## final value 212.670105
## converged
## # weights: 31
## initial value 355.272677
## iter 10 value 208.837898
## iter
        20 value 198.476591
## iter
         30 value 193.997001
## iter 40 value 187.726127
## iter
        50 value 184.116136
## iter
        60 value 180.647444
## iter
        70 value 176.333812
## iter
        80 value 175.742203
## iter 90 value 175.544669
## iter 100 value 174.742672
## final value 174.742672
## stopped after 100 iterations
## # weights: 51
## initial value 386.328733
```

```
10 value 217.596555
## iter
         20 value 192.892205
## iter
## iter
         30 value 172.918584
## iter
         40 value 161.627679
## iter
         50 value 159.096599
## iter
        60 value 154.990247
        70 value 151.876100
## iter
## iter 80 value 149.606581
## iter 90 value 147.190011
## iter 100 value 144.440045
## final value 144.440045
## stopped after 100 iterations
## # weights: 71
## initial value 303.638579
## iter 10 value 194.740913
## iter 20 value 160.548811
## iter 30 value 134.860595
        40 value 120.459136
## iter
## iter
        50 value 116.088941
## iter
        60 value 112.819088
        70 value 107.878678
## iter
## iter
        80 value 99.117370
## iter 90 value 96.479016
## iter 100 value 96.184993
## final value 96.184993
## stopped after 100 iterations
## # weights: 91
## initial value 580.742188
## iter
        10 value 194.787438
## iter
         20 value 159.110607
         30 value 136.598364
##
  iter
##
  iter
         40 value 117.120690
##
  iter
         50 value 103.975044
         60 value 92.064531
## iter
## iter
        70 value 88.482437
## iter
        80 value 86.984706
## iter 90 value 86.063462
## iter 100 value 85.800332
## final value 85.800332
## stopped after 100 iterations
## # weights: 11
## initial value 320.013268
## iter 10 value 225.843653
        20 value 217.888490
## iter
## iter 30 value 216.416888
## final value 216.327355
## converged
## # weights: 31
## initial value 342.493436
## iter 10 value 227.281861
## iter 20 value 210.988470
        30 value 206.196432
## iter
## iter 40 value 204.354484
         50 value 204.116266
```

```
## iter 60 value 204.113533
## final value 204.113521
## converged
## # weights: 51
## initial value 317.115588
## iter 10 value 209.066316
## iter 20 value 195.819281
## iter 30 value 191.922002
## iter 40 value 190.907865
## iter 50 value 190.666134
## iter 60 value 188.460339
        70 value 188.168175
## iter
## iter 80 value 188.160358
## iter 90 value 188.159610
## final value 188.159586
## converged
## # weights: 71
## initial value 351.802785
## iter 10 value 223.762233
## iter 20 value 204.819837
## iter 30 value 193.581715
## iter 40 value 181.752165
## iter 50 value 174.722471
## iter 60 value 171.881500
## iter 70 value 171.210467
## iter 80 value 170.682962
## iter 90 value 170.140025
## iter 100 value 170.020272
## final value 170.020272
## stopped after 100 iterations
## # weights: 91
## initial value 325.653829
## iter 10 value 230.199910
        20 value 210.319898
## iter
        30 value 195.642733
## iter
  iter
        40 value 186.925522
        50 value 181.398242
## iter
  iter
        60 value 175.795673
## iter
        70 value 171.783399
## iter 80 value 170.043335
## iter 90 value 169.168830
## iter 100 value 168.085566
## final value 168.085566
## stopped after 100 iterations
## # weights: 11
## initial value 316.429608
## iter 10 value 277.828700
## iter 20 value 233.094793
## iter 30 value 227.640380
## iter 40 value 224.761958
## iter 50 value 221.597747
## iter 60 value 214.150154
## iter 70 value 213.277312
## final value 213.216543
```

```
## converged
## # weights: 31
## initial value 364.953838
## iter 10 value 204.543825
## iter
        20 value 197.877844
## iter 30 value 194.292862
## iter 40 value 192.986481
## iter 50 value 192.297616
## iter 60 value 192.185189
## final value 192.184947
## converged
## # weights: 51
## initial value 487.664970
## iter 10 value 208.072759
## iter 20 value 181.001118
## iter 30 value 170.162886
## iter 40 value 166.821184
## iter 50 value 165.744227
## iter 60 value 165.494612
## iter 70 value 164.597847
## iter 80 value 163.506927
## iter 90 value 162.374422
## iter 100 value 162.062364
## final value 162.062364
## stopped after 100 iterations
## # weights: 71
## initial value 637.898131
## iter 10 value 226.120950
## iter
        20 value 197.302559
## iter
        30 value 180.361849
## iter 40 value 167.248779
## iter
        50 value 158.045880
## iter 60 value 149.337692
## iter 70 value 145.391946
## iter 80 value 140.864822
## iter 90 value 139.456828
## iter 100 value 139.324860
## final value 139.324860
## stopped after 100 iterations
## # weights: 91
## initial value 326.298274
## iter 10 value 212.754149
## iter
        20 value 181.300053
        30 value 152.389191
## iter
## iter 40 value 135.362132
## iter 50 value 132.854093
## iter 60 value 131.707297
## iter 70 value 131.203362
## iter 80 value 128.339015
## iter 90 value 128.041863
## iter 100 value 127.927002
## final value 127.927002
## stopped after 100 iterations
## # weights: 11
```

```
## initial value 322.413094
## iter 10 value 216.865456
## iter 20 value 212.853928
## final value 212.726978
## converged
## # weights: 31
## initial value 315.729387
## iter 10 value 207.698156
## iter
        20 value 193.673954
## iter 30 value 187.862453
## iter 40 value 184.249962
        50 value 183.867339
## iter
## iter 60 value 183.805518
## iter 70 value 183.692653
## iter 80 value 183.686375
## iter 90 value 183.672112
## iter 100 value 183.671672
## final value 183.671672
## stopped after 100 iterations
## # weights: 51
## initial value 402.280813
## iter 10 value 193.525982
## iter
         20 value 171.458231
## iter 30 value 167.906957
         40 value 165.022736
## iter
         50 value 163.019658
## iter
  iter
         60 value 162.562835
  iter
         70 value 162.005769
## iter
        80 value 161.727508
        90 value 161.533487
## iter 100 value 161.435826
## final value 161.435826
## stopped after 100 iterations
## # weights: 71
## initial value 379.907988
## iter 10 value 211.661124
         20 value 186.791943
## iter
  iter
         30 value 173.028350
  iter
        40 value 160.831199
##
         50 value 154.306428
##
  iter
## iter
         60 value 151.257909
## iter 70 value 150.940683
## iter 80 value 150.716366
## iter 90 value 150.665613
## iter 100 value 150.652792
## final value 150.652792
## stopped after 100 iterations
## # weights: 91
## initial value 357.100285
## iter 10 value 200.333181
## iter 20 value 154.874534
        30 value 132.026252
## iter
## iter 40 value 116.451228
        50 value 109.887383
```

```
## iter
        60 value 108.801678
         70 value 108.066798
## iter
## iter
        80 value 107.548261
## iter
        90 value 107.288704
## iter 100 value 107.227659
## final value 107.227659
## stopped after 100 iterations
## # weights: 11
## initial value 347.969129
## iter 10 value 237.087359
## iter 20 value 217.136055
## iter 30 value 213.627532
## iter 40 value 212.676265
## final value 212.675819
## converged
## # weights: 31
## initial value 328.892002
## iter 10 value 207.026108
## iter
        20 value 190.195926
## iter
         30 value 183.590230
## iter 40 value 180.991054
## iter
         50 value 174.878283
## iter
         60 value 172.757377
## iter 70 value 172.636872
        80 value 172.275515
## iter
## iter 90 value 171.012834
## iter 100 value 170.770019
## final value 170.770019
## stopped after 100 iterations
## # weights: 51
## initial value 366.381528
## iter
        10 value 212.171544
## iter
         20 value 186.262547
         30 value 169.925556
## iter
        40 value 156.478009
##
  iter
  iter
         50 value 143.484804
         60 value 139.383950
## iter
  iter
         70 value 138.345617
         80 value 137.952913
## iter
        90 value 137.695927
## iter
## iter 100 value 137.502536
## final value 137.502536
## stopped after 100 iterations
## # weights: 71
## initial value 444.886526
## iter 10 value 200.396590
## iter
         20 value 168.451870
## iter
         30 value 150.300935
## iter 40 value 135.790496
## iter 50 value 129.017369
## iter 60 value 123.304432
        70 value 121.149645
## iter
        80 value 118.243786
## iter
        90 value 116.446873
```

```
## iter 100 value 115.313890
## final value 115.313890
## stopped after 100 iterations
## # weights: 91
## initial value 389.213351
## iter 10 value 200.393105
## iter 20 value 172.449920
## iter 30 value 137.834679
## iter 40 value 116.292812
## iter 50 value 105.254472
## iter 60 value 94.686265
        70 value 92.151894
## iter
## iter 80 value 90.178827
## iter 90 value 88.444698
## iter 100 value 87.972353
## final value 87.972353
## stopped after 100 iterations
## # weights: 11
## initial value 313.221929
## iter 10 value 222.570993
## iter 20 value 217.417637
## iter 30 value 217.234583
## final value 217.234475
## converged
## # weights: 31
## initial value 382.945777
## iter 10 value 209.460665
## iter
        20 value 198.188871
## iter
        30 value 190.791981
## iter
        40 value 187.446991
        50 value 183.130891
##
  iter
## iter
        60 value 178.766755
## iter
        70 value 178.412644
## iter
        80 value 178.343871
## iter 90 value 178.321614
## iter 100 value 178.311527
## final value 178.311527
## stopped after 100 iterations
## # weights: 51
## initial value 411.502651
## iter 10 value 212.163624
## iter 20 value 197.635398
## iter
        30 value 185.571696
## iter 40 value 176.393166
## iter 50 value 169.910135
## iter 60 value 162.429920
## iter 70 value 156.635429
## iter 80 value 154.153374
## iter 90 value 153.003954
## iter 100 value 152.487389
## final value 152.487389
## stopped after 100 iterations
## # weights: 71
## initial value 342.155749
```

```
10 value 205.413381
## iter
## iter
         20 value 172.012037
## iter
         30 value 151.603879
## iter
         40 value 143.895056
## iter
         50 value 134.393004
## iter
        60 value 124.781230
         70 value 120.766942
## iter
## iter
        80 value 120.581997
## iter 90 value 120.577630
## final value 120.577621
## converged
## # weights: 91
## initial value 431.970090
## iter 10 value 207.912191
## iter
         20 value 171.285898
## iter
         30 value 135.045184
## iter 40 value 116.165236
## iter
         50 value 108.898506
## iter 60 value 105.155422
## iter
        70 value 98.380383
## iter 80 value 94.265954
        90 value 93.859611
## iter 100 value 93.742238
## final value 93.742238
## stopped after 100 iterations
## # weights: 11
## initial value 309.169263
## iter 10 value 227.669738
## iter
         20 value 221.413779
## iter
        30 value 221.371751
## final value 221.371306
## converged
## # weights: 31
## initial value 327.163067
## iter 10 value 224.298352
## iter
         20 value 210.565003
         30 value 209.374594
## iter
  iter
         40 value 209.005659
         50 value 208.694566
## iter
## iter 60 value 208.661414
## final value 208.659917
## converged
## # weights: 51
## initial value 327.194675
## iter 10 value 215.357361
## iter
         20 value 202.093324
## iter
         30 value 196.436431
## iter
        40 value 191.039008
## iter 50 value 189.119545
## iter 60 value 188.216528
        70 value 186.699169
## iter
         80 value 185.359707
## iter
## iter 90 value 185.235803
## iter 100 value 185.224455
```

```
## final value 185.224455
## stopped after 100 iterations
## # weights: 71
## initial value 324.490832
## iter 10 value 213.087524
## iter 20 value 201.592461
## iter
        30 value 192.769099
## iter 40 value 188.441351
## iter 50 value 186.510738
## iter 60 value 185.925361
## iter 70 value 185.778995
## iter 80 value 185.731487
## iter 90 value 185.722514
## iter 100 value 185.721917
## final value 185.721917
## stopped after 100 iterations
## # weights: 91
## initial value 381.096388
## iter 10 value 214.256753
## iter 20 value 196.956116
        30 value 189.685802
## iter
## iter 40 value 183.549078
## iter
        50 value 180.793624
## iter 60 value 178.952874
## iter 70 value 176.648522
## iter 80 value 175.193246
## iter 90 value 173.883890
## iter 100 value 172.302710
## final value 172.302710
## stopped after 100 iterations
## # weights: 11
## initial value 339.976559
## iter 10 value 228.609896
## iter
        20 value 225.363976
        30 value 218.248119
## iter
## iter
        40 value 217.625030
## iter 50 value 217.620041
## final value 217.619916
## converged
## # weights: 31
## initial value 323.558373
## iter 10 value 237.015775
## iter
        20 value 209.468921
## iter
        30 value 202.223630
## iter 40 value 200.936049
## iter
        50 value 199.198686
## iter 60 value 198.240132
## iter 70 value 197.838546
## iter 80 value 197.800702
## iter 90 value 197.777872
## final value 197.777590
## converged
## # weights: 51
## initial value 339.679261
```

```
10 value 212.265906
## iter
         20 value 190.170701
## iter
## iter
         30 value 182.020348
## iter
         40 value 177.401428
## iter
         50 value 175.147769
## iter
        60 value 174.478250
         70 value 174.226673
## iter
## iter 80 value 173.873321
## iter 90 value 173.815926
## iter 100 value 173.809852
## final value 173.809852
## stopped after 100 iterations
## # weights: 71
## initial value 322.466518
## iter 10 value 209.574966
        20 value 179.906497
## iter
## iter 30 value 162.577960
         40 value 158.312712
## iter
## iter
        50 value 157.135466
## iter
        60 value 154.223626
        70 value 153.550726
## iter
## iter
         80 value 153.269771
## iter 90 value 153.041096
## iter 100 value 152.931962
## final value 152.931962
## stopped after 100 iterations
## # weights: 91
## initial value 339.568579
## iter
         10 value 208.177038
## iter
         20 value 184.942084
         30 value 166.545483
##
  iter
##
  iter
         40 value 149.164592
##
  iter
         50 value 143.579586
         60 value 140.747527
## iter
         70 value 139.305938
## iter
## iter
         80 value 138.331081
## iter 90 value 138.157481
## iter 100 value 137.214305
## final value 137.214305
## stopped after 100 iterations
## # weights: 11
## initial value 330.162087
## iter 10 value 229.468071
         20 value 225.301762
## iter
         30 value 218.510564
## iter
## iter 40 value 217.280652
## final value 217.274047
## converged
## # weights: 31
## initial value 322.086017
## iter 10 value 221.392776
         20 value 201.549606
## iter
## iter
         30 value 195.326567
        40 value 193.870474
```

```
## iter
         50 value 192.162448
         60 value 190.233054
## iter
         70 value 189.999526
## iter
## iter
         80 value 189.507499
## iter
        90 value 188.812256
## iter 100 value 188.454030
## final value 188.454030
## stopped after 100 iterations
## # weights: 51
## initial value 410.488848
## iter
        10 value 199.232964
## iter
         20 value 172.518569
## iter
         30 value 163.519049
## iter 40 value 150.235486
## iter
        50 value 148.232038
## iter 60 value 146.374973
## iter 70 value 144.632275
## iter 80 value 143.676874
## iter 90 value 142.176470
## iter 100 value 141.328860
## final value 141.328860
## stopped after 100 iterations
## # weights: 71
## initial value 473.516605
## iter
        10 value 201.460163
## iter
         20 value 174.336680
## iter
         30 value 152.760826
  iter
        40 value 145.047462
  iter
         50 value 141.622278
## iter
         60 value 136.517082
  iter 70 value 135.137912
##
## iter
        80 value 134.018454
## iter 90 value 133.902318
## iter 100 value 133.814255
## final value 133.814255
## stopped after 100 iterations
## # weights: 91
## initial value 378.011143
## iter 10 value 206.428238
## iter
         20 value 169.955299
## iter
         30 value 140.422451
## iter 40 value 130.481855
## iter
         50 value 122.717915
        60 value 119.338091
## iter
        70 value 118.667162
## iter
## iter
        80 value 118.260656
        90 value 118.093550
## iter 100 value 118.068466
## final value 118.068466
## stopped after 100 iterations
## # weights: 11
## initial value 326.646340
## iter 10 value 237.499176
## iter 20 value 217.650142
```

```
## iter 30 value 217.241673
## final value 217.238432
## converged
## # weights: 31
## initial value 356.052332
## iter 10 value 214.041931
## iter 20 value 202.781390
## iter 30 value 200.104233
## iter 40 value 197.440337
## iter 50 value 194.519327
## iter 60 value 192.651312
        70 value 192.496214
## iter
## iter 80 value 192.292551
## iter 90 value 192.140071
## iter 100 value 192.013009
## final value 192.013009
## stopped after 100 iterations
## # weights: 51
## initial value 339.797073
## iter 10 value 206.610603
## iter 20 value 178.773775
## iter
        30 value 164.883402
## iter 40 value 158.182869
## iter 50 value 153.262440
        60 value 152.412067
## iter
        70 value 152.261657
## iter
## iter 80 value 152.121379
## iter 90 value 151.420549
## iter 100 value 150.603379
## final value 150.603379
## stopped after 100 iterations
## # weights: 71
## initial value 346.055219
## iter 10 value 214.773623
        20 value 180.616204
## iter
## iter
        30 value 166.426919
        40 value 154.592103
## iter
  iter
        50 value 146.649993
        60 value 139.078319
##
  iter
        70 value 132.355374
## iter
## iter 80 value 128.871496
## iter 90 value 127.044213
## iter 100 value 126.326894
## final value 126.326894
## stopped after 100 iterations
## # weights: 91
## initial value 375.715901
## iter 10 value 209.328815
## iter 20 value 161.873459
## iter 30 value 139.205183
## iter 40 value 127.981881
## iter 50 value 117.644376
## iter 60 value 108.213106
## iter 70 value 106.527512
```

```
## iter 80 value 105.397387
## iter 90 value 105.101505
## iter 100 value 104.993505
## final value 104.993505
## stopped after 100 iterations
## # weights: 11
## initial value 320.021934
## iter 10 value 223.973375
## iter 20 value 216.617562
## iter 30 value 213.912195
## iter 40 value 213.608339
## final value 213.608071
## converged
## # weights: 31
## initial value 335.769389
## iter 10 value 214.402604
## iter 20 value 200.357565
         30 value 191.911637
## iter
## iter 40 value 181.980759
## iter 50 value 175.753637
## iter 60 value 175.473366
## iter
        70 value 175.230858
## iter
        80 value 174.567671
## iter 90 value 174.508382
## iter 100 value 174.484137
## final value 174.484137
## stopped after 100 iterations
## # weights: 51
## initial value 323.408090
## iter
        10 value 209.760658
## iter
         20 value 188.486096
## iter
         30 value 180.386310
## iter
        40 value 171.305663
## iter
         50 value 161.061821
## iter 60 value 153.617210
## iter
        70 value 150.480564
## iter 80 value 150.241335
## final value 150.241065
## converged
## # weights: 71
## initial value 417.519218
## iter 10 value 208.974081
## iter
         20 value 184.120511
## iter
         30 value 161.458981
## iter 40 value 152.417669
## iter
         50 value 147.496817
## iter
        60 value 140.642564
## iter 70 value 134.703784
## iter 80 value 131.381591
## iter 90 value 127.187923
## iter 100 value 125.865470
## final value 125.865470
## stopped after 100 iterations
## # weights: 91
```

initial value 296.978369 ## iter 10 value 202.550217 20 value 180.708111 ## iter ## iter 30 value 146.390962 ## iter 40 value 128.600880 50 value 116.941387 ## iter 60 value 105.282065 ## iter ## iter 70 value 96.819092 ## iter 80 value 92.538267 ## iter 90 value 89.142777 ## iter 100 value 86.229820 ## final value 86.229820 ## stopped after 100 iterations ## # weights: 11 ## initial value 318.047366 ## iter 10 value 220.752615 ## iter 20 value 218.008124 ## final value 218.004957 ## converged ## # weights: 31 ## initial value 314.911725 ## iter 10 value 211.861440 ## iter 20 value 207.984079 ## iter 30 value 204.983043 40 value 200.429723 ## iter 50 value 200.137245 ## iter iter 60 value 200.127805 ## ## iter 60 value 200.127803 ## iter 60 value 200.127803 ## final value 200.127803 ## converged ## # weights: 51 ## initial value 401.360435 ## iter 10 value 236.884260 20 value 206.983590 ## iter iter 30 value 201.092039 40 value 195.764474 ## iter iter 50 value 192.033230 60 value 187.708965 ## iter 70 value 186.937631 ## iter ## iter 80 value 186.864518 ## iter 90 value 186.844067 ## iter 100 value 186.843010 ## final value 186.843010 ## stopped after 100 iterations ## # weights: 71 ## initial value 344.680353 ## iter 10 value 219.531829 ## iter 20 value 203.311077 30 value 192.742575 ## iter ## iter 40 value 185.896907 50 value 184.286804 ## iter ## iter 60 value 183.678899 70 value 183.421605

```
## iter 80 value 182.592869
## iter 90 value 182.451271
## iter 100 value 182.436325
## final value 182.436325
## stopped after 100 iterations
## # weights: 91
## initial value 453.054768
## iter 10 value 222.621431
## iter
         20 value 194.665560
## iter 30 value 183.114470
        40 value 180.694961
## iter
        50 value 178.383856
## iter
## iter 60 value 176.407296
## iter 70 value 172.958984
## iter 80 value 172.351514
## iter 90 value 172.174462
## iter 100 value 172.009344
## final value 172.009344
## stopped after 100 iterations
## # weights: 11
## initial value 344.933261
## iter 10 value 227.592410
## iter 20 value 214.786749
## iter 30 value 214.076361
## final value 214.031903
## converged
## # weights: 31
## initial value 377.128568
## iter
        10 value 211.805686
## iter
         20 value 196.207406
         30 value 191.400189
##
  iter
##
  iter
         40 value 190.928492
## iter
         50 value 189.950459
## iter
         60 value 188.855223
        70 value 188.707531
## iter
## iter
        80 value 188.667393
## iter 90 value 188.652912
## final value 188.652604
## converged
## # weights: 51
## initial value 400.771235
## iter 10 value 204.431413
## iter
         20 value 189.123298
         30 value 180.665644
## iter
## iter
        40 value 178.297241
## iter
         50 value 174.989086
## iter
        60 value 173.599051
## iter 70 value 172.791544
## iter 80 value 172.259549
## iter 90 value 171.933199
## iter 100 value 171.698561
## final value 171.698561
## stopped after 100 iterations
## # weights: 71
```

```
## initial value 427.905179
## iter
        10 value 214.814794
## iter
         20 value 179.688159
## iter
         30 value 160.734485
## iter
         40 value 156.266170
## iter
        50 value 153.397031
## iter 60 value 151.924440
## iter 70 value 151.443124
## iter 80 value 150.586832
## iter 90 value 149.408824
## iter 100 value 148.386726
## final value 148.386726
## stopped after 100 iterations
## # weights: 91
## initial value 350.026683
## iter 10 value 206.713052
## iter 20 value 177.536418
         30 value 155.361327
## iter
## iter 40 value 148.221776
## iter 50 value 145.993714
## iter 60 value 144.865785
## iter 70 value 143.944855
## iter
        80 value 142.671206
## iter 90 value 141.141487
## iter 100 value 140.745864
## final value 140.745864
## stopped after 100 iterations
## # weights: 11
## initial value 394.430068
## iter 10 value 221.920937
        20 value 214.941201
## iter
## iter
         30 value 213.793675
## iter 40 value 213.652068
## final value 213.652063
## converged
## # weights: 31
## initial value 323.650092
## iter 10 value 217.209424
## iter
         20 value 204.231987
## iter
         30 value 199.953800
## iter
         40 value 198.361485
        50 value 196.184517
## iter
## iter
        60 value 192.366200
         70 value 191.346762
## iter
        80 value 191.024249
## iter
## iter 90 value 190.989450
## iter 100 value 190.986709
## final value 190.986709
## stopped after 100 iterations
## # weights: 51
## initial value 309.359923
## iter 10 value 208.005562
## iter
        20 value 185.269169
        30 value 170.363856
```

```
40 value 163.559775
## iter
## iter
         50 value 156.712336
## iter
         60 value 153.784868
## iter
         70 value 152.268223
## iter
         80 value 151.558686
## iter 90 value 150.676222
## iter 100 value 150.014099
## final value 150.014099
## stopped after 100 iterations
## # weights: 71
## initial value 314.955410
## iter 10 value 204.807558
## iter
         20 value 175.468183
## iter
         30 value 159.871983
## iter 40 value 153.218000
## iter 50 value 150.464644
## iter 60 value 149.687810
## iter 70 value 149.221350
## iter 80 value 148.860887
## iter 90 value 148.794152
## iter 100 value 148.744047
## final value 148.744047
## stopped after 100 iterations
## # weights: 91
## initial value 375.740351
## iter 10 value 207.508428
## iter
         20 value 164.638052
  iter
         30 value 134.183844
  iter
         40 value 120.440594
## iter
         50 value 114.082629
        60 value 111.466321
##
  iter
## iter
        70 value 110.665845
## iter 80 value 110.097960
## iter 90 value 109.920761
## iter 100 value 109.871276
## final value 109.871276
## stopped after 100 iterations
## # weights: 11
## initial value 323.849611
## iter 10 value 228.844292
## iter
         20 value 224.140837
         30 value 215.045315
## iter
## iter
         40 value 213.617912
## iter 50 value 213.612711
## final value 213.612489
## converged
## # weights: 31
## initial value 318.483337
## iter 10 value 210.002438
## iter 20 value 193.943963
## iter
        30 value 189.432761
         40 value 184.479692
## iter
         50 value 181.072336
## iter
## iter 60 value 180.642650
```

```
70 value 180.572156
## iter
         80 value 180.443266
## iter
## iter 90 value 180.349678
## iter 100 value 180.161892
## final value 180.161892
## stopped after 100 iterations
## # weights: 51
## initial value 326.395355
## iter 10 value 212.306947
## iter
        20 value 194.616465
         30 value 176.394878
## iter
        40 value 166.421785
## iter
## iter
        50 value 157.566096
## iter
        60 value 154.329329
## iter 70 value 154.051163
## iter 80 value 153.934169
## iter 90 value 153.855767
## iter 100 value 153.441888
## final value 153.441888
## stopped after 100 iterations
## # weights: 71
## initial value 386.523270
## iter 10 value 211.783287
## iter
        20 value 180.896193
         30 value 154.600547
## iter
        40 value 135.588024
## iter
  iter
         50 value 126.427647
##
##
  iter
        60 value 123.044203
##
  iter
         70 value 121.245321
## iter
         80 value 119.481000
## iter 90 value 118.337139
## iter 100 value 117.132144
## final value 117.132144
## stopped after 100 iterations
## # weights: 91
## initial value 385.346908
        10 value 196.381422
## iter
  iter
         20 value 171.357150
  iter
         30 value 152.234494
##
         40 value 138.257358
##
  iter
## iter
         50 value 124.829835
## iter 60 value 122.510780
## iter 70 value 121.102618
## iter 80 value 120.599249
## iter 90 value 120.416322
## iter 100 value 119.913710
## final value 119.913710
## stopped after 100 iterations
## # weights: 11
## initial value 318.295455
## iter 10 value 227.562171
## iter
        20 value 223.349262
## iter 30 value 223.312743
## final value 223.308895
```

```
## converged
## # weights: 31
## initial value 451.633889
## iter
        10 value 235.644246
## iter
        20 value 219.734149
## iter 30 value 206.080766
## iter 40 value 200.567563
## iter 50 value 193.367096
## iter 60 value 191.422833
## iter 70 value 190.757798
## iter 80 value 190.027319
## iter 90 value 189.372770
## iter 100 value 189.293793
## final value 189.293793
## stopped after 100 iterations
## # weights: 51
## initial value 380.752680
## iter 10 value 209.211198
## iter 20 value 185.689289
## iter 30 value 175.451003
## iter 40 value 167.788675
## iter 50 value 162.595132
## iter
        60 value 157.172140
## iter 70 value 145.053148
## iter 80 value 141.230213
## iter 90 value 139.976602
## iter 100 value 139.906633
## final value 139.906633
## stopped after 100 iterations
## # weights: 71
## initial value 302.077923
## iter 10 value 206.662705
## iter
        20 value 174.519752
        30 value 154.071280
## iter
## iter 40 value 145.513435
##
  iter
        50 value 137.264957
        60 value 125.082395
## iter
  iter
        70 value 116.028481
        80 value 113.881194
## iter
## iter 90 value 113.717940
## iter 100 value 113.702646
## final value 113.702646
## stopped after 100 iterations
## # weights: 91
## initial value 316.575972
## iter 10 value 213.910278
## iter 20 value 188.564136
## iter
        30 value 151.609371
## iter 40 value 137.157481
## iter 50 value 115.514623
## iter 60 value 103.643750
## iter 70 value 95.856428
## iter 80 value 88.260846
        90 value 83.467830
```

```
## iter 100 value 82.269413
## final value 82.269413
## stopped after 100 iterations
## # weights: 11
## initial value 320.276172
## iter 10 value 229.185696
## iter 20 value 226.838079
## iter 30 value 226.782465
## final value 226.782373
## converged
## # weights: 31
## initial value 328.932780
## iter 10 value 222.766326
## iter 20 value 212.027300
## iter 30 value 208.260987
## iter 40 value 206.208701
## iter 50 value 205.242955
## iter 60 value 205.168209
## iter 70 value 205.159539
## iter 80 value 205.159213
## final value 205.159204
## converged
## # weights: 51
## initial value 408.919196
## iter 10 value 217.491496
## iter
        20 value 201.988050
## iter
        30 value 197.588488
## iter 40 value 195.867024
## iter
        50 value 195.180488
## iter
        60 value 194.972555
## iter 70 value 194.938019
## final value 194.937597
## converged
## # weights: 71
## initial value 327.314774
## iter 10 value 220.592767
## iter
        20 value 199.199480
## iter
        30 value 190.650528
## iter 40 value 185.930064
        50 value 181.442591
## iter
## iter
        60 value 179.242564
## iter 70 value 178.898925
## iter 80 value 178.801034
## iter 90 value 178.767028
## final value 178.766415
## converged
## # weights: 91
## initial value 319.292552
## iter 10 value 216.905873
## iter 20 value 201.560819
## iter 30 value 186.792724
## iter 40 value 179.524873
## iter 50 value 173.120760
## iter 60 value 171.668649
```

```
## iter 70 value 171.056703
## iter
        80 value 170.743605
## iter 90 value 169.816403
## iter 100 value 168.099119
## final value 168.099119
## stopped after 100 iterations
## # weights: 11
## initial value 312.216694
## iter 10 value 235.579066
## iter 20 value 235.056771
        30 value 234.937433
## iter
## iter 40 value 231.539790
## iter 50 value 224.689910
## iter 60 value 223.730439
## final value 223.729952
## converged
## # weights: 31
## initial value 332.451752
## iter 10 value 222.360505
## iter
        20 value 210.133352
        30 value 203.850589
## iter
## iter 40 value 202.235514
## iter
         50 value 201.441278
## iter 60 value 200.589940
## iter 70 value 200.522391
## iter 80 value 200.481147
## iter 90 value 200.465869
## iter 100 value 200.464021
## final value 200.464021
## stopped after 100 iterations
## # weights: 51
## initial value 485.862545
        10 value 223.156117
## iter
## iter
         20 value 201.440320
         30 value 192.569679
## iter
  iter
         40 value 186.579543
         50 value 182.442691
## iter
  iter
         60 value 180.932528
         70 value 180.624968
## iter
        80 value 180.316354
## iter
## iter 90 value 179.257440
## iter 100 value 177.109929
## final value 177.109929
## stopped after 100 iterations
## # weights: 71
## initial value 423.985040
## iter 10 value 209.701228
## iter 20 value 188.149097
## iter 30 value 169.246488
## iter 40 value 158.982052
## iter
        50 value 153.781493
         60 value 150.494861
## iter
         70 value 149.661237
## iter
        80 value 149.231005
```

iter 90 value 148.497742 ## iter 100 value 147.985105 ## final value 147.985105 ## stopped after 100 iterations ## # weights: 91 ## initial value 363.195678 10 value 219.515428 ## iter ## iter 20 value 188.922183 ## iter 30 value 168.953602 ## iter 40 value 153.139605 50 value 144.959412 ## iter 60 value 142.382255 ## iter ## iter 70 value 141.274686 ## iter 80 value 140.494785 ## iter 90 value 139.763497 ## iter 100 value 138.477515 ## final value 138.477515 ## stopped after 100 iterations ## # weights: 11 ## initial value 303.119040 ## iter 10 value 233.966729 ## iter 20 value 224.626904 ## iter 30 value 223.616647 ## iter 40 value 223.352675 ## final value 223.352652 ## converged ## # weights: 31 ## initial value 407.914373 ## iter 10 value 224.934799 ## iter 20 value 210.071552 30 value 201.476595 ## iter ## iter 40 value 196.236847 ## iter 50 value 195.176211 ## iter 60 value 194.879060 70 value 194.854478 ## iter ## iter 80 value 194.763756 ## iter 90 value 194.723516 ## iter 100 value 194.676340 ## final value 194.676340 ## stopped after 100 iterations ## # weights: 51 ## initial value 320.875231 ## iter 10 value 217.987693 20 value 202.613032 ## iter ## iter 30 value 185.209493 ## iter 40 value 178.608648 ## iter 50 value 169.711371 ## iter 60 value 166.265264 ## iter 70 value 164.361846 80 value 163.587850 ## iter ## iter 90 value 163.525323 ## iter 100 value 163.504706 ## final value 163.504706 ## stopped after 100 iterations

```
## # weights: 71
## initial value 303.008883
## iter 10 value 212.556157
## iter
        20 value 185.998718
## iter
        30 value 165.139439
## iter 40 value 150.912916
## iter 50 value 146.054077
## iter 60 value 143.882452
## iter 70 value 141.216061
## iter 80 value 138.515560
## iter 90 value 135.361863
## iter 100 value 134.546884
## final value 134.546884
## stopped after 100 iterations
## # weights: 91
## initial value 334.555358
## iter 10 value 204.226020
## iter 20 value 171.305896
## iter 30 value 144.007912
## iter 40 value 121.725325
## iter 50 value 115.193466
## iter 60 value 112.136745
## iter 70 value 110.939838
## iter 80 value 110.065945
## iter 90 value 109.502551
## iter 100 value 108.311097
## final value 108.311097
## stopped after 100 iterations
## # weights: 11
## initial value 313.785704
## iter 10 value 237.022732
## iter 20 value 223.403041
## iter 30 value 223.336977
## final value 223.314821
## converged
## # weights: 31
## initial value 406.655904
## iter 10 value 228.399987
## iter
        20 value 217.676798
## iter
        30 value 209.446829
## iter
        40 value 202.045621
## iter 50 value 198.589237
## iter
        60 value 193.782618
## iter 70 value 192.644376
        80 value 192.430481
## iter
## iter 90 value 192.022198
## iter 100 value 191.667374
## final value 191.667374
## stopped after 100 iterations
## # weights: 51
## initial value 317.068598
## iter 10 value 210.711269
## iter
        20 value 181.225470
        30 value 163.418883
```

```
40 value 158.370658
## iter
         50 value 151.126939
## iter
## iter
         60 value 148.976852
## iter
         70 value 148.847549
## iter
         80 value 148.642106
## iter 90 value 148.437160
## iter 100 value 148.126045
## final value 148.126045
## stopped after 100 iterations
## # weights: 71
## initial value 336.092533
## iter 10 value 212.853879
## iter
         20 value 175.064837
## iter
         30 value 151.403747
## iter 40 value 136.759765
## iter 50 value 124.527373
## iter 60 value 115.643512
## iter 70 value 111.660992
## iter 80 value 110.926748
## iter 90 value 110.448724
## iter 100 value 109.236631
## final value 109.236631
## stopped after 100 iterations
## # weights: 91
## initial value 342.509884
## iter 10 value 214.646714
  iter
         20 value 176.975853
  iter
         30 value 145.197895
  iter
         40 value 121.679569
## iter
         50 value 112.927017
        60 value 108.870290
##
  iter
##
  iter
         70 value 104.198213
## iter 80 value 102.307086
## iter 90 value 101.852273
## iter 100 value 101.666828
## final value 101.666828
## stopped after 100 iterations
## # weights: 11
## initial value 317.800362
## iter 10 value 223.985647
## iter
         20 value 211.519067
         30 value 210.171663
## iter
## iter
         40 value 210.057988
## iter 40 value 210.057988
## iter 40 value 210.057988
## final value 210.057988
## converged
## # weights: 31
## initial value 366.198067
## iter 10 value 203.901257
## iter 20 value 197.125090
         30 value 190.391036
## iter
## iter 40 value 181.393801
         50 value 180.235777
```

```
## iter 60 value 180.232888
## iter
        60 value 180.232886
## iter 60 value 180.232886
## final value 180.232886
## converged
## # weights: 51
## initial value 322.036769
## iter 10 value 203.960807
## iter
        20 value 185.711119
## iter 30 value 166.920116
## iter 40 value 158.856137
## iter 50 value 143.553839
## iter 60 value 136.048380
## iter 70 value 134.799809
## iter 80 value 134.733120
## final value 134.727576
## converged
## # weights: 71
## initial value 349.348800
## iter 10 value 201.011802
## iter 20 value 172.245756
## iter
        30 value 156.889795
## iter 40 value 142.284069
## iter 50 value 131.585015
        60 value 118.599216
## iter
        70 value 111.719049
## iter
## iter
        80 value 111.268757
## iter 90 value 111.254686
## final value 111.254684
## converged
## # weights: 91
## initial value 443.102629
## iter
        10 value 200.285831
        20 value 162.905638
## iter
        30 value 140.102977
## iter
## iter
        40 value 127.768126
        50 value 117.367801
## iter
  iter
        60 value 109.531454
## iter
        70 value 102.564019
        80 value 92.594979
## iter
## iter 90 value 84.842857
## iter 100 value 78.277171
## final value 78.277171
## stopped after 100 iterations
## # weights: 11
## initial value 345.629986
## iter 10 value 236.470298
## iter 20 value 220.580318
## iter 30 value 214.071316
## final value 213.900149
## converged
## # weights: 31
## initial value 324.488107
## iter 10 value 231.861575
```

```
20 value 212.478069
## iter
## iter
         30 value 204.782947
## iter
        40 value 198.903857
## iter
         50 value 196.292316
## iter
         60 value 195.693489
        70 value 195.480921
## iter
## iter 80 value 195.464956
## final value 195.464705
## converged
## # weights: 51
## initial value 409.610182
## iter 10 value 218.099259
## iter
         20 value 196.792448
## iter
         30 value 191.386378
## iter 40 value 189.865965
## iter 50 value 189.333847
## iter 60 value 188.791533
## iter 70 value 186.224472
## iter 80 value 185.571293
## iter 90 value 185.543917
## iter 100 value 185.542949
## final value 185.542949
## stopped after 100 iterations
## # weights: 71
## initial value 367.829111
## iter 10 value 208.178578
  iter
         20 value 187.454313
  iter
         30 value 179.160344
  iter
         40 value 176.938881
  iter
         50 value 176.077588
##
        60 value 175.961351
##
  iter
##
  iter
         70 value 175.651885
## iter
        80 value 175.430005
## iter 90 value 175.372141
## iter 100 value 175.370192
## final value 175.370192
## stopped after 100 iterations
## # weights: 91
## initial value 320.566817
## iter 10 value 207.915659
## iter
         20 value 195.552892
         30 value 179.619411
## iter
## iter
         40 value 173.025853
         50 value 168.753863
## iter
## iter
         60 value 167.638498
## iter
         70 value 167.346269
## iter
        80 value 166.654376
## iter 90 value 165.460587
## iter 100 value 165.135253
## final value 165.135253
## stopped after 100 iterations
## # weights: 11
## initial value 315.806984
## iter 10 value 219.327276
```

```
## iter 20 value 211.102097
## iter 30 value 210.672451
## final value 210.649469
## converged
## # weights: 31
## initial value 323.090026
## iter 10 value 216.184779
## iter 20 value 200.558808
## iter
        30 value 196.330768
## iter 40 value 194.642792
## iter 50 value 194.231453
        60 value 193.332714
## iter
## iter 70 value 193.030914
## iter 80 value 192.922595
## iter 90 value 192.888907
## iter 100 value 192.751030
## final value 192.751030
## stopped after 100 iterations
## # weights: 51
## initial value 313.565685
## iter 10 value 207.147253
## iter 20 value 185.112726
## iter
        30 value 173.692572
## iter 40 value 166.483542
        50 value 163.295062
## iter
## iter 60 value 162.359190
  iter 70 value 160.609530
##
## iter 80 value 159.935809
## iter 90 value 159.804657
## iter 100 value 159.780375
## final value 159.780375
## stopped after 100 iterations
## # weights: 71
## initial value 371.690248
## iter 10 value 207.430741
## iter
        20 value 177.860746
        30 value 172.079258
## iter
  iter
        40 value 165.836180
  iter
        50 value 164.067451
##
        60 value 163.369676
## iter
## iter 70 value 163.291886
## iter 80 value 163.277409
## iter 90 value 163.276389
## iter 100 value 163.276257
## final value 163.276257
## stopped after 100 iterations
## # weights: 91
## initial value 493.377846
## iter 10 value 200.963816
## iter 20 value 168.547939
## iter 30 value 149.555937
## iter 40 value 133.884137
        50 value 125.449534
## iter
## iter 60 value 122.200739
```

```
## iter 70 value 120.936205
## iter
         80 value 120.563350
## iter 90 value 120.090901
## iter 100 value 117.152414
## final value 117.152414
## stopped after 100 iterations
## # weights: 11
## initial value 315.326256
## iter 10 value 224.765705
## iter 20 value 222.469940
         30 value 214.135078
## iter
## iter 40 value 210.235107
## iter 50 value 210.106710
## final value 210.106199
## converged
## # weights: 31
## initial value 305.651647
## iter 10 value 210.293773
## iter 20 value 193.351394
## iter
         30 value 187.935366
## iter 40 value 183.263409
## iter
         50 value 181.206177
## iter
         60 value 179.552150
## iter 70 value 179.530857
## iter 80 value 179.528237
## iter 90 value 179.527787
## final value 179.527104
## converged
## # weights: 51
## initial value 342.543130
## iter 10 value 203.630009
## iter
         20 value 177.930647
## iter
         30 value 159.445422
         40 value 148.731087
## iter
         50 value 143.921790
## iter
  iter
         60 value 142.119742
         70 value 141.754285
## iter
  iter
         80 value 141.644445
        90 value 141.553160
## iter 100 value 141.550839
## final value 141.550839
## stopped after 100 iterations
## # weights: 71
## initial value 325.847050
## iter 10 value 202.282046
         20 value 174.034724
## iter
## iter
         30 value 150.234865
## iter 40 value 133.537139
## iter 50 value 128.906936
## iter 60 value 126.769731
## iter 70 value 126.508948
        80 value 126.294959
## iter
## iter 90 value 126.220416
## iter 100 value 126.193348
```

```
## final value 126.193348
## stopped after 100 iterations
## # weights: 91
## initial value 303.722990
## iter 10 value 203.317149
## iter
        20 value 163.691444
         30 value 125.028428
## iter
## iter 40 value 113.750244
        50 value 108.103595
## iter
## iter 60 value 99.318461
## iter 70 value 97.198568
## iter 80 value 93.321336
## iter 90 value 87.875387
## iter 100 value 85.711402
## final value 85.711402
## stopped after 100 iterations
## # weights: 11
## initial value 352.741663
## iter 10 value 225.821806
## iter 20 value 221.853073
        30 value 214.237083
## iter
## iter 40 value 210.347133
## iter
        50 value 210.064947
## iter 60 value 210.063076
## final value 210.062831
## converged
## # weights: 31
## initial value 361.095952
## iter
        10 value 212.250846
## iter
         20 value 203.172063
         30 value 196.776444
##
  iter
##
  iter
         40 value 190.657771
##
  iter
         50 value 185.387771
## iter
         60 value 177.061999
        70 value 174.169823
## iter
## iter
        80 value 173.359360
## iter 90 value 172.833759
## iter 100 value 172.264532
## final value 172.264532
## stopped after 100 iterations
## # weights: 51
## initial value 380.154708
## iter 10 value 206.953543
## iter
         20 value 184.960011
## iter
         30 value 169.390326
## iter 40 value 161.975361
## iter
         50 value 156.638730
## iter
        60 value 151.188039
## iter 70 value 149.463018
## iter 80 value 148.516125
## iter 90 value 147.889123
## iter 100 value 146.755767
## final value 146.755767
## stopped after 100 iterations
```

```
## # weights: 71
## initial value 356.958202
## iter 10 value 210.898096
## iter
        20 value 191.991288
## iter
        30 value 169.266301
## iter 40 value 154.760797
## iter 50 value 142.232532
## iter 60 value 135.141281
## iter 70 value 130.341705
## iter 80 value 125.057733
## iter 90 value 121.974350
## iter 100 value 120.563370
## final value 120.563370
## stopped after 100 iterations
## # weights: 91
## initial value 355.145241
## iter 10 value 201.958302
## iter 20 value 166.974821
## iter 30 value 143.258333
## iter 40 value 118.587401
## iter 50 value 110.266440
## iter
        60 value 104.107987
## iter 70 value 102.038075
## iter 80 value 101.353986
## iter 90 value 101.115075
## iter 100 value 100.847382
## final value 100.847382
## stopped after 100 iterations
## # weights: 11
## initial value 375.913288
## iter 10 value 235.255845
## iter
        20 value 230.749340
## iter
        30 value 230.695868
        40 value 230.192883
## iter
        50 value 225.662211
##
  iter
  iter
        60 value 225.230509
        70 value 224.787949
## iter
  iter
        80 value 224.541581
## iter 90 value 224.519319
## iter 100 value 224.517053
## final value 224.517053
## stopped after 100 iterations
## # weights: 31
## initial value 323.143818
## iter 10 value 219.387109
        20 value 205.559348
## iter
## iter
        30 value 198.948496
## iter 40 value 188.080757
## iter 50 value 184.689702
## iter 60 value 184.348213
## iter 70 value 184.322664
## iter 80 value 184.209536
## iter 90 value 184.202504
## iter 100 value 184.064583
```

```
## final value 184.064583
## stopped after 100 iterations
## # weights: 51
## initial value 325.879101
## iter 10 value 210.398823
        20 value 183.041418
## iter
## iter
         30 value 167.260549
## iter 40 value 155.443317
        50 value 145.769798
## iter
## iter 60 value 141.156342
## iter 70 value 141.122439
## final value 141.122309
## converged
## # weights: 71
## initial value 333.543324
## iter 10 value 211.567687
## iter 20 value 180.339823
         30 value 160.641263
## iter
## iter 40 value 147.226667
## iter 50 value 137.952058
## iter 60 value 132.189495
## iter 70 value 127.249250
## iter
        80 value 125.647355
## iter 90 value 124.960245
## iter 100 value 123.868624
## final value 123.868624
## stopped after 100 iterations
## # weights: 91
## initial value 320.647092
## iter
        10 value 203.648314
         20 value 162.411577
## iter
## iter
         30 value 129.125237
## iter
        40 value 113.037928
## iter
         50 value 102.171346
## iter 60 value 97.801074
## iter
        70 value 88.644524
        80 value 77.301368
## iter
## iter 90 value 75.157482
## iter 100 value 75.006112
## final value 75.006112
## stopped after 100 iterations
## # weights: 11
## initial value 323.222197
## iter 10 value 226.709155
## iter
        20 value 224.547602
## iter 30 value 224.427265
## final value 224.427241
## converged
## # weights: 31
## initial value 330.936485
## iter 10 value 224.045834
         20 value 213.085598
## iter
## iter
         30 value 210.532286
        40 value 208.426296
```

```
## iter 50 value 208.290420
## iter 60 value 208.288254
## final value 208.288150
## converged
## # weights: 51
## initial value 327.241724
## iter 10 value 230.238682
## iter 20 value 200.375168
## iter
        30 value 194.761009
## iter 40 value 193.170369
## iter 50 value 191.990434
        60 value 191.604307
## iter
## iter 70 value 191.573214
## iter 80 value 191.571182
## iter 80 value 191.571181
## iter 80 value 191.571181
## final value 191.571181
## converged
## # weights: 71
## initial value 354.632513
## iter 10 value 226.889711
## iter 20 value 201.037957
## iter
        30 value 188.792621
## iter 40 value 183.553814
        50 value 180.567797
## iter
## iter 60 value 179.362311
## iter 70 value 178.844955
## iter 80 value 178.418112
## iter 90 value 177.714354
## iter 100 value 177.490190
## final value 177.490190
## stopped after 100 iterations
## # weights: 91
## initial value 345.240667
## iter 10 value 226.327004
## iter
        20 value 210.541253
        30 value 193.846841
## iter
  iter
        40 value 184.553099
  iter
        50 value 179.373967
##
        60 value 177.086500
## iter
## iter 70 value 173.580211
## iter 80 value 171.891026
## iter 90 value 170.921024
## iter 100 value 170.333870
## final value 170.333870
## stopped after 100 iterations
## # weights: 11
## initial value 353.656477
## iter 10 value 234.576528
## iter 20 value 230.057669
## iter 30 value 224.893530
## iter 40 value 221.363976
## iter 50 value 221.281668
## final value 221.281626
```

```
## converged
## # weights: 31
## initial value 369.458082
## iter
        10 value 221.143999
## iter
        20 value 207.591553
## iter 30 value 202.063622
## iter 40 value 198.579589
## iter 50 value 197.408671
## iter 60 value 197.057007
## iter 70 value 196.818982
## iter 80 value 196.645404
## iter 90 value 196.591921
## iter 100 value 196.590589
## final value 196.590589
## stopped after 100 iterations
## # weights: 51
## initial value 316.136597
## iter 10 value 207.488781
## iter 20 value 189.721840
## iter 30 value 179.370452
## iter 40 value 175.489114
## iter 50 value 174.464830
## iter
        60 value 174.287934
## iter 70 value 174.008382
## iter 80 value 173.915473
## iter 90 value 173.906184
## iter 100 value 173.905140
## final value 173.905140
## stopped after 100 iterations
## # weights: 71
## initial value 453.428596
## iter 10 value 212.929532
## iter 20 value 177.267231
        30 value 168.159301
## iter
## iter 40 value 158.631545
  iter
        50 value 148.514875
        60 value 146.894500
## iter
  iter
        70 value 145.997394
## iter
        80 value 145.345309
## iter 90 value 144.923725
## iter 100 value 143.967521
## final value 143.967521
## stopped after 100 iterations
## # weights: 91
## initial value 585.398680
## iter 10 value 204.444793
## iter 20 value 175.843865
## iter
        30 value 160.893930
## iter 40 value 154.730876
## iter 50 value 149.818544
## iter 60 value 148.614896
## iter 70 value 147.674770
## iter 80 value 144.193789
        90 value 139.241098
```

```
## iter 100 value 138.122587
## final value 138.122587
## stopped after 100 iterations
## # weights: 11
## initial value 316.791635
## iter 10 value 231.834373
## iter 20 value 223.873067
## iter 30 value 221.176644
## iter 40 value 220.888544
## final value 220.888519
## converged
## # weights: 31
## initial value 322.378505
## iter 10 value 211.863163
## iter 20 value 200.374817
        30 value 199.958136
## iter
## iter 40 value 199.193852
## iter 50 value 197.032871
## iter 60 value 196.085375
## iter 70 value 195.843943
## iter 80 value 193.857534
## iter 90 value 192.473117
## iter 100 value 192.288072
## final value 192.288072
## stopped after 100 iterations
## # weights: 51
## initial value 366.015939
## iter 10 value 207.383157
## iter
         20 value 182.017589
## iter
         30 value 172.155790
        40 value 170.179619
##
  iter
##
  iter
         50 value 167.745111
## iter
        60 value 166.552154
## iter 70 value 165.126074
## iter 80 value 163.060986
## iter 90 value 162.131240
## iter 100 value 162.118761
## final value 162.118761
## stopped after 100 iterations
## # weights: 71
## initial value 414.132766
## iter 10 value 213.793243
## iter
         20 value 185.588753
         30 value 176.301519
## iter
## iter 40 value 168.174449
## iter
        50 value 159.772418
## iter 60 value 154.770808
## iter 70 value 152.616293
## iter 80 value 149.227231
## iter 90 value 148.342372
## iter 100 value 147.956165
## final value 147.956165
## stopped after 100 iterations
## # weights: 91
```

```
## initial value 311.231008
## iter
        10 value 205.616053
         20 value 169.144584
## iter
## iter
         30 value 141.273017
## iter
         40 value 118.783339
         50 value 106.998705
## iter
        60 value 101.313443
## iter
## iter 70 value 99.127744
## iter 80 value 98.252448
## iter 90 value 97.915223
## iter 100 value 97.340023
## final value 97.340023
## stopped after 100 iterations
## # weights: 11
## initial value 346.237464
## iter 10 value 251.168949
## iter 20 value 221.363758
## iter 30 value 220.864460
## final value 220.847344
## converged
## # weights:
## initial value 314.325735
## iter 10 value 222.592117
## iter 20 value 208.643738
         30 value 199.127824
## iter
        40 value 190.778731
## iter
  iter
         50 value 185.295954
##
##
  iter
        60 value 184.315721
##
  iter
         70 value 184.098030
## iter
         80 value 183.664786
        90 value 183.391583
## iter 100 value 182.683658
## final value 182.683658
## stopped after 100 iterations
## # weights: 51
## initial value 483.770337
        10 value 204.939156
## iter
  iter
         20 value 191.125257
## iter
         30 value 175.385070
         40 value 169.404598
## iter
## iter
         50 value 166.007039
## iter 60 value 163.743240
## iter 70 value 160.689235
## iter 80 value 158.590326
## iter 90 value 157.647876
## iter 100 value 157.512515
## final value 157.512515
## stopped after 100 iterations
## # weights: 71
## initial value 378.372862
## iter 10 value 218.743929
         20 value 179.161298
## iter
         30 value 161.587478
## iter
        40 value 155.746612
```

```
## iter 50 value 148.003977
## iter 60 value 140.011590
## iter 70 value 138.880322
## iter 80 value 137.814388
## iter 90 value 137.175673
## iter 100 value 136.387416
## final value 136.387416
## stopped after 100 iterations
## # weights: 91
## initial value 296.221297
## iter 10 value 198.117032
## iter 20 value 166.553269
## iter 30 value 139.854514
## iter 40 value 119.347582
## iter 50 value 104.881381
## iter 60 value 98.428978
## iter 70 value 94.880571
## iter 80 value 93.738263
## iter 90 value 93.328897
## iter 100 value 93.162993
## final value 93.162993
## stopped after 100 iterations
## # weights: 11
## initial value 356.653730
## iter 10 value 258.233225
## iter 20 value 246.830427
## iter 30 value 243.047522
## iter 40 value 242.650265
## final value 242.650224
## converged
```

```
n.tatol.time = proc.time() - n.start.time
n.tatol.time[3]
```

```
## elapsed
## 84.17
```

```
nnetFit
```

```
## Neural Network
##
##
  538 samples
##
     8 predictor
##
     2 classes: 'N', 'Y'
##
## Pre-processing: centered (8), scaled (8)
  Resampling: Cross-Validated (10 fold, repeated 5 times)
   Summary of sample sizes: 484, 484, 484, 484, 484, 484, ...
   Resampling results across tuning parameters:
##
##
##
     size decay
                  ROC
                             Sens
                                                    ROC SD
                                                                Sens SD
                                         Spec
##
                             0.8165714
                                                                0.08698571
     1
           0e+00
                  0.8308129
                                        0.6472515
                                                    0.05798757
##
     1
           1e-04
                  0.8333258
                             0.8194286
                                         0.6470175
                                                    0.05714836
                                                                0.08472510
##
     1
           1e-03
                             0.8320000
                                         0.6346199
                  0.8361688
                                                    0.04877146
                                                                0.07495994
##
     1
           1e-02
                  0.8424712
                             0.8451429
                                         0.6196491
                                                    0.05041169
                                                                0.05229908
     1
##
           1e-01
                  0.8423826
                             0.8434286
                                         0.6175439
                                                    0.05096933
                                                                0.05391464
##
     3
                  0.7805530
                             0.8000000
                                         0.6121053
                                                    0.09411257
           0e+00
                                                                0.09090228
     3
##
           1e-04
                  0.8031671
                             0.8285714
                                         0.5823392 0.06281368
                                                                0.07526159
     3
##
           1e-03
                  0.8046074
                             0.8051429
                                         0.6128070
                                                    0.06989823
                                                                0.08633208
##
     3
           1e-02
                  0.8184227
                             0.8137143
                                         0.6240936
                                                    0.05380421
                                                                0.06712766
     3
##
           1e-01
                  0.8275789
                             0.8285714
                                        0.6323977
                                                    0.04692167
                                                                0.06323238
##
     5
           0e+00
                  0.7778413
                             0.7857143
                                         0.6093567
                                                    0.06659153
                                                                0.07813955
     5
##
           1e-04
                  0.7841738
                             0.8028571
                                         0.6025731
                                                    0.05837126
                                                                0.07597759
     5
##
                             0.7994286
                                         0.5896491
                                                    0.05973696
           1e-03
                  0.7793642
                                                                0.07945881
##
     5
           1e-02
                  0.7995372
                             0.8097143
                                         0.6180117
                                                    0.05866029
                                                                0.06647174
##
     5
           1e-01
                  0.8135589
                             0.8148571
                                         0.6057310
                                                    0.04789353
                                                                0.05750324
##
     7
                  0.7787761
                             0.8142857
                                         0.5821637
                                                    0.05283325
           0e+00
                                                                0.06196827
##
     7
           1e-04
                  0.7737644
                             0.7885714
                                         0.5983626
                                                    0.04983286
                                                                0.06190102
     7
                                         0.6034503
##
           1e-03
                  0.7675948
                             0.7891429
                                                    0.07443360
                                                                0.06372839
##
     7
           1e-02
                  0.7730359
                             0.7891429
                                         0.5761988
                                                    0.06751535
                                                                0.07389672
##
     7
                  0.8092531
                                         0.6066667
           1e-01
                             0.8125714
                                                    0.04897674
                                                                0.06247965
##
     9
           0e+00
                  0.7632247
                             0.7805714
                                         0.5829240
                                                    0.06442872
                                                                0.06961308
##
     9
           1e-04
                  0.7570894
                             0.7800000
                                         0.6011696
                                                    0.05635148
                                                                0.06884542
##
     9
           1e-03
                  0.7618346
                             0.7811429
                                         0.5900585
                                                    0.06814220
                                                                0.08155302
##
     9
           1e-02
                  0.7648939
                             0.7851429
                                         0.5834503
                                                    0.05805882
                                                                0.05807978
##
     9
                  0.8016859
                             0.8034286
                                         0.5928655
                                                    0.05974861
                                                                0.07270349
##
     Spec SD
##
     0.12368584
##
     0.12313342
##
     0.12003643
##
     0.09858835
##
     0.09887845
##
     0.13630774
##
     0.12268386
##
     0.12199032
##
     0.13456668
##
     0.10235033
##
     0.11006981
##
     0.12383962
##
     0.12290020
##
     0.10154202
##
     0.10032433
```

```
##
     0.11212758
##
     0.10823915
     0.11847226
##
##
     0.12556006
##
     0.10993060
     0.11453473
##
##
     0.09870360
##
     0.12209885
     0.11395199
##
##
     0.11439266
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were size = 1 and decay = 0.01.
```

plot(nnetFit)

nnetClass=predict(nnetFit, newdata=testing)
nnetClass

```
nnetProbs <- predict(nnetFit, newdata = testing, type = "prob")
head(nnetProbs)</pre>
```

```
## N Y
## 2 0.9671650 0.03283495
## 3 0.1876943 0.81230570
## 4 0.9676413 0.03235873
## 6 0.8848205 0.11517945
## 8 0.2615700 0.73842997
## 9 0.2332571 0.76674293
```

histogram(~nnetProbs\$N|testing\$Class, xlab = "Probability of Diabetes")


```
n.c = confusionMatrix(data = nnetClass, testing$Class)
n.Accuracy = n.c$overall[1]
s.kappa = n.c$overall[2]
#plot ROC
nnetROC <- roc(testing$Class, nnetProbs[, 1], levels(testing$Class))
nnetROC$auc</pre>
```

```
## Area under the curve: 0.8058
```

```
plot(nnetROC, type = "S", print.thres = .5, col='green')
```



```
##
## Call:
## roc.default(response = testing$Class, predictor = nnetProbs[, 1], controls = levels(testi
ng$Class))
##
## Data: nnetProbs[, 1] in 150 controls (testing$Class N) > 80 cases (testing$Class Y).
## Area under the curve: 0.8058
```

Compare models

```
#Check time spent on each model
cbind(RF.1 = rf.total.time.1[3], RF.2= rf.total.time.2[3], Boost = boost.total.time[3], SVM= v.
tatol.time[3], NeuralNet = n.tatol.time[3])
```

```
## RF.1 RF.2 Boost SVM NeuralNet
## elapsed 44.04 69.92 25.33 23.25 84.17
```

```
#Compare
res = resamples(list(mdl1 = rfFit2, mdl2 = gbmFit, mdl3= svmFit, mdl4 = nnetFit))
summary(res)
```

```
##
## Call:
## summary.resamples(object = res)
##
## Models: mdl1, mdl2, mdl3, mdl4
## Number of resamples: 50
##
## ROC
##
          Min. 1st Qu. Median
                               Mean 3rd Qu.
                                              Max. NA's
## mdl1 0.6692 0.8064 0.8440 0.8421 0.8814 0.9571
                                                      0
## mdl2 0.7038 0.8117 0.8474 0.8429 0.8763 0.9429
                                                      0
## mdl3 0.7338 0.8227 0.8556 0.8455 0.8797 0.9323
                                                      0
## mdl4 0.6977 0.8173 0.8451 0.8425 0.8703 0.9349
                                                      0
##
## Sens
##
          Min. 1st Qu. Median
                               Mean 3rd Ou.
                                              Max. NA's
## mdl1 0.6571 0.8000 0.8571 0.8446 0.8857 0.9714
## mdl2 0.7143 0.8357 0.8857 0.8731 0.9143 0.9714
                                                      0
## mdl3 0.7429 0.8286 0.8714 0.8686 0.9143 0.9714
                                                      0
## mdl4 0.7429 0.8000 0.8286 0.8451 0.8857 0.9714
                                                      0
##
## Spec
##
          Min. 1st Qu. Median
                               Mean 3rd Ou.
                                              Max. NA's
## mdl1 0.3684 0.5263 0.6316 0.6120 0.6842 0.8421
                                                      0
## mdl2 0.2632 0.4868 0.5789 0.5774 0.6316 0.8333
## mdl3 0.3684 0.5263 0.5950 0.5994 0.6667 0.7895
                                                      0
## mdl4 0.3684 0.5789 0.6111 0.6196 0.6842 0.8947
                                                      0
```

```
# Visualizing Resamples
splom(res, metric = "ROC") #scatter plot
```

ROC

Scatter Plot Matrix

parallelplot(res, metric = "ROC")

dotplot(res, metric = "ROC")

Test to see if there are differences between the models

```
rocDiffs <- diff(res, metric = "ROC") # mdl2 and mdl3 have least difference
summary(rocDiffs)
```

```
##
## Call:
## summary.diff.resamples(object = rocDiffs)
##
## p-value adjustment: bonferroni
## Upper diagonal: estimates of the difference
## Lower diagonal: p-value for H0: difference = 0
##
## ROC
##
        mdl1 mdl2
                        mdl3
                                   mdl4
             -0.0008480 -0.0034177 -0.0004018
## mdl1
## mdl2 1
                        -0.0025698 0.0004461
## mdl3 1
             1
                                    0.0030159
## mdl4 1
             1
                        1
```

```
#Visualizing the Diffrences
dotplot(rocDiffs, metric = "ROC")
```


Based on this analysis, the difference between the models is SVM performs better