Série 1

Notation. On dénote par D un domaine générique de \mathbb{R}^n , $n \geq 1$.

Exercice 1. Soit $D \subset \mathbb{R}^n$ un domaine et $f: D \to \mathbb{R}^m$ de classe \mathcal{C}^1 sur D. Que veut dire $x \mapsto Df|_x$ est continue (en termes de ϵ, δ)?

Exercice 2. On a vu que si une fonction $f: D \to \mathbb{R}$ est \mathcal{C}^2 , pour tout $x \in D$ on a que

$$f(x + h) = f(x) + (\nabla f(x))^{T} h + \frac{1}{2} h^{T} H f|_{x} h + o(h^{2}),$$

où Hf dénote la Hessienne de f et $|o(h^2)|/||h||_{\mathbb{R}^n}^2 \underset{\stackrel{h\to 0}{\neq}}{\longrightarrow} 0$. Que peut-on dire pour une fonction \mathcal{C}^3 et pour des fonctions à valeurs dans \mathbb{R}^m ?

Exercice 3. (Fonctions inverses)

On rappelle le Théorème de la fonction inverse:

Si $f: D \to \mathbb{R}^n$ est une fonction \mathcal{C}^1 sur un domaine $D \subset \mathbb{R}^n$ et si $Df\big|_x \in \mathcal{M}_n(\mathbb{R}) := \mathcal{M}_{n,n}(\mathbb{R})$ est inversible on a qu'il existe un voisinage ouvert U de x dans D et un voisinage ouvert V de y:=f(x) tel que la restriction $f\big|_U: U \to V$ soit une bijection avec inverse $f^{-1}: V \to U$ de classe \mathcal{C}^1 , de dérivée $D(f^{-1})\big|_y = (Df\big|_x)^{-1}$.

- (1) Donner une bijection différentiable dont l'inverse n'est pas différentiable.
- (2) Montrer qu'il existe un voisinage ouvert U' de x où $Df|_{x'}$ est inversible pour tout $x' \in U'$.
- (3) Montrer qu'avec un changement de variable affine, on peut supposer que x = 0 et que $Df|_x = \mathrm{Id}$.
- (4) Montrer que l'existence de l'inverse $f^{-1}:V\to U$ est équivalente à l'existence d'un point fixe de $x\mapsto x+y-f(x)=x$ sur U pour tout $y\in V$.
- (5) Montrer que cette application est une contraction si U est suffisamment petit.
- (6) Montrer que cette existence suit du théorème du point fixe de Banach.

Exercice 4. Soit $z \in \mathbb{C}$ avec $z \neq -1$. Montrer que $\operatorname{Re}\left(\frac{1}{1+z}\right) = \frac{1}{2}$ si et seulement si |z| = 1.

Exercice 5. Démontrer le théorème fondamental de l'algèbre:

Tout polynôme non constant $P(z) = \sum_{k=0}^{n} a_k z^k$ a au moins une racine, c'est-à-dire qu'il existe $z_0 \in \mathbb{C}$ tel que $P(z_0) = 0$.

- (1) Montrer que $|P(z)| \to \infty$ quand $|z| \to \infty$, c'est-à-dire que pour tout $M \ge 0$ il existe $R \ge 0$ tel que pour tout $z \in \mathbb{C} \setminus D(0, R)$ on a $|P(z)| \ge M$.
- (2) Montrer que |P(z)| a un minimum sur \mathbb{C} .
- (3) Si on suppose par l'absurde que $\min_{z \in \mathbb{C}} |P(z)| = |P(z_0)| > 0$ montrer qu'on peut (par changement de variable) supposer que $z_0 = 0$ et que $P(z_0) = 1$ et que donc $P(z) = 1 + z^k Q(z)$ pour un certain $k \ge 1$ et un polynôme Q avec $Q(0) \ne 0$.
- (4) Montrer qu'il existe alors z' tel que |P(z')| < 1 et en déduire le théorème.
- (5) Montrer (en utilisant la division Euclidenne) que tout polynôme P de degré n peut s'écrire comme $P(z) = \alpha \prod_{k=1}^{n} (z z_k)$ avec $\alpha \in \mathbb{C}$ et où z_1, \ldots, z_n sont les racines de P.

Exercice 6. Soit $P(z) = \sum_{k=0}^n a_k z^k \in \mathbb{C}[z]$ un polynôme de degré n avec $a_n = 1$ et avec racines $z_1, \ldots, z_n \in \mathbb{C}$ et soit $Q(z) = \sum_{k=0}^n b_k z^k \in \mathbb{C}[z]$, avec $b_n = 1$, le polynôme avec racines z_1^2, \ldots, z_n^2 . Montrer que si $a_1 + a_3 + a_5 + \ldots$ et $a_0 + a_2 + a_4 + a_6 + \ldots$ sont des nombres réels, alors $b_0 + b_1 + \ldots$ est réel aussi.