This problem set covers material from Week 2, dates 2/17- 2/21. Textbook problems (if assigned) can be found at the end of the corresponding chapter.

Instructions: Write or type complete solutions to the following problems and submit answers to the corresponding Canvas assignment. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A general rubric for homework problems appears on the final page of this assignment.

Monday 2/17

1. We are continuously flipping a fair coin. We stop when the absolute value of the difference between the number of Heads flips and the number of Tails flipped is 3 (e.g. TTT or THTHTTT). Let's find the probability p that we stop in **at most 6 tosses**.

Define the event A_i as the event that we stop on the *i*-th toss, for $i \geq 1$.

- (a) For each i of interest, find $P(A_i)$ (provide some brief justification/reasoning for each).
- (b) Using part (a), find p. Provide justification where necessary.
- 2. 1.49 (Hint: define some events whose unions or intersections probabilities will be easy to find!)
- 3. 1.55 (No need to simplify)

Wednesday 2/19

TBD

Friday 2/21

TBD

Due: Tuesday 2/25, 11:59pm

General rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no
	doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor
	arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key
	justification for why the solution is valid. Alternatively, the solution
	is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant com-
	ponent of the problem or makes a significant mistake. Alternatively,
	in a multi-part problem, a majority of the solutions are correct and
	well-written, but one part is missing or is significantly incorrect.
2	The solution is either correct but not adequately written, or it is
	adequately written but overlooks a significant component of the
	problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Al-
	ternatively, the solution briefly indicates the correct answer, but
	provides no further justification.
0	Either the solution is missing entirely, or the author makes no non-
	trivial progress toward a solution (i.e. just writes the statement of
	the problem and/or restates given information).
Notes:	For problems with multiple parts, the score represents a holistic
	review of the entire problem. Additionally, half-points may be used
	if the solution falls between two point values above.