Algorithmic Verification of Linear Dynamical Systems

Toghrul Karimov

Saarland University & Max Planck Institute for Software Systems

What is a decision problem?

Decision problem: a yes/no question

A decision problem is decidable: there exists an algorithm that halts on all inputs and outputs the correct answer

What is a decision problem?

Decision problem: a yes/no question

A decision problem is decidable: there exists an algorithm that halts on all inputs and outputs the correct answer

Problem 1

Given $p \in \mathbb{Z}[X_1, \dots, X_d]$, does there exist $x_1, \dots, x_d \in \mathbb{R}$ such that $p(x_1, \dots, x_d) = 0$?

What is a decision problem?

Decision problem: a yes/no question

A decision problem is decidable: there exists an algorithm that halts on all inputs and outputs the correct answer

Problem 1

Given $p \in \mathbb{Z}[X_1, \dots, X_d]$, does there exist $x_1, \dots, x_d \in \mathbb{R}$ such that $p(x_1, \dots, x_d) = 0$?

Problem 2

Given $p \in \mathbb{Z}[X_1, \dots, X_d]$, does there exist $x_1, \dots, x_d \in \mathbb{Z}$ such that $p(x_1, \dots, x_d) = 0$?

Linear dynamical systems

A *linear dynamical system* is given by (M, s) where

- \circ $M \in \mathbb{Q}^{d \times d}$ is the *update matrix*
- \circ $s \in \mathbb{Q}^d$ is the *initial configuration*

Linear dynamical systems

A linear dynamical system is given by (M, s) where

- \circ $M \in \mathbb{Q}^{d \times d}$ is the *update matrix*
- \circ $s \in \mathbb{Q}^d$ is the *initial configuration*

The *trajectory* of (M, s) is the sequence $\langle s, Ms, M^2s, M^3s, \ldots \rangle$

Linear dynamical systems

A linear dynamical system is given by (M, s) where

- ∘ $M ∈ \mathbb{Q}^{d \times d}$ is the *update matrix*
- \circ $s \in \mathbb{Q}^d$ is the *initial configuration*

The *trajectory* of (M, s) is the sequence $\langle s, Ms, M^2s, M^3s, \ldots \rangle$

Verification of LDS

Find algorithms that

- 1. take (M, s) and a property φ , and
- 2. decide whether $\langle s, Ms, M^2s, M^3s, \ldots \rangle$ satisfies φ

Example of LDS: linear loops

initialise x_1, x_2 while $\neg P(x_1, x_2)$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Example of LDS: linear loops

initialise x_1, x_2 while $\neg P(x_1, x_2)$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

 $T = \{(x_1, x_2) : P(x_1, x_2)\}, \quad s \text{ is the initial value of } (x_1, x_2)$ $(x_1, x_2) = M^n s \text{ after } n \text{ iterations}$

Example of LDS: linear loops

initialise x_1, x_2 while $\neg P(x_1, x_2)$:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Loop terminates $\Leftrightarrow \langle s, Ms, M^2s, \ldots \rangle$ reaches **T**

Linear loops, cont'd

Termination problem for linear loops ≡

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Linear loops, cont'd

Termination problem for linear loops \equiv

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Many sound but incomplete approaches exist: invariants, ranking functions etc.

Linear loops, cont'd

Termination problem for linear loops \equiv

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Many sound but incomplete approaches exist: invariants, ranking functions etc.

Branching in the loop update ⇒ termination undecidable

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

 $\langle \textbf{\textit{s}}, \textbf{\textit{Ms}}, \textbf{\textit{M}}^2 \textbf{\textit{s}}, \textbf{\textit{M}}^3 \textbf{\textit{s}}, \ldots \rangle$

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

 $\langle \textbf{\textit{s}}, \textbf{\textit{Ms}}, \textbf{\textit{M}}^2\textbf{\textit{s}}, \textbf{\textit{M}}^3\textbf{\textit{s}}, \ldots \rangle$

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

 $\langle \textbf{s}, \textbf{M}\textbf{s}, \textbf{M}^2\textbf{s}, \textbf{M}^3\textbf{s}, \ldots \rangle$

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

 $\langle \textbf{s}, \textbf{M}\textbf{s}, \textbf{M}^2\textbf{s}, \textbf{M}^3\textbf{s}, \ldots \rangle$

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

 $\langle \textbf{s}, \textbf{M}\textbf{s}, \textbf{M}^2\textbf{s}, \textbf{M}^3\textbf{s}, \ldots \rangle$

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Given (M, s) and a hyperplane H, decide whether $M^n s \in H$ for some n

Decidable in dimension $d \le 4$, famously open in dimension d = 5

$$\langle s, Ms, M^2s, M^3s, \ldots \rangle$$

Skolem Problem, cont'd

We want to decide whether $\exists n \colon c^{\top} M^n s = 0$

The sequence $u_n := c^T M^n s$ is a *linear recurrence sequence*

Skolem Problem, cont'd

We want to decide whether $\exists n \colon c^{\top} M^n s = 0$

The sequence $u_n := c^T M^n s$ is a *linear recurrence sequence*

Examples:
$$u_n = 3u_{n-1} + u_{n-2} - 2u_{n-3}$$
 and

$$u_n = u_{n-1} + u_{n-2} = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n + \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n$$

Skolem Problem, cont'd

We want to decide whether $\exists n \colon c^{\top} M^n s = 0$

The sequence $u_n := c^T M^n s$ is a *linear recurrence sequence*

Examples: $u_n = 3u_{n-1} + u_{n-2} - 2u_{n-3}$ and

$$u_n = u_{n-1} + u_{n-2} = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n + \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$$

Skolem Problem, LRS version

Given an LRS $(u_n)_{n\in\mathbb{N}}$, decide whether $u_n=0$ for some n

Our contributions

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Our contributions

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Call a set T tame if it can be obtained through finitely many set operations from semialgebraic sets that either (i) have intrinsic dimension 1, or (ii) are contained in a 3-dimensional subspace

Our contributions

Reachability Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$ and a semialgebraic target T, decide whether $\langle s, Ms, M^2s, \ldots, \rangle$ reaches T

Call a set *T tame* if it can be obtained through finitely many set operations from semialgebraic sets that either (i) have intrinsic dimension 1, or (ii) are contained in a 3-dimensional subspace

Theorem

The Reachability Problem is decidable for tame *T*

Uses classical number-theoretic tools: Baker's theorem, its *p*-adic version, heights of algebraic numbers

Generalising reachability

Suppose we have (M, s) and semialgebraic T_1, \ldots, T_m

Suppose we have (M, s) and semialgebraic T_1, \ldots, T_m

We can ask whether the trajectory of (M, s)

○ visits T₁ infinitely often

Suppose we have (M, s) and semialgebraic T_1, \ldots, T_m

We can ask whether the trajectory of (M, s)

- visits T₁ infinitely often
- \circ eventually gets trapped in T_2

Suppose we have (M, s) and semialgebraic T_1, \ldots, T_m

We can ask whether the trajectory of (M, s)

- visits T₁ infinitely often
- \circ eventually gets trapped in T_2
- stays in T_1 until it visits T_2

Suppose we have (M, s) and semialgebraic T_1, \ldots, T_m

We can ask whether the trajectory of (M, s)

- visits T₁ infinitely often
- eventually gets trapped in T₂
- stays in T_1 until it visits T_2

Model-Checking Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$, semialgebraic T_1, \ldots, T_m and an ω -regular property φ over T_1, \ldots, T_m , decide whether the orbit $\langle s, Ms, M^2s, \ldots \rangle$ satisfies φ

Our contributions, cont'd

Model-Checking Problem

Given $M \in \mathbb{Q}^{d \times d}$, $s \in \mathbb{Q}^d$, semialgebraic T_1, \ldots, T_m and an ω -regular property φ over T_1, \ldots, T_m , decide whether the orbit $\langle s, Ms, M^2s, \ldots \rangle$ satisfies φ

Theorem

The Model-Checking Problem is decidable for tame targets

Main idea: the sequence $(\mathbb{1}(M^n s \in T))_n$ is *toric*

A toric word is the coding of an orbit of a rotation on a *k*-dimensional torus with respect to open sets

AABBBA

Automaton on toric words

A toric word is the coding of an orbit of a rotation on a *k*-dimensional torus with respect to open sets

Theorem

Given a toric word u and an automaton \mathcal{A} , it is decidable whether \mathcal{A} accepts u

Boundaries of decidability

Theorem

For even the simplest non-tame targets, (un)decidability of the Reachability Problem would entail major breakthroughs either in Diophantine approximation, or regarding the Skolem Problem

Boundaries of decidability

Theorem

For even the simplest non-tame targets, (un)decidability of the Reachability Problem would entail major breakthroughs either in Diophantine approximation, or regarding the Skolem Problem

Hartmanis-Stearns Conjecture

Any number whose nth binary digit can be computed in time O(n) must be either rational or transcendental

Number theory + toric words + automata theory is now a well-known powerful combination

Number theory + toric words + automata theory is now a well-known powerful combination

New results within the **DynAMiCs** project:

An algorithm for solving integer linear programming problems with some variables restricted to $2^{\mathbb{N}}$ and some to $3^{\mathbb{N}}$ (SODA25)

Number theory + toric words + automata theory is now a well-known powerful combination

New results within the **DynAMiCs** project:

- An algorithm for solving integer linear programming problems with some variables restricted to $2^{\mathbb{N}}$ and some to $3^{\mathbb{N}}$ (SODA25)
- ▶ An algorithm for deciding the monadic second-order theory of $\langle \mathbb{N}; <, a_1^{\mathbb{N}}, \dots, a_m^{\mathbb{N}} \rangle$, where $a_i \in \mathbb{N}$ (LICS24)

Number theory + toric words + automata theory is now a well-known powerful combination

New results within the **DynAMiCs** project:

- An algorithm for solving integer linear programming problems with some variables restricted to $2^{\mathbb{N}}$ and some to $3^{\mathbb{N}}$ (SODA25)
- An algorithm for deciding the monadic second-order theory of $\langle \mathbb{N}; <, a_1^{\mathbb{N}}, \dots, a_m^{\mathbb{N}} \rangle$, where $a_i \in \mathbb{N}$ (LICS24)

"Wir müssen wissen, wir werden wissen."

- David Hilbert, 1930

Verification of LDS via o-minimality

O-minimality of $\langle \mathbb{R}; <, +, \cdot, \exp(\cdot) \rangle \Rightarrow$ every first-order definable subset of \mathbb{R}^k has finitely many connected components

Robust Safety for LDS is decidable

Given (M, s) and T, it is decidable whether there exists $\varepsilon > 0$ such that $(M^n \cdot B(s, \varepsilon))_n$ avoids T