Metoda najmniejszych kwadratów

Poszukujemy aproksymacji funkcji danej w m punktach

za pomocą wielomianu aproksymującego stopnia n

$$W(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Niewiadome współczynniki a_0, a_1, \dots, a_n znajdziemy rozwiązując poniższy układ równań

$$\begin{bmatrix} S_{00} & S_{01} & \dots & S_{0n} \\ S_{10} & S_{11} & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ S_{n0} & \dots & \dots & S_{nn} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} T_0 \\ T_1 \\ \vdots \\ T_n \end{bmatrix}$$

w którym poszczególne elementy znajdziemy za pomocą następujących wzorów

$$T_k = \sum_{i=0}^{m-1} x_i^k y_i, \quad k = 0, 1, ..., n$$

Wskazówka. Rozmiar układu równań zależy od stopnia wielomianu aproksymującego. Dla n=1 mamy układ 2x2, dla n=2 układ 3x3 itd.

PRZYKŁAD:

Wykorzystując metodę najmniejszych kwadratów znaleźć najlepszą aproksymację dla funkcji danej w następujących punktach:

Wskazówka. Punkty do aproksymacji do swojego sprawozdania wyznaczacie sami na bazie funkcji podanych w waszych przykładach. Jako argumenty x wszyscy przyjmujecie $\{-1, -0.5, 0, 0.5, 1\}$, zaś wartości y wyznaczacie ze swojej funkcji. Np. dla funkcji $\sqrt{x+2}$ byłoby to $\{1, 1.2247, 1.4142, 1.5811, 1.7320\}$.

Rozwiązanie:

Do obliczeń przyjmujemy m = 4, n = 2.

Wskazówka. Wasz program ma działać dla dowolnego n i m.

Wyniki dla czytelności przedstawimy w tabelce:

l.p.	x ⁰	x^1	x^2	<i>x</i> ³	<i>x</i> ⁴	$x^0 \cdot y$	$x \cdot y$	$x^2 \cdot y$
1	1	1	1	1	1	6	6	6
2	1	2	4	8	16	19	38	76
3	1	3	9	27	81	40	120	360
4	1	4	16	64	256	69	276	1104
Σ	4	10	30	100	354	134	440	1546
	S ₀₀	$S_{01} = S_{10}$	$S_{02} = S_{20}$ = S_{11}	$S_{12} = S_{21}$	S ₂₂	T_0	T_1	T_2

Wskazówka. Wartości zaznaczone kolorem niebieskim i czerwonym wyznaczone są na bazie wzorów zamieszczonych na początku.

Stad układ równań:

$$\begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 134 \\ 440 \\ 1546 \end{bmatrix}$$

Po rozwiązaniu układu otrzymujemy:

$$a_0 = 1$$
, $a_1 = 1$, $a_2 = 4$

$$W(x) = 1 + x + 4x^2$$

Wskazówka. Układ rozwiązujecie za pomocą eliminacji Gaussa.

Korzystając z wielomianu aproksymującego W(x) możemy wyznaczyć rozwiązania dla dowolnego argumentu x, z zakresu aproksymowanej funkcji.

$$W(2) = 19$$

$$W(2.5) = 28.5$$

Założenia do programu:

- realizuje metodę najmniejszych kwadratów
- ma działać dla dowolnego stopnia wielomianu aproksymującego n (wpływ stopnia na wynik będzie podlegał analizie w sprawozdaniu) oraz dowolnej liczby punktów m opisujących funkcję
- dane wejściowe to kolejne x_i oraz y_i wyznaczone na bazie funkcji z własnego przykładu oraz x w którym poszukujemy rozwiązania
- program zwraca wartość wielomianu aproksymującego dla konkretnego, podanego przez użytkownika x (podobnie jak w interpolacji)