CS1231 Reference Notes (midterms)

~github/reidenong/cheatsheets~, AY23/24 S1

Chapter 1. Propositional Logic

Rules of Inference:

Modus Ponens	$\begin{array}{c} p \rightarrow q \\ p \\ \vdots \\ q \end{array}$
Modus Tollens	$\begin{array}{c} p \to q \\ \sim q \\ \therefore \sim p \end{array}$
Generalization	$p\\ \therefore p \lor q$
Specialization	$p \wedge q$ $\therefore p$
Conjunction	$egin{array}{c} p \ q \ & \therefore p \wedge q \end{array}$
Elimination	$\begin{array}{c} p \lor q \\ \sim p \\ \therefore q \end{array}$
Transitivity	$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \vdots p \rightarrow r \end{array}$
Proof by Division into Cases	$\begin{array}{c} p \vee q \\ p \rightarrow r \\ q \rightarrow r \\ \therefore r \end{array}$
Contradiction	$\begin{array}{c} \sim p \rightarrow F \\ \therefore p \end{array}$

Chapter 3. Quantified Statements Expressions of if-then statements:

r(x) sufficient condition for $s(x)$	$r(x) \to s(x)$
r(x) necessary condition for $s(x)$	$\neg r(x) \to \neg s(x)$ $s(x) \to r(x)$
r(x) only if $s(x)$	$r(x) \to s(x)$

Truth Set:

If P(x) is a predicate and x has domain D, the truth set of P(x) is the set of all elements in D that make P(x) true.

Universal Statements:

 $\forall x \in D, Q(x)$ where D is the domain of x and Q(x) is a predicate.

Existential Statements:

 $\exists x \in D, Q(x)$ where D is the domain of x and Q(x) is a predicate.

Validity of Arguments:

An argument is valid if and only if the truth of its premises implies the truth of its conclusion.

Soundness of Arguments:

An argument is sound if and only if it is valid and all its premises are true.

Showing Invalidity of Arguments:

- 1. Show there exist a counterexample of predicates such that all premises are true but the conclusion is false.
 - May be easier to work backwards, ie. find how the ∴ can be false before constructing premises
- 2. Boolean algebra

Rule of Inference for Quantified Statements:

Universal Instantiation	$\forall x \in D, P(x)$ $\therefore P(c) \text{ if } c \in D$
Universal	$P(c)$ for every $c \in D$
Generalization	$\therefore \forall x \in D, P(x)$
Existential Instantiation	$\exists x \in D, P(x)$ $\therefore P(c) \text{ for some } c \in D$
Existential	$P(c)$ for some $c \in D$
Generalization	$\therefore \exists x \in D, P(x)$

Proving Existential Statements

 $\exists x \in D, P(x)$:

- 1. Constructive proof to find a $x \in D$
- 2. Constructive proof by giving directions to find such an $x \in D$

Disproving Universal Conditional Statement

 $\forall x \in D, P(x) \to Q(x)$:

1. Show negation is true by counterexample, ie. prove $\exists x \in D, P(x) \land \neg Q(x)$

Chapter 5. Sets

Set Builder Notation:

The set of all x such that P(x) is true is denoted by

$$A = \{ x \in D \mid P(x) \}$$

where D is the domain of x and P(x) is a predicate.

Set Replacement Notation:

The set of all x such that P(x) is true is denoted by

$$A = \{ f(x) \mid x \in D \}$$

where D is the domain of x and f(x) is a function.

Roster Notation:

Listing all elements, we have

$$A = \{a, b, c, ...\}$$

Disjoint Sets:

Two sets A and B are disjoint if and only if they have no elements in common, ie. $A \cap B = \emptyset$.

Power Sets

The power set of a set P(A) is the set of all subsets of A. For a set A with n elements, P(A) has 2^n (Theorem 5.2.4)

For all sets A and B,

$$P(A \cap B) = P(A) \cap P(B)$$

However, there exists A and B such that

$$P(A \cup B) \neq P(A) \cup P(B)$$

Proving with Sets

- 1. Work with the universal set U, convert to boolean algebra and then back to sets eg. let $z \in U$, then $z \in \{Given Set\}$...
- 2. Work with set notation

Chapter 6. Relations

Definition of a relation:

A relation R from a set A to a set B is a subset of the Cartesian product AxB.

Given statement P(x,y), we have

$$\forall (x,y) \in A \times B, ((x,y) \in R \leftrightarrow P(x,y))$$
$$\forall x \in A, \forall y \in B, (xRy \leftrightarrow P(x,y))$$

Inverse Relations:

Given a relation R from a set A to a set B, the inverse relation $R^{\{-1\}}$ from B to A is defined as

$$R^{-1} = \{ (y, x) \in B \times A : (x, y) \in R \}$$
$$\forall x \in A, \forall y \in B, (xRy \leftrightarrow yR^{-1}x)$$

Domain, Co-Domain and Range:

Domain of R is the set of all first elements of ordered pairs in R, ie.

$$\{x \in A : \exists y \in B, (x, y) \in R\}$$

Co-domain of R is the set of all second elements of ordered pairs in R, ie. B

Range of R is the set of all second elements of ordered pairs in R, ie.

$$\{y \in B : \exists x \in A, (x, y) \in R\}$$

Compositions of Relations:

Relation starting in R and ending in S

- = Composition of R with S
- $= S \circ R$

$$\forall x \in A, \forall z \in C, (x(S \circ R)z \leftrightarrow \exists y \in B, (xRy \land ySz))$$

Composition is associative, ie.

$$(S \circ R) \circ T = S \circ (R \circ T) = S \circ R \circ T$$

Inverse of Composition is given as

$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$

Properties of Relations

Reflexive	$\forall x \in A, xRx$
Irreflexive	$\forall x \in A, (x,x) \notin R$
Symmetric	$\forall x \in A, \forall y \in A, (xRy \to yRx)$
Anti-Sym	$\forall x \in A, \forall y \in A, ((xRy \land yRx) \to x = y)$
Asymmetric	$\forall x \in A, \forall y \in A, (xRy \rightarrow y\cancel{R}x)$ ie. Anti-Sym and Irreflexive
Transitive	$\forall x,y,z \in A, ((xRy \land yRz) \to xRz)$
Equivalence	Reflexive, Symmetric, Transitive
Partial Order	Reflexive, Anti-Sym, Transitive

Transitive Closure:

The transitive closure of a relation R on a set A is the smallest transitive relation on A that contains R.

Partitions

A partition of a set A is a collection of non-empty, mutually disjoint subsets of A such that every element of A is in exactly one of these subsets.

 λ is a partiton of set A if

- 1. λ is a set of non-empty subsets of A
- 2. Every element of A is in exactly one element of λ , ie.

$$\forall x \in A, \exists S \in \lambda (x \in S)$$

$$\forall x \in A, \forall S, T \in \lambda ((x \in S \land x \in T) \to S = T)$$

Equivalence Relations

Relations induced by set partitions are equivalence relations.

The set of all elements $x \in A$ such that A is \sim -related to x is known as the *equivalence class* of x and is denoted by [x].

$$[a] = \{x \in A : x \sim a\}$$

$$\forall x \in A, \forall y \in A, ([x] = [y] \leftrightarrow x \sim y)$$

Order Relations

Maximal Element	c is a maximal element iff $\forall x \in A, c \preccurlyeq x \rightarrow c = x$	
	ie. no larger element exists	
Largest / Greatest/ Maximum Element	c is a largest element iff $\forall x \in A, x \preccurlyeq c$ ie. all other elements are smaller	

Minimal Element	c is a minimal element iff $\forall x \in A, x \preccurlyeq c \rightarrow c = x$
	ie. no smaller element exists
Smallest / Least / Minimum Element	c is a smallest element iff $\forall x \in A, c \preccurlyeq x$ ie. all other elements are larger

Compatible and Comparable

Consider a partial order \preccurlyeq on a set A, with $a, b \in A$.

a, b comparable $\leftrightarrow a \preccurlyeq b \lor b \preccurlyeq a$ a, b compatible $\leftrightarrow \exists c \in A, (a \preccurlyeq c \land b \preccurlyeq c)$

Definition of a Total Order:

$$\forall x, y \in A, (xRy \lor yRx)$$

Appendix

Laws of Boolean Algebra:

Commutative Law	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative Law	$p \wedge (q \wedge r) \equiv (p \wedge q) \wedge r$	$p \vee (q \vee r) \equiv (p \vee q) \vee r$
Distributive Law	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
Identity Law	$p \wedge T \equiv p$	$p \vee F \equiv p$
Negation Law	$p \wedge {\scriptstyle \sim} p \equiv F$	$p \vee {\scriptstyle \sim} p \equiv T$
Double Negation Law	$\sim (\sim p) \equiv p$	
Idempotent Law	$p \wedge p \equiv p$	$p\vee p\equiv p$
Universal Bound Law	$p \vee T \equiv T$	$p \wedge F \equiv F$
De Morgan's Law	${\scriptstyle \sim (p \wedge q) \equiv \sim p \vee \sim q}$	${\scriptstyle \sim (p \vee q) \equiv \sim p \wedge \sim q}$
Absorption Law	$p \wedge (p \vee q) \equiv p$	$p \vee (p \wedge q) \equiv p$
Negation of T and F	$\sim T \equiv F$	$\sim F \equiv T$
Implication Law	$p \to q \equiv {\sim} p \vee q$	
Contrapositive Law	$p \to q \equiv {\sim} q \to {\sim} p$	
Converse Law	$\operatorname{converse}(p \to q) \equiv q \to p$	
Inverse Law	$\mathrm{inverse}(p \to q) \equiv {\scriptstyle \sim} p \to {\scriptstyle \sim} q$	

Consensus Theorem	$(p \wedge q) \vee (\neg p \wedge r) \vee (q \wedge r) \equiv (p \wedge q) \vee (\neg p \wedge r)$
Proof	$\begin{split} (p \wedge q) \vee \underline{(q \wedge r)} \vee (\neg p \wedge r) \\ &\equiv (p \wedge q) \vee \underline{\{(\neg p \vee p) \wedge (q \wedge r)\}} \vee (\neg p \wedge r) \\ &\equiv (p \wedge q) \vee (p \wedge q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge r) \\ &\equiv (p \wedge q) \vee (\neg p \wedge r) \end{split}$

Laws of Set Algebra

Laws of Set Higebra		
Commutative Law	$A \cup B = B \cup A$	$A\cap B=.B\cap A$
Associative Law	$A \cup (B \cup C) = (A \cup B) \cup C$	$A\cap (B\cap C)=(A\cap B)\cap C$
Distributive Law	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$
Identity Law	$A \cup \emptyset = A$	$A \cap U = A$
Complement Law	$A\cup\overline{A}=U$	$A\cap\overline{A}=\emptyset$
Idempotent Law	$A \cup A = A$	$A \cap A = A$
Universal Bound Law	$A \cup U = U$	$A\cap\emptyset=\emptyset$
De Morgan's Law	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$
Absorption Law	$A \cup (A \cap B) = A$	$A\cap (A\cup B)=A$
Double Complement Law	$\overline{\overline{A}} = A$	
Complement of Universal Set Law	$\overline{U}=\emptyset$	
Set Difference Law	$A \setminus B = A \cap \overline{B}$	

Quick Power Set References

$P(\emptyset)$	$\{\emptyset\}=\{\{\}\}$
$P(\{a\})$	$\{\emptyset,\{a\}\}$
$P(\{a,b\})$	$\{\emptyset,\{a\},\{b\},\ \{a,b\}\}$
$P(\{a,b,c\})$	$\{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}$
$P(\{a,b,c,d\})$	$\{\emptyset, \{a\}, \{b\}, \{c\}, \{d\},$ $\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\},$ $\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\},$ $\{a, b, c, d\}\}$