

Sovereign Individual System (SIS): Own Your Server and ID

An Autonomous Digital Platform for Sovereign Individuals

Ying.Liu@csulb.edu

Facts

- Truly decentralized and autonomous
- No company/government/blockchain
- No dependency on DNS or any Internet infrastructure
- Not for profit
- Still an early stage design

Sovereign Definition

- For people and nation-state (Cambridge English Dictionary https://dictionary.cambridge.org/dictionary/english/sovereign)
 - having the highest power or being completely independent.
- For the digital world (this research)
 - having the highest power and being completely independent.

The Future Institution

- Prediction: Sovereign Individual is the institution of information age (1997)
 - Individuals use digital currency
 - Individual mental capital is the most valuable assets
 - Individuals decide the place to live/work and tax
- Sovereign individual applications/products
 - PGP email
 - Git and the creation of Linux
 - Cryptocurrency and DEFI
- "On the dimension of technology, the conflicts has two poles: Al and crypto.
 ... If Al is communist, crypto is libertarian" Preface by Peter Thiel

MASTERING
THE TRANSITION TO THE
INFORMATION AGE

JAMES DALE DAVIDSON

AND

LORD WILLIAM REES-MOGG

AUTAGES ET THE GREAT RECKONING

CHOPPERHONOLING

Digital Challenges (Why SIS)

- Sovereign conflicts between individual and nation-state
 - Privacy
 - Free expression
 - Fiat currency and digital account: privacy, access, and seigniorage (inflation)
- Sovereign conflicts among nation-states
 - National security concerns: TikTok
 - Inconsistent policies: EU GDPR
- Sovereign conflicts between individual and service providers
 - Privacy
 - Deny of service/access
 - Data ownership
- Too much noise or false information

Sources of Challenges

- No sovereign digital assets
- No sovereign digital identity
- No decentralized autonomous applications
- No control of sent/received information

The First Principle: Own Your Server and ID (OYSI)

No sovereign digital assets: Own your server

- Computer
- Storage
- Network

Store your ID in your server that represents the required digital resources that

- Available
- Reliable
- Scalable

Feasibility of OYSI

- Cheap, reliable and scalable digital assets
 - Cloud computing is cheap, reliable and scalable on demand
 - Virtual computers (firecracker) restart in 0.2 seconds
 - Safe runtimes for extensions in WASM
- Sovereign ID
 - Public-private key pairs
 - Key management
 - Biometric key access and recovery (it is safe because of OYSI)
 - Multiparty key recovery

SIS Solution

No sovereign digital identity: Own your identity

- Safe
- Easy to use
- East to recover

No decentralized autonomous applications: Autonomous/decentralized applications

- Open source
- Safe (isolated)
- Trustable (authenticated)

No control of sent/received information: pull-based communication protocol

- End to end security
- Authenticated message
- Pull-based protocol

Foundation of SIS

Central Theorem in Cryptography

"any function you'd like to compute, that you can compute with a trusted authority, you can also do without a trusted authority".

source: Dan Boneh
https://www.coursera.org/learn/crypto/lecture/ubmLN/what-is-cryptography

Source: https://www.researchgate.net/figure/Applications-of-cryptography_fig3_344949733

Sovereign Individual System (SIS)

- Sovereign Individual
 - Self-owned computation, storage, and communication
 - Self-sovereign identity: public key
 - Self-controlled, autonomous, optionally signed digital assists: messages, blogs, web sites,,,
- Group of Sovereign Individuals
 - Web of trust or hierarchical trust: group/organization
 - Organization-owned private network, End-to-End secure communication
 - Consensus-based applications: currency, DAO
 - Collaboration applications: payments, events,,,

SIS: the Platform

Client: smart phone, PC, Pad Function: UI and offline access Server: computer, storage, network Function: reliable and scalable digital assets

Software

- Sovereign id
- Asset management
- Autonomous applications
- Other app clients

Backup Storage

SIS Network

- Three Types
 - everyone brings a server
 - no servers
 - some bring servers
- Network protocol
 - Routing is based on two-tier ID: Self-sovereign ID -> Data Name -> Named Data
 - Two types of trust: web of trust (direct and transitive) and hierarchical trust (DNS, organization etc.)
 - Pull communication protocol for named data

Network Type (1): everyone brings a server

• Pros: reliable service, simple protocol

Cons: cost and redundancy

Network Type (2): no servers

- Example: Smart Phone Ad Hoc Network (SPAN) .
- Pros: direct communication with device WIFI or Bluetooth (Firechat).
- Cons: unreliable, uncommon

Network Type (3): some bring servers

- It is the network type for most applications
- Pros: flexibility and economy

Two Types of Network Protocols

- Internet-based: customized Matrix protocol (https://matrix.org/)
 - Mature and ready-to-use
 - Compatible
- Named data networking (https://named-data.net/)
 - ID-name binding
 - Decentralized, independent overlay networks
 - More efficient with name-based cache, pull protocol and multicasting
 - More than 10 years R&D

An Overlay Network

An Example App: Sovereign Individual Chat (SiChat)

Evolution

- Centralized
- Federated
- User-centric
- Self-sovereign identity / DID
- Sovereign Individual System: ID and more
 - System
 - Trust model
 - Network

Contributions

- Own your server and ID
 - Autonomous: self-sovereign ID is not enough, SI needs a system (computation, storage and network) to have the highest power and be completely independent
 - ID management: easy, safe and reliable biometric key recovery
- SIS network
 - Trust on sovereign ID (web of trust or hierarchical trust)
 - Scalable E2E security and authentication: cryptocurrency and DAO
 - Ready to try: efficient decentralized NDN protocols