2025 / Spring Semester

Topics on Quantum Computing

Lecture Note – Quantum Phase Estimation

Junghee Ryu

KISTI

- ☐ The Quantum Phase Estimation (QPE) algorithm is one of the most important tools in quantum computing maybe the most important.
 - https://arxiv.org/abs/quant-ph/9511026
- ☐ The QPE finds an eigenvalue of a unitary operator, given its eigenstate
 - We are given a unitary operator U and one of its eigenstate (eigenvector) $|\psi\rangle$.
 - a unitary operator is a square matrix
 - its eigenvalues has a magnitude of 1.
 - eigenvectors can be always represented in a normalized way.
 - The master equation then becomes $U|\psi\rangle=e^{i\phi}|\psi\rangle$, where ϕ is the phase of an eigenvalue.

Estimating phase of an eigenvalue of a unitary operator

$$U|\psi
angle=e^{i\phi}|\psi
angle$$

□ The core of QPE algorithm is to secure a quantum circuit that conducts the following transformation (note that $|0\rangle$ here = $|0\rangle^{\otimes n}$) using $|\psi\rangle$

$$|0\rangle \rightarrow |\theta\rangle$$
 $(\phi = 2\pi\theta, 0 \le \theta < 1)$

- We could then get $|\theta\rangle$ directly measuring the 2nd register: Estimation register
- How can we express a scalar value θ with a quantum state $|\theta\rangle$? \rightarrow Binary string

$$0.15625=1 imes 10^{-1}+5 imes 10^{-2}+6 imes 10^{-3}+2 imes 10^{-4}+5 imes 10^{-5}$$
 Decimal fraction $0.00101=0 imes 2^{-1}+0 imes 2^{-2}+1 imes 2^{-3}+0 imes 2^{-4}+1 imes 2^{-5}$ Binary fraction

(e.g.) 0.3125 (decimal) = 0.0101 (binary), and we can encode this with |0101⟩.

Estimating phase of an eigenvalue of a unitary operator

 \square Mission: Finding the operator that makes $|0\rangle \rightarrow |\theta\rangle$ with $|\psi\rangle$

$$ext{QFT} | heta
angle = rac{1}{\sqrt{2^n}} \sum_{k=0} e^{2\pi i heta k} |k
angle$$

- If we have the state in the right-hand side, *θ* can be estimated with inverse QFT!
- Recall that U and $|\psi\rangle$ are given (see the slide #2). Then, the factor $e^{2\pi i\theta k}$ can be obtained by applying U k times to $|\psi\rangle$ as follows,

$$|U^k|\psi
angle=e^{2\pi i heta k}|\psi
angle$$

■ Now, if we have an operator that makes $|\psi\rangle\otimes|k\rangle \rightarrow (U^k|\psi\rangle)\otimes|k\rangle$, then the right-hand side state in the first equation of this slide can be obtained (see more details in the next slide).

- \square Mission: Finding the operator that makes $|0\rangle \rightarrow |\theta\rangle$ with $|\psi\rangle$ (con't)
 - With an operator that makes the transformation: $|\psi\rangle\otimes|k\rangle$ \rightarrow $(U^k|\psi\rangle)\otimes|k\rangle$, we get the right-hand side state in the first equation of slide 4, as follows:

$$rac{1}{\sqrt{2^n}}\sum_{k=0}|\psi
angle|k
angle
ightarrowrac{1}{\sqrt{2^n}}\sum_{k=0}U^k|\psi
angle|k
angle=|\psi
anglerac{1}{\sqrt{2^n}}\sum_{k=0}e^{2\pi i heta k}|k
angle$$

Estimating phase of an eigenvalue of a unitary operator

- Mission: Finding the operator that makes $|0\rangle \rightarrow |\theta\rangle$ with $|\psi\rangle$ (con't)
 - With an operator that makes the transformation: $|\psi\rangle\otimes|k\rangle\rightarrow (U^k|\psi\rangle)\otimes|k\rangle$, we get the right-hand side state in the first equation of slide 4, as follows:

$$oxed{rac{1}{\sqrt{2^n}}\sum_{k=0}|\psi
angle|k
angle}
ightarrowrac{1}{\sqrt{2^n}}\sum_{k=0}U^k|\psi
angle|k
angle=|\psi
anglerac{1}{\sqrt{2^n}}\sum_{k=0}e^{2\pi i heta k}|k
angle$$

The left-most superposition state can be generated

$$\frac{1}{\sqrt{2^n}} \sum_{k=0} |\boldsymbol{\psi}\rangle \otimes |k\rangle = |\boldsymbol{\psi}\rangle \otimes \frac{1}{\sqrt{2^n}} (|0\rangle + |1\rangle + \dots + |n-1\rangle)$$

• The left-most superposition state can be generated
$$\frac{1}{\sqrt{2^n}} \sum_{k=0}^{\infty} |\psi\rangle \otimes |k\rangle = |\psi\rangle \otimes \frac{1}{\sqrt{2^n}} (|0\rangle + |1\rangle + \dots + |n-1\rangle)$$

$$|0\rangle - |H| - \frac{1}{\sqrt{2^n}} \sum_{k=0}^{\infty} |k\rangle = |\psi\rangle \otimes \frac{1}{\sqrt{2^n}} (|0\rangle + |1\rangle + \dots + |n-1\rangle)$$

$$|2\rangle - |H| - \frac{1}{\sqrt{2^n}} \sum_{k=0}^{\infty} |k\rangle = |2\rangle - |2\rangle$$

Estimating phase of an eigenvalue of a unitary operator

- \square Mission: Finding the operator that makes $|0\rangle \rightarrow |\theta\rangle$ with $|\psi\rangle$ (con't)
 - With an operator that makes the transformation: $|\psi\rangle\otimes|k\rangle$ \rightarrow $(U^k|\psi\rangle)\otimes|k\rangle$, we get the right-hand side state in the first equation of slide 4, as follows:

$$\left|rac{1}{\sqrt{2^n}}\sum_{k=0}|\psi
angle|k
angle
ightarrow \left|rac{1}{\sqrt{2^n}}\sum_{k=0}U^k|\psi
angle|k
angle
ight|=|\psi
anglerac{1}{\sqrt{2^n}}\sum_{k=0}e^{2\pi i heta k}|k
angle$$

Transformation with a controlled sequence

$$\sum_{k=0} U^{k} | \boldsymbol{\psi} \rangle \otimes | k \rangle = | \boldsymbol{\psi} \rangle \otimes | 00 \rangle + U | \boldsymbol{\psi} \rangle \otimes | 01 \rangle$$

$$(n=2) \qquad + U^{2} | \boldsymbol{\psi} \rangle \otimes | 10 \rangle + U^{3} | \boldsymbol{\psi} \rangle \otimes | 11 \rangle$$

- □ Mission: Finding the operator that makes $|0\rangle \rightarrow |\theta\rangle$ with $|\psi\rangle$ (con't)
 - With an operator that makes the transformation: $|\psi\rangle\otimes|k\rangle \rightarrow (U^k|\psi\rangle)\otimes|k\rangle$, we get the right-hand side state in the first equation of slide 4, as follows:

- **☐** Summary: Process
 - 1. Start with the state $|\psi\rangle\otimes|0\rangle$
 - 2. Apply a Hadamard gate to all estimation qubits to implement the following transformation

$$|\psi\rangle\otimes|0\rangle \rightarrow \frac{1}{\sqrt{2^n}}\sum_{k=0}|\psi\rangle\otimes|k\rangle$$

- 3. Apply a controlled sequence operation to get a state of $|\psi\rangle \frac{1}{\sqrt{2^n}} \sum_{k=0} e^{2\pi i \theta k} |k\rangle$
- 4. Conduct the inverse QFT to get $|\theta\rangle$, and we estimate θ

Coding Practice

- ☐ Problem description
 - Let's say, $U = R_{\phi}(2\pi/5)$, where $R_{\phi}(\phi) = \begin{bmatrix} e^{i\phi/2} R_z(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}$ $U|\psi\rangle = e^{i\phi}|\psi\rangle$
 - $|\psi\rangle = e^{2\pi i\theta}|1\rangle$ with $\theta = 1/5 = 0.2$
 - The mission is to find $|\theta\rangle$ and θ with QPE
 - Total circuit size = 5 qubits, so 4 qubits are needed to get $|\theta\rangle$ ($|\psi\rangle$: 1-qubit state)
- □ Useful functionalities
 - qml.ControlledQubitUnitary
 - qml.probs
 - qml.counts with setting shots in device plugin (qml.device(...))

Coding Practice

☐ Define *U* and prepare the emulator plugin with 2048 shots

```
import pennylane as qml import numpy as np import matplotlib.pyplot as plt

def myU(ind, w):

return qml.PhaseShift(2 * np.pi * ind / 5, wires=w)

https://docs.pennylane.ai/en/stable/code/api/pennylane.PhaseShift.html

class PhaseShift(phi, wires, id=None)

Bases: pennylane.operation.Operation

Arbitrary single qubit local phase shift

R_{\phi}(\phi) = e^{i\phi/2} R_{z}(\phi) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{bmatrix}

dev = qml.device("default.qubit", wires=5, shots=2048)
```

☐ We then create a single subroutine named as circuit_QPE (next slide)

Coding Practice

☐ The subroutine circuit_QPE()

Coding Practice

☐ The subroutine circuit_QPE()

Coding Practice

☐ Check the results

```
results = circuit_QPE()
results
```

- □ 0011 is observed with a probability of 1782/2048
 - This corresponds to 0.0011 (binary fraction)
 - 0.0011 (bin) = $2^{-3} + 2^{-4} = 0.1875$ (dec)
 - Recall the given θ = 0.2
 - → The inaccuracy ~ 0.0125 with 4 qubits (why 4 qubits, not 5)?
 - → How can we reduce this inaccuracy?

```
{'0000': 9,
 '0001': 20,
 '0010': 53,
 '0011': 1782,
 '0100': 120,
 '0101': 16,
 '0110': 10,
 '0111': 8,
 '1000': 7,
 '1001': 4,
 '1010': 1,
 '1011': 5,
 '1100': 2,
 '1101': 2,
 '1110': 1,
 '1111': 8}
```

Misson

- \Box Write a code that estimate the eigenvalue of U, where
 - U = 2-qubit controlled phase gate with phase $\phi = \pi/3$ ($\theta = 1/6$) (https://docs.pennylane.ai/en/stable/code/api/pennylane.ControlledPhaseShift.html)
 - 4-qubit estimation register (what should $|\psi\rangle$ be to estimate θ)?
 - Use 2048 shots and what do you get for θ ?
- ☐ Do phase estimation for the remaining three eigenvalues, which should be 0. What can you learn from the results?
- \Box Increase the size of the estimation register to 6, 8, 10-qubit. How does θ change & what can you learn from the results?