### BeerDataScienceProject

-presented by Shilpa Kewalaramani

#### Table Of Contents

- ► Introduction & Objective
- Exploring More About Columns
- 1. Details of Columns
- 2. Visualization of Data
- 3. Presence of Null Data
- Statistical Description
- Questions and Answers
- Steps to Run the Project

### Introduction & Objective

The Beer Challenge Analysis Project dataset has the data related to beer reviews which contains information regarding beers on the basis of the reviews collected by the users. The dataset has fields like Beer id, Beer\_Style, Beer Appearance, Beer Aroma and many such columns.

There are Total 5,28,870 rows and 13 columns

#### Objective

The main objective behind this analysis project is to answer some questions after taking the insights from the dataset provided

### Exploring more about Columns

**Details of ColumnS** 

Visualizing Numerical Columns

#### Details of Columns

- beer\_ABV means = Here ABV means Alcohol By Volume , beer\_ABV means the percent of alcohol present in beer
- beer\_beerId = Its the id assigned to different beers
- beer\_brewerld = It is the id of a place where beer is made commercially.
- beer name = It is the name of the beer
- beer\_style = Beer styles differentiates & categorise beers by colour, flavour, strength, ingredients, production
- review\_appearance = The beer\_appearance means the beer looks in color
- review\_palette = Rating based on how the beer interacts with the palate
- review\_overall = Overall review points given by the user
- review\_taste = Rating based on the taste of beer
- review\_profileName = Name of the person who reviewed the beer
- review\_aroma = Rating based on the smell of the review
- review\_text = Reviews in text written by the user
- review\_time = Timestamp when the review was recorded

### beer\_ABV

- There are 283 different beer\_ABV recorded,
- Minimum Beer\_ABV recorded is 0.01 and
- maximum recorded is 57.7,
- maximum Beer\_ABV lies between the range of 0 to 10



### beer\_beerld

- There are 20,200 unique beer\_beerld
- Minimum beer\_beerId is 3
- Maximum beer\_beerldis 77310
- Maximum beer\_beerld ranges between 0 to 10,000



### beer\_brewerld

- Minimum beer\_brewerld is 1
- Maximum beer\_brewerld s 27980
- Maximum beer\_brewerld ranges between 0 to 5000
- there are 1803 unique beer\_brewerld



### beer\_appearance

- Minimum review\_appearance is 0.0
- Maximum review\_appearance is 5.0
- Maximum review\_appearance ranges between 4 to 5



### review\_palette

- \* Minimum review\_palette is 1.0
- \* Maximum review\_palette is 5.0
- \* Maximum review\_palette ranges between 3.5 to 4.0



### review\_overall

- Minimum review\_overall is 0.0
- Maximum review\_overall is 5.0
- Maximum review\_overall ranges
   between 4 to 5



### review\_taste

- Minimum review\_taste is 1.0
- Maximum review\_taste s 5.0
- Maximum review\_taste ranges
   between 3.75 to 4 or 4.25



#### review\_aroma

- Minimum review\_aroma is 1.0
- Maximum review\_aroma s 5.0
- Maximum review\_aroma ranges
   between 3.75 to 4 or 4.25





- There are total 18339 different names of beer observed in the dataset
- Maximum beer consumed by user is Sierra Nevada Celebration Ale



- There are total 104 different styles of beer observed in the dataset
- Maximum beer style consumed by users are 'American IPA'



- total 22,800 consumers of beer who reviewed the beer observed in the dataset
- Maximum
  beer reviews
  are given
  'northyorksam
  my'

### Visualizing Year Column



- Maximum reviews are collected during the year 2011,
- from 1998 the reviews are gradually increasing

#### **Null Values**

- White Horizontal lines in the figure shows the null values
- 3.83 % of data was NULL
- beer\_ABV columns has 20280 Null values
- review\_profileName has 115 Null values
- review\_text has 119 Null values

 Null Values were replaced with mean and mode.

# Visualizing Null Values present in dataset



### Statistical Description

|        | beer_ABV      | beer_beerld        | beer_brewerld      | beer_name                              | beer_style      | review_appearance | review_palette | review_overall | review_taste  | review_profileName | review_aroma  | review_text                                                                              | review_time  | year               |
|--------|---------------|--------------------|--------------------|----------------------------------------|-----------------|-------------------|----------------|----------------|---------------|--------------------|---------------|------------------------------------------------------------------------------------------|--------------|--------------------|
| count  | 528870.000000 | 528870.000000      | 528870.000000      | 528870                                 | 528870          | 528870.000000     | 528870.000000  | 528870.000000  | 528870.000000 | 528870             | 528870.000000 | 528870                                                                                   | 5.288700e+05 | 528870.000000      |
| unique | NaN           | NaN                | NaN                | 18339                                  | 104             | NaN               | NaN            | NaN            | NaN           | 22801              | NaN           | 528372                                                                                   | NaN          | NaN                |
| top    | NaN           | NaN                | NaN                | Sierra<br>Nevada<br>Celebration<br>Ale | American<br>IPA | NaN               | NaN            | NaN            | NaN           | northyorksammy     | NaN           | <pre> <bound 0="" a="" lot="" method="" o<="" of="" pre="" series.mode=""></bound></pre> | NaN          | NaN                |
| freq   | NaN           | NaN                | NaN                | 3000                                   | 43369           | NaN               | NaN            | NaN            | NaN           | 1858               | NaN           | 119                                                                                      | NaN          | NaN                |
| mean   | 7.017442      | 22098.466016       | 2598.423429        | NaN                                    | NaN             | 3.864522          | 3.758926       | 3.833197       | 3.765993      | NaN                | 3.817350      | NaN                                                                                      | 1.224885e+09 | 2008.308306        |
| std    | 2.161781      | 22158.284352       | <u>5281.805350</u> | NaN                                    | NaN             | 0.604010          | 0.685335       | 0.709962       | 0.669018      | NaN                | 0.718903      | NaN                                                                                      | 7.605600e+07 | 2.409979           |
| min    | 0.010000      | 3.000000           | 1.000000           | NaN                                    | NaN             | 0.000000          | 1.000000       | 0.000000       | 1.000000      | NaN                | 1.000000      | NaN                                                                                      | 8.843904e+08 | <u>1998.000000</u> |
| 25%    | 5.300000      | <u>1745.000000</u> | 132.000000         | NaN                                    | NaN             | 3.500000          | 3.500000       | 3.500000       | 3.500000      | NaN                | 3.500000      | NaN                                                                                      | 1.174613e+09 | 2007.000000        |
| 50%    | 6.500000      | 14368.000000       | 394.000000         | NaN                                    | NaN             | 4.000000          | 4.000000       | 4.000000       | 4.000000      | NaN                | 4.000000      | NaN                                                                                      | 1.240366e+09 | 2009.000000        |
| 75%    | 8.500000      | 40528.000000       | <u>1475.000000</u> | NaN                                    | NaN             | 4.000000          | 4.000000       | 4.500000       | 4.000000      | NaN                | 4.500000      | NaN                                                                                      | 1.288560e+09 | 2010.000000        |
| max    | 57.700000     | 77310.000000       | 27980.000000       | NaN                                    | NaN             | 5.000000          | 5.000000       | 5.000000       | 5.000000      | NaN                | 5.000000      | NaN                                                                                      | 1.326277e+09 | <u>2012.000000</u> |

### Statistical Description Continued

- \* The columns that are showing NAN are categorical columns.
- \* It can be observed that in beer\_name Sierra Nevada Celebration Ale is on top with a frequency of 3000
- \* in beer\_style American IPA is on top with frequecny of 43369
- \* In review\_profileName northyorksammy is on top with frequency 1858
- \* The difference between the 75% percentile and maximum of beer\_ABV is remarkable, it means outliers are present
- \* The difference between 75% percentile and maximum of beer\_brewerld is also more but as it is Id number so it can be in that range

### Statistical Description Correlation between columns

- review taste and review aroma are highly correlated with each other
- review taste and review overall are also highly correlated with each other



-1.0

-0.8

- 0.6

-0.4

- 0.2

### Questions And Answers

#### 1. Rank top 3 Breweries which produce the strongest beers?

Here strongest beers indicates the strong presence of alcohol in the beer. so we have to find out top 3 beer\_brewerld using mean of beer\_ABV

So Top Three breweries are, Brewerid no 6513, 736 and 24215.

```
temp_data = df.groupby(['beer_brewerId'])['beer_ABV'].mean()
temp_df = pd.DataFrame(temp_data.reset_index())

temp_df.columns = ['beer_brewerId','beer_abv_mean']

Top_3_Breweris = temp_df.sort_values(by=['beer_abv_mean'], ascending=False).head(3)

Top_3_Breweris
```

#### beer\_brewerld beer\_abv\_mean

| 784  | 6513  | 19.228824 |
|------|-------|-----------|
| 175  | 736   | 13.395655 |
| 1644 | 24215 | 12.466667 |

### 2. Which year did beers enjoy the highest ratings?



to find out highest ratings of beer we need to groupby beer\_id and we also need to take highest counts of all other factors like review appearance, review\_aroma, review\_overall, review\_palettte, and review\_taste

so the year that encountered highest rating was 2002

### 3. Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?

To find the important factor, all the factors need to be considered along with overall\_review and the column showing highest correlation with review\_overall can be considered as importan

```
columns= df[['review_taste','review_aroma','review_appearance','review_palette','review_overall']]
columns.head()
```

|   | review_taste | review_aroma | review_appearance | review_palette | review_overall |
|---|--------------|--------------|-------------------|----------------|----------------|
| 0 | 1.5          | 1.5          | 2.5               | 2.0            | 1.5            |
| 1 | 3.0          | 3.0          | 3.0               | 2.5            | 3.0            |
| 2 | 3.0          | 3.0          | 3.0               | 2.5            | 3.0            |
| 3 | 2.5          | 3.0          | 3.5               | 3.0            | 3.0            |
| 4 | 4.0          | 4.5          | 4.0               | 4.5            | 4.0            |

### 3. Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?



### 3. Based on the user's ratings which factors are important among taste, aroma, appearance, and palette?

From the bar graph it can be considered that important factors are ¶

- <u>1) review\_aroma</u>
- 2)review\_taste
- 3)review\_palette
- 4)review\_appearance

### 4. If you were to recommend 3 beers to your friends based on this data which ones will you recommend?

Finding top 3 beers to recommend to friend is similar like finding the year with highest rating, here I will use groupby function on beer\_name and highest count (mean) on all factors like beer\_ABV', 'beer\_beerId', 'beer\_brewerId', 'beer\_name', 'beer\_style','review\_appearance', 'review\_palette', 'review\_overall', 'review\_taste','review\_aroma',

## 4. If you were to recommend 3 beers to your friends based on this data which ones will you recommend?

|   | beer_name              | review_overall | review_aroma | review_appearance | review_palette | review_taste | beer_ABV | beer_beerld | beer_style              |
|---|------------------------|----------------|--------------|-------------------|----------------|--------------|----------|-------------|-------------------------|
| 0 | Edsten Triple-Wit      | 5.0            | 5.0          | 5.0               | 5.0            | 5.0          | 10.0     | 1734        | Belgian Strong Pale Ale |
| 1 | Old Gander Barley Wine | 5.0            | 5.0          | 5.0               | 5.0            | 5.0          | 9.5      | 29423       | American Barleywine     |
| 2 | Rogue Black Brutal     | 5.0            | 5.0          | 5.0               | 5.0            | 5.0          | 9.0      | 45944       | Schwarzbier             |

#### Top 3 beer names to recommend to friends are

- 1. Edsten Triple-Wit
- 2. Old Gander Barley Wine
- 3. Rogue Black Brutal

### 5. Which Beer style seems to be the favorite based on reviews written by users?

For finding the favourite beer style this we need to preprocess, train and do sentiment analysis of reviews considering beer style as target and review\_text as feature and finally using groupby function on polarity\_Score of beer style we will find top 10 Beer styles

```
# Group by 'beer style' and calculate mean of polarity score
df.groupby('beer style')['polarity score'].mean().sort values(ascending=False)[0:10]
beer style
Quadrupel (Quad)
                                    0.862545
Braggot
                                    0.860895
Flanders Red Ale
                                    0.852030
Eisbock
                                    0.851972
Dortmunder / Export Lager
                                    0.850105
American Double / Imperial Stout
                                    0.845400
Wheatwine
                                    0.839985
                                    0.837569
Kvass
Old Ale
                                    0.837084
Belgian Strong Dark Ale
                                    0.835026
Name: polarity score, dtype: float64
```

### 5. Which Beer style seems to be the favorite based on reviews written by users?

On the basis of written reviews following Beer Styles seems to be favourite

- 1) Quadrupel (Quad)
- 2)Braggot
- 3)Flanders Red Ale
- 4)Eisbock
- <u>5)Dortmunder / Export Lager</u>
- 6)American Double / Imperial Stout
- 7)Wheatwine
- 8)Kvass
- 9) Old Ale
- 10) Belgian Strong Dark Ale

# 6. How does written review compare to overall review score for the beer styles?

we will find it using mean of polarity\_score and mean of review\_overall on beer\_style with groupby function

```
reviews = df.groupby('beer_style').agg({'polarity_score': np.mean,'review_overall': np.mean})
score= pd.DataFrame(reviews.reset_index()).sort_values(['polarity_score','review_overall'], ascending=[False,False])
score.head()
```

|    | beer_style                | polarity_score | review_overall |
|----|---------------------------|----------------|----------------|
| 86 | Quadrupel (Quad)          | 0.862545       | 4.049250       |
| 32 | Braggot                   | 0.860895       | 3.645729       |
| 58 | Flanders Red Ale          | 0.852030       | 3.962561       |
| 41 | Eisbock                   | 0.851972       | 4.079487       |
| 38 | Dortmunder / Export Lager | 0.850105       | 4.051962       |

# 7. How do find similar beer drinkers by using written reviews only?

By using polarity\_score we can find the beer drinkers with similar written reviews, like the review\_profilename who has same polarity\_score simply means their reviews are similar

|          | score.h | iead()        |             |                |                    |                                      |                   |                |                |              |                                            |
|----------|---------|---------------|-------------|----------------|--------------------|--------------------------------------|-------------------|----------------|----------------|--------------|--------------------------------------------|
| ut[46]:  |         | review_profil | eName po    | arity_score re | view_overall       |                                      |                   |                |                |              |                                            |
|          | 605     | B0bD0bbs      | selbock     | 0.9986         | 4.5                |                                      |                   |                |                |              |                                            |
|          | 16620   | layap         | andora      | 0.9984         | 3.0                |                                      |                   |                |                |              |                                            |
|          | 7975    | Stir          | nwizzle     | 0.9981         | 5.0                |                                      |                   |                |                |              |                                            |
|          | 7494    |               | Scottiv     | 0.9980         | 4.5                |                                      |                   |                |                |              |                                            |
|          | 8123    | Sy            | nergyZ      | 0.9978         | 3.5                |                                      |                   |                |                |              |                                            |
| h.+[47]. | (474, 1 | 15)           |             |                |                    |                                      |                   |                |                |              |                                            |
| Out[47]: | (474, 1 | -             | beer_beeric | l beer_brewerl | d beer_name        | beer_style                           | review_appearance | review_palette | review_overall | review_taste | review_profileNam                          |
| out[47]: | (474, 1 | -             | beer_beerlo |                | Ashland            | beer_style  American Amber / Red Ale | review_appearance | review_palette | review_overall | review_taste |                                            |
| Out[47]: |         | beer_ABV      |             | 5 107          | 5 Ashland<br>Amber | American<br>Amber /                  |                   |                |                |              | review_profileNam Slatetan RustyShacklefor |

# 7. How do find similar beer drinkers by using written reviews only?

Here I have reloaded the original database to see the original reviews of ProfileNames with similar Polarity\_score

to see the similarity among review\_text you can go through the following original reviews whose review texts are similar as they both are very happy to taste the beer

Out[49]: df1.loc[841,'review\_text']

Out[49]: "I picked this can up at Al's of Hampden, poured chilled from the can into a tulip. A - a ruby colored ale, excellent clarity w/ 3fingers of light beige cap w/ mix of bubbles sized large and tiny. The lace clings very well and retention is good. The col or reminds me of cranberry juice which is attractive to look at in the light S - A sweet toasted grainy odor w/ light fruitines s and berry-like yeast ester w/ a mild hop aroma and slight caramel notes w/ gentle vegetal aroma M - a moderately carbonated b rew w/ mild bitterness and gentle sweetness. The texture has light toasted and spice aspects w/ dry finishing medium body overa ll T - the flavor is relatively biscuity upfront and has subtle pine notes from the hops w/ light creamy caramel malt taste. Th ere is a gently fruity element from the yeast which allows the toasted grain note to carry over and seems to be the focus from midpoint on. the toast or roasted notes are the focus w/ mild herbal and the fruity quality adding contrast. The spice tinges m ellow and a very light citrus in the hops comes out when warmer w/ another layer of flavor unfolding. The contrast makes the am ber very balanced but seems to lean toward malt ever so slightly w/ strong biscuit taste until the semi-dry finish D - A solid beer in every way, very good representation of the style w/ satisfying drinkability. I would drink this with barbecue or meatlo af. The drinkability is good and I would look for this again I Can guarntee that (wink, wink)"

In [50]: df1.loc[1623,'review\_text']

Out[50]: "Stopped in for dinner for my wife's Birthday. Tried this on tap with my Stuffed Sirloin and Jalapenos, then took a growler of it home. Appearance: Amber, to dark amber, crystal-clear with an initial bit of off-white head that reduced to a ring. Not much lacing. Smell: scents of malts and cookie-type bread, with hops noticeable. Taste: great malt sweetness and balanced hop profil e. Really good, I get the feeling this is a real lager, not an Oktober-Ale that many places bring out. Really nice. Mouthfeel & Drinkability: Great feel, if just a tad low carb from the growler fill. Not all that thin in the mouth, just right. Great Drink ability, and real fresh. Overall: I have had many Oktoberfests this year (one of my fav styles) from Sam Adams, Hacker, Spaten, etc. and this is great. I have to try them side-side-side to see what differences I get, but so far my favorite of the seaso n!!! Great Job, BRBP!"

### Steps To Run the Project

- 1) Anaconda Jupyter Notebook
- 2) Google Colab Notebook

#### 1) Anaconda's Jupyter Notebook

- 1) Download the Anaconda from https://www.anaconda.com/
  - i) click on Products
  - ii) Click on **Anaconda Individual Edition**
  - iii) Click on Download
  - iv) Install it
- v) It will open a window with multiple file running options like Pycharm, Spyder, VSCODE etc and Jupyter Notebook, Install on Jupyter Notebook from it.
- 2)Download the BeerDataScience.zip folder from the github link and extract it in your local system.
- 3)Open the Anaconda Jupyter Notebook , click on the upload button and upload the BeerDataScienceProject.ipynb and BeerDataScienceProject.csv file from the extracted folder



4) Double click on the BeerDataScienceProject.ipynb file it will open the new tab

5) Click on Cell button and select the option of Run All option to run the entire file



#### 2) Google Colab Notebook

1) Copy this link and paste it in the Google Search Tab <a href="https://colab.research.google.com/drive/1dEJiLMRaUHt7-v0RMxpra8c-OFrUJpW\_?usp=sharing">https://colab.research.google.com/drive/1dEJiLMRaUHt7-v0RMxpra8c-OFrUJpW\_?usp=sharing</a>

#### You can see the entire Project already run

- 2) The file will be presented in the form of Notebook, here you have to run all the lines, So when you will start running the file it will give one warning, just click on **Run anyway**
- 3) Upload the CSV file in the google colab
- i) To upload the file click on **the table of contents** at the Top Left of screen , below **file** option adjacent to **+code** button





iii) click on **upload to session storage** button and upload the BeerDataScienceProject.csv file



**Note**: Do wait until whole file is uploaded, as the file is 395 mb long, so it will take time, otherwise code may give an error



4) Once the file is uploaded, click on **Runtime** button and then **Run All** to get all the outputs automatically

# THANK YOU