МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота №5

з дисципліни

«Дискретна математика»

Виконав:

студент групи КН-109

Яворський Володимир

Викладач:

Мельникова H.I.

Львів – 2018 р.

Лабораторна робота № 5

Тема: Знаходження найкоротшого маршруту за алгоритмом

Дейкстри. Плоскі планарні графи

Мета роботи: набуття практичних вмінь та навичок з використання

алгоритму Дейкстри.

Варіант №14

Завдання 1

1. За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі поміж парою вершин V_0 і V^{st}

Запишемо найближчі вершини V_1 , V_2 , V_3 , ... у порядку їх появи

$l(v_1) = 1$	$l(v_2) = 3$	$l(v_3) = 3$
(1)	\ _ /	(0)
$l(v_4)$ = 4	$l(v_5) = 5$	$l(v_6) = 6$
$l(v_7)$ = 7	$l(v_8)$ = 8	$l(v_9) = 8$
$l(v_{10}) = 9$	$l(v_{11}) = 9$	$l(v_{12}) = 10$
$l(v_{13})$ = 11	$l(v_{14})$ = 12	$l(v_{15}) = 12$
$l(v_{16})$ = 13	$l(v_{17})$ = 13	$l(v_{18})$ = 14
$l(v_{19})$ = 14	$l(v_{20})$ = 14	$l(v_{21})$ = 15
$l(v_{22})$ = 17	$l(v_{23})$ = 17	$l(v_{24})$ = 19
$l(v_{25})$ = 19	$l(v_{26})$ = 20	$l(v_{27}) = 23$
$l(v_{28})$ = 24		$l(v^*)$ = 24

Наш шуканий шлях : [v_0 , v_1 , v_3 , v_6 , v_8 , v_{10} , v_{19} , v_{23} , v_{27} , v^*].

2. За допомогою γ -алгоритма зробити укладку графа у площині, або довести що вона неможлива.

Довільно вибираємо цикл [v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 , v_9]

Виписуємо всі сегменти відносно циклу (контактні вершини обведені)

По черзі вкладаємо ланцюжки у наш цикл:

$$v_9 - v_8 - v_5;$$
 $v_2 - v_{12} - v_3;$
 $v_{12} - v_{13} - v_3;$
 $v_4 - v_{11} - v_{13};$
 $v_{11} - v_{14} - v_5;$
 $v_4 - v_{10} - v_7;$
 $v_2 - v_9;$
 $v_4 - v_9;$
 $v_5 - v_7;$

У нас залишились сегменти

Додати їх до нашого графу ми не можемо, адже вони належать різним секторам, і намалювати ребра без перетину не вийде. Отже, наш граф $\mathbf{\textit{не}}\ \mathbf{\textit{e}}\ \mathbf{\textit{планарним}}.$

Завдання 2

Написати програму, яка реалізує алгоритм Дейкстри знаходження найкоротшого шляху між парою вершин у графі. Протестувати розроблену програму на графі згідно свого варіанту.

Код програми:

```
#include <stdio.h>
//size of our matrix
#define N 30
int main()
int DISTANCE[N];
int VISITED[N];
int GRAPH[N][N] = {
// 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
```

```
};
for (int i = 0; i < N; i++)
DISTANCE[i] = 999;
VISITED[i] = 0;
DISTANCE[0] = 0;
int min, k, a;
do
k = 999;
min = 999;
for (int i = 0; i < N; i++)
{
if ((VISITED[i] == 0) && (DISTANCE[i] < min))
 min = DISTANCE[i];
 k = i;
}
}
if (k!= 999)
for (int i = 0; i < N; i++)
```

```
{
    if (GRAPH[k][i] > 0)
    {
        a = min + GRAPH[k][i];
        if (a < DISTANCE[i])
        {
            DISTANCE[i] = a;
        }
      }
      VISITED[k] = 1;
    }
} while (k < 999);

printf("\nThe shortest ways:\n\n");
for (int i = 0; i < N; i++)
    {
        printf("I(V0-V%d) = %d\n", i, DISTANCE[i]);
    }
    printf("\n");
    return 0;
}</pre>
```

Результат виконання програми:

```
jharvard@appliance (~/Dropbox/hello): ./dijkstra
The shortest ways:
l(VO-VO) = O
l(VO-V1) = 1
l(V0-V2) = 2
l(V0-V3) = 8
l(V0-V4) = 11
l(V0-V5) = 14
l(V0-V6) = 4
l(V0-V7) = 6
l(V0-V8) = 5
l(V0-V9) = 9
l(V0-V10) = 11
l(V0-V12) = 5
l(V0-V13) = 6
l(V0-V14) = 6
l(V0-V15)
l(V0-V17) = 20
l(V0-V18) = 10
l(V0-V20) = 13
l(V0-V22) = 15
l(V0-V23) = 23
l(V0-V24) = 13
l(V0-V25) = 12
l(V0-V26) = 14
l(V0-V27) = 17
l(V0-V28) = 20
l(V0-V29) = 26
```