

## **Causal Inference**

#### Vanessa Didelez and Robin Evans

BIPS, University of Bremen (Germany), and University of Oxford (UK)

August 2023 APTS — Glasgow

## **Overview of Course**



Part 1: Basic Causal Concepts

Part 2: Causal Diagrams
Directed Acyclic Graphs – DAGs; and
Single World Intervention Graphs – SWIGs

Part 3: Estimating a Causal Effect (Point Treatment)

Part 4: Multiple / Sequential Treatments and Causal Mediation

Part 5: Outlook: Instrumental Variables & Causal Discovery

## **Aims of Course**



- Introduce basic concepts of causal learning (reasoning, modelling & inference)
- ... to enable you to read more advanced 'causal' papers
- Focus on:
  - formulating causal (research) questions
  - understanding sources of (avoidable and unavoidable) bias
  - some basic methods: g-methods, propensity score, IVs, causal discovery
- Principles / examples & a some maths

ASK if you have QUESTIONS / comments etc. — ANYTIME!!!

## Who are You?



- Statistics
- Mathematics
- Comp. Science
- Medical / biol / epidemiology
- Econometrics
- Others

## Who are You?



- What is a randomised controlled trial?
- Why do we randomise?
- What is a DAG?
- What is confounding?
- What is Berkson / collider bias?
- What is a propensity score?

## **Causal Inference — History**



- Causality / causal inference very broad topic!
- Has developed and evolved quite separately in different fields: philosophy, sociology, epidemiology, econometrics, computer science, (statistics), mathematics ...
- Different terminology, approaches, accepted assumptions, designs / types of data sources
- Last few (only!) years: some convergence has emerged across fields
- Causality very fundamental to many research questions in many fields of data science!

# Part 1

# **Basic Causal Concepts**

## **Preamble**



- Causation / causality: philosophical, moral and other usages of the term — not what we are concerned with here
- This course: particular (narrow) view of causality most relevant for scientific enquiries: causality we can implement
- "Causal effect" a difference in outcomes, or their distribution, between (hypothetical) experiments we might do,
  - i.e. effect of (hypothetical) interventions

## **Not a Statistical Problem**



**Example:** We have data on treatment  $A \in \{0,1\}$  and an outcome Y (positive is better). A further covariate  $Z \in \{0,1\}$  has been measured.

- We find that for the treated, the average of Y is considerably *larger* than for the untreated
- However, within each level of Z, we find that the average of Y is considerably smaller for the treated than for the untreated
- ⇒ Do you recommend treatment or not?

#### **Causal Questions**



To obtain a causal answer, start with a causal question!

Describe the decision problem you would like to solve, or the ideal (hypothetical) experiment with which you could investigate your research question

⇒ Target Trial &

⇒ formal 'language'!

## **Research Questions**



### Descriptive / predictive:

"Is this patient at high risk of developing complications during surgery?"

#### Causal:

- (A) "Which type of anaesthetic should this patient receive to minimise the risk of complications during surgery?"
- (A') "How does the amount of anaesthetic affect the risk of complications during surgery?"
- (B) "What can be done to reduce the risk of complications during surgery for an average / a particular type of patient?"

## **Causation versus Association**



(Hernan & Robins, 2020:book)



(**Total**) causal effect: contrast of outcome if 'everyone was treated' versus if 'no-one was treated'

# Target Trial and its Emulation



#### Principle:

(Hernan & Robins, 2016:AJE)

- Start by formulating the ideal trial (experiment / ...) that would answer your desired research question
- Stick to good practice of trial design (PICOT):
  - eligibility criteria / relevant population
  - interventions / treatment strategies to be compared (controls?)
  - outcome (over what follow-up time)
  - other aspects: randomised? blinded? ...?
- Important: time-zero alignment of eligibility check, treatment assignment, start of follow-up
  - to avoid immortal-time bias
  - or prevalent-user bias

# Target Trial and its Emulation



### Principle ctd:

- Note: must not violate laws of physics (e.g. cannot turn back time); should not deliberately kill patients etc.
- Then: emulate target trial as closely as possible by analysis & with available (obs.) data!
  - use sequence of trials (at all eligible times) for efficiency
  - use 'cloning' to avoid immortal-time bias
- ⇒ Systematic approach ensures meaningful research question & minimises design-based sources of bias

# Target Trial and its Emulation



- Actual RCTs describe 'efficacy': does the new drug have an effect at all?
- Analyse real-world (i.e. observational) data: to describe 'effectiveness' in real population

## Causal Models 1-0-1



### Here: all models probabilistic!

#### Causal model:

describes situation (distribution) under (hypothetical) interventions / manipulations / changes

... needs to be related to:

**observational** (no intervention / 'natural' / 'idle') situation (distribution) generating our data

## **Identifiability** (informally):

aspects of the interventional situation equal certain unique functions of the observational situation

## **Basic Concepts**



## Conditional (In)dependence

P(Y = y), p(y) etc. probability / density / prob.mass function

## Conditional independence:

A and Y are conditionally independent given Z, write  $Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp A \mid Z$ , if

$$P(Y = y, A = a \mid Z = z) = P(Y = y \mid Z = z)P(A = a \mid Z = z)$$

for all a, y, z s.t. p(z) > 0. Or, equivalently if:

$$P(Y = y \mid A = a, Z = z) = P(Y = y \mid Z = z)$$

or p(y|a,z) = p(y|z) — relate this to regression models!

## **Basic Concepts**



## **Conditional Independence**

In words: if we already know (observed) the value of Z then knowing the value A is not informative with respect to the distribution (prediction) of Y

### **Example:**

- while knowing (only) that some-one has tar-stained fingers is informative to predict if they will develop lung-cancer...
- ... once we also know that they are a smoker, the information on their tar-stained fingers becomes irrelevant

lung-cancer ⊥ tar-fingers | smoking-status

## **Basic Causal Concepts**



Formalisms to make interventions explicit:

do-notation / causal DAGs / decision theory

Potential outcomes / counterfactuals

Structural equations / structural causal models: not much time to cover these...

## do-Notation



(Pearl, 2000/9:book)

**Judea Pearl** introduced intuitve notation to distinguish association and causation: 'do' and 'see'

$$p(y | \text{intervene to set } A = a) = p(y | \text{do}(A = a))$$

and

$$p(y | \mathsf{observe} \ A = a) = p(y | \mathsf{see}(A = a))$$

 $\Rightarrow$  do-calculus / axioms / directed acyclic graphs (DAGs).

Usually 
$$p(y | see(A = a)) = p(y | a)$$

## do-Intervention



p(y | do(A = a)) denotes point-intervention in wider system.

Consider:  $Y, A, X_1, X_2$  such that *observationally ('see')*:

$$p(y, a, x_1, x_2) = p(y|a, x_1, x_2)p(a|x_1, x_2)p(x_2|x_1)p(x_1)$$

May have reasons to believe that under intervention on A:

$$p(y, x_1, x_2 | \mathbf{do}(A = \tilde{a})) = p(y | \tilde{a}, x_1, x_2) p(x_2 | x_1) p(x_1).$$

**DAGs** help to structure the *factorisation* so as to represent prior-causal knowledge

## Identifiability



Will see that under **three structural assumptions** we have for suitable set X of covariates:

$$p(y\,|\operatorname{do}(A=a)) = \sum_x p(y\,|\,a,x) p(x)$$

left: interventional distribution; right: observational distrib.

⇒ **non-parametrically identified**, i.e. without parametric assumptions like linearity, Gaussianity etc.

## **Potential Outcomes (POs)**



(Rubin, 1974; many others)

Consider binary 'treatment'  $A^i \in \{0,1\}$ , individual i

 $Y^i(0)$  = response under intervention setting  $A^i=0$   $Y^i(1)$  = response under intervention setting  $A^i=1$  for same subject (at the same time)

- $\Rightarrow \{Y^i(0), Y^i(1)\}$  can never be observed together
- ⇒ potential outcomes.

#### Note:

POs only well defined if way of manipulating A well defined!

## **Potential Outcomes**



More generally, for arbitrary treatment type  $A \in \mathcal{A}$   $Y^i(a)$  = response if we  $\textit{set } A^i = a$ 

## **Counterfactuals**



Once a treatment has been realised, say  $A^i=1$ , then  $Y^i(1)$  can be observed and  $Y^i(0)$  becomes *counterfactual* (and vice versa).

Approaches relying on assumptions / properties of the joint distribution of (Y(0),Y(1)) can be called counterfactual as these assumptions are never empirically verifiable.

**Missing data?** Causal inference sometimes seen as missing data problem — counterfactual outcomes always missing!

## Potential Outcomes and 'do'



Many approaches, in fact, do not rely on *joint* distribution of (Y(0),Y(1)), and could equivalently be expressed using  $do(\cdot)$ -notation.

(but POs strong tradition in biomedical / econometric literature.)

Can regard p(Y(a)) = p(y | do(A = a))

But joint distribution of (Y(0),Y(1)) has no counterpart in do–notation.

⇒ Can express more (also more dubious) concepts with POs. (for critique see e.g. Dawid, 2000)

# **Structural Equations Models (SEMs)**



## aka Structural Causal Models (SCMs)

What makes them *structural*? (Peters, Janzig, Schölkopf, 2018:book)

$$\mathsf{output} \ \leftarrow f(\mathsf{input})$$

function  $f(\cdot)$  is invariant to how the 'input' is chosen / generated, e.g. observed or manipulated.

**Caveat:** strong modelling assumption — system considered essentially a 'machine' with some random noise.

- ⇒ allows 'cross-world' assumptions (like counterfactuals)
- ⇒ see single world intervention graphs SWIGs as alternative (Richardson & Robins, 2013:TechRep)

## **Causal Effects**



Let's use the above causal languages to express our target of inference.

Note: no such thing as 'the' causal effect

— always need to choose what to contrast with what and how

## **Causal Effects**



Typically formulated as contrasts of some aspect of

$$p(y | do(A = a))$$
 versus  $p(y | do(A = a'))$ 

or of p(Y(a)) versus p(Y(a')),

possibly conditional on further variables

For simplicity: A binary, but with obvious generalisations.

## **Average Causal Effect (ACE)**



## (Population) Total / Average Treatment Effect (ATE)

$$ACE = E(Y \mid do(A = 1)) - E(Y \mid do(A = 0))$$

or with POs

$$ACE = E(Y(1)) - E(Y(0))$$

'Population': in expectation over whole underlying population (effect may change with population)

'Total': can be indirect, via multiple causal paths, or combination of direct / indirect effects.

Note: can consider ratio, odds-ratio etc. if preferred

### **Cause and Effect**



#### Can now define:

A is a **cause** of Y (and Y is an effect of A) if for some  $a \neq a'$ 

$$p(y \mid \mathsf{do}(A = a)) \neq p(y \mid \mathsf{do}(A = a'))$$

or 
$$p(Y(a)) \neq p(Y(a'))$$

i.e. if (hypothetically) intervening in A setting it to different values changes some aspect of the distribution of Y

**Note:** this corresponds to how we check causation in a basic randomised experiment

## **Other Causal Effects**



## **Conditional Causal / Treatment Effect (CATE)**

#### ... or subgroup causal effect

Let Z=z characterise subset of population, e.g. age group Conditional causal effect of A on Y given Z=z:

$$E(Y|\mathbf{Z}=\mathbf{z};\mathsf{do}(A=1)) - E(Y|\mathbf{Z}=\mathbf{z};\mathsf{do}(A=0))$$

or, with POs

$$E(Y(1)|Z = z) - E(Y(0)|Z = z)$$

**Note:** Z must **not** itself be causally affected by A, i.e. must be pre-treatment

# Other Causal Effects Joint Causal Effect



Consider two (possibly sequential) exposures  $A_1, A_2$ .

The joint (total) causal effect of  $A_1$  and  $A_2$  on Y is

$$E(Y|\mathsf{do}(A_1=a_1,A_2=a_2)) - E(Y|\mathsf{do}(A_1=a_1',A_2=a_2'))$$

**Note:** potential issue here: 'time-dependent' confounding  $\rightarrow$  Part 4

# Other Causal Effects Controlled Direct Effect (CDE)



Consider again two sequential exposures  $A_1, A_2$ 

Controlled direct effect of  $A_1$  while controlling  $A_2$  means: hold fixed  $do(A_2 = 0)$  and contrast different values for  $A_1$ , e.g.

$$CDE = E(Y|do(A_1 = a, A_2 = 0)) - E(Y|do(A_1 = a', A_2 = 0))$$

**Note:** 'direct' means this effect is not possibly mediated by  ${\cal A}_2$  (but other mediators allowed)

## **Further Causal Effects**



"Individual Causal Effect": requires counterfactual concepts

"Population intervention effect"

"Effect of treatment on the treated (ETT)"

various versions of "(in) direct causal effects" (natural, interventional, separable...)

#### Other interventions:

- dynamic / adaptive: e.g. adapt dosage to patient history
- shift / random: add a constant or noise to the 'treatment'

"Principal Stratum Effect" (or local average treatment effect): requires counterfactual concepts

## **Summary**



- For causal answers, start with an explicit causal question: use formal notation ('do' or PO) or describe target trial
- Different causal parameters correspond to different research questions
- Key: establish identifiability of causal parameter from observable data
  - so far: 'g-formula' / standardisation to adjust for confounding
- Structural assumtpions: causal consistency, positivity & conditional exchangeability.

## Thank You!

www.leibniz-bips.de/en

Contact
Vanessa Didelez
Leibniz Institute for Prevention Research
and Epidemiology – BIPS
Achterstraße 30
D-28359 Bremen
didelez@leibniz-bips.de

