Analyzing Equilibriums of 1st-Order ODEs

Objectives:

- 1. Stability of equilibriums
- 2. Lineanzation
- 3. Equilibrium analysis

Recall: Equilibrium solutions

* Definition: Let dy = f(y) be an autonomous ODE

of some continuous function y(t) and f(y) is a function that describes the change. Suppose y^* is a critical point. Then, 1. $f(y^*) = 0$ and 2. $y(t) = y^*$ is an equilibrium solution.

Motivating Example

Criven the ode dy = y4 - y3 - y2 + y, --- 1st-order, homogeneous, autonomous, non-linear determine the equilibriums and identify their stability.

* Let $f(y) = y^4 - y^3 - y^2 + y$. Note that $\frac{dy}{dt} = f(y)$.

* Factorize fly), which is fly) = $y(y+1)(y-1)^2$.

* Find critical points: $0 = y(y+1)(y-1)^2 \longrightarrow y_1^* = -1, y_2^* = 0, y_3^* = 1$

* Write down equilibrium solutions: $y(t) = y_1^* \longrightarrow y(t) = -1$ $y(t) = y_2^* \longrightarrow y(t) = 0$ $y(t) = y_3^* \longrightarrow y(t) = 1$

* Phose diagram:

Linearization

* A way to identify equilibrium stability analytically.

* From the example: $dy = y(y+1)(y-1)^2$

* From the example:
$$\frac{dy}{dt} = y(y+1)(y-1)^{-1}$$

$$f(y) = y(y+1)(y-1)^{2}$$

Equilibrium solutions: y(t) = -1, y(t) = 0, y(t) = 1

Linearization on the equilibriums: $2f = 4y^3 - 3y^2 - 2y + 1$

y(+) = -1 is stable

•
$$y^* = 0$$
; $\frac{\partial f}{\partial y}\Big|_{y=0} = 4(0)^2 - 3(0) - 2(0) + 1 = 1 > 0$

y(+)=0 is unstable

•
$$y^* = 1$$
; $2f$ = $4(1) - 3(1) - 2(1) + 1 = 0$

y(+) = 1 might be semi-stable

To make sure:
$$\frac{\partial^2 f}{\partial y^2} = 12y^2 - 6y - 2$$

Then, $\frac{\partial^2 f}{\partial y^2} = 12(1)^2 - 6(1) - 2 = 4 > 0$

concave up

meaning f(+) = 1 is semi-stable

with sumounding solltions increasing.

* Phose diagram:

Stability of Equilibriums

Let dy = f(y) and $y(t) = y^k$ be an equilibrium solution.

Let dy = f(y) and $y(t) = y^k$ be an equilibrium solution.

•
$$y(t) = y^{*}$$
 is stable if $y_{\mu} = y^{*}$ and $y_{\mu} = y^{*}$ of $y_{\mu} = y^{*}$

•
$$y(t) = y^*$$
 is semi-stable if $\frac{\partial y}{\partial y} = y^*$ or $\frac{\partial y}{\partial y} = y^*$