1	Dara	3.4	ء:اء	A.	Decem	٠.٠	16	200
3	Date	M	anc	ĸa:	1.Jecem	ner.	13	AL.

rom 1449*			Docket Number: G&	L 176.19-US-U1	Application No	umber: 10/8	49,764
INFORMATION DISCLOSURE ST		TATEMENT	Applicant: Mladen Bar	rbic			
OE	UN AN APPLICATIO	V	Filing Date: May 20, 2	004 Group	Art Unit: 2878		
Tre-	 		, ,				
EE 2 1 200	25		U.S. PATENT DOCUM	MENTS			
XAMINER	OCUMENT NO.	DATE	NAM	E CLASS	SUBCLASS	FILING	DATE IF
INITIAL							PRIATE
TRAPE							
						<u> </u>	•
	L	1				<u> </u>	
	DOCIDENTALO	DATE	FOREIGN PATEN		Cumer see	T TTD A NIGE	.270)
	DOCUMENT NO.	DATE	COUNT	TRY CLASS	SUBCLASS	TRANSL	T
					 	YES	NO
		ļ			 		
					1		
				or, Title, Date, Pertinent P			
1				ON BY INDUCED			
4				MAGNETIC RESC	DNANCE, N	ature (Lor	idon)
	242-24	3, 190 (1973)	•				
1							
[4] P. Mansfield et al., NMR 'DIFFRACTION' IN SOLIDS?, J. Phys. C 6, L422-1426,							
(1973).							
-	[8] J. Aguayo et al., NUCLEAR MAGNETIC RESONANCE IMAGING OF A SINGLE						
	CELL,	CELL, Nature (London) 322, 190-191, (1986).					
	[9] S. C. Lee et al., COMMUNICATIONS: ONE MICROMETER RESOLUTION NMR						
MICROSCOPY, J. Magn. Reson. 150, 207-213, (2001).							
- 1				N" AND MICROSO	COPY IN SO	LIDS AN	D
1	LIQUI	DS BY NMR,	Phys. Rev. B 12, 36	518-3634 (1975).			
1							
\				TECTION OF SING	GLE-PROTO	N MAGN	IETIC
RESONANCE, Appl. Phys. Lett. 58, 2854-2856, (1991).							
		. 011					
[14] J. A. Sidles et al., MAGNETIC RESONANCE FORCE MICROSOCPY, Rev. Mod.							
	Phys. 67, 249-265 (1995).						
	00.5	D.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ALCHANIO I DE	TECTION	ONDERIC DO	2021427	
\cdot	[15] D. Rugar et al. MECHANICAL DETECTION OF MAGNETIC RESONANCE, Nature (London) 360, 563-566 (1992).						
1	ivature	(mondon) 200	, 202-200 (133 <i>2)</i> .				
1	lie d	Rugar et al	FORCE DETECTIVE	ON OF NUCLEAR	MAGNIETIC	DECONI	NICE
n-	Science	. Rugar et al., 264, 1560-15	10000 DE LECTION (1994)	ON OF NOCLEAR	MAGNETIC	KESUNA	unce,
	Joi.onec	0 , 1000 1.					
AMINITO	1		15.:-	CONCINE	7.20	سرر لا	
AMINER:	nitial if reference consider	ered whether or n		CONSIDERED: ace with MPEP 609; draw	,	- 1	
nformance an	d not considered. Includ	e copy of this for	n for next communication	to the Applicant.	and datoogn chiz	LOUIN HOLD	•
	<i>u</i>	,					

Form 1449*	Docket Number: G&C 176.19-US-U1 Application Number: 10/849,764		
INFORMATION DISCLOSURE STATEMENT	Applicant: Mladen Barbic		
IN AN APPLICATION	Filing Date: May 20, 2004	Group Art Unit 2878	

MICROSCOPIC SAMPLE USING MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. Lett. 68, 3-pgs., 2005-2007, (1996). [18] K. Wago et al., LOW-TEMPERATURE MAGNETIC RESONANCE FORCE DETECTION, J. Vac. Sci. Technol. B 14, 1197-1201, (1996). [19] K. J. Bruland et al., FORCE-DETECTED MAGNETIC RESONANCE IN A FIELD GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Jett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 7987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A. Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). [DATE CONSIDERED: 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-		[17] Z. Zhang et al. OBSERVATION OF FERROMAGNETIC RESONANCE IN A
[18] K. Wago et al., LOW-TEMPERATURE MAGNETIC RESONANCE FORCE DETECTION, J. Vac. Sci. Technol. B 14, 1197-1201, (1996). [19] K. J. Bruland et al., FORCE-DETECTED MAGNETIC RESONANCE IN A FIELD GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Lett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al., SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000).	n	
DETECTION, J. Vac. Sci. Technol. B 14, 1197-1201, (1996). [19] K. J. Bruland et al., FÖRCE-DETECTED MAGNETIC RESONANCE IN A FIELD GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Lett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FEPT NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).	R	Appl. Phys. Lett. 68, 3-pgs., 2005-2007, (1996).
DETECTION, J. Vac. Sci. Technol. B 14, 1197-1201, (1996). [19] K. J. Bruland et al., FÖRCE-DETECTED MAGNETIC RESONANCE IN A FIELD GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Lett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FEPT NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		[18] K. Wago et al. LOW TEMBER ATURE MAGNETIC RESONANCE FORCE
[19] K. J. Bruland et al., FORCE-DETECTED MAGNETIC RESONANCE IN A FIELD GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Lett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE Fept NANOPARTICLES AND FERROMAGNETIC Fept NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		
GRADIENT OF 250 000 TESLA PER METER, Appl. Phys. Lett. 73(21), 3159-3161, (1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		<i>D21201101.</i> , 11 140.00 100
(1998). [20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		[19] K. J. Bruland et al., FORCE-DETECTED MAGNETIC RESONANCE IN A FIELD
[20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE Fept NANOPARTICLES AND FERROMAGNETIC FEPT NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).	1 1	
INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000).		(1998).
INDIVIDUAL NANOMAGNETS MEASURED BY ULTRASENSITIVE CANTILEVER MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001). [21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000).		[20] B. C. Stipe et al. MAGNETIC DISSIPATION AND FLUCTUATIONS IN
[21] T. D. Stowe et al., ATTONEWTON FORCE DETECTION USING ULTRATHIN SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FEPI NANOPARTICLES AND FERROMAGNETIC FEPI NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		
SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		MAGNETOMETRY, Phys. Rev. Lett. 86, 2874-2877, (2001).
SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997). [22] O. Zuger et al., FIRST IMAGES FROM A MAGNETIC RESONANCE FORCE MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		[21] T. D. Stowe et al. ATTONEWTON FORCE DETECTION USING ULTRATHIN
MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		SILICON CANTILEVERS, Appl. Phys. Lett. 71, 288-290, (1997).
MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993). [23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		
[23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE Fept NANOPARTICLES AND FERROMAGNETIC Fept NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		
MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FEPt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		MICROSCOPE Appl. Phys. Lett. 63, 2496-2498, (1993).
MAGNETIC RESONANCE FORCE MICROSCOPE, J. Appl. Phys. 79, 1881-1884, (1996). [24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FEPt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		[23] O. Zuger et al., THREE-DIMENSIONAL IMAGING WITH A NUCLEAR
[24] M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).	l i	
FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		(1996).
FIELD FROM A FERROMAGNETIC SPHERE, J. Appl. Phys. 91, 9987-9994, (2002). [25] M. Barbic et al. SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		1241 M. Barbic, MAGNETIC RESONANCE DIFFRACTION USING THE MAGNETIC
MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE Fept NANOPARTICLES AND FERROMAGNETIC Fept NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		
MAGNETIC RESONANCE DIFFRACTION, J. Appl. Phys. 92, 7345-7354, (2002). [27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE Fept NANOPARTICLES AND FERROMAGNETIC Fept NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001).		[25] M. Barbic et al.SAMPLE-DETECTOR COUPLING IN ATOMIC RESOLUTION
FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998). [28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 23 - 05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		
[28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 23 - 05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		[27] P. Streckeisen et al., INSTRUMENTAL ASPECTS OF MAGNETIC RESONANCE
PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 23 - 05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		FORCE MICROSCOPY, Appl. Phys. A: Mater. Sci. Process. A66, S341-S344, (1998).
PARTICLES**, Adv. Mater. (Weinheim, Ger.) 10, 259-261, (1998). [29] S. Sun et al., MONODISPERSE FePt NANOPARTICLES AND FERROMAGNETIC FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 23 - 05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		[28] C. Petit, SELF-ORGANIZATION OF MAGNETIC NANOSIZED COBALT
FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		
FePt NANOCRYSTAL SUPERLATTICES, Science 287, 1989-1992, (2000). [30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		(an) a a
[30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL: THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in	{	[29] S. Sun et al., MUNUDISPERSE FEPT NANOPARTICLES AND FERROMAGNETIC FEPT NANOCRYSTAL SUPERI ATTICES Science 287, 1989, 1992, (2000)
THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 21.05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		1011/AITOOKTOTAD BOT DICERT TIOES, SCIENCE 201, 1707-1772, (2000).
THE CASE OF COBALT, Science 291, 2115-2117, (2001). XAMINER: DATE CONSIDERED: 21.05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in	6	[30] A. F. Puntes et al., COLLOIDAL NANOCRYSTAL SHAPE AND SIZE CONTROL:
XAMINER: DATE CONSIDERED: 21.05 XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609: draw line through citation if not in	12	THE CASE OF COBALT, Science 291, 2115-2117, (2001).
XAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in		The Across and the Ac
onformance and not considered. Include conv of this form for next communication to the Applicant		Diffe CONSIDERED.
The state of the state to the state continued to the Applicant.	conformance and r	tot considered. Include copy of this form for next communication to the Applicant.

Form 1449*	Docket Number: G&C 176.19-US-U1	Application Number: 10/849,764	
INFORMATION DISCLOSURE STATEMENT	Applicant: Mladen Barbic		
IN AN APPLICATION	Filing Date: May 20, 2004	Group Art Unit: 2878	

0-		[31] T. Hyeon et al., SYNTHESIS OF HIGHLY CRYSTALLINE AND
12		MONODISPERSE MAGHEMITE NANOCRYSTALLITES WITHOUT A SIZE-
No.		SELECTION PROCESS, J. Am. Chem. Soc. 123, 12798-12801, (2001).
		,
		[32] D. R. Baselt et al., A HIGH SENSITIVITY MICROMACHINED BIOSENSOR, Proc.
		IEEE 85, 672-680, (1997).
.		
		[33] M. A. Lantz et al., HIGH RESOLUTION EDDY CURRENT MICROSCOPY, Appl.
		Phys. Lett. 78, 383-385, (2001).
		1 11/31 2011, 70, 303 303, (2001).
		[34] T. Ono et al., MAGNETIC FORCE AND OPTICAL FORCE SENSING WITH
		ULTRATHIN SILICON RESONATOR, Rev. Sci. Instrum. 74, 5141-5146, (2003).
		[46] P. J. McDonald et al., STRAY FIELD MAGNETIC RESONANCE IMAGING, Rep.
		Prog. Phys. 61, 1441-1493, (1998).
		(1770)
 		[47] D. I. Hoult et al., THE QUANTUM ORIGINS OF THE FREE INDUCTION DECAY
		SIGNAL AND SPIN NOISE, J. Magn. Reson. 148, 182-199, (2001).
		31011AL AND 37111 NOISE, J. Magii. Resoll. 146, 162-199, (2001).
		[48] J. A. Sidles et al., THE CLASSICAL AND QUANTUM THEORY OF THERMAL
1 1		MAGNETIC NOISE, WITH APPLICATIONS IN SPINTRONICS AND QUANTUM
1		MICROSCOPY, Proc. IEEE 91, 799-816, (2003).
1		
		[49] J. D. Hannay et al., THERMAL FIELD FLUCTUATIONS IN A MAGNETIC
1 1		TIP/IMPLICATIONS FOR MAGNETIC RESONANCE FORCE MICROSCOPY, J. Appl.
		Phys. 87, 6827-6829, (2000).
[]		(2000)
		[51] L. R. Narasimhan et al., SQUID MICROSUSCEPTOMETRY IN APPLIED
ļ		MAGNETIC FIELDS, IEEE Trans. Appl. Supercond. 9, 3503-3506, (1999).
		[52] G. Boero et al., HALL DETECTION OF MAGNETIC RESONANCE, Appl. Phys.
l l		Lett. 79, 1498-1500, (2001).
	·····	[53] R. D. Black et al., A HIGH-TEMPERATURE SUPERCONDUCTING RECEIVER
		FOR NUCLEAR MAGNETIC RESONANCE MICROSCOPY, Science 259, 793-795,
		(1993).
(
[[[54] S. Zhang et al., HIGH-SENSITIVTY FERROMAGNETIC RESONANCE
1 1		MEASUREMENTS ON MICROMETER-SIZED SAMPLES, Appl. Phys. Lett. 70, 2756-
1 1		2758, (1997).
1/2	-	[55] F. Bloch, NUCLEAR INDUCTION, Phys. Rev. 70, 460-474, (1946).
1		
EVAMINUTO	. //	DUTT 500000000 2 2 2 2 2
EXAMINER:	aitial if mform	DATE CONSIDERED: 20.0
conformance an	d not conside	ence donsidered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in

Form 1449*	Docket Number: G&C 176.19-US-U1	Application Number: 10/849,764	
INFORMATION DISCLOSURE STATEMENT	Applicant: Mladen Barbic		
IN AN APPLICATION	Filing Date: May 20, 2004	Group Art Unit: 2878	

B	[57] J. G. Kempf et al., NANOSCALE FOURIER-TRANSFORM IMAGING WITH MAGNETIC RESONANCE FORCE MICROSCOPY, Phys. Rev. Lett. 90, 087601-4 (2003).
	[58] E. E. Sigmund et al., HOLE-BURNING DIFFUSION MEASUREMENTS IN HIGH MAGNETIC FIELD GRADIENTS, J. Magn. Reson. 163, 99-104, (2003).
	[59] G. Binning, H. Rohrer, SURFACE STUDIES BY SCANNING TUNNELING MICROSCOPY, Phys. Rev. Lett. 49, 57-61, (1982).
	[60] G. Binning, et al., ATOMIC FORCE MICROSCOPE, Phys. Rev. Lett. 56, 930-934, (1986).
	[61] R. Wiesendanger, OBSERVATION OF VACUUM TUNNELING OF SPIN-POLARIZED ELECTRONS WITH THE SCANNING TUNNELING MICROSCOPE, Phys. Rev. Lett. 65, 247-251, (1990).
	[62] Y. Manassen et al., DIRECT OBSERVATION OF THE PRECESSION OF INDIVIDUAL PARAMAGNETIC SPINS ON OXIDIZED SILICON SURFACES, Phys. Rev. Lett. 62, 2531-2535, (1989).
	[63] C. Durkan et al., ELECTRONIC SPIN DETECTION IN MOLECULES USING SCANNING-TUNNELING-MICROSCOPY-ASSISTED ELECTRON-SPIN RESONANCE, Appl. Phys. Lett. 80, 458-460, (2002).
	[66] J. Sanny et al., MICROWAVE ELECTRON SPIN RESONANCE SPECTROMETER WITH OPERATION TO 54 Mk IN A DILUTION REFRIGERATOR, Rev. Sci. Instrum. 52, 539-541, (1981).
	[67] H. Mahdjour et al., HIGH-SENSITIVITY BROADBAND MICROWAVE SPECTROSCOPY WITH SMALL NONRESONANT COILS, Rev. Sci. Instrum. 57, 1100-1106, (1986).
	[68] D. L. Olson et al., HIGH-RESOLUTION MICROCOIL ¹ H-NMR FOR MASS-LIMITED, NANOLITER-VOLUME SAMPLES, <i>Science</i> 270 , 1967-1970, (1995).
B	[70] D. A. Seeber et al., TRIAXIAL MAGNETIC FIELD GRADIENT SYSTEM FOR MICROCOIL MAGNETIC RESONANCE IMAGING, Rev. Sci. Instrum. 71, 4263-4272 (2000).

EXAMINER: Mondon	DATE CONSIDERED: 20.0				
EXAMINER: Initial if reference fonsidered, whether of not citation is in conformance with MPEP 609; draw line through citation if not in					
conformance and not considered. Include copy of this form for next communication to the Applicant.					

Form 1449*	Docket Number: G&C 176.19-US-U1 Application Number: 10/849		
INFORMATION DISCLOSURE STATEMENT	Applicant Mladen Barbic		
IN AN APPLICATION	Filing Date: May 20, 2004	Group Art Unit: 2878	

b	[71] L. Ciobanu et al., 3D MR MICROSCOPY WITH RESOLUTION 3.7um BY 3.3 um BY 3.3um, J. Magn. Reson. 158, 178-182, (2002).
1	[72] M. Barbic et al., ELECTROMAGNETIC MICROMOTOR FOR MICROFLUIDICS APPLICATIONS, Appl. Phys. Lett. 79:9, 1399-1401, (2001).
	[73] M. Barbic et al., SCANNING PROBE ELECTROMAGNETIC TWEEZERS, Appl. Phys. Lett. 79:12, 1897-1899, (2001).
	[74] M. Barbic, MAGNETIC WIRES IN MEMS AND BIO-MEDICAL APPLICATIONS, J. Magn. Mag. Mater. 249, 357-367, (2002).
	[75] M. Todorovic et al., MINIATURE HIGH-SENSITIVITY QUARTZ TUNING FORK ALTERNATING GRADIENT MAGNETOMETRY, Appl. Phys. Lett. 73, 3539-3597 (1998).
	[76] J. A. Rogers et al., USING MICROCONTACT PRINTING TO FABRICATE MICROCOILS ON CAPILLARIES FOR HIGH RESOLUTION PROTON NUCLEAR MAGNETIC RESONANCE ON NANOLITER VOLUMES, Appl. Phys. Lett. 70, 2464 – 2466, (1997).
	[77] Y. J. Kim et al., SURFACE MICROMACHINED SOLENOID INDUCTORS FOR HIGH FREQUENCY APPLICATIONS, <i>IEEE Trans. Compon. Pack. Manuf. C</i> 21, 26-33, (1998).
	[78] G. Boero et al., FULLY INTEGRATED PROBE FOR PROTON NUCLEAR MAGNETIC RESONANCE MAGNETOMETRY, Rev. Sci. Instrum. 72, 2764-2768, (2001).
	[79] M. M. Midzor et al., IMAGING MECHANISMS OF FORCE DETECTED FMR MICROSCOPY, J. Appl. Phys. 87, 6493-6495, (2000).
	[80] H. J. Mamin et al., SUBATTONEWTON FORCE DETECTION AT MILLIKELVIN TEMPERATURES, Appl. Phys. Lett. 79, 3358-3360, (2001).
	[81] H. J. Mamin et al., SUPERCONDUCTING MICROWAVE RESONATOR FOR MILLIKELVIN MAGNETIC RESONANCE FORCE MICROSCOPY, Rev. Sci. Instrum. 74, 2749-2753, (2003).
B	[82] C. Ascoli et al., MICROMECHANICAL DETECTION OF MAGNETIC RESONANCE BY ANGULAR MOMENTUM ABSORPTION, Appl. Phys. Lett. 69, 3920-3922(1996).

EXAMINER:	DATE CONSIDERED: 7. 28.05				
EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in					
conformance and not considered. Include copy of this form for next communication to the Applicant.					

Form 1449*	Docket Number: G&C 176.19-US-U1	Application Number: 10/849,764		
INFORMATION DISCLOSURE STATEMENT	Applicant: Mladen Barbic			
IN AN APPLICATION	Filing Date: May 20, 2004	Group Art Unit: 2878		

k		[83] M. Lohndorf et al., FERROMAGNETIC RESONANCE DETECTION WITH A TORSION-MODE ATOMIC-FORCE MICROSCOPE, Appl. Phys. Lett. 76, 1176-1178, (2000).
	i	[84] J. Moreland et al., FERROMAGNETIC RESONANCE SPECTROSCOPY WITH A MICROMECHANICAL CALORIMETER SENSOR, Rev. Sci. Instrum. 71, 3099-3103, (2000).
		[85] A. Jander et al., ANGULAR MOMENTUM AND ENERGY TRANSFERRED THROUGH FERROMAGNETIC RESONANCE, <i>Appl. Phys. Lett.</i> 78 , 2348-2350, (2001).
	i	[87] Ya. S. Greenberg, APPLICATION OF SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES TO NUCLEAR MAGNETIC RESONANCE, Rev. Mod. Phys. 70, 175-222, (1998).
7	([88] H. Bergh, NONLINEAR COUPLING AND RADIATION DAMPING IN OSCILLATOR-DETECTED MAGNETIC RESONANCE OF SINGLE SPINS, <i>Meas. Sci. Technol.</i> 7, 1019-1026, (1996).
<u>b</u>		[89] A. Suter et al., PROBE-SAMPLE COUPLING IN THE MAGNETIC RESONANCE FORCE MICROSCOPE, J. Magn. Reson. 154, 210-227, (2002).

	ATE CONSIDERED:	<i>).</i> 2	10	(
EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609; draw line through citation if not in conformance and not considered. Include copy of this form for next communication to the Applicant.								