Chapter 5 Even Answers

- 2. (a) 5.00 m/s^2 (b) 19.6 N (c) 10.0 m/s^2
- 4. 444 s
- **6.** (a) 1.44 m (b) $(50.9\mathbf{i} + 1.40\mathbf{j}) \text{ N}$
- **8.** 4.45 N
- **10.** (a) -4.47×10^{15} m/s² (b) $+2.09 \times 10^{-10}$ N
- **12.** (a) 534 N (b) 54.5 kg
- **14.** 2.55 N for a 88.7 kg person
- **16.** $(16.3\mathbf{i} + 14.6\mathbf{j})$ N
- **18.** 5.15 m/s² at 14.0° S of E
- **20.** (a) 181° counterclockwise from *x*-axis (b) 11.2 kg
 - (c) 37.5 m/s (d) $(-37.5\mathbf{i} 0.893\mathbf{j}) \text{ m/s}$
- **22.** 112 N
- **24.** $T_1 = 296 \text{ N}, T_2 = 163 \text{ N}, T_3 = 325 \text{ N}$
- **26.** (a) $T = F_g / \sin \theta$ (b) 1.79 N
- **28.** (a) 5.10×10^3 N (b) 3.62×10^3 kg
- **30.** (a) $a = g \tan \theta$ (b) 4.16 m/s²
- **32.** (a) 2.54 m/s^2 down the incline (b) 3.18 m/s
- **34.** (a) 3.57 m/s^2 (b) 26.7 N (c) 7.14 m/s
- **36.** (a) 36.8 N (b) 2.45 m/s^2 (c) 1.23 m

38. (a)
$$a_1 = 2a_2$$
 (b) $T_1 = \frac{m_1 m_2}{2m_1 + \frac{1}{2}m_2} g$, $T_2 = \frac{m_1 m_2}{m_1 + \frac{1}{4}m_2} g$ (c) $a_1 = \frac{m_2 g}{2m_1 + \frac{1}{2}m_2}$, $a_2 = \frac{m_2 g}{4m_1 + m_2}$

- **40.** 7.84 m/s^2 independent of the mass
- **42.** 0.456
- **44.** (a) 55.2° (b) 167 N
- **46.** $\mu_s = 0.727, \, \mu_k = 0.577$
- **48.** 221 m
- **50.** (a) 2.31 m/s^2 , down for 4.00 kg, left for 1.00 kg, up for 2.00 kg
 - (b) $T_{\text{left}} = 30.0 \text{ N}$, $T_{\text{right}} = 24.2 \text{ N}$
- **52.** (a) 0.931 m/s^2 (b) 6.10 cm
- **54.** (a) 3.00 s (b) 20.1 m (c) $(18.0\mathbf{i} 9.00\mathbf{j}) \text{ m}$
- **56.** (a) 2.00 m/s^2 (b) 4.00 N on m_1 , $6.00 \text{ on } m_2$, $8.00 \text{ on } m_3$
 - (c) 14.0 N between m_1 and $m_2,\,8.00$ N between m_2 and m_3

58. (a)
$$M = 3m \sin \theta$$
 (b) $T_1 = 2 mg \sin \theta$, $T_2 = 3 mg \sin \theta$ (c) $a = \frac{g \sin \theta}{1 + 2 \sin \theta}$

(d)
$$T_1 = 4mg\left(\frac{1+\sin\theta}{1+2\sin\theta}\right)$$
, $T_2 = 6mg\left(\frac{1+\sin\theta}{1+2\sin\theta}\right)$ (e) $M_{\text{max}} = 3m(\sin\theta + \mu_s\cos\theta)$

- (f) $M_{\min} = 3m(\sin \theta \mu_s \cos \theta)$ (g) $T_{2,\max} T_{2,\min} = (M_{\max} M_{\min})g = 6\mu_s \, mg \cos \theta$
- **60.** (a) (-45.0i + 15.0j) m/s (b) 162° from +x-axis (c) (-225i + 75.0j) m (d) (-227, 79.0) m
- **62.** (a) 4.90 m/s^2 (b) 3.13 m/s (c) 1.35 m (d) 1.14 s (e) no
- **64.** The system does not start to move when released, $f_1 + f_2 = 29.4 \text{ N}$
- **66.** $a = 0.143 \text{ m/s}^2$, approximately 4% high
- **68.** (b) T = 9.80 N, $a = 0.580 \text{ m/s}^2$

70. (a)
$$m_2 g \left[\frac{m_1 M}{m_1 M + m_2 (m_1 + M)} \right]$$
 (b) $\frac{m_2 g (M + m_1)}{m_1 M + m_2 (m_1 + M)}$ (c) $\frac{m_1 m_2 g}{m_1 M + m_2 (m_1 + M)}$ (d) $\frac{M m_2 g}{m_1 M + m_2 (m_1 + M)}$

- **72.** (a) 2.20 m/s^2 (b) 27.4 N
- **74.** (a) 600 N (b) 1100 N (forward)

76. (a)
$$T_1 = \frac{2mg}{\sin \theta_1}$$
, $T_2 = \frac{mg}{\sin \theta_2} = \frac{mg}{\sin \left[\tan^{-1}\left(\frac{1}{2}\tan \theta_1\right)\right]}$ (b) $\theta_2 = \tan^{-1}\left(\frac{\tan \theta_1}{2}\right)$

78.
$$n = (82.3 \text{ N}) \cos \theta, a = (9.80 \text{ m/s}^2) \sin \theta$$