Example 5

In the adjoining figure A,B,P are tangent points on the circumference of the circle $O.AM \perp MN, \angle M = \angle N = 90^{\circ}.$ $PD \perp AB$. Show that $PD^2 = AM \times BN$.

Solution: Connect AP, BP.

Since AB is the diameter, $\angle APB=90^\circ$. Thus $PD^2=AD\times DB$ Since $\angle M=90^\circ$, and $AM=PM, \angle MAP=\angle MPA=\alpha=45^\circ$.

Since $\angle N=90^\circ$, and $BN=PN, \angle NPB=\angle NBP=\alpha=45^\circ$. So $\angle BAP=\angle BPN=\alpha=45^\circ$ (both angles face the same arc PB). Since $\angle ADP=90^\circ, \angle DPA=\angle DAP=\alpha=45^\circ$. Similarly $\angle DPB=\angle DBP=\alpha=45^\circ$.

So
$$\triangle AMP \cong \triangle ADP \implies AM = AD$$

So
$$\triangle BNP \cong \triangle BDP \Rightarrow BN = DB$$
 (3)
Substituting (2) and (3) into (1): $PD^2 = AM \times BN$