

Ein VPN zum Schutz vor Quantencomputern

Wanja Zaeske, Stephan Ajuvo, Marei Peischl, Benjamin Lipp, Lisa Schmidt, Karolin Varner

Danke an NLNet für die finanzielle Unterstützung!

https://rosenpass.eu

Was passiert im Talk?

- Was ist Rosenpass?
- Wozu braucht es Post-Quanten-Kryptographie?
- Rosenpass-Demo!
- Wie funktioniert Rosenpass?
- Bunte Checkmarks: Kryptobeweise im CI-Setup
- Integration mit WireGuard & Chiffren

Rosenpass ist...

Software

- Ein Add-On für WireGuard um Post-Quanten-Sicherheit zu ermöglichen
- Eine stand-alone Schlüsselaustausch-Applikation, die mit allen möglichen Systemen integriert werden kann

Kryptographie

- Ein kryptographisches Protokoll
- Ein Schlüsseltauschverfahren
- post-quanten-sicher
- formal verifiziert

Kommunikation und Projekt

- Eine WissKomm-Initiative um Kryptographie der breiten Öffentlichkeit zugänglich zu machen
- Community-nahe Initiative um Forschung zu ermöglichen

Angriffe von Quantencomputern: Shors⁴ Algorithmus

Jargon: Löst einige mathematische Probleme effizient, auf denen moderne Krypto basiert:

- RSA¹ (das *Faktorisierungsproblem* Primzahlzerlegung)
- DH² (Berechnen des *Diskreten Logarithmus*)
- ECDH³ (Berechnen des Diskreten Logarithmus auf Elliptischen Kurven)

Weniger Jargon: Bricht so ziemlich alle moderne, asymmetrische Kryptographie.

¹ "Rivest-Shamir-Adleman" – Ron Rivest, Adi Shamir, Leonard Adleman

² "Diffie-Hellmann" – Whitfield Diffie, Martin Hellmann

³ Elliptic Curve Diffie-Hellmann

⁴ Peter Shor

Angriffe von Quantencomputern: Grovers⁵ Algorithmus

 $\mbox{\bf Jargon:}$ Suche durch ungeordnete Listen in $O(\sqrt{n})$ statt klassisch O(n) im Durchschnitt.

Weniger Jargon: Mostly harmless ("im wesentlichen harmlos"); symmetrische Kryptographie ist kaum betroffen.

⁵ Lov Grover

Quantencomputer: Ein ganz heißes Eisen

IF A RESEARCHER SAYS A COOL NEW TECHNOLOGY SHOULD BE AVAILABLE TO CONSUMERS IN...

WHAT THEY MEAN IS ...

THE FOURTH QUARTER OF NEXT YEAR	THE PROJECT WILL BE CANCELED IN SIX MONTHS.
FIVE YEARS	IVE SOLVED THE INTERESTING RESEARCH PROBLEMS. THE REST IS JUST BUSINESS, WHICH IS EASY, RIGHT?
TEN YEARS	WE HAVEN'T FINISHED INVENTING IT YET, BUT WHEN WE DO IT'LL BE AWESOME.
25+ YEARS	IT HAS NOT BEEN CONCLUSIVELY PROVEN IMPOSSIBLE.
WE'RE NOT REALLY LOOKING AT MARKET APPLICATIONS RIGHTNOW.	I LIKE BEING THE ONLY ONE WITH A HOVERCAR.

Post-Quanten-Kryptographie: Munch now decrypt later

- Post-Quanten-Kryptographie ist auf dem Weg der Standardisierung
- Wir müssen sehr früh deployen;
 wenn die Krypto kaputt ist, dann ist es zu spät.

"Munch now decrypt later"⁶

⁶ "Jetzt speichern später entschlüsseln". Warnung: Geheimdienste sind nicht so cute wie dieser Hamster. Quelle: https://foto.wuestenigel.com/gray-hams er-eating-sunflower-seed/

Post-Quanten-Kryptographie: Wird bereits standardisiert

Durch NIST⁷ zur Standardisierung ausgewählt [1]:

- Crystals-Kyber (Verschlüsselung)
- Crystals-Dilithium (Signatur)
- Falcon (Signatur)
- Sphincs+ (Signatur)

Das BSI⁸empfiehlt [2]:

- Frodo (Verschlüsselung)
- Classic McEliece (Verschlüsselung)

⁷ National Institut for Standards and Technology – US-Amerikanische Standardisierungsbehörde

⁸ Bundesamt für Sicherheit in der Informationstechnik

Verschlüsselung im Angesicht von Quantencomputern

Die meisten Schlüsselaustausch-Protokolle inklusive WireGuard nutzen NIKEs

Rosenpass Demo!


```
K Rosenpass
        rp pubkey server.rosenpass-secret server.rosenpass-public
        rp pubkey client.rosenpass-secret client.rosenpass-public
       Copy the -public directories to the other peers and then start the VPN. On the server:
        sudo rp exchange server.rosenpass-secret dev rosenpass0 listen 192.168.0.1:9999 \
            peer client.rosenpass-public allowed-ips fe80::/64
       On the client:
        sudo rp exchange client.rosenpass-secret dev rosenpass0 \
            peer server.rosenpass-public endpoint 192.168.0.1:9999 allowed-ips fe80::/64
       Assign IP addresses:
        sudo ip a add fe80::1/64 dev rosenpass0 # Server
        sudo ip a add fe80::2/64 dev rosenpass0 # Client
       Test the connection by pinging the server on the client machine:
        ping fe80::1%rosenpass0 # Client
       You can watch how Rosenpass replaces the WireGuard PSK with the following command:
        watch -n 0.2 'wg show all: wg show all preshared-keys'
```

Verschlüsselung im Angesicht von Quantencomputern

Die meisten Schlüsselaustausch-Protokolle inklusive WireGuard nutzen NIKEs

Schlüsselaustauschmethoden: Static-static Schlüsselaustausch mit NIKEs⁹

⁹ "Non-Interactive Key Exchange" – Nichtinteraktiver Schlüsselaustausch

Einfachst-möglicher Schlüsseltausch mit KEMs¹⁰

 $^{^{\}rm 10}$ "Key-Encapsulation Method" – Schlüsseltransportmethode

Schlüsselaustauschmethoden: Mit KEMs wird es komplizierter

Static-static Schlüsselaustausch mit KEMs.

Post-Quanten-WireGuard: 3 Schlüsseltransporte [5]

Alle 3 Schlüsseltransporte in einem Protokoll

Der Initiator ist erst authentifiziert, nachdem "(ack)" empfangen wurde.

Das Rosenpass-Protokoll

Sicherheitsanalyse

Symbolische Protokoll-Analyse

- kann automatisiert logische Fehler im Protokoll finden.
- Genauer: Kommunikationsabläufe, die Sicherheitseigenschaften brechen In unserem Fall:
- Wir nutzen ProVerif [3] als Tool um Protokoll-Bugs auszuschließen
- Wir haben die Laufzeit optimiert; symbolische Analyse läuft in fünf Minuten
- Beweise sind Teil des Software-Repositories; laufen in der CI
 Wir arbeiten an Beweisen in einem stärkeren Angreifermodell: kryptographische Beweise (mit CryptoVerif [4])

ProVerif in Technicolor


```
[17/17]
osenpass-proverif-proof> unpacking sources
osenpass-proverif-proof> unpacking source archive /nix/store/cznyv4ibwlzbh257v6lzx8r8al4cb0v0-source
osenpass-proverif-proof> source root is source
osenpass-proverif-proof> patching sources
osenpass-proverif-proof> configuring
rosenpass-proverif-proof> no configure script, doing nothing
osenpass-proverif-proof> building
rosenpass-proverif-proof> no Makefile, doing nothing
rosenpass-proverif-proof> installing
osenpass-proverif-proof> $ metaverif analysis/01 secrecy.entry.mpy -color -html /nix/store/gidm68r04lkpanykgz48527gf6nym6dy
rosenpass-proverif-proof
osenpass-proverif-proof> $ metaverif analysis/02 availability.entry.mpy -color -html /nix/store/gidm68r04lkpanykgz48527gf6n
vm6dv-rosenpass-proverif-proof
rosenpass-proverif-proof> $ wait -f 34
rosenpass-proverif-proof> $ cpp -P -I/build/source/analysis analysis/01_secrecy.entry.mpv -o target/proverif/01 secrecy.entr
v.i.pv
rosenpass-proverif-proof> $ cpp -P -I/build/source/analysis analysis/02 availability.entry.mpy -o target/proverif/02 availab
ility.entry.i.pv
rosenpass-proverif-proof> $ awk -f marzipan/marzipan.awk target/proverif/01 secrecy.entry.i.pv
osenpass-proverif-proof> $ awk -f marzipan/marzipan.awk target/proverif/02 availability.entry.i.pv
rosenpass-proverif-proof> 4s ✓ state coherence, initiator: Initiator accepting a RespHello message implies they also generat
ed the associated InitHello message
rosenpass-proverif-proof> 35s 🗸 state coherence, responder: Responder accepting an InitConf message implies they also general
ted the associated RespHello message
rosenpass-proverif-proof> 0s ✓ secrecy: Adv can not learn shared secret key
rosenpass-proverif-proof> ∅s 🗸 secrecy: There is no way for an attacker to learn a trusted kem secret key
                          secrecy: The adversary can learn a trusted kem pk only by using the reveal oracle
osenpass-proverif-proof> 0s
osenpass-proverif-proof> 0s
                          secrecy: Attacker knowledge of a shared key implies the key is not trusted
osenpass-proverif-proof> 31s ✓ secrecy: Attacker knowledge of a kem sk implies the key is not trusted
```

Rosenpass

WireGuard

Verwendete Chiffren

- Authentifikation und Vertraulichkeit: Classic McEliece (erfunden 1978, codebasiert)
- Forward Secrecy: Kyber (von NIST zur Standardisierung ausgewählt, gitterbasiert)
- Kryptoagilität: Wir planen die Möglichkeit einzubauen, die Chiffren zu wechseln (das ist nicht ciphersuite negotiation)

Ausblick

- Rosenpass in Kubernetes
- Isolation, Micro-VMs, Docker
- Formal verifizierte Implementierung
- Mehr WissKomm zu Kryptographie. Kryptographie braucht verständliche Erklärungen!
- Wir suchen High-Assurance-Kryptographieprojekte um mit uns zusammenzuarbeiten. Rosenpass ist klein und kann als Demonstrator dienen.

Zum Nachbauen... aus dem Whitepaper:

Konversationsstarter.

- Zurzeit wird Rosenpass via CLI konfiguriert
- Das lässt zu wünschen:
 - hinzufügen/entfernen von peers ohne neustart
 - <23 CLI Argumente f
 ür exchange mit einem peer
 - simple integration mit anderen Programmiersprachen
- Lösungsansätze:
 - Konfigurationsdatei: rosenpass rp-config.toml
 - Unix Domain Socket: add peer /opt/peer-pub.key rosenpass.eu:9999

Zum Nachbauen... aus dem Whitepaper:

Sicherheitsanalyse

Symbolische Protokoll-Analyse

- kann automatisiert logische Fehler im Protokoll finden.
- Genauer: Kommunikationsabläufe, die Sicherheitseigenschaften brechen In unserem Fall:
- Wir nutzen ProVerif [3] als Tool um Protokoll-Bugs auszuschließen
- Wir haben die Laufzeit optimiert; symbolische Analyse läuft in fünf Minuten
- Beweise sind Teil des Software-Repositories; laufen in der CI
 Wir arbeiten an Beweisen in einem stärkeren Angreifermodell: kryptographische Beweise (mit CryptoVerif [4])

CVE-2021-46873 – DOS against WireGuard through NTP

- The replay protection in classic WireGuard assumes a monotonic counter
- But the system time is attacker-controlled because NTP is insecure
- This generates a kill packet that abuses replay protection and renders the initiator's key-pair useless
- Attack is possible in the real world!
- Similar attack in post-quantum WireGuard is worse since InitHello is unauthenticated
- Solution: Biscuits

New Hashing/Domain separation scheme

- [1] URL: https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022.
- [2] URL: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/ Publikationen/Broschueren/Kryptografie-quantensicher-gestalten.pdf.
- [3] URL: https://proverif.inria.fr/.
- [4] URL: https://cryptoverif.inria.fr/.
- [5] Andreas Hülsing u. a. "Post-quantum WireGuard". In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. Full version: https://eprint.iacr.org/2020/379. IEEE, 2021, S. 304–321. DOI: 10.1109/SP40001.2021.00030. URL: https://doi.org/10.1109/SP40001.2021.00030.