ME6406 HW 1

Patrick Gardocki

2023-09-22

1. Pin-hole Optics

1.a

Assume:
$$R_1 = \frac{dp}{2}$$
; $R_2 = \frac{dL}{2}$; $S = \frac{s}{dp} = \frac{2s}{R_1}$

Area of Segment for any given circle

$$\delta O = \pi R^2 \ \delta a = \pi R^2 - \delta a_i \rightarrow \frac{\delta a}{\delta O} = 1 - \frac{\delta a_i}{\delta O}$$

$$\delta a_i = \pi R^2(\frac{2\alpha}{2\pi}) - sh = R^2\alpha - s\sqrt{R^2 - s^2}$$

If:
$$S = \frac{s}{R} \to \alpha = \cos^{-1}S$$

$$\frac{\delta a}{\delta O} = 1 - (\cos^{-1}S - S\sqrt{1 - S^2})$$

Relationship of two projections by given distance between intersection points

$$R_1^2 - s_1^2 = R_2^2 - s_2^2 \to s_2^2 = R_2^2 - R_1^2 + s_1^2 \to s_2 = R_1 \sqrt{\frac{1}{\rho}^2 + S_1^2 - 1}$$

$$S_2 = \frac{s_2}{R_2} = \frac{2s_2}{d_L} = -\frac{R_1\sqrt{\frac{1}{\rho}^2 + S_1^2 - 1}}{R_2} = \rho\sqrt{\frac{1}{\rho}^2 + S_1^2 - 1}$$

Finally,
$$\frac{\delta a}{\delta O} = (\frac{\delta a}{\delta O})_{PPC} + (\frac{\delta a}{\delta O})_{Cl}$$

Finally,
$$\frac{\delta a}{\delta O} = (\frac{\delta a}{\delta O})_{PPC} + (\frac{\delta a}{\delta O})_{Cl}$$

 $\frac{\delta a}{\delta O} = 2 - \frac{1}{\pi}(\cos^{-1}S - S\sqrt{1 - S^2} + \cos^{-1}S_2 - S_2\sqrt{1 - S_2^2})$

$$\frac{\delta a}{\delta O} = 2 - \frac{1}{\pi} (\cos^{-1}S - S\sqrt{1 - S^2} + \cos^{-1}(\rho\sqrt{\frac{1}{\rho}^2 + S_1^2 - 1}) - (\rho\sqrt{\frac{1}{\rho}^2 + S_1^2 - 1})\sqrt{1 - (\rho\sqrt{\frac{1}{\rho}^2 + S_1^2 - 1})^2}$$

1.b

Figure 1: dadO as function of S

2. Histogram Equalization

2.a

66	66	60	53	50	50	51	55
68	68	60	53	48	49	53	57
69	68	60	51	46	48	54	58
71	68	58	48	44	47	54	58
73	68	57	47	43	47	55	58
78	69	57	49	46	51	54	56

Figure 2: Sub-Region Before Filtering

202	202	191	106	74	74	90	133
228	228	191	106	53	64	106	154
239	228	191	90	21	53	122	175
244	228	175	53	11	37	122	175
250	228	154	37	5	37	133	175
255	239	154	64	21	90	122	138

Figure 3: Sub-Region After Filtering

Gray-level	# of Pixels	CDF	qk	round(qk)
43	1	1	5.3125	5
44	1	2	10.6250	11
45	0	2	10.6250	11
46	2	4	21.2500	21
47	3	7	37.1875	37
48	3	10	53.1250	53
49	2	12	63.7500	64
50	2	14	74.3750	74
51	3	17	90.3125	90
52	0	17	90.3125	90
53	3	20	106.2500	106
54	3	23	122.1875	122
55	2	25	132.8125	133
56	1	26	138.1250	138
57	3	29	154.0625	154
58	4	33	175.3125	175
59	0	33	175.3125	175
60	3	36	191.2500	191
61	0	36	191.2500	191
62	0	36	191.2500	191
63	0	36	191.2500	191
64	0	36	191.2500	191
65	0	36	191.2500	191
66	2	38	201.8750	202
67	0	38	201.8750	202
68	5	43	228.4375	228
69	2	45	239.0625	239
70	0	45	239.0625	239
71	1	46	244.3750	244
72	0	46	244.3750	244
73	1	47	249.6875	250
74	0	47	249.6875	250
75	0	47	249.6875	250
76	0	47	249.6875	250
77	0	47	249.6875	250
78	1	48	255	255

Figure 4: Histogram Equalization Table

Figure 5: Original Histogram

Figure 6: Filtered Histogram

Figure 7: Original - Filtered

3. Filtering Masks

3.a

The gradient magnitude is 18.601 and the direction is 53.746° .

66	60	53	50	50	51	55
68	60	53	48	49	53	57
68	60	51	46	48	54	58
68	58	48	44	47	54	58
68	57	47	43	417	55	58
69	57	49	46	51	54	56
	68 68 68	68 60 68 60 68 58 68 57	68 60 53 68 60 51 68 58 48 68 57 47	68 60 53 48 68 60 51 46 68 58 48 44 68 57 47 43	68 60 53 48 49 68 60 51 46 48 68 58 48 44 47 68 57 47 43	68 60 53 48 49 53 68 60 51 46 48 54 68 58 48 44 47 54 68 57 47 43 47 55

Figure 8: Direction of Gradient at pixel (3,6)

No differences between Matlab packages and own implementations are observed.

Figure 9: Gaussian Functions for various sigma

Gaussian Smoothing with Different σ Values

Figure 10: Effects of different sigma for Gaussian Filtering

3.f.i

3.f.ii

Figure 11: Color Patterns Before and After Filtering

3.f.iii

Before Filtering: d = 29.46

After Filtering: d = 74.23

4. Low-level Information Processing

4.a

Figure 12: Binarized Image at various Thresholds

4.b

Nut Area: 10331 Nut Centroid: [272.15, 324.19] Shell Area: 15072 Shell Centroid: [668,05, 301.27]

4.c

Figure 13: Boundaries of Nut and Shell