Exercício 1

Considere a função quadrática definida por $f(x)=x^2-2x-3,\ x\in\mathbb{R}.$

a)

Escreva a expressão $x^2 - 2x - 3$ na forma $(x - h)^2 + k$.

$$h = -\frac{b}{2a} = \frac{2}{2} = 1$$

$$k = -\frac{\Delta}{4a}$$

$$\Delta=16, \mathrm{ent\tilde{a}o}, k=-\frac{16}{4}=-4$$

Então a expressão $x^2 - 2x - 3$ é equivalente a $(x - 1)^2 - 4$.

b)

Calcule os zeros de f.

$$x = \frac{2 \pm \sqrt{16}}{2}$$
$$\Leftrightarrow x = \frac{2 \pm 4}{2}$$

$$\Leftrightarrow x = 3 \lor x = -1$$

Os zeros de $x^2 - 2x - 3$ são -1, 3.

c)

Represente graficamente f.

d)

Indique os valores de x que têm imagem negativa.

Exercício 2

Considere a função real de variável real definida por $f(x) = -(x+2)^2 - (x+2)^2$ $1, x \in \mathbb{R}$.

a)

Determine as coordenadas do vértice da parábola representativa do gráfico da função e escreva uma equação do seu eixo de simetria.

As coordenadadas do V=(-2,-1) e equação do eixo de simetria é x=-2

b)

Indique dois objetos diferentes que tenham a mesma imagem por f.

$$\{1, -10\}$$

$$\{-5, -10\}$$

c)

Qual o sentido da concavidade da parábola? Justifique.

A concavidade da parábola é voltada para baixo porque o coeficiente x ou seja é menor que zero.

d)

Represente graficamente f.

e)

Indique o seu contradomínio.

$$D_f' =]-\infty, -1]$$

$$x^{2} + 2x - 15$$
$$(x+5)(x-3)$$

Exercício 3

Resolva em R cada uma das condições:

a)

$$9x^2 + 12x + 4 \le 0$$
; C.A.

$$9x^{2} + 12x + 4 = 0$$

$$\Leftrightarrow x = \frac{-12 \pm \sqrt{0}}{18}$$

$$\Leftrightarrow x = \frac{-12}{18}$$

$$\Leftrightarrow x = -\frac{2}{3}$$

$$S = -\frac{2}{3}$$

$$9x^{2} + 12x + 4 \le 0 = -\frac{2}{3}$$

b)

$$-x^2 + 4 < 0$$
;

$$C.S. =]-\infty, -2[\,\cup\,]2, +\infty[$$

$$-x^2 - 5x \ge 6;$$
 C.A.

$$-x^{2} - 5x - 6 = 0$$

$$\Leftrightarrow x = \frac{5 \pm 1}{-2}$$

$$\Leftrightarrow x = \frac{5 + 1}{-2} \lor x = \frac{5 - 1}{-2}$$

$$\Leftrightarrow x = -3 \lor x = -2$$

$$S = \{-3, -2\}$$

$$-x^2 - 5x \ge 6 = [-3, -2]$$

$$x^2 + x - 2 > 0;$$
 C.A.

$$x^{2} + x - 2 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm 3}{2}$$

$$\Leftrightarrow x = \frac{-1 + 3}{2} \lor x = \frac{-1 - 3}{2}$$

$$\Leftrightarrow x = 1 \lor x = -2$$

$$S = \{-2, 1\}$$

$$x^2 + x - 2 > 0 =]-\infty, -2[\cup]1, +\infty[$$

 $\mathbf{e})$

$$4x^2 + x + 1 < 0;$$

O $\Delta < 0,$ portanto não tem zeros e como a concavidade é virada para cima não toca o eixo do x.

Exercício 4

Determine o domínio das funções definidas por :

a)

$$f(x) = \sqrt{2x^2 - 4x}$$
 C.A.

$$2x^{2} - 4x = 0$$

$$\Leftrightarrow x (2x - 4) = 0$$

$$\Leftrightarrow x = 0 \lor x = 2$$

$$D_{f} =]-\infty, 0] \cup [2, +\infty[$$

x	$-\infty$	0		2	+∞
x	_	0	+	+	+
2x-4	_	_	_	0	+
$(x)\left(2x-4\right)$	+	0	_	0	+

Crescente

Crescente

$$f(x) = \frac{x}{\sqrt{(x-1)(x-2)}}$$

$$D_f = \{x \in \mathbb{R} : (x-1)(x-2) > 0\}$$

C.A.

$$(x-1)(x-2) = 0$$

$$\Leftrightarrow x = 1 \lor x = 2$$

$$D_f =]-\infty, 1[\,\cup\,]2, +\infty[$$

x	$-\infty$	1		2	+∞
x-1	_	0	+	+	+
x-2	_	_	_	0	+
(x-1)(x-2)	+	0	_	0	+

Crescente Crescente

Exercício 5

a)

$$f(x) = \begin{cases} 2x - x^2, \text{ se } x \le 2\\ x, \text{ se } x > 2 \end{cases}$$

b)

$$g(x) = |x^2 - 4|$$

