# Discrete Optimization

The Knapsack Problem: Part II

#### Goals of the Lecture

Introduce branch and bound

## One-Dimensional Knapsack

maximize subject to

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$









4

- Iterative two steps
  - branching
  - bounding

- Iterative two steps
  - branching
  - bounding
- Branching
  - -split the problem into a number of subproblems
    - like in exhaustive search

- Iterative two steps
  - branching
  - bounding
- Branching
  - -split the problem into a number of subproblems
    - like in exhaustive search
- Bounding
  - -find an *optimistic estimate* of the best solution to the subproblem
    - maximization: upper bound
    - minimization: lower bound

► How to find this optimistic estimate?

- ► How to find this optimistic estimate?
  - -Relaxation!

► How to find this optimistic estimate?

-Relaxation!

Optimization is the art of relaxation

maximize subject to

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$

► What can we relax?

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$

- What can we relax?
  - we can relax the capacity constraint

| i | Vi | Wi |
|---|----|----|
| 1 | 45 | 5  |
| 2 | 48 | 8  |
| 3 | 35 | 3  |

K = 10





































maximize subject to

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$x_i \in \{0, 1\} \quad (i \in 1..3)$$

► Can we relax something else?

What if the items are bars of Belgian chocolate?

- What if the items are bars of Belgian chocolate?
  - In that case, we could actually take a fraction of the bar!

- What if the items are bars of Belgian chocolate?
  - In that case, we could actually take a fraction of the bar!

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$

$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- What if the items are bars of Belgian chocolate?
  - In that case, we could actually take a fraction of the bar!

maximize 
$$45x_1 + 48x_2 + 35x_3$$
  
subject to  $5x_1 + 8x_2 + 3x_3 \le 10$   
 $0 \le x_i \le 1$   $(i \in 1..3)$ 

- ► This is called the linear relaxation
  - we will come back to this later in the class
  - we relax the integrality requirement

Can we solve a knapsack when we can take parts of the items?

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- Can we solve a knapsack when we can take parts of the items?
  - order the items by decreasing value of V<sub>i</sub>/W<sub>i</sub>

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- Can we solve a knapsack when we can take parts of the items?
  - order the items by decreasing value of V<sub>i</sub>/W<sub>i</sub>
  - "most value per kilo"

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- ► How to solve the relaxation now?
  - -select the items while the capacity is not exhausted
  - -select a fraction of the last item

$$45x_1 + 48x_2 + 35x_3$$

$$5x_1 + 8x_2 + 3x_3 \le 10$$

$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- ► How to solve the relaxation now?
  - -select the items while the capacity is not exhausted
  - select a fraction of the last item

maximize 
$$45x_1 + 48x_2 + 35x_3$$
 subject to

$$5x_1 + 8x_2 + 3x_3 \le 10$$
$$0 \le x_i \le 1 \quad (i \in 1..3)$$

- ► In this example,
  - $V_1/W_1 = 9$ ,  $V_2/W_2 = 6$ ,  $V_3/W_3 = 11.7$
  - select items 3 and 1
  - select 1/4 of item 2
  - estimation: 92

► Why is correct?

► Why is correct?

$$\det x_i = \frac{y_i}{v_i}$$

Why is correct?

maximize subject to

$$\sum_{i\in 1...j} y_i$$

$$\sum_{i \in 1...j} \frac{w_i}{v_i} y_i \le K$$

$$0 \le y_i \le 1 \quad (i \in 1...j)$$

|   | Vi | Wi |
|---|----|----|
| 1 | 45 | 5  |
| 2 | 48 | 8  |
| 3 | 35 | 3  |

K = 10



























- Search Strategies
  - depth-first
  - best-first
  - -many others

- Search Strategies
  - depth-first
  - best-first
  - -many others
- Depth-first
  - prunes when a node estimation is worse than the best found solution
  - -memory efficient

- Search Strategies
  - depth-first
  - best-first
  - -many others
- Depth-first
  - prunes when a node estimation is worse than the best found solution
  - -memory efficient
- ► Best-First
  - select the node with the best estimation

|   | Vi | Wi |
|---|----|----|
| 1 | 45 | 5  |
| 2 | 48 | 8  |
| 3 | 35 | 3  |

K = 10























- Best-First
  - select the node with the best estimation
  - -when does it prune?
    - when all the nodes are worse than a found solution
  - is it memory efficient?
    - exaggerate!

# Dynamic Programming and Branch and Bound

Which one is better?

# Dynamic Programming and Branch and Bound

Which one is better?

► Can you combine the two?

## Until Next Time