نظریهی اطّلاعات، آمار و یادگیری (۱-۲۵۱۱)

تمرین سری دوم ترم بهار ۰۳-۲۰۹۲ دانشکدهی مهندسی برق دانشگاه صنعتی شریف

استاد: دکتر محمدحسین پاسائی میبدی

مهلت تحویل: جمعه ۷ اردیبهشت ۱۴۰۳ ساعت ۲۳:۵۹

(*) مسائلی که با ستاره مشخّص شدهاند امتیازی هستند و حل کردن آنها نمره ی امتیازی خواهد داشت!

انحراف بزرگ برای Log-Likelihood

فرض کنید P و Q دو توزیع احتمال باشند که $Q \ll Q$. همین طور X_i ها متغیّرهای تصادفی i.i.d از توزیع P و Y_i ها متغیّرهای $W_i = \log\left(\frac{p(Y_i)}{q(Y_i)}\right)$ و $Z_i = \log\left(\frac{p(X_i)}{q(X_i)}\right)$ تصادفی $W_i = \log\left(\frac{p(Y_i)}{q(Y_i)}\right)$ و $Z_i = \log\left(\frac{p(X_i)}{q(X_i)}\right)$ در این سوال می خواهیم رابطه ی زیر را به ازای هر $X_i = 0$ ثابت کنیم:

$$\left[\sum_{i=1}^{n} (W_i - Z_i) \ge nt\right] \le \exp\left(-n\left(\alpha + \frac{t}{\mathbf{r}}\right)\right)$$

$$.\mathcal{B}\left(P,Q
ight)=~\mathbb{E}_{Y\sim Q}\left[\sqrt{rac{p(Y)}{q(Y)}}
ight]$$
 و $lpha=-$ ۲ $\log\mathcal{B}\left(P,Q
ight)$ که در آن

۱. ثابت کنید:

$$\mathbb{P}\left[\sum_{i=1}^{n} (W_i - Z_i) \ge nt\right] \le \exp\left(-n \cdot F(t)\right),\,$$

 $.\psi_Q(\lambda) = \log \, \mathbb{E}\left[e^{\lambda W_i}
ight]$ و $\psi_P(\lambda) = \log \, \mathbb{E}\left[e^{\lambda Z_i}
ight]$ ، $F(t) = \sup_{\lambda \geq \circ} \{\lambda t - \psi_P(-\lambda) - \psi_Q(\lambda)\}$ که در آن:

$$F(\circ) = -\psi_P(-rac{\imath}{\mathtt{r}}) - \psi_Q(rac{\imath}{\mathtt{r}}) = lpha$$
 :ئابت كنيد

۳. ثابت کنید: $F(\circ) + rac{t}{\epsilon}$ سپس حکم را نتیجه بگیرید.

۲ زوج نرخهای قابل دسترس

در درس، دیدیم یک روش بررسی رفتار حدی خطاهای مسئله ی آزمون فرض آن است که خطای $\pi_{1|0}$ را کوچک نگه داریم و نرخهای همگرایی قابل دسترس برای خطای $\pi_{0|1}$ را به دست آوریم، حال در این مسئله می خواهیم برای هر دو عبارت خطا نرخ همگرایی به دست آوریم، منحنی مرزی ناحیه ی زوج نرخهای همگرایی قابل دسترس یعنی زوج نرخهایی مانند E_{0} و E_{0} که برای آنها روش تصمیم گیری و جود دارد که در آن داریم:

$$\pi_{\mathsf{I}|\circ} \leq \mathsf{Y}^{-n \cdot E_\circ}, \pi_{\circ|\mathsf{I}} \leq \mathsf{Y}^{-n \cdot E_\mathsf{I}}$$

۱. استدلال کنید که چرا ناحیهی زوج نرخهای قابل دسترس باید یک ناحیهی محدّب باشد؟

۱۰. با استفاده از قضیهی Neyman-Pearson و قرار دادن $au = n \cdot t$ که au پارامتر روش تصمیم گیری LLR است، نشان دهید به شرط $\mathrm{NLL}(P\|Q) \leq t \leq D_{\mathrm{KL}}(Q\|P)$ دهید به شرط

$$\pi_{\mathsf{I}|\circ}^{(n)} \leq \mathsf{Y}^{-n\cdot\psi_P^*(t)}, \qquad \pi_{\mathsf{I}|\circ}^{(n)} \leq \mathsf{Y}^{-n\psi_Q^*(t)}.$$

$$.\psi_P(\lambda) = \log \mathbb{E}_{X \sim P} \left[\exp \left(\lambda \log \frac{p(X)}{q(X)} \right) \right]$$
 و $\psi_P^*(t) = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda t - \psi_P(\lambda) \right\}$ که:

۳. با استفاده از نامساویهای فوق نشان دهید که به ازای هر t که در شرط $D_{\mathrm{KL}}(Q\|P) \leq t \leq D_{\mathrm{KL}}(Q\|P)$ صدق کند، زوج نرخ زیر قابل حصول هستند:

$$E_{\circ}(t) = \psi_P^*(t), \qquad E_{1}(t) = \psi_P^*(t) - t.$$

. حال نشان دهید که منحنی پارامتری پارامتری
$$\begin{cases} E_\circ(t)=\psi_P^*(t) \\ E_1(t)=\psi_P^*(t)-t \end{cases}$$
 همان منحنی پارامتری دوجهای قابل حصول است. ۴

۵. هدف آنست که نرخ بهینهی همگرایی عبارت زیر را محاسبه کنیم:

$$\min_{P(Z|X^n)} \left\{ \pi_{\circ} \pi_{1|\circ} + \pi_{1} \pi_{\circ|1} \right\} \tag{1}$$

با استفاده از مرزی که برای ناحیه ی زوج نرخهای همگرایی قابل حصول به دست آوردیم، مسئله ی محاسبه ی نرخ بهینه ی همگرایی عبارت (۱) به ازای مقادیر ثابت احتمالهای اوّلیه ی π_{\circ}, π_{1} را به صورت یک مسئله ی \max -min درآورید و نشان دهید نرخ بهینه برابر است با $\psi_{p}^{*}(\circ)$.

۳ گریز از مرکز

گوی به شعاع r در فضای \mathbb{R}^n را چنین تعریف می کنیم:

$$\mathcal{B}^{(n)}(r) = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_{\mathsf{r}} \le r \}.$$

مجموعه ی $A^{(n)}$ را چنین تعریف میکنیم:

$$\mathcal{A}^{(n)} = \left\{ \mathbf{x} \in \mathbb{R}^n : \forall i \in [n] \ x_i \in \left\{ 1, \Upsilon \right\} \right\}.$$

به تعبیر دیگر، $A^{(n)}$ مجموعه ی نقاطی از فضای \mathbb{R}^n است که هرکدام از درایههای آنها یکی از اعداد ۱ یا ۲ باشد. فرض کنید \mathbb{R}^n به تعبیر دیگر، $f(r_\circ,n)$ مجموعه ی نقاطی از فضای $A^{(n)}$ که خارج از گوی به شعاع $r_\circ \sqrt{n}$ باشند را با $f(r_\circ,n)$ نشان می دهیم، نشان $r_\circ > r^*$ باشد، $r_\circ > r^*$ باشد، آنگاه نمای تابعی از r_\circ دارد و اگر $r_\circ > r^*$ باشد، آنگاه نمای تابع $f(r_\circ,n)$ به عنوان تابعی از r_\circ اکیداً کمتر از ۱ است.

منظور از نمای یک تابع مانند h(n) مقدار عبارت $\frac{\log(h(n))}{n}$ است.

۴ اطّلاعات چرنف

فرض کنید نمونههای X_1, X_1, \dots, X_n به صورت X_1, X_2, \dots, X_n از توزیع Q به ما داده شده باشد. حالت بیزی را در نظر بگیرید که میدانیم با احتمال اوّلیه ی π_1 داریم $Q = P_1$ همچنین فرض کنید که میدانیم با احتمال اوّلیه ی π_1 داریم π_2 داریم π_3 داریم π_4 داریم فرضیه ی π_4 باشد. احتمالات خطا را نیز به صورت زیر تعریف می کنیم:

$$\alpha_n = P_{\mathsf{r}}^{(n)}(\mathcal{X}^n \backslash \mathcal{A}^{(n)}), \qquad \beta_n = P_{\mathsf{r}}^{(n)}(\mathcal{A}^{(n)}).$$

در این صورت، احتمال خطای کل برابر خواهد شد با:

$$\mathbb{P}_{\mathsf{E}}^{(n)} = \pi_{\mathsf{I}} \alpha_n + \pi_{\mathsf{T}} \beta_n.$$

:را به صورت زیر تعریف می کنیم D^*

$$D^* = \lim_{n \to \infty} \frac{-1}{n} \log \min_{\mathcal{A}^{(n)} \subseteq \mathcal{X}^n} \left\{ \mathbb{P}_{\mathsf{E}}^{(n)} \right\}.$$

۱. نشان دهید D^* (بهترین نمای قابل دستیایی در احتمال خطای بیزی) برابر است با:

$$D^* = D_{\mathrm{KL}}(P_{\lambda^*} || P_{\lambda}) = D_{\mathrm{KL}}(P_{\lambda^*} || P_{\lambda}),$$

که در آن داریم:

$$p_{\lambda}(x) = \frac{p_{\mathrm{I}}^{\lambda}(x)p_{\mathrm{T}}^{\mathrm{I}-\lambda}(x)}{\sum_{y \in \mathcal{X}} p_{\mathrm{I}}^{\lambda}(y)p_{\mathrm{T}}^{\mathrm{I}-\lambda}(y)},$$

و λ^* نیز مقداری از λ است که برای آن داریم

$$D_{\mathrm{KL}}(P_{\lambda^*} || P_{\mathsf{1}}) = D_{\mathrm{KL}}(P_{\lambda^*} || P_{\mathsf{T}}).$$

۲. اطّلاعات چرنف بین دو توزیع P_1 و P_2 به صورت زیر تعریف می شود:

$$\mathcal{C}(P_{1}, P_{7}) \stackrel{\Delta}{=} - \min_{0 \leq \lambda \leq 1} \log \left(\mathbb{E}_{X \sim P_{7}} \left[\left(\frac{p_{1}(X)}{p_{7}(X)} \right)^{\lambda} \right] \right).$$

نشان دهید:

$$D^* = \mathcal{C}(P_1, P_7).$$

۵ دمهای توزیعهای دوجملهای و پواسون

را در نظر بگیرید. $X \sim \mathsf{Binomial}(n,p)$ متغیّر تصادفی

۱. ثابت كنيد:

$$\begin{split} \mathbb{P}[X \geq k] \leq \exp\left\{-n \cdot D_{\mathrm{KL}}\big(\mathsf{Bernoulli}(k/n) \| \mathsf{Bernoulli}(p)\big)\right\} & \forall \quad k > np, \\ \mathbb{P}[X \leq k] \leq \exp\left\{-n \cdot D_{\mathrm{KL}}\big(\mathsf{Bernoulli}(k/n) \| \mathsf{Bernoulli}(p)\big)\right\}, & k < np \end{split}$$

۲. نشان دهند که:

$$\begin{split} & \mathbb{P}\big[X \geq u \, \mathbb{E}[X]\big] \leq \exp\{-\,\mathbb{E}[X]f(u)\} \forall u > \mathsf{V}, \\ & \mathbb{P}\big[X \leq u \, \mathbb{E}[X]\big] \leq \exp\{-\,\mathbb{E}[X]f(u)\} \forall \circ \leq u < \mathsf{V}, \end{split}$$

که در آن، $v \geq u \log u - (u-1) \geq u \log u$ است. $f(u) \triangleq u \log u - (u-1) \geq v$ برقرار است، بدون اثبات استفاده راهنمایی: میتوانید از نامساوی $x,y \in [\,\circ\,,\,1]$ که به ازای هر مقدار $x \log(\frac{x}{y}) \geq x - y$ برقرار است، بدون اثبات استفاده

۰۳ نشان دهید

$$f(u) = \int_{1}^{u} \frac{u - x}{x} dx \ge \frac{(u - 1)^{\mathsf{T}}}{\mathsf{T}u},$$

و نتيجه بگيريد:

$$\mathbb{P}[X > np + t] \le \exp\left(\frac{-t^{\mathsf{T}}}{\mathsf{T}(t + np)}\right) \quad \forall t > \circ.$$

۴. (*) ثابت كنيد:

$$\mathbb{P}[\sqrt{X} - \sqrt{np} \ge t] \le e^{-t^{\mathsf{r}}},$$

$$\mathbb{P}[\sqrt{X} - \sqrt{np} \le -t] \le e^{-t^{\mathsf{r}}},$$

که در آن، 0 < t > 0 فرض می شود. راتن و t > 0 فرض می شود. راهنمایی: ابتدا نشان دهید $D_{\mathrm{KL}}ig(\mathsf{Bernoulli}(k/n)\|\mathsf{Bernoulli}(p)ig) \geq (\sqrt{q} - \sqrt{p})^{\mathsf{T}}$ راهنمایی:

¹Chernoff Information

۶ انحراف من در آوردی!

با توجه به فرم وردشی انحراف KL ، تعمیم زیر از این انحراف ارائه شده است:

$$V_{\alpha,\beta,r,s,t}(P_X||Q_X) = \sup_{f:\mathcal{X} \to \mathbb{R}} \left\{ \mathbb{E}_{P_X}[f(X)] - r \mathbb{E}_{Q_X}[f(X)] - s \log \left(\mathbb{E}_{Q_X}[\exp(\alpha f(X))] \right) - t \log \left(\mathbb{E}_{Q_X}[\exp(\beta f(X))] \right) \right\}$$

در اینجا (s,t) اعداد نامنفی و lpha,eta,r اعداد حقیقی هستند.

۱۰ نشان دهید که چنانچه ۱ $\beta t
eq r + \alpha s + \beta$ برقرار باشد، مقدار انحراف همواره بینهایت است و در نتیجه تعریف فوق به درد نخور است!

در قسمتهای بعدی فرض میکنیم که تساوی $t+\alpha s+\beta t=1$ برقرار است.

٢. نشان دهيد كه انحراف فوق هميشه نامنفي است.

۳. نشان دهید که انحراف فوق وقتی $P_X = Q_X$ باشد برابر با صفر است. آیا عکس آن درست است؟

۴. برای توزیعهای مشترک P_{XY} و Q_{XY} نشان دهید

$$V_{\alpha,\beta,r,s,t}(P_X||Q_X) \le V_{\alpha,\beta,r,s,t}(P_{XY}||Q_{XY})$$

۵. نشان دهید پردازش یکسان انحراف را افزایش نمی دهد، یعنی

$$V_{\alpha,\beta,r,s,t}(P_X W_{Y|X} || Q_X W_{Y|X}) = V_{\alpha,\beta,r,s,t}(P_X || Q_X)$$

از این جا نامساوی پردازش داده ها را برای انحراف فوق بیان کرده و ثابت نمایید. همچنین نشان دهید که انحراف فوق نسبت به زوج (P_X,Q_X) محدّب است.

۶. خاصیت بالاجمعی زیر را ثابت نمایید:

$$V_{\alpha,\beta,r,s,t}(P_{XY}||Q_XQ_Y) \ge V_{\alpha,\beta,r,s,t}(P_X||Q_X) + V_{\alpha,\beta,r,s,t}(P_Y||Q_Y)$$

٧. (*) قرار دهيد:

$$W_{\alpha}(P_X || Q_X) = V_{\alpha, \circ, 1 - \frac{1}{\alpha}, \frac{1}{\alpha^{\mathsf{T}}}, \circ}(P_X || Q_X).$$

حد زیر را بیابید:

$$\lim_{\alpha \to \circ} W_{\alpha}(P_X || Q_X).$$

٨. (*) مستقيماً يا با استفاده از قسمتهاي قبل نشان دهيد:

$$D_{\chi^{\mathsf{T}}}(P_{XY}\|Q_XQ_Y) \geq D_{\chi^{\mathsf{T}}}(P_X\|Q_X) + D_{\chi^{\mathsf{T}}}(P_Y\|Q_Y).$$