

Presentation Category

- 1. Project Question Introduction
- 2. Data Crawling & Preprocessing
- Feature vectors & General Model(SVM, Tree, etc.) Comparison
- 4. Audio feature and Convolutional Neural Network Analysis

Dataset -- overview

- source: Spotify
- 7195 songs (5510 with .wav)
 - o Calm: 2951 (2742 with .wav)
 - sad: 439 (232 with .wav)
 - o energetic: 3554 (2364 with .wav)
 - o happy: 251 (172 with .wav)
- 16 features
 - provided by Spotify API
- Label
 - o/ self-labelled
 - o binary: positive & negative
 - o multi-class

Dataset -- preprocessing

- drop duplicated songs
- extract songs with preview_url (with audio)

```
calm.csv
calm_no_duplicates.csv
calm_no_duplicates_no_nan.csv
calm_vectors/
```

Dataset -- features

object metadata

16 features from Spotify API

id	0LweQRsfJ3pRAJJFy6DrR1
danceability	0.776
energy	0.692
key	2
loudness	-3.834
mode	1
speechiness	0.0555
acousticness	0.0075
instrumentalness	0
liveness	0.0588
valence	0.543
tempo	95.972
duration_ms	198174
time_signature	4
artist_name	Jessi
track_name	What Type of X
preview_url	https://p.scdn.co/mp3-preview/917623a4638d1005
binary_label	1
multiclass_label	4
Name: 1, dtype: obj	ject

Dataset -- features

- 30 second preview
 - o retrieve .wav
 - wav -> vector
 - which spectrogram
 - duration, start time
 - \blacksquare sr = 44100??
 - how to save numpy matrices?

Traditional models:)

SVM, Random Forest, etc.

Final Result

	precision	recall	f1-score	support
Sad	0.43	0.48	0.45	88
Healing	0.95	0.97	0.96	1926
joyful	0.90	0.86	0.88	816

first vs. last

	precision	recall	f1-score	support
Sad	0.43	0.48	0.45	88
Healing	0.95	0.97	0.96	1926
joyful	0.90	0.86	0.88	816

Final result: classifier = stacking (SVM, Decision Tree, Random Forest)

	precision	recall	f1-score	support
sad	1.00	0.06	0.11	53
calm	0.93	1.00	0.96	1926
happy	1.00	0.02	0.04	50
energetic	0.89	0.85	0.87	766

First model: SVM

Model Improvement

Better data

- o versampling
- o add more data

Better model

- o grid search for hyperparameter
- o try different models
- o stack models

Bther

o / change classification criterion

Improve the model

Better Data

Oversampling helps: library SMOTE

before	precision	recall	f1-score	support
sad	0.17	0.62	0.27	53
calm	0.94	0.95	0.94	1926
happy	0.15	0.58	0.23	50
energetic	0.94	0.58	0.72	766

after	precision	recall	f1-score	support
sad	1.00	0.06	0.11	53
calm	0.93	1.00	0.96	1926
happy	1.00	0.02	0.04	50
energetic	0.89	0.85	0.87	766

More data helps!!!

Better Model

Grid Search for good hyperparameter

Try different models:

```
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
```

Stacking

Other

Change classification criterion

Future Work

- More data: add data for the minority class
- Data of higher quality
- More features: extract features from the audio

Neural Network

------A long journey of model optimization ---

Feature vector input:

One-layer NN

Raw audio input:

- Conv + FC
- Conv + LSTM + DNN
- Pure LSTM

Simple NN

One layer with 8 nodes

Accuracy Score: 0.894

However, what can we do if we are given a new song?

Layer (type)	Output Shape	Param #
dense_92 (Dense)	(None, 8)	112
dense_93 (Dense)	(None, 4)	36
Total params: 148 Trainable params: 148 Non-trainable params: 0		

Conv + FC

3,552,513

Parameters

30+ mins
Training time

84.39%
Accuracy

Can we do better??

Early stopping

Callbacks=[es]

32 Batch size

89.11% Accuracy

Batch-Normalization & Drop Out Rate

Can we do better?

We changed the filter size from square into rectangular...

With only 446193 parameters! 1/10 of original numbers!

Accuracy: 89.11%

Pure LSTM

Low training rate and bad behavior!

Conv + LSTM + DNN

Activation

LeakyReLU(alpha=0.01

Filter

kernel_size=(1, 3)

Time + LSTM

Bidirectional LSTM (128, dropout=0.25, return_sequences=True)

89.47%

Highest Training Accuracy!

10+ mins/Epoch ... Super slow ... Orz ...

