- Vector space models
- Advantages
- Applications

Why learn vector space models?

Vector space models applications

- You eat <u>cereal</u> from a <u>bowl</u>
- You buy something and someone else sells it

Machine Translation

Chatbots

Fundamental concept

"You shall know a word by the company it keeps"

Firth, 1957

Firth, J. R. 1957:11)

Summary

- Represent words and documents as vectors
- Representation that captures relative meaning

Outline

- Relationships between words/documents

Word by Word Design

Number of times they occur together within a certain distance k

Word by Document Design

Number of times a word occurs within a certain category

Corpus

Word by Document Design

Number of times a word occurs within a certain category

Entertainment	Economy	Machine Learning	
Entertainment	Economy	Machine Learning	
500	6620	9320	
7000	4000	1000	
	Entertainment 500	Entertainment Economy 500 6620	

Vector Space

• W/W and W/D, counts of occurrence

Vector Spaces — Similarity between words/documents

Outline

- Euclidean distance
- N-dimension vector representations comparison

Euclidean distance

$$d(B, A) = \sqrt{(B_1 - A_1)^2 + (B_2 - A_2)^2}$$
$$c^2 = a^2 + b^2$$

$$d(B,A) = \sqrt{(8820)^2 + (-6000)^2}$$

Euclidean distance for n-dimensional vectors

Euclidean distance in Python

```
# Create numpy vectors v and w
v = np.array([1, 6, 8])
w = np.array([0, 4, 6])
# Calculate the Euclidean distance d
d = np.linalg.norm(v-w)
# Print the result
print("The Euclidean distance between v and w is: ", d)
```

The Euclidean distance between v and w is: 3

Summary

- Straight line between points
- Norm of the difference between vectors

Outline

- Problems with Euclidean Distance
- Cosine similarity

than the distance d1, which would suggest that the agriculture and history corpora are more sin Euclidean distance vs Cosine similarity than the agriculture and food corpora. Agriculture corpus (20,40) 40 Euclidean distance: d₂ < d₁ 30 d_1 Angles comparison: $\beta > \alpha$ eggs 20 Food corpus (5,15) History corpus (30,20) 10 The cosine of the angle between the vectors 10 30 disease Another common method for determining the similarity between vectors is computing the cosine of their inner angle. If the angle is small, the cosine would be close to one. And as the angle approaches 90 degrees the cosine approaches zero. As you can see here, the angle alpha between food and agriculture is smaller than the angle beta between agriculture and history. In this particular case, the cosine of those angles is a better proxy of similarity between these vector representations than their euclidean distance.

The distance d2 is smaller

Summary

• Cosine similarity when corpora are different sizes

Outline

- How to get the cosine of the angle between two vectors
- Relation of this metric to similarity

Previous definitions

Vector norm

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^n v_i^2}$$

Dot product

$$\vec{v}.\vec{w} = \sum_{i=1}^{n} v_i.w_i$$

Cosine Similarity

Cosine Similarity

Summary

- Cosine Similarity gives values between 0 and 1

• How to use vector representations

Manipulating word vectors

Manipulating word vectors

Summary

Use known relationships to make predictions

- Some motivation for visualization
- Principal Component Analysis

Visualization of word vectors

		d > 2	dimension
oil	0.20		0.10
gas	2.10		3.40
city	9.30		52.1
town	6.20		34.3

How can you visualize if your representation captures these relationships?

oil & gas

town & city

Visualization of word vectors

		d > 2				d =	2
oil	0.20		0.10		oil	2.30	21.2
gas	2.10		3.40	PCA	gas	1.56	19.3
city	9.30		52.1		city	13.4	34.1
town	6.20		34.3		town	15.6	29.8

Visualization of word vectors

Summary

- Original Space

 Uncorrelated features

 Dimension reduction
- Visualization to see words relationships in the vector space

- How to get uncorrelated features
- How to reduce dimensions while retaining as much information as possible

PCA algorithm

Eigenvector: Uncorrelated features for your data

Eigenvalue: the amount of information retained by each feature

PCA algorithm

Summary

- Eigenvectors give the direction of uncorrelated features
- Eigenvalues are the variance of the new features
- Dot product gives the projection on uncorrelated features