CS21 Decidability and Tractability

Lecture 26 March 10, 2014

March 10, 2014

CS21 Lecture 26

Outline

- "Challenges to the (extended) Church-Turing Thesis"
 - randomized computation
 - quantum computation

March 10, 2014

CS21 Lecture 26

Challenges to the extended Church-Turing thesis

March 10, 2014

CS21 Lecture 26

Extended Church-Turing Thesis

 the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis

everything we can compute in time t(n) on a physical computer can be computed on a Turing Machine in time t(n)^{O(1)} (polynomial slowdown)

randomized computation challenges this belief

March 10, 2014 CS21 Lecture 26

Extended Church-Turing Thesis

· Common to insert "probabilistic":

The "extended" Church-Turing Thesis

everything we can compute in time t(n) on a physical computer can be computed on a *probabilistic* Turing Machine in time t(n)^{O(1)} (polynomial slowdown)

March 10, 2014

CS21 Lecture 26

Randomized complexity classes

- model: probabilistic Turing Machine
 - deterministic TM with additional read-only tape containing "coin flips"

 $\begin{array}{c} \text{input tape} \\ \hline \text{olilooliliooliliool} \\ \hline \textbf{q}_0 \\ \hline \end{array} \\ \begin{array}{c} \text{read/write head} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \text{read head} \\ \hline \end{array} \\ \hline \\ \end{array} \\ \cdots$

March 10, 2014

Randomized complexity classes

```
• RP (Random Polynomial-time)

- L \in RP if there is a p.p.t. TM M:

x \in L \Rightarrow Pr_y[M(x,y) \text{ accepts}] \ge \frac{1}{2}

x \notin L \Rightarrow Pr_y[M(x,y) \text{ rejects}] = 1
• CORP (complement of Random Polynomial-time)

- L \in CORP if there is a p.p.t. TM M:

x \in L \Rightarrow Pr_y[M(x,y) \text{ accepts}] = 1

x \notin L \Rightarrow Pr_y[M(x,y) \text{ rejects}] \ge \frac{1}{2}

"p.p.t" = probabilistic polynomial time

CS21 Lecture 26
```

Randomized complexity classes • BPP (Bounded-error Probabilistic Poly-time) $-L \in BPP$ if there is a p.p.t. TM M: $x \in L \Rightarrow Pr_y[M(x,y) \text{ accepts}] \ge 2/3$ $x \notin L \Rightarrow Pr_y[M(x,y) \text{ rejects}] \ge 2/3$

March 10, 2014 CS21 Lecture 26 8

Randomized complexity classes

These classes may capture "efficiently computable" better than **P**.

One more important class:

- **ZPP** (<u>Z</u>ero-error <u>P</u>robabilistic <u>P</u>oly-time)
 - $-ZPP = RP \cap coRP$
 - $Pr_v[M(x,y)]$ outputs "fail"] ≤ ½
 - otherwise outputs correct answer

March 10, 2014 CS21 Lecture 26

Relationship to other classes

- · all these classes contain P
 - they can simply ignore the tape with coin flips
- all are in PSPACE
 - can exhaustively try all strings y
 - count accepts/rejects; compute probability
- $RP \subset NP$ (and $coRP \subset coNP$)
 - multitude of accepting computations
 - NP requires only one

March 10, 2014 CS21 Lecture 26 11

Polynomial identity testing

- Given: polynomial p(x₁, x₂, ..., x_n) as arithmetic formula (fan-out 1):
 - multiplication (fan-in 2)
 - addition (fan-in 2)
 - negation (fan-in 1)

March 10, 2014 CS21 Lecture 26 12

Polynomial identity testing

- Question: Is p identically zero?
 - i.e., is $p(\mathbf{x}) = 0$ for all $\mathbf{x} \in \mathbf{F}^n$
 - (assume |F| larger than degree...)
- · "polynomial identity testing" because given two polynomials p, q, we can check the identity $p \equiv q$ by checking if $(p - q) \equiv 0$

March 10, 2014

CS21 Lecture 26

13

Polynomial identity testing

- try all |F|ⁿ inputs?
 - may be exponentially many
- · multiply out symbolically, check that all coefficients are zero?
 - may be exponentially many coefficients
- · Best known deterministic algorithm places in EXP

March 10, 2014

CS21 Lecture 26

Polynomial identity testing

Lemma (Schwartz-Zippel): Let

$$p(x_1, x_2, ..., x_n)$$

be a total degree d polynomial over a field F and let S be any subset of F. Then if p is not identically 0.

$$\mathsf{Pr}_{r_1,r_2,...,r_n \in S}[\; \mathsf{p}(r_1,\,r_2,\,...,\,r_n) = 0] \le \mathsf{d}/|S|.$$

March 10, 2014

CS21 Lecture 26

15

17

Polynomial identity testing

- Given: polynomial p(x₁, x₂, ..., x_n) over field F
- · Is p identically zero?

Note: degree d is at most the size of input

March 10, 2014 CS21 Lecture 26

Polynomial identity testing

- randomized algorithm: pick a subset S ⊂ F of size 2d
 - pick r₁, r₂, ..., r_n from S uniformly at random
 - $if p(r_1, r_2, ..., r_n) = 0$, answer "yes"
 - if $p(r_1, r_2, ..., r_n) \neq 0$, answer "no"
- · if p identically zero, never wrong
- · if not, Schwartz-Zippel ensures probability of error at most 1/2

March 10, 2014

CS21 Lecture 26

Randomized complexity classes

- · We have shown:
 - -Polynomial Identity Testing is in coRP
 - -note: no sub-exponential time deterministic algorithm know

March 10, 2014

Randomized complexity classes

- How powerful is randomized computation?
- We have seen an example of a problem in

that we only know how to solve deterministically in **EXP**.

Is randomness a panacea for intractability?

March 10, 2014

CS21 Lecture 26

Randomized complexity classes

P
CORP RP
BPP
PSPACE
EXP

• believed that P = ZPP = RP = coRP = BPP (!)

March 10, 2014

CS21 Lecture 26

20

March 10, 2014 CS21 Lecture 26 21

Review

· Highest level: 2 main points

1. Decidability

- problem solvable by an algorithm = problem is decidable
- some problems are not decidable (e.g. HALT)

March 10, 2014 CS21 Lecture 26 22

Review

· Highest level: 2 main points

2. Tractability

- problem solvable in polynomial time = problem is tractable
- some problems are not tractable (EXPcomplete problems)
- huge number of problems are likely not to be tractable (NP-complete problems)

March 10, 2014

CS21 Lecture 26

Review

- · Important ideas
 - "problem" formalized as language
 - language = set of strings
 - "computation" formalized as simple machine
 - finite automata
 - pushdown automata
 - Turing Machine
 - "power" of machine formalized as the set of languages it recognizes

March 10, 2014

23

Review

- · Important ideas (continued):
 - simulation used to show one model at least as powerful as another
 - diagonalization used to show one model strictly more powerful than another
 - also Pumping Lemma
 - reduction used to compare one problem to another

March 10, 2014

CS21 Lecture 26

25

27

Review

- · Important ideas (continued):
 - complexity theory investigates the resources required to solve problems
 - time, space, others...
 - complexity class = set of languages
 - language L is C-hard if every problem in C reduces to L
 - language L is C-complete if L is C-hard and L is in C.

26

March 10, 2014

CS21 Lecture 26

Review

· Important ideas (continued):

A complete problem is a surrogate for the entire class.

March 10, 2014

CS21 Lecture 26

Summary

Part I: automata

March 10, 2014 CS21 Lecture 26 28

Finite Automata (single) start state alphabet $\Sigma = \{0,1\}$ states < (several) accept states transition for each symbol

 read input one symbol at a time; follow arrows; accept if end in accept state

March 10, 2014 CS21 Lecture 26 29

Finite Automata

- Non-deterministic variant: NFA
- Regular expressions built up from:
 - unions
 - concatenations
 - star operations

Main results: same set of languages recognized by FA, NFA and regular expressions ("regular languages").

March 10 2014

CS21 Lecture 26

5

30

Pushdown Automata

<u>Main results</u>: same set of languages recognized by NPDA, and context-free grammars ("context-free languages").

· and DPDA's weaker than NPDA's...

March 10, 2014 CS21 Lecture 26

Non-regular languages

Pumping Lemma: Let L be a regular language. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \ge p$ can be written as

w = xyz such that

- 1. for every $i \geq 0,\, xy^iz \in L$, and
- 2. |y| > 0, and
- 3. $|xy| \le p$.

33

March 10, 2014 CS21 Lecture 26 34

Pumping Lemma for CFLs

<u>CFL Pumping Lemma</u>: Let L be a CFL. There exists an integer p ("pumping length") for which every $w \in L$ with $|w| \ge L$

w = uvxyz such that

- 1. for every $i \geq 0,\, uv^i xy^i z \in L$, and
- 2. |vy| > 0, and

p can be written as

3. $|vxy| \le p$.

March 10, 2014 CS21 Lecture 26 35

Summary

Part II: Turing Machines and decidability

March 10, 2014 CS21 Lecture 26 36

Church-Turing Thesis • the belief that TMs formalize our intuitive notion of an algorithm is: The Church-Turing Thesis everything we can compute on a physical computer can be computed on a Turing Machine • Note: this is a belief, not a theorem.

Using reductions

- Used reductions to prove lots of problems were:
 - undecidable (reduce from undecidable)
 - non-RE (reduce from non-RE)
 - · or show undecidable, and coRE
 - non-coRE (reduce from non-coRE)
 - · or show undecidable, and RE

<u>Rice's Theorem</u>: Every nontrivial TM property is undecidable.

March 10, 2014

CS21 Lecture 26

43

The Recursion Theorem

Theorem: Let T be a TM that computes fn:

t:
$$\Sigma^* \times \Sigma^* \to \Sigma^*$$

There is a TM R that computes the fn:

$$r \colon \Sigma^* \to \Sigma^*$$

defined as $r(w) = t(w, \langle R \rangle)$.

 In the course of computation, a Turing Machine can output its own description.

March 10, 2014 CS21 Lecture 26

Incompleteness Theorem

Theorem: Peano Arithmetic is not complete.

(same holds for any reasonable proof system for number theory)

Proof outline:

- the set of theorems of PA is RE
- the set of true sentences (= Th(N)) is not RE

March 10, 2014 CS21 Lecture 26

Summary

Part III: Complexity

March 10, 2014 CS21 Lecture 26

Complexity

 Complexity Theory = study of what is computationally feasible (or tractable) with limited resources:

not in this course

47

- running time
- storage space
- number of random bits
- degree of parallelism
- rounds of interaction
- others...

March 10, 2014 CS21 Lecture 26

Time and Space Complexity

<u>Definition</u>: the time complexity of a TM M is a function f:N → N, where f(n) is the maximum number of steps M uses on any input of length n.

<u>Definition</u>: the <u>space complexity</u> of a TM M is a function f:N → N, where f(n) is the maximum number of tape cells M scans on any input of length n.

March 10, 2014

Complexity Classes

<u>**Definition**</u>: TIME(t(n)) = {L : there exists a TM M that decides L in space O(t(n))}

$$P = \bigcup_{k \ge 1} TIME(n^k)$$

$$EXP = \bigcup_{k \ge 1} TIME(2^{n^k})$$

<u>Definition</u>: $SPACE(t(n)) = \{L : there exists a TM M that decides L in space <math>O(t(n))\}$

$$\mathsf{PSPACE} = \bigcup_{k \geq 1} \mathsf{SPACE}(\mathsf{n}^k)$$

March 10, 2014

CS21 Lecture 26

49

Complexity Classes

<u>Definition</u>: NTIME(t(n)) = {L : there exists a NTM M that decides L in time O(t(n))}

$$NP = \bigcup_{k \geq 1} NTIME(n^k)$$

- Theorem: P ≠ EXP
- $P \subset NP \subset PSPACE \subset EXP$
- Don't know if any of the containments are proper.

March 10, 2014 CS21 Lecture 26 50

Alternate definition of NP

<u>Theorem</u>: language L is in NP if and only if it is expressible as:

$$L = \{ x \mid \exists y, |y| \le |x|^k, (x, y) \in R \}$$

where R is a language in P.

March 10, 2014 CS21 Lecture 26 51

Poly-time reductions

- Type of reduction we will use:
 - "many-one" poly-time reduction (commonly)
 - "mapping" poly-time reduction (book)

- f poly-time computable
- 2. YES maps to YES
- 3. NO maps to NO

52

March 10, 2014 CS21 Lecture 26

Hardness and completeness

<u>Definition</u>: a language L is <u>C-hard</u> if for every language A ∈ C, A poly-time reduces to L; i.e., $A ≤_P L$.

can show L is C-hard by reducing from a known C-hard problem

<u>Definition</u>: a language L is C-complete if L is C-hard and $L \in C$

March 10, 2014 CS21 Lecture 26 53

Complete problems

- EXP-complete: ATM_B = {<M, x, m> : M is a TM that accepts x within at most m steps}
- PSPACE-complete: QSAT = {φ : φ is a 3-CNF, and ∃x₁∀x₂∃x₃...∀x_n φ(x₁, x₂, ... x_n)}
- NP-complete: 3SAT = {φ : φ is a satisfiable 3-CNF formula}

March 10, 2014 CS21 Lecture 26 54

Lots of NP-complete problems

- · Indendent Set
- · Vertex Cover
- Clique
- · Hamilton Path (directed and undirected)
- · Hamilton Cycle and TSP
- · Subset Sum
- NAE3SAT
- · Max Cut
- Problem sets: max/min Bisection, 3-coloring, subgraph isomorphism, subset sum, (3,3)-SAT, Partition, Knapsack, Max2SAT...

March 10, 2014

CS21 Lecture 26

Other complexity classes

- · coNP complement of NP
 - complete problems: UNSAT, DNF TAUTOLOGY
- · NP intersect coNP
 - contains (decision version of) FACTORING
- PSPACE

55

- complete problems: QSAT, GEOGRAPHY

March 10, 2014 CS21 Lecture 26

Complexity classes

EXP CONP PSPACE decidable languages

all containments believed to be proper

Extended Church-Turing Thesis

56

 the belief that TMs formalize our intuitive notion of an efficient algorithm is:

The "extended" Church-Turing Thesis

everything we can compute in time t(n) on a physical computer can be computed on a Turing Machine in time t(n)^{O(1)} (polynomial slowdown)

March 10, 2014 CS21 Lecture 26 58

Challenges to the Extended Church-Turing Thesis

- Randomized computation BPP
 - POLYNOMIAL IDENTITY TESTING example of problem in BPP, not known to be in P
- Quantum computation
 - FACTORING example of problem solvable in quantum polynomial time, not believed to be in P

March 10, 2014

CS21 Lecture 26

59