On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par

$$5u_n - 2$$

3. Montrer que $(v_n)_{n\in\mathbb{N}}$ est géométrique.

5. Etudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$.

2. En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ est bien définie sur \mathbb{N} .

4. En déduire l'expression explicite de $(v_n)_{n\in\mathbb{N}}$ puis de $(u_n)_{n\in\mathbb{N}}$.

- $u_0 = 0 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{5u_n 2}{u_n + 2} \quad \text{et} \quad \forall n \in \mathbb{N}, \ v_n = \frac{u_n 2}{u_n 1}.$

1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que pour tout $n\geq 3, u_n>1$.