Information Retrieval(CS F469) Design Document Recommender Systems

Ву

Kaustubh Rajendra Welankar Gaurab Das Gupta Aman Kumar Jain 2016A7PS0095H 2016A3PS0255H 2016A7PS0009H

Various Techniques for Implementing the Recommender System

Collaborative Filtering

Collaborative filtering filters information by using the recommendations of other people. It is based on the idea that people who agreed in their evaluation of certain items in the past are likely to agree again in the future.

Formulation:

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user u on item j
N(i;x)... set items rated by x similar to i

Rxi :Rating of item i by user x

Neighbours taken: 3

Collaborative Filtering with Baseline Approach

The Baseline approach is used to take care of the cold start problem. The baseline is the avg rating + deviation of user + deviation of the movie. The CF gives the deviation from the baseline.

We solve the problem of strict and generous raters by using the centered cosine similarity.

Formulation:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} S_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} S_{ij}}$$

$$baseline \ estimate \ for \ r_{xi}$$

$$b_{xi} = \mu + b_x + b_i$$

$$0 \ \mu = \text{overall mean movie rating}$$

$$0 \ b_x = \text{rating deviation of user } x$$

$$= (avg. \ rating \ of \ user \ x) - \mu$$

$$0 \ b_i = \text{rating deviation of movie } i$$

Singular Value Decomposition(SVD)

SVD is a matrix factorization technique that is usually used to reduce the number of features of a data set by reducing space dimensions from N to K where K < N.

Formulation:

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \Sigma_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

A: Input data matrix

- m x n matrix (e.g., m users, n movies)

U: Left singular vectors

– m x r matrix (m users, r concepts)

Σ: Singular values

- r x r diagonal matrix (strength of each 'concept') (r: rank of the matrix A)

V: Right singular vectors

n x r matrix (n movies, r concepts)

$$\mathbf{A} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$$

σ_i ... scalar u_i ... vector v_i ... vector

rows of V^t are eigenvectors of D^tD = basis functions Σ is diagonal, with $\delta_{ii} = \mathbf{sqrt}(\lambda_i)$ (*i*th eigenvalue) rows of U are coefficients for basis functions in V (here we assumed that m > n, and rank(D) = n)

CUR Decomposition

CUR matrix decomposition, an alternative to SVD, is a low-rank matrix decomposition algorithm that is explicitly expressed in a small number of actual columns and/or actual rows of data matrix.

Formulation:

$$\|\mathbf{A} - \mathbf{CUR}\|_{\mathbf{F}} \le \|\mathbf{A} - \mathbf{A}_{\mathbf{k}}\|_{\mathbf{F}} + \varepsilon \|\mathbf{A}\|_{\mathbf{F}}$$

Where A is Original Matrix CUR is Matrix obtained by CUR multiplication A k is matrix obtained by retaining k dimensions

$$P(x) = \sum_{i} \mathbf{A}(i, x)^{2} / \sum_{i,j} \mathbf{A}(i, j)^{2}$$

Here the selected block represent the Frobenius norm of entire matrix

$$\mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}$$

$$W = X Z Y^T$$

$$U = W^{+} = Y Z^{+} X^{T}$$

In the code 470 rows/colums were selected

Results

Users: 943 Movies: 1682

Number of ratings: 100,000

The algorithms were evaluated based on 3 factors:

- 1. Root Mean Square Error
- 2. Spearman Correlation Coefficient
- 3. Top k Precision

Recomender System Technique	RMSE	Precision on top	Sperman Rank Correlation	CPU time taken for prediction
User-User Collaborative Filtering (without handling strict and generous raters)	1.0872568586 175646	1.0	0.9999999955 877837428	5.966830218
User-User Collaborative Filtering(handling strict and generous raters)	1.1505162127 509043	0.9859142857 142857	0.9999999950 5941967456	7.49527285199999 9

Item-Item Collaborative Filtering (without handling strict and generous raters)	0.5353389052 320383	1.0	0.999999989 303293208	8.58950657699999 8
Item-Item Collaborative Filtering(handling strict and generous raters)	0.3099552769 7619024	0.9593714285 714285	0.999999996 41416297	10.281696169
Item-Item Collaborative Filtering with Baseline Approach	0.9714891356	0.6992857142	0.9999999964	10.8931804380000
	713724	857143	7735908617	02
SVD with 100% energy	0.1163190609	0.9452285714	0.999999999	24.1936144350000
	7256046	285714	494996656	08
SVD with 90% energy	0.2868345802	0.9583142857	0.999999996	11.8851772610000
	1289965	142857	929171983	1
CUR with 100% energy	0.4793803153	0.9955714285	0.9999999991	12.0324468050000
	369837	714286	4226551316	06
CUR with 90% energy	0.4854692045 928863	0.9942	0.9999999991 203379617	12.2695872390000 03

Packages Used

Here are the following python packages used:

- 1. numpy
- 2. math
- 3. pandas
- 4. time