Programming own Neural Networks

The Cognitive Thinking Approach

- To understand NN
- To be able to code NN in any language of choice

Reference text book:

https://www.amazon.com/Make-Your-Own-Neural-Network-ebook/dp/B01EER4Z4G

NOTE: I have changed code to make it more simple and dependency free. Code in book uses scipy and matpotlib functions.

Things about NN not found in books

- NN are very old. Older than first electronic computer.
 - Model for Neural Network was built in 1943
 - First electronic was built in 1946
- NN kick started field of Artificial intelligence
- Why are they famous?
 - Because **Universal Approximation theorem** states that NN can compute any function
 - Even functions which we can not define like how our brain works or compute something
- For 50 years NN were not used because our computers were not fast enough
- Unlike traditional machine learning approaches, there is probability (very less)
 NN can given wrong output for already seen data
 - Just like a person can make wrong judgement about already known things

Fun fact

Google's co-founder Sergey Brin did not take neural networks seriously until some hackers cracked Google's reCapcha system with 99.9% accuracy using NN while humans could do it with 70% accuracy only.

NAND

 Why NAND? Because if NN can learn NAND then it can do anything that any boolean logic based circuit can do. NAND is universal gate.

X	Y	OUTPUT
0	0	1
0	1	1
1	0	1
1	1	0

Input Layer

Output Layer

How many nodes in middle layer?

Input Layer

Output Layer

No answer.

Input Layer

Generally, it depends on the amount of data that NN needs to learn. Like in our case it needs to learn 4 specific cases. So we need at least 4 nodes in middle layer.

Making it more may increase accuracy but this is not certain.

Output Layer

Hidden Layer Input Layer W **V**₁ X W_2 $^{\vee}W_3$ **V**₂ W₄ **V**₄

Hidden Layer

X	Y	OUTPUT
0	0	1
0	1	1
1	0	1
1	1	0

 $0.w_3 + 1.v_3$

 $0.w_4 + 1.v_4$

 $\begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 & \mathbf{w}_2 & \mathbf{w}_3 & \mathbf{w}_4 \\ \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix}$

General rule 1:

Layer (the area b/w two set of nodes) =

Matrix representing input nodes *

Matrix representing weights

Code

numpy has functions for
matrix multiplication

import numpy


```
# input data
x = numpy.array([[0,0],
               [0,1],
               [1,0],
               [1,1]])
# output data
y = numpy.array([[1],
              [1],
              [1],
              [0]])
```


weights without bias

w1 = numpy.random.rand(2, 4)

weights with bias

w1 = numpy.random.rand(2, 4)+1


```
# weights with bias
w1 = numpy.random.rand(2, 4)+1
# calculating input to hidden
# layer
h = numpy.dot(x, w1)
# h will 1 x 4 matrix
```


Who will decide what goes out of hidden layer?

Activation function

Defines if the node will fire or not

We will use sigmoid function

sigmoid function

def nonlin(x):
 return (1/(1 + numpy.exp(-x)))

$$f(x) = \frac{1}{1 + e^{-(x)}}$$


```
# sigmoid function
def nonlin(x):
    return (1/(1 + numpy.exp(-x)))
\# h = numpy.dot(x, w1)
12 = nonlin(numpy.dot(x, w1))
```

Hidden Layer


```
# code file nn.py
                                            # feed forward
import numpy
                                            11 = x
x = numpy.array([[0,0],
               [0,1],
                                            12 = nonlin(numpy.dot(l1, w1))
               [1,0],
               [1,1]])
                                            13 = nonlin(numpy.dot(12, w2))
y = numpy.array([[1],
                                            13 errors = y - 13
              [1],
              [1],
                                            print "Total error :"
              [0]])
                                            print
w1 = numpy.random.rand(2, 4) + 1
                                            numpy.mean(numpy.abs(13_errors))
w2 = numpy.random.rand(4, 1) + 1
def nonlin(x):
    return (1/(1 + numpy.exp(-x)))
```


Blame everyone as per their weight proportion

Transpose of a matrix

Back Propagation Matrix is

E. W^T

Remember,

Error matrix was 4 x 1

W2 was 4 x 1

So W^T will be 1 x 4

We now know following:

- How to feed forward?
 - Multiply input by weights
 - Pass in activation function
- How to calculate error?
 - Subtract obtained output from known output
- How to blame errors?
 - Multiply error by transpose of weights

So, how to correct error?

Error correction (Back propagation)

- We find derivative of activation function
- Derivative gives slope of tangent line which can guide us if we need to add to weight or subtract from it in order to correct the error
- This works because tangent emulates the curve closely at any point

```
import numpy
                                           # feed forward
x = numpy.array([[0,0],
                                           11 = x
               [0,1],
               [1,0],
                                           12 = nonlin(numpy.dot(l1, w1))
               [1,1]]
                                           13 = nonlin(numpy.dot(12, w2))
w2 = numpy.random.rand(4, 1) + 1
                                           13_{errors} = y - 13
def nonlin(x, deriv=False):
    if deriv==True:
        return (x * (1 - x))
    return (1/(1 + numpy.exp(-x)))
```

```
# code file nn2.py
                                           11 = x
                                           12 = nonlin(numpy.dot(11, w1))
import numpy
                                           13 = nonlin(numpy.dot(12, w2))
                                           13 errors = y - 13
x = numpy.array([[0,0],
                                           13 delta = 13_errors * nonlin(13,
               [0,1],
               [1,0],
                                           deriv=True)
               [1,1]]
...
                                           12 error = 13_delta.dot(w2.T)
w2 = numpy.random.rand(4, 1) + 1
                                           12 delta = 12_error * nonlin(12,
def nonlin(x, deriv=False):
                                           deriv=True)
    if deriv==True:
        return (x * (1 - x))
                                           w2 += 12.T.dot(13 delta)
    return (1/(1 + numpy.exp(-x)))
                                           w1 += 11.T.dot(12 delta)
```

Accuracy?

77%

How to improve it?

How do teach a child to speak?

By talking to the child until she learns to copy you exactly

(This is called epochs)

simplenn.py

Code with epochs and query handler