MATHEMATICS:

Max.Marks: 60

SECTION I

Single Correct Answer Type

This section contains 10 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct.

41.
$$\int \left(\sqrt{\cot x} \ e^{\sqrt{\sin x}} \ \sqrt{\cos x}\right) \left(1 + e^{\sqrt{\sin x}}\right) dx =$$

A)
$$\frac{\left(1+e^{\sqrt{\sin x}}\right)^2}{2}+c$$

B)
$$2e^{\sqrt{\sin x}} + c$$

$$C) \frac{e^{\left(1+\sqrt{\sin x}\right)}}{2} + c$$

D)
$$\left(1 + e^{\sqrt{\sin x}}\right)^2 + c$$

42.
$$\int \frac{\sec x \left(2 + \sec x\right)}{\left(1 + 2\sec x\right)^2} dx$$

A)
$$\frac{\cos x}{\left(1+2\cos x\right)^2}+c$$
 B) $\frac{\sin x}{\left(2+\cos x\right)}+c$ C) $\frac{-\sin x}{\left(2+\cos x\right)^2}+c$ D) $\frac{\cos x}{2+\cos x}+c$

C)
$$\frac{-\sin x}{(2+\cos x)^2}+c$$

D)
$$\frac{\cos x}{2 + \cos x} + c$$

43. The value of
$$\int_{0}^{\infty} \frac{\ell nx}{x^2 + 2x + 4} dx$$
 equals to

A)
$$\frac{\pi}{3\sqrt{3}} \ell n2$$
 B) $\frac{\pi}{\sqrt{3}} \ell n2$ C) $\frac{\pi}{2\sqrt{3}}$

B)
$$\frac{\pi}{\sqrt{3}} \ell n2$$

C)
$$\frac{\pi}{2\sqrt{3}}$$

$$\mathbf{D)} \,\, \frac{\pi}{2\sqrt{2}} \ell n2$$

Sr. IPLCO P1 Advanced

space for rough work

Consider a real valued continuous function f such that 44.

 $f(x) = \sin x + \int_{\pi/2}^{\pi/2} (\sin x + t f(t)) dt$ then the difference of maximum, minimum value of f in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is

- A) $\pi + 1$
- B) $2(\pi+1)$ C) π
- D) cann't be determined

- 45. The value of $\int_{0}^{\infty} \frac{\tan^{-1} 2016x \tan^{-1} 504x}{x} dx$
 - A) $\frac{\pi}{2} \ln 2$ B) $\pi \ln 2$ C) $\frac{\pi}{8} \ln 2$ D)0

- The value of $\int_{1}^{1} \frac{2x^{1007} + x^{3023} + 4x^{2016} \left(\tan^{-1} x\right)^{2015}}{1 + x^{2016}} dx$
 - A) 0
- B) $\frac{1}{504} + \frac{\pi}{4}$ C) $\frac{1}{504} + \frac{\pi}{2016}$ D) $\frac{\pi}{504} + \frac{1}{4}$

- $47. \quad Lt_{n\to\infty} \left({}^{2n}C_n \right)^{\frac{1}{n}} =$
 - A) 1
- B) 4
- C) e^2
- D) e^4

Sr. IPLCO_P1_Advanced

space for rough work

then $\int \ln 10 \log_{10}^{(1/p)} dx =$ p = 201648.

- A) $(x-2015)\ln(2015-x)-x\ln x+c$ B) $(x-2015)\ln(2015-x)+x-x\ln x+c$
- C) $(2015-x)\ln(2015-x)-x\ln x+c$ D) $(2015-x)\ln(2015-x)+x\ln x+c$

 $\int \frac{(1+x)\left[\left(1-x+x^2\right)\left(1+x+x^2\right)+x^2\right]}{\left(1+2x+3x^2+4x^3+3x^4+2x^5+x^6\right)}dx = f(x)+c, \text{ c is integration constant, } f(0) = 0, \text{ then}$ 49.

- f(5) =
- A) 5
- B) *l*n5
- C) $\frac{1}{5}\ell n5$
- D) *l*n6

Let $f(x) = \tan x + 2 \tan 2x + 4 \tan 4x + 8 \cot 8x$ then primitive of f(x) w.r to x is 50.

A) $8 \ln |\sin 8x| + c$

B) $\ln |\sin 8x| + c$

C) $\ln |\sin x| + c$

D) $\ln |\sec x| + c$

Sr. IPLCO P1 Advanced

space for rough work

SECTION II

Multiple Correct Answer(s) Type

This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of

- If $\int \frac{\cos x \sin x + 1 x}{e^x + \sin x + x} dx = \log_e(f(x)) + g(x) + c$ where c is integration constant and 51.
 - f(x) is positive f'(0) = 2, g(0) = 0 then
 - A) f(x) + g(x) is an even function
 - B) f(x) g(x) is an increasing function
 - C) |f(0)+g(2)|=1
 - D) If a function h(x) is such that h (x) + e^x = f(x) +g (x) then maximum value of h (x) is 1
- Consider the function $f(x) = \begin{cases} \int_0^x (4+|t-2|) dt & x > 3 \\ ax^2 + bx & x \le 3 \end{cases}$ and if f(x) is differentiable at 52.

$$x = 3$$
 then

A)
$$27 \text{ ab} = 1$$

B)
$$f(1) = 85/18$$

C)
$$f(4) = 20$$

A) 27 ab = 1 B)
$$f(1) = 85/18$$
 C) $f(4) = 20$ D) $\int_{4}^{6} (f^{1}(x) + 2) dx = 18$

Sr. IPLCO P1 Advanced

space for rough work

53. Let f(x), g(x) be any two continuous functions, a is non zero real number b is

positive real number but not equal to 1 then the value of $\int_{-a}^{a} \frac{f(x)}{b^{g(x)}+1} dx$ is

- A) independent of f, if f even, g odd
- B) independent of g, if f even, g odd
- C) independent of f, g if both f, g even
- D) independent of f,g if both f, g odd
- 54. Let $f:[0, \infty) \to R$ be a continuous strictly increasing function, such that

 $f^{3}(x) = \int_{0}^{x} t f^{2}(t) dt$, $\forall x \ge 0$, then which of the following is / are true

- A) f(x) is an onto function
- B) $\int_{0}^{1} f(x) dx = \frac{1}{18}$
- C) Number of solutions of $6f(x) = e^x$ is 2
- D) The graph of y = 6 f(x) intersects the graph of the curve $y = 3x^2 + 2x + 2$ at one point

Sr. IPLCO_P1_Advanced

space for rough work

Sri Chaitanya IIT Academy

08-11-15_Sr.IPLCO_JEE-ADV_(2013_P1)_RPTA-11_Q'Paper

Let $I_1 = \int \frac{\sin^2 x + \sin x}{1 + \sin x + \cos x} dx$, $I_2 = \int \frac{\cos^2 x + \cos x}{1 + \sin x + \cos x} dx$ and if c is any arbitrary constant,

then which of the following is/are correct

A)
$$2I_1 + \sin x + \cos x - x = c$$
 B) $I_1 - I_2 + \sin x + \cos x = c$

B)
$$I_1 - I_2 + \sin x + \cos x = c$$

C)
$$I_1 + I_2 - x = c$$

D)
$$2I_2 + \sin x - x - \cos x = c$$

SECTION III

Integer Answer Type

This section contains 5 questions. The answer to each question is single digit integer, ranging from 0 to 9

56.
$$Lt_{n\to\infty} \frac{3}{n} \left(1 + \sqrt{\frac{n}{n+3}} + \sqrt{\frac{n}{n+6}} + \sqrt{\frac{n}{n+9}} + \dots + \sqrt{\frac{n}{4n-3}} \right) =$$

57. If
$$\int \frac{1}{5\cos^2 x - 4\cos x \sin x - 2\sin^2 x} dx = \frac{1}{2\sqrt{14}} \ln \left| \frac{k + \tan x + 1}{k - \tan x - 1} \right| + c$$
 then integer part of k^2 is

58. If
$$\left(\int \cot^2 x \cos ec^4 x \ dx\right) = a \cot^3 x + b \cot^5 x + c$$
 then $\frac{1}{|a|} + \frac{1}{|b|}$ is equal to

59. If
$$\int_{\sin x}^{1} t^2 f(t) dt = 1 - \sin x$$
 where $x \in \left(0, \frac{\pi}{2}\right)$ then $f\left(\frac{1}{\sqrt{2}}\right)$ is equal to

60. If
$$\int_{2}^{8} \frac{dx}{x\sqrt{(x-2)(8-x)}} dx = \frac{\pi}{k}$$
 then the absolute value of k is

Sr. IPLCO P1 Advanced

space for rough work