A to	oical Problem Asked in the Exam
- det	A be the area in the xy-plane bounded by
-the	A be the area in the xy -plane bounded by x -axis and the lines $y=x+1$, $x=1$, $x=4$.
Dete	arnine A by
(i)	using geometry
(ii)	with a definite integral.
Sofn:	This is the
	$\begin{array}{c c} & & & \\ & & & \\ \hline \end{array}$
(i)	Ahea of thiangle = $\frac{1}{2} \cdot 3 \cdot 3 = \frac{9}{2}$.
	Atten of nectangle = $2.3 = 6$.
	Total area $A = \frac{9}{2} + 6 = \frac{21}{2} = 10.5$
(i)	$\int (x+1) dx = \int x dx + \int dx$
	$\frac{1}{2} = \frac{x^2}{4} + \frac{x}{4}$
#. 	$= \left(\frac{16}{2} - \frac{1}{2}\right) + \left(1 - 1\right) = 8 - \frac{1}{2} + 3 = 11 - \frac{1}{2}$
	Thus, they match!