Optimization, Assignment 1

Kassym Mukhanbetiyar

October 2024

Part II. Problem 2

Let P be the set of all pixels and n = |P|. Let S be a set of all possible clusters of pixels and m = |S|. For every i = 1, 2, ..., m we will denote $C_i \in S$ as a binary vector of length n (i.e. $C_i \in \{0, 1\}^n$), with:

$$[C_i]_j = \begin{cases} 1 & \text{if pixel } j \text{ is in cluster } C_i \\ 0 & \text{otherwise} \end{cases}$$

Let $C \in \{0,1\}^{m \times n}$ be a matrix with $C_{ij} = [C_i]_j \quad \forall 1 \leq i \leq m, 1 \leq j \leq n$.

Thus, we can infer that $m=2^n$. Let's say we precomputed the cost of each cluster and stored it in a vector $D \in \mathbb{R}^m$ with $D_i = cost(C_i)$.

Let $\beta \in \{0,1\}^m$ and β_i is set as 1 if and only if C_i is one of the clusters of the clusterization K.

Now, we can define our Integer Problem for k-clusterization.

min
$$\sum_{i=1}^{m} D_i \beta_i$$
s.t.
$$\sum_{i=1}^{m} \beta_i = k$$

$$\sum_{i=1}^{m} \beta_i C_{ij} = 1 \qquad \forall j = 1, \dots, n$$

$$\beta_i \in \{0, 1\} \qquad \forall i = 1, \dots, m$$

$$(2)$$

Condition (1) ensures that there are exactly k clusters. Condition (2) ensures that each point belongs to exactly one cluster.

P.S. Problem 3

Lemma: Any two pixels of the same color end up in the same cluster under the optimal clusterization.

For the Problem 3 we run local search initialized at 100 different random seed and about an upper bound M for optimal clusterization cost.

Then, I use the lemma to find all possible clusters C_i for $i \in [q]$ with a cost less than M. I can do that since I can treat work with unique colors instead of all pixels and apply backtracing with an upper bound on the cost of a cluster. Each cluster will be defined as a set of colors in the lemma. Thus, n in this application would be equal to the number of unique colors, i.e. 20.

Then, I store cluster costs in $D \in \mathbb{R}^q$ and solve the IP from problem 2.