Week 2 Lab

Yuanchao Zhang 2018-02-11

Plan for today

- 1. Changes of lab session administration
- 2. Recap
- 3. Install packages
- 4. The normal distribution
- 5. Check normality
- 6. One-sample tests of proportion

Changes of lab session

administration

Changes of lab session administration

- Lab handout:
 - Merged to homework assignment.
 - · Written mostly by instructors.
- · Optional sections of lab handout:
 - Separated from the handout & homework assignment.
 - · Will show up in the "Pages" section of Canvas.

Recap

Recap

- R environment
 - · Associated with each R interpreter session
- R current working directory
 - Do NOT change during analysis
- Path
 - · Absolute path
 - · Relative path
 - · Path delimiter:
 - · \ in Windows
 - / in Linux and MacOS
 - · / in R works for Windows, Linux, and MacOS

Recap

- Tutorial of R data analysis
 - · Input:
 - read.csv()
 - Analyze:
 - Plotting: ggplot2
 - · Data manipulation: indexing, subset(), and dplyr
 - Statistical testing: t.test()
 - Output: write.csv() and pdf()

Install packages

Install packages

```
# For normality test
install.packages('nortest')

# For power analysis of one sample proportion test
install.packages('pwr')

# You do not need to run this if you already
# installed `ggplot2'
install.packages('ggplot2')
```

The normal distribution

The normal distribution

When a random variable X is dristributed normally with mean μ and variance σ^2 , we write:

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

Probability density distribution (PDF) of the normal distribution:

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

PDF of the normal distribution

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

The normal distribution

- · Single Peaked
- Symmetric
- $E[x] = \mu$
- $Var[x] = \sigma^2$
- $SD[x] = \sigma$

Generate normal random numbers with rnorm

```
opar <- par(no.readonly = TRUE)
par(mfrow=c(2, 2))
normdata <- rnorm(10, mean=0, sd=1)
hist(normdata)
hist(normdata)
par(opar)</pre>
```


par(mfrow=c(2, 2))

Histogram of normdata

Blank Graph 3

par(opar)

```
# Plotting parameters have been set to old ones
# in `opar'
hist(normdata)
```


Generate normal random numbers with rnorm

```
normdata <- rnorm(10, mean=0, sd=1)
mean(normdata)
## [1] -0.1397156
sd(normdata)
## [1] 0.5693181
```

Generate 1 million normal random numbers

```
normdata <- rnorm(1000000, mean=0, sd=1)
mean(normdata)
## [1] -9.904492e-05
sd(normdata)
## [1] 1.000252
hist(normdata)
```

Histogram of normdata

Calculate probability density of normal distribution with dnorm

```
z_score_range <- seq(-4, 4, by = 0.2)
den zscores <- dnorm(z score range)</pre>
plot(den zscores, type = "l",
     main = "PDF on the Standard Normal Distribution",
     xlab = "Z-score", ylab = "Density", xaxt = "n")
den zscore sigmas <- c(dnorm(4), dnorm(3), dnorm(2),</pre>
                       dnorm(1), dnorm(0), dnorm(1),
                       dnorm(2), dnorm(3), dnorm(4))
den_score_labels <- c(-4, -3, -2, -1, 0, 1, 2, 3, 4)
axis(1, at = which(den zscores %in% den zscore sigmas),
     labels = den score labels)
```

Calculate probability density of normal distribution with dnorm

Calculate cumulative probability of normal distribution with pnorm

Calculate cumulative probability of normal distribution with pnorm

Calculate quantiles of normal distribution with qnorm

```
qnorm(0.99)
## [1] 2.326348
qnorm(0.9999)
## [1] 3.719016
pnorm(qnorm(0.9999))
## [1] 0.9999
# lower.tale: if TRUE (default), probabilities are P[X ≤ x]
# otherwise, P[X > x].
qnorm(0.9999, lower.tail = FALSE)
## [1] -3.719016
qnorm(1e-04)
## [1] -3.719016
pnorm(qnorm(0.9999, lower.tail = FALSE))
## [1] 1e-04
```

Central limit theorem

Theorem

Let $X_1, X_2, ..., X_n$ be a sequence of identically distributed (i.i.d.) random variables with mean $E[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$. Define $S_n = \frac{1}{n} \sum_i X_i$. Then, as $n \to \infty$, $S_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \sigma^2/n)$.

Central limit theorem is difficult to prove algebraically, but it is quite easy to demonstrate with simulation.

Theorem

Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables with mean $E[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$. Define $S_n = \frac{1}{n} \sum_i X_i$. Then, as $n \to \infty$, $S_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \sigma^2/n)$.

- Simulation procedure:
 - 1. Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. uniformly distributed random variables.
 - 2. Calculate sample everage S_n .
 - 3. Repeat *m* times.
 - 4. Plot the empirical PDF of S_n and normal PDF stated by the theorem.

```
# Let X1, X2, ..., X10 be a sequence of i.i.d.
# random variables uniformly distributed
# from 0 to 1.
runif(n = 10, min = 0, max = 1)
## [1] 0.89804708 0.85956656 0.63841285
## [4] 0.59958342 0.68575572 0.28295208
## [7] 0.42904749 0.15577247 0.26559273
## [10] 0.01854827
```

```
number of samples <- 5000
size of each sample <- 5000
unif_min <- 0
unif max <- 100
unif mean <- (unif max - unif min) / 2
unif sd <- (((unif max - unif min) ^ 2) / 12) ^ 0.5
sample average vector <- replicate(number of samples, {</pre>
  mean(runif(n = size_of_each_sample,
             min = unif min,
             max = unif max))
})
```

```
clt norm mean <- unif mean
clt norm sd <- unif sd / (size of each sample ^ 0.5)
ggplot(data = data.frame(x = sample average vector),
       mapping = aes(x = x)) +
  geom histogram(mapping = aes(y = ..density..),
                 alpha = 0.4) +
  geom_density(mapping = aes(color = 'Sample Ave. Dens.')) +
  stat function(fun = dnorm,
                args = list(mean=clt_norm_mean,
                            sd=clt norm sd),
                aes(colour = 'CLT Norm. Dens.')) +
 labs(x = 'Sample Average', y = 'Density') +
  ggtitle("Central Limit Theorem Simulation")
```


Check normality

Methods to check normality

- Explorative data analysis (EDA)
 - Histogram
 - · Density plot
 - · Quantile-Quantile plot
- Statistical tests
 - · Shapiro-Wilk normality test
 - Anderson-Darling normality test

Use EDA to check normality

Histogram:

```
num_points <- 30
normdata2 <- rnorm(num_points)

qplot(normdata2) +
  geom_histogram() +
  theme_bw() +
  ggtitle(paste("rnorm (", num_points, ")", sep=""))</pre>
```


Use EDA to check normality

Quantile-Quantile (Q-Q) plot:

Q-Q plot

Quantiles divide probility distribution or sample observations into even intervals.

Example, 4-quantiles (quartiles) and 100-quantiles (percentiles):

Q-Q plot

Q-Q plot compares the quantiles of one sample or distribution against the other.

```
quantile(0:10, probs=seq(0, 1, 0.1))
##
            20%
                 30% 40% 50%
                                     70%
                                60%
                                          80%
                                               90% 100%
               2
                             5
##
          1
                 3 4
                                  6
                                            8
                                                     10
qqnorm(0:10, ylim = c(0,10))
qqline(0:10, ylim = c(0,10))
```

Normal Q-Q Plot

Q-Q plot

Q-Q plot compares the quantiles of one sample or distribution against the other.

```
quantile(0:10, probs=seq(0, 1, 0.1))
## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 0 1 2 3 4 5 6 7 8 9 10
qqnorm(0:10, ylim = c(0,10))
qqline(0:10, ylim = c(0,10))
```


Anything wrong in this Q-Q plot?

Q-Q plot

Q-Q plot compares the quantiles of one sample or distribution against the other.

```
quantile(0:10, probs=seq(0, 1, 0.1))
## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 0 1 2 3 4 5 6 7 8 9 10
qqnorm(0:10, ylim = c(0,10))
qqline(0:10, ylim = c(0,10))
```


Anything wrong in this Q-Q plot?

Why the 0% of normal distribution is plotted around -1.75?

Source code of qqnorm:

```
getAnywhere(qqnorm.default)
## ...
        x <- qnorm(ppoints(n))[order(order(y))]</pre>
##
## ...
seq0to10_qqnormplot <- qqnorm(0:10)</pre>
seq0to10 qqnormplot$x
## [1] -1.69 -1.10 -0.75 -0.47 -0.23
                                            0.00
## [7] 0.23 0.47 0.75 1.10 1.69
seq0to10_qqnormplot$y
                                                    Normal Q-Q Plot
## [6] 6 7 8 9 10
                                          \infty
                                       Sample Quantiles
                                          9
                                                        0.0
                                                    Theoretical Quantiles
```

Source code of **ppoints**:

```
getAnywhere(ppoints)
## ...
## (1L:n - a)/(n + 1 - 2 * a)
## ...
```

Source code of **ppoints**:

```
getAnywhere(ppoints)
## ...
## (1L:n - a)/(n + 1 - 2 * a)
## ...
```

Blom (1958): standard normal random variable

$$E(r:n) \approx \Phi^{-1}(\frac{r-\alpha}{n-2\alpha+1})$$
 with $\alpha = 0.375$.

Source code of **ppoints**:

```
getAnywhere(ppoints)
## ...
## (1L:n - a)/(n + 1 - 2 * a)
## ...
```

Blom (1958): standard normal random variable $E(r:n) \approx \Phi^{-1}(\frac{r-\alpha}{n-2\alpha+1})$ with $\alpha=0.375$.

In plain words: if you draw n standard normal random numbers and order them from lowest to highest, the rth number is mostly likely to be the value where the CDF has value $\frac{r-\alpha}{n-2\alpha+1}$.

Source code of **ppoints**:

```
getAnywhere(ppoints)
## ...
## (1L:n - a)/(n + 1 - 2 * a)
## ...
```

Blom (1958): standard normal random variable $E(r:n) \approx \Phi^{-1}(\frac{r-\alpha}{n-2\alpha+1})$ with $\alpha=0.375$.

In plain words: if you draw n standard normal random numbers and order them from lowest to highest, the rth number is mostly likely to be the value where the CDF has value $\frac{r-\alpha}{n-2\alpha+1}$.

For more details, take STAT512 Mathematical Statistics.

Histogram of TCGA-LUAD cigarettes per day

```
luad cpd sd <- sd(tcga luad$cigarettes per day,</pre>
                  na.rm=TRUE)
luad cpd mean <- mean(tcga luad$cigarettes per day,</pre>
                       na.rm=TRUE)
qplot(x = cigarettes per day, xlim=c(-5, 10),
      data = tcga_luad, geom = "blank") +
  geom histogram(aes(y = ..density..),
                 alpha = 0.4) +
  geom line(aes(y = ..density.., colour = 'Empirical'),
            stat = 'density') +
  stat function(fun = dnorm,
                args = list(mean=luad cpd mean,
                             sd=luad cpd sd),
                aes(colour = 'Normal Approx')) +
  scale colour manual(name = 'Density',
                      values = c('red', 'blue')) +
  theme(legend.position = c(0.85, 0.85)) +
  ggtitle("TCGA LUAD: Cigarettes Per Day")
```

Histogram of TCGA-LUAD cigarettes per day

Q-Q plot of TCGA-LUAD cigarettes per day

TCGA-LUAD: Cigarettes per Day

Histogram of TCGA-LUAD years smoked

Q-Q plot of TCGA-LUAD years smoked

TCGA-LUAD: Years smoked

Use statistical tests to check normality

Shapiro-Wilk normality test:

```
nortest points <- 100
normdata nortest <- rnorm(nortest points)</pre>
shapiro.test(normdata nortest)
##
##
    Shapiro-Wilk normality test
##
## data: normdata nortest
## W = 0.97583, p-value = 0.06271
shapiro.test(1:1000)
##
    Shapiro-Wilk normality test
##
##
## data: 1:1000
## W = 0.95481, p-value < 2.2e-16
# Smaller p-value indicates significant deviation from normal
# distribution.
```

Use statistical tests to check normality

Anderson-Darling normality test

```
ad.test(normdata nortest)
##
   Anderson-Darling normality test
##
##
## data: normdata nortest
## A = 0.38284, p-value = 0.3912
ad.test(1:1000)
##
   Anderson-Darling normality test
##
##
## data: 1:1000
## A = 11.085, p-value < 2.2e-16
# Smaller p-value indicates significant deviation from normal
# distribution.
```

Shapiro-Wilk test of TCGA-LUAD cigarettes per day

```
shapiro.test(tcga_luad$cigarettes_per_day)
##
## Shapiro-Wilk normality test
##
## data: tcga_luad$cigarettes_per_day
## W = 0.90998, p-value = 9.873e-14
```

TCGA-LUAD: Cigarettes per Day

Shapiro-Wilk test of TCGA-LUAD years smoked

```
shapiro.test(tcga_luad$years_smoked)
##
## Shapiro-Wilk normality test
##
## data: tcga_luad$years_smoked
## W = 0.98572, p-value = 0.04686
```

TCGA-LUAD: Years smoked

One-sample tests of proportion

One-sample tests of proportion

- 7-test
- χ^2 -test using **prop.test**
- · One-sided
- Two-sided
- Power analysis

Overview of one-sample tests of proportion

· Proportion:

The number of observations with certain condition

The number of total observations

- Qusetion: How likely the observed proportion $(prop_{obs})$ is different from another proportion $(prop_{H_0})$?
 - prop_{obs} is determined by observations.
 - $prop_{H_0}$ is determined by us when specifying the null hypothesis (H_0).

z-test

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

Intuition: apply central limit theorem on *n* random variales *i.i.d.* Bernoulli distribution.

Theorem

Let $X_1, X_2, ..., X_n$ be a sequence of i.i.d. random variables with mean $E[X_i] = \mu$ and finite variance $Var(X_i) = \sigma^2$. Define $S_n = \frac{1}{n} \sum_i X_i$. Then, as $n \to \infty$, $S_n \xrightarrow{\mathcal{D}} \mathcal{N}(\mu, \sigma^2/n)$.

z-test

Example: A new study is performed where 22 out of 200 patients smoked more than 5 cigarettes per day. We would like to check if this group of patients has a statistically greater proportion of heavy smokers compared to the TCGA study. In TCGA, the porportion of heavy smokers 0.1.

Null hypothesis: The porportion of heavy smokers in this new study is no more than the porportion of heavy smokers in the TCGA study.

z-test

Null hypothesis: The porportion of heavy smokers in this new study is no more than 0.1.

```
alpha <- 0.05
z0 \leftarrow qnorm(1 - alpha)
print(z0)
## [1] 1.644854
prop2 <- 22/200
p0 < -0.1
n < -200
z \leftarrow (prop2 - p0)/sqrt(p0 * (1 - p0)/n)
print(z)
## [1] 0.4714045
7 > = 70
## [1] FALSE
```

Intuition: z-test with multiple catogries. For each category, apply central limit theorem on *n* random variales *i.i.d.* Bernoulli distribution.

$$X^2 = \sum_{i=1}^k \frac{(x_i - np_i)^2}{np_i}$$

There are k total categories and n total observations. x_i is the number of observations of category i. p_i is the hypothesized probability of observing category i.

When null hypothesis is correct, as $n \to \infty$, X^2 followed the χ^2 distribution with (k-1) degrees of freedom stated by CLT.

46

Null hypothesis: The porportion of heavy smokers in the new study is no more than 0.1.

```
print(propresult)
##
   1-sample proportions test without continuity correction
##
##
## data: hs out of n2, null probability p0
## X-squared = 0.22222, df = 1, p-value = 0.3187
## alternative hypothesis: true p is greater than 0.1
## 95 percent confidence interval:
## 0.0786844 1.0000000
## sample estimates:
##
## 0.11
```

```
# Comparing prop.test to z-score method.
Xstat <- propresult$statistic[[1]]
print(sqrt(Xstat))
## [1] 0.4714045

z = (hs/n2 - p0)/sqrt(p0 * (1 - p0)/n2)
print(abs(z))
## [1] 0.4714045</pre>
```

One-sided versus two-sided test

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

One-sided versus two-sided test

- Calculate p-value
 - $Pr(X \ge x|H)$ for right tail event
 - $\Pr(X \le x|H)$ for left tail event
 - $2min\{Pr(X \ge x|H), Pr(X \le x|H)\}\$ for double tail event
- · Interpret p-value
 - · Important:

 $Pr(evidence|hypothesis) \neq Pr(hypothesis|evidence)$

· Bayes' theorem applied to inference:

$$P(H|E) = P(E|H) \cdot \frac{P(H)}{P(E)}$$

Source: https://en.wikipedia.org/wiki/P-value Source: https://en.wikipedia.org/wiki/Bayesian_inference

One-sided versus two-sided test

One-sided:

Two-sided:

Two-sided one sample test of proportion

```
hs = 30 # second study patient proportion
p0 = 0.1 # TCGA LUAD proportion
n2 = 200 # second study sample size
z twotail = (hs/n2 - p0)/sqrt(p0 * (1 - p0)/n)
pval z twotail = 2 * pnorm(z twotail, lower.tail = FALSE)
pval z twotail
## [1] 0.01842213
proptest twotail <- prop.test(hs, n2, p = p0, correct = FALSE,</pre>
                                 alternative = "two.sided")
proptest twotail$p.value
                                            H_a: \mu \neq \mu_0
## [1] 0.01842213
                                                      z^{\alpha}
                                  Reject H_0
                                                      Reject H_0
```

One-sided one sample test of proportion

```
hs = 22 # second study heavy smokers
p\theta = 0.1 # TCGA LUAD proportion
n2 = 200 #Number of tests
propresult <- prop.test(hs, n2, p = p0, correct = FALSE,
                          alternative = "greater")
propresult$p.value
## [1] 0.3186759
z = (hs/n2 - p0)/sqrt(p0 * (1 - p0)/n2)
print(abs(z))
                                                    H_a: \mu > \mu_0
## [1] 0.4714045
pvalue z onesided <- pnorm(-abs(z))</pre>
pvalue z onesided
## [1] 0.3186759
                                                             Reject H_0
```

• The power of a binary hypothesis test is the probability that the test correctly rejects the null hypothesis (H_0) when a specific alternative hypothesis (H_1) is true.

power =
$$Pr$$
 (reject $H_0 \mid H_1$ is true)

- Main factors in calculating the power of a test:
 - · Effect size, or the difference in means between two groups
 - · Sample size: n
 - Significance level, α (often 0.05)

Calculate power given effect size, sample size, and significance level.

```
# h is effect size
pwr.p.test(h = 0.5, n = 55, sig.level = 0.05)
##
##
        proportion power calculation for binomial distribution
        (arcsine transformation)
##
##
                 h = 0.5
##
##
                 n = 55
##
         sig.level = 0.05
##
             power = 0.9597797
       alternative = two.sided
##
```

Calculate sample size given power, effect size, and significance level.

```
pwr.p.test(h = 0.5, n = NULL, sig.level = 0.05, power = 0.9)
##
##
        proportion power calculation for binomial distribution
##
        (arcsine transformation)
##
##
                 h = 0.5
##
                 n = 42.02968
##
         sig.level = 0.05
##
             power = 0.9
       alternative = two.sided
##
```

Calculate effect size given power, sample size, and significance level.

```
pwr.p.test(h = NULL, n = 100, sig.level = 0.05, power = 0.9)
##
##
        proportion power calculation for binomial distribution
##
        (arcsine transformation)
##
##
                 h = 0.3241514
##
                 n = 100
##
         sig.level = 0.05
##
             power = 0.9
       alternative = two.sided
##
```

Estimate effect size h using ES.h.

```
pwr.p.test(h = ES.h(p1 = 0.75, p2 = 0.5), sig.level = 0.05,
           n = NULL, power = 0.8.
           alternative = "greater")
##
##
        proportion power calculation for binomial distribution
##
        (arcsine transformation)
##
##
                 h = 0.5235988
##
                 n = 22.55126
##
         sig.level = 0.05
##
             power = 0.8
       alternative = greater
##
```

Questions?

Appendix

z-score

