Edge Computing

Definition:

Edge computing is a distributed computing paradigm where **data processing and analysis are performed close to the data source** (i.e., "at the edge" of the network) rather than relying solely on centralized cloud servers.

Why Edge Computing?

Traditional cloud computing requires sending data from devices (e.g., sensors, cameras) to remote servers for processing, which introduces **latency**, **bandwidth usage**, **and security risks**. Edge computing minimizes these issues by processing data locally—on or near the device itself.

Key Characteristics:

Feature	Description	
Low Latency	Fast response by processing data close to the source.	
Reduced Bandwidth	Less data sent to the cloud reduces network load.	
Enhanced Privacy	Data stays local, minimizing exposure.	
Autonomous Operation	Devices can work even if internet/cloud is unavailable.	

How It Works:

- 1. Data Source: Sensors, IoT devices, cameras, etc.
- 2. **Edge Device**: Raspberry Pi, industrial gateways, smartphones, etc.
- 3. **Local Processing**: Data is analyzed using algorithms or machine learning models.
- 4. **Decision Making**: Actions are triggered locally (e.g., turn off a machine, send alert).
- 5. Optional Cloud Sync: Only summarized or relevant data is sent to the cloud.

Example Architecture:

Smart Surveillance System:

- Camera + Raspberry Pi (edge device) + TensorFlow Lite
- Detects motion or faces in real-time at the edge
- · Sends only alerts or footage snippets to the cloud

Example Use Cases:

Sector	Edge Computing Use Case	
Manufacturing	Real-time quality inspection using cameras and AI at the edge	
Healthcare	Patient monitoring in ICU with alerts processed on-device	
Agriculture	Soil sensor + Raspberry Pi controlling irrigation locally	
Retail	In-store footfall analysis via edge-based video analytics	
Autonomous Vehicles	Real-time decision-making for driving, braking, etc.	

Edge Devices Examples:

- Raspberry Pi 4 / 5
- NVIDIA Jetson Nano / Xavier
- Google Coral Edge TPU
- Intel NUC
- Industrial IoT Gateways

Benefits of Edge Computing:

- **Real-Time Processing:** Essential for applications like robotics and autonomous vehicles.
- Reliability: Works even during cloud outages.
- Security: Local processing avoids transmitting sensitive data.
- Scalability: Reduces load on central servers.

Challenges:

- Hardware Limitations: Edge devices have less processing power than cloud servers.
- Maintenance: Updating and managing multiple distributed devices.
- Data Management: Choosing what data to store locally vs. send to cloud.

Edge vs Cloud Comparison:

Feature	Edge Computing	Cloud Computing
Latency	Very low	Higher
Bandwidth	Low usage	High usage
Processing Location	Local device	Remote server
Reliability	High (offline capable)	Depends on network

Real-world Example with Raspberry Pi:

- Smart Traffic System
 - o Camera feeds processed by Raspberry Pi at traffic signals
 - o Detects congestion and changes light timing dynamically
 - o Sends summarized data to central dashboard for monitoring