

WELTORGANISATION FÜR GEISTIGES EIGENTUM INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ :	Δ1	(11) Internationale Veröffentlichungsnumme	er: WO 96/29895
A23L 3/3463, 3/3472		(43) Internationales Veröffentlichungsdatum: 3.	Oktober 1996 (03.10.96)

(21) Internationales Aktenzeichen:

PCT/EP96/01364

- 28. März 1996 (28.03.96) (22) Internationales Anmeldedatum:
- (30) Prioritätsdaten:

195 12 147.3

31. März 1995 (31.03.95)

DE

- (71)(72) Anmelder und Erfinder: SCHÜR, Jörg, Peter [DE/DE]; Sophienstrasse 21, D-41065 Mönchengladbach (DE).
- (74) Anwälte: FITZNER, Ulrich usw.; Fitzner & Christophersen, Kaiserswerther Strasse 74, D-40878 Ratingen (DE).

(81) Bestimmungsstaaten: AL, AM, AU, AZ, BB, BG, BR, BY, SIMMUNGSSTAATEN: AL, AM, AU, AZ, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, europäisches Patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG). MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Anderungen eintreffen.

- (54) Title: PROCESS FOR IMPROVING THE SHELF LIFE OF AND/OR STABILISING PRODUCTS WHICH CAN SPOIL UNDER THE ACTION OF MICROBES
- (54) Bezeichnung: VERFAHREN ZUR HALTBARKEITSVERBESSERUNG UND/ODER STABILISIERUNG VON MIKROBIELL VERDERBLICHEN PRODUKTEN

(57) Abstract

The invention concerns a process for improving the shelf life of and/or stabilising products which can spoil under the action of microbes: during the production, processing or packing process, the surfaces of the products and/or their surroundings, in particular the surrounding air and/or surfaces of any equipment or material which comes directly or indirectly into contact with the products, are treated with one or more process-auxiliary agents containing at least one microbicidal aromatic substance.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft ein Verfahren zur Haltbarkeitsverbesserung und/oder Stabilisierung von mikrobiell verderblichen Produkten, bei dem während des Prozesses zur Herstellung, Verarbeitung oder Verpackung der Produkte deren Oberflächen und/oder deren Umgebung, insbesondere die Umgebungsluft und/oder die Oberflächen der unmittelbar oder mittelbar mit den Produkten in Kontakt kommenden Geräte oder sonstigen Materialien mit einem oder mehreren Prozeßhilfsmitteln beaufschlagt werden, wobei das Prozeßhilfsmittel wenigstens einen mikrobizid wirkenden Aromastoff enthält.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AM	Armenien	GB	Vereinigtes Königreich	MX	Mexiko
AT	Österreich	GE	Georgien	NE	Niger
ΑU	Anstralien	GN	Guinea	NL	Niederlande
BB	Barbados	GR	Griechenland	NO	Norwegen
BE	Belgien	HU	Ungara	NZ	Neusceland
BF	Burkina Faso	IE .	Irland	PL	Polen
BG	Bulgarien	IT	Italico	PT	Portugal
BJ	Benin	JP	Japan	RO	Ruminien
BR	Brasilien	KE	Kenya	RU	Russische Föderation
BY	Belarus	KG	Kirgisistan	SD	Sudan
CA	Kanada	KP	Demokratische Volksrepublik Korea	SE	Schweden
CF	Zentrale Afrikanische Republik	KR	Republik Korea	SG	Singapur
CG	Kongo	KZ	Kasachstan	SI	Slowenien
CH	Schweiz	น	Liechtenstein	SK	Slowakei
CI	Côte d'Ivoire	LK	Sri Lanka	SN	Senegal
CM	Kamenin	LR	Liberia	SZ	Swasiland
CN	China	LK	Litauen	TD	Tichad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dinemark	MD	Republik Moldau	UA	Ukraine
EE	Estland	MG	Madagaskar	UG	Uganda
ES	Spanien	ML	Mali	US	Vereinigte Staaten von Amerika
FI	Finnland	MN	Mongolei	UZ	Usbekistan
FR	Prankreich	MR	Mauretanien	VN	Vietnam
GA	Gahon	MW	Malawi		

WO 96/7 5 P 2P96/01364

5

10

Verfahren zur Haltbarkeitsverbesserung und/oder Stabilisierung von mikrobiell verderblichen Produkten

Die vorliegende Erfindung betrifft ein Verfahren zur Haltbarkeitsverbesserung und/oder Stabilisierung von mikrobiell verderblichen Produkten, ein Prozeßhilfsmittel zur Durchführung dieses Verfahrens sowie die Verwendung des Prozeßhilfsmittels zum Beaufschlagen von Oberflächen mikrobiell verderblicher Produkte und/oder deren Umgebung.

Industriell bearbeitete Nahrungs- und Futtermittel, Kosmetika, Pharmazeutika und andere für mikrobielle Verderbnis anfällige Produkte müssen eine gewisse, nicht zu kurze Zeit haltbar sein, um nach einem Transport und Vertrieb über die üblichen Wege unverdorben den Verbraucher zu erreichen. Der Verbraucher erwartet darüber hinaus, daß das erworbene Produkt auch nach dem Kauf nicht sofort verdirbt, sondem, je nach Produkt, einige Tage oder Wochen auf Vorrat gehalten werden kann.

Unbehandelt würden die meisten Nahrungs- und Futtermittel innerhalb weniger Tage verderben, da sich Pilze und/oder Bakterien ungehindert, allenfalls durch Kühlung beeinträchtigt, auf einem für sie idealen Nährboden vermehren könnten. Typische Beispiele sind der Verderb von Brot durch Schimmelpilze, z.B. Aspergillus niger, von Fleischprodukten (z.B. Wurst) durch Enterobakterien oder Lactobacillen, die Kontamination von Geflügel durch Salmonellen und vieles andere mehr. Da Pilze einschließlich Hefen bzw. deren Sporen, Grampositive und Gramnegative Bakterien überall vorhanden sind, wo nicht durch besondere, kostspielige und industriell aus ökonomischen Erwägungen nicht anwendbare Maßnahmen ein steriles Umfeld geschaffen wird, müssen geeignete Gegenmaßnahmen getroffen werden.

25

30

Herkömmlicherweise werden daher Nahrungs- und Futtermittel, Kosmetika, Pharmazeutika, Farben, Papier und Zellstoffe und andere verderbliche Produkte mit Konservierungsmitteln haltbar gemacht, die laut der Codex Alimentarius Liste der Food und Agriculture Organisation (FAO/WHO Food Standard Programme) in Division 3 Food Additives Preservatives 3.73 als "synthetische Konservierungsmittel" aufgeführt und meist in Form von chemischen Monosubstanzen oder deren Kombinationen eingesetzt werden.

Die in der erwähnten Liste aufgeführten Konservierungsmittel sind bakteriostatisch und/oder fungistatisch wirksam und verbessem die Haltbarkeit wesentlich. Sie werden jedoch von vielen Verbrauchern abgelehnt, da ihre Auswirkungen auf die Gesundheit des Verbrauchers nicht bekannt sind, bzw. schädliche Einflüsse, insbesondere bei wiederholter Aufnahme über einen langen Zeitraum, nicht ausgeschlossen werden können.

Nachteilig bei diesen Konservierungsmitteln ist insbesondere, daß sie regelmäßig dem Nahrungsmittel zugegeben werden. Dadurch gelangen relativ hohe Konzentrationen dieser Mittel beim Verzehr auch in den menschlichen Körper. Die Folge sind die heute vielfach gehäuft auftretenden Reaktionen in Form allergischer Erkrankungen.

Eine Alternative zur Konservierung durch Zusatz von synthetischen Konservierungsmitteln ist die thermische Inaktivierung von Keimen, z.B. durch Pasteurisieren. Unter Pasteurisieren versteht man eine thermische Behandlung von 30 bis 120 Minuten Einwirkzeit bei 70 bis 85 °C.

Die Pasteurisierung verbessert die Haltbarkeit derart behandelter Produkte erheblich, ist jedoch technisch aufwendig und verbraucht sehr viel Energie. Die Lebensfähigkeit von Sporen wird darüber hinaus oft nicht oder nur sehr unvollständig beeinträchtigt. Eine Pasteurisierung ist außerdem für temperaturempfindliche Produkte nicht anwendbar oder führt zu einem nicht unerheblichen Qualitätsverlust, da spätestens durch das oftmals notwendige zweite Thermisie-

30

ren (bis zu 85 °C) der "Frischegrad" des pasteurisierten Produktes nachläßt. Außerdem sind gerade wertvolle Bestandteile von Nahrungsmitteln, Kosmetika oder Pharmazeutika, z.B. Vitamine, Aminosäuren und viele pharmazeutische Wirkstoffe, thermolabil, so daß sich eine thermische Behandlung unter den üblichen Pasteurisierungsbedingungen verbietet.

Eine weitere Möglichkeit zur Verbesserung der Haltbarkeit ist es, das von Verderbnis bedrohte Produkt unter Stickstoff oder CO₂ luftdicht zu verpacken oder in Vakuumverpackungen bereitzustellen, wie es z.B. bei gemahlenem Kaffee gehandhabt wird. Diese Verfahren sind jedoch teuer und aufwendig und daher für viele Nahrungsmittel nicht anwendbar.

Aufgabe der Erfindung ist es daher, ein Verfahren zur Haltbarkeitsverbesserung und/oder Stabilisierung von mikrobiell verderblichen Produkten, bei dem während des Prozesses zur Herstellung, Verarbeitung oder Verpackung der Produkte deren Oberflächen und/oder deren Umgebung, insbesondere die Umgebungsluft und/oder die Oberflächen der unmittelbar oder mittelbar mit den Produkten in Kontakt kommenden Geräte oder sonstigen Materialien mit einem oder mehreren Prozeßhilfsmitteln bereitzustellen. Hierdurch soll insbesondere die Haltbarkeitsverbesserung und Stabilisierung von Nahrungs-Futtermitteln, Kosmetika, Pharmazeutika und anderen, von Verderbnis bedrohten Produkten ermöglicht werden, ohne daß synthetische Konservierungsmittel in diese behandelten Stoffe eingemischt oder eine Pasteurisierung bei Temperaturen von 70 bis 85 °C angewendet werden muß. Ebenso soll eine Herabminderung der eingesetzten Haltbarkeitsverbesserung und Stabilisierung erreicht werden.

Erfindungsgemäß wird diese Aufgabe durch ein Prozeßhilfsmittel, welches wenigstens einen mikrobizid wirkenden Aromastoff, vorzugsweise mindestens zwei Aromastoffe, enthält.

WO 96/1 P(P96/01364

Die vorliegende Erfindung betrifft ferner ein Prozeßhilfsmittel, das dadurch gekennzelchnet ist, daß es wenigstens einen mirkobizid wirkenden Aromastoff, vorzugsweise mindestens zwei Aromastoffe enthält

Schließlich betrifft die vorliegende Erfindung auch die Verwendung des Prozeßhilfsmittels zum Beaufschlagen von Oberflächen mikrobiell verderblicher Produkte und/oder deren Umgebung zum Zwecke des Aufstreichens, Schmierens, Emulgierens, Trennens, Reinigens, Sprühens, Vernebelns, Vergasens und Schneidens.

10

15

Die in den erfindungsgemäßen Prozeßhilfsmitteln enthaltenen Aromastoffe sind ausschließlich natürliche oder naturidentische Aromastoffe, die gemäß FEMA als sicher (GRAS - Generally Recognized As Safe) anerkannt sind. Bei der erwähnten Liste handelt es sich um FEMA GRAS Flavour Substances Lists GRAS 3-16 Nr. 2001-3834 (Stand 1993), die natürliche und naturidentische Aromastoffe aufführt, die von der amerikanischen Gesundheitsbehörde FDA zur Verwendung in Nahrungsmitteln zugelassen sind (FDA Regulation 21 CFR 172.515 für naturidentische Aromastoffe (Synthetic Flavoring Substances und Adjuvants) und FDA Regulation 21 CFR 182.20 für natürliche Aromastoffe (Natural Flavoring Substances und Adjuvants). Die diese FDA-Nomen erfüllenden Aromastoffe dürfen "quantum satis" eingesetzt werden, d.h. sie dürfen bis zu der Höchstkonzentration im Nahrungsmittel enthalten sein, in der sie noch keine geruchliche oder geschmackliche Beeinträchtigung des Nahrungsmittels, dem sie zugesetzt werden, bewirken. Die gemäß FEMA aufgeführten Aromastoffe decken sich weitgehend mit entsprechenden europäischen Norm COE enthaltenen Stoffen.

Erfindungsgemäß dürfen außerdem die gemäß Artikel V European Community Directive Flavourings (22.06.88) als "NAT4" klassifizierten Aromastoffe verwendet werden, vorausgesetzt, sie gelten gemäß der zuvor erwähnten FEMA GRAS-Liste als sicher. NAT4-Substanzen sind Substanzen, die unter bestimmten Voraussetzungen als naturidentisch zu deklarieren sind, z.B., wenn diese

Substanzen in Verbindung und als Bestandteil mit einem natürlichen oder naturidentischen Aromastoff eingesetzt werden.

Der besondere Vorteil der erfindungsgemäßen Prozeßhilfsmittel ist, daß es aufgrund seiner in der FEMA GRAS-Liste aufgeführten und von der US-Gesundheitsbehörde FDA, der wohl kritischsten Gesundheitsbehörde überhaupt, als unbedenklich anerkannten Bestandteile im "quantum satis"-Konzentrationsbereich ohne weiteres Nahrungsmitteln zugesetzt werden kann.

10 Ein weiterer besonderer Vorteil liegt darin, daß die Prozeßhilfsmittel den Geschmack und Geruch der behandelten Produkte nicht beeinflussen.

Die erfindungsgemäßen Prozeßhilfsmittel werden beispielsweise in Form von Schmiermitteln, Emulgier- und Reinigungsmitteln, Sprühmitteln, Vernebelungsmitteln, gasphasenaktiven Mitteln, Wärmeübertragungsmitteln sowie Schneidoder Trennmitteln eingesetzt. Ebenso können die Prozeßhilfsmittel als Zusätze zu den genannten Mitteln eingesetzt werden.

Es ist erfindungswesentlich, daß die Prozeßhilfsmittel nicht den Nahrungsmitteln 20 beigegeben werden bzw. mit diesen vermischt werden. Vielmehr werden nur die Oberflächen bzw. Schnittflächen der Nahrungsmittel mit den Prozeßhilfsmitteln beaufschlagt. Dies kann dadurch geschehen, daß Nahrungsmitteloberflächen bzw. Schnittflächen direkt mit den Prozeßhilfsmitteln beaufschlagt werden. Ebenso ist es aber auch möglich, die Oberflächen von 25 Geräten, Produktionsmaschinen, Verpackungseinrichtungen, Transporteinrichtungen, Verpackungsmaterialien sowie die Umgebungsluft mit dem Prozeßhilfsmittel zu versetzen.

Es ist erfindungsgemäß überraschend, daß die mikrobizide Wirkung der Prozeßhilfsmittel bereits bei Anwendung geringer Konzentrationen auftritt. Nur 0,01 bis
5 g/kg, vorzugsweise 0,05 bis 1 g/kg Nahrungsmittel wird bei deren Beaufschlagung verwendet. Bei dem Einsatz für die Umgebungsluft werden nur 0,001 bis

15

20

10 g/m³ Luft beispielsweise eingesetzt. Für die Oberflächen von Geräten werden sogar nur 0,000001g bis 0,1 g/cm² Oberfläche verwendet.

Bei Einhaltung dieser Konzentrationen liegen die in den Nahrungsmitteln nachweisbaren Mengen nur bei 0,001 Gew.-%. Hingegen werden nach dem Stand der Technik regelmäßig 0,1 bis 3 Gew.-% Konservierungsstoff in den Nahrungsmitteln vorhanden sein. Trotz dieser äußerst geringen Konzentrationen ist es erfindungsgemäß überraschend, daß gegenüber herkömmlich konservierten Nahrungsmitteln eine Haltbarkeitsverlängerung von bis zu 50 % erzielt werden kann.

Es ist besonders hervorzuheben und erstaunlich, daß bereits durch Prozeßhilfsmittel die indirekt auf Nahrungsmittel aufgebracht werden, bereits 0,001 Gew.-% ausreichen, um eine Haltbarkeitsstabilisierung bzw. -verbesserung bei erhöhter Produktqualität zu erreichen.

Diese Wirkung ist um so überraschender, als die mikrobizide Wirkungszeit der erfindungsgemäß eingesetzten Aromastoffe unter 24 Stunden, vorzugsweise unter 12 Stunden liegt. Ganz besonders bevorzugt ist es, Prozeßhilfsmittel und Konzentrationen so auszuwählen, daß die mikrobizide Wirkungszeit unter 1 Stunde, vorzugsweise unter 15 Minuten liegt.

Im Gegensatz dazu ist es das Ziel der herkömmlichen Konservierungsstoffe, möglichst lange, d.h. über Wochen und Monate, in dem Lebensmittel wirksam zu sein. Trotz der sehr kurzen Wirkungszeiten der erfindungsgemäß eingesetzten Prozeßhilfsmittel ist die Haltbarkeit gegenüber den nach dem Stand der Technik mit herkömmlichen Konservierungsstoffen bzw. Konservierungsverfahren behandelten Lebensmitteln signifikant erhöht.

Das erfindungsgemäße Prozeßhilfsmittel umfaßt Aromastoffe, die ausgewählt sind aus der Gruppe der Alkohole, Aldehyde, Phenole, Acetate, Säuren, Ester, Terpene, Acetale und deren physiologisch verträglichen Salze, ethenschen Ölen und Pflanzenextrakten. WO 967 '5

7

Bevorzugte Ausführungsformen der erfindungsgemäßen Prozeßhilfsmittel umfassen ein oder mehrere Aromastoffe, die aus einer oder mehreren der folgenden Gruppen ausgewählt sind:

5

I. Alkohole

Acetoin (Acetylmethylcarbinol), Ethylalkohol (Ethanol), Propylalkohol (1-Propanol), iso-Propylalkohol (2-Propanol, Isopropanol), Propylenglykol, Glycerin,

10

Benzylalkohol, n-Butylalkohol (n-Propylcarbinol), iso-Butylalkohol (2-Methyl-1-propanol), Hexylalkohol (Hexanol), L-Menthol, Octylalkohol (n-Octanol), Phenylethylalkohol (2-Phenylethanol), Zimtalkohol (3-Phenyl-2-propen-1-01), α -Methylbenzylalkohol (1-Phenylethanol), Heptylalkohol (Heptanol),

15

20

n-Amylalkohol (1-Pentanol), iso-Amylalkohol (3-Methyl-1-butanol), Anisalkohol (4-Methoxybenzylalkohol, p-Anisalkohol), Citronellol, n-Decylalkohol (n-Decanol), Geraniol, β-γ-Hexenol (3-Hexenol), Hydrozimtalkohol (3-Phenyl-1-propanol), Laurylalkohol (Dodecanol), Linalool, Nerolidol, Nonadienol (2,6-Nonadien-1-01), Nonylalkohol (Nonanol-1), Rhodinol, Terpineol, Borneol, Clineol (Eucalyptol), Anisol, Cuminylalkohol (Cuminol), 1-Phenyl-1-propanol, 10-Undecen-1-01, 1-Hexadecanol.

II. Aldehyde

.25

30

Acetaldehyd, Anisaldehyd, Benzaldehyd, iso-Butylaldehyd (Methyl-1-propanal), Citral , Citronellal, n-Caprinaldehyd (n-Decanal), Ethylvanillin, Fufurol, Heliotropin (Piperonal), Heptylaldehyd (Heptanal), Hexylaldehyd (Hexanal), 2-Hexenal (ß-Propylacrolein), Hydrozimtaldehyd (3-Phenyl-1-propanal), Laurylaldehyd (Dodecanal), Nonylaldehyd (n-Nonanal), Octylaldehyd (n-Octanal), Phenylacetaldehyd (1-Oxo-2-phenylethan), Propionaldehyd (Propanal), Vanillin, Zimtaldehyd (3-Phenylpropenal), Perillaaldehyd, Cuminaldehyd.

III. Phenole

Thymol, Methyleugenol, Acetyleugenol, Safrol, Eugenol, Isoeugenol, Anethol, Phenol, Methylchavicol (Estragol; 3-4-Methoxyphenyl-1-propen), Carvacrol, α-Bisabolol, Fornesol, Anisol (Methoxybenzol), Propenylguaethol (5-Prophenyl-2-ethoxyphenol).

IV. Acetate

iso-Amylacetat (3-Methyl-1-butylacetat), Benzylacetat, Benzylphenylacetat, n-Butylacetat, Cinnamylacetat (3-Phenylpropenylacetat), Citronellylacetat, Ethylacetat (Essigester), Eugenolacetat (Acetyleugenol), Geranylacetat, Hexylacetat (Hexanylethanoat), Hydrocinnamylacetat (3-Phenyl-propylacetat), Linalylacetat, Octylacetat, Phenylethylacetat, Terpinylacetat, Triacetin (Glyceryltriacetat),
 Kaliumacetat, Natriumacetat, Natriumdiacetat, Calciumacetat.

V. Säuren und/oder deren physiologisch verträgliche Salze

Essigsäure, Aconitsäure, Adipinsäure, Ameisensäure, Apfelsäure (1-Hydroxybemsteinsäure), Capronsäure, Hydrozimtsäure (3-Phenyl-1-propionsäure), Pelagonsäure (Nonansäure), Milchsäure (2-Hydroxypropionsäure), Phenoxyessigsäure (Glykolsäurephenylether), Phenylessigsäure (α-Toluolsäure), Valeriansäure (Pentansäure), iso-Valeriansäure (3-Methylbutansäure), Zimtsäure (3-Phenylpropensäure), Citronensäure, Mandelsäure (Hydroxyphenylessigsäure) Weinsäure (2,3-Dihydroxybutandisäure; 2,3-Dihydroxybemsteinsäure), Fumarsäure, Tanninsäure.

VI. Ester

30 Allicin.

VII. Terpene

Campher, Limonen, &-Caryophyllen.

5 VIII. Acetale

10

30

Acetal, Acetaldehydibutylacetal, Acetaldehyddipropylacetal, Acetaldehyd-phenethylpropylacetal, Zimtaldehydethylenglycolacetal, Decanaldimethylacetal, Heptanaldimethylacetal, Heptanalglycerylacetal, Benzaldehydpropylenglykolacetal.

IX. Polyphenol

- X. Etherische Öle und/oder alkoholische, glykolische oder durch CO₂ -Hoch druckverfahren erhaltene Extrakte aus den im folgenden aufgeführten Pflanzen:
 - a) Öle bzw. Extrakte mit hohem Anteil an Alkoholen:
 Melisse, Koriander, Kardamon, Eukalyptus;
- Die bzw. Extrakte mit hohem Anteil an Aldehyden:
 Eukalyptus citriodora, Zimt, Zitrone, Lemongras, Melisse, Citronella, Limette, Orange;
 - c) Öle bzw. Extrakte mit hohem Anteil an Phenolen:
- Oreganum, Thymian, Rosmarin, Orange, Nelke, Fenchel, Campher, Mandarine, Anis, Cascarille, Estragon und Piment;
 - d) Öle bzw. Extrakte mit hohem Anteil an Acetaten: Lavendel;
 - e) Öle bzw. Ektrakte mit hohem Anteil an Estern: Senf, Zwiebel, Knoblauch;
- f) Öle bzw. Extrakte mit hohem Anteil an Terpenen:
 Pfeffer, Pomeranze, Kümmel, Dill, Zitrone, Pfefferminz, Muskatnuß.

Sofem das Prozeßhilfsmittel nur einen der genannten Aromastoffe enthält, kommen Isopropanol und Ethanol nicht zum Einsatz. Überraschenderweise hat sich gezeigt, daß eine Kombination von mindestens zwei der angegebenen Aromastoffe eine weitaus größere Wirkung aufweist, als bei einer Einzelsubstanz.

Die meisten der in der GRAS FEMA-Liste aufgeführten Aromastoffe sind nicht wasserlöslich, d.h. hydrophob. Werden sie in hauptsächlich fetthaltigen Nahrungsmitteln eingesetzt, so sind sie aufgrund ihres lipophilen Charakters direkt ohne Lösungsmittel verwendbar. Der Anteil lipophiler Nahrungsmittel ist jedoch relativ gering. Um in den meistens hydrophilen Nahrungs- oder Futtermitteln, Kosmetika oder Pharmazeutika ihre Wirkung entfalten zu können, werden sie bevorzugt in Verbindung mit einem wasserlöslichen Lösungsvermittler eingesetzt. Um dem Anspruch dieser Erfindung, gesundheitlich unbedenkliche Prozeßhilfsmittel zur Verfügung zu stellen, gerecht zu werden, werden ausschließlich für Nahrungsmittel zugelassene Lösungsvermittler-Aromastoffe, z.B. Alkohole verwendet.

10

20

25

30

Die Anwendung der Prozeßhilfsmittel erfolgt unverdünnt und/oder in wasserlöslichen Verdünnungen mit Wasser und/oder lebensmittelzulässigen Lösemitteln (z.B. Alkohole) und/oder in fettlöslichen Verdünnungen mit Pflanzen- (Fett)Ölen.

In den erfindungsgemäßen Prozeßhilfsmitteln können z.B. gut wasserlösliche Alkohole, bevorzugt in Konzentrationen von 0,1 bis 99 Gew.-%, bezogen auf das Prozeßhilfsmittel, in Verbindung mit anderen Aromastoffen eingesetzt werden. Die erfindungsgemäßen Prozeßhilfsmittel enthalten vorzugsweise weniger als 50 Gew.-% Ethanol, Isopropanol oder Benzylalkohol oder eines Gemisches dieser Stoffe. Besonders bevorzugt ist es, wenn der Anteil der genannten Alkohole bei weniger als 30 Gew.-%, insbesondere weniger als 20 Gew.-% liegt. Sofern Prozeßhilfsmittel eingesetzt werden, die Benzylalkohol und wenigstens einen weiteren Aromastoff enthalten, kann der Anteil an Benzylalkohol auch bei mehr als 50 Gew.-% liegen. Überraschenderweise haben die Prozeßhilfsmittel, die beispielsweise nur 20 Gew.-% Ethanol oder

Isopropanol in Verbindung mit Aromaaldehyden und -phenolen in Konzentrationen im Promilibereich enthalten, eine sehr stark fungizide und bakterizide Wirkung; sogar Prozeßhilfsmittel, die 1 Gew.-% der genannten wasserlöslichen Alkohole in Verbindung mit weniger als 3 ‰ Aromaaldehyd und -phenol enthalten, weisen eine 70 bis 100 %-ige mikrobizide Wirkung auf.

Aus dem Voranstehenden ergibt sich, daß die erfindungsgemäßen Prozeßhilfsmittel überraschende mikrobizide Wirkungen auf das Umfeld der Produktion bzw. des Produktionsprozesses haben.

10

20

25

Bevorzugt ist dabei eine Verwendung der Prozeßhilfsmittel für die Produktion in Nahrungs- und Futtermitteln, Kosmetika, Pharmazeutika, Farben, Papier und/oder Zellstoffen.

15 In besonders bevorzugten Ausführungsformen werden die Prozeßhilfsmittel zur Haltbarkeitsverbesserung und Stabilisierung von aus der folgenden Gruppe ausgewählten Nahrungsmitteln verwendet:

Brot, Backwaren, Backmitteln, Backpulver, Puddingpulver, Getränken, diätetischen Lebensmitteln, Essenzen, Feinkost, Fisch und Fischprodukten, Kartoffeln und Produkten auf Kartoffelgrundlage, Gewürzen, Mehl, Margarine, Obst und Gemüse und Produkten auf Grundlage von Obst und Gemüse, Sauerkonserven, Stärkeprodukten, Süßwaren, Suppen, Teigwaren, Fleisch- und Fleischwaren, Milch-, Molkerei- und Käseprodukten, Geflügel und Geflügelprodukten, Ölen, Fetten und öl- oder fetthaltigen Produkten.

Das erfindungsgemäße Prozeßhilfsmittel wirkt im Umfeld des für Verderbnis anfälligen Produktes, beispielsweise eines Nahrungs- oder Futtermittels, z.B. auf Maschinenteilen, die in Kontakt mit dem zu be- oder verarbeitenden Produkt stehen, oder in der Luft. Durch den direkten Kontakt mit der Oberfläche des für Verderbnis anfälligen Produktes wirken sie auch dort, d.h. sie entfalten ihre Wirkung auf der Oberfläche oder bei Eindringen in das Produkt in diesem selbst.

15

20

Der besondere Vorteil des erfindungsgemäßen Prozeßhilfsmittels ist daher, daß es einerseits zuverlässig dekontaminiert, wobei sich seine Wirksamkeit gegen Gram-positive und Gram-negative Bakterien, Pilze einschließlich Hefen und auch Viren erwiesen hat, während es andererseits für den Konsumenten des Nahrungsmittels keine Gefahr darstellt, da es für diesen vollkommen unschädlich ist und keinerlei mikrobizide, technologische Nachwirkung im Nahrungsmittel besitzt, denn die mikrobizide Wirksamkeit bezieht sich auf das Produktionsumfeld, das durch die erfindungsgemäßen Maßnahmen von kontaminierenden Mikroorganismen befreit

Das erfindungsgemäße Prozeßhilfsmittel kann ein Schmiermittel sein, das gleichzeitig der Schmierung, der Dekontamination der geschmierten Teile und damit indirekt der Haltbarkeitsstabilisierung der Produkte, die mit diesen Teilen in Kontakt stehen, dient.

Erfindungsgemäß kann das Prozeßhilfsmittel weiterhin ein Emulgier-, Trennoder Reinigungsmittel sein. Solche Mittel dienen der Emulgierung und/oder Reinigung und damit auch der Dekontamination von Flächen, Gegenständen, Maschinen, Einrichtungen, Geräten, Schneidflächen oder -vorrichtungen, Transportvorrichtungen und ähnlichem. Es kann außerdem zum Dekontaminieren und Reinigen von Nahrungsmitteln, Rohstoffen, Kosmetika, Pharmazeutika, Farben, Papier, Zellstoff, Vieh, Geflügel, Fisch und Abfällen verwendet werden.

25

30

Das erfindungsgemäße Prozeßhilfsmittel kann darüber hinaus ein Sprühmittel sein. Ein solches Sprühmittel ermöglicht eine Feinverteilung der dekontaminierenden Wirkstoffe auf allen Maschinenteilen, Transportvorrichtungen, Schneidvorrichtungen, Arbeitsflächen usw. und kann gleichzeitig dazu führen, daß unmittelbar nach dem Schneid- bzw. Trennvorgang und/oder Verpackungs-Portionierungsvorgang verpackte Lebensmittel durch eingeschlossenes Sprühmittel in einem Klima mit dekontaminierenden und/oder haltbarkeitsstabilisierenden Eigenschaften aufbewahrt werden. Vernebel- bzw. versprühbare

Ausführungsformen sind darüber hinaus wegen des vergleichsweise geringeren Bedarfs sehr kostengünstig.

Ebenso kann das Sprühmittel in und/oder auf Verpackungen, wie z.B. Tüten, Kartons oder ähnliches eingeblasen bzw. versprüht/vernebelt werden, um so das darin verpackte Produkt länger haltbar zu machen.

Die Sprühmittel dienen auch dazu, im Umfeld der Produktion (Umwelt, Kühlung, Lüftung, Frischluft) an hygienischen Schwachstellen (z.B. Kühlstrecken) vernebelt werden zu können, um somit die Keimzahl zu verningern, ohne daß das dort arbeitende Personal Schaden nimmt.

Ebenso können die Prozeßhilfsmittel zum Aufsprühen auf Nahrungsmittelflächen oder Schnittflächen eingesetzt werden, um die auf den Nahrungsmitteln befindlichen Verderbniserreger zu eliminieren oder zu reduzieren.

Ferner können diese Sprühmitel in Transporteinrichtungen, Lager und Kühlräumen und ähnlichem eingesetzt werden.

20

30

10

In einer weiteren Ausführungsform ist das erfindungsgemäße Prozeßhilfsmittel ein Gasphasen-aktives Mittel, das der aktiven Dekontaminierung und/oder Desodorierung in der Gasphase in mehr oder weniger geschlossenen Systemen, wie Verpackungen, Abfallsystemen, Containersystemen, Transport- oder Lagerräumen und ähnlichem dient. Von der Wirkung des Gasphasenmittels profitieren sowohl das verpackte, im Container enthaltene, transportierte bzw. gelagerte Gut als auch die Luft und das jeweilige Umfeld.

Das erfindungsgemäße Prozeßhilfsmittel hat sich außerdem als ein gutes Wärmeübertragungsmittel erwiesen. Mit Wärmeübertragungsmittel sind Kühl-, Heizund Wärmemittel gemeint, die in umlaufenden Kreislaufsystemen von flüssigen Kühl-, Heiz- und Wärmesystemen als dekontaminierende Zusätze verwendet werden können. Sie werden dabei wäßrigen oder öligen Systemen zur

Verhinderung eines Wachstums von Mikroorganismen in den Flüssigkeiten zugefügt, um z.B. bei Leckagen von Kühlungen eine Kontamination zu verhindem.

- In einer besonders bevorzugten Ausführungsform ist das erfindungsgemäße Prozeßhilfsmittel ein Schneid- oder Trennmittel für Schneidmesser und/oder Schneidvorrichtungen aller Art und für alle verderblichen zu schneidenden Produkte, um die Kontaminierung der Schnittstellen zu verhindern.
- In der Nahrungsmittelindustrie treten oft an den Schnitt- bzw. Trennstellen von Nahrungsmitteln Kontaminationen durch Gram-negative oder Gram-positive Erreger, Schimmelpilze, Hefen und andere mögliche Verderbniserreger auf, die die Haltbarkeit der geschnittenen bzw. getrennten Produkte z.T. erheblich beeinträchtigen können und damit sowohl gesundheitliche als auch ökonomische Schäden verursachen. Die Kontaminationen werden durch Rohstoffe, Produkt/Rohstoffreste, Personal durch Maschinenteile oder betriebsbedingte Prozesse oder durch die Luft eingetragen.

Herkömmlicherweise werden daher bis heute entweder die geschnittenen bzw. getrennten oder zu schneidenden bzw. zu trennenden Nahrungsmittel pasteurisiert bzw. technisch behandelt, um sie zu dekontaminieren und damit haltbarer zu machen, oder mit Konservierungsstoffen versetzt. Wie oben bereits erwähnt, ist jedoch eine themische Behandlung nicht in jedem Fall möglich oder zulässig und führt unter Umständen zu einer Verminderung der Qualität des Produktes.

25

20

Eine flankierende Maßnahme zur Verbesserung der Haltbarkeit von Nahrungsmitteln ist die Reinigung oder gar Desinfektion des Umfeldes mit chemischen Desinfektionsmitteln, die der Biozidregelung unterliegt. Diese Stoffe sind mehr oder weniger giftig und sollen nicht in Nahrungsmittel übertragen werden. Die chemische Desinfektion ist jedoch eine diskontinuierliche Maßnahme, die pragmatisch nur zu bestimmten Produktionszeiten an Maschinenteilen und im Umfeld eingesetzt werden kann und nach deren Durchführung ein Nachspülen mit Wasser zur Entfernung der Restsubstanzen erforderlich ist.

Dementsprechend ist die direkte permanente Elimination von Verderbniserregem nicht gewährleistet.

Im Stand der Technik ist daher versucht worden, die Maschinenhygiene durch bessere Reinigungsfähigkeit oder durch Installationen zur Erzeugung bzw. Erhaltung von reiner oder keimarmer bzw. keimfreier Luft zu optimieren. Erfahrungsgemäß hat dies jedoch nicht eine erhöhte Haltbarkeit von geschnittenen bzw. getrennten Nahrungsmitteln bewirkt oder ist ökonomisch nicht mehr vertretbar oder ist praktisch nicht sicher umzusetzen.

10

15

20

25

30

Ein Beispiel aus der Schnittbrotindustrie zeigt, daß durch das Schneiden bzw. Trennen von Brotsorten wie Ganzteig-, Vollkom-, Weiß-, Misch- oder Toastbrot und anschließendes Verpacken die Haltbarkeit des Schnittbrotes im Gegensatz zu Ganzbrot erheblich reduziert wird. Sie liegt je nach Brotsorte zwischen 2 und 5 Tagen. Durch die heute meistens durchgeführte anschließende thermische Behandlung (Pasteurisieren in Öfen oder Mikrowellengeräten bei einer Kemtemperatur von 60 bis 90 °C) verlängert sich die Haltbarkeit von Brot normalerweise auf 4 bis ca. 20 Tage bei Verwendung normaler dampfdurchlässiger Polyethylentütenverpackungen. Andere Folien, z.B. aus Polypropylen, die jedoch wesentlich teurer sind, können wegen ihrer geringeren Dampfdurchlässigkeit eine längere Haltbarkeit erreichen. Verpackungen mit Polyesterkunststoffen und einer eingegebenen stickstoffhaltigen Atmosphäre führen zu noch längerer Haltbarkeit. All diese Maßnahmen sind jedoch entweder sehr kostspielig oder nur für teure Spezialprodukte und -märkte einsetzbar und führen z.T. zu erheblichen Qualitätsverlusten des Schnittbrotes, z.B. durch Kondensatbildung in der Brottüte, zu weiche Brotkonsistenz oder zu frühes Austrocknen. Diese Maßnahmen lösen alle nicht die eigentlichen Ursachen der Kontamination durch den Schneid- bzw. Trennprozeß, der sowohl die im Umfeld, wie auch die in Produkt oder an der Maschine vorhandenen möglichen Verderbniserreger durch die Schneidvorrichtung, z.B. die Schneidblätter, in das Nahrungsmittel einträgt bzw. darin verteilt.

WO 96/29 PC 96/01364

16

Als Schneid- bzw. Trennhilfsmittel werden üblicherweise entweder mineralische Zusammensetzungen, die in vielen Ländern nicht mehr zugelassen sind, oder pflanzliche Schneidöle eingesetzt, die oft bereits schon in sich kontaminiert, d.h. bakteriell belastet sind. Siehe z.B. G. Schuster: Investigations on mould contamination of sliced bread, Bäcker & Konditor 27(11), S. 345-347; G. Spicher: Die Quellen der direkten Kontamination des Brotes mit Schimmelpilzen; Das Schneidöl als Faktor der Schimmelkontamination; Getreide, Mehl und Brot 32(4), S. 91-94.

Für ein Schneid- bzw. Trennmittel, das eine Dekontamination der mit dem Nahrungsmittel in Kontakt stehenden Maschinenteile während des Schneidprozesses erlaubt und dadurch eine verbesserte Haltbarkeit des Schnittgutes bewirkt, besteht daher ein dringender Bedarf, der durch das erfindungsgemäße Schneid- bzw. Trennmittel befriedigt wird.

15

20

30

10

Das erfindungsgemäße Schneid- oder Trennmittel ist überall einsetzbar, wo industriell geschnitten oder getrennt wird und das Schnittgut einer Verderbnis durch Bakterien oder Pilze oder Kontamination durch Viren unterliegen kann. Dies trifft z.B. für Zellstoffe und Papier zu, besonders aber für Nahrungs- oder Futtermittel.

In einer bevorzugten Ausführungsform ist das erfindungsgemäße Prozeßhilfsmittel zum Schneiden oder Trennen von Brot, Backwaren, Fisch und Fischprodukten, Kartoffeln und Produkten auf Kartoffelgrundlage, Obst und Gemüse und Produkten auf Grundlage von Obst und Gemüse, Süßwaren, Stärkeprodukten, Teigwaren, Fleisch- und Fleischwaren, Käseprodukten, Geflügel und Geflügelprodukten geeignet.

Handelt es sich bei dem erfindungsgemäßen Prozeßhilfsmittel um ein Schneidbzw. Trennmittel (z.B. zum Schneiden von Brot), so kann dieses auf üblicher Pflanzenöl-Fett-Wachsbasis unter Zusatz von mikrobiziden Prozeßhilfsmitteln auf der Basis von Aromastoffen bereitgestellt werden. Das Schneid- bzw.

Trennmittel (z.B. für die Anwendung in der Fleischwaren-Industrie) kann

vorzugsweise erfindungsgemäß ausschließlich aus einem oder mehreren Aromastoffen bestehen.

Den Pflanzenölen, -wachsen und -fetten können auch natürliche Emulgatoren, z.B. Lecithine in einer Konzentration von 1 bis 25 Gew.-%, beigegeben werden, wie es dem Stand der Technik entspricht. Beispielhafte Emulgatoren sind Lecithine, Zitronensäuremonoglyceride, Diacetylweinsäure, N-Acetylphosphatidylethanolamin, Phosphatidylinositol, Phosphatidylserin, Phosphatidsäuren, Phosphatidylcholin. Wird das erfindungsgemäße Schneid- bzw. Trennmittel jedoch als Emulsion auf wäßriger Basis bereitgestellt, werden Pflanzenöle, Pflanzenfette und Pflanzenwachse mit ungesättigten und gesättigten C₁₈ - C₁₈-Fettsäuren, die ebenfalls eine Viskosität von ca. 10 mPas (20 °C) bis ca. 500 mPas (20 °C) haben, verwendet.

- Das beispielsweise aus den oben erwähnten Fettsäuren bzw. Ölen und Emulgatoren zusammengesetzte Schneid- und Trennmittel kann nach Mischen mit Wasser im Verhältnis von 1:1 bis 1:40 als Schneid- oder Trennemulsion (-milch) angewendet werden.
- In der Praxis wird das erfindungsgemäße Schneid- oder Trennmittel auf mindestens die in Kontakt mit dem Schnittgut stehenden Maschinenteile aufgebracht, um diese zu dekontaminieren. Die Mittel werden erfahrungsgemäß in Dosierungen von 1-20 g/kg Nahrungsmittel eingesetzt, wobei die Dosierung von der verwendeten Schneid- bzw. Trennvorrichtung und dem Schnittgut abhängig ist.

25

10

Die Schneid- und Trennmittel werden meistens auf die Schneid- bzw. Trennvorrichtungen aufgebracht, z.B. beim Brotschneiden auf Kreistellerscheibenschneidmaschinen aufgesprüht, mit denen z.B. Schnittbrot anschließend geschnitten wird. Erfindungsgemäß werden dabei Teile der Schneidvorrichtungen,
z.B. Kreistellermesser, Band-Slicer (rotierende Bandsägen), elektrische der mechanische Messer oder Messervorrichtungen, elektrische oder mechanische Sägen oder Sägevorrichtungen, elektrische oder mechanische Kettensägen oder
Vorrichtungen benetzt, so daß das Schneid- bzw. Trennmittel auf dem entspre-

chenden Maschinenteil sowie auch auf der durch das Schneiden oder Trennen entstandenen Oberfläche dekontaminierend bzw. mikrobizid wirken kann.

Die vorteilhafte Wirkung der erfindungsgemäßen Schneid- und Trennmittel äußert sich in einer verlängerten Haltbarkeit des Schnittgutes, z.B. von Schnittbrot. Sie beruht nicht zuletzt darauf, daß das Schneid- und Trennmittel die Oberfläche des Schnittgutes durchdringt und auch die tieferen Schichten des geschnittenen Nahrungsmittels dekontaminiert und zwar durch die im Schneidöl enthaltenen Aromastoffe.

10

Die hier beschriebenen Aromastoffe wirken darüber hinaus mikrobizid in der Dampfphase, da die meisten Aromastoffe leicht verdampfen. Sie wirken daher im sogenannten Umfeld des Nahrungsmittels, z.B. in der Verpackung des Nahrungsmittels, wenn dieses nach den Schneidprozeß z.B. in eine Folienverpackung verpackt wird.

15

Dieser Prozeß der Dekontamination des Schnittgutes nach dem eigentlichen Schneidvorgang kann durch eine schwache thermische Nachbehandlung des Nahrungsmittels ohne Qualitätsverlust desselben in der Verpackung unterstützt werden. So wird z.B. Brot nach dem Schneiden in Polyethylenfolien verpackt und anschließend z.B. mittels Mikrowelle innerhalb von 10 Sekunden bis 5 Minuten auf eine Kerntemperatur von zwischen 30 °C und 50 °C gebracht oder bis zu einer Stunde bei 30 °C bis 50 °C Kerntemperatur thermisch behandelt, wodurch der dekontaminierende Effekt des Schneid- bzw. Trennmittels verstärkt wird.

25

Der vorteilhafte Effekt der Schneid- bzw. Trennmittel kann z.T. erheblich erhöht werden, wenn die Auftrags- und Schneid- bzw. Trenntechniken so verbessert oder neu entwickelt werden, daß eine intensive Benetzung des Nahrungsmittels mit Schneid- bzw. Trennmittel erfolgt. So wurde z.B. in Versuchen zum Brotschneiden das Kreistellerschneidblatt mit separaten Nutführungen und Rillen versehen, so daß ein gründlicher und intensiver Auftrag von Schneid- bzw. Trennmittel möglich war.

Die folgenden Beispiele erläutern die Erfindung.

Vergleichsbeispiel

5

Im Stand der Technik ist bereits bekannt, daß Ethanol und Isopropanol in hohen Konzentrationen (75 Gew.-% bis mehr als 90 Gew.-%) mikrobizid sind. Additive mit einer derartig hohen Ethanol- oder Isopropanolkonzentration sind jedoch zum einen wegen der Gefahren bei ihrer Handhabung, insbesondere ihrer leichten Entflammbarkeit, zum anderen auch aus grundsätzlichen Erwägungen, z.B. im Hinblick auf ehemalige Alkoholiker oder Kinder, eher unerwünscht. Reduziert man jedoch die Ethanol- bzw. Isopropanolkonzentration auf 20 Gew.-%, bezogen auf das Prozeßhilfsmittel, oder weniger, so läßt sich keine bakterizide oder fungizide Wirkung mehr nachweisen, wie in der nachfolgenden Tabelle gezeigt wird.

<u>Tabelle</u>

Mikrobizide bzw. fungizide Wirkung von Ethanol und Isopropanol¹

20

10

15

	Staph. Aureus	Asp. Niger
	Einwirkzeit 1 Std.	Einwirkzeit 1 Std.
Isopropanol 20 Gew%	RF ² 0,3	RF 0,5
Ethanol 20 Gew%	RF 3,4	RF 0
Wachstumskontrolle	log KBE ³ : 7,5	log KBE: 5,4
Isopropanol 75 Gew%	RF 7,0	RF 5,4
Ethanol 75 Gew%	RF 7,0	RF 5,4
Wachstumskontrolle	log KBE: 7,0	

- 1. Die Ergebnisse wurden mittels eines quantitativen Suspensionsversuches erhalten (siehe Kapitel "Material und Methoden", 3.2).
- 25 2. RF (Reduktionsfaktor): log Ausgangskeimzahl abzüglich log Anzahl überlebender Keime.

3. KBE: Koloniebildende Einheiten

Beispiele 1-5

5

Die Effektivität von Prozeßhilfsmitteln wurde in verschiedenen Versuchen getestet. Hierbei zeigt sich, daß diese eine Verbesserung der Haltbarkeit und der Stabilisierung überraschenderweise bewirken, wenn sie als Schneidmittel, als Sprühmittel, als Reinigungsmittel, als Trennmittel eingesetzt werden. Die Anzahl der verderbniserregenden Keime auf Schneidflächen, Transportflächen oder Schnittflächen konnte so stark reduziert werden. Gleichzeitig wurde die Haltbarkeit z.B. von Wurst um 30 % gegenüber einer herkömmlichen Konservierung verlängert.

Am Beispiel von Brot wird durch Besprühen von Brotlaiben und Scheiben des Brotes mit Schneidmittel durch Aufsprühen des Prozeßhilfsmittels auf die Flächen der Schneidmesser die Haltbarkeit signifikant verbessert.

Am Beispiel von Backwaren konnte nachgewiesen werden, daß beim Vernebeln eines Prozeßhilfsmittels der Gehalt an Schimmelpilzen pro m² Luft signifikant reduziert werden konnte. Die Haltbarkeit wurde ohne zusätzliche Zugabe von Konservierungsmitteln in dem Brot bzw. den Backwaren erheblich verbessert.

Beispiel 1

25

20

Einsatz eines Prozeßhilfsmittels als Schneidmittel für Schneidmesser und als Sprühmittel für Transport- und Förderbänder in der Fleischerei.

Verfahrensbeschreibung:

30

a)-c) untersucht die Keimzahl von Säurebildnem wie Lactobacillen. Zur Bestimmung dieser Keinzahl wurde die übliche Labortechnik als Verdünnungsreihe und Gußagar angewendet.

Verwendeter Nährboden MRS agar (OXOID)

d) Zur Bestimmung der keimreduzierenden Wirkung auf der Oberfläche von Wurst wurde das Abklatschverfahren angewendet.
Die Keimzahl wurde vorher, nach 10 Minuten Einwirkzeit (nach Besprühung mit HIQProSlice, eingetragene Marke der Schür in Process GmbH), nach Abkühlung und vor dem Verpacken bestimmt.
Nährboden für Gesamtkeimzahl: RODAC mit TSA, TW 80 und Lecithin.
Oberfläche: 25 cm²

10 Probebeschreibung:

Als Untersuchungsobjekt wurde Rostbratwurst gewählt. Das Produkt hat eine Haltbarkeit von 2-3 Wochen.

15 Rostbratwurst wird wie folgt produziert:

Fleisch und Fett werden im Cutter geschnitten und mit Zutaten vermischt. Nach Einfüllen in den Darm wird die Wurst bei 75 °C gebrüht. Nach Abkühlung werden die Produkte zu je 3 Stück vakuumverpackt.

20	Probenr.:	Beschreibung Probe
	1	Rostbratwurst Nullprobe
	2	Nullprobe + ProSlice auf Außenhaut (1 g/1000 g Wurst)
	3	Anlage mit ProSlice dekontaminiert
	4	wie 3 + ProSlice auf Außenhaut (1 g/1000 g Wurst)
25	5	wie 3 + 1 % ProSlice als Additiv
	6	wie 5 + ProSlice auf Außenhaut (1g/1000 g Wurst)
	7	wie 3 + 3 % ProSlice als Additiv
	8	wie 7 + ProSlice auf Außenhaut (1g/1000 g Wurst)

30 Ergebnisse:

a) Die Haltbarkeit eines Produkts, wenn angewendet als Additiv.

Keimzahl Lactobacillen /g

Probennr.	Tag 1	Tag 7	Tag 14
1	100	31.000	2.100.000
5	200	26.000	5.000.000
7	100	40.000	5.000.000

5 b) Die Haltbarkeit eines Produkts, wenn angewendet als Sprühmittel auf der Außenhaut des Produkts

10	Keimzahl Lactobacillen/g				
Prober	ınr.	Tag 1	Tag 7	Tag 14	
, 1		100	31.000	2.100.000	
4		< 100	2.700	450.000	
. 6		< 100	19.000	1.100,000	
8		< 100	18.000	1.200.000	

c) Die Haltbarkeit eines Produkts, wenn angewendet als Sprühmittel auf
 15 Oberflächen direkt im Kontakt mit dem Produkt.

Probennr.	Tag 1	Tag 7	Tag 14
1	100	31.000	2.100.000
3	200	5.500	900.000

20 d) Die Keimzahl nach Besprühung auf der Außenseite des Produkts.
 Vorher (Probe 1)

Probennr. Gesamtkeimzahl/2 Gesamtkeimzahl/2
5 cm² vorher 5 cm² nach 10
Minuten

WO 96/291 PCI 76/01364

23

		Einwirkzeit
1	120	95
2	. 65	Kein Wachstum
4 .	110	Kein Wachstum
6	Rasenwuchs	Kein Wachstum
8	18	Kein Wachstum

Kommentar zu:

10

20

25

5 a) Die Haltbarkeit eines Produkts, wenn angewendet als Additiv.

Die Tabelle zeigt, daß das Zufügen von HIQProSlice auch in erheblichen Mengen keinen Einfluß auf die Haltbarkeitsverlängerung hat. Das HIQProSlice hat keine konservierende Wirkung, wenn es als Additiv zugefügt wird.

- Die Haltbarkeit eines Produkts, wenn angewendet als Sprühmittel an der Außenseite des Produkts.
- Die Tabelle zeigt, daß durch das Besprühen der Wurst mit 1 g pro 1000 g Produkt sich eine Haltbarkeitsverbesserung ergibt.
 - Die Haltbarkeit eines Produkts, wenn angewendet als Sprühmittel auf Oberflächen direkt im Kontakt mit dem Produkt.

Die Tabelle zeigt, daß durch das Besprühen der Oberflächen und Geräte sich eine Haltsbarkeitsverbesserung ergibt.

d) Die Keimzahl nach Besprühung auf der Außenseite des Produkts.

Durch das Besprühen der Wurstoberfläche ergibt sich eine Keimzahlreduzierung von RF log von mindestens 2 innerhalb 10 Minuten.

Beispiel 2

Technologische (Nach-)Wirkung von Prozeßhilfsmitteln zum Sprühen am Beispiel eines Sprühmittels/Schneidmittels zum Schneiden und Besprühen der Transportvorrichtungen bei der Produktion/Zerlegung von Geflügelfleisch.

Ergebnis der Prüfung von HIQ Pro Chick (1 %-ig) auf die Aufhebung eines bakteriziden/bakteriostatischen Effekts (syn. mikrobiologisch-technologische Nachwirkung) nach Kontakt mit Geflügelprotein in Anlehnung an die Methode B 4.2.3. BGA nach E. Petermann und G. Cemy.

Untersuchungsmaterial:

1 Muster HIQ Pro Chick-Konzentrat, eingetragene Marke der Firma Schür in Process GmbH, Mönchengladbach

15

Untersuchungsmethode:

B IV 4.2.3. BGA, Mikrobiologisches Meßverfahren; Agar-Diffusionstest

20 Durchführung:

Vom eingesandten Material wurde zunächst eine 1 %-ige Verdünnung in einem Lysat aus einem Hähnchenbrustfilet, Fa. Wiesenhof, HKL-A mit einem Proteingehalt von 30 g/l (Biurett-Methode) hergestellt. Diese Mischung wurde für 18 Std. bei 6 °C inkubiert. Am nächsten Tag wurde diese Mischung mit 10 µl, 50 µl und 100 µl in einen CASO-Agar mit pH 7,0 pipettiert, in den Sporen von Bacillus subtilis BGA-Stamm (DSM 614) eingegossen waren; Ansatz je 3 Vertiefungen.

30

25

Nach einer 2-stündigen Vordiffusion bei 4 °C wurden die Platten mit den Bacillus-Sporen 3 Tage bei 30 °C bebrütet und auf Hemmhöfen kontrolliert.

10

15

20

25

Als positive Kontrolle diente für den Bacillusstamm ein Antibiotikumplättchen - als Wachstumskontrolle wurde ein lediglich mit Sporen versetzter Agar benutzt.

Zusätzlich wurde das HIQ Pro Chick in obigen Mengen sowohl als konzentrierte, 10 %-ige und 1 %-ige Lösung ohne Proteinkontakt auf Hemmwirkung gegen den Bacillus subtilis untersucht. Dieser Ansatz wurde an 2 verschiedenen Tagen durchge-

führt.

Untersuchungsergebnis: Positive Kontrolle: Hemmhof von 40 mm um das

Antibiotikum

Wachstumskontrolle: Gutes Wachstum von Bacillus

subtilis BGA

Untersuchungsprobe: 1 %-iges HIQ Pro Chick in Protein: Keine Hemm-

höfe bei 10,50 und 100 µl Probenmenge.

HIQ Pro Chick ohne Protein: Keine Hemmhöfe bei 10, 50 und 100 µl Probenmenge und 100 %-iger,

10 %-iger und 1 %-iger Lösung.

Beurteilung nach Methode B IV 4.2.3. BGA:

Gemäß dem hier eingesetzten Testverfahren nach BGA (BgVV) läßt sich für die Probe HIQ Pro Chick in allen Versuchsansätzen selbst in 10-facher Dosierung kein bakterizider oder bakteriostatischer Effekt, d.h. auch keine mikrobiologischtechnologische Nachwirkung mit Hühnemuskelfleisch -Ektrakt nachweisen.

30

Beispiel 3

Prozeßhilfsmittel zum Besprühen von Schneidmessern als Schneidmittel und zum Besprühen von Transportvorrichtungen am Beispiel von Schnittwurst unter Berücksichtigung der Reduzierung von Verderbniserregern (Enterobacter/Lactobacillen) auf Schneidmessern, Transportvorrichtung und Wurstschnittflächen und Verbesserung/Verlängerung der Haltbarkeit.

2a. Standard-Verfahren

10

Probennr.:	Probenbeschreibung	Befund Gesamtkeimzahl/7 cm²	Bemerkung
. 1	Band	67	
2	Band	<u>+</u> 100	
3	Band	<u>+</u> 100	
4	Band	51	20 Schimmel
5	Wurstunterstützer	8	
6	Wurstunterstützer	0	
7	Messer (Außenseite)	39	
8	Messer (Innenseite)	28	
9	Messerkasten	massenhaft	
	(Innenseite)		

2b. Nach Behandlung von Schneid- und Transportflächen

Probennr.:	Probenbeschreibung	Befund
	1	Gesamtkeimzahl/7 cm²
· 18	Band nach Einreiben mit	1
	Papier	
	(13:12h)	
19	Band nach Einreiben mit	0
	Papier	
	(13:12h)	

WO 96/29 PC. 96/01364

27

20	Band nach Einreiben mit	0 .
	Papier	
	(13:22h)	. ,
21	Band nach Einreiben mit	1
•	Papier	•
	(13:20h)	
22	Band nach Einreiben mit	18
	Papier	
	(13:30h)	
23	Band nach Einreiben mit	4
	Papier	
	(13:30h)	
24	Band während der kontinuier-	0
	lichen Besprühung	,
25	Band während der kontinuier-	0
	lichen Besprühung	
26	Geschnittene Wurst (oben)	1
27	Geschnittene Wurst (unten)	0

2c. Haltbarkeitsüberprüfung verpackter Wurst

5 Probenbezeichnung:

V = Probe vor der Behandlung

M = Probe nach dem Einreiben

R = Probe nach dem Besprühen ausschließlich nur des Bandes

10 MB = Probe während der kontinuierlichen Besprühung des Bandes und des Messers

Datum	Probe	GKZ	Entero	Lacto	Staph.	Hefe	SchiPi.	Sp.Bild
Woche	V	<10 ²	<10	<10²	<10²	<10²	<10²	<10 ²
	М	<10 ²	<10	<10²	<10²	<10 ²	<10²	<10²
 -	R	<10 ²	<10	<10 ²	<10 ²	<10²	<10²	<10 ²
	МВ	<10 ²	<10	<10 ²	<10²	<10²	<10²	<10²

Datum	Probe	GKZ	Entero	Lacto	Staph.	Hefe	SchiPi.	Sp.Bild
Woche 2	V	7,2*10°	<10	>3*106	<10	<10	<10	<10²
	М	3,2*102	<10	2*10²	<10	<10	<10	<10²
	R	1,4*103	<10	1,5*103	<10	<10	<10	<10²
	МВ	1,8*10*	<10	1,7*10*	<10	<10	<10	<10²

Datum	Probe	GKZ	Entero	Lacto	Staph.	Hefe	SchiPi.	Sp.Bild
Woche 3	V	4,2*105	20	2,9*108	<10²	<10²	<10²	- <10²
	М	2,4°10 ⁴	60	6,3*10 ⁴	<10²	<10²	<10²	<10 ²
	R	6,3*10 ⁵	1,2*10*	3,0*10°	<10²	<10 ²	<10²	<10 ²
	МВ	4,0*10°	90	6,0*10°	<10²	<10²	<10²	<10²

Datum	Probe	GKZ	Entero	Lacto	Staph.	Hefe	SchiPi.	Sp.Bild
Woche 4	V	7,0*10′	<10	2,9*10*	<10²	<10²	<10 ²	<10²
	М	8,0*10'	<10	6,3*10*	<10²	200	<10²	<10²
	R	1,8*10'	<10	3,0*10 ⁵	<10²	<10 ²	<10²	<10²
 	МВ	10°	<10	6,0*10 ⁵	<10²	<10²	<10²	<10²

Datum	Probe	GKZ	Entero	Lacto	Staph.	Hefe	SchiPi.	Sp.Bild
Woche 5	V 3,5*10°		<10	6,6*10 ⁸	<10²	<10²	<10²	10
	М	5,0*10 ⁵	<10	7,0*10 ⁶	<10 ²	200	<10²	250
	R	10 ⁴	<10	10⁵	<10 ²	<10 ²	<10 ²	50
	МВ	2*10 ²	<10	<10 ²	<10²	<10 ²	<10 ²	30

Resultat:

5

Bei der Produktion von Schnittwurst verlängert sich indirekt deren Haltbarkeit durch kontinuierliche Anwendung der Prozeßhilfsmittel auf Schneidmesser und Transportvorrichtung, da die Anzahl der auf den Vorrichtungen entstehenden Verderbniserregem erheblich reduziert wird.

10

15

Die Haltbarkeit von Wurst wird nach den besagten Versuchsergebnissen durch Einsatz des Schneidmittels, welches auf die Schneidvorrichtungen aufgebracht wird, signifikant verbessert. Zugleich kommt es zu einer überraschenden guten Reinigung der Schneidflächen, der Schneidvorrichtungen. Außerdem wird die Schneidfähigkeit der Wurst verbessert. Trotz der hohen Verdünnung der eingesetzten Stoffe wird die Haltbarkeit erheblich verbessert. Mit Pflanzenölen lassen sich hervorragende Resultate in Verdünnung von 1:10 bis 1:100 erreichen.

Beispiel 4

20

Prozeßhilfsmittel zum Schneiden (Schneidöl) durch Besprühen auf Schneidmesser (Bandslicer), Kreistellerschneidmaschine und Sprühmittel zum Besprühen der Oberflächen des Nahrungsmittels am Beispiel von Toast-Brot unter Berücksichtigung der Reduzierung von Verderbniserregern auf den Maschinenteilen und Brot- und/oder Schnittflächen (Schimmelpilze/Aspergillus niger) zur gleichzeitigen Verbesserung/Verlängerung der Haltbarkeit.

Haltbarkeitsauswertung - Einsatz von Sprühmittel und Schneidöladditiv (ge-

nannt Jet und Cut)i

Proben- kodierung	Proben anzahl		Anzahl Ausfälle in Tagen																		
		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
V1 - 1,8 g Jet / Toast	70	0	0	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2
					Π	Г		·	Γ	Π						Г	Π		Ġΰ		GÜ
V2 - 1,0 g Jet / Toast	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	3
				Г														Γ	Г	GΫ	GV
V3 - 0,6 g Jet / Toast	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
				Г		Г										Г				Gυ	GU
V4 - nur Messer mit Cut	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	4	X
																		G V	GV	GV	
V5 - Standard o. Past.	70	0	0	0	0	1	3	5	10	16	X										
			Π			G۷	GV	G۷	G۷	G۷		T	Г							\vdash	
V6 - Standard	70	0	0	0	0	0	0	0	0	0	0	2	4	3	4	5	7	×			
					<u> </u>						L.								Ш	l	L

5

Legende: Schimmelfarbe:

G=Grün, GE=Gelb, S=Schwarz, W=Weiß,

K=Kreide

Schimmelbefundstelle O=Oben, U=Unten, S=Seite, M=Schnittfläche

V=Verschiedene Stellen

10

3b. Umfeldhygiene

Probennr.:	Beschreibung	<u>Zeit</u>	Bakt./m³	Schimmel
1	Eingang	15:15h	260	50
	Bandslicer			
2	Ausgang Slicer	15:25h	225	25
3	Kühlturm	15:30h	13	< 13
	Raummitte			

WO 96/	5	. *, å,		ν.	P	ZP96/01364
--------	---	---------	--	----	---	------------

62
. 88
25

Resultat:

Bei der Produktion von Schnittbrot verlängert sich indirekt dessen Haltbarkeit durch kontinuierliche Anwendung der Prozeßhilfsmittel zum Sprühen auf Brotoberflächen und Schneiden des Brotes mit Schneidöl (Zusatz des Prozeßhilfsmittel - schneidölanteilig zum normalen Schneidöl), da die Anzahl der Schimmelpilze (Verderbniserreger) sich erheblich reduzieren. Eine chemische Konservierung oder Pasteurisierung ist nicht mehr notwenidg.

Beispiel 5

Prozeßhilfsmittel zum Vernebeln in der Luft unter Berücksichtigung der Reduzierung der Verderbniserreger in der Luft (Schimmelpilz/Aspergillus niger) und Verhinderung der Resedimentierung auf Backwaren am Beispiel von Backwaren mit
dem Resultat der Verbesserung/Verlängerung der Haltbarkeit.

Luftkeimzahlmessungen vor der Behandlung

20

Biotest-Airsampler, jeweils 2 Min. (80 ltr. Luft)

WO 96/2! PC P96/01364

32

			•
Probennr.:	Probenbeschreibung	<u>Bakterien</u>	<u>Schimmel</u>
1	Kühlraum vor Ver-nebelung	38	
	zwischen den Kühltürmen		
. 2	Treppenbereich vor Einlauf in	1.500	
	den Kühlraum		
3	Ausgang Kühlraum zur	2.500	625
	Verpackung	•	
4	1.Kühlturm vor dem Luftstrom	75	13
	der Kühl-anlage - vor Verne-		
	belung 10:00h		
5	1.Kühlturm vor dem Luftstrom	80	140
	der Kühl-anlage direkt vor		
	Vernebelung 11:30h		

4b. Luftkeimzahlmessungen während/nach der Behandlung

5

Probennr.:	Probenbeschreibung	Bakterien	Schimmel
6	1.Kühlturm vor dem Luftstrom	15	13
•	der Kühl-anlage-während der		·
	Vernebelung 11:45h		
7	1.Kühlturm vor dem Luftstrom	0	0
	der Kühl-anlage-am Ende der		
	Vemebelung 13:00h		
8	1.Kühlturm vor dem Luftstrom	0	0
	der Kühl-anlage-nach der		
	Ver-nebelung 14:00h		

Haltbarkeitsauswertung nach Einsatz von Vernebelungsmittel (genannt FOG)

Probenkodierung	Proben- anzahi		Anzahl Ausfälle in Tagen 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28																	
·		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
532 mit Additiv	16	0	0	0	0	0	0	0	0	0	2	2	3	1	2	0	1	1	2	3
		İ.	Г						Г		Gυ	GU	Gυ	GU	GU		GU	Gι	Gυ	ĠΫ
505 mit Additiv	16	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	1	1	1	2
		Γ			_					Г	Г		Gυ	so	Gυ		GU	GU	GU	GΫ
505 mit Fog nach 60 Min.	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	8
		一	Г	Г	Г	Г	Г		_	_			_	Т				GL	Gυ	Gΰ
505 mit Fog nach 120 Min.	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4
			\vdash		┢	\vdash		H	┢		-	Г		T		┢	┪		GU	GU
505 mit Fog nach 180 Min.	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
		Γ	Г		Г		Γ					Г	Г	Γ			Γ	Г	Г	GÜ
505 mit Fog nach 240 Min.	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0

5

K=Kreide

Legende: Schimmelfarbe:

G=Grün, GE=Gelb, S=Schwarz, W=Weiß,

Schimmelbefundstelle O=Oben, U=Unten, S=Seite, M=Schnittfläche

V=Verschiedene Stellen

10

20

Aditiv=Koservierungsmittel Fog=ohne Konservierungsmittel

mit Einsatz des Vernebelungsmittels in der Luft

15 Resultat:

Bei der Produktion von Backwaren verlängert sich indirekt dessen Haltbarkeit durch kontinuierliche Anwendung des Prozeßhilfsmittels zum Vernebeln in der Luft (Kühlturm, Kühl-/Transportstrecke), wobei sich die Anzahl der Schimmelpilze in der Luft erheblich reduziert. Eine chemische Konservierung oder Pasteurisierung der Backwaren ist nicht mehr notwendig.

Beispiele 6 bis 17

In den nächsten Beispielen wurden folgende Materialien und Methoden eingesetzt:

5

25

Material und Methoden:

	1.	Testorganismen:	E.coli	ATCC11229
			Staph.aureus	ATCC6538
10		Ps.aeruginosa	ATCC15442	
			C.albicans	ATCC10231
		•	A.niger	ATCC16404
			Cladosporium hert	oarum (Eigenisolat)

15 2. Nährböden:

CSA (Tryptone Soya Agar Oxoid CM 131)

CSB (Tryptone Soya Broth Oxoid CM 129)

YGC agar (Merck 16000)

Tween 80 (Merck)

20 3. Durchführung der Tests

3.1. In-vivo-Test zur Bestimmung der Mindesthaltbarkeit

Die Pilze und Bakterien werden mit einem Swab (Wattetupfer) aufgenommen (mit drehenden Bewegungen über die Bewegungen über die bewachsene Platte streichen) und gleichmaßig z.B. über die Schnittfläche einer geschnittenen Brotprobe gestrichen, so daß so daß eine Konzentration von 10³ - 10⁴ Sporen bzw. Mikroorganismen pro 100 cm² erreicht wird.

0,2-0,3 ml des Testmittels werden mit einem Aerosolsprays auf 100 cm² Schnitt brotfläche gesprüht. Die Testbrote werden in Plastikbeutel (Polyethylen oder Polypropylen) verpackt, die Plastikbeutel geschlossen und bei Zimmertemperatur im Licht aufbewahrt.

5

10

15

20

Das Wachstum von Mikroorganismen auf den kontaminierten Broten wird mit dem auf Kontrollbrot verglichen. Als Mindesthaltbarkeit gilt die Anzahl von Tagen, nach der erstmals mit bloßem Auge ein Wachstum von Mikroorganismen erkannt werden kann.

3.2. In-vitro-Test- Quantitatives Suspensionsverfahren gemäß DGHM I 2.3.1.1

Übernachtkulturen (oder im Falle von z.B. A. niger und C. albicans 3 Tage Kulturen) werden in physiologischer Salzlösung (0,8%) suspendiert, bis die gewünschte Konzentration (10⁶ Pilze/mi bzw. 10⁸ Bakterien/ml)erreicht ist. Danach wird 1 ml der Suspension in 9 ml des Testmittels überimpft.

Für Keime wie Staph. aureus, Pseudomonas und E. coli wird eine Einwirkzeit von 5 min. bis 1 Stunde, für A. niger und C. albicans eine Einwirkzeit von 1,6 und 24 Stunden gewählt. Während der Einwirkzeit wird regelmäßig geschüttelt.

Nach Ablauf der Einwirkzeit wird eine Verdünnungsreihe der Testsuspensionen in CSB (Oxoid), enthaltend den o. die jeweils getesteten Aromastoff(e) inaktivierende Substanzen, angelegt. Zur Inaktivierung von Aldehyden wird beispielsweise 0,1 Gew.-% Histidin zugefügt, zur Inaktivierung von Phenolen 1 Gew.-% Tween 80^R, zur Inaktivierung von Alkoholen 0,2 Gew.-% Tween^R und zur Inaktivierung von Säuren, Estern u.a. 0,03 Gew.-% Lecithin. Bei Bakterien wird 1 ml von jeder Verdünnung mit CSA (Oxoid) übergossen, bei A. niger/C. albicans mit YGC Agar (Merck).

25

Nach 24-48 Stunden Bebrütung werden die Platten ausgewertet und der Abtötungsfaktor als Reduktionsfaktor (RF) im Verhältnis zu einer Wachstumskontrolle von 10⁵-10⁷ KBE/ml bestimmt.

Deutsche Gesellschaft für Hygiene und Mikrobiolgie; Richtlinien für die Prüfung und Bewertung chemischer Desinfektionsverfahren. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene Reine B, Band 172, Heft 6 (1981)

3.3 Gasphasen-Testverfahren

Das Gasphasen-Testverfahren dient der Bestimmung des Abtötungsfaktors bei Verwendung von gasphasenaktiver Prozeßhilfsmitteln.

5

10

15

20

25

Die Bestimmung wird in einer sogenannten zweifachen Petrischale durchgeführt. Auf eine absorbierende Oberfläche, z.B. Brot oder Hamstoff/Formaldehydschaumblöckchen (0,5 x 1 x 3 cm) werden 0,5 ml des gasphasenaktiven Mittels gegeben. Das Brot oder das Schaumblöckchen werden in ein Kompartiment einer unterteilten Petrischale gelegt.

In ein anderes Kompartiment der gleichen Petrischale wird eine mit ca. 10⁸ bis 10⁹ Keimen beimpfte Filterpapierscheibe (Durchmesser. 13 mm) gelegt. Die Schale wird luftdicht verschlossen und 24 Stunden bei einer Temperatur von 30 °C bebrütet.

Im Anschluß an die Inkubation wird die Filterpapierscheibe in 9 ml CSB suspendiert und eine Verdünnungsreihe in CSB hergestellt. Die Röhrchen werden bei 30 °C bebrütet und ausgewertet. Der Abtötungsfaktor wird im Vergleich mit einer Kontrolle bestimmt.

3.4 Gasphasensuspensionsverfahren

Mit dem Gasphasensuspensionsverfahren wird eine erste Untersuchung aut bakterizide und/oder fungizide Eigenschaften durchgeführt.

Zur Durchführung des Verfahrens werden dem jeweiligen Testmikroorganismus entsprechende geschmolzene Nährböden mit 10⁵ bis 10⁶ Keimen pro ml beimpft. Die Nährböden werden in Petrischalen gegossen und abgekühlt.

30

80 µl des zu testenden Mittels (Additiv oder Prozeßhilfsmittel) werden auf eine Filterpapierscheibe (Durchmesser: 13 mm; Schleicher & Schüll, Artikel 601/2) aufgetragen, und vier der so präparierten Filter gleichmäßig auf der Oberfläche

einer präparierten Petrischale verteilt. Anschließend werden die Platten 24 Stunden bei 37 °C inkubiert.

Nach der Inkubation wird die Größe des eventuell auftretenden Hemmbereiches bestimmt.

5

3.5 Konservierungstest

Der Konservierungstest wurde gemäß USP XXII/NF XVII, US Pharmacopeia, United States Pharmacopeial Convention, Rockville, MD 20852, bestimmt.

10 <u>Beispiel 6:</u> Synergistischer Effekt von gut wasserlöslichen Alkoholen, einem Aromaphenol

Mit dem Versuch, dessen Ergebnisse in der folgenden Tabelle dargestellt sind, werden die Einzelwirkungen von Ethanol, Isopropanol in Konzentrationen von 20 und 1 Gew.-% sowie die Kombinationswirkung von 0,2 Gew.-% Anisaldehyd und 0,04 Gew.-% Oreganumöl mit der synergistischen Wirkung der Kombination von Anisaldehyd, Oreganumöl und je einem der erwähnten wasserlöslichen Alkohole verglichen. Der Versuch wurde als quantitativer Suspensionsversuch durchgeführt.

20

	Reduktio	nsfaktoren
Einwirkzeit 1 Std.	A. niger	Staph. aureus
Anisaldehyd 0,2 Gew%	0	3,3
Oreganumöl 0,04 Gew%		
(Wirkstoffkombination 5E)		
20 Gew% Ethanol	0	3,4
20 Gew% isopropanol	0,5	0,3
20 Gew% Ethanol + 5E	5,4	7,7
20 Gew% Isopropanol + 5E	. 5,4	7,7
1 Gew% Ethanol	0	0
1 Gew% Isopropanol	0 .	0
1 Gew% Ethanol + 5E	0,9	7,7
1 Gew% Isopropanol + 5E	0,1	5,5
Wachstumskontrolle	log KBE: 5,4	log KBE: 7,7

Aus den Werten ergibt sich, daß eine 1 %-ige Lösung der hierin verwendeten Alkohole sowie die Wirkstoffkombination 5E alleine für Aspergillus niger völlig unwirksam sind; für Staphylokokkus aureus ist die Wirkstoffkombination 5E mäßig wirksam. Auch eine 20 %-ige Alkohollösung für sich hat auf Aspergillus niger so gut wie keinen mikrobiziden Effekt, während auf Staphylokokkus aureus nur die Ethanollösung mäßig mikrobizid wirkt. Eine Kombination von Ethanol oder Isopropanol mit der Wirkstoffkombination 5E führt jedoch bei Vorliegen einer 20 %-igen Alkohollösung zu fast ausnahmslos 100 %-igem mikrobiziden Effekt, während eine Kombination 1 %-iger Alkohollösungen mit der Wirkstoffkombination 5E bei Staphylokokkus aureus immerhin noch 70 bis 100 % Mikrobizidie aufwelst.

<u>Beispiel 7:</u> Dekontaminierende bzw. mikrobizide Wirksamkeit von einzelnen Aromastoffen

15

10

Die dekontaminierende bzw. mikrobizide Wirksamkeit von Aromastoffen aus den Gruppen der Alkohole, Aldehyde und Phenole sowie unterschiedliche Kombinationen aus diesen Gruppen wurde wiederum mit dem quantitativen Suspensionsverfahren bestimmt.

20 Die Ergebnisse sind in der folgenden Tabelle dargestellt.

10

Tabelle

			Staph.
	Einwirkzeit		aureus
	1	h:6h	Einwirkzeit 1
			h
	1		Reduktionsf
	1	_	aktor
in H₂O	log Ki	3E ² / ml: 5,5)	(Ausgangs-
			keimzahl in
	}		log KBE/ml:
		 	7,9)
,			
1 %	0,3	1,0	2,1
1 %	0,3	3,2	7,9
75 %	5,5	5,5	7,9
20 %	0,5	1,5	0,3
1 %	0	0	0
75 %	5,5	5,5	7,9
20 %	0,5		0,3
1 %	O.		0
0,2 %	0	4,2	
0,2 %	0	2,1	
0,2 %	0	2,6	•
0,04 %	0	3,1	1,4
0,04	0,2	0,2	1,6
	1 % 1 % 75 % 20 % 1 % 75 % 20 % 1 % 0,2 % 0,2 % 0,2 %	Gew% Aromastoff in H ₂ O 1 % 0,3 1 % 0,3 75 % 5,5 20 % 0,5 1 % 0 75 % 5,5 20 % 0,5 1 % 0 0,2 % 0 0,2 % 0 0,2 % 0 0,2 % 0 0,2 % 0 0,2 % 0	1 h : 6 h Gew% Reduktionsfaktor (Ausgangskeimzahl in log KBE²/ ml: 5,5) 1 %

5 <u>Beispiel 8:</u> Einfluß des erfindungsgemäßen Schneid- und Trennmittels auf die Haltbarkeit von Brot

Die Haltbarkeit von Schnittbrot wurde untersucht a) bei mit herkömmlichen Schneidmitteln geschnittenem Brot, das nicht mit Mikroorganismen beiimpft wurde, und bei mit dem erfindungsgemäßen Schneidmittel geschnittenem Brot, das nach dem Schneiden artifiziell kontaminiert wurde.

	Haltbarkeit des Schnittbrotes in Tagen				
Schneid-/ Trennmittel	Gew% bezogen auf das gebrauchs- fertige Mittel	Kontroll- brot, Ge- schnit- tene Brot- scheibe, unbe- handelt 20°C	Clado- sporium herbarum 5 x 10 ⁵ KBE/100 cm ² Brot 20°C	A. niger 2x10 ⁴ KBE/100 cm ² Brot 20°C	Staph. aureus 4x10 ⁴ KBE/ 100 cm ² Brot 20°C
a) Sojaöl Anisaldehyd	99 % 1 %	3	9	8	12
b) Sojaöl Caprylcaprinsäure- triglycerid Lecithin Anisaldehyd Hydrozimtalkohol	97,4 % 1 % 1 % 0,15 % 0,45 %	3	7	6	10

5 <u>Beispiel 9:</u> Vergleich des Einflusses von herkömmlichem Schneidmittel mit erfindungsgemäßem Schneidmittel auf die Haltbarkeit von Schnittbrot

Die Ergebnisse dieses vergleichenden Versuches sind in der folgenden Tabelle wiedergegeben.

	Haltbarkeit von Schnittbrot in Tagen		
Schneid-/Trennmittel gemäß Tabelle 6	Kontrollbrot mit Schneidöl ohne erfindungsgemäßes Prozeßhilfsmittel geschnitten	Kontrollbrot mit Schneid-/ Trennmittel gem. Tabelle 6 geschnitten	
а	3	11	
b	3	8	

Beispiel 10: Verlängerung der Haltbarkeit von Schnittbrot durch schwache thermische Nachbehandlung des mit Schneid-Trennmittel geschnittenen Nahrungsmittels

Die folgende Tabelle gibt die Haltbarkeit von Schnittbrot wieder, das einmal mit herkömmlichem Schneidöl geschnitten worden ist, zum anderen mit Schneid-/ Trennmitteln gemäß Tabelle 6 geschnitten worden ist und keiner thermischen Nachbehandlung unterworfen wurde und anschließend solchem Brot, das mit erfindungsgemäßen Schneid-/Trennmitteln geschnitten worden ist und anschließend einer schwachen thermischen Nachbehandlung unterworfen wurde.

15

	Haltbarkeit von Schnittbrot in Tagen				
Tabelle 8	Kontrollbrot mit	Kontrollbrot mit	Brot mit Schneid-/Trenn-		renn-
	Schneidöl ohne	Schneid-	mittel gem	. Tabelle 6 ge	eschnitten
Schneid-/	erfindungs-	/Trennmittel gem.	und then	misch nachbe	handelt
Trennmittel	gemäßes	Tabelle 6			
	Prozeßhilfs-	geschnitten			
	mittel				
	geschnitten				
			Einwirk-	Kem-	Halbar-
		•	zeit	temp.	keit in
			in s/min	in °C	Tagen
а	3	11	10s	30°C	12
	1		30s	36°C	13
			1 min.	41°C	15
			2 min.	45°C	17
			5 min.	50°C	20 ·
b	3	12	10s	30°C	13
			30s	36°C	14
		·	1 min.	41°C	16
			2 min.	45°C	17
·			5 min.	50°C	19

Beispiel 11 - 17

Im folgenden werden beispielhafte Prozeßhilfsmittel vorgestellt:

5

Beispiel:	11 Schneidmittel
	12 Wärme-Käite-Übertragungsmittel
	13 Emulgier-, Trenn-, Reinigungsmittel
	14 Schmiermittel
	15 Gasphasenaktives Mittel
	16 Vernebelungsmittel
	17 Sprühmittel

Die Rezepturbeispiele bestehen beispielhaft aus einzelnen und/oder mehreren Aromafunktionsgruppen untereinander und/oder sind synergistisch kombiniert.

10

Die Prozeßhilfsmittel werden entweder unverdünnt angewendet oder nach einer Verdünnung mit Wasser und/oder lebensmittelzulässigen Lösemitteln und/oder Pflanzen-(Fett)Ölen und/oder Emulgatoren von 0,01 Gew.-% bis 99,99 Gew.-% angewendet, bevorzugt in einem Mischungsverhältnis von 1:1 bis 1:100.

15

Einige Anwendungsbeispiele für den Einsatz eines oder mehrerer Prozeßhilfsmittel zur Haltbarkeitsstabilisierung und/oder Verbesserung und/oder Umfeldbeaufschlagung bei z.B.:

	Awendung Prozeßhilfsmittel	Beispiel Nr.:
Toastbrot	Vernebelungsmittel	16
	Schneidmittel	11
	Sprühmittel	17
Feingebäck	Vernebelungsmittel	16
Schnittwurst	Schneidmittel	11
	Emulgier-, Trenn-,	13
	Reinigungsmittel	•
Bratwurst	Sprühmittel	17

Heizkesselwasser	Wärme-, Kälte-,	12
zur	Übertragungsmittel	
Schokoladenmassen-	·	
erwärmung	3	
Förderband	Schmiermittel	14
Abfallbehälter	Gasphasenaktives	15
	Mittel -	

Folgende Rezepturbeispiele 1 - 62 sind repräsentative Beispiele der Aroma-Funktionsgruppen einzeln oder mehrere untereinander und/oder synergistisch kombiniert.

Funktionsgruppe	Aroma FDA	Beispiel Gew%
1 Alkohol	Glycerin	100
2 Alkohol-	Glycerin-	92
Aldehyd	Hexylaldehyd	8
3 Alkohol-	Acetoin-	· 71
Aldehyd-	Anisaldehyd-	20
Phenol	Anisol	9
4 Alkohol-	Propylalkohol-	95
Phenol	Thymol	5
5 Aldehyd-	Acetaldehyd-	84 .
Phenol	Eugenol	16
6 Alkohol-	Citronellol-	76
Säure	Weinsäure	24
7 Alkohol-	Anisalkohol-	62
Aldehyd-	Hydrozimtaldehyd-	28
Säure	Citronensäure	10
8 Alkohol-	Glycerin-	40
Aldehyd-	Citral-	14
Phenol-	Estragol-	18
Säure	Tanninsäure	28
9 Aldehyd	Perillaldehyd	100
10 Aldehyd-	Perillaldehyd-	85
Säure	Ameisensäure	15

C44 AB-1-1		·
11 Alkohol-	Benzylalkohol-	77
Phenol-	Isoeugenol-	18
Säure	Fumarsäure	5
12 Acetat	Linalylacetat	100
13 Aldehyd-	Propionaldehyd-	35
Phenol-	Carvacrol-	20
Säure	Phenylessigsäure	45
14 Acetal	Acetal	100
15 Alkohol-	Zimtalkohol-	51
. Acetat	Hydrocinnamylacetat	49
16 Alkohol-	Acetoin-	55
Aldehyd-	Acetaldehyd-	35
Acetat	Eugenolacetat	10
17 Alkohol-	Isopropanol-	45
Alkohol	Citronellol	55
18 Aldehyd-	Anisaldehyd-	64
Aldehyd	Benzaldehyd	36
19 Acetat-	Natriumacetat-	50
Acetat	Ethylacetat	50
20 Acetal-	Zimtaldehydethylen-	63
Acetal	glykolacetal-	37
	Acetaldehydphenethyl-	
	propylacetal	
21 Phenol-	Thymol-	25
Phenol	Anisol	75
22 Säure-	Valeriansäure-	30
Säure	Mandelsäure	70
23 Ester-	Allicin-	80
Ester	Zwiebel	20
24-Terpen-	Dill-	24
Terpen	Limonen	76
25 Phenol-	Thymol-	35
Polyphenol	Gallotannin	65
26 Phenol	Carvacrol	100
27 Polyphenol	Gallotannin	100
28 Säure	Apfelsäure	100
29 Ester	Allicin	100
	<u> </u>	

30 Terpen	Campher	100
31 Alkohol-	Linalool-	30
Aldehyd-	Heptanal-	21
Phenol-	Propenylguaethol-	18
Acetat	Triacetin	31
32 Alkohol-	Glycerin	40
Aldehyd-	Hydrozimtaldehyd	18
Phenol-	Fomesol	13
Acetat	Kaliumacetat	19
Säure .	Phenylessigsäure	10
33 Acetat-	Natnumdiacetat **	44
Aldehyd	Acetaldehyd	56
34 Acetat-	Benzylacetat	65
Phenol	α-Bisabolol	35
35 Acetat-	Lavendel	70
Säure	Weinsäure	30
36 Acetat-	Ethylacetat	8
Alkohol-	Borneol	42
Säure	Pelagonsäure	50
37 Acetat-	Iso-Amylacetat	30
Aldehyd-	Dodecanal ·	40
Säure	3-Methylbutansäure	30
38 Acetat-	Cinnamylacetat	35
Phenol	Anethol	41
Säure	Capronsäure.	24
39 Acetat-	Calciumacetat	50
Alkohol-	Heptanol	19
Aldehyd-	Benzaldehyd	10
. Säure	Essigsäure	21
40 Acetat-	Geranylacetat	16
Alkohol-	Cineol	35
Phenol-	Thymol	20
Säure	Phenylessigsäure	29
41 Acetal-	Heptanalglycerylacetal	10
Alkohol-	Nerolidol	40

42 Acetal-	Acetal	57
Alkohol	1-Phenylethanol	43
43 Acetal-	Acetaldehydphenethylprop	70
Säure	ylacetal	30
	Nonansäure	
44 Acetal-	Acetal	32
Alkohol-	Isopropanol	48
Säure	Essigsäure	20
45 Acetal-	Acetal	88
Phenol	Carvacrol	12
48 Ester-	Allicin	40
Alkohol-	Glycerin	40
Terpen	Campher	10
Säure	Essigsäure	10
47 Ester-	Allicin	20
Alkohol-	Acetoin	60
Aldehyd	n-Octanal	20
48 Ester-	Allicin	80
Säure	Aconitsäure	20
49 Ester-	Allicin	88
Phenol	Acetyleugenol	12
50 Ester-	Allicin	37
Acetat	Natriumacetat	63
51 Ester-	Allicin	78
Aldehyd	Acetaldehyd	22
52 Ester-	Allicin	8
Alkohol-	Rhodinol	62
Säure	Tanninsäure	30
53 Terpen-	Limonen	18
Alkohol-	Linalool	82
Säure		
54 Terpen-	β-Caryophyllen	30
Alkohol-	Koriander	35
Aldehyd	Lemongras	35

55 Terpen-	Campher	15
Ester-	Allicin	28
Alkohol-	Melisse	7
Säure	Citronensäure	50
56 Terpen-	Limonen	42
Ester-	Allicin	15
Alkohol-	Benzylalkohol	25
Aldehyd	Vanillin	18
57 Poliphenol-	Gallotannin	17
Alkohol-	2-Phenylethanol	65
Säure	Pentansäure	18
58 Terpen-	Limonen	70
Säure	Fumarsäure	30
59 Terpen-	Campher	20
Phenol	Thymol	80
60 Terpen-	Limonen	63
Acetat	Lavendel	37
61 Terpen-	Limonen	48
Aldehyd	Citral	52
62 Poliphenol-	Gallotannin	29
Alkohol-	Cuminol	42
Aldehyd	Cuminaldehyd	29

Patentansprüche

- 1.Verfahren zur Haltbarkeitsverbesserung und/oder Stabilisierung von mikrobiell verderblichen Produkten, bei dem vor, nach oder w\u00e4hrend des Prozesses zur Herstellung, Verarbeitung oder Verpackung der Produkte deren Oberfl\u00e4chen und/oder deren Umgebung, insbesondere die Umgebungsluft und/oder die Oberfl\u00e4chen der unmittelbar oder mittelbar mit den Produkten in Kontakt kommenden Ger\u00e4te oder sonstigen Materialien mit einem oder mehreren Proze\u00dfhilfsmitteln beaufschlagt werden,
- d a d u r c h g e k e n n z e i c h n e t, daß das Prozeßhilfsmittel wenigstens einen mikrobizid wirkenden Aromastoff, vorzugsweise wenigstens zwei mikrobizid wirkende Aromastoffe, enthält.
 - 2. Verfahren nach Anspruch 1
- d a d u r c h g e k e n n z e i c h n e t, daß das Prozeßhilfsmittel eine mikrobizide Wirkungszeit von weniger als 24 Stunden, vorzugsweise weniger als 12 Stunden aufweist.
 - 3. Verfahren nach Anspruch 2.
- 20 dadurch gekennzeichnet, daß die mikrobizide Wirkungszeit der Prozeßhilfsmittel unter 1 Stunde, vorzugsweise unter 15 Minuten liegt.
 - 4. Verfahren nach einem der Ansprüche 1 bis 3,
- d a d u r c h g e k e n n z e i c h n e t, daß die Beaufschlagung mit dem Prozeßhilfsmitteln zum Zwecke des Aufstreichens, Schmierens, Emulgierens, Trennens, Reinigens, Sprühens, Vernebelns, Vergasens und Schneidens erfolgt.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4,
 - d a d u r c h g e k e n n z e i c h n e t, daß die in dem Prozeßhilfsmittel enthaltenen Aromastoffe aus der Gruppe der Alkohole, Aldehyde, Phenole, Acetate, Ester, Terpene, Acetale, Polyphenole, Säuren und deren physiologisch verträglichen Salzen, etherischen Ölen und Pflanzenextrakten ausgewählt sind.

6. Verfahren nach einem der Ansprüche 1 bis 5,

d a d u r c h g e k e n n z e i c h n e t, daß ein Prozeßhilfsmittel eingesetzt wird, das mehr als 50 Gew.-% Benzylalkohol und wenigstens einen weiteren Aromastoff enthält.

5

7. Verfahren nach einem der Ansprüche 1 bis 6,

d a d u r c h g e k e n n z e i c h n e t, daß der Anteil der Aromastoffe im Prozeßhilfsmittel 100 Gew.-% beträgt.

10 8. Verfahren nach einem der Ansprüche 1 bis 7,

d a d u r c h g e k e n n z e i c h n e t, daß das Prozeßhilfsmittel weniger als 50 Gew.-%, vorzugsweise weniger als 30 Gew.-%, besonders bevorzugt weniger als 20 Gew.-% Ethanol, Isopropanol oder Benzylalkohol oder eines Gemisches dieser Stoffe enthält.

15

9. Prozeßhilfsmittel,

d a d u r c h g e k e n n z e i c h n e t, daß es wenigstens einen mikrobizid wirkenden Aromastoff, vorzugsweise wenigstens zwei mikrobizid wirkende Aromastoffe, enthält.

20

10. Prozeßhilfsmittel nach Anspruch 9,

d a d u r c h g e k e n n z e i c h n e t, daß es eine mikrobizide Wirkungszeit von weniger als 24 Stunden, vorzugsweise weniger als 12 Stunden aufweist

25 11.Prozeßhilfsmittel nach Anspruch 10,

d a d u r c h g e k e n n z e i c h n e t, daß die mikrobizide Wirkungszeit unter 1 Stunde, vorzugsweise unter 15 Minuten liegt.

12. Prozeßhilfsmittel nach einem der Ansprüche 9 bis 11,

dadurch gekennzeichnet, daß es wenigstens einen Aromastoff ausgewählt aus der Gruppe der Alkohole, Aldehyde, Phenole, Acetate, Ester, Terpene, Acetale, Polyphenole, Säuren und deren physiologisch verträglichen Salzen, etherischen Ölen und Pflanzenextrakten enthält.

5

13. Prozeßhilfsmittel nach einem der Ansprüche 9 bis 12, da durch gekennzeich eine het, daß es mehr als 50 Gew.-% Benzylakhol und wenigstens einen weiteren Aromastoff enthält.

14. Prozeßhilfsmittel nach einem der Ansprüche 9 bis 13, dadurch gekennzeich net, daß der Anteil der Aromastoffe 0,05 bis 100 Gew.-% beträgt.

15. Prozeßhilfsmittel nach einem der Ansprüche 9 bis 14, da durch gekennzeich net, daß es weniger als 50 Gew.-%, vorzugsweise weniger als 30 Gew.-%, besonders bevorzugt weniger als 20 Gew.-% Ethanol, Isopropanol oder Benzylalkohol oder eines Gemisches dieser Stoffe enthält.

15 16. Verwendung des Prozeßhilfsmittels nach einem der Ansprüche 9 bis 15 zum Beaufschlagen von Oberflächen mikrobiell verderblicher Produkte und/oder deren Umgebung zum Zwecke des Aufstreichens, Schmierens, Emulgierens, Trennens, Reinigens, Sprühens, Vermebelns, Vergasens und Schneidens.

INTERNATIONAL SEARCH REPORT

Inte anal Application No PCT/EP 96/01364 A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A23L3/3463 A23L3/3472 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 A23L Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X √DE,A,31 38 277 (UENO SEIYAKU OYO KENKYUJO 1-16 KK) 15 April 1982 see page 11, line 1 - line 7 see page 14, line 5 - page 15, line 30 √DE,A,24 23 076 (SANICK I.H.) 5 December X 1-16 1974 see page 4, paragraph 1 - page 5 see page 11 - page 12; examples 1-4 X √GB,A,172 993 (WALLIS R.L.M.) 1921 1-16 see paragraph "complete specification" X √GB,A,1 060 447 (MARPLE LEAF TRUST) 1 March 1-16 1967 see page 1, line 45 - line 60 -/--Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: To later document published after the international filing date or priority date and not in conflict with the application but dated to understand the principle or theory underlying the 'A' document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. 'O' document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 09.08.96 8 July 1996 Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HY Rjirwijt Tcl. (+31-70) 340-2040, Tx. 31 651 epo nl, Faz: (+31-70) 340-3016 Bendl, E

1

Form PCT.1SA-210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Inter anal Application No
PCT/EP 96/01364

Combination) DOCUMENTS CONSIDERED TO BE RELEVANT Legory' Granon of document, with indication, where appropriate, of the relevant passages US,A,4 446 161 (FRIEDMAN HERMAN H ET AL) 1 May 1984 See column 3, line 38 - column 4, line 65 EP,A,0 557 946 (GREEN CROSS CORP) 1 September 1993 see page 3, line 20 - page 4, line 49	Relevant to claim No. 1-16
US,A,4 446 161 (FRIEDMAN HERMAN H ET AL) 1 May 1984 See column 3, line 38 - column 4, line 65 EP,A,0 557 946 (GREEN CROSS CORP) 1 September 1993 see page 3, line 20 - page 4, line 49	1-16
1 May 1984 See column 3, line 38 - column 4, line 65 EP,A,0 557 946 (GREEN CROSS CORP) 1 September 1993 see page 3, line 20 - page 4, line 49	
EP,A,0 557 946 (GREEN CROSS CORP) 1 September 1993 see page 3, line 20 - page 4, line 49	1-16
	·
DATABASE WPI Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15 February	1-16
1994 see abstract DATABASE WPI Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK),	1-16
31 May 1990 see abstract DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K ✓ XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK), 30	1-16
November 1982 see abstract DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736 & JP,A,62 111 675 (SANRAKU OCEAN) , 22 May 1987 see abstract	1-16

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inter anal Application No PCT/EP 96/91364

4		PCT/EP	96/01364
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE-A-3138277	15-04-82	JP-C- 1422191 JP-A- 57058876 JP-B- 62028664 AU-B- 558019 CA-A- 1186218 FR-A,B 2490928 GB-A,B 2087724	29-01-88 08-04-82 22-06-87 15-01-87 30-04-85 02-04-82 03-06-82
DE-A-2423076	05-12-74	FR-A- 2229357 GB-A- 1465533 JP-A- 50052236 NL-A- 7406547	13-12-74 23-02-77 09-05-75 19-11-74
GB-A-172993		NOŅE	
GB-A-1060447		BE-A- 647875 FR-A- 1401489 NL-A- 6405266	31-08-64 13-10-65 16-11-64
US-A-4446161	01-05-84	CA-A- 1190787	23-07-85
EP-A-0557946	01-09-93	AU-B- 665229 AU-B- 3373593 CA-A- 2090172 CN-A- 1076332 JP-A- 6192018	21-12-95 02-09-93 27-08-93 22-09-93 12-07-94
		CN-A- 1076332	22-09-9

IATIONALER RECHERCHENBERICHT INT

males Aktenzeichen

er er er er vermen egner i grej

PCT/EP 96/01364 A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 6 A23L3/3463 A23L3/3472 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierter Mindestprüßstoll (Klassifikationssystem und Klassifikationssymbole) IPK 6 A23L

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE,A,31 38 277 (UENO SEIYAKU OYO KENKYUJO KK) 15.April 1982 siehe Seite 11, Zeile 1 - Zeile 7	1-16
	siehe Seite 14, Zeile 5 - Seite 15, Zeile 30	
Х	DE,A,24 23 076 (SANICK I.H.) 5.Dezember 1974	1-16
	siehe Seite 4, Absatz 1 - Seite 5 siehe Seite 11 - Seite 12; Beispiele 1-4	
х	GB,A,172 993 (WALLIS R.L.M.) 1921 siehe Abschnitt "complete specification"	1-16
x	GB,A,1 060 447 (MARPLE LEAF TRUST) 1.März 1967	1-16
	siehe Seite 1, Zeile 45 - Zeile 60	
	-/	

X	Westere Veröffentlichungen und der Fortsetzung von Feld C zu entsehmen
---	--

X Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen
- 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L' Veröffentlichung, die gezignet ist, einen Prioritätzanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer
 anderen im Recherchenbericht genannten Veröffentlichung belegt werden
 soll oder die aus einem anderen besonderen Grund angegeben ist (wie
 umsenführe)
- soil oder die aus einem anderen besonderen Grund angegeben ist (wie susgeführt)
 Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Berutzung, eine Ausstellung oder andere Maßnahmen bezieht
 Veröffentlichung, die vor dem internationalen Anneldedatum, aber nach dem beanspruchten Prionutitelatum veröffentlicht worden ist.
- Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritändatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeligenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindun kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden
- Veröffentlichung von besonderer Bedeutung, die beampruchte Erfindur kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- '&' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche-

Absendedatum des internationalen Recherchenberichts

8.Juli 1996

0 9. 08. 96 Bevollmächtigter Bediensteter

Name und Postanschrift der Internationale Recherchenbehörde Europäisches Patentami, P.B. 5818 Patentaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fan (+ 31-70) 340-3016

Bendl, E

Formblatt PCT.1SA.719 (Blatt 2) (Juli 1992)

NATIONALER RECHERCHENBERICHT

Inter males Aktenzeichen

US,A,4 446 161 (FRIEDMAN HERMAN H ET AL) 1.Mai 1984 siehe Spalte 3, Zeile 38 - Spalte 4, Zeile 65 EP,A,0 557 946 (GREEN CROSS CORP) 1.September 1993 siehe Seite 3, Zeile 20 - Seite 4, Zeile 49 DATABASE WPI Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15.Februar 1994 siehe Zusammenfassung DATABASE WPI Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 99-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK) 31.Mai 1990 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK) 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 A JP,A,57 194 775 (ASAMA KASEI KK) 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736	Fortserrum	p ALS WESENTLICH ANGESEHENE UNTERLAGEN	PCT/EP 9	6/01364
1.Mai 1984 siehe Spalte 3, Zeile 38 - Spalte 4, Zeile 65 EP,A,O 557 946 (GREEN CROSS CORP) 1.September 1993 siehe Seite 3, Zeile 20 - Seite 4, Zeile 49 DATABASE WPI Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15.Februar 1994 siehe Zusammenfassung DATABASE WPI Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK) , 31.Mai 1990 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK) , 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736			menden Teile	Betr. Anspruch Nr
1.September 1993 siehe Seite 3, Zeile 20 - Seite 4, Zeile 49 DATABASE WPI Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15.Februar 1994 siehe Zusammenfassung DATABASE WPI Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK) , 31.Mai 1990 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK) , 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736		1.Mai 1984 siehe Spalte 3, Zeile 38 - Spalte 4, Zeile		1-16
Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15.Februar 1994 siehe Zusammenfassung DATABASE WPI Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK) , 31.Mai 1990 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK) , 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736		1.September 1993 siehe Seite 3, Zeile 20 - Seite 4, Zeile		1-16
Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK), 31.Mai 1990 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK), 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736		Section Ch, Week 9411 Derwent Publications Ltd., London, GB; Class D13, AN 94-088588 XP002007733 & JP,A,06 038 678 (OKUBO T) , 15.Februar 1994		1-16
Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK), 30.November 1982 siehe Zusammenfassung DATABASE WPI Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736		Section Ch, Week 9028 Derwent Publications Ltd., London, GB; Class C03, AN 90-213153 XP002007734 & JP,A,02 142 703 (KURITA WATER IND KK), 31.Mai 1990		1-16
Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736		Section Ch, Week 8302 Derwent Publications Ltd., London, GB; Class D13, AN 83-03563K XP002007735 & JP,A,57 194 775 (ASAMA KASEI KK), 30.November 1982		1-16
1987 siehe Zusammenfassung		Section Ch, Week 8726 Derwent Publications Ltd., London, GB; Class D13, AN 87-181806 XP002007736 & JP,A,62 111 675 (SANRAKU OCEAN) , 22.Mai 1987		1-16

ablett PCT.ISA-210 (Fortsetzung von Blett 2) (Juli 1992)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.