NumPy – அறிமுகம் மற்றும் வரலாறு

NumPy என்பது Python-இல் **scientific computing** (கணினிசார் அறிவியல்) செய்ய பயன்படும் மிக முக்கியமான open-source library ஆகும். இது "Numerical Python" என்பதன் சுருக்கமாகும். Python மொழியின் மைய library-களில் ஒன்று ஆக NumPy இருக்கிறது. இதன் மூலம் நம்மால் எளிதில் multi-dimensional arrays-ஐ கையாள முடிகிறது. இது Python-ஐ கணினி அறிவியல் மற்றும் அறிவியல் கணக்கீடுகளுக்கான ஒரு மிகச்சிறந்த கருவியாக மாற்றியது.

NumPy உருவாக்கத்திற்கான அடிப்படைத் தேவைகள்

1990-களில், Python-ஐ science மற்றும் engineering கணக்கீடுகளுக்குப் பயன்படுத்த ஆரம்பித்தனர். அதற்காக high-performance arrays, matrices போன்ற data structures-ஐ handle செய்ய முடியாத நிலை ஏற்பட்டது. இந்த நிலையை தாண்ட, Python மொழியில் multi-dimensional arrays கையாளுவதற்கான library-கள் உருவாக்கப்பட்டன. இதன் முந்தைய library-களில் முக்கியமானவை **Numeric** மற்றும் **Numarray** ஆகும்.

Numeric

NumPy-க்கான முன்னோடி library ஆக **Numeric** இருந்தது. இதன் உதவியால் Python-இல் நம் array-க்களை scientific calculations-க்குப் பயன்படுத்த முடிந்தது. எனினும், சில performance மற்றும் flexibility குறைகள் இருந்ததால், இது முற்றிலும் perfect tool ஆக இருக்கவில்லை.

Numarray

Numeric-ன் குறைகளை சரி செய்யும் வகையில், **Numarray** library உருவாக்கப்பட்டது. இது மிகப் பெரிய data-களைப் பயன்படுத்தும் array operations-க்கு support அளித்தது. ஆனால், இந்த library-யும் பல செயல்பாட்டு சவால்கள் மற்றும் complications-ஐ கொண்டிருந்தது.

NumPy-ன் உருவாக்கம்

Python-இல் multi-dimensional arrays மற்றும் numerical operations-ஐ சரியான வகையில் கையாள ஒரு unified library தேவையாக இருந்தது. இதனால், **Travis Oliphant** 2005-இல் NumPy-ஐ உருவாக்கினார். **Numeric** மற்றும் **Numarray**-இன் சிறந்த அம்சங்களை ஒருங்கிணைத்து, இதன் குறைபாடுகளை சரி செய்தார். NumPy-யின் மிக முக்கியமான அம்சம் இதன் **ndarray** (N-dimensional array) ஆகும், இது multi-dimensional arrays கையாள பயன்படுகிறது.

Ndarray என்பது NumPy-யின் மையம், இதை NumPy-யின் இதயத்துடிப்பு எனக்கூறலாம். இதன் உதவியால், multidimensional data-களை மிகவும் சிறப்பாக கையாள முடிகிறது. இது Python-இல் ஒரு single-dimensional array (1D), double-dimensional array (2D) மட்டுமல்லாமல், N-dimensional arrays-ஐ handle செய்யும் திறனுடையது.

ஏன் N-dimensional arrays தேவை?

N-dimensional arrays-ஐ பயன்படுத்துவதற்கான முக்கியக் காரணம், இது real-world problems-இல் complex தகவல்களை represent செய்ய உதவுகிறது. உதாரணமாக, Image-களை process செய்யும் போது, நாம் images-ஐ arrays-ஆக represent செய்கிறோம். Image என்பது பல pixel values-ஆகும். ஒவ்வொரு pixel-மும் ஒரு value-ஐ கொண்டிருக்கும், அதனால் ஒரு grayscale image-ஐ 2D array-ஆகக் கருதலாம்.

• ஒரு 100x100 grayscale image-ஐ 2D array-ஆக represent செய்யலாம், இதன் rows மற்றும் columns ஒவ்வொரு pixel value-ஐ குறிக்கின்றன.

Color images (RGB images) ஒவ்வொரு pixel-க்கும் 3 colors (Red, Green, Blue) values-ஐ வைத்திருக்கும். இதனால், ஒரு RGB image 3D array ஆகும், இதில் ஒவ்வொரு pixel-க்கும் 3 dimensions-ல் data இருக்கும். **Shape of a color image**: 100x100x3 (100 rows, 100 columns, 3 color values for each pixel)

ஆகையால், image processing-ல் N-dimensional arrays-ஐ பயன்படுத்தி நம் image data-ஐ நிறைய dimensions-இல் represent செய்து அதை process செய்யலாம்.

இதேப்போன்று Weather data-வை அணுகும் போது, நாம் ஒரு குறிப்பிட்ட இடத்தின் வெப்பநிலை, காற்றின் வேகம், ஈரப்பதம் போன்றவற்றைப் பெற விரும்புகிறோம். இதற்காக, வெவ்வேறு இடங்களில் (latitude, longitude) 3D array-கள் weather parameters-ஐ represent செய்ய உதவும்.

- 3D array-ல், ஒரு நாடு முழுவதும் உள்ள வெப்பநிலை data-வை represent செய்யலாம், இதில் rows latitude-ஐ, columns longitude-ஐ, depth வெப்பநிலை அல்லது காற்றின் வேகம் போன்ற தரவுகளைக் குறிக்கும்.
- **Shape of the array**: 50x50x24 (50 latitude locations, 50 longitude locations, 24 time periods for a day)

இதன் மூலம், weather forecasting மற்றும் data analysis-ஐ multi-dimensional arrays-இல் represent செய்து complex data-ஐ கையாளலாம்.

NumPy-யின் N-dimensional arrays-ஐப் பயன்படுத்துவதன் மூலம், நம் scientific computations மற்றும் data analysis tasks மிகுந்த அளவில் அற்றலானதாக இருக்கும்.

குறிப்பு:

Array programming with NumPy

GitHub: https://github.com/tamil-phy/NumPy_Book_Tamil

1. NUMPY - ARRAY ATTRIBUTES

1.1. ndarray.shape {.no-break}

shape attribute என்பது NumPy array-இன் அமைப்பை (structure) குறிக்கிறது. இது array-இல் எத்தனை rows மற்றும் columns உள்ளன என்பதை சொல்கிறது.

எந்த ஒரு array-யும் கையாளும்போது, அதன் **shape** attribute மூலம் array-இன் பரிமாணங்களை (dimensions) அறிந்து கொள்ளலாம். **shape** attribute-ல் உள்ள values array-இல் உள்ள rows மற்றும் columns எண்ணிக்கையை தருகின்றன.

Input:

```
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
print("Shape of array:", arr.shape)
```

மேலே கொடுக்கப்பட்டுள்ள code-இல், **arr** என்ற 2D array உருவாக்கப்பட்டுள்ளது. இந்த array-இன் **shape** attribute-ஐ பயன்படுத்தி array-இன் அமைப்பை அறியலாம்.

அதாவது, இதன் output:

```
Shape of array: (2, 3)
```

இந்த array-இல் 2 rows மற்றும் 3 columns உள்ளன என்று பொருள்.

இதன் மூலம், **shape** attribute ஒரு Numpy array-இன் கட்டமைப்பை (structure) முழுமையாக குறிக்க உதவுகிறது.

1.2. ndarray.ndim {.no-break}

ndim என்பது array-இன் பரிமாணங்களின் எண்ணிக்கையை (number of dimensions) குறிக்கிறது. NumPy array-களின் பரிமாணங்களை புரிந்து கொள்ள இது மிகவும் முக்கியமான attribute ஆகும்.

ஒரு array எத்தனை dimension-களை கொண்டுள்ளது என்பதை **ndim** attribute-ஐ பயன்படுத்தி எளிதில் அறிய முடியும். இதன் உதவியால், 1D, 2D அல்லது multi-dimensional array என்பதை நம்மால் அறிய முடியும்.

Input:

```
import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
print("Number of dimensions:", arr.ndim)
```

மேலே கொடுக்கப்பட்டுள்ள code-இல், **arr** என்ற 2D array உருவாக்கப்பட்டுள்ளது. இந்த array-இன் **ndim** attribute-ஐ பயன்படுத்தி array-இன் பரிமாணங்களின் எண்ணிக்கையை (number of dimensions) அறியலாம்.

```
Number of dimensions: 2
```

2 என்று வரும்போது, இந்த array ஒரு 2D array என்று பொருள்.

இதன் மூலம், **ndim** attribute ஒரு Numpy array-இன் பரிமாணங்களின் எண்ணிக்கையை முழுமையாக அறிய உதவுகிறது.

1.3. numpy.itemsize {.no-break}

itemsize attribute ஒரு element-ஐ represent செய்ய memory-யில் எத்தனை bytes எடுக்கின்றது என்பதை அளிக்கிறது. இது, NumPy array-ல் உள்ள ஒவ்வொரு element-க்கும் memory allocation-ஐ எவ்வளவு எடுக்கும் என்பதை அறிய உதவுகிறது.

Input:

```
import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print("Item size of array:", arr.itemsize, "bytes")
```

இந்த code-இல், **arr** என்ற 1D array உருவாக்கப்பட்டுள்ளது, மற்றும் **itemsize** attribute-ஐ பயன்படுத்தி array-இன் ஒவ்வொரு element-ஐ memory-யில் represent செய்ய எவ்வளவு bytes எடுக்கின்றது என்பதை பார்க்கலாம்.

Output:

```
Item size of array: 8 bytes
```

8 bytes என்று வரும்போது, அந்த array-இல் உள்ள ஒவ்வொரு element-மும் 8 bytes அளவு memory-யைப் பயன்படுத்துகின்றது என்று பொருள்.

இதன் மூலம், **itemsize** attribute ஒரு Numpy array-இல் உள்ள ஒவ்வொரு element-இன் memory அளவை சரியாக அளக்க உதவுகிறது.

1.4. numpy.flags {.no-break}

flags attribute என்பது NumPy array-இன் memory layout-ஐ குறிக்கிறது. இது array-இன் உள்ளமைப்புகள் (properties) மற்றும் memory-இன் அடிப்படையில் array எவ்வாறு அமைக்கப்பட்டுள்ளது என்பதை விளக்குகிறது.

Input:

```
import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print("Flags of the array:\n", arr.flags)
```

இந்த code-இல், **arr** என்ற 1D array உருவாக்கப்பட்டுள்ளது, மற்றும் **flags** attribute-ஐ பயன்படுத்தி array-இன் memory layout பற்றிய தகவல்களை அறியலாம்.

Flags of the array:
 C_CONTIGUOUS : True
 F_CONTIGUOUS : False

OWNDATA : True
WRITEABLE : True
ALIGNED : True

WRITEBACKIFCOPY : False

இந்த **flags** attribute இவ்வாறு array-இன் memory layout பற்றிய விவரங்களை கொடுக்கிறது:

- **C_CONTIGUOUS**: Array-இன் memory layout C-style (row-major) ஆக உள்ளது.
- **F_CONTIGUOUS**: Array-இன் memory layout Fortran-style (column-major) ஆக இல்லை.
- OWNDATA: Array-க்கு சொந்தமாக memory data இருக்கிறது.
- WRITEABLE: Array-இல் உள்ள data மாற்றக்கூடியது.
- ALIGNED: Data memory alignment சரியாக உள்ளது.
- WRITEBACKIFCOPY: Write-back operation தேவைப்படும்போது False ஆகும்.

இதன் மூலம், **flags** attribute NumPy array-இன் memory layout மற்றும் array-இன் உள்ளமைப்புகள் பற்றிய முழு தகவல்களை வழங்குகிறது.

2. NUMPY - ARRAY CREATION ROUTINES

NumPy-ல் array-களை உருவாக்க பல்வேறு methods உள்ளன, அவற்றைப் பயன்படுத்தி data handling மற்றும் computation process-களை எளிதாக்கலாம். இப்போது, சில பொதுவாகப் பயன்படுத்தப்படும் array creation functions பற்றி விரிவாகப் பார்ப்போம்.

2.1. numpy.empty

numpy.empty() function ஒரு initialization values இல்லாத array-ஐ உருவாக்க பயன்படுகிறது. இதனால், array-இல் உள்ள values ஏதாவது முன்பே memory-யில் இருந்த random values ஆக இருக்கும். இதனால், memory-யில் உள்ள values reset செய்யப்படாமல், அந்த values array-இல் வரலாம்.

Input:

```
import numpy as np
empty_array = np.empty((2, 3))
print("Empty array:\n", empty_array)
```

இந்த code-இல், **np.empty()** function-ஐ பயன்படுத்தி 2 rows மற்றும் 3 columns கொண்ட ஒரு array உருவாக்கப்படுகிறது. இந்த array-இல் உள்ள values எல்லாம் எதுவும் initial values இல்லை. அதற்குப் பதிலாக, memory-யில் இருக்கும் junk values அல்லது random values array-இல் காணப்படும்.

Output:

```
Empty array:
[[4.66651921e-310 0.00000000e+000 2.05833592e-312]
[6.79038654e-313 2.14321575e-312 2.27053550e-312]]
```

இதில், array-இன் values எல்லாம் random values ஆக உள்ளன, ஏனெனில் **numpy.empty()** function memory-யில் ஏற்கனவே இருக்கும் data-ஐ பயன்படுத்தி array-ஐ உருவாக்குகிறது. இதனால், இந்த function array-ஐ மிக வேகமாக உருவாக்கும் ஆனால் initialization values கொடுக்காது.

- **numpy.empty(**) function பயன்படுத்தப்படும் போது array-இன் values எல்லாம் unpredictable ஆக இருக்கும்.
- Performance அதிகம் தேவைப்படும் போது, initialization values-ஐ avoid செய்ய இந்த function மிகவும் உதவியாக இருக்கும்.
- எப்போது values முக்கியமாக கருதப்படுகின்றனவோ, அப்போது **numpy.zeros()** அல்லது **numpy.ones()** போன்ற functions-ஐ பயன்படுத்துவது சிறந்தது.

இந்த function **speed optimization** தேவைப்படும் போது மிகவும் பயனுள்ளதாக இருக்கும், ஏனெனில் இது memory allocation மட்டும் செய்து, values-ஐ initialize செய்யாது.

2.2. numpy.zeros

zeros() function-ஐ பயன்படுத்தி, எல்லா elements-உம் 0 values கொண்ட ஒரு array-ஐ உருவாக்கலாம். இந்த function, array-இன் structure-ஐ (shape) user-defined shape-ஆக அமைத்து, அந்த shape-ஐ கொண்டு அனைத்து இடங்களிலும் 0 values-ஐ கொண்டு ஒரு array-ஐ return செய்யும்.

```
import numpy as np
zeros_array = np.zeros((2, 2))
print("Zeros array:\n", zeros_array)
```

```
Zeros array:
[[0. 0.]
[0. 0.]]
```

- இங்கு **np.zeros()** function-ஐ பயன்படுத்தி, 2 rows மற்றும் 2 columns கொண்ட ஒரு array உருவாக்கப்பட்டுள்ளது. இந்த array-இன் எல்லா elements-ம் 0 values கொண்டவை.
- **numpy.zeros(**) function memory-யை allocate செய்து, எல்லா elements-க்கும் 0 values கொடுக்கும்.
- இது, array-ஐ முழுமையாக 0 values கொண்டு initialize செய்ய விரும்பும் போது பயன்படும்.
- **zeros()** function data initialization தேவையுள்ள போது மிகவும் பயனுள்ளதாக இருக்கும், ஏனெனில் இது memory-யை efficient-ஆக நிரப்பி array-ஐ உருவாக்குகிறது.

2.3. numpy.ones

ones() function-ஐ பயன்படுத்தி, எல்லா elements-உம் 1 values கொண்ட ஒரு array-ஐ உருவாக்கலாம். இந்த function, array-இன் structure-ஐ (shape) user-defined shape-ஆக அமைத்து, அந்த shape-ஐ கொண்டு அனைத்து இடங்களிலும் 1 values-ஐ கொண்டு ஒரு array-ஐ return செய்யும்.

Input:

```
import numpy as np
ones_array = np.ones((3, 3))
print("Ones array:\n", ones_array)
```

Output:

```
Ones array:
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]
```

- இங்கு **np.ones(**) function-ஐ பயன்படுத்தி, 3 rows மற்றும் 3 columns கொண்ட ஒரு array உருவாக்கப்பட்டுள்ளது.
- இந்த array-இன் எல்லா elements-ம் 1 values கொண்டவை.

இதன் மூலம், **zeros()** மற்றும் **ones()** functions மிகவும் பயனுள்ளதாக இருக்கும், ஏனெனில் அவை predictable values கொண்ட array-களை உருவாக்குகின்றன, computation-ஐ எளிதாக்குகின்றன.

3. NUMPY – ARRAY FROM EXISTING DATA

Numpy-ல் array-களை உருவாக்குவதற்கான முக்கியமான வழிகளில் ஒன்றாக **Existing data**-விலிருந்து array-ஐ உருவாக்குவது அமைகிறது. இது Python-ல் ஏற்கனவே இருக்கும் data structures, போன்றவை (lists, buffers, iterables) கொண்டு நமக்கு தேவையான array-களை எளிதாக உருவாக்க உதவுகிறது. இதனால் data-ஐ NumPy-யின் powerful array operations-இல் பயன்படுத்த முடியும்.

3.1. numpy.asarray

asarray() function-ஐ பயன்படுத்தி, ஒரு existing data-ஐ NumPy array-ஆக மாற்றலாம். இதன் முக்கிய பயனாக, இதனால் original data-ஐ clone செய்து, array-ஆக மாற்றுவதில் பயன்படுத்தப்படும் memory space குறைவாக இருக்கும்.

Input:

```
import numpy as np

# list data-யை numpy array-ஆக மாற்றுதல்
list_data = [1, 2, 3, 4, 5]
array_data = np.asarray(list_data)
print("Array from list:", array_data)
```

Output:

```
Array from list: [1 2 3 4 5]
```

இந்த Code-இல், ஒரு Python list **list_data**-ஐ **asarray(**) function-ஐ பயன்படுத்தி NumPy array-ஆக மாற்றுகிறோம். இதன் மூலம், original data type retain ஆகிறது (சேமித்து), list_data array-ஆக மாற்றப்படுகிறது, மேலும் நம்மால் memory usage-யை திறமையாக கையாள முடிகிறது.

3.2. numpy.frombuffer

frombuffer() method-ஐ பயன்படுத்தி, buffer-ல் உள்ள data-ஐ NumPy array-ஆக மாற்ற முடியும். buffer-ல் உள்ள binary data-ஐ NumPy array-இல் மாற்றுவதன் மூலம், அதனுடன் அடுத்தடுத்த data manipulations மேற்கொள்ள உதவுகிறது.

Input:

```
buffer = b'Hello World'
array_buffer = np.frombuffer(buffer, dtype='S1')
print("Array from buffer:", array_buffer)
```

```
Array from buffer: [b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']
```

இங்கு, **buffer** என்ற binary data-ஐ **frombuffer()** method மூலம் NumPy array-ஆக மாற்றுகிறோம். இதனால், byte data அலகு அலகாக array-இல் element-களாகக் கிடைக்கிறது. இதுபோன்ற conversions binary data parsing மற்றும் manipulation-ஐ எளிதாக்கும்.

3.3. numpy.fromiter

fromiter() function-ஐ பயன்படுத்தி, iterable object-களை NumPy array-ஆக மாற்ற முடியும். இது memory-efficient-ஆகவும், high-performance data conversion-ஐ உருவாக்கவும் உதவுகிறது. fromiter() iterable values-ஐ array-ஆக dynamic-ஆக மாற்றுவதற்கான ஒரு method ஆகும். Iterables-ல் இருந்து continuous data stream-ஐ NumPy array-ஆக உருவாக்குவதன் மூலம், sequence-களை நேரடியாக array-களாக மாற்ற முடியும்.

Input:

```
iterable = (x*x for x in range(5))
array_iter = np.fromiter(iterable, dtype='int32')
print("Array from iterable:", array_iter)
```

Output:

```
Array from iterable: [ 0 1 4 9 16]
```

இந்த Code-இல், **iterable** என்ற generator expression-ஐ **fromiter()** method மூலம் NumPy array-ஆக மாற்றுகிறோம். இதனால் iterator-ல் உள்ள data sequential order-ஆக array-இல் சேமிக்கப்படுகிறது.

குறிப்புகள்:

- **asarray(**) function data-ஐ NumPy array-ஆக மாற்றும்போது, original data-ஐ duplicate செய்யாமல், அதை memory-efficient-ஆக array-ஆக மாற்றும்.
- **frombuffer()** method buffer-ல் உள்ள binary data-ஐ NumPy array-ஆக மாற்றி, low-level data manipulation செய்ய உதவுகிறது.
- **fromiter()** method iterators அல்லது generators கொண்டு data stream-ஐ array-ஆக மாற்றும், sequence operations-ஐ அதிக அளவில் எளிமையாக மாற்றுகிறது.
- **Memory Efficiency**: **fromiter()** function memory-ஐ குறைவாக பயன்படுத்தி iterable object-களை array-ஆக நேரடியாக மாற்ற உதவுகிறது. இது, ஒரு iterator data-ஐ dynamic-ஆக உருவாக்கி, memory allocation-ஐ தற்செயலாக (lazy evaluation) செய்ய அனுமதிக்கிறது.
- **High Performance**: Large-scale data conversions-இல் **fromiter()** function வேகமாக செயல்படுகிறது. Python list comprehension-ஐப் பயன்படுத்தி data-ஐ உருவாக்கும் முறைக்குப் பதிலாக, NumPy-யின் vectorized operations-ஐ பயன்படுத்துவதால், performance அதிகரிக்கிறது.

இதனால், NumPy-யில் data-ஐ நமக்கு வேண்டிய படி நமக்கு ஏற்கனவே உள்ள structures-இல் இருந்து array-களாக மாற்றி manipulations மற்றும் calculations செய்ய நம்மால் முடியும்.

4. NUMPY - ARRAY FROM NUMERICAL RANGES

NumPy-யில் **எண்கள் அடிப்படையிலான array** களை உருவாக்க பல functions உள்ளன. இந்த functions array values-ஐ ஏறுவரிசையில் அல்லது குறிப்பிட்ட அளவுகளில் உருவாக்குவதற்கான எளிமையான வழிகளை வழங்குகின்றன. இதனால் sequences மற்றும் ranges கொண்ட array-களை உருவாக்க முடிகிறது.

4.1. numpy.arange

arange() function-ஐ பயன்படுத்தி, start value-இல் இருந்து stop value வரை, குறிப்பிட்ட step values-ஐ அடிப்படையாகக் கொண்டு array-ஐ உருவாக்கலாம். இந்த function, Python-ல் உள்ள range() function போலவே செயல்படும், ஆனால் NumPy array-களாக values-ஐ return செய்யும்.

Input:

```
import numpy as np
array_arange = np.arange(1, 10, 2)
print("Array using arange:", array_arange)
```

Output:

```
Array using arange: [1 3 5 7 9]
```

இங்கு, **arange()** function **start value** 1-இல் இருந்து **stop value** 10 வரை, **step** value 2-ஐ அடிப்படையாகக் கொண்டு array values-ஐ உருவாக்குகிறது. இதனால், 1, 3, 5, 7, 9 போன்ற values கொண்ட array உருவாக்கப்படுகிறது.

4.2. numpy.linspace

linspace() function-ஐ பயன்படுத்தி, start value மற்றும் stop value-க்கு இடையில், even spacing values கொண்ட array-ஐ உருவாக்கலாம். இங்கு values எத்தனை elements-ஆக பிரிக்கப்படும் என்பதை user define செய்ய முடியும்.

Input:

```
array_linspace = np.linspace(0, 1, 5)
print("Array using linspace:", array_linspace)
```

Output:

```
Array using linspace: [0. 0.25 0.5 0.75 1. ]
```

இங்கு, **linspace(**) function **start** value 0-இல் இருந்து **stop** value 1 வரை, மொத்தம் 5 elements-ஆக values-ஐ even spacing-ஆக பிரிக்கிறது. இதனால், 0, 0.25, 0.5, 0.75, 1.0 போன்ற values கொண்ட array உருவாக்கப்படுகிறது.

4.3. numpy.logspace

logspace() function logarithmic spacing கொண்ட array values-ஐ உருவாக்கும். இது logarithmic scale-ல் base powers-இன் values-ஐ கொண்டு array-ஐ return செய்யும்.

Input:

```
array_logspace = np.logspace(1, 3, 5)
print("Array using logspace:", array_logspace)
```

Output:

```
Array using logspace: [ 10. 31.6227766 100. 316.22776602 1000. ]
```

இங்கு, **logspace()** function base 10 powers-இல், **start** value 10^1-இல் இருந்து **stop** value 10^3 வரை மொத்தம் 5 values-ஐ logarithmic scale-ல் return செய்கிறது. இதனால், [10, 31.62, 100, 316.22, 1000] போன்ற logarithmic values கொண்ட array உருவாக்கப்படுகிறது.

- arange(): Regular intervals-ஐ கொண்ட array values-ஐ return செய்கிறது.
- linspace(): Start மற்றும் stop values இடையே even spacing கொண்ட values-ஐ return செய்கிறது.
- logspace(): Logarithmic scale-ல் evenly spaced values-ஐ return செய்கிறது.

இந்த functions, numerical ranges அடிப்படையிலான array-களை உருவாக்குவதில் மிகவும் பயனுள்ளதாக இருக்கின்றன, ஏனெனில் இதனால் sequence-based calculations மற்றும் simulations எளிதாக செய்ய முடிகிறது.

5. NUMPY - INDEXING & SLICING

NumPy array-களில் **indexing** மற்றும் **slicing** methods மிக முக்கியமானவை, ஏனெனில் இவையால் array-களின் தனிப்பட்ட elements-ஐ அணுகுவதோடு, array-களின் ஒரு பகுதியை எளிதாக பிரிக்கவும் முடிகிறது. இவை data extraction மற்றும் manipulation-ஐ மிக எளிதாக்குகின்றன.

Input:

```
import numpy as np

arr = np.array([10, 20, 30, 40, 50])
print("Element at index 2:", arr[2]) # Indexing
print("Sliced array:", arr[1:4]) # Slicing
```

Output:

```
Element at index 2: 30
Sliced array: [20 30 40]
```

- **Indexing**: Indexing-ஐ பயன்படுத்தி, array-இல் உள்ள குறிப்பிட்ட இடத்தில் இருக்கும் element-ஐ நேரடியாக அணுக முடியும். Example-இல், **arr[2]** என்பது array-இன் மூன்றாவது இடத்தில் உள்ள value **30**-ஐ அணுகுகிறது.
- **Slicing**: Slicing-ன் மூலம், array-இன் ஒரு பகுதியை எளிதாக பிரித்து, அந்த பகுதியில் உள்ள values-ஐ return செய்யலாம். Example-இல், **arr[1:4]** என்பது array-இல் இரண்டாவது இடத்திலிருந்து நான்காவது இடம் வரை உள்ள values **[20, 30, 40]**-ஐ return செய்கிறது.

இந்த methods data extraction-ஐ மிக எளிமையாக மாற்றுகின்றன, மேலும் NumPy array-களுடன் நாம் பயனுள்ளதாக மற்றும் திறமையாக செயல்பட உதவுகின்றன.

6. NUMPY – ADVANCED INDEXING

NumPy-இல் **advanced indexing** முலம் array values-ஐ எளிதாக அணுகவும், update செய்யவும் அனுமதிக்கின்றன. இவை data selection மற்றும் manipulation-ஐ மேலும் திறமையாக செயல்படுத்த உதவுகின்றன.

6.1. Integer Indexing

Integer indexing-ன் மூலம் array-யின் குறிப்பிட்ட இடங்களில் உள்ள elements-ஐ எளிதாக பெறலாம். இதன் மூலம், multi-dimensional array-களில் அதிக specific data points-ஐ எளிதாக அணுக முடியும்.

Input:

```
import numpy as np

arr = np.array([[1, 2], [3, 4], [5, 6]])
print("Element at position (2, 1):", arr[2, 1])
```

Output:

```
Element at position (2, 1): 6
```

இந்தCode-இல், **arr[2, 1]** என்பது array-இன் மூன்றாவது row-இல் உள்ள இரண்டாவது element-ஐ காட்டுகிறது, அதாவது value **6**.

6.2. Boolean Array Indexing

Boolean array indexing-ன் மூலம், condition அடிப்படையில் array values-ஐ எளிதாக filter செய்ய முடியும். இது data analysis மற்றும் condition-based filtering-ஐ மிக எளிதாக்கும்.

Input:

```
arr = np.array([10, 20, 30, 40, 50])
condition = arr > 25
print("Filtered array with condition:", arr[condition])
```

Output:

```
Filtered array with condition: [30 40 50]
```

இந்த Code-இல், condition **arr > 25**-ஐ அடிப்படையாகக் கொண்டு array-இல் 25-ஐ விட அதிகமான values மட்டுமே return செய்கின்றன. இதனால் **[30, 40, 50]** என்ற values மட்டும் filter ஆகின்றன.

7. NUMPY – BROADCASTING

NumPy-யில் **broadcasting** என்பது shape-கள் வேறுபட்ட array-களை arithmetic operations-ல் பயன்படுத்த ஒரு நுட்பமாகும். இது data-ஐ duplicate செய்யாமல், memory-efficient-ஆக operations-ஐ நேரடியாக செய்ய உதவுகிறது. Broadcasting-ஐ பயன்படுத்தி arrays-இல் arithmetic operations செய்யும்போது, NumPy data-ஐ தானாகவே மிக எளிதாகப் பொருந்தும் விதமாக மாற்றுகிறது.

Broadcasting என்றால் என்ன?

Broadcasting என்பது NumPy-யின் திறனாக, இரண்டு array-களின் shape-கள் பொருந்தாதபோதும், arithmetic operations-ஐ செய்து முடிக்க data-ஐ தானாக விரிவாக்கி ஆக்க முறையாகும். NumPy-யின் broadcasting விதிகள் array-களை ஒன்று சேர்க்கவும், குறைந்த memory-யில் calculations செய்யவும் உதவுகின்றன.

Input:

```
import numpy as np

# Broadcasting உதாரணம்

array1 = np.array([1, 2, 3])

array2 = np.array([[1], [2], [3]])

print("array1 shape: ", array1.shape)

print("array2 shape: ", array2.shape)

result = array1 + array2

print("Broadcasted array:\n", result)
```

Output:

```
Broadcasted array:
[[2 3 4]
[3 4 5]
[4 5 6]]
```

- **array1**: 1D array, இதன் shape (3,)
- **array2**: 2D array, இதன் shape (3, 1)

இங்கு, broadcasting நுட்பம் **array1**-ஐ **array2**-இன் shape-க்கு பொருந்தும் வகையில் தானாக விரிவாக்குகிறது, அதன் பிறகு arithmetic operation நடக்கிறது. NumPy இவ்வாறு array-களை தானாக பொருத்துவது மூலமாக memory-யை சிக்கனமாக பயன்படுத்தி calculations செய்யும் திறன் அதிகரிக்கிறது.

Broadcasting பின்பற்ற வேண்டிய முக்கியமான விதிமுறைகள்:

- 1. **Dimension Compatibility**: இரண்டு array-களின் dimensions சமமாக இருக்க வேண்டும் அல்லது அவற்றில் ஏதாவது ஒரு dimension 1 என்ற அளவிற்கு சமமாக இருக்க வேண்டும்.
- 2. **Automatic Expansion**: Lower-dimensional arrays தானாகவே higher-dimensional array-க்கு பொருந்தும் வகையில் விரிவாக்கப்படுகின்றன.
- 3. **Efficient Operations**: Broadcasting-ன் மூலம் unnecessary data duplication-ஐ தவிர்க்கும் மற்றும் memory-யை சிறப்பாக பயன்படுத்தும்.

- 4. **Memory Efficiency**: Broadcasting data duplication இல்லாமல் calculations செய்ய உதவுகிறது, இதனால் memory utilization மேம்படுகிறது.
- 5. **Code Simplification**: Code-ஐ சுருக்கமாகவும் சுலபமாகவும் எழுத முடிகிறது, அதனால் complex array operations-ஐ நேரடியாக எழுதி புரியவைக்கலாம்.
- 6. **Performance**: Broadcasting arithmetic operations-ஐ வேகமாக செய்யும் திறன் கொண்டது, ஏனெனில் NumPy backend-ல் vectorized operations பயன்படுத்துகிறது.

எப்போது Broadcasting உதவிகரமாக இருக்கும்?

- வெவ்வேறு Shape கொண்ட Array-களுக்கு Calculations செய்யும்போது.
- Data Analysis மற்றும் Machine Learning calculations செய்யும் போது broadcasting மிகவும் முக்கியம்.

Broadcasting மூலம், NumPy பயனர் data-ஐ duplicate செய்யாமல் எளிமையாகவும் திறமையாகவும் operations-ஐ செய்ய உதவுகிறது, இதன் மூலம் high-performance calculations மற்றும் memory efficiency ஆகியவை அதிகரிக்கின்றன.

8. NUMPY - ITERATING OVER ARRAY

NumPy array-களை **iterate** செய்வது Python list-களை iterate செய்வதைப் போலவே எளிதானது. NumPy array-களில் iteration செய்யும் நுட்பங்கள் அதிக துல்லியமாகவும் வேகமாகவும் செயல்படுவதற்காக வடிவமைக்கப்பட்டுள்ளன. இதன் மூலம், multi-dimensional array-களில் iteration செய்யும்போது memory efficiency மற்றும் execution speed அதிகரிக்கின்றன.

8.1. Iteration Order

NumPy array-களை iterate செய்வதில் **row-major** அல்லது **column-major** order-ல் iteration செய்ய முடியும்.

Input:

```
# Row-major order iteration
array = np.array([[1, 2, 3], [4, 5, 6]])
for row in array:
    print("Row:", row)

# Column-major order iteration
for element in array.flat:
    print("Element:", element)
```

Output:

```
Row: [1 2 3]
Row: [4 5 6]
Element: 1
Element: 2
Element: 3
Element: 4
Element: 5
Element: 6
```

- **Row-major** order-ல் iteration செய்யும் போது, ஒவ்வொரு row-யும் தனித்தனியாக iterate செய்யப்படுகிறது. Example-இல், array -இன் ஒவ்வொரு row-ஐ print செய்கிறோம்.
- **flat** attribute-ஐ பயன்படுத்தி, array-இன் அனைத்து elements-ஐ flatten செய்து, அவற்றை column-major order-ல் iterate செய்கிறோம்.

Row-major order என்பதனால் rows-ஐ முன்னுரிமை கொடுத்து iterate செய்யப்படுகிறது, அதாவது முழு row-ஐ முன்னதாக process செய்யும்.

flat attribute-ஐ பயன்படுத்தி, multi-dimensional array-ஐ ஒரு single-dimensional array போல iterate செய்ய முடியும்.

8.2. Modifying Array Values

Iteration-ஐ பயன்படுத்தி array values-ஐ நேரடியாக மாற்றவும் (update) முடியும். இதனால், array-இன் original values-ஐ iteration முறையில் update செய்வது எளிதாகும்.

Input:

```
# Array values-ஐ iterate செய்து மாற்றுதல்
for i in np.nditer(array, op_flags=['readwrite']):
    i[...] = i * 2
print("Modified array:\n", array)
```

Output:

```
Modified array:
[[ 2  4  6]
[ 8 10 12]]
```

- np.nditer():
 - ் **np.nditer()** என்பது NumPy array-ஐ iterate செய்ய உதவும் ஒரு iterator object-ஐ உருவாக்குகிறது.
 - o இது multi-dimensional arrays-ஐ எளிமையாக iterate செய்யக்கூடியதாக மாற்றுகிறது.
- op_flags=['readwrite']:
 - op_flags argument-ஐ பயன்படுத்தி iteration செய்யும் போது array-ஐ எப்படி access செய்ய வேண்டும் என்பதை நிர்ணயிக்க முடியும்.
 - o **readwrite** flag-ஐ பயன்படுத்துவதன் மூலம் iteration செய்து கொண்டிருக்கும் போது array values-ஐ both (மேம்படுத்தவும் மற்றும் படிக்கவும்) access செய்ய முடிகிறது.
- i[...] = i * 2:
 - ் 🗓 🔐 மூலம், iterator (i) pointing செய்யும் array-இன் தற்போதைய element-ஐ access செய்கிறோம்.
 - o இங்கு, ஒவ்வொரு element-ஐ இரட்டிப்பு (double) செய்து, அதை array-இல் replace செய்கிறோம், அதாவது original array-இன் values-ஐ update செய்கிறோம்.

Iteration-ஐ எப்போது பயன்படுத்துவது?

- Row-major order iteration: நமக்கு row-by-row analysis அல்லது manipulation தேவையான போது.
- **flat attribute iteration**: Multi-dimensional array-களை flatten செய்து, அவர்களுடன் சுலபமாக iterate செய்ய வேண்டிய போது.
- Modifying array values: Iteration செய்கையில் values-ஐ நேரடியாக update செய்ய விரும்பும் போது.

Iteration-ன் முக்கியத்துவம்:

NumPy-யில் iteration methods-ஐ பயன்படுத்தி array values-ஐ access மற்றும் update செய்வது நமக்கு மிக வேகமாகவும் திறமையாகவும் data handling செய்ய உதவுகிறது. இதனால், data manipulation, analysis மற்றும் computation போன்ற செயல்பாடுகள் மிக எளிமையாகும்.

8.3. External Loop

External Loop iteration நுட்பம் array values-ஐ மேம்படுத்தி மற்றும் memory-efficient-ஆக iterate செய்ய உதவுகிறது. **external_loop** flag-ஐ பயன்படுத்தி, iteration செய்யும்போது data-ஐ ஒரு continuous block-ஆக iterate செய்ய முடியும், இதனால் execution speed அதிகரிக்கிறது.

```
# External loop iteration
array = np.array([[2, 4, 6], [8, 10, 12]])
for x in np.nditer(array, flags=['external_loop'], order='F'):
    print("External loop iteration:", x)
```

```
External loop iteration: [2 8]
External loop iteration: [ 4 10]
External loop iteration: [ 6 12]
```

- **flags=['external_loop']** : இந்த flag-ஐ பயன்படுத்தி, iteration செய்யும் போது data continuous block-ஆக iterate செய்யப்படுகிறது.
- order='F': Iteration order-ஐ Fortran-style (column-major) ஆக மாற்றுகிறது, இதனால் column-wise data-ஐ iterate செய்யலாம்.

External loop iteration-ஐ column-wise data handling-க்கு பயன்படுத்தும்போது, இது calculations மற்றும் data processing-ஐ வேகமாகவும் memory-efficient-ஆகவும் செய்கிறது.

8.4. Broadcasting Iteration

Broadcasting iteration மூலம் shape வேறுபட்ட array values-ஐ ஒரே நேரத்தில் iterate செய்ய உதவுகிறது. இது NumPy-யின் broadcasting principle-ஐ பயன்படுத்தி, operations-ஐ சிறப்பாக நிறைவேற்றுகிறது.

Input:

```
import numpy as np

array1 = np.array([1, 2, 3])
array2 = np.array([[1], [2], [3]])
for x, y in np.nditer([array1, array2]):
    print(f"x: {x}, y: {y}")
```

Output:

```
x: 1, y: 1

x: 2, y: 1

x: 3, y: 1

x: 1, y: 2

x: 2, y: 2

x: 3, y: 2

x: 1, y: 3

x: 2, y: 3

x: 3, y: 3
```

• **Broadcasting Iteration**: Broadcasting iteration-ஐ பயன்படுத்தி shape-ல் வேறுபாடுகள் இருந்தாலும் array values-ஐ இணைத்து iterate செய்ய முடிகிறது.

• **np.nditer([array1, array2])** : இரண்டு array-களையும் ஒரே iteration-ல் பயணிக்க பயன்படுகிறது, அதனால் values-ஐ side-by-side compare மற்றும் process செய்ய முடிகிறது.

இந்த broadcasting iteration data manipulation மற்றும் array operations-ஐ மிகவும் சுலபமாகவும் திறமையாகவும் செய்கிறது, ஏனெனில் இது different shapes கொண்ட array-களையும் ஒரு நேரத்தில் iterate செய்து எளிதாக இணைக்கிறது.

9. NUMPY - ARRAY MANIPULATION

NumPy, array-களை மாற்றவும் அதனை மாற்றி அமைக்கவும் பல்வேறு வழிகள் உண்டு. அதாவது இவை array-களின் structure-ஐ மாற்றுவதில், flatten செய்வதில், மற்றும் iterator-களை பயன்படுத்துவதில் மிகவும் பயனுள்ளதாக இருக்கும்.

9.1. numpy.reshape

reshape() function-ஐ பயன்படுத்தி, NumPy array-இன் shape-ஐ மாற்றலாம். இதனால், array-இல் உள்ள elements-ஐ மறு அமைப்பு செய்து, data structure-ஐ எளிதாக மாற்ற முடியும்.

Input:

```
import numpy as np

# Reshape operation
array = np.array([1, 2, 3, 4, 5, 6])
reshaped_array = array.reshape(2, 3)
print("Reshaped array:\n", reshaped_array)
```

Output:

```
Reshaped array:
[[1 2 3]
[4 5 6]]
```

- **reshape()** function-ஐ பயன்படுத்தி, 1D array [1, 2, 3, 4, 5, 6]-ஐ 2 rows மற்றும் 3 columns கொண்ட 2D array-ஆக மாற்றியுள்ளோம்.
- Reshape operation செய்வதற்கு array-இன் மொத்த elements எண்ணிக்கை மாறாமல் இருக்க வேண்டும்.
- **reshape()**: Array-இன் structure-ஐ மாற்ற உதவும், ஆனால் original shape-க்கு elements எண்ணிக்கை பொருந்த வேண்டும்.

குறிப்பு: Reshape operation செய்யும் போது, புதிய shape-க்கு elements கிட்டத்தட்ட இருந்தால் மட்டுமே அது செயல்படும்.

9.2. numpy.ndarray.flat

flat attribute-ஐ பயன்படுத்தி, array-இன் elements-ஐ ஒரு iterator-ஆக பெறலாம். இதன் மூலம், multi-dimensional array-ஐ ஒரு iterator-ஆக flatten செய்து iterate செய்ய முடியும்.

Input:

```
# Flat iteration
for element in array.flat:
    print("Flat element:", element)
```

```
Flat element: 1
Flat element: 2
Flat element: 3
Flat element: 4
Flat element: 5
Flat element: 6
```

- **flat** attribute-ஐ பயன்படுத்தி, multi-dimensional array-இல் உள்ள elements-ஐ ஒரு continuous sequence-ஆக iterator-ஆக iterate செய்கிறோம்.
- இது memory-efficient-ஆக array-ஐ handle செய்ய உதவுகிறது, மற்றும் எளிதாக elements-ஐ access செய்ய அனுமதிக்கிறது.

9.3. numpy.ndarray.flatten

flatten() method-ஐ பயன்படுத்தி, multi-dimensional array-ஐ ஒரு single-dimensional array-ஆக மாற்றலாம். இது array-இல் உள்ள அனைத்து elements-ஐ ஒரு single line-ல் வைத்து return செய்யும்.

Input:

```
# Flatten operation
flattened_array = array.flatten( )
print("Flattened array:", flattened_array)
```

Output:

```
Flattened array: [1 2 3 4 5 6]
```

- **flatten()** method-ஐ பயன்படுத்தி multi-dimensional array-ஐ ஒரே dimension-க்குள் flatten செய்து convert செய்கிறோம்.
- Flatten operation array-ஐ reshape செய்யாமல், ஒரு continuous structure-ஆக return செய்யும்.
- **flatten()**: Multi-dimensional array-ஐ single-dimensional array-ஆக மாற்றும், இது ஒரு new flattened copy-ஐ return செய்யும்.

9.4. numpy.ravel

```
import numpy as np

# Ravel operation
array = np.array([[1, 2, 3], [4, 5, 6]])
raveled_array = array.ravel()
print("Raveled array:", raveled_array)
```

```
Raveled array: [1 2 3 4 5 6]
```

- ravel() method multi-dimensional array-ஐ flattened array-ஆக மாற்றி return செய்கிறது.
- இது memory-யை சிக்கனமாக பயன்படுத்தி, wherever possible, original data-ஐ share செய்வதால் memory allocation குறைவாக இருக்கும்.

9.5. numpy.transpose

transpose() function-ஐ பயன்படுத்தி, array-இன் axes-ஐ மாற்றி அமைக்க முடியும். இது row-களை column-களாகவும் column-களை row-களாகவும் மாற்றுவதற்கான method ஆகும்.

Input:

```
# Transpose operation
reshaped_array = np.array([[1, 2, 3], [4, 5, 6]])
transposed_array = reshaped_array.transpose()
print("Transposed array:\n", transposed_array)
```

Output:

```
Transposed array:
[[1 4]
[2 5]
[3 6]]
```

- **transpose()** function array-இன் structure-ஐ மாற்றி row-களை column-களாகவும் column-களை row-களாகவும் மாற்றுகிறது.
- இது data analysis மற்றும் matrix operations-இல் அதிகமாக பயன்படும்.

9.6. numpy.ndarray.T

T attribute transpose operation-ஐ எளிதாக செய்ய alternate முறையாக பயன்படுகிறது. இது **transpose()** function-ஐ போன்றே செயல்படும், ஆனால் syntax சிறிது சுருக்கமாக இருக்கும்.

Input:

```
# Transpose operation using T attribute
print("Transposed array using T:\n", reshaped_array.T)
```

```
Transposed array using T:
[[1 4]
[2 5]
[3 6]]
```

- **T** attribute-ஐ பயன்படுத்தி array-இன் transpose-ஐ செய்யலாம், இது code-ஐ சுருக்கமாகவும் வாசிக்க எளிதாகவும் அமைக்கும்.
- **T** attribute transpose-ஐ எளிதாகவும் வேகமாகவும் செயல்படுத்த உதவுகிறது.

9.6. numpy.swapaxes

swapaxes() function-ஐ பயன்படுத்தி array-இல் உள்ள axes-ஐ மாற்றி அமைக்க முடியும். இதனால் multidimensional array-இல் axes-ஐ மாற்றி data structure-ஐ மாற்றலாம்.

Input:

```
# Swap axes operation
reshaped_array = np.array([[1, 2, 3], [4, 5, 6]])
swapped_array = reshaped_array.swapaxes(0, 1)
print("Swapped axes array:\n", swapped_array)
```

Output:

```
Swapped axes array:
[[1 4]
[2 5]
[3 6]]
```

- **swapaxes()** function-ஐ பயன்படுத்தி, array-இல் 0 மற்றும் 1 axes-ஐ மாற்றியுள்ளோம்.
- இது data-ஐ transpose செய்யும் ஒரு alternate method ஆகும், ஆனால் குறிப்பிட்ட axes-ஐ user-defined இடத்தில் மாற்றிக் கொள்ளலாம்.

9.7. numpy.rollaxis

rollaxis() method-ஐ பயன்படுத்தி, multi-dimensional array-இல் உள்ள axes-ஐ ஒரு குறிப்பிட்ட இடத்திற்கு மாற்றி அமைக்க முடியும். இது axes-ஐ flexibly reorder செய்ய உதவுகிறது.

Input:

```
# Roll axes operation
rolled_array = np.rollaxis(swapped_array, 1)
print("Rolled axes array:\n", rolled_array)
```

```
Rolled axes array:
[[1 2 3]
[4 5 6]]
```

- rollaxis() method axes-ஐ ஒரு குறிப்பிட்ட இடத்திற்கு மாற்றி அமைக்கிறது.
- இங்கு, axis-ஐ 1 இடத்தில் இருந்து 0 இடத்திற்கு மாற்றியுள்ளோம், இதனால் data structure மாற்றப்பட்டது.

குறிப்பு: swapaxes() மற்றும் **rollaxis()**: Array-இல் உள்ள axes-ஐ மாற்றி data structure-ஐ reconfigure செய்ய பயன்படுகின்றன.

9.8. numpy.broadcast

broadcast() function broadcasting operation எப்படி செயல்படுகிறது என்பதை காட்ட உதவுகிறது. இது shape-ல் பொருந்தாத array values-ஐ, NumPy broadcasting principle-ஐ பயன்படுத்தி இணைக்கும்.

Input:

```
array1 = np.array([1, 2, 3])
array2 = np.array([[1], [2], [3]])
broadcasted = np.broadcast(array1, array2)
for x, y in broadcasted:
    print(f"Broadcasted elements: x = {x}, y = {y}")
```

Output:

```
Broadcasted elements: x = 1, y = 1
Broadcasted elements: x = 2, y = 1
Broadcasted elements: x = 3, y = 1
Broadcasted elements: x = 1, y = 2
Broadcasted elements: x = 2, y = 2
Broadcasted elements: x = 3, y = 2
Broadcasted elements: x = 1, y = 3
Broadcasted elements: x = 2, y = 3
Broadcasted elements: x = 2, y = 3
Broadcasted elements: x = 3, y = 3
```

• **broadcast()** function-ஐ பயன்படுத்தி shape-ல் வேறுபட்ட arrays-ஐ iterate செய்து, broadcasting operation எவ்வாறு செயல்படுகிறது என்பதை பார்க்க முடிகிறது.

9.9. numpy.broadcast_to

broadcast_to() function-ஐ பயன்படுத்தி, ஒரு array-யை ஒரு குறிப்பிட்ட shape-க்கு broadcast செய்யலாம். இது data-ஐ duplicate செய்யாமல், memory-efficient-ஆக operations செய்ய உதவுகிறது.

Input:

```
# Broadcasting array to a new shape
array = np.array([1, 2, 3])
broadcasted_array = np.broadcast_to(array, (3, 3))
print("Broadcasted array:\n", broadcasted_array)
```

```
Broadcasted array:
[[1 2 3]
[1 2 3]
[1 2 3]]
```

- **broadcast_to()** function array-ஐ புதிய shape-க்கு broadcast செய்து, memory-யை duplicate செய்யாமல் arithmetic operations செய்ய முடிகிறது.
- இது array-ஐ வேகமாக மற்றும் memory-efficient-ஆக புதிய structure-க்கு conform செய்ய உதவுகிறது.

குறிப்பு: **broadcast()** மற்றும் **broadcast_to()**: Broadcasting principle-ஐ பயன்படுத்தி arrays-இல் operations செய்ய memory-efficient-ஆகவும் computationally fast-ஆகவும் மாற்றுகின்றன.

9.10. numpy.expand_dims

expand_dims() function-ஐ பயன்படுத்தி array-இல் ஒரு புதிய axis-ஐ சேர்த்து, அதன் dimensionality-ஐ அதிகரிக்க முடியும். இது array-ஐ reshape செய்து, அதனை higher-dimensional array-ஆக மாற்ற உதவுகிறது.

Input:

```
# Array dimensionality-ஐ அதிகரித்தல்
array = np.array([1, 2, 3])
expanded_array = np.expand_dims(array, axis=0)
print("Expanded array:\n", expanded_array)
```

Output:

```
Expanded array:
[[1 2 3]]
```

- இங்கு, **expand_dims()** function array-இல் ஒரு புதிய axis-ஐ (dimension) சேர்க்கிறது.
- axis=0 என்பதை குறிப்பிடுவதன் மூலம், original 1D array [1, 2, 3] ஒரு 2D array-ஆக ([[1, 2, 3]]) மாற்றப்படுகிறது.
- இது data-ஐ reshape செய்ய, multi-dimensional data handling-ஐ எளிதாக்க உதவுகிறது.

9.12. numpy.squeeze

squeeze() function-ஐ பயன்படுத்தி array-இல் உள்ள unwanted singleton dimensions-ஐ (அதாவது length 1 கொண்ட dimensions) அகற்றலாம். இது array-ஐ compact-ஆக மாற்றி அதன் shape-ஐ குறைக்க உதவுகிறது.

Input:

```
# Singleton dimensions—ஐ நீக்குதல்
array = np.array([[[1, 2, 3]]])
squeezed_array = np.squeeze(array)
print("Squeezed array:", squeezed_array)
```

Output:

```
Squeezed array: [1 2 3]
```

• squeeze() method array-இல் உள்ள unnecessary singleton dimensions-ஐ நீக்குகிறது.

- எங்கள் உதாரணத்தில், 3D array [[[1, 2, 3]]] ஒரு 1D array [1, 2, 3] -ஆக மாற்றப்படுகிறது.
- இது unwanted dimensions-ஐ அகற்றுவதால் memory usage மற்றும் data processing எளிதாகும்.

9.13. numpy.concatenate

concatenate() function-ஐ பயன்படுத்தி இரண்டு அல்லது அதற்கும் அதிகமான array-களை ஒரு இணைந்த array-ஆக உருவாக்கலாம். இது arrays-ஐ sequentially இணைத்து, single array-ஆக return செய்கிறது.

Input:

```
# Arrays-ஐ concatenate செய்தல்
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
concatenated_array = np.concatenate((array1, array2))
print("Concatenated array:", concatenated_array)
```

Output:

```
Concatenated array: [1 2 3 4 5 6]
```

- concatenate() function array-களை இணைத்து ஒரு single-dimensional array-ஆக return செய்கிறது.
- உதாரணத்தில், **array1** மற்றும் **array2** இணைக்கப்பட்டு, **[1, 2, 3, 4, 5, 6]** என்ற array-ஆகவும் உருவாக்கப்பட்டது.
- இது data merging மற்றும் continuous sequences-ஐ உருவாக்க உதவுகிறது.

9.14. numpy.stack

stack() function-ஐ பயன்படுத்தி arrays-ஐ ஒரு புதிய axis-இல் stack செய்ய முடியும். இது arrays-ஐ vertically அல்லது horizontally stack செய்து, multi-dimensional structure-ஆக மாற்ற உதவுகிறது.

Input:

```
# Arrays-ஐ stack செய்தல்

array1 = np.array([1, 2, 3])

array2 = np.array([4, 5, 6])

stacked_array = np.stack((array1, array2), axis=1)

print("Stacked array:\n", stacked_array)
```

```
Stacked array:
[[1 4]
[2 5]
[3 6]]
```

- **stack()** function arrays-ஐ ஒரு புதிய axis-இல் stack செய்கிறது, இதனால் data-ஐ multi-dimensional format-ஆக மாற்றுகிறது.
- axis=1 என்ற option-ஐ பயன்படுத்தியதால், array1 மற்றும் array2 values horizontal-ஆக stack ஆகின்றன.

• இது data representation-ஐ மாற்றுவதிலும், matrix operations செய்யவும் பயன்படும்.

9.15. numpy.hstack and numpy.vstack

hstack() மற்றும் vstack() functions-ஐ பயன்படுத்தி arrays-ஐ horizontal மற்றும் vertical-ஆக stack செய்ய முடியும்.

Horizontal Stacking with hstack()

hstack() function-ஐ பயன்படுத்தி, arrays-ஐ horizontal-ஆக (ஒரே row-ல்) stack செய்யலாம். இது arrays-ஐ இருவரையிலும் இணைத்து, ஒரே-dimensional row format-ல் merge செய்கிறது.

Input:

```
import numpy as np

# Arrays to stack
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])

# Horizontal stacking
hstacked_array = np.hstack((array1, array2))
print("Horizontally stacked array:", hstacked_array)
```

Output:

```
Horizontally stacked array: [1 2 3 4 5 6]
```

- hstack() function arrays-ஐ ஒரே-dimensional format-ல் horizontally stack செய்கிறது.
- இந்த உதாரணத்தில், array1 மற்றும் array2 values ஒன்று சேர்ந்து ஒரே row-ஆக return செய்யப்படுகின்றன.

Vertical Stacking with vstack()

vstack() function-ஐ பயன்படுத்தி, arrays-ஐ vertical-ஆக (ஒரே column-ல்) stack செய்யலாம். இது arrays-ஐ இருவரையிலும் vertically merge செய்து multi-dimensional array ஆக return செய்கிறது.

Input:

```
# Vertical stacking
vstacked_array = np.vstack((array1, array2))
print("Vertically stacked array:\n", vstacked_array)
```

```
Vertically stacked array:
[[1 2 3]
[4 5 6]]
```

- **vstack()** function arrays-ஐ vertical-ஆக stack செய்கிறது, அதாவது arrays-ஐ row-wise align செய்து multi-dimensional array ஆக return செய்கிறது.
- இது data handling மற்றும் matrix operations-ஐ சிறப்பாக செய்ய உதவுகிறது.

9.16. numpy.split

split() function-ஐ பயன்படுத்தி, ஒரு array-ஐ பல துண்டுகளாக பிரிக்கலாம். இது array-ஐ user-defined number of sub-arrays ஆக களவாக பிரிக்க உதவுகிறது.

Input:

```
# Array-ஐ split செய்தல்
array = np.array([1, 2, 3, 4, 5, 6])
split_array = np.split(array, 3)
print("Split arrays:", split_array)
```

Output:

```
Split arrays: [array([1, 2]), array([3, 4]), array([5, 6])]
```

- **split()** function array-ஐ user-defined size-க்கு sub-arrays ஆகப் பிரிக்கிறது.
- இந்த உதாரணத்தில், **array** ஐ மூன்று sub-arrays ஆக பிரிக்கப்பட்டு, ஒவ்வொரு array-க்கும் 2 elements ஆக return செய்கிறது.

9.17. numpy.hsplit and numpy.vsplit

hsplit() மற்றும் vsplit() functions-ஐ horizontal மற்றும் vertical-ஆக arrays-ஐ பிரிக்க முடியும்.

Horizontal Split with hsplit()

hsplit() function horizontal direction-ல் arrays-ஐ சில பகுதிகளாகப் பிரிக்க பயன்படும்.

Input:

```
# Horizontal split
harray = np.array([[1, 2, 3], [4, 5, 6]])
hsplit_array = np.hsplit(harray, 3)
print("Horizontally split arrays:", hsplit_array)
```

Output:

- hsplit() function arrays-ஐ horizontal-ஆக column-wise பிரிக்கிறது.
- இதனால், ஒவ்வொரு column data-ஐ தனித்தனியாக sub-arrays ஆக return செய்கிறது.

Vertical Split with vsplit()

vsplit() function vertical direction-ல் arrays-ஐ சில பகுதிகளாகப் பிரிக்க உதவுகிறது.

```
# Vertical split
vsplit_array = np.vsplit(harray, 2)
print("Vertically split arrays:", vsplit_array)
```

```
Vertically split arrays: [array([[1, 2, 3]]), array([[4, 5, 6]])]
```

- vsplit() function arrays-ஐ vertical-ஆக row-wise பிரிக்க உதவுகிறது.
- இது multi-dimensional arrays-ஐ row-wise sub-arrays ஆக பிரிக்க உதவுகிறது.

9.18. numpy.resize

resize() function array-ஐ ஒரு புதிய shape-க்கு மாற்றி அமைக்க உதவுகிறது. இது array-ஐ நினைவில் (memory) நிரப்பியபடி அல்லது பின்னர் அளவுடன் conform செய்து மாற்றிக்கொள்ள முடியும்.

Input:

```
# Array-ஐ resize செய்தல்
array = np.array([1, 2, 3, 4])
resized_array = np.resize(array, (2, 3))
print("Resized array:\n", resized_array)
```

Output:

```
Resized array:
[[1 2 3]
[4 1 2]]
```

- resize() function array-ஐ ஒரு புதிய shape-க்கு conform செய்து மாற்றுகிறது.
- இதன் output, புதிய shape conform ஆக elements இல்லை என்றால், original தரவுகளை மீண்டும் மீண்டும் நிரப்பும்.

இந்த methods எல்லாம் NumPy array-களை விரிவாக manipulate செய்து, memory-efficient-ஆக data handling மற்றும் reshaping செய்ய உதவுகின்றன.

9.19. numpy.append

append() function-ஐ பயன்படுத்தி, existing array-இன் முடிவில் values-ஐ சேர்க்க முடியும். இது original array-ஐ மாற்றாது; இதற்கு பதிலாக, புதிய array-ஐ return செய்யும், அதில் original values மற்றும் புதிய values இணைக்கப்படும்.

```
import numpy as np

# Array-இல் values-ஐ append செய்தல்

array = np.array([1, 2, 3])

appended_array = np.append(array, [4, 5, 6])

print("Appended array:", appended_array)
```

```
Appended array: [1 2 3 4 5 6]
```

- append() function-ஐ பயன்படுத்தி array-இன் முடிவில் [4, 5, 6] values-ஐ சேர்த்துள்ளோம்.
- இது original array-ஐ மாற்றாது, புதிய array-ஐ return செய்கிறது.
- இது frequently array-இல் new data add செய்யும்போது மிகவும் பயனுள்ளதாக இருக்கும்.

9.20. numpy.insert

insert() function-ஐ பயன்படுத்தி, array-இல் ஒரு குறிப்பிட்ட இடத்தில் values-ஐ insert செய்ய முடியும். இந்த method-ல், நீங்கள் எந்த இடத்தில் values-ஐ சேர்க்க வேண்டும் என்பதையும், எந்த values-ஐ சேர்க்க வேண்டும் என்பதையும் குறிப்பிடலாம்.

Input:

```
# Array-இல் values-ஐ insert செய்தல்
array = np.array([1, 2, 3])
inserted_array = np.insert(array, 1, [7, 8])
print("Inserted_array:", inserted_array)
```

Output:

```
Inserted array: [1 7 8 2 3]
```

- insert() function-ஐ பயன்படுத்தி, array-இன் இடத்தில் (index 1) [7, 8] values-ஐ insert செய்துள்ளோம்.
- இது original array-ஐ மாற்றாமல், புதிய array-ஐ return செய்கிறது.
- இந்த method-ஐ பயன்படுத்தி array-இல் values-ஐ middle-ல் அல்லது specific positions-ல் add செய்ய முடியும். **குறிப்பு:** எந்த இடத்தில் values சேர்க்க வேண்டும் என்பதையும், அந்த values-ஐ குறிப்பிட்ட இடத்தில் insert செய்வதை நிர்ணயிக்கலாம்.

9.21. numpy.delete

delete() function-ஐ பயன்படுத்தி, array-இல் unwanted values-ஐ அல்லது indices-ஐ அகற்றலாம். இது original array-ஐ modify செய்யாது; இது unwanted values-ஐ அகற்றி, புதிய array-ஐ return செய்கிறது.

```
# Array-இல் values-ஐ delete செய்தல்
array = np.array([1, 2, 3, 4, 5])
deleted_array = np.delete(array, [1, 3])
print("Deleted array:", deleted_array)
```

```
Deleted array: [1 3 5]
```

- delete() function-ஐ பயன்படுத்தி, array-இல் index 1 மற்றும் 3 (values **2** மற்றும் **4**) அகற்றப்பட்டுள்ளன.
- இதன் மூலம் unwanted values-ஐ array-இல் இருந்து remove செய்து, clean data-ஐ பெறலாம். **குறிப்பு:** Original array-ஐ மாற்றாது, புதிய array-ஐ return செய்து unwanted data-ஐ clean செய்கிறது.

9.22. numpy.unique

unique() function-ஐ பயன்படுத்தி, array-இல் உள்ள repeating elements-ஐ அகற்றி, unique values-ஐ மட்டும் return செய்யலாம். இது data analysis மற்றும் data cleaning செயல்பாடுகளில் மிகவும் பயனுள்ளது.

Input:

```
# Array-இல் unique values-ஐ பெறுதல்
array = np.array([1, 2, 2, 3, 4, 4, 5])
unique_values = np.unique(array)
print("Unique values:", unique_values)
```

Output:

```
Unique values: [1 2 3 4 5]
```

- **unique()** function-ஐ பயன்படுத்தி, **array**-இல் repeating values-ஐ அகற்றி, unique values மட்டும் return செய்யப்படுகிறது.
- இது data-இல் redundancy-ஐ அகற்றி, data-ஐ compact-ஆகவும் organized-ஆகவும் மாற்றுகிறது.

குறிப்பு: Data analysis மற்றும் data cleaning செயல்பாடுகளில் redundancy-ஐ அகற்றுகிறது.

10. NUMPY - BINARY OPERATORS

NumPy-யில் **binary operators** பயன்படுத்தி bitwise operations செய்யலாம். Bitwise operations binary (இரும) data-களில் வேலை செய்யும், அதாவது bit-அளவிலான data-ஐ நேரடியாக மாற்றும். இவை data manipulation மற்றும் bit-level operations-ஐ எளிதாக்கும்.

10.1. numpy.bitwise_and

bitwise_and operator இரண்டு arrays-இன் bitwise AND operation-ஐ return செய்கிறது. இது ஒவ்வொரு bit-இல் உள்ள values-ஐ எடுத்து AND operation செய்கிறது, அதாவது, இரண்டு bit-களும் 1 என்றால் மட்டுமே முடிவு 1 ஆக இருக்கும்.

Input:

```
import numpy as np

# Bitwise AND operation
a = np.array([0b1100])
b = np.array([0b1010])
result = np.bitwise_and(a, b)
print("Bitwise AND:", result)
```

Output:

```
Bitwise AND: [8]
```

- **a** = 0b1100 (binary) = 12 (decimal)
- **b** = 0b1010 (binary) = 10 (decimal)
- Bitwise AND operation (1100 AND 1010) = 1000 (binary) = 8 (decimal)

bitwise_and operation AND logic பயன்படுத்தி இரண்டு arrays-இன் corresponding bit-களை compare செய்து, முடிவுகளை return செய்கிறது.

10.2. numpy.bitwise_or

bitwise_or operator இரண்டு arrays-இன் bitwise OR operation-ஐ return செய்கிறது. இது OR operation-ஐ ஒவ்வொரு bit-ஐ வைத்து செய்கிறது, அதாவது, bit-களில் எதாவது ஒரு value 1 என்றால், முடிவாக 1 return ஆகும்.

Input:

```
# Bitwise OR operation
a = np.array([0b1100])
b = np.array([0b1010])
result = np.bitwise_or(a, b)
print("Bitwise OR:", result)
```

```
Bitwise OR: [14]
```

- **a** = 0b1100 (binary) = 12 (decimal)
- **b** = 0b1010 (binary) = 10 (decimal)
- Bitwise OR operation (1100 OR 1010) = 1110 (binary) = 14 (decimal)

bitwise_or operation OR logic-ஐ பயன்படுத்தி bit-level-ல் values-ஐ compare செய்து, final result-ஐ return செய்கிறது.

10.3. numpy.invert()

invert() function-ஐ பயன்படுத்தி array-இல் உள்ள ஒவ்வொரு bit-ஐ எதிர்மறையாக மாற்றலாம். இதன் பொருள், bit 1 இருந்தால் 0 ஆகவும், 0 இருந்தால் 1 ஆகவும் மாற்றம் செய்யும்.

Input:

```
# Bitwise NOT operation
a = np.array([0b1100], dtype=np.uint8)
result = np.invert(a)
print("Bitwise NOT:", result)
```

Output:

```
Bitwise NOT: [243]
```

- **a** = 0b1100 (binary) = 12 (decimal)
- **invert()** operation bit-களில் inversion செய்கிறது, அதாவது 1100 becomes 11110011 (for an 8-bit integer) = 243 (decimal).

invert() operation bit-level inversion-ஐ எளிதாக செய்து, data-ஐ logically toggle செய்ய உதவுகிறது.

10.4. numpy.left_shift

left_shift operator-ஐ பயன்படுத்தி array-இன் bits-ஐ இடது பக்கம் (left side) நகர்த்தலாம். இது bit values-ஐ shift செய்து, அதற்கு வலது பக்கம் புதிய Os சேர்க்கும்.

Input:

```
# Left shift operation
a = np.array([0b0010])
result = np.left_shift(a, 2)
print("Left Shift:", result)
```

Output:

```
Left Shift: [8]
```

• **a** = 0b0010 (binary) = 2 (decimal)

• Left shift operation shifts the bits 2 positions to the left: 0010 becomes 1000 (binary) = 8 (decimal).

left_shift operation bit-level-ல் values-ஐ இடது பக்கம் நகர்த்தி, binary representation-ஐ மாற்ற உதவுகிறது.

10.5. numpy.right_shift

right_shift operator-ஐ பயன்படுத்தி array-இன் bits-ஐ வலது பக்கம் (right side) நகர்த்தலாம். இது bit values-ஐ shift செய்து, அதற்கு இடது பக்கம் 0s சேர்க்கும்.

Input:

```
# Right shift operation
a = np.array([0b1000])
result = np.right_shift(a, 2)
print("Right Shift:", result)
```

Output:

```
Right Shift: [2]
```

- **a** = 0b1000 (binary) = 8 (decimal)
- Right shift operation shifts the bits 2 positions to the right: 1000 becomes 0010 (binary) = 2 (decimal).

right_shift operation bit-level-ல் values-ஐ வலது பக்கம் நகர்த்தி, binary data-ஐ சுருக்க உதவுகிறது.

இந்த binary operators data-ஐ bit-level-ல் manipulate செய்யவும், binary data handling ஐ memory-efficient-ஆகவும் செய்ய உதவுகின்றன.

11. NUMPY – STRING FUNCTIONS

NumPy-யில் **string functions** array-களில் உள்ள string values-ஐ manipulate செய்ய உதவுகின்றன. NumPy-யின் string functions-ஐ பயன்படுத்தி, strings-ஐ uppercase, lowercase, join, replace போன்ற operations செய்யலாம். இது data processing-ஐ எளிதாக்குவதுடன், string manipulation-ஐ memory-efficient-ஆகவும் செய்கிறது.

Input:

```
import numpy as np

# String functions example
string_array = np.array(['hello', 'world'])
upper_case = np.char.upper(string_array)
print("Uppercase Strings:", upper_case)
```

Output:

```
Uppercase Strings: ['HELLO' 'WORLD']
```

- **np.char.upper()** function-ஐ பயன்படுத்தி, array-இல் உள்ள strings-ஐ uppercase-ஆக மாற்றியுள்ளோம்.
- **string_array** எனப்படும் array-இல் உள்ள 'hello' மற்றும் 'world' என்பவை 'HELLO' மற்றும் 'WORLD' ஆக மாற்றப்படுகின்றன.
- இந்த function-ஐ strings-ஐ case conversion செய்ய பயன்படுத்தலாம்.

Additional String Functions in NumPy

1. Lowercase Conversion:

o **np.char.lower()** function-ஐ strings-ஐ lowercase-ஆக மாற்ற பயன்படுத்தலாம்.

Input:

```
lower_case = np.char.lower(string_array)
print("Lowercase Strings:", lower_case)
```

Output: Lowercase Strings: ['hello' 'world']

2. String Concatenation:

o **np.char.add()** function strings-ஐ concatenate செய்ய உதவுகிறது.

Input:

```
concatenated = np.char.add(['hello '], ['world'])
print("Concatenated String:", concatenated)
```

Output: Concatenated String: ['hello world']

3. Replace Substrings:

o **np.char.replace()** function strings-இல் உள்ள substring-ஐ மாற்ற பயன்படுகிறது.

Input:

```
replaced_string = np.char.replace('Hello World', 'World', 'NumPy')
print("Replaced String:", replaced_string)
```

Output: Replaced String: Hello NumPy

4. String Split:

o **np.char.split()** function strings-ஐ substring-களாக பிரிக்க உதவுகிறது.

Input:

```
split_string = np.char.split('Hello World')
print("Split String:", split_string)
```

Output: Split String: ['Hello', 'World']

இந்த string functions NumPy array-களில் உள்ள strings-ஐ manipulate செய்ய memory-efficient methods-ஐ வழங்குகின்றன, இது data processing மற்றும் text handling-ஐ எளிதாக்குகிறது.

12. NUMPY - MATHEMATICAL FUNCTIONS

NumPy-ல் பல்வேறு **mathematical functions** உள்ளன, இது arrays-இல் உள்ள values-ஐ நேரடியாக கணக்கிடவும், analyze செய்யவும் உதவுகிறது. இதன் மூலம் complex mathematical operations-ஐ எளிதாகவும் memory-efficient-ஆகவும் செயல்படுத்த முடியும்.

12.1. Trigonometric Functions

Numpy-ல் **trigonometric functions** மூலம் sin, cos, tan போன்ற values-ஐ angles-ஐ அடிப்படையாகக் கொண்டு கணக்கிட முடியும். இவை scientific calculations, signal processing மற்றும் data analysis-ல் பயன்படும்.

Input:

```
import numpy as np

# Trigonometric functions
angles = np.array([0, np.pi/2, np.pi])
sine_values = np.sin(angles)
print("Sine Values:", sine_values)
```

Output:

```
Sine Values: [0.000000e+00 1.000000e+00 1.224647e-16]
```

- **angles** array-ஐ பயன்படுத்தி [0, π/2, π] போன்ற radians values கொடுக்கப்பட்டுள்ளது.
- **np.sin()** function angles-இன் sine values-ஐ return செய்கிறது.
- Output-ல் sine values, அதாவது [0, 1, 0] போன்ற values-ஐ return செய்கிறது, இவை rounding error காரணமாக மிகச் சின்ன values-ஆக காணப்படலாம்.

Additional Trigonometric Functions:

1. Cosine Calculation:

Input:

```
cosine_values = np.cos(angles)
print("Cosine Values:", cosine_values)
```

Output: Cosine Values: [1.000000e+00 6.123234e-17 -1.000000e+00]

2. Tangent Calculation:

Input:

```
tangent_values = np.tan(angles)
print("Tangent Values:", tangent_values)
```

Output: Tangent Values: [0.000000e+00 1.633124e+16 -1.224647e-16]

12.2. Functions for Rounding

NumPy-ல் rounding operations-ஐ செய்ய, **round, floor, ceil** போன்ற functions உள்ளன. இவை decimal values-ஐ nearest integers-ஆக rounding, flooring, மற்றும் ceiling செய்து return செய்யும்.

Input:

```
# Rounding functions
float_array = np.array([1.2, 2.5, 3.8])
rounded_values = np.round(float_array)
print("Rounded Values:", rounded_values)
```

Output:

```
Rounded Values: [1. 2. 4.]
```

- **np.round()** function array-இல் உள்ள decimal values-ஐ nearest whole number-ஆக rounding செய்கிறது.
- Output-ல் [1.2 -> 1, 2.5 -> 2, 3.8 -> 4] ஆக rounding செய்யப்பட்ட values-ஐ return செய்கிறது.

Additional Rounding Functions:

- 1. Floor Operation:
 - o **np.floor()** function values-ஐ nearest lower integer-ஆக round செய்கிறது.

Input:

```
floor_values = np.floor(float_array)
print("Floor Values:", floor_values)
```

Output: Floor Values: [1. 2. 3.]

2. Ceil Operation:

o **np.ceil()** function values-ஐ nearest upper integer-ஆக round செய்கிறது.

Input:

```
ceil_values = np.ceil(float_array)
print("Ceil Values:", ceil_values)
```

Output: Ceil Values: [2. 3. 4.]

12.3. Exponential and Logarithmic Functions

NumPy-ல் exponential மற்றும் logarithmic operations-ஐ செய்யவும் functions உள்ளது. இது data growth மற்றும் scale-down analysis-ஐ scientific context-ல் பயன்படும்.

```
# Exponential function
exp_values = np.exp([1, 2, 3])
print("Exponential Values:", exp_values)
```

```
Exponential Values: [ 2.71828183 7.3890561 20.08553692]
```

- **np.exp(**) function values-ஐ exponential form-ல் (e^x) return செய்கிறது.
- இது data growth மற்றும் probability analysis-க்கு பயன்படும்.

Logarithmic Calculation

Input:

```
# Logarithmic function
log_values = np.log([1, np.e, np.e**2])
print("Logarithmic Values:", log_values)
```

Output:

```
Logarithmic Values: [0. 1. 2.]
```

- **np.log()** function values-ஐ natural logarithm (base e) form-ல் return செய்கிறது.
- இது data analysis மற்றும் scale transformations-க்கு பயன்படும்.

இந்த NumPy mathematical functions arrays-இல் arithmetic மற்றும் statistical operations-ஐ memory-efficient-ஆகவும் computationally fast-ஆகவும் செயல்படுத்த உதவுகின்றன.

13. NUMPY – ARITHMETIC OPERATIONS

NumPy-யில் **arithmetic operations** மிக எளிமையானவை, மற்றும் array-களின் values-ஐ நேரடியாக மாற்றி கொண்டுவர முடியும். இதனால், data analysis மற்றும் scientific calculations-ஐ வேகமாகவும் திறமையாகவும் செய்ய முடிகிறது.

13.1. numpy.reciprocal()

reciprocal() function-ஐ பயன்படுத்தி, array-இல் உள்ள values-ஐ reciprocal values-ஆக மாற்றலாம். Reciprocal என்பது 1/x என்ற சார்பாக இயங்கும், அதாவது, 1 ஐ given value-ஆல் பகுத்தல்.

Input:

```
# Reciprocal operation
array = np.array([1, 2, 4])
reciprocal_values = np.reciprocal(array)
print("Reciprocal values:", reciprocal_values)
```

Output:

```
Reciprocal values: [1 0 0]
```

- array values = [1, 2, 4]
- Reciprocal calculation = [1/1, 1/2, 1/4] = [1.0, 0.5, 0.25]
- NumPy integers-க்கு reciprocal values-ஐ முழுமையாகச் செருகுவதில்லை, fractional results முழுமையாக return செய்யப்படுகின்றன, இதை துல்லியமாக பெற floating-point data type-ஐ பயன்படுத்தலாம்.

Note: Integer array-இல் reciprocal values truncate செய்யப்பட்டு 0 ஆக இருக்கும், fractional values துல்லியமாகத் தர வேண்டுமானால், float array-ஐ பயன்படுத்துவது நல்லது.

13.2. numpy.power()

power() function-ஐ பயன்படுத்தி, array-இல் உள்ள values-ஐ exponentiation செய்யலாம். இது base value-ஐ exponent power-க்கு அடிக்கலாம்.

Input:

```
# Power operation
base = np.array([2, 3, 4])
exponent = np.array([2, 3, 2])
power_values = np.power(base, exponent)
print("Power values:", power_values)
```

```
Power values: [ 4 27 16]
```

- **base** values = [2, 3, 4]
- **exponent** values = [2, 3, 2]
- Power calculation = $[2^2, 3^3, 4^2]$ = [4, 27, 16]
- **np.power()** function base array-இன் ஒவ்வொரு value-க்கும் exponent array-ஐ use செய்து exponentiation செய்கிறது.

13.3. numpy.mod()

mod() function-ஐ பயன்படுத்தி, array-இல் modulus operation செய்யலாம். இது division operation செய்து, division லிருந்து மீதி values-ஐ return செய்யும்.

Input:

```
# Modulus operation
a = np.array([10, 20, 30])
b = np.array([3, 5, 7])
mod_values = np.mod(a, b)
print("Modulus values:", mod_values)
```

Output:

```
Modulus values: [1 0 2]
```

- a values = [10, 20, 30]
- **b** values = [3, 5, 7]
- Modulus calculation = [10 % 3, 20 % 5, 30 % 7] = [1, 0, 2]
- **np.mod()** function values-ஐ divide செய்து, division-லிருந்து மீதி values-ஐ return செய்கிறது.

Additional Arithmetic Operations

numpy.add() and numpy.subtract()

• Addition:

Input:

```
addition_result = np.add([1, 2, 3], [4, 5, 6])
print("Addition result:", addition_result)
```

Output: Addition result: [5 7 9]

Subtraction:

Input:

```
subtraction_result = np.subtract([10, 20, 30], [4, 5, 6])
print("Subtraction result:", subtraction_result)
```

Output: Subtraction result: [6 15 24]

இந்த arithmetic operations data analysis மற்றும் numerical computations-ஐ memory-efficient-ஆகவும், computationally fast-ஆகவும் செயல்படுத்த உதவுகின்றன.

14. NUMPY – STATISTICAL FUNCTIONS

NumPy-யில் பல **statistical functions** உள்ளன, இது data-யை எளிதாக புள்ளிவிவரமாக பரிசோதிக்க உதவுகிறது. இந்த statistical functions data analysis மற்றும் decision-making செயல்பாடுகளை துல்லியமாகவும் memory-efficient-ஆகவும் செய்ய உதவுகின்றன.

14.1. numpy.amin() and numpy.amax()

amin() மற்றும் amax() functions-ஐ பயன்படுத்தி array-இல் உள்ள குறைந்த மற்றும் அதிகமான values-ஐ கண்டறியலாம். இது data-யின் minimum மற்றும் maximum values-ஐ எளிதாக return செய்கிறது.

Input:

```
import numpy as np

# Finding min and max values
array = np.array([10, 20, 30, 40, 50])
min_value = np.amin(array)
max_value = np.amax(array)
print("Minimum value:", min_value)
print("Maximum value:", max_value)
```

Output:

```
Minimum value: 10
Maximum value: 50
```

- **np.amin()** function array-இல் உள்ள குறைந்த value-ஐ return செய்கிறது.
- **np.amax()** function array-இல் உள்ள அதிகமான value-ஐ return செய்கிறது.
- இந்த functions data-யின் extreme values-ஐ கண்டறிய data validation மற்றும் data quality analysis-க்கு பயனுள்ளது.

14.2. numpy.ptp()

ptp() function-ஐ பயன்படுத்தி array-இன் maximum மற்றும் minimum values-இன் range-ஐ காணலாம். இது peak-to-peak range-ஐ எளிதாக return செய்கிறது.

Input:

```
# Range of values using ptp( )
range_value = np.ptp(array)
print("Range (ptp):", range_value)
```

```
Range (ptp): 40
```

- **ptp()** function array-இல் உள்ள maximum value மற்றும் minimum value இடையிலான difference-ஐ return செய்கிறது.
- இந்த range values data-யின் spread-ஐ அளவிடும் metric ஆகும், இது data variability-ஐ அறிய உதவும்.

14.3. numpy.percentile()

percentile() function-ஐ array-இல் உள்ள values-இன் percentile-ஐ கண்டறிய பயன்படுத்தலாம். Percentile என்பது data-இல் உள்ள values-ஐ ஒரு குறிப்பிட்ட அளவிற்கு மேல் அல்லது கீழ் உள்ளவர்களாகப் பகுக்க உதவும்.

Input:

```
# Percentile calculation
percentile_value = np.percentile(array, 50)
print("50th Percentile:", percentile_value)
```

Output:

```
50th Percentile: 30.0
```

- **np.percentile()** function array-இல் உள்ள values-இன் குறிப்பிட்ட percentile-ஐ return செய்கிறது.
- 50th percentile என்பது median value ஆகும், இது data distribution-ஐ அறிய மிகவும் முக்கியமானது.
- Percentile calculations data-யின் distribution-ஐ அறிந்து data analysis-ல் useful insights அளிக்கிறது.

14.4. numpy.median()

median() function array-இல் values-ஐ arrange செய்த பிறகு, அதில் உள்ள center value-ஐ return செய்கிறது. Median என்பது values-ஐ ascending order-ல் வரிசைப்படுத்திய பிறகு உள்ள நடுநிலையான value ஆகும்.

Input:

```
import numpy as np

# Median calculation
array = np.array([10, 20, 30, 40, 50])
median_value = np.median(array)
print("Median value:", median_value)
```

Output:

```
Median value: 30.0
```

- median() function array-இல் உள்ள values-ஐ arrange செய்து, center value-ஐ return செய்கிறது.
- Median calculation data-இன் central tendency-ஐ அளவிட மிகவும் பயனுள்ளது, ஏனெனில் இது extreme values-ஐ (outliers) ignore செய்கிறது.

14.5. numpy.mean()

mean() function array-இல் values-இன் arithmetic mean (average) value-ஐ return செய்கிறது. Mean என்பது data-இல் உள்ள values-ஐ sum செய்து, அந்த sum-ஐ values-இன் எண்ணிக்கையால் பகுத்தல்.

Input:

```
# Mean calculation
mean_value = np.mean(array)
print("Mean value:", mean_value)
```

Output:

```
Mean value: 30.0
```

- mean() function array-இல் values-ஐ average-ஆக return செய்கிறது.
- Mean calculation data distribution-ஐ அறிய முக்கியமானது, இது values-ஐ central tendency-ல் புரிந்து கொள்ள உதவுகிறது.

14.6. numpy.average()

average() function array-இல் values-ஐ weighted average-ஆக return செய்கிறது. Weighted average-ல் values-க்கு கொடுக்கப்படும் importance (weight) அடிப்படையில் calculations செய்யப்படுகிறது.

Input:

```
# Weighted average calculation
weights = np.array([1, 2, 3, 4, 5])
weighted_average = np.average(array, weights=weights)
print("Weighted average:", weighted_average)
```

Output:

```
Weighted average: 40.0
```

- average() function values-இல் weights கொடுத்த பிறகு weighted average-ஐ return செய்கிறது.
- Weighted average data importance-ஐ அடிப்படையாக கொண்டு average value-ஐ return செய்யும், இது decision-making process-ல் மிக முக்கியம்.

14.7. Standard Deviation

std() function array-இல் values-ஐ standard deviation-ஆக return செய்கிறது. Standard deviation என்பது values-ஐ mean-இன் சுற்றிலும் எவ்வளவு scatter ஆக இருக்கின்றன என்பதை அளவிடும்.

```
# Standard deviation calculation
std_value = np.std(array)
print("Standard Deviation:", std_value)
```

```
Standard Deviation: 14.142135623730951
```

- std() function array-இல் values-ஐ standard deviation-ஆக return செய்கிறது.
- Standard deviation values-ஐ mean-இன் சுற்றிலும் எவ்வளவு வித்தியாசமாக உள்ளன என்பதை காட்டும், இது data variability-ஐ அறிய உதவுகிறது.

14.8. Variance

var() function array-இல் values-ஐ variance-ஆக return செய்கிறது. Variance என்பது values-ஐ mean-இன் சுற்றிலும் deviation-ஐ square செய்து return செய்கிறது.

Input:

```
# Variance calculation
variance_value = np.var(array)
print("Variance:", variance_value)
```

Output:

```
Variance: 200.0
```

- var() function array-இல் values-ஐ variance-ஆக return செய்கிறது.
- Variance values-ஐ mean-இன் சுற்று deviation-ஐ square செய்து அளவிடும், இது data spread-ஐ மேம்பட அறிய உதவும்.

இந்த statistical functions data analysis மற்றும் data interpretation-ல் முக்கிய பங்காற்றுகின்றன, மேலும் decision-making செயல்பாடுகளை துல்லியமாகவும் memory-efficient-ஆகவும் செய்ய உதவுகின்றன.

15. NUMPY - SORT, SEARCH & COUNTING FUNCTIONS

NumPy-யில் **sort, search மற்றும் counting** functions-ஐ பயன்படுத்தி array-களின் values-ஐ வரிசைப்படுத்தவும், தேடவும் மற்றும் எண்ணிக்கையிடவும் முடியும். இவை data analysis மற்றும் data manipulation-ஐ எளிமையாக்க உதவுகின்றன.

15.1. numpy.sort()

sort() function-ஐ பயன்படுத்தி array-இல் values-ஐ ascending order-ல் வரிசைப்படுத்தலாம். இது data-ஐ reorganize செய்ய memory-efficient-ஆகவும் computationally fast-ஆகவும் செய்கிறது.

Input:

```
import numpy as np

# Array sort operation
array = np.array([5, 2, 8, 1, 9])
sorted_array = np.sort(array)
print("Sorted array:", sorted_array)
```

Output:

```
Sorted array: [1 2 5 8 9]
```

- **np.sort()** function array-இல் values-ஐ ascending order-ல் வரிசைப்படுத்துகிறது.
- இது data-ஐ orderly format-ஆக மாற்றி, analysis-க்கு எளிதாகிறது.

15.2. numpy.argsort()

argsort() function-ஐ பயன்படுத்தி, array-இல் values-ஐ வரிசைப்படுத்த indices-ஐ return செய்கிறது. இது values-ஐ original order-ல் எவ்வாறு வரிசைப்படுத்த வேண்டுமென காட்டும்.

Input:

```
# Argsort operation
indices = np.argsort(array)
print("Indices of sorted array:", indices)
```

Output:

```
Indices of sorted array: [3 1 0 2 4]
```

- **np.argsort()** function-ஐ பயன்படுத்தி sorted order-ல் values எங்கே இருக்கின்றன என்பதன் indices-ஐ return செய்கிறது.
- இது data-ஐ arrange செய்யாதே, values-ஐ reference அடிப்படையில் access செய்ய உதவுகிறது.

15.3. numpy.lexsort()

lexsort() function ஒரு அல்லது அதற்கும் அதிகமான keys-ஐ அடிப்படையாக வைத்து data-ஐ வரிசைப்படுத்தும். இது multi-dimensional data-ஐ இரண்டு அல்லது அதற்கு மேற்பட்ட criteria அடிப்படையில் organize செய்ய உதவுகிறது.

Input:

```
# Lexsort operation
names = ['banana', 'apple', 'cherry']
prices = [40, 10, 30]
sorted_indices = np.lexsort((prices, names))
print("Sorted indices based on names and prices:", sorted_indices)
```

Output:

```
Sorted indices based on names and prices: [1 2 0]
```

- **np.lexsort()** function-ஐ இரண்டு keys (names, prices) அடிப்படையில் data-ஐ arrange செய்ய பயன்படுத்தியுள்ளோம்.
- இது data-ஐ multi-level sorting-ஆக reorder செய்ய உதவுகிறது, இதன் மூலம் complex data-ஐ organize செய்யலாம்.

15.4. numpy.argmax() and numpy.argmin()

argmax() மற்றும் argmin() functions array-இல் உள்ள மிகப் பெரிய மற்றும் சிறிய values-இருக்கும் indices-ஐ return செய்கின்றன. இது array-இல் உள்ள extreme values-ஐ எளிதாக கண்டறிய உதவுகிறது.

Input:

```
# Argmax and Argmin operations
max_index = np.argmax(array)
min_index = np.argmin(array)
print("Index of maximum value:", max_index)
print("Index of minimum value:", min_index)
```

Output:

```
Index of maximum value: 4
Index of minimum value: 3
```

- **np.argmax()** function array-இல் உள்ள maximum value-ஐ கொண்ட index-ஐ return செய்கிறது.
- **np.argmin()** function minimum value-ஐ கொண்ட index-ஐ return செய்கிறது.
- இது data-ஐ identify செய்து, peak values-ஐ track செய்ய உதவுகிறது.

15.5. numpy.nonzero()

nonzero() function array-இல் 0 அல்லாத values-இருக்கும் இடங்களை return செய்கிறது. இது sparse data-ஐ handle செய்யும் போது மிகவும் பயனுள்ளது.

```
# Non-zero indices
nonzero_indices = np.nonzero(array)
print("Indices of non-zero elements:", nonzero_indices)
```

```
Indices of non-zero elements: (array([0, 1, 2, 3, 4]),)
```

- **np.nonzero()** function array-இல் 0 values இல்லாத இடங்களை return செய்கிறது.
- இது data-ஐ filter செய்து, sparse data structures-ஐ அறிய memory-efficient-ஆகப் பயன்படுத்தப்படுகிறது.

15.6. numpy.where()

where() function ஒரு condition அடிப்படையில் array-இல் values-இருக்கும் இடங்களை return செய்கிறது. இது conditional logic-ஐ பயன்படுத்தி data-ஐ filter செய்ய உதவுகிறது.

Input:

```
# Where operation
condition_indices = np.where(array > 4)
print("Indices where values > 4:", condition_indices)
```

Output:

```
Indices where values > 4: (array([0, 2, 4]),)
```

- **np.where()** function-ஐ condition (values > 4) அடிப்படையில் values-இருக்கும் இடங்களை return செய்கிறது.
- இது boolean indexing-ஐ பயன்படுத்தி data-ஐ filter செய்ய எளிதாக்குகிறது.

15.7. numpy.extract()

extract() function-ஐ condition அடிப்படையில் array-இல் values-ஐ return செய்ய பயன்படுத்தலாம். இது data-இல் குறிப்பிட்ட condition satisfy செய்யும் values-ஐ எளிதாக பெற உதவுகிறது.

Input:

```
# Extract operation
extracted_values = np.extract(array > 4, array)
print("Extracted values greater than 4:", extracted_values)
```

```
Extracted values greater than 4: [5 8 9]
```

- **np.extract()** function array values-இல் condition satisfy செய்யும் values-ஐ return செய்கிறது.
- இது data analysis மற்றும் decision-making-ல் memory-efficient filtering operation ஆகிறது.

இந்த functions data sorting, searching மற்றும் filtering operations-ஐ memory-efficient-ஆகவும் computationally fast-ஆகவும் செய்கின்றன, மேலும் data analysis மற்றும் data handling-ஐ எளிதாக்குகின்றன.

16. NUMPY - BYTE SWAPPING

NumPy-யில் **byteswap()** function-ஐ பயன்படுத்தி array-இல் உள்ள values-ஐ byte-order மாற்றம் செய்ய முடியும். Byte swapping என்பது data representation-ஐ big-endian மற்றும் little-endian format-களுக்கு இடையே மாற்றுவது ஆகும். இது cross-platform data compatibility மற்றும் binary data handling-க்கு உதவுகிறது.

Byte-order: Big-endian vs Little-endian

- **Big-endian**: Data-யின் முக்கியமான byte (most significant byte) memory-யில் முதலில் சேமிக்கப்படும்.
- **Little-endian**: Data-யின் முக்கியமல்லாத byte (least significant byte) memory-யில் முதலில் சேமிக்கப்படும்.

Byte-order format என்பது data-ஐ எவ்வாறு memory-யில் represent செய்ய வேண்டும் என்பதைக் குறிப்பிடுகிறது, இது different computer architectures-ல் வேறுபடும்.

Input:

```
import numpy as np

# Byte swapping operation
array = np.array([1, 256, 8755], dtype=np.int16)
swapped_array = array.byteswap( )
print("Original array:", array)
print("Byte swapped array:", swapped_array)
```

Output:

```
Original array: [ 1 256 8755]
Byte swapped array: [ 256 1 38530]
```

- Original array: [1, 256, 8755] என்ற values-ஐ little-endian format-ல் represent செய்யப்பட்டுள்ளது.
- **byteswap()** function-ஐ பயன்படுத்திய பிறகு, **byte-order** மாற்றப்பட்டு values-ஐ **big-endian** format-ல் represent செய்கிறது.
- **Swapped array**: [256, 1, 38530] என values-ஐ மாற்றியுள்ளோம், இது byte-level representation-ஐ மாற்றியது.

எப்போது Byte Swapping பயன்படுத்த வேண்டும்?

- 1. **Cross-platform Compatibility**: Different systems-ல் data-ஐ transfer செய்யும்போது byte-order மாற்றம் தேவையானது.
- 2. **Binary Data Handling**: Low-level data processing மற்றும் file I/O operations-ல் byte-order conversion மிகவும் முக்கியம்.
- 3. **Networking Protocols**: Data-ஐ network-ல் different architectures-க்கு அனுப்பும்போது byte-order conversion தேவைப்படும்.
- **dtype Selection**: **byteswap()** operation-ஐ பயன்படுத்தும்போது, array-இன் data type (like np.int16, np.int32) மிகவும் முக்கியமானது, ஏனெனில் byte-order conversion அதில் இருக்கும் byte count-ஐ அடிப்படையாகக் கொண்டது.

• In-place Operation: byteswap() function array-ஐ original array-யை மாற்றாமல், புதிய array-ஐ return செய்கிறது. இதனால் original data intact ஆக இருக்கும்.

Byte-order Representation:

- **Little-endian**: Data-யின் முக்கியமல்லாத byte முதலில் வரும். உதாரணமாக, 256 என்ற integer value **little-endian**-ல் 0x0100 ஆக represent செய்யப்படும்.
- **Big-endian**: Data-யின் முக்கியமான byte முதலில் வரும். அதே 256 value **big-endian**-ல் 0x0001 ஆக represent செய்யப்படும்.

Byte Swapping's Importance in Data Processing:

- Data Interoperability: Systems-ல் data-ஐ endian-specific format-ல் represent செய்ய வேண்டும்.
- **Performance Optimization**: Different architectures-ல் memory access operations-byte-order alignment எவ்வாறு செய்யப்படுகிறது என்பதைக் குறிக்கிறது.
- Data Integrity: Byte swapping operations-இல் data corruption இல்லாமல் transfer-ஐ உறுதி செய்கிறது.

இந்த **byteswap()** operation data interoperability மற்றும் endianess conversion-ஐ எளிமையாக memory-efficient-ஆகவும் நுட்பமாகவும் செயல்படுத்த உதவுகிறது.

17. NUMPY - COPIES & VIEWS

NumPy-யில் data-ஐ manage செய்வதற்கான மூன்று முக்கியமான concepts உள்ளன: **No Copy, View அல்லது Shallow Copy, Deep Copy**. இவை memory-யை எவ்வாறு handle செய்ய வேண்டும், data-ஐ duplicate செய்ய வேண்டுமா என்பதனை புரிந்து கொள்ள உதவுகின்றன.

17.1. No Copy

ஒரு array-ஐ மற்றொரு variable-க்கு assign செய்தால், அது original data-ஐ reference செய்து கொண்டிருக்கும். இதற்கு copy உருவாகாது. இதன் பொருள், original array மற்றும் new variable ஒன்று data-ஐ share செய்கின்றன.

Input:

```
import numpy as np

# No copy operation
array = np.array([1, 2, 3])
no_copy_array = array
no_copy_array[0] = 10
print("Original array after modification:", array)
print("No Copy array:", no_copy_array)
```

Output:

```
Original array after modification: [10 2 3]
No Copy array: [10 2 3]
```

- No Copy-இல், original array-ஐ new variable-க்கு assign செய்தால், அது original data-ஐ reference செய்கிறது.
- no_copy_array-இல் மாற்றம் செய்யும் போது, array-யிலும் அதே மாற்றம் நிகழ்கிறது, ஏனெனில் இவை இரண்டுமே ஒரே memory location-ஐ reference செய்கின்றன.

17.2. View or Shallow Copy

view() method-ஐ பயன்படுத்தி ஒரு shallow copy உருவாக்கலாம். Shallow copy என்பது data-இல் உள்ள changes-ஐ reflect செய்யும், ஆனால் data structure மாற்றும்போது மாற்றம் இல்லாது இருக்கும்.

Input:

```
# Shallow copy operation
view_array = array.view( )
view_array[1] = 20
print("Original array after view modification:", array)
print("View array:", view_array)
```

```
Original array after view modification: [10 2 3]
View array: [10 20 3]
```

- **Shallow Copy**-இல், **view_array**-ஐ modify செய்தாலும், original array-யில் எந்த மாற்றமும் இல்லை, ஏனெனில் shallow copy data structure-ஐ share செய்கிறது.
- இதற்காக memory usage குறைவாக இருக்கும், ஆனால் data values-ஐ மட்டுமே modify செய்யலாம்.

17.3. Deep Copy

copy() method-ஐ பயன்படுத்தி ஒரு deep copy உருவாக்கலாம். Deep copy data-ஐ முழுமையாக independent-ஆக duplicate செய்கிறது. இதனால், original data-ஐ மாற்றினாலும், copy-ஐ எந்த விதமான பாதிப்பும் இருக்காது.

Input:

```
# Deep copy operation
deep_copy_array = array.copy( )
deep_copy_array[2] = 30
print("Original array after deep copy modification:", array)
print("Deep copy array:", deep_copy_array)
```

Output:

```
Original array after deep copy modification: [10 2 3]
Deep copy array: [10 2 30]
```

- **Deep Copy**-இல், **deep_copy_array** என்பது original data-ஐ முற்றிலும் duplicate செய்தது, எனவே copy-ஐ modify செய்தாலும், original array-யில் எந்த மாற்றமும் இல்லை.
- இது data integrity மற்றும் data isolation-ஐ உறுதிப்படுத்தும் போது மிகவும் பயனுள்ளதாக இருக்கும்.

எப்போது எந்த Copy-ஐ பயன்படுத்த வேண்டும்?

- 1. **No Copy**: Data-ஐ share செய்ய வேண்டுமானால், memory efficient-ஆக இருக்கும்.
- 2. **Shallow Copy**: Data structure-ஐ பயன்படுத்தும்போது memory usage குறைவாக வேண்டுமானால்.
- 3. **Deep Copy**: Data-ஐ completely duplicate செய்து, isolated environment-ல் manipulate செய்யவேண்டும் என்றால்.

NumPy-யின் **copies & views** methods data manipulation-ஐ எளிதாக்கி, memory-யை திறமையாக handle செய்ய உதவுகின்றன.

18. NUMPY - MATRIX LIBRARY

NumPy-யில் உள்ள **matrix library** என்பது matrix-களை உருவாக்கவும், நிர்வகிக்கவும் உதவும் functions-களை கொண்டுள்ளது. NumPy.matlib functions-ஐ பயன்படுத்தி, நீங்கள் matrix operations-ஐ memory-efficient-ஆகவும் computationally fast-ஆகவும் செயல்படுத்த முடியும். இது scientific computing மற்றும் linear algebra operations-ஐ எளிமையாக செய்கிறது.

18.1. matlib.empty()

matlib.empty() function-ஐ பயன்படுத்தி, uninitialized values கொண்ட ஒரு matrix-ஐ உருவாக்கலாம். Uninitialized matrix என்பது memory-யில் உள்ள பயனற்ற values-ஐ பயன்படுத்தி matrix-ஐ உருவாக்கும், இதனால் memory allocation மிக வேகமாக இருக்கும்.

Input:

```
import numpy.matlib as matlib

# Empty matrix உருவாக்கல்
empty_matrix = matlib.empty((2, 3))
print("Empty matrix:\n", empty_matrix)
```

Output:

```
Empty matrix:
[[4.66651921e-310 0.00000000e+000 2.05833592e-312]
[6.79038654e-313 2.14321575e-312 2.27053550e-312]]
```

- **matlib.empty(**) function-ஐ பயன்படுத்தி, 2 rows மற்றும் 3 columns கொண்ட uninitialized matrix-ஐ உருவாக்கியுள்ளோம்.
- Uninitialized matrix values என்பது random memory values ஆகும், ஏனெனில் values-ஐ initialize செய்யாமல் memory-யில் allocate செய்யப்படுகிறது.
- இந்த method-ஐ data initialization தேவையில்லாத computation-ல், மிக வேகமாக memory-யை allocate செய்ய பயன்படுத்தலாம்.

எப்போது matlib.empty() பயன்படுத்த வேண்டும்?

- **Performance Optimization**: Memory-யை வேகமாக allocate செய்ய வேண்டிய இடத்தில், ஆனால் values-ஐ பின்னர் initialize செய்யும் data structures-ல்.
- **Data Allocation**: Data-ஐ அடிப்படையாக பயன்படுத்தாமல் placeholder ஆக memory-யில் data structure உருவாக்கும்போது.

18.2. numpy.matlib.zeros()

matlib.zeros() function-ஐ பயன்படுத்தி, எல்லா elements-னும் zeros ஆக உள்ள ஒரு matrix-ஐ உருவாக்கலாம். இது scientific calculations மற்றும் numerical computations-ஐ நேரடியாக initialize செய்ய உதவும், ஏனெனில் zeros கொண்ட matrix-கள் இடம் பிடிக்கும் computation-ஐ எளிமையாக மாற்றுகின்றன.

```
# Zeros matrix உருவாக்கல்
zeros_matrix = matlib.zeros((3, 3))
print("Zeros matrix:\n", zeros_matrix)
```

```
Zeros matrix:
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
```

- **matlib.zeros()** function-ஐ பயன்படுத்தி 3 rows மற்றும் 3 columns கொண்ட matrix-ஐ உருவாக்கியுள்ளோம், இதில் எல்லா values-ஐயும் zero-ஆக initialize செய்துள்ளோம்.
- Zeros matrix scientific computing-ல் உள்ள data structures-ஐ initialize செய்ய உதவுகிறது, ஏனெனில் calculations-ல் zero values கொண்ட matrix-கள் computation-ஐ தொடங்குவதற்கு ஆரம்ப கட்டமாக பயன்படுத்தப்படுகின்றன.

எப்போது matlib.zeros() பயன்படுத்த வேண்டும்?

- **Default Initialization**: Numerical operations-ஐ ஆரம்ப கட்டமாக zeros matrix-கள் கொண்ட data structure-ஐ பயன்படுத்தும்போது.
- **Matrix Operations**: Linear algebra மற்றும் matrix multiplication போன்ற கணக்கீடுகளுக்கு ஆரம்ப கட்டத்தில் null values ஆக இருக்கும் data-ஐ initialize செய்ய வேண்டும்.

18.3. numpy.matlib.ones()

matlib.ones() function-ஐ பயன்படுத்தி, எல்லா elements-னும் ones ஆக உள்ள ஒரு matrix-ஐ உருவாக்கலாம். இது matrix-ஐ முழுமையாக ones values-ஆக initialize செய்வதற்காக memory-efficient-ஆக செயல்படுகிறது.

Input:

```
import numpy.matlib as matlib

# Ones matrix உருவாக்கல்

ones_matrix = matlib.ones((2, 4))

print("Ones matrix:\n", ones_matrix)
```

```
Ones matrix:
[[1. 1. 1. 1.]
[1. 1. 1.]]
```

- **matlib.ones()** function-ஐ பயன்படுத்தி 2 rows மற்றும் 4 columns கொண்ட matrix-ஐ உருவாக்கியுள்ளோம், இதில் எல்லா values-னும் ones ஆக இருக்கும்.
- இது scientific calculations மற்றும் linear algebra operations-ல் முக்கியமான data structures-ஐ initialize செய்ய உதவுகிறது.

எப்போது matlib.ones() பயன்படுத்த வேண்டும்?

- **Data Initialization**: Calculations-ஐ ஆரம்பிக்கும் முன் default values-ஆக ones கொண்ட data structures-ஐ initialize செய்ய.
- **Matrix Operations**: Machine learning algorithms மற்றும் matrix algebra operations-ல் identity values-ஐ represent செய்ய.

18.4. numpy.matlib.eye()

matlib.eye() function-ஐ diagonal values-ல் ones மற்றும் மற்ற இடங்களில் zeros values கொண்ட ஒரு identity matrix-ஐ உருவாக்க பயன்படுத்தலாம். இது rectangular shape-உம் diagonal-ல் identity values-ஐ represent செய்யும்.

Input:

```
# Eye matrix (identity matrix) உருவாக்கல்
eye_matrix = matlib.eye(n=3, M=4, k=0, dtype=int)
print("Eye matrix:\n", eye_matrix)
```

Output:

```
Eye matrix:
[[1 0 0 0]
[0 1 0 0]
[0 0 1 0]]
```

- **matlib.eye(**) function-ஐ பயன்படுத்தி 3 rows மற்றும் 4 columns கொண்ட matrix-ஐ diagonal-ல் ones values-ஐ கொண்டு உருவாக்கியுள்ளோம்.
- **k=0** என்பது main diagonal-ஐ குறிக்கிறது, ஆனால் positive அல்லது negative values கொடுத்தால், upper அல்லது lower diagonals-ஐ represent செய்ய முடியும்.

எப்போது matlib.eye() பயன்படுத்த வேண்டும்?

- **Identity Matrix Creation**: Linear algebra மற்றும் matrix inversion operations-ல் identity matrix-ஐ உருவாக்க.
- **Diagonal Operations**: Specific diagonal-ல் values-ஐ represent செய்து computations-ஐ எளிதாக்க.

18.5. numpy.matlib.identity()

matlib.identity() function square matrix-ஐ உருவாக்குவதற்காக diagonal-ல் மட்டும் ones values-ஐ கொண்டு பயன்படுத்தப்படுகிறது. இது square matrix-களில் diagonal values-ஐ identity values-ஆக represent செய்யும்.

Input:

```
# Identity matrix உருவாக்கல்
identity_matrix = matlib.identity(4, dtype=float)
print("Identity matrix:\n", identity_matrix)
```

```
Identity matrix:
  [[1. 0. 0. 0.]
  [0. 1. 0. 0.]
  [0. 0. 1. 0.]
  [0. 0. 0. 1.]]
```

- **matlib.identity()** function-ஐ பயன்படுத்தி 4x4 square identity matrix-ஐ diagonal-ல் ones values-ஐ கொண்டு உருவாக்கியுள்ளோம்.
- Identity matrix என்பது square matrix algebra மற்றும் linear transformations-ல் மிகவும் முக்கியமானது.

எப்போது matlib.identity() பயன்படுத்த வேண்டும்?

- **Square Matrix Operations**: Linear algebra operations மற்றும் machine learning algorithms-ல் identity matrix-ஐ represent செய்ய.
- **Matrix Calculations**: Square matrix calculations-ஐ ஆரம்ப கட்டத்தில் identity values கொண்டு initialize செய்ய.

18.6. numpy.matlib.rand()

matlib.rand() function-ஐ பயன்படுத்தி, uniform distribution அடிப்படையில் random values கொண்ட ஒரு matrix-ஐ உருவாக்கலாம். இது scientific computing மற்றும் statistical analysis-ல் random data generation-ஐ memory-efficient-ஆக செய்ய உதவுகிறது.

Input:

```
import numpy.matlib as matlib

# Random matrix உருவாக்கல்
random_matrix = matlib.rand(3, 3)
print("Random matrix:\n", random_matrix)
```

Output:

```
Random matrix:
[[0.54358789 0.23467931 0.67890512]
[0.89012345 0.12345678 0.67894321]
[0.56781234 0.23456789 0.89123456]]
```

- **matlib.rand()** function-ஐ பயன்படுத்தி 3 rows மற்றும் 3 columns கொண்ட random values கொண்ட matrix-ஐ உருவாக்கியுள்ளோம்.
- இங்கு random values-ஐ **uniform distribution** அடிப்படையில் உருவாக்கியுள்ளோம், அதாவது values-ஐ 0 மற்றும் 1 இடையே சமமான probability கொண்டு எடுத்துக்கொள்ளப்பட்டுள்ளன.
- இந்த method-ஐ stochastic simulations, Monte Carlo methods, மற்றும் statistical modeling-ல் random values-ஐ உருவாக்க பயன்படுத்தலாம்.

எப்போது matlib.rand() function-ஐ பயன்படுத்த வேண்டும்?

• Statistical Analysis: Data-ஐ random sampling அடிப்படையில் உருவாக்கும்போது.

- **Simulation Modeling**: Random values-ஐ அடிப்படையாக simulation-களை உருவாக்க வேண்டிய data structures-ல்.
- **Algorithm Testing**: Machine learning algorithms மற்றும் computational models-ஐ random input data கொண்டு validate செய்ய.
- Uniform Distribution: Random values-ஐ 0 மற்றும் 1 இடையே சமமான probability கொண்டு உருவாக்கும்.
- **Memory-efficient**: Memory-யை அளவிற்கேற்ப allocate செய்து, large-scale data generation-ஐ செய்யும்.
- **Scientific Computing**: Stochastic analysis மற்றும் random sampling operations-ஐ memory-efficient-ஆக செய்ய உதவும்.

NumPy-யின் matrix library functions-ஐ memory-efficient-ஆகவும், computationally fast-ஆகவும், data structures-ஐ initialize செய்ய பயன்படுத்தலாம். Scientific computing மற்றும் data analysis-ல் matrix-களை உருவாக்கவும், manipulate செய்யவும் இந்த functions மிகவும் பயனுள்ளதாக இருக்கும்.

19. NUMPY – LINEAR ALGEBRA

NumPy-யில் **linear algebra** operations-ஐ செய்ய பல முக்கியமான functions உள்ளன. இந்த functions matrix multiplication, inner products, determinants, மற்றும் linear equations-ஐ solve செய்ய memory-efficient மற்றும் computationally fast-ஆக செயல்படுகின்றன.

19.1. numpy.dot()

dot() function-ஐ பயன்படுத்தி, இரண்டு arrays-இன் dot product-ஐ கணக்கிடலாம். Dot product என்பது linear algebra-இல் முக்கியமான operation ஆகும், இது vectors மற்றும் matrices-இன் multiplication-ஐ உள்ளடக்கியது.

Input:

```
import numpy as np

# Dot product operation
a = np.array([1, 2])
b = np.array([3, 4])
dot_product = np.dot(a, b)
print("Dot product:", dot_product)
```

Output:

```
Dot product: 11
```

- **np.dot()** function-ஐ பயன்படுத்தி arrays **a** மற்றும் **b**-இன் dot product-ஐ கணக்கிட்டோம்.
- Dot product calculation: (1 * 3) + (2 * 4) = 3 + 8 = 11

19.2. numpy.vdot()

vdot() function-ஐ flattened arrays-இன் dot product-ஐ கணக்கிட பயன்படுத்தலாம். Flattened arrays-இல், multi-dimensional arrays-ஐ single-dimensional-ஆக மாற்றி dot product operation செய்யும்.

Input:

```
# Vdot product operation
vdot_product = np.vdot(a, b)
print("Vdot product:", vdot_product)
```

Output:

```
Vdot product: 11
```

- **np.vdot()** function-ஐ flattened arrays-இல் dot product operation செய்ய memory-efficient-ஆக பயன்படுத்துகிறோம்.
- Flattening ensures that the dot product operation works on single-dimensional data.

19.3. numpy.inner()

inner() function-ஐ பயன்படுத்தி, arrays-இன் inner product-ஐ கண்டறியலாம். Inner product என்பது vectors-இன் corresponding elements-ஐ multiply செய்து, அதன் summation-ஐ return செய்யும் operation ஆகும்.

Input:

```
# Inner product operation
inner_product = np.inner(a, b)
print("Inner product:", inner_product)
```

Output:

```
Inner product: 11
```

- **np.inner()** function-ஐ inner product operation செய்ய vectors-ஐ பயன்படுத்தியுள்ளோம்.
- Inner product calculation: (1 * 3) + (2 * 4) = 11, which is similar to dot product.

19.4. numpy.matmul()

matmul() function-ஐ matrix multiplication செய்ய பயன்படுத்தலாம். Matrix multiplication என்பது two-dimensional arrays-இல் row-by-column multiplication operation ஆகும்.

Input:

```
# Matrix multiplication operation
matrix1 = np.array([[1, 2], [3, 4]])
matrix2 = np.array([[5, 6], [7, 8]])
matrix_product = np.matmul(matrix1, matrix2)
print("Matrix product:\n", matrix_product)
```

Output:

```
Matrix product:
[[19 22]
[43 50]]
```

- **np.matmul()** function-ஐ matrix multiplication செய்ய பயன்படுத்தியுள்ளோம்.
- Matrix multiplication:

```
Row 1: (1 * 5) + (2 * 7) = 19Row 2: (3 * 5) + (4 * 7) = 43
```

19.5. Determinant Calculation

Numpy-யின் **det()** function-ஐ பயன்படுத்தி, square matrix-இன் determinant-ஐ கண்டறியலாம். Determinant என்பது linear algebra-இல் matrix-ஐ invertible ஆக மாற்றுவதற்கு பயன்படும் scalar value ஆகும்.

```
# Determinant calculation
det_value = np.linalg.det(matrix1)
print("Determinant:", det_value)
```

```
Determinant: -2.000000000000004
```

- np.linalg.det()** function-ஐ பயன்படுத்தி square matrix-இன் determinant-ஐ கண்டறிந்தோம்.
- Determinant-ஐ use செய்து matrix invertible property-ஐ validate செய்யலாம்.

19.6. numpy.linalg.solve()

solve() function-ஐ linear equations-இன் solution-ஐ கண்டறிய பயன்படுத்தலாம். இது linear equations-ஐ matrix representation-ல் convert செய்து, variables-ஐ கண்டறிகிறது.

Input:

```
# Solving linear equations
coefficients = np.array([[3, 1], [1, 2]])
constants = np.array([9, 8])
solutions = np.linalg.solve(coefficients, constants)
print("Solutions:", solutions)
```

```
Solutions: [2. 3.]
```

- **np.linalg.solve()** function-ஐ linear equations-ஐ solve செய்ய matrix algebra-ஐ பயன்படுத்தி variables-ஐ கண்டறிந்தோம்.
- Equations:
 - 0.3x + 1y = 9
 - 01x + 2y = 8
 - \circ Solution: x = 2, y = 3

20. NUMPY - MATPLOTLIB

NumPy-யுடன் **Matplotlib**-ஐ இணைத்து data-ஐ visualizations செய்வது மிகவும் எளிதாகவும் பயனுள்ளதாகவும் இருக்கிறது. Matplotlib plotting library-ஐ பயன்படுத்தி graphs மற்றும் charts உருவாக்கலாம். இது data-ஐ graphical format-ஆக represent செய்து, trends மற்றும் patterns-ஐ எளிதாக புரிந்து கொள்ள உதவுகிறது.

20.1. Sine Wave Plot

Sine wave plot-ஐ உருவாக்கி data-ஐ visualize செய்வது data trends-ஐ புரிந்துகொள்ள உதவுகிறது. Sine wave என்பது periodic function-ஐ graph-ஆக காட்டும் representation ஆகும்.

Input:

```
import matplotlib.pyplot as plt
import numpy as np

# Sine wave plot

x = np.linspace(0, 10, 100) # 0 முதல் 10 வரை 100 values

y = np.sin(x) # sine function—ஐ calculate செய்கிறது

plt.plot(x, y) # sine wave—ஐ plot செய்கிறது

plt.title("Sine Wave") # plot—க்கு தலைப்பு

plt.xlabel("X—axis") # horizontal axis—க்கு பெயர்

plt.ylabel("Y—axis") # vertical axis—க்கு பெயர்

plt.show() # plot—ஐ காட்டுகிறது
```

Sine Wave

- x values 0 முதல் 10 வரை equal intervals-ல் values-ஐ கொண்டு வருகிறது.
- **y = np.sin(x)** என்பது sine function-ஐ பயன்படுத்தி values-ஐ பெறுகிறது.
- **plt.plot()**-ஐ பயன்படுத்தி sine wave-ஐ visualize செய்கிறது.
- இது signal processing மற்றும் periodic functions-ஐ study செய்ய பயன்படுகிறது.

20.2. **subplot()**

subplot() function-ஐ ஒரே figure-இல் பல plots-ஐ உருவாக்க பயன்படுத்தலாம். இது multiple graphs-ஐ ஒரே chart-ல் அணுக்கமாகக் காண்பிக்க உதவுகிறது.

```
# Subplots creation
plt.subplot(2, 1, 1) # முதல் subplot
plt.plot(x, np.sin(x)) # sine wave plot
plt.title("Sine Wave")

plt.subplot(2, 1, 2) # இரண்டாம் subplot
plt.plot(x, np.cos(x)) # cosine wave plot
plt.title("Cosine Wave")

plt.tight_layout() # subplot-களுக்குள் overlap இல்லாமல் düzenle செய்கிறது
plt.show()
```


- **plt.subplot(2, 1, 1)** என்பது 2 rows மற்றும் 1 column கொண்ட subplot layout-ஐ முதலில் sine wave-க்கு set செய்கிறது.
- plt.subplot(2, 1, 2) என்பது இரண்டாவது subplot-ஐ cosine wave-ஐ plot செய்ய set செய்கிறது.
- இது graphs-ஐ compare செய்வதற்கான சிறந்த முறையாகும், data trends-ஐ side-by-side analyze செய்ய உதவுகிறது.

20.3. bar()

bar() function-ஐ data-ஐ bar chart-ஆக plot செய்ய பயன்படுத்தலாம். Bar chart-கள் data-ஐ categories அடிப்படையில் compare செய்ய உதவுகின்றன.

```
# Bar chart creation
categories = ['A', 'B', 'C'] # Categories names
values = [3, 7, 5] # Corresponding values
plt.bar(categories, values) # bar chart-ஐ plot செய்கிறது
plt.title("Bar Chart") # bar chart-க்கு தலைப்பு
plt.xlabel("Categories") # categories-ஐ x-axis-ல் காட்டுகிறது
plt.ylabel("Values") # values-ஐ y-axis-ல் காட்டுகிறது
plt.show()
```


- categories array-ல் உள்ள values horizontal axis-ல் (X-axis) காட்டப்படும்.
- **values** array-ல் உள்ள corresponding heights vertical axis-ல் (Y-axis) காட்டப்படும்.
- Bar chart-கள் data-ஐ categories அடிப்படையில் visual comparison செய்ய மிகவும் உதவுகின்றன.

21. NUMPY – HISTOGRAM USING MATPLOTLIB

Numpy-யுடன் **Matplotlib**-ஐ histogram உருவாக்கி data distribution-ஐ காணலாம். Histogram என்பது data-இன் frequency distribution-ஐ காண்பிக்கும் visual representation ஆகும், இது data-இல் values எவ்வாறு spread ஆகவுள்ளது என்பதைக் காட்டுகிறது.

21.1. numpy.histogram()

histogram() function-ஐ data distribution-ஐ கண்டறிய பயன்படுத்தலாம். இது data-ஐ bins எனப்படும் intervals-களாக பிரித்து, ஒவ்வொரு interval-ல் values எவ்வளவு உள்ளன என்பதைக் காட்டுகிறது.

Input:

```
import matplotlib.pyplot as plt
import numpy as np

# Histogram creation
data = np.random.randn(1000) # Randomly generated data with normal distribution
plt.hist(data, bins=30, alpha=0.7, color='blue') # Histogram plot
plt.title("Histogram") # Plot title
plt.xlabel("Data Values") # X-axis label
plt.ylabel("Frequency") # Y-axis label
plt.show() # Display the plot
```


- data = np.random.randn(1000) என்பது normal distribution கொண்ட 1000 random values-ஐ உருவாக்குகிறது.
- **plt.hist()** function data-ஐ 30 bins-ஆக பிரித்து frequency distribution-ஐ காட்டுகிறது.
- Histogram data distribution-ஐ எடுத்துக்காட்டி, data-இல் values எந்த range-ல் அதிகமாக உள்ளன என்பதைக் காட்டுகிறது.

22. NUMPY - I/O WITH NUMPY

NumPy-யில் data-ஐ save மற்றும் load செய்ய பல methods உள்ளன, இதனால் data-ஐ file format-ல் எளிதாக சேமிக்கவும், retrieve செய்யவும் முடியும். Data I/O operations scientific computing மற்றும் data analysis-ல் மிகவும் முக்கியமானவை.

22.1. numpy.save()

save() function-ஐ பயன்படுத்தி, array-ஐ binary format-ல் (.npy) சேமிக்கலாம். இது data-ஐ compact-ஆகவும் memory-efficient-ஆகவும் சேமிக்க உதவுகிறது.

Input:

```
import numpy as np

# Saving array to file
array = np.array([1, 2, 3, 4, 5])
np.save('my_array', array) # Save the array as a .npy file
```

Output:

```
Array saved as 'my_array.npy' in the current directory.
```

- **np.save()** function-ஐ array-ஐ binary format-ல் சேமிக்க பயன்படுத்துகிறோம்.
- இந்த method data-ஐ efficient-ஆக save செய்து, future usage-க்கு compact format-ல் வைத்திருக்கிறது.

22.2. numpy.savetxt()

savetxt() function-ஐ பயன்படுத்தி, array-ஐ text file format-ல் சேமிக்கலாம். Text format-ல் data-ஐ human-readable-ஆக save செய்ய இது பயன்படும்.

Input:

```
# Saving array to text file
np.savetxt('my_array.txt', array, delimiter=',') # Save the array as a .txt file
```

```
Array saved as 'my_array.txt' with comma-separated values.
```

- **np.savetxt(**) function array-ஐ text file format-ல் (.txt) சேமிக்கிறது.
- Text file format data-ஐ human-readable-ஆக save செய்ய உதவுகிறது, இது data analysis மற்றும் data sharing-க்கு பயனுள்ளதாக இருக்கும்.