

<u>Help</u> dougsweetser ▼

Course

Progress

<u>Dates</u>

Discussion

Wiki

* Course / 3. Residue theory. Application to computation of complex integrals. Jordan's lemma. / Exercises

Previous				Next >
(1 10 110 do				ITOXL >

Problem 3.10

☐ Bookmark this page

Problem 3.10

2 points possible (ungraded)

Evaluate the principal value of the following integrals.

$$ext{PV} \int_0^\infty rac{x^{a-1}}{1-x^b} dx ext{ for } b>a>0$$

$$\frac{\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]}{\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]} \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right] \left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array}\right]$$

a	b	π	2π	\cot	cos	
---	---	-------	--------	--------	-----	--

$$ext{PV} \int_0^\infty rac{x dx}{(x^2 + a^2)\sin bx} ext{ for } a > 0, b > 0$$

π	2	a	b	ab	sh	

Submit

You have used 0 of 6 attempts

✓ Previous
Next >