1. Operacije $+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ i $\odot: \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ su definisane na sledeći način:

$$(a,b) + (c,d) = (a+c,b+d),$$
 $\lambda \odot (a,b) = (\lambda a,b).$

za sve $(a,b),(c,d)\in\mathbb{R}^2$ i svako $\lambda\in\mathbb{R}$. Na uređenoj četvorci $(\mathbb{R}^2,\mathbb{R},+,\odot)$ ispitati sve aksiome vektorskog prostora.

- 2. Odrediti vrednosti realnih parametara a i b tako da vektori $\vec{a}=(2,0,a)$ i $\vec{b}=(1,b,1)$ budu ortogonalni na pravu $p:\frac{x-3}{3}=\frac{y-1}{1}=\frac{z+2}{-1}$. Dokazati da se svaki vektor koji je ortogonalan na pravu p može na jedinstven način prikazati kao linearna kombinacija vektora \vec{a} i \vec{b} . Dokazati da skup svih vektora ortogonalnih na pravu p čini potprostor prostora \mathbb{R}^3 , i odrediti jednu njegovu bazu.
- **3.** Neka je $\vec{a} = (1, 2, 3)$, i neka je $X = \{\vec{x} \in \mathbb{R}^3 \mid \vec{a} \cdot \vec{x} = 0\}$ i $Y = \{\vec{y} \in \mathbb{R}^3 \mid \vec{a} \times \vec{y} = \vec{0}\}$. (a) Dokazati da je $\mathcal{X} = (X, \mathbb{R}, +, \cdot)$ potprostor vektorskog prostora \mathbb{R}^3 i naći jednu njegovu bazu. (b) Dokazati da je $\mathcal{Y} = (Y, \mathbb{R}, +, \cdot)$ potprostor vektorskog prostora \mathbb{R}^3 i naći jednu njegovu bazu. (c) Naći $X \cap Y$.