Machine Learning Model Types and Difference

1. Clustering vs Classification

	Clustering	Classification
Definition	It is an unsupervised learning	It is a supervised learning
	technique used to group similar	technique where the goal is to
	data points together based on	assign data points to
	their features without prior	predefined categories or labels.
	knowledge of the group labels.	
Labels	In clustering no labeled data is	In classification labeled data is
	used during the training/testing	required for training/testing
	process of the model. The	the model for mapping from
	model identifies the inherent	input features to output labels.
	grouping of the data.	
Goal	To discover the inherent	To predict the category to
	structure and patterns in the	which a new data point
	data.	belongs based on learned
		patterns from labeled data.
Complexity	Clustering is less complex	Classification is more complex
	compared to Classification.	compared to Clustering.
Techniques	Common techniques for	Common techniques for
	clustering includes K-means,	classification includes Logistic
	Hierarchical Clustering, Pricipal	Regression, Decision Tree,
	Component Analysis(PCA), etc.	Support Vector Machine, etc.
Example	A company wants to segment	An email service provider
	its customers based on	wants to classify incoming
	purchasing behavior to tailor	emails as "spam" or "not
	marketing strategies. Using an	spam". Using a supervised
	unsupervised learning	learning algorithm like support
	algorithm like K-means	vector machines (SVM), they
	clustering, they group	train the model on a labeled
	customers based on similarities	dataset of emails. The model
	in purchase history, frequency,	learns to recognize patterns
	and amount spent. This results	associated with spam and non-
	in discovering natural customer	spam emails, enabling it to
	segments without predefined	classify new emails accurately.
	labels.	

2. Regression vs Classification

	Regression	Classification
Definition	It is a supervised learning	It is a supervised learning
	technique used to predict a	technique used to predict a
	continuous output variable	categorical output variable.
	based on input features.	
Output Type	The output is continuous/real	The output is a discrete class
	value.	label (Either binary or multi-
		label).
Techniques	Common techniques for	Common techniques for
	regression include Linear	classification includes Logistic
	Regression, Polynomial	Regression, Decision Tree,
	Regression, Random Forest	Support Vector Machine, etc.
	Regressor, etc.	
Evaluation	Evaluated using metrics like	Evaluated using metrics like
Metrics	mean absolute error (MAE),	accuracy, precision, F1 score,
	root mean squared error	etc.
	(RMSE), and R-squared, etc.	
Example	A real estate firm wants to	A healthcare provider wants to
	predict the selling price of	predict whether a patient has
	houses based on features like	diabetes based on their
	size, location, number of	medical data. Using a
	bedrooms, and age of the	supervised learning algorithm
	house. They use a regression	like logistic regression, they
	model like linear regression to	train the model on a labeled
	predict the continuous variable	dataset of patient records with
	of house prices.	features such as age, BMI,
		blood pressure, and glucose
		levels. The model learns to
		distinguish between diabetic
		and non-diabetic patients,
		allowing accurate predictions
		for new patients.