Devoir surveillé n°3: corrigé

SOLUTION 1.

1. f(z) est défini si et seulement si $e^z + e^{-z} \neq 0$. Or

$$e^z + e^{-z} = 0 \iff e^{2z} = -1 \iff \exists k \in \mathbb{Z}, \ 2z = (2k+1)i\pi \iff \exists k \in \mathbb{Z}, \ z = i\frac{\pi}{2} + ik\pi$$

Donc f(z) est défini pour $z \notin i\frac{\pi}{2} + i\pi \mathbb{Z}$.

2. f(z) = 0 équivaut à $e^z - e^{-z} = 0$. Or

$$e^z - e^{-z} = 0 \iff e^{2z} = 1 \iff \exists k \in \mathbb{Z}, 2z = 2ik\pi \iff \exists k \in \mathbb{Z}, z = ik\pi$$

L'ensemble des solutions est donc $i\pi\mathbb{Z}$.

3. Posons z = x + iy avec $(x, y) \in \mathbb{R}^2$.

$$\begin{split} |f(z)| < 1 &\iff \left| e^{z} - e^{-z} \right|^{2} < \left| e^{z} + e^{-z} \right|^{2} \\ &\iff \left(e^{z} - e^{-z} \right) \overline{\left(e^{z} - e^{-z} \right)} < \left(e^{z} + e^{-z} \right) \overline{\left(e^{z} + e^{-z} \right)} \\ &\iff \left(e^{z} - e^{-z} \right) \left(e^{\overline{z}} - e^{-\overline{z}} \right) < \left(e^{z} + e^{-z} \right) \left(e^{\overline{z}} + e^{-\overline{z}} \right) \\ &\iff -e^{z-\overline{z}} - e^{\overline{z}-z} < e^{z-\overline{z}} + e^{\overline{z}-z} \\ &\iff e^{2iy} + e^{-2iy} > 0 \\ &\iff \cos(2y) > 0 \end{split}$$

$$\mathrm{Donc} \left\{ \begin{aligned} |\operatorname{Im} z| &< \frac{\pi}{2} \\ |f(z)| &< 1 \end{aligned} \right. \iff \left\{ \begin{aligned} |y| &< \frac{\pi}{2} \\ \cos(2y) &> 0 \end{aligned} \right. \iff |y| &< \frac{\pi}{4}.$$

- **4.** Soit $z \in \Delta$. D'après la question précédente, |f(z)| < 1 i.e. $f(z) \in \mathcal{D}$. Ainsi tout élément de Δ a pour image par f un élément de \mathcal{D} , c'est-à-dire que $f(\Delta) \subset \mathcal{D}$.
- 5. Existence : Puisque Z est non nul, Z possède des arguments. De plus, les arguments de Z étant égaux à un multiple de 2π près, il existe un argument θ de Z appartenant à $]-\pi,\pi]$. On ne peut avoir $\theta=\pi$ sans quoi Z serait un réel négatif. Considérons également le module r de Z, qui est strictement positif puisque Z est non nul. On peut alors poser $z=\ln r+i\theta$ de sorte que $e^z=Z$ et $\mathrm{Im}(z)=\theta\in]-\pi,\pi[$.

Unicité: Supposons qu'il existe deux complexes z et z' tels que $e^z=e^{z'}=Z$ et les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$. Puisque $e^z=e^{z'}$, il existe $k\in\mathbb{Z}$ tel que $z'=z+2\mathrm{i}k\pi$. En partiulier, $\mathrm{Im}(z')-\mathrm{Im}(z)=2\mathrm{k}\pi$. Mais comme les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[,-2\pi<\mathrm{Im}(z')-\mathrm{Im}(z)<2\pi,$ de sorte que -1< k<1. Puisque k est entier k est nul puis z'=z.

6. Remarquons que

$$\frac{1+u}{1-u} = \frac{(1+u)(1-\overline{u})}{|1-u|^2} = \frac{1-|u|^2+2i\operatorname{Im}(u)}{|1-u|^2}$$

On en déduit que si $\frac{1+u}{1-u} \in \mathbb{R}_-$, alors $1-|u|^2 \leqslant 0$ i.e. $|u| \geqslant 1$. Par contraposition, si $u \in \mathcal{D}$, $\frac{1+u}{1-u} \notin \mathbb{R}_-$.

7. Montrons que tout élément de \mathcal{D} admet un unique antécédent dans Δ . Soit $\mathfrak{u}\in\mathcal{D}$ et $z\in\mathbb{C}$. On a facilement $f(z)=\mathfrak{u}\iff e^{2z}=\frac{1+\mathfrak{u}}{1-\mathfrak{u}}$. D'après la question $\mathbf{6}$, $\frac{1+\mathfrak{u}}{1-\mathfrak{u}}\notin\mathbb{R}_-$. D'après la question $\mathbf{5}$, cette équation admet une unique solution telle que $\mathrm{Im}(2z)\in]-\pi,\pi[$ i.e. $\mathrm{Im}(z)\in]-\frac{\pi}{2},\frac{\pi}{2}[$. Notons encore z cette solution. Comme on a également |f(z)|<1, la question $\mathbf{3}$ montre que $|\mathrm{Im}\,z|<\frac{\pi}{4}$ i.e. $z\in\Delta$. L'équation $f(z)=\mathfrak{u}$ admet donc une unique solution dans Δ . Puisqu'on a également montré que $f(\Delta)\subset\mathcal{D}$, f réalise bien une bijection de Δ sur \mathcal{D} .

SOLUTION 2.

1. a. Soit $(z,z') \in (\mathbb{C} \setminus \{-i\})^2$ tel que f(z) = f(z'). Alors $\frac{iz+1}{z+i} = \frac{iz'+1}{z'+i}$ donc (iz+1)(z'+i) = (iz'+1)(z+i). En développant, on obtient izz'+z'-z+i=izz'+z-z'+i puis z=z' donc f est injective.

- **b.** Soit $Z \in \operatorname{Imf}$. Il existe donc $z \in \mathbb{C} \setminus \{-i\}$ tel que Z = f(z). Supposons Z = i. Alors $\frac{iz+1}{z+i} = i$ puis iz+1 = i(z+i) = iz-i, ce qui est absurde. Ainsi $Z \neq i$ de sorte que $\operatorname{Im} f \subset \mathbb{C} \setminus \{i\}$. Réciproquement, soit $Z \in \mathbb{C} \setminus \{i\}$. Posons $z = \frac{1-iZ}{Z-i}$. Alors z(Z-i) = 1-iZ puis Z(z+i) = iz+1. En particulier, $z \neq -i$ puisqu'alors on aurait $0 = i \times (-1) + 1 = 2$. Ainsi $Z = \frac{iz+1}{z+i} = f(z)$ de sorte que $Z \in \operatorname{Im} f$. Par conséquent, $\mathbb{C} \setminus \{i\} \subset \operatorname{Im} f$.
 - Par double inclusion, $\operatorname{Im} f = \mathbb{C} \setminus \{i\}$. En particulier, f n'est pas surjective puisque $\operatorname{Im} f \neq \mathbb{C}$.
- **c.** Soit $Z \in f(\mathcal{P})$. Il existe donc $z \in \mathcal{P}$ tel que Z = f(z). Remarquons alors que

$$\begin{aligned} |iz + 1|^2 - |z + i|^2 &= (iz + 1)\overline{iz + 1} - (z + i)\overline{z + i} \\ &= (iz + 1)(-i\overline{z} + 1) - (z + i)(\overline{z} - i) \\ &= (z\overline{z} + iz - i\overline{z} + 1) - (z\overline{z} - iz + i\overline{z} + 1) \\ &= 2i(z - \overline{z}) = -4\operatorname{Im}(z) < 0 \end{aligned}$$

On en déduit donc que

$$|Z| = |f(z)| = \frac{|iz + 1|}{|z + i|} < 1$$

Ceci signifie que $Z \in \mathcal{D}$. Finalement, $f(\mathcal{P}) \subset \mathcal{D}$.

d. Soit $Z \in \mathcal{D}$. Alors $Z \neq i$ donc Z admet un unique antécédent z par f par injectivité de f. On a déjà montré à la question **1.b** que cet unique antécédent était $z = \frac{1-iZ}{Z-i}$. Il s'agit alors de montrer que $z \in \mathcal{P}$.

$$Im(z) = \frac{1}{2i}(z - \overline{z})$$

$$= \frac{1}{2i} \left(\frac{1 - iZ}{Z - i} - \overline{\left(\frac{1 - iZ}{Z - i}\right)} \right)$$

$$= \frac{1}{2i} \left(\frac{1 - iZ}{Z - i} - \frac{1 + i\overline{Z}}{\overline{Z} + i} \right)$$

$$= \frac{1}{2i} \cdot \frac{(1 - iZ)(\overline{Z} + i) - (1 + i\overline{Z})(Z - i)}{(Z - i)(\overline{Z} + i)}$$

$$= \frac{1}{2i} \cdot \frac{(Z + \overline{Z} + i - iZ\overline{Z}) - (Z + \overline{Z} - i + iZ\overline{Z})}{(Z - i)\overline{Z} - i}$$

$$= \frac{1}{2i} \cdot \frac{2i - 2iZ\overline{Z}}{|Z - i|^2} = \frac{1 - |Z|^2}{|Z - i|^2}$$

Or $Z \in \mathcal{D}$ donc |Z| < 1 de sorte que $\operatorname{Im}(z) > 0$ i.e. $z \in \mathcal{P}$. On a donc prouvé que tout élément de \mathcal{D} admettait un unique antécédent par f dans \mathcal{P} . Puisqu'on sait également que $\operatorname{f}(\mathcal{P}) \subset \mathcal{D}$, f induit une bijection de \mathcal{P} sur \mathcal{D} .

e. Soit $z \in \mathbb{C} \setminus \{i\}$. Alors

$$z \in f^{-1}(\mathbb{U})$$

$$\iff \qquad \qquad f(z) \in \mathbb{U}$$

$$\iff \qquad \qquad f(z)\overline{f(z)} = 1$$

$$\iff \qquad \frac{iz+1}{z+i} \cdot \frac{-i\overline{z}+1}{\overline{z}-i} = 1$$

$$\iff \qquad (iz+1)(-i\overline{z}+1) = (z+i)(\overline{z}-i)$$

$$\iff \qquad z\overline{z}+iz-i\overline{z}+1 = z\overline{z}+i\overline{z}-iz+1$$

$$\iff \qquad z = \overline{z}$$

$$\iff \qquad z \in \mathbb{R}$$

Ainsi $f^{-1}(\mathbb{U}) = \mathbb{R}$.

2. a. Soit $z \in \mathcal{P}$.

$$\operatorname{Im}(g(z)) = \frac{1}{2i}(g(z) - \overline{g(z)}) = \frac{1}{2i}\left(\frac{1}{\overline{z}} - \frac{1}{z}\right) = \frac{1}{2i} \cdot \frac{z - \overline{z}}{2i|z|^2} = \frac{\operatorname{Im}(z)}{|z|^2} > 0$$

donc $g(z) \in \mathcal{P}$. L'application g est par conséquent bien définie.

b. Il suffit de vérifier que g est une involution. En effet, pour tout $z \in \mathcal{P}$, g(g(z)) = z donc $g \circ g = \mathrm{Id}_{\mathcal{P}}$. Puisque g est une involution, elle est bijective.

3. **a.** Soit $z \in \mathcal{P}$. Supposons $z \sin \theta + \cos \theta = 0$. Alors $\operatorname{Im}(z \sin \theta + \cos \theta) = 0$ et donc $\sin \theta \cdot \operatorname{Im}(z) = 0$. Puisque $\operatorname{Im}(z) > 0$, $\sin \theta = 0$. Or $z \sin \theta + \cos \theta = 0$ donc $\cos \theta = 0$. On a donc $\sin \theta = \cos \theta = 0$, ce qui est absurde puisque $\sin^2 \theta + \cos^2 \theta = 1$. Finalement $z \sin \theta + \cos \theta \neq 0$, ce qui prouve que $A_{\theta}(z)$ est bien défini. Montrons maintenant que $A_{\theta}(z) \in \mathcal{P}$.

$$\begin{split} \operatorname{Im}(A_{\theta}(z)) &= \frac{1}{2i} \left(A_{\theta}(z) - \overline{A_{\theta}(z)} \right) \\ &= \frac{1}{2i} \left(\frac{z \cos \theta - \sin \theta}{z \sin \theta + \cos \theta} - \frac{\overline{z} \cos \theta - \sin \theta}{\overline{z} \sin \theta + \cos \theta} \right) \\ &= \frac{1}{2i} \cdot \frac{(z \cos \theta - \sin \theta)(\overline{z} \sin \theta + \cos \theta) - (\overline{z} \cos \theta - \sin \theta)(z \sin \theta + \cos \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{1}{2i} \cdot \frac{(z \overline{z} \cos \theta \sin \theta + z \cos^2 \theta - \overline{z} \sin^2 \theta - \sin \theta \cos \theta) - (z \overline{z} \cos \theta \sin \theta - z \sin^2 \theta + \overline{z} \cos^2 \theta - \sin \theta \cos \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{1}{2i} \cdot \frac{z(\cos^2 \theta + \sin^2 \theta) - \overline{z}(\cos^2 \theta + \sin^2 \theta)}{|z \sin \theta + \cos \theta|^2} \\ &= \frac{z - \overline{z}}{2i|z \sin \theta + \cos \theta|^2} = \frac{\operatorname{Im}(z)}{|z \sin \theta + \cos \theta|^2} \end{split}$$

Or $z \in \mathcal{P}$ donc Im(z) > 0. Ainsi $Im(A_{\theta}(z)) > 0$ i.e. $A_{\theta}(z) \in \mathcal{P}$.

- **b.** On vérifie immédiatement que $A_0(z) = z$ pour tout $z \in \mathcal{P}$. Autrement dit, $A_0 = \operatorname{Id}_{\mathcal{P}}$.
- **c.** Soit $z \in \mathcal{P}$. Alors

$$\begin{split} A_{\theta}(A_{\phi}(z)) &= \frac{A_{\phi}(z)\cos\theta - \sin\theta}{A_{\phi}(z)\sin\theta + \cos\theta} \\ &= \frac{\frac{z\cos\phi - \sin\phi}{z\sin\phi + \cos\phi} \cdot \cos\theta - \sin\theta}{\frac{z\cos\phi - \sin\phi}{z\sin\phi + \cos\phi} \cdot \sin\theta + \cos\theta} \\ &= \frac{(z\cos\phi - \sin\phi)\cos\theta - (z\sin\phi + \cos\phi)\sin\theta}{(z\cos\phi - \sin\phi)\sin\theta + (z\sin\phi + \cos\phi)\cos\theta} \\ &= \frac{(z\cos\phi - \sin\phi)\sin\theta + (z\sin\phi + \cos\phi)\cos\theta}{(z\cos\phi - \sin\phi)\sin\theta - (\sin\phi\cos\theta + \cos\phi\sin\theta)} \\ &= \frac{z(\cos\phi\cos\theta - \sin\phi\sin\theta) - (\sin\phi\cos\theta + \cos\phi\sin\theta)}{z(\cos\phi\sin\theta + \sin\phi\cos\theta) + \cos\phi\cos\theta - \sin\phi\sin\theta} \\ &= \frac{z\cos(\theta + \phi) - \sin(\theta + \phi)}{z\sin(\theta + \phi) + \cos(\theta + \phi)} \\ &= A_{\theta + \phi}(z) \end{split}$$

On en déduit que $A_{\theta} \circ A_{\varphi} = A_{\theta+\varphi}$.

d. Il suffit de remarquer

$$A_{\theta} \circ A_{-\theta} = A_{-\theta} \circ A_{\theta} = A_{\theta-\theta} = A_{0} = \operatorname{Id}_{\mathcal{P}}$$

Ainsi A_{θ} est bijective et $A_{\theta}^{-1} = A_{-\theta}$.

SOLUTION 3.

1. Les points A et B sont confondus si et seulement si z = 1.

Les points A et C sont confondus si et seulement si $z^2 = 1$ i.e. z = 1 ou z = -1.

Les points A et D sont confondus si et seulement si $z^3 = 1$ i.e. z = 1, z = j ou $z = j^2$.

Les points B et C sont confondus si et seulement si $z^2 = z$ i.e. z = 0 ou z = 1.

Les points B et D sont confondus si et seulement si $z^3 = z$ i.e. z = 0, z = -1 ou z = 1.

Les points C et D sont confondus si et seulement si $z^3 = z^2$ i.e. z = 0 ou z = 1.

Ainsi les points A, B, C, D sont deux à deux distincts si et seulement si $z \notin \{0, 1, -1, j, j^2\}$.

2. ABCD est un parallélogramme si et seulement si $\overrightarrow{AB} = \overrightarrow{DC}$, c'est-à-dire si et seulement si $z - 1 = z^2 - z^3$ ou encore $-z^3 + z^2 - z + 1 = 0$. Puisque $z \neq -1$, $-z^3 + z^2 - z + 1 = \frac{(-z)^4 - 1}{-z - 1} = -\frac{z^4 - 1}{z - 1}$. Ainsi ABCD est un parallélogramme si et seulement si $z^4 = 1$. Puisque les racines quatrièmes de l'unité sont 1, i, -1, -i et que $z \notin \{-1, 1\}$, ABCD est un parallélogramme si et seulement si z = i ou z = -i.

Si z = i, A, B, C, D sont les points d'affixes respectifs 1, i, -1, -i donc ABCD est un carré.

Si z = -i, A, B, C, D sont les points d'affixes respectifs 1, -i, -1, i donc ABCD est à nouveau un carré.

3. Le triangle ABC est rectangle isocèle en A si et seulement si AB = AC et $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{2} [\pi]$. En termes d'affixes, ABC est

rectangle isocèle en A si et seulement si $\begin{cases} |z-1|=|z^2-1| \\ \arg\frac{z^2-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases}$ ou encore $\begin{cases} \left|\frac{z^2-1}{z-1}\right|=1 \\ \arg\frac{z^2-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases}$. Puisque $\frac{z^2-1}{z-1}=z+1$, ceci

équivaut à
$$\begin{cases} |z+1| = 1 \\ \arg(z+1) \equiv \frac{\pi}{2}[\pi] \end{cases}$$
 ou encore $z+1=\pm i$.

rectangle isocèle en A si et seulement si $z=-1\pm i$.

4. On sait que $z^3 - 1 = (z - 1)(z^2 + z + 1)$. Le triangle ABD est rectangle isocèle en A si et seulement si AB = AD et

On sait que
$$z^3 - 1 = (z - 1)(z^2 + z + 1)$$
. Le triangle ABD est rectangle isocèle en A si et seulement si AB = AD et $(\overrightarrow{AB}, \overrightarrow{AD}) \equiv \frac{\pi}{2}[\pi]$. En termes d'affixes, ABD est rectangle isocèle en A si et seulement si
$$\begin{cases} |z - 1| = |z^3 - 1| \\ \arg \frac{z^3 - 1}{z - 1} \equiv \frac{\pi}{2}[\pi] \end{cases}$$
 ou encore

$$\begin{cases} \left|\frac{z^3-1}{z-1}\right|=1\\ \arg\frac{z^3-1}{z-1}\equiv\frac{\pi}{2}[\pi] \end{cases}. \text{ Puisque } \frac{z^3-1}{z-1}=z^2+z+1, \text{ ceci \'equivaut \`a} \begin{cases} |z^2+z+1|=1\\ \arg(z^2+z+1)\equiv\frac{\pi}{2}[\pi] \end{cases} \text{ ou encore } z^2+z+1=\pm i.$$

Finalement, ABC est rectangle isocèle en A si et seulement si z est solution d'une des deux équations (E_1) : $Z^2+Z+1+i=0$ ou (E_2) : $Z^2 + Z + 1 - i = 0$.

Le discriminant de (E_1) est $-3-4i=(1-2i)^2$. Les solutions de (E_1) sont donc $\frac{-1+(1-2i)}{2}=-i$ et $\frac{-1-(1-2i)}{2}=-1+i$. Puisque les coefficients de l'équation (E_2) sont les conjugués de ceux de l'équation (E_1) , les solutions de (E_2) sont les conjuguées de celles de l'équation (E_1) , c'est-à-dire i et -1 - i.

Le triangle ABD est rectangle isocèle en A si et seulement si $z \in \{i, -i, 1+i, 1-i\}$.

SOLUTION 4.

Supposons f injective. Soit $(A, B) \in \mathcal{P}(E)^2$. On sait déjà que $f(A \cap B) \subset f(A) \cap f(B)$. Montrons alors que $f(A) \cap f(B) \subset f(A \cap B)$. Soit donc $y \in f(A) \cap f(B)$. Il existe donc $(a, b) \in A \times B$ tel que y = f(a) = f(b). Mais par injectivité de f, a = b de sorte que $a = b \in A \cap B$. On en déduit que $y \in f(A \cap B)$. On a donc bien montré que $f(A) \cap f(B) \subset f(A \cap B)$ puis, par double inclusion, que $f(A \cap B) = f(A) \cap f(B)$.

Supposons maintenant que $f(A \cap B) = f(A) \cap f(B)$ pour tout couple $(A, B) \in \mathcal{P}(E)^2$. Soit $(x_1, x_2) \in E^2$ tel que $f(x_1) = f(x_2)$. Posons A = $\{x_1\}$ et B = $\{x_2\}$. Alors $f(A) = \{f(x_1)\}$ et $f(B) = \{f(x_2)\}$. Puisque $f(x_1) = f(x_2)$, f(A) = f(B). Ainsi $f(A) \cap f(B) = \{f(x_2)\}$. $\{f(x_1)\}=\{f(x_2)\}$. En particulier, $f(A)\cap f(B)$ est non vide. Puisque $f(A\cap B)=f(A)\cap f(B)$, $f(A\cap B)$ est également non vide. Il s'ensuit que $A \cap B$ est non vide et donc que $x_1 = x_2$. Ceci prouve l'injectivité de f.

SOLUTION 5.

- **1.** D'après l'énoncé, f(0 + f(0)) = f(f(0)) + f(0) donc f(0) = 0.
- **2.** A nouveau d'après l'énoncé, pour tout $n \in \mathbb{N}$

$$f(f(n)) = f(0 + f(n)) = f(f(0)) + f(n) = f(0) + f(n) = f(n)$$

puisque f(0) = 0. On a donc $f \circ f = f$.

3. Procédons par double inclusion.

Soit $a \in \text{Im } f$. Il existe donc $b \in \mathbb{N}$ tel que a = f(b). Ainsi f(a) = f(f(b)) = f(b) = a d'après la question précédente. Ainsi $a \in \mathcal{F}$. Ceci prouve que Im $f \subset \mathcal{F}$.

Soit $a \in \mathcal{F}$. Alors $a = f(a) \in \text{Im } f$. Ceci prouve que $\mathcal{F} \subset \text{Im } f$.

Par double inclusion, $\text{Im } f = \mathcal{F}$.

4. Soit $a \in \mathcal{F}$. Alors f(a) = a. Par conséquent

$$f(\alpha + 1) = f(1 + f(\alpha)) = f(f(1)) + f(\alpha) = \alpha + f(1) = \alpha + 1$$

car f(1) = 1 par hypothèse.

5. Puisque f(0) = 0, $0 \in \mathcal{F}$ et la question précédente permet de montrer par récurrence tout entier naturel appartient à \mathcal{F} , c'est-à-dire que $\mathcal{F} = \mathbb{N}$. Ceci signifie que $f(\mathfrak{n}) = \mathfrak{n}$ pour tout $\mathfrak{n} \in \mathbb{N}$ i.e. $f = Id_{\mathbb{N}}$.