

Chapitre I – Les suites

Bacomathiques -- https://bacomathiqu.es

TABLE DES MATIÈRES	
I - Définitions	1
1. Suites numériques	1
2. Sens de variation	1
3. Convergence et divergence	2
II - Calcul de limites	3
1. Limites de suites de référence	3
2. Opérations sur les limites	4
3. Majoration, minoration et bornes	6
4. Comparaisons et encadrements	7
III - Raisonnement par récurrence	9

I - Définitions

I - Définitions

1. Suites numériques

Pour rappel, on appelle **suite** une fonction (et plus précisément application) de \mathbb{N} dans \mathbb{R} : cette fonction va prendre des éléments de l'ensemble de départ \mathbb{N} et va les amener dans l'ensemble d'arrivée \mathbb{R} .

ARETENIR Définition

Il y a plusieurs manières de définir une suite :

- **Par récurrence :** On donne le premier terme de la suite ainsi que le terme au rang n + 1.
- **Par son terme général :** On donne le n-ième terme de la suite en fonction de n.

Attention! Bien que ces deux modes de génération soient les principaux, il en existe d'autres : algorithme, motifs géométriques, ...

Exemple

À LIRE 👀

On définit les suites (u_n) et (v_n) ainsi :

— $u_n = n$ pour tout $n \in \mathbb{N}$ ((u_n) est définie par son terme général).

--
$$(v_n) = \begin{cases} v_0 = 0 \\ v_{n+1} = v_n + 1 \text{ pour tout } n \ge 1 \end{cases}$$
 ((v_n) est définie par récurrence).

On remarque que bien que définies différemment, (u_n) et (v_n) sont égales.

2. Sens de variation

ARETENIR Définition

Soit (u_n) une suite.

- (u_n) est **croissante** si on a $u_{n+1} \ge u_n$ (ou $u_{n+1} u_n \ge 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est **décroissante** si on a $u_{n+1} \le u_n$ (ou $u_{n+1} u_n \le 0$) pour tout $n \in \mathbb{N}$.
- (u_n) est dite **constante** s'il existe $c \in \mathbb{R}$ tel que $u_n = c$ pour tout $n \in \mathbb{N}$.

Si une suite est croissante ou décroissante et ne change pas de variation, alors elle est dite **monotone**.

I - Définitions

3. Convergence et divergence

À RETENIR 💡

Convergence

On dit qu'une suite (u_n) **converge** vers un réel ℓ quand n tend vers $+\infty$ si :

Pour tout $\epsilon > 0$, l'intervalle ouvert $]\ell - \epsilon, \ell + \epsilon[$, contient tous les termes de la suite (u_n) à partir d'un certain rang. On note alors : $\lim_{n \to +\infty} u_n = \ell$.

À LIRE 👀

Cette définition est un peu abstraite mais elle signifie simplement que u_n se rapproche autant que l'on veut de ℓ pourvu que n soit assez grand.

Attention! Il est tout à fait possible que la suite (u_n) converge vers un réel ℓ mais ne soit jamais égal à ℓ .

À RETENIR 🦞

Divergence vers $+\infty$

On dit qu'une suite (v_n) **diverge** vers $+\infty$ quand n tend vers $+\infty$ si :

Pour tout A > 0, il existe un rang N tel que pour tout $n \ge N$, $v_n > A$. On note alors : $\lim_{n \to +\infty} u_n = +\infty$.

Il existe une définition similaire pour la divergence vers $-\infty$.

À LIRE 🍑

Divergence vers $-\infty$

Dire que (v_n) **diverge** vers $-\infty$ signifie que :

Pour tout A > 0, il existe un rang N tel que pour tout $n \ge N$, $v_n < -A$. On note alors: $\lim_{n \to +\infty} u_n = -\infty$.

À LIRE 🍑

À noter que l'on n'étudie les limites des **suites** que quand n tend vers $+\infty$, et qu'il est possible qu'une suite n'admette pas de limite. On dit alors que cette suite **diverge**. Par contre, si une suite converge vers une limite, alors cette limite est **unique**.

1. Limites de suites de référence

Nous allons donner quelques suites "classiques" avec leur limite en $+\infty$:

Limites de suites usuelles	
Suite	Limite quand n tend vers $+\infty$
(\sqrt{n})	+∞
(n)	+∞
(n^k) , pour $k \in \mathbb{N}^*$	+∞
$\left(\frac{1}{\sqrt{n}}\right)$	0
$\left(\frac{1}{n}\right)$	0
$\left(\frac{1}{n^k}\right)$, pour $k \in \mathbb{N}^*$	0

Nous allons désormais donner la limite d'une catégorie de suite très importante en mathématiques : celle des **suites géométriques**. Ainsi :

Limite de suites géométriques

À RETENIR 🕴

Soit (v_n) une suite définie pour tout $n \in \mathbb{N}$ par $v_n = q^n$ (où q est un nombre réel). Alors, on peut donner la limite de la suite (v_n) en fonction de q:

Limite d'une suite géométrique								
Si on a	-1 < q < 1	1 < q	<i>q</i> ≤ −1	q = 1				
Alors la suite (v_n) a pour limite	0	+∞	Pas de limite	1				

À LIRE 99

Le réel q est la **raison** de la suite : si q > 1, (v_n) est strictement croissante, si 0 < q < 1, (v_n) est strictement décroissante et si q = 1 ou 0, (v_n) est constante.

2. Opérations sur les limites

Dans tout ce qui suit, (u_n) et (v_n) sont deux suites. Ces tableaux sont à connaître et sont requis pour pouvoir travailler sur les limites.

Limite d'une somme								
Limite d'une somme								
Si la limite de (u_n) quand n tend vers $+\infty$ est	ℓ	ℓ	ℓ	+∞	$-\infty$	+∞		
Et la limite de (v_n) quand n tend vers $+\infty$ est	ℓ'	+∞	$-\infty$	+∞	$-\infty$	$-\infty$		
Alors la limite de $(u_n + v_n)$ quand n tend vers $+\infty$ est	$\ell + \ell'$	+∞	$-\infty$	+∞	$-\infty$?		

À RETENIR 🕴

Limite d'un produit

Limite d'un produit									
Si la limite de (u_n) quand n tend vers $+\infty$ est	ℓ	$\ell > 0$	$\ell > 0$	ℓ < 0	$\ell < 0$	+∞	+∞	-∞	0
Et la limite de (v_n) quand n tend vers $+\infty$ est	ℓ′	+∞	-∞	+∞	$-\infty$	+∞	-∞	-∞	±∞
Alors la limite de $(u_n \times v_n)$ quand n tend vers $+\infty$ est	$\ell \times \ell'$	+∞	-∞	-∞	+∞	+∞	-∞	+∞	ş

À RETENIR 🕴

Limite d'un quotient

Limite d'un qu	otient								
Si la limite de (u_n) quand n tend vers $+\infty$ est	ℓ	ℓ	+∞	+∞	$-\infty$	$-\infty$	±∞	ℓ	0
Et la limite de (v_n) quand n tend vers $+\infty$ est	$\ell' \neq 0$	±∞	ℓ' > 0	<i>l'</i> < 0	<i>l'</i> > 0	<i>l'</i> < 0	±∞	0+	0
Alors la limite de $\left(\frac{u_n}{v_n}\right)$ quand n tend vers $+\infty$ est	<u>ℓ</u>	0	+∞	-∞	-∞	+∞	?	±∞	?

À LIRE 🍑

Formes indéterminées

À noter qu'il n'existe que 4 formes indéterminées : " $+\infty-\infty$ ", " $0\times\pm\infty$ ", " $\pm\infty$ " et

3. Majoration, minoration et bornes

À RETENIR 💡

Définition

Soient une suite (u_n) et deux réels m et M:

- On dit que m est un **minorant** de (u_n) si pour tout $n: u_n > m$.
- On dit que *M* est un **majorant** de (*u_n*) si pour tout *n* : *u_n* < *M*.
 On dit que (*u_n*) est **bornée** si elle est à la fois majorée et minorée.

À RETENIR 🜹

Théorème

— Si (u_n) est croissante et est majorée, alors elle est convergente. Si elle n'est pas majorée, (u_n) diverge vers $+\infty$.

— Si (u_n) est décroissante et est minorée, alors elle est convergente. Si elle n'est pas minorée, (u_n) diverge vers $-\infty$.

DÉMONSTRATION @

Il faut savoir montrer que toute suite croissante et non majorée diverge vers $+\infty$. C'est ce que nous allons faire ici. Soit donc (u_n) une telle suite. Soit A > 0, on cherche un rang N tel que pour tout $n \ge N$, $u_n > A$.

Or, comme (u_n) est non majorée, il existe N tel que $u_N > A$. De plus, comme (u_n) est croissante, alors $A < u_N \le u_{N+1} \le u_{N+2} \le \dots$

Donc on a bien trouvé notre rang N vérifiant la définition de la divergence vers $+\infty$.

À LIRE 00

Toute suite convergente est également bornée.

4. Comparaisons et encadrements

À RETENIR 💡

Théorèmes de comparaison

Soient deux suites (u_n) et (v_n) telles que $u_n < v_n$ à partir d'un certain rang N. On a :

- Si $\lim_{n \to +\infty} u_n = +\infty$, alors $\lim_{n \to +\infty} v_n = +\infty$. Si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$. Si $\lim_{n \to +\infty} u_n = \ell$ et $\lim_{n \to +\infty} v_n = \ell'$ alors $\ell < \ell'$.

Il peut être utile de savoir démontrer le premier point dans le cas N = 0 (les autres points se démontrent de manière semblable). Supposons $\lim_{n\to+\infty}u_n=+\infty$. Soit A > 0, on cherche un rang p tel que pour tout $n \ge p$, $v_n > A$.

Comme u_n diverge vers $+\infty$, il existe un rang q tel que pour tout $n \ge q$, $u_n > A$. Donc on a : $A < u_q < v_q$, mais aussi $A < u_{q+1} < v_{q+1}$, etc.

Donc il suffit de poser p = q et on a bien notre rang vérifiant la définition de la divergence vers $+\infty$.

À RETENIR 📍

Théorème des gendarmes

Soient trois suites (u_n) , (v_n) et (w_n) . On suppose que $u_n < v_n < w_n$ à partir d'un certain rang et que (u_n) et (w_n) convergent vers le réel ℓ .

Alors
$$\lim_{n\to+\infty} v_n = \ell$$
.

III - Raisonnement par récurrence

Si on souhaite montrer qu'une propriété est vraie pour tout $n \in \mathbb{N}$ à partir d'un certain rang p, il est possible d'utiliser un type de raisonnement appelé **raisonnement par récurrence**.

À RETENIR 💡

Raisonnement par récurrence

Initialisation : On teste la propriété au rang p. Si elle est vérifiée, on passe à l'étape suivante.

Hérédité : On suppose la propriété vraie à un rang $n \ge p$. Puis on montre qu'elle reste vraie au rang n + 1.

Conclusion : On explique que l'on vient de démontrer la propriété au rang n+1 et que comme celle-ci est initialisée et héréditaire, alors elle est vraie à partir du rang p.

À LIRE 👀

Exemple

Soit une suite (u_n) définie par $(u_n)=\begin{cases} u_0=4\\ u_{n+1}=\frac{4u_n+17}{u_n+4} \end{cases}$. On souhaite montrer que pour tout $n\in\mathbb{N}$, on a $4\leq u_n\leq 5$.

On note \mathscr{P}_n la propriété définie pour tout $n \in \mathbb{N}$ par $\mathscr{P}_n : 4 \le u_n \le 5$.

On constate que $u_{n+1} = \frac{4u_n + 17}{u_n + 4} = \frac{4(u_n + 4) + 1}{u_n + 4} = 4 + \frac{1}{u_n + 4}$.

Initialisation : On teste la propriété au rang $0: 4 \le u_0 \le 5 \iff 4 \le 4 \le 5$. C'est vrai : la propriété \mathcal{P}_0 est vraie.

Hérédité : Supposons la propriété vraie à un rang $n \in \mathbb{N}$ et vérifions qu'elle est vraie au rang n + 1.

D'après \mathcal{P}_n : $4 \le u_n \le 5$. Donc on a :

$$\begin{split} 4 &\leq u_n \leq 5 \iff 4+4 \leq u_n+4 \leq 5+4 \\ &\iff \frac{1}{9} \leq \frac{1}{u_n+4} \leq \frac{1}{8} \\ &\iff 4+\frac{1}{9} \leq 4+\frac{1}{u_n+4} \leq 4+\frac{1}{8} \end{split}$$

Or $4 + \frac{1}{9} \approx 4$, 111 > 4 et $4 + \frac{1}{8} = 4$, 125 < 5. On a donc bien :

$$4 \le u_{n+1} \le 5$$

Conclusion : La propriété est initialisée au rang 0 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

Le raisonnement par récurrence est très utilisé en mathématiques et ne se limite pas qu'à l'étude des suites. On peut par exemple l'utiliser pour montrer l'**inégalité de Bernoulli**.

À RETENIR 💡

Inégalité de Bernoulli

 $(1+x)^n > 1 + nx$ pour tout $n \ge 2$ et tout $x \in [-1,0[\,\cup\,]0,+\infty[$.

DÉMONSTRATION 🥮

Inégalité de Bernoulli

Soit $x \in [-1,0[\,\cup\,]0,+\infty[$. On note \mathscr{P}_n la propriété définie pour tout $n \ge 2$ par \mathscr{P}_n : $(1+x)^n > 1+nx$. Montrons \mathscr{P}_n par récurrence.

Initialisation : On teste la propriété au rang $2: (1+x)^2 = 1 + 2x + x^2 > 1 + 2x$ (car $x^2 > 0$). La propriété \mathcal{P}_2 est vraie.

Hérédité : Supposons la propriété vraie à un rang $n \ge 2$ et vérifions qu'elle est vraie au rang n + 1.

En multipliant les deux membres de l'inégalité de l'hypothèse de récurrence par $1 + x \ge 0$ (qui ne change donc pas le sens de l'inégalité), on obtient :

$$(1+x)^n(1+x) \ge (1+nx)(1+x) \iff (1+x)^{n+1} \ge 1 + (n+1)x + nx^2 > 1 + (n+1)x$$

Conclusion:

La propriété est initialisée au rang 2 et est héréditaire. Ainsi, \mathcal{P}_n est vraie pour tout $n \geq 2$.