101

	2018-2	D:	N.A. ()		Midterm	
	예홍진	Discrete	Mathema	matics	Test time: 60	minutes
 The structure (odd integers, +, x) is closed with respect to addition(+) and multiplication(x). Consider operation △ defined for the set {0, 1} by the following table. Then an identity for △ is 1 and △ is communitive. In the pigeonhole principle, if n pigeons are assigned to m pigeonholes and m < n, then at least one pigeonhole contains two or more pigeons. Join, meet and boolean product of boolean matrices, all three operations are commutative. Let A = { a, b, c }. The expression aai(bvc) (cavb) is a regular expression. The transitive closure of a relation R is the connectivity relation R[∞]. The recurrence relation f_n = f_{n-1} + 2f²_{n-2} 1 is a linear homogeneous relation of degree 2. F 						
Then $R(A_1 \cup A_2) = R(A_1) \cup R(A_2)$. \checkmark 9. Let $A = \{1,2,3,4\}$ and let $R = \{(1,2),(2,2),(3,4),(4,1)\}$. Then R is antisymmetric.						
10. Let R be a relation on A . Then the connectivity relation R^{∞} is the transitive closure of R . 11. Let R and S be relations on A . $(R \cap S)^2 = R^2 \cap S^2$. 12. Let aRb if and only if $GCD(a,b) = 1$ for a,b in $A = Z^+$, then R is an equivalence relation. 13. Let L be a finite lattice. If $ L = 2^n$, then L is a Boolean algebra. 14. Let L be a lattice. Then for every a and b in L , $a \lor b = a$ if and only if $a \land b = b$.						
× (1	$D_{51},\ D_{70},\ { m and}$ 6 ~ 30) Compl	D_{143} are all Boolean a 4 (오무지 1 1 1 1 1 1 1 1 1 1	algebras. Rve atements. [15 pe	207W?.	702	0 = 20)
16. If a sequence may stop after n elements, n ∈ N, then we say that the sequence is (). 17. A structure is () with respect to an operation if that operation always produces another member of the collection of objects. 18. When showing that P(n) is true for all integers n ≥ n0, we use mathematical induction that is						
19. L	et $A = \{1, 3, 4\}$ only if $a \mid b$. The) and induction $B=\{2,4,6\}$ and $B=\{2,4,6\}$ en, $ R =(1,1)$.	3,10}. Define the			
h 21. St 22. A	as in-degree (${\sf uppose}$ that ${\it R}$ ${\sf relation}$ ${\it R}$ on	$R = \{(1,1), (1,2)\}$ and has out is a relation on a set a set A is $\{(1,1), (1,2)\}$ a set A is called a(r	t-degree (2 et A . The reflexit) if whenever (a). ve closure of R is $(a,b) \in R$, then (b,a)	(\triangle) .	2) 3×9
24. Le 25. If 26. If	et R be a relative seven integers \triangle is a binary	tion on a set A . Then from 1 to 12 are choperation, then \triangle is et, the process of core	n R is ((V C C nosen, then two C	if and only if R of them will add \triangle y) \triangle z = x \triangle	$R \cap R^{-1} = \varnothing$. up to (). $R \cap R^{-1} = \varnothing$.	[00 [10] [10] [10] [10]

1234560 8910 1112