Program Summary - Homework 5.sas

Execution Environment

Author: chwang10

File: /home/chwang10/Homework 5.sas

SAS Platform: Linux LIN X64 3.10.0-1062.9.1.el7.x86_64

SAS Host: ODAWS01-USW2.ODA.SAS.COM

SAS Version: 9.04.01M6P11072018

SAS Locale: en US

Submission Time: 11/3/2020, 12:15:24 AM

Browser Host: ASTOUND-66-234-210-119.CA.ASTOUND.NET

User Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111

Safari/537.36

Application Server: ODAMID01-USW2.ODA.SAS.COM

Code: Homework 5.sas

```
* Programmed by Charles Hwang *
* Coded in SAS OnDemand
* Monday, November 2, 2020
* Course: STAT 403
* Title: Homework 5
/* 1a */ Proc Import out=MLB datafile="/home/chwang10/BASEBALL2018.xlsx" dbms=xlsx;
Run;
/* 1b */ Proc Corr data=MLB plots=Matrix (nvar=ALL) nosimple; * Because the Proc Corr function only
allows a maximum of ten variables, two separate correlation matrices are needed. I chose to separate
the matrices into offensive and defensive variables.;
Title "1b. Correlation Matrices of Offensive MLB Variables";
Var WINLOSSPER R H HR RBI SB BA OBP SLG;
Proc Corr data=MLB plots=Matrix nosimple;
Title "1b. Correlation Matrices of Defensive MLB Variables";
Var WINLOSSPER ERA WHIP;
Run;
/* 1c(i) */ * The Runs Scored (R) variable had the strongest positive correlation to win
percentage (WINLOSSPER) at r = 0.83789. This means that win percentage has the greatest direct
correlation with runs scored.;
/* 1c(ii) */ * The Earned Run Average (ERA) variable had the strongest negative correlation to win
percentage (WINLOSSPER) at r = -0.87328. This means that win percentage has the greatest inverse
correlated with earned run average.;
/* 1c(iii) */ * The Earned Run Average (ERA) variable had the strongest overall correlation to win
percentage (WINLOSSPER) at r = -0.87328.;
/* 1d */ Proc Sort data=MLB;
By League;
Proc Corr data=MLB plots=Matrix (nvar=ALL) nosimple; * Specifying that all variables be displayed in
the correlation matrix (default is nvar=5);
Title "1d. Correlation Matrices of Offensive MLB Variables by League";
By League;
Var WINLOSSPER R H HR RBI SB BA OBP SLG; * There is an error for each pair of matrices but they do not
appear to affect the data or output in any way.;
Proc Corr data=MLB plots=Matrix nosimple;
Title "1d. Correlation Matrices of Defensive MLB Variables by League";
By League;
Var WINLOSSPER ERA WHIP;
Run; * The Earned Runs Average (ERA) variable had the strongest correlation to win
percentage (WINLOSSPER) in the American League at r = -0.92775, and The Runs Scored (R) variable had
the strongest correlation to win percentage (WINLOSSPER) in the National League at r = 0.85717. The
American League had the same variable with the strongest correlation, but the National League had a
different variable with the strongest correlation. This suggests that the American League may have a
slightly higher emphasis on pitching, while the National League have a slightly higher emphasis on
simply scoring runs.;
```

```
/* 2a */ Proc Import out=BCH datafile="/home/chwang10/Bone Cracking Hypercarnivores Data.xlsx" dbms=xlsx;
Proc Reg data=BCH;
Title "2a. Linear Regression of Bone Cracking Hypercarnivores Data";
Model SEJ=MA; * Linear model: SEJ = -2.76054 + 31.81161*MA;
Run;
/* 2b */ * Although r = 0.7486, the residual plot shows a lack of homoscedasticity, indicating that a
linear regression may not be the best model. Additionally, the studentized residual plot indicates some
outliers and both the studentized residual plot and Cook's D indicates some high leverage points.;
/* 2c */ Data BCH2;
Set BCH;
MASQ=MA**2;
Proc Reg data=BCH2 plots=predictions (x=MA);
Title "2c. Quadratic Regression of Bone Cracking Hypercarnivores Data";
Model SEJ=MA MASQ; * Quadratic model: SEJ=8.60935-73.35032*MA+236.05951*MA^2, r=0.8006, TSS=64.76180 ;
Run; * There is a megaphone effect in the residual plot and studentized residual plot, indicating a
lack of homoscedasticity. Additionally, the studentized residual plot indicates some outliers and some
high leverage points.;
/* 2d */ Data BCHL;
Set BCH;
lnSEJ=log(SEJ);
Proc Reg data=BCHL;
Title "2d. Exponential Regression of Bone Cracking Hypercarnivores Data";
Model lnSEJ=MA; * Exponential model: SEJ = e^(-0.16884 + 7.14161*MA), r = 0.8004, TSS = 3.06007;
Output out=BCHLO predicted=SEJP; * Both the residual plot and studentized residual plot appear to
indicate homoscedasticity. The studentized residual plot indicates some high leverage points.;
Data BCHLU; * Untransforming model;
Set BCHLO;
SEJU=exp(SEJP);
Proc Print data=BCHLU;
Title "2d. Bone Cracking Hypercarnivores Data with Untransformed Regression Output (SEJ vs. SEJU)";
Run;
/* 2e */ Proc Transreg data=BCH;
Title "2e. Box-Cox Transformation of Bone Cracking Hypercarnivores Data";
Model Boxcox(SEJ)=identity(MA);
Run; * \lambda = -0.75;
Data BCHBC;
Set BCH:
SEJ\lambda=SEJ**-0.75:
Proc Reg data=BCHBC;
Title "2e. Power Regression of Bone Cracking Hypercarnivores Data";
Model SEJ\lambda=MA; * Power model: SEJ = (0.75444 - 1.80577*MA)^4/3, r = 0.8207, TSS = 0.19097;
Run; * Looking at the residual plot and studentized residual plot, it appears there may be a lack of
homoscedasticity. Additionally, the studentized residual plot indicates some outliers and both the
studentized residual plot and Cook's D indicates some high leverage points.;
/* 2f */ * I believe the exponential model has the best fit. The adjusted-r^2 is the highest of the
three nonlinear models and the total sum of squares (TSS) is by far the lowest. The Box-Cox
Transformation also assures we have the best value of \lambda for the power model.;
/* 3a */ Proc Import out=Res datafile="/home/chwang10/Response.xlsx" dbms=xlsx;
Run;
/* 3b */ Symbol value=circle;
Proc Gplot data=Res;
Title "3b. Scatterplot of Response Data";
Plot y*x;
Run;
/* 3c */ Proc Nlin data=Res plots=all;
Title "3c. Nonlinear Model of Response Data (y = a*e^(bx))";
Parameters a=1 b=1; * Arbitrary median choice of parameters ;
Model y=a*exp(b*x);
Run; * The sum of squares when convergence is met (a = 111.9, b = -0.7352) is 1011.3. Additionally,
the residual histogram indicates the data may not be normal, and there is a megaphone effect in the
```

```
residual plot and studentized residual plot, indicating a lack of homoscedasticity.;
/* 3d */ Proc Nlin data=Res plots=all;
Title "3d. Nonlinear Model of Response Data (y = e^{(ax)}/(b + cx))";
Parameters a=.1 b=.1 c=.1;
Model y=exp(a*x)/(b+c*x);
Run; * The sum of squares when convergence is met (a = -0.1665, b = 0.00516, c = 0.0122) is 515.1.
This is better than the model in problem 3c. Additionally, there is a megaphone effect in the residual
plot and studentized residual plot, indicating a lack of homoscedasticity.;
Log: Homework 5.sas
Errors (2)
Notes (51)
           OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
70
71
           * Programmed by Charles Hwang *
72
           * Coded in SAS OnDemand
73
           * Monday, November 2, 2020
74
           * Course: STAT 403
75
           * Title: Homework 5
76
77
           /* 1a */
77
                    Proc Import out=MLB datafile="/home/chwang10/BASEBALL2018.xlsx" dbms=xlsx;
78
           Run:
NOTE: Import cancelled. Output dataset WORK.MLB already exists. Specify REPLACE option to overwrite it.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE IMPORT used (Total process time):
                          0.00 seconds
      real time
       user cpu time
                          0.00 seconds
      system cpu time
                          0.00 seconds
      memory
                          799.31k
      OS Memory
                          40852.00k
                          11/03/2020 08:15:17 AM
      Timestamp
       Step Count
                                         707 Switch Count 0
      Page Faults
      Page Reclaims
                                        138
      Page Swaps
      Voluntary Context Switches
                                        1
       Involuntary Context Switches
                                         0
      Block Input Operations
                                        0
      Block Output Operations
                                         0
79
           /* 1b */
                    Proc Corr data=MLB plots=Matrix (nvar=ALL) nosimple; * Because the Proc Corr function only
81
           allows a maximum of ten variables, two separate correlation matrices are needed. I chose to separate
82
           the matrices into offensive and defensive variables. ;
           Title "1b. Correlation Matrices of Offensive MLB Variables";
83
           Var WINLOSSPER R H HR RBI SB BA OBP SLG;
NOTE: PROCEDURE CORR used (Total process time):
                          0.81 seconds
       real time
       user cpu time
                          0.27 seconds
       system cpu time
                          0.01 seconds
      memory
                          18304.40k
      OS Memory
                          48552.00k
                          11/03/2020 08:15:17 AM
       Timestamp
       Step Count
                                        708 Switch Count 1
       Page Faults
                                         0
       Page Reclaims
                                         2667
       Page Swaps
       Voluntary Context Switches
                                         533
                                         0
       Involuntary Context Switches
       Block Input Operations
                                         0
      Block Output Operations
                                         832
85
           Proc Corr data=MLB plots=Matrix nosimple;
           Title "1b. Correlation Matrices of Defensive MLB Variables";
86
           Var WINLOSSPER ERA WHIP;
87
```

88

Run;

```
NOTE: PROCEDURE CORR used (Total process time):
     real time 0.27 seconds
     user cpu time
                        0.13 seconds
     system cpu time 0.00 seconds memory 3573.84k
                        49756.00k
      OS Memory
                         11/03/2020 08:15:18 AM
     Timestamp
      Step Count
                                       709 Switch Count 1
     Page Faults
     Page Reclaims
                                       702
      Page Swaps
                                        0
     Voluntary Context Switches
                                       303
      Involuntary Context Switches
                                       1
      Block Input Operations
                                       0
     Block Output Operations
                                       768
89
90
          /* lc(i) */ * The Runs Scored (R) variable had the strongest positive correlation to win
91
          percentage (WINLOSSPER) at r = 0.83789. This means that win percentage has the greatest direct
92
          correlation with runs scored.;
          /* lc(ii) */ * The Earned Run Average (ERA) variable had the strongest negative correlation to win
93
94
          percentage (WINLOSSPER) at r = -0.87328. This means that win percentage has the greatest inverse
95
          correlated with earned run average.;
96
          /* lc(iii) */ * The Earned Run Average (ERA) variable had the strongest overall correlation to win
97
          percentage (WINLOSSPER) at r = -0.87328.;
98
99
                  Proc Sort data=MLB;
99
100
          By League;
NOTE: Input data set is already sorted, no sorting done.
NOTE: PROCEDURE SORT used (Total process time):
                    0.00 seconds
     real time
      user cpu time
                         0.00 seconds
     system cpu time 0.00 seconds
     memory
                         427.12k
                         48808.00k
      OS Memory
                         11/03/2020 08:15:18 AM
     Timestamp
      Step Count
                                       710 Switch Count 0
     Page Faults
      Page Reclaims
                                       49
      Page Swaps
                                       0
      Voluntary Context Switches
                                       0
      Involuntary Context Switches
                                       0
      Block Input Operations
                                       0
     Block Output Operations
                                       0
101
          Proc Corr data=MLB plots=Matrix (nvar=ALL) nosimple; * Specifying that all variables be displayed in
          the correlation matrix (default is nvar=5);
102
          Title "1d. Correlation Matrices of Offensive MLB Variables by League";
103
104
          By League;
105
          Var WINLOSSPER R H HR RBI SB BA OBP SLG; * There is an error for each pair of matrices but they do not
106
          appear to affect the data or output in any way.;
ERROR: All variables have missing values for all observations in the input data set.
NOTE: The above message was for the following BY group:
     League=
NOTE: PROCEDURE CORR used (Total process time):
                     1.45 seconds
     real time
      user cpu time
                         0.44 seconds
      system cpu time
                         0.01 seconds
                         5418.15k
      memory
      OS Memory
                         51548.00k
                         11/03/2020 08:15:19 AM
     Timestamp
      Step Count
                                       711 Switch Count 1
      Page Faults
                                       1145
      Page Reclaims
      Page Swaps
      Voluntary Context Switches
                                       996
      Involuntary Context Switches
                                       3
      Block Input Operations
     Block Output Operations
                                       1104
107
          Proc Corr data=MLB plots=Matrix nosimple;
108
          Title "1d. Correlation Matrices of Defensive MLB Variables by League";
109
          By League;
110
          Var WINLOSSPER ERA WHIP;
```

```
111
          Run:
ERROR: All variables have missing values for all observations in the input data set.
NOTE: The above message was for the following BY group:
      League=
NOTE: PROCEDURE CORR used (Total process time):
                          0.44 seconds
      real time
                          0.19 seconds
      user cpu time
      system cpu time
                          0.00 seconds
      memory
                          4234.18k
                          51548.00k
      OS Memory
                          11/03/2020 08:15:20 AM
      Timestamp
      Step Count
                                        712 Switch Count 1
      Page Faults
                                        0
      Page Reclaims
                                        889
      Page Swaps
                                        0
      Voluntary Context Switches
                                        561
      Involuntary Context Switches
                                        4
      Block Input Operations
                                        0
      Block Output Operations
                                        792
111
                * The Earned Runs Average (ERA) variable had the strongest correlation to win
112
           percentage (WINLOSSPER) in the American League at r = -0.92775, and The Runs Scored (R) variable had
           the strongest correlation to win percentage (WINLOSSPER) in the National League at r = 0.85717. The
113
114
           American League had the same variable with the strongest correlation, but the National League had a
115
           different variable with the strongest correlation. This suggests that the American League may have a
116
           slightly higher emphasis on pitching, while the National League have a slightly higher emphasis on
117
           simply scoring runs.;
118
119
           /* 2a */
119
                   Proc Import out=BCH datafile="/home/chwang10/Bone Cracking Hypercarnivores Data.xlsx" dbms=xlsx;
NOTE: Import cancelled. Output dataset WORK.BCH already exists. Specify REPLACE option to overwrite it.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE IMPORT used (Total process time):
                         0.00 seconds
      real time
      user cpu time
                          0.00 seconds
                          0.00 seconds
      system cpu time
                          687.28k
      memory
      OS Memory
                          50580.00k
      Timestamp
                          11/03/2020 08:15:20 AM
      Step Count
                                        713 Switch Count 0
      Page Faults
                                        0
      Page Reclaims
                                        138
      Page Swaps
                                        0
      Voluntary Context Switches
                                        3
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        0
120
           Proc Reg data=BCH;
           Title "2a. Linear Regression of Bone Cracking Hypercarnivores Data";
121
122
           Model SEJ=MA; * Linear model: SEJ = -2.76054 + 31.81161*MA;
           Run;
123
124
           /* 2b */ * Although r = 0.7486, the residual plot shows a lack of homoscedasticity, indicating that a
125
126
           linear regression may not be the best model. Additionally, the studentized residual plot indicates some
127
           outliers and both the studentized residual plot and Cook's D indicates some high leverage points.;
128
129
           /* 2c */
NOTE: PROCEDURE REG used (Total process time):
      real time
                          0.53 seconds
      user cpu time
                          0.25 seconds
                          0.04 seconds
      system cpu time
      memory
                          11323.96k
      OS Memory
                          58340.00k
      Timestamp
                          11/03/2020 08:15:20 AM
      Step Count
                                        714 Switch Count 23
      Page Faults
                                        0
      Page Reclaims
                                        12505
      Page Swaps
      Voluntary Context Switches
                                        991
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        1168
```

```
129
                    Data BCH2;
130
          Set BCH;
131
          MASO=MA**2:
NOTE: There were 36 observations read from the data set WORK.BCH.
NOTE: The data set WORK.BCH2 has 36 observations and 10 variables.
NOTE: DATA statement used (Total process time):
     user cpu time 0.00 seconds
     system cpu time 0.00 seconds
                         961.18k
     memory
     OS Memory
                        52652.00k
     Timestamp
                        11/03/2020 08:15:20 AM
     Step Count
                                        715 Switch Count 2
     Page Faults
                                        0
     Page Reclaims
                                        124
     Page Swaps
                                        0
      Voluntary Context Switches
                                        14
     Involuntary Context Switches
                                        0
     Block Input Operations
                                        0
     Block Output Operations
                                        264
132
          Proc Reg data=BCH2 plots=predictions (x=MA);
133
          Title "2c. Quadratic Regression of Bone Cracking Hypercarnivores Data";
134
          Model SEJ=MA MASQ; * Quadratic model: SEJ=8.60935-73.35032*MA+236.05951*MA^2, r=0.8006, TSS=64.76180;
135
          Run:
                * There is a megaphone effect in the residual plot and studentized residual plot, indicating a
135
136
          lack of homoscedasticity. Additionally, the studentized residual plot indicates some outliers and some
137
          high leverage points.;
138
          /* 2d */
139
NOTE: PROCEDURE REG used (Total process time):
                     0.61 seconds
     real time
      user cpu time
                         0.25 seconds
                         0.03 seconds
      system cpu time
                         11225.46k
     memory
     OS Memory
                         60132.00k
      Timestamp
                         11/03/2020 08:15:21 AM
                                       716 Switch Count 23
      Step Count
      Page Faults
                                        0
     Page Reclaims
                                        12235
      Page Swaps
                                        0
      Voluntary Context Switches
                                       1026
      Involuntary Context Switches
                                       0
      Block Input Operations
                                        0
     Block Output Operations
                                       1616
139
                   Data BCHL;
140
          Set BCH;
          lnSEJ=log(SEJ);
141
NOTE: There were 36 observations read from the data set WORK.BCH.
NOTE: The data set WORK.BCHL has 36 observations and 10 variables.
NOTE: DATA statement used (Total process time):
      real time
                         0.00 seconds
      user cpu time
                         0.01 seconds
      system cpu time
                         0.00 seconds
     memory
                         950.40k
     OS Memory
                         53164.00k
                         11/03/2020 08:15:21 AM
     Timestamp
      Step Count
                                        717 Switch Count 2
      Page Faults
                                        0
      Page Reclaims
                                        122
      Page Swaps
                                        0
      Voluntary Context Switches
                                        12
      Involuntary Context Switches
      Block Input Operations
                                        0
      Block Output Operations
                                        264
142
          Proc Reg data=BCHL;
          Title "2d. Exponential Regression of Bone Cracking Hypercarnivores Data";
143
144
          Model lnSEJ=MA; * Exponential model: SEJ = e^{(-0.16884 + 7.14161*MA)}, r = 0.8004, TSS = 3.06007;
145
          Output out=BCHLO predicted=SEJP; \star Both the residual plot and studentized residual plot appear to
146
           indicate homoscedasticity. The studentized residual plot indicates some high leverage points.;
```

```
NOTE: The data set WORK.BCHLO has 36 observations and 11 variables.
NOTE: PROCEDURE REG used (Total process time):
                 0.49 seconds
ne 0.23 seconds
      real time
      user cpu time
      system cpu time 0.04 seconds memory 11230.21k
      memory
      OS Memory
                         60644.00k
      Timestamp
                        11/03/2020 08:15:21 AM
      Step Count
                                        718 Switch Count 25
      Page Faults
      Page Reclaims
                                        12141
      Page Swaps
      Voluntary Context Switches
                                        1003
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
                                        1440
      Block Output Operations
147
           Data BCHLU; * Untransforming model;
148
           Set BCHLO;
149
          SEJU=exp(SEJP);
NOTE: There were 36 observations read from the data set WORK.BCHLO.
NOTE: The data set WORK.BCHLU has 36 observations and 12 variables.
NOTE: DATA statement used (Total process time):
      real time
                        0.00 seconds
      real time 0.00 seconds user cpu time 0.00 seconds
      system cpu time 0.00 seconds
                          959.93k
      memory
     OS Memory
                         53676.00k
      Timestamp
                        11/03/2020 08:15:21 AM
      Step Count
                                        719 Switch Count 2
      Page Faults
                                        0
      Page Reclaims
                                        121
      Page Swaps
                                        0
      Voluntary Context Switches
                                        13
      Involuntary Context Switches
      Block Input Operations
                                        0
      Block Output Operations
                                        272
150
           Proc Print data=BCHLU;
151
           Title "2d. Bone Cracking Hypercarnivores Data with Untransformed Regression Output (SEJ vs. SEJU)";
152
NOTE: There were 36 observations read from the data set WORK.BCHLU.
NOTE: PROCEDURE PRINT used (Total process time):
                      0.09 seconds
      real time
      user cpu time
                          0.10 seconds
      system cpu time
                         0.00 seconds
      memory
                        1047.96k
      OS Memory
                         53672.00k
                         11/03/2020 08:15:21 AM
      Timestamp
      Step Count
                                        720 Switch Count 1
      Page Faults
                                        0
      Page Reclaims
                                        110
      Page Swaps
                                        0
      Voluntary Context Switches
                                        7
      Involuntary Context Switches
      Block Input Operations
                                        0
      Block Output Operations
                                       40
153
           /* 2e */
Proc Transreg data=BCH;
154
154
          Title "2e. Box-Cox Transformation of Bone Cracking Hypercarnivores Data";
155
156
          Model Boxcox(SEJ)=identity(MA);
157
NOTE: There were 36 observations read from the data set WORK.BCH.
NOTE: PROCEDURE TRANSREG used (Total process time):
      real time
                          0.14 seconds
      user cpu time
                         0.06 seconds
      system cpu time 0.01 seconds
      memory
                          2952.59k
      OS Memory
                          54836.00k
      Timestamp
                         11/03/2020 08:15:22 AM
                                        721 Switch Count 1
      Step Count
      Page Faults
                                        0
      Page Reclaims
                                        334
```

```
Page Swaps
                                        0
      Voluntary Context Switches
                                        356
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        496
157
             * \lambda = -0.75;
158
          Data BCHBC;
159
           Set BCH;
           SEJ\lambda = SEJ**-0.75;
160
NOTE: There were 36 observations read from the data set WORK.BCH.
NOTE: The data set WORK.BCHBC has 36 observations and 10 variables.
NOTE: DATA statement used (Total process time):
     real time
                         0.00 seconds
                          0.00 seconds
      user cpu time
      system cpu time 0.00 seconds
     memory
                         951.59k
     OS Memory
                          53932.00k
      Timestamp
                         11/03/2020 08:15:22 AM
                                        722 Switch Count 2
      Step Count
      Page Faults
                                        0
      Page Reclaims
                                        123
      Page Swaps
                                        0
      Voluntary Context Switches
                                        14
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        264
161
           Proc Reg data=BCHBC;
           Title "2e. Power Regression of Bone Cracking Hypercarnivores Data";
162
           Model SEJ\lambda=MA; * Power model: SEJ = (0.75444 - 1.80577*MA)^4/3, r = 0.8207, TSS = 0.19097 ;
163
164
164
                * Looking at the residual plot and studentized residual plot, it appears there may be a lack of
165
          homoscedasticity. Additionally, the studentized residual plot indicates some outliers and both the
           studentized residual plot and Cook's D indicates some high leverage points.;
166
167
           /* 2f */ * I believe the exponential model has the best fit. The adjusted-r^2 is the highest of the
168
169
           three nonlinear models and the total sum of squares (TSS) is by far the lowest. The Box-Cox
170
           Transformation also assures we have the best value of \lambda for the power model. ;
171
172
           /* 3a */
NOTE: PROCEDURE REG used (Total process time):
      real time
                          0.49 seconds
      user cpu time
                          0.24 seconds
                         0.04 seconds
      system cpu time
                          11227.81k
      memory
     OS Memory
                          61668.00k
                         11/03/2020 08:15:22 AM
     Timestamp
      Step Count
                                        723 Switch Count 23
      Page Faults
                                        0
      Page Reclaims
                                        12031
      Page Swaps
      Voluntary Context Switches
                                        1000
      Involuntary Context Switches
      Block Input Operations
                                        0
      Block Output Operations
                                        1200
                    Proc Import out=Res datafile="/home/chwang10/Response.xlsx" dbms=xlsx;
172
          Run;
173
NOTE: Import cancelled. Output dataset WORK.RES already exists. Specify REPLACE option to overwrite it.
NOTE: The SAS System stopped processing this step because of errors.
NOTE: PROCEDURE IMPORT used (Total process time):
     real time
                         0.00 seconds
      user cpu time
                          0.00 seconds
      system cpu time
                          0.00 seconds
      memory
                          800.28k
      OS Memory
                          54164.00k
      Timestamp
                          11/03/2020 08:15:22 AM
      Step Count
                                        724 Switch Count 0
      Page Faults
                                        0
      Page Reclaims
                                        138
      Page Swaps
                                        0
      Voluntary Context Switches
                                        1
      Involuntary Context Switches
```

```
Block Input Operations
                                        0
      Block Output Operations
                                        0
174
175
           /* 3b */ Symbol value=circle;
176
           Proc Gplot data=Res;
           Title "3b. Scatterplot of Response Data";
177
           Plot y*x;
178
179
           Run;
180
181
           /* 3c */
NOTE: There were 54 observations read from the data set WORK.RES.
NOTE: PROCEDURE GPLOT used (Total process time):
                          0.16 seconds
      real time
      user cpu time
                          0.16 seconds
      system cpu time
                          0.01 seconds
      memory
                          7857.31k
      OS Memory
                          57368.00k
                          11/03/2020 08:15:22 AM
      Timestamp
      Step Count
                                        725 Switch Count 1
                                        0
      Page Faults
      Page Reclaims
                                        766
      Page Swaps
      Voluntary Context Switches
                                        8
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        296
181
                   Proc Nlin data=Res plots=all;
           Title "3c. Nonlinear Model of Response Data (y = a*e^(bx))";
182
183
           Parameters a=1 b=1; * Arbitrary median choice of parameters ;
184
           Model y=a*exp(b*x);
185
           Run;
NOTE: DER.a not initialized or missing. It will be computed automatically.
NOTE: DER.b not initialized or missing. It will be computed automatically.
NOTE: PROC NLIN grid search time was 0: 0: 0.
NOTE: Convergence criterion met.
NOTE: PROCEDURE NLIN used (Total process time):
      real time
                          0.62 seconds
      user cpu time
                          0.33 seconds
      system cpu time
                         0.03 seconds
                          5913.18k
      memory
      OS Memory
                          56880,00k
      Timestamp
                          11/03/2020 08:15:23 AM
      Step Count
                                        726 Switch Count 2
      Page Faults
                                        0
      Page Reclaims
                                        1946
      Page Swaps
                                        0
      Voluntary Context Switches
                                        1303
      Involuntary Context Switches
                                        0
      Block Input Operations
                                        0
      Block Output Operations
                                        1576
185
                * The sum of squares when convergence is met (a = 111.9, b = -0.7352) is 1011.3. Additionally,
186
           the residual histogram indicates the data may not be normal, and there is a megaphone effect in the
187
           residual plot and studentized residual plot, indicating a lack of homoscedasticity.;
188
189
           /* 3d */
                   Proc Nlin data=Res plots=all;
189
           Title "3d. Nonlinear Model of Response Data (y = e^{(ax)/(b + cx)})";
190
191
           Parameters a=.1 b=.1 c=.1;
192
           Model y=exp(a*x)/(b+c*x);
193
           Run;
NOTE: DER.a not initialized or missing. It will be computed automatically.
NOTE: DER.b not initialized or missing. It will be computed automatically.
NOTE: DER.c not initialized or missing. It will be computed automatically.
NOTE: PROC NLIN grid search time was 0: 0: 0.
NOTE: Convergence criterion met.
NOTE: PROCEDURE NLIN used (Total process time):
      real time
                          0.63 seconds
      user cpu time
                          0.35 seconds
```

```
Step Count
                                   727 Switch Count 2
     Page Faults
                                   0
     Page Reclaims
                                   1696
     Page Swaps
                                   0
     Voluntary Context Switches
                                   1312
     Involuntary Context Switches 0
     Block Input Operations
                                   0
     Block Output Operations
                                   1608
193
             * The sum of squares when convergence is met (a = -0.1665, b = 0.00516, c = 0.0122) is 515.1.
         This is better than the model in problem 3c. Additionally, there is a megaphone effect in the residual
194
195
         plot and studentized residual plot, indicating a lack of homoscedasticity.;
196
197
         OPTIONS NONOTES NOSTIMER NOSOURCE NOSYNTAXCHECK;
208
```

Results: Homework 5.sas

1b. Correlation Matrices of Offensive MLB Variables

The CORR Procedure

9 Variables: WINLOSSPER R H HR RBI SB BA OBP SLG

	Pearson Correlation Coefficients, N = 30 Prob > r under H0: Rho=0											
	WINLOSSPER	R	Н	HR	RBI	SB	ВА	ОВР	SLG			
WINLOSSPER WINLOSSPER	1.00000	0.83789 <.0001	0.67245 <.0001	0.53724 0.0022	0.82353 <.0001	0.12400 0.5139	0.68859 <.0001	0.79834 <.0001	0.74983 <.0001			
R	0.83789	1.00000	0.71663	0.77367	0.99588	0.16094	0.72054	0.87978	0.93532			
R	<.0001		<.0001	<.0001	<.0001	0.3956	<.0001	<.0001	<.0001			
H	0.67245	0.71663	1.00000	0.29945	0.69289	0.36757	0.98345	0.79259	0.68697			
H	<.0001	<.0001		0.1079	<.0001	0.0457	<.0001	<.0001	<.0001			
HR	0.53724	0.77367	0.29945	1.00000	0.79485	0.02118	0.29698	0.51680	0.85806			
HR	0.0022	<.0001	0.1079		<.0001	0.9116	0.1110	0.0035	<.0001			
RBI	0.82353	0.99588	0.69289	0.79485	1.00000	0.13758	0.69814	0.85792	0.93899			
RBI	<.0001	<.0001	<.0001	<.0001		0.4685	<.0001	<.0001	<.0001			
SB	0.12400	0.16094	0.36757	0.02118	0.13758	1.00000	0.36838	0.25749	0.19081			
SB	0.5139	0.3956	0.0457	0.9116	0.4685		0.0452	0.1695	0.3125			
BA	0.68859	0.72054	0.98345	0.29698	0.69814	0.36838	1.00000	0.81488	0.69425			
BA	<.0001	<.0001	<.0001	0.1110	<.0001	0.0452		<.0001	<.0001			
OBP	0.79834	0.87978	0.79259	0.51680	0.85792	0.25749	0.81488	1.00000	0.77304			
OBP	<.0001	<.0001	<.0001	0.0035	<.0001	0.1695	<.0001		<.0001			
SLG	0.74983	0.93532	0.68697	0.85806	0.93899	0.19081	0.69425	0.77304	1.00000			
SLG	<.0001	<.0001	<.0001	<.0001	<.0001	0.3125	<.0001	<.0001				

1b. Correlation Matrices of Defensive MLB Variables

The CORR Procedure

3 Variables: WINLOSSPER ERA WHIP

Pearson Correlation Coefficients, N = 30 Prob > r under H0: Rho=0								
	WINLOSSPER	WINLOSSPER ERA WHII						
WINLOSSPER	1.00000	-0.87328	-0.83325					
WINLOSSPER		<.0001	<.0001					
ERA	-0.87328	1.00000	0.91950					
ERA	<.0001		<.0001					
WHIP	-0.83325	0.91950	1.00000					
WHIP	<.0001	<.0001						

1d. Correlation Matrices of Offensive MLB Variables by League

The CORR Procedure

League=' '

9 Variables: WINLOSSPER R H HR RBI SB BA OBP SLG

1d. Correlation Matrices of Offensive MLB Variables by League

The CORR Procedure

League=AL

9 Variables: WINLOSSPER R H HR RBI SB BA OBP SLG

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0									
	WINLOSSPER	R	Н	HR	RBI	SB	ВА	OBP	SLG

WINLOSSPER	1.00000	0.87471	0.78507	0.50558	0.85765	0.04611	0.83003	0.90413	0.82759
WINLOSSPER		<.0001	0.0005	0.0545	<.0001	0.8704	0.0001	<.0001	0.0001
R	0.87471	1.00000	0.70131	0.71396	0.99549	0.01859	0.70288	0.90008	0.93159
R	<.0001		0.0036	0.0028	<.0001	0.9476	0.0035	<.0001	<.0001
H	0.78507	0.70131	1.00000	0.18836	0.67061	0.41782	0.98232	0.80832	0.66215
H	0.0005	0.0036		0.5014	0.0062	0.1212	<.0001	0.0003	0.0072
HR	0.50558	0.71396	0.18836	1.00000	0.75567	-0.25260	0.16399	0.45038	0.83358
HR	0.0545	0.0028	0.5014		0.0011	0.3637	0.5592	0.0921	0.0001
RBI	0.85765	0.99549	0.67061	0.75567	1.00000	-0.01219	0.66529	0.86440	0.94204
RBI	<.0001	<.0001	0.0062	0.0011		0.9656	0.0068	<.0001	<.0001
SB	0.04611	0.01859	0.41782	-0.25260	-0.01219	1.00000	0.41401	0.24501	-0.02731
SB	0.8704	0.9476	0.1212	0.3637	0.9656		0.1250	0.3788	0.9230
BA	0.83003	0.70288	0.98232	0.16399	0.66529	0.41401	1.00000	0.85764	0.64598
BA	0.0001	0.0035	<.0001	0.5592	0.0068	0.1250		<.0001	0.0093
OBP	0.90413	0.90008	0.80832	0.45038	0.86440	0.24501	0.85764	1.00000	0.79635
OBP	<.0001	<.0001	0.0003	0.0921	<.0001	0.3788	<.0001		0.0004
SLG	0.82759	0.93159	0.66215	0.83358	0.94204	-0.02731	0.64598	0.79635	1.00000
SLG	0.0001	<.0001	0.0072	0.0001	<.0001	0.9230	0.0093	0.0004	

1d. Correlation Matrices of Offensive MLB Variables by League

The CORR Procedure

League=NL

9 Variables: WINLOSSPER R H HR RBI SB BA OBP SLG

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0										
	WINLOSSPER	R	Н	HR	RBI	SB	ВА	ОВР	SLG	
WINLOSSPER	1.00000	0.85717	0.61361	0.70249	0.84882	0.33782	0.60035	0.65904	0.81829	
WINLOSSPER		<.0001	0.0150	0.0035	<.0001	0.2181	0.0180	0.0075	0.0002	
R	0.85717	1.00000	0.73839	0.83976	0.99633	0.40110	0.74236	0.89053	0.95974	
R	<.0001		0.0017	<.0001	<.0001	0.1384	0.0015	<.0001	<.0001	
H	0.61361	0.73839	1.00000	0.38178	0.72262	0.31841	0.98437	0.79940	0.70229	
H	0.0150	0.0017		0.1603	0.0023	0.2474	<.0001	0.0003	0.0035	
HR	0.70249	0.83976	0.38178	1.00000	0.83339	0.46086	0.39122	0.63855	0.87689	
HR	0.0035	<.0001	0.1603		0.0001	0.0838	0.1493	0.0104	<.0001	
RBI	0.84882	0.99633	0.72262	0.83339	1.00000	0.39273	0.73636	0.89059	0.95621	
RBI	<.0001	<.0001	0.0023	0.0001		0.1476	0.0017	<.0001	<.0001	
SB	0.33782	0.40110	0.31841	0.46086	0.39273	1.00000	0.32679	0.28955	0.48920	
SB	0.2181	0.1384	0.2474	0.0838	0.1476		0.2345	0.2952	0.0642	
BA	0.60035	0.74236	0.98437	0.39122	0.73636	0.32679	1.00000	0.80310	0.72161	
BA	0.0180	0.0015	<.0001	0.1493	0.0017	0.2345		0.0003	0.0024	
OBP	0.65904	0.89053	0.79940	0.63855	0.89059	0.28955	0.80310	1.00000	0.81872	
OBP	0.0075	<.0001	0.0003	0.0104	<.0001	0.2952	0.0003		0.0002	
SLG	0.81829	0.95974	0.70229	0.87689	0.95621	0.48920	0.72161	0.81872	1.00000	
SLG	0.0002	<.0001	0.0035	<.0001	<.0001	0.0642	0.0024	0.0002		

1d. Correlation Matrices of Defensive MLB Variables by League

The CORR Procedure

League=' '

3 Variables: WINLOSSPER ERA WHIP

1d. Correlation Matrices of Defensive MLB Variables by League

The CORR Procedure

League=AL

3 Variables: WINLOSSPER ERA WHIP

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0							
	WINLOSSPER ERA WHIF						
WINLOSSPER	1.00000	-0.92775	-0.90347				
WINLOSSPER		<.0001	<.0001				
ERA	-0.92775	1.00000	0.97746				
ERA	<.0001		<.0001				
WHIP	-0.90347	0.97746	1.00000				
WHIP	<.0001	<.0001					

1d. Correlation Matrices of Defensive MLB Variables by League

The CORR Procedure

League=NL

3 Variables: WINLOSSPER ERA WHIP

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0								
	WINLOSSPER ERA WHII							
WINLOSSPER	1.00000	-0.79333	-0.60558					
WINLOSSPER		0.0004	0.0167					
ERA	-0.79333	1.00000	0.78948					
ERA	0.0004		0.0005					
WHIP	-0.60558	0.78948	1.00000					
WHIP	0.0167	0.0005						

2a. Linear Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: SEJ SEJ

Number of Observations Read	36
Number of Observations Used	36

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	48.94323	48.94323	105.20	<.0001			
Error	34	15.81857	0.46525					
Corrected Total	35	64.76180						

Root MSE	0.68209	R-Square	0.7557
Dependent Mean	4.65333	Adj R-Sq	0.7486
Coeff Var	14.65818		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-2.76054	0.73173	-3.77	0.0006			
MA	MA	1	31.81161	3.10158	10.26	<.0001			

2c. Quadratic Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: SEJ SEJ

Number of Observations Read	36
Number of Observations Used	36

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	52.58568	26.29284	71.26	<.0001		
Error	33	12.17612	0.36897				
Corrected Total	35	64.76180					

Root MSE	0.60743	R-Square	0.8120
Dependent Mean	4.65333	Adj R-Sq	0.8006
Coeff Var	13.05369		

Parameter Estimates										
Variable Label DF Estimate Standard Error t Value Pr >										
Intercept	Intercept	1	8.60935	3.67694	2.34	0.0254				
MA	MA	1	-73.35032	33.58403	-2.18	0.0362				
MASQ		1	236.05951	75.13149	3.14	0.0035				

2c. Quadratic Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: SEJ SEJ

2d. Exponential Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: InSEJ

Number of Observations Read	36
Number of Observations Used	36

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	2.46668	2.46668	141.34	<.0001			
Error	34	0.59339	0.01745					
Corrected Total	35	3.06007						

Root MSE	0.13211	R-Square	0.8061
Dependent Mean	1.49555	Adj R-Sq	0.8004
Coeff Var	8.83340		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	-0.16884	0.14172	-1.19	0.2418			
MA	MA	1	7.14161	0.60072	11.89	<.0001			

2d. Bone Cracking Hypercarnivores Data with Untransformed Regression Output (SEJ vs. SEJU)

Obs	Model name	DL	WL	Elements	SEJ	adjSEJ	FOUTN	MA	ST_Min	InSEJ	SEJP	SEJU
1	J022611T38	0.33	0.42	1139265	3.39	3.3	7653.53	0.19	63	1.22083	1.18807	3.28073
2	J022611T39	0.33	0.55	1177734	3.1	3.05	7347.61	0.18	90	1.13140	1.11665	3.05461
3	J022611T40	0.33	0.69	1138486	2.67	2.63	6999.04	0.18	73	0.98208	1.11665	3.05461
4	J022611T41	0.33	0.83	1086419	3.27	3.21	6737.5	0.17	78	1.18479	1.04523	2.84407
5	J022611T42	0.33	0.97	1047996	3.02	2.93	6442.83	0.16	65	1.10526	0.97382	2.64804
6	J022611T43	0.33	1.11	1007072	2.83	2.72	5932.73	0.15	43	1.04028	0.90240	2.46552
7	J022611T33	0.38	0.42	1146486	4.2	4.1	8960	0.23	108	1.43508	1.47373	4.36549
8	J021411T01	0.38	0.55	1203707	3.75	3.75	8635.51	0.22	97	1.32176	1.40232	4.06460
9	J030211T48	0.38	0.69	1153383	3.67	3.7	8313.37	0.21	70	1.30019	1.33090	3.78444
10	J021511T03	0.38	0.83	1103659	3.61	3.64	7966.53	0.2	57	1.28371	1.25948	3.52360
11	J021711T08	0.38	0.97	1072618	3.01	3.02	7768.39	0.2	64	1.10194	1.25948	3.52360
12	J021711T09	0.38	1.11	1044292	3.33	3.32	7401.19	0.19	44	1.20297	1.18807	3.28073
13	J022611T34	0.51	0.42	1095971	5.81	5.62	9436.23	0.24	77	1.75958	1.54515	4.68866
14	J021711T10	0.51	0.55	1124466	5.31	5.32	9919.35	0.25	69	1.66959	1.61656	5.03576
15	J021811T14	0.51	0.69	1108403	4.16	4.22	9768.02	0.25	66	1.42552	1.61656	5.03576
16	J021811T15	0.51	0.83	1095138	3.6	3.67	9275.19	0.23	72	1.28093	1.47373	4.36549
17	J021811T16	0.51	0.97	1094398	3.51	3.57	9116.86	0.23	72	1.25562	1.47373	4.36549
18	J021811T17	0.51	1.11	1069458	2.99	3.03	8496.61	0.21	47	1.09527	1.33090	3.78444
19	J022611T35	0.59	0.42	1030327	6.17	5.91	10263.06	0.26	67	1.81970	1.68798	5.40854
20	J021711T11	0.59	0.55	1077924	5.96	5.94	10127.58	0.25	67	1.78507	1.61656	5.03576
21	J030211T46	0.59	0.69	1081675	5.05	5.13	10029.38	0.25	70	1.61939	1.61656	5.03576
22	J022011T21	0.59	0.83	1103739	5.82	5.95	9428.57	0.24	74	1.76130	1.54515	4.68866
23	J030211T47	0.59	0.97	1129459	3.97	4.06	9717.49	0.24	68	1.37877	1.54515	4.68866
24	J021911T18	0.59	1.11	1096699	4.54	4.64	9269.83	0.23	75	1.51293	1.47373	4.36549
25	J030311T49	0.65	0.42	995611	6	5.68	10898.32	0.27	56	1.79176	1.75940	5.80893
26	J021811T12	0.65	0.55	1049741	6.62	6.53	11338.75	0.28	48	1.89010	1.83081	6.23895
27	J022111T26	0.65	0.69	1085106	4.71	4.74	10571.1	0.27	63	1.54969	1.75940	5.80893
28	J022111T25	0.65	0.83	1127189	5.74	5.85	10200.98	0.26	81	1.74746	1.68798	5.40854
29	J022011T23	0.65	0.97	1182948	4.96	5.07	9366.17	0.24	86	1.60141	1.54515	4.68866
30	J022011T19	0.65	1.11	1134838	5.04	5.16	10320.85	0.26	74	1.61741	1.68798	5.40854
31	J030211T45	0.73	0.42	962202	7.09	6.63	10939.08	0.27	45	1.95869	1.75940	5.80893
32	J021811T13	0.73	0.55	1032173	7.93	7.76	11725.13	0.29	49	2.07065	1.90223	6.70081
33	J022111T28	0.73	0.69	1092655	6.09	6.1	11245.83	0.28	62	1.80665	1.83081	6.23895
34	J022111T27	0.73	0.83	1167406	5.54	5.63	10570.2	0.27	80	1.71199	1.75940	5.80893
35	J030211T44	0.73	0.97	1248480	5.45	5.56	10679.1	0.27	100	1.69562	1.75940	5.80893
36	J021611T06	0.73	1.11	1186504	5.61	5.74	10949	0.27	90	1.72455	1.75940	5.80893

The TRANSREG Procedure

2e. Power Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: SEJλ

Number of Observations Read	36
Number of Observations Used	36

Analysis of Variance								
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F			
Model	1	0.15771	0.15771	161.17	<.0001			
Error	34	0.03327	0.00097852					
Corrected Total	35	0.19097						

Root MSE	0.03128	R-Square	0.8258
Dependent Mean	0.33360	Adj R-Sq	0.8207
Coeff Var	9.37695		

Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	Intercept	1	0.75444	0.03356	22.48	<.0001			
MA	MA	1	-1.80577	0.14224	-12.70	<.0001			

2e. Power Regression of Bone Cracking Hypercarnivores Data

The REG Procedure Model: MODEL1 Dependent Variable: SEJλ

3c. Nonlinear Model of Response Data ($y = a*e^{(bx)}$)

The NLIN Procedure Dependent Variable y Method: Gauss-Newton

	Iterative Phase					
Iter	а	b	Sum of Squares			
0	1.0000	1.0000	823971			

	Iterative Phase							
Iter	а	b	Sum of Squares					
1	1.2503	0.7892	173575					
2	4.0202	0.2414	74795.0					
3	38.3037	-1.5341	60007.0					
4	46.9574	-0.3251	17464.2					
5	87.7890	-0.6597	3518.6					
6	110.4	-0.7330	1024.1					
7	111.9	-0.7350	1011.3					
8	111.9	-0.7352	1011.3					
9	111.9	-0.7352	1011.3					
10	111.9	-0.7352	1011.3					

NOTE: Convergence criterion met.

Estimation Summary					
Method	Gauss-Newton				
Iterations	10				
Subiterations	2				
Average Subiterations	0.2				
R	3.179E-6				
PPC(b)	8.62E-7				
RPC(b)	6.283E-6				
Object	6.11E-10				
Objective	1011.327				
Observations Read	54				
Observations Used	54				
Observations Missing	0				

Note: An intercept was not specified for this model.

	DE	C of C	Mana Canana	E Value	Approx	
Source	DF	Sum of Squares	Mean Square	r value	Pr > F	

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Model	2	89484.3	44742.1	2300.53	<.0001
Error	52	1011.3	19.4486		
Uncorrected Total	54	90495.6			

Parameter	Estimate	Approx Std Error	Approximate 95%	Confidence Limits
а	111.9	3.0488	105.8	118.0
b	-0.7352	0.0276	-0.7907	-0.6798

Approximate Correlation Matrix					
	а	b			
а	1.0000000	-0.8409169			
b	-0.8409169	1.0000000			

3d. Nonlinear Model of Response Data ($y = e^{(ax)}/(b + cx)$)

The NLIN Procedure Dependent Variable y Method: Gauss-Newton

	Iterative Phase							
Iter	а	b	С	Sum of Squares				
0	0.1000	0.1000	0.1000	72705.2				
1	0.0880	-0.00177	0.1015	51310.0				
2	-0.0305	0.0139	0.0196	18614.2				
3	-0.0656	0.00580	0.0183	4151.1				
4	-0.1607	0.00496	0.0112	1004.2				
5	-0.1656	0.00515	0.0121	515.1				
6	-0.1665	0.00516	0.0122	513.0				
7	-0.1666	0.00517	0.0122	513.0				
8	-0.1666	0.00517	0.0122	513.0				

NOTE: Convergence criterion met.

Estimation Summary				
Method	Gauss-Newton			
Iterations	8			
Subiterations	6			
Average Subiterations	0.75			
R	4.722E-7			
PPC(a)	7.723E-7			
RPC(a)	0.000017			
Object	1.14E-10			
Objective	513.048			
Observations Read	54			
Observations Used	54			
Observations Missing	0			

Note: An intercept was not specified for this model.

	DE	C of C	Mana Canana	E Value	Approx	
Source	DF	Sum of Squares	wean Square	r value	Pr > F	

Source	DF	Sum of Squares	Mean Square	F Value	Approx Pr > F
Model	3	89982.5	29994.2	2981.60	<.0001
Error	51	513.0	10.0598		
Uncorrected Total	54	90495.6			

Parameter	Estimate	Approx Std Error	Approximate 95%	Confidence Limits
а	-0.1666	0.0383	-0.2435	-0.0897
b	0.00517	0.000666	0.00383	0.00650
С	0.0122	0.00153	0.00908	0.0152

Approximate Correlation Matrix			
	а	b	С
а	1.0000000	-0.8441931	0.9397393
b	-0.8441931	1.0000000	-0.9620080
С	0.9397393	-0.9620080	1.0000000