Determinarea punctului de minim al unei functii cu un numar arbitrar de variabile

Eduard-Mihail Hamza

October 7, 2020

1 Introduction

Acest raport prezinta doua metode de determinare a minimului unei functii cu numar arbitrar de variabile, o metoda determinista si una euristica. Se realizeaza o comparatie intre cele doua metode pe baza Functiei lui Rastrigin de dimensiune 2 si 5.

2 Method

Pentru testarea celor doua metode s-a folosit Functia lui Rastrigin[2]:

$$f(x) = A \cdot n + \sum_{i=1}^{n} \left[x_i^2 - A \cdot \cos(2\pi x_i) \right], A = 10, x_i \in [-5.12, 5.15]$$

2.1 Varianta determinista

Varianta determinista creeaza un vector de dimensiunea n prin metoda backtracking. Se genereaza fiecare vector posibil X cu $x_i \in [-5.12, 5.12]$. Se calculeaza valoarea Functiei lui Rastrigin pentru fiecare din vectorii de input generati si se retine cea mai mica valoare obtinuta.

2.2 Varianta euristica

Varianta euristica genereaza un vector X de dimensiunea n format din valori aleatoare, $x_i \in [-5.12, 5.12]$, apoi se calculeaza valoarea Functiei lui Rastrigin cu vectorul X ca input. Se realizeaza un numar de 1.000.000 de generari (rulari) aleatoare pentru vectorul X si se retine valoarea minima obtinuta folosind acesti vectori ca input.

Figure 1: Rastrigin's Function.

3 Experiment

3.1 Varianta determinista

- Limbaj folosit Python3.
- Intervalul [-5.12, 5.12] a fost parcurs cu precizia $\epsilon = 0.01$ pentru fiecare element x_i .
- Dimensiunea functiei 2.

3.2 Varianta euristica

- Limbaj folosit Python3.
- Numar de generari pentru vectorul de input X la fiecare rulare este 1.000.000.
- Numar repetitii 10.
- Dimensiunea functie 2 si 5.

4 Results

Dimensiune functie (n)	timp minim	timp mediu	timp maxim
2	1.478	1.525	1.612
5	2.813	6.02	9.01

Figure 2: Timpi de executie pentru metoda euristica in secunde

Dimensiune functie (n)	solutie buna	solutie medie	solutie slaba
2	0.02	2.89	6.12
5	3.87	7.46	10.89

Figure 3: Solutii pentru metoda euristica

Dimensiune functie (n)	timp minim	timp mediu	timp maxim
2	3.81	3.88	3.95
5	>5min	>5min	>5min

Figure 4: Timpi de executie pentru metoda determinista in secunde

Dimensiune functie (n)	solutie buna	solutie medie	solutie slaba
2	0.0	0.0	0.0
5	?	?	?

Figure 5: Solutii pentru metoda determinista

4.1 Interpretation

Algoritmul euristic nu prezinta o diferenta foarte mare de timp atunci cand dimensiunea functiei creste (+8s). Algoritmul determinist nu si-a incheiat executia nici macar in 5 minute pentru dimensiunea n=5 a functiei, timpul foarte mare de executie fiind rezultatului numarului foarte mare de numere generate prin metoda backtracking.

Din punct de vedere al solutiei, algoritmul determinist a aflat solutia exacta pentru n=2. Algoritmul euristic are o marja de eroare destul de mare: uneori gaseste solutii foarte apropiate de cea corecta (solutia 0.2), alteori produce rezultate foarte indepartate de cel corect (solutia 6.12).

5 Conclusions

Algoritmul determinist produce rezultate foarte bune pe dimensiuni foarte mici ale functiei insa nu e capabil sa returneze un rezultat intr-un timp acceptabil

atunci cand dimensiunea functiei creste. Algoritmul euristic produce solutii aproximative, dar isi incheie executia intr-un interval acceptabil de timp chiar si pe dimensiuni mari ale functiei. Erorile grosolane ale acestui algoritm pot fi diminuate prin rulari succesive si realizarea unei medii a solutiilor.

References

- [1] Wikipedia Commons
 Rastrigin's Function rendered image. https://commons.wikimedia.org/wiki/Main_Page
- [2] Rastrigin, L. A. "Systems of extremal control." Mir, Moscow (1974).
- [3] http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/ Hedar_files/TestGO_files/Page2607.htm
- [4] https://www.cs.unm.edu/~neal.holts/dga/benchmarkFunction/rastrigin.html