Soit un polynôme $P_n(x) = \sum_{j=0}^n a_j x^j$ de degré n à coefficients réels. On veut calculer sa valeur en α réel.

1) En divisant $P_n(x)$ par $(x - \alpha)$ déduire un algorithme de calcul de $P_n(\alpha)$. Quel est son coût calcul en multiplication et en addition algébrique en fonction de n?

On considère les divisions euclidiennes suivantes :

$$P_n(x) = (x - \alpha)P_{n-1}(x) + R_n$$

$$P_{n-1}(x) = (x - \alpha)P_{n-2}(x) + R_{n-1}$$
...
$$P_1(x) = (x - \alpha)P_0(x) + R_1$$

On écrit $P_0(x) = R_0$ car P_0 est constant.

En utilisant le polynôme de Taylor de $P_n(x)$ en α , montrer que $(n-j)!R_j = P_n^{(n-j)}(\alpha)$, $0 \le j \le n$, avec $P_n^{(0)}(\alpha) = P_n(\alpha)$. Donner une méthode de calcul des dérivées successives de P_n en α .

2) On considère la base des polynômes de Tchebychev T_j $0 \le j \le n$ de l'espace vectoriel des polynômes de degré inférieur ou égal à n.

$$T_0(x) = 1, T_1(x) = x, T_{m+1}(x) - 2xT_m(x) + T_{m-1}(x) = 0, \quad 1 \le m \le n-1.$$

Donner un algorithme de calcul de $P_n(\alpha)$ en écrivant le polynôme $P_n(x)$ $\sum_{j=0}^n \lambda_j T_j(x)$ et en utilisant une combinaison linéaire des équations de la relation de récurrence des polynômes de Tchebychev pour $m=1,\dots,n-1$ avec les coefficients notés $c_j,=2,\dots,n$ de la combinaison linéaire. Quel est son coût calcul en multiplication et en addition algébrique en fonction de n?

Application numérique : Pour $P_6(x) = 2$, $1T_0(x) + 3T_1(x) - 2$, $5T_2(x) + T_5(x) - 4T_6(x)$ calculer $P_6(2)$.

Applications:

I) Pour
$$|a| < 1$$
 on sait que $ln(1 - 2a\cos\theta + a^2) = -2\sum_{n=1}^{\infty} \frac{a^n}{n} \cos(n\theta)$.

1) Calculer $ln10 \ \text{à} \ 10^{-4} \ \text{près} \ (\ ln9 = 2, 1972 \).$

2) Si $T_n(x)$ est le polynôme de Tchebychev de degré n, en déduire le développement

$$ln(10+6x) = \sum_{n=0}^{\infty} b_n T_n(x) - 1 \le x \le 1$$

Déterminer k pour que l'approximation

$$ln(10+6x) \simeq \sum_{n=0}^{k} b_n T_n(x)$$

soit faite avec une erreur absolue inférieure à 10^{-4} .

3) Donner un algorithme de calcul approché de $\ln(10+6x)$ pour $-1 \le x \le 1$ en utilisant les polynômes de Tchebychev et en rappelant son coût calcul.

II) Pour
$$|a| < 1$$
 on sait que $\frac{1 - a\cos\theta}{1 - 2a\cos\theta + a^2} = \sum_{n=0}^{\infty} a^n \cos(n\theta)$.

1) En déduire le développement en polynômes de Tchebychev

$$\frac{10+x}{101+20x} = \sum_{n=0}^{\infty} b_n T_n(x) - 1 \le x \le 1$$

2) Déterminer l'entier positif k pour que l'approximation

$$\frac{10+x}{101+20x} \simeq \sum_{n=0}^{k} b_n T_n(x)$$

soit faite avec une erreur absolue inférieure à 10^{-5} . 3) Donner un algorithme de calcul approché de $\frac{10+x}{101+20x}$ pour $x \in [-1,1]$ en utilisant les polynômes de Tchebychev et en rappelant son coût calcul.