Corso di Laurea in Informatica - A.A. 2015 - 2016 Esame di Fisica - 27/09/2016

Esercizio 1

Consideriamo il vettore $\vec{u} = \sqrt{3}\vec{i} + \vec{j}$ ed il vettore \vec{v} che va dal punto $P = (2, -2\sqrt{3})$ all'origine O = (0, 0). Calcolare \vec{u}^2 ed il prodotto scalare $\vec{u} \cdot \vec{v}$.

Esercizio 2

Consideriamo lo spazio tridimensionale di coordinate xyz. Nel piano xy vi è una carica q che ruota in senso orario su una circonferenza di raggio R con modulo della velocità costante. Quando essa si trova nell'origine degli assi O la sua accelerazione è $\vec{a} = b\vec{i} + \sqrt{3}b\vec{j}$. Calcolare:

- a) il modulo dell'accelerazione e dire quali dimensioni ha la costante b;
- b) il modulo della velocità angolare quando la carica q si trova nell'origine O;
- c) il vettore velocità della carica q quando essa si trova nell'origine O;
- d) il numero di passaggi al secondo della carica per l'origine O;
- e) il vettore campo magnetico generato dalla carica ad un'altezza z = h sull'asse passante per il centro della circonferenza percorsa da q;
- f) il potenziale elettrico all'infinito se il potenziale elettrico nel punto sulla circonferenza diametralmente opposto all'origine O è nullo.

Esercizio 3

Nel circuito mostrato in figura le resistenze valgono $R_1=R$, $R_2=R/2$, $R_3=3R$ e le f.e.m. $\varepsilon_1=\varepsilon_2=V_0$ e $\varepsilon_3=2$ V_0 .

Calcolare:

- a) la corrente i nel resistore R_3 specificando se il verso è concorde a quello indicato in figura;
- b) la differenza di potenziale $V_B V_A$;
- c) la potenza erogata dalla f.e.m. ε_1 .

 $(R=1 \Omega, e V_0=27 V. Sostituire i valori numerici solo alla fine dello svolgimento).$

