Redes de dos puertos. Cuadripolos Eléctricos.

CURSO 2016-17

SISTEMAS ELÉCTRICOS

Grado en Ingeniería

PRÁCTICA Nº 6 Redes de dos puertos. Cuadripolos Eléctricos.

6.1 OBJETIVOS

- OBTENER LA MATRIZ DE TRANSMISION DE UN CUADRIPOLO EN π
- OBTENER EL CUADRIPOLO EN T EQUIVALENTE A UNO EN π .
- ESTUDIAR LA RELACIÓN ENTRE LAS VARIABLES DE ENTRADA Y DE SALIDA DE UN SISTEMA ELÉCTRICO DE DOS PUERTOS, CUADRIPOLO.

6.2 MATERIAL NECESARIO

Descripción	Cantidad	
Bobinas de 300 espiras, 0.8Ω , $4 A$.	1	300 Wdg.
Reostatos variables 100Ω	4	
Condensador monofásico de 8 μF o 10 μF	2	To or or other to the state of
Núcleo magnético en forma de U Núcleo magnético en forma de I.	1	
Polímetro digital como amperímetro y como voltímetro.	1	1000

Vatímetro digital	1	COO I A COO I
Pinza amperimétrica 1	1	Section 1
Fuente de alimentación de corriente alterna variable (integrada en la mesa de trabajo).	1	

6.3 FUNDAMENTO TEÓRICO

Definimos puerto como par de terminales por los cuales puede entrar o salir una señal de una red. Un cuadripolo es una red de dos puertos (entrada y salida).

Para realizar el estudio de estos dispositivos, se tendrán en cuenta circuitos eléctricos (C.E.) donde no existan fuentes independientes, estando permitidas las dependientes.

Los métodos de análisis aplicados a redes de puertos buscan las relaciones entre corrientes y tensiones en las terminales de las redes, pasando por alto los parámetros de las redes interiores.

v_a: tensión de entrada.
i_a: corriente de entrada.
v_b: tensión de salida.
i_b: corriente de salida.

Dado que suponemos lineales todos los elementos será posible analizar el cuadripolo y obtener la relación existente entre una tensión o corriente de entrada o salida del cuadripolo en función de otras dos variables de las cuatro que disponemos.

Podemos expresar las dos tensiones en función de las dos corrientes:

$$\begin{cases} v_{a} = f_{1} (i_{a}, i_{b}) \\ v_{b} = f_{2} (i_{a}, i_{b}) \end{cases}$$

O las corrientes en función de las tensiones:

$$\begin{cases} i_{a} = f_{3} (v_{a}, v_{b}) \\ i_{b} = f_{4} (v_{a}, v_{b}) \end{cases}$$

O una tensión y una corriente en función de la otra tensión y la otra corriente:

$$\begin{cases} v_{a} = f_{5} (v_{b}, i_{b}) \\ i_{a} = f_{6} (v_{b}, i_{b}) \end{cases}$$

Parámetro de transferencia (t, fundamentales o de transmisión).

Se describen las relaciones entre las variables de entrada (va, ia) y las de salida (vb, ib).

$$v_a = A \cdot v_b - B \cdot i_b$$
$$i_a = C \cdot v_b - D \cdot i_b$$

Expresándolo matricialmente:

$$\begin{bmatrix} \mathbf{v}_{\mathbf{a}} \\ \mathbf{i}_{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{\mathbf{b}} \\ -\mathbf{i}_{\mathbf{b}} \end{bmatrix}$$

$$A = \frac{V_a}{V_b}\Big|_{i_b = 0}$$
 Ganancia en tensión con los bornes b-b' en circuito abierto.

$$B = -\frac{V_a}{i_b} \bigg|_{v_a = 0}$$
 Impedancia de transferencia en cortocircuito.(Ω)

$$C = \frac{i_a}{V_b} \Big|_{i_b = 0}$$
 Admitancia de transferencia en circuito abierto.(Ω^{-1})

$$D = -\frac{i_a}{i_b}\Big|_{v_b=0}$$
 Ganancia en corriente con los bornes b-b' en cortocircuito.

La expresión matricial:

$$\begin{bmatrix} \mathbf{v}_{\mathbf{a}} \\ \mathbf{i}_{\mathbf{a}} \end{bmatrix} = \begin{bmatrix} \mathbf{T} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{v}_{\mathbf{b}} \\ -\mathbf{i}_{\mathbf{b}} \end{bmatrix}$$

Se pueden expresar las variables también de salida (v_b, i_b) en función de las de entrada (v_a, i_a)

$$\begin{bmatrix} \mathbf{v}_{\mathbf{b}} \\ -\mathbf{i}_{\mathbf{b}} \end{bmatrix} = [\mathbf{T}]^{-1} \cdot \begin{bmatrix} \mathbf{v}_{\mathbf{a}} \\ \mathbf{i}_{\mathbf{a}} \end{bmatrix}$$

Cuadripolo π

Tomando $\overline{V}_a = \overline{V}_1$; $\overline{V}_b = \overline{V}_2$; $\overline{I}_a = \overline{I}_1$; $-\overline{I}_b = \overline{I}_2$

Cuadripolo en π

Se pueden obtener los parámetros de la matriz de transmisión de este cuadripolo de la siguiente forma

$$\overline{A} = \frac{\overline{V}_1}{\overline{V}_2} \bigg|_{\overline{I}_2 = 0} = 1 + \overline{Z}_S \cdot \overline{Y}_{p2}$$

$$\overline{B} = \frac{\overline{V}_1}{\overline{I}_2} \bigg|_{\overline{V}_{2}=0} = \overline{Z}_S$$

$$\left. \overline{C} = \frac{\overline{I}_1}{\overline{V}_2} \right|_{\overline{I}_2 = 0} = \overline{Y}_{p1} + \overline{Y}_{p2} + \overline{Z}_S \cdot \overline{Y}_{p1} \cdot \overline{Y}_{p2}$$

$$\left. \overline{D} = \frac{\overline{I}_1}{\overline{I}_2} \, \right|_{\overline{V}_2 = 0} \, = 1 + \overline{Z}_S \cdot \overline{Y}_{\, p1} \label{eq:D}$$

La relación entre las variables de entrada y salida del cuadripolo, expresadas en forma matricial, será:

$$\begin{bmatrix} \overline{\mathbf{V}}_1 \\ \overline{\mathbf{I}}_1 \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{A}} & \overline{\mathbf{B}} \\ \overline{\mathbf{C}} & \overline{\mathbf{D}} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{V}}_2 \\ \overline{\mathbf{I}}_2 \end{bmatrix}$$

Es decir:

$$\overline{V}_1 = \overline{A} \cdot \overline{V}_2 + \overline{B} \cdot \overline{I}_2$$

$$\overline{I}_1 = \overline{C} \cdot \overline{V}_2 + \overline{D} \cdot \overline{I}_2$$

6.4 REALIZACIÓN DE LA PRÁCTICA

6.4.1 Cuadripolo π (con resistencias)

• Ensayo en circuito abierto:

Tomar tres resistencias de valores entre 50 y 100 Ω .

TOMA DE DATOS				
$R_1(\Omega)$ $R_2(\Omega)$ $R_3(\Omega)$				

Realizar el montaje de la Figura 1, fijando el valor de tensión de la fuente en **100 V**, para realizar el ensayo a circuito abierto del cuadripolo (en π).

TOMA DE DATOS			
$V_1(V)$ $I_1(A)$ $V_2(V)$ $I_2(A)$			
			0

Con las medidas obtenidas en el ensayo calcular los parámetros $\,\overline{A}\,$ y $\,\overline{C}\,$.

Calcular de nuevo los parámetros \overline{A} y \overline{C} a partir de los valores de las resistencias y comparar los resultados con los obtenidos en el ensayo.

CALCULAR (Ensayo)		CALCULAR (Teoría)	
Ā	$\overline{\mathbf{C}}$	Ā	$\overline{\mathbf{C}}$

• Ensayo en cortocircuito:

Realizar el montaje de la Figura 2, fijando el valor de tensión de la fuente de nuevo en **100 V**, para realizar el ensayo a cortocircuito del cuadripolo (en π).

Figura 2

TOMA DE DATOS				
$V_1(V)$ $I_1(A)$ $V_2(V)$ $I_2(A)$				
0				

Con las medidas obtenidas en el ensayo calcular los parámetros $\,\overline{B}\,y\,\,\overline{D}$.

Calcular de nuevo los parámetros \overline{B} y \overline{D} a partir de los valores de las resistencias y comparar los resultados con los obtenidos en el ensayo.

CALCULA	R (Ensayo)	CALCULA	AR (Teoría)
$\overline{\mathrm{B}}$	$\overline{ ext{D}}$	$\overline{\mathrm{B}}$	$\overline{ ext{D}}$

• Ensayo en carga

Coger una resistencia R entre 50 y 100 Ω

TOMA DE DATOS		
$R(\Omega)$		

Realizar el montaje de la Figura 3, fijando el valor de tensión de la fuente en **50 V**, para realizar el ensayo en carga del cuadripolo (en π).

Figura 3

TOMA DE DATOS				
$V_1(V)$ $I_1(A)$ $P_1(W)$ $V_2(V)$ $I_2(A)$				

A partir de la tensión e intensidad de entrada al cuadripolo y utilizando la matriz de transmisión del mismo, calcular la siguiente tabla y comparar con los resultados obtenidos en el ensayo.

CALCULAR			
$V_{2}(V)$ $I_{2}(A)$			

6.4.2 Cuadripolo en T (equivalente)

Calcular el cuadripolo T equivalente al cuadripolo π anterior. Para ello hacer la conversión triangulo-estrella.

$$R_{a} = \frac{R_{1} R_{2}}{R_{1} + R_{2} + R_{3}}$$

$$R_{b} = \frac{R_{1} R_{3}}{R_{1} + R_{2} + R_{3}}$$

$$R_{c} = \frac{R_{2} R_{3}}{R_{1} + R_{2} + R_{3}}$$

CALCULAR				
$R_{a}\left(\Omega\right)$ $R_{b}\left(\Omega\right)$ $R_{c}\left(\Omega\right)$				

• Ensayo en circuito abierto:

Realizar el montaje de la Figura 4, fijando el valor de tensión de la fuente en 50 V, para realizar el ensayo a circuito abierto del cuadripolo (en T).

Figura 4

TOMA DE DATOS				
$V_1(V)$ $I_1(A)$ $V_2(V)$ $I_2(A)$				
0				

Con las medidas obtenidas en el ensayo calcular los parámetros $\overline{A}\,\,y\,\,\overline{C}$.

CALCULAR				
\overline{A}	$\overline{\mathbf{C}}$			

• Ensayo en cortocircuito:

Realizar el montaje de la Figura 5, fijando el valor de tensión de la fuente de nuevo en 50 V, para realizar el ensayo a cortocircuito del cuadripolo (en T).

Figura 5

TOMA DE DATOS						
$V_1(V)$ $I_1(A)$ $V_2(V)$ $I_2(A)$						
		0				

Con las medidas obtenidas en el ensayo calcular los parámetros $\overline{B}y$ \overline{D} .

CALCULAR				
$\overline{\mathrm{B}}$ $\overline{\mathrm{D}}$				

Comparar los parámetros \overline{A} , \overline{B} , \overline{C} y \overline{D} del cuadripolo en π y del cuadripolo en T.

• Ensayo en carga

Coger la misma resistencia R (Ω) utilizada para el ensayo en carga del cuadripolo en π .

Realizar el montaje de la Figura 6, fijando el valor de tensión de la fuente en 50 V, para realizar el ensayo en carga del cuadripolo (en T).

TOMA DE DATOS						
$V_1(V)$ $I_1(A)$ $P_1(W)$ $V_2(V)$ $I_2(A)$						

Comparar los valores con los obtenidos en el ensayo en carga del cuadripolo en π .

6.4.3. Cuadripolo en π con una impedancia serie y admitancias en paralelo.

Tomar una resistencia, R, de valor entre 50 y 100 Ω , dos condensadores de 10 μ F, una Bobina de 300 espiras, 0,8 Ω , 4 A montada en un núcleo magnético laminado cerrado, y una resistencia de carga, Rc, de valor entre 50 y 100 Ω .

TOMA DE DATOS					
$R(\Omega)$	(Ω) Rc (Ω) C (μF)				

Realizar el montaje de la Figura 7.

Fijar el valor de tensión de la fuente a 50 V aproximadamente, para realizar el ensayo en carga del cuadripolo.

Figura 7

TOMA DE DATOS						
$V_1\left(V\right) = I_1\left(A\right) = P_1\left(W\right) = I_L\left(A\right) = V_L = V_2\left(V\right) = I_2\left(A\right)$						

Utilizando:

$$P_2 = V_2 \cdot I_2$$

$$P_1 - P_2 = (R + R_L) \cdot I_L^2$$

$$Z_L = \frac{V_L}{I_L}$$

$$X_L = \sqrt{Z_L^2 - R_L^2}$$

$$\overline{Z}_S = (R_L + R) + jX_L$$

$$\overline{Y}_{pl} = \overline{Y}_{p2} = \overline{Y}_{p} = jB_{c} = j\omega C$$

$$\overline{A} = 1 + \overline{Z}_s \overline{Y}_p$$

$$\overline{B} = \overline{Z}_S$$

$$\frac{\overline{C} = 2 \cdot \overline{Y}_p + \overline{Z}_s \cdot (\overline{Y}_p)^2}{C}$$

$$\overline{D} = \overline{A}$$

Calcular:

CALCULAR								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						$\overline{\mathrm{D}}$		

Sabiendo que:

$$\overline{V}_2 = V_2 \mid 0^o V$$

$$\bar{I}_2 = I_2 \underbrace{ \begin{bmatrix} 0^o \end{bmatrix}}_{} A \quad \text{(Carga puramente resistiva)}$$

Obtener los valores de tensión e intensidad a la entrada del cuadripolo a partir de los valores a la salida utilizando los parámetros de transmisión del cuadripolo, es decir, calcular:

$$\overline{V}_1 = \overline{A} \cdot \overline{V}_2 + \overline{B} \cdot \overline{I}_2$$

$$\overline{I}_1 = \overline{C} \cdot \overline{V}_2 + \overline{D} \cdot \overline{I}_2$$

Y compara su módulo con el valor medido en el ensayo.

CALCULA	R (Ensayo)	CALCULAR (Teoría)		
V ₁ (V)	I ₁ (A)	$V_1(V)$	I ₁ (A)	