Structure Learning in Infrastructure Networks

Rajasekhar Anguluri

Department of Computer Science and Electrical Engineering University of Maryland, Baltimore County (UMBC) rajangul@umbc.edu

Structure Learning Problems: Recap

Network Structure = Laplacian's Sparsity Pattern

infrastructure network

sparsity (zero & non-zero) of *L* captures network connections

- *measurables:* p-dim vectors x and y
- **full coverage:** access x or/and y
- partial coverage: sub-vectors of x or/and y

b linear model:

Vec(X) = H(Y) Ve(L) + Vec(E) full coverage

to covariance models:

$$\Omega = L\Omega_{x}L$$

full coverage

$$\Omega_{OO} = K_{OO} - K_{OH} K_{HH}^{-1} K_{HO}$$
 partial

Estimation:

- 1. estimate the vector Ve(L) from data
- 2. estimate matrices Ω and Ω_{OO} from data

Infrastructure Network → Graphical Model

infrastructure network

$$L_{
m org} = egin{bmatrix} 1 & -1 & 0 & 0 & 0 \ -1 & 2 & -1 & 0 & 0 \ 0 & -1 & 2 & -1 & 0 \ 0 & 0 & -1 & 2 & -1 \ \hline 0 & 0 & 0 & -1 & 1 \end{bmatrix}$$

$$L = \left[egin{array}{cccc} 1 & -1 & 0 & 0 \ -1 & 2 & -1 & 0 \ 0 & -1 & 2 & -1 \ 0 & 0 & -1 & 2 \end{array}
ight]$$

(two-hop) graphical model

$$\Omega = L^2 = \left[egin{array}{ccccc} 2 & -3 & 1 & 0 \ -3 & 6 & -4 & 1 \ 1 & -4 & 6 & -4 \ 0 & 1 & -4 & 5 \end{array}
ight]$$

६ +/-ve sign pattern is crucial for reconstruction

Exercises: Prove the following

- Theorem 1 (real-case [1]) Graphical model for node potentials in an infrastructure network includes edges between potentials at neighbors and two-hop neighbors.
- Theorem 2 (complex-lifted-case [1]) Graphical model for real and imaginary potentials in infrastructure network includes edges between real and imaginary potentials (i) at the self nodes; (ii) neighbors; and (iii) two-hop neighbors

$$\begin{bmatrix} y_R(k) \\ y_I(k) \end{bmatrix} = \begin{bmatrix} L_{RR} & L_{RI} \\ L_{IR} & L_{II} \end{bmatrix}^{-1} \begin{bmatrix} x_R(k) \\ x_I(k) \end{bmatrix}$$

$$L_{\text{real-imag}}$$

- edge-connectivity by $L_{\text{real-imag}}$: for every node associate an imaginary node (e.g., 1' for 1) this is not a graphical model
- draw the connections based on the sparsity pattern of $L_{real-imag}$ (try this for line graph)

Graphical Model → **Infrastructure Network**

sign-based algorithms: consider the infrastructure network G with minimum cycle length greater than three. Then show that algorithms below work (exercise)

network reconstruction : real-case [1]

input: inverse covariance Ω and threshold $\tau > 0$

output: graph \mathcal{G}

- 1. for all nodes i and j do
- 2. if $\Omega(i,j) < -\tau$ then
- 3. insert edge (i, j) in G
- 4. end if
- 5. end for

network reconstruction: complex-lift-case [1]

input: block matrix
$$\Omega_{(R,I)} = \begin{bmatrix} J_{RR} & J_{RI} \\ J_{IR} & J_{II} \end{bmatrix}$$
 and $\tau > 0$,

output: graph \mathcal{G}

- 1. for all nodes i and j do
- 2. if $J_{RR}(i,j) + J_{II}(i,j) < -\tau$ then
- 3. insert edge (i, j) in G
- 4. end if
- 5. end for

IEEE 33 BUS Distribution N/W Schematic

edge weights are scaled for plotting

IEEE 30 BUS Transmission N/W Schematic

ADMM: General Recipe (vector variable)

 $\bullet \bullet$ general problem form (with f, g convex):

minimize_{x,z}
$$f(x) + g(z)$$

subject to $Ax + Bz = c$

$$L_{\rho}(x,y,z) = f(x) + g(z) + \nu^{T}(Ax + Bz - c) + (\rho/2)||Ax + Bz - c||_{2}^{2}$$

$$egin{aligned} x^{k+1} &:= \mathrm{argmin}_x L_
ho \left(x, z^k, y^k
ight) & ext{// x- minimization} \ z^{k+1} &:= \mathrm{argmin}_z L_
ho \left(x^{k+1}, z, y^k
ight) & ext{// z- minimization} \end{aligned}$$

 $v^{k+1} := v^k + \rho \left(Ax^{k+1} + Bz^{k+1} - c\right)$ // multiplier update

ADMM for Sparse Inverse Covariance Matrix

MLE (minimization) problem:

minimize $\operatorname{Tr}(S\Omega) - \log \det(\Omega) + \lambda \|\Omega\|_1$

ADMM form:

minimize
$$\operatorname{Tr}(S\Omega) - \log \det(\Omega) + \lambda ||Z||_1$$

subject to
$$\Omega - Z = 0$$

ADMM (scaled):

$$\Omega^{k+1} := rgmin_{\Omega} \left(\operatorname{Tr}(S\Omega) - \log \det \Omega + (
ho/2) \left\| \Omega - Z^k + U^k
ight\|_F^2
ight)$$
 // X- minimization $Z^{k+1} := S \left(\Omega^{k+1} + U^k, \lambda/
ho
ight)$ // soft thresholding $U^{k+1} := U^k + (\Omega^{k+1} - Z^{k+1})$ // multiplier update