- William Lee, "Wireless & Cellular Communication", McGraw-Hill, Latest Edition
- Andrea Goldsmith, "Wireless Communication", Latest Edition
- Morvin K. Simon & Slim Alouini, "Digital Communication over Fading Channels" Latest Edition

DIGITAL SIGNAL PROCESSING

Contact Hours:	Credit H	ours:
Theory = 48	Theory	= 3.0
Practical = 48	Practical	= 1.0
Total = 96	Total	= 4.0

SUGGESTED COURSE LEARNING OUTCOMES:

Upon successful completion of the course, the student will be able to:

Ser	Example CLO	Domain	Taxonomy level	PLO
1.	ANALYSE and evaluate the properties of LTI systems in	Cognitive	4	1
	terms of its z-transforms.			
2.	UNDERSTAND the sampling theorem and perform	Cognitive	2	2
	sampling on continuous-time signals.			
3.	APPLY the concepts of all-pass and minimum-phase	Cognitive	3	5
	systems to analyze the LTI system and address complex			
	design problems.			
4.	EVALUATE design problems related to frequency	Cognitive	3	3
	selective processing and design FIR/IIR filters.			
5.	CONSTRUCT systems for spectral estimation of real	Psychomotor	3	2
	signals.			

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the following PLOs:

1	Engineering Knowledge:	$\overline{\mathbf{A}}$	7	Environment and Sustainability:	
2	Problem Analysis:	\checkmark	8	Ethics:	
3	Design/Development of Solutions:	\checkmark	9	Individual and Team Work:	
4	Investigation:		10	Communication:	
5	Modern Tool Usage:	\checkmark	11	Project Management:	
6	The Engineer and Society:		12	Lifelong Learning:	

Course outline:

- Review of Signals & Systems: Discrete LTI systems, Convolution, Difference Equations.
- z-transforms
- Sampling of Continuous Time Signals: Basic principles, Changing sampling rate, Prefiltering to avoid aliasing, Quantization errors.
- Transform Analysis of LTI Systems

- Frequency response of LTI systems, All pass systems, Minimum phase systems.
- IIR & FIR Filters and Filter Design Techniques
- Discrete Time Fourier Transform (DFT) and FFT Algorithms
- Fourier Analysis of Real Signals with DFT

Practical:

- Implementation of FIR and IIR filter
- Signal detection
- Equalizer implementation
- Channel Estimation

Teaching Methodology

- Lectures
- Laboratory work
- Projects

Assessment

Sessional + Mid Term

- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Assignments
- Report Writing

Final Term

- Written (Long Questions, Short Questions, MCQs)
- Presentation
- Report Writing

Text and Reference books:

- A.V. Oppenheim, R.W. Schafer and J.R. Buck, Discrete-Time Signal Processing, 3rd Edition, Pearson Education, 2009.
- S.K. Mitra, Digital Signal Processing: A Computer Based Approach, McGraw-Hill, 2011.
- J.G. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms and Applications, Prentice-Hall, 2007.
- Li Tan, Digital Signal Processing Fundamentals and Applications, Academic Press, Elsevier, ISBN: 978-0-12-374090-8