

Formale Systeme

Prof. Dr. Bernhard Beckert, WS 2018/2019

Prädikatenlogik: Semantik

Bedeutung von Formeln

Ist die Formel

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

wahr?

Die Signatur $\Sigma = \{k(\cdot), q(\cdot), d(\cdot), kl(\cdot), gr(\cdot), in(\cdot, \cdot)\}$ liegt fest.

Die Wahrheit ist abhängig von

- einer Interpretation $\mathcal{D} = (D, I)$
- ► einer Variablenbelegung β

Einführendes Beispiel 2


```
int max = 0:
       if (a.length > 0) max = a[0];
3
       int i = 1:
       while ( i < a.length ) {
5
          if (a[i] > max) max = a[i];
6
         ++i:
  Nachbedingung:
   (\forall int j;(j \ge 0 \& j < a.length <math>-> max > = a[j])
  &
   (a.length>0 \rightarrow
   \exists int j:(j>=0 \& j < a.length \& max=a[j]))
```

Interpretation

Definition

Es sei Σ eine Signatur der PL1.

Eine *Interpretation* \mathcal{D} von Σ ist ein Paar (D, I) mit

- 1. *D* ist eine beliebige, nichtleere Menge
- 2. I ist eine Abbildung der Signatursymbole, die
 - ▶ jeder Konstanten c ein Element $I(c) \in D$
 - ▶ für $n \ge 1$: jedem n-stelligen Funktionssymbol f eine Funktion $I(f): D^n \to D$
 - ▶ jedem 0-stelligen Prädikatsymbol P einen Wahrheitswert $I(P) \in \{\mathbf{W}, \mathbf{F}\}$
 - für n ≥ 1: jedem n-stelligen Prädikatsymbol p eine n-stellige Relation I(p) ⊆ Dⁿ zuordnet.

Beispiel-Interpretation (Tarski's World)

$$P_{\Sigma} = \{k(\),\ q(\),\ d(\),\ kl(\),\ gr(\),\ in(\ ,\)\}$$

$$D_{Bsp} = \{Q_1,\ldots,Q_6\} \cup \{K_1,K_2,K_3,D_1,D_2,D_3\}$$

$$I_{Bsp}(q) = \{Q_1,\ldots,Q_6\},\quad I_{Bsp}(k) = \{K_1,K_2,K_3\},\quad I_{Bsp}(d) = \{D_1,D_2,D_3\}$$

$$I_{Bsp}(in) = \{(K_1,Q_1),(K_1,Q_3),(K_2,Q_1),(K_2,Q_2),(K_3,Q_2),(K_3,Q_3),(D_3,D_1),(Q_5,D_2)\}$$

Variablenbelegung

Definition

Es sei (D, I) eine Interpretation von Σ .

Eine *Variablenbelegung* (oder kurz *Belegung* über *D*) ist eine Funktion

$$\beta: Var \rightarrow D.$$

Zu β , $x \in Var$ und $d \in D$ definieren wir die *Modifikation* von β an der Stelle x zu d:

$$\beta_x^d(y) = \begin{cases} d & \text{falls } y = x \\ \beta(y) & \text{falls } y \neq x \end{cases}$$

Auswertung von Termen

Definition Auswertungsfunktion

Sei (D, I) Interpretation von Σ , β Variablenbelegung über D. Wir definieren eine Funktion $val_{D,I,\beta}$, mit

$$val_{D,I,eta}(t) \in D$$
 für $t \in \mathit{Term}_{\Sigma}$ $val_{D,I,eta}(A) \in \{\mathbf{W},\mathbf{F}\}$ für $A \in \mathit{For}_{\Sigma}$

Definition Auswertung von Termen

$$\begin{array}{lll} \mathit{val}_{D,I,\beta}(x) & = & \beta(x) \text{ für } x \in \mathit{Var} \\ \mathit{val}_{D,I,\beta}(f(t_1,\ldots,t_n)) & = & (\mathit{I}(f))(\mathit{val}_{D,I,\beta}(t_1),\ldots,\mathit{val}_{D,I,\beta}(t_n)) \end{array}$$

Auswertung von Formeln

Definition

```
1. val_{D,I,\beta}(\mathbf{1}) = \mathbf{W}
val_{D,I,\beta}(\mathbf{0}) = \mathbf{F}
val_{D,I,\beta}(s \doteq t) := \begin{cases} \mathbf{W} \text{ falls } val_{D,I,\beta}(s) = val_{D,I,\beta}(t) \\ \mathbf{F} \text{ sonst} \end{cases}
val_{D,I,\beta}(P) := I(P) \text{ für 0-stellige Prädikate } P
val_{D,I,\beta}(p(t_1,\ldots,t_n)) := \begin{cases} \mathbf{W} \text{ falls } (val_{D,I,\beta}(t_1),\ldots,val_{D,I,\beta}(t_n)) \in I(p) \\ \mathbf{F} \text{ sonst} \end{cases}
```

Auswertung von Formeln

Definition

- 2. $val_{D,l,\beta}(X)$ für $X \in \{\neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B\}$ wie in der Aussagenlogik.
- 3. $val_{D,I,\beta}(\forall xA) :=$ $\begin{cases} \mathbf{W} \text{ falls für alle } d \in D : val_{D,I,\beta_x^d}(A) = \mathbf{W} \\ \mathbf{F} \text{ sonst} \end{cases}$

Beispiel für Auswertung

Sei die Interpretation $\mathcal{D}_{Bsp} = (D_{Bsp}, I_{Bsp})$ und die Variablenbelegung $\beta(x) = Q_1$. Werte darin die Formel aus:

$$q(x) \rightarrow \exists y (in(y,x) \land kl(y))$$

$$\begin{array}{l} \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ x\) = \mathit{Q}_1 \in \mathit{I}(q), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \mathit{q}(x)\) = \mathbf{W}. \end{array} \\ \begin{array}{l} \mathsf{W\"{a}hle}\ \mathit{K}_1 \ \mathit{als}\ \mathsf{Belegung}\ \mathsf{f\"{u}r}\ \mathit{y}. \\ (\mathit{K}_1,\mathit{Q}_1) \in \mathit{I}_{\mathit{Bsp}}(\mathit{in}) \ \mathit{und} \\ \mathit{K}_1 \in \mathit{I}_{\mathit{Bsp}}(\mathit{kl}), \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta_y^{\mathit{K}_1}}(\ (\mathit{in}(y,x) \land \mathit{kl}(y))\) = \mathbf{W}, \\ \mathit{also} \\ \mathit{val}_{\mathcal{D}_{\mathit{Bsp}},\beta}(\ \exists \mathit{y}(\mathit{in}(y,x) \land \mathit{kl}(y))\) = \mathbf{W} \end{array}$$

Insgesamt

$$val_{\mathcal{D}_{\mathsf{Bsn}},\beta}(q(x) \to \exists y (\mathit{in}(y,x) \land \mathit{kl}(y))) = \mathbf{W}$$

Koinzidenzlemma

Theorem

 \mathcal{D} sei Interpretation, β, γ Variablenbelegungen

- 1. Gilt für den Term t $\beta(x) = \gamma(x)$ für alle $x \in Var(t)$, dann $val_{\mathcal{D},\beta}(t) = val_{\mathcal{D},\gamma}(t)$.
- 2. Gilt für die Formel A $\beta(x) = \gamma(x)$ für alle $x \in Frei(A)$, dann $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$.
- 3. Ist $A \in For_{\Sigma}$ geschlossen, dann gilt $val_{\mathcal{D},\beta}(A) = val_{\mathcal{D},\gamma}(A)$

Beweis: Durch strukturelle Induktion unter Ausnutzung der Definition von val.

Konsequenz: Ist $A \in For_{\Sigma}$ geschlossen, schreiben wir $val_{\mathcal{D}}(A)$ statt $val_{\mathcal{D},\beta}(A)$.

Notation: $\mathcal{D} \models \mathcal{A}$ bedeutet $val_{\mathcal{D}}(A) = \mathbf{W}$.

Arithmetische Strukturen

Signatur
$$\Sigma_{arith} = \{0, 1, +, *, <\}$$

Struktur 1: Die mathematischen ganzen Zahlen

$$\mathcal{Z} = (\mathbb{Z}, \overset{\mathbb{Z}}{+}, \overset{\mathbb{Z}}{*}, \overset{\mathbb{Z}}{<}).$$

Struktur 2: Die ganzen Zahlen in Java (int)

$$\mathcal{Z}_{Jint} = (\mathbb{Z}_{Jint}, \overset{J}{+}, \overset{J}{*}, \overset{J}{<}).$$

$$n + m :=$$
nächste Folie

$$n*m := n$$
ächste Folie

$$n \stackrel{J}{<} m : \Leftrightarrow n \stackrel{\mathbb{Z}}{<} m$$

Java-Arithmetik

Für $n, m \in [int_MIN, int_MAX]$ definiere

$$n+m:=int_MIN+(int_HALFRANGE+(n+m))^{\mathbb{Z}}$$
 int_RANGE
 $n*m:=int_MIN+(int_HALFRANGE+(n*m))^{\mathbb{Z}}$ int_RANGE
wobei $int_HALFRANGE=2^{31}$ und $int_RANGE=2^{32}$.

Dann gilt z.B.

$$int_MAX \stackrel{J}{+} 1 = int_MIN$$
 und $int_MIN \stackrel{J}{+} (-1) = int_MAX$

Vergleich von \mathcal{Z} und \mathcal{Z}_{Jint}

Formel ϕ	$\mathcal{Z} \models \phi$	$\mathcal{Z}_{\mathit{jint}} \models \phi$
$\forall x \exists y (x < y)$	ja	nein
$\forall x \forall y ((x+1) * y = x * y + y)$	ja	ja
$\exists x (0 < x \land x + 1 < 0)$	nein	ja

Substitutionslemma für Terme

Theorem

 Σ sei eine Signatur, \mathcal{D} eine Interpretation für Σ , β , β' Belegungen, σ eine Substitution und $t \in Term_{\Sigma}$.

Dann gilt

$$val_{\mathcal{D},\beta}(\sigma(t)) = val_{\mathcal{D},\beta'}(t).$$

wobei

$$\beta'(x) = val_{\mathcal{D},\beta}(\sigma(x))$$

für alle $x \in Var$.

Beweis

Strukturelle Induktion nach t.

Beweis Induktionsanfang

Fall
$$t = x \in Var$$
:

$$val_{\mathcal{D},\beta}(\sigma(x)) = \beta'(x)$$
 Def. von β'
= $val_{\mathcal{D},\beta'}(x)$ Def. von $val(x)$

Beweis

Induktionsschritt

Fall
$$t = f(t_1, ..., t_n)$$
:
$$val_{\mathcal{D},\beta}(\sigma(f(t_1, ..., t_n)))$$

$$= val_{\mathcal{D},\beta}(f(\sigma(t_1), ..., \sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta}(\sigma(t_1)), ..., val_{\mathcal{D},\beta}(\sigma(t_n)))$$

$$= I(f)(val_{\mathcal{D},\beta'}(t_1), ..., val_{\mathcal{D},\beta'}(t_n))$$
(nach Induktionsannahme)
$$= val_{\mathcal{D},\beta'}(f(t_1, ..., t_n))$$

Quiz

Kollosionsfreie Substitutionen

Es bezeichne F die Formel

$$p(x,z) \wedge \exists y (p(x,y) \wedge p(z,y) \rightarrow p(x,y))$$

Welche der folgenden Subsitutionen ist kollisionsfrei für *F*?

$$\sigma_1$$
 $\{x/a,z/b\}$ kollisionsfrei σ_2 $\{x/(x+z),z/(x+z)\}$ kollisionsfrei σ_3 $\{x/(x+y),z/a\}$ Kollisionsfrei σ_4 $\{y/(x+y)\}$ kollisionsfrei σ_5 $\{x/z\}$

Substitutionslemma für Formeln

Theorem

 Σ sei eine Signatur, $\mathcal D$ eine Interpretation für Σ , β , β' Belegungen, $A \in For_{\Sigma}$ und σ eine für A kollisionsfreie Substitution.

Dann gilt:

$$val_{\mathcal{D},\beta}(\sigma(A)) = val_{\mathcal{D},\beta'}(A),$$

wobei

$$\beta'(x) = val_{\mathcal{D},\beta}(\sigma(x))$$

für alle $x \in Var$.

Beweis

Induktion nach A.

Exemplarisch: Schritt von A nach $\exists xA$.

Notation: val_{β} abkürzend für $val_{\mathcal{D},\beta}$.

Außerdem: $\sigma_x(x) = x$, $\sigma_x(y) = \sigma(y)$ für $y \neq x$.

$$\begin{array}{lll} & val_{\beta}(\sigma(\exists xA)) = \mathbf{W} \\ \text{gdw} & val_{\beta}(\exists x\sigma_x(A)) = \mathbf{W} & \text{Anwendung von } \sigma \\ \text{gdw} & val_{\beta_x^d}(\sigma_x(A)) = \mathbf{W} \text{ für ein } d \in D & \text{Def. von } val \\ \text{gdw} & val_{(\beta_x^d)''}(A) = \mathbf{W} & \text{Ind.-Vor.} \\ & & \text{wo } (\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y)) \text{ für alle } y. \\ \text{gdw} & val_{(\beta')_x^d}(A) = \mathbf{W} & \text{Lücke} \\ \text{gdw} & val_{\beta'}(\exists xA) = \mathbf{W} & \text{Def. von } val \\ \end{array}$$

Beweis

Schließen der Lücke

Der Beweis wird vollständig geführt sein, wenn wir die Lücke

$$(\beta_X^d)'' = (\beta')_X^d$$

schließen können. Wir müssen für jede Variable $y \in Frei(A)$ zeigen $(\beta_x^d)''(y) = (\beta')_x^d(y)$.

$$y = x$$
:

$$(\beta_x^d)''(x) = val_{\beta_x^d}(\sigma_x(x))$$
 Def. von $(\beta_x^d)''$
 $= val_{\beta_x^d}(x)$ Def. von σ_x
 $= \beta_x^d(x)$ Def. von val für Variable
 $= d$ Def. der modifizierten Belegung
 $= (\beta')_x^d(x)$ Def. der modifizierten Belegung

Beweis (Forts.)

Schließen der Lücke $(\beta_x^d)'' = (\beta')_x^d$

 $y \neq x$, y frei in A:

$$(\beta_x^d)''(y) = val_{\beta_x^d}(\sigma_x(y)) \qquad \text{Def. von } (\beta_x^d)''$$

$$= val_{\beta_x^d}(\sigma(y)) \qquad \text{Def. von } \sigma_x$$

$$= val_{\beta}(\sigma(y)) \qquad \text{da } x \text{ nicht in } \sigma(y) \text{ vorkommt}$$

$$\text{Kollisionsfreiheit von } \sigma$$

$$= \beta'(y) \qquad \text{Def. von } \beta'$$

$$= (\beta')_x^d(y) \qquad \text{Def. der modifizierten Belegung}$$

Sir Anthony "Tony" Hoare

Sir C.A.R. Hoare (* 1934)
Studied philosophy at Oxford U.
Graduated from Moscow State U., 1959
Programmer for Elliott Brothers, 1960
Prof. of CS at Queen's U. Belfast, 1968
An axiomatic basis for computer
programing
Communications ACM, 1969
Oxford U. Programming Research, 1977
Microsoft Research, Cambridge, now

Hoare-Kalkül und Substitutionslemma

Zuweisungsregel im Hoare-Kalkül

$$\{\{x/s\}A\} \ x := s \{A\}$$

wobei die Substitution $\{x/s\}$ kollisionsfrei sein muß.

Die Zuweisungsregel besagt, daß

- ausgehend von einem Zustand, in dem die Formel {x/s}A wahr ist,
- ▶ nach Ausführung der Programmstücks x := s
- ▶ ein Zustand erreicht wird, in dem die Formel A gilt.

Hoare-Kalkül und Substitutionslemma

Hintergrund-Interpretation \mathcal{H} .

Programmzustand = Variablenbelegung β .

Gelte $val_{\mathcal{H},\beta}(\{x/s\}A) = W$

Nach der Zuweisung x := s wird ein Zustand β' erreicht

$$\beta'(x) := val_{\mathcal{H},\beta}(s)$$

 $\beta'(y) := \beta(y) \text{ für } y \neq x$

Die Regel behauptet $val_{\mathcal{H},\beta'}(A) = W$.

Das ist gerade die Aussage des Substitutionslemmas für die Formel A ist und die Substitution $\sigma = \{x/s\}$.

Anwendung des Substitutionslemmas

Theorem

Sei Σ eine Signatur, $\mathcal D$ eine Interpretation für Σ , β eine Belegung und σ eine für A kollisionsfreie Substitution mit $\sigma(y) = y$ für alle Variablen $y \neq x$, dann gilt:

- $ightharpoonup val_{\mathcal{D},\beta}(\forall xA \to \sigma(A)) = W$
- ▶ $val_{\mathcal{D},\beta}(\sigma(A) \to \exists xA) = W.$

Beweis

Wir nehmen an, daß $val_{\mathcal{D},\beta}(\forall xA) = W$ gilt, d.h.

$$val_{\mathcal{D},\beta_{\mathbf{v}}^{\mathbf{d}}}(A) = W \text{ für alle } d \in D.$$

Zu zeigen ist

$$val_{\mathcal{D},\beta}(\sigma(A)) = W$$

Nach dem Substitutionslemma ist das gleichbedeutend mit $val_{\mathcal{D},\beta'}(A) = W$

wobei

$$\beta'(y) = val_{\mathcal{D},\beta}(\sigma(y)) = \begin{cases} \beta(y) \text{ falls } x \neq y \\ val_{\mathcal{D},\beta}(\sigma(x)) \text{ falls } y = x \end{cases}$$

Also $\beta' = \beta_x^d$, wenn man $d = val_{\mathcal{D},\beta}(\sigma(x))$ wählt.

Die zweite Aussage läßt sich analog beweisen.

Der Modellbegriff

Den Modell- und Folgerungsbegriff definieren wir nur für Formeln und Formelmengen ohne freie Variablen. Das ist mit Abstand der häufigste Anwendungsfall. Der Fall mit freien Variablen wird ausführlich in den Übungsaufgaben im Skript behandelt.

Definition

- ► Eine Interpretation \mathcal{D} über Σ nennen wir ein **Modell** einer Formel A ohne freie Variablen über Σ, wenn $val_{\mathcal{D}}(A) = W$.
- ▶ \mathcal{D} heißt **Modell** einer Formelmenge M ohne freie Variablen, wenn für jede Formel $B \in M$ gilt $val_{\mathcal{D}}(B) = W$.

Der logische Folgerungsbegriff

Definition

Es sei $M \subseteq For_{\Sigma}$, $A \in For_{\Sigma}$, beide ohne freie Variablen.

$$M \models_{\Sigma} A :\Leftrightarrow$$

Jedes Modell von M ist auch Modell von A.

Lies: **Aus** M **folgt** A (über Σ).

Kurznotationen:

$$\models$$
 statt \models_{Σ} , \models A für $\emptyset \models$ A, $B \models$ A für $\{B\} \models$ A.

Bemerkungen zum Modellbegriff

$$M \models A \quad \text{gdw} \quad M \cup \{\neg A\}$$

hat kein Modell

Allgemeingültigkeit

Definition

A ∈ For_∑ heißt

- ▶ allgemeingültig gdw |= A
- ► erfüllbar gdw ¬A ist nicht allgemeingültig.

Allgemeingültigkeit

Theorem

- 1. Die folgenden Aussagen sind äquivalent:
 - 1.1 A allgemeingültig
 - 1.2 Jede Interpretation \mathcal{D} ist Modell von A.
 - 1.3 $val_{\mathcal{D}}(A) = W$ für alle \mathcal{D} .
- 2. Die folgenden Aussagen sind äquivalent:
 - 2.1 A erfüllbar
 - 2.2 Es gibt \mathcal{D} mit $val_{\mathcal{D}}(A) = W$

Beispiele für allgemeingültige Formeln

- 1. $\neg \forall x A \leftrightarrow \exists x \neg A$,
- 2. $\neg \exists x A \leftrightarrow \forall x \neg A$
- 3. $\forall x \forall y A \leftrightarrow \forall y \forall x A$,
- 4. $\exists x \exists y A \leftrightarrow \exists y \exists x A$
- 5. $\forall x(A \land B) \leftrightarrow \forall xA \land \forall xB$
- 6. $\exists x(A \lor B) \leftrightarrow \exists xA \lor \exists xB$
- 7. $\forall \vec{y}(A \land QxB \leftrightarrow Qx(A \land B))$, falls $x \notin Frei(A)$ und \vec{y} alle freie Variablen in $A \land QxB$ sind.
- 8. $\forall \vec{y} (A \lor QxB \leftrightarrow Qx(A \lor B))$, falls $x \notin Frei(A)$ und \vec{y} alle freie Variablen in $A \land QxB$ sind.

Beweisbeispiel

Zeige

Für alle \mathcal{D}, β gilt $val_{\mathcal{D},\beta}(A \to \forall xB) = val_{\mathcal{D},\beta}(\forall x(A \to B))$ Voraussetzung: $x \notin Frei(A)$.

Falls $val_{\mathcal{D},\beta}(A \to \forall xB) = W$, dann folgt unmittelbar aus der Definition von val: $val_{\mathcal{D},\beta}(\forall x(A \to B)) = W$ (Übung).

Sei jetzt
$$val_{D,I,\beta}(\forall x(A \to B)) = W$$
, d. h. für alle $d \in D$: $(val_{D,\beta_x^d}(A) = W \Rightarrow val_{D,I,\beta_x^d}(B) = W)$. (*)

Angenommen, es wäre $val_{D,I,\beta}(A \to \forall xB) = F$. Dann gilt also $val_{D,\beta}(A) = W$ und $val_{D,\beta}(\forall xB) = F$ es gibt also ein $e \in D$ mit $val_{D,\beta}(B) = F$.

Wegen $x \notin Frei(A)$ gilt auch $val_{\mathcal{D},\beta_{\chi}^{e}}(A) = W$. Aus (*) folgt somit der Widerspruch: $val_{\mathcal{D},\beta_{\chi}^{e}}(B) = W$.

Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

Anders gesagt:

$$\left. \begin{array}{l} \text{Transitivit"at} \\ \text{Symmetrie} \\ \text{Endlosigkeit} \end{array} \right\} \models \text{Reflexivit"at} \\$$

Die Antwort ist

JA

2. Beispiel für ein Folgerbarkeitsproblem

Gilt folgendes?

$$\neg \exists x (a < x \land c(x) \land \forall y (a \le y < x \rightarrow b(y))$$

$$\models$$

$$\exists x (a < x \land \neg c(x) \land \forall y (a \le y < x \rightarrow \neg b(y))$$

Gegenbeispiel: