

UBC UAS Design Team: Firefighting/Payload Delivery

What?

- Autonomous quadcopter drone capable of performing tasks for both AEAC and SUAS competition
- Hot swappable water intake/deployment and package delivery payload

How?

- Designed parts, assemblies, and test fixtures in CAD software
- Worked with cross-functional teams to integrate electrical components (actuators, sensors)
- Rapid prototyping using 3D printing, waterjet cutting, and laser cutting

- Achieved 2nd place at AEAC 2025 out of 15 teams
- Reduced production cost of drone by 20%
- Trained newer members design best practices to carry forward in future designs

UBC UAS Design Team: UAV Airbus

What?

- National AEAC Competition passenger transport VTOL UAV piloted autonomously
- Worked on aircraft cabin that seats 4
 Barbie Dolls and 2kg of cargo

How?

- Used SolidWorks/OnShape to CAD cabin components, test mounts, and carbon fibre layup molds
- Conducted FEA and CFD in SolidWorks to optimize cabin structure and aerodynamics
- Rapid prototyping using 3D printing, waterjet cutting, and laser cutting

- Reduced aircraft fuselage internal structure weight by 20% and increased rigidity by 15%
- Reduced previous layup mold material by 67% and exterior weight by 30%
- 2nd in Design Presentation and 3rd Place in Flight Demonstration at AEAC 2024

Motorized Drift Tricycle

	Component A			Component B			Component C			Component D			Component E		
	Left	Middle	Right	Left	Middle	Right	Left	Middle	Right	Left	Middle	Right	Left	Middle	Right
Design Factor	2.5			2.5			2.5			2.5			2.5		
Stress Concentration Factor	0	0	2.18	3	0	2.5	0	2.18	0	2.5	0	3	2.18	0	0
Shear Magnitude	47.40674271			81.41908115			77.6852678			59.83454801			56.99632238		
Moment Magnitude	7.654292896			94.81348542			454.5252677			86.60294948			55.98920144		
Torque	104.8422			0			126.05			0			21.2078		
Retaining Ring	NO			YES			YES			YES			NO		
Corrected Endurance Limit	33112.05439			33112.05439			33112.05439			33112.05439			33112.05439		
Yield Strength		100000			100000			100000			100000			100000	
forque & Bending Diameter [eq12-24]	0.284885	0.284885	0.297924	0.602534	0	0.567006	0.302927	0.913592	0.302927	0.550143	0	0.584614	0.454658	0.167233	0.16723
Alternating Shear Diameter	0	0	0.15146	0.232849	0	0.212561	0	0.193887	0	0.18222	0	0.199612	0.166074	0	0
Adjusted Diameter for RR	0.284885	0.284885	0.297924	0.638686	0	0.601027	0.321103	0.968408	0.321103	0.583152	0	0.619691	0.454658	0.167233	0.16723
Final Calculated Shaft Diameter	0.297924			0.638686			0.968408			0.619691			0.454658		
Largest Min Diameter from All	0.968408														

What?

- Worked in a team of 6 to create a functional 3HP motorized drift tricycle
- Recycled kids bicycle cut and welded to a steel extrusion and machined base plate

How?

- Designed and iterated concepts through hand calculations and SolidWorks modelling
- Programmed scripts to conduct force analyses in MATLAB to ensure structural safety and FOS of 3
- Machined custom steel components and welded steel parts to assemble and test the final prototype

- Presented the project in front of mechanical engineering faculty members
- Gained hands-on experience designing a project from sketch to working assembly
- Quick way to get across campus (NOT ROAD LEGAL)!

Kardium Inc. Facility Expansion Equipment

What?

- Implemented a new chemical-based cleaning process
- Assembled and integrated custom mechanical/electrical jigs for facility expansion
- Conducted installation qualification testing for test equipment and jigs

How?

- Designed and implemented new tooling, jigs, and fixtures in SolidWorks
- Interpreting engineering drawings per ASME Y14.5 standards utilizing various machine shop tools (mill, laser welder) to reproduce parts
- Did troubleshooting and performance verification, to complete formal reports for review

- New cleaning process resulted in a 75% reduction in process time and improved production efficiency in a clean-room environment.
- Doubled facility production capacity from equipment duplication
- 21 new production jigs, tested and qualified

Escape 23 Trailer

What?

- Contributed to the successful launch of a new product line (Escape 23)
- Brought project from concept sketches all the way to full-scale production for consumers
- Redesigned existing trailer parts for improved manufacturability

How?

- Designed interior layout with CAD software (OnShape/SolidWorks).
- Designed a strain gauge system for testing chassis structure and validating FEA models
- Implemented Lean Six Sigma
 Principles to reduce material
 waste and introduced CNC
 manufacturing into the
 production line for E23 and
 existing products

- Reduced initial production cycle time down 60%
- Increased CNC machinery machine uptime rate by 50%
- Reduced defect rates by 40% and reduced material waste by 66%
- Generated \$1.2M in product presales

Titan Endurance Launcher & Orbiter

What?

- Potential energy launcher that propels an electronic catapult on wheels that launches a sphere
- Goal: Launch a sphere
 of unknown mass into a
 funnel and achieve
 maximum spirals before
 reaching the bottom

How?

- Optimized ball launch velocities by using MSC Adams to simulate and predict launch trajectories
- Used SolidWorks to CAD prototype launcher builds
- Manufactured parts using 3D printing, waterjet cutting, and laser cutting

- Predicted launch parameters with 85% accuracy using the simulation model
- Gained project management and technical documentation experience
- Successfully hit the target and achieved a spiral time of 56 seconds

Restaurant Robot Server

What?

- Designed a restaurant robot that automatically delivers food for a design competition
- Ultrasonic sensors and mecanum wheels drive robot; Servos, and power screws raise food tray to customer.

How?

- Use SolidWorks to design and produce a 3D render for presentation
- Conducted FEA simulations validated with hand calculations to justify component selection

- Formally presented concept to a group of judges and placed 8th out of 20 teams
- Strengthened skills in mechanical design, FEA, and part modelling

POSTURE-INO Posture Corrector


```
Postureino_Code
      Serial.begin(9600);
                                      // sets the serial port to 940
 10 Vold loop ()
11 (
12 x = analogSeas(0);
                                      // read analog input pin 0
                                      // sead analog imput pin 1
// read analog imput pin 1
     Serial.print(x, DSC);
Serial.print(* ");
      Serial printly, Obcs:
Decial print(* *);
     int your - (y, sec);
           Serial.print("Your sitting angle is " );
Serial.print(she()90 - y));
           Serial.print(" from vertical");
Serial.println();
      //detect slouching
      if (y < 375) (
         tone(buzzer, 1000);
        Serial println("SIT UP STRAIGHT! YOU"RE SLOOCHING");
      else [
```

What?

- Electronic posture corrector that alerts of poor sitting posture and tracks sitting data
- Made with minimum waste and recycled materials

How?

- Used prototyping boards and Arduino hardware to create circuitry
- Programmed data collection and feedback delivery features in C++

Results

- Posture-ino recorded data and alerted 14 students of their poor sitting posture
- Experience writing engineering reports and presenting to stakeholders

Baby Stroller Cupholder

What?

- Custom-designed dual beverage cup holder that mounts onto a baby stroller
- Affordable and practical solutions resolve the lack of beverage holders for this specific problem

How/2

- Engaged with client to understand requirements and determine design constraints
- Produced 3D CAD models and detailed 2D engineering drawings for assembly using SolidWorks

- Gained experience in SolidWorks, 3D printing, and technical documentation and presentation
- Client uses product daily with positive feedback