One-Variable Calculus: Applications CH3

mailto:econMath.namun+2016f@gmail.com (한신대)
mailto:ku.econ205+2016f@gmail.com (고려대)

2016년 9월 6일

Table of Contents

- 1 Using the First Derivatives for Graphing
- Second Derivatives and Convexity
- Graphing Rational Functions
- Tails and Horizontal Asymptotes
- Maxima and Minima
- 6 Applications to Economics

Positive Derivative implies Increasing Function

Theorem (3.1)

f: continuous \wedge differentiable at x_0

- $\bullet \ f'(x_0) > 0 \Rightarrow \exists \bar{\alpha}, \bar{\beta} \in \mathbb{R} \ \textit{s.t.} \ x_0 \in (\bar{\alpha}, \bar{\beta}) \land f \ \textit{is increasing on} \ (\bar{\alpha}, \bar{\beta})$

Theorem (3.2)

- $\bullet \ f'>0 \ \ \text{on} \ (\bar{a},\bar{b})\subset D\Rightarrow f \ \ \text{is increasing on} \ (\bar{a},\bar{b})$
- 2 f'<0 on $(\bar{a},\bar{b})\subset D\Rightarrow f$ is decreasing on (\bar{a},\bar{b})
- **3** f is increasing on $(\bar{a}, \bar{b}) \Rightarrow f' \geq 0$ on (\bar{a}, \bar{b})
- f is decreasing on $(\bar{a}, \bar{b}) \Rightarrow f' \leq 0$ on (\bar{a}, \bar{b})

Graph Sketching using First Derivatives

Procedure

(STEP 1) Find all x_i^* s.t. $f'(x_i^*) = 0$ (critical points), boundary points, and around undefined points

(STEP 2) Calculate $f(x_i^*)$

(STEP 3) Make table for graph sketch

- $f' > 0 \Rightarrow \nearrow$
- $f' < 0 \Rightarrow \searrow$

$$f(x) = x^4 - 8x^3 + 18x^2 - 11 (Ex3.1)$$

Convexity and Concavity

Definition (Convex (Concave up), Concave (Concave down))

f is convex on (\bar{a},\bar{b}) iff:

$$f\left((1-t)\bar{a}+t\bar{b}\right) \le (1-t)f(\bar{a})+tf(\bar{b}), \quad \forall t \in [0,1]$$

f is concave on (\bar{a},\bar{b}) iff:

$$f\left((1-t)\bar{a}+t\bar{b}\right) \ge (1-t)f(\bar{a})+tf(\bar{b}), \quad \forall t \in [0,1]$$

	f' > 0	f' < 0
f'' > 0		
f'' < 0		

Using Second Derivative for Graph Sketch

Procedure

- (STEP 1) Find all x_i^* s.t. $f'(x_i^*) = 0$ (critical points), $\underline{f''(x_i^*) = 0}$, boundary points, and around undefined points
- (STEP 2) Calculate $f(x_i^*)$
- (STEP 3) Make table for graph sketch

$$f(x) = x^4 - 8x^3 + 18x^2 - 11 (Ex3.1)$$

Graphing Rational Function

Procedure

(STEP 1) Find all x_i^* s.t. $f'(x_i^*) = 0$ (critical points), $f''(x_i^*) = 0$, boundary points, convergence toward undefined points, and tail (i.e., convergence toward $\pm \infty$)

(STEP 2) Calculate $f(x_i^*)$

(STEP 3) Make table for graph sketch

$$f(x) = \frac{16(x+1)}{(x-2)^2}$$
 (Ex3.6)

Tail

Tails of Polynomial

Only two cases: diverge to $\pm \infty$

Tails of Rational Function

$$g(x) = \frac{\bar{a}_0 x^k + \bar{a}_1 x^{k-1} + \dots + \bar{a}_{\bar{k}}}{\bar{b}_0 x^{\bar{m}} + \dots + \bar{b}_{\bar{m}}}$$

Tails of g(x) is determined by $\frac{\bar{a}_0}{\bar{b}_0}\frac{x^{\bar{k}}}{x^{\bar{m}}}$

- k > m: Same as polynomials with degree k m
- k=m: Converges to $\frac{a_0}{b_0}$ (Horizontal asymptote)
- k < m: converges to 0 (Horizontal asymptote)

Boundary Max and Interior Max

Theorem (3.3: First Order Condition (FOC))

 x_0 is an interior max or min of $f \Rightarrow x_0$ is a critical point of f. i.e., $f'(x_0) = 0$ (Inverse is not always true)

Theorem (3.4: Second Order Condition (SOC))

- $f'(x_0) = 0 \land f''(x_0) > 0 \Rightarrow x_0 \text{ is local min of } f$
- $f'(x_0) = 0 \land f''(x_0) = 0 \Rightarrow x_0$ can be max, min, or neither

Global Maxima and Minima

- Finding global max (or min) is not easy problem
- These cases guarantee the existence of global max (or min)
 - \bullet Domain of f is an interval \wedge f has only one critical point
 - $\bullet \ f''>0 \, \vee \, f''<0 \ \text{in domain of} \ f$
 - Domain of f is compact (closed and bounded) (\exists global max, global min)
- Below case guarantees the nonexistence of global max (or min)
 - Strictly increasing (or decreasing) functions with open domain

Producer's Problem in Perfect Competative Market

Producer's Problem in perfect competitive market

$$\arg \max_{x} \Pi(x)$$

$$x = f(L)$$

(Production Function)

Exogenous (Given) variables

- ullet $ar{w}$: unit price of labor
- ullet \bar{p} : unit price of end product

Assumptions

Assumptions

- $f: D \to \mathbb{R} \in \mathbf{C}^2$
- f is increasing: $f'(L) > 0 \forall L \in D$
- $\exists \bar{a} \geq 0$ s.t. (1) $f''(L) > 0 \forall L \in [0, \bar{a})$ (*i.e.*, convex on $[0, \bar{a})$) and (2) $f''(L) < 0 \forall L \in (\bar{a}, \infty]$ (*i.e.*, concave on (\bar{a}, ∞))
- ullet Quantity of input (labor) L is the only factor for production

Cost Functions

Big Picture for problem solving

Production Function \rightarrow Cost Function (in terms of x) \rightarrow Profit Function

 $\Pi(x) \to \mathsf{Finding}\ x^* \ \mathsf{maximizing}\ \Pi(x)$

Definition (Total Cost, Marginal Cost, and Average Cost)

- TC(x): Total cost for producing x
- \bullet MC(x) := TC'(x)
- $AC(x) := \frac{TC(x)}{x}$

Theorem (3.7c)

At interior minimum of AC (i.e., AC' = 0), AC = MC

Revenue and Profit Functions

Definition (Total Revenue, Marginal Revenue)

$$TR(x) := \bar{p}x$$

$$MR(x) := TR'(x)$$

Definition (Profit Function)

$$\Pi(x) := TR - TC$$

Producer's problem in Monopoly Case

In monopoly, p is endogenous

Producer's Problem in Monopoly

$$\arg\max_{p,x}\Pi(x)$$

However, firm is facing demand directly in monopoly

$$x = D(p)$$

(Demand Function)

Elasticity

Definition (A Elasticity of B)

$$\epsilon_{B,A} := \frac{\frac{dB}{B}}{\frac{dA}{A}} = \frac{A}{B} \frac{dB}{dA}$$

- $\frac{\Delta x}{x}$: rate of change
- Elasticity: ratio of rate of change
 - $|\epsilon| < 1$: inelastic
 - $|\epsilon| > 1$: elastic
 - $|\epsilon|=1$: unit elastic

Functions with Constant Demand

• Elasticity of linear demand function is not constant (not realistic)

$$x = D(p) = \bar{a} - \bar{b}p, \quad \bar{a}, \bar{b} > 0$$

Example of constant elasticity demand function (more realistic)

$$x = D(p) = \bar{k}p^{-\bar{r}}, \quad \bar{k}, \bar{r} > 0$$