MAT4220 FA22 HW09

Haoran Sun (haoransun@link.cuhk.edu.cn)

Problem 1 (P197 Q11).

- (a) Easy to verify that (18) satisfies $\Delta G = 0$ except at $\mathbf{x} = \mathbf{x}_0$, $G(\mathbf{x})|_{\partial D} = 0$, $G(\mathbf{x}) \log |\mathbf{x} \mathbf{x}_0|/2\pi$ finite at \mathbf{x}_0 .
- (b) Note that

$$\nabla G = \frac{1}{2\pi} \frac{1}{\rho} (\mathbf{x} - \mathbf{x}_0) - \frac{1}{2\pi} \frac{1}{\rho^*} (\mathbf{x} - \mathbf{x}_0^*)$$

Since $\mathbf{n} = \mathbf{x}/|\mathbf{x}|$, we have

$$\nabla G \cdot \mathbf{n} = \frac{1}{2\pi} \frac{1}{\rho} (a - r_0 \cos \phi) - \frac{1}{2\pi} \frac{1}{\rho^*} (a - r_0^* \cos \phi)$$

$$= \frac{1}{2\pi} \frac{a - r_0 a \cos \phi}{a^2 + r_0^2 - 2ar_0 \cos \phi} - \frac{1}{2\pi} \frac{a - \frac{a^2}{r_0} \cos \phi}{a^2 + \frac{a^4}{r_0^2} - 2\frac{a^3}{r_0} \cos \phi}$$

$$= \frac{1}{2\pi} \frac{1}{a} \frac{a^2 - r_0 a \cos \phi - r_0^2 + r_0 a \cos \phi}{a^2 + r_0^2 - 2ar_0 \cos \phi}$$

$$= \frac{a^2 - r_0^2}{2\pi a} \frac{1}{a^2 + r_0^2 - 2ar_0 \cos \phi}$$

Therefore we have proved Poisson's formula since

$$u(\mathbf{x}_0) = \frac{a^2 - r_0^2}{2\pi a} \iint_{\partial D} d\sigma \ u(\mathbf{x}) \frac{\partial}{\partial \mathbf{n}} G(\mathbf{x}, \mathbf{x}_0) = \frac{a^2 - r_0^2}{2\pi a} \iint_{\partial D} d\sigma \ \frac{u(\mathbf{x})}{a^2 + r_0^2 - 2ar_0 \cos \phi}$$

Problem 2 (P197 Q13). The Green's function for the whole ball is

$$G(\mathbf{x}, \mathbf{x}_0) = -\frac{1}{2\pi\rho} + \frac{a}{|\mathbf{x}_0|} \frac{1}{4\pi\rho^*}$$

Reflect the green's function wrt xy plane, we have

$$G(\mathbf{x}, \mathbf{x}_0) = -\frac{1}{4\pi\rho} + \frac{a}{|\mathbf{x}_0|} \frac{1}{4\pi\rho^*} + \frac{1}{4\pi\rho_z} - \frac{a}{|\mathbf{x}_0|} \frac{1}{4\pi\rho_z^*}$$

where

$$\rho = |\mathbf{x} - \mathbf{x}_0|$$
 $\rho^* = |\mathbf{x} - \mathbf{x}_0^*|$ $\rho_z = |\mathbf{x} - \mathbf{x}_{0z}|$ $\rho_z^* = |\mathbf{x} - \mathbf{x}_{0z}^*|$

where $x_0^* = a^2 \mathbf{x_0}/|\mathbf{x_0}|^2$, and $\mathbf{x_{0z}}$ is the reflection of $\mathbf{x_0}$ wrt xy plane, $\mathbf{x_{0z}}^*$ is the reflection of $\mathbf{x_0}^*$ wrt xy plane.

Problem 3 (P337 Q1). Easy to prove the linearity. To prove the continuity, since f integrable on Ω , then $\forall \phi_N \to \phi$, $\phi_N \in C^{\infty}(\Omega)$ compactly supported, let $F = |\langle |f|, 1 \rangle|$ on Ω (since |f| also integrable), then $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$ s.t. $\forall n > N$, we have $|\phi_N(x) - \phi(x)| < \epsilon/F$, and hence

$$|\langle f, \phi_n \rangle - \langle f, \phi \rangle| = \left| \int_{\Omega} dx \ f(x) [\phi_n(x) - \phi(x)] \right|$$
$$< \int_{\Omega} dx \ |f(x)| \frac{\epsilon}{F} = \epsilon$$

which means the map is continuous.

HW09 Haoran Sun

Problem 4 (P337 Q2). *Linearity:* direct prove by definition

$$\langle f', a\phi + b\psi \rangle = -\langle f, a\phi' + b\psi' \rangle = -\int_{\Omega} dx \ f(x)(a\phi'(x) + b\psi'(x)) = -a\langle f, \phi' \rangle - b\langle f, \psi' \rangle$$
$$= a\langle f', \phi \rangle + b\langle f', \psi \rangle$$

Continuity: since $\phi_N \to \phi$ uniformly and $\phi_N \in C^{\infty}(\Omega)$ compactly supported, then $\phi'_N \to \phi'$ uniformly and $\phi'_N \in C^{\infty}(\Omega)$ compactly supported, hence

$$\langle f, \phi'_N \rangle \to \langle f, \phi' \rangle \Rightarrow \langle f', \phi_N \rangle \to \langle f', \phi \rangle$$

Problem 5 (P337 Q5).

Claim.
$$-c \langle H_x, \phi \rangle = \langle H_t, \phi \rangle$$
.

Proof. Since

$$\langle H_x, \phi \rangle = -\iint_{\Omega} dx \, dt \, H(x - ct) \phi_x(x, t) = -\int_0^{\infty} dt \, \int_{ct}^{\infty} dx \, \phi_x(x, t) = \int_0^{\infty} dt \, \phi(ct, t)$$

$$\langle H_t, \phi \rangle = -\iint_{\Omega} dx \, dt \, H(x - ct) \phi_t(x, t) = -\int_0^{\infty} dx \, \int_0^{x/c} dt \, \phi_t(x, t) = -\int_0^{\infty} dx \, \phi(x, x/c)$$

$$= -c \int_0^{\infty} du \, \phi(cu, u)$$

Hence $c\langle H_x, \phi \rangle = \langle H_t, \phi \rangle$.

Therefore

$$c^{2} \langle H_{xx}, \phi \rangle = -c^{2} \langle H_{x}, \phi_{x} \rangle = c \langle H_{t}, \phi_{x} \rangle = -c \langle H, \phi_{xt} \rangle$$
$$\langle H_{tt}, \phi \rangle = -\langle H_{t}, \phi_{t} \rangle = c \langle H_{x}, \phi_{t} \rangle = -c \langle H, \phi_{tx} \rangle$$

Therefore we have $\langle H_{tt}, \phi \rangle = c^2 \langle H_{xx}, \phi \rangle$, which means that H(x - ct) is a weak solution.