Universal locally finite maximally homogeneous semigroups

Robert D. Gray¹ (joint work with I. Dolinka)

Conference to celebrate the 70th Anniversary of Peter J. Cameron, Lisbon, July 2017

Thank you Peter!

COMBINATORICA
Akadémiai Kiadó – Springer-Verlag

Combinatorica 13 (4) (1993) 377-396

INFINITE HIGHLY ARC TRANSITIVE DIGRAPHS AND UNIVERSAL COVERING DIGRAPHS

PETER J. CAMERON, CHERYL E. PRAEGER*
and NICHOLAS C. WORMALD†

Received August 18, 1989 Revised December 22, 1992

INDEPENDENCE ALGEBRAS

PETER J. CAMERON AND CSABA SZABÓ

ABSTRACT

An independence algebra is an algebra A in which the subalgebras satisfy the exchange axiom, and any map from a basis of A into A extends to an endomorphism. Independence algebras fall into two classes; the first are specified by a set X, a group G, and a G-space C. The second are much more restricted; we show that the subalgebra lattice is a projective or affine geometry, and give a complete classification of the finite algebra.

A digraph (that is a directed graph) is said to be highly act transitive if its automorphism group is transitive on the set of s-ace for sets 2 - 2. Several new constructions are given of infinite highly are transitive digraph D_i of a connected, 1-acr transitive digraph D_i of a singly are transitive digraph D_i of its constructed and a shown to be a covering digraph for the D_i of the surface of the D_i of the D_i

Thank you Peter!

Discrete Mathematics 192 (1998) 11-26

A census of infinite distance-transitive graphs

Peter J. Cameron *

School of Mathematical Sciences. Owen Mary and Westfield College, Mile End Road.

London EI 4NS, UK

Received 25 October 1996; revised 20 July 1997; accepted 25 July 1997

Abstract

This paper describes some classes of infinite distance-transitive graphs. It has no pretensions to give a complete list, but concentrates on graphs which have no finite analogues. © 1998 Elsevier Science B.V. All rights reserved

1. Introduction

There are various degrees of symmetry which a graph might display. Most of these are of a 'local-to-global' type, asserting that, if two configurations which look the

Homomorphism-Homogeneous Relational Structures

PETER J. CAMERON^{1†} and JAROSLAV NEŠETŘIL^{2‡}

¹School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London El 4NS, UK (e-mail: p.j.cameron@quul.ac.uk)

²Department of Applied Mathematics and Institute of Theoretical Computer Sciences, Charles University, Malostranské Nám. 25, 11800 Praha, Czech Republic (e-mail: nesetril@kam.mff.cuni.cz)

Hall's group

In 1959 Philip Hall constructed a countably infinite group $\mathcal U$ with the following properties:

- Universal: contains every finite group as a subgroup
- Locally finite: every finitely generated subgroup is finite
- ► Homogeneous: every isomorphism $\phi: A \to B$ between finite subgroups A, B of \mathcal{U} extends to an automorphism of \mathcal{U} . In fact, any two isomorphic subgroups of \mathcal{U} are conjugate in \mathcal{U} .

 \mathcal{U} is the unique countable group satisfying these properties.

Hall's group

In 1959 Philip Hall constructed a countably infinite group \mathcal{U} with the following properties:

- Universal: contains every finite group as a subgroup
- Locally finite: every finitely generated subgroup is finite
- ► Homogeneous: every isomorphism $\phi: A \to B$ between finite subgroups A, B of \mathcal{U} extends to an automorphism of \mathcal{U} . In fact, any two isomorphic subgroups of \mathcal{U} are conjugate in \mathcal{U} .

 $\ensuremath{\mathcal{U}}$ is the unique countable group satisfying these properties.

AAA83, Novi Sad, 2012, Manfred Droste asked:

"Is there a countable universal locally finite homogeneous semigroup?"

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \leq G$, with $K \cong L$ but they are not conjugate in G.

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \le G$, with $K \cong L$ but they are not conjugate in G. Now embed $\phi: S_4 = G \to S_G = S_{S_4}$ using Cayley's Theorem

$$g \mapsto \rho_g$$
, $x\rho_g = xg$ for $x \in G$.

Now $\phi(K)$ and $\phi(L)$ are conjugate in $S_G = S_{S_4}$.

Constructing Hall's group

Example: Let $G = S_4$, the symmetric group, and

$$K = \{(), (12)\}, L = \{(), (12)(34)\}.$$

Then $K, L \le G$, with $K \cong L$ but they are not conjugate in G. Now embed $\phi: S_4 = G \to S_G = S_{S_4}$ using Cayley's Theorem

$$g\mapsto \rho_g, \quad x\rho_g=xg \quad \text{for} \quad x\in G.$$

Now $\phi(K)$ and $\phi(L)$ are conjugate in $S_G = S_{S_4}$.

Construct \mathcal{U} by iterating this process

Set $G_0 = S_4$, $G_1 = S_{S_4}$, $G_2 = S_{S_{S_4}}$, ... and let $\phi : G_i \to G_{i+1}$ be given by the right regular representation $g \mapsto \rho_g$, giving

$$G_0 \xrightarrow{\phi_0} G_1 \xrightarrow{\phi_1} G_2 \xrightarrow{\phi_2} \dots$$

Then $\mathcal{U} = \bigcup_{i \geq 0} G_i$ is the direct limit of this chain of symmetric groups.

Amalgamation

Amalgamation

Amalgamation and Fraïssé's Theorem

Definition (Amalgamation property for a class C)

If $S, A, B \in \mathcal{C}$ and $f_1 : S \to A$ and $f_2 : S \to B$ are embeddings then $\exists C \in \mathcal{C}$ and embeddings $g_1 : A \to C$ and $g_2 : B \to C$ such that $f_1g_1 = f_2g_2$.

- The class of finite groups has the amalgamation property. It is an *amalgamation class* and its Fraïssé limit is \mathcal{U} .
- Fraïssé's Theorem implies that a countable homogeneous structure is uniquely determined by its finitely generated substructures (called its age).

Conclusion: Hall's group \mathcal{U} is the unique countable homogeneous locally finite group.

Amalgamation bases for finite semigroups

T. E. Hall, C. J. Ash (1975): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

Amalgamation bases for finite semigroups

T. E. Hall, C. J. Ash (1975): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

"How homogeneous can a countable universal locally finite semigroup be?"

Amalgamation bases for finite semigroups

T. E. Hall, C. J. Ash (1975): The class of finite semigroups does *not have* the amalgamation property. Therefore, there is no countable universal locally finite homogeneous semigroup.

"How homogeneous can a countable universal locally finite semigroup be?"

Definition. A finite semigroup S is an amalgamation base for all finite semigroups if in the class of finite semigroups every

The class \mathcal{B} of all such semigroups contains all finite: groups, inverse semigroups whose principal ideals form a chain, full transformation semigroups T_n (K. Shoji (2016))

Maximal homogeneity

 $\mathcal{B} = \{S : S \text{ is an amalgamation base for all finite semigroups}\}$

T – a countable universal locally finite semigroup, S – a finite semigroup.

Definition

We say $\operatorname{Aut}(T)$ acts homogeneously on copies of S in T if for all $U_1, U_2 \leq T$ with $U_1 \cong S \cong U_2$, every isomorphism $\phi: U_1 \to U_2$ extends to an automorphism of T.

Proposition

Aut(T) acts homogeneously on copies of S in $T \implies S \in \mathcal{B}$

Definition

We say T is maximally homogeneous if, for all $S \in \mathcal{B}$, Aut(T) acts homogeneously on copies of S in T.

The maximally homogeneous semigroup ${\mathcal T}$

 T_n = the full transformation semigroup of all maps from $[n] = \{1, 2, \dots n\}$ to itself under composition.

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of semigroups, where each $M_i \cong T_{n_i}$, then the limit $T = \bigcup_{i \geq 0} M_i$ is a full transformation limit semigroup.

Fact: Every infinite full transformation limit semigroup is universal and locally finite.

The maximally homogeneous semigroup ${\mathcal T}$

 T_n = the full transformation semigroup of all maps from $[n] = \{1, 2, \dots n\}$ to itself under composition.

Definition

If we have a chain

$$M_0 \rightarrow M_1 \rightarrow M_2 \rightarrow \dots$$

of embeddings of semigroups, where each $M_i \cong T_{n_i}$, then the limit $T = \bigcup_{i>0} M_i$ is a full transformation limit semigroup.

Fact: Every infinite full transformation limit semigroup is universal and locally finite.

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous full transformation limit semigroup \mathcal{T} .

Existence and uniqueness of \mathcal{T}

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous full transformation limit semigroup \mathcal{T} .

- Since T is not homogeneous it cannot be constructed using Fraïssé's Theorem.
- ▶ We instead make use of a well-known generalisation, sometimes called the Hrushovski construction.
 - See D. Evans's Lecture notes from his talks at the Hausdorff Institute for Mathematics, Bonn, September 2013.
- $ightharpoonup \mathcal{T}$ is not obtainable by iterating Cayley's theorem for semigroups

$$T_n \to T_{T_n} \to T_{T_{T_n}} \to \dots$$

Structure of T_n

$$\alpha \mathcal{J}\beta \iff \alpha \& \beta \text{ generate the same ideal}$$

$$\Leftrightarrow |\text{im } \alpha| = |\text{im } \beta|.$$

Set
$$J_r = \{ \alpha \in T_n : |\text{im } \alpha| = r \}.$$

Each idempotent ϵ in J_r is contained in a maximal subgroup H_{ϵ} of S_r .

Example

$$\epsilon = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 3 \end{pmatrix} \in T_4$$

$$H_{\epsilon} = \left\{ \begin{pmatrix} 1 & 2 & 3 & 4 \\ i & j & k & k \end{pmatrix} : \{i, j, k\} = \{1, 2, 3\} \right\}$$

12|3|4

13|2|4

Main idea

Even though \mathcal{T} is not homogeneous, it still displays a high degree of symmetry in its combinatorial and algebraic structure.

Theorem (Dolinka & RDG (2017))

1. \mathcal{T} is countable universal and locally finite.

Main idea

Even though \mathcal{T} is not homogeneous, it still displays a high degree of symmetry in its combinatorial and algebraic structure.

Theorem (Dolinka & RDG (2017))

- 1. \mathcal{T} is countable universal and locally finite.
- 2. \mathcal{T}/\mathscr{J} is a chain isomorphic to (\mathbb{Q}, \leq) .

Main idea

Even though \mathcal{T} is not homogeneous, it still displays a high degree of symmetry in its combinatorial and algebraic structure.

Theorem (Dolinka & RDG (2017))

- 1. \mathcal{T} is countable universal and locally finite.
- 2. \mathcal{T}/\mathcal{J} is a chain isomorphic to (\mathbb{Q}, \leq) .
- 3. Every maximal subgroup is isomorphic to Hall's group \mathcal{U} .

Main idea

Even though \mathcal{T} is not homogeneous, it still displays a high degree of symmetry in its combinatorial and algebraic structure.

Theorem (Dolinka & RDG (2017))

- 1. \mathcal{T} is countable universal and locally finite.
- 2. \mathcal{T}/\mathcal{J} is a chain isomorphic to (\mathbb{Q}, \leq) .
- 3. Every maximal subgroup is isomorphic to Hall's group \mathcal{U} .
- 4. Aut(\mathcal{T}) acts transitively on the set of \mathcal{J} -classes of \mathcal{T} (so all principal factors \mathcal{J}^* are isomorphic to each other).

Graham-Houghton graphs – local structure

I - *r*-element set, *P* - partition with *r* parts $H_{P,I}$ is a group $\Leftrightarrow H_{P,I}$ contains an idempotent $\Leftrightarrow I$ a transversal of *P*

Graham–Houghton graphs in \mathcal{T}

Definition (The countable random bipartite graph)

It is the unique countable universal homogeneous bipartite graph. It is characterised as the countably infinite bipartite graph satisfying:

(*) for any two finite disjoint sets U, V from one part of the bipartition, there is a vertex w in the other part with $w \sim U$ but $w \not \sim V$.

Graham–Houghton graphs in \mathcal{T}

Definition (The countable random bipartite graph)

It is the unique countable universal homogeneous bipartite graph. It is characterised as the countably infinite bipartite graph satisfying:

(*) for any two finite disjoint sets U, V from one part of the bipartition, there is a vertex w in the other part with $w \sim U$ but $w \not \sim V$.

Theorem (Dolinka & RDG (2017))

Every Graham–Houghton graph of \mathcal{T} is isomorphic to the countable random bipartite graph.

The flower lemma

Lemma. Let A_1, \ldots, A_k , B_1, \ldots, B_l be *t*-element subsets of $\{1, \ldots, m\}$. If |M| < t then there exists a partition P of [m] with t parts: $P \perp A_i$ and $P \not\perp B_i$.

Proposition. Let 1 < r < n. Then $\exists \phi : T_n \to T_m$ such that $\forall a_1, \dots, a_k, b_1, \dots, b_l \in J_r \subseteq T_n$ from distinct \mathscr{L} -classes $\exists c \in T_m$ such that in T_m

- $R_c \cap L_{a_i\phi}$ are groups
- ▶ $R_c \cap L_{b_i\phi}$ are not groups

Inverse semigroups

The symmetric inverse monoid I_n of partial bijections

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & - \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 3 & - & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ - & 1 & - \end{pmatrix}$$

T. E. Hall (1975): Amalgamation bases for finite inverse semigroups are precisely the finite \mathcal{J} -linear inverse semigroups.

Theorem (Dolinka & RDG (2017))

There is a unique maximally homogeneous symmetric inverse limit semigroup \mathcal{I} .

- 1. \mathcal{I} is locally finite and universal for finite inverse semigroups.
- 2. \mathcal{I}/\mathscr{J} is a chain isomorphic to (\mathbb{Q}, \leq) .
- 3. Every maximal subgroup if isomorphic to Hall's group \mathcal{U} .
- 4. The semilattice of idempotents $E(\mathcal{I})$ is isomorphic to the universal countable homogeneous semilattice.

Some open problems

We have seen that among T_n -limit semigroups \mathcal{T} is the unique example that is maximally homogeneous.

Problem 1: *Is* \mathcal{T} *the only countable universal locally finite maximally homogeneous semigroup?*

We know that \mathcal{T} embeds every finite semigroup, but

Problem 2: Does every countable locally finite semigroup embed into \mathcal{T} ?

Problem 3: Does there exist a countable locally finite semigroup which embeds every countable locally finite semigroup?

(Note: There exist 2^{\aleph_0} non-isomorphic, countable, locally finite, groups, and \mathcal{U} embeds all countable locally finite groups.)