CS & IT

DISCRETE MATHS
Graph theory

Lecture No. 05

Line Graph (L(G))

L (G).

or name the vertices in G.

so name the edges based on end vertices

-> edge in G will become vertex in L(G)

> common end points connect it

** Kn -> complete Graph Degree of each vertex is (n-1).

2 (n-2) verten. (n-2) degree.

straph vertices are represented as n-bit signal.

two vertices are connected with each other, when there bit difference is changes by 1-bit, what will be total edges in the Graph?

Total
$$00$$

Vertices 01
 $= 2$
 00
 $= 2$
 00
 $= 2$
 0
 $= 2$
 $= 10$
 $= 11$

n-bit signal.

Total vertices = 2n.

n=2 bit
Total vertices = 2=4.

n-bit signal.

Total vertices = 20.

Degree & each vertex is n.

$$\frac{2^n xn}{2} = e$$

Hypercube (Qp) (n22)

4 n-bitsignal -> does not contains odd length cycle -> Bipartite Graph.

Q2.

Regular Graph.

Q1.

Total vertices
$$V = 2^n$$
.
 $e(G) = n \cdot 2^{n-2}$.

$$e(G) + e(G) = V(V-1)$$
 $n \cdot 2^{n-1} + e(G) = 2^{n}(2^{n-1})$

$$e(\bar{G}) = \frac{2^{n}(2^{n}-1)}{2} - n \cdot 2^{n-1}$$

Kν ν-1, ν-1, ν-1,ν-2.

Subgraph (c)

Graph G=(VIE)

6 03 2

- 1. Every edge & G is subgraph of G.
- 2. Every verten of G is subgraph of G.
- 3. Every Graph is subgraph of itself.

1 Subgraph

4. bcach → bcG.

(Subgraph of a subgraph of a Graph is

Subgraph of a Graph.

edges.

$$G_{1}$$
 G_{1}
 G_{1}

$$G_2$$
 $E_2 = \{12, 23\}$

G1, G2 are subgraphs of G. Such that, G1, G2 will not have any common

verten

V1= {2,2}

if no common verten. no point of having Common edge.

