CSE/ECE 848 Introduction to Evolutionary Computation

Module 5, Lecture 22, Part 2b
Evolutionary Multi-Objective Optimization
for Greenhouse Control

Erik D. Goodman, Executive Director
BEACON Center for the Study of Evolution in Action
Professor, ECE, ME, and CSE

Classical Greenhouse Control Strategy

Source: Vanthoor, 2011

Economic Model

Source: Vanthoor, 2011

Source: Vanthoor, 2011

Model

Fitness Evaluation

- Simulate multiple growing seasons for each individual
 - Choose pair of objective values with the worst net financial result (NFR)

Parameter	Value		
Growing periods	August 1 st , 2006 – July 1 st , 2007		
	August 1 st , 2007 – July 1 st , 2008		
	August 1 st , 2008 – July 1 st , 2009		
Simulation	334 days		
Length			
Coordinates	36°48′N, 2°43′W		
Height above sea	151 meters		
level			
Greenhouse	[Whitewash, Boiler Heating, Fogging System, CO2		
design	injection]		

Reviewing: NSGA-II Parameters

- Population size and generations based on available resources
- Mutation
 probability
 based on size N
 of a
 chromosome

Parameter	Value
Population size	80
Generations	100
Two-point crossover probability	0.3
Uniform mutation probability	1/N

Reviewing Chromosome Definition

- Chromosome values stored as integer vector – WHY INTEGERS?
- Size = 9 integers
- 1.045 x 10²⁶ distinct chromosomes

Parameter	Range	Step Size
T _{AirVentOn} (°C)	[10, 30]	0.1
T _{AirVentOff} (°C)	[10, 30]	0.1
RH _{AirVentOn}	[1, 10]/10	0.01
CO _{2AirVentOn}	[100, 500]	0.1
(ppm)		
T _{AirBoilOn} (°C)	[10, 30]	0.1
T _{OutThScrOn} (°C)	[10, 30]	0.1
CO _{2AirExtMax} (ppm)	[500, 1000]	0.1
CO _{2AirExtMin} (ppm)	[100, 500]	0.1
I _{GlobMax} (W×m ⁻²)	[200, 1000]	0.1

- We can evolve multiple sets of control rules, to cover different periods of day: morning, day and evening
- (Night is already different)
- To do that, simply replicate chromosome and append a copy for each new time period.
- We'll compare the unevolved single-point controller with 4 evolved controllers, as shown next

Reviewing Evolved Control Strategies

- Controllers are evolved based on a classical strategy for selection of control parameters
 - More complex controllers can reproduce simpler behavior if needed

Evolved Control Strategies— What We Learned

- High-yield solutions have aggressive CO₂
 enrichment strategy
- Low-energy solutions
 use less heating and CO₂
 enrichment
- Most solutions favor keeping ventilation closed to maximize CO₂ enrichment utilization

High-Yield Control Actions, Typical Day

Low-Cost Control Actions, Typical Day

Comparing 5 Types of Controllers

- Single circle: Classical, unevolved controller
- Red points: NTP: Evolved controllers, No Time
 Partitioning
- Green points: TP: Time Partitioned--Day divided into fixed morning, day and evening. Still 9 variables to evolve for each time period, so 27 total
- Blue points: TP+: Day divided, but transition points now relative to current sunrise, sunset times
- Purple points: TP++: Control also partitioned into before-fruit-set and after-fruit-set; 58 total variables

 Based on classical strategy

 Setpoints are evolved, no additional changes