2段階単体法

線形計画問題の制約条件にて、等式あるいは不等号が逆向きのものへの対 応は?

・スラック変数を導入し、等式制約へ

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \ge b_j \quad (b_j > 0)$$

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n - x_{n+1} = b_j$$

・等式制約へ人工変数 (artificial variable) を導入
$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} = b_{m}$$

$$a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} + y_{1} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} + y_{2} = b_{2}$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n} + y_{m} = b_{m}$$

・前段階として次の線形計画問題を解く

もし、最大値0が得られたら、元の問題に実行可能解が存在。

このとき、 $y_1=y_2=\cdots=y_m=0$ なので、すべての人口変数を除外した制約部を用いて、元の問題を解く。

-例題2.1

制約条件

$$\begin{cases} 2x_1 + 5x_2 - x_3 & = 270 \\ x_1 + x_2 & -x_4 & = 75 \\ 4x_1 + x_2 & -x_5 & = 120 \end{cases}$$

$$\Rightarrow \begin{cases} 2x_1 + 5x_2 - x_3 & +y_1 & = 270 \\ x_1 + x_2 & -x_4 & +y_2 & = 75 \\ 4x_1 + x_2 & -x_5 & +y_3 & = 120 \end{cases}$$

Phase I

ここで、目的関数は

$$-y_1 - y_2 - y_3$$
= -(270 - 2x₁ - 5x₂ + x₃) - (75 - x₁ - x₂ + x₄)
-(120 - 4x₁ - x₂ + x₅)
= -465 + 7x₁ + 7x₂ - x₃ - x₄ - x₅

である。

	b_i	x_1	x_2	x_3	x_4	x_5	y_1	y_2	y_3	θ
	270	2	5	-1	0	0	1	0	0	138
I	75	1	1	0	-1	0	0	1	0	75
	120	4	1	0	0	-1	0	0	1	30
	-465	-7	-7	1	1	1	0	0	0	
	210	0	9/2	-1	0	1/2	1	0	-1/2	420
II	45	0	3/4	0	-1	(1/4)	0	1	-1/4	180
	30	1	1/4	0	0	-1/4	0	0	1/4	
	-255	0	-21/4	1	1	-3/4	0	0	7/4	
	120	0	3	-1	2	0	1	-2	3/2	60
III	180	0	3	0	-4	1	0	4	-4	
	75	1	1	0	-1	0	0	1	0	
	-120	0	3	1	-2	0	0	3	1	
	60	0	3/2	-1/2	1	0	1/2	-1	3/4	
VI	420	0	9	-2	0	1	2	0	-1	
	135	1	5/2	-1/2	0	0	1/2	0	3/4	
	0	0	6	0	0	0	1	1	5/2	

Phase II

				x_3						
	60	0	3/2	-1/2	1	0	1/2	-1	3/4	
VI	420	0	9	-2	0	1	2	0	-1	
	135	1	5/2	$-2 \\ -1/2$	0	0	1/2	0	3/4	
	0	0	6	0	0	0	1	1	5/2	

Maximize $-2x_1 - 3x_2$

subject to

$$3/2x_2 - 1/2x_3 + x_4 = 60$$

$$9x_2 - 2x_3 + x_5 = 420$$

$$x_1 + 5/2x_2 - 1/2x_3 = 135$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

目的関数は

$$\begin{array}{rcl} -2x_1-3x_2 & = & -2(135-5/2x_2-1/2x_3)-3x_2 \\ & = & -270+2x_2-x_3 \end{array}$$

	b_i	x_1	x_2	x_3	x_4	x_5	θ
	60	0	3/2	-1/2	1	0	40
I	420	0	9	-2	0	1	140/3
	135	1	5/2	-1/2	0	0	54
	-270	0	-2	1	0	0	
	40	0	1	-1/3	2/3	0	
II	60	0	0	1	-6	1	
	35	1	0	1/3	-5/3	0	
	-190	0	0	1/3	4/3	0	

従って、Phase II の問題は、 $x_1=35, x_2=40$ のとき、最大値 -190 をと

様々な問題への対応

最小化: Minimize $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

1

Maximize $-c_1x_1-c_2x_2-\cdots-c_nx_n$

制約の相互変換

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \le b_j \quad (x_i \ge 0)$$

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n + x_{n+1} = b_j \quad (x_i \ge 0)$$

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \ge b_j \quad (x_i \ge 0)$$

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n - x_{n+1} = b_j \quad (x_i \ge 0)$$

$$a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n = b_j \quad (x_i \ge 0)$$

$$\begin{cases} a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \le b_j \\ a_{j1}x_1 + a_{j2}x_2 + \dots + a_{jn}x_n \ge b_j \\ \end{cases} (x_i \ge 0)$$

 x_i : 非負条件なし \longleftrightarrow $x_{i1}-x_{i2}$ $(x_{ij} \ge 0)$

例題2.2 (2段階単体法を必要とする例)

5種類の原料 R_1,R_2,R_3,R_4,R_5 を用いて金属 M_1,M_2,M_3 からなる合金 を生産する。原料には不純物も含まれ、成分比率は次の表で与えられる:

	R_1	R_2	R_3	R_4	R_5
M_1	40 %	10	20	0	50
M_2	10	30	10	20	20
M_3	20	10	20	10	10
不純物	30	50	50	70	20
コスト	9 千円 /kg	7	5	6	10

また、合金の混合比率は

金属	混合比率
M_1	60%
M_2	20%以下
M_3	20%以上

である。原料 R_i の使用料を x_i kg とするとき、1kg の合金を最小コストで 作るための問題を線形計画問題として定式化せよ。

Minimize $9x_1 + 7x_2 + 5x_3 + 6x_4 + 10x_5$ subject to $0.7x_1 + 0.5x_2 + 0.5x_3 + 0.3x_4 + 0.8x_5 = 1$ $0.4x_1 + 0.1x_2 + 0.2x_3 + 0.5x_5 = 0.6$ $0.1x_1 + 0.3x_2 + 0.1x_3 + 0.2x_4 + 0.2x_5 \leq 0.2$

 $0.2x_1 + 0.1x_2 + 0.2x_3 + 0.1x_4 + 0.1x_5 \ge 0.2$

 $x_1, x_2, x_3, x_4, x_5 \ge 0$

制約の第1式は

$$0.3x_1 + 0.4x_2 + 0.3x_3 + 0.3x_4 + 0.3x_5 = 0.4$$

でも可。

双対理論(Duality Theory)

Maximize $3x_1 + 5x_2$

subject to

I)
$$\begin{array}{c} x_1 + x_2 \leq 10 & (1) \\ 2x_1 + 3x_2 \leq 24 & (2) \\ x_1 + 3x_2 \leq 21 & (3) \\ x_1, x_2 \geq 0 & \end{array}$$

制約式(1)の2倍と制約式(2)を足し合わせると

$$4x_1 + 5x_2 \le 44$$

 $x_1 \ge 0$ であることから $3x_1 + 5x_2 \le 4x_1 + 5x_2 \le 44$ よって。この 44 は目的関数の上界を与える。

(2) + (3) $3x_1 + 6x_2 \le 45$ Ţ $3x_1 + 5x_2 \le 45$

 $(1) \times 2 + (3)$ $3x_1 + 5x_2 \le 41$

制約式を組み合わせることで目的関数値の上界が分かる!

非負変数 y_1,y_2,y_3 を導入し、 $(1) \times y_1 + (2) \times y_2 + (3) \times y_3$ を求めると

$$(x_1 + x_2)y_1 + (2x_1 + 3x_2)y_2 + (x_1 + 3x_2)y_3 \le 10y_1 + 24y_2 + 21y_3$$

$$(y_1 + 2y_2 + y_3)x_1 + (y_1 + 3y_2 + 3y_3)x_2 \le 10y_1 + 24y_2 + 21y_3$$

$$y_1 = 2$$
, $y_2 = 1$, $y_3 = 0$ が先ほどの上界 44 を与える。

$$(3x_1 + 5x_2 \le 4x_1 + 5x_2 \le 44)$$

一般には

$$y_1 + 2y_2 + y_3 \ge 3$$
, $y_1 + 3y_2 + 3y_3 \ge 5$

の条件の下で、 $y_1, y_2, y_3 \ge 0$ を様々に変化させることにより上界が得られる。

従って、よりよい (最大値により近い) 上界を求める問題を考えると

(II) Minimize
$$10y_1 + 24y_2 + 21y_3$$
 subject to $y_1 + 2y_2 + y_3 \ge 3 \qquad (1)$ $y_1 + 3y_2 + 3y_3 \ge 5 \qquad (2)$ $y_1, y_2, y_3 \ge 0$

この問題は、問題 (I) の双対問題と呼ばれる。

双対問題

Maximize $c_1x_1 + c_2x_2 + \cdots + c_nx_n$

subject to

主問題 (P)

 $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$

:

 $a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \le b_m$

 $x_i \ge 0$ $i = 1, 2, \dots, n$

Minimize $b_1y_1 + b_2y_2 + \cdots + b_my_m$

subject to

双対問題 (D)

 $a_{11}y_1 + a_{12}y_2 + \dots + a_{1m}y_m \ge c_1$

:

 $a_{n1}y_1 + a_{n2}y_2 + \dots + a_{nm}y_m \ge c_n$

 $y_i \ge 0$ $i = 1, 2, \dots, m$

以後、簡単のため

$$x = (x_1, x_2, ..., x_n)^T, y = (y_1, y_2, ..., y_m)^T$$

$$c = (c_1, c_2, \dots, c_n)^T, b = (b_1, b_2, \dots, b_m)^T$$

$$A = \left(\begin{array}{cccc} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{array} \right)$$

とおき、

$$c_1 x_1 + c_2 x_2 + \dots + c_n x_n = c^T x$$

などとあらわす。

ただし A^T は A の転置を表し、 $x\geq 0$ は $x_i\geq 0$ $(i=1,2,\ldots,n)$ をあらわ すものとする(他も同様)。

主問題と双対問題の関係

主問題 (P) Max $c^T x$ s.t. $Ax \le b, x \ge 0$

双対問題 (D) Min $b^T y$ s.t. $A^T y \ge c$, $y \ge 0$

定理 2.1 (弱双対定理)

主問題 (P) とその双対問題 (D) のそれぞれの実行可能解

$$x = (x_1, x_2, ..., x_n)^T, y = (y_1, y_2, ..., y_m)^T$$

に対し次の関係が成り立つ。

 $c_1x_1 + c_2x_2 + \dots + c_nx_n \le b_1y_1 + b_2y_2 + \dots + b_my_m$

系 2.

主問題 (P) が無限解をもつならば、双対問題 (D) は実行可能解をもたない。また、双対問題 (D) が無限解をもつならば、主問題 (P) は実行可能解をもたない。

系 2.2

主問題 (P) とその双対問題 (D) のそれぞれの実行可能解

$$x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_m)$$

が

 $c_1x_1 + c_2x_2 + \dots + c_nx_n = b_1y_1 + b_2y_2 + \dots + b_my_m$

を満たすならば、x,y はそれぞれ、主問題 (P) と双対問題 (D) の最適解である。

ger.

定理 2.2 (双対定理)

主問題 (P) が最適解をもつとき、双対問題 (D) も最適解をもち、(P) の最大値と (D) の最小値は一致する。

至 2.3

主問題 (P) および双対問題 (D) がともに実行可能解をもてば、それらは最適解をもち、(P) の最大値と (D) の最小値は一致する。

定理 2.3 (相補スラック定理)

を目題 (P) と双対問題 (D) の実行可能解x,yが、それぞれ (P) と (D) の最適解であるための必要十分条件は、次の2つの関係式で与えられる。

$$x^{T}(A^{T}y - c) = 0, \quad y^{T}(b - Ax) = 0$$

双対問題のパターン

主問題 (P) Min $c^T x$ s.t. $Ax \ge b$, $x \ge 0$

双対問題 (D) Max $b^T y$ s.t. $A^T y \le c, y \ge 0$

主問題 (P) Min $c^T x$ s.t. $Ax = b, x \ge 0$

双対問題 (D) Max $b^T y$ s.t. $A^T y \leq c$

双対定理により

- 主問題を解くことと、双対問題を解くことは本質的に 等価
- 制約が少ないほうの問題を解くほうが有利
- 内点法への発展

問題2.3

定理2.1を用いて、系2.2を示せ。

参考図書

- 今野浩、線形計画法、日科技連
- 田村明久・村松正和、最適化法、共立出版
- 福島雅夫、数理計画入門、朝倉書店