

# Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling

Qitian Wu, Zixuan Zhang, Xiaofeng Gao, Junchi Yan, Guihai Chen Department of Computer Science and Engineering, Shanghai Jiao Tong University, China

# **Motivation & Background**



## High-dimensional event sequences are ubiquitous:

- Information cascade in large-scale social networks
- Point-of-interest visiting route in a large city
- Markers contain plenty of combinational features

## Main challenges for high-dimensional event sequence modeling:

- Unknown networks among high-dimension markers
- Multiply subsequences of interdependent events
- Hard to measure the discrepancy

#### **Problem Formulation**



## Methodology

$$p(m_j \in \mathcal{N}_i) = \frac{\exp(\mathbf{w}_C^{\top}[\mathbf{d}_j||\mathbf{d}_i])}{\sum_{u=1}^{M} \exp(\mathbf{w}_C^{\top}[\mathbf{d}_u||\mathbf{d}_i])}$$

• temporal point process attentive intensity model

$$\mathbf{h}_n = MultiHeadAttn(\mathbf{e}_0, \mathbf{e}_1, \cdots, \mathbf{e}_k), n = 0, 1, \cdots, k,$$

Random walk approach for marker generation

$$p(m_j \in \overline{\mathcal{N}}_{i_n} | m_j \in \mathcal{N}_{i_n}) = \frac{\exp(\mathbf{w}_N^{\top}[\mathbf{h}_n || \mathbf{d}_j] + b_N)}{\sum_{m_u \in \mathcal{N}_{i_n}} \exp(\mathbf{w}_N^{\top}[\mathbf{h}_n || \mathbf{d}_u] + b_N)}$$

Adversarial generative imitation learning

$$\min_{\pi} -H(\pi) + \max_{r} \mathbb{E}_{\pi_{E}}(r(\mathcal{S}^{*})) - \mathbb{E}_{\pi}(r(\mathcal{S}))$$



Sampling for the marker and time of new event



# **Experiments**

#### Prediction of next event's time and marker



#### Reconstruction of marker relation network

| Methods                          | Syn-Small        |                  |                  |                  | Syn-Large        | •                | MemeTracker      |                 |                  | Weibo            |                  |                  |
|----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-----------------|------------------|------------------|------------------|------------------|
|                                  | PRE              | REC              | F1               | PRE              | REC              | F1               | PRE              | REC             | F1               | PRE              | REC              | F1               |
| NETRATE                          | 0.4983           | 0.3986           | 0.4429           | -                | -                | -                | 0.5638           | 0.4510          | 0.5011           | -                | -                | -                |
| KernelCascade                    | 0.4975           | 0.3980           | 0.4422           | -                | -                | -                | 0.5560           | 0.4448          | 0.4942           | -                | -                | -                |
| LTN-PR $(K_1)$<br>LTN-PR $(K_2)$ | 0.6486<br>0.6298 | 0.3892<br>0.5038 | 0.4865<br>0.5598 | 0.5573<br>0.5637 | 0.3344<br>0.4510 | 0.4180<br>0.5011 | 0.5200<br>0.5273 | 0.3120   0.4218 | 0.3899<br>0.4687 | 0.3628<br>0.3062 | 0.2984<br>0.3148 | 0.3275<br>0.3104 |
| $LTN-PR(K_3)$                    | 0.6328           | 0.6328           | 0.6328           | 0.5604           | 0.5604           | 0.5800           | 0.6370           | 0.5092          | 0.5662           | 0.2780           | 0.3427           | 0.3069           |

## Scalability to million-level markers



(a) Sequence length = 5. (b) Sequence length = 25. (c) Sequence length = 50.