LR(0). Ejemplo 1

Gramática original

- (1) E := T
- (2) E := E + T
- (3) T := i
- (4) T := (E)

Gramática extendida

- (0) E' ::= E\$
- (1) E := T
- (2) E := E + T
- (3) T := i
- (4) T := (E)

Estado inicial

El estado inicial del autómata de análisis es el **cierre** de la configuración $\{E' ::= .E\$\}$, es decir el siguiente conjunto de configuraciones:

```
S_0
E' ::= .E$
E ::= .T
E ::= .E + T
T ::= .i
T ::= .(E)
```

Estados S_1 y S_2

El autómata salta al estado S_1 desde el estado inicial al desplazar el símbolo "E" en la entrada. En S_1 hay dos configuraciones posibles, $\{E' ::= E.\$\}$ y $\{E ::= E .+ T\}$, que no es necesario cerrar ya que en ambas el punto está delante de un símbolo terminal:

S_1

$$\mathsf{E} ::= \mathsf{E} .+ \mathsf{T}$$

Desde S_1 el autómata salta a S_2 con el símbolo "+". En este caso obtenemos la configuración $\{E := E + .T\}$, a la que hay que aplicar la operación de cierre para obtener el siguiente conjunto de configuraciones:

S_2

$$E ::= E + .T$$

$$\mathsf{I} ::= \mathsf{I}$$

$$T ::= .(E)$$

Estados S_3 y S_{acc}

Desde S_2 el autómata salta a S_3 con el símbolo "T". La configuración resultante es $\{E := E + T.\}$. En este caso el punto se encuentra al final de la regla. Esto significa que el estado debe ser un **estado final** y por tanto hay que aplicar una reducción.

S_3 [estado final]

E ::= E + T.

Desde S_1 el autómata salta a S_{acc} con el símbolo "\$". La configuración resultante es {E' ::= E\$.}. Se trata también de un estado final, en particular aquel en el que se reduce la regla del axioma. Si el autómata alcanza este estado la cadena de entrada se acepta.

S_{acc} [estado de aceptación]

E' ::= E\$.

Autómata de análisis completo

Ejemplo de análisis usando el autómata (a lo bruto)

Instante	Estado	Entrada	Pila	Acción	
0	S_0	i+i+i\$		Desplazar i y saltar a S_4	
1	S_4	+i+i\$	i	Reducir la regla 3, T ::= i	
2	S_0	T+i+i\$		Desplazar T y saltar a S_7	
3	S_7	+i+i\$	Т	Reducir la regla 1, E ::= T	
4	S_0	E+i+i\$		Desplazar E y saltar a S_1	
5	\mathcal{S}_1	+i+i\$	E	Desplazar $+$ y saltar a S_2	
6	S_2	i+i\$	E+	Desplazar i y saltar a S_4	
7	S_4	+i\$	E+i	Reducir la regla 3, T ::= i	
8	S_0	E+T+i\$		Desplazar E y saltar a S_1	
9	S_1	+i+i\$	Е	Desplazar $+$ y saltar a S_2	
10	S_2	T+i\$	E+	Desplazar T y saltar a S_3	
11	S_3	+i\$	E+T	Reducir la regla 2, $E := E + T$	
12	S_0	E+i\$		Desplazar E y saltar a S_1	

Ejemplo de análisis usando el autómata (a lo bruto)

Instante	Estado	Entrada	Pila	Acción
13	S_1	+i\$	E	Desplazar $+$ y saltar a S_2
14	S_2	i\$	E+	Desplazar i y saltar a S_4
15	S_4	\$	E+i	Reducir la regla 3, T ::= i
16	S_0	E+T\$		Desplazar E y saltar a S_1
17	S_1	+T\$	E	Desplazar $+$ y saltar a S_2
18	S_2	T\$	E+	Desplazar T y saltar a S_3
19	<i>S</i> ₃	\$	E+T	Reducir la regla 2, $E := E + T$
20	S_0	E\$		Desplazar E y saltar a S_1
21	S_1	\$	E	Desplazar $\$$ y saltar a S_{acc}
22	S_{acc}		E\$	¡¡Aceptar!!

En todas las reducciones hacemos lo siguiente:

- Sacar de la pila la parte derecha de la regla
- Añadir a la entrada la parte izquierda de la regla
- Si la pila no está vacía, vaciarla añadiendo su contenido a la entrada
- **4** Saltar al estado S_0

Truco

- Si metemos el estado en la pila evitamos tener que volver a empezar después de cada reducción.
- El estado actual está siempre en la cima de la pila.
- Con cada desplazamiento introducimos en la pila el símbolo desplazado y el estado al que transita el autómata.
- Con cada reducción sacamos de la pila la parte derecha de la regla (incluyendo estados) y añadimos a la entrada el no terminal de la parte izquierda.

Ejemplo de análisis usando el autómata (con truco)

Instante	Estado	Entrada	Pila	Acción	
0	S_0	i+i+i\$	0	Desplazar i y saltar a <i>S</i> ₄	
1	<i>S</i> ₄	+i+i\$	0i4	Reducir la regla 3, T ::= i	
2	S_0	T+i+i\$	0	Desplazar T y saltar a S_7	
3	<i>S</i> ₇	+i+i\$	0T7	Reducir la regla 1, E ::= T	
4	S_0	E+i+i\$	0	Desplazar E y saltar a S_1	
5	S_1	+i+i\$	0E1	Desplazar $+$ y saltar a S_2	
6	S_2	i+i\$	0E1+2	Desplazar i y saltar a S_4	
7	<i>S</i> ₄	+i\$	0E1+2i4	Reducir la regla 3, T ::= i	
8	S_2	T+i\$	0E1+2	Desplazar T y saltar a S_3	
9	<i>S</i> ₃	+i\$	0E1+2T3	Reducir la regla 2, $E := E + T$	
10	S_0	E+i\$	0	Desplazar E y saltar a S_1	

Ejemplo de análisis usando el autómata (con truco)

Instante	Estado	Entrada	Pila	Acción
11	S_1	+i\$	0E1	Desplazar $+$ y saltar a S_2
12	S_2	i\$	0E1+2	Desplazar i y saltar a <i>S</i> ₄
13	<i>S</i> ₄	\$	0E1+2i4	Reducir la regla 3, T ::= i
14	S_2	T\$	0E1+2	Desplazar T y saltar a S_3
15	<i>S</i> ₃	\$	0E1+2T3	Reducir la regla 2, $E := E + T$
16	S_0	E\$	0	Desplazar E y saltar a S_1
17	S_1	\$	0E1	Desplazar $\$$ y saltar a S_{acc}
18	S_{acc}		0E1\$Acc	¡¡Aceptar!!

Tabla de análisis LR(0)

	+	i	()	\$	Е	Т
0		d4	d5			1	7
1	d2				acc		
2		d4	d5				3
3	r2	r2	r2	r2	r2		
4	r3	r3	r3	r3	r3		
5		d4	d5			6	7
6	d2			d8			
7	r1	r1	r1	r1	r1		
8	r4	r4	r4	r4	r4		

- Se construye a partir del autómata.
- Cada fila es un estado.
- Las columnas representan los posibles símbolos de entrada.
- Cada casilla representa la acción a realizar cuando en un determinado estado se recibe un determinado símbolo de entrada.
- Las casillas vacías son situaciones de error.

Uso de la tabla de análisis

- Inicialmente la pila contiene sólo el símbolo 0.
- Desplazar: Avanzar un símbolo en la entrada, introduciéndolo en la pila junto con el estado al que saltas.
- Reducir: Sacar de la pila la parte derecha de la regla (doble de símbolos de los que tiene la parte derecha). Considerar el símbolo de la parte izquierda como siguiente entrada.
- Ir a: ("Desplazar" un no terminal) Saltar al estado indicado, introduciendo en la pila el no terminal y el estado. No se avanza en la entrada.
- Aceptar: Aceptar la cadena de entrada y terminar.
- Casilla en blanco: Error, cadena no se acepta.

Ejemplo de análisis usando la tabla

Instante	Entrada	Pila	Acción
0	i+i+i\$	0	d4
1	+i+i\$	0i4	r3, T ::= i
2	+i+i\$	0	7
3	+i+i\$	0T7	r1, E ::= T
4	+i+i\$	0	1
5	+i+i\$	0E1	d2
6	i+i\$	0E1+2	d4
7	+i\$	0E1+2i4	r3, T ::= i
8	+i\$	0E1+2	3
9	+i\$	0E1+2T3	r2, E ::= E + T
10	+i\$	0	1

Ejemplo de análisis usando la tabla

Instante	Entrada	Pila	Acción
11	+i\$	0E1	d2
12	i\$	0E1+2	d4
13	\$	0E1+2i4	r3, T ::= i
14	\$	0E1+2	3
15	\$	0E1+2T3	r2, E ::= E + T
16	\$	0	1
17	\$	0E1	¡¡Aceptar!!

- Después de cada reducción viene un "ir a", en el que se "desplaza" el símbolo no terminal reducido.
- No se considera el estado de aceptación, cuando se desplaza el símbolo \$ se acepta la cadena.
- Las reducciones se hacen con independencia del símbolo que haya en la entrada.

Ejemplo con una entrada incorrecta

Instante	Entrada	Pila	Acción
0	i+i+\$	0	d4
1	+i+\$	0i4	r3, T ::= i
2	+i+\$	0	7
3	+i+\$	0T7	r1, E ::= T
4	+i+\$	0	1
5	+i+\$	0E1	d2
6	i+\$	0E1+2	d4
7	+\$	0E1+2i4	r3, T ::= i
8	+\$	0E1+2	3
9	+\$	0E1+2T3	r2, E ::= E + T
10	+\$	0	1
11	+\$	0E1	d2
12	\$	0E1+2	¡¡ERROR!!

Lo que hace bison

(Ver material, demo Ir, en moodle)

```
Open → 🛂 Save 🖺 🤸 Undo 🧀 🐰
□ lr0.y ¥
%{
 #include <stdio.h>
%}
%start E
%%
T: '(' E ')'
%%
            Yacc ▼ Tab Width: 8 ▼
                                   Ln 7, Col 3
                                                 INS
```

Lo que hace bison

- -d: Genera el fichero *lr0.tab.h*
- -g: Genera el fichero *lr0.dot*
- -r all: Genera el fichero Ir0.output

Generando el autómata con dot

dot -Tpdf lr0.dot -o lr0.pdf

Analizando el fichero Ir0.output

El fichero 1r0.output contiene todos los detalles acerca del autómata de análisis.

Creando la tabla de análisis

awk -f proc_output.awk < lr0.output</pre>

	\$end 			'+' 	'i'	S'		T
0	i	s 2	i	i	 s1	i	l g 3	
			•	 r 3	 r 3		 	
2		 s 2	•	 	 s 1		 g 5	
	 s 6	 	'	 s 7	 		 	
1			i		ii	i		
I		i	i	i	ii	i	 	
5 	 			s 7 	 	'	 	
				ACCP	ACCP 		 	
7		s 2 		 	s 1 		 	g 9
8	r 4	r 4	r 4	r 4	r 4		 	i i
9	r 2	r 2	r 2	r 2	r 2	i		

LR(0). Ejemplo 2. Conflictos

Gramática extendida

- (0) B' ::= B\$
- (1) B := bD; Ef
- (2) D := d
- (3) D ::= D;d
- (4) E ::= e
- (5) E := e; E

Autómata de análisis

Tabla de análisis LR(0)

	b	;	f	d	е	\$	В	D	Е
0	d2						1		
1						acc			
2				d4				3	
3		d5							
4	r2	r2	r2	r2	r2	r2			
5				d6	d7				8
6	r3	r3	r3	r3	r3	r3			
7	r4	r4/d10	r4	r4	r4	r4			
8			d9						
9	r1	r1	r1	r1	r1	r1			
10					d7				11
11	r5	r5	r5	r5	r5	r5			

Análisis SLR(1) para el ejemplo 2

- siguiente(B) = $\{\$\}$, las reducciones de B sólo se pueden realizar delante del símbolo \$
- siguiente(D) = {;}, las reducciones de D sólo se pueden realizar delante del símbolo;
- siguiente(E) = $\{f\}$, las reducciones de E sólo se pueden realizar delante del símbolo f
- La tabla de análisis resultante no presenta conflictos

Tabla de análisis SLR(1) para el ejemplo 2

	b	;	f	d	е	\$	В	D	Е
0	d2						1		
1						acc			
2				d4				3	
3		d5							
4		r2							
5				d6	d7				8
6		r3							
7		d10	r4						
8			d9						
9						r1			
10					d7				11
11			r5						

Conflictos en SLR(1). Ejemplo 3

Gramática extendida

- (0) E' ::= E\$
- (1) E := E + E
- (2) E := E * E
- (3) E := i

Autómata de análisis

Tabla de análisis SLR(1)

	*	+	i	\$	Е
0			d1		2
1	r3	r3		r3	
2	d4	d3		acc	
3			d1		6
4			d1		5
5	r2/d4 r1/d4	r2/d3		r2	
6	r1/d4	r1/d3		r1	

• siguiente(E) = $\{\$,+,*\}$