Markov chain Monte Carlo methods for Uncertainty Quantification General concept Lecture 21

March 31, 2016; April 5, 2016; April 7, 2016

Motivation: Bayesian inference & prediction

Data: $D = (D_1, ..., D_N)$

Parameters: $X = (X_1, ..., X_d)$

Likelihood: $\mathcal{L}(D|X)$

Prior model: $\pi(X)$

Posterior model: The basis for inference about X ... via Bayes theorem

$$\pi(X|D) = \frac{\mathcal{L}(D|X)\pi(X)}{\int \mathcal{L}(D|Y)\pi(Y)dY}$$

Predictive model: Predictive distribution of a future obs. D_{future}.

$$\mathcal{L}(D_{\mathsf{future}}|D) = \int \mathcal{L}(D_{\mathsf{future}}|X)\pi(X|D)\mathsf{d}X$$

... expected likelihood where uncertainty of X is constrained w.r.t $\pi(X|D)$

The problem: Challenges in Bayesian Inference

For some function $g(\cdot)$,

the derivation of any posterior quantity requires the computation of integrals of the form:

$$\mathsf{E}_{\pi(X|D)}(g(X)) = \int g(X)\pi(X|D)\mathsf{d}X$$

• the posterior distribution density $\pi(X|D)$ or $\pi(g(X)|D)$ is intractable because of

$$\int \mathcal{L}(D|X)\pi(X)\mathrm{d}X = ??$$

CODE

CODE

Application: Bayesian hierarchical model

Likelihood

$$D_{i} \sim \mathsf{Bernoulli}(p(t_{i}|\alpha,\beta)), \ i = 1,...,23$$

$$p(t_{i}|\alpha,\beta) = \frac{\exp(\alpha + \beta t_{i})}{1 + \exp(\alpha + \beta t_{i})}$$

Prior

$$\alpha \sim N(\mu = 0, \sigma^2 = 10^2)$$

 $\beta \sim N(\mu = 0, \sigma^2 = 10^2)$

Posterior:

$$\pi(X = (\alpha, \beta)|D) = \prod_{i=1}^{23} \left(\frac{\exp(\alpha + \beta t_i)}{1 + \exp(\alpha + \beta t_i)}\right)^{D_i} \left(\frac{1}{1 + \exp(\alpha + \beta t_i)}\right)^{1 - D_i} \times \exp(-\frac{1}{2}\alpha^2/10^2) \times \exp(-\frac{1}{2}\beta^2/10^2) \times \frac{1}{\text{CONST.}}$$

The cure: Monte Carlo methods

Due to the 'essential correspondence' between density $\pi(X|D)$ & samples $\{X^{(n)} \sim \pi(X|D)\}$:

- Posterior density could be re-created via
 - histograms estimators,
 - kernel density estimators,
 - Normal mixture models, etc...
- Expectations could be approx. via

$$\mathsf{E}_{\pi(X|D)}(g(X)) \approx \frac{1}{N} \sum_{n=1}^{N} g(x^{(n)})$$

Monte Carlo methods (main idea)

- Generate an i.i.d. sample $X^{(n)} \sim \pi(dX)$, for n = 1, ..., N
 - Inverse probability integral transform
 - Rejection sampling
 - Importance sampling

Approx. integral
$$\mathsf{E}_\pi(g(X)) = \int g(X)\pi(X)\mathrm{d}X$$
 with $\bar{g}^{(N)} \approx \frac{1}{N}\sum_{n=1}^N g(X^{(n)})$ and standard error s.e. $(\bar{g}^{(N)}) = \sqrt{\frac{1}{N}\mathsf{Var}_\pi(g(X))}$

... according to the \sqrt{N} -CLT

Ripley (2001). Stochastic simulation.

Markov chain Monte Carlo methods (main idea)

- Generate a Markov chain $X^{(n)} \sim P(d \cdot | X^{(n-1)})$, for n = 1, ..., N
- Approx. integral $\mathsf{E}_\pi(g(X)) = \int g(X) \pi(X) \mathrm{d}X$ with $\bar{g}^{(N)} \approx \frac{1}{N} \sum_{n=1}^N g(X^{(n)})$ and standard error s.e. $(\bar{g}^{(N)}) = \sqrt{\frac{1}{N} \tau_g \mathsf{Var}_\pi(g(X))}$

where $\tau_g \in (0, \infty)$ is the integrated autocorrelation time with $\tau_g = 1 + 2 \sum_{k=1}^{\infty} \text{Cor}(x_n, x_{n+k})$

... according to the (Markov chain) \sqrt{N} -CLT

MCMC theory

Main conditions for $P(d \cdot | \cdot)$

- 1. Stationarity w.r.t. $\pi(d\cdot)$
 - Reversibility w.r.t. $\pi(d\cdot)$
- 2. ϕ -irredusibility
 - Hurris recurrent
- 3. Aperiodicity

Stationarity

Definition: The Markov chain $\{x^{(n)}; n=1,...,N\}$ simulated by the transition probability $P(\mathsf{d}\cdot|\cdot)$ has stationary (or invariant) distribution $\pi(\cdot)$ iff

$$\int_{x \in \mathcal{X}} \pi(\mathsf{d}x) P(\mathsf{d}y|x) = \pi(\mathsf{d}y)$$

where $x, y \in \mathcal{X}$.

Explanation: If $x_n \sim \pi(d\cdot)$ & $x_{n+1} \sim P(d\cdot|x_n)$, then $x_{n+1} \sim \pi(d\cdot)$

Hopefully, if we run the Markov chain (started from anywhere) for a long time, then for a long N the distribution of X_N will be approx. stationary: $X_N \stackrel{\text{appox.}}{\sim} \pi(d\cdot)$.

Reversibility

Definition: The Markov chain $\{x^{(n)}; n=1,...\}$ simulated by the transition probability $P(\mathbf{d}\cdot|\cdot)$ is reversible w.r.t distribution $\pi(\cdot)$ iff

$$\pi(\mathsf{d} x)P(\mathsf{d} y|x) = \pi(\mathsf{d} y)P(\mathsf{d} x|y)$$

where $x, y \in \mathcal{X}$.

Explanation: It expresses an equilibrium in the flow of the Markov chain: The probability of being in x and moving to y is the same as the probability of being in y and moving to x.

Property: Reversibility implies stationarity

Rational: It is more conservative assumption, but it is easier to be checked, since no integral is involved

Reversibility implies stationarity

Proposition: If Markov chain $\{x^{(n)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is reversible w.r.t distribution $\pi(\mathbf{d}\cdot)$, then $\pi(\mathbf{d}\cdot)$ is the stationarity distr.

Prof: We compute that

$$\int_{x \in \mathcal{X}} \pi(dx) P(dy|x) = \int_{x \in \mathcal{X}} \pi(dy) P(dx|y)$$
$$= \pi(dy) \int_{x \in \mathcal{X}} P(dx|y)$$
$$= \pi(dy)$$

ϕ -irreduciblility

Definition: The Markov chain $\{x^{(n)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is ϕ -irreducible if for all $A\subseteq\mathcal{X}$ with $\phi(A)>0$, there exists a positive integer n s.t. $P^n(A|x)>0$, for all $x\in\mathcal{X}$, where $P^n(A|x)$ is the n-step transition probability of the Markov chain.

Explain: The Markov chain has positive probability of eventually reaching any state from any other state, in a finite number of iterations.

Harris recurrent

Definition: The Markov chain $\{x^{(n)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is Harris recurrent if for all $A\subseteq\mathcal{X}$ with $\pi(A)>0$ and for all $x\in\mathcal{X}$, there exists a positive integer n s.t. $P^n(A|x)=1$, for all $x\in\mathcal{X}$, where $P^n(A|x)$ is the n-step transition probability of the Markov chain.

Explain: For all $A \subseteq \mathcal{X}$ with $\pi(A) > 0$ and for all $x \in \mathcal{X}$, the probability that the Markov chain will eventually reach B from x is 1.

Aperiodicity

The Markov chain $\{x^{(n)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is aperiodic if there does not exist partition $\{\mathcal{X}_i; i=1,...,\kappa\}$ where $\pi(\mathcal{X}_i)>0$ s.t.

- $P(\mathcal{X}_{i+1}|x) = 1$ for $x \in \mathcal{X}_i$ and
- $P(\mathcal{X}_1|x) = 1$ for $x \in \mathcal{X}_{\kappa}$

Ergodicity

Theorem: If Markov chain $\{x^{(t)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is Harris recurrent, aperiodic, and has a stationary distribution $\pi(\mathbf{d}\cdot)$ then for every initial distribution $\tilde{\pi}$

$$\lim_{n\to\infty} ||\int P^n(\cdot|x)\tilde{\pi}(\mathrm{d}x) - \pi(\cdot)|| = 0$$

Explain: Standard Markov chain theory tells that for any initial seed $x^{(0)}$, the realisation of the chain $\{x^{(1)}, x^{(2)}, x^{(3)}, ...\}$, provides via the ergodic theorem, a realisation of the stationary distribution since

$$x^{(n)} \to \pi(\cdot)$$
, as $n \to \infty$

Markov chain \sqrt{N} -CLT

Theorem: If Markov chain $\{x^{(n)}\}$ with transition probability $P(\mathbf{d}\cdot|\cdot)$ is irreducible, aperiodic, and reversible with stationary distribution $\pi(\mathbf{d}\cdot)$ then the CLT applies: For some function $g(\cdot)$, and $\bar{g}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} g(x^{(n)})$

$$N^{-1/2}(\bar{g}^{(N)} - \mathsf{E}_{\pi}(g(x))) \Longrightarrow \mathsf{N}(0, \tau_g \mathsf{Var}_{\pi}(g(x)))$$

where
$$\tau_g = 1 + 2\sum_{k=1}^{\infty} Cor(x_n, x_{n+k})$$
, if $\tau_g < \infty$.

Explain: Standard Markov chain theory tells that for any initial seed $x^{(0)}$, the realisation of the chain $\{x^{(1)}, x^{(2)}, x^{(3)}, ...\}$, provides, an approx. of the required expectations as

$$\bar{g}^{(N)} \to \mathsf{E}_{\pi}(g(x)), \text{ as } N \to \infty$$

where
$$\bar{g}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} g(x^{(n)}).$$

CODE

CODE

Metropolis-Hastings: the algorithm

Simulate from a Metropolis-Hastings transition probability $P(d \cdot | \cdot)$, with target distribution $\pi(d \cdot)$, and proposal distribution $q(d \cdot | \cdot)$.

i.e.
$$X^{(n+1)} \sim P(d \cdot | X^{(n)})$$

Given that the current state of the Markov chain is at $X^{(n)} = x$:

- 1. Generate a 'proposed value' x' from $q(d \cdot | x)$
- 2. Calculate

$$a(x,x') = \min(1, \frac{\pi(x')}{\pi(x)} \frac{q(x|x')}{q(x'|x)})$$

3. With probability a(x, x') accept the proposed value and set $X^{(n+1)} = x'$; otherwise reject and set $X^{(n+1)} = x$.

Generate
$$u \sim \mathsf{U}(0,1)$$
, and set $X^{(n+1)} = \begin{cases} x' & \text{, if } \mathsf{a}(x,x') \geqslant u \\ x & \text{, if } \mathsf{a}(x,x') < u \end{cases}$

Metropolis-Hastings: the transition probability

The Metropolis-Hastings transition probability is:

$$P(y|x) = q(y|x)a(x,y) + (1-r(x))\delta_x(y)$$

where
$$r(x) = \int q(y|x)a(x,y)dy$$
,

and $\delta_x(y)$ is the Dirac mass in x.

Metropolis-Hastings: Reversibility

The Metropolis-Hastings (as described above) produces a Markov chain $\{x^{(t)}\}$ which is reversible w.r.t $\pi(d\cdot)$.

Prof: We need to show that

If
$$x \neq y$$
,

$$\pi(dx)P(dy|x) = [\pi(x)dx][q(y|x)a(x,y)dy]$$

$$= \pi(x)q(y|x)\min(1, \frac{\pi(y)}{\pi(x)} \frac{q(x|y)}{q(y|x)})dxdy$$

$$= \min(\pi(x)q(y|x), \pi(y)q(x|y))dxdy$$

$$= [\pi(y)dy][q(x|y)a(y,x)dx]$$

$$= \pi(dy)P(dx|y)$$

 $\pi(dx)P(dy|x) = \pi(dy)P(dx|y)$

If x = y, then the equation is trivial.

Metropolis-Hastings: Main properties

The Metropolis-Hastings (as described above):

- is reversible and hence admits stationary distribution $\pi(d\cdot)$.
- is irreducible if

$$q(y|x) > 0$$
, for every $x \in \mathcal{X}$, $y \in \mathcal{X}$

since every set of ${\mathcal X}$ can be reached in a single step

• is aperiodic, if it allows events $\{X^{(t+1)} = X^{(t)}\}$, i.e. the probability of such an event is not zero

Metropolis-Hastings: Advantages/Challenges

Advantages:

We only need to know density $\pi(\cdot)$ up to a normalisation constant

$$a(x,x') = \min(1, \frac{\pi(x')}{\pi(x)} \frac{q(x|x')}{q(x'|x)})$$

Challenges:

If the proposal distribution $q(d \cdot | \cdot)$ is poorly chosen:

- the exploration of the sampling space will be slow
- the standard error of the MC estimates will be large; because of high autocorrelations; $\tau_g = 1 + 2\sum_{k=1}^{\infty} \text{Cor}(x_h, x_{h+k})$
- ▶ E.g. the number of rejections can be high

Metropolis-Hastings: Special cases

Popular special cases of the Metropolis-Hastings algorithm are:

IMH: The independence Metropolis-Hastings sampler

RWM: The Random Walk Metropolis algorithm*

MALA: The Langevin adjusted Hastings algorithm

... just different proposal distributions

Independence Metropolis-Hastings algorithm (IMH)

The proposal distribution $q(\cdot, d\cdot)$ is independent on the current state i.e. q(x'|x) = q(x')

$$X^{(n+1)} \sim P^{(\mathsf{IMH})}(\mathsf{d} \cdot | X^{(n)})$$

Given that the current state of the Markov chain is at $X^{(n)} = x$:

- 1. Generate x' from $q(d \cdot)$
- 2. Calculate

$$a(x, x') = \min(1, \frac{\pi(x')}{\pi(x)} \frac{q(x|x')}{q(x'|x)}$$
$$= \min(1, \frac{\pi(x')}{\pi(x)} \frac{q(x)}{q(x')})$$

3. With probability a(x, x') accept and set $X^{(n+1)} = x'$; otherwise reject and set $X^{(n+1)} = x$.

Independence Metropolis-Hastings: notes

- 1. The proposal distribution $q(\mathbf{d}\cdot|\cdot)$ is independent on the current state; i.e. q(x'|x)=q(x')
- 2. The proposal distribution should be as close as possible to the target (stationary) distribution; i.e. $q(\cdot) \approx \pi(\cdot)$
- 3. Ideally, if $q(\cdot)=\pi(\cdot)$, then a(x,x')=1, and the algorithm reduces to i.i.d. sampling from $\pi(d\cdot)$
- 4. It is a little bit difficult to find 'good' $q(\cdot)$ s.t. $q(\cdot) \approx \pi(\cdot)$, however possible if you try hard...
 - E.q.: If $\pi(\cdot)$ is uni-modal, $q(\cdot)$ can be a multivariate Normal distribution $N(\mu_{\pi}, \Sigma_{\pi})$ where μ_{π}, Σ_{π} are properly chosen.

Random walk Metropolis algorithm (RWM)

The proposal distribution $q(d \cdot | \cdot)$ is s.t.

$$q(x'|x) = N(x'|x, \sigma^2 \mathbb{I})$$
, for $\sigma^2 > 0$

$$X^{(n+1)} \sim P^{(\mathsf{RWM})}(\mathsf{d} \cdot | X^{(n)})$$

Given that the current state of the Markov chain is at $X^{(n)} = x$:

- 1. Generate $x' \sim N(x, \sigma^2 \mathbb{I})$
- 2. Calculate

$$\begin{aligned} a(x,x') &= \min(1,\frac{\pi(x')}{\pi(x)}\frac{q(x|x')}{q(x'|x)} = \min(1,\frac{\pi(x')}{\pi(x)}\frac{\mathbb{N}(x|x',\sigma^2\mathbb{I})}{\mathbb{N}(x'|x,\sigma^2\mathbb{I})}) \\ &= \min(1,\frac{\pi(x')}{\pi(x)}) \end{aligned}$$

3. With probability a(x, x') accept and set $X^{(n+1)} = x'$; otherwise reject and set $X^{(n+1)} = x$.

Random walk Metropolis: notes 1

Rational: "Local" exploration of the sampling space, around the neighbourhood of $X_n = x$.

$$q(x'|x) : x' = x + \sigma z ; z \sim N(0,1)$$

- Move towards modes of $\pi(\cdot)$ more often that moving away from them
 - "Uphill moves" are all accepted w.p. a(x, x') = 1
 - "Downhill moves" may be accepted w.p. a(x,x')<1, or rejected w.p. 1-a(x,x')
- Advantages:
 - RWM is flexible: the choice of $q(d \cdot | \cdot)$ is simple
 - RWM uses the previously simulated value x at stage $X^{(n)}$ to generate the proposed value x' for stage $X^{(n+1)}$.

Random walk Metropolis: notes 2

RWM achieves optimal performance, if the proposal scale σ^2 leads to expected acceptance prob. $\bar{a}_{\rm opt} \approx 0.234$

...if the components of $x := (x_1, ..., x_d)$ are independent.

...however this rule leads to satisfactory performance in general cases

▶ Variations: $q(d \cdot | \cdot)$ can be any symmetric dist. s.t.

$$q(x'|x) = q(|x - x'|)$$

E.g.
$$q(d \cdot | \cdot)$$
:
propose $x' \sim U(x - \sigma, x + \sigma)$.
propose $x' = x + \sigma z$; $z \sim U(-1, 1)$

Langevin adjusted Hastings algorithm (MALA)

The proposal distribution $q(d \cdot | \cdot)$ is s.t.

$$q(x'|x) = N(x'|x + \frac{\sigma^2}{2}\nabla \log(\pi(x)), \sigma^2\mathbb{I}), \text{ for } \sigma^2 > 0$$

$$X^{(n+1)} \sim P^{(\mathsf{MALA})}(\mathsf{d} \cdot | X^{(n)})$$

Given that the current state of the Markov chain is at $X^{(n)} = x$:

- 1. Generate $x' \sim N(x + \frac{\sigma^2}{2}\nabla \log(\pi(x)), \sigma^2 \mathbb{I})$
- 2. Calculate

$$\begin{split} a(x,x') &= \min(1,\frac{\pi(x')}{\pi(x)}\frac{q(x|x')}{q(x'|x)}) \\ &= \min(1,\frac{\pi(x')}{\pi(x)}\frac{\mathsf{N}(x|x'+\frac{\sigma^2}{2}\nabla\log(\pi(x')),\sigma^2\mathbb{I})}{\mathsf{N}(x'|x+\frac{\sigma^2}{2}\nabla\log(\pi(x)),\sigma^2\mathbb{I})}) \end{split}$$

3. With probability a(x, x') accept and set $X^{(n+1)} = x'$; otherwise reject and set $X^{(n+1)} = x$.

4 D > 4 D > 4 E > 4 E > E 9 Q C

Langevin adjusted Hastings: notes

- 1. Goal: Direct the proposed values toward areas where density $\pi(\cdot)$ is likely to be larger by using information from $\pi(\cdot)$.
- 2. Rational: the inclusion of $\nabla \log(\pi(\cdot))$ in the proposal centre encourages moves towards the modes of $\pi(\cdot)$

$$q(x'|x) : x' = x + \frac{\sigma^2}{2} \nabla \log(\pi(x)) + \sigma z ; z \sim N(0,1)$$

- 3. In difficult settings, exact gradients $\nabla \log(\pi(\cdot))$ can be replaced by numerical derivatives
- 4. MALA achieves optimal performance, if the proposal scale σ^2 leads to expected acceptance prob. $\bar{a}_{\rm opt} \approx 0.57$
 - ...if the components of $x := (x_1, ..., x_d)$ are independent.
 - ...however this rule leads to satisfactory performance in general cases

CODE

CODE

Tuning Metropolis-Hastings algorithms

The issue:

- ▶ How do we select a satisfactory proposal distr. $q(\cdot, d\cdot)$?
- Well, ... this is not easy in general Metropolis-Hastings algorithm
- But, ... for some special cases, it is possible by adjusting the proposals

Recall that:

- About RWM, the σ^2 is unknown
 - RWM can achieve satisfactory performance, if the proposal scale σ^2 leads to acc. prob. $a_{\rm opt} \approx 0.234$
- About MALA, the σ^2 is unknown
 - MALA can achieve satisfactory performance, if the proposal scale σ^2 leads to acc. prob. $a_{\rm opt} \approx 0.57$

An adaptive scheme for RWM, MALA

Goal: Adjust the proposal scaling σ^2 in RWM or MALA algorithms

For n = 0, 1, 2, ..., iterate:

- 1. Simulate $X^{(n+1)}$ from $P_{\sigma_n^2}^{(RWM)}(d \cdot | X^{(n)})$
- 2. Adjust σ^2 s.t. $\log(\sigma_{n+1}^2) = \log(\sigma_n^2) + \gamma_{n+1}(a_{n+1}^{\text{RWM}} \bar{a}_{\text{opt}})$

Acceptance prob. of RWM at *n*-th iteration: a_n^{RWM}

Optimal acc. prob. value:
$$a_{\text{opt}} = \begin{cases} 0.234 & \text{, for RWM} \\ 0.57 & \text{, for MALA} \end{cases}$$

Gain sequence: $\gamma_n : \mathbb{N} \to \mathbb{R}_+$, a decreasing function $\gamma_n \searrow 0$

E.g.
$$\gamma_n = C/n^{\varsigma}, \ C > 0, \ \varsigma \in (0.5, 1)$$

Christophe Andrieu and Johannes Thoms (2008). A tutorial on adaptive MCMC

Adaptive RWM and MALA algorithms: notes 1

Gain sequence γ_n

- γ_n must present a smooth slow decay
- As $n \uparrow$, $\gamma_n \downarrow$, and the influence of adaptation vanishes
- A reasonable choice is

$$\gamma_n = C/n^{\varsigma}, \quad C > 0, \quad \varsigma \in (0.5, 1)$$

• ς controls the speed that γ_n decays to 0

Christophe Andrieu and Johannes Thoms (2008). A tutorial on adaptive MCMC

An adaptive scheme for RWM, MALA: notes 2

Rational: At state *n*,

• if
$$a_{n+1}^{\text{RWM}} < \bar{a}_{\text{opt}}$$
,
 $\implies \log(\sigma_{n+1}^2) < \log(\sigma_n^2)$
 $\implies \sigma_{n+1}^2 \text{ decreases}$

 \implies RWM/MALA will perform smaller steps at stage n+1

$$\begin{split} & \text{if } a_{n+1}^{\text{RWM}} > \bar{a}_{\text{opt}}, \\ & \Longrightarrow \log(\sigma_{n+1}^2) > \log(\sigma_n^2) \\ & \Longrightarrow \sigma_{n+1}^2 \text{ increases} \\ & \Longrightarrow \text{RWM/MALA will perform larger steps at stage } n+1 \end{split}$$

Christophe Andrieu and Johannes Thoms (2008). A tutorial on adaptive MCMC

CODE

CODE

Blockwise MCMC samplers

Consider r.v. $X := (X_1, ..., X_d)$ that follows $X \sim \pi(dX)$.

Challenge: In many cases, it is difficult to select appropriate proposals to construct an efficient Metropolis-Hastings algorithm that 'updates' simultaneously the whole $X := (X_1, ..., X_d)$

Reasons: X can be high dimensional.

Different X_i may have different ranges, types, etc.

etc...

Cure: 'Break' sampling of X by combining M-H algorithms targeting the conditional distributions of $\pi(d \cdot)$

Blockwise MCMC sampler

Consider r.v. $X := (X_1, ..., X_d)$ that follows $X \sim \pi(dX)$.

How to generate $X^{(n)} \sim P^{(blockwise)}(d \cdot | X^{(n-1)})$ targeting $\pi(dX)$??

- Simulate $X_1^{(n)} \sim P_1^{(\text{M-H})}(\mathbf{d} \cdot | \cdot)$ targeting $\pi(\mathbf{d}X_1^{(n)}|X_2^{(n-1)},...,X_d^{(n-1)})$:
- ► Simulate $X_i^{(n)} \sim P_i^{(\text{M-H})}(\mathbf{d} \cdot | \cdot)$ targeting $\pi(\mathbf{d}X_i^{(n)}|X_1^{(n)},...,X_{i-1}^{(n)},X_{i+1}^{(n-1)},...,X_d^{(n-1)})$:
- ► Simulate $X_d^{(n)} \sim P_i^{(\text{M-H})}(\mathbf{d} \cdot | \cdot)$ targeting $\pi(\mathbf{d}X_d^{(n)}|X_1^{(n)},X_3^{(n)},...X_{d-1}^{(n)})$

Set
$$X^{(n)} = (X_1^{(n)}, X_3^{(n)}, ... X_d^{(n)})$$

For example, for the *i*-th block

Simulate
$$X_i^{(n)} \sim P_i^{(\text{RWM})}(\mathbf{d} \cdot | \cdot)$$
 targeting $\pi(\mathbf{d}X_i^{(n)} | X_1^{(n)}, ..., X_{i-1}^{(n)}, X_{i+1}^{(n-1)}, ..., X_d^{(n-1)})$ (via RWM)

- 1. Generate $x' \sim N(x_i^{(n-1)}, \sigma^2 \mathbb{I})$
- 2. Calculate

$$\begin{split} a(x,x') &= \min(1, \frac{\pi(x'|x_1^{(n)},...,x_{i-1}^{(n)},x_{i+1}^{(n-1)},...,x_d^{(n-1)})}{\pi(x_i^{(n-1)}|x_1^{(n)},...,x_{i-1}^{(n)},x_{i+1}^{(n)},...,x_d^{(n-1)})}) \\ &= \min(1, \frac{\pi(x_1^{(n)},...,x_{i-1}^{(n)},x',x_{i+1}^{(n-1)},...,x_d^{(n-1)})}{\pi(x_1^{(n)},...,x_{i-1}^{(n)},x_i'^{(n-1)},x_{i+1}^{(n-1)},...,x_d^{(n-1)})} \end{split}$$

3. With probability $a(x_i^{(n-1)}, x')$ accept and set $X_i^{(n)} = x'$; otherwise reject and set $X_i^{(n)} = x_i^{(n-1)}$.

Gibbs sampler (special case of Blockwise MCMC sampler)

Consider r.v. $X := (X_1, ..., X_d)$ that follows $X \sim \pi(dX)$.

If all the full conditional dist of $\pi(dX)$ can be sampled directly

How to
$$X^{(n)} \sim P^{(\text{Gibbs})}(d \cdot | X^{(n-1)})$$
 targeting $\pi(dX)$??

- Simulate $X_1^{(n)} \sim \pi(\mathsf{d}X_1^{(n)}|X_2^{(n-1)},...,X_d^{(n-1)})$
 - :
- $\begin{array}{l} \quad \text{Simulate } X_i^{(n)} \sim \pi(\mathrm{d}X_i^{(n)}|X_1^{(n)},...,X_{i-1}^{(n)},X_{i+1}^{(n-1)},...,X_d^{(n-1)}) \\ \quad \vdots \end{array}$
 - :
- Simulate $X_d^{(n)} \sim \pi(dX_d^{(n)}|X_1^{(n)}, X_3^{(n)}, ... X_{d-1}^{(n)})$

Set
$$X^{(n)} = (X_1^{(n)}, X_3^{(n)}, ... X_d^{(n)})$$

CODE

CODE

Blockwise MCMC sampler: notes

The blockwise MCMC sampler admits $\pi(dX)$ as stationary distribution

Systematic sweep: (described above)

- The blocks are updated in a fix order: $P^{\text{(blockwise)}} = P_1^{\text{(M-H)}} P_2^{\text{(M-H)}} ... P_d^{\text{(M-H)}}$
- The Markov chain is NOT reversible

Permutation sweep:

- The blocks are updated in a random permutation order p $P^{(blockwise)} = P_{p(1)}^{(M-H)} P_{p(2)}^{(M-H)} ... P_{p(d)}^{(M-H)}$
- The Markov chain is reversible

Random sweep:

- At each iteration, randomly select and update ONLY one block $P^{\text{(blockwise)}} = \frac{1}{d} \sum_{i=1}^{d} P_i^{\text{(M-H)}}$
- ▶ The Markov chain is reversible

Blockwise MCMC sampler (Permutation sweep)

Consider r.v. $X := (X_1, ..., X_d)$ that follows $X \sim \pi(dX)$. How to generate $X^{(n)} \sim P^{(blockwise)}(d \cdot | X^{(n-1)})$ targeting $\pi(dX)$?

- Generate a random permutation p = (p(1), ..., p(d))
 - Simulate $X_{\rho(1)}^{(n)} \sim P_{\rho(1)}^{(\mathsf{M-H})}(\mathsf{d}\cdot|\cdot)$ targeting $\pi(\mathsf{d}X_{\rho(1)}^{(n)}|\mathsf{all}$ the rest)
 - Simulate $X_{p(i)}^{(n)} \sim P_{p(i)}^{(\text{M-H})}(\mathbf{d} \cdot | \cdot)$ targeting $\pi(\mathbf{d} X_{p(i)}^{(n)} | \text{all the rest})$
 - · Simulate $X_{p(d)}^{(n)} \sim P_{p(d)}^{(\text{M-H})}(\mathbf{d}\cdot|\cdot)$ targeting $\pi(\mathbf{d}X_{p(d)}^{(n)}|\mathbf{all}$ the rest)

Set
$$X^{(n)} = (X_1^{(n)}, X_3^{(n)}, ... X_d^{(n)})$$

Blockwise MCMC sampler (Random sweep)

Consider r.v. $X := (X_1, ..., X_d)$ that follows $X \sim \pi(dX)$.

Generate $X^{(n)} \sim P^{(\mathsf{blockwise})}(\mathsf{d} \cdot | X^{(n-1)})$ targeting $\pi(\mathsf{d} X)$

- ▶ Select block $i \sim U\{1, ..., d\}$, at random
- ► Simulate $X_i^{(n)} \sim P_i^{(\text{M-H})}(d \cdot | \cdot)$ targeting $\pi(dX_i^{(n)} | \text{all the rest})$

Set
$$X^{(n)} = (X_1^{(n-1)}, ..., X_{i-1}^{(n-1)}, X_i^{(n)}, X_{i+1}^{(n-1)}, ..., X_d^{(n-1)})$$

Improving the quality of the MCMC sample

After we generate the MCMC sample $\{X_1, X_2, X_3, ...\}$

Burn-in: Use only the generated Markov chain in the stationarity

- Discard the first few iterations (e.g. first b steps) of the Markov chain as a burn-in period
- Keep only the last tail of the Markov chain

E.g. keep
$$\tilde{X} = \{X_b, X_{b+1}, X_{b+2}, X_{b+3}, ...\}$$

Thinning: Try to reduce the autocorrelation by sub-sampling

ightharpoonup Use only every k-th element of the generated Markov chain

E.g. use
$$\tilde{\tilde{X}} = {\tilde{X}_1, \tilde{X}_{1+k}, \tilde{X}_{1+2k}, ...} = {X_{b+1}, X_{b+k}, X_{b+2k}, ...}$$
 ... k -step thinning

Application: Inference on what?

Compute densities:

- $\pi(\alpha, \beta|D)$
- $\pi(\alpha|D) = \int \pi(\alpha, \beta|D) d\beta$,
- $\pi(\beta|D) = \int \pi(\alpha, \beta|D) d\alpha$

Compute expectations:

- $\mathsf{E}(\alpha|D) = \int \alpha \pi(\alpha|D) \mathsf{d}\alpha$
- $\mathsf{E}(\beta|D) = \int \beta \pi(\beta|D) \mathsf{d}\beta$
- Pr(t = 66.0|D) = E($p(t = 66.0|(\alpha, \beta))|D$) = $\int p(t = 66.0|(\alpha, \beta))\pi(\alpha, \beta|D)d\alpha d\beta$

Application: How to facilitate inference?

Generate sample: $\{(\alpha_n, \beta_n) \sim P(d \cdot | (\alpha_{n-1}, \beta_{n-1})); n = 1, ..., N\}$ Estimate densities:

- $\hat{\pi}(\alpha, \beta|D)$: with the histogram of $\{(\alpha_n, \beta_n); n = 1, 2, ..., N\}$
- $\hat{\pi}(\alpha|D)$: with the histogram of $\{\alpha_n; n=1,2,...,N\}$
- $\hat{\pi}(\beta|D)$: with the histogram of $\{\beta_n; n=1,2,...,N\}$

Estimate expectations:

$$\widehat{\mathsf{E}(\alpha|D)} = \bar{\alpha}^{(N)} = \tfrac{1}{N} \sum_{n=1}^{N} \alpha_n, \text{ with s.e.} (\widehat{\mathsf{E}(\alpha|D)}) = \sqrt{\tfrac{1}{N} s_{\alpha}^2 \tau_{\alpha}}$$

$$\widehat{\mathsf{E}(\beta|D)} = \bar{\beta}^{(N)} = \tfrac{1}{N} \sum_{n=1}^{N} \beta_n, \text{ with s.e.} (\widehat{\mathsf{E}(\beta|D)}) = \sqrt{\tfrac{1}{N} s_{\beta}^2 \tau_{\beta}}$$

$$\widehat{\Pr}(t = 66.0|D) = \overline{p}^{(N)} = \frac{1}{N} \sum_{n=1}^{N} \overbrace{p(t = 66.0|(\alpha_n, \beta_n))}^{=p_n}$$
with s.e. $(\widehat{\Pr}(t = 66.0|D)) = \sqrt{\frac{1}{N} s_p^2 \tau_p}$