HIGHER ALGEBRA

MAXIMILIEN PÉROUX

1. Lecture 1: Thursday, January 12th

Today: the homotopy hypothesis

Classical algebra: sets, monoids, groups, abelian groups, rings. Each of these are built up on the other. In higher courses, we may see groupoids, which are types of categories. A category is a generalization of a monoid, in some sense. We also have monoidal categories, which in some sense are a generalization of rings.

For higher algebra: spaces, \mathbb{E}_1 -spaces, spectra, \mathbf{E}_1 -ring spectra. Underlying this we have ∞ -groupoids, ∞ -categories, and monoidal ∞ -categories.

We study spaces, not up to homeomorphism, but up to weak homotopy equivalence. We will study this in a minute. "Spaces" in this class will always mean the study of topological spaces up to weak homotopy equivalence.

We'll give a synthetic definition of what an infinity category is, and circle back to a technical definition in about a month.

What is an ∞ -category?

An ∞ -category (or $(\infty, 1)$ -category) \mathscr{C} should consist of:

- (1) a class of objects
- (2) a class of morphisms so that $\operatorname{Hom}_{\mathscr{C}}(X,Y)$ is a space
- (3) n-morphisms for $n \geq 2$, where for instance 2-morphisms are between 1-morphisms, 3-morphisms between 2-morphisms, etc.
- (4) morphisms can be composed in a suitable way
- (5) *n*-morphisms for $n \geq 2$ are invertible in some sense.

An ∞ -groupoid (or $(\infty, 0)$ -category) should be an ∞ -category where all the 1-morphisms are also invertible in some sense.

Why study spaces up to weak homotopy equivalence?

Date: January 12, 2023.

Recall by the Yoneda lemma, we have that

$$X \cong Y \Leftrightarrow \operatorname{Hom}_{\mathsf{Top}}(A, X) \cong \operatorname{Hom}_{\mathsf{Top}}(A, Y)$$

for all $A \in \text{Top}$. Figuring out Hom(A, X) up to bijection for all A is very difficult, so we prefer to study continuous maps up to homotopy. For X and Y nice enough, we say that $f \simeq g$ in Hom(X, Y) if there exists some path $I \to \text{Map}(X, Y)$ so that $0 \mapsto f$ and $1 \mapsto g$. We define $[X, Y] = \text{Hom}_{\text{Top}}(X, Y) / \simeq$.

We see then that $X \simeq Y$ if and only if $[A, X] \cong [A, Y]$ for all $A \in Top$.

We may ask when $[A, -] : \mathsf{Top}_* \to \mathsf{Set}$ factors through Grp or Ab . We have that [A, -] factors through Grp if and only if A is a co-H-group in Top . That is, we have maps

$$A \to A \lor A$$

 $A \to *$.

which is coassociative, counital, coinvertible.

Example 1.1. S^n , when $n \geq 1$, is a co-H-space. The map $S^n \to S^n \vee S^n$ is the pinch map.

We say that X is weakly homotopy equivalent to Y, we write $X \sim Y$, if and only if there is a map $X \to Y$ inducing an isomorphism

$$\pi_n(X) = [S^n, X]_* \cong [S^n, Y]_* = \pi_n(Y),$$

for all $n \ge 0$ (for $n \ge 1$ this is a group isomorphism).

If $X \sim Y$, then $H_n(X) \cong H_n(Y)$ for any n.

Theorem 1.2. (Cellular approximation) For any X in Top, there exists \widetilde{X} a CW complex with a canonical map $\widetilde{X} \xrightarrow{\sim} X$ that is a weak equivalence.

Theorem 1.3. (Whitehead) If X, Y are CW complexes, then $X \xrightarrow{\simeq} Y$ is a homotopy equivalence if and only if $X \xrightarrow{\sim} Y$ is a weak homotopy equivalence.

Exercise 1.4. Find spaces X and Y which are weakly homotopy equivalent but not homotopy equivalent.

We denote by Δ the simplex category. Its objects are ordered sets of the form $[n] = \{0, 1, ..., n\}$, and its morphisms are order-preserving maps. We have that Δ is generated by *cofaces* and *codegeneracies*. The cofaces are of the form

$$d^0, d^1: [0] \to [1],$$

skipping 0 or 1 in [1], etc. The codegeneracies look like $s^0 : [1] \to [0]$ which "repeat" an element.

The cofaces and codegeneracies satisfy certain cosimplicial identities.

If \mathscr{C} is a category, we denote by $s\mathscr{C} = \mathscr{C}^{\Delta^{\mathrm{op}}}$ the simplicial objects in \mathscr{C} . If $\mathscr{C} = \mathtt{Set}$, we write $s\mathtt{Set}$ as the category of simplicial sets. A simplicial set $X_{\bullet} \in s\mathtt{Set}$ consists of sets X_0, X_1, \ldots together with face and degeneracy maps satisfying the simplicial identities.

Example 1.5. The nerve of a small category. Let $\mathscr{C} \in \mathsf{Cat}$ a small category. We denote by $N_{\bullet}\mathscr{C}$ the simplicial set with $N_0\mathscr{C} = \mathsf{ob}\mathscr{C}$, $N_1\mathscr{C} = \mathsf{mor}\mathscr{C}$, and $N_n\mathscr{C}$ the set of n composable morphisms in \mathscr{C} . That is,

$$N_n\mathscr{C} = N_1\mathscr{C} \times_{N_0\mathscr{C}} \cdots \times_{N_0\mathscr{C}} N_1\mathscr{C}.$$

The face maps are source/target/composition. The degeneracies insert an identity morphism.

Example 1.6. Via Yoneda, we get a functor

$$\Delta^n := \operatorname{Hom}_{\Delta}(-, [n]) : \Delta^{\operatorname{op}} \to \operatorname{Set}.$$

If X_{\bullet} is a simplicial set, we get that the set of *n*-simplices X_n is in bijection with $\operatorname{Hom}_{\mathsf{sSet}}(\Delta^n, X_{\bullet})$.

Example 1.7. (Dold–Kan) We have $\operatorname{Ch}_{R}^{\geq 0} \xrightarrow{\Gamma} s\operatorname{Mod}_{R}$ is an isomorphism, where $\Gamma_{m}C_{\bullet} = \bigoplus_{[n] \to [k]} C_{k}$, with faces and degeneracies left as an exercise.

Example 1.8. Let $\Delta_{\mathsf{Top}}^n \subseteq \mathbb{R}^{n+1}$ be defined by

$$\{(t_0,\ldots,t_n)\in\mathbb{R}^{n+1}: 0\le t_i\le 1, \sum t_i=1\}.$$

We can view $[n] = \{v_0, \ldots, v_n\}$, and $v_i = (0, \ldots, 0, 1, 0, \ldots, 0)$ with 1 at the *i*th place. Then if $\alpha : [m] \to [n]$ in Δ , we can define $\alpha(v_i) = v_{\alpha(i)}$. Extend linearly to get $\alpha_* : \Delta^m_{\mathsf{Top}} \to \Delta^n_{\mathsf{Top}}$. We get then that $\Delta^{\bullet}_{\mathsf{Top}}$ is a cosimplicial topological space.

Example 1.9. If $X \in \text{Top}$, we have $\operatorname{Sing}_{\bullet}(X) \in \text{sSet}$ defined by $\operatorname{Sing}_n(X) = \operatorname{Hom}_{\operatorname{Top}}\left(\Delta^n_{\operatorname{Top}},X\right)$.

Definition 1.10. If $X_{\bullet} \in \mathtt{sSet}$, we define its *geometric realization* to be

$$|X_{\bullet}| = \coprod_{n \ge 0} X_n \times \Delta^n_{\mathsf{Top}} / \sim,$$

where $(x,s) \sim (y,t)$ if and only if there is some $\alpha : [m] \to [n]$ so that $\alpha^* y = x$ and $\alpha_* s = t$.

Example 1.11. $|\Delta^n_{\bullet}| \cong \Delta^n_{\text{Top}}$.

Exercise 1.12. $|X_{\bullet}|$ is always a CW complex for any $X_{\bullet} \in sSet$.

Exercise 1.13. We have an adjunction |-|: $sSet \leftrightarrows Top : Sing(-)$

Definition 1.14. $X_{\bullet} \to Y_{\bullet}$ is a *weak homotopy equivalence* in sSet if $|X_{\bullet}| \xrightarrow{\sim} |Y_{\bullet}|$ is a weak homotopy equivalence of spaces.

Theorem 1.15. (Quillen) Simplicial sets up to weak equivalence is equivalent to topological spaces up to weak homotopy equivalence. Moreover, for any $X \in \mathsf{Top}$, we have that $|\mathsf{Sing}(X)|$ is weakly equivalent to X.

It is not true that $Y \sim \text{Sing}(|Y|)$ for all $Y \in \mathtt{sSet}$. We need Y to be a Kan complex.

REFERENCES