Concurrencia y bloqueos en Oracle

Álvaro González Sotillo

November 16, 2017

Contents

1	Introducción	1
2	Propiedades ACID	1
3	Problemas del uso concurrente	3
4	Bloqueos	4
5	Detección y solución de sesiones bloqueadas	5
6	Referencias	8

1 Introducción

- Oracle es un servidor de base de datos
- Idealmente, cada usuario debería poder usar la base de datos como si fuera para él en exclusiva (ACID)
- Más de un usuario, y más de un cliente por usuario, puede utilizar a la vez el servidor
- Problemas:
 - Bloqueos de tablas
 - Auditoría de conexiones

2 Propiedades ACID

Atomicidad	Un conjunto de cambios se realiza en su totalidad, o no se realiza ninguno
Consistencia	Las reglas de los datos (constraints) se respetan
${f aIslamiento}$	Cada usuario puede trabajar considerando que es el único que utiliza la base de datos
Durabilidad	Una vez grabada una modificación, persistirá aunque ocurra algún fallo posterior

2.1 Atomicidad

• Algunos cambios deben producirse juntos:

- Ejemplo: Una transferencia bancaria debe restar de una cuenta y sumar en otra
- El conjunto de cambios es una transacción
 - Una transacción empieza cuando acaba la siguiente
 - Termina con:
 - * commit: Los cambios se guardan
 - * rollback: Ningún cambio se guarda
 - * Desconexión o error: generalmente, equivalente a rollback

2.2 Consistencia

- Los datos deben ser coherentes con el modelo de datos
- Se utilizan restricciones (constraints)
 - primary key
 - unique
 - foreign key
 - ckeck
 - Incluso triggers (scripts del gestor de base de datos)
- ullet No hay forma de saltarse una constraint
 - Más allá de eliminarla (drop)

2.3 Aislamiento (isolation)

- Objetivos:
 - Cada usuario debe poder trabajar como si fuera el único
 - Pero al mismo tiempo los datos deben poder accederse concurrentemente
- Esto supone llegar a un compromiso
 - Cuanto más aislamiento menos concurrencia
 - Cuanto más concurrencia menos aislamiento
- Estos problemas los trataremos más adelante

2.4 Durabilidad

- Las bases de datos garantizan tras la vuelta de commit que
 - Los datos han sido grabados a soporte no volátil
 - Los datos son recuperables por este y otros usuarios

3 Problemas del uso concurrente

- Idealmente, cada usuario debería poder trabajar sin notar que otros usuarios usan a la vez la base de datos
- Debido a otras transacciones, pueden presentarse los siguientes problemas:

Lectura sucia	$Dirty \ read$	Un usuario lee datos aún no confirmados
Lectura no repetible	$Repeatable\ read$	Un usuario lee menos filas (o filas cambiadas) en select sucesivas dentro de la n
Fila fantasma	$Phanton\ read$	Un usuario lee más filas en select sucesivas dentro de la misma transacción

3.1 Nivel de aislamiento/concurrencia

$\operatorname{Problema}$	Nivel de aislamiento
	Read Uncommited (Oracle no lo tiene)
Lectura sucia	
	Read committed (por defecto en Oracle)
Lectura no repetible	
	Repeatable read (Oracle no lo tiene)
Fila fantasma	
	Serializable

3.2 Datos para pruebas de bloqueos

```
create table ALUMNOS( DNI varchar(10), NOMBRE varchar(10));
insert into ALUMNOS values ('1', 'Pepe');
insert into ALUMNOS values ('2', 'Juan');
insert into ALUMNOS values ('3', 'Mar a');
```

3.3 Lectura no repetible

Conexión 1	Conexión 2
set transaction isolation level read committed	set transaction isolation level read committed
select * from alumnos	select * from alumnos
	update alumnos set nombre='Pepe2' where dni=3
select * from alumnos	
Aún no se ve el cambio, sería una lectura sucia	
	commit
select * from alumnos	
Ahora se ve el cambio, es una lectura no repetible	
rollback	

3.4 Fila fantasma

Conexión 1

set isolation level read commited

select * from alumnos

insert into ALUMNOS values('4', 'Susana commit

select * from alumnos

La conexión 1 leerá más alumnos en la segunda select, una fila fantasma

4 Bloqueos

rollback

- La orden set isolation level indica a la base de datos que bloquee filas, campos o tablas
- Al bloquearse, los demás usuarios no pueden acceder hasta que la transacción no termine
 - commit
 - rollback
- Los bloqueos garantizan que no se producen los problemas correspondientes al nivel de aislamiento:
 - Read committed
 - Serializable

4.1 Lectura no repetible bloqueada

Conexión 1	Conexión 2
set transaction isolation level serializable	
select * from alumnos	
	update alumnos set nombre='Pepe2' where dni=3
select * from alumnos	
Aún no se ve el cambio, sería una lectura sucia	
	commit
select * from alumnos	
El cambio no se ve	
rollback	

4.2 Fila fantasma bloqueada

Conexión 2
<pre>insert into ALUMNOS values('5', 'Pepe') commit</pre>

Continúa en la siguiente página

Continúa de la página anterior

Conexión 1	Conexión 2	
------------	------------	--

rollback

4.3 Bloqueos no automáticos

- Los niveles de aislamiento bloquean automáticamente filas, campos o tablas
- Pero también pueden bloquearse manualmente
- Bloqueo de una tabla completa
 - lock table TABLA
- Bloqueo de algunas filas:

```
select <una consulta que devuelva algunas filas de una tabla>
for update
```

5 Detección y solución de sesiones bloqueadas

- Si un usuario/aplicación se comporta de manera inadecuada, puede bloquear la base de datos
- Es necesario monitorizar los bloqueos y solucionarlos:
 - Avisando al usuario
 - Modificando la aplicación
 - Matando las transacciones o conexiones bloqueantes

5.1 Vistas de sesiones

- Contienen información de las sesiones
 - Usuario Oracle
 - Usuario de sistema operativo
 - Cliente Oracle
 - Sentencia SQL
 - ...

5.2 Usuarios conectados (1)

select

```
username,
osuser,
terminal
from
sys.v_$session
where
username is not null
order by
username,
osuser;
```

5.3 Usuarios conectados (2)

```
SELECT s.username, s.program, s.logon_time
FROM sys.v_$session s, sys.v_$process p, sys.v_$sess_io si
WHERE s.paddr = p.addr(+)
AND si.sid(+) = s.sid
AND s.type = 'USER';
```

5.4 Bloqueos de la base de datos

```
select session id "sid", SERIAL# "Serial",
substr(object_name,1,20) "Object",
  substr(os user name, 1, 10) "Terminal".
  substr(oracle username,1,10) "Locker",
  nvl(lockwait, 'active') "Wait",
  decode (locked_mode,
    2, 'row_share',
    3, 'row_exclusive',
    4, 'share',
    5, 'share_row_exclusive',
    6, 'exclusive', 'unknown') "Lockmode",
  OBJECT TYPE "Type"
FROM
  SYS.V $LOCKED OBJECT A,
  SYS.ALL OBJECTS B,
  SYS.V_$SESSION c
  A.OBJECT ID = B.OBJECT ID AND
  C.SID = A.SESSION ID
ORDER BY 1 ASC, 5 Desc;
```

5.5 Descripción de usuarios bloqueados y bloqueantes

```
      select s1.username || '@' || s1.machine

      || '_(SID=' || s1.sid || '_)__is_blocking_'

      || s2.username || '@' || s2.machine || '_(SID=' || s2.sid || '_)_' AS blocking_status

      from v_$lock l1, v_$session s1, v_$lock l2, v_$session s2

      where s1.sid=l1.sid and s2.sid=l2.sid

      and l1.BLOCK=1 and l2.request > 0

      and l1.id1 = l2.id1

      and l2.id2 = l2.id2;
```

5.6 Sentencia SQL bloqueada (de un SID)

```
select s.sid, q.sql_text from v_$sqltext q, v_$session s
where q.address = s.sql_address
and s.sid = ELSIDBLOQUEADO
order by piece;
```

5.7 Sentencias SQL bloqueadas

```
select s.sid, q.sql_text from v_$sqltext q, v_$session s
where q.address = s.sql_address
and s.sid in (
    select s2.sid
    from v_$lock l1, v_$session s1, v_$lock l2, v_$session s2
    where s1.sid=l1.sid and s2.sid=l2.sid
    and l1.BLOCK=1 and l2.request > 0
    and l1.id1 = l2.id1
    and l2.id2 = l2.id2
)
order by piece;
```

5.8 Terminar una sesión

```
ALTER SYSTEM KILL SESSION 'sid, serial#';
```

5.9 Terminar una sesión (sistema operativo)

- Se debe matar el proceso identificado en el spid (system process identifier)
- \bullet Solo como último recurso, mejor KILL <code>SESSION</code>

6 Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex