Применение комплексных чисел

- 1. Клетчатый прямоугольник разбили на плитки двух видов: $1 \times m$ и $n \times 1$ (плитки нельзя поворачивать). Докажите, что это можно сделать плитками одного из видов.
- 2. Прямоугольник размера 8×9 замощают плитками двух видов: 3×1 и "дырявой" 1×3 (в дырявой плитке отсутствует центральная клетка, плитки нельзя поворачивать). Докажите, что можно указать на 18 клеток так, что, если плитками замостить 70 клеток прямоугольника, то две оставшиеся обязательно будут среди указанных.
- 3. Найдите все многочлены $P \in \mathbb{R}[x]$, удовлетворяющие при всех $x \in \mathbb{R}$ равенству $P(x)P(x+1) = P(x^2+x+1)$.
- 4. Найдите все многочлены $P \in \mathbb{R}[x]$, удовлетворяющие при всех $x \in \mathbb{R}$ равенству $P(x)P(2x^2) = P(2x^3 + x)$.
- 5. Десятичная запись простого числа имеет вид $\overline{a_n a_{n-1} \dots a_1 a_0}$, где n>1 и $a_n>1$. Докажите, что многочлен $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ неприводим над $\mathbb Z$.
- 6. Пусть $P \in \mathbb{Q}[x]$ неприводимый многочлен степени n. Докажите, что количество многочленов $Q \in \mathbb{Q}[x]$ степени, меньшей n, таких, что $P(x) \mid P(Q(x))$, не превосходит n.
- 7. Многочлены $P,Q,R,S\in\mathbb{R}[x]$ удовлетворяют при всех $x\in\mathbb{R}$ равенству $P(x^5)+xQ(x^5)+x^2R(x^5)=(x^4+x^3+x^2+x+1)S(x)$. Докажите, что P(x) делится на x-1.
- 8. Даны простое число p>2 и множество $A=\{1,2,\ldots,2p\}$. Найдите количество подмножеств множества A, которые состоят из p элементов с суммой кратной p.
- 9. Пусть f(n) количество непустых подмножеств множества $\{1,2,\ldots,n\}$ с суммой, кратной n. Докажите равенство $f(x)=1+\frac{1}{n}\cdot\sum_{2\nmid d\mid n}\varphi(d)2^{\frac{n}{d}}.$
- 10. Даны натуральные числа n>1 и a_1,\ldots,a_m . Через f(k) обозначим количество m-ок (c_1,c_2,\ldots,c_m) таких, что $1\leqslant c_i\leqslant a_i,\ i=\overline{1,m},$ и $c_1+c_2+\ldots+c_m\equiv k\pmod n$. Докажите, что какое-то из a_i кратно n, если и только если $f(0)=f(1)=\ldots=f(n-1)$.
- 11. Даны натуральные числа m,n>1 и a_1,\ldots,a_n , где никакое из a_i не кратно m^{n-1} . Докажите, что существует ненулевой набор целых чисел e_1,\ldots,e_n , меньших m по модулю, такой, что $m^n\mid e_1a_1+\ldots+e_na_n$.
- 12. **Теорема Гаусса**—**Люка** Докажите, что все корни производной многочлена $P \in \mathbb{C}[x]$ принадлежат выпуклой оболочке множества всех корней этого многочлена на комплексной плоскости.
- 13. Докажите, что, если многочлен $p \in \mathbb{R}[x]$ принимает только неотрицательные значения, то его можно представить в виде суммы квадратов двух многочленов из $\mathbb{R}[x]$.

Применение комплексных чисел

- 14. Решите уравнение $(z-1)^n = (z+1)^n$ и выпишите сумму квадратов всех его корней.
- 15. Докажите, что $\sum_{m=1}^{n-1} \frac{1}{\sin^2 \frac{\pi m}{n}} = \frac{n^2-1}{3}$ при всех нечётных n>1.
- 16. Вычислите $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 17. **Теорема Лиувилля** Пусть $\alpha \in \mathbb{C}$ корень неприводимого многочлена $p \in \mathbb{Z}[x]$, $\deg p \geqslant 2$. Докажите, что существует вещественное число c > 0 такое, что для любого рационального числа $\frac{p}{q}$ выполняется неравенство $|\alpha \frac{p}{q}| > \frac{c}{q^n}$.
- 18. Придумайте вещественное число, не алгебраическое над Q.
- 19. На окружности выбрали 100 точек и для каждой перемножили расстояния до остальных. Могли ли получиться числа от 1 до 100 (в некотором порядке)?