Boolesche Axiome

$$1. \qquad A + B = B + A$$

$$2. \qquad A \cdot B = B \cdot A$$

3.
$$A + (B + C) = (A + B) + C$$

4.
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

5.
$$A + (B \cdot C) = (A+B) \cdot (A+C)$$

6.
$$A \cdot (B+C) = A \cdot B + A \cdot C$$

$$7. \qquad A + 0 = A$$

8.
$$A \cdot 1 = A$$

9.
$$A \cdot \overline{A} = 0$$

10.
$$A + \overline{A} = 1$$

De Morgan'sche Regeln

11.
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

12.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Idempotenz gesetz/Absorptions gesetz

$$13. \qquad A + A = A$$

14.
$$A \cdot A = A$$

$$15. \qquad A \cdot 0 = 0$$

16.
$$A+1=1$$

$$17. \qquad A + A \cdot B = A$$

$$18. \qquad A \cdot (A+B) = A$$

 $(A, B, C) \in \{0, 1\}$ seien binäre Variablen.

Name	Funktion		Symbol		
			EN 60617-12	DIN 40700 (bis 1976)	US ANSI 91-1984
Inverter	$Y = \overline{A}$	A Y 0 1 1 0	A — 1 0- Y	А — о— У	A — Y
AND	$Y = A \cdot B$	A B Y 0 0 0 0 1 0 1 0 0 1 1 1	A — & — Y	A — Y	A B Y
NAND	$Y = \overline{A \cdot B}$	A B Y 0 0 1 0 1 1 1 0 1 1 1 0	A — & O- Y	A — o— Y	А
OR	Y = A + B	$\begin{array}{c c c} A & B & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$	A — ≥1 — Y	А	$A \longrightarrow Y$
NOR	$Y = \overline{A + B}$	$\begin{array}{c c c} A & B & Y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \end{array}$	A — ≥1	A B Y	А Y
Antivalenz (XOR)	$Y = A \oplus B$ $= \overline{A} \cdot B + A \cdot \overline{B}$	$\begin{array}{c c c} A & B & Y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	A — =1 — Y	А Y	A Y
Äquivalenz (XNOR)	$Y = A \equiv B$ $= \overline{A} \cdot \overline{B} + A \cdot B$	$\begin{array}{c c c} A & B & Y \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	A — = — Y	A = Y	A DOMESTIC Y